2022年10月2日

偏微分方程

强基数学 002

吴天阳

2204210460

定理 1 (Gauss-Green 公式). 设 $\Omega \in \mathbb{R}^n$ 为有界开集,且 $\partial \Omega \in C^1$,若 $U = (u_1, \cdots, u_n)^T : \bar{\Omega} \to \mathbb{R}^n$ 且 $u \in C^1(\Omega) \cap C(\bar{\Omega})$,则

$$\int_{\Omega} \nabla \cdot U \, \mathrm{d}x = \int_{\partial \Omega} U \cdot \boldsymbol{n} \, \mathrm{d}s,$$

其中n为 $\partial\Omega$ 的单位外法向.

题目 1. 利用 Gauss-Green 公式证明:

(1). 若 $u, v \in C^1(\Omega) \cap C(\bar{\Omega})$,则

$$\int_{\Omega} u_{x_i} v \, \mathrm{d}x = -\int_{\Omega} u v_{x_i} \, \mathrm{d}x + \int_{\partial \Omega} u v n_i \, \mathrm{d}s.$$

(2). 若 $u \in C^2(\Omega) \cap C^1(\bar{\Omega})$,则

$$\int_{\Omega} \Delta u \, \mathrm{d}x = \int_{\partial \Omega} \frac{\partial u}{\partial \boldsymbol{n}} \, \mathrm{d}s,$$

其中 $\Delta u = \nabla \cdot (\nabla u) = \sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}, \ \frac{\partial u}{\partial \boldsymbol{n}} = \nabla u \cdot \boldsymbol{n}.$

(3). 若 $u, v \in C^2(\Omega) \cap C^1(\bar{\Omega})$,则

$$\int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x = -\int_{\Omega} u \nabla v \, \mathrm{d}x + \int \partial \Omega u \frac{\partial v}{\partial \boldsymbol{n}} \, \mathrm{d}s.$$

(4). 若 $u, v \in C^2(\Omega) \cap C^1(\bar{\Omega})$,则

$$\int_{\Omega} (u\Delta v - v\Delta u) \, \mathrm{d}x = \int_{\partial\Omega} \left(u \frac{\partial v}{\partial \boldsymbol{n}} - v \frac{\partial u}{\partial \boldsymbol{n}} \right) \, \mathrm{d}s.$$

证明. (1). 令
$$U = (0, \dots, 0, uv, 0, \dots, 0)^T$$
,即 $U_j = \begin{cases} uv, & j = i, \\ 0, & j \neq i. \end{cases}$

$$\int_{\Omega} \nabla \cdot U \, \mathrm{d}x = \int_{\Omega} \frac{\partial uv}{\partial x_i} \, \mathrm{d}x = \int_{\Omega} u_{x_i} v \, \mathrm{d}x + \int_{\Omega} uv_{x_i} \, \mathrm{d}x \\ \xrightarrow{\underline{\text{Gauss-Green}}} \int_{\partial \Omega} U \cdot \boldsymbol{n} \, \mathrm{d}s = \int_{\partial \Omega} uv n_i \, \mathrm{d}s$$
 $\Rightarrow \int_{\Omega} u_{x_i} v \, \mathrm{d}x = -\int_{\Omega} uv_{x_i} \, \mathrm{d}x + \int_{\partial \Omega} uv n_i \, \mathrm{d}s.$

(2).
$$\int_{\Omega} \Delta u \, \mathrm{d}x = \int_{\Omega} \nabla \cdot (\nabla u) \, \mathrm{d}x \xrightarrow{\text{Gauss-Green}} \int_{\partial \Omega} \nabla u \cdot \boldsymbol{n} \, \mathrm{d}s = \int_{\partial \Omega} \frac{\partial u}{\partial \boldsymbol{n}} \, \mathrm{d}s.$$

(3). 由 (1) 知,令 $v = \frac{\partial v}{\partial x_i}$,可得

$$\int_{\Omega} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} dx = -\int_{\Omega} u \frac{\partial^2 v}{\partial x_i^2} dx + \int_{\partial \Omega} u \frac{\partial v}{\partial x_i} n_i ds, \quad (i = 1, 2, \dots, n),$$

对上式左右两端同时对 $i=1,2,\cdots,n$ 求和可得

$$\int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x = -\int_{\Omega} u \Delta v \, \mathrm{d}x + \int_{\partial \Omega} u \frac{\partial v}{\partial \boldsymbol{n}} \, \mathrm{d}s.$$

(4). 由 (3) 知, 交换 u, v 可得

$$\int_{\Omega} \nabla u \cdot \nabla v \, \mathrm{d}x = -\int_{\Omega} u \Delta v \, \mathrm{d}x + \int_{\partial \Omega} u \frac{\partial v}{\partial \boldsymbol{n}} \, \mathrm{d}s = -\int_{\Omega} v \Delta u \, \mathrm{d}x + \int_{\partial \Omega} v \frac{\partial u}{\partial \boldsymbol{n}} \, \mathrm{d}s,$$

则

$$\int_{\Omega} (u \Delta v - v \Delta u) \, \mathrm{d}x = \int_{\partial \Omega} \left(u \frac{\partial v}{\partial \boldsymbol{n}} - v \frac{\partial u}{\partial \boldsymbol{n}} \right) \, \mathrm{d}s.$$

题目 2. 将下列方程化为标准型:

(1)
$$\sum_{i=1}^{n} u_{x_i x_i} + \sum_{1 \le i < j \le n} u_{x_i x_j} = 0,$$

$$(2) u_{xx} + 2u_{xy} + 2u_{yy} = 0.$$

解答. (1). 该方程的系数矩阵为 $A = \begin{bmatrix} 1 & 1/2 & \cdots & 1/2 \\ 1/2 & 1 & \cdots & 1/2 \\ \vdots & \vdots & \ddots & \vdots \\ 1/2 & 1/2 & \cdots & 1 \end{bmatrix}$, 则 A 的有 n-1 重特征值为

 $\lambda_{1,2,\cdots,n-1}=rac{1}{2},\ \lambda_n=rac{n+1}{2},\$ 于是该方程为**椭圆形**,通过变量代换

$$\nabla v = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \cdots & \frac{1}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \cdots & \frac{1}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n}} \\ 0 & -\frac{2}{\sqrt{6}} & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \frac{1}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n}} \\ 0 & 0 & \cdots & -\frac{(n-1)}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n}} \end{bmatrix} \nabla u$$

可得标准型为 $\sum_{i=1}^{n} \lambda_i v_{x_i x_i} = 0.$

(2). 该方程的系数矩阵为 $A=\begin{bmatrix}1&1\\1&2\end{bmatrix}$,则 A 的特征值为 $\lambda_{1,2}=\frac{3\pm\sqrt{5}}{2}$,则该方程为**椭圆形**,通过变量代换

$$\nabla v = \begin{bmatrix} \sqrt{\frac{5 + \sqrt{5}}{10}} & \sqrt{\frac{5 - \sqrt{5}}{10}} \\ -\sqrt{\frac{5 - \sqrt{5}}{10}} & \sqrt{\frac{5 + \sqrt{5}}{10}} \end{bmatrix} \nabla u$$

可得标准型为 $\sum_{i=1}^{n} \lambda_i v_{x_i x_i} = 0$.

题目 3. 设

$$J(v) = \frac{1}{2} \int_{\Omega} (|\nabla v|^2 + v^2) \,\mathrm{d}x + \frac{1}{2} \int_{\partial \Omega} \alpha(x) v^2 \,\mathrm{d}s - \int_{\Omega} f v \,\mathrm{d}x - \int_{\partial \Omega} g v \,\mathrm{d}s,$$

其中 $\alpha(x) \ge 0$. 考虑一下三个问题:

问题 I (变分问题): 求 $u \in M = C^1(\bar{\Omega})$, 使得

$$J(u) = \min_{v \in M} J(v).$$

问题 II: 求 $u \in M = C^1(\bar{\Omega})$, 使得它对于任意 $v \in M$, 都满足

$$\int_{\Omega} (\nabla u \cdot \nabla v + u \cdot v - fv) \, dx + \int_{\partial \Omega} (\alpha(x)uv - gv) \, ds = 0.$$

问题 III (第三边值问题): 求 $u \in C^2(\Omega) \cap C^1(\bar{\Omega})$, 满足以下边值问题

$$\begin{cases}
-\Delta u + u = f, & x \in \Omega, \\
\frac{\partial u}{\partial \vec{n}} + \alpha(x)u = g, & x \in \partial\Omega.
\end{cases}$$

- (1) 证明问题 I 与问题 II 等价.
- (2) 当 $u \in C^2(\Omega) \cap C^1(\bar{\Omega})$ 时,证明问题 I、II、III 等价.

$$j(\varepsilon) = J(u + \varepsilon v),$$

则

$$j'(\varepsilon) = \int_{\Omega} ((u_x + \varepsilon v_x)v_x + (u_y + \varepsilon v_y)v_y + (u + \varepsilon v)v) \, \mathrm{d}x + \int_{\partial\Omega} \alpha(x)(u + \varepsilon v)v \, \mathrm{d}s - \int_{\Omega} fv \, \mathrm{d}x - \int_{\partial\Omega} gv \, \mathrm{d}s.$$

问题 I 的必要性条件为 j'(0) = 0, 即

$$j'(0) = \int_{\Omega} (u_x v_x + u_y v_y + uv) \, dx + \int_{\partial\Omega} \alpha(x) uv \, ds - \int_{\Omega} fv \, dx - \int_{\partial\Omega} gv \, ds$$
$$= \int_{\Omega} (\nabla u \cdot \nabla v + uv - fv) \, dx + \int_{\partial\Omega} (\alpha(x) uv - gv) \, ds = 0.$$
(1)

由于

$$j''(\varepsilon) = \int_{\Omega} (v_x^2 + v_y^2 + v^2) \, \mathrm{d}x + \int_{\partial \Omega} \alpha(x) v^2 \, \mathrm{d}s \geqslant 0.$$

说明(1)式为问题Ⅰ的充要条件,则问题Ⅰ与问题Ⅱ等价.

(2) 由于 $u \in C^2(\Omega) \cap C^1(\bar{\Omega})$,由 Guass-Green 公式可知

$$\int_{\Omega} \nabla u \cdot \nabla v \, dx = -\int_{\Omega} \Delta u \cdot v \, dx + \int_{\partial \Omega} v \frac{\partial u}{\partial \vec{n}} \, ds,$$

于是(1)式等价于

$$\int_{\Omega} (u - \Delta u - f) v \, \mathrm{d}x + \int_{\partial \Omega} \left(\frac{\partial u}{\partial \vec{n}} + \alpha(x) u - g \right) v \, \mathrm{d}s = 0,$$

取 $v \in C_0^{\infty}(\Omega)$, 由引理 2.1 可知

$$\begin{cases} u = \Delta u + f, & x \in \Omega, \\ \frac{\partial u}{\partial \vec{n}} + \alpha(x)u = g, & x \in \partial\Omega. \end{cases}$$

综上,问题 I 与问题 Ⅲ 等价,由(1)问可知,问题 I、Ⅱ、Ⅲ 等价.

题目 4. (1) 证明在自变量代换

$$\begin{cases} \xi = x - at, \\ \eta = x + at \end{cases}$$

下,波动方程 $u_{tt} - a^2 u_{xx} = 0$ 具有的形式

$$u_{\xi\eta}=0,$$

并由此求出波动方程的通解.

(2) 证明在自变量代换

$$\begin{cases} \xi = x - \alpha t, \\ \tau = t \end{cases}$$

下,方程 $u_t + \alpha u_x = a^2 u_{xx}$ 具有的形式

$$u_{\tau} = a^2 u_{\xi\xi}.$$

解答. (1) 由于 $\xi_t = -a$, $\xi_x = 1$, $\eta_t = a$, $\eta_x = 1$, 则

$$u_{tt} - a^2 u_{xx} = u_{\xi\eta} \cdot \xi_t \eta_t - a^2 u_{\xi\eta} \cdot \xi_x \eta_x = -2a^2 u_{\xi\eta} = 0$$

则 $u_{\xi\eta} = 0$. 对 ξ 进行积分可得 $u_{\eta} = c + f(\eta)$, 对 η 进行积分可得

$$u = c\eta + \int f(\eta) \,\mathrm{d}\eta + f_2(\xi),$$

记 $f_1(\eta) = c\eta + \int f(\eta) \,\mathrm{d}\eta$,则

$$u(x,y) = f_1(x+at) + f_2(x-at).$$

其中 f_1, f_2 为任意的标量函数.

(2) 由于 $\xi_x = 1$, $\tau_x = 0$, $\tau_t = 1$, 则

$$u_t + \alpha u_x = u_\tau \tau_t + \alpha u_\tau \tau_x = u_\tau,$$

$$\alpha^2 u_{xx} = \alpha^2 u_{\xi\xi}(\xi_x)^2 = \alpha^2 u_{\xi\xi},$$

所以原方程等价于 $u_{\tau} = \alpha^2 u_{\xi\xi}$.

题目 5. 若 u 是 Laplace 方程 $\Delta u = 0$ 的解,如果 u(x) 只是向径 r = |x| 的函数,即 $u(x) = \tilde{u}(r)$,试写出 $\tilde{u}(r)$ 适合的常微分方程.

解答. 设 $r = \sqrt{x_1^2 + \dots + x_n^2}$,则

$$\begin{split} \frac{\partial}{\partial x_i} &= \frac{\partial r}{\partial x_i} \frac{\partial}{\partial r} = \frac{x_i}{r} \frac{\partial}{\partial r}, \\ \frac{\partial^2}{\partial x_i^2} &= \frac{\partial^2}{\partial x_i^2} (\frac{x_i}{r} \frac{\partial}{\partial r}) = \frac{\partial^2}{\partial x_i^2} (\frac{x_i}{r}) \frac{\partial}{\partial r} + (\frac{x_i}{r})^2 \frac{\partial^2}{\partial r^2} = \frac{r^2 - x_i^2}{r^3} \frac{\partial}{\partial r} + \frac{x_i^2}{r^2} \frac{\partial^2}{\partial r^2}. \end{split}$$

所以

$$\Delta u = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2} u = \left(\frac{nr^2 - r^2}{r^3} \frac{\partial}{\partial r} + \frac{r^2}{r^2} \frac{\partial^2}{\partial r^2} \right) u = \frac{\partial^2 u}{\partial r^2} + \frac{n-1}{r} \frac{\partial u}{\partial r}.$$