

- jobs that have been finished till now
- \blacksquare jobs that are being processed
- $\hfill \Box$ jobs that have not begun to process till now

$$x_{ijk} := \begin{cases} 1, & \text{if operation } j \text{ of job } i \text{ is allocated to service } k, \\ 0, & \text{otherwise.} \end{cases}$$
 (1)

#	-1	sky		1
	١.	CIZT	10	ch
ハ	т.	DIZ V	112	$^{\circ}$

Sets	Descriptions	
$\overline{\mathcal{N}_i}$	set of operations of job $i; j \in \mathcal{N}_i$	
${\cal I}$	set of jobs; $i \in \mathcal{I}$	
\mathcal{K}	set of services; $k \in \mathcal{K}$	
Parameters	Descriptions	
λ_{ijk}	whether operation j of job i can be processed on service k	
s_{ij}	start time of operation j of job i	
c_{ij}	completion time of operation j of job i	
p_{ij}	processing time of operation j of job i	
M	a sufficently large positive integer	

$$y_{iji'j'k} := \begin{cases} 1, & \text{if operation } j \text{ of job } i \text{ is processed before operation } i^{'} \text{ of job } j^{'} \text{ on service } k, \\ 0, & \text{otherwise.} \end{cases}$$

$$(2)$$

 $z_{ijl} := \begin{cases} 1, & \text{if operation } l \text{ of job } i \text{ is processed after operation } j \text{ of job } i, \\ 0, & \text{otherwise.} \end{cases}$

(3)

minimize
$$\max \sum_{i \in \mathcal{I}, k \in \mathcal{K}} c_{ijk},$$
 (4)

subject to
$$\sum_{k \in \mathcal{K}} x_{ijk} = 1, \quad j \in \mathcal{N}_i, i \in \mathcal{I},$$
 (5)

$$x_{ijk} \leqslant \lambda_{ijk}, \quad j \in \mathcal{N}_i, i \in \mathcal{I}, k \in \mathcal{K},$$
 (6)

$$y_{iji'j'k} + y_{i'j'ijk} \leq x_{ijk}, \quad j \in \mathcal{N}_{i}, j' \in \mathcal{N}_{i'}, i, i' \in \mathcal{I}, (i, j) \neq (i', j'), k \in \mathcal{K},$$
(7)

$$y_{iji'j'k} + y_{i'j'ijk} + 1 \geqslant x_{ijk} + x_{i'j'k}, \quad j \in \mathcal{N}_{i}, j' \in \mathcal{N}_{i'}, i, i' \in \mathcal{I}, (i, j) \neq (i', j'), k \in \mathcal{K},$$
(8)

$$s_{ij} + p_{ij} - M(1 - y_{iji'j'k}) \leqslant s_{i'j'}, \quad j \in \mathcal{N}_{i}, j' \in \mathcal{N}_{i'}, i, i' \in \mathcal{I}, (i, j) \neq (i', j'), k \in \mathcal{K},$$

$$(9)$$

$$s_{ij} + p_{ij} \leqslant z_{ijl}s_{il}, \quad j, l \in \mathcal{N}_i, i \in \mathcal{I}, j \neq l,$$
 (10)

$$s_{ij} \geqslant 0, \quad j \in \mathcal{N}_i, i \in \mathcal{I},$$
 (11)

$$x_{ijk} \in \{0, 1\}, \quad j \in \mathcal{N}_i, i \in \mathcal{I}, k \in \mathcal{K},$$
 (12)

$$y_{iji'j'k} \in \{0,1\}, \quad j \in \mathcal{N}_{i}, j' \in \mathcal{N}_{i'}, i, i' \in \mathcal{I}, (i,j) \neq (i',j'), k \in \mathcal{K},$$

$$(13)$$

$$z_{ijl} \in \{0, 1\}, \quad j, l \in \mathcal{N}_i, i \in \mathcal{I}, j \neq l,$$
 (14)