Revision

COST FUNCTION, ERROR, LOSS

Cost Function

Squared Error =
$$(h(x) - y)^2$$

Sum of Squared Errors =
$$\sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^{2}$$

Note: superscript is not power, but representing *ith* instance/record.

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^{2}$$

Or equally...

$$MSE = \frac{\sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^{2}}{m}$$

LR with One Variable: Alternative Perspective

Size $(Feet^2)$	Price \$(× 1000)
1500	190
2250	285
2740	420
2318	300
2500	350
1250	180

Notations:

m = Total Number of Training Samples

x = Feature

y = Label

 $(x^{(i)}, y^{(i)}$: the *ith* sample in the dataset i.e., when $i = 1, x^{(1)} = 2250, y^{(1)} = 285$

Univariate Linear Regression

□Also called, Linear Regression with one variable or simple linear regression

$$y = mx + b$$

$$h(x) = w_0 + w_1 x$$

Parameters:

$$w_0, w_1$$

Cost Function:

$$MSE = \frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^{2}$$

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

Goal: Choose w_0, w_1 such that $h(x) \approx y$ for training examples (x, y)

Or...

Goal: Choose w_0 , w_1 such that $h(x) - y \approx 0$

Will be helpful later when differentiating. This only changes scale of minimization.

A Simplified Case

Hypothesis

$$h(x) = w_0 + w_1 x$$

Parameters

$$w_0, w_1$$

□Cost Function

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

□Goal

$$Minimize_{w_0,w_1}J(w_0,w_1)$$

Restrict to those lines which pass through origin.

Assume
$$w_0 = 0$$

□ Hypothesis

$$h(x) = w_1 x$$

Parameters

$$w_1$$

□Cost Function

$$J(w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

□Goal

$$Minimize_{w_1}J(w_1)$$

Visualizing Hypothesis and Cost Function

$$J(w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

$$J(w_1) = \frac{1}{2m} \sum_{i=1}^{m} (w_1 x^{(i)} - y^{(i)})^2$$

$J(w_1)$

$$J(1) = \frac{1}{2(3)} \left((1-1)^2 + (2-2)^2 + (3-3)^2 \right) = 0$$

$$J(0.5) = \frac{1}{6} \left((0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2 \right) = 0.58$$

$$J(0) = \frac{1}{6} \left((0-1)^2 + (0-2)^2 + (0-3)^2 \right) = 2.3$$

In actual, the cost functions are not that nice!

Using Both Parameters

■ Hypothesis

$$h(x) = w_0 + w_1 x$$

Parameters

$$w_0, w_1$$

□Cost Function

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

□Goal

$$Minimize_{w_0,w_1}J(w_0,w_1)$$

How would the "error surface" look like now?

Using Both Parameters

$$h(x) = w_0 + w_1 x$$

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

But plotting in 3D is not convenient!

$$h(x) = w_0 + w_1 x$$

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$
Error for current w_0, w_1

$$0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.0.2 \\ 0.0.4 \\ 0.0.4 \\ 0.0.4 \\ 0.0.5 \\ 0.0.4 \\ 0.0.5 \\ 0.00 \\ 0.0.0 \\ 0.00$$

Highest error at edges. Lowest error as we move closer to the center.

$$h(x) = w_0 + w_1 x$$

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

$$h(x) = w_0 + w_1 x$$

$$h(x) = w_0 + w_1 x$$

$$J(w_0, w_1) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

How to find optimal values of w_0, w_1 ?

Gradient Descent Algorithm

The Gradient Descent Algorithm

- **Goal:** Minimize $J(w_0, w_1)$
- Outline:
 - Start with some (w_0, w_1)
 - Keep updating (w_0, w_1) to reduce $J(w_0, w_1)$
 - Until, we hopefully reach a minimum.

Global Minimum vs Local Minimum

Do we really want the Global Minimum?

We must consider test data ...

Current value of w_1

Initial values of our weights determine in which direction the algorithm would move!

A Simplified Version of Gradient Descent

 \square Assume again that we set $w_0=0$ and our hypothesis and cost function practically have only one coefficient, w_1

$$h(x) = w_1 x$$

Repeat until convergence {

$$w_1 \coloneqq w_1 - \alpha \frac{\partial}{\partial w_1} (J(w_1))$$

}

Where
$$J(w_1) = \frac{1}{2m} \sum_{i=1}^{m} (w_1 x^{(i)} - y^{(i)})^2$$

Step size (aka learning rate)

Direction to move

Derivate of the cost function with respect to w_1

We just want to find the rate of change from current point (instantaneous gradient)

Direction of Step

Step Size

 $w_1 \coloneqq w_1 - \alpha \; \frac{\partial}{\partial w_1} \left(J(w_1) \right)$

$$w_1 \coloneqq w_1 - \alpha \; \frac{\delta}{\delta w_1} \left(J(w_1) \right)$$

 $w_1 \coloneqq w_1 - \alpha(negative)$: Increase w_1 $w_1 \coloneqq w_1 - \alpha(positive)$: Decrease w_1

- In addition to α , the steepness of the gradient also control the step size.
- The step sizes become smaller as we get closer to the minimum, even with a fixed α
- With α too small, it takes a long time to reach the minimum.
- With α too small, it takes a long time to reach the minimum.

Step Size

$$w_1 \coloneqq w_1 - \alpha \ \frac{\partial}{\partial w_1} \left(J(w_1) \right)$$

$$w_1 \coloneqq w_1 - \alpha \frac{\delta}{\delta w_1} \left(J(w_1) \right)$$

 $w_1 \coloneqq w_1 - \alpha(negative)$: Increase w_1 $w_1 \coloneqq w_1 - \alpha(positive)$: Decrease w_1

- In addition to α , the steepness of the gradient also control the step size.
- The step sizes become smaller as we get closer to the minimum, even with a fixed α
- With α too small, it takes a long time to reach the minimum.
- With α too small, it takes a long time to reach the minimum.
 - With α too large, we can miss the minimum, and may fail to converge.

The Problem of Local Optima

Assignment 2 – Task 2

- ☐ Use your images dataset and age label (Same as Task 1 of Assignment 2)
 - Resize images to 32x32, just like before.
- ☐ Train SGD Linear Regressor using scikit-learn using training split
- \square Compute \mathbb{R}^2 and MSE on test split.
- □Compare the metrics with simple linear regression model trained with OLS that you trained in Task 1. (To see which one is better i.e., OLS vs SGD regression)

Book Reading

- ☐ Murphy Chapter 1, Chapter 14
- ☐ Tom Mitchel (TM) Chapter 4