



# Towards a Unified Data Analytics Optimizer

Yanlei Diao

Ecole Polytechnique, France University of Massachusetts Amherst, USA

#bigdata #deeplearning #optimization



SELECT C.uid, avg(P.pagerank)
FROM Clicks C, Pages P
WHERE C.url = P.url
GROUP BY C.uid
HAVING avg(P.pagerank) > 0.5
ORDER BY avg(P.pagerank)





ClickStream





Sessionization

Training of a classifier

Predication

Cloud Computing (EC2 ~60 instance types)

-t2.nano -t2.micro -t2.small -t2.medium t2.large -m4.large -m4.xlarge -m4.2xlarge m4.4xlarge -m4.10xlarge -m3.medium m3.large -m3.xlarge -m3.2xlarge -c4.large -c4.2xlarge ...







SELECT C.uid, avg(P.pagerank)
FROM Clicks C, Pages P
WHERE C.url = P.url
GROUP BY C.uid
HAVING avg(P.pagerank) > 0.5
ORDER BY avg(P.pagerank)



-t2.nano -t2.micro -t2.small -t2.medium t2.large -m4.large -m4.xlarge -m4.2xlarge m4.4xlarge -m4.10xlarge -m3.medium m3.large -m3.xlarge -m3.2xlarge -c4.large c4.2xlarge ...



ClickStream



Sessionization



Predication









SELECT C.uid, avg(P.pagerank)
FROM Clicks C, Pages P
WHERE C.url = P.url
GROUP BY C.uid
HAVING avg(P.pagerank) > 0.5
ORDER BY avg(P.pagerank)







Sessionization

Training of a classifier

**Predication** 



-t2.nano -t2.micro -t2.small -t2.medium t2.large -m4.large -m4.xlarge -m4.2xlarge m4.4xlarge -m4.10xlarge -m3.medium m3.large -m3.xlarge -m3.2xlarge -c4.large c4.2xlarge ...







SELECT C.uid, avg(P.pagerank)
FROM Clicks C, Pages P
WHERE C.url = P.url
GROUP BY C.uid
HAVING avg(P.pagerank) > 0.5
ORDER BY avg(P.pagerank)



Sessionization

Training of a classifier

**Predication** 

Today's Cloud Service guarantees availability (SLA)



But too many configuration issues are left to the user...

## A New Data Analytics Service



SELECT C.uid, avg(P.pagerank)
FROM Clicks C, Pages P
WHERE C.url = P.url
GROUP BY C.uid
HAVING avg(P.pagerank) > 0.5
ORDER BY avg(P.pagerank)



Sessionization

Training of a classifier

Predication

#### Cloud Computing: ~60 instance types

-t2.nano -t2.micro -t2.small -t2.medium t2.large -m4.large -m4.xlarge -m4.2xlarge m4.4xlarge -m4.10xlarge -m3.medium m3.large -m3.xlarge -m3.2xlarge -c4.large c4.2xlarge ...





# A New Data Analytics Service



SELECT C.uid, avg(P.pagerank)
FROM Clicks C, Pages P
WHERE C.url = P.url
GROUP BY C.uid
HAVING avg(P.pagerank) > 0.5
ORDER BY avg(P.pagerank)



Sessionization

Training of a classifier

Predication

Latency

Throughput

Monetary cost

#### **Dataflow Optimizer**

Bring database optimization to a broader class of analytics

- job configuration
- 2 cloud instance

# Dataflow Optimizer: dataflow programs



Throughput

Monetary cost

...



SELECT C.uid, avg(P.pagerank)
FROM Clicks C, Pages P
WHERE C.url = P.url
GROUP BY C.uid
HAVING avg(P.pagerank) > 0.5
ORDER BY avg(P.pagerank)







Sessionization

Training of a classifier

**Predication** 



# Dataflow Optimizer: from Logical to Physical Plans



#### **Phyiscal Plans**

Hadoop Streaming [Li et al 2011,2012,2015]



Degree of parallelism  $\theta p$ 

Granularity of scheduling  $\theta s$ 

Memory per executor...

Prediction

Training a classifier

Sessionization



# Challenge 1: Cost Models for the Dataflow Optimizer

#### **SQL** Optimizer

- Cost model for relational algebra
- Cost model for resource consumption (CPU and IO counters)
- System behaviors are often centered on CPU and IO
- Tend to run homogenous hardware

#### **Dataflow Optimizer**

- Cost model for arbitrary dataflow programs (in java, scala, python, ...)
- Cost models for any user-defined objectives (latency, throughput, cost, ...)
- Modeling diverse system behaviors, including CPU, IO, shuffling, queuing, data skew, stragglers, failures...
- Cloud computing may employ heterogeneous hardware



Building a general cost model for any user objective is hard!



# Challenge 2: Need A New Multi-Objective Optimizer

**Latency versus Throughput** 

1M tuples/sec with 1 sec latency



1K tuple/sec with 0.1 sec latency

Latency versus Monetary Cost

1 sec latency at \$800/day



5 sec latency at \$300/day

**Multi-Objective Optimization** 

- Solution is a (Pareto) set
- Reveals interesting tradeoffs



 $<\theta p$ ,  $\theta s$ ,  $\lambda$ , ...>

# Overview: Cost Modeling for Dataflow Optimization

#### Dataflow Optimizer

- Cost model for arbitrary data dataflow programs (in java, scala, ...)
- Cost models for any user-defined objectives
- Modeling diverse system behaviors including CPU, IO, shuffling, queuing, data skew, stragglers, failures...
- Cloud computing may employ heterogeneous hardware

### In-situ modeling

 Learn a model as complex as necessary for the current computing environment

## Deep Learning

- Representation learning for an arbitrary program
- A (non-linear) function for any objective



# Trace Collection for Cost Modeling & Optimization



# Trace Collection for Cost Modeling & Optimization

Significant change of user preference, e.g. switching to the replay mode Dataflow p **Dataflow Optimizer** Objectives  $\{F_1, ..., F_k\}$  $\Theta_{(0)}$ **Physical** Input  $\Theta^{(1)}$ Traces Execution Plan Data  $\Theta^{(2)}$ **User Objectives** (related measures) Spark Spark **Application** Streaming Listener (Spark related metrics) Optimization time: TO(i) - Tith preference change

- T⊖<sup>(1)</sup>: job first seen, workload encoding and optimization
- T⊖(i),i>1 : job already seen, optimization



# Inside the Dataflow Optimizer



# 1. Building a Cost Model for each User Objective

Given a dataflow, we assume that there is a job-specific encoding  $W_j$  (of its key characteristics) which is invariant to time and runtime parameters.

Definition: For a job j, the workload encoding  $W_j$  is a real-valued vector satisfying three conditions:

- 1. Invariance: For the same logical dataflow program,  $W_j$  should be (approximately) an invariant during a period of time
- 2. Reconstruction:  $W_j$  should carry all the information for reconstructing the observations (traces), given a specific job configuration  $\Theta_j^i$
- 3. Similarity Preserving: For similar programs i and j, their encodings  $W_i$  and  $W_j$  should also be similar

# Formal Description of the Predictive Model

Under our assumption, the model for a user objective (e.g., latency) can be abstracted as a deterministic function:

$$\Psi(\theta_j^i, W_j) = l_j^i$$

Interpreted as an optimization problem, our goal is to find a function s.t.

$$\Psi^* = \underset{\Psi}{\operatorname{arg \, min}} \quad \operatorname{avg}(\operatorname{distance}(\Psi(\theta_j^i, W_j), l_j^i)$$

where average is taken among all training instances ( j,  $W_i$  ).

**Challenge**: Building the  $\Psi$  function is easy if both  $W_j$  and  $\Theta_j^i$  are known, but the workload encoding  $W_j$  is <u>unknown</u> in practice!

#### Neutral network architectures that can

- (1) extract the workload encoding for each new job;
- (2) predict on a user objective given a new job configuration.

# Two Types of Architecture

# 1. Embedding



#### 2. Autoencoder



# Results on Modeling

52 SQL-like jobs from 5 parameterized templates for click stream analysis, which use different group-by's, joins, global or windowed aggregates, and user-defined functions. 6 intensive jobs (each with 455 conf.), 46 regular jobs (each with 25 conf.).

12 ML jobs based on binary classification using Stochastic Gradient Descent. Each has 25 configurations.

|                      | SQL-like Jobs |           | ML Jobs   |           |
|----------------------|---------------|-----------|-----------|-----------|
|                      | T1            | <b>T2</b> | <b>T1</b> | <b>T2</b> |
| Embedding            | 9.7%          | 33.3%     | 16.5%     | 16.2%     |
| Autoencoder          | 11.6 %        | 22.0%     | 24.9%     | 53.9%     |
| Autoencoder + Opt2   | 11.6 %        | 13.4%     | 24.9%     | 25.0%     |
| Autoencoder + Opt1   | 8.5%          | 10.3%     | 2.9%      | 2.6%      |
| Autoencoder + Opt1/2 | 8.5%          | 8.4%      | 2.9%      | 3.6%      |
| HadoopStreaming [17] | 31.9%         | 31.9%     | 84.6%     | 84.6%     |

# Results on Modeling

Predication accuracy on familiar jobs

Prediction accuracy on new (seen first time) jobs

|                    | SQL-lil   | SQL-like Job |           | ML Jobs   |   |
|--------------------|-----------|--------------|-----------|-----------|---|
|                    | <b>T1</b> | T2           | <b>T1</b> | <b>T2</b> | ] |
| Embedding          | 9.7%      | 33.3%        | 16.5%     | 16.2%     |   |
| Autoencoder        | 11.6 %    | 22.0%        | 24.9%     | 53.9%     |   |
| Autoencoder + Opti | 2 11.6 %  | 13.4%        | 24.9%     | 25.0%     | 1 |
| Autoencoder + Opt  | 1 8.5%    | 10.3%        | 2.9%      | 2.6%      |   |
| Autoencoder + Opt1 | /2 8.5%   | 8.4%         | 2.9%      | 3.6%      |   |
| HadoopStreaming [1 | [7] 31.9% | 31.9%        | 84.6%     | 84.6%     |   |

# 2. A New Multi-Objective Optimizer

- Given a set of user objectives, a Multi-Objective Optimizer uses the predicted performance measures to construct a Pareto optimal set (frontier).
- The skyline offers insights on tradeoffs:
  - e.g., two configurations consume the same amount of resources, but one achieves 20% higher throughput with only 1% loss of latency
- It finally chooses one optimal configuration to set the system parameters (e.g., degree of parallelism, granularity of scheduling, input rate) for execution.

## **Integration Results**



Improvement over configurations set by engineers, dominance in 10/15, tradeoffs in 5/15



Improving throughput in the replay mode, reducing running time by 50%



## Messages

In-situ modeling based on deep learning has the potential to model any user objective in a given computing environment

Multi-objective optimization has the potential to explore tradeoffs and move in direction of better performance automatically



# Acknowledgements



Your comments are very welcome. Thank you!

