Assignment 3

1. Suppose that $M = (Q, \Sigma, \delta, q_0, A)$ and let $\delta^* : Q \times \Sigma^* \to Q$ be its extended transition function. Prove that for any $q \in Q$ and $x, y \in \Sigma^*$ that $\delta^*(q, xy) = \delta^*(\delta^*(q, x), y)$. (Hint: use induction on the length of x).

Proof. Prove by induction on the length of x

Base case: |x| = 0

We have $x = \epsilon$, then $\delta^*(q, xy) = \delta^*(q, \epsilon y)$

Then $\delta^{\star}(q, \epsilon y) = \delta^{\star}(\delta^{\star}(q, \epsilon), y) = \delta^{\star}(\delta^{\star}(q, x), y)$ (Since $x = \epsilon$)

Inductive Hypothesis: |x| = n

Let $q \in Q$ and $x, y \in \Sigma^*$ and $n \in N$.

Let x = a, we have $\delta^*(q, ay) = \delta^*(\delta^*(q, a), y)$

Inductive Step: we need to prove for |x| = n + 1

We can write x = ai where |a| = n and i

We have: $\delta^*(q, xy) = \delta^*(q, aiy)$

Then $\delta^{\star}(\delta^{\star}(q,a),iy) = \delta^{\star}(\delta^{\star}(\delta^{\star}(q,a),i),y) = \delta^{\star}(\delta^{\star}(q,ai),y)$ (according to IH)

Then $\delta^{\star}(\delta^{\star}(q, ai), y) = \delta^{\star}(\delta^{\star}(q, x), y)$ (Since x = ai) Therefore, $\delta^{\star}(q, xy) = \delta^{\star}(\delta^{\star}(q, x), y)$ for any $q \in Q$ and $x, y \in \Sigma^{\star}$

2. Suppose L is a regular language, and $M=(Q,\Sigma,\delta,q_0,A)$ is a deterministic finite state machine such that L(M)=L. Prove that if |Q|=2 then one of the following hold: (i) $L=\emptyset$ (ii) $\epsilon\in L$, or (iii) $\exists a\in\Sigma$ such that $a\in L$. (Hint: prove one of the three hold for each possible configuration of A and q_0).

Proof. Suppose if |Q|=2 then none of the following hold: (i) $L=\emptyset$ (ii) $\epsilon \in L$, or (iii) $\exists a \in \Sigma$ such that $a \in L$.

Case 1: There is no accepting states or no paths from state q_0 to q_1 . In this case, $L = \emptyset$ holds since there is no language that machine accepts or accepting states.

Case 2: There is one accepting state. Since M is a deterministic finite machine, then $\exists \delta(q_0, a) = q_1$ that if the automaton is in state q_0 and reads input a then it goes to state q_1 . Therefore, $\exists a \in \Sigma$ holds such that $a \in L$

Case 3: There are 2 accepting states. If the automaton is in state q_0 , it already in accepting state and does not need to receive any inputs. Therefore, $\epsilon \in L$ holds.

There is a contradiction with what we suppose. Therefore, when |Q|=2 then one of the following hold: (i) $L=\emptyset$ (ii) $\epsilon\in L$, or (iii) $\exists a\in\Sigma$ such that $a\in L$.

- 3. If L is a finite-size language then L is a regular language, meaning that it can be accepted by a finite state machine. Prove this by defining how to build—for any finite-size language L—a finite state machine M that accepts L and prove that L(M) = L. (Hint: a finite-size language has the notion of the "longest" word and a finite state machine can have a lot of states as long as its a finite number.)
 - 1) Since L is a finite size language, L is a regular language, we can build a machine that accepts L.

If a finite-size language has the notion of the longest word and the finite state machine can have a lot of states - finite number, we can start from q_0 and add states after each inputs, until we reach the accepting states.

Define the construction for a machine:

Q is a finite non empty sets of states

 Σ is a finite non empty alphabet of symbols

 q_0 is an initial state

A is a set of accepting states

 $\delta^{\star}(q,x)=p$ where $x\in \Sigma^{\star}$ and $q\in Q$ is a transition function from each states.

We know that if the automaton is in state q and reads input x then it goes to state p. The machine takes input as a state and a word, output a state such that the result of applying the single instance of the transition function to each letter keeping track of the state along the way.

2) Prove that L(M) = L

Assume $x \in L(M)$.

Since $L(M) = \{x \in \Sigma^* : \delta^*(q_0, x) \in A\}$, there exists a transition function $\delta^*(q_0, x) = A$.

Since L is a finite size regular language, there is a machine that will accept it.

We know x is arbitrary number and x has to be in some L. Then $x \in L$. Therefore, $L(M) \in L$ for L is some regular language.

Assume $x \in L$. Let x and L are arbitrary.

Since L is a finite size language and regular language, which means that there exists a Deterministic Finite Automata that accepts the language. Then there exist a transition function $\delta^{\star}(q_0, x) = A$ that transition to accepting states with some input x. Therefore, $x \in L(M)$, then $L \in L(M)$.

Therefore, L(M) = L