Multilevel Multilingual

Multilevel Models in Stata, R and Julia

Andrew Grogan-Kaylor

2024 - 03 - 19

Table of contents

1	Mul	tilevel Multilingual 5
	1.1	Introduction
	1.2	An Introduction To Equations and Syntax
		1.2.1 Stata 5
		1.2.2 R
		1.2.3 Julia
2	Des	criptive Statistics 7
	2.1	Descriptive Statistics
		2.1.1 Stata 7
		2.1.2 R
		2.1.3 Julia
3	Unc	conditional Model 10
	3.1	The Equation
	3.2	Run Models
		3.2.1 Stata
		3.2.2 R
		3.2.3 Julia
4	Cros	ss Sectional Model 14
	4.1	The Equation
	4.2	Stata
		4.2.1 Get The Data
		4.2.2 Graph
		4.2.3 Run The Model
	4.3	R
		4.3.1 Get The Data
		4.3.2 Graph
		4.3.3 Run The Model
	4.4	Julia
		4.4.1 Load The Needed Packages And Load The Data
		4.4.2 Graph
		4.4.3 Change Country To Categorical
		4.4.4 Run The Model

List of Figures

4.1	Outcome by Parental Warmth (Stata)	ľ
4.2	Outcome by Parental Warmth (R)	1
4.3	Outcome by Parental Warmth (Julia)	2(

List of Tables

	1.1	Sample of Simulate	d Multilevel Data																	F
--	-----	--------------------	-------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

1 Multilevel Multilingual

1.1 Introduction

Below, I describe the use of Stata, R, and Julia to estimate multilevel models. ## The Data

The examples use the simulated_multilevel_data.dta file from *Multilevel Thinking*. Here is a direct link to download the data.

outcome
59.18
61.54
51.87
51.71
55.88
60.78

Table 1.1: Sample of Simulated Multilevel Data

1.2 An Introduction To Equations and Syntax

To explain statistical syntax for each software, I consider the general case of a multilevel model with dependent variable y, independent variables x and z, clustering variable group, and a random slope for x. i is the index for the person, while j is the index for the group.

$$y = \beta_0 + \beta_1 x_{ij} + \beta_2 z_{ij} + u_{0j} + u_{1j} \times x_{ij} + e_{ij}$$
(1.1)

1.2.1 Stata

In Stata mixed, the syntax for a multilevel model of the form described in Equation 1.1 is:

mixed y x || group: x

1.2.2 R

In R lme4, the general syntax for a multilevel model of the form described in Equation 1.1 is:

```
lmer(y \sim x + z + (1 + x || group), data = ...)
```

1.2.3 Julia

In Julia MixedModels, the general syntax for a multilevel model of the form described in Equation 1.1 is:

```
fit(MixedModel, @formula(y ~ x + z + (1 + x | group)), data)
```

2 Descriptive Statistics

2.1 Descriptive Statistics

2.1.1 Stata

```
use simulated_multilevel_data.dta // use data
```

summarize outcome warmth physical_punishment HDI
tabulate group

Variable		Obs	Mean	Std. dev.	Min	Max
outcome		3,000	53.46757	6.65179	33.39014	76.75101
warmth		3,000	3.524333	1.889956	0	7
physical_p~t		3,000	2.494667	1.380075	0	5
HDI	1	3,000	64.76667	17.24562	33	87

arbitrary group variable	Freq.	Percent	Cum.
1 2	1,507 1,493	50.23 49.77	50.23
Total	3,000	100.00	

2.1.2 R

```
library(haven) # read data in Stata format

df <- read_dta("simulated_multilevel_data.dta")</pre>
```

R's descriptive statistics functions rely heavily on whether a variable is a *numeric* variable, or a *factor* variable. Below, I convert two variables to factors (factor) before using summary¹ to generate descriptive statistics.

```
df$country <- factor(df$country)

df$group <- factor(df$group)

summary(df)</pre>
```

```
HDI
   country
                                     family
                                                        id
                                                                        group
                                        : 1.00
       : 100
                       :33.00
                                                   Length: 3000
                                                                        1:1507
1
                Min.
                                 Min.
2
       : 100
                1st Qu.:53.00
                                 1st Qu.: 25.75
                                                   Class : character
                                                                        2:1493
3
                                 Median : 50.50
                                                   Mode :character
       : 100
                Median :70.00
4
       : 100
                Mean
                       :64.77
                                 Mean
                                         : 50.50
5
       : 100
                3rd Qu.:81.00
                                 3rd Qu.: 75.25
6
       : 100
                Max.
                       :87.00
                                 Max.
                                        :100.00
(Other):2400
physical_punishment
                                         outcome
                         warmth
Min.
       :0.000
                     Min.
                             :0.000
                                      Min.
                                              :33.39
1st Qu.:2.000
                     1st Qu.:2.000
                                      1st Qu.:48.78
Median :3.000
                     Median :4.000
                                      Median :53.64
Mean
       :2.495
                     Mean
                             :3.524
                                      Mean
                                              :53.47
3rd Qu.:3.250
                     3rd Qu.:5.000
                                      3rd Qu.:58.06
Max.
       :5.000
                     Max.
                             :7.000
                                      Max.
                                              :76.75
```

2.1.3 Julia

```
using Tables, MixedModels, MixedModelsExtras, StatFiles, DataFrames, CategoricalArrays, Data

df = DataFrame(load("simulated_multilevel_data.dta"))
```

Similarly to R, Julia relies on the idea of variable type. I use transform to convert the appropriate variables to categorical variables.

¹skimr is an excellent new alternative library for generating descriptive statistics in R.

```
Otransform!(df, :country = categorical(:country))
Otransform!(df, :group = categorical(:group))
```

describe(df)

8×7 Da	ataFrame						
Row	variable	mean	min	median	max	nmissing	eltyp
	Symbol	Union	Any	Union	Any	Int64	Union
1	country		1.0		30.0	0	Union
2	HDI	64.7667	33.0	70.0	87.0	0	Union
3	family	50.5	1.0	50.5	100.0	0	Union
4	id		1.1		9.99	0	Union
5	group		1.0		2.0	0	Union
6	physical_punishment	2.49467	0.0	3.0	5.0	0	Union
7	warmth	3.52433	0.0	4.0	7.0	0	Union
8	outcome	53.4676	33.3901	53.6426	76.751	0	Union
						1 column	omitted

1 column omitted

3 Unconditional Model

An *unconditional* multilevel model is a model with no independent variables. One should always run an unconditional model as the first step of a multilevel model in order to get a sense of the way that variation is apportioned in the model across the different levels.

3.1 The Equation

$$outcome_{ij} = \beta_0 + u_{0j} + e_{ij} \tag{3.1}$$

The Intraclass Correlation Coefficient (ICC) is given by:

$$ICC = \frac{var(u_{0j})}{var(u_{0j}) + var(e_{ij})}$$

$$(3.2)$$

In a two level multilevel model, the ICC provides a measure of the amount of variation attributable to Level 2.

3.2 Run Models

3.2.1 Stata

```
use simulated_multilevel_data.dta // use data
```

```
mixed outcome || country: // unconditional model
```

Performing EM optimization \dots

Performing gradient-based optimization: Iteration 0: Log likelihood = -9856.1548 Iteration 1: Log likelihood = -9856.1548

```
Computing standard errors ...
Mixed-effects ML regression
                                  Number of obs = 3,000
Group variable: country
                                  Number of groups = 30
                                  Obs per group:
                                          min = 100
                                          avg = 100.0
                                          max = 100
                                  Wald chi2(0)
                                  Prob > chi2
Log likelihood = -9856.1548
   outcome | Coefficient Std. err. z P>|z| [95% conf. interval]
______
    _cons | 53.46757 .3539097 151.08 0.000
                                    52.77392
______
 Random-effects parameters | Estimate Std. err. [95% conf. interval]
______
country: Identity
           var(_cons) | 3.348734 .9702594 1.897816 5.908906
         var(Residual) | 40.88284 1.060908
                                    38.8555
LR test vs. linear model: chibar2(01) = 169.64
                                 Prob >= chibar2 = 0.0000
estat icc // calculate icc
Intraclass correlation
______
                     ICC Std. err.
              Level |
                                    [95% conf. interval]
______
             country | .0757091 .0203761 .0442419 .1265931
```

3.2.2 R

```
library(haven)
df <- read_dta("simulated_multilevel_data.dta")</pre>
library(lme4) # estimate multilevel models
fit0 <- lmer(outcome ~ (1 | country),</pre>
            data = df)
summary(fit0)
Linear mixed model fit by REML ['lmerMod']
Formula: outcome ~ (1 | country)
  Data: df
REML criterion at convergence: 19712.5
Scaled residuals:
     Min
              1Q
                  Median
                                ЗQ
                                        Max
-2.97650 -0.68006 0.00936 0.67580 3.03510
Random effects:
 Groups Name Variance Std.Dev.
 country (Intercept) 3.478 1.865
 Residual
                    40.883
                              6.394
Number of obs: 3000, groups: country, 30
Fixed effects:
           Estimate Std. Error t value
(Intercept) 53.47 0.36 148.5
library(performance)
performance::icc(fit0) # calculate icc
# Intraclass Correlation Coefficient
```

Adjusted ICC: 0.078 Unadjusted ICC: 0.078

3.2.3 Julia

```
using Tables, MixedModels, MixedModelsExtras, StatFiles, DataFrames, CategoricalArrays, Data
df = DataFrame(load("simulated_multilevel_data.dta"))
@transform!(df, :country = categorical(:country))
m0 = fit(MixedModel, Oformula(outcome ~ (1 | country)), df)
Linear mixed model fit by maximum likelihood
 outcome ~ 1 + (1 | country)
          -2 logLik
                         AIC
                                   AICc
   logLik
                                               BIC
 -9856.1548 19712.3097 19718.3097 19718.3177 19736.3288
Variance components:
           Column Variance Std.Dev.
country (Intercept)
                      3.34871 1.82995
Residual
                     40.88285 6.39397
 Number of obs: 3000; levels of grouping factors: 30
 Fixed-effects parameters:
              Coef. Std. Error
                                      z Pr(>|z|)
(Intercept) 53.4676 0.353908 151.08
                                           <1e-99
icc(m0)
```

0.07570852291396266

4 Cross Sectional Model

4.1 The Equation

Recall the general model of Equation 1.1, and the syntax outlined in Section 1.2. Below in Equation 4.1, we consider a more substantive example.

 $\text{outcome}_{ij} = \beta_0 + \beta_1 \text{warmth}_{ij} + \beta_2 \text{physical punishment}_{ij} + \beta_3 \text{group}_{ij} + \beta_4 \text{HDI}_{ij} + u_{0j} + u_{1j} \times \text{warmth}_{ij} + e_{ij}$ (4.1)

4.2 Stata

4.2.1 Get The Data

```
use simulated multilevel data.dta
```

4.2.2 Graph

```
twoway scatter outcome warmth, xtitle("warmth") ytitle("outcome") title("Outcome by Parental
quietly graph export scatter.png, replace
```

4.2.3 Run The Model

```
mixed outcome warmth physical_punishment group HDI || country: warmth
```


Figure 4.1: Outcome by Parental Warmth (Stata)

Performing EM optimization ...

Performing gradient-based optimization:

Iteration 0: Log likelihood = -9668.198
Iteration 1: Log likelihood = -9667.9551
Iteration 2: Log likelihood = -9667.9534
Iteration 3: Log likelihood = -9667.9533
Iteration 4: Log likelihood = -9667.9532

Computing standard errors ...

Mixed-effects ML regression

Group variable: country

Number of obs = 3,000

Number of groups = 30

Obs per group:

min = 100 avg = 100.0 max = 100

Wald chi2(4) = 401.26Prob > chi2 = 0.0000

Log likelihood = -9667.9532

outcome | Coefficient Std. err. z P>|z| [95% conf. interval]

warmth | .9616447 .0581825 16.53 0.000 .8476091 1.07568

physical_punishment | -.8453802 .0798155 -10.59 0.000 -1.001816 -.6889448

group | 1.084344 .2200539 4.93 0.000 .6530461 1.515642

HDI | .010557 .0204522 0.52 0.606 -.0295286 .0506426

_cons | 49.87963 1.436612 34.72 0.000 47.06392 52.69534

Random-effects parameters				[95% conf.	_
country: Independent					
var(warmth)		1.83e-06	.0000173	1.76e-14	190.9774
var(_cons)			.9633726	1.924651	5.901676
var(Residual)			.9346936	34.23291	37.89842
LR test vs. linear model: chi	2(2	2) = 198.01		 Prob > chi:	2 = 0.0000

Note: LR test is conservative and provided only for reference.

4.3 R

4.3.1 Get The Data

```
library(haven)

df <- read_dta("simulated_multilevel_data.dta")</pre>
```

4.3.2 Graph

```
library(ggplot2)

ggplot(df,
    aes(x = warmth,
        y = outcome)) +
    geom_point() +
    labs(title = "Outcome by Parental Warmth")
```

Outcome by Parental Warmth

Figure 4.2: Outcome by Parental Warmth (R)

4.3.3 Run The Model

```
fit1 <- lmer(outcome ~ warmth + physical_punishment +</pre>
              group + HDI +
               (1 + warmth || country),
            data = df
summary(fit1)
Linear mixed model fit by REML ['lmerMod']
Formula: outcome ~ warmth + physical_punishment + group + HDI + ((1 |
    country) + (0 + warmth | country))
   Data: df
REML criterion at convergence: 19350.3
Scaled residuals:
    Min
            1Q Median
                            3Q
                                   Max
-3.4496 -0.6807 0.0016 0.6864 3.1792
Random effects:
 Groups
          Name
                      Variance Std.Dev.
 country (Intercept) 3.611568 1.90041
 country.1 warmth
                      0.001876 0.04331
                      36.049124 6.00409
 Residual
Number of obs: 3000, groups: country, 30
Fixed effects:
                   Estimate Std. Error t value
(Intercept)
                   49.88754 1.48203 33.662
warmth
                    0.96155 0.05875 16.367
physical_punishment -0.84556 0.07986 -10.588
group
                    1.08471 0.22017 4.927
HDI
                    0.01044 0.02116 0.493
Correlation of Fixed Effects:
            (Intr) warmth physc_ group
warmth
           -0.126
physcl_pnsh -0.135 -0.025
         -0.218 -0.010 -0.019
group
HDI
           -0.925 -0.006 0.008 -0.001
```

4.4 Julia

4.4.1 Load The Needed Packages And Load The Data

```
using Tables, MixedModels, StatFiles, DataFrames, CategoricalArrays, DataFramesMeta

df = DataFrame(load("simulated_multilevel_data.dta"))
```

4.4.2 Graph

Outcome by Parental Warmth

Figure 4.3: Outcome by Parental Warmth (Julia)

4.4.3 Change Country To Categorical

```
@transform!(df, :country = categorical(:country))
```

4.4.4 Run The Model

```
Linear mixed model fit by maximum likelihood
outcome ~ 1 + warmth + physical_punishment + group + HDI + (1 + warmth | country)
logLik -2 logLik AIC AICC BIC
```

-9667.9392 19335.8783 19353.8783 19353.9385 19407.9357

Variance components:

Column Variance Std.Dev. Corr.

country (Intercept) 3.2369484 1.7991521

warmth 0.0001080 0.0103903 +1.00

Residual 36.0187144 6.0015593

Number of obs: 3000; levels of grouping factors: 30

Fixed-effects parameters:

	Coef.	Std. Error	Z	Pr(> z)
(Intercept)	49.9018	1.43435	34.79	<1e-99
warmth	0.961545	0.0582135	16.52	<1e-60
physical_punishment	-0.845389	0.0798149	-10.59	<1e-25
group	1.08524	0.220055	4.93	<1e-06
HDI	0.0101984	0.0204401	0.50	0.6178