CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 16 FEBBRAIO 2015

Svolgere i seguenti esercizi, giustificando pienamente tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Indicati con A un insieme non vuoto, con $\mathcal R$ una relazione di equivalenza in A e con a e b elementi di A,

- (i) definire la classe di equivalenza $[a]_{\mathcal{R}}$ e l'insieme quoziente A/\mathcal{R} ;
- (ii) se |A| = 10, quali sono le possibili cardinalità per A/\Re ?
- (iii) Tra le seguenti, dire quali sono condizioni necessarie e sufficienti affinché $[a]_{\mathcal{R}} = [b]_{\mathcal{R}}$:
 - (α) a=b;
- (β) $a \mathcal{R} b$;
- $(\gamma) [a]_{\mathcal{R}} \subseteq [b]_{\mathcal{R}};$
- $(\delta) \ (\exists c \in A)(c \ \mathcal{R} \ a \land b \in [c]_{\mathcal{R}}).$

Esercizio 2. Sia $\mathcal{P} = \mathcal{P}(\mathbb{N}^+) \setminus \{\emptyset\}$ e sia φ l'applicazione: $X \in \mathcal{P} \longmapsto \{a + b \mid a, b \in X\} \in \mathcal{P}$.

- (i) Caratterizzare (se esistono) gli $X \in \mathcal{P}$ tali che:
- $\begin{array}{c} (\alpha)\ \varphi(X)=\{1\}; & (\beta)\ |\varphi(X)|=1; \\ (ii)\ {\rm Calcolare}\ \varphi(\mathbb{N}^+)\ {\rm e}\ \varphi(\mathbb{N}^+\smallsetminus\{4\}); \end{array}$
- $(\gamma) |\varphi(X)| = 2.$
- (iii) φ è iniettiva? φ è suriettiva?
- (iv) Definita in \mathcal{P} la relazione d'ordine Σ ponendo, per ogni $X, Y \in \mathcal{P}$,

$$X \Sigma Y \iff ((X = Y) \vee (\varphi(X) \subset \varphi(Y))),$$

dire se Σ è totale e determinare in (\mathcal{P}, Σ) gli eventuali elementi minimali, massimali, minimo, massimo. (\mathcal{P}, Σ) è un reticolo?

- (v) Posto $A = \{\{2\}, \{3\}, \{2,4\}, \{2,5\}, \{1,3,4,7\}\}$, disegnare il diagramma di Hasse di (A, Σ) . Sempre in (A, Σ) , determinare, se esistono, inf $\{2, 4\}, \{2, 5\}$ e sup $\{2, 4\}, \{2, 5\}$. (A, Σ) è un reticolo?
- (vi) Esiste $X \subseteq A$ tale che (X, Σ) sia un reticolo booleano di cardinalità 4?

Esercizio 3. Si consideri l'operazione binaria associativa * definita in $\mathbb{Z}_8 \times \mathbb{Z}_8$ da:

$$(\forall a, b, c, d \in \mathbb{Z}_8) \big((a, b) * (c, d) = (ac, bc) \big).$$

- (i) Nel semigruppo ($\mathbb{Z}_8 \times \mathbb{Z}_8, *$) si stabilisca se esistono elementi neutri a destra, neutri a sinistra, neutri.
- (ii) Sempre in $(\mathbb{Z}_8 \times \mathbb{Z}_8, *)$, si determinino le coppie (a, b) tali che

$$((a,b)*(\bar{4},\bar{1})=(\bar{0},\bar{0})) \wedge ((\bar{4},\bar{1})*(a,b)=(\bar{0},\bar{0})).$$

(iii) Verificare se $\mathbb{Z}_8 \times \{\bar{0}\}\ e \{\bar{0}\} \times \mathbb{Z}_8$ sono parti chiuse rispetto a *. In caso di risposta affermativa studiare le strutture indotte (sono semigruppi, monoidi, gruppi? Sono commutative?).

(i) Trovare in $\mathbb{Z}_7[x]$, se ne esistono, polinomi: Esercizio 4.

- (α) f, di grado 7, che abbia 7 radici distinte in \mathbb{Z}_7 ;
- (β) g, di grado 7, che sia il prodotto di 7 fattori irriducbili ed abbia esattamente una radice
- (γ) h, di grado 7, che sia il prodotto di 7 fattori irriducbili e non abbia radici in \mathbb{Z}_7 .
- (ii) Scomporre, in $\mathbb{Z}_7[x]$, $x^4 \bar{4}$ in prodotto di fattori irriducibili monici.