EXHIBIT 3

IN THE UNITED STATES DISTRICT COURT FOR THE SOUTHERN DISTRICT OF WEST VIRGINIA CHARLESTON DIVISION

B.P.J., by her next friend and mother, HEATHER JACKSON,

Plaintiff,

VS.

WEST VIRGINIA STATE BOARD OF EDUCATION; HARRISON COUNTY BOARD OF EDUCATION; WEST VIRGINIA SECONDARY SCHOOLS ACTIVITIES COMMISSION; W. CLAYTON BURCH, in his official capacity as State Superintendent, DORA STUTLER, in her official capacity as the Harrison County Superintendent, and the STATE OF WEST VIRGINIA,

Case No. 2:21-cv-00316

Hon. Joseph R. Goodwin

Defendants,

and

LAINEY ARMISTEAD,

Defendant-Intervenor.

DECLARATION OF DR. CHAD T. CARLSON, M.D., FACSM

I, Dr. Chad T. Carlson, pursuant to 28 U.S. Code § 1746, declare under penalty of perjury under the laws of the United States of America that the facts contained in my Expert Report of Dr. Chad T. Carlson, M.D., FACM prepared for *B.P.J. v. West Virginia*, attached hereto, are true and correct to the best of my knowledge and belief, and that the opinions expressed therein represent my own expert opinions.

Executed on February 23, 2022.

Chad T. Carlson, MD

Mal J. Cla

Expert Report of Dr. Chad Thomas Carlson, M.D., FACM prepared for *B.P.J. v. West Virginia*February 23, 2022

- c. Males exhibit large average advantages in size, weight, and physical capacity over females—often falling far outside female ranges. Even before puberty, males have a performance advantage over females in most athletic events. Failure to preserve protected female-only categories in contact sports (broadly defined) will ultimately increase both the frequency and severity of injury suffered by female athletes who share playing space with these males.
- d. Current research supports the conclusion that suppression of testosterone levels by males who have already begun puberty will not fully reverse the effects of testosterone on skeletal size, strength, or muscle hypertrophy, leading to persistence of sexbased differences in power, speed, and force-generating capacity.
- 12. In this white paper, I use the term "contact sports" to refer broadly to all sports in which collisions between players, or collisions between equipment such as a stick or ball and the body of a player, occur with some frequency (whether or not permitted by the rules of the game), and are well recognized in the field of sports medicine as causes of sport-related injuries. The 1975 Title IX implementing regulations (34 CFR § 106.41) say that "for purposes of this [regulation] contact sports include boxing, wrestling, rugby, ice hockey, football, basketball, and other sports the purpose or major activity of which involves bodily contact." Certainly, all of the sports specifically named in the regulation fall within my definition of "contact sport." Mixed martial arts, field hockey (Barboza 2018), soccer (Kuczinski 2018), rugby (Viviers 2018), lacrosse

⁸ It is common to see, within the medical literature, reference to distinctions between "contact" and "collision" sports. For purposes of clarity, I have combined these terms, since in the context of injury risk modeling, there is no practical distinction between them.

body is impacted at the waist can result in high torque and acceleration on the neck and head.

- 40. Sport-related concussion—a common sports injury and one with potentially significant effects—is attributable to linear, angular, or rotational acceleration and deceleration forces that result from impact to the head, or from an impact to the body that results in a whiplash "snap" of the head. (Rowson 2016.) In the case of a concussive head injury, it is the brain that accelerates or decelerates on impact, colliding with the inner surface of the skull. (Barth 2001 at 255.)
- 41. None of this is mysterious: each of us, if we had to choose between being hit either by a large, heavy athlete running at full speed, or by a small, lighter athlete, would intuitively choose collision with the small, light athlete as the lesser of the two evils. And we would be right. One author referred to the "increase in kinetic energy, and therefore imparted forces" resulting from collision with larger, faster players as "profound." (Dashnaw 2012.)

V. GENDER DIFFERENCES RELEVANT TO INJURY

42. It is important to state up front that it is self-evident to most people familiar with sport and sport injuries that if men and women were to consistently participate together in competitive contact sports, there would be higher rates of injury in women. This is one reason that rule modifications often

exist in leagues where co-ed participation occurs. ¹⁴ Understanding the physics of sports injuries helps provide a theoretical framework for why this is true, but so does common sense and experience. All of us are familiar with basic objective physiological differences between the sexes, some of which exist in childhood, and some of which become apparent after the onset of puberty, and persist throughout adulthood. And as a result of personal experience, all of us also have some intuitive sense of what types of collisions are likely to cause pain or injury. Not surprisingly, our "common sense" on these basic facts about the human condition is also consistent with the observations of medical science. Below, I provide quantifications of some of these well-known differences between the sexes that are relevant to injury risk, as well as some categorical differences that may be less well known.

A. Height and weight

43. It is an inescapable fact of the human species that males as a group are statistically larger and heavier than females. On average, men are 7% to 8% taller than women. (Handelsman 2018 at 818.) According to the most recently available Centers for Disease Control and Prevention (CDC) statistics, the weight of the average U.S. adult male is 16% greater than that of the average U.S. adult female. (CDC 2018.) This disparity persists into the athletic cohort.

¹⁴ For example, see https://www.athleticbusiness.com/college/intramural-coed-basketball-playing-rules-vary-greatly.html (detailing variety of rule modifications applied in co-ed basketball). Similarly, coed soccer leagues often prohibit so-called "slide tackles," which are not prohibited in either men's or women's soccer. See, e.g.., http://www.premiercoedsports.com/pages/rulesandpolicies/soccer.

Researchers find that while athletes tend on average to be lighter than non-athletes, the weight difference between the average adult male and female athlete remains within the same range—between 14% and 23%, depending on the sport analyzed. (Santos 2014; Fields 2018.) Indeed, World Rugby estimates that the typical male rugby player weighs 20% to 40% more than the typical female rugby player. (World Rugby Transgender Women Guidelines 2020.) This size advantage by itself allows men to bring more force to bear in a collision.

B. Bone and connective tissue strength

44. Men have bones in their arms, legs, feet, and hands that are both larger and stronger per unit volume than those of women, due to greater cross-sectional area, greater bone mineral content, and greater bone density. The advantage in bone size (cross-sectional area) holds true in both upper and lower extremities, even when adjusted for lean body mass. (Handelsman 2018 at 818; Nieves 2005 at 530.) Greater bone size in men is also correlated with stronger tendons that are more adaptable to training (Magnusson 2007), and an increased ability to withstand the forces produced by larger muscles (Morris 2020 at 5). Male bones are not merely larger, they are stronger per unit of volume. Studies of differences in arm and leg bone mineral density – one component of bone strength – find that male bones are denser, with measured advantages of between 5% and 14%. (Gilsanz 2011; Nieves 2005.)

45. Men also have larger ligaments than women (Lin 2019 at 5), and stiffer connective tissue (Hilton 2021 at Table 1), providing greater protection against joint injury.

C. Speed

46. When it comes to acceleration from a static position to a sprint, men are consistently faster than women. World record sprint performance gaps between the sexes remain significant at between 7% and 10.5%, with world record times in women now exhibiting a plateau (no longer rapidly improving with time) similar to the historical trends seen in men. (Cheuvront 2005.) This performance gap has to do with, among other factors, increased skeletal stiffness, greater cross-sectional muscle area, denser muscle fiber composition and greater limb length. (Handelsman 2018.) Collectively, males, on average, run about 10% faster than females. (Lombardo 2018 at 93.) This becomes important as it pertains to injury risk, because males involved in sport will often be travelling at faster speeds than their female counterparts in comparable settings, with resultant faster speed at impact, and thus greater impact force, in a given collision.

D. Strength/Power

47. In 2014, a male mixed-martial art fighter identifying as female and fighting under the name Fallon Fox fought a woman named Tamikka Brents, and caused significant facial injuries in the course of their bout. Speaking about their fight later, Brents said:

"I've fought a lot of women and have never felt the strength that I felt in a fight as I did that night. I can't answer whether it's because she was born a man or not because I'm not a doctor. I can only say, I've never felt so overpowered ever in my life, and I am an abnormally strong female in my own right." ¹⁵

- 48. So far as I am aware, mixed martial arts is not a collegiate or high school interscholastic sport. Nevertheless, what Brent experienced in an extreme setting is true and relevant to safety in all sports that involve contact. In absolute terms, males as a group are substantially stronger than women.
- 49. Compared to women, men have "larger and denser muscle mass, and stiffer connective tissue, with associated capacity to exert greater muscular force more rapidly and efficiently." (Hilton 2021 at 201.) Research shows that on average, during the prime athletic years (ages 18-29) men have, on average, 54% greater total muscle mass than women (33.7 kg vs. 21.8 kg) including 64% greater muscle mass in the upper body, and 47% greater in the lower body. (Janssen 2000 at Table 1.) The cross-sectional area of muscle in women is only 50% to 60% that of men in the upper arm, and 65% to 70% of that of men in the thigh. This translates to women having only 50% to 60% of men's upper limb strength and 60% to 80% of men's lower limb strength. (Handelsman 2018 at 812.) Male weightlifters have been shown to be approximately 30% stronger than female weightlifters of equivalent stature and mass. (Hilton 2021 at 203.) But in competitive athletics, since the stature and mass of the average male

¹⁵ https://bjj-world.com/transgender-mma-fighter-fallon-fox-breaks-skull-of-her-female-opponent/

exceeds that of the average female, actual differences in strength between average body types will, on average, exceed this. The longer limb lengths of males augment strength as well. Statistically, in comparison with women, men also have lower total body fat, differently distributed, and greater lean muscle mass, which increases their power-to-weight ratios and upper-to-lower limb strength ratios as a group. Looking at another common metric of strength, males average 57% greater grip strength (Bohannon 2019) and 54% greater knee extension torque (Neder 1999). Research shows that sex-based discrepancies in lean muscle mass begin to be established from infancy, and persist through childhood to adolescence. (Davis 2019; Kirchengast 2001; Taylor 1997; Taylor 2010; McManus 2011.)

50. Using their legs and torso for power generation, men can apply substantially larger forces with their arms and upper body, enabling them to generate more ball velocity through overhead motions, as well as to generate more pushing or punching power. In other words, isolated sex-specific differences in muscle strength in one region (even differences that in isolation seem small) can, and do combine to generate even greater sex-specific differences in more complex sport-specific functions. One study looking at moderately-trained individuals found that males can generate 162% more punching power than females. (Morris 2020.) Thus, multiple small advantages aggregate into larger ones.

E. Throwing and kicking speed

One result of the combined effects of these sex-determined 51. differences in skeletal structure is that men are, on average, able to throw objects faster than women. (Lombardo 2018; Chu 2009; Thomas 1985.) By age seventeen, the average male can throw a ball farther than 99% of seventeenyear-old females—which necessarily means at a faster initial speed assuming a similar angle of release— despite the fact that factors such as arm length, muscle mass, and joint stiffness individually don't come close to exhibiting this degree of sex-defined advantage. One study of elite male and female baseball pitchers showed that men throw baseballs 35% faster than women—81 miles/hour for men vs. 60 miles/hour for women. The authors of this study attribute this to a sex-specific difference in the ability to generate muscle torque and power. (Chu 2009.) A study showing greater throwing velocity in male versus female handball players attributed it to differences in body size, including height, muscle mass, and arm length. (Van Den Tillaar 2012.) Interestingly, significant sex-related difference in throwing ability has been shown to manifest even before puberty, but the difference increases rapidly during and after puberty. (Thomas 1985 at 266.) These sex-determined differences in throwing speed are not limited to sports where a ball is thrown. Males have repeatedly been shown to throw a javelin more than 30% farther than females. (Lombardo 2018 Table 2; Hilton 2021 at 203.) Even in preadolescent children, differences exist. International youth records for 5- to

12-year-olds in the javelin show 34-55% greater distance in males vs. females using a 400g javelin. 16

52. Men also serve and spike volleyballs with higher velocity than women, with a performance advantage in the range of 29-34%. (Hilton 2021.) Analysis of first and second tier Belgian national elite male volleyball players shows ball spike speeds of 63 mph and 56 mph respectively. (Forthorme 2005.) NCAA Division I female volleyball players—roughly comparable to the secondtier male elite group referenced above—average a ball spike velocity of approximately 40 mph (18.1 m/s). (Ferris 1995 at Table 2.) Notably, based on the measurements of these studies, male spiking speed in *lower* elite divisions is almost 40% greater than that of NCAA Division I female collegiate players. Separate analyses of serving speed between elite men and women Spanish volleyball players showed that the average power serving speed in men was 54.6 mph (range 45.3–64.6 mph), with maximal speed of 76.4 mph. In women, average power serving speed was 49 mph (range 41-55.3 mph) with maximal speed of 59 mph. This translates to an almost 30% advantage in maximal serve velocity in men. (Palao 2014.)

53. Recall that kinetic energy is dependent on mass and the square of velocity. A volleyball (with fixed mass) struck by a male, and traveling an

¹⁶ http://age-records.125mb.com/.

average 35% faster than one struck by a female, will deliver 82% more energy to a head upon impact.

54. The greater leg strength and jumping ability of men confer a further large advantage in volleyball that is relevant to injury risk. In volleyball, an "attack jump" is a jump to position a player to spike the ball downward over the net against the opposing team. Research on elite national volleyball players found that on average, males exhibited a 50% greater vertical jump height during an "attack" than did females. (Sattler 2015.) Similar data looking at countermovement jumps (to block a shot) in national basketball players reveals a 35% male advantage in jump height. (Kellis 1999.) In volleyball, this dramatic difference in jump height means that male players who are competing in female divisions will more often be able to successfully perform a spike, and this will be all the more true considering that the women's net height is seven inches lower than that used in men's volleyball. Confirming this inference, research also shows that the successful attack percentage (that is, the frequency with which the ball is successfully hit over the net into the opponent's court in an attempt to score) is so much higher with men than women that someone analyzing game statistics can consistently identify games played by men as opposed to women on the basis of this statistic alone. These enhanced and more consistently successful attacks by men directly correlate to their greater jumping ability and attack velocity at the net. (Kountouris 2015.)

- 55. The combination of the innate male-female differences cited above, along with the lower net height in women's volleyball, means that if a reasonably athletic male is permitted to compete against women, the participating female players will likely be exposed to higher ball velocities that are outside the range of what is typically seen in women's volleyball. When we recall that ball-to-head impact is a common cause of concussion among women volleyball players, this fact makes it clear that participation in girls' or women's volleyball by biologically male individuals will increase concussion injury risk for participating girls or women.
- 56. Male sex-based advantages in leg strength also lead to greater kick velocity. In comparison with women, men kick balls harder and faster. A study comparing kicking velocity between university-level male and female soccer players found that males kick the ball with an average 20% greater velocity than females. (Sakamoto 2014.) Applying the same principles of physics we have just used above, we see that a soccer ball kicked by a male, travelling an average 20% faster than a ball kicked by a female, will deliver 44% more energy on head impact. Greater force-generating capacity will thus increase the risk of an impact injury such as concussion.

VI. ENHANCED FEMALE VULNERABILITY TO CERTAIN INJURIES

57. Above, I have reviewed physiological differences that result in the male body bringing greater weight, speed, and force to the athletic field or court,

and how these differences can result in a greater risk of injury to females when males compete against them. It is also true that the female body is more vulnerable than the male body to certain types of injury even when subject to comparable forces. This risk appears to extend to the younger age cohorts as well. An analysis of Finnish student athletes from 1987-1991, analyzing over 600,000 person-years of activity exposures, found, in students under fifteen years of age, higher rates of injury in girls than boys in soccer, volleyball, judo and karate. (Kujala 1995.) Another epidemiological study looking specifically at injury rates in over 14,000 middle schoolers over a 20 year period showed that "in sex-matched sports, middle school girls were more likely to sustain any injury (RR = 1.15, 95% CI = 1.1, 1.2) or a time-loss injury (RR = 1.09, 95% CI = 1.0, 1.2) than middle school boys." In analyzed both-sex sports (i.e., sexseparated sports that both girls and boys play, like soccer), girls sustained higher injury rates, and greater rates of time-loss injury. (Beachy 2014.) Another study of over 2000 middle school students at nine schools showed that the injury rate was higher for girls' basketball than for football (39.4 v 30.7/1000 AEs), and injury rates for girls' soccer were nearly double that of boys' soccer (26.3 v. 14.7/1000 AEs). (Caswell 2017.) In this regard, I will focus on two areas of heightened female vulnerability to collision-related injury which have been extensively studied: concussions, and anterior cruciate ligament injuries.

A. Concussions

58. Females are more likely than males to suffer concussions in comparable sports, and on average suffer more severe and longer lasting disability once a concussion does occur. (Harmon 2013 at 4; Berz 2015; Blumenfeld 2016; Covassin 2003; Rowson 2016.) Females also seem to be at higher risk for post-concussion syndrome than males. (Berz 2015; Blumenfeld 2016; Broshek 2005; Colvin 2009; Covassin 2012; Dick 2009; Marar 2012; Preiss-Farzanegan 2009.)

59. The most widely-accepted definition of sport-related concussion comes from the Consensus Statement on Concussion in Sport (see below). 17 (McCrory 2018.) To summarize, concussion is "a traumatically induced transient

¹⁷ "Sport related concussion is a traumatic brain injury induced by biomechanical forces. Several common features that may be utilised in clinically defining the nature of a concussive head injury include:

SRC may be caused either by a direct blow to the head, face, neck or elsewhere on the body with an impulsive force transmitted to the head.

SRC typically results in the rapid onset of short-lived impairment of neurological function that resolves spontaneously. However, in some cases, signs and symptoms evolve over a number of minutes to hours.

SRC may result in neuropathological changes, but the acute clinical signs and symptoms largely reflect a functional disturbance rather than a structural injury and, as such, no abnormality is seen on standard structural neuroimaging studies.

SRC results in a range of clinical signs and symptoms that may or may not involve loss of consciousness. Resolution of the clinical and cognitive features typically follows a sequential course. However, in some cases symptoms may be prolonged.

The clinical signs and symptoms cannot be explained by drug, alcohol, or medication use, other injuries (such as cervical injuries, peripheral vestibular dysfunction, etc) or other comorbidities (e.g., psychological factors or coexisting medical conditions)."

disturbance of brain function and involves a complex pathophysiological process" that can manifest in a variety of ways. (Harmon 2013 at 1.)

- 60. Sport-related concussions have undergone a significant increase in societal awareness and concurrent injury reporting since the initial passage of the Zachery Lystedt Concussion Law in Washington State in 2009 (Bompadre 2014), and the subsequent passage of similar legislation governing return-to-play criteria for concussed athletes in most other states in the United States. (Nat'l Cnf. of State Leg's 2018). Concussion is now widely recognized as a common sport-related injury, occurring in both male and female athletes. (CDC 2007.) Sport-related concussions can result from player-surface contact or player-equipment contact in virtually any sport. However, sudden impact via a player-to-player collision, with rapid deceleration and the transmission of linear or rotational forces through the brain, is also a common cause of concussion injury. (Covassin 2012; Marar 2012; Barth 2001; Blumenfeld 2016; Boden 1998; Harmon 2013 at 4.)
- 61. A large retrospective study of U.S. high school athletes showed a higher rate of female concussions in soccer (79% higher), volleyball (0.6 concussions/10,000 exposures, with 485,000 reported exposures, vs. no concussions in the male cohort), basketball (31% higher), and softball/baseball (320% higher). (Marar 2012.) A similarly-sized, similarly-designed study comparing concussion rates between NCAA male and female collegiate athletes showed, overall, a concussion rate among females 40% higher than that of

males. Higher rates of injury were seen across individual sports as well, including ice hockey (10% higher); soccer (54% higher); basketball (40% higher); and softball/baseball (95% higher). (Covassin 2016.) The observations of these authors, my own observations from clinical practice, and the acknowledgment of our own Society's Position Statement (Harmon 2013), all validate the higher frequency and severity of sport-related concussions in women and girls.

62. Most epidemiological studies to date looking at sport-related concussion in middle schoolers show that more boys than girls are concussed. There are fewer studies estimating concussion rate. This is, in part, because measuring injury rate is more time and labor-intensive. Researchers at a childrens' hospital, for example, could analyze the number of children presenting to the emergency department with sport-related concussion and publish findings of absolute number. However, to study concussion incidence, athlete exposures also have to be recorded. Generally speaking, an athlete exposure is a single practice or game where an athlete is exposed to playing conditions that could reasonably supply the necessary conditions for an injury to occur. Rates of athletic injury, concussion among them, are then, by convention, expressed in terms of injury rate per 1000 athletic exposures. More recently, some studies have been published that analyze the rates of concussion in the middle school population. Looking at the evidence, the conclusion can be made that females experience increased susceptibility to concussive injuries before puberty. For example, Ewing-Cobbs, et al. (2018) found elevated postconcussion symptoms in girls across all age ranges studied, including children between the ages of 4 and 8. Kerr's 2017 study of middle school students showed over three times the rate of female vs male concussion in students participating in sex-comparable sports [0.18 v. 0.66/1000 A.E.'s]. (Kerr 2017.) This is the first study I am aware of that mimics the trends seen in adolescent injury epidemiology showing a higher rate of concussion in girls than boys in comparable sports.

- 63. More recent research looking at the incidence of sport-related concussions in U.S. middle schoolers between 2015 and 2020, found that the rate of concussion was higher in middle school athletes than those in high school. In this study, girls had more than twice the rate of concussion injury (0.49/1000 athletic exposures vs 0.23/1000 AE) in analyzed sports (baseball/softball, basketball, soccer and track), as well as statistically greater time loss. (Hacherl 2021 (Journal of Athletic Training); Hacherl 2021 (Archives of Clinical Neuropsychology).) The authors hypothesized that the increasing incidence of concussion in middle school may relate to "other distinct differences associated with the middle school sport setting itself, such as, the large variations in player size and skill." 18
- 64. In addition, females on average suffer materially greater cognitive impairment than males when they do suffer a concussion. Group differences in

 $^{^{18}\} https://www.nata.org/press-release/062421/middle-school-sports-have-overall-higher-rate-concussion-reported-high-school.$

cognitive impairment between females and males who have suffered concussion have been extensively studied. A study of 2340 high school and collegiate athletes who suffered concussions determined that females had a 170% higher frequency of cognitive impairment following concussions, and that in comparison with males, female athletes had significantly greater declines in simple and complex reaction times relative to their preseason baseline levels. Moreover, the females experienced greater objective and subjective adverse effects from concussion even after adjusting for potentially protective effect of helmets used by some groups of male athletes. (Broshek 2005 at 856, 861; Colvin 2009; Covassin 2012.)

- 65. This large discrepancy in frequency and severity of concussion injury is consistent with my own observations across many years of clinical practice. The large majority of student athletes who have presented at my practice with severe and long-lasting cognitive disturbance have been adolescent girls. I have seen girls remain symptomatic for over a year, and lose ground academically and become isolated from their peer groups due to these ongoing symptoms. For patients who experience these severe effects, post-concussion syndrome can be life-altering.
- 66. Some of the anatomical and physiological differences that we have considered between males and females help to explain the documented differences in concussion rates and in symptoms between males and females. (Covassin 2016; La Fountaine 2019; Lin 2019; Tierney 2005; Wunderle 2014.)

Anatomically, there are significant sex-based differences in head and neck anatomy, with females exhibiting in the range of 30% to 40% less head-neck segment mass and neck girth, and 49% lower neck isometric strength. This means that when a female athlete's head is subjected to the same load as an analogous male, there will be a greater tendency for head acceleration, and resultant injury. (Tierney 2005 at 276-277.)

When modeling the effect of the introduction of male mass, speed, 67. and strength into women's rugby, World Rugby gave particular attention to the resulting increases in forces and acceleration (and injury risk) experienced in the head and neck of female players. Their analysis found that "the magnitude of the known risk factors for head injury are . . . predicted by the size of the disparity in mass between players. The addition of [male] speed as a biomechanical variable further increases these disparities," and their model showed an increase of up to 50% in neck and head acceleration that would be experienced in a typical tackle scenario in women's rugby. As a result, "a number of tackles that currently lie beneath the threshold for injury would now exceed it, causing head injury." (World Rugby Transgender Women Guidelines 2020.) While rugby is notoriously contact-intensive, similar increases to risk of head and neck injury to women are predictable in any sport context in which males and females collide at significant speed, as happens from time to time in sports including soccer, softball, and basketball.

- 68. In addition, even when the heads of female and male athletes are subjected to identical accelerative forces, there are sex-based differences in neural anatomy and physiology, cerebrovascular organization, and cellular response to concussive stimuli that make the female more likely to suffer concussive injury, or more severe concussive injury. For instance, hypothalamic-pituitary disruption is thought to play a role in post-concussion symptomatology that differentially impacts women. (McGroarty 2020; Broshek 2005 at 861.) Another study found that elevated progesterone levels during one portion of the menstrual cycle were associated with more severe post-concussion symptomatology that differentially impacted women. (Wunderle 2014.)
- 69. As it stands, when females compete against each other, they already have higher rates of concussive injury than males, across most sports. The addition of biologically male athletes into women's contact sports will inevitably increase the risk of concussive injury to girls and women, for the multiple reasons I have explained above, including, but not limited to, the innate male advantage in speed and lean muscle mass. Because the effects of concussion can be severe and long-lasting, particularly for biological females, we can predict with some confidence that if participation by biological males in women's contact sports based on gender identity becomes more common, more biological females will suffer substantial concussive injury and the potential for long-term harm as a result.

B. Anterior Cruciate Ligament injuries

- 70. The Anterior Cruciate Ligament ("ACL") is a key knee stabilizer that prevents anterior translation of the tibia relative to the femur and also provides rotatory and valgus knee stability. (Lin 2019 at 4.) Girls and women are far more vulnerable to ACL injuries than are boys and men. The physics of injury that we have reviewed above makes it inevitable that the introduction of biologically male athletes into the female category will increase still further the occurrence of ACL injuries among girls or women who encounter these players on the field.
- 71. Sports-related injury to the ACL is so common that it is easy to overlook the significance of it. But it is by no means a trivial injury, as it can end sports careers, require surgery, and usually results in early-onset, post-traumatic osteoarthritis, triggering long-term pain and mobility problems later in life. (Wang 2020.)
- 72. Even in the historic context in which girls and women limit competition to (and so only collide with) other girls and women, the rate of ACL injury is substantially higher among female than male athletes. (Flaxman 2014; Lin 2019; Agel 2005.) One meta-analysis of 58 studies reports that female athletes have a 150% relative risk for ACL injury compared with male athletes, with other estimates suggesting as much as a 300% increased risk. (Montalvo 2019; Sutton 2013.) Particularly in those sports designated as contact sports, or

¹⁹ Valgus force at the knee is a side-applied force that gaps the medial knee open.

sports with frequent cutting and sharp directional changes (basketball, field hockey, lacrosse, soccer), females are at greater risk of ACL injury. In basketball and soccer, this risk extends across all skill levels, with female athletes between two and eight times more likely to sustain an ACL injury than their male counterparts. (Lin 2019 at 5.) These observations are widely validated, and consistent with the relative frequencies of ACL injuries that I see in my own practice.

- 73. When the reasons underlying the difference in the incidence of ACL injury between males and females were first studied in the early 1990s, researchers speculated that the difference might be attributable to females' relative inexperience in contact sports, or to their lack of appropriate training. However, a follow-up 2005 study looking at ACL tear disparities reported that, "Despite vast attention to the discrepancy between anterior cruciate ligament injury rates between men and women, these differences continue to exist." (Agel 2005 at 524.) Inexperience and lack of training do not explain the differences. Sex seems to be an independent predictor of ACL tear risk.
- 74. In fact, as researchers have continued to study this discrepancy, they have determined that multiple identifiable anatomical and physiological differences between males and females play significant roles in making females more vulnerable to ACL injuries than males. (Flaxman 2014; Lin 2019; Wolf 2015.) Summarizing the findings of a number of separate studies, one researcher recently cited as anatomical risk factors for ACL injury smaller ligament size,

decreased femoral notch width, increased posterior-inferior slope of the lateral tibia plateau, increased knee and generalized laxity, and increased body mass index (BMI). With the exception of increased BMI, each of these factors is more likely to occur in female than male athletes. (Lin 2019 at 5.) In addition, female athletes often stand in more knee valgus (that is, in a "knock-kneed" posture) due to wider hips and a medially-oriented femur. Often, this is also associated with a worsening of knee valgus during jump landings. The body types and movement patterns associated with these valgus knee postures are more common in females and increase the risk for ACL tear. (Hewett 2005.)

- 75. As with concussion, the cyclic fluctuation of sex-specific hormones in women is also thought to be a possible risk factor for ACL injury. Estrogen acts on ligaments to make them more lax, and it is thought that during the ovulatory phase of menses (when estrogen levels peak), the risk of ACL tear is higher. (Chidi-Ogbolu 2019 at 1; Herzberg 2017.)
- 76. Whatever the factors that increase the injury risk for ACL tears in women, the fact that a sex-specific difference in the rate of ACL injury exists is well established and widely accepted.
- 77. Although non-contact mechanisms are the most common reason for ACL tears in females, tears related to contact are also common, with ranges reported across multiple studies of from 20%-36% of all ACL injuries in women. (Kobayashi 2010 at 672.) For example, when a soccer player who is kicking a ball is struck by another player in the lateral knee of the stance leg, medial and

rotational forces can tear the medial collateral ligament (MCL), the ACL, and the meniscus. Thus, as participation in the female category based on identity rather than biology becomes more common (entailing the introduction of athletes with characteristics such as greater speed and lean muscle mass), and as collision forces suffered by girls and women across the knee increase accordingly, the risk for orthopedic injury and in particular ACL tears among impacted girls and women will inevitably rise.

78. Of course there exists variation in all these factors within a given group of males or females. However, it is also true that within sex-specific pools, size differential is somewhat predictable and bounded, even considering outliers. When males are permitted to enter into the pool of female athletes based on gender identity rather than biological sex, there is an increased possibility that a statistical outlier in terms of size, weight, speed, and strength—and potentially an extreme outlier—is now entering the female pool. Although injury is not guaranteed, risks to female participants will increase. And as I discuss later, the available evidence together suggests that this will be true even with respect to males who have been on testosterone suppression for a year or more. World Rugby relied heavily upon this when they were determining their own policy, and I think it is important to reiterate that this policy, rooted in concern for athlete safety, is justifiable based upon current evidence from medical research and what we know about biology.