(1) Suppose the functions $\varphi_i \colon \Omega \to \mathbb{R}$ are continuous, and that for every $\mu \in \mathbb{R}^m_+$, the Problem (P_μ) :

minimize
$$L(v, \mu)$$
 subject to $v \in \Omega$,

has a unique solution u_{μ} , so that

$$L(u_{\mu}, \mu) = \inf_{v \in \Omega} L(v, \mu) = G(\mu),$$

and the function $\mu \mapsto u_{\mu}$ is continuous (on \mathbb{R}^{m}_{+}). Then the function G is differentiable for all $\mu \in \mathbb{R}^{m}_{+}$, and

$$G'_{\mu}(\xi) = \sum_{i=1}^{m} \xi_i \varphi_i(u_{\mu}) \quad \text{for all } \xi \in \mathbb{R}^m.$$

If λ is any solution of Problem (D):

maximize
$$G(\mu)$$

subject to $\mu \in \mathbb{R}^m_+$,

then the solution u_{λ} of the corresponding problem (P_{λ}) is a solution of Problem (P).

- (2) Assume Problem (P) has some solution $u \in U$, and that Ω is convex (open), the functions φ_i ($1 \le i \le m$) and J are convex and differentiable at u, and that the constraints are qualified. Then Problem (D) has a solution $\lambda \in \mathbb{R}_+^m$, and $J(u) = G(\lambda)$; that is, the duality gap is zero.
- *Proof.* (1) Our goal is to prove that for any solution λ of Problem (D), the pair (u_{λ}, λ) is a saddle point of L. By Theorem 50.15(1), the point $u_{\lambda} \in U$ is a solution of Problem (P).

Since $\lambda \in \mathbb{R}_+^m$ is a solution of Problem (D), by definition of $G(\lambda)$ and since u_λ satisfies Problem (P_λ) , we have

$$G(\lambda) = \inf_{v \in \Omega} L(v, \lambda) = L(u_{\lambda}, \lambda),$$

which is one of the two equations characterizing a saddle point. In order to prove the second equation characterizing a saddle point,

$$\sup_{\mu \in \mathbb{R}_+^m} L(u_\mu, \mu) = L(u_\lambda, \lambda),$$

we will begin by proving that the function G is differentiable for all $\mu \in \mathbb{R}_+^m$, in order to be able to apply Theorem 40.9 to conclude that since G has a maximum at λ , that is, -G has minimum at λ , then $-G'_{\lambda}(\mu - \lambda) \geq 0$ for all $\mu \in \mathbb{R}_+^m$. In fact, we prove that

$$G'_{\mu}(\xi) = \sum_{i=1}^{m} \xi_i \varphi_i(u_{\mu}) \quad \text{for all } \xi \in \mathbb{R}^m.$$
 (*deriv)