Sur le théorème de Fermat

1. (a) Pour k compris entre 1 et p-1, le théorème de division euclidienne nous dit qu'il existe un unique couple d'entiers (q_k, r_k) tel que :

$$\begin{cases} ka = q_k p + r_k \\ 0 \le r_k \le p - 1 \end{cases}$$

Le reste r_k est nul si, et seulement si, le nombre premier p divise ka, ce qui implique qu'il divise k ou a, ce qui est impossible pour $1 \le k \le p-1$ et a premier avec p.

On a donc $1 \le r_k \le p - 1$.

Si $1 \le j < k \le p-1$ sont tels que $r_k = r_j$, on a alors $(k-j)a = (q_k - q_j)p$ et p divise (k-j)a en étant premier avec k-j et a, ce qui est impossible.

On a donc $r_k \neq r_j$ pour $1 \leq j \neq k \leq p-1$.

(b) Pour k comprisentre 1 et p-1, on a $ka \equiv r_k$ (p), donc:

$$(p-1)!a^{p-1} = (a)(2a)\cdots((p-1)a) \equiv r_1, r_2, \cdots, r_{p-1}(p)$$

(c) Comme les r_k sont deux à deux distincts dans $\{1,2,\cdots,p-1\}$, on a $r_1r_2\cdots r_{p-1}=(p-1)!$ et l'identité précédente s'écrit $(p-1)!a^{p-1}\equiv (p-1)!$ (p), ce qui revient à dire que p divise (p-1)! $(a^{p-1}-1)$.

Le nombre premier p étant premier avec (p-1)! (dans le cas contraire p divise le produit (p-1)! donc l'un des termes du produit, ce qui n'est pas possible), le théorème de Gauss nous dit qu'il divise $a^{p-1}-1$, ce qui revient à dire que $a^{p-1}\equiv 1$ (p).

- 2. Multipliant par a, on a aussi $a^n \equiv a$ (n), identité qui est aussi valable pour a multiple de n. Réciproque par Gauss.
- 3. (a) $3045 \equiv 3 \pmod{13} \Rightarrow 3045^{2018} \equiv 3^{2018} \pmod{13}$ 3 est premier avec 13, d'après le théorème de Fermat $3^{12} \equiv 1 \pmod{13}$. On a alors $3^{12 \times 168 + 2} \equiv 3^3 \pmod{13} \Rightarrow 3^{2018} \equiv 1 \pmod{13}$ et finalement $3045^{2018} \equiv 1 \pmod{13}$.
 - (b) En utilisant le même raisonnement, on montre que $3\,044^{2\,018} \equiv 4 \pmod{13}$.
- 4. Si p divise a, il divise aussi a^b et le reste cherché est nul.

On suppose donc que p ne divise pas a.

En vue de diminuer a, on effectue la division euclidienne de a par p, soit a=q'p+s avec $1\leq s\leq p-1$ et on a $a^b\equiv s^b$ (p).

Ensuite, en vue de diminuer b, on effectue la division euclidienne de b par p-1, soit b=q(p-1)+r avec $0 \le r \le p-2$ et on a $a^b=(a^{p-1})^q a^r$ avec $a^{p-1} \equiv 1$ (p) puisque p ne divise pas a, ce qui donne :

$$a^b \equiv a^r \ (p)$$
$$\equiv s^r \ (p)$$

Le reste cherché est donc celui de la division de s^r par p avec $1 \le s \le p-1$ et $0 \le r \le p-2$. Voir les exemples précédents.

- 5. En calculant 2^{n-1} modulo n, si on trouve un reste différent de 1, l'entier n n'est pas premier. Si on trouve 1, on recommence avec 3 et ainsi de suite.
- 6. Pour $2 \le a \le n-1$, il existe un entier q tel que $a^{n-1}-qn=1$, ce qui signifie que a est premier avec n (Bézout) et en conséquence, n est premier.
- 7. Soit n un nombre de Carmichaël. Si n est pair, alors n-1 est impair et $(-1)^{n-1} = -1$ n'est pas congru à 1 modulo n (on a $n \ge 3$), donc n n'est pas un nombre de Carmichaël.

- 8. (a) On a la décomposition en facteurs premiers $561 = 3 \cdot 11 \cdot 17 = \prod_{k=1}^{3} p_k$ (critères de divisibilité par 3 et par 11).
 - (b) $560 = 2 \cdot 280 = 10 \cdot 56 = 16 \cdot 35$. Soit $a \in \mathbb{Z}$ premier avec 561.
 - (c) Si l'un des p_k divise a, il divise aussi pgcd (a, n) et a n'est pas premier avec n.
 - (d) Dire que $a \in \mathbb{Z}$ est premier avec 561 équivaut à dire qu'il est premier avec chaque p_k et le théorème de Fermat nous dit que $a^{p_k-1} \equiv 1 \mod (p_k)$.
 - (e) En remarquant que 560 est divisible par chaque $p_k 1$ (560 = $2 \cdot 280 = 10 \cdot 56 = 16 \cdot 35$), on en déduit que $a^{560} \equiv 1 \mod(p_k)$ pour k = 1, 2, 3, ce qui équivaut à dire que $a^{560} 1$ est multiple de chaque p_k .
 - (f) En conséquence $a^{560}-1$ est multiple du produit $n=\prod_{k=1}^3 p_k$ puisque les p_k sont premiers deux à deux distincts, ce qui équivaut à $a^{560}\equiv 1$ (561). Conclusion, 561 est de Carmichaël.
- 9. (a) En écrivant que $n-1=(p_1-1)+p_1\,(p_2-1)$, on déduit que n-1 ne peut être divisible par p_2-1 , en effet si p_2-1 divise n-1 il divise p_1-1 avec $p_1< p_2$, ce qui est impossible. On peut aussi dire qu'on a une autre division euclidienne $n-1=q\,(p_2-1)$ qui donne $p_1-1=0$.

En conséquence un nombre de Carmichaël a au moins trois facteurs premiers.

(b) Même démonstration que pour 561.

Soit $n = \prod_{j=1}^{r} p_j$, où $r \geq 3$, $3 \leq p_1 < \cdots < p_r$ sont premiers tels que chaque $p_j - 1$, pour j compris entre 1 et r, divise n - 1.

Un tel entier, produit d'au moins trois nombres premiers est non premier.

Dire que $a \in \mathbb{Z}$ est premier avec n équivaut à dire qu'il est premier avec chaque p_k , pour k compris entre 1 et r, et le théorème de Fermat nous dit que $a^{p_k-1} \equiv 1 \mod (p_k)$. Comme n-1 est divisible par chaque p_k-1 , on a aussi $a^{n-1}=a^{q_k(p_k-1)}=(a^{p_k-1})^{q_k}\equiv 1$

Comme n-1 est divisible par chaque p_k-1 , on a aussi $a^{n-1}=a^{q_k(p_k-1)}=(a^{p_k-1})^{q_k}\equiv 1$ mod (p_k) pour k compris entre 1 et r, ce qui signifie que $a^{n-1}-1$ est multiple de tous les p_k , donc de $n=\prod_{j=1}^r p_j$ puisque les p_k sont premiers deux à deux distincts, ce qui signifie que $a^{n-1}\equiv 1$ (n).

- (c) $n = 1105 = 5 \cdot 13 \cdot 17^2$; $n = 41041 = 7 \cdot 11 \cdot 13 \cdot 41.3$
- 10. L'entier n est non premier et on a $n \equiv 1 \pmod{6a}$, $n \equiv (6a+1)^2 \equiv 1 \pmod{12a}$, $n \equiv (6a+1)(12a+1) \equiv 1 \pmod{18a}$, ce qui signifie que p_k-1 divise n-1 pour k=1,2,3. Donc n est de Carmichaël.

Pour a = 1, on obtient $n = 7 \cdot 13 \cdot 19 = 1729$.

Pour a = 6, on obtient $n = 37 \cdot 73 \cdot 109 = 294409$.

Pour a = 35, on obtient $n = 211 \cdot 421 \cdot 631 = 56052361$.

On admet le résultat suivant. ⁵

- 1. Cela se déduit aussi immédiatement du théorème chinois qui dit que $\mathbb{Z}_n^{\times} \hookrightarrow \prod_{j=1}^r (\mathbb{Z}_{p_j})^{\times}$ et du théorème de Fermat
- 2. Il est somme de deux carrés puisque chaque facteur premier est somme de deux carrés.
- 3. En 1994, Alford, Granville et Pomerance ont montré qu'il existe une infinité de nombres de Carmichaël.
- 4. On ne sait s'il existe une infinité de triplets de nombres premiers de la forme $(p_1, 2p_1 1, 3p_1 2)$
- 5. On utilise le fait que \mathbb{F}_p^* est cyclique.

Théorème 1 (Korselt)

Soit $n \geq 3$ un entier. Les propriétés suivantes sont équivalentes :

- 1. il existe un entier $r \geq 3$ et des nombres premiers $3 \leq p_1 < \cdots < p_r$ tels que $n = \prod_{j=1}^r p_j$ et, pour tout indice j compris entre 1 et r, $p_j 1$ divise n 1;
- $2. \ n \ {\rm est \ non \ premier \ et}:$

$$\forall x \in \mathbb{Z}_n, \ x^n = x$$

<u>3</u>. n est un nombre de Carmichaël.