Dynamic Selection Problem

Link choices to outcomes:

 $\bullet \ \ \mathsf{Labor} \ \mathsf{force} \ \mathsf{participation} \ \to \mathsf{earnings}$

 $\bullet \ \ \mathsf{Market} \ \mathsf{entry} \to \mathsf{profits}$

Dynamic Selection Problem

Link choices to outcomes:

- ullet Labor force participation o earnings
- Market entry → profits

Selection bias: firms choose to enter a market based on unobservable potential profits

We can use finite mixture distributions to control for selection

Dynamic Selection Problem

Link choices to outcomes:

- ullet Labor force participation o earnings
- Market entry → profits

Selection bias: firms choose to enter a market based on unobservable potential profits

We can use finite mixture distributions to control for selection

Assumption: Selection bias eliminated once we control for unobserved type

Let $Y_{2t}=$ choice, $Y_{1t}=$ outcome, s is unobserved type. Joint likelihood given by

Let $Y_{2t} =$ choice, $Y_{1t} =$ outcome, s is unobserved type. Joint likelihood given by

$$\mathcal{L}(Y_{1t}, Y_{2t}|X_{1t}, X_{2t}, \alpha_1, \alpha_2, s) = \mathcal{L}(Y_{1t}|Y_{2t}, X_{1t}, \alpha_1, s)\mathcal{L}(Y_{2t}|X_{2t}, \alpha_2, s)$$

Let $Y_{2t}=$ choice, $Y_{1t}=$ outcome, s is unobserved type. Joint likelihood given by

 $\mathcal{L}(Y_{1t}, Y_{2t}|X_{1t}, X_{2t}, \alpha_1, \alpha_2, s) = \mathcal{L}(Y_{1t}|Y_{2t}, X_{1t}, \alpha_1, s)\mathcal{L}(Y_{2t}|X_{2t}, \alpha_2, s)$

 $= \mathcal{L}(Y_{1t}|X_{1t},\alpha_1,s)\mathcal{L}(Y_{2t}|X_{2t},\alpha_2,s)$

Let $Y_{2t} =$ choice, $Y_{1t} =$ outcome, s is unobserved type. Joint likelihood given by

$$\mathcal{L}(Y_{1t}, Y_{2t}|X_{1t}, X_{2t}, \alpha_1, \alpha_2, s) = \mathcal{L}(Y_{1t}|Y_{2t}, X_{1t}, \alpha_1, s)\mathcal{L}(Y_{2t}|X_{2t}, \alpha_2, s)$$

$$=\mathcal{L}(Y_{1t}|X_{1t},\alpha_1,s)\mathcal{L}(Y_{2t}|X_{2t},\alpha_2,s)$$

Likelihood separable conditional on type s, i.e. $Y_{1t} \perp Y_{2t} | X_{1t}, s$

This allows us to move to the second equality above

Suppose s were observed. Then we'd have the log likelihood:

$$\ell = \sum_{i} \sum_{t} \left\{ \ell_{1}(Y_{1t}|X_{1t}, \alpha_{1}, s) + \ell_{2}(Y_{2t}|X_{2t}, \alpha_{2}, s) \right\}$$

Suppose *s* were observed. Then we'd have the log likelihood:

$$\ell = \sum_{i} \sum_{t} \{\ell_{1}(Y_{1t}|X_{1t},\alpha_{1},s) + \ell_{2}(Y_{2t}|X_{2t},\alpha_{2},s)\}$$

Two-stage estimation:

- 1. Estimate α_2 using only ℓ_2
- 2. Estimate α_1 using ℓ_1 (taking $\hat{\alpha}_2$ as given, since ℓ_1 might depend on α_2 implicitly)

Suppose *s* were observed. Then we'd have the log likelihood:

$$\ell = \sum_{i} \sum_{t} \{\ell_{1}(Y_{1t}|X_{1t},\alpha_{1},s) + \ell_{2}(Y_{2t}|X_{2t},\alpha_{2},s)\}$$

Two-stage estimation:

- 1. Estimate α_2 using only ℓ_2
- 2. Estimate α_1 using ℓ_1 (taking $\hat{\alpha}_2$ as given, since ℓ_1 might depend on α_2 implicitly)

Selection bias eliminated once conditioning on s and X_{1t}

But when s is unobserved, log likelihood becomes non-separable:	

But when s is unobserved, log likelihood becomes non-separable:

$$\ell = \sum_{i} \log \left(\sum_{s} \pi_{s} \prod_{t} \mathcal{L}(Y_{1t}|X_{1t}, \alpha_{1}, s) \mathcal{L}(Y_{2t}|X_{2t}, \alpha_{2}, s) \right)$$

But when s is unobserved, log likelihood becomes non-separable:

$$\ell = \sum_{i} \log \left(\sum_{s} \pi_{s} \prod_{t} \mathcal{L}(Y_{1t}|X_{1t}, \alpha_{1}, s) \mathcal{L}(Y_{2t}|X_{2t}, \alpha_{2}, s) \right)$$

where the π 's are the population type probabilities

But when s is unobserved, log likelihood becomes non-separable:

$$\ell = \sum_{i} \log \left(\sum_{s} \pi_{s} \prod_{t} \mathcal{L}(Y_{1t}|X_{1t}, \alpha_{1}, s) \mathcal{L}(Y_{2t}|X_{2t}, \alpha_{2}, s) \right)$$

where the π 's are the population type probabilities

Implication: Cannot estimate parts separately

Although conditional independence simplified things a bit

Resolving selection problem requires joint estimation of both components