

工作	紧前工作	正常持续时间 正常直接费用		1接费用	最短时间		压缩费用/天
A		3		50 2			50
В	-	6 14		40	4		60
C	34.0	2 50		50	1		30
D	A	5	100		3		40
E	C	2	55		2 5		-
F	A	7	115		5		30
G	B,D	4	1	00	2		70
项目	工期(天)	12	11	10	9	8	7
间接	费用(元)	900	820	740	700	660	620
正常工期: 关键线路			A, D, G		_		
	工	期	12		A	D	F
总正常直接费用 总间接费用 总费用			610	C	В		000
			900		c		1
			1510		()	E

压缩工期至10天: 关键线路要压缩2天 工序 正常持续时间 最短持续时间 压缩费用/天 50 3 2 D 5 3 40 G 4 2 70 方案: D从5天压缩至3天,增加的费用(压缩费用)=2x40=80 原总正常直接费用 610 增加的费用 80 总间接费用 740 (参见上页) 总费用 1430 思考: 如何选择要压缩的工作? 线路:线路持续时间>目标工期的关键/非关键线路 工作: 这些线路上压缩费用低的工作 其它准则,如时间长的...、几条线路的公共工作

●费用优化

- 也称工期-费用优化,即应用网络计划方法,在一定的约束条件下,综合考虑费用和工期之间的相互关系,以求费用和工期的最佳组合,达到费用低,工期短的优化目的
- 费用优化思路
 - 向关键线路要节约
- 费用优化假设前提
 - 现行工期大于最优工期
 - 相反的情况处理方法类似

• 基本概念

- 完成一个活动的方法很多,其中总有一个是费用 最低的,称与之相应的活动持续时间为活动的正 常时间
- 采取一些措施可以缩短持续时间,但一般是要增加费用的,而且持续时间在一定条件下也只能缩短到一定限度,这个缩短的极限时间称为活动的最短时间
- 直接费率:活动持续时间缩短一个单位时间而增加的直接费用
 - 直接费率=(最短时间的直接费用-正常时间的直接费用)/(正常时间-最短时间)
 - 组合直接费率
- 直接费率:项目工期缩短一个时间单位而减少的 间接费用

To the

(二) 费用优化步骤

- 第一步: 准备基本数据
- (1) 计算或明确项目各活动的直接费率及 项目的间接费率
- (2) 用标号法确定项目关键线路和工期
- (3) 计算正常时间下的项目总费用
- 第二步:按下表调整直至项目总费用不可再 降低为止

●第一步: 准备基本数据 直接费率 P₁₂=(2.0-1.5)/(6-4)=0.25千元/天 同理得其他活动的直接费率,见网络图(大于间接费率的直接费率可以不标) 同接费率: 0.12千元/天 关键线路见网络图, 工期为96天 正常时间下项目总费用=总直接费用+总间接费用=(1.5+9.0+5.0+4.0+12.0+8.5+9.5+4.5)+0.12*96=65.52千元

被缩短活 动名称	(组合) 直接费率	费率差	缩短时间	费用变化	总费用	工期
4-6	0.057	-0.063	12	-0.756	64.764	84
1-3	0.100 -0.020 6 -0.120		-0.120	64.646	78	
	6(4)	(1),6]		(3),66]		\
[0] (1	6(4)	\bigcirc		0.05	\mathcal{L}	\

○ 上期优化 使计算工期符合要求工期 压缩关键活动 资源优化 使资源均衡或使资源在限量内 调整活动(尤其是非关键活动)的开始结束时间或者活动之间的逻辑关系 费用优化 使费用最低(没考虑资源不均衡的浪费或超出资源限量的问题) 压缩关键活动 组合使用,一种可能的组合方式 先工期优化,再费用优化,再资源优化(可先解决超出资源限量的问题,再解决资源均衡的问题)

(四) 利用线性规划模型进行优化

• 设活动(i,j)的时间-费用是线性关系

● 问题1: 给定完工期T, 求最优方案

- 符号说明

• Z —总(直接)费用

• t_{ii}—活动(i, j)的延续时间;

• P_{ii}—活动(i, j)的直接费率;

• d_{ii}—活动(i, j)的最短持续时间;

• D_{ii}—活动(i, j)的正常持续时间;

• Z_{Dii}—活动(i, j)的正常费用;

• T_i — 节点的发生时间, i=1,2,...,n。

• T—项目完工期

- 优化目标: Z ---总(直接)费用

- 决策变量: t_{ij}, T_i

则活动(i,j)的加快时间为 $(D_{ij}-t_{ij})$; 活动(i,j)的追加费用 $P_{ij}(D_{ij}-t_{ij})$; 项目的正常费用 $Z_D=\sum Z_{Dij}$; 项目的追加费用 $\Delta Z=\sum P_{ij}(D_{ij}-t_{ij})$; 故项目的总(直接)费用为:

$$Z = Z_D + \sum_{(i,j)} P_{ij} (D_{ij} - t_{ij})$$

使项目的总(直接)费用最小,即

$$MinZ = Z_D + \sum_{(i,j)} P_{ij} (D_{ij} - t_{ij})$$

考虑约束条件,对任意活动(i,j),应有

$$d_{ij} \le t_{ij} \le D_{ij}$$

$$T_1 = 0$$

$$T_j - T_i \ge t_{ij}$$

$$T_n \le T$$

费用优化的线性模型可表述为

$$MinZ = Z_D + \sum_{(i,j)} P_{ij}(D_{ij} - t_{ij})$$
 $s.t.$ $d_{ij} \leq t_{ij} \leq D_{ij}$ 对所有实活动 $T_1 = 0$ $T_j - T_i \geq t_{ij}$ 对所有活动,包括虚活动 $T_n \leq T$ $t_{ij}, T_j \geq 0$ 对所有活动和节点 最优解: Z^* , $t_{ij}^{\;*}, T_j^{\;*}$

• 问题2: 不给定完工期, 求最优方案

$$MinF =$$
 间接费用+ $[Z_D + \sum_{(i,j)} P_{ij}(D_{ij} - t_{ij})]$ $s.t.$ $d_{ij} \leq t_{ij} \leq D_{ij}$ 对所有实活动 $T_1 = 0$ $T_j - T_i \geq t_{ij}$ 对所有活动,包括虚活动 $t_{ij}, T_j \geq 0$ 对所有活动和节点 最优解: F^* , $t_{ij}^*, T_j^*(T^* = T_{ij}^*)$

• **习题** 正常情况下,总间接费用18000元,项目完工期 每缩短一天<u>间接费用</u>节省 330 元,最低成本日程?

	活 动 时间 代号	正常工时 (天)	正常费用 (元)	特急工时 (天)	特急費用 (元)	成本斜率 (元/天)
ŀ	t₁ ①→②	24	5000	16	7000	250
ı	t₂ ①→③	30	9000	18	10200	100
1	t₃ ②→④	22	4000	18	4800	200
l	t4 ③→④	26	10000	24	10300	150
l	ts ③→⑤	24	8000	20	9000	250
	t ₆ ④→⑥	18	5400			_
	t7 ⑤→⑥	18	6400	10	6800	50
	总计	正常完工 期 74	47800			

用 Excel 计算结果

• 给定工期资源均衡的规划问题

- 规划模型
 - 优化目标

Min
$$\sigma^2 = \frac{1}{T} \sum_{t=1}^{T} (Q_t - Q_m)^2 = (\frac{1}{T} \sum_{t=1}^{T} Q_t^2) - Q_m^2$$

- 约束条件
 - 最早开工时间≤活动的开工时间≤最晚开工时间 活动的完工时间<紧后开工的最小值(等价于活动的开工时 同≤紧前完工的最大值) 活动的开工时间≥0,整数
- 求解

- 观察法求满意解

启发式方法求满意解

3