UArizona DataLab Workshop Series

Deep Dive Into Deep Learning

Mithun Paul, Ph.D Research Scientist Data Science Institute mithunpaul@arizona.edu

What is Intelligence?

Approximations of Continuous World Using Discrete Tools

weighted connections

Perceptron: Single Layer Neural Network

Perceptron Model (Minsky-Papert in 1969)

AI HAS A LONG HISTORY OF BEING "THE NEXT BIG THING" ...

Timeline of Al Development

- 1950s-1960s: First AI boom the age of reasoning, prototype AI developed
- 1970s: Al winter I
- 1980s-1990s: Second Al boom: the age of Knowledge representation (appearance of expert systems capable of reproducing human decision-making)
- 1990s: Al winter II
- 1997: Deep Blue beats Gary Kasparov
- 2006: University of Toronto develops Deep Learning
- 2011: IBM's Watson won Jeopardy
- 2016: Go software based on Deep Learning beats world's champions

"Artificial intelligence is the science and engineering of making computers behave in ways that, until recently, we thought required human intelligence." ~ Andrew Moore, Ph.D.

TOWARDS

Machine Learning

"Machine learning is the study of computer algorithms that allow computer programs to automatically improve through experience." ~ Tom M. Mitchell, Ph.D.

Deep Learning

While the term deep learning is vague, it bases on the idea of mimicking the brain by building algorithms that resemble biological neurons' functionality in the brain.

towardsai.net/deep-learning

A Quick Deep Dive into Nuts and Bolts of Deep Learning

Core component 1: Loss Function

Qn) Where do you see this sign almost on a daily basis?

Answer

Cruise Control In Cars

How Does Cruise Control Work?

A constant feedback mechanism between expected speed and current speed

Core Component 1: Loss Function + Back Propagation A constant feedback mechanism between expected value and current value

Core Component 2

Core Component 3: Activation Function

Perceptron: Single Layer Neural Network

Perceptron Model (Minsky-Papert in 1969)

Solving XOR with a Neural Net

Linear classifiers cannot solve this

$$\sigma(20^*0 + 20^*0 - 10) \approx 0$$

 $\sigma(20^*1 + 20^*1 - 10) \approx 1$
 $\sigma(20^*0 + 20^*1 - 10) \approx 1$
 $\sigma(20^*1 + 20^*0 - 10) \approx 1$

$$\sigma (-20^*0 - 20^*0 + 30) \approx 1$$
 $\sigma (20^*0 + 20^*1 - 30) \approx 0$
 $\sigma (-20^*1 - 20^*1 + 30) \approx 0$ $\sigma (20^*1 + 20^*0 - 30) \approx 0$
 $\sigma (-20^*0 - 20^*1 + 30) \approx 1$ $\sigma (20^*1 + 20^*1 - 30) \approx 1$
 $\sigma (-20^*1 - 20^*0 + 30) \approx 1$ $\sigma (20^*1 + 20^*1 - 30) \approx 1$

Core Component 4: Architecture

Deep Neural Network

Figure 12.2 Deep network architecture with multiple layers.

A mostly complete chart of

©2019 Fjodor van Veen & Stefan Leijnen asimovinstitute.org

Input Cell

- Hidden Cell
- Probablistic Hidden Cell

Backfed Input Cell

- Spiking Hidden Cell
- Capsule Cell
- Output Cell
- Match Input Output Cell
- Recurrent Cell
- Memory Cell
- Gated Memory Cell
- Kernel
- Convolution or Pool

Perceptron (P)

Deep Feed Forward (DFF)

Recurrent Neural Network (RNN)

Auto Encoder (AE)

Hopfield Network (HN) Boltzmann Machine (BM)

Variational AE (VAE)

Denoising AE (DAE)

Sparse AE (SAE)

Restricted BM (RBM)

Deep Belief Network (DBN)

Core Component 5: Bag of Words

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

Intuition: Learn Language From Context

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

...

Word2Vec

GloVe

man - woman

company - ceo

city - zip code

comparative - superlative

Core Component 6: Internet as Bag of Words

Large Language Models

CHATGPT **S**OpenAI

Build Your Own Chat Bot

https://huggingface.co/

https://ai.meta.com/llama/

Build Your Own Chat Bot

https://github.com/ua-datalab/Work shops/blob/main/Deep_Dive_Into_D eep_Learning/llama_chatbot.ipynb

