电磁场实验二实验报告

题目:

题目 02 如图所示为无限大的平板电容截面示意图。其中极板厚度为 5mm,极板宽度I=100mm,极板间距为d=100mm,相对介电常数 $\varepsilon_{r1}=10$, $\varepsilon_{r2}=20$ 。介质分界面距离极板距离为 d_1 和 d_2 ,模型垂直于纸面方向的厚度为 1m。

使用有限元软件 FEMM 仿真计算:

- a) 极板间电压为 100V、 $d_1=50$ mm 时,电场及电位分布情况及单位长度电容值,并绘制电位的分布云图。
- b) 当 d_1 从10mm到90mm变化时,单位长度电容的变化规律。

第一问结果:

图 1 d1 = 50mm 电场分布

图 2 d1 = 50mm 电压分布

图 3 d1 = 50mm 电容

电容值为 127.771pF。

第二问结果:

d1/mm	10	20	30	40	50	60	70	80	90
电容	102.7	108.1	113.9	120.4	127.7	136.0	145.6	156.7	170.0
/pF	91	19	72	73	71	61	07	71	92

可以看到电容随 d_1 的增加而增加。 在电容器中,电场满足: $\epsilon_1 E_1 = \epsilon_2 E_2$ 电容器的电压满足: $U = E_1 d_2 + E_2 d_1$ 电容器极板自由电荷满足 $\sigma_f = \epsilon_1 E_1$

则: 电容器的电容为 $\epsilon_1 S/(d+((\epsilon_1/\epsilon_2)-1)d_1)$, 电容随 d_1 的增加而增加。