Ecole Supérieure de la Statistique et de l'Analyse de l'Information Année universitaire 2020/2021

Intégration et Probabilité 2 TD 2. Vecteurs gaussiens

Exercice 1.

Soit $X = (X_1, X_2)^t$ un vecteur gaussien de moyenne $m = (1, 2)^t$ et de matrice de covariance

$$\Sigma_X = \left(\begin{array}{cc} 4 & 1\\ 1 & 3 \end{array}\right)$$

- 1. Donner la loi du vecteur $Y = (X_1 + 2X_2, \frac{X_1}{2} + X_2)^t$.
- 2. Donner la fonction caractéristique du vecteur Y. Le vecteur Y admet-il une densité par rapport à la mesure de Lebesgue? (justifier votre réponse). Si oui, la donner.
- 3. Reprener les questions 1 et 2 avec le vecteur Z = X + Y.

Exercice 2.

Soit X un vecteur aléatoire de \mathbb{R}^n tel que $E[(X_i)^2] < +\infty \ \forall \ i \in \{1, \dots, n\}.$

1. Montrer que la matrice de covariance de X définie par $K_X = cov((X_i, X_j))_{i,j=1,\dots,n}$ est symétrique et semi-définie positive (positive) au sens où $\forall a \in \mathbb{R}^n$, on a l'inégalité suivante

$$aK_X a^t = \sum_{i,j=1}^n a_i cov(X_i, X_j) a_j \ge 0.$$

Exercice 3.

On considère X et Y deux vecteurs gaussiens centrés et i.i.d. à valeurs dans \mathbb{R}^d . Soit $X_{\varphi} = X \cos(\varphi) + Y \sin(\varphi)$ et $Y_{\varphi} = -X \sin(\varphi) + Y \cos(\varphi)$, avec $\varphi \in [0, 2\pi]$. Déterminer la loi de X_{φ} et de Y_{φ} et étudier l'indépendance.

Exercice 4.

Soit une v.a.r X suivant la loi normale centrée réduite. Y est une v.a.r. qui suit une loi de Rademacher, telle que:

$$P{Y = 1} = P{Y = -1} = \frac{1}{2}.$$

On suppose que X et Y sont indépendantes et on pose Z = XY. Déterminer la loi de Z et démontrer que X et |X|Y ont même loi. Peut-on dire que Le veteur aléatoire (X,Z) est gaussien?

Exercice 5.

Soit X un veteur gaussien centré et à valeurs dans \mathbb{R}^2 .

- 1) Montrer l'équivalence entre les assertions suivantes:
 - 1. Les composantes de X sont indépendantes.
 - 2. $E[e^{i(X_1+X_2)}] = E[e^{iX_1}]E[e^{iX_2}]$
- 2) L'équivalence entre les assertions précedente reste-elle valable dans le cas où X est un veteur gaussien centré et à valeurs dans \mathbb{R}^3 ?
- 3) Soit X un veteur gaussien centré et à valeurs dans \mathbb{R}^3 tel que pour tout $u = (u_1, u_2, u_3) \in \mathbb{R}^3$, on a l'égalité suivante:

$$E[e^{i\sum_{k=1}^{3} u_k X_k}] = \prod_{k=1}^{3} E[e^{iu_k X_k}].$$

Les composantes de X ($X = (X_1, X_2, X_3)$) sont-elles indépendantes?

Exercice 6.

Soit $X=(X_0,\,\cdots,\,X_d)$ un vecteur gaussien à valeurs dans \mathbb{R}^{d+1} tel que:

- 1. $X_i \hookrightarrow \mathcal{N}(0, 1) \ \forall \ i \in \{0, 1, \dots, d\}.$
- 2. $cov(X_0, X_j) = p \text{ pour } 1 \le j \le d.$
- 3. $cov(X_i, X_j) = p^2 \text{ pour } 1 \le j \ne i \le d.$

Soit $Y = (X_0, Y_1, \dots, Y_d)$ un vecteur aléatoire tel que

$$Y_j = (1 - p^2)^{-\frac{1}{2}} (X_j - pX_0)$$

pour $1 \leq j \leq d$. Déterminer la loi de Y et celle de $S = \sum_{j=1}^{d} X_j$.

Exercice 7

- 1. Soient X et Y deux v.a.r. continues indépendantes admettant respectivement pour densités f_X et f_Y . Montrer que $X \neq Y$ p.s.
- 2. On considère une v.a.r. X admettant une densité notée f_X . Déteminer f_{X^2} en fonction de f_X .
- 3. Soit une v.a.r X suivant la loi normale centrée réduite. Calculer $\mathbb{E}[X^4]$
- 4. Soit le veteur aléatoire (X, Y) telle que $(X, Y) \hookrightarrow \mathcal{N}(0, I_2)$. Soient les deux variables aléatoires Z et Q telles que

$$Z = \frac{(X+Y)}{2}$$
 et $Q = \frac{(X-Y)}{2}$.

On pose

$$U = \frac{(X - Z)^2 + (Y - Z)^2}{2}.$$

Calculer la matrice de covariance du vecteur (Z, Q).

- 5. Calculer E[U] et Var[U].
- 6. Etudier l'indépendance des deux variables aléatoires Z et U.
- 7. Donner P_U .