

Bistability during CO oxidation at Pd(100): Atomistic origin from first-principles kinetic Monte Carlo simulations

Max J. Hoffmann¹, Matthias Scheffler², Karsten Reuter¹

¹TU München, Germany ²Fritz-Haber Institut der Max-Planck-Gesellschaft, Germany

March 11, 2013

One surface-two reactivities

 CO_2 production over Pd(100) at ambient pressure T = 408 K

Hendriksen et al., Catal. Today 105 2, 234 (2005)

Method: First-principles Kinetic Monte Carlo

Method: First-principles Kinetic Monte Carlo

Follow rare-event time evolution by numerically solving Markovian master equation:

$$\dot{\rho}_i = \sum_j (-k_{ji}\rho_i + k_{ij}\rho_j)$$

Using harmonic transition state theory

$$k_{ij} = f^{ extsf{TST}} rac{k_{ extsf{B}} T}{h} \exp\left(rac{-\Delta E_{ij}}{k_{ extsf{B}} T}
ight)$$

Reuter and Scheffler, PRB 73, 4, (2006), 045433.

Method: First-principles Kinetic Monte Carlo

Follow rare-event time evolution by numerically solving Markovian master equation:

$$\dot{\rho}_i = \sum_j (-k_{ji}\rho_i + k_{ij}\rho_j)$$

Using harmonic transition state theory

$$k_{ij} = f^{\text{TST}} \frac{k_{\text{B}} T}{h} \exp \left(\frac{-\Delta E_{ij}}{k_{\text{B}} T} \right)$$

DFT(vibrations, barriers) CASTEP GGA-PBE $E_{\rm cut}=400$ eV, U.S.-PP, 4-layer slabs

Reuter and Scheffler, PRB 73, 4, (2006), 045433.

Lattice Model & Elementary Processes

metal vs. oxide

Lattice Model & Elementary Processes

- CO: molecular adsorption, desorption, diffusion
- O₂: dissocative adsorption, desorption, diffusion
- \blacksquare CO+ $\frac{1}{2}$ O₂ \rightarrow CO₂ reaction

Pd(100)

lateral interactions through n.n. site blocking

$$PdO(\sqrt{5} \times \sqrt{5}) R27^{\circ}$$

- no lateral interactions, DFT binding energies for intact surface oxide
- Eley-Rideal reaction

Kinetic phases overlap

$T=600\,\mathrm{K}$

$$PdO(\sqrt{5} \times \sqrt{5})R27^{\circ}$$

Kinetic phases overlap

 $p_{\mathrm{O}_2}~[\mathrm{atm}]$ MJH, K. Reuter, Topics Catal. (submitted), arXiv:1301.3285

 10^{-10} 10^{-7} 10^{-4} 10^{-1} 10^{2}

Kinetic phases overlap

MJH, K. Reuter, Topics Catal. (submitted), arXiv:1301.3285

Kinetic phases overlap $T=400\,\mathrm{K}$ 10-0.30.60.2 0.4 10^{-13} 10^{-13} 0.1-0.2 10^{-16} 10^{-16} 10^{-18} $10^{-14} \ 10^{-10}$ p_{O_2} [atm] $\Box_{0.0}$ $\Box_{0.0}$ 10^{-18} 10⁻¹⁴ 10 p_{O2} [atm] 10^{-10} ML ML Pd(100) $PdO(\sqrt{5} \times \sqrt{5})R27^{\circ}$ 10^{-3} $\underbrace{\frac{10^{-6}}{\text{mt}}}_{10^{-9}}$ 10^{-15} $T = 400 \, \mathrm{K}$ 10^{-18} $10^{-21} \ 10^{-17} \ 10^{-13} \ 10^{-9}$ 10^{-5} 10^{-1}

 p_{O_2} [atm]

MJH, K. Reuter, Topics Catal. (submitted), arXiv:1301.3285

Thermodynamic phases overlap, too!

Thermodynamic phases overlap, too!

Thermodynamic phases overlap, too!

$T = 408 \, \text{K}$

Reaction kinetics revisited

MJH, K. Reuter, Topics Catal. (submitted), arXiv:1301.3285

Hendriksen *et al.*, Catal. Today 105 2, 234 (2005)

Summary

- bistability can be rationalized from thermodynamics
- kinetics show that CO coverage and lateral interaction hinder surface oxide formation
- reactivity of both surfaces may be very similar

Summary

- bistability can be rationalized from thermodynamics
- kinetics show that CO coverage and lateral interaction hinder surface oxide formation
- reactivity of both surfaces may be very similar

Outlook

- kinetics of surface oxide destruction
- reactivity of partially destructed surface oxide

Summary

- bistability can be rationalized from thermodynamics
- kinetics show that CO coverage and lateral interaction hinder surface oxide formation
- reactivity of both surfaces may be very similar

Outlook

- kinetics of surface oxide destruction
- reactivity of partially destructed surface oxide

Thank you for your attention (please stay tuned for **O 20.6**).

- implement kMC models at the speed of thought
- exchange format for models
- GUI Editor and Viewer

- implement kMC models at the speed of thought
- exchange format for models
- GUI Editor and Viewer

- implement kMC models at the speed of thought
- exchange format for models
- GUI Editor and Viewer

- implement kMC models at the speed of thought
- exchange format for models
- GUI Editor and Viewer

- "Kinetic Monte Carlo modeling of the catalytic hydrogenation of benzene on Pt(111)" Maxime Van den Bossche, Master Thesis, 2012, Universiteit Gent
- "First-principles Modelling of Diffusion and Entropy in Battery Materials", Dipl-Chem. Steffen Hartung, TUM Create Singapore
- "First-principles kinetic Monte Carlo based reactor modeling", Dr. Sebastian Matera, TUM
- "Configurational Entropy Contributions in Adsorbate Spatial Distributions", Dr. Aditya (Ashi) Savara, Northwestern Univsersity
- "Multi-lattice kinetic Monte Carlo for CO Oxidation on Pd(100)/PdO(101)√5", MJH

Treatment of Lateral Interaction

Nearest-neighbor cluster expansion on $(\sqrt{5}\times\sqrt{5})R27^\circ$

 "CO Oxidation on Pd(100) at Technologically Relevant Pressure Conditions: A First-Principles Kinetic Monte Carlo Study"
 J. Rogal, K. Reuter, and M. Scheffler, Phys. Rev. B 77, 155410 (2008).

Oxygen-oxygen interaction on Pd(100)

- "First-Principles Statistical Mechanics Approach to Step Decoration at Surfaces"
 - Y. Zhang and K. Reuter, Chem. Phys. Lett 465, 303 (2008).