Abstract

Your abstract.

CV = 4

				/			ı				
\int Table 1: Ca 2011Adaptive _M odel1											
		Augmented Band $(\eta = 0.5)$	Augmented Band $(\eta = 0.8)$	Augmented Band $(\eta = 1)$	Augmented Threshold $(\tau = 0.2, p = 1, q = 0)$	Augmented Threshold $(\tau=0.2,p=0.99,q=0.01)$	Sample	Soft Threshold	Hard Threshold	Linear Shrink	Nonlinear Shrink
fro 2	100 300 500 100 300 500	8.76(0.76) 15.23(0.61) 19.35(0.79) 3.48(0.38) 5.00(0.41) 5.39(0.38)	6.54(0.31) 10.61(0.44) 13.24(0.58) 2.57(0.30) 3.70(0.36) 3.72(0.28)	5.69(0.2\$) 8.01(0.24) 9.47(0.21) 2.53(0.23) 3.18(0.27) 3.24(0.2\$)	8.87(0.48) 23.73(1.29) 37.22(2.23) 2.66(0.26) 4.64(0.27) 6.16(0.45)	9.01 (0.64) 24.09 (1.18) 38.02 (2.39) 2.67 (0.28) 4.69 (0.31) 6.29 (0.42)	14.57(0.33) 43.55(0.37) 72.36(0.43) 4.57(0.40) 9.26(0.43) 12.84(0.39)	9.49 (3.90) 16.63 (10.98) 13.44 (1.98) 3.16 (1.07) 4.06 (2.13) 3.06 (0.44)	12.94(3.09) 30.33(9.51) 37.88(0.07) 4.02(1.07) 8.21(1.87) 8.99(0.02)	12.19(0.20) 29.02(0.11) 41.34(0.09) 3.67(0.33) 5.59(0.16) 6.27(0.11)	7.49(0.30) None None 3.50(0.39) None None
				Ta	ble 2: Ca	ai2011Adaj	$\mathrm{ptive}_{M}oa$	$del2_my$			
		Augmented Band $(\eta = 0.5)$	Augmented Band $(\eta = 0.8)$	Augmented Band $(\eta = 1)$	Augmented Threshold $(\tau = 0.2, p = 1, q = 0)$	Augmented Threshold $(\eta = 0.2, p = 0.99, q = 0.01)$	Sample	Soft Threst-old	Hard Threshold	Linear Shrink	Nonlinear Shrink
fro	100 300 500	7.70(0.38) 21.30(0.35) 35.90(0.41)	4.58(0.26) 15.31(0.34) 27.34(0.44)	4.18(0.20) 13.95(0.33) 25.76(0.43)	12.23(0.68) 49.69(2.07) 99.95(4.10)	2.48(0.56) 50.29(2.36) 99.93(5.59)	19.36(0.30) 74.90(0.46) 148.50(0.70)	12.48(3.91) 46.08(19.26) 65. 2 9(14.98)	16.10(5.14) 43.09(11.92) 51.34(113)	10.30(0.06) 28.50(0.07) 52.11(0.08)	8.99(0.12) None None
2	100 300 500	2.41(0.14) 4.10(0.15) 5.84(0.17)	1.41(0.14) 3.16(0.17) 4.24(0.15)	1.26(0.18) 3.15(0.18) 4.20(0.14)	3.02(0.25) 9.10(0.57) 15.98(0.93)	$ \begin{array}{c} 3.09(0.25) \\ 8.93(0.61) \\ 16.02(0.87) \end{array} $	5.91(0.34) 13.73(0.45) 23.63(0.54)	3.66(1.86) 9.55(3.54) 10.01(1.59)	5.37(1.06) 7.98(4.30) 8.14(1.00)	2.78(0.05) 6.86(0.15) 11.63(0.19)	2.16(0.08) None None