제 2 교시

# 수학 영역

#### 5지선다형

- 1.  $\left(\frac{2^{\sqrt{3}}}{2}\right)^{\sqrt{3}+1}$ 의 값은? [2점]
  - ①  $\frac{1}{16}$  ②  $\frac{1}{4}$  ③ 1 ④ 4

- **2.** 함수  $f(x) = 2x^2 + 5$ 에 대하여  $\lim_{x \to 2} \frac{f(x) f(2)}{x 2}$ 의 값은? [2점]
  - ① 8 ② 9

- ③ 10 ④ 11

- 3.  $\sin(\pi \theta) = \frac{5}{13}$  이고  $\cos \theta < 0$ 일 때,  $\tan \theta$ 의 값은? [3점]

  - ①  $-\frac{12}{13}$  ②  $-\frac{5}{12}$  ③ 0 ④  $\frac{5}{12}$  ⑤  $\frac{12}{13}$

$$f(x) = \begin{cases} -2x + a & (x \le a) \\ ax - 6 & (x > a) \end{cases}$$

가 실수 전체의 집합에서 연속이 되도록 하는 모든 상수 a의 값의 합은? [3점]

- $\bigcirc 1 -1$   $\bigcirc 2 -2$   $\bigcirc 3 -3$   $\bigcirc 4 -4$   $\bigcirc 5 -5$

 $\mathbf{5.}$  등차수열  $\{a_n\}$ 에 대하여

$$a_1 = 2a_5$$
,  $a_8 + a_{12} = -6$ 

일 때,  $a_2$ 의 값은? [3점]

- ① 17 ② 19
- ③ 21
- **4** 23
- **⑤** 25

- 6. 함수  $f(x) = x^3 3x^2 + k$ 의 극댓값이 9일 때, 함수 f(x)의 극솟값은? (단, k는 상수이다.) [3점]
  - 1
- ② 2
- ③ 3 ④ 4
- **⑤** 5

7. 수열  $\{a_n\}$ 의 첫째항부터 제n항까지의 합을  $S_n$ 이라 하자.

$$S_n = \frac{1}{n(n+1)}$$
일 때,  $\sum_{k=1}^{10} (S_k - a_k)$ 의 값은? [3점]

- ①  $\frac{1}{2}$  ②  $\frac{3}{5}$  ③  $\frac{7}{10}$  ④  $\frac{4}{5}$  ⑤  $\frac{9}{10}$

- **8.** 곡선  $y=x^3-4x+5$  위의 점 (1,2)에서의 접선이 곡선  $y = x^4 + 3x + a$ 에 접할 때, 상수 a의 값은? [3점]
  - ① 6
- ② 7
- 3 8
- **4** 9
- ⑤ 10

9. 닫힌구간 [0, 12] 에서 정의된 두 함수

$$f(x) = \cos \frac{\pi x}{6}$$
,  $g(x) = -3\cos \frac{\pi x}{6} - 1$ 

이 있다. 곡선 y=f(x)와 직선 y=k가 만나는 두 점의 x좌표를  $\alpha_1$ ,  $\alpha_2$ 라 할 때,  $\left|\alpha_1-\alpha_2\right|=8$ 이다. 곡선 y=g(x)와 직선 y=k가 만나는 두 점의 x좌표를  $\beta_1$ ,  $\beta_2$ 라 할 때,  $\left|\beta_1 - \beta_2\right|$ 의 값은? (단, k는 -1 < k < 1인 상수이다.) [4점]

- ① 3
- $2\frac{7}{2}$  34  $4\frac{9}{2}$  55

10. 수직선 위의 점 A(6)과 시각 t=0일 때 원점을 출발하여 이 수직선 위를 움직이는 점 P가 있다. 시각  $t(t \ge 0)$ 에서의 점 P의 속도 v(t)를

$$v(t) = 3t^2 + at \quad (a > 0)$$

이라 하자. 시각 t=2에서 점 P와 점 A 사이의 거리가 10일 때, 상수 *a*의 값은? [4점]

- ① 1
- ② 2
- ③ 3
- 4
- **⑤** 5

11. 함수  $f(x) = -(x-2)^2 + k$ 에 대하여 다음 조건을 만족시키는 자연수 n의 개수가 2일 때, 상수 k의 값은? [4점]

 $\sqrt{3}^{f(n)}$ 의 네제곱근 중 실수인 것을 모두 곱한 값이 -9이다.

- ① 8
- ② 9
- ③ 10
- 4 11
- ⑤ 12
- 12. 실수 t(t>0)에 대하여 직선 y=x+t와 곡선  $y=x^2$ 이 만나는 두 점을 A, B라 하자. 점 A를 지나고 x축에 평행한 직선이 곡선  $y=x^2$ 과 만나는 점 중 A가 아닌 점을 C, 점 B에서 선분 AC에 내린 수선의 발을 H라 하자.

 $\lim_{t\to 0+} \frac{\overline{\mathrm{AH}}-\overline{\mathrm{CH}}}{t}$  의 값은? (단, 점 A 의 x좌표는 양수이다.) [4점]

- ① 1
- ② 2
- ③ 3
- 4
- ⑤ 5



13. 그림과 같이 선분 AB를 지름으로 하는 반원의 호 AB 위에 두 점 C, D가 있다. 선분 AB의 중점 O에 대하여 두 선분 AD, CO가 점 E에서 만나고,

 $\overline{\text{CE}} = 4$ ,  $\overline{\text{ED}} = 3\sqrt{2}$ ,  $\angle \text{CEA} = \frac{3}{4}\pi$ 

이다.  $\overline{AC} \times \overline{CD}$ 의 값은? [4점]



- ①  $6\sqrt{10}$
- ②  $10\sqrt{5}$
- $3 16\sqrt{2}$

- $4) 12\sqrt{5}$
- ⑤  $20\sqrt{2}$

14. 최고차항의 계수가 1이고 f(0)=0, f(1)=0인 삼차함수 f(x)에 대하여 함수 g(t)를

$$g(t) = \int_{t}^{t+1} f(x) dx - \int_{0}^{1} |f(x)| dx$$

라 할 때, <보기>에서 옳은 것만을 있는 대로 고른 것은? [4점]

----<보 기>---

- ㄱ. g(0) = 0 이면 g(-1) < 0 이다.
- ㄴ. g(-1) > 0이면 f(k) = 0을 만족시키는 k < -1인 실수 k가 존재한다.
- □. g(-1) > 1 이면 g(0) < -1 이다.</p>

- ① ¬ ② ¬, ∟ ③ ¬, ⊏
- ④ ∟, ⊏
  ⑤ ¬, ∟, ⊏

## 6

### 수학 영역

15. 수열  $\{a_n\}$ 이 다음 조건을 만족시킨다.

(가) 모든 자연수 k에 대하여  $a_{4k}\!=\!r^k$ 이다. (단, r는 0 < |r| < 1인 상수이다.)

(나)  $a_1 < 0$ 이고, 모든 자연수 n에 대하여

$$a_{n+1} = \left\{ \begin{array}{ll} a_n + 3 & \left( \left| a_n \right| < 5 \right) \\ \\ -\frac{1}{2} a_n & \left( \left| a_n \right| \geq 5 \right) \end{array} \right.$$
 
$$\circ \mid \text{T}.$$

 $\left|a_{m}\right| \geq 5$ 를 만족시키는 100 이하의 자연수 m의 개수를 p라 할 때,  $p+a_1$ 의 값은? [4점]

- ① 8
- 2 10
- ③ 12 ④ 14
- **⑤** 16

#### 단답형

16. 방정식  $\log_3(x-4) = \log_9(x+2)$ 를 만족시키는 실수 x의 값을 구하시오. [3점]

17. 함수 f(x)에 대하여  $f'(x) = 6x^2 - 4x + 3$ 이고 f(1) = 5일 때, f(2)의 값을 구하시오. [3점]

## 수학 영역

18. 수열  $\{a_n\}$ 에 대하여  $\sum_{k=1}^5 a_k = 10$ 일 때,

$$\sum_{k=1}^{5} c a_k = 65 + \sum_{k=1}^{5} c$$

를 만족시키는 상수 c의 값을 구하시오. [3점]

**19.** 방정식  $3x^4 - 4x^3 - 12x^2 + k = 0$ 이 서로 다른 4개의 실근을 갖도록 하는 자연수 k의 개수를 구하시오. [3점]

**20.** 상수 k(k < 0)에 대하여 두 함수

$$f(x) = x^3 + x^2 - x$$
,  $g(x) = 4|x| + k$ 

의 그래프가 만나는 점의 개수가 2일 때, 두 함수의 그래프로 둘러싸인 부분의 넓이를 S라 하자.  $30 \times S$ 의 값을 구하시오. [4점]

#### 8

### 수학 영역

**21.** 그림과 같이 곡선  $y=2^x$  위에 두 점  $P(a,2^a)$ ,  $Q(b,2^b)$ 이 있다. 직선 PQ의 기울기를 m이라 할 때, 점 P를 지나며 기울기가 -m인 직선이 x축, y축과 만나는 점을 각각 A, B라 하고, 점 Q를 지나며 기울기가 -m인 직선이 x축과 만나는 점을 C라 하자.

$$\overline{AB} = 4\overline{PB}$$
,  $\overline{CQ} = 3\overline{AB}$ 

일 때,  $90 \times (a+b)$ 의 값을 구하시오. (단, 0 < a < b) [4점]



**22.** 최고차항의 계수가 1이고 x=3에서 극댓값 8을 갖는 삼차함수 f(x)가 있다. 실수 t에 대하여 함수 g(x)를

$$g(x) = \begin{cases} f(x) & (x \ge t) \\ -f(x) + 2f(t) & (x < t) \end{cases}$$

라 할 때, 방정식 g(x)=0의 서로 다른 실근의 개수를 h(t)라 하자. 함수 h(t)가 t=a에서 불연속인 a의 값이 두 개일 때, f(8)의 값을 구하시오. [4점]

- \* 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
- 이어서, 「선택과목(확률과 통계)」 문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.

제 2 교시

# 수학 영역(미적분)

5지선다형

**23.**  $\lim_{x\to 0} \frac{4^x-2^x}{x}$ 의 값은? [2점]

- ① ln 2 ② 1
- $3 2 \ln 2$  4 2  $5 3 \ln 2$

24.  $\int_0^{\pi} x \cos\left(\frac{\pi}{2} - x\right) dx$ 의 값은? [3점]

- ①  $\frac{\pi}{2}$  ②  $\pi$  ③  $\frac{3\pi}{2}$  ④  $2\pi$  ⑤  $\frac{5\pi}{2}$

**25.** 수열  $\{a_n\}$ 에 대하여  $\lim_{n\to\infty} \frac{a_n+2}{2} = 6$ 일 때,

 $\lim_{n\to\infty}\frac{na_n+1}{a_n+2n}$ 의 값은? [3점]

- ① 1 ② 2 ③ 3 ④ 4
- ⑤ 5
- **26.** 그림과 같이 양수 k에 대하여 곡선  $y = \sqrt{\frac{kx}{2x^2 + 1}}$  와

x축 및 두 직선 x=1, x=2로 둘러싸인 부분을 밑면으로 하고 x축에 수직인 평면으로 자른 단면이 모두 정사각형인 입체도형의 부피가  $2 \ln 3$ 일 때, k의 값은? [3점]



- $\bigcirc$  6
- ② 7
- 3 8
- **4** 9
- ⑤ 10

## 수학 영역(미적분)

3

**27.** 그림과 같이  $\overline{A_1B_1} = 4$ ,  $\overline{A_1D_1} = 1$ 인 직사각형  $A_1B_1C_1D_1$ 에서 두 대각선의 교점을  $E_1$ 이라 하자.

 $\overline{A_2D_1}=\overline{D_1E_1}$ ,  $\angle A_2D_1E_1=\frac{\pi}{2}$ 이고 선분  $D_1C_1$ 과 선분  $A_2E_1$ 이 만나도록 점  $A_2$ 를 잡고,  $\overline{B_2C_1}=\overline{C_1E_1}$ ,  $\angle B_2C_1E_1=\frac{\pi}{2}$ 이고 선분  $D_1C_1$ 과 선분  $B_2E_1$ 이 만나도록 점  $B_2$ 를 잡는다. 두 삼각형  $A_2D_1E_1$ ,  $B_2C_1E_1$ 을 그린 후  $\bowtie$  모양의 도형에 색칠하여 얻은 그림을  $R_1$ 이라 하자.

그림  $R_1$ 에서  $\overline{A_2B_2}:\overline{A_2D_2}=4:1$ 이고 선분  $D_2C_2$ 가 두 선분  $A_2E_1$ ,  $B_2E_1$ 과 만나지 않도록 직사각형  $A_2B_2C_2D_2$ 를 그린다. 그림  $R_1$ 을 얻은 것과 같은 방법으로 세 점  $E_2$ ,  $A_3$ ,  $B_3$ 을 잡고 두 삼각형 A<sub>3</sub>D<sub>2</sub>E<sub>2</sub>, B<sub>3</sub>C<sub>2</sub>E<sub>2</sub>를 그린 후 ₩ 모양의 도형에 색칠하여 얻은 그림을  $R_2$ 라 하자.

이와 같은 과정을 계속하여 n번째 얻은 그림  $R_n$ 에 색칠되어 있는 부분의 넓이를  $S_n$ 이라 할 때,  $\lim S_n$ 의 값은? [3점]



- ①  $\frac{68}{5}$  ②  $\frac{34}{3}$  ③  $\frac{68}{7}$  ④  $\frac{17}{2}$  ⑤  $\frac{68}{9}$

**28.** 그림과 같이 반지름의 길이가 1이고 중심각의 크기가  $\frac{\pi}{2}$ 인

부채꼴 OAB가 있다. 호 AB 위의 점 P에 대하여  $\overline{PA} = \overline{PC} = \overline{PD}$ 가 되도록 호 PB 위에 점 C와 선분 OA 위에 점 D를 잡는다. 점 D를 지나고 선분 OP와 평행한 직선이 선분 PA 와 만나는 점을 E라 하자.  $\angle POA = \theta$ 일 때, 삼각형 CDP의 넓이를  $f(\theta)$ , 삼각형 EDA의 넓이를  $g(\theta)$ 라 하자.

 $\lim_{\theta \to 0+} \frac{g(\theta)}{\theta^2 \times f(\theta)}$ 의 값은? (단,  $0 < \theta < \frac{\pi}{4}$ ) [4점]



- ①  $\frac{1}{8}$ 
  - $2\frac{1}{4}$   $3\frac{3}{8}$
- $4 \frac{1}{2}$   $5 \frac{5}{8}$

#### 4

#### 수학 영역(미적분)

#### 단답형

**29.** 함수  $f(x) = e^x + x$ 가 있다. 양수 t에 대하여 점 (t, 0)과 점 (x, f(x)) 사이의 거리가 x = s에서 최소일 때, 실수 f(s)의 값을 g(t)라 하자. 함수 g(t)의 역함수를 h(t)라 할 때, h'(1)의 값을 구하시오. [4점]



**30.** 최고차항의 계수가 1인 사차함수 f(x)와 구간  $(0, \infty)$ 에서  $g(x) \ge 0$ 인 함수 g(x)가 다음 조건을 만족시킨다.

- (가)  $x \le -3$ 인 모든 실수 x에 대하여  $f(x) \ge f(-3)$ 이다.
- (나) x > -3인 모든 실수 x에 대하여  $g(x+3)\{f(x)-f(0)\}^2 = f'(x)$ 이다.

 $\int_{4}^{5} g(x) dx = \frac{q}{p}$ 일 때, p+q의 값을 구하시오. (단, p와 q는 서로소인 자연수이다.) [4점]

- \* 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인 하시오.
- 이어서, 「선택과목(기하)」 문제가 제시되오니, 자신이 선택한 과목인지 확인하시오.