| Oubits: | /0>,  1>                          | instead of 45, (->                                   | > for box is of 12                               |                  |
|---------|-----------------------------------|------------------------------------------------------|--------------------------------------------------|------------------|
| Errors: | 10>-b 11<br>14>-b 10>             |                                                      | Max                                              |                  |
|         | 10> -> 10<br>1> -> -              |                                                      | nor                                              |                  |
|         | 10>,14>-                          | L U107, U112 M                                       | nitary continuous errors                         |                  |
|         | Error Correction                  |                                                      |                                                  |                  |
| •       | itition code<br>1970 Mariner Prob | e going to Mars -                                    | greyscale pictura                                |                  |
|         |                                   | rey -> 100 (                                         |                                                  |                  |
|         | A bits -> 12                      | bits, convert 1 emor                                 |                                                  | 1 Wins           |
| Hamm    | ing Code                          |                                                      |                                                  |                  |
|         | 4 bits - > 7  #2 - Field w        | bits correctury 2 elements                           | 1-bit errors                                     |                  |
|         | addition mod                      |                                                      |                                                  |                  |
|         |                                   | D * D= D<br>D * 1= (* 0=0<br>) * (=0                 |                                                  |                  |
|         | Fin - veetar sp.                  | ale over #2 relenents                                | $(x_1, x_2, \dots, x_n)$ $x_i \in$               | = F <sub>2</sub> |
|         |                                   | (0,0),(1,0,                                          |                                                  |                  |
| codes   | : A binary,                       | linear code C of le<br>subspace of F2 <sup>n</sup> o | Pereth in and rank K, In, K1, of dimension k: 2k | <i>I</i> 5       |

| To expense $(Q,Q)$ , $(1,Q)(Q,Q)$ , $(1,1)$ $E=7$ $(Q,Q)$ , $(1,1)^3$ - Answ subspace of $15^2$ 2 vectors $1=2$ expenses $1=1$ work vector $(1,1)=1$ work $1=1$ wor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |      |              |          |        | U        | υ,          | , u      | V2        | ł E              | 2          |               |            | ω, · | ŧω    | 2 t        | e e     |            |      |     |     |      |              |    |    |      |          |          |     |     |      |   |    |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|--------------|----------|--------|----------|-------------|----------|-----------|------------------|------------|---------------|------------|------|-------|------------|---------|------------|------|-----|-----|------|--------------|----|----|------|----------|----------|-----|-----|------|---|----|---|
| $E=\overline{z} \ (0,0), \ (1,1)\overline{s} - hour subspace of the 2 2 vectors$ $N=2                                    $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | F    | 2            |          | W      | /ele     | ene         | nk       | 5         |                  |            |               | (0         | ى رە | >)    | , (        | 1,0     | ه) ( (     | اد   | ),  | (Ι, | ١)   |              |    |    |      |          |          |     |     |      |   |    |   |
| M=2 compacts $V=1$ basis verbs $V=1$ basis verbs $V=1$ basis of $V=1$ $V=1$ basis of $V=1$ $V=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | ,    |              |          |        |          |             |          |           |                  |            |               |            |      |       |            |         |            |      |     |     |      |              | -2 |    | 0    | /        |          | •   |     |      |   |    |   |
| Comming code  (1,1) + (1,1) = (0,0)  Howming code  This, $+$ basis $-$ o $+$ T, $+$ Dinary linear code  Four basis diffs: $(x, x_2, x_3, x_4)$ some data $+$ encode  Lodeword: $(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ $X = (x_1, x_2, x_3, x_4, x_6, x_7, x_7, x_7, x_7, x_7, x_7, x_7, x_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |      |              | e        | -2     | (1       | 0,          | 0)       | ),        | (                | ا, ا<br>ا  | ) \$          |            | 1    | J.C.  | nea        | · .     | SVB        | zge. | rce | Ø^  | 4    |              | 2  |    | Z    | ν        | LC !     | 35  |     |      |   |    |   |
| Comming code  (1,1) + (1,1) = (0,0)  Howming code  This, $+$ basis $-$ o $+$ T, $+$ Dinary linear code  Four basis diffs: $(x, x_2, x_3, x_4)$ some data $+$ encode  Lodeword: $(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ $X = (x_1, x_2, x_3, x_4, x_6, x_7, x_7, x_7, x_7, x_7, x_7, x_7, x_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |      | n=2          | _ (      | יזייני | onle     | <i>*</i> t5 |          |           |                  | $T_l$      | ba            | 1512       | > V  | ec po | 5          |         |            |      |     |     |      |              |    |    |      |          |          |     |     |      |   |    |   |
| Hamming code  Thits, 4 bass -0 [T, 4] Divary linear code  Four basis Dits: $(x, x_2, x_3, x_4)$ some obtaint - encode  Lodeword: $(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ $X_5 = X_1 + x_2 + x_4$ and $X_7 = X_1 + X_3 + x_4$ and $X_7 = X_2 + X_3 + x_4$ and $X_7 = X_3 + X_4$ and $X_7 = X_3 + X_4$ and $X_7 = X_4 + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | )    | 1=           |          | ba     | 3i5 1    | rea         | bs       |           |                  |            |               |            |      |       |            |         |            |      |     |     |      |              |    |    |      |          |          |     |     |      |   |    |   |
| Hamming code  Thits, 4 bass -0 [T, 4] Divary linear code  Four basis dits: $(x, x_2, x_3, x_4)$ some obtaint to encode  Lodeword: $(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ $X_5 = X_1 + x_2 + x_4$ uncel 2 $X_7 = X_1 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_2 + x_3 + x_4$ uncel 2 $X_7 = X_7 + x_3 + x_4$ uncel 2 $X_7 = X_7 + x_3 + x_4$ uncel 2 $X_7 = X_7 + x_4 + x_4$ uncel 2 $X_7 = X_7 + x_4 + x_4$ uncel 2 $X_7 = X_7 + x_4 + x_4$ uncel 2 $X_7 = X_7 + x_4 + x_4$ uncel 2 $X_7 = X_7 + x_4 + x_4$ uncel 2 $X_7 = X_7 + x_4 + x_4$ uncel 2 $X_7 = X_7 + x_4 + x_4$ uncel 2 $X_7 = X_7 + x_4 + x_4$ unce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |      |              |          | (1     | 11       | عر          | 3        | h         | en :?            |            | Q             | <b>1</b> 0 |      |       |            |         |            |      |     | 1   | ۱    | <u>ح</u> ، ح |    |    | وسر  | 7 1      | 7        |     | ما  |      |   |    |   |
| Homming code  Thits, I was -o ET, II Dinary linear code  Four basis bits: $(x_1, x_2, x_3, x_4)$ some data to encode  Lodeword: $(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ $X = (x_1, x_2 + x_4)$ and $(x_1, x_2, x_3, x_4)$ $X = (x_1, x_2 + x_4)$ and $(x_1, x_2, x_3, x_4)$ $X = (x_1, x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |      |              |          |        |          |             |          | EU        | 3/2              | ्य         |               | C.         |      |       |            |         |            |      |     |     | , Wi | ) l          | 0  |    |      | י נ      | _        | 00  |     |      |   |    |   |
| Four basis Dits: $(x, x_2, x_3, x_4)$ Some both to encade  Codeword: $(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ $ x_5 = x_1 + x_2 + x_4  \text{mod } 2 $ $ x_7 = x_2 + x_3 + x_4  \text{mod } 2 $ $ x_7 = x_2 + x_3 + x_4  \text{mod } 2 $ $ x_7 = (x_1, x_2,, x_7) $ $ d = (x_1, x_2, x_3, x_4) $ $ W = dG $ $ \psi = dG$ |               |      |              |          | (      | 1,       | 1)          | +        | - (       | 1, (             | ) =        | - (           | 0          | , D  | )     |            |         |            |      |     |     |      |              |    |    |      |          |          |     |     |      |   |    |   |
| Four basis Dits: $(x, x_2, x_3, x_4)$ Some both to encade  Codeword: $(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ $ x_5 = x_1 + x_2 + x_4  \text{mod } 2 $ $ x_7 = x_2 + x_3 + x_4  \text{mod } 2 $ $ x_7 = x_2 + x_3 + x_4  \text{mod } 2 $ $ x_7 = (x_1, x_2,, x_7) $ $ d = (x_1, x_2, x_3, x_4) $ $ W = dG $ $ \psi = dG$ |               |      |              |          |        |          |             |          |           |                  |            |               |            |      |       |            |         |            |      |     |     |      |              |    |    |      |          |          |     |     |      |   |    |   |
| Four basis Dits: $(x, x_2, x_3, x_4)$ Some both to encade  Codeword: $(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ $ x_5 = x_1 + x_2 + x_4  \text{mod } 2 $ $ x_7 = x_2 + x_3 + x_4  \text{mod } 2 $ $ x_7 = x_2 + x_3 + x_4  \text{mod } 2 $ $ x_7 = (x_1, x_2,, x_7) $ $ d = (x_1, x_2, x_3, x_4) $ $ W = dG $ $ \psi = dG$ | Hamn          | nina | 1 C          | da       | 2      |          |             |          |           |                  |            |               |            |      |       |            |         |            |      |     |     |      |              |    |    |      |          |          |     |     |      |   |    |   |
| Four logs: $0its: (x_1, x_2, x_3, x_4)$ some data to encode  (odeword: $(x_1, x_2, x_3, x_4, x_5, x_6, x_7)$ $X \le X = X + x_2 + x_4 $ uned $X = X = X + X + X + X + X + X + X + X + $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ,             | L    |              |          |        | ,        |             |          | ,         |                  |            |               | 7          |      | 21 ~  | 1          |         |            |      |     |     | Λ    |              |    |    |      |          |          |     |     |      |   |    |   |
| Lodeword: $(x_1, X_2, X_3, x_4, x_5, x_6, x_7)$ $X = X, + X_2 + X_4  \text{mod } 2$ $X = X_1 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_7 + X_7 $                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |      |              | 7        | bit    | 3,       | 4           |          | b         | uns              | _          | <b>D</b>      | L          | -l,  | 4.    | ļ          |         | , <b>P</b> | ine  | ary | V   | line | ear          |    | ĐĐ | '€   |          |          |     | +   |      |   |    |   |
| Lodeword: $(x_1, X_2, X_3, x_4, x_5, x_6, x_7)$ $X = X, + X_2 + X_4  \text{mod } 2$ $X = X_1 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_7 + X_7 $                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |      |              |          |        |          |             |          |           |                  |            |               |            |      |       |            |         |            |      |     |     |      |              |    |    |      |          |          |     |     |      |   |    |   |
| Lodeword: $(x_1, X_2, X_3, x_4, x_5, x_6, x_7)$ $X = X, + X_2 + X_4  \text{mod } 2$ $X = X_1 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_2 + X_3 + X_4  \text{mod } 2$ $X_7 = X_7 + X_7 $                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | Fe   | w            |          | ba:    | SiS      | (           | bi f     | اج :<br>ح |                  | ( x        | لارا          | 2,         | X3.  | , X.  | 1)         |         |            |      |     | 5   | 30 W | 10           | di | ak | 1.   | 2        | onc      | ode | 2   |      |   |    |   |
| $X = X_1 + X_2 + X_4 \qquad \text{mod } 2$ $X = X_1 + X_3 + X_4 \qquad \text{mod } 2$ $X_7 = X_2 + X_3 + X_4 \qquad \text{mod } 2$ $W = (X_1, X_2,, X_7)$ $d = (X_1, X_2, X_3, X_4)$ $W = dG$ $Vow  \text{vector}  (X_1,, X_8)$ $G = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$ $Vow  \text{vector}  (X_1,, X_8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |      |              |          |        |          |             |          |           |                  |            |               |            |      |       |            |         |            |      |     | +   |      |              |    |    |      |          |          |     |     |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | CE   | <i>+€</i> \€ | m        | iva    | -        |             |          | ()        | ^1,              | 12         | , ×3,         | , , , 4    | 115  | ×6    | <u>X</u> - | 7)      |            |      |     |     |      |              |    |    |      |          |          |     |     |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |      |              |          |        |          |             |          |           |                  |            |               |            |      |       |            |         |            |      |     |     |      |              |    |    |      |          |          |     |     |      |   |    |   |
| $W = (x_1, x_2,, x_7)$ $d = (x_1, x_2, x_3, x_4)$ $W = dG$ $V = dG$ $V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |      | X            | 5        | =      | χ<br>ν   | ( 1         | 1/2      | 2 f.<br>+ | X4<br>X s        |            | ν             | noc        | 12   |       |            |         |            |      |     | +   |      |              |    |    |      |          |          |     |     |      |   |    |   |
| $W = \begin{pmatrix} x_1, x_2,, x_7 \end{pmatrix}$ $d = \begin{pmatrix} x_1, x_2, x_3, x_4 \end{pmatrix}$ $W = dG$ $V = dG$                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |      | Х<br>У-      | <i>6</i> | E      | x:       | 2 +         | ^3<br>Уз | +>        | (4<br>(4         |            | ν<br>ν        | nod        | 2    |       |            |         |            |      |     |     |      |              |    |    |      |          |          |     |     |      |   |    |   |
| $W = dG$ $G = \begin{cases} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |      | ,,           |          |        |          |             |          |           |                  |            |               |            |      |       |            |         |            |      |     |     |      |              |    |    |      |          |          |     |     |      |   |    |   |
| $W = dG$ $G = \begin{cases} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |      |              |          |        |          |             |          |           |                  |            |               |            |      |       |            |         |            |      |     | +   |      |              |    |    |      |          |          |     |     |      |   |    |   |
| W = dG $U = dG$ $V = dG$ $V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Λ             | J =  | (            | / x      |        | X2.      |             | <u></u>  | X7        | .)               |            |               |            |      |       |            |         |            |      |     |     |      |              |    |    |      |          |          |     |     |      |   |    |   |
| ses w= Gd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d             | L =  | ζ,           | X١       | , )    | ر<br>2 , | Χz          | ,        | y ą       | - )              |            |               |            |      |       |            |         |            |      |     | 1   |      |              |    |    |      |          |          |     |     |      |   |    |   |
| ses w= Gd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |      |              |          |        |          |             |          |           |                  |            |               |            |      |       |            |         |            | 1    |     | 2   | 0    | 0            | ,  | 1  | 0    | \        |          |     |     |      |   |    |   |
| ses w= Gd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | W             | =    | d            | G        |        |          |             |          |           |                  |            |               |            |      |       |            | <u></u> |            | D    |     | 1   | 0    | 0            | 1  | 0  | (    |          |          |     |     |      |   |    |   |
| ses w= Gd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |      | 1            |          |        |          |             | 1        |           |                  |            |               | ١          |      |       |            | -( `    |            | 0    |     | D   | l    | 0            | 0  | 1  | 1    |          |          |     |     |      |   |    |   |
| ses w= Gd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |      | _            | NO       | w      | Vt       | e c-        | tov      |           | ( × <sub>l</sub> | , 1,       | , <b>&gt;</b> | 4)         |      |       |            |         | +          | 0    | (   | ) C | 7    | 1            | 1  | 1  | ا    | 1<br>est | i no     | ٥٠. | Li. |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |      |              |          |        |          |             |          |           |                  |            |               |            |      |       |            |         |            |      |     |     |      |              |    |    | 17.7 |          |          | S W | es  | w:   | 2 | GT | d |
| Claim: Hamming Code can platest 2 bit error \$1 correct 1 bit error in length 7 word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A [           |      |              | <i>(</i> |        |          |             | 0        |           |                  |            | 1             | 1 1        |      |       | )          | 1       |            |      | 1   |     |      |              | ı  |    |      |          |          |     |     |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> Clair</u> | n!   | H            | law      | miv    | y i      | Coo         | le       |           | CA               | <i>3</i> 1 | b             | etee       | 4    | 2     | bir        | + e     | ver        | * *  | 1 4 | SV  | re   | <u>c</u> t   | /  | bi | + e  | mg       | <b>'</b> | m   | M   | ig H | 7 | WO | d |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |      |              |          |        |          |             |          |           |                  |            |               |            |      |       |            |         |            |      |     |     |      |              |    |    |      |          |          |     |     |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |      |              |          |        |          |             |          |           |                  |            |               |            |      |       |            |         |            |      |     | 1   |      |              |    |    |      |          |          |     |     |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |      |              |          |        |          |             |          |           |                  |            |               |            |      |       |            |         |            |      |     | +   |      |              |    |    |      |          |          |     |     |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |      |              |          |        |          |             |          |           |                  |            |               |            |      |       |            |         |            |      |     |     |      |              |    |    |      |          |          |     |     |      |   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |      |              |          |        |          |             |          |           |                  |            |               |            |      |       |            |         |            |      |     |     |      |              |    |    |      |          |          |     |     |      |   |    |   |



