Exercises on Consensus

Exercise 1. Let the graphs G_1 , G_2 , and G_3 be given as shown in Figure 1.

- 1. Derive the graphs $G_1 = (V_1, E_1)$, $G_2 = (V_2, E_2)$, and $G_3 = (V_3, E_3)$.
- 2. Derive the Laplacian matrices of the graphs.
- 3. Let G_1 , G_2 , and G_3 be the topology of a network of agents with integrator dynamics and consensus protocol

$$u_i = \sum_{j \in N_i} (x_j - x_i). \tag{1}$$

Will the agents reach consensus, and if so, what type of consensus (consensus/average-consensus/min-consensus/max-consensus)?

Figure 1: Illustration of a dynamic graph.

Exercise 2. Consider a simplified version of the clock synchronization algorithm proposed in [1], where we consider offset compensation, and not drift compensation; thus, the dynamics of each clock are given as

$$\dot{\tau}_i = 1 + u_i, \quad \tau_i(0) = \beta_i$$

where τ_i is the value of the ith clock, β_i is the offset of the clock, and u_i is the clock compensation that we must design.

The offset compensation proposed in equation (15) of [1] can be rephrased as

$$u_i = \alpha \sum_{j \in N_i} (\tau_j - \tau_i), \tag{2}$$

where $\alpha \in \mathbb{R}_{>0}$ is a gain to be designed.

- 1. Let G_2 from Exercise 1 be the topology of a network of agents, and simulate the system.
- 2. Derive the convergence rate of the disagreement of the dynamic network.
- 3. Simulate the dynamic network and compare the simulated results with the convergence bound.

Exercise 3. Add a virtual agent to the dynamic network in Figure 2 such that the state of every agent follows the constant reference of the virtual agent.

Figure 2: Illustration of a dynamic graph.

Bibliography

[1] L. Schenato and F. Fiorentin. Average time synch: A consensus-based protocol for clock synchronization in wireless sensor networks. $Automatica,\ 47(9):1878-1886,\ 2011.$