

Obliczanie π metodą Monte Carlo

Przykład metody przybliżonej

Czego chcemy?

- Metoda przybliżona wyliczania π
- Wada: wolno zbieżna, mało dokładna...
- Zaleta: idealna do rozproszenia!

Na początku było koło

... wpisane w kwadrat

Teraz możemy rzucić w kwadrat punkt...

... a potem jeszcze jeden punkt...

... i jeszcze jeden...

... i jeszcze...

i tak dalej...

Teraz patrzymy, które punkty wypadły poza koło

Teraz patrzymy, które punkty wypadły poza koło

Skoro:

$$rac{P_{ko}}{P_{kw}}=rac{\pi r^2}{4r^2}$$

to po skróceniu i obustronnym przemnożeniu przez cztery:

$$4rac{P_{ko}}{P_{ko}}=\pi$$

Dla ćwiartki koła mamy ten sam stosunek

Jak losujemy?

O czym pamiętać?

- int X = 1 / 3; Ile wynosi X?
- pamiętać o inicjacji zarodka liczb losowych srand; oprócz srand/rand są też inne metody losowania
- Nie zarzynać mastera setkami wiadomości
- Jedna wiadomość może zawierać wiele liczb

GOOD LUCK!