Cálculo II (M1003) - teste 1 - 15 de Maio de 2021	Duração: 60 minutos
Nome:	N.:

Os telemóveis têm de estar desligados. O uso de calculadoras não é permitido. Não serão corrigidas respostas escritas a lápis.

Deverá responder às questões na própria folha e no espaço respectivo. Se necessitar de mais folhas pode usar uma das duas folhas brancas distribuidas com o enunciado, a outra pode ser usada como folha de rascunho.

Justifique completamente as suas respostas.

1. (0.75 valores) Considere a curva $\alpha:]-1,1[\to \mathbb{R}^2$ definida por $\alpha(t)=(t^2,t^2+1)$. Esboce o traço da curva indicando o sentido do movimento.

2. (1.25 valores) Seja $\beta : \mathbb{R} \to \mathbb{R}^3$ tal que $\beta(t) = (e^t, e^{-t}, \sqrt{2}t)$. Verifique que a velocidade escalar de β no instante t é dada por $e^t + e^{-t}$ e calcule o comprimento da curva entre os instantes t = 0 e $t = \ln(4)$.

3. (1.5 valores) Seja $\gamma: \mathbb{R} \to \mathbb{R}^3$ uma curva definida por $\gamma(t) = (\cos(3t), 4t, \sin(3t))$. Para cada instante $t \in \mathbb{R}$, calcule a velocidade escalar, a aceleração normal e a aceleração tangencial.

4. (1.5 valores) Seja $\delta: I \subseteq \mathbb{R} \to \mathbb{R}^3$ uma curva suave, parametrizada por comprimento de arco cujo traço está contido numa esfera. Mostre que a curvatura de δ nunca se anula.

5. Seja
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 . $(x, y, z) \mapsto (x^4y, xe^z)$.

- (a) (1.5 valores) Determine:
 - (i) $Df_{(1,1,0)}$, a derivada de f no ponto (1,1,0)
 - (ii) Df((1,1,0);(2,4,1)), a derivada direcional no ponto (1,1,0) segundo a direcção (2,4,1).

(b) (1.5 valores) Se
$$g: \mathbb{R}^2 \to \mathbb{R}^3$$
 é uma função derivável tal que $\mathcal{J}g_{(x,y)} = \begin{bmatrix} e^x & x^2 \\ x+y & 2x+xy \\ 1 & 0 \end{bmatrix}$. Determine $\frac{\partial g \circ f}{\partial x}\Big|_{(1,1,0)}$.