ELH222 ELEKTRONİĞE GİRİŞ (11278)

2. Yarıyıl Sınavı / 11 Aralık 2002 (*) 10.00-12.00 Doç.Dr. İnci ÇİLESİZ, Yük.Müh. Tolga KAYA

ÇÖZÜMLER

1. Yandaki kuvvetlendirici devresinde kullanılan BJT transistörlerin parametreleri şunlardır:

$$h_{\rm fe}$$
 = $h_{\rm FE}$ = 300, $V_{\rm BE}$ = 0,6 V, $h_{\rm re}$ \cong 0, $h_{\rm oe}$ \cong 0 ve $V_{\rm T}$ = 25 mV.

Ayrıca,
$$R_1$$
 = 100k, R_2 = 1k2, R_3 = 300 Ω , R_4 = 4k7, R_5 = 22k, R_6 = 20k, V_{CC} = +15V, V_{EE} = -15V.

a. T₁ ve T₂ transistörlerinin çalışma noktası kolektör akımlarını bulunuz.

Tı'in baz-emetör çevriminden

$$I_{C1} = h_{FE1} \frac{V_{EE} - V_{BE1}}{R_1 + (h_{FE1} + 1)(R_3 + R_4)} = 2,69 \text{ mA}$$

$$I_{C2} = h_{FE2} \frac{V_{CC} + V_{EE} - V_{BE2} - R_2 I_{C1}}{R_2 + (h_{FE1} + 1)R_5} = 1,19 \text{ mA}$$

Bu akım değerlerini kullanarak $r_{e^{1/2}}=rac{V_T}{I_{C^{1/2}}}$ bağıntısı yardımıyla $r_{e^1}=9,67~\Omega$; $r_{e^2}=21,94~\Omega$.

b. Devrenin vo/vi gerilim kazancı için bağıntılar $A_{v2} = K_{v2} = \frac{R_{e2}}{r_{e2} + R_{e2}} = \frac{R_5 /\!/ R_6}{r_{e2} + R_5} = 0,997$

$$A_{v1} = K_{v1} = -\frac{R_{C1} // R_{v1}}{r_{e1} + R_{e1}} = -\frac{R_2 // r_{i2}}{r_{e1} + R_3} \text{ ve } r_{i2} = h_{fe2} (r_{e2} + R_{e2}) = h_{fe2} [r_{e2} + (R_5 // R_6)] = 3,14 M\Omega$$

yerine konursa $A_{v1}=K_{v1}=-3,87$ ve dolayısıyla $A_{toplam}=K_{toplam}=A_{v1}A_{v2}=K_{v1}K_{v2}=-3,86$.

c. ri giriş ve ro çıkış dirençlerini bulunuz.

$$r_{i} = R_{1} / / r_{i1} \text{ burada } r_{i1} = h_{fe1}(r_{e1} + R_{e1}) = h_{fe1}(r_{e1} + R_{3}) = 92.6 \ k\Omega \text{ yerine konursa } r_{i} = 48{,}16 \ k\Omega \,.$$

Diğer yandan
$$r_o=R_5$$
 // $\left[r_{e2}+\frac{R_g^{'}}{h_{fe2}}\right]=R_5$ // $\left[r_{e2}+\frac{r_{o1}}{h_{fe2}}\right]$. Burada $r_{o1}=R_{C1}=R_2$ olduğu için $r_o=25{,}91\,\Omega$ olarak bulunur.

2. Sağ yanda verilen NMOS kuvvetlendirici devresinin DC kutuplamada 1 mA savak akımı akıtması istenmektedir. NMOS parametreleri $V_T = 0.4 \text{ V}$, $\mu_n C_{ox} = 175 \,\mu\text{A/V}^2$,

 $(W/L) = 10 \mu m/0.6 \mu m$, $V_{DD} = 3.3 V$, ve $R_D = 1 k\Omega$ olarak verilmiştir.

Verilen bu değerlerle NMOS transistörün doymalı bölgede çalışma kosulunu kullanarak Rs direnci için

koşulunu kullanarak Rs direnci iç bir değer seçiniz.

$$V_{GS} = \sqrt{\frac{2I_D}{\mu_n C_{ox} \left(\frac{W}{L}\right)}} + V_T = 1.23 V \text{ ve doyma}$$

$$i_s \qquad koşulu ifadeleri (1) V_{GS} - V_T > 0 SAĞLANIYOL$$

koşulu ifadeleri (1) $V_{GS} - V_T > 0$ SAĞLANIYOR.

(2) $V_{GS} - V_T \le V_{DS}$. Ayrıca $V_{DS} = V_D - V_S$ olduğunu anımsayarak ve V_S = R_S I_D ve V_D = V_{DD} – R_D I_D = 2,3 V bağıntılarını kullanarak

 $R_S \le 1,47 \text{ k}\Omega$ buluruz. SEÇİM: $R_S = 200 \Omega$

Devrenin v_d/v_i ve v_s/v_i gerilim kazançlarını sol yanda verilen T eşdeğer devresini kullanarak hesaplayınız.

Eşdeğer devreyi sol yanda görüldüğü gibi çizdikten sonra

$$v_i = v_g = v_{gs} + v_s = v_{gs} + i_s R_S = v_{gs} + g_m v_{gs} R_S$$

$$v_i = v_{\sigma s} (1 + g_m R_s)$$

$$v_d = -g_m v_{gs} R_D = v_{gs} (-g_m R_D)$$

$$v_s = g_m v_{gs} R_S = v_{gs} (g_m R_S)$$

$$g_m = \sqrt{2\mu_n C_{ox} \frac{W}{L} I_D} = 2,42 \ mA/V \ \text{ve} 1/g_m = 414 \ \Omega$$

Dolayısıyla

$$\frac{v_d}{v_i} = \frac{v_d}{v_g} = -\frac{g_m R_D}{1 + g_m R_S} = -\frac{R_D}{\frac{1}{g_m} + R_S} \text{ ve } \frac{v_s}{v_i} = \frac{v_s}{v_g} = \frac{g_m R_S}{1 + g_m R_S} = \frac{R_S}{\frac{1}{g_m} + R_S}$$

Görüldüğü gibi her zaman $\frac{v_s}{v_i} = \frac{v_s}{v_g} < 1$. Sayısal değerler ise: $\frac{v_d}{v_i} = \frac{v_d}{v_g} = -1,63$ ve $\frac{v_s}{v_i} = \frac{v_s}{v_g} = 0,33$

olarak bulunur. Eğer Rs = 1k2 seçilseydi $\frac{v_d}{v_i} = \frac{v_d}{v_o} = -0.62$ ve $\frac{v_s}{v_i} = \frac{v_s}{v_g} = 0.74$ bulunacaktı.

Soru	1a	1b	1c	2a	2b	Toplam
Puan	20	20	20	20	20	100