PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 9/12, 9/64, 15/54, 15/57, C07K
16/40, A61K 38/45, 38/48, C12Q 1/68

(11) International Publication Number: WO 98/36054

(43) International Publication Date: 20 August 1998 (20.08.98)

(21) International Application Number: PCT/AU98/00085 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(22) International Filing Date: 13 February 1998 (13.02.98)

(30) Priority Data:

PO 5101 13 February 1997 (13.02.97) AU PP 0422 18 November 1997 (18.11.97) AU

(71) Applicant (for all designated States except US): AMRAD OPERATIONS PTY. LTD. [AU/AU]; 576 Swan Street, Richmond, VIC 3121 (AU).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ANTALIS, Toni, Marie [AU/AU]; 527 Coronation Drive, Toowong, QLD 4066 (AU). HOOPER, John, David [AU/AU]; 56 Hetherington Street, Herston, QLD 4006 (AU).

(74) Agents: HUGHES, E., John, L. et al.; Davies Collison Cave, 1 Little Collins Street, Melbourne, VIC 3000 (AU). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: NOVEL MOLECULES

(57) Abstract

The present invention relates generally to novel molecules and more particularly novel proteinaceous molecules involved in or associated with regulation of cell activities and/or viability. The present invention is particularly directed to novel serine proteinases and a novel kinase and to derivatives, agonists and antagonists thereof. In one embodiment, the present invention provides a novel serine proteinase, referred to herein as "HELA2" or "testisin", which has roles in spermatogenesis, in suppressing testicular cancer and as a marker for cancers.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	\mathbf{SZ}	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
\mathbf{BE}	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
\mathbf{BG}	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	$\mathbf{z}\mathbf{w}$	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

- 1 - -

NOVEL MOLECULES

FIELD OF THE INVENTION

5 The present invention related generally to novel molecules and more particularly novel proteinaceous molecules involved in or associated with regulation of cell activities and/or viability. The present invention is particularly directed to novel serine proteinases and a novel kinase and to derivatives, agonists and antagonists thereof. In one embodiment, the present invention provides a novel serine proteinase, referred to herein as "HELA2" or "testisin", which 10 has roles in spermatogenesis, in suppressing testicular cancer and as a marker for cancers.

BACKGROUND OF THE INVENTION

The rapidly increasing sophistication of recombinant DNA technology is greatly facilitating research and development in the medical and allied health fields. This is particularly the case in the area of cell regulation leading to a greater understanding of the events leading to or involved in cancer, development of acquired immunodeficiency disease syndrome (AIDS), neurological disorders, heart disease, tissue graft rejection and infertility amongst many other conditions.

20 Two particularly important classes of molecules are the proteinases and kinases.

Proteinases play important roles in a number of physiological and pathological processes such as proteolytic cascades involved in blood coagulation, fibrinolysis and complement activation as well as cleavage of growth factors, hormones and receptors, the release of bioactive molecules and processes involving cell proliferation and development, inflammation, tumour growth and metastasis. Of particular significance are the cellular proteinases, or those proteinases synthesized in cells and tissues which serve to activate or deactivate proteins responsible for performing specific functions. These proteinases may be found outside the cell, within the cell or may be present on the cell surface.

30

Serine proteinases are particularly important. These proteinases are characterised by a

mechanism involving serine, histidine and aspartate amino acids in the serine proteinase active site. Members of the serine proteinase family which play important roles in a range of cellular functions and which have demonstrated causative roles in human diseases include tissue-type plasminogen activator and thrombin (thrombosis and blood clotting), urokinase-type plasminogen activator (cancer and metastasis), trypsin and elastase (emphysema and liver disease) and angiotensin converting enzyme (hypertension).

A serine proteinase is also implicated in TNFα degradation and soluble TNF-receptor (p75) release by THP1 cells (Vey et al. Eur. J. Imm. 26, 2404-2409, 1996). Serine proteinases have been implicated in the activation of macrophages (Nakabo et al. J. Leukocyte Biol. 60, 328-336, 1996), in nuclear laminin degradation in apoptosis (McConkey et al. J.Biol. Chem., 271, 22398-22406, 1996), in prostaglandin-E2 induced release of soluble TNF receptor shedding (Choi et al. Cellular Immunology 170, 178-184, 1996), in PAF synthesis (Bussolino et al. Eur. J. Immunol. 24, 3131-3139, 1994), and in the proteolysis of IkB, a regulatory molecule important in signal transduction and apoptosis. Release of serine proteinases known as granzymes is central to CTL killing and many of the substrates cleaved by granzymes are also cleaved by cellular proteinases (for example, IL-1β is a substrate for Granzyme B as well as the cysteine proteinase, interleukin 1β-converting enzyme (ICE)). Granzyme A, a serine proteinase with Arg-amidolytic activity, has been reported to induce the production of IL-6 and IL-8 in lung fibroblasts (Sower et al. Cellular Immunology 171, 159-163, 1996) and cleaves IL-1β to a 17kD mature form that is biologically active.

Kinases are a large group of molecules, many of which regulate the response of cells to external stimuli. These molecules regulate proliferation and differentiation in eukaryotic cells frequently *via* signal transduction pathways.

The identification of new serine proteinases and kinases permits the development of a range of derivatives, agonists and antagonists at the nucleic acid and protein levels which in turn have applications in the treatment and diagnosis of a range of conditions such as cancer, inflammation, neurological disorders amongst many other conditions including conditions which initiate or promote apoptosis such as viral infection, old age and drug abuse. One particularly useful serine

proteinase HELA2 (testisin) identified in accordance with the present invention is involved in spermatogenesis, testicular cancer and as a marker for cancer.

SUMMARY OF THE INVENTION

5

Sequence Identity Numbers (SEQ ID NOs.) for the nucleotide and amino acid sequences referred to in the specification are defined at the end of the subject specification.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers.

One aspect of the present invention provides a novel molecule in isolated form involved in or associated with regulation of cell activity and/or viability.

Another aspect of the present invention contemplates an isolated proteinaceous molecule involved in or associated with regulation of cell activity and/or viability comprising a sequence of amino acids encoded by a nucleotide sequence, at least a portion of which, is capable of being amplified by polymerase chain reaction (PCR) using the following primers:

5' ACAGAATTCTGGGTIGTIACIGCIGCICAYTG3' [SEQ ID NO:1]; and

5' ACAGAATTCAXIGGICCICCIC/GT/AXTCICC3' [SEQ ID NO:2];

25

or a complementary form of said primers.

The proteinaceous molecule of the present invention may be a serine proteinase or a kinase.

30 Yet another aspect of the present invention is directed to an isolated serine proteinase comprising the amino acid sequence substantially set forth in SEQ ID NO:4 or an amino acid sequence

having at least about 50% similarity to all or part thereof. This serine proteinase is referred to herein as a short isoform (S) of "HELA2" or "testisin".

Still another aspect of the present invention relates to an isolated serine proteinase comprising the amino acid sequence substantially as set forth in SEQ ID NO:6 or an amino acid sequence having at least about 50% similarity to all or part thereof. This serine proteinase is referred to herein as a long isoform (L) of HELA2 (testisin).

Still yet another aspect of the present invention provides an isolated serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:8 or an amino acid sequence having at least about 50% similarity to all or part thereof. This serine proteinase is referred to herein as "ATC2".

Even yet another aspect of the present invention is directed to a serine proteinase in isolated form comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:3 or a nucleotide sequence having at least 50% similarity to all or part thereof or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:3 under low stringency conditions at 42°C.

20 Another aspect of the present invention relates to a serine proteinase in isolated form comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:5 or a nucleotide sequence having at least 50% similarity to all or part thereof or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:5 under low stringency conditions at 42°C.

25

Still another aspect of the present invention provides a serine proteinase in isolated form comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:7 or a nucleotide sequence having at least 50% similarity to all or part thereof or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:7 under 30 low stringency conditions at 42°C.

Another embodiment of the present invention is directed to a kinase in isolated form comprising an amino acid sequence substantially as set forth in SEQ ID NO:10 or having 50% amino acid similarity to all or part thereof. This kinase is referred to herein as "BCON3".

5 In a related embodiment, the kinase comprises an amino acid sequence encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:9 or a nucleotide sequence having at least 50% similarity to all or part of the nucleotide sequence set forth in SEQ ID NO:9 or a nucleotide sequence capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:9 under low stringency conditions at 42°C.

10

15

The present invention further provides an isolated nucleic acid molecule encoding a polypeptide wherein at least a portion of said nucleic acid molecule is capable of being amplified by polymerase chain reaction (PCR) using the following primers:

5' ACAGAATTCTGGGTIGTIACIGCIGCICAYTG3' [SEQ ID NO:1]; and

5'ACAGAATTCAXIGGICCICCIC/GT/AXTCICC3' [SEQ ID NO:2];

or a complementary form of said primers.

20

The present invention also provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:3 or having 50% similarity to all or part thereof or a nucleic acid molecule capable of hybridising to SEQ ID NO:3 under low stringency conditions at 42°C.

25

Another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:5 or having 50% similarity to all or part thereof or a nucleic acid molecule capable of hybridising to SEQ ID NO:5 under low stringency conditions at 42°C.

30

Still another aspect of the present invention is directed to an isolated nucleic acid molecule

- 6 -

comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:7 or having 50% similarity to all or part thereof or a nucleic acid molecule capable of hybridising to SEQ ID NO:7 under low stringency conditions at 42°C.

- 5 Even still another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:9 or having 50% similarity to all or part thereof or a nucleic acid molecule capable of hybridising to SEQ ID NO:9 under low stringency conditions at 42°C.
- 10 Another aspect of the present invention provides an isolated serine proteinase encoded by a gene proximal to a cluster of genes on a mammalian chromosome.

More particularly, this aspect of the present invention is directed to a serine proteinase encoded by a gene proximal to a cluster of genes or human chromosome 16p13.3 or its equivalent in a non-human species.

Still more particularly, the serine proteinase is encoded by a gene comprising a nucleotide sequence substantially as set forth in SEQ ID NO:3 or 5 or 28 or 29 or 30 or a nucleotide sequence having at least 50% similarity to any one thereof or a nucleotide sequence capable of hybridizing to any one of SEQ ID NO:3 or 5 or 28 or 29 or 30 under low stringency conditions at 42°C or a nucleotide sequence encoding a serine proteinase having an amino acid sequence substantially as set forth in SEQ ID NO:4 or 6 or an amino acid sequence having at least about 50% similarity to SEQ ID NO:4 or 6.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a representation showing (A) schematic and (B) hydrophobicity plot of the HELA2 amino acid sequence.

5

Figure 2 is a diagrammatic representation showing: (A) the amino acid sequence of HELA2 (testisin). The putative signal sequence, light chain, heavy chain and transmembrane domains are as indicated, the catalytic amino acids, His, Asp and Ser are as designated; insertion of Tyr-Ser (YS) 4 amino acids after the catalytic His is found in the long isoform of testisin and is due to alternative mRNA splicing; (B) *in vitro* transcription/translation of HELA2 (testisin) showing the protein product.

Figure 3 is a diagrammatic representation of plasmid constructs pBluescriptHELA2(S) and pBluescriptHELA2(L) containing full length cDNAs for testisin (short isoform (S)) and testisin (long isoform (L)), respectively.

Figure 4 is a diagrammatic representation of plasmid constructs pQET(20-295)N and pQET(20-295)C, wherein the hydrophobic residues of testisin were removed and the remaining sequences cloned into pQE prokaryotic expression plasmids; plasmids pGEX-1 (90-279) comprising a carboxy terminal part of testisin fused to glutathione-S-transferase.

Figure 5 is a photographic representation of: (A) silver stained gel showing purification of recombinant HELA2 (testisin) from *E. coli*. The purified HELA2 (testisin) is indicated by the arrow in the eluate fractions. Some HELA2 (testisin) is also found in the wash fractions as the affinity matrix was not used in excess. His-N21 is one clone containing the amino-terminal His tag, and clones His-C21, His-C22 and His-C23 are three different clones with the carboxy-terminal His tag. (B) Western blot of native and denatured recombinant HELA2 (testisin) probed with Clontech anti-His tag-antibody. The 32kD band shown by the arrow is HELA2 (testisin). HELA2 (testisin) is not detected in the denatured samples as it appears that denaturation with urea destroys the His epitope recognised by the monoclonal antibody.

Figure 6 is a representation of the amino acid sequence of HELA2 (testisin) showing the regions of the molecule selected for generation of peptide antigens.

Figure 7 is a photographic representation of a Western blot of GST-HELA2 (testisin) fusion 5 protein purified by affinity chromatography.

Figure 8 is a diagrammatic representation of eukaryotic expression constructs, pcDNA3-Test(S-C), pcDNA3-Test(L-C) and pcDNA3-Test(1-297)L-C.

10 **Figure 9** is a diagrammatic representation showing a histogram of the signal intensity from a Clontech Master RNA blot of the tissue distribution of HELA2 (testisin) in RNA from 50 different normal tissues. (A) Probed with HELA2 (testisin) specific probe; (B) Probed with BCON3 specific prove which is ubiquitously expressed. The 8 tissues on the right hand side of the diagram are the control (negative) samples.

15

- Figure 10 is a photographic representation of a multiple normal tissue Northern blot (Clonetech) probed with: (A) HELA2 (testisin) specific probe and (b) BCON3 specific probe.
- Figure 11 is a photographic representation of agarose gel of PCR products generated by amplification of HELA2 (testisin) cDNA in prevasectomised and post-vasectomised ejaculate specimens. The HELA2 (testisin) PCR product is 464bp and the β2-macroglobulin product is 250 bp.
- Figure 12 is a photographic representation of *in situ* hybridization of rat testis showing the localisation of HELA2 (testisin) mRNA to the germ cells of the testis.
- Figure 13 is a representation showing: (A) spread of normal metaphase chromosomes showing bright dots where HELA2 (testisin) is expressed at 16p13.3; (B) Diagrammatic representation of chromosome 16p13.3 showing location of HELA (testisin) and relationship to other disease 30 causing genes.

- Figure 14 is: (A) a photographic representation of northern blot analysis of HELA2 (testisin) mRNA showing signals in normal testis of 4 patients and absence of signal in the tumours of these patients; (B) a photographic representation of the localisation of HELA2 (testisin) protein in a human germ cell tumour section assessed by immunohistochemical staining using anti-5 HELA2 (testisin) peptide antibodies. Staining is only detected in the normal (N) tissue and not present in the tumour (T) tissue.
- **Figure 15** is a diagrammatic representation of the genomic map of HELA2 (testisin) showing experimentally determined intron/exon boundaries and relative sizes of the introns (marked with a letter) and exons (marked with a roman numeral).
 - Figure 16 is a representation of HELA2 (testisin). Nucleotides in introns are in lowercase and exons in uppercase. The putative transcription start site is marked by +1.
- 15 **Figure 17** is a representation of the DNA sequence of Intron C and flanking exons showing where alternative mRNA splicing occurs to generate the two isoforms of HELA2 (testisin).
- **Figure 18** is a representation of: (A) the cDNA sequence of the mouse homologue of HELA2 (testisin). Catalytic residues are indicated by circles and cysteines likely involved in disulfide bonding are indicated by squares; (B) Hydrophobicity plot of HELA2 (testisin) amino acid sequence.
- **Figure 19** is a diagrammatic representation of chromosome 16p13.3 showing the serine proteinase gene cluster which includes HELA2 (testisin). Lines represent cosmids containing 25 the respective serine proteinase genes.
 - **Figure 20A** is a representation of: (A) the cDNA sequence of SP001LA (SEQ ID NO:28). Catalytic residues are indicated by circles and cysteins likely involved in disulfide bonding are indicated by squares; (B) hydrophobicity plots of SP001LA amino acid sequence.

30

- 10 -

Catalytic residues are indicated by circles and cysteines likely involved in disulfide bonding are indicated by squares. (B) Hydrophobicity plot of SP002LA amino acid sequence.

Figure 20C is a representation of: (A) the cDNA sequence of SP003LA (SEQ ID NO:30).

5 Catalytic residues are indicated by circles and cysteines likely involved in disulfide bonding are indicated by squares. (B) Hydrophobicity plot of SP003LA amino acid sequence.

Figure 21 is a photographic representation of *in vitro* transcription/translation of BCON3 showing the protein products.

A summary of the SEQ ID NOs used throughout the specification is presented in Table 1.

TABLE 1

5	SEQ ID NO	DESCRIPTION
	1	* PCR primer sequence
	2	* PCR primer sequence
	3	Nucleotide sequence of short form of HELA2
	4	Amino acid sequence of short form of HELA2
10	5	Nucleotide sequence of long form of HELA2
	6	Amino acid sequence of long form of HELA2
	7	Nucleotide acid sequence of ATC2
	8	Amino acid sequence of ATC2
	9	Nucleotide acid sequence of BCOM3
15	10	Amino acid sequence of BCOM3
	11	Primers used to generate amino terminal tagged protein
	12	Primers used to generate amino terminal tagged protein
	13	Primers used to generated carboxy-linked terminal protein
	14	Primers used to generated carboxy-linked terminal protein
20	15	Peptide antigen T20-33
	16	Peptide antigen T46-63
	17	Peptide antigen T175-190
	18	Forward primer
	19	Reverse primer
25	20	Forward primer
	21	Reverse primer

TABLE 1 (Continued)

	22	Forward primer
	23	Reverse primer
5	24	Serine proteinase activation motif
	25 & 26	Mouse HELA2 cDNA sequence
	27	Human genomic DNA sequence
	28	Clustered serine proteinase gene SP001LA
	29	Clustered serine proteinase gene SP002LA
10	30	Clustered serine proteinase gene SP003LA

* Abbreviations:

X = A or G

Y = C or T

15 I= Inosine.

A list of single and three letter abbreviations for amino acid residues is presented in Table 2.

TABLE 2

Amino Acid	Three-letter	One-letter
	Abbreviation	Symbol
Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	C
Glutamine	Gln	Q
Glutamic acid	Glu	E
Glycine	Gly	G
Histidine	His	H
Isoleucine	Ile	I
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser ·	S
Threonine	Thr	T
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V
Any residue	Xaa	X

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention is predicated in part on a genetic engineering approach to identify nucleotide sequences encoding serine proteinases or kinases. The genetic engineering approach is based on the use of degenerate primers corresponding to conserved regions of serine proteinases (amino acids flanking His- and Ser- residues) to amplify gene fragments spanning these regions for cDNA, using low stringency reverse transcriptase-polymerase chain reaction (RT-PCR).

10 This technique has been successfully used, in accordance with the present invention, to identify serine proteinases and kinases useful in modulating cell activity and viability including modulating spermatogenesis, acting as tumour suppressors and acting as a marker for non-testicular cancers.

Accordingly, one aspect of the present invention provides a novel molecule in isolated form 15 involved in or associated with regulation of cell activity and/or viability.

More particularly, the present invention contemplates a novel serine proteinase in isolated form comprising a sequence of amino acids encoded by a nucleotide sequence, at least a portion of which, is capable of being amplified by polymerase chain reaction (PCR) using the following primers:

5' ACAGAATTCTGGGTIGTIACIGCIGCICAYTG3' [SEQ ID NO:1]; and

5'ACAGAATTCAXIGGICCICCIC/GT/AXTCICC3' [SEQ ID NO:2];

25

or a complementary form of said primers.

Preferably, X is A or G, Y is C or T and I is inosine.

30 In a particularly preferred embodiment, the isolated serine proteinase comprises the amino acid sequence substantially set forth in SEQ ID NO:4 or an amino acid sequence having at least about

50% similarity to all or part thereof. This serine proteinase is referred to herein as a short isoform of "HELA2" or "HELA2 (testisin)". The terms "HELA2" and "testisin" are used interchangedly throughout the subject specification to refer to the same molecule.

- 5 In another preferred embodiment, the amino acid sequence of the serine proteinase is substantially as set forth in SEQ ID NO:6 or an amino acid sequence having at least about 50% similarity to all or part thereof. This serine proteinase is the long isoform of HELA2 or HELA2 (testisin).
- 10 Yet another preferred embodiment of the present invention provides an amino acid sequence substantially as set forth in SEQ ID NO:8 or an amino acid sequence having at least about 50% similarity to all or part thereof. This serine proteinase is referred to herein as "ATC2".

Another aspect of the present invention relates to a serine proteinase in isolated form comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:3 or a nucleotide sequence having at least 50% similarity to all or part thereof or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:3 under low stringency conditions at 42°C.

20 Still another aspect of the present invention is directed to a serine proteinase in isolated form comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:5 or a nucleotide sequence having at least 50% similarity to all or part thereof or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:5 under low stringency conditions at 42°C.

25

30 low stringency conditions at 42°C.

In another aspect of the present invention, there is provided a serine proteinase in isolated form comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:7 or a nucleotide sequence having at least 50% similarity to all or part thereof or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:7 under

Another embodiment of the present invention is directed to a kinase in isolated form comprising an amino acid sequence substantially as set forth in SEQ ID NO:10 or having 50% amino acid similarity to all or part thereof. This kinase is referred to herein as "BCON3".

5 In a related embodiment, the kinase comprises an amino acid sequence encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:9 or a nucleotide sequence having at least 50% similarity to all or part of the nucleotide sequence set forth in SEQ ID NO:9 or a nucleotide sequence capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:9 under low stringency conditions at 42°C.

10

The present invention further provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding a novel molecule involved in or associated with regulation of cell activity and/or viability. Preferably, the nucleic acid molecule is capable of being amplified by PCR using the primers set forth in SEQ ID NO:1 and/or SEQ ID NO:2.

More particularly, the present invention further provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:3 or having 50% similarity to all or part thereof or a nucleic acid molecule capable of hybridising to SEQ ID NO:3 under low stringency conditions at 42°C.

Another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:5 or having 50% similarity to all or part thereof or a nucleic acid molecule capable of hybridising to SEQ ID NO:5 under low stringency conditions at 42°C.

Another aspect of the present invention is directed to an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:7 or having 50% similarity to all or part thereof or a nucleic acid molecule capable of hybridising to SEQ ID NO:7 under low stringency conditions at 42°C

Still another aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:9 or having 50% similarity to all or part thereof or a nucleic acid molecule capable of hybridising to SEQ ID NO:9 under low stringency conditions at 42°C.

5

Reference herein to a low stringency includes low stringency at 42°C includes and encompasses from at least about 1% v/v to at least about 15% v/v formamide and from at least about 1M to at least about 2M salt for hybridisation, and at least about 1M to at least about 2M salt for washing conditions. Alternative stringency conditions may be applied where necessary, such as medium stringency, which includes and encompasses from at least about 16% v/v to at least about 30% v/v formamide and from at least about 0.5M to at least about 0.9M salt for hybridisation, and at least about 0.5M to at least about 0.9M salt for washing conditions, or high stringency, which includes and encompasses from at least about 31% v/v to at least about 50% v/v formamide and from at least about 0.01M to at least about 0.15M salt for hybridisation, and at least about 0.01M to at least about 0.15M salt for hybridisation, and

Reference herein to similarity to "part" of a sequence means similarity to at least about 4 contiguous amino acids or at least about 12 contiguous nucleotide bases and more preferably at least about 7 contiguous amino acids or at least about 21 contiguous nucleotide bases.

20

means.

The term "similarity" includes exact identity between sequences or, where the sequence differs, different amino acids may be related to each other at the structural, functional, biochemical and/or conformational levels.

The term "isolated" includes biological purification and biological separation and encompasses molecules having undergone at least one purification, concentration or separation step relative to its natural environment. For example, a preparation may comprise at least about 10%, preferably at least about 20%, more preferably at least about 30%, still more preferably at least about 50% or greater of the molecule relative to at least one other component in a composition as determined by activity, mass, amino acid content, nucleotide content or other convenient

Hereinafter, the molecules of the present invention are referred to as a "proteinase/kinase". The term "proteinase/kinase" includes the serine proteinases HELA2 (testisin) and ATC2 and the kinase BCON3. The proteinase/kinase of the present invention may be in isolated, naturally occurring form or recombinant or synthetic form or chemical analogues thereof.

5

The proteinase/kinase of the present invention is preferably of human origin but from non-human origins are also encompassed by the present invention. Non-human animals contemplated by the present invention include primates, livestock animals (e.g. sheep, cows, pigs, goats, horses, donkeys), laboratory test animals (e.g. mice, rats, guinea pigs, hamsters, rabbits), domestic companion animals (e.g. dogs, cats), birds (e.g. chickens, geese, ducks and other poultry birds, game birds, emus, ostriches) and captive wild or tamed animals (e.g. foxes, kangaroos, dingoes). The present invention also encompasses a proteinase/kinase homologue from *Xenopus* and plants.

15 The nucleic acid molecules encoding a proteinase/kinase may be genomic DNA, cDNA or RNA such as mRNA.

Yet another aspect of the present invention provides an isolated serine proteinase encoded by a gene proximal to a cluster of genes on a mammalian chromosome. The cluster of genes is preferably on human chromosome 16p13.3 or its equivalent in a non-human species. The cluster is made up of genes all encoding or having the potential to encode a serine proteinase or homologue, derivative or functional or evolutionary equivalent thereof. Preferably, the gene cluster comprises two or more of genes comprising a nucleotide sequence selected from SEQ ID NO:3 and 5 (HELA2, short and long forms, respectively) and SEQ ID NO:28 (SP001LA), SEQ ID NO:29 (SP002LA), SEQ ID NO:30 (SP003LA) and SP004LA (see Figure 19) or a nucleotide sequence having at least 50% similarity to any one of those sequences or capable of hybridizing to any one of those sequences under low stringency conditions at 42°C.

The term "proximal" is used in its broadest sense to mean a gene cluster and includes a gene 30 within proximity to another gene.

- 19 -

Another aspect of the present invention contemplates a method for cloning a nucleotide sequence encoding a novel serine proteinase, said method comprising screening a nucleic acid library with said one or more or oligonucleotides defined by SEQ ID NO:1 and/or SEQ ID NO:2 and obtaining a clone therefrom which encodes said novel serine proteinase or part thereof.

5

Preferably, the nucleic acid library is genomic DNA, cDNA, genomic or mRNA library.

Preferably, the nucleic acid library is a cDNA expression library.

10 Preferably, the nucleic acid library is of human origin such as from brain, liver, kidney, neo-natal tissue, embryonic tissue, tumour or cancer tissue.

With respect to HELA2 (HELA2 (testisin)), significant expression is generally only found in normal testis. Accordingly, the present invention extends to nucleic acid molecules capable of tissue-specific or substantially tissue-specific expression.

Still another embodiment contemplates the promoter or a functional part thereof of the genomic gene encoding the subject proteinase/kinase of the present invention. The promoter may readily be obtained by, for example, "chromosome walking". A particularly useful promoter is from 20 HELA2 (testisin) which can be regarded as a testis specific promoter. This promoter can be used, for example, to direct testis specific expression of genetic sequences operably linked to the promoter and may be used *inter alia* gene therapy or modulation of fertility.

The present invention further contemplates a range of derivatives of the subject proteinase/kinase. Derivatives include fragments, parts, portions, mutants, homologues and analogues of the subject polypeptides and corresponding genetic sequences. Derivatives also include single or multiple amino acid substitutions, deletions and/or additions to the subject molecules or single or multiple nucleotide substitutions, deletions and/or additions to the genetic sequence encoding the molecules. "Additions" to amino acid sequences or nucleotide sequences include fusions with other peptides, polypeptides or proteins or fusions to nucleotide sequences. Reference herein to the serine proteinase and kinase includes reference to all derivatives thereof

including functional derivatives or immunologically interactive derivatives.

Analogues of the subject serine proteinase and kinase contemplated herein include, but are not limited to, modification to side chains, incorporating of unnatural amino acids and/or their derivatives during peptide, polypeptide or protein synthesis and the use of crosslinkers and other methods which impose conformational constraints on the proteinaceous molecule or their analogues.

Examples of side chain modifications contemplated by the present invention include modifications of amino groups such as by reductive alkylation by reaction with an aldehyde followed by reduction with NaBH₄; amidination with methylacetimidate; acylation with acetic anhydride; carbamoylation of amino groups with cyanate; trinitrobenzylation of amino groups with 2, 4, 6-trinitrobenzene sulphonic acid (TNBS); acylation of amino groups with succinic anhydride and tetrahydrophthalic anhydride; and pyridoxylation of lysine with pyridoxal-5-phosphate followed by reduction with NaBH₄.

The guanidine group of arginine residues may be modified by the formation of heterocyclic condensation products with reagents such as 2,3-butanedione, phenylglyoxal and glyoxal.

20 The carboxyl group may be modified by carbodiimide activation *via* O-acylisourea formation followed by subsequent derivitisation, for example, to a corresponding amide.

Sulphydryl groups may be modified by methods such as carboxymethylation with iodoacetic acid or iodoacetamide; performic acid oxidation to cysteic acid; formation of a mixed disulphides with other thiol compounds; reaction with maleimide, maleic anhydride or other substituted maleimide; formation of mercurial derivatives using 4-chloromercuribenzoate, 4-chloromercuriphenylsulphonic acid, phenylmercury chloride, 2-chloromercuri-4-nitrophenol and other mercurials; carbamoylation with cyanate at alkaline pH.

30 Tryptophan residues may be modified by, for example, oxidation with N-bromosuccinimide or alkylation of the indole ring with 2-hydroxy-5-nitrobenzyl bromide or sulphenyl halides.

- 21 -

Tyrosine residues on the other hand, may be altered by nitration with tetranitromethane to form a 3-nitrotyrosine derivative.

Modification of the imidazole ring of a histidine residue may be accomplished by alkylation with iodoacetic acid derivatives or N-carbethoxylation with diethylpyrocarbonate.

Examples of incorporating unnatural amino acids and derivatives during peptide synthesis include, but are not limited to, use of norleucine, 4-amino butyric acid, 4-amino-3-hydroxy-5-phenylpentanoic acid, 6-aminohexanoic acid, t-butylglycine, norvaline, phenylglycine, ornithine, sarcosine, 4-amino-3-hydroxy-6-methylheptanoic acid, 2-thienyl alanine and/or D-isomers of amino acids. A list of unnatural amino acid, contemplated herein is shown in Table 3.

TABLE 3

Non-conventional amino acid	Code	Non-conventional amino acid	Code
α-aminobutyric acid	Abu	L-N-methylalanine	Nmala
α -amino- α -methylbutyrate	Mgabu	L-N-methylarginine	Nmarg
aminocyclopropane-	Cpro	L-N-methylasparagine	Nmasn
carboxylate	-1	L-N-methylaspartic acid	Nmasp
aminoisobutyric acid	Aib	L-N-methylcysteine	Nmcys
aminonorbornyl-	Norb	L-N-methylglutamine	Nmgln
carboxylate		L-N-methylglutamic acid	Nmglu
cyclohexylalanine		Chexa L-N-methylhistidine	Nmhis
cyclopentylalanine	Cpen	L-N-methylisolleucine	Nmile
D-alanine	Dal	L-N-methylleucine	Nmleu
D-arginine	Darg	L-N-methyllysine	Nmlys
D-aspartic acid	Dasp	L-N-methylmethionine	Nmmet
D-cysteine	Deys	L-N-methylnorleucine	Nmnle
D-glutamine	Dgln	L-N-methylnorvaline	Nmnva
D-glutamic acid	Dglu	L-N-methylornithine	Nmorn
D-histidine	Dhis	L-N-methylphenylalanine	Nmphe
D-isoleucine	Dile	L-N-methylproline	Nmpro
D-leucine	Dleu	L-N-methylserine	Nmser
D-lysine	Dlys	L-N-methylthreonine	Nmthr
D-methionine	Dmet	L-N-methyltryptophan	Nmtrp
D-ornithine	Dorn	L-N-methyltyrosine	Nmtyr
D-phenylalanine	Dphe	L-N-methylvaline	Nmval
D-proline	Dpro	L-N-methylethylglycine	Nmetg
D-serine	Dser	L-N-methyl-t-butylglycine	Nmtbu
D-threonine	Dthr	L-norleucine	Nle
D-tryptophan	Dtrp	L-norvaline	Nva

	D-tyrosine	Dtyr	α-methyl-aminoisobutyrate	Maib
	D-valine	Dval	α -methyl- γ -aminobutyrate	Mgabu
	D-α-methylalanine	Dmala	α-methylcyclohexylalanine	Mchexa
	D-α-methylarginine	Dmarg	α-methylcylcopentylalanine	Mcpen
5	D-α-methylasparagine	Dmasn	α -methyl- α -napthylalanine	Manap
	D-α-methylaspartate	Dmasp	α -methylpenicillamine	Mpen
	D-α-methylcysteine	Dmcys	N-(4-aminobutyl)glycine	Nglu
	D-α-methylglutamine	Dmgln	N-(2-aminoethyl)glycine	Naeg
	D-α-methylhistidine	Dmhis	N-(3-aminopropyl)glycine	Norn
10	D-α-methylisoleucine	Dmile	N-amino-α-methylbutyrate	Nmaabu
	D-α-methylleucine	Dmleu	α -napthylalanine	Anap
	D-α-methyllysine	Dmlys	N-benzylglycine	Nphe
	D-α-methylmethionine	Dmmet	N-(2-carbamylethyl)glycine	Ngln
	D-α-methylornithine	Dmorn	N-(carbamylmethyl)glycine	Nasn
15	D-α-methylphenylalanine	Dmphe	N-(2-carboxyethyl)glycine	Nglu
	D-α-methylproline	Dmpro	N-(carboxymethyl)glycine	Nasp
	D-α-methylserine	Dmser	N-cyclobutylglycine	Ncbut
	D-α-methylthreonine	Dmthr	N-cycloheptylglycine	Nchep
	D-α-methyltryptophan	Dmtrp	N-cyclohexylglycine	Nchex
20	D-α-methyltyrosine	Dmty	N-cyclodecylglycine	Ncdec
	D-α-methylvaline	Dmval	N-cylcododecylglycine	Ncdod
	D-N-methylalanine	Dnmala	N-cyclooctylglycine	Ncoct
	D-N-methylarginine	Dnmarg	N-cyclopropylglycine	Ncpro
	D-N-methylasparagine	Dnmasn	N-cycloundecylglycine	Neund
25	D-N-methylaspartate	Dnmasp	N-(2,2-diphenylethyl)glycine	Nbhm
	D-N-methylcysteine	Dnmcys	N-(3,3-diphenylpropyl)glycine	Nbhe
	D-N-methylglutamine	Dnmgln	N-(3-guanidinopropyl)glycine	Narg
	D-N-methylglutamate	Dnmglu	N-(1-hydroxyethyl)glycine	Nthr
	D-N-methylhistidine	Dnmhis	N-(hydroxyethyl))glycine	Nser
30	D-N-methylisoleucine	Dnmile	N-(imidazolylethyl))glycine	Nhis
	D-N-methylleucine	Dnmleu	N-(3-indolylyethyl)glycine	Nhtrp

	D-N-methyllysine	Dnmlys	N-methyl-γ-aminobutyrate	Nmgabu
	N-methylcyclohexylalanine	Nmchexa	D-N-methylmethionine	Dnmmet
	D-N-methylornithine	Dnmorn	N-methylcyclopentylalanine	Nmcpen
	N-methylglycine	Nala	D-N-methylphenylalanine	Dnmphe
5	N-methylaminoisobutyrate	Nmaib	D-N-methylproline	Dnmpro
	N-(1-methylpropyl)glycine	Nile	D-N-methylserine	Dnmser
	N-(2-methylpropyl)glycine	Nleu	D-N-methylthreonine	Dnmthr
	D-N-methyltryptophan	Dnmtrp	N-(1-methylethyl)glycine	Nval
	D-N-methyltyrosine	Dnmtyr	N-methyla-napthylalanine	Nmanap
10	D-N-methylvaline	Dnmval	N-methylpenicillamine	Nmpen
	γ-aminobutyric acid	Gabu	N-(p-hydroxyphenyl)glycine	Nhtyr
	L-t-butylglycine	Tbug	N-(thiomethyl)glycine	Ncys
	L-ethylglycine	Etg	penicillamine	Pen
	L-homophenylalanine	Hphe	L-α-methylalanine	Mala
15	L-α-methylarginine	Marg	L-α-methylasparagine	Masn
	L-α-methylaspartate	Masp	L-α-methyl-t-butylglycine	Mtbug
	L-α-methylcysteine	Mcys	L-methylethylglycine	Metg
	L-α-methylglutamine	Mgln	L-α-methylglutamate	Mglu
	L-α-methylhistidine	Mhis	L-α-methylhomophenylalanine	Mhphe
20	L-α-methylisoleucine	Mile	N-(2-methylthioethyl)glycine	Nmet
	L-α-methylleucine	Mleu	L-α-methyllysine	Mlys
	L-α-methylmethionine	Mmet	L-α-methylnorleucine	Mnle
	L-α-methylnorvaline	Mnva	L-α-methylornithine	Morn
	L-α-methylphenylalanine	Mphe	L-α-methylproline	Mpro
25	L-α-methylserine	Mser	L-α-methylthreonine	Mthr
	L-α-methyltryptophan	Mtrp	L-α-methyltyrosine	Mtyr

- 25 -

L-α-methylvaline

Mval

L-N-methylhomophenylalanine

Nmhphe

N-(N-(2,2-diphenylethyl)

Nnbhm

N-(N-(3,3-diphenylpropyl)

carbamylmethyl)glycine

Nnbhe

carbamylmethyl)glycine

Nmbc

1-carboxy-1-(2,2-diphenyl-

5 ethylamino)cyclopropane

and the N or C terminus.

natural product screening.

Crosslinkers can be used, for example, to stabilise 3D conformations, using homo-bifunctional crosslinkers such as the bifunctional imido esters having $(CH_2)_n$ spacer groups with n=1 to n=6, glutaraldehyde, N-hydroxysuccinimide esters and hetero-bifunctional reagents which usually contain an amino-reactive moiety such as N-hydroxysuccinimide and another group specific-reactive moiety such as maleimido or dithio moiety (SH) or carbodiimide (COOH). In addition, peptides can be conformationally constrained by, for example, incorporation of C_α and N_α -methylamino acids, introduction of double bonds between C_α and C_β atoms of amino acids and the formation of cyclic peptides or analogues by introducing covalent bonds such as forming an amide bond between the N and C termini, between two side chains or between a side chain

These types of modifications may be important to stabilise the proteinase/kinase if administered to an individual or for use as a diagnostic reagent.

The present invention further contemplates chemical analogues of the proteinase/kinase capable of acting as antagonists or agonists of the native molecules or which can act as functional analogues of the native molecules. For example, an antagonist may be a proteinase inhibitor.

25 Chemical analogues may not necessarily be derived from the subject enzymes but may share certain conformational similarities. Alternatively, chemical analogues may be specifically designed to mimic certain physiochemical properties of the serine proteinases or kinases. Chemical analogues may be chemically synthesised or may be detected following, for example,

30

The identification of the novel molecules of the present invention permits the generation of a

range of therapeutic molecules capable of modulating expression of their native counterparts or modulating their activity. Modulators contemplated by the present invention includes agonists and antagonists of proteinase/kinase expression. Antagonists of proteinase/kinase expression include antisense molecules, ribozymes and co-suppression molecules. Agonists include molecules which increase promoter ability or interfere with negative regulatory mechanisms. Agonists of proteinase/kinase include molecules which overcome any negative regulatory mechanism. Antagonists of the proteinase/kinase include antibodies and inhibitor peptide fragments.

- 10 Other derivatives contemplated by the present invention include a range of glycosylation variants from a completely unglycosylated molecule to a modified glycosylated molecule. Altered glycosylation patterns may result from expression of recombinant molecules in different host cells.
- 15 Another embodiment of the present invention contemplates a method for modulating expression of proteinase/kinase in a human, said method comprising contacting the proteinase/kinase gene encoding proteinase/kinase with an effective amount of a modulator of proteinase/kinase expression for a time and under conditions sufficient to up-regulate or down-regulate or otherwise modulate expression of proteinase/kinase. For example, a nucleic acid molecule encoding proteinase/kinase or a derivative thereof may be introduced into a cell conversely, proteinase/kinase antisense sequences such as oligonucleotides may be introduced.

Another aspect of the present invention contemplates a method of modulating activity of proteinase/kinase in a human, said method comprising administering to said mammal a modulating effective amount of a molecule for a time and under conditions sufficient to increase or decrease proteinase/kinase activity. The molecule may be a proteinaceous molecule or a chemical entity and may also be a derivative of proteinase/kinase or its receptor or a chemical analogue or truncation mutant of proteinase/kinase or its receptor.

30 One particularly useful serine proteinase, HELA2 (testisin), is implicated in spermatogenesis and in testicular tumour development. It is proposed, in accordance with the present invention,

that HELA2 (testisin) is involved in fertility and infertility.

Northern blot analysis of Poly A+ RNA from normal tissue specimens showed a unique tissue distribution for HELA2 (testisin) with significant expression only in the testis. No signals are detected in any other tissue, with the exception of a minor signal in salivary gland. By RT-PCR, HELA2 (testisin) is detected in the ejaculate of normal males but not in the ejaculate of vasectomised males indicating that it is of germ cell origin. Hybridization data *in situ* indicated that HELA2 (testisin) is produced by immature germ cells in the testis, located near the basal epithelium and, hence, is an important factor for normal sperm maturation; defective expression or mutations would contribute to primary male infertility. Further, it is from the precursors of spermatocytes that 95% of testicular germ cell tumours, such as seminomas, embryonal carcinomas and teratocarcinomas arise. In the normal testis, germ cells undergo meiosis to become spermatocytes, but in individuals at risk, the germ cells continue to proliferate giving rise to germ cell tumours. Although not wishing to limit the present invention to any one theory or mode of action, it is proposed, in accordance with present invention, that HELA2 (testisin) functions at this critical juncture - cell growth versus maturation.

Familial forms of testicular cancer are rare, but linkage analysis of a large family with familial seminoma has demonstrated linkage to chromosome 16p, within a region adjacent to the 20 HPKD1 (human polycystic kidney disease) gene at 16p13.3. The HELA2 (testisin) gene localises to chromosome 16p13.3 which is near the telomere of chromosome 16 and is associated with high genetic instability. The HELA2 (testisin) gene is sandwiched between four genes which underlie other human genetic disorders; HPKD1 and tuberous sclerosis (TSC2) on the one side, and familial mediterranean fever (MEF) and Rubenstein-Taybi syndrome 25 (RSTS) on the other side. The question of whether HELA2 (testisin) may be a tumour suppressor for seminoma was determined by comparing HELA2 (testisin) mRNA expression in normal testes with corresponding germ cell tumours from patients with seminoma. HELA2 (testisin) was not detectable in the tumours of these patients, but was present in the corresponding normal testis specimens, indicative of a tumour suppressor role of HELA2 (testisin) in testicular germ cell cancers.

Although restricted in normal tissues to the testes, HELA2 (testisin) is expressed in tumours of the colon, pancreas, prostate and ovary. This indicates that HELA2 (testisin) contributed to tumourigenesis and, therefore, has an application as a marker and also as a therapeutic antitumour target in these types of cancers.

5

These data point to a potentially very significant role for HELA2 (testisin) in testicular germ cell maturation (spermatogenesis) as well as in the genesis of testicular germ cell tumours. In accordance with the present invention, it is proposed that expression of HELA2 (testisin) by immature germ cells may be essential for sperm cell development, such that loss of HELA2 (testisin) expression leads to continued and uncontrolled proliferation of immature germ cells leading to subsequent tumourigenesis. Germ cells wherein HELA2 (testisin) is mutated or absent may thus be prone to malignant transformation because of an inability to progress along the differentiation pathway.

15 HELA2 (testisin) is well-positioned to anchor on the surface of the germ cell where it would participate in a range of proteolytic activities, including cell migration, differentiation and/or activation of growth factors, receptors, or cytokines as well as initiate additional proteolytic cascades. Although not intending to limit the present invention to any one theory or mode of action, it is proposed, in accordance with the present invention, that the proteolytic target of 20 HELA2 (testisin) is a cytokine, receptor or growth factor essential for either germ cell proliferation or differentiation - ie. HELA2 (testisin) may either inactivate a factor important for proliferation, or activate a factor which promotes differentiation. Thus, HELA2 (testisin) may be critical in the regulation of specific cytokines, cytokine receptors or growth factors by means of post-translational proteolytic processing. That HELA2 (testisin) is not present in other normal tissues of the male urogenital tract, such as the prostate and kidney, also argues for such a role specific to the testis.

Diagnostic and therapeutic applications for HELA2 (testisin) have the potential to be wideranging both in the cancer and fertility/infertility markets. In tumours, other than the testis, it 30 is desirable to block or inhibit HELA2 (testisin) activity. As HELA2 (testisin) is a member of the serine proteinase family, for which prototype crystal structures are known and the catalytic mechanism reasonably well characterised, the design of drugs that target HELA2 (testisin) proteolytic activity as an anti-tumour therapy should be relatively straightforward. As HELA2 (testisin) is predicted to be anchored on the cell surface, there would not be difficulties associated with delivery of drugs to intracellular compartments. Further, it is very possible that some tumour-associated HELA2 (testisin) may be proteolytically cleaved from the surface of tumour cells, and the extracellular domain detectable in patient serum as a potential tumour associated marker.

Testicular cancer is the commonest malignancy in men aged 20-44 years. Early diagnosis correlates which an improved chance of cure and in a reduction in the severity of treatment. If the cancer is not treated early, it becomes very aggressive. The incidence of testicular cancer is significant (9/100,000) and has been rising over the last 10 years. In testicular germ cell tumours, such as seminoma, delivery of recombinant HELA2 (testisin) using gene therapy techniques could lead to arrest of tumour growth and potentially allow commencement of normal sperm cell maturation and differentiation, thereby reducing the need for surgical removal of the testis (orchidectomy). This may be particularly effective for patients who have already had one testicle removed because of testicular cancer. The risk of contralateral testicular cancer is increased in these patients and tumour development could be arrested through early treatment with HELA2 (testisin) to arrest growth and assist maturation of germ cells. The finding of mutant forms of HELA2 (testisin) may also lead to new markers for seminoma. Unlike other testicular non-seminoma cancers where α-fetoprotein and β-HCG are frequently elevated and can be used as tumour markers, the lack of an adequate marker for seminoma creates difficulties with staging and patient follow-up.

25 A demonstrated role for HELA2 (testisin) in sperm maturation and development would likely lead to improved diagnosis and new directed therapeutics for male primary infertility. Primary male infertility is responsible for conception problems in 5-10% of couples and the world market for a therapeutic in this area would be very substantial. Delivery of recombinant HELA2 (testisin) could assist sperm maturation and potentially trigger normal sperm development in some of these cases. The identification of mutant forms of HELA2 (testisin) could aid in diagnosis of infertility. If HELA2 (testisin) does not prove to be a tumour

suppressor, but is important for sperm maturation, it could provide a new target for the development of a male contraceptive. If hormonal regulation of HELA2 (testisin) can be demonstrated, HELA2 (testisin) may prove effective for the treatment of conditions arising from dysfunctional hormal responses, such as cryptorchidism, which is associated with both 5 infertility and seminoma development.

Accordingly, the present invention contemplates a pharmaceutical composition comprising proteinase/kinase or a derivative thereof or a modulator of proteinase/kinase expression or proteinase/kinase activity and one or more pharmaceutically acceptable carriers and/or diluents.

10 These components are referred to as the "active ingredients" and include, for example, HELA2 (testisin).

The pharmaceutical forms suitable for injectable use include sterile aqueous solutions (where water soluble) and sterile powders for the extemporaneous preparation of sterile injectable solutions. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of superfactants. The preventions of the action of microorganisms can be brought about by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimersal and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride. Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions are prepared by incorporating the active compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the various sterilized active ingredients into a sterile vehicle which contains the basic dispersion

medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and the freeze-drying technique which yield a powder of the active ingredient plus any additional desired ingredient from previously sterile-filtered solution thereof.

5

When the active ingredients are suitably protected they may be orally administered, for example, with an inert diluent or with an assimilable edible carrier, or it may be enclosed in hard or soft shell gelatin capsule, or it may be compressed into tablets, or it may be incorporated directly with the food of the diet. For oral therapeutic administration, the active compound may be incorporated with excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, elixirs, suspensions, syrups, wafers, and the like. Such compositions and preparations should contain at least 1% by weight of active compound. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 5 to about 80% of the weight of the unit. The amount of active compound in such therapeutically useful compositions in such that a suitable dosage will be obtained. Preferred compositions or preparations according to the present invention are prepared so that an oral dosage unit form contains between about 0.1 µg and 2000 mg of active compound.

The tablets, troches, pills, capsules and the like may also contain the components as listed 20 hereafter. A binder such as gum, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a sweetening agent such a sucrose, lactose or saccharin may be added or a flavouring agent such as peppermint, oil of wintergreen, or cherry flavouring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier. Various other materials may be present as coatings or to otherwise modify the physical form of the dosage unit. For instance, tablets, pills, or capsules may be coated with shellac, sugar or both. A syrup or elixir may contain the active compound, sucrose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavouring such as cherry or orange flavour. Of course, any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed. In addition, the active compound(s) may be incorporated into sustained-release

preparations and formulations.

Pharmaceutically acceptable carriers and/or diluents include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like. The use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, use thereof in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.

10 It is especially advantageous to formulate parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Parental compositions are generally suitable for administration by the intravenous, subcutaneous or intramuscular routes amongst other routes of administration. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the mammalian subjects to be treated; each unit containing a predetermined 15 quantity of active material calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the novel dosage unit forms of the invention are dictated by and directly dependent on (a) the unique characteristics of the active material and the particular therapeutic effect to be achieved, and (b) the limitations inherent in the art of compounding such an active material for the treatment of disease in living 20 subjects having a diseased condition in which bodily health is impaired as herein disclosed in detail. Other forms of administration include but are not limited to intranasal, buccal, rectal, suppository, inhalation, intracerebral and intraperitoneal.

The principal active ingredient is compounded for convenient and effective administration in effective amounts with a suitable pharmaceutically acceptable carrier in dosage unit form as hereinbefore disclosed. A unit dosage form can, for example, contain the principal active compound in amounts ranging from 0.5 µg to about 2000 mg. Expressed in proportions, the active compound is generally present in from about 0.5 µg to about 2000 mg/ml of carrier. In the case of compositions containing supplementary active ingredients, the dosages are determined by reference to the usual dose and manner of administration of the said ingredients.

The effective amounts include amounts calculated or predicted to have the desired effect and range from at least about 0.01 ng/kg body weight to about 10,000 mg/kg body weight. Alternative amounts include 0.1 ng/kg body weight to about 1000 ng/kg body weight.

5 The pharmaceutical composition may also comprise genetic molecules such as a vector capable of transfecting target cells where the vector carries a nucleic acid molecule capable of modulating proteinase/kinase expression or proteinase/kinase activity. The vector may, for example, be a viral vector. This form of therapy is proposed to be particularly useful for gene replacement or enhancement therapy for HELA2 (testisin) especially for the modulation of fertility and/or treatment of testicular cancer.

Still another aspect of the present invention is directed to antibodies to proteinase/kinase and its derivatives. Such antibodies may be monoclonal or polyclonal and may be selected from naturally occurring antibodies to proteinase/kinase or may be specifically raised to proteinase/kinase or derivatives thereof. In the case of the latter, proteinase/kinase or its derivatives may first need to be associated with a carrier molecule. The antibodies and/or recombinant proteinase/kinase or its derivatives of the present invention are particularly useful as therapeutic or diagnostic agents. For example, monitoring non-testicular cancer by measuring HELA2 (testisin) or screening for the presence of testicular cancer by an absence of HELA2 (testisin).

Proteinase/kinase and its derivatives may also be used to screen for naturally occurring antibodies to proteinase/kinase. These may occur, for example in some autoimmune diseases. Alternatively, specific antibodies can be used to screen for proteinase/kinase. Techniques for such assays are well known in the art and include, for example, sandwich assays and ELISA. Knowledge of proteinase/kinase levels may be important for diagnosis of certain cancers or a predisposition to cancers or for monitoring certain therapeutic protocols.

Antibodies the proteinase/kinase of the present invention may be monoclonal or polyclonal.

30 Alternatively, fragments of antibodies may be used such as Fab fragments. Furthermore, the present invention extends to recombinant and synthetic antibodies and to antibody hybrids. A

- 34 -

"synthetic antibody" is considered herein to include fragments and hybrids of antibodies. The antibodies of this aspect of the present invention are particularly useful for immunotherapy and may also be used as a diagnostic tool for assessing apoptosis or monitoring the program of a therapeutic regimen.

5

For example, specific antibodies can be used to screen for proteinase/kinase proteins. The latter would be important, for example, as a means for screening for levels of proteinase/kinase in a cell extract or other biological fluid or purifying proteinase/kinase made by recombinant means from culture supernatant fluid. Techniques for the assays contemplated herein are known in the art and include, for example, sandwich assays and ELISA.

It is within the scope of this invention to include any second antibodies (monoclonal, polyclonal or fragments of antibodies or synthetic antibodies) directed to the first mentioned antibodies discussed above. Both the first and second antibodies may be used in detection assays or a first antibody may be used with a commercially available anti-immunoglobulin antibody. An antibody as contemplated herein includes any antibody specific to any region of proteinase/kinase.

Both polyclonal and monoclonal antibodies are obtainable by immunization with the enzyme or protein and either type is utilizable for immunoassays. The methods of obtaining both types of sera are well known in the art. Polyclonal sera are less preferred but are relatively easily prepared by injection of a suitable laboratory animal with an effective amount of proteinase/kinase, or antigenic parts thereof, collecting serum from the animal, and isolating specific sera by any of the known immunoadsorbent techniques. Although antibodies produced by this method are utilizable in virtually any type of immunoassay, they are generally less favoured because of the potential heterogeneity of the product.

The use of monoclonal antibodies in an immunoassay is particularly preferred because of the ability to produce them in large quantities and the homogeneity of the product. The preparation of hybridoma cell lines for monoclonal antibody production derived by fusing an immortal cell line and lymphocytes sensitized against the immunogenic preparation can be done by techniques

- 35 -

which are well known to those who are skilled in the art.

Another aspect of the present invention contemplates a method for detecting proteinase/kinase in a biological sample from a subject said method comprising contacting said biological sample with an antibody specific for proteinase/kinase or its derivatives or homologues for a time and under conditions sufficient for an antibody-proteinase/kinase complex to form, and then detecting said complex.

The presence of proteinase/kinase may be accomplished in a number of ways such as by Western blotting and ELISA procedures. A wide range of immunoassay techniques are available as can be seen by reference to US Patent Nos. 4,016,043, 4, 424,279 and 4,018,653. These, of course, includes both single-site and two-site or "sandwich" assays of the non-competitive types, as well as in the traditional competitive binding assays. These assays also include direct binding of a labelled antibody to a target.

15

Sandwich assays are among the most useful and commonly used assays and are favoured for use in the present invention. A number of variations of the sandwich assay technique exist, and all are intended to be encompassed by the present invention. Briefly, in a typical forward assay, an unlabelled antibody is immobilized on a solid substrate and the sample to be tested brought 20 into contact with the bound molecule. After a suitable period of incubation, for a period of time sufficient to allow formation of an antibody-antigen complex, a second antibody specific to the antigen, labelled with a reporter molecule capable of producing a detectable signal is then added and incubated, allowing time sufficient for the formation of another complex of antibodyantigen-labelled antibody. Any unreacted material is washed away, and the presence of the 25 antigen is determined by observation of a signal produced by the reporter molecule. The results may either be qualitative, by simple observation of the visible signal, or may be quantitated by comparing with a control sample containing known amounts of hapten. Variations on the forward assay include a simultaneous assay, in which both sample and labelled antibody are added simultaneously to the bound antibody. These techniques are well known to those skilled 30 in the art, including any minor variations as will be readily apparent. In accordance with the present invention the sample is one which might contain proteinase/kinase including cell extract, tissue biopsy or possibly serum, saliva, mucosal secretions, lymph, tissue fluid and respiratory fluid. The sample is, therefore, generally a biological sample comprising biological fluid but also extends to fermentation fluid and supernatant fluid such as from a cell culture.

5 In the typical forward sandwich assay, a first antibody having specificity for the proteinase/kinase or antigenic parts thereof, is either covalently or passively bound to a solid surface. The solid surface is typically glass or a polymer, the most commonly used polymers being cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene. The solid supports may be in the form of tubes, beads, discs of microplates, or any other surface suitable for conducting an immunoassay. The binding processes are well-known in the art and generally consist of cross-linking covalently binding or physically adsorbing, the polymerantibody complex is washed in preparation for the test sample. An aliquot of the sample to be tested is then added to the solid phase complex and incubated for a period of time sufficient (e.g. 2-40 minutes or overnight if more convenient) and under suitable conditions (e.g. from about room temperature to about 37°C) to allow binding of any subunit present in the antibody. Following the incubation period, the antibody subunit solid phase is washed and dried and incubated with a second antibody specific for a portion of the hapten. The second antibody to the hapten.

20

An alternative method involves immobilizing the target molecules in the biological sample and then exposing the immobilized target to specific antibody which may or may not be labelled with a reporter molecule. Depending on the amount of target and the strength of the reporter molecule signal, a bound target may be detectable by direct labelling with the antibody.

25 Alternatively, a second labelled antibody, specific to the first antibody is exposed to the target-first antibody complex to form a target-first antibody-second antibody tertiary complex. The complex is detected by the signal emitted by the reporter molecule.

By "reporter molecule" as used in the present specification, is meant a molecule which, by its 30 chemical nature, provides an analytically identifiable signal which allows the detection of antigen-bound antibody. Detection may be either qualitative or quantitative. The most

commonly used reporter molecules in this type of assay are either enzymes, fluorophores or radionucleotide containing molecules (i.e. radioisotopes) and chemiluminescent molecules. In the case of an enzyme immunoassay, an enzyme is conjugated to the second antibody, generally by means of glutaraldehyde or periodate. As will be readily recognized, however, a 5 wide variety of different conjugation techniques exist, which are readily available to the skilled artisan. Commonly used enzymes include horseradish peroxidase, glucose oxidase, betagalactosidase and alkaline phosphatase, amongst others. The substrates to be used with the specific enzymes are generally chosen for the production, upon hydrolysis by the corresponding enzyme, of a detectable colour change. Examples of suitable enzymes include alkaline 10 phosphatase and peroxidase. It is also possible to employ fluorogenic substrates, which yield a fluorescent product rather than the chromogenic substrates noted above. In all cases, the enzyme-labelled antibody is added to the first antibody hapten complex, allowed to bind, and then the excess reagent is washed away. A solution containing the appropriate substrate is then added to the complex of antibody-antigen-antibody. The substrate will react with the enzyme 15 linked to the second antibody, giving a qualitative visual signal, which may be further quantitated, usually spectrophotometrically, to give an indication of the amount of hapten which was present in the sample. "Reporter molecule" also extends to use of cell agglutination or inhibition of agglutination such as red blood cells on latex beads, and the like.

20 Alternately, fluorescent compounds, such as fluorescein and rhodamine, may be chemically coupled to antibodies without altering their binding capacity. When activated by illumination with light of a particular wavelength, the fluorochrome-labelled antibody adsorbs the light energy, inducing a state to excitability in the molecule, followed by emission of the light at a characteristic colour visually detectable with a light microscope. As in the EIA, the fluorescent labelled antibody is allowed to bind to the first antibody-hapten complex. After washing off the unbound reagent, the remaining tertiary complex is then exposed to the light of the appropriate wavelength the fluorescence observed indicates the presence of the hapten of interest. Immunofluorescene and EIA techniques are both very well established in the art and are particularly preferred for the present method. However, other reporter molecules, such as 30 radioisotope, chemiluminescent or bioluminescent molecules, may also be employed.

The present invention also contemplates genetic assays such as involving PCR analysis to detect proteinase/kinase gene or its derivatives. Alternative methods or methods used in conjunction include direct nucleotide sequencing or mutation scanning such as single stranded conformation polymorphoms analysis (SSCP), specific oligonucleotide hybridisation, and methods such as direct protein truncation tests.

The nucleic acid molecules of the present invention may be DNA or RNA. When the nucleic acid molecule is in DNA form, it may be genomic DNA or cDNA. RNA forms of the nucleic acid molecules of the present invention are generally mRNA.

10

Although the nucleic acid molecules of the present invention are generally in isolated form, they may be integrated into or ligated to or otherwise fused or associated with other genetic molecules such as vector molecules and in particular expression vector molecules. Vectors and expression vectors are generally capable of replication and, if applicable, expression in one or both of a prokaryotic cell or a eukaryotic cell. Preferably, prokaryotic cells include *E. coli, Bacillus sp* and *Pseudomonas sp*. Preferred eukaryotic cells include yeast, fungal, mammalian and insect cells.

Accordingly, another aspect of the present invention contemplates a genetic construct 20 comprising a vector portion and a mammalian and more particularly a human proteinase/kinase gene portion, which proteinase/kinase gene portion is capable of encoding an proteinase/kinase polypeptide or a functional or immunologically interactive derivative thereof.

Preferably, the proteinase/kinase gene portion of the genetic construct is operably linked to a promoter on the vector such that said promoter is capable of directing expression of said proteinase/kinase gene portion in an appropriate cell.

In addition, the proteinase/kinase gene portion of the genetic construct may comprise all or part of the gene fused to another genetic sequence such as a nucleotide sequence encoding 30 glutathione-S-transferase or part thereof.

The present invention extends to such genetic constructs and to prokaryotic or eukaryotic cells comprising same.

The present invention also extends to any or all derivatives of proteinase/kinase including 5 mutants, part, fragments, portions, homologues and analogues or their encoding genetic sequence including single or multiple nucleotide or amino acid substitutions, additions and/or deletions to the naturally occurring nucleotide or amino acid sequence. The present invention further encompasses hybrids between the proteinase/kinases such as to broaden the spectrum of activity and to ligands and substrates of the proteinase/kinase.

10

The proteinase/kinase and its genetic sequence of the present invention will be useful in the generation of a range of therapeutic and diagnostic reagents.

Soluble proteinase/kinase polypeptides or other derivatives, agonists or antagonists are also contemplated to be useful in the treatment of disease, injury or abnormality in the nervous system, e.g. in relation to central or peripheral nervous system to treat Cerebral Palsy, trauma induced paralysis, vascular ischaemia associated with stroke, neuronal tumours, motoneurone disease, Parkinson's disease, Huntington's disease, Alzheimer's disease, Multiple Sclerosis, peripheral neuropathies associated with diabetes, heavy metal or alcohol toxicity, renal failure and infectious diseases such as herpes, rubella, measles, chicken pox, HIV or HTLV-1. Other conditions for which the proteinase/kinase are useful include cancer, metastasis and autoimmune disease amongst many others. Particular applications for HELA2 (testisin) include as a marker for non-testicular cancers, in the treatment of testicular cancer and in the treatment of infertility or in inducing infertility such for contraception.

25

A further aspect of the present invention contemplates the use of proteinase/kinase or its functional derivatives in the manufacture of a medicament for the treatment of proteinase/kinase mediated conditions defective or deficient.

30 The present invention is further described by the following non-limiting Examples.

- 40 -

EXAMPLE 1 CLONING PROCEDURES

In order to identify serine proteinases that may be involved in regulatory cellular functions, a genetic screening approach was applied using degenerate primers corresponding to conserved regions of serine proteinases (amino acids flanking His- and Ser- residues) to amplify gene fragments spanning these regions from cDNA, using a low stringency RT-PCR (Reverse Transcriptase-Polymerase Chain Reaction) approach.

10 By this technique, the aim was to isolate low abundance genes as well as those present in moderate to high abundance. The cDNA used for these experiments was isolated from a HeLa cell cytotoxicity model wherein PAI-2 expression inhibits TNF(-induced apoptosis (Dickinson et al. J. Biol. Chem. 270: 27894-27904, 1995). These PAI-2 expressing cells provide a unique and viable system for investigating TNF(signalling pathways as they are protected from the cytotoxic effects of TNF).

cDNA was generated from RNA isolated from HeLa cells and PAI-2 expressing HeLa cells, both untreated and following treatment with TNF and cycloheximide. Amplification of each cDNA population using PCR and the following serine proteinase degenerate primers,

20

His Primer: 5'ACAGAATTCTGGGTIGTIACIGCIGCICAYTG3' [SEQ ID NO:1], Ser Primer: 5'ACAGAATTCAXIGGICCICCIC/GT/AXTCICC3' [SEQ ID NO:2]

(where X = A or G; Y = C or T; I = Inosine)

produced DNA fragments in the range of 480bp, the approximate predicted size of the serine proteinase intergenic region. These amplified DNA fragments were cloned into E. coli generating a library containing approximately 150 independent clones. The inventors analysed 36 of these clones and found that 9 encoded previously identified serine proteinases or tissue-type or urokinase-type plasminogen activators, thereby demonstrating the efficacy of this approach. Of the other 36, two were found to encode novel open reading frames with high homology to serine proteinases and are referred to herein as "HELA2" (or "testisin") and

- 41 -

"ATC2". One additional clone designated herein, "BCON3", showed homology to a kinase. Extension of the DNA fragments by RACE in both 5' and 3' directions using internally derived primers has verified the homology of HELA2 and ATC2 to the serine proteinase family. Each of the three DNA sequences are unique in that they are markedly different from any known 5 DNA or protein sequence in the Genbank and NBRF databases.

EXAMPLE 2 HELA2 SERINE PROTEINASE (TESTISIN)

10 The HELA2 mRNA transcript is approximately 1.5kb as determined from Northern blot analysis. Nucleic acid sequence was obtained for about 1.1kb of HELA2 which spans the entire coding region, the 3' noncoding region and part of the 5' noncoding region. The coding region starts with an ATG codon which is present in a motif analogous to the Kozak eukaryotic translation initiation consensus sequence. Alignment of the deduced amino acid sequence of HELA2 with homologous serine proteinases shows that the cDNA encodes a 314 amino acid (aa) polypeptide with a calculated molecular weight of 34.8kD (called Testisin), which is synthesized as a zymogen containing pre-, pro- and catalytic regions (Figure 1). The pro- region (or light chain) and the catalytic region (heavy chain) are delineated by a classic serine proteinase activation motif Arg-Ile-Val-Gly-Gly [SEQ ID NO:24] with cleavage likely occurring between Arg and Ile. The catalytic region includes the catalytic triad of His, Asp and Ser in positions and motifs which are highly conserved among the serine proteinases. Ten Cys residues occur in conserved positions: by analogy to other serine proteinases, eight of these function to form disulfide bridges within the catalytic region and the remaining two link the pro- and catalytic regions.

25

Structural features conserved in the binding pockets of serine proteinases are present in HELA2 (testisin). An Asp residue at the bottom of the serine proteinase binding pocket six residues before the active site Ser in HELA2 (testisin) indicates that HELA2 (testisin) has trypsin-like specificity, with proteolytic cleavage after Arg or Lys in target substrates. HELA2 (testisin) also contains a conserved Ser-Trp-Gly motif at the top of the binding pocket which is likely involved in hydrogen bonding with target substrates in other serine proteinases.

A hydrophobicity plot of the HELA2 (testisin) amino acid sequence (Figure 1) identifies two hydrophobic regions, one located at the amino terminus and the other at the carboxy terminus. The 20 aa amino terminal hydrophobic region is likely to be a signal peptide, which would direct newly synthesized HELA2 to enter the endoplasmic reticulum. The 16 aa hydrophobic carboxy terminus of HELA2 (testisin) shows high homology to the transmembrane domain of prostasin (Figure 2), suggesting that HELA2 (testisin) is likely to be a membrane-anchored serine proteinase. Thus HELA2 (testisin) may anchor on the germ cell surface where it could participate in a range of proteolytic activities, including participation in cell migration, differentiation and/or activation of growth factors and proteolytic cascades. In prostasin, this protruding carboxy terminus may be cleaved, thus releasing the serine proteinase from the membrane. A similar cleavage event may also occur with Testasin.

Two isoforms of HELA2 were identified in a HeLa cell cDNA library (Stratagene UniZap HeLa Library) which differ by an insertion of 6 nucleotides which generates a Sfi1 restriction enzyme site. At the protein level, there is a corresponding insertion of 2 aa's (Tyr-Ser) within the catalytic binding pocket (Figure 2A). The two isoforms of HELA2 cDNA are referred to as the short (S) and long (L) isoforms, respectively. The nucleotide and corresponding amino acid sequence for the short isoform of HELA2 is shown in SEQ ID NOs. 3 and 4, respectively. The long isoform is shown in SEQ ID NO:5 and 6, respectively.

20

EXAMPLE 3

GENERATION OF FULL LENGTH cDNA ENCODING HELA2 (TESTISIN)

Partial cDNA fragments of the short and long isoforms of HELA2 were obtained using a combination of library screening techniques. Plasmids containing the full length cDNA of the two isoforms were then generated in pBluescriptSK(-) by ligating restriction enzyme-digested fragments of the partial cDNAs. A plasmid map of the two generated constructs, pBluescriptHELA2(S) and pBluescriptHELA2(L), and a restriction enzyme map of the long isoform cDNA are diagrammed in Figure 3.

30

In vitro transcription/translation using HELA2 cDNA shows a major specific product of

approximately 35kD (Fig. 2B), which is the same as size predicted from the open reading frame, demonstrating that HELA2 cDNA encodes a protein. The translation/transcription coupled rabbit reticulocyte lysate system (Promega) was used as per the manufacturer's instructions for 35S-methionine labelling. Clones of HELA2 in pBluescript a PAI-2 positive control were used with T3-RNA polymerase (sense direction).

EXAMPLE 4

EXPRESSION OF RECOMBINANT HELA2 (TESTISIN) IN E.COLI

- 10 (A) Generation of expression constructs
 - (i) His(6)-tagged recombinant HELA2 (testisin)

To reduce potential toxic effects on host cells, and therefore optimise expression, a strategy was employed to eliminate the hydrophobic residues of the secretory and membrane anchoring domains of HELA2 (testisin) (Testisin (20-295)). Testisin (20-295) fragments which were His6 tagged at either the amino or carboxy terminal were obtained by PCR and expression constructs were generated by inserting these into pQE vectors (Qiagen).

The primers used to generate the amino-terminal tagged protein were:

forward: 5' GCACAGTCGACCAAGCCGGAGTCGCAGAG 3' [SEQ ID NO:11] and

20 reverse: 5' GCACAAAGCTTGCCAGGAGGGGTCTGGCTG 3' [SEQ ID NO:12]

The amplification product of 858bp was digested with Sall and HindIII and ligated into pQE-10 to give pQE-10(20-295)N (Figure 4).

The primers used to generate the carboxy-terminal tagged protein were:

- 25 forward: 5' GCACAACCATGGCCAAGCCGGAGTCGCAGGAG 3' [SEQ ID NO:13] and reverse 5' GCACAAGATCTCCAGGAGGGGTCTGGCTG 3' [SEQ ID NO:14].
 The amplification product of 859 bp was digested with NcoI and BgIII and ligated into PQE-60 to give pQE-60(20-295)C (Figure 4).
- 30 (ii) GST-tagged recombinant HELA2 (testisin)

 In order to generate a fusion of glutathione-S-transferase (GST) and HELA2 (testisin),

pBluescriptHELA2(S) was digested with Sau3A1, releasing a 570bp DNA fragment encoding the 190 amino acids at the carboxy terminal end of HELA2 (testisin). This DNA fragment was cloned into the BamH1 site of pGEX-1 generating pGEX-1(90-279) (Figure 4) and subjected to DNA sequence analysis to confirm that the fusion was in frame.

5

(b) Expression of His-tagged HELA2 (testisin) in E. coli

pQE10(20-295)N and pQE60(20-295)C plasmids were electro-transformed into E. coli DH5(cells. Four different clones were selected for further analysis: His-N21 expressing amino terminal His6-tagged Testisin (20-295); and His-C21, His-C22, and His-C23 expressing carboxy terminal His6-tagged Testisin (20-295). To express recombinant HELA2 (testisin) protein, transformed cells were grown to log phase then induced for 4 hours in the presence of 2mM IPTG. Cells were lysed in a denaturing lysis buffer containing 8M urea, 0.1M NaH2PO4 and 0.01M Tris/HCI pH8. Alternatively the cells were lysed in a non-denaturing lysis buffer containing 0.1M NaH2PO4, 0.1M NaCl and 0.01 M Tris/HCI pH8. The His6 tagged protein was recovered by mixing the lysate with a metal affinity resin (Qiagen or Clontech). Purified testisin(L) was eluted with 100 mM EDTA in lysis buffer (pH 6.3). A major band of approximately 32 kDa was obtained in the eluate as shown by the arrows in Figure 5A. Western blot analysis of a purification of the His-C23 clone using an anti-His6 antibody showed that the band at 32 kDa was His6 tagged HELA2 (testisin) (Figure 5B).

EXAMPLE 5 IMMUNOLOGY

25 (A) Rabbit Polyclonal Antibodies Directed Against HELA2 (testisin) Peptide Antigens

Three peptides were selected from the HELA2 (testisin) amino acid sequence on the basis of predicted antigenicity, hydrophilicity and lack of identity with known proteins (Figure 6).

30 Peptide antigen T20-33

KPESQEAAPLSGPC [SEQ ID NO:15]

Peptide antigen T46-63

EDAELGRWPWQGSLRLWDC [SEQ ID NO:16]

- 45 -

Peptide antigen T175-190 GYIKEDEALPSPHTLQC [SEQ ID NO:17]

These peptides were synthesized (Auspep) and coupled to keyhole limpet hemocyanin. The coupled peptide (500 Fg) in PBS (0.5 ml) was emulsified in an equal volume of Freund's complete adjuvant before injection into a rabbit. Booster injections of coupled peptide in Freund's incomplete adjuvant were made at intervals of 2 to 3 weeks. Each rabbit was bled (approximately 1 ml) before the initial injection and about 7 days after the second and subsequent boosters and the antibody titre assessed by direct ELISA assay. Immunoreactive antisera against the peptide antigens was demonstrated and when a sufficiently high titre was 10 achieved (after 3 to 5 boosters), between 12 and 25 ml of blood was removed from each animal.

Rabbit antisera was affinity purified against the respective immunising peptides by chromatography using peptide-coupled affinity columns. Immunoreactivity of the affinity purified antibodies against HELA2 (testisin) was demonstrated by Western blot analysis of GST-tagged recombinant HELA2 (testisin). pGEX-1(90-279) plasmid DNA (described in Example 4) was electro-transformed into E. coli DH5(cells and induced for 3 hours in the presence of 0.5mM IPTG. Cells were lysed in 1.5% sarcosyl, 2% Triton X100 and then sonicated. After removal of the insoluble fraction by centrifugation, the cell lysate was mixed with a 50% slurry of Glutathione Sepharose 4B, washed, and the purified GST-Testisin(90-279) was eluted by boiling with SDS-Sample buffer. Figure 7 shows an example of Western blot analysis of the eluate using anti-Peptide T175-190 antibody demonstrating a purified, immunoreactive band representative of GST-linked HELA2(testisin) of approximately 47 kDa.

(B) Rabbit Polyclonal Antibodies Directed Against Purified Bacterially Expressed HELA225 (testisin)

An SDS-PAGE gel slice containing purified His6 tagged HELA2 (testisin) (as described in Example 4, part (b)) is to be combined with adjuvant and rabbits immunized as described above. Rabbit antisera are tested by Western blot analysis for immunoreactivity against purified recombinant HELA2 (testisin) and HELA2 (testisin) in cell extracts, as well as use in immunohistochemical analyses.

- 46 -

EXAMPLE 6 EXPRESSION OF HELA2 (TESTISIN) IN EUKARYOTIC CELLS

(A) Generation of expression constructs

5

- Eukaryotic expression constructs encoding testisin(s) and testisin(L) His6 tagged at the carboxy terminal were generated in the eukaryotic expression vector pcDNA3 (Invitrogen). DNA fragments encoding HELA2 (testisin) were generated by PCR from both pBluescriptHELA2(S) and pBluescriptHELA2(L) using the primers:
- 10 forward: 5' GCACAGGTACCGAGGCCATGGGCGCGCGC 3' [SEQ ID NO:18] and reverse 5' GCACATCTAGATCAGTGGTGGTGGTGGTGGTGGACCGGCCCCAGGA GTGG 3' [SEQ ID NO:19]
- The PCR product of 985 bp obtained from amplification of HELA2 (testisin) from pBluescriptHELA2(S) as template was ligated into pGEM-T (Easy) vector (Promega). Digestion of this shuttle construct with NotI released a 1025 bp fragment which was ligated into pcDNA3 generating the short isoform expression construct pcDNA3-Test(S-C) (Figure 8). PCR amplification of the long isoform template gave a 991 bp product which was ligated into pGEM-T (easy) vector. NotI digestion of the shuttle construct released a 1031 bp fragment which was ligated into pcDNA3 giving pcDNA3-Test(L-C) (Figure 8).
 - Soluble testisin (1-295)-His6 in which the membrane anchoring sequence is deleted and the protein is carboxy-His6 tagged is to be obtained by PCR amplification of HELA2 (testisin) from pBluescriptHELA2(L) using the primers:
- 25 forward: 5' GCACAGCGGCCGCGAGGCCATGGGCGCGCGC 3' [SEQ ID NO:20] and reverse: 5' GCACAGCGGCCGCTCAGTGGTGGTGGTGGTGCCAGGAGGGGTC TGGCTG 3' [SEQ ID NO:21].
 - The PCR product will be digested with NotI and ligated into pcDNA3 generating the long isoform expression construct pcDNA3-Test(1-295)L-C (Figure 8).

30

(B) Expression and cellular localisation of HELA2 (testisin)

Each of the expression constructs is transiently transfected into a eukaryotic cell line (eg. HeLa, CHO or COS cells) by electroporation. Expression is confirmed by Northern blot and immunoblot. The His6 tag is a small, uncharged tag which reportedly does not interfere with cellular membrane interactions and is able to be detected with anti-His6 antibodies. HELA2 (testisin) cellular localisation is analysed by immunofluorescence using antibodies directed against the His6 tag and stained cells examined by confocal microscopy. Mock transfected cells is monitored as one of the controls in these experiments. Cells are examined under non-permeablised and permeabilised conditions to investigate intracellular and cell surface expression of HELA2 (testisin) tagged proteins. Possible release of HELA2 (testisin) into the supernatant is monitored by immunoblotting of conditioned media. Association of HELA2 (testisin) with a particular cellular compartment is confirmed by cellular fractionation studies. Stable transfectants of the full length and truncated tagged HELA2 (testisin) is generated by selection in G418. Recombinant HELA2 (testisin) is purified from these stable transfectants using a metal affinity resin (eg. Qiagen or Clontech) for assay of its bioactivity and efficacy as 15 a therapeutic reagent.

EXAMPLE 7

HELA2 (TESTISIN) IS SPECIFICALLY EXPRESSED IN THE NORMAL TESTIS, AND IS ASSOCIATED WITH SPERM DEVELOPMENT

20

(A) Normal Tissue Blot

Dot blot analysis of PolyA+ RNA from 50 normal tissue specimens (strandardised to 8 different housekeeping genes) (Clontech) was performed using a 32P-labelled HELA2 (testisin) probe.

25 Hybridization of the radiolabelled probe was in ExpressHyb solution (Clontech) at 650. The blots were washed to a final stringency of 0.1xSSC/0.5% w/v SDS. High level expression of HELA2 (testisin) was found only in the testis as shown by the histogram plot of the Signal Intensity in Figure 9. In contrast, probing of the same blot with BCON3 showed ubiquitous expression of BCON3 mRNA in a variety of tissues (Figure 9).

30

(B) Multiple Tissue Northern Blot

Northern blots displaying polyA+ mRNA from 16 different normal tissues (Clontech) were hybridised at 65°C in ExpressHyb solution using a 400bp SacII/EcoRI 32P-labelled HELA2 probe for 3h and then washed to a final stringency of 0.1xSSC/0.1%SDS at 60°C. After a 5h exposure, a strong band was observed only in the lane containing testis mRNA, demonstrating the specificity of HELA2 (testisin) expression for the testis (Figure 10A). Prolonged exposure (4.5 days) of the blot revealed a very low level of HELA2 (testisin) mRNA expression in the prostate, lung and pancreas only. In contrast to HELA2, BCON3 is expressed in mRNA from most tissues present on the blot (Figure 10B).

10

(C) HELA2 (testisin) is Expressed in Sperm Cells, Demonstrating its Germ Cell Origin

To determine whether HELA2 (testisin) expression is associated with germ cells of the testis, ejaculate specimens from normal fertile males were compared with those of post-vasectomy males by RT-PCR analysis using HELA2 (testisin) specific primers. Sperm is the primary product from the testis that is found in ejaculate; other components of the ejaculate are derived from the prostate.

First strand cDNA was reverse transcribed from total RNA which has been isolated from frozen or fresh ejaculate specimens. PCR was performed on the cDNA templates using the primers: forward: 5' CTGACTTCCATGCCATCCTT 3' [SEQ ID NO:22] and reverse: 5' GCT'CACGACTCCAATCTGAT 3' [SEQ ID NO:23].

As shown in Figure 11, strong signals of the expected size of 464 bp were detected in ejaculate from normal males (Patients #23 and #31), while no HELA2 (testisin) was detected in Patient 25 #153 (post-vasectomy). Patent #90 (post-vasectomy) showed a low level of amplification product which may reflect a small amount of residual sperm in the seminiferous tubules. PCR using primers specific for (2-macroglobulin was performed on the same samples as a control for the presence of approximately equal amounts of cDNA in each sample.

30 (D) HELA2 (testisin) is Expressed in Immature Germ Cells of the Testis

- 49 -

In situ hybridization was performed on paraffin-embedded specimens of rat testis tissue using DIG- labelled HELA2 (testisin) RNA probes (T3 and T7 generated transcripts containing nucleotides 1-423 of HELA2 cDNA). The results using the antisense RNA probe showed strong positive staining near the basal lamina of the seminiferous tubules in the region associated with spermatocytes and spermatogonia (Figure 12, see arrows). HELA2 (testisin) mRNA expression did not appear to be associated with Leydig cells and the pattern was not typical for Sertoli cell staining. The presence of HELA2 (testisin) mRNA in these cells indicates a role for HELA2 (testisin) in germ cell maturation and sperm development.

10

EXAMPLE 8

HELA2 (TESTISIN) EXPRESSION IS ASSOCIATED WITH TUMOURS IN NON-TESTIS CELL-TYPES

15 The tissue and cell-type distribution of testisin mRNA transcripts in tumours were determined by Northern hybridization analyses of RNA extracted from in vitro cultured tumour cells lines derived from different cancerous tissues. HELA2 (testisin) was detected in the HeLa ovarian carcinoma, the U937 lymphoma, and the melanoma cell line 253-3D. HELA2 (testisin) is also associated with cDNA libraries derived from tumours of the colon, pancreas, prostate and ovary (NCBI-EST Database). The presence of HELA2 (testisin) in tumours where it is not expressed normally indicates that it likely plays a role in tumourigenesis in several cell-types.

EXAMPLE 9 THE HELA2 (TESTISIN) GENE IS LOCATED ON HUMAN CHROMOSOME 16p13.3

25

The genetic location of testisin was mapped to the short arm of chromosome 16 at 16p13.3 by fluorescence in-situ hybridization to normal metaphase chromosomes (Figure 13A). Screening of a chromosome 16 hybrid panel then sub-localised HELA2 (testisin) to the cosmid 406D6 which has been mapped to this region (Sood, R. et al (1997)Genomics 42: 83-95; Doggett, N.A. et al. (1995) Nature 377 (Suppl.):335-365. The cosmid lies between the markers

- 50 -

D16S246 and D16S468 and the gene is located just centromeric to D16S246 (Figure 13B). This region of the human genome is associated with high genetic instability and telomeric rearrangements underlie a variety of common human genetic disorders. Testisin is sandwiched between the human disease genes PKD1 (polycystic kidney disease) and tuberous sclerosis (TSC2) on the on side, and MEF (familial mediterranean fever) and Rubenstein-Taybi syndrome (RSTS) on the other side as diagrammed in Figure 13B.

EXAMPLE 10

HELA2 (TESTISIN) mRNA AND PROTEIN EXPRESSION IS ABSENT IN TESTICULAR GERM CELL TUMOURS

To determine whether HELA2 (testisin) may play a role in testicular tumourigenesis, HELA2 (testisin) mRNA expression in normal testes and testicular tumour tissue obtained from 4 patients diagnosed with seminoma were compared by Northern blot analysis. HELA2 (testisin) mRNA was detected in normal testes from all four patients but was not detectable in the corresponding tumours (Figure 14A). This data indicates a tumour suppressor role for HELA2 (testisin) in testicular germ cell tumours.

Expression of HELA2 (testisin) protein in testicular tissue was examined by immunohistochemistry. Paraffin-embedded tissue sections were fixed, treated, blocked, incubated with anti-peptide antibodies (1:10 dilution) and bound antibody detected with the Vectastain Universal Elite ABC kit (Vector Laboratories). Negative controls were performed in the absence of antibody. Strong staining of HELA2 (testisin) was detected in the germ cells of normal testis (N) but was absent in the adjacent tumour tissue (T) (for example, see Figure 14B), providing further evidence of a tumour suppressor role for HELA2 (testisin) in testicular germ cell tumours.

EXAMPLE 11

GENOMIC ORGANISATION OF THE HELA2 (TESTISIN) GENE

30

10

The HELA2 (testisin) gene is further characterised by determination of its genomic

organisation. Intron-extron boundaries and most of the DNA sequence of the HELA2 (testisin) gene was determined from cosmid DNA by DNA sequencing. A genomic map of HELA2 (testisin) is given in Figure 15. The intron/exon boundaries are highly conserved relative to prostasin, although the sizes of the introns show considerable variation. The genomic DNA sequence with introns in lower case and exons in upper case is shown in Figure 16 and in SEQ ID NO 25. DNA sequence analysis is being performed on RNA from tumour tissues to ascertain the predicted function of HELA2 (testisin) as a tumour suppressor.

EXAMPLE 12

THE HELA2 (TESTISIN) SHORT AND LONG ISOFORMS ARE GENERATED BY ALTERNATIVE mRNA SPLICING

Two isoforms of HELA2 (testisin) were identified which differ by an insertion of 2 amino acids (Tyr-Ser) between the catalytic His and Asp residues. These constitute the long (L) and short 15 (S) isoforms. At the DNA level there is a corresponding insertion of 6 nucleotides which generates a Sfc1 restriction enzyme site. PCR amplification from single strand cDNA generated from HeLa cell total RNA followed by DNA sequence analysis of the amplified product demonstrated that the two isoforms are generated through the use of two alternative mRNA splice sites. The DNA sequence for the intron and the flanking exons are shown in Figure 17.

The resulting insertion of amino acids YS occurs 4 amino acids after the catalytic His residue of HELA2 (testisin). Preliminary molecular modelling shows the presence of this insertion is likely to alter the catalytic activity and/or specificity of HELA2 (testisin) for its substrates.

EXAMPLE 13

25 MUTATION ANALYSIS-HELA2 (TESTISIN) AS A TUMOUR SUPPRESSOR

Intronic DNA sequence information generated above (see Example 11) is used to generate primers to amplify HELA2 (testisin) exons for SSCP analyses. Genomic DNA isolated from seminomas and corresponding normal testis as well as genomic DNA from wild-type and affected seminoma family members are analysed by SSCP for altered expression patterns indicative of genetic mutations. Evidence of genetic mutations are also being determined by

DNA sequence analysis.

5

EXAMPLE 14

HOMOLOGUES OF HUMAN HELA2 (TESTISIN) ARE PRESENT IN OTHER SPECIES

Southern blot analysis of genomic DNA isolated from a range of species using a HELA2 (testisin) cDNA probe shows that homologues of HELA2 (testisin) are present in hamster, mouse, marmoset and monkey. The mouse homologue of HELA2 (testisin) was identified and obtained as an EST clone. The cDNA sequence and corresponding amino acid sequence of mouse HELA2 (testisin) was determined (Figure 18) and is given in SEQ ID NO 27. The mouse cDNA encodes a protein which contains the catalytic triad of His, Asp and Ser (circles) and 10 cysteine residues (small boxes), and an activation site (triangle) as found in HELA2 (testisin). The hydrophilicity plot shows the presence of a hydrophobic sequence at the carboxy terminus suggesting the presence of a putative membrane anchor. Comparison of the mouse and human sequences show 68.1% homology at the cDNA level and 69.1% homology at the amino acid level.

EXAMPLE 15

HELA2 (TESTISIN) IS PART OF A CLUSTER OF HOMOLOGOUS GENES ON CHROMOSOME 16p13.3

Analysis of DNA sequences released to NCBI databases reveals the presence of homologues of HELA2 (testisin) in a cluster on Chromosome 16p13.3. Figure 19 shows the positions of these genes, designated SP001LA, SP002LA, SP003LA, and SP004LA, relative to HELA2 (testisin) and the respective cosmids (Sood, R. et al (1997) Genomics 42: 83-95) in which they are located. Figure 20A, 20B and 20C show the partial cDNA and deduced amino acid sequences of SP001LA, SP002LA, and SP003LA respectively. Each cDNA encodes a protein which contains the catalytic triad of His, Asp and Ser (circles) and 10 cysteine residues (small boxes), and an activation site (triangle) as found in HELA2 (testisin). Comparisons of the cDNA and amino acid sequences from the heavy chain region through to the poly A tail gives

the % identity with HELA2 (testisin) as follows:

	cDNA	Protein
SP001LA	34.8%	47.3%
5 SP002LA	41.0%	47.1%
SP003LA	40.3%	51.3%

Each of the serine proteinases encoded by these genes show that they have carboxy terminal extensions, and SP002LA is the only one with a hydrophobic carboxy terminal tail indicative of a membrane anchored protein. Identification of an expressed sequence tag (EST) from a human testis cDNA library demonstrates that this gene is expressed in the testis, like HELA2 (testisin). The location of this serine proteinase cluster on chromosome 16p13.3 flanking HELA2 (testisin) suggests that these serine proteinases are also involved, like HELA2(testisin), in sperm maturation and development. Thus they may constitute a proteolytic cascade which is essential for these processes. Loss or mutation of these genes may lead to testicular germ cell tumours and to other testicular abnormalities, such as infertility.

EXAMPLE 16 ATC2 SERINE PROTEINASE

20

ATC2 was isolated from the cDNA of PAI-2 expressing HeLa cells following treatment with TNF and cycloheximide. A partial DNA sequence for ATC2 cDNA has been obtained which encompasses the sequence encoding the serine proteinase catalytic region. Additional clones extending to both 5' and 3' directions have been obtained. The available nucleic acid sequence of ATC2 cDNA and its deduced amino acid sequence shows that it is a member of the serine proteinase family with homology to hepsin, prostasin, and acrosin. It thus belongs to the same family as HELA2. The catalytic region includes the His, Asp and Ser conserved motifs. Preliminary Northern blot experiments have failed to detect ATC2 mRNA in total RNA isolated from resting HeLa cells, indicating it is not expressed in abundance in these cells, which may therefore be tightly regulated. As ATC2 was isolated from cells following treatment with TNF and cycloheximide, its expression may be induced by these agents in HeLa cells. These data

- 54 -

have potential significance for a role for ATC2 in apoptosis and cell death. ATC2 may be intracellular, extracellular or found on the cell surface and is likely to be involved in regulating cell functions. Thus ATC2 may have potential significance in the treatment of cancer and diseases involving dysregulation of cell growth and survival. The nucleotide and corresponding amino acid sequence of ATC2 is shown in SEQ ID NOs: 7 and 8, respectively.

EXAMPLE 16 BCON3

10

The deduced amino acid sequence of BCON3 (SEQ ID NO:10) reveals that it is novel. At both the DNA and protein level, BCON3 shows homology to members of the kinase family of proteins. Although it cannot be classified as a member of any particular sub-family of kinases, alignments of the BCON3 protein with the conserved domains of thymidine kinases and tyrosine 15 and serine/threonine protein kinases indicates possible ATP/GTP binding and phosphate transfer regions. Thus, it may be the first member of a new family of kinases. Analysis of the translation product using hydrophobicity plots and the Prosite protein analysis algorithms indicates BCON3 may lack an N-terminal signal sequence (that is, it is likely to encode an intracellular protein) and it possesses a nuclear localization signal. BCON3 mRNA is approximately 2300 20 nucleotides in length. cDNA sequence (SEQ ID NO:9) has been obtained covering about 95% of the transcript and including the 3' poly A tail. BCON3 mRNA is expressed in most normal tissues as demonstrated by dot blot analysis of 50 normal tissue specimens (standardised to 8 different housekeeping genes) (Clontech). (Figure 9). Analysis of BCON3 mRNA expression using a multiple tissue Northern blot displaying polyA+ mRNA from 16 different normal tissues 25 (Clontech) shows that BCON3 is expressed in most tissues (Figure 10B). Expression by in vitro transcription/translation expression using a partial BCON3 cDNA fragment shows BCON3 encodes a protein. Two major transcription/translation products are detected, one of 51kDa, the size predicted from the open reading frame, and a second product of about 43kDa, which may represent a partial translation product (Figure 21).

30

Those skilled in the art will appreciate that the invention described herein is susceptible to

variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or 5 features.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

- (i) APPLICANT
 - (US only): ANTALIS Toni Marie and HOOPER John David (Other than US): AMRAD OPERATIONS PTY LTD
- (ii) TITLE OF INVENTION: NOVEL MOLECULES
- (iii) NUMBER OF SEQUENCES: 24
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: DAVIES COLLISON CAVE
 - (B) STREET: 1 LITTLE COLLINS STREET
 - (C) CITY: MELBOURNE
 - (D) STATE: VICTORIA
 - (E) COUNTRY: AUSTRALIA
 - (F) ZIP: 3000
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: International PCT Application
 - (B) FILING DATE: 13-FEB-1998
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: PO5101/97
 - (B) FILING DATE: 13-FEB-1997
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: PP0422/97
 - (B) FILING DATE: 18-NOV-1997
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: HUGHES, DR E JOHN L
 - (C) REFERENCE/DOCKET NUMBER: EJH/AF

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: +61 3 9254 2777

(B) TELEFAX: +61 3 9254 2770

(C) TELEX: AA 31787

PCT/AU98/00085

(2)	INFORMATION	FOR	SEQ	ID	NO:	l:
-----	-------------	-----	-----	----	-----	----

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 32 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

ACAGAATTCT GGGTIGTIAC IGCIGCICAY TG

32

- (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1094 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

ACAGAATTCA XIGGICCICC IC/GT/AXTCICC

29

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1094 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 17..965

- 59 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

CGCGGGAGAG GAGGCC ATG GGC GCG CGC GGG GCG CTG CTG CTG GCG CTG Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu 1 5 10														49	
					GGA Gly										97
					TGC Cys										145
					GAA Glu										193
					CAC His 65										241
					GCG Ala										289
					CAG Gln										337
					TAC Tyr										385
					CTG Leu										433
					GTC Val 145										481
					Phe					Arg				GTG Val	529

- 60 -

ΔСΨ	GGC	TGG	GGG	TAC	ATC	AAA	GAG	GAT	GAG	GCA	CTG	CCA	TCT	CCC	CAC	577
											Leu					
	_	_	175					180					185			
											AAC					625
Thr	Leu		Glu	Val	Gln	Val		Ile	Ile	Asn	Asn		Met	Cys	Asn	
		190					195					200				
CAC	CTC	TTC	CTC	AAG	TAC	AGT	TTC	CGC	AAG	GAC	ATC	TTT	GGA	GAC	ATG	673
											Ile					
	205					210					215					
																= 0.4
											GCC					721
	Cys	Ala	Gly	Asn		Gln	Gly	Gly	Lys	Asp 230	Ala	Cys	Pne	GTĀ	235	
220					225					250					233	
TCA	GGT	GGA	CCC	TTG	GCC	TGT	AAC	AAG	GAT	GGA	CTG	TGG	TAT	CAG	ATT	769
											Leu					
				240					245					250		
																015
											CCC					817
Gly	Val	Val	Ser 255	Trp	GIY	Val	СТУ	260	GIA	Arg	Pro	ASII	265	PIO	GIY	
			255					200					200			
GTC	TAC	ACC	ААТ	ATC	AGC	CAC	CAC	TTT	GAG	TGG	ATC	CAG	AAG	CTG	ATG	865
											Ile					
		270					275					280				
												~~~	G	ama	<b></b>	012
											TCG					913
Ala	285	ser	GIĀ	Met	ser	290	PIO	Asp	PIO	·	Trp 295	PIO	ьец	пец	rne	
	203					250										
TTC	CCT	CTT	CTC	TGG	GCT	CTC	CCA	CTC	CTG	GGG	CCG	GTC	TGA			961
Phe	Pro	Leu	Leu	Trp	Ala	Leu	Pro	Leu	Leu	Gly	Pro	Val	*			
300					305					310						
							~~~~	• ~~	~~~ <b>~</b>	3 ama	100	aaam	aam i	mama	mmcmcm	1015
GCC	TACC	TGA	GCCC.	ATGC.	AG C	CIGG	GGCC.	A C.I.	GCCA	AGTC	AGG	CCCT	GG.I.	TCTC	TTCTGT	1013
СТТ	GTTT	GGT	AATA	AACA	CA T	TCCA	GTTG	A TG	CCTT	GCAG	GGC	ATTT	TTC .	AAAA	AAAAA	1075
	~				•											
AAA	AAAA	AAA	AAAA	AAAA	A											1094

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 313 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
- Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu Leu Leu Ala Arg Ala 1 5 10 15
- Gly Leu Arg Lys Pro Glu Ser Gln Glu Ala Ala Pro Leu Ser Gly Pro 20 25 30
- Cys Gly Arg Arg Val Ile Thr Ser Arg Ile Val Gly Glu Asp Ala 35 40 45
- Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg Leu Trp Asp Ser
 50 55 60
- His Val Cys Gly Val Ser Leu Leu Ser His Arg Trp Ala Leu Thr Ala 65 70 75 80
- Ala His Cys Phe Glu Thr Asp Leu Ser Asp Pro Ser Gly Trp Met Val 85 90 95
- Gln Phe Gly Gln Leu Thr Ser Met Pro Ser Phe Trp Ser Leu Gln Ala 100 105 110
- Tyr Tyr Thr Arg Tyr Phe Val Ser Asn Ile Tyr Leu Ser Pro Arg Tyr
 115 120 125
- Leu Gly Asn Ser Pro Tyr Asp Ile Ala Leu Val Lys Leu Ser Ala Pro 130 135 140
- Val Thr Tyr Thr Lys His Ile Gln Pro Ile Cys Leu Gln Ala Ser Thr 145 150 155 160
- Phe Glu Phe Glu Asn Arg Thr Asp Cys Trp Val Thr Gly Trp Gly Tyr
 165 170 175
- Ile Lys Glu Asp Glu Ala Leu Pro Ser Pro His Thr Leu Gln Glu Val 180 185 190

- 62 -

Gln Val Ala Ile Ile Asn Asn Ser Met Cys Asn His Leu Phe Leu Lys 195 200 205

Tyr Ser Phe Arg Lys Asp Ile Phe Gly Asp Met Val Cys Ala Gly Asn 210 215 220

Ala Gln Gly Gly Lys Asp Ala Cys Phe Gly Asp Ser Gly Gly Pro Leu 225 230 235 240

Ala Cys Asn Lys Asp Gly Leu Trp Tyr Gln Ile Gly Val Val Ser Trp
245 250 255

Gly Val Gly Cys Gly Arg Pro Asn Arg Pro Gly Val Tyr Thr Asn Ile
260 265 270

Ser His His Phe Glu Trp Ile Gln Lys Leu Met Ala Gln Ser Gly Met 275 280 285

Ser Gln Pro Asp Pro Ser Trp Pro Leu Leu Phe Phe Pro Leu Leu Trp 290 295 300

Ala Leu Pro Leu Leu Gly Pro Val * 305 310

- (2) INFORMATION FOR SEQ ID NO:5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1100 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 17..961
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

- 63 -

			1	5				10					
				AGG Arg									97
		GGA		CGA Arg 35	CGG								145
	GAG			GGG Gly					CAG				193
				TGC Cys									241
				TGC Cys									289
				CAG Gln									337
				TAC Tyr 115									385
				CTG Leu									433
				GTC Val									481
				TTT Phe									529
				ATC Ile									577

- 64 -

CCC	CAC	ACC	CTC	CAG	GAA	GTT	CAG	GTC	GCC	ATC	ATA	AAC	AAC	TCT	ATG	625
Pro	His	Thr	Leu	Gln	Glu	Val	Gln	Val	Ala	Ile	Ile	Asn	Asn	Ser	Met	
		190					195					200			1	
										0.2						653
						AAG										673
Cys		His	Leu	Phe	Leu	Lys	Tyr	Ser	Phe	Arg		Asp	Tile	Pne	GIĀ	
	205					210					215					
GAC	ATG	GTT	TGT	GCT	GGC	AAT	GCC	CAA	GGC	GGG	AAG	GAT	GCC	TGC	TTC	721
						Asn										
220			-		225					230					235	
GGT	GAC	TCA	GGT	GGA	CCC	TTG	GCC	TGT	AAC	AAG	GAT	GGA	CTG	TGG	TAT	769
Gly	Asp	Ser	Gly	Gly	Pro	Leu	Ala	Cys	Asn	Lys	Asp	Gly	Leu		Tyr	
				240					245					250		
								~	~~~			222	000	2.20	000	017
						TGG										817
Gln	Ile	GIY		Val	Ser	Trp	GIY	260	GIY	Cys	GIA	AIG	265	ASII	ALG	
			255					260					203			
CCC	GGT	GTC	TAC	ACC	AAT	ATC	AGC	CAC	CAC	TTT	GAG	TGG	ATC	CAG	AAG	865
						Ile										
	_	270	_				275					280				
CTG	ATG	GCC	CAG	AGT	GGC	ATG	TCC	CAG	CCA	GAC	CCC	TCC	TGG	CCG	CTA	913
Leu	Met	Ala	Gln	Ser	Gly	Met	Ser	Gln	Pro	Asp	Pro	Ser	Trp	Pro	Leu	
	285					290					295					
													_ ~~	~ ~-	a marage	
	TTT	TTC	CCT	CTT	CTC	TGG	GC7	r CTC	C CC	E CTO	CT(G GG	G CC	C GT	C TGAGCCT	ACC
968	nh o	Dha	Dro	T 011	Tou	Trp	- ר ג	Leu	Pro	T.OU	T.011	Glv	Pro	Val		
леи 300	Pne	Pne	PIO	ьеu	305	ттр	Ата	ьеu	FIO	310	neu	Gry	110	Val	315	
300					303					310					0.20	
TGA	GCCC	ATG (CAGC	CTGG	gg C	CACT	GCCA	A GT	CAGG	CCCT	GGT'	TCTC'	TTC '	rgrc'	TTGTTT	1028
		-														
GGT	ATA	AAC .	ACAT'	TCCA	GT T	GATG	CCTT	G CA	GGGC.	ATTT	TTC.	AAAA	AAA .	AAAA	AAAAA	1088
AAA	AAAA	AAA	AA													1100

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 314 amino acids
- (B) TYPE: amino acid

- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
- Met Gly Ala Arg Gly Ala Leu Leu Leu Ala Leu Leu Leu Ala Arg Ala 1 5 10 15
- Gly Leu Arg Lys Pro Glu Ser Gln Glu Ala Ala Pro Leu Ser Gly Pro 20 25 30
- Cys Gly Arg Arg Val Ile Thr Ser Arg Ile Val Gly Glu Asp Ala
 35 40 45
- Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg Leu Trp Asp Ser 50 55 60
- His Val Cys Gly Val Ser Leu Leu Ser His Arg Trp Ala Leu Thr Ala 65 70 75 80
- Ala His Cys Phe Glu Thr Tyr Ser Asp Leu Ser Asp Pro Ser Gly Trp
 85 90 95
- Met Val Gln Phe Gly Gln Leu Thr Ser Met Pro Ser Phe Trp Ser Leu 100 105 110
- Gln Ala Tyr Tyr Thr Arg Tyr Phe Val Ser Asn Ile Tyr Leu Ser Pro 115 120 125
- Arg Tyr Leu Gly Asn Ser Pro Tyr Asp Ile Ala Leu Val Lys Leu Ser 130 135 140
- Ser Thr Phe Glu Phe Glu Asn Arg Thr Asp Cys Trp Val Thr Gly Trp 165 170 175
- Gly Tyr Ile Lys Glu Asp Glu Ala Leu Pro Ser Pro His Thr Leu Gln 180 185 190
- Glu Val Gln Val Ala Ile Ile Asn Asn Ser Met Cys Asn His Leu Phe 195 200 205

- 66 -

Leu Lys Tyr Ser Phe Arg Lys Asp Ile Phe Gly Asp Met Val Cys Ala 210 215 220

Gly Asn Ala Gln Gly Gly Lys Asp Ala Cys Phe Gly Asp Ser Gly Gly 225 230 235 240

Pro Leu Ala Cys Asn Lys Asp Gly Leu Trp Tyr Gln Ile Gly Val Val
245 250 255

Ser Trp Gly Val Gly Cys Gly Arg Pro Asn Arg Pro Gly Val Tyr Thr 260 265 270

Asn Ile Ser His His Phe Glu Trp Ile Gln Lys Leu Met Ala Gln Ser 275 280 285

Gly Met Ser Gln Pro Asp Pro Ser Trp Pro Leu Leu Phe Phe Pro Leu 290 295 300

Leu Trp Ala Leu Pro Leu Leu Gly Pro Val 305

- (2) INFORMATION FOR SEQ ID NO:7:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 799 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 24..799
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

AGTTCAGATG AATGGGACTG TGA GAA CCA TCT GTG ACC AAA TTG ATA CAG Glu Pro Ser Val Thr Lys Leu Ile Gln

GAA CAG GAG AAA GAG CCG CGG TGG CTG ACA TTA CAC TCC AAC TGG GAG

50

WO 98/36054

Glu	Gln	Glu	Lys	Glu		Arg	Trp	Leu	Thr	Leu	His	Ser	Asn	Trp				
10					15					20					25			
										GTA						:	146	
Ser	Leu	Asn	Gly		Thr	Leu	His	Glu		Val	Val	Asn	Gly		Ser			
				30					35					40				
TGT	GAG	AGC	AGA	AGT	AAA	ATT	TCT	CTT	CTG	TGT	ACT	AAA	CAA	GAC	TGT	:	194	
Cys	Glu	Ser		Ser	Lys	Ile	Ser		Leu	Cys	Thr	Lys		Asp	Cys			
			45					50					55					
GGG	CGC	CGC	CCT	GCT	GCC	CGA	ATG	AAC	AAA	AGG	ATC	CTT	GGA	GGT	CGG	:	242	
Gly	Arg	Arg	Pro	Ala	Ala	Arg		Asn	Lys	Arg	Ile		Gly	Gly	Arg			
		60					65					70						
ACG	AGT	CGC	CCT	GGA	AGG	TGG	CCA	TGG	CAG	TGT	TCT	CTG	CAG	AGT	GAA	:	290	
Thr	Ser	Arg	Pro	Gly	Arg	Trp	Pro	Trp	Gln	Cys		Leu	Gln	Ser	Glu			
	75					80					85							
CCC	AGT	GGA	CAT	ATC	TGT	GGC	TGT	GTC	CTC	ATT	GCC	AAG	AAG	TGG	GTT	:	338	
Pro	Ser	Gly	His	Ile	Cys	Gly	Cys	Val	Leu	Ile	Ala	Lys	Lys	Trp				
90					95					100					105			
GTG	ACA	GTT	GCC	CAC	TGC	TTC	GAG	GGG	AGA	GAG	TAA	GCT	GCA	GTT	TGG		386	
Val	Thr	Val	Ala	His	Cys	Phe	Glu	Gly	Arg	Glu	Asn	Ala	Ala		Trp			
				110					115					120				
AAA	GTG	GTG	СТТ	GGC	ATC	AAC	AAT	CTA	GAC	CAT	CCA	TCA	GTG	TTC	ATG		434	
Lys	Val	Val	Leu	Gly	Ile	Asn	Asn	Leu	Asp	His	Pro	Ser	Val	Phe	Met			
			125					130					135					
CAG	ACA	CGC	TTT	GTG	AGG	ACC	ATC	ATC	CTG	CAT	CCC	CGC	TAC	AGT	CGA		482	
Gln	Thr	Arg	Phe	Val	Arg	Thr	Ile	Ile	Leu	His	Pro	Arg	Tyr	Ser	Arg			
		140					145					150						
GCA	GTG	GTG	GAC	TAT	GAC	ATC	AGC	ATC	GTT	GAG	CTG	AGT	GAA	GAC	ATC		530	
Ala	Val	Val	Asp	Tyr	Asp	Ile	Ser	Ile	Val	Glu	Leu	Ser	Glu	Asp	Ile			
	155					160					165							
AGT	GAG	ACT	GGC	TAC	GTC	CGG	CCT	GTC	TGC	TTG	ccc	AAC	CCG	GAG	CAG		578	
Ser	Glu	Thr	Gly	Tyr	Val	Arg	Pro	Val	. Cys	Leu	Pro	Asn	Pro	Glu	Gln			
170					175	,				180					185			
TGG	CTA	GAG	CCI	' GAC	: ACG	TAC	TGC	TAT	' ATC	ACA	GGC	TGG	GGC	CAC	ATG		626	
															Met			

- 68 -

				-
	190	195	200	
		TG CAA GAG GGA GAG eu Gln Glu Gly Glu 210		674
	Cys Gln Ser T	AC TTT GAC ATG AAG yr Phe Asp Met Lys 25		722
		AG TCT GGC ACA GTT lu Ser Gly Thr Val 245		770
GGT GAC TGG GGC Gly Asp Trp Gly 250				799
(2) INFORMATION				
(A	ENCE CHARACTER LENGTH: 258 TYPE: amino TOPOLOGY: 1	amino acids acid		
(ii) MOLE	CULE TYPE: pro	otein		
(xi) SEQU	JENCE DESCRIPT	ON: SEQ ID NO.8:		
Glu Pro Ser Val	Thr Lys Leu :	Ile Gln Glu Gln Glu 10	Lys Glu Pro Arg 15	
Trp Leu Thr Leu		Trp Glu Ser Leu Asn 25	Gly Thr Thr Leu	
His Glu Leu Val	l Val Asn Gly	Gln Ser Cys Glu Ser 40	Arg Ser Lys Ile	
Ser Leu Leu Cy: 50		Asp Cys Gly Arg Arg		
	55	•		

- 69 -

Pro Trp Gln Cys Ser Leu Gln Ser Glu Pro Ser Gly His Ile Cys Gly 85 90 Cys Val Leu Ile Ala Lys Lys Trp Val Val Thr Val Ala His Cys Phe 105 100 Glu Gly Arg Glu Asn Ala Ala Val Trp Lys Val Val Leu Gly Ile Asn 120 Asn Leu Asp His Pro Ser Val Phe Met Gln Thr Arg Phe Val Arg Thr 135 Ile Ile Leu His Pro Arg Tyr Ser Arg Ala Val Val Asp Tyr Asp Ile 155 150 Ser Ile Val Glu Leu Ser Glu Asp Ile Ser Glu Thr Gly Tyr Val Arg 170 175 165 Pro Val Cys Leu Pro Asn Pro Glu Gln Trp Leu Glu Pro Asp Thr Tyr 190 185 180 Cys Tyr Ile Thr Gly Trp Gly His Met Gly Asn Lys Met Pro Phe Lys 205 200 195 Leu Gln Glu Gly Glu Val Arg Ile Ile Ser Leu Glu His Cys Gln Ser 215 220 Tyr Phe Asp Met Lys Thr Ile Thr Thr Arg Met Ile Cys Ala Gly Tyr 240 235 225 230 Glu Ser Gly Thr Val Asp Ser Cys Met Gly Asp Trp Gly Gly Pro Leu

250

255

Asn Ser

(2) INFORMATION FOR SEQ ID NO:9:

245

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2241 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 166..1773

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

	(22,							_									
ATTI	ATA	ACG F	ACTCA	CTAT	'A GG	GAAT	TTGG	G CCC	CTCGA	AGGA	AGAA	TTCG	GC P	ACGAG	GCTGC	(60
GGCG	CACI	rgt (GAGGG	GAGTO	G CI	GTGF	TCCC	G GGG	GCCC	GAA	cccc	SACTO	GA G	GCTGA	AGCGC	1:	20
AGGC	TGC	GG (SCGCG	FGAGT	C GG	GAGG	GCT0	G AGT	FGTTC	CTT	CCAG			cG GA er Gl		1	74
									GGC Gly							2:	22
									TCA Ser							2	70
									GAA Glu 45							3	18
									TGT Cys							3	66
									CCA Pro							4	14
									GAG Glu							4	62
	-								CTG Leu							5	510
GCT	GTG	TTT	GAT	AAT	TTG	ATT	CAA	TTG	GAG	CAT	CTT	AAC	ATT	GTT	AAG	5	558

Ala	Val	Phe	Asp	Asn 120	Leu	Ile	Gln	Leu	Glu 125	His	Leu	Asn	Ile	Val 130	Lys	
					GCT Ala											606
					ATG Met											654
					CAC His											702
					CTC Leu 185											750
					GGG Gly											798
					AAG Lys											846
					TGT CYs											894
					GAA Glu											942
					TGT Cys 265											990
										Glu					Ala	1038
															TGC Cys	1086

- 72 -

			295					300					305				
CTG.	CAG	TCT	GAG	ССТ	GCT	CGC	AGA	CCA	ACA	GCC	AGA	GAA	CTT	CTG	TTC	:	1134
	Gln																
		310					315					320					
	CCA	~~~	mmc	mmm	C 3 3	CMC	CCC	ጥርር	כיייכ	222	ርሞር	СТТ	GCG	GCC	CAC	;	1182
	Pro																
1110	325					330					335						
												000	OM A	030	CAC		1230
	ATT Ile																1.230
Cys 340	TTE	vaı	GIĀ	HIS	345	птъ	Mec	116	110	350	11011				355		
	ACC																1278
Ile	Thr	Lys	Asn		Asp	Thr	Ser	Ala	Val 365	Leu	Ala	GIU	TTE	370	Ala		
				360					303								
	CCA																1326
Gly	Pro	Gly	Arg	Glu	Pro	Val	Gln		Leu	Tyr	Ser	Gln		Pro	Ala		
			375					380					385				
CTG	GAA	тта	GAT	AAA	TTC	CTT	GAA	GAT	GTC	AGG	AAT	GGG	ATC	TAT	CCT		1374
	Glu																
		390					395					400					
om.	aca	999	mmm	000	CTTC	CCT	CCC	CCC	CAG	CAG	CCA	CAG	CAG	GAG	GAG		1422
	Thr																
200	405					410					415						
									<u> </u>		- ~~	~~~		o o m	C 3 3		1470
	ACA Thr																1470
Va.		ser	Pro	vai	425	PIO	FLO	per	Val	430		110		~	435		
	A GCT																1518
Pro) Ala	Glu	Val			Arg	Lys	Val	Val 445		Met	Gin	Cys	450			
				440	'				413								
GA	G TCG	GTG	GAG	GAG	GGA	GTC	AAA	CAC	CAC	CTG	ACA	CTI	CTG	CTG	AAG		1566
G1	u Ser	· Val	Glu	Glu	Gly	Val	Lys			Leu	Thr	Leu			Lys		
			455	•				460)				465				
ம்ம	G GAC	G GAC	. AAA	CTC	AAC	. CGG	CAC	CTO	AGC	TGT	GAC	CTC	ATG	CCA	AAT		1614
															Asn		
		470)				475	•				480)				

- 73 -

AT ATC	CCC	GAG	TTG	GCG	GCT	GAG	CTG	GTG	CAG	CTG	GGC	TTC	ATT	1662
sn Ile	Pro	Glu	Leu	Ala	Ala	Glu	Leu	Val	Gln	Leu	Gly	Phe	Ile	
35				490					495					
														1710
lu Ala	Asp	Gln	Ser	Arg	Leu	Thr	Ser	Leu	Leu	Glu	Glu	Thr	Leu	
			505					510					515	
AG TTC	AAT	TTT	GCC	AGG	AAC	AGT	ACC	CTC	AAC	TCA	GCC	GCT	GTC	1758
ys Phe	Asn	Phe	Ala	Arg	Asn	Ser	Thr	Leu	Asn	Ser	Ala	Ala	Val	
		520					525					530		
TC TCC	TCT	TAG	AGCT	CAC	rcgg	GCCA(GG C	CCTG	ATCT	G CG	CTGT	GGCT		1810
al Ser	Ser													
	535													
TGGAC	GTGC'	TGCA	GC C	CTCC	rgtco	CT'	rccc	CCCA	GTC	AGTA	ATT	CCCT	GTGAAG	1870
TCCCT	CCTT'	TATT	AT TA	CAGG	AGGG	C TG	GGGG	GGCT	CCC	rggt'	ГСТ	GAGC	ATCATC	1930
CCCTC	CCCT	CTCT'	rc c'	TCCC	CTCT	G CA	CTTT	GTTT	ACT	rgtt'	rtg	CACA	GACGTG	1990
GGGCC	TTCT	CAGC	AG C	CGCC'	TTCT	A GT	TGGG	GGCT	AGT	CGCT	GAT	CTGC	CGGCTC	2050
CAGCC	TGTG	TGGA	AA G	GAGG	CCCA	C GG	GCAC'	TAGG	GGA	GCCG	TAA	TCTA	CAATCC	2110
GGGCG	GCCG	GGGC	GG G.	AGAG.	AAAG	G TG	GTGC	TGCA	GTG	GTGG	CCC	TGGG	GGGCCA	2170
TTCGC	CTCA	GTTG	CT G	CTGT.	AATA	A AA	GTCT	ACTT	TTT	GCTA	AAA	AAA.A	AAAAA.	2230
AAAAA	A						•							2241
	an Ile AG GCT Lu Ala AG TTC VS Phe TC TCC TCCTC GGGCC CAGCC GGGCG TTCGC	an Ile Pro B5 AG GCT GAC Lu Ala Asp AG TTC AAT VS Phe Asn TC TCC TCT B1 Ser Ser 535 TGGAC GTGC TCCCT CCTT CCCTC CCCT CAGCC TGTG GGGCG GCCG	an Ile Pro Glu AG GCT GAC CAG Lu Ala Asp Gln AG TTC AAT TTT YS Phe Asn Phe 520 TC TCC TCT TAGA Al Ser Ser 535 TGGAC GTGCTGCAC TCCCT CCTTTATT CCCTC CCTCTCT GGGCC TCTCAGC CAGCC TGTGTGGA GGGCG GCCGGGGCC TTCGC CTCAGTTG	an Ile Pro Glu Leu AG GCT GAC CAG AGC Lu Ala Asp Gln Ser 505 AG TTC AAT TTT GCC VS Phe Asn Phe Ala 520 TC TCC TCT TAGAGCTC al Ser Ser 535 TGGAC GTGCTGCAGC CC TCCCT CCTTTATTAT TC CCCTC CCCTCTCTTC CC GGGCC TCTCAGCAG CC CAGCC TGTGTGGAAA GC GGGCG GCCGGGGCGG GC TTCGC CTCAGTTGCT G	Ile Pro Glu Leu Ala 490 AG GCT GAC CAG AGC CGG Lu Ala Asp Gln Ser Arg 505 AG TTC AAT TTT GCC AGG VS Phe Asn Phe Ala Arg 520 TC TCC TCT TAGAGCTCAC Tal Ser Ser 535 TGGAC GTGCTGCAGC CCTCCT TCCCT CCTTTATTAT TCAGG CCCTC CCCTCTCTTC CTCCCC CAGCC TGTGTGGAAA GGAGG GGGCG GCCGGGGCGG GAGAG TTCGC CTCAGTTGCT GCTGT	Ile Pro Glu Leu Ala Ala 490 AG GCT GAC CAG AGC CGG TTG Lu Ala Asp Gln Ser Arg Leu 505 AG TTC AAT TTT GCC AGG AAC VS Phe Asn Phe Ala Arg Asn 520 TC TCC TCT TAGAGCTCAC TCGGC Al Ser Ser 535 TGGAC GTGCTGCAGC CCTCCTGTCC CCCTC CCTTTATTAT TCAGGAGGGC CCCTC CCCTCTCTC CTCCCCTCTC CAGCC TGTGTGGAAA GGAGGCCCAC CCGCG GCCGGGGCG GAGAGAAAGC TTCGC CTCAGTTGCT GCTGTAATA	Ile Pro Glu Leu Ala Ala Glu 490 AG GCT GAC CAG AGC CGG TTG ACT Lu Ala Asp Gln Ser Arg Leu Thr 505 AG TTC AAT TTT GCC AGG AAC AGT VS Phe Asn Phe Ala Arg Asn Ser 520 TC TCC TCT TAGAGCTCAC TCGGGCCAG Al Ser Ser 535 IGGAC GTGCTGCAGC CCTCCTGTCC CT CCCTC CCTTTATTAT TCAGGAGGGC TGG CCCTC CCCTCTCTC CTCCCCTCTG CAG CGGCC TTCTCAGCAG CCGCCTTCTA GT CAGCC TGTGTGGAAA GGAGGCCCAC GGG GGGCG GCCGGGGCGG GAGAGAAAGG TGG TTCGC CTCAGTTGCT GCTGTAATAA AA	Ile Pro Glu Leu Ala Ala Glu Leu 490 AG GCT GAC CAG AGC CGG TTG ACT TCT Lu Ala Asp Gln Ser Arg Leu Thr Ser 505 AG TTC AAT TTT GCC AGG AAC AGT ACC VS Phe Asn Phe Ala Arg Asn Ser Thr 520 TC TCC TCT TAGAGCTCAC TCGGGCCAGG CO Al Ser Ser 535 TGGAC GTGCTGCAGC CCTCCTGTCC CTTCCCC TCCCT CCTTTATTAT TCAGGAGGGC TGGGGGC CCCTC CCCTCTCTC CTCCCCTCTG CACTTTC CGGCC TTCTCAGCAG CCGCCTTCTA GTTGGGC CAGCC TGTGTGGAAA GGAGGCCCAC GGGCAC TCCCC CCCGGGGCGG GAGAGAAAGG TGGTGCC TTCGC CTCAGTTGCT GCTGTAATAA AAGTCT	Sin Ile Pro Glu Leu Ala Ala Glu Leu Val 490 AG GCT GAC CAG AGC CGG TTG ACT TCT CTG Lu Ala Asp Gln Ser Arg Leu Thr Ser Leu 505 AG TTC AAT TTT GCC AGG AAC AGT ACC CTC VS Phe Asn Phe Ala Arg Asn Ser Thr Leu 520 TC TCC TCT TAGAGCTCAC TCGGGCCAGG CCCTGA All Ser Ser 535 TGGAC GTGCTGCAGC CCTCCTGTCC CTTCCCCCCA TCCCTC CCTTTATTAT TCAGGAGGGC TGGGGGGGCT CCCTC CCCTCTTC CTCCCCTCTG CACTTTGTTT CGGGCC TTCTCAGCAG CCGCCTTCTA GTTGGGGGCT CAGCC TGTGTGGAAA GGAGGCCCAC GGGCACTAGG GGGCG GCCGGGGCGG GAGAGAAAGG TGGTGCTGCA TTCGC CTCAGTTGCT GCTGTAATAA AAGTCTACTT	Sin Tile Pro Glu Leu Ala Ala Glu Leu Val Gln 495 AG GCT GAC CAG AGC CGG TTG ACT TCT CTG CTA Lu Ala Asp Gln Ser Arg Leu Thr Ser Leu Leu 505 AG TTC AAT TTT GCC AGG AAC AGT ACC CTC AAC VS Phe Asn Phe Ala Arg Asn Ser Thr Leu Asn 520 TC TCC TCT TAGAGCTCAC TCGGGCCAGG CCCTGATCTC al Ser Ser 535 TGGAC GTGCTGCAGC CCTCCTGTCC CTTCCCCCCA GTCA CCCTC CCTTTATTAT TCAGGAGGGC TGGGGGGGCT CCCT CCCTC CCCTCTCTC CTCCCCTCTG CACTTTGTTT ACT CGGGCC TCTCTAGCAG CCGCCTTCTA GTTGGGGGCT AGTC CCAGCC TGTGTGGAAA GGAGGCCCAC GGGCACTAGG GGAC CGGGCG GCCGGGGGGG GAGAGAAAGG TGGTGCTGCA GTGGGGGCC TTCCCC CTCAGTTGCT GCTGTAATAA AAGTCTACTT TTT	Sin Ile Pro Glu Leu Ala Ala Glu Leu Val Gln Leu 490 AG GCT GAC CAG AGC CGG TTG ACT TCT CTG CTA GAA Lu Ala Asp Gln Ser Arg Leu Thr Ser Leu Leu Glu 505 AG TTC AAT TTT GCC AGG AAC AGT ACC CTC AAC TCA VS Phe Asn Phe Ala Arg Asn Ser Thr Leu Asn Ser 520 TC TCC TCT TAGAGCTCAC TCGGGCCAGG CCCTGATCTG CGC Al Ser Ser 535 TGGAC GTGCTGCAGC CCTCCTGTCC CTTCCCCCCA GTCAGTAG CCCTC CCTTTATTAT TCAGGAGGGC TGGGGGGGCT CCCTGGTG CCCTC CCTCTCTC CTCCCCTCTG CACTTTGTTT ACTTGTTG CGGCC TCTCTAGCAG CCGCCTTCTA GTTGGGGGCT AGTCGCTG CAGCC TGTGTGGAAA GGAGGCCCAC GGGCACTAGG GGAGCCGG CGGCG GCCGGGGCGG GAGAGAAAGG TGGTGCTGCA GTGGTGGG TTCGC CTCAGTTGCT GCTGTAATAA AAGTCTACTT TTTGCTA	Sin Ile Pro Glu Leu Ala Ala Glu Leu Val Glin Leu Gly 495 AG GCT GAC CAG AGC CGG TTG ACT TCT CTG CTA GAA GAG Lu Ala Asp Glin Ser Arg Leu Thr Ser Leu Leu Glu Glu 505 AG TTC AAT TTT GCC AGG AAC AGT ACC CTC AAC TCA GCC Lys Phe Asn Phe Ala Arg Asn Ser Thr Leu Asn Ser Ala 520 TC TCC TCT TAGAGCTCAC TCGGGCCAGG CCCTGATCTG CGCTGT Al Ser Ser 535 TGGAC GTGCTGCAGC CCTCCTGTCC CTTCCCCCCA GTCAGTATTA TCCCT CCTTTATTAT TCAGGAGGGC TGGGGGGGCT CCCTGGTTCT CCCTC CCCTCTCTC CTCCCCTCTG CACTTTGTTT ACTTGTTTTG CCCCC CCCTCTCTCC CTCCCCTCTG GGGGGGCT AGTCGCTGAT CAGCC TGTGTGGAAA GGAGGCCCAC GGGCACTAGG GGAGCCGAAT CGGGCG GCCGGGGCGG GAGAGAAAGG TGGTGCTGCA GTGGTGGCCC TTCCC CTCAGTTGCT GCTGTAATAA AAGTCTACTT TTTGCTAAAAA	Sin Ile Pro Glu Leu Ala Ala Glu Leu Val Gln Leu Gly Phe 490 495 AG GCT GAC CAG AGC CGG TTG ACT TCT CTG CTA GAA GAG ACC Lu Ala Asp Gln Ser Arg Leu Thr Ser Leu Leu Glu Glu Thr 505 510 AG TTC AAT TTT GCC AGG AAC AGT ACC CTC AAC TCA GCC GCT YS Phe Asn Phe Ala Arg Asn Ser Thr Leu Asn Ser Ala Ala 520 525 530 TC TCC TCT TAGAGCTCAC TCGGGCCAGG CCCTGATCTG CGCTGTGGCT 335 AGGAC GTGCTGCAGC CCTCCTGTCC CTTCCCCCCA GTCAGTATTA CCCTG CCCTC CCCTCTTCT CTCCCCCTA GTCAGTATTA CCCTG CCCTC CCCTCTTCT CTCCCCCTA GTCAGTATTA CCCTG CCCTC CCCTCTTCT CTCCCCCTA GTCAGTATTA CCCTG CCCTC CCCTCTTCT CTCCCCTCTG CACTTTGTTT ACTTGTTTTG CACAG CCCTC TCTCCCCCA GTCAGTATTA CTGCTGGGCC TTCTCAGCAG CCGCCTTCTA GTTGGGGGCT AGTCGCTGAT CTGCCCCCCCA GTCAGTAGTA CTGCCCCCCCCCC	AG GCT GAC CAG AGC CGG TTG ACT TCT CTG CTA GAA GAG ACC TTG Lu Ala Asp Gln Ser Arg Leu Thr Ser Leu Leu Glu Glu Thr Leu 505 515 AG TTC AAT TTT GCC AGG AAC AGT ACC CTC AAC TCA GCC GCT GTC VS Phe Asn Phe Ala Arg Asn Ser Thr Leu Asn Ser Ala Ala Val 520 525 530 TC TCC TCT TAGAGCTCAC TCGGGCCAGG CCCTGATCTG CGCTGTGGCT 535 TGGAC GTGCTGCAGC CCTCCTGTCC CTTCCCCCCA GTCAGTATTA CCCTGTGAAG TCCCT CCTTTATTAT TCAGGAGGGC TGGGGGGGCT CCCTGGTTCT GAGCATCATC CCCTC CCCTCTTCC CTCCCCTCTG CACTTTGTTT ACTTGTTTG CACAGACGTG CCGCTC CCCTCTTCC CTCCCCCCA GTCGGGGGCT CTGCCGGCTC CAGCC TGTGTGGAA GGGGCC TCTCAGCAG CGGCCTTCTA GTTGGGGGCT AGTCGCTGAT CTGCCGGCTC CAGCC TGTGTGGAA GGAGGCCCAC GGGCACTAGG GGAGCCGAAT TCTACAATCC CAGCC TGTGTGGAAA GGAGGCCCAC GGGCACTAGG GGAGCCGAAT TCTACAATCC GGGCG GCCGGGGGGG GAGAGAAAGG TGGTGCTGCA GTGGTGGCCC TGGGGGGCCA TTCCCC CTCAGTTGCT GCTGTAATAA AAAAAAAAAA

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 535 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Met Ser Glu Gly Glu Ser Gln Thr Val Leu Ser Ser Gly Ser Asp Pro

- 74 -

1				5					10					15	
Lys	Val	Glu	Ser 20	Ser	Ser	Ser	Ala	Pro 25	Gly	Leu	Thr	Ser	Val 30	Ser	Pro
Pro	Val	Thr 35	Ser	Thr	Thr	Ser	Ala 40	Ala	Ser	Pro	Glu	Glu 45	Glu	Glu	Glu
Ser	Glu 50	Asp	Glu	Ser	Glu	Ile 55	Leu	Glu	Glu	Ser	Pro 60	Cys	Gly	Arg	Trp
Gln 65	Lys	Arg	Arg	Glu	Glu 70	Val	Asn	Gln	Arg	Asn 75	Val	Pro	Gly	Ile	Asp 80
Ser	Ala	Tyr	Leu	Ala 85	Met	Asp	Thr	Glu	Glu 90	Gly	Val	Glu	Val	Val 95	Trp
Asn	Glu	Val	Gln 100	Phe	Ser	Glu	Arg	Lys 105	Asn	Tyr	Lys	Leu	Gln 110	Glu	Glu
Lys	Val	Cys 115	Ala	Val	Phe	Asp	Asn 120	Leu	Ile	Gln	Leu	Glu 125	His	Leu	Asn
Ile	Val 130	Lys	Phe	His	Lys	Туг 135	Trp	Ala	Asp	Ile	Lys 140	Glu	Asn	Lys	Ala
Arg 145	Val	Ile	Phe	Ile	Thr 150	Gly	Tyr	Met	Ser	Ser 155	Gly	Ser	Leu	Lys	Gln 160
Phe	Leu	Lys	Lys	Thr 165	Gln	Lys	Asn	His	Gln 170	Thr	Met	Asn	Glu	Lys 175	Ala
Trp	Lys	Arg	Trp 180	Cys	Thr	Gln	Ile	Leu 185	Ser	Ala	Leu	Ser	Туr 190	Leu	His
Ser	Cys	Asp 195	Pro	Pro	Ile	Ile	His 200	Gly	Asn	Leu	Thr	Cys 205	Asp	Thr	Ile
Phe	Ile 210	Gln	His	Asn	Gly	Leu 215	Ile	Lys	Ile	Gly	Ser 220	Val	Ala	Pro	Asp
Thr 225		Asn	Asn	His	Val 230	Lys	Thr	Суз	Arg	Glu 235		Gln	Lys	Asn	Leu 240
His	Phe	Phe	Ala	Pro	Glu	Tyr	Gly	Glu	Val	Thr	Asn	Val	Thr	Thr	Ala

- 75 -

				245					250					255	
Val	Asp	Ile	Туr 260	Ser	Phe	Gly	Met	Cys 265	Ala	Leu	Gly	Met	Ala 270	Val	Leu
Glu	Ile	Gln 275	Gly	Asn	Gly	Glu	Ser 280	Ser	Tyr	Val	Pro	Gln 285	Glu	Ala	Ile
Ser	Ser 290	Ala	Ile	Gln	Leu	Leu 295	Glu	Asp	Pro	Leu	Gln 300	Arg	Glu	Phe	Ile
Gln 305	Lys	Cys	Leu	Gln	Ser 310	Glu	Pro	Ala	Arg	Arg 315	Pro	Thr	Ala	Arg	Glu 320
Leu	Leu	Phe	His	Pro 325	Ala	Leu	Phe	Glu	Val 330	Pro	Ser	Leu	Lys	Leu 335	Leu
Ala	Ala	His	Cys 340	Ile	Val	Gly	His	Gln 345	His	Met	Ile	Pro	Glu 350	Asn	Ala
Leu	Glu	Glu 355	Ile	Thr	Lys	Asn	Met 360	Asp	Thr	Ser	Ala	Val 365	Leu	Ala	Glu
Ile	Pro 370	Ala	Gly	Pro	Gly	Arg 375	Glu	Pro	Val	Gln	Thr 380	Leu	Tyr	Ser	Gln
Ser 385	Pro	Ala	Leu	Glu	Leu 390	Asp	Lys	Phe	Leu	Glu 395	Asp	Val	Arg	Asn	Gly 400
Ile	Tyr	Pro	Leu	Thr 405	Ala	Phe	Gly	Leu	Pro 410	Arg	Pro	Gln	Gln	Pro 415	Gln
Gln	Glu	Glu	Val 420	Thr	Ser	Pro	Val	Val 425	Pro	Pro	Ser	Val	Lys 430	Thr	Pro
Thr	Pro	Glu 43 5	Pro	Ala	Glu	Val	Glu 440	Thr	Arg	Lys	Val	Val 445	Leu	Met	Gln
Cys	Asn 450	Ile	Glu	Ser	Val	Glu 455	Glu	Gly	Val	Lys	His 460	His	Leu	Thr	Leu
Leu 465	Leu	Lys	Leu	Glu	Asp 470	Lys	Leu	Asn	Arg	His 475	Leu	Ser	Cys	Asp	Leu 480
Mot	Dro	λαη	Clu	λαn	Tlo	Pro	Glu	Len	Δla	ΔΊа	Glu	T.e.11	Wa l	Gln	T.011

- 76 -

485 490 495

Gly Phe Ile Ser Glu Ala Asp Gln Ser Arg Leu Thr Ser Leu Leu Glu 500 505 510

Glu Thr Leu Asn Lys Phe Asn Phe Ala Arg Asn Ser Thr Leu Asn Ser 515 520 525

Ala Ala Val Thr Val Ser Ser 530 535

- (2) INFORMATION FOR SEQ ID NO:11:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 39 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GCACAGTCGA CCAAGCCGGA GTCGCAGAG

39

- (2) INFORMATION FOR SEQ ID NO:12:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 30 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

- 77 -

GCACAAAGCT TGCCAGGAGG GGTCTGGCTG	30
(2) INFORMATION FOR SEQ ID NO:13:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 32 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
GCACAACCAT GGCCAAGCCG GAGTCGCAGG AG	32
(2) INFORMATION FOR SEQ ID NO:14:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
GCACAAGATC TCCAGGAGGG GTCTGGCTG	29
(2) INFORMATION FOR SEQ ID NO:15:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 14 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	

Lys Pro Glu Ser Gln Glu Ala Ala Pro Leu Ser Gly Pro Cys

PCT/AU98/00085 WO 98/36054

- 78 -

10 5

- (2) INFORMATION FOR SEQ ID NO:16:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:
- Glu Asp Ala Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser Leu Arg Leu Trp Asp 5 10 Cys
- (2) INFORMATION FOR SEQ ID NO:17:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
- Gly Tyr Ile Lys Glu Asp Glu Ala Leu Pro Ser Pro His Thr Leu Gln Cys 10 15
- (2) INFORMATION FOR SEQ ID NO:18:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 29 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

PCT/AU98/00085

WO 98/36054

- 79 -

(2)	INFORMATION FOR SEQ ID NO:19:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 50 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
GCA	CATCTAG ATCAGTGGTG GTGGTGGTGG TGGACCGGCC CCAGGAGTGG	50
(2)	INFORMATION FOR SEQ ID NO:20:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
GCA	CAGCGGC CGCGAGGCCA TGGGCGCGCG C	31
(2)	INFORMATION FOR SEQ ID NO:21:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 52 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
GCA	CAGCGGC CGCTCAGTGG TGGTGGTGGT GGTGCCAGGA GGGGTCTGGC TG	52
(2)	INFORMATION FOR SEQ ID NO:22:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
CTGACTTCCA TGCCATCCTT	20
(2) INFORMATION FOR SEQ ID NO:23:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
GCTCACGACT CCAATCTGAT	20
(2) INFORMATION FOR SEQ ID NO:24:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 5 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
Arg Ile Val Gly Gly 5	
(2) INFORMATION FOR SEQ ID NO:25:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 959 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

(ix) FEATURE:

(A) NAME/KEY: CDS

(B) LOCATION: 2..856

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

			CC TC		s Ar			er Ar	46
			GCT Ala						94
			AAC Asn						142
			GCT Ala						190
			CAG Gln 70						238
			TAT Tyr						286
			TCG Ser						334
		Ser	GTC Val						382

																420
					ACG											430
Cys	Leu	Leu	Asn	Ser	Thr	Tyr	Lys	Phe	Glu	Asn	Arg	Thr	Asp	Cys	Trp	
		130					135					140				
GTG	ACC	GGC	TGG	GGG	GCT	ATT	GGA	GAA	GAT	GAG	AGT	CTG	CCA	TCT	CCC	478
Val	Thr	Gly	Trp	Gly	Ala	Ile	Gly	Glu	Asp	Glu	Ser	Leu	Pro	Ser	Pro	
	145	-	_	_		150					155					
2 2 C	ΔСТ	CTC	CAG	GAA	GTG	CAG	GTA	GCT	ATT	ATC	AAC	AAC	AGC	ATG	TGT	526
					Val											
	1111	шеα	GIII	Ora	165	0277				170					175	
160					103											
	~ n m	* mc	m 2 C	70 70 70	AAG	CCA	CAC	ጥጥር	CGC	ACG	ממכ	ΑπС	TGG	GGA	GAC	574
Asn	HIS	Met	Tyr		Lys	PIO	ASP	Pile		1111	Maii	116	111	190	1155	
				180					185					100		
						~~~	~	aam	999	770	C M M	aaa	maa	mmm.	ccm	622
					ACT											022
Met	Val	Суѕ		Gly	Thr	Pro	Glu		СТУ	гЛs	Asp	Ата		Pne	GIY	
			195					200					205			
																650
					TTG											670
Asp	Ser	Gly	Gly	Pro	Leu	Ala	Cys	Asp	Gln	Asp	Thr		Trp	Tyr	Gin	
		210					215					220				
					TGG											718
Val	Gly	Val	Val	Ser	Trp	Gly	Ile	Gly	Cys	Gly	Arg	Pro	Asn	Arg	Pro	
	225					230					235					
GGA	GTC	TAT	ACC	AAC	ATC	AGT	CAT	CAC	TAC	AAC	TGG	ATC	CAG	TCA	ACC	766
Gly	Val	Tyr	Thr	Asn	Ile	Ser	His	His	Tyr	Asn	Trp	Ile	Gln	Ser	Thr	
240					245				•	250					255	
ATG	ATC	CGC	AAT	GGG	CTG	CTC	AGG	CCT	GAC	CCA	GTC	CCC	TTG	СТА	CTG	814
					Leu											
		5		260			_		265					270		
שישיים	Cmm	י אכייי	СТС		TGG	GCT	тсс	тст	TTG	CTG	AGG	CCT	GCC			856
					Trp											
FIIE	пец	. 1111	275			1110		280			2		285			
			413					200								
ma:	acaa	12 (2	aama	m x ~~	יוחר יי	C N C C	imeme	יא ריר	ישירי זי רי	iccmc	י יייטיים	ירושירית	புரு	CTDAT	CTTGCT	916
TGA	GCCC	.ACA	CGTG	TACC	TC A	CACC	1616	יא פפ	TCMG	.GG 1.C	191	U1U1	111	JIMI	C11GC1	210
										***						959
TGC	LAAT:	'AAA'	CCTG	AATT	I AT	TT.VV	AAAA	A AA	AAAA	AAAA	AAA A	7				909

- (2) INFORMATION FOR SEQ ID NO:26:
  - (i) SEQUENCE CHARACTERISTICS:
    - (A) LENGTH: 285 amino acids
    - (B) TYPE: amino acid
    - (D) TOPOLOGY: linear
  - (ii) MOLECULE TYPE: protein
  - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:
- Asp Leu Leu Ser Gly Pro Cys Gly His Arg Thr Ile Pro Ser Arg Ile
  1 5 10 15
- Val Gly Gly Asp Asp Ala Glu Leu Gly Arg Trp Pro Trp Gln Gly Ser 20 25 30
- Leu Arg Val Trp Gly Asn His Leu Cys Gly Ala Thr Leu Leu Asn Arg 35 40 45
- Arg Trp Val Leu Thr Ala Ala His Cys Phe Gln Lys Asp Asn Asp Pro 50 55 60
- Phe Asp Trp Thr Val Gln Phe Gly Glu Leu Thr Ser Arg Pro Ser Leu 65 70 75 80
- Trp Asn Leu Gln Ala Tyr Ser Asn Arg Tyr Gln Ile Glu Asp Ile Phe 85 90 95
- Leu Ser Pro Lys Tyr Ser Glu Gln Tyr Pro Asn Asp Ile Ala Leu Leu 100 105 110
- Lys Leu Ser Ser Pro Val Thr Tyr Asn Asn Phe Ile Gln Pro Ile Cys 115 120 125
- Leu Leu Asn Ser Thr Tyr Lys Phe Glu Asn Arg Thr Asp Cys Trp Val 130 135 140
- Thr Gly Trp Gly Ala Ile Gly Glu Asp Glu Ser Leu Pro Ser Pro Asn 145 150 155 160
- Thr Leu Gln Glu Val Gln Val Ala Ile Ile Asn Asn Ser Met Cys Asn 165 170 175
- His Met Tyr Lys Lys Pro Asp Phe Arg Thr Asn Ile Trp Gly Asp Met

- 84 -

			180					185					190		
Val	Cys	Ala 195	Gly	Thr	Pro	Glu	Gly 200	Gly	Lys	Asp	Ala	Cys 205	Phe	Gly	Asp
Ser	Gly 210	Gly	Pro	Leu	Ala	Cys 215	Asp	Gln	Asp	Thr	Val 220	Trp	Tyr	Gln	Val
Gly 225	Val	Val	Ser	Trp	Gly 230	Ile	Gly	Cys	Gly	Arg 235	Pro	Asn	Arg	Pro	Gly 240
Val	Tyr	Thr	Asn	Ile 245	Ser	His	His	Tyr	Asn 250		Ile	Gln	Ser	Thr 255	Met
Ile	Arg	Asn	Gly 260	Leu	Leu	Arg	Pro	Asp 265	Pro	Val	Pro	Leu	Leu 270	Leu	Phe
Leu	Thr	Leu 275	Ala	Trp	Ala	Ser	Ser 280	Leu	Leu	Arg	Pro	Ala 285			
(2)	INF	ORMA'	TION	FOR	SEQ	ID 1	NO:2	7:							
	(i						ISTI								
		(2	A) L	ENGT:	H: 3	866	base	pai:	rs						
		()	B) T	YPE:	nuc	leic	aci	đ							

## (ii) MOLECULE TYPE: DNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

AGTGAGTCTC CTGCCTCAGC CTCCCAAGTA GCTGGGACTT CAGGTGTGT CCACCATCCT 60

CAGCTAATTT TTTTTTTTT TTTTTTTTTT AGAAGGAGTC TTGCTCTGTC GCCCAGGCTG 120

GAGTGCAGTG GCGCGATCTT CCAGGCCCCA CCGGGCCCTC AGGAAGGCCT TGCCTACCTG 180

CTTTAAGGGG ACTCCTGGCT CAGGGCCAGG CCCCTGGTGC TGGAGGAGGT GGTGGGTGGA 240

GGGCAGGGGG CACCAAGCGG GCAGCCAGGA CCCCCGGGCT GCAGACAAGA AAAGGACTGT 300

GGGGTCCACC GGGTCTGGGC CACATCAAGG AATGTGGTTG AAGACCCGCC CTTAGGAGCT 360 GAAAGCCAGG GCGCTACCAG GCCTGAGAGG CCCCAAACAG CCCTTGGGCC TGGTTTGGGA 420 GGATTAAGCT GGAGCTCCCA ACCCGCCCTG CCCCCAGGGG GCGACCCCGG GCCCGGCGCG 480 AGAGGAGGCA GAGGGGGCGT CAGGCCGCGG GAGAGGAGGC CATGGGCGCG CGCGGGGCGC 540 TGCTGCTGGC GCTGCTGCTG GCTCGGGCTG GACTCAGGAA GCCGGGTGAG CTCGGGGCGC 600 TGCTGGCGGG ATGGGGAGGC GGGGGAGCGG TGGGGAGGAC GGGAGGTGGA GGCCGCGGGG 660 720 AGTCACTTCT TGTCTCCCGC AGAGTCGCAG GAGGCGGCGC CGTTATCAGG TAGGGCGCCC AGGACGCGCG ATTCCTGCCA GGGCCGTTGG GCCGAGGTGG ACGGGGGGCG GTGAGGGGGT 780 AGAGGGGGGC CTTTACTGCT CTCTCGCCCC CGCCCCCGGG ATCGAGAACT CTGTTGGCGT 840 GGAAAGTAAC TAACGGACGC TGGAGGGGGA TGGGCGGGCC CTGCAGAGCA CGTGGGAGGA 900 TCTCCAGTGT CACCTACTTC CTGCTGCACA CACGCGAGGG GACCCTGGGT GGGCAAAAAC 960 GTGCTTTCCC GGACGGGGTT GAAGGGGAGA AAGGGAGAGG TCGGGCTTGG GGGGCTGCCT 1020 1080 CCCGCGGCTC AGCAGTTCCT CTGACCATCC GAGGACCATG CGGCCGACGG GTCATCACGT CGCGCATCGT GGGTGGAGAG GACGCCGAAC TCGGGCGTTG GCCGTGGCAG GGGAGCCTGC 1140 GCCTGTGGGA TTCCCACGTA TGCCGAGTGA GCCTGCTCAG CCACCGCTGG GCACTCACGG 1200 CGGCGCACTG CTTTGAAACG TGAGTGGGGG TGCGAACGGA GGGGTGCGGG GACGGCCAGG 1260 AACAGGGCTG GAGGGAGTGC CACCGAACTT TACCTCTGGT CTGATGCCAG ACTTGGGCGT 1320 GAAAGTTGTG CGTGGATGCG GCCTGGTGTT CTCCTGAGCC CCAGGCTGTG CTGCAGCCGG 1380 TTACACCCAC TCCAGTTCCC TTTGGGTCTC CTGGAGGGAA CCCTGTTCAG GTTATTCCAG 1440 AATGTTCTTC CAGAACATTT CCACACACTT TTGGGTATTC TCTCCCTTTT TCTTTCAACC 1500 1560 CAAAGTTCAC CACTGACCAT CCCACCCTCA TCCCCCCTCC TGGTGGACGG TGCGGTACAG TGTGGGGCAC TGAGCCAAGG CCAGCACCCC CGGGCCGCTG TGTGGACTCC ATCCTGCCAA 1620 TCCCACATTG GCGTGGTGCA TCTCCCCATT CCTCCTTGGG CTGCATGGGG GTGCCCCTGG 1680

AGGCCTTGGC	TCAATGCAAG	GCTCCTTGGG	ACAGCTCTGG	GAGGTGACAA	GACCCCACCC	1740
TTCTGCTGCA	GGAGCAGGTC	CTAGGACTTT	GGTTGTGGTC	TGTCTGGGCT	CCTTCATTTC	1800
TGCAGGGGAC	CCTGGGTGTT	AGCAAGTAGC	AGCAACACCA	CAGTTTCCCC	TCCTGCACTG	1860
GACCCCAGTT	GTGCTCAGGT	AGCCAGCCCT	CCATCCAGGG	CCCCTGACTG	CTCTCTTCTC	1920
TTCTGCCAGC	TATAGTGACC	TTAGTGATCC	CTCCGGGTGG	ATGGTCCAGT	TTGGCCAGCT	1980
GACTTCCATG	CCATCCTTCT	GGAGCCTGCA	GGCCTACTAC	ACCCGTTACT	TCGTATCGAA	2040
TATCTATCTG	AGCCCTCGCT	ACCTGGGGAA	TTCACCCTAT	GACATTGCCT	TGGTGAAGCT	2100
GTCTGCACCT	GTCACCTACA	CTAAACACAT	CCAGCCCATC	TGTCTCCAGG	CCTCCACATT	2160
TGAGTTTGAG	AACCGGACAG	ACTGCTGGGT	GACTGGCTGG	GGGTACATCA	AAGAGGATGA	2220
GGGTGAGGCT	GGGGACAGGC	GGGTCAGGGA	GGAACTGTCT	TTGTTCACCT	GTTCCCCTGC	2280
ATAGGCACAA	TAGCCCCCTG	CTTGGTCTGG	GGGTGCAGGC	TATGCCCCTC	TTGCTTGCAG	2340
TCTCTCCTCA	CCTGCCAGGG	CAGGGACCAA	ACACCCAGTT	CTCTCCCTTC	CAGGGGCTGT	2400
GGGGCCAGA	AGGAGAGTGT	GAGAGGGAGG	CCAGTTTGGC	GCAAGCCTGT	GGGTGGTGCG	2460
GTGGTGGAGG	GGTTCTGGAG	GGCTTGGCGA	CATAAACCTC	ATACTTGGAT	TTATTCCTGC	2520
ATCTTTCCAC	CTCCCCCAGT	GCTCACCAAT	GCCCCAGGCA	TCACCAGGTT	GCCCCTTCCC	2580
CCAAGGTCTG	GCTTTGGATG	CTTATGTGAA	CACCGTTTTA	AGTTGCCTTG	GCCCCTTCCT	2640
CGGTTCCTTT	TTGGCTGAGG	AATCTCTCCA	TGGCTGCAGG	CAGGGCCATT	GTTGCCATTC	2700
TACAGATAGG	GAAAGTGCGG	CTGGGGGAGC	TCTGACAGCT	GTCCCTCCCC	GGGGCCTTCT	2760
GTGATGCTGC	TGAGGGCCTC	TGTTGTGCTG	GGGTCTGGGT	TGGAGCTGGG	GGTAATGGAG	2820
ATGAACCTGC	CAGGCACAGT	GGGTGCCCCA	GGGCCCCAC	CCCCGCAGCC	TATGCCATCC	2880
CTCCATAGAG	GGGCCTCAGG	TTGCTGTCTC	TCTCCTTCCC	ACTATCGTCC	GCACAGCACT	2940
GCCATCTCCC	CACACCCTCC	AGGAAGTTCA	GGTCGCCATC	ATAAACAACT	CTATGTGCAA	3000
CCACCTCTTC	CTCAAGTACA	GTTTCCGCAA	GGACATCTTT	GGAGACATGG	TTTGTGCTGG	3060

CAATGCCCAA	GGCGGGAAGG	ATGCCTGCTT	CGTGAGTGTC	CTTGCCACCA	CTCCCAGCCC	3120
AGGAAAGCAT	CCTGTGTCCC	TGTGCCTTAT	TTGACCCTCA	TGCCAACCCC	GGGAGGTGGA	3180
GACTGTTGCC	CCACTCTGCA	GATGCAGAAA	CGGAGGCTTG	GCTGCTGCCA	GGGGGAGGAG	3240
GAGGATGTGC	ACCCAGTCTA	CCCAGCCCCA	TAGCCCTTCC	CACTCTCAGC	CCCTCCCCTG	3300
CCCCACTCAC	TCTGCCCCAG	GCTGACCTCA	GCCCGCTGC	TCCCCAGGGT	GACTCAGGTG	3360
GACCCTTGGC	CTGTAACAAG	AATGGACTGT	GGTATCAGAT	TGGAGTCGTG	AGCTGGGGAG	3420
TGGGCTGTGG	TCGGCCCAAT	CGGCCCGGTG	TCTACACCAA	TATCAGCCAC	CACTTTGAGT	3480
GGATCCAGAA	GCTGATGGCC	CAGAGTGGCA	TGTCCCAGCC	AGACCCCTCC	TGGCCGCTAC	3540
TCTTTTTCCC	TCTTCTCTGG	GCTCTCCCAC	TCCTGGGGCC	GGTCTGAGCC	TACCTGAGCC	3600
CATGCAGCCT	GGGGCCACTG	CCAAGTCAGG	CCCTGGTTCT	CTTCTGTCTT	GTTTGGTAAT	3660
AAACACATTC	CAGTTGATGC	CTTGCAGGGC	ATTCTTCAAA	AGCAGTGGCT	TCATGGACAG	3720
CTCATTCTCT	CTTGTGCAGA	CAGCCTGTCT	GTGCCCCTGG	CTCACACCCA	CATCTGTTCT	3780
GCACCATAGA	ACCATCTGGT	TATTTCGATC	AGAAAGAGAA	TTGTGTGTTG	CCCAGGCTGG	3840
TCTTGAACGC	CTAGGGTGTC	TCGATC				3866

### (2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 1165 base pairs
  - (B) TYPE: nucleic acid
  - (C) STRANDEDNESS: single
  - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

CTGAACCGGG	TTGTGGGCGG	CGAGGACAGC	ACTGACAGCG	AGTGGCCCTG	GATCGTGAGC	60
ATCCAGAAGA	ATGGGACCCA	CCACTGCGCA	GGTTCTCTGC	TCACCAGCCG	CTGGGTGATC	120
ACTGCTGCCC	ACTGTTTCAA	GGACAACCTG	AACAAACCAT	ACCTGTTCTC	TGTGCTGCTG	180
GGGGCCTGGC	AGCTGGGGAA	CCCTGGCTCT	CGGTCCCAGA	AGGTGGGTGT	TGCCTGGGTG	240
GAGCCCCACC	CTGTGTATTC	CTGGAAGGAA	GGTGCCTGTG	CAGACATTGC	CCTGGTGCGT	300
CTCGAGCGCT	CCATACAGTT	CTCAGAGCGG	GTCCTGCCCA	TCTGCCTACC	TGATGCCTCT	360
ATCCACCTCC	CTCCAAACAC	CCACTGCTGG	ATCTCAGGCT	GGGGGAGCAT	CCAAGATGGA	420
GTTCCCTTGC	CCCACCCTCA	GACCCTGCAG	AAGCTGAAGG	TTCCTATCAT	CGACTCGGAA	480
GTCTGCAGCC	ATCTGTACTG	GCGGGGAGCA	GGACAGGGAC	CCATCACTGA	GGACATGCTG	540
TGTGCCGGCT	ACTTGGAGGG	GGAGCGGGAT	GCTTGTCTGG	GCGACTCCGG	GGGCCCCCTC	600
ATGTGCCAGG	TGGACGGCGC	CTGGCTGCTG	GCCGGCATCA	TCAGCTGGGG	CGAGGGCTGT	660
GCCGAGCGCA	ACAGGCCCGG	GGTCTACATC	AGCCTCTCTG	CGCACCGCTC	CTGGGTGGAG	720
AAGATCGTGC	AAGGGGTGCA	GCTCCGCGGG	CGCGCTCAGG	GGGGTGGGGC	CCTCAGGGCA	780
CCGAGCCAGG	GCTCTGGGGC	CGCCGCGCGC	TCCTAGGGCG	CAGCGGGACG	CGGGGCTCGG	840
ATCTGAAAGG	CGGCCAGATC	CACATCTGGA	TCTGGATCTC	CGGCGGCCTC	GGGCGGTTTC	900
CCCCGCCGTA	AATAGGCTCA	TCTACCTCTA	CCTCTGGGGG	CCCGGACGGC	TGCTGCGGAA	960
AGGAAACCCC	CTCCCGACC	CGCCCGACGG	CCTCAGGCCC	CGCCTCCAAG	GCATCAGGCC	1020
CCGCCCAACG	GCCTCATGTC	CCCGCCCCA	CGACTTCCGG	CCCCGCCCCG	GGCCCCAGCG	1080
CTTTTGTGTA	TATAAATGTT	' AATGATTTT	ATAGGTATTI	GTAACCCTGC	CCACATATCT	1140
TATTTATTCC	TCCAATTTCA	AAATA				1165

### (2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
  - (A) LENGTH: 933 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: DNA

## (xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

AATGCGGCCA	CTCCAAGGAG	GCCGGGAGGA	TTGTGGGAGG	CCAAGACACC	CAGGAAGGAC	60
GCTGGCCGTG	GCAGGTTGGC	CTGTGGTTGA	CCTCAGTGGG	GCATGTATGT	GGGGCTCCC	120
TCATCCACCC	ACGCTGGGTG	CTCACAGCCG	CCCACTGCTT	CCTGAGGTCT	GAGGATCCCG	180
GGCTCTACCA	TGTTAAAGTC	GGAGGGCTGA	CACCCTCACT	TTCAGAGCCC	CACTCGGCCT	240
TGGTGGCTGT	GAGGAGGCTC	CTGGTCCACT	CCTCATACCA	TGGGACCACC	ACCAGCGGGG	300
ACATTGCCCT	GATGGAGCTG	GACTCCCCCT	TGCAGGCCTC	CCAGTTCAGC	CCCATCTGCC	360
TCCCAGGACC	CCAGACCCCC	CTCGCCATTG	GGACCGTGTG	CTGGGTAAAC	GGGCTGGGGG	420
TCCACTCAGG	AGAGGCCCTG	GCGAGTGTCC	TTCAGGAGGT	GGCTGTGCCC	CTCCTGGACT	480
CGAACATGTG	TGAGCTGATG	TACCACCTAG	GAGAGCCCAG	CCTGGCTGGC	CAGCGCCTCA	540
TCCAGGACGA	CATGCTCTGT	GCTGGCTCTG	TCCAGGGCAA	GAAAGACTCC	TGCCAGGGTG	600
ACTCCGGGGG	GCCGCTGGTC	TGCCCCATCA	ATGATACGTG	GATCCAGGCC	GGCATTGTGA	660
GCTGGGGATT	CCGCTGTGCC	CGGCCTTTCC	GGCCTGGTGT	CTACACCCAG	GTGCTAAGCT	720
ACACAGACTG	GATTCAGAGA	ACCCTGGCTG	AATCTCACTC	AGGCATGTCT	GGGGCCCGCC	780
CAGGTGCCCC	AGGATCCCAC	TCAGGCACCT	CCAGATCCCA	CCCAGTGCTG	CTGCTTGAGC	840
TGTTGACCGT	ATGCTTGCTT	GGGTCCCTGT	GAACCATGAG	CCATGGAGTC	CGGGATCCCC	900
TTTCTGGTAG	GATTGATGGA	АТСТААТААТ	AAA			933

#### (2) INFORMATION FOR SEQ ID NO:30:

### (i) SEQUENCE CHARACTERISTICS:

- 90 -

(A) LENGTH: 980 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

### (ii) MOLECULE TYPE: DNA

# (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

CCTGTGGTCG	CCCCAGGATG	CTGAACCGAA	TGGTGGGCGG	GCAGGACACG	CAGGAGGCG	60
AGTGGCCCTG	GCAAGTCAGC	ATCCAGCGCA	ACGGAAGCCA	CTTCTGCGGG	GGCAGCCTCA	120
TCGCGGAGCA	GTGGGTCCTG	ACGGCTGCGC	ACTGCTTCCG	CAACACCTCT	GAGACGTCCC	180
TGTACCAGGT	CCTGCTGGGG	GCAAGGCAGC	TAGTGCAGCC	GGGACCACAC	GCTATGTATG	240
CCCGGGTGAG	GCAGGTGGAG	AGCAACCCCC	TGTACCAGGG	CACGGCCTCC	AGCGCTGACG	300
TGGCCCTGGT	GGAGCTGGAG	GCACCAGTGC	CCTTCACCAA	TTACATCCTC	CCCGTGTGCC	360
TGCCTGACCC	CTCGGTGATC	TTTGAGACGG	GCATGAACTG	CTGGGTCACT	GGCTGGGGCA	420
GCCCCAGTGA	GGAAGACCTC	CTGCCCGAAC	CGCGGATCCT	GCAGAAACTC	GCTGTGCCCA	480
TCATCGACAC	ACCCAAGTGC	AACCTGCTCT	ACAGCAAAGA	CACCGAGTTT	GGCTACCAAC	540
CCAAAACCAT	CAAGAATGAC	ATGCTGTGCG	CCGGCTTCGA	GGAGGGCAAG	AAGGATGCCT	600
GCAAGGGCGA	CTCGGGCGGC	CCCCTGGTGT	GCCTCGTGGG	TCAGTCGTGG	CTGCAGGCGG	660
GGGTGATCAG	CTGGGGTGAG	GGCTGTGCCC	GCCAGAACCG	CCCAGGTGTC	TACATCCGTG	720
TCACCGCCCA	CCACAACTGG	ATCCATCGGA	TCATCCCCAA	ACTGCAGTTC	CAGCCAGCGA	780
GGTTGGGCGG	CCAGAAGTGA	GACCCCCGGG	GCCAGGAGCC	CCTTGAGCAG	AGCTCTGCAC	840
CCAGCCTGCC	CGCCCACACC	ATCCTGCTGG	TCCTCCCAGC	GCTGCTGTTG	CACCTGTGAG	900
CCCCACCAGA	CTCATTTGTA	AATAGCGCTC	CTTCCTCCCC	TCTCAAATAC	CCTTATTTTA	960
TTTATGTTTC	TCCCAATAAA					980

- 91 -

#### CLAIMS:

1. An isolated proteinaceous molecule involved in or associated with regulation of cell activity and/or viability comprising a sequence of amino acids encoded by a nucleotide sequence, at least a portion of which, is capable of being amplified by polymerase chain reaction (PCR) using the following primers:

5' ACAGAATTCTGGGTIGTIACIGCIGCICAYTG3' [SEQ ID NO:1]; and

5'ACAGAATTCAXIGGICCICCIC/GT/AXTCICC3' [SEQ ID NO:2];

- 2. An isolated proteinaceous molecule according to claim 1 wherein said molecule is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:4 or an amino acid sequence having at least 50% similarity thereto.
- 3. An isolated proteinaceous molecule according to claim 1 wherein said molecule is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:6 or an amino acid sequence having at least 50% similarity thereto.
- 4. An isolated proteinase molecule according to claim 1 wherein said molecule is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:8 or an amino acid sequence having at least about 50% similarity thereto.
- 5. An isolated proteinaceous molecule according to claim 1 wherein said molecule is a serine proteinase comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:3 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:3 under low stringency conditions at 42°C.

- 6. An isolated proteinaceous molecule according to claim 1 wherein said molecule is a serine proteinase comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:5 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:5 under low stringency conditions at 42°C.
- 7. An isolated proteinaceous molecule according to claim 1 wherein said molecule is a serine proteinase comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:7 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:7 under low stringency conditions at 42°C.
- 8. An isolated proteinaceous molecule according to claim 1 wherein said molecule is a kinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:10 or having 50% amino acid similarity thereto.
- 9. An isolated proteinaceous molecule according to claim 1 wherein said molecule is a kinase comprising an amino acid sequence encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:9 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:9 under low stringency conditions at 42°C.
- 10. An isolated nucleic acid molecule encoding a polypeptide wherein at least a portion of said nucleic acid molecule is capable of being amplified by polymerase chain reaction (PCR) using the following primers:
  - 5' ACAGAATTCTGGGTIGTIACIGCIGCICAYTG3' [SEQ ID NO:1]; and
    - 5'ACAGAATTCAXIGGICCICCIC/GT/AXTCICC3' [SEQ ID NO:2];

- 11. An isolated nucleic acid molecule according to claim 10 wherein said polypeptide is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:4 or an amino acid sequence having at least 50% similarity thereto.
- 12. An isolated nucleic acid molecule according to claim 10 wherein said polypeptide is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:6 or an amino acid sequence having at least 50% similarity thereto.
- 13. An isolated nucleic acid molecule according to claim 10 wherein said polypeptide is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:8 or an amino acid sequence having at least about 50% similarity thereto.
- 14. An isolated nucleic acid molecule according to claim 10 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:3 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:3 under low stringency conditions at 42°C.
- 15. An isolated nucleic acid molecule according to claim 10 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:5 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:5 under low stringency conditions at 42°C.
- 16. An isolated nucleic acid molecule according to claim 10 comprising a sequence of nucleotides substantially as set forth in SEQ ID NO:7 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:7 under low stringency conditions at 42°C.
- 17. An isolated nucleic acid molecule according to claim 10 wherein said polypeptide is a kinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:10 or having 50% amino acid similarity thereto.

- 18. An isolated nucleic acid molecule according to claim 17 comprising a sequence of nucleotides encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:9 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:9 under low stringency conditions at 42°C.
- 19. An isolated serine proteinase encoded by a gene proximal to a cluster of genes of a mammalian chromosome.
- 20. An isolated serine proteinase according to claim 19 wherein the mammalian chromosome is human chromosome 16p13.3 or its equivalent in a non-human species.
- An isolated serine proteinase according to claim 20 wherein the gene cluster includes at least two genes having the nucleotide sequence as set forth in SEQ ID NO:3 or 5 or 28 or 29 or 30 or a nucleotide sequence having at least 50% similarity to any one of SEQ ID NO:3 or 5 or 28 or 29 or 30 or a nucleotide sequence capable of hybridizing to any one of the sequences under low stringency conditions at 42°C.
- 22. An isolated serine proteinase according to claim 20 wherein said serine proteinase is a short form of HELA2 having an amino acid sequence substantially as set forth in SEQ ID NO:4 or an amino acid sequence having at least 50% similarity thereto.
- 23. An isolated serine proteinase according to claim 20 wherein said serine proteinase is a long form of HELA2 having an amino acid sequence substantially as set forth in SEQ ID NO:6 or an amino acid sequence having at least 50% similarity thereto.
- 24. An isolated serine proteinase according to claim 22 encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:3 or a nucleotide sequence having at least 50% similarity thereto or a sequence capable of hybridizing to SEQ I NO:3 under low stringency conditions at 42°C.

- 25. An isolated serine proteinase according to claim 23 encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:5 or a nucleotide sequence having at least 50% similarity thereto or a sequence capable of hybridizing to SEQ ID NO:5 under low stringency conditions at 42°C.
- 26. An isolated nucleic acid molecule comprising a nucleotide sequence encoding a serine proteinase and corresponding to a gene proximal to a cluster of genes encoding serine proteinases.
- An isolated nucleic acid molecule according to claim 26 wherein the gene cluster includes at least two genes having the nucleotide sequence as set forth in SEQ ID NO:3 or 5 or 28 or 29 or 30 or a nucleotide sequence having at least 50% similarity to any one of SEQ ID NO:3 or 5 or 28 or 29 or 30 or a nucleotide sequence capable of hybridizing to any one of the sequences under low stringency conditions at 42°C.
- 28. An isolated nucleic acid molecule according to claim 25 comprising a nucleotide sequence substantially as set forth in SEQ ID NO:3 or SEQ ID NO:5 or a nucleotide sequence having at least about 50% similarity to either of SEQ ID NO:3 or SEQ ID NO:5 or a nucleotide sequence capable of hybridizing to SEQ ID NO:3 or SEQ ID NO:5 under low stringency conditions at 42°C.
- 29. An isolated kinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:10 or an amino acid sequence having at least about 50% similarity thereto.
- 30. An isolated kinase according to claim 29 encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:9 or a nucleotide sequence having at least 50% similarity thereto or capable of hybridizing to SEQ ID NO:9 under low stringency conditions at 42°C.
- 31. A method of regulating cell activity and/or viability said method comprising contacting said cell with an activity and/or viability effective amount of a serine proteinase and/or kinase.

32. A method according to claim 31 wherein the serine proteinase comprises a sequence of amino acids encoded by a nucleotide sequence, at least a portion of which, is capable of being amplified by polymerase chain reaction (PCR) using the following primers:

# 5' ACAGAATTCTGGGTIGTIACIGCIGCICAYTG3' [SEQ ID NO:1]; and

## 5'ACAGAATTCAXIGGICCICCIC/GT/AXTCICC3' [SEQ ID NO:2];

- 33. A method according to claim 31 wherein the serine proteinase comprises an amino acid sequence substantially as set forth in SEQ ID NO:4 or an amino acid sequence having at least 50% similarity thereto.
- 34. A method according to claim 31 wherein the serine proteinase comprises an amino acid sequence substantially as set forth in SEQ ID NO:6 or an amino acid sequence having at least 50% similarity thereto.
- 35. A method according to claim 31 wherein the serine proteinase comprises an amino acid sequence substantially as set forth in SEQ ID NO:8 or an amino acid sequence having at least about 50% similarity thereto.
- 36. A method according to claim 31 wherein the serine proteinase comprises a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:3 or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:3 under low stringency conditions at 42°C.
- 37. A method according to claim 31 wherein the serine proteinase comprises a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:5 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:5 under low stringency conditions at 42°C.

- 38. A method according to claim 31 wherein the serine proteinase comprises a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:7 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:7 under low stringency conditions at 42°C.
- 39. A method according to claim 31 wherein the kinase comprises an amino acid sequence substantially as set forth in SEQ ID NO:10 or having 50% amino acid similarity thereto.
- 40. A method according to claim 31 wherein the kinase comprises an amino acid sequence encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:9 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:9 under low stringency conditions at 42°C.
- 41. A method of modulating fertility in a mammal said method comprising modulating levels of HELA2 wherein increasing levels of HELA2 facilitates sperm maturation and development.
- 42. A method according to claim 41 wherein fertility is enhanced by introducing recombinant HELA2.
- 43. A method according to claim 41 wherein fertility is reduced by down regulating expression of the HELA2 gene.
- 44. A composition comprising a serine proteinase and/or kinase capable of regulating cell activity and/or viability and one or more pharmaceutically acceptable carriers and/or diluents.
- 45. A composition according to claim 44 wherein the serine proteinase is HELA2 or a functional derivative thereof.
- 46. An isolated antibody capable of interacting with a proteinaceous molecule involved in or associated with regulation of cell activity and/or viability comprising a sequence of amino acids encoded by a nucleotide sequence, at least a portion of which, is capable of being

amplified by polymerase chain reaction (PCR) using the following primers:

5' ACAGAATTCTGGGTIGTIACIGCIGCICAYTG3' [SEQ ID NO:1]; and

5'ACAGAATTCAXIGGICCICCIC/GT/AXTCICC3' [SEQ ID NO:2];

- 47. An isolated antibody according to claim 46 wherein said proteinaceous molecule is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:4 or an amino acid sequence having at least 50% similarity thereto.
- 48. An isolated antibody according to claim 46 wherein said proteinaceous molecule is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:6 or an amino acid sequence having at least 50% similarity thereto.
- 49. An isolated antibody according to claim 46 wherein said proteinaceous molecule is a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:8 or an amino acid sequence having at least about 50% similarity thereto.
- 50. An isolated antibody according to claim 46 wherein said proteinaceous molecule is a serine proteinase comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:3 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:3 under low stringency conditions at 42°C.
- An isolated antibody according to claim 46 wherein said proteinaceous molecule is a serine proteinase comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:5 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:5 under low stringency conditions at 42°C.

- 52. An isolated antibody according to claim 46 wherein said proteinaceous said molecule is a serine proteinase comprising a sequence of amino acids encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:7 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:7 under low stringency conditions at 42°C.
- 53. An isolated antibody according to claim 46 wherein said proteinaceous molecule is a kinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:10 or having 50% amino acid similarity thereto.
- An isolated antibody according to claim 46 wherein said proteinaceous molecule is a kinase comprising an amino acid sequence encoded by a nucleotide sequence substantially as set forth in SEQ ID NO:9 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:9 under low stringency conditions at 42°C.
- 55. An antagonist or agonist to the isolated proteinaceous molecule according to any one of claims 1 to 9.
- 56. A method of determining a predisposition for or the presence of a cancer, said method comprising determining the presence of a nucleotide sequence encoding a proteinaceous molecule according to any one of claims 1 to 9.
- 57. A method according to claim 56 wherein the nucleotide sequence encodes a polypeptide wherein at least a portion of said nucleotide sequence is capable of being amplified by polymerase chain reaction (PCR) using the following primers:
  - 5' ACAGAATTCTGGGTIGTIACIGCIGCICAYTG3' [SEQ ID NO:1]; and
    - 5'ACAGAATTCAXIGGICCICCIC/GT/AXTCICC3' [SEQ ID NO:2];

- 58. A method according to claim 57 wherein said nucleotide sequence encodes a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:4 or an amino acid sequence having at least 50% similarity thereto.
- 59. A method according to claim 57 wherein said nucleotide sequence encodes a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:6 or an amino acid sequence having at least 50% similarity thereto.
- 60. A method according to claim 57 wherein said nucleotide sequence encodes a serine proteinase comprising an amino acid sequence substantially as set forth in SEQ ID NO:8 or an amino acid sequence having at least about 50% similarity thereto.
- A method according to claim 57 wherein said nucleotide sequence is as substantially set forth in SEQ ID NO:3 or is a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:3 under low stringency conditions at 42°C.
- 62. A method according to claim 57 wherein said nucleotide sequence is as substantially set forth in SEQ ID NO:5 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:5 under low stringency conditions at 42°C.
- 63. A method according to claim 57 wherein said nucleotide sequence is as substantially set forth in SEQ ID NO:7 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the sequence set forth in SEQ ID NO:7 under low stringency conditions at 42°C.
- 64. A method according to claim 57 wherein said nucleotide sequence is as substantially set forth in SEQ ID NO:10 or having 50% amino acid similarity thereto.

65. A method according to claim 57 wherein said nucleotide sequence is as substantially set forth in SEQ ID NO:9 or a nucleotide sequence having at least 50% similarity thereto or a nucleotide sequence capable of hybridising to the nucleotide sequence set forth in SEQ ID NO:9 under low stringency conditions at 42°C.



SUBSTITUTE SHEET (RULE 26)

2/62

FIG 2A

FIG 2A(I) FIG 2A(II)





FIG 2B



In vitro transcription / translation of HELA2 (Testisin)

FIG 3

FIG 3(i)

FIG 3(ii)

FIG 3(iii)



HELA2 (Testisin) Short Isoform



SUBSTITUTE SHEET (RULE 26)



FIG 3(iii)

FIG 4

FIG 4(i)

FIG 4(ii)

FIG 4(iii)



SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)

FIG 5

### 14/62

## A. Expression of recombinant Testisin in E. coli.



#### B. Western blot of recombinant Testisin



FIG 6(I)

FIG 6(II)

FIG 6(III)

FIG 6

140

Щ

K

 $\Box$ 

 $\succ$ 

Д

S

Z

Ü

Ц

 $\triangleright$ 

 $\alpha$ 

Д

S

Щ

 $\succ$ 

 $\vdash\vdash$ 

 $\mathbb{Z}$ 

Ŋ

379

GTATCGAATATCTATCTGAGCCCTCGCTACCTGGGGAATTCACCCTATGACATTGCCTTG

120

ഥ

 $\succ$ 

 $\alpha$ 

 $\vdash$ 

 $\triangleright$ 

Ø

Ŏ

ᆸ

S

 $\geq$ 

 $\Box$ 

 $\Omega$ 

Д

 $\Sigma$ 

S

H

Н

Ø

 $\Box$ 

GCCGCGGGAGAGGAGGCC

(I)9

FIGURE

	7	319 GGCCAGCTGACTTCCATGCCATCCTTCTGGAGCCTGCAGGCCTACTACACCCGTTACTTC	319
-	100	GCGCACTGCTTTGAAACCTATAGTGACCTTAGTGATCCCTCCGGGTGGATGGTCCAGTTT A H C F E T 'Y S D L S D P S G W M V Q F	259
62	80	CTGTGGGATTCCCACGTATGCGGAGTGAGCCTGCTCAGCCACCGCTGGGCACTCACGGCG	199
16/	09	CGCATCGTGGGTGGAGGACGCCGAACTCGGGCGTTGGCCGTGGCGAGGCGTGCGC	139
	40	CCGGAGTCGCAGGCGCCGCCGTTATCAGGACCATGCGGCCGACGGGTCATCACGTCG	79
	20	ATGGGCGCGCGCGCGCTGCTGCTGCTGCTGGCTCGGGCTGGACTCAGGAAG M G A R G A L L L A L L L A R A G L R K	4.7

#### SUBSTITUTE SHEET (RULE 26)

FIGURE 6 (II)

160 GTGAAGCTGTCTGCACCTGTCACCTACACTAAACACATCCAGCCCATCTGTCTCCAGGCC Н Õ 口 × Ø S Ц × 439

180 ľΉ  $\vdash$ Ŋ 499

X  $\succeq$ G 3  $\Box$ H  $\triangleright$ 3 U Ω  $\vdash$ 公 Z 口 ഥ 口

200 GAGGATGAGGCACTGCCATCTCCCCACACCCTCCAGGAAGTTCAGGTCGCCATCATAAAC Z Ø  $\geq$ Ŏ >口 0 口  $\vdash$ Ή Д W Д Ц ഥ 559

220 AACTCTATGTGCAACCACCTCTTCCTCAAGTACAGTTTCCGCAAGGACATCTTTGGAGAC U ×  $\alpha$ Ŋ  $\triangleright$ 又 Ц רבו П Ξ Z Ŋ 619

17/62

ATGGTTTGTGCTGGCAATGCCCAAGGCGGGAAGGATGCCTGCTTCGGTGACTCAGGTGGA  $\Box$ U ፲  $\mathcal{O}$ Ø X C U O

Ø

Z

 $^{\circ}$ 

K

abla

240

C

r

Ŋ

260 CCCTTGGCCTGTAACAAGAATGGACTGTGGTATCAGATTGGAGTCGTGAGCTGGGGAGTG U Ŋ  $\gt$ U Ŏ  $\succ$ Z П  $\Box$ Z ×  $\mathbb{Z}$  $\cup$ Ø Ц

280 GGCTGTGGTCGGCCCAATCGGCCCCGGTGTCTACACCAATATCAGCCACCACTTTGAGTGG 3 闰 ഥ 口 耳 Ŋ <del>|--|</del> Z  $\vdash$  $\succ$  $\gt$ r Д ĸ Z Д  $\simeq$ U  $\Box$ 

#### **SUBSTITUTE SHEET (RULE 26)**

619

739

799

300

П

Z

Ŋ

ATCCAGAAGCTGATGGCCCAGAGTGGCATGTCCCAGCCCAGACCCCTCCTGGCCGCTACTC Ø Ŋ Σ U Ŋ Ø Ø  $\succeq$ П (III) Õ FIGURE 6 859

TTTTCCCTCTTCTGGGCTCTCCCACTCCTGGGGCCGGTCTGAGCCTACCTGAGCCCA 919

U 口 口 Д Щ Ø  $\geq$ Ы  $\Box$ 

# Western blot of GST-Testisin using anti-Testisin peptide T175 antibody



FIG 7

FIG 8

FIG 8(i)

FIG 8(ii)

FIG 8(iii)



SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)

<u>FIG 9</u>

FIG 9(i)	FIG 9(ii)
FIG 9(iii)	FIG 9(iv)



F16 9







FIG 9(iii)







SUBSTITUTE SHEET (RULE 26)



**SUBSTITUTE SHEET (RULE 26)** 



Fold 12

Testisin (MELA2) is located on human chromosome 16p13.3



FIG 13/

PCT/AU98/00085



WO 98/36054 PCT/AU98/00085



# B. Immunohistochemistry





SUBSTITUTE SHEET (RULE 26)

FIG 16

FIG 16(i)

FIG 16(ii)

FIG 16(iii)

FIG 16(iv)

FIG 16(v)

FIG 16(vi)

agtgagtctc	agtgagtctc ctgcctcagc	ctcccaagta	ctcccaagta gctgggactt caggtgtgtg	caggtgtgtg	20
ccaccatcct	cagctaattt	tttttttt	ttttttttg	agaaggagtc	100
ttgctctgtc	gcccaggctg	gagtgcagtg	gcgcgatctt	ccaggcccca	150
ccgggccctc		tgcctacctg	ctttaagggg	actcctggct	200
cagggccagg		tggaggaggt	tggaggaggt ggtgggtgga	gggcaggggg	250
caccaagcgg	gcagccagga	cccccgggct	gcagacaaga	aaaggactgt	300
		/+1EXON			
ggggtccacc	gggtctgggc	CACATCAAGG	CACATCAAGG AATGTGGTTG AAGACCCGCC	AAGACCCGCC	350
CTTAGGAGCT		GCGCTACCAG	GCCTGAGAGG	CCCCAAACAG	400
CCCTTGGGCC	TGGTTTGGGA	GGATTAAGCT		GGAGCTCCCA ACCCGCCCTG	450
CCCCCAGGGG	CCCCCAGGGG GCGACCCCGG	5050550005	AGAGGAGGCA	GAGGGGCGT	200
CAGGCCGCGG	GAGAGGAGGC	CATGGGCGCG	2929999292	CGCGGGCGC TGCTGCTGGC	550
			GNI/	/INTRON A	
GCTGCTGCTG	GCTGCTGCTG GCTCGGGCTG		GACTCAGGAA GCCGGgtgag	ctcgggggcgc	009
tgctggcggg	atggggaggc	ggggagcgg	tggggaggac	tggggaggac gggaggtgga	650

FIG 16(

	700		750	800	850	006	950	1000	1050		1100	1150	1200
:	GAGGCGCGC		gggccgttgg	ctttactgct	ggaaagtaac	cgtgggagga	gaccctgggt	aagggagagg	ctgaccatcc		GGGTGGAGAG	GCCTGTGGGA	GCACTCACGG
EXON 2.	agagtcgcag gaggcggcgc		attcctgcca	agagggggc	ctgttggcgt	ctgcagagca	cacgcgaggg	gaaggggaga	agcagttcct		CGGCCGACGG GTCATCACGT CGCGCATCGT GGGTGGAGAG	GGGAGCCTGC	CCACCGCTGG GCACTCACGG
	tgtctcccgc		aggacgcgcg	gtgagggggt	atcgagaact	tgggcgggcc	ctgctgcaca	ggacgggggtt	cccgcggctc		GTCATCACGT	GCCGTGGCAG	GCCTGCTCAG
	ggccgcgggg agtcacttct tgtctcccgc	INTRON B	tagggcgccc	acggggggcg	adacacaddd	tggaggggga	cacctacttc	gtgctttccc	ggggctgcct		CGGCCGACGG	GACGCCGAAC TCGGGCGTTG GCCGTGGCAG	TTCCCACGTA TGCGGAGTGA GCCTGCTCAG
	وقودودووووو		CGTTATCAGg tagggcgccc	gccgaggtgg	ctctagaaca	taacggacgc			tcgggcttgg	/EXON 3	gagGACCATG	GACGCCGAAC	TTCCCACGTA

FIG 16(ii

	1250	1300	1350	1400	1450	1500	1550	1600	1650	1700	1750	1800	1850	1900
	ggggtgcggg	tacctctggt	gcctggtgtt	tccagttccc	aatgttcttc	tctttcaacc	tggtggacgg	cgggccgctg	tctccccatt	tcaatgcaag	ttctgctgca	ccttcatttc	cagtttcccc	ccatccaggg
	tgcgaacgga	caccgaactt	cgtggatgcg	ttacacccac	gttattccag	tctccctttt	tececectee	ccagcacccc	gcgtggtgca	aggccttggc	gaccccaccc	tgtctgggct	agcaacacca	agccagccct
/INTRON C	tgagtggggg	gagggagtgc	gaaagttgtg	ctgcagccgg	ccctgttcag	ttgggtattc	cccaccctca	tgagccaagg	tcccacattg	gtgcccctgg	gaggtgacaa	ggttgtggtc	agcaagtagc	gtgctcaggt
	CTTTGAAACg	aacagggctg	acttgggcgt	ccaggctgtg	ctggagggaa	ccacacactt	cactgaccat	tgtggggcac	atcctgccaa	ctgcatgggg	acagctctgg	ctaggacttt	cctgggtgtt	gaccccagtt
	CGGCGCACTG	gacgggcagg	ctgatgccag	ctcctgagcc	tttgggtctc	cagaacattt	caaagttcac	tgcggtacag	tgtggactcc	cctccttggg	gctccttggg	ggagcaggtc	tgcaggggac	tcctgcactg

FIG 16(11

cccctgactg	ccctgactg ctctcttctc		ttctgcc <u>ag</u> c tat <u>ag</u> TGACC	TTAGTGATCC	1950
CTCCGGGTGG	CTCCGGGTGG ATGGTCCAGT	TTGGCCAGCT	GACTTCCATG	CCATCCTTCT	2000
GGAGCCTGCA	GGAGCCTGCA GGCCTACTAC	ACCCGTTACT	TCGTATCGAA	TATCTATCTG	2050
AGCCCTCGCT	AGCCCTCGCT ACCTGGGGAA	TTCACCCTAT	GACATTGCCT	TGGTGAAGCT	2100
GTCTGCACCT	GTCACCTACA	CTAAACACAT	CCAGCCCATC	TGTCTCCAGG	2150
CCTCCACATT	TGAGTTTGAG	TGAGTTTGAG AACCGGACAG ACTGCTGGGT	ACTGCTGGGT	GACTGGCTGG	2200
		/INTRON	D		
GGGTACATCA	GGGTACATCA AAGAGGATGA	GGgtgaggct	ggggacaggc	gggtcaggga	2250
ggaactgtct	ggaactgtct ttgttcacct	gttcccctgc	ataggcacaa	tagccccctg	2300
cttggtctgg	gggtgcaggc	tatgcccctc	ttgcttgcag	tctctcctca	2350
cctgccaggg	cagggaccaa	acacccagtt	ctctcccttc	caggggctgt	2400
gggggccaga	aggagagtgt	gagagggagg	ccagtttggc	gcaagcctgt	2450
gggtggtgcg	gtggtggagg	ggttctggag	ggcttggcga	cataaacctc	2500
atacttggat	ttattcctgc	atctttccac	ctcccccagt	gctcaccaat	2550

atacttggat

	gccccaggca	tca	approx	x 1000 bp		3563
	ccaggttgcc	ccttccccca	aggtctggct	ttggatgctt	atgtgaacac	≈3613
	cgttttaagt	tgccttggcc	ccttcctcgg	ttcctttttg	gctgaggaat	×3663
	ctctccatgg	ctgcaggcag	ggccattgtt	gccattctac	agatagggaa	≈ <b>371</b> 3
	agtgcggctg	ggggagctct	gacagctgtc	cctccccggg	gccttctgtg	≈3763
	atgctgctga	gggcctctgt	tgtgctgggg	tctgggttgg	agctgggggt	≈3813
~!!D	aatggagatg	aacctgccag	gcacagtggg	tgccccaggg	ccccacccc	≈38 <b>6</b> 3
27171	cgcagcctat	gccatccctc	catagagggg	cctcaggttg	ctgtctctct	≈3913
			/EXON 5.			
~··=	ccttcccact	atcgtccgca	cagCACTGCC	ATCTCCCCAC	ACCCTCCAGG	×3963
	AAGTTCAGGT	CGCCATCATA	AACAACTCTA	TGTGCAACCA	CCTCTTCCTC	≈4013
	AAGTACAGTT	TCCGCAAGGA	CATCTTTGGA	CATCTTTGGA GACATGGTTT	GTGCTGGCAA	≈ <b>4</b> 063
26)			[/	/INTRON E		
	TGCCCAAGGC	GGGAAGGATG	CCTGCTTCgt	gagtgtcctt	gccaccactc	≈4113
	ccagcccagg	aaagcatcct	gtgtccctgt	gccttatttg	accctcatgc	≈4163
	caaccccggg	aggtggagac	tgttgcccca	ctctgcagat	gcagaaacgg	≈4213

FIG 16(V

aggcttggct	gctgccaggg	ggaggaggag	gatgtgcacc	cagtctaccc	≈4263
agccccatag	cccttcccac	tctcagcccc	tacactgaac	cactcactct	≈4313
			/EXON	/EXON 6	
gccccaggct	gccccaggct gacctcagcc	ccgctgctcc	ccagGGTGAC	TCAGGTGGAC	≈4363
CCTTGGCCTG	TAACAAGAAT	TAACAAGAAT GGACTGTGGT	ATCAGATTGG	AGTCGTGAGC	≈4413
TGGGGAGTGG	GCTGTGGTCG	GCCCAATCGG	CCCGGTGTCT	ACACCAATAT	≈4463
CAGCCACCAC	CAGCCACCAC TTTGAGTGGA	TCCAGAAGCT	GATGGCCCAG	AGTGGCATGT	≈ <b>451</b> 3
CCCAGCCAGA	. CCCCTCCTGG	CCGCTACTCT	TTTTCCCTCT	TCTCTGGGCT	≈ <b>4</b> 563
CTCCCACTCC TGGGG	TGGGGCCGGT	CTGAGCCTAC	CTGAGCCCAT	GCAGCCTGGG	≈4613
GCCACTGCCA AGTCA	. AGTCAGGCCC	TGGTTCTCTT	CTGTCTTGTT	TGGTAATAAA	≈4663
CACATTCCAG TTGAT	TTGATGCCTT	GCAGGGCATT	CTTCAaaagc	agtggcttca	≈4713
tggacagctc	attctctctt	gtgcagacag	cctgtctgtg	cccctggctc	≈4763
acacccacat	ctgttctgca	ccatagaacc	atctggttat	ttcgatcaga	≈4813
aagagaattg	tgtgttgccc	aggctggtct	tgaacgccta	gggtgtctcg	≈ <b>4</b> 863
atc					≈ <b>4</b> 866

FIG 16(v



FIG 18 (AI)

FIG 18 (AII)

FIG 18(A)

- 20 c U  $\alpha$ Ŋ Д Ω̈́ Ç ŋ Ŋ (AI) 口 FIGURE 18
- 40 TGATGCTGAGCTTGGCCGCGCGTGGCAAGGGAGCCTGCGTGTATGGGGCAACCACTT Z U 3  $\alpha$ 口 Ŋ U Ö  $\geq$ Д S ĸ G ഥ Ø 61
- 09 × ATGTGGCGCAACCTTGCTCAACCGCCGCTGGGTGCTTACAGCTGCCCACTGCTTCCAAAA Ø 口 ď Ø H Ц  $\gt$ 3 召 ĸ Z П Ц Ø U 121
- 80 GGATAACGATCCTTTTGACTGGACAGTCCAGTTTGGTGAGCTGACTTCCAGGCCATCTCT П Ŋ  $\alpha$ ഗ Ц 口 G 口 Ŏ  $\gt$  $\vdash$ 3 Ω ഥ Д Z 181
- 100 X CTGGAACCTACAGGCCTATTCCAACCGTTACCAAATAGAAGATATTTTCCTGAGCCCCAA Д Ŋ Ц Н  $\Box$ 띠 Ø  $\succ$ K Z Ŋ Ø Ŏ Д Z 241
- 120 GTACTCGGAGCAGTATCCCÁATGACATAGCCCTGCTGAAGCTGTCATCTCCAGTCACCTA  $\vdash$ Д Ŋ S Ц ¥ Ц Ц Ø Н О Z Д Ø 口 Ŋ 301
- 140 CAATAACTTCATCCAGCCCATCTGCCTCCTGAACTCCACGTACAAGTTTGAGAACCGAAC  $\alpha$ Z 口 Щ K <u>--</u> ഗ Z Ц П U Д Ø 361
- 160 Z TGACTGCTGGGTGACCGGCTGGGGGGCCTATTGGAGAAGATGAGAGTCTGCCATCTCCCAA Ŋ Д Д Ŋ 闰  $\Box$ 口 U Ø U 3 Ċ  $\vdash$ 421

180 CACTCTCCAGGAAGTGCAGGTAGCTATTATCAACACAGCATGTGTAACCATATGTACAA H Z  $\mathcal{O}$  $\mathbf{Z}$ Ŋ Z Z Н Н Ø  $\gt$ Ø  $\gt$ 口 FIGURE 18 (AII) Ø

200 AAAGCCAGACTTCCGCACGAACATCTGGGGAGACATGGTTTGCGCTGGCACTCCTGAAGG 口 U Ø ひ  $\triangleright$ Σ U 3  $\vdash$ Z Е 召 ഥ 541

220 TGGCAAGGATGCCTGCTTTGGTGACTCGGGAGGACCCTTGGCCGTGCGACCAGGATACGGT  $\mathcal{O}$ Ø Ы Ü U Ŋ О Ü ſΤι C Ø 601

240 G GTGGTATCAGGTTGGAGTTGTGAGCTGGGGAATAGGCTGTGGTCGCCCCAATCGCCCTGG 只 U C  $\mathcal{O}$  $\vdash$ U Z Ŋ  $\gt$  $\triangleright$ r  $\gt$ Ø 661

260 r AGTCTATACCAACATCAGTCACTACAACTGGATCCAGTCAACCATGATCCGCAATGG Z  $\Sigma$ Ŋ Ŏ 3 Z  $\succ$ 口 田 ഗ  $\vdash$ Z H 721

285 280 Ŋ TTTGCTGAGGCCTGCCTGAGCCCACACGTGTACGTCACACCTGTGAGGTCAGGGTGTGTC 3  $\triangleright$ 841

GCTGCTCAGGCCTGACCCAGTCCCCTTGCTACTGTTTCTTACTCTGGCCTTGGGCTTCCTC

召

901

## SUBSTITUTE SHEET (RULE 26)

781



SUBSTITUTE SHEET (RULE 26)

€.£				ŝ	-7,
			2		÷
			•		
	· · ·	lo .			
		÷			

FIG 20A(AI)

FIG 20A(AII)

FIG 20A(AIII)

FIG 20A(A)

FIGURE 20A (AI)

50/62

420 180 240 300 360 09 120 GAGCCCCACCCTGTGTATTCCTGGAAGGAGGTGCCTGTGCAGACATTGCCCTGGTGCGT CTCGAGCGCTCCATACAGTTCTCAGAGCGGGTCCTGCCCATCTGCCTACCTGATGCCTCT ATCCACCTCCCTCCAAACACCCCACTGCTGGATCTCAGGCTGGGGGAGCATCCAAGATGGA ACTGCTGCCCACTGTTTCAAGGACAACCTGAACAAACCATACCTGTTCTCTGTGCTGCTG ATCCAGAAGAATGGGACCCACCACTGCGCAGGTTCTCTGCTCACCAGCCGCTGGGTGATC CTGAACCGGGTTGTGGGCGGCGAGGACAGCACTGACAGCGAGTGGCCCTGGATCGTGAGC  $\mathcal{O}$ S  $\simeq$  $\Box$ K 3 Ö  $\alpha$  $\Omega$ 3 口 S U Ŋ  $\Box$  $\bigcirc$  $\Box$ 3  $\vdash$  $\geq$ K  $\bowtie$ 凵 口  $\mathcal{O}$ Д Ц Ŏ  $\mathcal{O}$ Д S Ц Ŋ ď S  $\bowtie$ О S Н  $\bigcirc$ Ü  $\mathbb{Z}$  $\simeq$ Н ĸ  $\geq$ S ď П  $\Omega$ 口  $\Box$ 口  $\Box$ U ×  $\mathbb{Z}$ W 口  $\Box$  $\geq$ Д [T] 口  $\vdash$ Z Ω. Ŀ M U  $\mathbb{H}$ O U Z Ü H Ľι  $\triangleright$ U  $\Box$ Н Д П  $\gt$ >Ŋ  $\Xi$  $R \nabla V$ Ø Д Z Д  $\alpha$ П 3 二 X K 口 耳 Z Ŏ Ø Д X U 口 101 121 21 41 61 81 SUBSTITUTE SHEET (RULE 26)

FIGURE 20A

51/62

099 720 780 540 TGTGCCGGCTAACTTGGAGGGGGAGCGGGATGCTTGTCTGGGCGACTCCGGGGGGCCCCTC GTTCCCTTGCCCCCCCTCAGACCCTGCAGAAGCTGAAGGTTCCTATCATCGACTCGGGAA GCCGAGCGCAACAGGCCCGGGGGTCTACATCAGCCTCTCTGCGCACCGCTCCTGGGTGGAG AAGATCGTGCAAGGGGTGCAGCTCCGCGGGCGCGCTCAGGGGGGTGGGGCCCTCAGGGCA GTCTGCAGCCATCTGTACTGGCGGGGAGCAGGACAGGGACCCATCACTGAGGACATGCTG ATGTGCCAGGTGGACGGCGCCTGGCTGCTGGCCGGCATCACCTGGGGGCGAGGGCTGT U U S 口 (C) U  $\simeq$ H Ŋ U Д  $\Box$  $\mathcal{Q}$ Ŏ × Ц U  $\Box$ K  $\Box$ Ц Ŏ U K S  $\alpha$ Ø  $\Box$  $\mathcal{Q}$ Ø Ц U  $\simeq$  $\alpha$ 3 X 口 Ü Ø U K  $\geq$ U  $\succeq$ 口 Д U Ξ  $\Box$ 召 Z Ŏ Õ S U  $\alpha$ U Þ 口 161 141 181

ATCTGAAAGGCGGCCAGATCCACATCTGGATCTGGATCTGCGGCGGCGGCTTTC CCCCGCCGTAAATAGGCTCATCTACCTCTACCTCTGGGGGCCCCGGACGGCTGCTGCGGAA S Ø Ø U Ŋ Ŋ

CCGAGCCAGGGCTCTGGGGCCGCCGCGCTCCTAGGGGCCCCAGCGGGACGCGGGGCTCGG

## 1020 1080 1140 CCGCCCAACGGCCTCATGTCCCCCCCCCCACGACTTCCGGCCCCCGGGCCCCAGCG CTTTTGTGTATAAATGTTAATGATTTTTTATAGGTATTTGTAACCCTGCCACATATCT TATTTATTCCTCCAATTTCAATAAA FIGURE 20A (AIII)



SUBSTITUTE SHEET (RULE 26)

FIG 20B(AI)

FIG 20B(AII)

FIG 20B(A)

09 Ŏ U C  $R \nabla I$ U Ø 口 × Ŋ (AI) 二 20B FIGURE

 $\Box$ Н U >Ŋ 3 П U Ŏ 3  $\leq$ ĸ 21

180 TCATCCACCCACGCTGGGTGCTCACAGCCGCCCACTGCTTCCTGAGGTCTGAGGATCCCG 口  $\Box$  $\oplus$ A K H Д  $\triangleright$  $\geq$ K H 240 GGCTCTACCATGTTAAAGTCGGAGGCCTGACCCCTCACTTTCAGAGCCCCACTCGGCCT Н Д 口 Ŋ ഗ Д H Ц U U  $\triangleright$ ×  $\Box$ Ц G

TGGTGGCTGTGAGGAGGCTCCTGGTCCACTCCTCATACCATGGGACCACCACCAGCGGGG 300

r S  $\vdash$ U 田 Ŋ 円 Ц 口 ĸ ĸ Ø ACATTGCCCTGATGGAGCTGGACTCCCCCTTGCAGGCCTCCCAGTTCAGCCCCATCTGCC 360

U

ഗ

ഥ

Ŏ

Ŋ

Ø

Ŏ

Ц

Ŋ

О

口

 $\Sigma$ 

Ø

101

TCCCAGGACCCCAGACCCCCCCTCGCCATTGGGACCGTGTGCTGGGGTAAACGGGCTGGGGG

Z  $\geq$ Ü ⊱ Ç K Ŏ  $\Box$ 121

TCCACTCAGGAGAGGCCCTGGCGAGTGTCCTTCAGGAGGTGGCTGTGCCCCTCCTGGACT 480  $\triangleright$ Þ 口 Ŏ Ц  $\triangleright$ S Ø Ø ш U Ŋ 二 141

8

61

41

540 召 Ŏ  $\Box$ Ø Ц S Д 띠 U  $\Box$ 工  $\succ$  $\succeq$  $\Box$ 口 FIGURE 20B (AII)  $\Box$  $\Sigma$  $\mathbb{Z}$ S 161

009 TCCAGGACGACATGCTCTGTGCTCTGTCTGTCCAGGGCAAGAAGACTCCTGCCAGGGTG  $\bigcirc$ Ŏ Ü ഗ X Y  $^{\circ}$  $\bigcirc$ >Ŋ  $\Box$  $\triangleleft$ Ü Ц  $\boxtimes$ П  $\bigcirc$ 181

099 ACTCCGGGGGGCCGCTGGTCTGCCCCATCAATGATACGTGGATCCAGGCCGGCATTGTGA  $^{\circ}$ Ø Ŏ S  $\vdash$  $\Box$  $\mathbb{Z}$ Д  $\Box$ 口 Д U  $\Box$ (V) 201

GCTGGGGGATTCGGCTGTGCCCGGCCTTTCCGGCCTGGTGTCTACACCCCAGGTGCTAAGCT  $\Omega$ Ц Ŏ  $\vdash$ U Д  $\alpha$ ĹΤι Д  $\alpha$ K  $\mathcal{C}$ U U 3 S 221

780  $\alpha$ K  $\mathcal{O}$ S  $\Sigma$  $\Box$ S  $\blacksquare$ S 디 Ø  $\vdash$  $\vdash$  $\mathbf{z}^{\mathbf{i}}$ Õ  $\geq$  $\Box$  $\vdash$ 241

840 ഥ Ц П Д 口 S  $\alpha$ S  $\vdash$ U Ŋ  $\Xi$ Ŋ  $\Box$ Д Ø  $\mathcal{Q}$ 261 900 TGTTGACCGTATGCTTGCGTCCCTGTGAACCATGAGCCATGGAGTCCGGGATCCCC П  $\Omega$ U  $\vdash$ 281

THT CTC CTC CALL CALCE AND CALLED AND A TOWN TO THE CALL OF THE CALL OF THE CALLED AND THE CALLE

## SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)

FIG 20C(AI)

FIG 20C(AII)

FIG 20C(A)

09

59/62

AGTGGCCCTGGCAAGTCAGCATCCAGCGCAACGGAAGCCACTTCTGCGGGGGCAGCCTCA 120 C Ŋ U Ü ഥ U 口 U Ŋ  $\gt$ G  $R \nabla M$ Z 凶 Z ഗ 21

FIGURE 20C (AI)

TCGCGGAGCAGTGGGTCCTGACGGCTGCGCACTGCTTCCGCAACACCTCTGAGACGTCCC S 口 ഗ Z ĸ Ü  $\equiv$ Ø H 3  $\mathbf{Z}$ 口 Д r Д Ŏ  $\gt$ Н Ø 召 Ø U 61

CCCGGGTGAGGCAGGTGGAGAGCAACCCCCTGTACCAGGGCACGGCCTCCAGCGCTGACG 300 ഗ Ŋ U Ŏ Z Ø ſτ] 81

TGGCCCTGGTGGAGCTGGAGGCACCAGTGCCCTTCACCAATTACATCCTCCCCGTGTGCC Z  $\vdash$ ᄺ Д Ø ഥ U C ひ Z  $\Xi$ U  $\vdash$ ш 121

GCCCCAGTGAGGAAGACCTCCTGCCGGAACCGGGATCCTGCAGAAACTCGCTGTGCCCA X Ŏ  $\alpha$ Д 闰 Д Ŋ 141

SUBSTITUTE SHEET (RULE 26)

TCATCGACACCCCAAGTGCAACCTGCTCTACAGCAAAGACACCGAGTTTGGCTACCAAC G 口 Ŋ П U FIGURE 20C (AII) 161

CCAAAACCATCAAGAATGACATGCTGTGCGCCGGCTTCGAGGAGGGCCAAGAAGGATGCCT X C 口 ᅜ U Ø Ü П  $\Sigma$ П Z 181

099 GCAAGGGCGACTCGGCGCCCCCTGGTGTGCCTCGTGGGTCAGTCGTGGCTGCAGGCGG 201

720 GGGTGATCAGCTGGGGGTGAGGGCTGTGCCCCCAGAACCGCCCAGGTGTCTACATCCGTG

U ĸ Z Ŏ ĸ A Ü U 띠 U 3 Ŋ

780 Ŏ K L Д Н 召 Ή Z Z 口 241

GGTTGGGCGGCCAGAAGTGAGACCCCCGGGGCCCAGGAGCCCCTTGAGCAGAGCTCTGCAC Ø Ø H Д H Ø U 召 О 261

CCAGCCTGCCCGCCCACACCATCCTGCTGGTCCTCCCAGCGCTGCTGTTGCACCTGTGAG Ø Д ij ILLLV Ø 281 CCCCACCAGACTCATTTGTAAATAGCGCTCCTTCCTCCCCTCTCAAATACCCTTATTTA TTTATGTTTCTCCCAATAAA

SUBSTITUTE SHEET (RULE 26)



SUBSTITUTE SHEET (RULE 26)



FIG 21

International Application No.-PCT/AU 98/00085

<b>A.</b>	CLASSIFICATION OF SUBJECT MATTER	÷				
Int Cl ⁶ :	C12N 009/12, 009/64, 015/54, 015/57; C07K 016	7/40; A61K 038/45, 038/48; C12Q 001/68				
A coording to	According to International Patent Classification (IPC) or to both national classification and IPC					
	FIELDS SEARCHED	matoria diastribution and n				
	mentation searched (classification system followed by classification system)	lassification symbols)				
	searched other than minimum documentation to the ext E DATABASES (see below) MEDLINE (see be		he fields searched			
(as online, STN [GC] [ACT] G	base consulted during the international search (name of N (DGENE): TGGG[AC] [AGT] [GC] T [AGT] AC [AGT] [AGT] CC [ACT] [CT] T and SWISSPROT, GENBA p13.3 AND "serine protease"	H GC [AGT] GC [AGT] CA [CT] TG AN	D GG [AGT] CA [CT] [AT]			
C.	DOCUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.			
Proc. Natl. Acad. Sci. USA 87, pages 960-3  cluster of hematopoetic serine protease genes chromosomal band as the human α/S T-cell See whole document, especially page 961 co.		is found on the same ecceptor locus."	1,4,7,10,13,16,19,26, 27,31,32,35,38,46,49, 52,56,57,60,63			
X	Further documents are listed in the continuation of Box C	See patent family an	nex			
* Special categories of cited documents:  "A" document defining the general state of the art which is not considered to be of particular relevance  "E" earlier document but published on or after the international filing date  "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)  "O" document referring to an oral disclosure, use, exhibition or other means  "P" document published prior to the international filing date but later than the priority date claimed		priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family				
Date of the act	nual completion of the international search	Date of mailing of the international sear 03 APR 1998	en report			
	ling address of the ISA/AU N PATENT OFFICE	Authorized officer				
PO BOX 200 WODEN AC AUSTRALIA		JIM CHAN Telephone No.: (02) 6283 2340				

## INTERNATIONAL SEARCH REPORT

International Application No.

DCT/A	TI 98/00085

Box 1	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This Interreasons:	national Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: 19, 20, 26, 31, 44  because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:  the breadth of the claims was such that it was uneconomical to conduct a search that encompassed the full scope of the claims.
3.	Claims Nos.:  because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a)
Вох П	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inter	mational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest.
	No protest accompanied the payment of additional search fees.

International Application No.
PCT/AU 98/00085

C (Continuat		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	Proc. Natl. Acad. Sci. USA 87, pages 3811-5 (1990) Vanderslice, P. et al. "Human mast cell tryptase: multiple cDNAs and genes reveal a multigene serine protease family."  See whole document	1-4,5-7,10-13,14-16,26- 28,31,32-38,44,46- 52,55-59,60-63
X	J. Reprod. Fertil. 100, pages 567-75 (1994) Bermudez, D. et al. "Proacrosin as a marker of meiotic and post-meiotic germ cell differentiation: quantitative assessment of human spermatogenesis with a monoclonal antibody." See whole document, in particular Introduction.	46-48, 50, 51, 55
X	J. Biol. Chem. 269(29) pages 18843-8 (1994) Yu, J.X. et al. "Prostasin is a novel human serine protease from seminal fluid." See whole document, in particular discussion.	1-3,5,6,10- 12,14,15,27,28,31- 34,37,44,46- 48,50,51,55-59,61,62
X	J. Biol. Chem. 269 (31) pages 19976-82 (1994) Matsushima, M. et al. "Structural characterisation of porcine enteropeptidase." See whole document, especially figure 4.	1-3,5,6,10- 12,14,15,27,28,31- 34,37,44,46- 48,50,51,55-59,61,62
X	J. Biol. Chem. 270 (22) pages 13483-89 (1995) Yu, J.X. et al. "Molecular cloning, tissue-specific expression, and cellular localisation of human prostasin mRNA."  See whole document, especially figure 2, Introduction and Discussion.	1-3,5,6,10- 12,14,15,27,28,31- 34,36,37,41-43,44,46- 48,50,51,55-59,61,62
X	Mol. Reprod. Dev. 43, pages 236-47 (1996) O'Brien, D.A. et al. "Boar proacrosin" expressed in spermatids of transgenic mice does not reach the acrosome and disrupts spermatogenesis."  See whole document.	1-3,5,6,10- 12,14,15,27,28,31- 34,36,37,41-43,44,46 48,50,51,55-59,61,62