Семинар 7. Плоское движение твердого тела.

Клименок Кирилл Леонидович

13.10.2022

1 Теоретическая часть

1.1 Теорема Эйлера

Первая ключевая мысль, которая нам понадобится — это теорема Эйлера. Если тело движется в плоскости, то в любой момент времени существует мгновенная ось, вокруг которой вращается тело. Доказывать строго это теорему мы не будем, а просто рассмотрим идею как ее найти. Если есть 2 точки с известными скоростями, то строим прямые, перпендикулярные скоростям. В точке пересечения и будет мгновенная ось вращения. Если нам известные скорости лежат на 1 прямой, то из их соотношения и расстояний можно найти расстояние до оси: $v_A/r_A = v_B/r_B$. Если расстояние получается бесконечным, то и ось будет бесконечно далеко и тело движется поступательно.

Эта теорема работает только, чтобы найти скорости, для расчета ускорений она не работает!

1.2 Запись уравнения моментов относительно движущейся оси

Так как при плоском движении тело вращается, то мы бы хотели писать уравнение моментов с такой же легкостью, что и для простого вращения. Пусть наша ось A движется со скоростью v_A относительно неподвижной точки O. Тогда момент сил относительно движущейся оси:

$$\vec{M}_A = [(\vec{r}_O - \vec{r}_A) \times \vec{F}] = \vec{M}_O - [\vec{r}_A \times \vec{F}]$$

Момент импульса тогда:

$$\vec{L}_A = [(\vec{r}_O - \vec{r}_A) \times \vec{p}] = \vec{L}_O - [\vec{r}_A \times \vec{L}] \Rightarrow \frac{d\vec{L}_A}{dt} = \frac{d\vec{L}_O}{dt} - [\vec{v}_A \times \vec{p}] - [\vec{r}_A \times \vec{F}]$$

Импульс здесь записан в системе отсчета, движущегося с точкой A. Тогда, чтобы выполнялось $dL_A/dt = M_A$ надо, чтобы $[\vec{v}_A \times \vec{p}] = 0$, то есть ось должна двигаться параллельно с центром масс тела. Это наш принципиальный момент, который поможет решать задачи.

2 Практическая часть

2.1 Задача 0.15

Условие Мяч радиуса R и массы m раскручен до угловой скорости ω и поставлен на горизонтальную шероховатую поверхность. С какой скоростью V будет двигаться мяч после прекращения проскальзывания?

Решение Задача является стандартной для применения уравнения движения и уравнения на момент импульса. В нашем случае по горизонтали есть только сила трения, которая вообще-то не равна силе трения скольжения, а из моментов относительно оси, проходящей через центр масс только ее момент замедляет вращение:

$$\begin{cases} m\frac{dV}{dt} = F_{fr} \\ I\frac{d\omega}{dt} = -F_{fr}r \end{cases} \Rightarrow Id\omega = -mrdV \Rightarrow \int_{\omega}^{V/r} Id\omega = -\int_{0}^{V} mrdV \Rightarrow \frac{2}{3}mr^{2}\left(\frac{V}{r} - \omega\right) = -mrV$$

Окончательно

$$V = \frac{2}{5}\omega r$$

2.2 Задача 9.76

Условие По поверхности большого полого цилиндра, лежащего на горизонтальной плоскости, начинает бежать собака массой m в направлении к наивысшей точке A и притом так, что она все время находится на одном и том же расстоянии от этой точки (см.рис.). В результате цилиндр начинает катиться по горизонтальной плоскости без скольжения. Масса цилиндра M, а угол AOB равен α . Определить: 1) ускорение оси цилиндра a; 2) силу трения F_{fr} между цилиндром и плоскостью во время качения; 3) время t, в течение которого собака способна оставаться на указанном расстоянии от точки A, если максимальная полезная мощность, которую она способна развить, равна N_{max} . Какая при этом будет достигнута максимальная скорость v_{max} поступательного движения цилиндра? (Полезной мощностью здесь называется мощность, которая затрачивается собакой на увеличение кинетической энергии системы.)

Рис. 1: К задаче 9.76

Решение Задача похожа на рассматриваемую ранее нулевку, но несколько сложнее из-за собаки. В начале разберемся с взаимодействием собаки и цилиндра: у них есть сила взаимодействия друг с другом, но если рассматривать систему «собака + цилиндр», то эта сила — внутренняя и ее не нужно рассматривать в уравнении моментов или во втором законе Ньютона.

Когда мы разобрались с внутренней силой, можно и ответить, почему наш цилиндр будет раскручиваться. Тут тоже все просто — из-за силы трения. Тогда мы можем записать уравнение моментов. Осталось определиться с точкой, относительно которой надо записывать. Но и тут все просто: мы не знаем силу трения, вот относительно точки касания и будем писать, чтобы занулить

ее момент, а также момент сил реакции и силы тяжести от цилиндра:

$$L_D = I_D \omega + mvr(1 + \cos \alpha) = 2Mr^2 + mvr(1 + \cos \alpha) = (M + 2m(1 + \cos \alpha)) vr$$

$$\frac{dL_D}{dt} = (M + 2m(1 + \cos \alpha)) r \frac{dv}{dt} = M_D = mg \sin \alpha$$

$$a = \frac{mg \sin \alpha}{M + 2m(1 + \cos \alpha)}$$

Теперь не составляет труда найти силу трения из второго закона Ньютона:

$$(M+m)\frac{dv}{dt} = F_{fr} \Rightarrow F_{fr} = \frac{(M+m)mg\sin\alpha}{M+2m(1+\cos\alpha)}$$

Теперь разбираемся с мощностью. Тут все просто: мощность собаки идет на увеличение кинетической энергии системы (собака остается на одной и той же высоте, а сила трения не совершает работу, так как качение идет без проскальзывания):

$$N = \frac{dK}{dt} = I_D \omega \frac{d\omega}{dt} + mv \frac{dv}{dt} = (2M + m)v \frac{dv}{dt} = (2M + m)va \Rightarrow v_{max} = \frac{N_{max}}{(2M + m)a}$$

Тогда время, за которое эта скорость достигается будет:

$$t = \frac{v_{max}}{t} = \frac{N_{max}}{(2M+m)a^2}$$

2.3 Задача 9.79

Условие Бильярдный шар катится без скольжения по горизонтальной плоскости со скоростью v и ударяется в покоящийся такой же бильярдный шар, причем линия центров параллельна скорости движения. Определить скорости обоих шаров после того, как их движение перейдет в чистое качение. Какая доля первоначальной кинетической энергии перейдет в тепло? Считать, что при столкновении шаров передачи вращательного движения не происходит. Потерей энергии на трение при чистом качении пренебречь.

Решение Первое, рассматриваем ситуацию непосредственно до и непосредственно после удара. Так как удар упругий, а время удара мало, то работает и ЗСИ и ЗСЭ:

$$\begin{cases} mv = mv_1 + mv_2 \\ mv^2 + 2E_{rot} = mv_1^2 + mv_2^2 + 2E_{rot} \end{cases} \Rightarrow v_1 = 0; v_2 = v$$

Так как во время удара вращение не передается, то первый продолжает вращаться вперед с угловой скоростью $\omega_1 = v/r$, а для второго $\omega_2 = 0$. Что происходит дальше? А дальше происходит задача 0.15 и для каждого шарика надо ее решить, с учетом начальных условий, которые мы только что выписали. Конечные условия это их качение без проскальзывания. Я позволю себе записать только записать сами интегралы. Для первого шара:

$$\int_{\omega_1}^{V_{1,e}/r} Id\omega = -\int_0^{V_{1,e}} mrdV \Rightarrow v_{1,e} = \frac{I\omega_1 r}{I + mr^2} = \frac{2}{7}v$$

Аналогично и для 2 шарика:

$$\int_{0}^{V_{2,e}/r} Id\omega = -\int_{V_2}^{V_{2,e}} mrdV \Rightarrow v_{2,e} = \frac{5}{7}v$$

И последнее. Если шар с моментом инерции I относительно центра катится со скоростью v без проскальзывания, то у него есть кинетическая энергия поступательного и вращательного движения:

$$E = \frac{mv^2}{2} + \frac{I(v/r)^2}{2} = \frac{7}{10}mv^2$$

Тогда потери энергии:

$$\frac{E_0 - E_1 - E_2}{E_0} = 1 - \frac{v_1^2}{v^2} - \frac{v_2^2}{v_0^2} = \frac{20}{49}$$

2.4 Задача 9.115

Условие На идеально гладкой горизонтальной поверхности лежит стержень длиной l и массой M, который может скользить по этой поверхности без трения. В одну из точек стержня ударяет шарик массой m, движущийся перпендикулярно к стержню. На каком расстоянии x от середины стержня должен произойти удар, чтобы шарик передал стержню всю свою кинетическую энергию? Удар считать абсолютно упругим. При каком соотношении масс M и m это возможно?

Рис. 2: К задаче 9.115

Решение Естественно решать задачу будем используя законы сохранения. Стержень свободный, значит после удара он поедет. Тогда ЗСИ:

$$mv_0 = Mv_C$$

Закон сохранения момента импульса относительно центра стержня:

$$mv_0x = I\omega$$

Закон сохранения энергии:

$$\frac{mv_0^2}{2} = \frac{Mv_C^2}{2} + \frac{I\omega^2}{2}$$

Напомню, что момент инерции стрежня относительно центра это $ml^2/12$. И конечно же после решения системы получаем ответ:

$$x = \frac{l}{2}\sqrt{\frac{M-m}{3m}}$$

2.5 Комментарии к задачам из задания

Нулевки Задача про скатывание разобрана на лекции, а соотношение кинетических энергий считается через теорему Кенига.

Задача 6.15 Идейно повторяет 9.115. Использовать законы сохранения

Задача 9.71 Небольшое усложнение скатывания из-за трения между 2 скатывающимися телами. Его надо учесть, когда будете писать моменты

Задача 9.76 Решена

Задача 9.79 Решена

Задача 9.89 Опять законы сохранения и все

Задача 9.115 Решена

Задача 9.163 Здесь надо расписать, что происходит в момент удара с точки зрения импульса силы и изменения момента импульса

Задача 9.187 Задачу о катушке мы рассматривали на лекции