Zpracování obrazu (10. přednáška)

Od reality k obrazu ...

... a zase zpět

A co naopak?

 $g(W) \Rightarrow W$

Nejednoznačnost

Zjednodušený model — camera obscura

P — bod na scéně, souřadnice (X,Y,Z)

 P^\prime — obraz bodu P v rovině obrázku, souřadnice (x,y,z)

Pomocí podobnosti trojúhelníků odvodíme

$$x = \frac{-fX}{Z}, \ y = \frac{-fY}{Z}$$

Intenzita, barvy, ...

Intenzita závisí na úhlu dopadu světla (Lambertův zákon)

$$I = \varrho_0 I_0 \cos \vartheta$$

- I_0 intenzita dopadajícího světla
- ϱ_0 albedo
- → úhel dopadu

Princip trojbarevnosti

Každé vlnové spektrum lze složit ze tří složek tak, že člověk nepozná rozdíl.

- složky: červená, zelená, modrá
- ústřice mají 12 základních barev (!)

Fáze zpracování obrazu

Nízkourovňová

- detekce hran
- detekce oblastí
- jednoduchá detekce objektů
- $2D \Rightarrow 3D$

Vysokoúrovňová

- rozpoznávání objektů
- rozpoznávání textu
- . . .

Detekce hran

Idea Hrana je místo, kde dochází k ostré změně intenzity.

- derivace intenzity, gradient intenzity
- odstranění šumu (gausovský filtr)
- konvoluce

Detekce hran podruhé

U strukturovaných povrchů (vlasy, oblečení, ...) převažují lokální změny intenzit nad globálními

- otisky textur histogram intenzit
- relativně nezávislé na změně osvětlení

Optický tok

Detekce oblastí

Detekce obličejů

2D⇒3D

2D⇒3D

