Claims

1. A compound of formula (1):

$$R^4$$
 Z
 O
 Y
 (2)
 (1)
 A
 $(R^1)_n$
 (1)

wherein:

5

Z is CH or nitrogen;

 R^4 and R^5 together are either $-S-C(R^6)=C(R^7)$ - or $-C(R^7)=C(R^6)-S-$;

R⁶ and R⁷ are independently selected from hydrogen, halo, nitro, cyano, hydroxy,

fluoromethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, carboxy, carbamoyl, (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkoxy and (1-4C)alkanoyl;

A is phenylene or heteroarylene;

n is 0, 1 or 2;

R¹ is independently selected from halo, nitro, cyano, hydroxy, carboxy, carbamoyl,

N-(1-4C)alkylcarbamoyl, N,N-((1-4C)alkyl)₂carbamoyl, sulphamoyl, N-(1-4C)alkylsulphamoyl, N,N-((1-4C)alkyl)₂sulphamoyl, -S(O)_b(1-4C)alkyl (wherein b is 0,1,or 2), -OS(O)₂(1-4C)alkyl, (1-4C)alkyl, (2-4C)alkenyl, (2-4C)alkynyl, (1-4C)alkoxy, (1-4C)alkanoyl, (1-4C)alkanoyloxy, hydroxy(1-4C)alkyl, fluoromethyl, difluoromethyl, trifluoromethoxy and -NHSO₂(1-4C)alkyl;

or, when n is 2, the two R¹ groups, together with the carbon atoms of A to which they are attached, may form a 4 to 7 membered saturated ring, optionally containing 1 or 2 heteroatoms independently selected from O, S and N, and optionally being substituted by one or two methyl groups;

r is 1 or 2; and when r is 1 the group

25

is a substituent on carbon (2) and when r is 2 (hereby forming a six membered ring) the same group is a substituent on carbon (2) or on carbon (3);

Y is selected from $-C(O)R^2$, $-C(O)OR^2$, $-C(O)NR^2R^3$, -(1-4C)alkyl [optionally substituted by 1 or 2 substituents independently selected from hydroxy, $-C=NR^2$, (1-4C)alkoxy, aryloxy,

heterocyclyloxy, $-S(O)_bR^2$ (wherein b is 0, 1 or 2), $-O-S(O)_bR^2$ (wherein b is 0, 1 or 2),

 $heterocyclyl], -C(O)NOH, -C(O)NSH, -C(N)OH, -C(N)SH, -SO_2H, -SO_3H, -SO_2N(OH)R^2, \\$

-(2-4C)alkenyl, $-SO_2NR^2R^3$, $-(1-4C)alkylC(O)R^2$, $-(1-4C)alkylC(O)OR^2$,

 $-(1-4C) \\ alkyl \\ SC(O) \\ R^2, \\ -(1-4C) \\ alkyl \\ OC(O) \\ R^2, \\ -(1-4C) \\ alkyl \\ C(O) \\ NR^2 \\ R^3, \\ -(1-4C) \\ alkyl \\ -(1-4C) \\ alkyl \\ -(1-4C) \\ alkyl \\ -(1-4C) \\ alkyl \\ -(1-4C) \\ -(1-4C)$

 $4C) alkylOC(O)OR^2, -(1-4C) alkylN(R^2)C(O)OR^2, -(1-4C) alkylN(R^2)C(O)NR^2R^3, -(1-4C) alkylN(R^2)C(O)NR^2, -(1$

4C)alkylOC(O)NR²R³, (3-6C)cycloalkyl (optionally substituted by 1 or 2 R⁸), aryl,

10 heterocyclyl (wherein the heterocyclic ring is linked by a ring carbon atom),

-(1-4C)alkylSO₂(2-4C)alkenyl and -S(O)_cR² (wherein c is 0, 1 or 2);

R² and R³ are independently selected from hydrogen, -O(1-4C)alkyl, -S(1-4C)alkyl, -N(1-

4C)alkyl, heterocyclyl, aryl, and (1-4C)alkyl [optionally substituted by 1 or $2\ R^8$ groups];

or

5

wherein NR²R³ may form a 4 to 7 membered saturated, partially saturated or unsaturated ring, optionally containing 1, 2 or 3 additional heteroatoms independently selected from N, O and S (provided there are no O-O, O-S or S-S bonds), wherein any -CH₂- may optionally be replaced by -C(=O)-, and any N or S atom may optionally be oxidised to form an N-oxide or SO or SO₂ group respectively, and wherein the ring is optionally substituted by 1 or 2 substituents

independently selected from halo, cyano, (1-4C)alkyl, hydroxy, (1-4C)alkoxy and (1-4C)alkylS(O)_b- (wherein b is 0, 1 or 2);

R⁸ is independently selected from hydrogen, hydroxy, (1-4C)alkyl, (2-4C)alkenyl,

(1-4C)alkoxy, cyano((1-4C))alkyl, amino((1-4C))alkyl [optionally substituted on nitrogen by 1 or 2 groups selected from (1-4C)alkyl, hydroxy, hydroxy((1-4C))alkyl,

dihydroxy((1-4C))alkyl, - $CO_2(1-4C)$ alkyl, aryl and aryl((1-4C))alkyl], halo((1-4C))alkyl,

dihalo((1-4C))alkyl, trihalo((1-4C))alkyl, hydroxy((1-4C))alkyl, dihydroxy((1-4C))alkyl,

(1-4C)alkoxy(1-4C)alkoxy, (1-4C)alkoxy(1-4C)alkyl, hydroxy(1-4C)alkoxy, 5- and 6-

membered cyclic acetals and mono- and di-methyl derivatives thereof, aryl, heterocyclyl,

(heterocyclyl)(1-4C)alkyl, (3-7C)cycloalkyl (optionally substituted with 1 or 2 hydroxy

groups, (1-4C)alkyl or $-CO_2(1-4C)$ alkyl), (1-4C)alkanoyl, (1-4C)alkylS $(O)_b$ - (wherein b is 0,

1 or 2), (3-6C)cycloalkylS(O)_b- (wherein b is 0, 1 or 2), arylS(O)_b- (wherein b is 0, 1 or 2),

heterocyclylS(O)_b- (wherein b is 0, 1 or 2), benzylS(O)_b- (wherein b is 0, 1 or 2),

PCT/GB2004/003345

(1-4C)alkylS(O)_c(1-4C)alkyl- (wherein c is 0, 1 or 2), -N(OH)CHO, -C(=N-OH)NH₂, -C(=N-OH)NH(1-4C)alkyl, $-C(=N-OH)N((1-4C)alkyl)_2$, -C(=N-OH)NH(3-6C)cycloalkyl, $-C(=N-OH)N((3-6C)cycloalkyl)_2$, $-COCOOR^9$, $-C(O)N(R^9)(R^{10})$, $-NHC(O)R^9$, -C(O)NHSO₂((1-4C)alkyl), -NHSO₂R⁹, (R⁹)(R¹⁰)NSO₂-, -COCH₂OR¹¹, -COCH₂OH, $(R^9)(R^{10})N_{-}$, $-COOR^9$, $-CH_2OR^9$, $-CH_2COOR^9$, $-CH_2OCOR^9$, $-CH_2CH(CO_2R^9)OH$, -5 $CH_2C(O)NR^9R^{10}$, - $(CH_2)_wCH(NR^9R^{10})CO_2R^{9'}$ (wherein w is 1, 2 or 3), and $-(CH_2)_w CH(NR^9R^{10})CO(NR^{9'}R^{10'})$ (wherein w is 1, 2 or 3); R⁹, R⁹, R¹⁰ and R¹⁰ are independently selected from hydrogen, hydroxy, (1-4C)alkyl (optionally substituted by 1 or 2 R¹¹), (2-4C)alkenyl, (3-7C)cycloalkyl (optionally substituted by 1 or 2 hydroxy groups), cyano((1-4C))alkyl, trihaloalkyl, aryl, heterocyclyl, 10 heterocyclyl((1-4C)alkyl), -CO₂(1-4C)alkyl; or R⁹ and R¹⁰ together with the nitrogen to which they are attached, and/or R⁹ and R¹⁰ together with the nitrogen to which they are attached, form a 4- to 6-membered ring where the ring is optionally substituted on carbon by 1 or 2 substituents independently selected from oxo, hydroxy, carboxy, halo, nitro, cyano, carbonyl, (1-4C)alkoxy and heterocyclyl; or the ring may 15 be optionally substituted on two adjacent carbons by -O-CH₂-O- to form a cyclic acetal wherein one or both of the hydrogens of the -O-CH₂-O- group may be replaced by a methyl; R¹¹ is independently selected from (1-4C)alkyl and hydroxy(1-4C)alkyl; or a pharmaceutically acceptable salt or pro-drug thereof.

20

25

- 2. A compound of the formula (1), or a pharmaceutically acceptable salt or pro-drug thereof, as claimed in claim 1, wherein A is phenylene.
- 3. A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in claim 1 or claim 2, wherein n is 0.
 - A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in any one of the preceding claims wherein r is 1.
- 30 5. A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in any one of the preceding claims wherein R⁶ and R⁷ are independently hydrogen or halo.

WO 2005/013981 PCT/GB2004/003345 - 113 -

6. A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in any one of the preceding claims wherein Y is selected from $-C(O)OR^2$, $-C(O)NR^2R^3$, -(1-4C)alkyl [optionally substituted by a substituent selected from hydroxy, (1-4C)alkoxy, $-S(O)_bR^2$ (wherein b is 0, 1 or 2), $-O-S(O)_bR^2$ (wherein b is 0, 1 or 2), $-NR^2R^3$, $-NR^2C(=O)R^2$ and $-SO_2NR^2R^3$], -(1-4C)alkyl $C(O)R^2$, -(1-4C)

10

15

5

- 7. A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in any one of the preceding claims wherein R² and R³ are independently selected from hydrogen, heterocyclyl, -O(1-4C)alkyl, -N(1-4C)alkyl, (1-4C)alkyl [optionally substituted by 1 or 2 R⁸ groups]; or an NR²R³ group forms a morpholine, thiomorpholine (and oxidised versions thereof), pyrrolidine, or piperidine ring and wherein the ring is optionally substituted by 1 or 2 substituents independently selected from chloro, fluoro, hydroxy and methoxy.
- 8. A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in any one of the preceding claims wherein R⁸ is independently selected from hydrogen, hydroxy, -C(O)N(R⁹)(R¹⁰), -NHC(O)R⁹, -COOR⁹, -CH₂OCOR⁹, -CH₂OCOR⁹, aryl, heterocyclyl, and 5- and 6-membered cyclic acetals and mono- and di-methyl derivatives thereof.
- 9. A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in any one of the preceding claims wherein R⁹ and R¹⁰ are independently selected from hydrogen, hydroxy and (1-4C)alkyl) or R⁹ and R¹⁰ together with the nitrogen to which they are attached form a morpholine, thiomorpholine (and oxidised versions thereof), pyrrolidine, or piperidine ring.

30

10. A pharmaceutical composition which comprises a compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in claim 1 in association with a pharmaceutically-acceptable diluent or carrier.

- 11. A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in claim 1, for use in a method of treatment of a warm-blooded animal such as man by therapy.
- 5 12. A compound of the formula (1), or a pharmaceutically acceptable salt or in-vivo hydrolysable ester thereof, as claimed in claim 1, for use as a medicament.
 - 13. A compound of the formula (1), or a pharmaceutically acceptable salt or *in vivo* hydrolysable ester thereof, as claimed in claim 1, for use as a medicament in the treatment of type 2 diabetes, insulin resistance, syndrome X, hyperinsulinaemia, hyperglucagonaemia, cardiac ischaemia or obesity in a warm-blooded animal such as man.
 - 14. The use of a compound of the formula (1), or a pharmaceutically acceptable salt or invivo hydrolysable ester thereof, as claimed in claim 1, in the manufacture of a medicament for use in the treatment of type 2 diabetes, insulin resistance, syndrome X, hyperinsulinaemia, hyperglucagonaemia, cardiac ischaemia or obesity in a warm-blooded animal such as man.
 - 15. The use of a compound of the formula (1), or a pharmaceutically acceptable salt or invivo hydrolysable ester thereof, as claimed in claim 1, in the manufacture of a medicament for use in the treatment of type 2 diabetes in a warm-blooded animal such as man.
 - 16. A process for the preparation of a compound of formula (1) as claimed in claim 1, which process comprises:

reacting an acid of the formula (2):

10

15

20

25

or an activated derivative thereof; with an amine of formula (3):

WO 2005/013981 PCT/GB2004/003345

- 115 -

$$NH_2$$
 (3)

and thereafter if necessary:

- i) converting a compound of the formula (1) into another compound of the formula (1);
- 5 ii) removing any protecting groups;
 - iii) forming a pharmaceutically acceptable salt or in vivo hydrolysable ester.