平成31年 電磁気学II

大山主朗

平成31年 電磁気学II 前期中間試験

- 1 以下の(a)及び(d)に示す物理定数は電磁気学を修めた者であれば常識的 に覚えていなければならない数値である、それぞれの値を示せ、
- (a) 真空の誘電率 $\varepsilon_0: 8.854 \times 10^{-12} \, \mathrm{F/m}$
- (b) 真空の透磁率 $\mu_0: 1.257 \times 10^{-6} \, \mathrm{H/m}$
- (c) 電子の電荷 $e:-1.602\times 10^{-19}\,\mathrm{C}$
- (d) 電子の静止質量 $m:9.109\times 10^{-31}\,\mathrm{kg}$
- 2 xy 直交座標系において,同量異符号の点磁荷 $\pm m$ が距離 l に固定された磁気双極子が存在する.このとき以下の問いに答えよ.
- (a) 点 A に存在する磁荷 -m が点 $\mathrm{P}(x_0,y_0)$ に作る磁界 H_1 を求めよ. また, H_1 を x 方向成分 H_{x1} と y 方向成分 H_{y1} に分解せよ.

$$\mathbf{H}_{1} = \frac{1}{4\pi\mu_{0}} \frac{-m}{\left(\left(x_{0} + \frac{l}{2}\right)^{2} + y_{0}^{2}\right)^{3/2}} \left\{ \left(x_{0} + \frac{l}{2}\right) \mathbf{i} + y_{0} \mathbf{j} \right\} [A/m]$$

$$|\mathbf{H}_{1}| = \frac{1}{4\pi\mu_{0}} \frac{m}{\left(x_{0} + \frac{l}{2}\right)^{2} + y_{0}^{2}} [A/m]$$

$$|\mathbf{H}_{x1}| = \frac{1}{4\pi\mu_{0}} \frac{m}{\left(\left(x_{0} + \frac{l}{2}\right)^{2} + y_{0}^{2}\right)^{3/2}} \left(x_{0} + \frac{l}{2}\right) [A/m] \quad \text{x 軸上方向}$$

$$|\mathbf{H}_{y1}| = \frac{1}{4\pi\mu_{0}} \frac{m}{\left(\left(x_{0} + \frac{l}{2}\right)^{2} + y_{0}^{2}\right)^{3/2}} y_{0} [A/m] \quad \text{y 軸下方向}$$

(b) 点 B に存在する磁荷 +m が点 $\mathrm{P}(x_0,y_0)$ に作る磁界 H_2 を求めよ. また, H_2 を x 方向成分 H_{y2} に分解せよ.

$$\begin{aligned} & \boldsymbol{H}_{2} = \frac{1}{4\pi\mu_{0}} \frac{m}{\left(\left(x_{0} - \frac{l}{2}\right)^{2} + y_{0}^{2}\right)^{3/2}} \left\{ \left(x_{0} - \frac{l}{2}\right) \boldsymbol{i} + y_{0} \boldsymbol{j} \right\} [\text{A/m}] \\ & |\boldsymbol{H}_{2}| = \frac{1}{4\pi\mu_{0}} \frac{m}{\left(x_{0} - \frac{l}{2}\right)^{2} + y_{0}^{2}} [\text{A/m}] \\ & |\boldsymbol{H}_{x2}| = \frac{1}{4\pi\mu_{0}} \frac{m}{\left(\left(x_{0} - \frac{l}{2}\right)^{2} + y_{0}^{2}\right)^{3/2}} \left(x_{0} - \frac{l}{2}\right) [\text{A/m}] \quad \text{x 軸正方向} \\ & |\boldsymbol{H}_{y2}| = \frac{1}{4\pi\mu_{0}} \frac{m}{\left(\left(x_{0} - \frac{l}{2}\right)^{2} + y_{0}^{2}\right)^{3/2}} y_{0} [\text{A/m}] \quad \text{y 軸正方向} \end{aligned}$$

(c) 点 P での磁界 H の x 方向成分 H_x と y 方向成分 H_y をそれぞれ求めよ.

$$\begin{aligned} |\boldsymbol{H}_{x}| &= |\boldsymbol{H}_{x1}| + |\boldsymbol{H}_{x2}| \\ &= \frac{m}{4\pi\mu_{0}} \left\{ \frac{1}{\left(\left(x_{0} - \frac{l}{2}\right)^{2} + y_{0}^{2}\right)^{3/2}} \left(x_{0} - \frac{l}{2}\right) - \frac{1}{\left(\left(x_{0} + \frac{l}{2}\right)^{2} + y_{0}^{2}\right)^{3/2}} \left(x_{0} + \frac{l}{2}\right) \right\} [A/m] \\ |\boldsymbol{H}_{y}| &= |\boldsymbol{H}_{y1}| + |\boldsymbol{H}_{y2}| \\ &= \frac{m}{4\pi\mu_{0}} y_{0} \left\{ \frac{1}{\left(\left(x_{0} - \frac{l}{2}\right)^{2} + y_{0}^{2}\right)^{3/2}} - \frac{1}{\left(\left(x_{0} + \frac{l}{2}\right)^{2} + y_{0}^{2}\right)^{3/2}} \right\} [A/m] \end{aligned}$$

(d) 磁気双極子モーメント M の大きさと方向を求めよ.

$$m{M} = mm{l}$$

$$= mlm{i} \, [\mathrm{Wb} \cdot \mathrm{m}]$$

$$|m{M}| = ml \, [\mathrm{Wb} \cdot \mathrm{m}] \quad \mathrm{x}$$
 軸正方向

(e) 点 P が原点 O より十分遠方にあると仮定すると、 $\sqrt{(x_0-l/2)^2+y_0^2}\simeq \sqrt{x_0^2+y_0^2}$ 及び $\sqrt{(x_0+l/2)^2+y_0^2}\simeq \sqrt{x_0^2+y_0^2}$ と近似できる.このことを用いて (c) にて得た磁界 H_x 及び H_y を簡略化せよ.

$$|m{H}_x| \simeq rac{ml}{4\pi\mu_0\left(x_0^2+y_0^2
ight)^{3/2}}\left[\mathrm{A/m}
ight] \;\;\mathrm{x}$$
 軸左方向 $|m{H}_y| \simeq 0\left[\mathrm{A/m}
ight]$

(f) y 方向に一様な磁界 H_0 が存在するとき、磁気双極子にはたらくトルク T を求めよ.

$$egin{aligned} m{T} &= m{M} H_0 \sin \theta \ &= m l m{i} H_0 \sin rac{\pi}{2} \ &= m l H_0 m{i} \ &| m{T} | = m l H_0 \left[\mathrm{Wb} \cdot \mathrm{m}
ight] \end{aligned}$$

- 3 磁化されていない強磁性体に磁界 H を外部から印加し,強磁性体内部での磁束密度 B を観測すると,図 3 に示すような結果が得られた.このとき,図中の行程 1: 点 O \rightarrow 点 P_1 ,行程 2: 点 P_1 \rightarrow 点 P_2 ,行程 3: 点 P_2 \rightarrow 点 P_3 ,行程 4: 点 P_3 \rightarrow 点 P_4 ,行程 5: 点 P_4 \rightarrow 点 P_5 , 行程 6: 点 P_5 \rightarrow 点 P_6 ,行程 7: 点 P_6 \rightarrow 点 P_1 の 7 つの行程に着目して,測定結果を説明せよ.
- 4 強磁性体,弱磁性体,常磁性体,反磁性体の 4 つの磁性体の性質を,「比透磁率 μ_s 」と「磁化率 χ 」という 2 つの語句を両方用いて説明せよ.

強磁性体は磁化率 χ が 0 よりかなり大きく,透磁率 μ_s が 1 よりかなり大きい磁化されやすい磁性体を指す. そのため,印加した磁界と同じ方向に磁化され,その大きさも大きい.

弱磁性体は磁化率 χ が0より大きく、透磁率 μ_s より小さい磁性体である.

常磁性体は磁化率 χ が 0 より大きく,透磁率 μ_s は 1 未満の磁性体を指す.そのため,印加した磁界と同じ方向に磁化され,その大きさは大きくない.

反磁性体は磁化率 χ が 0 より小さく,透磁率 μ_s が 1 より小さい磁性体を指す.そのため,印加した磁界と逆方向に磁化され,その大きさは小さい.

反磁性体は磁化率 χ が 0 より小さく,透磁率 μ_s が 1 より小さい磁性体を指す.そのため,印加した磁界と逆方向に磁化され,その大きさは小さい.

- 5 xyz 直交座標系の xy 平面内に原点 O を中心する半径 a の円周状に電流 I が流れている.このとき,以下の場所に発生する磁界 H とその方向を求めよ.
- (a) 原点 O
- (b) (x, y, z) = (0, 0, h) となる z 軸上の点 P
- 6 xyz 直交座標系の y 軸に沿って点 A から点 B まで有限長直線電流 I が流れている.このとき,x 軸上の点 P(a,0,0) に発生する磁界 H とその方向を求めよ.また,有限長直線電流 I が無限長直線電流 I になった場合,点 P に発生する磁界 H を求めよ.
- 7 xyz 直角座標空間において,y 軸上の点 $A(0, c_1, 0)$ から点 $B(0, c_2, 0)$ まで y 軸に沿って直線状に流れる電流 I がある.このとき,x 軸上の点 P(a, 0, 0) に発生する磁界 H を求めよ.また,電流 I の始点 A と終点 B の座標がそれぞれ $(0, -\infty, 0), (0, \infty, 0)$ となった場合の点 P に発生する磁界 H を求めよ.