

Alan Turing e o "Primeiro Computador"

Alan Turing foi um brilhante matemático britânico. Suas contribuições à ciência não somente ajudou seu país a enfrentar um dos maiores problemas da história, a segunda guerra mundial, como foi a base de, nada menos, a computação! Esse é um herói em todos os sentidos e sua vida interrompida antes da hora mostra como o mundo pode ser cruel, mesmo para com seus heróis.

ALAN TURING

Primeira geração: vávulas termiônicas

Ainda durante a Segunda Guerra Mundial, nos Estados Unidos, foi desenvolvido o primeiro computador eletrônico da história. Trata-se do **ENIAC**, um computador integrador numérico eletrônico, cujos números impressionam. Veja a seguir uma foto deste modelo:

- Componentes: 170.000 válvulas termiônicas.
- Peso: Cerca de 30 toneladas.
- Espaço utilizado: Sala de 150m².
- Capacidade de processamento (número de cálculos por segundo):

1 bilhão de vezes menor que a dos celulares usados hoje em dia.

- Componentes: 170.000 válvulas termiônicas.
- Peso: Cerca de 30 toneladas.
- Espaço utilizado: Sala de 150m².
- Capacidade de processamento (número de cálculos por segundo): 1 bilhão de vezes menor que a
 dos celulares usados hoje em dia.

Para evoluirmos desse verdadeiro elefante até os computadores atuais, foi preciso substituir as válvulas, já que elas eram pesadas e espaçosas.

Segunda geração: transistores

Os primeiros transistores ocupavam apenas alguns milímetros, precisando de bem menos energia que as válvulas. Assim, foi possível reduzir o tamanho de rádios, equipamentos eletrônicos em geral e computadores.

Na imagem, um transistor.

O QUE É UM TRANSISTOR?

O transistor é um **interruptor eletrônico** e um **amplificador de sinal**. Ele controla o fluxo de corrente elétrica de um jeito parecido com uma torneira controlando a água: um pequeno sinal pode ligar ou desligar uma corrente maior. Isso faz dele a base dos circuitos digitais (computadores, celulares, tudo que tem um chip) e dos analógicos (rádios, amplificadores de som etc.).

COMO FUNCIONA?

Um transistor geralmente tem **três terminais**:

- Base (B) → controla o transistor.
- Coletor (C) → entrada da corrente principal.
- Emissor (E) → saída da corrente.

Ele pode ser bipolar (BJT) ou de efeito de campo (FET), mas vamos focar no mais comum para lógica digital:

BJT (Bipolar Junction Transistor).

MODO CHAVEADOR (LIGA/DESLIGA)

Aqui o transistor funciona como um interruptor:

- •Se não chega corrente na base, o circuito está desligado (bloqueia a corrente do coletor para o emissor).
- •Se chega corrente na base, ele liga e deixa passar corrente do coletor para o emissor.

Isso é a base do funcionamento dos processadores: 0 = desligado, 1 = ligado.

MODO AMPLIFICADOR

Se o transistor recebe um pequeno sinal na base, ele libera uma corrente maior do coletor para o emissor. Assim, ele amplifica sinais fracos, como o som do microfone para os alto-falantes.

TIPOS DE TRANSISTORES

- 1. NPN (o mais comum) Corrente flui do coletor para o emissor quando a base recebe um sinal positivo.
- 2. PNP Funciona ao contrário: a corrente flui do emissor para o coletor quando a base recebe um sinal negativo.

POR QUE ISSO IMPORTA?

Sem transistores, não teríamos processadores, memória RAM, Wi-Fi, rádio, amplificadores de guitarra... enfim, praticamente toda a tecnologia moderna.

Para o Transistor NPN (esquerda):

•JBE → Junção Base-Emissor (Base para Emissor)

•JBC → Junção Base-Coletor (Base para Coletor)

Para o Transistor PNP (direita):

•JEB → Junção Emissor-Base (Emissor para Base)

•JCB → Junção Coletor-Base (Coletor para Base)

As setas representam os diodos internos que existem devido à estrutura do transistor. No NPN, a corrente flui do coletor para o emissor quando há tensão positiva na base. Já no PNP, a corrente flui do emissor para o coletor quando a base está em potencial mais negativo.

*Um diodo é um componente eletrônico que permite a passagem de corrente elétrica em apenas um sentido. Ele funciona como uma válvula unidirecional, bloqueando a corrente no sentido oposto.

Terceira geração: circuitos integrados

Na década de 1960, o próximo salto de evolução foi dado com a criação dos circuitos integrados (CI): pastilhas de silício que contêm um circuito eletrônico miniaturizado. É o que, de forma comum, chamamos de chip de computador.

Na imagem, um circuito integrado.

Com o uso de transistores e CI, os computadores ficaram menores e cada vez mais baratos.

Quarta geração: microprocessadores

A década de 1980 presenciou a proliferação de PCs cada vez mais potentes, baratos e conectados por meio do surgimento das redes locais de computadores e da internet: a rede mundial.

Além disso, um novo equipamento aparecia nos lares: o videogame, um tipo de computador especializado, cujos programas são jogos eletrônicos com ênfase nos gráficos e na interação com os usuários.

Computação no cotidiano

Hoje em dia, muitos celulares já são, de fato, computadores pessoais portáteis, plenamente conectados pela rede de telefonia móvel (celular). Nossa dependência em relação a eles para as tarefas do cotidiano já é tão forte que nem percebemos quando os utilizamos, inclusive estranhando sua ausência. Afinal, usamos computadores para:

Comunicação.

Meios de transporte.

Hardware e Software

Os computadores são feitos com um conjunto de componentes dividido em dois grandes grupos:

Hardware (HW)

Componentes físicos, ou seja, o que pode ser visto e tocado.

Software (SW)

Programas executados no computador.

Para exemplificarmos os conceitos de hardware e software, podemos fazer uma analogia com a linha de produção de um automóvel. A montadora constrói um modelo, colocando nele:

Principais componentes de hardware dos computadores

Vamos conhecê-los a seguir:

Processador

Também conhecido como CPU (*Central Processing Unit* ou Unidade Central de Processamento, em português), processador é o cérebro do computador, pois recebe as instruções e as executa sequencialmente. Seu principal componente é a unidade lógica e aritmética, responsável por operações como adicionar e subtrair.

A execução das instruções em um processador é regulada pela presença de um pulso de frequência constante denominado clock, que é medido em Hertz (Hz) — número de pulsos por segundo. Uma das principais características de um processador é a velocidade com que consegue executar instruções. Isso depende diretamente da frequência do clock.

Overclocking

Overclocking, por sua vez, é o processo para customizar a velocidade do *clock* do processador acima de sua frequência de uso normal. Tal prática deixa o computador mais rápido, pois uma maior quantidade de operações pode ser realizada ao mesmo tempo. Há certos riscos envolvidos no *overclocking*, como danos ao processador e sobreaquecimento.

Os chips eletrônicos operam com uma frequência base, medida em MHz (megahertz) ou GHz (gigahertz), que define quantas operações por segundo eles executam.

- •Exemplo: Um processador com clock de 3.5 GHz realiza 3,5 bilhões de ciclos por segundo.
- •Se você aumentar para **4.5 GHz**, ele será **mais rápido**, mas também consumirá mais energia e gerará mais calor.

Overclocking

O overclocking geralmente é feito ajustando dois fatores principais na **BIOS/UEFI** ou em softwares específicos:

- **1.Frequência do clock** Aumenta a velocidade de processamento.
- **2.Tensão (voltagem)** Dá mais energia para estabilizar o funcionamento em clocks mais altos.

Riscos e Desvantagens

- •Superaquecimento: O chip pode atingir temperaturas perigosas.
- •Maior consumo de energia: Seu PC pode gastar mais eletricidade.
- •Instabilidade: Se o clock estiver muito alto, o sistema pode travar ou reiniciar.
- •Redução da vida útil: Componentes operando fora das especificações podem desgastar mais rápido.

Placa-Mãe

A placa-mãe consiste em um circuito elétrico impresso e uma série de componentes conectados nela.

Os principais são:

Placa-Mãe

A função básica da placa-mãe é conectar o processador, a memória principal e os periféricos (outros componentes não essenciais do computador). Essas conexões são chamadas de **barramentos**. Conforme a tecnologia se desenvolve, a placa-mãe começa a integrar em si periféricos que, até então, precisavam ser encaixados nela, como placas de vídeo, placas de rede, placas controladoras de portas seriais e paralelas.

Periféricos

Por se conectarem à parte central do computador, seus demais componentes são chamados, em geral, de **periféricos**. Muitos mostram ser tão relevantes que não seríamos capazes de imaginar sistemas computacionais sem eles. O primeiro computador usava apenas uma série de lâmpadas como saída e alguns cartões perfurados como entrada. Inicialmente, são necessários apenas dois instrumentos nesse processo, embora haja outro que também precisa ser apontado.

*São dispositivos externos conectados a um computador para entrada, saída ou armazenamento de dados. Eles expandem a funcionalidade do sistema, permitindo interação e comunicação com o usuário.

Dispositivos de saída

Eles leem os resultados por computador. Os mais usuais são:

Sistema de vídeo

Composto, geralmente, por uma placa de vídeo e um monitor ou uma tela.

Alto-falantes ou caixas de som Emite sons e sinais sonoros.

*Impressora*Imprime documentos elaborados no computador.

Placa de rede Envia os dados pela rede.

Mesmo com a operacionalidade garantida por esses dispositivos, ainda existe o seguinte problema: a memória principal perde as informações quando se desliga o computador, ou seja, ela é volátil.

Mas é possível resolver esse tipo de problema?

A resposta é: **sim**. Precisamos de um sistema de armazenamento persistente que não perca as informações após esse desligamento.

Para isso, são usadas as **memórias secundárias**. Mais conhecidas como HD (*Hard Disk* ou Disco Rígido, em português), elas possuem essa nomenclatura porque sua tecnologia predominante envolve discos magnéticos lidos e escritos por um cabeçote. Atualmente, essa tecnologia tem sido substituída por **Discos de Estado Sólido (SSD)**, que são muito mais rápidos e menos propensos a falhas e desgaste por não haver partes móveis mecânicas neles.

As **principais características das memórias secundárias** são similares às da principal:

- Armazenamento: Normalmente medida em GB (gigabytes ou bilhões de bytes) ou TB (terabytes ou trilhões de bytes).
- Velocidade: Depende do barramento que o liga à placa-mãe

Hoje, a principal tecnologia de barramento de memória secundária é o SATA2, que é capaz de atingir taxas de transmissão de 3 Gb/s (3 *gigas* por segundo).

Software

As possibilidades criadas pela presença de um *hardware* no computador requerem a execução de um conjunto de programas, trazendo, assim, suas funcionalidades à tona, que definem o *software*. Costuma-se dividi-lo em dois tipos:

Softwares de Aplicação

Geralmente, são rodados de forma consciente nos computadores, entregando as funcionalidades desejadas por seu usuário. Observe alguns exemplos a seguir:

- •Navegadores de internet Chrome, Firefox e Internet Explorer;
- Planilhas: Excel e Libreoffice Calc;
- •Editores de texto Word e Libreoffice Writer;
- Jogos eletrônicos LoL e Fortnite.

Softwares de Sistema

Permitem que os finalísticos rodem em muitas máquinas com *hardwares* diversificados. Os *softwares* de sistema incluem os drivers dos dispositivos instalados no computador, ou seja, programas que controlam como se acessa e comanda determinado periférico.

Exemplo: Uma placa de rede.

^{*}O principal software de sistema é o conhecido sistema operacional.

Tendências

Você consegue se imaginar usando um computador sem mouse ou touchscreen? No ramo de *softwares*, diversos programas mudaram a forma como trabalhamos e nos divertimos, tais como:

- Jogos eletrônicos
- Sistemas operacionais com interface gráfica (Windows)
- Aplicativos para realizar diversas tarefas cotidianas (e-bank, e-commerce e e-mail)
- Navegador de internet (web browser)
- Planilhas
- Editores de texto