2024-01-31 底盘功率限制.md

底盘功率限制

version 1.2.0 author dungloi

理论

RoboMaster 对抗赛相关规则针对步兵、英雄和哨兵三个兵种设置了底盘功率限制,机器人底盘需在功率限制 范围内运行;裁判系统持续监控机器人底盘功率,对功率超限的机器人按一定规则进行惩罚。考虑到机器人在 运动过程中难以准确控制瞬时输出功率,为避免因瞬时超功率导致的惩罚,规则设置了缓冲能量 Z。

更多描述请参考最新规则。

因此,底盘功率限制算法的目标是:在保证底盘运动可控的前提下,将底盘总功率(所有轮组叠加之和)限制 在功率上限附近,并充分利用缓冲能量,实现底盘的平稳迅速启停、流畅运动,确保不受到底盘功率超限惩 罚。

数据说明

对于机器人底盘,功率相关的数据来源有裁判系统、超级电容功率控制板量测和电机电调反馈,能够读取以下 信息:

数据名	符号 (单位)	数 据 源	频率 (Hz)	描述
底盘 功率 上限	\$P_m(\rm W)\$	裁判系统	10	当前等级下该兵种的底盘功率上限(max),超限则首先扣除缓 冲能量
底盘 缓冲 能量	\$Z(\rm J)\$	裁判系统	10	缓冲能量余量,随裁判系统功率量测动态变化,若耗尽将导致超功率惩罚。目前(2023赛季)无增益上限为 60 J,触发飞坡增益后增加至 250 J 一次
底盘功率	\$P_{r}(\rm W)\$	裁判系统	10	裁判系统(referee)测得的底盘总功率
底盘 功率	\$P_{c}(\rm W)\$	超电主控	1000	超电主控(cap)测得的底盘总功率
电机 转速	\$\Omega(\rm rpm)\$	电调	1000	电机转速反馈

数据名	符号 (单位)	数据源	频率 (Hz)	描述
电机 转矩 电流	\$i_q(\rm A)\$	电调	1000	电机转矩电流反馈,手册未指明量纲,经测试与输入一致:C620 电调原始值范围 \$[-16384,16384]\$,线性映射到 \$[-20,20] \rm A\$.

人为指定或计算得到以下数据, 频率为 1KHz:

数据名	符号 (单位)	描述
底盘功率 模型计算 值	\$P_{model} (\rm W)\$	根据功率模型计算得到的底盘功率
底盘功率 估计	\$\hat P(\rm W)\$	滤波后验估计结果
底盘功率 模型预测 值	\$P_{pred}(\rm W)\$	根据电机功率模型计算得到,预测(predict)下一控制周期的底盘功率
动态底盘 功率上限	\$P_{ref}(\rm W)\$	计算得到的动态变化、用于功率限制的底盘功率目标上限
底盘缓冲 能量目标 值	\$Z_{ref}(\rm J)\$	缓冲能量目标值,用户给定
电机转速 目标值	\$\Omega_{ref} (\rm rpm)\$	电机转速目标值,用户给定
电机转矩 电流目标值	\$i_{ref}(\rm A)\$	电机转矩电流目标值,基于转速目标值由控制器计算得出。C620 电调原始值范围 \$[-16384,16384]\$,线性映射到 \$[-20,20] \rm A\$.

电机功率模型

根据现有能够获取的数据,一个较为准确的电机功率模型为:

 $P=\Omega \ H-P_{loss}$

其中 \$M\$ 表示输出转矩,\$P_{loss}\$ 表示除机械输出以外的功率损耗,主要为铜损耗。

考虑电磁转矩和转矩电流 $_{i_q}$ 近似成正比(如下图,C620 电调搭配 M3508 电机速度闭环控制的电机性能曲线),定义转矩系数 $_{k_m}$ 有

 $M = k_{M} \cdot i_q$

image-20230109180629888

根据手册, 转矩常数为 \$0.3\ \rm N\cdot m/A\$, 可作为 \$k_M\$ 的初值参考。

使用转矩电流近似表示线电流,基于 \$P_{loss} = R\cdot i^2\$,在电机堵转的情况下统计 \$i_q\$ 和功率观测 \$P_{measure}\$,拟合损耗曲线。以 C620 电调 + M3508 电机为例,堵转电机,在 5000ms 内以 \$[0:16384/2000:16384]\$ 扫描转矩电流,\$P-i\$ 曲线拟合结果如下(供参考):

3508_total_fit_ref

其中 \$\hat R=p 1\$; \$p 2\$ 视为 0; \$p 3\$ 为电机所接入电路的静息功率。

功率估计

融合估计

对实际功率进行后验估计时,采用基于模型的先验预测数据(见下文)与量测数据通过卡尔曼滤波融合的形式 取得:

\$\$ \begin{split} 预测: &\hat x_{k}^-=\rm \mathbb P_{model}\ &P_k^-=P_{k-1}+Q\ 更新: &K_k=P_{k}k-1} (P_{k}k-1)+R)^{-1}\ &\hat x_{k}=\hat x_{k}k-1}+K_k ({\rm \mathbb P_{measure}}-\hat x_k^-)\ &P_k=(I-K_k)P_{k}^- \end{split} \$\$

- 若底盘上未装有超级电容模块: \$\rm \mathbb P_r\$ 量测 (10Hz) 与 \$\rm \mathbb P_{model}\$ (1kHz) 融合进行功率估计。
- **若底盘上装有超级电容模块: **裁判系统不再直接监测底盘输出功率,此时 \$\rm \mathbb P_c\$ 量测 (1kHz) 与 \$\rm \mathbb P_{model}\$ 融合进行功率估计。

Interpretation of the second o

功率计算及预测模型

考虑 C620 电调具有优良的转矩电流调控性能,认为实际转矩电流能够密切跟随给定的转矩电流目标值。而电机的转速是缓慢变化的过程,不能突变,1ms 控制周期内的变化忽略不计。给出电机目标转速后,使用下式预测一个控制周期(1ms)后单个电机的功率:

\$\$ P_{pred_j}= \hat k_{M}\cdot\Omega_j\cdot i_{ref_j}+\hat R\cdot i^2_{ref_j} \$\$

本算法**要求使用纯比例控制**计算电机的目标转矩电流 i_{ref} , 按照各电机的 PID 控制器参数,比例系数分别为 K_{p_i} , 同时进行结果的量纲转换(转换至 A)和限幅:

 $f_{\rm TO_A\ [}{\rm TO_A\ [}{\rm MAX}\ (K_{p_j}(\Omega_{p_j}(\Omega_{p_j}))]$

对于底盘的全部电机以及底盘的静息功率 \$P_0\$, 叠加以预测总功率:

 $p_{\pred}=\hat k_{M}\sum_j \Omega_j \$

其中 \$\hat R\$ 参数为拟合得到的常量;由于 \$k_{M}\$ 并不能精确得到,需要根据上面的功率后验估计,基于模型不断进行修正:

\$\$ \hat k_{M} = {\hat P - \sum_j \hat R\cdot i_{q_j}^2-P_0\over \sum_j \Omega_j\cdot i_{q_j}} \$\$

需要注意,裁判系统无法量测负功率,因此当以裁判系统作为功率量测且估计功率为负时,不应更新 \$\hat k_M\$。

进行功率估计是为了得到更准确的预测模型,我们使用该模型进行下文所述的功率限制。

功率限制

算法主要流程如下:

power_limiter.drawio

此外,注意以下特殊情况:

- 单个电机期望输出电流超限,需要按照电流上限解出其转速限制系数
- 当出现异常情况导致缓冲能量过低(超电电压过低)时,触发保护机制,应给出极低的目标功率
- 若出现裁判系统或超电主控断联,需做对应处理。

计算动态功率上限

算法中额外计算动态底盘功率上限 \$P_{ref}\$ (而不直接使用 \$P_m\$ 作为上限), 一是为了应对电机启动阶段瞬时功率较大的情况,此时功率限制应适当放宽,若以 \$P_m\$ 为实际功率上限将难以启动;二是为了充分利用部分缓冲能量。计算过程如下:

- 求取缓冲能量调节控制量 \$u(Z)\$, 采用 \$PD\$ 控制以增加稳定性:
- $\$ \begin{align} e(Z)=&Z_{ref}-Z\ u(Z)=&K_{pz}e(Z)+K_{dz}{\Delta e(Z)\setminus T} \end{align} \$\$
 - 参照裁判系统的缓冲能量计算逻辑 Z = Z + (Pm P),要使控制量 \$u(Z)\$ 生效,功率目标值应为:
- $P_{ref}=P_m-u(Z)$
 - 安全起见 \$Z_{ref}\$ 一般设置为 \$20\rm J\$ 左右。为充分利用缓冲能量,对于不同的 \$P_m\$ 应采用动态参数,比例系数的选取可参考下式:
- $K_{pz}=\frac{P_m}{Z_{ref}}$

求解转速削减系数

由功率预测模型,当预测出的底盘功率大于动态功率上限时,同比例削减各电机目标转速。设置削减系数 \$k_l\$,削减后电机 \$\Omega_{ref}'=k_l\cdot\Omega_{ref}\$.求取 \$k_l\$,使得

 $\$ \hat k_{M}\sum_j \Omega_j \cdot K_{p_j}(k_l \Omega_{ref_j}-\Omega_j)+ \sum_j \hat R \cdot [K_{p_j}(k_l \Omega_{ref_j}-\Omega_j)^2 + P_0 \triangleq P_{ref} \tag{1} \$\$

记

若解存在(\$\beta^2-4\alpha\gamma\ge0\$),解得 \$\$ k_l=\frac{-\beta\pm\sqrt{\beta^2-4\alpha\gamma}} {2\alpha},取解\in (0,1) \$\$

若出现解不存在的情况,求使得 \$(1)\$ 式左边结果最小的 $\$k_l$ \$ 值,以尽可能地限制功率: $\$k_l$ = -{\beta \over 2\alpha } \$\$ 若 $\$K_{p_j}(k_l \Omega_{p_j}(k_l)$ \$ 超出电机可输出的转矩电流上限,则应按照该上限额外计算一个转速限制 $\$k_{e_j}$ \$,使得 $\$K_{p_j}(k_{e_j} k_l \Omega_{p_j}(k_{e_j})$ \$ / Comega_{ref_j}-\Omega_j)\triangleq 对应超出的上限 \$\$ 并按照所有超限轮组中的 $\infty(k_{e_j})$ \$,作用于底盘的全部轮组。经削减的轮组目标转速表示为:

\$\$ \Omega_{ref}'=\min{k_{e_j}}\cdot k_l\cdot\Omega_{ref} \$\$ 经证明,削减转速的整个控制过程均能达到降低功率的效果。

快速开始

组件源码仓库地址: https://github.com/ZJU-HelloWorld/HW-Components

底盘功率限制算法依赖于卡尔曼滤波器和 PID 控制器。要在项目中使用该组件,需添加仓库内的以下文件:

```
algorithms/power_limiter.c
algorithms/power_limiter.h
algorithms/pid.c
algorithms/pid.h
algorithms/filter.c
algorithms/filter.h
tools.h
system.h
```

使用前准备

底盘功率限制算法涉及 CMSIS-DSP 矩阵运算等操作,使用前需要做以下准备:

- 添加源文件, 包含头文件路径; 注意 DSP 版本须在 1.10.0 及以上
- 添加预处理宏以开启浮点运算单元 (FPU)
- 在使用 STM32CubeMX 生成项目时,请在 Code Generator 界面 Enable Full Assert,来帮助断言 算法中的错误;在 main.c 中修改 assert_failed 函数以指示断言结果
- 在 system.h 中 system options: user config 处进行系统设置

示例

首先在限制器头文件 power limiter.h 中设置是否安装超级电容模块的宏定义开关,例如:

```
/* USER CONFIG -----*/
#define SUPER_CAP_EXISTING 1
```

在项目中引用头文件:

```
#include "power_limiter.h"
```

实例化一个底盘功率限制器,并初始化一个静态参数结构体数组,参数含义见组件说明。如:

```
PwrLimiter_t limiter;

PwrLimitStaticParams_t static_param = {
    .motor_nums = 4u,
```

其中 r_loss, p_bias (即 \$P_0\$), FusionKfParams 参数与算法原理相关,需要事先拟合、计算及整定。

初始化底盘功率限制器,如:

```
PwrLimiterInit(&limiter, &static_param);
```

调用限制器时,首先设置动态参数数组,然后调用 updateRuntimeParams 方法进行数据更新,如:

```
float spd_measure_rpm_[<WHEEL_NUM>] = {...};
float iq_measure_[<WHEEL_NUM>] = {...};
float spd_ref_rpm_[<WHEEL_NUM>] = {...};
Pid_t* motor_pid_instance_[<WHEEL_NUM>] = {...};
PwrLimitRuntimeParams_t runtime_par = {
    .is referee online = true,
    .p_rfr_max = <REFEREE_DATA>,
    .z_rfr_measure = <REFEREE_DATA>,
    .p_rfr_measure = <REFEREE_DATA>,
#if SUPER_CAP_EXISTING
    .is_super_cap_online = true,
    .super cap mode = PWR LIMIT SUPER CAP OFF,
    .p_dummy_max = <REFEREE_DATA>,
    .z_dummy_measure = <REFEREE_DATA>,
    .p cap measure = <REFEREE DATA>,
#endif
    .iq_measure_a = iq_measure_a_,
    .spd_measure_rpm = spd_measure_rpm_,
    .spd_ref_rpm = spd_ref_rpm_,
    .motor_pid_instance = motor_pid_instance_
};
limiter.updateRuntimeParams(&limiter, &runtime_par);
```

其中若底盘上安装了超电模块,则启用 is_super_cap_online 等参数(已由 SUPER_CAP_EXISTING 宏开关确定)。

然后计算限制后的各电机转速,存储于用户提供的数组中。

注意:最终得到的是与动态参数设置顺序对应的所有电机的目标转速,还需要自行使用控制算法得到目标转矩电流,再发送给电调。

```
float limited_spd_ref_rpm[<WHEEL_NUM>];
limiter.calcLimitedSpd(&limiter, limited_spd_ref_rpm);
```

组件说明

PwrLimiter 类

底盘功率限制器。

属性

名称	类型	描述
static_params	PwrLimitStaticParams_t	功率限制静态参数,包括电机数量和用户设定的参数
runtime_params	PwrLimitRuntimeParams_t	功率限制动态参数,包括连接状态、裁判系统数据、 转速及电流量测和目标值、电机 Kp 等
data	PwrLimitData_t	运行时中间项数据
p_ref_pid	Pid_t	控制缓冲能量的 PD 控制器
pwr_kf	Kf_t	融合功率模型计算值和观测值的卡尔曼滤波器

方法

名称	参数说明	描述
updateRuntimeParams	传入动态参数数组指针 PwrLimitRuntimeParams_t* params	更新运行时动态 参数
calcLimitedSpd	传入数组首地址 float* limited_spd_ref_rpm, 用于存储限制后电机转速的输出结果	计算限制后的各 电机转速

PwrLimitStaticParams 结构体

存储静态参数。

名称	类型	示例值	描述
motor_nums	uint8_t 4 电相		电机数量
z_ref	uint16_t	20	缓冲能量目标收敛值
z_danger	uint16_t	10	缓冲能量最小危险值,以避免缓冲能量耗尽

名称	类型	示例值	描述
p_bias	float	8.0f	底盘静息功率
r_loss	float	/	功率损耗相关参数
PwrKfParams	/	/	—————————————————————————————————————

PwrLimitRuntimeParams 结构体

存储算法运行时所需的动态参数。

名称		示例值	描述	
is_referee_online	bool	true / false	裁判系统连接状态	
is_super_cap_online	bool	true / false	(仅当安装超电模 块时启用)超级电 容主控连接状态	
super_cap_mode	PwrLimitCapMode_t	PWR_LIMIT_SUPER_CAP_OFF PWR_LIMIT_SUPER_CAP_NORMAL PWR_LIMIT_SUPER_CAP_BOOST	(仅当安装超电模 块时启用) 超级电 容状态模式	
p_rfr_max	uint16_t	50	裁判系统功率上限	
z_rfr_measure	uint16_t	60	裁判系统缓冲能量 量测	
p_rfr_measure	float	50.0f	裁判系统功率量测	
p_dummy_max	uint16_t	50	(仅当安装超电模 块时启用)超级电 容启用时,提供的 伪功率上限	
z_dummy_measure	uint16_t	60	(仅当安装超电模 块时启用)超级电 容启用时,提供的 伪缓冲能量	
p_cap_measure	float	50.0f	(仅当安装超电模 块时启用)超级电 容主控功率量测	
iq_measure_a	int16_t*	/	所有电机转矩电流 量测的数组首地 址,单位:\$\rm A\$	
spd_measure_rpm	int16_t*	/	所有电机转速量测 的数组首地址,单 位:\$\rm rpm\$	

名称	类型	示例值	描述
spd_ref_rpm	int16_t*	/	所有电机转速目标 值的数组首地址, 单位: \$\rm rpm\$
motor_pid_instance	Pid_t**	/	底盘电机转速控制 器句柄列表指针

附录

版本说明

版本号	发布日期	说明	贡献者
version 1.0.0	2021.12.06	完成新版功率限制研发,采用简单模型	薛东来
version 1.0.1	2022.07.17	配合新超电逻辑联调,整理代码	薛东来
version 1.1.0	2023.01.11	修改估计细节,完善模型	薛东来
version 1.2.0	2023.05.17	1. 拟合曲线 2. 测试并修正电机输出电流超限问题以及km估计不准问题 3. 结合超电逻辑完善	薛东来 赵炜