Nell'ultima lezione abbiano introdoto il concetto di RANGO di un insieme di vettori.
Richiamiamo qui la definizione per comodità.

Def: Sia V una spario rettoriale su K e sia fry,..., ref un sottoinsieure finita di V.
10 RANGO di fry,..., ref è la dinensione del sottogoria rettoriale generato da VI,..., re:

rg(//4,..., /e3) = dim(</1,..., /e>).

Equivalentemente è il numero massimo di vettori Cintearmente indipendenti in gv. ..., vez.

A partire de questa definizione, definiano ora il rango di una matrice.

Def: Sia $A \in \mathcal{C}$ Mu, n(K).

10 RANGO PER RICHE di $A \in \mathcal{C}$ rango dell'insieme delle sue right (vettori in K^n).

11 RANGO PER COLONNE di $A \in \mathcal{C}$ rango dell'insieme delle sue colonne (vettori in K^m).

& sempio

Considerians $A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \in M_{8,4}(\mathbb{R})$. Some linearmente indipendenti (1,0,0,1) = (1,0,0,1) - (0,1,0,0).

taugo per right = rg (1(1,0,0,1), (0,1,0,0), (1,-1,0,1)) = 2

rango per colonne = rg () (1,0,1), (0,1,-1), (0,0,0), (1,0,1) } = 2

<(1,0,1),(0,1,-1),(0,0,0),(1,0,1)>=<(1,0,1),(0,1,-1)>= dim(<(1,0,1),(0,1,-1)>)=2.

Notiamo che per la matrice A considerata il rango per righe è uguale al rango per colanne.

Non si tratta di una coincidenta, infatti abbiano il resultato seguente, che per questioni di tempo non dimostreremo.

Teorema: 18 rango per righe e il rango per colonne di una huatrica coincidoub.
Possiamo dunque chiamare semplicemente rango di AE Hmyn (K)
il rango per righe (o per colonne) di A. 20 denatiamo ra (A).

Osserazioni: · Se A E Mm, n(K), allora rg(A) = min fm, nf.

Attenzioni: la righa e la coloma di A non
generano lo stesso sottospazio. Infatti
tali sottospazi non sono monoha ma
cessariamente contenuti vello stesso
spazio rettoriala (se m x n, K x x k n).

Poidui il rango per righa è vopola al rango per

• Poidri il rango per right è vopale al rango per colonne abbiano: $rq(A) = rq(A^{T})$

Esempio: Consideriamo la matrica a scalini.

Calcoliano il rango, calcolando il rango per righe.

Per definizion abbiana:

chianamente rimonendo
il vettore nullo lo
spazio vettoriale generato
non cambia.

Mostrians che i vettori (1,2,3,4,5) (0,6,7,8,9) (0,0,0,0,1), e (0,0,0,0,12) sons livearmente indipendenti. Siano $\lambda, \mu, \delta, \gamma \in \mathbb{R}$ toli che:

2(1,2,3,4,5) + µ(0,6,7,8,9) + & (0,0,0,0,12) + y (0,0,0,0,12) = (0,0,0,0) => 1, 21+6µ, 32+7µ, 42+8µ+408, 52+9µ+408+12y) = (0,0,0,0).

Quind:	ra (M)	<u>-</u> 4.	Votiau	us du	. iQ .	raup	4; M	ē va	ملا ما	
Quind: numero	di bigi	non n	nulle	9: W		0		0		
Piō in a										
Proposizio	ne : K	coup	, d. (ma me	trice	a scalin	i ē	מפן מס רע	al nume	æ
		, ,,,9,,	100(1	,,						
Dim	0	.0	, ,			00				
sca Pini	oho jo	Cinec	ite ch	n indip	engeng io pr	non well) 16 L	ma w	vatrice a	
Con ; pr	assiwi	due (risulta	r was	shiau	o du	5 005	ع:اله: لا	calcolore	
il rang	s - Zoad	we wa	whice	سهراكة ع	zavdo	9, we	todo'	देः ध	calcdan	
Proposi zio	Š	ioup	BE W	$m(\kappa)$, C €	E Mn (K)	due	matric	i invertibili	•
	A	dora	(A) go	= 10%	(BA)=	B (AC)	,			
	0	wero	molti	glicare	٥	odz jwiz	00	destra	per una di A.	
	W	ratic	inve	Hoile	NOV	modific	م زو	rando	di A.	
Corollar	io : 18	ravo	p di	una	matri	ce A ē	ugua	le al	rango di	
Corollar	:0 : 18 U	rano	o di Atrice	on so	uatri Livi	ce A ē	ugua anuta	er al	rango di	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Corollar	:0 : 18 Un On Iv	rano na nu Mrovers welte	o di Atrica o de il se	ono	matri alivi erazio	ce A ē B off mi elev generato	doll emba emba emba emba emba emba emba emba	le al	rango di	
Carollar	:0 : 18 01 01 10 10	rano na nu Mrovers noltre lo sh di B.	p di atricu o de il se	una a se Mu op otospa del s	matri alivi erazio ero obsed	ce A ē B off mi elev Jenerato Stio g	enerat	le al do A ii. le rio do do!	rango di Ihe di A Ele righe	
									rango di he di A ele righe zione a il rango.	
Dim: 0										
Dim: 0	gui op sinistra	per u	elew	entare	corris	ponde all bille, che	la mol	tiplica wdifica	zione a il rango.	
Dim: 0	gui op sinistra	per u	elew	entare	corris	ponde all bille, che	la mol	tiplica wdifica	zione a il rango.	
Dim: 0	gui op sinistra	erazion per u	elen no mu dello	entare atrice	corris	ponde all bille, che	la mol non n	tiplica wadifica	Zione a il rango.	
Dim: 0	qui opisinistra	erazion per u	elen no mu dello	entare atrice	corris	ponde all bille, che	la mol non n	tiplica wadifica	zione a il rango.	
Dim: 0 Esempio Calcolar Da quan Mostria	qui opisinistro	erazion per u	della della della	entare atrice mat	corris inverti rica A att	ponde all bill, che A = (-2 Co stess	non n	tiplica wdifica .13 o -1 5 -14	Zíone a il rango.	
Dim: 0 Esempio Calcolar Da quar Mostrice elementa Effettuian	ogni opisinistra	erazion per u rango to il ecini	della rango oftenul	entare atrice mat	corris inverti rica A att	ponde all bille, che A = (-2 Co skss caverso	la mol non n -5 5 6 6	tiplica hodifica 1 3 0 - 1 5 - 14 row opera	sione a il rango. l rango. op della zioni Sordan;	
Dim: 0 Esempio Calcolar Da quar Mostrice elementa Effettuian	ogni opisinistra	erazion per u rango to il ecini	della rango oftenul	entare atrice mat	corris inverti rica A att	ponde all bille, che A = (-2 Co skss caverso	la mol non n -5 5 6 6	tiplica hodifica 1 3 0 - 1 5 - 14 row opera	sione a il rango. l rango. op della zioni Sordan;	
Dim: 0 Esempio Calcolar Da quar Mostrice elementa Effettuian	ogni opisinistra	erazion per u rango to il ecini	della della otternit	entare atrice mat	corris inverti rica A att	ponde all bille, che A = (-2 Co skss caverso	la mol non n -5 5 6 6	tiplica hodifica 1 3 0 - 1 5 - 14 row opera	Zíone a il rango.	

alesto semplice procedimento per il calcala del rango di una matrice ci offre muovi metodi per risolvere della tipologie di problemi che abbiano già affrontato, come illustrato qui di sequito. Applicazioni 1) Calcalare una base e la dimensione del sottosposio sequente 0=<(1,-3,2,0,1),(1,1,3,1,3),(3,-5,2,1,7),(-1,7,-1,0,1),(0,4,1,1,2)>. Sia A la matrice du la per righe i veltori du generano U: $A = \begin{pmatrix} 1 & -3 & 2 & 0 & 1 \\ 1 & 1 & 3 & 1 & 3 \\ 3 & -5 & 2 & 1 & 7 \\ -1 & 7 & -1 & 0 & 1 \\ 0 & 4 & 1 & 1 & 2 \end{pmatrix}$ Poichi diu(U) = rg (A), coloctions il rango di A con il metodo di chiminazione di Gauss: $\begin{pmatrix} 1 & -3 & 2 & 0 & 1 \\ 1 & 1 & 3 & 1 & 3 \\ 3 & -5 & 2 & 1 & 7 \\ -1 & 7 & -1 & 0 & 1 \\ 0 & 4 & 1 & 1 & 2 \\ 0 & 4 & 1 & 0 & 2 \\ 0 & 4 & 1 & 1 & 2 \\ 0 & 4 & 1 & 0 & 2 \\ 0 & 4 & 1 & 1 & 2$ $\begin{pmatrix}
1 & -3 & 2 & 0 & 1 \\
0 & 4 & 1 & 1 & 2 \\
0 & 0 & -5 & 0 & 2 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$ ha 4 veltor; non nolli => rg(A) = 4 Ottenia ma din (U) = 4 · e una bose di U è data dalle righe non nulle della matrice a scalini ottenuta (in quanto esse generana la stesso sottospasio delle righe della matrice di partenza). Quindi d(1,-3,2,0,1), (0,4,1,1,2), (0,0,-5,0,2), (0,0,0,-1,0) } ē una base ፈ፡ ሀ. 2) 2' insieure 7(4,1,1), (4,2,2), (4,2,3) { è una base di R3? $\frac{1}{4}(1,1,1), (1,2,2), (1,2,3)$ \(\frac{1}{4}\) \(\frac{1}{4},1,1), \((1,2,2), (1,2,3)\)\(\frac{1}{4}\) sono linearmente indipendenti (=> rg (111) = 3.

			$ \begin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix} $ $ \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 \end{bmatrix} $ $ \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} $ $ \begin{bmatrix} 3 & \text{cight} \\ \text{non rull} $
Quind: ra	$ \begin{pmatrix} 1 & 4 & 4 \\ 4 & 2 & 2 \\ 4 & 2 & 3 \end{pmatrix} = $ di $1R^3$.	3. Ne segue	e che $\frac{1}{2}(1,1,1)$, $(1,2,2)$, $(1,2,3)$ $\frac{1}{2}$
			stabilin se una matrice è il risultato sequente: E Un (K) è invertibile se e no una matrice quadrata è se ha ranop massimo.
	rog(A) = rog(AA-	(In) =	invertibile. Allora esiste n. Ma allora: = n In é una matrice a
(E) Sio A E	per una u invertibile	undiplichiemo untice	scalini con n right non null. ano Re. Rn E KM le right base di KM. In particolare
Siano Ex:= E2:=), vetori a	della base ica di K".
Allora, 5 = 1,- E1 = E2 =	• • • • • •	Rn generalso	o K ⁿ , ∃ bij ∈ K, i ∈ h 1,, nq,

```
Sia B = (b;j) \in Un(K).
             É facile allore mostron du BA = In Quindi A é invertibile.
       Esempio
       Per quali valori di KEIR la matrice A = (1 2 3) è invertibile?
         Sappiano che A è invertibile se e solo se ra (A) = 3.
         Calcaliama il rango, riducendo A a scalini:
            \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & K \end{pmatrix} \xrightarrow{R_2 \leftarrow R_2 - 4R_1} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & -6 & K-21 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - 2R_2} \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & K-9 \end{pmatrix} \xrightarrow{\text{can with a right way number of the second second
          Quindi rg(A) = 3 se e solo se K \neq 9. Ne segre che A \tilde{e} invertibile se e solo se K \neq 9.
     Torniano ora ai siskui lineari poichi la nozione di rango permette di stabilire facilmente se un sistema è compatibile o meno.
        Teorema di Rouhi-Copelli (criterio di compatibilità di un sistema lineane)
              Un sistema lineara di nu equationi e n incognite
                                      AX=6,
parte don A=(a_{ij}) \in \mathcal{H}_{w,n}(K), b \in \mathcal{H}_{w,n}(K) e X=\begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \tilde{e} compatible se e so
               se rg(A) = rg(A/b).
 parte [In tal caso il sistema possiede con-r solvani, dore r= rg(A).
           Dine
            Per delinizione il sistema AX=b è compatibile se e solo se esiste (de,..., xn) e kn tale che
           (by) = compinazione cineare di (an),... (an) (an) (an) = rg(A) = rg(A)b).
                      Supposition on the AX=b sia un sistema compatibile
Sia r= rg(A) = rg(A1b)
```

Applicando il metodo di eliminazione di Gauss-Jordan a (Alb), otteniano una matrice a scalini can r righe non nulle e quindi r pivots (si noti che l'ultimo pivot non apportiene all'ultimo parte ma colonna, altrimenti $rg(A) \neq rg(A|b)$). Quindi il sistema possiede n-r variabili libere e quindi con-r soluzioni. Esempio Per quali valori di KEIR il sistema seguente è compatibile? $\begin{array}{c} X_1 + X_2 + X_3 + X_4 = 4 \\ X_1 + X_4 = 3 \end{array}$ $\begin{array}{c} -X_2 - X_3 + 7X_4 = 6 \\ -X_4 - 2X_2 - 2X_3 + 3X_4 = K \end{array}$ Consideriamo la matrice orlata associata al sistema e riduciamola a scolini con l'algoritmo di Gense-Jordan. $\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & -1 & -1 & 0 & 2 \\
0 & 0 & 0 & 7 & 4 \\
0 & 0 & 0 & 4 & K-1
\end{pmatrix}
\xrightarrow{R_4 \leftarrow R_4 - \frac{4}{7}R_3}
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
0 & -1 & -1 & 0 & 2 \\
0 & 0 & 0 & 7 & 4 \\
0 & 0 & 0 & 0 & \frac{7K-23}{7}
\end{pmatrix}$ Quindi rg(A) = 3 e $rg(A|b) = \sqrt{3}$ se $K = \frac{23}{7}$. Per il teorema di Rachi-Capelli il sistema è compatibile x e solo se K= 23. Osservazione: Se b= (0), cioè se AX=b é un sistema ouvagenco, allora vog (A) = rog (A/b). Quindi ritroviano che un sistema ouvagenco è sempre compatibile. Inaltre l'insieme delle soluzione è un sottospazio vettoriale di Kⁿ di dimensione n-r, done r= rg(A). Esempio: Determinant la dimension e una base del sotosposio 1 x-2y+3t=0 $S = \{(x, y, z, t) \in \mathbb{R}^4 :$ 22-4-32+9+=0

Per Ca dimensione di S determiniano il rango di
$$A = \begin{pmatrix} 1 & -2 & 0 & 3 \\ 0 & 1 & -1 & 1 \\ 2 & -1 & -3 & 9 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 & 0 & 3 \\ 0 & 1 & -1 & 1 \\ 2 & -1 & -3 & 9 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - 2R_4} \begin{pmatrix} 1 & -2 & 0 & 3 \\ 0 & 1 & -1 & 1 \\ 0 & 3 & -3 & 3 \end{pmatrix} \xrightarrow{R_3 \leftarrow R_3 - 3R_2} \begin{pmatrix} 1 & -2 & 0 & 3 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Quindi V = vg(A) = 2. Poichi il sistema possiede a varialili, dim(s)=a-2-2.

Per determinare una base di S, determiniano l'insieme delle solvaioni del sistema.

Za matrice a scalini ottenuta corrisponde al sistema:

$$\begin{cases}
X-2Y+3T=0 \\
Y-2+T=0
\end{cases}$$
Scentians
$$\begin{cases}
X-2Y=-3T \\
Y=Z-T
\end{cases}$$

$$\begin{cases}
X=2Z-5T \\
Y=Z-T
\end{cases}$$
Scentians
$$\begin{cases}
Y=Z-T \\
Scentians
\end{cases}$$
Scentians
$$\begin{cases}
Y=Z-T \\
Scentians
\end{cases}$$
Scentians
$$\begin{cases}
Y=Z-T \\
Scentians
\end{cases}$$

Quind:
$$S = \int (x,y,z,t)$$
: $y = z-t$ e $x = 2z-5t$, $z,t \in \mathbb{R}^{2} = \frac{1}{2}(2z-5t,z-t,z,t)$: $z,t \in \mathbb{R}^{2} = \frac{1}{2}(2,1,1,0) + \frac{1}{2}(2,1,$

Ne segue che (2,1,1,0) e (-5,-1,0,1) generaus S. Porchi dim(S)=2 concludio us che 1(2,1,1,0), (-5,-1,0,1) à è una base di S.

Si noti che (2,1,1,0) si otiene per z=1 e t=0 e (-5,-1,0,1) per z=0 e t=1.
Questo salto di z et assicura che i vettor: ottenuti sono linearmente
indipendenti.