Advanced Agribusiness Management

Rodney Beard

March 21, 2017

Advanced Agribusiness Management

Rodney Beard

The Diet Problem

reed-mix problems

Crop rotation

Crop rotation

- Stigler, George J. The Cost of Subsistence. *Journal of Farm Economics*, vol. 27, no. 2, 1945, pp. 303?314
- Dantzig, G. (1990). The Diet Problem. *Interfaces*, 20(4), 43-47. Retrieved from http://www.jstor.org/stable/25061369
- ► El-Nazer, T., McCarl, B. A., 1986. The choice of crop rotation: A modeling approach and case study. American Journal of Agricultural Economics 68 (1), 127?136. (available on http://chla.mannlib.cornell.edu/).
- ▶ Throsby, C.D. (1967) STATIONARY-STATE SOLUTIONS IN MULTI-PERIOD LINEAR PROGRAMMING PROBLEMS, Australian Journal of Agricultural Economics¿ Volume 11, Number 02, December 1967

Stigler's 1939 Diet										
Food Annual	Quantities	Annual Cost								
Wheat Flour	370 lb.	\$13.33								
Evaporated Milk	57 cans	\$3.84								
Cabbage	111 lb.	\$4.11								
Spinach	23 lb.	\$1.85								
Dried Navy Beans	285 lb.	\$16.80								
Total Annual Cost		\$ 39.93								

The Diet Problem

Table of nutrients considered in Stigler's diet

Nutrient	Daily Recommended Intake
Calories	3,000 Calories
Protein	70 grams
Calcium	.8 grams
Iron	12 milligrams
Vitamin A	5,000 IU
Thiamine (Vitamin B1)	1.8 milligrams
Riboflavin (Vitamin B2)	2.7 milligrams
Niacin	18 milligrams
Ascorbic Acid (Vitamin C)	75 milligrams

Advanced Agribusiness Management

Rodney Beard

The Diet Problem

Feed-mix problems

rop rotation

The MOTAD (Minimization of Total Absolute Deviations) model

Nutritive content and price of ingredients

Ingredient	Calcium	Protein	Fiber	Unit Cost		
	(kg/kg)	(kg/kg)	(kg/kg)	(cents/kg)		
Limestone	0.38	0.0	0.0	10.0		
Corn	0.001	0.09	0.02	30.5		
Soybean meal	0.002	0.50	0.08	90.0		

The mixture must meet the following restrictions:

- ► Calcium at least 0.8% but not more than 1.2%.
- Protein at least 22%.
- ► Fiber at most 5%.

http://www.me.utexas.edu/~jensen/or_site/models/unit/lp_model/blending/blend1.html

Crop rotation

Minimize $Z = 10L + 30.5C + 90S$											
Minimum calcium:	0.38L	+ 0.001C	+ 0.002S	> 0.008							
Maximum calcium:	0.38L	+ 0.001C	+ 0.002S	< 0.012							
Minimum protein:		+ 0.09C	+ 0.50S	> 0.22							
Maximum fiber:		+ 0.02C	+ 0.08S	< 0.05							
Conservation:	L	+ C	+ S	= 1							

Crop rotations

- Multi-period linear programming
- Dynamic programming
- Repeated (annual timeless) cropping cycle (using LP)

Problem a farm grows N crops and crop yield depends on what was grown on the farm in the previous three years. Current year is i, previous years are j, k, r.

$$\max \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{r=1}^{N} C_{ijkr} X_{ijkr}$$

subject to

$$\sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{k=1}^{N} \sum_{r} X_{ijkr} \leq TA$$

$$\sum_{i=1}^{N} X_{ijkr} - \sum_{m=1}^{N} X_{jkrm} \leq 0, i, j, k = 1, \dots, N$$

$$X_{ijkr} \geq 0$$

The second constraint is a rotation constraint that is equal to zero when continuous cropping occurs, i.e. no rotation takes place.

Advanced Agribusiness Management

Rodney Beard

The Diet Problem

Feed-mix problems

Crop rotations

Crop rotations

```
Possible rotations plans
```

C	C	C	C	C	C	C	C	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ	Ρ
C	C	C	C	Ρ	Р	Ρ	Ρ	C	C	C	C	Ρ	Ρ	Р	Ρ
C	C	Ρ	Р	C	C	Ρ	Ρ	C	C	Ρ	Ρ	C	C	Ρ	Р
C	Ρ	C	Ρ	C	Ρ	C	Ρ	C	Ρ	C	Ρ	C	Ρ	C	Ρ

Rodney Beard

The Diet Problem

Feed-mix problem

 ${\sf Crop\ rotations}$

Land	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	≤ TA
CCC	0	-1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	≤ 0
CCP	0	1	-1	-1	0	0	0	0	0	1	0	0	0	0	0	0	≤ 0
CPC	0	0	1	0	-1	-1	0	0	0	0	1	0	0	0	0	0	≤ 0
CPP	0	0	0	1	0	0	-1	-1	0	0	0	1	0	0	0	0	≤ 0
PCC	0	0	0	0	1	0	0	0	-1	-1	0	0	1	0	0	0	≤ 0
PCP	0	0	0	0	0	1	0	0	0	0	-1	-1	0	1	0	0	≤ 0
PPC	0	0	0	0	0	0	1	0	0	0	0	0	-1	-1	1	0	≤ 0
PPP	0	0	0	0	0	0	0	1	0	0	0	0	0	0	-1	0	≤ 0

- ▶ Gives area of land to be planted to each crop for each sequence. so X_{CCCP} is the area of land to be planted to corn following two corn crops and one potato crop.
- ▶ i have not provided gross margins for this problem but nor do the authors.
- ► Think about where gross margins *C_{ijkr}* might be obtained from.
- ► How might one infer the rotation sequence in an area from aggregate data?
- ► How would you go about setting this model up in Jupyter using SciPy?

$$\min \sum_{j=1}^{n} \sum_{k=1}^{n} x_j x_k \sigma_{jk}$$

such that

$$\sum_{j=1}^{n} f_j x_j = \lambda$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i$$

$$x_i \ge 0$$

Advanced Agribusiness Management

Rodney Beard

The Diet Problem

Feed-mix problem

Crop rotation

- x_i level of the i-th farm activity
- $ightharpoonup f_j$ the expected or forecast gross margin
- $ightharpoonup \sigma_{jk}$ the covariance of the gross margin between the j-th and k-th farm activity
- a_{ij} how much the j-th activity utilizes of the i-th resource
- ▶ *b_i* avaialbility of the i-th resource

Crop rotation

- consistent with probability if gross margins are normally distributed
- subjective probability values may be used
- consistent with the separation theorem