

Indian Institute of Technology Ropar

Department of Mathematics

MA102 - Linear Algebra and Integral Transforms and Special Functions

Second Semester of Academic Year 2023-24

Tutorial sheet -4

- 1. Let V be a vector space defined as $V = M_{2\times 2}(\mathbb{R})$ over the field \mathbb{R} . Let $W_1 = \left\{ \begin{pmatrix} a & b \\ c & a \end{pmatrix} \in V; a, b, c \in \mathbb{R} \right\}$ and $W_2 = \left\{ \begin{pmatrix} 0 & a \\ -a & b \end{pmatrix} \in V; a, b \in \mathbb{R} \right\}$. Prove that W_1 and W_2 are subspaces of V and find the dimension of $W_1, W_2, W_1 + W_2$ and $W_1 \cap W_2$.
- 2. Let W_1 and W_2 be subspaces of a vector space $V(\mathbb{R})$ having dimensions m and n, respectively, where $m \leq n$.
 - (a) Prove that $\dim(W_1 \cap W_2) \leq m$.
 - (b) Prove that $\dim(W_1 + W_2) \leq m + n$.
- 3. Let $M_4(\mathbb{R})$ be the space of all (4×4) matrices over the field \mathbb{R} . Let

$$W = \left\{ (a_{ij}) \in M_4(\mathbb{R}) | \sum_{i+j=k} a_{ij} = 0, \ k = 2, 3, 4, 5, 6, 7, 8 \right\},\,$$

then find the $\dim(W)$.

- 4. Suppose U and W are both five-dimensional subspaces of $\mathbb{R}^9(\mathbb{R})$. Prove that $U \cap W \neq \{0\}$.
- 5. Suppose that U and W are both four-dimensional subspaces of $\mathbb{C}^6(\mathbb{C})$. Prove that there exist two vectors in $U \cap W$ such that neither of these vectors is scalar multiple of other.
- 6. Suppose V is a finite-dimensional vector space over the field \mathbb{R} with $\dim(V) = n \geq 1$. Prove that there exist 1-dimensional subspaces $U_1, \ldots U_n$ of V such that

$$V = U_1 \oplus \cdots \oplus U_n$$
.

- 7. Determine which of the following mappings are linear transformation.
 - (a) $T: \mathbb{R}^3(\mathbb{R}) \to \mathbb{R}^2(\mathbb{R}), \ T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} xy \\ yz \end{bmatrix}.$
 - (b) $T: \mathbb{R}^3(\mathbb{R}) \to \mathbb{R}^3(\mathbb{R}), \ T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x+1 \\ y \\ z \end{bmatrix}.$
 - (c) Transpose mapping $T: \mathbb{R}^{m \times n}(\mathbb{R}) \to \mathbb{R}^{n \times m}(\mathbb{R}), \ T(A) = A^T$.
 - (d) Trace mapping $tr: \mathbb{R}^{n \times n}(\mathbb{R}) \to \mathbb{R}(\mathbb{R}), \ \operatorname{tr}(A) = \operatorname{trace}(A).$
 - (e) The evaluation mapping $\varepsilon_u : \mathbb{R}[x](\mathbb{R}) \to \mathbb{R}(\mathbb{R})$, $u \in \mathbb{R}$, defined by $\varepsilon_u (a_0 + a_1 x + \cdots + a_n x^n) = a_0 + a_1 u + \cdots + a_n u^n$, where $\mathbb{R}[x]$ is the space of all polynomials over \mathbb{R} .
- 8. Find out whether the following statements are true or false.
 - (a) The differential mapping $\mathcal{D}: \mathcal{C}^1(\mathcal{I}) \to \mathcal{C}^0(\mathcal{I})$, defined by $\mathcal{D}(f(x)) = f'(x)$ is injective, where \mathcal{I} is an open interval in \mathbb{R} , $\mathcal{C}^1(\mathcal{I})$ is the space of all continuously differentiable functions on \mathcal{I} and $\mathcal{C}^0(\mathcal{I})$ is the space of all continuous functions on \mathcal{I} .

- (b) The evaluation mapping is surjective.
- (c) The trace mapping is injective but not surjective.
- 9. Find Null space and Range space of the following mappings.

(a) S:
$$\mathbb{R}^n(\mathbb{R}) \to \mathbb{R}^n(\mathbb{R})$$
 such that $S \begin{bmatrix} x_1 \\ \cdot \\ \cdot \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ x_1 \\ x_2 \\ \cdot \\ \cdot \\ x_{n-1} \end{bmatrix}$

(b)
$$T: \mathbb{R}^n(\mathbb{R}) \to \mathbb{R}^n(\mathbb{R})$$
 such that $T\begin{bmatrix} x_1 \\ \cdot \\ \cdot \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 - x_1 \\ \cdot \\ \cdot \\ \cdot \\ x_n - x_{n-1} \end{bmatrix}$

- 10. Let T be a linear operator on a vector space $V(\mathbb{R})$. Let $v \in V$ and let m be a positive integer such that $T^m v = 0$ and $T^{m-1} v \neq 0$. Then show that $v, Tv, \ldots, T^{m-1} v$ are linearly independent.
- 11. Let $T: \mathbb{R}^2(\mathbb{R}) \to \mathbb{R}^2(\mathbb{R})$ is a map, first reflects this map through x-axis and then reflects through the line y = x. Find the mapping T.
- 12. Find a 2×2 singular matrix B that maps $(1,1)^T$ to $(1,3)^T$.

***** END *****