IMPLEMENTACJA PLANERA ---założenia

Zrozumienie założeń do implementacji wymaga znajomości algorytmu --w zakresie omówionym na zajęciach wprowadzających oraz w dokumencie

2-Wprowadzenie_do_algorytmu

STRUKTURY DANYCH

Reprezentacja składników stanu--na przykładach

zależność przestrzenna klocek b5 leży na klocku b2

jest reprezentowana w postaci struktury on(b5, b2)

składnik stanu klocek b7 jest wolny

jest reprezentowana w postaci struktury **clear(b7)**

Reprezentacja stanu

--lista struktur reprezentujących składniki stanu

Przykładowy stan:

[on (b4, p1), on (b1, b4), on (b3, b1), on (b2, p3), clear (b3), clear (b2), clear (p2), clear (p4)]

Reprezentacja celów
Cele mają postać składników stanu, np.
on(b1, b3)
Reprezentacja celu nie w pełni ukonkretnionego z nałożonymi więzami przykład
Reprezentacja celu <i>wolne/swobodne X</i> z nałożonym warunkiem <i>X leży na obiekcie b4</i> :
clear(X/ on(X, b4))
Reprezentacja akcjiprzykład
Akcja przenieś b1 z b4 na b3
jest reprezentowana w postaci struktury
move(b1, b4, b3)
Reprezentacja akcji nie w pełni ukonkretnionej z nałożonymi więzami przykłady
Reprezentacja akcji przenieś b4 z obiektu Y na b2 z nałożonym warunkiem b4 leży na obiekcie Y :
move(b4, Y/ [on(b4, Y)], b2))
Reprezentacja akcji przenieś b1 z b4 na Z z nałożonymi warunkami obiekt Z jest wolny oraz obiekt Z jest różny od b1 :
move(b1, b4, Z/[clear(Z), diff(Z, b1)])
Reprezentacja akcji <i>przenieś obiekt X z b4 na b2</i> z nałożonym warunkiem <i>obiekt X leży na b4</i> :
move(X/ [on(X,b4)], b4, b2))

WSTĘPNA WERSJA KODU PROCEDURY GŁÓWNEJ

JEST TO WERSJA WSTĘPNA: DO SKORYGOWANIA I UZUPEŁNIENIA W TRAKCIE OPRACOWANIA ZADANIA

STRUKTURA PROCEDURY GŁÓWNEJ WZOROWANA NA IMPLEMENTACJI PLANERA PRZEDSTAWIONEJ W PODRĘCZNIKU

Bratko Prolog Programming for Artificial Intelligence

ed. 3 Pearson Education / Addison-Wesley 2001

plan (State, Goals, [], State) : -

goals_achieved (Goals, State) .

plan (InitState, Goals, Plan, FinalState) : -

choose_goal (Goal, Goals, RestGoals, InitState), achieves (Goal, Action), requires (Action, CondGoals, Conditions), plan (InitState, CondGoals, PrePlan, State1), inst_action(Action, Conditions, State1, InstAction), perform_action (State1, InstAction, State2), plan (State2, RestGoals, PostPlan, FinalState), conc (PrePlan, [InstAction | PostPlan], Plan).

ARGUMENTY W WYRAŻENIACH PREDYKATOWYCH ---ZAMIERZONE ZNACZENIE ODNIESIONE DO DZIEDZINY PROBLEMU

InitState stan początkowy

Goals lista celów

Plan skonstruowany plan

FinalState stan końcowy

Goal cel wybrany z listy celów

RestGoals pozostałe cele

Action akcja osiągająca zadany cel

CondGoals warunki dla akcji, które stają się nowymi celami Conditions warunki dla akcji do sprawdzenia w stanie,

w którym akcja bedzie wykonywana

PrePlan skonstruowany preplan

State1 stan pośredni 1, osiągany po wykonaniu preplanu

InstAction akcja ukonkretniona przed wykonaniem

State2 stan pośredni 2, osiągany po wykonaniu akcji

w stanie pośrednim 1

PostPlan skonstruowany postplan

CIĄG DALSZY NA NASTĘPNEJ STRONIE

ZALECANA KOLEJNOŚĆ PRACY NAD PROCEDURAMI:
goals_achieved
choose_goal
achieves
requires
inst_action
perform_action

UZUPEŁNIENIA W PROCEDURZE GŁÓWNEJ:
zaimplementowanie ograniczenia długości planu ze zwiększaniem limitu w razie potrzeby
zabezpieczenie przed niszczeniem celów już osiągniętych w trakcie planowania
zaimplementowanie testowego trybu wykonania program, umożliwiającego użytkownikowi sterowanie decyzjami algorytmu w poszczególnych krokach.
Szczegółowe założenia do tych uzupełnień funkcjonalnosci programu będą podane na zajęciach na spotkaniach etapowych

CIĄG DALSZY NA NASTĘPNEJ STRONIE

PRZYDATNE PROCEDURY WBUDOWANE (PREDYKATY SYSTEMOWE)

not LUB \+ - negacja

Przykład użycia:

not(member(X, Lista)) LUB (preferowane) \+ member(X, Lista)

var i nonvar - sprawdzenie, czy zmienna jest ukonkretniona

var(X) - przetworzenie wywołania kończy się powodzeniem wtedy i tylko wtedy, gdy w chwili wywołania X jest zmienną nie ukonkretnioną.

nonvar(X) - przetworzenie wywołania kończy się powodzeniem wtedy i tylko wtedy, gdy w chwili wywołania zmienna X jest ukonkretniona.

=.. - wyodrębnienie ze struktury funktora i listy argumentów lub zbudowanie struktury dla zadanego funktora i listy argumentów

Przykłady użycia:

arc(a, b) = ... L

po przetworzeniu wywołania zmienna L będzie związana z listą [arc, a, b]

X = ... [arc, a, b]

po przetworzeniu wywołania zmienna X będzie związana ze strukturą arc(a, b)