TEORIA GRAFÓW – PROJEKT

Mateusz Szymonek

Zad 1. Szkic grafu

Zad 2. Macierz incydencji

Zad.3 Graf jest hamiltonowski:

$$0 \rightarrow 1 \rightarrow 3 \rightarrow 9 \rightarrow 7 \rightarrow 2 \rightarrow 4 \rightarrow 8 \rightarrow 11 \rightarrow 6 \rightarrow 10 \rightarrow 5 \rightarrow 0$$

Zad.4 Graf nie jest eulerowski, nie zawiera ścieżki ani cyklu Eulera.

<u>Zad.5</u>

<u>Zad.6</u>

Liczba chromatyczna: 4

Indeks chromatyczny: 7

Zad.7 Wyznacz MST:

0 i 5	3
5 i 6	1
6 i 4	3
4 i 3	1
3 i 2	1
5 i 7	1
7 i 9	1
6 i 11	1
6 i 8	1
8 i 10	1
10 i 1	3
	17

Waga MST: 17

Zad.8 Planarność grafu

Graf jest planarny, nie zawiera podgrafów K5 i K3,3.

Opis algorytmu:

Algorytm Dijkstry został stworzony do badania najkrótszych, możliwych ścieżek pomiędzy dowolnie wybranymi węzłami. Rozwiązuje problemy związane bezpośrednio z tworzeniem ścieżek o najmniejszym, możliwym koszcie wagowym. Jest stosowany w niektórych systemach nawigacji, gdzie odpowiednie miejsca są oznaczone jako wierzchołki grafów, a trasy jako krawędzie z odpowiednimi wagami. Często także w serwisach społecznościowych, gdzie używając drzew decyzyjnych lub złożonych algorytmów regresji bądź klasyfikacji, ich twórcy mogą proponować nam potencjalnych znajomych lub ogłoszenia i reklamy. Jego różne formy są stosowane do specjalistycznych problemów. Działa jednak tylko w przypadku, gdy wagi nie są wartościami ujemnymi. Można wtedy korzystać chociażby z algorytmu Bellmana-Forda, równie popularnego jednak nieco wolniejszego przy większych grafach.