Lab 3 - Textual Data Analytics

Complete the code with TODO tag.

1. Feature Engineering In this exercise we will understand the functioning of TF/IDF ranking. Implement the feature engineering and its application, based on the

code framework provided below. First we use textual data from Twitter.

import numpy as np

In [1]:

In [2]:

In [3]:

```
import pandas as pd
         data = pd.read csv('elonmusk tweets.csv')
         print(len(data))
         data.head()
         2819
Out[1]:
                          id
                                    created at
                                                                                   text
```

0 849636868052275200 2017-04-05 14:56:29 b'And so the robots spared humanity ... https:... 1 848988730585096192 2017-04-03 20:01:01 b"@ForIn2020 @waltmossberg @mims @defcon_5 Exa... **2** 848943072423497728 2017-04-03 16:59:35 b'@waltmossberg @mims @defcon_5 Et tu, Walt?' **3** 848935705057280001 2017-04-03 16:30:19 b'Stormy weather in Shortville ...'

4 848416049573658624 2017-04-02 06:05:23 b"@DaveLeeBBC @verge Coal is dying due to nat ... 1.1. Text Normalization Now we need to normalize text by stemming, tokenizing, and removing stopwords.

import nltk nltk.download('punkt')

from collections import Counter

pp = pprint.PrettyPrinter(indent=4)

[nltk data] Downloading package punkt to

[nltk_data] /Users/adamnguyen/nltk_data... [nltk_data] Package punkt is already up-to-date!

[nltk_data] Package stopwords is already up-to-date!

[nltk_data] Downloading package stopwords to [nltk data] /Users/adamnguyen/nltk data...

nltk.download('stopwords')

def normalize(document):

import math

import pprint

import string from nltk.corpus import stopwords

from __future__ import print_function, division

from nltk.stem import PorterStemmer, WordNetLemmatizer

TODO: remove punctuation text = "".join([ch for ch in document if ch not in string.punctuation]) # TODO: tokenize text tokens = nltk.word tokenize(text) # TODO: Stemming stemmer = PorterStemmer() ret = " ".join([stemmer.stem(word.lower()) for word in tokens]) original_documents = [x.strip() for x in data['text']] documents = [normalize(d).split() for d in original documents] documents[0] Out[3]: ['band', 'so', 'the', 'robot', 'spare', 'human', 'httpstcov7jujqwfcv']

As you can see that the normalization is still not perfect. Please feel free to improve upon (OPTIONAL), e.g.

words = [word for word in flat list if word not in stopwords.words('english')]

https://marcobonzanini.com/2015/03/09/mining-twitter-data-with-python-part-2/

flat list = [word for doc in documents for word in doc]

"""TODO: compute IDF, storing values in a dictionary"""

TODO: remove stop words from the vocabulary

TODO: we take the 500 most common words only

counts = Counter(words) vocabulary = counts.most common(500) print([x for x in vocabulary if x[0] == 'tesla'])

 $idf = \{\}$

num documents = len(documents)

vector = [0]*len(vocabulary) counts = Counter(document)

re(np.array(document_vectors[1]) > 0)]

return vector

tures=500)

for i, term in enumerate(vocabulary):

vector[i] = idf[term] * counts[term]

from sklearn.metrics.pairwise import linear kernel

features = tfidf.fit(original documents)

1.4. Apply TF-IDF for information retrieval

"""TODO: compute cosine similarity"""

sumxx, sumxy, sumyy = 0, 0, 0

for i in range(len(v1)): x = v1[i]; y = v2[i]

result = 0

sumxx += x*xsumyy += y*ysumxy += x*y

In [9]: def cosine similarity(v1, v2):

if sumxy == 0:

else:

document vectors = [vectorize(s, vocabulary, idf) for s in documents]

Out[7]: (array(['tesla', 'exactli'], dtype='<U17'), array([3.31630952, 6.65361284]))

In [8]: from sklearn.feature extraction.text import CountVectorizer, TfidfVectorizer

1.2. Implement TF-IDF

In [4]: # Flatten all the documents

vocabulary = [x[0] **for** x **in** vocabulary] assert len(vocabulary) == 500

Now you need to implement TF-IDF, including creating the vocabulary, computing term frequency, and normalizing by tf-idf weights.

vocabulary.sort() vocabulary[:5] [('tesla', 287)] Out[4]: ['brt', 'tesla', 'spacex', 'model', 'thi'] In [5]: def tf(vocabulary, documents): matrix = [0] * len(documents)for i, document in enumerate(documents): counts = Counter(document) matrix[i] = [0] * len(vocabulary) for j, term in enumerate(vocabulary): matrix[i][j] = counts[term] return matrix tf = tf(vocabulary, documents) np.array(vocabulary)[np.where(np.array(tf[1]) > 0)], np.array(tf[1])[np.where(np.array(tf[1]) > 0)]Out[5]: (array(['tesla', 'exactli'], dtype='<U17'), array([1, 1]))</pre>

for i, term in enumerate(vocabulary): idf[term] = math.log(num documents / sum(term in document for document in documents), 2) return idf idf = idf(vocabulary, documents) [idf[key] for key in vocabulary[:5]] Out[6]: [2.539126825495932, 3.3163095197385393, 3.7262581423445837, 3.8171115727956972, 3.8027562798186274] In [7]: def vectorize(document, vocabulary, idf):

np.array(vocabulary)[np.where(np.array(document vectors[1]) > 0)], np.array(document vectors[1])[np.whe

Now we use the scikit-learn library. As you can see that, the way we do text normalization affects the result. Feel free to further improve

tfidf = TfidfVectorizer(analyzer='word', ngram range=(1,1), min df = 1, stop words = 'english', max fea

We can use the vector representation of documents to implement an information retrieval system. We test with the query Q = "tesla nasa"

upon (OPTIONAL), e.g. https://stackoverflow.com/questions/36182502/add-stemming-support-to-countvectorizer-sklearn

corpus tf idf = tfidf.transform(original documents) sum words = corpus tf idf.sum(axis=0)

1.3. Compare the results with the reference implementation of scikit-learn library.

testla 0.3495243100660956

```
# TODO: rank the documents by cosine similarity
    scores = [[cosine_similarity(query_vector, document_vectors[d]), d] for d in range(len(document_vec
tors))]
    scores.sort(key=lambda x: -x[0])
    print('Top-{0} documents'.format(k))
    for i in range(k):
        print(i, original_documents[scores[i][1]])
query = "tesla nasa"
stemmer = PorterStemmer()
search_vec(query, 5, vocabulary, stemmer, document_vectors, original_documents)
Top-5 documents
0 b'@ashwin7002 @NASA @faa @AFPAA We have not ruled that out.'
1 b'RT @NASA: Updated @SpaceX #Dragon #ISS rendezvous times: NASA TV coverage begins Sunday at 3:30am
ET: http://t.co/qrm0Dz4jPE. Grapple at ...'
2 b"Deeply appreciate @NASA's faith in @SpaceX. We will do whatever it takes to make NASA and the Ame
rican people proud."
3 b'Would also like to congratulate @Boeing, fellow winner of the @NASA commercial crew program'
4 b"@astrostephenson We're aiming for late 2015, but NASA needs to have overlapping capability to be
safe. Would do the same"
We can also use the scikit-learn library to do the retrieval.
cosine_similarities = linear_kernel(new_features, corpus_tf_idf).flatten()
related docs indices = cosine similarities.argsort()[::-1]
topk = 5
print('Top-{0} documents'.format(topk))
for i in range(topk):
    print(i, original_documents[related_docs_indices[i]])
```

In [6]: def idf(vocabulary, documents):

words freq = [(word, sum words[0, idx]) for word, idx in tfidf.vocabulary .items()] print(sorted(words freq, key = lambda x: x[1], reverse=True)[:5]) print('testla', corpus tf idf[1, features.vocabulary ['tesla']]) [('http', 163.54366542841234), ('https', 151.85039944652075), ('rt', 112.61998731390989), ('tesla', 9 5.96401470715628), ('xe2', 88.20944486346477)]

result = sumxy/math.sqrt(sumxx*sumyy) return result def search_vec(query, k, vocabulary, stemmer, document_vectors, original_documents): q = query.split() q = [stemmer.stem(w) for w in q]

query_vector = vectorize(q, vocabulary, idf)

In [10]: new_features = tfidf.transform([query])

Top-5 documents 0 b'@ashwin7002 @NASA @faa @AFPAA We have not ruled that out.' 1 b"SpaceX could not do this without NASA. Can't express enough appreciation. https://t.co/uQpI60zAV

2 b'@NASA launched a rocket into the northern lights http://t.co/tR2cSeMV' most of all.'

3 b'Whatever happens today, we could not have done it without @NASA, but errors are ours alone and me 4 b'RT @NASA: Updated @SpaceX #Dragon #ISS rendezvous times: NASA TV coverage begins Sunday at 3:30am ET: http://t.co/qrm0Dz4jPE. Grapple at ...'