Random Access on Narrow Decision Diagrams in External Memory

Steffan Christ Sølvsten, Casper Moldrup Rysgaard, and Jaco van de Pol SPIN 2024

Adiar

I/O-efficient Decision Diagrams

github.com/ssoelvsten/adiar

£ Features

Serialized Representation of a Binary Decision Diagram.

Priority Queue:
$$Q_{count}$$
:
$$[((0,0) \xrightarrow{\top} (1,0), 1), ((0,0) \xrightarrow{\bot} (2,0), 1),$$

Seek	Sum	Result
(1,0)	0	0

Priority Queue:
$$Q_{count}$$
:
$$[((0,0) \xrightarrow{\top} (1,0), 1) , ((0,0) \xrightarrow{\bot} (2,0), 1) ,$$

]

See (1, (Sum 0	Re	sul 0
[((0,0)	Queue: $(1,0)$, $\xrightarrow{\top}$ $(2,0)$,	1)	,

Seek	Sum	Result
(1,0)	1	0

Priority Queue:
$$Q_{count}$$
:
$$((0,0) \xrightarrow{\perp} (2,0), \quad 1) \quad ,$$

$$((1,0) \xrightarrow{\top} (2,0), \quad 1) \quad ,$$

$$((1,0) \xrightarrow{\top} (3,1), \quad 1) \quad ,$$

Seek	Sum	Result
(2,0)	0	0

Priority Queue:
$$Q_{count}$$
:

$$((0,0) \xrightarrow{\perp} (2,0), \quad 1) \quad ,$$

$$((1,0) \xrightarrow{\top} (3,1), \quad 1) \quad ,$$

Seek	Sum	Result
(2,0)	0	0

Priority Queue:
$$Q_{count}$$
: [
$$((0,0) \xrightarrow{\perp} (2,0), \quad 1) \quad , \\ ((1,0) \xrightarrow{\perp} (2,0), \quad 1) \quad , \\ ((1,0) \xrightarrow{\top} (3,1), \quad 1) \quad , \\]$$

Seek	Sum	Result
(2,0)	2	0
P [riority Queue:	Q_{count} :

Seek (3, 0)	Sum 0	Result 0
[Priority Queue: <i>Q</i>	count:
($(2,0) \xrightarrow{\perp} (3,0),$ $(1,0) \xrightarrow{\top} (3,1),$ $(2,0) \xrightarrow{\top} (3,1),$	2) , 1) , 2)]

Seek	_	Sum	Result
(3, 0)		0	0
]	Priority (Queue:	Q_{count} :

Priority Queue: Q_{count}:

$$((2,0) \xrightarrow{\top} (3,1), \quad 2) \qquad]$$

Seek (3, 1)	Sum 3	Result 2
Prio [rity Queue: G	Q _{count} :
		1

Seek (3, 1)	Sum 3	Result 5
Prio [rity Queue: (Q _{count} :
		1

EPFL Circuit Verification | 300 GiB of RAM

Steffan Christ Sølvsten

- soelvsten@cs.au.dk
- ssoelvsten.github.io

Adiar

- github.com/ssoelvsten/adiar
- ssoelvsten.github.io/adiar

