

4.图的最短路径问题

赵宗昌

带权图:边长有"距离"(有时候可能为负值)最短路径就是指连接两点的这些路径中最短的一条。最短的路径长度称为最短距离。

求1到8的最短距离?

_

- >任意两点间最短路:
 - -Floyd(弗洛伊德)算法:(邻接矩阵)单源最短路:
 - -Dijkstra (迪杰斯特拉) 算法 (邻接矩阵)
 - -SPFA算法 (最短路快速算法) (邻接表)

- >1 各种算法的特点及其使用范围
- >2 时间复杂度
- >3 各种最短路径算法的实现

松弛技术(三角不等式)

f[i]:以s为起点,i为终点的最短距离

if
$$(f[u]+w< f[v])$$
 $f[v]=f[u]+w$;

不考虑有负权回路的图的最短路

长度为-3的负权回路

一.floyd算法(计算每一对顶点间的最短路径)

最简单的最短路径算法,可以计算图中任意两点间i到j的最短路径d[i][j]。 Floyed的时间复杂度是O(N³),适用于出现负边权的情况(无负劝回路)。

if (d[i][k]+d[k][j]< d[i][j]) d[i][j]=d[i][k]+d[k][j]

或写成: d[i][j]=min(d[i][j],d[i][k]+d[k][j])

去掉一维k直接更新: d[i][j]=min(d[i][j],d[i][k]+d[k][j])

弗洛伊德算法: 牢记下列4行代码:

邻接矩阵初始化:对角线为0;无边的无穷大使用之前初始化:

```
d[i][i]=0
d[i][j]=a[i][j] i到j有边
=无穷大INF=1000000000; 不能是2000000000;
=0x3f3f3f3f
```

- 1. for (int $k=1; k \le n; k++$)
- 2. for (int i=1; $i \le n$; i++)
- 3. for (int j=1; $j \le n$; j++)
- 4. d[i][j]=min(d[i][j],d[i][k]+d[k][j]);

d[i][j]的变化

k=0				
0	10	49	INF	7
10	0	17	7	5
49	17	0	34	INF
INF	7	34	0	13
7	5	INF	13	0

k=1				
0	10		INF	7
10	0	17	7	5
49	17	0	34	56
INF	7	34	0	13
7	5	56	13	0

5 8
1 2 10
1 3 49
157
2 3 17
2 4 7
255
3 4 34
4 5 13

k=2				
0	10	27	17	7
10	0	17	7	5
27	17	0	24	22
17	7	24	0	12
7	5	22	12	0

k=3				
. 0	10	27	17	7
10	0	17	7	5
27	17	0	24	22
17	7	24	0	12
7	5	22	12	0

k=4				
0	10	27	17	7
10	0	17	7	5
27	17	0	24	22
17	7	24	0	12
7	5	22	12	0

k=5				
0	10	27	17	7
10	0	17	7	5
27	17	0	24	22
17	7	24	0	12
7	5	22	12	0

2 7 8 1 -4 2 -5 -5

59 0 3 8 ∞ 123 0 ∞ ∞ 138 4 0 ∞ ∞ 15-4 **-**5 0 ∞ 241 6 257 ∞ ∞ ∞ 3 2 4 4 1 2 4 3 -5

5 4 6

d[i][j]的变化

k=0				
0	3	8	INF	-4
INF	0	INF	1	7
INF	4	0	INF	INF
2	INF	-5	0	INF
INF	INF	INF	6	0

k=2				
0	3	8	4	-4
INF	0	INF	1	7
INF	4	0	5	11
2	5	-5	0	-2
INF	INF	INF	6	0

k=4					
	0	3	-1	4	-4
	3	0	-4	1	-1
	7	4	0	5	3
	2	-1	-5	0	-2
	8	5	1	6	0

 ∞

 ∞

0

k=1				
0	3	8	INF	-4
INF	0	INF	1	7
INF	4	0	INF	INF
2	5	-5	0	-2
INF	INF	INF	6	0

k=3				
0	3	8	4	-4
INF	0	INF	1	7
INF	4	0	5	11
2	$^{-1}$	-5	0	-2
INF	INF	INF	6	0

k=5				
0	1	-3	2	-4
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
8	5	1	6	0

说明:

1.记住循环变量的顺序,外层是k 2.如果边长a后面没用处,直接使用a(或开始就把边存到d中)即可,无需另外的d←a

时间复杂度: O(n^3) 邻接矩阵存储 可以负权,但不能有负权回路

例1: 主席的居住城市

【问题描述】

OI国共有n个城市,任意两个城市都直接或间接连通,每两个直接相连的城市之间都有一双向公路。OI国的CHEN主席要选择其中一个城市居住,由于他到每个城市考察的概率是相等的,所以他选择的城市到其它所有城市的的最短距离的和应该最小。

现在,给出城市间的道路,请帮助CHEN主席确定居住的城市。

【输入】

第一行,n,表示城市的个数。

以下是n*n的矩阵,描述城市之间的距离,-1表示对应城市间没有道路。

【输出】

第一行: CHEN居住城市的编号(如果有多个城市同时最小,输出编号最小的城市)。

第二行:最小距离和。

已知: n<=100; 城市间的距离不超过100。

dist.in	dist.out
5	2
-1 31 -1 72 -1	234
31 -1 30 -1 70	
-1 30 -1 76 -1	
72 -1 76 -1 40	
-1 70 -1 40 -1	

一本通题目:

训练题目:

- 1: 1342<u>最短路径问题</u>
- 2: 1343牛的旅行 (课后)
- 3: 1378最短路径(shopth) (课后)
- 4: 1381城市路(Dijkstra)

二.Dijkstra(迪杰斯特拉)算法

计算某一顶点到其它所有顶点的最短路径 (单源最短路径问题)

开始点(源点): s

d[i]:顶点i到s的最短距离。

邻接矩阵a[][]存储边长

初始:

d[i]=无边无穷大100000000

d[s]=0;

5 8	
1	
1 2 10	
1 3 49	
157	
2 3 17	
2 4 7	
255	
3 4 34	
4 5 13	

顶点	1	2	3	4	5
vis[i]	1	0	0	0	0
D[i]	0	10	49	∞	7
Path[i]	1	1,2	1,3		1,5
TE 上	1		2	4	_
顶点	1	2	3	4	5
vis[i]	1	0	0	0	1
D[i]	0	10	49	20	7
Path[i]	1	1,2	1,3	1,5,4	1,5
顶点	1	2	3	4	5
vis[i]	1	1	0	0	1
D[i]	0	10	27	17	7
Path[i]	1	1,2	1,2,3	1, 2,4	1,5

顶点	1	2	3	4	5
vis[i]	1	1	0	1	1
D[i]	0	10	27	17	7
Path[i]	1	1,2	1,2,3	1, 2,4	1,5

5 8
1
1 2 10
1 3 49
157
2 3 17
2 4 7
255
3 4 34
4 5 13

顶点	1	2	3	4	5
vis[i]	1	1	1	1	1
D[i]	0	10	27	17	7
Path[i]	1	1,2	1,2,3	1, 2,4	1,5

- 1、在集合2中找一个到start距离最近的顶点k:min{d[k]}
- 2、把顶点k加到集合1中,同时修改集合2中的剩余顶点j的d[j]是否经过k后变短。如果变短修改d[j]

d[j]=min(d[j],d[k]+a[k][j])

3、重复1,直至集合2空为止。

方法1: 四行

```
void dijkstra(int s) {
    memset(vis,0,sizeof(vis));
    for(int i=1;i<=n;i++)d[i]=a[s][i];
    d[s] = 0;
    vis[s]=1;
    for(int i=1;i<n;i++){
        int x=-1, mn=INF;
        for(int j=1;j<=n;j++)if(!vis[j]&&d[j]<mn) mn=d[x=j];
        vis[x]=1;
        for(int j=1;j<=n;j++)if(!vis[j]) d[j]=min(d[j],d[x]+a[x][j]);
```

方法2:

```
void dijkstra(int s) {
    memset(vis,0,sizeof(vis));
    for (int i=1;i<=n;i++)d[i]=INF;</pre>
    d[s]=0;
    for(int i=1;i<=n;i++) {
        int x=-1, mn=INF;
        for(int j=1; j<=n; j++) if(!vis[j]&&d[j]<mn) mn=d[x=j];
        vis[x]=1;//第一次是起点s
        for(int j=1;j<=n;j++)if(!vis[j]) d[j]=min(d[j],d[x]+a[x][j]);
```

时间复杂度: O(n^2) 不能有负权的边

dijkstra训练题目:

1: 1381城市路(Dijkstra)

2: 1379热浪(heatwv)

3: 1376信使(msner)

4: 1344最小花费

5: 1377乘车路线

floyed dijkstra 邻接矩阵存储

补充: 图的邻接表存储

》邻接表是图的一种链式存储结构,在邻接表中,对于图中的每一个顶点u都建立一个单向链表,链表中的每一结点用来描述顶点u的邻接点。

邻接表的实现有两种方法: vector和数组模拟。

◆Vector实现邻接表

无权图:


```
5 7
1 2
1 3
1 4
2 3
2 5
3 5
4 5
```

```
1:2 3 4
2:1 3 5
3:1 2 5
4:1 5
5:2 3 4
```

```
vector<int>g[maxn];
int n,m;
int main(){
    cin>>n;
    cin>>m;
    for(int i=0;i<m;i++) {</pre>
         int u,v;
         cin>>u>>v;
         q[u].push back(v);
         g[v].push back(u);
    for (int i=1;i<=n;i++) {
        int k=g[i].size();
         cout<<i<":";
         for (int j=0;j<k;j++)</pre>
             cout<<q[i][j]<<" ";
         cout << endl;
    return 0;
                              2018: 赵宗昌
```

带权图

40 19 18

5(4 1 40) -> 12(4 5 38)

```
const int maxn=10010;//最大顶点数量
struct Edge{int from;int to;int w;};//边记录
vector<Edge>e;
               //所有的边
vector<int>g[maxn];//每个顶点的邻接点的边的编号
int n,m;
```

5: 9->11->13 5 7 1 2 20 $0(1 \ 2 \ 20) \rightarrow 2(1 \ 3 \ 19) \rightarrow 4(1 \ 4 \ 40)$ 1 3 19 $1(2 \ 1 \ 20) \rightarrow 6(2 \ 3 \ 18) \rightarrow 8(2 \ 5 \ 29)$ 1 4 40 3: $3(3 \ 1 \ 19) \rightarrow 7(3 \ 2 \ 18) \rightarrow 10(3 \ 5 \ 17)$ 2 3 18 2 5 29 $9(5\ 2\ 29) \rightarrow 11(5\ 3\ 17) \rightarrow 13(5\ 4\ 38)$ 3517

4 5 38

g[i]

1->6->8

 $3: 3 \rightarrow 7 \rightarrow 10$

4: 5->12

1: 0->2->4

读入数据建立邻接表

```
cin>>n;
cin>>m;
for(int i=0;i<m;i++) {
    int u, v, w;
    cin>>u>>v>>w;
    e.push back((Edge) {u,v,w});
    e.push back((Edge) {v,u,w});
    q[u].push back(2*i);
    q[v].push back(2*i+1);
```

```
> 访问顶点u的邻接点方法:
> int k=g[u].size();
> for (int j=0; j<k; j++) {</pre>
    int p=g[u][j];;
    int v=e[p].to;//u的邻接点
    int w=e[p].w; //<u,v>边长
```

◆数组模拟链表

```
>struct Edge{
  int u,v,w,next;
```

- **├**};
- > Edge e[maxe];

顶点i	g[i]
1	13
2	10
3	8
4	14
5	12

X	У	w W
2	5	3
1	3	2
3	5	2
2	3	1
1	2	2
4	5	4
1	4	3

边	i	1	2	3	4	5	6	7	8	9	10	11	12	13	14
起点	e[i].u	2	5	1	3	3	5	2	3	1	2	4	5	1	4
终点	e[i].v	5	2	3	1	5	3	3	2	2	1	5	4	4	1
边长	e[i].w	3	3	2	2	2	2	1	1	2	2	4	4	3	3
下一条边	e[i].next	0	0	0	0	4	2	1	5	3	7	0	6	9	11

```
1. for (int i=1; i \le m; i++) {
     int u, v, w;
     scanf ("%d%d%d", &u, &v, &w);
    e[i]=(Edge) \{u, v, w, g[u]\}; g[u]=i;
5. e[i+m]=(Edge) \{v, u, w, g[v]\}; g[v]=i+m;
```

◆访问结点 u 的邻接点:

```
1. for(int i=g[u];i>0;i=e[i].next) {
2.    int v=e[i].v;
3.    ...
4. }
```

附. Bellman-Ford算法

- ▶ 同Dijkstra算法相比,Bellman-Ford算法能够在图中**存在负权边的情况下** 解决单源最短路问题。
- > 其基本思路为:
- ➤ 如果两点之间有最短路,那么最多经过图中所有顶点各一次(如果经过某个顶点两次,那么我们走出了一个环。如果环的权值为非负,显然不划算;如果权值为负,则最短路不存在),也就是说,这条路最多有n-1条边。根据最短路的最优子结构性质,最多包含k条边的最短路可以由最多包含k-1条边的最短路"加一条边"来求得,因此通过反复松弛每条边n-1遍,即可求得源点到所有点的最短路。

▶边表存图(u[i], v[i], w[i])


```
for(int i=1;i<=n;i++) d[i]=INF;
d[s]=0
for(int i=1;i<=n-1;i++)
    for(int j=1;j<=m;j++) {
        x=u[j];      y=v[j];
        if d[x]<INF          d[y]=min(d[y],d[x]+w[i]);
}</pre>
```

有负环的判定:

- > 如果还能松弛 则有负环
- \triangleright for (int i=1; i<=m; i++)
- if (d[u[i]]+w[i]<d[v[i]]) 有负环</p>

Bellman-Ford算法:

单源最短路可以有负权能判断是否有负环时间复杂度为O(nm)

→3.SPFA算法(单源)

- ➤ SPFA算法的全称是: Shortest Path Faster Algorithm
- > SPFA实际上是Bellman-Ford基础上的优化
- > 西南交通大学段凡丁于1994年发表的
- ➤ 给定的图存在负权边,这时类似Dijkstra等算法便没有了 用武之地;而Bellman-Ford算法的复杂度又过高。
- > SPFA算法目前应用最广的最短路径算法。
- > 期望的时间复杂度 O(km) (k<2,m是边数)
- > 邻接表存储边的关系

实现方法:

- 建立一个队列,初始时队列里只有起始点.
- ≻ d[i]记录起始点s到i所有点的<mark>最短路径</mark>.
- 然后执行松弛操作,用依次用队列里有的点u去更新所有后继结点vi的最短路,如果vi被更新成功且不在队列中则把该点加入到队列最后。重复执行直到队列为空。结点可能被多次被更新,可以多次进队列。

If d[u]+w < d[v] then d[v]=d[u]+w

V被更新了,如果队列中不存在,再一次进入队列

018 ・ 赵宗昌


```
void spfa(int s){
    memset(vis,0,sizeof(vis));
    memset(d,0x3f,sizeof(d));
    d[s]=0;
    vis[s]=1;
    q[0]=s;
    int head=0,tail=1;
    while (head!=tail) {
        int u=q[(head++)%maxn];
        vis[u]=0;
        int k=g[u].size();
        for (int i=0;i<k;i++) {</pre>
            int p=g[u][i];
            int v=e[p].to, w=e[p].w;
             if(d[v]>d[u]+w){
                 d[v]=d[u]+w;
                 if (vis[v] == 0) {
                     q[(tail++)%maxn]=v;
                     vis[v]=1;
```

```
void spfa(int s){{
    queue<int>q;
    memset(inq,0,sizeof(inq));
    for(int i=1;i<=n;i++) d[i]=INF;
    d[s]=0;
    q.push(s);inq[s]=1;
    while(!q.empty()){
        int u=q.front();q.pop();
        inq[u]=0;
        for(int i=g[u];i>0;i=e[i].next){
            int v=e[i].v,w=e[i].w;
            if(d[u]+w<d[v]){
                d[v]=d[u]+w;
                if(!inq[v]){
                    q.push(v);
                    inq[v]=1;
```

数组模拟

- > 1. Spfa算法中,可以有负边。
- > 如图中无负环,存在最短路,路径上的顶点个数不会超过n。
- > 所以每个顶点点进入队列的次数不会超过n。
- > 2. Spfa的时间:
- 产在 SPFA 算法中,如果每个顶点都入队列一遍,则将扫描所有向图中每条边一次且仅一次,没有重复,其时间复杂度为 O(m);如果每个顶点平均入队列 k 次,则 SPFA 算法的时间复杂度为 O(km)。通常的情况,k为 2 左右。
- ▶ 3. SPFA 算法中判断负权值回路的方法 在 SPFA 算法中,如果一个顶点入队列的次数超过 n,则表示有 向网中存在负权值回路。如:昆虫洞(Wormholes, poj3259)

- ▶ 用 SPFA 算法判断是否存在负权值回路的原理是:如果存在负权值回路,那么从源点到某个顶点的最短路径可以无限缩短,某些顶点入队列将超过 N 次 (N 为顶点个数)。因此,只需在 SPFA算法中统计每个顶点入队列的次数,在取出队列头顶点时,都判断该顶点入队列的次数是否已经超过 N 次,如果是,说明存在负权值回路,则 SPFA 算法不需要再进行下去了。
 - 另外,如果存在负权值回路,在退出 SPFA 算法时队列可能不为空,所以在进行下一个测试前清空队列。
- While(!q.empty())q.pop();

训练题目:

1: 1382<u>最短路(Spfa)</u>

2: 1380<u>分糖果(candy)</u>

3: 1345香甜的黄油

◆应用:

- ▶1. 奶牛派对(Silver Cow party poj3268)
- **>2.** 昆虫洞(Wormholes poj3259)