CoE202 Fundamentals of Artificial intelligence <Big Data Analysis and Machine Learning>

Neural Networks Techniques

Prof. Young-Gyu Yoon School of EE, KAIST

Contents

- Recap
 - Biological vision
 - Convolution operation
 - ConvNet as a special case of NN
 - ConvNet as a generalization of NN
 - Building block of ConvNet
- Regularization methods
- Optimization methods
- NN architectures

Regularization in Optimization

 Regularization: is the process of adding information in order to solve an ill-posed problem or to prevent overfitting

- Modify loss function
- Give constraints to the network
- Decrease network size
- Quit training before the network over-fits
- · Add "noise" to data

Green: with regularization **Blue:** without regularization

Data augmentation

- Shift, crop, rotate, brightness adjustment (and more)
 - As long as we believe it is realistic enough ...

Data augmentation?

- Remember that even human vision is orientation dependent
 - Rotation (and other operations) may or may not alter the content, so we need to think twice before we do it

Data augmentation?

 The examples illustrate why we should think twice and check if the transformation may alter the contents!

L2 (or L1) regularization

Problem

- While training, the optimizer may tend to increase the absolute value of the parameters
- This may result in overfitting and/or floating point overflow
- Solution: modification of loss function

$$\mathcal{L}_{new} = \mathcal{L}_{origianl} + [\lambda \mathcal{L}_{L2}]^{ ext{Add another term in our loss function}} \ _{\mathcal{L}_{L2} = \sum_i w_i^2}^{ ext{Add another term in our loss function}} \ _{\mathcal{L}_{L2} = \sum_i w_i^2}^{ ext{Add another term in our loss function}}$$

$$-\nabla \mathcal{L}_{new} = -\nabla \mathcal{L}_{original} - \lambda \nabla \mathcal{L}_{L2}$$
$$-\nabla \mathcal{L}_{L2} = -2 \sum_{i} w_{i}$$

Dropout

- A simple technique to prevent overfitting
- (while training) we randomly "sub-sample" part of the neurons in network
- (while testing) we use all of the neurons

Dropout

Q) Is this training accuracy or validation/test accuracy?

Training

- We assign probability p to each neuron (the probability that each neuron will be present or not)
- Then, we are train the network while randomly subsampling it
 - Randomly sub-sampling is based on the probability p
 - We are training a network in a way such that 'a randomly selected part of the network' will be able to solve the task

Testing

For validation & testing, we enable all neurons

Dropout

7.1 Effect on Features

(a) Without dropout

(b) Dropout with p = 0.5.

Batch Normalization

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Batch normalization

Ensure the output statistics of a layer are fixed.

Batch Normalization

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β
Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}$$

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Training

- For each mini-batch, the mean and variance is calculated and the data is normalized
- The normalized data is scaled and shifted (linear transform) with trainable parameters γ and β

Testing

 For validation & testing, we use mean and variance from the entire dataset (not from a batch)

Model Ensembles

Problem:

 There always is a bias in our output (especially with high capacity models)

Solution:

 Train multiple networks and take the averaged output (assuming that the bias will average out)

RMSprop

Problem:

$$\theta^{(k+1)} = \theta^{(k)} - \gamma \nabla \mathcal{L}(\theta^{(k)})$$

- the size of the gradient (used for gradient descent) may vary widely in magnitudes
 - → some parameters experience large updates, some do not
 - → proper learning rate is different form different parameters
- Solution: use adapter learning rates for different parameters
 - divide the gradient (for each parameter) by the square root of the moving average of the squared gradient

$$MA^{(k)} = \beta MA^{(k-1)} + (1-\beta)(\nabla \mathcal{L}(\theta^{(k)}))^2 \qquad \text{``moving average" of squared gradient}$$

$$\theta^{(k+1)} = \theta^{(k)} - \frac{\gamma}{\sqrt{MA^{(k)}}} \nabla \mathcal{L}(\theta^{(k)})$$

divide by the square root

Adam: combine momentum and RMSprop

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

```
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0, 1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector
   m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector)
   v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
      t \leftarrow t + 1
       g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate) v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate)
       \widehat{m}_t \leftarrow m_t/(1-\beta_1^t) (Compute bias-corrected first moment estimate)
       \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
      \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
```

Comparison of optimization methods

Comparison of optimization methods

Skip Connection (ResNet)

- Problem: gradient vanishing
 - The deeper, more the powerful
 - However, a very deep network is difficult to train
 - Back-propagation through very large number of layers needs to be done → it becomes difficult to properly train "front-end" layers
- Solution: make skip connections
 - Add direction connection paths in our network, so back-propagation can be done without gradient vanishing problem

Skip Connection (ResNet)

Without skip connections

With skip connections

AlexNet: winner of ImageNet challenge 2012

Fully Convolutional Network

- We want more than just image classification → we want to know what's where
- Conceptually speaking, we want X: 512x512x3 → Y: 10x512x512, instead of X: 512x512x3 → Y: 10x1 mapping

Fully Convolutional Network

- We want more than just image classification → we want to know what's where
- Conceptually speaking, we want X: 512x512x3 → Y: 10x512x512, instead of X: 512x512x3 → Y: 10x1 mapping

U-net

• Network architecture suited for X: 512x512x3 → Y: 10x512x512

U-net

Key properties

- Skip-connection: high resolution information is directly fed-through
- Contraction-and-expansion: abstraction (high level information extraction) is performed and used for pixel level segmentation
- Large receptive field: convolution operations for image images corresponds to large-kernel convolution for full-sized images
- Multi-resolution processing: information is processed at multiple resolutions

Summary

- Regularization methods
 - Data augmentation
 - L1/L2 regularization
 - Dropout
 - Batch normalization
 - Model ensemble
- Optimization methods
 - RMSprop
 - Adam
- NN architectures
 - ImageNet
 - FCN
 - U-net

References

- Website
 - CS231n course website: https://cs231n.github.io/