MBMT Geometry Round — Gauss

April 7, 2018

Full Name		
	Team Number	

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

This round consists of **8** questions. You will have **30** minutes to complete the round. Each question is *not* worth the same number of points. Questions answered correctly by fewer competitors will be weighted more heavily. Please write your answers in a reasonably simplified form.

1	27 cubes of side length 1 are arranged to form a $3 \times 3 \times 3$ cube. If the corner $1 \times 1 \times 1$ cubes are removed, what fraction of the volume of the big cube is left?
	Proposed by Chris Tong
	Solution. $\boxed{\frac{19}{27}}$
	There are 8 corners. If the 8 corner pieces are removed, then the resulting solid will
	contain $27 - 8 = 19$ 1 by 1 by 1 cubes. Therefore, the ratio of the volumes is $\left\lfloor \frac{19}{27} \right\rfloor$. \Box
2	Points A , B , and C are on a line such that $AB=6$ and $BC=11$. Find all possible values of AC .
	Proposed by Daniel Zhu
	Solution. $5,17$
	Depending on the location of A, AC is either $11 + 6 = 17$ or $11 - 6 = 5$.
3	Consider rectangle $ABCD$, with $1 = AB < BC$. The angle bisector of $\angle DAB$ intersects \overline{BC} at E and \overrightarrow{DC} at F . If $FE = FD$, find BC .
	Proposed by Steven Qu
	Solution. $2+\sqrt{2}$
	Let $BC = x$. $FE = FA - EA = (x - 1)\sqrt{2}, FD = AD = x.$
	Equating and solving yields $x = 2 + \sqrt{2}$.
4	Consider a lamp in the shape of a hollow cylinder with the circular faces removed with height 48 cm and radius 7 cm. A point source of light is situated at the center of the lamp. The lamp is held so that the bottom of the lamp is at a height 48 cm above an infinite flat sheet of paper. What is the area of the illuminated region on the flat sheet of paper, in cm ² ?
	light

Solution. $\boxed{441\pi}$

Take a cross section so that the paper is a line ℓ and the lamp is a rectangle ABCD (labelled counterclockwise) with dimensions 14 by 96 with $CD \parallel \ell$ and CD closer to ℓ than AB. Let M be the midpoint of CD, and take the point source in the rectangle to be O and extend OC to meet ℓ at X and OM to meet ℓ at Y. Then we have two similar right triangles: OCM and OXY. Note that OM = 24, CM = 7, and MY = 72. Hence, by similar triangles, $\frac{7}{XY} = \frac{24}{24+48} \implies XY = 21$.

If we imagine tracing light rays from O to the paper, we see that the rays intersect the paper with the silhouette of a circle with radius XY. So the area is $XY^2\pi = \boxed{441\pi}$, as desired.

5 There exist two triangles ABC such that AB = 13, $BC = 12\sqrt{2}$, and $\angle C = 45^{\circ}$. Find the positive difference between their areas.

Proposed by Steven Qu

Solution. 60

Let A and A' be the two possible locations for A if we fix B and C as well as the direction of AC. Let BD be the height to side AC. Then BD = 12 by 45-45-90 triangles. Then both ADB and A'DB are 5-12-13 triangles. Therefore, the different of the areas is just two 5-12-13 triangles, which have a total area of 60

6 $\triangle ABC$ is a right triangle with $\angle A = 90^{\circ}$. Square ADEF is drawn, with D on \overline{AB} , F on \overline{AC} , and E inside $\triangle ABC$. Point G is chosen on \overline{BC} such that EG is perpendicular to BC. Additionally, DE = EG. Given that $\angle C = 20^{\circ}$, find the measure of $\angle BEG$.

Proposed by Kevin A. Zhou

Solution. 55°

Since the angles of a triangle add up to 180° , the $\angle B = 70^{\circ}$. Notice that point E is the incenter of triangle ABC. This means that BE bisects $\angle ABC$, so the measure of $\angle GBE = 35^{\circ}$. Then, the measure of $\angle BEG = \boxed{55^{\circ}}$.

7 Let ABC be an equilateral triangle with side length 2. Let the circle with diameter AB be Γ . Consider the two tangents from C to Γ , and let the tangency point closer to A be D. Find the area of $\triangle CAD$.

Proposed by Steven Qu

Solution.
$$\boxed{\frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{3}}$$

 $[CAD] = [OAD] + [OCD] \circ [OAC]$. We tackle the triangles on the RHS one by one.

 $OC = \sqrt{3}$, so $[OAC] = \frac{\sqrt{3}}{2}$. Furthermore, OD = 1 and CD is tangent to O, so OD is perpendicular to CD and $CD = \sqrt{2}$. This means that $[OCD] = \frac{\sqrt{3}}{2}$. Now, drop a

perpendicular from D to AB, call the foot E. DE is parallel to OC, so $\angle ODE = \angle DOC$ and triangles OED and CDO are similar. Therefore, $DE = \frac{\sqrt{3}}{3}$, and $[OAD] = \frac{\sqrt{3}}{6}$. Thus, the answer is $\frac{\sqrt{3}}{6} + \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{2} = \frac{\sqrt{2}}{2} - \frac{\sqrt{3}}{3}$.

Diagram(s) here: (diagram 2 for problem, diagram 3 for solution) https://tinyurl.com/mbmtdiagrams

8 Let ABC be a triangle with $\angle A = 60^{\circ}$, AB = 37, AC = 41. Let H and O be the orthocenter and circumcenter of ABC, respectively. Find OH.

The orthocenter of a triangle is the intersection point of the three altitudes. The circumcenter of a triangle is the intersection point of the three perpendicular bisectors of the sides.

Proposed by Daniel Zhu

Solution. 4

Let H_1, H_2 be the projections of H onto AC and AB. Let O_1, O_2 be the projections of O onto AC and AB.

Note that $H_1O_1 = AO_1 - AH_1 = \frac{41}{2} - \frac{37}{2} = 2$. Similarly, $O_2H_2 = 2$.

Through some 30-60-90 triangles, we get that the quadrilateral formed by the four perpendiculars is a rhombus with side length $\frac{4}{\sqrt{3}}$ and angles of 60° and 120°. Therefore we can compute OH to be $\boxed{4}$.