Université Ibn Zohr

Ecole Supérieur de l'Education et de la Formation - Agadir

ESEFA

Année Universitaire 2019/2020 Semestre : 2

TD D'OPTIQUE GEOMETRIQUE

Filières : **LEESM**, **LEESI Série N°: 4**

EXERCICE 1:

On considère une lentille mince (L) de distance focale image f' = 0.5 cm.

- 1) Calculer la vergence V de la lentille (L)?
- 2) En déduire la nature de la lentille (L)
- 3) On placer un petit objet \overline{AB} de hauteur h ($\overline{AB} = h = 1cm$) pour que son image $\overline{A'B'}$ à travers la lentille (L) soit réelle et située à 18 cm de O.
 - **a.** Déterminer la position de l'objet \overline{AB} par deux méthodes :
 - Formule de Newton.
 - Relation de conjugaison avec origine au centre.
 - **b.** En déduire la nature de l'objet \overline{AB} ?
 - **c.** Calculer le grandissement γ et la hauteur de l'image $\overline{A'B'}$?
- 4) Faire la construction géométrique correspondante ?

EXERCICE 2:

Une lentille mince divergente de 10 cm de distance focale donne d'un objet $\overline{AB} = 1$ cm placé à 5 cm en arrière de la lentille une image $\overline{A'B'}$.

- 1) Déterminer la position de de l'image $\overline{A'B'}$?
- **2)** En déduire la nature de l'image $\overline{A'B'}$?
- 3) Calculer le grandissement γ et la hauteur de l'image $\overline{A'B'}$?
- 4) Faire la construction géométrique correspondante?

EXERCICE 3:

Un système centré formé de deux lentilles L_1 et L_2 distantes de $e = \overline{O_1O_2}$, a pour distance focale image f'. La lentille L_1 a pour foyers objet et image F_1 et F_1 ' respectivement. La lentille L_2 est de foyers objet et image F_2 et F_2 ' respectivement.

- 1) En fonction de f', f_2 et e :
 - **a.** Calculer la position du foyer objet F du système centré par rapport à O₁?
 - **b.** En déduire $\overline{O_1H}$ où H est le point principal objet du système?
- **2)** En fonction de f', f_1 ' et e:
 - **a.** Calculer la position du foyer image F' du système centré par rapport à O₂?
 - **b.** En déduire $\overline{O_2H'}$ où H' est le point principal image du système?
- **3)** Pour les valeurs e = 2cm, $f_1' = 3$ cm et f' = 6cm, calculer f_2' , $\overline{O_1F}$, $\overline{O_1F}$, $\overline{O_2F'}$ et $\overline{O_2H'}$?
- 4) Calculer la position des points nodaux N et N' puis le centre optique O du système centré?
- 5) Dans quelle condition le système est afocal?
- 6) En utilisant un foyer objet secondaire ϕ_1 de la lentille L_1 , retrouver par construction géométrique la position des points cardinaux F et H (on choisit une échelle de 1cm \rightarrow 1cm sur papier)?
- 7) En utilisant un foyer objet secondaire ϕ_2 de la lentille L₂, retrouver par construction géométrique la position des points cardinaux F' et H' (on choisi une échelle de 1cm \rightarrow 3cm sur papier)?
- **8)** En utilisant les plans principaux, chercher par construction géométrique l'image d'un objet \overline{AB} droit placé au foyer objet de la lentille L₁. En déduire le grandissement γ du système centré?

1/1