The Flexible Socio Spatial Group Queries

Bishwamittra Ghosh¹, Mohammed Eunus Ali², Farhana M. Choudhury³, Sajid Hasan Apon², Timos Sellis⁴, Jianxin Li⁵

VLDB 2019

¹National University of Singapore

²Bangladesh University of Engineering and Technology

³RMIT University and University of Melbourne, Australia

⁴Swinburne University of Technology, Australia

⁵The University of Western Australia

Socio-spatial Graph

Problem Formulation

Given

- ► Set of meeting points *Q*
- ▶ Socio-spatial graph G = (V, E)

Find top k groups such that

$$score(G_i, q_i) \ge score(G_{i+1}, q_{i+1})$$

where G_i is a subgraph of G, $q_i \in Q$ and $1 \le i \le k-1$

Constraints for a feasible group $G_i = (V, E)$

- minimum social connectivity constraint c
 - ▶ degree(v) ≥ c, $\forall v \in V$
- ► maximum distance d_{max}
 - ▶ $dist(v, q) \le d_{max}, \forall v \in V$
- ightharpoonup minimum group size n_{min} , maximum group size n_{max}
 - $ightharpoonup n_{min} \le |V| \le n_{max}$

Score of group $G_i = (V, E)$ w.r.t. meeting point q

$$egin{aligned} & ext{score}_{ ext{social}} = rac{2|E|}{|V|(|V|-1)} \ & ext{score}_{ ext{spatial}} = 1 - rac{\sum_{v \in V} ext{dist}(v,q)}{d_{max}|V|} \ & ext{score}_{ ext{size}} = rac{|V|}{n_{max}} \end{aligned}$$

 $\mathsf{score} = \alpha \cdot \mathsf{score}_{\mathsf{social}} + \beta \cdot \mathsf{score}_{\mathsf{spatial}} + \gamma \cdot \mathsf{score}_{\mathsf{size}}$

Literature review

There are existing works that address socio spatial group queries. The major gaps are

- ► specific group size⁶ vs variable group size
- finding only the best group⁶ vs top k groups
- ► fixed meeting point vs multiple meeting points⁷
- average social connectivity constraint⁸ vs minimum social connectivity constraint⁹
- ► ranking function combining social and spatial factors¹⁰ vs ranking function combining social, spatial and group size factors

 $^{^{6}}$ [Fang17], [Shen16], [Zhu14],[Yang12]

⁷[Shen16]

⁸[Shen16], [Yang12]

⁹[Fang17],[Zhu14]

¹⁰[Armenatzoglou15]

Contribution

- Exact algorithm
 - member ordering based on spatial distance
 - optimistic assumption (maximum) on social connectivity of including members
 - early termination based on upper bound on spatial distance

Continued...

- ▶ Heuristic approximate approach
 - member ordering based on spatial distance
 - lower bound on social connectivity while including a member in the intermediate group

Continued...

- ▶ A fast approximate approach
 - ▶ a tighter lower bound on social connectivity while including a member in the intermediate group
 - upper bound on spatial distance and lower bound on social connectivity that improves the rank of current exploring group
 - prune when including a member can not increase the score of intermediate group
- Greedy approach
 - avoid backtracking

- ▶ meeting point q₁
- b distance ordered members $\{a, b, c, d \dots\}$

- ▶ meeting point q₂
- distance ordered members $\{b, a, c, \dots\}$

- ▶ meeting point q₁
- ▶ distance ordered members {a, b, c, d . . . }

- meeting point q₂
- distance ordered members $\{b, a, c, \dots\}$

- ▶ meeting point q₁
- ▶ distance ordered members {a, b, c, d . . . }

- ▶ meeting point q₂
- b distance ordered members $\{b, a, c, \dots\}$
 - \emptyset

- ▶ meeting point q₁
- ▶ distance ordered members {a, b, c, d . . . }

- ightharpoonup meeting point q_2
- distance ordered members $\{b, a, c, \dots\}$
 - \emptyset

- meeting point q₁
- ▶ distance ordered members {a, b, c, d . . . }

- meeting point q₂
- distance ordered members
 {b, a, c, ...}

select meeting point that has minimum spatial distance to first unexplored member

- meeting point q₁
- ▶ distance ordered members {a, b, c, d . . . }

- meeting point q₂
- ▶ distance ordered members {b, a, c, . . . }

 $\{a, b, c\}$ is a result group

- ▶ meeting point q₁
- ▶ distance ordered members {a, b, c, d . . . }

- ▶ meeting point q₂
- ▶ distance ordered members {b, a, c, . . . }

- meeting point q₁
- ▶ distance ordered members {a, b, c, d . . . }

- meeting point q₂
- ► distance ordered members { b, a, c, . . . }

Advance termination based on upper bound on spatial distance

- ▶ meeting point q₁
- ▶ distance ordered members {a, b, c, d . . . }

- ▶ meeting point q₂
- ▶ distance ordered members {b, a, c, . . . }

- meeting point q₁
- ▶ distance ordered members {a, b, c, d . . . }

- meeting point q₂
- ▶ distance ordered members {b, a, c, . . . }

 $degree(c, \{a\}) < lower bound on social connectivity$

- meeting point q₁
- ▶ distance ordered members {a, b, c, d . . . }

- meeting point q₂
- ▶ distance ordered members {b, a, c, . . . }

 $degree(c, \{b\}) \ge lower bound on social connectivity$

- meeting point q₁
- ▶ distance ordered members {a, b, c, d . . . }

- ightharpoonup meeting point q_2
- ▶ distance ordered members {b, a, c, ...}

Approximation ratio of fast approximate algorithm

$${\it approximation\ ratio} = \frac{{\it lowest\ scoring\ retrieved\ group}}{{\it best\ scoring\ group\ that\ may\ not\ be\ retrived}}$$

Emphasis	Weights	Approximation ratio
Social score	$\alpha = 1, \beta = \gamma = 0$	$\frac{c}{n_{max}-1}$
Spatial score	$\beta = 1, \alpha = \gamma = 0$	1
Size score	$\gamma=1, \alpha=\gamma=0$	n _{min} n _{max}

Experimental Results

 $\mathsf{B} = \mathsf{Baseline^{11}}, \ \mathsf{E} = \mathsf{Exact}, \ \mathsf{A} = \mathsf{Approximate}, \ \mathsf{FA} = \mathsf{Fast} \ \mathsf{approximate}, \ \mathsf{GA} = \mathsf{Greedy} \ \mathsf{approximate}$

Figure: Computation time of different algorithm

Experimental Results

 $\mathsf{A} = \mathsf{Approximate}, \ \mathsf{FA} = \mathsf{Fast} \ \mathsf{approximate}, \ \mathsf{GA} = \mathsf{Greedy} \ \mathsf{approximate}$

Figure: Percentage of groups in top k of approximate algorithm that also appear in top k, top 1.5k, and top 2k of the exact algorithm

Conclusion

- \triangleright we propose novel top k flexible social spatial group queries
- we devise a ranking function combining social closeness, spatial distance, and group size
- we propose exact algorithm and efficient approximate algorithms
- \blacktriangleright Exact algorithm runs up to $10 \times$ faster than the baseline
- Fast approximate algorithm runs up to $100 \times$ faster than exact algorithm and returns the same set of results in most cases

Thank You