

Ve370 Introduction to Computer Organization

Homework 7

楊毅文 519370910053

Assigned: November 23, 2021

Due: 2:00pm on November 30, 2021

Submit a PDF file on Canvas

1. (20 points) For a 2-way set associative cache with a 32-bit address and write back mechanism, the partition of the 32 bits are as follows:

- Offset: bit 6 to 0

- Index: bit 11-7

(1) What is the size of the cache? (5 points)

$$2^{5}*2^{5}*32+2^{5}*2^{5}*2^{5}*2^{5}*2^{5}*2^{5}*2^{5}*2^{5}*1+2^{5}*2^{5}*1=2092$$
 word =66944 bit

Starting from power on, the following byte addresses were used to access the cache memory: 0, 4, 20, 136, 232, 164, 1024, 30, 140, 3100, 176, 2180

- (2) What is the hit ratio? (5 points) 7/12=58.3%
- (3) Show the final state of the cache, with each valid line represented as <index, tag, data>. (10 points)

<1, 0, Mem[32~63]>

<1000, 0, Mem[256~287]>

<11000, 0, Mem[768~799]>

<10001, 0, Mem[544~575]>

2. (20 points) In general, cache access time is proportional to its capacity. Assume that main memory accesses take 70 ns and that memory accesses are 36% of all instructions. The following table shows data for caches attached to each of two processors, P1 and P2.

	Size	Miss Rate	Hit Time
P1	16KB	4.3%	1.18 ns
P2	32KB	2.7%	2.22 ns

(1) Assuming that the cache hit time determines the cycle times for P1 and P2, what are their respective clock rates? (5 points)

Clock rate
$$P1 = 1/1.18 \text{ ns} = 0.847 \text{ GHz}$$

Clock rate
$$P2 = 1/2.22 \text{ ns} = 0.450 \text{ GHz}$$

(2) What is the AMAT for P1 and P2? AMAT (Average Memory Access Time) is defined as follows: AMAT = Hit time + Miss rate × Miss penalty (5 points).

AMAT P1 =
$$1.18 \text{ ns} + 4.3\% * 70 \text{ ns} = 4.19 \text{ ns}$$

AMAT
$$P2 = 2.22 \text{ ns} + 2.7\% * 70 \text{ ns} = 4.11 \text{ ns}$$

(3) Assuming a base CPI of 1.0 without any memory stalls, what is the actual CPI for P1 and P2? Which processor is faster? (10 points)

Actual CPI P1 =
$$1.0 + 100\% * 4.3\% * 70$$
 ns / 1.18 ns per cycle + $36\% * 4.3\% * 70$ ns / 1.18 ns per cycle = 4.47

Actual CPI P2 =
$$1.0 + 100\% * 2.7\% * 70$$
 ns / 2.22 ns per cycle + $36\% * 2.7\% * 70$ ns / 2.22 ns per cycle = 2.16

The P2 is faster.

- 3. (60 points) Given the following byte addresses for memory access:
 - 3, 180, 43, 3, 191, 89, 190, 14, 181, 44, 186, 252
 - (1) Show the final cache contents for a 3-way set associative cache with two-word blocks and a total size of 24 words. Use LRU replacement. For each reference identify the index bits, the tag bits, the offset bits, and if it is a hit or a miss. (20 points)

	3	180	43	3	191	89	190	14	181	44	186	252
tag	0	101	1	0	101	10110	101	0	101	1	101	111
index	00	10	01	00	11	0	11	01	10	01	11	11
offset	011	100	011	011	111	001	110	110	101	100	010	100
h/m	miss	miss	miss	hit	miss	miss	hit	miss	hit	hit	hit	miss

Final cache:

index	tag	data1	data2	
00	0	Mem[0]	Mem[1]	
01	1	Mem[10]	Mem[11]	
	0	Mem[2]	Mem[3]	
10	101	Mem[44]	Mem[45]	
11	101	Mem[46]	Mem[47]	
	10	Mem[22]	Mem[23]	
	111	Mem[62]	Mem[63]	

(2) Show the final cache contents for a fully associative cache with one-word blocks and a total size of 8 words. Use LRU replacement. For each reference identify the index bits, the tag bits, and if it is a hit or a miss. (20 points)

	3	180	43	3	191	89	190	14	181	44	186	252
tag	0	10110 1	1010	0	101111	10110	101111	11	10110 1	1011	101110	111111
index	ı	ı	1	1	ı	Ī	ı	1	ı	1	ı	-
offset	11	00	11	11	11	01	10	10	01	00	10	00
h/m	miss	miss	miss	hit	miss	miss	hit	miss	hit	miss	miss	miss

Final cache:

tag	data
0	Mem[0]
101101	Mem[45]
111111	Mem[63]
101111	Mem[47]
10110	Mem[22]
11	Mem[3]
1011	Mem[11]
101110	Mem[21]

(3) What is the miss rate for a fully associative cache with two-word blocks and a total size of 8 words, using LRU replacement? What is the miss rate using MRU (most recently used) replacement? Finally what is the best possible miss rate for this cache, given any replacement policy? (20 points)

LRU miss rate = 9/12 = 75%

MRU miss rate = 9/12 = 75%

Then best possible miss rate of this cache is 75%.