A Mathematical Introduction to Data Science

September 23, 2013

Homework 1. MDS and PCA

Instructor: Yuan Yao Due: Tuesday September 30, 2013

The problem below marked by * is optional with bonus credits.

1. MDS of cities: Go to the following website

http://www.geobytes.com/citydistancetool.htm

Perform the following experiment.

- (a) Input a few cities (no less than 7) in your favorite, and collect the pairwise *air traveling* distances shown on the website in to a matrix D;
- (b) Make your own codes of Multidimensional Scaling algorithm for D;
- (c) Plot the normalized eigenvalues $\lambda_i/(\sum_i \lambda_i)$ in a descending order of magnitudes, analyze your observations (did you see any negative eigenvalues? if yes, why?);
- (d) Make a scatter plot of those cities using top 2 or 3 eigenvectors, and analyze your observations.
- 2. PCA experiments: Take any digit data ('0',...,'9'), or all of them, from website http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/zip.digits/and perform PCA experiments with Matlab or other language you are familiar:
 - (a) Set up data matrix $X = (x_1, \ldots, x_n) \in \mathbb{R}^{p \times n}$;
 - (b) Compute the sample mean $\hat{\mu}_n$ and form $\tilde{X} = X e\hat{\mu}_n^T$;
 - (c) Compute top k SVD of $\tilde{X} = US_kV^T$;
 - (d) Plot eigenvalue curve, i.e. i vs. $\lambda_i(\hat{\Sigma}_n)/tr(\hat{\Sigma}_n)$ $(i=1,\ldots,k)$, with top-k eigenvalue λ_i for sample covariance matrix $\hat{\Sigma}_n = \frac{1}{n}\tilde{X}*\tilde{X}^T$, which gives you explained variation of data by principal components;
 - (e) Use imshow to visualize the mean and top-k principle components as left singular vectors $U = [u_1, \ldots, u_k];$
 - (f) For k = 1, sort the image data (x_i) (i = 1, ..., n) according to the top right singular vectors, v_1 , in an ascending order;
 - (g) For k = 2, scatter plot (v_1, v_2) and select a grid on such a plane to show those images on the grid (e.g. Figure 14.23 in book [ESL]: Elements of Statistical Learning).
- 3. Positive Semi-definiteness: Recall that a n-by-n real symmetric matrix K is called positive semi-definite $(p.s.d. \text{ or } K \succeq 0)$ iff for every $x \in \mathbb{R}^n$, $x^T K x \geq 0$.

- (a) Show that $K \succeq 0$ if and only if its eigenvalues are all nonnegative.
- (b) Show that $d_{ij} = K_{ii} + K_{jj} 2K_{ij}$ is a squared distance function, *i.e.* there exists vectors $u_i, v_j \in \mathbb{R}^n \ (1 \le i, j \le n)$ such that $d_{ij} = ||u_i u_j||^2$.
- (c) Let $\alpha \in \mathbb{R}^n$ be a signed measure s.t. $\sum_i \alpha_i = 1$ (or $e^T \alpha = 1$) and $H_\alpha = I e\alpha^T$ be the Householder centering matrix. Show that $B_\alpha = -\frac{1}{2}H_\alpha DH_\alpha^T \succeq 0$.
- (d) If $A \succeq 0$ and $B \succeq 0$ $(A, B \in \mathbb{R}^{n \times n})$, show that $A + B = [A_{ij} + B_{ij}]_{ij} \succeq 0$ (elementwise sum), and $A \circ B = [A_{ij}B_{ij}]_{ij} \succeq 0$ (Hadamard product or elementwise product).
- 4. *Singular Value Decomposition: The goal of this exercise is to refresh your memory about the singular value decomposition and matrix norms. A good reference to the singular value decomposition is Chapter 2 in this book:

Matrix Computations, Golub and Van Loan, 3rd edition.

Parts of the book are available online here:

http://www.math.pku.edu.cn/teachers/yaoy/reference/golub.pdf

- (a) Existence: Prove the existence of the singular value decomposition. That is, show that if A is an $m \times n$ real valued matrix, then $A = U \Sigma V^T$, where U is $m \times m$ orthogonal matrix, V is $n \times n$ orthogonal matrix, and $\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_p)$ (where $p = \min\{m, n\}$) is an $m \times n$ diagonal matrix. It is customary to order the singular values in decreasing order: $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_p \geq 0$. Determine to what extent the SVD is unique. (See Theorem 2.5.2, page 70 in Golub and Van Loan).
- (b) Best rank-k approximation operator norm: Prove that the "best" rank-k approximation of a matrix in the operator norm sense is given by its SVD. That is, if $A = U\Sigma V^T$ is the SVD of A, then $A_k = U\Sigma_k V^T$ (where $\Sigma_k = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_k, 0, \ldots, 0)$ is a diagonal matrix containing the largest k singular values) is a rank-k matrix that satisfies

$$||A - A_k|| = \min_{\text{rank}(B)=k} ||A - B||.$$

(Recall that the operator norm of A is $||A|| = \max_{||x||=1} ||Ax||$. See Theorem 2.5.3 (page 72) in Golub and Van Loan).

(c) Best rank-k approximation - Frobenius norm: Show that the SVD also provides the best rank-k approximation for the Frobenius norm, that is, $A_k = U\Sigma_k V^T$ satisfies

$$||A - A_k||_F = \min_{\text{rank}(B) = k} ||A - B||_F.$$