Teoria di Galois 1 - Tutorato II

Estensioni, campi di spezzamento, omomorfismi di campi

Venerdì 11 Marzo 2005

Esercizio 1. In ciascuno dei seguenti casi, determinare la dimensione del campo di spezzamento del polinomio sul campo assegnato F:

a.
$$f(x)=x^3$$

$$F=\mathbb{Q};$$
b. $f(x)=(x^2-3)(x^2-27)(x^2-12)$
$$F=\mathbb{Q}(3^{\frac{1}{3}});$$
c. $f(x)=x^8-4$
$$F=\mathbb{Q}(e^{\frac{2\pi i}{h}});$$
d. $f(x)=x^h-3$
$$F=\mathbb{Q}(e^{\frac{2\pi i}{h}});$$
f. $f(x)=x^3+30x+1$
$$F=\mathbb{Q};$$
g. $f(x)=x^{15}+3x^5+1$
$$F=\mathbb{F}_5;$$
h. $f(x)=x^4-x^3-4x^2+1$
$$F=\mathbb{F}_2;$$
i. $f(x)=x^{10}+x+1$

Esercizio 2. In ciascuno dei seguenti numeri algebrici, si calcoli il polinomio minimo

a.
$$e^{\frac{2\pi i}{33}}$$
; b. $\cos \frac{2\pi}{9}$; c. $\cos \frac{2\pi}{11}$; d. $\cos \frac{2\pi}{13}$; e. $\cos \frac{\pi}{5}$; f. $\sin \frac{\pi}{7}$.

Esercizio 3. Descrivere gli F-omomorfismi di E in $\mathbb C$ in ciascuno dei seguenti casi:

a.
$$E=\mathbb{Q}(e^{\frac{\pi i}{8}})$$

$$F=\mathbb{Q}(e^{\frac{\pi i}{2}});$$
 b. $E=\mathbb{Q}(\sqrt{2},\sqrt{3},\sqrt{5})$
$$F=\mathbb{Q}(\sqrt{6});$$
 c. $E=\mathbb{Q}(\zeta_7)$
$$F=\mathbb{Q}(\cos\frac{2\pi}{7});$$
 d. $E=\mathbb{Q}(\sqrt{\sqrt{3}+1})$
$$F=\mathbb{Q}(\sqrt{3});$$
 e. Sostituire ora \mathbb{C} con $\mathbb{F}_7(\beta)$, dove $\beta^4+\beta+1=0$
$$F=\mathbb{F}_7(\alpha) \quad \text{con} \quad \alpha^4+5\alpha^2+3\alpha+1=0$$

$$F=\mathbb{F}_7(\sqrt{-2}).$$

Esercizio 4. Si mostri che $\mathbb{Q}(\sqrt{-7}) \subseteq \mathbb{Q}(\zeta_7)$. Suggerimento: Considerare il numero $\zeta_7 + \zeta_7^2 - \zeta_7^3 + \zeta_7^4 - \zeta_7^5 + \zeta_7^6$.

Esercizio 5. Mostrare che se n divide m, allora $\mathbb{Q}(\zeta_n) \subset \mathbb{Q}(\zeta_m)$.

Esercizio 6. Dimostrare che se $q\in\mathbb{Q}$, allora $\cos(q\pi)$ è un numero algebrico. Calcolare anche la dimensione

$$\left[\mathbb{Q}(\cos(q\pi)):\mathbb{Q}\right].$$

Si può dire la stessa cosa di $\sin(q\pi)$?

Suggerimento: Utilizzare (senza mostrarlo) il fatto che $[\mathbb{Q}(\zeta_m):\mathbb{Q}]=\varphi(m)$.

Esercizio 7. Mostrare che se $f \in F[x]$ è un polinomio irriducibile e charF = p, allora il campo di spezzamento di f ha grado ∂f .