Triads e Pepe

What this talk is About

- Use KDB+/Q for generating jazz music (lines)
- based on George Garzone's concepts
- Inputs are a few musical parameters
 - Starting note
 - Triad Quality
 - Step
 - How many triads in the output
- outputs midi files

Who I Am

Steve Wirts

- Software developer 25 years in NYC area
- KDB/Q+, Java, Javascript, Smalltalk
- Currently at Virtu

George Garzone

- elite world renown jazz musician (saxophone)
- currently faculty at Berkelee
- historically significant jazz innovator

George Garzone

Triads e Pepe?

only 3 ingredients

Cacio e Pepe

deceptively difficult to get just right

The "Sound"

*play both examples now

Towards an Algorithm

- George developed this approach
 - Over time starting in 1990s
 - Listening to Coltrane
 - Spark happened at an ear training class at NEC

- Triadic Chromatic Approach
 - Connect random triads of same quality
 - Starting note offset by ½ step from previous note
 - Avoid patterns
 - don't repeat inversions

- -octave is a scientific term
- same note just "higher" sounding
 - each octave is 2 * frequency of the next below
 - C3 130.81Hz
 - C2 65.41Hz
 - C1 32.70Hz
 - C0 16.35Hz

- Musical Instrument Digital Interface (midi)
 - semitone (half step) is the atomic unit
 - an octave has 12 semitones, music is base 12
 - notes are integers between the audible lowest and highest notes

- Musical Instrument Digital Interface (midi)
 - C is the name of the lowest note

```
1 octave ((#)sharp (b)flat – ebony keys)
```

```
    0 1
    2 3
    4 5 6
    7 8
    9 10
    11 12
```

• C (C# Db) D (D# Eb) E F (F# Gb) G (G# Ab) A (A# Bb) B C

- A Quick note about range
 - bosendofer imperial piano has 8.5 octaves 0 102
 - midi accommodates 0 128
 - western music, a practical range is 60 84 (0-24)
 - 2 octaves easy to read in sheet music, easy to play on saxophone

- an interval is a number of semitones (a distance) between 2 notes
- a triad is a cluster of 3 notes root, middle, top (2 stacked intervals)
- 4 basic triad "Qualities"

Music Theory Triads

quality	music notes	midi note values	interval sizes
C Major	C E G	0 4 7	4 3
C Minor	C Eb G	0 3 7	3 4
C Diminished	C Eb Gb	0 3 6	3 3
C Augmented	C E Ab	0 4 8	4 4

Music Theory — the Inversion

- an inversion is when the notes of a triad are rearranged with respect to which one is on bottom
- a triad has 3 notes so it has 3 possible inversions
- three stacked inversions with the root as the middle note is called an INVERSION LADDER
 - there are 5 notes in an inversion ladder
- Critical to the epiphany

```
4 top G
3 middle E E
2 root C C C - 1st inversion root middle top
1 top G G - 3nd inversion (top down an octave) root middle
0 middle E - 2nd inversion (middle down an octave) (top down an octave) root
```

```
50
```

```
3rd inversion 0 1 2
2nd inversion 1 2 3
1st inversion 2 3 4
```

Computer Theory for Music People

computer people count things starting from 0

Try and Fail over the Years

England prolog version – late 1990's

Java version early 2000's

Finally got the algorithm right do it in KDB+/Q

 Q God Steve Apter: "get to the tiniest version of the algorithm that you can – you have to think really hard for awhile"


```
Messages
Left to do: 1
Left to do: 0
SEQUENCE IS: [triad(root(60),third(64),fifth(55)),triad(third(56),fifth(47),root(52)),triad(root(53),fifth(48),third(57))
```

The Epiphany

- YOU CAN REPEAT INVERSIONS!
- there are 2 keys to avoiding hearing repetition, inversion and order of the notes played within
 - anything is trivial once it becomes obvious

The Algorithm

The Algorithm

- construct music "lines" by connecting random triads of the same quality
- random means to select at random an inversion and a note sequence
- * you can repeat an inversion but note ordering within the inversion must be different from the previous triad
- consecutive triads start on a note that is up or down 1 semitone from last note of the previous triad
- if the last note of a triad is G, the next triad must start on a Gb(F#) or a Ab(G#)
- these notes (Gb or Ab) can be the root middle or top of the next triad

The Algorithm

- there are 18 possible note sequences for 1 triad of any quality, these are called
- INVERSION LADDER SEQUENCE INDEXES

2nd	inversion		
	0	1	2
	0	2	1
	1	0	2
	1	2	0
	2	0	1
	2	1	0

3rd	inversion			
	1	2	3	
	1	3	2	
	2	1	3	
	2	3	1	
	3	1	2	
	3	2	1	

1st	ir	1V6	ersion
	2	3	4
	2	4	3
	3	2	4
	3	4	2
	4	2	3
	4	3	2

The Algorithm - example

- TCA algorithm inputs (reasonable defaults in parens)
 - 1) starting note (72) middle c
 - 2) a triad (4 3)
 - major "happy" sounding triad expressed as 2 stacked interval sizes
 - 3) count of repeating triads per output line (8)
 - 4) the (step) size (1 semitone) between successive triads
 - up or down at random
 - 5) high low bounds (60 84)
 - any line that goes above or below this range is disqualified

The Algorithm – example (1)

```
select a triad quality, lets say major 4 3
 compute the inversion ladder
    ladder:{(0;x 1;12-x 0;12;12+x 1)}
    tq:4 3
    il:ladder tq
        4 top 12 + tq[1]
                                    = 15
       3 middle 12
                                    = 12
       2 root 12 - tq[0]
        1 top tq[1]
                                    = 3
        0 middle
                                       Ø
```

The Algorithm – example (2)

2) compute the inversion ladder sequence indexes ilsi:raze(0 1 2;1 2 3;2 3 4)@\:(0 1 2;0 2 1;1 0 2;1 2 0;2 1 0;2 0 1)

```
0 1 2
0 2 1
1 0 2
120
2 1 0
2 0 1
123
1 3 2
2 1 3
2 3 1
3 2 1
3 1 2
2 3 4
2 4 3
3 2 4
3 4 2
4 3 2
4 2 3
```

The Algorithm – example (3)

3) apply the 18 inversion ladder sequence indexes to our inversion ladder il (0 3 8 12 15) il @ ilsi

```
0 3 8
0 8 3
3 0 8
3 8 0
8 0 3
8 3 0
3 8 12
3 12 8
```

The Algorithm – example (4)

4) compute the INVERSION LADDER INTERVALS from this ili:{1_ deltas x} each il@ilsi

```
3 5
8 -5
-3 8
5 -8
-5 -3
-8 3
```

9 -4 -5 9 4 -9 -4 -5 -9 5

7 -3 -4 7 3 -7 -3 -4 -7 4

The Algorithm – example (5)

5) a random triad is now (-1 or 1) and one of the inversion ladder interval from (4)

The Algorithm – example (6)

6) repeat (4), 8 times without repeating the same inversion ladder interval flip (enlist 8?1 -1), flip -8 ? ili

The Algorithm – example (7)

```
7) raze and scan the sums, replace the first value with starting note value sums 72, 1 _ raze flip (enlist 8?1 -1),flip -8 ? ili
```

72 67 76 77 74 70 71 75 78 79 70 75 74 67 71 72 77 69 68 71 64 65 74 70

The Algorithm - solution

```
triads:(!). flip (
  (`major;4 3);
  (`minor;3 4);
  (`diminished;3 3);
  (`augmented;4 4)
  );
generateline:{sums 72,1 _ raze flip (enlist 8?1 -1),flip -8 ? {1_ deltas x} each ladder[triads x]@ilsi}
```

The Algorithm – wrap up

- 8) save to disk as a midi file `:line.midi 1: midi generateline`major
- 9) reject for range and ending note, repeat a zillion times

The Algorithm – wrap up

- Q is a general purpose language
- Try doing small/odd things with it in your free time
 - Its fun!!
- You can do more things with it than you think

- Links
 - https://github.com/stevewirts/kdb-midi-generation
 - https://github.com/stevewirts/kdb-tca-talk

Fun Time!!!

Lets try some generated lines with George now!