2011-12 学年第一学期高等数学试题(A)

一、填空题(每小题 4 分, 共 20 分)

1。 设
$$0 < a < b$$
,则 $\lim_{n \to +\infty} (a^{-n} + b^{-n})^{\frac{1}{n}} =$ ______

2。设函数
$$y = y(x)$$
 由参数方程 $\begin{cases} x = t - \ln(1+t) \\ y = t^3 + t^2 \end{cases}$ 所确定,则 $\frac{d^2 y}{dx^2} =$ ______

3。设
$$\varphi(x)$$
是 x 到离 x 最近的整数的距离,则 $\int_0^{100} \varphi(x) dx = ______$

5。已知
$$f(x)$$
 的一个原函数为 $\frac{\sin x}{x}$,则 $\int x^3 f'(x) dx = ______$

二、选择题(每小题 4 分, 共 20 分)

1. 下列命题中正确的一个是(

(A) 若
$$\lim_{x \to x_0} f(x) \ge \lim_{x \to x_0} g(x)$$
,则 $\exists \delta > 0$, $\underline{\exists} 0 < |x - x_0| < \delta$ 时,有 $f(x) \ge g(x)$;

(B) 若
$$\exists \delta > 0$$
, 当 $0 < |x - x_0| < \delta$ 时, 有 $f(x) > g(x)$ 且 $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} g(x)$ 都 存在,则 $\lim_{x \to x_0} f(x) > \lim_{x \to x_0} g(x)$;

(C) 若
$$\exists \delta > 0$$
, 当 $0 < |x - x_0| < \delta$ 时, 有 $f(x) > g(x)$, 则 $\lim_{x \to x} f(x) \ge \lim_{x \to x} g(x)$;

(D) 若
$$\lim_{x \to x} f(x) > \lim_{x \to x} g(x)$$
,则 $\exists \delta > 0$,当 $0 < |x - x_0| < \delta$ 时,有 $f(x) > g(x)$ 。

2. 设
$$f(x)$$
 在 x_0 处可导,则 $\lim_{h\to 0} \frac{f(x_0-2h)-f(x_0)}{2h} = ($

(A)
$$-f'(x_0)$$
 (B) $f'(-x_0)$ (C) $f'(x_0)$ (D) $2f'(x_0)$

(C)
$$f'(x_0)$$

(D)
$$2f'(x_0)$$

3. 设y = f(x)在点 x_0 的某邻域内具有连续的三阶导数,且

$$f'(x_0) = f''(x_0) = 0, f'''(x_0) < 0, \text{ } 1$$

(A)
$$f(x_0)$$
是 $f(x)$ 的极大值

(B)
$$f(x_0)$$
是 $f(x)$ 的极小值

(C)
$$(x_0, f(x_0))$$
 为曲线 $y = f(x)$ 的拐点

4. 设
$$F(x) = \int_{x}^{x+2\pi} e^{\sin t} \sin t dt$$
,则 $F(x)$ (

5.若连续函数 f(x) 满足关系式 $f(x) = \int_0^{2x} f\left(\frac{t}{2}\right) dt + \ln 2$,则 f(x) = 0

- (A) $e^x \ln 2$
- (B) $e^{2x} \ln 2$
- (C) $e^x + \ln 2$ (D) $e^{2x} + \ln 2$

三、解答题(每小题 10 分, 共 60 分)

- 1. 求极限 (1) $\lim_{x\to 0} x^2 \sin \frac{1}{x}$ (2) $\lim_{x\to 0} \left(\frac{a^x + b^x + c^x}{3} \right)^{\frac{1}{x}}$, 其中 a,b,c > 0 。
- 2. 设函数 $f(x) = \begin{cases} \frac{g(x)}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, 其中 g(x) 可导,且在 x = 0 处二阶导数 g''(0) 存在,且
- g(0) = g'(0) = 0, 试求 f'(x), 并讨论 f'(x) 在 x = 0 处的连续性。
- 3。已知函数 f(x) 在 [0,1] 上连续, f(x) 在 (0,1) 上可导,且满足 $f(1) = k \int_{a}^{1/2} x e^{1-x} f(x) dx$, 其中k > 1,证明:至少存在一点 $\xi \in (0,1)$,使得 $f'(\xi) = (1-\xi^{-1})f(\xi)$ 。
- 4. 求 $\int_0^x f(t)g(x-t)dt, (x \ge 0)$, 其中当 $x \ge 0$ 时, f(x) = x, $g(x) = \begin{cases} \sin x, 0 \le x < \frac{\pi}{2} \\ 0, x \ge \frac{\pi}{2} \end{cases}$.
- 5. 求微分方程 $3(1+x^2)y'+2xy=2xy^4$ 满足初始条件 $y|_{x=0}=\frac{1}{2}$ 的特解。
- 6. (1) 计算 $\lim_{n \to +\infty} \left| \frac{\sin \frac{\pi}{n}}{n+1} + \frac{\sin \frac{2}{\pi}}{n+\frac{1}{n+1}} + \dots + \frac{\sin \pi}{n+\frac{1}{n+1}} \right|$
- (2) 设 f(x) 在[0,1]上连续,且1 ≤ f(x) ≤ 2 ,证明: $\int_0^1 f(x) dx \int_0^1 \frac{1}{f(x)} dx \le \frac{9}{8}$ 。