# Resource partitioning and latency hiding

The local execution context of a warp mainly consists of the following resources:

- Program counters
- Registers
- Shared memory

The execution context of each warp processed by a SM is maintained on-chip during the entire lifetime of the warp. Therefore, switching from one execution context to another has no cost

 Registers and shared memory can be directly controlled by the programmer.

• set of 32-bit registers stored in a register file that are partitioned among threads, and a fixed amount of shared memory that is partitioned among thread blocks.

#### Fewer warps with more register per thread



More warps with fewer register per thread



More blocks with less shared memory per block

| Technical spec              | 3    | 3,5  | 5    | 6    | 7         |  |
|-----------------------------|------|------|------|------|-----------|--|
| Max concurrent block per SM | 16   | 16   | 32   | 32   | <i>32</i> |  |
| Max concurrent warps per SM | 64   | 64   | 64   | 64   | 64        |  |
| No register per SM          | 64K  | 64N  | 64K  | 64K  | 64N       |  |
| Max Kegister per thread     | 63   | 255  | 255  | 255  | 255       |  |
| Shured memory per 314       | TOIV | 7010 | UTIV | OTIV | 9010      |  |

## Warp categories in SM

Resources have been allocated



### Active blocks/warps



Stalled warp — not ready for execution





## Conditions to be a eligible warps

• 32 CUDA cores should free for execution

All arguments to the current instruction for that warp should ready