

Bearbeiten Sie die folgenden Aufgaben allein. Sie haben 35 (?) Minuten Zeit. Mit diesen Diagnoseaufgaben haben Sie die Möglichkeit für sich zu prüfen, ob Sie die mathematische Grundideen und elementaren Methoden zu dem neuen Thema "Rekonstruktion von Beständen" verstanden haben.

Die bearbeiteten Aufgaben werden nicht bewertet!

Aufgabe 1: "Grundidee"

Zum Einstieg in das Thema "Rekonstruktion von Beständen" haben wir uns mit der Lernaufgabe "Wassertank" auseinandergesetzt.

- a. Erläutern Sie kurz den von uns verwendeten Begriff Bestand in einem Sachkontext Ihrer Wahl.
- b. Erläutern Sie, welche Bedeutung die Fläche zwischen dem Graphen der Änderungsratenfunktion f'(x) und der x-Achse bei der rechnerischen Bestimmung des aktuellen Bestandes f(x) hat.
- c. In der nachfolgenden Tabelle wird beschrieben, wie man eine krummlinig begrenzte Fläche zwischen Funktionsgraph und x-Achse (näherungsweise) berechnen kann leider sind die Zeilen durcheinandergeraten. Bringen Sie die fünf Schritte in eine sinnvolle Reihenfolge und erstellen Sie eine Freihandskizze zur Veranschaulichung des Vorgangs:

Beschreibung des Verfahrensschritts	Nr.:
Multiplikation der Intervalllängen mit dem zugehörigen konstanten Funktionswert	
Erhöhung der Anzahl n an Teilintervallen und Wiederholung der bisherigen Schritte	
Annahme von konstanten Funktionswerten in den einzelnen Teilintervallen	
Unterteilen des gesamten Intervalls [a;b] in n Teilintervalle	
Addition dieser n Produkte	
Das Ergebnis (für $n \to \infty$) nennt man Integral der zugehörigen Funktion auf [a;b].	

Aufgabe 2: "Bestände skizzieren"

Skizzieren Sie jeweils den qualitativen Verlauf einer passenden Bestandsfunktion f zu den gegebenen Änderungsratenfunktionen f'.

a. b.

Aufgabe 3: "Unternehmensgewinn"

Der unten abgebildete Graph zeigt die Gewinnänderungsratenfunktion ($Werte\ in \frac{Tausend\ \epsilon}{Monat}$) einer (fiktiven) Firma über den Verlauf von 48 Monaten.

- a. Berechnen Sie den Gewinn nach 0, 4, 8, 12 Monaten und tragen Sie die berechneten Werte in das untere Koordinatensystem ein.
- b. Berechnen Sie den Gesamtgewinn nach 48 Monaten.

c. Skizzieren Sie den Verlauf des Gesamtgewinns in dem Intervall [0; 48] in das untere Koordinatensystem.

Mit welchen Funktionstypen kann der Funktionsgraph des Gewinnverlaufes in den unterschiedlichen Intervallen der Gewinnratenfunktion beschrieben werden?

Aufgabe 4: "Tabelle"

Geben Sie zu den gegebenen Änderungsraten die inhaltliche Bedeutung des zugehörigen Bestandes an bzw. zu den gegebenen Beständen die zugehörigen Änderungsraten, d.h.: Füllen Sie die Lücken in der Tabelle aus.

Variable x	Änderungsrate f(x)	Bestand B(x)
Zeit (z.B. in sec. oder h)	Geschwindigkeit (in m/s oder km/h)	
	Datenübertragungsrate (in MByte/s)	
Zeit (in Jahren)	Gewinn- Verlustrate (in €/Jahr)	
	Zu- und Abflussrate bei Flüssigkeiten (in Li- ter/min)	
		Besucheranzahl

Lösungen

Aufgabe 1

- a. Der von uns verwendete Begriff Bestand gibt den aktuellen Wert einer sich verändernden Größe (z.B. Wassermenge, Gesamtgewinn, zurückgelegte Strecke, zu zahlende Einkommensteuer) an, die uns grade interessiert.
- b. **Geometrische Interpretation der Flächen:** Die Fläche zwischen dem Graphen der Änderungsratenfunktion und der x-Achse entspricht der Änderung des Bestandes der physikalischen Größe in dem betrachteten Intervall.

Allgemeiner formuliert: Das Produkt aus Änderungsrate $\Delta f'(x)$ und Δx beschreibt die Änderung des Bestandes der physikalischen Größe in dem Intervall Δx .

c. Tabelle

Beschreibung des Verfahrensschritts	Nr.:
Multiplikation der Intervalllängen mit dem zugehörigen konstanten Funktionswert	3
Erhöhung der Anzahl n an Teilintervallen und Wiederholung der bisherigen Schritte	5
Annahme von konstanten Funktionswerten in den einzelnen Teilintervallen	2
Unterteilen des gesamten Intervalls [a;b] in n Teilintervalle	1
Addition dieser n Produkte	4
Das Ergebnis (für $n \to \infty$) nennt man Integral der zugehörigen Funktion auf [a;b].	

Skizze:

Aufgabe 2

Datei: 2_Diagnoseset_Rekonstruktion_von_Bestaenden

Aufgabe 3

a)

x in Monaten	Gewinn in $\in \left[\frac{f(x)\cdot x}{2}\right]$
0	0
4	40.000,-
8	160.000,-
12	360.000,-

 $A = \frac{60 \cdot 12}{2} = 360$; d.h. es wurden im ersten Intervall [0; 12 Monate] genau 360.000,- \in erwirtschaftet.

b)

- Berechnung des Gewinns im Intervall [12; 24 Monate]: A₂ = 60 · 12 = 720; Dies entspricht einem Gewinn von 720.000,- €.
- Berechnung des Gewinns im Intervall [24;48 Monate]: $A_3 = -10 \cdot 24 = -240$. Dies entspricht einem Gewinn von -240.000,- €
- Die Firma hat somit in dem Intervall [0; 48 Monate] einen Gesamtgewinn von 360.000,- € + 720.000,- € 240.000,- € = 840.000,- € gemacht.

c)

Beschreibung der Funktionstypen in unterschiedlichen Intervallen der Gewinnratenfunktion:

- In dem Intervall [0; 12] kann die Gewinnfunktion mit einem quadratischen Funktionsterm modelliert werden.
- In dem Intervall]12; 24] kann die Gewinnfunktion mit einer linearen Funktion mit positiver Steigung modelliert werden.
- In dem Intervall]24; 48] kann die Gewinnfunktion mit einer linearen Funktion mit negativer Steigung modelliert werden.

Aufgabe 4

X	Änderungsfunktion	Bestandsfunktion
Zeit (z.B. in s oder h)	Geschwindigkeit in Abhängigkeit der Zeit	Zurückgelegter Weg in Abhängigkeit der Zeit
Zeit (in s)	Datenübertragungsrate (in MByte/s)	Datenvolumen (in MByte)
Zeit (in Jahren)	Gewinn- und Verlustrate (in €/Jahr)	Gesamtgewinn
Zeit (in min)	Zu- und Abflussrate bei Flüssigkeiten (in Liter/min)	Flüssigkeitsvolumen (in Liter)
Zeit (z.B. min. oder h)	Zu- und Abgänge von Besuchern (pro Zeit- einheit) in Besucherzentren	Besucheranzahl

Auswertung des Lernprotokolls

Wenn Sie mit der Bearbeitung des Lernprotokolls fertig sind kontrollieren Sie Ihre Ergebnisse eigenständig mit Ihrem Lernpartner und/oder den ausliegenden Lösungen

Analysieren Sie Ihre Fehler und suchen Sie ggf. das Gespräch mit Ihrem Lernpartner. Mögliche Leitfragen wären:

- Welche Fehlannahmen haben zu meinen Fehlern geführt?
- Welche Rechenfehler wurden gemacht?
- Zu welchen Themen habe ich noch Fragen?
- Was ist mir noch unklar und ich benötige ein Erklärung durch die Lehrkraft?