Computational Homework 1

Due: Monday, February 18 (end-of-day 11.59pm)

You should use C++ to write the code. Submit code and summary of results via Compass2g.

1. Lattice Methods

(a) The Cox-Ross-Rubinstein (CRR), Jarrow-Rudd and Tian parametrizations are all different ways to approximate the Black-Scholes model. For δt sufficiently small, the option prices will be very close to one another. Write a program to implement all three parametrizations for the Binomial lattice model and use them to price a Ame- $rican\ put\ option$. Plot the put option prices for the three parametrizations (in the same graph) as a function of δt and discuss the results.

References. CRR/JR - Lecture 1, Slide 24; Tian - Homework 1.

(b) **Improve** the Binomial approximation of the put option price under the CRR model using the *Binomial Black-Scholes* and the *Binomial Average methods* (both) with *Richardson extrapolation*. Use both methods to price the American put option and **plot** the option price for each method against the number of steps.

Reference. BBS, BAM, Richardson extrapolation – Lecture 2, Slides 15–19.

(c) Write a program to implement the *Trinomial model* with risk-neutral probabilities given by

$$\begin{cases} p_u = \frac{1}{2\lambda^2} + \frac{\nu\sqrt{\delta t}}{2\lambda\sigma} \\ p_m = 1 - \frac{1}{\lambda^2} \\ p_d = 1 - p_u - p_m \end{cases}$$

where $\nu = r - \frac{1}{2}\sigma^2$. Choose $\lambda = \sqrt{\frac{3}{2}}$. Compute the American put option price and plot it as a function of the number of steps. Discuss your results.

Reference. Trinomial odel – Lecture 3, Slides 26+

(d) **Compare** the option price you obtained in (b) using the Binomial Black-Scholes method with Richardson extrapolation with the option price you obtained in (c) and plot both in the same graph as a function of the number of steps. Discuss.

For (a)–(d) use the following parameters to price an American put option: S=100, $\sigma=20\%$, r=3%, K=105, T=1. You can use steps from 25 to 25600. If your code takes long to run, feel free to modify the number of steps.

IE 525 A. Chronopoulou

2. Multidimensional Options

The payoff of an American max option at maturity is

$$\max\left(\max_{1\leq i\leq k} S^i(t) - K, 0\right)$$

where $S^{i}(t)$, i = 1, ..., k is the price of stock i at time t. We assume that each stocks follow a Black-Scholes model with correlation ρ_{ij} .

- (a) Write a function that computes the price of an American max option with k=3 stocks. To test your algorithm use the following parameters: $S^i(0)=100,\ K=100,\ \sigma_i=0.2,\ \rho_{ij}=0.1,$ for $i,\ j=1,\ldots,k,\ i\neq j,\ r=0.05$ and T=0.5, and k=3.
- (b) For steps 15, 30, 60, 120, 240, 480, **plot** the option price against the number of steps.
- (c) For the different number of steps, **report** the CPU time that your code needs to run. Summarize your results in a table. Briefly comment on your results.