Data importation

- 1. Endpoint dataframe
 - A. Exploration of data

Exploration tables using the rstatix, janitor and skimr packages

Data visualization

B. Normality hypothesis and outlier detection

Boxplots after outlier detection

Violin and sina plots after outlier detection

Exploration statistics for the variables after outlier detection

2. Exploration of the timeseries data

Number of data observations per day for the traits of the timeseries datasets

- A. Exploration of the timeseries dataframe
- B. Exploration of the S_timeseries dataframe
- C. Exploration of the T_timeseries dataframe

UCPH Data Analysis

Elise

2024-06-09

Set the right working directory.

```
setwd("C:/Users/elise/Documents/Mémoire/Main/Data/Templates/UCPH")
```

Data importation

Import the data sets extracted from the Data Preparation R Markdown.

```
list.files()
```

```
plant_info <- read.table("plant_info.txt", header = TRUE, sep = "\t")
endpoint <- read.table("endpoint.txt", header = TRUE, sep = "\t")
S_timeseries <- read.table("S_timeseries.txt", header = TRUE, sep = "\t")</pre>
```

Convert the columns to factor and date formats.

```
# plant_info
plant_info <- lapply(plant_info, factor)</pre>
# endpoint
matching_cols <- intersect(names(endpoint), names(plant_info))</pre>
endpoint[, matching_cols] <- lapply(endpoint[, matching_cols], factor)</pre>
endpoint$Date <- date(endpoint$Date)</pre>
endpoint$Timestamp <- NA
# timeseries
# No data
# S_timeseries
matching_cols <- intersect(names(S_timeseries), names(plant_info))</pre>
S_timeseries[, matching_cols] <- lapply(S_timeseries[, matching_cols], factor)</pre>
S_timeseries$Timestamp <- as.POSIXct(S_timeseries$Timestamp, format = "%Y-%m-%d %H:%M:%")</pre>
S")
S_timeseries$Date <- date(S_timeseries$Date)</pre>
# T_timeseries
# No data
```

Collect the variables of every data template and print the names of the variables. This serves as a double check.

```
platform <- "UCPH"</pre>
# endpoint
df <- endpoint[,colSums(is.na(endpoint))<nrow(endpoint)]</pre>
genotype_index <- which(colnames(df) == "Genotype")</pre>
variables <- colnames(df[, c(3:(genotype_index - 1))]) # We remove the 3 first columns</pre>
that are "Unit.ID" and "Date" etc
# timeseries
# No data
# S timeseries
df_S_timeseries <- S_timeseries[,colSums(is.na(S_timeseries))<nrow(S_timeseries)]</pre>
genotype_index <- which(colnames(df_S_timeseries) == "Genotype")</pre>
variables_S <- "S_Height_cm"</pre>
# T_timeseries
# No data
print(paste(platform, ": The variables for endpoint are", paste(variables, collapse =
", "), sep = " "))
```

```
## [1] "UCPH : The variables for endpoint are DW_shoot_g, DW_root_g"
```

```
print(paste(platform, ": The variables for S_timeseries are", paste(variables_S, collap
se = ", "), sep = " "))
```

```
## [1] "UCPH : The variables for S_timeseries are S_Height_cm"
```

Add a column Plant type with three levels, H L and T. This variable is useful to test for heterosis effects.

```
endpoint$Plant_type <- substr(endpoint$Genotype, nchar(as.character(endpoint$Genotyp
e)), nchar(as.character(endpoint$Genotype)))
S_timeseries$Plant_type <- substr(S_timeseries$Genotype, nchar(as.character(S_timeseries$Genotype)))</pre>
```

1. Endpoint dataframe

A. Exploration of data

Exploration tables using the rstatix, janitor and skimr packages

```
endpoint %>%
  count(Genotype)
```

```
## Genotype n
## 1 EPPN_T 12
## 2 EPPN1_H 12
## 3 EPPN1_L 12
## 4 EPPN2_H 12
## 5 EPPN2_L 12
## 6 EPPN3_H 12
## 7 EPPN3_L 12
## 8 EPPN4_H 12
## 9 EPPN4_L 12
```

```
endpoint %>%
  tabyl(Genotype, Column) %>%
  adorn_totals("row") %>%
  adorn_percentages("row") %>%
  adorn_pct_formatting() %>%
  adorn_ns() %>%
  adorn_ns() %>%
  adorn_title("combined")
```

```
##
    Genotype/Column
                              1
                                          2
                                                                             5
                                                      3
             EPPN_T 8.3%
                                 8.3%
                                        (1) 16.7%
##
                            (1)
                                                    (2) 16.7%
                                                               (2)
                                                                     8.3%
                                                                           (1)
##
            EPPN1 H 8.3%
                            (1)
                                 8.3%
                                        (1) 16.7%
                                                    (2) 16.7%
                                                               (2)
                                                                     8.3%
                                                                           (1)
            EPPN1 L 8.3%
                            (1) 16.7%
                                        (2)
                                             8.3%
                                                    (1)
                                                         8.3%
                                                                     8.3%
##
                                                                (1)
                                                                           (1)
            EPPN2 H 16.7%
                            (2)
                                 8.3%
                                                    (2)
                                                         8.3%
                                                                           (1)
##
                                        (1) 16.7%
                                                                (1)
                                                                     8.3%
            EPPN2_L 16.7%
                            (2)
                                 8.3%
                                        (1)
                                             8.3%
                                                    (1)
                                                         8.3%
                                                                (1) 16.7%
                                                                           (2)
##
            EPPN3_H 8.3%
                            (1)
                                 8.3%
                                        (1)
                                             8.3%
                                                    (1) 16.7%
                                                               (2)
                                                                     8.3%
##
                                                                           (1)
            EPPN3 L 16.7%
                            (2)
##
                                 8.3%
                                        (1)
                                             8.3%
                                                    (1)
                                                         8.3%
                                                               (1)
                                                                    8.3%
                                                                           (1)
##
            EPPN4 H 8.3%
                            (1) 16.7%
                                        (2)
                                             8.3%
                                                    (1)
                                                         8.3%
                                                               (1) 16.7%
                                                                           (2)
##
            EPPN4_L 8.3%
                            (1) 16.7%
                                        (2)
                                             8.3%
                                                    (1)
                                                         8.3%
                                                               (1) 16.7%
                                                                           (2)
              Total 11.1% (12) 11.1% (12) 11.1% (12) 11.1% (12) 11.1% (12)
##
                                                9
                                     8
##
##
     8.3%
           (1) 8.3%
                       (1) 16.7%
                                  (2)
                                        8.3%
                                               (1)
                       (2)
     8.3%
           (1) 16.7%
                            8.3%
                                  (1)
                                        8.3%
                                              (1)
##
##
    16.7%
           (2)
                8.3%
                       (1)
                            8.3%
                                  (1) 16.7%
                                              (2)
     8.3%
           (1)
                       (1)
                            8.3%
                                  (1) 16.7%
##
                8.3%
                                              (2)
##
     8.3%
           (1)
                8.3%
                       (1) 16.7%
                                  (2)
                                        8.3%
                                               (1)
##
     8.3%
           (1) 16.7%
                       (2)
                            8.3%
                                  (1) 16.7%
                                              (2)
                       (1) 16.7%
                                  (2)
    16.7%
           (2)
                8.3%
                                        8.3%
##
                                              (1)
##
    16.7%
           (2) 8.3%
                       (1)
                            8.3%
                                  (1)
                                       8.3%
                                              (1)
##
     8.3%
           (1) 16.7%
                       (2)
                            8.3%
                                  (1) 8.3%
                                              (1)
    11.1% (12) 11.1% (12) 11.1% (12) 11.1% (12)
```

```
endpoint %>%
  tabyl(Genotype, Row) %>%
  adorn_totals("row") %>%
  adorn_percentages("row") %>%
  adorn_pct_formatting() %>%
  adorn_ns() %>%
  adorn_ns() %>%
  adorn_title("combined")
```

```
7
                               2
                                       3
##
   Genotype/Row
                      1
         EPPN_T 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
##
##
        EPPN1 H 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
        EPPN1 L 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
##
        EPPN2_H 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
##
        EPPN2_L 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
##
        EPPN3 H 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
##
        EPPN3_L 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
##
##
        EPPN4_H 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
##
        EPPN4_L 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
          Total 8.3% (9) 8.3% (9) 8.3% (9) 8.3% (9) 8.3% (9) 8.3% (9)
##
##
                          10
                                  11
##
   8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
   8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
##
   8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
##
   8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
##
   8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
##
   8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
   8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
   8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
##
##
   8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1) 8.3% (1)
##
   8.3% (9) 8.3% (9) 8.3% (9) 8.3% (9)
```

```
## Warning: Using an external vector in selections was deprecated in tidyselect 1.1.0.
## i Please use `all_of()` or `any_of()` instead.
## # Was:
## data %>% select(variables)
##
## # Now:
## data %>% select(all_of(variables))
##
## See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```

```
skim(endpoint[variables])
```

Data summary

Name	endpoint[variables]
Number of rows	108
Number of columns	2
Column type frequency:	
numeric	2
Group variables	None

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100 hist
DW_shoot_g	1	0.99	3.46	1.65	0.77	2.3	3.22	4.3	8
DW_root_g	0	1.00	0.98	0.83	0.10	0.5	0.80	1.2	5

Data visualization

Using several functions that are located in the functions.R script

Boxplots

create_boxplots(endpoint, variables, "Genotype")

```
## Warning: `aes_string()` was deprecated in ggplot2 3.0.0.
## i Please use tidy evaluation idioms with `aes()`.
## i See also `vignette("ggplot2-in-packages")` for more information.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```

Warning: Removed 1 rows containing non-finite values (`stat_boxplot()`).

create_boxplots(endpoint, variables, "Plant_type")

Warning: Removed 1 rows containing non-finite values (`stat_boxplot()`).

Correlation plots

```
for (i in 1:(length(variables) - 1)) {
  for (j in (i + 1):length(variables)) {
    calculate_correlation_plot(endpoint, variables[i], variables[j])
  }
}
```

```
## `geom_smooth()` using formula = 'y ~ x'
```

```
## Warning: Removed 1 rows containing non-finite values (`stat_smooth()`).
```

```
## Warning: Removed 1 rows containing missing values (`geom_point()`).
```

```
## Warning: Removed 108 rows containing missing values (`geom_text()`).
```

Correlation Plot between DW_shoot_g and DW_root_g

B. Normality hypothesis and outlier detection

Test for normality hypothesis and plot density histogram. The red curve is the normal distribution, the blue dotted curve is the data density curve.

```
normality_results <- normality_test_histogram(endpoint)</pre>
```

```
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```

QQ Plot of DW_shoot_g


```
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## i Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
```

```
## Warning: Removed 1 rows containing non-finite values (`stat_bin()`).
```

```
## Warning: Removed 1 rows containing non-finite values (`stat_density()`).
```

Warning: Removed 101 rows containing missing values (`geom_function()`).

[1] 101 31

QQ Plot of DW_root_g

[1] 55 46

Remove the outliers, replacing them with NULL values and normality visual verification.

The function detect_replace_ouliers_by_genotype checks for outlying values, using the Tukey method.

Then run the function on all variables of the dataset.

```
endpoint_clean <- endpoint
# Run the function on the dataset for all the variables
endpoint_clean <- detect_replace_outliers_by_genotype(endpoint_clean)</pre>
```

Boxplots after outlier detection

```
create_boxplots(endpoint_clean, variables, "Genotype")
```

```
## Warning: Removed 7 rows containing non-finite values (`stat_boxplot()`).
```

Warning: Removed 4 rows containing non-finite values (`stat_boxplot()`).

create_boxplots(endpoint_clean, variables, "Plant_type")

```
## Warning: Removed 7 rows containing non-finite values (`stat_boxplot()`).
## Removed 4 rows containing non-finite values (`stat_boxplot()`).
```


Violin and sina plots after outlier detection

```
## Warning: The `size` argument of `element_line()` is deprecated as of ggplot2 3.4.0.
## i Please use the `linewidth` argument instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.

## Warning: Removed 7 rows containing non-finite values (`stat_ydensity()`).

## Warning: Removed 4 rows containing non-finite values (`stat_sina()`).

## Warning: Removed 4 rows containing non-finite values (`stat_ydensity()`).

## Warning: Removed 4 rows containing non-finite values (`stat_sina()`).
```


create_violin_plots(endpoint_clean, variables, "Plant_type")

Warning: Removed 7 rows containing non-finite values (`stat_ydensity()`).

Warning: Removed 7 rows containing non-finite values (`stat_sina()`).

Warning: Removed 4 rows containing non-finite values (`stat_ydensity()`).

Warning: Removed 4 rows containing non-finite values (`stat_sina()`).

Exploration statistics for the variables after outlier detection

skim(endpoint_clean[variables])

Data summary

Name	endpoint_clean[variables]
Number of rows	108
Number of columns	2
Column type frequency:	
numeric	2
Group variables	None

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
DW_shoot_g	7	0.94	3.40	1.49	0.77	2.33	3.22	4.21	7.07	
DW_root_g	4	0.96	0.89	0.66	0.10	0.50	0.80	1.10	4.30	

```
##
## Summary for: DW_shoot_g
## # A tibble: 9 × 4
    Genotype mean std.dev n_missing
##
    <fct>
             <dbl>
                     <dbl>
## 1 EPPN4_L
              3.95
                     1.56
## 2 EPPN1_H
              3.92
                     1.81
## 3 EPPN3 L
                    0.532
                                   2
              3.80
## 4 EPPN1 L
              3.48
                     1.66
                                   0
## 5 EPPN2_L
              3.32
                     1.36
                                   1
## 6 EPPN4_H 3.31
                     2.03
                                   а
## 7 EPPN3_H
                     1.75
                                   1
              3.06
## 8 EPPN_T
              2.91
                     0.565
                                   2
## 9 EPPN2 H
              2.81
                     1.18
## Summary for: DW_root_g
## # A tibble: 9 × 4
    Genotype mean std.dev n_missing
    <fct>
             <dbl>
                     <dbl>
##
                               <int>
## 1 EPPN1_H 1.49
                     1.34
## 2 EPPN1 L 0.975
                     0.567
                                   0
## 3 EPPN3 L 0.892
                     0.378
                                   0
## 4 EPPN2 L 0.864
                     0.448
                                   1
## 5 EPPN4 H 0.817
                     0.629
## 6 EPPN3 H 0.782
                     0.549
                                   1
## 7 EPPN4 L 0.773
                     0.313
                                   1
## 8 EPPN T
             0.709
                     0.370
## 9 EPPN2 H 0.667
                     0.438
```

2. Exploration of the timeseries data

In this part, we look at the timeseries, S_timeseries and T_timeseries datasets, also using several functions, located in the functions.R script.

Number of data observations per day for the traits of the timeseries datasets

Observations per day for S_timeseries

A. Exploration of the timeseries dataframe

Scatter plots by Genotype

```
print(paste0("No data for", platform))
```

```
## [1] "No data forUCPH"
```

Scatterplots for all genotypes by Plant type (Hybride, Line, EPPN20 T) with smooth line.

print(paste0("No data for", platform))

[1] "No data forUCPH"

Scatter plots for all genotypes by water treatment

print(paste0("No data for", platform))

[1] "No data forUCPH"

B. Exploration of the S_timeseries dataframe

Scatter plots by Genotype

plot_scatter_by_genotype(S_timeseries, variables_S, "EPPN_T")

Scatterplot of S_Height_cm for Genotype EPPN_T

Scatterplots for all genotypes by Plant type (Hybride, Line, EPPN20_T) with smooth line.

plot_scatter_with_smooth(S_timeseries, variables_S)

Scatterplot of S_Height_cm by Plant type

`geom_smooth()` using formula = 'y ~ x'

Smooth line of S_Height_cm by Plant type

Scatter plots for all genotypes by water treatment

plot_scatter_with_smooth_water(S_timeseries, variables_S)

Scatterplot of S_Height_cm by Plant type and Soil

$geom_smooth()$ using formula = 'y ~ x'

Smooth line of S_Height_cm by Plant type and Soil

C. Exploration of the T_timeseries dataframe

Scatter plots by Genotype

print(paste0("No data for", platform))

[1] "No data forUCPH"

Scatterplots for all genotypes by Plant type (Hybride, Line, EPPN20_T) with smooth line.

print(paste0("No data for", platform))

[1] "No data forUCPH"

Scatter plots for all genotypes by water treatment

print(paste0("No data for", platform))

[1] "No data forUCPH"