Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Томский государственный архитектурно-строительный университет»

ЧИСЛЕННЫЕ МЕТОДЫ РАСЧЕТА СТРОИТЕЛЬНЫХ КОНСТРУКЦИЙ. МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ И САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

Методические указания

Составитель Б.А. Тухфатуллин

Численные методы расчета строительных конструкций. Материалы для проведения практических занятий и самостоятельной работы студентов: методические указания / Сост. Б.А. Тухфатуллин. — Томск: Изд-во Том. гос. архит.-строит. унта, $2012.-56\ c.$

Рецензент к.т.н., доцент Д.Н. Песцов Редактор Е.Ю. Глотова

Методические указания содержат материалы для проведения практических занятий и самостоятельной работы студентов по дисциплине «Численные методы расчета строительных конструкций» по направлению 270800 «Строительство» профиля подготовки «Промышленное и гражданское строительство», «Городское строительство и хозяйство» всех форм обучения.

Печатаются по решению методического семинара кафедры строительной механики № 8 от 10.11.2011 г.

Утверждены и введены в действие проректором по учебной работе В.В. Дзюбо

<u>с</u> 01.09.2012 до 01.09.2017

Оригинал-макет подготовлен автором.

Подписано в печать 18.01.12. Формат $60\times84/16$. Бумага офсет. Гарнитура Таймс. Уч.-изд. л. 2,9. Тираж 250 экз. Заказ № 3

Изд-во ТГАСУ, 634003, г. Томск, пл. Соляная, 2. Отпечатано с оригинал-макета в ООП ТГАСУ. 634003, г. Томск, ул. Партизанская, 15.

ВВЕДЕНИЕ

Численные методы расчета строительных конструкций изучаются студентами в VII семестре. Цель дисциплины — дать общие сведения об использовании существующих программных комплексов и положенных в их основу методов расчета стержневых систем, пластин и оболочек. В первой части дисциплины изучаются методы конечных разностей (МКР), Ритца, Бубнова—Галеркина на примерах решения задач прочности, жесткости и устойчивости [1-3]. Основы метода конечных элементов (МКЭ) [4-6] излагаются во второй части курса.

Общие сведения о программном комплексе SCAD [7, 8], входящего в состав вычислительной системы SCAD Office, порядок создания расчетной модели и вывода результатов приводятся в первом разделе методических указаний.

Второй раздел содержит различные задачи для проведения практических занятий по изучению МКЭ. С помощью ПК SCAD выполняется расчет шарнирно опертой балки, фермы, плоской рамы, арки, панели, пространственной стержневой системы. На этих примерах изучаются различные приемы создания расчетной модели, порядок построения линий влияния и т. п. После расчета выполняются проверка и анализ полученных результатов.

Варианты заданий для расчетно-графической работы «Расчет стержневых систем методом конечных элементов» приводятся в третьем разделе. В первой задаче требуется часть расчетов по МКЭ выполнить вручную, во второй задаче расчет полностью производится в ПК SCAD, в том числе и при изменениях в расчетной схеме.

Указания к выполнению и оформлению расчетнографической работы содержатся в четвертом разделе, необходимые для расчета справочные данные приводятся в приложении. При составлении вариантов использованы материалы ранее изданных методических указаний [9].

1. ОБЩИЕ СВЕДЕНИЯ О ПРОГРАММНОМ КОМПЛЕКСЕ SCAD

ПК SCAD предназначен для расчета конструкций на прочность, жесткость, устойчивость при действии статических и динамических воздействий. В основу расчета положен метод конечных элементов. С его помощью рассчитываются плоские и пространственные стержневые системы, пластины и оболочки, мембраны, массивные тела. Также могут быть рассчитаны комбинированные системы: рамно-связевые конструкции многоэтажных зданий, пластины с ребрами, плиты на упругом основании и т. д.

Статические воздействия могут быть силовыми, температурными или заданными перемещениями отдельных точек конструкции. Динамическое нагружение задается в виде вибрационной нагрузки от технологического оборудования, пульсации ветра, ударных и сейсмических воздействий. Рассчитываемые системы могут иметь произвольные очертания, различные ослабления (вырезы) и условия закрепления. Библиотека конечных элементов содержит большое количество различных элементов.

По результатам расчета осуществляется выбор невыгодных комбинаций нагрузок, проверка или подбор поперечных сечений стержней.

Подготовка исходных данных

Исходные данные задаются в режиме диалога при помощи графического препроцессора. Файл с исходными данными, имеющий расширение spr (сокращение от Scad PRoject) формируется автоматически. Предусмотрена возможность подготовки исходных данных в виде текстового файла с расширением txt, в том числе и для обмена информации с программными комплексами Lira, Stark ES.

Для подготовки исходных данных необходимо рассчиты-

ваемую задачу разбить на узлы и конечные элементы. Элементы, имеющие одинаковые жесткостные характеристики, объединяют в один тип жесткости.

Расчетная схема располагается в правой декартовой системе координат (рис. 1.1, a). Местная система координат для стержневого КЭ имеет следующую ориентацию: ось x_1 направлена от начала стержня к его концу, а оси y_1 и z_1 являются главными центральными осями инерции сечения (рис. 1.1, δ). Если одна из главных осей инерции сечения не параллельна плоскости xOy, задается угол чистого вращения — угол поворота главных центральных осей инерции сечения.

Puc. 1.1

Координаты узлов задаются в общей системе координат. Предусмотрена возможность задания узлов по дуге окружности, с использованием повторителей и т. п.

Для пространственной схемы каждый узел системы имеет шесть степеней свободы, которые нумеруются следующим образом:

- 1 линейное перемещение вдоль оси x;
- 2 линейное перемещение вдоль оси y;
- 3 линейное перемещение вдоль оси z;
- 4 поворот вокруг оси x;
- 5 поворот вокруг оси y;
- 6 поворот вокруг оси z .

Шарниры используются для описания прикрепления стержней к узлам в виде устранения линейных или угловых связей по осям местной системы координат.

Для стержневых КЭ указываются:

EA – жесткость на растяжение—сжатие (кH);

 EJ_y – жесткость на изгиб относительно оси y_1 (кН·м²);

 EJ_z – жесткость на изгиб относительно оси z_1 (кН·м²);

 GJ_k – жесткость на кручение (к $H \cdot M^2$);

 GA_{v} – жесткость на сдвиг вдоль оси y_{1} (кН);

 GA_z – жесткость на сдвиг вдоль оси z_1 (кН).

Для КЭ пластины указываются характеристики материала, толщина и вид напряженно-деформированного состояния.

В ряде случаев для заранее определенных типов сечений (такие сечения называются параметрическими) можно выбрать материал и указать размеры; в этом случае все характеристики будут вычислены программой автоматически.

Для стальных конструкций поперечное сечение может быть назначено с использованием базы данных из сортамента прокатных профилей.

Связи накладываются в общей системе координат и имеют

следующие обозначения:

X — линейная связь вдоль оси x;

Y — линейная связь вдоль оси y;

Z – линейная связь вдоль оси z;

 U_{x} – связь от поворота вокруг оси x;

 $U_{_{\scriptscriptstyle V}}$ – связь от поворота вокруг оси y;

 U_z – связь от поворота вокруг оси z.

Нагрузки в виде сосредоточенных сил, моментов прикладываются в узлы по направлениям общей системы координат или к элементам с указанием координаты сечения от начала элемента. Распределенные нагрузки прикладываются к элементам и задаются по направлениям местной или общей системы координат. Нагрузки, приложенные одновременно, относят к одному загружению.

Положительные силы и распределенные нагрузки направлены противоположно соответствующим осям. Положительные моменты – по часовой стрелке, если смотреть с конца соответствующей оси.

Для создания и работы со сложными (и не только) расчетными схемами имеется большое количество инструментов для ввода, проверки и корректировки исходных данных, например:

копирование схемы, сборка из нескольких подсхем, объединение в группы узлов (элементов), фрагментация, масштабирование и т. д.

Тип схемы

Тип схемы позволяет существенно упрощать ввод данных, например, для плоской рамы (балки) нет необходимости ставить опорные связи из плоскости; для фермы не нужно устанавливать шарниры по концам КЭ и т. п. Наиболее часто используемые типы схемы приведены в табл. 1.1.

Таблица 1.1

19	Th TBO ĬĬ			нейн		У	гловь	ые			
SM.	CI	E E	пере	меще	кин	пере	емеще	ения			
Тип схемы	Плоскость	Количество степеней свободы	переі х	у	z	x	у	z	Система		
1	xOz	2	+	_	+	-	_	_	Плоская ферма, панель		
2	xOz	3	+	_	+	ı	+	-	Плоская рама, балка, арка		
3	хОу	3	_	_	+	+	+	_	Балочный ростверк, плита		
4	_	3	+	+	+	ı	-	-	Пространственная ферма (структура), массивное тело		
5	_	6	+	+	+	+	+	+	Система общего вида (пространственная стержневая система, оболочка и т. п.)		

Последовательность решения задачи

- 1. Создать новый проект (выбрать тип схемы, задать единицы измерения для координат узлов, размеров сечений, нагрузок).
 - 2. Подготовить расчетную схему:
 - ввести координаты узлов;
 - задать элементы;
 - описать жесткости;
 - установить опорные связи;
 - задать нагрузки.
 - 3. Произвести расчет задачи.
- 4. Вывести результаты расчета (эпюры усилий, деформированную схему, поля напряжений). Проверить полученные результаты, используя деформированную схему и известные из сопротивления материалов свойства эпюр внутренних усилий.

2. МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Практическое занятие № 1

- 1. Для балки (рис. 2.1) построить эпюры изгибающих моментов и поперечных сил.
 - 2. Определить прогиб посредине пролета балки.
- 3. Сравнить полученные результаты (максимальный прогиб, ординаты эпюр внутренних усилий) с известными из дисциплины «Сопротивление материалов» величинами.

Поперечное сечение

Puc. 2.1

Таблица 2.1 Исходные данные для расчета балки

Номер	L,	b,	h,	q,	Материал
группы	M	CM	CM	кН/м	1.101 op 11001
1	4,0	20,0	40	24	Бетон В15
2	4,5	22,5	45	22	Бетон В15
3	5,0	25,0	50	20	Бетон В15
4	5,5	27,5	55	18	Бетон В20
5	6,0	30,0	60	16	Бетон В20
6	6,5	32,5	65	14	Бетон В20
7	7,0	35,0	70	12	Бетон В22
8	8,0	40,0	80	10	Бетон В22

- 1. Для стальной фермы (рис. 2.2) определить усилия в стержнях от постоянной нагрузки.
- 2. Построить линии влияния для отмеченных стержней (подвижная нагрузка перемещается по нижнему поясу фермы).

Puc. 2.2

Таблица 2.2 Исходные данные для расчета фермы

Номер группы	L,	<i>Н</i> , м	<i>F</i> , кН	Верхний пояс	Нижний пояс	Решетка
1	16	2,0	6,5	110×8	80×7	63×6
2	18	2,2	7,0	125×8	90×8	70×6
3	20	2,4	7,5	125×9	100×10	75×6
4	22	2,6	8,0	140×9	110×8	80×7
5	24	2,8	8,5	140×10	125×8	90×7
6	26	3,0	9,0	140×12	125×10	90×9
7	28	3,2	9,5	160×10	140×10	100×8
8	30	3,4	10,0	160×12	160×10	100×12

- 1. Для заданной рамы (рис. 2.3) определить усилия в стержнях и перемещения узлов.
- 2. Для наклонного стержня построить эпюры изгибающих моментов, поперечных и продольных сил.

Таблица 2.3 Исходные данные для расчета рамы

Номер группы	<i>L</i> ,	<i>Н</i> ,	<i>F</i> ₁ , кН	<i>F</i> ₂ , кН	<i>q</i> ₁ , кН/м	<i>q</i> ₂ , кН/м	<i>М</i> , кН·м	Δ, cm	Материал
1	6,0	5,8	20	30	2,0	3,0	12	1,5	Бетон В15
2	6,2	6,0	18	28	2,8	3,2	10	2,0	Бетон В15
3	6,4	6,2	16	26	3,6	4,6	8	2,5	Бетон В15
4	6,6	6,4	14	24	3,4	4,4	6	3,0	Бетон В20
5	6,8	6,6	12	22	4,2	5,2	20	3,5	Бетон В20
6	7,0	6,8	10	20	5,0	7,0	18	4,0	Бетон В20
7	7,2	7,0	8	18	6,8	7,8	16	4,5	Бетон В22
8	7,4	7,2	6	16	5,6	6,6	14	5,0	Бетон В22

Задача № **1.** Выполнить расчет деревянной арки (рис. 2.4, a), вписав в нее ломаную из восемнадцати и тридцати шести звеньев.

Puc. 2.4

Задача № 2. Определить напряжения в панели с отверстием (рис. 2.4, б), разбив ее на четыре части по горизонтали и три по вертикали (использовать для расчета прямоугольный конечный элемент балки-стенки).

Таблица 2.4 Исходные данные для расчета арки и панели

Номер	R,	F,	L,	Н,	h,	q,	Материал
группы	M	кН	M	M	M	кН/м	панели
1	15	20	6,0	3,0	0,30	10,0	Бетон В15
2	16	18	6,2	3,1	0,32	12,0	Бетон В15
3	17	16	6,4	3,2	0,34	14,0	Бетон В15
4	18	14	6,6	3,3	0,36	16,0	Бетон В20
5	20	12	6,8	3,4	0,38	18,0	Бетон В20
6	21	10	7,0	3,5	0,40	20,0	Бетон В20
7	22	8	7,2	3,6	0,42	22,0	Бетон В22
8	23	6	7,4	3,7	0,44	24,0	Бетон В22

Последовательность выполнения задачи № 1:

– воспользоваться инструментом «генерация узлов по дуге» или «ввод элементов по дуге» (в этом случае одновременно задать жесткости элементов).

Последовательность выполнения задачи № 2:

- задать координаты четырех узлов на контуре панели;
- ввести конечный элемент пластины;
- изменить тип конечного элемента с № 44 на № 21;
- назначить жесткость конечному элементу;
- разделить панель на четыре части по горизонтали и три по вертикали;
 - удалить элементы в месте отверстия;
 - установить опорные связи;
 - и приложить нагрузку.

- 1. Создать расчетную схему плоской рамы (рис. 2.5, a). Нагрузки q_1 , F_1 приложить в первом загружении.
- 2. Создать расчетную схему пространственной рамы. Нагрузки q_2 приложить во втором загружении (рис. 2.5, δ).
 - 3. Выполнить расчет пространственной рамы.

Таблица 2.5 Исходные данные для расчета рамы

Номер	L,	Н,	F_1 ,	q_1 ,	q_2 ,	Колонна	Ригель,
группы	M	M	кН	кН/м	кН/м	Колонна	распорка
1	6,0	5,8	20	2,0	3,0	30K1*	30Ш1**
2	6,2	6,0	18	2,8	2,8	30K2	30Ш2
3	6,4	6,2	16	3,6	2,6	30K3	30Ш3
4	6,6	6,4	14	3,4	2,4	35K1	35Ш1
5	6,8	6,6	12	4,2	2,2	35K2	35Ш2
6	7,0	6,8	10	5,0	2,0	35K3	35Ш3
7	7,2	7,0	8	6,8	1,8	40K1	40Ш1
8	7,4	7,2	6	7,6	1,6	40K2	40III2

^{*} двутавр колонный

Последовательность выполнения задачи:

- выбрать тип схемы № 5;
- создать плоскую раму (задать узлы, ввести элементы, задать жесткости, приложить нагрузки q_1 , F_1 в загружении №1);
- при установке опорных связей учесть, что колонны имеют жесткое защемление в плоскости и из плоскости рамы;
- скопировать плоскую раму в направлении оси y с шагом 6 м два раза (выбрать опцию «копирование нагрузок»);
 - установить распорки;
 - приложить нагрузки q_2 в загружении №2.

^{**} двутавр широкополочный

б

Puc. 2.5

3. ВАРИАНТЫ ЗАДАНИЙ ДЛЯ РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ

Задача № 1

Для заданной рамы (рис. 3.1) требуется:

- 1. Выполнить расчет в SCAD, построить эпюры внутренних усилий, определить перемещения узлов.
- 2. Для вертикального стержня сформировать матрицу жесткости в местной системе координат, направляющих косинусов, вычислить матрицу жесткости элемента в общей системе координат.
- 3. По известным перемещениям по концам элемента вычислить внутренние усилия в элементе и построить их эпюры.

Таблица 3.1 Исходные данные для задачи № 1

Номер	L,	F,	q,	M,	EA	EJ
группы	M	кН	кН/м	кН∙м	LA	LJ
1	3,0	20	4,4	6	100	1
2	3,2	18	4,2	8	100	1
3	3,4	16	4,0	10	100	1
4	3,6	14	3,8	12	100	1
5	3,8	12	3,6	14	200	1
6	4,0	10	3,4	16	200	1
7	4,2	8	3,2	18	200	1
8	4,4	6	3,0	20	200	1

Рис. 3.1 (продолжение см. на с. 18–20, окончание – на с. 21)

Puc. 3.1. Продолжение (начало см. на с. 17, продолжение на с. 19, 20, окончание – на с. 21)

Puc. 3.1. Продолжение (начало см. на с. 17, 18, продолжение – на с. 20, окончание – на с. 21)

 $\it Puc.~3.1.~$ Продолжение (начало см. на с. 17–19, окончание – на с. 21)

Puc. 3.1. Окончание (начало см. на с. 17–20)

Задача № 2

Для заданной плоской стержневой системы (рис. 3.2) требуется:

- 1. Выполнить расчет в SCAD.
- 2. Показать деформированную схему сооружения.
- 3. Построить эпюры внутренних усилий.
- 4. Сделать статическую проверку полученного решения.
- 5. Произвести расчет системы при изменениях в расчетной схеме или построить линии влияния (указывается по каждому варианту индивидуально).

Таблица 3.2 Исходные данные для задачи № 2

Номер	a,	F,	q,	Μ,	b,	h,	Уголок
группы	M	кН	кН/м	кН∙м	СМ	CM	y i oliok
1	0,6	30	6	10	40	60	100×10
2	0,8	40	8	12	40	80	110×8
3	1,0	50	10	14	50	100	125×10
4	1,2	60	12	16	60	120	140×12
5	1,4	70	14	18	70	140	160×12
6	1,6	80	16	20	80	160	180×12
7	1,8	90	18	22	90	180	220×14
8	2,0	100	20	24	100	200	250×16

Построить линию влияния изгибающего момента в сечении «k»

Произвести расчет при изменениях в расчетной схеме:

- а) шарнирном присоединение решетки к узлам (пояса неразрезные);
- б) все узлы шарнирные

Рис. 3.2 (продолжение см. на с. 23–33, окончание – на с. 34)

Произвести расчет при изменениях в расчетной схеме: все узлы жесткие

Построить линии влияния продольных сил в отмеченных стержнях

Рис. 3.2. Продолжение (начало см. на с. 22, продолжение – на с. 24–33, окончание – на с. 34)

Произвести расчет при изменениях в расчетной схеме: высота сечения ригеля увеличена в 1,5 раза

Произвести расчет при изменениях в расчетной схеме: в среднее сечение стоек вставить шарнир

Puc. 3.2. Продолжение (начало см. на с. 22–23, продолжение – на с. 25–33, окончание – на с. 34)

Произвести расчет при изменениях в расчетной схеме: все узлы жесткие

Построить линии влияния изгибающего момента и поперечной силы в сечении $\langle k \rangle$

Puc. 3.2. Продолжение (начало см. на с. 22–24, продолжение – на с. 26–33, окончание – на с. 34)

Произвести расчет при изменениях в расчетной схеме: высота сечения ригеля увеличена в 1,5 раза

Произвести расчет при изменениях в расчетной схеме: все узлы жесткие

 $\it Puc.~3.2.$ Продолжение (начало см. на с. 22–25, продолжение – на с. 26–33, окончание – на с. 34)

Произвести расчет при изменениях в расчетной схеме: высота сечения ригеля увеличена в 1,5 раза

Произвести расчет при изменениях в расчетной схеме: все узлы жесткие

Puc. 3.2. Продолжение (начало см. на с. 22–26, продолжение – на с. 28–33, окончание – на с. 34)

Произвести расчет при изменениях в расчетной схеме:

Произвести расчет при изменениях в расчетной схеме: вписать в арочную часть ломаную линию из двенадцати звеньев

Puc. 3.2. Продолжение (начало см. на с. 22–27, продолжение – на с. 29–33, окончание – на с. 34)

Произвести расчет при изменениях в расчетной схеме: вписать в арочную часть ломаную линию из двадцати четырех звеньев

Произвести расчет при изменениях в расчетной схеме: увеличить жесткость вант в 2 раза

Puc. 3.2. Продолжение (начало см. на с. 22–28, продолжение – на с. 30–33, окончание – на с. 34)

Произвести расчет при изменениях в расчетной схеме: все узлы жесткие

Произвести расчет при изменениях в расчетной схеме: высота сечения ригеля увеличена в 1,5 раза

Рис. 3.2. Продолжение (начало см. на с. 22–29, продолжение – на с. 31–33, окончание – на с. 34)

Построить линии влияния продольных сил в отмеченных стержнях

Puc. 3.2. Продолжение (начало см. на с. 22–30, продолжение – на с. 32, 33, окончание – на с. 34)

Построить линии влияния продольных сил в отмеченных стержнях

Произвести расчет при изменениях в расчетной схеме: размеры поперечного сечения верхнего пояса увеличены в 2 раза

Рис. 3.2. Продолжение (начало см. на с. 22–31, продолжение – на с. 33, окончание – на с. 34)

Произвести расчет при изменениях в расчетной схеме: промежуточная опора смещается вниз на 3 см

Произвести расчет при изменениях в расчетной схеме: все узлы жесткие

Рис. 3.2. Продолжение (начало см. на с. 22–32, окончание – на с. 34)

Произвести расчет при изменениях в расчетной схеме: все узлы жесткие

Рис. 3.2. Окончание (начало см. на с. 22–33)

4. ПРИМЕР ВЫПОЛНЕНИЯ РАСЧЕТНО-ГРАФИЧЕСКОЙ РАБОТЫ

Пример решения задачи № 1

Схема рамы и исходные данные для расчета показаны на рис. 4.1, a.

Puc. 4.1

Создаем в SCAD расчетную модель (тип схемы № 2 «плоская рама»). Задаем координаты узлов и соединяем их стержнями согласно принятой нумерации (рис. 4.1, δ , ϵ).

Назначаем жесткости стержней:

- способ задания «численное описание»;
- тип элемента «стержень плоской рамы (тип 2)»;
- продольная жесткость EF = 150 кH;
- изгибная жесткость $EJ_{v} = 1 \text{ кH} \cdot \text{м}^{2}$;

Устанавливаем шарнир для первого элемента:

- освобождение угловых связей;
- конец элемента (узел 2);
- направление вокруг оси $y(U_y)$.

Прикладываем нагрузки:

- «узловые нагрузки» сила, направленная по оси X, величина F = -18 кH , приложена к узлу № 2;
- «нагрузки на стержни», направление по оси X , величина q=-6 кН/м , приложена к элементу № 3;
- «нагрузки на стержни» момент по оси Y, величина M=-12 к $H\cdot$ м, привязка к началу элемента «0», приложен к элементу № 2.

Выполняем расчет.

Выводим результаты расчета:

- «единицы измерений», «выходные», «перемещения» в м, «усилия и напряжения» в кН, формат числа 1,123 (т. к.

некоторые результаты расчета могут быть существенно меньше единицы).

Недостающие ординаты выясняем с помощью функций

- «информация об элементе», «эпюры усилий» (для эпюр с ординатами разных знаков»;
- «результаты», «печать таблиц», «усилия и напряжения» (для эпюр с ординатами одного знака).

В результате получаем значения узловых перемещений по горизонтали, вертикали, углы поворота (рис. 4.2, a–e) и эпюры внутренних усилий (рис. 4.2, e– ∂).

Правило знаков для линейных перемещений (рис. 4.2, a), совпадает с принятым в лекционном курсе, а для угловых перемещений — противоположное (рис. 4.3, δ , ϵ). Показываем узловые перемещения на одной схеме (рис. 4.2, ϵ). Для углов поворота, полученных в SCAD, следует поменять знаки на обратные, а для горизонтальных и вертикальных перемещений знаки оставить без изменений.

Правило знаков для линейных перемещений

Правило знаков для угловых перемещений

г

Puc. 4.3

Для вертикального конечного элемента формируем матрицу жесткости в местной и общей системе координат.

Конечный элемент № 1

Показываем стержень в общей (рис. 4.4, a) и местной системе координат (рис. 4.4, δ). Принимаем, что узел № 1 является начальным, а узел № 2 — конечным.

Puc. 4.4

Вычисляем при длине стержня $\ell = 3.5 \, \text{м}$:

$$\cos \alpha = \frac{X_{\text{\tiny K}} - X_{\text{\tiny H}}}{\ell} = \frac{X_2 - X_1}{\ell} = \frac{0 - 0}{3.5} = 0;$$

$$\sin \alpha = \frac{Y_{\text{\tiny K}} - Y_{\text{\tiny H}}}{\ell} = \frac{Y_2 - Y_1}{\ell} = \frac{3.5 - 0}{3.5} = 1.$$

Матрица направляющих косинусов для стержня с шарниром в конце элемента (см. приложение)

$$[C] = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 & 0 & 0 \\ \sin\alpha & \cos\alpha & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \cos\alpha & -\sin\alpha \\ 0 & 0 & \sin\alpha & \cos\alpha \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

Матрица жесткости стержня с шарниром в конце элемента (см. приложение)

$$\begin{bmatrix} k^* \end{bmatrix} = \begin{bmatrix} \frac{EA}{\ell} & 0 & 0 & -\frac{EA}{\ell} & 0 \\ 0 & \frac{3EJ}{\ell^3} & \frac{3EJ}{\ell^2} & 0 & -\frac{3EJ}{\ell^3} \\ 0 & \frac{3EJ}{\ell^2} & \frac{3EJ}{\ell} & 0 & -\frac{3EJ}{\ell^2} \\ -\frac{EA}{\ell} & 0 & 0 & \frac{EA}{\ell} & 0 \\ 0 & -\frac{3EJ}{\ell^3} & -\frac{3EJ}{\ell^2} & 0 & \frac{3EJ}{\ell^3} \end{bmatrix} =$$

$$\begin{bmatrix} \frac{150}{3,5} & 0 & 0 & -\frac{150}{3,5} & 0\\ 0 & \frac{3\cdot 1}{3,5^3} & \frac{3\cdot 1}{3,5^2} & 0 & -\frac{3\cdot 1}{3,5^3}\\ 0 & \frac{3\cdot 1}{3,5^2} & \frac{3\cdot 1}{3,5} & 0 & -\frac{3\cdot 1}{3,5^2}\\ -\frac{150}{3,5} & 0 & 0 & \frac{150}{3,5} & 0\\ 0 & -\frac{3\cdot 1}{3,5^3} & -\frac{3\cdot 1}{3,5^2} & 0 & \frac{3\cdot 1}{3,5^3} \end{bmatrix} =$$

$$= \begin{bmatrix} 42,857 & 0 & 0 & -42,857 & 0 \\ 0 & 0,070 & 0,245 & 0 & -0,070 \\ 0 & 0,245 & 0,857 & 0 & -0,245 \\ -42,857 & 0 & 0 & 42,857 & 0 \\ 0 & -0,070 & -0,245 & 0 & 0,070 \end{bmatrix}$$

Переводим матрицу жесткости в общую систему координат по формуле $[k] = [C] \cdot [k^*] \cdot [C]^{\mathsf{T}}$. Перемножаем матрицы $[C] \times [k^*]$

$$\begin{bmatrix} 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times$$

$$\times \begin{bmatrix} 42,857 & 0 & 0 & -42,857 & 0 \\ 0 & 0,070 & 0,245 & 0 & -0,070 \\ 0 & 0,245 & 0,857 & 0 & -0,245 \\ -42,857 & 0 & 0 & 42,857 & 0 \\ 0 & -0,070 & -0,245 & 0 & 0,070 \end{bmatrix} =$$

$$= \begin{bmatrix} 0 & -0.070 & -0.245 & 0 & 0.070 \\ 42.857 & 0 & 0 & -42.857 & 0 \\ 0 & 0.245 & 0.857 & 0 & -0.245 \\ 0 & 0.070 & 0.245 & 0 & -0.070 \\ -42.857 & 0 & 0 & 42.857 & 0 \end{bmatrix}.$$

Полученную матрицу умножаем на матрицу $[C]^{\mathsf{T}}$

$$\begin{bmatrix} 0 & -0,070 & -0,245 & 0 & 0,070 \\ 42,857 & 0 & 0 & -42,857 & 0 \\ 0 & 0,245 & 0,857 & 0 & -0,245 \\ 0 & 0,070 & 0,245 & 0 & -0,070 \\ -42,857 & 0 & 0 & 42,857 & 0 \end{bmatrix} \times$$

$$= \begin{bmatrix} 0,070 & 0 & -0,245 & -0,070 & 0 \\ 0 & 42,857 & 0 & 0 & -42,857 \\ -0,245 & 0 & 0,857 & 0,245 & 0 \\ -0,070 & 0 & 0,245 & 0,070 & 0 \\ 0 & -42,857 & 0 & 0 & 42,857 \end{bmatrix}.$$

Допускается вычислять результат перемножения матриц в программных продуктах Microsoft Excel, OpenOffice Calc, MATLAB, Scilab и т. д. В этом случае следует сформировать исходные матрицы вручную и привести матрицу результат (без промежуточных вычислений).

Вычисляем внутренние усилия по МКЭ с использованием перемещений узлов, полученных в SCAD.

Из полученных перемещений (рис. 4.3, ε) выбираем вектор перемещений по концам конечного элемента \mathfrak{N} 1:

$$\{Z\} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 111,340 \\ 0,240 \end{bmatrix}.$$

Переводим перемещения в местную систему координат по формуле $\{Z^*\} = [C]^T \cdot \{Z\}$

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \\ 0 \\ 111,340 \\ 0,240 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0,240 \\ -111,340 \end{bmatrix}$$

Находим вектор реакций в местной системе координат перемножением матрицы жесткости элемента $[k^*]$ на вектор перемещений $\{Z^*\}$ по формуле $\{r^*\} = [k^*] \cdot \{Z^*\}$

$$\begin{bmatrix} 42,857 & 0 & 0 & -42,857 & 0 \\ 0 & 0,070 & 0,245 & 0 & -0,070 \\ 0 & 0,245 & 0,857 & 0 & -0,245 \\ -42,857 & 0 & 0 & 42,857 & 0 \\ 0 & -0,070 & -0,245 & 0 & 0,070 \end{bmatrix} \times \begin{bmatrix} 0 \\ 0 \\ 0,240 \\ -111,340 \end{bmatrix} = \begin{bmatrix} 42,857 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + (-42,857) \cdot 0,240 + 0 \cdot (-111,340) \\ 0 \cdot 0 + 0,070 \cdot 0 + 0,245 \cdot 0 + 0 \cdot 0,240 + (-0,070) \cdot (-111,340) \\ 0 \cdot 0 + 0,245 \cdot 0 + 0,857 \cdot 0 + 0 \cdot 0,240 + (-0,245) \cdot (-111,340) \\ -42,857 \cdot 0 + 0 \cdot 0 + 0 \cdot 0 + 42,857 \cdot 0,240 + 0 \cdot (-111,340) \\ 0 \cdot 0 + (-0,070) \cdot 0 + (-0,245) \cdot 0 + 0 \cdot 0,240 + 0,070 \cdot (-111,340) \end{bmatrix} = \begin{bmatrix} -10,286 \\ 7,794 \\ 27,278 \\ 10,286 \\ 7,704 \end{bmatrix}.$$

Показываем реакции в начале и в конце элемента с учетом знака (рис. 4.5, a). Положительные реакции направляем в ту же сторону, что и перемещения (рис. 4.3, a, b), а отрицательные в обратную сторону.

По полученным реакциям находим продольные, поперечные силы и изгибающие моменты в начале элемента (рис. $4.5, \delta$):

 $N_{\rm H} = 10,286\,{\rm KH};$ $Q_{\rm H} = 7,794\,{\rm KH};$ $M_{\rm H} = -27,278\,{\rm KH}\cdot{\rm M}.$ Внутренние усилия в конце элемента (рис. 4.5, ϵ): $N_{\rm K} = 10,286\,{\rm KH};$ $Q_{\rm K} = 7,794\,{\rm KH};$ $M_{\rm K} = 0\,{\rm KH}\cdot{\rm M}.$

Строим по этим расчетам эпюры в элементе N 1 (рис. 4.6). За исключением знака поперечной силы эти эпюры совпадают с эпюрами, построенными в SCAD.

Не следует повторять в расчетно-графической работе все положения методических указаний (они нужны для уяснения рассматриваемого материала). Оформление работы должно быть выдержано в стиле краткой пояснительной записки к производимым расчетам.

Методические указания к оформлению задачи № 2

Исходные данные для расчета. Приводится расчетная схема с указанием геометрических размеров, нагрузок, размеров поперечных сечений, условий опирания. Записывается кратко цель расчета.

Дискретизация системы. Производится общий анализ рассчитываемой задачи: наличие стержней с криволинейной осью, учитывается характер изменений в расчетной схеме. Приводятся схемы нумерации узлов и конечных элементов.

Результаты расчета. Приводится деформированная схема сооружения, указываются места и величины максимальных перемещений узлов по вертикали и горизонтали. Вычерчиваются эпюры внутренних усилий с указанием ординат в характерных сечениях.

Статическая проверка полученного решения. Проверяется равновесие одного узла или равновесие всей системы под действием заданной нагрузки и опорных реакций.

Решение задачи при изменениях в расчетной схеме, построение линий влияния. Производится анализ изменений в результатах расчета (указывается в процентном отношении изменение внутренних усилий, делается вывод о влиянии внесенных изменений на прочность и жесткость сооружения). При расчете на подвижную нагрузку необходимо описать порядок определения ординат и построить требуемые линии влияния.

Пример выполнения задачи № 2

Схема рамы и исходные данные для расчета показаны на рис. 4.7, a. Дополнительно требуется построить линию влияния изгибающего момента в сечении «k» и произвести расчет при увеличении высоты ригеля в два раза.

Назначаем узлы (рис. 4.7, б), в том числе в сечениях, где будет расположена единичная сила при построении линии влияния. Схема нумерации конечных элементов показана на рис. 4.8, a.

После выполения расчета показываем деформированную схему (рис. 4.8, δ) и эпюры изгибающих моментов (рис. 4.8, ϵ), поперечных и продольных сил (рис. 4.9, a, δ).

Для статической проверки вырезаем узел (рис. 4.9, ϵ) и составляем уравнения равновесия:

$$\sum x = 182,97 + 0,0 + 1,16 \cdot 0,832 - 331,59 \cdot 0,555 = 0,096 \approx 0;$$

$$\sum y = -175,4 - 101,14 + 1,16 \cdot 0,555 + 331,59 \cdot 0,832 = -0,013 \approx 0;$$

$$\sum m = 150,6 + 6,25 - 156,85 = 0,0.$$

Условия равновесия выполняются.

6 122,42 9,29 77,58 38,85 6,25 146,57

Puc. 4.8

a

б

в

Статическая проверка

Puc. 4.9

Для построения линии влияния изгибающего момента в узле № 9 прикладываем единичную силу в узлах 2–10. По результатам расчета заполняем табл. 4.1 и строим линию влияния (рис. 4.10).

Tаблица 4.1 **Ор**динаты линии влияния изгибающего момента

	Единичная сила в узле								
M_9	2	3	4	5	6	7	8	9	10
	0,02	0,04	0,04	-0,04	-0,23	0,05	0,52	1,22	0,57

Puc. 4.10

Выполняем расчет при увеличении высоты сечения ригеля в два раза. Результаты расчета показаны на рис. 4.11. Сравнивая полученные внутренние усилия, делаем вывод, то при увеличении изгибной жесткости ригеля максимальный изгибающий момент в ригеле увеличился на 17 %, а максимальная продольная сила в наклонном стержне уменьшилась на 14 %.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. *Ильин, В. П.* Численные методы решения задач строительной механики: учеб. пособие для вузов / В.П. Ильин, В.В. Карпов, А.М. Масленников. –М.: Изд-во АСВ, 2005. 426 с.
- 2. *Александров*, *А.В.* Основы теории упругости и пластичности : учеб. для вузов / А.В. Александров, В.Д. Потапов. М. : Высш. шк., 2007. 400 с.
- 3. *Икрин, В.А.*. Сопротивление материалов с элементами теории упругости и пластичности : учеб. для вузов / В.А. Икрин. М. : Изд-во АСВ, 2005. 424 с.
- 4. *Трушин, С.И.* Метод конечных элементов. Теория и задачи: учеб. пособие / С.И. Трушин. М.: Изд-во АСВ, 2008. 256 с.
- 5. *Агапов, В.П.* Метод конечных элементов в статике, динамике и устойчивости конструкций: учеб. пособие / В.П. Агапов. М.: Изд-во АСВ, 2004. 248 с.
- 6. *Константинов, И.А.* Строительная механика: учеб. для вузов / И.А. Константинов, В.В. Лалин, И.И. Лалина. М.: Проспект, КНОРУС, 2010. 432 с.
- 7. SCAD Office. Вычислительный комплекс SCAD / В.С. Карпиловский [и др.]. М.: Изд-во ACB, 2007. 592 с.
- 8. *Семенов, А.А.* Проектно-вычислительный комплекс SCAD в учебном процессе. Часть І. Статический расчет : учеб. пособие / А.А. Семенов, А.И. Габитов. М. : Изд-во ACB, 2005. 152 с.
- 9. *Тухфатуллин*, *Б.А.* Расчет стержневых и континуальных систем методом конечных элементов: методические указания / Б.А. Тухфатуллин. Томск: Изд-во Том. гос. архит.-строит. ун-та, 2000. 30 с.

Матрицы жесткости $[k^*]$ и направляющих косинусов [C] для стержня, жестко примыкающего к узлам в начале и в конце:

$$\left[k^*\right] = \begin{bmatrix} \frac{EA}{\ell} & 0 & 0 & -\frac{EA}{\ell} & 0 & 0\\ 0 & \frac{12EJ}{\ell^3} & \frac{6EJ}{\ell^2} & 0 & -\frac{12EJ}{\ell^3} & \frac{6EJ}{\ell^2}\\ 0 & \frac{6EJ}{\ell^2} & \frac{4EJ}{\ell} & 0 & -\frac{6EJ}{\ell^2} & \frac{2EJ}{\ell}\\ -\frac{EA}{\ell} & 0 & 0 & \frac{EA}{\ell} & 0 & 0\\ 0 & -\frac{12EJ}{\ell^3} & -\frac{6EJ}{\ell^2} & 0 & \frac{12EJ}{\ell^3} & -\frac{6EJ}{\ell^2}\\ 0 & \frac{6EJ}{\ell^2} & \frac{2EJ}{\ell} & 0 & -\frac{6EJ}{\ell^2} & \frac{4EJ}{\ell} \end{bmatrix},$$

$$[C] = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 & 0 & 0 & 0\\ \sin\alpha & \cos\alpha & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & \cos\alpha & -\sin\alpha & 0\\ 0 & 0 & 0 & \sin\alpha & \cos\alpha & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Матрицы жесткости $[k^*]$ и направляющих косинусов [C] для стержня с шарниром в начале элемента:

$$\begin{bmatrix} k^* \end{bmatrix} = \begin{bmatrix} \frac{EA}{\ell} & 0 & -\frac{EA}{\ell} & 0 & 0 \\ 0 & \frac{3EJ}{\ell^3} & 0 & -\frac{3EJ}{\ell^3} & \frac{3EJ}{\ell^2} \\ -\frac{EA}{\ell} & 0 & \frac{EA}{\ell} & 0 & 0 \\ 0 & -\frac{3EJ}{\ell^3} & 0 & \frac{3EJ}{\ell^3} & -\frac{3EJ}{\ell^2} \\ 0 & \frac{3EJ}{\ell^2} & 0 & -\frac{3EJ}{\ell^2} & \frac{3EJ}{\ell} \end{bmatrix},$$

$$[C] = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 & 0 \\ 0 & 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Матрицы жесткости $[k^*]$ и направляющих косинусов [C] для стержня с шарниром в конце элемента:

$$[k^*] = \begin{bmatrix} \frac{EA}{\ell} & 0 & 0 & -\frac{EA}{\ell} & 0\\ 0 & \frac{3EJ}{\ell^3} & \frac{3EJ}{\ell^2} & 0 & -\frac{3EJ}{\ell^3}\\ 0 & \frac{3EJ}{\ell^2} & \frac{3EJ}{\ell} & 0 & -\frac{3EJ}{\ell^2}\\ -\frac{EA}{\ell} & 0 & 0 & \frac{EA}{\ell} & 0\\ 0 & -\frac{3EJ}{\ell^3} & -\frac{3EJ}{\ell^2} & 0 & \frac{3EJ}{\ell^3} \end{bmatrix},$$

$$[C] = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & \cos \alpha & -\sin \alpha \\ 0 & 0 & 0 & \sin \alpha & \cos \alpha \end{bmatrix}.$$

ОГЛАВЛЕНИЕ

Введение	3
1. Общие сведения о программном комплексе SCAD	4
2. Материалы для проведения практических занятий	9
3. Варианты заданий для расчетно-графической работы	16
4. Пример выполнения расчетно-графической работы	35
Библиографический список	52
Приложение	53