STAT430: Machine Learning for Financial Data

Keras functional API

Introduction to Keras functional API

· Keras objects are modified in place, not necessary to be assigned back, eg:

```
network %>% compile(optimizer = "rmsprop",loss = "categorical_crossentropy",metrics = c("accuracy"))
```

- · With Keras, we can treat any model as a layer: re-use the architecture and the weights
- · With Keras functional API, we can create models that
 - can easily process sequences of inputs
 - time_distributed()
 - apply a layer to every temporal slice of an input
 - the axis right after the sample axis is the temporal axis
 - have multi-inputs and multi-outputs
 - layer_concatenate() combines multiple inputs
 - have shared layers
 - represent directed acyclic graphs
- · Try R

Hierarchical RNN (HRNN)

- · HRNN is an example of using Keras API to process sequences of inputs
- · HRNNs can learn across multiple levels of temporal hierarchy
- Example of using HRNN for text analysis
 - the 1st recurrent layer of an HRNN encodes a sentence (e.g. of word vectors) into a sentence vector
 - the 2nd recurrent layer then encodes a sequence of such vectors (encoded by the first layer) into a document vector
 - the document vector is considered to preserve both the word-level and sentence-level structure of the context

Hierarchical RNN (HRNN) - Examples

- Example of using HRNN to classify MNIST digits
 - the first LSTM layer encodes every row of pixels of shape (28, 1) to a vector of shape (128)
 - the second LSTM layer then encodes these 28 vectors to an image vector representing the whole image
 - a final dense layer is added for prediction
- · Try R
- Example of using HRNN to LOB analysis
 - the first LSTM layer encodes every time step of shape (20, 1) to a vector of shape (32)
 - the second LSTM layer then encodes these 100 (w) vectors to a vector to represent the whole spatial-temporal image
 - a final dense layer is added for prediction
- · Try R

Multiple input / output models

Multiple input / output models - Example

- · Predict numbers of retweets and likes for a news headline
 - the main input is the headline itself, as a sequence of words
 - the auxiliary input is the time of day when the headline was posted
 - the model is supervised via two loss functions

Multiple input / output models - Example

Try R

Shared layers

- · instantiate a layer once, then call it on as many inputs as you want
- the weights of the shared layer are also reused
- · Example: predict whether two tweets are from the same person or not
 - the mechanism that encodes tweets a and b should be the same
 - encoded_a <- tweet_a %>% shared_lstm
 - encoded_b <- tweet_b %>% shared_lstm
- · Try R

Directed acyclic graphs of layers

- · Keras allows arbitrary architectures that can be represented as directed acyclic graphs
- · Two notable ones:
 - Inception modules
 - Residual connections

Inception modules

- · a popular type of network architecture for convolutional neural networks
- · consists of a stack of modules that themselves look like small independent parallel network branches
- the most basic form of an Inception module has 3 to 4 branches starting with a 1×1 convolution, followed by a 3×3 convolution, and ending with the concatenation of the resulting features
- · learn spatial features and channel-wise features separately, which is more efficient than learning them jointly, why?
- · after concatenation, the number of channels of the output is the sum of the numbers of channels of the branches

Inception modules - 1×1 convolution

- pointwise convolution, i.e., 1×1 convolution, contributes to factoring out channel-wise feature learning and space-wise feature learning
- · running each single tile vector through a dense layer: mixing channels but not across space
 - revisit the toy example
- · useful if each channel is highly auto-correlated across space, but different channels may not be highly correlated with each other
- Try R
- Back to Course Scheduler