11.4 The Normal Distribution - Overview

Normal Distribution Properties

- It's a symmetric, unimodal and bell-shaped distribution
 ⇒ which implies mean = median = mode.
- Total area under curve (probability) is equal to 1 = 100%.
- Completely described by its mean μ (location) and standard deviation σ (spread).

Empirical Rule (68 – 95 – 99.7 Rule)

- When data is approximately bell shaped, the standard deviation allows us to make fairly accurate approximations about the locations of our data values.

68% of the data lies within 1 standard deviation of the mean.

95% of the data lies within 2 standard deviations of the mean.

of the data lies within 3 standard deviations of the mean.

- We can use these breakdowns to find probabilities within certain intervals.

Example 1: Suppose that diameters of a new species of apple have a bell-shaped distribution with a mean of 7 cm and a standard deviation of 0.5 cm. Using the empirical rule, find the following percentages of apples with diameters that are:

Normal Distribution - Again

• The normal distribution allows us to find any probability, not just for points that lie exactly 1, 2, or 3 standard deviations ("steps") away from the mean like with the empirical rule!

Z-scores ("Standard" scores in Hawkes Certify)

- Definition: A **z-score** <u>standardizes</u> observations based on the <u>mean</u> (center) and <u>standard deviation</u> (spread) of the distribution.
 - o Allows for comparisons on different scales.
 - o Ex) ACT vs SAT

Formula:
$$z = \frac{x - \mu}{\sigma} = \frac{x - \bar{x}}{s} = \frac{obs - mean}{st \ dev}$$

- Interpretation:
 - o A **z-score** tells us how many standard deviations an observation is away from the mean.
 - The unit of a z-score is standard deviations.

Example 2: For each data set with the stated μ and σ , find the standard score (z score) corresponding to the given observation, x.

a)
$$\mu = 8$$
, $\sigma = 3$, $x = 17$

a)
$$\mu = 8$$
, $\sigma = 3$, $x = 17$ $= \frac{17 - 8}{3} = 3$, above mean

b)
$$\mu = 100$$
, $\sigma = 16$, $x = 80$

$$Z = \frac{80 - (00)}{16} = -(.35)$$
 below mean

c) Which observation is further from the mean relatively?

Finding probabilities based on the Normal Distribution

- Handout: Normal Distribution Table
 - Use the handout to convert z-scores to percentiles ("left probabilities").
 - \triangle 0 ALWAYS gives probability LESS THAN Z: P(Z < z). " Left"

- Different types of probabilities
 - Left probability = Table (Directly)

Draw, Label and Shade curve

Example: Find the total area under the standard normal curve (probability or percentage) to the left of z = 0.34.

Examples: Find the probability to the right of z = 0.34.

$$\begin{cases}
2 & \text{ight} = 1 - 12 + 4 \\
2 & \text{ight} = 0.633 \\
4 & \text{ight} = 0.3669
\end{cases}$$

Find the probability to the right of z = -1.2.

Example: Find the probability between $z_1 = -0.12$ and $z_2 = 2.27$.

Why this works

Between =
$$uft = 2 - uft = 1$$

= $0.4984 - 0.4522$
 $\sqrt{-0.5362}$

Example: Find the probability to the left of $z_1 = -0.12$ and to the right of $z_2 = 2.27$.

Examples

Example 3: Suppose that IQ scores have a bell-shaped distribution with a mean of 105 and a standard deviation of 15. Using the empirical rule answer the following questions:

a) What percentage of IQ scores are greater than 75?

Shade

outside
$$\rightarrow$$
 Total Between (Inside)
$$100\% - 95\% = 5\%$$

only Right
$$\rightarrow \frac{5\%}{2} = 2.5\%$$

Final Answer =
$$95\% + 2.5\% = 100\% - 3.5\% = 97.5\%$$

b) Between which two values do the middle 68% of IQ scores fall between?

Example 4: Suppose there is a new breed of giant cats, whose weights are normally distributed with an average of 100 pounds and a standard deviation of 15 lbs. You would like to own a smaller version of this type of cat, specifically between # lbs and 69 lbs. What is the probability you can find a cat between these two weights.

