

Automated reaction discovery through reactive MD simulations

EMILIO MARTINEZ NUÑEZ

DEPARTAMENTO DE QUÍMICA FÍSICA UNIVERSIDADE DE SANTIAGO DE COMPOSTELA SPAIN EMILIO.NUNEZ@USC.ES

Outline

- ✓ Our method: AutoMeKin
- ✓ Applications

Our method

Complex and/or non-intuitive mechanisms

Manual searches:

- ✓ can be tedious
- ✓ and might overlook unconventional paths

AutoMeKin

J. Comput. Chem. **2015**, *36*, 222

Phys. Chem. Chem. Phys. 2015, 17, 14912

J. Comput. Chem. 2021, 42, 2036

M2DSchool 11/20/2022

AutoMeKin's pipeline

J. Comput. Chem. 2015, 36, 222

Phys. Chem. Chem. Phys. 2015, 17, 14912

J. Comput. Chem. 2021, 42, 2036

Reactive MD simulations I

Phys. Chem. Chem. Phys. 2015, 17, 14912

- ✓ Standard MD: high E or T and short:
- ✓ QCT
- microcanonical/canonical sampling
- √ adaptive energy range
- ✓ movie (210 kcal/mol)

Reactive MD simulations II

ChemSystemsChem **2020**, *152*, e19002

- ✓ Rare-event acceleration method (BXDE):
- ✓ energy boxes
- ✓ more efficient sampling
- ✓ loose coupling via ASE
- ✓ movie: Langevin 1000 K

M2DSchool 11/20/2022

ChemKnow

J. Comput. Chem. 2021, 42, 2036

Sampling from multiple minima

Phys. Chem. Chem. Phys. 2015, 17, 14912

Trajectories start from multiple minima

M2DSchool 11/20/2022

- ✓ Algorithm based on the adjacency matrix
- ✓ Relaxation of atoms not involved in the reaction

$$a_{ij} = \begin{cases} 1 & \text{if } \delta_{ij} < 1 \\ 0 & \text{otherwise} \end{cases} \text{ with } \delta_{ij} = \frac{r_{ij}}{r_{ij}^{\text{ref}}}$$

Reactive event detection II: (BOTS)

JCTC, 2020, 16, 1606

- Algorithm based on the bond orders
- Relaxation of atoms not involved in the reaction

Optimization

Single-ended methods: MOPAC, G09, G16, Entos Qcore

Screening

Molecules, 2018, 23, 3156

PRL, 2011, 107, 085504

Spectral Graph Theory & SPRINT coordinates

Laplacian L = D - A
$$\begin{pmatrix} 2 & -1 & -1 & 0 \\ -1 & 2 & 0 & -1 \\ -1 & 0 & 2 & -1 \\ 0 & -1 & -1 & 2 \end{pmatrix}$$

$$\lambda = 0,2,2,4$$

SPRINT Coordinates

$$S_i = \sqrt{N} \lambda^{max} \nu^{max}$$

Basic concepts of chemical kinetics

Basic concepts of chemical kinetics I

Homogeneous reactions (occurring in a single phase). closed system (in general, gas-phase reactions).

$$aA + bB + \cdots \rightarrow eE + fF + \cdots$$
 (1)

a, b, ..., e, f,... stoichiometric coefficients (in general, v_i)

A, B,..., E, F,... chemical species.

 v_i must ensure mass and charge balance.

Rate of Reaction (r)

$$r = \frac{1}{V} \left(\frac{1}{v_i} \frac{dn_i}{dt} \right) = \frac{1}{v_i} \frac{d[S_i]}{dt} \qquad \text{constant } V$$
 (2)

$$r = -\frac{1}{a}\frac{d[A]}{dt} = -\frac{1}{b}\frac{d[B]}{dt} = \dots = \frac{1}{e}\frac{d[E]}{dt} = \frac{1}{f}\frac{d[F]}{dt} = \dots$$
 (3)

 $[S_i]$ molar concentration of species i.

Example:
$$N_2 + 3H_2 \rightarrow 2NH_3$$
 $r = -\frac{d[N_2]}{dt} = -\frac{1}{3}\frac{d[H_2]}{dt} = \frac{1}{2}\frac{d[NH_3]}{dt}$

Units for *r*: chemical kinetics: M s⁻¹ (mol L⁻¹ s⁻¹), chemical dynamics: molecule cm⁻³ s⁻¹

Basic concepts of chemical kinetics II

Rate Law

Relationship between the rate of reaction and the concentrations of species at time t. For many reactions: $r = k[A]^{\alpha}[B]^{\beta}...$

k is the rate constant or rate coefficient. k = k(T, p) $\alpha, \beta, ...$ are the orders with respect to species A, B, The sum $\alpha + \beta + ...$ is the overall order.

Examples:

$$2N_2O_5 \rightarrow 4NO_2 + O_2$$
 $r = k[N_2O_5]$ $r = k[N_2O_5]$ $r = k[NO_2]^2[O_2]$ $r = k[NO_2]^2[O_2]$ $r = \frac{k[H_2][Br_2]^{1/2}}{1+j[HBr]/[Br_2]}$

In general, rate laws cannot be deduced from the reaction stoichiometry; they must be determined experimentally (or predicted by simulations).

Basic concepts of chemical kinetics III

Reaction Mechanisms

Collection of coupled steps involving chemical transformations of molecular species. The different steps are called elementary reactions.

A complex (or composite) reaction is formed by two or more elementary steps. Most chemical reactions are complex.

Example:
$$2N_2O_5(g) \to 4NO_2(g) + O_2(g)$$
 $r = k[N_2O_5]$

- 1. $N_2O_5 \rightleftharpoons NO_2 + NO_3$
- 2. $NO_2 + NO_3 \rightarrow NO + O_2 + NO_2$
- 3. $NO + N_2O_5 \rightarrow NO_2 + NO_2 + NO_2$

The molecularity is the number of molecules that react in an elementary reaction.

Unimolecular reaction
$$A \to \text{products}$$
 $-\frac{d[A]}{dt} = k[A]$

Bimolecular reaction $A + B \to \text{products}$ $-\frac{d[A]}{dt} = -\frac{d[B]}{dt} = k[A][B]$
 $2A \to \text{products}$ $-\frac{1}{2}\frac{d[A]}{dt} = k[A]^2$

Basic concepts of chemical kinetics IV

Differential Rate Equations (DREs)

For a given reaction mechanism, we may write the (coupled) differential rate equations (aka Chemical Master Equation). From these equations, we may predict the rate law (not always) and the time evolution of the populations of all the chemical species involved in the mechanism.

Example: $2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$

1.
$$N_2O_5 \rightleftharpoons NO_2 + NO_3$$

2.
$$NO_2 + NO_3 \rightarrow NO + O_2 + NO_2$$

3.
$$NO + N_2O_5 \rightarrow NO_2 + NO_2 + NO_2$$

$$\frac{d[N_2O_5]}{dt} = -k_1[N_2O_5] + k_{-1}[NO_2][NO_3] - k_3[NO][N_2O_5]$$

$$\frac{d[NO_2]}{dt} = k_1[N_2O_5] - k_{-1}[NO_2][NO_3] + 3k_3[NO][N_2O_5]$$

$$\frac{d[NO_3]}{dt} = k_1[N_2O_5] - (k_{-1} + k_2)[NO_2][NO_3]$$

$$\frac{d[\mathsf{NO}]}{dt} = k_2[\mathsf{NO}_2][\mathsf{NO}_3] - k_3[\mathsf{NO}][\mathsf{N}_2\mathsf{O}_5]$$

$$\frac{d[O_2]}{dt} = k_2[NO_2][NO_3]$$

Solution of the DREs: Analytical, numerical integration, KMC

M2DSchool 11/20/2022

Basic concepts of chemical kinetics V

In terms of PESs, an elementary step involves motion across a single barrier

Basic concepts of chemical kinetics VI

Important points of the PES: Those in which the gradient is zero (stationary points).

Minima or equilibrium geometries: All the eigenvalues of the Hessian are positive.

- ✓ Global: Lowest potential energy of the PES.
- ✓ Local: A point with the lowest potential in a given region.
- ✓ Reactive intermediate: Metastable local minimum.
- Conformers: The set of local minima that can be interconverted by rotations about single bonds.

Saddle points: One or more eigenvalues of the Hessian are negative.

- ✓ First order: Only one of the eigenvalues is negative.
- ✓ Second order: Two eigenvalues are negative.
- ✓ Transition state (TS): First order saddle point relevant for the study of a chemical reaction.

Note: the Hessian is the matrix of second derivatives of the potential with respect to the coordinates (also called force constant matrix).

Basic concepts of chemical kinetics VII

Dependence of k on T

Basic concepts of chemical kinetics VIII

Dependence of k on p

In general, only important for gas-phase unimolecular reactions

Kinetics module in AutoMeKin I

TST/RRKM

Kinetics module in AutoMeKin II

Chemical Master Equation: KMC

Computer program

AutoMeKin2021: J. Comput. Chem., **2021**, *42*, 2036

https://rxnkin.usc.es/index.php/AutoMeKin

amk_tools: ACS Physical Chemistry Au 2022, 2, 225

Diego Garay

Moisés Alvarez

Computer program

AutoMeKin2021: J. Comput. Chem., 2021, 42, 2036

https://rxnkin.usc.es/index.php/AutoMeKin

Barrierless rxns: ACS Physical Chemistry Au 2022, 2, 225

Applications

System	Reference
Fragmentation of indole	ACS Phys Chem Au 2022 (accepted)
Digylcine and dialanine	JCTC 2021 , 17, 5556
Photoisomerization of a charged styryl dye	J. Am. Soc. Mass. Spectrom. 2021 , 32, 2842
Formation mechanisms of formaldehyde in cold astrophysical regions	A&A 2021 , 656, A148
Fragmentation of octaazapentalene	Monatsh Chem. 2021, 152, 421
Syngas oxy-combustión in supercritical CO ₂	J. CO2 Util 2021 , 49, 101554
Electron-transfer-induced cleaveage in Tryptophan	JPCA 2021 , 125, 2324
Cycloaddition of cyclic nitrone	Tetrahedron 2020 , 76, 130764
Ozonolysis of α-pinene	ChemSystemsChem 2020 , 152, e19002.
vdW interactions	IJQC 2019 , 119, e26008
Fragmentation of L-Cysteine	JPCA 2019, 123, 3685
Thermal decomposition of 1-propanol	JPCA 2018, 122, 4790
Tetrahydrofuran oxidation	Combust Flame 2018 , 191, 252
Photolysis of methyl cyanoformate	ApJ 2017 , 849, 15
Hydroformylation of ethylene	Chem. Sci. 2017, 8, 3843
Fragmentation of protonated uracil	PCCP 2016 , 18, 22712
Photolysis of acryloyl chloride	PCCP 2016 , 18, 5019
Photolysis of propenal	PCCP 2015 , 17, 14912
HCN elimination from vinyl cyanide	PCCP, 2015 , 17, 6948

Systems studied so far

HCN elimination from vinyl cyanide

PCCP 2015, 17, 6948

Photolysis of propenal

PCCP **2015**, *17*, 14912 JCP **2011**, *134*, 044309

CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)

Photolysis of methyl cyanoformate

ApJ. 2017, 849, 15

Time-resolved IR spectra Evidence of

HCN(HNC) formation

14 μs 7 µs CN v₂ HCN HCN HNC 2000 1000 3000 Frequency / cm⁻¹

AutoMeKin & QCT

Top: AutoMeKin's TSs Bottom: Vibrational distros

Ozonolysis of α -pinene

ChemSystemsChem **2020**, *152*, e19002

Reaction networks

Top: stdMD Bottom: BXDE

141 8.4% H2+C10H14O3 H2O2+C10H14O 0,9% C₆H₆O₂+C₆H₁₀O 0.3%

Mechanism

Blue: stdMD & BXDE

Red: Only BXDE

Unimolecular decomposition of indole I

ACS Physical Chemistry Au 2022, 2, 225

M2DSchoo 11/20/2022

Reaction network

HCN elimination paths

ACS Physical Chemistry Au 2022, 2, 225

Astrochemistry: Formation of indole from methelene (CH₂) and phenyl isocyanide (C₆H₅CN) in the ISM

Unimolecular decomposition of indole II

M2DSchool 11/20/2022

Hydroformylation of ethylene I

M2DSchool 11/20/2022

Chem. Sci. 2017, 8, 3843

Workflow

Initial conditions

Heck and Breslow mechanism

Input

Catalyst and starting materials: $HCo(CO)_3$ (1), ethylene (2), CO (3) and H_2 (4)

Temperature: 423 K

Solvent: Toluene ($\eta = 2.09 \times 10^{-4} \text{ Pa s}$)

 $c_{0,\text{cat}}$ =0.0004-0.02 M

 $c_{0,\text{eth}} = 0.04 - 2 \text{ M}$

 p_0 =1-60 bar CO and H₂

Hydroformylation of ethylene II

M2DSchool 11/20/2022

Chem. Sci. 2017, 8, 3843

Reaction mechanism

∆G (kcal/mol) -15 -20 -

Rate law

Int. J. Quantum Chem. 2019, 119, e26008

New A matrix

 ${f F}$: Molecule ${\cal F}$

 ${\bf G}$: Molecule ${\cal G}$

NO₂-pyrene Most stable minimum-energy structures

M2DSchool 11/20/2022

Interface with M3C

Simulation of dissociative photoionization

CH₃OH⁺ CHO+(+COH+) CH₂OH 0.8 0.7 TPES 0.6 0.5 0.4 0.3 0.2 CHOH* 0.1 0.0 CHO*/COH* Fractional Ion Abundace CH₂OH⁺ 80-60-CH₃OH CHOH*/CH2O* Fractional Ion Abundace CH₂OH⁺ CHO*/COH* CH₃OH⁴ CHOH+/CH2O+ CH2+ Internal Energy (eV)

Ехр

M3C

M3C+AutoMeKin

Nestor Aguirre

Interface with the Cathedral package

Fernández-Ramos

https://github.com/cathedralpkg

Acknowledgements

George Barnes

Carles Bo

Dave Glowacki

Sabine Kopec

Aurelio Rodríguez Rober Rodríguez Robin Shannon

Jimmy Stewart

Pablo Tahoces

Saulo Vázquez

