Personalized Twitter Audio

—— Cloud Computing Final Project ——

Haoran Ma, Chun-Yi Yang, Lizi Chen, Le Wang

Project Proposal

An Application enables users to listen to feeds from friends and channels they followed on social networks (Twitter).

Application Features

- Transfer tweets to audios
 - Eleberated audio that integrates information from twitter timeline
- Update periodically
 - Regular monitoring and scraping in a specific period
- Classify audio
 - o A CNN support method to classify content into different category. Ex. sport, business, etc.

Presentation Process

Cloud Architecture Design	Machine Learning	Application
ToolsServices Introduction	CNN learning on text classificationModel implementation	Application deploymentApplication showcase

Cloud Service - AWS

Amazon EC2

- Virtual computing environments
- Various configurations of CPU, memory, storage, and networking capacity
- Static IPv4 addresses for dynamic cloud computing

Amazon DynamoDB

- A NoSQL database service,
- Automatic data replication over three zones
- Designed for massive scalability
- DynamoDB delivers highly predictable performance

Amazon S3

- An online storage service
- Durability, availability and scalability
- Comprehensive security and compliance capability
- Flexible management, easy data transfer

EC2

Ubuntu 16.04-amd64-server

t2.micro

Dynamodb

Twitter Schema

```
"user_id": "andy",
"datetime": "051002" // MONTH/DAY/HOUR
"tweets":[
      "category":"0",
      "created_at": "Thu May 10 02:45:02 +0000 2018",
      "favorate_count": "3",
      "quote_count": "6",
      "reply_count":"2",
      "retweet_count":"10",
      "screenNanme": "The Wall Street Journal",
      "text": "David Mayman has helped make sci-fi a
      "tweet id": "994407939959148546"
    },
  1 <!--END OF TWEET LIST-->
} <!--END OF USER LISt-->
```


S3

Bucket: cc-project-s3

Folder: user_id / time_category

- World
- Sports
- Business
- Sci/Tech
- 300,000 Training set
- 100,000 Testing set

• Precision: 92%

• Recall: 91%

Further Improvement:

Use Tensorflow Serving as a constant running service.

Deployment on AWS EC2

- 1. Setup EC2 on AWS
- 2. Connect to EC2

Code sample for flask deployment

```
from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():
    return 'Hello, World!'

if __name__ == "__main__":
    app.run(host="0.0.0.0", port=80)
```

