6. (Mixed) Integer Linear Programming

Roberto Amadini

Department of Computer Science and Engineering, University of Bologna, Italy

Combinatorial Decision Making and Optimization

2nd cycle degree programme in Artificial Intelligence University of Bologna, Academic Year 2021/22

From Reals to Integers

- We have seen the simplex method to solve LP problems in "typically polynomial" time
- We however can always solve LP problems in polynomial time
 - Ellipsoid methods (inefficient, worse than simplex in practice)
 - Interior point methods (e.g., Karmarkar, can outperform simplex)
- If the domain of the variables involved is $\mathbb R$ or $\mathbb Q$ solving LP problems is not NP-hard
- What if we require domains to be subsets of Z or N? Would the problem be easier? Or harder? Or the same?
 - Let's go back to the baking example

```
1% We know how to make two sorts of cakes. A banana cake which takes 250g of
2% self-raising flour, 2 mashed bananas, 75g sugar and 100g of butter, and a
3% chocolate cake which takes 200g of self-raising flour, 75g of cocoa, 150g
4% sugar and 150g of butter. We can sell a chocolate cake for $4.50 and a
5% banana cake for $4.00. And we have 4kg self-raising flour, 6 bananas,
6% 2kg of sugar, 500g of butter and 500g of cocoa. How many of each sort of
7% cake should we bake for the fete to maximise the profit
9 var 0..100; b; % no. of banana cakes
10 var 0..100; c; % no. of chocolate cakes
11
12% flour
13 constraint 250*b + 200*c <= 4000;
14% bananas
15 constraint 2*b <= 6:
16% sugar
17 constraint 75*b + 150*c <= 2000;
18% butter
19 constraint 100*b + 150*c <= 500;
20% cocoa
21 constraint 75*c <= 500;
22
23% maximize our profit
24 solve maximize 400*b + 450*c:
25
26 output ["no. of banana cakes = (b)\n",
           "no. of chocolate cakes = (c)\n"];
27
```

◆□ ▶ ◆□ ▶ ◆■ ▶ ◆■ ◆9.00

- $b, c \in 0..100 = \{0, 1, ..., 100\} \subseteq [0, 100] = \{x \in \mathbb{R} \mid 0 \le x \le 100\}$
- b = 3, c = 4/3 can't be a feasible solution anymore!

- On the previous episodes, we assumed we could sell slices of cakes
 - E.g., one third of banana cake and two fifths of chocolate cake
- This could be a too strong assumption in a real-world setting
 - Imagine we are selling cars instead of cakes
- The feasible/optimal regions are now sets of integer points
 - "Grids" instead of polyhedra
- What is the optimal solution if we strictly require $b, c \in 0..100$?

- $b, c \in 0..100 = \{0, 1, ..., 100\} \subseteq [0, 100] = \{x \in \mathbb{R} \mid 0 \le x \le 100\}$
- Optimal solution b = c = 2

Integer Linear Programming

An Integer Linear Programming (ILP) problem has standard form:

$$\begin{array}{ll} \max & \sum_{j=1}^{n} c_{j} x_{j} \\ \text{s.t.} & \sum_{j=1}^{n} a_{i,j} x_{j} = b_{i} \quad 1 \leq i \leq m \\ & x_{j} \geq 0, \quad x_{j} \in \mathbb{Z} \quad 1 \leq j \leq n \end{array}$$

- If we require only k < n variables to be integers, then it is a **Mixed-Integer Programming (MIP)** problem
 - ILP a.k.a. Integer Programming (IP)
 - MIP a.k.a. Mixed-Integer Linear Programming (MILP)
- Linear relaxation: MIP problem with no integrality constraints $x_i \in \mathbb{Z}$
 - If $\mathcal{L}(P)$ is the linear relaxation of P, $\mathcal{F}_P \subseteq \mathcal{F}_{\mathcal{L}(P)}$ hence solving $\mathcal{F}_{\mathcal{L}}(P)$ and rounding its optimal solution does not work in general

Linear relaxation

- Optimal solution of linear relaxation: $b=3, c=4/3=1.\overline{3}$, rounding to nearest integer b=3, c=1. Obj. value = $400 \cdot 3 + 450 \cdot 1 = 1650$
- Optimal solution original problem: b=2, c=2. Obj. value = $400 \cdot 2 + 450 \cdot 2 = 1700$

Linear relaxation

- Rounding the optimal solution of $\mathcal{L}(P)$ is not sound in general!
- E.g. with $P: \max(x)$ s.t. $x \le 5/3, x \ge 0, x \in \mathbb{Z}$ we have that $5/3 = 1.\overline{6}$ is optimal for $\mathcal{L}(P)$ but its rounding is $2 \notin \mathcal{F}_P = \{0,1\}$
 - In this case $\mathcal{O}_P=\{1\}
 eq \{rac{5}{3}\} = \mathcal{O}_{\mathcal{L}(P)}$
- Clearly, $\mathcal{F}_{\mathcal{L}(P)} = \emptyset \implies \mathcal{F}_P = \emptyset$: solving $\mathcal{F}_{\mathcal{L}(P)}$ can help to detect unsatisfiability of P
- If $\mathcal{L}(P)$ unbounded, P can be:
 - bounded, e.g. $P: \max(x_1)$ s.t. $x_1 = \sqrt{2}x_2$ and $x_1, x_2 \in \mathbb{N}$
 - unbounded, e.g. $P : \max(x) \text{ s.t. } x \in \mathbb{N}$
 - unsatisfiable, e.g. $P: \max(x_1)$ s.t. $0.1 \le x_2 \le 0.2$ and $x_1, x_2 \in \mathbb{N}$

Complexity

- Adding integrality has huge impact on the complexity of LP solving
- No known algorithms for solving MIP problems in polynomial time
 - \bullet otherwise, P = NP
- More precisely, MIP problems are NP-complete
 - They are in **NP** (certifying solutions takes polynomial time)
 - Solvable by NDTM in polynomial time...
 - They are among the *hardest* problems in **NP** (NP-hard)
- If we could solve a generic MIP problem in polynomial time, we could also solve, e.g., any SAT problem in polynomial time
 - And all the NP problems in polynomial time...

SAT to MIP reduction

• From any generic SAT problem in CNF P_{SAT} with clauses C_1, \ldots, C_m and literals ℓ_1, \ldots, ℓ_n we get an equisatisfiable MIP problem P_{MIP} :

max
$$0$$

s.t. $\sum_{j=1}^{n} a_{i,j} x_{j} \leq |C_{i}^{-}| - 1$ $1 \leq i \leq m$
 $x_{j} \in \{0,1\}$ $1 \leq j \leq n$

where $C_i = C_i^- \cup C_i^+$ and C_i^-/C_i^+ are the negative/positive literals of C_i and $a_{i,j} = \begin{cases} -1 & \text{if } \ell_j \in C_i^+ \\ +1 & \text{if } \neg \ell_j \in C_i^- \\ 0 & \text{otherwise} \end{cases}$ for $i = 1, \dots, m, j = 1, \dots, n$

• E.g. $\ell_1 \vee \neg \ell_2 \vee \ell_4 \vee \neg \ell_5 \implies x_1 + (1 - x_2) + 0 \cdot x_3 + x_4 + (1 - x_5) \ge 1 \implies x_1 - x_2 + x_4 - x_5 \ge -1 \implies -x_1 + x_2 - x_4 + x_5 \le 1$

SAT to MIP reduction

- Reducing P_{SAT} to P_{MIP} takes polynomial time
 - O(mn) time
- P_{SAT} feasible $\iff P_{MIP}$ feasible, and any solution of P_{MIP} can be mapped back into a solution of P_{SAT} in polynomial time
 - O(n) time: $x_j = 0 \mapsto \ell_j = false, x_j = 1 \mapsto \ell_j = true$
- P_{MIP} solvable in polynomial time \implies any SAT problem solvable in poly. time \implies any NP-complete problem in poly. time \implies P=NP
- Because rounding is in general not applicable, we have to tackle MIP solving with other approaches

Handling NP-hardness

Different ways of handling NP-hard problems:

- Exact algorithms: they guarantee to find an optimal solution although this may take exponential time
 - Branch-and-bound, cutting planes
- Approximation algorithms: they guarantee in polynomial time a (sub-)optimal solution at most ρ times worse the optimal one
 - $oldsymbol{
 ho}=\operatorname{approximation}$ factor
- Heuristic algorithms: no guarantee of optimality nor polynomial runtime, but "in practice" they find good solutions in reasonable time
 - According to empirical evidences

Branch-and-bound

- Branch-and-bound (BB) is based on divide et impera approach: split a "big" problem into sub-problems until a success or a failure
 - Overall solution derived from the solution of sub-problems
- Branch phase = explore the sub-problems
 - sub-trees of the search tree
- Bound phase = compute the bounds of sub-problem optimal solution
 - to possibly prune the search tree if current solution not improvable
- BB is a general paradigm applicable to various NP-hard problems

Branch-and-bound

• We can solve a standard MIP problem P via BB. Suppose $P_0 = \mathcal{L}(P)$ has solution β_1, \ldots, β_n with some $\beta_k \notin \mathbb{Z}$ (very lucky otherwise!)

- Pick a x_k s.t. $\beta_k \notin \mathbb{Z}$ and branch: $\begin{cases} P_1 = P_0 \cup \{x_k \le \lfloor \beta_k \rfloor\} \\ P_2 = P_0 \cup \{x_k \ge \lceil \beta_k \rceil\} \end{cases}$ Note $\mathcal{F}_P = \mathcal{F}_{P_1} \cup \mathcal{F}_{P_2}$ and $\mathcal{F}_{P_1} \cap \mathcal{F}_{P_2} = \emptyset$
- ullet We can solve P_1,P_2 to optimality and take the best solution (if any)
 - If integral, optimal for P too! Otherwise, branch again on P_1, P_2, \ldots
- So we build search tree rooted in P_0 with edges $P_i \rightarrow P_j$ if child node P_i is a sub-problem of parent node P_i

Branch-and-bound

- If a P_k has integral optimal solution, we compare its obj. value z_k with the best obj. value z^* so far (best bound): if $z_k > z^*$, then $z^* \leftarrow z_k$, otherwise we cannot improve z^*
 - In any case, we "close" that path: P_k will be a leaf
 - Initially, $z^* \leftarrow -\infty$
- A leaf can also denote an unfeasible sub-problem or one with non-integral solution and obj. value $\leq z^*$
- In the end, an optimal solution for P corresponds to a feasible leaf P_k with obj. value z^*
 - Leaves also called fathomed nodes, current optimal solution also called incumbent solution

Let's how BB works on the baking problem where $B, C \in 0..100$

If we solve $P_0 = \mathcal{L}(P)$, optimal solution B = 3, C = 4/3 not feasible: we need to branch on C: $\begin{cases} P_1 = P_0 \cup \{C \le \lfloor 4/3 \rfloor = 1\} \\ P_2 = P_0 \cup \{C \ge \lceil 4/3 \rceil = 2\} \end{cases}$

The resulting search tree is:

If $C \le 1$, optimal solution is integral: B = 3, C = 1 with value 1650

Node P_1 is a leaf: we backtrack and explore P_2

If $C \ge 2$, we get a better solution B = 2, C = 2 with value 1700

Branch and Bound

- BB works well typically in combination with other techniques
 - Presolve
 - Cutting planes
 - Heuristics
 - Parallelism
 - ...

Presolve

- Presolve means reformulating a problem before its actual solving process to possibly reduce its size
 - Presolve should be computationally efficient
- Bounds tightening, e.g.: $\{x_1 + x_2 \ge 20, x_1 \le 10\} \models x_2 \ge 10$
 - If $x_2 \in 1..9$, we eagerly detect unsatisfiability
- Problem reduction, e.g.: $\{x_1 + x_2 \le 0.8\} \models x_1 = x_2 = 0$
 - x_1, x_2 can be removed from problem formulation
- Pre-processing a MIP problem P is important because it can reduce the size of $\mathcal{F}_{\mathcal{L}(P)}$ without altering \mathcal{F}_{P}

Cutting planes

- The theory of cutting planes has allowed for significant advancements of MIP solving
- Instead of (or in addition to...) branching on sub-problems, we repeatedly add new constraints entailed by the original problem P
- The idea is to "cut out" parts of $\mathcal{F}_{\mathcal{L}(P)} \mathcal{F}_P$ along the solving process to remove non-integral solutions
 - Until we converge to an optimal solution for P
- The existence of a cut separating optimal solution in $\mathcal{F}_{\mathcal{L}(P)} \mathcal{F}_P$ from $\mathcal{F}(P)$ is guaranteed
 - But not its uniqueness!

Cutting planes

Formally, a cut for a MIP problem P in standard form is an inequality $px \leq q$ such that $py \leq q$ and pz > q for each $y \in \mathcal{F}_P$ and $z \in \mathcal{O}_{\mathcal{L}(P)}$

Cutting Planes

Gomory's cut

- Proposed by R. Gomory in the 1950s
- Suppose basis $\mathcal{B}^* = \{x_{i_1}, \dots, x_{i_m}\}$ is optimal for $\mathcal{L}(P)$. Basic variables can be rewritten as:

$$x_{i_k} = \beta_k + \sum_{j=1}^{n-m} \alpha_{k,j} x_{i_{m+j}}$$
 for $k = 1, ..., m$

where $x_{i_{m+1}}, x_{i_{m+2}}, \dots, x_{i_n}$ are non-basic variables

• The optimal solution x^* is $x_{i_k}^* = \beta_k$ for $k = 1, \ldots, m$ and $x_{i_j}^* = 0$ for $j = m+1, \ldots, n$. If there is a $\beta_k \notin \mathbb{Z}$, then $x^* \in \mathcal{F}_{\mathcal{L}(P)} - \mathcal{F}_P$ so we generate a cut to separate x^* from \mathcal{F}_P

Gomory's cut

- The cut has the form $-f_k + \sum_{j=1}^{n-m} f_{k,j} x_{i_{m+j}} \ge 0$ where for $j = 1, \dots, n-m$ and $k = 1, \dots, m$:
 - $f_k = \beta_k \lfloor \beta_k \rfloor$
 - f_k is the mantissa of β_k : $0 < f_k < 1$
 - $f_{k,j} = -\alpha_{k,j} \lfloor -\alpha_{k,j} \rfloor$
 - $f_{k,j}$ is the mantissa of $-\alpha_{k,j}$: $0 \le f_{k,j} < 1$
- So, $\mathcal{L}(P) \leftarrow \mathcal{L}(P) \cup \left\{ y_k = -f_k + \sum_{j=1}^{n-m} f_{k,j} x_{i_{m+j}}, \quad y_k \ge 0 \right\}$
 - A new slack variable y_k added at each round
- $\mathcal{B}^* \leftarrow \mathcal{B}^* \cup \{y_k\}$ and solve with dual simplex. Why?

Gomory's cut

- Dual simplex solves dual problem without converting the primal, by moving between dual feasible basis until primal feasible basis reached
 - \mathcal{B}^* unfeasible for current (primal) problem $(y_k = -f_k < 0)$
 - $oldsymbol{artheta}^*$ is optimal for primal problem and so dual feasible: all the reduced costs are non-positive
- In the first round:
 - Leaving variable = y_k (because $\beta_k = \min{\{\beta_i\}}$)
 - Entering variable = x_i with maximum negative ratio $-\gamma_i/\alpha_{k,i}$
- If dual simplex finds an integral optimal solution or is unbounded (primal infeasible) then STOP, otherwise repeat

Example

- E.g., for baking example we get $\mathcal{B}^* = \{S_1, B, S_3, C, S_5\}$, with optimal solution B = 3, C = 4/3, $S_1 = \cdots = S_5 = 0$ having value $z^* = 1800$
 - We need to "cut out" non-integral value 4/3
 - $\alpha_{C,S_2} = 1/3$, $\alpha_{C,S_4} = 1/150$
- $f_C = 4/3 \lfloor 4/3 \rfloor = 1/3$
- $f_{C,S_2} = 1/3 \lfloor 1/3 \rfloor = 1/3$, $f_{C,S_4} = -1/150 \lfloor -1/150 \rfloor = 149/150$
- Gomory's cut is $y_C = -1/3 + 1/3 \cdot S_2 + 149/150 \cdot S_4$, $y_C \ge 0$
 - Corresponding to $300B + 447C \le 1495$
 - $\bullet~300\cdot 3 + 447\cdot 4/3 = 1496 > 1495$ does not satisfy the cut
- Starting basis for dual simplex is $\{S_1, B, S_3, C, S_5, y_C\}$, then y_C out, choose entering variable, reformulate with new basis...

Branch-and-cut

- Gomory's cut considered ineffective at the time because of numerical instability and number of cuts needed for convergence
- In mid 1990s, G. Cornuéjols et al. proved it to be very effective in combination with branch-and-bound: branch-and-cut
- Basically, it runs BB for P and if an optimal solution of $\mathcal{L}(P)$ is not integral it possibly adds cutting planes to refine $\mathcal{L}(P)$
 - E.g., https://www.ibm.com/docs/en/icos/12.10.0?topic= concepts-branch-cut-in-cplex
- Cuts can be global (valid for all solutions of P) or local (valid for sub-problems)

Bender's Decomposition

- Cutting planes can be seen as "row generation" methods: new constraints are added at each step
- Bender's decomposition is another row generation method dividing a problem P into master problem (min) and sub-problem(s) (max)
 - Idea: iteratively fix the value of some variables and solve the dual of residual sub-problem to get cuts or better objective bounds
 - Logic-Based Bender's Decomposition: sub-problems are generic problems solvable with any solver (e.g., CP or SMT solvers)
- Also column-generation methods exist: start with subset of variables and repeatedly add variables until objective value cannot be improved
 - Assumption: only a small subset of variables is useful
 - E.g., Dantzig-Wolfe decomposition

Bender's Decomposition

• Consider a problem with m inequalities and n variables, divide them in $\mathbf{x} \in \mathbb{R}^p$, $\mathbf{y} \in \mathbb{R}^{n-p}$ for some $p \in 1..n$ and rewrite the problem as:

$$\begin{array}{ccccc} \min \ c^T \mathbf{x} & + & d^T \mathbf{y} \\ \text{s.t. } A \mathbf{x} & + & B \mathbf{y} & \geq & b \\ \mathbf{x} \geq 0 & , & \mathbf{y} \in Y \end{array}$$

• where $Y \subseteq \mathbb{R}^{n-p}$ is the feasible set of \mathbf{y} (no assumptions on Y). For any fixed tuple of values $\overline{\mathbf{y}} \in Y$, the residual problem is:

$$\begin{array}{lll} \min \ c^T \mathbf{x} & + & d^T \overline{\mathbf{y}} \\ \mathrm{s.t.} \ A \mathbf{x} & \geq & b - B \overline{\mathbf{y}} \end{array} , \quad \mathbf{x} \geq 0$$

• The dual of the residual problem is:

$$\max (b - B\overline{\mathbf{y}})^T \mathbf{u} + d^T \overline{\mathbf{y}}$$

s.t. $A^T \mathbf{u} < c$, $\mathbf{u} > 0$

Bender's Decomposition

• So, the original problem (master) can be seen as a minimax problem:

$$\min_{\boldsymbol{y} \in \boldsymbol{Y}} \left[\boldsymbol{d}^T \boldsymbol{y} + \max_{\boldsymbol{u} \geq \boldsymbol{0}} \left\{ (\boldsymbol{b} - \boldsymbol{B} \boldsymbol{y})^T \boldsymbol{u} \mid \boldsymbol{A}^T \boldsymbol{u} \leq \boldsymbol{c} \right\} \right]$$

- Bender's approach iteratively builds a (initially empty) set of cuts for the master problem by repeatedly solving the max sub-problem:
 - \bullet If unbounded, residual problem unfeasible: a corresponding cut is generated to exclude \overline{y}
 - If unfeasible, residual problem unbounded or unfeasible: STOP
 - If $\overline{\mathbf{u}}$ is optimal, is optimal for residual too. We might update the current upper bound of master problem, and add to it $\mathbf{c}^T \mathbf{x} \geq (\mathbf{b} B\mathbf{y})^T \overline{\mathbf{u}}$
 - By weak duality, $c^T \mathbf{x} + d^T \mathbf{y} \ge (\mathbf{b} B\mathbf{y})^T \mathbf{u} + d^T \mathbf{y}$
 - Now solve the new master problem to get a new solution $\overline{\mathbf{y}}$: if the new bounds gap $< \epsilon$ then STOP and get $\overline{\mathbf{x}}$ from residual problem
 - \bullet Otherwise repeat with the new $\overline{\boldsymbol{y}}$

Heuristics

- Heuristics methods aim to find "good" solutions in "reasonable" time
 - Inherently experimental, weak theoretical guarantees
- Constructive methods: start with empty solution and iteratively extend the current partial solution
 - Evolutionary, genetic algorithms
- Local search methods: start with a complete solution and iteratively improve it
 - Hill climbing
- Meta-heuristics methods: heuristics for selecting, combining, tuning or generating other heuristics
 - Tabu search

MIP Heuristics

- MIP heuristics can be used in addition to branching/cutting, e.g.:
- Rounding and checking non-integral solutions
- Diving: rounding + bounding/fixing some variables and re-solve linear relaxation at each node of the search tree
- Sub-MIPing: restrict to sub-problem by fixing/bounding some variables and solve it

...

Warm starts

- MIP resolution may be warm-started by giving an initial value to (some of) the variables
- This not necessarily translates to a new incumbent: the suggested solution might be unfeasible or not better than current best bound
 - Or, if partial, it might take too long to compute a complete solution
- A warm start vector might come from the knowledge of a similar problem, or from the expertise of a domain expert
- Warm-starting MIP problems can be highly beneficial for tightening the bounds of its variables

Take-home messages

- Adding integer variables to LP significantly increases its complexity
- MIP solving can be tackled with (a combination of) different approaches
 - Exact
 - Approximate
 - Heuristic
- Rounding non-integral solutions of linear relaxation does not work in general

Take-home messages

- Branch-and-bound: divide-et-impera approach, branches on variables with non-integer value, stop if we cannot improve incumbent solution
- Cutting planes: linear equalities separating non-integral, optimal solutions of linear relaxation from feasible region of original problem
 - Branch-and-cut
 - Gomory's cut
 - Benders' cut
- Heuristics: no strong guarantees on optimality/runtime, but "in practice" they find good solutions in reasonable time
 - Inherently experimental