18.S997 (FALL 2017) PROBLEM SET 3

- 1. Fix 0 . Let G be a graph on n vertices with average degree at least pn. Prove:
 - (a) The number of labeled 6-cycles in G is at least $(p^6 o(1))n^6$.

 - (b) The number of labeled copies of K_{3,3} in G is at least (p⁹ o(1))n⁶.
 (c) The number of labeled copies of Q₃ = in G is at least (p¹² o(1))n⁸.
 (d) (Bonus) The number of labeled paths on 4 vertices in G is at least (p³ o(1))n⁴.
- 2. Deduce from the quasirandom Cayley graphs theorem the following corollary for vertex transitive graphs: If an n-vertex d-regular vertex-transitive graph G satisfies

$$|e(X,Y) - \frac{d}{n}|X||Y|| \le \epsilon dn$$
 for all $X, Y \subseteq V(G)$,

then all the eigenvalues of the adjacency matrix of G, other than the largest one, are at most $8\epsilon d$ in absolute value.

- 3. Define $W: [0,1]^2 \to \mathbb{R}$ by $W(x,y) = 2\cos(2\pi(x-y))$. Let G be a graph. Show that t(G,W)is the number of ways to orient all edges of G so that every vertex has the same number of incoming edges as outgoing edges.
- 4. Let W be a $\{0,1\}$ -valued graphon. Suppose graphons W_n satisfy $||W_n W||_{\square} \to 0$ as $n \to \infty$. Show that $||W_n - W||_1 \to 0$ as $n \to \infty$.
- 5. (a) Let $\epsilon > 0$. Show that for every graphon $W: [0,1]^2 \to [0,1]$, there exist measurable sets $S_1, \ldots, S_k, T_1, \ldots, T_k \subseteq [0, 1]$ and reals $a_1, \ldots, a_k \in \mathbb{R}$, with $k < 1/\epsilon^2$, such that

$$\left\|W - \sum_{i=1}^{k} a_i \mathbf{1}_{S_i \times T_i}\right\|_{\square} \le \epsilon.$$

(b) Let \mathcal{P} be a partition of [0,1] into measurable sets. Let U be a graphon that is constant on $S \times T$ for each $S, T \in \mathcal{P}$. For that for every graphon W, one has

$$||W - W_{\mathcal{P}}||_{\square} < 2||W - U||_{\square}.$$

- (c) Use (a) and (b) to give a different proof of the weak regularity lemma (with slightly worse bounds than the one given in class): show that for every $\epsilon > 0$ and every graphon W, there exists partition \mathcal{P} of [0,1] into $2^{O(1/\epsilon^2)}$ measurable sets such that $||W-W_{\mathcal{P}}||_{\square} \leq \epsilon$.
- 6. In this problem, you will give an alternate proof of the strong regularity lemma with explicit bounds.

Let $\epsilon = (\epsilon_1, \epsilon_2, \dots)$ be a sequence of positive reals. By repeatedly applying the weak regularity lemma, show that there is some $M = M(\epsilon)$ such that for every graphon W, there is a pair of partitions \mathcal{P} and \mathcal{Q} of [0,1] into measurable sets, such that \mathcal{Q} refines \mathcal{P} , $|\mathcal{Q}| \leq M$ (here $|\mathcal{Q}|$ denotes the number of parts of \mathcal{Q}),

$$||W - W_{\mathcal{Q}}||_{\square} \le \epsilon_{|\mathcal{P}|}$$
 and $||W_{\mathcal{Q}}||_{2}^{2} \le ||W_{\mathcal{P}}||_{2}^{2} + \epsilon_{1}^{2}$.

Furthermore, deduce the strong regularity lemma in the form given in class: one can write

$$W = W_{\rm str} + W_{\rm psr} + W_{\rm sml}$$

where W_{str} is a k-step-graphon with $k \leq M$, $\|W_{\text{psr}}\|_{\square} \leq \epsilon_k$, and $\|W_{\text{sml}}\|_1 \leq \epsilon_1$. State your bounds¹ on M explicitly in terms of ϵ .

7. (Generalized maximum cut) For symmetric measurable functions $W, U: [0,1]^2 \to \mathbb{R}$, define

$$\mathcal{C}(W,U) := \sup_{\varphi} \langle W, U^{\varphi} \rangle = \sup_{\varphi} \int W(x,y) U(\varphi(x), \varphi(y)) \, dx dy,$$

where φ ranges over all measure-preserving bijections on [0, 1]. Extend the definition of $\mathcal{C}(\cdot, \cdot)$ to graphs: $\mathcal{C}(G, \cdot) := \mathcal{C}(W_G, \cdot)$ etc.

- (a) Show that if W_1 and W_2 are graphons such that $\mathcal{C}(W_1, U) = \mathcal{C}(W_2, U)$ for all graphons U, then $\delta_{\square}(W_1, W_2) = 0$.
- (b) Let G_1, G_2, \ldots be a sequence of graphs such that $\mathcal{C}(G_n, U)$ converges as $n \to \infty$ for every graphon U. Show that G_1, G_2, \ldots is convergent.
- (c) Can the hypothesis in (b) be replaced by " $\mathcal{C}(G_n, H)$ converges as $n \to \infty$ for every graph H"?
- 8. Using the moments lemma (t(F, U) = t(F, W) for all F implies $\delta_{\square}(U, W) = 0)$ and compactness of the space of graphons, deduce:

Inverse counting lemma. For every $\epsilon > 0$, there exist $k \in \mathbb{N}$ and $\eta > 0$ such that whenever two graphons U and W satisfy

$$|t(F,U)-t(F,W)| \leq \eta$$
 for all graphs F on k vertices,

we must have $\delta_{\square}(U, W) < \epsilon$.

9. (a) Given $f: \mathbb{Z} \to \mathbb{C}$, write its Fourier series $\widehat{f}: \mathbb{R}/\mathbb{Z} \to \mathbb{C}$ as

$$\widehat{f}(t) = \sum_{n \in \mathbb{Z}} f(n)e^{-int}.$$

Let $c_1, \ldots, c_k \in \mathbb{Z}$. Let $A \subset \mathbb{Z}$ be a finite set. Show that

$$|\{(a_1,\ldots,a_k)\in A^k: c_1a_1+\cdots+c_ka_k=0\}| = \int_0^1 \widehat{1}_A(c_1t)\widehat{1}_A(c_kt)\ldots\widehat{1}_A(c_kt)\,dt.$$

(b) Show that if a finite set A of integers contains $\beta |A|^2$ solutions $(a, b, c) \in A^3$ to a+2b=3c, then it contains at least $\beta^2 |A|^3$ solutions $(a, b, c, d) \in A^4$ to a+b=c+d.

... to be continued ... check back later (last updated: November 7, 2017). Some hints on next page

¹With $\epsilon_k = \epsilon/k^2$ (corresponding to Szemerédi's regularity lemma), your bound on M should be an exponential tower of 2's of height $\epsilon^{-O(1)}$; if not then you are doing something wrong.

HINTS

- 4. Every measurable set can be arbitrarily well approximated (in measure) as a union of boxes.
- 7. Remember that $\| \cdot \|_{\square} \le \| \cdot \|_1 \le \| \cdot \|_2$.