

Today's Lecture

Nearest Neighbors

- Finding the closest data point to a query point is a common operation.
- In machine learning, at the core of the **nearest** neighbor classifier.

NN Classifier

NN Query

- ▶ **Given**: a data set *X* of *n* points in \mathbb{R}^d and a query point, $p \in \mathbb{R}^d$.
- **Return**: the point in X that is nearest¹ to p

¹In terms of Euclidean distance, though other distances can be considered.

Approach #1: Brute Force

Compute distance between p and every point $x \in X$, keep closest.

ightharpoonup Time: $\Theta(nd)$

Intuitively...

...we can do better. We only need to look at region close to p.


```
def brute force nn search(data, p):
    """Find nearest neighbor.
    Parameters
    data : np.ndarray
        An n x d array of points.
    p : np.ndarrav
        A d-array representing the query point.
    Returns
    nn : np.ndarray
        The closest point.
    nn distance : float
        Distance to closest point.
    ,, ,, ,,
    distances = np.sqrt(np.sum((data - p)**2, axis=1))
    ix_of_nn = np.argmin(distances)
   nn = data[ix of nn]
   nn distance = distances[ix of nn]
    return (nn, nn distance)
```

Approach #2

- ▶ Build a grid.
- ► To query NN, find cell containing *p*.
- Start search in p's cell, move outwards.

Intuitively...

Problems

- How do we choose grid cell size?
 - ► Too big: cells contain a lot of points = brute force.
 - Too small: Most of the cells are empty.
 - "Just right" for one region might be too big/small for another region.
- Number of cells grows exponentially with dimension.

Today

- We'll refine the idea of a grid.
- Adapt cell placement/size to the data.
- Result: k-d trees.

k-d Trees

- Will speed up NN queries in low dimensions (<10) from $\Theta(n)$ to $\Theta(\log n)$.
- But will be just as bad as brute force in high dimensions.

DSC 190 DATA STRUCTURES & ALGORITHMS

k-d Trees

k-d Trees

- Binary search tree for multidimensional data.
- Now: structure & properties.
- Next section: how to query them.
- Next next section: how to construct them.

Internal Nodes

- Internal nodes are threshold questions.
 - ► can be of form $x \ge 1$? or $y \ge \tau$? in 2-d.
 - ► can be of form $x \ge \tau$? or $y \ge \tau$? or $z \ge \tau$? in 3-d.
 - etc.

Internal Nodes

A path forms a conjunction.

Leaf Nodes

Leaf nodes are (collections of) points.

Partitioning

Each internal node **splits** space.

k-d Trees in Python

```
from dataclasses import dataclass
from typing import Union, Optional
import numpy as np
กdataclass
class KDInternalNode:
    # the left and right children can be internal nodes
    # or numpv arravs of points (leaf nodes)
    left: Union['KDInternalNode', np.ndarray]
    right: Union['KDInternalNode', np.ndarrav]
    # the threshold tau in the question
    threshold: float
    # the dimension used in the question
    dimension: int
```


Queries on k-d Trees

Types of Queries

- Standard query:
 - ► Is (1, 5) in the tree?
- Nearest neighbor query:
 - Return the nearest neighbor(s) of (1, 5).

Standard Queries

► Is (6,3) in the tree? Is (1,5) in the tree?

Standard Queries

- Similar to BST query.
 - Recursively choose left/right by answering question.
 - Brute-force linear search on leaf (if needed).
- ▶ Takes O(h) time, where h is height of the tree².

²Assuming each leaf has a bounded number of points.

Nearest Neighbor Queries

- Given query point p = (x, y), find nearest neighbor in tree.
- Can we just do a standard query?
 - Find cell that would contain (x, y).
 - ▶ Return closest neighbor within that cell.

No

► Example: p = (3, 3).

Main Idea

It is not sufficient to only check the cell that p would be placed in. You must also check neighboring cells (which can be very far away in the tree).

Brute Force?

- This suggests we need to traverse the whole tree.
- But we can actually do much better.
- Intuitively, some branches can be ruled out (pruned).

Example

► Example: p = (5, 3).

Bounding Branches

- **Observation**: let d_{bound} be distance from p to the boundary.
- ► Then the closest a point in the other branch can be to p is d_{bound}
- If we search and find a point whose distance to *p* is less than *d*_{bound}, we do not need to search other branch.

Bounding Branches

To query NN of (x, y):

- Search right branch first if $x \ge t$, otherwise search left branch first.
- Let d_{nn} be the distance from p to the closest point found.
- Let d_{bound} be the distance from p to boundary.
- Search other branch only if $d_{bound} < d_{nn}$.

Apply this idea recursively.

$$nn = (6,3)$$
 $d_{nn} = 1$

► NN Query: (5, 3)

no

Example

► NN Query: (3, 3)


```
def nn_query(node, p):
   if isinstance(node. np.ndarray):
        return brute force nn search(node, p)
    else:
        # find the most likely branch
        if p[node.dimension] >= node.threshold:
            most likely branch. other branch = node.right. node.left
        else:
            most likely branch, other branch = node.left, node.right
        # compute distance to boundary
        distance to boundary = abs(p[node.dimension] - node.threshold)
        # find nn within most likely branch
        nn. nn distance = nn querv(most likely branch. p)
        # check the other branch, but only if necessary
        if distance to boundary < nn distance:</pre>
            nn other, nn other distance = nn querv(other branch, p)
            # check if the nn within this branch is closer
            if nn other distance < nn distance:
                nn = nn other
                nn distance = nn other distance
        return nn, nn distance
```

k-NN Search

- Sometimes we want to find k nearest neighbors.
- Keep a max heap of best k so far.
- Check branch if distance to boundary < kth closest.

Analysis

- Assume each leaf has bounded number of points.
- ▶ Best case: $\Theta(h) \rightarrow \Theta(\log n)$ if balanced
- ▶ Worst case: $\Theta(n)$.
 - ▶ We may be unable to rule out many of the branches.
 - Can occur even if tree is balanced.
 - Especially if query point far from data.
- Note: balancing is difficult, but possible.

Example of Worst Case

- ► NN Query: (20, 20)
- ► Closest point is (5, 9) at distance ≈ 19

Performance Degradation

- In small dimensions, NN lookup usually takes $\Theta(\log n)$.
- We'll see performance degrades to $\Theta(n)$ (brute force) as dimensionality $\rightarrow \infty$.
- Curse of Dimensionality

Constructing k-d Trees

Construction

Given: a set of *n* data points in \mathbb{R}^d

Construct: a k-d tree containing these points.

Caveats

► There are many variations on k-d tree construction.

- We'll describe one popular approach.
- Assumption: offline construction.
 - ► Have all of the data at once (no insert/delete).

Idea

- Starting with *n* points, either:
 - ▶ make internal node by splitting $(x \ge \tau?)$
 - make leaf node containing the points
- Apply this strategy recursively.
- Questions:
 - Do we split, or do we make a leaf?
 - If we split:
 - What dimension to split on?
 - What threshold to use?

Q1: Do we split?

- ► Take parameter *M* (max leaf size).
- ► If *n* < *M*, don't split.
- ▶ **Reason**: For small *n*, brute force is actually faster (less overhead).

Difference between largest and smallest values.

Calculated using only points in **this** subtree.

Alternatively: round-robin. Split x, y, z, x, y, ...

Q3: What threshold to use?

- ightharpoonup Need threshold, au.
- Use median value in splitting dimension.
 - Calculated using only points in this subtree.
 - Guaranteed to produce balanced tree.
- Alternatively: randomly-selected pivot, or median of random selection

(1,1), (4,2), (5,2), (1,5), (1,6), (7,7), (8,9)

Set M = 2, use median and spread for splitting. We start with data:

Х	у
4	2
1	1
1 5 1 7	2
1	2 6 7
7	
8	9 5
8 2	5

- ► Spread of *x*: 7
- ► Spread of *y*: 8
- ightharpoonup Use y as splitting dimension.
- Median of y: 5.

is <i>y</i> ≥ 5?
(1,1), (4,2), (5,2) (1,5), (1,6), (7,7), (8,9)

Set M = 2, use median and spread for splitting. We start with data:

Х	у
4	2
4 1	2 1
5	2
1	2 6
7	7
7 8 2	7 9 5
2	5

- Spread of x: 7
- ► Spread of *y*: 8
- Use y as splitting dimension.
- Median of y: 5.

is
$$y \ge 5$$
?

(1,1), (4,2), (5,2) (1,5), (1,6), (7,7), (8,9)

Recurse on left child. Data becomes:

×	х у
-4	+ 2
1	1
5	2

- Spread of x: 4
- Spread of y: 1
- Use x as splitting dimension.
 - \triangleright Median of x: 4.

Recurse on left child. Data becomes:

_		
	Х	у
_	4	2
	1	1
	5	2

- Spread of x: 4
- Spread of y: 1
- \triangleright Use x as splitting dimension.
- Median of x: 4.

Recurse on children. Since size <= M, these become leaf nodes.

Recurse on children. Since size <= *M*, these become leaf nodes.

Unroll recursion, now recurse down right side of tree. Data becomes:

×	х у	
	7	
8	9	
2	5	

- Spread of x: 7
- Spread of y: 4
- Use x as splitting dimension.
- Median of x: 7 (or 2).

Unroll recursion, now recurse down right side of tree. Data becomes:

- Spread of x: 7
- Spread of y: 4
- ightharpoonup Use x as splitting dimension.
- Median of x: 7 (or 2).

Make leaf nodes, since size $\leq M$.

is
$$y \ge 5$$
?

is $x \ge 4$?

is $x \ge 7$?

(1,1) (4,2), (5,2) (1,5), (1,6) (7,7), (8,9)

Make leaf nodes, since size $\leq M$.

Tree complete!


```
def build_kd_tree(data, m=2):
    if len(data) <= m:</pre>
        return data
    # find the dimension with greatest spread
    spread = data.max(axis=0) - data.min(axis=0)
    splitting dimension = np.argmax(spread)
    # find the median along this dimension
    median = np.median(data[:. splitting dimension])
    # separate the data into new left and right sets
    # note that this isn't the most efficient since it will
    # produce a copy... better to do an in-place partition
    left_data = data[data[:, splitting_dimension] < median] N[2]
    right data = data[data[:, splitting dimension] >= median]
    left = build kd tree(left data)
    right = buil\overline{d} k\overline{d} tree(right data)
    return KDInternalNode(
        left=left, right=right, threshold=median,
        dimension=splitting_dimension
```

Analysis

- ▶ Θ(k) to find median, perform copies, where k is / \
 number of points in subtree.

 ¬|
 η|
 η|
 η|
 η|
 η|
 η|
 η|
 η|
 η|
- Tree has Θ(log n) levels (since it is balanced).
- ► Total time:

$$\underbrace{n}_{\text{level } 1} + \underbrace{(n/2 + n/2)}_{\text{level } 2} + \underbrace{(n/4 + n/4 + n/4 + n/4)}_{\text{level } 3} + \dots = \Theta(n \log n)$$

Example

Example

Curse of Dimensionality

Performance Degradation

- ▶ Brute force NN search takes $\Theta(n)$ time.
- If dimensionality is small, k-d trees take $\Theta(\log n)$.
 - Great speedup!
- As dimensionality grows, performance degrades.
 - ightharpoonup At worst, it is $\Theta(n)$.
 - Becomes just as bad as brute force!
- Why?

Main Idea

As d grows, the number of neighboring cells that we may need to check grows like 2^d .

We saw that if query point is far away, we cannot rule out branches.

► The reason? Distance from query to NN is not significantly different from distance between query and other points.

$$\frac{NN(p)}{FN(p)} \rightarrow 1$$

Surprising Fact

In high dimensions³, the ratio of the distance to nearest neighbor and distance to furthest neighbor → 1.

³Under some assumptions on distribution of data.

- Generate random d-dimensional query vector from multivariate Gaussian.
- ► Generate 1000 *d*-dimensional data points from same Gaussian.

Plot distribution of distances.

(x,y) (a,b)

Experiment

Experiment

Experiment FN = 34

Experiment

Notice: width doesn't change, but center increases.

► So min = max – δ , with δ constant.

$$\frac{\min}{\max} = 1 - \frac{\delta}{\max}$$

Explanation #2

- Every point in data set is approximately equidistant to query point.
- Can't rule out branches.

Have to perform a brute force search.

Main Idea

In high dimensions, every data point is approximately equidistant to the query point, meaning we can't rule out most branches.

Main Idea

Not only are k-d trees **inefficient** in high dimensions, Euclidean distance is **less meaningful** in high dimensions, and therefore so is the concept of NN search itself.

Approximate Nearest Neighbors

Why, exactly?

- Why do we need the exact NN?
- Often something close would do.
- Especially if not confident in distance measure.
 - As is the case in high dimensions.

Maybe this can be done faster?

ANN

Given: A set of points and a query point, *p*.

Return: An approximate nearest neighbor.

k-D ANNs

- ► So far, our k-d trees find **exact** nearest neighbor.
- But there's a very simple way to do ANN query.
- Idea: prune more aggressively.

Before

- Let d_{nn} be distance from query point to best so far.
- Let d_{bound} be distance from query point to boundary.
- Search branch only if $d_{\text{bound}} < d_{\text{nn}}$.

Now

- ► Take $\alpha \ge 1$ as a parameter.
- ► Search branch only if $d_{\text{bound}} < d_{\text{nn}}/\alpha$.
- ldea: make it easier to toss out branch.
- If α = 1; exact search.
- If α > 1; approximate, faster as α grows.

Theory

- Let q be exact NN, let q_{ann} be that found by this strategy.
- ► Then:

$$d(p, q_{ann}) \le \alpha \cdot d(p, q)$$

Next Time

► ANNs via **Locality Sensitive Hashing**.