E1214 Fundamentos de las Comunicaciones E0311 Comunicaciones

E0214 Comunicaciones

Curso 2023

Adrián Carlotto

comunica@ing.unlp.edu.ar

Temas a tratar

- Distorsión Lineal
- Retardo de fase
- Retardo de grupo

Distorsión lineal

¿Cómo debería ser la respuesta de un sistema lineal que no produce distorsión de la señal?

Si el sistema NO produce distorsión lineal, podemos escribir a la señal de salida como:

La distorsión no se produce porque aparecen componentes que no estaban en la señal de entrada (como en los SNL)

$$y(t) = K x(t - t_o)$$
 ; con K constante real

$$H(f) = K e^{-j2\pi f t_0}$$

Distorsión lineal

$$H(s) = \frac{Y(s)}{X(s)} = \frac{1}{1 + s RC}$$

Retardo de fase y grupo

Definimos al retardo de fase como:

$$T_f \triangleq -\frac{\operatorname{fase}\left\{H(f)\right\}}{2\pi f}$$

Para que el sistema no produzca distorsión lineal, el módulo de la respuesta en frecuencia deberá ser constante y la fase lineal (retardo de fase constante) en el ancho de banda de señal.

En algunos casos podemos relajar esta restricción tan fuerte para el sistema.

Ejemplos

Supongamos una señal de DBL que atraviesa un canal/sistema que no produce distorsión lineal, esto es, en el ancho de banda de señal puede escribirse, $H(f) = G e^{-j2\pi f t_0}$, con $G y t_0$ constantes reales.

$$x(t) = A m(t) \cos(2\pi f_p t) \qquad \text{fase}\{H(f)\} = -2\pi t_0 f \qquad \longrightarrow \qquad T_f \triangleq -\frac{\text{fase}\{H(f)\}}{2\pi f} = t_0 \text{ cte.}$$

La señal a la salida será: $y(t) = A G m(t - T_f) \cos(2\pi f_p(t - T_f))$

Si ahora, la señal atraviesa un canal con ganancia y retardo de grupo constante en el ancho de banda de señal

$$Y(f) = X(f) H(f)$$

$$Y(f) = \frac{1}{2} [M(f + f_p) - M(f - f_p)] H(f) =$$

$$= \frac{G}{2} [M(f + f_p) e^{j\phi_0} - M(f - f_p) e^{-j\phi_0}] e^{j2\pi f T_g}$$

$$y(t) = G m(t - T_g) \cos(2\pi f_p(t - T_g) - \phi_0) = G m(t - T_g) \cos(2\pi f_p(t - T_g - \frac{\phi_0}{2\pi f_p}))$$

¿preguntas?

Foro en Moodle de E214 E1214

Consultas en tiempo real en reuniones virtuales (

Fuentes:

- Principles of Communications, 5/E by Rodger Ziemer and William Tranter, John Wiley & Sons. Inc.
- www.minicircuits.com
- https://www.mwrf.com
- Software Defined Radio Using MATLAB & Simulink and the RTL-SDR. ISBN: 978-0-9929787-1-6

