第二章 线性规划

修贤超

https://xianchaoxiu.github.io

目录

- 2.1 线性规划问题及其数学模型
- 2.2 图解法
- 2.3 单纯形法原理
- 2.4 单纯形法计算步骤
- 2.5 单纯形法的进一步讨论
- 2.6 线性规划的对偶问题
- 2.7 对偶问题的基本性质

■原问题

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j \le b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

■ 矩阵表达

$$\max z = \mathbf{CX}$$
s.t.
$$\begin{cases} \mathbf{AX} \le \mathbf{b} \\ \mathbf{X} \ge \mathbf{0} \end{cases}$$

■ 引入松弛变量

$$\max z = \mathbf{CX} + \mathbf{0X}_{S}$$
s.t.
$$\begin{cases} \mathbf{AX} + \mathbf{IX}_{S} = \mathbf{b} \\ \mathbf{X} \ge \mathbf{0}, \ \mathbf{X}_{S} \ge \mathbf{0} \end{cases}$$

- □Ⅰ为初始基
- $\mathbf{Q} \ \mathbf{X}_{S} = (x_{n+1}, \dots, x_{n+m})^{\top} \$ 为基变量
- 决策变量为 $X = [X_B, X_N]$
- 约束函数的系数矩阵为 A = [B, N]
- 目标函数的系数向量为 $\mathbf{C} = [\mathbf{C}_B, \mathbf{C}_N]$

■ 写出下面问题的对偶问题

max
$$z = 2x_1 + x_2$$

s.t.
$$\begin{cases}
5x_2 \le 15 \\
6x_1 + 2x_2 \le 24 \\
x_1 + x_2 \le 5 \\
x_1, x_2 \ge 0
\end{cases}$$

■标准化

$$\max z = 2x_1 + x_2 + 0x_3 + 0x_4 + 0x_5$$
s.t.
$$\begin{cases}
5x_2 + x_3 = 15 \\
6x_1 + 2x_2 + x_4 = 24 \\
x_1 + x_2 + x_5 = 5 \\
x_1, x_2, x_3, x_4, x_5 \ge 0
\end{cases}$$

■ 列出初始单纯形表,确定主元 [6],用 x_1 替换 x_4

	$c_j \rightarrow$		2	1	0	0	0
\mathbf{C}_{B}	\mathbf{X}_{B}	b	x_1	$ x_2 $	$ x_3 $	$ x_4 $	x_5
0	x_3	15	0	5	1	0	0
0	$x_3 \\ x_4$	24	[6]	2	1 0	1	0
0	x_5	5	1	1	0	0	1
	$z_j - z_j$		2	1	0	0	0

■ 变量重排

		\mathbf{X}_{B}		X	-N		\mathbf{X}_S	
	x_3	$ x_1 $	x_5	x_4	x_2	$ x_3 $	x_4	$ x_5 $
15	1	0	0	0	5	1	0	0
24	0	6	0	1	2	0	1	0
5	0	1	1	0	1	0	0	1
b		В		1	V		Ι	

	项目		非基	变量	基变量
\mathbf{C}_{B}	基	b	\mathbf{X}_{B}	$ \mathbf{X}_N $	$ \mathbf{X}_S $
0	$\mid \mathbf{X}_S \mid$	b	В	N	I
c	$z_j - z_j$		\mathbf{C}_{B}	\mathbf{C}_N	0

■ 变量重排

		\mathbf{X}_{B}		X	$\cdot N$		\mathbf{X}_S	
	x_3	$ x_1$	$ x_5 $	x_4	$ x_2 $	x_3	$ x_4 $	x_5
15	1	0	0	0	5	1	0	0
4	0	1	0	1/6	2/6	0	1/6	0
5	0	0	1	-1/6	4/6	0	-1/6	1
b		Ι		$ \mathbf{B}^{-}$	$^{1}\mathbf{N}$		\mathbf{B}^{-1}	

项目	项目 基变量		5量
$oxed{\mathbf{C}_B \mid \mathbf{\&} \mid \mathbf{b}}$	\mathbf{X}_{B}	\mathbf{X}_N	$ \mathbf{X}_S $
$oxed{\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{B}^{-1}\mathbf{b}}$	$\mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$	$\mathbf{B}^{-1}\mathbf{N}$	$\mid \mathbf{B}^{-1}\mathbf{I} = \mathbf{B}^{-1}$
$c_j - z_j$	$\mathbf{C}_B - \mathbf{C}_B \mathbf{I} = 0$	$\mathbf{C}_N - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N}$	$0 - \mathbf{C}_B \mathbf{B}^{-1}$

■ 迭代前后对

项目		非基	变量	基变量
C _B 基	b	\mathbf{X}_{B}	\mathbf{X}_N	$oxed{\mathbf{X}_S}$
$0 \mid \mathbf{X}_S \mid$	b	В	N	I
$c_j - z_j$		\mathbf{C}_{B}	\mathbf{C}_N	0

项目	项目 基变量		非基变量		
\mathbf{C}_B 基 \mathbf{b}	\mathbf{X}_{B}	\mathbf{X}_N	\mathbf{X}_S		
$oxed{\mathbf{C}_B \mid \mathbf{X}_B \mid \mathbf{B}^{-1}\mathbf{b}}$	$\mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$	$\mathbf{B}^{-1}\mathbf{N}$	$\mathbf{B}^{-1}\mathbf{I} = \mathbf{B}^{-1}$		
$c_j - z_j$	$\mathbf{C}_B - \mathbf{C}_B \mathbf{I} = 0$	$\mathbf{C}_N - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N}$	$0 - \mathbf{C}_B \mathbf{B}^{-1}$		

- 对应初始单纯形表中的单位矩阵 I,迭代后的单纯形表中为 B⁻¹
- $lacksymbol{\bullet}$ 初始单纯形表中基变量 $\mathbf{X}_S = \mathbf{b}$,迭代后的表中 $\mathbf{X}_B = \mathbf{B}^{-1}\mathbf{b}$

项目	非基变量	基变量
$\mathbf{C}_B \mid \mathbf{E} \mid \mathbf{b}$	$oxed{\mathbf{X}_B \mid \mathbf{X}_N \mid}$	\mathbf{X}_S
$0 \mid \mathbf{X}_S \mid \mathbf{b}$	B N	I
$c_j - z_j$	$\mid \mathbf{C}_B \mid \mathbf{C}_N \mid$	0
	\downarrow	

项目	项目 基变量		5量
$oxed{\mathbf{C}_B}$ 基 $oldsymbol{b}$ $oxed{b}$	\mathbf{X}_{B}	\mathbf{X}_N	\mathbf{X}_S
$oldsymbol{\mathrm{C}}_B \mid \mathbf{X}_B \mid \mathbf{B}^{-1}\mathbf{b} \mid$	$\mathbf{B}^{-1}\mathbf{B} = \mathbf{I}$	$\mathbf{B}^{-1}\mathbf{N}$	$\mathbf{B}^{-1}\mathbf{I} = \mathbf{B}^{-1}$
$c_j - z_j$	$\mathbf{C}_B - \mathbf{C}_B \mathbf{I} = 0$	$\mathbf{C}_N - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N}$	$0 - \mathbf{C}_B \mathbf{B}^{-1}$

- 初始单纯形表中约束系数矩阵 [A, I] = [B, N, I], 迭代后的表中约束系数矩阵为 $[B^{-1}A, B^{-1}I] = [I, B^{-1}N, B^{-1}]$
- $lacksymbol{\bullet}$ 若初始矩阵中变量 x_j 的系数向量为 \mathbf{P}_j ,迭代后的为 \mathbf{P}_i' ,则 $\mathbf{P}_j' = \mathbf{B}^{-1}\mathbf{P}_j$

$egin{array}{c c c c c c c c c c c c c c c c c c c $	量
$0 \mid \mathbf{X}_{\mathbf{S}} \mid \mathbf{b} \mid \mathbf{B} \mid \mathbf{N} \mid \mathbf{I}$	S
0 5 0 - - -	
$c_j - z_j \mid \mathbf{C}_B \mid \mathbf{C}_N \mid 0$	

■ 迭代后达到最优, 即检验数满足

$$\mathbf{C}_N - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{N} \le 0, \ -\mathbf{C}_B \mathbf{B}^{-1} \le 0$$

由于 $C_B - C_B I = 0$, 得到

$$\mathbf{C} - \mathbf{C}_B \mathbf{B}^{-1} \mathbf{A} \le 0, \ -\mathbf{C}_B \mathbf{B}^{-1} \le 0$$

这里 C_BB^{-1} 称为单纯形乘子。若令 $Y^{\top} = C_BB^{-1}$,则上式可以改写为

$$\mathbf{A}^{\mathsf{T}}\mathbf{Y} \ge \mathbf{C}^{\mathsf{T}}, \ \mathbf{Y} \ge 0$$

lacksquare 上式表明 $\mathbf{C}_B\mathbf{B}^{-1}$ 的转置为其对偶问题的一个可行解,即

$$w = \mathbf{Y}^{\mathsf{T}} \mathbf{b} = \mathbf{C}_B \mathbf{B}^{-1} \mathbf{b} = z$$

当原问题为最优解时,对偶问题为可行解,且两者具有相同的目标函数值

弱对偶性

■ 如果 \overline{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \overline{y}_i $(i=1,\ldots,m)$ 是其对偶问题的可行解,则恒有

$$\sum_{j=1}^{n} c_j \overline{x}_j \le \sum_{i=1}^{m} b_i \overline{y}_i$$

证明 根据定义易知

$$\sum_{j=1}^{n} c_j \overline{x}_j \le \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} \overline{y}_i \right) \overline{x}_j = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \overline{x}_j \overline{y}_i$$

$$\sum_{i=1}^{m} b_i \overline{y}_i \ge \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \overline{x}_j \right) \overline{y}_i = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \overline{y}_i \overline{x}_j$$

推论

■ 如果 \overline{x}_j $(j=1,\ldots,n)$ 是原问题的可行解, \overline{y}_i $(i=1,\ldots,m)$ 是其对偶问题的可行解,则恒有

$$\sum_{j=1}^{n} c_j \overline{x}_j \le \sum_{i=1}^{m} b_i \overline{y}_i$$

- 推论 1 原问题任一可行解的目标函数值是其对偶问题目标函数值的下界, 反之,对偶问题任一可行解的目标函数值是其原问题目标函数值的上界
- 推论 2 若原问题有可行解且目标函数值无界,则其对偶问题无可行解,反之,对偶问题有无界解,则原问题无可行解
- 推论 3 若原问题有可行解,对偶问题无可行解,则原问题目标函数值无界, 反之,对偶问题有可行解,原问题无可行解,则对偶问题的目标函数值无界

最优性

■ 如果 \hat{x}_j (j = 1, ..., n) 是原问题的可行解, \hat{y}_i (i = 1, ..., m) 是其对偶问题的可行解,且有 $\sum\limits_{j=1}^n c_j \hat{x}_j = \sum\limits_{i=1}^m b_i \hat{y}_i$ 则 \hat{x}_j (j = 1, ..., n) 是原问题的最优解, \hat{y}_i (i = 1, ..., m) 是其对偶问题的最优解

证明 设 x_j^* $(j=1,\ldots,n)$ 是原问题的最优解, y_i^* $(i=1,\ldots,m)$ 是其对偶问题的最优解, 有

$$\sum_{j=1}^{n} c_j \hat{x}_j \le \sum_{j=1}^{n} c_j x_j^*, \sum_{i=1}^{m} b_i y_i^* \le \sum_{i=1}^{m} b_i \hat{y}_i$$

$$\sum_{j=1}^{n} c_j \hat{x}_j = \sum_{i=1}^{m} b_i \hat{y}_i, \sum_{j=1}^{n} c_j x_j^* \le \sum_{i=1}^{m} b_i y_i^*$$

$$\sum_{j=1}^{n} c_j \hat{x}_j = \sum_{j=1}^{n} c_j x_j^* = \sum_{i=1}^{m} b_i y_i^* = \sum_{i=1}^{m} b_i \hat{y}_i$$

强对偶性

■ 若原问题及其对偶问题均具有可行解,则两者均具有最优解,且它们最优解的目标函数值相等

证明 由于两者均有可行解,根据弱对偶性的推论 1,对原问题的目标函数值具有上界,对偶问题的目标函数值具有下界,因此两者均具有最优解

当原问题为最优解时, 其对偶问题的解为可行解, 且有 z=w, 由最优性知, 这时两者的解均为最优解

互补松驰性

■ 在线性规划问题的最优解中,如果对应某一约束条件的对偶变量值为零,则 改约束条件取严格等式;反之,如果约束条件取严格不等式,则其对应的对 偶变量一定为零。也即

$$m{\square}$$
 若 $\hat{y}_i > 0$,则有 $\sum_{j=1}^n a_{ij} \hat{x}_j = b_i$,即 $\hat{x}_{si} = 0$

$$\Box$$
 若 $\sum_{j=1}^{n} a_{ij} \hat{x}_{j} < b_{i}$,即 $\hat{x}_{si} = 0$,则有 $\hat{y}_{i} = 0$

因此一定有 $\hat{x}_{si} \cdot \hat{y}_i = 0$

证明 由弱对偶性知

$$\sum_{j=1}^{n} c_j \hat{x}_j \le \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} \hat{x}_j \hat{y}_i \le \sum_{i=1}^{m} \sum_{j=1}^{n} b_i \hat{y}_i$$

又根据最优性 $\sum\limits_{j=1}^n c_j \hat{x}_j = \sum\limits_{i=1}^m b_i \hat{y}_i$,故上式中全为等式

互补松驰性

由右端等式得

$$\sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} \hat{x}_j - b_i \right) \hat{y}_i = 0$$

由于 $\hat{y}_i \geq 0$, $\sum_{i=1}^n a_{ij} \hat{x}_j - b_i \leq 0$, 故对所有 $i = 1, \ldots, m$ 有

$$\left(\sum_{j=1}^{n} a_{ij}\hat{x}_j - b_i\right)\hat{y}_i = 0$$

- \Box 当 $\sum_{i=1}^{n} a_{ij}\hat{x}_{j} b_{i} < 0$ 时,必有 $\hat{y}_{i} = 0$

互补松驰性

- 将互补松弛性质应用于其对偶问题时, 可以描述为
 - $m{Q}$ 如果有 $\hat{x}_i > 0$,则有 $\sum\limits_{i=1}^m a_{ij} \hat{y}_i = c_j$
 - \square 如果有 $\sum\limits_{i=1}^{m}a_{ij}\hat{y}_{j}>c_{j}$,即 $\hat{x}_{j}=0$
- 上述针对对称形式证明得对偶问题得性质,同样适用于非对称形式
- 互补松弛性质是理解非线性规划中 KKT 条件得重要基础

■ 试用对偶理论证明上述线性规划问题无最优解

$$\max z = x_1 + x_2$$
s.t.
$$\begin{cases} -x_1 + x_2 + x_3 \le 2\\ -2x_1 + x_2 - x_3 \le 1\\ x_1, x_2, x_3 \ge 0 \end{cases}$$

■ 上述问题的对偶问题

min
$$w = 2y_1 + y_2$$

s.t.
$$\begin{cases}
-y_1 - 2y_2 \ge 1 \\
y_1 + y_2 \ge 1 \\
y_1 - y_2 \ge 0 \\
y_1, y_2 \ge 0
\end{cases}$$

- 由第1个约束条件知对偶问题无可行解,因而无最优解
- 由推论 3知原问题也无最优解

■ 已知线性规划问题

min
$$w = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$$

s.t.
$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4\\ 2x_1 - x_2 + 3x_3 + x_4 + x_5 \ge 3\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

已知其对偶问题的最优解为 $y_1^* = 4/5, y_2^* = 3/5, z = 5$, 试用对偶理论找出原问题的最优解

■ 原问题

min
$$w = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$$

s.t.
$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4\\ 2x_1 - x_2 + 3x_3 + x_4 + x_5 \ge 3\\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

■ 对偶问题

$$\max z = 4y_1 + 3y_2$$
s.t.
$$\begin{cases}
y_1 + 2y_2 \le 2 & (1) \\
y_1 - y_2 \le 3 & (2) \\
2y_1 + 3y_2 \le 5 & (3) \\
y_1 + y_2 \le 2 & (4) \\
3y_1 + y_2 \le 3 & (5) \\
y_1, y_2 \ge 0
\end{cases}$$

■ $\mathbf{k}y_1^* = 4/5, y_2^* = 3/5$ 的值代入约束条件得

$$(2) = 1/5 < 3, (3) = 17/5 < 5, (4) = 7/5 < 2$$

它们为严格不等式,由<u>互补松弛性</u>得 $x_2^* = x_3^* = x_4^* = 0$ 。

■ 由于 $y_1^*, y_2^* > 0$, 由互补松弛性可知原问题的两个约束条件应取等式,即

$$x_1^* + 3x_5^* = 4, \ 2x_1^* + x_5^* = 3$$

求解后得到 $x_1^* = 1$, $x_5^* = 1$.

■ 因此原问题的最优解为 $X^* = (1,0,0,0,1)^{\top}$, 最优值为 $w^* = 5$

课堂练习1

■ 已知线性规划问题

$$\max z = 2x_1 + 4x_2 + x_3 + x_4$$
s.t.
$$\begin{cases} x_1 + 3x_2 + x_4 \le 8\\ 2x_1 + x_2 \le 6\\ x_2 + x_3 + x_4 \le 6\\ x_1 + x_2 + x_3 \le 9\\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

- 🛮 写出其对偶问题
- □ 原问题的最优解为 (2,2,4,0), 试根据对偶理论直接求对偶问题的最优解

课堂练习1(答案)

■ 对偶问题

min
$$w = 8y_1 + 6y_2 + 6y_3 + 9y_4$$

s.t.
$$\begin{cases} y_1 + 2y_2 + y_4 \ge 2\\ 3x_1 + y_2 + y_3 + y_4 \ge 4\\ y_3 + y_4 \ge 1\\ y_1 + y_3 \ge 1\\ y_1, y_2, y_3, y_4 \ge 0 \end{cases}$$

■ 对偶问题最优解为 $y = (4/5, 3/5, 1, 0)^{\mathsf{T}}$, 最优值 $w^* = 16$

小结

- 单纯形计算的矩阵描述
- 对偶问题的基本性质
 - □ 弱对偶定理
 - □最优性定理
 - □ 对偶定理
 - □ 互补松弛性
- 课后作业: P75, 习题 2.5 和练习 1

Q&A

Thank you!

感谢您的聆听和反馈