Listing of Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claim 1(currently amended). A compound of Formula (I)

$$R^5$$
 R^6
 R^1
 R^5
 R^5
 R^4
 R^3
 R^2
 R^2

the stereoisomers and prodrugs thereof, and the pharmaceutically acceptable salts of said compounds, stereoisomers, and prodrugs, wherein:

W is oxygen, sulfur, -SO-, -S(O)₂, -CH₂-, -CF₂-, -CHF-, -C(O)-, -CH(OH)-, -NR^a, or -C(=CH₂)-;

 R^1 , R^2 , R^3 , and R^6 are each independently hydrogen, halogen, -(C_1 - C_8)alkyl, -CF₃, -OCF₃, -O(C_1 - C_8)alkyl, or -CN;

 R^4 is hydrogen, -(C₁-C₁₂)alkyl substituted with zero to three substituents independently selected from Group V, -(C₂-C₁₂)alkenyl, -(C₂-C₁₂)alkynyl, halogen, -CN, -OR^b, -SR^c, -S(O)₂R^c, aryl, heteroaryl, -(C₃-C₁₀)cycloalkyl, heterocycloalkyl, -S(O)₂NR^cR^d, -C(O)NR^cR^d, -C(O)OR^c, -NR^aC(O)R^d, -NR^aC(O)NR^cR^d, -NR^aS(O)₂R^d, or -C(O)R^c; or

 R^3 and R^4 are taken together along with the carbon atoms to which they are attached to form a carbocyclic ring of formula - $(CH_2)_{i-}$ or a heterocyclic ring of formula - $(CH_2)_{k-}Q$ - $(CH_2)_{l-}$ wherein Q is oxygen, sulfur, or - NR^e -; i is 3, 4, 5, or 6; k is 0, 1, 2, 3, 4, or 5; and 1 is 0, 1, 2, 3, 4, or 5; and wherein said carbocyclic ring and said heterocyclic ring are each substituted with zero to four substituents independently selected from - $(C_1$ - C_4)alkyl, - OR^b , oxo, -CN, phenyl, or - NR^aR^g ;

R⁵ is hydroxy, -O(C₁-C₆)alkyl, -OC(O)R^f, fluorine, or -C(O)OR^c; or

R⁴ and R⁵ are taken together along with the carbon atoms to which they are attached to form a heterocyclic ring selected from the group consisting of -CR^c=CR^a-NH-, -N=CR^a-NH, -CR^c=CR^a-O-, -CR^c=CR^a-S-, -CR^c=N-NH-, and -CR^a=CR^a-CR^a=N-;

 R^a for each occurrence is independently hydrogen, or -(C_1 - C_6)alkyl substituted with zero or one -(C_3 - C_6)cycloalkyl or methoxy;

 R^b for each occurence is independently hydrogen, -(C₁-C₁₂)alkyl substituted with zero to three substituents independently selected from Group V, aryl, heteroaryl, -(C₃-C₁₀)cycloalkyl, heterocycloalkyl, -C(O)NR^cR^d, or -C(O)R^f;

 R^c and R^d for each occurrence are each independently hydrogen, $-(C_1-C_{12})$ alkyl substituted with zero to three substituents independently selected from Group VI, $-(C_2-C_{12})$ alkenyl, $-(C_2-C_{12})$ alkynyl, aryl, heteroaryl, $-(C_3-C_{10})$ cycloalkyl, or heterocycloalkyl;

provided that when R^4 is the moiety $-SR^c$, $-S(O)R^c$, or $-S(O)_2R^c$, R^c is other than hydrogen; or

R^c and R^d are taken together along with the atom(s) to which they are attached to form a 3-10 membered heterocylic ring which may optionally contain a second heterogroup selected from oxygen, -NR^e-, or sulfur; and wherein said heterocyclic ring is substituted with zero to four substituents independently selected from -(C₁-C₄)alkyl, -OR^b, oxo, -CN, phenyl, or -NR^aR^g;

 R^e for each occurence is hydrogen, -CN, -(C_1 - C_{10})alkyl substituted with zero to three substituents independently selected from Group V, -(C_2 - C_{10})alkenyl, -(C_3 - C_{10})cycloalkyl, aryl, heteroaryl, -C(O) R^f , -C(O) QR^f , -C(O) QR^f , or -S(O) QR^f ;

 R^f for each occurence is independently -(C_1 - C_{10})alkyl substituted with zero to three substituents independently selected from Group VI, -(C_2 - C_{12})alkenyl, -(C_3 - C_{10})cycloalkyl, aryl, heteroaryl, or heterocycloalkyl;

 R^g for each occurence is independently hydrogen, -(C₁-C₆)alkyl, -(C₂-C₆)alkenyl, aryl, -C(O)R^f, -C(O)OR^f, -C(O)NR^aR^f, -S(O)₂R^f, or -(C₃-C₈)cycloalkyl;

Group V is halogen, -CF₃, -OCF₃, -OH, oxo, -(C₁-C₆)alkoxy, -CN, aryl, heteroaryl, -(C₃-C₁₀)cycloalkyl, heterocycloalkyl, -SR^f, -S(O)R^f, -S(O)₂R^f, -S(O)₂NR^aR^f, -NR^aR^g, or -C(O)NR^aR^f;

Group VI is halogen, hydroxy, oxo, $-(C_1-C_6)$ alkoxy, aryl, heteroaryl, $-(C_3-C_8)$ cycloalkyl, heterocycloalkyl, -CN, or $-OCF_3$;

provided that when R^4 is $-(C_1-C_{12})$ alkyl substituted with zero to three substituents independently selected from Group V, wherein said Group V substituent is oxo, said oxo group is substituted on a carbon atom other than the C_1 carbon atom in $-(C_1-C_{12})$ alkyl;

aryl for each occurence is independently phenyl or naphthyl substituted with zero to four substituents independently selected from halogen, -(C_1 - C_6)alkyl, -CN, -SR f , -S(O)₂R f , -(C_3 - C_6)cycloalkyl, -S(O)₂NR a R f , - NR a R g , -C(O)NR a R f , -OR b , -perfluoro-(C_1 - C_4)alkyl, or -COOR f ;

provided that when said substituent(s) on aryl are $-SR^f$, $-S(O)R^f$, $-S(O)_2R^f$, $-S(O)_2R^g$, $-S(O)_2NR^aR^f$, $-NR^aR^g$, $-C(O)NR^aR^f$, $-OR^b$, or $-COOR^f$, said substituents R^b , R^f , and R^g , are other than aryl or heteroaryl;

heteroaryl for each occurrence is independently a 5-, 6-, 7-, 8-, or 9-membered monocyclic or bicyclic ring having from one to three heteroatoms selected from O, N, or S;

wherein in said bicyclic ring, a monocyclic heteroaryl ring is fused to a benzene ring or to another heteroaryl ring, and having zero to three substituents independently selected from halogen, -(C₁-C₄)alkyl, -CF₃, -OR^b, -NR^aR^g, or -COOR^f;

provided that when said substituent(s) on heteroaryl are $-NR^aR^g$, $-OR^b$, or $-COOR^f$, said substituents R^b , R^f , and R^g , are other than aryl or heteroaryl;

heterocycloalkyl for each occurrence is independently a 5-, 6-, 7-, 8-, or 9-membered monocyclic or bicyclic cycloalkyl ring having from one to three heteroatoms selected from oxygen, -NR^e, or sulfur, and having zero to four substituents independently selected from -(C₁-C₄)alkyl, -OR^b, oxo, -CN, phenyl, or -NR^aR^g; and

X is

$$\begin{cases} -CH_2 - NH \\ -$$

with the proviso that when W is oxygen, sulfur, SO, or SO₂, then X is not represented by

Claim 2(origional). A compound according to claim 1 wherein W is oxygen.

Claim 3(origional). A compound according to claim 1 wherein:

 R^1 is located at the 3-position and R^2 is located at the 5-position, wherein R^1 and R^2 are each independently hydrogen, -(C_1 - C_6)alkyl, halogen, or -CN;

 R^3 is hydrogen, $-(C_1-C_4)$ alkyl or halogen;

 $R^4 \ \, \text{is} \ \, -(C_1\text{-}C_{10}) \\ \text{alkyl substituted with zero to three substituents independently} \\ \text{selected from fluoro, hydroxy, oxo, aryl, heteroaryl, } -(C_3\text{-}C_8) \\ \text{cycloalkyl, or heterocycloalkyl, } -S(O)_2 \\ \text{NR}^c \\ \text{R}^d, -C(O) \\ \text{NR}^c \\ \text{R}^d, -S(O)_2 \\ \text{R}^c, -(C_3\text{-}C_8) \\ \text{cycloalkyl, } \\ \text{oxology} \\ \text{heterocycloalkyl, } -S(O)_2 \\ \text{NR}^c \\ \text{R}^d, -C(O) \\ \text{NR}^c \\ \text{R}^d, -S(O)_2 \\ \text{R}^c, -(C_3\text{-}C_8) \\ \text{cycloalkyl, } \\ \text{oxology} \\ \text{heterocycloalkyl, } -S(O)_2 \\ \text{NR}^c \\ \text{NR}^d, -C(O)_2 \\ \text{NR}^c \\ \text{NR}^d, -C(O)_3 \\ \text{NR}^c \\ \text{NR}^d, -C(O)_4 \\ \text{NR}^d \\$

heterocycloalkyl, $-C(O)R^c$, $-OR^b$, $-SR^c$, $-S(O)R^c$, $-NR^aC(O)R^d$, $-NR^aC(O)NR^cR^d$, or $-NR^aS(O)_2R^d$; or

 R^c and R^d are taken together along with the atom(s) to which they are attached to form a 3-10 membered heterocylic ring which may optionally contain a second heterogroup selected from oxygen, -NR^e-, or sulfur; and wherein the heterocyclic ring is substituted with zero to four substituents independently selected from -(C₁-C₄)alkyl, - OR^b , oxo, -CN, phenyl, or -NR^aR^g; or

 R^3 and R^4 are taken together along with the carbon atoms to which they are attached to form a carbocyclic ring of formula –(CH_2)_i- or a heterocyclic ring of formula – (CH_2)_k-Q-(CH_2)_l- wherein Q is -O-, -S- or -NR^e-; i is 3, 4, 5 or 6; k is 0, 1, 2, 3, 4 or 5; and 1 is 0, 1, 2, 3, 4 or 5; and wherein said carbocyclic ring and said heterocyclic ring are each substituted with zero to four substituents independently selected from –(C_1 - C_4)alkyl, –OR^b, oxo, -CN, phenyl, or -NR^aR^g;

provided that when R^4 is $-(C_1-C_{10})$ alkyl substituted with zero to three substituents, said oxo group is substituted on a carbon atom other than the C_1 carbon atom in $-(C_1-C_{10})$ alkyl;

 R^5 is -OH, -OC(O) R^f , -C(O)OR^c, or -F; wherein R^f is-(C₁-C₁₀)alkyl substituted with zero to three substituents independently selected from Group VI;

R⁶ is hydrogen, halogen or –(C₁-C₄)alkyl; and

X is

$$\begin{cases} -CH_2 & NH \\ S & O \\ NH & S & O \\ NH & O \\$$

Claim 4(origional). A compound according to claim 3 wherein

 R^1 and R^2 are each independently hydrogen, -(C_1 - C_6)alkyl, halogen, or -CN; R^3 is hydrogen;

 R^4 is $-(C_1-C_{10})$ alkyl substituted with zero to three substituents independently selected from fluoro, hydroxy, oxo, aryl, heteroaryl, $-(C_3-C_8)$ cycloalkyl, or heterocycloalkyl, $-S(O)_2NR^cR^d$, $-C(O)NR^cR^d$, $-S(O)_2R^c$, $-(C_3-C_8)$ cycloalkyl, heterocycloalkyl, $-C(O)R^c$, $-OR^b$, $-SR^c$, $-S(O)R^c$, $-NR^aC(O)R^d$, $-NR^aC(O)NR^cR^d$, or $-NR^aS(O)_2R^d$; or

 R^c and R^d are taken together along with the atom(s) to which they are attached to form a 3-10 membered heterocylic ring which may optionally contain a second heterogroup selected from oxygen, -NR^e-, or sulfur; and wherein the heterocyclic ring is substituted with zero to four substituents independently selected from -(C₁-C₄)alkyl, - OR^b, oxo, -CN, phenyl, or -NR^aR^g;

 R^5 is -OH, fluoro, or -OC(O) R^f wherein R^f is-(C₁-C₁₀)alkyl substituted with zero to three substituents independently selected from Group VI; and

R⁶ is hydrogen.

Claim 5(origional). A compound according to claim 4 wherein

R¹ and R² are both methyl, bromo, or chloro;

 R^4 is $-(C_1-C_{10})alkyl,$ substituted with zero to two substituents independently selected from fluoro, hydroxy, oxo, aryl, heteroaryl, $-(C_3-C_8)cycloalkyl,$ or heterocycloalkyl, $-S(O)_2NR^cR^d,$ $-C(O)NR^cR^d,$ $-S(O)_2R^c,$ $-(C_3-C_8)cycloalkyl,$ heterocycloalkyl, $-C(O)R^c$, $-OR^b$, $-SR^c$, $-S(O)R^c$, $-NR^aC(O)R^d$, $-NR^aC(O)NR^cR^d$, or $-NR^aS(O)_2R^d$; or

 R^c and R^d are taken together along with the atom(s) to which they are attached to form a 3-10 membered heterocylic ring which may optionally contain a second heterogroup selected from oxygen, -NR^e-, or sulfur; and wherein the heterocyclic ring is substituted with zero to four substituents independently selected from -(C₁-C₄)alkyl, - OR^b , oxo, -CN, phenyl, or -NR^aR^g; and

 R^5 is -OH.

Claim 6(currently amended). A compound selected from the group consisting of:

5 [3,5 dichloro 4 (4 hydroxy 3 isopropyl phenoxy) benzyl] thiazolidine 2,4 dione;

5-[4-(4-hydroxy-3-isopropyl-phenoxy)-3,5-dimethyl-benzylidene] thinzolidine-2,4-dione;

5-[4-(4-hydroxy-3-isopropyl-phenoxy)-3,5-dimethyl-benzyl]-thiazolidine-2,4-dione;

N-cyclopropyl 5-[2,6-dichloro-4-(2,4-dioxo-thiazolidin-5ylmethyl)-phenoxy]-2-hydroxy-benzenesulfonamide;

N-cyclobutyl-5-[2,6-dichloro-4-(2,4-dioxo-thiazolidin-5ylmethyl)-phenoxy]-2-hydroxy-N-methyl-benzamide;

2-[3,5-dichloro-4-(4-hydroxy-3-isopropyl-phenoxy)-benzyl]-[1,2,4]oxadiazolidine-3,5-dione;

2-[4-(3-isopropyl-4-methoxy-phenoxy)-3,5-dimethyl-benzyl]-

[1,2,4]oxadiazolidine-3,5-dione;

2-[4-(4-hydroxy-3-isopropyl-phenoxy)-3,5-dimethyl-benzyl]-

[1,2,4]oxadiazolidine-3,5-dione; and

5-[4-(4-hydroxy-3-isopropyl-phenoxy)-3,5-dimethyl-phenyl]-2,4-dihydro-[1,2,4]triazol-3-one, the stereoisomers and prodrugs thereof, and the pharmaceutically acceptable salts of said compounds, stereoisomers, and prodrugs.

Claims 7-17(cancelled)

Claim18 (original. A pharmaceutical composition comprising a compound of Formula (I), a stereoisomer or prodrug thereof, or a pharmaceutically acceptable salt of said compound, stereoisomer or prodrug, as defined in claim 1.

Claims 19-25 (cancelled)

Claim 26 (new). A method for treating skin disorders comprising administering to a patient in need thereof a compound according to claim 1.

Claim 27 (new). The method of claim 26 in which said compound is applied topically.