Multi-criteria decision making

Optimization models

CASE STUDY OF EQUULEUS CAR SHARING

Variables

X1	X2	Х3	X4	D0	D1	D2	11	12
no. of minivan	no. of SUV	no. of Sedan	no. of Econom	Down payment	1st yr payr	2nd yer payr	yr 1 interest	yr 2 interest

Input data

- Discount rate = 15
- %; interest rate = 4%; down payment>= 10% of price

 Total Budget Vehicle type 	Minivan		SUV		Sedan		Economy	
Purchase Price	\$	27,000.00	\$	22,000.00	\$	18,000.00	\$	14,000.00
Y1 N Rev	\$	15,000.00	\$	10,000.00	\$	9,000.00	\$	7,000.00
Y2 N Rev	\$	28,000.00	\$	19,000.00	\$	21,000.00	\$	15,000.00
PV of Rev		\$34,215.50		\$23,062.38		\$23,705.10		\$17,429.11

Linear Programing Model

```
Object, to maximize,
NPV = 34.21 X1+23.06 X2+23.75 X3+17.43 X4-D0-D1/(1+K)-D2/(1+K)^2-I1/(1+K)
12/(1+K)^2
Subject to,
Budget, D0<=$10,000
No. of vehicles, X1 \ge 0.15(X1 + X2 + X3);
                                                  X1 \le 0.5(X1 + X2 + X3)
                 X2 \ge 0.15(X1 + X2 + X3);
                                                  X2 \le 0.5(X1 + X2 + X3)
                 X3 >= 0.15(X1+X2+X3);
                                                  X3 \le 0.5(X1 + X2 + X3)
                 X4 \ge 0.15(X1 + X2 + X3);
                                                  X4 \le 0.5(X1 + X2 + X3)
Payoff, 27X1+22X2+18X3+14X4= D0+D1+D2
```

Linear Programing Model

- Down payment, D0>=.15(27X1+22X2+18X3+14X4)
- Payment up to year 1, D0+D1>=0.5(27X1+22X2+18X3+14X4)+I1
- 1^{st} year interest, I1 = 0.04 (27X1+22X2+18X3+14X4-D0)
- 2nd year interest, I2= .0.04(27X1+22X2+18X3+14X4-D0-D1)
- 1st year cash flow, D1<=15X1+10X2+9X3+7X3
- 2nd year cash flow, D2<=28X1+19X2+21X3+15X4