$\frac{\text{ST3131 Regression Analysis}}{\text{Lingjie, April 27, 2021}}$

ATQ

Comment on relationship using Scatter Plot

- 1. There is/isn't a
- 2. positive/ negative
- 3. linear/ non-linear relationship between x and y
- 4. with a constant/ non constant Variance

Fit a linear model

1. Write down fitted model

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 I(X_2 = 1)$$

2. Note: if cat var, write I(X = Type A)

Test model

- 1. Single regressor: t-test, Multiple regressors: F-test
- 2. State H_0, H_1
- 3. Find t-stat/ F-stat, p-value
- 4. Conclude reject/ do not reject H_0

Comment on model Fit

- 1. R^2 is large/small
- 2. F-test is significant/ not significant

Checking on assumptions

- 1. Residual plot shows residuals randomly scattered/ some trend about 0, a linear model is sufficient/ insufficient
- 2. Residuals plot shows constant/ non constant variance
- 3. Standardised residuals shows there are/ no outliers
- 4. Residual Normal probability plot shows residuals violate/ does not violate normality assumption
- 5. VIF is small suggesting there is/ no multicollinearity

Hypothesis testing

Statistical Inference: using probability to quantify how plausible a value for a parameter is

1. Assumptions

- Randomised data
- Required sample size
- Shape of distribution
- Note: transformed regressor need to be transformed back

2. Hypothesis

- $H_0 := \text{null hypothesis}$, represents no effect
- $H_1 :=$ alternative hypothesis, effect of some type
- $H_1: p > 0.5, H_1: p < 0.5 :=$ one-sided alternative hypothesis
- $H_1: p \neq 0.5 :=$ two-sided alternative hypothesis
- Note: H_0, H_1 cannot have any overlap

3. Test Statistics

- ullet Describes how far that point estimate falls from the parameter value given in H_0
- Required:
 - 1. value in the sample,
 - 2. parameter value in H_0

4. p-value

- Probability in sampling distribution that test statistic assumes a value more extreme (tail probability) than observed
- Small p-value, either reject H_0 or sample is not representative of the population
- Note: for F-test, it is only the right tail

5. Conclusion

Reports the p-value, and summarises how much evidence there is against H_0

Checking Normality using QQ-plots

QQ-plots: standardised sample quantiles vs theoretical quantiles of a N(0,1) distribution. When compared to the straight line:

```
qqnorm(X) # qq plot
qqline(X) # line
```


• Left tail shorter, Right tail longer: Right-skewed

• Left tail longer, Right tail shorter: Left-skewed

• Both tails longer

• Both tail shorter

- Right tail is below: longer than Normal
- Right tail is above: shorter than Normal
- Left tail is below: shorter than Normal
- Left tail is above: longer than Normal

Alternative method: Anderson-Darling test H_0 : data is normal vs H_1 : data is not normal

Hypothesis Testing for Means

 $\mu := \text{population mean}$

One-Sample t-Test for Means

- 1. Assumption
 - variable measured is quantitative
 - data obtained through randomization
 - population distribution is approximately Normal, crucial when n is small
- 2. Hypothesis $H_0: \mu = \mu_0, H1: \mu \neq \mu_0$
- 3. Test Statistics point estimate: \bar{X} $T = \frac{\bar{X} \mu_0}{s/\sqrt{(n)}} \sim t_{n-1}$

4. p-Value

t.test(data, mu=0) # default: 2-sided

5. Conclusion Report and interpret p-value in the context of the experiment

Confidence Interval

95% Confidence Interval for the Mean

 $\bar{X} \pm t_{n-1,0.975} \times s/\sqrt{n}$

 $\bar{X} \pm t_{n-1,0.975} \times SE(\bar{X})$

Comparing Means

Tests for Comparing Two Group Means

Not the focus of this module, but we can use $H_0: \mu_1 = \mu_2 \Rightarrow \mu_1 - \mu_2 = 0$ and apply t-test

ANOVA

Let I := num of groups and J := num of obs in each group

- 1. Assumption errors are normally distributed
- 2. Hypothesis $H_0: \beta_1 = \beta_2 = \cdots = \beta_I = 0$
- 3. Test Statistics $F = \frac{SS_B/(I-1)}{SS_W[I(J-1)]} \sim F_{I-1,I(J-1)}$
- 4. p-value reject H_0 if $F > F_{I-1,I(J-1)}(\alpha)$ Note: F-stat test only on the right tail, even if test is 2-sided
- 5. Conclusion

Linear Regression

```
model <- lm(y~x+I(x^2)+log(x), data=data)
summary(model) # regression results
anova(model) # ANOVA table
predict(model, data.frame(x1=x),
   interval="confidence", level=0.95)
predict(model, data.frame(x1=x),
   interval="prediction", level=0.95)
qt(alpha/2, df) # quantile
pt(t0, df) # probability</pre>
```

Population model : $\mathbf{y_{n\times 1}} = \mathbf{X_{n\times p}}\beta_{\mathbf{p}\times 1} + \epsilon_{\mathbf{n}\times 1}$ Fitted model : $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 x^2$ Hat matrix (**H**) : $\hat{\mathbf{y}} = \mathbf{X}\hat{\beta} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$

Sample regression model: $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$

Note:

linearity refers to parameters (coefficients) fitted model has no error term

Main Objective of Regression Analysis

- model fitting estimate unknown parameters (OLS, MLE)
- model adequacy checking validate appropriateness of the model

Notations

 $\begin{array}{lll} \epsilon & := {\rm random\ (uncorrelated)\ error\ term} \\ & := E(\epsilon) = 0\ {\rm and\ } Var(\epsilon) = \sigma^2 \\ y_i & := i{\rm th\ dependent\ (response/target/output)} \\ & {\rm variable} \\ x_{ij} & := {\rm independent\ } \\ & {\rm (predictor/input/covariate/regressor)} \\ & := i{\rm th\ observation\ of\ regressor\ } x_j \\ k & := {\rm num\ of\ regressors\ }, {\rm excl\ } \beta_0 \\ p & := k+1, {\rm incl\ } \beta_0 \\ p & := k+1, {\rm incl\ } \beta_0 \\ \beta_0 & := {\rm intercept\ }, {\rm always\ assumed\ exist} \\ \beta_i & := {\rm slope} \\ E(y|x) & := \mu_{y|x} = E(\beta_0 + \beta_1 x + \epsilon|x) = \beta_0 + \beta_1 x \\ Var(y|x) & := \sigma_{y|x}^2 = Var(\beta_0 + \beta_1 x + \epsilon|x) = \sigma^2 \\ \end{array}$

Estimation of the Model Parameters

Simple regression

Objective:

$$\min S(\beta_0, \beta_1) = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$$

Solution:

$$\begin{split} \hat{\beta}_0 &= \bar{y} - \hat{\beta}_1 \bar{x} \\ \hat{\beta}_1 &= \frac{\sum_{i=1}^n y_i x_i - \frac{(\sum_{i=1}^n y_i)(\sum_{i=1}^n x_i)}{n}}{\sum_{i=1}^n x_i^2 - \frac{(\sum_{i=1}^n x_i)^2}{n}} \\ &= \frac{Cov(X,Y)}{Var(X)} = \frac{S_{xy}}{S_{xx}} \\ Var(y) &= \frac{SS_T}{n-1} \\ Var(X) &= \frac{S_{xx}}{n-1} \end{split}$$

Notation:

$$S_{xy} = \sum_{i=1}^{n} y_i x_i - \frac{\left(\sum_{i=1}^{n} y_i\right)\left(\sum_{i=1}^{n} x_i\right)}{n} = \sum_{i=1}^{n} y_i (x_i - \bar{x})$$
$$S_{xx} = \sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n} = \sum_{i=1}^{n} (x_i - \bar{x})^2$$

Multiple regression

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}_{n \times 1} \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdots & x_{1k} \\ 1 & x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & \cdots & x_{nk} \end{bmatrix}_{n \times p}$$

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{bmatrix}_{p \times 1} \epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{bmatrix}_{p \times 1}$$

Objective:

$$\min S(\beta) = \sum_{i=1}^{n} \epsilon^{2} = \epsilon^{T} \epsilon = (\mathbf{y} - \mathbf{X}\beta)^{T} (\mathbf{y} - \mathbf{X}\beta)$$
$$= \mathbf{y}^{T} \mathbf{y} - 2\beta^{T} \mathbf{X}^{T} \mathbf{y} + \beta^{T} \mathbf{X}^{T} \mathbf{X}\beta$$

Note: $(\beta^T \mathbf{X}^T \mathbf{y})_{1 \times 1}$ is a scalar

Solution:

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

 $(\mathbf{X}^T\mathbf{X})^{-1}$ exist \Leftrightarrow regressors are linearly independent

Properties of the Least-Squares Estimation

Key: unbiased mean + small variance
$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}} = \sum_{i=1}^n \frac{(x_i - \bar{x})}{S_{xx}} y_i = \sum_{i=1}^n c_i y_i$$

$$\therefore \sum_{i=1}^n c_i = 0, \sum_{i=1}^n c_i x_i = 1, \sum_{i=1}^n c_i^2 = \frac{1}{S_{xx}}$$

$$E(\hat{\beta}_x) = \beta_x \quad E(\hat{\beta}_x) = \beta_x$$

$$E(\hat{\beta}_1) = \beta_1, \quad E(\hat{\beta}_0) = \beta_0$$

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}, \quad Var(\hat{\beta}_0) = \sigma^2(\frac{1}{n} + \frac{\bar{x}^2}{S_{xx}})$$

Mean and Variance of $\hat{\beta}$

$$\begin{array}{l} :: E(\epsilon) = 0, (\mathbf{X^TX})^{-1}\mathbf{X^TX} = \mathbf{I} \\ E(\hat{\beta}) = E[(\mathbf{X^TX})^{-1}\mathbf{X^Ty}] = E[(\mathbf{X^TX})^{-1}\mathbf{X^T}(\mathbf{X}\beta + \epsilon)] = \\ E[(\mathbf{X^TX})^{-1}\mathbf{X^TX}\beta + (\mathbf{X^TX})^{-1}\mathbf{X^T}\epsilon] = \beta \\ Cov(\hat{\beta}) = E\left\{[\hat{\beta} - \mathbf{E}(\hat{\beta})][\hat{\beta} - \mathbf{E}(\hat{\beta})]^T\right\}_{p \times p} \text{ symmetric matrix} \\ \text{the } j^{th} \text{ diagonal element is } Var(\hat{\beta}_i) \text{ and } (ij) \text{th off-diagonal} \\ \text{element is } Cov(\hat{\beta}_i, \hat{\beta}_j) \text{ Hence} \\ Cov(\hat{\beta}) = Var(\hat{\beta}) = Var\left[(\mathbf{X^TX})^{-1}\mathbf{X^Ty}\right] = \\ (\mathbf{X^TX})^{-1}\mathbf{X^T}Var(\mathbf{y}) \left[(\mathbf{X^TX})^{-1}\mathbf{X^T}\right]^T = \\ \end{array}$$

$$\sigma^{2}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1} = \sigma^{2}(\mathbf{X}^{T}\mathbf{X})^{-1}$$

Denote $\mathbf{C} = (\mathbf{X}^{T}\mathbf{X})^{-1}$, then $Var(\hat{\beta}_{j}) = \sigma^{2}C_{jj}$ and $Cov(\hat{\beta}_{i}, \hat{\beta}_{j}) = \sigma^{2}C_{ij}$

$$E(\hat{\beta}) = \beta, \quad Cov(\hat{\beta}) = \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$$
$$Var(\hat{\beta}_j) = \sigma^2 C_{jj}, \quad Cov(\hat{\beta}_i, \hat{\beta}_j) = \sigma^2 C_{ij}$$

Estimation of σ^2

Denote $SS_T = \sum_{i=1}^n (y_i - \bar{y})^2$ (not model dependent)

$$SS_{Res} = SS_T - \hat{\beta}_1 S_{xy} \text{ (model dependent)}$$

$$\sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \sum_{i=1}^n y_i^2 - n\bar{y}^2 - \hat{\beta}_1 S_{xy}$$

$$= \sum_{i=1}^n (y_i - \bar{y})^2 - \hat{\beta}_1 S_{xy}$$

 $\therefore E(SS_{Res}) = (n-p)\sigma^2, p := \text{num of regressors (includ } \beta_0)$ $\therefore \hat{\sigma}^2 = SS_{Res}/(n-p), \text{ unbiased estimator of } \sigma^2$ Denote $MS_{Res} = SS_{Res}/(n-p), \text{ residual mean square}$ $\hat{\sigma} := \text{residual standard error or standard error of regression}$

$$\hat{\sigma}^2 = MS_{Res} = \frac{SS_{Res}}{n-p}$$

Estimation of σ^2 , multiple regression

$$\begin{split} SS_{Res} &= \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} e_i^2 = \mathbf{e^T e} \\ \text{Sub } \mathbf{e} &= \mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}} \\ SS_{Res} &= (\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}})^{\mathbf{T}} (\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}}) \\ &= \mathbf{y^T} \mathbf{y} - \hat{\boldsymbol{\beta}}^{\mathbf{T}} \mathbf{X^T} \mathbf{y} - \mathbf{y^T} \mathbf{X} \hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\beta}}^{\mathbf{T}} \mathbf{X^T} \mathbf{X} \hat{\boldsymbol{\beta}} \\ &= \mathbf{y^T} \mathbf{y} - 2 \hat{\boldsymbol{\beta}}^{\mathbf{T}} \mathbf{X^T} \mathbf{y} + \hat{\boldsymbol{\beta}}^{\mathbf{T}} \mathbf{X^T} \mathbf{X} \hat{\boldsymbol{\beta}} \\ \text{Since } \mathbf{X^T} \mathbf{X} \hat{\boldsymbol{\beta}} &= \mathbf{X^T} \mathbf{y} \Rightarrow SS_{Res} = \mathbf{y^T} \mathbf{y} - \hat{\boldsymbol{\beta}}^{\mathbf{T}} \mathbf{X^T} \mathbf{y} \\ MS_{Res} &= \frac{SS_{Res}}{n-p} \Rightarrow E(MS_{Res}) = \sigma^2 \Rightarrow \hat{\sigma}^2 = MS_{Res} \text{ is unbiased estimator of } \sigma^2 \end{split}$$

Hypothesis Testing

$$y_i \sim N(\beta_0 + \sum_{i=1}^k \beta_j x_{ij}, \sigma^2)$$
$$\hat{\beta} \sim N(\beta, \sigma^2(\mathbf{X}^T \mathbf{X})^{-1}), \hat{\beta}_i \sim N(\beta_i, \sigma^2 C_{ij})$$

Assumption:

- x, y shares linear relationship
- uncorrelated errors with $E(\epsilon) = 0$ and $Var(\epsilon) = \sigma^2$
- $\epsilon_i \sim N(0, \sigma^2)$ Note: for each sub-population, they have the same variance

t test: Individual Regression Coefficient

 $H_0: \beta_1 = 0, H_1: \beta_1 \neq 0$

$$t_0 = \frac{\hat{\beta}_1}{\sqrt{MS_{Res}/S_{xx}}} = \frac{\beta_j}{\sqrt{\hat{\sigma}^2 C_{jj}}} = \frac{\hat{\beta}_1}{se(\hat{\beta}_1)} \sim t_{n-p}$$

 C_{jj} is diagonal element $(\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-1} \Leftrightarrow \hat{\beta}_j$ $H_0: \beta_0 = 0, H_1: \beta_0 \neq 0$

$$t_0 = \frac{\hat{\beta}_0}{se(\hat{\beta}_0)} = \frac{\hat{\beta}_0}{\sqrt{MS_{Res}(1/n + \bar{x}^2/S_{xx})}} \sim t_{n-p}$$

rejected H_0 if $|t_0| > t_{n-k-1(\alpha/2)}$

Note: the test is given other regressors in the model

F, t test: Significance of Regression

$$H_0: \beta_1 = \beta_2 = \cdots \beta_j = 0, H_1:$$
 at least 1 $\beta_i \neq 0$

$$F = \frac{SS_R/k}{SS_{Res}/(n-k-1)} = \frac{MS_R}{MS_{Res}} \sim F_{df_{SS_R}, df_{SS_{Res}}}$$

Reject H_0 if $F_0 > F_{k,n-k-1}(\alpha)$

ANOVA table

Source of	Sum of	DF	MS	F_{α}
Variation	Squares			
Regression	SS_R	k	MS_R	MS_R/MS_{Res}
Residual	SS_{Res}	n-p	MS_{Res}	
Total	SS_T	n-1		•

$$SS_T = SS_R + SS_{Res}, SS_R$$
 is model dependent $\sum_{i=1}^n (y_i - \bar{y})^2 = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^n (y_i - \hat{y}_i)^2$

Extra-sum-of-squares Method

Useful to select a subset of regressors

Extra-sum-of-square due to

$$\beta_2: SS_R(\beta_2|\beta_1) = SS_R(\beta) - SS_R(\beta_1)$$
 with $df = r$

 $H_0: \beta_2 = 0, H_1: \beta_2 \neq 0$

$$F_0 = \frac{SS_R(\beta_2|\beta_1)/r}{MS_{Res}} \sim F_{r,n-p}$$

Note: in R the order we put regressors matters

 $t^2 = F_0 \sim F_{1,n-p}$

ESS: Orthogonal Col in X

consider $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} = \mathbf{X_1}\boldsymbol{\beta_1} + \mathbf{X_2}\boldsymbol{\beta_2} + \boldsymbol{\epsilon}$, if $\mathbf{X_1} \perp \mathbf{X_2}$, Sum of square and model is the same regardless of order to add in regressors \Rightarrow no need to refit (rare case)

Confidence Intervals

CI on the Regression Coefficients

$$\beta_i \in \hat{\beta}_i \pm t_{n-p}(\alpha/2) \times se(\hat{\beta}_i)$$

$$\sigma^2 \in \left(\frac{(n-p)MS_{Res}}{\chi_{n-p}^2(\alpha/2)}, \frac{(n-p)MS_{Res}}{\chi_{n-p}^2(1-\alpha/2)}\right)$$

CI Estimation of the Mean Response

Mean Response: $E(y|x_0)$

$$E(\hat{y}|x_0) = \hat{\mu}_{u|x_0} = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

$$Var(\hat{\mu}_{y|x_0}) = Var(\hat{\beta}_0 + \hat{\beta}_1 x_0) = Var(\bar{y} + \hat{\beta}_1 (x_0 - \bar{x}))$$

$$= \sigma^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right) = \sigma^2 \mathbf{x_0^T} (\mathbf{X^T X})^{-1} \mathbf{x_0}$$

$$E(y|x_0) \in \hat{\mu}_{y|x_0} \pm t_{n-p}(\alpha/2) \sqrt{MS_{Res}\left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)}$$

$$E(y|x_0) \in \hat{y}_0 \pm t_{n-p}(\alpha/2) \sqrt{\hat{\sigma}^2 \mathbf{x_0^T} (\mathbf{X^T X})^{-1} \mathbf{x_0}}$$

Note

• CI for $E(y|x_0)$ is a function of x_0

- interval width minimised at $x_0 = \bar{x}$ and widens as $|x_0 \bar{x}|$ increases
- standard error for a CI on mean responses takes into account the uncertainty due to sampling ⇒ confidence band is not parallel

Simultaneous CI on Regression Coefficients

Bonferroni Method, useful when trying to find the joint CI of $\beta_i, \beta_j, i \neq j$

$$\hat{\beta}_i \pm t_{n-p}(\alpha/2p) \times se(\hat{\beta}_i), j \in [0, k]$$

Prediction Interval

Note: check if X is in the range of dataset

Prediction: $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$, let $\psi = y_0 - \hat{y}_0$

Note: Prediction interval is for the future observation y_0 can be obtained, and future observation y_0 is independent of our prediction \hat{y}_0

$$Var(\psi) = Var(y_0) - 2Cov(y_0, \hat{y}_0) + Var(\hat{y}_0)$$

= $\sigma^2 + \sigma^2 \left(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)$

$$y_0 \in \hat{y}_0 \pm t_{n-p}(\alpha/2) \sqrt{M S_{Res} \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}\right)}$$
$$y_0 \in \hat{y}_0 \pm t_{n-p}(\alpha/2) \sqrt{\hat{\sigma}^2 (1 + \mathbf{x_0^T} (\mathbf{X^T} \mathbf{X})^{-1} \mathbf{x_0})}$$

Note: standard error for a prediction interval of a future observation takes into account the uncertainty due to sampling and variability of the individual around the predicted mean.

Coefficient of Determination R^2

$$R^{2} = \frac{SS_{R}}{SS_{T}} = 1 - \frac{SS_{Res}}{SS_{T}}$$

$$R^{2}_{Adj} = 1 - \frac{SS_{Res}/(n-p)}{SS_{T}/(n-1)}$$

$$= 1 - \frac{n-1}{n-p}(1-R^{2})$$

$$cor(y, \hat{y}) = |cor(y, x)| = \sqrt{R^{2}}$$

proportion of variation explained by the regressors

Interpretation of Regression Coefficients

First Interpretation

changes in mean response $\frac{\partial}{\partial x_i} E(y|X)$

Second Interpretation

contribution of x_j to y after both y, x_j have been linearly adjusted for all other regressors

$$e_{y,x_1,x_2,\dots,x_{k-1}} = \beta_k e_{x_k,x_1,x_2,\dots,x_{k-1}}$$

Hidden Extrapolation in Multiple Regression

| Regressor Variables Hull (RVH)

Using the hat matrix $\mathbf{H} = \mathbf{X}(\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathbf{T}}$

and set $\max h_{ii} := h_{max}$

To be within the ellipsoid, $\mathbf{x}^{\mathbf{T}}(\mathbf{X}^{\mathbf{T}}\mathbf{X})^{-1}\mathbf{x} \leq h_{max}$

Therefore, the new estimation at point

 $\mathbf{x_0^T} = [1, x_{01}, x_{02}, \cdots, x_{0k}]$ will have $h_{00} = \mathbf{x_0^T} (\mathbf{X^T X})^{-1} \mathbf{x_0}$ if $h_{00} > h_{max}$, then the point is a point of extrapolation

Indicator Variables

Categorical variables, we assign dummy variables, $\alpha-1$

$$x = \begin{cases} 0 & \text{if obs from type A} \\ 1 & \text{if obs from type B} \end{cases} = I(\text{obs from type B})$$

Same slope, different intercept for different type To test for significance of 3 types:

$$H_0: \beta_2 = \beta_3 = 0$$

 $H_1: \beta_2 \neq 0 \text{ and/or } \beta_3 \neq 0$

Interaction Term

To test if diff types are identical: $H_0: \beta_2 = \beta_3 = 0$ vs $H_1: \beta_2$ and/or $\beta_3 \neq 0$

Note: we should not include x_1x_2 if there is no x_2, x_1

Standardised Regression Coefficients

Unit normal Scaling

$$x_{ij} = \frac{x_{ij} - \bar{x}_j}{s_j}, i \in [1, n], j \in [1, k]$$

 $\bar{x}_j=(\sum_{i=1}^n x_{ij})/n, s_j^2=(\sum_{i=1}^n (x_{ij}-\bar{x}_j)^2)/(n-1)$ Note: model using scaled response and scaled regressors does not have intercept

Unit Length Scaling

$$w_{ij} = \frac{x_{ij} - \bar{x}_j}{\sqrt{S_{jj}}}, i \in [1, n], j \in [1, k]$$

 $S_{jj} = \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)^2 = (n-1)s_j^2$ Note: each new regressor w_j has mean $\bar{w}_j = 0$ and length $\sqrt{\sum_{i=1}^{n} (w_{ij} - \bar{w}_j)^2} = 1$ The resultant $\mathbf{W}^T \mathbf{W}$ matrix is a generalizing matrix where

The resultant $\mathbf{W^TW}$ matrix is a correlation matrix where r_{lj} is simple correlation between $x_l, x_j, l, j = 1, \dots, k, l \neq j$

Other topics

Regression Through the Origin

 $y = \beta_1 x + \epsilon$, only appropriate when origin (0,0) has meaning $\min S(\beta_1) = \sum_{i=1}^n (y_i - \beta_1 x_i)^2$ $\hat{\beta}_1 = \sum_{i=1}^n y_i x_i / \sum_{i=1}^n x_i^2$ $\hat{\sigma}^2 = M S_{Res} = \sum_{i=1}^n (y_i - \hat{y}_i)^2 / n - 1$ $= \left(\sum_{i=1}^n y_i^2 - \hat{\beta}_1 \sum_{i=1}^n y_i x_i\right) / (n-1)$

Estimation by Maximum Likelihood

Only when the response (or error) distribution is known i.e. $\epsilon \sim N(0,\sigma^2) \Rightarrow y_i \sim N(\beta_0+\beta_1x_i,\sigma^2)$ max $L(y_i,x_i,\beta_0,\beta_1,\sigma^2)=\prod_{i=1}^n(2\pi\sigma^2)^{-1/2}exp\left[-\frac{1}{2\sigma^2}(y_i-\beta_0-\beta_1x_i)^2\right]=(2\pi\sigma^2)^{-n/2}exp\left[-\frac{1}{2\sigma^2}(y_i-\beta_0-\beta_1x_i)^2\right]$ \Leftrightarrow max $\log L=-\frac{n}{2}\log(2\pi)-\frac{n}{2}\log\sigma^2-\frac{1}{2\sigma^2}\sum_{i=1}^n(y_i-\beta_0-\beta_1x_i)^2$ $\hat{\beta}_0=\bar{y}-\hat{\beta}_1\bar{x}$ $\hat{\beta}_1=\sum_{i=1}^ny_i(x_i-\bar{x})/\sum_{i=1}^n(x_i-\bar{x})^2$ $\hat{\sigma}^2=\sum_{i=1}^n(y_i-\hat{\beta}_0-\hat{\beta}_1x_i)^2/n=[(n-2)/n]\hat{\sigma}_{OLS}^2$, biased

Model Adequacy Checking

Model assumption:

- Linearity assumption $\mathbf{Y} = \beta \mathbf{X}$
- Normality assumption $\epsilon_i \sim N$
- $E(\epsilon) = 0$
- Homogeneity assumption $Var(\epsilon) = \sigma^2$
- Independent error assumption $Cov(\epsilon_i, \epsilon_i) = 0$

Graphical Methods before model fitting

• One-dimensional graphs

Histogram, Stem-and-leaf-display, Dot plot, Box plot (for outlier detection)

Check for: 1) distribution (symmetric or skewed) to determine if transformation is required 2) outliers

• Two-dimensional graphs

pairwise plots (e.g. scatter plots)

Check for: 1) Multicollinearity 2) Linear relationship $y \sim x$

- Rotating plots
- Dynamic graphs

Residual Analysis

Diagnostic methods primarily based on studying model residuals $(e_i = y_i - \hat{y}_i)$

$$E(e_i) = 0$$

$$Var(\bar{e}) = \frac{\sum_{i=1}^{n} (e_i - \bar{e})^2}{n - p} = \frac{\sum_{i=1}^{n} e_i^2}{n - p} = \frac{SS_{Res}}{n - p} = MS_{Res}$$

The residuals are not independent. However, when $p \ll n$ the nonindependence has little effect

Hat Matrix

$$\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$$

$$\hat{\mathbf{y}} = \mathbf{H}\mathbf{y}$$

$$\hat{y}_i = h_{i1}y_1 + \dots + h_{in}y_n$$

$$\mathbf{e} = (\mathbf{I} - \mathbf{H})\mathbf{y}$$

 \hat{y}_i := weighted sum of all given observation

 h_{ii} := leverage value for ith observation

:= weight given to y_i in determining the *i*th fitted values \hat{y}_i

 \mathbf{H} := is symmetric and idempotent ($\mathbf{H}\mathbf{H} = \mathbf{H}$)

I - H := is symmetric and idempotent

Variance of Residuals

$$\mathbf{e} = (\mathbf{I} - \mathbf{H})(\mathbf{X}\beta + \epsilon)$$

$$= (\mathbf{I} - \mathbf{H})\epsilon$$

$$Var(\epsilon) = \sigma^2 \mathbf{I}$$

$$Var(\mathbf{e}) = (\mathbf{I} - \mathbf{H})Var(\epsilon)(\mathbf{I} - \mathbf{H})' = \sigma^2(\mathbf{I} - \mathbf{H})$$

$$Var(e_i) = \sigma^2(1 - h_{ii})$$

$$Cov(e_i, e_j) = -\sigma^2 h_{ij}$$

Standardized Residual

$$\frac{e_i}{\sigma\sqrt{(1-h_{ii})}}$$

$$\hat{\sigma}_{(i)}^2 = \frac{SS_{Res(i)}}{n-k-2} = \frac{SS_{Res(i)}}{n-p-1}$$

Estimate σ^2 : MS_{Res} or $\hat{\sigma}^2_{(i)}$, both unbiased estimator of σ^2 $SS_{Res(i)} := \text{sum of squared residual when fit model with } (n-1) \text{ obs without } i\text{th obs}$

Studentized Residuals

Internally studentized residuals

$$r_i = \frac{e_i}{\sqrt{MS_{Res}}\sqrt{(1 - h_{ii})}}$$

rstandard (model)

Externally studentized residuals

$$r_{i}^{*} = \frac{e_{i}}{\hat{\sigma}_{(i)}\sqrt{(1-h_{ii})}}$$
$$r_{i}^{*} = r_{i}\sqrt{\frac{n-p-1}{n-p-r_{i}^{2}}}$$

Since both internal and external studentized residuals are monotone transformation of another, either is fine

Residual plots

Normal Probability Plot (QQ plot)

• Plot ordered S.R (x-axis) vs cumulative probability or normal scores (y-axis)

Expect: normally distributed residuals, nearly straight line with an intercept of 0 and slope 1

Note: common defect is due to large residuals arise from outliers

Scatter plot of S.R. vs fitted values

Plot residuals vs fitted values

Expect: random scatter plot

Note: observe for potential patterns, such as non-constant variance, nonlinearity

- a ideal
- b non constant variance (heterogeneity)
- c variance follow binomial distribution
- d non linear relationship

Scatter plots of S.R. vs each predictor

• Plot S.R. with each regressors

Except: randomly scattered plot

Note: transformation might be needed for the regressors

Plot of Residuals in Time Sequence

• Plot residuals against time order

Expect: randomly scatter plot

Note: if not random, variance might be changing with time then linear or quadratic terms in time should be added to the model

• Autocorrection (errors are related to each other) is serious violation of basic regression assumptions

Comments on Residual plots

- Strong indication of linear relationship between variables
- Normal probability plot indicates a deviation from normality assumption, it also shows potential outliers
- plot of residuals vs fitted values has large residuals, suggesting outliers
- Scatter plot between regressors show linear relationship between them, a deeper investigation about data is needed. There might be ommitted variable bias (factors that linked to both regressors such as location), extra variables should be added to fix this

Detection and Treatment of Outliers

Outlier:

- extreme observation, one that is considerably different from the majority of data
- Residuals >> 3 sd from mean indicate potential y space outliers
- 1) Examine Residual plots against fitted values
- 2) QQ-plot
- "bad" values: result of unusual but explainable events, can be deleted and corrected
 - e.g. faulty measurement or analysis, incorrect recording data, failure of measuring instrument
- "normal" values: unusual but perfectly pausible observation

should be kept since deleting will provide false sense of precision in estimation/prediction

Observe (compare with and without outliers):

- Changes in goodness of fit (R^2, MS_{Res})
- Effect on model (magnitude and sign of β)

Lack of Fit of the Regression Model

Formal test for Lack of fit (only for simple model)

$$y_{ij} - \hat{y}_i = (y_{ij} - \bar{y}_i) + (\bar{y}_i - \hat{y}_i)$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \hat{y}_i)^2 = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_i)^2 + \sum_{i=1}^{m} n_i (\bar{y}_i - \hat{y}_i)^2$$

$$SS_{Res} = SS_{PE} + SS_{LOF}$$

$$F_0 = \frac{SS_{LOF}/(m-2)}{SS_{PE}/(n-m)} = \frac{MS_{LOF}}{MS_{PE}}$$

$$\sim F_{m-2,n-m}$$

Assumption: normality, independence and constant variance. Test only the first order relationship

$$H_0: \beta_1 \neq 0$$

m := num of levels (x into m groups)

 $n := \sum_{i=1}^{m} n_i \text{ total observation}$

ij residual := $y_{ij} - \hat{y}_i$

 SS_{PE} := sum of squaress due to pure error

 SS_{LOF} := sum of squares due to lack of fit

Leverage and Influence

Figure: Examples of a leverage point (left) and an influential point (right).

Diagnostics for Leverage

$$h_{ii} = x_i (\mathbf{X}'\mathbf{X})^{-1} x_i'$$

- standardised distance of *i*th observation from the center of the *x* space
- the amount of leverage exerted by jth observation y_j on the fitted value \hat{y}_i .
- Large h_{ii} indicate potential influential

- Not all leverage points are influential points. Should consider h_{ii} with standardized residuals. Large for both are likely to be influential
- since $\sum h_{ii} = rank(\mathbf{H}) = rank(\mathbf{X}) = p$, average size of h_{ii} is $\bar{h} = p/n$
- $h_{ii} > 2p/n$ is consider leverage point (for small sample where 2p/n > 1 then this cutoff doesn't apply)

```
# include beta0
x <- cbind(c(rep(1, n), x1, x2)
# hat matrix
hat <- x%*%solve(t(x)%*%x)%*%t(x)
which(diag(hat)>(2p/n))
```

Cook's Distance

Measure of influence

 $\beta_{(i)} := \text{beta without the } i \text{th data}$

Usual choice of $\mathbf{M} = \mathbf{X}'\mathbf{X}, c = pMS_{res}$

$$D_i = (\mathbf{M}, c) = \frac{(\hat{\beta}_{(i)} - \hat{\beta})' \mathbf{M} (\hat{\beta}_{(i)} - \hat{\beta})}{c}, i \in [1, n]$$

Points with large D_i have considerable influence on the least square estimate $\hat{\beta}$

$$D_i = \frac{r_i^2}{p} \frac{h_{ii}}{1 - h_{ii}} \sim F_{p,n-p}(\alpha)$$

Deleting point i would move the estimate of β to approximately the edge of a $F_{p,n-p}^{-1}(D_i)$ confidence region.

cook.distance(model)

DFFITS, DFBETAS

- Statistic that indicate how much $\hat{\beta}_j$ changes in standard deviation if i was deleted
- Number of standard deviation that the fitted value \hat{y}_i changes if observation i was removed

To Correct Model Inadequacies

Transformation to Linearize the model

 $(\beta_0, x > 0, \beta_1 < 0)$

Figure	Linearizable Function	Transformation	Linear Form $y' = \log \beta_0 + \beta_1 x'$
5.4a, b	$y = \beta_0 x^{\beta_1}$	$y' = \log y, x' = \log x$	
5.4c, d	$y = \beta_0 e^{\beta_1 x}$	$y' = \ln y$	$y' = \ln \beta_0 + \beta_1 x$
5.4e, f	$y = \beta_0 + \beta_1 \log x$	$x' = \log x$	$y' = \beta_0 + \beta_1 x'$
5.4g, h	$y = \frac{x}{\beta_0 x - \beta_1}$	$y' = \frac{1}{y}, x' = \frac{1}{x}$	$y'=\beta_0-\beta_1x'$

 $model \leftarrow lm(y^I(x^2)+I(1/X))$

Analytical Methods for Selecting a Transformation

Transformation on y: Box-Cox Method

Power transformation y^{λ} using maximum likelihood Estimate β, λ

$$y^{(\lambda)} = \begin{cases} \frac{y^{\lambda} - 1}{\lambda y \dot{y} y^{\lambda - 1}}, & \lambda \neq 0 \\ \dot{y} log(y), & \lambda = 0 \end{cases}$$
$$\dot{y} = exp\left[\frac{1}{n} \sum_{i=1}^{n} log(y_i)\right]$$
$$\mathbf{v}^{(\lambda)} = \mathbf{X}\beta + \epsilon$$

Transform $y = y^{(\lambda)}$ if $\lambda \neq 0$ else log(y)

Transformation on X: Box and Tidwell

Estimate β_0, β_1, α

$$\xi = \begin{cases} x^{\alpha}, & \alpha \neq 0\\ log(x), & \alpha = 0 \end{cases}$$

To estimate α

- 1. Initial a model by least square method $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$
- 2. fit a new model adding w = xlog(x) $\hat{y} = \hat{\beta}'_0 + \hat{\beta}'_1 x + \hat{\gamma} w$
- 3. then take

$$\alpha_1 = (\hat{\gamma}/\hat{\beta}_1) + 1$$

Repeat procedure (1-3) with $x' = x^{\alpha_1}$

Procedure converge rapidly, often first stage result α is a satisfactory estimate of α

Generalized and Weighted Least Squares

Weighted Least Squares

Linear regression models with nonconstant variance. Deviation between y_i, \hat{y}_i is multiplied by a weight $w_i \propto 1/Var(y_i)$

WLS estimators are unbiased

 $MS_{(w)RES}$ is unbiased estimator of σ^2

$$S(\beta_0, \beta_1) = \sum_{i=1}^n w_i (y_i - \beta_0 - \beta_1 x_i)^2$$

$$w_i = \frac{1}{\sigma_i^2}$$

$$w_i = w_j \Leftrightarrow \sigma_i = \sigma_j$$

$$\hat{\beta}_0 = \bar{y}_w - \hat{\beta}_1 \bar{x}_w$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n w_i (x_i - \bar{y}_w) (y_i - \bar{x}_w)}{\sum_{i=1}^n w_i (x_i - \bar{x}_w)^2}$$

$$\bar{x}_w = \frac{\sum_{i=1}^n w_i x_i}{\sum_{i=1}^n w_i} \quad \bar{y}_w = \frac{\sum_{i=1}^n w_i y_i}{\sum_{i=1}^n w_i}$$

Benefits

- In transformed model, coefficient estimates are hard to interpret. Interpretation for WLS remain the same
- $\bullet~$ WLS can remove an observation by setting weight = 0
- WLS also can weight down outlier and influential point

Generalized Least Squares

$$\mathbf{y} = \mathbf{X}\beta + \epsilon$$

$$E(\epsilon) = 0 \quad Var(\epsilon) = \sigma^2 \mathbf{V}$$

- OLS: V = I
- WLS: **V** is diagonal, **y** are uncorrelated but have unequal variances
- $\bullet\,$ if off-diagonal V are nonzero, then observations are correlated

Least squares normal equation

$$(\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{V}^{-1}\mathbf{y}$$

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{X}'\mathbf{V}^{-1}\mathbf{y}$$

 $\hat{\beta}$ is the generalized least squares estimate of β

Multicollinearity

Multicollinearity occur when regressors are not orthogonal to each other

Let X_j be the jth column of the matrix X, if

$$\sum_{j=1}^{k} t_j \mathbf{X_j} = 0$$

where t_j are not all zero is approximately true then $\mathbf{X}'\mathbf{X}^{-1}$ does not exist

Sources of Multicollinearity

- Data collection method
 - occur when only subsample of the entire sample space has been selected $\,$

if positive correlation is strong enough, multicollinearity problem will occur

- Constraints on the model or in the population physical constraint regardless of collection method
- Model specification adding polynomial term of regressors
- Overdefined model

fit more regressors than observations

solve by: 1. using lesser regressors 2. do preliminary studies using subset of regressors 3. use principal components

Effects of Multicollinearity

Poor Coefficient Estimate

 $\mathbf{C} := (\mathbf{X}'\mathbf{X})^{-1}$ with only k regressors $L_1^2 :=$ squared distance between $\hat{\beta}$ and β

$$L_1^2 = (\hat{\beta} - \beta)'(\hat{\beta} - \beta)$$

$$E(L_1^2) = E[(\hat{\beta} - \beta)'(\hat{\beta} - \beta)] = \sum_{j=1}^k E(\hat{\beta}_j - \beta_j)^2$$

$$= \sum_{j=1}^k Var(\hat{\beta}_j) = \sigma^2 Tr(X'X)^{-1}$$

$$E(L_1^2) = \sigma^2 \sum_{j=1}^k \frac{1}{\lambda_j}$$

 $\lambda_i := i$ th eigenvalues of $\mathbf{X}'\mathbf{X}$

Trace of matrix is sum of the eigenvalues of matrix When multicollinearity presents, at least one of λ_j is large. Therefore, distance from $\hat{\beta}$ to β is large.

Large Variances and Covariances

if X is unit length scaled matrix

$$Cor(\mathbf{X}) = \mathbf{X}'\mathbf{X}$$

$$[Cor(\mathbf{X})]^{-1} = \mathbf{C} = \frac{1}{1 - R_j^2}$$

$$Var(\hat{\beta}_j) = \sigma^2 C_{jj}$$

 R_j^2 := multiple coefficient of determination from the regression of x_j on the remaining k-1 regressor variables If multicollinearity presents, one of R_j^2 will be large and $Var(\beta_i)$ will be large

Multicollinearity Diagnostics

Examination of the Correlation Matrix

Unit scaled X without intercept

$$r_{ij}$$
 of $\mathbf{X}'\mathbf{X} = cor(\mathbf{X})$

if $|r_{ij}|$ is close to 1, there might be multicollinearity.

Variance Inflation Factors

Since $Var(\beta_i) = \sigma^2 C_{ij}$. C_{ij} increase with VIF.

VIF is the factor by which variance increase due to near-linear dependence among the regressors

$$VIF_j = \frac{1}{1 - R_j^2}$$

If $VIF_j > 5$, associated regression coefficient are poorly estimated due to multicollinearity

```
diag(solve(t(X)%*%X))
diag(solve(cor(X)))
```

Eigensystem Analysis of X'X

eigenvalues of $\mathbf{A}_{k \times k}$ are the k roots of the equation $|\mathbf{A} - \lambda \mathbf{I}| = 0$

eigen(X)\$values

small eigenvalues are indications of multicollinearity

Kappa
$$k = \frac{\lambda_{max}}{\lambda_{min}}$$

$$k_j = \frac{\lambda_{max}}{\lambda_j}$$

- K < 100: no serious problem
- 100 < l < 1000: moderate to strong multicollinearity
- k > 1000: strong multicollinearity

Eigensystem analysis can be used to identify the nature of the near-linear dependence in data (self-study)

Methods for Dealing with Multicollinearity

- Collect more data
- Respecify the model
- Ridge Regression or Principal Component Regression

Ridge Regression

 $\mathbf{X}'\mathbf{X}$ in correlation form

$$(\mathbf{X}'\mathbf{X} + \lambda \mathbf{I})\hat{\beta}_{\mathbf{R}} = \mathbf{X}'\mathbf{y}$$
$$\hat{\beta}_{\mathbf{R}} = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}'\mathbf{y}$$
$$= (\mathbf{X}'\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}'\mathbf{X}\hat{\beta}$$
$$= \mathbf{Z}_{\lambda}\hat{\beta}$$

when $\lambda = 0$, ridge is least squares estimate

$$\begin{split} MSE(\hat{\beta}_{\mathbf{R}}) &= Var(\hat{\beta}_{\mathbf{R}}) + (\text{bias in } \hat{\beta}_{\mathbf{R}})^2 \\ &= \sigma^2 \sum_{j=1}^k \frac{\lambda_j}{(\lambda_j + \lambda)^2} + \lambda^2 \beta' (\mathbf{X}' \mathbf{X} + \lambda \mathbf{I})^{-2} \beta \end{split}$$

 λ increase: Var decrease bias increase Hoerl and Kennard proved there exist a non-zero λ s.t. MSE of $\hat{\beta}_R < Var(\hat{\beta})$ from OLS. provided $\hat{\beta}'\beta$ is bounded

$$SS_{Res} = (\mathbf{y} - \mathbf{X}\hat{\beta}_{\mathbf{R}})'(\mathbf{y} - \mathbf{X}\hat{\beta}_{\mathbf{R}})$$
$$= (\mathbf{y} - \mathbf{X}\hat{\beta})(\mathbf{y} - \mathbf{X}\hat{\beta}) + (\hat{\beta}_{\mathbf{R}} - \hat{\beta})'\mathbf{X}'\mathbf{X}(\hat{\beta}_{\mathbf{R}} - \hat{\beta})$$

Term of LHS is SS_{Res} for OLS $\hat{\beta}$ Ridge estimates will not necessarily provide the best "fit" to the data. When λ increase, SS_{Res} of $\hat{\beta}_R$ increase and R^2 decrease

Ridge Trace

Objective: finding smallest possible λ s.t. line is stable **Figure 9.5** Ridge trace for acetylene data using nine regressors.

Variable Selection

Basic Strategy for Variable Selection

- 1. Fit full model
- 2. Perform analysis (full residual analysis and investigate collinearity)
- 3. Determine transformation on response and some regressors
- 4. Use t-test on individual regressors
- 5. Perform analysis on edited model (esp residual analysis)

Consequence of Model Misspecfication

- 1. $\hat{\beta}_q$ is biased for subset model
- 2. $Var(\hat{\beta}_q^*) \ge Var(\hat{\beta}_q)$
- 3. $MSE(\hat{\beta}_q^*) \geq MSE(\hat{\beta}_q)$
- 4. $\hat{\sigma}$ is biased for subset model
- 5. $MSE(\hat{y}^*) = Var(\hat{y}^*) \ge MSE(\hat{y})$

Criteria for Evaluating Subset Regression models

R²

$$R_q^2 = \frac{SS_R(q)}{SS_T} = 1 - \frac{SS_{Res(q)}}{SS_T}$$

• Adjusted \mathbb{R}^2

$$R_{adj,p}^2 = 1 - \frac{n-1}{n-p}(1 - R_p^2)$$

 \bullet MS_{Res}

$$MS_{Res} = \frac{SS_{Res}(p)}{n-p}$$

• Akaike Information Criterion

$$AIC = nlog(\frac{SS_{Res}}{n}) + 2p$$

• Bayesian Information Criterion (OLS) by Schwartz and Sawa

$$BIC = nlog(\frac{SS_{Res}}{n}) + plog(n)$$

AIC, BIC must be comparing the same response of the same data size

Computational Techniques for Variable Selection

- Evaluating All Possible models
- Stepwise Regression Methods Forward Selection

Backward Elimination

Forward Selection

- 1. Derived the fitted values and residuals from $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x 1 \pmod{1}$
- 2. Fit the regression model: $\hat{x}_j = \hat{\alpha}_{0j} + \hat{\alpha}_{1j}x_1, j \in [2, k]$
- 3. Derive the simple correlation between the residuals of Model 1 and the residuals from k-1 models above
- 4. The x_j that give the largest correlation will be the next regressor to enter the model

Add to model if

$$F = \frac{SS_R(x_2|x_1)}{MS_{Res}(x_1, x_2)} > F_{in}$$

```
library(leaps)
model <- lm(y~1) # only intercept
step(model, direction="forward",
scope=y~x1+x2+x3)</pre>
```

Backward Elimination

- 1. Start model with k regressor, compute partial F statistic for each regressors as if it was the last variable to enter the model
- 2. regressor with the smallest F stat is examined first and removed if $F < F_{out}$
- 3. Fit new model with rest of k-1 regressors and calculate partial F stat. Regressor with smallest partial F stat is remove if $F < F_{out}$

```
library(leaps)
model <- lm(y~x1+x2+x3)
step(model, direction="backward")</pre>
```

Stepwise Regression Methods

- 1. At each step, all the regressors entered model previously are reassessed via their partial F stat
- 2. A regressor added at earlier step may now be redundant because of the relationship between it and regressors now in the model
- 3. If the partial F stat for a variables is less than F_{out} then variable is dropped from the model
- 4. Stepwise regression method requires two cutoff values. One for entering variables and one for removing them. It's often $F_{in} > F_{out}$

```
library(leaps)
model <- lm(y~x1+x2+x3)
step(model, direction="both")</pre>
```

Strategy for Regression Model Building

Always choose the model passing model adequcy instead of just high r^2

