CDS 131 Homework 3: Transforms & Stability in State Space

Winter 2025

Due 1/27 at 11:59 PM

Instructions

This homework is divided into three parts:

- 1. Optional Exercises: the exercises are entirely optional but are recommended to be completed before looking at the problems. They consist of easier, more computational questions to help you get a feel for the material.
- 2. <u>Required Problems</u>: the problems are the required component of the homework, and might require more work than the exercises to complete.
- 3. Optional Problems: the optional problems are some additional, recommended problems some of these might go a little beyond the standard course material.

All you need to turn in is the solutions to the required problems - the others are recommended but not required.

1 Optional Exercises

1.1 Transforms & Transition Matrices

The Laplace transform offers yet another way of computing the state transition matrix. For a continuoustime, LTI representation (A, B, C, D), the matrix exponential is computed $\exp(At) = \mathcal{L}^{-1}[(sI - A)^{-1})](t)$, for all $t \geq 0$. In this problem, we'll consider an analogue in discrete-time, and use both the continuous and discrete formulas to compute some transition matrices.

1. Show that the state transition matrix of a discrete-time, LTI representation (A, B, C, D) is computed,

$$A^{k} = \mathcal{Z}^{-1}[z(zI - A)^{-1}][k], \ \forall k \ge 0.$$
(1)

2. Using the transform formulas, compute the continuous and discrete-time transition matrices associated to the matrix,

$$A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix}. \tag{2}$$

Comment on the benefits and drawbacks of this method of computing the transition matrix. You may use a symbolic calculator to compute the inverse of (sI - A).

1.2 Transfer Functions & Change of Basis

Consider a linear, time-invariant system representation (A, B, C, D). Recall that under a change of state coordinates, z = Tx, the representation transforms to $(TAT^{-1}, TB, CT^{-1}, D)$. Does the transfer function associated to the system representation change under a change of state coordinates? Provide a proof or counterexample to back up your answer.

1.3 Analytic Functions

Recall that a given function $f: \Omega \to \mathbb{C}$, where $\Omega \subseteq \mathbb{C}$ is open in \mathbb{C} , is an analytic function if it is (complex) differentiable in a neighborhood of every point of \mathbb{C} . For each of the scalar functions of $s \in \mathbb{C}$,

$$f_1(s) = \frac{1}{s}, \ f_2(s) = e^s, \ f_3(s) = \frac{(s-1)}{(s+1)(s-1)(s+2)}, \ G(s) = C(sI-A)^{-1}B,$$
 (3)

determine the largest subset of \mathbb{C} on which the function is analytic.

2 Required Problems

2.1 A Simple SISO Transfer Function

1. Consider a continuous-time SISO, LTI system representation (A, B, C, D),

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 1 \\ -a_0 & -a_1 & \dots & -a_{n-2} & -a_{n-1} \end{bmatrix} \quad B = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

$$C = \begin{bmatrix} c_0 & c_1 & \dots & c_{n-2} & c_{n-1} \end{bmatrix} \qquad D = 0,$$

$$(4)$$

Show that the transfer function of such a system is computed,

$$\hat{H}(s) = \frac{c_{n-1}s^{n-1} + c_{n-2}s^{n-2} + \dots + c_1s + c_0}{s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0}.$$
 (5)

- 2. Let $c(s) = c_{n-1}s^{n-1} + ... + c_0$ and $d(s) = s^n + ... + a_0$. If s_0 satisfies $c(s_0) = 0$ and $d(s_0) \neq 0$, show for $u(t) = u_0 e^{s_0 t}$, $u_0 \in \mathbb{R}$, the zero-state response of the system does not contain a term involving $e^{s_0 t}$.
- 3. Suppose s_0 is not an eigenvalue of A and that $c(s_0) = 0$. Show that the matrix,

$$\begin{bmatrix} A - sI & B \\ C & D \end{bmatrix}, \tag{6}$$

is singular at $s = s_0$. Hint: determinant.

2.2 A Skew-Symmetric Stability Condition

Consider the input-free linear, time-varying system $\dot{x}(t) = A(t)x(t)$, where $A(\cdot) \in PC(\mathbb{R}, \mathbb{R}^{n \times n})$. Show that if A(t) is skew-symmetric for all $t \in \mathbb{R}$ $(A(t) = -A^{\top}(t))$, then $x_e = 0$ is a Lyapunov stable equilibrium point.

2.3 Robustness of Exponential Stability

In this problem, we'll show that exponential stability is robust under small perturbations.

1. (\bigstar Hard—you can skip this subproblem if you can't find a solution after giving it some thought) Consider a family of polynomials parameterized by t,

$$f(s,t) = a_n(t)s^n + \dots + a_1(t)s + a_0(t), \tag{7}$$

where each $a_i : \mathbb{R} \to \mathbb{R}$ is continuous. Prove there exist continuous functions $\lambda_i : \mathbb{R} \to \mathbb{C}$, i = 1, ..., n, such that for all $t_0 \in \mathbb{R}$, each $\lambda_i(t_0)$ corresponds to a root of $f(s, t_0)$.

2. Prove there exists a continuous function spec : $\mathbb{R}^{n \times n} \to \mathbb{C}^n$, mapping a matrix $A \in \mathbb{R}^{n \times n}$ to a vector containing its eigenvalues.

3. Let $A \in \mathbb{R}^{n \times n}$. Consider the perturbed systems,

$$\dot{x}(t) = (A + \Delta)x(t), \quad x[k+1] = (A + \Delta)x[k],$$
 (8)

where $\Delta \in \mathbb{R}^{n \times n}$. Suppose each system is globally exponentially stable for $\Delta = 0$. In each case, prove there exists an M > 0 such that for all $\Delta : \|\Delta\| < M$, the system remains globally exponentially stable.

2.4 Constant Norm & Constant Speed Systems

The system $\dot{x} = Ax$ is called *constant norm* if, for every trajectory x, ||x(t)|| is constant. The system is called *constant speed* if for every trajectory x, $||\dot{x}(t)||$ is constant.

- 1. Find the (general) conditions on A under which the system is constant norm.
- 2. Find the (general) conditions on A under which the system is constant speed.
- 3. Is every constant norm system a constant speed system? Provide a proof or counterexample.
- 4. Is every constant speed system a constant norm system? Provide a proof or counterexample.

2.5 Separating Hyperplane for a Linear Dynamical System

Let $c \in \mathbb{R}^n$ be a nonzero vector. The hyperplane passing through 0 defined by c is the set,

$$\mathcal{H}_c = \{ x \in \mathbb{R}^n : c^\top x = 0 \} \subseteq \mathbb{R}^n. \tag{9}$$

Consider a continuous-time, LTI system $\dot{x}(t) = Ax(t)$, where $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$. A hyperplane \mathcal{H}_c passing through zero is said to be a separating hyperplane for this system if no trajectory of the system ever crosses the hyperplane. That is, if $c^{\top}\varphi(t,t_0,x_0) < 0$ for some $t \in \mathbb{R}$, it is impossible to have $c^{\top}\varphi(t',t_0,x_0) > 0$ for another time $t' \in \mathbb{R}$. Assuming the eigenvalues of A are all distinct, explain how to find all separating hyperplanes of $\dot{x}(t) = Ax(t)$. Find the conditions on A under which there are no separating hyperplanes.

3 Optional Problems

3.1 Stability & System Relations

In this problem, we'll examine how the stability of systems is preserved under coordinate transforms. Here, we'll consider an arbitrary (continuous or discrete-time) input-free system with state transition map φ : $\mathbf{T} \times \mathbb{R}^n \to \mathbb{R}^n$, where $\mathbf{T} = \{(t_1, t_0) \in \mathcal{T} \times \mathcal{T} : t_1 \geq t_0\}$.

1. Let $\hat{\varphi}: \mathbf{T} \times \mathbb{R}^n \to \mathbb{R}^n$ be the state transition map of a second, input-free system on \mathbb{R}^n . Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. The systems φ and $\hat{\varphi}$ are said to be T-related if,

$$T(\varphi(t, t_0, x_0)) = \hat{\varphi}(t, t_0, T(x_0)), \ \forall t \ge t_0 \in \mathcal{T}, \ x_0 \in \mathbb{R}^m.$$

If the systems have the form $\dot{x} = A(t)x$ and $\dot{\hat{x}} = \hat{A}(t)\hat{x}$, find sufficient conditions on A and \hat{A} such that the two systems are T-related.

- 2. Prove that if T is invertible, then the equilibrium $x_e = 0$ of $\dot{x}(t) = A(t)x(t)$ is (Lyapunov/asymptotically/exponentially) stable if and only if the equilibrium $\hat{x}_e = 0$ of $\dot{x}(t) = \hat{A}(t)\hat{x}(t)$ is (Lyapunov/asymptotically/exponentially) stable.
- 3. Suppose now that T is a surjective linear mapping from $\mathbb{R}^n \to \mathbb{R}^k$. What can you conclude about the stability of $\hat{x}_e = 0$ from the stability of $x_e = 0$? What about the case where T is injective? Back up your claims with proofs or counterexamples.