Récapitulatif de Mécanique

Sciences de l'Ingénieur

I. Liaisons

Ponctuelle	2	0	\$
Pivot	→ □→	9	- /CO+
Pivot glissant		ò	
Linéaire rectiligne	<i>z x</i>	2	*
Linéaire annulaire	-	<u> </u>	4
Rotule	Ý	Ý	Ŕ
Appui plan	4		
Glissière	- □→	*	
Hélicoïdale	-	þ	<u></u>

II. Formules générales

Rendement	$\eta = \frac{P_s}{P_e} = \frac{C_s}{C_e} \times r$	$\eta_g = \prod_{k=1}^n \eta_k$
Rapport de réduction	$r = \frac{\omega_s}{\omega_e} = \frac{N_s}{N_e} = \frac{Z_e}{Z_s}$	$r_g = \prod_{k=1}^n r_k = \frac{\prod Z_{e_k}}{\prod Z_{s_k}} \times (-1)^n$
Puissance	Translation $\begin{array}{c ccc} W & N & m.s^{-1} \\ & & & & \\ \hline P = F \times V \end{array}$	
	Rotation $W \text{ N.m rad.s}^{-1}$ $P = C \times \omega$	
Vitesse	$V = \frac{\omega R}{2\pi NR}$ $V = \frac{2\pi NR}{60}$	$\omega = \frac{2\pi N}{60} = 2\pi n$
Pression	bar daN $p = \frac{F}{s}$ cm ²	Pa N $p = \frac{F}{S}$ m^2

Récapitulatif de Mécanique

Sciences de l'Ingénieur

III. Les guidages en rotation

Calcul des coussinets		Roulement à billes	
$p = \frac{F}{d \times L}$ F (N) : charge sur le palier d (mm) : diamètre de l'alésage L (mm) : longueur du coussinet p (N.mm ⁻²) : pression diamétrale	+	Roulement à billes	
			Roulement à rouleaux cylindriques
		$[\dot{l}]$	Roulement à rouleaux coniques

Règles de montage des roulements :

Si une bague est tournante par rapport à la direction de la charge exercée sur le roulement (Fa, Fr ou F), elle doit être ajustée avec serrage.

Si une bague est fixe, ou non-tournante par rapport à la direction de cette charge, elle doit être ajustée avec jeu.

Les bagues tournantes par rapport à la charge et ajustées serrés doivent être fixées latéralement ou « épaulés » des deux côtés.

IV. Les engrenages

m	Module de l'engrenage	
Z	Nombre de dents	
р	Pas	$p = m \cdot \pi$
h_a	Saillie	$h_a = m$
h _f	Creux	$h_f = 1,25m$
h	Hauteur de dent	$h = h_a + h_f = 2,25m$
d_p	Diamètre primitif	$d_p = mZ$
d_{a}	Diamètre de tête	$d_a = d_p + 2m$
d_{f}	Diamètre de pied	$d_f = d_p - 2.5m$
а	Entraxe	•
b	Largeur de denture	b = km

V. Cinématique

	MTRU	MTRUV
Accélération	a(t) = 0	$a(t) = a = \frac{\Delta v}{\Delta t}$
Vitesse	$v(t) = v_i = \frac{\Delta d}{\Delta t}$	$v(t) = a(t - t_i) + v_i$
Position	$x(t) = v_i(t - t_i) + x_i$	$x(t) = \frac{1}{2}a(t - t_i)^2 + v_i(t - t_i) + x_i$

Composition de vitesses:

$$\overrightarrow{V_{A_{1/3}}} = \overrightarrow{V_{A_{1/2}}} + \overrightarrow{V_{A_{2/3}}}$$

Equiprojectivité:

$$\overrightarrow{AB} \cdot \overrightarrow{V_{A_{1/0}}} = \overrightarrow{AB} \cdot \overrightarrow{V_{B_{1/0}}}$$