Section 3.6 – Solving Trigonometry Equations

Addition Property of Equality

For any three algebraic expressions A, B, and C

If
$$A = B$$

Then
$$A+C=B+C$$

Multiplication Property of Equality

For any three algebraic expressions A, B, and C, with $C \neq 0$

If
$$A = B$$

Then
$$AC = BC$$

Example

Solve
$$2\sin x - 1 = 0$$

Solution

$$2\sin x = 1$$

$$\sin x = \frac{1}{2}$$

$$x = 30^{\circ} \ or \ 150^{\circ}$$

Solutions between (0 and
$$2\pi$$
)

$$x = \frac{\pi}{6} \text{ or } \frac{5\pi}{6}$$

$$x = 30^{\circ} + 360^{\circ}k$$
 or $150^{\circ} + 360^{\circ}k$

$$x = \frac{\pi}{6} + 2k\pi \quad or \quad \frac{5\pi}{6} + 2k\pi$$

Example

Solve
$$2\sin\theta - 3 = 0$$
, if $0^{\circ} \le \theta < 360^{\circ}$

<u>Solution</u>

$$2\sin\theta = 3$$

$$\sin \theta = \frac{3}{2}$$

 $\sin \theta$ can't be greater than 1

No solution

Solve
$$\cos(A - 25^\circ) = -\frac{1}{\sqrt{2}}$$

Solution

$$\cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = 45^{\circ}$$

 $-\frac{1}{\sqrt{2}}$ is negative \rightarrow cosine is in QII or QIII.

$$\cos^{-1}\left(-\frac{1}{\sqrt{2}}\right) = 135^{\circ} \text{ or } 225^{\circ}$$

$$\cos(A - 25^\circ) = -\frac{1}{\sqrt{2}} = \cos(135^\circ)$$

$$\sqrt{2}$$

$$A - 25^\circ = 135^\circ + 360^\circ k$$

$$A = 25^{\circ} + 135^{\circ} + 360^{\circ}k$$

$$A = 160^{\circ} + 360^{\circ} k$$

$$\cos(A - 25^\circ) = -\frac{1}{\sqrt{2}} = \cos(225^\circ)$$

$$A - 25^{\circ} = 225^{\circ} + 360^{\circ}k$$

$$A = 25^{\circ} + 225^{\circ} + 360^{\circ}k$$

$$A = 250^{\circ} + 360^{\circ}k$$

Example

Solve
$$3\sin\theta - 2 = 7\sin\theta - 1$$
 if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$3\sin\theta - 7\sin\theta = 2 - 1$$

$$-4\sin\theta=1$$

$$\sin\theta = -\frac{1}{4}$$

$$\hat{\theta} = \sin^{-1}\left(-\frac{1}{4}\right) = 14.5^{\circ}$$

Negative sign \rightarrow sine is in QIII or QIV

$$\theta = 14.5^{\circ} + 180^{\circ}$$

$$\theta = 360^{\circ} - 14.5^{\circ}$$

$$\theta = 194.5^{\circ}$$

$$\theta$$
 = 345.5°

Solve
$$2\sin^2\theta + 2\sin\theta - 1 = 0$$
 if $0 \le \theta < 2\pi$

if
$$0 \le \theta < 2\pi$$

Solution

$$\sin \theta = \frac{-2 \pm \sqrt{2^2 - 4(2)(-1)}}{2(2)}$$

$$= \frac{-2 \pm \sqrt{12}}{4}$$

$$= \frac{-2 \pm 2\sqrt{3}}{4}$$

$$= \frac{2(-1 \pm \sqrt{3})}{4}$$

$$= \frac{-1 \pm \sqrt{3}}{2}$$

$$\sin \theta = \frac{-1 - \sqrt{3}}{2} < -1 \qquad \sin \theta = \frac{-1 + \sqrt{3}}{2} = 0.3661$$

$$\theta = \sin^{-1}(0.3661)$$

$$\hat{\theta} = 0.37 \quad (QI \text{ or } QII)$$

$$\theta = 0.37 \qquad \theta = \pi - 0.37 = 2.77$$

Example

Solve: $2\cos x - 1 = \sec x$, if $0 \le x < 2\pi$

Solution

$$2\cos x - 1 = \frac{1}{\cos x}$$

$$2\cos^2 x - \cos x = 1$$

$$2\cos^2 x - \cos x - 1 = 0$$

$$(2\cos x + 1)(\cos x - 1) = 0$$

$$2\cos x + 1 = 0$$

$$\cos x - 1 = 0$$

$$\cos x = -\frac{1}{2}$$

$$\cos x = 1$$

$$x = \frac{2\pi}{3}, \frac{4\pi}{3}$$
 $x = 0$

$$x = 0$$

The solutions are: $0, \frac{2\pi}{3}, \frac{4\pi}{3}$

Solve: $\cos 2\theta + 3\sin \theta - 2 = 0$, if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$1 - 2\sin^2\theta + 3\sin\theta - 2 = 0$$

$$-2\sin^2\theta + 3\sin\theta - 1 = 0$$

$$2\sin^2\theta - 3\sin\theta + 1 = 0$$

$$(2\sin\theta - 1)(\sin\theta - 1) = 0$$

$$2\sin\theta-1=0$$

$$\sin\theta - 1 = 0$$

$$\sin \theta = \frac{1}{2}$$

$$\sin \theta = 1$$

$$\theta = 30^{\circ}, 150^{\circ}$$

$$\theta = 90^{\circ}$$

The solutions are: $\theta = 30^{\circ}, 90^{\circ}, 150^{\circ}$

$$\theta = 30^{\circ}, 90^{\circ}, 150^{\circ}$$

Example

Solve: $4\cos^2 x + 4\sin x - 5 = 0$, if $0 \le x < 2\pi$

Solution

$$4(1-\sin^2 x) + 4\sin x - 5 = 0$$

$$4 - 4\sin^2 x + 4\sin x - 5 = 0$$

$$-4\sin^2 x + 4\sin x - 1 = 0$$

$$4\sin^2 x - 4\sin x + 1 = 0$$

$$(2\sin x - 1)^2 = 0$$

$$2\sin x - 1 = 0$$

$$\sin x = \frac{1}{2}$$

The solutions are: $x = \frac{\pi}{6}, \frac{5\pi}{6}$

$$z = \frac{\pi}{6}, \ \frac{5\pi}{6}$$

Solve:
$$\sin 2\theta + \sqrt{2}\cos \theta = 0$$
, if $0^{\circ} \le \theta < 360^{\circ}$

Solution

$$2\sin\theta\cos\theta + \sqrt{2}\cos\theta = 0$$
$$\cos\theta \left(2\sin\theta + \sqrt{2}\right) = 0$$

$$\cos \theta = 0$$

$$2\sin\theta + \sqrt{2} = 0$$

$$\cos \theta = 0$$

$$\sin\theta = -\frac{\sqrt{2}}{2}$$

$$\hat{\theta} = \sin^{-1} \frac{1}{\sqrt{2}} = 45^{\circ}$$

$$\theta = 90^{\circ}, 270^{\circ}$$

$$\theta = 225^{\circ},315^{\circ}$$

Example

Solve:
$$\sin \theta - \cos \theta = 1$$
, if $0 \le \theta < 2\pi$

Solution

$$\sin \theta = \cos \theta + 1$$

$$\sin^2\theta = (\cos\theta + 1)^2$$

$$1 - \cos^2 \theta = \cos^2 \theta + 2\cos \theta + 1$$

$$0 = \cos^2 \theta + 2\cos \theta + 1 - 1 + \cos^2 \theta$$

$$0 = 2\cos^2\theta + 2\cos\theta$$

$$2\cos^2\theta + 2\cos\theta = 0$$

$$2\cos\theta(\cos\theta+1)=0$$

$$2\cos\theta = 0$$

$$\cos\theta + 1 = 0$$

$$\cos \theta = 0$$

$$\cos \theta = -1$$

$$\theta = \frac{\pi}{2}, \frac{3\pi}{2}$$

$$\theta = \pi$$

Check

$$\theta = \frac{\pi}{2}$$

$$\sin \frac{\pi}{2} - \cos \frac{\pi}{2}? = ?1$$

$$1 - 0 = 1$$

$$\theta = \frac{3\pi}{2}$$

$$\sin \frac{3\pi}{2} - \cos \frac{3\pi}{2} = 1$$

$$-1 - 0 = 1$$

(False statement)

$$\theta = \pi$$

$$\sin \pi - \cos \pi = ?1$$

$$0 - (-1) = 1$$

The solutions are: $\frac{\pi}{2}$, π

Exercises Section 3.6 – Solving Trigonometry Equations

1. Solve
$$2\cos\theta + \sqrt{3} = 0$$
 if $0^\circ \le \theta < 360^\circ$

2. Solve
$$5\cos t + \sqrt{12} = \cos t$$
 if $0 \le t < 2\pi$

3. Solve
$$\tan \theta - 2\cos \theta \tan \theta = 0$$
 if $0^{\circ} \le \theta < 360^{\circ}$

4. Solve
$$2\sin^2 \theta - 2\sin \theta - 1 = 0$$
 if $0^\circ \le \theta < 360^\circ$

5. Solve:
$$4\cos\theta - 3\sec\theta = 0$$
 if $0^{\circ} \le \theta < 360^{\circ}$

6. Solve:
$$2\sin^2 x - \cos x - 1 = 0$$
 if $0 \le x < 2\pi$

7. Solve:
$$\sin \theta - \sqrt{3} \cos \theta = 1$$
 if $0^{\circ} \le \theta < 360^{\circ}$

8. Solve:
$$7\sin^2 \theta - 9\cos 2\theta = 0$$
 if $0^\circ \le \theta < 360^\circ$

9. Solve
$$2\cos^2 t - 9\cos t = 5$$
 if $0 \le t < 2\pi$

10. Solve
$$\sin \theta \tan \theta = \sin \theta$$
 if $0^{\circ} \le \theta < 360^{\circ}$

11. Solve
$$\tan^2 x + \tan x - 2 = 0$$
 if $0 \le x < 2\pi$

12. Solve
$$\tan x + \sqrt{3} = \sec x$$
 if $0 \le x < 2\pi$

13. Solve
$$\cos\left(A - \frac{\pi}{9}\right) = -\frac{1}{2}$$

14. If a projectile (such as a bullet) is fired into the air with an initial velocity v at an angle of elevation θ , then the height h of the projectile at time t is given by:

$$h(t) = -16t^2 + vt\sin\theta$$

- a) Give the equation for the height, if v is $600 \, ft./sec$ and $\theta = 45^{\circ}$.
- b) Use the equation in part (a) to find the height of the object after $\sqrt{3}$ seconds.
- c) Find the angle of elevation of θ of a rifle barrel, if a bullet fired at 1,500 ft./sec takes 3 seconds to reach a height of 750 feet. Give your answer in the nearest of a degree.