Decision tree learning

Biplab Banerjee

Inductive inference with decision trees

 Decision Trees is one of the most widely used inductive inference.

Pros:

- Method for approximating discrete-valued functions (including boolean)
- Learned functions are represented as decision trees (or ifthen-else rules)
- Expressive hypotheses space

Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

2/11/2

Decision tree representation (PlayTennis)

⟨Outlook=Sunny, Temp=Hot, Humidity=High, Wind=Strong⟩ No

Decision trees expressivity

 Decision trees represent a disjunction of conjunctions on constraints on the value of attributes:

Another Example of Decision Tree

categorical continuous

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Apply Model to Test Data

Top-down induction of Decision Trees

- ID3 (Quinlan, 1986) is a basic algorithm for learning DT's
- Given a training set of examples, the algorithms for building DT performs search in the space of decision trees
- The construction of the tree is top-down. The algorithm is greedy.
- The fundamental question is "which attribute should be tested next? Which question gives us more information?"
- A descendent node is then created for each possible value of this attribute and examples are partitioned according to this value
- The process is repeated for each successor node until all the examples are classified correctly or there are no attributes left

Which attribute is the best classifier?

- A statistical property called information gain, measures how well a given attribute separates the training examples
- Information gain uses the notion of entropy, commonly used in information theory
- Information gain = expected reduction of entropy

Entropy in binary classification

- Entropy measures the *impurity* of a collection of examples. It depends from the distribution of the random variable p.
 - -S is a collection of training examples
 - $-p_{+}$ the proportion of positive examples in S
 - $-p_{-}$ the proportion of negative examples in S

Entropy
$$(S) \equiv -p_{+} \log_{2} p_{+} - p_{-} \log_{2} p_{-} \quad [0 \log_{2} 0 = 0]$$

Entropy $([14+, 0-]) = -14/14 \log_{2} (14/14) - 0 \log_{2} (0) = 0$
Entropy $([9+, 5-]) = -9/14 \log_{2} (9/14) - 5/14 \log_{2} (5/14) = 0,94$
Entropy $([7+, 7-]) = -7/14 \log_{2} (7/14) - 7/14 \log_{2} (7/14) = 0,94$
 $([7+, 7-]) = -7/14 \log_{2} (7/14) - 7/14 \log_{2} (7/14) = 0,94$

Entropy

Information gain as entropy reduction

- Information gain is the expected reduction in entropy caused by partitioning the examples on an attribute.
- The higher the information gain the more effective the attribute in classifying training data.
- Expected reduction in entropy knowing A

$$Gain(S, A) = Entropy(S) - \sum_{\substack{V \in Values(A) \ |S|}} \frac{|Sv|}{|S|} Entropy(Sv)$$

Values(A) possible values for ASv subset of S for which A has value v

Example: expected information gain

Let

- $Values(Wind) = \{Weak, Strong\}$
- S = [9+, 5-]
- $S_{Weak} = [6+, 2-]$
- $S_{Strong} = [3+, 3-]$
- Information gain due to knowing Wind:

$$Gain(S, Wind) = Entropy(S) - 8/14 \ Entropy(S_{Weak}) - 6/14 \ Entropy(S_{Strong})$$

= 0,94 - 8/14 × 0,811 - 6/14 × 1,00
= 0,048

Which attribute is the best classifier?

Which attribute is the best classifier?

First step: which attribute to test at the root?

- Which attribute should be tested at the root?
 - Gain(S, Outlook) = 0.246
 - Gain(S, Humidity) = 0.151
 - Gain(S, Wind) = 0.084
 - Gain(S, Temperature) = 0.029
- Outlook provides the best prediction for the target
- Lets grow the tree:
 - add to the tree a successor for each possible value of Outlook
 - partition the training samples according to the value of Outlook

After first step

Second step

Working on *Outlook=Sunny* node:

$$Gain(S_{Sunny}, Humidity) = 0.970 - 3/5 \times 0.0 - 2/5 \times 0.0 = 0.970$$

 $Gain(S_{Sunny}, Wind) = 0.970 - 2/5 \times 1.0 - 3.5 \times 0.918 = 0.019$
 $Gain(S_{Sunny}, Temp.) = 0.970 - 2/5 \times 0.0 - 2/5 \times 1.0 - 1/5 \times 0.0 = 0.570$

- Humidity provides the best prediction for the target
- Lets grow the tree:
 - add to the tree a successor for each possible value of *Humidity*
 - partition the training samples according to the value of *Humidity*

Second and third steps

Measure of Impurity: GINI

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum $(1 1/n_c)$ when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

Gini=0.000			
C2	6		
C1	0		

C1	1		
C2	5		
Gini=0.278			

C1	2		
C2	4		
Gini=0.444			

C1	3		
C2	3		
Gini=0.500			

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Splitting Based on GINI

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n = number of records at node p.

https://blog.quantinsti.com/gini-index/

ID3: algorithm

```
ID3(X, T, Attrs) X: training examples:
          T: target attribute (e.g. PlayTennis),
          Attrs: other attributes, initially all attributes
 Create Root node
 If all X's are +, return Root with class +
 If all X's are —, return Root with class —
 If Attrs is empty return Root with class most common value of T in X
 else
   A \leftarrow best attribute; decision attribute for Root \leftarrow A
    For each possible value v_i of A:
    - add a new branch below Root, for test A = v_i
    -X_i \leftarrow subset of X with A = v_i
    - If X_i is empty then add a new leaf with class the most common value of T in X
       else add the subtree generated by ID3(X_i, T, Attrs - \{A\})
 return Root
```

Prefer shorter hypotheses: Occam's razor

- Why prefer shorter hypotheses?
- Arguments in favor:
 - There are fewer short hypotheses than long ones
 - If a short hypothesis fits data unlikely to be a coincidence
 - Elegance and aesthetics
- Arguments against:
 - Not every short hypothesis is a reasonable one.

Issues in decision trees learning

- Overfitting
 - Reduced error pruning
 - Rule post-pruning
- Extensions
 - Continuous valued attributes
 - Alternative measures for selecting attributes
 - Handling training examples with missing attribute values
 - Handling attributes with different costs
 - Improving computational efficiency
 - Most of these improvements in C4.5 (Quinlan, 1993)

Example

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No
D15	Sunny	Hot	Normal	Strong	No

Overfitting in decision trees

⟨Outlook=Sunny, Temp=Hot, Humidity=Normal, Wind=Strong, PlayTennis=No⟩

New noisy example causes splitting of second leaf node.

Avoid overfitting in Decision Trees

- Two strategies:
 - 1. Stop growing the tree earlier, before perfect classification
 - 2. Allow the tree to *overfit* the data, and then *post-prune* the tree
- Training and validation set
 - split the training in two parts (training and validation) and use validation to assess the utility of post-pruning
 - Reduced error pruning
 - Rule pruning

Reduced-error pruning (Quinlan 1987)

- Each node is a candidate for pruning
- Pruning consists in removing a subtree rooted in a node: the node becomes a leaf and is assigned the most common classification
- Nodes are removed only if the resulting tree performs no worse on the validation set.
- Nodes are pruned iteratively: at each iteration the node whose removal most increases accuracy on the validation set is pruned.
- Pruning stops when no pruning increases accuracy

Effect of reduced error pruning

Rule post-pruning

- 1. Create the decision tree from the training set
- 2. Convert the tree into an equivalent set of rules
 - Each path corresponds to a rule
 - Each node along a path corresponds to a pre-condition
 - Each leaf classification to the post-condition
- 3. Prune (generalize) each rule by removing those preconditions whose removal improves accuracy ...
 - ... over validation set
 - ... over training with a pessimistic, statistically inspired, measure
- 4. Sort the rules in estimated order of accuracy, and consider them in sequence when classifying new instances

Converting to rules

 $(Outlook=Sunny) \land (Humidity=High) \Rightarrow (PlayTennis=No)$

Why converting to rules?

- Each distinct path produces a different rule: a condition removal may be based on a local (contextual) criterion. Node pruning is global and affects all the rules
- In rule form, tests are not ordered and there is no book-keeping involved when conditions (nodes) are removed
- Converting to rules improves readability for humans

Dealing with continuous-valued attributes

- So far discrete values for attributes and for outcome.
- \blacksquare Given a continuous-valued attribute $A_{\it c}$ dynamically create a new attribute $A_{\it c}$

```
A_c = True if A < c, False otherwise
```

- How to determine threshold value c?
- Example. *Temperature* in the *PlayTennis* example
 - Sort the examples according to *Temperature*

```
        Temperature
        40
        48
        |
        60
        72
        80
        |
        90

        PlayTennis
        No
        No
        54
        Yes
        Yes
        Yes
        No
```

- Determine candidate thresholds by averaging consecutive values where there is a change in classification: (48+60)/2=54 and (80+90)/2=85
- Evaluate candidate thresholds (attributes) according to information gain. The best is *Temperature*_{>54}. The new attribute competes with the other ones

Problems with information gain

- Natural bias of information gain: it favours attributes with many possible values.
- Consider the attribute Date in the PlayTennis example.
 - Date would have the highest information gain since it perfectly separates the training data.
 - It would be selected at the root resulting in a very broad tree
 - Very good on the training, this tree would perform poorly in predicting unknown instances. Overfitting.
- The problem is that the partition is too specific, too many small classes are generated.
- We need to look at alternative measures ...

An alternative measure: gain ratio

$$SplitInformation(S, A) \equiv -\sum_{i=1}^{c} \frac{/S_i/}{/S/} log_2 \frac{/S_i/}{/S/}$$

- S_i are the sets obtained by partitioning on value i of A
- SplitInformation measures the entropy of S with respect to the values of A. The more uniformly dispersed the data the higher it is.

$$Gain(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}$$

- GainRatio penalizes attributes that split examples in many small classes such as Date. Let S = n, Date splits examples in n classes
 - $SplitInformation(S, Date) = -[(1/n log_2 1/n) + ... + (1/n log_2 1/n)] = -log_2 1/n = log_2 n$
- Compare with A, which splits data in two even classes:
 - $SplitInformation(S, A) = -[(1/2 \log_2 1/2) + (1/2 \log_2 1/2)] = -[-1/2 -1/2] = 1$