PART-III_MATHEMATICS

Max Marks: 60

Section-1 (One or More options Correct Type)

This section contains 10 multiple choice equations. Each question has four choices (A) (B)(C) and (D) out of which ONE or MORE are correct.

- 41. Let $A = \{1^2, 3^2, 5^2, \dots\}$. If 9 elements selected from set A (without repetition) to make a 3×3 matrix then det (A) will be divisible by
 - A) 9
- B) 36
- C) 8
- D) 64
- 42. Which of the following statements are *FALSE*?
 - A) If A and B are square matrices of the same order such that ABAB = 0, it follows that BABA = 0.
 - B) Let A and B be different $n \times n$ matrices with real numbers. If $A^3 = B^3$ and $A^2B = B^2A$, then $A^2 + B^2$ is invertible.
 - C) If A is a square, non-singular and symmetric matrix, then $\left(\left(A^{-1}\right)^{-1}\right)^{-1}$ is skew symmetric.
 - D) The matrix of the product of two invertible square matrices of the same order is also invertible.

Sec: Sr.IPLCO space for rough work

43. The system of equation is $x - y \cos \theta + z \cos 2\theta = 0$, $x \cos 2\theta - y + z \cos \theta = 0$

 $x \cos 2\theta - y \cos \theta + z = 0$ has non-trivial solution for θ equals to

- A) $\frac{8\pi}{3}$
- B) $\frac{\pi}{6}$
- C) $\frac{2\pi}{3}$
- D) $\frac{\pi}{12}$
- 44. If both the roots of the equation $x^2 2ax + a^2 + a 3 = 0$ in the variable x are less than 3 then 'a' can be
 - A) 2
- B) 5/2
- C) $\sqrt{3}$
- D) -7
- 45. Complete set of real values of a for the equation $9^x + a \cdot 3^x + 1 = 0$ has
 - A) two real solutions, is $(-\infty, -2)$
 - B) no real solution, is $(-2, \infty)$
 - C) exactly one real solution, is {-2}
 - D) at least one real solution, is $(-\infty, -2]$
- 46. If $a_1 < a_2 < a_3 < a_4 < a_5 < a_6$, then the equation

$$(x-a_1)(x-a_3)(x-a_5)+3(x-a_2)(x-a_4)(x-a_6)=0$$
 has

A) three real roots

B) a root in $(-\infty, a_1)$

C) a root in (a_1, a_2)

D) a root in (a_5, a_6)

Sec: Sr.JPLCO

space for rough work

20

27-09-15_Sr.IPLCO_JEE-ADV_(2014_P1)_RPTA-8_Q'Paper

Let a_1, a_2, a_3 be real numbers which are in arithmetic progression with 47. common difference $d \neq 0$. Then

A)
$$A = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_5 & a_6 & a_7 \end{bmatrix}$$
 is singular B) $B = \begin{bmatrix} a_1 & a_2 & a_3 \\ a_2 & a_3 & a_4 \\ a_2 & a_4 & a_6 \end{bmatrix}$ is non-singular

- C) The system of equations $a_1x + a_2y + a_3z = 0$, $a_3x + a_1y + a_2z = 0$, $a_4x + a_5y + a_6z = 0$ has unique solution
- D) The system of equations $a_1x + a_2y + a_3z = 0$, $a_4x + a_5y + a_6z = 0$, $a_7x + a_8y + a_9z = 0$ has infinitely many solutions
- If by eliminating x between the equations $x^2 + ax + b = 0$ and xy + l(x + y) + m = 0, a 48. quadratic equation in y is formed whose roots are the same as those original quadratic in x, then which of the following may be correct?
 - A) a = 2l
- B) b = m
- C) b + m = al D) a + b = l
- Let |a| < |b| and $a, b \in R$ are the roots of the equation $x^2 |\alpha|x |\beta| = 0$. If $|\alpha| < b 1$, then 49. the equation $\log_{|a|} \left(\frac{x}{b}\right)^2 - 1 = 0$ has at least one
 - A) root lying between $(-\infty, a)$
- B) roots lying between (b, ∞)

C) negative root

D) positive root

Sec: Sr.JPLCO

space for rough work

27-09-15_Sr.IPLCO_JEE-ADV_(2014_P1)_RPTA-8_Q'Paper

- 50. Given $|ax^2 + bx + c| \le |Ax^2 + Bx + C|$, $\forall x \in \mathbb{R}$, a,b,c A,B,C $\in \mathbb{R}$ and $d=b^2 4ac > 0$ and $D=B^2 4AC > 0$. Then which of the following statements are true
 - $A) \mid a \mid \leq \mid A \mid$
 - B) $|d| \leq |D|$
 - C) $|a| \ge |A|$
 - D) if D,d are not necessarily positive then roots of $ax^2 + bx + c = 0$ and $Ax^2 + Bx + C = 0$ may not be equal

Section-2 (Integer Value Correct Type)

This section contains 10 questions. The answer to each question is a **single digit integer**, **ranging** from 0 to 9 (both inclusive).

- 51. Let $P(x) = x^2 + bx + c$, where b and c are integer. If P(x) is a factor of both $x^4 + 6x^2 + 25$ and $3x^4 + 4x^2 + 28x + 5$, find the value of P(1).
- 52. The set of real parameter 'a' for which the equation $x^4 2ax^2 + x + a^2 a = 0$ has all real solutions, is given by $\left[\frac{m}{n}, \infty\right]$ where m and n are relatively prime positive integers, then the value of (m+n) is
- 53. Sum of non-real roots of $(x^2 + x 2)(x^2 + x 3) = 12$ is k, then |k| = 12

Sec: Sr.IPLCO space for rough work

${\tt 27-09-15_Sr.IPLCO_JEE-ADV_(2014_P1)_RPTA-8_Q'Paper}$

- 54. If α, β, γ are the roots of the equation $x^3 + px^2 + qx + r = 0$, and they are in G.P. such that β satisfy the equation $px + k_1q = 0$ and α, γ satisfy the equation $pqx^2 k_2(q p^2)qx + p^2r = 0$ then the value of $k_1 + k_2$ is
- 55. If the equation $x^4 + px^3 + qx^2 + rx + 5 = 0$ has four positive real roots, then the minimum value of pr/10 is
- 56. A be set of 3×3 matrices formed by entries 0, -1, and 1 only. Also each of 1, -1, 0 occurs exactly three times in each matrix. The number of symmetric matrices with trace (A) = 0 is k, then $\frac{k}{6} = \dots$
- 57. Let A_n , $(n \in N)$ be a matrix of order $(2n-1) \times (2n-1)$, such that $a_{ij} = 0$, $\forall i \neq j$ and $a_{ij} = n^2 + i + 1 2n$, $\forall i = j$ where a_{ij} denotes the element of i^{th} row and j^{th} column of A_n . Let $T_n = (-1)^n \times$ (sum of all the elements of A_n). Find the value of $\left[\frac{\sum_{n=1}^{102} T_n}{520200}\right]$, where [.] represents the greatest integer function.

Sec: Sr.JPLCO

space for rough work

23

27-09-15_Sr.IPLCO_JEE-ADV_(2014_P1)_RPTA-8_Q'Paper

- 58. If $A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -3 \\ 2 & 1 & 0 \end{bmatrix}$ and B = (adj A) and C = 5A, then find the value of $\frac{|adj B|}{|C|}$.
- 59. If $-2 \le \lfloor x \rfloor < 2$, $-1 \le \lfloor y \rfloor < 1$, $-3 \le \lfloor z \rfloor < 3$, where $\lfloor x \rfloor$ denotes greatest integer function and the minimum value of $\begin{vmatrix} x \rfloor + 1 & y \end{pmatrix} = \begin{bmatrix} z \\ x \rfloor & y \rfloor + 1 & z \\ x \rfloor & y \rfloor = 1 \end{vmatrix}$ is equals to K then |K| equals to
- 60. Let $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5 > 0$ and $\mathbf{A} = [a_{ij}]_{5 \times 5}$ matrix such that $\mathbf{a}_{ij} = \begin{cases} \left| \mathbf{x}_i \mathbf{x}_j \right| & i \neq j \\ \mathbf{x}_i, & i = j \end{cases}$

$$if \left(x_1^2 - x_3 x_5\right) \left(x_2^2 - x_3 x_5\right) \leq 0, \left(x_2^2 - x_4 x_1\right) \left(x_3^2 - x_4 x_1\right) \leq 0, \left(x_3^2 - x_5 x_2\right) \left(x_4^2 - x_5 x_2\right) \leq 0$$

 $\left(x_4^2 - x_1 x_3\right) \! \left(x_5^2 - x_1 x_3\right) \! \leq \! 0, \! \left(x_5^2 - x_2 x_4\right) \! \left(x_1^2 - x_2 x_4\right) \! \leq \! 0 \,, \text{ then the sum of the digits of } the$

number det A is _____ (given that $x_3 = 3$)

Sec: Sr.JPLCO

space for rough work

24