UNIVERSIDAD DE COSTA RICA ESCUELA DE INGENIERÍA ELÉCTRICA

IE-0523 — Circuitos Digitales II

PREPARADO POR

 ${\rm Tarea}~03$

Fecha de entrega: 18 - 05 - 2024.

Ruiz Sánchez Junior Alfonso — B97026

Profesor: Enrique Coen Alfaro

1. Resumen

2. Descripción arquitectonica

Figura 1: Diagrama de estados de cajero automatico

La entrada reset a IDLE que se encuentra al aire, significa que en cualquier momento en el que reset llegue a cero la maquina de estados irá al estado IDLE

Transición de estados

- IDLE a validacion, necesita el ingreso de una tarjeta
- validación a deposito, necesita el pin correcto y un cero en el tipo de transacción
- validacion a retiro, necesita el pin correcto y un uno en el tipo de transacción
- validacion a bloqueo, necesita que el contador de intentos llegue a 3

3. Planes de pruebas

3.1. Plan 1

Acá se muestra la interacción del modulo ante un deposito. Para ello se ingresa la tarjeta, el monto, y el pin correcto, como resultado se debe obtener que el balance aumente en la cantidad del monto ingresado

3.2. Plan 2

Acá se muestra la interacción del modulo ante un intento de retiro con fondos insuficientes y un retiro efectuado. Para ello se ingresa la tarjeta, un monto mayor al balance y el pin correcto posteriormente se cambia el valor del monto a un monto menor para poder mostrar como se encuente la señal de salida de fondos insuficientes y posteriormente esta se apaga y se enciente la señal de entrega de dinero y de balance actualizado, debido a que el monto ingresado fue menor al balance.

3.3. Plan 3

Acá se muestra la interacción del modulo ante el error de pin 3 veces mostrando las alartas de advertencia y bloqueo. Para ello se ingresa la tarjeta, y se ingresa una clave incorrecta se presiona enter 3 veces y como resultado se obtendrá que se enciente la salida de pin incorrecto en cada ingreso, después la señal de advertencia cuando el contador de intentos llega a 2, después la señal de bloqueo cuando el contador de intentos llega a 3.

NOTA: Todas las pruebas fueron exitosas tanto para el modulo conductual como para el modulo sintetizado.

4. Instrucciones de simulación

Para esta sección se introducirá el archivo README.md que está en la carpeta de la tarea 03.

```
### Plan 1:
#### Acá se muestra la interacción del modulo ante un deposito.
### Plan 2:
#### Acá se muestra la interacción del modulo ante un intento de retiro con
#### fondos insuficientes y un retiro efectuado.
### Plan 3:
#### Acá se muestra la interacción del modulo ante el error de pin 3 veces
#### mostrando las alartas de advertencia y bloqueo.
```

```
#### Copilaciones:
#### Para copilar el plan 1 con el modulo conductual
    make copile
#### Para copilar el plan 2 con el modulo conductual
    make copile2
#### Para copilar el plan 3 con el modulo conductual
    make copile3

#### Para copilar el plan 1 con el modulo sintetizado
    make copile4
#### Para copilar el plan 2 con el modulo sintetizado
    make copile5
##### Para copilar el plan 3 con el modulo sintetizado
    make copile6
```

```
### ejecuciones
#### Para ejecutar el script de yosys
    yosys tellermachine.ys
#### Para ejecutar lo copilado
    make run
```

NOTA\: el comando run también elimita el archivo vcd generado y el vpp ##### esto debido a que así se puede ejecutar los archivos recien copilados ##### y así probando que se llega al mismo resultado.

5. Resultados

Figura 2: Plan 1 con modulo conductual

Figura 3: Plan 1 con modulo sintetizado

Figura 4: Plan 2 con modulo conductual

Figura 5: Plan 2 con modulo sintetizado

Figura 6: Plan 3 con modulo conductual

Figura 7: Plan 3 con modulo sintetizado