19 Continuity

20 Continuity II

Continuous Functions

Continuity 3/21

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 18 Continuity Monday 25 February 2019

Announcements

- A preliminary version of Assignment 4 has been posted on the course web site. More problems will be added soon.
 Due Friday 8 March 2019 at 1:25pm via crowdmark.
 BUT you should do it before Test #1.
- Math 3A03 Test #1 Monday 4 March 2019 at 7:00pm in MDCL 1110 (room is booked for 90 minutes; you should not feel rushed)

Limits of functions

Definition (Limit of a function on an interval (a, b))

Let $a < x_0 < b$ and $f : (a, b) \to \mathbb{R}$. Then f is said to approach the limit L as x approaches x_0 , often written " $f(x) \to L$ as $x \to x_0$ " or

$$\lim_{x\to x_0} f(x) = L,$$

iff for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $0 < |x - x_0| < \delta$ then $|f(x) - L| < \varepsilon$.

Shorthand version:

$$\forall \varepsilon > 0 \,\, \exists \delta > 0 \,\,) \,\, 0 < |x - x_0| < \delta \,\, \Longrightarrow \,\, |f(x) - L| < \varepsilon.$$

The function f need not be defined on an entire interval. It is enough for f to be defined on a set with at least one accumulation point.

Continuity

Definition (Limit of a function with domain $E \subseteq \mathbb{R}$)

Let $E \subseteq \mathbb{R}$ and $f : E \to \mathbb{R}$. Suppose x_0 is a point of accumulation of E. Then f is said to approach the limit L as x approaches x_0 , *i.e.*,

$$\lim_{x\to x_0}f(x)=L\,,$$

iff for all $\varepsilon > 0$ there exists $\delta > 0$ such that if $x \in E$, $x \neq x_0$, and $|x - x_0| < \delta$ then $|f(x) - L| < \varepsilon$.

Shorthand version:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \) \ \left(x \in E \ \land \ 0 < |x - x_0| < \delta \right) \implies |f(x) - L| < \varepsilon.$$

Example

Prove directly from the definition of a limit that

$$\lim_{x\to 3}(2x+1)=7.$$

(solution on board)

Proof that $2x + 1 \rightarrow 7$ as $x \rightarrow 3$.

We must show that $\forall \varepsilon > 0 \ \exists \delta > 0$ such that $0 < |x-3| < \delta \implies |(2x+1)-7| < \varepsilon$. Given ε , to determine how to choose δ , note that

$$|(2x+1)-7|<\varepsilon\iff |2x-6|<\varepsilon\iff 2|x-3|<\varepsilon\iff |x-3|<\frac{\varepsilon}{2}$$

Therefore, given $\varepsilon > 0$, let $\delta = \frac{\varepsilon}{2}$. Then $|x - 3| < \delta \implies |(2x + 1) - 7| = |2x - 6| = 2|x - 3| < 2\frac{\varepsilon}{2} = \varepsilon$, as required.

Example

Prove directly from the definition of a limit that

$$\lim_{x\to 2} x^2 = 4.$$

(solution on board)

(and on next slide)

Limits of functions

Proof that $x^2 \rightarrow 4$ as $x \rightarrow 2$.

We must show that $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{such that} \; 0 < |x-2| < \delta \implies$ $|x^2-4|<arepsilon$. Given arepsilon, to determine how to choose δ , note that

$$|x^2-4|<\varepsilon\iff |(x-2)(x+2)|<\varepsilon\iff |x-2||x+2|<\varepsilon.$$

We can make |x-2| as small as we like by choosing δ sufficiently small. Moreover, if x is close to 2 then x + 2 will be close to 4, so we should be able to ensure that |x+2| < 5. To see how, note that

$$|x+2| < 5 \iff -5 < x+2 < 5 \iff -9 < x-2 < 1$$

 $\iff -1 < x-2 < 1 \iff |x-2| < 1.$

Therefore, given $\varepsilon > 0$, let $\delta = \min(1, \frac{\varepsilon}{5})$. Then $|x^2-4| = |(x-2)(x+2)| = |x-2||x+2| < \frac{\varepsilon}{5}5 = \varepsilon.$ Continuity II 11/21

Mathematics and Statistics

$$\int_{M} d\omega = \int_{\partial M} \omega$$

Mathematics 3A03 Real Analysis I

Instructor: David Earn

Lecture 19 Continuity II Wednesday 27 February 2019 ■ A preliminary version of Assignment 4 has been posted on the course web site. More problems will be added soon. Due Friday 8 March 2019 at 1:25pm via crowdmark. BUT you should do it before Test #1.

- Math 3A03 Test #1 Monday 4 March 2019 at 7:00pm in MDCL 1110 (room is booked for 90 minutes; you should not feel rushed)
 - Test will cover everything up to the end of the topology section.
- Niky Hristov will hold extra office hours this Friday 1 March 2019, 11:30am-12:30pm and immediately before class on the day of the test, *i.e.*, Monday 4 March 2019, 10:30–11:30am.
- Solutions to $\lim_{x\to 3}(2x+1)=7$ and $\lim_{x\to 2}x^2=4$ are now in the slides for the previous lecture.

Limits of functions

Rather than the ε - δ definition, we can exploit our experience with sequences to define " $f(x) \to L$ as $x \to x_0$ ".

Definition (Limit of a function via sequences)

Let $E \subseteq \mathbb{R}$ and $f : E \to \mathbb{R}$. Suppose x_0 is a point of accumulation of E. Then

$$\lim_{x\to x_0} f(x) = L$$

iff for every sequence $\{e_n\}$ of points in $E \setminus \{x_0\}$,

$$\lim_{n\to\infty}e_n=x_0\quad \implies\quad \lim_{n\to\infty}f(e_n)=L\,.$$

Limits of functions

Lemma (Equivalence of limit definitions)

The ε - δ definition of limits and the sequence definition of limits are equivalent.

(solution on board)

Note: The definition of a limit via sequences is sometimes easier to use than the ε - δ definition.

Proof $(\varepsilon - \delta) \Longrightarrow \underline{\text{seq}}$.

Suppose the ε - δ definition holds and $\{e_n\}$ is a sequence in $E\setminus\{x_0\}$ that converges to x_0 . Given $\varepsilon>0$, there exists $\delta>0$ such that if $0<|x-x_0|<\delta$ then $|f(x)-L|<\varepsilon$. But since $e_n\to x_0$, given $\delta>0$, there exists $N\in\mathbb{N}$ such that, for all $n\geq N$, $|e_n-x_0|<\delta$. This means that if $n\geq N$ then $x=e_n$ satisfies $0<|x-x_0|<\delta$, implying that we can put $x=e_n$ in the statement $|f(x)-L|<\varepsilon$. Hence, for all $n\geq N$, $|f(e_n)-L|<\varepsilon$. Thus,

$$e_n \to x_0 \implies f(e_n) \to L$$

as required.

Proof of Equivalence of ε - δ definition and sequence definition of limit.

Proof (seq $\Longrightarrow \varepsilon - \delta$) via contrapositive.

Suppose that as $x \to x_0$, $f(x) \not\to L$ according to the ε - δ definition. We must show that $f(x) \not\to L$ according to the sequence definition.

Since the ε - δ criterion does <u>not</u> hold, $\exists \varepsilon > 0$ such that $\forall \delta > 0$ there is some $x_\delta \in E$ for which $0 < |x_\delta - x_0| < \delta$ and yet $|f(x_\delta) - L| \ge \varepsilon$. This is true, in particular, for $\delta = 1/n$, where n is any natural number. Thus, $\exists \varepsilon > 0$ such that: $\forall n \in \mathbb{N}$, there exists $x_n \in E$ such that $0 < |x_n - x_0| < 1/n$ and yet $|f(x_n) - L| \ge \varepsilon$. This demonstrates that there is a sequence $\{x_n\}$ in $E \setminus \{x_0\}$ for which $x_n \to x_0$ and yet $f(x_n) \not\to L$. Hence, $f(x) \not\to L$ as $x \to x_0$ according to the sequence criterion, as required.

One-sided limits

Definition (Right-Hand Limit)

Let $f: E \to \mathbb{R}$ be a function with domain E and suppose that x_0 is a point of accumulation of $E \cap (x_0, \infty)$. Then we write

$$\lim_{x \to x_0^+} f(x) = L$$

if for every $\varepsilon>0$ there is a $\delta>0$ so that

$$|f(x) - L| < \varepsilon$$

whenever $x_0 < x < x_0 + \delta$ and $x \in E$.

One-sided limits

One-sided limits can also be expressed in terms of sequence convergence.

Definition (Right-Hand Limit – sequence version)

Let $f: E \to \mathbb{R}$ be a function with domain E and suppose that x_0 is a point of accumulation of $E \cap (x_0, \infty)$. Then we write

$$\lim_{x\to x_0^+}f(x)=L$$

if for every decreasing sequence $\{e_n\}$ of points of E with $e_n > x_0$ and $e_n \to x_0$ as $n \to \infty$,

$$\lim_{n\to\infty}f(e_n)=L.$$

Infinite limits

Definition (Right-Hand Infinite Limit)

Let $f: E \to \mathbb{R}$ be a function with domain E and suppose that x_0 is a point of accumulation of $E \cap (x_0, \infty)$. Then we write

$$\lim_{x\to x_0^+} f(x) = \infty$$

if for every M>0 there is a $\delta>0$ such that $f(x)\geq M$ whenever $x_0< x< x_0+\delta$ and $x\in E$.

Properties of limits

There are theorems for limits of functions of a real variable that correspond (and have similar proofs) to the various results we proved for limits of sequences:

- Uniqueness of limits
- Algebra of limits
- Order properties of limits
- Limits of absolute values
- Limits of Max/Min

See Chapter 5 of textbook for details.