令和2年度	修士論文概要		
		片山・金研究室	佐藤 僚祐
		No. 31414050	Ryosuke Sato

1 はじめに

が知られている.

分散グラフアルゴリズムとは、計算機を頂点、辺を通信リ ンクとみなしてネットワークをモデル化したグラフ上にお いて、そのネットワーク自身を入力として様々な問題を解く 枠組みである.分散アルゴリズムにおける代表的なモデルの ひとつとして CONGEST モデルが存在する.CONGEST モ デルにおいて、各ノードは同期して同じアルゴリズムを実行 して入力グラフ上の問題を解決する.各ノードは各ラウンド で (i)b ビットのメッセージを近傍に送信し,(ii) 近傍からメッ セージを受信し、(iii) 内部計算を行う. 一般に, $b = O(\log n)$ を想定する.CONGEST モデルにおける組み合わせ最適化 問題を考えるにあたり、ある1つの頂点にグラフ全体のト ポロジの情報を集め、その頂点でアルゴリズムを実行する というアプローチでは自明に $\Omega(n^2)$ ラウンドの実行時間 を必要とする.(?) これは CONGEST モデルにおいて通信 リンクの帯域幅が制限されていることによるものであり、 このアプローチを用いずに各ノードが協力して問題を解く アルゴリズムを構成できるかに興味がもたれている. 組み合わせ最適化問題の一つである最大独立集合の分散ア ルゴリズムに対する多くの研究がされている. 各頂点が隣 接していない頂点部分集合を独立集合といい,最大独立集 合とは重みなしグラフにおいては頂点数が最も多い独立集 合,重み付きグラフにおいては合計重みが最も大きい独立集 合である. 頂点の最大次数を Δ としたとき、最大重み付き独 立集合の $(1+\varepsilon)\cdot\Delta$ -近似を高確率で見つける $(\frac{poly(\log\log n)}{c})$

ラウンドアルゴリズムや, 最大独立集合の $(\frac{1}{2}+\varepsilon)$ -近似を見つけるアルゴリズムに対する $\Omega(\frac{n}{(\log n)^3})$ ラウンドの下限