MAT0120 - Álgebra I para Licenciatura

Lista 5

Professor: Kostiantyn Iusenko Monitor: Douglas de Araujo Smigly

1° Semestre de 2021

Inteiros módulo m 1

(1) Construa as tabelas de adição e de multiplicação de \mathbb{Z}_7 e \mathbb{Z}_{12} .

(2) Busque os inversos dos seguintes elementos:

(a) $\overline{14}$ em \mathbb{Z}_{15} ;

(b) $\overline{38}$ em \mathbb{Z}_{83} ; (c) $\overline{351}$ em \mathbb{Z}_{6669} ; (d) $\overline{91}$ em \mathbb{Z}_{2565} .

(3) Mostre que

(a) $\overline{73} = \overline{-92}$ em \mathbb{Z}_5 ; (b) $\overline{99} = \overline{-87}$ em \mathbb{Z}_6 ; (c) $\overline{3!} = \overline{-2!}$ em \mathbb{Z}_8 ; (d) $\overline{12!} = \overline{15!}$ em \mathbb{Z}_9 .

(4) Em \mathbb{Z}_{20} , determine

(a) os menores representantes positivos de $\overline{-10}$ e $\overline{-6}$;

(b) todos os divisores de zero;

(c) todos os elementos inversos com seus inversos;

(d) repita os itens (b) e (c) para \mathbb{Z}_{10} e \mathbb{Z}_{12} .

(5) Determine os inversos multiplicativos de \bar{a} em \mathbb{Z}_n e, em seguida, resolva as equações de congruências reduzidas:

1

(a) a = 3, $\mathbb{Z}_n = \mathbb{Z}_{10}$ e $3x \equiv 7 \pmod{10}$;

(b) a = 6, $\mathbb{Z}_n = \mathbb{Z}_{35}$ e $6x - 2 \equiv 11 \pmod{35}$.

(6) Sejam $\overline{a}, \overline{b}, \overline{c} \in \mathbb{Z}_m$ com $\mathrm{mdc}(c, m) = 1$. Prove que $\overline{a} \cdot \overline{c} = \overline{b} \cdot \overline{c}$ implica que $\overline{a} = \overline{b}$.

(7) Sejam p um primo e \overline{a} , $\overline{b} \in \mathbb{Z}_p$. Prove que

(a) $\overline{a}^p = \overline{a}$;

(b) $(\overline{a} + \overline{b})^p = \overline{a} + \overline{b}$.

- (8) O elemento $\overline{a} \in \mathbb{Z}_m$ chama-se **idempotente** se $\overline{a} \cdot \overline{a} = \overline{a}$.
 - (a) Busque todos idempotentes em \mathbb{Z}_6 e \mathbb{Z}_{12} .
 - (a) Busque todos idempotentes em \mathbb{Z}_{10} e \mathbb{Z}_{30} .
 - (c) Seja p um primo. Mostre que $\overline{0}$, $\overline{1}$ são os únicos idempotentes em \mathbb{Z}_p .
- (9) O elemento $\bar{a} \in \mathbb{Z}_m$ chama-se **nilpotente** se $\bar{a}^k = \bar{0}$ para algum k. Mostre que \mathbb{Z}_m não tem não-nulos nilpotentes se e só se *m* não tem fator primo em quadrado.
- (10) Em \mathbb{Z}_7 , busque os quadrados de todos elementos.
- (11) Encontre as raízes em \mathbb{Z}_7 de

(a)
$$x^2 + x + \overline{1}$$

(b)
$$3x^2 + 4x + 3$$

por completar o quadrado e usando Exercício 10.

- (12) Encontre os quadrados de todos elementos em \mathbb{Z}_{11} .
- (13) Encontre as raízes em \mathbb{Z}_{11} de

(a)
$$\overline{4}x^2 + \overline{6}x + \overline{1}$$

(b)
$$\overline{4}x^2 + \overline{6}x + \overline{8}$$

por completar o quadrado e usando Exercício 12.

(14) Determine os divisores de zero, em \mathbb{Z}_m , e resolva as equações para cada caso:

(a)
$$\overline{7}x = \overline{0}, m = 21;$$

(b)
$$\overline{4}x = \overline{10}, m = 22;$$

(c)
$$\overline{3}x = \overline{6}, m = 24;$$

(d)
$$\overline{5}x = \overline{0}, m = 25;$$

- (15) Encontre os divisores de zero, em \mathbb{Z}_m , para m = 8, 9, 10, 14, 15, 26, 28.
- (16) Ache os divisores de zero e os elementos que tem inversos em \mathbb{Z}_5 , \mathbb{Z}_8 , \mathbb{Z}_{17} , \mathbb{Z}_{21} e \mathbb{Z}_{89} .

2

(17) Resolva, em \mathbb{Z}_m , as equações abaixo:

(a)
$$\overline{3}x + \overline{2} = \overline{6}x + \overline{7}, m = 8;$$

(b)
$$(\overline{2}x + \overline{3})^2 + (\overline{3}x + \overline{2})^2 + \overline{5}x = \overline{0}, m = 5;$$

(c)
$$\overline{4}x - \overline{7} + \overline{6}x + \overline{2} = \overline{3}x + \overline{5}x$$
, $m = 12$; (d) $x^{21} - x = \overline{0}$, $m = 5$;

(d)
$$x^{21} - x = \overline{0}, m = 5;$$

(e)
$$x^{12} - \overline{1} = \overline{0}, m = 5;$$

(f)
$$x^7 - x = \overline{0}, m = 4.$$

(18) Resolva em \mathbb{Z}_m cada um dos sistemas abaixo:

$$(a) \begin{cases} \overline{4}x + y = \overline{1} \\ x - \overline{2}y = \overline{4}. \end{cases}, m = 5$$

(b)
$$\begin{cases} x + y + z &= \overline{0} \\ \overline{2}x + \overline{3}y + \overline{3}z &= \overline{3} \\ x + y + \overline{3}z &= \overline{0}. \end{cases}, m = 4$$

- (19) Verifique se os elementos abaixo são inversíveis. Em caso afirmativo, determine o inverso.
 - (a) $\overline{97}$ em \mathbb{Z}_{307} ;

- (b) $\overline{22}$ em \mathbb{Z}_{105} .
- (20) Seja p um número primo. Prove que $\overline{2},\overline{3},\ldots,\overline{p-1}$ são soluções em \mathbb{Z}_p da equação

$$x^{p-2} + x^{p-3} + \ldots + x + \overline{1} = \overline{0}.$$

[Dica:] Utilize a fatoração $x^{p-1} - 1 = (x-1)(x^{p-2} + x^{p-3} + ... + x + 1)$.

- (21) A **ordem** de um elemento \bar{a} em \mathbb{Z}_p é definida como o menor inteiro positivo m tal que $\bar{a}^m = \bar{1}$.
 - (a) Prove que $m \le p 1$.
 - (b) Encontre as ordens de todos os elementos de \mathbb{Z}_{11} e \mathbb{Z}_{13} .