Podstawowe zasady rysowania asymptotycznych charakterystyk częstotliwościowych

1. Element inercyjny I rzędu $G(s) = \frac{k}{Ts+1}$.

2. Regulator PD $G(s) = k_p(T_D s + 1)$.

3. Element całkujący $G(s) = \frac{k}{s}$.

4. Element różniczkujący G(s) = Ts.

Przykład 1.

Transmitancja operatorowa układu otwartego ma postać:

$$G_0(s) = \frac{k(10s+1)}{s(100s+1)(0,1s+1)(0,01s+1)}$$

Narysuj asymptotyczne charakterystyki częstotliwościowe.

W pierwszej kolejności należy wyznaczyć zakres pulsacji dla którego będą rysowane charakterystyki:

$$T_{max} = 100$$
 $\omega_{min} = \frac{1}{T_{max}} = 10^{-2}$ (+ dwie dekady w lewo) $\omega_{min} = 10^{-2-2} = 10^{-4}$

$$T_{min} = 0.01$$
 $\omega_{max} = \frac{1}{T_{min}} = 10^2$ (+ dwie dekady w prawo) $\omega_{max} = 10^{2+2} = 10^4$

Następnie należy zapisać transmitancję operatorową układu otwartego w postaci iloczynowej:

$$G_0(s) = (10s+1)$$
 $\frac{1}{s}$ $\frac{1}{100s+1}$ $\frac{1}{0.1s+1}$ $\frac{1}{0.01s+1}$

i po kolei narysować charakterystyki składowe:

10°

10¹

10²

10³

-315 <u>-</u> 10⁻⁴

10⁻³

10⁻²

10⁻¹

Przykład 2

. Wyznacz transmitancję filtru o logarytmicznej charakterystyce modułowej zbliżonej do:

Narysuj asymptotyczne, logarytmiczne charakterystyki modułowe elementów filtru, ich asymptotyczne logarytmiczne charakterystyki fazowe i wypadkową charakterystykę fazową filtru. Naszkicuj charakterystykę amplitudowo-fazową filtru. Jaki sygnał ustali się na wyjściu filtru, jeśli na wejście podamy sygnał sin(t).

Politechnika Łódzka Instytut Automatyki Transmitancja jest więc równa: $G(s) = \frac{(10s+1)(0.1s+1)}{(s+1)^2}$. Podobnie jak w zadaniu 1 składamy charakterystyki fazowe (oczywiście wystarczyło złożyć charakterystyki asymptotyczne):

16

Jeśli na wejście podamy sygnał sin(t), to na wyjściu ustali się sinusoida o amplitudzie ok. 5 (amplituda 1 wzmocniona 14 dB, $10^{\frac{14}{20}} \approx 5$) będąca w fazie z sinusoida wejściową ($\omega = 1$, $|G(j\omega)| \approx 5$, $arg\{G(j\omega)\} = 0$)

Charakterystyka amplitudowo-fazowa:

a)
$$\omega \approx 0$$
, $|G(j\omega)| \approx 1$, $arg\{G(j\omega)\} \approx 0$

b)
$$\omega \approx 0.1$$
, $|G(j\omega)| \approx 1+$, $arg\{G(j\omega)\} \approx \frac{\pi}{4}$

c)
$$\omega \approx 1$$
, $|G(j\omega)| \approx 5$, $arg\{G(j\omega)\} \approx 0$

$$10^{\frac{14}{20}} \approx 5$$

d)
$$\omega \approx 10$$
, $|G(j\omega)| \approx 1+$, $arg\{G(j\omega)\} \approx -\frac{\pi}{4}$

$$e) \omega \rightarrow \infty, |G(j\omega)| \rightarrow 1, arg\{G(j\omega)\} \rightarrow 0$$

