

Design of Embedded System

Mars Rover Project Report

Luca Poli[1124244], Razvan Potcoveanu[1123076]

Version: 1.0.0

Table of Contents

1. Planning	3
1.1 Requirements	
1.1.1 Definition	
1.1.2 Timetable	4
1.2 Sensors/Actuators Mapping	
1.2.1 Proposal	

1. Planning

1.1 Requirements

1.1.1 Definition

Group	Code	Priority	Description	
Functionality	F_SFT	М	The rover should perform any mission safely (without fallir of the edge or getting stuck in the lakes)	
	F_MSQ	М	The rover should perform the missions in sequential order (from the first)	
	F_COL	М	The rover should be able to detect colors, to find or avoid them	
	F_DIS	М	The rover should be able to detect distant objects	
	F_IMP	М	The rover should be able to detect impact with other objects	
	F_ARM	М	The rover should be able to use the measurement arm	
	F_POB	S	The rover should be able to push another object	
	F_FED	S	The rover should give feedback (led or sound) on mission complete or errors	
	F_PRK	С	The rover should be able to park	
	F_DNS	W	The rover should be able to dance and sing	
Usability	U_NHM	M	The rover should perform any mission without human interaction	
	U_ELG	М	The user should be able to see the error log	
	U_ALG	S	The rover should keep an activity log	
	U_TLG	С	The rover should keep track of time required for a mission	
Reliability	R_ESR	М	The rover should stop and restart after a critical error	
	R_BRC	M	After a Bluetooth connection lost, the rover should try to reconnect	
	R_SER	М	The rover should be able to work normally even with some sensors read errors	
Performance	P_CTM	М	The rover should be able to perform the missions in a reasonable time	
	P_BCM	М	The two bricks should respond to each other's instructions immediately	
	P TPR	М	The rover should response to trigger in order of their priority	
	P IEL	S	The rover should log the errors immediately	
	P EFM	W	The rover should perform the missions in an efficient way	
Supportability	S_COL	М	The user should be able to configure the colors to detect (and how to react to them)	
	S_MSP	S	The user should be able to configure the speed of the motor	
	S_ARM	S	The user should be able to configure on which objects the rover has to use the measurement arms	
	S_MOV	С	The user should be able to configure the movement actions parameters (angle to turn, distance,)	
	S FED	С	The user should be able to configure the missions feedback	
	S_POB	С	The user should be able to configure which objects the rover has to move	
	S_FSN	W	The user should be able to add and use custom sounds for feedback	

1.1.2 Timetable

Week number	Activities
0: 22/11 – 27/11	Requirements definition and planning; Sensor/actuators mapping; DSL
	typepal refactor; Refine of DSL grammar
1: 29/11 – 05/12	Basic must have functionalities [F_SFT, F_COL, F_DIS, F_IMP, F_ARM,
	U_NHM, U_ELG, R_SER, S_COL]
2: 06/12 – 12/12	Test and refine of implementation of F_SFT; Finish implementation of
	previous functionalities; Implementation of [F_MSQ, F_POB, F_FED,
	R_ESR, R_BRC, P_CTM, P_BCM, U_ALG]
3: 13/12 – 19/12	Finish implementation of previous functionalities; Implementation of [P_TPR,
	P_IEL, S_MSP, S_ARM, S_MOV, F_PARK]
4: 20/12 – 26/12	Finish implementation of previous functionalities; Implementation of [P_IEL,
	S_MOV, S_FED, S_POB, U_TLG]
5: 27/12 – 02/01	Finish implementation of previous functionalities; Implementation of [S_FSN,
	P_EFM, F_DNS]
6: 03/01 – 09/01	Testing and refining

1.2 Sensors/Actuators Mapping

1.2.1 Proposal

Actuators	Left motor	Measurement arm motor
	Right motor	
Sensors	Color left	Touch left
	Color right	Touch right
	Color mid	Touch back
	Ultrasonic back	Ultrasonic front

EV3 Brick2

EV3 Brick1

Explanation:

Because of the delay in communication between the two bricks we decided to go with this configuration for brick1 (motor and safety related sensors) because it's going to assure that we don't drive off the table. For brick2 we have put the ultrasonic front sensor, because we can increase the detection range to account for the delay.