SE(3) diffusion model with application to protein backbone generation

```
Jason Yim<sup>1</sup> Brian L. Trippe<sup>2</sup> Valentin De Bortoli<sup>3</sup> Emile Mathieu<sup>4</sup> Arnaud Doucet<sup>5</sup> Regina Barzilay<sup>1</sup> Tommi Jaakkola<sup>1</sup>
```

¹MIT, USA ²Columbia University, USA ³CNRS, France ⁴University of Cambridge, UK ⁵University of Oxford, UK

Presenter: Angxiao Yue

September 24, 2024

Outline

Background

Preliminaries and Notation

Method

Experiment

Discussion

Background

- ▶ Generative Modeling: The $\mathbb{N} \mathbb{C}_{\alpha} \mathbb{C}$ atoms for each residue are described as a frame[1][2][3][4]. The backbone structure with N residues (frames) is represented as an element of $\mathsf{SE}(3)^N$.
- Rotation matrix r.

$$\begin{split} u_1 &= v_1, \quad u_2 = v_2 - \mathsf{Proj}_{u_1}(v_2) = v_2 - \frac{\langle v_2, u_1 \rangle}{\langle u_1, u_1 \rangle} \\ e_1 &= \frac{v_1}{\|v_1\|}, \quad e_2 = \frac{v_2}{\|v_2\|}, \quad e_3 = e_1 \times e_2 \\ r &= \begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix} \end{split}$$

• Translation x (the C_{α} coordinate).

$$\Rightarrow \mathit{T} = (\mathit{r}, \mathit{x}) \in \mathsf{SE}(3), \quad \textbf{Decoupled}$$

• Torsion angle ψ .

Figure 1: A frame for each residue.

Background

- ▶ **Diffusion modeling** has been extended to Riemannian manifolds like SE(3)[5][6].
 - Lack tractable training procedures.
 - Fail to effectively incorporate geometric invariances.
- ▶ **SOTA** at that time: RFdiffusion[7].
 - Rely on a heuristic denoising loss.
 - Require pretraining on protein structure prediction.

Motivated by the above...

Contributions

Propose a theory and methodology for **SE(3)** diffusion models applied to protein backbone generation without pretraining.

- ▶ Develop a diffusion process on $SE(3)^N$.
- ▶ Implement an SE(3)-invariant diffusion model for protein backbones.
- ► FrameDiff generates diverse, designable, and novel protein monomers up to 500 residues.
- ► FrameDiff achieves in-silico designability rates, second only to RFdiffusion[7], a pretrained model with 4x more parameters.

Outline

Background

Preliminaries and Notation

Method

Experiment

Discussion

Preliminaries and Notation

Backbone Parameterization

Following the AlphaFold2 (AF2)[1] approach, N residues (frames) are mapped from fixed coordinates $\mathbb{N}^*, \mathbf{C}^*_{\alpha}, \mathbf{C}^*, \mathbf{O}^* \in \mathbb{R}^3$, with \mathbf{C}^*_{α} at (0,0,0).

Each coordinate reflects idealized bond angles and lengths from experimental data.

For residue n:

$$[\mathbf{N}_n, \mathbf{C}_n, (\mathbf{C}_{\alpha})_n] = T_n \cdot [\mathbf{N}^*, \mathbf{C}^*, \mathbf{C}_{\alpha}^*]$$

where $T_n = [r_n, x_n] \in SE(3)$, $r_n \in SO(3)$ is a 3×3 rotation matrix, and $x_n \in \mathbb{R}^3$. For any $v \in \mathbb{R}^3$, $T_n \cdot v = r_n v + x_n$. $\mathbf{T} = [T_1, \dots, T_N] \in SE(3)^N$ is the full transformation.

 O_n rotates around the bond between C_n and $(\mathsf{C}_\alpha)_n$ with angle ψ_n .

Preliminaries and Notation

▶ Diffusion Modeling on Manifolds

Based on the Riemannian score-based generative model[6], where $X^{(0)} \sim p_0$ is supported on a Riemannian manifold \mathcal{M} . A \mathcal{M} -valued forward process $(X^{(t)})_{t\geq 0}$ evolves from p_0 towards the invariant density $p_{\text{inv}}(x) \propto e^{-U(x)}$, following:

$$d\mathbf{X}(t) = -\frac{1}{2}\nabla U(\mathbf{X}(t)) dt + d\mathbf{B}_{\mathcal{M}}^{(t)}, \quad \mathbf{X}^{(0)} \sim p_0,$$

where $\mathbf{B}_{\mathcal{M}}^{(t)}$ is Brownian motion on \mathcal{M} . The time-reversed process is described by:

Proposition 1 (Time-reversal)[6]

For $T_F > 0$, with $\overleftarrow{X}(0) \stackrel{d}{=} X(T_F)$,

$$d\overset{\longleftarrow}{\mathbf{X}}(t) = \left\{ \frac{1}{2} \nabla U(\overset{\longleftarrow}{\mathbf{X}}(t)) + \nabla \log p_{T_F - t}(\overset{\longleftarrow}{\mathbf{X}}(t)) \right\} dt + d\mathbf{B}_{\mathcal{M}}^{(t)},$$

where p_t is the density of $\overleftarrow{\mathbf{X}}^{(t)}$. Under mild assumptions, $\overleftarrow{\mathbf{X}}(t) \stackrel{d}{=} \mathbf{X}(T_F - t)$.

Preliminaries and Notation

- Riemannian Gradients and Brownian Motion
 - Tangent Space and Gradients: Riemannian gradients $\nabla U(x)$ and $\nabla \log p_t(x)$ are in the tangent space $T_x\mathcal{M}$ at x, with an inner product $\langle \cdot, \cdot \rangle_{\mathcal{M}}$.
 - Brownian Motion and Laplace-Beltrami: Brownian motion on $\mathcal M$ follows the Laplace-Beltrami operator $\Delta_{\mathcal M}$ and evolves via:

$$\frac{\partial \pi_t}{\partial t} = \frac{1}{2} \Delta_{\mathcal{M}} \pi_t.$$

Denoising Score Matching:

DSM approximates the Stein score $\nabla \log p_t$ with a score network $s_{\theta}(t,\cdot)$. The DSM loss is:

$$\mathcal{L}(\theta) = \mathbb{E}\left[\lambda_t \|\nabla \log p_{t|0}(\mathbf{X}^{(t)}|\mathbf{X}^{(0)}) - s_{\theta}(t, \mathbf{X}^{(t)})\|^2\right],$$

where $p_{t|0}$ is the conditional density of $\mathbf{X}^{(t)}$ given $\mathbf{X}^{(0)}$, and λ_t is a weighting factor.

Outline

Background

Preliminaries and Notation

Method

Experiment

Discussion

Method Overview

► Theoretical Part:

- **Step 1:** Define a forward diffusion process on SE(3).
- Step 2: Derive DSM training on compact Lie groups, using SO(3) as an example.
- Step 3: Ensure SE(3) invariance, with $SE(3)^N$ data distribution invariant to global rotations and translations.

Practical Part:

- **Step 1:** Propose FrameDiff which learns the score using frame and torsion predictions.
- Step 2: Training losses.
- **Step 3:** Sampling procedure.

Theoretical Part Step 1: Forward diffusion on SE(3)

To define a canonical forward diffusion on $SE(3)^N$.

▶ Choose an inner product on SE(3) to define a Brownian motion. Derive from the canonical inner products for SO(3) and \mathbb{R}^3

$$\langle u, v \rangle_{\mathfrak{so}(3)} = \frac{\mathsf{Tr}(uv^\top)}{2} \quad \mathsf{and} \quad \langle x, y \rangle_{\mathbb{R}^3} = \sum_{i=1}^3 x_i y_i,$$

Under an appropriate choice of inner product, SE(3) can be identified with SO(3) \times \mathbb{R}^3 from a Riemannian point of view.

Theoretical Part Step 1: Forward diffusion on SE(3)

Proposition 2 (Metric on SE(3))

For any $T \in SE(3)$ and $(a, x), (a', x') \in T_TSE(3)$ we define

$$\langle (a, x), (a', x') \rangle_{\mathsf{SE}(3)} = \langle a, a' \rangle_{\mathsf{SO}(3)} + \langle x, x' \rangle_{\mathbb{R}^3}.$$

We have:

(a) for any $f \in C^{\infty}(\operatorname{SE}(3))$ and $T = (r, x) \in \operatorname{SE}(3)$,

$$\nabla_T f(T) = (\nabla_T f(r, x), \nabla_x f(r, x)),$$

(b) for any $f \in C^{\infty}(SE(3))$ and $T = (r, x) \in SE(3)$,

$$\Delta_{\mathsf{SE}(3)} f(T) = \Delta_{\mathsf{SO}(3)} f(r, x) + \Delta_{\mathbb{R}^3} f(r, x),$$

(c) for any t>0, $B_{{\rm SE}(3)}^{(t)}=[B_{{\rm SO}(3)}^{(t)},B_{\mathbb{R}^3}^{(t)}]$ with independent $B_{{\rm SO}(3)}^{(t)}$ and $B_{\mathbb{R}^3}^{(t)}.$

Theoretical Part Step 1: Forward diffusion on SE(3)

The metric in **Proposition 2** allows to treat SO(3) and $\mathbb{R}3$ forward processes independently (conditionally on $\mathbf{T}(0)$). The associated forward process $(\mathbf{T}^{(t)})_{t\geq 0} = (\mathbf{R}^{(t)}, \mathbf{X}^{(t)})_{t\geq 0}$ is given by

$$d\mathbf{T}^{(t)} = \left[0, -\frac{1}{2}\mathbf{X}^{(t)}\right] dt + \left[d\mathbf{B}_{\mathsf{SO}(3)}^{(t)}, d\mathbf{B}_{\mathbb{R}^3}^{(t)}\right].$$

Thus, we have

$$\nabla_{\mathbf{T}^{(t)}} \log p_{t|0}(\mathbf{T}^{(t)}|\mathbf{T}^{(0)}) = \left(\nabla_{\mathbf{R}^{(t)}} \log p_{t|0}(\mathbf{R}^{(t)}|\mathbf{R}^{(0)}), \nabla_{\mathbf{X}^{(t)}} \log p_{t|0}(\mathbf{X}^{(t)}|\mathbf{X}^{(0)})\right)$$

 \Rightarrow Denoising score matching on SO(3) and \mathbb{R}^3 separately.

Theoretical Part Step 2: Denoising score matching on SE(3)

▶ Denoising score matching on SO(3). The forward process $(\mathbf{R}^{(t)})_{t\geq 0}$ is simply the Brownian motion on SO(3), and $p_{t|0}$ is defined by the heat kernel.

Proposition 3 (Brownian motion on compact Lie groups)

Assume that $\mathcal M$ is a compact Lie group, where for any $\ell \in \mathbb N$ χ_ℓ is the character associated with the irreducible unitary representation of dimension d_ℓ . Then $\chi_\ell: \mathcal M \to \mathbb R$ is an eigenvector of Δ and there exists $\lambda_\ell \geq 0$ such that $\Delta \chi_\ell = -\lambda_\ell \chi_\ell$. In addition, we have for any t>0 and $x^{(0)}, x^{(t)} \in \mathcal M$,

$$p_{t|0}(x^{(t)}|x^{(0)}) = \sum_{\ell \in \mathbb{N}} d_{\ell} e^{-\lambda_{\ell} t/2} \chi_{\ell} \left(\left(x^{(0)} \right)^{-1} x^{(t)} \right).$$

Theoretical Part Step 2: Denoising score matching on SE(3)

Proposition 4 (Brownian motion on SO(3)))

For any $t \geq 0$ and $r^{(0)}, r^{(t)} \in SO(3)$, we have that $p_{t|0}(r^{(t)}|r^{(0)}) = IGSO_3(r^{(t)}, r^{(0)}, t)$ given by $IGSO_3(r^{(t)}, r^{(0)}, t) = f(\omega(r^{(0)\top}r^{(t)}), t)$, where $\omega(r)$ is the rotation angle in radians for any $r \in SO(3)$ —in the axis-angle representation—and

$$f(\omega, t) = \sum_{\ell \in \mathbb{N}} (2\ell + 1) e^{-\ell(\ell+1)t/2} \frac{\sin((\ell+1/2)\omega)}{\sin(\omega/2)}.$$

Accurate values of the Brownian density can easily be obtained by **truncating** the series and it allows computation of the conditional score required by the DSM loss.

Theoretical Part Step 2: Denoising score matching on SE(3)

Proposition 5 (Score on SO(3))

For t > 0, $r^{(0)}, r^{(t)} \in SO(3)$, we have

$$\nabla \log p_{t|0}(r^{(t)}|r^{(0)}) = \frac{r^{(t)}}{\omega^{(t)}} \log \left\{ r^{(0,t)} \right\} \frac{\partial \omega f(\omega^{(t)}, t)}{f(\omega^{(t)}, t)},$$

with $r^{(0,t)}=r^{(0)}r^{(t)}, \omega^{(t)}=\omega(r^{(0,t)})$ and \log the inverse of the exponential on SO(3), i.e., the matrix logarithm.

▶ Denoising score matching on \mathbb{R}^3 .

 $p_{t|0}(x^{(t)}|x^{(0)})=\mathcal{N}(x^{(t)};e^{-t/2}x^{(0)},(1-e^{-t})I_3)$ and the corresponding conditional score is

$$\nabla \log p_{t|0}(x^{(t)}|x^{(0)}) = (1 - e^{-t})^{-1}(e^{-t/2}x^{(0)} - x^{(t)}).$$

Theoretical Part Step 3: SE(3) Invariance via Centered SE(3)^N

No output of an $SE(3)^N$ diffusion model can be SE(3) invariant, as no probability measure on \mathbb{R}^{3N} is \mathbb{R}^3 -invariant.

► From SE(3) to SO(3) Invariance:

- Construct an invariant measure on SE(3) N by fixing the center of mass, i.e., $\sum_{n=1}^N x_n = 0$.
- This defines a subgroup $SE(3)_0^N$, with elements $[(r_1, x_1), \dots, (r_N, x_N)]$.
- $SE(3)_0^N$ remains a Lie group, with SO(3) as a subgroup of $SE(3)_0^N$.

Proposition 6 (Disintegration of measures on SE(3)^N)

Under mild assumptions, for every SE(3)-invariant measure μ on SE(3)^N, there exist an SO(3)-invariant probability measure on SE(3)^N₀ and μ proportional to the Lebesgue measure on \mathbb{R}^3 such that

$$d\mu(\{(r_i, x_i)\}_{i=1}^N) = d\mu\left(\frac{1}{N}\sum_{i=1}^N x_i\right) \times d\eta\left((r_1, x_1 - \frac{1}{N}\sum_{i=1}^N x_i), \dots, (r_N, x_N - \frac{1}{N}\sum_{i=1}^N x_i)\right).$$

Theoretical Part Step 3: SE(3) Invariance via Centered SE(3)^N

In order to define a SE(3)-invariant measure on SE(3)^N one needs only to **define an** SO(3) invariant measure on SO(3)^N₀.

▶ Diffusion models on $SE(3)_0^N$ -Forward:

$$\mathbf{d}\mathbf{T}^{(t)} = \left[0, -\frac{1}{2}\mathbf{X}^{(t)}\right] \mathbf{d}t + \left[\mathbf{d}\mathbf{B}_{\mathsf{SO}(3)}^{(t)}, \mathbf{d}\mathbf{B}_{\mathbb{R}^3}^{(t)}\right] \text{(page 13)}$$

$$\downarrow \downarrow$$

$$\mathbf{d}\mathbf{T}^{(t)} = \left[0, -\frac{1}{2}\mathbf{P}\mathbf{X}^{(t)}\right] \mathbf{d}t + \left[\mathbf{d}\mathbf{B}_{SO(3)^N}^{(t)}, \mathbf{P}\mathbf{d}\mathbf{B}_{\mathbb{R}^{3N}}^{(t)}\right],$$

 $\mathbf{P} \in \mathbb{R}^{3N \times 3N}$ is the projection matrix removing the center of mass $\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$.

Theoretical Part Step 3: SE(3) Invariance via Centered $SE(3)^N$

▶ Diffusion models on $SE(3)_0^N$ -Backward:

$$\begin{split} \mathrm{d} \overleftarrow{\mathbf{X}}^{(t)} &= \left\{ \frac{1}{2} \nabla \mathit{U}(\overleftarrow{\mathbf{X}}^{(t)}) + \nabla \log p_{T_{F}-t}(\overleftarrow{\mathbf{X}}^{(t)}) \right\} \mathrm{d}t + \mathrm{d}\mathbf{B}_{\mathcal{M}}^{(t)}(\mathbf{page 8}) \\ & \qquad \\ \mathrm{d} \overleftarrow{\mathbf{R}}^{(t)} &= \nabla_r \log p_{T_{F}-t}(\overleftarrow{\mathbf{T}}^{(t)}) \mathrm{d}t + \mathrm{d}\mathbf{B}_{SO(3)^N}^{(t)}, \\ \mathrm{d} \overleftarrow{\mathbf{X}}^{(t)} &= \mathbf{P} \left\{ \frac{1}{2} \overleftarrow{\mathbf{X}}^{(t)} + \nabla_x \log p_{T_{F}-t}(\overleftarrow{\mathbf{T}}^{(t)}) \right\} \mathrm{d}t + \mathbf{P} \mathrm{d}\mathbf{B}_{\mathbb{R}^{3N}}^{(t)}. \end{split}$$

Theoretical Part Step 3: SE(3) Invariance via Centered SE(3)^N

Proposition 7 (G-invariance and SDEs)

Let G be a Lie group and H a subgroup of G. If (a) $X(0) \sim p_0$ for an H-invariant distribution p_0 and (b) $dX(t) = b(t,X(t))dt + \Sigma^{1/2}dB(t)$ for bounded, H-equivariant coefficients b and Σ satisfying $b \circ L_h = dL_h(b)$ and $\Sigma dL_h(\cdot) = dL_h(\Sigma)$, and where B(t) is a Brownian motion associated with a left-invariant metric. Then for every $t \geq 0$ (a) the distribution p_t of X(t) is H-invariant, and (b) its score $\nabla_x \log p_t(X(t))$ is H-equivariant.

Corollary

Suppose $\{T^{(0)}\}_{t\geq 0}$ has $\mathrm{SO}(3)$ invariant initial distribution p_0 and evolves according to forward equation. Then for every $t\in (0,T_F)$, $\nabla \log p_{T_F-t}(\tilde{T}(t))$ is $\mathrm{SO}(3)$ equivariant, and the distribution of $(\mathbf{R}(t),\mathbf{X}(t))$ implied by backward equation is $\mathrm{SO}(3)$ -invariant.

Practical Part Step 1: Framework of FrameDiff

Figure 2: Framework of FrameDiff

$$\begin{split} (\hat{T}^{(0)}, \hat{\psi}) &= \mathsf{FramePred}(\hat{T}(t), t; \theta), \quad \hat{T}^{(0)} = (\hat{R}^{(0)}, \hat{X}^{(0)}) \\ \nabla_{T^{(t)}} \log p_{t_0} \left(T^{(t)} \mid \hat{T}^{(0)} \right) &= \left\{ \left(s_{\theta}^r(t, T^{(t)})_n, s_{\theta}^x(t, T^{(t)})_n \right) \right\}_{n=1}^N \\ s_{\theta}^r(t, T^{(t)})_n &= \nabla_{R_n^{(t)}} \log p_{t_0} \left(R_n^{(t)} \mid \hat{R}_n^{(0)} \right), \quad s_{\theta}^x(t, T^{(t)})_n &= \nabla_{X_n^{(t)}} \log p_{t_0} \left(X_n^{(t)} \mid \hat{X}_n^{(0)} \right) \end{split}$$

Practical Part Step 2: Training losses

DSM losses

$$\mathcal{L}(\theta) = \mathbb{E}\left[\lambda_t \|\nabla \log p_{t|0}(\mathbf{X}^{(t)}|\mathbf{X}^{(0)}) - s_{\theta}(t, \mathbf{X}^{(t)})\|^2\right],$$

where $\lambda_t^r = \frac{1}{\mathbb{E}} \|\nabla \log p_{t|0}(R_n^{(t)}|R^{(0)})\|_{\mathfrak{so}(3)}^2$, $\lambda_t^x = \frac{1-e^{-t}}{e^{-t/2}}$ and $\mathcal{L}_{\mathsf{dsm}} = \mathcal{L}_{\mathsf{dsm}}^r + \mathcal{L}_{\mathsf{dsm}}^x$.

Auxiliary losses

$$\mathcal{L}_{\mathsf{bb}} = \frac{1}{4N} \sum_{n=1}^{N} \sum_{n \in \Omega} \|a_n^{(0)} - \hat{a}_n^{(0)}\|^2.$$

$$\mathcal{L}_{2D} = \frac{1}{Z} \sum_{n=1}^{N} \sum_{b \in \Omega} \mathbf{1} \{ d_{ab}^{nm} < 0.6 \} \| d_{ab}^{nm} - \hat{d}_{ab}^{nm} \|^2$$

$$\begin{split} Z &= (\sum_{n,m=1}^{N} \sum_{a,b \in \Omega} \mathbf{1} \{ d_{ab}^{nm} < 0.6 \}) - N. \\ \Rightarrow \mathcal{L} &= \mathcal{L}_{\mathsf{dsm}} + w \cdot \mathbf{1} \left\{ t \leq \frac{T_F}{4} \right\} (\mathcal{L}_{\mathsf{bb}} + \mathcal{L}_{2D}) \end{split}$$

Practical Part Step 3: Sampling procedure

- Utilize the Euler-Maruyama discretization of backward equation as a geodesic random walk.
- Sampling involves Z_n^x and Z_n^r from Gaussian distributions in tangent spaces of $X_n^{(t)}$ and $R_n^{(t)}$, respectively.
- For rotations, δ_i from N(0,1) for orthonormal basis vectors of Lie algebra so(3) used to form $Z_n^r = R_n^{(t)} \sum_{i=1}^3 \delta_i e_i, \text{ rotating into the tangent space as} T_{R_n^{(t)}} N(0, \operatorname{Id}).$

Algorithm 1 FrameDiff sampling of protein backbones Require: $\theta, N, T_F, N_{\text{steps}}, \zeta, \epsilon$ 1: $\gamma = (1 - \epsilon)/N_{\text{steps}}$ 2: # Sample from invariant density 3: $\mathbf{T}^{(T_F)} \sim P_{\#} p_{:...}^{SE(3)^N}$ 4: for $t = T_F, T_F - \gamma, T_F - 2\gamma, \dots, \epsilon$ do 5: $\hat{\mathbf{T}}^{(0)}$, = FramePred($\mathbf{T}^{(t)}$, t; θ) $\{(s_{\theta}^{r}, s_{\theta}^{x})\}_{n=1}^{N} = \nabla_{\mathbf{T}^{(t)}} \log p_{t|0}(\mathbf{T}^{(t)} \mid \hat{\mathbf{T}}^{(0)})$ for $(R_n^{(t)}, X_n^{(t)}) = T_1^{(t)}, \dots, T_n^{(t)}$ do # Translation tangent Gaussian $Z_n^{\mathbf{x}} \sim \mathcal{N}(0, \mathrm{Id}_3)$ $W_n^{\rm x} = P\gamma \left[\frac{1}{2}X_n^{(t)} + s_{\theta,n}^{\rm x}\right] + \zeta\sqrt{\gamma}Z_n^{\rm x}$ # Remove center of mass $W_n^{\mathrm{x}} = PW_n^{\mathrm{x}}$ # Rotation tangent Gaussian 13: 14: $Z_n^{\rm r} \sim \mathcal{TN}_{_{\mathcal{D}^{(t)}}}(0, \mathrm{Id})$ 15: # Euler-Maruyama step on tangent space $W_n^{\rm r} = \gamma \mathbf{s}_{\theta,n}^{\rm r} + \zeta \sqrt{\gamma} Z_n^{\rm r}$ 16: $T_n^{(t-\gamma)} = \exp_{\mathcal{T}^{(t)}} \left\{ (W_n^{\mathrm{r}}, W_n^{\mathrm{x}}) \right\}$ end for 19. end for 20: **Return:** FramePred($\mathbf{T}^{(\epsilon)}, \epsilon; \theta$)

Outline

Background

Preliminaries and Notation

Method

Experiment

Discussion

Experiment

20312 backbones taken from the Protein Data Bank (PDB). Our model comprises 17.4 million parameters and was trained for one week on two A100 Nvidia GPUs.

- Designability: TM-score (scTM, higher is better) and C RMSD (scRMSD, lower is better).
- Diversity: The proportion of unique clusters: (number of clusters) / (number of samples).
- ▶ **Novelty**: Search for similar structures and report the highest TM-scores of samples to any chain in PDB, which they refer to as **pdbTM**.

Experiment

Table 1. FrameDiff sample metrics.

Noise scale ζ N_{steps} N_{seq}	1.0 500 8	0.5 500 8	0.1 500 8	0.1 500 100	0.1 100 8
>0.5 scTM (\uparrow)	49%	74%	75%	84%	74%
$< 2 { m \AA}$ scrmsd (\uparrow)	11%	23%	28%	40%	24%
DIVERSITY (†)	0.75	0.56	0.53	0.54	0.55

Table 2. FrameDiff ablations.

>0.5 scTM (\uparrow)	SELF COND.	$\mathcal{L}_{\mathrm{2D}}$	$\mathcal{L}_{ m bb}$	$\mathcal{L}_{\mathrm{dsm}}$	\mathcal{L}_F
49%	✓	✓	✓	✓	
39%	✓	\checkmark	\checkmark		✓
42%		\checkmark	\checkmark	\checkmark	
22%			\checkmark	\checkmark	
16%				\checkmark	
0%	✓	\checkmark	\checkmark		

Outline

Background

Preliminaries and Notation

Method

Experiment

Discussion

Discussion

Translation and quaternion are decoupled in this line of work[1][2][3][4].

- ▶ Independent treatment of rotations and translations assumes that the stochastic properties of these processes are uniform and independent across all dimensions and scenarios, this assumptions may be wild.
- In many physical and real-world systems, rotations and translations are not entirely independent; they can influence each other.
- "dual quaternions" can represent rotation and translation at the same time. Building SDE or flow matching (more popular last year) on dual quaternion manifold is interesting and meaningful.

Thank you!

References

- [1] John Jumper, *Highly accurate protein structure prediction with AlphaFold*, Nature, 2021.
- [2] Jason Yim, *SE*(3) diffusion model with application to protein backbone generation, ICML, 2023.
- [3] Avishek (Joey) Bos, SE(3)-Stochastic Flow Matching for Protein Backbone Generation, ICLR, 2024.
- [4] Guillaume Huguet, Sequence-Augmented SE(3)-Flow Matching For Conditional Protein Backbone Generation, NeurlPS under review, 2024.
- [5] Chin-Wei Huang, Riemannian Diffusion Models, NeurlPS, 2022.
- [6] Valentin De Bortoli, *Riemannian Score-Based Generative Modeling.*, NeurlPS, 2022.

References

[7] Joseph L. Watson, *Broadly applicable and accurate protein design by integrating structure prediction networks and diffusion generative model*, bioRxiv, 2022.