```
In [118...
          import numpy as np
           import pandas as pd
           import seaborn as sns
           import matplotlib.pyplot as plt
           from time import time
           from sklearn.linear_model import LogisticRegression
           from sklearn.neighbors import KNeighborsClassifier
           from sklearn.svm import SVC
           from sklearn.model_selection import train_test_split,GridSearchCV
           from sklearn.metrics import confusion_matrix, roc_curve, accuracy_score, f1_score, roc
           from astropy.table import Table
           from sklearn.metrics import roc_auc_score
          df = pd.read_csv('student-data.csv')
          dfv = pd.read_csv('student-data.csv')
  In [ ]:
          df
In [119...
Out[119]:
```

school sex age address famsize Pstatus Medu Fedu Mjob Fjob ... internet rom 0 GP F 18 U GT3 Α 4 4 at\_home teacher no yes 1 GP F 17 U GT3 Τ 1 1 at\_home other 2 GΡ F 15 U LE3 Τ 1 1 at\_home other yes F 15 U GT3 Τ 3 GP 4 health services yes 4 GP F 16 U GT3 Τ 3 3 other other no 390 MS 20 U LE3 Α 2 2 M services services no 391 MS 17 U LE3 Τ 3 M 1 services services yes Τ 1 392 MS Μ 21 R GT3 1 other other no 393 MS Μ 18 R LE3 Τ 3 services other yes 394 MS Μ 19 U LE3 Τ 1 1 other at\_home yes

395 rows × 31 columns

```
In [120... def numerical_data():
    df['school'] = df['school'].map({'GP': 0, 'MS': 1})
    df['sex'] = df['sex'].map({'M': 0, 'F': 1})
    df['address'] = df['address'].map({'U': 0, 'R': 1})
    df['famsize'] = df['famsize'].map({'LE3': 0, 'GT3': 1})
    df['Pstatus'] = df['Pstatus'].map({'T': 0, 'A': 1})
    df['Mjob'] = df['Mjob'].map({'teacher': 0, 'health': 1, 'services': 2, 'at_home': df['Fjob'] = df['Fjob'].map({'teacher': 0, 'health': 1, 'services': 2, 'at_home': df['reason'] = df['reason'].map({'home': 0, 'reputation': 1, 'course': 2, 'other': df['guardian'] = df['guardian'].map({'mother': 0, 'father': 1, 'other': 2})
    df['schoolsup'] = df['schoolsup'].map({'no': 0, 'yes': 1})
    df['famsup'] = df['famsup'].map({'no': 0, 'yes': 1})
```

```
df['paid'] = df['paid'].map({'no': 0, 'yes': 1})
   df['activities'] = df['activities'].map({'no': 0, 'yes': 1})
   df['nursery'] = df['nursery'].map({'no': 0, 'yes': 1})
   df['higher'] = df['higher'].map({'no': 0, 'yes': 1})
   df['internet'] = df['internet'].map({'no': 0, 'yes': 1})
   df['romantic'] = df['romantic'].map({'no': 0, 'yes' : 1})
   df['passed'] = df['passed'].map({'no': 0, 'yes': 1})
   # reorder dataframe columns :
   col = df['passed']
   del df['passed']
   df['passed'] = col
# feature scaling will allow the algorithm to converge faster, large data will have so
def feature scaling(df):
   for i in df:
        col = df[i]
        # let's choose columns that have large values
        if(np.max(col)>6):
            Max = max(col)
            Min = min(col)
            mean = np.mean(col)
            col = (col-mean)/(Max)
            df[i] = col
        elif(np.max(col)<6):</pre>
            col = (col-np.min(col))
            col /= np.max(col)
            df[i] = col
```

In [121... numerical\_data()
 df

| Out[121]: |     | school | sex | age | address | famsize | Pstatus | Medu | Fedu | Mjob | Fjob | ••• | internet | romantic |
|-----------|-----|--------|-----|-----|---------|---------|---------|------|------|------|------|-----|----------|----------|
|           | 0   | 0      | 1   | 18  | 0       | 1       | 1       | 4    | 4    | 3    | 0    |     | 0        | 0        |
|           | 1   | 0      | 1   | 17  | 0       | 1       | 0       | 1    | 1    | 3    | 4    |     | 1        | 0        |
|           | 2   | 0      | 1   | 15  | 0       | 0       | 0       | 1    | 1    | 3    | 4    |     | 1        | 0        |
|           | 3   | 0      | 1   | 15  | 0       | 1       | 0       | 4    | 2    | 1    | 2    |     | 1        | 1        |
|           | 4   | 0      | 1   | 16  | 0       | 1       | 0       | 3    | 3    | 4    | 4    |     | 0        | 0        |
|           | ••• | •••    |     |     | •••     | •••     | •••     | •••  |      |      |      |     | •••      |          |
|           | 390 | 1      | 0   | 20  | 0       | 0       | 1       | 2    | 2    | 2    | 2    |     | 0        | 0        |
|           | 391 | 1      | 0   | 17  | 0       | 0       | 0       | 3    | 1    | 2    | 2    |     | 1        | 0        |
|           | 392 | 1      | 0   | 21  | 1       | 1       | 0       | 1    | 1    | 4    | 4    |     | 0        | 0        |
|           | 393 | 1      | 0   | 18  | 1       | 0       | 0       | 3    | 2    | 2    | 4    |     | 1        | 0        |
|           | 394 | 1      | 0   | 19  | 0       | 0       | 0       | 1    | 1    | 4    | 3    |     | 1        | 0        |

395 rows × 31 columns

In [122... # Let's scal our features
feature\_scaling(df)

|           | 1                  | 0.0                          | 1.0                        | 0.013809                                                                          | 0.0                                 | 1.0                             | 0.0                         | 0.25             | 0.25             | 0.75           | 1.00           |           | 1.0 |
|-----------|--------------------|------------------------------|----------------------------|-----------------------------------------------------------------------------------|-------------------------------------|---------------------------------|-----------------------------|------------------|------------------|----------------|----------------|-----------|-----|
|           | 2                  | 0.0                          | 1.0                        | -0.077100                                                                         | 0.0                                 | 0.0                             | 0.0                         | 0.25             | 0.25             | 0.75           | 1.00           |           | 1.0 |
|           | 3                  | 0.0                          | 1.0                        | -0.077100                                                                         | 0.0                                 | 1.0                             | 0.0                         | 1.00             | 0.50             | 0.25           | 0.50           |           | 1.0 |
|           | 4                  | 0.0                          | 1.0                        | -0.031646                                                                         | 0.0                                 | 1.0                             | 0.0                         | 0.75             | 0.75             | 1.00           | 1.00           |           | 0.0 |
|           | •••                |                              |                            |                                                                                   |                                     |                                 |                             |                  |                  |                |                |           |     |
|           | 390                | 1.0                          | 0.0                        | 0.150173                                                                          | 0.0                                 | 0.0                             | 1.0                         | 0.50             | 0.50             | 0.50           | 0.50           |           | 0.0 |
|           | 391                | 1.0                          | 0.0                        | 0.013809                                                                          | 0.0                                 | 0.0                             | 0.0                         | 0.75             | 0.25             | 0.50           | 0.50           |           | 1.0 |
|           | 392                | 1.0                          | 0.0                        | 0.195627                                                                          | 1.0                                 | 1.0                             | 0.0                         | 0.25             | 0.25             | 1.00           | 1.00           |           | 0.0 |
|           | 393                | 1.0                          | 0.0                        | 0.059264                                                                          | 1.0                                 | 0.0                             | 0.0                         | 0.75             | 0.50             | 0.50           | 1.00           |           | 1.0 |
|           | 394                | 1.0                          | 0.0                        | 0.104718                                                                          | 0.0                                 | 0.0                             | 0.0                         | 0.25             | 0.25             | 1.00           | 0.75           |           | 1.0 |
|           | 395 row            | s × 31                       | 1 col                      | umns                                                                              |                                     |                                 |                             |                  |                  |                |                |           |     |
| 4         |                    |                              |                            |                                                                                   |                                     |                                 |                             |                  |                  |                |                |           | •   |
| In [123   | df.sha             | pe                           |                            |                                                                                   |                                     |                                 |                             |                  |                  |                |                |           |     |
| Out[123]: | (395, 31)          |                              |                            |                                                                                   |                                     |                                 |                             |                  |                  |                |                |           |     |
| In [124   | df.dro             | pna()                        | .sha                       | pe # their                                                                        | is no nu                            | ll value                        | e "fort                     | unatel           | y:)"             |                |                |           |     |
| Out[124]: | (395, 31)          |                              |                            |                                                                                   |                                     |                                 |                             |                  |                  |                |                |           |     |
| In [125   | df.col             | umns                         |                            |                                                                                   |                                     |                                 |                             |                  |                  |                |                |           |     |
| Out[125]: | ·                  | 'Mjo<br>'fai<br>'hig<br>'Wal | b',<br>lure<br>her'<br>c', | , 'sex', 'a<br>'Fjob', 're<br>s', 'school<br>, 'internet<br>'health', '<br>ject') | ason', 'a<br>sup', 'fa<br>', 'roman | guardiar<br>amsup',<br>ntic', ' | ı', 'tr<br>'paid'<br>famrel | avelti<br>, 'act | me', ˈ<br>ivitie | study<br>s', ' | time'<br>nurse | ry',      |     |
| In [126   | featur             | 'Mjo<br>'fai<br>'hig         | b',<br>lure<br>her'        | ol', 'sex', 'Fjob', 're s', 'school , 'internet 'health', '                       | ason', '<br>sup', 'f<br>', 'roma    | guardiar<br>amsup',<br>ntic', ' | n', 'tr<br>'paid'           | avelti<br>, 'act | me',<br>ivitie   | study<br>s','  | time'<br>nurse | ,<br>ry', |     |
| In [127   |                    | _                            |                            | <i>t status</i><br>alue_counts                                                    | ()                                  |                                 |                             |                  |                  |                |                |           |     |
| Out[127]: | yes<br>no<br>Name: | 265<br>130<br>passe          | d, d                       | type: int64                                                                       |                                     |                                 |                             |                  |                  |                |                |           |     |

Out[122]: school sex age address famsize Pstatus Medu Fedu Mjob Fjob ... internet roma

**0** 0.0 1.0 0.059264 0.0 1.0 1.0 1.00 1.00 0.75 0.00 ... 0.0



```
In [129... # see correlation between variables through a correlation heatmap
    corr = df.corr()
    plt.figure(figsize=(30,30))
    sns.heatmap(corr, annot=True, cmap="Reds")
    plt.title('Correlation Heatmap', fontsize=20)
```

Out[129]: Text(0.5, 1.0, 'Correlation Heatmap')



In [130... plt.figure(figsize=(8, 12))
 heatmap = sns.heatmap(df.corr()[['passed']].sort\_values(by='passed', ascending=False),
 heatmap.set\_title('Features Correlating with the status of student', fontdict={'fontsi

# Features Correlating with the status of student



```
In [131... df["goout"].unique()
Out[131]: array([0.75, 0.5 , 0.25, 0. , 1. ])

In [132... # going out
    perc = (lambda col: col/col.sum())
    index = [0,1]
    out_tab = pd.crosstab(index=df.passed, columns=df.goout)
    out_perc = out_tab.apply(perc).reindex(index)
    out_perc.plot.bar(colormap="mako_r", fontsize=16, figsize=(14,6))
    plt.title('student status By Frequency of Going Out', fontsize=20)
    plt.ylabel('Percentage of Student', fontsize=16)
    plt.xlabel('Student status', fontsize=16)
```



```
In [133... # romantic status
    romance_tab1 = pd.crosstab(index=df.passed, columns=df.romantic)
    romance_tab = np.log(romance_tab1)
    romance_perc = romance_tab.apply(perc).reindex(index)
    plt.figure()
    romance_perc.plot.bar(colormap="PiYG_r", fontsize=16, figsize=(8,8))
    plt.title('Student status By Romantic relaion', fontsize=20)
    plt.ylabel('Percentage of Logarithm Student Counts ', fontsize=16)
    plt.xlabel('Student status', fontsize=16)
    plt.show()
    # 0 in romantic mean no romantic relation
```

<Figure size 432x288 with 0 Axes>

# Student status By Romantic relaion



```
In [134... # 1) mother job
# Mjob distribution
f, fx = plt.subplots()
figure = sns.countplot(x = 'Mjob', data=dfv, order=['teacher','health','services','at_fx = fx.set(ylabel="Count", xlabel="Mother Job")
figure.grid(False)
```



```
In [135... mjob_tab1 = pd.crosstab(index=df.passed, columns=df.Mjob)
mjob_tab = np.log(mjob_tab1)
mjob_perc = mjob_tab.apply(perc).reindex(index)
```

```
plt.figure()
mjob_perc.plot.bar(colormap="mako_r", fontsize=16, figsize=(8,8))
plt.title('Student status By mother JOB', fontsize=20)
plt.ylabel('Percentage of Logarithm Student Counts ', fontsize=16)
plt.xlabel('Student status', fontsize=16)
plt.show()
#'teacher': 0, 'health': 1, 'services': 2, 'at_home': 3, 'other': 4
```

<Figure size 432x288 with 0 Axes>





```
In [136... #Mother education:
    good = df.loc[df.passed==1]
    poor=df.loc[df.passed==0]
    good['good_student_mother_education'] = good.Medu
    poor['poor_student_mother_education'] = poor.Medu
    plt.figure(figsize=(6,4))
    p=sns.kdeplot(good['good_student_mother_education'], shade=True, color="r")#good_stude
    p=sns.kdeplot(poor['poor_student_mother_education'], shade=True, color="b")#poor_stude
    plt.xlabel('Mother Education Level', fontsize=20)
```

```
C:\Users\sivas\AppData\Local\Temp\ipykernel_6968\3018233835.py:4: SettingWithCopyWarn
ing:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er_guide/indexing.html#returning-a-view-versus-a-copy
   good['good_student_mother_education'] = good.Medu
C:\Users\sivas\AppData\Local\Temp\ipykernel_6968\3018233835.py:5: SettingWithCopyWarn
ing:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er_guide/indexing.html#returning-a-view-versus-a-copy
   poor['poor_student_mother_education'] = poor.Medu

Text(0.5, 0, 'Mother Education Level')
```

Out[136]:



```
higher_tab = pd.crosstab(index=df.passed, columns=df.higher)
higher_perc = higher_tab.apply(perc).reindex(index)
higher_perc.plot.bar(colormap="Dark2_r", figsize=(14,6), fontsize=16)
plt.title('Final Grade By Desire to Receive Higher Education', fontsize=20)
plt.xlabel('Final Grade', fontsize=16)
plt.ylabel('Percentage of Student', fontsize=16)
```

Out[137]: Text(0, 0.5, 'Percentage of Student')



```
#impact of age
higher_tab = pd.crosstab(index=df.passed, columns=df.age)
higher_perc = higher_tab.apply(perc).reindex(index)
higher_perc.plot.bar(colormap="Dark2_r", figsize=(14,6), fontsize=16)
plt.title('Student status By age', fontsize=20)
plt.xlabel('Student status', fontsize=16)
plt.ylabel('Percentage of Student', fontsize=16)
```

Out[138]: Text(0, 0.5, 'Percentage of Student')



```
In [139...
fail_tab = pd.crosstab(index=df.passed, columns=df.failures)
fail_perc = fail_tab.apply(perc).reindex(index)
fail_perc.plot.bar(colormap="Dark2_r", figsize=(14,6), fontsize=16)
plt.title('student status By failures', fontsize=20)
plt.xlabel('Final Grade', fontsize=16)
plt.ylabel('Percentage of Student', fontsize=16)
```

Out[139]: Text(0, 0.5, 'Percentage of Student')



```
In [140... #first let's see the destribution of students who live in urban or rural area
f, fx = plt.subplots()
figure = sns.countplot(x = 'address', data=dfv, order=['U','R'])
fx = fx.set(ylabel="Count", xlabel="address")
figure.grid(False)
plt.title('Address Distribution')
```

Out[140]: Text(0.5, 1.0, 'Address Distribution')



```
In [141... ad_tab1 = pd.crosstab(index=df.passed, columns=df.address)
    ad_tab = np.log(ad_tab1)
    ad_perc = ad_tab.apply(perc).reindex(index)
    ad_perc.plot.bar(colormap="RdYlGn_r", fontsize=16, figsize=(8,6))
    plt.title('student status By Living Area', fontsize=20)
    plt.ylabel('Percentage of Logarithm Student#', fontsize=16)
    plt.xlabel('Student status', fontsize=16)
```

Out[141]: Text(0.5, 0, 'Student status')

# student status By Living Area



```
#impact of weekend alcohol consumption in student performance
alc_tab = pd.crosstab(index=df.passed, columns=df.Walc)
alc_perc = alc_tab.apply(perc).reindex(index)
alc_perc.plot.bar(colormap="Dark2_r", figsize=(14,6), fontsize=16)
plt.title('student status By weekend alchol consumption', fontsize=20)
plt.xlabel('Student status', fontsize=16)
plt.ylabel('Percentage of Student', fontsize=16)
```

Out[142]: Text(0, 0.5, 'Percentage of Student')



```
In [143... # weekend alcohol consumption
# create good student dataframe
good = df.loc[df.passed == 1]
good['good_alcohol_usage']=good.Walc
# create poor student dataframe
poor = df.loc[df.passed == 0]
```

```
poor['poor alcohol usage']=poor.Walc
plt.figure(figsize=(10,6))
p1=sns.kdeplot(good['good_alcohol_usage'], shade=True, color="r")
p1=sns.kdeplot(poor['poor_alcohol_usage'], shade=True, color="b")
plt.title('Good Performance vs. Poor Performance Student Weekend Alcohol Consumption'
plt.ylabel('Density', fontsize=16)
plt.xlabel('Level of Alcohol Consumption', fontsize=16)
C:\Users\sivas\AppData\Local\Temp\ipykernel_6968\1621555142.py:4: SettingWithCopyWarn
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er guide/indexing.html#returning-a-view-versus-a-copy
  good['good_alcohol_usage']=good.Walc
C:\Users\sivas\AppData\Local\Temp\ipykernel_6968\1621555142.py:7: SettingWithCopyWarn
ing:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er_guide/indexing.html#returning-a-view-versus-a-copy
  poor['poor alcohol usage']=poor.Walc
Text(0.5, 0, 'Level of Alcohol Consumption')
```

#### Out[143]:

### Good Performance vs. Poor Performance Student Weekend Alcohol Consumption



```
alc_tab = pd.crosstab(index=df.passed, columns=df.internet)
alc_perc = alc_tab.apply(perc).reindex(index)
alc_perc.plot.bar(colormap="Dark2_r", figsize=(14,6), fontsize=16)
plt.title('student status By internet accessibility', fontsize=20)
plt.xlabel('Student status', fontsize=16)
plt.ylabel('Percentage of Student', fontsize=16)
```

Out[144]: Text(0, 0.5, 'Percentage of Student')



```
stu_tab = pd.crosstab(index=df.passed, columns=df.studytime)
stu_perc = stu_tab.apply(perc).reindex(index)
stu_perc.plot.bar(colormap="Dark2_r", figsize=(14,6), fontsize=16)
plt.title('student status By study time', fontsize=20)
plt.xlabel('Student status', fontsize=16)
plt.ylabel('Percentage of Student', fontsize=16)
```

Out[145]: Text(0, 0.5, 'Percentage of Student')



```
In [146... he_tab = pd.crosstab(index=df.passed, columns=df.health)
he_perc = he_tab.apply(perc).reindex(index)
he_perc.plot.bar(colormap="Dark2_r", figsize=(14,6), fontsize=16)
plt.title('student status By health', fontsize=20)
plt.xlabel('Student status', fontsize=16)
plt.ylabel('Percentage of Student', fontsize=16)
```

Out[146]: Text(0, 0.5, 'Percentage of Student')



```
In [147... data = df.to_numpy()
        n = data.shape[1]
        x = data[:,0:n-1]
        y = data[:,n-1]
        x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=0)
        logisticRegr = LogisticRegression(C=1)
In [148...
In [149... logisticRegr.fit(x_train,y_train)
        LogisticRegression(C=1)
Out[149]:
In [150... y_pred=logisticRegr.predict(x_test)
        y_pred
        Out[150]:
              1., 1., 1., 1., 0., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 1., 0.,
              1., 0., 1., 1., 1., 1., 1., 0., 0., 1., 0., 1., 1., 1., 0., 1.,
              1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 1., 1., 1., 1., 1.,
              1., 0., 1., 1., 1., 1., 0., 0., 1., 1., 1., 1., 0., 1., 1., 1., 1.]
In [151... Sctest=logisticRegr.score(x_test,y_test)
        Sctrain=logisticRegr.score(x_train,y_train)
         print('#Accuracy test is: ',Sctest)
         print('#Accuracy train is: ',Sctrain)
        f1 = f1_score(y_test, y_pred, average='macro')
        print('\n#f1 score is: ',f1)
        #Accuracy test is: 0.6386554621848739
        #Accuracy train is: 0.7463768115942029
        #f1 score is: 0.5533734834598935
        #Let's have a look at the accuracy of the model
In [152...
```

```
Sctest=logisticRegr.score(x_test,y_test)
           Sctrain=logisticRegr.score(x_train,y_train)
           print('Accuracy test is: ',Sctest)
           print('Accuracy train is: ',Sctrain)
          Accuracy test is: 0.6386554621848739
          Accuracy train is: 0.7463768115942029
 In [153... #now, we can get the confusion matrix with confusion_matrix():
           confusion_matrix(y_test, y_pred)
          array([[12, 38],
Out[153]:
                  [ 5, 64]], dtype=int64)
 In [154... #let's visualize the confusion matrix:
           cm = confusion_matrix(y_test, y_pred)
           sns.heatmap(cm,annot=True)
           <AxesSubplot:>
Out[154]:
                                                        - 60
                      12
                                          38
                                                        - 50
                                                         - 40
                                                         - 30
                       5
                                          64
                                                         20
                                                         - 10
                       Ò
                                          1
 In [155... print(classification_report(y_test, y_pred))
                         precision
                                      recall f1-score
                                                          support
                                        0.24
                              0.71
                                                   0.36
                                                               50
                    0.0
                    1.0
                              0.63
                                        0.93
                                                   0.75
                                                               69
                                                   0.64
                                                              119
               accuracy
                              0.67
                                        0.58
                                                   0.55
                                                              119
             macro avg
          weighted avg
                                                   0.58
                                                              119
                              0.66
                                        0.64
          fpositif, tpositif, thresholds = roc_curve(y_test, y_pred)
 In [156...
           plt.plot([0,1],[0,1],'--')
           plt.plot(fpositif,tpositif, label='LogisticRegr')
           plt.xlabel('false positif')
           plt.ylabel('true positif')
           plt.title('LogisticRegr ROC curve')
           p=plt.show()
```



```
In [157...
         max_iteration = 0
         maxF1 = 0
          maxAccuracy = 0
          optimal_state = 0
          import random
          for k in range(max_iteration):
              print ('Iteration :'+str(k)+', Current accuracy: '+str(maxAccuracy)+ ', Current f1
              split_state = np.random.randint(1,100000000)-1
              x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=split(x,y)
              logisticRegr = LogisticRegression(C=1)
              logisticRegr.fit(x_train,y_train)
              y_pred=logisticRegr.predict(x_test)
              f1 = f1_score(y_test, y_pred, average='macro')
              accuracy = accuracy_score(y_test, y_pred)*100
              if (accuracy>maxAccuracy and f1>maxF1):
                  maxF1 = f1
                  maxAccuracy = accuracy
                  optimal_state = split_state
          optimal_state = 85491961
          x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=optime
          logisticRegr = LogisticRegression(C=1)
          logisticRegr.fit(x_train,y_train)
          y_pred=logisticRegr.predict(x_test)
          f1 = f1_score(y_test, y_pred, average='macro')
          accuracy = accuracy_score(y_test, y_pred)*100
          print('\n\n\n*Accuracy is: '+str(accuracy)+'\n*f1 score is: ',f1)
          yt_lg,yp_lg = y_test,y_pred
          #ploting the roc_curve
          print ( '\n\n *the ROC curve: ')
          fpositif, tpositif, thresholds = roc_curve(y_test, y_pred)
          plt.plot([0,1],[0,1],'--')
          plt.plot(fpositif,tpositif, label='LogisticRegr')
          plt.xlabel('false positif')
          plt.ylabel('true positif')
          plt.title('LogisticRegr ROC curve')
```

```
p=plt.show()

#visualizig the confusion matrix:

print (' *the confusion matrix ')

cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm,annot=True)
```

\*Accuracy is: 80.67226890756302 \*f1 score is: 0.7408389357068459

### \*the ROC curve:



\*the confusion matrix
<AxesSubplot:>

Out[157]:



```
In [158... #define data
  y=df.passed
  target=["passed"]
  x = df.drop(target,axis = 1 )
```

```
In [159... max_iteration = 0
```

```
maxF1 = 0
maxAccuracy = 0
optimal state = 0
for k in range(max iteration):
    print ('Iteration :'+str(k)+', Current accuracy: '+str(maxAccuracy)+ ', Current f1
   split state = np.random.randint(1,100000000)-1
   x train,x test,y train,y test = train test split(x,y,test size=0.3,random state=sp
   KNN = KNeighborsClassifier()
   KNN.fit(x_train,y_train)
   y pred=KNN.predict(x test)
   f1 = f1 score(y test, y pred, average='macro')
   accuracy = accuracy score(y test, y pred)*100
   if (accuracy>maxAccuracy and f1>maxF1):
       maxF1 = f1
       maxAccuracy = accuracy
       optimal_state = split_state
optimal state = 71027464
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=optima
KNN= KNeighborsClassifier()
KNN.fit(x train,y train)
y pred=KNN.predict(x test)
f1 = f1_score(y_test, y_pred, average='macro')
accuracy = accuracy_score(y_test, y_pred)*100
print('\n\n\n*Accuracy is: '+str(accuracy)+'\n*f1 score is: ',f1)
print ('random state is ',optimal state)
#ploting the roc_curve
print ( '\n\n *the ROC curve: ')
fpositif, tpositif, thresholds = roc curve(y test, y pred)
plt.plot([0,1],[0,1],'--')
plt.plot(fpositif,tpositif, label='knn')
plt.xlabel('false positif')
plt.ylabel('true positif')
plt.title('KNN ROC curve')
p=plt.show()
yt knn,yp knn= y test,y pred
#visualizig the confusion matrix:
print (' *the confusion matrix ')
cm = confusion matrix(y test, y pred)
sns.heatmap(cm,annot=True)
```

```
*Accuracy is: 78.15126050420169
*f1 score is: 0.7102996254681648
random state is 71027464
```

<sup>\*</sup>the ROC curve:



\*the confusion matrix
Out[159]: <AxesSubplot:>



```
#Setup arrays to store training and test accuracies
In [160...
         neighbors= np.arange(1,20)
         train_accuracy =np.empty(19)
         test_accuracy = np.empty(19)
         for i,k in enumerate(neighbors):
             #Setup a knn classifier with k neighbors
             knn = KNeighborsClassifier(n_neighbors=k)
             #Fit the model
             knn.fit(x_train, y_train)
             #Compute accuracy on the training set
             train_accuracy[i] = knn.score(x_train, y_train)
             #Compute accuracy on the test set
             test_accuracy[i] = knn.score(x_test, y_test)
         # Plotting the curv
         plt.title('k-NN Varying number of neighbors')
         plt.plot(neighbors, test_accuracy, label='Testing Accuracy')
         plt.plot(neighbors, train_accuracy, label='Training accuracy')
         plt.legend()
```

```
plt.xlabel('Number of neighbors')
plt.ylabel('Accuracy')
plt.show()
```

```
k-NN Varying number of neighbors
   1.0
                                                       Testing Accuracy
                                                       Training accuracy
   0.9
Accuracy
   0.8
   0.7
   0.6
              2.5
                       5.0
                               7.5
                                               12.5
                                                               17.5
                                      10.0
                                                       15.0
                              Number of neighbors
```

```
In [161...
          #In case of classifier like knn the parameter to be tuned is n neighbors
           param_grid = {'n_neighbors':np.arange(1,20)}
           knn = KNeighborsClassifier()
           knn_cv= GridSearchCV(knn,param_grid,cv=5)
           knn_cv.fit(x_train,y_train)
           #best score\n",
           knn_cv.best_score_
          0.6449350649350649
Out[161]:
In [162...
           knn_cv.best_params_
          {'n_neighbors': 19}
Out[162]:
           param_grid = {'n_neighbors':np.arange(1,20)}
In [163...
           knn = KNeighborsClassifier()
           knn_cv= GridSearchCV(knn,param_grid,cv=5)
           knn_cv.fit(x_test,y_test)
           #best score\n",
           knn_cv.best_score_
          0.7728260869565217
Out[163]:
           knn_cv.best_params_
In [164...
           {'n_neighbors': 13}
Out[164]:
           param_grid = {'n_neighbors':np.arange(1,20)}
In [165...
           knn = KNeighborsClassifier()
           knn_cv= GridSearchCV(knn,param_grid,cv=5)
           knn_cv.fit(x,y)
           #best score\n",
           knn_cv.best_score_
          0.6734177215189873
Out[165]:
```

```
In [166... knn_cv.best_params_
         {'n_neighbors': 7}
Out[166]:
          params = {"n_neighbors":[7,19] , "metric":["euclidean", "manhattan", "chebyshev"]}
In [167...
          acc = \{\}
          for m in params["metric"]:
              acc[m] = []
              for k in params["n_neighbors"]:
                  print("Model_{{}} metric: {}, n_neighbors: {}".format(i, m, k))
                  i += 1
                  t = time()
                  knn = KNeighborsClassifier(n_neighbors=k, metric=m)
                  knn.fit(x train,y train)
                  pred = knn.predict(x_test)
                  print("Time: ", time() - t)
                  acc[m].append(accuracy_score(y_test, y_pred))
                  print("Acc: ", acc[m][-1])
          Model 18 metric: euclidean, n neighbors: 7
          Time: 0.0106048583984375
          Acc: 0.7815126050420168
          Model 19 metric: euclidean, n neighbors: 19
          Time: 0.0
          Acc: 0.7815126050420168
          Model_20 metric: manhattan, n_neighbors: 7
          Time: 0.0
          Acc: 0.7815126050420168
          Model 21 metric: manhattan, n neighbors: 19
          Time: 0.0
          Acc: 0.7815126050420168
          Model_22 metric: chebyshev, n_neighbors: 7
          Time: 0.0
          Acc: 0.7815126050420168
          Model_23 metric: chebyshev, n_neighbors: 19
          Time: 0.0
          Acc: 0.7815126050420168
         max iteration = 0
In [168...
          maxF1 = 0
          maxAccuracy = 0
          optimal state = 0
          f1 = 0
          accuracy = 0
          True60 = False
          for k in range(max_iteration):
              print ('Iteration :'+str(k)+', Current accuracy: '+str(maxAccuracy)+ ', Current f1
              split_state = np.random.randint(1,100000000)-1
              x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=sr
              KNN = KNeighborsClassifier(n_neighbors=7,metric='chebyshev')
              KNN.fit(x_train,y_train)
              y pred=KNN.predict(x test)
              f1 = f1_score(y_test, y_pred, average='macro')
              accuracy = accuracy_score(y_test, y_pred)*100
              if accuracy>maxAccuracy and f1>=0.5:
                  maxF1 = f1
                  maxAccuracy = accuracy
```

```
optimal_state = split_state
    if maxAccuracy>79:
        break

optimal_state = 29300362
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3,random_state=optima
KNN_f= KNeighborsClassifier(n_neighbors=7,metric='chebyshev')
KNN_f.fit(x_train,y_train)
y_pred=KNN_f.predict(x_test)
f1 = f1_score(y_test, y_pred, average='macro')
accuracy = accuracy_score(y_test, y_pred)*100
print('\n\n\n*Accuracy is: '+str(accuracy)+'\n*f1 score is: ',f1)
print ('random_state is ',optimal_state)
yt_knn,yp_knn= y_test,y_pred
```

\*Accuracy is: 69.74789915966386 \*f1 score is: 0.47959183673469385 random state is 29300362

In [169...
ac = accuracy\_score(yt\_knn,yp\_knn)
print('Accuracy is: ',ac)
cm= confusion\_matrix(yt\_knn,yp\_knn)
sns.heatmap(cm,annot=True)
yt\_knn,yp\_knn = y\_test,y\_pred

Accuracy is: 0.6974789915966386



In [170... print(classification\_report(y\_test,y\_pred))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| 0.0          | 0.19      | 0.12   | 0.14     | 26      |
| 1.0          | 0.78      | 0.86   | 0.82     | 93      |
|              |           |        |          |         |
| accuracy     |           |        | 0.70     | 119     |
| macro avg    | 0.48      | 0.49   | 0.48     | 119     |
| weighted avg | 0.65      | 0.70   | 0.67     | 119     |

In [171... #ploting the roc\_curve

```
print ( ' the ROC curve: ')

fpositif, tpositif, thresholds = roc_curve(y_test, y_pred)
plt.plot([0,1],[0,1],'--')
plt.plot(fpositif,tpositif, label='final knn model')
plt.xlabel('false positif')
plt.ylabel('true positif')
plt.title('knn_f ROC curve')
p=plt.show()
```

the ROC curve:



```
In [172...
        # Show results of every model
        def showResults(accuracy, trainingTime, y pred,model):
           print('------Results :',model,'----
           confusionMatrix = confusion_matrix(y_test, y_pred)
           print('\n The ROC curve is :\n')
           fig, _ = plt.subplots()
           fpr,tpr,thresholds=roc curve(y test,y pred)
           plt.plot([0, 1],[0, 1],'--')
           plt.plot(fpr,tpr,label=model)
           plt.xlabel('false positive')
           plt.ylabel('false negative')
           plt.legend()
           fig.suptitle('ROC curve: '+str(model))
           plt.show()
           print('-----')
           print('The model accuracy:', round(accuracy),'%')
           print('----')
           print('The training time is: ',trainingTime)
           print('The f1 score is :',round(100*f1_score(y_test, y_pred, average='macro'))/10@
           print('----')
           print('The roc_auc_score is :',round(100*roc_auc_score(y_test, y_pred))/100)
           print('-----')
           print('The confusion matrix is :\n')
           ax = plt.axes()
           sns.heatmap(confusionMatrix,annot=True)
```

```
# Hyperparameter Tuning :
\# C, degree and gamma are the parameters that are used in SVM classffier 'svc(C=..,..)
# The following functions will return those values that minimize the error on (X val,)
# So this (X val,y val) set will be used to get the optimal SVM parameters before eval
# Optimal C
def optimal C value():
    Ci = np.array((0.0001, 0.001, 0.05, 0.1, 4, 10, 40, 100))
    minError = float('Inf')
    optimal_C = float('Inf')
    for c in Ci:
        clf = SVC(C=c,kernel='linear')
        clf.fit(X_train, y_train)
        predictions = clf.predict(X val)
        error = np.mean(np.double(predictions != y val))
        if error < minError:</pre>
            minError = error
            optimal C = c
    return optimal C
# Optimal C and the degree of the polynomial
def optimal C d values():
    Ci = np.array((0.0001, 0.001, 0.01, 0.05, 0.1, 4, 10, 40, 100))
    Di = np.array((2, 5, 10, 15, 20, 25, 30))
    minError = float('Inf')
    optimal_C = float('Inf')
    optimal d = float('Inf')
    for d in Di:
        for c in Ci:
            clf = SVC(C=c,kernel='poly', degree=d)
            clf.fit(X train, y train)
            predictions = clf.predict(X val)
            error = np.mean(np.double(predictions != y_val))
            if error < minError:</pre>
                minError = error
                optimal C = c
                optimal d = d
    return optimal_C,optimal_d
# Optimal C and gamma
def optimal C gamma values():
    Ci = np.array((0.0001, 0.001, 0.01, 0.05, 0.1, 4, 10, 40, 100))
    Gi = np.array((0.000001, 0.00001, 0.01, 1, 2, 3, 5, 20, 70, 100, 500, 1000))
    minError = float('Inf')
    optimal C = float('Inf')
    optimal_g = float('Inf')
    for g in Gi:
        for c in Ci:
            clf = SVC(C=c,kernel='rbf', gamma=g)
            clf.fit(X_train, y_train)
            predictions = clf.predict(X_val)
```

```
error = np.mean(np.double(predictions != y val))
           if error < minError:</pre>
               minError = error
               optimal C = c
               optimal g = g
   return optimal_C,optimal_g
# Compare the three kernels
def compare kernels():
   X_train1,X_val1,X_test1,y_train1,y_val1,y_test1 = split(df,rest_size=0.4,test_size
   X train2,X val2,X test2,y train2,y val2,y test2 = split(df,rest size=0.4,test size
   X_train3,X_val3,X_test3,y_train3,y_val3,y_test3 = split(df,rest_size=0.4,test_size
   print('----- Comparison ------
   print('\n')
   f11 = "{:.2f}".format(f1 score(y test1, y linear, average='macro'))
   f22 = "{:.2f}".format(f1 score(y test2, y poly, average='macro'))
   f33 = "{:.2f}".format(f1_score(y_test3, y_gauss, average='macro'))
   roc1 = "{:.2f}".format(roc_auc_score(y_test1, y_linear))
   roc2 = "{:.2f}".format(roc_auc_score(y_test2, y_poly))
   roc3 = "{:.2f}".format(roc auc score(y test3, y gauss))
   a1,a2 = confusion_matrix(y_test1, y_linear)[0],confusion_matrix(y_test1, y_linear)
   b1,b2 = confusion_matrix(y_test2, y_poly)[0],confusion_matrix(y_test2, y_poly)[1]
   c1,c2 = confusion_matrix(y_test3, y_gauss)[0],confusion_matrix(y_test3, y_gauss)[1
   data_rows = [('training time', time1, time2, time3),
                ('','',''),
                 ('accuracy %',linear_accuracy, poly_accuracy, gauss_accuracy),
                ('','',''),
                ('confusion matrix',a1, b1, c1),
               ('',a2,b2,c2),
                ('','',''),
               ('f1 score', f11, f22, f33),
                ('','',''),
               ('roc_auc_score',roc1,roc2,roc3)]
   t = Table(rows=data_rows, names=('metric','Linear kernel', 'polynomial kernel', 'g
   print(t)
   print('\n\n')
   print('The Roc curves :\n')
   y_pred1 = y_linear
   y_pred2 = y_poly
   y pred3 = y gauss
   fig, _ = plt.subplots()
   fig.suptitle('Comparison of three ROC curves')
   fpr,tpr,thresholds=roc curve(y test1,y pred1)
   plt.plot([0, 1],[0, 1],'--')
   plt.plot(fpr,tpr,label='Linear kernel :'+str(roc1))
   plt.xlabel('false positive')
   plt.ylabel('false negative')
   fpr,tpr,thresholds=roc curve(y test2,y pred2)
   plt.plot(fpr,tpr,label='Polynomial kernel :'+str(roc2))
   fpr,tpr,thresholds=roc_curve(y_test3,y_pred3)
   plt.plot(fpr,tpr,label='Gaussian kernel :'+str(roc3))
   plt.legend()
   plt.show()
```

```
# Print results of the choosen kernel
def best kernel(kernel):
   X_train1,X_val1,X_test1,y_train1,y_val1,y_test1 = split(df,rest_size=0.4,test_size
   X train2,X val2,X test2,y train2,y val2,y test2 = split(df,rest size=0.4,test size
   X_train3,X_val3,X_test3,y_train3,y_val3,y_test3 = split(df,rest_size=0.4,test_size
   time = 0
   f1 = 0
   accuracy = 0
   rc = 0
   y = 0
   if kernel == 'linear kernel':
       time = time1
        f1 = "{:.2f}".format(f1_score(y_test1, y_linear, average='macro'))
        accuracy = round(100*linear_accuracy)/100
        rc = round(100*roc_auc_score(y_test1, y_linear))/100
       y_{\text{test}} = y_{\text{test1}}
       y = y linear
   elif kernel == 'polynomial kernel':
        time = time2
       f1 = "{:.2f}".format(f1_score(y_test2, y_poly, average='macro'))
        accuracy = round(100*poly accuracy)/100
        rc = round(100*roc_auc_score(y_test2, y_poly))/100
       y_{\text{test}} = y_{\text{test2}}
       y = y_poly
   else :
        time = time3
       f1 = "{:.2f}".format(f1_score(y_test3, y_gauss, average='macro'))
       accuracy = round(100*gauss_accuracy)/100
        rc = round(100*roc auc score(y test3, y gauss))/100
       y_{\text{test}} = y_{\text{test3}}
       y = y_gauss
   # used for comparing three classfiers(knn, logistic regression and svm)
   yt_svm,yp_svm = y_test, y
   print('The choosen kernel :',kernel)
    print('the training :',time)
   print('the accuracy :',round(accuracy),'%')
    print('the f1 score :',f1)
   print('The roc_auc_score is :',rc)
   print('-----\nThe ROC curve :')
   fig, _ = plt.subplots()
   fpr,tpr,thresholds=roc_curve(y_test,y)
   plt.plot([0, 1],[0, 1],'--')
   plt.plot(fpr,tpr,label=kernel+': '+str(rc))
   plt.xlabel('false positive')
    plt.ylabel('false negative')
   plt.legend()
   plt.show()
    confusionMatrix = confusion_matrix(y_test, y)
   print('----\nThe confusion matrix is :')
   ax = plt.axes()
   sns.heatmap(confusionMatrix,annot=True)
   ax.set title('Confusion matrix of SVM '+str(kernel))
   return yt svm, yp svm
# svm factor : factor affecting students performance, later on on this Ipython noteboo
```

```
# 1) factor as svm coefficients
def factors(array, K, max_or_min, df):
    n = array.shape[1]
    array = array.reshape(n,1)
    my_list = array.tolist()
    if max or min == 'max':
        temp = sorted(my_list)[-K:]
        res = []
        for ele in temp:
            res.append(my list.index(ele))
        return(get factors(res, df))
    elif max_or_min == 'min':
        temp = sorted(my list, reverse=True)[-K:]
        temp = temp = np.array(temp).reshape(K,1)
        res = []
        for ele in temp:
            if ele<0:</pre>
                res.append(my_list.index(ele))
        return(get_factors(res, df))
    else:
        return
# 2) converts those factors to dataset columns name
def get factors(index, df):
   f = []
    for i in index:
       f.append(df.columns[i])
    return f
# 3) Convert column names to understandable string
columns_name = {'famsize': 'family size', 'Pstatus': "parent's cohabitation status ",
                'Fedu': "father's education", 'Mjob': "mother's job", 'Fjob': "father'
                'reason': 'reason to choose this school ','schoolsup': 'extra education' 'paid': 'extra paid classes within the course subject', 'higher': 'war
                'romantic': 'with a romantic relationship ', 'famrel': 'quality of fam
                'Dalc': 'workday alcohol consumption', 'Walc': 'weekend alcohol consum
def column_to_string(fcts,max_or_min):
    if max or min == 'max':
        print('-----
        print('Factors helping students succeed :')
    else:
        print('-----
        print('Factors leading students to failure')
    for fct in fcts:
```

```
if fct in columns name:
            print(columns name[fct])
        else:
            print(fct)
# Splitting the data for SVM
# Here We will split data into test set, cross validation (X_val, y_val) set and trair
# The cross validation (X val, y val) is used for choosing the optimal value for svm p
def split(df,rest_size,test_size,randomState):
   data = df.to_numpy()
   n = data.shape[1]
   x = data[:,0:n-1]
   y = data[:,n-1]
   if(randomState):
        X_train,X_rest,y_train,y_rest = train_test_split(x,y,test_size=rest_size,rando
       X_val,X_test,y_val,y_test = train_test_split(X_rest,y_rest,test_size=test_size
   else:
        X_train,X_rest,y_train,y_rest = train_test_split(x,y,test_size=rest_size,rand
       X_val,X_test,y_val,y_test = train_test_split(X_rest,y_rest,test_size=test_size
   return X_train,X_val,X_test,y_train,y_val,y_test
```

```
optimal_split_state1 = 0
        maxAccuracy = 0
        maxF1 = 0
        # We already tune parameters, we do not need to loop over all the hyperparamters again
        # if you want to do so just set max_iteration to 2000 for example
        # and remove the line 'optimal_split_state = 388628375' at the bottom of this cell.
        max iteration = 0
         if max iteration != 0:
            print ('-----
                                     ------tunning starts----
         for k in range(max iteration):
            print ('Iteration :'+str(k)+', Current accuracy: '+str(maxAccuracy)+' Current f1
            # Let's get the optimal C value for the linear kernal
            split_state = np.random.randint(1,1000000000)-1
            X train, X val, X test, y train, y val, y test = split(df, rest size=0.4, test size=0.4, r
            optimal_C = optimal_C_value()
            # Now let's use the optimal C value
            linear_clf = SVC(C=optimal_C,kernel='linear')
            # Let's train the model with the optimal C value and calculate the training time
            tic = time()
            linear_clf.fit(X_train, y_train)
            toc = time()
            time1 = str(round(1000*(toc-tic))) + "ms"
            y_linear = linear_clf.predict(X_test)
            linear_f1 = f1_score(y_test, y_linear, average='macro')
            linear_accuracy = accuracy_score(y_test, y_linear)*100
            if linear_accuracy>maxAccuracy and linear_f1>maxF1:
                maxAccuracy = linear_accuracy
```

```
maxF1 = linear f1
       optimal split state1 = split state
   if maxAccuracy>86 and maxF1>80:
       break;
# We've already tuned our hyperparameters, we will not repeat that again as it takes s
# The optimal split state for linear kernel is 388628375
# Let's try that split state
optimal_split_state1 = 388628375
X_train, X_val, X_test, y_train, y_val, y_test = split(df, rest_size=0.4, test_size=0.4, rando
optimal_C = optimal_C_value()
# Now let's use the optimal C value
linear clf = SVC(C=optimal C,kernel='linear')
# Let's train the model with the optimal C value and calculate the training time
tic = time()
linear_clf.fit(X_train, y_train)
toc = time()
time1 = str(round(1000*(toc-tic))) + "ms"
y_linear = linear_clf.predict(X_test)
linear accuracy = accuracy score(y test, y linear)*100
if max_iteration != 0:
   print('\n\n\n
                                                  -----process ended'
                   _____
                                                                        n\n')
# Let's show the resuls
showResults(linear_accuracy, time1, y_linear,'SVM linear kernel')
```

------Results : SVM linear kernel ------

The ROC curve is:

ROC curve: SVM linear kernel



```
The model accuracy: 84 %

The training time is: 16ms

The f1 score is: 0.82

The roc_auc_score is: 0.8

The confusion matrix is:
```



```
In [174...
        optimal split state2 = 0
        maxAccuracy = 0
        maxF1 = 0
        # We already tune parameters, we do not need to loop over all the hyperparamters again
         # if you want to do so just set max_iteration to 500 for example
        # and remove the line 'optimal_split_state2 = 7070621' at the bottom of this cell.
        max iteration = 0
        if max iteration != 0:
            print ('-----Hyperparameters tunning starts----
        for k in range(max_iteration):
            print ('Iteration :'+str(k)+', Current accuracy: '+str(maxAccuracy)+', Current f1
            split state = np.random.randint(1,100000000)-1
            X_train,X_val,X_test,y_train,y_val,y_test = split(df,rest_size=0.4,test_size=0.4,r
            # Let's get the optimal C and the degree value for the polynomial kernal
            optimal_C, optimal_d = optimal_C_d_values()
            # Now let's use the optimal c value and the optimal degree value
            poly_clf = SVC(C=optimal_C,kernel='poly', degree=optimal_d)
            # Let's train the model with the optimal C value
            poly_clf.fit(X_train, y_train)
            y poly = poly clf.predict(X test)
            poly_f1 = f1_score(y_test, y_poly, average='macro')
            poly_accuracy = accuracy_score(y_test, y_poly)*100
            if poly_accuracy>maxAccuracy and poly_f1>maxF1:
```

```
maxAccuracy = poly_accuracy
        maxF1 = poly_f1
        optimal_split_state2 = split_state
# We've already tuned our hyperparameters, we will not repeat that again as it takes s
# The optimal split state for polynomial kernel is 7070621
# Let's try that split state
optimal_split_state2 = 7070621
X_train,X_val,X_test,y_train,y_val,y_test = split(df,rest_size=0.4,test_size=0.4,rando
optimal_C, optimal_d = optimal_C_d_values()
# Now let's use the optimal C value
poly_clf = SVC(C=optimal_C,kernel='poly', degree=optimal_d)
# Let's train the model and calculate the training time
tic = time()
poly_clf.fit(X_train, y_train)
toc = time()
time2 = str(round(1000*(toc-tic))) + "ms"
y poly = poly clf.predict(X test)
poly_accuracy = accuracy_score(y_test, y_poly)*100
if max iteration != 0:
    print('\n\n\n
                                               -----process ended
                                                                         n\n')
# Let's show the resuls
showResults(poly_accuracy, time2, y_poly,'SVM polynomial kernel')
```

-----Results : SVM polynomial kernel -----

The ROC curve is :

ROC curve: SVM polynomial kernel



```
The model accuracy: 78 %

The training time is: 16ms

The f1 score is: 0.74

The roc_auc_score is: 0.73

The confusion matrix is:
```



```
In [175...
        optimal split state3 = 0
        maxAccuracy = 0
        maxF1 = 0
        # We already tune parameters, we do not need to loop over all the hyperparamters again
        # if you want to do so just set max_iteration to 500 for example
        # and remove the line 'optimal_split_state3 = 93895097' at the bottom of this cell.
        max iteration = 0
        if max iteration != 0:
            print ('-----Hyperparameters tunning star
                   -----\n\n')
        for k in range(max_iteration):
            print ('Iteration :'+str(k)+', Current accuracy: '+str(maxAccuracy)+', Current f1
            split_state = np.random.randint(1,100000000)-1
            X_train,X_val,X_test,y_train,y_val,y_test = split(df,rest_size=0.4,test_size=0.4,r
            # Let's get the optimal C and the degree value for the polynomial kernal
            optimal_C, optimal_gamma = optimal_C_gamma_values()
            # Now let's use the optimal c value and the optimal degree value
            gauss_clf = SVC(C=optimal_C,kernel='rbf',gamma=optimal_gamma)
            # Let's train the model with the optimal C value
            gauss clf.fit(X train, y train)
            y_gauss = gauss_clf.predict(X_test)
            gauss_f1 = f1_score(y_test, y_gauss, average='macro')
            gauss_accuracy = accuracy_score(y_test, y_gauss)*100
```

```
if gauss_accuracy>maxAccuracy and gauss_f1>maxF1:
       maxAccuracy = gauss accuracy
       maxF1 = gauss_f1
       optimal_split_state3 = split_state
# We've already tuned our hyperparameters, we will not repeat that again as it takes s
# The optimal split state for polynomial kernel is 93895097
# Let's try that split state
optimal_split_state3 = 93895097
X_train,X_val,X_test,y_train,y_val,y_test = split(df,rest_size=0.4,test_size=0.4,rando
optimal_C, optimal_gamma = optimal_C_gamma_values()
# Now let's use the optimal C value
gauss_clf = SVC(C=optimal_C,kernel='rbf',gamma=optimal_gamma)
# Let's train the model and calculate the training time
tic = time()
gauss_clf.fit(X_train, y_train)
toc = time()
time3 = str(round(1000*(toc-tic))) + "ms"
y_gauss = gauss_clf.predict(X_test)
gauss_accuracy = (accuracy_score(y_test, y_gauss)*100)
if max_iteration != 0:
   print('\n\n\n
                                                                     -process ended'
                                                                        n\n')
# Let's show the resuls
showResults(gauss_accuracy, time3, y_gauss,'SVM gaussian kernel')
    ------Results : SVM gaussian kernel ------
```

------Results : SVM gaussian kernel -----

The ROC curve is :

### ROC curve: SVM gaussian kernel



The model accuracy: 83 %

The training time is: 8ms

The f1 score is: 0.77

The roc\_auc\_score is: 0.74

The confusion matrix is:



| gaussian kernel    | polynomial kernel | Linear kernel     | metric           |
|--------------------|-------------------|-------------------|------------------|
| 8ms                | 16ms              | 16ms              | training time    |
| 82.8125            | 78.125            | 84.375            | accuracy %       |
| [10 11]<br>[ 0 43] | [12 8]<br>[ 6 38] | [15 8]<br>[ 2 39] | confusion matrix |
| 0.77               | 0.74              | 0.82              | f1 score         |
| 0.74               | 0.73              | 0.80              | roc_auc_score    |

The Roc curves :

## Comparison of three ROC curves



## In [177... yt\_svm,yp\_svm = best\_kernel('linear kernel')

The choosen kernel : linear kernel

the training : 16ms the accuracy : 84 % the f1 score : 0.82

The roc\_auc\_score is : 0.8

-----

## The ROC curve :



The confusion matrix is :



In [178... # Get svm parameters

```
coefs = linear_clf.coef_
          # factors helping students to succeed
          column_to_string(factors(coefs, 5, 'max', df), 'max')
          # factors leading students to failure
          column_to_string(factors(coefs, 5, 'min', df), 'min')
         Factors helping students succeed :
         father's education
         guardian
         wants to take higher education
         studytime
         father's job
         Factors leading students to failure
         age
         health
         going out with friends
         absences
         failures
In [179...
         import numpy as np
          import pandas as pd
          import seaborn as sns
          import matplotlib.pyplot as plt
          from time import time
          from sklearn.linear_model import LogisticRegression
          from sklearn.neighbors import KNeighborsClassifier
          from sklearn.svm import SVC
          from sklearn.model selection import train test split,GridSearchCV
          from sklearn.metrics import confusion_matrix, roc_curve, accuracy_score, f1_score, roc
          from astropy.table import Table
          from sklearn.metrics import roc auc score
          df = pd.read csv('student-data.csv')
          dfv = pd.read_csv('student-data.csv')
In [180...
         def numerical data():
```

```
df['school'] = df['school'].map({'GP': 0, 'MS': 1})
   df['sex'] = df['sex'].map({'M': 0, 'F': 1})
   df['address'] = df['address'].map({'U': 0, 'R': 1})
   df['famsize'] = df['famsize'].map({'LE3': 0, 'GT3': 1})
   df['Pstatus'] = df['Pstatus'].map({'T': 0, 'A': 1})
   df['Mjob'] = df['Mjob'].map({'teacher': 0, 'health': 1, 'services': 2, 'at_home':
   df['Fjob'] = df['Fjob'].map({'teacher': 0, 'health': 1, 'services': 2, 'at_home':
   df['reason'] = df['reason'].map({'home': 0, 'reputation': 1, 'course': 2, 'other':
   df['guardian'] = df['guardian'].map({'mother': 0, 'father': 1, 'other': 2})
   df['schoolsup'] = df['schoolsup'].map({'no': 0, 'yes': 1})
   df['famsup'] = df['famsup'].map({'no': 0, 'yes': 1})
   df['paid'] = df['paid'].map({'no': 0, 'yes': 1})
   df['activities'] = df['activities'].map({'no': 0, 'yes': 1})
   df['nursery'] = df['nursery'].map({'no': 0, 'yes': 1})
   df['higher'] = df['higher'].map({'no': 0, 'yes': 1})
   df['internet'] = df['internet'].map({'no': 0, 'yes': 1})
   df['romantic'] = df['romantic'].map({'no': 0, 'yes' : 1})
   df['passed'] = df['passed'].map({'no': 0, 'yes': 1})
   # reorder dataframe columns :
   col = df['passed']
   del df['passed']
   df['passed'] = col
# feature scaling will allow the algorithm to converge faster, large data will have so
def feature_scaling(df):
   for i in df:
        col = df[i]
        # let's choose columns that have large values
        if(np.max(col)>6):
            Max = max(col)
            Min = min(col)
            mean = np.mean(col)
            col = (col-mean)/(Max)
            df[i] = col
        elif(np.max(col)<6):</pre>
            col = (col-np.min(col))
            col /= np.max(col)
            df[i] = col
```

```
In [181... numerical_data() df
```

| Out[181]: | school |   | sex | age | address | famsize | Pstatus | Medu | Fedu | Mjob | Fjob | ••• | internet | romantic |
|-----------|--------|---|-----|-----|---------|---------|---------|------|------|------|------|-----|----------|----------|
|           | 0      | 0 | 1   | 18  | 0       | 1       | 1       | 4    | 4    | 3    | 0    |     | 0        | 0        |
|           | 1      | 0 | 1   | 17  | 0       | 1       | 0       | 1    | 1    | 3    | 4    |     | 1        | 0        |
|           | 2      | 0 | 1   | 15  | 0       | 0       | 0       | 1    | 1    | 3    | 4    |     | 1        | 0        |
|           | 3      | 0 | 1   | 15  | 0       | 1       | 0       | 4    | 2    | 1    | 2    |     | 1        | 1        |
|           | 4      | 0 | 1   | 16  | 0       | 1       | 0       | 3    | 3    | 4    | 4    |     | 0        | 0        |
|           | •••    |   |     |     |         |         |         |      |      |      |      |     |          |          |
|           | 390    | 1 | 0   | 20  | 0       | 0       | 1       | 2    | 2    | 2    | 2    |     | 0        | 0        |
|           | 391    | 1 | 0   | 17  | 0       | 0       | 0       | 3    | 1    | 2    | 2    |     | 1        | 0        |
|           | 392    | 1 | 0   | 21  | 1       | 1       | 0       | 1    | 1    | 4    | 4    |     | 0        | 0        |
|           | 393    | 1 | 0   | 18  | 1       | 0       | 0       | 3    | 2    | 2    | 4    |     | 1        | 0        |
|           | 394    | 1 | 0   | 19  | 0       | 0       | 0       | 1    | 1    | 4    | 3    |     | 1        | 0        |

395 rows × 31 columns

4

In [182... # Let's scal our features
feature\_scaling(df)

# Now we are ready for models training  $\operatorname{df}$ 

| Out[182]: |   | school | sex | age      | address | famsize | Pstatus | Medu | Fedu | Mjob | Fjob | ••• | internet | roma |
|-----------|---|--------|-----|----------|---------|---------|---------|------|------|------|------|-----|----------|------|
|           | 0 | 0.0    | 1.0 | 0.059264 | 0.0     | 1.0     | 1.0     | 1.00 | 1.00 | 0.75 | 0.00 |     | 0.0      |      |
|           | 1 | 0.0    | 1.0 | 0.013809 | 0.0     | 1.0     | 0.0     | 0.25 | 0.25 | 0.75 | 1.00 |     | 1.0      |      |

| U   | 0.0 | 1.0 | 0.039204  | 0.0 | 1.0 | 1.0 | 1.00 | 1.00 | 0.73 | 0.00 | ••• | 0.0 |
|-----|-----|-----|-----------|-----|-----|-----|------|------|------|------|-----|-----|
| 1   | 0.0 | 1.0 | 0.013809  | 0.0 | 1.0 | 0.0 | 0.25 | 0.25 | 0.75 | 1.00 |     | 1.0 |
| 2   | 0.0 | 1.0 | -0.077100 | 0.0 | 0.0 | 0.0 | 0.25 | 0.25 | 0.75 | 1.00 |     | 1.0 |
| 3   | 0.0 | 1.0 | -0.077100 | 0.0 | 1.0 | 0.0 | 1.00 | 0.50 | 0.25 | 0.50 |     | 1.0 |
| 4   | 0.0 | 1.0 | -0.031646 | 0.0 | 1.0 | 0.0 | 0.75 | 0.75 | 1.00 | 1.00 |     | 0.0 |
| ••• |     |     |           |     |     |     |      |      |      |      |     |     |
| 390 | 1.0 | 0.0 | 0.150173  | 0.0 | 0.0 | 1.0 | 0.50 | 0.50 | 0.50 | 0.50 |     | 0.0 |
| 391 | 1.0 | 0.0 | 0.013809  | 0.0 | 0.0 | 0.0 | 0.75 | 0.25 | 0.50 | 0.50 |     | 1.0 |
| 392 | 1.0 | 0.0 | 0.195627  | 1.0 | 1.0 | 0.0 | 0.25 | 0.25 | 1.00 | 1.00 |     | 0.0 |
| 393 | 1.0 | 0.0 | 0.059264  | 1.0 | 0.0 | 0.0 | 0.75 | 0.50 | 0.50 | 1.00 |     | 1.0 |
| 394 | 1.0 | 0.0 | 0.104718  | 0.0 | 0.0 | 0.0 | 0.25 | 0.25 | 1.00 | 0.75 |     | 1.0 |

395 rows × 31 columns

In [183... df.dropna().shape

```
Out[183]: (395, 31)
 In [184... df.columns
           Index(['school', 'sex', 'age', 'address', 'famsize', 'Pstatus', 'Medu', 'Fedu',
Out[184]:
                   'Mjob', 'Fjob', 'reason', 'guardian', 'traveltime', 'studytime',
                   'failures', 'schoolsup', 'famsup', 'paid', 'activities', 'nursery', 'higher', 'internet', 'romantic', 'famrel', 'freetime', 'goout', 'Dalc',
                   'Walc', 'health', 'absences', 'passed'],
                 dtype='object')
 'failures', 'schoolsup', 'famsup', 'paid', 'activities', 'nursery', 'higher', 'internet', 'romantic', 'famrel', 'freetime', 'goout', 'Dalc',
                   'Walc', 'health', 'absences']
           X=df.drop('passed',axis='columns')
 In [186...
           y=df['passed']
           from sklearn.model selection import train test split
 In [187...
           X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=5)
 In [188...
           import tensorflow as tf
           from tensorflow import keras
           model=keras.Sequential([
               keras.layers.Dense(25,input_shape=(30,),activation='relu'),
               keras.layers.Dense(20,activation='relu'),
               keras.layers.Dense(1,activation='sigmoid'),
           ])
           model.compile(optimizer='RMSProp',
                         loss='binary_crossentropy',
                         metrics=['accuracy'])
           model.fit(X_train,y_train,epochs=180)
```

```
Epoch 1/180
Epoch 2/180
10/10 [============ - 0s 1ms/step - loss: 0.6403 - accuracy: 0.670
Epoch 3/180
10/10 [============ - 0s 2ms/step - loss: 0.6317 - accuracy: 0.670
Epoch 4/180
10/10 [============= - 0s 2ms/step - loss: 0.6280 - accuracy: 0.670
Epoch 5/180
Epoch 6/180
10/10 [============= - 0s 2ms/step - loss: 0.6163 - accuracy: 0.670
Epoch 7/180
10/10 [============== - 0s 2ms/step - loss: 0.6125 - accuracy: 0.674
Epoch 8/180
10/10 [============== - 0s 2ms/step - loss: 0.6082 - accuracy: 0.674
Epoch 9/180
10/10 [============= - 0s 2ms/step - loss: 0.6034 - accuracy: 0.677
Epoch 10/180
Epoch 11/180
Epoch 12/180
10/10 [============ - 0s 2ms/step - loss: 0.5875 - accuracy: 0.708
Epoch 13/180
10/10 [============== - 0s 2ms/step - loss: 0.5869 - accuracy: 0.693
Epoch 14/180
10/10 [============= - 0s 2ms/step - loss: 0.5797 - accuracy: 0.712
Epoch 15/180
10/10 [============= - 0s 1ms/step - loss: 0.5770 - accuracy: 0.715
Epoch 16/180
Epoch 17/180
10/10 [============= - 0s 2ms/step - loss: 0.5696 - accuracy: 0.718
Epoch 18/180
Epoch 19/180
10/10 [============ - 0s 2ms/step - loss: 0.5587 - accuracy: 0.724
Epoch 20/180
10/10 [============] - 0s 2ms/step - loss: 0.5560 - accuracy: 0.731
0
```

```
Epoch 21/180
Epoch 22/180
10/10 [============= - 0s 1ms/step - loss: 0.5485 - accuracy: 0.734
Epoch 23/180
10/10 [============= - 0s 2ms/step - loss: 0.5431 - accuracy: 0.727
Epoch 24/180
10/10 [============ - 0s 1ms/step - loss: 0.5426 - accuracy: 0.727
Epoch 25/180
10/10 [============= - 0s 2ms/step - loss: 0.5383 - accuracy: 0.746
Epoch 26/180
Epoch 27/180
Epoch 28/180
10/10 [============== - 0s 2ms/step - loss: 0.5265 - accuracy: 0.746
Epoch 29/180
Epoch 30/180
Epoch 31/180
Epoch 32/180
Epoch 33/180
10/10 [============== - 0s 2ms/step - loss: 0.5102 - accuracy: 0.769
Epoch 34/180
10/10 [================= ] - 0s 2ms/step - loss: 0.5086 - accuracy: 0.762
Epoch 35/180
10/10 [============= - 0s 1ms/step - loss: 0.5040 - accuracy: 0.778
Epoch 37/180
10/10 [============= - 0s 2ms/step - loss: 0.4964 - accuracy: 0.781
Epoch 38/180
10/10 [============= - 0s 2ms/step - loss: 0.4969 - accuracy: 0.775
Epoch 39/180
10/10 [============ - 0s 3ms/step - loss: 0.4943 - accuracy: 0.769
Epoch 40/180
8
```

```
Epoch 41/180
Epoch 42/180
10/10 [============= - 0s 2ms/step - loss: 0.4847 - accuracy: 0.788
Epoch 43/180
10/10 [============ - 0s 2ms/step - loss: 0.4809 - accuracy: 0.775
Epoch 44/180
10/10 [============== - 0s 2ms/step - loss: 0.4806 - accuracy: 0.778
Epoch 45/180
Epoch 46/180
Epoch 47/180
10/10 [============== - 0s 2ms/step - loss: 0.4699 - accuracy: 0.788
Epoch 48/180
Epoch 49/180
10/10 [============== - 0s 2ms/step - loss: 0.4709 - accuracy: 0.778
Epoch 50/180
Epoch 51/180
Epoch 52/180
10/10 [============ - 0s 2ms/step - loss: 0.4604 - accuracy: 0.794
Epoch 53/180
10/10 [============== - 0s 2ms/step - loss: 0.4582 - accuracy: 0.791
Epoch 54/180
10/10 [============== - 0s 2ms/step - loss: 0.4562 - accuracy: 0.791
1
Epoch 55/180
10/10 [============== - 0s 3ms/step - loss: 0.4526 - accuracy: 0.791
1
Epoch 56/180
10/10 [============== - 0s 2ms/step - loss: 0.4527 - accuracy: 0.794
Epoch 57/180
10/10 [============= - 0s 2ms/step - loss: 0.4514 - accuracy: 0.788
Epoch 58/180
10/10 [============= - 0s 2ms/step - loss: 0.4448 - accuracy: 0.784
Epoch 59/180
10/10 [============ - 0s 1ms/step - loss: 0.4440 - accuracy: 0.800
Epoch 60/180
10/10 [===========] - 0s 2ms/step - loss: 0.4408 - accuracy: 0.803
8
```

```
Epoch 61/180
Epoch 62/180
10/10 [============ ] - 0s 2ms/step - loss: 0.4380 - accuracy: 0.800
Epoch 63/180
10/10 [============ - 0s 2ms/step - loss: 0.4360 - accuracy: 0.797
Epoch 64/180
10/10 [============ - 0s 2ms/step - loss: 0.4329 - accuracy: 0.800
Epoch 65/180
Epoch 66/180
10/10 [============= - 0s 2ms/step - loss: 0.4286 - accuracy: 0.800
Epoch 67/180
10/10 [============== - 0s 2ms/step - loss: 0.4240 - accuracy: 0.797
Epoch 68/180
Epoch 69/180
10/10 [============= - 0s 1ms/step - loss: 0.4200 - accuracy: 0.816
Epoch 70/180
10/10 [============= - 0s 1ms/step - loss: 0.4167 - accuracy: 0.813
Epoch 71/180
Epoch 72/180
Epoch 73/180
10/10 [============== - 0s 1ms/step - loss: 0.4096 - accuracy: 0.810
Epoch 74/180
Epoch 75/180
Epoch 76/180
1
Epoch 77/180
10/10 [============ - 0s 1ms/step - loss: 0.4033 - accuracy: 0.819
Epoch 78/180
10/10 [============= - 0s 2ms/step - loss: 0.3993 - accuracy: 0.835
Epoch 79/180
10/10 [============= - 0s 2ms/step - loss: 0.3925 - accuracy: 0.816
Epoch 80/180
6
```

```
Epoch 81/180
Epoch 82/180
Epoch 83/180
10/10 [============= - 0s 2ms/step - loss: 0.3885 - accuracy: 0.832
Epoch 84/180
10/10 [============== - 0s 2ms/step - loss: 0.3856 - accuracy: 0.838
Epoch 85/180
Epoch 86/180
Epoch 87/180
Epoch 88/180
10/10 [============== - 0s 2ms/step - loss: 0.3776 - accuracy: 0.844
Epoch 89/180
Epoch 90/180
386
Epoch 91/180
576
Epoch 92/180
449
Epoch 93/180
10/10 [============== - 0s 1ms/step - loss: 0.3641 - accuracy: 0.844
Epoch 94/180
449
Epoch 95/180
576
Epoch 96/180
1
Epoch 97/180
10/10 [============== - 0s 926us/step - loss: 0.3574 - accuracy: 0.8
Epoch 98/180
Epoch 99/180
10/10 [============ - 0s 1ms/step - loss: 0.3534 - accuracy: 0.860
Epoch 100/180
4
```

```
Epoch 101/180
Epoch 102/180
10/10 [============ ] - Os 2ms/step - loss: 0.3471 - accuracy: 0.870
Epoch 103/180
Epoch 104/180
Epoch 105/180
Epoch 106/180
Epoch 107/180
Epoch 108/180
10/10 [=============== ] - 0s 2ms/step - loss: 0.3316 - accuracy: 0.876
Epoch 109/180
Epoch 110/180
10/10 [============ - 0s 2ms/step - loss: 0.3263 - accuracy: 0.873
Epoch 111/180
Epoch 112/180
Epoch 113/180
Epoch 114/180
Epoch 115/180
10/10 [============== - 0s 2ms/step - loss: 0.3165 - accuracy: 0.886
1
Epoch 116/180
Epoch 117/180
10/10 [============ - 0s 1ms/step - loss: 0.3135 - accuracy: 0.895
Epoch 118/180
10/10 [============= - 0s 1ms/step - loss: 0.3135 - accuracy: 0.886
Epoch 119/180
10/10 [============ - 0s 1ms/step - loss: 0.3039 - accuracy: 0.895
Epoch 120/180
10/10 [===========] - 0s 1ms/step - loss: 0.3064 - accuracy: 0.898
7
```

```
Epoch 121/180
Epoch 122/180
10/10 [============= - 0s 969us/step - loss: 0.3041 - accuracy: 0.8
Epoch 123/180
892
Epoch 124/180
10/10 [============= - 0s 1ms/step - loss: 0.2958 - accuracy: 0.901
Epoch 125/180
Epoch 126/180
Epoch 127/180
987
Epoch 128/180
Epoch 129/180
10/10 [============== - 0s 1ms/step - loss: 0.2879 - accuracy: 0.892
Epoch 130/180
Epoch 131/180
Epoch 132/180
082
Epoch 133/180
10/10 [============= - 0s 1ms/step - loss: 0.2837 - accuracy: 0.901
Epoch 134/180
Epoch 135/180
1
Epoch 136/180
Epoch 137/180
Epoch 138/180
10/10 [============== - 0s 2ms/step - loss: 0.2681 - accuracy: 0.911
4
Epoch 139/180
10/10 [============ - 0s 2ms/step - loss: 0.2635 - accuracy: 0.914
Epoch 140/180
4
```

```
Epoch 141/180
Epoch 142/180
10/10 [============= - 0s 2ms/step - loss: 0.2640 - accuracy: 0.911
Epoch 143/180
10/10 [============= - 0s 2ms/step - loss: 0.2586 - accuracy: 0.908
Epoch 144/180
Epoch 145/180
Epoch 146/180
Epoch 147/180
10/10 [============= - 0s 1ms/step - loss: 0.2496 - accuracy: 0.908
Epoch 148/180
Epoch 149/180
Epoch 150/180
10/10 [============= - 0s 991us/step - loss: 0.2472 - accuracy: 0.9
177
Epoch 151/180
Epoch 152/180
10/10 [============= - 0s 1ms/step - loss: 0.2425 - accuracy: 0.920
Epoch 153/180
Epoch 154/180
10/10 [============= - 0s 1ms/step - loss: 0.2380 - accuracy: 0.920
9
Epoch 155/180
146
Epoch 156/180
177
Epoch 157/180
10/10 [============ - 0s 1ms/step - loss: 0.2349 - accuracy: 0.917
Epoch 158/180
10/10 [============= - 0s 1ms/step - loss: 0.2278 - accuracy: 0.920
Epoch 159/180
1
Epoch 160/180
6
```

```
Epoch 161/180
Epoch 162/180
Epoch 163/180
10/10 [============ - 0s 2ms/step - loss: 0.2200 - accuracy: 0.920
Epoch 164/180
10/10 [============= - 0s 2ms/step - loss: 0.2217 - accuracy: 0.924
Epoch 165/180
Epoch 166/180
10/10 [============= - 0s 2ms/step - loss: 0.2132 - accuracy: 0.930
Epoch 167/180
10/10 [============= - 0s 2ms/step - loss: 0.2150 - accuracy: 0.917
Epoch 168/180
10/10 [============= - 0s 2ms/step - loss: 0.2119 - accuracy: 0.924
Epoch 169/180
10/10 [============= - 0s 2ms/step - loss: 0.2039 - accuracy: 0.936
Epoch 170/180
Epoch 171/180
Epoch 172/180
10/10 [============ - 0s 3ms/step - loss: 0.2053 - accuracy: 0.939
Epoch 173/180
10/10 [============= - 0s 3ms/step - loss: 0.2038 - accuracy: 0.930
Epoch 174/180
Epoch 175/180
10/10 [============== - 0s 2ms/step - loss: 0.1989 - accuracy: 0.936
Epoch 176/180
10/10 [============= - 0s 2ms/step - loss: 0.1975 - accuracy: 0.933
Epoch 177/180
10/10 [============ - 0s 2ms/step - loss: 0.1959 - accuracy: 0.933
Epoch 178/180
10/10 [============= - 0s 3ms/step - loss: 0.1911 - accuracy: 0.936
Epoch 179/180
10/10 [============ - 0s 2ms/step - loss: 0.1907 - accuracy: 0.939
Epoch 180/180
5
```

```
<keras.callbacks.History at 0x1f006b474f0>
Out[188]:
In [189...
          model.evaluate(X_test,y_test)
          3/3 [==========] - 0s 2ms/step - loss: 1.0989 - accuracy: 0.5949
          [1.0988645553588867, 0.594936728477478]
Out[189]:
In [190...
          yp=model.predict(X_test)
          yp[:5]
          array([[0.6653685],
Out[190]:
                  [0.07507494],
                  [0.92375535],
                  [0.8437072],
                  [0.9589287 ]], dtype=float32)
          y_test[:10]
In [191...
          306
                 1.0
Out[191]:
          343
                 0.0
          117
                 1.0
          50
                 1.0
                 0.0
          316
          279
                 1.0
          394
                 0.0
          354
                 1.0
          123
                 1.0
          357
                 1.0
          Name: passed, dtype: float64
          y_pred=[]
In [192...
          for element in yp:
              if element>0.5:
                  y_pred.append(1)
              else:
                  y_pred.append(0)
In [193... y_pred[:10]
          [1, 0, 1, 1, 1, 1, 1, 1, 1]
Out[193]:
In [194...
          from sklearn.metrics import confusion_matrix,classification_report
          print(classification_report(y_test,y_pred))
          yt_ann=y_test
          yp_ann=y_pred
                        precision
                                      recall f1-score
                                                         support
                              0.36
                                        0.31
                                                              26
                   0.0
                                                  0.33
                   1.0
                              0.68
                                        0.74
                                                  0.71
                                                              53
                                                              79
                                                  0.59
              accuracy
             macro avg
                              0.52
                                        0.52
                                                  0.52
                                                              79
          weighted avg
                             0.58
                                        0.59
                                                  0.59
                                                              79
In [195...
          import seaborn as sn
```

```
cm=tf.math.confusion_matrix(labels=y_test,predictions=y_pred)
plt.figure(figsize=(10,7))
sn.heatmap(cm,annot=True,fmt='d')
plt.xlabel('Predicted')
plt.ylabel('Truth')
```

Out[195]: Text(69.0, 0.5, 'Truth')



```
round((6+38)/(6+38+15+38),2)*100
In [196...
          45.0
Out[196]:
 In [ ]:
In [197...
          # Function to compare the three classifiers (Logistic regression, KNN and SVM) perform
          def compare_lg_knn_svm(yt_knn,yp_knn,yt_lg,yp_lg,yt_svm,yp_svm,yt_ann,yp_ann):
              f1_lg = round(f1_score(yt_lg, yp_lg, average='macro')*100)
              f1_knn = round(f1_score(yt_knn, yp_knn, average='macro')*100)
              f1_svm = round(f1_score(yt_svm, yp_svm, average='macro')*100)
              f1_ann = round(f1_score(yt_ann, yp_ann, average='macro')*100)
              #Accuracy score
              acc_lg = round(accuracy_score(yt_lg, yp_lg)*100)
              acc_knn = round(accuracy_score(yt_knn, yp_knn)*100)
              acc_svm = round(accuracy_score(yt_svm, yp_svm)*100)
              acc_ann = round(accuracy_score(yt_ann, yp_ann)*100)
              #Confusion matrix
              conf_lg = confusion_matrix(yt_lg, yp_lg)
              conf_knn = confusion_matrix(yt_knn, yp_knn)
```

```
conf_svm = confusion_matrix(yt_svm, yp_svm)
   conf ann = confusion matrix(yt ann, yp ann)
   #ROC score
   roc c lg = round(roc auc score(yt lg, yp lg)*100)
   roc_c_knn = round(roc_auc_score(yt_knn, yp_knn)*100)
   roc_c_svm = round(roc_auc_score(yt_svm, yp_svm)*100)
   roc_c_ann = round(roc_auc_score(yt_ann, yp_ann)*100)
   #ROC curve thresholds
   roc_knn = roc_curve(yt_knn,yp_knn)
   roc_lg = roc_curve(yt_lg,yp_lg)
   roc_svm = roc_curve(yt_svm,yp_svm)
   roc_ann = roc_curve(yt_ann,yp_ann)
   # Table of metrics
   print('-----Table of metrics-----
   data_rows = [('f1 score',f1_lg,f1_knn,f1_svm,f1_ann),
                ('','','','',''),
                 ('accuracy %',acc_lg,acc_knn,acc_svm,acc_ann),
                ('','','',''),
                ('confusion matrix',conf_lg[0], conf_knn[0], conf_svm[0],conf_ann[0])
               ('',conf_lg[1], conf_knn[1], conf_svm[1],conf_ann[1]),
               ('ROC score',roc_c_lg,roc_c_knn,roc_c_svm,roc_c_ann),
               ('','','','')]
   t = Table(rows=data_rows, names=('metric','Logistic regression', 'KNN', 'SVM','ANN
   print(t)
   #Plot ROC curve
   print('\n\n------ROC curves------
   fig, _ = plt.subplots()
   fig.suptitle('Comparison of three ROC curves')
   fpr,tpr,thresholds=roc_lg
   plt.plot([0, 1],[0, 1],'--')
   plt.plot(fpr,tpr,label='Logistic regression :'+str(roc_c_lg))
   plt.xlabel('false positive')
   plt.ylabel('false negative')
   fpr,tpr,thresholds=roc knn
   plt.plot(fpr,tpr,label='KNN :'+str(roc_c_knn))
   fpr,tpr,thresholds=roc_svm
   plt.plot(fpr,tpr,label='SVM :'+str(roc_c_svm))
   fpr,tpr,thresholds=roc_ann
   plt.plot(fpr,tpr,label='ANN :'+str(roc_c_ann))
   plt.legend()
   plt.show()
   # Maximum metrics
   print('------Max of metrics-----
   data_rows = [('max f1 score',algo_with_max_metric(f1_lg,f1_knn,f1_svm,f1_ann)),
                ('','','',''),
                 ('max accuracy %',algo_with_max_metric(acc_lg,acc_knn,acc_svm,acc_ar
               ('max ROC score',algo_with_max_metric(roc_c_lg,roc_c_knn,roc_c_svm,roc
   t = Table(rows=data_rows, names=('metric','Learning algorithm winnig'))
   print(t)
# Function returning name of winnig algorithm based on a single metric
def algo with max metric(a,b,c,d):
```

```
max_metric = max(a,b,c)
if max_metric == a:
    return 'Logistic regression'
elif max_metric == b:
    return 'KNN'
elif max_metric == c:
    return 'SVM'
else:
    return 'ANN'
```

In [ ]:

In [198... compare\_lg\_knn\_svm(yt\_knn,yp\_knn,yt\_lg,yp\_lg,yt\_svm,yp\_svm,yt\_ann,yp\_ann)

-----Table of metrics-----

| metric           | Logistic | regression         | KN | NN | S۱ | /M | Al. | NN |
|------------------|----------|--------------------|----|----|----|----|-----|----|
| f1 score         |          | 74                 |    | 48 |    | 82 |     | 52 |
| accuracy %       |          | 81                 |    | 70 |    | 84 |     | 59 |
| confusion matrix |          | [18 17]<br>[ 6 78] |    |    |    |    |     |    |
| ROC score        |          | 72                 |    | 49 |    | 80 |     | 52 |

-----ROC curves-----

## Comparison of three ROC curves



metric Learning algorithm winnig
max f1 score SVM
max accuracy % SVM
max ROC score SVM