Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

Claim 1 (canceled).

2 (Previously presented): The method of Claim 12 wherein:

said fixed-point operand is one of at least two fixed-point operands to be used by said instruction; and

said expanding comprises normalization of at least said fixed-point operand if said fixed-point operand has said property of a value different from another value of said property of another operand to be used by said instruction.

3(Previously presented): The method of Claim 12 wherein:

said instruction is to use two operands, with

said fixed-point operand as a first operand, and another fixed-point operand as a second operand; and

said first operand has a property of a first value and the second operand has said property of a second value different from said first value, said expanding comprises normalization of at least one fixed-point operand to have a common value for said property, said common value being one of the first value and the second value.

SILICON VALLEY ATENT CROUP LLP

4(Previously presented): The method of Claim 12 wherein:

the fixed-point result has said value of at least said one property.

5(Previously presented): The method of Claim 12 further comprising:

said computer determining a property value for the fixed-point result, based on said at least one property value of the fixed-point operand, said fixed-point result being displayed to said user based on said property value from said determining.

6(Previously presented): The method of Claim 12 comprising:

said computer determining a property value for the corresponding fixed-point result, based on the instruction that was performed on the fixed-point operand.

7(Previously presented): The method of Claim 12 wherein:

the fixed-point representation includes the value of the fixed-point number in memory in floating-point representation.

8(Previously presented): The method of Claim 12 wherein:

the fixed-point representation includes a value in memory to represent the signedness property.

9(Previously presented): The method of Claim 12 wherein:

STLICON YALLEY

the fixed-point representation includes a value in memory to represent the complexness property.

10(Previously presented): The method of Claim 12 wherein:

the fixed-point representation uses at least two locations in memory to store a precision of the value.

11(Previously presented): The method of Claim 12 wherein:

the fixed-point representation includes a value in memory to represent a scaling factor for the fixed-point number.

12 (Previously presented): In a computer comprising a memory and a floating point unit, a method implemented in a set of instructions executable by said computer, the method comprising:

said computer receiving a program, a portion of said program comprising an operand (hereinafter "fixed-point operand") represented in a fixed-point representation;

wherein said fixed-point operand has at least one property selected from a group consisting of (signedness, precision, complexness);

said computer expanding said fixed-point operand into a floating-point representation to obtain a floating-point equivalent;

said computer storing a precision of the fixed-point operand;

said computer further receiving in said portion an instruction comprising an operation to be performed on the fixed-point operand by a fixed point processor;

\$11.ICON VALLEY

said computer using said floating point unit to perform on the floating-point equivalent, at least one floating-point operation that corresponds to the fixed-point operation, yielding at least one floating-point result;

said computer reducing said at least one floating-point result generated by the floating-point operation into a fixed-point result;

said computer using the stored precision during reduction of the floating-point result into the fixed-point result; and

said computer displaying said fixed-point result to a user to enable said portion of said program to be debugged without use of said fixed point processor.

13(Previously presented): The method of Claim 12 wherein during reduction of the floating-point result to the fixed-point result, the method comprises:

said computer using a predetermined storage element to identify a mode of rounding to be performed on the floating-point result, wherein the mode of rounding is one of: round (round-to-nearest), fix (round towards zero), cell (round towards positive infinity), and floor (round towards negative infinity), and said computer performing said rounding, and said fixed-point result being displayed after said rounding is performed.

14(Previously presented): The method of Claim 12 wherein during reduction of the floating-point result into the corresponding fixed-point result, the method comprises:

said computer using a predetermined storage element to identify a kind of arithmetic to be performed on the floating-point result, wherein the kind of arithmetic is one of: saturation and modulo.

STLICON VALLEY
'ATENT GROUP LIP

15(Previously presented): The method of Claim 12 wherein:

said fixed-point representation is hereinafter "first fixed-point representation";

the fixed-point result is expressed in a second fixed-point representation which is different from the first fixed-point representation; and

the method further comprises said computer using a predetermined storage element in said memory to identify a property of the second fixed-point representation, said fixed-point result being displayed to said user in said second fixed-point representation.

16(Previously presented): The method of Claim 15 wherein:
said property of the second fixed-point representation is precision.

17(Previously presented): The method of Claim 15 wherein:
said property of the second fixed-point representation is signedness.

18(Previously presented): The method of Claim 15 wherein: said property of the second fixed-point representation is complexness.

19(Previously presented): The method of Claim 12 wherein during expansion of the fixed-point operands into floating-point equivalents, the method comprises:

said computer detecting that the operands are invalidly scaled and issuing a warning message displayed to said user based on a predetermined storage element.

SILICON VALLEY

Page 7 of 33

. 20(Previously presented): The method of Claim 12 further comprising:

said computer using at least the precision of the fixed-point operand, during emulation of another instruction that uses a result of the fixed-point arithmetic operation.

21 (Previously presented): The method of Claim 12 wherein:

the floating-point representation conforms to an IEEE Standard for floating-point arithmetic.

22 (Previously presented): The method of Claim 12 wherein the instruction is to be performed on said fixed-point operand and at least an additional floating-point operand, and the fixed-point arithmetic operation is to be performed on the fixed-point operand and said additional floating-point operand, and the method further comprises:

during the act of receiving said floating-point operand, said computer reducing said additional floating-point operand into fixed-point representation, based on the precision of the fixed-point operand.

23 (Previously presented): The method of Claim 22 wherein:

reduction of the floating-point operand into said fixed-point representation is based on said property of the fixed-point operand.

24(Original): The method of Claim 23 wherein:

SILICON VALLEY

said property is precision.

25 (Original): The method of Claim 23 wherein:

said property is signedness.

26 (Original): The method of Claim 23 wherein:

said property is complexness.

27 (Previously presented): A method implemented in a set of instructions executable by a computer that comprises a floating point unit, the method comprising:

said computer receiving receiving a program, at least a portion of said program being written for execution on a fixed point processor, said fixed point processor being not available for execution of said program, said portion of said program comprising at least one operand represented in fixed-point representation (hereinafter "fixed-point operand"), said fixed-point operand having at least one property selected from a group consisting of (signedness, precision, complexness);

said computer expanding said fixed-point operand into a floating-point representation to obtain a floating-point equivalent;

said computer receiving an instruction comprising an operation to be performed on the fixed-point operand;

said computer receiving another instruction that indicates a type of said fixedpoint operand;

wherein said another instruction comprises a call to a function;

SILICON VALLEY

Page 9 of 33

said computer using said floating point unit to perform on the floating-point equivalent, at least one floating-point operation that corresponds to the fixed-point operation, yielding at least one floating-point result;

said computer reducing, based on a value of said at least one property, said at least one floating-point result generated by the floating-point operation into a fixed-point result; and

said computer displaying the fixed point result and receiving instructions for debugging said portion of said program without use of the fixed point processor.

28 (Original): The method of Claim 27 wherein:

said function comprises instantiation of an object of a predetermined class, the object comprising said floating-point equivalent and at least one property of said fixed-point operand.

29 (Previously presented): The method of Claim 27 wherein:

the fixed-point operand is a real number;

the method further comprises said computer receiving another indication via another function name that a complex number is to be expressed in fixed-point representation; and

on receipt of an imaginary part and a real part of the complex number, said computer expanding each part into a corresponding floating-point equivalent.

30 (Previously presented): A method implemented in a set of instructions executable by a computer that comprises a floating point unit, the method comprising:

ATENT CROUP U

Page 10 of 33

said computer receiving receiving a program, at least a portion of said program being written for execution on a fixed point processor, said fixed point processor being not available for execution of said program, said portion of said program comprising at least one operand represented in fixed-point representation (hereinafter "fixed-point operand"), said fixed-point representation having a precision identifying a first plurality of bits on a left side of a point and a second plurality of bits on a right side of said point;

said computer expanding said fixed-point operand into a floating-point representation to obtain a floating-point equivalent;

said computer receiving in said program an instruction comprising an operation to be performed on the fixed-point operand;

wherein said instruction comprises overloading of an operator normally used to denote said corresponding floating-point operation;

said computer using said floating point unit to perform on the floating-point equivalent, at least one floating-point operation that corresponds to the fixed-point operation, yielding at least one floating-point result;

said computer reducing, based said precision, said at least one floating-point result generated by the floating-point operation into a fixed-point result; and

said computer displaying the fixed point result and receiving instructions for debugging said portion of said program without use of the fixed point processor.

Claims 31-39 (canceled).

40 (Previously presented): In a computer comprising a floating point unit, a method implemented in a set of instructions executable by said computer, the method comprising:

said computer receiving at least one operand represented in fixed-point representation (hereinafter "fixed-point operand");

SILICON VALLEY

Page 11 of 33

said computer expanding said fixed-point operand into a floating-point representation to obtain a floating-point equivalent;

said computer receiving an instruction comprising a fixed-point operation to be performed on the fixed-point operand by a fixed point processor;

said computer using said floating point unit to perform on the floating-point equivalent, at least one floating-point operation that corresponds to the fixed-point operation, yielding at least one floating-point result;

said computer reducing said at least one floating-point result generated by the floating-point operation into a fixed-point result; and

said computer displaying said fixed-point result and receiving instructions to debug a portion of a program comprising said fixed-point operand and said fixed-point operation without use of said fixed point processor;

wherein if the fixed-point operation is specified as saturation arithmetic and if said floating-point result is a vector or array, said act of reducing comprises:

said computer setting a maximum value and a minimum value for a fixed-point result to be obtained from reducing the floating-point result generated by the floating-point operation, based on the precision and signedness of at least said fixed-point operand;

said computer replacing any negative numbers in the floating-point result with zero;

said computer replacing any numbers in the floating-point result that are greater than the maximum value with the maximum value;

said computer replacing any numbers in the floating-point result that are less than the minimum value with the minimum value.

SILICON VALLEY
'ATENT GROUP LLE

Page 12 of 33

41 (Original): The method of Claim 40 wherein if a rounding mode is specified as round, the act of reducing further comprises:

subsequent to performance of said act of setting, rounding the floating-point result.

42 (Previously presented): A computer-implemented method implemented in a set of instructions, the computer-implemented method comprising:

receiving a program, at least a portion of said program being written for execution on a fixed point processor, said fixed point processor being not available for execution of said program, said portion of said program comprising at least one operand representing a real number expressed in fixed-point representation (hereinafter "fixed-point operand"), said fixed-point representation having a precision identifying a first plurality of bits on a left side of a point and a second plurality of bits on a right side of said point;

said computer expanding said fixed-point operand into a floating-point representation to obtain a floating-point equivalent, said expanding comprising storing in said memory said precision of said fixed-point operand;

said computer further receiving in said portion of said program an instruction to be performed on the fixed-point operand;

said computer using said floating point unit to perform on the floating-point equivalent, at least one floating-point operation that corresponds to the fixed-point operation, yielding at least one floating-point result;

SILICUN YALLKY

RECEIVED CENTRAL FAX CENTER MAY 2 0 2008

said computer reducing, based on kind of said instruction received, said at least one floating-point result generated by the floating-point operation into a fixed-point result; and

said computer displaying said fixed-point result to a programmer to enable said portion of said program to be debugged without use of said fixed point processor.

43 (Original): The method of Claim 42 wherein:

said instruction includes an operator and said act of reducing is based on said operator.

44 (Currently amended): A <u>computer readable</u> memory encoded with a plurality of objects, each object representing at-least one fixed-point number, each object being encoded in a plurality of locations comprising:

a first location encoded with a value of a signedness property of said fixed-point number;

a second location encoded with a value of a complexness property of said fixed-point number;

a plurality of locations encoded with values of subproperties of a precision property of said fixed-point number; and

at least one location encoded with a floating-point value of said fixed-point number;

wherein the memory further comprises instructions that cause a computer to operate floating point hardware to use said floating-point value

ATENT GROUP WA

Page 14 of 33

and display a result of said use thereby to help in debugging at least a portion of a program without use of a fixed point processor.

45 (Original): The memory of Claim 44 wherein each object further comprises:

a third value of a scaling factor of said fixed-point number.

46 (Previously presented): The memory of Claim 44 wherein at least one object in said plurality further comprises:

a plurality of additional floating-point values;

wherein said values of said properties are identical for each of said additional floating-point values, and said at least one object represents a vector operand.

47 (Original): The memory of Claim 44 wherein said precision property comprises:

a number of bits to the left of a point in the fixed-point number as a subproperty.

48 (Previously presented): A memory encoded with a plurality of objects, each object representing at least one fixed-point number, each object being encoded in a plurality of locations comprising:

a first location encoded with a value of a signedness property of said fixed-point number;

SILICON VALLEY

a second location encoded with a value of a complexness property of said fixed-point number;

a plurality of locations encoded with values of subproperties of a precision property of said fixed-point number; and

at least one location encoded with a floating-point value of said fixed-point number;

wherein said precision property further comprises a number of bits to the right of said point in the fixed-point number as another subproperty;

wherein the memory further comprises a program written for execution on a fixed point processor, said fixed point processor being not available for execution of said program, said program comprising instructions to:

use floating-point hardware on the floating-point value in said at least one location to generate a floating-point result, and

display said fixed-point result to a user by use of at least said precision property to enable at least a portion of said program to be debugged without use of said fixed point processor.

49 (Original): The memory of Claim 47 wherein said precision property further comprises:

a total number of bits in the fixed-point number as another subproperty.

50 (Previously presented): The memory of Claim 44 wherein said precision property further comprises:

SILICUN VALLEY

Page 16 of 33

a number of bits to the right of a point in the fixed-point number as a subproperty.

51 (Original): The memory of Claim 44 wherein said at least one location encoded with said floating-point value of said fixed-point number holds a real component of said fixed-point number, the memory further comprising:

at least one additional memory location for holding a complex component of said fixed-point number.

52 (Previously presented): A computer that supports floating-point arithmetic, the computer comprising:

means (hereinafter "receiving means") for receiving and storing in a memory of said computer a program written for execution on a fixed point processor, said fixed point processor being not available for execution of said program, said program comprising at least one operand represented in fixed-point representation (hereinafter "fixed-point operand"), said fixed-point operand having at least one property selected from a group consisting of (signedness, precision, complexness);

means, coupled to said receiving means, for expanding said fixed-point operand into a floating-point representation to obtain a floating-point equivalent;

said program in said memory comprising a fixed-point operation to be performed on the fixed-point operand;

a floating point unit coupled to the means for expanding to receive therefrom the floating-point equivalent and to generate at least one floating-point result by performance of at least one floating-point operation that corresponds to the fixed-point operation;

SILICON VALLEY

means for reducing said at least one floating-point result generated by the floating-point operation into a fixed-point result; and

means for displaying the fixed-point result and receiving instructions for debugging said program without use of the fixed point processor;

wherein said memory is coupled to each of said means and said floating point unit, said memory being encoded with a plurality of objects, at least one object representing at least said fixed-point operand, said object being encoded in a plurality of locations comprising:

a first location encoded with a value of a signedness property of said fixed-point operand;

a second location encoded with a value of a complexness property of said fixed-point operand;

a group of locations encoded with values of subproperties of a precision property of said fixed-point operand; and

at least one location encoded with a floating-point value of said fixed-point operand.

53 (Previously presented): In a computer, a method implemented in a set of instructions executable by said computer, the method comprising:

said computer receiving a program, at least a portion of said program being written for execution on a fixed point processor, said fixed point processor being not available for execution of said program, said portion of said program comprising at least one operand representing a real number expressed in fixed-point representation (hereinafter "fixed-point operand"), said fixed-point representation having a precision

SITICON AVECTA

Page 18 of 33

identifying a plurality of first bits of the fixed-point operand on a first side of a point and a plurality of second bits of the fixed-point operand on a second side of the point;

said computer adding to said program a sequence of instructions to expand said fixed-point operand into a floating-point representation to obtain a floating-point equivalent, said sequence comprising an instruction to store in said memory said precision of said fixed-point operand;

said computer adding to said program at least a first instruction to use a floating point unit to perform on the floating-point equivalent, at least one floating-point operation that corresponds to the fixed point operation, to yield at least one floating-point result;

said computer adding to said program at least a second instruction to reduce, based on said precision, said at least one floating-point result generated by the floating-point operation into a fixed-point result;

and

said computer displaying said fixed-point result and receiving instructions for debugging said program without use of said fixed point processor.

54 (Previously presented): The method of Claim 12 wherein said fixed-point operand comprises:

a value of a scaling factor of said fixed-point number.

55 (Previously presented): The method of Claim 12 wherein: said fixed-point operand comprises a plurality of floating-point values; and said fixed-point operand is a vector operand.

SILICON VALLEY ATENT GROUP ILL

Page 19 of 33

56 (Previously presented): The method of Claim 12 wherein said property comprises at least two of:

a number of bits to the left of a point in the fixed-point number;

a number of bits to the right of said point in the fixed-point number; and

a total number of bits in the fixed-point number.

57 (Previously presented): The method of Claim 12 wherein at least one location in said memory of said computer encoded with said floating-point value of said fixed-point number holds a real component of said fixed-point number, said memory further comprising:

at least one additional location for holding a complex component of said fixed-point number.

58 (Previously presented): The method of Claim 15 wherein said fixed-point operand comprises:

a value of a scaling factor of said fixed-point number.

59 (Previously presented): The method of Claim 15 wherein:

said fixed-point operation comprises a plurality of additional floating-point values;

and

said fixed-point operand is a vector operand.

SILICON VALLEY

Page 20 of 33

- 60 (Previously presented): The method of Claim 15 wherein said property of the second fixed-point representation comprises at least two of:
 - a number of bits to the left of a point in the fixed-point number;
 - a number of bits to the right of said point in the fixed-point number; and
 - a total number of bits in the fixed-point number.
- 61 (Previously presented): The method of Claim 15 wherein at least one location in said memory of said computer encoded with said floating-point value of said fixed-point number holds a real component of said fixed-point number, said memory further comprising:

at least one additional location for holding a complex component of said fixed-

- 62 (Previously presented): The method of Claim 23 wherein said fixed-point operand comprises:
 - a value of a scaling factor of said fixed-point number.
- 63 (Previously presented): The method of Claim 23 wherein said fixed-point operand comprises:
 - a plurality of floating-goint values; and
 - said fixed-point operand is a vector operand.

STLICON VALLEY

Page 21 of 33

64 (Previously presented): The method of Claim 23 wherein said property comprises at least two of:

- a number of bits to the left of a point in the fixed-point number;
- a number of bits to the right of said point in the fixed-point number; and
- a total number of bits in the fixed-point number.

65 (Previously presented): The method of Claim 23 wherein at least one location in said memory of said computer encoded with said floating-point value of said fixed-point number holds a real component of said fixed-point number, said memory further comprising:

at least one additional location for holding a complex component of said fixed-point number.

66 (Previously presented): The method of Claim 28 wherein each fixed-point operand comprises:

a value of a scaling factor of said fixed-point number.

67 (Previously presented): The method of Claim 28 wherein:

said fixed-point operand further comprises a plurality of additional floating-point values; and

SILICON VALLEY

Page 22 of 33

said values of said properties are identical for each of said additional floatingpoint values, and said fixed-point operand is a vector operand.

68 (Previously presented): The method of Claim 28 wherein said property comprises at least two of:

a number of bits to the left of a point in the fixed-point number;

a number of bits to the right of said point in the fixed-point number; and

a total number of bits in the fixed-point number.

69 (Previously presented): The method of Claim 28 wherein at least one location in a memory of said computer is encoded with said floating-point value of said fixed-point number and holds a real component of said fixed-point number, the memory further comprising:

at least one additional memory location for holding a complex component of said fixed-point number.

70 (Previously presented): The method of Claim 30 wherein said fixed-point operand comprises:

a value of a scaling factor of said fixed-point number.

71 (Previously presented): The method of Claim 30 wherein:

said fixed-point operand comprises a plurality of floating-point values; and

ATENT GROUP IL

Page 23 of 33

said fixed-point operand is a vector operand.

72 (Previously presented): The method of Claim 30 wherein said property comprises at least two of:

a number of bits to the left of a point in the fixed-point number;

a number of bits to the right of said point in the fixed-point number; and

a total number of bits in the fixed-point number.

73 (Previously presented): The method of Claim 30 wherein at least one location in said memory of said computer encoded with said floating-point value of said fixed-point number holds a real component of said fixed-point number, said memory further comprising:

at least one additional location for holding a complex component of said fixed-point number.

74 (Previously presented): The method of Claim 40 wherein said fixed-point operand comprises:

a value of a scaling factor of said fixed-point number.

75 (Previously presented): The method of Claim 40 wherein: said fixed-point operand comprises a plurality of floating-point values; and said fixed-point operand is a vector operand.

SILICON VALLEY

Page 24 of 33

76 (Previously presented): The method of Claim 40 wherein said property comprises at least two of:

- a number of bits to the left of a point in the fixed-point number;
- a number of bits to the right of said point in the fixed-point number; and
- a total number of bits in the fixed-point number.

77 (Previously presented): The method of Claim 40 wherein at least one location in said memory of said computer encoded with said floating-point value of said fixed-point number holds a real component of said fixed-point number, said memory further comprising:

at least one additional location for holding a complex component of said fixed-point number.

78 (Previously presented): The memory of Claim 48 wherein each object further comprises:

a third value of a scaling factor of said fixed-point number.

79 (Previously presented): The memory of Claim 48 wherein at least one object in said plurality further comprises:

a plurality of additional floating-point values;

ATENT GROUP 143

Page 25 of 33

PAGE 31/39 * RCVD AT 5/20/2008 2:00:04 PM [Eastern Daylight Time] * SVR:USPTO-EFXRF-5/42 * DNIS:2738300 * CSID:4083787770 * DURATION (mm-ss):05-22

wherein said values of said properties are identical for each of said additional floating-point values, and said at least one object represents a vector operand.

- 80 (Previously presented): The memory of Claim 48 wherein said precision property comprises at least two of:
 - a number of bits to the left of a point in the fixed-point number;
 - a number of bits to the right of said point in the fixed-point number; and
 - a total number of bits in the fixed-point number.
 - 81 (Previously presented): The computer of Claim 52 wherein:
 - a location in said plurality of locations is encoded with a value of a scaling factor.
 - 82 (Previously presented): The computer of Claim 52 wherein:
 said fixed-point operated comprises a plurality of floating-point values; and
 - said fixed-point operand is a vector operand.
- 83 (Previously presented): The computer of Claim 52 wherein said property comprises at least two of:
 - a number of bits to the left of a point in the fixed-point number;
 - a number of bits to the right of said point in the fixed-point number; and

SILICON VALLEY

Page 26 of 33

a total number of bits iff the fixed-point number.

84 (New): The memery of Claim 44 wherein:

a value of a variable in said portion of said program is displayed by said instructions.

85 (New): The memory of Claim 44 wherein:

a property of a variable in said portion of said program is displayed by said instructions.

86 (New): The memory of Claim 44 wherein:

said instructions evaluate an operation on a variable in said portion of said program and said result is from evaluation of said operation.

87 (New): The memory of Claim 86 wherein:

a property of said result is displayed by said instructions.

88 (New): The memory of Claim 44 wherein:

said instructions are implemented in an interpreter.

SILICON VALLEY

Page 27 of 33

89 (New): The memory of Claim 44 wherein:

a warning is displayed by said instructions.

90 (New): The method of Claim 12 wherein:

said computer displays during said displaying, a value of a variable in said portion of said program.

91 (New): The method of Claim 12 wherein:

said computer displays during said displaying, a property of a variable in said portion of said program.

92 (New): The method of Claim 12 wherein:

said computer evaluates an operation on a variable in said portion of said program and during said displaying displays a result of evaluation of said operation.

93 (New): The mentiory of Claim 12 wherein:

said computer evaluates an operation on a variable in said portion of said program and during said displaying displays a property of a result of evaluation of said operation

94 (New): The mentory of Claim 12 wherein:

SILICON VALLEY

Page 28 of 33

Ø 035 05/20/2008 11:07 FAX 4083787770 Appl. No. **10/665,999** Amdt daied May 20, 2008 said set of instructions are implemented in an interpreter. The memory of Claim 12 wherein: 95 (New): a warning is displayed by said set of instructions.

Page 29 of 33

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.