UNIVERSIDAD DE GUADALAJARA

CENTRO UNIVERSITARIO DE CIENCIAS EXACTAS E INGENIERÍAS

Sistemas Inteligentes IV

Actividad 7. Algoritmos de agrupamiento

Pacheco Quintero Marco Antonio 213535019

10 de mayo de 2021

Semestre 2021A

Sección D01

Objetivo

Realizar un programa en Python para aplicar algoritmos de agrupamiento a los datos de los archivos adjuntos. Utilizar las herramientas de sklearn para el modelo de agrupación. Utiliza los siguientes algoritmos:

- KMeans
- Affinity Propagation
- Mean Shift
- Spectral Clustering
- Agglomerative Clustering

- DBSCAN
- OPTICS
- Gaussian Mixture
- Birch

Resultados

Para el archivo adjunto "df_agrupacion_1.cvs" se muestran los resultados obtenidos para cada algoritmo de agrupamiento.

KMeans

Spectral Clustering

OPTICS

Score=1.0

• Gaussian Mixture

Para el archivo adjunto "df_agrupacion_2.cvs" se muestran los resultados obtenidos para cada algoritmo de agrupamiento.

KMeans

Score = 0.3033

• Spectral Clustering

Score = 1.0

Score = 1.0

Score = 1.0

OPTICS

Score = 1.0

Gaussian Mixture

Score = 0.5116

Para el archivo adjunto "df_agrupacion_3.cvs" se muestran los resultados obtenidos para cada algoritmo de agrupamiento.

KMeans

$$Score = 1.0$$

Score = 1.0

• Spectral Clustering

Score = 1.0

Score = 1.0

Score = 1.0

OPTICS

Score = 1.0

Gaussian Mixture

Score = 1.0

Para el archivo adjunto "df_agrupacion_4.cvs" se muestran los resultados obtenidos para cada algoritmo de agrupamiento.

KMeans

Score = 1.0

• Spectral Clustering

Score = 0.0

Score = 0.0

Score=1.0

OPTICS

Score=0.0

• Gaussian Mixture

Score = 0.0

Para el archivo adjunto "df_agrupacion_5.cvs" se muestran los resultados obtenidos para cada algoritmo de agrupamiento.

KMeans

$$Score = 0.4552$$

Score = 0.5375

• Spectral Clustering

Score = 0.7207

Score = 0.5280

Score = 0.9969

OPTICS

Score = 0.9969

Gaussian Mixture

Score = 1.0

Para el archivo adjunto "df_agrupacion_6.cvs" se muestran los resultados obtenidos para cada algoritmo de agrupamiento.

KMeans

$$Score = 0.8022$$

Score = 0.9471

Spectral Clustering

Score = 0.9414

Score = 0.9761

Score = 0.9171

OPTICS

Gaussian Mixture

Score = 0.9761

Conclusión

De entre los algoritmos de agrupación que utilizamos podríamos decir que una mitad fue mejor con casos donde necesitábamos un agrupamiento radial y la otra mitad se desempeño mejor con el resto de ejemplos usados. Para el conjunto de datos 1 y 2, tuvieron mejor desempeño los algoritmos: Spectral Clustering, Agglomerative Clustering, DBSCAN y OPTICS. Mientras que para el conjunto de datos restantes tuvieron mejor desempeño los algoritmos: KMeans, Affinity Propagation, Mean Shift, Gaussian Mixture, Birch. Por otra parte, el algoritmo Affinity Propagation fue el más difícil de configurar en cuanto a sus parámetros.