Cylindrical Goordinates; -V = III rdrdodz. 1) Evaluate SS extydy, where Q is the solid bounded by the cylinder stry=9, the xy-plane and the plane Z=5. Solution:  $\gamma: 0 \rightarrow 3$   $0: 0 \rightarrow 2IT; z: 0 \rightarrow 5$  $I = \int_{0}^{2T} \int_{0}^{3} \int_{0}^{5} \int_{0}^{2} r dr d\theta dz$   $= \int_{0}^{2T} \int_{0}^{3} \int_{0}^{5} r dr d\theta dz$   $= \int_{0}^{2T} \int_{0}^{3} \int_{0}^{5} r dr d\theta dz$   $= \int_{0}^{2T} \int_{0}^{3} \int_{0}^{5} r dr d\theta dz$ put 8= t 2rdr2dt rdrz dt t:0 -9  $=\frac{3}{2}\int^{2\pi} \left(\int^{9} e^{t} dt\right) d\theta$  $=\frac{S(2\pi)(e^{9}-1)}{2}=5\pi(e^{9}-1).$ 



Use a triple integral to find the volume of the Solid Q bounded by the graph of  $y = 4 - x^2 - z^2$  and the XZ-plane. Sol? 4=4-x2-22 >> = 4-x2-y (-1.7: -14-x=y-)-14-x=y Joith Z=0,  $y=4-x^2$ De.  $y:0 \rightarrow 4-x^2$  with  $y=0 \Rightarrow x^2=4$   $x=\pm 2$ Regulared volume  $V = \iint dV = \int \int \int \frac{1}{4x^2} dx$   $= 2 \int \int \frac{4-x^2}{\sqrt{4-x^2-y}} dy dx = -2 \times \frac{2}{3} \int \frac{2}{4-x^2-y^3} dx$  $= -\frac{4}{3} \int_{-2}^{2} -(4-x^{2})^{3/2} dx = \frac{4}{3} \int_{-2}^{2} (4-x^{2})^{3/2} dx = 817$ 2nd method  $y = 4 - x^2 - z^2$  with  $y = 0 \Rightarrow x^2 + z^2 = 4$ wetake x=r610, 7= r8mo then  $y = 4-r^{-1}$  $V = \int_{0}^{2\pi} \int_{0}$ = 8 m