CS178 Homework #4 Solutions

March 10, 2017

Problem 1: Decision Trees

You can most easily do this problem by hand, but since I have to type a solution I will put it into the Python notebook.

(a) Calculate the entropy of the class variable y

(b) Calculate the information gain for each feature xi. Which feature should be split first?

So, we should select the 2nd feature.

(c) Draw the complete decision tree that will be learned from these data:

```
In [5]: # Split on feature 2:
       print "Splitting on feature 2:"
       print "Left data: \n", Xy[X[:,1]==0,:]
       print "Right data: \n", Xy[X[:,1]==1,:]
Splitting on feature 2:
Left data:
[[0 0 1 1 0 -1]
[1 0 1 1 1 1]
 [001001]
 [1 0 0 0 0 1]
 [1 0 1 1 0 1]]
Right data:
[[1 1 0 1 0 -1]
[ 0 1 1 1 1 -1]
 [ 1 1 1 1 0 -1]
 [ 0 1 0 0 0 -1]
 [1 1 1 1 1 -1]
In [6]: # On the right data, we will always predict "-1".
       # On the left data, we'll need to split again.
       # You can see by inspection that the next best feature is the first
           or you can recompute it as above
       print "Splitting left data on feature 1 next:"
       XLeft = Xy[X[:,1]==0,:]
       print "Left data: \n", XLeft[ XLeft[:,0]==0, :]
       print "Right data: \n", XLeft[ XLeft[:,0]==1, :]
```

```
Splitting left data on feature 1 next:
Left data:
[[0 0 1 1 0 -1]
[001001]]
Right data:
[[1 0 1 1 1 1]
[1 0 0 0 0 1]
 [1 0 1 1 0 1]]
In [7]: # On the right data, we always predict "+1"
        # On the left data, we can see that only the fourth feature is informative
        # So the final rule is:
        # if (long):
              discard
        # else:
             if (known):
        #
                  read
            else:
                 if (has "grade"): discard
                  else: read
Problem 2: Decision trees on Kaggle
In [8]: import mltools.dtree as dt;
        reload(dt);
  (Part A) Load the data
In [13]: X = np.genfromtxt("project/X_train.txt",delimiter=' ')
         Y = np.genfromtxt("project/Y_train.txt",delimiter=' ')
         Xt,Xv,Yt,Yv = ml.splitData(X,Y,0.80)
         Xe = np.genfromtxt('project/X_test.txt',delimiter=' ')
  (Part B) Train a basic decision tree:
In [16]: lr = dt.treeClassify(Xt,Yt, maxDepth=50)
In [17]: print "Train ERR: ",lr.err(Xt,Yt)
         print "Valid ERR: ",lr.err(Xv,Yv)
Train ERR: 0.0341125
Valid ERR: 0.33205
  Looks overfit!
```

(Part C) Let's look at controlling the depth:

```
In [18]: for depth in range(16):
             lr.train(Xt,Yt, maxDepth=depth)
             print "Depth {:02d}: {} train, {} validation".format(depth, lr.err(Xt,Yt), lr.err(X
Depth 00: 0.3411125 train, 0.34165 validation
Depth 01: 0.3331625 train, 0.33065 validation
Depth 02: 0.32165 train, 0.32045 validation
Depth 03: 0.3172875 train, 0.3177 validation
Depth 04: 0.315225 train, 0.31675 validation
Depth 05: 0.3109375 train, 0.31475 validation
Depth 06: 0.3077 train, 0.31035 validation
Depth 07: 0.3020125 train, 0.30795 validation
Depth 08: 0.2972375 train, 0.30765 validation
Depth 09: 0.290225 train, 0.30375 validation
Depth 10: 0.2812625 train, 0.30265 validation
Depth 11: 0.272975 train, 0.3038 validation
Depth 12: 0.263225 train, 0.30285 validation
Depth 13: 0.2514875 train, 0.3042 validation
Depth 14: 0.2382875 train, 0.30635 validation
Depth 15: 0.22445 train, 0.3073 validation
   (Part D, E) and now at the number of data required to split, either in the resulting child (leaf),
or in the parent:
In [19]: for i in range(2,13):
             lr.train(Xt,Yt, maxDepth=20, minLeaf=2**i)
             print "> 2^{:d} data per leaf: {} train, {} validation".format(i, lr.err(Xt,Yt), lr
> 2^2 data per leaf: 0.1820625 train, 0.3167 validation
> 2^3 data per leaf: 0.201175 train, 0.3172 validation
> 2^4 data per leaf: 0.225275 train, 0.3149 validation
> 2<sup>5</sup> data per leaf: 0.2542375 train, 0.31015 validation
> 2^6 data per leaf: 0.2766125 train, 0.3086 validation
> 2^7 data per leaf: 0.28855 train, 0.3077 validation
> 2^8 data per leaf: 0.2980125 train, 0.3064 validation
> 2^9 data per leaf: 0.3036125 train, 0.3079 validation
> 2^10 data per leaf: 0.3104125 train, 0.3103 validation
> 2^11 data per leaf: 0.313875 train, 0.3134 validation
> 2^12 data per leaf: 0.32165 train, 0.32045 validation
In [20]: for i in range(2,13):
             lr.train(Xt,Yt, maxDepth=20, minParent=2**i)
             print "> 2^{:d} data per parent: {} train, {} validation".format(i, lr.err(Xt,Yt),
> 2^2 data per parent: 0.158525 train, 0.3167 validation
> 2^3 data per parent: 0.1708625 train, 0.3152 validation
> 2^4 data per parent: 0.190225 train, 0.31695 validation
```

```
> 2^5 data per parent: 0.213675 train, 0.3161 validation
> 2^6 data per parent: 0.2358125 train, 0.3128 validation
> 2^7 data per parent: 0.2566 train, 0.3103 validation
> 2^8 data per parent: 0.2746125 train, 0.3099 validation
> 2^9 data per parent: 0.2885 train, 0.3076 validation
> 2^10 data per parent: 0.2996375 train, 0.30785 validation
> 2^11 data per parent: 0.3081 train, 0.30985 validation
> 2^12 data per parent: 0.311025 train, 0.31225 validation
```

I'll pick minLeaf = 2^8 :

In [21]: lr.train(Xt,Yt,maxDepth=20,minLeaf=2**8)

(Part F) Check the AUC scores and the ROC curve:

AUC: Train 0.703419880746 Valid 0.671362503932

(Part G) Make predictions & upload them to Kaggle

In [23]: lr.train(X,Y, minLeaf=2**8, maxDepth=20)

```
In [25]: # Output our predictions to a file:
         YeHat = lr.predictSoft(Xe)[:,1]
         np.savetxt('project/predict_dtree.csv', np.vstack((np.arange(len(YeHat)), YeHat)).T,'%d,
         # and then upload them!
Problem 3: Random Forests
In [41]: M = Xt.shape[0]
        Mv= Xv.shape[0]
         rforest = [None] *25
         YtHat = np.zeros((M, 25))
         YvHat = np.zeros((Mv,25))
         for 1 in range(25):
             #print "Training {}".format(l)
                                                          # uncomment if you want to monitor pr
             Xi,Yi = ml.bootstrapData(Xt,Yt, M)
                                                          # draw this member's random sample of
             rforest[1] = dt.treeClassify()
                                                                and train the model on that draw
             rforest[1].train(Xi,Yi,maxDepth=20,nFeatures=10)
             YtHat[:,1] = rforest[1].predict(Xt)
                                                          # predict on training data
             YvHat[:,1] = rforest[1].predict(Xv)
                                                          # and validation data & save result
             if 1+1 in [1,5,10,15,25]:
                 # Make the prediction (mean of columns 0...l-1) and score the error rate:
                 errT = ((Yt - YtHat[:,0:1+1].mean(axis=1)>.5)).mean()
                 errV = ((Yv - YvHat[:,0:1+1].mean(axis=1)>.5)).mean()
                 print "{:02d} members: {} train, {} valid".format(l+1,errT,errV)
01 members: 0.1380125 train, 0.2017 valid
05 members: 0.1261375 train, 0.2076 valid
10 members: 0.106425 train, 0.1953 valid
15 members: 0.1262375 train, 0.21415 valid
25 members: 0.1238625 train, 0.2151 valid
  To compute AUC, it is easiest to wrap our ensemble in a classifier object:
In [46]: class randomForest(ml.base.classifier):
             def __init__(self, learners):
                 self.learners=learners;
                 self.classes=learners[0].classes;
             def predictSoft(self,X):
                 ysoft = np.zeros((X.shape[0],len(self.classes)));
                 for i in range(len(self.learners)): ysoft[:,1]+=self.learners[i].predict(X);
                 return ysoft/len(self.learners);
         rf = randomForest(rforest);
```

print "AUC Train: ",rf.auc(Xt,Yt)," Valid: ",rf.auc(Xv,Yv)

```
AUC Train: 0.954917550798 Valid: 0.72930380735
```

In a slightly different variant, we can try averaging the trees' confidence (instead of their class prediction):