Notes TC4

Adrien Pavao

September 2017

Contents

1 Inférence Bayesienne			Bayesienne	1
	1.1	Niveau	1 1 : Classification Bayesienne	1
	1.2	Niveau	1 2 : Inférence Bayesienne des paramètres	2
		1.2.1	A priori sur les paramètres	2
		1.2.2	A posteriori sur les paramètres	2
		1.2.3	Retour à la classification	3

Inférence Bayesienne 1

Différents niveaux d'inférence...

Niveau 1: Classification Bayesienne

- Y : La classe à prédire (catégorielle)
- \vec{X} : Vecteur aléatoire, $\vec{X} = (x1...x2)$ (vertical) (tous les X et x qui viennent son des vecteurs)

On cherche à choisir y de façon à maximiser :

On therefore a choisin y de tagon a maximiser :
$$P(Y=y|\vec{X}=\vec{x}) = \frac{P(\vec{X}=\vec{x}|Y=y)P(Y=y)}{P(\vec{X}=\vec{x})}$$
 Dans cette formule, on remarque des termes particuliers :

- La vraisemblance : $P(\vec{X} = \vec{x}|Y = y)$.
- L'a priori : P(Y = y).
- L'évidence : $P(\vec{X} = \vec{x})$.

La vraisemblance et l'a priori sont à estimer. On estime une ditribution sur X pour chaque classe y. On peut donc faire l'hypothèse naïve suivante : $P(\vec{X}=\vec{x}|Y=y)=\Pi_{i=1}^dP(\vec{X}_i=\vec{x}_i|Y=y)$

$$P(\vec{X} = \vec{x}|Y = y) = \prod_{i=1}^{d} P(\vec{X}_i = \vec{x}_i|Y = y)$$

Estimer les paramètres

Cas Bernouilli : $\Theta_{iy} = \frac{n(1,i,y)}{N(i,y)}$

 $n(1, i, y) = \text{nombre de fois où } X_i = 1 \text{ dans la classe y.}$

Si n(1, i, y) = 0 alors $\Theta_{iy} = 0$ Donc P(X = x | Y = y) = 0, ce qui est mauvais. On estime Θ sur les données et on vient à la conclusion qu'un evenement est impossible sous pretexte qu'on ne l'a jamais observé. Il faut éviter ce problème.

Ce type d'estimation est appelée une estimation MLE: Maximum Likelihood Estimate. Il s'agit de l'interprétation fréquentiste des données.

Autrement dit, on cherche les paramètres Θ_{iy} qui maximisent $P(D|\Theta_{iy})$. (D la réalisation des données ..)

1.2 Niveau 2 : Inférence Bayesienne des paramètres

On cherche $P(X_i|Y)$ -i. $P(X_i|Y_i\Theta_{iy})$. L'apprentissage revient à l'estimation d'une distribution sur les paramètres.

Estimer
$$P(\Theta_{iy}|D)$$
.

$$P(\Theta_{iy}|D) = \frac{P(D|\Theta_{iy})P(\Theta_{iy})}{P(D)}$$

A priori sur les paramètres

Cas Bernouilli : $\Theta_{iy} \in [0,1]$, continu. Donc $P(\Theta_{iy})$ - une loi continue de support [0,1]. Le choix : Loi Beta.

If Let choix: Lot beta.
$$P(\Theta_{iy}; \alpha_0, \alpha_1) = \frac{\Gamma(\alpha_0 + \alpha_1)}{\Gamma(\alpha_0)\Gamma(\alpha_1)} \Theta_{iy}^{\alpha_1 - 1} (1 - \Theta_{iy})^{\alpha_0 - 1}$$
(Dénominatour et gener : Normalisation)

(Dénominateur et game -; Normalisation)

 α_0 et α_1 sont les paramètres de la loi Beta. On a $\alpha_0, \alpha_1 > 0, \in R$ (R reel, D majuscule ...)

- Fonction de densité symétrique : $\alpha_0 = \alpha_1$ et $\alpha_0, \alpha_1 > 1$. Graphe 1
- A priori non-informatif :

 $\alpha_0 = \alpha_1 = 1.$

Graphe 2

• A priori parcimonieux (sparse) :

 $\alpha_0, \alpha_1 < 1$

Graphe 3

1.2.2 A posteriori sur les paramètres

 $P(\Theta_{iy}|D)$ gamealpha $P(D|\Theta_{iy})P(\Theta_{iy};\alpha_1,\alpha_0)$ (vraimsemblance et a priori). gamealpha -¿ proportionnel à $P(\Theta_{iy}|D)$ propor $\Theta_{iy}^{N_1+\alpha_1-1}(1-\Theta_{iy})^{N_0+\alpha_0-1}$

• N_0 : Nombre de x_i à 0 dans D.

• N_1 : Nombre de x_i à 1 dans D.

(defition importante) La loi a posteriori est comme la loi a priori, une loi Beta. La loi Beta est l'a priori **conjugué** de Bernouilli (conjugated prior).

1.2.3 Retour à la classification

1. Maximum a Posteriori des Paramètres (MAP)

 $\Theta_{iy} = argmax P(\Theta_{iy}|D)$ (chapeau sur le theta!) $\Theta_{iy} = \frac{N_1 + \alpha_1 - 1}{N_1 + N_0 + \alpha_1 + \alpha_0 - 2}$ α_1 et α_0 agissent comme des "pseudo-comptes". Lissage (smoothing) de distibution. $\Theta_{iy}! = 0$ Si $N_1, N_0 >> \alpha_1, \alpha_0$ alors l'a priori est négligeable.

-¿ Régularisation, eviter le sur-apprentissage.

2. Loi prédictive (inférence Bayesienne 3)

 $P(X_i = x_i | Y = y; \Theta_{iy})$ avec Θ_{iy} estimés à partir des données (MAP).

Le paramètre n'existe pas et ne doit donc pas apparaitre dans la prédiction. La vraie prédiction :

 $P(X_i = x_i|D) = integrale 01 P(X_i = x_i; \Theta_{iy}|D) d\Theta_{iy}$, en marginalisant les paramètres.

 $P(X_i;\Theta_{iy}|D) = P(X_i|\Theta_{iy};D)P(\Theta_{iy}|D) \text{ (vraisemblance et a priori)}.$

 $P(X_i = x_i | D) = \frac{N_1 + \alpha_1}{N_1 + N_0 + \alpha_1 + \alpha_0}$, $Pourtout\alpha_1$ et $\alpha_0 > 0$.