9.4 Huffman Trees and Codes

Suppose we have to encode a text that comprises symbols from some n-symbol alphabet by assigning to each of the text's symbols some sequence of bits called the *codeword*. For example, we can use a *fixed-length encoding* that assigns to each symbol a bit string of the same length m ($m \ge \log_2 n$). This is exactly what the standard ASCII code does. One way of getting a coding scheme that yields a shorter bit string on the average is based on the old idea of assigning shorter codewords to more frequent symbols and longer codewords to less frequent symbols.

This idea was used, in particular, in the telegraph code invented in the mid-19th century by Samuel Morse. In that code, frequent letters such as $e(\cdot)$ and $a(\cdot -)$ are assigned short sequences of dots and dashes while infrequent letters such as $q(--\cdot -)$ and $z(--\cdot -)$ have longer ones.

Variable-length encoding, which assigns codewords of different lengths to different symbols, introduces a problem that fixed-length encoding does not have. Namely, how can we tell how many bits of an encoded text represent the first (or, more generally, the ith) symbol? To avoid this complication, we can limit ourselves to the so-called prefix-free (or simply prefix) codes. In a prefix code, no codeword is a prefix of a codeword of another symbol. Hence, with such an encoding, we can simply scan a bit string until we get the first group of bits that is a codeword for some symbol, replace these bits by this symbol, and repeat this operation until the bit string's end is reached.

Huffman's algorithm

- Step 1 Initialize *n* one-node trees and label them with the symbols of the alphabet given. Record the frequency of each symbol in its tree's root to indicate the tree's *weight*. (More generally, the weight of a tree will be equal to the sum of the frequencies in the tree's leaves.)
- Step 2 Repeat the following operation until a single tree is obtained. Find two trees with the smallest weight (ties can be broken arbitrarily, but see Problem 2 in this section's exercises). Make them the left and right subtree of a new tree and record the sum of their weights in the root of the new tree as its weight.

A tree constructed by the above algorithm is called a *Huffman* tree. It defines—in the manner described above—a *Huffman* code.

EXAMPLE Consider the five-symbol alphabet {A, B, C, D, _} with the following occurrence frequencies in a text made up of these symbols:

symbol	Α	В	C	D	_
frequency	0.35	0.1	0.2	0.2	0.15

The Huffman tree construction for this input is shown in Figure 9.12.

The resulting codewords are as follows:

symbol	A	В	C	D	_
frequency	0.35	0.1	0.2	0.2	0.15
codeword	11	100	00	01	101

Hence, DAD is encoded as 011101, and 10011011011101 is decoded as BAD AD.

With the occurrence frequencies given and the codeword lengths obtained, the average number of bits per symbol in this code is

$$2 \cdot 0.35 + 3 \cdot 0.1 + 2 \cdot 0.2 + 2 \cdot 0.2 + 3 \cdot 0.15 = 2.25$$
.

Had we used a fixed-length encoding for the same alphabet, we would have to use at least 3 bits per each symbol. Thus, for this toy example, Huffman's code achieves the *compression ratio*— a standard measure of a compression algorithm's effectiveness— of $(3-2.25)/3 \cdot 100\% = 25\%$. In other words, Huffman's encoding of the text will use 25% less memory than its fixed-length encoding. (Extensive experiments with Huffman codes have shown that the compression ratio for this scheme typically falls between 20% and 80%, depending on the characteristics of the text being compressed.)