第二讲 例题及习题

目录

第二讲	例题及习题	1
-,	例题	1
	例 1	1
	例 2	2
	例 3	2
	例 4	2
	例 5	2
	例 6	2
	例 7	2
	例 8	3
	例 9	3
	例 10	3
	例 11	3
	例 12	3
	例 13	4
	例 14	4
	例 15	4
	例 16	4
	达布定理	4
	例 17	4
	例 18	5
	例 19	5
	练习	5
	习题 1	5
	习题 2	5
	习题 3	5

一、例题

例 1

已知f(x)可导,则函数 $F(x) = f(x)(1+|\sin x|)$ 在x = 0可导的充要条件是:_____.

已知f(x)在x = 0连续,且 $\lim_{x\to 0} \frac{xf(x) + \ln(x+1)}{x^2} = 2$,求f'(0).

例 3

若f(x)在x = 0处连续,且 $\lim_{x \to 0} \frac{f(2x) - f(x)}{x} = a$,证明f(x)在x = 0处可导,并求f'(0).

例 4

读
$$L(x) = \frac{d^n}{dx^n} (1 - x^m)^n$$
,求 $L(1)$.

例 5

例 6

求 $(e^x \sin x)^{(n)}$.

例 7

已知f(x)在[a,b]上连续,在(a,b)内可导且f(a)=f(b),求证: $\exists \xi \in (a,b)$, $f'(\xi) = \frac{f(\xi)-f(a)}{b-a}.$

f(x)在[0,1]上二阶可导且 $f(0) = f'(0), f(\frac{1}{2}) = 0.$ 求证: $\exists \xi \in (0, \frac{1}{2}),$ 使得 $f''(\xi) = \frac{3f'(\xi)}{1-2\xi}.$

例 9

函数f(x)在[a,b]上二阶可导,f(a) = f(b) = 0,求证: 对 $\forall x \in [a,b]$, $\exists \xi \in (a,b)$,使得 $f(x) = \frac{f''(\xi)}{2}(x-a)(x-b)$.

例 10

函数f(x)在[a,b]上有二阶连续导数, 求证: $\exists \xi \in (a,b)$, 使得 $\int_a^b f(x) dx = (b-a)f(\frac{a+b}{2}) + \frac{1}{24}(b-a)^3 f''(\xi).$

例 11

f(x)在[a,b]可导,f(a) = f(b) = 1,证明 $\exists \xi, \eta \in (a,b)$, $s.t. e^{\xi-\eta}(f(\xi)+f'(\xi)) = 1$.

例 12

f(x)在[0,1]上可导, f(0) = 0, f(1) = 1, 求证: 对 $\forall a > 0, b > 0$, $\exists \xi, \eta \in (0,1)$, $\xi \neq \eta$, 使得: $\frac{a}{f'(\xi)} + \frac{b}{f'(\eta)} = a + b$.

f(x)在[a,b]上二阶可导, f(a) = f(b) = 0, f'(a) > 0, 求证: $\exists \xi \in (a,b)$, s.t. $f''(\xi) < 0$.

例 14

f(x)在[0,1]上有二阶连续导数, f(0) = f(1) = 0, $\min_{x \in [0,1]} f(x) = -1$, 求证: $\max_{x \in [0,1]} f''(x) \ge 8$.

例 15

已知f(x)在[0,1]上连续,在(0,1)内可导, $f(x) \neq 0$, $\forall x \in (0,1)$,f(0) = 0,求证: $\forall n, m \in N^*, \exists \xi \in (0,1), \ n \frac{f'(\xi)}{f(\xi)} = m \frac{f'(1-\xi)}{f(1-\xi)}.$

例 16

f(x), g(x)在[a,b]上二阶可导, $g''(x) \neq 0, \forall x \in (a,b), f(a) = f(b) = g(a) = g(b) = 0.$ 求证: $\exists \xi \in (a,b), \frac{f''(\xi)}{g''(\xi)} = \frac{f(\xi)}{g(\xi)}.$

达布定理

设f(x)在[a,b]上可导,则对 $\forall C: f'(a) < C < f'(b)$,都存在 $\xi \in (a,b)$ 使得 $f'(\xi) = C$.

例 17

设f(x), g(x)在[a,b]上有可导, $g'(x) \neq 0$,求证:对任意C, $\frac{f'(a)}{g'(a)} < C < \frac{f'(b)}{g'(b)}$, 都存在 $\xi \in (a,b)$,使得 $\frac{f'(\xi)}{g'(\xi)} = C$.

设f(x)在 $[a,+\infty)$ 上连续,且在 $(a,+\infty)$ 内可微,如果 $\lim_{x\to+\infty} f(x) = f(a)$,则 $\exists \xi \in (a,+\infty)$,s.t. $f'(\xi) = 0$.

例 19

设f(x)在 $(-\infty, +\infty)$ 上连续,且在 $(-\infty, +\infty)$ 内可微,如果 $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = A$,则日 $\xi \in (-\infty, +\infty)$,s.t. $f'(\xi) = 0$.

二、练习

习题 1

f(x)在[a,b]上有三阶连续导数, 求证: $\exists \xi \in (a,b), s.t.$

$$f(b) = f(a) + \frac{1}{2}(b-a)(f'(b) + f'(a)) - \frac{1}{12}(b-a)^3 f'''(\xi)$$

习题 2

f(x)在[a,b]有二阶导数,f'(a) = f'(b) = 0,求证 $\exists \xi \in (a,b)$, s.t.

$$\left|f''(\xi)\right| \ge \frac{4}{(b-a)^2} \left|f(b)-f(a)\right|$$

习题 3

f(x), g(x)在[a,b]上有一阶导数, $g'(x) \neq 0$,求证: $\exists \xi \in (a,b), \frac{f'(\xi)}{g'(\xi)} = \frac{f(a) - f(\xi)}{g(\xi) - g(b)}$