Boolean Model

Abstraction of search engine architecture

Search with Boolean query

- Boolean query
 - E.g., "obama" AND "healthcare" NOT "news"
- Procedures
 - Lookup query term in the dictionary
 - Retrieve the posting lists
 - Operation
 - AND: intersect the posting lists
 - OR: union the posting list
 - NOT: diff the posting list

Search with Boolean query

Example: AND operation

Trick for speed-up: when performing multi-way join, starts from lowest frequency term to highest frequency ones

Deficiency of Boolean model

- The query is unlikely precise
 - "Over-constrained" query (terms are too specific): no relevant documents found
 - "Under-constrained" query (terms are too general): over delivery
 - It is hard to find the right position between these two extremes (hard for users to specify constraints)
- Even if it is accurate
 - Not all users would like to use such queries
 - All relevant documents are not equally relevant
 - No one would go through all the matched results
- Relevance is a matter of degree!

Document Selection vs. Ranking

Ranking is often preferred

- Relevance is a matter of degree
 - Easier for users to find appropriate queries
- A user can stop browsing anywhere, so the boundary is controlled by the user
 - Users prefer coverage would view more items
 - Users prefer precision would view only a few

Retrieval procedure in modern IR

- Boolean model provides <u>all</u> the ranking candidates
 - Locate documents satisfying Boolean condition
 - E.g., "obama healthcare" -> "obama" OR "healthcare"
- Rank candidates by relevance
 - Important: the notation of relevance
- Efficiency consideration
 - Top-k retrieval (Google)

Notion of relevance

Some notations

- Vocabulary V={w₁, w₂, ..., w_N} of language
- Query $q = t_1,...,t_m$, where $t_i \in V$
- Document $d_i = t_{i1},...,t_{in}$, where $t_{ij} \in V$
- Collection C= {d₁, ..., d_k}
- Rel(q,d): relevance of doc d to query q
- Rep(d): representation of document d
- Rep(q): representation of query q

Vector Space Model

Relevance = Similarity

Assumptions

- Query and documents are represented in the same form
 - A query can be regarded as a "document"
- Relevance(d,q) \propto similarity(d,q)
- Key issues
 - How to represent query/document?
 - How to define the similarity measure $\Delta(x,y)$?

Vector space model

- Represent both doc and query by <u>concept</u> vectors
 - Each concept defines one dimension
 - K concepts define a high-dimensional space
 - Element of vector corresponds to concept weight
 - E.g., d=(x₁,...,x_k), x_i is "importance" of concept i
- Measure relevance
 - Distance between the query vector and document vector in this concept space

Documents as vectors

- So we have a |V|-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

Terms are axes of space

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model.
- Instead: rank more relevant documents higher than less relevant documents

How to assign weights?

- Important!
- Why?
 - Query side: not all terms are equally important
 - Doc side: some terms carry more information about the content
- How?
 - Two basic <u>heuristics</u>
 - TF (Term Frequency) = Within-doc-frequency
 - IDF (Inverse Document Frequency)

TF weighting

- Idea: a term is more important if it occurs more frequently in a document
- TF Formulas
 - Let f(t,d) be the frequency count of term t in doc d
 - Raw TF: tf(t,d) = f(t,d)

TF normalization

- Two views of document length
 - A doc is long because it is verbose
 - A doc is long because it has more content
- Raw TF is inaccurate
 - Document length variation
 - "Repeated occurrences" are less informative than the "first occurrence"
 - Relevance does not increase proportionally with number of term occurrence
- Generally penalize long doc, but avoid overpenalizing
 - Pivoted length normalization

TF normalization

Sublinear TF scaling

$$-tf(t,d) = \begin{cases} 1 + \log f(t,d), & \text{if } f(t,d) > 0\\ 0, & \text{otherwise} \end{cases}$$

tf	1 + log (tf)
0	0
1	1
2	1.3
3	1.47
4	1.6
5	1.7
6	1.77
10	2
100	3
1000	4

Document frequency

 Idea: a term is more discriminative if it occurs only in fewer documents

IDF weighting

- Solution
 - Assign higher weights to the rare terms
 - Formula $DF(t) = \log(\frac{N}{df(t)})$ Number of docs in collection $DF(t) = \log(\frac{N}{df(t)})$ Number of docs containing term t
 - A corpus-specific property
 - Independent of a single document

Example

Table 2. Raw frequency count used as score of documents

	disease	symptom	osteoporosis	
Doc 1	20	15	1	36
Doc 2	3	10	13	26

Table 3. log Normalized frequency (1 + log (tf)) used as score of documents

	disease	symptom	osteoporosis	
Doc 1	2.3	2.2	1	5.5
Doc 2	1.47	2	2.1	4.5 7

Example

Table 3. log Normalized frequency (1 + log (tf)) used as score of documents

	disease	symptom	osteoporosis	
Doc 1	2.3	2.2	1	5.5
Doc 2	1.47	2	2.1	4.57

Table 4. Idf score of words

	Document frequency	$IDF(t) = 1 + \log(\frac{N}{df(t)})$
disease	2000	1+ log (100,000/2000) = 2.7
symptom	300	1+ log (100,000/300) = 3.5
osteoporosis	10	1+ log (100,000/10) = 5

TF-IDF score of Doc 1 = 2.3*2.7 + 2.2*3.5 + 1*5 = 18.9TF-IDF score of Doc 2 = 1.47*2.7 + 2*3.5 + 2.1*5 = 21.5

Why document frequency

How about total term frequency?

$$-ttf(t) = \sum_{d} f(t, d)$$

Table 1. Example total term frequency v.s. document frequency in Reuters-RCV1 collection.

Word	ttf	df
try	10422	8760
insurance	10440	3997

TF-IDF weighting

- Combining TF and IDF
 - Common in doc → high tf→ high weight
 - Rare in collection → high idf → high weight
 - $-w(t,d) = TF(t,d) \times IDF(t)$
- Most well-known document representation schema in IR! (G Salton et al. 1983)

"Salton was perhaps the leading computer scientist working in the field of information retrieval during his time." - wikipedia

Gerard Salton Award

highest achievement award in IR

Question

 Suppose a user enters a single word query to two different search engines. One search engine uses normalized TF as score of documents and other search engine uses normalizedTF*IDF as score of documents. Will the two search engines produce different rankings of documents?