SOFTWARE VALIDATION

Painkiller Injection System

Table of Contents

System Architecture	2
T1: Unit Test	3
T1.1: Injector Unit Test	3
T1.2: PISdisplay Unit Test	5
T2: Integration Test	8
T3: Functional Test	9
T3.1: Use Case "Power On"	9
T3.2: Use Case "Power Off"	9
T3.3: Use Case "Start Injection"	9
T3.4: Use Case "Stop Injection"	9
T3.5: Use Case "Change baseline rate"	9
T3.6: Use Case "Change bolus amount"	10
T3.7: Use Case "Lock"	10
T3.8: Use Case "Unlock"	10
T3.9: Use Case "Inject Bolus"	10
T4: UPPAAL Model Checking	11
T4.1 PIS Model	11
T4.2 PowerButton Model	11
T4.3 InjectionButton Model	12
T4.4 PatientButton Model	12
T4.5 Properties Checking	12

System Architecture

The system architecture is shown below:

T1: Unit Test

T1.1: Injector Unit Test

T1.1.1: Test injector(a)

```
function obj =injector(a) Tcover1.1.1
    obj.inject_rate = 0.01;
    obj.bolus_volume = 0.2;
    obj.inject_log = [];
end
```

- Coverage Criteria: Statement coverage
- Test case

	Test Case T1.1.1
Coverage Item	Tcover1.1.1
Input	Null
State	Initialization of the injector system
Expected Output	obj =injector(a)

Test coverage: 1/1=100%Test result: 1 passed

T1.1.2: Test update_rate ()

- Coverage Criteria: Statement coverage
- Test case

	Test Case T1.1.2
Coverage Item	Tcover1.1.2
Input	Injector system
	A target rate
State	An update of baseline injecting rate
Expected Output	Initialized injector
	The injector with baseline rate updated

Test coverage: 1/1=100%Test result: 1 passed

T1.1.3: Test update_bolus ()

- Coverage Criteria: Statement coverage
- Test case

	Test Case T1.1.3
Coverage Item	Tcover1.1.3

Input	Injector system
	A target bolus volume
State	an update of bolus injecting rate
Expected Output	Initialized injector
	The injector with bolus volume updated

Test coverage: 1/1=100%Test result: 1 passed

T1.1.4: Test injection ()

- Coverage Criteria: Statement coverage
- Test case

	Test Case T1.1.4
Coverage Item	Tcover1.1.4
Input	Injector system
State	An injection happens at current moment
Expected Output	Initialized injector
	A log that has recorded the most recent
	injection

Test coverage: 1/1=100%Test result: 1 passed

T1.1.5: Test bolus ()

- Coverage Criteria: Statement coverage
- Test case

	Test Case T1.1.5
Coverage Item	Tcover1.1.5
Input	Injector system
	A bolus input
State	A bolus shot happens at current moment
Expected Output	Initialized injector
	A log that has recorded the most recent bolus

Test coverage: 1/1=100%Test result: 1 passed

T1.1.6: Test timefly ()

end

- Coverage Criteria: Statement coverage
- Test case

	Test Case T1.1.6
Coverage Item	Tcover1.1.6
Input	Injector system
State	No action in the current moment
Expected Output	Initialized injector
	A log that has a 0 at the end

Test coverage: 1/1=100%Test result: 1 passed

T1.1.7: Test wipe ()

```
function wipe(this) Tcover1.1.7
    this.inject_rate = 0.01;
    this.bolus_volume = 0.2;
    this.inject_log =[];
end
```

Coverage Criteria: Statement coverage

Test case

	Test Case T1.1.7
Coverage Item	Tcover1.1.7
Input	Injector system
	A current baseline rate and current bolus
	volume
State	Need to reset the whole system
Expected Output	Initialized injector
	Cleared log
	Default injection rate
	Default bolus volume

Test coverage: 1/1=100%Test result: 1 passed

T1.2: PISdisplay Unit Test

This Unit Test tests some of the logic functions written in PISdisplay. However, some logical calculation related operation are written in the callback functions of the items, so they will be not tested here but rather in the Ultest

For the sake of safety and security, we have set some core functions and properties to private in PISdisplay. However, as we are doing a white box test and for efficiency tests, please modify the following properties and methods to "public" in order for the testcase to access.

```
properties (Access = private)
    sf % stateflow function
    cc % instance for class
    Patient UI % multiwindow
```

T1.2.1: Test live()

end

- Coverage Criteria: Branch coverage
- Test case

	Test Case T1.2.1.1	Test Case T1.2.1.2	Test Case T1.2.1.3
Coverage	Tcover1.2.1.1	Tcover1.2.1.4	Tcover1.2.1.3
Item	Tcover1.2.1.2	Tcover1.2.1.6	
	Tcover1.2.1.5		
Input	PISdisplay	 PISdisplay 	PISdisplay
	an inject_log length>86400	an inject_log	an inject_log length>=10
	with all 0.02	length>=10 with	with all 0.02
	houramount = dayamount=	all 0.02	• houramount =
	3600*0.02	• houramount =	dayamount= 0.2
	• power is on	dayamount= 0	• power is on
	 injection switch is off 	power is on	 injection switch is on
		 injection switch 	• injection rate=0.02*60
		is off	
State	injecting over 1 day and	Normal condition	Normal injection and
	overamount	and no current	normal injection
		injection	
Expected	houramountgauge=3599*0.02	• log(end)==0.02	• log(end)==0.02
Output	dayamountgauge=3599*0.02	 the indicating 	• HourAmountGauge==0.22
	 the indicating light turns 	light turns green	DayamountGauge==0.22
	yellow		

• Test coverage: 3/3=100%

Test result: 3 passed

Test1.2.2: test wipe()

Coverage Criteria: Statement coverage

Test case

	Test Case T1.2.2
Coverage Item	Tcover1.2.2
Input	PISdisplay
	an inject_log length>=10 with all 0.02
	houramount = dayamount= 0.2
	• power is on
	injection switch is on
	• injection rate=0.02*60
State	Need to reset the system when the power is
	switched off and call wipe()
Expected Output	Initialized injector
	• log(end)==[]
	HourAmountGauge==0
	DayamountGauge==0

Test coverage: 1/1=100%Test result: 1 passed

Test1.2.3: test wipe()

Coverage Criteria: Statement coverage

Test case

	Test Case T1.2.3
Coverage Item	Tcover1.2.3
Input	PISdisplay
	an inject_log length>=10 with all 0.02
	houramount = dayamount = 0.2
	• power is on
State	To inject a bolus for patients
Expected Output	• log==[end] == bolus_volume
	dayamount = 0.02+bolus_volume
	houramount=0.02+bolus_volume

Test coverage: 1/1=100%Test result: 1 passed

T2: Integration Test

The implementation only contains UI and one core class name "Injector", thus the validation will skip this part and directly continue with Functional Test

T3: Functional Test

T3.1: Use Case "Power On"

The Physician turns on the injector.

T3.2: Use Case "Power Off"

The Physician turns off the injector.

Test case

	Test Case TC3.1
Coverage Item	T3.1 T3.2
Input	PISdisplay
State	To turn on and turn off the machine
Expected Output	The machine turns on first
	The machine turns off

• Test result: 1 passed

T3.3: Use Case "Start Injection"

T3.4: Use Case "Stop Injection"

The Physician turns on the injector to start injecting. He also changes the baseline rate in the middle. The Physician turns off the injector after the injecting. During the process, the there maybe over injecting from either baseline injection or from bolus injection.

Test case

	Test Case TC3.4 TC3.7 TC3.8
Coverage Item	T3.3 T3.4
Input	PISdisplay
	Turn on the injection switch
State	To turn on and turn off the machine
Expected Output	The machine turns on first.
	The machine starts to inject.
	The machine stops injecting.

• Test result: 1 passed

T3.5: Use Case "Change baseline rate"

The Physician tries to change the baseline injection rate and tends to change it to over 0.1

Test case

	Test Case TC3.2
Coverage Item	T3.5
Input	PISdisplay
	Changes to baseline rate
State	Need to change baseline rate
Expected Output	The machine turns on first.
	• The baseline rate can be changed for the first
	time

The baseline cannot be changed for the
second time

• Test result: 1 passed

T3.6: Use Case "Change bolus amount"

The Physician tries to change the bolus volume and tends to change it to over 0.5

Test case

	Test Case TC3.3
Coverage Item	T3.6
Input	PISdisplay
	Changes to bolus volume
State	Need to change bolus volume
Expected Output	The machine turns on first.
	• The bolus volume can be changed for the first
	time
	The bolus volume cannot be changed for the
	second time

• Test result: 1 passed

T3.7: Use Case "Lock"

T3.8: Use Case "Unlock"

The Physician locks the machine so that no buttons on the machines can be changed except for the patient button to shot bolus.

Test case

	Test Case TC3.5 TC3.6
Coverage Item	T3.7 T3.8
Input	PISdisplay
	Locks the machine
	Patient injects bolus
State	Need to lock the machine
Expected Output	The machine turns on first.
	The machine is locked so that nothing can be
	modified
	The patient button is still workable.

• Test result: 1 passed

T3.9: Use Case "Inject Bolus"

Patients want to inject a bolus of painkiller for himself to kill the pain no matter if the machine is locked.

Test case

	Test Case TC3.6
Coverage Item	T3.9
Input	PISdisplay
	Locks the machine

	Patient injects bolus
State	Need to lock the machine
Expected Output	The machine turns on first.
	The machine is locked so that nothing can be
	modified
	The patient button is still workable.

• Test result: 1 passed

T4: UPPAAL Model Checking

This UPPAAL runs under Windows10 with UPPAAL 4.1.24.

Since UPPAAL weakly supports Float data type, all the real data required has been multiplied by 10.

Further, since the baseline input rate and the bolus volume does not impact the logic and the structure of the system, the model used r=1 and b=20 to resemble the input, respectively.

T4.1 PIS Model

This resembles the implementation of Matlab painkiller system. Most of the core functions are reimplemented in UPPAAL again.

The core function is *ifvalid(input_amount)*, which checks if a new input of input_amount will violate the limit of input both daily and hourly.

T4.2 PowerButton Model

The POWERON and POWEROFF resembles the push action of the power switch.

T4.3 InjectionButton Model

The INJECTIONON and INJECTIONOFF resembles the push action of real injection switch

T4.4 PatientButton Model

The GiveBolus resembles the push of patient button by the patients to get an extra bolus input.

T4.5 Properties Checking

AO 75°1 and r°5 AO 5°10 and r°50 AO begravio AO day core500

These properties checking mainly focus on the limits of injection of baseline and bolus to see if there will be a mis-overshoot. It turns out that the system is safe and sound.