Relativity and Quantum Physics Summary

Mathematical Notes

October 27, 2025

Contents

1	Special Relativity				
	1.1	Postulates			
	1.2	Lorentz Transformations			
	1.3	Time Dilation and Length Contraction			
	1.4	Relativistic Velocity Addition			
	1.5	Relativistic Energy and Momentum			
	1.6	Four-Vectors			
2	Ger	neral Relativity 4			
	2.1	Equivalence Principle			
	2.2	Spacetime Curvature			
	2.3	Einstein Field Equations			
	2.4	Schwarzschild Metric			
	2.5	Black Holes			
3	Quantum Mechanics Fundamentals 5				
	3.1	Wave-Particle Duality			
	3.2	Uncertainty Principle			
	3.3	Schrödinger Equation			
	3.4	Quantum States and Operators			
	3.5	Measurement and Collapse			
4	Quantum Systems				
	4.1	Particle in a Box			
	4.2	Harmonic Oscillator			
	4.3	Hydrogen Atom			
5	Angular Momentum				
	5.1	Orbital Angular Momentum			
	5.2	Spin			
	5.3	Pauli Matrices			
6	Identical Particles 7				
	6.1	Symmetrization Postulate			
	6.2	Pauli Exclusion Principle			
	6.3	Exchange Symmetry			

7	Quantum Field Theory 7				
	7.1	Field Quantization			
	7.2	Creation and Annihilation Operators	7		
	7.3	Feynman Diagrams	8		
8	Relativistic Quantum Mechanics 8				
	8.1	Klein-Gordon Equation	8		
	8.2	Dirac Equation	8		
	8.3	Antimatter	8		
9	Quantum Entanglement 8				
	9.1	Bell States	8		
	9.2	Bell's Theorem	8		
	9.3	EPR Paradox	8		
10	App	olications	9		
	10.1	Quantum Computing	9		
	10.2	Quantum Cryptography	9		
	10.3	Quantum Sensing	9		
	10.4	Cosmology	9		
11	Imp	ortant Constants	9		
12	Key	Theorems 1	.0		
	12.1	No-Cloning Theorem	0		
	12.2	Unitarity	0		
	12.3	Conservation Laws	0		
13	Mod	dern Developments	.0		
		Quantum Field Theory	0		
		Quantum Gravity			
		•	ın		

Special Relativity 1

1.1 **Postulates**

- 1. **Principle of Relativity**: The laws of physics are the same in all inertial reference frames.
- 2. Constancy of Light Speed: The speed of light in vacuum is constant ($c = 2.998 \times 10^8$ m/s) in all inertial frames.

Lorentz Transformations 1.2

For frames moving with relative velocity v along x-axis:

$$x' = \gamma(x - vt) \tag{1}$$

$$t' = \gamma \left(t - \frac{vx}{c^2} \right) \tag{2}$$
$$y' = y \tag{3}$$

$$y' = y \tag{3}$$

$$z' = z \tag{4}$$

where $\gamma = \frac{1}{\sqrt{1-\beta^2}}$ and $\beta = \frac{v}{c}$.

Time Dilation and Length Contraction

Theorem 1.1 (Time Dilation).

$$\Delta t = \gamma \Delta t_0$$

where Δt_0 is the proper time (time in the rest frame).

Theorem 1.2 (Length Contraction).

$$L = \frac{L_0}{\gamma}$$

where L_0 is the proper length (length in the rest frame).

Relativistic Velocity Addition

For velocities u and v along the same direction:

$$u' = \frac{u+v}{1 + \frac{uv}{c^2}}$$

3

1.5 Relativistic Energy and Momentum

- Relativistic momentum: $\vec{p} = \gamma m \vec{v}$
- Total energy: $E = \gamma mc^2$
- Rest energy: $E_0 = mc^2$
- Kinetic energy: $K = (\gamma 1)mc^2$
- Energy-momentum relation: $E^2 = (pc)^2 + (mc^2)^2$

1.6 Four-Vectors

Definition 1.1. A **four-vector** is a quantity that transforms under Lorentz transformations like (ct, x, y, z).

• Position four-vector: $x^{\mu} = (ct, \vec{r})$

• Energy-momentum four-vector: $p^{\mu} = (E/c, \vec{p})$

• Four-velocity: $u^{\mu} = \gamma(c, \vec{v})$

• Four-force: $F^{\mu} = \gamma(\vec{F} \cdot \vec{v}/c, \vec{F})$

2 General Relativity

2.1 Equivalence Principle

Definition 2.1. The **weak equivalence principle** states that the gravitational and inertial masses are equivalent.

Definition 2.2. The **strong equivalence principle** states that the effects of gravity are locally indistinguishable from acceleration.

2.2 Spacetime Curvature

Definition 2.3. Spacetime is a four-dimensional manifold with metric tensor $g_{\mu\nu}$.

The line element is:

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

2.3 Einstein Field Equations

Theorem 2.1 (Einstein Field Equations).

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

where:

- $G_{\mu\nu}$ is the Einstein tensor
- Λ is the cosmological constant
- $T_{\mu\nu}$ is the stress-energy tensor

2.4 Schwarzschild Metric

For a spherically symmetric mass M:

$$ds^{2} = -\left(1 - \frac{2GM}{c^{2}r}\right)c^{2}dt^{2} + \left(1 - \frac{2GM}{c^{2}r}\right)^{-1}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

2.5 Black Holes

Definition 2.4. The Schwarzschild radius is $r_s = \frac{2GM}{c^2}$.

Definition 2.5. An **event horizon** is a boundary beyond which events cannot affect an outside observer.

3 Quantum Mechanics Fundamentals

3.1 Wave-Particle Duality

Definition 3.1. de Broglie wavelength: $\lambda = \frac{h}{p}$ where h is Planck's constant.

Definition 3.2. Photoelectric effect: $E_k = h\nu - \phi$ where ϕ is the work function.

3.2 Uncertainty Principle

Theorem 3.1 (Heisenberg Uncertainty Principle).

$$\Delta x \Delta p \ge \frac{\hbar}{2}$$

$$\Delta E \Delta t \geq \frac{\hbar}{2}$$

where $\hbar = \frac{h}{2\pi}$.

3.3 Schrödinger Equation

Theorem 3.2 (Time-Dependent Schrödinger Equation).

$$i\hbar\frac{\partial\psi}{\partial t} = \hat{H}\psi$$

where $\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + V(\vec{r}, t)$ is the Hamiltonian operator.

Theorem 3.3 (Time-Independent Schrödinger Equation).

$$\hat{H}\psi = E\psi$$

for stationary states with energy E.

3.4 Quantum States and Operators

Definition 3.3. A quantum state is represented by a wave function $\psi(\vec{r},t)$ normalized as $\int |\psi|^2 d^3r = 1$.

Definition 3.4. An **observable** is represented by a Hermitian operator \hat{A} with eigenvalues a_n and eigenstates $|n\rangle$.

3.5 Measurement and Collapse

Definition 3.5. Upon measurement of observable \hat{A} , the state collapses to an eigenstate $|n\rangle$ with probability $|\langle n|\psi\rangle|^2$.

4 Quantum Systems

4.1 Particle in a Box

For a particle in a one-dimensional box of length L:

$$\psi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$
$$E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}$$

4.2 Harmonic Oscillator

Definition 4.1. The quantum harmonic oscillator has energy levels:

$$E_n = \hbar\omega \left(n + \frac{1}{2} \right)$$

where n = 0, 1, 2, ...

The wave functions involve Hermite polynomials:

$$\psi_n(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{1}{\sqrt{2^n n!}} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) e^{-\frac{m\omega x^2}{2\hbar}}$$

4.3 Hydrogen Atom

Theorem 4.1 (Bohr Model).

$$r_n = \frac{n^2 \hbar^2}{me^2} \frac{4\pi \epsilon_0}{e^2}$$
$$E_n = -\frac{me^4}{2\hbar^2 (4\pi \epsilon_0)^2} \frac{1}{n^2}$$

Theorem 4.2 (Quantum Mechanical Solution). The wave function is $\psi_{nlm}(r,\theta,\phi) = R_{nl}(r)Y_l^m(\theta,\phi)$ where:

6

- n is the principal quantum number
- \bullet *l* is the orbital angular momentum quantum number
- m is the magnetic quantum number

5 Angular Momentum

5.1 Orbital Angular Momentum

Definition 5.1. The orbital angular momentum operator is $\hat{\vec{L}} = \hat{\vec{r}} \times \hat{\vec{p}}$.

- $\bullet \ \hat{L}^2|l,m\rangle = l(l+1)\hbar^2|l,m\rangle$
- $\hat{L}_z|l,m\rangle = m\hbar|l,m\rangle$
- $l = 0, 1, 2, \dots$ and $m = -l, -l + 1, \dots, l 1, l$

5.2 Spin

Definition 5.2. Spin is an intrinsic angular momentum property of particles.

For spin-1/2 particles:

$$\hat{S}^2|s, m_s\rangle = s(s+1)\hbar^2|s, m_s\rangle = \frac{3}{4}\hbar^2|s, m_s\rangle$$
$$\hat{S}_z|s, m_s\rangle = m_s\hbar|s, m_s\rangle$$

where $m_s = \pm \frac{1}{2}$.

5.3 Pauli Matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

6 Identical Particles

6.1 Symmetrization Postulate

Definition 6.1. For identical particles, the wave function must be either:

- Symmetric (bosons): $\psi(1,2) = \psi(2,1)$
- Antisymmetric (fermions): $\psi(1,2) = -\psi(2,1)$

6.2 Pauli Exclusion Principle

Theorem 6.1. No two identical fermions can occupy the same quantum state.

6.3 Exchange Symmetry

- Bosons (integer spin): Follow Bose-Einstein statistics
- Fermions (half-integer spin): Follow Fermi-Dirac statistics

7 Quantum Field Theory

7.1 Field Quantization

Definition 7.1. A quantum field is an operator-valued function $\hat{\phi}(x)$ that creates and annihilates particles.

7.2 Creation and Annihilation Operators

- \hat{a}^{\dagger} creates a particle
- \bullet \hat{a} annihilates a particle
- $[\hat{a}, \hat{a}^{\dagger}] = 1 \text{ (bosons)}$
- $\{\hat{a}, \hat{a}^{\dagger}\} = 1$ (fermions)

7.3 Feynman Diagrams

Definition 7.2. Feynman diagrams are graphical representations of particle interactions in quantum field theory.

8 Relativistic Quantum Mechanics

8.1 Klein-Gordon Equation

For spin-0 particles:

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2 + \frac{m^2c^2}{\hbar^2}\right)\psi = 0$$

8.2 Dirac Equation

For spin-1/2 particles:

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0$$

where γ^{μ} are the Dirac matrices.

8.3 Antimatter

Definition 8.1. Antiparticles have the same mass but opposite charge and quantum numbers as their corresponding particles.

9 Quantum Entanglement

9.1 Bell States

The maximally entangled two-qubit states:

$$|\Phi^{+}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \tag{5}$$

$$|\Phi^{-}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle) \tag{6}$$

$$|\Psi^{+}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle) \tag{7}$$

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle) \tag{8}$$

9.2 Bell's Theorem

Theorem 9.1. No local hidden variable theory can reproduce all the predictions of quantum mechanics.

9.3 EPR Paradox

The Einstein-Podolsky-Rosen paradox questions the completeness of quantum mechanics and introduces the concept of "spooky action at a distance."

10 Applications

10.1 Quantum Computing

- Quantum gates and circuits
- Quantum algorithms (Shor's, Grover's)
- Quantum error correction

10.2 Quantum Cryptography

- Quantum key distribution (BB84 protocol)
- Quantum teleportation
- Quantum secure communication

10.3 Quantum Sensing

- Quantum metrology
- Gravitational wave detection
- Quantum magnetometry

10.4 Cosmology

- Big Bang theory
- Cosmic microwave background
- Dark matter and dark energy
- Inflation theory

11 Important Constants

- Speed of light: $c = 2.998 \times 10^8$ m/s
- Planck constant: $h = 6.626 \times 10^{-34} \text{ J} \cdot \text{s}$
- Reduced Planck constant: $\hbar = 1.055 \times 10^{-34} \text{ J} \cdot \text{s}$
- Gravitational constant: $G = 6.674 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
- Electron charge: $e = 1.602 \times 10^{-19} \text{ C}$
- Electron mass: $m_e = 9.109 \times 10^{-31} \text{ kg}$
- Proton mass: $m_p = 1.673 \times 10^{-27} \text{ kg}$
- Fine structure constant: $\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \approx \frac{1}{137}$
- Rydberg constant: $R_{\infty} = \frac{me^4}{8\epsilon_0^2 h^3 c} = 1.097 \times 10^7 \text{ m}^{-1}$

12 Key Theorems

12.1 No-Cloning Theorem

Theorem 12.1. It is impossible to create an identical copy of an arbitrary unknown quantum state.

12.2 Unitarity

Theorem 12.2. Quantum evolution is unitary: $\hat{U}^{\dagger}\hat{U} = \hat{I}$.

12.3 Conservation Laws

- Energy conservation
- Momentum conservation
- Angular momentum conservation
- Charge conservation
- Baryon and lepton number conservation

13 Modern Developments

13.1 Quantum Field Theory

- Standard Model of particle physics
- Quantum electrodynamics (QED)
- Quantum chromodynamics (QCD)
- Electroweak theory

13.2 Quantum Gravity

- String theory
- Loop quantum gravity
- Causal dynamical triangulation
- Asymptotic safety

13.3 Quantum Information

- Quantum error correction
- Quantum communication
- Quantum simulation
- Quantum machine learning