

Übung 2 - Standzeit

Dr.-Ing. Anke Müller, 23.04.2018
Institut für Werkzeugmaschinen und Fertigungstechnik

Standvermögen

> Das **Standvermögen** ist die Fähigkeit <u>eines Wirkpaares</u> (Werkzeug und Werkstück), einen bestimmten Zerspanvorgang durchzustehen [DIN6583].

- Werkzeugverschleiß
- Zerspankraft, Schnittleistung
- Oberflächenrauheit
- Spanform und -temperatur

- Standzeit
- Standweg
- Standmenge
- Standvolumen

Nach König

Ziele der heutigen Vorlesung

Standkriterien und Standgrößen

- Zur Beurteilung des <u>Standvermögens</u> des Systems werden Standkriterien verwendet.
 - Alle am Werkzeug messbaren Daten, z.B. Verschleißmarkenbreite.
 - Am Werkstück messbare Daten, z.B. Veränderungen der Rauheit.
 - Am Zerspanvorgang messbare Größen, z.B. Änderung der Schnittkraft, der Spantemperatur oder der Spanform.
 - **-** ...
- Zur Beschreibung der <u>Lebensdauer</u> des Systems, also vom Einsatzbeginn bis zum Erreichen des Standkriteriums unter dem Einfluss der Standbedingungen, werden die Standgrößen verwendet [DIN6583].
 - Standzeit
 - Standweg
 - Standvolumen
 - Standmenge
 - ...

Verschleißformen und Messgrößen am Schneidkeil

γ	Spanwinkel
α	Freiwinkel
$SV\gamma$	Schneidenversatz in Richtung
	Spanfläche
SVlpha	Schneidenversatz in Richtung
	Freifläche
VB	Verschleißmarkenbreite
VB KL	Verschleißmarkenbreite Kolklippenbreite
KL	Kolklippenbreite
KL KT	Kolklippenbreite Kolktiefe
KL KT	Kolklippenbreite Kolktiefe Kolkmittenabstand, d.h.

Schneide

Standzeit

- Die Standzeit T_c ist
 - die wichtigste Größe zur Kennzeichnung der Zerspanbarkeit eines Werkstoffes.
 - die Zeit in min, während der ein Werkzeug vom Anschnitt bis zum Unbrauchbarwerden aufgrund eines vorgegebenen Standzeitkriteriums unter gegebenen Zerspanbedingungen Zerspanarbeit leistet.

→ Wichtig ist immer die Beschreibung des Gesamtsystems aus Werkstück, Werkzeug, Einspannung, Werkzeugmaschine und Kühlschmierstoff!

Ermittlung der Standzeit

Ermittlung der Standzeit T_c durch

Temperaturstandzeitdrehversuch

- Einfluss der Temperatur maßgebend für das Erreichen des Standzeitendes
- Konstante Schnittbedingungen, bis die Schneide thermisch erliegt, z.B. bei Anlassfarben auf Schnitt- oder Werkstückoberfläche
- → Für Schneidstoffe mit geringer Temperaturbeständigkeit (Werkzeugstähle, Schnellarbeitsstähle)

Verschleißstandzeitdrehversuch

- Einfluss der Verschleißes maßgebend für das Erreichen des Standzeitendes
- Längsrundschnitt mit konstanten Schnittbedingungen
- Messen des Verschleißes auf der Frei- und Spanfläche nach verschiedenen Schnittzeiten
- Aufstellung von Verschleißkurven
- → Für Schneidstoffe mit großer Temperaturbeständigkeit (Hartmetall, Cermet, Keramik, CBN)

Verschleißkurve

Verschleißstandzeitdrehversuch

Quelle: König

Standzeitkurve

Quelle: König

Standzeitkurve im log. System

$$y = m \cdot x + b$$

$$\log T_c = k \cdot \log v_c + \log C_v$$

$$T_c = C_v \cdot v_c^k$$

$$\tan \alpha = k = -\frac{\log C_{v}}{\log C_{T}}$$

$$T_c = C_v \cdot v_c^k = \left(\frac{v_c}{C_T}\right)^k$$

Taylorgleichung

Quelle: König

Schnittgeschwindigkeit v_c/(m/min)

Herleitung der Taylorgleichung

- Geradengleichung $y = m \cdot x + b$
- Geradengleichung im logarithmischen System $\log T_c = k \cdot \log v_c + \log C_v$
- daraus folgt

$$T_c = C_v \cdot v_c^k$$

- Der Steigungswert k kann auch über $\tan \alpha = k = -\frac{\log C_v}{\log C_T}$ ermittelt werden.
- Somit gilt:

$$T_c = C_v \cdot v_c^k = \left(\frac{v_c}{C_T}\right)^k$$
 Taylorgleichung

C_v und C_T in der Taylorgleichung

- Der **Parameter C** $_{v}$ (Ordinatenabschnitt) gibt die Standzeit bei einer Schnittgeschwindigkeit von $v_{c} = 1$ m/min an.
 - → "normierte Standzeit"

- Der **Parameter C**_T (Abszissenabschnitt) gibt die Schnittgeschwindigkeit an, bei der sich eine Standzeit von T_c = 1 min ergibt.
 - → "normierte Schnittgeschwindigkeit"

Erweiterte Taylorgleichung

- Einfache Taylorgleichung berücksichtigt nur den Einfluss der Schnittgeschwindigkeit auf die Standzeit.
- Der Vorschub kann durch die erweitere Taylorgleichung mit berücksichtigt werden

$$T_c = C \cdot f^i \cdot v_c^k$$

■ C, i und k können dann mit Hilfe der Standzeitdiagramme bestimmt werden.

Aufgabe 1

a) Leiten Sie aus dem gegebenen $VB-v_c$ -Diagramm die Taylorgerade im doppeltlogarithmischen Diagramm für ein Verschleißkriterium vom VB = 0.3 mm ab!

- b) Bestimmen Sie die Kennwerte der Taylorgeraden k, C_ν, C_T!
- c) Stellen Sie C_v als Funktion von C_T und k dar!
- d) Was sind C_v und C_T anschaulich?
- e) Was sagt die Steigung der Taylorgeraden über das Verschleißverhalten des Schneidstoffes aus?

a) Leiten Sie aus dem gegebenen $VB-v_c$ -Diagramm die Taylorgerade im doppeltlogarithmischen Diagramm für ein Verschleißkriterium vom VB = 0.3 mm ab!

b) Bestimmen Sie die Kennwerte der Taylorgeraden k, C_v, C_T!

c) Stellen Sie C_v als Funktion von C_T und k dar!

d) Was sind C_v und C_T anschaulich?

e) Was sagt die Steigung der Taylorgeraden über das Verschleißverhalten des Schneidstoffes aus?

Übung 2 - Standzeit

Dr.-Ing. Anke Müller, 23.04.2018
Institut für Werkzeugmaschinen und Fertigungstechnik