ACTL3142: Statistical Machine Learning for Risk and Actuarial Applications

Airbnb Sydney Price Analysis Assignment Part 2

Audrey Chang Z5627566

1.1 Creating the HAS Variable

The proportion of listings with HAS = 1 is 0.3115. 31.15% of listings are classified as high scoring based on user reviews.

2.1 Data Preparation Cleaning

- Removed irrelevant columns: bathrooms text, host since.
- Created host experience years = 2025 host since.
- Create high availability: Binary feature based on the median of availability 60.
- Imputed missing values: host_response_time-"Unknown"; host_response_rate and host_acceptance_rate-median values; host is superhost-most frequent value (0, not a superhost)

2.2 Feature Engineering

- **Region**: Derived from neighbourhood using domain-specific groupings (East, West, North, South).
- Property Group: Categorized property_type into logical groups (e.g., Apartment/Condo, Hotel/Hostel, Guest Accommodation).
- **High Availability**: Binary feature based on whether availability 60 is above the median.

• Interaction Terms:

- o host experience years × host is superhost: Indicates consistent quality over time.
- o price × availability 60: Captures trade-offs between price and availability.
- o room_type × property_group: Captures contextual differences in guest expectations.
- Log transformation: Applied to price to handle skewness.
- Re-leveled categorical variables: Adjusted reference levels for interpretability.

2.3 Exploratory Analysis and Variable Selection

- Removed avg_score and individual review scores to prevent data leakage.
- Assessed predictive strength of numerical and binary predictors with HAS using point-biserial and phi correlations, respectively. Top features:(See Appendix for correlation)
 - o Positively correlated: host is superhost, price, longitude, host experience years, latitude
 - Negatively correlated: calculated host listings count, instant bookable, availability 60
- Visualized categorical predictor relationships with HAS using stacked bar plots. (See appendix)

2.4 Train-Test Split

• Random 75%/25% split for training and testing.

2.5 Model Comparison and Justification(See Appendix for Model Comparison and ROC curves and AUC scores)

2.6 Model Selection and Justification(See Appendix for model summary output.)

The logistic regression model was selected as the final model for the following reasons:

Criterion	Justification
Balanced Predictive Power	Achieved the highest AUC among all models with balanced accuracy, recall & F1-score.
High Interpretability	Provides transparent coefficients, ideal for stakeholder interpretation.
Strategic Feature Inclusion	Includes key predictors like host_is_superhost, log_price, and meaningful interactions.
Justifiable Feature Selection	Selected using stepwise selection of lowest AIC(6421.5) and EDA insights, ensuring model parsimony and relevance.
Best Recall Performance	Recall of 60.1%, the highest among all models, ensures accurate detection of high-quality listings.
Most Competitive Overall	Although Ridge had slightly higher accuracy, its recall was significantly lower.

3.1 Model Evaluation

• Model Fit: The model's Null Deviance (7145.5) and Residual Deviance (6371.5) show a substantial reduction, indicating a good fit. The AIC (6421.5) suggests the model is relatively efficient. Most predictors are statistically significant, reinforcing the model's strength.

Model Coefficients: Most of the model's predictors are statistically significant and their coefficients are directionally sensible, meaning they align with expectations based on domain knowledge.

3.1.1 Diagnostics & Validation

- Confusion Matrix: Shows balanced classification across both HAS classes, with no major imbalance.
- **ROC Curve & AUC**: AUC = 0.722 indicates solid discrimination power between HAS = 1 and HAS = 0.
- Model Coefficients: Most predictors are statistically significant and directionally sensible (details in Q4).

3.1.2 Residual & Deviance Diagnostics

- Deviance residuals show slight skew above zero and mild heteroscedasticity, especially at low predicted probabilities.
- A few residuals exceed ± 2 , suggesting moderate outliers.
- No strong curvature or funnel shape in plots, supporting adequate model fit.

3.1.3 Influence Diagnostics:

- quate model fit.

 nce Diagnostics:

 Cook's Distance values are mostly below 0.025, with no major leverage issues.
- Minor spikes (around index 2000 and beyond) are non-distorting.

Deviance Residuals vs Fitted Probabilities Cook's Distance for Logistic Regression

3.1.4 Potential Limitations

Issue	Explanation			
Linearity Assumption	Logistic regression assumes log-odds are linearly related to predictors. This may oversimplify effects (e.g., price or geography).			
Interaction Overfitting	Sparse categories in some room-type × property-group interactions could lead to overfitting.			
Recall at 60.1%	Although balanced, the model still misses some HAS=1 listings			
Limited Flexibility	Logistic regression may underperform compared to nonlinear models like Random Forest or XGBoost in capturing complex patterns.			
Business Impact of False Negatives	With a recall of 60.1%, ~40% of truly high-rated listings are missed. For Airbnb hosts and investors, these false negatives may lead to lost visibility, underpricing, and fewer bookings — making recall improvement a key business priority.			

4.1 Insights for a Sydney Investor with HAS=0 Listings

Recommendation	Model Evidence	Strategic Action
Become a Superhost	host_is_superhost, +0.5361, p < 2e-16	Focus on improving host responsiveness, enhancing reviews, and avoiding cancellations to elevate the profile.
Align Price with Quality	log_price, +0.7267, p < 2e-16	Invest in premium property features and avoid underpricing when offering high-quality value.
Avoid Overextending	calculated_host_listings_cou nt, -0.0181, p < 2e-16	Limit the number of listings to maintain high-quality, personalized service for guests.
Limit Excessive Availability	high_availability, -0.3465, p < 0.001	Consider offering exclusive or time-limited booking windows to create a sense of exclusivity.

Be Cautious with Instant Book	instant_bookable, -0.4813, p < 0.001	Allow for guest communication before booking whenever possible to ensure both parties' expectations are clear.
Favor South Sydney	regionSouth, +0.3523, p = 0.0267	Target regions in South Sydney, where listings show a positive regional effect.
Consider Eastern Suburbs	longitude, +0.8272, p = 0.049	Focus on properties near beaches or the CBD (e.g., Bondi), as these areas tend to generate higher ratings.

Room Type × Property Group Insights

-Top Performing Combinations

Private rooms generally perform well when paired with home-like or distinctive property types:

- Private room × Guest Accommodation (+1.192, p < 0.001), House/Townhouse/Villa (+1.008, p < 0.001), and Unique Stays (+1.279, p < 2e-16)score highly—guests value privacy, homeliness, and unique experiences.
- Private room × Apartment/Condo (+1.027, p = 0.0029) also performs strongly, likely due to affordability and convenience.

Entire home options also see success when the property offers charm or hospitality focus:

• Entire home \times Guest Accommodation (+0.8555, p < 0.001) and Cottage/Cabin/Bungalow (+0.7475, p = 0.002) attract guests seeking either professional hosting or rustic, private retreats.

-Underperforming Combination

• Private room \times Hotel/Hostel (-1.887, p = 0.0015) performs poorly—likely because guests booking private rooms expect more personalization than standard hotel settings provide.

5.1 Data Preprocessing & Feature Engineering, used the cleaned dataset from Q2. Key steps included:

- Log Transformation on response: Applied to price to reduce skewness; used log price in all models.
- Review Score Proxy: Kept avg score for review-related insights.
- Engineered Features
 - Activity Duration: days between reviews = last first review.
 - **PCA**: Applied to accommodates, beds, bedrooms, and bathrooms to reduce dimensionality and multicollinearity; retained 1st PC (PC capacity). (Based on correlation plot)

5.2 Feature Selection (See Appendix for Random Forest's %IncMSE plot)

- Used Random Forest's %IncMSE metric to assess variable importance and identify predictive strength.
- Performed cutoff sensitivity analysis using top 10, 15, and 20 features to evaluate trade-offs.
- Selected top 20 predictors to reduce dimensionality and multicollinearity → df reduced used in all models

5.3 Model Development(See Appendix for model summary)

Split: 60% train, 20% validation, 20% test.

5.3.1 Random Forest

Captured non-linear effects and variable interactions. Hyperparameter grid search included:

• mtry: 10, 15, 20 and ntree: 100, 300, 500

Trained models on training data; best combination selected using validation RMSE and MSE.

5.3.2 Lasso Regression

- Used alpha = 1. Design matrix encoded categorical vars.
- 10-fold CV on train set to choose lambda.min (0.000197037).
- Final model trained on full train set. Provided sparse feature selection.

5.3.3 Generalized Linear Model

- Gaussian with identity link on log price.
- Transparent baseline. Residual Deviance = 595.22, AIC = 3720.2.

5.3.4 XGBoost

- Strong tabular data performance. Used:
 - o eta = 0.1, max depth = 6, objective = reg:squarederror

- Early stopping CV to select best rounds. Final model trained accordingly.
- Feature Importance: Key contributors include PC capacity, longitude, room/property interactions, latitude, etc

5.3.5 Gradient Boosted Machines

- The log-transformed target was back-transformed prior to modeling.
- A model was trained using 1,000 trees, a learning rate (shrinkage) = 0.01, and depth = 4.
- 5-fold cross-validation was employed internally to determine the optimal number of boosting iterations.

5.4 Model Evaluation Reported RMSE on original price scale (exp(log_price)) (See appendix)

5.5 Final Model Justification, Final Choice: XGBoost

- Predictive performance: XGBoost had the lowest test MSE, our primary criterion.
- Flexibility: It captures non-linear relationships and high-order interactions automatically.
- Feature importance: Though interpretation is not required, it provides insight into what vars drive predictions.
- Robustness: Through regularization and early stopping, overfitting was mitigated.

6.1 Strengths of the Final Model

- High Predictive Accuracy: XGBoost achieved the lowest RMSE on both validation and test sets, excelling in capturing non-linear data relationships.
- No Overfitting: Consistent validation (\$107.8) and test (\$107.71) RMSEs indicate low overfitting risk.
- Robust Feature Engineering: Applied log transformation, PCA on capacity variables, and domain-specific features.

6.2 Model Diagnostics & Validation:

- Residual Analysis: Standardized residuals scatter around zero, indicating no major model misspecification
- 5-Fold Cross-Validation with Early Stopping: Prevented overfitting.
- Mild Heteroscedasticity: Observed for high-priced listings (> \$500), expected in pricing contexts.

6.3 Model Limitations

- Black-Box Nature: XGBoost lacks transparency, limiting its interpretability for stakeholders needing explainable models
- Heteroscedasticity: Increased residual variance at higher price points reduces precision for luxury listings.
- Lack of Temporal Features: Seasonal and event-based pricing patterns were not captured, likely affecting real-world Airbnb pricing.
- No Segmentation: The model assumes a global pricing strategy, missing potential segmentation (e.g., business vs. leisure, luxury vs. budget).

7.1 Improve the Best Model

- Expand Cross-Validation and Hyperparameter Tuning: Use 10-fold cross-validation and a wider grid to improve stability and unlock better parameter combinations. Bayesian optimization could enhance tuning efficiency.
- **Implement Ensemble Stacking**: Combine XGBoost with Random Forest or GBM to leverage each model's strengths, reducing bias and variance for better performance.
- Enhance Feature Selection and Dimensionality Reduction: Extend PCA and L1 regularization to reduce overfitting by eliminating weak or collinear predictors.
- **Engineer Nonlinear Transformations**: Add splines or polynomial features for continuous predictors (e.g., latitude, host experience years) to improve signal representation and interpretability.
- **Deepen Residual Analysis and Subgroup Diagnostics**: Explore residuals by subgroups (e.g., region, room type) and error distribution plots to identify misfit segments and guide further feature engineering.
- **Incorporate Clustering for Latent Segments**: Use clustering (e.g., K-means, hierarchical) to define submarkets, allowing the model to adapt to distinct market segments for improved predictions.
- **8.1** Final XGBoost model and preprocessing pipeline were applied to the Q8 test set to generate predictions.

Appendix

Model Summaries

2.5

Logistic Regression Stepwise Selection

```
Start: AIC=6422.71
HAS ~ host_is_superhost + log_price + calculated_host_listings_count + high_availability + longitude + latitude + instant_bookable +
    region + price_availability_interaction + room_type_property_group_interaction
                                          Df Deviance
                                               6371.5 6421.5
6372.7 6422.7
- latitude
- price_availability_interaction
                                               6370.7 6422.7
<none>
- longitude
                                               6374.8 6424.8
- region
                                               6386.1 6432.1
- high_availability
                                               6388.6 6438.6
                                           1
- instant_bookable
                                               6415.4 6465.4
                                           1
                                               6439.7 6489.7
- log_price
- host_is_superhost
                                               6441.3 6491.3
                                           1
- room_type_property_group_interaction 14
                                               6546.5 6570.5
calculated_host_listings_count
                                               6550.9 6600.9
Step: AIC=6421.54
HAS ~ host_is_superhost + log_price + calculated_host_listings_count +
    high_availability + longitude + instant_bookable + region +
    price_availability_interaction + room_type_property_group_interaction
                                          Df Deviance
                                               6373.4 6421.4
- price_availability_interaction
                                               6371.5 6421.5
6370.7 6422.7
<none>
+ latitude
- longitude
                                               6375.5 6423.5
                                               6388.1 6432.1
- region
- high_availability
                                           1
                                               6389.2 6437.2
- instant_bookable
                                               6416.2 6464.2
                                           1
- log_price
                                               6440.6 6488.6
                                           1
- host_is_superhost
                                               6442.9 6490.9
- room_type_property_group_interaction 14
                                               6549.8 6571.8
calculated_host_listings_count
                                               6552.4 6600.4
Step: AIC=6421.39
HAS ~ host_is_superhost + log_price + calculated_host_listings_count +
    high_availability + longitude + instant_bookable + region +
    room_type_property_group_interaction
                                          Df Deviance
                                               6373.4 6421.4
<none>
+ price_availability_interaction
                                               6371.5 6421.5
+ latitude
                                               6372.7 6422.7
- longitude
                                               6377.3 6423.3
                                               6389.2 6431.2
- region
- high_availability
                                               6417.3 6463.3
- instant_bookable
                                           1
                                               6417.8 6463.8
                                               6445.1 6491.1
host_is_superhost
 log_price
                                               6463.8 6509.8
```

```
log_price
 - room type property group interaction 14
                                                6550.0 6570.0
   calculated_host_listings_count
                                                6553.3 6599.3
 Call:
 glm(formula = HAS ~ host_is_superhost + log_price + calculated_host_listings_count +
high_availability + longitude + instant_bookable + region +
      room_type_property_group_interaction, family = binomial,
 Deviance Residuals:
 Min 1Q Median 3Q
-1.7773 -0.8863 -0.6168 1.1264
                                       3.0267
 Coefficients:
                                                                                   Estimate Std. Error z value Pr(>|z|)
                                                                                             6.336e+01
                                                                                                          8.483 < 2e-16 ***
 host_is_superhost
                                                                                  5.374e-01
                                                                                             6.336e-02
 log_price
calculated_host_listings_count
                                                                                  6.527e-01
                                                                                             6.935e-02
                                                                                                          9.412 < 2e-16 ***
10.045 < 2e-16 ***
                                                                                              1.791e-03
                                                                                                         -6.594 4.28e-11 ***
 high_availability1
                                                                                  -4.181e-01
                                                                                             6.341e-02
 longitude
instant_bookable
                                                                                  8.304e-01
-4.796e-01
                                                                                             4.202e-01
7.318e-02
                                                                                                          1.976 0.048121 *
-6.554 5.61e-11 *
 regionEast
                                                                                 -1.643e-02
                                                                                             1.431e-01
                                                                                                          -0.115 0.908563
                                                                                             1.483e-01
1.580e-01
                                                                                                          1.405 0.159976
2.201 0.027753
 reaionSouth
                                                                                  3.477e-01
                                                                                                          0.230 0.818441
2.930 0.003392
 room_type_property_group_interactionHotel room.Apartment/Condo
                                                                                  2 0190-01
                                                                                             8.794e-01
 room_type_property_group_interactionPrivate room.Apartment/Condo
                                                                                                          3.061 0.002203 **
 room_type_property_group_interactionEntire home/apt.Cottage/Cabin/Bungalow
                                                                                  7.408e-01
                                                                                             2.420e-01
 room_type_property_group_interactionPrivate room.Cottage/Cabin/Bungalow room_type_property_group_interactionEntire home/apt.Guest Accommodation
                                                                                  6.955e-01
8.468e-01
                                                                                             7.330e-01
1.260e-01
                                                                                                          0.949 0.342706
6.722 1.79e-11
                                                                                                          3.640 0.000273 ***
 room_type_property_group_interactionPrivate room.Guest Accommodation room_type_property_group_interactionHotel room.Hotel/Hostel room_type_property_group_interactionPrivate room.Hotel/Hostel
                                                                                  1.171e+00
                                                                                             3.218e-01
                                                                                    302e+01
                                                                                              1.549e+02
                                                                                                          -0.084 0.933015
                                                                                             5.940e-01
                                                                                                          -3.197 0.001388
                                                                                  -1.899e+00
 room_type_property_group_interactionShared room.Hotel/Hostel
room_type_property_group_interactionEntire home/apt.House/Townhouse/Villa
                                                                                  1 2080+01
                                                                                             3 845e+02
                                                                                                          -0 031 0 974946
                                                                                                          2.174 0.029670
                                                                                    864e-01
                                                                                                          7.771 7.81e-15 ***
 room_type_property_group_interactionPrivate room.House/Townhouse/Villa
                                                                                  9.779e-01
                                                                                             1.258e-01
 room_type_property_group_interactionEntire home/apt.Unique Stays (Other)
room_type_property_group_interactionPrivate room.Unique Stays (Other)
                                                                                  4.374e-01
                                                                                             4.292e-01
                                                                                                          1.019 0.308121
                                                                                  1.256e+00
 room_type_property_group_interactionShared room.Unique Stays (Other)
                                                                                  2.361e-01
                                                                                             6.439e-01
                                                                                                          0.367 0.713816
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
 (Dispersion parameter for binomial family taken to be 1)
 Null deviance: 7145.5 on 5757 degrees of freedom
Residual deviance: 6373.4 on 5734 degrees of freedom
 AIC: 6421.4
 Number of Fisher Scoring iterations: 13
Final Logistic regression summary
 Call:
 glm(formula = HAS ~ host_is_superhost + log_price + calculated_host_listings_count +
      high_availability + longitude + instant_bookable + region +
      price_availability_interaction + room_type_property_group_interaction,
       family = binomial, data = train)
 Deviance Residuals:
 Min 1Q Median
-1.7912 -0.8864 -0.6180
                                        30
                                  1.1273
                                              3.0352
 Coefficients:
                                                                                               Estimate Std. Error z value Pr(>|z|)
                                                                                                          6.333e+01 -2.050 0.040388 *
 (Intercept)
                                                                                             -1.298e+02
                                                                                                                         8.458 < 2e-16 ***
 host_is_superhost
                                                                                             5.361e-01
                                                                                                          6.338e-02
                                                                                                                         8.225 < 2e-16 ***
 log_price
                                                                                              7.267e-01
                                                                                                          8.835e-02
 calculated_host_listings_count
                                                                                             -1.805e-02
                                                                                                          1.793e-03
                                                                                                                       -10.066 < 2e-16 ***
  high_availability1
                                                                                             -3.465e-01
                                                                                                          8.245e-02
                                                                                                                        -4.203 2.63e-05 ***
                                                                                                                         1.969 0.048916 *
                                                                                             8.272e-01
  longitude
                                                                                                          4.200e-01
 instant_bookable
                                                                                             -4.813e-01
                                                                                                           7.320e-02
                                                                                                                         -6.575 4.87e-11
                                                                                             -2.232e-02
                                                                                                          1.431e-01
                                                                                                                        -0.156 0.876046
  regionEast
 regionNorth
                                                                                             2.100e-01
                                                                                                          1.483e-01
                                                                                                                         1.416 0.156845
 reaionSouth
                                                                                             3.523e-01
                                                                                                           1.579e-01
                                                                                                                         2.231 0.025711
                                                                                                             .325e-06
                                                                                                                         1.356 0.175117
 price_availability_interaction
                                                                                             7.221e-06
  room_type_property_group_interactionHotel room.Apartment/Condo
                                                                                             2.274e-01
                                                                                                          8.751e-01
                                                                                                                         0.260 0.794928
                                                                                                          3.444e-01
 room_type_property_group_interactionPrivate room.Apartment/Condo
                                                                                                                         2.982 0.002866
                                                                                             1.027e+00
                                                                                                             .420e-01
 room_type_property_group_interactionEntire home/apt.Cottage/Cabin/Bungalow
                                                                                              7.475e-01
                                                                                                                          3.089 0.002009
 room_type_property_group_interactionPrivate room.Cottage/Cabin/Bungalow
                                                                                              7.438e-01
                                                                                                             .319e-01
                                                                                                                         1.016 0.309475
                                                                                             8.555e-01
 room_type_property_group_interactionEntire home/apt.Guest Accommodation
                                                                                                           1.261e-01
                                                                                                                         6.782 1.19e-11
 room_type_property_group_interactionPrivate room.Guest Accommodation
                                                                                             1.192e+00
                                                                                                          3.221e-01
                                                                                                                         3.700 0.000215
  room_type_property_group_interactionHotel room.Hotel/Hostel
                                                                                             -1.301e+01
                                                                                                             .550e+02
                                                                                                                         -0.084 0.933090
 {\tt room\_type\_property\_group\_interactionPrivate~room.Hotel/Hostel}
                                                                                             -1.887e+00
                                                                                                          5.939e-01
                                                                                                                        -3.177 0.001486
 room_type_property_group_interactionShared room.Hotel/Hostel
                                                                                             -1.204e+01
                                                                                                          3.844e+02
                                                                                                                         -0.031 0.975005
 room_type_property_group_interactionEntire home/apt.House/Townhouse/Villa
                                                                                             1.900e-01
                                                                                                             .578e-02
                                                                                                                         2.215 0.026727
 {\tt room\_type\_property\_group\_interactionPrivate\ room. House/Townhouse/Villa}
                                                                                             1.008e+00
                                                                                                          1 278e-01
                                                                                                                         7 887 3 10e-15 ***
                                                                                                                         1.052 0.292879
 room_type_property_group_interactionEntire home/apt.Unique Stays (Other)
                                                                                             4.510e-01
                                                                                                          4.288e-01
 room_type_property_group_interactionPrivate room.Unique Stays (Other)
                                                                                              1.279e+00
                                                                                                          1.452e-01
 room_type_property_group_interactionShared room.Unique Stays (Other)
                                                                                             2.886e-01
                                                                                                          6.453e-01
                                                                                                                         0.447 0.654683
 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
 (Dispersion parameter for binomial family taken to be 1)
       Null deviance: 7145.5 on 5757 degrees of freedom
 Residual deviance: 6371.5 on 5733 degrees of freedom
 AIC: 6421.5
 Number of Fisher Scoring iterations: 13
```

2.5 Model Comparison

Model	Accuracy	Precision	Recall	F1-Score	AUC	Interpretability
Logistic Regression	0.713	0.601	0.601	0.601	0.722	High
Decision Tree	0.694	0.519	0.519	0.519	0.642	Very High
Random Forest	0.697	0.518	0.368	0.430	0.697	Lower (black box)
Lasso Regression	0.712	0.583	0.258	0.358	0.699	High (sparse)
Ridge Regression	0.717	0.609	0.249	0.353	0.700	High (shrinkage)

ROC curves and AUC scores for all models

ROC Curve Comparison

2.6 Model Summary (Logistic Regression)

Model Fit

Metric	Value
Null Deviance	7145.5
Residual Deviance	6371.5
AIC	6421.5

5.4 Model comparison

Model	Val MSE	Val RMSE (\$)	Test MSE	Test RMSE	Comments
XGBoost	11,621.14	107.80	11,602.35	107.71	Best predictive performance
GBM	12,125.03	110.11	12,487.32	111.75	Strong performance, slightly behind XGB
Random Forest	12,180.51	110.37	12,829.36	113.27	Competitive model
GLM	14,763.91	121.51	15,917.98	126.17	Simple interpretable baseline
Lasso Reg.	14,780.49	121.58	15,921.67	126.18	Regularized, but weaker prediction

```
Code
```{r}
Load necessary libraries
library(randomForest)
library(MASS)
library(readxl)
library(glmnet)
library(caret)
library(tidyverse)
library(ggplot2)
library(corrplot)
library(dplyr)
library(psych)
library(ROCR)
library(rpart)
library(splines)
library(xgboost)
library(Matrix)
library(gbm)
library(writexl)
Q1
```{r}
df <- read excel("/Users/audreychang/Desktop/ACTL ML/Textbook R/HW/Assignment2/AirbnbSydneyV2.xlsx")
### Create avg score from the 7 review score variables
```{r}
df\avg score <- rowMeans(df\), c("review scores rating", "review scores accuracy",
 "review scores cleanliness", "review scores checkin",
```

"review\_scores\_communication", "review\_scores\_location",

```
"review scores value")], na.rm = TRUE)
```{r}
# Create binary HAS variable: 1 if avg score > 4.9, else 0
df$HAS <- as.numeric(df$avg score > 4.9)
...
```{r}
prop HAS <- mean(df$HAS)</pre>
cat("Proportion of listings with HAS=1:", prop HAS, "\n")
Q2
Data Preprocessing and Feature Engineering
Clean and transform data
```{r}
# Convert character indicators to numeric
df <- df %>%
 mutate(
  host is superhost = ifelse(host is superhost == "t", 1, 0),
  host identity verified = ifelse(host identity verified == "t", 1, 0),
  host has profile pic = ifelse(host has profile pic == "t", 1, 0),
  instant bookable = ifelse(instant bookable == "t", 1, 0),
  host experience years = 2025 - lubridate::year(host since),
  host listings count = as.numeric(host listings count),
  host total listings count = as.numeric(host total listings count),
  host response rate = as.numeric(host response rate),
  host acceptance rate = as.numeric(host acceptance rate)
```{r}
Handle missing values
Replace "N/A" strings with actual NA values
na string cols <- sapply(df, function(x) {
 if (is.character(x) || is.factor(x)) {
 any(x == "N/A", na.rm = TRUE)
 } else {
 FALSE
 }
})
cols to fix <- names(na string cols[na string cols == TRUE])
```

```
df[cols to fix] \le lapply(df[cols to fix], function(x) na if(x, "N/A"))
Check NA values in each column
na count \leq- sapply(df, function(x) sum(is.na(x)))
na count[na count > 0] # Show columns with missing values
Calculate proportion of missing values
na proportion \leq- sapply(df, function(x) mean(is.na(x)))
Remove columns not needed
df <- df[, !(names(df) %in% c("bathrooms text", "host since"))]
Replace missing values in categorical variables
df$host response time[is.na(df$host response time)] <- "Unknown"
Impute host response rate with median
median response rate <- median(df$host response rate, na.rm = TRUE)
df$host response rate[is.na(df$host response rate)] <- median response rate
Impute host acceptance rate with median
median acceptance rate <- median(df$host acceptance rate, na.rm = TRUE)
df$host acceptance rate[is.na(df$host acceptance rate)] <- median acceptance rate
Impute host is superhost with 0 (Not Superhost) most common type
Since it's already numeric (0 = \text{not superhost}, 1 = \text{superhost})
df$host is superhost[is.na(df$host is superhost)] <- 0
Feature Engineering: Create new variables
```{r}
# Create region categories
east <- c("Randwick", "Waverley", "Woollahra", "Sydney", "Marrickville",
     "Canada Bay", "Botany Bay", "Leichhardt", "Ashfield", "Burwood")
west <- c("Penrith", "Blacktown", "Fairfield", "Liverpool", "Campbelltown",
     "Auburn", "Bankstown", "Holroyd", "Strathfield", "Parramatta", "Canterbury")
north <- c("Ku-Ring-Gai", "North Sydney", "Willoughby", "Lane Cove", "Hornsby",
      "Ryde", "Mosman", "Hunters Hill", "The Hills Shire", "Warringah", "Manly", "Pittwater")
south <- c("Sutherland Shire", "Rockdale", "Hurstville", "Bankstown", "Camden", "City Of Kogarah")
# Create region classification
df$region <- case when(
 df$neighbourhood %in% east ~ "East",
 df$neighbourhood %in% west ~ "West",
 df\neighbourhood \%in\% north \~ "North",
 df$neighbourhood %in% south ~ "South",
 TRUE ~ "Other"
)
```

```
# Categorize property types into broad groups
df$property group <- ifelse(df$property type %in% c(
  "Entire rental unit", "Entire condo", "Entire serviced apartment",
  "Entire loft", "Room in serviced apartment", "Room in aparthotel",
  "Private room in serviced apartment", "Private room in condo"),
   "Apartment/Condo",
     ifelse(df\$property type \%in\% c(
     "Entire home", "Entire vacation home", "Entire villa",
     "Entire townhouse", "Private room in home", "Private room in townhouse",
     "Private room in villa"),
     "House/Townhouse/Villa",
          ifelse(df$property type %in% c(
       "Entire guesthouse", "Entire guest suite",
       "Private room in guesthouse", "Private room in guest suite",
       "Private room in bed and breakfast").
        "Guest Accommodation",
               ifelse(df$property type %in% c(
          "Entire cottage", "Entire cabin", "Entire bungalow",
          "Private room in cabin", "Private room in cottage",
          "Private room in bungalow", "Private room in chalet", "Tiny home"),
          "Cottage/Cabin/Bungalow",
                   ifelse(df$property type %in% c(
            "Room in hotel", "Room in boutique hotel", "Shared room in boutique hotel",
            "Shared room in hostel", "Private room in hostel",
            "Shared room in hotel", "Shared room in condo"),
             "Hotel/Hostel",
                        "Unique Stays (Other)"
    )
  ))
# Create high availability indicator
df$high availability <- ifelse(df$availability 60 > median(df$availability 60), 1, 0)
# Drop original variables after categorization
df <- df[, !(names(df) %in% c("neighbourhood", "property type"))]
# Convert categorical variables to factors
df$room type <- as.factor(df$room type)
df$property group <- as.factor(df$property group)
df$region <- as.factor(df$region)
df$high availability <- as.factor(df$high availability)
```

```
٠,,
```

```
### Exploratory Data Analysis
```{r}
Create a clean dataset excluding review-based variables
df clean <- df
columns to exclude <- c("review scores rating",
 "review scores accuracy",
 "review scores cleanliness",
 "review scores checkin",
 "review scores communication",
 "review scores location",
 "review scores value",
 "avg score")
df clean <- df clean[,!(names(df clean) %in% columns to exclude)]
Ensure HAS is numeric for correlation analysis
df clean$HAS <- as.numeric(df clean$HAS)</pre>
Calculate correlation with HAS for numeric variables
numeric vars <- df clean[, sapply(df clean, is.numeric)]
numeric vars <- numeric vars[, names(numeric vars) != "HAS"]</pre>
cor results <- sapply(numeric vars, function(x) {</pre>
 if (is.numeric(x)) {
 cor(df clean$HAS, x, use = "complete.obs")
 } else {
 NA
 }
})
Remove NA results
cor results <- cor results[!is.na(cor results)]</pre>
Create correlation summary dataframe
cor df <- data.frame(
 Variable = names(cor results),
 CorrelationWithHAS = cor results
) %>% arrange(desc(abs(CorrelationWithHAS)))
print(cor df)
Visualize correlations
ggplot(cor df, aes(x = reorder(Variable, CorrelationWithHAS)), y = CorrelationWithHAS)) +
 geom col(fill = "steelblue") +
 geom text(aes(label = round(CorrelationWithHAS, 3)),
 hjust = ifelse(cor df\CorrelationWithHAS >= 0, -0.1, 1.1),
```

```
size = 3.5) +
 coord flip() +
 labs(title = "Point-Biserial Correlation with HAS",
 x = "Variable",
 y = "Correlation") +
 theme(axis.text.x = element text(face = "bold"),
 axis.text.y = element text(face = "bold"),
 plot.title = element text(hjust = 0.5, face = "bold"))
```{r}
# Convert HAS to factor for visualizations and modeling
df$HAS <- factor(df$HAS)
# Visualize categorical variables
categorical vars <- c("region", "property group", "host response time", "room type", "high availability")
# Loop through each categorical variable and create a visualization
for (var in categorical vars) {
 # Create a summary table
 summary table <- df %>%
  group by(HAS, !!sym(var)) %>%
  summarise(count = n(), .groups = "drop")
 # Plot the data
 p \le gplot(summary table, aes string(x = var, y = "count", fill = "HAS")) +
  geom bar(stat = "identity", position = "stack") +
  labs(title = paste("Distribution of", var, "by HAS"),
     x = var, y = "Count") +
  theme minimal() +
  scale fill manual(values = c("0" = "blue", "1" = "red")) # Match fill to factor levels
 # Rotate x-axis labels for crowded variables
 if (var %in% c("property group", "region", "host response time", "high availability")) {
  p < -p + theme(axis.text.x = element text(angle = 45, hjust = 1))
 print(p)
### Feature Transformation and Interaction based on EDA
```{r}
create transformations and interactions based on insights from EDA
Set reference levels for categorical variables
```

```
First check what levels exist
region levels <- levels(df$region)
print(region levels)
Relevel with appropriate error handling
if("West" %in% region levels) {
 df$region <- relevel(df$region, ref = "West")
} else {
 cat("Warning: 'West' not found in region levels. Available levels:", paste(region levels, collapse=", "), "\n")
 # Use first level if "West" isn't available
 df$region <- relevel(df$region, ref = region levels[1])
df\$property group <- relevel(df\$property group, ref = "Apartment/Condo")
df$room type <- relevel(df$room type, ref = "Entire home/apt")
log transformation to handle skewness
df$log price <- log(df$price + 1)
Create interactions based on EDA insights
df$host exp superhost interaction <- df$host experience years * df$host is superhost
df$price availability interaction <- df$price * df$availability 60
df$room type property group interaction <- interaction(df$room type, df$property group)
O2,3,4
Model Building
```{r}
# First make sure HAS is a factor for classification
df$HAS <- factor(df$HAS)
# Split data into training and test sets
set.seed(123)
split <- sample(1:nrow(df), 0.75 * nrow(df))
train <- df[split, ]
test <- df[-split, ]
# Handle missing values in training data
# For numeric columns, replace NA with median
train <- train %>%
 mutate(across(where(is.numeric), ~ifelse(is.na(.), median(., na.rm = TRUE), .)))
# For categorical variables, replace NA with most common category
for(col in names(train)[sapply(train, is.factor)]) {
```

```
if(any(is.na(train[[col]]))) {
  most common <- names(sort(table(train[[col]]), decreasing = TRUE))[1]
  train[[col]][is.na(train[[col]])] <- most common
}
# Apply same transformations to test set
test <- test %>%
 mutate(across(where(is.numeric), ~ifelse(is.na(.), median(., na.rm = TRUE), .)))
for(col in names(test)[sapply(test, is.factor)]) {
 if(any(is.na(test[[col]]))) {
  most common <- names(sort(table(train[[col]]), decreasing = TRUE))[1] # Use distribution from training data
  test[[col]][is.na(test[[col]])] <- most common
}
# Extract response variables
y train <- train$HAS
y test <- test$HAS
Train-Test Split
```{r}
Split
set.seed(123)
split <- sample(1:nrow(df), 0.75 * nrow(df))
train <- df[split,]
test <- df[-split,]
If filtering, do it here
train <- na.omit(train)</pre>
test <- na.omit(test)
Then extract y
y train <- train$HAS
y test <- test$HAS
Logistic Regression (Baseline)
1. Stepwise Selection
```{r}
# Start withfull model
logit full <- glm(HAS ~ host is superhost + log price + calculated host listings count +
```

```
high availability + longitude + latitude + instant bookable +
            region + price availability interaction + room type property group interaction,
           family = binomial, data = train)
# Run stepwise selection
model stepwise <- stepAIC(logit full, direction = "both")
summary(model stepwise)
```{r}
Final Logistic regression model
logit revised <- glm(HAS ~ host is superhost + log price + calculated host listings count +
 high availability + longitude + instant bookable +
 region + price availability interaction +
 room type property group interaction,
 family = binomial, data = train)
View the summary of the updated model
summary(logit revised)
...
```{r}
# Get predicted probabilities for the logistic model
pred probs <- predict(logit revised, type = "response")</pre>
# Convert probabilities to binary labels using a threshold of 0.5
pred labels <- ifelse(pred probs > 0.5, 1, 0)
# Actual labels (assuming your dependent variable is 'HAS')
true labels <- train$HAS
# Confusion Matrix
cm <- table(Predicted = pred labels, Actual = true labels)
print(cm)
# Accuracy
accuracy <- sum(diag(cm)) / sum(cm)
cat("Accuracy:", accuracy, "\n")
# Precision
precision <- cm[2, 2] / sum(cm[2, ]) # TP / (TP + FP)
cat("Precision:", precision, "\n")
# Recall (Sensitivity)
recall <- cm[2, 2] / sum(cm[2, ]) # TP / (TP + FN)
cat("Recall:", recall, "\n")
```

```
#F1-score
f1 <- 2 * (precision * recall) / (precision + recall)
cat("F1-score:", f1, "\n")
# ROC Curve & AUC
pred logit <- prediction(pred probs, true labels)</pre>
perf <- performance(pred logit, measure = "tpr", x.measure = "fpr")
plot(perf, main = "ROC Curve", col = "blue", lwd = 2)
roc auc <- performance(pred logit, measure = "auc")@y.values[[1]]
abline(a = 0, b = 1, col = "gray", lty = 2)
cat("AUC:", roc auc, "\n")
Decision Tree
```{r}
Train the Decision Tree model
dt model <- rpart(HAS ~ host is superhost + log price + calculated host listings count +
 high availability + longitude + instant_bookable +
 region + price availability interaction +
 room type property group interaction,
 data = train, method = "class")
Make predictions on the test set
pred probs dt <- predict(dt model, test, type = "prob")[, 2] # Get probabilities for the positive class
pred labels dt <- ifelse(pred probs dt > 0.5, 1, 0) # Convert probabilities to binary labels
Actual labels for the test set
true labels dt <- test$HAS
Evaluate the model
Confusion Matrix
cm dt <- table(Predicted = pred labels dt, Actual = true labels dt)
print(cm dt)
Accuracy
accuracy dt <- sum(diag(cm dt)) / sum(cm dt)
cat("Accuracy:", accuracy dt, "\n")
Precision
precision dt <-cm dt[2, 2] / sum(cm dt[2,]) # TP / (TP + FP)
cat("Precision:", precision dt, "\n")
Recall (Sensitivity)
recall dt \leftarrow dt[2, 2] / sum(cm dt[2,]) # TP / (TP + FN)
cat("Recall:", recall dt, "\n")
```

```
#F1-score
f1 dt <- 2 * (precision dt * recall dt) / (precision dt + recall dt)
cat("F1-score:", fl dt, "\n")
ROC Curve & AUC
pred dt <- prediction(pred probs dt, true labels dt)
perf dt <- performance(pred dt, measure = "tpr", x.measure = "fpr")
plot(perf dt, main = "ROC Curve - Decision Tree", col = "red", lwd = 2)
roc auc dt <- performance(pred dt, measure = "auc")@y.values[[1]]
abline(a = 0, b = 1, col = "gray", lty = 2)
cat("AUC:", roc auc dt, "\n")
Random Forest Model
```{r}
# Train Random Forest
set.seed(123)
rf model <- randomForest(HAS ~ host is superhost + log price + calculated host listings count +
                high availability + longitude + instant bookable + region +
                price availability interaction + room type property group interaction,
               data = train, importance = TRUE, ntree = 500)
# Predict probabilities and classes on the test set
rf probs <- predict(rf model, newdata = test, type = "prob")[, 2] # probabilities for class 1
rf preds <- ifelse(rf probs > 0.5, 1, 0)
# Convert numeric predictions to factors for confusionMatrix function
rf preds factor <- factor(rf preds, levels = c(0, 1))
test HAS factor <- factor(as.numeric(as.character(test$HAS)), levels = c(0, 1))
# Confusion Matrix & Basic Metrics
conf rf <- confusionMatrix(rf preds factor, test HAS factor, positive = "1")
print(conf rf)
# Extract evaluation metrics
accuracy rf <- conf rf$overall["Accuracy"]</pre>
precision rf <- conf rf$byClass["Pos Pred Value"]</pre>
recall rf <- conf rf$byClass["Sensitivity"]
fl rf <- conf rf$byClass["F1"]
cat("\n--- Evaluation Metrics: Random Forest ---\n")
cat("Accuracy:", round(accuracy rf, 4), "\n")
cat("Precision:", round(precision rf, 4), "\n")
cat("Recall:", round(recall rf, 4), "\n")
cat("F1-score:", round(f1 rf, 4), "\n")
# ROC Curve & AUC
```

18

```
pred rf <- prediction(rf probs, as.numeric(as.character(test$HAS)))
perf rf <- performance(pred rf, "tpr", "fpr")
roc auc rf <- performance(pred rf, "auc")@y.values[[1]]
# Plot ROC
plot(perf rf, main = "ROC Curve - Random Forest", col = "darkgreen", lwd = 2)
abline(a = 0, b = 1, col = "gray", lty = 2)
             :", round(roc auc rf, 4), "\n")
cat("AUC
# Variable importance plot
varImpPlot(rf model, main = "Variable Importance - Random Forest")
Regularized Logistic Regression (Lasso/Ridge)
Prepare Data
```{r}
--- Prepare data ---
Build model matrix from predictors
x train <- model.matrix(HAS ~ host is superhost + log price + calculated host listings count +
 high availability + longitude + instant bookable +
 region + price availability interaction +
 room type property group interaction, data = train)[, -1] # drop intercept
x test <- model.matrix(HAS ~ host is superhost + log price + calculated host listings count +
 high availability + longitude + instant bookable +
 region + price availability interaction +
 room type property group interaction, data = test)[, -1] # drop intercept
Lasso Logistic Regression (L1)
```{r}
\# Lasso (alpha = 1)
lasso model <- cv.glmnet(x train, y train, alpha = 1, family = "binomial", type.measure = "class")
# Predict on test set
lasso probs <- predict(lasso model, newx = x test, s = "lambda.min", type = "response")
lasso preds <- ifelse(lasso probs > 0.5, 1, 0)
# Evaluation
conf lasso <- confusionMatrix(as.factor(lasso preds), as.factor(y test), positive = "1")
print(conf lasso)
# Metrics
accuracy lasso <- conf lasso$overall["Accuracy"]
```

```
precision lasso <- conf lasso$byClass["Precision"]</pre>
recall lasso <- conf lasso$byClass["Recall"]
fl lasso <- conf lasso$byClass["F1"]
cat("\n--- Lasso Logistic Regression ---\n")
cat("Accuracy:", round(accuracy lasso, 4), "\n")
cat("Precision:", round(precision lasso, 4), "\n")
cat("Recall:", round(recall lasso, 4), "\n")
cat("F1-score:", round(f1 lasso, 4), "\n")
```{r}
Check levels of the target variable
levels(y train)
levels(y test)
Ridge Logistic Regression (L2)
```{r}
# Ridge (alpha = 0)
ridge model <- cv.glmnet(x train, y train, alpha = 0, family = "binomial", type.measure = "class")
# Predict on test set
ridge probs <- predict(ridge model, newx = x test, s = "lambda.min", type = "response")
ridge preds <- ifelse(ridge probs > 0.5, 1, 0)
# Evaluation
conf_ridge <- confusionMatrix(as.factor(ridge_preds), as.factor(y_test), positive = "1")
print(conf ridge)
# Metrics
accuracy ridge <- conf ridge $\text{soverall}["Accuracy"]
precision ridge <- conf ridge$byClass["Precision"]</pre>
recall ridge <- conf ridge $by Class ["Recall"]
fl ridge <- conf ridge$byClass["F1"]
cat("\n--- Ridge Logistic Regression ---\n")
cat("Accuracy:", round(accuracy ridge, 4), "\n")
cat("Precision:", round(precision ridge, 4), "\n")
cat("Recall :", round(recall ridge, 4), "\n")
cat("F1-score:", round(f1 ridge, 4), "\n")
```

ROC Curve & AUC for both

```
```{r}
Lasso
pred lasso <- prediction(lasso probs, y test)</pre>
perf lasso <- performance(pred lasso, "tpr", "fpr")</pre>
auc lasso <- performance(pred lasso, "auc")@y.values[[1]]
Ridge
pred ridge <- prediction(ridge probs, y test)</pre>
perf ridge <- performance(pred ridge, "tpr", "fpr")</pre>
auc ridge <- performance(pred ridge, "auc")@y.values[[1]]
Plot ROC
plot(perf lasso, main = "ROC Curve - Regularized Logistic Regression", col = "purple", lwd = 2)
plot(perf ridge, add = TRUE, col = "orange", lwd = 2)
legend("bottomright",
 legend = c(
 paste("Lasso (AUC =", round(auc lasso, 3), ")"),
 paste("Ridge (AUC =", round(auc ridge, 3), ")")
),
 col = c("purple", "orange"), lwd = 2)
cat("Lasso AUC:", auc lasso, "\n")
cat("Ridge AUC:", auc ridge, "\n")
ROC comparison
```{r}
# --- Logistic Regression ROC ---
pred logit <- prediction(pred probs, true labels)</pre>
perf logit <- performance(pred logit, measure = "tpr", x.measure = "fpr")
roc auc logit <- performance(pred logit, measure = "auc")@y.values[[1]]
# --- Decision Tree ROC ---
pred dt <- prediction(pred probs dt, true labels dt)
perf dt <- performance(pred dt, measure = "tpr", x.measure = "fpr")
roc auc dt <- performance(pred dt, measure = "auc")@y.values[[1]]
# --- Random Forest ROC ---
pred rf <- prediction(rf probs, test$HAS)</pre>
perf rf <- performance(pred rf, measure = "tpr", x.measure = "fpr")
roc auc rf <- performance(pred rf, measure = "auc")@y.values[[1]]
# --- Lasso ROC ---
pred lasso <- prediction(lasso probs, y test)</pre>
perf lasso <- performance(pred lasso, "tpr", "fpr")</pre>
roc auc lasso <- performance(pred lasso, "auc")@y.values[[1]]
```

```
# --- Ridge ROC ---
pred ridge <- prediction(ridge probs, y test)</pre>
perf ridge <- performance(pred ridge, "tpr", "fpr")</pre>
roc auc ridge <- performance(pred ridge, "auc")@y.values[[1]]
# --- Random Classifier (baseline) ---
set.seed(42)
random probs <- runif(length(true labels)) # generate random probabilities
pred random <- prediction(random probs, true labels)</pre>
perf random <- performance(pred random, "tpr", "fpr")</pre>
roc auc random <- performance(pred random, "auc")@y.values[[1]]
# --- Plot ROC curves together ---
plot(perf logit, main = "ROC Curve Comparison", col = "blue", lwd = 2)
plot(perf dt, add = TRUE, col = "red", lwd = 2)
plot(perf rf, add = TRUE, col = "darkgreen", lwd = 2)
plot(perf lasso, add = TRUE, col = "purple", lwd = 2)
plot(perf ridge, add = TRUE, col = "orange", lwd = 2)
plot(perf_random, add = TRUE, col = "gray", lwd = 2, lty = 2)
# --- Add the legend ---
legend("bottomright",
    legend = c(
     paste("Logistic Regression (AUC =", round(roc auc logit, 3), ")"),
     paste("Decision Tree (AUC =", round(roc_auc_dt, 3), ")"),
     paste("Random Forest (AUC =", round(roc auc rf, 3), ")"),
     paste("Lasso (AUC =", round(roc auc lasso, 3), ")"),
     paste("Ridge (AUC =", round(roc auc ridge, 3), ")"),
     paste("Random Classifier (AUC =", round(roc_auc_random, 3), ")")
    col = c("blue", "red", "darkgreen", "purple", "orange", "gray"),
    lty = c(1, 1, 1, 1, 1, 2),
    lwd = 2)
# --- AUC output ---
cat("Logistic Regression AUC:", roc auc logit, "\n")
                            :", roc auc dt, "\n")
cat("Decision Tree AUC
cat("Random Forest AUC
                             :", roc auc rf, "\n")
cat("Lasso Logistic AUC
                            :", roc auc lasso, "\n")
cat("Ridge Logistic AUC
                            :", roc auc ridge, "\n")
cat("Random Classifier AUC :", roc auc random, "\n")
...
Q3
```{r}
```

```
--- Residual and Deviance Diagnostics for Final Logistic Regression Model ---
Pearson residuals
pearson resid <- residuals(logit revised, type = "pearson")</pre>
Deviance residuals
deviance resid <- residuals(logit revised, type = "deviance")
Fitted values (predicted probabilities)
fitted probs <- fitted(logit revised)
--- Plot: Deviance Residuals vs Fitted Probabilities ---
ggplot(data = data.frame(Fitted = fitted probs, Deviance = deviance resid), aes(x = Fitted, y = Deviance)) +
 geom point(alpha = 0.5, color = "steelblue") +
 geom hline(yintercept = 0, linetype = "dashed", color = "red") +
 labs(
 title = "Deviance Residuals vs Fitted Probabilities",
 x = "Fitted Probabilities",
 y = "Deviance Residuals"
) +
 theme minimal()
```{r}
# --- Influence Diagnostics ---
library(ggplot2)
# Cook's Distance
cooks d <- cooks.distance(logit revised)
# Leverage (hat) values
hat values <- hatvalues(logit revised)
# Combine diagnostics
influence df <- data.frame(
 obs = 1:length(cooks d),
 cook = cooks d,
 hat = hat values,
 deviance = residuals(logit revised, type = "deviance")
# --- Plot Cook's Distance ---
ggplot(influence df, aes(x = obs, y = cook)) +
 geom bar(stat = "identity", fill = "firebrick", alpha = 0.7) +
 geom hline(yintercept = 4 / nrow(influence df), linetype = "dashed", color = "black") +
 labs(
```

```
title = "Cook's Distance for Logistic Regression",
  x = "Observation Index",
  y = "Cook's Distance"
 ) +
 theme minimal()
## Q5
```{r}
Preprocessing and Feature Engineering

Drop review-related variables Keep avg score to be the proxy of all review-score-related variables
review vars <- c(
 "review scores rating",
 "review scores accuracy",
 "review scores cleanliness",
 "review scores checkin",
 "review scores communication",
 "review scores location",
 "review scores value"
Create df clean2 by removing review variables
df clean2 <- df[, !(names(df) %in% review vars)]
Remove other unusable columns
df clean2 <- df clean2[, !(names(df clean2) %in% c(
 "price", # Remove original price as I'll use log price
 "price availability interaction",
 "high availability"
))]
Feature Engineering: Calculate days between reviews
This might introduce data leakage for new listings - only use if available at prediction time
df clean2$days between reviews <- as.numeric(difftime(
 as.Date(df clean2$last review),
 as.Date(df clean2$first review),
 units = "days"
))
Remove original date columns after feature extraction
df clean2 <- df clean2[,!(names(df clean2) %in% c("first review", "last review"))]
Handle missing values
Replace "N/A" strings with actual NA
```

```
na string cols <- sapply(df clean2, function(x) {
 if (is.character(x) || is.factor(x)) {
 any(x == "N/A", na.rm = TRUE)
 } else {
 FALSE
})
cols to fix <- names(na string cols[na string cols == TRUE])
df clean2[cols to fix] <- lapply(df clean2[cols to fix], function(x) na if(x, "N/A"))
Check for remaining NA values
na count <- sapply(df clean2, function(x) sum(is.na(x)))
na count[na count > 0] # Show only columns with missing values
```{r}
# Select all numeric predictors for correlation analysis
numeric vars <- names(df clean2)[sapply(df clean2, is.numeric)]
df numeric <- df clean2[numeric vars]</pre>
# Calculate correlation with log price
cor with price <- sapply(numeric vars, function(x) {</pre>
 if(x != "log price") {
  cor(df clean2[[x]], df clean2$log price, use = "complete.obs")
 } else {
  NA
 }
})
# Create and sort correlation dataframe
cor df <- data.frame(
 Predictor = names(cor with price),
 Correlation = cor with price
) %>%
 filter(!is.na(Correlation)) %>% # Remove NA values
 arrange(desc(abs(Correlation))) # Sort by absolute correlation for both pos/neg correlations
# Print the sorted correlations
print(cor df)
# Plot correlation
ggplot(cor df, aes(x = reorder(Predictor, Correlation), y = Correlation)) +
 geom bar(stat = "identity", fill = "skyblue", color = "black") +
 coord flip() +
 theme minimal(base size = 15) +
 labs(
```

```
title = "Correlation of Numeric Predictors with Airbnb Log Price",
  x = "Predictor",
  y = "Correlation with Log Price"
 ) +
 theme(
  plot.title = element text(size = 18, face = "bold", hjust = 0.5),
  axis.title = element text(size = 14, face = "bold"),
  axis.text = element text(size = 12, face = "bold")
 geom text(
  aes(label = round(Correlation, 2)),
  hjust = ifelse(cor dfSCorrelation > 0, -0.2, 1.2),
  size = 4
  fontface = "bold"
 )
Prepossessing data
\*\*PCA on correlated subset\*\*:
```{r}
Select highly correlated "capacity" variables
capacity vars <- df clean2 %>% select(accommodates, beds, bedrooms, bathrooms)
Perform PCA
pca capacity <- prcomp(capacity vars, center = TRUE, scale. = TRUE)
Add first principal component back to data
df clean2$PC capacity <- pca capacity$x[, 1]
#Drop original correlated variables
df clean2 <- df clean2 %>% select(-accommodates, -beds, -bedrooms, -bathrooms)
```{r}
colnames(df clean2)
#Remove rows with missing values
df clean2 <- na.omit(df clean2)
```{r}
Fit initial Random Forest model to get variable importance
rf model <- randomForest(log price ~ ., data = df clean2, ntree = 500, importance = TRUE)
Extract variable importance
importance df <- as.data.frame(importance(rf model))
importance df$Variable <- rownames(importance df)
```

```
Sort by %IncMSE (most important at the top)
importance sorted <- importance df %>%
 arrange(desc(`%IncMSE`))
Print the top variables by importance
print(importance sorted)
Plot variable importance
varImpPlot(rf model, main = "Variable Importance (%IncMSE)")
...
```{r}
#Try several cutoffs:
mse results <- c()
for (n in c(10, 15, 20)) {
 top n vars <- importance sorted$Variable[1:n]
 df sub <- df clean2 %>% select(all of(top n vars), log price)
 # Fit model (Random Forest)
 rf temp <- randomForest(log price \sim ., data = df sub, ntree = 500)
 pred temp <- predict(rf temp)</pre>
 mse <- mean((df sub$log price - pred temp)^2)
 mse results <- c(mse results, mse)
}
print(mse results)
**Create the reduced dataset** ('df reduced') using the selected top 20 predictors.
```{r}
Extract top 20 predictor variable names from importance
top 20 vars <- importance sorted$Variable[1:20]
Filter top 20 variables to include only those that exist in df clean2
top 20 vars<- top 20 vars[top 20 vars %in% names(df clean2)]
Create reduced dataset with the top predictors and target variable (log price)
df reduced <- df clean2 %>% select(all of(top 20 vars), log price)
View column names in the reduced dataset
cat("Variables in df reduced:\n")
print(colnames(df reduced))
```

```
60/20/20 train-validation-test split
```{r}
# First extract the test dataset:
set.seed(123)
n <- nrow(df reduced)
test index <- sample(1:n, size = 0.2 * n)
test reduced <- df reduced[test index, ]
train val <- df reduced[-test index, ]
# Then split the rest into validation and training sets:
val index <- sample(1:nrow(train val), size = 0.25 * nrow(train val))# 25% of 80% = 20%
valid reduced <- train val[val index, ]</pre>
train reduced <- train val[-val index, ]
### 2. Random Forest (on log price)
Tune Hyperparameters (mtry and ntree) Using the Validation Set
```{r}
RMSE evaluation function
evaluate model <- function(pred, actual) {
 mse <- mean((actual - pred)^2)
 rmse <- sqrt(mse)
 return(list(MSE = mse, RMSE = rmse))
}
Fit the Final Random Forest on the Full Training Set with Best Parameters
```{r}
# Manual tuning of mtry and ntree
mtry values <- c(10, 15, 20)
ntree values <- c(100, 300, 500)
tune results <- expand.grid(mtry = mtry values, ntree = ntree values)
tune results$MSE <- NA
tune results$RMSE <- NA
for (i in 1:nrow(tune results)) {
 rf temp <- randomForest(log price ~ ., data = train reduced,
                mtry = tune results\mtry[i],
                ntree = tune results$ntree[i])
 pred val <- predict(rf temp, newdata = valid reduced)</pre>
 eval <- evaluate model(exp(pred val), exp(valid reduced$log price))
 tune results$MSE[i] <- eval$MSE
```

Split this new reduced dataset

```
tune results$RMSE[i] <- eval$RMSE
tune results <- tune results [order(tune results $RMSE), ]
print(tune results)
best combo <- tune results[1, ]
```{r}
Final RF model using best tuning parameters
rf final <- randomForest(log price ~ ., data = train reduced,
 mtry = best combo$mtry,
 ntree = best combo$ntree)
Validation set predictions and evaluation
pred val final <- predict(rf final, newdata = valid reduced)
eval val final <- evaluate model(exp(pred val final), exp(valid reduced$log price))
val mse <- mean((exp(pred val final) - exp(valid reduced$log price))^2)
cat("Validation RMSE: $", round(eval val final$RMSE, 2), "\n")
cat("Validation MSE:", round(val mse, 2), "\n\n")
Test set predictions and evaluation
pred test final <- predict(rf final, newdata = test reduced)</pre>
eval test final <- evaluate model(exp(pred test final), exp(test reduced$log price))
test mse <- mean((exp(pred test final) - exp(test reduced$log price))^2)
cat("Test RMSE: $", round(eval test final$RMSE, 2), "\n")
cat("Test MSE:", round(test mse, 2), "\n")
Lasso Regression (on log price)
Lasso Regression ('alpha = 1')
```{r}
# Build model matrix once from full reduced dataset
x full <- model.matrix(log price \sim ., data = df reduced)[, -1]
y full <- df reduced$log price
# Perform consistent 60/20/20 split on full data
set.seed(123)
n <- nrow(df reduced)
test index <- sample(1:n, size = 0.2 * n)
train val index <- setdiff(1:n, test index)
val index <- sample(train val index, size = 0.25 * length(train val index))
```

```
train index <- setdiff(train val index, val index)
# Subset model matrix and target vectors
x train <- x full[train index,]
x valid <- x full[val index,]
x test <- x full[test index,]
y train <- y full[train index]
y valid <- y full[val index]
y test <- y full[test index]
```{r}
Cross-validation for best lambda
set.seed(123)
lasso cv <- cv.glmnet(x train, y train, alpha = 1, standardize = TRUE)
Plot CV curve
plot(lasso cv)
Fit final model
best lambda lasso <- lasso cv$lambda.min
cat("Best lambda (Lasso):", best lambda lasso, "\n")
lasso model <- glmnet(x train, y train, alpha = 1, lambda = best lambda lasso)
Predict
pred valid lasso \leftarrow predict(lasso model, s = best lambda lasso, newx = x valid)
pred test lasso \leftarrow predict(lasso model, s = best lambda lasso, newx = x test)
Evaluate
eval val lasso <- evaluate model(exp(pred valid lasso), exp(y valid))
eval test lasso <- evaluate model(exp(pred test lasso), exp(y test))
Display both MSE and RMSE
cat("Lasso Validation MSE:", round(eval val lasso$MSE, 2), "\n")
cat("Lasso Validation RMSE: $", round(eval val lasso$RMSE, 2), "\n\n")
cat("Lasso Test MSE:", round(eval test lasso$MSE, 2), "\n")
cat("Lasso Test RMSE: $", round(eval test lasso$RMSE, 2), "\n")
Selected predictors
lasso coefs <- coef(lasso model)
selected predictors <- rownames(lasso coefs)[which(lasso coefs != 0)]
cat("\nSelected predictors by Lasso:\n")
print(selected predictors)
```

٠,, ## \*\*GLM (Gaussian with identity link)\*\* prepossessing\ ```{r} # Convert percentage-like variables to numeric percentage\_vars <- c("host\_acceptance\_rate", "host\_response\_rate")</pre> convert percentages to numeric <- function(df) { for (var in percentage vars) { if (var %in% colnames(df)) { df[[var]] <- as.numeric(as.character(df[[var]])) } } return(df) train reduced <- convert percentages to numeric(train reduced) valid reduced <- convert percentages to numeric(valid reduced) test reduced <- convert percentages to numeric(test reduced) # Remove factors with only one level drop single level factors <- function(df) { keep <- sapply(df, function(col) !(is.factor(col) && length(unique(col)) == 1)) df], keep] } train reduced <- drop single level factors(train reduced) # Align validation/test with training columns valid reduced <- valid reduced[, colnames(train reduced)]</pre> test reduced <- test reduced[, colnames(train reduced)] # Drop NAs train reduced <- na.omit(train reduced)</pre> valid reduced <- na.omit(valid reduced) test reduced <- na.omit(test reduced) ```{r}

glm log model <- glm(log price ~ ., data = train reduced, family = gaussian(link = "identity"))

# Fit GLM on log price

# Predict on validation and test

31

```
pred log val <- predict(glm log model, newdata = valid reduced)</pre>
pred log test <- predict(glm log model, newdata = test reduced)</pre>
Actual and predicted prices (back-transform)
actual val price <- exp(valid reduced$log price)
actual test price <- exp(test reduced$log price)
pred val price <- exp(pred log val)
pred test price <- exp(pred log test)
MSE & RMSE
mse price val <- mean((actual val price - pred val price)^2)
mse price test <- mean((actual test price - pred test price)^2)
rmse price val <- sqrt(mse price val)
rmse price test <- sqrt(mse price test)
Output summary results
glm metrics <- list(
 Validation MSE = round(mse price val, 2),
 Validation RMSE = round(rmse price val, 2),
 Test MSE = round(mse price test, 2),
 Test RMSE = round(rmse price test, 2)
print(glm metrics)
...
```{r}
summary(glm log model)
**XGBoost**
Prepare Data (Convert to DMatrix)
```{r}
Drop target from features
X train <- model.matrix(log price ~ . -1, data = train reduced)
y train <- train reduced$log price
X valid <- model.matrix(log price \sim . -1, data = valid reduced)
y valid <- valid reduced$log price
X test <- model.matrix(log price \sim . -1, data = test reduced)
```

```
y test <- test reduced$log price
Convert to DMatrix
dtrain \le xgb.DMatrix(data = X train, label = y train)
dvalid <- xgb.DMatrix(data = X valid, label = y valid)
dtest <- xgb.DMatrix(data = X test, label = y test)
...
Define Parameters and Train
```{r}
# Hyperparameters
params <- list(
 objective = "reg:squarederror",
 eval metric = "rmse",
 eta = 0.1,
 max depth = 6
# Cross-validation to determine best nrounds
cv <- xgb.cv(
 params = params,
 data = dtrain,
 nrounds = 500,
 nfold = 5,
 early stopping rounds = 10,
 verbose = 0
best nrounds <- cv$best iteration
# Final model training using best nrounds
xgb model <- xgb.train(
 params = params,
 data = dtrain,
 nrounds = best nrounds,
 watchlist = list(train = dtrain, eval = dvalid),
 early stopping rounds = 10,
 print_every n = 20
# Save the model for later use (optional)
xgb.save(xgb model, "final xgb model.model")
# Reload the model if needed
# xgb model <- xgb.load("final xgb model.model")</pre>
```

```
Predict on Validation & Test Sets
```

```
```{r}
Predict log prices
pred valid xgb <- predict(xgb model, newdata = dvalid)</pre>
pred test xgb <- predict(xgb model, newdata = dtest)</pre>
Convert back to price
pred valid price <- exp(pred valid xgb)
pred test price <- exp(pred test xgb)
actual valid price <- exp(y valid)
actual test price <- exp(y test)
Calculate RMSE and MSE
rmse xgb val <- sqrt(mean((actual valid price - pred valid price)^2))
rmse xgb test <- sqrt(mean((actual test price - pred test price)^2))
mse xgb val <- mean((actual valid price - pred valid price)^2)
mse xgb test <- mean((actual test price - pred test price)^2)
Output results
cat("XGBoost Validation RMSE: $", round(rmse xgb val, 2), "\n")
cat("XGBoost Validation MSE: ", round(mse xgb val, 4), "\n\n")
cat("XGBoost Test RMSE: $", round(rmse xgb test, 2), "\n")
cat("XGBoost Test MSE: ", round(mse xgb test, 4), "\n")
Feature Importance Plot
```{r}
# Feature importance plot
importance matrix <- xgb.importance(model = xgb model)
xgb.plot.importance(importance matrix, top n = 20)
Gradient Boosted Trees (GBM)
```{r}
Prepare the data
gbm requires the response to be in the original (not log) scale
train gbm <- train reduced
valid gbm <- valid reduced
test gbm <- test reduced
```

```
train gbm\price <- exp(train gbm\log price)
valid gbm$price <- exp(valid gbm$log price)</pre>
test_gbm$price <- exp(test_gbm$log_price)
Remove the log price column
train_gbm$log price <- NULL
valid gbm$log price <- NULL
test gbm$log price <- NULL
Fit the GBM model
set.seed(123)
gbm model <- gbm(
 formula = price \sim .,
 distribution = "gaussian",
 data = train gbm,
 n.trees = 1000,
 interaction.depth = 4,
 shrinkage = 0.01,
 n.minobsinnode = 10,
 cv.folds = 5.
 verbose = FALSE
Determine the best number of trees
best iter <- gbm.perf(gbm model, method = "cv")
Predict
pred valid gbm <- predict(gbm model, newdata = valid gbm, n.trees = best iter)
pred test gbm <- predict(gbm model, newdata = test gbm, n.trees = best iter)
actual valid gbm <- valid gbm $price
actual test gbm <- test gbm$price
Evaluate
rmse gbm val <- sqrt(mean((actual valid gbm - pred valid gbm)^2))
rmse gbm test <- sqrt(mean((actual test gbm - pred test gbm)^2))
mse gbm val <- mean((actual valid gbm - pred valid gbm)^2)
mse gbm test <- mean((actual test gbm - pred test gbm)^2)
cat("GBM Validation RMSE: $", round(rmse gbm val, 2), "\n")
cat("GBM Validation MSE: ", round(mse gbm val, 4), "\n\n")
cat("GBM Test RMSE: $", round(rmse gbm test, 2), "\n")
cat("GBM Test MSE: ", round(mse gbm test, 4), "\n")
```

```
Q6
Diagnostics & Validation
```{r}
# Residuals on test set (actual - predicted)
residuals test <- actual test price - pred test price
# Plot residuals vs predicted prices
library(ggplot2)
ggplot(data = data.frame(predicted = pred test price, residuals = residuals test),
    aes(x = predicted, y = residuals)) +
 geom point(alpha = 0.5, color = "#1f77b4") +
 geom hline(yintercept = 0, linetype = "dashed", color = "red") +
 labs(
  title = "Residuals vs Predicted Price (Test Set)",
  x = "Predicted Price (\$)",
  y = "Residuals (\$)"
 theme minimal()
```{r}
Standardized residuals on the test set
standardized residuals <- residuals test / sd(residuals test)
Plot standardized residuals to spot potential outliers
library(ggplot2)
ggplot(data = data.frame(predicted = pred test price, std resid = standardized residuals),
 aes(x = predicted, y = std resid)) +
 geom point(alpha = 0.5, color = "#2ca02c") +
 geom hline(yintercept = c(-2, 0, 2), linetype = c("dashed", "solid", "dashed"), color = c("red", "black", "red")) +
 labs(
 title = "Standardized Residuals vs Predicted Price",
 x = "Predicted Price (\$)",
 y = "Standardized Residuals"
) +
 theme minimal()
Q7 in the report
```

Question 8: Final prediction on test data using trained XGBoost model

• • •

```
```{r}
test data <- read excel("/Users/audreychang/Desktop/ACTL ML/Textbook R/HW/Assignment2/AirbnbTest (1).xlsx")
Preprocess Test Data
```{r}
#days between reviews
test data$days between reviews <- as.numeric(as.Date(test data$last review) - as.Date(test data$first review))
#drop first review, last review
test data <- subset(test data, select = -c(first review, last review))
#only run sucessfully when u have the original file
...
```{r}
#host experience years
test data$host experience years <- 2025 - as.numeric(format(as.Date(test data$host since), "%Y"))
#drop host since
test data <- subset(test data, select = -c(host since))
```{r}
#avg score
test data\(\text{avg score} <- \text{rowMeans(test data[, c("review scores rating", "review scores accuracy",
"review scores cleanliness", "review scores checkin", "review scores communication", "review scores location",
"review scores value")], na.rm = TRUE)
#drop review related variables
test data <- test data %>%
 select(-review scores rating,
 -review scores accuracy,
 -review scores cleanliness,
 -review scores checkin,
 -review scores communication,
 -review scores location,
 -review scores value)
```{r}
#Convert 't'/'f' to binary (0/1)
binary vars <- c("host is superhost", "host identity verified", "host has profile pic", "instant bookable")
for (var in binary vars) {
 test data[[var]] <- ifelse(test data[[var]] == "t", 1, 0)
}
```

```
```{r}
#numeric conversions
test data <- test data %>%
 mutate(
 host listings count = as.numeric(host listings count),
 host total listings count = as.numeric(host total listings count),
 host response rate = as.numeric(host response rate),
 host acceptance rate = as.numeric(host acceptance rate)
)
Handling NA
```{r}
#Identify columns in test data where "N/A" appears (as a string)
na string cols test <- sapply(test data, function(x) {
 if (is.character(x) || is.factor(x)) {
  any(x == "N/A", na.rm = TRUE)
 } else {
  FALSE
})
# List of column names that contain "N/A" strings
cols to fix test <- names(na string cols test[na string cols test == TRUE])
#Replace "N/A" with real NA only in those columns
test data[cols to fix test] \leftarrow lapply(test data[cols to fix test], function(x) na if(x, "N/A"))
#Count NA values per column
na count test <- sapply(test data, function(x) sum(is.na(x)))
na count test <- na count test [na count test > 0] # Only show columns with missing
na count test
remove unused column
```{r}
test data <- test data %>%
 select(-bathrooms text)
```{r}
# Convert percentage columns to numeric
test data <- test data %>%
 mutate(
```

```
host response rate = as.numeric(host response rate),
  host acceptance rate = as.numeric(host acceptance rate)
 )
# Impute missing values in host response rate with its median
test data$host response rate[is.na(test data$host response rate)] <- median(test data$host response rate, na.rm =
TRUE)
# Impute missing values in host acceptance rate with its median
test data$host acceptance rate[is.na(test data$host acceptance rate)] <- median(test data$host acceptance rate, na.rm
= TRUE)
```{r}
Replace missing values for host response rate and host acceptance rate host response time, host is superhost with
"Unknown"
test data$host response time[is.na(test data$host response time)] <- "Unknown"
test data$host is superhost[is.na(test data$host is superhost)] <- "Unknown"
```{r}
# Check if there are any NA values in the entire test data
anyNA(test data)
```{r}
#Region Classification (based on neighbourhood)
test data$region <- case when(
 test data$neighbourhood %in% east ~ "East",
 test data$neighbourhood %in% west ~ "West",
 test data$neighbourhood %in% north ~ "North",
 test data$neighbourhood %in% south ~ "South",
 TRUE ~ "Other"
)
```{r}
#Property Group Categorization
test data$property group <- ifelse(test data$property type %in% c(
 "Entire rental unit", "Entire condo", "Entire serviced apartment",
 "Entire loft", "Room in serviced apartment", "Room in aparthotel",
 "Private room in serviced apartment", "Private room in condo"),
 "Apartment/Condo",
 ifelse(test data$property type %in% c(
```

```
"Entire home", "Entire vacation home", "Entire villa",
  "Entire townhouse", "Private room in home", "Private room in townhouse",
  "Private room in villa"),
  "House/Townhouse/Villa",
  ifelse(test data$property type %in% c(
   "Entire guesthouse", "Entire guest suite",
   "Private room in guesthouse", "Private room in guest suite",
   "Private room in bed and breakfast"),
    "Guest Accommodation",
    ifelse(test data$property type %in% c(
     "Entire cottage", "Entire cabin", "Entire bungalow",
     "Private room in cabin", "Private room in cottage",
     "Private room in bungalow", "Private room in chalet", "Tiny home"),
     "Cottage/Cabin/Bungalow",
     ifelse(test data$property type %in% c(
      "Room in hotel", "Room in boutique hotel", "Shared room in boutique hotel",
      "Shared room in hostel", "Private room in hostel",
      "Shared room in hotel", "Shared room in condo"),
      "Hotel/Hostel",
      "Unique Stays (Other)"
```{r}
df$region <- relevel(as.factor(df$region), ref = "West") # Set West as the reference category
df$property group <- relevel(as.factor(df$property group), ref = "Apartment/Condo") # Relevel property group
df$room_type <- relevel(as.factor(df$room_type), ref = "Entire home/apt") # Relevel room_type
• • •
```{r}
#room type × property group interaction
test data$room type property group interaction <- interaction(test data$room type, test data$property group)
```{r}
#PCA
Select the same capacity variables from the test set
capacity vars test <- test data %>% select(accommodates, beds, bedrooms, bathrooms)
```

```
Apply the PCA transformation using the training PCA object
Use predict() to project the test data onto the training PCA space
pca capacity test <- predict(pca capacity, newdata = capacity vars test)
Add the first principal component to the test data
test data$PC capacity <- pca _capacity_test[, 1]
Drop the original capacity variables from the test set
test data <- test data %>% select(-accommodates, -beds, -bedrooms, -bathrooms)
...
Apply the Model to the Test Set
```{r}
colnames(test data)
3\. Make predictions using the trained model
```{r}
Assuming you have the list of top predictor variables from Question 5
test data reduced <- test data %>% select(all of(top 20 vars)) # Reduced dataset with top predictors
Load the trained model from Question 5 (XGBoost in this case)
xgb model <- xgb.load("final xgb model.model")
Convert test data to DMatrix (for XGBoost)
dtest <- xgb.DMatrix(data = model.matrix(~ . -1, data = test data reduced)) # Ensure you remove the intercept term
Predict log prices using the model
pred log price <- predict(xgb model, newdata = dtest)</pre>
Convert log price predictions back to the price scale (exponentiate)
test data$price prediction <- exp(pred log price) # Update the price prediction column
Optionally, check the first few predictions
head(test data$price prediction)
Save the predictions to an Excel file
write xlsx(test data, "/Users/audreychang/Desktop/ACTL ML/Textbook R/HW/Assignment2/AirbnbTest (1).xlsx")
```

#### Generative AI usage

OpenAI.(2025). ChatGPT (March 27 version) [Large language model]. https://chat.openai.com/chat

### **Purpose of Use:**

ChatGPT was used to support various aspects of the assignment, including:

#### • Editing and Refinement:

- o Improved clarity, flow, and conciseness of report sections.
- Reduced redundancy in model descriptions and interpretations.

## • Planning and Structure:

- Helped organize report sections logically.
- Suggested concise formats for presenting model results and diagnostics.

### • Concept Clarification and Idea Generation:

- Explained statistical concepts such as:
  - Cook's Distance (influence diagnostics)
  - XGBoost mechanisms and hyperparameters
  - Gradient Boosted Trees and ensemble methods
  - Residual diagnostics in logistic regression and XGBoost
- Suggested realistic improvement steps for the predictive model.

#### • Prompt Examples Used:

- "Make this paragraph more concise but preserve meaning."
- "Explain how to interpret Cook's Distance."
- "What are the pros and cons of XGBoost in model interpretability?"
- o "Suggest ways to improve a regression model using advanced techniques."
- "Refine this model limitation section to save words."

#### Others:

# 2.3 Variable Selection (Correlation plot)





### 2.3 Data Visualization

### "Region"



"property\_group"



# "Host\_response\_time"



# "room\_type"



High availability



# Predictors used in Q2

- host\_is\_superhost
- log(price
- longitude
- (host\_experience\_years
- latitude
- calculated host listings count
- instant\_bookable
- high availability
- "Region"
- "property group"
- "Host\_response\_time"
- "room type"

### Random Forest Variable Importance(Classification)

Variable Importance - Random Forest



#### **5.1 PCA**



# 6.2 Raw Residual Analysis



### 5.2 Feature Selection Random Forest's %IncMSE metric



#### **5.3.2 Lasso Regression** lambda.min (0.000197037)



5.3.4 XGBoost Feature Importance Plot

