#### FUNDAMENTALS OF LINEAR ALGEBRA

- Inner product and distance
- Orthogonality; orthogonal sets and bases
- Orthogonal projections and decompositions
- Gram-Schmidt process
- QR-factorisation

Wednesday, 22 May 2019

## Inner product

**Definition:** For  $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ , the product  $\mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^n v_i w_i$ 

is called the inner product or scalar product (or dot product).

**Note:** Vectors in  $\mathbb{R}^n$  can be regarded as  $n \times 1$  matrices, e.g.:

$$\mathbf{v} = \left[ \begin{array}{c} v_1 \\ \vdots \\ v_n \end{array} \right] \qquad \mathbf{w} = \left[ \begin{array}{c} w_1 \\ \vdots \\ w_n \end{array} \right]$$

Their transposes are then  $1 \times n$  matrices:

$$\mathbf{v}^{\top} = [ v_1 \dots v_n ] \quad \mathbf{w}^{\top} = [ w_1 \dots w_n ]$$

The result of  $\mathbf{v}^{\top}\mathbf{w}$  is a  $1 \times 1$  matrix, that is, a scalar:

$$\mathbf{v} \cdot \mathbf{w} \equiv \mathbf{v}^{\top} \mathbf{w} = \begin{bmatrix} v_1 & \dots & v_n \end{bmatrix} \begin{vmatrix} w_1 \\ \vdots \\ w_n \end{vmatrix} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n$$

# Inner product and orthogonality

$$\mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^{n} v_i w_i = v_1 w_1 + v_2 w_2 + \ldots + v_n w_n$$

**Theorem:**  $\forall \{\mathbf{v}, \mathbf{w}, \mathbf{x}\} \in \mathbb{R}^n$ :

- $\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$
- $\bullet \ (\mathbf{v} + \mathbf{w}) \cdot \mathbf{x} = \mathbf{v} \cdot \mathbf{x} + \mathbf{w} \cdot \mathbf{x}$
- $\bullet (c \mathbf{v}) \cdot \mathbf{w} = \mathbf{v} \cdot (c \mathbf{w}) = c (\mathbf{v} \cdot \mathbf{w})$
- $\mathbf{v} \cdot \mathbf{v} \geqslant 0$ , and  $\mathbf{v} \cdot \mathbf{v} = 0$  if and only if  $\mathbf{v} = \mathbf{0}$

**Definition:** Two vectors  $\mathbf{v}$  and  $\mathbf{w}$  in  $\mathbb{R}^n$  are called *orthogonal* to each other if  $\mathbf{v} \cdot \mathbf{w} = 0$ . The notation is  $\mathbf{v} \perp \mathbf{w}$ .

**Note:**  $\forall \mathbf{v} \in \mathbb{R}^n$ ,  $\mathbf{v} \perp \mathbf{0}$  because  $\mathbf{0} \cdot \mathbf{v} = 0 \ \forall \mathbf{v}$ .

### Norm and distance

#### **Definitions:**

- The length, or *norm*, of  $\mathbf{v}$  is:  $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{\mathbf{v}^{\top} \mathbf{v}}$ .  $\forall c$ ,  $\|c\mathbf{v}\| = |c| \|\mathbf{v}\|$ .
- A vector with a unit norm (length) is called a *unit vector*. If we divide a non-zero vector  $\mathbf{v}$  by its length  $\|\mathbf{v}\|$  we will obtain a *unit* (or *normalised*) vector  $\mathbf{u}$ :

$$\|\mathbf{u}\| = \left\| \frac{\mathbf{v}}{\|\mathbf{v}\|} \right\| = \frac{\|\mathbf{v}\|}{\|\mathbf{v}\|} = 1.$$

**Definition:** The distance between two vectors  ${\bf v}$  and  ${\bf w}$  in  $\mathbb{R}^n$  is

$$dist(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|$$

**Pythagorean theorem:** If and only if  $\mathbf{v} \perp \mathbf{w}$ ,

$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2.$$

**Definition:** If a vector  $\mathbf{z}$  is orthogonal to every vector in a subspace W of  $\mathbb{R}^n$  then  $\mathbf{z}$  is said to be orthogonal to W.

The set of all vectors that are orthogonal to W is called the orthogonal complement of W and is denoted by  $W^\perp$  .

### **Example:**

Let W be a plane through the origin in  $\mathbb{R}^3$  and L be a line through the origin and perpendicular to W.

If  $\mathbf{z} \in L$  and  $\mathbf{w} \in W$ then  $\mathbf{z} \cdot \mathbf{w} = 0$ .



#### Notes:

L consists of all vectors orthogonal to  $\mathbf{w} \in W$  and W consists of all vectors orthogonal to  $\mathbf{z} \in L$ , so

$$L = W^{\perp} \quad \text{and} \quad W = L^{\perp}$$

A vector  $\mathbf{x} \in W^{\perp}$  if and only if  $\mathbf{x}$  is orthogonal to every vector in a set that spans W.

 $L^{\perp}$  and  $W^{\perp}$  are subspaces of  $\mathbb{R}^n$ .



**Theorem:** Let **A** be an  $m \times n$  matrix. Then

$$(\operatorname{Row} \mathbf{A})^{\perp} = \operatorname{Nul} \mathbf{A}$$
 and  $(\operatorname{Col} \mathbf{A})^{\perp} = \operatorname{Nul} (\mathbf{A}^{\top})$ 



**Proof:** If  $x \in \text{Nul } A$ , then x is orthogonal to each row of A because each row can be treated as a vector in  $\mathbb{R}^n$ :

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Since the rows of  ${\bf A}$  span  ${\rm Row}\,{\bf A}$ ,  ${\bf x}$  is orthogonal to  ${\rm Row}\,{\bf A}$ .

Conversely, if  ${\bf x}$  is orthogonal to  ${\rm Row}\,{\bf A}$ , then  ${\bf x}$  is certainly orthogonal to each row of  ${\bf A}$ , and hence  ${\bf A}{\bf x}={\bf 0}$ .

Thus  $(\operatorname{Row} \mathbf{A})^{\perp} = \operatorname{Nul} \mathbf{A}$  is true for any matrix including  $\mathbf{A}^{\top}$ .

Therefore 
$$(\operatorname{Col} \mathbf{A})^{\perp} = (\operatorname{Row}(\mathbf{A}^{\top}))^{\perp} = \operatorname{Nul} \mathbf{A}^{\top}.$$
 (recall that  $\operatorname{Row} \mathbf{A}^{\top} = \operatorname{Col} \mathbf{A}$ ).

# Orthogonal sets

**Definition:** A set of vectors  $\{\mathbf{u}_1, \dots \mathbf{u}_p\}$  in  $\mathbb{R}^n$  is called an *orthogonal set* if each pair of vectors from the set is orthogonal:

$$\mathbf{u}_i \cdot \mathbf{u}_j = 0 \qquad \forall \ i \neq j$$

**Example:** Show that this set is orthogonal:

$$\mathbf{u}_1 = \left[ \begin{array}{c} 3 \\ 1 \\ 1 \end{array} \right], \ \ \mathbf{u}_2 = \left[ \begin{array}{c} -1 \\ 2 \\ 1 \end{array} \right], \ \ \mathbf{u}_3 = \left[ \begin{array}{c} -1 \\ -4 \\ 7 \end{array} \right].$$

**Solution:** Consider all the possible pairs:

$$\mathbf{u}_1 \cdot \mathbf{u}_2 = 3 \cdot (-1) + 1 \cdot 2 + 1 \cdot 1 = 0$$
  
 $\mathbf{u}_1 \cdot \mathbf{u}_3 = 3 \cdot (-1) + 1 \cdot (-4) + 1 \cdot 7 = 0$ 

$$\mathbf{u}_1 \cdot \mathbf{u}_3 = \mathbf{0} \cdot (1) + 1 \cdot (4) + 1 \cdot 7 = 0$$
  
 $\mathbf{u}_2 \cdot \mathbf{u}_3 = -1 \cdot (-1) + 2 \cdot (-4) + 1 \cdot 7 = 0$ 

Each pair is orthogonal, thus  $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$  is an orthogonal set.



## Orthogonal sets

**Theorem:** If  $S = \{\mathbf{u}_1, \dots \mathbf{u}_p\} \in \mathbb{R}^n$  is an orthogonal set of non-zero vectors, then S is a linearly independent set and hence it is a basis for the subspace spanned by S.

**Proof:** Let us consider the equation for linear (in)dependence:

$$\mathbf{0} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \ldots + c_p \mathbf{u}_p$$

Multiply this relation by  $\mathbf{u}_1$  from either side:

$$\mathbf{0} \cdot \mathbf{u}_1 = (c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_p \mathbf{u}_p) \cdot \mathbf{u}_1$$
$$0 = c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1) + c_2 (\mathbf{u}_2 \cdot \mathbf{u}_1) + \dots + c_p (\mathbf{u}_p \cdot \mathbf{u}_1)$$
$$0 = c_1 (\mathbf{u}_1 \cdot \mathbf{u}_1)$$

where only the first term remains since  $\mathbf{u}_1 \perp \{\mathbf{u}_2, \dots \mathbf{u}_p\}$ . However  $\mathbf{u}_1 \neq \mathbf{0}$  so  $\mathbf{u}_1 \cdot \mathbf{u}_1 \neq 0$  and thus we must have  $c_1 = 0$ . Similarly  $c_2, \dots c_p$  are also all zero. Thus S is linearly independent.

# Orthogonal basis

**Definition:** An *orthogonal basis* for a subspace V of  $\mathbb{R}^n$  is such a basis for V which is an orthogonal set.

Coordinates with respect to an orthogonal basis are easily found:

**Theorem:** Let  $\{\mathbf{u}_1, \dots \mathbf{u}_p\}$  be an orthogonal basis for a subspace V of  $\mathbb{R}^n$ . For each  $\mathbf{x} \in V$ , the linear combination

$$\mathbf{x} = c_1 \mathbf{u}_1 + \ldots + c_p \mathbf{u}_p$$
 has the weights  $c_i = \frac{\mathbf{x} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i}$ 

Proof: Compute all the inner products, as in the previous proof

$$\mathbf{x} \cdot \mathbf{u}_i = (c_1 \mathbf{u}_1 + \ldots + c_p \mathbf{u}_p) \cdot \mathbf{u}_i = c_i (\mathbf{u}_i \cdot \mathbf{u}_i)$$

Since  $\mathbf{u}_i \neq \mathbf{0}$ , then  $\mathbf{u}_i \cdot \mathbf{u}_i \neq 0$  and we can find  $c_i = \frac{\mathbf{x} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i}$ 

# Orthogonal basis

**Example:** Find  $[y]_{\mathcal{B}}$  in the orthogonal basis  $\mathcal{B} = \{u_1, u_2, u_3\}$ :

$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} -1 \\ -4 \\ 7 \end{bmatrix}; \qquad \mathbf{y} = \begin{bmatrix} 6 \\ 1 \\ -8 \end{bmatrix}$$

**Solution:** To find the coordinates  $[y]_{\mathcal{B}}$  we compute

$$\mathbf{y} \cdot \mathbf{u}_1 = 6 \cdot 3 + 1 \cdot 1 - 8 \cdot 1 = 11,$$
  $\mathbf{u}_1 \cdot \mathbf{u}_1 = 3^2 + 1^2 + 1^2 = 11$   
 $\mathbf{y} \cdot \mathbf{u}_2 = -6 \cdot 1 + 1 \cdot 2 - 8 \cdot 1 = -12,$   $\mathbf{u}_2 \cdot \mathbf{u}_2 = (-1)^2 + 2^2 + 1^2 = 6$   
 $\mathbf{y} \cdot \mathbf{u}_3 = -6 \cdot 1 - 1 \cdot 4 - 8 \cdot 7 = -66,$   $\mathbf{u}_3 \cdot \mathbf{u}_3 = (-1)^2 + (-4)^2 + 7^2 = 66$ 

Thus 
$$\mathbf{y} = \frac{11}{11} \mathbf{u}_1 - \frac{12}{6} \mathbf{u}_2 - \frac{66}{66} \mathbf{u}_3$$
 and  $[\mathbf{y}]_{\mathcal{B}} = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}$ 

It is quite easy to find coordinates in an orthogonal basis.

For a non-orthogonal case we would need to solve a linear system.

# Orthogonal projections

Given a non-zero vector  $\mathbf{u} \in \mathbb{R}^n$ , consider decomposing another vector  $\mathbf{y} \in \mathbb{R}^n$  into the sum of two vectors, such that

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}, \qquad \hat{\mathbf{y}} = \alpha \mathbf{u}, \qquad \mathbf{z} \perp \mathbf{u}$$

Consider  $\mathbf{z} = \mathbf{y} - \alpha \mathbf{u}$ , which is orthogonal to  $\mathbf{u}$  if and only if

$$0 = \mathbf{z} \cdot \mathbf{u} = (\mathbf{y} - \alpha \mathbf{u}) \cdot \mathbf{u} = \mathbf{y} \cdot \mathbf{u} - \alpha (\mathbf{u} \cdot \mathbf{u})$$

Hence

$$\alpha = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \qquad \hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \, \mathbf{u}$$

 $\hat{\mathbf{y}}$  is the *orthogonal projection* of  $\mathbf{y}$  onto  $\mathbf{u}$ , and  $\mathbf{z}$  is called the component orthogonal to  $\mathbf{u}$ .



# Orthogonal projections

The orthogonal projection  $\hat{\mathbf{y}}$  does not depend on the length of  $\mathbf{u}$ . Indeed, if we replace  $\mathbf{u}$  by  $\mathbf{u}'=k\mathbf{u}$ , then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}'}{\mathbf{u}' \cdot \mathbf{u}'} \mathbf{u}' = \frac{\mathbf{y} \cdot (k\mathbf{u})}{(k\mathbf{u}) \cdot (k\mathbf{u})} (k\mathbf{u}) = \frac{k (\mathbf{y} \cdot \mathbf{u})}{k^2 (\mathbf{u} \cdot \mathbf{u})} k \mathbf{u} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}.$$

#### **Definition:**

$$\hat{\mathbf{y}} \equiv \operatorname{proj}_L \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$$

is the *orthogonal projection* of y onto  $L = \operatorname{Span}\{u\}$ .



Subspace  $L = \operatorname{Span}\{\mathbf{u}\}$  is a line through  $\mathbf{u}$  and  $\mathbf{0}$ .

## Orthogonal projections

**Example:** Find orthogonal projection of y onto u and write y as the sum of two vectors,  $\hat{y} \in \operatorname{Span}\{u\}$  and  $z \perp u$ , for

$$\mathbf{y} = \begin{bmatrix} 7 \\ 6 \end{bmatrix}, \qquad \mathbf{u} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}.$$

**Solution:** First we compute  $y \cdot u$  and  $u \cdot u$ :

$$\mathbf{y} \cdot \mathbf{u} = \mathbf{y}^{\top} \mathbf{u} = \begin{bmatrix} 7 & 6 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 40,$$
  
 $\mathbf{u} \cdot \mathbf{u} = \mathbf{u}^{\top} \mathbf{u} = \begin{bmatrix} 4 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = 20.$ 

Then the orthogonal projection and the orthogonal component are

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = \frac{40}{20} \begin{bmatrix} 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 8 \\ 4 \end{bmatrix}$$
$$\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 7 \\ 6 \end{bmatrix} - \begin{bmatrix} 8 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$$

## Geometric interpretation

For two orthogonal basis vectors  $\mathbf{u}_1, \mathbf{u}_2 \in \mathbb{R}^2$ :

$$\mathbf{y} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2$$
 with  $c_j = rac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}$ 



The first term is the projection of y onto the line  $\mathrm{Span}\{u_1\}$ , and the second term is the projection of y onto the line  $\mathrm{Span}\{u_2\}$ .

### **Theorem:** (the orthogonal decomposition theorem)

Let W be a subspace of  $\mathbb{R}^n$ . Then  $\forall \mathbf{y} \in \mathbb{R}^n$  there is a unique decomposition

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z},$$

where  $\hat{\mathbf{y}} \in W$  and  $\mathbf{z} \in W^{\perp}$ .



If  $\{\mathbf{u}_1, \dots \mathbf{u}_p\}$  is any orthogonal basis in W,

$$\hat{\mathbf{y}} = \sum_{i=1}^p rac{\mathbf{y} \cdot \mathbf{u}_i}{\mathbf{u}_i \cdot \mathbf{u}_i} \, \mathbf{u}_i \qquad ext{and} \qquad \mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}.$$

 $\hat{\mathbf{y}} \equiv \operatorname{proj}_W \mathbf{y}$  is called the *orthogonal projection* of  $\mathbf{y}$  onto W.

#### Notes:

- The uniqueness of the decomposition indicates that the orthogonal projection  $\hat{\mathbf{y}}$  depends only on W but not on a particular basis used in W.
- If  $\mathbf{y} \in W$  then  $\operatorname{proj}_W \mathbf{y} = \mathbf{y}$ .

### Example: Let

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

The set  $\{\mathbf{u}_1, \mathbf{u}_2\}$  is an orthogonal basis for  $W = \mathrm{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$ . (indeed,  $\mathbf{u}_1 \cdot \mathbf{u}_2 = -4 + 5 - 1 = 0$  so the vectors are orthogonal)

Decompose  ${\bf y}$  into a vector in W and a vector orthogonal to W .

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}, \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}.$$

**Solution:** 

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2.$$

$$\mathbf{y} \cdot \mathbf{u}_1 = 2 + 10 - 3 = 9$$
  $\mathbf{y} \cdot \mathbf{u}_2 = -2 + 2 + 3 = 3$   
 $\mathbf{u}_1 \cdot \mathbf{u}_1 = 4 + 25 + 1 = 30$   $\mathbf{u}_2 \cdot \mathbf{u}_2 = 4 + 1 + 1 = 6$ 

$$\hat{\mathbf{y}} = \frac{9}{30} \begin{bmatrix} 2\\5\\-1 \end{bmatrix} + \frac{3}{6} \begin{bmatrix} -2\\1\\1 \end{bmatrix} = \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix}$$

and

$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} -2/5 \\ 2 \\ 1/5 \end{bmatrix} = \begin{bmatrix} 7/5 \\ 0 \\ 14/5 \end{bmatrix}.$$

$$\mathbf{u}_1 = \begin{bmatrix} 2\\5\\-1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} -2\\1\\1 \end{bmatrix}, \quad \hat{\mathbf{y}} = \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix}, \quad \mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} 7/5\\0\\14/5 \end{bmatrix}.$$

The theorem ensures that  $(\mathbf{y} - \hat{\mathbf{y}}) \in W^{\perp}$ .

We can verify that  $(\mathbf{y} - \hat{\mathbf{y}}) \cdot \mathbf{u}_1 = 0$  and  $(\mathbf{y} - \hat{\mathbf{y}}) \cdot \mathbf{u}_2 = 0$ .

The final decomposition is

$$\mathbf{y} = \begin{bmatrix} 1\\2\\3 \end{bmatrix} = \begin{bmatrix} -2/5\\2\\1/5 \end{bmatrix} + \begin{bmatrix} 7/5\\0\\14/5 \end{bmatrix}.$$

## Properties of projection

**Theorem:** (the best approximation theorem)

Let W be a subspace of  $\mathbb{R}^n$ ,  $\mathbf{y} \in \mathbb{R}^n$ , and  $\hat{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}$ .

Then  $\hat{\mathbf{y}}$  is the point in W closest to  $\mathbf{y}$  in the sense that

$$\|\mathbf{y} - \hat{\mathbf{y}}\| < \|\mathbf{y} - \mathbf{v}\| \qquad \forall \, \mathbf{v} \neq \hat{\mathbf{y}}$$

**Definition:** The distance from a point y in  $\mathbb{R}^n$  to a subspace W is defined as the distance from y to the nearest point in W.

#### Notes:

- $oldsymbol{\hat{y}}$  is called the *best approximation* to  $oldsymbol{y}$  by elements of W .
- In a sense, we approximate  $\mathbf{y}$  by a variable vector  $\mathbf{v} \in W$ . The distance from  $\mathbf{y}$  to  $\mathbf{v}$ , given by  $\|\mathbf{y} \mathbf{v}\|$ , can be regarded as the 'error' incurred by using  $\mathbf{v}$  in place of  $\mathbf{y}$ . This error is minimised when  $\mathbf{v} = \hat{\mathbf{y}}$ .

# Properties of projection

**Example:** Find the distance from y to  $W = \operatorname{Span}\{u_1, u_2\}$  where

$$\mathbf{u}_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}$$

**Solution:** Distance from  $\mathbf{y}$  to W is  $\|\mathbf{y} - \hat{\mathbf{y}}\|$ , where  $\hat{\mathbf{y}} = \operatorname{proj}_W \mathbf{y}$ .

Vectors  $\mathbf{u}_1, \mathbf{u}_2$  form an orthogonal basis for W, and

$$\mathbf{y} \cdot \mathbf{u}_1 = -5 + 10 + 10 = 15$$
  $\mathbf{y} \cdot \mathbf{u}_2 = -1 - 10 - 10 = -21$   
 $\mathbf{u}_1 \cdot \mathbf{u}_1 = 25 + 4 + 1 = 30$   $\mathbf{u}_2 \cdot \mathbf{u}_2 = 1 + 4 + 1 = 6$ 

Then

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \frac{15}{30} \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix} - \frac{21}{6} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix}$$

# Properties of projection

$$\mathbf{u}_1 = \begin{bmatrix} 5 \\ -2 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix}, \quad \hat{\mathbf{y}} = \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix}$$

Then

$$\mathbf{y} - \hat{\mathbf{y}} = \begin{bmatrix} -1 \\ -5 \\ 10 \end{bmatrix} - \begin{bmatrix} -1 \\ -8 \\ 4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 6 \end{bmatrix}$$

and the distance from  ${f y}$  to W is

$$\|\mathbf{y} - \hat{\mathbf{y}}\| = \sqrt{0^2 + 3^2 + 6^2} = \sqrt{45} = 3\sqrt{5}$$

So,  $\hat{\mathbf{y}}$  is the best approximation for  $\mathbf{y}$  within  $\mathrm{Span}\{\mathbf{u}_1,\mathbf{u}_2\}$ ; any other vector in  $\mathrm{Span}\{\mathbf{u}_1,\mathbf{u}_2\}$  will have a greater distance from  $\mathbf{y}$ .

### Orthonormal set and basis

**Definition:** A set  $\{\mathbf{u}_1, \dots \mathbf{u}_p\}$  is called an *orthonormal set* if it is an orthogonal set of unit vectors.

If V is the subspace spanned by such a set, then  $\{\mathbf{u}_1, \dots \mathbf{u}_p\}$  is an *orthonormal basis* for V, since this set is linearly independent.

The simplest example of an orthonormal set is the standard basis  $\{e_1, \dots e_n\}$  for  $\mathbb{R}^n$ .

Any non-empty subset of  $\{e_1, \dots e_n\}$  is orthonormal too, and forms an orthonormal basis for the corresponding sub-space.

# Orthonormal basis and projection

**Theorem:** If  $\mathbf{U} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_p]$ , where  $\{\mathbf{u}_1, \ \dots \ \mathbf{u}_p\}$  is an orthonormal basis for a subspace W of  $\mathbb{R}^n$ , then  $\forall \mathbf{y} \in \mathbb{R}^n$ :

- $\operatorname{proj}_W \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2) \mathbf{u}_2 + \ldots + (\mathbf{y} \cdot \mathbf{u}_p) \mathbf{u}_p$
- $\operatorname{proj}_W \mathbf{y} = \mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{y}$

**Proof:** By the definition of projection

$$\hat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \, \mathbf{u}_1 + \ldots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \, \mathbf{u}_p$$

and taking into account that the basis is orthonormal

$$\mathbf{u}_1 \cdot \mathbf{u}_1 = 1$$
,  $\mathbf{u}_2 \cdot \mathbf{u}_2 = 1$ , ...  $\mathbf{u}_n \cdot \mathbf{u}_n = 1$ 

we immediately obtain

$$\operatorname{proj}_{W} \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_{1}) \mathbf{u}_{1} + (\mathbf{y} \cdot \mathbf{u}_{2}) \mathbf{u}_{2} + \ldots + (\mathbf{y} \cdot \mathbf{u}_{p}) \mathbf{u}_{p}.$$

## Orthonormal basis and projection

### **Proof (contnuing):**

From  $\operatorname{proj}_W \mathbf{y} = (\mathbf{y} \cdot \mathbf{u}_1) \mathbf{u}_1 + (\mathbf{y} \cdot \mathbf{u}_2) \mathbf{u}_2 + \ldots + (\mathbf{y} \cdot \mathbf{u}_p) \mathbf{u}_p$  we see that  $\operatorname{proj}_W \mathbf{y}$  is a linear combination of the columns of  $\mathbf{U}$  with the coefficients  $(\mathbf{y} \cdot \mathbf{u}_1), (\mathbf{y} \cdot \mathbf{u}_2), \ldots (\mathbf{y} \cdot \mathbf{u}_p)$ .

Denoting 
$$\mathbf{x} = \begin{bmatrix} \mathbf{y} \cdot \mathbf{u}_1 \\ \mathbf{y} \cdot \mathbf{u}_2 \\ \vdots \\ \mathbf{y} \cdot \mathbf{u}_p \end{bmatrix}$$
 we can write  $\operatorname{proj}_W \mathbf{y} = \mathbf{U} \mathbf{x}$ .

In turn, the elements of x can be written as

$$\mathbf{u}_1^{\mathsf{T}}\mathbf{y}, \quad \mathbf{u}_2^{\mathsf{T}}\mathbf{y}, \quad \dots \quad \mathbf{u}_p^{\mathsf{T}}\mathbf{y}$$

which are the entries of  $\mathbf{U}^{\top}\mathbf{y}$ .

Thus  $\mathbf{x} = \mathbf{U}^{\top} \mathbf{y}$  and so  $\operatorname{proj}_{W} \mathbf{y} = \mathbf{U} \mathbf{U}^{\top} \mathbf{y}$ .

**Theorem:** Given a basis  $\mathbf{x}_1, \dots \mathbf{x}_p$  for a subspace W of  $\mathbb{R}^n$ , define

$$\mathbf{v}_1 = \mathbf{x}_1$$

$$\mathbf{v}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1$$

$$\mathbf{v}_3 = \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2$$
...

$$\mathbf{v}_p = \mathbf{x}_p - \frac{\mathbf{x}_p \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \, \mathbf{v}_1 - \frac{\mathbf{x}_p \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \, \mathbf{v}_2 - \ldots - \frac{\mathbf{x}_p \cdot \mathbf{v}_{p-1}}{\mathbf{v}_{p-1} \cdot \mathbf{v}_{p-1}} \, \mathbf{v}_{p-1}$$

Then  $\{\mathbf{v}_1, \dots \mathbf{v}_p\}$  is an orthogonal basis for W.

In addition,  $\operatorname{Span}\{\mathbf{v}_1,\ldots\,\mathbf{v}_k\}=\operatorname{Span}\{\mathbf{x}_1,\ldots\,\mathbf{x}_k\}$  for  $1\leqslant k\leqslant p$ .

Orthonormal basis is then obtained by normalising  $v_i$  to unit vectors.

Gram-Schmidt process is an algorithm for producing an orthogonal or orthonormal basis for any non-zero subspace of  $\mathbb{R}^n$ .

**Example:** Consider a linearly independent set

$$\mathbf{x}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} 0\\0\\1\\1 \end{bmatrix}.$$

which is a basis for a subspace W in  $\mathbb{R}^4$ .

We aim to construct an orthogonal basis  $\{{f v}_1,{f v}_2,{f v}_3\}$  for W .

#### Solution:

Step 1: Let 
$$\mathbf{v}_1 = \mathbf{x}_1$$
 and  $W_1 = \operatorname{Span}\{\mathbf{x}_1\} = \operatorname{Span}\{\mathbf{v}_1\}$ .

Step 2: Vector  $\mathbf{v}_2$  is then produced by subtracting from  $\mathbf{x}_2$  its projection onto the subspace  $W_1$ . That is,

$$\mathbf{v}_2 = \mathbf{x}_2 - \operatorname{proj}_{W_1}(\mathbf{x}_2) = \mathbf{x}_2 - \mathbf{p} = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1.$$

$$= \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix} - \frac{3}{4} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -3/4 \\ 1/4 \\ 1/4 \\ 1/4 \end{bmatrix}$$

For the ease of further calculations, renormalise  $\mathbf{v}_2$  into  $\mathbf{v}_2'$ :

$$\mathbf{v}_2'=4\mathbf{v}_2=egin{bmatrix} -3\\1\\1\\1 \end{bmatrix}$$
 and then  $W_2=\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2'\}$ 

Step 3: Produce  $v_3$  by subtracting from  $x_3$  its  $W_2$ -projection:

$$\operatorname{proj}_{W_2}(\mathbf{x}_3) = \frac{\mathbf{x}_3 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{x}_3 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2$$
$$= \frac{2}{4} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} + \frac{2}{12} \begin{bmatrix} -3\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 0\\2/3\\2/3\\2/3 \end{bmatrix}.$$

Then  $\mathbf{v}_3 = \mathbf{x}_3 - \operatorname{proj}_{W_2}(\mathbf{x}_3)$  is

$$\mathbf{v}_{3} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} - \begin{bmatrix} 0 \\ 2/3 \\ 2/3 \\ 2/3 \end{bmatrix} = \begin{bmatrix} 0 \\ -2/3 \\ 1/3 \\ 1/3 \end{bmatrix}; \qquad \mathbf{v}_{3}' = \begin{bmatrix} 0 \\ -2 \\ 1 \\ 1 \end{bmatrix}$$



Vector  $\mathbf{v}_3 \in W$  because  $\mathbf{x}_3$  and  $\operatorname{proj}_W \mathbf{x}_3$  are both in W.

Thus  $\{\mathbf v_1, \mathbf v_2', \mathbf v_3\}$  is an orthogonal set in W and it is basis for W.

**Example:** Construct an orthonormal basis for

$$\operatorname{Span}\left\{ \left[ \begin{array}{c} 3\\6\\0 \end{array} \right], \left[ \begin{array}{c} 1\\2\\2 \end{array} \right] \right\}$$

**Solution:** 

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} - \underbrace{\frac{3 \cdot 1 + 6 \cdot 2 + 0 \cdot 2}{3^2 + 6^2 + 0^2}}_{10} \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix}.$$

The corresponding orthonormal basis is

$$\mathbf{u}_1 = \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix}, \qquad \mathbf{u}_2 = \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

### Orthonormal matrices

Matrices with columns forming an orthonormal set are important for applications and computing algorithms.

**Theorem:** U has orthonormal columns if and only if  $U^TU = I$ .

**Theorem:** If U has orthonormal columns, then  $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ :

- (a)  $\|\mathbf{U}\mathbf{x}\| = \|\mathbf{x}\|$
- (b)  $(\mathbf{U}\mathbf{x}) \cdot (\mathbf{U}\mathbf{y}) = \mathbf{x} \cdot \mathbf{y}$
- (c)  $(\mathbf{U}\mathbf{x}) \cdot (\mathbf{U}\mathbf{y}) = 0$  if and only if  $\mathbf{x} \cdot \mathbf{y} = 0$

Properties (a) and (c) imply that the linear mapping  $\mathbf{x}\mapsto \mathbf{U}\mathbf{x}$  preserves length and orthogonality.

## Orthogonal matrices

**Definition:** An *orthogonal matrix*  $\mathbf{U}$  is a square invertible matrix such that  $\mathbf{U}^{-1} = \mathbf{U}^{\top}$ .

#### Notes:

- An orthogonal matrix has orthonormal columns.
- Any square matrix with orthonormal columns is orthogonal.
- An orthogonal matrix has orthonormal rows.

### Example:

$$\mathbf{U} = \begin{bmatrix} 3/\sqrt{11} & -1/\sqrt{6} & -1/\sqrt{66} \\ 1/\sqrt{11} & 2/\sqrt{6} & -4/\sqrt{66} \\ 1/\sqrt{11} & 1/\sqrt{6} & 7/\sqrt{66} \end{bmatrix}.$$

is orthogonal because it is square and its columns are orthonormal.

#### **Theorem:** *QR factorisation*

An  $m \times n$  matrix  $\mathbf{A}$  with linearly independent columns can be factorised as  $\mathbf{A} = \mathbf{Q}\mathbf{R}$ , where  $\mathbf{Q}$  is an  $m \times n$  matrix with columns forming an orthonormal basis for  $\mathrm{Col}\,\mathbf{A}$ , and  $\mathbf{R}$  is an  $n \times n$  upper triangular invertible matrix with positive entries on its diagonal.

**Note:** Since  $\mathbf{Q}$  is an orthonormal matrix,  $\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I}$ .

Thus 
$$\mathbf{Q}^{\top}\mathbf{A} = \mathbf{Q}^{\top}\big(\mathbf{Q}\mathbf{R}\big) = \big(\mathbf{Q}^{\top}\mathbf{Q}\big)\mathbf{R} = \mathbf{I}\mathbf{R} = \mathbf{R}$$
 , so  $\mathbf{R} = \mathbf{Q}^{\top}\mathbf{A}$  .

**Proof:** The columns of  ${\bf A}$  form a basis  $\{{\bf a}_1,\ldots {\bf a}_n\}$  for  ${\rm Col}\,{\bf A}$ .

An orthonormal basis  $\{u_1,\ldots u_n\}$  for  $\operatorname{Col} \mathbf A$  can be constructed by using the Gram-Schmidt process.

Then 
$$\forall k = 1 \dots n \quad \mathbf{a}_k \in \operatorname{Span}\{\mathbf{a}_1, \dots \mathbf{a}_k\} = \operatorname{Span}\{\mathbf{u}_1, \dots \mathbf{u}_k\}.$$

Therefore, there are constants  $r_{1k}, \ldots r_{kk}$ , such that

$$\mathbf{a}_k = r_{1k}\mathbf{u}_1 + \ldots + r_{kk}\mathbf{u}_k + 0 \cdot \mathbf{u}_{k+1} + \ldots + 0 \cdot \mathbf{u}_n$$

In case  $r_{kk} < 0$ , multiply  $r_{kk}$  and  $\mathbf{u}_k$  by -1 so that all  $r_{kk} > 0$ .

**Proof (continuing):** Rewriting the same equation in vector form,

$$\mathbf{a}_k = r_{1k}\mathbf{u}_1 + \ldots + r_{kk}\mathbf{u}_k + 0 \cdot \mathbf{u}_{k+1} + \ldots + 0 \cdot \mathbf{u}_n$$

$$\mathbf{u}_k = r_{1k}\mathbf{u}_1 + \ldots + r_{kk}\mathbf{u}_k + \mathbf{0} \cdot \mathbf{u}_{k+1} + \cdots$$
 
$$= \begin{bmatrix} \mathbf{u}_1 & \ldots & \mathbf{u}_n \end{bmatrix} \begin{bmatrix} r_{1k} & & & & \\ \vdots & & & \\ r_{kk} & & & \\ 0 & & & \\ \vdots & & & \end{bmatrix} = \mathbf{Q}\mathbf{r}_k$$
 vectors, we form matrix  $\mathbf{R} = \begin{bmatrix} \mathbf{r}_1 \ldots \mathbf{r}_n \end{bmatrix}$ 

From  $\mathbf{r}_k$  vectors, we form matrix  $\mathbf{R} = [\mathbf{r}_1 \dots \mathbf{r}_n]$  . Then

$$\mathbf{A} = [\mathbf{a}_1 \dots \mathbf{a}_n] = [\mathbf{Q}\mathbf{r}_1 \dots \mathbf{Q}\mathbf{r}_n] = \mathbf{Q}\mathbf{R}$$

By construction,  $\mathbf{R}$  is triangular with positive diagonal entries.

It can be shown that R is invertible because the columns of A are linearly independent (consider  $\mathbf{R}\mathbf{x} = \mathbf{0}$  given that  $\mathbf{A}\mathbf{x} = \mathbf{0}$ ).

### **Example:**

Find a QR decomposition of: 
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
.

**Solution:** Earlier we have found an orthogonal basis for  $\operatorname{Col} \mathbf{A}$  as

$$\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -3\\1\\1\\1 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 0\\-2\\1\\1 \end{bmatrix}.$$

Upon normalisation we obtain

$$\mathbf{Q} = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0\\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6}\\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix}.$$

$$\mathbf{R} = \mathbf{Q}^{\top} \mathbf{A} = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0 \\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6} \\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix}^{\top} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1/2 & 1/2 & 1/2 & 1/2 \\ -3/\sqrt{12} & 1/\sqrt{12} & 1/\sqrt{12} & 1/\sqrt{12} \\ 0 & -2/\sqrt{12} & 1/\sqrt{6} & 1/\sqrt{6} \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 3/2 & 1\\ 0 & 3/\sqrt{12} & 2/\sqrt{12}\\ 0 & 0 & 2/\sqrt{6} \end{bmatrix}.$$

So the QR decomposition is:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1/2 & -3/\sqrt{12} & 0 \\ 1/2 & 1/\sqrt{12} & -2/\sqrt{6} \\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \\ 1/2 & 1/\sqrt{12} & 1/\sqrt{6} \end{bmatrix} \begin{bmatrix} 2 & 3/2 & 1 \\ 0 & 3/\sqrt{12} & 2/\sqrt{12} \\ 0 & 0 & 2/\sqrt{6} \end{bmatrix}$$

## Summary

- ullet Inner product  $\mathbf{u}\cdot\mathbf{v}\equiv\mathbf{u}^{ op}\mathbf{v}=\sum_{i}\mathbf{u}_{i}\mathbf{v}_{i}$
- $\bullet$  Norm  $\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}}$  and distance  $\mathrm{dist}(\mathbf{u},\,\mathbf{v}) = \|\mathbf{u} \mathbf{v}\|$
- Orthogonal vectors, complements, sets, bases
- Orthogonal projections and decompositions
- The best approximation theorem
- ullet Gram-Schmidt process:  ${f v}_1={f x}_1$ , then

$$\mathbf{v}_i = \mathbf{x}_i + \sum_{j=1}^{i-1} \left( -\frac{\mathbf{x}_i \cdot \mathbf{v}_j}{\mathbf{v}_j \cdot \mathbf{v}_j} \, \mathbf{v}_j \right) \qquad i = 2, \dots p$$

ullet  ${f A}={f Q}{f R}$  factorisation:  ${f A}\xrightarrow{{\sf Gram-Schmidt}}{f Q}$ , then  ${f R}={f Q}^{ op}{f A}$ .

### Next lecture

## See you next Wednesday

29 May 2019

Assignment 7 is due this week (on 22–24 May)

Assignment 8 is due next week (on 29–31 May)