Université Montpellier II – L3 Logique 2

Contrôle

Aucun document autorisé

Durée: 1h 15

Barème indicatif: 3 pts + 10 pts + 7 pts + 1 pt (bonus)

Exercice 1

- 1. Construire l'arborescence syntaxique de la formule $A = \forall x (p(x) \lor (\exists y q(y) \land \exists y \forall z r(x,y,z)))$
- 2. Cette formule est-elle fermée ? Comment le voit-on sur l'arborescence syntaxique ?

Exercice 2

- 1. Soit le langage du premier ordre $L=(\{a\}, \{p,q\})$ où a est une constante et p et q sont des prédicats unaires. On considère trois interprétations de L, qui ont toutes pour domaine $D=\{1,2\}$ et interprètent toutes la constante a par l'élément 1 de D.
 - I1: $I1(p) = \{1\} \text{ et } I1(q) = \{1,2\}$ I2: $I2(p) = \{1,2\} \text{ et } I2(q) = \{1\}$ I3: $I3(p) = \emptyset \text{ et } I3(q) = \{2\}$

Donner la valeur des formules suivantes, pour chacune des interprétations I1, I2 et I3 :

 $A = \forall x (p(x) \rightarrow q(x))$ $B = \exists x p(x) \rightarrow \exists x q(x)$ $C = \exists x q(x) \rightarrow q(a)$

- 2. La formule $(A \leftrightarrow B)$, où A et B sont les formules de la question 1, est-elle valide ? Prouvez votre réponse.
- 3. A-t-on A |= B ? B |= A ? Prouvez votre réponse.

Exercice 3

1. Modélisez en logique du premier ordre le raisonnement suivant :

Certains étudiants aiment les films de Kubrick Aucun étudiant n'aime les navets Donc aucun film de Kubrick n'est un navet

- 2. Si l'on voulait montrer que ce raisonnement est correct (au sens de la logique), que devrait-on montrer ?
- 3. Ce raisonnement est-il correct ? Justifiez votre réponse en français (on ne vous demande donc pas d'écriture formelle, mais de donner une suite d'arguments précis qui prouve votre réponse).

Question bonus (1pt)

On juge un homme accusé de cambriolage.

Le procureur dit : "s'il a commis ce vol, il avait forcément un complice".

L'avocat de l'accusé répond : "c'est complètement faux !".

Pourquoi est-ce la pire chose que pouvait dire l'avocat à propos de son client ?

Vous pouvez répondre à cette question en vous situant en logique des propositions.