Outils Calculatoires Feuille d'exercice 2

Institut Villebon-Charpak

Année 2017 - 2018

Exercice 1 (*) Forme géométrique

Mettre sous forme géométrique $\rho e^{i\theta}$ (avec $\rho > 0$ et $\theta \in [0, 2\pi[)$ les nombres complexes suivants

$$u = 1 + i$$
 $v = 3i + \sqrt{3}$ $w = -e^{\ln(3) + 5i}$ $z = \frac{-e^{\frac{2i\pi}{5}}}{1 + i}$

Solution : $u = \sqrt{2}e^{\frac{i\pi}{4}}$ $v = 2\sqrt{3}e^{\frac{i\pi}{3}}$ $w = 3e^{i(5-\pi)}$ $z = \frac{\sqrt{2}}{2}e^{\frac{23i\pi}{20}}$

Exercice 2 $(\star\star)$ Somme d'exponentielles

Soient $\theta_1, \theta_2 \in \mathbb{R}$. Quel est le module et l'argument de $e^{i\theta_1} + e^{i\theta_2}$?

Indication: On pourra factoriser par $e^{i\frac{\theta_1+\theta_2}{2}}$ et discuter selon le signe de $\cos\left(\frac{\theta_1-\theta_2}{2}\right)$.

Exercice 3 (V) Quelques formules de trigonométrie

Soit $\theta \in \mathbb{R}$ un réel et $z = e^{i\theta}$.

1. Exprimer \overline{z} sous forme géométrique et algébrique. En déduire les formules

$$\cos(-\theta) = \cos(\theta)$$
 $\sin(-\theta) = -\sin(\theta)$

2. Exprimer -z sous forme géométrique et algébrique. En déduire les formules

$$cos(\theta + \pi) = -cos(\theta)$$
 $sin(\theta + \pi) = -sin(\theta)$

3. Exprimer iz sous forme géométrique et algébrique. En déduire les formules

$$\cos\left(\theta + \frac{\pi}{2}\right) = -\sin(\theta)$$
 $\sin\left(\theta + \frac{\pi}{2}\right) = \cos(\theta)$

4. Adapter la méthode pour montrer les formules

$$cos(\pi - \theta) = -cos(\theta)$$
 $sin(\pi - \theta) = sin(\theta)$

et

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta)$$
 $\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)$

Exercice 4 (*) Racines carrées de nombres complexes

Caluler les racines carrées des nombres complexes suivants

$$\begin{aligned} z_1 = 7 + 24i, & z_2 = -15 - 8i, & z_3 = 5 - 12i, & z_4 = i, \\ \textbf{Solution:} & \pm (4 + 3i), & \pm (1 - 4i), & \pm (3 - 2i), & \pm \frac{1 + i}{\sqrt{2}} \end{aligned}$$

Exercice 5 (\star) Equations quadratiques dans $\mathbb C$

Résoudre dans $\mathbb C$ les équations suivantes

$$z^{2} + z + 1 = 0$$
 $z^{2} = 7 + 24i$ $z^{2} - (5 + 6i)z + 1 - 13i = 0$

Solution:

$$\left\{-\frac{1}{2}+i\frac{\sqrt{3}}{2},-\frac{1}{2}-i\frac{\sqrt{3}}{2}\right\} \qquad \left\{4+3i,-4-3i\right\} \qquad \left\{-1-i,6+7i\right\}$$

Exercice 6 (**) Système somme-produit

- 1. Résoudre dans \mathbb{C} l'équation $z^2 (1+i)z + (2-i) = 0$.
- 2. En déduire les solutions dans $\mathbb C$ du système $\begin{cases} u+v=1+i\\ uv=2-i \end{cases}.$

Solution : (u, v) = (1 + 2i, -i) ou (u, v) = (-i, 1 + 2i)

Exercice 7 (**) Valeurs spéciales de cos et sin

- 1. Résoudre dans \mathbb{C} l'équation $z^2 = \frac{1+i}{\sqrt{2}}$. On donnera les solutions sous forme algébrique et géométrique.
- 2. En déduire

$$\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2+\sqrt{2}}}{2}$$
 $\sin\left(\frac{\pi}{8}\right) = \frac{\sqrt{2-\sqrt{2}}}{2}$

3. Adapter la méthode pour trouver les formules

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2+\sqrt{3}}}{2}$$
 $\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{2-\sqrt{3}}}{2}$

Exercice 8 $(\star \star \star)$ Tangente de la somme

- 1. Soit $\theta \in]-\frac{\pi}{2}, \frac{\pi}{2}[$. Quel est le module et l'argument de $1+i\tan\theta$?
- 2. Soient $\theta_1, \theta_2 \in [0, \frac{\pi}{4}[$. Montrer que $1 \tan \theta_1 \tan \theta_2 > 0$.
- 3. Calculer de deux manières l'argument de $(1 + i \tan \theta_1)(1 + i \tan \theta_2)$. En déduire la formule

$$\tan(\theta_1 + \theta_2) = \frac{\tan \theta_1 + \tan \theta_2}{1 - \tan \theta_1 \tan \theta_2}$$

Exercice 9 $(\star \star \star)$ Formule de Machin

- 1. Calcular $\frac{(5+i)^4}{239+i}$.
- 2. En déduire la formule suivante (découverte par John Machin en 1706) :

$$\frac{\pi}{4} = 4\arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right)$$

Exercice 10 $(\star \star \star)$ Somme de sinusoïdes

Soient $a, b \in \mathbb{R}$ des réels. Montrer qu'il existe $\theta_{a,b} \in [0, 2\pi[$ tel que pour tout $x \in \mathbb{R}$ on ait

$$a\cos(x) + b\sin(x) = \sqrt{a^2 + b^2}\cos(x + \theta_{a,b})$$

Indication: On pourra considérer $(a-ib)e^{ix}$ et l'exprimer sous forme algébrique et géométrique.