INTRO STATS

BRIAN STOCK03.25.17

GOALS OF STATISTICS

1. Estimate the values of important *parameters*

"What is the global population growth rate?"

2. Test *hypotheses* about those parameters

"Is the US pop growth rate **declining**?"

CHECK 1. PARAMETERS VS. ESTIMATES

Write on a piece of paper:

- I. What is the difference between a parameter and an estimate?
- 2. What is the difference between a population and a sample?
- 3. What makes a sample good?

Individually

I-2 minutes

A population of starfish

What **parameters** may we be interested in?

Samples of starfish population

How do our **estimates** vary by each sample?

Populations --- Parameters Want to know

Constant/fixed

Samples --- Estimates

What we have

Random variables

Populations --- Parameters

Want to know

Constant/fixed

Samples --- Estimates

What we have

Random variables

What makes a good sample?

What makes a good sample?

- Independent selection of individuals
- Random selection of individuals
 - Each individual has equal chance of being selected
- Sufficiently large

Sample bias vs. precision

THE STUMBLING BLOCKS

- I. What statistical test should I use?
- 2. How to do it (using R)

CHECK 2. SCIENTIFIC METHOD / PROCESS

In groups of 4, discuss:

- What are the steps in the scientific method/process?
- Choose a simple biological question.
 Describe the steps you would take to find the answer.

~10 minutes

Share with class

SCIENTIFIC METHOD / PROCESS

By ArchonMagnus - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=42164616

- I. Biological question. Be specific!
- 2. Put the question in the form of a biological null hypothesis and alternate hypothesis.
- 3. Translate the biological hypotheses into statistical hypotheses
- **4.** Which variables are relevant to your question?
- 5. Determine what kind of variable each one is.
- 6. Design an experiment that controls or randomizes the confounding variables.
- 7. Choose the best statistical test to use. Depends on:
 - number of variables
 - kinds of variables
 - expected fit to the parametric assumptions
 - hypothesis to be tested
- 8. Determine a good sample size for the experiment. Power analysis.
- **9.** Collect data (do the experiment).
- 10. See if your data meet the **assumptions of the statistical test** you chose. If it doesn't, choose a more appropriate test.
- II. Apply the statistical test, and interpret the results.
- 12. Communicate your results, often with a graph or table

CHECK 3. NULL VS ALTERNATE HYPOTHESES

Did your group list null and alternate hypotheses?

• If not, do so now

Groups

I-2 minutes

Population

Define our **population parameter** of interest.

Population

We can't measure EVERY starfish in the population. Instead, take a **random sample**. Calculate the **estimate** using our sample.

Population

Sample

But our sample/estimate is random – imagine all of the other samples we COULD have gotten!

Population

Sample

If we make an estimate (ex: calculate mean) from each of these samples, we have the **sampling distribution** under the **null hypothesis**.

Population

Sample

If our sample is **very different** from what we expect under the null hypothesis, (calculate the probability, or **p-value**) then we **reject the null** (conclude that our population parameter is different).

Population

Sample

If our sample is **very different** from what we expect under the null hypothesis, (calculate the probability, or **p-value**) then we **reject the null** (conclude that our population parameter is different).

Difference in mean height

Population Sample

If our sample is **not different** from what we expect under the null hypothesis, (calculate the probability, or p-value) then we fail to reject the null (conclude that our population parameter is not different).

Population

Sample

If our sample is **not different** from what we expect under the null hypothesis, (calculate the probability, or **p-value**) then we **fail to reject the null** (conclude that our population parameter is not different).

Difference in mean height

STRETCH!

- Time series
- Count/discrete
- Paired
- Continuous
- Categorical
- Ordinal
- Binomial

3) At a port, you track the number of every species of fish caught by the fishermen every day for 3 months

Fecha	Mero	Manta	Pargo	Mojarra
03.06.17	25	0	67	18
04.06.17	34	2	55	17
05.06.17				
06.06.17				

- Time series
- Count/discrete
- Paired
- Continuous
- Categorical
- Ordinal
- Binomial

4) Beaufort sea state

Beaufort state	Wind speed	Wave height	Description
0	<	0	mirror-like
1	1-5	0-0.2	ripples
2	6-11	0.2-0.5	wavelets
3	12-19	0.5-1	crests break
4	20-28	1-2	whitecaps
5	29-38	2-3	spray
6	39-49	3-4	foam crests

- Time series
- Count/discrete
- Paired
- Continuous
- Categorical
- Ordinal
- Binomial

5) For one fishing port in 2012 and 2013 you have the total number of fish caught. You want to see if there is a difference between 2012 and 2013.

Year	Catch
2012	2168
2013	3087

- Time series
- Count/discrete
- Paired
- Continuous
- Categorical
- Ordinal
- Binomial

6) You study a population of grouper and collect length measurements of 500 fish

Fish	Length (mm)
I	466
2	680
3	512
•••	
500	717

- Time series
- Count/discrete
- Paired
- Continuous
- Categorical
- Ordinal
- Binomial

7) During a species' spawning season, you sample 200 females and record whether or not each female has eggs (sexual maturity)

Female	Mature?
I	Yes
2	No
3	No
•••	
200	Yes

- Time series
- Count/discrete
- Paired
- Continuous
- Categorical
- Ordinal
- Binomial

8) On a fishing boat, you record the species of each fish caught.

Fish	Species
I	Manta
2	Mero
3	Pompano
•••	
200	Pargo

Bar graph

Grouped bar graph

Histogram

Histograms

Cumulative Distribution

Height (in cm) of Bio300 Students

- I. What is the **median** height?
- 2. What percent of students are less than 180 cm? 210 cm?
- 3. If I am 160 cm tall, what percentile am I?

Cumulative Distribution vs. Probability Distribution

The cumulative frequency = proportion of individuals equal to or less than that value

Multiple histograms

Shrike

Young, K. V., E. D. Brodie Jr., and E. D. Brodie III. 2004. How the horned lizard got its horns. Science 304:65.

Two ways of comparing 4 distributions

Scatter plot

CHECK 7. DESCRIBING DISTRIBUTIONS

Center

- Mean
- Median
- Mode

Width

- Range
- Standard deviation (SD)
- Variance
- Coefficient of variation (CV)

RANGE

VARIANCE IN A POPULATION

$$\frac{\overset{N}{\diamond}(Y_i - m)^2}{S^2} = \frac{\overset{i=1}{\sim}}{N}$$

N is the number of individuals in the population. μ is the true mean of the population.

SAMPLE VARIANCE

$$\overset{n}{\text{a}} \left(Y_i - \overline{Y} \right)^2$$

$$s^2 = \frac{i=1}{n-1}$$

n is the sample size

STANDARD DEVIATION (SD)

Positive square root of the variance

 σ = true standard deviation

s = Sample standard deviation:

$$S = \sqrt{S^2} = \sqrt{\frac{\mathop{a}\limits_{i=1}^{n} (Y_i - \overline{Y})^2}{n-1}} \qquad S^2 = 0.70$$

$$S = \sqrt{0.70} = 0.84$$

COEFFICIENT OF VARIATION (CV)

The *coefficient of variation* is the standard deviation expressed as a percentage of the mean.

$$CV = 100\% \frac{S}{\overline{Y}}$$

Why calculate CV?

What have we missed by only talking about center and width?

SKEW

- Measure of asymmetry
- Skew direction refers to the pointy tail of a distribution

SKEW

- Measure of asymmetry
- Skew direction refers to the pointy tail of a distribution

CHECK 8. NORMAL DISTRIBUTION

Describe these normal distributions

CHECK 8. NORMAL DISTRIBUTION

N (mean, sd)

N (20,5)

N(20,I)

N (40,5)

N(40, I)

CHECK 9. T DISTRIBUTION

The *one-sample* t-test compares the mean of a random sample from a normal population with the population mean proposed in a null hypothesis.

$$t = \frac{\overline{Y} - \mu_0}{s / \sqrt{n}}$$

CHECK 9. T DISTRIBUTION

CHECK 9. T DISTRIBUTION

