1 パッキングレングスとは?

1.1 当初の定義

パッキングレングスは、以下のように定義される*1。

$$p = \frac{M}{\langle R^2 \rangle_0 \rho N_a} \tag{1}$$

ここで、M はポリマー鎖の分子量、 $\langle R^2 \rangle_0$ はシータ状態での平均自乗末端間距離、 ρ は密度、 N_a はアボガドロ数である。なお、この定義の意味は一本のポリマー鎖が占有する体積 $\frac{M}{\rho N_a}$ を $\langle R^2 \rangle_0$ で除したものとされているが、物理的な直感に結びつけるのは困難である。

1.2 Fetters らのアプローチ

この p というパラメタの意味について考えてみよう。 式 (1) は、Flory の特性比 C_{∞} *2により、

$$p = \frac{M}{\langle R^2 \rangle_0 \rho N_a}$$

$$= \frac{M}{C_{\infty} n b^2 \rho N_a}$$

$$= \frac{m_b}{C_{\infty} b^2 \rho N_a}$$

ここで、ポリマー鎖を形成するモノマー1個の体積 V_b を以下のように見積もると、

$$V_b = \frac{n}{\rho N_a}$$

ポリマー鎖中の繰り返しユニットの直径に対応すると考えられる。

^{*1} Witten, T.A.; Milner, S.T.; Wang, Z.-G. in Multiphase Macromolecular Systems; Culbertson, B.M., Ed.; Plenum: New York, 1989.

 $^{^{*2}}$ 特性費の定義は、 $C_\infty=rac{\langle R^2
angle_0}{nb^2}$ であり、ここでの n,b はモノマーユニットの数とその長さ(経路長を n で割ったもの)を表す。