Geometry and Topology

Solve every problem.

Problem 1.

- (a) Show that P^{2n} can not be the boundary of a compact manifold.
- (b) Show that P^3 is the boundary of some compact manifold.

Solution:

(a) Suppose M is a compact manifold and ∂M is its boundary. We can glue together two copies of M, say M_1, M_2 , to get a closed manifold \widetilde{M} . From the Mayer-Vietoris long exact sequence for the triad $(\widetilde{M}; M_1, M_2)$, we have the identity

$$\chi(\widetilde{M}) = 2\chi(M) - \chi(\partial M),$$

where χ is the Euler characteristic. If the dimension of ∂M is even, then the dimension of M is odd, and so is the dimension of \widetilde{M} . By Poincate duality, $\chi(\widetilde{M}) = 0$. So $\chi(\partial M)$ has to be an even number. However, $\mathbf{RP^{2n}}$ has odd Euler characteristic. Thus $\mathbf{RP^{2n}}$ can not be the boundary of a compact manifold.

(b) Since \mathbb{RP}^3 is diffeomorphic to SO(3), it is actually the circle bundle on S^2 in the tangent bundle of S^2 . Thus \mathbb{RP}^3 is the boundary of the disk bundle of S^2 in the tangent bundle of S^2 .

Problem 2. Suppose M is a noncompact, complete n-dimensional manifold, and suppose there is an open subset $U \subset M$ and an open set $V \subset \mathbf{R}^{\mathbf{n}}$ such that $M \setminus U$ is isomorphic to $\mathbf{R}^{\mathbf{n}} \setminus V$. If $\mathrm{Ric}M \geq 0$, show that M is isometric to $\mathbf{R}^{\mathbf{n}}$.

Solution: Without loss of generality, we may assume $V = B_R(0)$ for some R > 0. Let $p \in M$ be a point. If $\text{Ric}M \ge 0$, by the Bishop-Gromov inequality, we know $\frac{\text{Vol}(B_r(p))}{\text{Vol}(B_r^n)}$ is non-increasing. Here, B_r^n is the standard Euclidean ball in

 $\mathbf{R}^{\mathbf{n}}$ with radius r. On one hand, as $r \to 0$, because M is a smooth manifold, we have $\lim_{r \to 0} \frac{\operatorname{Vol}(B_r(p))}{\operatorname{Vol}(B_r^n)} = 1$; one the other hand, when $r \to \infty$, because $M \setminus U$ is isomorphic to $\mathbf{R}^{\mathbf{n}} \setminus B_R(0)$, we also have $\lim_{r \to \infty} \frac{\operatorname{Vol}(B_r(p))}{\operatorname{Vol}(B_r^n)} = 1$. As a consequence, $\frac{\operatorname{Vol}(B_r(p))}{\operatorname{Vol}(B_r^n)}$ is a constant 1 for all r > 0. Then by the rigidity case of Bishop-Gromov theorem, M is isometric to $\mathbf{R}^{\mathbf{n}}$.

Remark: Some students may want to use the Cheeger-Gromoll splitting theorem to show $M \cong N \times \mathbf{R}$, then conclude that $M \cong \mathbf{R}^{\mathbf{n}}$. To my knowledge, it is actually hard to show that one can find a straight line in M. In fact, for a straight line in $\mathbf{R}^{\mathbf{n}} \setminus V$, its corresponding line in M may not be straight, because there could be a shorter path going through U

which connects two points on the line.

Problem 3. Compute all the homotopy groups of the *n*-torus $T^n = S^1 \times S^1 \times \cdots \times S^1$, $n \ge 2$.

Solution: In the following homotopy groups we always assume that we have fixed a base point.

Because T^n is connected, $\pi_0(T^n)$ is a trivial group.

 $\pi_1(T^n)$ is the fundamental group of T^n . Because the fundamental group of a product space is just the product of each fundamental group, and the fundamental group of S^1 is \mathbb{Z} , so $\pi_1(T^n) = \mathbb{Z}^n$.

The universal cover of T^n is $\mathbf{R^n}$, which is contractible. So for all $k \geq 2$, $\pi_k(T^n) \cong \pi_k(\mathbf{R^n}) = 0$, which is the trivial group.

Problem 4. Consider the upper half space $\mathbf{H}^3 = \{(x,y,z) \mid z > 0\}$ equipped with hyperbolic metric $g = \frac{dx^2 + dy^2 + dz^2}{z^2}$. Let P be the surface defined by $\{z = x \tan \alpha, z > 0\}$ for some $\alpha \in (0, \frac{\pi}{2})$. Compute the mean curvature of P.

Solution: We use ∂_x , ∂_y and ∂_z to denote the vector fields on \mathbf{H}^3 induced from \mathbf{R}^3 . Then we can compute the Christoffel symbols

$$\begin{cases} \Gamma_{zi}^{i} = -z^{-1} \\ \Gamma_{jj}^{z} = z^{-1}, \quad j \neq z \\ \Gamma_{ij}^{k} = 0, \quad \text{other cases.} \end{cases}$$

So the covariant derivatives are

$$\begin{cases} \nabla_{\partial_{x}} \partial_{x} = z^{-1} \partial_{z} \\ \nabla_{\partial_{y}} \partial_{y} = z^{-1} \partial_{z} \\ \nabla_{\partial_{z}} \partial_{z} = -z^{-1} \partial_{z} \\ \nabla_{\partial_{z}} \partial_{x} = \nabla_{\partial_{x}} \partial_{z} = -z^{-1} \partial_{x} \\ \nabla_{\partial_{z}} \partial_{y} = \nabla_{\partial_{y}} \partial_{z} = -z^{-1} \partial_{y} \\ \nabla_{\partial_{x}} \partial_{y} = \nabla_{\partial_{y}} \partial_{x} = 0 \end{cases}$$

Now consider the surface P parametrized by $F:(u,v)\to(u,v,u\tan\alpha)$. Then at any fixed point the tangent space is spanned by

$$F_u = \partial_x + \tan \alpha \partial_z, \ F_v = \partial_v,$$

with the metric

$$g_{uv} = z^{-2} \begin{pmatrix} 1 + \tan^2 \alpha & 0 \\ 0 & 1 \end{pmatrix}.$$

We can also find a unit normal vector

$$\mathbf{n} = \frac{z}{\sqrt{1 + \tan^2 \alpha}} (\tan \alpha \partial_x - \partial_z).$$

Next, we can compute that

$$\begin{split} \nabla_{F_u} F_u &= (1 - \tan^2 \alpha) z^{-1} \partial_z - 2 \tan \alpha z^{-1} \partial_x, \\ \nabla_{F_v} F_u &= -\tan \alpha z^{-1} \partial_y, \\ \nabla_{F_v} F_v &= z^{-1} \partial_z. \end{split}$$

Moreover.

$$\begin{split} \langle \nabla_{F_u} F_u, \mathbf{n} \rangle &= -\frac{1}{z^2 \sqrt{1 + \tan^2 \alpha}} (1 + \tan^2 \alpha), \\ \langle \nabla_{F_v} F_u, \mathbf{n} \rangle &= 0, \\ \langle \nabla_{F_v} F_v, \mathbf{n} \rangle &= -\frac{1}{z^2 \sqrt{1 + \tan^2 \alpha}}. \end{split}$$

So the mean curvature is

$$H = -g^{ij} \langle \nabla_{F_i} F_j, \mathbf{n} \rangle = \frac{2}{\sqrt{1 + \tan^2 \alpha}} = 2 \cos \alpha.$$

Remark: There are different conventions for the definition of mean curvature, so the final answer could be $\cos \alpha$, $-2\cos \alpha$, $or -\cos \alpha$, depending on the choice of definitions.

Problem 5. Suppose M is a compact 2-dimensional Riemannian manifold without boundary, with positive sectional curvature. Show that any two compact closed geodesics on M must intersect with each other.

Solution: We prove by contradiction. Suppose there exist two compact closed geodesics γ_1 and γ_2 that do not intersect with each other. Then we can find $p \in \gamma_1$ and $q \in \gamma_2$ such that the distance between p,q is the shortest distance among all pairs of points on γ_1 and γ_2 . Let $\tilde{\gamma}: [a,b] \to M$ be a length parametrized geodesic connecting $\tilde{\gamma}(a) = p$ and $\tilde{\gamma}(b) = q$, whose length realizes this shortest distance. Let ℓ be the length functional of curves. By the first variational formula,

$$\delta \ell(\tilde{\gamma}) = 0.$$

Namely, if V is a normal variational vector field along $\tilde{\gamma}$, suppose $\tilde{\gamma}_s$ is a family of curves generating this variational vector field, then

$$0 = \frac{d\ell(\tilde{\gamma}_s)}{ds}\bigg|_{s=0} = -\left\langle V(a), \dot{\tilde{\gamma}}(a) \right\rangle + \left\langle V(b), \dot{\tilde{\gamma}}(b) \right\rangle.$$

As a consequence, we know that $\dot{\tilde{\gamma}}(a)$ is perpendicular to γ_1 at p and $\dot{\tilde{\gamma}}(b)$ is perpendicular to γ_2 at q.

Next we consider the second variational formula. Suppose X is a vector field along $\tilde{\gamma}$, where |X(a)| = 1 and X(a) is perpendicular to $\tilde{\gamma}(a)$, and X(t) is defined by parallel transport along $\tilde{\gamma}$ for $a < t \le b$. Suppose $\tilde{\gamma}_s$ is a family of curves that generate X, then

$$0 \leq \left. \frac{d^2\ell(\tilde{\gamma}_s)}{ds^2} \right|_{s=0} = \int_a^b -R(\dot{\tilde{\gamma}},X,X,\dot{\tilde{\gamma}})dt + \langle \nabla_{X(a)}X(a),\dot{\tilde{\gamma}}(a)\rangle - \langle \nabla_{X(b)}X(b),\dot{\tilde{\gamma}}(b)\rangle.$$

Notice that γ_1 and γ_2 are geodesics and X(a), X(b) are both unit vectors in the direction of γ_1 , γ_2 at p,q respectively, so $\nabla_{X(a)}X(a) = 0$ and $\nabla_{X(b)}X(b) = 0$, and as a consequence

$$0 \le \left. \frac{d^2 \ell(\tilde{\gamma}_s)}{ds^2} \right|_{s=0} = \int_a^b -R(\dot{\tilde{\gamma}}, X, X, \dot{\tilde{\gamma}}) dt = \int_a^b -\sec(\dot{\tilde{\gamma}}, X) dt < 0.$$

This is a contradiction.

Problem 6. Suppose Σ is a smooth compact embedded hypersurface (*i.e.* a codimension 1 submanifold) without boundary in \mathbb{R}^n for $n \geq 3$. Show that Σ is orientable.

Solution: We first claim that it suffices to show Σ has a trivial normal bundle in \mathbb{R}^n . In fact, the trivial bundle has the splitting $\mathbb{R}^n \times \Sigma = T\Sigma \oplus N\Sigma$, so the first Stiefel-Whitney class of the bundles satisfies

$$0 = w_1(T\Sigma) + w_1(N\Sigma).$$

If the line bundle of Σ is trivial, we must have $w_1(N\Sigma) = 0$, therefore $w_1(T\Sigma) = 0$. This is equivalent to Σ being orientable.

Thus it remains to show that Σ has a trivial normal bundle. We prove by contradiction. We can view the tubular neighbourhood \mathcal{T} of Σ as a part of $N\Sigma$. If Σ has a non-trivial normal bundle, then there exists a closed curve γ in \mathcal{T} that only intersects Σ at a single point transversely. Consider a smoothly embedded disk D bounded by γ that intersects Σ transversely. Then the intersection of D and Σ consists of finitely many smooth curves whose endpoints lie on the boundary $\partial D = \gamma$. This implies that γ intersects Σ at an even number of points, which is a contradiction.