BECA / Huson / 12.1 IB Math SL 17 November 2017 Name:

Homework: Calculus review

 $m{v}=egin{pmatrix}2\-3\6\end{pmatrix}$ and $m{w}=egin{pmatrix}k\-2\4\end{pmatrix}$, for k>0 . The angle between $m{v}$ and $m{w}$ is $rac{\pi}{3}$.

Find the value of $oldsymbol{k}$.

[7 marks]

 $\overrightarrow{AB}=egin{pmatrix} -3 \ 0 \ -4 \end{pmatrix}$ and

$$\overrightarrow{ ext{AC}} = egin{pmatrix} -2 \ 2 \ -6 \end{pmatrix}$$
 .

[3 marks]

- (i) Write down \overrightarrow{BA}
- (ii) Find $\overrightarrow{\mathrm{BC}}$.
- **2b.** (i) Find $\cos \widehat{ABC}$. [7 marks]
 - (ii) Hence, find $\sin A\widehat{B}C$.

 $\overrightarrow{ ext{CD}} = egin{pmatrix} -4 \ 5 \ p \end{pmatrix}$, where p>0 .

[6 marks]

- (i) Given that $\overrightarrow{|\mathrm{CD}|} = \sqrt{50}$, show that p=3 .
- (ii) Hence, show that \overrightarrow{CD} is perpendicular to \overrightarrow{BC} .
- **3.** [6 marks]

Let $f(x) = \mathrm{e}^{2x}$. The line L is the tangent to the curve of f at $(1, \mathrm{e}^2)$.

Find the equation of L in the form y=ax+b

4a. [2 marks] Let $f(x)=\sqrt[3]{x^4}-rac{1}{2}$. Find f'(x).

5a. The population of deer in an enclosed game reserve is modelled by the function

 $P(t) = 210\sin(0.5t-2.6) + 990$, where t is in months, and t=1 corresponds to 1 January 2014.

Find the number of deer in the reserve on 1 May 2014.

[3 marks]

5b. Find the rate of change of the deer population on 1 May 2014.

[2 marks]

5c. Interpret the answer to part (i) with reference to the deer population size on 1 May 2014. [1 mark]

6a. [2 marks] Let $f(x) = rac{3x}{x-q}$, where x
eq q.

Write down the equations of the vertical and horizontal asymptotes of the graph of f.

6b. The vertical and horizontal asymptotes to the graph of f intersect at the point $\mathrm{Q}(1,3)$.

Find the value of q.

[2 marks]

6c. [4 marks]

The point $\mathrm{P}(x,\ y)$ lies on the graph of f . Show that $\mathrm{PQ} = \sqrt{\left(x-1
ight)^2 + \left(rac{3}{x-1}
ight)^2}$.

6d. Hence find the coordinates of the points on the graph of f that are closest to (1,3).

[6 marks]

7a. The following diagram shows the graph of $f(x)=a\sin bx+c$, for $0\leqslant x\leqslant 12$.

The graph of f has a minimum point at (3, 5) and a maximum point at (9, 17).

[6 marks]

- (i) Find the value of c.
- (ii) Show that $b=rac{\pi}{6}$.
- (iii) Find the value of *a*.

7b. The graph of g is obtained from the graph of f by a translation of $\binom{k}{0}$. The maximum point on the graph of g has coordinates $(11.5,\ 17)$.

- (i) Write down the value of k.
- (ii) Find g(x).

7c. [6 marks] The graph of g changes from concave-up to concave-down when x=w.

- (i) Find w.
- (ii) Hence or otherwise, find the maximum positive rate of change of ${\it g}$.

8a. [2 marks]

Line L_1 passes through points $\mathrm{A}(1,\,-1,4)$ and $\mathrm{B}(2,\,-2,5)$.

 \overrightarrow{AB}

8b. [2 marks]

Find an equation for L_1 in the form $oldsymbol{r}=oldsymbol{a}+toldsymbol{b}$.

8c. [7 marks]

$$m{r} = egin{pmatrix} 2 \ 4 \ 7 \end{pmatrix} + s egin{pmatrix} 2 \ 1 \ 3 \end{pmatrix}$$
 .

Line L_2 has equation

Find the angle between L_1 and L_2 .

9a. *[6 marks]* The diagram below shows part of the graph of f(x)=(x-1)(x+3) .

- (a) Write down the x-intercepts of the graph of f .
- (b) Find the coordinates of the vertex of the graph of f .

9b. Write down the x-intercepts of the graph of f .

[2 marks]

9c. Find the coordinates of the vertex of the graph of $oldsymbol{f}$.

[4 marks

10a. [3 marks]

Let
$$f(x) = \sin x + rac{1}{2}x^2 - 2x$$
 , for $0 \le x \le \pi$. Find $f'(x)$.

10b. [3 marks]

Let g be a quadratic function such that g(0)=5 . The line x=2 is the axis of symmetry of the graph of g .

Find g(4).

10c. [4 marks]

The function g can be expressed in the form $g(x)=a(x-h)^2+3$.

- (i) Write down the value of h .
- (ii) Find the value of a .

10d. [6 marks]

Find the value of x for which the tangent to the graph of f is parallel to the tangent to the graph of g .