

AI와 머신러닝

- Machine = 컴퓨터
- <u>Learning = 분석</u>
- <u>"컴퓨터가 데이터를 분석하는 알고리즘과 기술"</u>
- 1) Study of algorithms 2) improve their performance 3) at some task 4) with experience

Concept

- Combine classification results using multiple classifiers
 - Extract multiple datasets from a raw dataset using Bootstrap resampling method
 - Combine the results using simple majority voting and weighted voting

Bagging (Bootstrap Aggregating)

- 특징
- ① Bootstrap resample을 K 개 만들어 원래의 데이터를 대체하여 하나의 분류기를 적용하여 resample수 만큼 각각 학습
- ② x와 출력 y로 구성된 Bootstrap resample k에 대한 분류기 $C_k(x)$ 의 가능한 예측 범주를 class 0, class 1 로 지정
- (3) Threshold value issue!
- ④ K개의 Bootstrap resample의 개수만큼 되풀이하여 아래 식과 같이 C_{bag} 를 구한 후 C_{bag} 가 0.5이상이면 해당 관찰치를 class 1 이라 하고 0.5이하이면 class 0 이라 분류

$$C_{bag} = \frac{1}{K} \sum_{k=1}^{K} C_k(x)$$

- Random forest: 대표적인 앙상블 분류모형
 - 다수의 DT(randomly selected m inputs per tree)
 - 예측: 각 tree 예측에 대한 mode
 - Random decision forests에서 시작(Tin Kam Ho of Bell Labs in 1995)
 - Breiman's "bagging" idea와 random selection of features (2001)와 결합
 - Bagging (Breiman, 1996), Random Forests (Breiman, 2001), Extremely randomized trees (Geurts et al., 2006)

• 장점

• 높은 정확성, 효율적인 수행, 변수 제거 없이도 다수의 변수 활용, 변수 중요도 제공, Voting을 통한 Unbiased 결과, Missing 값이 있어도 좋은 성능

Boosting, Arcing(Adaptively Resample and Combine)

- 기본 아이디어
 - 분류기 성능에 따라 weighted voting
 - 이전 bootstrap sample에서 오분류된 observation은 다음 bootstrap sample 시에 선택되도록 하는 확률을 높여줌으로써 이전에 오분류된 observation 을 정분류할 가능성이 높은 분류기를 생성하도록 함.

Arcing (arc-fs)

Freund & Schapire (1996) AdaBoost

- 1) Training 데이터에 있는 *N* 개의 관측치에서 각 관측치가 추출될 확률을 *P(i)=1/N*로 같은 값을 적용하여 Bootstrap resample을 실시(i=1,...,N).
- 2) N개의 관측치를 가지는 k번째 Bootstrap resample로 학습된 분류기 C₄를 형성
- 3) i 번째 경우에 대해서 C_k 를 이용하여 분류한 결과가 오분류 되었을 때는 1의 값을, 정분류 되었을 때는 0의 값을 갖는 더미변수 d(i)를 정의
- 4) 분류기 C_k 의 오분류율 ε_k 와 P(i)를 갱신하는데 필요한 β_k 를 계산

$$\varepsilon_k = \sum_{i=1}^N P(i)d(i), \qquad \beta_k = \frac{(1 - \varepsilon_k)}{\varepsilon_k}$$

- 만일 k번째 step의 ϵ_k 가 0이거나 ½보다 크면 p(i)=1/N 로 하고 1st step에서 다시 시작

5) β_k 를 바탕으로 k+1 번째 Bootstrap resample에서 관측치 i 가 샘플링될 확률을 다음과 같이 갱신한다.

$$P_{k+1}(i) = \frac{P_{k}(i)\beta_{k}^{d(i)}}{\sum P_{k}(i)\beta_{k}^{d(i)}}$$

6) 이와 같은 과정을 K 번 반복 한 후, 각 분류기의 분류 결과에 $log(\beta_k)$ 의 가중치를 주어 가중 평균한 값을 취하게 된다.

$$C_{arc-fs} = \frac{\sum_{k=1}^{K} w_k C_k(x)}{\sum_{k=1}^{K} w_k}$$
where $w_k = \log(\beta_k)$

Gradient Boosting = Gradient Descent + Boosting

- Fit an additive model (ensemble) $\sum_t \alpha_t h_t$ in a forward stage-wise manner.
- In each stage, introduce a weak learner to compensate the shortcomings of existing weak learners.
- In Gradient Boosting,"shortcomings" are identified by gradients.
- In Adaboost,"shortcomings" are identified by high-weight data points.
- Formulate Adaboost as gradient descent with a special loss function.
- Generalize Adaboost to Gradient Boosting in order to handle a variety of loss functions.
- XGBoost
- Training loss + Complexity of the trees

Bagging vs Boosting

- Ensemble 기법: 여러 분류 모형의 결과를 결합하는 기법
- Random Forest: 앙상블 학습 방법의 일종으로, 훈련 과정에서 구성한 다수의 Decision Tree로부터 Voting을 통해 결과 예측
- Bagging: 주어진 데이터에서 랜덤하게 여러 개의 같은 크기의 부분집합을 생성
- Out of Bag과 Voting: Out of Bag(OOB)는 Bagging에서 제외되는 데이터들을 의미하며, Voting은 Random Forest내 여러 Decision Tree의 결과 중 다수의 결과를 선택하는 방법

Random Forest

- Breiman의 "bagging "과 변수 랜덤 선택 아이디어 기반
- 처음에는 random decision forests로 시작하여 발전
- 데이터의 다양한 경우를 반영할 수 있도록 보완
- 다양한 경우에 대한 Decision Tree를 통해 성능과 안정성을 제고

Random forest (or random forests)

Ensemble classifier that consists of many decision trees and outputs the class that is the mod
e of the class's output by individual trees

Algorithm

- ① N: # of training cases / M: 분류기의 변수
- ② M개 중 m개의 변수가 Tree의 각 노드에서 분류 에 사용
- ③ N개의 training case 중에서 각 tree에 사용되는 n개의 case를 선택 (예: bootstrap sample). 선택되지 않은 Case는 error 추정에 사용
- ④ 각 tree의 각 노드에서, m개의 변수를 무작위 선택하여 분류에 사용. 이후 m개의 변수로 가장 분류를 잘하도록 계산
- ⑤ 각 Tree fully grown and not pruned

Random Forest

- 데이터의 다양한 경우를 반영할 수 있도록 보완
- 안정성을 제고

Random Forest

- 몇 개의 Decision Tree를 만들 것인지? 몇 개의 X변수를 Random하게 선택할 것인지?

- Adaboost는 Ensemble 기법의 Boosting을 DT에 적용
- Stump로 부터 학습을 시작
 - Stump: 단순한 형태의 Tree, Weak learner

- Forest of stumps를 활용
 - Random Forest: 모든 tree는 같은 weight을 갖음
 - Adaboost: Stump마다 중요도의 차이가 존재
- Random Forest에서는 Tree가 같은 중요도를 지님

• Adaboost에서의 stump의 중요도: Amount of say로 표현, 클 수록 결과에 큰 영향을 미침

- Forest of stumps
 - 첫 stump는 다음 stump에 영향, 순차적으로 다음 stump에 영향을 주는 방식

Example

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Υ	Y	205	Y	1/8
N	Y	180	Y	1/8
Υ	N	210	Y	1/8
Υ	Υ	167	Y	1/8
N	Y	156	N	1/8
Ν	Υ	125	Ν	1/8
Υ	Ν	168	N	1/8
Υ	Υ	172	Ν	1/8

Target

Sample Weight의 합은 1

• 각 변수별 Target과의 관계

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Υ	Υ	205	Y	1/8
N	Υ	180	Υ	1/8
Υ	N	210	Υ	1/8
Υ	Υ	167	Υ	1/8
N	Y	156	N	1/8
N	Υ	125	N	1/8
Υ	N	168	N	1/8
Υ	Υ	172	N	1/8

• 각 변수별 Target과의 관계

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Υ	Υ	205	Υ	1/8
N	Υ	180	Υ	1/8
Υ	N	210	Υ	1/8
Υ	Υ	167	Υ	1/8
N	Υ	156	N	1/8
N	Υ	125	N	1/8
Υ	N	168	N	1/8
Υ	Υ	172	N	1/8

• 각 변수별 Target과의 관계

- 1) Weight 오름차순
- 2) 인접 몸무게 평균
- 3) 각 평균으로 지니불순도
- 4) 가장 작은 지니불순도인 몸 무게 평균 176

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight	
Υ	Υ	205	Υ	1/8	
N	Υ	180	Υ	1/8	
Υ	N	210	Υ	1/8	
Υ	Υ	167	Υ	1/8	
N	Υ	156	N	1/8	
N	Υ	125	N	1/8	
Υ	N	168	N	1/8	
Υ	Υ	172	N	1/8	

• 각 stump별 지니 계수

• 첫 stump의 Total Error

	Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
	Υ	Υ	205	Υ	1/8
	N	Υ	180	Υ	1/8
\vdash	Y	N	210	Y	1/8
П	Υ	Υ	167	Υ	1/8
Ч	N	Y	156	N	1/8
	N	Υ	125	N	1/8
	Υ	N	168	N	1/8
	Υ	Υ	172	N	1/8

• 첫 stump의 Total Error

Amount of Say =
$$\frac{1}{2}log(\frac{1-Total\,Error}{Total\,Error})$$

• AoS 계산 예: Chest Pain (실제 stump는 아님)

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Υ	Υ	205	Υ	1/8
N	Υ	180	Υ	1/8
Υ	N	210	Υ	1/8
Υ	Υ	167	Υ	1/8
N	Υ	156	N	1/8
N	Υ	125	N	1/8
Υ	Y N		N	1/8
Υ	Υ	172	N	1/8

• 두 번째 Stump 계산

- 첫 Stump가 잘못 분류한 Sample의 Weight를 높여줌
 - 이후 원래 데이터에서 샘플링을 통해 새롭게 데이터 구성
 - Weight를 활용한 샘플링
- 첫 Stump에서 오분류된 Sample이 높은 Weight으로 더 많이 Sampling됨
 - 다음 Stump에서 이전 단계에 오분류된 Obs.에 집중

New Sample Weight = Sample Weight \times $e^{amount\ of\ say}$ AoS가 크면 Weight도 증가

• 첫 stump에서의 4번째 행

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Υ	Υ	205	Υ	1/8
N	Υ	180	Υ	1/8
Y	N	210	Υ	1/8
Υ	Υ	167	Υ	1/8
N	Y	156	N	1/8
N	Υ	125	N	1/8
Υ	N	168	N	1/8
Υ	Υ	172	N	1/8

New Sample Weight =
$$\frac{1}{8} \times e^{0.97} = 0.125 \times 2.64 = 0.33$$

• 두 번째 Stump 계산

- 첫 Stump에서 정분류된 Sample은 낮은 Weight으로 덜 Sampling
 - 다음 Stump에서 이전 단계에 정분류된 Obs.는 덜 고려함

New Sample Weight = Sample Weight
$$\times e^{-amount \ of \ say}$$

AoS가 크면 Weight는 감소

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
Υ	Υ	205	Υ	1/8
Ν	Υ	180	Υ	1/8
Y	N	210	Y	1/8
Υ	Υ	167	Υ	1/8
N	Y	156	N	1/8
N	Υ	125	N	1/8
Υ	N	168	N	1/8
Υ	Υ	172	N	1/8

$$New \, Sample \, Weight = \\ \frac{1}{8} \times e^{-0.97} = 0.125 \, \times 0.38 = 0.05$$

▸ <u>Weight의 합이 1이 되도록 정규화</u>

• 두 번째 Stump를 위한 Sampling

Arteries	Patient Weight	Heart Disease	Sample Weight	New Weight	Sampling 을 위한 값
Υ	205	Υ	1/8	0.07	0~0.07
Υ	180	Υ	1/8	0.07	0.07~0.14
N	210	Υ	1/8	0.07	0.14~0.21
Υ	167	Υ	1/8	0.49	0.21~0.7
Y	156	N	1/8	0.07	0.7~0.77
Υ	125	N	1/8	0.07	0.77~0.84
N	168	N	1/8	0.07	0.84~0.91
Υ	172	N	1/8	0.07	0.91~1
	Y N Y Y Y N	Y 180 N 210 Y 167 Y 156 Y 125 N 168	Y 180 Y N 210 Y Y 167 Y Y 156 N Y 125 N N 168 N	Y 180 Y 1/8 N 210 Y 1/8 Y 167 Y 1/8 Y 156 N 1/8 Y 125 N 1/8 N 168 N 1/8	Y 180 Y 1/8 0.07 N 210 Y 1/8 0.07 Y 167 Y 1/8 0.49 Y 156 N 1/8 0.07 Y 125 N 1/8 0.07 N 1/8 0.07 N 1/8 0.07

- 0~1사이 난수 생성
- 해당 난수 값이 속하는 행을 선택
- 중복해서 선택 가능
- Weight가 높은 행이 Sampling될 확률이 높음

• 다음 Stump를 위한 Sampling 및 학습 반복

Chest Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight	New Weight	Sampling 을 위한 값				
Υ	Υ	205 \	Υ	1/8	0.07	0~0.07				
N	Υ	180	Υ	1/8	0.07	0.07~0.14				베 기즈뉘 ★기칭
Υ	N	210	Y	1/8	0.07	0.14~0.21		• [·[금 세신글 취(해 가중치 초기화
Υ	Υ	167	Y	1/8	0.49	0.21~0.7				()
N	Υ	156	N	1/8	0.07	0.7~0.77				1
N Y Y	Y N Y	125 168 172	N	1/8 1/8 1/8	Ch	est Pain	Blocked Arteries	Patient Weight	Heart Disease	Sample Weight
						N	Υ	156	N	1/8
						Υ	Υ	167	Υ	1/8
					*	N	Υ	125	N	1/8
						Υ	Υ	167	Υ	1/8
						Υ	Υ	167	Y	1/8
						Υ	Υ	172	N	1/8
					4	Υ	Υ	205	Υ	1/8
						Υ	Υ	167	Υ	1/8

• Adaboost의 예측 방식

• 주어진 X값에 대해 Forest of Stump 내의 Stump에 적용

3. Boosting - Adaboost

• Adaboost의 예측 방식

• 주어진 X값에 대해 Forest of Stump 내의 Stump에 적용

4. Adaboost in detail

Given a training set

$$D = \{(x_i, y_i): x_i \in R^d, y_i \in \{-1, +1\}, i = 1, ..., m\}.$$

Define a distribution over the dataset D such that $\sum_{i} D(i) = 1$.

Initialize the distribution D_1 to be uniform: $D_1(i) = 1/m$.

Repeat for $t = 1, \ldots, T$:

- 1. Learn weak classifier h_t (h_t : $R^d \rightarrow \{-1, +1\}$) using distribution D_t .
 - 1) Compute the weighted error for each weak classifier.

$$\epsilon_t(h) = \sum_{i=1}^m D_t(i)\delta(h(\mathbf{x}_i) \neq y_i), \quad \forall h$$

2) Select the weak classifier with minimum error.

$$h_t = \operatorname{argmin}_h \epsilon_t(h), \quad \epsilon_t(h_t) < \frac{1}{2}$$

2. Set weight α_t based on the error:

$$\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t(h_t)}{\epsilon_t(h_t)} \right)$$

4. Adaboost in detail

3. Update the distribution based on the performance so far:

$$D_{t+1}(i) = \frac{1}{Z_t} D_t(i) \exp\left[-\alpha_t y_i h_t(\mathbf{x}_i)\right] \longrightarrow \exp\left[-y_i \alpha_t h_t(\mathbf{x}_i)\right] = \begin{cases} \exp\left[-\alpha_t\right] < 1 & \text{if } h_t(\mathbf{x}_i) = y_i \\ \exp\left[\alpha_t\right] > 1 & \text{if } h_t(\mathbf{x}_i) \neq y_i \end{cases}$$

where Z_t is a normalization factor to keep D_{t+1} a distribution.

• At each iteration, the weights on the data points are normalized by

$$Z_t = \sum_{\mathbf{x}_i} D_t(\mathbf{x}_i) \exp\left[-y_i \alpha_i h_t(\mathbf{x}_i)\right]$$
$$= \sum_{\mathbf{x}_i \in \mathcal{A}} D_t(\mathbf{x}_i) \exp\left[-\alpha_t\right] + \sum_{\mathbf{x}_i \in \overline{\mathcal{A}}} D_t(\mathbf{x}_i) \exp\left[\alpha_t\right]$$

where A is the set of correctly classified points: $\{\mathbf{x}_i \colon y_i = h_t(\mathbf{x}_i)\}.$

4. The strong classifier has the following form: $H_{final}(x) = \operatorname{sign}(\sum_t \alpha_t h_t(x))$

Adaboost VS Gradient Boost

- Adaboost: 여러 Stump의 순차적 계산
- GB: leaf로 부터 시작
 - Leaf: Target에 대한 초기 추정값(예: 평균, log(odds ratio) 등)
 - Stump가 아닌 Tree를 생성: 각 tree는 leaf가 8~32개 크기 수준으로 생성

Target

Height	Color	Gender	Weight
1.6	В	M	88
1.6	G	F	76
1.5	В	F	56
1.8	R	M	73
1.5	G	M	77
1.4	В	F	57

Gradient Boost, Step 1

- Leaf의 계산
- Target인 Weight의 평균: 71.2
- Residual을 계산: 실제값과 예측값의 차이(error)

같은 X변수들로 Residual에 대한 Tree

Height	Color	Gender	Weight	Residual
1.6	В	М	88	16.8
1.6	G	F	76	4.8
1.5	В	F	56	-15.2
1.8	R	М	73	1.8
1.5	G	М	77	5.8
1.4	В	F	57	-14.2
			I	
		i	<u>.</u>	

- Gradient Boost, Step 1
 - Leaf + 1st Tree

- Male, Blue인 경우 예측 예시:
 - 71.2 + 16.8 = 88 (관측치와 동일하지만 과적합)
 - Bias는 작지만 Variance 큰 상태

Gradient Boost, Step 2

- 과적합 방지, 학습속도 조절을 위한 학습율 도입
- Learning Rate: 0~1사이, 이 예에서는 0.1 사용

- Male, Blue인 경우 예측 예시: 71.2 + 0.1 X 16.8 = 72.9
 - 실제값에 가까워지지만, 그 정도가 조절됨 (Gradient의 개념)
 - Variance를 낮게 유지할 수 있음

Gradient Boost, Step 3

• Learning Rate: 0~1사이, 이 예에서는 0.1 사용

• H=1.6, Male, Blue인 경우 예측 예시: 71.2 + 0.1 X 16.8 + 0.1 X 15.1 = 74.4

Gradient Boost, Step 3

• 학습율 반영 예측값을 통한 두 번째 Residual 계산

같은 X변수들로 New Residual에 대한 Tree

		- 1			ī
Height	Color	Gender	Weight	Residual	Residual(new)
1.6	В	M	88	16.8	15.1
1.6	G	F	76	4.8	4.3
1.5	В	F	56	-15.2	-13.7
1.8	R	М	73	1.8	1.4
1.5	G	М	77	5.8	5.4
1.4	В	F	57	-14.2	-12.7

Residual 크기 감소

- 위의 과정을 계속 반복
 - 정해진 iteration한도 까지 반복
 - 또는 이전 단계와 이후 단계의 Residual 차이가 없을 때까지 반복
- 매 iteration에서의 Tree의 leaf는 8~32개 사이에서 생성
- 매 iteration마다 다르게 생성
 - 1st tree: leaf 8개
 - 2nd tree: leaf 327
 - 3rd tree: leaf 16개
 - ...

- Gradient Boost for Classification, Step 1
 - Leaf의 계산
 - X 범주 2개 대비 O범주는 4개, Odds = 4/2, leaf는 log(odds) = 0.7

X1	X2	X3	Target
Υ	12	Blue	0
Υ	87	Green	0
N	44	Blue	X
Υ	19	Red	X
N	32	Green	0
N	14	Blue	0

- Gradient Boost for Classification, Step 1
 - Leaf의 계산: X 범주 2개 대비 O범주는 4개, Odds = 4/2, leaf는 log(odds) = 0.7
 - Leaf를 통한 O 범주의 확률?
 - Exponential(log(odds)) / (1+exponential(log(odds))) = 0.7
 - 이 값이 기준인 0.5와 비교하여 O, X 분류
 - Residual을 계산: 예를 들어 O는 확률 1이고, leaf 는 0.7이어서 Residual은 0.3

같은 X변수들로 Residual에 대한 Tree

X1	X2	Х3	Target	Residual
Υ	12	Blue	0	0.3
ΙΥ	87	Green	0	0.3
N	44	Blue	Х	-0.7
ΙΥ	19	Red	Х	-0.7
N	32	Green	0	0.3
. N	14	Blue	0	0.3
L		;		

- Gradient Boost, Step 1
 - 1st Tree
 - leaf의 수를 8~32로 제한하며 그 범위내에서 tree 생성

- Gradient Boost, Step 1
 - 1st Tree

- Gradient Boost, Step 2
 - Leaf 의 initial prediction에 tree에 학습율 반영하여 계산
 - Leaf + 1st Tree

Gradient Boost for Classification, Step 3

- 각 범주에 대한 발생 확률 계산
 - 1st Obs의 업데이트된 log(odds)는 1.8
 - Leaf 0.7 + 1.4(from tree) X 0.8 = 1.8
 - 1st Obs의 확률: $\frac{e^{1.8}}{1+e^{1.8}}$

X1	X2	Х3	Target	Residual	Prob
Y	12	Blue	0	0.3	0.9
Υ	87	Green	0	0.3	0.5
N	44	Blue	X	-0.7	0.5
Υ	19	Red	X	-0.7	0.1
N	32	Green	0	0.3	0.9
N	14	Blue	0	0.3	0.9

Gradient Boost for Classification, Step 3

• Residual 다시 계산, 다음 tree 생성

					i	
X1	X2	Х3	Target	Residual	Prob.	New Residual
Y	12	Blue	0	0.3	0.9	1-0.9
Υ	87	Green	0	0.3	0.5	1-0.5
N	44	Blue	X	-0.7	0.5	0-0.5
Υ	19	Red	X	-0.7	0.1	0-0.1
N	32	Green	0	0.3	0.9	1-0.9
N	14	Blue	0	0.3	0.9	1-0.9

• Gradient Boost, Step 3

• Learning Rate: 0~1사이, 이 예에서는 0.1 사용

6. Gradient Boosting in detail

Gradient Boosting with Example

Problem

Recognize the given hand written capital letter.

- Multi-class classification
- 26 classes. A,B,C,...,Z

Data Set

- http://archive.ics.uci.edu/ml/datasets/Letter+Recognition
- 20000 data points, 16 features

Feature Extraction

1	horizontal position of box		mean y variance
2	2 vertical position of box		mean x y correlation
3	3 width of box		mean of x * x * y
4	4 height of box		mean of x * y * y
5	total number on pixels	13	mean edge count left to right
6	mean x of on pixels in box	14	correlation of x-ege with y
7	mean y of on pixels in box	15	mean edge count bottom to top
8	mean x variance	16	correlation of y-ege with x

Feature Vector= (2, 1, 3, 1, 1, 8, 6, 6, 6, 6, 5, 9, 1, 7, 5, 10)
Label = G

6. Gradient Boosting in detail

Model

- 26 score functions : F_A, F_B, F_C, ...,F_Z.
- $F_A(x)$ assigns a score for class A
- scores are used to calculate probabilities

$$P_A(x) = \frac{e^{F_A(x)}}{\sum_{c=A}^{Z} e^{F_c(x)}}$$

$$P_B(x) = \frac{e^{F_B(x)}}{\sum_{c=A}^{Z} e^{F_c(x)}}$$
...
$$P_Z(x) = \frac{e^{F_Z(x)}}{\sum_{c=A}^{Z} e^{F_c(x)}}$$

predicted label = class that has the highest probability

6. Gradient Boosting in detail

Loss Function for each data point

Step 1 turn the label y_i into a (true) probability distribution $Y_c(x_i)$ For example: $y_5 = G$, $Y_A(x_5) = 0$, $Y_B(x_5) = 0$, ..., $Y_G(x_5) = 1$,, $Y_Z(x_5) = 0$

- Step 2 calculate the predicted probability distribution $P_c(x_i)$ based on the current model F_A , F_B , ..., F_Z . $P_A(x_5) = 0.03$, $P_B(x_5) = 0.05$, ..., $P_G(x_5) = 0.3$, ..., $P_Z(x_5) = 0.05$
- Step 3 calculate the difference between the true probability distribution and the predicted probability distribution.

 Here we use KL-divergence

