# Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

# 1.4 ANALYSIS OF ALGORITHMS

- introduction
- observations
- mathematical models
- order-of-growth classifications
- theory of algorithms
- memory

## Common order-of-growth classifications

Definition. If  $f(N) \sim c \ g(N)$  for some constant c > 0, then the order of growth of f(N) is g(N).

- Ignores leading coefficient.
- Ignores lower-order terms.

Ex. The order of growth of the running time of this code is  $N^3$ .

```
int count = 0;
for (int i = 0; i < N; i++)
  for (int j = i+1; j < N; j++)
    for (int k = j+1; k < N; k++)
      if (a[i] + a[j] + a[k] == 0)
      count++;</pre>
```

Typical usage. With running times.

## Common order-of-growth classifications

Good news. The set of functions

1,  $\log N$ , N,  $N \log N$ ,  $N^2$ ,  $N^3$ , and  $2^N$ 

suffices to describe the order of growth of most common algorithms.



## Common order-of-growth classifications

| order of<br>growth | name         | typical code framework                                                                                                 | description           | example              | T(2N) / T(N) |
|--------------------|--------------|------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------|--------------|
| 1                  | constant     | a = b + c;                                                                                                             | statement             | add two<br>numbers   | 1            |
| $\log N$           | logarithmic  | while (N > 1) { N = N / 2; }                                                                                           | divide in half        | binary search        | ~ 1          |
| N                  | linear       | for (int i = 0; i < N; i++) { }                                                                                        | loop                  | find the<br>maximum  | 2            |
| $N \log N$         | linearithmic | [see mergesort lecture]                                                                                                | divide<br>and conquer | mergesort            | ~ 2          |
| N <sup>2</sup>     | quadratic    | for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }                                                            | double loop           | check all<br>pairs   | 4            |
| N 3                | cubic        | <pre>for (int i = 0; i &lt; N; i++)   for (int j = 0; j &lt; N; j++)    for (int k = 0; k &lt; N; k++)       { }</pre> | triple loop           | check all<br>triples | 8            |
| $2^N$              | exponential  | [see combinatorial search lecture]                                                                                     | exhaustive<br>search  | check all<br>subsets | T(N)         |

## Binary search demo

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.



#### successful search for 33



#### Binary search: Java implementation

#### Trivial to implement?

- First binary search published in 1946.
- First bug-free one in 1962.
- Bug in Java's Arrays.binarySearch() discovered in 2006.

Invariant. If key appears in the array a[], then a[10]  $\leq$  key  $\leq$  a[hi].

## Binary search: mathematical analysis

Proposition. Binary search uses at most  $1 + \lg N$  key compares to search in a sorted array of size N.

Def. T(N) = # key compares to binary search a sorted subarray of size  $\leq N$ .

Binary search recurrence. 
$$T(N) \le T(N/2) + 1$$
 for  $N > 1$ , with  $T(1) = 1$ .

| left or right half | possible to implement with one | (floored division) | 2-way compare (instead of 3-way)

Pf sketch. [assume *N* is a power of 2]

$$T(N) \le T(N/2) + 1$$
 [given]  
 $\le T(N/4) + 1 + 1$  [apply recurrence to first term]  
 $\le T(N/8) + 1 + 1 + 1$  [apply recurrence to first term]  
 $\vdots$   
 $\le T(N/N) + 1 + 1 + \dots + 1$  [stop applying,  $T(1) = 1$ ]  
 $= 1 + \lg N$ 

## An N<sup>2</sup> log N algorithm for 3-SUM

#### Algorithm.

- Step 1: Sort the *N* (distinct) numbers.
- Step 2: For each pair of numbers a[i]
   and a[j], binary search for -(a[i] + a[j]).

#### Analysis. Order of growth is $N^2 \log N$ .

- Step 1:  $N^2$  with insertion sort.
- Step 2:  $N^2 \log N$  with binary search.

Remark. Can achieve  $N^2$  by modifying binary search step.

#### input

#### sort

#### binary search

$$(-40, -10)$$
 50

$$(-40, 0)$$
  $40$ 

:

$$(-20, -10)$$
  $30$ 

: :

$$(-10, 0)$$
  $10$ 

$$\begin{array}{ccc} \vdots & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

$$(30, 40) -70$$

double counting

#### Comparing programs

Hypothesis. The sorting-based  $N^2 \log N$  algorithm for 3-SUM is significantly faster in practice than the brute-force  $N^3$  algorithm.

| N     | time (seconds) |
|-------|----------------|
| 1,000 | 0.1            |
| 2,000 | 0.8            |
| 4,000 | 6.4            |
| 8,000 | 51.1           |

ThreeSum.java

| N      | time (seconds) |
|--------|----------------|
| 1,000  | 0.14           |
| 2,000  | 0.18           |
| 4,000  | 0.34           |
| 8,000  | 0.96           |
| 16,000 | 3.67           |
| 32,000 | 14.88          |
| 64,000 | 59.16          |

ThreeSumDeluxe.java

Guiding principle. Typically, better order of growth  $\Rightarrow$  faster in practice.