

LITIGATION TECHNICAL SUPPORT AND SERVICES

ROCKY MOUNTAIN ARSENAL

107200

TL

FINAL PHASE I
CONTAMINATION ASSESSMENT REPORT
SITE 30-1: IMPACT AREA
(INCLUDES 30-7: GROUND DISTURBANCE)
(Version 3.3)

January 1988
Contract Number DAAK11-84-D0016
Task Number 14 (Army Sites North)

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.

HARDING LAWSON ASSOCIATES MIDWEST RESEARCH INSTITUTE

DISSEMINATION STATEMENT A
Approved for public release
Distribution Unlimited

REQUESTS FOR COPIES OF THIS DOCUMENT
SHOULD BE REFERRED TO PROGRAM MANAGER
FOR ROCKY MOUNTAIN ARSENAL CLEANUP,
AMXRM-PM ABERDEEN PROVING GROUND,
MARYLAND 21010

PREPARED FOR

19960419 183

PROGRAM MANAGER'S OFFICE FOR
ROCKY MOUNTAIN ARSENAL CLEANUP

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE
COPY FURNISHED TO DTIC
CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.**

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.</p>			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE 01/00/88	3. REPORT TYPE AND DATES COVERED	
4. TITLE AND SUBTITLE CONTAMINATION ASSESSMENT REPORT, PHASE I, SITE 30-1, IMPACT AREA (INCLUDES 30-7 GROUND DISTURBANCE) TASK 14, ARMY SITES NORTH, FINAL, VERSION 3.3		5. FUNDING NUMBERS DAAK11 84 D 0016	
6. AUTHOR(S)			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) ENVIRONMENTAL SCIENCE AND ENGINEERING ENGLEWOOD, CO		8. PERFORMING ORGANIZATION REPORT NUMBER 88033R03	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) ROCKY MOUNTAIN ARSENAL (CO.). PMRMA COMMERCE CITY, CO		10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION / AVAILABILITY STATEMENT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED		12b. DISTRIBUTION CODE	
<p>13. ABSTRACT (Maximum 200 words)</p> <p>THIS FINAL REPORT DOCUMENTS THE PHASE I CONTAMINATION SURVEY OF SITE 30-1, USED FROM 1945 TO 1951 AS AN IMPACT AREA FOR 4.2 INCH MORTARS. 66 SAMPLES FROM 29 BORINGS WERE ANALYZED FOR VOLATILE AND SEMIVOLATILE ORGANICS AND METALS WITH SEPARATE ANALYSES FOR AS AND HG. CU, PB, AND ZN WERE DETECTED ABOVE INDICATOR RANGES; HOWEVER, THESE ELEVATED METAL VALUES ARE ASSOCIATED WITH BEDROCK WHICH CONSISTS OF VOLCANICLASTIC MATERIAL. NO TARGET ORGANIC COMPOUNDS WERE DETECTED. METAL ANOMALIES WERE FOUND AT THE SITE. A PHASE II PROGRAM CONSISTING OF 5 ADDITIONAL BORINGS IS RECOMMENDED TO INVESTIGATE THREE AREAS WHICH HAVE NOT BEEN FULLY INVESTIGATED. THE VOLUME OF POTENTIALLY CONTAMINATED MATERIAL PRESENT IS ESTIMATED AT 70,000 BANK CUBIC YARDS.</p> <p>APPENDICES: CHEMICAL NAMES, PHASE I CHEMICAL DATA, COMMENTS AND RESPONSES.</p>			
14. SUBJECT TERMS GEOLOGY, HYDROLOGY, GEOPHYSICAL EXPLORATION, ANALYTES, SOIL SAMPLING, CHEMICAL DATA, MUNITIONS			15. NUMBER OF PAGES
			16. PRICE CODE
17. SECURITY CLASSIFICATION OF REPORT UNCLASSIFIED	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT

88033 R03

Original

LITIGATION TECHNICAL SUPPORT AND SERVICES

Rocky Mountain Arsenal

Rocky Mountain Arsenal
Information Center
Commerce City, Colorado

FILE COPY

FINAL PHASE I
CONTAMINATION ASSESSMENT REPORT
SITE 30-1: IMPACT AREA
(INCLUDES 30-7: GROUND DISTURBANCE)
(Version 3.3)

January 1988
Contract Number DAAK11-84-D0016
Task Number 14 (Army Sites North)

PREPARED BY

ENVIRONMENTAL SCIENCE AND ENGINEERING, INC.

Harding Lawson Associates Midwest Research Institute
(Prepared under Task 21)

PREPARED FOR

U.S. ARMY PROGRAM MANAGER'S OFFICE FOR ROCKY MOUNTAIN ARSENAL

THE INFORMATION AND CONCLUSIONS PRESENTED IN THIS REPORT REPRESENT THE OFFICIAL POSITION OF THE DEPARTMENT OF THE ARMY UNLESS EXPRESSLY MODIFIED BY A SUBSEQUENT DOCUMENT. THIS REPORT CONSTITUTES THE RELEVANT PORTION OF THE ADMINISTRATIVE RECORD FOR THIS CERCLA OPERABLE UNIT.

THE USE OF TRADE NAMES IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL PRODUCTS. THIS REPORT MAY NOT BE CITED FOR PURPOSES OF ADVERTISEMENT.

TABLE OF CONTENTS

Section	Page
EXECUTIVE SUMMARY	iv
1.0 PHYSICAL SETTING	1
1.1 LOCATION	1
1.2 GEOLOGY	1
1.3 HYDROLOGY	3
2.0 HISTORY	9
3.0 SITE INVESTIGATION	13
3.1 PREVIOUS SOIL INVESTIGATIONS	13
3.2 PHASE I SURVEY	13
3.2.1 Phase_I_Program	13
3.2.2 Phase_I_Field_Observations	17
3.2.3 Geophysical_Exploration	19
3.2.4 Phase_I_Analyte_Levels_and_Distribution	22
3.2.5 Phase_I_Contamination_Assessment	37
3.3 PHASE II SURVEY	39
3.4 QUANTITY OF POTENTIALLY CONTAMINATED SOIL	41
4.0 REFERENCES	43

APPENDICES

- 30-1-A CHEMICAL NAMES, METHODS, AND ABBREVIATIONS
30-1-B PHASE I CHEMICAL DATA
30-1-C COMMENTS AND RESPONSES

LIST OF FIGURES

Figure		Page
30-1-1	Site Location Map, Site 30-1, Rocky Mountain Arsenal	2
30-1-2	Field Boring Profile for Boring 5334	4
30-1-3	Field Boring Profile for Boring 5335	5
30-1-4	Regional Topography, Site 30-1, Rocky Mountain Arsenal	6
30-1-5	Regional Ground Water Flow, Site 30-1, Rocky Mountain Arsenal	8
30-1-6	Phase I Investigation Boring Location Map, Site 30-1	15
30-1-7	Phase I Investigation Geophysical Results Summary, Site 30-1	21
30-1-8	Phase I Investigation Chemical Analysis Results, Site 30-1	30
30-1-9	Proposed Phase II Investigation Boring Location Map, Site 30-1	40

LIST OF TABLES

Table		Page
30-1-1	Summary of Analytical Results for Site 30-1	23
30-1-2	Concentration of Target Analytes Above Detection Limits in Site 30-1 Soil Samples	24
30-1-3	Tentative Identification of Nontarget Compounds in Site 30-1 Soil Samples	32

EXECUTIVE SUMMARY
SITE 30-1: IMPACT AREA

Site 30-1, Impact Area, is in the northeast portion of Rocky Mountain Arsenal (RMA) in Section 30. The site was used as a mortar impact area from 1946 until the early 1950's, although the source of mortar fire is uncertain. This site was investigated under Task 14 in the spring of 1986. A total of 29 soil borings were drilled to depths of 5 to 10 feet (ft) and 66 samples were collected. An extensive geophysical reconnaissance program using magnetic and electromagnetic techniques was performed over the entire site. An additional investigation consisted of surface sweeps for metal debris, test pit excavations for geophysical anomalies, and several borings drilled for geological information.

Four other sites (30-4, 30-5, 30-6, and 30-7) are within the Site 30-1 boundaries. Site 30-7, a ground disturbance of unknown origin, is included in this Site 30-1 investigation. Site 30-4 (Sanitary Landfill) is addressed in a Task 7 investigation. The remaining two sites are addressed in independent Task 14 Contamination Assessment Reports.

Copper, lead, and zinc were the only metals detected at concentrations above their indicator ranges. All other metal values were within or below their respective indicator ranges. Elevated metal values are associated with a well-defined bedrock high which consists, in part, of Tertiary-age volcaniclastic material. No target organic compounds were detected at this site. Several nontarget organic compounds were detected at low concentrations and were tentatively identified as natural organic products, phthalates, and unknown hydrocarbons.

A Phase II program consisting of 5 soil borings (20 samples) is recommended to investigate three areas (a geophysical anomaly, a trench, and a possible burn site) which were not fully investigated by the Phase I investigation. These three areas are estimated to cover 37,500 square feet (ft^2) and to contain 8,400 bank cubic yards (bcy) of potentially contaminated soil.

Phase I data and aerial photographs indicate that the main portion of the mortar impact range is in the area of visible impact craters and is estimated to cover 2,100,000 ft^2 (approximately 1,000 by 2,100 ft). Results also suggest that up to 70,000 bcy of soil in the impact range may be contaminated with a large quantity of small metal pieces and unexploded ordnance (UXO).

SITE 30-1: IMPACT AREA
(Includes 30-7: Ground Disturbance)

1.0 PHYSICAL_SETTING

1.1 LOCATION

Site 30-1, the primary impact area for 4.2-inch mortar rounds, comprises most of the southeast corner of Section 30 as shown in Figure 30-1-1. A dirt road in the southeast corner of the section once encircled the site which was considered to be the primary impact range (Geraghty and Miller, 1982, RIC#81342R06; Stout et al., 1982, RIC#83368R01; RMACCPMT, 1984, RIC#84034R01). The following four sites are within and adjacent to Site 30-1:

Site	<u>Description/Activity</u>
30-4	Sanitary landfill
30-5	M-34(GB) Demilitarization area
30-6	M-34 disposal trenches
30-7	Ground disturbance, unknown origin

Sites 30-4, 30-5, and 30-6 are addressed in other Contamination Assessment Reports, while Site 30-7 is included as part of this Site 30-1 Contamination Assessment Report. Because the boundaries for Site 30-1 were not discernible on any aerial photograph, they were derived from the 1984 Rocky Mountain Arsenal Contamination Control Program Management Team map (RMACCPMT) (RIC#84034R01). Visible impact craters were also used to determine the site boundaries.

1.2 GEOLOGY

Site 30-1 is situated on Pleistocene alluvium which consists of interbedded silty sand, gravel, and clay partly covered by a thin layer of eolian silt and sand. The thickness of the alluvium generally varies from 2 to 20 feet (ft), with the thickest portion located along the western boundary near First Creek, in the vicinity of Well 30010 (May, 1982, RIC#82295R01). The eastern portion of the site is located over a bedrock high and has a thin alluvial cover.

The alluvium is underlain by the Denver Formation which is characterized by bentonite-rich clay/shale and compact lenticular sand horizons. Lithologic variations in the Denver Formation include interbedded siltstone, claystone, sandstone, conglomerate, low-grade coal, lignite, and volcaniclastic material. The sandstone units are as much as 20-ft thick and are typically discontinuous, loosely to poorly cemented, and commonly grade into siltstone or shale. Locally, however, the sands are well-cemented (Stollar and van der Leeden, 1981, RIC#81293R05; Geraghty and Miller, 1982, RIC#81342R06; May, 1982, RIC#82295R01; RMACCPMT, 1983, RIC#83326R01; Clark, 1985, RIC#85183R01; Anderson et al., 1979, RIC#85214R03).

The Phase I boring program investigated the alluvium and bedrock at 29 boring locations. A sandy silt or silty sand interbedded with clayey silt lenses was the dominant soil type encountered. Grain size and sand content generally increased with depth. The Denver Formation was encountered in four borings as follows:

Boring No.	Depth (ft)	Lithologies
5334	9	weathered volcaniclastic
5335	6	weathered claystone
5341	5	weathered volcaniclastic
5345	7	weathered volcaniclastic

Borings in Site 30-5, which is within Site 30-1 (Figure 30-1-1), encountered Denver Formation claystone at depths of 3 to 4 ft. Boring logs 5334 and 5335 (Figures 30-1-2 and 30-1-3) are representative of surficial site geology at Site 30-1.

1.3 HYDROLOGY

Site 30-1 is situated in the First Creek drainage basin on a west to southwest-facing slope (Figure 30-1-4). Elevations along the eastern site border (F Street) range from approximately 5,247 to 5,270 ft above mean sea level (ft msl); elevations in the southwest part of the site range from approximately 5,220 to 5,230 ft msl. Surface drainage generally flows west toward First Creek, which is approximately 1,300 ft west of the western site boundary (Figure 30-1-4). Site 30-4 (Sanitary Landfill) lies between Site 30-1 and First Creek and may receive surface runoff from Site 30-1.

A small unnamed drainage channel crosses Site 30-1 from the south boundary and flows northwest toward First Creek (Figure 30-1-4). In a 1964 aerial

Figure 30-1-2
FIELD BORING PROFILE
FOR BORING 5334
SOURCE: ESE, 1987

Prepared for:
U.S. Army Program Manager's Office
For Rocky Mountain Arsenal
Aberdeen Proving Ground, Maryland

Figure 30-1-3
FIELD BORING PROFILE
FOR BORING 5335
SOURCE: ESE, 1987

Prepared for:
U.S. Army Program Manager's Office
For Rocky Mountain Arsenal
Aberdeen Proving Ground, Maryland

EXPLANATION

- Monitoring Wells
- Investigated Site
- ← Surface Drainage Flow
- ☒ Concrete Observation Bunker
- Creek

APPROXIMATE SCALE (in feet)
Contour Interval 5 Feet

Figure 30-1-4
REGIONAL TOPOGRAPHY,
SITE 30-1
ROCKY MOUNTAIN ARSENAL
SOURCE: ESE, 1987

Prepared for:
U.S. Army Program Manager's Office
For Rocky Mountain Arsenal
Aberdeen Proving Ground, Maryland

01/18/88

photograph, liquid was noted in this channel, although it was not entering First Creek (Stout et al., 1982, RIC#83368R01). It is unknown what effect, if any, this small drainage has had on the hydrology of the area.

Most of Section 30 overlies a bedrock high. The water table lies below the alluvial-Denver Formation contact at an elevation of approximately 5,195 to 5,220 ft msl. Available data indicate that the water table occurs within the alluvium only in the southwestern portion of the site (RMACCPMT, 1983, RIC#83326R01).

Water levels measured during the Task 4 Initial Screening Program indicate that wells surrounding Site 30-1 (Figure 30-1-5) have depths to water ranging from 8.5 ft (5,197 ft msl, Well 30009) in the west to 35 ft (5,214 ft msl, Well 29002) in the northeast (ESE, 1986c, RIC#86238R08). Wells to the north (Well 30004) and south (Well 31009) have depth to water measurements of 29.6 (5,195 ft msl) and 27.4 ft (5,214 ft msl), respectively. Ground water flow is generally to the northwest.

Historical data (Clark, 1985, RIC#85183R01) suggest that the water table elevation in this area has varied little over the past 5 years. Phase I borings were drilled to a depth of 10 ft, but did not penetrate the water table. An isolated 10 parts per billion (ppb) endrin value was reported downgradient in Denver Formation Well 30005 (ESE, 1986c, RIC#86238R08). These results, however, are provided for background purposes and are not intended to be correlated with soil sample analytical results generated as part of the Phase I study. It is not possible to determine on the basis of available data if activities at Site 30-1 have affected ground water beneath this site.

Figure 30-1-5
REGIONAL GROUND WATER FLOW
SITE 30-1
ROCKY MOUNTAIN ARSENAL
SOURCE: ESE, 1987

Prepared for:
U.S. Army Program Manager's Office
For Rocky Mountain Arsenal
Aberdeen Proving Ground, Maryland

2.0 HISTORY

Section 30 was part of the original buffer zone for RMA operations from 1945 until 1951, when the RMA boundary was moved east to its present location. From 1945 to 1951, Site 30-1 was reportedly used as an impact range for 4.2-inch mortars (Wingfield, 1977, RIC#81266R68). Several resources describe the impact range differently. One drawing illustrates that areas of Sections 26, 35, 25, 36, 30, 31, 29 and 32 were part of the mortar range (RMA, 1946). Four observation posts were associated with the reported mortar range, one which was located atop Rattlesnake Hill in Section 35, one atop the hill on Eighth Avenue between D and E streets in Section 25, one at the intersection of E Street and Eighth Avenue, and a concrete bunker in Section 30 (U.S. Army Chemical Corps, 1945; U.S. Army Chemical Corps, 1946). The 1949 aerial photograph of Section 30 shows a dirt road in the southeast section corner that encircles an area considered to be the primary impact range (Geraghty and Miller, 1982, RIC#81342R06).

The Installation Assessment Report (Wingfield, 1977, RIC#81266R68) suggests that the impact area includes the northeast corner of Section 30 and the adjacent areas of Sections 19, 20, and 29. This location appears unlikely, however, since Sections 19 and 20 were outside the RMA boundary in the late 1940's (Geraghty and Miller, 1982, RIC#81342R06). Although 4.2-inch mortar fragments have been found in the south-central portion of Section 30, no fragments have been found in the northeast portion of the section (Wingfield, 1977, RIC#81266R68).

A concrete bunker, used to observe mortar impacts, is located near the center of the site. Windows in the bunker are present only on the north and west sides, suggesting that the main impact range was north of the bunker. The ground disturbance identified as Site 30-7 in the southeast corner of Site 30-1, was located on a 1958 aerial photograph, but its history is unknown (RMACCPMT, 1984, RIC#84034R01). It is unlikely that Site 30-7 was in the Section 30 impact range due to its proximity to the southeast section corner. The 1958 aerial photograph does show a trench at Site 30-7 (Stout et al., 1982, RIC#83368R01), although no information is available on what,

if anything, may have been disposed of in the trench. Drawing D-748 and pre-Arsenal aerial photographs indicate a farming silo once stood directly adjacent to F Street, just northeast of Site 30-5.

U.S. Army Technical Escort Center (TEC) personnel have indicated that the maximum penetration depth for 4.2-inch mortars is 8 ft. Six ft is considered a conservative average for subsurface dud rounds (RMACCPMT, 1984, RIC#84034R01). Explosive chemicals contained within mortar shells should detonate upon impact leaving little or no contamination. Soil contamination from UXO is expected to be minimal at this site (Geraghty and Miller, 1982, RIC#81342R06).

Site 30-1 is suspected of being contaminated with organic, inorganic, and heavy metal contaminants, in addition to UXO (RMACCPMT, 1984, RIC#84034R01). The soil is believed to contain scrap metal fragments from 4.2-inch mortar impacts and 4.2-inch unexploded rounds which may contain high explosive (HE), white phosphorus (WP), smoke (FS) filler, or slugs (Wingfield, 1977, RIC#81266R68; Geraghty and Miller, 1982, RIC#81342R06).

The available aerial photographs (Stout et al., 1982, RIC#83368R01) may be summarized as follows:

Photograph Date	Description
October 21, 1948	Only the westernmost portion of the site is shown in this photograph. The photograph clearly shows a dirt road extending north from Eighth Avenue for approximately one-half mile, then turning east-northeast and eventually intersecting F Street. This road defines the western and northern margins of Site 30-1.
October 15, 1964	The road described above is still clearly visible in this photograph and the observation bunker is present. The access road to the demilitarization operation (Site 30-5) is now clearly visible, as are the trenches comprising Sites 30-6 and 30-7. A north-northeast dirt track leading from the observation bunker near the center of Site 30-1 to the vicinity of Site 30-6 is also visible in this photograph. A light-colored, small rectangular

01/15/88

area thought to be remains of a farming silo is clearly shown northeast of Site 30-5 and directly adjacent to F Street. Four light gray scars approximately 90 ft in diameter are visible in this photograph. Two scars are west and two are approximately 1,200 ft northwest of Site 30-6. The scars are not thought to be related to Site 30-1 activities. All of the scars are north of the designated site.

April 28, 1974

The dirt roads and tracks described in the 1964 photograph are still visible, although some are faint. The rectangular area of unknown origin northeast of Site 30-5 now appears to be a blackened, possible burn area. The sanitary landfill (Site 30-4) is clearly defined near the southwest corner of Site 30-1. The northwest portion of the site has a light-colored ground scar which may be related to impact craters located directly north.

September 20, 1980

The sanitary landfill (Site 30-4) has been expanded to the northwest and has obscured the north-south road which once defined the western margin of Site 30-1. Brackets are drawn on the photograph which distinguish the boundaries of the old and new landfills. The blackened area east-northeast of the demilitarization operation is still well-defined. Impact craters are now visible in the northwest quadrant of the site. Many impact craters are visible to the north and northwest of Site 30-5 as well. Two trenches oriented northwest-southeast are visible in the southwest portion of the site, east of the landfill access road.

December 31, 1985

A long, thin, apparently shallow excavation is west-northwest of the demilitarization operation in this photograph. Another similar excavation is 400 ft north of the observation bunker. Several east-west linear berms are in the southeast quadrant of the site. The southwest portion of the site east of the landfill access road appears irregular and hilly.

The fact that many visible impact craters occur in the north-central part of the site does not fully correspond with the 1977 Records Evaluation Report (Wingfield, 1977, RIC#81266R68), which shows the impact range extending northeast across Section 30 and into Sections 19, 20, and 29. Mr. William

01/15/88

Moloney (Quality Assurance, RMA) has suggested that the impact range is north of the observation bunker (Figure 30-1-1) and doubts that the GB demilitarization facility (Site 30-5) would have been constructed on any part of the impact range. Windows in the observation bunker only face north and west; thus, it is unlikely that mortars were intentionally fired to the southern and eastern parts of Section 30, beyond the effective view of the observation bunker.

3.0 SITE INVESTIGATION

3.1. PREVIOUS SOIL INVESTIGATIONS

The soil at Site 30-1 has been mapped by the U.S. Soil Conservation Service (Sampson and Baber, 1974) as Ascalon sandy loam, Ascalon-Vona sandy loam, and Platner loam. Ascalon soil is sandy loam containing varying amounts of sand and gravel which become clay-rich and calcareous with depth. Ascalon-Vona soil is somewhat sandier than Ascalon soil and is better drained. Soil of the Platner loam series is typically gray-brown, noncalcareous, silty loam which becomes more clay-rich and calcareous with depth. No previous soil contamination studies are documented for this site.

3.2 PHASE I SURVEY

3.2.1 Phase_I_Program

The Phase I program consisted of an extensive geophysical survey and a soil boring program which was intended to locate large-scale burial sites or anomalous soil conditions. Twenty-nine soil borings yielding 66 soil bedrock samples were drilled at an average spacing of 450 ft over this 7,219,000 ft² site. Twenty-one borings were drilled to a depth of 5 ft, and eight borings were drilled to 10 ft. Four borings (5334, 5335, 5341, and 5345) encountered claystone bedrock. The 29 Phase I borings were drilled as follows:

Boring_Number	Depth_(ft)	Number_of_Samples
5325	5	2
5326	10	3
5327	5	2
5328	5	2
5329	5	2
5330	5	2
5331	5	2
5332	5	2
5333	10	3
5334	10	3
5335	10	3
5336	5	2
5337	5	2
5338	5	2
5339	5	2
5340	5	2
5341	10	3

01/15/88

5342	5	2
5343	5	2
5344	5	2
5345	10	3
5346	5	2
5347	5	2
5348	10	3
5349	5	2
5350	10	3
5351	5	2
5352	5	2
5353	5	2
TOTAL		66

During the geophysical investigation of this site, an anomalous response area was identified south of Site 30-4. This was determined to be the old Sanitary Landfill, and was referred to Task 7 for investigation. Six soil borings were placed in this area under Task 7.

The geophysical program at this site also indicated widespread magnetic and electromagnetic response on the eastern and northern portions of the site. Seven borings were drilled and a pit was dug to provide more information on the anomalous responses. Two surface sweeps for metal debris characterization were also conducted; one within the primary impact area and another in an area of abundant metal debris near Eighth Avenue.

Soil samples were collected using the continuous soil sampling method detailed in the Task 14 Technical Plan (ESE, 1986b, RIC #86238R04). Samples were obtained at predetermined intervals unless field conditions [i.e., water table, staining, etc.] required an adjustment in the intervals. No adjustment was required in intervals from Site 30-1 borings.

Boring locations, pertinent surficial objects, and historical features from aerial photographs have been combined and presented on the boring location map (Figure 30-1-6). Borehole sites were selected on the basis of visual evidence, historical reports, aerial photographs, and geophysical results. Boring 5325 was located within the boundaries of Site 30-7; all other borings were situated in Site 30-1.

EXPLANATION

- [Solid Box] Abundant Metal Debris
- [Star] Impact Crater
- [Dashed Line] Road or Swale
- [Solid Line] Trench
- [Star] Large Pieces of Metal
- [Square] Concrete Observation Bunker
- [Dot] Phase I Boring
- [Dashed Line] RMACCPMT Boundary(1984, RIC No.84034R01)

▲ EBASCO Soil Boring Location

— Creek or Ditch

0 400 800
SCALE: in feet

Figure 30-1-6
PHASE I INVESTIGATION
BORING LOCATION MAP
SITE 30-1

SOURCE: HARDING LAWSON ASSOCIATES, 1987

Prepared for:
U.S. Army Program Manager's Office
For Rocky Mountain Arsenal
Aberdeen Proving Ground, Maryland

Prior to drilling, all borehole sites were cleared for safety purposes in accordance with the geophysical program detailed in the Task 14 Technical Plan (ESE, 1986b, RIC#86238R04). Borehole site clearance was used to ensure drilling would not encounter buried UXO or other metal that could pose a significant safety risk. Magnetic intensity readings were obtained with a gradiometer. A 20-ft-square grid was centered at each boring location, and gradiometer readings were obtained at a spacing of 5 ft throughout the area. A contour map was prepared from the data and used to place the boring in the safest location within the geophysical plot. Following borehole clearance with the gradiometer, a metal detector was used to check for surficial (0 to 2 ft) metal which may have presented a safety risk. Twenty-two borings were relocated slightly due to borehole site clearance. This procedure should not be confused with the geophysical exploration program outlined in Section 3.2.3 of this report.

A photoionization detector (PID), calibrated to an isobutylene standard, was used to obtain readings from the open boreholes during drilling and from soil samples during geologic logging. The PID measures the concentration of organic vapors in the air and is a method of ensuring personnel safety.

All samples were analyzed by gas chromatography/mass spectrometry (GC/MS) for semivolatile organic compounds and by inductively-coupled argon plasma (ICP) analyses for cadmium, chromium, copper, lead, and zinc. All samples were analyzed for arsenic and mercury by atomic absorption (AA) spectroscopy. A GC/MS volatile organic analysis was performed on five samples from the 9- to 10-ft interval as follows: 5326, 5334, 5335, 5345, and 5348. A complete list of the Phase I analytes is in Appendix 30-1-A.

The Phase I remedial investigation program for this site was developed and implemented based on historical documentation, aerial photographs, and other information available at the time of its implementation. Since that time, previously unavailable information has been identified and incorporated into the history section of this report. Furthermore, this additional information has been evaluated in detail to determine how it might impact the investigation approach at this site. Based upon this evaluation, it has been determined that the additional information collected since the Phase I

01/26/88

and Phase II program was designed does not substantially alter the view of potential contamination at this site. As a result, the Phase I program as conducted and Phase II program as planned is judged to provide a complete and accurate investigation of the possible contamination at this site.

3.2.2 Phase_I_Field_Observations

Several linear surface scars were noted at Site 30-1. Boring 5345 was drilled in a 175- by 30-ft-wide trench oriented northwest-southeast, Boring 5335 was also drilled in a trench, and Boring 5334 was drilled in a ditch beside a gravel road running east-west. No indications of disposal activity were present in any borehole sample from these trenches, nor were any surface indications of disposal noted. Boring 5347 was placed within a small drainage channel in the western portion of the site.

Several depressions (impact craters) were noted within the site (Figure 30-1-6). Most depressions were small and shallow (6 ft wide by 3 ft deep). A general field search in the northern part of the site near Borings 5345, 5348, 5342, and 5343 revealed an abundant number of small pieces of shrapnel associated with these impact craters. Most metal pieces were only 1 to 2 inches square in size, but occasionally they were 1 ft². Only a few pieces of shrapnel were found over a 3,000 ft² area along the northern site boundary approximately 1,000 ft west of Site 30-6. A second field search of a 2,300 ft² area was conducted within a broad zone of intense geophysical anomalies 300 ft southwest of Site 30-5. Only 20 small pieces of metal were found, most of which were 2- to 4-inch-long, pencil-shaped fragments. The quantity of metal in the general area southwest of Site 30-5 is estimated to be 5 to 10 times less than that found in the north-central portion of Site 30-1.

A 1-acre area within the primary impact area was staked and a surface sweep was conducted. Personnel with expertise in UXO identification recovered 14 fuzes, 20 blasting caps, two 40mm grenades, and 1 dud smoke grenade from the area. The items were stored in a magazine for future detonation. A second

01/18/88

surface sweep was conducted in an area of abundant metal debris near Eighth Avenue. Material identified in this area was innocuous scrap metal that did not warrant further investigation.

A 100- by 200-ft area along F Street was described as a possible burn scar by Stout et al. (1982, RIC#83368R01). A field search of this area revealed abundant pieces of red brick, building tile, and concrete. The June 4, 1978 Drawing D-748, "4.2 inch Mortar Range", and pre-Arsenal aerial photographs indicate this to be the location of an agricultural-use silo. The area contained scattered small cans and abundant metal, although there was no surface evidence to suggest burning occurred in this area. The red brick and tile are thought to be the silo remains. The area, as mapped by the geophysical field crew, contained abundant scattered metal (Figure 30-1-6).

Boring 5345 contained visible staining in the 9- to 10-ft interval. Green specks and spots were noted in this sample, but no unusual field readings were detected.

An M8 alarm and M18A2 test kit were used to detect the presence of chemical agents in boreholes and soil samples. The M8 alarm is used to detect GB (Sarin) and VX at detection levels of 0.2 and 0.4 milligrams per cubic meter (mg/m^3) respectively, after a response time of 2 to 3 minutes [U.S. Army Materiel Development and Readiness Command (USAMDARC), 1982; USAMDARC, 1979; Headquarters-Department of the Army (HDOA), 1976]. However, many other substances, including smoke and engine exhaust, can activate the M8 alarm. The M18A2 is used as a backup test if an M8 alarm is triggered, as a substitute for an M8, and as a specific check for the presence of mustard. The M18A2 detects G agents, V agents, all forms of mustard, and Lewisite (L), based upon the knowledge that these agents were manufactured, stored, or demilitarized at the site (HDOA, 1976). The detection limit for mustard agents is 0.5 milligrams per cubic meter (mg/m^3) and the detection for GB is 0.2 mg/m^3 . The detection limit for L in soil is 5 parts per million (ppm).

Historical evidence did not support further testing for chemical agents at this site. No positive tests or alarm activation occurred at this site. PID readings for this site were less than 2.3 and posed no risk to drilling personnel.

3.2.3 Geophysical Exploration

The two geophysical methods used in this Task 14 investigation included continuous magnetic surveying with a Geonics G-866, which measures minute changes in the earth's magnetic field, and continuous electromagnetic (EM) surveying with a Geonics EM-31D, which measures both in-phase and out-of-phase EM response.

Geophysics is an indirect technique that measures the electrical/physical properties of an object or lithology. Geophysical anomalies may be related to buried metal or to lithologic variations and/or depth to bedrock. The correct interpretation of geophysical data is dependent upon experience and extensive site knowledge to identify anomalies induced by debris or contaminant plumes.

Within the limitations inherent in the methods, the geophysical data obtained in this investigation can be used to infer the presence of metals or chemical contamination. Whereas the magnetic technique is sensitive to the presence of ferrous metal, in-phase EM techniques can be used to detect both ferrous and nonferrous metal. Out-of-phase EM techniques provide information regarding bulk soil conductivity and the possible presence of chemical contamination.

The geophysical survey consisted of alternating magnetic and EM lines spaced 25 ft apart. Continuous geophysical readings were taken along each traverse and stored on computer tape. Three individual contour maps were generated from the magnetic, EM in-phase, and EM out-of-phase data. Areas of anomalous geophysical response were noted for each map and used to produce a geophysical results summary map.

Results from the magnetometer and EM survey are summarized in Figure 30-1-7. The three major areas of magnetic anomalies and their locations are: Anomaly A, southwest corner; Anomaly B, southeastern to eastern portion of the site; and Anomaly C, northeast corner. Anomaly A coincides with a very strong in-phase EM response and defines the old landfill. Anomaly B is defined by numerous magnetic anomalies; the eastern one-half to one-third portion of this anomaly also contains abundant in-phase EM anomalies. Seven borings drilled in this area were logged for geologic characteristics and revealed volcaniclastic material (indicative of bedrock) at depths from 3 to 10 ft. The magnetic and electromagnetic response are attributed to the Denver Formation bedrock. Anomaly C extends beyond the northern geophysical survey grid boundary and consists of strong magnetic, in-phase EM, and out-of-phase EM anomalies. Anomaly C was investigated by an excavation pit in which shallow volcaniclastic material was also identified.

The geophysical survey was designed to detect large accumulations of metal buried in trenches or pits. Widely scattered pieces of shrapnel associated with mortar impacts are not detectable. Because the scattered magnetic anomalies shown on Figure 30-1-7 are not supported by accompanying in-phase EM anomalies, these small isolated magnetic anomalies probably represent shallow metal debris or localized bedrock anomalies.

A large curving band of out-of-phase EM anomalies extends from the northern to the eastern geophysical survey grid boundary. These anomalies are thought to be related to soil texture and/or moisture content. A second area of out-of-phase EM anomalies occurs in the southwest corner of the site just northeast of the old landfill area. The strongest portion of this anomaly (D) appears to be related to two small trenches and mounds west of Borehole 5330. In-phase EM values are also anomalous in this area, but are related to both the old landfill location and the two trenches and mounds.

An out-of-phase EM anomaly coincides with the north-south oriented trench west of Site 30-5. Although this trench is within the curving out-of-phase EM anomaly described above, greater intensities were measured by all three geophysical techniques in the immediate vicinity of the trench.

EXPLANATION

- | | | |
|----------------------------------|------------------|--|
| ■ Abundant Metal Debris | ○ Mounds | — RMACCPMT Boundary
(1984, RIC #84034R01) |
| △ Impact Crater | ● Excavation Pit | N |
| — Road or Swale | — Creek or Ditch | |
| — Trench | | |
| ★ Large Piece of Metal | ● Phase I Boring | 0 400 800 |
| ▣ Concrete Observation
Bunker | ◆ Geology Boring | SCALE: in feet |
- Geophysical Anomalies**
- Magnetic
 - Inphase EM
 - Out-Of-Phase EM

Figure 30-1-7
PHASE I INVESTIGATION,
GEOPHYSICAL RESULTS SUMMARY
SITE 30-1,
SOURCE: HARDING LAWSON ASSOCIATES, 1987

Prepared for:
U.S. Army Program Manager's Office
For Rocky Mountain Arsenal
Aberdeen Proving Ground, Maryland

3.2.4 Phase_I_Analyte_Levels_and_Distribution

A statistical summary of Phase I analytical results is presented in Table 30-1-1. An analytical summary for each sample, including lithology and air monitoring results, is presented in Table 30-1-2. A listing of the target compounds and a tabulation of analytical data can be found in Appendices 30-1-A and 30-1-B.

To assess the significance of metal and organic analytical values, indicator ranges were established. For organic compounds, the indicator level is the method detection limit. For metals, a range of values was chosen to reflect the upper end of the normal range for each metal as naturally found in RMA alluvial soils. Selection of the ranges is discussed in the Introduction to the Contamination Assessment Reports (ESE, 1986a). Concentrations within and above indicator range for Phase I data are presented in Figure 30-1-8.

Most metal concentrations at this site are within their respective indicator ranges, except for samples near or from bedrock. Copper, zinc, and lead were the only metals found at concentrations exceeding their indicator ranges. Mercury was detected in two samples at 0.066 and 0.082 ppm, and arsenic was detected in 14 samples from 5.5 to 7.4 ppm. Cadmium was below the detection limit in all samples.

Six borings (5334, 5335, 5338, 5341, 5345, and 5352) contained metal concentrations above the indicator ranges. All six borings were situated in areas of high inferred soil conductivity and relatively shallow bedrock (Figure 30-1-7). Four of these borings (5334, 5335, 5341, and 5345) encountered weathered bedrock (volcaniclastics) at depths of 5- to 9-ft. Boring 5338 penetrated a stiff-textured silty clay horizon that may actually be weathered bedrock. The remaining boring (5352) contained brownish-clay silt, which may indicate a relatively higher organic content. The elevated organic content could be responsible for concentrating certain metals (Krauskopf, 1979). Target organic compounds were not detected in any of the 66 Phase I samples (Table 30-1-1).

Table 30-1-1. Summary of Analytical Results for Site 30-1

Constituent	Number of Samples*	Range	Mean	Median	Concentrations ($\mu\text{g/g}$)			MRI Detection Limit	Indicator Range
					Standard Deviation	ESE	MRI		
Volatile (N=5)†									
None Detected								DL	
Semi-volatile (N=66)†									
None Detected								DL	
ICP Metals (N=66)†									
Cadmium	0	—	—	—	—	—	—	—	—
Chromium	57	8.1-25	15	16	3.8	7.2	0.50	DL-2.0	
Copper	66	5.8-58	17	14	9.7	4.8	7.4	25-40	
Lead	36	20-41	28	28	5.2	17	4.9	20-35	
Zinc	65	26-110	56	54	17	16	16	25-40	
Arsenic (N=66)†	14	5.5-7.4	6.3	6.3	.54	4.7	5.2	DL-10	
Mercury (N=66)†	2	0.066-0.082	—	—	—	0.050	0.070	DL-0.10	

* Number of samples in which constituent was detected above the detection limits.

† N = Number of samples analyzed.

— Not calculated for less than five detections.

DL Detection limit.

Source: ESE, 1987.

Table 30-1-2. Concentration of Target Analytes Above Detection Limits in Site 30-1 Soil Samples (Page 1 of 6)

Bore Number	5325	5326	5326	5327	5327	5328	5329	5330
Depth (ft)	0-1	4-5	0-1	9-10	0-1	4-5	0-1	4-5
Geologic Material	Sandy Silt							
AIR MONITORING								
PID*	BDL							
SOIL CHEMISTRY								
<u>Volatiles (µg/g)</u>	NA							
<u>Semi-volatiles (µg/g)</u>	NA							
None Detected								
<u>Metals (µg/g)</u>	BDL							
Cadmium	20	14	19	17	9.4	16	13	17
Chromium	14	12	14	13	8.2	16	13	13
Copper	32	20	34	26	26	24	24	30
Lead	59	47	60	48	32	51	47	53
Zinc	BDL							
<u>Arsenic (µg/g)</u>	BDL	5.8	7.1	6.7	BDL	7.4	6.8	BDL
<u>Mercury (µg/g)</u>	BDL							

Table 30-1-2. Concentration of Target Analytes Above Detection Limits in Site 30-1 Soil Samples (Page 2 of 6)

Bore Number	5331	5331	5332	5333	5333	5334	5334	5335	5335
Depth (ft)	0-1	4-5	0-1	4-5	0-1	4-5	0-1	4-5	9-10
Geologic Material	Slightly Sandy Silt	Sandy Silt	Slightly Sandy Silt	Sandy Silt	Clayey Silt	Clayey Silt	Silty Sand	Silty Sand	Weathered Sandy Volcanic-clastic (Denver Fm.)
AIR MONITORING									
PID*	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SOIL CHEMISTRY									
<u>Volatile (µg/g)</u>									
NAs	NAs	NAs	NAs	NAs	NAs	NAs	NAs	NAs	NAs
<u>Semi-volatiles (µg/g)</u>									
None Detected									
<u>Metals (µg/g)</u>									
Cadmium	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chromium	11	17	19	16	18	18	12	15	BDL
Copper	15	20	21	19	12	11	5.8	13	36
Lead	BDL	BDL	BDL	BDL	34	28	BDL	30	32
Zinc	4.2	55	66	50	50	61	4.7	40	31
<u>Arsenic (µg/g)</u>	BDL	BDL	BDL	BDL	6.4	5.5	BDL	BDL	BDL
<u>Mercury (µg/g)</u>	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Table 30-1-2. Concentration of Target Analytes Above Detection Limits in Site 30-1 Soil Samples (Page 3 of 6)

Bore Number	5336	5336	5337	5337	5338	5338	5339	5339	5340	5340	5341	5341
Depth (ft)	0-1	4-5	0-1	4-5	0-1	4-5	0-1	4-5	0-1	4-5	0-1	4-5
Geologic Material	Slightly Sandy Silt	Sandy Silt	Sand	Sandy Silt	Silt	Silt						
AIR MONITORING												
PID*	BKD	BKD	BKD	BKD	BKD	BKD	BKD	BKD	BKD	BKD	BKD	BKD
SOIL CHEMISTRY												
Volatile Organics ($\mu\text{g/g}$)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi-volatiles ($\mu\text{g/g}$)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
None Detected												
Metals ($\mu\text{g/g}$)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Cadmium	16	9.9	BDL	14	15	18	16	18	16	16	21	12
Chromium	18	1.3	9.4	13	14	15	15	15	14	14	24	51
Copper	21	BDL	BDL	26	29	30	28	32	28	28	BDL	BDL
Lead	60	37	BDL	48	52	88	58	56	56	56	69	110
Zinc	BDL	BDL	BDL	5.3	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Arsenic ($\mu\text{g/g}$)	BDL	BDL	BDL	0.066	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Mercury ($\mu\text{g/g}$)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Table 30-1-2. Concentration of Target Analytes Above Detection Limits in Site 30-1 Soil Samples (Page 4 of 6)

AIR MONITORING		PLD*		BKD		BKD		BKD		BKD		BKD	
Bore Number	5342	5343	5343	5344	5344	5345	5345	5346	5346	5346	5346	5347	5347
Depth (ft.)	4-5	0-1	4-5	0-1	4-5	0-1	4-5	0-1	4-5	0-1	4-5	0-1	4-5
Geologic Material	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Sandy Silt	Weathered Volcanic-clastic	Sandy Silt	Sandy Silt	Sandy Silt	Slightly Clayey	Clayey Silt
								(Denver fm.)					
<u>SOIL CHEMISTRY</u>		<u>Volatile</u> ($\mu\text{g/g}$)		NA		NA		NA		NA		NA	
<u>Semi-volatiles</u> ($\mu\text{g/g}$)		NA		NA		NA		NA		NA		NA	
None Detected													
<u>Metals</u> ($\mu\text{g/g}$)													
Cadmium	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chromium	1.9	9.4	16	8.1	20	19	16	10	10	9.6	16	16	16
Copper	2.1	1.2	20	7.0	19	20	20	39	26	14	14	14	19
Lead	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Zinc	66	42	50	33	68	54	50	92	65	35	42	33	58
<u>Arsenic</u> ($\mu\text{g/g}$)	BDL	BDL	5.9	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
<u>Mercury</u> ($\mu\text{g/g}$)	BDL	BDL	BDL	BDL	BDL	0.066	BDL	0.082	BDL	BDL	BDL	BDL	BDL

Table 30-1-2. Concentration of Target Analytes Above Detection Limits in Site 30-1 Soil Samples (Page 5 of 6)

Bore Number		5348	5348	5348	5349	5349	5350	5350
Depth (ft)	0-1	4-5	9-10	0-1	4-5	0-1	4-5	9-10
Geologic Material	Sandy Silt	Sandy Silt	Silty Sand	Slightly Clayey Silt	Slightly Clayey Silt	Sandy Silt	Sandy Silt	Sandy Silt
AIR MONITORING								
PM1*	BDL	BDL	BDL	BDL	BDL	1.1	BDL	BDL
SOIL CHEMISTRY								
Volatile (µg/g)	NA	NA	BDL	NA	NA	NA	NA	NA
Semi-volatiles (µg/g)								
None Detected								
Metals (µg/g)								
Cadmium	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
Chromium	1.7	1.1	9.4	1.5	14	22	14	11
Copper	1.7	1.3	6.3	1.8	18	13	10	7.8
Lead	2.9	2.1	BDL	BDL	20	33	21	BDL
Zinc	5.8	4.2	7.4	5.9	50	61	44	32
Arsenic (µg/g)	BDL	BDL	BDL	BDL	BDL	6.5	BDL	BDL
Mercury (µg/g)	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Table 30-1-2. Concentration of Target Analytes Above Detection Limits in Site 30-1 Soil Samples (Page 6 of 6)

	Bore Number	5151	5152	5153	5153
	Depth (ft)	4-5	0-1	4-5	4-5
	Geologic Material	Sandy Silt	Silty Sand	Clayey Silt	Sandy Silt
AIR MONITORING					
PID*	1.5	1.9	BDL	BDL	BDL
SOIL CHEMISTRY					
Volatile (µg/g)	NA	NA	NA	NA	NA
Semi-volatiles (µg/g)	NA	NA	NA	NA	NA
Metals (µg/g)					
None Detected					
Cadmium	BDL	BDL	BDL	BDL	BDL
Chromium	1.4	1.1	2.1	2.5	1.1
Copper	9.4	8.6	1.3	14	1.7
Lead	24	20	41	36	1.3
Zinc	4.4	4.5	64	64	BDL
Arsenic (µg/g)	BDL	BDL	5.9	6.2	BDL
Mercury (µg/g)	BDL	BDL	BDL	BDL	BDL

* As calibrated to an isobutylene standard.

BDL No readings above ambient background.

NA Not analyzed.

BDL Below detection limit.

Source: ESE, 1987.

EXPLANATION

- Abundant Metal Debris
 ☀ Impact Crater
 — Road or Swale
 — Trench
 ★ Large Pieces of Metal
 ☐ Concrete Observation Bunker
 ● Phase I Boring

Zn 60

Creek or Ditch

Analyte

Sampling Interval	0-1	As	21
	4-5	Hg	0.5
Bedrock Sample	9-10	BIL	

Level (ug/g)

BIL No Organics Above Detection Limits;
 No Metals \geq Indicator Range

RMACCPMT Boundary(1984, RIC No.84034R01)

— — — RMACCPMT Boundary(1984, RIC No.84034R01)

**Figure 30-1-8
PHASE I INVESTIGATION
CHEMICAL ANALYSIS RESULTS
SITE 30-1**

SOURCE: HLA 1987

Prepared for:
U.S. Army Program Manager's Office
For Rocky Mountain Arsenal
Aberdeen Proving Ground, Maryland

Several compounds were detected by GC/MS that were not included in the target compound list and that were not conclusively identified. Table 30-1-3 lists the boring number, sample interval depth, relative retention time (shown as "unknown number" on the table), concentration, sample number, lot best-fit identification, and comments for these nontarget compounds detected at Site 30-1. It should be noted that an individual compound may have more than one relative retention time and also that a particular retention time may be assigned to more than one compound. Therefore, Table 30-1-3 provides only a general indication of additional compounds that may be present.

Ninety-seven nontarget identifications were recorded and 45 sample intervals were found to contain nontarget compounds at concentrations ranging from 0.3 to 7 ppm. Most of these compounds were tentatively identified as naturally-occurring semivolatile organic compounds. Phthalates were detected in three samples, and oxybis ethanol (diethylene glycol) was detected in three others. Thirty-five nontargets were detected at low levels and could not be identified.

The nontarget data were reviewed and assessed with respect to the site's historical use. The compounds identified are attributable to naturally-occurring degradation products. The 2,2-(1,2 ethane diyl-bis) oxybis ethanol was the only exception. Oxybis ethanol (diethylene glycol) is a common component in antifreeze. Although this compound only occurred in Lot BMS, no positive identification of oxybis ethanol could be made from the method blank nontarget analysis. It should be noted, however, that all Task 14 borings where oxybis ethanol was detected were drilled in the winter months. In the field, antifreeze is put in the steam cleaner overnight during winter months, and bled out of the lines before decontamination procedures. It is thought that incomplete bleeding of the line contaminated drilling equipment with antifreeze, and likewise, samples from these borings. The remaining unknown compounds all occurred at low concentrations and are probably related to the natural environment rather than chemical contamination.

Table 30-1-3. Tentative Identification of Nontarget Compounds in Site 30-1 Soil Samples (Page 1 of 5)

Borehole Number	Interval Depth (ft)	Unknown Number	Concentration Above Background (ppm)*	Sample Number	Lot	Best Fit	Comments†
5325	0-1	625	0.8	30-1-1	BMT	Phthalate	a,c,g,h
		626	1	30-1-1	BMT	Phthalate	a,d,g,h
		628	0.6	30-1-1	BMT	Phthalate	a,c,g,h
		631	0.5	30-1-1	BMT	Octadecanol	d
		634	0.4	30-1-1	BMT	Unknown	a
		636	6	30-1-1	BMT	Bis (2-ethyl-hexyl) phthalate	c
		642	0.9	30-1-1	BMT	Unknown hydrocarbon	a,f,g,h
	4-5			30-1-2	BMU		i
	0-1			30-1-12	BMU		j
	4-5			30-1-13	BMU		i
5326	9-10	0.27	3	30-1-14	BMU	Dibutyl ester nonanedioic acid	d
		614	2	30-1-14	BMU		
	0-1	615	0.4	30-1-23	BMT	Unknown	a
		634	0.9	30-1-23	BMT	Unknown hydrocarbon	a,f,g
		642	0.6	30-1-23	BMT	Unknown	a
5327	4-5	642	0.4	30-1-24	BMT	Unknown	a
	0-1			30-1-14	BMU		i
	4-5			10-1-35	BMU		j
	0-1			10-1-35	BMU		
5328	4-5			10-1-35	BMU		
	0-1			10-1-35	BMU		
	4-5			10-1-35	BMU		
	0-1			10-1-35	BMU		
5329	4-5			10-1-35	BMU		
	0-1	566	0.4	30-1-35	BMU	Methyl ester hexadecanoic acid	a,d,f
		606	0.4	30-1-35	BMU		a
		633	0.6	30-1-36	BMU		
5330	0-1	609	0.5	10-1-56	MPH	Hexadecanoic acid	a,d,f
		611	0.5	30-1-56	MPH	Unknown hydrocarbon	a
		617	0.7	30-1-56	MPH	Unknown	a
		618	0.5	10-1-56	MPH	Unknown	a
		619	0.5	30-1-56	MPH	Unknown	a

Table 30-1-3. Tentative Identification of Nontarget Compounds in Site 30-1 Soil Samples (Page 7 of 5)

Borehole Number	Interval Depth (ft)	Unknown Number	Concentration Above Background (ppm)*	Sample Number	Lot	Best Fit	Comments†
5330	0-1	628	0.8	30-1-57	MPH	Unknown	a
		634	0.7	30-1-57	MPH	Unknown	a,f
		642	0.6	30-1-57	MPH	Unknown	a,f
		652	0.7	30-1-57	MPH	Unknown hydrocarbon	a,f
5330	4-5	634	1	30-1-57	MPH	Unknown hydrocarbon	a
		637	0.8	30-1-57	MPH	Bis (2-ethyl-hexyl) phthalate	c,f
5331	0-1	588	3	30-1-67	MPD	Diethyl phthalate	c
	4-5	634	0.5	30-1-68	MPD	Unknown hydrocarbon	a,f
5332	0-1	634	0.9	30-1-78	MPE	Unknown hydrocarbon	a,f
	4-5	634	0.7	30-1-79	MPE	Unknown hydrocarbon	a,f
5333	0-1	620	0.4	30-1-89	BMV	Unknown	a
		634	0.4	30-1-89	BMV	Unknown	a
		642	0.3	30-1-89	BMV	Unknown	a
				10-1-90	BMV	Dibutyl ester nonanedioic acid	i
5334	4-5	614	2	30-1-91	BMV	Unknown hydrocarbon	d
	9-10	614					a,f,g
	0-1	634	0.4	30-1-100	BMT	Unknown	a
		642	0.4	30-1-101	BMT	Unknown	i
5335	4-5			30-1-102	BMT		i
	9-10						
	0-1	582	0.4	30-1-111	BMS	Unknown	a
		614	6	30-1-111	BMS	Octadecanol	d
		615	0.4	30-1-111	BMS	Unknown	a
		642	0.5	30-1-111	BMS	Unknown	a
		650	0.5	30-1-111	BMS	Unknown	a

Table 30-1-3. Tentative Identification of Nontarget Compounds in Site 30-1 Soil Samples (Page 3 of 5)

Borehole Number	Interval Depth (ft.)	Unknown Number	Concentration Above Background (ppm)*	Sample Number	Lot	Best fit	Comments†
5335	4-5	582	0.5	30-1-112	BMS	2,12' (1,2 Ethane diyl-bis) oxybis ethanol	f
		614	7	30-1-112	BMS	Octadecanol	d
		623	0.5	30-1-112	BMS	Unknown	a
		550	0.5	30-1-113	BMS	Heptanoic acid	d
5336	0-1	634	0.3	30-1-122	HPE	Unknown hydrocarbon	a, f
	4-5	615	1	30-1-123	HPE	Dibutyl nonanediote	d
		634	0.6	30-1-123	HPE	Unknown hydrocarbon	a, f
5337	0-1	634	1	30-1-133	HPG	Unknown hydrocarbon	a
	4-5			30-1-134	HPG		j
5338	0-1	562	0.4	30-1-144	BMS	Unknown	a
		582	0.8	30-1-144	BMS	2,2' (1,2 Ethane diyl-bis) oxybis ethanol	f
		614	4	30-1-144	BMS	Octadecanol	d
		615	0.6	30-1-144	BMS	Unknown	a
5339	0-1	566	0.5	30-1-144	BMS	Unknown	a
		634	0.6	30-1-144	BMS	Unknown	a
		614	2	30-1-145	BMS	Octadecanol	d
5340	0-1	559	0.4	30-1-155	BMS	Unknown	a
		562	0.6	30-1-155	BMS	Nonanoic acid	a
		566	0.7	30-1-155	BMS	2,2' (1,2 Ethane diyl bis) oxybis ethanol	d
		582	0.9	30-1-155	BMS	Octadecanol	a, f
5340	4-5	614	5	30-1-155	BMS	Unknown hydrocarbon	a
		615	0.6	30-1-155	BMS	Unknown	a
		634	0.5	30-1-155	BMS	Octadecanol	d
		642	0.6	30-1-156	BMS	Unknown	a
5340	0-1	614	4	30-1-156	BMS	Octadecanol	d
		642	0.4	30-1-156	BMS	Unknown hydrocarbon	a, f

Table 30-1-3. Tentative Identification of Nontarget Compounds in Site 30-1 Soil Samples (Page 4 of 5)

Borehole Number	Interval Depth (ft)	Unknown Number	Above Background (ppm)*	Concentration Sample Number	Lot	Best Fit	Comments†
5340	4-5	614 642	2 0.6	30-1-167 10-1-167	BMS BMS	Octadecanol Unknown hydrocarbon	d a,f
5341	0-1	615	3	30-1-177	MPB	Dibutyl nonanedioate	j
	4-5	615	1	30-1-178 30-1-179	MPB MPB	Unknown hydrocarbon Unknown hydrocarbon	d a
5342	0-1	634	0.9	30-1-188	MPG	Unknown hydrocarbon	a,f
	4-5	634	0.9	30-1-189	HFG	Unknown hydrocarbon	a,f
5343	0-1	642	0.8	30-1-199	BMS	Unknown	a
	650	0.4	30-1-199	BMS	Unknown	a	a
	614	6	30-1-200	BMS	Octadecanol	d	a
	633	0.9	30-1-200	BMS	Unknown	a	a
5344	0-1	582	0.9	30-1-210	MPB	Unknown hydrocarbon	a,f
	4-5			30-1-211	MPB		j
5345	0-1			30-1-221	MPH		i
	4-5	634	0.7	30-1-222	MPG	Unknown hydrocarbon	a,f
	9-10	634	1	30-1-223	MPG	Unknown hydrocarbon	a
5346	0-1			30-1-232	MPH	Dibutyl nonanedioate	j
	4-5	615	0.4	30-1-233	MPH		d
5347	0-1	635	0.8	30-1-243	MPE	Unknown hydrocarbon	a,f
	4-5	634	0.7	30-1-244	MPE	Unknown hydrocarbon	a,f
5348	0-1			30-1-254	MPB		i
	4-5			30-1-255	MPB		i

Table 30-1-3. Tentative Identification of Nontarget Compounds in Site 30-1 Soil Samples (Page 5 of 5)

Borehole Number	Interval Depth (ft)	Unknown Number	Concentration Above Background (ppm)*	Sample Number	Lot	Best Fit	Comments†
5348	9-10	094 615	0.2 1	30-1-256 30-1-256	MLS MLS	Unknown hydrocarbon Dibutyl nonanediote	a, f d
5349	0-1 4-5	635	1	30-1-265 30-1-266	MPE MPE	Unknown hydrocarbon	a i
5350	0-1 4-5			30-1-276 30-1-277	BMU BMU		i
	9-10	614	0.4	30-1-278	BMU	Unknown	i
5351	0-1 4-5	633	0.4	30-1-287 30-1-288	BMT BMT	Unknown	i a
5352	0-1 4-5	642 648	0.4 0.4	30-1-298 30-1-299	BMV BMV	Unknown Unknown	a a
5353	0-1 4-5	634	1	30-1-309 30-1-310	MPH MPG	Unknown hydrocarbon	i a

* Values reported are blank corrected.

- † a. No positive identification.
b. Surfactant.
c. Plasticizer (note: All phthalates and adipates will have this comment).
d. Derived from natural products.
e. Suspected laboratory contaminant.
f. Low concentration.
g. Low frequency of occurrence.
h. Ubiquitous.
i. Possible column bleed.
j. None detected.

Source: ESE, 1987.

Although two of six borings (5335 and 5345) were in trenches suspected of containing contamination, only Sample 5345 (9- to 10-ft) was visibly stained with green specks and spots. Copper, zinc, and mercury were detected in this sample at concentrations within their respective indicator ranges. Many other samples with no visible discoloration contained similar metal values.

3.2.5 Phase I Contamination Assessment

A significant portion of Site 30-1 is underlain by relatively shallow (6- to 9-ft) bedrock which influenced metal concentration values in 4- to 5- and 9- to 10-ft sample intervals. Bedrock (Denver Formation) samples usually displayed copper, zinc, and other metals at concentrations within and above their indicator range depending on lithology. Consequently, metal values from deep samples must be evaluated with regard to lithologic variations. It should be noted that established indicator ranges are based on metal values for surficial alluvium (0- to 5-ft) and do not necessarily reflect geochemical variations between alluvial and bedrock environments. Except for an elevated lead value in the 0- to 1-ft interval of Borehole 5352, 4- to 5- and 9- to 10-ft are the only other intervals where metal values were detected above the indicator ranges.

Copper, lead, and zinc were detected at levels above their indicator ranges in 13 samples (6 boreholes) collected within or slightly above the weathered or slightly reworked bedrock zone or within a brown silty-clay horizon. These six borings are located within the broad curving band of out-of-phase EM anomalies. This conductivity band is represented by shallow (<10 ft) volcaniclastic bedrock, as evidenced by seven borings logged for geologic horizons. The presence of shallow bedrock is further indicated by several Site 30-5 Phase I borings that encountered bedrock at 3- to 4-ft (Figure 30-1-6), and borings from Site 30-6 which displayed similar geochemical patterns.

Boring 5345 was noted to contain green specks in the 9- to 10-ft sample. The cause of this green coloration was not determined; however, metal concentrations were within or below indicator level for this bedrock sample. No volatile or semivolatile compounds were detected in this sample.

The north-south oriented trench containing Boring 5335 is within a widespread magnetic and electromagnetic anomaly. No geophysical response was directly related to the trench, and Boring 5335 contained metal concentrations indicative of shallow bedrock rather than trench disposal.

A possible burn area was noted by Stout et al. (1982, RIC#83368R01) in their aerial photograph interpretation of the eastern site boundary. This area corresponds to an area of scattered metal debris, scattered clay building tiles, and bricks. Historical information indicates an agricultural use silo once stood at this location, and the debris is thought to be the result of its demolition. A Phase II boring is suggested to provide more information on activity at this location.

A pit was excavated at geophysical Anomaly C to explain the intense magnetic and electro-magnetic response. Geologists logging the pit identified bedrock at 8 ft, and no evidence of disposal activity was observed. A trench cut across a similar anomaly in Site 30-6 also identified shallow bedrock as cause for the geophysical responses. No further investigation is required in this area.

Geophysical results for the trenches just west of Boring 5330 (Anomaly D, Figure 30-1-7) strongly suggest the presence of buried metal debris. Some of the highest in-phase and out-of-phase EM values in Site 30-1 were found in this area. The mounds associated with these trenches are outside the area of high magnetic and in-phase intensities, and no visible evidence of debris is present. Bedrock influences for Anomaly D are probably insignificant relative to Anomalies B and C. Additional borings in these trenches are suggested on the basis of the geophysical response and observed debris in and around Anomaly D. The mounds east of the trenches display no discrete geophysical response and contain no visible debris or indication of contamination. The mounds are most likely the original excavation material and do not warrant further investigation.

A large area underlain by volcaniclastic material in the bedrock was delineated by the magnetic technique and, to a lesser degree, by in-phase EM. This area (Anomaly B) extends east of the site boundary into the

southwestern portion of Site 29-4. The elevated copper, lead, and zinc values found in samples from this anomaly are related to the erratic deposition of metals caused by the weathering and reworking of the Denver Formation.

The following three areas at Site 30-1 have not been fully explored or defined by the Phase I investigation. A Phase II investigation is warranted for these areas:

- o Geophysical Anomaly D, which is centered on the trenches in the south - central portion of the site;
- o The trench investigated by Boring 5335; and
- o The small area of demolition and metal debris identified as a burn scar along the eastern site boundary.

3.3 PHASE II SURVEY

A Phase II program will be conducted at this site to examine the following three areas:

- o Two 10 ft borings will investigate geophysical Anomaly D for any chemical compounds related to the strong geophysical anomalies in the two trenches. Samples will be taken from the intervals of 0 to 1, 4 to 5, and 9 to 10 ft and analyzed for the Phase I suite of analytes. An isopropylmethyl phosphonate (IMPA) and thioglycol (TDG) analysis will be conducted on all samples to test for Army agent degradation products. The deepest interval will also be analyzed for volatile organic compounds, or in other intervals as necessitated by field conditions;
- o The trench investigated by Boring 5335 will be investigated by two additional borings: one placed to the north and one placed south of Boring 5335 (Figure 30-1-9). These 10 ft borings will be sampled at the intervals of 0 to 1, 4 to 5, and 9 to 10 ft and analyzed for the Phase I suite. An IMPA and TDG analysis will also be conducted on all samples to test for Army agent degradation products. Volatile organic compounds will be analyzed on the deepest interval in each boring and in samples as necessitated by field conditions; and

Figure 30-1-9
PROPOSED PHASE II INVESTIGATION
BORING LOCATION MAP, SITE 30-1
SOURCE: HARDING LAWSON ASSOCIATES

Prepared for:
U.S. Army Program Manager's Office
For Rocky Mountain Arsenal
Aberdeen Proving Ground, Maryland

- o A possible burn area noted by Stout et al. (1982, RIC#83368R01) and mapped by geophysicists as an area of abundant surface metal (Figure 30-1-7) will be investigated by a single 10-ft boring with the intervals of 0 to 1, 4 to 5, and 9 to 10 ft analyzed for Phase I analytes. This area is thought to be the demolition remains of a farming silo based on historical information and visual inspection. The deepest sample interval from this boring will also be analyzed for volatile organic compounds.

In summary, 5 borings (20 samples) are recommended for the Phase II program. Following this program, site boundaries will be further modified and new volume/area estimates will be calculated.

Comments on the draft final version of this report were received from Shell Chemical Company on July 1, 1987 and from Colorado Department of Health on October 27, 1987. Additional comments were received from the U.S. Environmental Protection Agency on October 29, 1987. These comments were considered in the preparation of this final report and are presented with responses in Appendix 30-1-C.

3.4 QUANTITY OF POTENTIALLY CONTAMINATED SOIL

The Decontamination Assessment Report (RMACCPMT, 1984, RIC#84034R01) outlined a hypothetical cleanup strategy for Site 30-1. The plan called for the excavation and removal of 241,000 bank cubic yards (bcy) of material. The estimated depth of excavation was 6 ft. UXO and contaminated soil were assumed to account for 0.1 and 15 percent of the total volume, respectively (RMACCPMT, 1984, RIC#84034R01).

Phase I field observations suggest that a large part of Site 30-1 is affected by metal associated with mortar impacts. Metal debris is thought to be less abundant outside the primary impact area. The main impact range should include a relatively small amount of potentially contaminated soil

relative to its overall size; nevertheless, excavation will be necessary to remove buried mortar fragments and/or UXO. Although the volume of fragments and UXO is probably small (i.e.; a few cubic yards), a significant amount of soil would have to be screened to find it.

The areal extent of the geophysical anomaly, trench, and burn scar have been estimated as 10,500, 7,000, and 20,000 ft², respectively. Assuming a 6-ft depth, the volume of potentially contaminated soils for these areas is 8,400 bcy.

The revised site boundary for the main impact range is shown in Figure 30-1-9. This area occupies 2,100,000 ft² and is estimated to contain 70,000 bcy of hazardous waste and 470 bcy of UXO, on the basis of a 6-ft excavation depth and criteria in the Decontamination Assessment Report (RMACCPMT, 1984, RIC#84034R01). These estimates are speculative and will remain so until further information is available on the type, quantity, and depth of potentially contaminated debris.

4.0 REFERENCES

RIC#85214R03

Anderson, B., Krell, J., and Jones, D. 1979. Tier I Data Files, Rocky Mountain Arsenal Field Drilling Files, Bore Logs, Vols. I-III.

RIC#85183R01

Clark, J. June 1985. Section Plots and Well Summary. D.P. Associates, Inc.

Environmental Science and Engineering, Inc., (ESE). 1986a. Introduction to the Contamination Assessment Reports. Rocky Mountain Arsenal. Prepared for Office of the Program Manager, Rocky Mountain Arsenal.

RIC#86238R04

Environmental Science and Engineering, Inc., (ESE). 1986b. Rocky Mountain Arsenal Phase I Survey of Army Sites-North. Draft Final Technical Plan. Task Number 14. Prepared for U.S. Army Program Manager's Office for Rocky Mountain Arsenal.

RIC#86238R08

Environmental Science and Engineering, Inc., (ESE). 1986c. Rocky Mountain Arsenal Water Quantity/Quality Survey: Initial Screening Program Report, Draft Final. Vols. I, II, and III. Task Number 4. Prepared for U.S. Army Program Manager's Office for Rocky Mountain Arsenal.

RIC#81342R06

Geraghty and Miller, Inc. September 1982. Assessment of Contaminant Migration from Potential Contamination Sources.

Headquarters-Department of the Army (HDOA). 1976. Technical Manual, Operators and Organizations Maintenance Manual, Detector Kit, Chemical Agent, ABC-M18A2, TM3-6665-254-15.

Krauskopf, K.B. 1979. Introduction to Geochemistry. McGraw-Hill Book Company. New York, New York.

RIC#82295R01

May, J. July 1982. Regional Ground Water Study of Rocky Mountain Arsenal: Part 1 Hydrogeologic Definition. Waterways Experiment Station (WES).

Rocky Mountain Arsenal (RMA). June 4, 1946. Facilities Engineering, Rocky Mountain Arsenal. Drawing D-748, 4.2 Inch Mortar Range.

RIC#83326R01

Rocky Mountain Arsenal Contamination Control Program Management Team (RMACCPMT): Final Report. September 1983. Selection of a Contamination Control Strategy for Rocky Mountain Arsenal. Vols. I & II.

01/18/88

RIC#84034R01.

Rocky Mountain Arsenal Contamination Control Program Management Team,
(RMACCPMT). January 1984. Decontamination Assessment for Land and
Facilities at Rocky Mountain Arsenal.

Sampson, J.J. and Baber, T.G. 1974. Soil Survey of Adams
County, Colorado. U.S. Soil Conservation Service (SCS).
77 pp. plus maps.

RIC#81293R05

Stollar, R.L., and van der Leeden, F. January 1981. Evaluation of the
Hydrogeologic System and Contamination Migration Patterns, Rocky
Mountain Arsenal, Denver, Colorado. Final Report. Geraghty and
Miller.

RIC#83368R01

Stout, K., Abbott, L., and Webb, V. 1982. Installation Assessment Report,
Rocky Mountain Arsenal, Vols. 1 and 2. U.S. Environmental Protection
Agency (USEPA).

U.S. Army Chemical Corps. 1945. History of Rocky Mountain Arsenal.
Vol. XII. Inspection Division. Microfilm RMA190, Frames 1093-
1101.

U.S. Army Chemical Corps. July 1, 1946 through December 31, 1946.
Microfilm RMA191, Frames 1093-1101.

U.S. Army Materiel Development and Readiness Command (USAMDARC). 1979.
Safety Regulations for Chemical Agent H. DARCOM-R 385-31. Department
of the Army.

U.S. Army Materiel Development and Readiness Command (USAMDARC). 1982.
Safety Regulations for Chemical Agents GB and VX. DARCOM-R 385-102.
Department of the Army.

RIC#81266R68

Wingfield, D. 1977. Installation Assessment of Rocky Mountain Arsenal.
Report No. 107, Vols. I and II. Rocky Mountain Arsenal/U.S. Army Toxic
and Hazardous Materials Agency (RMA/USATHAMA).

APPENDIX 30-1-A
CHEMICAL NAMES, METHODS, AND ABBREVIATIONS

APPENDIX 30-1-A
CHEMICAL NAMES, METHODS, AND ABBREVIATIONS

PHASE I ANALYTES AND CERTIFIED METHODS

Analytes/Methods	Synonymous Names and Abbreviations	Standard Abbreviations
VOLATILE ORGANIC COMPOUNDS/GCMS	VOL	VO
1,1-Dichloroethane	1,1-Dichloroethane	11DCLE
1,2-Dichloroethane	1,2-Dichloroethane	12DCLE
1,1,1-Trichloroethane (TCA)	1,1,1-Trichloroethane	111TCE
1,1,2-Trichloroethane	1,1,2-Trichloroethane	112TCE
Benzene	Benzene	C ₆ H ₆
Bicycloheptadiene	Bicycloheptadiene (BCHD)	BCHPD
Carbon tetrachloride	Carbon tetrachloride	CCL ₄
Chlorobenzene	Chlorobenzene	CLC ₆ H ₅
Chloroform	Chloroform	CHCl ₃
Dibromochloropropane	Dibromochloropropane	DBCP
Dicyclopentadiene	Dicyclopentadiene	DCPD
Dimethyldisulfide	Dimethyldisulfide	DMDS
Ethylbenzene	Ethylbenzene	ETC ₆ H ₅
m-Xylene	meta-Xylene	13DMB
Methylene chloride	Methylene chloride	CH ₂ Cl ₂
Methylisobutyl ketone	Methylisobutyl ketone	MIBK
o,p-Xylene	ortho- and/or para-Xylene	XYLEN
Tetrachloroethene (PCE)	Tetrachloroethylene	TCLEE
Toluene	Toluene	MEC ₆ H ₅
Trans 1,2-dichloroethene	Trans 1,2-dichloroethylene	12DCE
Trichloroethene (TCE)	Trichloroethylene	TRCLE
SEMOVOLATILE ORGANIC COMPOUNDS/GCMS	EXTRACTABLE ORGANIC COMPOUNDS (EX)	SVO
1,4-Oxathiane	1,4-Oxathiane	OXAT
2,2-Bis (para-chlorophenyl)-	Dichlorodiphenylethane	PPDDE
1,1-dichloroethane	Dichlorodiphenyltrichloroethane	PPDDT
2,2-Bis (para-chlorophenyl)	Aldrin	ALDRN
1,1,1-trichloroethane	Atrazine	ATZ
Aldrin	Chlordane	CILDAN
Atrazine	p-Chlorophenylmethyl sulfide	CPMS
Chlordanne	p-Chlorophenylmethyl sulfoxide	CPMSO
Chlorophenylmethyl sulfide	p-Chlorophenylmethyl sulfone	CPMSO ₂
Chlorophenylmethyl sulfoxide	Dibromochloropropane	DBCP
Chlorophenylmethyl sulfone	Dicyclopentadiene	DCPD
Dibromochloropropane	Dieldrin	DLDRN
Dicyclopentadiene	Diisopropylmethyl phosphonate	DIMP
Dieldrin		
Diisopropylmethyl phosphonate		

1/26/88

APPENDIX 30-1-A
CHEMICAL NAMES, METHODS, AND ABBREVIATIONS

Analytes/Methods	Synonymous Names and Abbreviations	Standard Abbreviations
SEMIVOLATILE ORGANIC COMPOUNDS (CONT)		
Dimethylmethyl phosphonate	Dimethylmethyl phosphonate	DMMP
Dithiane	Dithiane	DITH
Endrin	Endrin	ENDRN
Hexachlorocyclopentadiene	Hexachlorocyclopentadiene (HCPD)	CL ₆ CP
Isodrin	Isodrin	ISODR
Malathion	Malathion	MALTHN
Parathion	Parathion	PRTHN
Supona	2-Chloro-1(2,4-dichlorophenyl) vinyldiethyl phosphate	SUPONA
Vapona	Vapona	DDVP
METALS/ICP		
Cadmium	ICAP	JCP
Chromium	Cadmium	CD
Copper	Chromium	CR
Lead	Copper	CU
Zinc	Lead	PB
Zinc	Zinc	ZN
SEPARATE ANALYSES		
Arsenic/AA	Arsenic	AS
Mercury/AA	Mercury	HG

11/19/87

APPENDIX 30-1-A
CHEMICAL NAMES, METHODS, AND ABBREVIATIONS

PHASE II ANALYTES AND CERTIFIED METHODS

Analytes/Methods	Synonymous Names and Abbreviations	Standard Abbreviations
VOLATILE ORGANIC COMPOUNDS/GCMS (Same as Phase I)	VOL	VO
SEMICVOLATILE ORGANIC COMPOUNDS/GCMS (Same as Phase I)	EXTRACTABLE ORGANIC COMPOUNDS (EX)	SVO
VOLATILE HALOCARBON COMPOUNDS/GCCON	PURGEABLE HALOCARBONS (PHC)	VHO
1,1-Dichloroethane	1,1-Dichloroethane	11DCLE
1,2-Dichloroethane	1,2-Dichloroethane	12DCLE
1,1-Dichloroethene	1,1-Dichloroethene	11DCE
1,1,1-Trichloroethane (TCA)	1,1,1-Trichloroethane	111TCE
1,1,2-Trichloroethane	1,1,2-Trichloroethane	112TCE
Carbon tetrachloride	Carbon tetrachloride	CCL ₄
Chlorobenzene	Chlorobenzene	CLC ₆ H ₅
Chloroform	Chloroform	CHCl ₃
Methylene chloride	Methylene chloride	CH ₂ CL ₂
Trans 1,2-dichloroethylene	Trans 1,2-dichloroethene	12DCE
Tetrachloroethene (PCE)	Tetrachloroethylene	TCLEE
Trichloroethene (TCE)	Trichloroethylene	TRCLE
VOLATILE HYDROCARBON COMPOUNDS/GCFID	DCPD	HYDCBN
Bicycloheptadiene	Bicycloheptadiene (BCHD)	BCHPD
Dicyclopentadiene	Dicyclopentadiene	DCPD
Methylisobutyl ketone	Methylisobutyl ketone	MIBK
VOLATILE AROMATIC COMPOUNDS/GCPID	PURGEABLE AROMATICS (PAM)	VAO
Benzene	Benzene	C ₆ H ₆
Ethylbenzene	Ethylbenzene	ETC ₆ H ₅
m-Xylene	meta-Xylene	13DMB
o,p-Xylene	ortho- and/or para-Xylene	XYLEN
Toluene	Toluene	MEC ₆ H ₅
ORGANOCHLORINE PESTICIDES/GCEC		OCP
2,2-Bis (para-chlorophenyl)- 1,1-dichloroethane	Dichlorodiphenylethane	PPDDE
2,2-Bis (para-chlorophenyl)- 1,1,1-trichloroethane	Dichlorodiphenyltrichloroethane	PPDDT
Aldrin	Aldrin	ALDRN
Chlordane	Chlordane	CLDAN
Dieldrin	Dieldrin	DLDRN
Endrin	Endrin	ENDRN
Hexachlorocyclopentadiene	Hexachlorocyclopentadiene	CL ₆ CP
Isodrin	Isodrin	ISODR

11/19/87

APPENDIX 30-1-A
CHEMICAL NAMES, METHODS, AND ABBREVIATIONS

Analytes/Methods	Synonymous Names and Abbreviations	Standard Abbreviations
ORGANOPHOSPHOROUS PESTICIDES/GCNPD	ORGANOPHOSPHOROUS COMPOUNDS (OPC)	OPP
Atrazine	Atrazine	ATZ
Malathion	Malathion	MLTHN
Parathion	Parathion	PRTHN
Supona	2-Chloro-1(2,4-dichlorophenyl) vinyl diethyl phosphate	SUPONA
Vapona	Vapona	DDVP
ORGANOPHOSPHOROUS COMPOUNDS/GCFPD	DIMP	OPC
Diisopropylmethyl phosphonate	Diisopropylmethyl phosphonate	DIMP
Dimethylmethyl phosphonate	Dimethylmethyl phosphonate	DMMP
ORGANOSULPHUR COMPOUNDS/GCFPD		OSC
1,4-Oxathiane	1,4-Oxathiane	OXAT
Benzothiazole	Benzothiazole	BTZ
Chlorophenylmethyl sulfide	p-Chlorophenylmethyl sulfide	CPMS
Chlorophenylmethyl sulfone	p-Chlorophenylmethyl sulfone	CPMSO ₂
Chlorophenylmethyl sulfoxide	p-Chlorophenylmethyl sulfoxide	CPMSO
Dimethyldisulfide	Dimethyldisulfide	DMDS
Dithiane	Dithiane	DITH
METALS/ICP	JCAP	ICP
Cadmium	Cadmium	CD
Chromium	Chromium	CR
Copper	Copper	CU
Lead	Lead	PB
Zinc	Zinc	ZN
SEPARATE ANALYSES		
Arsenic/AA	Arsenic	AS
Mercury/AA	Mercury	HG

APPENDIX 30-1-A
CHEMICAL NAMES, METHODS, AND ABBREVIATIONS

Analytes/Methods	Synonymous Names <u>and Abbreviations</u>	Standard Abbreviations
ARMY AGENT DEGRADATION PRODUCTS:		ADP
AGENT PRODUCTS/HPLC	TDGCL	
Chloroacetic Acid	Chloroacetic acid	CLC2A
Thiodiglycol	Thiodiglycol (TDG)	TDGCL
AGENT PRODUCTS/IONCHROM	IMPA	GBDP
Fluoroacetic acid	Fluoroacetic acid	FC2A
Isopropylmethylphosphonic acid	Isopropylmethylphosphonate	IMPA
Methylphosphonic acid	Methylphosphonate	MPA
Methods		Abbreviations
Atomic Absorption Spectroscopy		AA
Gas Chromatography/Conductivity Detector		GCCON
Gas Chromatography/Electron Capture		GCEC
Gas Chromatography/Flame Ionization Detector		GCFID
Gas Chromatography/Flame Photometric		GCFPD
Gas Chromatography/Mass Spectrometry		GCMS
Gas Chromatography/Nitrogen Phosphorous Detector		GCNPD
Gas Chromatography/Photoionizaton Detector		GCPID
High Performance Liquid Chromatography		HPLC
Inductively Coupled Argon Plasma		ICP, ICAP
Ion Chromatography		IONCHROM

APPENDIX 30-1-B
PHASE I CHEMICAL DATA

PROJECT NUMBER 85937 0420			PROJECT NAME RMA TASK14		
FIELD GROUP 30-1 30-1SG			PROJECT MANAGER M. WITT LAB COORDINATOR PAUL GEISZLER		
PARAMETERS	STORE#	SAMPLE ID/#	5329A	5329B	5330A
UNITS	METHOD		5325A	5325B	5325A
DATE TIME	03/27/86 08:21	03/27/86 09:40	5326A	5326C	5327A
SAMPLE TYPE	71999	SO	30-1	30-1	30-1
SAMPLE DEPTH FT	0	0.0	12	13	14
SITE TYPE I	99759	BORE	BORE	BORE	BORE
INSTALLATION CODE	99720	RK	RK	RK	RK
SAMPLING TECHNIQUE	72005	\$	\$	\$	\$
COORDINATE, N/S S/T	98392	186050	186302	186302	186302
COORDINATE, E/W S/T	98393	2193659	2193538	2193538	2193638
MOISTURE %WET WT	70320	11.1	10.7	9.8	7.7
CADMIUM UG/G- DRY	1028	<0.900	<0.900	<0.900	<0.900
CHROMIUM UG/G- DRY	99584	20.5	13.6	18.7	9.37
COPPER UG/G- DRY	1043	14.3	11.5	14.2	12.8
LEAD UG/G- DRY	1052	31.9	19.5	33.7	26.3
ZINC UG/G- DRY	1093	59.3	47.2	59.9	47.9
ARSENIC UG/G- DRY	1003	<4.70	5.78	7.10	6.68
MERCURY UG/G- DRY	71921	<0.050	<0.050	<0.050	<0.050
ALDRIN UG/G- DRY	98356	<0.900	<0.900	<0.900	<0.900
DIELDRIN UG/G- DRY	98365	<0.300	<0.300	<0.300	<0.300
DDT,PP, UG/G- DRY	98364	<0.400	<0.400	<0.400	<0.400
ENDRIN UG/G- DRY	98369	<0.700	<0.700	<0.700	<0.700
CHLORDANE UG/G- DRY	98361	<1.00	<1.00	<1.00	<1.00
	0				

ENVIRONMENTAL SCIENCE & ENGINEERING 02/17/87 STATUS:

PAGE # 2

PROJECT NUMBER		85931-0420		PROJECT NAME		KNA TASK #4	
FIELD GROUP		30-1		LAB COORDINATOR		PAUL GEISLER	
PARAMETERS		SAMPLE ID/#					
UNITS	METHOD	STORE #					
DATE	03/27/86	53258	5326A	5326B	5326C	5327A	5328B
TIME	08:21	30-1	30-1	30-1	30-1	30-1	5329A
DDE, PP'	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	5330A
1,4 OXATHIANE	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	5330B
DIMP	UG/G-DRY	<0.500	<0.500	<0.500	<0.500	<0.500	30-1
VAPONA	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	56
HEXA(1-CYCLOCLOPENTADIENE)	UG/G-DRY	<1.00	<1.00	<1.00	<1.00	<1.00	57
ADIDENE	UG/G-DRY	<0.600	<0.600	<0.600	<0.600	<0.600	67
MALATHION	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	
ISODRIN	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	
1,4 DITHIOLANE	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	
DICYCLOPENTADIENE	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	
DBCP(NEMAGON)	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	
P-CL-PHENYL METHYL SULFIDE	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	
P-CL-PHENYL METHYL SULFOXIDE	UG/G-DRY	<0.400	<0.400	<0.400	<0.400	<0.400	
ATRAZINE	UG/G-DRY	<0.700	<0.700	<0.700	<0.700	<0.700	
SUPONA	UG/G-DRY	<0.500	<0.500	<0.500	<0.500	<0.500	
DMMF	UG/G-DRY	<2.00	<2.00	<2.00	<2.00	<2.00	
PARATHION	UG/G-DRY	<0.700	<0.700	<0.700	<0.700	<0.700	
P-CL-PHENYL METHYL SULFONE	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	
TRANS-1,2-DICHLOROETHENE	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	
ETHYL BENZENE	UG/G-DRY	0	0	0	0	0	
METHYLENE CHLORIDE	UG/G-DRY	0	0	0	0	0	

			PROJECT NUMBER 85937 0420	PROJECT NAME RMA TASK 14	02/17/87 STATUS:
PARAMETERS	UNITS	STORE#	FIELD GROUP 30-1 30-1SG	PROJECT MANAGER M. WITT LAB COORDINATOR PAUL GEISZLER	
DATE		5325A 30-1 1	5325B 30-1 2	5326A 30-1 12	5326B 30-1 13
TIME		03/27/86 08:21	03/27/86 08:21	03/28/86 09:40	03/28/86 09:40
TETRACHLOROETHENE	UG/G-DRY	98690 0			<0.300
TOLUENE	UG/G-DRY	98691 0			<0.300
1,1,1-TRICHLORO-ETHANE	UG/G-DRY	98692 0			<0.300
1,1,2-TRICHLORO-ETHANE	UG/G-DRY	98693 0			<0.300
TRICHLOROETHENE	UG/G-DRY	98694 0			<0.300
M-XYLENE	UG/G-DRY	98695 0			<0.300
MIBK	UG/G-DRY	98696 0			<0.500
DMDM	UG/G-DRY	98697 0			<0.300
BENZENE	UG/G-DRY	98699 0			<0.300
O-ANIS/OR P-XYLENE	UG/G-DRY	98700 0			<0.500
CARBON TETRACHLORIDE	UG/G-DRY	98680 0			<0.300
CHLOROBENZENE	UG/G-DRY	98681 0			<0.300
CHLOROFORM	UG/G-DRY	98682 0			<0.300
1,1-DICHLOROETHANE	UG/G-DRY	98683 0			<0.300
1,2-DICHLOROETHANE	UG/G-DRY	98684 0			<0.300
BICYCLOHEPTADIENE	UG/G-DRY	98686 0			<0.300
DBCP(NEMAGON)	UG/G-DRY	98652 Q9	<0.30	<0.30	<0.30
DBCP	UG/G-DRY	98652 H9	<0.300	<0.300	<0.300
UNK588	UG/G	90049 36	0.649		
UNK615	UG/G	90071 36		0.455	

ENVIRONMENTAL SCIENCE & ENGINEERING 02/17/87 STATUS : PAGE # 4

ENVIRONMENTAL SCIENCE & ENGINEERING 02/17/87 STATUS:

UNK625	UG/C	90078	0.813
UNK626	UG/C	36	0.838
UNK627	UG/C	90079	1.06
UNK628	UG/C	36	0.569
UNK629	UG/C	90081	0.569
UNK630	UG/C	36	0.487
UNK631	UG/C	90083	0.487
UNK632	UG/C	36	0.628
UNK633	UG/C	90085	0.628
UNK634	UG/C	36	0.719
UNK635	UG/C	90086	1.12
UNK636	UG/C	36	0.878
UNK637	UG/C	90088	5.67
UNK642	UG/C	36	0.377
UNK643	UG/C	90108	0.859
UNK644	UG/C	36	0.417
UNK645	UG/C	90182	3.02
UNK646	UG/C	36	0.641
UNK647	UG/C	90200	0.430
UNK648	UG/C	36	0.392
UNK649	UG/C	90022	0.599
UNK650	UG/C	36	0.430
UNK651	UG/C	90063	0.430
UNK652	UG/C	36	0.430
UNK653	UG/C	90070	2.33
UNK654	UG/C	36	0.479
UNK655	UG/C	90066	0.479
UNK656	UG/C	50	0.479
UNK657	UG/C	90067	0.479
UNK658	UG/C	50	0.479
UNK659	UG/C	90111	0.719
UNK660	UG/C	50	0.719
UNK661	UG/C	90072	0.719
UNK662	UG/C	50	0.719
UNK663	UG/C	90073	0.719
UNK664	UG/C	50	0.719
UNK665	UG/C	90105	0.479
UNK666	UG/C	50	0.479
UNK667	UG/C	90089	0.784

PAGE# 5
ENVIRONMENTAL SCIENCE & ENGINEERING 02/17/87 STATUS:

ENVIRONMENTAL SCIENCE & ENGINEERING 02/17/87 STATUS:

PROJECT NUMBER 85937 0420				PROJECT NAME RMA TASK 14			
FIELD GROUP 30-1				PROJECT MANAGER M. WITT			
30-1SG				LAB COORDINATOR PAUL GEISZLER			
PARAMETERS	UNITS	STORE #	METHOD	SAMPLE ID/#	30-1	30-1	30-1
DATE	03/27/86	03/27/86	03/28/86	5326A	5326B	5326A	5326B
TIME	08:21	08:21	09:40	30-1	30-1	30-1	30-1
			09:40	12	13	23	45
				14		34	56

ENVIRONMENTAL SCIENCE & ENGINEERING

PAGE#

02/17/87 STATUS:

6

PROJECT NUMBER 85937 0420

PROJECT NAME RMA TASK 14

4

FIELD GROUP 30-1

PROJECT MANAGER M. WITT

30-1SG

LAB COORDINATOR PAUL GEISZLER

PARAMETERS	STORET #	5331B 30-1 68	5332A 30-1 78	5332B 30-1 79	5333A 30-1 89	5333B 30-1 90	SAMPLE ID#	5334B 30-1 100	5334C 30-1 101	5335A 30-1 102	5335B 30-1 111	5335C 30-1 112	5336A 30-1 122	5336B 30-1 123
DATE TIME		04/02/86 10:37	04/02/86 10:16	04/02/86 10:16	04/02/86 10:37	04/02/86 10:37	04/02/86 09:01	03/27/86 09:01	03/27/86 09:01	03/26/86 14:39	03/26/86 14:39	04/02/86 14:39	04/02/86 13:04	04/02/86 13:04
SAMPLE TYPE	STORRET #	71999 0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
SAMPLE DEPTH FT	METHOD	99758A 0	4.00	0.0	4.00	0.0	4.00	9.00	0.0	4.00	9.00	0.0	4.00	0.0
SITE TYPE I		99759 0	BORE	BORE	BORE	BORE	BORE	BORE	BORE	BORE	BORE	BORE	BORE	BORE
INSTALLATION CODE		99720 0	RK	RK	RK	RK	RK	RK	RK	RK	RK	RK	RK	RK
SAMPLING TECHNIQUE		72005 0	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$	\$
COORDINATE, N/S		186362 0	186301	186372	186372	186372	186969	186969	186969	187192	187192	186975	186975	
COORDINATE E/W		98393 0	2192020	2192528	2193127	2193127	2192646	2192646	2192646	2193225	2193225	2192342	2192342	
MOISTURE %WET WT		70320 0	7.4	14.7	9.1	8.5	9.5	10.6	12.0	5.2	19.3	11.5	21.0	10.8
CADMIUM		1028 0	<0.510	<0.510	<0.510	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.510	<0.510
CHROMIUM UG/G- DRY		99584 0	17.2	19.4	15.7	18.1	20.8	17.5	11.9	<7.20	15.4	<7.20	<7.20	16.3
COPPER UG/G- DRY		1043 0	19.5	21.3	18.6	13.9	11.4	10.7	5.77	35.6	13.1	36.4	18.0	13.3
LEAD UG/G- DRY		1052 0	<16.0	<16.0	32.4	33.7	28.4	<17.0	<17.0	30.1	20.3	32.2	30.6	<16.0
ZINC UG/G- DRY		1093 0	55.4	66.4	49.9	49.7	60.9	46.8	40.4	25.6	92.6	49.8	82.8	84.4
ARSENIC UG/G- DRY		1003 0	<5.20	<5.20	<4.70	6.35	5.53	<4.70	<4.70	5.90	<4.70	<4.70	<5.20	<5.20
MERCURY UG/G- DRY		71921 0	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050
ALDRIN UG/G- DRY		98356 0	<0.500	<0.500	<0.500	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.500	<0.500
DIELDRIN UG/G- DRY		98365 0	<0.600	<0.600	<0.600	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.600	<0.600
DDT, PP, UG/G- DRY		98364 0	<2.00	<2.00	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<2.00	<2.00
ENDRIN UG/G- DRY		98369 0	<4.00	<4.00	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<4.00	<4.00
CHLORDANE UG/G- DRY		98361 0	<6.00	<6.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<6.00	<6.00

B-6

PROJECT NUMBER 85937 0420

FIELD GROUP 30-1

30-1SG

PROJECT NAME RMA TASK14

PROJECT MANAGER M. WITT

LAB COORDINATOR PAUL GEISLER

PARAMETERS	UNITS	STORE#	METHOD	DATE	TIME	5332A 30-1 78	5332B 30-1 79	5333A 30-1 89	5333B 30-1 90	5333C 30-1 91	5334A 30-1 100	SAMPLE ID/#	5334C 30-1 101	5334B 30-1 102	5335A 30-1 111	5335B 30-1 112	5335C 30-1 113	5336A 30-1 122	5336B 30-1 123
DDE,PP'	UG/G-DRY	98363	<0.500	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	04/02/86
1,4 OXATHIANE	UG/G-DRY	98644	<0.500	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
DIMP	UG/G-DRY	98645	<3.00	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
VAPONA	UG/G-DRY	98646	<0.300	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
HEXAHALOOCYCLOPENT-	UG/G -DRY	98647	<1.00	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
ADIENE	UG/G-DRY	0	<3.00	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
MALATHION	UG/G-DRY	98648	<2.00	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
ISODRIN	UG/G-DRY	98649	<0.600	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
1,4 DITHIANE	UG/G-DRY	98650	<2.00	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
DICYCLOPENTADIENE	UG/G-DRY	98651	<6.00	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
DBCP(NEOMAGON)	UG/G-DRY	98652	<0.600	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
P-CLPHENYL METHYL-SULFIDE	UG/G-DRY	98653	<0.300	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
P-CLPHENYL METHYL-SULFOXIDE	UG/G-DRY	98654	<1.00	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
ATRAZINE	UG/G-DRY	98655	<0.500	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
SUPONA	UG/G-DRY	98656	<0.900	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
DMMP	UG/G-DRY	98657	<3.00	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
PARATHION	UG/G-DRY	98658	<2.00	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
P-CLPHENYL METHYL-SULFONE	UG/G-DRY	98659	<0.400	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
TRANS-1,2-DICHLORO-ETHENE	UG/G-DRY	98667	<0.300	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
ETHYL BENZENE	UG/G-DRY	98668	<0.300	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04
METHYLENE CHLORIDE	UG/G-DRY	98669	<0.300	04/02/86	10:37	04/02/86	10:16	04/02/86	10:37	04/02/86	10:37	04/02/86	03/27/86	03/27/86	03/26/86	03/26/86	03/26/86	04/02/86	13:04

ENVIRONMENTAL SCIENCE & ENGINEERING

PAGE# 8

		PROJECT NUMBER 85937 0420		PROJECT NAME RMA TASK 14		02/17/87 STATUS:	
		FIELD GROUP 30-1		PROJECT MANAGER M. WITT			
		30-1SG		LAB COORDINATOR PAUL GEISLER			
PARAMETERS	STORET #	SAMPLE ID#	SAMPLE ID#	SAMPLE ID#	SAMPLE ID#	SAMPLE ID#	SAMPLE ID#
UNITS	METHOD	5331B	5332A	5333A	5333B	5334A	5334B
DATE	STORER #	30-1	30-1	30-1	30-1	30-1	30-1
TIME	METHOD	68	78	79	89	90	91
TETRACHLOROETHENE		04/02/86	04/02/86	04/02/86	04/02/86	03/27/86	03/27/86
UG/G-DRY		10:37	10:16	10:16	10:37	09:01	09:01
TOLUENE	UG/G-DRY	0	98691				
1,1,1-TRICHLOROETHANE	UG/G-DRY	0	98692				
1,1,2-TRICHLOROETHANE	UG/G-DRY	0	98693				
TRICHLOROETHENE	UG/G-DRY	0	98694				
M-XYLENE	UG/G-DRY	0	98695				
MIRK	UG/G-DRY	0	98696				
DHDS	UG/G-DRY	0	98697				
BENZENE	UG/G-DRY	0	98699				
O-AND/OR P-XYLENE	UG/G-DRY	0	98700				
CARBON TETRACHLORIDE	UG/G-DRY	0	98680				
CHLOROBENZENE	UG/G-DRY	0	98681				
CHLOROFORM	UG/G-DRY	0	98682				
1,1-DICHLOROETHANE	UG/G-DRY	0	98683				
1,2-DICHLOROETHANE	UG/G-DRY	0	98684				
BICYCLOHEPTADIENE	UG/G-DRY	0	98686				
DBCP (NEMACON)	UG/G-DRY	0	98652	<0.60	<0.60	<0.30	<0.30
DBCP	UG/G-DRY	0.9	98652	<0.600	<0.600	<0.300	<0.300
UNK588	UG/G	H9	90049				
UNK615	UG/G	36	90071				

ENVIRONMENTAL SCIENCE & ENGINEERING 02/17/87 STATUS: PAGE# 9

PROJECT NUMBER 85937 0420 FIELD GROUP 30-1 30-ISC			PROJECT NAME RMA TASK 14 PROJECT MANAGER M. WITT LAB COORDINATOR PAUL GEISZLER		
PARAMETERS	UNITS	STORET # METHOD	SAMPLE ID/#	SAMPLE ID/#	SAMPLE ID/#
DATE		5331B 30-1 68	5332A 30-1 78	5333A 30-1 89	5334A 30-1 91
TIME		04/02/86 10:37	04/02/86 10:16	04/02/86 10:16	04/02/86 10:37
UNK625	UG/G	90078 36	90079 36	90080 36	90081 36
UNK626	UG/G	90082 36	90083 36	90084 36	90085 36
UNK628	UG/G	90086 36	90087 36	90088 36	90089 36
UNK631	UG/G	90090 36	90091 36	90092 36	90093 36
UNK633	UG/G	90094 36	90095 36	90096 36	90097 36
UNK634	UG/G	90098 36	90099 36	90100 36	90101 36
UNK636	UG/G	90102 36	90103 36	90104 36	90105 36
UNK642	UG/G	90106 36	90107 36	90108 36	90109 36
UNK027	UG/G	90112 36	90113 36	90114 36	90115 36
UNK566	UG/G	90200 36	90201 36	90202 36	90203 36
UNK537	UG/G	90022 36	90023 36	90024 36	90025 36
UNK606	UG/G	90063 36	90064 36	90065 36	90066 36
UNK614	UG/G	90070 36	90071 36	90072 36	90073 36
UNK609	UG/G	90066 50	90067 50	90068 50	90069 50
UNK611	UG/G	90067 50	90068 50	90069 50	90070 50
UNK652	UG/G	90111 50	90112 50	90113 50	90114 50
UNK617	UG/G	90072 50	90073 50	90074 50	90075 50
UNK618	UG/G	90073 50	90074 50	90075 50	90076 50
UNK619	UG/G	90105 50	90106 50	90107 50	90108 50
UNK637	UG/G	90089 50	90090 50	90091 50	90092 50

ENVIRONMENTAL SCIENCE & ENGINEERING 02/17/87 STATUS: PAGE# 10

PROJECT NUMBER 85937 0420 FIELD GROUP 30-1 30-1SG			PROJECT NAME RMA TASK 14 PROJECT MANAGER M. WITT LAB COORDINATOR PAUL GEISZLER		
PARAMETERS	STORET #	SAMPLE ID/#	PARAMETERS	STORET #	SAMPLE ID/#
UNITS	METHOD		UNITS	METHOD	
DATE	04/02/86	5332A	5332B	5333A	5333B
TIME	10:37	30-1	30-1	30-1	30-1
	68	78	79	89	90
UNK620	UG/G	04/02/86	04/02/86	04/02/86	04/02/86
		10:16	10:16	10:37	10:37
UNK648	UG/G	09074	0.391		
UNK550	UG/G	36			
UNK559	UG/G	90648			
UNK562	UG/G	90099			
UNK582	UG/G	90033			
UNK599	UG/G	90045			
UNK623	UG/G	90127			
UNK650	UG/G	90077			
UNK625	UG/G	90134			
UNK094	UG/G	90087			
		50	50	50	50

ENVIRONMENTAL SCIENCE & ENGINEERING 02/17/87 STATUS: PAGE # 11

PROJECT NUMBER 85937 0420 PROJECT NAME

PROJECT NAME: RHA TASK 14
FIELD GROUP: 30-1

30-155
LAB COORDINATOR PA III GE 1571 EB

הנִזְקָן וְהַנִּזְקָן בְּבֵין הַמִּזְקָנִים

DATE	TIME	04/11/86	04/11/86	03/26/86	03/26/86	03/26/86	03/26/86	03/26/86	03/26/86	03/26/86	03/26/86	03/26/86	03/26/86	04/11/86	04/11/86
	13:47	13:47	13:22	13:22	13:22	13:22	13:22	13:22	13:22	13:22	13:22	13:22	13:22	08:50	08:50

COORDINATE E/W	COORDINATE N/S	DEPTH (ft)	MOISTURE	SWET WT
98393 STP	2191848	2193593	2193593	0
70320 STP	8.9	6.6	9.0	11.0

	Cadmium	Ug/G-DRY	Ug/G-	Chromium	Ug/G-DRY	Ug/G-DRY
1028	<0.510	<0.510	<0.900	<0.900	<0.900	<0.900
99584	<7.40	13.7	15.3	<7.20	18.1	16.4

COPPER	UG/G- DRY	104.3	9.40	13.2	14.0	14.6	15.3	14.9	13.6	14.4	23.6	50.8	57.5	21.0	12.3	20.3
LEAD	UG/G-DRY	1052	<16.0	<16.0	25.9	29.1	30.2	27.6	32.2	28.3	<16.0	<16.0	26.3	<16.0	<16.0	26.3

ZINC	UG/G-DRY	1093	<28.0	48.3	52.3	88.4	58.4	56.0	56.1	55.6	68.9	111	88.8	66.1	41.5	50.2
ARSENIC	UG/G-DRY	1003	<5.20	5.20	5.82	<4.70	<4.70	<4.70	<4.70	6.34	<5.20	<5.20	<5.20	<5.20	<5.20	5.87

	MERCURY	UG/G-DRY	ALDRIN	UG/G-DRY
	<0.050	<0.050	<0.050	<0.050
	71921	0	98356	0

	DDT, PP'	UG/G-DRY	Dieldrin	UG/G-DRY
DDT, PP'	<2.00	<2.00	<0.600	<0.600
UG/G-DRY	0	0	<0.300	<0.300

	ENDRIN	CHLORDANE
	UG/G-DRY.	UG/G- DRY
98369	<4.00	<4.00
0	<0.700	<0.700
98361	<6.00	<1.00
0	<1.00	<1.00

B-11

ENVIRONMENTAL SCIENCE & ENGINEERING

PAGE # 12

PROJECT NUMBER 85937 0420
 FIELD GROUP 30-1
 30-1SG

02/17/87 STATUS:

PROJECT NAME RMA TASK 14
 PROJECT MANAGER M. WITT
 LAB COORDINATOR PAUL GEISZLER

PARAMETERS	STORE#	STOKE #	TIME	DATE	SAMPLE ID/#	5341A	5341B	5342A	5342B
UNITS	METHOD					30-1	30-1	30-1	30-1
DDE, PP*	UG/G-DRY	98363	<0.500	04/11/86 13:47	53378 30-1 134	53384 30-1 144	5339A 30-1 145	53398 30-1 155	5340A 30-1 156
1,4 OXATHIANE	UG/G-DRY	98644	<0.500	04/11/86 13:47	13:22	13:22	13:22	13:22	12:45
DIMP	UG/G-DRY	98645	<3.00	04/11/86 13:47	<0.300	<0.300	<0.300	<0.300	<0.300
VAPONA	UG/G-DRY	98646	<0.300	04/11/86 13:47	<0.300	<0.300	<0.300	<0.300	<0.300
HEXA-CHLOROCYCLOPENTADIENE	UG/G-DRY	98647	<1.00	04/11/86 13:47	<1.00	<1.00	<1.00	<1.00	<1.00
MALATHION	UG/G-DRY	98648	<2.00	04/11/86 13:47	<0.600	<0.600	<0.600	<0.600	<0.600
ISODRIN	UG/G-DRY	98649	<0.600	04/11/86 13:47	<0.300	<0.300	<0.300	<0.300	<0.300
1,4 DITHIANE	UG/G-DRY	98650	<2.00	04/11/86 13:47	<0.300	<0.300	<0.300	<0.300	<0.300
DICYCLOCADIENE	UG/G-DRY	98651	<6.00	04/11/86 13:47	<0.300	<0.300	<0.300	<0.300	<0.300
DBCP (NEMAGON)	UG/G-DRY	98652	<0.600	04/11/86 13:47	<0.300	<0.300	<0.300	<0.300	<0.300
P-CLPHENYL METHYL-SULFIDE	UG/G-DRY	98653	<0.300	04/11/86 13:47	<0.300	<0.300	<0.300	<0.300	<0.300
P-CLPHENYL METHYL-SULFOXIDE	UG/G-DRY	98654	<1.00	04/11/86 13:47	<0.400	<0.400	<0.400	<0.400	<0.400
ATRAZINE	UG/G-DRY	98655	<0.500	04/11/86 13:47	<0.700	<0.700	<0.700	<0.700	<0.700
SUPONA	UG/G-DRY	98656	<0.900	04/11/86 13:47	<0.500	<0.500	<0.500	<0.500	<0.500
DIMP	UG/G-DRY	98657	<3.00	04/11/86 13:47	<2.00	<2.00	<2.00	<2.00	<2.00
PARATHION	UG/G-DRY	98658	<2.00	04/11/86 13:47	<0.700	<0.700	<0.700	<0.700	<0.700
P-CLPHENYL METHYL-SULFONE	UG/G-DRY	98703	<0.400	04/11/86 13:47	<0.300	<0.300	<0.300	<0.300	<0.300
TRANS-1,2-DICHLORO-ETHENE	UG/G-DRY	98867	0	04/11/86 13:47	0	0	0	0	0
ETHYL BENZENE	UG/G-DRY	98868	0	04/11/86 13:47	0	0	0	0	0
METHYLENE CHLORIDE	UG/G-DRY	98869	0	04/11/86 13:47	0	0	0	0	0

PROJECT NUMBER 85937 0420			PROJECT NAME RHA TASK 14		
FIELD GROUP 30-1 30-1SC			PROJECT MANAGER M. WITT LAB COORDINATOR PAUL GEISLER		
PARAMETERS	STORED #		SAMPLE ID/#		
UNITS	METHOD				
DATE	04/11/86	5337A	5338A	5339A	5340A
TIME	13:47	30-1 133	30-1 134	30-1 145	30-1 155
TETRACHLOROETHENE	98690	UG/G-DRY	0		
TOLUENE	98691	UG/G-DRY	0		
1,1,1-TRICHLORO- ETHANE	98692	UG/G-DRY	0		
1,1,2-TRICHLORO- ETHANE	98693	UG/G-DRY	0		
TRICHLOROETHENE	98694	UG/G-DRY	0		
M-XYLENE	98695	UG/G-DRY	0		
M-BK	98696	UG/G-DRY	0		
DMDS	98697	UG/G-DRY	0		
BENZENE	98699	UG/G-DRY	0		
O-AND/OR P-XYLENE	98700	UG/G-DRY	0		
CARBON TETRACHLORIDE	98680	UG/G-DRY	0		
CHLOROBENZENE	98681	UG/G-DRY	0		
CHLOROFORM	98682	UG/G-DRY	0		
1,1-DICHLOROETHANE	98683	UG/G-DRY	0		
1,2-DICHLOROETHANE	98684	UG/G-DRY	0		
BICYCLOHEPTADIENE	98686	UG/G-DRY	0		
DBCP (NEFAGON)	98652	<0.60	<0.60	<0.30	<0.30
DBCP	98652	<0.600	<0.600	<0.300	<0.300
UNK588	90049	H9			
UNK615	90071	36	0.604	0.567	2.53
		36			1.26

ENVIRONMENTAL SCIENCE & ENGINEERING 02/17/87 STATUS: PAGE#

PROJECT NUMBER 85937 0420
FIELD GROUP 30-1
PROJECT NAME RMM
PROJECT MANAGER M.
LAB COORDINATOR PA

PROJECT MANAGER M. WITT
LAB COORDINATOR PAUL GEISZLER

PAGE 15

ENVIRONMENTAL SCIENCE & ENGINEERING			02/17/87	STATUS:					
PROJECT NUMBER 65937 0420 FIELD GROUP 30-1 30-1SG			PROJECT NAME RMA TASK 14 PROJECT MANAGER M. WITT LAB COORDINATOR PAUL GEISZLER						
PARAMETERS	UNITS	STOKE # METHOD	SAMPLE ID/#						
			5337A 30-1 133	5337B 30-1 134	5339A 30-1 144	5340A 30-1 145	5341A 30-1 155	5341B 30-1 166	5342A 30-1 167
DATE	TIME	04/11/86 13:47	04/11/86 13:22	03/26/86 13:22	03/26/86 13:22	03/26/86 13:22	03/26/86 12:45	03/26/86 08:50	04/11/86 08:50
UNK620	UG/G	90074 36							03/26/86 08:50
UNK648	UG/G	90648 36							04/11/86 08:50
UNK550	UG/G	90550 36							03/26/86 08:50
UNK559	UG/G	90099 36							04/11/86 08:50
UNK562	UG/G	90033 36							04/11/86 08:50
UNK582	UG/G	90045 36							04/11/86 08:50
UNK599	UG/G	90127 36							04/11/86 08:50
UNK623	UG/G	90077 36							04/11/86 08:50
UNK650	UG/G	90134 36							04/11/86 08:50
UNK635	UG/G	90087 50							04/11/86 08:50
UNK094	UG/G	90007 50							04/11/86 08:50

0.363

ENVIRONMENTAL SCIENCE & ENGINEERING				02/17/87	STATUS:	PAGE #	16
PROJECT NUMBER 05937 0420 FIELD GROUP 30-1 30-1SG				PROJECT NAME RHA TASK14 PROJECT MANAGER M. WITT LAB COORDINATOR PAUL GEISZLER			
PARAMETERS	UNITS	STORE#	METHOD	SAMPLE ID/#	SAMPLE ID/#	SAMPLE ID/#	SAMPLE ID/#
DATE		53438	5344A	5345A	5345C	5346A	5347A
TIME		30-1 200	30-1 210	30-1 221	30-1 222	30-1 233	30-1 243
SAMPLE TYPE		71999	\$0	\$0	\$0	\$0	\$0
SAMPLE DEPTH FT		99758A	4.00	0.0	4.00	0.0	4.00
SITE TYPE	I	99759	BORE	BORE	BORE	BORE	BORE
INSTALLATION CODE		99720	RK	RK	RK	RK	RK
SAMPLING TECHNIQUE		72005	\$	\$	\$	\$	\$
COORDINATE, N/S		98392	188047	188510	187416	187416	187463
COORDINATE E/W		98393	2193106	2193204	2192604	2192604	2191921
MOISTURE	%WET WT	70320	7.7	10.0	7.8	9.7	14.3
CADMIUM	UG/G- DRY	1028	<0.900	<0.510	<0.510	<0.510	<0.510
CHROMIUM	UG/G-DRY	99584	8.09	19.6	19.4	16.5	<7.40
COPPER	UG/G-DRY	1013	6.97	18.7	19.6	20.1	38.6
LEAD	UG/G-DRY	1052	<17.0	31.3	<16.0	<16.0	<16.0
ZINC	UG/G-DRY	1093	33.4	68.1	53.6	50.3	91.7
ARSENIC	UG/G-DRY	1003	<1.70	<5.20	<5.20	<5.20	<5.20
MERCURY	UG/G-DRY	71921	<0.050	<0.050	<0.050	<0.050	<0.050
ALDRIN	UG/G-DRY	98356	<0.900	<0.500	<0.500	<0.500	<0.500
DIELDRIN	UG/G-DRY	98365	<0.300	<0.600	<0.600	<0.600	<0.600
DDT, PP'	UG/G-DRY	98364	<0.400	<2.00	<2.00	<2.00	<2.00
ENDRIN	UG/G-DRY	98369	<0.700	<4.00	<4.00	<4.00	<4.00
CHLORDANE	UG/G-DRY	98361	<1.00	<6.00	<6.00	<6.00	<6.00

		PROJECT NUMBER 85937 0420		PROJECT NAME RHA TASK 14	
		FIELD GROUP 30-1		PROJECT MANAGER M. WITT	
				LAB COORDINATOR PAUL GEISLER	
PARAMETERS	STORET #	SAMPLE ID#	SAMPLE ID#	SAMPLE ID#	SAMPLE ID#
UNITS	METHOD	DATE	TIME	DATE	TIME
DDE, PP ^a	UG/G-DRY	5343B 30-1 200	5344A 30-1 210	5345A 30-1 221	5345B 30-1 222
1,4 OXATHIANE	UG/G-DRY	09:26/86 12:33	09:21	03/26/86 09:40	04/11/86 09:40
DIMP	UG/G-DRY	98863 0	<0.300	<0.500	<0.500
VAPONA	UG/G-DRY	98845 0	<0.300	<3.00	<3.00
HEXYCHLOROCYCLOPENTADIENE	UG/G-DRY	98847 0	<1.00	<1.00	<1.00
MAHALTHON	UG/G-DRY	98848 0	<0.600	<2.00	<2.00
ISODRIN	UG/G-DRY	98849 0	<0.300	<0.600	<0.600
1,4 DITHIANE	UG/G-DRY	98850 0	<0.300	<2.00	<2.00
DICYCLOPENADIENE	UG/G-DRY	98851 0	<0.300	<6.00	<6.00
DBCP(NEMAGON)	UG/G-DRY	98852 0	<0.300	<0.600	<0.600
P-CLPHENYL METHYL SULFIDE	UG/G-DRY	98853 0	<0.300	<0.300	<0.300
P-CLPHENYL METHYL SULFOXIDE	UG/G-DRY	98854 0	<0.400	<1.00	<1.00
ATRAZINE	UG/G-DRY	98855 0	<0.700	<0.500	<0.500
SUPONA	UG/G-DRY	98856 0	<0.500	<0.900	<0.900
DMP	UG/G-DRY	98857 0	<2.00	<3.00	<3.00
PARATHION	UG/G-DRY	98858 0	<0.700	<2.00	<2.00
P-CLPHENYL METHYL SULFONE	UG/G-DRY	98703 0	<0.300	<0.400	<0.400
TRANS-1,2-DICHLOROETHENE	UG/G-DRY	98867 0			<0.800
ETHYL BENZENE	UG/G-DRY	98868 0			<0.400
METHYLENE CHLORIDE	UG/G-DRY	98869 0			NA

ENVIRONMENTAL SCIENCE & ENGINEERING			02/17/87	STATUS:	PAGE #	18
PROJECT NUMBER 85937 0420 FIELD GROUP 30-1 30-1 SG			PROJECT NAME RMA TASK 14 PROJECT MANAGER M. WITT LAB COORDINATOR PAUL GEISZLER			
PARAMETERS	STORE #	SAMPLE ID/#				
UNITS	METHOD					
DATE	03/26/86	5345B	5345B	5346B	5347A	5348A
TIME	12:33	30-1 200	30-1 210	30-1 221	30-1 223	30-1 232
TETRACHLOROETHENE	98690					
UG/G-DRY	0					
TOLUENE	98691					
UG/G-DRY	0					
1,1,1-TRICHLORO-ETHANE	98692					
UG/G-DRY	0					
1,1,2-TRICHLORO-ETHANE	98693					
UG/G-DRY	0					
TRICHLOROETHENE	98694					
UG/G-DRY	0					
M-XYLENE	98695					
UG/G-DRY	0					
HIBK	98696					
UG/G-DRY	0					
DMS	98697					
UG/G-DRY	0					
BENZENE	98699					
UG/G-DRY	0					
O-AND/OR P-XYLENE	98700					
UG/G-DRY	0					
CARBON TETRACHLORIDE	98680					
UG/G-DRY	0					
CHLOROBENZENE	98681					
UG/G-DRY	0					
CHLOROFORM	98682					
UG/G-DRY	0					
1,1-DICHLOROETHANE	98683					
UG/G-DRY	0					
1,2-DICHLOROETHANE	98684					
UG/G-DRY	0					
BICYCLOHEPTADIENE	98686					
UG/G-DRY	0					
DBCP (NEFAGON)	98652	<0.30	<0.60	<0.60	<0.60	<0.60
UG/G-DRY	Q9	<0.300	<0.600	<0.600	<0.600	<0.600
DBCP	98652	H9				
UG/G-DRY						
UNK588	90049	36				
UNK615	90071	36				
UG/G						

0.432
1.05

ENVIRONMENTAL SCIENCE & ENGINEERING 02/17/87 STATUS: PAGE# 19

PROJECT NUMBER 85937 0420 FIELD GROUP 30-1 30-1SG			PROJECT NAME RMA TASK14 PROJECT MANAGER H. WITT LAB COORDINATOR PAUL GEISZLER		
PARAMETERS	UNITS	STORET # METHOD	SAMPLE ID/#	SAMPLE ID/#	SAMPLE ID/#
DATE		53438 30-1 200	5344A 30-1 210	5344B 30-1 211	5345A 30-1 221
TIME		03/26/86 12:33	03/26/86 09:21	03/26/86 09:21	04/11/86 09:40
UNK625	UG/G	90078 36	90079 36	90080 36	90081 36
UNK626	UG/G	90082 36	90083 36	90084 36	90085 36
UNK628	UG/G	90086 36	90087 36	90088 36	90089 36
UNK631	UG/G	90083 36	90085 36	90086 36	90087 36
UNK633	UG/G	90085 0.917	90086 0.917	90087 0.917	90088 0.917
UNK634	UG/G	90086 36	90087 36	90088 36	90089 36
UNK636	UG/G	90088 36	90108 36	90108 36	90108 36
UNK642	UG/G	90108 36	90182 36	90182 36	90182 36
UNK027	UG/G	90182 36	90200 36	90200 36	90200 36
UNK566	UG/G	90200 36	90022 36	90022 36	90022 36
UNK537	UG/G	90022 36	90063 36	90063 36	90063 36
UNK606	UG/G	90063 36	90070 36	90070 36	90070 36
UNK614	UG/G	90070 36	90066 50	90066 50	90066 50
UNK609	UG/G	90066 50	90072 50	90072 50	90072 50
UNK611	UG/G	90072 50	90111 50	90111 50	90111 50
UNK652	UG/G	90111 50	90105 50	90105 50	90105 50
UNK617	UG/G	90105 50	90089 50	90089 50	90089 50
UNK618	UG/G	90089 50	90073 50	90073 50	90073 50
UNK619	UG/G	90073 50	90105 50	90105 50	90105 50
UNK637	UG/G	90105 50			

ENVIRONMENTAL SCIENCE & ENGINEERING 02/17/87 STATUS:

PAGE# 20

PROJECT NUMBER 85937 0420			PROJECT NAME RMA TASK 14		
FIELD GROUP 30-1			PROJECT MANAGER M. WITT		
30-1SG			LAB COORDINATOR PAUL GEISZLER		
PARAMETERS	UNITS	STORE#	SAMPLE ID#		
METHOD			5345C	5346A	5347B
DATE	TIME	03/26/86 12:33	03/26/86 09:21	04/11/86 09:40	04/11/86 09:40
TIME				13:00	13:00
UNK620	UG/G	90074 36	5345B 30-1 200	5345A 30-1 210	5345B 30-1 222
UNK648	UG/G	90068 36	5344B 30-1	5344A 30-1	5344B 30-1
UNK550	UG/G	90050 36			
UNK559	UG/G	90009 36			
UNK562	UG/G	90033 36			
UNK582	UG/G	90045 36			
UNK599	UG/G	90127 36			
UNK623	UG/G	90077 36			
UNK650	UG/G	90134 36			
UNK635	UG/G	90087 50			
UNK094	UG/G	90007 50			

		ENVIRONMENTAL SCIENCE & ENGINEERING		02/17/87	STATUS:
		PROJECT NUMBER 85937 0420	PROJECT NAME RMA TASK 14		
PARAMETERS	STORE#	FIELD GROUP 30-1 30-1SG	PROJECT MANAGER M. WITT LAB COORDINATOR PAUL GEISZLER		
DATE	TIME	04/02/86 15:03	03/28/86 08:44	03/27/86 08:44	04/02/86 14:40
SAMPLE TYPE	STORED # METHOD	SO	SO	SO	SO
SAMPLE DEPTH	0	30-1 266	30-1 276	30-1 277	30-1 287
SITE TYPE	F T	99758A	4.00	0.0	4.00
SITE TYPE I		99759	BORE	BORE	BORE
INSTALLATION CODE		99720	RK	RK	RK
SAMPLING TECHNIQUE		0	\$	\$	\$
COORDINATE, N/S		98392	187945	187787	187787
COORDINATE, E/W	STP	98393	2191924	2191048	2191048
MOISTURE	%WET WT	70320	8.4	10.1	6.1
CADMIUM		1028	<0.510	<0.900	<0.900
CHROMIUM	UG/G- DRY	99584	14.1	21.5	14.3
COPPER	UG/G- DRY	1043	18.0	13.2	10.1
LEAD	UG/G- DRY	1052	20.5	33.1	21.0
ZINC	UG/G- DRY	1093	49.6	60.6	43.5
ARSENIC	UG/G- DRY	1003	<5.20	6.47	<4.70
MERCURY		71921	<0.050	<0.050	<0.050
ALDRIN		98356	<0.500	<0.900	<0.900
DIELDRIN		98365	<0.600	<0.300	<0.300
DDT, PP'		98364	<2.00	<0.400	<0.400
ENDRIN		98369	<4.00	<0.700	<0.700
CHLORDANE	UG/G- DRY.	98361	<6.00	<1.00	<1.00
	UG/G- DRY	0			

ENVIRONMENTAL SCIENCE & ENGINEERING

PAGE# 22

PROJECT NUMBER 85937 0420
 FIELD GROUP 30-1
 30-1-SC

PROJECT NAME RMA TASK14
 PROJECT MANAGER M. WITT
 LAB COORDINATOR PAUL GEISZLER

02/17/87 STATUS:

PARAMETERS	UNITS	STORET #	METHOD	DATE	TIME	53498 30-1 266	5350A 30-1 276	5350B 30-1 277	5350C 30-1 278	5351A 30-1 287	5351B 30-1 288	SAMPLE ID/#	5352B 30-1 298	5352A 30-1 299	5353A 30-1 309	5353B 30-1 310
DDE, PP*	UG/G-DRY	98363 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 00:00	03/27/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/11/86 13:21	04/11/86 13:21
1,4 OXATHIANE	UG/G-DRY	98644 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.300	03/27/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/11/86 13:21	04/11/86 13:21
DIMP	UG/G-DRY	98645 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.500	03/27/86 <0.500	04/02/86 <0.500	04/02/86 <0.500	04/02/86 <0.500	04/02/86 <0.500	04/11/86 13:21	04/11/86 13:21
VAPONA	UG/G-DRY	98646 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.300	03/27/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/11/86 13:21	04/11/86 13:21
HEXAHALOCLOPENENT-ADIEINE	UG/G-DRY	98647 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <1.00	03/27/86 <1.00	04/02/86 <1.00	04/02/86 <1.00	04/02/86 <1.00	04/02/86 <1.00	04/11/86 13:21	04/11/86 13:21
MALATHION	UG/G-DRY	98648 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.600	03/27/86 <0.600	04/02/86 <0.600	04/02/86 <0.600	04/02/86 <0.600	04/02/86 <0.600	04/11/86 13:21	04/11/86 13:21
ISODRIN	UG/G-DRY	98649 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.300	03/27/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/11/86 13:21	04/11/86 13:21
1,4 DITHANE	UG/G-DRY	98650 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.300	03/27/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/11/86 13:21	04/11/86 13:21
DICYCLOPENTADIENE	UG/G-DRY	98651 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.300	03/27/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/11/86 13:21	04/11/86 13:21
DBCP (NERGON)	UG/G-DRY	98652 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.300	03/27/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/11/86 13:21	04/11/86 13:21
P-CLPHENYL METHYL-SULFIDE	UG/G-DRY	98653 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.300	03/27/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/11/86 13:21	04/11/86 13:21
P-CLPHENYL METHYL-SULFOXIDE	UG/G-DRY	98654 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.400	03/27/86 <0.400	04/02/86 <0.400	04/02/86 <0.400	04/02/86 <0.400	04/02/86 <0.400	04/11/86 13:21	04/11/86 13:21
ATRAZINE	UG/G-DRY	98655 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.700	03/27/86 <0.700	04/02/86 <0.700	04/02/86 <0.700	04/02/86 <0.700	04/02/86 <0.700	04/11/86 13:21	04/11/86 13:21
SUPONA	UG/G-DRY	98656 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.500	03/27/86 <0.500	04/02/86 <0.500	04/02/86 <0.500	04/02/86 <0.500	04/02/86 <0.500	04/11/86 13:21	04/11/86 13:21
DMMF	UG/G-DRY	98657 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <2.00	03/27/86 <2.00	04/02/86 <2.00	04/02/86 <2.00	04/02/86 <2.00	04/02/86 <2.00	04/11/86 13:21	04/11/86 13:21
PARATHION	UG/G-DRY	98658 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.700	03/27/86 <0.700	04/02/86 <0.700	04/02/86 <0.700	04/02/86 <0.700	04/02/86 <0.700	04/11/86 13:21	04/11/86 13:21
P-CLPHENYL METHYL-SULFONE	UG/G-DRY	98703 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.300	03/27/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/11/86 13:21	04/11/86 13:21
TRANS-1,2-DICHLORO-ETHENE	UG/G-DRY	98687 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.700	03/27/86 <0.700	04/02/86 <0.700	04/02/86 <0.700	04/02/86 <0.700	04/02/86 <0.700	04/11/86 13:21	04/11/86 13:21
ETHYLBENZENE	UG/G-DRY	98688 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.300	03/27/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/11/86 13:21	04/11/86 13:21
METHYLENE CHLORIDE	UG/G-DRY	98689 0	UG/G-DRY	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/28/86 08:44	03/27/86 <0.300	03/27/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/02/86 <0.300	04/11/86 13:21	04/11/86 13:21

ENVIRONMENTAL SCIENCE & ENGINEERING 02/17/87 STATUS:

		PROJECT NUMBER 85937 0420 FIELD GROUP 30-1 30-1SG		PROJECT NAME RMA TASK 14 PROJECT MANAGER M. WITT LAB COORDINATOR PAUL GEISZLER	
PARAMETERS	UNITS	STORE #	METHOD	SAMPLE ID #	
DATE		04/02/86	03/28/86	03/28/86	04/02/86
TIME		15:03	08:44	08:44	04/11/86
TETRACHLOROETHENE	UG/G-DRY	98690			
TOLUENE	UG/G-DRY	98691			
1,1,1-TRICHLORO-	UG/G-DRY	98692	0		
ETHANE	UG/G-DRY	98693	0		
1,1,2-TRICHLORO-	UG/G-DRY	98694	0		
ETHANE	UG/G-DRY	98695	0		
TRICHLOROETHENE	UG/G-DRY				
M-XYLENE	UG/G-DRY				
HIBK	UG/G-DRY	98696			
DMSO	UG/G-DRY	98697	0		
BENZENE	UG/G-DRY	98699	0		
UG/G-DRY					
O-AND/OR P-XYLENE	UG/G-DRY	98700	0		
CARBON TETRACHLORIDE	UG/G-DRY	98680	0		
CHLOROBENZENE	UG/G-DRY	98681	0		
CHLOROFORM	UG/G-DRY	98682	0		
1,1-DICHLOROETHANE	UG/G-DRY	98683	0		
1,2-DICHLOROETHANE	UG/G-DRY	98684	0		
BICYCLOHEPTADIENE	UG/G-DRY	98686	0		
DBCP(NEOMAGON)	UG/G-DRY	98652	<0.60	<0.30	<0.30
DBCP	UG/G-DRY	98652	<0.600	<0.300	<0.300
UNK588	UG/G-DRY	H9			
UNK615	UG/G	90049	36		
		90071	36		

ENVIRONMENTAL SCIENCE & ENGINEERING 02/17/87 STATUS: PAGE # 24

PARAMETERS	UNITS	STORE# METHOD	PROJECT NUMBER FIELD GROUP	04/02/86 15:03	03/28/86 08:44	03/28/86 08:44	03/27/86 00:00	04/02/86 00:00	04/02/86 14:40	04/11/86 13:21	04/11/86 13:21
UNK625	UG/G	90078 36	65937 0420 30-1 30-1SG								
UNK626	UG/G	90079 36									
UNK628	UG/G	90081 36									
UNK631	UG/G	90083 36									
UNK633	UG/G	90085 36									
UNK634	UG/G	90086 36									
UNK636	UG/G	90088 36									
UNK642	UG/G	90108 36									
UNK027	UG/G	90182 36									
UNK566	UG/G	90200 36									
UNK537	UG/G	90022 36									
UNK606	UG/G	90063 36									
UNK614	UG/G	90070 36									
UNK609	UG/G	90066 50									
UNK611	UG/G	90067 50									
UNK652	UG/G	90111 50									
UNK617	UG/G	90072 50									
UNK618	UG/G	90073 50									
UNK619	UG/G	90105 50									
UNK637	UG/G	90089 50									

PAGE# 25

ENVIRONMENTAL SCIENCE & ENGINEERING

02/17/87

STATUS:

PROJECT NUMBER 85937 0420
 FIELD GROUP 30-1
 30-1SG

PROJECT NAME RMA TASK14

PROJECT MANAGER M. WITT

LAB COORDINATOR PAUL GEISZLER

PARAMETERS	UNITS	STORET # METHOD	DATE TIME	5349B 30-1 266	5350A 30-1 276	5350B 30-1 277	5350C 30-1 278	5351A 30-1 287	5351B 30-1 288	5352A 30-1 298	5352B 30-1 299	5353A 30-1 309	5353B 30-1 310
UNK620	UG/G		04/02/86 15:03	03:28/86 08:44	03:28/86 08:44	03:28/86 08:44	03:28/86 08:44	03:27/86 00:00	03:27/86 00:00	04/02/86 00:00	04/02/86 14:40	04/11/86 14:40	04/11/86 13:21
UNK648	UG/G												0.360
UNK550	UG/G												
UNK559	UG/G												
UNK562	UG/G												
UNK582	UG/G												
UNK599	UG/G												
UNK623	UG/G												
UNK650	UG/G												
UNK635	UG/G												
UNK094	UG/G												

PROJECT NUMBER 85937 0420
 FIELD GROUP T14QC
 30.1MB

PROJECT NAME RMA TASK 14
 PROJECT MANAGER M. WITT
 LAB COORDINATOR PAUL GEISZLER

PARAMETERS	UNITS	STORED #	METHOD	BLK T14QC	BLK T14QC	BLK T14QC	BLK T14QC	BLK T14QC	BLK T14QC	BLANK T14QC	BLANK T14QC	BLK T14QC	
DATE TIME		02/28/86	03/05/86	03/06/86	03/13/86	03/14/86	03/14/86	04/01/86	04/07/86	05/12/86	05/12/86	05/12/86	07/11/86 00:00
SAMPLE TYPE		71999	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0	\$0
SAMPLE DEPTH FT		93758A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SITE TYPE 1		99759	QCMB	QCMB	QCMB	QCMB	QCMB	QCMB	QCMB	QCMB	QCMB	QCMB	QCMB
INSTALLATION CODE		99720	RK	RK	RK	RK	RK	RK	RK	RK	RK	RK	RK
SAMPLE		0	G	G	G	G	G	G	G	G	G	G	G
SAMPLING TECHNIQUE		72005	0	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
MOISTURE %WET WT		70320	0	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900
CADMIUM UG/G- DRY		1028	0	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900
CHROMIUM UG/G- DRY		99584	11.6	14.8	14.2	15.2	11.2	12.8	12.7	11.2	10.7	14.5	10.4
COPPER UG/G- DRY		1043	9.70	9.50	10.00	10.6	9.45	9.58	10.4	9.22	9.00	16.2	11.4
LEAD UG/G- DRY		1052	<17.0	24.1	<17.0	22.9	<17.0	<17.0	<17.0	<17.0	<17.0	<16.0	<16.0
ZINC UG/G- DRY		1093	43.3	48.9	47.2	51.4	43.0	47.4	44.7	43.3	39.8	42.1	36.8
ARSENIC UG/G- DRY		1003	<4.70	<4.70	<4.70	<4.70	<4.70	<4.70	<4.70	<4.70	<5.20	<5.20	<5.20
MERCURY UG/G- DRY		71921	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.070	<0.070	<0.070
ALDRIN UG/G- DRY		98356	<0.300	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.500	<0.500	<0.500
DIELDRIN UG/G- DRY		98365	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.600	<0.600	<0.600
DDT,PP* UG/G- DRY		98364	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<2.00	<2.00	<2.00
ENDRIN UG/G- DRY.		98369	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<4.00	<4.00	<4.00
CHLORDANE UG/G- DRY		98361	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<6.00	<6.00	<6.00
DDE,PP* UG/G- DRY		98363	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.500	<0.500	<0.500
1,4 OXATHIANE UG/G- DRY		98644	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.500	<0.500	<0.500

PROJECT NUMBER 85937 0420
 FIELD GROUP T14QC
 30.1MB

PROJECT NAME RMA TASK 14

PROJECT MANAGER M. WITT

LAB COORDINATOR PAUL GEISZLER

PARAMETERS	UNITS	STORED #	METHOD	BLK	BLANK	BLANK							
DATE	TIME			T14QC									
DIMP		98645	UG/G-DRY	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<3.00	<3.00
VAPONA		98646	UG/G -DRY	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
HEXACHLOROCYCLOPENTADIENE		98647	UG/G-DRY	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00
MALATHION		98648	UG/G-DRY	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<2.00	<2.00
I SODRIN		98649	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.600	<0.600
1,4 DITHIANE		98650	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<2.00	<2.00
DICYCLOCOPENTADIENE		98651	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<6.00	<6.00
DBCP(NEMAGON)		98652	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.600	<0.600
P-CLPHENYL METHYL SULFIDE		98653	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
P-CL PHENYL METHYL SULFOXIDE		98654	UG/G-DRY	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<1.00	<1.00
ATRAZINE		98655	UG/G-DRY	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<0.500	<0.500
SUPONA		98656	UG/G-DRY	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.900	<0.900
DMMMP		98657	UG/G-DRY	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<3.00	<3.00
PARATHION		98658	UG/G-DRY	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<0.700	<2.00	<2.00
P-CLPHENYL METYL SULFONE		98703	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.400	<0.400
COORDINATE, N/S		98392	STP	0									
COORDINATE, E/W		98393	STP	0									
TRANS-1,2-DICHLOROETHENE		98687	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.800	<0.800
ETHYL BENZENE		98688	UG/G-DRY	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.400	<0.400
METHYLENE CHLORIDE		98689	UG/G-DRY	3.63	3.61	3.64	2.38	1.43	0.938	1.05	0.900	N/A	N/A

PROJECT NUMBER 85937 0420

FIELD GROUP T14QC

PROJECT NAME RMA TASK 14

PROJECT MANAGER M. WITT

LAB COORDINATOR PAUL GEISZLER

PARAMETERS	UNITS	STORET #	METHOD	DATE	TIME	BLK													
TETRACHLOROETHENE		98690	UG/G-DRY	02/28/86	03/05/86	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	
TOLUENE		98691	UG/G-DRY	0	0	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
1,1,1-TRICHLOROETHANE		98692	UG/G-DRY	0	0	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
1,1,2-TRICHLOROETHANE		98693	UG/G-DRY	0	0	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
TRICHLOROETHENE		98694	UG/G-DRY	0	0	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
M-XYLENE		98695	UG/G-DRY	0	0	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
MIBK		98696	UG/G-DRY	0	0	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
DMDS		98697	UG/G-DRY	0	0	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
BENZENE		98699	UG/G-DRY	0	0	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
O-AND/OR P-XYLENE		98700	UG/G-DRY	0	0	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500
CARBON TETRACHLORIDE		98680	UG/G-DRY	0	0	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
CHLOROBENZENE		98681	UG/G-DRY	0	0	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
CHLOROFORM		98682	UG/G-DRY	0	0	0.946	1.10	0.989	0.615	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
1,1-DICHLOROETHANE		98683	UG/G-DRY	0	0	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
1,2-DICHLOROETHANE		98684	UG/G-DRY	0	0	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
BICYCLOHEPTADIENE		98686	UG/G-DRY	0	0	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300
UNK525		90016	UG/G-DRY	0	0	0.951													
UNK529		90018	UG/G	36	0.572														
UNK534		90114	UG/G	36	0.839														
UNK538		90123	UG/G	36															

ENVIRONMENTAL SCIENCE & ENGINEERING

PAGE# 4

PROJECT NUMBER 85937 0420

FIELD GROUP T14QC
30. IMBPROJECT NAME RMA TASK 14
PROJECT MANAGER M. WITT
LAB COORDINATOR PAUL GEISLER

STATUS: 05/08/87

PARAMETERS	UNITS	STORET #	METHOD	SAMPLE ID/#				BLANK	BLANK	BLANK	BLANK
				BLK	BLK	BLK	BLK				
DATE TIME		02/28/86	03/05/86	03/06/86	03/06/86	03/13/86	03/14/86	03/14/86	04/01/86	04/07/86	05/12/86
UNK540	UG/G	90198	18.3	36	13.0						
UNK542	UG/G	90024		20.0							
UNK545	UG/G	90027		36	1.19						
UNK550	UG/G	90550		36							
UNK551	UG/G	90095		36							
UNK558	UG/G	90098		0.360							
UNK562	UG/G	90033		36							
UNK566	UG/G	90200		0.966							
UNK582	UG/G	90045		36							
UNK586	UG/G	90047		0.423							
UNK588	UG/G	90049		36	25.7						
UNK603	UG/G	90060		36							
UNK604	UG/G	90061		36							
UNK613	UG/G	90069		36							
UNK608	UG/G	90065		36							
UNK614	UG/G	90070		36	7.62						
UNK615	UG/G	90071		36							
UNK617	UG/G	90072		36							
UNK619	UG/G	90105		36							

ENVIRONMENTAL SCIENCE & ENGINEERING

PROJECT NUMBER 85937 0420
FIELD GROUP T14QC
30.1MB

PROJECT NAME RMA TASK14
PROJECT MANAGER M. WITT
LAB COORDINATOR PAUL GEISZL

PROJECT NUMBER 85937 0420
 FIELD GROUP T14QC
 30.1MB

PROJECT NAME RMA TASK 14
 PROJECT MANAGER M. WITT
 LAB COORDINATOR PAUL GEISLER

PARAMETERS	UNITS	STORED METHOD	DATE TIME	BLK	BLANK	BLANK	BLANK						
				T14QC									
				3	5	6	7	8	10	11	12	13	56
UNK569	UG/G		02/28/86 03:05:86										
UNK573	UG/G			90038	36								
UNK575	UG/G			90100									
UNK576	UG/G			90121									
UNK577	UG/G			90040									
UNK578	UG/G			90041									
UNK579	UG/G			90042									
UNK580	UG/G			90043									
UNK583	UG/G			90044									
UNK584	UG/G			90045									
UNK585	UG/G			90046									
UNK587	UG/G			90047									
UNK591	UG/G			90048									
UNK592	UG/G			90115									
UNK593	UG/G			90051									
UNK594	UG/G			90102									
UNK595	UG/G			90103									
UNK598	UG/G			90052									
UNK600	UG/G			90053									
UNK601	UG/G			90054									
				90055									
				90056									
				90057									
				90058									

8.63

PROJECT NUMBER 85937 0420
 FIELD GROUP T14QC
 30.1MB

PROJECT NAME RMA TASK14
 PROJECT MANAGER M. WITT
 LAB COORDINATOR PAUL GEISZLER

PARAMETERS	UNITS	STOKE #	METHOD	BLK	BLK	BLK	BLK	BLK	BLK	BLANK	BLANK	BLANK
DATE	TIME			T14QC	T14QC	T14QC	T14QC	T14QC	T14QC	T14OC	T14OC	T14OC
UNK606	UG/G	90063		3	36							
UNK611	UG/G	90067		5	36							
UNK612	UG/G	90068		6	36							
UNK616	UG/G	90104		7	36							
UNK618	UG/G	90073		8	36							
UNK621	UG/G	90075			36							
UNK624	UG/G	90118			36							
UNK625	UG/G	90078			36							
UNK628	UG/G	90081										
UNK629	UG/G	90082					1.02					
UNK633	UG/G	90085						0.390				
UNK634	UG/G	90086										
UNK636	UG/G	90088										
UNK640	UG/G	90199										
UNK642	UG/G	90108							0.502			
UNK646	UG/G	90192										
UNK648	UG/G	90648										
UNK649	UG/G	90117										
UNK652	UG/G	90111										
UNK653	UG/G	90112										

ENVIRONMENTAL SCIENCE & ENGINEERING

05/08/87

STATUS:

PAGE#

8

PROJECT NUMBER 85937 0420
 FIELD GROUP T14QC
 30. IMB

PROJECT NAME RMA TASK 14
 PROJECT MANAGER M. WITT
 LAB COORDINATOR PAUL GEISZLER

PARAMETERS	STORET #	METHOD	SAMPLE ID/*			DATE	TIME	02/28/86	03/05/86	03/06/86	03/13/86	03/14/86	04/01/86	04/07/86	05/12/86	05/12/86	05/12/86	05/12/86	07/11/86	00:00
			BLK	BLK	BLK															
			BLK	T14QC	T14QC	BLK	BLK	BLANK												
				5	7	8	10	11	12	13	52	53	54	55	56	57	58	59	60	
UNITS																				
DATE																				
TIME																				
UNK664	UG/C	90154 36																		

ENVIRONMENTAL SCIENCE & ENGINEERING

PROJECT NUMBER 85937 0420

FIELD GROUP T14QC

30.1MB

PROJECT NAME RMA TASK 14

PROJECT MANAGER M. WITT

LAB COORDINATOR PAUL GEISZLER

PAGE# 9

PARAMETERS UNITS STORET # METHOD

DATE TIME

SAMPLE TYPE

SAMPLE DEPTH FT

SITE TYPE I

INSTALLATION CODE SAMPLE

SAMPLING TECHNIQUE

MOISTURE %WET WT

CADMIUM UG/G- DRY

CHROMIUM UG/G-DRY

COPPER UG/G- DRY

LEAD UG/G-DRY

ZINC UG/G-DRY

ARSENIC UG/G- DRY

MERCURY UG/G-DRY

ALDRIN UG/G- DRY

DIELDRIN UG/G-DRY

DDT,PP'

ENDRIN UG/G-DRY

CHLORDANE UG/G- DRY

DDE,PP'

1,4 OXATHIANE UG/G-DRY

SAMPLE ID/#

BLK T14QC

0

0

0

0

0

0

0

0

0

0

0

0

0

0

66

68

69

69

81

80

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

71999

99758A

99759

99720

72005

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

PROJECT NUMBER 85937 0420

FIELD GROUP T14QC

30. IMB

PROJECT NAME RMA TASK 14

PROJECT MANAGER M. WITT

LAB COORDINATOR PAUL GEISZLER

SAMPLE ID/#

PARAMETERS	UNITS	STORED #	METHOD	BLK	T14QC	BLK	T14QC	BLK	T14QC	BLK	OPSED	SAMPLE ID/#
DATE TIME				07/11/86 00:00	07/11/86 00:00	07/11/86 00:00	05/04/86 00:00	04/02/86 00:00				
DIMP	UG/G-DRY	98645	0	<3.00	<3.00	<3.00	<3.00	<3.00	<1.00	<1.00	<0.500	
VAPONA	UG/G -DRY	98646	0	<0.300	<0.300	<0.300	<0.300	<0.300	<1.00	<1.00	<1.00	
HEXAChLOROCYCLOPENTADIENE	UG/G -DRY	98647	0	<1.00	<1.00	<1.00	<1.00	<1.00	<2.00	<2.00	<0.600	
ADIENE	UG/G-DRY	98648	0	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<0.300	
MALATHION	UG/G-DRY	0										
ISODRIN	UG/G-DRY	98649	0	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	
1,4 DITHIANE	UG/G-DRY	98650	0	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<0.300	
DICYCLOPENTADIENE	UG/G-DRY	98651	0	<6.00	<6.00	<6.00	<6.00	<6.00	<6.00	<6.00	<0.300	
DBCP (NEOMAGON)	UG/G-DRY	98652	0	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.600	<0.300	
P-CLPHENYL METHYL-SULFIDE	UG/G-DRY	98653	0	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	<0.300	
P-CLPHENYL METHYL-SULFOXIDE	UG/G-DRY	98654	0	<1.00	<1.00	<1.00	<1.00	<1.00	<0.500	<0.500	<0.400	
ATRAZINE	UG/G-DRY	98655	0	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.500	<0.700	
SUPONA	UG/G-DRY	98656	0	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.900	<0.500	
DMP	UG/G-DRY	98657	0	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<3.00	<2.00	
PARATHION	UG/G-DRY	98658	0	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<2.00	<0.700	
P-CLPHENYL METHYL-SULFONE	UG/G-DRY	98703	0	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.300	
COORDINATE N/S	STP	98392	0									
COORDINATE E/W	STP	98393	0									
TRANS-1,2-DICHLOROETHENE	UG/G-DRY	98687	0	<0.800	<0.800	<0.800	<0.800	<0.800	<0.300	<0.300	<0.300	
ETHYL BENZENE	UG/G-DRY	98688	0	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	<0.400	
METHYLENE CHLORIDE	UG/G-DRY	98689	0									
												4.92

PROJECT NUMBER 85937 0420
 FIELD GROUP T14QC
 30.1MB

PROJECT NAME RMA TASK 14
 PROJECT MANAGER M. WITT
 LAB COORDINATOR PAUL GEISZLER

PARAMETERS	UNITS	STORE#	METHOD	BLK	T14QC	BLK	T14QC	BLK	T14QC	BLK	OPSED	SAMPLE ID/*
DATE				07/11/86	07/11/86	07/11/86	05/04/86	04/02/86				
TIME				00:00	00:00	00:00	00:00	00:00				
TETRACHLOROETHENE		98690	UG/G-DRY	<0.500								<0.300
TOLUENE		98691	UG/G-DRY	0	<0.300							<0.300
1,1,1-TRICHLORO- ETHANE		98692	UG/G-DRY	0	<0.500							<0.300
1,1,2-TRICHLORO- ETHANE		98693	UG/G-DRY	0	<0.600							<0.300
TRICHLOROETHENE		98694	UG/G-DRY	0	<0.600							<0.300
M-XYLENE		98695	UG/G-DRY	0	<0.300							<0.300
MIBK		98696	UG/G-DRY	0	<0.400							<0.500
DMDS		98697	UG/G-DRY	0	<4.00							<0.300
BENZENE		98699	UG/G-DRY	0	<1.00							<0.300
O-AND/OR P-XYLENE		98700	UG/G-DRY	0	<0.500							<0.500
CARBON TETRACHLORIDE		98680	UG/G-DRY	0	<0.400							<0.300
CHLOROBENZENE		98681	UG/G-DRY	0	<0.300							<0.300
CHLOROFORM		98682	UG/G-DRY	0	<0.700							0.717
1,1-DICHLOROETHANE		98683	UG/G-DRY	0	<0.500							<0.300
1,2-DICHLOROETHANE		98684	UG/G-DRY	0	<0.400							<0.300
BICYCLOHEPTADIENE		98686	UG/G-DRY	0	<0.800							<0.300
UNK525		90016	UG/G	0								
UNK529		90018	UG/G	36								
UNK534		90114	UG/G	36								
UNK538		90123	UG/G	36								

PROJECT NUMBER 85937 0420
 FIELD GROUP T14QC
 30. IMB

PROJECT NAME RMA TASK 14
 PROJECT MANAGER M. WITT
 LAB COORDINATOR PAUL GEISZLER

PARAMETERS	UNITS	STORET #	METHOD	BLK	T14QC	BLK	T14QC	BLK	T14QC	BLK	OPSED	SAMPLE ID/#
DATE				07/11/86	07/11/86	07/11/86	07/11/86	05/04/86	04/02/86			
TIME				00:00	00:00	00:00	00:00	00:00	00:00	00:00	00:00	
UNK540	UG/G	90198										
UNK542	UG/G	90024										
UNK545	UG/G	90027										
UNK550	UG/G	90550										
UNK551	UG/G	90095										
UNK558	UG/G	90098										
UNK562	UG/G	90033										
UNK566	UG/G	90200										
UNK582	UG/G	90045										
UNK586	UG/G	90047										
UNK588	UG/G	90049										
UNK603	UG/G	90060										
UNK604	UG/G	90061										
UNK608	UG/G	90065										
UNK609	UG/G	90066										
UNK613	UG/G	90069										
UNK614	UG/G	90070										
UNK615	UG/G	90071										
UNK617	UG/G	90072										
UNK619	UG/G	90105										

ENVIRONMENTAL SCIENCE & ENGINEERING

PROJECT NUMBER 85937 0420

FIELD GROUP T14QC

30.1MB

PROJECT NAME RMA TASK 14
PROJECT MANAGER M. WITT
LAB COORDINATOR PAUL GEISLER

SAMPLE ID/#

PARAMETERS	UNITS	STORED #	METHOD	BLK	BLK	BLK	BLK	BLK	BLK	SAMPLE ID/#
DATE				T14QC	T14QC	T14QC	T14QC	T14QC	T14QC	
TIME				66	68	69	81	81	80	
UNK620	UG/G	90074		07/11/86	07/11/86	07/11/86	05/04/86	04/02/86		
UNK622	UG/G	90076		00:00	00:00	00:00	00:00	00:00	00:00	
UNK623	UG/G	90077								
UNK627	UG/G	90080								
UNK635	UG/G	90087								
UNK638	UG/G	90090								
UNK641	UG/G	90107								
UNK643	UG/G	90133								
UNK650	UG/G	90134								
UNK110	UG/G	90181								
UNK133	UG/G	90176								
UNK524	UG/G	90015								
UNK528	UG/G	90132								
UNK541	UG/G	90023								
UNK544	UG/G	90026								
UNK556	UG/G	90152								
UNK559	UG/G	90099								
UNK560	UG/G	90126								
UNK567	UG/G	90036								
UNK568	UG/G	90037								

PROJECT NUMBER 85937 0420 FIELD GROUP T14QC 30.1MB			PROJECT NAME RMA TASK 14 PROJECT MANAGER M. WITT LAB COORDINATOR PAUL GEISZLER		
PARAMETERS	UNITS	STORET # METHOD	BLK T14QC 66	BLK T14QC 68	BLK T14QC 69
DATE TIME			07/11/86 00:00	07/11/86 00:00	05/04/86 00:00
UNK569	UG/G	90038			
UNK573	UG/G	90100			
UNK575	UG/G	90121			
UNK576	UG/G	90040			
UNK577	UG/G	90041			
UNK578	UG/G	90042			
UNK579	UG/G	90043			
UNK580	UG/G	90044			
UNK583	UG/G	90046			
UNK584	UG/G	90115			
UNK585	UG/G	90102			
UNK587	UG/G	90048			
UNK591	UG/G	90051			
UNK592	UG/G	90103			
UNK593	UG/G	90052			
UNK594	UG/G	90053			
UNK595	UG/G	90054			
UNK598	UG/G	90056			
UNK600	UG/G	90057			
UNK601	UG/G	90058			

PROJECT NUMBER 85937 0420
 FIELD GROUP T14QC
 30.1MB

PROJECT NAME RMA TASK 14
 PROJECT MANAGER M. WITT
 LAB COORDINATOR PAUL GEISZLER

SAMPLE ID/*

PARAMETERS	UNITS	STORET #	METHOD	BLK	T14QC	BLK	T14QC	BLK	T14QC	BLK	OPS/ED	SAMPLE ID/*
DATE				07/11/86	07/11/86	07/11/86	07/11/86	05/04/86	04/02/86			
TIME				00:00	00:00	00:00	00:00	00:00	00:00	00:00		
UNK606	UG/G	90063										
UNK611	UG/G	36										
UNK612	UG/G	90067										
UNK616	UG/G	90068										
UNK618	UG/G	36										
UNK621	UG/G	90104										
UNK624	UG/G	90073										
UNK625	UG/G	36										
UNK628	UG/G	90075										
UNK629	UG/G	90118										
UNK633	UG/G	36										
UNK634	UG/G	90082										
UNK636	UG/G	90081										
UNK640	UG/G	90085										
UNK642	UG/G	36										
UNK646	UG/G	90199										
UNK648	UG/G	90108										
UNK649	UG/G	36										
UNK652	UG/G	90192										
UNK653	UG/G	90111										
	UG/G	36										

		PROJECT NUMBER 85937 0420		PROJECT NAME RMA TASK14		PAGE#
		FIELD GROUP T14QC		PROJECT MANAGER M. WITT		
		30.1MB		LAB COORDINATOR PAUL GEISZLER		
				SAMPLE ID/#		
PARAMETERS	STORED #	BLK	BLK	BLK	BLK	
	METHOD	T14QC	T14QC	T14QC	T14QC	
		66	68	69	81	
DATE	07/11/86	07/11/86	07/11/86	05/04/86	04/02/86	
TIME	00:00	00:00	00:00	00:00	00:00	
UNK664	90154					
	36					
UNITS	UG/G					

STATE OF COLORADO

COLORADO DEPARTMENT OF HEALTH

4210 East 11th Avenue
Denver, Colorado 80220
Phone (303) 320-8333

October 22, 1987

Ron Romer
Governor

Thomas M. Vernon, MD
Executive Director

Mr. Donald Campbell
Program Manager's Office
RMA Contamination Cleanup
Department of the Army
Aberdeen Proving Grounds
Maryland 21010-5401

Dear Mr. Campbell:

Enclosed are the state's comments on Task 2, 7, 12, 14 and 15 Draft Phase I Contamination Assessment Reports (CARs) for the following sites:

Task_2

Site 1-3 Mounded Material

Task_7

Site 3-1/3-3 Drainage Ditch and Overall Basin
Site 24-7 North Bog

Task_12

Site 12-1 Buried Lake Sludge

Task_14

Site 4-5 Disposal Trenches
Site 30-1 Impact Area
Site 30-5 M-34 Demilitarization Area

Task_15

Site 4-2 Burning Pit

Our principle concerns with the reports are that the representation of the extent of contamination in the CAR is severely underestimated, and that the implementation of the remaining Phase I plans as proposed and the proposed Phase II programs will not adequately define the nature and extent of contamination. The plans should be modified to fully define the nature and extent of soil contamination in these sites, and to be consistent with the requirements of the National Contingency Plan for the conduct of remedial investigations.

Mr. Don Campbell
October 22, 1987
Page Two

The state's comments are subject to change pending the review of the recently obtained 1986 third and fourth quarter GC/MS ground water data.

If you have any questions on the enclosed comments, please contact Jeff Edson.

Sincerely,

David C. Shelton
Director
Hazardous Materials and
Waste Management Division

DCS:nr

cc: Dave Strang, RMA
Ken Conright, Tri-County Health Dept.
Beth Gallegos
Larry Ford, SACWSU
Howard Kenison, Attorney General's Office
Robert Duprey, U.S. EPA
Chris Hahn, Shell Oil Company
Thomas Bick, U.S. Department of Justice
Major Scott Isaacson, Department of the Army
Edward McGrath, Holme, Robert & Owen

01/18/88

**RESPONSE TO PRECEEDING GENERAL COMMENT
OF THE STATE OF COLORADO ON THE
TASK 14 DRAFT FINAL REPORT
SITE 30-1: IMPACT AREAS**

Response:

The objectives of the Phase I programs as performed and the Phase II programs as planned have been previously presented and explained in the various Technical Plans, the Introduction to the CARS, and successive CAR review meetings. Based on the collective results of the investigative techniques outlined in these references, the nature and extent of contamination have been assessed using the most conclusive data available and best professional judgement. All available historical information, aerial photograph interpretations, geophysical surveys, and chemical analysis results have been used to define the vertical and lateral extent of contamination. Phase I and Phase II boring placements and chemical analyses are intended to provide the most effective procedures of collecting meaningful data on which to base estimates of contamination. The technical plans and investigative techniques for this soil contamination assessment have been presented for comment to EPA, and investigations have been modified, where needed, in accordance with EPA requirements. In addition, all Remedial Investigations (RI) have implemented technical programs consistent with the National Contingency Plan, and CERCLA guidelines for the conduct of RI at hazardous waste sites.

We feel that the RI programs being conducted will adequately define the nature and extent of contamination at RMA and provide meaningful data upon which a Feasibility Study (FS) and future remedial actions can be based. In the event that data gaps still exist at the completion of the Phase II program, further investigative techniques will be pursued to fill such gaps.

In all cases, based on the data presented, the most conservative estimate of contamination has been developed. A revised estimate will be provided at the conclusion of the Phase II program which will more accurately define the extent of contamination at any given site. All estimates are, of course, dependent on final settlement of preliminary pollutant limit values (PPLV) for contaminants at RMA.

01/15/88

**RESPONSE TO GENERAL COMMENTS OF
OCTOBER 22, 1987 FROM
COLORADO DEPARTMENT OF HEALTH
PERTAINING TO ALL PHASE I
CONTAMINATION ASSESSMENT REPORTS (CARS)**

Comment_1:

Potential action levels for organic and inorganic analytes in the soils may be lower than detection limits used in the Phase I program. Contingencies must be made to re-investigate all sites if action levels warrant lower detection limits.

Response:

The Phase I soil investigations utilized certified analytical methods that were developed to minimize the detection limit while allowing the Army to analyze for a wide range of pertinent analytes in a large number of samples. Specific Phase II analytical methods are then utilized to further define the extent of contamination suggested by the Phase I analysis. Phase II methods use specific compound detection devices to reduce the detection limit of any particular compound to the lowest level which is technically achievable, while maintaining a degree of confidence in results which is legally defensible.

Because of the complexity in defining action levels and the lengthy review required to establish tentative levels, this specific issue was placed under consideration by the "How Clean is Clean" committee. Rather than delay the RI 3 to 4 years in order to further define and substantiate the action levels, the program was allowed to proceed, but with some recognized risk. As previously stated to all MOA parties, further remedial investigations may be required to address the final action levels.

Comment_2:

There are numerous, reoccurring, non-target analytes found in many sites. A formal process must be presented to determine whether non-target analytes belong on target analyte lists. Furthermore, target analytes may need to be determined on a source by source (or section by section basis), rather than on an "Arsenal-wide" basis. Revised target analytes programs should be implemented in the Phase II program.

Response:

The Phase II target analyte list for each site investigated is based on available Phase I results, including target and nontarget detections. MOA parties, including representatives from the Colorado Department of Health (CDH), review these data and the nontarget

results regularly to determine that significant nontarget compounds are being adequately addressed in Phase II. Comments received from MOA that are specific in nature are carefully considered by the Army. In each site investigation, the Army reviews nontarget data and MOA comments in order to ascertain the necessity of further defining the extent of a Phase I nontarget compound. In addition, a committee comprised of RI and FS team members is systematically evaluating all nontarget compounds detected during the RI program.

Although this technical review process is subjective, serious candidates for inclusion on the target list have included: those compounds which occur frequently or in a pattern; compounds of high concentrations; high toxicity compounds; carcinogenic compounds; and compounds that may be considered as byproducts or degradation products of target compounds. Compounds such as benzothiazole and several Army agent degradation products were added to the Phase II target list as a result of this review process. In each case, the Army has provided ample opportunity to every party to formally document any serious concern regarding the Phase II target analyte program.

Comment 3:

For sites where contaminants have been detected in the unsaturated zone at the water table, the Phase II program must sample the saturated zone. These borings will determine the vertical extent of source-related contaminants and provide insight into potential ground-water contamination.

Response:

The intent of the Phase I soil investigations as described in the various technical plans submitted to the MOA parties was to identify and quantify contamination in the unsaturated zone. Therefore, sampling was restricted to intervals at or above the water table. In addition to the soil program, the Army has conducted an extensive program of surface and ground water monitoring at RMA. Soils information will be evaluated in conjunction with information gathered during the various water analytical programs that have been conducted. Evaluation of soil contamination with respect to surface and ground water monitoring results will be presented in the Study Area Reports to be issued to MOA parties. In some instances, the Phase II program will sample intervals at or below the water table at locations within each site suspected of contributing to aquifer contamination. Contaminant concentrations in these soil samples, if detected, will also be compared against local ground water quality data.

01/15/88

Comment 4:

The Army has labeled many non-target analytes found in the soils as a laboratory induced contamination. Little, if any, information is presented to support this determination. Many of these contaminants have been found in concentrations too high to be indicative of laboratory contamination (e.g., methylene chloride 800 ppm, Site 4-5). Further, many laboratory batches that exhibit "laboratory contamination" have clean laboratory blanks.

If laboratory induced contamination overwhelms the GC/MS screen, the chemical analysis program becomes suspect and must be re-evaluated. Further, a procedure for documenting the identification and verification of suspected laboratory contaminants must be presented.

Response:

A position paper concerning contaminants which are listed as "laboratory induced" is currently in preparation and will be released to MOA parties upon completion.

01/15/88

**RESPONSES TO SPECIFIC COMMENTS OF THE
COLORADO DEPARTMENT OF HEALTH ON THE
DRAFT FINAL TASK 14 REPORT
SITE 30-1: IMPACT AREAS (VERSION 2.2)**

Comment_1:

p. 7

The statement that the 10 ppb endrin value was not substantiated in the Task 4 ISP contradicts the findings in the ISP report which indicates an endrin concentration of 10 ppb in monitoring Well 30005.

Response

The statement concerning the 10 ppb endrin value in Well 30004 from the RMA database has been corrected to a 10 ppb endrin value in Well 30005 in the Task 4 ISP Report.

**Comment_2:
is not p. 14**

Figure 30-1-6 indicates that the Old Sanitary Landfill included as part of the Site 30-4 Landfill, but is part of Site 30-1. However, the Army did not investigate the Old Sanitary Landfill area pursuant to the Site 30-1 Phase I Technical Plan. Similarly, the Task 7 - Site 30-4 CAR did not include the Old Sanitary Landfill area in its investigation. A program must be initiated to define the nature and extent of any contamination in this area.

Response

The 1984 RMACCPMT map (RIC#84034R01) was the basis of all Phase I soil investigations, and Site 30-4 (Sanitary Landfill) boundaries. During the Site 30-1 geophysical investigation, intense magnetic and EM inphase response indicated the location of the Old Sanitary Landfill. The nature and extent of contamination in the Old Sanitary Landfill as well as the locations of the six soil borings in this area are presented in the Site 30-4 CAR (Task 7).

Shell Oil Company

c/o Holme Roberts & Owen
Suite 1800
1700 Broadway
Denver, CO 80290

June 24, 1987

USATHAMA
Office of the Program Manager
Rocky Mountain Arsenal Contamination Cleanup
ATTN: AMXRM-EE: Chief: Mr. Donald L. Campbell
Bldg E4585, Trailer
Aberdeen Proving Ground, MD 21010-5401

Dear Mr. Campbell:

Enclosed herewith are Shell Oil's comments on the Draft Final Contamination Assessment Reports for sites 19-UNC, 22-UNC, 27-UNC, and 30-1 assessed under Task 14.

Very truly yours,

A handwritten signature in black ink that appears to read "C. K. Hahn".

C. K. Hahn
Manager
Denver Site Project

RDL:ajg

Enclosure

cc: (w/enclosure)
USATHAMA ✓
Office of the Program Manager
Rocky Mountain Arsenal Contamination Cleanup
ATTN: AMXRM-EE: Mr. Kevin T. Blose
Bldg E4585, Trailer
Aberdeen Proving Ground, MD 21010-5401

USATHAMA
Office of the Program Manager
Rocky Mountain Arsenal Contamination Cleanup
ATTN: PMSO: Mr. Brian L. Anderson
Aberdeen Proving Ground, MD 21010-5401

87502-1/2

cc: Mr. Thomas Bick
Environmental Enforcement Section
Land & Natural Resources Division
U.S. Department of Justice
P.O. Box 23896
Benjamin Franklin Station
Washington, D.C. 20026

Mr. Scott Isaacson
Headquarters - Department of the Army
ATTN: DAJA-LTS
Washington, D.C. 20310-2210

Ms. Patricia Bohm
Office of Attorney General
CERCLA Litigation Section
1560 Broadway, Suite 250
Denver, CO 80202

Mr. Chris Sutton
Colorado Department of Health
4210 East 11th Avenue
Denver, CO 80220

Mr. Robert L. Duprey
Director, Air & Waste Management Division
U.S. Environmental Protection Agency, Region VIII
One Denver Place
999 18th Street, Suite 1300
Denver, CO 80202-2413

Mr. Connally Mears
U.S. Environmental Protection Agency, Region VIII
One Denver Place
999 18th Street, Suite 1300
Denver, CO 80202-2413

Mr. Thomas P. Looby
Assistant Director
Colorado Department of Health
4210 East 11th Avenue
Denver, CO 80220

**RESPONSES TO SPECIFIC COMMENTS OF THE
SHELL OIL COMPANY ON THE
DRAFT FINAL TASK 14 REPORT
SITE 30-1: IMPACT AREAS (VERSION 2.2)**

Comment_1:

Page iv, 9
first paragraph

Two firing stations for the Site 30-1 mortar impact area are shown on RMA Drawings D-748, 4.2 inch Mortar Range, June 4, 1948 and AG-7, Area_Map, Observation Post-Bldg_853, Mortar_Range, 4-26-45. One station (map D-748) is located alongside "C" Street in Section 26. The concrete firing emplacements are clearly visible at this station today. A "short range firing house" is shown on Drawing AG-7 located along the eastern boundary of Section 30 directly west of Site 30-1.

The legend on Drawing AG-7 indicates that Site 30-1 may also have been used for testing incendiary (M69X) bombs. A "test stand" is shown which is located 300 ft northeast of the Observation Post Building 853.

Response

Drawings D-748 and AG-7 have been reviewed and evaluated for additional information relevant to the Site 30-1 investigation. The observation post locations have been included in Section 2.0. The "Short Range Mortar Firing House" is on the western boundary of Section 30 directly west of Site 30-1. Mortar fire is shown to follow a due east trajectory and would impact approximately 750 ft north of the Observation Post Building 853. The path corresponds to the primary impact area as determined from the Phase I investigation. A test stand possibly used for testing M69X bombs is 300 ft northeast of the observation bunker on Drawing AG-7. The test stand was not observed in the field, and no physical indications of drop testing activities in this area are evident. Site 36-2 is reported to have proof-tested M69 bomblets, although all activities were documented to occur within Building 725. The test stand described on Drawing AG-7 was either never constructed or used, or used and removed with no resultant wastes.

Comment_2:
paragraph 3.3
first bullet

Testing for IMPA will provide information on only one of the Army's potential degrading products. It is recommended all other Army degradation products which have certified methods also be checked during the analyses.

Response

IMPA (GB degradation products) and TDGCL (mustard degradation products) are two of the specific certified methods to detect Army agent degradation products. Both analyses are scheduled for Phase II samples from trenches, as are ICP metals, arsenic,

mercury, and semivolatile organic compound analysis. The semivolatile method is certified for the detection of DIMP, DMMP, oxathiane, and dithiane. The Phase II program as designed will provide complete information on agent degradation products, and the nontarget analysis should identify other compounds indicative of contamination. It should be noted, however, that no history of agent contaminated material is documented for this site.

Comment_3:
paragraph 3.4

As with most of the post-Phase I contaminated soil volume revisions, the volume calculated for Site 30-1 is arbitrary and misleading. The boundary drawn for the "main impact area" is arbitrary. Undoubtedly there are UXO's outside this area which, because of their lower spatial density in a larger area than the "main impact area", will result in a relatively larger quantity of potentially contaminated soil to be handled.

Response

The boundary drawn for the main impact area has been determined from the RMACCPMT map, and supported by field reconnaissance and visual evidence. The volume of potentially contaminated soil has been estimated from chemical analysis results, geophysics, and historical research. Based on the Phase I investigation of the site, this estimate of potentially contaminated soil provides accurate information upon which to base feasibility assessments.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION VIII

999 18th STREET—SUITE 500

DENVER, COLORADO 80202-2405

REF: 8HWM-SR

OCT 14 1987

Colonel W. N. Quintrell
Program Manager
AMXRM-EE Department of the Army
U.S. Army Toxic and Hazardous Materials Agency
Building 4460
Aberdeen Proving Ground, MD 21010-5401

Re: Rocky Mountain Arsenal (RMA),
Documentation of suspected laboratory
contamination.

Dear Colonel Quintrell:

EPA Region VIII has the enclosed preliminary comments for Sites 4-5, 24-6, 2-8, 3-4, and supplemental comments on Sites 30-1, and 4-5 from our contractors. Our contact on this matter is Mr. Connally Mears at (303) 293-1528.

Sincerely yours,

A handwritten signature in black ink, appearing to read "Robert L. Duprey".

Robert L. Duprey, Director
Hazardous Waste Management Division

Enclosure

cc: David Shelton, CDH
Chris Hahn, Shell Oil Company
R. D. Lundahl, Shell Oil Company
Thomas Bick, Department of Justice
Elliott Laws, Department of Justice
Preston Chiaro, Ebasco
Mike Witt, ESE

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION VIII

999 18th STREET—SUITE 500

DENVER, COLORADO 80202-2405

REF: 8HWM-SR

SEP 23 1987

Colonel W. N. Quintrell
Program Manager
AMXRM-EE Department of the Army
U.S. Army Toxic and Hazardous Materials Agency
Building 4460
Aberdeen Proving Ground, MD 21010-5401

Re: Rocky Mountain Arsenal (RMA),
Review of Final Phase I CAR Report for
Task 14, Site 30-1, Impact Area.

Dear Colonel Quintrell:

EPA Region VIII has reviewed the above referenced final report and has the enclosed preliminary comments from our contractors. Given the status of Phase II Remedial Investigation work at this site and the nature of the enclosed comments, it may be that our concerns can be addressed during the Feasibility Study for RMA. If you wish to pursue that option, please call Mr. Connally Mears at (303) 293-1528.

Sincerely yours,

A handwritten signature in black ink, appearing to read "J. L. Duprey".

Robert L. Duprey, Director
Hazardous Waste Management Division

Enclosure

cc: David Shelton, CDH
Chris Hahn, Shell Oil Company
R. D. Lundahl, Shell Oil Company
Thomas Bick, Department of Justice
Elliott Laws, Department of Justice
Preston Chiaro, Ebasco
Mike Witt, ESE

01/26/88

**RESPONSES TO SPECIFIC COMMENTS
OF ENVIRONMENTAL PROTECTION
AGENCY ON THE DRAFT FINAL
TASK 14 REPORT
SITE 30-1: IMPACT AREA (VERSION 2.2)**

Comment_1:

The small drainage channel crossing through the southwest quadrant of the site should be shown on Figures 30-1-6 through 30-1-8. Are holes 5330, 5331, and 5337 located in this channel? If so, the report should so state. If not, Phase II should sample this channel.

Response

The small drainage has been added to Figures 30-1-6 thru 30-1-8. Boring 5347 was placed within this drainage.

Comment_2:

Why wasn't a boring located in the mounded area adjacent to Boring 5330? Are these mounds from excavating the nearby trench, or are they burying something?

Response

Field inspection of the mounds near Boring 5330 did not reveal any visual indications of disposal activity or debris. These mounds are the result of initial trench excavation based on proximity to the trenches and lack of visual soil contamination.

Comment_3:

Why were no borings placed in the area labeled "Abundant Metal Debris" in the south central portion of the site?

Response

No borings were placed in the area of "Abundant Metal Debris" based on results of a surface sweep of the area. Personnel with extensive knowledge of ordnance used and stored at RMA investigated the area, and recorded only innocuous metal surface debris.

Comment_4:

The report states that the tentatively identified compound diethylene glycol occurred only in Lot BMS, and was therefore attributed to laboratory contamination. However, the three borings that it occurred in were all located in the same general vicinity and may not be laboratory induced since it did not appear in the blanks analysis. Therefore, diethylene glycol should be added to the analyte list for the Phase II borings.

Response

Diethylene glycol (2,2'-oxybisethanol) is a common component of commercially available antifreeze. The compound was detected in three borings that were all in the same general vicinity. This compound was identified in several other Task 14 sites as well. All of these borings were drilled in the winter

months, when antifreeze may be used for field vehicles and equipment. Antifreeze is used overnight in the steam cleaner line and may have bled out of the line before decontamination procedures. Incomplete bleeding of the line may have contaminated both field equipment and the samples. Phase II borings proposed for this site include a GC/MS scan, which will detect diethylene glycol in the nontarget analysis.

Comment 5:

Numerous contamination assessment reports dismiss low concentrations of tentatively identified compounds and one target analyte (methylene chloride) as a "suspected laboratory contaminant". When analysis of the blanks do not support this conclusion, we feel the reports should substantiate the assertion with additional documentation from the laboratory QA/QC program. Several examples of hits dismissed as suspected laboratory contamination without supporting documentation are cited below.

Site	Boring(s)	Compound	Concentration
4-6	19	methylene chloride	3
30-1	5335, 5338, 5339	oxy-bis ethanol	0.5, 0.8, 0.9
24-6	4,11	methylene chloride	2, 3
2-8	6	methylene chloride	6 (No data on BLANKS)
3-4	3, 7, 8, 14	methylene chloride	1 - 5
4-5	11, 2, 10	methylene chloride	800, 50, 2

Response:

A position paper on "laboratory introduced" contamination is currently being assembled and will be presented to MOA parties upon completion.