Parcours Ingénieur Machine Learning **DENCLASSROOMS**

Session Mars 2021

Projet 4 Segmentez des clients d'un site ecommerce

25/07/2021 Etudiante : QITOUT Kenza

Mentor: Maïeul Lombard

Evaluateur: Zied Jemai

CONTEXTE DU PROJET

Connecte les entreprises au Brésil qui peuvent vendre leurs produits sur le site www.olist.com et les livrer aux clients

Problématique:

Se place en tant que consultant pour Olist => Aider l'équipe marketing en leur fournissant les profils des clients

Objectifs: Comprendre les différents types d'utilisateurs en réalisant une segmentation des clients facilement exploitable et compréhensible

BASES DE DONNEES

9 DataFrames disponibles sur https://www.kaggle.com/olistbr/brazilian-ecommerce, composés de données anonymisées :

PISTES DE RECHERCHE

Missions:

- Réaliser une courte analyse exploratoire après avoir nettoyé les jeux de données
- Tester différentes approches de modélisation
- Evaluer la fréquence de mise à jour de la segmentation

Méthodologie:

- Modèle de base = segmentation RFM
- Construire d'autres modèles qui apportent plus d'informations à l'équipe marketing
- Clustering des clients via des méthodes non supervisées pour regrouper les clients de profils similaires

Diagramme circulaire des données présentes et manquantes pour olist_order_reviews

Nettoyage des différents DataFrames séparément :

- 0% à 0.8% de NaN pour tous les DataFrames sauf pour olist_order_reviews
- Vérification de l'orthographe et transformation des catégories en minuscule pour les variables qualitatives
- Vérification des Outliers (avec les boxplot) => pas de traitement nécessaire

olist_customers	olist_geoloca tion	olist_order_items	olist_order _payments	olist_order_rev iews	olist_orders	olist_products	olist_sell ers
99441 * 5	1000163 * 5	112650 * 7	103886 * 5	100000 * 7	99441 * 8	32951 * 9	3095 * 4
Vérification des informations sur la ville et l'état des clients avec le DataFrame olist_geolocation avec une jointure via le ZipCode => 0 ligne supprimée	de 'frei	Création de la variable 'price_freight_sum' arrondie à 10 ⁻³ ation de l'égalité au seght_value' et 'price' et ec une jointure via 'ordnes	'payment_valı	ue' arrondie à	Création des variables 'durée_livraison', et 'statut_livraison' Imputation des lignes sans duree_livraison	Création de la variable 'volume_produit' Regroupement catégories en anglais avec le DataFrame product_category_name _translation	

Jointures internes des variables utilisées pour la segmentation :

Suppression des 7043 lignes contenant des données manquantes

DataFrame de 111 150 lignes et 27 colonnes des articles vendus pour chaque commande pour chaque client

Agrégations des informations pour chaque client :

- Groupby de 'price', 'freight_value', 'product_photos_qty', 'product_weight_g', 'volume_produit' par 'order_id'
- Puis Groupby de toutes les variables par 'customer_unique_id'

Dans l'ordre croissant par 'order_purchase_timestamp' et en supprimant les doublons en fonction de la variable

Agrégation des variables quantitatives par la somme ou par la moyenne

Agrégation des variables qualitatives par le mode (en cas d'ambiguïté, la catégorie la plus récente a été privilégiée)

Indicateurs de la segmentation RFM:

□ Récence = durée depuis le dernier achat

Montant = montant moyen des commandes

Moyenne = 141.81

Moyenne = 1.03

Autres indicateurs pour améliorer la segmentation :

- Nombre total d'articles
- Moyenne du nombre d'articles par commande
- Statut de la livraison de la dernière commande ('Livré' ou 'Non livré')
- Moyenne de la proportion des frais de transport
- Moyenne de la note du client et de la durée de réponse à l'enquête de satisfaction
- Moyenne de la durée de livraison
- Moyenne du poids des articles
- Moyenne du volume des articles
- Moyenne du nombre de photos par article
- Localisation la plus fréquente du vendeur par rapport au client ('Local' ou 'Non local')
- Moyenne de la distance entre le client et le vendeur
- Paiement par carte de crédit le plus fréquent ('credit_card', 'autre')
- Moyenne du nombre de versements par article
- Catégorie de l'article la plus fréquente

Analyses univariées : 'nombre_total_articles'

Moyenne: 1.21

Ecart-type: 0.46

Analyses univariées : 'review_score'

Moyenne: 4.08

Ecart-type: 1.78

Analyses univariées : 'duree_livraison'

Moyenne: 23.08

Ecart-type: 5069.30

Analyses univariées : 'volume_produit_moyen'

Moyenne: 15347.07

Ecart-type: 548609783.25

Analyses bivariées : Relation entre 'nb_versements_moyen' et 'payment_type_credit_card_mode'

ANOVA: $n^2 = 0.15$

Analyses bivariées : Relation entre 'moyenne_prix_commande' et 'volume_produit_moyen'

Corrélation de Pearson = 0.29

Vérification de la corrélation entre les variables :

Corrélation entre les variables utilisées dans la segmentation < |0.9|

Suppression de 9 variables

DataFrame final de 91 701 lignes et 21 variables

2. MODELISATION

Méthode utilisée pour réaliser les analyses sur les différents modèles et la stabilité du modèle :

2. MODELISATION

Liste des modèles testés :

- > KModes (n_clusters entre 1 et 15) Cost et Coefficient de silhouette

Comparaison des modèles entre eux :

- Coefficient de silhouette (metrics.silhouette_score)
- Indice de Calinski-Harabasz (metrics.calinski_harabasz_score)
- Temps d'éxecution

Etude de la stabilité des segments au cours du temps :

Indice de Rand entre les clusters de 2017 et les clusters de X mois après (metrics.adjusted_rand_score) Recherche de l'hyperparamètre optimal

Segmentation RFM: Comparaison des modèles

Histogramme du Temps d'exécution

19

Sélectionne le KMeans avec un coefficient de silhouette à 0.52 et un indice de Calinski Harabasz à

34764, avec un temps d'exécution de 0.81 s

Méthode du coude :

ch

choix du n_clusters = 4

Segmentation RFM: Résultats du clustering avec KMeans

Profil 0 = Clients récents

Profil 1 = Clients anciens

Profil 2 = Clients ayant passé plus de 2 commandes

Profil 3 = Clients ayant beaucoup dépensé

Groupes 2 et 3 peu représentés dans le DataFrame

Segmentation en ajoutant des indicateurs : Comparaison des modèles

Sélectionne le KMeans avec un coefficient de silhouette à 0.15 et un indice de Calinski Harabasz à 4336, avec un temps d'exécution de 2.67 s

Méthode du coude :

choix du n_clusters = 8

Histogramme du Temps d'exécution

product_photos_qty_moyen duree_livraison

3. Modèle optimal

product_photos_qty_moyen duree_livraison

Segmentation en ajoutant des indicateurs : Résultats du clustering avec Kmeans

product_photos_qty_moyen

duree_livraison

Segmentation en ajoutant des indicateurs : Résultats du clustering avec KMeans

Modèle sélectionné: Kmeans avec l'ensemble des indicateurs

Mise à jour tous les 5 mois

Modèle sélectionné: Kmeans avec l'ensemble des indicateurs

Conclusion

Réponse à la problématique : Comprendre les différents types d'utilisateurs

<u>Segmentation RFM</u> => Apporte plus d'informations à l'équipe marketing en ajoutant des indicateurs (profils clients plus détaillés)

<u>Modèle optimal</u> = **Kmeans** VS KPrototypes, KModes et DBSCAN

Semble apporter le plus d'informations dans la segmentation des clients et plutôt rapide

- Segments plus représentatifs que d'autres
- Profils exploitables

<u>Etude de la stabilité des segments au cours du temps</u> = Mise à jour tous les 5 mois (après chute de l'Indice de Rand)

MERCI DE VOTRE ATTENTION

QUESTIONS - REPONSES