

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129
Název projektu	SŠPU Opava – učebna IT
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20 vzdělávacích materiálů)
Název sady vzdělávacích materiálů:	MEC IIIa
Popis sady vzdělávacích materiálů:	Mechanika III – dynamika a hydrostatika, 3. ročník.
Sada číslo:	G-20
Pořadové číslo vzdělávacího materiálu:	09
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_G-20-09
Název vzdělávacího materiálu:	Pohybová energie pro translační pohyb
Zhotoveno ve školním roce:	2011/2012
Jméno zhotovitele:	Ing. Karel Procházka

Př.: V ocelovém žlabu se dopravuje uhlí. Jaký musí být:

- a) nejmenší úhel sklonu, má–li uhlí žlabem rovnoměrně klouzat. Dáno: f = 0,24.
- b) zvětšíme–li úhel sklonu žlabu na α = 30° , s jakým zrychlením uhlí sjíždí a jaké dosáhne rychlosti na konci žlabu o délce 8 m?

a)
$$\sum F_{iy}=0$$

$$-F_N+G\cdot\cos\alpha=0 \to F_N=G\cdot\cos\alpha$$

$$F_S=0 \qquad F_S=0 \text{ (uhlí nemá propadávat, má sjíždět)}$$

$$\sum F_{ix} = 0$$

$$F_{T} = F_{N} \cdot f$$

$$-F_{T} + G \cdot \sin \alpha = 0$$

$$-F_{N} \cdot f + G \cdot \sin \alpha = 0$$

$$-G \cdot \cos \alpha \cdot f + G \cdot \sin \alpha = 0$$

$$\sin \alpha = f \cdot \cos \alpha$$

$$tg\alpha = \frac{\sin\alpha}{\cos\alpha} = f = 0.24 \rightarrow \alpha = 13^{\circ}29'$$

 $\sum F_{ix} = 0$

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

 $G \cdot \sin \alpha - F_T - F_S = 0$

b)

$$G \cdot \sin \alpha - F_N \cdot f - F_S = 0$$

$$G \cdot \sin \alpha - F_N \cdot f - m \cdot a = 0$$

$$G \cdot \sin \alpha - G \cdot f \cdot \cos \alpha - m \cdot a = 0 \rightarrow m \cdot a = 0$$

$$= G \cdot \sin \alpha - f \cdot G \cdot \cos \alpha \rightarrow a = 0 \rightarrow m \cdot a = 0$$

$$= \frac{G \cdot \sin \alpha - G \cdot f \cdot \cos \alpha}{m} = 0$$

$$= \frac{m \cdot g \cdot \sin \alpha - m \cdot g \cdot f \cdot \cos \alpha}{m} = \frac{m \cdot g \cdot (\sin \alpha - f \cdot \cos \alpha)}{m} = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\sin \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\cos \alpha - f \cdot \cos \alpha) = 0$$

$$= g \cdot (\cos \alpha -$$

Pohybová energie pro translační pohyb

Pohybová energie hmotného bodu: $\Delta E = \frac{1}{2} \cdot \Delta m \cdot v^2$

U translačního pohybu se každý hmotný bod tělesa pohybuje stejnou rychlostí v.

Pohybová energie celého tělesa je dána součtem pohybových energií jednotlivých bodů, a proto platí, že:

 $v = a \cdot t = 2,87 \cdot 2,36 = 6,8 \text{ m/s}$

 $s = \frac{1}{2}v \cdot t = \frac{1}{2}a \cdot t^2 \rightarrow t = \sqrt{\frac{2s}{a}} = \sqrt{\frac{2 \cdot 8}{2.87}} = 2,36s$

$$\Delta \mathbf{E} = \sum \Delta \mathbf{E}_i = \sum \frac{1}{2} \cdot \Delta m_i \cdot v^2 = \frac{v^2}{2} \cdot \sum \Delta m_i = \frac{m \cdot v^2}{2}$$

Stejně jako u hmotného bodu platí, že práce zrychlující síly se projevuje změnou jeho pohybové energie. Platí to i pro tělesa.

Práce = Energie

W = E

$$F \cdot s = \frac{1}{2} \cdot m \cdot \left(v^2 - v_0^2 \right)$$

Př.: Vlak o hmotnosti $m=2\cdot 10^5\,\mathrm{kg}$ se rozjíždí rovnoměrně zrychleně na rychlost $v=72\,\mathrm{km/h}=20\,\mathrm{m/s}$ na dráze s = 600 m. Určete:

- a) zrychlení při rozjíždění;
- b) zrychlující sílu lokomotivy;
- c) energii pohybu vlaku na konci rozjíždění;
- d) velikost odporu, který působí na vlak, jestliže při vykolejení se zastaví na dráze s = 30 m.

a)
$$s = \frac{1}{2}v \cdot t \to t = \frac{2 \cdot s}{v}$$

 $a = \frac{v}{t} = \frac{v^2}{2 \cdot s} = \frac{20^2}{2 \cdot 600} = 0,333 \text{ m/s}^2$

b)
$$F_z = m \cdot a = 2 \cdot 10^5 \cdot 0,3333 = 66666N$$

c)
$$E_K = \frac{1}{2} m \cdot v^2 = \frac{1}{2} 2 \cdot 10^5 \cdot 20^2 = 40\,000\,000 J = 40\,MJ$$

d)
$$F \cdot s = \frac{1}{2} \cdot m \cdot (v^2 - v_0^2), \ v_0 = 0 \rightarrow F \cdot s = \frac{1}{2} \cdot m \cdot v^2$$

$$F = \frac{m \cdot v^2}{2 \cdot s} = \frac{200000 \cdot 20^2}{2 \cdot 30} = 1333333N = 1333kN$$

Dynamika otáčivého pohybu

Momenty setrvačnosti těles

V pružnosti a pevnosti jsme označovali výraz $\Delta S \cdot y^2 = \Delta J$ jako elementární kvadratický moment průřezu.

V **dynamice** součin elementární hodnoty a čtverce vzdálenosti od uvažované osy $\Delta m \cdot r^2 = \Delta I$ nazýváme elementárním **momentem setrvačnosti**.

Celkový moment setrvačnosti k dané ose:

$$I = \sum \Delta I_i = \Delta m_1 r_1^2 + \Delta m_2 r_2^2 + \dots \left[kg \cdot m^2 \right]$$

Základní pojmy

Moment setrvačnosti k ose procházející těžištěm se značí Io

Redukovaná hmotnost:

V technické praxi často potřebujeme převést (redukovat) hmotu otáčejícího se tělesa s momentem setrvačnosti I_0 do jediného bodu předepsané vzdálenosti ${\bf r}$ od osy otáčení tak, aby moment setrvačnosti tohoto bodu byl stejný jako moment setrvačnosti celého tělesa ke stejné ose.

Redukovanou hmotnost m_r pak určíme ze vztahu:

$$I_0 = m_r \cdot r^2$$

$$m_r = \frac{I_0}{r^2}$$

Tímto způsobem redukujeme např. hmotu setrvačníku do čepu kliky.

Poloměr setrvačnosti

Se zřetelem na zjednodušení vztahů závislých na momentu setrvačnosti se zavádí pojem **poloměr** setrvačnosti a značí se i. Platí:

$$I_0 = m \cdot i^2 \longrightarrow i = \sqrt{\frac{I_0}{m}} \quad [m]$$

 I_0 – moment setrvačnosti k ose procházející těžištěm.

Setrvačný moment

Místo momentu setrvačnosti I se při výpočtech setrvačníků a rotačních částí strojů používá setrvačný moment (m·D²). Bývá uváděn v katalozích elektrických strojů. Podle setrvačného momentu posuzujeme setrvačnost otáčejícího se tělesa.

m – hmotnost celého tělesa;

D – průměr setrvačnosti.

$$D = 2 \cdot i = 2 \cdot \sqrt{\frac{I_0}{m}}$$

$$I_0 = m \cdot i^2$$

i – poloměr setrvačnosti, I₀ – moment setrvačnosti k ose procházející těžištěm.

Mezi momentem setrvačnosti a setrvačným momentem platí vztah:

$$m \cdot D^2 = m \cdot (2 \cdot i)^2 = 4 \cdot \underbrace{m \cdot i^2}_{I_0} = 4 \cdot I_0 \left[kg \cdot m^2 \right]$$

Setrvačný moment **m·D²** je 4 násobkem momentu setrvačnosti **I**₀.

Seznam použité literatury:

- MRŇÁK L. DRDLA A.: MECHANIKA Pružnost a pevnost pro střední průmyslové školy strojnické.
 Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA II Kinematika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., MECHANIKA III Dynamika pro střední průmyslové školy strojnické, Praha: SNTL, 1977.
- JULINA M., KOVÁŘ J., VENCLÍK V., *MECHANIKA IV Mechanika tekutin a termomechanika pro střední průmyslové školy strojnické,* Praha: SNTL, 1977.
- TUREK, I., SKALA, O., HALUŠKA J.: MECHANIKA Sbírka úloh. Praha: SNTL, 1982.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 5. doplněné vydání. Praha: Albra, 2011. ISBN 80-7361-033-7.