София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 29 ноември 2014 г.

А. Максимална цена

В един склад имало n вида стоки в ограничени количества. За всяка стока се знае цената c_i и теглото w_i (i = 1, 2, ..., n) на една продуктова единица. Задачата е да натовари камион с дадена товароносимост m със стоки от склада с най-голяма възможна цена. Обемът на стоките може да бъде пренебрегнат.

Вход:

На входа най-напред се задават числата n и m - видове стоки и товароносимостта на камиона. На следващите n реда са дадени брой продуктови единици, тегло w_i и стойност c_i на една продуктова единица от съответния вид стока. Всички числа са цели в интервала [1, 100]. Входът съдържа много примери.

Изход:

Отпечатва се максималната стойност за натоварените на камиона стоки - за всеки пример на отделен ред.

Вход	Изход
3 10	70
4 1 10	
3 4 20	
2 5 30	

Пояснение на примера: В склада има 3 вида стоки (n = 3), а товароносимостта на камиона е 10 (m = 10). От първия вид стока в склада има 4 продуктови единици, всяка с тегло 1 (w1 = 1) и стойност 10 (c1 = 10), от втория вид - 3 продуктови единици с тегло 4 (w2 = 4) и стойност 20 (c2 = 20) и от третия вид - 2 продуктови единици с тегло 5 (w3 = 5) и стойност 30 (c3 = 30). Оптималното решение се получава от 4 продуктови единици от първия вид стока и една от третия вид, общо тегло 4x1 + 1x5 = 9 и стойност 4x10 + 1x30 = 70.

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 29 ноември 2014 г.

В. Зайче в беда

Веднъж малкото бяло зайче, гонено от един ловец попаднало в лабиринт, които имал форма на квадратна дъска N x N. В него чакал големия лош вълк, които предварително изкопал дупки, където зайчето да падне и той да го хване по-лесно. В последния момент зайчето с ужас разбрало, че може да се движи само в посока надолу и надясно и че изхода от лабиринта е чак в долния десен ъгъл на дъската.

Зайчето трябвало да разбере каква е вероятността да излезе от лабиринта без да падне в някоя дупка. За целта трябвало да изчисли броя пътища от входа до изхода на лабиринта, като успяло да се снабди с картата на този лабиринт. Картата е зададена с размер N, като местата на дупките са означени с O, а проходимите места с 1. Напишете програма, която пресмята търсения брой пътища.

Вход:

На входа се задава числото N < 100 - размерът на дъската и матрица с единици и нули. Входът съдържа много примери.

Изход:

За всеки пример на отделен ред се отпечатва цяло число - търсения брой пътища.

Вход	Изход	
2	2	
1 1	1	
1 1	0	
3		
1 0 1		
1 0 1		
1 1 1		
2		
0 1		
1 1		

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 29 ноември 2014 г.

С. Много прости числа

Много просто се нарича просто число, което притежава следното допълнително интересно свойство: след отстраняване на най-дясната цифра на числото полученото число е също просто, след отстраняване на най-дясната цифра на новото просто число се получава отново просто число и т.н. докато се получи едноцифрено число, което също е просто или е равно на 1.

Числото 1 не се счита за просто.

Например, 7331 е просто число и след отстраняване на 1, полученото число 733 е също просто. След отстраняване на 3, полученото число 73 е просто число. След отстраняване на 3, полученото число 7 е отново просто. Едноцифрените прости числа 2, 3, 5 и 7 са много прости. Много просто е и числото 11, тъй като самото то е просто и като махнем последната му цифра остава 1.

Напишете програма, която по зададен интервал [a,b], извежда всички много прости числа от този интервал.

Вход

На стандартния вход се въвеждат двойки естествени числа а и b, съответно ляв и десен край на интервала. Входът съдържа много примери.

Изход

Намерените супер прости числа се извеждат на стандартния изход в нарастващ ред – всяко число на нов ред. Ако в зададения интервал няма нито едно много просто число, на стандартния изход се извежда NO.

Ограничения: $0 < a < b < 10^7$

Вход	Изход
20 50	23
	29
	31
	37

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 29 ноември 2014 г.

D. Азбука

Даден е низ, съдържаш малки букви от латинската азбука. Да се намери най-късия подниз, съдържащ всички букви на тази азбука.

Вход

На системния вход се задават низове, съдържащи само малки латински букви. Всеки низ започва на отделен ред.

Изход

За всеки тест на отделен ред на стандартния изход се отпечатва търсения най-къс подниз. Ако има два най-къси низа се отпечатва този, който е по-напред във входния низ. Ако няма се извежда числото 0.

Вход	Изход
qwertyuiopasdfghjklzxcvbnmqwerty	qwertyuiopasdfghjklzxcvbnm
aaabbbcccdddefghijklmn	0

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 29 ноември 2014 г.

Е. Нечетни числа

Да се намери сумата на нечетните числа в даден затворен интервал. Границите на интервала се четат от стандартния вход, а сумите се отпечатват по една на ред на стандартния изход. Всички числа на входа са цели и в затворения интервал [1, 1000].

Вход	Изход
1 3	4
2 4	3
24 24 99 100	0
99 100	99

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 29 ноември 2014 г.

F. Събиране и изваждане на дроби

Напишете програма, за събиране и изваждане на прости дроби, като представите резултата във вид на несъкратима дроб.

Стандартен вход:

Всеки пример се задава със сума или разлика на две дроби на отделен ред: m/n + p/q или m/n - p/q, където m, n, p, q са естествени числа, по-малки от 10000. Входът съдържа няколко примера.

Стандартен изход:

За всеки пример на изхода се записва сумата или разликата на двете дроби като несъкратимата дроб по същия начин, както зададените на входа дроби. Когато решението е цяло число, то се записва по нормалния начин.

Пример:

Вход	Изход
1/2 + 1/3	5/6
10/4 - 1/2	2

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 29 ноември 2014 г.

G. Щастливи числа

Щастливо число ще наричаме естествено число, което се записва в двоична бройна система с четен брой цифри и има еднакъв брой единици в първата и втората половина на записа му. Да се напише програма, която да да определя дали дадено число е щастливо.

Числата са по-малки от 10^5 и се четат от стандартния вход, а резултатът "YES" или "NO" се извежда на стандартния изход, по един на ред.

Вход	Изход
3 4 10 129	YES
	NO
	YES
	YES

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 29 ноември 2014 г.

Н. Тройки числа

Дадена е редица от цели положителни числа, да се намерят три числа в редицата, чиято сума е отнапред зададено число или е по-малка, но максимално близка до него.

Всеки пример се задава на два реда — броят N на числата в редицата (2 < N < 101) и отнапред зададеното число M ($9 < M < 300\ 001$). На втория ред са числата от редицата. Край на входа е число, не отговарящо на ограниченията за N.

За всеки тестов пример да се изведе получената сума на отделен ред.

Вход	Изход
5 21	21
5 6 7 8 9	497
10 500	
93 181 245 214 315 36 185 138	
216 295	
0	

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 29 ноември 2014 г.

I. Низове

Дадени са два низа а и b, съставени от малки латински букви. Напишете програма, която намира низът с най-голяма дължина, който е едновременно подниз на пермутация на а и подниз на пермутация на b.

Под "пермутация на низ" ще разбираме низ със същата дължина, включващ символите на изходния в някакъв ред.

Под "подниз на низ" ще разбираме низ, съставен от ненулев брой последователни символи на дадения.

Вход

На първия ред е даден броя на тестовете (не повече от 30). За всеки тест се въвеждат двата низа, всеки на отделен ред. Максималната дължина на всеки от тях е 1000 символа.

Изход

На редове в изхода се извеждат съответните търсени низове. Ако има повече от един низ с най-голяма дължина, отговарящ на условието, да се изведе най-малкия в лексикографската им подредба.

Вход	Изход	
2	erw	
qwerty	ор	
aswer		
poiut hjkop		
hjkop		

София 1635, ул. Монтевидео 21 тел.: 55 81 37, 55 21 35, факс: 957 19 30

Департамент Информатика

Школа "Състезателно програмиране" Състезание, 29 ноември 2014 г.

Ј. Кифли

В закусвалня има три вида кифли, съответно с мармалад, шоколад и крем. Искаме да купим възможно най-много кифли. Проблемът е, че броят им е ограничен, както са ограничени и парите ни. Възможно е някои видове кифли да струват О парични единици или някои видове кифли да са свършили.

Напишете програма, която ни помага да намерим най-голямото количество кифли, които може да купим.

Вход

На първия ред е даден броя на тестовете (не повече от 30).

За всеки тест данните са разположени на три реда. От първия ред се въвеждат три цели неотрицателни числа – цените на кифлите с мармалад, с шоколад и с крем. От втория ред се въвеждат още три цели неотрицателни числа – броя на кифлите от съответния вид. От третия ред се въвежда едно цяло неотрицателно число – парите, с които разполагаме.

Изход

За всеки тест програмата трябва да изведе на един ред едно цяло число — броят на кифлите, които може да закупим.

Ограничения

Всички данни са цели неотрицателни числа и не са по-големи от

100 000 000 000 000 000.

Пример

Вход	Изход
2	7
5 3 8	105
2 6 4	
23	
15 18 20	
1 4 100	
1000000	