COM6115: Text Processing

Information Retrieval: Evaluating IR systems

Mark Hepple

Department of Computer Science University of Sheffield

Overview

- Definition of the information retrieval problem
- Approaches to document indexing
 - manual approaches
 - automatic approaches
- Automated retrieval models
 - boolean model
 - ranked retrieval methods (e.g. vector space model)
- Term manipulation:
 - stemming, stopwords, term weighting
- Web Search Ranking
- Evaluation

Evaluation of IR systems – Why?

- There are various retrieval models/algorithms/IR systems
 - ♦ How determine which is the best?
- What is the best component/technique for:
 - ♦ Ranking? (cosine, dot-product, ...)
 - ♦ Term selection? (stopword removal, stemming, ...)
 - ♦ Term weighting? (binary, TF, TF.IDF, ...)
- How far down the ranked list will a user need to look to find some/all relevant items?

Evaluation – Relevance

- Evaluation of effectiveness in relation to the relevance of the documents retrieved
- Relevance is judged in a binary way, even if it is in fact a continuous judgement
 - Impossible when the task is to rank thousands or millions of options: too subjective, too difficult
- Other factors could also be evaluated:
 - User effort/ease of use
 - Response time
 - Form of presentation

Evaluation – Relevance (Benchmarking)

- In IR research/development scenarios, one cannot afford humans looking at results of every system/variant of system
- Instead, performance measured/compared using a pre-created benchmarking corpus, a.k.a. gold-standard dataset, which provides:
 - a standard set of documents, and queries
 - a list of documents judged relevant for each query, by human subjects
 - relevance scores, usually treated as binary
- Example: TREC IR evaluation corpora (http://trec.nist.gov/)
 - ♦ TREC has run annually since 1991

Evaluation of IR systems – Metrics

- AIM:
 - 1. get as much good stuff as possible
 - 2. get as little junk as possible
- The two aspects of this aim are addressed by two separate measures — recall and precision

	Relevant	Non-relevant	Total
Retrieved	A	В	A+B
Not retrieved	С	D	C+D
Total	A+C	B+D	A+B+C+D

- Recall: $\frac{A}{A+C}$ = proportion of relevant documents returned
- Precision: $\frac{A}{A+B}$ = proportion of retrieved documents that are relevant
 - ♦ Both measures have range: [0...1]

Retrieved vs. Relevant Documents

 Precision and Recall address the relation between the <u>retrieved</u> and <u>relevant</u> sets of documents

 Various situations that arise can be pictorially represented in these terms

• High precision, low recall:

Low precision, low recall:

Low precision, high recall:

• High precision, high recall:

Trade-off Between Recall and Precision

- There is always a trade-off between precision and recall
 - For IR: as more results are considered down the list, precision generally drops, while recall generally increases

Recall and Precision: Example

	Rel	Non-rel
Ret	Α	В
Not ret	С	D

- All documents: A+B+C+D = 130
- Relevant documents for query: A+C = 28

Recall and Precision: System 1

	Rel	Non-rel
Ret	Α	В
Not ret	С	D

$$R_1 = \frac{A_1}{A_1 + C_1} = \frac{16}{28} = .57$$

 $P_1 = \frac{A_1}{A_1 + B_1} = \frac{16}{25} = .64$

- System 1 retrieves 25 items: A₁+B₁ = 25
- Relevant and retrieved items: A₁ = 16
- Relevant documents for query: A₁+C₁ = 28

Recall and Precision: System 2

	Rel	Non-rel
Ret	Α	В
Not ret	С	D

$$R_2 = \frac{A_2}{A_2 + C_2} = \frac{12}{28} = .43$$

 $P_2 = \frac{A_2}{A_2 + B_2} = \frac{12}{15} = .8$

- System 2 retrieves 15 items: $A_2+B_2=15$
- Relevant and retrieved items: $A_2 = 12$
- Relevant documents for query: $A_2+C_2=28$

Recall and Precision: Which is the better system?

$$R_1 = \frac{A_1}{A_1 + C_1} = \frac{16}{28} = .57$$
 $P_1 = \frac{A_1}{A_1 + B_1} = \frac{16}{25} = .64$

$$R_2 = \frac{A_2}{A_2 + C_2} = \frac{12}{28} = .43$$

 $P_2 = \frac{A_2}{A_2 + B_2} = \frac{12}{15} = .8$

Which did better: System 1 or System 2?

F-measure

- F measure (also called F1):
 - combines precision and recall into a single figure
 - gives equal weight to both:

$$F = \frac{2PR}{P + R}$$

- F is a harmonic mean:
 - penalises low performance in one value more than *arithmethic* mean:

	values	mean	F
e.g.	P=0.5, R=0.5	0.5	0.5
	P=0.1, R=0.9	0.5	0.18

Previous example:

	R	P	<i>F</i>
System 1	.57	.64	0.603
System 2	.43	.8	0.559

- Related measure F_{β} :
 - \diamond allows user to determine relative importance of P vs. R, by varying β
 - \diamond F1 is a special case of F_{β} (where $\beta = 1$)

Precision at a cutoff

 Measures how well a method ranks relevant documents before non-relevant documents

• E.g. there are 5 relevant documents = d1,d2,d3,d4,d5 - compute precision at top 5

precision at top 5	Syste	m 1	System 2		Syster	m 3		
	d1:	$\sqrt{}$	d10:	×	d6:	×		
	d2:	$\sqrt{}$	d9:	×	d1:	$\sqrt{}$		
	d3:	$\sqrt{}$	d8:	×	d2:			
	d4:	$\sqrt{}$	d7:	×	d10:	×		
rank 5:	d5:	$\sqrt{}$	d6:	×	d9:	×		
	d6:	×	d1:		d3:			
	d7:	×	d2:	$\sqrt{}$	d5:			
	d8:	×	d3:	$\sqrt{}$	d4:			
	d9:	×	d4:	$\sqrt{}$	d7:	×		
rank 10:	d10:	×	d5:	$\sqrt{}$	d8:	×		
precision at rank 5:	1.0		1.0		0.0		0.4	ļ
precision at rank 10:	0.5	5	0.5	5	0.5	5		

Precision at a cutoff (ctd)

 Note precision at top 5 for System 1: inner order of relevant documents doesn't matter as long as they are all relevant

	Syste	m 1	System 2		Syste	m 3
	d5:		d10:	×	d6:	×
	d4:	$\sqrt{}$	d9:	×	d1:	$\sqrt{}$
	d3:	$\sqrt{}$	d8:	×	d2:	
	d1:	$\sqrt{}$	d7:	×	d10:	×
rank 5:	d2:	$\sqrt{}$	d6:	×	d9:	×
	d6:	×	d1:		d3:	
	d7:	×	d2:	$\sqrt{}$	d5:	
	d8:	×	d3:	$\sqrt{}$	d4:	
	d9:	×	d4:	$\sqrt{}$	d7:	×
rank 10:	d10:	×	d5:	$\sqrt{}$	d8:	×
precision at rank 5:	1.0)	0.0)	0.4	ļ
precision at rank 10:	0.5	5	0.5	5	0.5	5

Average Precision

- Aggregates many precision numbers into one evaluation figure
- Precision computed for each point a relevant document is found, and figures averaged

Sy	/stem	า 1	System 2			S	า 3	
d1:	$\sqrt{}$	(1/1)	d10:	×		d6:	×	
d2:	$\sqrt{}$	(2/2)	d9:	×		d1:		(1/2)
d3:	$\sqrt{}$	(3/3)	d8:	×		d2:		(2/3)
d4:	$\sqrt{}$	(4/4)	d7:	×		d10:	×	
d5:	$\sqrt{}$	(5/5)	d6:	×		d9:	×	
d6:	×		d1:		(1/6)	d3:		(3/6)
d7:	×		d2:	$\sqrt{}$	(2/7)	d5:		(4/7)
d8:	×		d3:	$\sqrt{}$	(3/8)	d4:		(5/8)
d9:	×		d4:		(4/9)	d7:	×	
d10:	×		d5:	$\sqrt{}$	(5/10)	d8:	×	
precision at rank	k 5:	1.0			0.0			0.4
precision at rank		0.5			0.5			0.5
avg. p		1.0			0.354			0.573