Feedback Linearizable Discretizations of Mechanical Systems using Retraction Maps

Shreyas N B

October 16, 2024

Outline

Outline

- 1 Introduction
 - Feedback Linearization
 - Retraction Maps
 - Mechanical Systems
- 2 MF-Linearization
 - MF-Linearizability
 - Examples
- 3 Conclusions
 - Some results

Outline

- 1 Introduction
 - Feedback Linearization
 - Retraction Maps
 - Mechanical Systems
- 2 MF-Linearization
 - MF-Linearizability
 - Examples
- 3 Conclusions
 - Some results

Definitions

Let M and N be two n-dimensional manifolds and $\phi: M \to N$ be a diffeomorphism. Let $X \in \mathfrak{X}(M)$ be a vector field on M. Then, $X_{\phi} := T\phi \circ X \circ \phi^{-1}$ is a vector field on N.

Feedback Linearization

Let $x_0 \in \mathcal{O}(x_0)$ and $u_0 \in \mathcal{O}(u_0)$ be such that $f(x_0, u_0) = 0$. Then, the system is locally feedback linearizable if there exists a diffeomorphism $\phi: M \to N$ such that $X_\phi = \frac{\partial}{\partial x_0}$.

Feedback Linearization

MIT Hack

The HACK:

■ Tom O'Connor - wanted to measure Harvard bridge to track his progress when walking

- Tom O'Connor wanted to measure Harvard bridge to track his progress when walking
- Smoot's height chosen as unit of measurement (he was the shortest)

Feedback Linearization

MIT Hack

- Tom O'Connor wanted to measure Harvard bridge to track his progress when walking
- Smoot's height chosen as unit of measurement (he was the shortest)
- Seven freshman measured Harvard bridge using Smoot's body to mark distance

- Tom O'Connor wanted to measure Harvard bridge to track his progress when walking
- Smoot's height chosen as unit of measurement (he was the shortest)
- Seven freshman measured Harvard bridge using Smoot's body to mark distance
- Result: Harvard Bridge = 364.4 smoots (+an ear)

Feedback Linearization

Career

■ Chairman of the American National Standards Institute

Introduction

Career

- Chairman of the American National Standards Institute
- Served as president of the International Organization for Standardization from 2003 to 2005.

Introduction 800

What is a Smoot?

■ An imprecise unit of measurement originating from famous MIT hack

What is a Smoot?

- An imprecise unit of measurement originating from famous MIT hack
- 1 smoot = 5 feet and 7 inches

What is a Smoot?

- An imprecise unit of measurement originating from famous MIT hack
- 1 smoot = 5 feet and 7 inches
- Harvard bridge = 364.4 smoots (+ an ear)

Mechanical System

MIT Hack

Mechanical Systems

MIT Hack

The HACK:

■ Tom O'Connor - wanted to measure Harvard bridge to track his progress when walking

- Tom O'Connor wanted to measure Harvard bridge to track his progress when walking
- Smoot's height chosen as unit of measurement (he was the shortest)

- Tom O'Connor wanted to measure Harvard bridge to track his progress when walking
- Smoot's height chosen as unit of measurement (he was the shortest)
- Seven freshman measured Harvard bridge using Smoot's body to mark distance

- Tom O'Connor wanted to measure Harvard bridge to track his progress when walking
- Smoot's height chosen as unit of measurement (he was the shortest)
- Seven freshman measured Harvard bridge using Smoot's body to mark distance
- Result: Harvard Bridge = 364.4 smoots (+an ear)

- - Feedback Linearization
 - Retraction Maps
 - Mechanical Systems
- 2 MF-Linearization
 - MF-Linearizability
 - Examples
- - Some results

Career

■ Chairman of the American National Standards Institute

Career

- Chairman of the American National Standards Institute
- Served as president of the International Organization for Standardization from 2003 to 2005.

Examples

Examples

Inverted Pendulum

Examples

- Inverted Pendulum
- Double Pendulum

Examples

- Inverted Pendulum
- Double Pendulum
- Cart-Pole System

Outline

- - Feedback Linearization
 - Retraction Maps
 - Mechanical Systems
- - MF-Linearizability
 - Examples
- 3 Conclusions
 - Some results

Questions and Answers

Want to know more?

■ Browse http://web.mit.edu/smoot/history.htm.

Some results

Questions and Answers

Want to know more?

- Browse http://web.mit.edu/smoot/history.htm.
- Smoot's Legacy http://alum.mit.edu/news/AlumniNews/ Archive/smoots_legacy.

Some results

Questions and Answers

Want to know more?

- Browse http://web.mit.edu/smoot/history.htm.
- Smoot's Legacy http://alum.mit.edu/news/AlumniNews/ Archive/smoots_legacy.
- Smoot Salute! http://web.mit.edu/spotlight/smoot-salute.

