Primo parziale

- Multiple Choice: Select the correct answer from the list of choices.
 - (a) [5 points] True or False: Using the kernel trick, we can get non-linear decision boundaries using algorithms designed originally for linear models. O True O False
 - (b) [5 points] True or False: A zero-mean Gaussian Prior (i.e. $p(\mathbf{w}) = \mathcal{N}(0, \sigma I)$) on model parameters in a MAP estimate corresponds to adding an L2 regularization term (e.g. ||w||₂) to the loss in an MLE O False
 - (c) [5 points] True or False: In the Primal Form of the SVM, increasing hyperparameter C will decrease the complexity of the resulting classifier. O True O False
 - (d) [5 points] True or False: The Maximum a Priori and Maximum likelihood solution for linear regression are always equivalent. O True O False
 - (e) [5 points] If a hard-margin support vector machine tries to minimize $||\mathbf{w}||_2$ subject to $y_n(\mathbf{w}^T\mathbf{x}_n + b) \ge 2$, what will be the size of the margin?
 - $\bigcirc \frac{1}{||\mathbf{w}||} \bigcirc \frac{2}{||\mathbf{w}||} \bigcirc \frac{1}{2||\mathbf{w}||} \bigcirc \frac{1}{4||\mathbf{w}||}$
 - (f) [5 points] The posterior distribution of B given A is:
 - $\bigcirc P(B \mid A) = \frac{P(A|B)P(A)}{P(B)}$

 - $\bigcirc P(B \mid A) = \frac{P(A,B)P(B)}{P(A)}$ $\bigcirc P(B \mid A) = \frac{P(A|B)P(B)}{P(A)}$ $\bigcirc P(B \mid A) = \frac{P(A|B)P(B)}{P(A,B)}$
 - (g) [5 points] Let w* be the solution obtained using unregularized least-squares regression. What solution will you obtain is you scale all input features by a factor of c before solving?
 - $\bigcirc c\mathbf{w}^* \bigcirc c^2\mathbf{w}^* \bigcirc \frac{1}{c^2}\mathbf{w}^* \bigcirc \frac{1}{c}\mathbf{w}^*$

Total Question 1: 35

- a) Kernel trick, potrebbe essere vera [da specificare meglio anche se si intende non lineare nell'input space oppure nello spazio creato].
 - Prof: Vero, "that's the point of doing the kernel trick". Quale è un altro modo per ottenere "non linear decision boundaries using linear algorithms?" Si può fare con qualunque non linear basis mapping [explicit embedding], come ad esempio utilizzando un mapping polinomiale. Il kernel trick fa questo implicitamente, utilizzando la Gram Matrix.
- b) MAP [bayesian regression] vs MLE, dovrebbe essere vera. Differenze L1 e L2 nel caso della scelta dei pesi [sparse pesi che vuol
 - Prof: Vero. Vedi dimostrazione fatta in classe.
- c) Falsa, quasi sicuro: aumentando C si porta il nostro modello ad aumentare la complessità perché si dà più peso ad ogni singola slack variable. Lezione 8 slide 26
 - Prof: Falso, nella formulazione SVM la regolarizzazione è sugli errori di classificazione slack, quindi l'iperparametro C. Se aumentiamo $\mathcal C$ diciamo al modello di non preoccuparsi troppo del termine quadratico, ma di stare molto attento ai termini di slack.

$$\min_{\mathbf{w},b} \quad \frac{1}{2} ||\mathbf{w}||^2 + C \sum_{n=1}^{N} \xi_n$$

subject to
$$y_n(\langle \mathbf{w}, \mathbf{x}_n \rangle + b) \ge 1 - \xi_n$$
 for all $n = 1, ..., N$

- d) MAP vs MLE, dovrebbe essere falsa perché non è vera sempre, in alcune condizioni è vero [vedi domanda b]. Prof: Falso, MAP e MLE possono essere uguali se utilizziamo un regularizer L2, poniamo molta attenzione alla scelta del coefficiente di regolarizzazione along with the gaussian prior. Un facile modo per pensare a questo è il seguente: the MAP solution include il concetto di prior, il quale biasizza la soluzione per un specifico setting di model parameters. Ad esempio un gaussian prior a media nulla si ha bias della soluzione verso il vettore $\vec{0}$, che è la stessa cosa che fa la regolarizzazione L2.
- e) ||w||

~ O.

e)
$$\frac{2}{\|w\|}$$

- f) E' semplicemente la regola di Bayes, quindi: $P(B|A) = \frac{P(A|B)P(B)}{P(A)}$
- g) Prof: $\frac{1}{c}w^*$. Se scaliamo l'input per un valore c, allora avremo $c\vec{x}$. A questo punto per riottenere lo stesso risultato poiché $w^T\vec{x}$, si ha che i pesi dovranno essere riscalati per il termine $\frac{1}{c}$.

Idea nostra:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathsf{T}} \phi(\mathbf{w})\}^2$$

$$E = \frac{1}{2} \sum \{t_{n} - c_{w} x^{2}\}$$

$$= \frac{1}{2} \sum \{t_{n} - c_{w} + w_{1} x^{2}\}^{2}$$

$$= \frac{1}{2} \sum \{t_{n} - c_{w} + w_{1} x^{2}\}^{2}$$

$$= \frac{1}{2} \sum \{t_{n} - c_{w} + w_{1} x^{2}\}^{2}$$

$$\nabla_{W} E = \begin{bmatrix} \frac{1}{2} \sum \left\{ t_{n} - c \left(w_{0} + w_{1} \times \right) \right\}^{2} \\ \frac{1}{2} \sum \left\{ t_{n} - c \left(w_{0} + w_{1} \times \right) \right\}^{2} \end{bmatrix}$$

$$= \begin{bmatrix} e_{i} \\ \sum \left(t_{n} - c \left(w_{0} + w_{1} \times \right) \right) \cdot (c) \end{bmatrix}$$

$$= \begin{bmatrix} e_{i} \\ \sum \left(t_{n} - c \left(w_{0} + w_{1} \times \right) \right) \cdot (c) \end{bmatrix}$$

$$= \begin{bmatrix} e_{i} \\ \sum \left(t_{n} - c \left(w_{0} + w_{1} \times \right) \right) \cdot (c) \end{bmatrix}$$

$$= \begin{bmatrix} e_{i} \\ \sum \left(t_{n} - c \left(w_{0} + w_{1} \times \right) \right) \cdot (c) \end{bmatrix}$$

$$= \begin{bmatrix} e_{i} \\ \sum \left(t_{n} - c \left(w_{0} + w_{1} \times \right) \right) \cdot (c) \end{bmatrix}$$

$$= \begin{bmatrix} e_{i} \\ \sum \left(t_{n} - c \left(w_{0} + w_{1} \times \right) \right) \cdot (c) \end{bmatrix}$$

$$= \begin{bmatrix} e_{i} \\ \sum \left(t_{n} - c \left(w_{0} + w_{1} \times \right) \right) \cdot (c) \end{bmatrix}$$

$$= \begin{bmatrix} e_{i} \\ \sum \left(t_{n} - c \left(w_{0} + w_{1} \times \right) \right) \cdot (c) \end{bmatrix}$$

2.	. Multiple Answer Select ALL correct choices: there may be more than one correct choice, but there is always at least one correct choice.
	(a) [5 points] What are support vectors?
	\bigcirc The examples \mathbf{x}_n from the training set required to compute the decision function $f(\mathbf{x})$ in an
	SVM.
	○ The class means.
	The training samples farthest from the decision boundary.
	\bigcirc The training samples \mathbf{x}_n that are on the margin (i.e. $y_n f(\mathbf{x}_n) = 1$).
	1
	(b) [5 points] Which of the following are true about the relationship between the MAP and MLE estimators
	for linear regression?
	○ They are equal if $p(\mathbf{w}) = 1$ ○ They are equal if $p(\mathbf{w}) = \mathcal{N}(0, \sigma)$ for very small σ .
	They are requal if $p(w) = \mathcal{N}(0, \delta)$ for very small δ .
	They are equal in the limit of infinite training samples.
	(c) [5 points] You train a linear classifier on 10,000 training points and discover that the training accuracy
	is only 67%. Which of the following, done in isolation, has a good chance of improving your training
	accuracy?
	Add novel features.
	○ Train on more data.○ Train on less data
	Regularize the model
(d)	[5 points] In a soft-margin support vector machine, if we increase C, which of the following are likely
u)	to happen?
	The margin will grow wider.
	Most nonzero slack variables will decrease.
	$\bigcirc \mathbf{w} _2$ will grow larger.
	There will be more points inside the margin.
(e)	[5 points] Which of the following are reasons why you might adjust your model in ways that increase
	the bias?
	 You observe high training error and high validation error.
	You have few data points.
	 You observe low training error and high validation error.
	 Your data are not linearly separable.
(f)	[5 points] Which of the following are true of polynomial regression (i.e. least squares regression with
	polynomial basis mapping)?
	If we increase the degree of polynomial, we increase variance.
	The regression function is nonlinear in the model parameters.
	The regression function is linear in the original input variables.
	If we increase the degree of polynomial, we decrease bias.
(g)	[5 points] Which of the following classifiers can be used on non linearly separable datasets?
	O The hard margin SVM.
	O Logistic regression.
	O The linear generative Bayes classifiers.
	○ Fisher's Linear Discriminant.

3. [15 points] Assume the class conditional distributions for a two-class classification problem are $p(\mathbf{x} \mid \mathcal{C}_1) = \mathcal{N}(\mu_1, \beta^{-1}I)$ and $p(\mathbf{x} \mid \mathcal{C}_2) = \mathcal{N}(\mu_2, \beta^{-1}I)$. Show that the optimal decision boundary is *linear*, i.e. that it can be written as $H = \{\mathbf{x} \mid \mathbf{w}^T\mathbf{x} + b = 0\}$ for some \mathbf{w} and b.

Hint: Remember that points x on the optimal decision boundary will satisfy $p(C_1 \mid \mathbf{x}) = p(C_2 \mid \mathbf{x})$, and that the formula for the multivariate Gaussian density is:

$$\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\}$$

Probabile soluzione

4. [15 points] Assume we have a training set of only two points (one from each class):

$$\mathcal{D} = \{([0,0],-1),([2,0],+1)\}$$

Solve for the optimal hard margin primal SVM parameters w and b for this dataset.

HM SVM:
$$\min_{W,b} \frac{1}{2} ||w||^2$$
can Vincoli $y_n (\langle w, x_n \rangle + b) \geq 1$

Poiché gli unici due punti che abbiamo sono support vectors, allora si ha che saranno sui [rispettivi] margini, quindi si può scrivere:

$$\forall n \left(\langle \overrightarrow{w}, \overrightarrow{x}_n \rangle + b \right) = 1$$

Mettiamo i punti che abbiamo:

$$-1 \left(\begin{bmatrix} w_0 & w_1 \end{bmatrix} \quad \begin{bmatrix} 0 \\ 0 \end{bmatrix} + b \right) = 1 \Rightarrow -1 \left(0 + b \right) = 1 \Rightarrow b = -1$$

• 1
$$\left(\begin{bmatrix} w_0 & w_1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} + b \right) = 1 \Rightarrow 2 w_0 + b = 1 \Rightarrow w_0 = 1$$

$$W^* = \begin{bmatrix} 1 & w_1 \end{bmatrix} \qquad b = -1$$

Dovendo minimizzare ||w|| e non avendo vincoli sulla scelta di w_1 si procede a porre $w_1=0$. Quindi:

$$W^* = \begin{bmatrix} 1 & 0 \end{bmatrix} \qquad b = -1$$

5. [10 points (bonus)] Write the primal SVM objective as an empirical risk minimization problem over a linearly separable dataset $\mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$. Show that any \mathbf{w} and b minimizing this empirical risk is also a solution to the standard hard-margin SVM objective with constraints.

Argomento collegato

Il problema di empirical risk minization:

min
$$\frac{1}{2} \| w \|^2 + C \sum_{n=1}^{N} \max \left\{ 0, 1 - y_n (\langle w, x_n \rangle + b) \right\}$$

Il problema di hard-margin SVM:

min
$$\frac{1}{2} \| w \|^2$$

 w, b
 $con \ Vindi \qquad y_h \left(\langle w, \times_h \rangle + b \right) > 1$

Poiché il dataset è linearmente separabile si ha che hard margin ammette una soluzione, in cui tutti i sample verrano classificati correttamente. Questo porta ad avere che $\forall (x_n, y_n)$ si ha $y_n (< w, x_n > +b) \ge 1$. Mettendo questa osservazione nel termine di hinge loss avremo che $\max\{0, 1-y_n (< w, x_n > +b)\}$ dove $1-y_n (< w, x_n > +b) \le 0$ e quindi tale termine di loss sarà zero. Quindi i w e b che saranno soluzione hard-margin saranno soluzione anche per empirical risk.

Secondo parziale

- Multiple Choice: Select the correct answer from the list of choices.
 - (a) [5 points] True or False: A K-nearest neighbor classifier is only able to learn linear discriminant func-○ True ➤ False
 - (b) [5 points] True or False: Projecting a dataset onto its first principal component maximizes the variance
 - (c) [5 points] True or False: The K-means algorithm is guaranteed to find the best cluster centers for any dataset. O True False
 - (d) [5 points] True or False: A Parzen kernel density estimator uses only the nearest sample in the dataset to estimate the probability of an input sample x. \bigcirc True \nearrow False
 - (e) [5 points] How many parameters will a Multilayer Perceptron (MLP) for binary classification with a single hidden layer of width 10 and an input dimensionality of 8 have?
 - \bigcirc 80 \bigcirc 99 \bigcirc 88 \swarrow None of the above \red
 - (f) [5 points] Which of the following loss functions is called the negative log likelihood?
 - $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} (\ln y_c \ln \hat{y}_c)^2$ $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} (y_c \ln \hat{y}_c)^2$ $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} y_c \ln \hat{y}_c$ $\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} \ln \hat{y}_c$
 - (g) [5 points] How many iterations of gradient descent must we perform for an epoch of minibatch Stochastic Gradient Descent with a dataset of 1024 samples and a batch size of 16?
 - \bigcirc 1024 \bigcirc 1 \bigcirc 32 \bigotimes 64

Total Question 1: 35

1. Multiple Choice: Select the correct answer from the list of choices.
(a) [5 points] True or False: A K-nearest neighbor classifier is only able to learn linear discriminant functions. ○ True √ False
(b) [5 points] True or False: Projecting a dataset onto its first principal component maximizes the variance of the projected data. √ True ○ False
(c) [5 points] True or False: The K-means algorithm is guaranteed to find the best cluster centers for any dataset. ○ True √ False
(d) [5 points] True or False: A Parzen kernel density estimator uses only the nearest sample in the dataset to estimate the probability of an input sample x . \bigcirc True $$ False
 (e) [5 points] How many parameters will a Multilayer Perceptron (MLP) for binary classification with a single hidden layer of width 10 and an input dimensionality of 8 have? ○ 80 √ 99 ○ 88 ○ None of the above
(f) [5 points] Which of the following loss functions is called the negative log likelihood?
$\bigcirc \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} (\ln y_c - \ln \hat{y}_c)^2$
$\bigcirc \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} (y_c - \ln \hat{y}_c)^2$
$\sqrt{\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}})} = -\sum_{c=1}^{C} y_c \ln \hat{y}_c$
$\bigcirc \mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}) = -\sum_{c=1}^{C} \ln \hat{y}_c$
(g) [5 points] How many iterations of gradient descent must we perform for an epoch of minibatch Stochastic Gradient Descent with a dataset of 1024 samples and a batch size of 16?
\bigcirc 1024 \bigcirc 1 \bigcirc 32 $\sqrt{64}$
Total Question 1: 35

(a)	[5 points] What are the advantages of projecting data onto $K < D$ principal components?
	We eliminate noise in the original representation.
	Classes are guaranteed to be linearly separable.
	O It is a nonlinear embedding that makes learning easy with simpler models. O It is a nonlinear embedding that makes learning easy with simpler models.
	Models trained on the reduced data are simpler.
(b)	[5 points] Which of the following are advantages of Ensemble Models (e.g. Committees)?
	They reduce the variance of the resulting model.
	They are much more efficient than the base model.
	They can reduce the expected error of the final model.
	The resulting model is nonlinear even if the base model is linear.
(c)	[5 points] Which of the following are causes of the vanishing gradients when training neural networks?
	Saturated inputs to activation functions with near-zero derivatives when saturated.
	Badly scaled input values.
	Very deep models.
	Bad random initialization of the network parameters.
(d)	[5 points] Which of the following are requirements for applying backpropagation to compute gradients
	in a deep network?
	○ The network must not be too deep.
	The network must be a directed acyclic graph.
	All activation functions must be differentiable.
	 All activation functions must be continuous.
(e)	[5 points] Which of the following are true of the Nadaraya-Watson estimator?
	It only requires some of the training data at test time.
	Tt is a nonparametric method.
	✓ It estimates a nonlinear function of the input.
	 It estimates a linear function of the input.
(f)	[5 points] What does the learning rate control in Stochastic Gradient Descent?
	The size of gradient steps made in each iteration.
	The degree of nonlinearity in the model.
	The regression function is linear in the original input variables.
	The speed at which the model learns.
(g)	[5 points] Which of the following models are nonparametric?
	○ The Multilayer Perceptron (MLP).
	O Logistic regression.
	The K-Nearest Neighbor Classifier
	O Decision Trees.

[5 points]	What are the advantages of projecting data onto $K < D$ principal components?
\checkmark	We eliminate noise in the original representation.
0	Classes are guaranteed to be linearly separable.
0	It is a nonlinear embedding that makes learning easy with simpler models.
\checkmark	Models trained on the reduced data are simpler.
[5 points]	Which of the following are advantages of Ensemble Models (e.g. Committees)?
\checkmark	They reduce the variance of the resulting model.
0	They are much more efficient than the base model.
\checkmark	They can reduce the expected error of the final model.
0	The resulting model is nonlinear even if the base model is linear.
[5 points]	Which of the following are causes of the vanishing gradients when training neural networks?
\checkmark	Saturated inputs to activation functions with near-zero derivatives when satu-
	rated.
0	Badly scaled input values.
-	Very deep models.
	Bad random initialization of the network parameters.
-	Which of the following are requirements for applying backpropagation to compute gradients
m a deep	
O	The network must not be too deep. The network must be a directed cayelia graph
	The network must be a directed acyclic graph.
_	All activation functions must be differentiable. All activation functions must be continuous.
	Which of the following are true of the Nadaraya-Watson estimator?
	It only requires some of the training data at test time. It is a nonparametric method.
* .	It estimates a nonlinear function of the input.
-	It estimates a linear function of the input.
	What does the learning rate control in Stochastic Gradient Descent?
	The size of gradient steps made in each iteration.
v	The degree of nonlinearity in the model.
0	The regression function is linear in the original input variables.
v	The speed at which the model learns.
	Which of the following models are nonparametric?
	The Multilayer Perceptron (MLP).
$\tilde{\circ}$	Logistic regression.
1/	The K-Nearest Neighbor Classifler
Ŏ	Decision Trees.
	5 points

Total Question 2: 35

3. [15 points] Show that the first principal component of dataset $\mathcal{D} = \{\mathbf{x}_n\}_{n=1}^N$ is an eigenvector of the data covariance matrix.

$$S = \frac{1}{N} \sum_{n=1}^{N} (\overrightarrow{x} - \overrightarrow{x}) (\overrightarrow{x} - \overrightarrow{x})^{T}$$

$$S = \frac{1}{N} \sum_{n=1}^{N} (\overrightarrow{x} - \overrightarrow{x}) (\overrightarrow{x} - \overrightarrow{x})^{T}$$

$$S = \frac{1}{N} \sum_{n=1}^{N} (\overrightarrow{x}_{1} \cdot \overrightarrow{x} - \overrightarrow{x}_{1} \cdot \overrightarrow{x})^{2}$$

$$N = 1$$

$$N = 1$$

devo massimizzare la Varianza nello spasio proiettato però devo vincolare n'i (lagrangiano)

$$S \vec{u}_1 - \sqrt{2}\vec{u}_1 = 0$$

$$S \vec{u}_1 = \sqrt{2}\vec{u}_1$$

$$J \text{ moltiplice per } \vec{u}_1^T$$

 $\vec{\lambda}_1^T \leq \hat{\lambda}_1 = \lambda_1$

4. [15 points] Show that a Multilayer Perceptron with two hidden layers with activation function $\sigma(x) = x$ is only capable of learning linear functions.

$$\gamma = f\left(\sigma(W_{2}(W_{1}\times))\right)$$

$$\sigma(x) = x$$

$$\gamma = f\left(\sigma(W_{2}(W_{1}\times)) = y = f\left(W_{2}W_{1}\times\right)$$

$$x \to ax = y = f\left(W_{2}W_{1}(ax)\right) = a\left(W_{2}W_{1}x\right)$$

Solution: An MLP with two hidden layers computes the function:

$$\begin{split} f(\mathbf{x}) &= W_{\text{out}}\sigma(W_2\sigma(W_1\mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) + \mathbf{b}_{\text{out}} \\ &= W_{\text{out}}(W_2(W_1\mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2) + \mathbf{b}_{\text{out}} \text{ (since } \sigma \text{ is the identity function)} \\ &= (W_{\text{out}}W_2W_1)\mathbf{x} + [W_{\text{out}}W_2\mathbf{b}_1 + W_{\text{out}}\mathbf{b}_2 + \mathbf{b}_{\text{out}}], \end{split}$$

which is a linear (well, affine) function $f(\mathbf{x}) = W \otimes + \mathbf{b}$ for:

$$\begin{split} W &= W_{\text{out}}W_2W_1\\ \mathbf{b} &= W_{\text{out}}W_2\mathbf{b}_1 + W_{\text{out}}\mathbf{b}_2 + \mathbf{b}_{\text{out}}. \end{split}$$

5. [10 points (bonus)] Design a Deep Convolutional Neural Network (with at least three convolutional layers one or more pooling layers) to classify MNIST images (input size 28×28). Draw the network (or write pseudocode for its definition) and indicate how many parameters each layer has and the sizes of the intermediate feature maps.

