G. H. Raisoni College of Engineering and Management, Pune.

(An Autonomous Institution affiliated to Savitribai Phule Pune University, Pune)

F.Y B. Tech (All Branches) (Term II)

ESE Summer-2021(2020 Pattern)

Linear algebra and statistics (UBSL153)

[Time: 2 Hours] [Max. Marks-50]

COURSE OUTCOME:

CO1: Apply simple operations like adding, multiplying, inverting, transposing, etc. in matrices &vectors.

CO2: Apply the concepts of Linear Algebra in programming languages. Course Outcomes

CO3: Apply the concepts of least squares methods and basic problems in probability.

CO4: Apply the knowledge of Random variables.

CO5: Apply the knowledge of Probability distributions to solve engineering problems.

Instructions to the candidates:.

- 1) All questions compulsory.
- 2) Neat diagrams must be drawn wherever necessary.
- 3) Figures to the right indicate full marks.
- 4) Assume suitable data, if necessary.

BL	Sub		Marks	CO			
L1	Question a)	Define Bases and Dimension of a vector space	[2]	CO1			
	<i>b</i>)	Define probability distribution of discrete and continuous random variable.	[2]	CO4			
	<i>c</i>)	Define correlation and regression					
L2	<i>a</i>)	[3]	CO2				
	b)	A box contains 6 red, 4 white and 5 blue balls. 3 balls are drawn .Find the probability that they are drawn in the order red, white and blue if each ball is not replaced	[3]	CO3			
	<i>c</i>)	[3]	CO5				
L3	<i>a</i>)	If 40% of bolts produced by a machine are defective, determine the probability that out of 5 bolts drawn, i) 2 are defective, ii) At least 3 are defective, iii) 1 is defective, iv) At most 2 are defective.	[5]	CO5			
	b)	Random variable x has following distribution.					
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Evaluate i) K, ii) p(x < 3), iii) p(x > 4), iv) $p(x \ge 6)$, v) cumulative distribution function.

Find the matrix representing T: $R^3 \rightarrow R^4$ such that [5] CO2 T(x, y, z) = (x + y + z, 2x + z, 2y - z, 6y) relative to standard basis of R^3 and R^4 .

Evaluate Eigen values and all Eigen vectors for $A = \begin{bmatrix} 2 & -2 & 3 \\ 1 & 1 & 1 \\ 1 & 3 & -1 \end{bmatrix}$ [5] CO2

L4 Test the linear dependency and find the relation if it exists for a) $X_1 = (1,1,1,3), X_2 = (1,2,3,4) \& X_3 = (2,3,4,7).$

[5] **CO1**

OR

Determine which of these two subsets is a subspace of R³ **b**)

[5] CO₁

- (a) $W = \{(x_1, x_2, 1) \mid \text{ where } x_{1,\&}x_2 \text{ are real numbers. } \}$ (b) $U = \{(x_1, x_{3+}x_1, x_3) \mid \text{ where } x_{1,\&}x_3 \text{ are real numbers. } \}$
- Diagonalize the matrix $A = \begin{bmatrix} 4 & -3 & -3 \\ 3 & -2 & -3 \\ -1 & 1 & 2 \end{bmatrix}$ *c*)

[7] CO₂

Analyse the given data to best fit the curve $y = a + bx + cx^2$ d)

[8] CO₃

X	0	1	2	3	4
у	1	1.8	1.3	2.5	6.3
