HoloLights

色覺辨識障礙輔助應用

SA212345 陳聿薇 沈沁蓁 蔡屏萱 朱紜彤 洪語衡

Table of contents

- 01 專案動機
- 02 功能
- 03 系統Demo
- 04 受測者回饋及成效

HoloLights: 動機

世界上約有3.5億人患有色覺辨識障礙

系統功能:色覺障礙評估系統

系統功能: 色彩辨識輔助

系統實際操作畫面

疊加紅色弱濾鏡後畫面

綠色弱

藍黃色弱

系統功能:物件辨識模組

系統實際操作畫面

部分區域 (物件辨識)

全視野矯正

系統功能:文字提示框

系統實際操作畫面

顯示當前主要色彩名稱

以廣用試劑爲例:綠→反應完成

系統Demo

HoloLights

色覺辨識障礙輔助應用

	紅色弱	綠色弱	藍黃色弱
[模擬] 色弱使用者視野			
[模擬] 經本系統矯正後 色弱使用者視野	Reservity Roses	Del Rio	

實驗使用者反饋

*紅綠色盲數據

*藍黃色盲數據

	色覺障礙類型	矯正前後 紅綠與藍黃 測驗答對率變化 0 100%	濾鏡使用感想
受測者1	重度 綠色弱 中度 藍黃色弱	19% → 38% 60% → 80%	紅綠色差異變明顯 顏色具立體感
受測者2	重度 紅色弱	22%> 44%	紅綠色差異變明顯
受測者3	重度 綠色弱 中度 藍黃色弱	40% → 63% 70% → 80%	無感受到明顯變化
受測者4	重度 紅色弱 中度 藍黃色弱	60% → 75% 50% > 60 %	紅綠色差異變明顯顏

HoloLights,

color your sight.

Q&A pages#

01. Colorblind

- 矯正依據23
- 測驗依據24
- 色覺偏差25

02. Hololens 2

- 現有色弱工具比較26
- 其他穿戴裝置比較27
- 模型訓練28
- 系統架構20

03. Testing

- 測試情形full2
- 測試流程圖30

04. Business

- 擴增場域圖片31
- 技術發展21
- 商業模式22

系統特色

彈性調整矯色程度 未依使用者色覺障礙程度調整 i 識別顏色變化實驗場域 須手持裝置進行 混合實境HoloLens 2 光源限制 文字提示框輔助 Aa 色碼提示不直觀 套用物件辨識模組

特色:彈性調整矯色程度

市面上現有的色弱矯正眼鏡/APP 無法根據不同使用者選擇不同濾鏡

依色覺障礙類型與程度調整

特色:以化學實驗爲主要情境

常見的化學實驗多以顏色變化判斷 例如:酸鹼滴定等

使用者能夠感知到顏色變化

特色:結合混合實境HoloLens 2

實驗需要雙手操作 矯正眼境有光源限制

提升機動性、擴增可用範圍

特色:輔以文字提示框

市面上現有的APP所提供的 色碼提示不直觀

Aa

偵測色彩變化、顯示對應實驗意義

特色:套用物件識別模組

大面積矯色會出現色彩偏移的情況

針對觀測目標進行矯色 保留對其他色彩的正常感知能力

系統架構

未來展望:技術發展

添加亮度變量 供使用者手動調整

新增更多物件辨識模組

未來展望:商業模式

色彩矯正依據

文獻參考

Gustavo M. Machado, Manuel M. Oliveira, and Leandro A. F. Fernandes

"A Physiologically-based Model for Simulation of Color Vision Deficiency". IEEE

Transactions on Visualization and Computer Graphics. Volume 15 (2009), Number 6,

November/December 2009. pp. 1291-1298.

參考此文獻中提供的模擬矩陣作為矯色基礎,因色覺辨識障 礙者對於顏色判斷的狀況不一,團隊亦實際邀請色覺辨識障 礙者參與系統測試,透過一測、二測的比較,以及訪問其對 於辨識圖卡(如右)的觀看情形判斷濾鏡是否有效;而除了 使用者回饋,團隊也詢問過眼科醫師、驗光師的意見,皆有 正面回饋。

色覺辨識障礙評估依據

文獻參考

Pseudo-Isochromatic Plates to Measure Colour Discrimination

Klára Wenzel, Krisztián Samu, Budapest University of Technology and Economics Department of Mechatronics, Optics and Information Engineering Bertalan L. u. 4-6, 1111 Budapest, Hungary

https://www.colorlitelens.com/color-blindness-test.html#Redgreen

參考由Colorlite色盲矯正眼鏡公司所提供的色覺障礙測驗網站,使用紅綠色盲測驗共32個僞色板(RG-14/P-9/D-9)以及藍黃色盲測驗10個僞色板作爲題庫,除了參考文獻,團隊也寫信到官方信箱詢問專家兩種色弱的判定基準。

避免色覺偏差

現有進行全視野色彩矯正的產品為色盲眼鏡,以較大廠牌的EnChroma為例,產品利用光學矯正 改變色覺障礙者易混淆的色光波長。但是在相關產品的使用者回饋中發現,全視野的矯正也容易 造成色覺傾向偏移,色弱(盲)患者在日常生活中已有一定的辨色經驗,突然進行大範圍的顏色 矯正可能造成認知錯亂及量眩,而無法長時間配載。

現有辨識輔助工具比較

	穿戴式色盲眼鏡	辨色協助APP	ColorADD	HoloLights
色彩矯正模式	光學矯色 提升顏色對比度	部分提供重新上色 (替代特殊色系)	無	經模擬矩陣運算 提升顏色對比度
是否依使用者色覺 障礙模式調整	單一度數 僅少數提供	否	否	多種模式 依使用者需求選擇
文字提示類型	無	色碼、通用名稱	特殊代號、 色碼、通用名稱	通用名稱
光源限制	僅支援自然光	無限制	無限制	無限制
是否「免手持」	是	否	是	是

其他穿戴式裝置比較

	Meta Quest 3	Apple Vision pro	HoloLens 2
延展實境類型	虛擬實境(VR)	虚擬實境(VR)	混合實境(MR)
定價	529.99美金	3499美金	3500美金
電池續航力	1.5-2小時	約2小時	2-3小時
應用程式	部分遊戲、社交軟體、 影音、生產力工具	僅iOS支援之應用程式	影音、生產力工具、 可自行開發擴充功能
裝置強調特質	沉浸式遊戲體驗	優質影音體驗	手勢/場景的辨識、 混合實境遠端協作功能

模型訓練

使用Ultralytics的YOLOv8訓練自訂模型,mAP50=0.995。

使用者測試情形

紅綠色盲測驗包含 RG-14個板 ••

P-9個板 ••

9個板 💿

藍黃色盲測驗包含 T-10個板 ●●

	原色覺障礙類型	系統套用濾鏡	畫面經矯正後結果	濾鏡使用感想
受測者1	Severe綠色弱 Moderate藍黃色弱	緑色 藍黃色	RG+3/P+1/D+2 T+2	紅綠色差異變明顯、彩度增加 部分顏色有明顯浮出、具立體感
受測者2	Severe紅色弱	紅色	RG+5/P+1/D+1	紅綠色差異變明顯、彩度增加
受測者3	Severe綠色弱 Moderate藍黃色弱	線色 藍黃色	RG+2/P+3/D+1 T+1	無感受到明顯變化
受測者4	Moderate紅色弱 Moderate藍黃色弱	紅色 藍黃色	RG+1/P+0/D+3 T+1	紅綠色差異變明顯、彩度增加 部分顏色有明顯浮出、具立體感

系統測試流程

●使用者初次進行 色覺障礙評估 ② 使用者觀看圖卡 並詢問其物體辨識情形

3 配戴HoloLens 2

④ 使用者透過矯正濾鏡 進行二次測驗 母使用者再次觀看圖卡並詢問其視覺所見差異

使用情境:複雜圖像識別

在教育機構或研究機構、政府單位,色覺辨認障礙者可能遇到複雜圖像使用顏色作為特殊意義, 卻因為某些色系混淆無法正確辨識,且同時須使用紙筆或雲端系統紀錄,若另外手持裝置套用應 用程式可能造成作業不便。

▲ 地政司地籍圖