Circular #4

Reference Data	
Mass of Earth	$5.98 \times 10^{24} \mathrm{kg}$
Radius of Earth	$6.38 \times 10^6 \mathrm{m}$
Mass of Moon	$7.35 \times 10^{22} \mathrm{kg}$
Radius of Moon	$1.74 \times 10^6 \mathrm{m}$

1. A satellite orbits the earth at a distance $1{,}120 \text{ km} (1.12 \times 10^6 \text{ m})$ above the Earth's surface. If the force of gravity acting on the satellite is 2100 N, what is the mass of the satellite? (*Hint:* think carefully about what the radius is.)

- 2. A astronaut has a mass of 92 kg.
 - (a) What is the force of gravity between the astronaut and the earth? (Use $F_G = Gm_1m_2/d^2$.)

- (b) Let's try it a different way. What is the astronaut's weight on earth using the equation $F_G = mg$?
- (c) The astronaut now travels to the moon. What is the force of gravity between the astronaut and the moon when he stands on its surface? (Use $F_G = Gm_1m_2/d^2$.)

(d) Use the equation $F_G = mg$ to figure out what g (the acceleration of gravity) is on the surface of the