学院

年级 学号

姓名

共 4 页 第 1 页

2022 ~2023 学年第 1 学期期末考试试卷

(C) $f_{\mathcal{L}}: f_{\mathcal{L}} = 3: 4$, $\lambda_{\mathcal{L}}: \lambda_{\mathcal{L}} = 4: 3$ (D) $f_{\mathcal{L}}: f_{\mathcal{L}} = 3: 4$, $\lambda_{\mathcal{L}}: \lambda_{\mathcal{L}} = 3: 4$

《工程光学(2)》(A 卷 共 4 页)

(考试时间: 2023 年 3月 4日)

题号	_	=	三	四	Ŧi.	六	七	八	九	十	成绩	核分人 签字
得分												

- 一、选择题(共24分,每小题2分)
- 1、单缝夫琅和费衍射第三级暗纹所对应的半波带数目是()

专业

- 7、用两个斜入射的平面波拍摄全息光栅,想要让形成的光栅条纹更密,那么应该()
- (A) 减小 λ , 增大 θ (B)减小 λ , 减小 θ (C)增大 λ , 增大 θ (D)增大 λ , 减小 θ

(A) 2 (B) 4 (C)6(D)82、光从空气正入射一透明薄膜(折射率是n),想要反光强度最大,薄膜的厚度应至少

为()

- (A) $\frac{\lambda}{2}$ (B) $\frac{\lambda}{4}$ (C) $\frac{\lambda}{2n}$ (D) $\frac{\lambda}{4n}$
- 3、线偏振光经过半波片后,偏振态是()
- (A) 线偏振光 (B) 圆偏振光 (C)椭圆偏振光 (D)无法确定
- 4、一束光从介质 1 入射到介质 2 中,起偏角为 θ_1 ,从介质 2 入射到介质 1 中,起偏角为
- θ_2 ,若知道 $\theta_1 < \theta_2$,则介质折射率之间的关系())
- (A) $n_1 < n_2$ (B) $n_1 > n_2$ (C) $n_1 = n_2$ (D)无法判断

- 5、考虑一波带片,光经过它光强是没有波带片时的400倍,则波带的数目为()
- (A) 10 (B) 20 (C) 30 (D) 40
- 6、红光在水中和绿光在真空中的波长相同,在水中,红光和绿光的折射率为3:4,那 么请问在真空中,红光:绿光 ()
- (A) $f_{\mathcal{L}}$: $f_{\mathcal{L}} = 4$: 3, $\lambda_{\mathcal{L}}$: $\lambda_{\mathcal{L}} = 4$: 3 (B) $f_{\mathcal{L}}$: $f_{\mathcal{L}} = 4$: 3, $\lambda_{\mathcal{L}}$: $\lambda_{\mathcal{L}} = 3$: 4

- 8、考虑检验工件的平整度,若干涉条纹呈现以下图样,则工件()
- (A) 凸起, $\frac{\lambda}{2}$ (B)凸起, $\frac{\lambda}{4}$ (C)凹起, $\frac{\lambda}{2}$ (D)凹起, $\frac{\lambda}{4}$

- 二、简答题(共24分,每小题6分)
- 1.一束自然光入射到一个玻璃和方解石胶合的棱镜中,请画出光的传播方向以及偏振状

学院

专业

班

年级

学号

姓名

共4页 第2页

5.考虑一个迈克尔逊干涉仪,点光源放在透镜的焦点之内。

- (1) 当 M_1 和 M_2 严格垂直时,条纹是什么样子的?
- (2) 当 M_1 和 M_2 不垂直时,条纹是什么样子的?
- (3) 考虑光源是复色光时, G_2 的用途是什么?当 M_1 和 M_2 '之间距离超过一定限度时,看见的条纹是什么样子的?

2. 两束振幅和初相位都相等的左旋圆偏振光和右旋圆偏振光相遇,光场的偏振态变成什么样?

3. 光学拍发生的条件是什么? 有什么特点? 有什么应用?

4. 考虑单缝夫琅和费衍射,当缝宽分别为波长λ的 1 倍,10 倍,100 倍时,中央亮纹的半角宽度是多少?请简要分析一下这种现象

学院	专业	班	年级	学号	姓名	共4页第3页
	m ,请以 $sin heta$ 为横轴, I/I_0 为纵车	计,入射光的波长为 600nm, 缝宽轴, 画出衍射分布的图样。当缝间		1. 一東波长为 在在两个偏振/ (1) 经过偏振 (2) 经过石英 (3) 经过偏振	共10分,每小题17、10、9分) 600nm 平行自然光,入射到一个正交 片中间加入一个石英波片,厚度为 0.4 片P ₁ 后的光强和偏振态? 波片后的光强和偏振态,并写出光矢 法片P ₂ 后的光强和偏振态?	mm, $n_o=1.544$, $n_e=1.553$,请问

 学院
 专业
 班
 年级
 学号
 姓名
 共4页第4页

3. 现在考虑一个相控天线阵列,单元之间的距离为 $\frac{3\lambda}{4}$,其中光经过每个单元后之间又有一定的相位变化,相邻两个之间变化差为 $\frac{\pi}{2}$,如第一个单元为0,第二个单元为 $\frac{\pi}{2}$,第三个单元为 $2 \times \frac{\pi}{2}$,以此类推。请问正入射的光有几个衍射级次?(提示:可以看成光栅)

2.考虑一个双缝干涉装置,一个缝宽为d,另一个缝宽为2d,在一个缝的前面加上一个厚度为h、折射率为n的玻璃板,请问 P_0 处的光强是多少?条纹的可见度时多少?