

We Claim:

1 1. A method of forming a conformal thin film of silicon oxide on a
2 substrate having spaced conductive lines thereon comprising the steps of:
3 mounting a substrate onto a substrate support in a vacuum chamber;
4 forming a plasma in the vacuum chamber in a region above the
5 substrate by means of an electrical power source from a reaction gas comprising a
6 mixture of tetraethylorthosilicate and a fluorine-containing halocarbon gas selected
7 from the group consisting of CX_4 and $CX_3-(CX_2)_n-CX_3$ wherein X is hydrogen or
8 halogen and n is an integer from 0 to 5 with the proviso that at least one X is
9 fluorine; and
10 subjecting the substrate to the plasma so as to deposit a layer of silicon
11 oxide containing at least about 2.5 atomic percent of fluorine onto the substrate
12 without the formation of voids in the film.

1 2. The method of claim 1 wherein the plasma is created from the
2 tetraethylorthosilicate and C_2F_6 .

1 3. The method of claim 1 wherein the plasma is created by means
2 of two power sources having different frequencies.

1 4. The method of claim 3 wherein the plasma is created by means
2 of one power source having a frequency of about 13.56 MHz and a second power
3 source having a frequency of between 50 KHz and 1000 KHz.

1 5. The method of claim 4 wherein the second power source has a
2 frequency of about 400 KHz.
 ^

1 6. The method of claim 1 wherein a single power source having a
2 frequency of about 13.56 MHz is used.

1 7. The method of claim 1 wherein said power source is a source of
2 microwave power.

1 8. A method of forming a conformal thin film of silicon oxide
2 over a substrate having spaced conductive lines thereon in a plasma chamber
3 comprising
4 mounting a substrate in said chamber;
5 introducing into the chamber in a region above said substrate as a
6 plasma precursor gas vaporized tetraethylorthosilicate in a carrier gas including
7 oxygen and a fluorocarbon selected from the group consisting of
8 CX_4 and $\text{CX}_3-(\text{CX}_2)_n-\text{CX}_3$
9 wherein X is hydrogen or fluorine and n is an integer from 0 to 5 with
10 the proviso that at least one X is fluorine;
11 and thereafter forming a plasma therefrom, so as to deposit a layer of
12 silicon oxide containing at least about 2.5 atomic percent of fluorine over said
13 conductive lines.

1 9. A method according to claim 8 wherein the plasma precursor
2 gas contains a ratio of silicon:fluorine of about 14:1.

1 10. A method according to claim 8 wherein the conductive lines are
2 less than 1 micron in width and no more than 1 micron apart.

1 11. In a processing chamber, a method of depositing a layer having
2 a predetermined intrinsic stress level over a substrate, the method comprising:
3 (a) distributing a halogen source to said processing chamber at a
4 selected rate, said selected rate being chosen according to said predetermined stress
5 level;
6 (b) introducing a process gas comprising silicon, oxygen and said
7 halogen source into said chamber; and

(c) forming a plasma from said process gas to deposit said layer having said predetermined intrinsic stress level over said substrate.

12. The method of claim 11 wherein said predetermined stress level is a compressive stress level.

13. The method of claim 11 wherein said halogen source comprises a fluorine source.

14. The method of claim 13 wherein said fluorine source is selected from the group consisting of CF_4 , C_2F_6 , SiF_4 and TEFS.

15. The method of claim 14 wherein said silicon source comprises

16. The method of claim 15 wherein said predetermined intrinsic stress level is between about -1.0×10^9 dynes/cm² and -0.5×10^9 dynes/cm².

17. The method of claim 16 wherein a dielectric constant of said layer is between about 3.8 to 4.1.

18. The method of claim 13 further comprising steps of:

(d) repeatedly performing steps (a) through (c) to deposit a halogen-doped silicon oxide film on a plurality of substrates;

(e) measuring the intrinsic stress of said deposited halogen-doped silicon oxide film on each of said plurality of substrates; and

(f) if said intrinsic stress of said deposited halogen-doped silicon
oxide films is too high, increasing said selected rate at which said halogen source is

introduced during deposition of a halogen-doped silicon oxide film over a subsequently processed substrate to lower the intrinsic stress of said subsequently deposited halogen-doped silicon oxide film, and if said intrinsic stress of said

11 deposited halogen-doped silicon oxide films is too low, decreasing said selected rate
12 at which said halogen source is introduced during deposition of a halogen-doped
13 silicon oxide film over a subsequently processed substrate to increase the intrinsic
14 stress of said subsequently deposited halogen-doped silicon oxide film.

1 19. The method of claim 13 wherein said selected rate is
2 determined from a database of measured intrinsic stress levels of previously deposited
3 films.

1 20. The method of claim 11 wherein said processing chamber
2 comprises a high-density plasma chemical vapor deposition chamber and said plasma
3 is formed by application of radio-frequency power to a coil.

1 21. In a processing chamber, a method of depositing a layer having
2 a selectively varied stress level on a substrate, the method comprising:

3 (a) distributing a halogen source to said processing chamber at a
4 first selected rate, said first selected rate being chosen according to a first
5 predetermined stress level;

6 (b) introducing a process gas comprising silicon, oxygen and said
7 halogen source into said chamber;

8 (c) forming a plasma from said process gas to deposit a first
9 portion of the layer having said first predetermined intrinsic stress level over said
10 substrate; and then

11 (d) distributing the halogen source to said processing chamber at a
12 second selected rate, said second selected rate being chosen according to a second
13 predetermined stress level to deposit a second portion of the layer on the first portion
14 of the layer, said second portion of the layer having said second predetermined
15 intrinsic stress level.

1 22. The method of claim 21 where said first predetermined stress
2 level is compressive and said second predetermined stress level is tensile.

1 23. The method of claim 21 where said first predetermined stress
2 level is tensile and said second predetermined stress level is compressive.

1 24. A substrate processing system comprising:
2 a housing for forming a vacuum chamber;
3 a substrate holder, located within said housing for holding a substrate;
4 a gas delivery system configured to introduce a process gas into said
5 vacuum chamber;
6 a plasma generation system configured to form a plasma from said
7 process gas;
8 a controller for controlling said gas delivery system and said plasma
9 generation system; and
10 a memory coupled to said controller comprising a computer readable
11 medium having a computer readable program embodied therein for directing
12 operation of said substrate processing system, said computer readable program
13 comprising:
14 a first set of instructions for controlling said gas delivery system to
15 introduce a process gas comprising silicon, oxygen, and a halogen source into said
16 gas mixing area; and
17 a second set of instructions for controlling said plasma generation
18 system to form a plasma from said gases by said first set of instructions to deposit a
19 layer over said substrate;
20 whereby said first set of instructions controls said gas delivery system
21 to introduce said halogen source into said gas mixing area at a selected rate so that
22 said deposited layer has a predetermined intrinsic stress level.

1 25. The substrate processing system of claim 24 wherein said first
2 set of instructions controls said gas delivery system to introduce a fluorine source as
3 said halogen source into said gas mixing area at a selected rate so that said deposited
4 layer has a stress level of between -1.0 to -0.5x10⁹ dynes/cm².

1 26. The substrate processing system of claim 24 wherein said first
2 set of instructions controls said gas delivery system to introduce said fluorine source
3 into said chamber at a rate that is about 20% or less of the total gas flow into said
4 chamber.

*Add
a3*