STATISTISCH REDENEREN

Lab 2

April	7.	201	6
	• 7		~

Students: Maico Timmerman 10542590	Lecturer: Rein van de Boomgaard
Tim van Zalingen	Course:
10784012	Statistisch Redeneren

Contents

1	Kar	nsrekening	2													2
	1.1	Opgave 1														2
		Operave 2														2

1 Kansrekening 2

1.1 Opgave 1

(a) De lineaire functie F(x) stijgt op dit interval van 0 naar 1. Dit geeft ons:

$$F(x) = \frac{x-3}{9-3} = \frac{x-3}{6} \tag{1}$$

Voor $2 \le x \le 8$.

(b)
$$P([-10,3]) = F(-10) - F(3) = 0 - \frac{3-3}{6} = 0$$
 (2)

(c) $P([a,b]) = F(a) - F(b) = \frac{a-3}{6} - \frac{b-3}{6} = \frac{a-3-b+3}{6} = \frac{a-b}{6}$ (3)

1.2 Opgave 2

(a) $U = \{\text{'kop'}, \text{'munt'}\}$

(b)
$$P(k) = \binom{n}{k} p^k (1-p)^{n-k} \tag{4}$$

- (c) Dit is de binomiale verdeling, met paramters n en p.
- (d)