1 6 3 . . .

POWERED BY Dialog

PROCESSING METHOD AND PROCESSOR USING THE SAME

Publication Number: 09-005650 (JP 9005650 A), January 10, 1997

Inventors:

- ARAKI KEISUKE
- AKIYAMA KENJI

Applicants

• CANON INC (A Japanese Company or Corporation), JP (Japan)

Application Number: 07-178236 (JP 95178236), June 21, 1995

International Class (IPC Edition 6):

- G02B-025/00
- G02B-027/00
- G06F-017/50

JAPIO Class:

- 29.2 (PRECISION INSTRUMENTS--- Optical Equipment)
- 45.4 (INFORMATION PROCESSING--- Computer Applications)

Abstract:

PURPOSE: To obtain a processing method adequate for paraxial calculation of an optical system for calculating the paraxial quantity developed around the reference axis of the optical system including a curved surface (off-axial curved surface) which is not the plane having the plane normal not aligned to the reference axis at the point where the optical path (reference axis) of the reference wavelength from an object plane to an image plane intersects with the curved surface and a processor using the same.

CONSTITUTION: At least one among A, D, B, .phi. of the Gaussian bracket by which the calculation equation is obtained, focal length, two principal point positions, magnification .beta. and the paraxial quantity of back focus are calculated for each of the respective faces or over the entire system by the technique developed around the reference axis of the optical system including the off-axial curved surface which is not the plane having the plane normal not aligned to the reference axis at the point where the reference axis of the reference wavelength from the object plane to an image plane intersects with the curved surface.

JAPIO

© 2003 Japan Patent Information Organization. All rights reserved. Dialog® File Number 347 Accession Number 5390850

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-5650

(43)公開日 平成9年(1997)1月10日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	FΙ			技術表示箇所
G02B	25/00			G 0 2 B	25/00	Α	
	27/00				27/00		
G06F	17/50			G06F	15/60	680A	

		審査請求	未請求 請求項の数22 FD (全 54 頁)
(21)出願番号	特膜平7-178238	(71)出願人	000001007 キヤノン株式会社
(22)出顧日	平成7年(1995)6月21日		東京都大田区下丸子3丁目30番2号
		(72)発明者	荒木 敬介 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内
		(72)発明者	秋山 健志 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内
		(74)代理人	弁理士 高梨 幸雄
		,	

(54) 【発明の名称】 処理方法及びそれを用いた処理装置

(57)【要約】

【目的】 物体面から像面にいたる基準波長の光路(基 準軸)が曲面と交わる点において面法線が基準軸と一致 しない平面ではない曲面(Off-Axial曲面)を含む光学 系の、基準軸のまわりに展開した近軸量を計算する光学 系の近軸計算に好適な処理方法及びそれを用いた処理装 置を得ること。

【構成】 物体面から像面にいたる基準波長の基準光線 の基準軸が曲面と交わる点において面法線が基準軸と一 致しない平面ではないOff-Axial曲面を含む光学系の、 該基準軸のまわりに展開する手法で計算式が得られるガ ウシャンブラケットのA. D. B. Φ. 焦点距離、2つ の主点位置、倍率β、バックフォーカスの近軸量の少な くとも1つを各面毎または全系にわたって計算するよう にしたこと。

*トすることを特徴とする処理方法。

トすることを特徴とする処理方法。

【請求項3】 物体面から像面にいたる基準波長の基準

光線の基準軸が曲面と交わる点において面法線が基準軸

と一致しない平面ではないOff-Axial曲面を含む光学系

の、該基準軸のまわりにする展開する手法で計算式が得 られるガウシャンブラケットのA, D, B, Φ, 焦点距

離、2つの主点位置、倍率β、バックフォーカスの近軸

量の少なくとも1つを複数のアジムスで、各面毎、ある

いは全系にわたって計算してその近軸量のアジムス依存

【請求項4】 物体面から像面にいたる基準波長の基準

軸が曲面と交わる点において面法線が基準軸と一致しな

い平面ではないOff-Axia1曲面を含む光学系の、Off-Axi

al曲面の形状を、上記基準軸と面とのの交点を原点とし

z軸を面法線とした座標系で2次の項から始まる平面べ

1

【特許請求の範囲】

【請求項1】 物体面から像面にいたる基準波長の基準 光線の基準軸が曲面と交わる点において面法線が基準軸 と一致しない平面ではないOff-Axial曲面を含む光学系 の、該基準軸のまわりに展開する手法で計算式が得られ るガウシャンプラケットのA, D, B, Φ, 焦点距離、 2つの主点位置、倍率β、バックフォーカスの近軸量の 少なくとも1つを各面毎または全系にわたって計算する ようにしたことを特徴とする処理方法。

【請求項2】 物体面から像面にいたる基準波長の基準 10 性を表示装置に表示、またはブリンターにブリントアウ 光線の基準軸が曲面と交わる点において面法線が基準軸 と一致しない平面ではないOff-Axial曲面を含む光学系 の、該基準軸のまわりに展開する手法で計算式が得られ るガウシャンブラケットのA, D, B, Φ, 焦点距離、 2つの主点位置、倍率β、バックフォーカスの近軸量の 少なくとも1つを各面毎、あるいは全系にわたって計算 して表示装置に表示、またはプリンターにプリントアウォ

 $Z(X,Y)=C_{20}X^{2}+2C_{11}XY+C_{01}Y^{2}+D_{10}X^{3}+3D_{11}X^{2}Y+3D_{11}XY^{2}+D_{01}Y^{3}$

 $+E_{40} x^{4} + 4E_{31} x^{3} y + 6E_{42} x^{2} y^{2} + 4E_{13} xy^{3} + E_{04} y^{4} + \dots$ (数式1)

ースの式

に表示する、あるいはプリンターにプリントアウトする ことを特徴とする処理方法。

【請求項5】 物体面から像面にいたる基準波長の基準 軸が曲面と交わる点において面法線が基準軸と一致しな※

と表現される非対称非球面の多項式で計算して表示装置 20% い平面ではないOff-Axia1曲面を含む光学系の、Off-Axi al曲面の形状を、上記交点を原点としz軸を面法線とし た座標系で2次の項から始まるOff-Axial2次曲面ベー スの式

【数1】

 $(1/a+1/b)(\cos^2(t)y^2+x^2)$

2cos(t)[1+1/2(1/a-1/b)sin(t)y+/1+(1/a-1/b)sin(t)y-y²/ab-[1/ab+1/4tan²(t)(1/a+1/b)²]x²] $+C_{30}x^{3}+C_{21}x^{2}y+C_{12}xy^{2}+C_{03}y^{3}+C_{40}x^{4}+C_{31}x^{3}y$ $+C_{22}x^2y^2+C_{12}xy^3+C_{04}y^4+....+...$ (数式28)

と表現される非対称非球面の式で計算して表示する、あ るいはブリンターにブリントアウトすることを特徴とす る処理方法。

【請求項6】 物体面から像面にいたる基準波長の基準 軸が曲面と交わる点において面法線が基準軸と一致しな★ ★い平面ではないOff-Axial曲面を含む光学系の、Off-Axi a1曲面の形状を、上記交点を原点としz軸を面法線とし た座標系で2次の項から始まるトーリック面ベースの式 【数2】

$$z=R-(R-s)\sqrt{1-\frac{y^2}{(R-s)^2}}$$

$$+C_{30}x^3+C_{21}x^2y+C_{12}xy^2+C_{03}y^3+C_{40}x^4+C_{31}x^3y$$
 $+C_{22}x^2y^2+C_{13}xy^3+C_{04}y^4+.....+....$ ただしRは母線の曲率半径、 s は $s=s$ (x)で子線断面の形状の式である。 (数式29)

と表現される非対称非球面の式で計算して表示する、あ るいはブリンターにブリントアウトすることを特徴とす る処理方法。

【請求項7】 物体面から像面にいたる基準波長の基準 50 【数3】

軸が曲面と交わる点において面法線が基準軸と一致しな い平面ではないOff-Axia1曲面を含む光学系の、基準軸 のまわりに展開した

 $2(N'\cos\theta'-N\cos\theta)(\cos\xi'\cos\xi'\cos\xi'\cos\theta'\sin\xi'\cos\xi'+\cos\theta\cos\xi'\sin\xi')C11+\cos\theta\cos\theta'\sin\xi'\sin\xi'C20)$

Φ=
$$\frac{\sqrt{\cos\theta\cos\theta'(\cos\xi'\cos\xi+\cos\theta\sin\xi'\sin\xi)(\cos\theta'\sin\xi'\sin\xi+\cos\theta\cos\xi'\cos\xi)}}{\sqrt{\cos\theta\cos\xi'\cos\xi'\cos\xi+\cos\theta\sin\xi'\sin\xi'\sin\xi}}$$
 (数式10)

で定義されるOff-Axial曲面の近軸量各面でとに計算

h, '=A, h, (数式13) α_{ν} '= Φ_{ν} h_{ν} + D_{ν} α_{ν} (数式14) h_{ν ,1}=h_ν '-e_ν ' α_ν ' (数式15) α_{ν} . $= \alpha_{\nu}$ (数式16)

で定義される近軸トレースの式を使って全系あるいはブ ロックの近軸量A、B、Φ、Dを複数のアジムスについ 20 準軸が曲面と交わる点において面法線が基準軸と一致し て計算し、全系あるいはブロックの近軸量A, B, Φ, Dがほぼアジムス依存性がないように各構成面の形状を 決定することを特徴とする処理方法。

【請求項8】 請求項7の処理方法および装置におい *

 $\cos \theta$ ($\cos \theta$ ' $\sin \xi$ ' $\sin \xi$ + $\cos \theta$ $\cos \xi$ ' $\cos \xi$) $\cos \theta$ '($\cos \theta$ ' $\cos \mathcal{E}$ ' $\cos \mathcal{E}$ + $\cos \theta \sin \mathcal{E}$ ' $\sin \mathcal{E}$)

* て、全系あるいはブロックの近軸量A, B, Φ, Dがア ジムス依存性が最も小さくなるように、各構成面の形状 を決定する手段として自動設計の手法を用いることを特 徴とする処理方法。

【請求項9】 請求項1から請求項8のいずれか1項記 載の処理方法を用いていることを特徴とする処理装置。

【請求項10】 物体面から像面にいたる基準波長の基 ない平面ではないOff-Axial曲面を含む光学系の、基準 軸のまわりに展開した

【数4】

(数式8)

(数式9)

2(N'cos θ'-Noos θ) (cos ξ 'cos ξ CO2+(cos θ'sin ξ 'cos ξ +cos θ cos ξ 'sin ξ)C11+cos θ cos θ 'sin ξ 'sin ξ C20)

(数式10) $\sqrt{\cos\theta\cos\theta'(\cos\theta'\cos\xi'\cos\xi'\cos\xi+\cos\theta\sin\xi'\sin\xi)(\cos\theta'\sin\xi'\sin\xi+\cos\theta\cos\xi'\cos\xi)}$

で定義されるOff-Axial曲面の近軸量各面ごとに計算 し、

h_ν '=A_ν h_ν (数式13) α_{ν} '= Φ_{ν} h_{ν} + D_{ν} α_{ν} (数式14) h_{ν .1}=h_ν '-e_ν ' α_ν ' (数式15) α_{ν} , α_{ν} (数式16)

で定義される近軸トレースの式を使って全系の近軸量 A, B, Φ, Dを複数のアジムスについて計算した時、 全系の近軸量A, B, Φ, Dがほぼアジムス依存性がな いように各構成面の形状が決定されていることを特徴と する光学系。

40 【請求項11】 物体面から像面にいたる基準波長の基 準軸が曲面と交わる点において面法線が基準軸と一致し ない平面ではないOff-Axial曲面を含む光学系の、基準 軸のまわりに展開した

【数5】

 $\cos \theta$ ($\cos \theta$ ' $\sin \xi$ ' $\sin \xi$ + $\cos \theta$ $\cos \xi$ ' $\cos \xi$) D=1/A= (数式9) $\cos \theta$ '($\cos \theta$ ' $\cos E$ ' $\cos E + \cos \theta \sin E$ ' $\sin E$)

 $2(N'\cos\theta'-N\cos\theta)(\cos\xi'\cos\xi)\cos\xi'\cos\theta'\sin\xi'\cos\xi'+\cos\theta\cos\xi'\sin\xi')C11+\cos\theta\cos\theta'\sin\xi'\sin\xi'(20)$

Φ= (数式10) $\sqrt{\cos\theta\cos\theta}$ '(cos θ 'cos ξ 'cos ξ +cos θ sin ξ 'sin ξ)(cos θ 'sin ξ 'sin ξ +cos θ cos ξ 'cos ξ)

で定義されるOff-Axial曲面の近軸量各面ごとに計算

h, '=A, h, (数式13) α_{ν} '= Φ_{ν} h $_{\nu}$ +D $_{\nu}$ α_{ν} (数式14) $h_{\nu + 1} = h_{\nu} \cdot -e_{\nu} \cdot \alpha_{\nu}$ (数式15) $\alpha_{\nu \rightarrow 1} = \alpha_{\nu}$ (数式16)

で定義される近軸トレースの式を使って全系の近軸量 A, B, Φ, Dを複数のアジムスについて計算した時、 全系の近軸量A, B, Φ, Dがほぼアジムス依存性がな いように各構成面の形状が決定されており、かつ物体面 距離あるいは像面距離のどちらか片方が無限遠であるこ とを特徴とする光学系。

【請求項12】 前記光学系のすべて面はOff-Axial反 射面であることを特徴とする請求項11の光学系。

【請求項13】 前記光学系の構成面はOff-Axial反射 面と共軸の屈折面であることを特徴とする請求項11の 光学系。

A=
$$\sqrt{\frac{\cos \theta'(\cos \theta'\cos \xi'\cos \xi + \cos \theta \sin \xi'\sin \xi)}{\cos \theta(\cos \theta'\sin \xi'\sin \xi + \cos \theta\cos \xi'\cos \xi)}}$$

 $\cos \theta$ ($\cos \theta$ ' $\sin \xi$ ' $\sin \xi$ + $\cos \theta$ $\cos \xi$ ' $\cos \xi$) D=1/A= $\cos \theta$ '($\cos \theta$ ' $\cos E$ ' $\cos E + \cos \theta \sin E$ ' $\sin E$)

*【請求項14】 前記光学系は少なくとも1面の反射面 を含み、その反射面が C_1 ,が0で C_2 と C_2 。 $\cos^2\theta$ の比 がほぼ1になる面または

6

 $C_{11}=0$, $C_{02}=C_{20}$ $\cos^2\theta$ (数式27)

の反射面がアジムス依存性を持たない条件をみたす面で あることを特徴とする請求項11の光学系。

【請求項15】 前記光学系において含まれる反射面は 20 すべてC,,が0でC,,とC,,cos' θの比がほぼ1になる 面または

 $C_{1,1}=0$, $C_{0,2}=C_{2,0}$ $\cos^2\theta$ (数式27) の反射面がアジムス依存性を持たない条件をみたす面で あることを特徴とする請求項11の光学系。

【請求項16】 物体面から像面にいたる基準波長の基 準軸が曲面と交わる点において面法線が基準軸と一致し ない平面ではないOff-Axial曲面を含む光学系の、該基 準軸のまわりに展開した

【数6】

(数式8)

(数式9)

 $2(N'\cos\theta'-N\cos\theta)(\cos\xi'\cos\xi)(\cos\xi'\sin\xi'\cos\xi+\cos\theta\cos\xi'\sin\xi)C11+\cos\theta\cos\theta'\sin\xi'\sin\xi$ (数式10) $\sqrt{\cos\theta\cos\theta}$ '($\cos\theta$ 'cos ξ 'cos ξ +cos θ sin ξ 'sin ξ)(cos θ 'sin ξ 'sin ξ +cos θ cos ξ 'cos ξ)

で定義されるOff-Axial曲面の近軸量各面ごとに計算

し、 h, '=A, h, (数式13) αν '=Φν hν +Dν αν (数式14) h_{ν . 1} =h_ν '-e_ν ' α_ν ' (数式15) α_{ν} , $= \alpha_{\nu}$ ' (数式16)

で定義される近軸トレースの式を使って全系の近軸量 A, B, Φ, Dを複数のアジムスについて計算した時、 全系の近軸量A, B, Φ , Dがほぼアジムス依存性がな 50 $C_{1,1}=0$, $C_{0,2}=C_{2,0}$ cos² θ

いように各構成面の形状が決定されており、かつ物体面 距離および像面距離のどちらも有限距離であることを特 徴とする光学系。

【請求項17】 前記光学系はすべて面がOff-Axial射 面であることを特徴とする請求項16の光学系。

【請求項18】 前記光学系は少なくとも1面の反射面 を含み、その反射面が C_{11} が0で C_{01} と C_{10} cos 1 θ の比 がほぼ1になる面または

(数式27)

の反射面がアジムス依存性を持たない条件をみたす面で あることを特徴とする請求項16の光学系。

【請求項19】 前記光学系において含まれる反射面は すべて C_{11} が0で C_{12} と C_{13} cos 3 θ の比がほぼ1 になる 面または

 $C_{11}=0$ 、 $C_{02}=C_{20}$ cos² θ (数式27)

の反射面がアジムス依存性を持たない条件をみたす面で*

*あることを特徴とする請求項16の光学系。

【請求項20】 物体面から像面にいたる基準波長の基準軸が曲面と交わる点において面法線が基準軸と一致しない平面ではないOff-Axial曲面を含む光学系が複数のブロックに別れており、全系を通しての基準軸のまわりに展開した

【数7】

(数式8)

(数式9)

 $2(N'\cos\theta'-N\cos\theta)(\cos\xi'\cos\xi)\cos\xi'\cos\theta'\sin\xi'\cos\xi+\cos\theta\cos\xi'\sin\xi)C11+\cos\theta\cos\theta'\sin\xi'\sin\xi$

Φ= $\frac{}{\sqrt{\cos\theta\cos\theta'\cos\xi'\cos\xi'\cos\xi+\cos\theta\sin\xi'\sin\xi')(\cos\theta'\sin\xi'\sin\xi+\cos\theta\cos\xi'\cos\xi)}}$ (数式10)

で定義されるOff-Axial曲面の近軸量各面ごとに計算し

h, '=A, h, (数式13) α, '=Φ, h, +D, α, (数式14)

h_{ν ,1}=h_ν '-e_ν ' α_ν ' (数式15)

 $\alpha_{\nu,1} = \alpha_{\nu}$ (数式16)

で定義される近軸トレースの式を使って各ブロックの近軸量A, B, Φ, Dを複数のアジムスについて計算した時、各ブロックの近軸量A, B, Φ, Dがほぼアジムス依存性がないように各構成面の形状が決定されており、それらのブロックの間の間隔を変化させることによって 30 ズームを行なうことを特徴とするズームレンズ光学系。

【請求項21】 前記ズームレンズ光学系は少なくとも 1面の反射面を含み、その反射面が C_1 が0で C_2 と C_3 。 $\cos^3\theta$ の比がほぼ1になる面または

 $C_{1}=0$ 、 $C_{0,2}=C_{0,0}\cos^{2}\theta$ (数式27)

の反射面がアジムス依存性を持たない条件をみたす面で あることを特徴とする請求項20のズームレンズ光学 系。

【請求項22】 前記ズームレンズ光学系において含まれる反射面はすべて C_{11} が0で C_{01} と C_{10} cos 1 θ の比が 40 ほぼ1 になる面または

 $C_{11}=0$ 、 $C_{02}=C_{20}$ cos² θ (数式27)

の反射面がアジムス依存性を持たない条件をみたす面で あることを特徴とする請求項20のズームレンズ光学 系。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光学系の近軸計算を行う為の処理方法及びそれを用いた処理装置に関し、特に、物体面から像面にいたる基準波長の光路(以下「基

20 準軸」ともいう。)が曲面と交わる点において面法線が 基準軸と一致しない平面ではない曲面(以下「Off-Axia 1曲面」ともいう。)を含む光学系の、基準軸のまわり に展開した近軸量を計算することを特徴とする光学系の 近軸計算に好適な処理方法及びそれを用いた処理装置に 関する。

【0002】また本発明は、光学系の構成面の表現にかかわる処理方法及びそれを用いた処理装置に関し、特に、物体面から像面にいたる基準波長の光路(基準軸)曲面と交わる点において面法線が基準軸と一致しない平面ではない曲面(Off-Axia)曲面)を含む光学系の構成面の表現にかかわる処理方法及びそれを用いた処理装置に関する。

【0003】また本発明は、物体面から像面にいたる基準波長の光路(基準軸)が曲面と交わる点において面法線が基準軸と一致しない平面ではない曲面(Off-Axial曲面)を含む光学系の形状決定のために好適な処理方法及びそれを用いた処理装置に関する。

【0004】更に本発明は、物体面から像面にいたる基準波長の光路(基準軸)が曲面と交わる点において面法線が基準軸と一致しない平面ではない曲面(Off-Axia)曲面)を含むOff-Axia)光学系に関する。

[0005]

【従来の技術】従来より各面の回転対称軸である光軸のまわりに回転対称の屈折面または反射面を配置してなる共軸光学系が物体面の像を像面に結像する光学系として用いられてきた。共軸光学系の構成面の表現法としてはその光学系の回転対称軸である光軸と各面の交点である面頂点をローカル座標の原点とした面形状の表現式、数式a、あるいは数式bが主として用いられている。

に、物体面から像面にいたる基準波長の光路(以下「基 50 【0006】尚、数式a, bは本明細書の実施例の説明

の最後に一括して表示している。以下、数式として直接 表示していない式も同様にして実施例の説明の最後に一 括して表示している。

【0007】そしてその共軸光学系の骨組みを決めるも のとして、共軸系の近軸理論があり、共軸光学系の設計 の際に焦点距離や倍率を決めるのに用いられている。そ してそうした近軸量を用いて共軸光学系の骨組みが決め られ、収差をターゲットとした自動設計法などにより共 軸光学系の形状が決定されている。

ay) のような表示系においては従来の共軸光学系の範疇 には属さない非対称非球面を用いた設計(主として反射 面)が自動設計技術の向上に伴いしばしば見うけられる ようになってきている。

【0009】こうした非対称非球面の表現方法として は、共軸系の上記式で表わされる面が大きく偏心してい て光学系として使っている部分は光軸から大きく離れた 部分であるとする「共軸光学系の偏心による非対称非球 面の表現方法」(図42参照)が一般的であり、そうし たりもしていた。

【0010】そして上述した座標系を用い、光学配置の 骨組みや焦点距離や倍率といった合理的な評価量もそろ わないままとうした光学系(Off-Axial光学系)を、像面 でのスポットの絞られかただけをッターゲットにした自 動設計の手法で、あるいは軸外までよく収差のとれた共 軸光学系の軸外部分だけを用いるといった手法で設計し ていた。

[0011]

【発明が解決しようとする課題】しかしながら、こうし た光学系(Off-Axia]光学系) に対して「共軸光学系の偏 心による非対称非球面の表現方法」は、実際の光線があ たり使用される部分の表現の原点が使用される部分の中 にないことが多く、原点を使用領域に来るように一度座* * 標変換しないデータでは実際の面の加工、測定の際には ひどく不便であった(問題点1)。

10

【0012】またこうした光学系(Off-Axial光学系)の 各面の形状を変化させて光学系としての性能を最適化す る場合、使用する面の部分の中心を結ぶ線の折れ曲がり 方も大きく変化して光学系の骨組みの基本配置が固定で きないという問題(問題点2)もあった。(図42参 照) そして、こうした光学系(Off-Axial光学系) に対し ては共軸系の近軸論・収差論の手法は、光線のあたる部 【0008】ところが最近、HMD (head mount displ 10 分の近傍に対称軸が存在しないので意味を持たず、かと いって一般的なOff-Axial光学系を普遍的に扱える理論 はまだ構築されていなかった。そしてこうした光学系(O ff-Axial光学系) に対しては光学系の設計の際の目安と なる合理的な一般的に焦点距離や倍率を計算することも できなかった(問題点3)。

> 【0013】従って、Off-Axial光学系の形状決定は試 行錯誤に頼らざるをえず、効率的な形状決定方法が確立 しているとは言い難かった(問題点4)。

【0014】そして得られた光学系も「共軸光学系の偏 て表現した光学系に無理やり共軸系の近軸理論を適用し 20 心による非対称非球面の表現方法」によって表現されて いるため、対称な面を偏心させただけの非対称非球面で 完全な非対称非球面とは言い難く、従って非対称非球面 としての設計の自由度も低く十分な性能の光学系と言い 難いものも多かった(問題点5)。

[0015]

【課題を解決するための手段】本発明は問題点1. 問題 点2を解決するために、さらに問題点3を解決する理論 及び処理方法を構築するために、こうしたOff-Axial光 学系に対しても、物体面から像面にいたる基準波長の光 路(基準軸)が曲面と交わる点において面法線が基準軸 と一致しない平面ではない曲面(Off-Axial曲面)を含む 光学系の、Off-Axia1曲面の形状を、上記交点を原点と しz軸を面法線とした座標系で2次の項から始まる

 $Z(X,Y)=C_{20}X^{2}+2C_{11}XY+C_{02}Y^{2}+D_{30}X^{3}+3D_{21}X^{2}Y+3D_{12}XY^{2}+D_{03}Y^{3}$ $+E_{40} \times^{4} +4E_{33} \times^{3} \vee +6E_{22} \times^{2} \vee^{2} +4E_{13} \times \vee^{3} +E_{04} \vee^{4} +...$ (数式1) ※【数8】

[0016]

または

 $(1/a+1/b)(\cos^2(t)y^2+x^2)$

 $2\cos(t)[1+1/2(1/a-1/b)\sin(t)y+\sqrt{1+(1/a-1/b)\sin(t)y-y^2/ab-\{1/ab+1/4tan^2(t)(1/a+1/b)^2\}x^2}]$ $+C_{30}x^3+C_{21}x^2y+C_{12}xy^2+C_{03}y^3+C_{40}x^4+C_{31}x^3y$ $+C_{22}x^2y^2+C_{13}xy^3+C_{04}y^4+....+...$ (数式28)

または [0017] 【数9】

$$z=R-(R-s)\sqrt{1-\frac{y^2}{(R-s)^2}}$$

(数式29)

で表わされる非対称非球面の式をOff-Axial曲面の表現 式として用いる。

【0018】そして光学系の骨組みを決める近軸論がそ の座標系と折れ曲がった基準軸光線に沿った近軸展開手 法を用いれば構築可能であり、そうして構築された理論 を用いた計算処理方法ならびに処理装置を問題点3を解 決するための手段として用いる。

【0019】更に近軸トレースの式を使って全系あるい は各ブロックの近軸量を計算し、全系(ブロック)の近 軸量がほぼアジムス依存性がないように各構成面の形状 を決定するという、形状決定の計算処理方法ならびに処 20 理装置を問題点4を解決するための手段として用いる。 【0020】そして問題点1から4までを解決するため の手段を用いて確立された手法で得られる光学系を採用 することで問題点5の解決を図る。なお、問題点5の解 決策として、反射面に対しては、解析的に求められる 「反射面のパワーが各面でアジムス依存性を持たない条 件」を利用して得られる光学系を採用することも有効で ある。

【0021】次に具体的に本発明の近軸計算を行う為の 処理方法及びそれを用いた処理装置の構成を説明する。 【0022】まず、本発明の処理方法は、

(A-1)物体面から像面にいたる基準波長の基準光線 の基準軸が曲面と交わる点において面法線が基準軸と一 致しない平面ではないOff-Axial曲面を含む光学系の、 該基準軸のまわりに展開する手法で計算式が得られるガ ウシャンブラケットのA, D, B, Φ, 焦点距離、2つ の主点位置、倍率β、バックフォーカスの近軸量の少な*

10*くとも1つを各面毎または全系にわたって計算するよう にしたことを特徴としている。

12

【0023】(A-2)物体面から像面にいたる基準波 長の基準光線の基準軸が曲面と交わる点において面法線 が基準軸と一致しない平面ではないOff-Axia1曲面を含 む光学系の、該基準軸のまわりに展開する手法で計算式 が得られるガウシャンブラケットのA. D. B. Φ. 焦 点距離、2つの主点位置、倍率β、バックフォーカスの 近軸量の少なくとも1つを各面毎、あるいは全系にわた って計算して表示装置に表示、またはブリンターにブリ ントアウトすることを特徴としている。

【0024】(A-3)物体面から像面にいたる基準波 長の基準光線の光路基準軸が曲面と交わる点において面 法線が基準軸と一致しない平面ではないOff-Axial曲面 を含む光学系の、該基準軸のまわりにする展開する手法 で計算式が得られるガウシャンブラケットのA, D, Β. Φ. 焦点距離、2つの主点位置、倍率β、バックフ ォーカスの近軸量の少なくとも1つを複数のアジムス で、各面毎、あるいは全系にわたって計算してその近軸 量のアジムス依存性を表示装置に表示、またはプリンタ 30 ーにプリントアウトすることを特徴としている。

【0025】(A-4)物体面から像面にいたる基準波 長の基準軸が曲面と交わる点において面法線が基準軸と 一致しない平面ではないOff-Axia1曲面を含む光学系 の、Off-Axial曲面の形状を、上記基準軸と面とのの交 点を原点としz軸を面法線とした座標系で2次の項から 始まる平面ベースの式

 $Z(X,V)=C_{20}X^{2}+2C_{11}XV+C_{02}V^{2}+D_{30}X^{3}+3D_{21}X^{2}V+3D_{12}XV^{2}+D_{03}V^{3}$ $+E_{40} x^{4} + 4E_{31} x^{3} y + 6E_{22} x^{2} y^{2} + 4E_{13} xy^{3} + E_{04} y^{4} + \dots$ (数式1)

に表示する、あるいはプリンターにプリントアウトする ことを特徴としている。

【0026】(A-5)物体面から像面にいたる基準波 長の基準軸が曲面と交わる点において面法線が基準軸と 一致しない平面ではないOff-Axial曲面を含む光学系

と表現される非対称非球面の多項式で計算して表示装置 40 の、Off-Axial曲面の形状を、上記交点を原点としz軸を 面法線とした座標系で2次の項から始まるOff-Axial2 次曲面ベースの式

[0027]

【数10】

$(1/a+1/b)(\cos^2(t)y^2+x^2)$

 $2\cos(t)[1+1/2(1/a-1/b)\sin(t)y+ /1+(1/a-1/b)\sin(t)y-y^2/ab-(1/ab+1/4tan^2(t)(1/a+1/b)^2]x^2]$ $+C_{30}x^3+C_{21}x^2y+C_{12}xy^2+C_{03}y^3+C_{40}x^4+C_{31}x^3y$ $+C_{22}x^2y^2+C_{13}xy^3+C_{14}y^4+....+...$ (数式28)

と表現される非対称非球面の式で計算して表示する、あ ている。

【0028】(A-6)物体面から像面にいたる基準波 長の基準軸が曲面と交わる点において面法線が基準軸と 一致しない平面ではないOff-Axial曲面を含む光学系

*の、Off-Axial曲面の形状を、上記交点を原点としz軸を るいはブリンターにブリントアウトすることを特徴とし 10 面法線とした座標系で2次の項から始まるトーリック面 ベースの式

14

[0029]

【数11】

$$z=R-(R-s)\sqrt{1-\frac{y^2}{(R-s)^2}}$$

$$+C_{30}x^3+C_{21}x^2y+C_{12}xy^2+C_{03}y^3+C_{40}x^4+C_{31}x^3y$$
 $+C_{22}x^2y^2+C_{13}xy^3+C_{04}y^4+.....+....$
ただしRは母線の曲率半径、sはs=s(x)で子線断面の形状の式である。 (数式29)

と表現される非対称非球面の式で計算して表示する、あ るいはプリンターにプリントアウトすることを特徴とし ている。

【0030】(A-7)物体面から像面にいたる基準波 長の基準軸が曲面と交わる点において面法線が基準軸と※

※一致しない平面ではないOff-Axial曲面を含む光学系 の、基準軸のまわりに展開した

[0031]

【数12】

(数式8)

(数式9)

$$D=1/A= \begin{cases} \cos\theta \left(\cos\theta ' \sin\xi ' \sin\xi + \cos\theta \cos\xi ' \cos\xi \right) \\ \cos\theta ' \left(\cos\theta ' \cos\xi ' \cos\xi + \cos\theta \sin\xi ' \sin\xi \right) \end{cases}$$

2(N'cos θ'-Nocs θ) (cos ξ'cos ξ C02+(cos θ'sin ξ'cos ξ +cos θ cos ξ'sin ξ)C11+cos θ cos θ'sin ξ'sin ξ C20) (数式10) $\sqrt{\cos\theta\cos\theta}$ '(\cos \theta' \cos \xi + \cos \theta \sin \xi '\sin \xi '\sin \xi '\sin \xi + \cos \theta \cos \xi '\cos \xi)

で定義されるOff-Axial曲面の近軸量各面ごとに計算 し、

h_ν '=A_ν h_ν (数式13) αν'=Φν hν +Dν αν (数式14)

 $h_{\nu,1} = h_{\nu}' - e_{\nu}' \alpha_{\nu}'$ (数式15)

 α_{ν} , α_{ν} (数式16)

で定義される近軸トレースの式を使って全系あるいはブ ロックの近軸量A、B、Φ、Dを複数のアジムスについ て計算し、全系あるいはブロックの近軸量A、B. Φ. Dがほぼアジムス依存性がないように各構成面の形状を 50 【0034】本発明の光学系は、

決定することを特徴としている。

【0032】特に、請求項7の処理方法および装置にお いて、全系あるいはブロックの近軸量A、B、Φ、Dが アジムス依存性が最も小さくなるように、各構成面の形 状を決定する手段として自動設計の手法を用いることを 特徴としている。

【0033】又、本発明の処理装置は前記構成要件(A -1)~(A-7)の何れか1項記載の処理方法を利用 していることを特徴としている。

(数式10)

(B-1)物体面から像面にいたる基準波長の基準軸が 曲面と交わる点において面法線が基準軸と一致しない平 面ではないOff-Axial曲面を含む光学系の、基準軸のま *

 $\cos \theta$ '($\cos \theta$ ' $\cos \xi$ ' $\cos \xi + \cos \theta \sin \xi$ ' $\sin \xi$) $\cos \theta$ ($\cos \theta$ ' $\sin \xi$ ' $\sin \xi$ + $\cos \theta \cos \xi$ ' $\cos \xi$)

*わりに展開した [0035] 【数13】

(数式8)

(数式9)

$$D=1/A= \begin{cases} \cos\theta (\cos\theta '\sin\xi '\sin\xi +\cos\theta \cos\xi '\cos\xi) \\ \cos\theta '(\cos\theta '\cos\xi '\cos\xi +\cos\theta \sin\xi '\sin\xi) \end{cases}$$

 $2(\mathsf{N}'\cos\theta\,'\text{-Noos}\,\theta\,)(\cos\xi\,'\cos\xi\,\mathsf{CO2}+(\cos\theta\,'\sin\xi\,'\cos\xi\,+\cos\theta\,\cos\xi\,'\sin\xi\,)\mathsf{C}11+\cos\theta\,\cos\theta\,'\sin\xi\,'\sin\xi\,\mathsf{C}20)$

 $\sqrt{\cos\theta\cos\theta}$ '(\cos \theta' '\cos \xi +\cos \theta +\cos \theta \sin \xi '\sin \xi (\cos \theta' \sin \xi +\cos \theta \cos \xi (\cos \xi)

で定義されるOff-Axial曲面の近軸量各面ととに計算 し、

h, '=A, h, (数式13) αν '=Φν hν +Dν αν (数式14) h, .1=h, '-e, ' α, ' (数式15) α, ,1 = α, ' (数式16)

で定義される近軸トレースの式を使って全系の近軸量 A. B. Φ. Dを複数のアジムスについて計算した時、 全系の近軸量A, B, Φ, Dがほぼアジムス依存性がな※

A=
$$\sqrt{\frac{\cos \theta '(\cos \theta '\cos \xi '\cos \xi +\cos \theta \sin \xi '\sin \xi)}{\cos \theta (\cos \theta '\sin \xi '\sin \xi +\cos \theta \cos \xi '\cos \xi)}}$$

$$D=1/A= \begin{cases} \cos\theta (\cos\theta '\sin\xi '\sin\xi +\cos\theta \cos\xi '\cos\xi) \\ \cos\theta '(\cos\theta '\cos\xi '\cos\xi +\cos\theta \sin\xi '\sin\xi) \end{cases}$$

 $2(N'\cos\theta'-N\cos\theta)(\cos\xi'\cos\xi'\cos\xi'\cos\xi'\sin\xi'\sin\xi'\cos\xi'+\cos\theta'\sin\xi')$

で定義されるOff-Axial曲面の近軸量各面ごとに計算 U.

h_ν '=A_ν h_ν (数式13) α_{ν} '= Φ_{ν} h_{ν} + D_{ν} α_{ν} (数式14) h, ,1=h, '-e, ' α, ' (数式15) α_{ν} , = α_{ν} ' (数式16)

で定義される近軸トレースの式を使って全系の近軸量 A, B, Φ, Dを複数のアジムスについて計算した時、 全系の近軸量A, B, Φ, Dがほぼアジムス依存性がな いように各構成面の形状が決定されており、かつ物体面 距離あるいは像面距離のどちらか片方が無限遠であると とを特徴としている。

【0038】特に、

(B-2-2)前記光学系の構成面はOff-Axial反射面 と共軸の屈折面であること。

40 (B-2-3) 前記光学系は少なくとも1面の反射面を 含み、その反射面が C_{11} が0で C_{01} と C_{10} cos 1 θ の比が ほぼ1になる面または

 $C_{11}=0$, $C_{02}=C_{20}$ $\cos^2\theta$ (数式27)

の反射面がアジムス依存性を持たない条件をみたす面で あること。

(B-2-4) 前記光学系において含まれる反射面はす べて C_{11} が0で C_{01} と C_{10} cos 1 θ の比がほぼ 1 になる面 または

 $C_{11} = 0$, $C_{02} = C_{20} \cos^2 \theta$ (数式27)

(B-2-1)前記光学系のすべて面はOff-Axial反射 50 の反射面がアジムス依存性を持たない条件をみたす面で

※いように各構成面の形状が決定されていることを特徴と している。

【0036】(B-2)物体面から像面にいたる基準波 長の基準軸が曲面と交わる点において面法線が基準軸と

16

20 一致しない平面ではないOff-Axial曲面を含む光学系 の、基準軸のまわりに展開した

[0037]

【数14】

(数式8)

(数式9)

面であること。

あること。等、を特徴としている。

【0039】(B-3)物体面から像面にいたる基準波 長の基準軸が曲面と交わる点において面法線が基準軸と 一致しない平面ではないOff-Axial曲面を含む光学系

> $\cos \theta$ '($\cos \theta$ ' $\cos \xi$ ' $\cos \xi + \cos \theta \sin \xi$ ' $\sin \xi$) $\cos \theta$ ($\cos \theta$ ' $\sin \xi$ ' $\sin \xi$ + $\cos \theta \cos \xi$ ' $\cos \xi$)

*の、該基準軸のまわりに展開した [0040] 【数15】

(数式8)

 $\cos \theta$ ($\cos \theta$ ' $\sin \xi$ ' $\sin \xi$ + $\cos \theta \cos \xi$ ' $\cos \xi$) cos θ'(cos θ'cos E'cos E+cos θ sin E'sin E)

(数式9)

2(N'cos θ '-Noos θ) (cos ξ 'cos ξ C02+(cos θ 'sin ξ 'cos ξ +cos θ cos ξ 'sin ξ) C11+cos θ cos θ 'sin ξ 'sin ξ C20)

Φ= (数式10) $\int \cos \theta \cos \theta' (\cos \theta' \cos \xi' \cos \xi + \cos \theta \sin \xi' \sin \xi) (\cos \theta' \sin \xi' \sin \xi + \cos \theta \cos \xi' \cos \xi)$

で定義されるOff-Axial曲面の近軸量各面ごとに計算 し、

h_ν '=A_ν h_ν

(数式13)

 α_{ν} '= Φ_{ν} h $_{\nu}$ +D $_{\nu}$ α_{ν}

(数式14)

 $h_{\nu + 1} = h_{\nu} ' - e_{\nu} ' \alpha_{\nu} '$

(数式15)

 α_{ν} , α_{ν}

(数式16)

で定義される近軸トレースの式を使って全系の近軸量 A, B, Φ, Dを複数のアジムスについて計算した時、 全系の近軸量A、B、Φ、Dがほぼアジムス依存性がな いように各構成面の形状が決定されており、かつ物体面 距離および像面距離のどちらも有限距離であることを特 徴としている。

【0041】特に、

(B-3-1) 前記光学系はすべて面がOff-Axial射面 であること。

(B-3-2)前記光学系は少なくとも1面の反射面を 含み、その反射面が C_{11} が0で C_{02} と C_{10} cos 3 θ の比が ほぼ1になる面または

> $\cos \theta$ '($\cos \theta$ ' $\cos \xi$ ' $\cos \xi$ + $\cos \theta$ $\sin \xi$ ' $\sin \xi$) cos θ (cos θ 'sin ξ 'sin ξ +cos θ cos ξ 'cos ξ)

 $XC_{11}=0$, $C_{02}=C_{20}$ cos² θ (数式27)

の反射面がアジムス依存性を持たない条件をみたす面で あること。

18

20 (B-3-3) 前記光学系において含まれる反射面はす べて C_{11} が0で C_{01} と C_{10} cos' θ の比がほぼ1になる面 または

 $C_{11}=0$, $C_{02}=C_{20}$ $\cos^2\theta$ (数式27)

の反射面がアジムス依存性を持たない条件をみたす面で あること。等、を特徴としている。

【0042】本発明のズームレンズ光学系は、

(C-1)物体面から像面にいたる基準波長の基準軸が 曲面と交わる点において面法線が基準軸と一致しない平 面ではないOff-Axial曲面を含む光学系が複数のブロッ

30 クに別れており、全系を通しての基準軸のまわりに展開 した

[0043]

【数16】

(数式8)

 $\cos \theta$ ($\cos \theta$ ' $\sin \xi$ ' $\sin \xi$ + $\cos \theta$ $\cos \xi$ ' $\cos \xi$)

(数式9)

2(N'00s θ'-N00s θ)(00s ξ'cos ξ C02+(cos θ'sin ξ'cos ξ +cos θ cos ξ'sin ξ)C11+cos θ cos θ'sin ξ'sin ξ C20)

(数式10) $\sqrt{\cos\theta\cos\theta}$ '($\cos\theta$ ' $\cos\xi$ ' $\cos\xi$ + $\cos\theta\sin\xi$ ' $\sin\xi$)($\cos\theta$ ' $\sin\xi\sin\xi$ + $\cos\theta\cos\xi$ ' $\cos\xi$)

で定義されるOff-Axial曲面の近軸量各面でとに計算

h_ν '=A_ν h_ν (数式13)

 α_{ν} '= Φ_{ν} h_{ν} +D_{ν} α_{ν} (数式14) h_{ν .1}=h_ν '-e_ν ' α_ν ' (数式15) α_{ν} , $_{1}$ = α_{ν} ' (数式16)

で定義される近軸トレースの式を使って各ブロックの近

50 軸量A, B, Φ, Dを複数のアジムスについて計算した

時、各ブロックの近軸量A、B、Φ、Dがほぼアジムス 依存性がないように各構成面の形状が決定されており、 それらのブロックの間の間隔を変化させることによって ズームを行なうことを特徴としている。

19

【0044】特に、

(C-1-1) 前記ズームレンズ光学系は少なくとも1 面の反射面を含み、その反射面がC11が0でC22とC2。 $\cos^2 \theta$ の比がほぼ1になる面または

 $C_{1,1} = 0$, $C_{0,2} = C_{2,0} \cos^2 \theta$ (数式27)

の反射面がアジムス依存性を持たない条件をみたす面で 10 曲がっている形状となる。(図43参照) あること、

(C-1-2) 前記ズームレンズ光学系において含まれ る反射面はすべて C_{11} が0で C_{01} と C_{10} cos 1 θ の比がほ ほしになる面または

 $C_{11}=0$, $C_{02}=C_{20}$ $\cos^2\theta$ (数式27)

の反射面がアジムス依存性を持たない条件をみたす面で あること。等、を特徴としている。

[0045]

【実施例】本発明の実施例を説明する前に、本発明者が 構築したOff-Axial光学系の近軸理論については、一般 には知られていないのでその内容について解説する。

【0046】《Off-Axial光学系の近軸理論》

1.0ff-Axial光学系と構成面の表現方法

1-1.0ff-Axial光学系

従来多く用いられている共軸光学系に対し、Off-Axial 光学系とその骨組みとなる基準軸を以下の様に定義す

【0047】★基準軸の定義

一般的には物体面から像面にいたる基準となる基準波長 の光線の光路をその光学系における基準軸と定義する。 これだけでは基準となる光線の選び方に曖昧性が残るの で、通常は以下の2つの原則のいずれかに則り基準光線 を設定する。

【0048】(1) 光学系に部分的にでも対称性を有する 軸が存在し、収差のとりまとめが対称性よく行なうこと* * ができる場合にはその対称性を有する軸上を通る光線を 基準光線とする。

【0049】(2) 光学系に一般的に対称軸が存在しない 時、あるいは部分的には対称軸が存在しても、収差のと りまとめが対称性よく行なえない時には、物体面中心 (被撮影、被観察範囲の中心) から出る光線のうち、光 学系の指定される面の順に光学系を通り、光学系内に定 義される絞り中心を通る光線を基準光線として設定す る。このようにして定義される基準軸は一般的には折れ

★Off-Axial光学系の定義

上記のように定義した基準軸が曲面と交わる点において 面法線が基準軸と一致しない曲面(Off-Axia)曲面)を含 む光学系をOff-Axial光学系と定義し、その例を図43 に示す。(但し、平面反射面によって基準軸が単純に折 れ曲がっている場合も面法線が基準軸と一致しないが、 その平面反射面は収差の対称性を損なわないので、Off-Axial光学系の対象から除外する。) この定義は共軸光 学系の一部が大きく偏心した光学系も含むが、一般的非 20 対称非球面の系では"偏心"の"心"の意味の対称性を持っ た点や線が存在しないため"偏心"という言葉はあえて用 いず、Off-Axialという言葉を用いることにする。

【0050】1-2.0ff-Axial光学系の構成面に適した面 形状

表現方法

Off-Axial光学系を構成する面は一般に対称性を持たな い。対称性を持たない面の表現法としては展開の中心に 対する2変数べき級数展開が最も一般的である。 ここで は展開の中心は面と基準軸との交点とし、その面形状を 30 表現するローカル座標系としては面法線にz軸をあわせ たものを用いる。そして形状を表わす式をz=f(x,v)の形 に表現する。その際その点での面法線が、面形状の変化 に伴っても変化しないように展開は2から始めるように する。つまり

 $Z(X,y)=C_{20}X^{2}+2C_{11}Xy+C_{02}Y^{2}+D_{30}X^{3}+3D_{21}X^{2}Y+3D_{12}XY^{2}+D_{03}Y^{3}$

 $+E_{40} \times^{4} +4E_{31} \times^{3} \times +6E_{21} \times^{2} \times^{3} +4E_{13} \times \times^{3} +E_{04} \times^{4} +...$ (数式1)

のように表わす。

【0051】とのように基準軸との交点を中心に面法線 ば、従来のOff-Axial光学系の設計法とは異なり、光学 配置の骨組み(基準軸の配置)を変えることなく面形状 を変化させることができる(図44参照)。また更に、 2次の展開係数も固定して3次以降の係数のみを変化さ せれば各アジムスでの近軸量(後述の数式8から数式1 1の結果参照)を変えることなく収差補正のみを行なう **とともできる。**

【0052】2.折れ曲がった基準軸に沿った近軸展開手

展開の座標系とそこで用いる諸量を示す。反射は屈折率 が負の屈折と一般化できるので展開は屈折系で考えると を固定して展開する手法を用いて構成面を定義しておけ 40 とにする。この図において物体側、像側ともに基準軸に 沿って1oca1座標系がとられ、物体面、像面、入射瞳 面、射出瞳面を基準軸に垂直に図に示すように定義す る。面形状は前項で述べたように面法線に沿った1ccal 座標系で表現されている。このとき物線ベクトルb、入 射瞳上の髙さベクトルァを通る光線を考え、この物線ベ クトルb、高さベクトルrが微小量として屈折の法則を べき級数展開することを考える。その手順は

- i).光線の方向ベクトルsを図中の距離s,b(物線ベ クトルbの絶対値) および (物線ベクトルbのアジム
- 図45に解析に用いた折れ曲がった基準軸に沿った近軸 50 ス;但し基準軸の屈折面を钅=0ととる)、距離t,r

(高さベクトルr の絶対値) および $\xi_r = \xi_r + \phi_r$ (高さベクトルr のアジムス; ϕ は相対アジムス) を用いて表わす。

21

【0053】ii).i)で求めた始点ベクトルと方向ベクトルおよび面形状の式を使って屈折面上の交点を求める。

【0054】iii)、ii)の交点における面法線ベクトル nをベクトル解析の手法で求める。

【0055】iv).iii)の結果と屈折の法則を用い、その 交点における屈折後の方向ベクトル s を求める。

【0056】v).屈折面上の位置と屈折後の方向ベクトルs´とがわかったので距離s´,t´が与えられれば像線ベクトルb´、射出瞳上の高さベクトルr´が求まる。この手順による像線ベクトルb´の距離b、rの1次量までの展開結果を数式2,数式3に示す。但しまでは像面での像線の理想アジムスでも'=もととられる。この結果において像線ベクトルb´は図46に図示してあるように

b´=βb+Δ,+Δ. (数式4)

の形に成分に分解して表現してある。但し β b + Δ は アジムス ξ に対する平行成分ベクトル(β は後述の数式 1 1 で決められる投影の横倍率)、 Δ は垂直成分ベクトルを表わす。

*【0057】3.0ff-Axial光学系での結像の式と屈折の 近軸量の導出

3-1 Off-Axial光学系での結像の式の導出

数式2と数式3の結果を使って近軸関係を求める場合は 物高bは0とおいてよい。従ってΔ,とΔ,のrのl次 の比例係数を調べればよいわけであるが、系の回転非対 称性のために近軸光線が基準軸に対してねじれの位置に あることを反映して、これら2つの係数はアジムスを依 存を持ち一般的には同時に2つの係数を0とすることは 10 できない。一般にとうした近軸光線が基準軸に対してね じれの位置にあるアナモルフィックな光学系では、光路 をアジムス断面に投影した△」の係数=0により結像共 役関係式と近軸量を定義し、△」に対し、△」の係数= 0の式から結像共役関係式を求めるとはいっても一般に 相対アジムスφ=0の光線(メリディオナル光線に対 応) と $\phi = \pi / 2$ の光線(サジタル光線に対応)とでは 桔像位置が異なる(いわゆる非点収差を持つ)ことをこ の係数の式は示している。この軸上の非点収差に対し本 理論では相対アジムスφ=0の場合の結像面を近軸像面 20 と定義し、 φ = 0 の場合は軸上非点収差が残るとして理 論を構築することにする。そうした像面の定義により投 影された結像関係式として

 $N'(\cos\theta'\cos\xi'\cos\xi+\cos\theta\sin\xi'\sin\xi)/(s'\cos\theta')-N(\cos\theta'\sin\xi'\sin\xi'+\cos\theta\cos\xi'\cos\xi)/(s\cos\theta')-2(N'\cos\theta'-N\cos\theta)\cos\xi'\cos\xi',$ + $(\cos\theta'\sin\xi'\cos\xi+\cos\theta\cos\xi'\sin\xi)_{11}$ + $(\cos\theta\cos\eta'\sin\xi'\sin\xi',)/(\cos\theta\cos\eta')=0$ (数式5)

が求まるが、これはs、s ´をt、t ´に変えるだけで 瞳面の結像式となるので、従来の共軸系の一般拡張とな る合理的な定義であることがわかる。

【0058】3-2 屈折面の近軸量の導出とガウシャンブラケットによる屈折の式の表現

次にこの投影された結像関係式を従来の共軸系での結像の式

(N´A)/s´ー(ND)/sーΦ= 0 (数式6) と比較することを考える。ここでA、Dは 【0059】

【数17】

$$\begin{pmatrix} h \\ \alpha \end{pmatrix} = \begin{pmatrix} A & 0 \\ \Phi & D \end{pmatrix} \begin{pmatrix} h \\ \alpha \end{pmatrix}$$
 (数式7)

で示される屈折のガウシャンブラケットの対角成分、Φはパワーを表わす(但し成分のB=0, AD=1の場合)。【0060】ただちにわかる通りこれら2つの式は全く同じ形式をしているので、比較によりこの結像式に対応するOff-Axial屈折面の近軸量を決定することができる。つまり近軸光線を投影して考えれば共軸系の場合と同様に各アジムス毎に近軸量の計算ができることになる。その結果のA、D、Φを数式8から数式10℃示す。また屈折面での投影の横倍率は

 $\beta = \alpha / \alpha$ =Ns D/(N's) (数式11) と与えられることも示すことができる。

30 【0061】ことで数式8から数式11に示された近軸量は従来の共軸系の近軸量の一般拡張になっていることは注目に値する。これはこれらの式に共軸、回転対称の条件の $\theta=\theta'=0$ 、 $C_{1}=0$ 、 C_{2} 。 $=C_{3}=1/(2r)$ (rは曲率半径)を代入すれば共軸系の場合の式が得られることで容易に確かめることができる。

【0062】4.近軸トレース

4-1 転送のガウシャンブラケット

以上のようにOff-Axial系の各面においてガウシャンブラケットを用いた手法で屈折の近軸量を定義できたが、複数の面から構成される系においては面と面との間の転送項を定義しておく必要がある。Off-Axial系の場合も簡単な幾何学的考察により、基準軸上に沿って長さばを定義すれば従来と同様に換算面間隔e'=d'/N'を用いて

【0063】 【数18】

50 の形でガウシャンブラケットを使った表現ができること

(13)

がわかる。従ってOff-Axial面が複数ある系においても 従来と同様にアジムス毎に近軸トレースが可能である。 つまりOff-Axial光学系全体の骨組みも共軸系の場合と 同様に近軸的に解析できるわけである。

【0064】4-2 近軸トレースの手法

3-2 で求まった屈折の式

h, '=A, h, (数式13)

αν'=Φνhν+Dναν (数式14)

と、4-1 で求まった転送の式

h, ,₁=h, '-e, 'α, ' (数式15)

 $\alpha_{\nu+1} = \alpha_{\nu}$ (数式16)

を使えば共軸系の場合と同様の近軸トレースが可能である。共軸系と違うのは屈折の式のA、とD、が一般に1ではないこととA、、D、、 Φ、がアジムス依存があることである。従って各アジムスでとの近軸量を計算すれば近軸量のアジムス依存性を調べることが可能である。

【0065】以下にある与えられたるアジムス & に対する近軸トレース計算のフローを示す。

【0066】i).s,などの与えられた光学系のデータに対し近軸追跡の初期値h、 α , $(\alpha_1=N,h_1/s_1)$ を設定する。

【0067】ii).屈折面での近軸量A, 、Φ, 、D, を求める。

【0068】iii).屈折の式を使ってh, '、α, 'を求める。

また必要があればs,、s,'や屈折面での横倍率β,を

S_ν =N_ν h_ν / α_ν (数式17)

s, '=N, 'h, '/α, ' (数式18)

 $\beta_{\nu} = \alpha_{\nu} / \alpha_{\nu}$ (数式19)

を使って求める。

【0069】iv).面番号 ν が最終面のものでなければ転送の式を用いてh $_{\nu-1}$ 、 $\alpha_{\nu-1}$ を求める。

【0070】v).面番号νが最終面の番号k になるまでii) からiv) までを繰り返す。

【0071】vi).以上の計算で求められた面番号 ν が最終面の番号kでの h_k '、 α_k 'が常に

h, '=Ah, +Β α,

(数式20)

 α_k '= $\Phi h_1 + D\alpha_1$ (数式21)

を満たすように全系のガウシャンブラケットの成分A、*

 $C_{02} = (1/a+1/b)\cos\theta/4$, $C_{20} = (1/a+1/b)/(4\cos\theta)$, $C_{11} = 0$

が得られ容易に確かめることができる。またこの図の場合においてはa,b を2 つの魚点と面頂点との距離とすれば反射面のパワーは直観的に1/a+1/b と理解されるが、このことも同時に(数式10)を使った計算にて確かめることができる。

【0078】★Off-Axial屈折面

Off-Axia I屈折面は反射面のように簡単にはならない。 これはガウシャンブラケットの対角要素A 、D が1 ではない(A=1/D≠1 なる逆数関係) ためである。しかしながらこのことも屈折面を平面にして考えれば理解可能であ * B 、Φ、D を求める。

【0072】vii). 求まった全系のA、B、 Φ 、D を用いて焦点距離f、主点位置H、H およびバックフォーカス s_k を共軸系と同様の式

24

f=1/ Φ (数式22)

 $\Delta_1 = (1-D)/\Phi$ H=N₁ Δ_1 (数式23)

Δ'=(A-1)/Φ H'=N'Δ' (数式24)

S_k'=N_k'(f+△_k') (数式25)

により求める。

10 【0073】(図47参照: Fは物体側焦点、H は物体側主点、F'は像側焦点、H'は像側主点を表わす)

viii).全系の横倍率βを

 $\beta = \alpha_1/\alpha_1$ (数式26)

により求める。

【0074】5.簡単な面での分析・確認

ことで簡単な面について求まった近軸理論の適用を考える。

【0075】★Off-Axial反射面

HMD などで多用されるOff-Axial反射面においては θ = - 20 θ であるのでガウシャンブラケットのA、D が1 と共軸系と同じになる。この場合反射面のパワーは曲率のほかに入射角 θ およびアジムス ξ に依存するアナモルフィックなものとなる。ここで更に曲率に比例する面形状の

係数C。、C,、C。が C,=0、C。z=C。cos² θ (数式27)

を満たす様に選ばれれば反射面のパワーがアジムスをに 依存しないようにすることができる。

【0076】つまり、Off-Axial反射面においてはy,z方向の面形状の係数が $C_{1,z}=0$ 、 $C_{0,z}=C_{1,z}\cos^2\theta$ を満たす 30 ように選ぶことで近軸的には共軸回転対称系と同様な扱いができるようになる。

【0077】特に図48に示すような基準軸が2焦点を通るOff-Axial反射2次曲面では一般にこの関係が満たされている。このことはこの図の系の面頂点における曲率を求めてやれば、あるいは後述する基準軸が2焦点を通るOff-Axial射2次曲面の一般式(数式28)をべき級数に展開して(数式1)の形にして係数を比較することにより、

る。屈折面が平面の場合屈折面のプリズム効果により系はアジムス依存性を持った角倍率を持つが、これは一般にガウシャンブラケットのDとして表わされる。このことを念頭において考えれば一般のOff-Axial屈折面のガウシャンブラケットの各成分はOff-Axialな屈折によるプリズム効果と曲面によって生じたパワー変化との複合された項であると理解することができる。

【0079】6.設計への応用

ない(A=1/D≠1 なる逆数関係) ためである。しかしなが 以上述べてきたようにして構築されるOff-Axial系の近 ちとのととも屈折面を平面にして考えれば理解可能であ 50 軸理論と近軸トレースの手法はOff-Axial系の設計の際 に応用することができる。一般に倍率がアジムスに依存 しない等方的結像の場合、全系ではすべての近軸量がア ジムス依存がないと考えられるので、設計は例えば次の ような手順で行なえばよい。

【0080】i).光学系を光路の干渉などを考慮しつ つ、折れ曲がった基準軸に沿って配置する。

【0081】ii).次にガウシャンブラケットの手法を用 いてアジムス毎に近軸トレースを行ない、全系の近軸量 ・像面位置がアジムス依存を持たないように各面の曲率 を決めてやる。

【0082】このような近軸量のアジムス依存性に着目 した設計手法は今までになかった考え方であり、Off-Ax ial系の設計に大きな指針を与えるものである。

【0083】以上がOff-Axial光学系に対する近軸理論 およびそれを用いた光学系の骨組みの設計方法について の解説である。

【0084】以上の理論の中で説明してきたような表現 で表現された面表現方法を用いれば、とうした光学系(0 ff-Axial光学系)に対する解析理論(Off-Axial近軸理論) を構築することができる。またOff-Axial光学系の各面 20 の形状を変化させて光学系としての性能を最適化する場 合、使用する面の部分の中心を結ぶ線の折れ曲がり方や 近軸量(光学系の骨組み) を固定したままで面形状を最 適化することができるようになる。

【0085】またこの面形状表現方法を用いて構築され た理論は従来の共軸系の近軸理論を完全に包含する形と してまとめあげることができるので、その理論を用いた 計算処理方法ならびに処理装置を採用すれば、Off-Axia 1光学系においても光学系の設計の際に一般的に焦点距 離や倍率を計算することができるようになる。

【0086】さらにこの構築されたOff-Axial近軸理論 により可能となったOff-Axial光学系の近軸トレースの 手法を使って全系あるいはズームレンズのブロックとい った複数面から成るブロックの近軸量がほぼアジムス依 存性がないように各構成面の形状を決定するという計算 処理方法ならびに処理装置を採用すれば、Off-Axial光 学系においても光学系の形状決定という設計作業が効率 的に行なえるという作用を持つ。

【0087】さらにこの構築されたOff-Axial近軸理論 により反射面に対して導き出される条件式、(数式27)を そのOff-Axial光学系を構成するOff-Axial曲面の反射面 が満たすべき面の形状の制限式として採用すれば、Off-Axial光学系においても光学系の近軸量が各面でアジム ス依存性を持たず、近軸理論上は共軸系の回転対称面と 全く同様に扱うことができるという作用を持つ。

【0088】次に本発明の具体的な各実施例について説 明する。図1 は本発明の一実施例に係る処理装置のブロ ック図である。図において、11は装置全体の制御を司る CPU、13はCPU11 において実行されるプログラム等が格 納されるROM と、この実行の際のワーキングエリアとし 50 例の処理動作のフローチャートの一例を示す。

て用いられるRAM を含むメインメモリ、14はキャラクタ 情報、制御情報等を入力するためのキーボード、15はボ インティングデバイスとしてのマウス、16はキーボード 14およびマウス15と本装置との間で信号接続を行なうた めのキーインターフェイスである。

26

【0089】17はローカルエリアネットワーク(LAN)18 と本装置を接続するLAN インターフェイス、19はROM、 SRAM、RS232C方式インターフェイス等を有した入出力装 置(以下「I/O」という) である。 I/O 19 には各種外部機 10 器を接続可能である。20、21は外部記憶装置としてのハ ードディスク装置およびフロッピーディスク装置、22は ハードディスク装置20なよびフロッピーディスク装置21 と本装置との間で信号接続を行なうためのディスクイン ターフェイスである。23はインクジェットプリンタ、レ ーザービームプリンタ等によって構成されるプリンタ、 24はプリンタ23と本装置との間で信号接続を行なうため のブリンタインターフェイスである。25は表示装置であ り、26は表示装置25と本装置との間で信号接続を行なう ための表示インターフェイスである。12は、上記各機器 間を信号接続するためのデータバス、コントロールバ ス、アドレスバスからなるシステムバスである。

【0090】本実施例においては、CPU11 が、あらかじ めメインメモリ13のROM 部に格納された処理手順を読み 出し実行するものである。そして各処理により得られる 値は、それぞれメインメモリ13のRAM 部に格納されるも のである。

【0091】図2は、本発明の近軸量計算に対する実施 例の処理動作の一例を示すフローチャートである。その フローは上記4-2 の項で詳しく説明した近軸トレース方 30 法に則ったものである。そしてアジムス依存性の計算は 1 つのアジムスに対する計算が終わったあと、別のアジ ムスについて計算するというフローである。

【0092】図3 に本発明の近軸量計算に対する実施例 の他の処理動作の一例を示す。図2のフローが1つのア ジムスどとに近軸追跡するフローであるのに対し図3の フローはいくつかのアジムスでの近軸追跡を並列的に行 なっている。

【0093】図4 に本発明の近軸量計算に対する実施例 のさらに別の処理動作の一例を示す。このフローではガ ウシャンブラケットの手法に則り、屈折の式、転送の式 を行列を用いて表わし、行列の計算を行なうことによっ ケットのマトリックスを求めている。アジムスごとの計 算は図3の時と同様の並列的処理であるが、図2のよう な個別処理を繰り返す手法をとってもよい。

【0094】図5 にOff-Axial光学系のOff-Axial面の形 状の計算をしその結果を表示装置に表示あるいはプリン ターに出力する計算処理方法ならびに処理装置(装置と しては図1と同じ図になるので省略する)に対する実施

【0095】 CCではOff-Axial光学系のOff-Axial面の 面形状が基準軸とその面の交点を原点とし、その点での 面法線をひとつの座標軸(z軸) とした座標系で表現され ていることが重要なので、もしそのような表示になって いなければ上記理論の項で説明した原則に則り基準軸を 設定して、面形状を基準軸とその面の交点を原点とし、 その点での面法線をひとつの座標軸(z軸) とした座標系 に変換してから面形状の具体的形状を計算する。

【0096】とうした座標系で記述することにより、Of f-Axial光学系の近軸量が計算できるようになるという 効果のほかに、とうした座標系に則って面形状を具体的 に計算することは、光線が通り実際に使われる部分の面 形状を理解しやすくなるとともに面の加工データを作成 する上でも面形状を測定する際でも便利である。

【0097】図6 にはOff-Axial光学系の近軸トレース の手法を使って全系あるいはズームレンズのブロックと いった複数面から成るブロックの近軸量がほぼアジムス 依存性がないように各構成面の形状を決定するという計 算処理方法ならびに処理装置としては図1 と同じ図にな ャートの一例を示す。

【0098】ここで変化させてよい変数とは、基準軸の 配置が固定の場合は主として面形状を表わす係数であ り、基準軸の配置を変化させてもよい場合は更に面間 隔、基準軸と面法線のなす角度、硝材などもとることが できる。ターゲットの近軸量としては全系のパワー中 (あるいはその逆数の焦点距離)、全系の横倍率、主点 位置、バックフォーカスなどをとることができる。この 図に示されたフローを達成するのには、DLS 法や直交化 法といった最適化の手法を用いた自動設計を用いれば効 30 率がよい。

【0099】次に以上説明してきた処理動作のフローに 従って処理され出力された結果の実施例を示す。出力は 図1 における25の表示装置になされてもよいし、23のプ リンターよりプリントアウトされてもよい。

【0100】まず本発明の実施例1について説明する。 【0101】図7 に断面図が示されている実施例1 のOf f-Axial光学系の仕様、各面の配置、特性、面形状のデ ータを表1 に示す(尚、表1は実施例の最後に一括表示 している。他の表についても同様である。)。

【0102】とこで表1に示されたデータの座標系を図 8 を使って説明する。この図においてOff-Axial光学系 を物体側から像面に進む1つの光線(図8中の一点鎖線 で示すもので基準軸光線と呼ぶ) に沿って順番に i 番目 の面を第i面とする。そして光学系はOff-Axial光学系 であるため光学系を構成する各面は共通の光軸を持って いない。

【0103】そこで、図中においては先ず第1面の光線 有効径の中心を原点とする絶対座標系を設定する。そし て第1面の光線有効径の中心点を原点とすると共に、原 50 なった以下の式により表わされている:

点と最終結像面の中心とを通る光線(基準軸光線)の経 路を光学系の基準軸と定義している。さらに、本実施例 中の基準軸は方向(向き)を持っている。その方向は基 準軸光線が結像に際して進行する方向である。基準軸 は、光学系の外から見た場合には光軸と同様な取り扱い ができる。

28

【0104】そして、次に 各実施例の光学系を構成す るチルト面は基本的にすべてが同一面内でチルトしてい る。そこで、絶対座標系の各軸を以下のように定める。 【0105】Z軸:原点を通り第2面に向かう基準軸 Y軸:原点を通りチルト面内(図8の紙面内)でZ軸に 対して反時計回りに90°をなす直線

X軸:原点を通りZ、Y 各軸に垂直な直線(図8 の紙面に 垂直な直線)

又、光学系を構成する第 i 面の面形状を表すには、絶対 座標系にてその面の形状を表記するより、基準軸と第i 面が交差する点を原点とするローカル座標系を設定し て、ローカル座標系でその面の面形状を表した方が形状 を認識する上で理解し易い為、本発明の構成データを表 るので省略する) に対する実施例の処理動作のフローチ 20 示する実施例では第1面の面形状をローカル座標系で表 わす。

> 【0106】また、第i面のYZ面内でのチルト角は絶対 座標系のZ 軸に対して反時計回り方向を正とした角度 θ i (単位*)で表す。よって、本発明の実施例では各面 のローカル座標の原点は図8中のYZ平面上にある。また XZおよびXY面内での面の偏心はない。さらに、第i面の ローカル座標(x,y,z) のy,z 軸は絶対座標系(X,Y,Z)に 対してYZ面内で角度 θ i傾いており、具体的には以下の ように設定する。

【0107】z軸:ローカル座標の原点を通り、絶対座 標系のZ 方向に対しYZ面内において反時計方向に角度θ i をなす直線

y 軸:ローカル座標の原点を通り、z 方向に対しYZ面内 において反時計方向に90°をなす直線

x 軸:ローカル座標の原点を通り、YZ面に対し垂直な直

また、Diは第 i 面と第(i+1) 面のローカル座標の原点間 の間隔を表すスカラー量、Ndi 、 ν diは 第 i 面と第 (i+1)面間の媒質の屈折率とアッベ数である。

【0108】なお実施例中には通常一般に球面(この実 施例1 にはたまたま含んでいない)び回転非対称の非球 面を有している。その内の球面部分は球面形状としてそ の曲率半径㎡を記してあらわす。数値実施例において は、曲率半径riの符号は、曲率中心がローカル座標のz 軸プラス方向にある場合をプラスとし、z軸マイナス方 向にある場合をマイナスとする。

【0109】また、実施例中の光学系は少なくとも回転 非対称な非球面を一面以上有し、その形状は数式1とは 基本的には同じだが、二項係数がついてない点で多少異 $Z = C_1 \checkmark + C_2 \checkmark + C_3 \checkmark + C_3 \checkmark + C_1 \checkmark \lor + C_2 \checkmark \lor + C_3 \checkmark \lor + C_3 \checkmark \lor (数式30)$

(但し近軸量を計算するのに必要なC。」とC。は数式1と全く同じである)上記曲面式はx に関して偶数次の項のみであるため、上記曲面式により規定される曲面はyz面を対称面とする面対称な形状である。さらに以下の条件が満たされる場合はxz面に対して対称な形状を表す。

 $[0\ 1\ 1\ 0\]\ C_0, = C_{21} = 0$

さらに

 $C_{01} = C_{10}$ $C_{04} = C_{10} = C_{11}/2$

が満たされる場合は回転対称な形状を表す。以上の条件 10 を満たさない場合は非回転対称な形状である。

【0111】なおとうした座標系の設定方法は以下の実施例においても同様であるので以下の実施例においては 説明を省略する。

【0112】この実施例1の0ff-Axial光学系は反射面のみで構成された単焦点の結像系である。(像面の位置に表示素子を置き、絞り位置を瞳位置と考えれば表示光学系とも考えることができる。) ここでこの光学系を構成している非球面の面形状を表わす式は面のベースがどのような面かわかりやすいように図48の、3つのパラメ 20ーターa、b、t(図48のθに相当する角度;ここでtが基準軸の反射角に等しい時基準軸は2 焦点を通る)で表わした0ff-Axial2次曲面をベースにし、多項式項を加えた(数式28)で表現してある。

【0113】との表現は一般的な2次曲面が表わせて便利な表現である。そしてその形状の式を使って計算した第2面から第6面までの面形状の数値出力例を表2に示す。そしてその数値計算結果をもとに面形状を直観的にわかりやすようにグラフィカルに表現すると例えば第2面の場合は図9のようになる。

【0114】こうした基準軸との交点を原点としz 軸を面法線と一致させた数式28の表現、またはより一般的表現の数式1による表現は、従来の「共軸光学系の偏心による非対称非球面の表現方法」とは異なり、実際光線がのあたり使用される部分の表現の原点が使用される部分の中にあるために実際の面の加工、測定の際に座標変換する必要がない。なお加工上のメリットがある面形状の表現方法としては一般回転2次曲面の(数式28)の表現のほかに、この実施例中にはないが、(数式29)に示されるアナモルフィック光学系に対するトーリック面をベースとした式もトーリック面の加工が一般に全く対称性のない面の加工に比べて易しいことから有用である。

【0115】次にとのOff-Axial光学系のパワーやおよび横倍率の近軸量の各面での値、および全系での値を上記近軸計算のフローに則って計算した結果を表3に示す。なお、とこでの各面での近軸量の計算の際に使う面形状の式の展開係数は、Off-Axial2次曲面をベースにした数式28をさらにべき級数展開して平面ベースの数式1の形に変換したものである。

【0116】更に各面のパワー及び全系のパワーのアジ 50 やすいようにスケールを拡大して描いてある。)

ムス依存性を計算しそのアジムス依存性をグラフとして表現したものを図10に、全系の焦点距離、主点位置、バックフォーカスのアジムス依存性を計算しそのアジムス依存性をグラフとして表現したものを図11に示す(なお図11では残存アジムス依存性がわかりやすいようにスケールを拡大して描いてある。)。

【0117】図10においては各面のパワーのアジムス依存性が小さい面が多いが、このことは表3においてる。とC,。cos²の比が1に近い値を持つ面(ほぼ(数式27)の反射面がアジムス依存性を持たない条件をみたす面)多いことに対応している。このように近軸量がアジムス依存性を持つOff-Axial学系の場合、アジムス依存の計算結果を表またはグラフとして表示しておくことはその光学系の近軸的特徴を理解する上で有効である。

【0118】なおとの実施例は、高次の収差とのバランスとの関連で近軸量がまだ多少のアジムス依存性を残しているものの、全系の焦点距離(パワー)や横倍率ができるだけアジムス依存性を持たないように各面の曲率を自動設計の手法により最適化をかけて求めた設計の一例であり、全系のパワーや横倍率のアジムス依存性が小さいのに対応して、図12のスポットダイグラム(最大像高の1/4の範囲; 微細構造がわかるように拡大されている。スポットの大きさは0.1mm 以下にはなっている)、図13のディストーションの図からもわかるように基準軸近傍で非点収差やディストーションの少ない光学系となっている。

【0119】次に本発明の実施例2について説明する。 【0120】図14に断面図が示されている実施例2のOf f-Axial光学系の仕様、各面の配置、特性、面形状のデータを表4に示す。

【0121】このOff-Axia1光学系は反射面と共軸の屈折面で構成された単焦点の結像系である。(この系も像面の位置に表示素子を置き、絞り位置を瞳位置と考えれば表示光学系とも考えることができる。) ここでもこの光学系を構成している非球面の面形状を表わす式としては(数式28) を使って表現してある。

【0122】次にてのOff-Axial光学系のパワーやおよび横倍率の近軸量の各面での値、および全系での値を上記計算のフローに則って計算した結果を表5 に示す。なお、ここでの各面での近軸量の計算の際に使う面形状の式の係数は、Off-Axial2次曲面をベースにした(数式28)をさらにべき級数展開して平面ベースの(数式1)の形に変換したものである。

【0123】更に上記計算値のうち、各面および全系でのパワーΦのアジムス依存性をグラフとして表現したものを図15に、全系の焦点距離、主点位置、バックフォーカスのアジムス依存性をグラフとして表現したものを図16に示す。(なお図16では残存アジムス依存性がわかりのよいとなどスケットを終すして批りてきる。)

図15においては各面のパワーのアジムス依存性が小さい面が多いが、このことは表5 において G_1 と G_2 cos θ の比が1 に近い値を持つ面(ほぼ(数式27)の反射面がアジムス依存性を持たない条件をみたす面) が多いことに対応している。

【0124】との実施例ではこれらの図からもわかるように全系としては近軸量のアジムス依存性は押さえられている。こうした設計は、全系の焦点距離(パワー)や横倍率ができるだけアジムス依存性を持たないように各面の曲率を自動設計の手法により最適化をかけて求めた10設計の一例であり、全系のパワーや横倍率のアジムス依存性が小さいのに対応して、図17のスポットダイグラム(最大像高の1/4の範囲; 微細構造がわかるように拡大されている。スポットの大きさは0.1mm以下にはなっている)、図18のディストーションの図からもわかるように基準軸近傍で非点収差やディストーションの少ない光学系となっている。

【0125】次に本発明の実施例3について説明する。 【0126】図19に断面図が示されている実施例3のOf f-Axial光学系の仕様、各面の配置、特性、面形状のデータを表6に示す。

【0127】このOff-Axial光学系はOff-Axial反射面とOff-Axial屈折面の両方を用いて構成された単焦点の結像系である。(この系も像面の位置に表示素子を置き、絞り位置を瞳位置と考えれば表示光学系とも考えることができる。)ここでもこの光学系を構成している非球面の面形状を表わす式としては(数式28)を使って表現してある。ここで第5面から第12面の屈折面はすべて球面ではあるが、その曲率中心は表6の面頂点の位置、面法線の方向角データからわかるように必ずしも同一直線上にないので、基準軸を絞り中心と像面中心を通る基準波長の光線の光路とした時、これらの面はOff-Axial屈折面となっている。

【0128】次にとのOff-Axia1光学系の各面および全系でのパワーΦ、横倍率、そして全系の焦点距離、主点位置、バックフォーカスのアジムス依存性を上記計算のフローに則って計算した結果を表7に示す。なお、ことでの各面での近軸量の計算の際に使う面形状の式の係数は、Off-Axia12次曲面をベースにした数式28をさらにべき級数展開して平面ベースの数式1の形に変換したもの40である。

【0129】更に上記計算値のうち、各面および全系でのパワーΦのアジムス依存性をグラフとして表現したものを図20に、全系の焦点距離、主点位置、パックフォーカスのアジムス依存性をグラフとして表現したものを図21に示す。(なお図21では残存アジムス依存性がわかりやすいようにスケールを拡大して描いてある。)図20においては各面のパワーのアジムス依存性がある面、小さい面ともに含むが、小さい面については、表7においてG。とG。cos' θの比が1 に近い値を持つ面

(ほぼ(数式27)の反射面がアジムス依存性を持たない条件をみたす面) に対応している。

【0130】この実施例ではこれらの図からもわかるように全系としては近軸量のアジムス依存性は押さえられている。こうした設計は、全系の焦点距離(パワー)や横倍率ができるだけアジムス依存性を持たないように各面の曲率を自動設計の手法により最適化をかけて求めた設計の一例であり、全系のパワーや横倍率のアジムス依存性が小さいのに対応して、図22のスポットダイグラム(最大像高の1/4 の範囲; 微細構造がわかるように拡大されている。スポットの大きさは0.1mm 以下にはなっている)、図23のディストーションの図からもわかるように基準軸近傍で非点収差やディストーションの少ない光学系となっている。

【0131】次に本発明の実施例4について説明する。 【0132】図24に断面図が示されている実施例4のOf f-Axial光学系の仕様、各面の配置、特性、面形状のデータを表8に示す。このOff-Axial光学系はOff-Axial反 射面と共軸の屈折面(平面)を用いて構成されたズーム 20 の可能な結像系であり、絞り面の第1面を第1ブロック、第2面から第6面を第2ブロック、第7面から第1面を第3ブロック、第12面から第16面を第4ブロックとしたとき、第2ブロックと第3ブロックの間隔、第3ブロックと第4ブロックの間隔を可変としてズームを行なっている。ここではこの光学系を構成している非球面の面形状を表わす式としては(数式30)の平面ベースの式を使って表現してある。

【0133】次にこのOff-Axia1光学系のパワーΦおよび2つの主点位置の各ブロックごとのアジムス依存性の計算値、および全系での焦点距離、主点位置、バックフォーカスのアジムス依存性の計算値を広角端、中間位置、望遠端の3つのステートに対して上記計算のフローに削って計算した結果を表9に示す。そしてそれらの結果のグラフを図25および図26に示す。(なお図26では残存アジムス依存性がわかりやすいようにスケールを拡大して描いてある。)

なお、この例では各面のパワーのアジムス依存性のグラフはブロックごとのアジムス依存性のグラフを表示したため省略したが、表8の値を用いて計算すれば他の実施例同様に描くことができる。その際C。」とC。cos' θの比が1に近い値を持つ面(ほぼ(数式27)の反射面がアジムス依存性を持たない条件をみたす面)を含むことは表9の数値計算を参照することによって確かめることができる。

【0134】また図14でわかるように、この実施例は各ブロックのパワーもほぼアジムス依存性がないような設計になっている。このためブロック間隔を変化させても全系のパワーがすべてのステートでアジムス依存性がほとんどないようにできる。

50 【0135】なお図25ではわからない位だがスケールが

拡大された図26ではわかる程度の残存のアジムス依存性 は高次の収差とのバランスとの関連で残っていると思わ れるが、この光学系も、各ブロックや全系の焦点距離 (パワー) や横倍率ができるだけアジムス依存性を持た ないように各面の曲率を自動設計の手法により最適化を かけて求めた設計による一例であり、全系のパワーや横 倍率のアジムス依存性が小さいのに対応して、図27のス ポットダイグラム(最大像髙の1/4 の範囲; 微細構造が わかるように拡大されている。スポットの大きさは0.1m m以下にはなっている)、図28のディストーション(最 10 8)を使って表現してある。ただしここでの各反射面は 大像高の1/4 の範囲) の図からもわかるように各ステー トともに基準軸近傍で非点収差やディストーションの少 ない光学系となっている。

【0136】次に本発明の実施例5について説明する。 【 0 1 3 7 】図29に断面図が示されている実施例5 のOf f-Axial光学系の仕様、各面の配置、特性、面形状のデ ータを表10に示す。

【0138】 このOff-Axial 光学系は反射面だけで構成 された単焦点の結像系である。(この系も像面の位置に 表示素子を置き、絞り位置を瞳位置と考えれば表示光学 系とも考えることができる。) ここでもこの光学系を構 成している非球面の面形状を表わす式としては(数式28) を使って表現してある。ただしことでの各面は(数式2 8) の多項式部分が存在するので厳密なOff-Axia12次曲 面ではないが、多項式部分に2次の項がないので曲率的 にはそれと同等となっておりしかもベースになっている Off-Axial2次曲面の2 焦点は基準軸上にあるので、(数 式27) の条件を満たしている。従って近軸的にはこれら の反射面は完全にアジムス依存性がなく、あたかも共軸 系のように取り扱うことが可能である。

【0139】次にこのOff-Axial光学系のパワーΦおよ び横倍率の近軸量の各面での値、および全系での値を上 記計算のフローに則って計算した結果を表11に示す。予 想通りどちらの量も全くアジムス依存性がない。なお、 ことでの各面での近軸量の計算の際に使う面形状の式の 係数は、Off-Axial2次曲面をベースにした(数式28)をさ らにべき級数展開して平面ベースの(数式1)の形に変換 したものである。

【0140】更に図30に各面のパワー及び全系のパワー のアジムス依存性をグラフとして表現したものを示す。 この図からわかるように、この系は各面、全系ともに全 くアジムス依存性を持っていない。なおこの光学系は更 に髙次の収差が小さくなるように各面の髙次の係数を自 動設計の手法により最適化をかけて求めた設計であり、 全系のパワーや横倍率のアジムス依存性がないのに対応 して、図31のスポットダイグラム(最大像高の1/4 の範 囲; 微細構造がわかるように拡大されている。スポット の大きさは0.1mm 以下にはなっている)、図32のディス トーションの図からもわかるように基準軸近傍で非点収 差やディストーションの少ない光学系となっている。

【0141】次に本発明の実施例6について説明する。 【0142】図33に断面図が示されている実施例6のOf f-Axial光学系の仕様、各面の配置、特性、面形状のデ ータを表12に示す。

34

【0143】 このOff-Axial光学系はOff-Axial反射面と 共軸の屈折面で構成された単焦点の結像系である。この 光学系は実施例1 から3 や5 の光学系とは異なり、物体 距離が有限の有限結像系出ある。ここでもこの光学系を 構成している非球面の面形状を表わす式としては(数式2 (数式28) の多項式部分がないので厳密なOff-Axial2次 曲面となっておりしかもその2 焦点は基準軸上にあるの で、(数式27) の条件を満たしている。従って近軸的に はこれらの反射面は厳密にアジムス依存性がなく、あた かも共軸系のように取り扱うことが可能である。

【0144】次にこのOff-Axial光学系の各面および全 系でのパワーΦ、横倍率、そして全系の焦点距離、主点 位置、バックフォーカスのアジムス依存性を上記計算の フローに則って計算した結果を表13に示す。予想通りど の近軸量も全くアジムス依存性がない。なお、ことでの 各面での近軸量の計算の際に使う面形状の式の係数は、 Off-Axial2次曲面をベースにした(数式28) をさらにベ き級数展開して平面ベースの(数式1)の形に変換したも のである。

【0145】更に図34に各面のパワー及び全系のパワー のアジムス依存性をグラフとして表現したものを示す。 この図からわかるように、この系は各面、全系ともに全 くアジムス依存性を持っていない。なおこの光学系は髙 次の収差が小さくなるように各面の曲率を自動設計の手 法により最適化をかけて求めた設計の一例であり、全系 30 のパワーや横倍率のアジムス依存性がないのに対応し て、図35のスポットダイグラム(最大像高の1/4 の範囲: 微細構造がわかるように拡大されている。スポットの 大きさは0.1mm 以下にはなっている)、図36のディスト ーションの図からもわかるように基準軸近傍で非点収差 やディストーションの少ない光学系となっている。

【0146】次に本発明の実施例7について説明する。 【0147】図37に断面図が示されている実施例7のOf f-Axial光学系の仕様、各面の配置、特性、面形状のデ ータを表14亿示す。

【0148】このOff-Axial光学系はOff-Axial反射面の みで構成された単焦点の結像系である。(この系も像面 の位置に表示素子を置き、絞り位置を瞳位置と考えれば 表示光学系とも考えることができる。) ここでもこの光 学系を構成している非球面の面形状を表わす式としては (数式28)を使って表現してある。

【0149】次にこのOff-Axial光学系の各面および全 系でのパワーΦ、横倍率、そして全系の焦点距離、主点 位置、バックフォーカスのアジムス依存性を上記計算の 50 フローに則って計算した結果を表15に示す。なお、ここ

での各面での近軸量の計算の際に使う面形状の式の係数は、Off-Axial2次曲面をベースにした数式28をさらにべき級数展開して平面ベースの数式1の形に変換したものである。

【0150】更に上記計算値のうち、各面および全系でのパワー中のアジムス依存性をグラフとして表現したものを図38に、全系の焦点距離、主点位置、バックフォーカスのアジムス依存性をグラフとして表現したものを図22に示す。(なお図39では残存アジムス依存性がわかりやすいようにスケールを拡大して描いてある。)図38においては各面のパワーのアジムス依存性がある面、小さい面ともに含むが、小さい面については、表7においてG。とG。cos¹ の比が1 に近い値を持つ面(ほぼ(数式27)の反射面がアジムス依存性を持たない条件をみたす面)に対応している。

【0151】この実施例では実施例5 や6 とは異なって、各面の近軸量にはアジムス依存性を持っているものがあるものの、全系としては近軸量のアジムス依存性は押さえられている。こうした設計は、全系の焦点距離(パワー)や横倍率ができるだけアジムス依存性を持たないように各面の曲率を自動設計の手法により最適化をかけて求めた設計の一例であり、全系のパワーや横倍率のアジムス依存性が小さいのに対応して、図40のスポットダイグラム(最大像高の1/4 の範囲; 微細構造がわかるように拡大されている。スポットの大きさは0.1mm 以下にはなっている)、図41のディストーションの図からもわかるように基準軸近傍で非点収差やディストーションの少ない光学系となっている。

[0152]

【外1】

37 38 -1. $N(\cos\theta'\cos\xi'\sin(\xi+\phi)-\cos\theta\sin\xi'\cos(\xi+\phi))/(N\cos\theta'(s-t))$ $-\epsilon$ 'N(cos θ 'sin ξ 'sin($\xi+\phi$)+coe θ cos ξ 'cos($\xi+\phi$))/(N'cos θ '($s\to$ 1)) (数式2) (数式3) $-2ss(N\cos\theta$ -Ncos θ)(- $\sin\xi\cos(\xi+\phi)$ CO2+($\cos\theta\cos\theta\cos(\xi+\phi)$ - $\cos\theta\sin\xi\sin(\xi+\phi)$)C11+ $\cos\theta\cos\theta\cos\xi\sin(\xi+\phi)$ C20) -4 N($\cos \theta \sin \xi \cdot \sin \xi + \cos \theta \cos \xi \cdot \cos \xi$)/(N' $\cos \theta \cdot (\epsilon - \epsilon)$) -s 'N(cos θ 'cos ξ 'sin ξ -cos θ sin ξ 'cos ξ)/(N'cos θ '(s \rightarrow)) -21 s'(N'cos 8'-Ncos 8)[cos ‡'cos ‡ Co2+(cos 8'sin ‡'cos ‡+cos 8 cos £'sin ‡)C11 +cos 8 cos 8'sin £'sin ‡ C20] 21 s' (N'008 8'-N008 8) [-sin £'008 £'002 + (008 8'008 £'008 £'-008 8 sin £'sin £')C11 +008 8 008 8'008 £'sin £'C20] $(s (-\cos \theta \cdot \sin \xi \cdot \cos(\xi + \phi) + \cos \theta \cos \xi \cdot \sin(\xi + \phi))/(\cos \theta (s \rightarrow 1))$ $s(\cos\theta,\cos\xi,\cos(\xi+\phi)+\cos\theta\sin\xi,\sin(\xi+\phi))/(\cos\theta(s-1))$ B+ 1(cos 0 cos € cos € +cos 0 sin € sin €)(cos 0 (1 -1)) $((-\cos\theta,\sin\xi,\cos\xi+\cos\theta\cos\xi,\sin\xi)/(\cos\theta(s+\zeta))$ $I(N\cos\theta\cos\theta.(s-1))$ $/(N'\cos\theta\cos\theta, (s - 1))$ /(N cos θ cos θ '(s - t)) $((N\cos\theta\cos\theta)(s-1))$, \$ e / ' V e - T V P 9 Δ, = τ

【外2】

[0153]

(数式9)

40 (数式10) 2(N'cos 8 '-Ncos 8) (cos £ 'cos £ Co2+(cos 8 'sin £ 'cos £ +cos 8 cos £ 'sin £) C11+cos 8 cos 8 'sin £ 'sin £ C20] $\sqrt{\cos \theta \cos \theta}$ (cos θ)cos ξ)cos ξ +cos θ sin ξ \sin ξ \(cos θ \sin ξ \sin ξ \sin ξ +cos θ cos ξ \(cos ξ \)

(数式12)

$$\begin{pmatrix} h \\ \alpha \end{pmatrix} = \begin{pmatrix} A & 0 \\ 0 & D \end{pmatrix} \begin{pmatrix} h \\ \alpha \end{pmatrix} \qquad (数式7)$$

A=
$$\frac{\cos \theta '(\cos \theta '\cos \xi'\cos \xi +\cos \theta \sin \xi'\sin \xi)}{\cos \theta (\cos \theta '\sin \xi'\sin \xi +\cos \theta \cos \xi'\cos \xi)}$$

$$\frac{\cos \theta (\cos \theta '\sin \xi'\sin \xi +\cos \theta \cos \xi'\cos \xi)}{\cos \theta '(\cos \theta '\sin \xi'\cos \xi +\cos \theta \sin \xi'\sin \xi)}$$

[0154]

【外3】

#

(数式28)

(数式29)

42

 $(1/a+1/b)(\cos^2(t)y^2+x^2)$

 $2\cos(t)[1+1/2(1/a-1/b)\sin(t)y+\sqrt{1+(1/a-1/b)\sin(t)y-y^2/ab-\{1/ab+1/4\tan^2(t)(1/a+1/b)^2\}x^2}] \\ +C_{30}x^3+C_{21}x^2y+C_{12}xy^2+C_{03}y^3+C_{40}x^4+C_{31}x^3y \\ +C_{22}x^2y^2+C_{13}xy^3+C_{04}y^4+......+....$

$$z=R-(R-s)\sqrt{1-\frac{y^2}{(R-s)^2}}$$

+C₃₀x³+C₂₁x²y+C₁₂xy²+C₀₃y³+C₄₀x⁴+C₃₁x³y +C₂₂x²y²+C₁₃xy³+C₀₄y⁴+...... ただしRは母線の曲率半径、sはs=s(x)で子線断面の形状の式である。

[0155]

* * (外4) z=Ah²+Bh⁴+Ch⁶+Dh⁸+Eh¹⁰+...... 但しh²=x²+y²

(数式a)

[0156]

【外5】

裘1

実施例1(単焦点、反射面のみ)

水平半画角 垂直半画角 絞り径 31.7 24.8 1.60

像サイズ 水平4.8mm ×垂直3.6mm

各面	の面頂点の	の位置 (Yi	, Zi).	面法線の)方向角 θ	i、面間隔Di、硝材データ、面特性	
i	Yi	Zi	heta i	Di	Ndi	vdi	
1	0.00	0.00	0.00	15.00	1	絞り	
2	0.00	15.00	25.00	18.00	1	反射面	
3	-13.79	3.43	5.00	18.00	1	反射面	
4	-25.36	17.22	-10.00	15.00	1	反射面	
5	-30.49	3.12	-15.00	14.00	1	反射面	
6	-41.21	12.12	-25.00	19.00	1	反射面	
7	-41.21	-6.88	0.00		1	像面	

非球面形状

R 2回 a =-1.70158e+01 b =-1.99675e+01 t = 2.69345e+01 C03=-6.82940e-05 C21=-4.91116e-05 C04= 7.50340e-06 C22= 2.72683e-05 C40= 1.85155e-05

R 3面 a =-1.46738e+01 b =-1.06108e+01 t =-4.78682e+01 C03= 1.59750e-03 C21= 2.47761e-03 C04= 4.94211e-06 C22= 2.88441e-04 C40=-5.44074e-06

R 4面 a =-2.54952e+01 b =-2.54826e+01 t = 3.27938e+01

R 5面 a =-6.25646e+01 b =-8.38258e+00 t =-4.03998e+01 C03=6.23735e-04 C21=6.79503e-04 C04=-8.18199e-05 C22=-1.19484e-04 C40=-1.48499e-04

R $6\overline{\mathbf{M}}$ a =-2.13397e+01 b =-2.40733e+01 t = 2.57011e+01 C03=-1.74466e-05 C21=-6.32275e-05 C04=-8.53737e-07 C22= 1.33874e-07 C40=-3.17827e-06

[0157]

【外6】

[0159]

45

46

```
丧2-1
   面形状の数値出力(x,yに対する2の値)
   第2面
   y\x -4.5303 -3.6242 -2.7182 -1.8121 -0.9061 0.0000 0.9061 1.8121 2.7182 3.6242 4.5303 -10.2020 -3.2121 -2.9662 -2.7773 -2.6435 -2.5637 -2.5372 -2.5637 -2.6435 -2.7773 -2.9662 -3.2121
    -8.1616 -2.2520 -2.0166 -1.8352 -1.7064
                                                  -1.6295 -1.6039 -1.6295 -1.7064 -1.8352 -2.0166 -2.2520
            -1.5323 -1.3022 -1.1246
    -6.1212
                                         -0.9983
                                                           -0.8976 -0.9228
                                                                              -0.9983 -1.1246
                                                   -0.922R
                                                                                                -1.3022 -1.5323
    -4.0808
             -1.0279
                      -0.8002 -0.6242
                                         -0.4989
                                                   -0.4240
                                                            -0.3990 -0.4240
                                                                              -0.4989
                                                                                       -0.6242 -0.8002 -1.0279
    -2.0404
              -0.7283
                      -0.5010 -0.3252
                                          -0.2000
                                                   -0.1251
                                                            -0.1002 -0.1251
                                                                              -0.2000
                                                                                       -0.3252
                                                                                                 -0.5010 -0.7283
     0.0000
              -0.6310
                      -0.4027 -0.2261
                                         -0.1003
                                                   -0.0251
                                                             0.0000
                                                                     -0.0251
                                                                              -0.1003 -0.2261
                                                                                                -0.4027 -0.6310
     2 0404
              -0.7398 -0.5090 -0.3305
                                         -0.2035
                                                   -0.1275
                                                            -0.1022
                                                                     -0.1275
                                                                              -0.2035
                                                                                        -0.3305
                                                                                                 -0.5090 -0.7398
                      -0.8287 -0.6471
     4.0808
             -1.0637
                                                                    -0.4408
                                          -0.5180
                                                   -0.4408
                                                            -0.4151
                                                                              -0.5180
                                                                                       -0.6471
                                                                                                -0.8287 -1.0637
     6.1212
             -1.6191 -1.3773 -1.1909
                                         -1.05B4
                                                   -0.9792
                                                            -0.9529
                                                                     -0.9792
                                                                              -1.0584 -1.1909
                                                                                                -1.3773 -1.6191
            -2.4339 -2.1812 -1.9868
-3.5583 -3.2868 -3.0789
                                                   -1.7666
                                                            -1.7392
                                                                     -1.7666
                                                                                       -1.9868
                                          -1.8489
                                                                              -1.8489
                                                                                                -2.1812
                                                                                                         -2.4339
                                                                                       -3.0789
    10.2020
                                          -2.9319
                                                   -2.8443
                                                            -2.8152
                                                                     -2.8443
                                                                              -2.9319
                                                                                                -3.2868
   第3面
    y\x -1.8373 -1.4698 -1.1024 -0.7349
-4.8079 -1.0295 -0.9457 -0.8811 -0.8352
             -1.8373 -1.4698 -1.1024 -0.7349
                                                  -0.3675
                                                            0.0000 0.3675 0.7349 1.1024 1.4698 1.8373
                                                   -0.8078
                                                           -0.7987 -0.8078
                                                                              -0.8352 -0.8811 -0.9457 -1.0295
     -3.8463 -0.7143 -0.6320 -0.5684 -0.5233
                                                   -0.4964
                                                           -0.4874 -0.4954
                                                                              -0.5233 -0.5684 -0.6320 -0.7143
     -2.8847 -0.4841 -0.4033 -0.3410 -0.2967
                                                            -0.2614 -0.2702
                                                   -0.2702
                                                                              -0.2967
                                                                                       -0.3410 -0.4033 -0.4841
                                -0.1886
                                                                     -0.1194
     -1.9231
              -0.3287
                       -0.2497
                                         -0.1453
                                                   -0.1194
                                                            -0.1108
                                                                              -0.1453
                                                                                      -0.1886
                                                                                                -0.2497
                                                                                                          -0.3287
     -0 9616
              -0.2391 -0.1619
                                -0.1024 -0.0601
                                                   -0.0348
                                                            -0.0264
                                                                     -0.0348
                                                                              -0.0601 -0.1024 -D.1619
      0.0060
                       -0.1318
              -0.2069
                                -0.0739
                                         -0.0328
                                                   -0.00R2
                                                             0.0000
                                                                     -0.0082
                                                                              -0.0328 -0.0739
                                                                                                -0.1318
                                                                                                          -0.2069
              -0.2247
                       -0.1510
                                -0.0956
                                                                              -0.0558
                                         -0.0558
                                                   -0.0320
                                                            -0.0240
                                                                     -0.0320
                                                                                      -0.0956
                                                                                                -0.1518 -0.2247
      1.9231
              -0.2859
                                -0.1610
                                                            -0.0919
                                                                                      -0.1610 -0.2154 -0.2859
                      -0.2154
                                         -0.1225
                                                   -0.0995
                                                                     -0.0995
                                                                              -0.1225
      2.8847
              -0.3852 -0.3171 -0.2646
                                         -0.2275
                                                   -0.2053
                                                            -0.1979
                                                                     -0.2053
                                                                              -0.2275
                                                                                       -0.2646
                                                                                                -0.3171
                                                                                                          -0.3852
             -0.5190
                      -0.4530
                               -0.4024
      3.8463
                                                                     -0.3451 -0.3665
                                         -0.3665
                                                   -0.3451
                                                            -0.3380
                                                                                      -0.4024 -0.4530
                                                                                                         -0.5190
      4.8079
             -0.6858
                      -0.6216
                                -0.5723
                                         -0.5376
                                                   -0.5168
                                                            -0.5100
                                                                     -0.5168
                                                                              -0.5376
                                                                                      -0.5723 -0.6216
                                                                                                         -0.6858
[0158]
                                                        * * 【外7】
   表2-2
             面形状の数値出力(x,yに対する2の値)
  第4面
                                                           0.0000 1.3564 2.7127 4.0691 5.4255 6.7818
-1.3451 -1.3916 -1.5319 -1.7682 -2.1041 -2.5453
-0.8440 -0.8894 -1.0260 -1.2560 -1.5829 -2.0119
     y\x -6.7818 -5.4255 -4.0691 -2.7127
-8.7129 -2.5453 -2.1041 -1.7682 -1.5319
                                                  -1.3564
                                                  -1.3916
     -6.9703
            -2.0119
                      -1.5829 -1.2560
                                         -1.0260
                                                  -0 9894
                                                                     -0.5112 -0.6450 -0.8703 -1.1903 -1.6100
                                                            -0.4668
                                          -0.6450
             -1.6100 -1.1903 -0.8703
-1.3295 -0.9166 -0.6017
                                                   -0.5112
     -5.2277
                                          -0.3800
                                                   -0.2482
                                                            -0.2045
                                                                     -0.2482 -0.3800 -0.6017 -0.9166 -1.3295
     -3.4852
                                                                     -0.093B
                                                                              -0.2241 -0.4434
                                                                                                -0.7549
                                                                                                          -1.1632
              -1.1632 -0.7549
                                -0.4434
                                          -0.2241
                                                   -0.0938
                                                            -0.0505
     -1.7426
                                                                              -0.1725
                                                                                       -0.3905
                                                                                                          -1.1057
                                                             0.0000
                                                                     -0.0430
                                                                                                -0.7000
     0.0000
              -1.1057
                      -0.7000
                                -0.3905
                                          -0.1725
                                                   -D.043D
                                                                                        -0.4396
                                                   -0.0927
                                                            -0.0497
                                                                     -0.0927
                                                                              -0.2220
                                                                                                 -0.7486
                                                                                                          -1.1538
              -1.1538 -0.7486
                                -0.4396
                                          -0.2220
     1.7426
                                                                              -0.3710 -0.5893
             -1.3061 -0.8994
                                -0.5893
                                          -0.3710
                                                   -0.2413
                                                            -0.1983
                                                                     -0.2413
                                                                                                 -0.8994
                                                                                                          -1.3061
      3.4B52
                      -1.1526 -0.8399
-1.5108 -1.1936
                                                                                       -0.8399
                                                                     -0.4890
-0.8379
                                                                                                 -1.1526
                                                                                                          -1.5631
     5.2277
                                         -0.619B
-0.9704
                                                  -0.4890
-0.8379
                                                            -0.4457
-0.7940
                                                                              -0.6198
              -1.5631
                                                                              -0.9704
                                                                                       -1.1936
-1.6549
                                                                                                 -1.5108
                                                                                                          -1.9275
     6.9703
            -1.9275
                                         -1.4273
     B.7129 -2.4045 -1.9788 -1.6549
                                                            -1.2473
                                                                     -1.2922
                                                                              -1.4273
                                                                                                -1.9788
                                                                                                          -2.4045
                                                   -1.2922
   第5面
     y\x -2.5432 -2.0345 -1.5259
-3.0855 -0.5418 -0.4346 -0.3527
                                                                     0.5086
                                                                                        1.5259
                                                                                                  2.0345
                                                                                                           2.5432
              -2.5432 -2.0345 -1.5259
                                         -1.0173
                                                  -0.5086 -0.0000
                                                                               1.0173
                                                                     -0.2607
                                                                              -0.2950
                                                                                       -0.3527 -0.4346 -0.5418
                                                            -0.2493
                                        -0.2950
                                                  -0.2607
                                                                     -0.1693 -0.2034 -0.2609
                                                                                                 -0.3424 -0.4491
                                                            -0.1579
     -2.4684 -0.4491 -0.3424 -0.2609
                                        -0.2034
                                                   -0.1693
              -0.3790
                      -0.2724
                                -0.1910
                                          -0.1336
                                                   -0.0995
                                                            -0.0882
                                                                     -0.0995
                                                                              -0.1336
                                                                                        -0.1910 -0.2724 -0.3790
     -1.8513
                                                                                       -0.1421 -0.2236
                                                                                                          -0.3305
                       -0.2236
                                -0.1421
                                                   -0.0504
                                                            -0.0391
                                                                     -0.0504
                                                                              -0.0846
     -1.2342
              -0.3305
                                          -0.0846
                                                                     -0.0212
                                                                                                 -0.1954
                                                                                                          -0.3029
                                                                              -0.0555
                                                                                       -0.1133
                                                            -0.0098
     -0.6171
              -0.3029
                       -0.1954
                                -0.1133
                                          -0.0555
                                                   -0.0212
                                                                     -0.0115
                                          -0.0462
                                                                               -0.0462
                                                                                        -0.1045
                                                                                                           -0.2959
                                -0.1045
                                                   -0.0115
                                                            0.0000
                                                                                                 -0.1874
              -0.2959
                       -0.1874
     -0.0000
      0.6171
                                -0.1158
                                          -0.0567
                                                   -0.0215
                                                            -0.0099
                                                                     -0.0215
                                                                              -0.0567
                                                                                        -0.1158
                                                                                                 -0.199B
                                                                                                           -0 3098
              -0.3098
                      -0.1998
                                                                                                          -0.3451
                       -0.2332
                                -0.1478
                                          -0.0876
                                                   -0.0519
                                                            -0.0400
                                                                     -0.0519
                                                                              -0.0876
                                                                                        -0.1478
                                                                                                 -0.2332
      1.2342
              -0.3451
                                                                              -0.1400
                                                                                        -0.2015
                                                                                                 -0.2888
                                                                                                          -0.4032
             -0.4032 -0.2888
                                          -0.1400
                                                                     -0.1035
      1.8513
                               -0.2015
                                                   -0.1035
                                                            -0.0914
                                                            -0.1657
                                                                     -0.1781 -0.2156
                                                                                       -0.2787
                                                                                                 -0.3682
                                         -0.2156
                                                   -0.1781
      2.4684
             -0.4856 -0.3682 -0.2787
      3.0855 -0.5949 -0.4739 -0.3815 -0.3165
                                                   -0.2779
                                                                     -0.2779 -0.3165
                                                                                       -0.3815 -0.4739
                                                                                                           -0.5949
                                                            -0.2650
```

【外8】

表2-3 面形状の数値出力 (x, yに対するzの値)

```
第6面
    -0.4951 -0.2767
-0.5306 -0.3108
-0.6331 -0.4111
                 -0.7802
                                                      -0.1224 -0.0305
                                                                              0.0000 -0.0305 -0.1224 -0.2767
                                                                                                                               -0.4951
                                                                                                                                             -0.7802
      0.0000
      1.2720 -0.8175 -0.5306 -0.3108 -0.1555 -0.0630 -0.1326 -0.1555 -0.0630 -0.1555 -0.3108 -0.5306 -0.8175 2.5440 -0.9227 -0.6331 -0.4111 -0.2544 -0.1610 -0.1300 -0.1610 -0.2544 -0.4111 -0.6331 -0.9227 3.8160 -1.0976 -0.8041 -0.5793 -0.4205 -0.3259 -0.2945 -0.3259 -0.4205 -0.5793 -0.8041 -1.0976 5.0880 -1.3447 -1.0462 -0.8176 -0.6562 -0.5601 -0.5282 -0.5601 -0.6562 -0.8176 -1.0462 -1.3447 -1.0462 -0.8176 -0.9648 -0.8668 -0.8342 -0.8668 -0.9648 -1.1295 -1.3627 -1.6675
[0160]
                                                                           * * (外9)
                       表3
                       近軸量
                                 powerのアジムス依存性
面\アジムス 0 30
                                                                                  60
                                                                                                               C02/(C20*(cos 0 )^2)
                                                                                                90
                                                           0.1080
                                             0.1071
                                                                           0.1098
                                                                                           0.1107
                                                                                                              0.9676
                                             -0.1541
                                                            -0.1583
0.0773
                                                                           -0.1669
0.0797
-0.1406
                                                                                          -0.1712
                                                                                                              0.9000
                                              0.0762
                                                                                          0.0808
                                                                                                              0.9422
                                              -0.125B
                                                            -0.1307
                                                                                          -0.1455
                                                                                                              0.8643
                                              0.0879
                                                              0.0881
                                                                            0.0887
                                                                                            0.0889
                                                                                                              0.9885
                            total
                                             -0.3102
                                                            -0.3118
                                                                           -0.3133
                                                                                          -0.3131
                                横倍率のアジムス依存性
面\アジムス 0
2 -0.0000 -0.00
                                                            30
-0.0000
                                                                                  60
                                                                           -0.0000
                                                                                          -0.0000
                                                                           0.4026
                                              0.4284
                                                             0.4195
                                                                                           0.3946
                                             -1.5301
                                                            -1.4804
                                                                           -1.3905
                                                                                           -1.3496
                                             -0.7744
                                                            -0.8119
                                                                           -0.9014
                                                                                          -0.9553
                                             -0.6B01
                                                            -0.6868
                                                                           -0.6942
                                                                                          -0.6947
```

-0.0000

-0.0000

[0161] [外10]

-0.0000

-0.0000

total

実施例2(単焦点、反射面+屈折面(共軸))

水平半画角 23.4 垂直半画角 18.0 絞り径 1.80

各面の面頂点の位置(Yi , Zi)、面法線の方向角 θ i 、面間隔Di 、硝材データ、面特性 Yi Zi θi Di Ndi νdi 0.00 0.00 0.00 4.27 1 0.00 2 4.27 0.00 1.58310 30.20 屈折面 6.25 1.58310 30.20 1.58310 30.20 3 0.00 10.52 18.50 8.10 反射面 -4.87 4.05 -1.00 7.78 反射面 -9.77 -19.16 10,10 7-.37 1.58310 30.20 反射面 -9.85 -27.19 2.73 8.00 1.58310 30.20 反射面 -16.41 7.31 -27.53 5.81 1.58310 30.20 反射面 8 -16.41 1.50 0.00 2.50 屈折面 1 9 -16.41 -1.00 0.00 1 像面

球面形状

R 2面 r 2= -7.891 R 8面 r 8= 9.956

非球面形状

R 3面 a =-1.14012e+01 b =-1.18198e+01 t = 1.84936e+01 C03=-1.45648e-04 C21=-6.61332e-05 C40= 4.74629e-05 C22= 2.63964e-05 C40= 4.74629e-05 R 4面 a = 6.22159e+01 b =-3.63434e+00 t =-3.64536e+01 C03= 5.30792e-03 C21= 1.47021e-02 C04= 4.56272e-04 C22= 7.05893e-04 C40=-4.80923e-03 R 5面 a =-2.43894e+01 b =-8.62097e+00 t = 1.97882e+01 C03=-2.35500e-04 C21=-4.31297e-05 C04=-4.98744e-05 C22=-1.20801e-04 C40=-7.58653e-05 R 6面 a = 3.78988e+00 b =-3.21669e+00 t =-2.75834e+01 C03= 2.89135e-03 C21= 4.70991e-03 C04=-6.03057e-04 C22=-1.27501e-03 C40=-8.22786e-04 R 7面 a =-1.96892e+01 b =-2.48568e+01 t = 2.71952e+01 C03=-6.49245e-04 C21=-2.32589e-06 C04= 1.18747e-05 C22= 1.91866e-04 C40=-9.90786e-05

[0162]

【外11】

51

赉5

近軸量					
	powerのアジムスは	存性			
	面\アジムス 0	30	60	90	C02/(C20*(cos 8)^2)
	2 -0.0739	-0.0739	-0.0739	-0.0739	1.0000
	3 0.2728	0.2728	0.2728	0.2728	1.0001
	4 -0.4186	-0.4144	-0 4060	-0 4018	1 0419

3	0.2728	0.2728	0.2728	0.2728	1.0001
4	-0.4186	-0.4144	-0.4060	-0.4018	1.0419
5	0.2485	0.2485	0.2486	0.2486	0.9998
6	-0.0746	-0.0745	-0.0743	-0.0742	1.0053
7	0.1445	0.1443	0.1439	0.1437	1.0061
8	0.0586	0.0586	0.0586	0.0586	1.0000
total	-0.2187	-0.2181	-0.216B	-0.2162	

横倍	半のアジムス	依存性		
面\ア	シムス 0	30	60	90
2	0.0000	0.0000	0.0000	0.0000
3	-0.2653	-0.2653	-0.2653	-0.2653
4	0.833B	0.8353	0.8381	0.8396
5	-3.1309	-3,1288	-3.1247	-3.1227
6	9.3685	9.2084	8.9042	8.7598
7	0.0607	0.0619	0.0642	0.0654
8	0.8579	0.8579	0.8577	0.8576
total	0.0000	0.000	0.000	0.000

[0163] [外12]

実施例3(単焦点、反射面+屈折面(off-axial)) 水平半面角 19.1 垂直半面角 14.5

絞り径 6.00

各面の面頂点の位置(Yi , 2i)、面法級の方向角 θ i 、面間隔Di 、硝材データ、面特性

```
Yi
              Zi
                     θi
                                   Ndi
                             Di
     0.00
             0.00
                     0.00
                           74.01
                                   1
                                                  絞り
                                                  反射面反射面
     0.00
            74.01
                    21.97
                           56.80
                                   1
   -39.42
                     0.85
            33.11
                           53.46
                                   1
   -75.36
            72.69
                   -18.54
                            72.34
                                   1
                                                  反射面
                    0.45
4.79
6.46
   -81.87
             0.64
                            4.66
                                                  屈折面
                                   1.83400 37.16
   -82.11
            -4.01
                            2.98
                                   1
                                                  屈折面
            -6.99
   -82.19
                            1.07
                                   1.84665 23.88
                                                  屈折面
  -82.26
            -8.06
                     0.18
                            4.76
                                   1
                                                  屈折面
  -82.83
           -12.79
                   -10.13
                                   1.71999 50.25
                            6.31
                                                  屈折面
10 -82.78
11 -82.45
           -19.10
                    6.30
                                                  屈折面
                            3.83
          -22.92
                    -0.77
                            0.39
                                   1.83480 42.72
                                                  屈折面
          -29.98
   -82.06
                    -9.45
                           18.41
                                   1
                                                  屈折面
13 -82.73 -48.40
                    2.00
                                   1
                                                  像面
```

球面形状

非球面形状

R 2面。a = 3.36759e+02 b =-3.15328e+02 t = 8.95510e+01 C03=-8.68501e-06 C21=-2.25860e-05 C04=-2.82857e-07 C22=-3.57767e-07 C40=-1.39322e-08 C05= 8.22060e-09 C23= 3.33747e-09 C41=-5.80341e-09 R3面 a =-3.99870e+01 b =-2.94443e+01 t = 5.12198e+01 C03=-1.60084e-05 C21= 2.02658e-05 C04=-2.78682e-06 C22= 1.58674e-05 C40= 2.56031e-05 C05= 1.68041e-07 C23=-2.82577e-07 C41=-3.88482e-07 R = -2.36159e + 02 b = -5.63231e + 01 t = 2.33084e + 01 C03=-1.12229e-05 C21=-1.15712e-05 C04= 1.34763e-07 C22= 1.65257e-07 C40= 1.57502e-07 CO5= 1.26972e-09 C23=-4.19707e-11 C41=-3.16439e-09 R 5面 a =-4.40303e+01 b =-4.40303e+01 t = 0.00000e+00 R 6面 a = 2.61887e+01 b = 2.61887e+01 t = 0.00000e+00 $R 7\overline{B}$ a = 1.60442e+01 b = 1.60442e+01 t = 0.00000e+00 R 8面 a =-4.03833e+01 b =-4.03833e+01 t = 0.00000e+00 R 9面 a =-5.43914e+01 b =-5.43914e+01 t = 0.00000e+60 R10回 a = 1.52012e+02 b = 1.52012e+02 t = 0.00000e+00 R11面 a = 1.04459e+02 b = 1.04459e+02 t = 0.00000e+00 R12面 a = 2.80571e+01 b = 2.80571e+01 t = 0.00000e+00

[0164] 【外13】 表7

'n	軸	£

pow	erのアジムスは	存住			
面いて	プジムス 0	30	60	90	C02/(C20*(cos θ) ^2)
2	0.0253	0.0255	0.0257	0.0258	0.9817
3	-0.0416	-0.0431	-0.0461	-0.0476	0.8739
4	0.0216	0.0217	0.0219	0.0220	0.9815
5	0.0191	0.0190	0.0190	0.0190	1.0068
6	0.0319	0.0319	0.0319	0.0319	1.0010
7	-0.0531	-0.0531	-0.0529	-0.0529	1.0074
8	-0.0212	-0.0212	-0.0211	-0.0210	1.0040
9	0.0144	0.0142	0.0138	0.0136	1.0935
10	0.0049	0.0049	0.0048	0.0048	1.0136
11	-0.0080	-0.0080	-0.0080	-0.0080	1.0060
12	0.0309	0.0307	0.0303	0.0301	1.0121
total	-0.0479	-0.0482	-0.0487	-0.0489	
横倍	宇のアジムス	依存性			
面\ア	ジムス 0	30	60	90	

面ヽプ	'ジムス 0	30	60	90
2	0.0409	8.0407	0.0403	0.0402
3	0.5593	0.5483	0.5273	0.5172
4	-2.6196	-2.5923	-2.5394	-2.5137
5	0.3544	0.3597	0.3704	0.3757
6	0.4994	0.5016	0.5060	0.5082
7	3.1019	3.0564	2.9680	2.9251
8	5.4201	4.9914	4.3269	4.0641
9	0.2494	0.2735	0.3205	0.3433
10	0.7992	0.8051	0.8173	0.8236
11	1.3925	1.3848	1.3678	1.3585
12	0.4212	0.4271	0.4405	0.4481
otal	-0.0208	-0 0207	-0 0205	-0 0204

全系の焦点距離、主点位置、バックフォーカスのアジムス依存性 アジムス 0 30 60 90

	/ JAA 0	30	60	90
f	-20.8605	-20.7619	-20.5505	-20.43B3
Н	-21.8683	-21.9981	-22.1082	-22.0949
H'	39.8260	39.7062	39.3925	39.1988
sk'	18.9655	18.9443	18.842	18.7605

[0165] [外14]

57

表8-1 実施例4(ズーム) 広角端 中間 望遠端 水平半画角 14.0 10.6 7.1 垂直半圏角 10.6 8.0 5.3

亚重·	半闽角	10.6	8.0	5.3			
絞り	圣	2.00	3.00	4.00			
各面	の面頂点	の位置 (Yi	, Zi),	面法線の	方向角 8 i	、面間	隔pi 、硝材データ、面特性
i	Yi	2i(W)	θi	Di	Ndi	v di	
ī	0.00	0.00	0.00	変数	1		絞り
2	-8.90	3.00	0.00	6.00	1.51633	64.15	屈折面
3	0.00	9.00	28.00	10.73	1.51633	64.15	反射面
4	-8.90	3.00	0.00	10.73	1.51633	64.15	全反射面
5	-17.79	9.00	-28.00	6.00	1.51633	64.15	反射面
6	-17.79	3.00	0.00	変数	1		屈折面
7	-17.79	-10.58	0.00	6.00	1.51633	64.15	屈折面
8	-17.79	-16.58	-28.00	10.73	1.51633	64.15	反射面
9	-26.69	-10.58	0.00	10.73	1.51633	64.15	全反射面
10	-35.58	-16.58	28.00	6.00	1.51633	64.15	反射面
11	-35.58	-10.58	0.00	安数	1		屈折面
12	-35.58	-0.24	0.00	6.00	1.51633	64.15	屈折面
13	-35.58	5.76	28.00	10.73	1.51633	64.15	反射面
14	-44.48	-0.24	0.00	10.73	1.51633	64.15	全反射面
. 15	-53.37	5.76	-28.00	6.00	1.51633	64.15	反射面
16	-53.37	-0.24	0.00	変数	1		屈折面
17	-53.37	-5.09	-0.00		1		像面

[0166]

【外15】

```
特開平9-5650
```

(31) 59 60 表8-2 広角端 中聞 望遠端. D 1 3.00 13.58 3.00 7.92 3.00 D 6 8.22 10.34 8.40 15.65 D16 4.86 D 1~ 1面 Si(M) = Zi(W)
D 2~ 6面 Zi(M) = Zi(W)
D 7~11面 Zi(M) = Zi(W) + 5.66
D12~16面 Zi(M) = Zi(W) + 3.54 Zi(T) = Zi(W) Zi(T) = Zi(W) Zi(T) = Zi(W) + 11.58 Zi(T) = Zi(W) + 10.79 D17面 Zi(M) = Zi(W) Zi(T) = Zi(W) 球面形状 R 2面 r 2=∞ R 4面 r 4=∞ R 6面 r 6=∞ R 7面 r 7=∞ R 9面 r 9=∞ R11面 r11=∞ R12面 r12=∞ R14面 r14=∞ R16面 r16=∞ 非球面形状 R 3面 C02=-9.93659e-03 C20=-1.22676e-02 C03= 7.21398e-06 C21=-1.44539e-03 C04= 1.48230e-05 C22=-7.24467e-05 C40= 5.24580e-05 R 5回 C02=-1.00000e-02 C20=-1.46379e-02 C03= 8.61457e-05 C21=-3.69104e-04 C04= 9.82308e-05 C22=-2.21626e-05 C40= 7.11988e-06 * * 【外16】 表9 -1 各面のpowerのアジムス依存性 面\アジムス 0 30 2 0.0000 0.0000 60 C02/(C20*(cos 8)^2) 90 0.0000 0.0657 0.0000 1.0000 0.0683 0.0676 0.0663 1.0390 0.0000 0.0000 0.0000 0.0000 0.0687 0.0711 0.0760 0.0784 0.8763 6 0.0000 0.0000 0.0000 0.0000 1,0000

近軸量

[0167]

7 0.0000 0.0000 0.0000 0.0000 1.0000 -0.0136 -0.0120 -0.0131 -0.0115 1.1797 9 0.0000 0.0000 0.0000 0.0000 1.0000 10 0.0330 0.0333 0.0341 0.0344 0.9590 11 0.0000 0.0000 0.0000 0.0000 1.0000 12 0.0000 0.0000 0.0000 0.0000 1.0000 0.0467 13 0.0462 0.0452 0.0447 1.0437 14 0.0000 0.0000 0.0000 0.0000 1.0000 15 16 -0.0274 -0.0260 -0.0234 -0.0221 1.2369 0.0000 0.0000 0.0000 0.0000 1.0000

[0168] 【外17】 61 表 9 - 2

62

各プロックの近軸量のアジムス依存性

pove	ェのアジムスも	农存性		
プロック\ア	ジムス 0	30	60	90
2	0.0706	0.0707	0.0710	0.0712
3	0.0258	0.0264	0.0278	0.0285
4	0.0374	0.0372	0.0368	0.0366
物体	倒主点のアジ	ムス依存性		
ブロック\ア	ジムス 0	30	60	90
2	17.7284	18.1970	19.1025	19.5379
3	22.0878	21.8010	21.2798	21.0427
4	-6.3903	-5.9546	-5.0536	-4.5895
像倒	主点のアジム	ス依存性		
ブロック\ア	ジムス 0	30	60	90
2	-17.6411	-17.4962	-17.1827	-17.0149
3	3.5071	3.0345	2.1632	1.7607
4	-21.6198	-21.5405	-21.3533	-21,2454

	全系の焦点距離、	主点位置、バッ	クフォーカスの	ワアジムス依存も	±
	state\アジム/	٥ .	30	60	90
£	1	-9.62198	-9.67001	-9.74419	-9.77029
	2	-12.8052	-12.8549	-12.9213	-12.938
	3	-19.2138	-19.2896	-19.3788	-19.3916
H	1	-11.6097	-11.1447	-10.1588	-9.63993
	2	-17.9926	-17.5163	-16.4797	-15.9215
	3	-29.9318	-29.4547	-28.3483	-27.7208
н′	1	9.72918	9.7186	9.66437	9.62072
	2	12.848	12.876	12.8865	12.8688
	3	19.1959	19.3317	19.5139	19.5591
sk'	1	0.107193	0.048587	-0.079824	-0.149564
	2	0.042803	0.021116	-0.034867	-0.069215
	3	-0.017902	0.042127	0.135096	0.167466

[0169] [外18]

-7.16 -35.00

轰10

```
実施例5(反射面全部がアジムス依存性の無い面で構成されている)
```

水平半画角 19.1 垂直半画角 14.5 絞り径 3.00

各面の面頂点の位置(Yi , 2i)、面法線の方向角 hetai 、面間隔Di 、硝材データ、面特性 i θi Yi Zi Di Ndi νdi 0.00 1 0.00 0.00 15.00 絞り 反射面反射面 2 0.00 15.00 17.50 15.00 -B.60 2.71 0.00 15.00 1 -17.21 15.00 -17.50 15.00 1 反射面 5 -17.21 0.00 -35.00 15.00 反射面 1 5.13 -52.50 15.00 6 -31.30 1 反射面

1

像面

球面形状

7 -22.70

非球面形状

R 2面 a =-1.71321e+01 b =-2.448B3e+01 t = 1.75000e+01 C03= 9.95387e-06 C21=-1.12119e-04 C40=-1.80506e-06

R 3面 a =-2.56221e+01 b =-1.98536e+01 t =-3.50000e+01 C03= 3.55012e-04 C21=-2.33267e-04 C40=-1.61811e-04

R 4面 a =-2.33875e+01 b =-3.19439e+01 t = 1.75000e+01 C03= 6.18379e-05 C21=-6.37575e-05 C04=-4.47829e-06 C22=-7.21756e-06 C40=-4.66257e-06

R 5面 a = 9.91236e+02 b =-1.90574e+01 t =-3.50000e+01 C03= 2.20356e-04 C21=-4.31585e-04 C04=-4.09169e-05 C22=-7.80995e-05 C40=-6.56681e-05

R 6面 a =-2.18368e+01 b =-2.60699e+01 t = 1.75000e+01 C03= 5.56387e-05 C21=-1.03896e-04 C40=-4.66969e-06

[0170] [外19]

```
特開平9-5650
```

(34)

65

赛11 近軸量

```
powerのアジムス依存性
面\アジムス 0
                            30
                                       60
                                                  90
                                                             C02/(C20*(cos 8)^2)
            0.0992
                         0.0992
                                   0.0992
                                               0.0992
                                                            1.0000
            -0.0894
0.0741
                        -0.0894
                                   -0.0894
                                              -0.0894
                                                            1.0000
                        0.0741
                                   0.0741
                                              0.0741
                                                            1.0000
             -0.0515
                        -0.0515
                                   -0.0515
                                              -0.0515
                                                            1.0000
             0.0842
                        0.0842
                                   0.0842
                                              0.0842
                                                            1.0000
total
             -0.1671
                        -0.1671
                                   -0.1671
                                              -0.1671
    横倍率のアジムス依存性
面\アジムス 0
                            30
                                       60
                                                  90
    2
           -0.0000
                       -0.0000
                                  -0.0000
                                             -0.0000
    3
            0.6945
                       0.6945
                                  0.6945
                                             0.6945
    4
           -2.7471
                       -2.7471
                                  -2.7471
                                             -2.7471
    5
           -1.2022
                       -1.2022
                                  -1.2022
                                             -1.2022
           -0.2589
                       -0.2589
                                  -0.2589
                                             -0.2589
            0.0000
                                  0.0000
total
                       0.0000
                                              0.0000
```

丧12

実施例6(アジムス依存性無しの反射面3面+共軸屈折面2面) 水平物高 0.8 垂直物高 0.6 物体側MA 0.25 物体側テレセントリック系

各面の面頂点の位置(Yi , Zi)、面法線の方向角 θ i 、面間隔Di 、硝材データ、面特性 θi 0.00 i Yi Zí Di Ndi v di 1 物体面 1.51633 64.15 屈折面 1.51633 64.15 反射面 1.51633 64.15 反射面 1.51633 64.15 反射面 6.70 8.00 0.00 -6.70 0.00 0.00 0.00 0.00 8.00 25.00 12.00 -9.19 0.29 0.00 12.00 -18.39 8.00 -25.00 8.00 -18.39 0.00 0.00 12.00 屈折面 6 -18.39 -12.00 0.00 1 像面

【外20】

球面形状

R 1面 r 2= -20.07822 R 5面 r 5= 141.350

非球面形状

R 2面 a =-1.77469e+01 b =-1.86780e+01 t = 2.50000e+01 R 3面 a =-6.57878e+00 b = 5.41790e+01 t =-5.00000e+01 R 4面 a = 2.19871e+01 b =-1.11111e+01 t = 2.50000e+01

[0171]

68

```
表13 近軸量
                 各面のpowerのアジムス依存性
面\アジムス 0 30
1 -0.0257 -0.0257
                                                                    90
-0.0257
0.1666
-0.2025
                                                                                     C02/(C20*(cos θ )^2)
1.0000
                                                           60
                                                      -0.0257
0.1666
-0.2025
0.0675
0.0037
                                         0.1666
-0.2025
0.0675
                                                                                     1.0000
                            0.1666
                            -0.2025
                                                                     0.0675
0.0037
                            0.0675
                                                                                      1.0000
                            0.0037
                                          0.0037
                                                                                     1.0000
            total
                            0.0726
                                          0.0726
                                                        0.0726
                                                                     0.0726
                各面の横倍率のアジムス依存性
面\アジムス 0 30
1 0.8530 0.8530
                                                           60
                                                                         90
                                                       0.8530
                                                                    0.8530
                                                                  -1.2028
-13.4217
                           -1.2028
                                         -1.2028
                                                      -1.2028
                          -13.4217
                3
                                       -13.4217
                                                     -13.4217
                          -0.2303
                                        -0.2303
                                                      -0.2303
                                                                   -0.2303
                           0.9548
-3.0284
                                         0.9548
                                                      0.9548
                                                                   0.9548
           total
                                        -3.0284
                                                      -3.0284
                                                                    -3.0284
           全系の焦点距離、主点位置、パックフォーカスのアジムス依存性
アジムス 0 30 60 90
13.7694 13.7694 13.7694 13.7
                                           30
13.7694
11.6163
-43.1039
                                                              60
13.7694
                                                                                90
                                                                                13.7694
      H
                           11.6163
                                                             11.6163
                                                                               11.6163
      H,
                          -43.1039
                                                             -43.1039
                                                                              -43.1039
                                           -29.3345
      sk'
                          -29.3345
                                                             -29.3345
                                                                              -29.3345
```

[0172]

【外21】

1400 0 0 0 0 0

70

```
    表14 実施例7(各面はアジムス依存性有り、全系では良好に補正)
    水平半函角 31.7
    垂直半回角 24.6
    絞り径 1.80

           各面の面頂点の位置(Yi, zi)、面法線の方向角 fi、面間隔pi 、硝材データ、面特性 i Yi Zi fi Di Ndi vdi
                     Yi
0.00
                                  Zi
0.00
                                               0.00
                                                           12.00
                      0.00
                                 12.00
2.36
                                              25.00
                                                                                                 反射面
                                                           15.00
              3 . -11.49
                                 2.36 5.00
13.85 -15.00
                                                          15.00
                                                                       1
                                                                                                 反射面
              4 -21.13
5 -23.39
                                                         13.00
                                                                                                 反射面
                                                                       1
                                  1.05 -20.00
                                                          12.00
                                                                       1
                                                                                                 反射面
                                                         12.00
              6 -32.58
                                  8.76
                                           -25.00
                                                                      1
                                                                                                 反射面
              7 -32.58
                                -3.24
                                               0.00
                                                                       1
                                                                                                 像面
           球面形状
           非球面形状
           R 2回 a =-1.26573e+01 b =-2.13703e+01 t = 2.98521e+01
C03= 4.95834e-05 C21= 3.39115c-05
C04=-9.19556e-07 C22= 5.93068e-07 C40= 1.85782e-06
            R 3面 a =-9.07721e+00 b =-2.48186e+01 t =-5.53091e+01 
C03= 4.77040e-04 C21=-1.12441e-03 
C04=-4.62772e-05 C22= 3.90500e-04 C40=-9.91376e-04
           R 4面 a =-2.69809e+01 b =-1.99832e+01 t = 3.10274e+01 
C03= 6.21654e-05 C21=-1.32598e-05 
C04=-5.40297e-06 C22= 7.31038e-08 C40=-7.70748e-06
           R 5面 a =-3.17534e+01 b =-2.20633e+01 t =-3.59820e+01 
C03= 2.14600e-04 C21=-7.50117e-05 
C04=-1.30076e-04 C22=-4.65260e-05 C40=-1.66481e-04
           R 600 a =-1.36451e+01 b =-4.09400e+01 t = 1.81152e+01 C03=1.68250e-04 C21=-1.22840e-04 C04=-8.49028e-06 C22=2.61020e-05 C40=-2.18609e-05
```

[0173] [外22]

赛15

P C 13						
近軸						
	4	面のpowerのア	ジムス佐存件			
	面	\アジムス o	30	60	90	G034467044
	2	0.1204	0.1232	0.1287	0.1315	C02/(C20*(cos θ)^2) 0.9158
	3	-0.1211	-0.1376	-0.1705	-0.1869	0.9138
	4	0.0824	0.0848	0.0897	0.0921	0.8940
	5	-0.0718	-0.0744	-0.0796	-0.0822	0.8731
	6	0.1025	0.1001	0.0955	0.0932	1.0997
t	otal	-0.2758	-0.2788	-0.2803	-0.2788	1.0777
	A	面の横倍率のフ	ではしては対域	.		
	THI V	アジムス	30	=		
	2	-0.0000	-0.0000	60	90	
	3	0.5523	0.5138	-0.0000	-0.0000	
	ĭ	-1.8524		0.4479	0.4198	
	5	-1.8090	-1.7490	-1.5731	-1.4974	
	ź	-0.2359	-2.2504	-4.0156	-6.2537	
	otal		-0.2184	-0.1623	-0.1199	
C)CGI	0.0000	0.0000	.0.0000	0.0000	
全系の	近軸量	t				
az. ((deg)	0	30	60	90	
£	-	-3.62594	-3.58678	-3.5677	-3.58626	
H		-4.09308	-3.9339	-3.56619	-3.37722	
H'		8.68666	8.75342	8.73797	8.60563	
ek'		5.06072	5.16664	5.17027	5.01938	
				4.11021	3.01938	

[0174]

【発明の効果】以上説明してきたように本発明の面表現 方法を用いれば実際光線がのあたり使用される部分の表 現の原点が使用される部分の中にあるために実際の面の 程等簡略化できるという効果がある。

【0175】その時、面表現のベース式がOff-Axial2次 曲面やトーリック面であれば理解しやすい上に加工上も 易しくなるという効果がある。またこうした光学系(Off -Axial光学系)の各面の形状を変化させて光学系として の性能を最適化する場合、使用する面の部分の中心を結 ぶ線の折れ曲がり方を固定したままで面形状を最適化す ることができるという効果がある。

【0176】また本発明の面表現方法を用いれば従来の 「共軸光学系の偏心による非対称非球面の表現方法」に よる表現方法に比べて、設計自由度が大きいのでより収 差補正が行なえた光学系を得られる可能性が大きくなる という効果がある。またこの面形状表現方法を用いて構 築されたOff-Axial光学系に対する近軸理論は従来の共 軸系の近軸理論を完全に包含する形としてまとめあげる ことができるので、その理論を用いた計算処理方法なら びに処理装置を採用すれば、物体面から像面にいたる基 準波長の光路(基準軸) が曲面と交わる点において面法 線が基準軸と一致しない平面ではない曲面(Off-Axial曲 面)を含む光学系(Off-Axial光学系)においても光学系 50 面が満たすべき面の形状の制限式として採用すれば、Of

の設計の際に一般的に焦点距離や倍率などの近軸量を計 算することができ、光学系の骨組みを理解しやすくなる という効果がある。

【0177】さらにこうした計算手法を光学系全系から 加工、測定の際に座標変換する必要がなく、図面作成工 30 ズームレンズを構成する各ブロックにも適用することに よってOff-Axia1光学系を使った単焦点レンズやズーム レンズを設計できるという効果がある。

> 【0178】さらにこの構築されたOff-Axial近軸理論 により可能となったOff-Axial光学系の近軸トレースの 手法を使って全系あるいはズームレンズのブロックとい った複数面から成るブロックの近軸量がほぼアジムス依 存性がないように各構成面の形状を決定するという計算 処理方法ならびに処理装置を採用すれば、Off-Axial光 学系においても光学系の形状決定という設計作業が効率 的に行なえるという効果がある。

> 【0179】そしてそうした設計によって得られる光学 系は全系あるいはズームレンズのブロックといった複数 面から成るブロックのパワー、倍率といった近軸量がほ ぼアジムス依存性がないようになっているので、基準軸 近傍で非点収差やディストーションが小さい光学系が得 られるという効果がある。

> 【0180】さらにこの構築されたOff-Axial近軸理論 により反射面に対して導き出される条件式、(数式27) をそのOff-Axial光学系を構成するOff-Axial曲面の反射

f-Axia1光学系においても光学系の近軸量が各面でアジムス依存性を持たず、近軸理論上は共軸系の回転対称面と全く同様に扱うことができるという効果がある。

【0181】そして(数式27)をほぼ満たすような面を光学系の中に使うことで全系の近軸量のアジムス依存性を小さくおさえることができるので、全系あるいはズームレンズのブロックといった複数面から成るブロックのパワー、倍率といった近軸量がほぼアジムス依存性がないようによりしやすくなり、基準軸近傍で非点収差やディストーションがより出にくい光学系が得られるという効果がある。

【図面の簡単な説明】

【図1】本発明の一実施例に係る処理装置のブロック図 【図2】本発明の一実施例に係る近軸計算の処理動作を 示すフローチャートの一例

【図3】本発明の一実施例に係る近軸計算の処理動作を 示すフローチャートの別の例

【図4】本発明の一実施例に係る近軸計算の処理動作を 示すフローチャートの更に別の例

【図5】本発明の一実施例に係るOff-Axial面の面形状 計算の処理動作を示すフローチャートの一例

【図6】本発明の一実施例に係るOff-Axia1光学系のアジムス依存性を押さえるように光学系を決定する計算の処理動作を示すフローチャートの一例

【図7】本発明の手法を使って近軸計算を行なった第1 実施例の光学系の断面図

【図8】本発明の一実施例に係る光学系の出力の際に用いられている座標系を説明する図

【図9】本発明の手法を使って近軸計算を行なった第1 実施例の第2 面の面形状を示す図

【図10】本発明の手法を使って近軸計算を行なった第 1 実施例の各面および全系でのパワーのアジムス依存性 を示す図

【図11】本発明の手法を使って近軸計算を行なった第 1 実施例の全系での焦点距離、主点位置、バックフォー カスのアジムス依存性を示す図

【図12】本発明の手法を使って近軸計算を行なった第 1 実施例の光学系の基準軸近傍のスポットダイアグラム を示す図

【図13】本発明の手法を使って近軸計算を行なった第 40 1 実施例の光学系の基準軸近傍のディストーションを示 す図

【図14】本発明の手法を使って近軸計算を行なった第2実施例の光学系の断面図

【図15】本発明の手法を使って近軸計算を行なった第 2 実施例の各面および全系でのパワーのアジムス依存性 を示す図

【図16】本発明の手法を使って近軸計算を行なった第 2 実施例の全系での焦点距離、主点位置、バックフォー カスのアジムス依存性を示す図 【図17】本発明の手法を使って近軸計算を行なった第 2 実施例の光学系の基準軸近傍のスポットダイアグラム を示す図

74

【図18】本発明の手法を使って近軸計算を行なった第 2 実施例の光学系の基準軸近傍のディストーションを示 す図

【図19】本発明の手法を使って近軸計算を行なった第 3 実施例の光学系の断面図

ようによりしやすくなり、基準軸近傍で非点収差やディ 【図20】本発明の手法を使って近軸計算を行なった第ストーションがより出にくい光学系が得られるという効 10 3 実施例の各面および全系でのパワーのアジムス依存性果がある。 を示す図

【図21】本発明の手法を使って近軸計算を行なった第3実施例の全系での焦点距離、主点位置、バックフォーカスのアジムス依存性を示す図

【図22】本発明の手法を使って近軸計算を行なった第 3 実施例の光学系の基準軸近傍のスポットダイアグラム を示す図

【図23】本発明の手法を使って近軸計算を行なった第 3 実施例の光学系の基準軸近傍のディストーションを示 20 す図

【図24】本発明の手法を使って近軸計算を行なった第4実施例の光学系の断面図

【図25】本発明の手法を使って近軸計算を行なった第 4 実施例の各ブロックおよび全系でのパワーのアジムス 依存性を示す図

【図26】本発明の手法を使って近軸計算を行なった第4 実施例の3 つのステートでの、全系の焦点距離、主点位置、バックフォーカスのアジムス依存性を示す図

【図27】本発明の手法を使って近軸計算を行なった第 30 4 実施例の3 つのステートでの、光学系の基準軸近傍の スポットダイアグラムを示す図

【図28】本発明の手法を使って近軸計算を行なった第4実施例の3つのステートでの、光学系の基準軸近傍のディストーションを示す図

【図29】本発明の手法を使って近軸計算を行なった第 5 実施例の光学系の断面図

【図30】本発明の手法を使って近軸計算を行なった第 5 実施例の各面および全系でのパワーのアジムス依存性 を示す図

0 【図31】本発明の手法を使って近軸計算を行なった第 5 実施例の光学系の基準軸近傍のスポットダイアグラム を示す図

【図32】本発明の手法を使って近軸計算を行なった第 5 実施例の光学系の基準軸近傍のディストーションを示 す図

【図33】本発明の手法を使って近軸計算を行なった第6実施例の光学系の断面図

【図34】本発明の手法を使って近軸計算を行なった第 6 実施例の各面および全系でのパワーのアジムス依存性 50 を示す図 75

【図35】本発明の手法を使って近軸計算を行なった第 6 実施例の光学系の基準軸近傍のスポットダイアグラム を示す図

【図36】本発明の手法を使って近軸計算を行なった第 6 実施例の光学系の基準軸近傍のディストーションを示 す図

【図37】本発明の手法を使って近軸計算を行なった第 7 実施例の光学系の断面図

【図38】本発明の手法を使って近軸計算を行なった第 7 実施例の各面および全系でのパワーのアジムス依存性 10 12 システムバス を示す図

【図39】本発明の手法を使って近軸計算を行なった第 7 実施例の全系での焦点距離、主点位置、バックフォー カスのアジムス依存性を示す図

【図40】本発明の手法を使って近軸計算を行なった第 7 実施例の光学系の基準軸近傍のスポットダイアグラム を示す図

【図41】本発明の手法を使って近軸計算を行なった第 7 実施例の光学系の基準軸近傍のディストーションを示 す図

【図42】従来の「共軸光学系の偏心による非対称非球 面の表現方法」を示す図

【図43】Off-Axial光学系の一例を示す図

【図44】本発明で用いているOff-Axial光学*

* 系の基準軸と面との交点を原点にした表現方法を示す図 【図45】折れ曲がった基準軸に沿った近軸展開の座標 系とそこで用いられる諸量を示す図

76

【図46】像点ベクトルの成分分解を示す図

【図47】Off-Axia1光学系の主点と焦点と焦点距離

【図48】基準軸が2 焦点を通るOff-Axial反射2 次曲 面の例を示す図

【符号の説明】

11 CPU

13 メインメモリ

14 キーボード

15 マウス

16 キーインターフェイス

17 LAN インターフェイス

19 I/Oインターフェイス

20 ハードディスク装置

21 フロッピーディスク装置

20 22 ディスクインターフェイス

23 プリンタ

24 プリンタインターフェイス

25 表示装置

26 表示インターフェイス

【図1】 【図7】

[図13]

【図6】

実施例3

実施例1

0.10000 MM

【図11】

全系での近軸量のアジムス依存性

【図15】

各面のパワーのアジムス依存性

光学系断面図

0.10000 MM

実施例2

実施例5

41

【図42】

【図45】

- 物体面位置 t 入射量面位置
- s' 像面位置 t' 射出脑面位置

【図46】

【図47】

