ALGEBRA 1B, Lista 13

Niech R i S będą pierścieniami przemiennymi z 1.

1. Dla każdej liczby pierwszej p, utożsamiamy $\mathbb{Z}_{(p)}$ z podpierścieniem \mathbb{Q} . Udowodnić, że:

$$\bigcap_{p\in\mathbb{P}}\mathbb{Z}_{(p)}=\mathbb{Z}.$$

- 2. Załóżmy, że R jest UFD i niech $f,g\in R[X]$. Udowodnić, że jeśli $\mathrm{cont}(f)=1=\mathrm{cont}(g),$ to $\mathrm{cont}(fg)=1.$
- 3. Udowodnić, że wielomian $X^{p-1}+X^{p-2}+\cdots+X+1\in\mathbb{Q}[X]$ jest nierozkładalny, gdzie p jest liczbą pierwszą.
- 4. Znaleźć NWD i NWW dla:
 - (a) $X^4 X$, $X^6 X \le \mathbb{C}[X]$,
 - (b) $X^4 X$, $X^6 X \le \mathbb{C}[X]$,
 - (c) 4-2i, $13+i \le \mathbb{Z}[i]$,
 - (d) 13, $12 + 5i \le \mathbb{Z}[i]$,
- 5. Udowodnić, że następujące warunki są równoważne:
 - (a) Istnieją R_1, R_2 niezerowe pierścienie z 1 takie, że $R \cong R_1 \times R_2$.
 - (b) Istnieją $u_1, u_2 \in R \setminus \{0\}$ takie, że $u_1 + u_2 = 1, u_1^2 = u_1, u_2^2 = u_2$.
 - (c) Istnieje $u \in R \setminus \{0,1\}$, który jest *idempotentem*, to znaczy $u^2 = u$.
- 6. Udowodnić, że $(R \times S)^* = R^* \times S^*$ (równość podzbiorów $R \times S$).
- 7. Niech $n \in \mathbb{N}$ oraz $n = p_1^{\alpha_1} \dots p_k^{\alpha_k}$, gdzie $\alpha_i \in \mathbb{N}$ i p_1, \dots, p_k są liczbami pierwszymi, które są parami różne. Udowodnić, że:
 - (a) Dla $\alpha \in \mathbb{N}$ i p pierwszej mamy $|\mathbb{Z}_{p^{\alpha}}^*| = p^{\alpha} p^{\alpha-1}$,
 - (b) $|\mathbb{Z}_n^*| = (p_1^{\alpha_1} p_1^{\alpha_1 1}) \cdot \dots \cdot (p_k^{\alpha_k} p_k^{\alpha_k 1}).$
- 8. Udowodnić, że

$$\mathbb{Q}[X,Y]/(XY) \ncong \mathbb{Q}[X,Y]/(X) \times \mathbb{Q}[X,Y]/(Y).$$