Existence Proofs

Alexander Shen

LIRMM / CNRS, University of Montpellier, France

Outline

When One Example is Enough

Splitting an Octagon

Making Fun in Real Life

Know Your Rights

Nobody Can Win All The Times

Know What Are You Looking For

Source: https://en.wikipedia.org/wiki/Historia_animalium_(Gessner)

what does the proof look like?

- what does the proof look like?
- it depends

- what does the proof look like?
- it depends
- claim: object with given properties exists

- what does the proof look like?
- it depends
- claim: object with given properties exists
- proof: an example

- what does the proof look like?
- it depends
- claim: object with given properties exists
- proof: an example
- one example is enough

congruent pieces: of the same shape and size

congruent pieces: of the same shape and size

Prove that this figure can be cut into 2 congruent pieces

congruent pieces: of the same shape and size

Prove that this figure can be cut into 2 congruent pieces

congruent pieces: of the same shape and size

Prove that this figure can be cut into 2 congruent pieces

congruent pieces: of the same shape and size

Prove that this figure can be cut into 2 congruent pieces

what about 4 pieces?

Spoiler

Spoiler

Outline

When One Example is Enough

Splitting an Octagon

Making Fun in Real Life

Know Your Rights

Nobody Can Win All The Times

The Octagon

The Octagon

The Octagon

split into two congruent pieces

Spoiler

Spoiler

what about three congruent pieces?

Outline

When One Example is Enough

Splitting an Octagon

Making Fun in Real Life

Know Your Rights

Nobody Can Win All The Times

Tensegrities

Tensegrities

· drinking straws and thread

Tensegrities

drinking straws and thread

 there exists a"tensegrity": a solid construction; straws do not touch each other; connected by threads

Not Allowed

Tensegrity Finished

A Tensegrity: Animation

[Source: https://commons.wikimedia.org/wiki/File:Tensegrity_simple_3.gif]

Tensegrities in the Real Life

[Source:https://en.wikipedia.org/wiki/Needle_Tower]

made by Kenneth Snelson, a student of Buckminster Fuller (who invented the word and made many of them)

Outline

When One Example is Enough

Splitting an Octagon

Making Fun in Real Life

Know Your Rights

Nobody Can Win All The Times

Protect Your Sources

Protect Your Sources

 a two-digit number that becomes 7 times smaller after the first digit is deleted

Protect Your Sources

- a two-digit number that becomes 7 times smaller after the first digit is deleted
- not difficult to find: not so many choices

- a two-digit number that becomes 7 times smaller after the first digit is deleted
- not difficult to find: not so many choices
- divisible by 7: 14, 21, 28, 35, 42, 49, 56, 63

- a two-digit number that becomes 7 times smaller after the first digit is deleted
- not difficult to find: not so many choices
- divisible by 7: 14, 21, 28, 35, 42, 49, 56, 63
- but what if we asked for a number that becomes 57 times smaller?

- a two-digit number that becomes 7 times smaller after the first digit is deleted
- not difficult to find: not so many choices
- divisible by 7: 14, 21, 28, 35, 42, 49, 56, 63
- but what if we asked for a number that becomes 57 times smaller?
- you say: $7125 = 57 \cdot 125$

- a two-digit number that becomes 7 times smaller after the first digit is deleted
- not difficult to find: not so many choices
- divisible by 7: 14, 21, 28, 35, 42, 49, 56, 63
- but what if we asked for a number that becomes 57 times smaller?
- you say: $7125 = 57 \cdot 125$
- no need to explain how you found it

• how did we find 7125?

- how did we find 7125?
- $ab ... z = 57 \times b ... z$

- how did we find 7125?
- $ab ... z = 57 \times b ... z$
- $X = b \dots z$

- how did we find 7125?
- $ab...z = 57 \times b...z$
- $X = b \dots z$ has k digits

- how did we find 7125?
- $ab...z = 57 \times b...z$
- $X = b \dots z$ has k digits
- $a \times 10^k + X = 57 \times X$

- how did we find 7125?
- $ab ... z = 57 \times b ... z$
- $X = b \dots z$ has k digits
- $a \times 10^k + X = 57 \times X$
- $a \times 10^k = 56 \times X = 7 \times 8 \times X$

- how did we find 7125?
- $ab...z = 57 \times b...z$
- $X = b \dots z$ has k digits
- $a \times 10^k + X = 57 \times X$
- $a \times 10^k = 56 \times X = 7 \times 8 \times X$
- a divisible by 7: only a = 7 works

- how did we find 7125?
- $ab...z = 57 \times b...z$
- $X = b \dots z$ has k digits
- $a \times 10^k + X = 57 \times X$
- $a \times 10^k = 56 \times X = 7 \times 8 \times X$
- a divisible by 7: only a = 7 works
- $10^k = 8 \times X$

- how did we find 7125?
- $ab...z = 57 \times b...z$
- $X = b \dots z$ has k digits
- $a \times 10^k + X = 57 \times X$
- $a \times 10^k = 56 \times X = 7 \times 8 \times X$
- a divisible by 7: only a = 7 works
- $10^k = 8 \times X$; 10 and 100 not multiples of 8

- how did we find 7125?
- $ab...z = 57 \times b...z$
- $X = b \dots z$ has k digits
- $a \times 10^k + X = 57 \times X$
- $a \times 10^k = 56 \times X = 7 \times 8 \times X$
- a divisible by 7: only a = 7 works
- $10^k = 8 \times X$; 10 and 100 not multiples of 8
- 1000 works, X = 125

- how did we find 7125?
- $ab...z = 57 \times b...z$
- $X = b \dots z$ has k digits
- $a \times 10^k + X = 57 \times X$
- $a \times 10^k = 56 \times X = 7 \times 8 \times X$
- a divisible by 7: only a = 7 works
- $10^k = 8 \times X$; 10 and 100 not multiples of 8
- 1000 works, X = 125
- also $71250 = 57 \times 1250$, etc.

Outline

When One Example is Enough

Splitting an Octagon

Making Fun in Real Life

Know Your Rights

Nobody Can Win All The Times

three weights: 1, 2, 3

- three weights: 1, 2, 3
- split into two groups

- three weights: 1, 2, 3
- split into two groups
- 1 + 2 = 3

- three weights: 1, 2, 3
- split into two groups
- 1+2=3
- $\pm 1 \pm 2 \pm 3 = 0$

- three weights: 1, 2, 3
- split into two groups
- 1+2=3
- $\pm 1 \pm 2 \pm 3 = 0$
- +1+2-3=0

1,2,3,4,5,7 → two groups of equal weight

- 1, 2, 3, 4, 5, 7 \rightarrow two groups of equal weight
- total weight: 1+2+3+4+5+7=22

- 1, 2, 3, 4, 5, 7 \rightarrow two groups of equal weight
- total weight: 1+2+3+4+5+7=22
- find a group of weight 11

- 1, 2, 3, 4, 5, 7 \rightarrow two groups of equal weight
- total weight: 1+2+3+4+5+7=22
- find a group of weight 11
- easy: 4 + 7

- 1, 2, 3, 4, 5, 7 \rightarrow two groups of equal weight
- total weight: 1+2+3+4+5+7=22
- find a group of weight 11
- easy: 4 + 7 (also 1 + 2 + 3 + 5 = 11)

• if the weights are 1, 2, 3, 4, 5, 6?

- if the weights are 1, 2, 3, 4, 5, 6?
- total weight 21

- if the weights are 1, 2, 3, 4, 5, 6?
- total weight 21: not a multiple of 2

- if the weights are 1, 2, 3, 4, 5, 6?
- total weight 21: not a multiple of 2
- mission impossible

- if the weights are 1, 2, 3, 4, 5, 6?
- total weight 21: not a multiple of 2
- mission impossible
- what about weights 2, 4, 6, 8, 10, 12?

- if the weights are 1, 2, 3, 4, 5, 6?
- total weight 21: not a multiple of 2
- mission impossible
- what about weights 2, 4, 6, 8, 10, 12?
- hint: just changing the units

1, 2, 3, 4, 5, 17

- 1, 2, 3, 4, 5, 17
- 1+2+3+4+5+17=32

- 1, 2, 3, 4, 5, 17
- 1+2+3+4+5+17=32
- sum is even, but...

- 1, 2, 3, 4, 5, 17
- 1+2+3+4+5+17=32
- sum is even, but...
- ...17 is too big

- 1, 2, 3, 4, 5, 17
- 1+2+3+4+5+17=32
- sum is even, but...
- ...17 is too big
- obstacles of different types

- 1, 2, 3, 4, 5, 17
- 1+2+3+4+5+17=32
- sum is even, but...
- ...17 is too big
- obstacles of different types
- no complete list

- 1, 2, 3, 4, 5, 17
- 1+2+3+4+5+17=32
- sum is even, but...
- ...17 is too big
- obstacles of different types
- no complete list
- NP-complete pprox infeasible

 the structure of the proof reflects the structure of the claim

- the structure of the proof reflects the structure of the claim
- claim: an object with some property exists

- the structure of the proof reflects the structure of the claim
- claim: an object with some property exists
- proof: an example

- the structure of the proof reflects the structure of the claim
- claim: an object with some property exists
- proof: an example
- one example is enough

- the structure of the proof reflects the structure of the claim
- claim: an object with some property exists
- proof: an example
- one example is enough
- no need to disclose the sources

- the structure of the proof reflects the structure of the claim
- claim: an object with some property exists
- proof: an example
- one example is enough
- no need to disclose the sources
- beware: claim may be false!