

Introduction to Machine Learning

Learning Objectives

- Fundamentals of Python programming language
- ☐ Familiarity with NumPy and Pandas
- Provide examples of Machine Learning used today
- Given a new problem, qualitatively describe how a machine learning can be used
 - Formulate a potential machine learning task
 - Identify the data needed for the task
- Classify a machine learning task
 - Regression vs. Classification
- Identify the predictors and target variables
- Determine the role of expert knowledge in the task vs. data driven learning

Outline

- Basics of Programming
 - Python loops and data structures
 - ☐ Scientific computational package NumPy
 - Data visualization
- What is machine learning?
- Types of machine learning algorithms
 - ☐ Classification and regression
- \square Why the hype today?

Global Rising Sea-Levels

Programming basics in Google Colab Notebook

- Google Colab is a free cloud service
 - Machine Learning education and research tool
 - Free and requires no setup
 - Supports free GPU to perform fast computations
 - You can improve your python programming skills
- Python
 - Loops
 - **Data Structures**
- **Data Visualization**
 - Load data using Pandas
 - Visualize the data by plotting histograms, scatter plots, etc.

```
a = [20,43,6,90,78,3]
print("forwards")
for i in range(len(a)):
  print(a[i])
print("now backwards:")
i = len(a)-1
while(i>=0):
  print(a[i])
```

```
a = ["apples",5,32,"oranges",10] # an example list
a[1:3] # index a slice of list (last element not included!)
b = ["bananas", a, "42"] # a list within a list
a.append("anything"); print(a) # add element to end of list, then print the list
# you can also remove elements. Google to find out how!
```

```
['apples', 5, 32, 'oranges', 10, 'anything']
```

a[0] # index a single element

len(a) # length of the list

Outline

- Basics of Programming
 - Python loops and data structures
 - Scientific computational package NumPy
 - Data visualization
- What is machine learning?
- Types of machine learning algorithms
 - ☐ Classification and regression
- Why the hype today?

What is Machine Learning?

- Learn the algorithm from known data to generate the rules
- Make predictions on unknown data using these rules.

Why Machine Learning over Expert Approach?

- Human expertise does not exist (ex: complex medical processes we don't fully understand)
- Humans are unable to explain their expertise (speech recognition)
- Solution changes in time (routing on a computer network)
- Solution needs to be adapted to specific cases (user biometrics)

Example 1: Digit Recognition

- Problem: Recognize a digit from the image
- MNIST dataset challenge
 - Dataset developed in 1990s to spur AI research on a challenging problem for the time
 - Data taken from census forms
 - Became a classic benchmark for machine vision problems
 - ☐ We will see this dataset extensively in this class

Images are 28 x 28 pixels

Example 1: Digit Recognition – Classical "Expert" Approach

- ☐ Idea: Use your knowledge about digits
 - You are an "expert" since you can do the task
 - □ So, you construct simple rules and code them
- \blacksquare Expert rule example: "Image is a digit 7 if...":
 - ☐ There is a single horizontal line, and
 - ☐ There is a single vertical line
- Rule seems simple and reasonable
- □ But,...

Images are 28 x 28 pixels

Example 1: Digit Recognition – Problems with Expert Rules

- ☐ Simple expert rule breaks down in practice
 - Hard to define a "line" precisely
 - Orientation, length, thickness, ...
 - May be multiple lines...
- General problem: Difficult to code our knowledge
 - We can do the task
 - ☐ But it is hard to translate to simple mathematical formula

```
def count vert lines(image):
def count horiz lines(image):
    . . .
def classify(image):
    nv = count vert lines(image)
    nh = count horiz lines(image)
    . . .
    if (nv == 1) and (nh == 1):
        digit = 7
    . . .
    return digit
```


Example 1: Digit Recognition – Problems with Expert Rules

- Do not use your "expert" knowledge
- Learn the function from data!
- Supervised learning:
 - Get many labeled examples (x_i, y_i) , i=1,...,N (Called the training data)
 - lacktriangle Each example has an input x_i and output y_i
 - Learn a function f(x) such that: $f(x) = y_i$ for "most" training examples

Training inputs images x_i (ex. 5000 ex per class)

Learned classifier f(x)

Training output labels $y_i \in \{0,1,...,9\}$

Example 1: Digit Recognition – ML Approach Benefits & Challenges

- - On MNIST, current systems get <0.21% errors (as of 1/20/2018)
 - ☐ Used widely in commercial systems today (e.g. OCR)
 - ☐ Cannot match this performance with an expert system
- ☐ But there are challenges:
 - ☐ How do we acquire data? Someone must manually label examples.
 - ☐ How do we train an algorithm to learn from the data?
 - ☐ If a function works on training example, will it generalize on new data?
- ☐ This is what you will learn in this course

Example 2: Face Detection

- Problem: For each image region, determine if face or non-face
- ☐ More challenging than digit recognition
 - Even harder to describe a face via "rules" in a robust way

Example 2: Face Detection - Supervised Learning Approach

- Data: Get large number of face and non-face examples
- ☐ Typical early dataset
 - 5000 faces (all near frontal, vary age, race, gender, lighting)
 - 10⁸ non faces
- Train an algorithm to learn the classification rules/function
 - The function maps image to binary value "face" or "non-face"
 - ☐ For good performance, functions may be complex
 - Many parameters

Example 3: Spam Detection

- □ Classification problem:
 - Is email junk or not junk?
- For ML, must represent email numerically
 - Common model: bag of words
 - Enumerate all words, i=1,...,N
 - □ Represent email via word count x_i = num instances of word i
- ☐ Challenge:
 - Very high-dimensional vector

Machine Learning in Many Fields

- Retail: Market basket analysis, Customer relationship management (CRM)
- ☐ Finance: Credit scoring, fraud detection
- Manufacturing: Control, robotics, troubleshooting
- Medicine: Medical diagnosis
- Telecommunications: Spam filters, intrusion detection
- ☐ Bioinformatics: Motifs, alignment
- ☐ Web mining: Search engines

Outline

- Basics of Programming
 - □ Python loops and data structures
 - ☐ Scientific computational package NumPy
 - Data visualization
- What is machine learning?
- Types of machine learning algorithms
 - ☐ Classification and regression
- \blacksquare Why the hype today?

Classification

- ☐ Example: Credit score
- ☐ Determine if customer is high-risk or low-risk
- Select features:
 - ☐ Example: Income & Savings
 - Represent as a vector $x=(x_1,x_2)$
- Learn a function from features to target
 - Use past training data
- Need to get this data

Regression

- ☐ Target variable *y* is continuous-valued
- Example:
 - \square Predict y = price of car
 - \Box From x = mileage, size, horsepower, ...
 - □ Can use multiple predictors
- Assume some form of the mapping
 - \square Ex. Linear: $y = \beta_0 + \beta_1 * x$
 - \Box Find parameters β_0 , β_1 from data

Regression Example – In Google Colab Notebook

- ☐ The Boston housing data set was collected in the 1970s
- Predict housing prices
- Many possible predictors:
 - □ Crime
 - Areas of non-retail business in the town
 - ☐ Age of people who own the house

Outline

- Basics of Programming
 - Python loops and data structures
 - ☐ Scientific computational package NumPy
 - Data visualization
- ☐ What is machine learning?
- Types of machine learning algorithms
 - ☐ Classification and regression
- ☐ Why the hype today?

What ML is Doing Today?

- Autonomous driving
- Jeopardy
- ☐ Very difficult games: Alpha Go
- Machine translation
- ☐ Many, many others...

Why Now?

- Machine learning is an old field
 - ☐ Much of the pioneering statistical work dates to the 1950s
- ☐ So what is new now?
- ☐ Big Data:
 - Massive storage. Large data centers
 - Massive connectivity
 - Sources of data from Internet and elsewhere
- Computational advances
 - ☐ Distributed machines, clusters
 - GPUs and hardware

Summary

- Fundamentals of Python programming language
- Familiarity with NumPy and Pandas
- Provide examples of Machine Learning used today
- Given a new problem, qualitatively describe how a machine learning can be used
 - Formulate a potential machine learning task
 - Identify the data needed for the task
- Classify a machine learning task
 - Regression vs. Classification
- Identify the predictors and target variables
- Determine the role of expert knowledge in the task vs. data driven learning

Thank You!