Exercise 5 – Density Operator

The density operator ϱ is defined as

$$\varrho \equiv \sum_{j} p_{j} |\Psi_{j}\rangle \langle \Psi_{j}|, \qquad \sum_{j} p_{j} = 1.$$
 (1)

The system may be found in the state $|\Psi_j\rangle$ with probability p_j . If the state of the system is known exactly, i.e., $\varrho = |\Psi\rangle\langle\Psi|$, the state is called *pure*, otherwise *mixed*. Suppose we have a system ϱ^{AB} which consists of two subsystems A and B. The *reduced*

density operator is defined by

$$\varrho^A \equiv \operatorname{Tr}_B\left(\varrho^{AB}\right),\tag{2}$$

where

$$\operatorname{Tr}_{B}(|a_{1}\rangle\langle a_{2}|\otimes|b_{1}\rangle\langle b_{2}|) \equiv |a_{1}\rangle\langle a_{2}|\operatorname{Tr}(|b_{1}\rangle\langle b_{2}|), \tag{3}$$

and $|a_1\rangle, |a_2\rangle$ are states of A, and $|b_1\rangle, |b_2\rangle$ are states of B.

Problem 1

Proof that

- a) Tr $\varrho = 1$,
- b) ϱ is Hermitian,
- c) ϱ is semi-positive,
- d) Tr $\varrho^2 \le 1$ and Tr $\varrho^2 = 1$ if and only if ϱ is a pure state.

Problem 2

a) Show that the density operator ϱ fulfills the von Neumann equation

$$\dot{\varrho} = -\frac{i}{\hbar} \left[H, \varrho \right] \,. \tag{4}$$

b) Show that an arbitrary density matrix for a mixed state qubit may be written as

$$\varrho = \frac{1}{2} \left(\mathbb{1} + \vec{r} \cdot \vec{\varrho} \right) \,. \tag{5}$$

For what \vec{r} is ϱ pure?

Problem 3

Consider the state

$$\varrho^{12} = \left(\frac{|00\rangle + |11\rangle}{\sqrt{2}}\right) \left(\frac{\langle 00| + \langle 11|}{\sqrt{2}}\right) \tag{6}$$

- a) Show that ϱ^{12} is a pure state.
- b) Calculate ϱ^1 and show that ϱ^1 is a mixed state.

Problem 4

Suppose a composite system of A and B is in the state $|a\rangle |b\rangle$, where $|a\rangle$ is a pure state of system A, and $|b\rangle$ is a pure state of system B. Show that the reduced density operator of system A alone is a pure state.

Problem 5

In exercise 5 the initial state was given by

$$|\Psi\rangle_{\rm in} = \frac{1}{\sqrt{2}} \left(\alpha |0_S 0_A 0_B\rangle + \alpha |0_S 1_A 1_B\rangle + \beta |1_S 0_A 0_B\rangle + \beta |1_S 1_A 1_B\rangle \right) . \tag{7}$$

Calculate the reduced density operator ϱ^B and show that it is a mixed state.