Drawback of DDA:-

for every egn we have to use Round fund avoid

Bresenham's Algo &

I of When m < 1 x - unit interval $y \to ?$

II $\Rightarrow m > 1$ $y \rightarrow unit interval$ $\chi_{k+1} \rightarrow ?$

III: m=1 $\chi_{k+1} \rightarrow \text{unit interval}, \text{ and}$ $\chi_{k+1} \rightarrow \text{unit interval}$

Let m<1 (case I)

$$y = m\chi + C$$

$$y = m(\chi_{k+1}) + C$$

$$\left[\mathcal{Y} = m(\chi_{k} + 1) + C \right] - 0$$

Decision Parapeter $(P_R) = \Delta \times (d_1 - d_2)$ to select $\frac{\partial K}{\partial R}$

di= y-yk $d_1 = m(x_k+1)+C-y_k$ d2= yk+1-4 dz = yx+1-[m(xx+1)+c]. $d_1 - d_2 = m(x_k + 1) + c - y_k - [y_k + 1 + [m(x_k + 1) + c]$ d,-d2 = 2m(xk+1)-2yk+2C-1 $\Delta \chi(d_1-d_2) = \Delta \chi \left[2 \frac{\Delta y}{\Delta \chi} (\chi_k+1) - 2 y_k + 2 c - 1 \right]$ Initial decision = $2\Delta y(x_k + 1) - 2\Delta x y_k + 2\Delta x C - \Delta x$ $P_{K} = 2\Delta y x_{K} + 2\Delta y - 2\Delta x y_{K} + \Delta x (2C-1)$ s put value PK+1 = 2 Dy XK+1 + 2Dy - 2DX yK+1 + DX (2C-1) of C here $P_{k+1} - P_{k} = 2\Delta y \chi_{k+1} + 2\Delta y - 2\Delta \chi y_{k+1} + \Delta \chi (2Q-1)$ $-2\Delta y \chi_{k} - 2\Delta y + 2\Delta \chi y_{k} - \Delta \chi (2Q-1)$ $=2\Delta y(\chi_{k+1}-\chi_k)-2\Delta \chi(y_{k+1}-y_k)$ = 21y (2/+1-Xx) -21x (yx+1-yx) PK+1 = PK + 2DY - 2DX (YK+1 - YK) y=mx+c put value of c in Px $P_{k} = 2\Delta y x_{k} + 2\Delta y - 2\Delta x y_{k} + \Delta x (2(y - mx) - 1)$ = 20 yxx + 20 y - 20 xyx + 20 xy - 20xm(x) - 0x = 20 y xx + 20 y - 20 x yx + 20 x y - 2 1xx Ay, x - 0x = 20y2x + 20y - 20xyx + 20xy - 20yx - 0x = 204xx +204-20xyx +20xyx - 20xxx - 0x

Decision:

If
$$P_{k} > 0$$

 $\chi_{k+1} = \chi_{k} + 1$
 $\Rightarrow \chi_{k+1} = \chi_{k} + 1$
Next point (χ_{k+1}, χ_{k+1})
 $(\chi_{k} + 1, \chi_{k} + 1)$

If
$$P_k \times O$$

$$\chi_{k+1} = \chi_k + 1$$

$$\Rightarrow \chi_{k+1} = \chi_k + 1$$

$$\Rightarrow \chi_{k+1} = \chi_k$$

$$\chi_{k+1} = \chi_k + 1$$

$$\chi_{k+1} = \chi$$

Similarly if m is greater than 1 (m)1)
replace x +y

$$\begin{bmatrix}
P_{k} = 2\Delta x - \Delta y \\
P_{k+1} = P_{k} + 2\Delta x - 2\Delta y (x_{k+1} - x_{k})
\end{bmatrix}$$

Decision:

Next point (x_{k+1}, y_{k+1}) (x_{k+1}, y_{k+1})

If
$$P_k < 0$$

$$y_{k+1} = y_k + 1$$

$$x_{k+1} = x_k$$

Next Point
(XK+1, YK+1)

Lh
(XK, YK+1)

MINISTER MAY 1 ..

(1,1) - (6,7)

$$m = \frac{7-1}{6-1} = \frac{6}{5} = 1.2 > 1$$

 $\Delta x = 6-1 = 5$ $2\Delta x = 10$
 $\Delta y = 7-1 = 6$ $2\Delta y = 12$

When
$$m > 1$$
 $P_k = 2\Delta x - \Delta y - 2\Delta y - 2\Delta y = 2\Delta x - 2\Delta y = 2\Delta x - 2\Delta y = 2\Delta x + 1$

If $P_k > 0 \Rightarrow 2\alpha + 1 = 2\alpha + 1$

If $P_k < 0 \Rightarrow 2\alpha + 1 = 2\alpha + 1$

10 10 01 1 10 00

$$P_{K} = 2\Delta x - \Delta y$$

= 10-6 = 4>0

K(iteration)
$$(2k, yk)$$
 P_k $(2k+1, yk+1)$
 $(1,1)$ $(2,2)$
 $P_{k+1} = P_k + 2\Delta x - 2\Delta y(x_{k+1} - x_k)$
 $= 4 + 10 - 12(2 - 1)$
 $= 14 - 12$
 $= 2 > 0$
 $2:$ $(2,2)$ 2 $(3,3)$
 $P_{k+1} = 2 + 10 - 12(3 - 2)$
 $= 12 - 12 = 0$
 $3:$ $(3,3)$ 0 $(4,4)$
 $P_{k+1} = 0 + 10 - 12(4 - 3)$
 $= -2 \times 6$
 $4:$ $(4,4)$ -2 $(4,5)$
 $P_{k+1} = -2 + 10 - 12(4 - 4)$
 $= 0 > 0$

5: (4,5) 8 (5,6)

$$P_{K+1} = 8 + 10 - 12(5 - 4)$$

$$= 18 - 12$$

$$= 18-12$$

$$= 6 > 0$$
6: $(5,6)$
6 $(6,7)$

(1,1)(2,2)(3,3)(4,4)(4,5)(5,6)(6,7)

$$8118 \circ (1,1) - (3,6)$$

$$9118 \circ (1,1) - (3,6)$$

3

(37,41)

(38,42)

$$P_{k+1} = 6 + 10 - 16(49 - 47)$$

$$= 16 - 16 = 0$$
4. (38,42)
$$P_{k+1} = 0 + 10 - 16(43 - 42)$$

$$= 10 - 16 = -6 > 0$$
5. (39,43)
$$P_{k+1} = -6 + 10 - 16(43 - 43)$$

$$= -6 + 10 = 4 > 0$$
6. (40,43)
$$P_{k+1} = 4 + 10 - 16(44 - 43)$$

$$= 14 - 16$$

$$= -2 < 0$$
7. (41,44)
$$P_{k+1} = -2 + 10 - 16(44 - 44)$$

$$= 8 > 0$$
8. (42,44)
8. (43,45)

Gue: Generate the intermediate Points using BLDA b/w two end points (3,2) and (4,6)