

Instituto Federal de Educação, Ciência e Tecnologia do Ceará Campus Maracanaú

Coordenadoria de Computação

Curso de Bacharelado em Ciência da Computação Disciplina: Processamento Digital de Imagens

Professor: Igor Rafael Silva Valente

ATIVIDADE

Assunto:

Transformações de intensidade – parte 2.

Orientações:

A atividade deve ser executada individualmente e entregue através do ambiente Google Classroom.

Nome completo:

Raul Aquino de Araújo

- 1. O que é um histograma? Explique.
 - Histograma de uma imagem é uma ferramenta que demonstra a frequência com que cada valor de intensidade da imagem aparece na mesma.
- 2. Explique a forma esperada do histograma para os tipos de imagens elencados a seguir:
 - a. Imagem escura
 - Fazendo uma análise do histograma de uma imagem escura, temos que a concentração da valores da intensidade estão mais à esquerda, ou seja, mais próximos do valor 0.
 - b. Imagem clara
 - De forma contrária, ao analisarmos o histograma de uma imagem dita como clara, temos uma concentração dos valores de intensidade mais a direita da imagem, para uma imagem de 8 bits, mais próximo do 255.
 - c. Imagem de baixo contraste
 - Ocupa apenas uma pequena faixa de valores do total de valores disponíveis do histograma dessa imagem.
 - d. Imagem de alto contraste
 - Temos uma distribuição maior dos valores ao longo do histograma.
- 3. Com o intuito de demonstrar a equalização automática de histograma, utilize a ferramenta Octave Online (https://octave-online.net) para fazer o que se pede (a resposta deve ser dada em formato de relatório, onde o código-fonte criado para cada item deve ser seguido do resultado/imagem obtido):
 - a. Carregue as imagens clara.tif, escura.tif e baixo_contraste.tif (fornecidas em anexo)

```
clear; clc; clear all;
pkg load image;
E = imread('escura.tif');
C = imread('clara.tif');
B = imread('baixo_contraste.tif');
```

b. Exiba as imagens com seus respectivos histogramas (use a função subplot)

c. Realize a equalização automática em cada uma das imagens originais

```
E2 = histeq(E);
17
    C2 = histeq(C);
18
    B2 = histeq(B);
19
   figure,
20
    subplot(1,2,1), imshow(E2), title('Escura equalizada'),
21
    subplot(1,2,2), imhist(E2), title('Histograma');
22
    figure,
23
    subplot(1,2,1), imshow(C2), title('Clara equalizada'),
    subplot(1,2,2), imhist(C2), title('Histograma');
24
25
    figure,
    subplot(1,2,1), imshow(B2), title('Baixo contraste equalizada'),
26
    subplot(1,2,2), imhist(B2), title('Histograma');
```

d. Exiba as imagens equalizadas com seus respectivos histogramas (use a função subplot)

Clara equalizada

Baixo contraste equalizada

- 4. Em relação ao resultado obtido na questão anterior, note que não são notadas alterações relevantes entre as três imagens equalizadas. A partir desta análise, responda:
 - a. Como isto é possível, visto que os histogramas das imagens equalizadas são diferentes?

$$s_k = T(r_k) = (L-1)\sum_{j=0}^k p_r(r_j) = \frac{(L-1)}{MN}\sum_{j=0}^k n_j$$

 $k = 0, 1, 2, ..., L-1$

Basicamente os histogramas de entradas também são bem parecidos, porém em locais diferentes, levando isso em consideração e fazendo a utilização da fórmula acima, teremos que a imagem de saída das 3 imagens sejam bem parecidas.

Boa sorte!

Prof. Igor.