Article Carpenter et al. (2012) 1		r 0.46	lower	upper	n 19
Carpenter et al. (2012) 2 Carpenter et al. (2012) 3	├	0.56 0.38	0.14	0.81	19 19
Carpenter et al. (2012) 4 Carpenter et al. (2012) 5		0.48	0.03 -0.43	0.77	19 19
Carpenter et al. (2012) 6 Carpenter et al. (2012) 7		0.18 0.47	-0.30 0.02	0.59 0.76	19 19
Carpenter et al. (2012) 8 Carpenter et al. (2012) 9	-	0.40 0.45	-0.07 -0.01	0.72 0.75	19 19
Carpenter et al. (2012) 10 Carpenter et al. (2012) 11	-	0.46 0.37	0.01 -0.10	0.76 0.71	19 19
Carpenter et al. (2012) 12 Carpenter et al. (2012) 13	 	0.36 0.13	-0.11 -0.34	0.70 0.55	19 19
Carpenter et al. (2012) 14 Carpenter et al. (2012) 15	├	0.13 0.01	-0.34 -0.45	0.55 0.46	19 19
Carpenter et al. (2012) 16 Carpenter et al. (2012) 17		0.01 0.43	-0.45 -0.03	0.46 0.74	19 19
Carpenter et al. (2012) 18 Carpenter et al. (2012) 19		0.52 0.30	0.09 -0.18	0.79 0.66	19 19
Carpenter et al. (2012) 20 Dawson et al. (2009) 1	- 	0.30 0.41	-0.18 0.07	0.66 0.66	19 32
Dawson et al. (2009) 2 Dawson et al. (2009) 3		0.08 0.09	-0.43 -0.42	0.55 0.56	16 16
Dawson et al. (2009) 4 Dawson et al. (2009) 5		0.21 0.18	-0.32 -0.35	0.64 0.62	16 16
Dawson et al. (2009) 6 Hussey & Barnes-Holmes (2012) 1	 	0.21 0.16	-0.32 -0.21	0.64 0.49	16 30
Hussey & Barnes-Holmes (2012) 2 Hussey & Barnes-Holmes (2012) 3	<u> </u>	0.15 -0.03	-0.22 -0.39	0.48 0.33	30 30
Hussey & Barnes-Holmes (2012) 4 Hussey & Barnes-Holmes (2012) 5	⊢	-0.08 0.05	-0.43 -0.32	0.29 0.40	30 30
Hussey & Barnes-Holmes (2012) 6 Hussey & Barnes-Holmes (2012) 7	 	-0.07 0.04	-0.42 -0.32	0.30 0.39	30 30
Hussey & Barnes-Holmes (2012) 8 Hussey & Barnes-Holmes (2012) 9		0.15 0.39	-0.22 0.03	0.48 0.66	30 30
Hussey & Barnes-Holmes (2012) 10 Hussey & Barnes-Holmes (2012) 11		0.16 -0.19	-0.21 -0.52	0.49 0.18	30 30
Hussey & Barnes-Holmes (2012) 12 Hussey & Barnes-Holmes (2012) 13		-0.10 0.17	-0.44 -0.20	0.27 0.50	30 30
Hussey & Barnes–Holmes (2012) 14 Hussey & Barnes–Holmes (2012) 15		0.41 0.11	0.06 -0.26	0.67 0.45	30 30
Hussey & Barnes-Holmes (2012) 16 Hussey & Barnes-Holmes (2012) 17		0.29 0.18	-0.08 -0.19	0.59 0.51	30 30
Hussey & Barnes–Holmes (2012) 18 Hussey & Barnes–Holmes (2012) 19		-0.06 0.16	-0.41 -0.21	0.31 0.49	30 30
Hussey & Barnes-Holmes (2012) 20 Hussey & Barnes-Holmes (2012) 21		0.16 -0.05	-0.21 -0.40	0.49 0.32	30 30
Hussey & Barnes-Holmes (2012) 22 Hussey & Barnes-Holmes (2012) 23	□	0.08 -0.07	-0.29 -0.42	0.43	30 30
Hussey & Barnes-Holmes (2012) 24 Hussey & Barnes-Holmes (2012) 25	- B	0.25	-0.12 -0.30	0.56	30 30
Hussey & Barnes-Holmes (2012) 26 Hussey & Barnes-Holmes (2012) 27		-0.30 -0.08	-0.60 -0.43	0.07	30 30
Hussey & Barnes-Holmes (2012) 28 Hussey & Barnes-Holmes (2012) 29		0.00	-0.36 -0.32	0.36	30 30
Hussey & Barnes-Holmes (2012) 30 Nicholson & Barnes-Holmes (2012a) 1		-0.14 0.44	-0.48 0.09	0.23	30 30
Nicholson & Barnes–Holmes (2012a) 2 Nicholson & Barnes–Holmes (2012a) 3		0.13	-0.24 0.06	0.47	30 30
Nicholson & Barnes-Holmes (2012a) 4 Nicholson & Barnes-Holmes (2012a) 5	<u> </u>	0.04	-0.32 0.13	0.39	30 30
Nicholson & Barnes-Holmes (2012a) 6 Nicholson & Barnes-Holmes (2012b) 1		0.04 -0.09	-0.32 -0.46	0.39	30 26
Nicholson & Barnes-Holmes (2012b) 2 Nicholson & Barnes-Holmes (2012b) 3		0.05 0.40	-0.34 0.01	0.43 0.68	26 26
Nicholson & Barnes-Holmes (2012b) 4 Nicholson & Barnes-Holmes (2012b) 5	=	0.41 0.23	0.03 -0.17	0.69 0.57	26 26
Nicholson & Barnes-Holmes (2012b) 6 Nicholson & Barnes-Holmes (2012b) 7		0.47 0.24	0.10 -0.16	0.73 0.57	26 26
Nicholson & Barnes-Holmes (2012b) 8 Nicholson & Barnes-Holmes (2012b) 9		0.41 0.45	0.03	0.69 0.71	26 26
Nicholson & Barnes-Holmes (2012b) 10 Nicholson, Dempsey et al. (2014) 1		0.27 0.43	-0.13 0.08	0.60 0.69	26 29
Nicholson, Dempsey et al. (2014) 2 Nicholson, Dempsey et al. (2014) 3		0.44 0.28	0.09 -0.10	0.69 0.59	29 29
Nicholson, Dempsey et al. (2014) 4 Nicholson, Dempsey et al. (2014) 5		0.14 0.27	-0.24 -0.11	0.48 0.58	29 29
Nicholson, Dempsey et al. (2014) 6 Nicholson, Dempsey et al. (2014) 7	, 	0.38 0.23	0.02 -0.15	0.66 0.55	29 29
Nicholson, Dempsey et al. (2014) 8 Nicholson, Dempsey et al. (2014) 9	 	0.21 0.12	-0.17 -0.26	0.54 0.47	29 29
Nicholson, Dempsey et al. (2014) 10 Nicholson, Dempsey et al. (2014) 11		0.42 0.31	0.06 -0.06	0.68 0.61	29 29
Nicholson, Dempsey et al. (2014) 12 Nicholson, Dempsey et al. (2014) 13		0.09 0.28	-0.29 -0.10	0.44 0.59	29 29
Nicholson, Dempsey et al. (2014) 14 Nicholson, Dempsey et al. (2014) 15		0.08 0.20	-0.30 -0.18	0.43 0.53	29 29
Nicholson, Dempsey et al. (2014) 16 Nicholson, Dempsey et al. (2014) 17		0.00 -0.07	-0.37 -0.43	0.37	29 29
Nicholson, Dempsey et al. (2014) 18 Nicholson, Dempsey et al. (2014) 19	⊢ ■	0.06 -0.04	-0.31 -0.40	0.42 0.33	29 29
Nicholson, Dempsey et al. (2014) 20 Nicholson, Dempsey et al. (2014) 21		-0.04 0.21	-0.40 -0.17	0.33 0.54	29 29
Nicholson, Dempsey et al. (2014) 22 Nicholson, McCourt et al. (2013) 1		0.19 0.56	-0.19 0.23	0.52 0.78	29 27
Nicholson, McCourt et al. (2013) 2 Nicholson, McCourt et al. (2013) 3		0.43	0.06	0.70	27 27
Nicholson, McCourt et al. (2013) 4 Nicholson, McCourt et al. (2013) 5		0.17 0.03	-0.22 -0.35	0.52 0.41	27 27
Nicholson, McCourt et al. (2013) 6 Nicholson, McCourt et al. (2013) 7		-0.01 0.50	-0.39 0.15	0.37	27 27
Nicholson, McCourt et al. (2013) 8 Nicholson, McCourt et al. (2013) 9	-	0.40	0.02	0.68	27 27
Nicholson, McCourt et al. (2013) 10 Parling et al. (2012) 1		0.16	-0.23 0.07	0.51	27 28
Parling et al. (2012) 2 Parling et al. (2012) 3		0.47	0.12 -0.15	0.72	28 28
Parling et al. (2012) 4 Parling et al. (2012) 5		0.11	-0.27 -0.35	0.46	28 25
Parling et al. (2012) 6 Parling et al. (2012) 7		0.30	-0.11 -0.35	0.62	25 25
Parling et al. (2012) 8 Parling et al. (2012) 9 Parling et al. (2012) 10		0.31	-0.10 0.01 -0.31	0.63 0.64 0.41	25 30 30
Parling et al. (2012) 10 Parling et al. (2012) 11 Parling et al. (2012) 12		0.06 0.27 0.02	-0.31 -0.10 -0.34	0.41 0.57 0.38	30 30
Parling et al. (2012) 12 Parling et al. (2012) 13 Parling et al. (2012) 14		0.02 0.12 0.20	-0.34 -0.27 -0.19	0.38 0.48 0.54	30 27 27
Parling et al. (2012) 14 Parling et al. (2012) 15 Parling et al. (2012) 16		0.20 0.08 0.34	-0.19 -0.31 -0.05	0.54 0.45 0.64	27 27 27
Timko et al. (2010; Study 1) 1 Timko et al. (2010; Study 1) 2	-	-0.09 0.15	-0.05 -0.36 -0.13	0.64 0.19 0.41	50 50
Timko et al. (2010; Study 1) 3 Timko et al. (2010; Study 1) 4	⊢	0.16 0.24	-0.12 -0.04	0.42 0.49	50 50
Timko et al. (2010; Study 1) 5 Timko et al. (2010; Study 1) 6		0.29	0.01	0.53 0.45	50 50
Timko et al. (2010; Study 1) 7 Timko et al. (2010; Study 1) 8		0.29 0.32	0.01 0.05	0.53 0.55	50 50
Timko et al. (2010; Study 1) 9 Timko et al. (2010; Study 1) 10	⊢	-0.03 0.11	-0.31 -0.17	0.25 0.38	50 50
Timko et al. (2010; Study 1) 11 Timko et al. (2010; Study 1) 12		0.15 0.16	-0.13 -0.12	0.41 0.42	50 50
Timko et al. (2010; Study 1) 13 Timko et al. (2010; Study 1) 14		-0.01 -0.17	-0.29 -0.43	0.27 0.11	50 50
Timko et al. (2010; Study 1) 15 Timko et al. (2010; Study 1) 16	─────	-0.01 0.15	-0.29 -0.13	0.27 0.41	50 50
Timko et al. (2010; Study 1) 17 Timko et al. (2010; Study 1) 18		0.20	-0.08 -0.26	0.45	50 50
Timko et al. (2010; Study 1) 19 Timko et al. (2010; Study 1) 20	- ■	0.23	-0.05 -0.18	0.48	50 50
Timko et al. (2010; Study 1) 21 Timko et al. (2010; Study 1) 22	⊢	0.05 -0.21	-0.23 -0.46	0.32 0.07	50 50
Timko et al. (2010; Study 1) 23 Timko et al. (2010; Study 1) 24	<u> </u>	0.16 0.43	-0.12 0.17	0.42	50 50
Timko et al. (2010; Study 1) 25 Timko et al. (2010; Study 1) 26 Timbo et al. (2010; Study 1) 27	<u> </u>	0.08 -0.10	-0.20 -0.37	0.35	50 50
Timko et al. (2010; Study 1) 27 Timko et al. (2010; Study 1) 28 Timko et al. (2010; Study 1) 20		0.14	-0.14 -0.18	0.40	50 50
Timko et al. (2010; Study 1) 29 Timko et al. (2010; Study 1) 30 Timko et al. (2010; Study 1) 31		-0.02 0.17	-0.30 -0.11	0.26 0.43	50 50
Timko et al. (2010; Study 1) 31 Timko et al. (2010; Study 1) 32 Timko et al. (2010; Study 2) 1		0.24	-0.04 -0.04	0.49	50 50
Timko et al. (2010; Study 2) 1 Timko et al. (2010; Study 2) 2 Timko et al. (2010; Study 2) 3		0.12 0.22 0.21	-0.09 0.02	0.32 0.41	93 93
Timko et al. (2010; Study 2) 3 Timko et al. (2010; Study 2) 4 Timko et al. (2010; Study 2) 5		0.21 -0.04	0.01 -0.24 -0.13	0.40 0.17	93 93
Timko et al. (2010; Study 2) 5 Timko et al. (2010; Study 2) 6 Timko et al. (2010; Study 2) 7		0.08	-0.13 -0.15	0.28	93 93
Timko et al. (2010; Study 2) 7 Timko et al. (2010; Study 2) 8 Timko et al. (2010; Study 2) 9		-0.02 -0.14	-0.22 -0.33	0.18 0.07	93 93
Timko et al. (2010; Study 2) 9 Timko et al. (2010; Study 2) 10 Timko et al. (2010; Study 2) 11		-0.04 0.08 -0.08	-0.24 -0.13 -0.28	0.17 0.28 0.13	93 93 93
Timko et al. (2010; Study 2) 11 Timko et al. (2010; Study 2) 12 Vahey et al. (2009) 1		-0.08 -0.05 0.62	-0.28 -0.25 0.37	0.13 0.16 0.79	93 93 37
Vahey et al. (2009) 1 Vahey et al. (2009) 2 Vahey et al. (2009) 3		0.62 0.46 0.04	0.37 0.12 -0.42	0.79 0.70 0.49	37 30 19
Vahey et al. (2009) 3 Vahey et al. (2010) 1 Vahey et al. (2010) 2		0.04 0.89 0.55	-0.42 0.04 -0.25	0.49 0.99 0.90	19 5 8
Vahey et al. (2010) 3		0.55 0.21 0.26	-0.25 -0.39 -0.34	0.90 0.68 0.71	13 13
Vahev et al. (2010) 4		J. ∠ 0		J.1 1	13
Vahey et al. (2010) 4 Meta-analysis (3-level RE confidence interval) Meta-analysis (3-level RE credibility interval)	•	0.22	0.15 0.22	0.29	416 416
Meta-analysis (3-level RE confidence interval) Meta-analysis (3-level RE credibility interval) Meta-analysis (3-level RE prediction interval)	0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1				