ベクトルのトレーニング

1 [改訂版青チャート数学B 早稲田大]

 \triangle OABにおいて, $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ とする。辺 OA を 3:2 に内分する点を C,辺 OB を 3:4 に内分する点を D,線分 AD と BC との交点を P とし,直線 OP と辺 AB との 交点を Q とする。次のベクトルを \overrightarrow{a} , \overrightarrow{b} を用いて表せ。

$$(1)$$
 \overrightarrow{OP}

$$(2)$$
 \overrightarrow{OQ}

[2][2015 近畿大]

平面上に4点O, A, B, C があり、点C は線分OB 上にある。 $|\overrightarrow{OA}|=1$, $|\overrightarrow{OB}|=2$ であり、内積 $\overrightarrow{OA} \cdot \overrightarrow{OB}$ の値は1 である。また、 $\angle ACB=135^\circ$ である。

(1)
$$\angle AOB = \overrightarrow{CA} =$$

$$|\overrightarrow{CB}| = \frac{1}{D} - \sqrt{D}$$
 である。

(2) 点 P は $\overrightarrow{OP} = l\overrightarrow{OA} + m\overrightarrow{OB} + n\overrightarrow{OC}$ ($l \ge 0$, $m \ge 0$, $n \ge 0$, l + m + n = 2) を満たしながら動く。このとき,点 P の存在範囲 D の面積は $\frac{}{}$

ある。

(3) (2) で与えられた D 上の点で、点 Q からの距離が最小になるような点を Q とする。

$$\angle O \angle \hat{S}, \ \overrightarrow{OQ} = \frac{ + \sqrt{\hat{V}} - \sqrt{\hat{V}} - \sqrt{\hat{V}} - \sqrt{\hat{V}} - \sqrt{\hat{OB}} }{ \overrightarrow{OA} + \sqrt{\hat{V}} - \sqrt{\hat{OB}} } \ \vec{OB} \ \vec{OB}$$

3 [2011 早稲田大]

3点 A(1, 0, 0), $B\left(0, \frac{1}{2}, 0\right)$, $C\left(0, 0, \frac{1}{3}\right)$ の定める平面を α とする。点 O を原点と し,点 P を $\overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$ を満たすようにとり,点 P から平面 α に垂線 PQ を下ろす。このとき, \overrightarrow{PQ} を \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} を用いて表せ。

4 [2008 慶応義塾大]

空間において、原点 O を中心とする半径 5 の球面上に、 $|\overrightarrow{PQ}| = |\overrightarrow{PR}| = 4$ かつ $|\overrightarrow{QR}| = 3$ を満たすように 3 点 P, Q, R をとる。また、線分 QR の中点を M とする。

- (1) \overrightarrow{OP} と \overrightarrow{OM} の内積は $^{\tau}$ である。
- (2) \overrightarrow{OM} の大きさは 1 である。
- (3) \overrightarrow{MP} と \overrightarrow{OM} の内積は $^{\flat}$ である。
- (4) 点 P と点 M を通る直線を ℓ とし、原点 O から ℓ に下ろした垂線の足を H とする。

このとき, \overrightarrow{OH} を \overrightarrow{OP} と \overrightarrow{OM} で表すと, $\overrightarrow{OH} = \frac{\overrightarrow{OP} + \overrightarrow{DM}}{\overrightarrow{DM}}$ である。