

## Flervariabelanalys för civilingenjörer MA505G-0100

2021-06-03, kl. 14:15-19:15

Hjälpmedel: Endast skrivmateriel. Formelblad delas ut tillsammans med skrivningen.

Betygskriterier: Skrivningens maxpoäng är 60. Samtliga uppgifter bedöms utifrån kriterier för problemlösning och redovisning. För betyg 3/4/5 räcker det med 4 poäng inom vart och ett av huvudområdena differentialkalkyl, integralkalkyl och vektoranalys samt 30/40/50 poäng totalt. Detaljerna framgår av separat dokument publicerat på Blackboard.

Anvisningar: Motivera väl, redovisa alla väsentliga beräkningssteg, rita tydliga figurer och svara exakt. Redovisa inte mer än en uppgift per blad. Lämna in bladen i uppgiftsordning.

Skrivningsresultat: Meddelas inom 15 arbetsdagar.

Examinator: Andreas Bergwall.

Lycka till!

## Grundläggande uppgifter (6p/uppgift)

- 1. Bestäm ekvationen för det plan som tangerar nivåytan  $x^2z 2y + e^z = 1$  i origo. Om det skulle gå att lösa ut z ur nivåytans ekvation, vad skulle  $z'_y(0,0)$  bli?
- 2. Visa att  $f(x,y) = \frac{2}{3}x^3 x^2 \frac{1}{2}x^2y + xy + \frac{1}{2}y^2$  har exakt en lokal extrempunkt.
- 3. Beräkna volymen av det begränsade området mellan ytorna  $z=1-x^2$  och  $z=-1+y^2$ .
- 4. Beräkna  $\int_{\gamma} 2xz \, dx 2 \, dy + (x^2 + e^z) \, dz$ , dels om  $\gamma$  är linjestycket från (0,0,0) till (1,2,3), dels om  $\gamma$  är parameterkurvan  $\mathbf{r}(t) = (t,2t^2,3t^3)$ ,  $0 \le t \le 1$ .
- 5. Beräkna flödet av vektorfältet  $\boldsymbol{u}=(x\sin y,ze^{xyz},z)$  in genom randytan till rätblocket  $K=[0,1]\times[-1,1]\times[0,1].$

Kom ihåg att illustrera relevanta definitionsmängder, integrationsområden och orienteringar med tydliga figurer.

## Fördjupade uppgifter (10p/uppgift)

- 6. Betrakta ytan  $z = x^2 + 2xy$ ,  $2x^2 + y^2 < 1$ .
  - (a) Tänk dig att du står i en punkt (x, y, z) på ytan och tittar åt det håll som den lutar brantast uppåt. Hur stor är lutningen?
  - (b) I vilken punkt på ytan finns den allra största lutningen och hur stor är den?

Ledning: Som vanligt tänker vi oss att det är z-axeln som går rakt uppåt. Ditt svar i (a) ska vara ett uttryck i x och y. I (b) ska du bestämma största värdet hos detta uttryck då  $2x^2 + y^2 \le 5$ .

- 7. Bestäm tyngdpunkten hos
  - (a) ett homogent halvklot K, och
  - (b) halvklotets randyta  $\partial K$ .

Ledning: I (a) ges tyngdpunktens x-koordinat av

$$x_t = \frac{\iiint_K x \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}{\iiint_K \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z}$$

och motsvarande för övriga koordinater. I (b) får trippelintegralerna bytas mot ytintegraler över  $\partial K$ .

- 8. Låt  $\boldsymbol{n}=(a,b,c)$  vara en enhetsvektor och låt  $\Gamma$  vara den cirkelskiva som har radie 1, centrum i origo, och normalvektor  $\boldsymbol{n}$ . Låt  $\partial\Gamma$  vara den positivt orienterade randkurvan till  $\Gamma$ .
  - (a) Beräkna  $\int_{\partial \Gamma} (y+z^2) dx + (2z+x^2) dy + (3x+y^2) dz$ . Tänk på att Γ ligger i planet ax+by+cz=0 och utnyttja symmetrier!
  - (b) Hur ska a, b och c väljas för att integralen i (a) ska få ett så stort värde som möjligt?

Kom ihåg att illustrera relevanta definitionsmängder, integrationsområden och orienteringar med tydliga figurer.

## Kommentarer till Flervariabelanalys för civilingenjörer 20210603

1. Låt  $g(x,y,z)=x^2z-2y+e^z$ . Då är  $\nabla g(0,0,0)=(0,-2,1)$  en normal till ytan och till tangentplanet. Planets ekvation är alltså 0x-2y+1z=0, d.v.s. z=2y.

Eftersom ytan och tangentplanet har samma lutning så kan vi derivera tangentplanets ekvation för att komma fram till att  $z'_{\nu}(0,0) = 2$ .

Obs! När man ska bestämma tangentplan till en yta så måste man anpassa sin metod efter vilken typ av beskrivning man har av ytan:

- För en funktionsyta z = f(x,y) så gäller att tangentplanet i punkten (a,b,f(a,b)) ges av  $z = f(a,b) + f'_x(a,b)(x-a) + f'_y(a,b)(y-b)$ .
- För en nivåyta g(x,y,z) = C så gäller att tangentplanet i en punkt (a,b,c) på ytan ges av  $g'_x(a,b,c)(x-a) + g'_y(a,b,c)(y-b) + g'_z(a,b,c)(z-c) = 0$ . Men det räcker egentligen att veta att  $\nabla g(a,b,c)$  ger tangentplanets normal. Vet man det så måste planets ekvation bli  $g'_x(a,b,c)x + g'_y(a,b,c)y + g'_z(a,b,c)z = D$ . Konstanten D kan man sen bestämma genom att sätta in (a,b,c) i vänsterledet.

Om man har en parameteryta så finns ett tredje sätt att bestämma tangentplanet—kolla i boken!

En ekvation måste alltid innehålla både vänster- och högerled. I den här uppgiften kan man inte svara med -2y+z eller Tangentplanet=-2y+z. Det säger ingenting! Hur ska man utifrån en sådan beskrivning kunna avgöra om en viss punkt ligger i planet eller ej? Det går inte!

Kom också ihåg att den punkt man bestämmer tangentplanet i måste själv uppgylla planets ekvation. Om man i den här uppgiften svarar med -2y+z=1 så är det ett orimligt svar. Det var tangenplanet i origo som skulle bestämmas och det är uppenbart att origo inte uppfyller denna ekvation.

2. f är partiellt deriverbar överallt så det är endast stationära punkter som kan vara lokala extrempunkter.

Vi har att

$$\begin{cases} f'_x = 0 \\ f'_y = 0 \end{cases} \Leftrightarrow \begin{cases} 2x^2 - 2x - xy + y = 0 \\ -\frac{1}{2}x^2 + x + y = 0 \end{cases} \Leftrightarrow \begin{cases} (2x - y)(x - 1) = 0 \\ y = \frac{1}{2}x^2 - x \end{cases}$$

Om x=1 så får vi y=-1/2, så (1,-1/2) är en stationär punkt. Om vi sätter in y=2x i den andra ekvationen så fås

$$2x = \frac{1}{2}x^2 - x \Leftrightarrow x^2 - 6x = 0 \Leftrightarrow x = 0 \text{ eller } x = 6.$$

Det ger oss ytterligare två stationära punkter: (0,0) och (6,12).

I var och en av de tre stationära punkterna bestämmer vi nu värdet på  $A=f''_{xx}=4x-2-y,\ B=f''_{xy}=-x+1$  och  $C=f''_{yy}=1$  och studerar den kvadratiska formen  $Q(h,k)=Ah^2+2Bhk+Ck^2$ :

• I punkten (1, -1/2) får vi

$$Q(h,k) = \frac{5}{2}h^2 + k^2$$

vilket är en positivt definit kvadratisk form. (1,-1/2) är alltså en lokal minpunkt.

 $\bullet$  I punkten (0,0) får vi

$$Q(h,k) = -2h^2 + 2hk + k^2 = (k+h)^2 - 3h^2$$

vilket är en indefinit kvadratiskform. (0,0) är alltså en sadelpunkt.

• I punkten (6, 12) får vi

$$Q(h,k) = 10h^2 - 10hk + k^2 = (k - 5h)^2 - 15h^2$$

vilket också är en indefinit kvadratiskform. Alltså är även (6,12) en sadelpunkt.

Därmed har vi visat att det bara finns en lokal extrempunkt, nämligen (1, -1/2) som är en lokal minpunkt.

3. I området K mellan de två ytorna gäller att  $-1+y^2 \le 1-x^2$ , d.v.s. att  $x^2+y^2 \le 2$ . Låt D vara denna cirkelskiva i xy-planet. Volymen ges då av

$$\iint_D (1 - x^2 + 1 - y^2) \, \mathrm{d}x \, \mathrm{d}y = \iint_{[0,\sqrt{2}] \times [0,2\pi]} (2 - r^2) r \, \mathrm{d}r \, \mathrm{d}\varphi = \left[ r^2 - \frac{r^4}{4} \right]_0^{\sqrt{2}} \cdot 2\pi = 2\pi.$$

4. Låt  $\boldsymbol{F}=(2xz,-2,x^2+e^z)$ . Eftersom  $\nabla\times\boldsymbol{F}=\boldsymbol{0}$  så är  $\boldsymbol{F}$  ett potentialfält i  $\mathbb{R}^3$  (och kurvintegralen är oberoende av vägen). Det finns alltså en potential, d.v.s. en funktion U(x,y,z) sådan grad $U=\boldsymbol{F}$ . Den kan t.ex. bestämmas så här:

$$U'_x = 2xz \Leftrightarrow U = x^2z + g(y, z).$$

I det här steget ska man inte skriva  $U=x^2z+g(y)+h(z)$  för man kan inte i förväg veta om beroendet av y och z kan delas upp i varsin term. I nästa steg sätter vi in ovanstående i likheten  $U_y'=-2$  och får då följande:

$$0 + g_y'(y, z) = -2 \Leftrightarrow g(y, z) = -2y + h(z).$$

Nu vet vi alltså att  $U = x^2z - 2y + h(z)$ . Insättning i  $U'_z = x^2 + e^z$  ger till sist:

$$x^2 + h'(z) = x^2 + e^z \Leftrightarrow h'(z) = e^z \Leftrightarrow h(z) = e^z + C.$$

Det är alltså funktionerna  $U = x^2z - 2y + e^z + C$  som är potentialer till F.

För den avslutande beräkningen kan vi t.ex. välja  $U = x^2z - 2y + e^z$ . Eftersom båda kurvorna startar i punkten (0,0,0) och slutar i punkten (1,2,3) så är kurvintegralens värde i båda fallen  $U(1,2,3) - U(0,0,0) = e^3 - 2$ .

5. Eftersom det var flödet in genom randytan som efterfrågades så måste alla normalvektorer riktas in i K. Det måste man sedan kompensera för med ett teckenbyte när man använder Gauss sats. Det sökta flödet är därför

$$\iint_{\partial K} \boldsymbol{u} \cdot \boldsymbol{n} \, dS = -\iiint_{K} \operatorname{div} \boldsymbol{u} \, dx dy dz = -\iiint_{K} (\sin y + xz^{2} e^{xyz} + 1) \, dx dy dz.$$

Eftersom sin y är en udda funktion av y och K är spegelsymmetrisk i planet y=0 så är  $\iiint_K \sin y \, \mathrm{d}x \mathrm{d}y \mathrm{d}z = 0$ . Av symmetriskäl kan vi alltså bortse från sin y-termen i integranden. 1:an ger K:s volym, vilken är 2 (volymsenheter). Mittentermen,  $xz^2e^{xyz}$ , hanteras enklast genom att först integrera m.a.p. y, sedan x och sist z:

$$\int_{-1}^{1} xz^{2} e^{xyz} \, dy = \left[ ze^{xyz} \right]_{y=-1}^{1} = ze^{xz} - ze^{-xz}$$

$$\int_{0}^{1} (ze^{xz} - ze^{-xz}) \, dx = \left[ e^{xz} + e^{-xz} \right]_{x=0}^{1} = e^{z} + e^{-z} - 2$$

$$\int_{0}^{1} (e^{z} + e^{-z} - 2) \, dz = \left[ e^{z} - e^{-z} - 2z \right]_{0}^{1} = e - e^{-1} - 2$$

Tar man det i en annan ordning så får man börja med en partiell integration. När vi slutligen adderar de olika delresultaten får vi att flödet är

$$-\iiint_K (\sin y + xz^2 e^{xyz} + 1) \, dx dy dz = -(0 + e - e^{-1} - 2 + 2) = e^{-1} - e.$$

- 6. Låt  $f(x,y) = x^2 + 2xy$  och  $g(x,y) = 2x^2 + y^2$ .
  - (a) Ytan lutar alltid brantast i gradientens riktning, d.v.s. i riktningen

$$\nabla f(x,y) = (2x + 2y, 2x).$$

I den riktningen ges lutningen av

$$|\nabla f(x,y)| = \sqrt{(2x+2y)^2 + (2x)^2} = 2\sqrt{(x+y)^2 + x^2}.$$

(b) Vi söker den punkt där  $|\nabla f(x,y)|$  antar sitt största värde i området  $g(x,y) \leq 1$ , vilket är samma punkt som  $h(x,y) = (x+y)^2 + x^2$  antar sitt största värde i.

h är kontinuerlig och området är kompakt, så största värde finns. h är till och med  $C^1$ , så maxpunkten finns i en inre stationär punkt eller i en randpunkt.

Stationära punkter: Lösning av systemet  $\nabla h = \mathbf{0}$  ger att det finns en enda stationär punkt, nämligen (0,0), och där är f(0,0) = 0.

Randpunkter: Randundersökningen kan t.ex. genomföras genom att vi söker punkter där  $\nabla h$  och  $\nabla g$  är parallella:

$$\begin{vmatrix} 2(x+y) + 2x & 2(x+y) \\ 4x & 2y \end{vmatrix} = 0 \Leftrightarrow \dots \Leftrightarrow y^2 = 2x^2.$$

Insättning i g(x,y)=1 ger  $x=\pm 1/2$  och vart och ett av dessa värden ger sedan  $y=\pm 1/\sqrt{2}$ , d.v.s. fyra intressanta randpunkter. I dessa har vi

$$h(\pm \frac{1}{2}, \pm \frac{1}{\sqrt{2}}) = 1 + \frac{1}{\sqrt{2}}$$
 resp.  $h(\pm \frac{1}{2}, \mp \frac{1}{\sqrt{2}}) = 1 - \frac{1}{\sqrt{2}}$ .

Jämförelse och slutsats: Eftersom  $0 < 1 - (1/\sqrt{2}) < 1 + (1\sqrt{2})$  så är det i punkterna  $\pm (1/2, 1/\sqrt{2})$  som den givna ytan lutar brantast. Om lutningen är uppåt eller neråt beror på vilket håll man tittar åt!

7. Ett halvklot Kmed radie Rhar volymen  $V=2\pi R^3/3$ och arean  $A=3\pi R^2$ så

$$\iiint_K \mathrm{d}x \mathrm{d}y \mathrm{d}z = \frac{2\pi R^3}{3} \quad \text{ och } \quad \iint_{\partial K} \mathrm{d}S = 3\pi R^2.$$

Observera att randytan  $\partial K$  består av två delar: en halvsfär S och en cirkelskiva C.

Om vi väljer koordinatsystem så att K ges av olikheterna  $x^2 + y^2 + z^2 \leq R^2$ ,  $z \geq 0$ , så kommer såväl K som  $\partial K$  att ha sina tyngdpunkter på z-axeln, så då är det bara z-koordinaterna  $(z_t)$  som behöver beräknas.

(a) Med rymdpolära koordinater får vi att

$$Vz_t = \iiint_K z \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \dots = \frac{\pi R^4}{4}$$

vilket ger  $z_t = \frac{3R}{8}$ .

(b) Eftersom z=0 på cirkelskivan C så är  $\iint_C z \, dS = 0$ . Halvsfären S kan parametriseras med sfäriska koordinater. Det ger

$$\iint_{S} z \, dS = \iint_{[0,\pi/2] \times [0,2\pi]} R \cos \theta \cdot R^{2} \sin \theta d\theta d\varphi$$
$$= R^{3} \int_{0}^{\pi/2} \cos \theta \sin \theta d\theta \int_{0}^{2\pi} d\varphi = R^{3} \cdot \frac{1}{2} \cdot 2\pi = \pi R^{3}.$$

Alltså är  $Az_t = 0 + \pi R^3$  vilket ger  $z_t = \frac{R}{3}$ .

8. (a) Använd Stokes sats. Låt  ${\pmb F}=(y+z^2,2z+x^2,3x+y^2)$ . Då är  $\nabla\times{\pmb F}=(2y-2,2z-3,2x-1)$ . Med givna orienteringar så är

$$\int_{\partial\Gamma} (y+z^2) \, dx + (2z+x^2) \, dy + (3x+y^2) \, dz$$

$$= \iint_{\Gamma} (2y-2, 2z-3, 2x-1) \cdot (a, b, c) \, dS$$

$$= \iint_{\Gamma} (2(cx+ay+bz) - (2a+3b+c)) \, dS.$$

Eftersom cirkelskivan  $\Gamma$  är spegelsymmetrisk i origo så kommer integralen av de linjära termerna (alltså cx, ay och bz) att vara 0. Dessa representerar ju udda funktioner av x, y resp. z. Övriga termer är konstanta. Eftersom  $\Gamma$ :s area är  $\pi$  så är alltså kurvintegralens värde  $-\pi(2a+3b+c)$ .

(b) Eftersom (a,b,c) är en enhetsvektor så ska vi nu maximera  $f(a,b,c) = -\pi(2a+3b+c)$  under bivillkoret  $g(a,b,c) = a^2+b^2+c^2=1$ . f är kontinuerlig och bivillkoret definierar en kompakt mängd så det finns ett största värde. Alla ingående funktioner är  $C^1$  så i den punkt där detta inträffar så är  $\nabla f$  och  $\nabla g$  parallella. Vi kan t.ex. använda lagranges multiplikatormetod för att hitta dessa punkter:

$$\nabla g \parallel \nabla f \Leftrightarrow (a, b, c) = \lambda(2, 3, 1).$$

Insättning i bivillkoret ger  $14\lambda^2=1$ , d.v.s.  $\lambda=\pm 1/\sqrt{14}$ . Vi får alltså två punkter att jämföra,  $\pm (2,3,1)/\sqrt{14}$ . Största möjliga värde på f fås då  $(a,b,c)=-(2,3,1)/\sqrt{14}$ .