Name: Lam Chun Ting Jeff

ITSC: ctjlam SID: 12222973

Q1. Decision Tree

Summary Table

Classifier	Accuracy	Precision	Recall	F1	Training Time
Decision Tree	0.52	0.5	0.52	0.48	0.01106
Entropy, depth 5					
Decision Tree	0.53	0.52	0.53	0.52	0.05246
Entropy, depth 10					
Decision Tree	0.56	0.55	0.56	0.55	0.06496
Entropy, depth 15					
Decision Tree	0.59	0.58	0.59	0.58	0.06730
Entropy, depth 20					
Decision Tree	0.53	0.52	0.53	0.49	0.02451
Gini, depth 5					
Decision Tree	0.55	0.54	0.55	0.54	0.04212
Gini, depth 10					
Decision Tree	0.58	0.58	0.58	0.58	0.05089
Gini, depth 15					
Decision Tree	0.59	0.59	0.59	0.59	0.05395
Gini, depth 20					

We can see for both entropy and Gini computation, when depth increase, both training time and accuracy will increase, as more depth will implies more computation, and more details can be separated. For the difference between Gini and entropy, the training time at first entropy takes shorter time comparing to Gini, but later Gini computes faster than entropy. Entropy should takes longer time as the computation as entropy requires to compute split info while Gini will have one equation less than entropy. But we can see rather Gini is better than Entropy from the result that for all accuracy, precision, recall and F1, the value is a bit higher. In others words, the true-positive case has a more proportion to other cases in prediction result.

Name: Lam Chun Ting Jeff ITSC: ctjlam

SID: 12222973

Program Output

Entropy

Summary for de Training time:					Summary for de Training time:	0.052455902	2099609375	is .	
	precision		f1-score	support		precision	recall	f1-score	support
3	0.00	0.00	0.00	5		0.00	0.00	0.00	
					4	0.32	0.23	0.26	40
4	0.23	0.07	0.11	40	5	0.55	0.54	0.54	289
5	0.54	0.55	0.55	289	6	0.55	0.65	0.60	434
6	0.51	0.71	0.59	434		0.51	0.38	0.44	176
7	0.59	0.19	0.29	176	8	0.18	0.11	0.14	37
8	0.11	0.03	0.04	37	9	0.00	0.00	0.00	0
accuracy			0.52	981	accuracy			0.53	981
macro avg	0.33	0.26	0.26	981	macro avg	0.30	0.27	0.28	981
undebtod ave	0.50	0.52	0.48	981	weighted avg	0.52	0.53	0.52	981
weighted avg			========	=== :	=========				=== ==== 20)
Summary for d	ecision tree	Entropy	, depth =	=== :		ecision tre: 0.0673017	e (Entrop 501831054	y, depth = 7s	
	ecision tree	Entropy	, depth =	=== :	Summary for d	ecision tre	e (Entrop 501831054	y, depth =	=== 20) support
Summary for d	ecision tree: 0.06495714	Entropy	, depth =	=== : ==== 15)	Summary for d Training time	ecision tre : 0.0673017 precision	e (Entrop 501831054 recall 0.00	y, depth = 7s f1-score 0.00	support 5
Summary for d	ecision tree: 0.06495714 precision	e (Entropy 18762207s recall	f1-score	=== 15) support	Summary for d Training time	ecision tre : 0.0673017 precision 0.00 0.30	e (Entrop 501831054 recall 0.00 0.23	y, depth = 7s f1-score 0.00 0.26	support 5 40
Summary for d Training time	ecision tree: 0.06495714 precision 0.00 0.33	(Entropy 18762207s recall 0.00 0.20	f1-score 0.00 0.25	=== 15) support 5 40	Summary for d Training time	ecision tre : 0.0673017 precision 0.00 0.30 0.62	e (Entrop 501831054 recall 0.00 0.23 0.60	y, depth = 7s f1-score 0.00 0.26 0.61	support 5 40 289
Summary for d Training time 3 4 5	ecision tree: 0.06495714 precision 0.00 0.33 0.59	(Entropy 1187622075 recall 0.00 0.20 0.61	f1-score 0.00 0.25 0.60	=== : 15) support 5 40 289	Summary for d Training time 3 4 5 6	ecision tre : 0.0673017 precision 0.00 0.30 0.62 0.62	e (Entrop 501831054 recall 0.00 0.23 0.60 0.66	y, depth = 7s f1-score 0.00 0.26 0.61 0.64	support 5 40 289 434
Summary for d Training time 3 4 5 6	ecision tree: 0.06495714 precision 0.00 0.33 0.59 0.59	(Entropy 1187622075 recall 0.00 0.20 0.61 0.59	f1-score 0.00 0.25 0.60 0.59	=== = = = = = = = = = = = = = = = = =	Summary for d Training time 3 4 5 6	ecision tre : 0.0673017 precision 0.00 0.30 0.62 0.62 0.56	e (Entrop 501831054 recall 0.00 0.23 0.60 0.66	y, depth = 7s f1-score 0.00 0.26 0.61 0.64 0.55	support 5 40 289 434 176
Summary for d Training time 3 4 5 6 7	ecision tree: 0.06495714 precision 0.00 0.33 0.59 0.59 0.52	0.00 0.20 0.61 0.59	f1-score 0.00 0.25 0.60 0.59	=== 15) support 5 40 289 434 176	Summary for d Training time 3 4 5 6 7 8	0.00 0.30 0.62 0.56 0.34	e (Entrop 501831054 recall 0.00 0.23 0.60 0.66 0.54	y, depth = 7s f1-score 0.00 0.26 0.61 0.64 0.55 0.33	support 5 40 289 434 176 37
Summary for d Training time 3 4 5 6	ecision tree: 0.06495714 precision 0.00 0.33 0.59 0.59	(Entropy 1187622075 recall 0.00 0.20 0.61 0.59	f1-score 0.00 0.25 0.60 0.59	=== = = = = = = = = = = = = = = = = =	Summary for d Training time 3 4 5 6	ecision tre : 0.0673017 precision 0.00 0.30 0.62 0.62 0.56	e (Entrop 501831054 recall 0.00 0.23 0.60 0.66	y, depth = 7s f1-score 0.00 0.26 0.61 0.64 0.55 0.33	support 5 40 289 434 176
Summary for d Training time 3 4 5 6 7	ecision tree: 0.06495714 precision 0.00 0.33 0.59 0.59 0.52	0.00 0.20 0.61 0.59	f1-score 0.00 0.25 0.60 0.59	=== 15) support 5 40 289 434 176	Summary for d Training time 3 4 5 6 7 8	0.00 0.30 0.62 0.56 0.34	e (Entrop 501831054 recall 0.00 0.23 0.60 0.66 0.54	y, depth = 7s f1-score 0.00 0.26 0.61 0.64 0.55 0.33	support 5 40 289 434 176 37
Summary for d Training time 3 4 5 6 7 8	ecision tree: 0.06495714 precision 0.00 0.33 0.59 0.59 0.52	0.00 0.20 0.61 0.59	f1-score 0.00 0.25 0.60 0.59 0.54 0.29	support 5 40 289 434 176 37	Summary for d Training time 3 4 5 6 7 8	0.00 0.30 0.62 0.56 0.34	e (Entrop 501831054 recall 0.00 0.23 0.60 0.66 0.54	y, depth = 75 f1-score 0.00 0.26 0.61 0.64 0.55 0.33 0.00	5 40 289 434 176 37

		ecision tree				Summary for de				
iraining	time	: 0.02450513		f1-score		Training time:				
		precision	recall	T1-Score	support		precision	recall	f1-score	support
	3	0.00	0.00	0.00	5	3	0.00	0.00	0.00	
	4	0.56	0.12	0.20	40	4	0.44	0.28	0.34	46
	5	0.55	0.56	0.55	289	5	0.61	0.57	0.59	289
	6	0.51	0.72	0.60	434	6	0.56	0.64	0.60	434
	7	0.59	0.22	0.32	176	7	0.48	0.47	0.47	176
	8	0.00	0.00	0.00	37	8	0.33	0.08	0.13	37
accui	racy			0.53	981	accuracy			0.55	981
macro	avg	0.37	0.27	0.28	981	macro avg	0.40	0.34	0.35	981
			0 53	0 40	0.01		0 54	0 -	0 5 4	001
weighted	avg =====	0.52	0.53 =======	0.49 ====================================	981 ===	weighted avg	0.54 ========	0.55 =========	0.54	98: ====
======= ======= Summary	for c	======================================	====== ======= 2 (gini, 335693359	======== =============================	===	Summary for d	======================================	======= ======= e (gini, c	======================================	
======= ======= Summary	for c	======== =============================	====== ======= 2 (gini, 335693359	======== =============================	===	Summary for d	ecision tre	======= ======= e (gini, c	======================================	981 ==== ==== support
======= ======= Summary	for c	======================================	gini, 335693359 recall	======================================	===	Summary for d	======================================	======= e (gini, c 7980041504 recall	======================================	support
======= ======= Summary	for c	decision tree: 0.05089378	gini, 335693359 recall	======================================	=== ==== support 5	Summary for d Training time	ecision tre : 0.0539457 precision 0.00 0.37	======= e (gini, c 7980041504 recall 0.00 0.33	depth = 20) depth = 20) depth = 20) depth = 20) depth = 20)	support
======= ======= Summary	for c	decision tree: 0.05089374 precision 0.00 0.37	e (gini, 335693359 recall 0.00	depth = 15) 4s f1-score 0.00 0.35	=== ==== support 5 40	Summary for d Training time	ecision tre : 0.0539457 precision 0.00 0.37 0.62	e (gini, c 7980041504 recall 0.00 0.33 0.60	depth = 20) s f1-score 0.00 0.35 0.61	support
======= ======= Summary	for c time	e======== decision tree :: 0.05089374 precision 0.00 0.37 0.60	(gini, 335693359 recall 0.00 0.33 0.60	depth = 15) 4s f1-score 0.00 0.35 0.60	=== support 5 40 289	Summary for d Training time	ecision tre : 0.0539457 precision 0.00 0.37 0.62 0.61	e (gini, c 7980041504 recall 0.00 0.33 0.60 0.65	depth = 20) is f1-score 0.00 0.35 0.61 0.63	support 5 46 289
======= ======= Summary	for c time	e=====================================	e (gini, 335693359 recall 0.00 0.33 0.60 0.65	======================================	support 5 40 289	Summary for d Training time	ecision tre : 0.0539457 precision 0.00 0.37 0.62 0.61 0.57	e (gini, c 7980041504 recall 0.00 0.33 0.60 0.65	0.00 0.35 0.61 0.63 0.57	support 5 46 289 434
======= ======= Summary	===== for c time 3 4 5 6 7	ecision tree: 0.05089370 precision 0.00 0.37 0.60 0.63 0.55	e (gini, 335693359 recall 0.00 0.33 0.60 0.65	======================================	support 5 40 289 434	Summary for d Training time 3 4 5 6 7 8	ecision tre : 0.0539457 precision 0.00 0.37 0.62 0.61 0.57	e (gini, c 7980041504 recall 0.00 0.33 0.60 0.65 0.57 0.30	depth = 20) ls f1-score 0.00 0.35 0.61 0.63 0.57 0.32	support 5 46 289 434 176
======= ======= Summary	for c time	e=====================================	e (gini, 335693359 recall 0.00 0.33 0.60 0.65	======================================	support 5 40 289	Summary for d Training time 3 4 5 6 7	ecision tre : 0.0539457 precision 0.00 0.37 0.62 0.61 0.57	e (gini, c 7980041504 recall 0.00 0.33 0.60 0.65	0.00 0.35 0.61 0.63 0.57	support 5 46 289 434
======= ======= Summary	3 4 5 6 7	ecision tree: 0.05089370 precision 0.00 0.37 0.60 0.63 0.55	e (gini, 335693359 recall 0.00 0.33 0.60 0.65	======================================	support 5 40 289 434	Summary for d Training time 3 4 5 6 7 8	ecision tre : 0.0539457 precision 0.00 0.37 0.62 0.61 0.57	e (gini, c 7980041504 recall 0.00 0.33 0.60 0.65 0.57 0.30	depth = 20) Is f1-score 0.00 0.35 0.61 0.63 0.57 0.32 0.00	support 5 46 289 434 176
======= ======== Summary Training	===== for c time 3 4 5 6 7 8	ecision tree: 0.05089370 precision 0.00 0.37 0.60 0.63 0.55	e (gini, 335693359 recall 0.00 0.33 0.60 0.65	======================================	support 5 40 289 434 176	Summary for d Training time 3 4 5 6 7 8 9	ecision tre : 0.0539457 precision 0.00 0.37 0.62 0.61 0.57	e (gini, c 7980041504 recall 0.00 0.33 0.60 0.65 0.57 0.30	depth = 20) ls f1-score 0.00 0.35 0.61 0.63 0.57 0.32	support 5 46 289 434 176

Name: Lam Chun Ting Jeff

ITSC: ctjlam SID: 12222973

Classifier	Accuracy	Precision	Recall	F1	Training Time
KNN	0.48	0.48	0.48	0.48	0.01068
# Neighbors 3					
KNN	0.49	0.47	0.49	0.47	0.01031
# Neighbors 5					
KNN	0.49	0.47	0.49	0.47	0.00941
# Neighbors 7					
Random Forest	0.66	0.66	0.66	0.64	0.08291
# Estimator=10					
Random Forest	0.66	0.66	0.66	0.65	0.30515
# Estimator=50					
Random Forest	0.65	0.67	0.65	0.63	0.56236
# Estimator=100					

Generally, training time in Random Forest is much higher than KNN. The major reasons as Random Forests will generate lots of classifier and helps to better generalize the problem. And therefore, the accuracy is much higher than KNN, in which KNN is a simple and straight forward classifier.

For KNN, we can see that although accuracy will increase when number of neighbors increase from 3 to 5, while stay the same at 7, the true positive among with false positive, is smaller than false negative, which precision is smaller than recall.

For random forest, in this case we choose sklearn default value for number of estimators, 10 before 0.22 version, and 100 after 0.22 version, and a middle value 50. We can actually see 10 to 50, F1 score increases, in other words, true positive cases have larger proportion, which means the real accuracy increases. As we cannot see an actual growth in accuracy in 10 to 50, then for random forest 100, it is believed that it has been over-generalize. Therefore, no reference value for the cases. In short, increase in number of estimators will increase in accuracy, and training time.

KNN

	(NN (# Neighb : 0.01068401		9s		Summary for KNN Training time:		Summary for KNN (# Neighbours=7) Training time: 0.009410858154296875s							
	precision	recall	f1-score	support		precision	recall	f1-score	support		precision		f1-score	suppor
	0.00	0.00	0.00			0.00	0.00	0.00			0.00	0.00	0.00	
	0.23	0.20	0.21	40		0.19	0.07	0.11	40		0.29	0.15	0.20	
	0.46	0.54	0.50	289		0.46	0.54	0.50	289		0.46	0.51	0.48	
6	0.54	0.56	0.55	434	6	0.53	0.59	0.56	434		0.52	0.62	0.56	4
	0.47	0.38	0.42	176		0.47	0.34	0.39	176		0.45	0.32	0.37	1
	0.38	0.08	0.13			0.22	0.05	0.09			0.20	0.03	0.05	
accuracy			0.48	981	accuracy			0.49	981	accuracy			0.49	9
macro ave	0.35	0.29	0.30	981	macro avg	0.31	0.27	0.27	981	macro avg	0.32	0.27	0.28	9
ighted avg	0.48	0.48	0.48	981	weighted avg	0.47	0.49	0.47	981	weighted avg	0.47	0.49	0.47	9

Random Forest

	aindom Fores : 0.08291196				Summary for R Training time			Summary for Raindom Forest (# Estimator=100) Training time: 0.5623600482940674s						
	precision	recall	f1-score	support		precision	recall	f1-score	support		precision	recall	f1-score	suppor
	0.00	0.00	0.00			0.00	0.00	0.00		3	0.00	0.00	0.00	
	0.73	0.20	0.31	40		0.62	0.12	0.21	40		0.83	0.12	0.22	
	0.64	0.70	0.67	289		0.70	0.67	0.69	289		0.67	0.65	0.66	21
6	0.65	0.76	0.70	434		0.64	0.79	0.71	434	6	0.62	0.80	0.70	
	0.71	0.53	0.61	176		0.65	0.55	0.60	176		0.69	0.51	0.59	
	0.73	0.30	0.42			0.79	0.30	0.43			0.91	0.27	0.42	
accuracy			0.66	981	accuracy			0.66	981	accuracy			0.65	9
macro avg	0.58	0.41	0.45	981	macro avg	0.57	0.41	0.44	981	macro avg	0.62	0.39	0.43	9
ighted avg	0.66	0.66	0.64	981	weighted avg	0.66	0.66	0.65	981	weighted avg	0.67	0.65	0.63	9

Name: Lam Chun Ting Jeff

ITSC: ctjlam SID: 12222973

Q2.

```
==== Classifier 1 =======
Aplhas: 1.7380493449176364
Weak Classifier - x > v (where v = [1.5]) then y = -1 else y = 1
       ====== Classifier 2 ========
Aplhas: 2.6663593966326844
Weak Classifier - x > v (where v = [0.5]) then y = 1 else y = 1
====== Classifier 3 =======
Aplhas: 2.5652451279522674
Weak Classifier - x > v (where v = [8.5]) then y = 1 else y = -1
  _____
  ====== Classifier 4 ========
Aplhas: 2.6179223685983244
Weak Classifier - x > v (where v = [6.5]) then y = -1 else y = 1
      -----
Aplhas: 3.7439507138604458
Weak Classifier - x > v (where v = [4.5]) then y = 1 else y = -1
______
Prediction: [ 1. 1. -1. -1. -1. 1. 1. -1. -1. 1.]
Accuracy: 1.0
```

Note: result may various during runtime because it purely depends on how the training data randomly sampled, which follow the instruction in lecture slide. There is commented code to get static training set for training such that the result will be much constant (but it will violate the lecture instruction. However it can get a static minimal number of classifier for classification)

```
C^*(x) = sign[1.738*C1 + 2.666*C2 + 2.565*C3 + 2.6179*C4 + 3.744*C5]
```

Where

C1: x>1.5, then y = -1, else y = 1 C2: x>0.5, then y = 1, else y = 1 C3: x>8.5, then y = 1, else y = -1 C4: x>6.5, then y = -1, else y = 1 C5: x>4.5, then y = 1, else y = 1