```
In [2]:
         # Import our visualization libraries
         import pandas as pd
         import seaborn as sns
         import matplotlib.pyplot as plt
         import plotly.express as px
         import numpy as np
         import sklearn
         df = pd.read_csv("marketing_campaign.csv", sep="\t")
In [3]:
         df.head()
Out[3]:
              ID Year_Birth
                            Education Marital_Status Income Kidhome Teenhome Dt_Customer Recency
         0 5524
                      1957
                            Graduation
                                              Single
                                                     58138.0
                                                                    0
                                                                               0
                                                                                   04-09-2012
                                                                                                    58
         1 2174
                      1954 Graduation
                                              Single 46344.0
                                                                               1
                                                                                   08-03-2014
                                                                                                    38
         2 4141
                      1965 Graduation
                                            Together 71613.0
                                                                    0
                                                                               0
                                                                                   21-08-2013
                                                                                                    26
         3 6182
                                            Together 26646.0
                                                                                   10-02-2014
                      1984 Graduation
                                                                               0
                                                                                                    26
         4 5324
                      1981
                                  PhD
                                             Married 58293.0
                                                                    1
                                                                               0
                                                                                   19-01-2014
                                                                                                    94
        5 rows × 29 columns
```

Content Attributes

People

- ID: Customer's unique identifier
- Year_Birth: Customer's birth year
- Education: Customer's education level
- Marital_Status: Customer's marital status
- Income: Customer's yearly household income
- Kidhome: Number of children in customer's household
- Teenhome: Number of teenagers in customer's household
- Dt_Customer: Date of customer's enrollment with the company
- Recency: Number of days since customer's last purchase
- Complain: 1 if the customer complained in the last 2 years, 0 otherwise

Products

- MntWines: Amount spent on wine in last 2 years
- MntFruits: Amount spent on fruits in last 2 years
- MntMeatProducts: Amount spent on meat in last 2 years
- MntFishProducts: Amount spent on fish in last 2 years

- MntSweetProducts: Amount spent on sweets in last 2 years
- MntGoldProds: Amount spent on gold in last 2 years

Promotion

- NumDealsPurchases: Number of purchases made with a discount
- AcceptedCmp1: 1 if customer accepted the offer in the 1st campaign, 0 otherwise
- AcceptedCmp2: 1 if customer accepted the offer in the 2nd campaign, 0 otherwise
- AcceptedCmp3: 1 if customer accepted the offer in the 3rd campaign, 0 otherwise
- AcceptedCmp4: 1 if customer accepted the offer in the 4th campaign, 0 otherwise
- AcceptedCmp5: 1 if customer accepted the offer in the 5th campaign, 0 otherwise
- Response: 1 if customer accepted the offer in the last campaign, 0 otherwise

Place

- NumWebPurchases: Number of purchases made through the company's website
- NumCatalogPurchases: Number of purchases made using a catalogue
- NumStorePurchases: Number of purchases made directly in stores
- NumWebVisitsMonth: Number of visits to company's website in the last month

```
df["TotalAmountSpent"] = df["MntFishProducts"] + df["MntFruits"] + df["MntGoldProds"]
In [4]:
In [5]:
        from datetime import datetime
        df["Age"] = df["Year Birth"].apply(lambda x : datetime.now().year - x)
In [6]:
        df["Age"].describe()
In [7]:
        count
                  2240.000000
Out[7]:
                    54.194196
        mean
                    11.984069
        std
                    27.000000
        min
        25%
                   46.000000
        50%
                    53.000000
                    64.000000
        75%
                   130.000000
        max
        Name: Age, dtype: float64
In [8]:
        sns.histplot(data=df, x="Age", bins = list(range(10, 150, 10)))
         plt.title("Distribution of Customer's Age")
         plt.savefig("Age.png");
```

Distribution of Customer's Age


```
df["Education"] = df["Education"].replace({"Graduation":"Graduate", "PhD":"Postgraduat
 In [9]:
In [10]:
         df["Education"].value_counts()
         Graduate
                           1127
Out[10]:
         Postgraduate
                           1059
         Undergraduate
                             54
         Name: Education, dtype: int64
         df["Education"].unique()
In [11]:
         array(['Graduate', 'Postgraduate', 'Undergraduate'], dtype=object)
Out[11]:
In [12]:
         df["Education"].value counts(normalize=True).plot.bar(figsize=(8, 6))
          plt.xticks(rotation=45)
          plt.title("Frequency of Customer's Education [proportion]");
```

Frequency of Customer's Education [proportion]

Proportion of Customer's Marital Status


```
In [16]: sns.histplot(data=df, x="Income", binwidth=1e4)
plt.title("Distribution of Customer's Income");
```

Distribution of Customer's Income


```
In [17]: df["Kidhome"].unique()
Out[17]: array([0, 1, 2])

In [18]: df["Kidhome"].value_counts(normalize=True).plot.bar()
    plt.ylabel("Frequency")
    plt.title("Proportion of Customer's Kid");
```



```
In [19]: df["Teenhome"].unique()
Out[19]: array([0, 1, 2])

In [20]: df["Teenhome"].value_counts(normalize=True).plot.bar()
    plt.ylabel("Frequency")
    plt.title("Proportion of Customer's Teen at Home");
```

Proportion of Customer's Teen at Home


```
In [21]: df["Total Children"] = df["Kidhome"] + df["Teenhome"]
In [22]: df["Total Children"].unique()
Out[22]: array([0, 2, 1, 3])
In [23]: df["Total Children"].value_counts(normalize=True).sort_index().plot.bar()
    plt.ylabel("Frequency")
    plt.title("Proportion of Customer's Total Children at Home");
```

Proportion of Customer's Total Children at Home


```
In [24]: df["TotalAmountSpent"].describe()
```

count 2240.000000 Out[24]: 605.798214 mean 602.249288 std 5.000000 min 25% 68.750000 50% 396.000000 75% 1045.500000 2525.000000 max

Name: TotalAmountSpent, dtype: float64

In [25]: sns.histplot(data=df, x="TotalAmountSpent", binwidth=200, stat="probability")
plt.title("Distribution of Total Amount Spent on Product by Customers [Proportion]");

Distribution of Total Amount Spent on Product by Customers [Proportion]

In [26]: sns.scatterplot(data=df, x="Age", y="TotalAmountSpent")
plt.title("Relationship between Age and Total Amount Spent");


```
def group_age(age):
In [26]:
              if age <20:</pre>
                  return "11-20"
              elif age > 20 and age <31:</pre>
                  return "21-30"
              elif age > 30 and age <41:</pre>
                  return "31-40"
              elif age > 40 and age <51:</pre>
                  return "41-50"
              elif age > 50 and age <61:</pre>
                  return "51-60"
              elif age > 60 and age <71:</pre>
                  return "61-70"
              elif age > 70 and age <81:</pre>
                  return "71-80"
              elif age > 80:
                  return ">80"
In [27]: df["Age Group"] =df["Age"].apply(group_age)
          # To order plotly index
          order = ["11-20","21-30", "31-40", "41-50", "51-60", "61-70", "71-80", ">80"]
          mask = df.groupby("Age Group")["TotalAmountSpent"].median()
In [28]:
          mask = mask.reset index()
          fig = px.bar(data_frame=mask, x="Age Group", y="TotalAmountSpent", height=500)
          annotation = []
          for x, y in zip(mask["Age Group"], mask["TotalAmountSpent"]):
              annotation.append(
                  dict(x=x, y=y+20,
                        text=str(round(y, 2)) + '$',
                        font=dict(family='Arial', size=14, color='rgb(66, 99, 236)'), showarrow=F
          fig.update xaxes(categoryorder='array', categoryarray= order)
          fig.update_layout(annotations=annotation)
          fig.show()
```



```
In [29]: plt.figure(figsize=(8, 8))
    sns.violinplot(x="Age Group", y="TotalAmountSpent", data=df, cut=0, order=order)
    plt.title("Relationship between Age Range and Total Amount Spent");
```

Relationship between Age Range and Total Amount Spent


```
from scipy.stats import iqr
In [30]:
In [31]:
         iqr = iqr(df["Income"], nan policy="omit")
         low = np.nanquantile(df["Income"], 0.25) - 1.5 * iqr
         high = np.nanquantile(df["Income"], 0.75) + 1.5 * iqr
In [32]:
         df_cut = df[df["Income"].between(low, high)]
         mask = df_cut.groupby("Age Group")["Income"].mean()
In [33]:
         mask = mask.reset_index()
         fig = px.bar(data_frame=mask, x="Age Group", y="Income", height=500)
         annotation = []
         for x, y in zip(mask["Age Group"], mask["Income"]):
             annotation.append(
                  dict(x=x, y=y +5000,
                       text=str(round(y, 2)) + '$',
                       font=dict(family='Arial', size=14, color='rgb(66, 99, 236)'), showarrow=F
```

```
)
fig.update_xaxes(categoryorder='array', categoryarray= ["21-30", "31-40"])
fig.update_layout(annotations=annotation)
fig.show()
```



```
In [34]:
         (df_cut[df_cut["Age Group"] == "21-30"]["Income"]).describe()
                     15.000000
         count
Out[34]:
         mean
                  63576.866667
         std
                  26909.456211
                   7500.000000
         min
         25%
                  52669.500000
         50%
                  74293.000000
         75%
                  80375.500000
                  95529.000000
         max
         Name: Income, dtype: float64
In [35]:
         mask = df.groupby("Education")["TotalAmountSpent"].median()
         mask = mask.reset index()
         fig = px.bar(data_frame=mask, x="Education", y="TotalAmountSpent", height=500,
                      title = "Relationsip Between Education and Total Amount Spent [Average Spe
         annotation = []
         for x, y in zip(mask["Education"], mask["TotalAmountSpent"]):
             annotation.append(
                  dict(x=x, y=y+20,
                       text=str(round(y, 2)) + '$',
                       font=dict(family='Arial', size=14, color='rgb(66, 99, 236)'), showarrow=F
```

```
)
fig.update_xaxes(categoryorder='array', categoryarray= order)
fig.update_layout(annotations=annotation)
fig.show()
```

Relationsip Between Education and Total Amount Spent [Avera

Relationsip Between Customer's Education Level and Income

Relationship between Customer's Marital Status and Total Amo

Relationship between Customer's Marital Status and Income [


```
df["Kidhome"].value counts()
              1293
Out[39]:
               899
                48
         Name: Kidhome, dtype: int64
         mask = df.groupby("Kidhome")["TotalAmountSpent"].median()
In [40]:
         mask = mask.reset_index()
         fig = px.bar(data_frame=mask, x="Kidhome", y="TotalAmountSpent", height=500,
                       title="Relationship between Customer's Kid and Amount Spent [Average]")
         annotation = []
         for x, y in zip(mask["Kidhome"], mask["TotalAmountSpent"]):
             annotation.append(
                  dict(x=x, y=y +50,
                       text=str(round(y, 2)) + '$',
                       font=dict(family='Arial', size=14, color='rgb(66, 99, 236)'), showarrow=F
         fig.update_xaxes(categoryorder='array', categoryarray= ["21-30", "31-40"])
         fig.update layout(annotations=annotation)
         fig.show()
```

Relationship between Customer's Kid and Amount Spent [Ave

Relationship between Marital Status and Total Amount Spent

Relationship between Marital Status and Total Amount Spent

Relationship between Marital Status and Total Amount Spent

Relationship between Marital Status and Amount Spent [Avera

Relationship Between Customer's Income and Total Amount S


```
In [46]: fig = px.scatter(
    data_frame=df_cut,
    x = "Income",
    y= "TotalAmountSpent",
    title = "Relationship between Income VS Total Amount Spent Based on Education",
    color = "Education",
    height=500
)
fig.show()
```

Relationship between Income VS Total Amount Spent Based o


```
In [47]: fig = px.scatter(
    data_frame=df_cut,
    x = "Income",
    y= "TotalAmountSpent",
    title = "Relationship between Income VS Total Amount Spent Based on Education",
    color = "Total Children",
    height=500
)
fig.show()
```

Relationship between Income VS Total Amount Spent Based o

Building the KMeans Model

We will build the Kmeans Model using two Features to Segment the Customers Demographic and Behaviour "Income" and "Total Amount Spent"

```
import sklearn
In [48]:
         df["Income"].fillna(df["Income"].median(), inplace=True)
In [49]:
In [50]:
         data = df[["Income", "TotalAmountSpent"]]
         df_log = np.log(data)
In [51]:
         from sklearn.preprocessing import StandardScaler
In [52]:
         from sklearn.cluster import KMeans
In [53]: std_scaler = StandardScaler()
         df_scaled = std_scaler.fit_transform(df_log)
         errors = []
In [54]:
         for k in range(1, 11):
```

```
model = KMeans(n_clusters=k,n_init=10,random_state=42)
model.fit(df_scaled)
errors.append(model.inertia_)
```

```
In [55]: plt.title('The Elbow Method')
  plt.xlabel('k'); plt.ylabel('SSE')
  sns.pointplot(x=list(range(1, 11)), y=errors)
  plt.savefig("Elbow.png")
```

The Elbow Method

In [56]: %pip install kneed

Requirement already satisfied: kneed in /Users/revanthvemula/miniconda3/envs/prac/lib/python3.11/site-packages (0.8.2)

Requirement already satisfied: numpy>=1.14.2 in /Users/revanthvemula/miniconda3/envs/prac/lib/python3.11/site-packages (from kneed) (1.24.2)

Requirement already satisfied: scipy>=1.0.0 in /Users/revanthvemula/miniconda3/envs/prac/lib/python3.11/site-packages (from kneed) (1.10.1)

Note: you may need to restart the kernel to use updated packages.

The optimum number of clusters is: 3

```
In [58]: model = KMeans(n_clusters=3,n_init=10, random_state=42)
    model.fit(df_scaled)
```

```
Out[58]: 

KMeans(n_clusters=3, n_init=10, random_state=42)
```

```
In [59]: data = data.assign(ClusterLabel= model.labels_)
    data.groupby("ClusterLabel")[["Income", "TotalAmountSpent"]].median()
```

Out[59]: Income TotalAmountSpent

ClusterLabel

43.0	25261.5	0
1069.5	69084.0	1
145.0	42641.0	2

```
In [60]: fig = px.scatter(
    data_frame=data,
    x = "Income",
    y= "TotalAmountSpent",
    title = "Relationship between Income VS Total Amount Spent",
    color = "ClusterLabel",
    height=500
)
fig.show()
```

Relationship between Income VS Total Amount Spent

Interpreting the cluster Label. Cluster 0: Customers with low Income and Low spending. Cluster 1: Customer with moderate Income and Moderate spending. Cluster 3: Custoemers who earn much and spend much.

Building The Kmeans Model with Three Features

```
In [61]: data = df[["Age", "Income", "TotalAmountSpent"]]

In [62]: df_log = np.log(data)
    std_scaler = StandardScaler()
    df_scaled = std_scaler.fit_transform(df_log)

In [63]: sse = {}
    for k in range(1, 11):
        model = KMeans(n_clusters=k,n_init=10, random_state=42)
        model.fit(df_scaled)
        sse[k] = model.inertia_

In [64]: plt.title('The Elbow Method')
    plt.xlabel('k'); plt.ylabel('SSE')
    sns.pointplot(x=list(sse.keys()), y=list(sse.values()))
    plt.show()
```



```
In [65]: model = KMeans(n_clusters=3,n_init=10,random_state=42)
    model.fit(df_scaled)

data = data.assign(ClusterLabel= model.labels_)

In [66]: result = data.groupby("ClusterLabel").agg({"Age":"mean", "Income":"median", "TotalAmouresult").agg({"Age":"mean", "TotalAmoure
```

k

Out[66]: Age Income TotalAmountSpent

ClusterLabel

0	50.0	31801.0	54.0
1	45.0	67402.0	1001.0
2	66.0	62814.0	822.0

Visualizing The Result

Visualizing Cluster Result Using 3 Features

Interpreting Result Cluster 1 depicts young customers that earn way lot and also spend a lot. Cluster 2 translates to old customer that earn lot and also spend high. Cluster 3 depicts young customers that earn lows and also spend low.

```
In [68]:
         from sklearn.model_selection import train_test_split
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import accuracy score, classification report
         feature_columns = ["NumDealsPurchases", "AcceptedCmp1", "AcceptedCmp2", "AcceptedCmp3'
         X = df[feature_columns]
         y = df['Response']
         # Split the data into training and testing sets
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state
         # Standardize the features
          scaler = StandardScaler()
         X_train_scaled = scaler.fit_transform(X_train)
         X_test_scaled = scaler.transform(X_test)
         # Train the Logistic regression model
          logreg = LogisticRegression()
          logreg.fit(X_train_scaled, y_train)
```

```
# Make predictions on the test set
y_pred = logreg.predict(X_test_scaled)

# Evaluate the model performance
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy: ", accuracy)
print(classification_report(y_test, y_pred))
```

```
Accuracy: 0.8459821428571429
              precision
                            recall f1-score
                                                support
           0
                    0.86
                              0.97
                                                     379
                                         0.91
                    0.50
           1
                              0.16
                                         0.24
                                                      69
    accuracy
                                         0.85
                                                    448
                    0.68
                              0.57
                                         0.58
                                                     448
   macro avg
weighted avg
                    0.81
                              0.85
                                         0.81
                                                    448
```

In [69]: !pip install imbalanced-learn

Requirement already satisfied: imbalanced-learn in /Users/revanthvemula/miniconda3/en vs/prac/lib/python3.11/site-packages (0.10.1)

Requirement already satisfied: numpy>=1.17.3 in /Users/revanthvemula/miniconda3/envs/prac/lib/python3.11/site-packages (from imbalanced-learn) (1.24.2)

Requirement already satisfied: scipy>=1.3.2 in /Users/revanthvemula/miniconda3/envs/prac/lib/python3.11/site-packages (from imbalanced-learn) (1.10.1)

Requirement already satisfied: scikit-learn>=1.0.2 in /Users/revanthvemula/miniconda 3/envs/prac/lib/python3.11/site-packages (from imbalanced-learn) (1.2.2)

Requirement already satisfied: joblib>=1.1.1 in /Users/revanthvemula/miniconda3/envs/prac/lib/python3.11/site-packages (from imbalanced-learn) (1.2.0)

Requirement already satisfied: threadpoolctl>=2.0.0 in /Users/revanthvemula/miniconda 3/envs/prac/lib/python3.11/site-packages (from imbalanced-learn) (3.1.0)

In [70]: from imblearn.over_sampling import SMOTE

```
In [71]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=
smote = SMOTE(random_state=42)
X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train)

logreg = LogisticRegression()
logreg.fit(X_train_smote, y_train_smote)

y_pred = logreg.predict(X_test)
print("Accuracy: ", accuracy_score(y_test, y_pred))
print(classification_report(y_test, y_pred))
```

Accuracy:	0.7946428571428571					
		precision	recall	f1-score	support	
	0	0.91	0.85	0.88	577	
	1	0.34	0.48	0.40	95	
	_	0.54	0.40	0.40	22	
accur	асу			0.79	672	
macro	avg	0.62	0.66	0.64	672	
weighted	avg	0.83	0.79	0.81	672	

```
import xgboost as xgb
In [72]:
         from xgboost import XGBClassifier
         from sklearn.model selection import GridSearchCV
          # Define the XGBoost classifier
         xgb = XGBClassifier(random_state=42)
          # Define the hyperparameter search space
          param grid = {
              'max_depth': [3, 5, 7],
              'learning_rate': [0.1, 0.01, 0.001],
              'n estimators': [100, 500, 1000],
              'subsample': [0.5, 0.75, 1],
              'colsample_bytree': [0.5, 0.75, 1],
          }
         # Perform a grid search over the hyperparameter space using 5-fold cross-validation
          grid search = GridSearchCV(xgb, param grid=param grid, cv=5, scoring='f1', n jobs=-1)
         grid_search.fit(X_train_smote, y_train_smote)
          # Print the best hyperparameters
          print('Best hyperparameters:', grid_search.best_params_)
         # Train the XGBoost classifier with the best hyperparameters
          best_xgb = grid_search.best_estimator_
          best xgb.fit(X train smote, y train smote)
          # Evaluate the XGBoost classifier on the test set
         y_pred = best_xgb.predict(X_test)
          print(classification_report(y_test, y_pred))
         Best hyperparameters: {'colsample_bytree': 1, 'learning_rate': 0.01, 'max_depth': 7,
          'n_estimators': 100, 'subsample': 0.5}
                                    recall f1-score support
                       precision
                    a
                            0.90
                                      0.85
                                                 0.88
                                                            577
                            0.33
                                       0.45
                                                 0.38
                                                             95
                                                 0.79
                                                            672
             accuracy
                            0.62
                                       0.65
                                                 0.63
                                                            672
            macro avg
                                                 0.81
                                       0.79
         weighted avg
                            0.82
                                                            672
```

```
In [73]: from sklearn.ensemble import RandomForestClassifier

param_grid_rf = {
        'n_estimators': [100, 200, 500],
        'max_depth': [None, 10, 20, 30],
        'min_samples_split': [2, 5, 10],
        'min_samples_leaf': [1, 2, 4]
}

rf = RandomForestClassifier(random_state=42)
grid_search_rf = GridSearchCV(estimator=rf, param_grid=param_grid_rf, scoring='f1', cv
grid_search_rf.fit(X_train_smote, y_train_smote)

best_params_rf = grid_search_rf.best_params_
print("Best hyperparameters for Random Forest:", best_params_rf)
```

```
rf_best = RandomForestClassifier(**best_params_rf, random_state=42)
rf_best.fit(X_train_smote, y_train_smote)
y_pred_rf = rf_best.predict(X_test)
print(classification_report(y_test, y_pred_rf))
Best hyperparameters for Random Forest: {'max_depth': 10, 'min_samples_leaf': 2, 'min
_samples_split': 10, 'n_estimators': 500}
              precision
                          recall f1-score
                                              support
           0
                   0.90
                             0.85
                                       0.88
                                                   577
           1
                   0.34
                             0.45
                                       0.39
                                                   95
                                       0.80
                                                  672
    accuracy
                   0.62
                             0.65
                                       0.63
                                                  672
  macro avg
weighted avg
                   0.82
                             0.80
                                       0.81
                                                  672
```