

Course code	Course Name	L-T-P - Credits	Year of Introduction
CS462	FUZZY SET THEORY AND APPLICATIONS	3-0-0-3	2016

Course Objectives:

- To introduce the theory of fuzzy sets.
- To discuss theoretical differences between fuzzy sets and classical sets.
- To discuss fuzzy logic inference
- To introduce fuzzy arithmetic concepts.
- To discuss fuzzy inference applications in the area of control.

Syllabus:

Theory of Fuzzy Sets: Classical Sets vs Fuzzy Sets, Types of Fuzzy Sets, Operations on Fuzzy Sets, Zadeh's Extension Principle, Fuzzy Relations, Fuzzy Relational Equations, Possibility Theory and Fuzzy Measures. Applications of Fuzzy Sets: Approximate Reasoning, Fuzzy Relational Inference, Fuzzy Controllers, Efficiency and Effectiveness of inference schemes, Functional Approximation capabilities.

Expected Outcome:

The Student will be able to:

- i. interpret fuzzy set theory and uncertainty concepts
- ii. identify the similarities and differences between probability theory and fuzzy set theory and their application conditions
- iii. apply fuzzy set theory in modeling and analyzing uncertainty in a decision problem
- iv. apply fuzzy control by examining simple control problem examples

Text Books:

- 1. George J Klir and Bo Yuan, "Fuzzy Sets and Fuzzy Logic: Theory and Applications", Prentice Hall NJ,1995.
- 2. Timothy J. Ross, "Fuzzy Logic with Engineering Applications", 3rd Edition, Willey, 2010.

References:

- 1. E P Klement, R Mesiar and E. Pap, Triangular norms, Kluwer Academic Press, Dordrecht, 2000.
- 2. H.J. Zimmermann, Fuzzy Set Theory and its Applications, Allied Publishers, New Delhi, 1991.
- 3. Kevin M Passino and Stephen Yurkovich, *Fuzzy Control*, Addison Wesley Longman, 1998
- 4. M Grabisch et al., *Aggregation Functions*, Series Encyclopedia Of Mathematics And Its Applications, Cambridge University Press, 2009
- 5. Michal Baczynski and Balasubramaniam Jayaram, *Fuzzy Implications*, Springer Verlag, Heidelberg, 2008.

Course Plan					
Module	Contents	Hours	End Sem. Exam Marks		
I	Classical sets vs Fuzzy Sets - Need for fuzzy sets - Definition and Mathematical representations - Level Sets - Fuzzy functions - Zadeh's Extension Principle.	06	15%		
II	Operations on [0,1] - Fuzzy negation, triangular norms, t-	06	15%		

	conorms, fuzzy implications, Aggregation Operations, Fuzzy					
	Functional Equations					
FIRST INTERNAL EXAMINATION						
III	Fuzzy Binary and n-ary relations - composition of fuzzy relations - Fuzzy Equivalence Relations - Fuzzy Compatibility Relations - Fuzzy Relational Equations	07	15%			
IV	Fuzzy Measures - Evidence Theory - Necessity and Belief Measures - Probability Measures vs Possibility Measures	07	15%			
SECOND INTERNAL EXAMINATION						
V	Fuzzy Decision Making - Fuzzy Relational Inference - Compositional Rule of Inference - Efficiency of Inference - Hierarchical	08	20%			
VI	Fuzzy If-Then Rule Base - Inference Engine - Takagi-Sugeno Fuzzy Systems - Function Approximation Applications Advanced topics: Adaptive fuzzy inference systems: Adaptive networks - Architectures - Learning rules. Adaptive neuro-fuzzy inference systems (ANFIS) - Architectures - Hybrid learning rules.	08	20%			
END SEMESTER EXAM						

Question Paper Pattern

1. There will be FOUR parts in the question paper – A, B, C, D

2. Part A

- a. Total marks: 40
- b. *TEN* questions, each have 4 marks, covering all the SIX modules (*THREE* questions from modules I & II; *THREE* questions from modules III & IV; *FOUR* questions from modules V & VI). *All* questions have to be answered.

3. Part B

- a. Total marks: 18
- b. THREE questions, each having 9 marks. One question is from module I; one question is from module II; one question uniformly covers modules I & II.
- c. Any TWO questions have to be answered.
- d. Each question can have maximum THREE subparts.

4. Part C

- a. Total marks: 18
- b. *THREE* questions, each having **9 marks**. One question is from **module III**; one question is from **module IV**; one question *uniformly* covers **modules III** & IV
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.

5. Part D

- a. Total marks: 24
- b. *THREE* questions, each having **12 marks**. One question is from **module V**; one question is from **module VI**; one question *uniformly* covers **modules V** & VI.
- c. Any TWO questions have to be answered.
- d. Each question can have *maximum THREE* subparts.
- 6. There will be *AT LEAST* 60% analytical/numerical questions in all possible combinations of question choices.