Unsupervised Learning

1

Machine Learning

UN-SUPERVISED LEARNING

3

3

클러스터링은 데이터에서 비슷한 객체들을 하나의 그룹으로 묶는 것

5

그럼 데이터가 비슷한 기준은?

유사도 (거리) 정보 기반

7

□ K-means cluste	ring	
□ Hierarchical clu	stering	
□ Density-based	spatial clustering of applications with noise (DBSCAN)	
□ Gaussian mixtu	re model	
□ Self-organizing	map (SOM)	

유사도

 \circ $d(x_i, x_j)$: 데이터 x에 대해 두 데이터 x_i, x_j 간에 정의되는 임의의 거리

。 유클리디언 거리, 코싸인 유사도 등 벡터에서 정의되는 모든 거리 척도

유클리디안 거리 (L2 DISTANCE)

。 피타고라스 정의

두점 P와 Q가 각각 $P=(p_1,p_2,p_3,...,p_n)$ 와 $Q=(q_1,q_2,q_3,...,q_n)$ 의 좌표를 갖을 때 두 점 사이의 거리를 계산하는 유클리디안거리 (Euclidean distance)공식은 다음과 같습니다.

$$\sqrt{(p_1-q_1)^2+(p_2-q_2)^2+\ldots+(p_n-q_n)^2} = \sqrt{\sum_{i=1}^n (p_i-q_i)^2}$$

$$\frac{1}{1+Ed}$$

13

예제) 4번과 가장 가까운 데이터는 무엇인가요?

#	Α	В	С	D
1	3	2	0	2
2	1	2	3	0
3	2	2	2	2

4 1 5 0 0

$$\begin{aligned} dist(D1,Q) &= \sqrt{(3-1)^2 + (2-5)^2 + (0-0)^2 + (2-0)^2} = \sqrt{17} \\ dist(D2,Q) &= \sqrt{(1-1)^2 + (2-5)^2 + (3-0)^2 + (0-0)^2} = \sqrt{18} \\ dist(D3,Q) &= \sqrt{(2-1)^2 + (2-5)^2 + (2-0)^2 + (2-0)^2} = \sqrt{18} \end{aligned}$$

코사인 유사도

- □ 두 벡터 사이의 코사인 각도를 구해 서로의 유사도를 구하는 방식
- □ 텍스트 데이터의 유사도를 구하는 방법 중 하나
- □ 데이터 셋의 길이 차이가 심한 상황일 때도 데이터들의 유사도를 판단 할 수 있다.

코사인 유사도 : 0

코사인 유사도 : 1

15

코사인 유사도

$$\cos.similarity = \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel} = \frac{\sum_{i=1}^{n} A_i \times B_i}{\sqrt{\sum_{i=1}^{n} (A_i)^2} \times \sqrt{\sum_{i=1}^{n} (B_i)^2}}$$

코사인 유사도

#	Α	В	С	D	Е	F	D	Н
L1	8	8	2	2	0	0	0	O
L2	10	8	3	O	0	0	O	0
L3	0	0	3	2	8	6	6	8
L4	0	0	3	0	8	6	2	8

#	내적	NORM A	NORM B	NORMA*NORM B	Cos.Sim
L1 X L2	8*10+8*8+2*3+2*0	(8*8+8*8+2*2+2*2)^0.5	(10*10+8*8+3*3)^0.5	11.66*13.15	150/153.3878
	150	11.6619	13.1529	153.39	0.9779
L3 X L4	3*3+8*8+6*6+6*2+8*8	(3*3+2*2+8*8+6*6+6*6+8*8)^0.5	(3*3+8*8+6*6+2*2+8*8)^0.5	14.59*13.30	185/194.1667
	185	14.5945	13.3041	194.17	0.9528
L1 X L3	2*3+2*2	(8*8+8*8+2*2+2*2)^0.5	(3*3+2*2+8*8+6*6+6*6+8*8)^0.5	11.66*14.59	10/170.1996
	10	11.6619	14.5945	170.20	0.0588

17

K-MEANS CLUSTERING

$$\arg\min_{\mathbf{C}} \sum_{i=1}^{K} \sum_{\mathbf{x}_j \in C_i} ||\mathbf{x}_j - \mathbf{c}_i||^2$$

Algorithm 1 Basic K-means Algorithm.

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: until The centroids don't change

	Weak points	
1	Sensitive results from Initial points	
2	Ball-shaped clusters	
3	Sensitive to noise points	

every example in the blue shaded area will be misclassified as the blue class

3 NN

every example in the blue shaded area will be classified correctly as the red class

장점	계산이 쉽다. 다른 군집화 알고리즘에 비해 복잡도가 낮다
O T	구현이 쉽고 다양한 언어와 플랫폼에서 제공되는 알고리즘
	노이즈에 매우 민감
단점	군집 개수를 사전에 지정
	앞의 몇 가지 상황에서는 최적의 군집 구조를 찾기 어려움

Evaluation metrics for clustering

Sum of squared distance for each point to it's assigned centroid

52

Silhouette score

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

a(1)
a(1)
a(1) = a(1)에서 각 점들 간의 거리를 평균

$$s = \frac{b - a}{\max(a, b)}$$

$$-1 \le s \le 1$$

