Bases Matemáticas – BIS 0003 2º quad. 2019 – Noturno – Santo André Prof. Vinicius Cifú Lopes

Primeira Prova – 16/07/2019

Nome	RA
Resolução e portuoção	

Instruções:

- Esta prova tem duração de 1h 30min.
- Não se esqueça de escrever seus dados acima; use caneta azul ou preta.
- Somente vire esta folha e inicie a prova quando autorizado.
- Não remova ou substitua o grampo das folhas.
- Use caneta azul ou preta para responder as questões. Não use lápis.
- Não rasure e não use borracha, corretivo ou "branquinho". Se errar, risque e escreva a versão nova em sequência.
- Nada fora dos quadros de resposta ou em folha avulsa será considerado na correção. Cada quadro deve conter todo o trabalho pedido referente a sua questão.
- Quando solicitado, indique apenas a resposta final dentro do quadro. Caso contrário, apresente raciocínio e dedução completos.
- Utilize somente os métodos requeridos nos enunciados e vistos em aula.
- Quando solicitado, realize a demonstração abstratamente e em geral, sem recurso a exemplos numéricos ou hipóteses adicionais.
- Apresente letra legível e redação organizada.
- Para rascunho, use somente os versos das folhas deste caderno ou solicite folhas avulsas e devolva-as ao final da prova. Não utilize outro material.
- Não use tinta vermelha.
- Não é permitido consultar materiais, dispositivos ou pessoas.
- Nenhuma pergunta será respondida durante a prova.
- Sobre a mesa, tenha somente caneta azul ou preta e documento original e com foto. Arrume seus pertences sob a cadeira e fechados na bolsa.
- Não cole, nem permita cópia! Proteja seu trabalho.
- Esta prova contém 4 (quatro) folhas, incluindo esta, e 3 (três) questões. Verifique se este caderno está completo ao iniciar a prova.

Boa Prova!

o quadradinho correspondente. (4pts.)			
(0,2 pto. cada)	Verdadeiro	Falso	
(a) $(\forall x \in \mathbb{N})(\exists y \in \mathbb{N}) x < y$. (dedo x, time $y = x + 1$)	V		
(b) $(\forall y \in \mathbb{N})(\exists x \in \mathbb{N}) x < y$. (to me yero)		V	
(c) $(\exists x \in \mathbb{N})(\exists y \in \mathbb{N}) x < y$. (tome $x = 5 \in y = 9$)			
(d) $(\forall x \in \mathbb{N})(\forall y \in \mathbb{N}) x < y$. (tome x=9 e y=5)			
(e) $(\exists y \in \mathbb{N})(\forall x \in \mathbb{N}) \ 2x - y = 0$. (mesmo y pero to do x)		U	
(f) 5 é primo e 4 é impar. (a 2° prop. e' folsa)			
(g) 5 é primo ou 4 é impar. (= 1º prop. el verdadeira)			
(h) Todo número inteiro tem raiz quadrada inteira. (72 4 Z)		
(i) $\sqrt{3-x} = x - 3$ tem duas soluções reais.		4	
$3-x = (x-3)^2 = x^2 - 6x + 9 \Rightarrow x^2 - 5x + 6 = 0 \Rightarrow x=2 + 6 \times -3 & 6 \otimes e \times -3 + 6 = 0$ (j) $(\exists x \in \mathbb{R}) x+1 + x-2 = 1 \cdot x < -1 \Rightarrow (-x-1) + (-x+2) = 1 \Rightarrow x = 0$			
$(k) 3 \log x - \frac{1}{2} \log z \equiv \log(3x/2z). (3 \log x - \frac{1}{2} \log z) = \log(x^2 - \log z)$	* ^{1/2}		
(1) $\arcsin \cos 2x = \frac{\pi}{2} + 2x $ $\operatorname{para} 0 \le x \le \frac{\pi}{2}$. (0 $\{2x \le \pi\}$)			arcelede orgaloni
(m) arcsen $\cos 2x = \frac{\pi}{2} + 2x$ para $\frac{\pi}{2} \le x \le \frac{3\pi}{2}$. ($\pi \le 2x \le 3\pi = -\pi/2 \le 2x \le 3\pi = -\pi/2 \le 2x \le 3\pi$)	/12/ → [] //o-2x ≤√/o)		O,4 pto
(n) A imagem de $g: \mathbb{N} \to \mathbb{Z}$, $g(n) = (-1)^n n + (-1)^{n+1} (n)$	$+ 1$), é $\{-1,0\}$	<u>,</u> 1}.	
q(n) = (-1) ⁿ n + (-1), (-1) ⁿ n + (-1) ⁿ⁺¹ != (-1) ⁿ⁺¹ pole ser 1 (n imper) on (n per), not zer	_1	L	
(o) $f: \mathbb{N} \to \mathbb{N}$, $f(n) = 3n + 1$, é bijetora. (not e'solvej tare: $\neq n \in \mathbb{N}$ $f(n) = 5$)		V	
(p) $f: \mathbb{Z} \to \mathbb{Z}$, $f(n) = n - n $, é injetora. $(4(5)=0=4(6))$			
(q) $f: \mathbb{Z} \to \mathbb{Z}$, $f(n) = n - n $, é sobrejetora. ($\exists x \in \mathbb{Z} = \exists x \in \mathbb{Z}$) $f(n) = n - (-n) = 2n$ per (r) Se p, q são números racionais, então $p + q$ é um números	racional		
(De corpo, ou anda, some de prospés o' fração.)	[]		
(s) Se $a < b$ são reais, então $1/b < 1/a$. (-245, was $1/5$)	-12)		
(t) O número 1 é o único elemento neutro da multiplicação.	. 🖳		
Nos lister: a) 2016-1, ex. 20, b) 2016-1, ex. 2d, c) 2016-1, ex. 2e, d		Ç,	
e) 2016-1, cx.3b, f) 2017-2, cx.la, g) 2017-2, cx.1b, h) 2017-2, cx.3			
j) 2016-5, ex. 14e, k) 2016-8, ex. 128, e) 2016-8, ex. 17c, m \$ 2016-8, ex. 17			
o) 2016-6, ex.5c, e) 2016-6, ex.5d, q) 2016-6, ex.5d (2°), r) 2017-2, ex.33, t) 2016-4, ex.2b.	, s) 2017-5, w.l	L ,	

(1) Verifique se cada afirmação de (a) até (t), a seguir, é verdadeira ou falsa e assinale

(2) Demonstre: (3pts)

(a)
$$(1 - 1/2)(1 - 1/3) \cdots (1 - 1/n) = 1/n$$
 para todo natural $n \ge 2$.

(Listo 2016-3, ex. 4c) (Eschrecemos o produto durante a priova.)

$$\frac{(1-1/2)(1-1/3)-...(1-1/n)(1-1/n+1)=\frac{1}{n}\cdot(1-1/n+1)=\frac{1}{n+1}\cdot\frac{(n+1)-1}{n+1}=\frac{1}{n+1}\cdot\frac{($$

(b) $2^{2n} - 1$ é divisível por 3 para todo natural $n \ge 1$.

(Listo 2017-4, ex. 7)

Posso: Assuma $2^{2n}-1$ divisivel par 3. Queremos $2^{2(n+1)}-1$ divisivel par 3. (alculanos: $2^{2n+2}-1=4$. $2^{2n}-4+4-1=4(2^{2n}-1)+3$, ambos os termos divisiveis par 3. (1pto)

(Também $4.2^{2n}-1=3.2^{2n}+(2^{2n}-1)$ etc.)

(3) Dadas $f(x) = \operatorname{sen} x \operatorname{e} g(x) = \sqrt{x}$, determine para cada $f, g, f \circ g, f \circ f, g \circ f \operatorname{e} g \circ g$ seu maior domínio real e sua expressão em termos de x. (3pts)

(Listo 2016-7, ex. 9d)

f(x) = sex est definite pare to do x eIR > Dom (f)=IR. (0,5 pto)

g(x) = (x est definite pare x>0 > Dom (g) = [0,00[. (0,5 pto)

(fog)(x) = sen(x) est definite pare x>0 > Dom (fog) = (0,00[. (0,5 pto)

(fot)(x) = sen(sex) est definite pare to do x eIR => Dom (fot) = IR. (0,5 pto)

(qof)(x) = vsex requer sex x>0, on sejo, x no 1° on 2° quadrantes

>> Dom (qof) = |xeir| | = xeir | 2 x n (x (2 x n + x)) (0,5 pto)

(qoq)(x) = vix = 4x requer x>0 > Dom (qoq) = [0,00[. (0,5 pto)