Solutions for Homework14

Emre Arapcic-Uvak Vedad Siljic

Abstract

In this document we will show the solutions for problems represented in the given homework for this week.

Contents

1		k 1 Problem Solution																											
2	Tasl	k 2																											
	2.1	Problem																					 						
	2.2	${\bf Solution}$																					 		 				
3	Tasl	k 3																											
•		Problem																					 						
		Solution																											
4	Tasl	k 1																											
-		Problem																											
		Solution																											
		5 51411511				•				•				·		•	•			•				•		•		·	
5	Tasl																												
	5.1	$\mathbf{Problem}$																					 		 				
	5.2	Solution								•								 •					 		 	•			
6	6 Task 6																												
	6.1	Problem																					 						
	6.2	Solution																 •					 		 	•			
7	Tasl	k 7																											
	7.1	Problem																					 						
	7.2	${\bf Solution}$																					 		 				
8	Tasl	k 8																											
	8.1	Problem																					 						
		${\bf Solution}$																											
9	Tasl	k 9																											
,		Problem																					_						
	-	Solution																											
10	Tasl	k 10																											
ΤÛ		Problem																											
		Solution																											
		$\sim o_1 a_{01}o_{11}$																					 		 				

1 Task 1

1.1 Problem

In the given graph which represents the movement of a car, answer the following:

- Between which point and point the car accelerate, and between which points it decelerate?
- What is the distance traveled at point C? and what is it at point F?
- Indicate line segments with 0 acceleration, does that mean the car is not moving? Explain.
- What are the values of acceleration and deceleration of the car at each segment?

Figure 1: Velocity-Time of the car

1.2 Solution

- 1. The car accelerates at points:
 - A → B
 - F → G

And it decelerates at points:

- $C \rightarrow D$
- $G \rightarrow I \ (G \rightarrow H \& H \rightarrow I)$
- 2. To get the distance we can just find the integral from point A (0) to whatever points we want. So to see what the distance traveled at point C is we just have to evaluate

$$\int_A^C v*dt = \int_A^B v*dt + \int_B^C v*dt$$

which is just the area under the graph so from $A \to B$ we have a right triangle with sides 1×6 which means that the area from that triangle is $\frac{6}{2} = 3$, and from $B \to C$ we have a rectangle with sides

 2×6 so in total the area of the rectangle is 12 meaning that the distanced traveled from $A \to C$ is 3+12=15m. To find out the distance traveled from $A \to F$ we have to solve the following integral:

$$\int_A^F v * dt = \int_A^C v * dt + \int_C^B v * dt + \int_D^F v * dt$$

Since we already know that $\int_A^C v * dt = 15m$ we just have to find the other two integrals, which at the end end up being $15 + \frac{2*4}{2} + 2*2 + 2*4 = 15 + 4 + 4 + 8 = 31m$

- 3. The line segments with 0 acceleration are
 - $B \to C$
 - $I \to K \ (I \to J \& J \to K)$

This does **NOT** mean that the car isn't moving, this just means that the velocity of the car isn't changing or in other words

$$\frac{dv}{dt} = 0$$

	LINE SEGMENT	Acceleration value $\left[\frac{m}{s^2}\right]$										
	$A \rightarrow B$	3										
	$B \to C$	0										
	$C \to D$	-2										
	$D \to E$	0										
4.	$E \to F$	0										
	$F \to G$	1										
	$G \to H$	-1										
	$H \rightarrow I$	-1										
	$I \to J$	0										
	$J \to K$	0										

2 Task 2

2.1 Problem

An environmental engineer has obtained a bacteria culture from a municipal water sample and allowed the bacteria to grow. The initial count of Bacteria is A, and their growth formula with time being in hours is given by:

$$B = B_0 e^{Ct}$$

A: is the summation of your birthday digits divided by 0.5 C: is the summation of your IUS ID number divided by 50.

- What is B_0 ? And what is its value?
- After how many hours, the amount of Bacteria would be 100000?
- Pick up 4 to 5 points in time and draw the graph of Bacteria growth. (This is done by pen and pencil)
- Use Octave to plot the graph of bacteria growth

2.2 Solution

$$A = \frac{1+4+1+2+2+0+0+2}{0.5} = \frac{12}{0.5} = 24$$

$$C = \frac{2+2+0+3+0+2+2+8+9}{50} = \frac{28}{50} = 0.56$$

- 1. B_0 is the initial amount of bacteria in our system and since our variable A represents the initial count of bacteria we can conclude that $A = B_0$.
- 2. To figure this out we simply have to figure out the following equation:

$$24 * e^{0.56*t} = 100000$$

$$0.56 * t * \ln 24 * e = \ln 100000$$

$$0.56 * t = \frac{\ln 100000}{\ln 24 * e}$$

$$t = \log_{24*e} 100000 * \frac{1}{0.56}$$

$$t \approx 4.9207[h]$$

3. Using the following code:

We get the following graph

Figure 2: Bacterial growth plot

- 3 Task 3
- 3.1 Problem
- 3.2 Solution
- 4 Task 4
- 4.1 Problem
- 4.2 Solution
- 5 Task 5
- 5.1 Problem
- 5.2 Solution
- 6 Task 6
- 6.1 Problem
- 6.2 Solution
- 7 Task 7
- 7.1 Problem
- 7.2 Solution
- 8 Task 8
- 8.1 Problem
- 8.2 Solution
- 9 Task 9
- 9.1 Problem
- 9.2 Solution
- 10 Task 10
- 10.1 Problem
- 10.2 Solution