

Introdução

Gramática Regular

Exemplos

Construção de um AFNe de uma Gramática Regular

Construção da Gramática Regular de um AFD

Introdução

Gramática Regular

Exemplos

Construção de um AFNe de uma Gramática Regular

Construção da Gramática Regular de um AFD

Introdução

É possível utilizar a definição de Gramática apresentada nesta disciplina para definir tanto Linguagens Regulares quanto Linguagens Não Regulares.

Entretanto, é possível limitar as regras de produção em Gramáticas para que elas definam exatamente a classe de Linguagens Regulares.

Introdução

Gramática Regular

Exemplos

Construção de um AFNe de uma Gramática Regular

Construção da Gramática Regular de um AFD

Gramática Linear

Definição

Seja uma Gramática G = (V, T, P, S) (lembrando, V são os estados, T os símbolos, P as regras de produção, e S o estado inicial), com $A \in V$, $B \in V$ e $w \in T^*$. Então G é uma G de uma G de

Gramática Linear

Definição (Continuação)

- Gramática Linear à Direita (GLD) Todas as regras de produção são da forma A → wB ou A → w.
- Gramática Linear à Esquerda (GLE) Todas as regras de produção são da forma A → Bw ou A → w.
- Gramática Linear Unitária à Direita (GLUD) Todas as regras de produção são como em GLD mas |w| ≤ 1.
- Gramática Linear Unitária à Esquerda (GLUE) Todas as regras de produção são como em GLE mas |w| ≤ 1.

Gramática Linear

Equivalências entre Gramáticas Lineares

Se L é uma linguagem, então:

- L é gerada por uma GLD se e somente se,
- L é gerada por uma GLE se e somente se,
- L é gerada por uma GLUD se e somente se,
- L é gerada por uma GLUE.

Ou seja, as diversas Gramáticas Lineares são formalismos com expressividade equivalente.

Gramática Regular

Definição

Uma Gramática **G** é dita **Gramática Regular** se **G** é uma Gramática Linear.

Linguagem Gerada

Definição

Seja **G** = (**V**, **T**, **P**, **S**) uma Gramática. A **Linguagem Gerada** por **G**, denotada por:

L(G) ou GERA(G)

é tal que:

$$L(G) = \{w \in T^* \mid S \Rightarrow^+ w\}$$

Introdução

Gramática Regular

Exemplos

Construção de um AFNe de uma Gramática Regular

Construção da Gramática Regular de um AFD

Exemplo 1 - a(ba)*

A linguagem **a(ba)*** é gerada por quais gramáticas regulares?

Exemplo 1 - a(ba)* (Continuação)

A linguagem a(ba)* é gerada por quais gramáticas regulares?

- GLD: G = ({S, A}, {a, b}, P, S) com P:
 - $S \longrightarrow aA$
 - A \longrightarrow baA | ε
- GLE: G = ({S}, {a, b}, P, S) com P:
 - $\bullet \ \, S \longrightarrow Sba \mid a$

Exemplo 1 - a(ba)* (Continuação)

A linguagem **a(ba)*** é gerada por quais gramáticas regulares?

- GLUD: G = ({S, A, B}, {a, b}, P, S) com P:
 - $S \longrightarrow aA$
 - A \longrightarrow bB | ε
 - $B \longrightarrow aA$
- GLUE: G = ({S, A}, {a, b}, P, S) com P:
 - S \longrightarrow Aa | a
 - $\bullet \ \, \mathsf{A} \longrightarrow \mathsf{Sb}$

Introdução

Gramática Regular

Exemplos

Construção de um AFNe de uma Gramática Regular

Construção da Gramática Regular de um AFD

$\mathsf{AFN}_{\mathcal{E}}$ de uma Gramática Regular

Como uma Gramática Regular representa uma Linguagem Regular, é possível criar um AFN ε que reconhece a linguagem gerada por uma Gramática Regular.

Construção de um AFN*ε* a partir de uma Gramática Regular Considere a GLD abaixo:

- $S \longrightarrow aA$
- A \longrightarrow bB | ε
- $B \longrightarrow aA$

Construção de um AFN ε a partir de uma Gramática Regular Considere a GLD abaixo:

$$G = ({S, A, B}, {a, b}, P, S) com P$$
:

Em primeiro lugar, constrói-se o autômato a partir dos dados da Gramática.

Adiciona-se um Estado Final \mathbf{q}_f e usa-se \mathbf{S} como Estado Inicial.

•
$$S \longrightarrow aA$$

• A
$$\longrightarrow$$
 bB | ε

•
$$B \longrightarrow aA$$

$$M = ({a, b}, {S, A, B, q_f}, \delta, S, {q_f})$$

Construção de um AFN ε a partir de uma Gramática Regular

Considere a GLD abaixo:

$$G = ({S, A, B}, {a, b}, P, S) com P$$
:

Agora, converte-se as regras de produção da Gramática em transições do Autômato. A conversão é direta: a partir de um estado, lê-se um símbolo e chega-se a

outro estado.

Produção	Transição
$S \longrightarrow aA$	$\delta(S, a) = \{A\}$
$A \longrightarrow bB$	$\delta(A, b) = \{B\}$
$A \longrightarrow \varepsilon$	$\delta(S, \varepsilon) = \{q_f\}$
$B \longrightarrow aA$	$\delta(B, a) = \{A\}$

- $S \longrightarrow aA$
- A \longrightarrow bB | ε
- B \longrightarrow aA

Construção de um AFN ε a partir de uma Gramática Regular Considere a GLD abaixo:

$$G = ({S, A, B}, {a, b}, P, S)$$

O AFN ε será:

$$M = (\{a, b\}, \{S, A, B, q_f\}, \delta, S, \{q_f\})$$

δ	а	b	ε
S	{A}	Ø	Ø
Α	Ø	{B}	$\{q_f\}$
В	{A}	Ø	Ø
\mathbf{q}_f	Ø	Ø	Ø

Introdução

Gramática Regular

Exemplos

Construção de um AFNe de uma Gramática Regular

Construção da Gramática Regular de um AFD

Além de extrair um AFN ε de uma Gramática Regular, é possível fazer uma operação "quase inversa" de encontrar uma Gramática Regular de um AFD.

Construção de uma Gramática Regular a partir de um AFD Considere o autômato abaixo:

M = ({a, b, c}, {q₀, q₁, q₂},
$$\delta$$
, q₀, {q₀, q₁, q₂}) com δ :

δ	а	b	С
\mathbf{q}_0	{q ₀ }	$\{q_1\}$	Ø
\mathbf{q}_1	Ø	$\{q_1\}$	$\{q_2\}$
\mathbf{q}_2	Ø	Ø	{q ₂ }

Construção de uma Gramática Regular a partir de um AFD

Considere o autômato abaixo:

M = ({a, b, c}, {q₀, q₁, q₂},
$$\delta$$
, q₀, {q₀, q₁, q₂}) com δ :

Pra criar a Gramática primeiro adicionamos um estado inicial **S** ao conjunto de estados do Autômato, e utilizamos os dados deste último para montar a Gramática:

δ	а	b	С
\mathbf{q}_0	{q ₀ }	$\{q_1\}$	Ø
\mathbf{q}_1	Ø	$\{q_1\}$	{q ₂ }
\mathbf{q}_2	Ø	Ø	{q ₂ }

$$G = (\{q_0, q_1, q_2, S\}, \{a, b, c\}, P, S)$$

Construção de uma Gramática Regular a partir de um AFD

Considere o autômato abaixo:

M = ({a, b, c}, {q₀, q₁, q₂},
$$\delta$$
, q₀, {q₀, q₁, q₂}) com δ :

Agora, converte-se as regras de transição do Autômato nas regras de produção da Gramática: a partir de um estado, lê-se um símbolo e chega-se a outro estado. Adiciona-se leituras de estados vazios e do inicial para q₀.

Transição	Produção
-	$S \longrightarrow q_0$
-	$q_0 \longrightarrow arepsilon$
-	$q_1 \longrightarrow arepsilon$
-	$q_{2}\longrightarrow arepsilon$
$\delta(q_0,a)=q_0$	$q_0 \longrightarrow aq_0$
$\delta(q_0, b) = q_1$	$q_0 \longrightarrow bq_1$
$\delta(q_1, b) = q_1$	$q_1 \longrightarrow bq_1$
$\delta(q_1, c) = q_2$	$q_1 \longrightarrow cq_2$
$\delta(q_2, c) = q_2$	$q_2 \longrightarrow cq_2$

Construção de uma Gramática Regular a partir de um AFD

Considere o autômato abaixo:

M = ({a, b, c}, {q₀, q₁, q₂},
$$\delta$$
, q₀, {q₀, q₁, q₂}) com δ :

Será a Gramática:

$$\begin{array}{c} S \longrightarrow q_0 \\ q_0 \longrightarrow \varepsilon \\ q_1 \longrightarrow \varepsilon \\ q_2 \longrightarrow \varepsilon \\ q_0 \longrightarrow aq_0 \\ q_0 \longrightarrow bq_1 \\ q_1 \longrightarrow bq_1 \\ q_1 \longrightarrow cq_2 \\ q_2 \longrightarrow cq_2 \end{array}$$

$$\begin{array}{c} \mathbf{q}_2 \longrightarrow \varepsilon \\ \mathbf{q}_0 \longrightarrow \mathbf{a} \mathbf{q}_0 \end{array}$$

$$q_1 \longrightarrow pq_1$$

$$q_2 \longrightarrow cq_2$$

Introdução

Gramática Regular

Exemplos

Construção de um AFNe de uma Gramática Regular

Construção da Gramática Regular de um AFD

- Gramáticas Regulares são linguagens formais capazes de gerar palavras;
- Uma Gramática Regular será GLD, GLE, GLUD ou GLUE;
- A partir de uma Gramática Regular é possível extrair um AFNε que reconhece a linguagem gerada pela Gramática Regular;
- Também é possível criar uma Gramática Regular a partir de um AFD.

