SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

DIPLOMSKI RAD br. 680

Utvrđivanje mikrolokacije mobilnog uređaja u zatvorenom prostoru

Ivan Kraljević

Zagreb, svibanj 2014.

Hvala Kafki i njegovom "samo jednom pivu".

SADRŽAJ

1.	Uvod	1
2.	Tehnologija Bluetooth Low Energy	2
3.	Odašiljači iBeacon	5
4.	Utvrđivanje relativne i apsolutne lokacije u zatvorenom prostoru	12
5.	Radno okruženje Apache Cordova	15
6.	Praktični rad	18
7.	Zaključak	19
Li	teratura	20

1. Uvod

Danas najkorišteniji sustav za pozicioniranje, navigaciju i vremenske usluge je GPS (engl. *Global Positioning System*). U idealnim uvjetima preciznost određivanja lokacije GPS-a je oko deset metara, ali zbog toga što signali do uređaja dolaze od jako udaljenih satelita na nju utječe ogroman broj parametara, od atmosferskih uvjeta (npr. oblačno nebo) do metala u okolini uređaja (Schneider, 2013). Dodatno, u zatvorenim prostorima dolazni signal satelita dodatno remete zidovi kroz koje oni prolaze i ostale prepreke u okolini. Posljedično, korištenje GPS-a za pozicioniranje i navigaciju u zatvorenim prostorima je izrazito nepouzdano i nepraktično.

Iz gore navedenih razloga očita je potreba za sustavom koji će moći pouzdano odrediti lokaciju korisnika u zatvorenom prostoru. Ovaj problem se našao u središtu velikog broja znanstvenih istraživanja pri čemu se većina fokusira na određivanje lokacije na temelju signala bežične lokalne računalne veze (engl. *wireless local area network*, *WLAN*). Uvođenjem Bluetooth 4.0 specifikacije i tehnologije *Bluetooth Low Energy* dolazi do razvoja niza jeftinih uređaja male potrošnje koji se potencijalno mogu iskoristiti za rješavanje problema pozicioniranja i navigacije u zatvorenom prostoru.

U ovom diplomskom radu govoriti će se o tehnologiji Bluetooth, problemu određivanja lokacije u zatvorenom prostoru, rješenju temeljenom na Bluetooth Smart odašiljačima, odnosno tehnologiji iBeacon, te na kraju će se ponuditi smjernice za daljnji razvoj. U drugom dijelu rada prikazati će se kako se Bluetooth Smart odašiljači mogu primijeniti u mobilnim aplikacijama.

2. Tehnologija Bluetooth Low Energy

Tehnologija Bluetooth je standard bežične komunikacije koji se koristi za razmjenu podataka na maloj udaljenosti. Bluetooth je razvijen 1994. godine u Ericssonu, a 1998. godine Ericsson, IBM, Intel, Nokia i Toshiba osnivaju posebno nadležno tijelo, Bluetooth Special Interest Group (SIG). Uloga nadležnog tijela je unaprijeđenje standarda, ispravna implementacija i licenciranje Bluetooth tehnologije.

Glavne odlike Bluetooth tehnologije su niska cijena Bluetooth uređaja, niska potrošnja energije, niski domet, robusnost te korištenje na globalnoj razini. Bluetooth omogućava brzinu prijenosa reda veličine 1 Mbit/s te koristi nelicencirani frekvencijski pojas od 2.4 do 2.485 GHz, odnosno koristi ISM područje (engl. *industrial, scientific and medical*) koje je frekvencijski usklađeno na globalnoj razini. Uz to, Bluetooth nudi radijsku vezu prema drugim sustavima, uređaji različitih proizvođača su međusobno kompatibilni i dopuštena je komutacija paketa i kanala.

Sredinom 2010. godine Bluetooth SIG objavljuje Bluetooth 4.0 specifikaciju koja uključuje *Classic Bluetooth*, *Bluetooth high speed* i *Bluetooth low energy* protokole. *Bluetooth low energy* (u daljenjem tekstu BLE), poznat i pod nazivom *Bluetooth Smart*, je tehnologija koja je optimizirana tako da ima veoma nisku potrošnju energije. Uz izuzetno nisku potrošnju energije, glavne odlike tehnologije su mogućnost višegodišnjeg rada na malom izvoru energije (poput *button-cell* ili AAA baterije), mala veličina i niska cijena te kompatibilnost sa mobilnim uređajima, tabletima i računalima. Za ugradnju BLE tehnologije u uređaje Bluetooth 4.0 specifikacija uvodi dva načina

rada: *single-mode* i *dual-mode*. *Single-mode* način rada obuhvaća integraciju samo BLE funkcionalnosti na kontroler, dok *dual-mode* načina rada omogućava integraciju BLE funkcionalnost u standardni Bluetooth kontroler. Proizvođači uređaja imaju na raspolaganju te dvije opcije i pri tome je važno napomenuti da uređaji sa *single-mode* načinom rada ne mogu komunicirati sa uređajima koji koriste klasični Bluetooth protokol.

Danas se velika većina mobilnih uređaja proizvodi sa podrškom i za standardni Bluetooth i za BLE, tj. u uređaje se ugrađuje Bluetooth mikrokontroler sa *dual-mode* načinom rada. Mobilni operacijski sustavi koji trenutno podržavaju BLE su:

- Android 4.3 i noviji
- iOS 5 i noviji
- Windows Phone 8.1
- Blackberry 10

Bitno je napomenuti da BLE nije i ne pokušava biti optimizirana verzija *Bluetooth classic* tehnologije, već cilja na sasvim nove načine primjene. Predviđene primjene su u sportu, zdravstvu, trgovini, turizmu, mjerenju udaljenosti i druge.

Tehničke značajke

Bluetooth Low Energy tehnologija temelji se na profilima i Generic Attribute Profile (u daljnjem tekstu GATT) specifikaciji.

BLE profili su posebne specifikacije koje definiraju servise koji se koriste u određenim scenarijima. Od proizvođača konkretnih uređaja se očekuje da zadovolje određen profil kako bi se osigurala međusobna kompatibilnost između raznih uređaja (npr. ako uređaj koji prati krvni tlak osobe zadovoljava HRP profil svi uređaji mogu uniformno čitati njegove servise). Popularniji standardizirani profili su:

- HTP (Health Thermometer Profile) omogućava uređaju spajanje i interakciju sa termometrom
- GLP (Glucose Profile) omogućava uređaju spajanje i interakciju sa senzorom koji mjeri razinu glukoze u krvi osobe
- BLP (Blood Pressure Profile) omogućava uređaju spajanje i interakciju sa senzorom koji mjeri krvni tlak osobe
- HRP (Heart Rate Profile) omogućava uređaju spajanje i interakciju sa senzorom rada srca
- FMP (Find Me Profile) definira ponašanje gdje pritisak gumba na jednom uređaju šalje obavijest drugom uređaju
- PXP (*Proximity Profile*) omogućava praćenje udaljenosti između dva uređaja

– LNP (Location and Navigation Profile) - omogućava uređaju spajanje i interakciju sa senzorom navigacije

Ostali profili mogu se naći na službenim Bluetooth stranica¹. Svi BLE profili su definirani na temelju GATT specifikacije.

GATT specifikacija definira način na koji se šalju i primaju podaci kratke duljine (često zvani atributi) preko BLE veze. GATT koristi *Attribute* protokol (ATT) koji ima sličnu funkcionalnost kao SDP² protokol kod standardnog Bluetootha, samo što je optimiziran i pojednostavljen za korištenje u uređajima male potrošnje. GATT definira na koji način su ATT atributi grupirani tako da čine konkretne servise. Bitni koncepti kod GATT specifikacije su:

Klijent

Uređaj koji pokreće komunikaciju te šalje zahtjeve i prima odgovore (npr. mobilni uređaj ili računalo).

Server

Uređaj koji prima zahtjeve i šalje odgovore (npr. senzor temperature ili iBeacon odašiljač).

Servis

Kolekcija povezanih karakteristika koje zajedno čine nekakvu funkciju (npr. *Health Thermometer* servis uključuje karakteristike za vrijednost temperature, interval čitanja i mjernu jedinicu temperature). Svaki servis može imati proizvoljan broj karakteristika.

Karakteristika³

Vrijednost koja se izmjenjuje između klijenta i servera (npr. krvni tlak osobe ili trenutno stanje baterije). Svaka karakteristika može imati proizvoljan broj opisnika.

Opisnik⁴

Vrijednost koja pobliže opisuje neku karakteristiku (npr. minimalna i maksimalna vrijednost karakteristike ili mjerna jedinica karakteristike).

https://developer.bluetooth.org/gatt/profiles/

²Service discovery protocol, omogućava uređajima da međusobno saznaju koje servise podržavaju i koje parametre trebaju koristiti pri stvaranju podatkovne veze

³engl. *Characteristic*

⁴engl. *Descriptor*

3. Odašiljači iBeacon

Odašiljači iBeacon su jeftini uređaji, niske potrošnje energije koji korištenjem BLE tehnologije obavještavaju obližnje uređaje o svojoj prisutnosti. Obližnji uređaji (poput mobilnih uređaja i tableta) mogu se pretplatiti na notifikacije odašiljača te mogu primati razne sadržaje (poput teksta, slika ili URL adresa) od njih. Krajem 2013. godine iBeacon tehnologiju patentirala je američka multinacionalna korporacija Apple Inc.

Neki od zanimljivih načina primjene iBeacon tehnologije su u muzejima, trgovinama, bolnicama i ostalim ustanovama gdje se sadržaj mijenja ovisno o položaju u prostoriji. Posjetitelj muzeja može na mobilni uređaj ili tablet primiti sadržaj o objektu kojega trenutno promatra (npr. informacije o skulpturi ili slici), uz to, osoblje muzeja može pratiti koji su objekti najgledaniji i slično. U bolnici se može primijeniti tako da liječnik dobije sve podatke o pacijentu, od povijesti bolesti do trenutne dijagnoze, kada se približi njegovoj sobi ili krevetu. U trgovini se može iskoristiti tako da kupca obavijesti o predmetima na popustu u blizini. Također, iBeacon odašiljači mogu se iskoristiti i kao sustav beskontaktnog plaćanja na sličan način kako se i NFC¹ tehnologija koristi. Ovo su samo najjednostavniji i najopćenitiji slučajevi gdje se iBeacon tehnologija može ukomponirati, broj načina korištenja tehnologije je ogroman.

iBeacon se može konfigurirati tako da se sadržaj šalje samo kad se uređaj približi odašiljaču na određenu udaljenost. Pri tome su definirana tri parametra udaljenosti: neposredna (*immediate*), mala (*near*) i velika (*far*) udaljenost. Neposredna udaljenost je do nekoliko centimetara, mala do nekoliko metara, dok je velika udaljenost iznad deset metara. Ove vrijednosti su aproksimativne jer ovisno o stvarnim uvjetima u kojima su odašiljači postavljeni signal može dosta varirati pa precizne vrijednosti nisu upotrebljive.

¹Near field communication, bežična tehnologija jako kratkog dometa korištena za komunikaciju između dva krajnja uređaja

Pošto je iBeacon tehnologija relativno nova, detaljna specifikacija nije javno dostupna stoga su gotovo svi proizvođači iBeacon odašiljača reverznim inženjeringom otkrili značajan dio iBeacon Bluetooth profila.

Kada je Apple predstavio iBeacon tehnologiju objavili su aplikaciju AirLocate pomoću koje se iPhone ili iPad koji podržava BLE može ponašati kao iBeacon odašiljač. Također, pomoću iste aplikacije moguće je podesiti sve parametre odašiljača. Kombinacijom te aplikacije pokrenute na nekom iPhone ili iPad uređaju i uređaja koji može snimati Bluetooth Low Energy pakete (poput računala sa ugrađenim Texas Instruments CC2540 čipom) istraživači uključujući i (Young, 2013) su došli do strukture *advertising* paketa koja je prikazana u tablici 3.1.

Tablica 3.1: Struktura *advertising* paketa iBeacon odašiljača

Bajt	Vrijednost	Opis
1.	02	Duljina podataka - 2 bajta
2.	01	Tip podataka - zastavice
3.	X	LE i BR/ERD zastavice
4.	1A	Duljina podataka - 26 bajtova
5.	FF	Podaci o proizvođaču
6.	4C	Podaci o proizvođaču - Apple
7.	00	Podaci o proizvođaču - Apple
8.	02	Tip podataka
9.	15	Duljina podataka - 15 bajta
10.	X	Proximity UUID 1. bajt
11.	X	Proximity UUID 2. bajt
12.	X	Proximity UUID 3. bajt
13.	X	Proximity UUID 4. bajt
14.	X	Proximity UUID 5. bajt
15.	X	Proximity UUID 6. bajt
16.	X	Proximity UUID 7. bajt
17.	X	Proximity UUID 8. bajt
18.	X	Proximity UUID 9. bajt
19.	X	Proximity UUID 10. bajt
20.	X	Proximity UUID 11. bajt
21.	X	Proximity UUID 12. bajt
22.	X	Proximity UUID 13. bajt
23.	X	Proximity UUID 14. bajt
24.	X	Proximity UUID 15. bajt
25.	X	Proximity UUID 16. bajt
26.	X	Major value 1. bajt
27.	X	Major value 1. bajt
28.	X	Minor value 1. bajt
29.	X	Minor value 2. bajt
30.	X	RSSI na udaljenosti od 1m

X - vrijednosti ovise o postavkama konkretnog odašiljača

Izuzev trećeg bajta sa LE² i BR/ERD³ zastavicama prvih devet bajtova svakog paketa su jednaki kod svakog odašiljača. Nakon toga slijedi šesnaest bajtova koji čine *Proximity UUID*⁴ parametar, dva bajta koji čine *Major value* parametar, dva bajta koja čine *Minor value* parametar te posljednji, trideseti, bajt koji sadrži RSSI⁵ izmjeren na udaljenosti od jednog metra.

Konfigurabilni parametari *Proximity UUID*, *Major value* i *Minor value* koriste se za identifikaciju pojedinog odašiljača. Preporuča se korištenje tih vrijednosti na način da *Proximity UUID* bude nekakav globalni identifikator, a *Major value* i *Minor value* specifičniji identifikatori. Konkretno, *Proximity UUID* može biti oznaka konkretnog trgovačkog lanca, *Major value* oznaka konkretne trgovine, dok *Minor value* može biti oznaka konkretne kategorije u trgovini.

Posljednji bajt *advertising* paketa sadrži RSSI izmjeren na udaljenosti od jednog metra od odašiljača. On se koristi kod određivanja udaljenosti od odašiljača. Pošto jakost signala na nekoj udaljenosti ovisi o okolini u kojoj je uređaj postavljen, radi pouzdanijeg određivanja relativne udaljenosti od odašiljača preporuča se prije početka korištenja odašiljača izmjeriti RSSI na udaljenosti od jednog metra te pohraniti tu vrijednost u sam odašiljač.

Kontakt.io Beacon

Glavne značajke uređaja su odašiljanje podatkovnih paketa korištenjem BLE tehnologije te kompatibilnost sa svim uređajima koji podražavaju Bluetooth 4.0. Uz to, uređaji se mogu jednostavno klonirati i nadograditi, imaju visoku razinu sigurnosti te malu energetsku potrošnju.

Pojedini uređaj ima nekoliko konfigurabilnih parametara: ime uređaja, *Proximity UUID*, *major* i *minor* vrijednosti, *transmisssion power level* te interval odašiljanja poruka. Uređaj napaja jedna CR2477 baterija s kojom uređaj može konstantno raditi više od 24 mjeseca (Kontakt.io, 2014a). Raspon odašiljanja signala ovisi o snazi odašiljanja (određena parametrom *transmisssion power level*) te okolini u kojoj je odašiljač postavljen. Pri standardnoj (tvorničkoj) snazi odašiljanja iznosa -4 dBm, mobilni uređaj (ili bilo koji drugi uređaj sa podruškom za BLE) može prepoznati odašiljač do oko šest

metara udaljenosti, dok na najjačoj snazi odašiljanja iznosa 4 dBm, odašiljač se može

²Low Energy

³Bluetooth Radio/Enhanced Data Rate

⁴*Universally unique identifier*

⁵received signal strength indicator, mjera jakosti primljenog signala

prepoznati i na udaljenosti većoj od dvadeset metara.

Tehnička specifikacija

Dimenzije odašiljača su $55 \text{ mm} \times 55 \text{ mm} \times 15 \text{ mm}$ te on teži svega 23 grama. Vanjski okvir je od ABS⁶ plastike, a uređaj napaja zamjenjiva CR2477 baterija s kojom odašiljač može raditi više od dvije godine. Prema (Kontakt.io, 2014b) vrijeme rada može se dodatno povećati na čak šest godina ukoliko se smanje jakost odašiljanja i interval odašiljanja poruka.

Ostale karakteristike odašiljača su:

- Bluetooth Smart multiprotocol SOC⁷ IC⁸ kojega proizvodi Nordic Semiconductors
- 32-bitni ARM Cortex M0 procesor
- 256 kB flash memorije
- 16 kB RAM memorije
- Jakost odašiljanja u rasponu od -30 dBm do +4 dBm
- Dozvoljene brzine prijenosa: 250 kBs, 1 Mbs i 2 Mbs

Slika 3.1: Kontakt.io iBeacon odašiljač

⁶Akrilonitril butadien stiren, izdržljiva plastika koja je pogodna za recikliranje

⁷sustav na čipu (engl. *System on a chip*)

⁸integrirani krug (engl. *integrated circuit*)

Dozvoljene vrijednosti jakosti odašiljanja su: -30, -20, -16, -12, -8, -4, 0 i 4 dBm.

Struktura paketa

Uređaj odašilje dvije vrste paketa podataka: advertising i scan response.

Tokom rada uređaj kontinuriano odašilje *advertising* pakete i na taj obavještava okolne uređaje o svojoj prisutnosti. Drugi tip paketa, *scan response* paket, šalje se odmah nakon *advertising* paketa i sadrži dodatne informacije o odašiljaču, poput imena odašiljača, stanja baterije i slično.

Struktura *advertising* paketa odgovara strukturi iBeacon *advertising* paketa navedenog u tablici 3.1, dok je struktura *scan response* paketa navedena u tablici 3.2.

Tablica 3.2: Struktura scan response paketa

Bajt Vrijednost		Opis				
1.	08*	Duljina podataka - 8 bajta				
2.	09	Tip podatka - Complete Local Name				
3.	4B*	Lokalno ime uređaja				
4.	6F*	Lokalno ime uređaja				
5.	6E*	Lokalno ime uređaja				
6.	74*	Lokalno ime uređaja				
7.	61*	Lokalno ime uređaja				
8.	6B*	Lokalno ime uređaja				
9.	74*	Lokalno ime uređaja				
10.	02	Duljina podataka - 2 bajta				
11.	0A	Tip podataka - Tx Power Value				
12.	F4	Tx Power Value				
13.	0A	Duljina podataka - 10 bajta				
14.	16	Tip podataka - service data				
15.	0D	Service UUID 1. bajt				
16.	D0	Service UUID 2. bajt				
17.	X	Identifikator odašiljača 1. bajt				
18.	X	Identifikator odašiljača 2. bajt				
19.	X	Identifikator odašiljača 3. bajt				
20.	X	Identifikator odašiljača 4. bajt				
21.	X	Firmware version 1. bajt				
22.	X	Firmware version 2. bajt				
23.	X	Razina baterije				

X - vrijednosti ovise o postavkama konkretnog odašiljača

^{* -} varijabilne duljine, ovisi o duljini postavljenog imena odašiljača (max. 15 bajtova)

4. Utvrđivanje relativne i apsolutne lokacije u zatvorenom prostoru

Tehnologije navigacije i pozicioniranja koje se oslanjaju na udaljene satelite (poput GPS i GNSS tehnologija) nisu pogodne za korištenje u zatvorenim prostorima iz razloga što njihove signale apsorbiraju i reflektiraju krovovi, zidovi i ostali objekti u okolini. Iz istih razloga određivanje lokacije preko mobilnih signala, odnosno preko radio tornjeva nije moguće.

Stoga su za utvrđivanje lokacije u zatvorenom prostoru potrebni sasvim novi i drugačiji pristupi problemu te shodno tome, sasvim nove metode određivanja lokacije. Zbog ogromnog porasta pristupačnosti i popularnosti pametnih telefona, posljednjih nekoliko godina sve je veća potražnja za nekakvim pouzdanim rješenjem problema. Kako ne postoji nikakav *de facto* standard, gotovo sva ponuđena rješenja su međusobno različita i koriste cijeli niz različitih tehnologija, od optičkih (npr. kamera uređaja) i radio (npr. signali obližnje bežične mreže) skroz do akustičnih tehnologija.

Vjerojatno najznačajniji uspjeh je postignut sa praćenjem signala kojega odašilje obližnja bežična Wi-fi mreža. Velika prednost ove metode je značajan porast bežičnih pristupnih točaka na koje se mobilni i drugi uređaji mogu spojiti. Da bi se ovom metodom odredila lokacija uređaja potrebno je na neki način mapirati dotičnu pristupnu točku te zatim na temelju jakosti primljenog signala utvrditi poziciju mobilnog uređaja u odnosu na nju. Parametri mapiranja uključuju apsolutnu poziciju, SSID¹ i MAC² adresu pristupne točke (tj. WLAN uređaja). Neke od poznatijih web aplikacija poput WeFi³ i WiGLE⁴ sadrže više od sto milijuna mapiranih bežičnih pristupnih točaka.

¹service set identification

²media access control address

³http://www.wefi.com/maps/

⁴https://wigle.net

Uz navigaciju i pozicioniranje pomoću Wi-fi mreža, dosta su popularne metode koje se služe tehnikama proširene i virtualne stvarnosti te tehnikama strojnog učenja, raspoznavanja uzoraka i računalnog vida. Jedna od popularnijih tehnika proširene i virtualne stvarnosti je korištenje posebnih oznaka (markera) kojega kamera mobilnog uređaja može prepoznati u prostoru. Vezano za metode strojnog učenja, raspoznavanja uzoraka i računalnog vida bitno je spomenuti ambiciozan projekt Tango⁵ na kojemu radi tehnološki gigant Google. Cilj projekta je ponuditi rješenje koje će korištenjem kamere i ostalih senzora mobilnog uređaja nuditi pomoć pri navigaciji, pozicioniranju i prepoznavanju okoline u zatvorenom i otvorenom prostoru.

Utvrđivanje relativne udaljenosti od odašiljača

Tablica 4.1: Rezultat mjerenja signala u zatvorenom prostoru

	Beacon1				Beacon2			
Udaljenost	μ_{RSSI}	σ_{RSSI}	min_{RSSI}	max_{RSSI}	μ_{RSSI}	σ_{RSSI}	min_{RSSI}	max_{RSSI}
0.5	-81.075	2.426	-88	-74	-65.165	2.546	-76	-56
1.0	-80.320	2.799	-86	-76	-66.250	2.316	-73	-59
1.5	-75.575	3.298	-80	-70	-62.695	4.324	-69	-57
2.0	-73.990	2.558	-79	-68	-58.750	1.982	-62	-53
2.5	-78.725	0.907	-81	-74	-63.595	0.875	-66	-59
3.0	-82.470	4.053	-91	-74	-67.810	2.619	-73	-62
3.5	-81.685	2.892	-87	-77	-71.620	3.537	-80	-65
4.0	-83.115	1.903	-88	-77	-68.720	2.000	-73	-65
4.5	-91.125	3.057	-98	-85	-74.975	3.065	-81	-68
5.0	-88.705	2.198	-93	-83	-72.445	3.485	-78	-65
5.5	-88.935	3.487	-97	-83	-79.920	6.883	-93	-68
6.0	-92.450	2.399	-99	-87	-82.175	5.896	-98	-71
6.5	-93.610	1.691	-99	-90	-74.085	2.977	-80	-68
7.0	-	-	-	-	-71.700	2.858	-77	-65
7.5	-	-	-	-	-76.065	2.241	-80	-71
8.0	-	-	-	-	-78.295	4.926	-91	-71

⁵https://www.google.com/atap/projecttango/

Utvrđivanje apsolutne lokacije

Triangulacija

Postupak triangulacije

Trilateracija

5. Radno okruženje Apache Cordova

Radno okruženje Apache Cordova je skup aplikacijsko programskih sučelja (engl. *application programming interface, API*) koji omogućavaju da razvijatelj mobilnih aplikacija pristupa osnovnim funkcijama mobilnoga uređaja, poput kamere, sustava za pohranu podataka i telefonskog imenika preko JavaScript jezika. U kombinaciji sa radnim okruženjima poput Sencha Touch, Dojo Mobile i Ionic aplikacije za pametne telefone mogu se razvijati korištenjem samo HTML, CSS i JavaScript programskog jezika.

Korištenjem Apache Cordove programer je oslobođen pisanja aplikacija u nativnim jezicima uređaja (npr. Java za Android, Objective-C za iOS), već se koriste isključivo prethodno spomenute web tehnologije. Bez obzira na to što aplikacije nisu napisane u nativnim jezicima, Apache Cordova aplikacije se prevode i pakiraju pomoću SDK (engl. *software development kit, SDK*) željene platforme stoga se aplikacije mogu i postaviti na trgovine aplikacija (engl. *app store*) dotične platforme.

Cordova nudi skup uniformnih JavaScript biblioteka čije funkcije programer može pozivati. One imaju podršku za povezivanje sa specifičnim platformama. Cordova je trenutno dostupna za sljedeće platforme: Android, iOS, Blackberry, Windows Phone, Palm WebOS, Bada i Symbian.

Za pristup *Bluetooth Low Energy* funkcijama mobilnog uređaja korištena je **Cordova BLE** biblioteka¹, dok je oko dvije stotine dodatnih i besplatnih biblioteka dostupno na službenom repozitoriju².

Službene Cordova JavaScript biblioteke koje održava Cordova tim su:

Battery Status

Omogućava nadgledanje stanja baterije uređaja.

https://github.com/evothings/cordova-ble

²http://plugins.cordova.io

Camera

Omogućava pristup kameri uređaja.

Contacts

Omogućava pristup telefonskom imeniku uređaja.

Device

Omogućava pristup specifičnim informacijama uređaja (npr. ime uređaja, operacijski sustav).

Device Motion (Accelerometer)

Omogućava pristup senzoru ubrzanja (akcelerometar).

Device Orientation (Compass)

Omogućava pristup kompasu uređaja.

Dialogs

Omogućava korištenje sustava obavijesti uređaja.

FileSystem

Omogućava korištenje datotečnog sustava uređaja.

FileTransfer

Omogućava pristup sustavu za prijenos datoteka.

Geolocation

Omogućava pristup prema geolokacijskom sustavu.

Globalizationg

Omogućava različite reprezentacije objekata ovisno o postavkama lokacije uređaja.

InAppBrowser

Omogućava otvaranje URL-ova u novoj instanci web-preglednika uređaja.

Media

Omogućava snimanje i reprodukciju audio datoteka.

Media Capture

Omogućava snimanje audio i video datoteka.

Network Information (Connection)

Omogućava pristup informacijama o stanju mreže uređaja.

Splashscreen

Omogućava manipuliranje početnog zaslona aplikacije.

Vibration

Omogućava korištenje mehanizma za vibriranje uređaja.

Radno okruženje Ionic

Ionic je radno okruženje napisano sa HTML, CSS i JavaScript programskim jezikom čiji je cilj olakšati razvoj hibridnih mobilnih aplikacija³ stoga je ono jako dobar izbor prilikom izrade Cordova aplikacija. Ionic je primarno okrenut prema olakšanju izrade korisničkog sučelja, odnosno nudi cijeli niz funkcija koje razvijatelju olakšavaju izradu velikih i složenih mobilnih aplikacija. U pozadini, Ionic koristi danas sve popularnije JavaScript *frontend* radno okruženje AngularJS koje je namjenjeno izradi *single-page* web aplikacija. Korištenjem AngularJSa u Ionic je dodan cijeli niz direktiva⁴, filtera⁵, servisa⁶ i drugih funkcija koje programeru rješavaju cijeli niz problema poput osjetljivog dizajna (engl. *responsive design*), hvatanja raznih korisnikovih interakcija (dodiri s jedim ili više prstiju, povlačenje (engl. *swipe*) stavki, stezanju i širenju stavki (engl. *pinch*) i cijeli niz drugih).

Ionic se sastoji od dva temeljna dijela. Prvi dio čine CSS i Sass datoteke čija je svrha da razvijateljima olakšaju izradu vizualnoga dizajna aplikacije. Drugi dio čine JavaScript datoteke i HTML predlošci koji pojednostavljuju izradu aplikacija složene arhitekture te programerima nude cijeli niz pomoćnih funkcija.

Ionic je relativno novo radno okruženje i u vrijeme pisanja ovog rada je u beta verziji. Unatoč tome, veliki broj funkcija već je implementiran i samo njihovim korištenjem mogu se napraviti velike, složene i vizualno privlačne mobilne aplikacije. Uz to, Ionic je izdan pod MIT licencom i njegov izvorni kod je javno dostupan na službenom Github repozitoriju⁷.

³Aplikacije napravljene korištenjem web tehnologija. Pokreću se unutar posebnog spremnika uređaja te koriste funkcije web preglednika za prikaz HTML sadržaja i izvođenje JavaScript kôda

⁴Posebne oznake DOM elemenata koje obavještavaju AngularJS HTML prevoditelja da transformira elemente ili im doda novo ponašanje.

⁵Funkcije za obradu ili transformaciju podataka koji se prikazuju korisniku. Npr. mogu se koristiti za abecedni prikaz elemenata liste, prikaz teksta isključivo velikim slovom itd.

⁶Jedinstveni objekti (engl. *singleton*) koji se koriste za dijeljenje funkcija i resursa unutar aplikacije.

⁷https://github.com/driftyco/ionic

6. Praktični rad

Klijentska aplikacija

klijentski app.

Poslužiteljska aplikacija

poslužiteljski app.

7. Zaključak

Zaključak.

LITERATURA

- Michael Downes. *Short Math Guide for LTEX*. American Mathematical Society, 2002. URL ftp://ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf.
- Robin Heydon. *Bluetooth Low Energy: The Developer's Handbook*. Prentice Hall, 2012. ISBN 013288836X,9780132888363.
- Kontakt.io. Kontakt.io beacon datasheet v2.0, 2014a. URL http://docs.kontakt.io/beacon/kontakt-beacon-v2.pdf.
- Kontakt.io. Tehnical specifications, 2014b. URL http://kontakt.io/technology/technical-specification.
- T. Oetiket, H. Partl, Hyna, i E. Schlegl. *The not-so-short introduction to Latex*. URL http://www.ctan.org/tex-archive/info/lshort/english/lshort.pdf.
- David Schneider. You are here. *IEEE Spectrum*, stranice 30–35, 12 2013.
- David Young. Reverse Engineering the iBeacon Profile. Radius Networks, 2013. URL http://developer.radiusnetworks.com/2013/10/01/reverse-engineering-the-ibeacon-profile.html.
- Šime Ungar. *Uvod u T_EX s naglaskom na ET_EX2*ε. Odjel za matematiku, Sveučilište J.J. Strossmayera u Osijeku, 2002.

Utvrđivanje mikrolokacije mobilnog uređaja u zatvorenom prostoru

Sažetak

Sažetak na hrvatskom jeziku.

Ključne riječi: Bluetooth, BLE, mikrolokacija, iBeacon, Android, iOS, Apache Cordova, Ruby on Rails, Ruby, JavaScript, razvoj mobilnih aplikacija

Determining a micro-location of a mobile device

Abstract

Abstract.

Keywords: Bluetooth, BLE, mikrolokacija, iBeacon, Android, iOS, Apache Cordova, Ruby on Rails, Ruby, JavaScript, mobile development