L10: Statically Indeterminate Beam

Department of Civil Engineering
School of Engineering
Aalto University

Statically Determinate and Indeterminate Structures

Statically determinate structures

No. of Equilibrium Equations = No. of unknowns

In this situation we can determine the unknown forces by using the principles of statics to determine the unknown forces, e.g. drawing free body diagrams and solving equilibrium equations.

Statically indeterminate structures

We cannot determine all the unknown forces using the principles of statics.

No. of Equilibrium Equations < No. of unknowns

System is statically indeterminate because we either have <u>too many members</u> or <u>over stiff</u> <u>support conditions</u> giving too many reaction forces. To solve we need extra information. This information comes from the geometric characteristics of deformation during loading which gives additional equations.

Note: All materials in this handout are used in class for educational purposes only.

Statically Determinate and Indeterminate Structures

For this case, the following three basic concepts must be satisfied:

Equilibrium Conditions
Geometric Compatibility
Constitutive Relations

Statically Indeterminate Beams

The prismatic beam AB, which has a fixed end at A and is supported by a roller at B. Reactions involve four unknowns, while only three equilibrium equations are available, namely

$$\mathring{a}F_x = 0$$
 $\mathring{a}F_y = 0$ $\mathring{a}M(x) = 0$

Deflection of Beams

APPENDIX D Beam Deflections and Slopes				
Beam and Loading	Elastic Curve	Maximum Deflection	Slope at End	Equation of Elastic Curve
P	y L x	$-\frac{PL^3}{3EI}$	$-\frac{PL^2}{2EI}$	$y = \frac{F}{6EI}(x^3 - 3Lx^2)$
2 	y L x	$-\frac{wL^4}{8EI}$	$-\frac{wL^3}{6EI}$	$y = -\frac{w}{24EI}(x^4 - 4Lx^3 + 6L^2x^2)$
3		$-\frac{ML^2}{2EI}$	$-\frac{ML}{EI}$	$y = -\frac{M}{2EI}x^2$
1 - 1 - 1 P		-\frac{PL^3}{48EI} pago PDF	± <u>PL²</u> 16EI Enhancer	For $x \le \frac{1}{2}L$: $y = \frac{P}{48EI}(4x^3 - 3L^2x)$
	A B x y y mar	For $a > b$: $-\frac{Pb(L^2 - b^2)^{3/2}}{9\sqrt{3}EIL}$ at $x_m = \sqrt{\frac{L^2 - b^2}{2}}$	$ heta_A = -rac{Pb(L^2 - b^2)}{6EIL}$ $ heta_B = +rac{Pa(L^2 - a^2)}{6EIL}$	For $x < a$: $y = \frac{Pb}{6EIL}[x^3 - (L^2 - b^2)x]$ For $x = a$: $y = -\frac{Pa^2b^2}{3EIL}$
6		$-\frac{5wL^4}{384EI}$	$\pm \frac{wL^3}{24EI}$	$y = -\frac{w}{24EI}(x^4 - 2Lx^3 + L^3x)$
A B	A B x	ML ² 9√3EI	$\theta_A = + \frac{ML}{6EI}$ $\theta_B = - \frac{ML}{3EI}$	$y = -\frac{M}{6EIL}(x^3 - L^2x)$

Example-1

Since only A_x can be determined from these equations, we conclude that the beam is statically indeterminate.

Example-1

Equilibrium equations:

$$\sum F_{x} = 0$$

$$A_{x} = 0$$

$$\sum F_{y} = 0$$

$$A_{y} + B = 0$$

$$\sum M_{A} = 0$$

$$M_{A} - B \times L + \frac{1}{2}\omega L^{2} = 0$$

Equation of elastic curve:

$$\sum M_{C} = 0 \qquad M_{A} - \frac{1}{2}\omega x^{2} + A_{y}x - M = 0$$

$$EI \frac{d^{2}v}{dx^{2}} = -\frac{1}{2}\omega x^{2} + A_{y}x + M_{A}$$

$$EI\theta = EI \frac{dy}{dx} = -\frac{1}{6}\omega x^{3} + \frac{1}{2}A_{y}x^{2} + M_{A}x + C_{1}$$

$$EIy = -\frac{1}{24}\omega x^{4} + \frac{1}{6}A_{y}x^{3} + \frac{1}{2}M_{A}x + C_{1}x + C_{2}$$

Example-1

Equilibrium equations:

$$x = 0, \theta = 0 x = 0, y = 0$$

$$C_1 = 0 C_2 = 0$$

$$EIy = -\frac{1}{24}\omega x^4 + \frac{1}{6}A_y x^3 + \frac{1}{2}M_A x$$

$$x = L, y = 0$$

$$0 = -\frac{1}{24}\omega L^2 + \frac{1}{6}A_y L^3 + \frac{1}{2}M_A$$

$$A_x = 0$$
 $A_y = \frac{5}{8}\omega L$ $M_A = -\frac{1}{8}\omega L^2$ $B = \frac{3}{8}\omega L$

Example-2

Beam statically indeterminate to the second degree.

Example-3: Principle of Superposition

For the beam and loading shown, determine the slope and deflection at point B.

Example-3: Principle of Superposition

Loading I
$$(\theta_B)_I = \frac{\omega L}{6EI} \quad (y_B)_I = \frac{\omega L}{8EI}$$
 Loading II
$$(\theta_C)_{II} = -\frac{\omega (L/2)^3}{6EI} = -\frac{\omega L^3}{48EI}$$

$$(y_C)_{II} = -\frac{\omega (L/2)^4}{8EI} = -\frac{\omega L^4}{128EI}$$

Example-3: Principle of Superposition

In portion CB, the bending moment for loading II is zero and thus the elastic curve is a straight line.

$$(\theta_B)_{II} = (\theta_C)_{II} = -\frac{\omega L^3}{48EI}$$

$$(y_B)_{II} = (y_C)_{II} + (\theta_C)_{II} \left(\frac{L}{2}\right) = -\frac{\omega L^4}{128EI} - \frac{\omega L^3}{48EI} \left(\frac{L}{2}\right) = -\frac{7\omega L^4}{384EI}$$

Slope at Point B

$$\theta_B = (\theta_B)_I + (\theta_B)_{II} = \frac{\omega L^3}{6EI} - \frac{\omega L^3}{48EI} = \frac{7\omega L^3}{48EI}$$

Deflection at Point B

$$y_B = (y_B)_I + (y_B)_{II} = \frac{\omega L^4}{8EI} - \frac{7\omega L^4}{384EI} = \frac{41\omega L^4}{384EI}$$

Principle of Superposition

For the uniform beam AB, (a) determine the reaction at A, (b) derive the equation of the elastic curve, (c) determine the slope at A.

Exercise-1

For the beam and loading shown, determine the reaction at the roller support.

Exercise-2

Determine the reaction at the roller support and draw the bending moment diagram for the beam and loading shown.

