

SRMCV Project: Extending the Diffeomorphic Neural Reconstruction Approach

Vasiliki Papadouli, Alexander Fuchs, Zehranaz Canfes

Practical Course: Shape Reconstruction and Matching in Computer Vision

TUM School of Computation, Information and Technology
Technical University of Munich
14.08.2023

Table of Contents

- Overview
- Approach
- Results
- Further Work
- Summary

Introduction: Mesh Reconstruction

Input: Images

Traditional Approaches

Structure from Motion (e.g. colmap1)

Image Source: Yilmaz, Ozgur & Karakus, Fatih. (2013). "Stereo and kinect fusion for continuous 3D reconstruction and visual odometry"

Voxel Carving²

Image Source: Hasenfratz, et al. (2004). "A Real-Time System for Full Body Interaction with Virtual Worlds"

Deep Learning Approach

Diffeomorphic Neural Surface Parameterization

Model shape as a velocity field

Deform Unit sphere by Integration over *t* timesteps

Diffeomorphic Neural Surface Parameterization

- Guarantee closed mesh
- Well-defined inside and outside

- Topological restriction
- Restricted to trivial (black)
 background

The original architecture

Separate modeling of shape and color data

Our Process

Reduce Computational Requirements

- 1. Simplified Renderer
- 2. Custom Dataset
- 3. Training adaptations for NeRF
- 4. Non-Trivial backgrounds

Dataset Creation

Use of Blender Software

Bunny occupies a unit sphere, while still being strictly inside, as the geometry is initialized with the unit sphere

30 different keyframes focusing on the front part of head

Red: object

blue: camera

Dataset Creation

Image Renderer

- Soft Rasterizer, based on original work
- Exclude specularities
- Diffuse_albedo: White
- Point Light source

Original work:

$$\mathcal{L}_{total} = \mathcal{L}_{image} + \mathcal{L}_{silhouette} + \mathcal{L}_{velocity} + \mathcal{L}_{normal_consistency}$$

$$+\mathcal{L}_{edge} + \mathcal{L}_{laplacian_smoothing}$$

Our aim:

$$\mathcal{L}_{total} = \mathcal{L}_{image} + \mathcal{L}_{velocity}$$

Training does not converge => Our approach fails

Silhouette Renderer

Renderer using a soft silhouette shader

Image and mask loss

Initial tries to find out why our code fails to reconstruct the bunny

(a) Ground truth

(b) Mask loss only

(c) Image and mask loss

Fixed error:

- Point light source was not positioned at the camera point but instead above the object
- Reduced learning rate

New Results with Image_loss + Velocity_loss

Validation Sets

Loss = 0.01895

Loss = 0.01959

Loss =0.01483

Training with Randomly Cropped Images

Main idea: NeRF => shoot a ray at every single pixel of the rendered image

Goal: Reduce computational cost

Approach:Multiplying the z-axis of the translation matrix (T) with the crop ratio

Final Approach: crop a random 2D offset value on the rendered ground truth and predicted mesh

Training with Randomly Cropped Images

Training With Randonny Cropped imag

Ground Truth

Add non-trivial Background

White cubes as a background
Try to reconstruct the mesh with a background

Preliminary Tests for NeRF

Main idea: Use a NeRF to obtain the background color

First check: use of the ground truth background as input to our rendering function

The loss only tries to reconstruct the bunny

Experiments with different background setups

Ears never have a very high contrast to the background =>reconstruction of ears fails **Approach**: No background behind ears

Experiments with different background setups

Missing viewpoints behind the bunny => reconstruction of ears fails **Approach**:Full rotation around the head

Experiments with different background setups

Object and the background same color => difficult to be distinguished **Approach**: colored cubes, white bunny mesh

Effect of Early Stopping on the Results: Training

• After some time, there is no progress

Effect of Early Stopping on the Results

Challenge: details around the eyes and the ears

Effect of ShapeNet's Size on the Results

Groundtruth

• ShapeNet with layers **256,256,256,3**: ~ 1 hour 40 minutes

• ShapeNet with layers **128,128,128,3**: ~ 1 hour 30 minutes

ShapeNet with layers 64,64,64,3: ~ 1 hour

Future Work: NeRF

- What is NeRF?
 - Synthesizing novel views of scenes given multi-view images
 - Scene representation as continuous 5D function
 - Input: spatial location (x,y,z) and viewing direction (θ, ϕ)
 - Output: volume density and view-dependent emitted radiance
- Neural Radiance Field (NeRF)

- Problem: Assumption of bounded scenes
 - impossible to have high-resolution in the foreground and the background
- Solution: Model background and foreground separately

Future Work: NeRF++

- Aim: Learn the background and reconstruct the mesh simultaneously
- **How:** NeRF++ to model the background separately from the foreground i.e. two NeRFs
 - o integral along the outer NeRF: inverted sphere parameterization
- Already implemented in our code using the existing VolSDF implementation^[1] and is ready to be integrated and tested

Future Work: NeRF++

• Separation of foreground and background is crucial for our approach

(a) bounding volume for the truck only

(b) bounding volume for the entire scene

(a) NeRF++ prediction

(b) predicted foreground

(c) predicted background

Future Work: Complex Light Source

- Aim: Reconstruct objects with specular reflectance
- How: Use more complex light sources

The original approach:

DNS GT

Our approach:

Ours GT

- **Specular** albedo and **diffuse** RGB color
- **Diffuse** RGB color

Future Work: Improve Geometric Details

- Improve the geometric quality
 - 1. Use higher resolution images
 - Coarse-to-fine strategy: gradually increase rendering resolution or the sampling rate

Summary

Initial Goal:

Investigate background handling in mesh reconstruction approach

Summary

Convincing reconstruction with limited dataset coverage

Result:

Implementation allows input of separately modeled background

Further Work required:

- Background modeling (e.g. via NeRF)
- Reintroduction of light complexities (BRDF-Net)

