-	Vemburoj	Konar	AAI			
	28 D16AD	21 T	Exp-1		DATE:	E:
	Aim:	Dosign a for outco	nd Implement	a Hid	lden Maxkox	Models
	models events these	used	to describe the under 15 assumed	Seq Venteo	gowerful prebabil of observ cesses gener governed by	ting
1)	Hidden It		Unobservable		$tent = factors$ $f = events$ $S = \{s_1, s_2,\}$	
2			hidder State	o, .	em issions as	sociated
3)	11		Probabilities the like State to	SIINUVU		120m
				OR EDUCATIONAL USE		

4) Emission Probability (B) It describes the probability of observing a

porticular event given the current hidden state

5) Initial State Distribution (T):

The initial state distribution IT specifies the probabilities of starting in each pidden state

Markov Proporty

HMMs assume the Morker property, which Stoles wh that the future states depends only On the current State and not on the sequence of previous states. Nathemotically this con be written as

P (Sty | S,, Sz ... Sty) = P(Sty, St)

Conclusion:

The experiment involving the design and implementation of a HMM for outcome prediction provides Valuable insights into the application of probabilistic mode 15 in predective analysis.

FOR EDUCATIONAL USE