Lecture 2 ADTs, Stacks, Queues

Stacks

- The Stack ADT supports operations:
 - isEmpty: have there been same number of pops as pushes
 - push: takes an item
 - pop: raises an error if empty, else returns most-recently pushed item not yet returned by a pop
 - ... (possibly more operations)
- A Stack data structure could use a linked-list or an array or something else, and associated algorithms for the operations
- One implementation is in the library java.util.Stack

The Stack ADT

```
Operations:
    create
    destroy
    push
    pop
    top
    is empty
```


Can also be implemented with an array or a linked list

- The list in Python acts like a stack
- Type of elements is irrelevant

Why Stack ADT is useful

- It arises all the time in programming (e.g., see Weiss 3.6.3)
 - Recursive function calls
 - Balancing symbols (parentheses)
 - Evaluating postfix notation: 3 4 + 5 *
 - Clever: Infix ((3+4) * 5) to postfix conversion (see text)
- We can code up a reusable library
- We can communicate in high-level terms
 - "Use a stack and push numbers, popping for operators..."
 - Rather than, "create a linked list and add a node when..."

The Queue ADT

Operations
 create
 destroy
 enqueue
 dequeue

is empty

- Just like a stack except:
 - Stack: LIFO (last-in-first-out)
 - Queue: FIFO (first-in-first-out)
- Just as useful and ubiquitous

Circular Array Queue Data Structure

```
// Basic idea only!
enqueue(x) {
   Q[back] = x;
   back = (back + 1) % size
}
```

```
// Basic idea only!
dequeue() {
    x = Q[front];
    front = (front + 1) % size;
    return x;
}
```

Considerations:

- What if queue is empty?
 - Enqueue?
 - Dequeue?
- What if array is full?
- How to test for empty?
- What is the complexity of the operations?
- Can you find the kth element in the queue?

Linked List Queue Data Structure

```
front back
```

```
// Basic idea only!
enqueue(x) {
  back.next = new Node(x);
  back = back.next;
}
```

```
// Basic idea only!
dequeue() {
    x = front.item;
    front = front.next;
    return x;
}
```

Considerations:

- What if queue is empty?
 - Enqueue?
 - Dequeue?
- Can *list* be full?
- How to test for empty?
- What is the complexity of the operations?
- Can you find the kth element in the queue?

Data Structure Analysis Practice

For each of the following, pick the best Data Structure (Stack, Queue, either, or neither) and Implementation (Array, Linked List, either, or neither):

- Maintain a collection of customers at a store with a relatively constant stream of customers at all times
- Keep track of a ToDo list
- Maintain a sorted student directory
- Manage the history of webpages visited to be used by the "back" button
- Store data and access the kth element often

Pseudocode

Describe an algorithm in the steps necessary, write the shape of the code but ignore specific syntax.

Algorithm: Count all elements in a list greater than x

Pseudocode:

```
int counter // keeps track of number > x
while list has more elements {
   increment counter if current element is > than x
   move to next element of list
}
```

Pseudocode Example 2

Algorithm: Given a list of names in the format "firstName lastName", make a Map of all first names as keys with sets of last names as their values

Pseudocode:

```
create the empty result map
while list has more names to process {
    firstName is name split up until space
    lastName is name split from space to the end
    if firstName not in the map yet {
        put firstName in map as a key with an empty
        set as the value
    }
    add lastName to the set for the first name
    move to the next name in the list
}
```

Amortized Runtime Complexity

- Recall our plain-old stack implemented as an array that doubles its size if it runs out of room
 - How can we claim **push** is O(1) time if resizing is O(n) time?
 - We can't, but we can claim it's an O(1) amortized operation
- What does amortized mean?
- When are amortized bounds good enough?
- How can we prove an amortized bound?

Will just do two simple examples

- Text has more sophisticated examples and proof techniques
- Idea of how amortized describes average cost is essential

Amortized Runtime Intuition

Consider implementing a Stack with an array. What if we had initially 5 empty slots, and every time it gets full, we add an additional size * 2 slots and have to copy over all the old data? What is the worst case runtime for the add (element) operation?

Amortized Runtime Intuition

Consider implementing a Stack with an Array. What if we had initially 5 empty slots, and every time it gets full, we add an additional size * 2 slots and have to copy over all the old data? What is the **amortized runtime for the add (element)** operation?

"Building Up Credit" Intuition

 Can think of preceding "cheap" operations as building up "credit" that can be used to "pay for" later "expensive" operations

- Because any sequence of operations must be under the bound, enough "cheap" operations must come first
 - Else a prefix of the sequence, which is also a sequence, would violate the bound

Amortized Runtime Complexity

If a sequence of M operations takes O(Mf(n)) time, we say the amortized runtime is O(f(n))

Amortized bound: worst-case guarantee over sequences of operations

- Example: If any **n** operations take O(n), then amortized O(1)
- Example: If any \mathbf{n} operations take $O(\mathbf{n}^3)$, then amortized $O(\mathbf{n}^2)$
- The worst case time per operation can be larger than f (n)
 - As long as the worst case is always "rare enough" in any sequence of operations

Amortized guarantee ensures the average time per operation for any sequence is O(f(n))

Example #1: Resizing stack

A stack implemented with an array where we double the size of the array if it becomes full

Claim: Any sequence of push/pop/isEmpty is amortized O(1)

Need to show any sequence of \mathbf{M} operations takes time $O(\mathbf{M})$

- Recall the non-resizing work is $O(\mathbf{M})$ (i.e., $\mathbf{M} * O(\mathbf{1})$)
- The resizing work is proportional to the total number of element copies we do for the resizing
- So it suffices to show that:

After **M** operations, we have done < **2M** total element copies (So average number of copies per operation is bounded by a constant)

Amount of copying

After **M** operations, we have done **< 2M** total element copies

Let **n** be the size of the array after **M** operations

Then we have done a total of:

Because we must have done at least enough **push** operations to cause resizing up to size **n**:

$$M \ge n/2$$

– So

 $2M \ge n > number of element copies$