O Método Simplex

Cid C. de Souza

cid@ic.unicamp.br

Instituto de Computação - UNICAMP

Cid de Souza – Método Sim**pléx**63

Definições e Resultados Básicos

• $S \subseteq \mathbb{R}$ é convexo se e somente se todo ponto \overline{x} que é uma combinação linear convexa de um par de pontos qualquer (x^1, x^2) de S também pertencer a S.

CONVEXO

NÃO CONVEXO

• Proposição: $S = \{x \in \mathbb{R}^n : Ax \leq b, x \geq 0\}$ é convexo.

Definições e Resultados Básicos

Definição (geométrica):

 \overline{x} é um ponto extremo de S se e somente se não existem pontos distintos x^1 e x^2 de S tal que $\alpha x^1 + (1-\alpha)x^2 = x$ com $0 < \alpha < 1$.

Definição (algébrica):

Seja $S=\{x\in\mathbb{R}^n:Ax\leq b,x\geq 0\}$ \overline{x} não vazio, $A:m\times n$, $m\leq n$ e $\rho(A)=m$. Se \overline{x} é ponto extremo de S então \overline{x} satisfaz n desigualdades *linearmente independentes* de S na igualdade.

Cid de Souza - Método Simplex63

Definições e Resultados Básicos

■ (algébrica ⇒ geométrica)

Seja $Gx \leq g$ o subsistema linear de S com n desigualdades LI satisfeitas na igualdade, ou seja,

$$G\overline{x} = g, G : n \times n, \rho(G) = n.$$

Supor por contradição que $\overline{x}=\alpha x^1+(1-\alpha)x^2$, $x^1\neq x^2\in S$.

Isso implica que $G\overline{x} = \alpha Gx^1 + (1-\alpha)Gx^2 = g$.

Como
$$\alpha > 0$$
, $1 - \alpha > 0$, $Gx^1 < q$ e $Gx^2 < q$, $Gx^1 = Gx^2 = q$.

Uma vez que G é inversível, isso obriga que $\overline{x} = x^1 = x^2$.

Logo, \overline{x} deve ser extremo.

Definições e Resultados Básicos

● (geométrica ⇒ algébrica)

Supor que \overline{x} satisfaz a apenas r < n desigualdades de S na igualdade. Sejam estas r desigualdades dadas por:

$$G\overline{x} = g, G : r \times n, \rho(G) = r < n.$$

Afirmação: Existe
$$d \neq 0$$
 tal que $Gd = 0$ (as colunas de G são LD)

Portanto, existe um escalar $\epsilon>0$ tal que $(\overline{x}-\epsilon d)$ e $(\overline{x}+\epsilon d)$ estão ambos em S.

Como
$$\overline{x} = \frac{1}{2}(\overline{x} - \epsilon d) + \frac{1}{2}(\overline{x} + \epsilon d)$$
, \overline{x} não é extremo.

Cid de Souza - Método Simplex63

Representação de Poliedros

Teorema de Caratheodory:

O poliedro não vazio $S = \{x \in \mathbb{R}^n : Ax \leq b, x \geq 0\}$ também pode ser representado na seguinte forma:

$$S = \{x \in \mathbb{R}: \quad x = \sum_{i=1}^p \lambda_i x^i + \sum_{j=1}^q \mu_j d^j,$$

$$\sum_{i=1}^p \lambda_i = 1, \lambda_i \geq 0 \text{ para todo } i = 1, \dots, p$$

$$\mu_j \geq 0 \text{ para todo } j = 1, \dots, q\},$$

onde $\{x^1, \ldots, x^p\}$ são os pontos extremos de S e $\{d^1, \ldots, d^q\}$ são os raios extremos de S.

Representação de Poliedros

Cid de Souza - Método Simplex63

Soluções básicas

$$S = \{ x \in \mathbb{R}^n : Ax = b, x \ge 0 \}$$

- Se $y \in S$ então y é uma solução viável.
- Supor que $A: m \times n$, $\rho(A) = m$ e $n \geq m$. Então, x é uma solução básica se $x_i = 0$ para todo $i = m+1, \ldots, n$ e a matriz $B = [A_{\bullet 1} \ A_{\bullet 2} \ \ldots \ A_{\bullet m}]$ é inversível.

(assume-se que as colunas de A e as componentes de x tenham sido rearranjadas apropriadamente).

Soluções básicas

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} x_B \\ \dots \\ x_N \end{bmatrix},$$

onde x_B são as variáveis básicas e x_N são as variáveis não básicas.

$$Ax = [B \ N] \begin{bmatrix} x_B \\ x_N \end{bmatrix} = Bx_B + Nx_N = b \implies x_B = B^{-1}b - B^{-1}Nx_N.$$

Cid de Souza - Método Simplex63

Soluções básicas (exemplos)

$$x_1 + x_2 \le 6$$
 $x_1 + x_2 + x_3 = 6$ $x_2 \le 3 \equiv x_2 + x_4 = 3$ $x_1 + x_2 + x_3 = 6$ $x_2 + x_4 = 3$

$$A = \left[\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{array} \right]$$

Soluções básicas (exemplos)

1.
$$B = [A_{\bullet 1} \ A_{\bullet 2}] = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
 é inversível.

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}, x_N = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

2.
$$B = \begin{bmatrix} A_{\bullet 2} & A_{\bullet 3} \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$
 é inversível.

$$\begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}, x_N = \begin{bmatrix} x_1 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Cid de Souza - Método Simpléx/63

Soluções básicas (exemplos)

3.
$$B = \begin{bmatrix} A_{\bullet 2} & A_{\bullet 4} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 é inversível.

$$\begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = B^{-1}b = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ -3 \end{bmatrix}, x_N = \begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solução inviável!

4.
$$B=[A_{\bullet 1} \ A_{\bullet 3}]=\left[egin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right]$$
 não é inversível.

Número de soluções básicas:
$$\frac{n!}{m!(n-m)!}$$
 (exponencial!)

Soluções Básicas e Pontos Extremos

Teorema: Seja $S=\{x\in\mathbb{R}^n:Ax=b,x\geq 0\}$. Então, \overline{x} é um ponto extremo de S se e somente se \overline{x} é uma solução básica viável.

● (básica ⇒ extremo)

Seja \overline{x} uma solução básica e assuma por contradição que $\overline{x} = \alpha y + (1 - \alpha)z$, $y, z \in S - \{\overline{x}\}$ e $\alpha \in (0, 1)$.

$$\overline{x} = \begin{bmatrix} \overline{x}^B \\ \dots \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \alpha \begin{bmatrix} y^B \\ \dots \\ y_{m+1} \\ \vdots \\ y_n \end{bmatrix} + (1 - \alpha) \begin{bmatrix} z^B \\ \dots \\ z_{m+1} \\ \vdots \\ z_n \end{bmatrix}.$$

Cid de Souza - Método Simplé:8/63

Soluções Básicas e Pontos Extremos

Como $y_{m+j} \geq 0$, $z_{m+j} \geq 0$ e $0 < \alpha < 1$, tem-se que, $y_{m+j} = z_{m+j} = 0$ para todo $j = 1, \ldots, n-m$. Além disso,

$$Ay = [B \ N][y^B \ 0] = By^B = b Az = [B \ N][z^B \ 0] = Bz^B = b$$
 $\Longrightarrow y^B = z^B = x_B = B^{-1}b.$

Conclui-se que \overline{x} não pode ser escrita como combinação convexa estrita de dois pontos distintos de S. Logo, \overline{x} é ponto extremo.

Soluções Básicas e Pontos Extremos

● (extremo ⇒ básica)

Como \overline{x} é extremo, existem n restrições LI em S que são satisfeitas na igualdade. Logo existem n-m equações da forma $x_i=0$ que são satisfeitas para $i\in N\subseteq\{1,\ldots,n\}$.

Assim, tem-se o sistema linear da forma $\overline{A}x = b, x_N = 0$ que é satisfeito por \overline{x} que, na forma matricial, é dado por:

$$\overline{A}x = \left[\begin{array}{cc} B & N \\ 0 & I \end{array} \right] \left[\begin{array}{c} x_B \\ x_N \end{array} \right] = \left[\begin{array}{c} b \\ 0 \end{array} \right].$$

Este sistema tem solução única pois as linhas de \overline{A} são LI. Logo $\det(B) = \det(\overline{A})$ e, portanto, B é inversível e a solução do sistema acima é básica.

Cid de Souza - Método Simples/63

Pontos extremos e otimalidade

Teorema: $S = \{x \in \mathbb{R}^n : Ax \le b, x \ge 0\}$ tem solução viável se e somente se S tem um ponto extremo.

Teorema: Seja $S = \{x \in \mathbb{R}^n : Ax = b, x \geq 0\}$. Considere o problema dado por $z = \min\{cx : x \in S\}$. Se z tem valor finito então existe um ponto extremo ótimo.

Além disso, se existir mais de um ponto extremo ótimo, toda combinação convexa destes pontos será uma solução ótima também.

Prova: Teorema de Caratheodory. □.

Idéia do algoritmo Simplex

- Encontrar um ponto extremo (= solução básica).
- Sair do ponto extremo corrente e ir para um ponto extremo vizinho onde o valor da função objetivo é melhor.
- Repetir o passo anterior enquanto for possível.
- Retornar o ponto extremo corrente (solução ótima!)

Solução básica:

$$Ax = b \equiv Bx_B + Nx_N = b \Longrightarrow$$

$$x_B = B^{-1}b - B^{-1}Nx_N, \quad x_N = 0$$

$$x_B = \overline{b} - \sum_{j \in N} \underbrace{B^{-1}a_{\bullet j}}_{u_j} x_j$$

Cid de Souza - Método Simpléx/63

Algoritmo do Simplex

Escrever a função objetivo e as variáveis básicas em função das variáveis não básicas:

$$\begin{cases} z = cx = c_B x_B + c_N x_N = (c_B B^{-1} b - c_B B^{-1} N x_N) + c_N x_N \\ z = \underbrace{c_B B^{-1} b}_{z_0} + \underbrace{(c_N - c_B B^{-1} N) x_N}_{\sum_{j \in N} (c_j - c_B B^{-1} a_{\bullet j}) x_j} \end{cases}$$

Reescrevendo o PL: (custos reduzidos)

$$\min \quad z = z_0 + \sum_{j \in N} \frac{1}{(c_j - z_j)} x_j$$
s.a.
$$\sum_{j \in N} \frac{1}{y_j} x_j + x_B = \overline{b} \qquad \equiv \qquad \sum_{j \in N} \frac{1}{y_j} x_j \le \overline{b}$$

$$x_j \ge 0 \text{ para } j \in N, x_B \ge 0 \qquad x_j \ge 0 \text{ para } j \in N$$

Simplex: exemplo

$$z = \max \quad x_1 + 2x_2$$

$$2x_1 + x_2 \le 4$$

$$x_1 + 3x_2 \le 6$$

$$x_1 + x_2 \le 3$$

$$x_1, x_2, \ge 0$$

$$z = \max \quad x_1 + 2x_2$$

$$2x_1 + x_2 + y_1 + + = 4$$

$$x_1 + 3x_2 + y_2 + = 6$$

$$x_1 + x_2 + y_3 = 3$$

$$x_1, x_2, y_1, y_2, y_3 \ge 0$$

Cid de Souza - Método Simplé: 9/63

Simplex: exemplo

Simplex: exemplo

Primeira iteração: $x_1 = x_2 = 0$

variáveis básicas: y_1, y_2 e y_3 :

$$z=x_1+2x_2$$

$$y_1=4-2x_1-x_2$$

$$y_2=6-x_1-3x_2$$

$$y_3=3-x_1-x_2$$

$$x_2 \text{ entra na base e } y_2 \text{ sai da base}$$

Segunda iteração: $x_1 = 0, x_2 = 2$

variáveis básicas: y_1, x_2 e y_3 :

$$z = 4 + \frac{1}{3}x_1 - \frac{2}{3}y_2$$

$$y_1 = 2 - \frac{5}{3}x_1 + \frac{1}{3}y_2$$

$$x_2 = 2 - \frac{1}{3}x_1 - \frac{1}{3}y_2$$

$$y_3 = 1 - \frac{2}{3}x_1 + \frac{1}{3}y_2$$

$$x_1 \text{ entra na base e } y_1 \text{ sai da base}$$

Cid de Souza - Método SimpleM/63

Simplex: exemplo

Terceira iteração: $x_1 = \frac{6}{5}, x_2 =$

variáveis básicas: x_1, x_2 e y_3 :

$$z=rac{66}{15}-rac{1}{5}y_1-rac{9}{5}y_2 \ \ldots \$$
 solução ótima ! $(ar{c}_j<0,\ orall j\in N)$

Simplex: tableau

Segunda iteração:

	x_1	x_2	y_1	y_2	y_3	RHS
z	$-\frac{1}{3}$	0	0	$\frac{2}{3}$	0	4
y_1	<u>5</u> 3	0	1	$-\frac{1}{3}$	0	2
x_2	$\frac{1}{3}$	1	0	$\frac{1}{3}$	0	2
y_3	$\frac{2}{3}$	0	0	$-\frac{1}{3}$	1	1

RHS x_1 y_3 y_1 y_2 66 0 0 z $\overline{15}$ $\frac{6}{5}$ 0 x_1 $\frac{24}{15}$ 0 x_2 1 y_3

Terceira iteração:

tableau ótimo!

Pivoteamento, operações elementares e a inversa da base.

Cid de Souza - Método Simple%/63

Simplex: caso ilimitado

$$z = \min$$
 $-x_1$ $2x_2$ $3x_1$ $+$ x_2 y_1 $=$ 3 $-2x_1$ $+$ x_2 $+$ y_2 $+$ $=$ 3 x_1 $2x_2$ $+$ y_3 $=$ 1 $2x_1$ x_2 $+$ y_4 $=$ 10 x_1 , x_2 , y_1 , y_2 , y_3 y_4 \geq 0

Simplex: caso ilimitado (cont.)

penúltima iteração:

vértice degenerado (1,0)

última iteração:

vértice degenerado (0,3) problema ilimitado!

direção extrema:
$$d = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

	$ x_1 $	x_2	y_1	y_2	y_3	y_4	RHS
\overline{z}	0	$\frac{5}{3}$	$\frac{1}{3}$	0	0	0	-1
$\overline{x_1}$	1	$\frac{1}{3}$	$-\frac{1}{3}$	0	0	0	1
y_2	0	$\frac{5}{3}$	$-\frac{2}{3}$	1	0	0	5
y_3	0	$-\frac{7}{3}$	$\frac{1}{3}$	0	1	0	0
y_4	0	$-\frac{5}{3}$	$\frac{2}{3}$	0	0	1	8

	x_1	x_2	y_1	y_2	y_3	y_4	RHS
\overline{z}	0	0	$\frac{1}{3}$	$-\frac{2}{3}$	0	0	-6
$\overline{x_1}$	1	0	$-\frac{1}{5}$	$-\frac{2}{15}$	0	0	0
x_2	0	1	$-\frac{2}{5}$	$\frac{2}{5}$	0	0	3
y_3	0	0	$-\frac{3}{5}$	$\frac{14}{15}$	1	0	7
y_4	0	0	0	$\frac{2}{3}$	0	1	13

Cid de Souza - Método Simpl@5/63

Dualidade

Primal:

$$\max \quad z^* = cx$$

$$(P)$$
 s.a $Ax \leq b$ $x \geq 0$

Dual:

$$\min \quad w^* = ub$$

$$(D) \quad \text{s.a} \quad uA \ge c$$

$$u > 0$$

Exemplo:

$$\max z = x_1 + x_2 + x_3$$
s.a
$$x_1 - 3x_2 + 4x_3 = 6$$

$$(P) x_1 - x_2 \leq 3$$

$$2x_2 - x_3 \geq 4$$

$$x_1 \geq 0 , x_2 \geq 0 , x_3 \in \mathbb{R}$$

Dualidade (cont.)

Existe uma variável dual para cada restrição do primal e vice-versa.

Proposição: O dual do dual é o primal

Cid de Souza - Método Simpl@₹/63

Dualidade (cont.)

Proposição: (Dualidade Fraca)

Se \overline{x} é uma solução primal viável e \overline{u} é uma solução dual viável então $c\overline{x} \leq z^* \leq w^* \leq \overline{u}b$.

Relação entre os valores ótimos primal e dual:

- 1. se $z^* \to \infty$ (P ilimitado) então D é inviável.
- 2. se $w^* \to -\infty$ (*D* ilimitado) então *P* é inviável.
- 3. se P e D são ambos limitados então $z^* = w^*$ (Dualidade Forte) .
- 4. P e D são ambos inviáveis.

Relações entre o primal e o dual

Primal: Ilimitado

$$\max z = x$$

$$\begin{array}{cc} \mathbf{s.a} & x \geq 1 \\ & x \geq 0 \end{array}$$

Dual: Inviável

$$\min \ w = -u$$

$$\text{s.a} \quad u \leq -1$$

$$u \ge 0$$

Cid de Souza – Método Simpl@9/63

Relações entre o primal e o dual

Primal: Inviável

$$\max \ z = x$$

s.a
$$x \le -3$$

$$x \ge 0$$

Dual: Ilimitado

$$\min w = -3u$$

s.a
$$u \ge 1$$

$$u \ge 0$$

Relações entre o primal e o dual

Primal: Limitado

$$\max z = x$$

s.a
$$x \le 5$$

 $x > 0$

Dual: Limitado

$$\min \ w = 5u$$

s.a
$$u \ge 1$$
 $u > 0$

Cid de Souza - Método Simpl@xl/63

Relações entre o primal e o dual

Primal: Inviável

$$\max \quad z = x_1 - x_2$$

s.a
$$x_1 + x_2 \le -1$$

$$x_1 + x_2 \ge 1$$

$$x_1, x_2 \in \mathbb{R}$$

Dual: Inviável

$$\min \quad w = -u_1 - u_2$$

s.a
$$u_1 - u_2 = 1$$

$$u_1 - u_2 = -1$$

$$u_1, u_2 \geq 0$$

Complementaridade de Folgas

$$\max z^* = cx \qquad \qquad \min w^* = ub$$

$$(P) \quad \text{s.a} \quad Ax + s = b \qquad \qquad (D) \quad \text{s.a} \quad uA - t = c$$

$$x > 0, s > 0 \qquad \qquad u > 0, t > 0$$

Teorema das Folgas Complementares: (x^*, s^*) é uma solução ótima de P e (u^*, t^*) uma solução ótima de D se e somente se, para todo $j \in \{1, \ldots, n\}, \, x_j^* t_j^* = 0$ e, para todo $i \in \{1, \ldots, m\}, \, u_i^* s_i^* = 0$.

Prova: (\Rightarrow) u^* é viável para D, logo $u^*A - t^* = c$.

Como $x^* \ge 0$, $(u^*A - t^*)x^* = cx^*$.

Reescrevendo chega-se a: $u^*Ax^* - t^*x^* = cx^*$.

Como x^* é viável para P, tem-se: $u^*(b-s^*)-t^*x^*=cx^*$.

Pela dualidade forte, conclui-se que: $u^*s^* + t^*x^* = 0$.

Como $x^*, s^*, u^*, t^* \geq 0$ o resultado fica mostrado.

Cid de Souza - Método Simple%/63

Complementaridade de Folgas (cont.)

Prova: (\Leftarrow) Como (x^*, s^*) e (u^*, t^*) são viáveis para P e D respectivamente, tem-se:

$$cx^* = (u^*A - t^*)x^* = u^*Ax^* - t^*x^* = u^*Ax^*$$

ou ainda

$$cx^* = u^*(b - s^*) = u^*b - u^*s^* = u^*b.$$

Pela dualidade fraca, (x^*, s^*) deve ser uma solução ótima de P e (u^*, t^*) deve ser uma solução ótima de D.

Bases duais viáveis

(P)
$$\max_{\mathbf{s.a}} z^* = cx$$
 (D)
$$\max_{\mathbf{s.a}} w^* = ub$$
 s.a $uA \ge c$

Solução básica primal: $Ax = Bx_B + Nx_N = b$

$$z = cx = c_B x_B + c_N x_N = c_B B^{-1} b + \underbrace{(c_N - c_B B^{-1} N)}_{\text{custos reduzidos}} x_N.$$

Definir: $u = c_B B^{-1}$ e t = uA - c (folgas duais).

Proposição:
$$u$$
 é complementar a $x=\begin{bmatrix} x_B \\ x_N \end{bmatrix}$, i.e., $xt=0$.

Prova:
$$x(uA - c) = (x_B \mid x_N)(uB - c_B \mid uN - c_N) = (x_B \mid x_N)(c_BB^{-1}B - c_B \mid c_BB^{-1}N - c_N) = 0$$

Cid de Souza - Método Simpl@5/63

Bases duais viáveis

Definição: Se $c_B B^{-1} N \ge c_N$ então B é uma base dual viável.

Nota 1: $c_B B^{-1} N \ge c_N \equiv \text{custos reduzidos negativos}.$

Nota 2: Uma base pode ser só primal viável, só dual viável, nem primal e nem dual viável ou simultaneamente primal e dual viável.

Proposição: Se B é uma base primal e dual viável então $(x_B \mid x_N) = (B^{-1}b \mid 0)$ é ótima para P e $u = c_BB^{-1}$ é ótima para D.

Prova:
$$z^* \ge cx = c_B B^{-1} b$$
 e $w^* \le ub = c_B B^{-1} b$
Pela dualidade fraca, $z^* \le w^*$, logo $z^* = w^*$

Primal-Simplex formalizado

Definição: as bases $B \in B'$ são adjacentes se $|B \setminus B'| = |B' \setminus B| = 1$.

Movendo de uma base para outra: aumenta uma variável não básica mantendo-se as outras em zero.

$$x_B + B^{-1}Nx_N = B^{-1}b \implies x_B + B^{-1}a_{\bullet r}x_r = \bar{b} \implies x_B + y_rx_r = \bar{b}$$

- 1. Se para todo $i=1,\ldots,m,\,(y_r)_i\leq 0,\,x_r$ cresce indefinidamente e a base não muda.
- 2. Se para algum $j \in \{1, \ldots, m\}, (y_r)_i > 0$, escolher

$$s \in \{1, \dots, m\}$$
 tal que:

$$\frac{\overline{b}_s}{(y_r)_s} = \min\left\{\frac{\overline{b}_i}{(y_r)_i} : (y_r)_i > 0\right\}$$

Cid de Souza - Método Simpl®₹/63

Primal-Simplex (cont.)

 x_r entra na base com valor $\frac{\bar{b}_s}{(y_r)_s}$ e $(x_B)_s$ sai da base.

Definição: uma solução primal viável é degenerada se $x_B = \overline{b}$ e $\overline{b}_i = 0$ para algum $i = 1, \dots, m$.

Observação: se não existir nenhuma base degenerada então, definida uma variável não-básica para entrar na base, só haverá uma variável básica candidata a sair da base.

Primal-Simplex (cont.)

Corolário: Seja B uma base não degenerada primal viável mas dual inviável, i.e., existe x_r não básica com custo reduzido $\overline{c}_r = c_r - c_B B^{-1} a_{\bullet r} = c_r - c_B y_r > 0$.

- 1. Se $y_r \leq 0$ então $z^* \to \infty$ (primal ilimitado).
- 2. Se $\exists s$ tal que $(y_r)_s > 0$ então é possível mover para uma <u>única</u> base $B^{(r)}$ de melhor custo.

Prova:

- 1. $x_B=\overline{b}-y_rx_r$, logo $z=z_0+\overline{c}_rx_r>z_0$ e, portanto, $z\to\infty$ quando $x_r\to\infty$.
- 2. Na base $B^{(r)}$, o custo será $c_{B(r)}x_{B(r)}=z_0+\overline{c}_rx_r>z_0=c_Bx_B$.

Cid de Souza - Método Simpl@/63

Primal Simplex: Fase 2

Passo 1: encontrar base primal viável B (FASE 1).

Passo 2: se $(c_N - c_B B^{-1} N) \le 0$, PARE!

Retorne a solução ótima $x_B = B^{-1}b, x_N = 0.$

Se não (pricing) escolher r tal que $\bar{c}_r = c_r - c_B B^{-1} a_{\bullet r} > 0$.

Se $y_r = B^{-1}a_{\bullet r} \leq 0$, PARE! Retorne "problema ilimitado".

Se não, escolher s tal que $(y_r)_s>0$ e $\frac{\overline{b}_s}{(y_r)_s}=\min_{(y_r)_i>0}\left\{\frac{\overline{b}_i}{(y_r)_i}\right\}$.

(\star s sai da base e r entra na base \star)

Executar troca de base (pivoteamento): $B \leftarrow B \setminus \{B_{\bullet s}\} \cup \{a_{\bullet r}\}$. Voltar ao Passo 1.

Proposição: Não havendo soluções básicas degeneradas, o algoritmo primal simplex temina em um número finito de passos.

Primal Simplex: Fase 1

$$\max \quad z = cx \qquad \qquad \max \quad z_a = (-1)x^a$$

$$(P) \quad \text{s.a} \quad Ax = b \qquad \qquad (P_a) \quad \text{s.a} \quad Ax + Ix^a = b$$

$$x \geq 0 \qquad \qquad x \geq 0, x^a \geq 0$$

$$(\text{supor } b \geq 0) \qquad \qquad (x^a : \text{ variáveis artificiais})$$

Observações:

- P_a é viável pois tem solução básica dada por $x^a = b$ e x = 0. Pode ser resolvido pela Fase 2!
- P_a é limitado ($z_a \leq 0$), portanto tem solução ótima em um vértice.
- (x, x^a) é viável para P_a e x viável para P se e somente se $x^a = 0$. Se $z_a < 0$, P_a não tem solução viável com $x_a = 0$ e P é inviável.

Cid de Souza - Método Simplet /63

Primal Simplex: Fase 1 (cont.)

Observações:

- Se $z_a = 0$, toda solução ótima (x, x^a) de P_a satisfaz $x^a = 0$ com x viável para P.
- No caso anterior, se todas as variáveis artificiais são não básicas, a base ótima de P_a é uma base viável para P. Pode-se remover as variáveis artificiais do problema!
- ▶ Mas, é possível que algumas variáveis artificiais fiquem na base com o valor zero (base degenerada). Neste caso, se elas não forem removidas por pivoteamento, existem restrições redundantes no sistema Ax = b.

Algoritmo Dual Simplex

Comparativo entre os algoritmos Primal e Dual Simplex:

- Primal Simplex: visita bases primais viáveis até que a base corrente se torne dual viável (custos reduzidos ≤ 0).
- Dual Simplex: visita bases duais viáveis até que a base corrente se torne primal viável (variáveis básicas ≥ 0).

Proposição: Se B uma base dual viável e $\overline{b}_s < 0$ para algum s, então

- 1. Se $(y_s)_j \ge 0$ para todo $j \in N$ (não básica) então o problema é primal inviável.
- 2. Se não, existe uma base dual viável $B^{(r)}$ adjacente à base B corrente dada por $B^{(r)} = B \cup \{a_{\bullet r}\} \setminus \{B_{\bullet s}\}$ satisfazendo $r \in N$, $(y_s)_r < 0$ e $r = \arg\min_{j \in N} \left\{ \frac{\overline{c}_j}{(y_s)_j} \, : \, (y_s)_j < 0 \right\}$.

Cid de Souza - Método Simple%/63

Algoritmo Dual Simplex (cont.)

Prova:

1.
$$x_B+B^{-1}Nx_N=\overline{b}\Longrightarrow (x_B)_s=\overline{b}_s-\sum_{j\in N}(y_s)_jx_j=\overline{b}_s<0$$

Se $(y_s)_j\geq 0$ para todo $j\in N$, toda solução com $x_j\geq 0$ para todo $j\in N$ satisfaz $(x_B)_s<0$.

2. Se x_r entra na base e $(x_B)_s$ sai, então

$$z = z_0 + \sum_{j \in N} \overline{c}_j x_j - \lambda [(x_B)_s + \sum_{j \in N} (y_s)_j x_j] + \lambda \overline{b}_s$$

$$= 0 \text{ (linha do tableau !)}$$

$$z = z_0 + \lambda \overline{b}_s + \sum_{j \in N} [\overline{c}_j - \lambda(y_j)_s] x_j - \lambda(x_B)_s, \qquad \text{onde } \lambda = \frac{\overline{c}_r}{(y_s)_r} \ge 0.$$

A base $B^{(r)}$ é dual viável pois: $\lambda \geq 0$ (custo reduzido de $(x_B)_s$), $\overline{c}_j - \lambda(y_s)_j \leq \overline{c}_j \leq 0$ para todo j tal que $(y_j)_s \geq 0$ e, pela escolha de r, $\overline{c}_j - \lambda(y_s)_j \leq 0$ para todo j satisfazendo $(y_s)_j < 0$.

Algoritmo Dual Simplex

Passo 1: encontrar base dual viável B (FASE 1).

Passo 2: se B é primal viável, i.e., se $\bar{b} = B^{-1}b \ge 0$, PARE!

Retorne a solução ótima (primal) $x_B = B^{-1}b, x_N = 0.$

Se não (pricing) escolher s tal que $(x_B)_s < 0$.

Se $(y_s)_i \geq 0$ para todo $j \in N$, PARE!

Retorne "problema inviável".

Se não, escolher
$$r$$
 tal que $r = \arg\min_{j \in N} \left\{ \frac{\overline{c}_j}{(y_s)_j} : (y_s)_j < 0 \right\}$

($\star s$ sai da base e r entra na base \star)

Executar troca de base (pivoteamento): $B \leftarrow B \setminus \{B_{\bullet s}\} \cup \{a_{\bullet r}\}$. Voltar ao Passo 1.

Cid de Souza - Método Simplets/63

Dual Simplex: (cont.)

Observações:

- A função objetivo do problema primal é monotonamente decrescente ao contrário do primal simplex.
- ullet O valor do decréscimo ao mudar a base é de $\left|rac{ar{c}_rar{b}_s}{(y_s)_r}
 ight|$.
- Não havendo degenerescência no problema dual, $\overline{c}_r < 0$ e o decréscimo é estrito.

Logo o algoritmo termina em tempo finito!

Dual Simplex: exemplo

$$z = \max$$
 - $2x_1$ - $3x_2$ - $4x_3$
 x_1 + $2x_2$ + x_3 - x_4 = 3
 $2x_1$ - x_2 + $3x_3$ - x_5 = 4
 x_1 , x_2 , x_3 , x_4 $x_5 \ge 0$

	x_1	x_2	x_3	x_4	x_5	RHS
\overline{z}	2	3	4	0	0	0
$\overline{x_4}$	-1	-2	-1	1	0	-3
x_5	-2	1	-3	0	1	-4

Cid de Souza - Método Simple₹/63

Dual Simplex: exemplo (cont.)

	x_1	x_2	x_3	x_4	x_5	RHS
\overline{z}	0	4	1	0	1	-4
$\overline{x_4}$	0	$-\frac{5}{2}$	$\frac{1}{2}$	1	$-\frac{1}{2}$	-1
x_1	1	$-\frac{1}{2}$	$\frac{3}{2}$	0	$-\frac{1}{2}$	2

solução ótima!

Tableau e variáveis duais

$$z = c_B x_B + c_N x_N = z_0 + \sum_{j \in N} (c_j - \underbrace{c_B B^{-1}}_{u} a_{\bullet j}) x_j$$

Se existirem colunas na matriz original A que formam uma matriz identidade e que correspondam a variáveis de folga (custos nulos), no tableau ótimo teremos nestas colunas que:

$$\overline{c}_j = -u_j^*,$$

ou seja, na linha correspondente à função objetivo e nas colunas correspondentes à identidade teremos as variáveis duais ótimas.

Cid de Souza - Método Simple%/63

Primal ou Dual Simplex?

- se $\overline{c}_j \le 0$ para todo $j \in N$ e $\overline{b}_i \ge 0$ para todo $i \in B$ então a solução é ótima. Nada há a fazer !
- se $\overline{c}_j \le 0$ para todo $j \in N$ e $\exists i \in B$ tal que $\overline{b}_i < 0$ então Primal Simplex tem Fase 1 mas o Dual Simplex passa direto à Fase 2!
- se $\exists j \in N$ tal que $\overline{c}_j > 0$ e $\overline{b}_i \geq 0$ para todo $i \in B$ então Dual Simplex tem Fase 1 mas o Primal Simplex passa direto à Fase 2!
- se $\exists j \in N$ tal que $\overline{c}_j > 0$ e $\exists i \in B$ tal que $\overline{b}_i < 0$ então Primal e Dual Simplex tem Fase 1.

Adição de nova restrição após otimização

$$\max z = cx$$

$$(1) \quad \text{s.a} \quad Ax = b \quad (A: m \times n)$$

$$x \ge 0$$

$$(2) \quad \max z' = cx$$

$$\text{s.a} \quad Ax = b$$

$$dx \le d_0$$

$$x > 0$$

- **9** Base ótima para (1): $A = (B \mid N), x_B = B^{-1}b B^{-1}Nx_N, x_N = 0.$
- ▶ Folga da nova restrição: $dx + x_{n+1} = d_0, x_{n+1} \ge 0.$
- ullet Uma base para (2): $B'=B\cup\{a_{ullet,n+1}\}$, onde $a_{ullet,n+1}=egin{bmatrix}0\ \vdots\ 0\ 1\end{bmatrix}=e_{m+1}.$

Cid de Souza - Método Simplex/63

Adição de nova restrição (cont.)

● Usando a antiga base B podemos escrever x_{n+1} como função de x_N :

$$dx + x_{n+1} = (d_B|d_N) \begin{bmatrix} x_B \\ x_N \end{bmatrix} + x_{n+1} = d_B x_B + d_N x_N + x_{n+1}$$
$$= d_B (B^{-1}b - B^{-1}Nx_N) + d_N x_N + x_{n+1} = d_0.$$

- Linha do novo tableau: $x_{n+1} + (d_N d_B B^{-1} N) x_N = d_0 d_B \overline{b}$.
- ▶ Novo tableau: $(x_B, x_N, x_{n+1} \ge 0 \text{ e } c'_N = \text{novos custos reduzidos})$

$$z' + 0x_B + 0x_{n+1} + c'_N x_N = c_B \overline{b}$$

$$x_B + B^{-1} N x_N = \overline{b}$$

$$x_{n+1} + (d_N - d_B B^{-1} N) x_N = d_0 - d_B \overline{b}$$

Essa solução é primal viável ?

Adição de nova restrição (cont.)

Proposição: A nova base B' é dual viável.

Prova:

$$B' = \begin{bmatrix} & & 0 \\ B & \vdots \\ & & 0 \\ d_B & 1 \end{bmatrix} \implies (B')^{-1} = \begin{bmatrix} & & 0 \\ B^{-1} & \vdots \\ & & 0 \\ -d_B B^{-1} & 1 \end{bmatrix}$$

custos reduzidos:

$$c_N' = c_N - c_{B'}(B')^{-1}N'$$
, onde $N' = \begin{bmatrix} N \\ d_N \end{bmatrix}$ e $c_{B'} = [c_B \mid 0]$.

Cid de Souza - Método Simple%/63

Adição de nova restrição (cont.)

Prova: (cont.)

$$c_{B'}(B')^{-1} = [c_B \mid 0] \begin{bmatrix} & & & 0 \\ B^{-1} & & \vdots \\ & & 0 \\ -d_B B^{-1} & 1 \end{bmatrix} = [c_B B^{-1} \mid 0].$$

Logo, $c_{B'}(B')^{-1}N' = c_BB^{-1}N$, ou seja, os custos reduzidos das variáveis não básicas permanecem inalterados!

Portanto, a nova base ainda é dual viável.

Conclusão: após adicionar uma nova restrição, deve-se dar preferência ao uso do algoritmo dual simplex!

Adição de nova restrição: exemplo

$$z = \max 3x_1 + 5x_2$$
 $x_1 \ge 4$
 $3x_1 + 2x_2 \le 18$
 $x_1, x_2 \ge 0$

Folga da primeira restrição: y_1 .

Folga da segunda restrição: y_2 .

Cid de Souza - Método Simple 5/63

Adição de nova restrição: exemplo

Tableau ótimo!

Inversa da base: B^{-1}

	x_1	x_2	y_1	y_2	RHS
z	$\frac{9}{2}$	0	0	$\frac{5}{2}$	45
y_1	1	0	1	0	4
x_2	$\frac{3}{2}$	1	0	$\frac{1}{2}$	9

Nova restrição:

$$x_2 \leq 6 \quad \equiv \quad x_2 + y_3 = 6,$$

$$\operatorname{com} y_3 \geq 0.$$

Adição de nova restrição: exemplo

Novo Tableau:

Escrever y_3 em função das variáveis não-básicas.

	x_1	x_2	y_1	y_2	y_3	RHS
\overline{z}	$\frac{9}{2}$	0	0	$\frac{5}{2}$	0	45
y_1	1	0	1	0	0	4
x_2	$\frac{3}{2}$	1	0	$\frac{1}{2}$	0	9
y_3	0	1	0	0	1	6

Base não é primal viável mas é dual viável.

Usar o dual simplex!

 $(B')^{-1}$: colunas y_1, y_2, y_3 .

	x_1	x_2	y_1	y_2	y_3	RHS
\overline{z}	$\frac{9}{2}$	0	0	$\frac{5}{2}$	0	45
y_1	1	0	1	0	0	4
x_2	$\frac{3}{2}$	1	0	$\frac{1}{2}$	0	9
y_3	$-\frac{3}{2}$	0	0	$-\frac{1}{2}$	1	-3

Cid de Souza - Método Simplex/63

Adição de nova restrição: exemplo

Base é primal viável e é dual viável.

Tableau ótimo!

	x_1	x_2	y_1	y_2	y_3	RHS
\overline{z}	0	0	0	1	3	36
y_1	0	0	1	$-\frac{1}{3}$	$\frac{2}{3}$	2
x_2	0	1	0	0	1	6
x_1	1	0	0	$\frac{1}{3}$	$-\frac{2}{3}$	2

Simplex para variáveis limitadas

Definição: Uma partição das colunas de A tal que $A=[B\mid N_1\mid N_2]$ corresponde a uma solução básica $[x_B\mid x_{N_1}\mid x_{N_2}]$ se B é inversível, $x_{N_1}=0$, $x_{N_2}=h_{N_2}$ e $x_B=B^{-1}b-B^{-1}N_2x_{N_2}-B^{-1}N_1x_{N_1}$.

A solução básica será viável se $0 \le B^{-1}(b - N_2h_{N_2}) \le h_B$.

Cid de Souza - Método Simpl69/63

Simplex para variáveis limitadas (cont.)

- **•** Existem dois tipos de variáveis não básicas: as que estão no seu limite inferior (x_{N_1}) e as que estão no seu limite superior (x_{N_2}) .
- Escrevendo a F.O. em função das variáveis não-básicas (VNB):

$$z = cx = [c_B \mid c_{N_1} \mid c_{N_2}] \begin{bmatrix} x_B \\ x_{N_1} \\ x_{N_2} \end{bmatrix} = c_B x_B + c_{N_1} x_{N_1} + c_{N_2} x_{N_2}$$

ou ainda

$$z = c_B B^{-1} b + \underbrace{(c_{N_2} - c_B B^{-1} N_2) x_{N_2}}_{\text{custos reduzidos das}} + \underbrace{(c_{N_1} - c_B B^{-1} N_1) x_{N_1}}_{\text{custos reduzidos das}}$$

$$\text{VNB no limite superior} \qquad \text{VNB no limite inferior}$$

Simplex para variáveis limitadas (cont.)

Para uma solução básica temos as seguintes folgas:

- **Dual:** $t = [t_B | t_{N_1} | t_{N_2}].$
- Primal: $s = [s_B \mid s_{N_1} \mid s_{N_2}] \text{ com } s_{N_1} = h_{N_1} \text{ e } s_{N_2} = 0.$

Proposição: Seja B uma base e $u=c_BB^{-1}$. Se $v_B=0$, $v_{N_1}=0$ e $v_{N_2}=c_{N_2}-c_BB^{-1}N_2$ então (u,v) é complementar a x, ou seja, xt=0 e $v_S=0$.

Prova:
$$t_B = uB + v_B - c_B = c_B B^{-1} B + v_B - c_B = 0$$

$$t_{N_1} = u N_1 + v_{N_1} - c_{N_1} = c_B B^{-1} N_1 - c_{N_1}$$

$$t_{N_2} = u N_2 + v_{N_2} - c_{N_2} = c_B B^{-1} N_2 - c_{N_2} + c_{N_2} - c_B B^{-1} N_2 = 0$$

$$\text{Logo, } xt = [x_B \mid 0 \mid x_{N_2}][0 \mid c_B B^{-1} N_1 - c_{N_1} \mid 0]^t = 0.$$

$$\text{Por outro lado, } vs = [0 \mid 0 \mid c_{N_2} - c_B B^{-1} N_2][s_B \mid s_{N_1} \mid 0]^t = 0.$$

Cid de Souza - Método Simple 1/63

Simplex para variáveis limitadas (cont.)

Proposição: As variáveis duais u e v com os valores definidos tais como na proposição anterior formam uma solução dual viável se e somente se $c_{N_2} - c_B B^{-1} N_2 \ge 0$ e $c_{N_1} - c_B B^{-1} N_1 \le 0$.

Observação: (u,v) é dual viável se e somente se o custo reduzido das variáveis no limite inferior é ≤ 0 e o custo reduzido das variáveis no limite superior é ≥ 0 .

Bases adjacentes:

- 1. $B' = (B \setminus a_{\bullet s}) \cup a_{\bullet r}$ onde x_r é uma VNB e $r \in N_1 \cup N_2$.
- 2. B'=B (a base não muda) mas $|N_1'\setminus N_1|+|N_2'\setminus N_2|=1$, ou seja, alguma VNB passa do seu limite superior para o seu limite inferior ou vice-versa !

Simplex para variáveis limitadas (cont.)

Observações finais:

- Os algoritmos primal e dual simplex necessitam de pequenas modificações para passarem a tratar o caso de variáveis limitadas.
- A vantagem de usar esta versão modificada dos algoritmos é que pode-se tabalhar com uma base de dimensão menor ($m \times m$ em vez de $(m+n) \times (m+n)$. Menos memória!
- As formulações de Programação Linear Inteira de problemas de otimização combinatória usualmente trabalham com variáveis binárias.

Os algoritmos de PLI resolvem vários PLs onde estas variáveis são limitadas inferiormente por *ZERO* e superiormente por *UM!* Logo vale a pena usar o algoritmo modificado!

Cid de Souza - Método Simple%/63