Digital Image Basics

Dr. Aurélien Quillet

Data Scientist & Al dev

Professional experience

- PhD: Molecular Biologist (4 years)
- Data Science Project Leader (3 years)
- Teacher / Mentor (3 years)

Teaching experience

Topics:

- Data / IA
- Code / programming
- Algorithmes
- Mathématiques
- Molecular Biology

My training

Course description

The Syllabus

Session 1: intro

Session 2 : CNN architecture

Session 3 : Object detection

Session 4 : Image segmentation

Session 5 : Image generation

Session 6 : Final project

Session 7:
Soutenance

Course description

The Syllabus

Session 1: intro

Session 2 : CNN architecture

Session 3 : Object detection

Assignment 1

Assignment 2...

Session 4 : Image segmentation

Session 5 : Image generation

Session 6 : Final project

... Assignment 2

Final Project

Session 7 : Soutenance

Course description

The Syllabus

Assignment	Given out	Turned in	Points	Coef
1	27/05/2024	17/06/2024	100	1
2	17/06/2024	4/07/2024	100	2
3 (final)	04/07/2024	27/07/2024	100	3

Course description

Grading Grid

Skill	Description		
Documentation (markdown)	 Using at least 3 different resources (kaggle notebooks, blogs, youtube videos or else), explain your strategy and why you think this is going to work. Your code is commented when needed. The model and hyperparameters selection is explained. The performances are commented on. Bibliographical references are present. 	50	
Code (python)	 All blocks necessary to implement your strategy are present. Specialized libraries have been used. All notebook cells have been executed successfully sequentially. 	30	
Performances	 A baseline is defined. All necessary comparisons are done. Figures are readable and legends are present. A proper evaluation metric was selected. 	20	
Application (bonus)	 The script is functional. The script respects the required parameters. 	10	

Plan

- > Image analysis
 - Pixel notions
 - Colors
 - Image histogram
- Image filtering
 - Convolution filtering

Usual dataset

Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
1	5.1	3.5	1.4	0.2	Iris-setosa
2	4.9	3	1.4	0.2	Iris-setosa
3	4.7	3.2	1.3	0.2	Iris-setosa
4	4.6	3.1	1.5	0.2	Iris-setosa
5	5	3.6	1.4	0.2	Iris-setosa
6	5.4	3.9	1.7	0.4	Iris-setosa
7	4.6	3.4	1.4	0.3	Iris-setosa
8	5	3.4	1.5	0.2	Iris-setosa
9	4.4	2.9	1.4	0.2	Iris-setosa
10	4.9	3.1	1.5	0.1	Iris-setosa
11	5.4	3.7	1.5	0.2	Iris-setosa
12	4.8	3.4	1.6	0.2	Iris-setosa
13	4.8	3	1.4	0.1	Iris-setosa
14	4.3	3	1.1	0.1	Iris-setosa
15	5.8	4	1.2	0.2	Iris-setosa
16	5.7	4.4	1.5	0.4	Iris-setosa
17	5.4	3.9	1.3	0.4	Iris-setosa
18	5.1	3.5	1.4	0.3	Iris-setosa
19	5.7	3.8	1.7	0.3	Iris-setosa

Usual features / classification

The problem

Image Analysis

Pixel notions & histograms

Pixel notions

- Image sampling : divide image in small areas
 (pixels) containing a value (or a list of values)
- Coordinates : Width & Height position of a pixel
- Quantification : number of **possible values**
- Definition : W X H
- Resolution : Pixels / Length unit

Grayscale

Width

(0, 0)					
	250	249	249	248	242
	246	244	243	228	230
Height	244	242	240	230	231
	241	240	240	229	230

An image / 2D array

Col1 Col2 Col3 Col4 ····

Row1

Row2

Row3

Row4

Arr[0][0]	Arr[0][1]	Arr[0][2]	Arr[0][3]
Arr[1][0]	Arr[1][1]	Arr[1][2]	Arr[1][3]
Arr[2][0]	Arr[2][1]	Arr[2][2]	Arr[2][3]
Arr[3][0]	Arr[3][1]	Arr[3][2]	Arr[3][3]

250	249	249	248	242
246	244	243	228	230
244	242	240	230	231
241	240	240	229	230

An image / 3D array

Colors

Image Histogram

Original

Image Histogram

Under exposed

Grayscale intensity

Image Histogram

Over exposed

Histogram Equalization

Contrast adjusted

Grayscale intensity

Histogram Equalization

Contrast adjusted

Cumulative pixel intensity frequency

Librairies

Practice

Before you ask...


```
# import Opency
import cv2
# import Numpy
import numpy as np
# read a image using imread
img = cv2.imread(\'F:\\do_nawab.png\', 0)
# creating a Histograms Equalization
# of a image using cv2.equalizeHist()
equ = cv2.equalizeHist(img)
# stacking images side-by-side
res = np.hstack((img, equ))
# show image input vs output
cv2.imshow(\'image\', res)
cv2.waitKey(0)
cv2.destroyAllWindows()
```

Source: geeksforgeeks.org

Image Filtering

Feature extraction & Convolution

Feature extraction

SIFT

Feature extraction

ID	Desc1.1	Desc1.2	Desc1.3	Desc1.4	Desc2.1	Desc2.2
1	0.256	20.64	5.588	8.461	3.5123	0.4561
2	620.64	53.5123	83.5123	78.461	10.4561	50.4561
3	58.461	60.256	820.64	28.461	220.64	320.64
4	50.4561	40.256	28.461	0.2566	80.256	50.4561
5	60.256	40.256	80.4561	20.4561	38.461	20.4561
6	63.5123	30.4561	520.64	83.5123	90.256	70.4561

SIFT

SURF

FAST

BRIEF

ORB

Mais... ça ne marche pas top!

Image Filtering

Feature extraction & Convolution

Neighbors Averager Filter

Kernel

158

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

170

168

Convolution

(1*141+1*158+1*174+1*184+1*90+1*205+1*175 +1*129+1*113) / 9

141	158	174	170	168
184	90	205	196	204
175	129	113	125	201
155	164	195	145	109
169	222	235	146	182

R	ef	ကြ	re

_		
A	fte	r

141

-	184	152	205	196	204
	175	129	113	125	201
r	155	164	195	145	109
	169	222	235	146	182

174

Neighbors Averager Filter

Kernel

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Convolution

(1*158+1*174+1*170+1*90+1*205+1*196+1*129 +1*113+1*125) / 9

141	158	174	170	168
184	90	205	196	204
175	129	113	125	201
155	164	195	145	109
169	222	235	146	182

Before

	141	158	174	170	168
—	184	152	151	196	204
	175	129	113	125	201
After	155	164	195	145	109
	169	222	235	146	182

Gaussian Filter

Kernel

1/16	2/16	1/16
2/16	4/16	2/16
1/16	2/16	1/16

Convolution

(1*141+2*158+1*174+2*184+4*90+2*205+1*175 +2*129+1*113) / 16

141	158	174	170	168
184	90	205	196	204
175	129	113	125	201
155	164	195	145	109
169	222	235	146	182

_				
В	et	O	re	9

	141	158	174	170	168
_	184	145	205	196	204
	175	129	113	125	201
After	155	164	195	145	109
	169	222	235	146	182

Animated Convolution

Borders management

- Zero padding
- Duplication
- Partial convolution

141	158	174	170	168
184	90	205	196	204
175	129	113	125	201
155	164	195	145	109
169	222	235	146	182

What's next?

Suspens...!!!

Teaser...

Machine Learning

Deep Learning

Teaser...

Exercices

Coding games & Image classification

Bonus points (10)! Let's play some Codingame!

- easy:
 - o flip the sign
 - Reverse minesweeper
 - sudoku validator
 - o lumen
 - o pirate's treasure
- > medium:
 - forest fire
 - battleship