

α) Εξ ορισμού της διχοτόμου γωνίας, η διχοτόμος διέρχεται από το σημείο τομής των δύο πλευρών της γωνίας. Εδώ, οι δύο πλευρές έχουν εξισώσεις: y=0 και $y=\lambda x$ οι οποίες έχουν μοναδική κοινή λύση το (x,y)=(0,0), αφού $\lambda \neq 0$. Επίσης, όπως φαίνεται και στο παραπάνω σχήμα, η διχοτόμος δ_1 έχει κλίση θετική και μικρότερη από την κλίση της ευθείας ε. Συνεπώς, η διχοτόμος δ_1 είναι μη κατακόρυφη ευθεία που διέρχεται από την αρχή των αξόνων και άρα έχει εξίσωση της μορφής:

$$y = \lambda_1 x$$
 $\mu \epsilon 0 < \lambda_1 < \lambda$.

Ένα τυχαίο σημείο της διχοτόμου δ_1 έχει συντεταγμένες $(x, \lambda_1 x)$, όπου $x \in \mathbb{R}$. Επιλέγω το σημείο $A(1, \lambda_1)$, που αντιστοιχεί στο x = 1. Επίσης, οι εξισώσεις των πλευρών της γωνίας είναι:

x'x άξονας: $0 \cdot x + 1 \cdot y + 0 = 0$.

ευθεία ε:
$$\lambda \cdot x - 1 \cdot y + 0 = 0$$
.

Όμως στο σημείο Α,, ως σημείο της διχοτόμου, όσο απέχει από τον x'x άξονα απέχει και από την ευθεία ε, δηλαδή:

$$d(A, x'x \ \alpha\xi o \nu \alpha\varsigma) = d(A, \varepsilon) \Leftrightarrow$$

$$\frac{|0\cdot 1+1\cdot \lambda_1+0|}{\sqrt{0^2+1^2}} = \frac{|\lambda\cdot 1-1\cdot \lambda_1+0|}{\sqrt{\lambda^2+(-1)^2}} \stackrel{\lambda_1>0,\lambda>\lambda_1}{\Longleftrightarrow}$$

$$\lambda_1 = \frac{\lambda - \lambda_1}{\sqrt{1 + \lambda^2}} \Leftrightarrow$$

$$\left(1+\sqrt{1+\lambda^2}\right)\lambda_1=\lambda$$

Άρα,
$$λ_1 = \frac{λ}{1+\sqrt{1+λ^2}}$$
.

β) Η διχοτόμος δ_2 (που βρίσκεται στο 2° και 4° τεταρτημόριο) είναι και αυτή ευθεία που διέρχεται από την αρχή των αξόνων, οπότε έχει εξίσωση της μορφής $y=\lambda_2 x$, και είναι κάθετη στη διχοτόμο δ_1 , επομένως το γινόμενο των αντίστοιχων κλίσεων είναι ίσο με -1, δηλαδή $\lambda_1 \cdot \lambda_2 = -1$, οπότε, από το α ερώτημα, έχουμε διαδοχικά:

$$\lambda_2 = \frac{-1}{\lambda_1} = \frac{-1}{\frac{\lambda}{1+\sqrt{1+\lambda^2}}} = \frac{1+\sqrt{1+\lambda^2}}{-\lambda} = \frac{\left(1+\sqrt{1+\lambda^2}\right)\cdot\left(1-\sqrt{1+\lambda^2}\right)}{(-\lambda)\cdot\left(1-\sqrt{1+\lambda^2}\right)} =$$

$$=\frac{1-(1+\lambda^2)}{(-\lambda)\cdot\left(1-\sqrt{1+\lambda^2}\right)}=\frac{-\lambda^2}{(-\lambda)\cdot\left(1-\sqrt{1+\lambda^2}\right)}=\frac{\lambda}{1-\sqrt{1+\lambda^2}}$$

Άρα,
$$λ_2 = \frac{λ}{1 - \sqrt{1 + λ^2}}$$
.

γ) Έστω $\lambda=1$. Τότε η ευθεία ε: y=x σχηματίζει γωνία 45° με τον θετικό ημιάξονα 0x, και επομένως, η διχοτόμος δ_1 σχηματίζει γωνία $22,5^{\circ}$ με τον θετικό ημιάξονα 0x. Άρα, από τον ορισμό της κλίσης και το α) ερώτημα, έχουμε διαδοχικά:

$$\epsilon \phi 22,5^o = \lambda_1 = \frac{\lambda}{1+\sqrt{1+\lambda^2}} = \frac{1}{1+\sqrt{1+1^2}} = \frac{1}{1+\sqrt{2}} = \frac{1-\sqrt{2}}{(1+\sqrt{2})\cdot(1-\sqrt{2})} = \frac{1-\sqrt{2}}{1-2} = \sqrt{2}-1 \; .$$