HEAT EXCHANGER MASS CALCULATION

STHEmass.m approximate heat exchanger mechanical sizing for cost estimation purposes

getFOB.m cost estimation

STHEmass

Calculates heat exchanger dimensions and mass using simplified 1996 Finnish pressure vessel code. For academic purposes only. **DISCLAIMER**: The authors do not guarantee correct bug-free calculation, no usefulness for any purpose is even implied, and <u>no liability</u> for any outcome from the use of these codes is accepted.

The codes are provided in the hope it may be useful to some, and can be freely used and modified for any academic purpose, by citing:

Saari J; Suikkanen H; Mendoza-Martinec C; Hyvärinen J. *Optimization of natural circulation district heating reactor primary heat exchangers*. Energies **2023**, x, xxxx. doi: xxxx

SYNTAX

result = STHEmass(HXdata, Fixed, outputfname, TEMA, plotti)

• HXdata Structure containing heat exchanger thermal design output

Fixed Structure containing fixed parameters for sizing
 outputfname Character string containing output file name

TEMA
 Heat exchanger TEMA type. Only few common options available.

• plotti Selection output options

DESCRIPTION

Function STHEmass calculates heat exchanger approximate mass according to simplified 1996 Finnish pressure vessel code for cost estimation purposes in academic optimization studies. (i.e. this is NOT an up-to-date or complete mechanical sizing software, and is not to be used for anything but theoretical optimization studies for academic purposes.)

If shell thickness is given as input (HXdata.s_sh), the sufficiency of this for designated design conditions is checked and insufficiency reported. By default, this is not known, but calculated as one of the outputs.

There is currently no allowance made for using different materials for different parts of the heat exchanger other than tubes. Tube dimensions are not checked or sized; mechanical sizing of all other parts than tubes is done using the same material, whose properties are defined as part of input structure Fixed.

The following components are considered and sizing is performed:

Component	Method	Sizing and standard
Shell	Sizing	SFS-2611 (internal pressure) SFS-2862 (external pressure – elastic and nonelastic buckling)
Channel shell	Sizing	SFS-2611 (internal pressure) SFS-2862 (external pressure – elastic and nonelastic buckling)
Channel cover	Sizing	SFS-2615 (flange attachment assumed)
Channel tube pass division plate	Fixed	No sizing, constant thickness s = 16 mm
Tubesheet	Sizing	SFS-2774
Flanges	Approximate	No sizing, polynomial estimates for flange dimensions as a function of shell diameter
Baffle plates	Fixed	No sizing, fixed thickness from <code>HXdata</code> input struct
Sealing strips	Fixed	No sizing, fixed thickness (same as baffle thickness)
Tie rods & spacers	Fixed	No sizing, fixed diameter d = 12.5 mm

For condenser dimensions, provisions are made for additional components to be considered. These were used for Saari et al.(2022), but omitted from this code. Trough was used only in Saari et al.(2014), where some tubes were submerged in condensate a drain cooler trough for subcooling.

Air vent	Fixed	Air / non-condensable gas suction tube
Air cooler baffle	Fixed	A cover plate to block direct steam flow path from turbine to air vent. Thickness = baffle thickness
Trough	Fixed	A trough separating drain cooler section tubes. See Saari et al.(2014) from ECOS-2014 (Turku, June 2014)

Input variables

HXdata – output from heat exchanger thermal sizing algorithm

Data Types: structure

The structure contains a number of fields, originating from heat thermal exchanger sizing algorithm. These are listed in the following:

Field	Data type	Description
s_sh	Floating point	OPTIONAL: Shell thickness [m]
		default: not present, calculated from other dimensions,
		material properties, and design pressures
		if present: checked for sufficiency in calculation.
Npasses	Positive integer	Number of tube-side passes [-]
do_mm	Floating point	Tube outside diameter [mm]
s_mm	Floating point	Tube wall thickness [mm]
P_mm	Floating point	Tube pitch [mm]
D_OTL	Floating point	Tube bundle diameter to outer tube limit [m]
D_ShIn	Floating point	Shell inside diameter [m]
LStraight	Floating point	straight tube in pass including part covered by baffles,
		but not by tubesheet [m]
NtbPerPass	Positive integer	Number of tubes per pass [-]
N_bfls	Positive integer	Number of baffle plates [-]
N_HolesPerBaffle	Positive integer	Number of holes per baffle plate [-]
A_BflFr	Floating point	Frontal area of a baffle plate, after cutting the window,
		but before drilling the holes [m²]
StripPairs	Floating point	Number of sealing strip pairs at shell side
SStripWidth	Floating point	Width of sealing strip [m] (thickness = that of a baffle)
s_bfl	Floating point	Thickness of baffle plates (and s.strips) [m]

Fixed – fixed parameters

Data Types: structure

The structure contains a large number of fields from heat exchanger sizing algorithm; these are listed in the following

Field metalprops sizingdata	Data type Structure Structure	Description Structure containing material properties Structure containing design pressures
metalprops.rho metalprops.c1 metalprops.c2 metalprops.Et metalprops.nyy metalprops.sigmal metalprops.nk metalprops.n	Floating point	material density [kg/m³] corrosion allowance [mm] optional, default 3.0 mm manufacturing tolerance [mm] opt., default 2.0 mm Young's modulus (mod.of elasticity) [N/mm²] Poisson's ratio [-] calculation strength [N/mm²] safety factor, elastic buckling [-] safety factor, non-elastic buckling & internal pressure [-]
sizingdata.ptbmax sizingdata.shbmin sizingdata.shbmax	Floating point	tube-side maximum pressure [MPa(g)] shell-side minimum pressure [MPa(g)] shell-side maximum pressure [MPa(g)]

TEMA – type of heat exchanger according to TEMA classification

Data Type: a string of 3 characters

Examples: STHEmass (~,~,'dummySTHE','AEL',0): conventional fixed-tubesheet STHE STHEmass (~,~,'dummycondensr','AXU',0): typical for U-tube steam condensers

Specifies the type of heat exchanger with 3-character code, see table below for interpretation. Note that many more TEMA head and shell types exist, only a few common ones are implemented, and of these only A/O = E/X = L/M/T/U/O have been subjected to even rudimentary validation/verification as it is.

Front-end head types A: E: Cross-flow shell (typically used for condensers) C: No front head or channel only for Saari et al. (2023) DH SMR primary heat exchangers M: Fixed tubesheet (equivalent to front-end head type B.) N: Fixed tubesheet (equivalent to front-end head type B.) Pull-through floating head (for shell-side access) U: U-tube bundle (no rear head) O: None – same as front-end (0 for the land)	1 st character:	2 nd character:	3 rd character:
A: Flanged, removable cover B: Cross-flow shell (typically used for condensers) C: No front head or channel only for Saari et al. (2023) DH SMR primary heat exchangers D: Fixed tubesheet (equivalent to front-end head type B.) T: Pull-through floating head (for shell-side access) U: U-tube bundle (no rear head) O: O: O: O: O: O: O: O: O: O	Front-end head types	Shell types	Rear-end head types
Plul-through floating head (for shell-side access) One-pass shell (equivalent to front-end head type A.) M: Fixed tubesheet (equivalent to front-end head type B.) N: Fixed tubesheet (equivalent to front-end head type B.) N: Fixed tubesheet (equivalent to front-end head type C.) N: Fixed tubesheet (equivalent to front-end head type C.) T: No front head or channel – only for Saari et al. (2023) DH SMR primary heat exchangers U: U-tube bundle (no rear head) O:			1
Flanged, removable cover B: Cross-flow shell (typically used for condensers) C: No front head or channel – only for Saari et al. (2023) DH SMR primary heat exchangers D: No front head or channel – only for Saari et al. (2023) DH SMR primary heat exchangers U: U-tube bundle (no rear head) O: O: O: O: O: O: O: O: O: O			
B: Cross-flow shell (typically used for condensers) C: Fixed tubesheet (equivalent to front-end head type B.) N: Fixed tubesheet (equivalent to front-end head type C.) T: Pull-through floating head (for shell-side access) U: U-tube bundle (no rear head) O: O: O: O: O: Divide bundle O:		One-pass shell	1
Bonnet (Integral cover) Cross-flow shell (typically used for condensers) N: Fixed tubesheet (equivalent to front-end head type B.) No front head or channel – only for Saari et al. (2023) DH SMR primary heat exchangers U: U-tube bundle (no rear head) O: O: O: O: Divides bundle (no rear head) O:	Flanged, removable cover		type A.)
Integral with tubesheet O: No front head or channel – only for Saari et al. (2023) DH SMR primary heat exchangers Pull-through floating head (for shell-side access) U: U-tube bundle (no rear head) O: O: O: O: O: D-tube bundle (no rear head) O:		Cross-flow shell	Fixed tubesheet (equivalent to front-end head
Integral with tubesheet O: No front head or channel – only for Saari et al. (2023) DH SMR primary heat exchangers U: U-tube bundle (no rear head) O: O: O: O: O: O: O: O: O: O		(typically used for condensers)	1
O: No front head or channel – only for Saari et al. (2023) DH SMR primary heat exchangers Pull-through floating head (for shell-side access) U: U-tube bundle (no rear head) O:			Fixed tubesheet (equivalent to front-end head
No front head or channel – only for Saari et al. (2023) DH SMR primary heat exchangers Pull-through floating head (for shell-side access) U: U-tube bundle (no rear head) 0:	_		Ͳ•
U-tube bundle (no rear head) 0:	No front head or channel – only for Saari et al. (2023) DH		Pull-through floating head
(no rear head) 0:			U:
			(no rear head)
			None – same as front-end '0'

outputfname - output file name

Data Type: character string

Example: STHEmass (~, ~, 'STHEdimensions.txt', ~, 1)

Specifies output file name for a text output. Only relevant if plotti is set at value greater than 0.

plotti - to print or not to print an output file

Data Type: scalar

Example: STHEmass (~, ~, 'dummyname', ~, 0)

Specifies whether a text file output is generated. If set at 0 or negative, no file is created, but a value for outputfname must still be provided.

Output variables

results - structure containing complete result data

Data Type: structure

A structure containing all output data. These are listed in the following:

Field	Data type	Description
L_tot	Floating point	Heat exchanger total length [m]
D_tot	Floating point	Heat exchanger diameter (flange diam. if present) [m]
m_tot	Floating point	Heat exchanger total mass [kg]
m_sh	Floating point	Mass of shell [kg]
m_tb	Floating point	Mass of heat transfer tubes [kg]
m_bfl	Floating point	Mass of baffle plates [kg]
m_ts	Floating point	Mass of tubesheet [kg]
m_ch	Floating point	Mass of channels (both channels, including shell, cover,
		and possible tube-side pass division plate(s) [kg]
${\tt m_flng}$	Floating point	Mass of flanges [kg]
m_other	Floating point	Mass of all other components: tie rods, spacers, sealing
		strips, and (in condensers) air vent pipe and related
		baffles, and (if subcooling sect.) condensate trough [kg]
s_bfl	Floating point	Baffle plate thickness [m]
s_tbplate	Floating point	Tubesheet thickness [m]
s_fChannelcover	Floating point	Front-head channel cover thickness [m]
s_fChannelcover	Floating point	Rear-head channel cover thickness [m]
s channelshell	Floating point	Channel shell thickness [m]

s_shell	Floating point	Heat exchanger shell thickness [m]
L_shell	Floating point	Heat exchanger shell length [m]
L_tbTot	Floating point	Total tube length (incl.that in tubesheet, baffles) [m]
L_fhead	Floating point	Length of front-end head [m]
L_rhead	Floating point	Length of rear-end head [m]
s_TbPassDivPla	ate Floating point	Tube-side pass division plate thickness [m]
L_drill_Bfl	Floating point	Total drilling length through baffle plates [m]
L_drill_Ts	Floating point	Total drilling length through tubesheet(s) [m]
D_ShO	Floating point	Shell outer diameter [m]
D_ShIn	Floating point	Shell inside diameter [m]
D_Flng	Floating point	Front-head channel diameter [m]
D_ChIn	Floating point	Rear-head channel diameter [m]
LStraight	Floating point	Tube straight length (incl.that in tubesheet, baffles) [m]
do	Floating point	Tube outside diameter [m]
fock	Positive integer	Successful calculation and acceptable result?
		1 – failed to calculate and/or unacceptable design
		0 – succesful calculation and acceptable design
StripPairs	Positive integer	Number of sealing strip pairs [-]
SStripWidth	Positive integer	Tube outside diameter [-]
NtbPerPass	Positive integer	Number of tubes per pass [-]