函数零点探寻之极限放缩法

一、方法

在极限的情况下,保留对多项式影响最大的项,放缩除去其他项.

二、实例分析

1.(16年国I改编) $f(x) = (x-2)e^x + a(x-1)^2$ 有两个零点,求 a 取值范围.

解: 易知 $a \le 0$ 时, 不符题意,且a > 0 时 f(1) = -e < 0 f(2) = a > 0.

故只需寻找一个小于1的x,使f(x) > 0.

观察该函数, $x \to -\infty$ 时, $(x-2)e^x \to 0$, $a(x-1)^2 \to +\infty$.

因此 $a(x-1)^2$ 对函数值产生主要影响,所以仅保留该项,放缩除去 $(x-2)e^x$. 下面是完整答题步骤:

设 $y = (x-2)e^x$,则 $y' = (x-1)e^x$,故x = 1时,y取最小值-e即 $y \ge -e$.

故 $f(x) = (x-2)e^x + a(x-1)^2 > -e + a(x-1)^2$.

因为要和a 相乘抵消, 所以令 $x_0 - 1 = \frac{-e}{\sqrt{a}}$ (这里分子取大点就行, 无所谓)

$$\mathbb{P} x_0 = \frac{-e}{\sqrt{a}} + 1 < 1$$

故
$$f(x_0) > e^2 - e > 0$$

Q.E.D.

2.(17年国I改编) $f(x) = ae^{2x} + (a-2)e^x - x$.

当 0 < a < 1 时,找到一个x,使x > -lna,且f(x) > 0.

析: 当 $x \to +\infty$ 时,起主要影响的是 ae^{2x} ,故直接把其他项放缩成最简单的形式. 结尾的x把它变成 e^x ,就能提出来一个 e^x 从而合并同类项了.

M:
$$f(x) = ae^{2x} + (a-2)e^x - x > ae^{2x} + (a-2)e^x - e^x = e^x (ae^x + a - 3)$$
.

$$\Leftrightarrow x_0 = \ln \frac{3-a}{a}, \text{ M} \ f(x_0) > 0$$

Q.E.D.

3.
$$f(x) = e^x - a(x + \cos x) - \frac{2x+1}{x+1}, a > 0.$$

找到一个 $x_0 \in (-1,0)$,使 $f(x_0) > 0.$
析: $\exists x \to -1$ 时, $-\frac{2x+1}{x+1} \to +\infty$,占主要影响,于是把其他的全部放缩掉.
解: $f(x) = e^x - a(x + \cos x) - \frac{2x+1}{x+1} > e^{-1} - a(x+1) - \frac{2x+1}{x+1}.$
而 $e^{-1} - a(x+1) - \frac{2x+1}{x+1} = e^{-1} + \frac{1-a(x+1)^2 - 2(x+1)}{x+1}.$
由于 $e^{-1} > 0$,所以只需要 $\frac{1-a(x+1)^2 - 2(x+1)}{x+1} > 0$
令 $1 - a(x+1)^2 - 2(x+1) = 0$,解得 $x = \frac{1+\sqrt{1+a}}{-a} - 1$ 或 $x = \frac{1-\sqrt{1+a}}{-a} - 1.$

显然 $-1 < \frac{1-\sqrt{1+a}}{-a} - 1 < 0$,所以令 $x_0 = \frac{1-\sqrt{1+a}}{-a} - 1$

Q.E.D.

则 $f(x_0) > 0$