УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

Курсовая работа Часть 2

Вариант 9

Студент Пчелкин Илья Игоревич P3106

Преподаватель Поляков Владимир Иванович

Задание

Построить комбинационную схему реализующую функцию C=A+1 (C и A — 4 битные) при t=0 и C=A+B (C — 4 битное, A и B — двух битные числа) при t=1. При переносе устанавливается бит e.

Таблица истинности

Nº	t	a_1	a_2	b_1	b_2	e	c_1	c_2	c_3	c_4
0	0	0	0	0	0	0	0	0	0	1
1	0	0	0	0	1	0	0	0	1	0
2	0	0	0	1	0	0	0	0	1	1
3	0	0	0	1	1	0	0	1	0	0
4	0	0	1	0	0	0	0	1	0	1
5	0	0	1	0	1	0	0	1	1	0
6	0	0	1	1	0	0	0	1	1	1
7	0	0	1	1	1	0	1	0	0	0
8	0	1	0	0	0	0	1	0	0	1
9	0	1	0	0	1	0	1	0	1	0
10	0	1	0	1	0	0	1	0	1	1
11	0	1	0	1	1	0	1	1	0	0
12	0	1	1	0	0	0	1	1	0	1
13	0	1	1	0	1	0	1	1	1	0
14	0	1	1	1	0	0	1	1	1	1
15	0	1	1	1	1	1	0	0	0	0
16	1	0	0	0	0	0	0	0	0	0
17	1	0	0	0	1	0	0	0	0	1
18	1	0	0	1	0	0	0	0	1	0
19	1	0	0	1	1	0	0	0	1	1
20	1	0	1	0	0	0	0	0	0	1
21	1	0	1	0	1	0	0	0	1	0
22	1	0	1	1	0	0	0	0	1	1
23	1	0	1	1	1	0	0	1	0	0
24	1	1	0	0	0	0	0	0	1	0
25	1	1	0	0	1	0	0	0	1	1
26	1	1	0	1	0	0	0	1	0	0
27	1	1	0	1	1	0	0	1	0	1
28	1	1	1	0	0	0	0	0	1	1
29	1	1	1	0	1	0	0	1	0	0
30	1	1	1	1	0	0	0	1	0	1
31	1	1	1	1	1	0	0	1	1	0

Минимизация булевых функций на картах Карно

$$e = a_1 a_2 b_1 b_2 \bar{t} \quad (S_Q = 5)$$

$$c_1 = \overline{t} \ (a_1 \vee a_2) \ (a_1 \vee b_1) \ (a_1 \vee b_2) \ \left(\overline{a_1} \vee \overline{a_2} \vee \overline{b_1} \vee \overline{b_2} \right) \quad (S_Q = 15)$$

$$c_2 = \left(a_2 \vee b_1\right) \, \left(a_2 \vee b_2 \vee t\right) \, \left(a_1 \vee a_2 \vee \overline{t}\right) \, \left(a_1 \vee b_1 \vee \overline{t}\right) \, \left(a_1 \vee b_2 \vee \overline{t}\right) \, \left(b_1 \vee b_2 \vee \overline{t}\right) \, \left(\overline{a_2} \vee \overline{b_1} \vee \overline{b_2} \vee t\right) \quad (S_Q = 28)$$

 $c_3 = \overline{a_1} \, b_1 \, \overline{b_2} \, \vee \, b_1 \, \overline{b_2} \, \overline{t} \, \vee \, \overline{b_1} \, b_2 \, \overline{t} \, \vee \, a_1 \, \overline{a_2} \, \overline{b_1} \, t \, \vee \, a_1 \, \overline{b_1} \, \overline{b_2} \, t \, \vee \, \overline{a_1} \, \overline{a_2} \, b_1 \, t \, \vee \, \overline{a_1} \, a_2 \, \overline{b_1} \, b_2 \, \vee \, a_1 \, a_2 \, b_1 \, b_2 \, t \quad (S_O = 38)$

$$c_4 = (\overline{b_2} \vee t) (\overline{a_2} \vee \overline{b_2}) (a_2 \vee b_2 \vee \overline{t}) \quad (S_Q = 10)$$

Преобразование системы булевых функций

$$\begin{cases} e = a_1 \, a_2 \, b_1 \, b_2 \, \bar{t} & (S_Q^e = 5) \\ c_1 = \bar{t} \, (a_1 \vee a_2) \, (a_1 \vee b_1) \, (a_1 \vee b_2) \, \left(\overline{a_1} \vee \overline{a_2} \vee \overline{b_1} \vee \overline{b_2} \right) & (S_Q^{c_1} = 15) \\ c_2 = (a_2 \vee b_1) \, (a_2 \vee b_2 \vee t) \, (a_1 \vee a_2 \vee \bar{t}) \, (a_1 \vee b_1 \vee \bar{t}) \wedge \\ \wedge \, (a_1 \vee b_2 \vee \bar{t}) \, \left(b_1 \vee b_2 \vee \bar{t} \right) \, \left(\overline{a_2} \vee \overline{b_1} \vee \overline{b_2} \vee t \right) \\ c_3 = \overline{a_1} \, b_1 \, \overline{b_2} \vee b_1 \, \overline{b_2} \, \overline{t} \vee \overline{b_1} \, b_2 \, \overline{t} \vee a_1 \, \overline{a_2} \, \overline{b_1} \, t \vee a_1 \, \overline{b_1} \, \overline{b_2} \, t \vee \overline{a_1} \, \overline{a_2} \, b_1 \, t \vee \\ \vee \, \overline{a_1} \, a_2 \, \overline{b_1} \, b_2 \vee a_1 \, a_2 \, b_1 \, b_2 \, t \\ c_4 = \left(\overline{b_2} \vee t \right) \, \left(\overline{a_2} \vee \overline{b_2} \right) \, \left(a_2 \vee b_2 \vee \bar{t} \right) & (S_Q^{c_4} = 10) \\ (S_Q = 96) \end{cases}$$

Проведем раздельную факторизацию системы.

$$\begin{cases} e = a_1 \, a_2 \, b_1 \, b_2 \, \overline{t} & (S_Q^e = 5) \\ c_1 = \overline{t} \, \left(a_1 \vee a_2 \, b_1 \, b_2 \right) \, \left(\overline{a_1} \vee \overline{a_2} \vee \overline{b_1} \vee \overline{b_2} \right) & (S_Q^{c_1} = 12) \\ c_2 = \left(a_2 \vee b_1 \right) \, \left(a_1 \vee \overline{t} \vee a_2 \, b_1 \, b_2 \right) \, \left(a_2 \vee b_2 \vee t \right) \, \left(b_1 \vee b_2 \vee \overline{t} \right) \, \left(\overline{a_2} \vee \overline{b_1} \vee \overline{b_2} \vee t \right) & (S_Q^{c_2} = 23) \\ c_3 = b_1 \, \overline{b_2} \, \left(\overline{a_1} \vee \overline{t} \right) \vee \overline{b_1} \, b_2 \, \left(\overline{t} \vee \overline{a_1} \, a_2 \right) \vee a_1 \, \overline{b_1} \, t \, \left(\overline{a_2} \vee \overline{b_2} \right) \vee \overline{a_1} \, \overline{a_2} \, b_1 \, t \vee \\ & \vee a_1 \, a_2 \, b_1 \, b_2 \, t \\ c_4 = \left(\overline{b_2} \vee t \, \overline{a_2} \right) \, \left(a_2 \vee b_2 \vee \overline{t} \right) & (S_Q^{c_4} = 9) \end{cases}$$

Проведем совместную декомпозицию системы.

$$\varphi_0 = a_2 \, b_1 \, b_2, \quad \overline{\varphi_0} = \overline{a_2} \vee \overline{b_1} \vee \overline{b_2}$$

$$\begin{cases} \varphi_0 = a_2 \, b_1 \, b_2 & (S_Q^{\varphi_0} = 3) \\ e = \varphi_0 \, a_1 \, \overline{t} & (S_Q^e = 3) \\ c_1 = \overline{t} \, (\varphi_0 \vee a_1) \, (\overline{\varphi_0} \vee \overline{a_1}) & (S_Q^{c_1} = 7) \\ c_2 = (a_2 \vee b_1) \, (\overline{\varphi_0} \vee t) \, (\varphi_0 \vee a_1 \vee \overline{t}) \, (a_2 \vee b_2 \vee t) \, (b_1 \vee b_2 \vee \overline{t}) & (S_Q^{c_2} = 18) \\ c_3 = \varphi_0 \, a_1 \, t \vee b_1 \, \overline{b_2} \, (\overline{a_1} \vee \overline{t}) \vee \overline{b_1} \, b_2 \, (\overline{t} \vee \overline{a_1} \, a_2) \vee a_1 \, \overline{b_1} \, t \, (\overline{a_2} \vee \overline{b_2}) \vee \overline{a_1} \, \overline{a_2} \, b_1 \, t & (S_Q^{c_3} = 30) \\ c_4 = (\overline{b_2} \vee \overline{a_2} \, t) \, (a_2 \vee b_2 \vee \overline{t}) & (S_Q = 71) \end{cases}$$

Проведем совместную декомпозицию системы.

$$\varphi_1 = \varphi_0 \, a_1, \quad \overline{\varphi_1} = \overline{\varphi_0} \vee \overline{a_1}$$

$$\begin{cases} \varphi_0 = a_2 \, b_1 \, b_2 & (S_Q^{\varphi_0} = 3) \\ c_2 = (a_2 \vee b_1) \, (\overline{\varphi_0} \vee t) \, (\varphi_0 \vee a_1 \vee \overline{t}) \, (a_2 \vee b_2 \vee t) \, (b_1 \vee b_2 \vee \overline{t}) & (S_Q^{c_2} = 18) \\ c_4 = (\overline{b_2} \vee \overline{a_2} \, t) \, (a_2 \vee b_2 \vee \overline{t}) & (S_Q^{c_4} = 9) \\ \varphi_1 = \varphi_0 \, a_1 & (S_Q^{e_1} = 2) \\ e = \varphi_1 \, \overline{t} & (S_Q^{e_2} = 2) \\ c_1 = \overline{\varphi_1} \, \overline{t} \, (\varphi_0 \vee a_1) & (S_Q^{c_1} = 5) \\ c_3 = \varphi_1 \, t \vee b_1 \, \overline{b_2} \, (\overline{a_1} \vee \overline{t}) \vee \overline{b_1} \, b_2 \, (\overline{t} \vee \overline{a_1} \, a_2) \vee a_1 \, \overline{b_1} \, t \, (\overline{a_2} \vee \overline{b_2}) \vee \overline{a_1} \, \overline{a_2} \, b_1 \, t & (S_Q^{c_3} = 29) \\ (S_Q = 70) & (S_Q = 70) \end{cases}$$

Проведем раздельную факторизацию системы.

$$\begin{cases} \varphi_0 = a_2 \, b_1 \, b_2 & (S_Q^{\varphi_0} = 3) \\ c_2 = (a_2 \vee b_1) \, (t \vee \overline{\varphi_0} \, (a_2 \vee b_2)) \, (\varphi_0 \vee a_1 \vee \overline{t}) \, (b_1 \vee b_2 \vee \overline{t}) & (S_Q^{c_2} = 18) \\ c_4 = (\overline{b_2} \vee \overline{a_2} \, t) \, (a_2 \vee b_2 \vee \overline{t}) & (S_Q^{c_4} = 9) \\ \varphi_1 = \varphi_0 \, a_1 & (S_Q^{\varphi_1} = 2) \\ e = \varphi_1 \, \overline{t} & (S_Q^e = 2) \\ c_1 = \overline{\varphi_1} \, \overline{t} \, (\varphi_0 \vee a_1) & (S_Q^{c_1} = 5) \\ c_3 = t \, (\varphi_1 \vee a_1 \, \overline{b_1} \, (\overline{a_2} \vee \overline{b_2}) \vee \overline{a_1} \, \overline{a_2} \, b_1) \vee b_1 \, \overline{b_2} \, (\overline{a_1} \vee \overline{t}) \vee \overline{b_1} \, b_2 \, (\overline{t} \vee \overline{a_1} \, a_2) & (S_Q^{c_3} = 28) \\ (S_Q = 69) & (S_Q = 69) \end{cases}$$

Проведем совместную декомпозицию системы.

$$\varphi_2 = a_2 \vee b_2$$

$$\begin{cases} \varphi_2 = a_2 \vee b_2 & (S_Q^{\varphi_2} = 2) \\ \varphi_0 = a_2 \, b_1 \, b_2 & (S_Q^{\varphi_0} = 3) \\ c_2 = (a_2 \vee b_1) \, (t \vee \overline{\varphi_0} \, \varphi_2) \, (\varphi_0 \vee a_1 \vee \overline{t}) \, (b_1 \vee b_2 \vee \overline{t}) & (S_Q^{c_2} = 16) \\ c_4 = (\varphi_2 \vee \overline{t}) \, (\overline{b_2} \vee \overline{a_2} \, t) & (S_Q^{c_4} = 8) \\ \varphi_1 = \varphi_0 \, a_1 & (S_Q^{\varphi_1} = 2) \\ e = \varphi_1 \, \overline{t} & (S_Q^e = 2) \\ c_1 = \overline{\varphi_1} \, \overline{t} \, (\varphi_0 \vee a_1) & (S_Q^{c_1} = 5) \\ c_3 = t \, (\varphi_1 \vee a_1 \, \overline{b_1} \, (\overline{a_2} \vee \overline{b_2}) \vee \overline{a_1} \, \overline{a_2} \, b_1) \vee b_1 \, \overline{b_2} \, (\overline{a_1} \vee \overline{t}) \vee \overline{b_1} \, b_2 \, (\overline{t} \vee \overline{a_1} \, a_2) & (S_Q^{c_3} = 28) \\ (S_Q = 68) & (S_Q = 68) \end{cases}$$

Проведем совместную декомпозицию системы.

$$\varphi_3 = \varphi_0 \vee a_1$$

$$\begin{cases} \varphi_2 = a_2 \vee b_2 & (S_Q^{\varphi_2} = 2) \\ \varphi_0 = a_2 \, b_1 \, b_2 & (S_Q^{\varphi_0} = 3) \\ c_4 = (\varphi_2 \vee \overline{t}) \, (\overline{b_2} \vee \overline{a_2} \, t) & (S_Q^{\varphi_1} = 2) \\ \varphi_1 = \varphi_0 \, a_1 & (S_Q^{\varphi_1} = 2) \\ e = \varphi_1 \, \overline{t} & (S_Q^{\varphi_1} = 2) \\ c_3 = t \, (\varphi_1 \vee a_1 \, \overline{b_1} \, (\overline{a_2} \vee \overline{b_2}) \vee \overline{a_1} \, \overline{a_2} \, b_1) \vee b_1 \, \overline{b_2} \, (\overline{a_1} \vee \overline{t}) \vee \overline{b_1} \, b_2 \, (\overline{t} \vee \overline{a_1} \, a_2) & (S_Q^{\varphi_3} = 28) \\ \varphi_3 = \varphi_0 \vee a_1 & (S_Q^{\varphi_3} = 2) \\ c_2 = (\varphi_3 \vee \overline{t}) \, (a_2 \vee b_1) \, (t \vee \overline{\varphi_0} \, \varphi_2) \, (b_1 \vee b_2 \vee \overline{t}) & (S_Q^{e_2} = 15) \\ c_1 = \overline{\varphi_1} \, \varphi_3 \, \overline{t} & (S_Q = 67) \end{cases}$$

Синтез комбинационной схемы в булемов базисе

Будем анализировать схему на следующем наборе аргументов:

$$a_1 = 1, a_2 = 0, b_1 = 0, b_2 = 1, t = 1$$

Выходы схемы из таблицы истинности:

$$e = 0$$
, $c_1 = 0$, $c_2 = 0$, $c_3 = 1$, $c_4 = 1$

Цена схемы: $S_Q=67$. Задержка схемы: $T=5\tau$.