Decision Trees

Original Slides by:

Courtney Anne Ngo Daniel Stanley Tan, PhD Arren Antioquia

Updated (AY 2023 – 2024 T3) by:

Thomas James Tiam-Lee, PhD

Decision Trees

- Supervised machine learning algorithm for both classification and regression.
- Key idea: Make a prediction by asking a series of yes / no questions, based on the historical data.

,			•
Outlook	Humidity (Nominal)	Windy	Play
overcast	high	FALSE	yes
overcast	normal	TRUE	yes
overcast	high	TRUE	yes
overcast	normal	FALSE	yes
rainy	high	FALSE	yes
rainy	normal	FALSE	yes
rainy	normal	TRUE	no
rainy	normal	FALSE	yes
rainy	high	TRUE	no
sunny	high	FALSE	no
sunny	high	TRUE	no
sunny	high	FALSE	no
sunny	normal	FALSE	yes
sunny	normal	TRUE	yes

Terminology

Terminology

Leaf nodes (decisions)

X (features)

y (label)

Age	Score	Winner
10	30	winner
10	10	winner
15	15	winner
20	25	winner
30	15	not a winner

If we want to predict whether someone is a winner, what is the best yes/no question to ask?

Why?

X (features)

y (label)

	7	
Age	Score	Winner
10	30	winner
10	10	winner
15	15	winner
20	25	winner
30	15	not a winner

X (features)

y (label)

Age	Score	Winner
10	30	winner
10	10	winner
15	15	winner
20	25	winner
30	15	not a winner

X (features)

y (label)

Age	Score	Winner
10	30	winner
10	10	winner
15	15	winner
20	25	winner
30	15	not a winner

Decision Trees

- Only yes/no questions are allowed.
- Each question must allows follow the format of:

Is [feature] equal to / greater than / less than [value]?

For this data, decision trees will be forced to do this instead.

Weather	Temp.	Suspended
sunny	32	no
rainy	32	no
rainy	20	yes
sunny	35	no
snowy	24	yes

- For categorical variables, equality with each possible value can be asked.
- For continuous variables, comparison with every value present in the data can be asked (just choose one of ≥, ≤, >, <)</p>

Weather	Temp.	Suspended
sunny	32	no
rainy	32	no
rainy	20	yes
sunny	35	no
snowy	24	yes

Is the weather sunny?
Is the weather rainy?
Is the weather snowy?

Weather	Temp.	Suspended
sunny	32	no
rainy	32	no
rainy	20	yes
sunny	35	no
snowy	24	yes

Is the weather sunny?
Is the weather rainy?
Is the weather snowy?

Is the temperature > 35?
Is the temperature > 32?
Is the temperature > 24?
Is the temperature > 20?

Weather	Temp.	Suspended
sunny	32	no
rainy	32	no
rainy	20	yes
sunny	35	no
snowy	24	yes

```
Is the weather sunny?
Is the weather rainy?
Is the weather snowy?
```

```
Is the temperature > 35?
Is the temperature > 32?
Is the temperature > 24?
Is the temperature > 20?
```

 Number of possible questions / splits is affected by the training data

Better Tree?

X (features)

y (label)

Age	Score	Winner
10	30	winner
10	10	winner
15	15	winner
20	25	winner
30	15	not a winner

Both are valid trees, but which one is better? Why?

Better Tree?

X (features)

y (label)

Age	Score	Winner
10	30	winner
10	10	winner
15	15	winner
20	25	winner
30	15	not a winner

Tree on the left is better! Lesser memory for the same performance. How do we make good trees?

Key Idea

X (features)

y (label)

Age	Score	Winner
10	30	winner
10	10	winner
15	15	winner
20	25	winner
30	15	not a winner

- To make a better tree, we need to ask good questions.
- What makes a question good?
 - How do we quantify this mathematically?

Key Idea

X (features)

y (label)

Age	Score	Winner
10	30	winner
10	10	winner
15	15	winner
20	25	winner
30	15	not a winner

 Each question "splits" the data into two.

What makes a good split?

Measure of Impurity

 Given a set of objects, "impurity" measures how homogeneous or heterogeneous the objects are.

$$L(S) = -|S| \sum_{i}^{y} p_i \log_2(p_i)$$

$$p_i = \frac{\text{number of class } i}{|S|}$$

$$L(S) = -|S| \sum_{i}^{y} p_i \log_2(p_i)$$

$$p_i = \frac{\text{number of class } i}{|S|}$$

$$L(S) = -|S| \sum_{i}^{y} p_i \log_2(p_i)$$

$$p_i = \frac{\text{number of class } i}{|S|}$$

$$L(S) = (-7) \times \left(\left(\frac{6}{7} \right) \log_2 \left(\frac{6}{7} \right) + \left(\frac{1}{7} \right) \log_2 \left(\frac{1}{7} \right) \right)$$

$$L(S) = 4.141709$$

$$L(S) = -|S| \sum_{i}^{y} p_i \log_2(p_i)$$

$$p_i = \frac{\text{number of class } i}{|S|}$$

$$L(S) = -|S| \sum_{i}^{y} p_i \log_2(p_i)$$

$$p_i = \frac{\text{number of class } i}{|S|}$$

$$L(S) = (-6) \times \left(\left(\frac{3}{6} \right) \log_2 \left(\frac{3}{6} \right) + \left(\frac{3}{6} \right) \log_2 \left(\frac{3}{6} \right) \right)$$

$$L(S) = 6$$

$$L(S) = -|S| \sum_{i}^{y} p_i \log_2(p_i)$$

$$p_i = \frac{\text{number of class } i}{|S|}$$

$$L(S) = -|S| \sum_{i}^{y} p_i \log_2(p_i)$$

$$p_i = \frac{\text{number of class } i}{|S|}$$

$$L(S) = (-9) \times \left(\left(\frac{9}{9} \right) \log_2 \left(\frac{9}{9} \right) + \left(\frac{0}{9} \right) \log_2 \left(\frac{0}{9} \right) \right)$$

$$L(S) = 0$$

Gini Index

$$L(S) = |S| \times \left(1 - \sum_{i}^{y} p_i^2\right)$$

$$p_i = \frac{\text{number of class } i}{|S|}$$

$$L(S) = |S| \times \left(1 - \sum_{i}^{y} p_i^2\right)$$

$$p_i = \frac{\text{number of class } i}{|S|}$$

$$L(S) = |S| \times \left(1 - \sum_{i}^{y} p_i^2\right)$$

$$p_i = \frac{\text{number of class } i}{|S|}$$

$$L(S) = 7 \times \left(1 - \left(\left(\frac{6}{7}\right)^2 + \left(\frac{1}{7}\right)^2\right)\right)$$

$$L(S) = 1.714$$

$$L(S) = |S| \times \left(1 - \sum_{i}^{y} p_i^2\right)$$

$$p_i = \frac{\text{number of class } i}{|S|}$$

$$L(S) = |S| \times \left(1 - \sum_{i}^{y} p_i^2\right)$$

$$p_i = \frac{\text{number of class } i}{|S|}$$

$$L(S) = 6 \times \left(1 - \left(\left(\frac{3}{6}\right)^2 + \left(\frac{3}{6}\right)^2\right)\right)$$

$$L(S) = 3$$

$$L(S) = |S| \times \left(1 - \sum_{i}^{y} p_i^2\right)$$

$$p_i = \frac{\text{number of class } i}{|S|}$$

$$L(S) = |S| \times \left(1 - \sum_{i}^{y} p_i^2\right)$$

$$p_i = \frac{\text{number of class } i}{|S|}$$

$$L(S) = 9 \times \left(1 - \left(\left(\frac{9}{9}\right)^2 + \left(\frac{0}{9}\right)^2\right)\right)$$

$$L(S) = 0$$

Shannon Vs. Gini Index

 Note that the impurity still must be scaled with the number of instances in the set to give more importance to the impurity of larger groups.

$$L(S) = |S| \times \frac{\sum (x - \mu)^2}{n - 1}$$

$$L(S) = |S| \times \frac{\sum (x - \mu)^2}{n - 1}$$

$$L(S) = |S| \times \frac{\sum (x - \mu)^2}{n - 1}$$

$$L(S) = 6 \times 0.4 = 2.4$$

$$L(S) = |S| \times \frac{\sum (x - \mu)^2}{n - 1}$$

$$L(S) = |S| \times \frac{\sum (x - \mu)^2}{n - 1}$$

$$L(S) = 6 \times 12.16667 = 73$$

Information Gain

 Amount of impurity that was lost when splitting the dataset through a question.

IG = A - (B + C)

Training a Decision Tree

function DTL (data)

if all *data* have the same class return class

No need to ask more questions

else

 $best \leftarrow Choose-Attribute-and-Threshold(data)$ $tree.left \leftarrow DTL(data matching best)$

tree.right ← DTL(*data* not matching best)

return tree

best question based on the highest IG

Choose the

Left and right partition are also trees, so they can be generated recursively

DT are High Variance Models

- DT is designed to keep asking questions until all classes have been completely separated from one another.
- Unless there are overlapping classes on the same point, DT will always achieve 100% accuracy on the training set!
- Is this always a good thing?

DT are High Variance Models

Decision trees are prone to overfitting!

Regularization Techniques

- Stopping Criterion (stop asking questions once a certain criteria is reached)
 - Minimum batch size
 - If number of data points to split < min
 - Tree depth (height)
 - If height > max
 - Number of nodes
 - If number of nodes > max
 - Impurity reduction percentage
 - If impurity < min, return mode/avg

Regularization Techniques

- When we stop asking questions, and the dataset is still not homogeneous, how do we make the prediction?
 - For classification: pick the majority
 - For regression: get the average

Pipeline (Classification)

Pipeline (Regression)

