

CS323 Lab 1

Yepang Liu

liuyp1@sustech.edu.cn

Agenda

- Introduction to labs & course project
- Set up the environment for course project
- Find teammates for the project

What will we do in labs?

- Exercises to understand the core concepts learnt in lectures
- Tool tutorials to help you build a working compiler
- Cover some detailed content that cannot be covered in lectures,
 e.g., complex algorithms, etc.
- Q&A (we won't have much time for questions during lectures)
- Project inspections / demos/ presentations

• ...

Lab Attendance & Exercises

• We will check lab attendance and exercises after course selection/drop period.

• It is fine if you cannot finish all lab exercises during class. You can continue to do the exercises after each class and submit your work before the end of the week.

Course Project

• **Team size:** 2-3 students (there is no additional bonus for small-sized teams)

Tasks:

Target language: MIPS32 SUSTech Programming Language

- 1. Build a working compiler for a mini C-like language (SPL)
 - Phase 1: Lexical and syntax analysis (~1 month) 输出语法分析树
 - Phase 2: Semantic analysis (~1 month)
 - Phase 3: Intermediate code generation (~1 month)
 - Phase 4 (optional): Target code generation & optimizations (~ 1 month)
- 2. Do research on an open-source compiler and write a report (~10 pages, ACM Journal article template)
 - o https://en.wikipedia.org/wiki/List_of_compilers#Open_source_compilers

Course Project

• Typically, for each phase, you need to submit:

- Code + test cases
- A brief report: 1) how to run your compiler (or its components), 2) the new features designed and implemented by your team, 3) the contribution of each team member

• Project checking plans (tentative):

- Milestone check 1 (Phase 1): Week 7
- Milestone check 2 (Phase 2): Week 11
- Final check (Phases 1-3): Week 15

Demos & presentations (week 16, tentative):

For selected projects & research reports only

Install Flex

- Flex is a fast lexical analyser generator. It is a tool for generating programs that perform pattern-matching on text. Flex is a non-GNU free implementation of the well known Lex program.
 - GitHub repo: https://github.com/westes/flex
 - Manual: https://www.epaperpress.com/lexandyacc/download/flex.pdf
- Please follow the step below to install Flex 2.6.4* on Ubuntu 18.04:
 - sudo apt install flex=2.6.4-6 (you may need to update your package list with "sudo apt update" before installing flex)
 - If the installation is successful, type the command "flex --version". If you see "flex 2.6.4", you are done.

The latest avaiable version of a Ubuntu package can be found at https://packages.ubuntu.com/.

^{*} We have not tested other versions. There might be problems.

Install Bison

- Bison is a general-purpose parser generator that converts an annotated context-free grammar into a parser. You can use it to develop a wide range of language parsers, from simple desk calculators to complex programming languages.
 - Official website: https://www.gnu.org/software/bison/
 - Manual: https://www.gnu.org/software/bison/manual/
- Please follow the steps below to install Bison (3.0.4):
 - sudo apt install bison=2:3.0.4.dfsg-1build1
 - If the installation is successful, type the command "bison --version". If you see "bison (GNU Bison) 3.0.4...", you are done.

Test Your C Programming Environment

- We will mostly use C for programming this semester.
- If you are not familiar, please take a look at this quick guide:
 - https://www.tutorialspoint.com/cprogramming/c_quick_guide.htm
- Or learn the language via this interactive tutorial:
 - https://www.learn-c.org/
- To test your environment, please compile and run a hello world program:
 - 1. Clone our GitHub repo to local via https://github.com/sqlab-sustech/CS323-2023F.git (if you don't have git, install it by "sudo apt install git")
 - 2. Go to the directory "lab1" and run command "make hello". If you see a file "hello.out" generated, you are done. Continue to execute "./hello.out" and you will see a "hello world!" message in the terminal.
 - 3. If you fail to build the target, you may need to install gcc (via "sudo apt install gcc") and make (via "sudo apt install make") and repeat the second step.

C Programming Exercise (Optional)

• To warm up, let's do a linked list exercise

- In our definition, each node contains two fields (see link_list.h under the lab1 directory):
 - For header node, the first field contains the number of nodes in the list, excluding itself; For other nodes, the first field contains an int value.
 - The second field is a pointer to the next node in the list and NULL if the current node is the last one in the list.

C Programming Exercise (Optional)

• We have provided the code for a few functions (see link_list.c). You are required to implement the following functions:

```
/* insert val at position index */
void linked_list_insert(node *head, int val, int index);

/* get value at position index */
int linked_list_get(node *head, int index);

void linked_list_delete(node *head, int index);

/* search the first index of val */
int linked_list_search(node *head, int val);

/* remove the first occurence node of val */
void linked_list_remove(node *head, int val);

/* search all indexes of val */
node *linked_list_search_all(node *head, int val);

/* remove all occurences of val */
void linked_list_remove all(node *head, int val);
```

- When you finish, please compile your code and make a shared object file named "libll.so" via the command "make libll".
- To test your code, please run our provided python script (if you do not have python3, install it via "sudo apt install python3"):
 - python3 ll_test.py (see how many test cases you can pass)

VMware Image

- In case you are not able to set up the environment, we also provide a VMware image*:
 - http://10.16.69.201:2333/course/cs323-compilers/CS323-labvm.7z

You can import the image into VMware and login using the credential "student:compiler" (it is a privileged user).

^{*} We do not have resources to maintain the image. Use it at your own risk.

Find Your Teammates ©

• 【腾讯文档】CS323-2023秋课程项目组队

https://docs.qq.com/sheet/DSlFSU0REREVBR0pZ?tab=BB08J2