Costo computazionale

- Tempo di esecuzione
- Necessità di memoria.

Il tasso di crescita del tempo che impieghiamo nell'algoritmo si divide in tre notazioni

- Worst case O()
 - abbiamo f(n) = 3n e il suo O(f(n)) = O(n) perchè abbiamo una c >= 3 tale che ci ritroviamo con un valore maggiore da n0 in poi "n >= n0" n <= O(n) o n <= c*n per un n >= n0 e con una c >= 3
- Best case Ω()
 - abbiamo f(n) = 3n e il suo $\Omega(f(n)) = \Omega(n)$ perchè abbiamo una $c \le 3$ tale che ci ritroviamo con un valore inferiore a f(n) da n0 in poi " $n \ge n0$ " $n \ge n0$ " $n \ge n0$ 0 e con una n0 e con una n0 "
- Average case Θ()
 - il caso medio ci permette di dimostrare che senza cambiare quello che c'è all'interno di Θ (un "generico") possiamo aggiunge anche Ω () e O() quindi sappiamo che esiste una c' tale che f(n) <= c' * n ed esiste una c' tale che f(n) >= c' * n e questo vale per un certo punto n0 abbastanza grande.

Proprietà e dimostrazione dell' algebra della notazione asintotica

- 1. \forall k > 0 se f(n) \rightarrow O(g(n)) allora anche k*f(n) \rightarrow O(g(n)). Dim
 - sappiamo che esistono delle c tali che $f(n) \le c*g(n) \forall n > n0$ allora $k*f(n) \le k*c*g(n) = k*f(n) \le c*g(n) k*f(n) \le k*c*g(n) e c' = c*k$
- 2. \forall f(n),d(n) > 0 se f(n) \rightarrow g(n) e d(n) \rightarrow h(n) allora f(n) + d(n) \rightarrow (O(g(n) + h(n)) = O(max(g(n), h(n))) Dim
 - sappiamo che abbiamo quattro costanti c', c", n0' e n0" tali che $f(n) <= c'*g(n) \ \forall \ n > n0'$ e $d(n) <= c"*h(n) \ \forall \ n > n0"$ ed allora sappiamo che $f(n) + d(n) <= c'*g(n) + c''*h(n) <= \max(c', c'') * (g(n) + h(n)) \ \forall \ n > \max(n', n'')$ cioè $f(n) + d(n) <= c * (g(n) + h(n)) \ \forall \ n > n0 \ == \ f(n) + d(n) \to O(g(n) + h(n))$ e per le proprietà della notazione asintotica sappiamo che dobbiamo prendere solo il massimo tra la somma di funzioni quindi $f(n) + d(n) \to O(\max(g(n), h(n)))$
- 3. \forall f(n),d(n) > 0 se f(n) \rightarrow g(n) e d(n) \rightarrow h(n) allora f(n) * d(n) \rightarrow O(g(n)*h(n))
 Dim
 - sappiamo che abbiamo quattro costanti c', c", n0' e n0" tali che f(n) <= c'*g(n) ∀ n > n0' e d(n) <= c"*h(n) ∀ n > n0" ed allora sappiamo che f(n) * d(n) <= (c' * c")*(g(n) * h(n)) ∀ n >= max(n0', no") allora f(n) * d(n) → O(g(n) * h(n)) con la c = c' * c" e n = max(n0', no")

Verifica della notazione asintotica

Attraverso i limiti possiamo capire se la nostra notazione è corretta o sbagliata e questa si può verificare per i diversi casi che può verificare un limite $\rightarrow + \infty$ di $f(n) \rightarrow O/\Omega/\Theta$ (g(n))

- 1. $\lim_{n \to +\infty} di f(n)/g(n) = n \in \mathbb{R}$ allora $f(n) \to \Theta(g(n))$ ovviamente anche O & Ω
- 2. $\lim_{n \to +\infty} di f(n)/g(n) = 0$ allora $g(n) \to +\infty$ più velocemente di $f(n) f(n) \to O(g(n))$
- 3. $\lim_{n \to +\infty} di f(n)/g(n) = 0$ allora $f(n) \to +\infty$ più velocemente di $g(n) f(n) \to \Omega(g(n))$

Sommatoria:

- 1. $i=0 \rightarrow n \text{ di } \sum i = n *((n+1)/2) = \Theta(n^2)$
- 2. $i=x \rightarrow n \text{ di } \sum c^{i} = (c^{n}(n+1) c^{i}x) / (c-1) = \Theta(c^{n})$

Calcolo costo Computazionale

- 1. I for rispettano il range o il numero di elementi in un array/qualsiasi altra cosa.
- 2. I while hanno diverse modalità e condizioni come while n > 1(o qualsiasi numero) :
 - a. n // x con x un qualsiasi numero <math>O(log(x) n)
 - b. n x con x un qualsiasi numero O(n)
 - c. i = 1 i*i >= n con i +=1 allora abbiamo $O(n^{(1/2)})$
- 3. I for/while con for/while annidati, dobbiamo calcolare le informazioni e poi moltiplicare il tutto
- 4. In caso di un caso migliore e peggiore, prendiamo innanzitutto quello maggiore e quello che si ripete al crescere di n sennò poniamo c come il max.

Ricorsione

La ricorsione è ispirata dalle funzioni ricorsive, e serve per risolvere un problema in un modo naturale come ad esempio trovare il fattoriale di n cioè n * (n-1)!, quest'ultimo avrà come caso baso n == 0 return 1.

Pro della ricorsione:

- la soluzione è più naturale comparata con la soluzione iterativa.

Contro della ricorsione:

- Utilizza molta memoria perché si deve ricordare i casi precedenti .
- Non è scalabile all'infinito a causa del grande utilizzo della memoria.

Calcolo costo computazionale per la ricorsione

1. Metodo Iterativo:

- Sostituiamo all'interno della f(n) fino a quando non arriviamo a T(1)
- $T(n) = T(n-1) + \Theta(1) con T(1) = \Theta(1)$
- $T(n) = [T(n-2) + \Theta(1)] + \Theta(1) \dots T(n) = [T(n-3) + \Theta(1)] + \Theta(1) + \Theta(1) \dots$
- da qui possiamo dire che dobbiamo trovare un k tale che n-k = 1 e con un paio di semplificazioni arriviamo che k = n-1 e questo è il limite della sommatoria ed infine ad ogni T(n) abbiamo un + $\Theta(1)$ quindi la nostra sommatoria sarà i=0 \rightarrow n-1 Σ + $\Theta(1)$ che sarebbe $\Theta(n)$ $\Theta(1)$

$$T(h) = 2t \left(\frac{h}{2}\right) + o(h)$$

$$T(h) = 2\left[2t \left(\frac{h}{2}\right) + o\left(\frac{h}{2}\right)\right] + o(h)$$

$$T(h) = 2\left[2t \left(\frac{h}{2}\right) + o\left(\frac{h}{2}\right)\right] + o\left(\frac{h}{2}\right)\right] + o(h)$$

$$T(h) = 2^{k} \left[\frac{h}{2^{k}}\right] + \sum_{i=0}^{k-1} \frac{h}{2^{i}} \cdot 2^{i} \quad k = \log_{2} h$$

$$T(h) = h \cdot o(1) + \sum_{i=0}^{k-1} h$$

$$T(h) = o(h) + h + h + \dots + h$$

$$T(h) = o(\log_{2} h \cdot h) = (\log_{2} h^{h})$$

2. Metodo di Sostituzione:

- È consigliata al fine di dimostrare la veridicità di un costo computazionale.
- T(n) = T(n-1) + c T(1) = d
- Il nostro Principale obiettivo è quello di verificare il Ω e O, al fine di poter dire che T(n) <= k*n (O) e T(n) <= h*n (Ω) e in tutto questo avremmo un T(1) = d tale che per (O) d <= k e per (Ω) d >= h.
- Andiamo a vederlo per O(n) della T(n) sopra, sappiamo che la k >= d, e che T(n) = k*(n-1) + c e che T(n) <= k*n, quindi k*n k + c <= kn == k >= c. quindi sappiamo che T(n) = O(n) se e solo se [k >= c] e [k >= d].
- Questo vale anche per Ω(n) ma con k*n <= T(n).

$$T_{CM} = 2\Gamma\left(\frac{h}{2}\right) + \theta(n) \qquad T_{C1} = \Theta(1)$$

$$T_{CM} = O\left(\frac{h \cdot \log n}{2}\right) = T_{Ch} \le k \cdot \left(\frac{h \cdot \log n}{2}\right)$$

$$T_{CM} = 2\Gamma\left(\frac{h}{2}\right) + (\cdot n) \qquad T_{C1} = d$$

$$O\left(\frac{h}{2}\right) \le k \cdot 1 \cdot \log_{2} \frac{1}{2} = d \le 0 \qquad F_{ALSO}$$

$$O\left(\frac{h \cdot \log_{2} n}{2}\right) = k \cdot h \log_{2} h + h n$$

$$O\left(\frac{h}{2}\right) \le k \cdot h \log_{2} h + h n$$

$$O\left(\frac{h}{2}\right) \le k \cdot h \log_{2} h + h n$$

$$O\left(\frac{h}{2}\right) \le 2\left(\frac{h}{2}\right) \log_{2} h$$

3. Metodo dell'Albero

- È molto simile al Metodo Iterativo, soltanto che qui cerchiamo di dare anche una rappresentazione grafica al fine di capire come si sviluppa la ricorsione sotto forma d'albero.
- $T(n) = T(n-1) + \Theta(1)$
- disegniamo il costo per $T(n) = \Theta(1)$ e lo colleghiamo tramite un nodo a T(n-1) e gli diamo $T(n-1) = \Theta(1)$ e così via alla fine il avremmo un abero con dei valori ai quali in alcuni casi gli potremmo assegnare delle variabili, e dobbiamo scoprire quanto ci mette $T(n) \to T(1)$ in questo caso n-1 Time quindi avremo $i=0 \to n-1 \Sigma + \Theta(1)$ che sarebbe $\Theta(n) \Theta(1)$
- Ora vediamo $T(n) = 2T(n/2) + \Theta(n)^2$ con $T(1) = \Theta(1)$
- In cima abbiamo Θ(n)^2, al 2° livello= 2*(n/2)^2, al 3° livello= 4*(n/4)^2, da qui vediamo una ripetizione di 2^i*(n/2^i)^2 == n^2 / 2^i, e per vedere dove dobbiamo fermarci sappiamo che n/2^k = 1 quindi n = 2^k 1 quindi k = log n e abbiamo i=0 → log n ∑ n^2/2^i che sarebbe (siccome non dipende da i)n^2 * ∑ 1/2^i che sarebbe Θ(n^2) * un num finito.

4. Metodo Principale:

- È molto semplice ma abbiamo delle condizioni da rispettare come:
 - $T(n) = a*T(n/b) + f(n) e T(1) = \Theta(1)$.
- $S = n^{(\log b)}$.
- Se f(n) = O(S) per qualche costante ε tale che S = n^(logb (a- ε)) allora T(n) = n^(logb (a))
- Se $f(n) = \Theta(S)$ allora $T(n) = n^{(\log b)} (a)$ * log n
- Se $f(n) = \Omega(S)$ per qualche costante ε tale che $S = n^{(\log b)}(a) + \varepsilon$ e se $a*f(n/b) \le c * f(n)$ per qualche c costante < 1 allora $T(n) = \Theta(f(n))$

$$T(n) = 2T(\frac{h}{2}) + \Theta(h) \quad T(1) = \Theta(1)$$

$$C = 2 \quad b > 2 \quad f(m) = h$$

$$h^{\log_2 2} = h^1 = f(m)$$

$$2 \quad Caso$$

$$f(h) = \Theta(h^{\log_2 2})$$

$$\Theta(m) = O(h\log h)$$

Linked List (liste puntate)

Le linked list sono formate da due valori principali, uno rappresenta il valore del puntatore e un altro il valore nella memoria del prossimo puntatore, in questo modo riusciamo ad avere una complessità spaziale costante a differenza degli array.

- Caratteristiche delle liked List

Le linked list sono abbastanza complesse da utilizzare visto che al fine di ritornare all'inizio dobbiamo utilizzare la ricorsione o salvarci da qualche parte il puntatore iniziale, infine trova, elimina e inserisce elementi in O(n), apparte gli inserimenti alla fine della linked list che avviene in O(n)

- Double Linked List (Liste doppiamente puntate)

A differenza delle normali Linked List, quest'ultime oltre a puntare al prossimo elemento, puntano anche al precedente, ovviamente il primo elemento ha come precedente None, quest'ultima cosa è molto utile nel caso dell'eliminazione di elementi/puntatori, ad esempio abbiamo None $<--> 1 <--> 2 <--> 3 <--> 4 <math>\rightarrow$ None se abbiamo il puntatore dell'intero 2, basterà dire che il next di 1 sarà 2.next e dire che il precedente di 3 sarà il precedente del 2, tutto questo in modo costante.

Stack (pila)

Lo stack è rappresentato come una lista puntata, ma lui si ricorda sempre dell'ultimo puntatore, semplicemente riportando sempre l'ultimo puntatore(quello che ha come next None), lo stack è utile perché riusciamo a estrarre l'ultimo elemento in tempo costante, e l'inserimento viene fatto in tempo costante, perché possiamo inserire gli elemento sono in ultima posizione.

Nel complesso lo stack è poco utilizzato nei problemi informatici, ma dove è veramente utile fa la differenza, lascerò qua sotto un codice in python che ci permette di visitare un albero in modo iterativo grazie allo stack.

Ricerca di un valore (V) in una lista casuale

- 1. Tempo minimo $\Theta(n)$.
- 2. Ci calcoliamo la lunghezza della lista.
- 3. Scorriamo la lista per indici e se troviamo V ci segniamo l'indice e breakiamo il for.

4. ritorniamo quello che ci chiede l'esercizio (indice).

Ricerca di un valore (V) in una lista ordinata "Binary search"

- 1. n = len(Lista)
- 1. Considerando che è una lista ordinata possiamo dividere la lista log n volte
- 2. Quindi andremo a vedere l'elemento in lista[n//2] e se uguale a V ritorniamo n//2, altrimenti se V è maggiore allora controlleremo [n//2 + n//4] e ripeteremo le stesse operazioni, invece se minore controlleremo [n//2 n//4] e ripeteremo le stesse operazioni.
- 3. Il tempo sarà uguale a $\Theta(n)$ se ci calcoliamo la len(Lista) altrimenti $\Theta(\log n)$.