No part of the candidate evidence in this exemplar material may be presented in an external assessment for the purpose of gaining credits towards an NCEA qualification.

91173

Level 2 Physics, 2015

KIA NOHO TAKATŪ KI TŌ ĀMUA AO!

91173 Demonstrate understanding of electricity and electromagnetism

9.30 a.m. Tuesday 17 November 2015 Credits: Six

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of electricity and electromagnetism.	Demonstrate in-depth understanding of electricity and electromagnetism.	Demonstrate comprehensive understanding of electricity and electromagnetism.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Make sure that you have Resource Sheet L2-PHYSR.

In your answers use clear numerical working, words and/or diagrams as required.

Numerical answers should be given with an appropriate SI unit.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–11 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

Excellence

TOTAL

27

Hamish connects a circuit as shown in the picture below. The circuit comprises a 6.0 V battery, 1.0 m of Nichrome resistance wire and two connecting wires. The battery produces a uniform electric field in the Nichrome resistance wire.

Assume that the connecting wires have no resistance.

(a) Calculate the strength of the electric field in the Nichrome resistance wire.

$$g = -1.6 \times 10^{-19} \text{ V} = 6.0 \text{ V} \text{ d} = 1.0 \text{ M}$$

 $E = \frac{6}{4} = \frac{6}{4} = \frac{6}{4} = 6 \text{ Vm}^{-1}$

(b) Explain what happens to the size of the electric force on an electron as it travels through the Nichrome resistance wire.

as F= Eq and might neither to or q change. So set the size of the Ward force doesn't change from F= tq F= 6x-1.6x10-19 N.

(c) Calculate the distance moved by an electron as it loses 9.6×10^{-20} J of electrical potential energy.

energy. ABp = Ead $-a.6 \times 10^{-20} = 6 \times -1.6 \times 10^{-10} \times d$ -9.6×10^{-20} $-6 \times 10^{-10} = d$ $-6 \times 10^{-10} = d$ $-6 \times 10^{-10} = d$

3 Hamish then adds another 6.0 V battery in series AND shortens the wire to 0.50 m. (d) Write a comprehensive explanation on what will happen to the size of the force on the Calculations are not needed. the Parcie 4 times greater. e distance is 2 un so he Eleschen 15 Pour filmes bugg Eq Stays the Same but

On tis 4x bigger So Fis Ex biggv.

EB

ASSESSOR USE ONLY

QUESTION TWO: THE ELECTROMAGNETIC SWING

Monique builds a swing to show electromagnetic induction. It comprises a light rod, pivoted at the top so it can swing, and a loop of copper wire at the bottom. She places two strong magnets at the lowest point of the motion with opposite poles facing each other.

The diagrams below show the loop entering the magnetic field.

(a) Determine the direction of the force acting on **electrons** in the wire BC, due to their motion in the magnetic field.

(b) At the instant shown in the diagram, the voltage across the wire BC is 0.15 mV.

Calculate the speed of the wire loop.

The magnetic field strength is 3.0×10^{-3} T.

Physics 91173, 2015

ASSESSOR USE ONLY

	appens to the size			
The si-	re of	te co	urent o	horbly. Because
F=894	30 It 8	もいい	doubled	7 15 doubles
ad //	F. J	. 50	To ic	truo timo grat
1/8				
BAISO WI	V t	15 MODE	~1 Areid	Stay he sug.
A short time lat	en the whole loop	is inside the n	nagnetic field.	gives incorrect.
Write a compre	hensive explanati	on about the c	urrent in the lo	op when the whole loop is in
magnetic field.				
Assuming	trie 100	p is Mo	ouing to	he right que to
	in the		•	
				,
				e current cop
				pward So one
Clorknise	al he	itw on	til clocken	ise. this
Means	tu tu	o (Wer	to will	(cancel or
and	thre i	rill be	10 ne	of which in
	tu loop	2.	/	
	•			
				$\varphi = (\varphi_{q} - \varphi_{q})^{-1} + \varphi_{q}$
		/	<i>(</i>	. (4)
,				
		/		
		/		

QUESTION THREE: THE SMOKE DETECTOR

Charge on an electron = -1.6×10^{-19} C

One type of smoke detector comprises a pair of metal plates 4.8 mm apart, connected to a battery. Alpha particles from a radioactive source ionise particles of smoke between the plates. This causes the smoke particles to lose one or more electrons and become charged.

The diagram below shows a positively charged smoke particle. The force on the particle is towards AB.

(a) Draw lines showing the electric field between the plates.

Include the direction of the field lines.

The mass of the smoke particle is 1.7×10^{-7} kg

A particular smoke particle loses two electrons. It then experiences a force of $5.88 \times 10^{-16} \, \mathrm{N}$ (b) due to the electric field.

Calculate the strength of the electric field.

Maria brings a magnet close to the smoke detector. The magnet produces a magnetic field of (c) strength 3.0×10^{-2} T, which, with reference to the diagram above, is directed into the page.

State the size of the force due to the magnet on the stationary smoke particle.

Explain your answer.

Physics 91173, 2015

QUESTION FOUR: CIRCUITS

Kahu has two identical lamps marked 6.0 V, 2.0 W. He wants to connect them to a 9.0 V battery. He realises that he will have to connect a resistor to reduce the voltage across the lamps.

He connects the circuit shown below.

(a) Calculate the current in each lamp when it is operating at its normal brightness.

(b) Calculate the resistance of the resistor that he should use so that the lamps are at their normal brightness.

August 1	
V=DR P= 0.67 K= 13,4,2	13.4-9,0= 426 Lt.4.1
R= J R= 0.67 = 90.1	

What will happen to the current in the resistor if one lamp "blows"? Explain your answer. $\tau = \frac{1}{K}$

The curet in the restor would be less becare the convert $I = \frac{V_s}{p_T}$ and the RT would be greater without the other lamp so the IT would be less and the It goes through the resistor.

So the I would be less.

Kahu sets up a new circuit with different lamps and resistor, as shown in the diagram below.

NIDE

(d) Calculate the voltage across the 4.0 Ω resistor.

V= IR V=1.5x4 V= 60

mo