Yashwanth Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Compound Angle:

The smallest positive value of x (in radians) satisfyinig the equation 4.

 $(\sin x)(\cos^3 x) - (\cos x)(\sin^3 x) = \frac{1}{4}$, is

1.

- (A) $\frac{\pi}{4}$ (B) $\frac{\pi}{8}$ (C) $\frac{\pi}{12}$
- (D) $\frac{\pi}{15}$

If $\frac{\sin^2 x}{2} + \frac{\cos^2 x}{3} = \frac{1}{5}$, then

- (A) $\tan^2 x = \frac{2}{3}$ (B) $\frac{\sin^8 x}{8} + \frac{\cos^8 x}{27} = \frac{1}{125}$ (C) $\tan^2 x = \frac{1}{3}$ (D) $\frac{\sin^8 x}{8} + \frac{\cos^8 x}{27} = \frac{2}{125}$
- If $m \tan(\theta 30^\circ) = n \tan(\theta + 120^\circ)$, show that $\cos 2\theta = \frac{m+n}{2(m-n)}$.

- (a) If $A + B + C = \pi$; prove that $\tan^2 \frac{A}{2} + \tan^2 \frac{B}{2} + \tan^2 \frac{C}{2} \ge 1$. 20.
 - (b) Prove that the triangle ABC is equilateral iff, cot A + cot B + cot C = √3.

- The minimum value of the expression $\frac{9x^{n}\sin^{n}x+4}{x\sin x}$ for $x \in (0, \pi)$ is 8.
 - (A) $\frac{16}{3}$
- (B) 6
- (C) 12
- (D) $\frac{8}{3}$

54.	If the work function of a metal is 6.63×10^{-1}	J, the maximum wavelength of the photon required
	to remove a photoelectron from the metal is	nm. (Nearest integer) [Given: h =

- The wave number of the first emission line in the Balmer series of H-Spectrum is : 23. (R = Rydberg constant):
 - (1) $\frac{3}{4}$ R
- (2) $\frac{9}{400}$ R (3) $\frac{5}{36}$ R (4) $\frac{7}{6}$ R

- An electron in a hydrogen atom in its ground state absorbs energy equal to the ionisation 43. energy of Li*2. The wavelength of the emitted electron is:
 - (A) 3.32 ×10⁻¹⁰ m
- (B) 1.17 Å
- (C) 2.32 × 10⁻⁹ nm (D) 3.33 pm
- 21. The ground state energy of hydrogen atom is -13.6 eV. Consider an electronic state Ψ of He⁺ whose energy; azimuthal quantum number and magnetic quantum number are -3.4 eV, 2 and 0, respectively. Which of the following statement(s) is(are) true for the state Ψ? [JEE Adv. 2019]
 - (1) It has 2 angular nodes
 - (2) It has 3 radial nodes
 - (3) The nuclear charge experienced by the electron in this state is less than 2e, where e is the magnitude of the electronic charge
 - (4) It is a 4d state.
- An electron has kinetic energy 2.8 × 10⁻²³ J. de-Broglie wavelength will be nearly :-46. $(m_e = 9.1 \times 10^{-31} \text{ kg})$
 - (A) 9.28×10^{-24} m (B) 9.28×10^{-7} m (C) 9.28×10^{-8} m (D) 9.28×10^{-10} m

Functions:

- Let $f(x) = a^{x}(a > 0)$ be written as $f(x) = f_1(x) + f_2(x)$, where $f_1(x)$ is an even function and $f_2(x)$ 10. is an odd function. Then $f_1(x + y) + f_1(x - y)$ equals [JEE - Main 2019]
 - (A) $2f_1(x + y) \cdot f_2(x y)$

(B) $2f_1(x + y) \cdot f_1(x - y)$

(C) 2f₁(x) · f₂(y)

(D) 2f₁(x) · f₁(y)

100

12.	Let $f(x)x^2, x \in R$. For any $A \subseteq R$, define $g(A) = \{x \in R : f(x) \in A\}$. If $S = [0,4]$, then which one of					
	the following statemetns is not true?			[JEE - Main 2019]		
	(A) $f(g(S)) = S$	(B) $g(f(f)) \neq S$	(C) $g(f(S)) = g(S)$	(D) $f(g(S)) = f(S)$		
9.	Let a function f defined from $R \to R$ as					
	$(x + p^2)$	for $x \le 2$				

$$f(x) = \begin{bmatrix} x + p^2, & \text{for } x \le 2\\ px + 5, & \text{for } x > 2 \end{bmatrix}$$

If the function is surjective, then find the sum of all possible integral values of p in [-100,100].

/2x+1\

Let N be the set of natural numbers and two functions f and g be defined as f, g: N → N such 20.

$$\text{that } f(n) = \begin{cases} \frac{n+1}{2}; & \text{if } n \text{ is odd} \\ \frac{n}{2}; & \text{if } n \text{ is even} \end{cases} \text{ and } g(n) = n - (-1)^n. \text{ Then, fog is} \qquad \text{[JEE - Main 2019]}$$

(A) one-one but not onto

- (B) onto but not one-one
- (C) both one-one and onto
- (D) neither one-one nor onto
- The value of f(-89) f(-67) + f(46) is equal to
 - (A) 4
- (B) 5
- (C) 6
- (D) 7

MULTIPLE CORRECT TYPE

Coordination Chemistry:

- 37. The formula of the complex hydridotrimethoxidoborate(III) ion is:

 - (A) [BH(OCH₃)₃]²⁻ (B) [BH₂(OCH₃)₃]²⁻ (C) [BH(OCH₃)₃]⁻ (D) [BH(OCH₃)₃]⁺

- In the complexes [Fe(H2O)6]3+, [Fe(SCN)6]3-, [Fe(C2O4)3]3- and [FeCl6]3-, more stability is 2. [AIEEE-2002] shown by snown by -(1) $[Fe(H_2O)_6]^{3+}$ (2) $[Fe(SCN)_6]^{-3}$ (3) $[Fe(C_2O_4)_3]^{3-}$ (4) $[FeCl_6]^{3-}$

78.	Oxidation number of Fe in violet coloured complex Na ₄ [Fe(CN) ₅ (NOS)] is:					
	(A) 0	(B) 2	(C) 3	(D) 4		
15.	The IUPAC name of [Ni(NH ₃) ₄]* ² [NiCl ₄] ⁻² is				[JEE 2008]	
	(A) Tetrachloronickel (II)-tetraamminenickel (II)					
	(B) Tetraamminenickel (II)-tetrachloronickel (II)					
	(C) Tetraamminenickel (II)-tetrachloronickelate (II)					
	(D) Tetrachloronickel (II)-tetraamminenickelate (0)					
30.	Which of the following complex ions will exhibit optical isomerism? [J-MAIN-2012, Online] (en = 1, 2-diamine ethane)					
	(1) [Co(en) ₂ Cl		(2) [Zn(en) ₂] ²	t+		
	(3) [Co(NH ₃) ₄ (Cl ₂] ⁺	(4) [Cr(NH ₃) ₂	2Cl2]*		