

SW6306V 寄存器手册

1. 寄存器

注意: reserved 的寄存器或 bit 不能被改写

1.1. REG0x01: 芯片版本

Bit	Description	R/W	Default
7-4		1	/
3-0	芯片版本	R	0x1

1.2. REG0x0E: 充电电压状态

Bit	Description	R/W	Default
7	reserved	/	/
6-4	充电时,vbus 的实际电压指示	R	0x0
	0: 5V		
	1: 9V		
	2: 10V		
	3: 12V		
	4: 15V		
	5: 20V		
	6: reserved		
	7: 多个输入口或输出口		
	充电时,请求的电压是否有效	R	0x0
3	0: 无效		
\	1: 有效		
2-0	充电时,请求电压指示	R	0x0
	0: 5V		
	1: 9V		
	2: 10V		
	3: 12V		
	4: 15V		
	5: 20V		
	6~7: reserved		

1.3. REG0x0F: 充放电快充指示

Bit	Description	R/W	Default
7-6	reserved	R	0x0
	电压标志	R	0x0
5	0: 非快充电压		
	1: 电压处于快充电压		
	快充标志	R	0x0
4	0: 非快充		
	1: 协议指示处于快充		
3-0	快充指示	R	0x0
	0: None		
	1: QC2		
	2: QC3		
	3: QC3+		
	4: FCP		
	5: SCP		
	6: PD FIX		
	7: PD PPS		
	8: PE 1.1		
	9: PE 2.0		
	10: VOOC 1.0		
	11: VOOC 4.0		
	12: SuperVOOC		
	13: SFCP		
	14: AFC		
	15: UFCS		

1.4. REG0x10: 充电端口限流状态

Bit	Description	R/W	Default
7-0	充电时端口限流实时值	R	0x0
	0.2~7A, 50mA/step		

1.5. REG0x11: 充电电池限流状态

Bit	Description	R/W	Default
7-0	充电时电池端限流实时值	R	0x0
	$0.1\sim12A$, 100mA/step		

1.6. REG0x12: 模式状态

Bit	Description	R/W	Default
7-4	reserved	/	/
3	无线充工作标志位	R/W	0x0
	0: 无线充工作指示灯不显示		
	1: 无线充工作指示灯显示(此 bit 需要由 MCU 来写入,		
	芯片才将无线充工作指示灯显示出来)		
	特别注意设置了无线充模式,A2 口打开,此时数码管的		
	无线充显示处于闪烁状态,此时并不算打开了无线		
	充,当 MCU 完成无线充的连接之后,会将无线充工作		
	的标志位写 1,此时数码管的无线充指示变为常亮状态		
2	无线充异物标志位	R/W	0x0
	0: 无线充异常指示灯不显示		
	1: 无线充异常指示灯显示(此 bit 需要由 MCU 来写入,		
	芯片才将无线充异常指示灯显示出来)		
1	小电流模式指示	R	0x0
	0: 未处于小电流模式		
	1: 处于小电流模式		
0	MPPT 充电指示位	R	0x0
	0: 非 MPPT 充电状态		
	1: MPPT 充电状态		

1.7. REG0x13: 端口空载状态

Bit	Description	R/W	Default
7-4	reserved	/	/
3	A1 口空载指示位		
	0: nothing		
\ \	1: A1 口处于空载	R	0x0
2	A2 口空载指示位		
	0: nothing		
	1: A2 口空载	R	0x0
1	C1 口空载指示位		
	0: nothing		
	1: C1 口空载	R	0x0
0	C2 口空载指示位		
	0: nothing		
	1: C2 口空载	R	0x0

1.8. REG0x14: 显示状态指示

Bit	Description	R/W	Default
7-6	reserved	/	/
5	WLED 工作状态指示	R	0x0
	0: 关闭 WLED		
	1: 打开 WLED		
	LED/数码管工作状态指示		
4	0: 未打开	R	0x0
	1: 打开		
3-0	reserved	X	

1.9. REG0x15: 异常事件指示

Bit	Description	R/W	Default
7-6	reserved	1	/
5	电量计量完成指示	R/W	0x0
	此 bit 通过写 1 清零		
	表示电量计周期性做计算时,完成一个周期的计算		
4	电池欠压 uvlo 事件指示	R/W	0x0
	此 bit 通过写 1 清零		
3	充电异常事件指示	R/W	0x0
	此 bit 通过写 1 清零		
	使用时,查询到发生充电异常指示,之后再查异常状		
	态寄存器 REG0x2A~2C,确定发生何种异常。		
2	放电异常事件指示	R/W	0x0
	此 bit 通过写 1 清零		
	使用时,查询到发生放电异常指示,之后再查异常状		
	态寄存器 REG0x2A~2C,确定发生何种异常。		
1	按键事件指示	R/W	0x0
	此 bit 通过写 1 清零		
	注意:按键事件包含短按,长按和双击		
	使用时,查询到发生按键指示,之后再查按键状态寄		
	存器,确定为何种类型事件。		
0	场景变化事件指示,	R/W	0x0
	此 bit 通过写 1 清零		
	注意:场景包含 C1 和 C2 口, A1 口和 A2 口的插拔事		
	件		

1.10. REG0x18: 系统状态指示

Bit	Description	R/W	Default
7	充电异常触发事件指示	R	0x0
	0: 充电无异常		
	1: 异常导致充电关闭		
6	放电异常触发事件指示	R	0x0
	0: 放电无异常		
	1: 异常导致放电关闭		
5	充电状态指示位	R	0x0
	0: 充电关闭		
	1: 充电打开		
4	放电状态指示位	R	0x0
	0: 放电关闭		
	1: 放电打开		
3	C1 口通路状态指示位	R	0x0
	0: C1 通路关闭		
	1: C1 通路打开		
2	C2 口通路状态指示位	R	0x0
	0: C2 通路关闭		
	1: C2 通路打开		
1	A1 口通路状态指示位	R	0x0
	0: A1 通路关闭		
	1: A1 通路打开		
0	A2 口通路状态指示位	R	0x0
	0: A2 通路关闭		
	1: A2 通路打开		

1.11. REG0x19: TypeC 状态指示

Bit	Description	R/W	Default
7-6	C1 口连接角色状态	R	0x0
	1: sink		
	2: source		
	Other: 未连接		
5-4	C2 口连接角色状态	R	0x0
	1: sink		
	2: source		
	Other: 未连接		
3	C1 口的 CC1 状态指示	R	0x0
	0: 未连接		
	1: C1 口 CC1 连接		

2	C1 口的 CC2 状态指示	R	0x0
	0: 未连接		
	1: C1 口 CC2 连接		
1	C2 口的 CC1 状态指示	R	0x0
	0: 未连接		
	1: C2 口 CC1 连接		
0	C2 口的 CC2 状态指示	R	0x0
	0: 未连接		
	1: C2 口 CC2 连接		

1.12. REG0x1A: NTC 电流指示

Bit	Description	R/W	Default
7-6	NTC 电流档位标志	R	0x0
	0: 80uA		
	1: 40uA		
	2: 20uA		
	3: reserved		
	此标志位表示作用 NTC 电阻上的电流档位。精确计算		
	NTC 温度的过程如下:		
	1.通过 ADC REG0x31/REG0x32 读取 NTC 电阻上电压		
	2.通过 REG0x1A[7:6]获取 NTC 上的电流档位		
	3.通过 NTC 电阻上的电压和电流计算得到 NTC 电阻值		
	4.通过 NTC 阻值查找相应的阻值-温度对应表,得到		
	NTC 温度		
5-0	reserved	/	/

1.13. REG0x1C: A 口及快充输入状态指示

Bit	Description	R/W	Default
7	reserved	/	/
	A2 口存在状态指示	R	0x0
	0: 不存在		
6	1: 存在		
	仅在芯片上电时检测 1 次,当 GATEA2 对地短路		
	时,认为 A2 口不存在		
	A1 口存在状态指示	R	0x0
	0: 不存在		
5	1: 存在		
	仅在芯片上电时检测 1 次,当 GATEA1 对地短路		
	时,认为A1口不存在		

	当前协议是否支持 9V 档位快充	R	0x0
4	0: 不支持		
	1: 支持		
	当前协议是否支持 10V 档位快充	R	0x0
3	0: 不支持		
	1: 支持		
	当前协议是否支持 12V 档位快充	R	0x0
2	0: 不支持		
	1: 支持		
	当前协议是否支持 15V 档位快充	R	0x0
1	0: 不支持		
	1: 支持		
	当前协议是否支持 20V 档位快充	R	0x0
0	0: 不支持		
	1: 支持		

1.14. REG0x1D: 端口状态指示

Bit	Description	R/W	Default
7	C1 作为 source 的连接状态指示	R	0x0
	0: 未连接		
	1: 连接		
6	C1 作为 sink 的连接状态指示	R	0x0
	0: 未连接		
	1: 连接		
5	C2 作为 source 的连接状态指示	R	0x0
	0: 未连接		
	1: 连接		
4	C2 作为 sink 的连接状态指示	R	0x0
	0: 未连接		
	1: 连接		
3	A1 口在线状态指示	R	0x0
	0: 不在线		
	1: 在线		
2	A2 口在线状态指示	R	0x0
	0: 不在线		
	1: 在线		
1	C1 口的在线状态指示	R	0x0
	0: 不在线		
	1: 在线		
0	C2 口的在线状态指示	R	0x0
	0: 不在线		

1 + 41		
1. 什纥	'	
1. 上入	i '	

1.15. REG0x20: 短按键事件触发

Bit	Description	R/W	Default
7-1	reserved	/	/
0	写短按键事件,自动清零	WC/R	0x0
	0: 无响应		
	1: 触发一次短按键		
	注: 会刷新空载检测时间		
	待机状态下可以直接读写, 但不支持连续读写		

1.16. REG0x21: 放电事件触发

Bit	Description	R/W	Default
7-6	reserved	1	/
5	写关闭放电事件,自动清零	WC/R	0x0
	该 bit 写 1 时关闭放电,关闭通路管驱动		
4-0	reserved	/	/

1.17. REG0x22: 端口事件触发

Bit	Description	R/W	Default
	C1 口作为 source 拔出事件触发	WC	0x0
7	该 bit 写 1 时触发 C1 source 拔出事件,自动清零		
	只有 source 连接态才有效		
	C1 口作为 source 插入事件触发	WC	0x0
6	该 bit 写 1 时触发 C1 source 插入事件,自动清零		
	只有 source 连接态才有效		
	C2 口作为 source 拔出事件触发	WC	0x0
5	该 bit 写 1 时触发 C1 source 拔出事件,自动清零		
	只有 source 连接态才有效		
	C2 口作为 source 插入事件触发	WC	0x0
4	该 bit 写 1 时触发 C1 source 插入事件,自动清零		
	只有 source 连接态才有效。		
3	A1 口拔出事件触发	WC	0x0
3	写 1 触发 A1 口拔出事件,自动清零		
2	A1 口插入事件触发	WC	0x0
	写 1 触发 A1 口接入事件,自动清零		
1	A1 口拔出事件触发	WC	0x0

	写 1 触发 A2 口拔出事件,自动清零		
0	A2 口插入事件触发	WC	0x0
U	写 1 触发 A2 口接入事件,自动清零		

1.18. REG0x23: 低功耗设置

Bit	Description	R/W	Default
7-1	reserved	1	
0	关机低功耗使能	R/W	0x0
	0: 开低功耗		
	1: 关闭低功耗		
	1) REG0x23 写 0x01 关闭低功耗		
	2) REG0x24 写 0x20,0x40,0x80,解锁 I2C 写操作		
	才能写其他寄存器(除 REG0x21~0x24 之外)		
	注意: 只有关闭低功耗时, 其他寄存器才能写入		

1.19. REG0x24: I2C 使能

Bit	Description	R/W	Default
	I2C 写操作使能,如果要写其他寄存器(除	/	/
	REG0x20~0x24之外),需要先执行如下操作:		
	1) 写 REG0x24=0x20;		
7-5	2) 写 REG0x24=0x40;		
	3) 写 REG0x24=0x80;		
	4) 若要操作 REG0x100~REG0x156,写 REG0x24=0x81		
	若要退出 I2C 写操作使能,则写 REG0x24=0x00		
4-1	reserved	/	/
	I2C 寄存器地址 bit 8	R/W	0x0
	若要操作 REG0x100~REG0x156 时, 需写此 bit 为 1		
U	若此 bit 为 1 时,要操作低于 REG0x100 的地址时,向		
	REG0x1FF 写 0 即可将此 bit 清零。		

1.20. REG0x25: 事件中断使能

Bit	Description	R/W	Default
7-6	reserved	/	/
5	电量计量完成事件中断使能	R/W	0x0
	0: 禁止电量计量完成中断		
	1: 使能电量计量完成中断		
4	电池欠压 uvlo 事件中断使能	R/W	0x0

	0: 禁止 uvlo 中断		
	1: 使能 uvlo 中断		
	充电异常事件中断使能	R/W	0x0
3	0: 禁止充电异常中断		
	1: 使能充电异常中断		
	放电异常事件中断使能	R/W	0x0
2	0: 禁止放电异常中断		
	1: 使能放电异常中断		
	按键事件中断使能	R/W	0x0
1	0: 禁止按键中断		
1	1: 使能按键中断		
	注意:按键事件包含短按,长按和双击		
	场景变化中断使能	R/W	0x0
	0: 禁止场景变化中断		
0	1: 使能场景变化中断		
	注意:场景包含 C1 和 C2 口, A1 口和 A2 口的插拔事		
	件		

1.21. REG0x28: 模式设置

Bit	Description	R/W	Default
7-5	reserved	/	/
4	WLED 控制 0:关闭 WLED	R/W	0x0
	1: 打开 WLED		
	强制关闭输出	R/W	0x0
	0: 无影响		
3	1: 强制关闭输出使能		
3	此 bit 不会自动清零,在强制关闭输出期间,A 口插入		
	检测关闭,不响应按键打开输出,Type-C 口只作为		
	sink		
	充电强制关闭	R/W	0x0
	0: 无影响		
2	1: 强制关闭充电		
	此 bit 不会自动清零,在强制关闭充电时,只关闭		
	charger,通路管开关不受影响		
	控制进入小电流充电	R/W	0x0
	0: 退出小电流模式		
1	1: 进入小电流模式		
	注意:		
	1) 要进入小电流模式,此 bit 先写 0,之后再写 1,小		
	电流模式定时重新打开;		

	2) 要退出小电流模式,此 bit 写 0		
	MPPT 功能设置	R/W	0x0
0	0: 关闭		
	1: 打开		

1.22. REG0x29: IO 控制

Bit	Description	R/W	Default
7-3	reserved	/	1
2	IO1 pin 输出电平设置	R/W	0x0
	0: 拉低		
	1: 拉高		
1-0	IRQ PIN 模式配置	R/W	0x0
	0: LED/数码管工作时持续拉低		
	1:中断事件使能且发生后,发送 10mS 低电平脉冲		
	2: 中断事件使能且发生后,持续拉低直到对应中断标		
	志位清除		
	3: 无动作		

1.23. REG0x2A: 系统异常状态指示 0

Bit	Description	R/W	Default
7	reserved	/	/
	放电时电池过压异常事件指示	R	0x0
6	0: 正常		
6	1: 发生过异常		
	注意,此bit 在下次开机事件时自动清零		
	放电时芯片过温异常事件指示	R	0x0
5	0: 正常		
3	1: 发生过异常		
	注意,此 bit 在下次开机事件时自动清零		
	放电时 NTC 过温异常事件指示	R	0x0
4	0: 正常		
7	1: 发生过异常		
	注意,此 bit 在下次开机事件时自动清零		
	放电时 vbus 过载异常事件指示	R	0x0
3	0: 正常		
3	1: 发生过异常		
	注意,此 bit 在下次开机事件时自动清零		
2	放电时 vbus 短路异常事件指示	R	0x0
	0: 正常		

	1: 发生过异常		
	注意,此 bit 在下次开机事件时自动清零		
	放电时 vbus 慢速过压保护异常事件指示	R	0x0
1	0: 正常		
1	1: 发生过异常		
	注意,此 bit 在下次开机事件时自动清零		
0	放电时 vbus 快速过压保护异常事件指示	R	0x0
	0: 正常		
	1: 发生过异常		
	注意,此 bit 在下次开机事件时自动清零		

1.24. REG0x2B: 系统异常状态指示 1

Bit	Description	R/W	Default
7	电池电压低于 1.5V 异常事件指示	R	0x0
	0: 正常		
/	1:发生过异常		
	注意,此 bit 在下次开机事件时自动清零		
	充电超时异常事件指示	R	0x0
6	0: 正常		
	1: 发生过异常		
	注意,此bit 在下次开机事件时自动清零		
	充满事件指示	R	0x0
5	0: 未充满		
	1: 充满		
	注意,此 bit 在下次开机事件时自动清零		
	充电时电池过压异常事件指示	R	0x0
4	0: 正常		
_	1: 发生过异常		
	注意,此bit 在下次开机事件时自动清零		
	充电时芯片过温异常事件指示	R	0x0
3	0: 正常		
	1: 发生过异常		
	注意,此bit 在下次开机事件时自动清零		
	充电时 NTC 过温异常事件指示	R	0x0
2	0: 正常		
	1: 发生过异常		
	注意,此bit 在下次开机事件时自动清零	_	
	充电时 vbus 慢速过压异常事件指示	R	0x0
1	0: 正常		
-	1:发生过异常		
	注意,此 bit 在下次开机事件时自动清零	-	
0	充电时 vbus 快速过压异常事件指示	R	0x0

0: 正常	
1: 发生过异常	
注意,此 bit 在下次开机事件时自动清零	

1.25. REG0x2C: 系统异常状态指示 2

Bit	Description	R/W	Default
	按键事件指示	R	0x0
	0: 未发生按键事件		
7-6	1: 发生短按		
/-0	2: 发生双击		
	3: 发生长按		
	注意,此 bit 在下次按键事件到来时更新		
5	reserved	1	1
	放电时 62368 低温异常事件指示	R	0x0
4	0: 正常		
-	1: 发生过异常		
	注意,此 bit 在下次开机事件时自动清零		
	充电时 62368 低温异常事件指示	R	0x0
3	0: 正常		
	1: 发生过异常		
	注意,此 bit 在下次开机事件时自动清零		
	充电 62368 过温异常事件指示	R	0x0
2	0: 正常		
-	1: 发生过异常		
	注意,此bit 在下次开机事件时自动清零		
	放电时 dpdm 5.5V 过压异常事件指示	R	0x0
1	0: 正常		
	1: 发生过异常		
	注意,此bit 在下次开机事件时自动清零		
	放电时 cc 5.5V 过压异常事件指示	R	0x0
0	0: 正常		
	1: 发生过异常		
	注意,此 bit 在下次开机事件时自动清零		

1.26. REG0x2D: CC 驱动控制

Bit	Description	R/W	Default
7-2	reserved	/	/
1	TypeC1 CC 驱动控制 0: 无影响	R/WC	0x0

	1: 不驱动 TypeC1 的 CC1、CC2, 1s 后恢复驱动 注意此 bit 写 1 后自动清零		
0	TypeC2 CC 驱动控制 0: 无影响 1: 不驱动 TypeC1 的 CC1、CC2, 1s 后恢复驱动	R/WC	0x0
	注意此 bit 写 1 后自动清零		

1.27. REG0x2E: PD 命令控制

Bit	Description	R/W	Default
7-4	reserved	1	1
3-0	发送 PD 指令 0: 无影响 1: 重新发送 source cap 2: 启动发送 hard reset 流程 3~15: reserved	R/WC	0x0

1.28. REG0x2F: UFCS 命令控制

Bit	Description	R/W	Default
7-1	reserved	/	/
0	发送 UFCS 指令 0: 无影响 1: 重新发送 source cap 注意此 bit 写 1 后自动清零	R/WC	0x0

1.29. REG0x30: ADC 配置

Bit	Description	R/W	Defaul
			t
7-5	reserved	/	/
	ADC 数据选择	R/W	0x0
	0: 输入输出电压(8mV)		
	1: 输入/输出 IBUS 电流(4mA)		
	2: 电池电压 (7mV)		
	3: 输入/输出 IBAT 电流(5mA)		
	4: NTC 温度 (5℃)		
4-0	9: 芯片温度(1/6.82℃)		
	10: NTC 电压(1.1mV)		
	Other: reserved		
	注意:		
	NTC 电压计算方法参见 REG0x1A[7:6]中的描述		
	NTC 温度计算公式为: (Adc_data[11:0] – 16)*5℃		
	芯片温度计算公式为: (Adc_data[11:0] – 1839)/6.82℃		

1.30. REG0x31: ADC 数据低 8 位

Bit	Description	R/W	Default
7-0	ADC 低 8 位锁存	R/W	0x0
	Adc_data[7:0]		

1.31. REG0x32: ADC 数据高 4 位

Bit	Description	R/W	Default
7-4	reserved	/	/
3-0	ADC 高 4 位锁存	R/W	0x0
	Adc_data[11:8]		

1.32. REG0x40: 强制控制使能

Bit	Description	R/W	Default
	使能 I2C 强制控制输出功率		
	0: 无影响		
7	1: 强制设置输出功率	R/W	0x0
	当设置为1时,在系统控制模式下可以通过		
	REG0x4F 设置输出功率		

6	使能 I2C 强制控制 IBUS 电流,对充放电都有效 0: 不强制控制 IBUS 限流 1: I2C 强制控制 IBUS 限流 当设置为 1 时,在系统控制模式或 MCU 控制模式下可以通过 REG0x43/REG0x49 设置 IBUS 限流	R/W	0x0
5	使能 I2C 强制控制 IBAT 电流,对充放电都有效 0: 不强制控制 IBAT 限流 1: I2C 强制控制 IBAT 限流 当设置为 1 时,在系统控制模式或 MCU 控制模式下可以通过 REG0x44/ REG0x4A 设置 IBAT 限流	R/W	0x0
4	reserved		/
3	使能强制控制充电 hold 门限 0: 不强制控制充电 hold 门限 1: I2C 控制充电 hold 门限 当设置为 1 时,在系统控制模式或 MCU 控制模式下可以通过 REG0x48 设置充电 hold 门限	R/W	0x0
2	使能强制控制最大输入功率 0:不强制控制最大输入功率 1: I2C 控制最大输入功率 当设置为 1 时,在系统控制模式下可以通过 REG0x45 设置最大输入功率	R/W	0x0
1	使能强制控制充电目标电压 0:不强制控制充电目标电压 1: I2C 控制充电目标电压 当设置为 1 时,在系统控制模式或 MCU 控制模式 下可以通过 REG0x46~47 设置充电目标电压	R/W	0x0
0	foc_ctrl_vbus_vol 使能 I2C 强制控制 VBUS 电压 0: 无影响 1: 强制设置 VBUS 电压 当设置为 1 时,在系统控制模式或 MCU 控制模式 下可以通过 REG0x41~42 设置 VBUS 电压	R/W	0x0

1.33. REG0x41: 输出电压低 8 位控制

Bit	Description	R/W	Default
7-0	dischg_vbus[7:0] 输出电压设置低 8 位 可设置值 3.3~27.3V,10mV/step 输出电压=dischg_vbus[11:0]*10mV 当设置电压低于 3.3V 时,输出电压维持在 3.3V 不 变	R/W	0x0

当设置值超过 27.3V 时,输出电压维持在 27.3V 不	
变	
注意:修改寄存器后,立即生效	

1.34. REG0x42: 输出电压高 4 位控制

Bit	Description	R/W	Default
7-4	reserved	/	1
3-0	dischg_vbus[11:8] 输出电压设置高 4 位	R/W	0x0
	注意: 修改寄存器后, 立即生效		

1.35. REG0x43: 输出 IBUS 限流控制

Bit	Description	R/W	Default
7-0	dischg_ibus_limit 输出 IBUS 限流设置 可设置值 0.2~7A, 50mA/step 输出 IBUS 限流=dischg_ibus_limit*50mA 当设置值低于 0.2A 时,输出限流维持在 0.2A 不变 当设置值超过 7A 时,输出限流维持在 7A 不变 在 MCU 控制模式或者在系统控制模式 REG0x40[6] =1 时能够设置此寄存器	R/W	0x0

1.36. REG0x44: 输出 IBAT 限流控制

Bit	Description	R/W	Default
6-0	dischg_ibat_limit 输出 IBAT 限流设置 可设置值 0.1~12A, 100mA/step 输出 IBAT 限流=dischg_ibat_limit*100mA 当设置值低于 0.1A 时,输出限流维持在 0.1A 不变 当设置值超过 12A 时,输出限流维持在 12A 不变 在 MCU 控制模式或者在系统控制模式 REG0x40[5] =1 时能够设置此寄存器	R/W	0x0

1.37. REG0x45: 输入功率控制

Bit	Description	R/W	Default
7	reserved	/	/

	input_pow_set 输入最大功率设置, 注意与 REG0x107[3:0]的对应关		
	系 可犯單位 1 100W 1W/****		
	可设置值 1~100W,1W/step		
	输入最大功率=input_pow_set*1W		
6-0	当 input_pow_set=0 不充电	R/W	0x0
	在系统控制模式,REG0x40[2] =0 时,输入最大功		
	率由 REG0x107[3:0] 控制,REG0x40[2] =1 时,能		
	够设置此寄存器,此时输入最大功率由		
	REG0x45[6:0]决定,在 MCU 强制控制模式下,此		,
	寄存器无效,电压和电流均由 MCU 控制		

1.38. REG0x46: 充电目标电压低 8 位控制

Bit	Description	R/W	Default
7-0	charger_vol[7:0] 充电目标电压强制设置低 8 位 可设置值 3.3V-27.3V,10mV/step 充电目标电压=charger_vol[11:0]*10mV 当设置值低于 3.3V 时,充电目标电压维持在 3.3V 不变 当设置值超过 27.3V 时,充电目标电压维持在 27.3V 不变 在 MCU 控制模式或者在系统控制模式 REG0x40[1]=1 时能够设置此寄存器	R/W	0x0

1.39. REG0x47: 充电目标电压高 4 位控制

Bit	Description	R/W	Default
7-4	reserved	/	/
4-0	charger_vol[11:8] 充电目标电压强制设置高 4 位	R/W	0x0

1.40. REG0x48:充电限压门限控制

Bit	Description	R/W	Default
7-0	charger_hold 充电 hold 门限强制设置 可设置值 4.1V-25.6V,0.1V/step 充电欠压=charger_hold*0.1V	R/W	0x0

当设置超过 25.6V 时,充电欠压维持在 25.6V 不变	
在 MCU 控制模式或者在系统控制模式	
REG0x40[3] =1 时能够设置此寄存器	

1.41. REG0x49: 充电 IBUS 电流控制

Bit	Description	R/W	Default
7-0	charger_ibus_limit 充电时端口限流值设置 可设置值 0.2A~7A, 50mA/step 充电端口限流=charger_ibus_limit*50mA 当设置低于 0.2A 时,充电端口限流维持在 0.2A 不 变 当设置超过 7A 时,充电端口限流维持在 7A 不变 在 MCU 控制模式或者在系统控制模式 REG0x40[6] =1 时能够设置此寄存器	R/W	0x0

1.42. REG0x4A: 充电 IBAT 电流控制

Bit	Description	R/W	Default
7	reserved	/	/
6-0	charger_ibat_limit 充电时电池端限流设置 可设置值 0.1A~12A,100mA/step 充电电池端限流=charger_ibat_limit*100mA 当设置低于 0.1A 时,充电电池端限流维持在 0.1A 不变 当设置超过 12A 时,充电电池端限流维持在 12A 不 变 在 MCU 控制模式或者在系统控制模式 REG0x40[5] =1 时能够设置此寄存器	R/W	0x0

1.43. REG0x4B: 外部显示控制

Bit	Description	R/W	Default
7-4		/	/
3	异常显示控制	R	0x0
	0: 无影响		
	1: 异常显示		
	在写此 bit 为 1 后,以 5 次异常灯显为单位,持续显		
	示; MCU 需要写 0 以停止异常灯显		
2	快充显示控制	R	0x0
	0: 无影响		

	1: 显示快充		
	此 bit 为 1 时,一直显示快充		
1	小电流显示控制	R	0x0
	0: 无影响		
	1: 小电流灯显		
	此 bit 为 1 时,一直做小电流灯显		
0	无线充灯显控制	R	0x0
	0: 无影响		
	1: 无线充灯显		
	此 bit 为 1 时,一直做无线充灯显		,

1.44. REG0x4C: 场景控制

Bit	Description	R/W	Default
7-4		1	1
3	无线充模式下,仅包含 A2 口输出的边充边放电压	R/W	0x0
	请求设置		
	0: 固定申请输入最高电压(REG0x11E[5:4]决定)		
	1:寄存器设置(REG0x50[2:0]决定)		
2	无线充模式下,单 A2 口输出时,输出固定电压设	R/W	0x0
	置		
	0:输出固定电压(REG0x11E[1:0]决定)		
	1: 寄存器设置(REG0x41 和 REG0x42 决定)		
1-0	Reserved	R/W	0x0

1.45. REG0x4F: 输出功率设置

Bit	Description	R/W	Default
7	reserved	/	/
6-0	poset 输出功率寄存器设置,注意与 REG0x100[3:0]的对应关系 可设置值 1~100W,1W/step 输出功率= poset*1W 当设置值超过 100W 时,输出功率维持 100W 不变在系统控制模式,REG0x40[7] =0 时,输出最大功率由 REG0x100[3:0] 控制,REG0x40[2] =1 时,能够设置此寄存器,此时输出最大功率由 REG0x4F[6:0]决定,在 MCU 强制控制模式下,此寄存器无效,电压和电流均由 MCU 控制	R/W	0x0

1.46. REG0x50: 输入快充控制

Bit	Description	R/W	Default
7-4	reserved	/	/
3	快充申请电压控制方式 0: 快充电压自动控制	R/W	0x0
	1: MCU 控制快充电压		
2-0	强制申请快充电压档位 0:5V 1:9V 2:10V(若没有10V档位,则申请20V) 3:12V 4:15V 5:20V 6:20V 7:20V	R/W	0x0

1.47. REG0x51: 放电最大功率指示

Bit	Description	R/W	Default
7	reserved	/	/
6-0	放电最大功率,1W/step	R	0x0

1.48. REG0x52: 充电最大功率指示

Bit	Description	R/W	Default
7	reserved	/	/
6-0	充电最大功率,1W/step	R	0x0

1.49. REG0x86: 库仑计最大容量低 8 位

Bit	Description	R/W	Default
7-0	库仑计最大容量低 8 位	R/W	0x0
	326.2236mWh/step		

1.50. REG0x87: 库仑计最大容量高 4 位

Bit	Description	R/W	Default
7-4	reserved	/	/
3-0	库仑计最大容量高 4 位	R/W	0x0

226 2226 3771	
326.2236mWh/step	
320.223011 W 11/3tep	

1.51. REG0x88: 库仑计当前容量低 8 位

Bit	Description	R/W	Default
7-0	库仑计当前容量低 8 位	R/W	0x0
	0.07964mWh/step	K/W	UXU

1.52. REG0x89: 库仑计当前容量中 8 位

Bit	Description	R/W	Default
7-0	库仑计当前容量中 8 位	R/W	0x0
/-0	0.07964mWh/step	IC/ VV	UXU

1.53. REG0x8A: 库仑计当前容量高 8 位

Bit	Description	R/W	Default
7-0	库仑计当前容量高8位	R/W	0x0
	0.07964mWh/step	IX/ W	UXU

1.54. REG0x8B: 库仑计当前电量

Bit	Description	R/W	Default
7-0	库仑计当前电量	R	0x0
	1%/step		

1.55. REG0x8C: 库仑计可用电量

Bit	Description	R/W	Default
7-0	库仑计可用电量	R	0x0
	1%/step		

1.56. REG0x94: 均匀化处理当前电量

Bit	Description	R/W	Default
7-0	均匀化处理当前电量	R	0x0
	1%/step		

1.57. REG0x99: 显示电量

Bit	Description	R/W	Default
7-0	显示电量	R	0x0
	1%/step		

1.58. REG0xA2: 容量学习状态指示

Bit	Description	R/W	Default
7	reserved		1
6	容量学习过程标志位	R	0x0
	0: 不处于容量学习过程		
	1: 处于容量学习过程中		
5	容量学习完成标志位	R/W	0x0
	0: 未完成		
	1: 完成		
	当该 bit 为 1 说明至少完成过一次容量学习		
4-0	reserved	/	/

1.59. REG0xA4:外部系统状态指示

Bit	Description	R/W	Default
7-4		/	/
3	外部写入数据有效标志位	R/W	0x0
	0: 无效		
	1: 有效		
	注意: 这里外部写入数据有效,表示电量计可以叠加		
	外部系统的电流数据做电量计量		
2	外部系统充放电状态	R/W	0x0
	0: 充电		
	1: 放电		
1	外部系统充满状态	R/W	0x0
	0: 未充满		
	1: 充满		
0	外部系统低电状态	R/W	0x0
	0: 未低电		
	1: 低电		

1.60. REG0xA5:外部系统电池电流低 8 位

Bit	Description	R/W	Default
7-0	外部系统电池端电流低 8 位	R/W	0x0
	5mA/step		

1.61. REG0xA6:外部系统电池电流高 4 位

Bit	Description	R/W	Default
7-4		1	1
3-0	外部系统电池端电流高 4 位	R/W	0x0
	5mA/step		

1.62. REG0xA9:外部系统端口输入限流

Bit	Description	R/W	Default
7-0	外部输入限流	R/W	0x0
	50mA/step		

1.63. REG0xAA:外部系统电池端限流

Bit	Description	R/W	Default
7-0	外部系统电池端输入限流	R/W	0x0
	100mA/step		

1.64. REG0xAB: 外部系统端口电流低 8 位

Bit	Description	R/W	Default
7-0	外部系统端口电流低 8 位	R/W	0x0
	4mA/step		

1.65. REG0xAC: 外部系统端口电流高 4 位

Bit	Description	R/W	Default
7-4	/	/	/
3-0	外部系统端口电流高 4 位	R/W	0x0
	4mA/step		

1.66. REG0x100: 放电配置 0

Bit	description	R/W	Default
	芯片放电恒温环使能		
	0: 使能		
7	1: 禁止	R/W	0x0
	当芯片放电恒温环禁止时,无论 pin 设置或者寄存器设置放		
	电恒温环门限均无效		
	芯片放电恒温环阈值		
	0: 60℃		
	1: 70℃		
	2: 80℃		
6-4	3: 90℃	R/W	0x0
	4: 100℃		·
	5: 110℃		
	6: 120℃		
	7: 130℃		
	输出最大功率自动检测		
3	0: 自动检测	R/W	0x0
	1: 由当前寄存器[2:0]设置		
	输出功率设置		
	0: 27W		
	1: 30W		
2-0	2: 35W		
	3: 45W	R/W	0x0
	4: 60W		
	5: 65W		
	6: 100W		
	7: reserved		

1.67. REG0x101: 放电配置 1

Bit	description	R/W	Default
7-6	多口输出时最大输出电流设置 0: 4.2A 1: 3.0A 2: 5.2A 3: 6.2A	R/W	0x0
5-4	VBUS 限流固定偏移 0: 300mA 1: 150mA	R/W	0x0

	2: 450mA		
	3: 600mA		
	输出电压固定偏移		
	0: 100mV		
3-2	1: 0mV	R/W	0x0
	2: 200mV		
	3: 300mV		
	线补设置, 直充协议无效		
	0: 60mV/A		
1-0	1: 0mV/A	R/W	0x0
	2: 100mV/A		
	3: 80mV/A		

1.68. REG0x102: 放电配置 2

Bit	description	R/W	Default
_	快充模式线补使能		0 0
7	0: 使能 1: 禁止	R/W	0x0
6-3	reserved	/	/
	VBUS 快速过压保护控制		
2	0: 打开 VBUS 快速过压保护	R/W	0x0
	1: 关闭 VBUS 快速过压保护		
1-0	reserved	/	/

1.69. REG0x103: 放电配置 3

Bit	description	R/W	Default
	放电 IBAT 限流的默认值		
	0: 12A		
7-6	1: 10A	R/W	0x0
	2: 8A		
	3: 不生效		
5-4	reserved	/	/
3-0	磷酸铁锂电池欠压门限		
	0: 2.75V*N	R/W	0x0
	1~12: 1.9~3.0*N, 0.1V/step		

1.70. REG0x104: 放电配置 4

Bit	description	R/W	Default

7	Laconnad	/	/
/	reserved	/	/
	uvlo 迟滞,N 为电池节数		
	0: 0.4V*N		
	1: 0.1V*N		
	2: 0.2V*N		
6-4	3: 0.3V*N	R/W	0x0
	4: 0.5V*N		
	5: 0.6V*N		
	6: 0V		
	7: 0.8V*N		
3	reserved	/	/
	三元锂电池欠压门限		
	0: 3.0V*N		
	1: 2.6V*N		
	2: 2.7V*N		
2-0	3: 2.8V*N	R/W	0x0
	4: 3.9V*N		
	5: 3.1V*N		
	6: 3.2V*N		
	7: 3.3V*N		

1.71. REG0x106: 放电配置 5

Bit	description	R/W	Default
	电感设置		
7	0: 4.7uH	R/W	0x0
	1: 10uH		
6	reserved	/	/
	放电 NTC 高温门限		
	0: 60℃		
5-4	1: 50℃	R/W	0x0
	2: 55℃		
	3: 65℃		
3	reserved	/	/
	放电 NTC 低温门限		
	0: -20°C		
	1: -15℃		
2-0	2: -10°C	R/W	0x0
2-0	3: -5℃	IX/ VV	UXU
	4: 0℃		
	5: 不生效		
	6: -25°		

	·	'
17. 20°		
1 /: -30		
7. 20	· '	

1.72. REG0x107: 充电配置 0

Bit	description	R-/W	Default
7-5	reserved	/	/
4	快充是否按照固定功率充电 0: 快充按照允许的最大电流充电 1: 快充按照固定功率充电 按照允许的最大功率充电,不超过输入最大功率时,允许的最 大充电电流为 3A(VOOC1.0/4.0 允许的最大充电电流为 6A) 按照固定功率充电时,AFC/FCP 按照 18W 充电,VOOC1.0/4.0 按照 15W(5V3A)充电	R/W	0x0
3	输入最高功率设置方式 0:自动检测 1:由当前寄存器[2:0]设置	R/W	0x0
2-0	输入最高功率设置 0: 27W 1: 30W 2: 35W 3: 45W 4: 60W 5: 65W 6: 100W 7: 100W	R/W	0x0

1.73. REG0x108: 充电配置 1

Bit	description	R/W	Default
	电池类型设置方式		
7	0: 自动检测	R/W	0x0
	1: 由当前寄存器[6:4]设置		
	电池类型设置		
	0: 4.2V		
	1: 4.3V		
	2: 4.35V		
6-4	3: 4.4V	R/W	0x0
	4: 4.5V		
	5: 3.6V,磷酸铁锂电池		
	6: 3.65V,磷酸铁锂电池		
	7: 3.65V,磷酸铁锂电池		

3	电池节数设置方式 0: 自动检测 1: 由当前寄存器[2:0]设置	R/W	0x0
2-0	电池节数设置 0~2: 2 节 3: 3 节 4: 4 节 5: 5 节 6: 6 节 (仅磷酸铁锂电池和 4.2V 三元锂电池支持) 7: 7 节(仅支持磷酸铁锂电池)	R/W	0x0

1.74. REG0x109: 充电配置 2

Bit	description	R/W	Default
7	电池电压低于 1.5V 时是否充电 0: 电池 N*1.5V 以下允许充电 1: 电池 N*1.5V 以下不允许充电	R/W	0x0
6-4	5V 限压门限设置 0~7: 4.2V~4.9V, 0.1V/step,	R/W	0x4
3	涓流充电超时设置 0: 40 分钟 1: 关闭涓流充电超时	R/W	0x0
2-0	9V 限压门限设置 0~7: 8.2V~8.9V, 0.1V/step,	R/W	0x3

1.75. REG0x10A: 充电配置 3

Bit	description	R/W	Default
	适配器拉挂使能位		
7	0: 使能	R/W	0x0
	1: 禁止		
6-4	9V 限压门限设置	R/W	0x3
0-4	0~7: 9.2V~9.9V, 0.1V/step		
	边充边放设置	R/W	0x0
3	0: 允许 5V 边充边放		
	1: 充电优先,禁止 5V 边充边放		
2-0	12V 限压门限设置	R/W	0x3
	0~7: 11.2V~11.9V, 0.1V/step,	IX/ VV	UX3

1.76. REG0x10B: 充电配置 4

Bit	description	R/W	Default
7	边充边放 hold 门限设置 0: 边充边放,输入欠压提高到 4.8V 1: 边充边放,输入欠压不变 立即生效	R/W	0x0
6-4	15V 限压门限设置 0~7: 13.8V~14.5V, 0.1V/step,	R/W	0x7
3	reserved	/	/
2-0	20V 限压门限设置 0~7: 18.8V~19.5V, 0.1V/step,	R/W	0x2

1.77. REG0x10C: 充电配置 5

Bit	description	R/W	Default
7-4	reserved	/	/
3	限压门限自适应 0: 充电电流大于 3A 时降低限压门限为当前档位最小值 1: 充电电流大于 3A 时不降低限压门限 注意: 降低限压门限以尽可能使充电电流大于 3A	R/W	0x0
2-0	reserved	R/W	0x7

1.78. REG0x10D: 充电配置 6

Bit	description	R/W	Default
7-6	磷酸铁锂电池涓流充电门限设置 0: 2.75V 1: 2.1V	R/W	0x0
	2: 2.5V 3: 2.8V		
	涓流充电电流 0: 100mA		
5-4	1: 200mA	R/W	0x0
	2: 300mA		
	3: 400mA		
	涓流充电电压迟滞		
3-2	0: 电池节数*0.1V		
	1: 电池节数*0.2V	R/W	0x0
	2: 电池节数*0.3V		
	3: 电池节数*0.4V		

	恒流充电超时设置		
	0: 22h		
1-0	1: 33h	R/W	0x0
	2: 48h		
	3: 关闭恒流充电超时		

1.79. REG0x10E: 充电配置 7

Bit	description	R/W	Default
	充电截至电流设置		
	0: 200mA		
7-6	1: 100mA	R/W	0x0
	2: 300mA		
	4: 400mA		
5-4	reserved	1	/
	C □ 5V 充电电流设置		
	0: 3.0A		
	1: 1.8A		
	2: 1.9A		
	3: 2.0A		
	4: 2.1A		
	5: 2.2A		
	6: 2.3A		
3-0	7: 2.4A	R/W	0x0
	8: 2.5A		
	9: 2.6A		
	10: 2.7A		
	11: 2.8A		
	12: 2.9A		
	13: 3.1A		
	14: 3.2A		
	15: 3.3A		

1.80. REG0x10F: 充电配置 8

Bit	description	R/W	Default
	B 口和 L 口 5V 充电电流设置		
	0: 2.0A		
7-5	1: 1.6A	R/W	0x0
	2: 1.7A		
	3: 1.8A		

		1	1
	4: 1.9A		
	5: 2.1A		
	6: 2.2A		
	7: 2.3A		
	充电时,NTC 低温保护门限设置		
	0: 0°C		
	1: 5°C		
	2: 10°C		
4-2	3: 15°C	R/W	0x0
	4: 20°C		
	5: -5°C		
	6: -10°C		
	7: 不生效		
	充电时,NTC 高温保护门限设置		
1-0	0: 45°C		
	1: 55°C	R/W	0x0
	2: 60°C		
	3: 65°C		

1.81. REG0x110: 充电配置 9

Bit	description	R/W	Default
7	62368 充放电保护的做法设置 0: 62368 保护时减小功率 1: 62368 保护减小 IBAT 限流值	R/W	0x0
6-4	62368 温度低时的做法设置 0: 输入功率/IBAT 限流设置值*1 1: 输入功率/IBAT 限流设置值*1/8 2: 输入功率/IBAT 限流设置值*2/8 3: 输入功率/IBAT 限流设置值*3/8 4: 输入功率/IBAT 限流设置值*4/8 5: 输入功率/IBAT 限流设置值*5/8 6: 输入功率/IBAT 限流设置值*6/8 7: 输入功率/IBAT 限流设置值*7/8	R/W	0x0
3-2	62368 温度高时的做法 0: 输入功率/IBAT 限流设置值*1 1: 输入功率/IBAT 限流设置值*1/4 2: 输入功率/IBAT 限流设置值*2/4 3: 输入功率/IBAT 限流设置值*3/4	R/W	0x0
1-0	62368 充电高温范围设置 0: 0℃ 1: 10℃	R/W	0x0

2: 20°C	
3: reserved	
注意: 62368 充电高温范围为 NTC 高温保护门限 ~ (NTC 高	
温保护门限 - 62368 充电高温范围设置)	

1.82. REG0x111: 充电配置 10

Bit	description	R/W	Default
	充电时 62368 功能设置		
	0: 使能		
7	1: 禁止	R/W	0x0
	此寄存器的优先级高于 PIN 设置,如果 62368 功能禁止, pin		
	设置/寄存器设置的 62368 保护功能不生效		
	62368 高温充电目标电压设置		
	0:不降低充电目标电压	9'	
	1: 充电目标电压降低 0.05V*N		
	2: 充电目标电压降低 0.1V*N		
6-4	3: 充电目标电压降低 0.15V*N	R/W	0x0
	4: 充电目标电压降低 0.2V*N		
	5: 充电目标电压降低 0.25V*N		
	6: 充电目标电压降低 0.3V*N		
	7: 充电目标电压降低 0.35V*N		
	放电时 62368 功能设置		
_	0: 使能		
3	1: 禁止	R/W	0x0
	此寄存器的优先级高于 PIN 设置,如果 62368 功能禁止,pin		
	设置/寄存器设置的 62368 保护功能不生效		
	62368 充电常温范围设置		
	0: 20°C		
	1: 5°C		
	2: 25°C		
2.0	3: 30°C	D/W	0.0
2-0	4: 35°C	R/W	0x0
	5: 40°C 6: 45°C		
	7: reserved		
	7: reserved 注意: 62368 充电常温范围为(NTC 高温保护门限 - 62368 充		
	电高温范围设置)~62368 充电常温范围设置		

1.83. REG0x112: 充电配置 11

Bit	description	R/W	Default
7-6	62368 放电低温时的做法 0: 输出功率/IBAT 限流设置值*1 1: 输出功率/IBAT 限流设置值*0.2 2: 输出功率/IBAT 限流设置值*0.5 3: 输出功率/IBAT 限流设置值*0.7	R/W	0x0
5	放电 62368 低温保护范围保护方式 0: 降低输出功率/IBAT 限流 1: 设置为固定的电压电流	R/W	0x0
4	低于 62368 低温保护范围时设置固定的电压电流 0: 固定设置为 5V3A 1: 固定设置为 5V1.5A	R/W	0x0
3-2	62368 放电时常温范围设置 0: 45℃ 1: 60℃ 2: 放电 NTC 高温保护到放电 NTC 低温保护 3: 放电 NTC 高温保护到放电 NTC 低温保护 注意: 62368 放电常温范围为 NTC 高温保护门限 ~ (NTC 高温保护门限 - 62368 充电常温范围设置)	R/W	0x0
1-0	reserved	/	/

1.84. REG0x113: 充电配置 12

Bit	description	R/W	Default
7	充电恒温环设置 0: 使能 1: 禁止 当 charger 恒温环禁止时,无论 pin 设置或者寄存器设置充电恒温环门限均无效	R/W	0x0
6-4	芯片充电恒温环阈值 0: 60℃ 1: 70℃ 2: 80℃ 3: 90℃ 4: 100℃ 5: 110℃ 6: 120℃ 7: 130℃ 立即生效	R/W	0x0
3-0	reserved	/	/

1.85. REG0x114: buckboost 配置 0

Bit	description	R/W	Default
7-6	工作频率 0: 300K 1: 200K 2: 400K 3: 500K	R/W	0x0
5-4	充放电共峰值限流值设置 0: 12A 1: 14A 2: 16A 3: 18A	R/W	0x3
3-2	芯片 die 过温温度设置 0: 120℃ 1: 130℃ 2: 140℃ 3: 150℃	R/W	0x0
1-0	reserved	/	/

1.86. REG0x115: buckboost 配置 1

Bit	description	R/W	Default
	M2 rdson 设置,与峰值限流联动		
	0: 2.5mR		
7-6	1: 5mR	R/W	0x0
	2: 7.5mR		
	3: 10mR		
5-0	reserved	/	/

1.87. REG0x116: buckboost 配置 2

Bit	description	R/W	Default
7	reserved	/	/
6	轻载工作模式设置 0: 轻载工作在 pfm 模式 1: 轻载强制工作在 pwm 模式	R/W	0x0
5	reserved	/	/

	NTC 保护设置		
3		D /11/	0.0
	0: 使能	R/W	0x0
	1: 禁止		
	充电放电温度设置方式		
	0: 由 pin 自动检测	R/W	0x0
	1: 由寄存器控制		
2	充放电 62368 功能设置方式		
	0: 由 pin 自动检测	R/W	0x0
	1: 由寄存器控制		
1	充放电恒温环门限设置方式		
	0: 由 pin 自动检测	R/W	0x0
	1: 由寄存器控制		
0	reserved	/	1

1.88. REG0x117: 插入拔出检测配置 0

Bit	description	R/W	Default
7	A1 口 VBUS 接入检测使能 0: 使能	R/W	0x0
	1: 禁止	IX/ VV	UXU
6	A2 口 VBUS 接入检测使能		
	0: 使能	R/W	0x0
	1: 禁止		
5-0	reserved	/	/

1.89. REG0x118: 插入拔出检测配置 1

Bit	description	R/W	Default
7-6	reserved	/	/
	A1 口空载使能		
5	0: 使能	R/W	0x0
	1: 禁止		
4	A2 口空载使能		
	0: 使能	R/W	0x0
	1: 禁止		
3	C1 口空载使能		
	0: 使能	R/W	0x0
	1: 禁止		
2	C2 口空载使能		
	0: 使能	R/W	0x0
	1: 禁止		
1-0	reserved	/	/

1.90. REG0x119: 插入拔出检测配置 2

Bit	description	R/W	Default
	多口空载时间设置 0: 32s		
7-6	1: 8s	R/W	0x0
	2: 16s		
	3: 64s 工件大分共中间沿里		
	无线充空载时间设置		
- A	0: 128s	D/W	00
5-4	1: 16s 2: 32s	R/W	0x0
	2: 328 3: 64s		
	拔出电流门限是否随输出高压(>7.65V)变化设置		
3	0: 禁止	R/W	0x0
	1: 使能	10 **	OAO
	单口空载时间设置		
	0: 32s		
	1: 8s		
2-0	2: 16s	R/W	0x0
	3: 64s		
	4: 128s		
	5-7: 32s		

1.91. REG0x11A: 插入拔出检测配置 3

Bit	description	R/W	Default
7-4	A 口拔出电流门限 VBUS<7.65V 或 VBUS>7.65V 且 REG0x119[3]=0 时 0: 60mA 1: 10mA 2: 20mA 3: 30mA 4: 40mA 5: 50mA 6: 70mA 7: 80mA 8: 90mA 9: 100mA	R/W	0x0

	10: 110mA		
	11: 120mA		
	12: 130mA		
	13: 140mA		
	14: 150mA		
	15: 160mA		
	VBUS>7.65V 且 REG0x119[3]=1 时		
	0: 30mA		
	1: 10mA		
	2: 20mA		
	3: 20mA		
	4: 20mA		
	5: 30mA		
	6: 40mA		
	7: 40mA		
	8: 50mA		
	9: 50mA		
	10: 60mA		
	11: 60mA		
	12: 70mA		
	13: 70mA		
	14: 80mA		
	15: 80mA		
	A2 口无线充移出电流门限		
	VBUS<7.65V,VBUS>7.65V 且 REG0x119[3]==0 时		
	0: 120mA		
	1: 20mA		
	2: 40mA		
	3: 60mA		
	4: 80mA		
	5: 100mA		
	6: 140mA		
3-0	7: 160mA	R/W	0x0
	8: 180mA	10, 11	OAO
	9: 200mA		
	A: 220mA		
	B: 240mA		
	C: 260mA		
	D: 280mA		
	E: 300mA		
	F: 320mA		
	VBUS>7.65V 且 REG0x119[3]==1 时		
	0: 60mA		

1: 10mA	
2: 20mA	
3: 30mA	
4: 40mA	
5: 50mA	
6: 70mA	
7: 80mA	
8: 90mA	
9: 100mA	
10: 110mA	
11: 120mA	
12: 130mA	
13: 140mA	
14: 150mA	
15: 160mA	

1.92. REG0x11B: 插入拔出检测配置 4

Bit	description	R/W	Default
7	无线充模式模式设置方式 0:由 pin 自动检测 1:由寄存器控制(REG0x11B[6])	R/W	0x0
6	无线充模式模式设置0: 禁止无线充模式1: 使能无线充模式	R/W	0x0
5	小电流模式设置方式 0:由 pin 自动检测 1:由寄存器控制(REG0x11B[4])	R/W	0x0
4	小电流模式支持设置 0: 不支持 1: 支持小电流模式	R/W	0x0
3-2	小电流模式屏蔽空载时间设置 0: 2h 1: 1h 2: 3h 3: 4h	R/W	0x0
1-0	reserved	/	/

1.93. REG0x11D: 插入拔出检测配置 5

Bit	description	R/W	Default

7-5	reserved	/	/
4	边充边放充电电流自适应 0: 边充边放时,充电电流为设置值 1: 边充边放时,1 个输出口打开时,充电电流将变为设置电流 的 1/2,两个输出口打开时,充电电流将变为设置电流的 1/3	R/W	0x0
3-0	reserved	/	/

1.94. REG0x11E: 无线充场景配置

Bit	description	R/W	Default
7	reserved	/	1
6	无线充模式下,只包含 A2 口输出的快充边充边放控制 0: 禁止 1: 使能	R/W	0x0
5-4	无线充模式下,只包含 A2 口输出的快充边充边放状态下,申请固定最高输入电压设置值 0:9V 1:12V 2:15V 3:20V	R/W	0x0
3	reserved	/	/
2	无线充模式下,单 A2 口输出时,输出电压固定电压使能位。 0:禁止 1:使能	R/W	0x0
1-0	无线充模式下,单 A2 口输出时,输出电压固定电压设置值。 仅 A2 口打开且处于无线充模式,默认输出电压设置 0: 9V 1: 12V 2: 15V 3: 20V	R/W	0x0

1.95. REG0x11F: 端口快充配置

Bit	description	R/W	Default
7-6	reserved	/	/
5	A1 口快充使能 0: 使能 1: 禁止	R/W	0x0
4	A2 口快充使能0: 使能1: 禁止	R/W	0x0

3	C1 口输入快充使能 0: 使能 1: 禁止	R/W	0x0
2	C1 口输出快充使能 0: 使能 1: 禁止	R/W	0x0
1	C2 口输入快充使能 0: 使能 1: 禁止	R/W	0x0
0	C2 口输出快充使能 0: 使能 1: 禁止	R/W	0x0

1.96. REG0x120: 输入电压配置

Bit	description	R/W	Default
	B口充电优先设置		
7	0: C口优先,同为C口,先接入优先充	R/W	0x0
	1: B 口接入优先充电		
6	reserved	/	/
	设置功率小于 35W 时, 12V 以上输入输出使能		
5	0: 支持 12V 以上输入输出	R/W	0x0
	1: 不支持 12V 以上输入输出		
4-3	reserved	/	/
	快充协议的申请电压优先级		
2	0: 按照协议支持的最高电压充电	R/W	0x0
	1: 根据电池电压不同设置充电电压的优先级		
	充电时快充协议申请的最大电压		
	0: 20V		
1-0	1: 15V	R/W	0x0
	2: 12V		
	3: 9V		

1.97. REG0x122: DPDM 协议设置 0

Bit	description	R/W	Default
	高压快充协议功率设置		
7.6	0: 18W	D/W	0.0
7-6	1: 30W 2: 45W	R/W	0x0
	2: 45 W		

5	多口输出时苹果模式开关 0: 使能 1: 禁止	R/W	0x0
4	三星 1.2V 开关 0: 使能 1: 禁止	R/W	0x0
3-0	reserved	/	/

1.98. REG0x123: DPDM 协议设置 1

Bit	description	R/W	Default
7-6	QC3+最大功率 0: 18W 1: 27W 2: 40W 3: 45W	R/W	0x0
5-4	QC2.0 最大电压 0: 12V 1: 9V 2: 20V 3: 12V	R/W	0x0
3-2	QC3.0、QC3+最大电压 0: 20V 1: 12V 2: 9V 3: 12V	R/W	0x0
1	AFC 最大电压 0: 12V 1: 9V	R/W	0x0
0	FCP 最大电压 0: 12V 1: 9V	R/W	0x0

1.99. REG0x124: DPDM 协议设置 2

Bit	description	R/W	Default
	SFCP 最大电压设置		
7	0: 9V	R/W	0x0
	1: 12V		

6	PE 最大电压设置 0: 9V 1: 12V	R/W	0x0
5-0	reserved	/	/

1.100. REG0x12A: DPDM 协议设置 3

Bit	description	R/W	Default
7	QC2.0 source 开关 0: 使能 1: 禁止	R/W	0x0
6	QC3.0 source 开关 0: 使能 1: 禁止	R/W	0x0
5	QC3+ source 开关 0: 使能 1: 禁止	R/W	0x0
4	FCP source 开关 0: 使能 1: 禁止	R/W	0x0
3	AFC source 开关 0: 使能 1: 禁止	R/W	0x0
2	reserved	/	/
1	高压 SCP source 开关 0: 使能 1: 禁止	R/W	0x0
0	低压 SCP source 开关 0: 使能 1: 禁止	R/W	0x0

1.101. REG0x12B: DPDM 协议设置 4

Bit	description	R/W	Default
7	PE source 开关 0: 使能 1: 禁止	R/W	0x0
6	SFCP source 开关 0: 使能 1: 禁止 注: 立即生效	R/W	0x0

	VOOC1.0 source 开关		
5	0: 禁止	R/W	0x0
	1: 使能		
	VOOC4.0 source 开关		
4	0: 禁止	R/W	0x0
	1: 使能		
	SuperVOOC source 开关		
3	0: 禁止	R/W	0x0
	1: 使能		
	UFCS srouce 开关		
2	0: 使能 UFCS srouce	R/W	0x0
	1: 关闭 UFCS srouce		
1-0	reserved	/	1

1.102. REG0x12C: DPDM 协议设置 5

Bit	description	R/W	Default
	UFCS sink 开关		
7	0: 使能		
	1: 禁止	R/W	0x0
	AFC sink 开关		
6	0: 使能		
	1: 禁止	R/W	0x0
	SCP sink 开关		
5	0: 使能		
	1: 禁止	R/W	0x0
	VOOC sink 开关		
4	0: 禁止		
	1: 使能	R/W	0x0
3-2	reserved	/	/
	HVDCP sink 开关		
1	0: 使能		
	1: 禁止	R/W	0x0
	SDP 抽电电流		
0	0: 抽 500mA	R/W	0x0
	1: 抽 2A		

1.103. REG0x12D: ufcs 协议设置

Bit	description	R/W	Default
7	reserved	/	/

	UFCS source 5v 可编程档位使能		
6	0: 使能 1: 关闭 I2C 操作各档位的开关,或者各档位的电流,或者功率寄存器等,需要再操作 UFCS 功率改变寄存器才能使 src cap 内容的改变生效并重播新的 src cap 内容	R/W	0x0
5	UFCS source 10v 可编程档位使能 0: 使能 1: 关闭	R/W	0x0
4	UFCS source 20v 可编程档位使能 0: 使能 1: 关闭	R/W	0x0
3	UFCS source 档位设置方式 0: 自动设置 1: 手动修改相应寄存器设置广播的电流内容 只针对电流的设置,可编程档位的使能是独立的,不被该位所 影响; 当该位为1时,才能修改各档位的电流内容	R/W	0x0
2-0	reserved	/	/

1.104. REG0x12E: ufcs 电流设置 0

Bit	description	R/W	Default
7	reserved	/	/
6-0	UFCS source 5v 可编程档位最大电流,50mA/step	R/W	0x0

1.105. REG0x12F: ufcs 电流设置 1

Bit	description	R/W	Default
7	reserved	/	/
6-0	UFCS source 10v 可编程档位最大电流 50mA/step	R/W	0x0

1.106. REG0x130: ufcs 电流设置 2

Bit	description	R/W	Default
7	reserved	/	/
6-0	UFCS source 20v 可编程档位最大电流	D/W	00
	50mA/step	R/W	0x0

1.107. REG0x132: Typec 设置

Bit	description	R/W	Default
7	VCONN 过流异常检测使能 0: 使能	R/W	0x0
	1: 禁止		
6-2	reserved	/	/
	C1 口 Type-C 的角色设置		
1-0	0: DRP with try.SRC		
	1: only source	R/W	0x0
	2: only sink		
	3: reserved		

1.108. REG0x133: pd 协议设置 0

Bit	description	R/W	Default
	PD source 使能		
7	0: 使能 PD source 协议		
	1: 关闭 PD source 协议	R/W	0x0
6	reserved	/	/
	进 PD source 协议后是否响应 SCP		
5	0: PD 协议响应 SCP		
3	1: PD 协议不响应 SCP		
	注意: SCP 协议固定 gating PD 协议	R/W	0x0
	进 PD source 协议后是否响应 VOOC		
4	0: PD 协议响应 VOOC		
4	1: PD 协议不响应 VOOC		
	注意: VOOC 协议固定 gating PD 协议	R/W	0x0
	进 PD source 协议后是否响应 UFCS		
3	0: PD 协议响应 UFCS		
3	1: PD 协议不响应 UFCS		
	注意: UFCS 协议固定 gating PD 协议	R/W	0x0
2-0	reserved	/	/

1.109. REG0x134: pd 协议设置 1

Bit	description	R/W	Default
7-6	reserved	/	/
5	PPS3 档位设置 0: 使能		
	1: 禁止	R/W	0x0

	PPS2 档位设置		
4	0: 使能		
	1: 禁止	R/W	0x0
	PPS1 档位设置		
3	0: 使能		
	1: 禁止	R/W	0x0
	PPS0 档位设置		
2	0: 使能		
	1: 禁止	R/W	0x0
	PD 20V 档位设置		
1	0: 使能		
	1: 禁止	R/W	0x0
	PD 15V 档位设置		
0	0: 使能		
	1: 禁止	R/W	0x0

1.110. REG0x135: pd 协议设置 2

Bit	description	R/W	Default
	PD 12V 档位设置		
7	0: 使能		
	1: 禁止	R/W	0x0
	PD 9V 档位设置		
6	0: 使能		
	1: 禁止	R/W	0x0
	广播 PPS 的最小电压值		
5	0: 5v, 对应的 ppsshutdown 门限为 4.5v		
	1: 3.3v, 对应的 ppsshutdown 门限为 3.1v	R/W	0x0
	src cap 中 fix 档位的电流是否自动设置		
	0: 自动设置		
4	1: 手动修改相应寄存器设置 fix 档位电流		
	fix 电压档位的使能不会被该位 gating,只要关闭了,相应的电		
	压档位也关闭。该位只是开关 fix 电流的设置	R/W	0x0
	src cap 中 pps 的内容是否自动设置		
	0: 自动设置		
3	1: 手动修改相应寄存器设置 pps,包括档位/电流		
	该位为1时,才能修改 pps 档位的使能位,以及各 pps 档位的		
	电流内容	R/W	0x0
	自动模式下 pps 模式是否支持恒功率		
2	0: 不支持恒功率		
	1: 支持恒功率	R/W	0x0

	在 8s 内 sink 只请求 5v fix,是否重播 5v2a 的 src cap		
1	0: 不重播		
	1: 重播 5v2a	R/W	0x0
	PD source 收到非法请求时是否发起 hard reset 并关闭 PPS 档位		
0	0: hard reset, 重播 src cap 中关闭 PPS 档位		
	1: 不 hard reset, reject 该 request	R/W	0x0

1.111. REG0x136: pd 协议设置 3

Bit	description	R/W	Default
	cv 与 cc 切换时发送 alert 消息		
7	0: 发送 alert 消息		
	1: 不发送 alert 消息	R/W	0x0
6-5	reserved	1	/
	PD 是否响应 discover svid	U ′	
1	0: not_support		
4	1: 响应对方端口发送的 discover svid		
	如果 pd_discid_en 为 1,但该位为 0,需要回复 nak	R/W	0x0
	PD 是否响应 discover id		
3	0: not_support		
	1:响应对方端口发送的 discover id	R/W	0x0
2	reserved	/	/
	PD dr_swap 使能控制		
1	0: not_support		
	1: accept	R/W	0x0
	PD vconn_swap 使能控制		
0	0: not_support		
	1: accept	R/W	0x0

1.112. REG0x137: pd 协议设置 4

Bit	description	R/W	Default
7	reserved	/	/
6	当使能作为 sink 超时未收到 src cap 发送 hardreset 时, 发送		
	hardreset 的次数		
	0: 发送一次 hardreset		
	1: 发送 2 次 hardreset	R/W	0x0
5-1	reserved	/	/
0	PD sink 使能控制		
	0: 使能 PD sink 协议	R/W	0x0
	1: 关闭 PD sink 协议		

1.113. REG0x138: pd 协议设置 5

Bit	description	R/W	Default
7-0	pd_src_fix5v_cur[7:0] 手动设置 fix 电流时,5v fix 的电流值设置低 8 位 10mA/bit 高 2 位地址为 0x13C[7:6]	R/W	0x0

1.114. REG0x139: pd 协议设置 6

Bit	description	R/W	Default
7-0	pd_src_fix9v_cur[7:0] 手动设置 fix 电流时,9v fix 的电流值设置低 8 位 10mA/bit 高 2 位地址为 0x13C[5:4]	R/W	0x0

1.115. REG0x13A: pd 协议设置 7

Bit	description	R/W	Default
7-0	pd_src_fix12v_cur[7:0] 手动设置 fix 电流时,12v fix 的电流值设置低 8 位 10mA/bit 高 2 位地址为 0x13C[3:2]	R/W	0x0

1.116. REG0x13B: pd 协议设置 8

Bit	description	R/W	Default
7-0	pd_src_fix15v_cur[7:0] 手动设置 fix 电流时,15v fix 的电流值设置低 8 位 10mA/bit 高 2 位寄存器地址为 0x13C[1:0]	R/W	0x0

1.117. REG0x13C: pd 协议设置 9

Bit	description	R/W	Default
7-6	pd_src_fix5v_cur[9:8] 手动设置 fix 电流时,5v fix 的电流值设置高 2 位 10mA/bit	R/W	0x0

	低 8 位寄存器地址为 0x138[7:0]		
5-4	pd_src_fix9v_cur[9:8] 手动设置 fix 电流时,9v fix 的电流值设置高 2 位 10mA/bit 低 8 位寄存器地址为 0x139[7:0]	R/W	0x0
3-2	pd_src_fix12v_cur[9:8] 手动设置 fix 电流时,12v fix 的电流值设置高 2 位 10mA/bit 低 8 位寄存器地址为 0x13A[7:0]	R/W	0x0
1-0	pd_src_fix15v_cur[9:8] 手动设置 fix 电流时,15v fix 的电流值设置高 2 位 10mA/bit 低 8 位寄存器地址为 0x138B[7:0]	R/W	0x0

1.118. REG0x13D: pd 协议设置 10

Bit	description	R/W	Default
7-0	pd_src_fix20v_cur[7:0] 手动设置 fix 电流时,20v fix 的电流值设置低 8 位 10mA/bit 高 2 位寄存器地址为 0x13E[1:0]	R/W	0x0

1.119. REG0x13E: pd 协议设置 11

Bit	description	R/W	Default
	只在手动模式下有效, 当接入 5a 线缆时, pps0 档位是否支持		
7	恒功率		
	0: 不支持恒功率		
	1: 支持恒功率	R/W	0x0
	只在手动模式下有效,当接入 5a 线缆时, pps1 档位是否支		
	持恒功率		
6	0: 不支持恒功率		
	1: 支持恒功率	R/W	0x0
	只在手动模式下有效,当接入5a线缆时,数字根据此bit设		
5	置 pps2 档位是否支持恒功率		
5	0: 不支持恒功率		
	1: 支持恒功率	R/W	0x0
	只在手动模式下有效, 当接入 5a 线缆时, 数字根据此 bit 设		
4	置 pps3 档位是否支持恒功率		
	0: 不支持恒功率		
	1: 支持恒功率	R/W	0x0

3-2	reserved	/	/
1-0	pd_src_fix20v_cur[9:8] 手动设置 fix 电流时,20v fix 的电流值设置高 2 位 10mA/bit 低 8 位寄存器地址为 0x13D[7:0]	R/W	0x0

1.120. REG0x13F: pps0 电流设置 0

Bit	description	R/W	Default
7	只在手动模式下有效, 当接入非 5a 线缆时, pps0 档位是否支		
	持恒功率		
	0: 不支持恒功率		
	1: 支持恒功率	R/W	0x0
6-0	手动设置 pps 时,pps0 最大电流		
	50mA/bit	R/W	0x0

1.121. REG0x140: pps1 电流设置 1

Bit	description	R/W	Default
	只在手动模式下有效, 当接入非 5a 线缆时, pps1 档位是否支		
7	持恒功率		
/	0: 不支持恒功率		
	1: 支持恒功率	R/W	0x0
6.0	手动设置 pps 时,pps1 最大电流		
6-0	50mA/bit	R/W	0x0

1.122. REG0x141: pps2 电流设置 2

Bit	description	R/W	Default
7	只在手动模式下有效, 当接入非 5a 线缆时, pps2 档位是否支		
	持恒功率		
	0: 不支持恒功率		
	1: 支持恒功率	R/W	0x0
6-0	手动设置 pps 时,pps2 最大电流		
0-0	50mA/bit	R/W	0x0

1.123. REG0x142: pps3 电流设置 3

Bit description R/W Default

7	只在手动模式下有效,当接入非 5a 线缆时, pps3 档位是否支持恒功率 0: 不支持恒功率 1: 支持恒功率	D/W	00
	1: 又持但切率	R/W	0x0
6-0	手动设置 pps 时,pps3 最大电流		
0-0	50mA/bit	R/W	0x0

1.124. REG0x143: pd-vid0

Bit	description	R/W	Default
7-0	pd_vid[7:0] 响应 discover id 时,vid 字段的值	R/W	0x0

1.125. REG0x144: pd-vid1

Bit	description	R/W	Default
7-0	pd_vid[15:8] 响应 discover id 时,vid 字段的值	R/W	0x0

1.126. REG0x145: pd-bcd

Bit	description	R/W	Default
7-0	pd_bcd[7:0] 响应 discover id 时,bcd device 字段的值	R/W	0x0

1.127. REG0x146: pd-bcd

Bit	description	R/W	Default
7-0	pd_bcd[15:8] 响应 discover id 时,bcd device 字段的值	R/W	0x0

1.128. REG0x147: pd-pid0

Bit	description	R/W	Default
7-0	pd_pid[7:0] 响应 discover id 时,pid 字段的值	R/W	0x0

1.129. REG0x148: pd-pid1

Bit	description	R/W	Default
7-0	pd_pid[15:8] 响应 discover id 时,pid 字段的值	R/W	0x0

1.130. REG0x149: pd-svid0

Bit	description	R/W	Default
7-0	pd_svid[7:0] 响应 discover svid 时,svid 字段的值	R/W	0x0

1.131. REG0x14A: pd-svid1

Bit	description	R/W	Default
7-0	pd_svid[15:8] 响应 discover svid 时,svid 字段的值	R/W	0x0

1.132. REG0x14B: Typec 设置

Bit	description	R/W	Default
7-6	C2 口 Type-C 的角色设置		
	0: DRP with try.SRC		
	1: only source	R/W	0x0
	2: only sink		
	3: reserved		
5-0	reserved	R/W	0x0

1.133. REG0x14D: 显示设置

Bit	description	R/W	Default
7-4	reseved	/	/
3-2	LED/数码管驱动设置		
	0: 4/10mA		
	1: 6/15mA	R/W	0x0
	2: 2/5mA		
	3: 8/20mA		
1	空载 5s 灭灯使能		
	0: 显示跟随输出关闭	R/W	0x0
	1: 轻载 5s 后关闭输出		

SW6306V I2C Register List

0	reseved	/	/
---	---------	---	---

1.134. REG0x14E: 电量计设置 0

Bit	description	R/W	Default
	Rdc 计算使能		
	0: 禁止		
7	1: 使能	R/W	0x0
	Rcs 使能后, 充电时间>5 分钟并且当前电池电压以及充电电		
	流符合条件就会开始 Rdc 计算		
6-5	reseved	/	1
	容量学习使能		
1	0: 禁止	R/W	0x0
4	1: 使能	K/W	UXU
	容量学习使能后,触发 UVLO 后开始充电就开始容量学习		
3-0	reseved	/	/

1.135. REG0x14F: 电量计设置 1

Bit	description	R/W	Default
7-6	reseved	/	/
5	充电至 100%条件 0: 充满 1: 99%后等待 10 分钟	R/W	0x0
4-0	reseved	/	/

1.136. REG0x150: 按键设置 0

Bit	description	R/W	Default
7	reseved	/	/
6	短按键是否退出蓝牙模式或关闭 WLED (需要先进入对应状态) R/W 0x0 1: 短按键退出蓝牙或关闭 WLED (需要先进入对应状态)		0x0
5-4	reseved		/
3	快充场景下防止误触发功能使能 0:禁止 1:使能 快充场景下,不响应第一次短按键,第一次短按键后 1.5s~5s 再次短按键才响应短按键功能	R/W	0x0

2	短按键额外打开有 Rd 的口功能使能 0:禁止 1:使能	R/W	0x0
1	短按键额外打开 VBUS 建立不起来的端口功能使能 0: 禁止 1: 使能	R/W	0x0
0	按键功能定义自动检测 0: 通过 pin 自动检测 1: 根据寄存器定义	R/W	0x0

1.137. REG0x151: 按键设置 1

Bit	description	R/W	Default
7	reseved	/	/
6-4	短按键触发的事件 0: 打开 A1 口; 1: 打开 A2 口; 2: 同时打开 A1/A2 口; 3: 打开 VBUS 建立不起来的口; 4: 打开有 Rd 的口; 5~7: 只做电量显示功能以及打开已经接入的输出口;(此时如果没有外部设备接入显示 5s 灭灯)	R/W	0x0
3-2	长按键触发的事件 0: 进入小电流模式/WLED 模式,优先进入小电流模式;如果识别为小电流模式,长按进入/退出小电流模式;如果识别为WLED 模式,长按打开/关闭 WLED; 1: 识别为 WLED 模式后,长按打开/关闭 WLED 2: 识别为小电流模式后,长按进入/退出小电流模式 3: 长按关闭下游口	R/W	0x0
1-0	双击按键触发的事件 0:双击关闭下游口 1:识别为小电流模式后,双击进入/退出小电流模式 2:识别为 WLED 模式后,双击打开/关闭 WLED 3:进入小电流模式/WLED 模式,优先进入小电流模式;如果识别为小电流模式,双击进入/退出小电流模式;如果识别为 WLED 模式,双击打开/关闭 WLED	R/W	0x0

1.138. REG0x153: peak current 功能设置

Bit	description	R/W	Default

7-6	reserved		/
	pps 模式下,限流偏移设置		
	0: 0		
5-4	1: 100mA	R/W	0x0
	2: 200mA		
	3: 300mA		
3-0	reserved	R/W	0x0

1.139. REG0x154: 异常使能设置 1

Bit	description	R/W	Default
7-4	reserved	R/W	0x0
3	放电时 vbus 过压慢速保护使能 0: 使能 1: 禁止	R/W	0x0
2	放电时 dpdm 5.5v 过压保护使能 0: 使能 1: 禁止	R/W	0x0
1	放电时 CC 5.5v 过压保护使能 0: 使能 1: 禁止	R/W	0x0
0	reserved	R/W	0x0

1.140. REG0x155: 异常使能设置 2

Bit	description	R/W	Default
7	放电 62368 低温保护使能 0: 使能 1: 禁止	R/W	0x0
6	cc 和 cv 切换时,是否上报 cc flag 0: 使能 1: 禁止 使能时,发生 cc 和 cv 切换,上报充电 IBAT 和放电 IBUS cc flag	R/W	0x0
5-0	reserved	R/W	0x0

1.141. REG0x156: 异常使能设置 3

Bit	description	R/W	Default
7-3	reserved	R/W	0x0

2	充电 NTC 过温保护使能 0: 使能 1: 禁止	R/W	0x0
1	充电 62368 高温保护使能 0: 使能 1: 禁止	R/W	0x0
0	充电 62368 低温保护使能 0: 使能 1: 禁止	R/W	0x0

2. 版本历史

版本	日期	详细说明
V0.1.0	2023.9.20	初始版本;
V0.1.1	2023.9.25	修改字体格式;
V0.2.0	2023.11.23	补充和修改寄存器功能使能条件和描述
V0.3.0	2023.12.12	增加部分寄存器、部分寄存器描述格式统一

免责声明

珠海智融科技股份有限公司(以下简称"本公司")将按需对本文件内容作相应修改,且 不另行通知。请客户自行在本公司官网下载最新文本。

本文件仅供客户参考,本公司不对客户产品的设计、应用承担任何责任。客户应保证在将本公司产品集成到任何产品中,不会侵犯第三方知识产权,如客户产品发生侵权行为,本公司将不承担任何责任。

客户转售本公司产品所做的任何虚假宣传,本公司将对此不承担任何责任;如本文件被第三方篡改,篡改后的文本对本公司不产生任何约束力。