

算法 Algorithms

第三章

+ Outline

- 算法 (Algorithm)
 - 1. 搜索問題
 - 2. 排序問題
 - 3. 優化問題
- 算法複雜度 (Algorithm Complexity)

+ 算法 Algorithm (3.1)

■ 算法(Algorithm):接收有效輸入值(Input)並產生所需輸出值(Output)的包含指定步驟的一系列流程。

+ 範例

- 描述一個能在有限序列的整數中搜索最大值的算法:
 - 1. 把第一個數(lst #)視為暫時的最大值(Max)
 - 2. 把 Max 跟第二個數(2nd #)比較大小, 若 2nd # 比 Max 大, 則 Max := 2nd #
 - 3. 重覆直至比較所有值, max中的值為所求最大值。
- 偽代碼 (Pseudocode):

```
procedure max(a_1, a_2, ...., a_n: integers)

max := a_1

for i := 2 to n

if max < a_i then max := a_i

return max\{max \text{ is the largest element}\}
```

E.g. 11, 23, 4, 67, 9

+ 偽代碼 (Pseudocode)

- 定義:
 - Procedure algorithm name (list and properties of variables)
- 注釋: {comment}
- 赋值: variable := expression
- 條件結構:
 - **if** condition **then** statement or block of statements
 - if condition then statement 1
 else statement 2
 - if condition 1 then statement 1
 else if condition 2 then statement 2
 else if condition 3 then statement 3 ...

+ 偽代碼 (Pseudocode)

- 循環結構:
 - for variable := initial value to final value statement or block of statements
 - for elements with a certain property statement or block of statements
 - while condition
 statement or block of statements

■ 返回語句: return output of algorithm

更多偽代碼請參考附錄C (Appendix 3)

*利用算法解決問題的例子

- 比如以下三類:
 - 一. 搜索算法: 搜索特定元素在列表中的位置
 - 二. 排序算法: 把元素由小到大作排序
 - 三. 優化算法:確定所有輸入的可能值中的最優值(最大值或最小值)。

+一、搜索算法 Searching Algorithms

- 一般的搜索問題是在一含不同元素 $a_1,a_2,...,a_n$ 的列表中 定位元素 x,或者確認它不在列表中。
 - ■如:圖書館在允許某人借閱另一本書之前可能想要先檢查Ta 是否在書籍過期的名單中。

⁺一、線性搜索 Linear Search

搜索特定元素 x 在列表中的位置的算法:

如:
$$(x = 7)$$
 4, 7, 3, 6, 1, 0, 9

- 預設位置為1, 比較 x 和 a_1 , 若不相等, 位置+1;
- 繼續比較x和 a_2 ,若不相等,位置+1;
- 重覆直至比較所有值直到找到相等的值,若最後沒有相等的即傳回-1。

```
procedure linear search (x:integer, a_1, a_2, ..., a_n: distinct integers)
i := 1
while (i \le n \text{ and } x \ne a_i)
    i := i + 1
if i \le n then location := i {location is the subscript i of the term a_i equal to x}
else location := -1 {location is set to -1 if x is not found}
return location
```

+一、二分搜索 Binary Search

■ 在一個<u>由小到大排列</u>的列表中以比較中間位置數值來搜索 x 的算法:

如:
$$(x = 7)$$
 0, 1, 3, 4, 6, 7, 9

- 1. 將要找的元素 x 與中間元素進行比較。如果中間元素較小,則搜索會跳到列 表的上半部分繼續; 否則搜索從列表的下半部分繼續(包括中間位置)。
- 2. 重複此過程,直到我們有一個大小為1的列表。如果我們要查找的元素與列表中的元素相等,則傳回對應位置。否則,傳回-1以表示未找到該元素。

```
procedure binary search(x: integer, a_1, a_2, ..., a_n: increasing integers)
i := 1 \ \{i \text{ is the left endpoint of interval}\}
j := n \ \{j \text{ is right endpoint of interval}\}
while i < j
m := \lfloor (i+j)/2 \rfloor
if x > a_m then i := m+1
else j := m

if x = a_i then location := i \ \{location \text{ is the subscript } i \text{ of the term } a_i \text{ equal to } x \}
else location := -1 \ \{location \text{ is set to } -1 \text{ if } x \text{ is not found}\}
return location
```

* Linear Search vs. Binary Search

Example: 4, 7, 3, 6, 1, 0, 9

Python Outputs:

```
In [41]: #Perform Linear Search
        x = 7
         array1 = [4,7,3,6,1,0,9]
         linear_search(x, array1)
Out [41]: 1
                                  In [42]: #Perform Binary Search
                                            x = 7
                                            array2 = [0,1,3,4,6,7,9]
                                            binary_search(x, array2)
```

Out[42]: 5

+二、排序算法 Sorting Algorithms

- ■用以對一列表進行排序
 - ■如:電話、價格、用戶名等排序

+二、冒泡排序 Bubble Sort

■通過比較相鄰元素並交換順序不對的元素作排序。

```
procedure bubblesort(a_1,...,a_n): real numbers with n \ge 2)

for i := 1 to n-1

for j := 1 to n-i

if a_j > a_{j+1} then interchange a_j and a_{j+1} \{a_1,...,a_n \text{ is now in increasing order}\}
```


⁺二、插入排序 Insertion Sort

■ 通過不斷比較前方的元素大小並插入至正確順序位置 排序。

```
procedure insertion sort (a_1,...,a_n): real numbers
   with n \ge 2)
   for j := 2 to n
      i := 1
      while a_i > a_i
          i := i + 1
       m := a_i \{ \text{Hold } a_i \text{ temporarily} \}
       for k := 0 to j - i - 1
           a_{i-k} := a_{i-k-1} {move location one by one}
        a_i := m
{Now a_1,...,a_n is in increasing order}
```

* Bubble Sort vs. Insertion Sort

Example: 42, 19, 32, 11, 8

Python Outputs:

```
In [30]: #Perform Bubble Sort
array3 = [42,19,32,11,8]
bubblesort(array3)

Sorted Array: [8, 11, 19, 32, 42]
```

```
In [2]: #Perform Insertion Sort
array4 = [42, 19, 32, 11, 8]
insertionsort(array4)

Sorted Array: [8, 11, 19, 32, 42]
```

+三、貪婪算法 Greedy Algorithms

- 根據定義何謂"最優", 算法會在每一步都選擇"最優" 方案。
 - ■如:在一段路線上選擇最短路程。

+三、找零錢的貪婪算法 Greedy Change-Making Algorithm

■ 利用最少硬幣數找零:

```
procedure change(c_1, c_2, ..., c_r): values of coins, where c_1 > c_2 > ... > c_r; n: a positive integer)

for i := 1 to r
d_i := 0 \ [d_i \ \text{ counts the coins of denomination } c_i]
while n \ge c_i
d_i := d_i + 1 \ [\text{add a coin of denomination } c_i]
n = n - c_i
[d_i \ \text{ counts the coins } c_i]
```

⁺ Greedy Algorithms

- 以美元的硬幣為例: $c_1 = 25$, $c_2 = 10$, $c_3 = 5$, and $c_4 = 1$
- n = 97

```
In [27]: #Perform Change-Making Algorithm
    coin_values = [25,10,5,1]
    n=97
    change_making(coin_values,n)
Out[27]: [3, 2, 0, 2]
```

+函數的增長 Growth of Functions (3.2)

- 在計算機科學和數學領域,很多時候我們會在意函數的增長速度。
- ■計算機科學中,我們想知道當輸入的Input增加,一個算法運算速度的變化,以此來:
 - ■比較兩個解決同樣問題的算法的效率
 - ■確定一個算法在輸入值變多時是否實際上可用

+ 大O記號 Big-O Notation

■稱f(x)是O(g(x))若存在常數C和k令每當x>k都有

$$|f(x)| \le |C(g(x))|$$

■ 讀作 "f(x) is big-O of g(x)"

+ 大O記號 Big-O Notation

The part of the graph of f(x) that satisfies f(x) < Cg(x) is shown in color.

+例1

- A. 證明函數 $f(x) = 4x^2 8x + 1$ 是 $O(x^2)$ 的;
- B. 判斷函數 $\log(n+1)$ 和 $\log(n^2+1)$ 是否是 $O(\log n)$ 的。
- Step 1 To prove that $f(x)=4x^2-8x+1$ is $O(x^2)$, we need to show that there exists a constant C such that $|f(x)|\leq Cx^2$ for all x sufficiently large
- ullet Simplify f(x) to get $f(x)=4x^2-8x+1$
- Notice that -8x and +1 are of lower order than x^2 , so as x grows, $4x^2$ will dominate the expression
- Choose C=5 (for example), then for all x>1, we have $|4x^2-8x+1|\le 4x^2+8x+1\le 4x^2+8x^2+x^2=13x^2\le 5x^2$
- $oxed{\mathsf{step 5}}$ Therefore, f(x) is $O(x^2)$

- To determine if $\log(n+1)$ is $O(\log n)$, we need to show that there exists a constant C such that $\log(n+1) \le C\log n$ for all n sufficiently large
- Using properties of logarithms, we can write $\log(n+1) = \log n + \log(1+1/n)$
- Since $\log(1+1/n)$ approaches 0 as n approaches infinity, we can find a constant C such that $\log(n+1) \leq \log n + C$ for all n sufficiently large
- step 4 Therefore, $\log(n+1)$ is $O(\log n)$
- Step 1 To determine if $\log(n^2+1)$ is $O(\log n)$, we need to show that there exists a constant C such that $\log(n^2+1) \le C \log n$ for all n sufficiently large
- Using properties of logarithms, we can write $\log(n^2+1) = \log n^2 + \log(1+1/n^2)$
- Since $\log n^2=2\log n$ and $\log(1+1/n^2)$ approaches 0 as n approaches infinity, we can find a constant C such that $\log(n^2+1)\leq 2\log n+C$ for all n sufficiently large
- $oxed{\mathsf{step 4}}$ Therefore, $\log(n^2+1)$ is $O(\log n)$

+ 大O記號 Big-O Notation

我們想要找出函數的<u>最佳</u>大O估算,即其可取的階最小的簡單函數。

- $\diamondsuit A(f,g,n)$: "f(n) is O(g(n))." 則 $\forall n \in N$:
 - $A(f_1, g_1, n) \land A(f_2, g_2, n) \rightarrow A(f_1 f_2, g_1 g_2, n)$
 - $\blacksquare A(f_1, g_1, n) \land A(f_2, g_2, n) \rightarrow A(f_1 + f_2, \max(g_1, g_2), n)$

E.g.
$$f_1(n) = 3n^2 + 2$$
, $f_2(n) = 99n^3 + 4n + 1$
 $\therefore (f_1 f_2)(n)$ is $O(n^5)$;
 $(f_1 + f_2)(n)$ is $O(n^3)$.

+ 例2

■ 求下列函數的最佳大O估算: (請用階最小的簡單函數)

- A. $(n^2 + 8)(n + 1)$
- B. $(n \log n + n^2)(n^3 + 2)$
- c. $(n! + 2^n)(n^3 + \log(n^2 + 1))$
- To find the Big O estimate for $A=\left(n^2+8
 ight)(n+1)$, we look for the highest degree term after expanding the product
- Expanding A, we get $A=n^3+n^2+8n+8$. The term with the highest degree is n^3
- $\overline{
 m step \, 3}$ Therefore, the Big O estimate for A is $O(n^3)$

- Step 1 To find the Big O estimate for $B=\left(n\log n+n^2\right)\left(n^3+2\right)$, we multiply the highest degree terms from each factor
- ${f step \, 2}$ The highest degree term in the first factor is n^2 and in the second factor is n^3
- $oxed{ ext{step 3}}$ Multiplying these gives $n^2 \cdot n^3 = n^5$
- ullet Step 4 Therefore, the Big O estimate for B is $O(n^5)$
- Step 1 To find the Big O estimate for $C=(n!+2^n)\left(n^3+\log\left(n^2+1\right)\right)$, we identify the term with the highest growth rate
- $oxed{ t step 2}$ The term n! grows faster than 2^n , and n^3 grows faster than $\log \left(n^2 + 1
 ight)$
- $oxed{ ext{step 3}}$ Therefore, the product of the highest growth rate terms is $n! \cdot n^3$
- Since n! grows faster than any polynomial, the Big O estimate for C is dominated by n!
- step 5 Therefore, the Big O estimate for C is O(n!)

*常見的函數大O估算及其排序

$1 < \log n < n < n \log n < n^2 < 2^n < n!$

■當 n 越大, 各類函數的增長變化:

+ 算法的複雜度 Complexity of Algorithm (3.3)

- 運行一個算法需時多久?
 - ■通過計算運算步驟的量

- 算法分析步驟:
- 1. 準確描述算法步驟
- 2. 定義大小為 n 的一次運算
- 3. 計算以n作大小的算法之運算量f(n)

+ 時間複雜度 Time Complexity

3.3 表1:

複雜度	術語
0(1)	Constant complexity 常量複雜度
$O(\log n)$	Logarithmic complexity 對數複雜度
O(n)	Linear complexity 線性複雜度
$O(n \log n)$	Linearithmic complexity 線性對數複雜度
$O(n^b)$	Polynomial complexity 多項式複雜度
$O(b^n), b > 1$	Exponential complexity 指數複雜度
O(n!)	Factorial complexity 階乘複雜度

+ 算法的複雜度 Complexity of Algorithm

■假設每次運算需時10-11秒,運行一個算法需時多久?

TABLE 2 The Computer Time Used by Algorithms.								
Problem Size	Bit Operations Used							
n	$\log n$	n	$n \log n$	n^2	2^n	n!		
10	$3 \times 10^{-11} \text{ s}$	10^{-10} s	$3 \times 10^{-10} \text{ s}$	10^{-9} s	10^{-8} s	$3 \times 10^{-7} \text{ s}$		
10^{2}	$7 \times 10^{-11} \text{ s}$	10^{-9} s	$7 \times 10^{-9} \text{ s}$	10^{-7} s	$4 \times 10^{11} \text{ yr}$	*		
10^{3}	$1.0 \times 10^{-10} \text{ s}$	10^{-8} s	$1 \times 10^{-7} \text{ s}$	10^{-5} s	*	*		
10^{4}	$1.3 \times 10^{-10} \text{ s}$	10^{-7} s	$1 \times 10^{-6} \text{ s}$	10^{-3} s	*	*		
10 ⁵	$1.7 \times 10^{-10} \text{ s}$	10^{-6} s	$2 \times 10^{-5} \text{ s}$	0.1 s	*	*		
10 ⁶	$2 \times 10^{-10} \text{ s}$	10^{-5} s	$2 \times 10^{-4} \text{ s}$	0.17 min	*	*		

^{*}代表需時多於 10100 年

+ 例3

■ 求以下算法的複雜度(Complexity):

```
procedure bubblesort(a_1,...,a_n): real numbers with n \ge 2)

for i := 1 to n-1

for j := 1 to n-i

if a_j > a_{j+1} then interchange a_j and a_{j+1} \{a_1,...,a_n \text{ is now in increasing order}\}
```

+ 教材對應閱讀章節及練習

- ■3.1,3.2(只看 Big-O),3.3
- ■對應習題:(可視個人情況定量)
 - ■3.1: All (試試看能否寫出大致流程,並根據答案了解步驟)
 - **3.2**: 1-8, 19, 21-22, 26-27.
 - **3.3**: 1-14, 20-21

