## Análisis I - Matemática I - Análisis II (C) - Análisis Matemático I (Q)

## Práctica 7: Campos vectoriales en $\mathbb{R}^2$ y $\mathbb{R}^3$

Se sugiere complementar la resolución de los ejercicios de esta práctica con GeoGebra.

1. Identificar qué campo vectorial F no fue graficado, y graficarlo.

i. 
$$\mathbf{F}(x, y) = (y, -x)$$

ii. 
$$\mathbf{F}(x,y) = (-x, -y),$$

iii. 
$$\mathbf{F}(x,y) = (\operatorname{sen}(x+y), \operatorname{sen}(x+y)),$$

iv. 
$$\mathbf{F}(x, y) = (-x, y)$$
.



2. Graficar los siguientes campos  $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^3$ .

(a) 
$$\mathbf{F}(x, y, z) = (y, 1, -x)$$
, (b)  $\mathbf{F}(x, y, z) = (1, y, 1)$ , (c)  $\mathbf{F}(x, y, z) = (y, 1, 1)$ .

(b) 
$$\mathbf{F}(x, y, z) = (1, y, 1),$$

(c) 
$$\mathbf{F}(x, y, z) = (y, 1, 1)$$

3. Encontrar los campos vectoriales gradiente de f.

(a) 
$$f(x,y) = \sqrt{x^2 + y^2}$$
, (b)  $f(x,y,z) = xyz$ , (c)  $f(x,y,z) = \frac{e^{xz}}{y^2 + x^2}$ .

4. Dibujar las curvas de nivel de las funciones junto con sus campos vectoriales gradiente. ¿Qué observa?

(a) 
$$f(x,y) = 1 - x^2 - y^2$$
, (b)  $f(x,y) = x^2 - y$ , (c)  $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$ .

5. Decidir si F es un campo vectorial gradiente, y si lo es, encuentrar la función potencial f (es decir, la función que verifica que  $\mathbf{F} = \nabla f$ ).

(a) 
$$\mathbf{F}(x, y) = (x, y)$$

(b) 
$$\mathbf{F}(x, y, z) = (yz, xz, xy + 2z),$$

(c) 
$$\mathbf{F}(x,y) = (e^x \cos(y), e^x \sin(y)), \text{ (d) } \mathbf{F}(x,y) = (y,x^2),$$

(e) 
$$\mathbf{F}(x, y, z) = (y, x, xy),$$

(f) 
$$\mathbf{F}(x,y) = (2xy + y^{-2}, x^2 - 2xy^{-3}), y > 0.$$

6. Las **líneas de flujo** (o **líneas de corriente**) de un campo vectorial  $\mathbf{F}$  son las trayectorias que sigue una partícula cuyo campo de velocidades es  $\mathbf{F}$ . Es decir,  $\mathbf{r} : \mathbb{R} \to \mathbb{R}^2$  es una línea de flujo de  $\mathbf{F}$  si se verifica que

$$\mathbf{r}'(t) = \mathbf{F}(\mathbf{r}(t)).$$

Por tanto, los vectores en un campo vectorial son tangentes a las líneas de flujo.

Hallar una línea de flujo de cada uno de los siguientes campos que pase por el punto indicado.

- (a)  $\mathbf{F}(x,y) = (x,-y), p = (1,1),$
- (b)  $\mathbf{F}(x,y) = (1,x), p = (1,0).$
- 7. Para cada una de las siguientes trayectorias, hallar un campo vectorial **F** tal que **r** sea una línea de flujo de **F**.
  - (a)  $\mathbf{r}(t) = (\cos t, \sin t)$ ,
  - (b)  $\mathbf{r}(t) = (t^3, \sqrt{t}).$

## Rotor

- 8. Dibujar el campo  $\mathbf{F}(x,y,z) = (0,x,0)$  y decidir (sin hacer la cuenta) si el rotor es cero en  $\{x > 0\}$ . Confirma tu intuición haciendo la cuenta.
- 9. Hallar el rotor de los siguientes campos vectoriales.
  - (a)  $\mathbf{F}(x, y, z) = (x + yz, y + xz, z + xy),$
  - (b)  $\mathbf{F}(x, y, z) = (xye^z, 0, yze^x),$
  - (c)  $\mathbf{F}(x, y, z) = (\sin(yz), \sin(zx), \sin(xy)).$
- 10. Decidir si cada uno de los siguientes campos son o no conservativos. En caso de que lo sea, hallar f tal que  $\mathbf{F} = \nabla f$ .
  - (a)  $\mathbf{F}(x, y, z) = (y^2 z^3, 2xyz^3, 3xy^2 z^2),$
  - (b)  $\mathbf{F}(x, y, z) = (xyz^2, x^2yz^2, x^2y^2z),$
  - (c)  $\mathbf{F}(x, y, z) = (1, \sin(z), y \cos(z)),$
  - (d)  $\mathbf{F}(x, y, z) = (e^x \sin(yz), ze^x \cos(yz), ye^x \cos(yz)).$
- 11. Demostrar que cualquier campo vectorial de la forma

$$\mathbf{F}(x, y, z) = (f(x), g(y), h(z)),$$

donde f, g, h son funciones derivables, es irrotacional (es decir, rot  $\mathbf{F} = 0$ ).

- 12. Este ejercicio demuestra la relación entre el vector rotacional y las rotaciones. Sea B un cuerpo rígido que gira alrededor del eje z. La rotación se puede describir mediante el vector  $\mathbf{w} = (0,0,\omega)$  donde  $\omega$  es la velocidad angular de B, es decir, la velocidad tangencial de cualquier punto P en B dividida por la distancia d a partir del eje de rotación. Sea  $\mathbf{r} = (x,y,z)$  el vector de posición de P.
  - (a) Considerar el ángulo  $\theta$  de la figura y demostrar que el campo de velocidades de B está dado por  $\mathbf{v} = \mathbf{w} \times \mathbf{r}$ .
  - (b) Demostrar que  $\mathbf{v} = (-\omega y, \omega x, 0)$ .
  - (c) Demostrar que rot  $\mathbf{v} = 2\mathbf{w}$ .



## Divergencia

- 13. Hallar la divergencia de los siguientes campos vectoriales.
  - (a)  $\mathbf{F}(x, y, z) = (xy^2z^3, x^3yz^2, x^2y^3z),$

(b) 
$$\mathbf{F}(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}(x, y, z),$$

- (c)  $\mathbf{F}(x, y, z) = (e^x \sin(y), e^y \sin(z), e^z \sin(x)),$
- (d)  $\mathbf{F}(x, y, z) = \left(\frac{x}{y}, \frac{y}{z}, \frac{z}{x}\right)$ .

14. Demostrar que cualquier campo de la forma

$$\mathbf{F}(x, y, z) = (f(y, z), g(x, z), h(x, y)),$$

donde f, g y h son funciones diferenciables, es incompresible (es decir, div  $\mathbf{F} = 0$ ).

- 15. Sea f un campo escalar y  $\mathbf{F}$  un campo vectorial. Decidir si cada una de las siguientes expresiones tienen sentido. Si no es así, explicar por qué. Si tienen sentido, decidir si se trata de un campo vectorial o escalar.
  - (a) rot f,
- (b)  $\nabla f$ ,
- (c) div **F**,
- (d)  $rot(\nabla f)$ ,

- (e)  $\nabla \mathbf{F}$ ,
- (f)  $\nabla (\operatorname{div} \mathbf{F})$ , (g)  $\operatorname{div}(\nabla f)$ ,
- (h)  $rot(rot \mathbf{F})$ .
- 16. Demostrar las siguientes identidades, suponiendo que existen las derivadas parciales y que son continuas. Para f un campo escalar y  $\mathbf{F}$ ,  $\mathbf{G}$  campos vectoriales, se define

$$(f \mathbf{F})(x, y, z) = f(x, y, z)\mathbf{F}(x, y, z),$$

$$(\mathbf{F} \cdot \mathbf{G})(x, y, z) = \mathbf{F}(x, y, z) \cdot \mathbf{G}(x, y, z),$$

$$(\mathbf{F} \times \mathbf{G})(x, y, z) = \mathbf{F}(x, y, z) \times \mathbf{G}(x, y, z).$$

- (a) div  $(f \mathbf{F}) = f \operatorname{div} \mathbf{F} + \mathbf{F} \cdot \nabla f$ ,
- (b)  $\operatorname{rot}(f \mathbf{F}) = f \operatorname{rot} \mathbf{F} + (\nabla f) \times \mathbf{F},$
- (c)  $\operatorname{div}(\mathbf{F} \times \mathbf{G}) = \mathbf{G} \cdot \operatorname{rot} \mathbf{F} \mathbf{F} \cdot \operatorname{rot} \mathbf{G}$ ,
- (d)  $\operatorname{div}(\nabla f \times \nabla q) = 0$ .
- 17. Para  $\mathbf{r}(x,y,z) = (x,y,z)$  y  $r = ||\mathbf{r}||$ , verificar las siguientes identidades.

(a) 
$$\nabla \cdot \mathbf{r} = 3$$
,

(b) 
$$\nabla \cdot (r \ \mathbf{r}) = 4r$$

(a) 
$$\nabla \cdot \mathbf{r} = 3$$
, (b)  $\nabla \cdot (r \mathbf{r}) = 4r$  (c)  $\nabla^2 r^3 = 12r$ .

18. Sabemos que todos los campos vectoriales de la forma  $\mathbf{F} = \nabla g$  satisfacen la ecuación rot  $\mathbf{F} = 0$  y que todos los campos vectoriales de la forma  $\mathbf{F} = \text{rot } \mathbf{G}$  satisfacen la ecuación div  $\mathbf{F} = 0$  (si se suponen que las derivadas parciales son continuas). Esto lleva a plantear la pregunta: ¿existen ecuaciones que deben satisfacer todas las funciones de la forma  $f = \text{div } \mathbf{G}$ ?

Demostrar que la respuesta a esta pregunta es "no" mediante la demostración de que toda función continua  $f: \mathbb{R}^3 \to \mathbb{R}$  es la divergencia de algún campo vectorial.

[Sugerencia: considerar  $\mathbf{G}(x,y,z) = (g(x,y,z),0,0)$  donde  $g(x,y,z) = \int_0^x f(t,y,z)dt$ .]