Title of presentation

Subtitle of presentation

Author 1¹ Author $2^{1,2}$ Author $3^{1,2,3}$

¹University A

²University B

³University C

September 25, 2021

UNIVERSIDAD DE SANTIAGO Contenido

Section

Texto

Texto2

UNIVERSIDAD DE SANTIAGO Why kinking effect?

Theorem

There is no largest prime number.

Proof.

1. Suppose *p* were the largest prime number.

UNIVERSIDAD DE SANTIAGO Why kinking effect?

Theorem

There is no largest prime number.

- 1. Suppose p were the largest prime number.
- 2. Let q be the product of the first p numbers.

UNIVERSIDAD DE SAITIAGO Why kinking effect?

Theorem

There is no largest prime number.

- 1. Suppose p were the largest prime number.
- 2. Let *q* be the product of the first *p* numbers.
- 3. Then q + 1 is not divisible by any of them.

Why kinking effect?

Theorem

There is no largest prime number.

Proof.

- 1. Suppose p were the largest prime number.
- 2. Let q be the product of the first p numbers.
- 3. Then q + 1 is not divisible by any of them.
- 4. But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof used reductio ad absurdum.

UNIVERSIDAD DE SANTIAGO Contenido

Section

Texto

Texto2

UNIVERSIDAD DE SANTIAGO DE CHILE The proof uses reductio ad absurdum. The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

1. Suppose p were the largest prime number.

There Is No Largest Prime Number The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

- 1. Suppose p were the largest prime number.
- 2. Let q be the product of the first p numbers.

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

- 1. Suppose *p* were the largest prime number.
- 2. Let *q* be the product of the first *p* numbers.
- 3. Then q + 1 is not divisible by any of them.

There Is No Largest Prime Number

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

- 1. Suppose p were the largest prime number.
- 2. Let *q* be the product of the first *p* numbers.
- 3. Then q + 1 is not divisible by any of them.
- 4. But q+1 is greater than 1, thus divisible by some prime number not in the first p numbers.

The proof used reductio ad absurdum.

UNIVERSIDAD DE SANTIAGO Contenido

Texto2

Figures

Observation 1

Simmons Hall is composed of metal and concrete.

Observation 2

Simmons Dormitory is composed of brick.

Conclusion

Simmons Hall \neq Simmons Dormitory.

Figures

Table: Results of CLT buckling test, obtained from Pina et al. (2019)

Test number	Width /mm	Total thickness /mm	Height /mm	<i>E</i> /GPa	$\lambda_{\it eff}$	Critical load /kN	Critical stress /MPa
1.a	150	45	1000	11.65	87.8	71.85	10.64
1.b	150	45	1000	11.65	87.8	95.31	14.12
2.a	150	45	1980	11.65	164.6	35.76	5.3
2.b	150	45	1990	11.65	164.6	21.12	3.13
3.a	150	90	2000	11.29	83.1	210.14	15.57
3.b	150	90	2000	11.29	83.1	129.24	9.57
3.c	150	90	2000	11.29	83.1	168.98	12.52
3.d	150	90	2000	11.29	83.1	194.89	14.44

Title of presentation

Subtitle of presentation

Author 1¹ Author $2^{1,2}$ Author $3^{1,2,3}$

¹University A

²University B

³University C

September 25, 2021

UNIVERSIDAD Bibliography I

Pina, J. C., E. I. Saavedra Flores, and K. Saavedra (2019). "Numerical Study on the Elastic Buckling of Cross-Laminated Timber Walls Subject to Compression". In: Construction and Building Materials 199, pp. 82-91.