

MAT1512

May/June 2016

CALCULUS A

Duration 2 Hours

100 Marks

EXAMINERS

FIRST SECOND MRS SB MUGISHA DR S FALEYE

DR L LINDEBOOM

Closed book examination.

This examination question paper remains the property of the University of South Africa and may not be removed from the examination venue

This paper consists of 4 pages ANSWER ALL QUESTIONS.
ALL CALCULATIONS MUST BE SHOWN

Calculators may NOT be used

QUESTION 1

(a) Determine the following limits (if they exist)

(1)
$$\lim_{t \to 2} \left(\frac{t^2 - 2}{t^3 - 3t + 5} \right)^2$$
 (3)

(1)
$$\lim_{r \to 9} \frac{\sqrt{r}}{(r-9)^4}$$
 (3)

(iii)
$$\lim_{x \to 1} \left(\frac{1}{x-1} + \frac{1}{x^2 - 3x + 2} \right)$$
 (3)

(iv)
$$\lim_{y \to 0} \frac{1 - \cos^2 y}{y^2}$$
 (3)

(v)
$$\lim_{t \to \infty} \frac{t - t\sqrt{t}}{2t^{\frac{3}{2}} + 3t - 5}$$
 (3)

(b) If
$$4x - 9 \le f(x) \le x^2 - 4x + 7$$
 for $x \ge 0$, find $\lim_{x \to 4} f(x)$ (4)

(c) Let
$$f(x) = \begin{cases} cx^2 + 2x & \text{if } x < 2 \\ x^3 - cx & \text{if } x \ge 2 \end{cases}$$

Find the values of "c" which will make the function f(x) continuous at x=2 (6)

[25]

QUESTION 2

(a) By the first principles of differentiation, find the following

(1) derivative of
$$F(x) = \frac{1-x}{2+x}$$

(n)
$$F'(-3)$$

(b) Find the derivatives of the following functions by using the appropriate rules for differentiation

(1)
$$g(x) = x^2 (1 - 2x)$$

$$(11) f(v) = \frac{3\sqrt{v} - 2ve^v}{v}$$

$$(4)$$

[TURN OVER]

(iii)
$$y = \int_{1-3x}^{1} \frac{u^3}{1+u^2} du$$
 (4)

(c) Given $y + x \cos y = x^2 y$, determine the following

(1)
$$\frac{dy}{dx}$$
 by using implicit differentiation (4)

(n) the equations of the tangent line and normal line to the curve $y + x \cos y = x^2 y$ at the point $\left(1, \frac{\pi}{2}\right)$

[25]

QUESTION 3

(a) Determine the following integrals

(1)
$$\int \frac{4x^3 - 1}{x^4 - x} dx$$

$$(\mathbf{n}) \int_{1}^{4} \frac{x^2 + 1}{\sqrt{x}} dx \tag{3}$$

(iii)
$$\int \tan^2 \sec^4 x \ dx \tag{4}$$

(iv)
$$\int \frac{6x}{x^2-1} dx$$
 Hint Use integration by partial fractions (5)

(b) Given that $f(x) = x^2 - 9$ and g(x) = 3 - x

(1) Sketch the graphs of
$$f(x)$$
 and $g(x)$ on the same axes (4)

(n) Evaluate the area bounded by the graphs of
$$f(x)$$
 and $g(x)$ (6)

[25]

QUESTION 4

(a) Given that $f(x,y) = \frac{\sin(x+y)}{y} + x^2 \tan y$

(1) Determine
$$f_x$$
 and f_y , hence find $\frac{dy}{dx}$ (6)

(ii) Show that, for the function
$$f(x,y) = \frac{\sin(x+y)}{y} + x^2 \tan y$$
, $f_{xy} = f_{yx}$ (6)

(iii) Let
$$f(x,y) = 0$$
, then use implicit differentiation technique to determine $\frac{dy}{dx}$ (6)

[TURN OVER]

(iv) Compare your answer in 4a(i) to 4a(iii) (2)

(b) Determine the solution of
$$\frac{y'}{x} = \frac{1}{y^2 - y}$$
 that passes through the point $(1, 2)$ (5)

[25]

TOTAL: [100]

© UNISA 2016