Onze resultaten Project eerste semester

Fordeyn Tibo

Inhoudsopgave

1	Ons eindresultaat	3
2	2 Statistische bevindingen voor de verschillende draagmethoden	4
	2.1 GSM in broekzak	 4
	2.2 GSM in hand	 5
	2.3 GSM in jaszak	 5
	2.4 GSM in achterzak	 6
3	3 Vergelijking mt professionele app	7
U	3.1 Tabel met data	 7
	3.2 Het rekenkudig gemiddelde	

Dit is mijn klad voor het deel van dit deel van het eindverslag.

Hoofdstuk 1

Ons eindresultaat

Uiteindelijk is de stappenteller met degelijke UI afgewerkt. De grootste gemeten foutmarge is 6 procent. Hoe accuraat de detector is hangt af van de manier waarop men de GSM bijhoudt, zoals te zien in de data hieronder. (voer data gsm in broekzak in en gsm in hand, geef dan aan dat er ook verschillen op te merken zijn bij gsm in achterzak en jaszak)

Met onze UI kunnen doelen ingessteld worden en aan de hand van de progress bar kan de gebruiker direct nagaan in hoeverre dit doel is bereikt. Het gebruikte kleurenschema is niet te lastig voor de ogen, en leesbaar. voeg foto UI toe indien die er nog niet is in een ander deel van het verslag.

We vergeleken onze stappenteller met de meest gedownloadde op de app store, en vonden dat die van ons beter presteerde (zie onderstaande data), natuurlijk zijn er relatief weinig datapunten, waardoor niet met stellige zekerheid gezegd kan wordt welke beter is.

Hoofdstuk 2

Statistische bevindingen voor de verschillende draagmethoden

2.1 GSM in broekzak

2.1.1 Tabel met data

Tabel 1: Lijst met data gsm in broekzak voor beide detectors		
Dynamische detector	Statische detector	
52	46	
51	48	
49	45	
48	45	

2.1.2 Het rekenkudig gemiddelde

$$AM = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{a_1 + a_2 + \ldots + a_n}{n}.$$

- Toegepast op de dynamische detector: 50
- Toegepast op de statische detector: 46

2.1.3 Gemiddelde fout

dynamische detector

Root mean squared error
$$\iff E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{\theta}_i - \theta_i)^2}.$$

Met $\hat{\theta}_i$ het aantal gemeten stappen, en θ_i het aantal stappen effectief gezet.

$$E=\sqrt{2,5}.$$

statische detector

Root mean squared error
$$\iff E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{\theta}_i - \theta_i)^2}.$$

Met $\hat{\theta}_i$ het aantal gemeten stappen, en θ_i het aantal stappen effectief gezet.

$$E = \sqrt{17, 5}$$
.

2.2 GSM in hand

2.2.1 Tabel met data

Tabel 1: Gsm in de hand	
Dynamische detector	Statische detector
47	4
50	2
48	2
49	2

2.2.2 Het rekenkudig gemiddelde

$$AM = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{a_1 + a_2 + \dots + a_n}{n}.$$

- Toegepast op de dynamische detector: 47,5
- Toegepast op de statische detector: 2,5

2.2.3 Gemiddelde fout

dynamische detector

Root mean squared error
$$\iff E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{\theta}_i - \theta_i)^2}.$$

Met $\hat{\theta}_i$ het aantal gemeten stappen, en θ_i het aantal stappen effectief gezet.

$$E = \sqrt{3.5}$$
.

statische detector

Root mean squared error
$$\iff E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{\theta}_i - \theta_i)^2}.$$

Met $\hat{\theta}_i$ het aantal gemeten stappen, en θ_i het aantal stappen effectief gezet.

$$E = 95.$$

2.3 GSM in jaszak

2.3.1 Tabel met data

Tabel 1: GSM in jaszak	
Dybamische detector	Statische detector
52	26
50	25
49	23
48	27

2.3.2 Het rekenkudig gemiddelde

$$AM = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{a_1 + a_2 + \dots + a_n}{n}.$$

5

- Toegepast op de dynamische detector: 49,75
- Toegepast op de statische detector: 45,25

2.3.3 Gemiddelde fout

dynamische detector

Root mean squared error
$$\iff E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{\theta}_i - \theta_i)^2}.$$

Met $\hat{\theta}_i$ het aantal gemeten stappen, en θ_i het aantal stappen effectief gezet.

$$E = \sqrt{2,25}$$
.

statische detector

Root mean squared error
$$\iff E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{\theta}_i - \theta_i)^2}.$$

Met $\hat{\theta}_i$ het aantal gemeten stappen, en θ_i het aantal stappen effectief gezet.

$$E = \sqrt{614,75}$$
.

2.4 GSM in achterzak

2.4.1 Tabel met data

Tabel 1: GSM in achterzak		
Dynamische detector	Statische detector	
52	51	
52	50	
52	52	
51	49	

2.4.2 Het rekenkudig gemiddelde

$$AM = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{a_1 + a_2 + \dots + a_n}{n}.$$

- Toegepast op de dynamische detector: 51,75
- Toegepast op de statische detector:50,5

2.4.3 Gemiddelde fout

dynamische detector

Root mean squared error
$$\iff E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{\theta}_i - \theta_i)^2}.$$

Met $\hat{\theta}_i$ het aantal gemeten stappen, en θ_i het aantal stappen effectief gezet.

$$E = \sqrt{3,25}$$
.

statische detector

Root mean squared error
$$\iff E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{\theta}_i - \theta_i)^2}.$$

Met $\hat{\theta}_i$ het aantal gemeten stappen, en θ_i het aantal stappen effectief gezet.

$$E = \sqrt{1, 5}$$
.

Hoofdstuk 3

Vergelijking mt professionele app

We hebben de stappenteller van ons vergeleken met een betalende uit de app store; StepsApp. Ik koos deze app aangezien hij bovenaan stond in de app store, en meer dan 20 miljoen downloads heeft. De app is in principe betalend, dus ik startte een free trial. We vergeleken deze met onze dynamische detector, dit is namelijk overduidelijk de betere. Dit met de GSM in de hand, aangezien dat de moeilijkste test is met het meeste fouten.

Hier zijn onze resultaten, gsm in de hand.

3.1 Tabel met data

Tabel 1: Vergelijking StepsApp met gsm onze dynamische detector, gsm in de hand.		
StepsApp resultaten	Onze dynamische detector	
	resultaten.	
57	47	
50	50	
48	51	
54	49	

3.2 Het rekenkudig gemiddelde

$$AM = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{a_1 + a_2 + \dots + a_n}{n}.$$

• Toegepast op de StepsApp: 53

• Toegepast op de onze detector: 49,25

3.2.1 Gemiddelde fout

StepsApp

Root mean squared error
$$\iff E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{\theta}_i - \theta_i)^2}.$$

Met $\hat{\theta}_i$ het aantal gemeten stappen, en θ_i het aantal stappen effectief gezet.

$$E = \sqrt{69}$$
.

dynamische detector

Root mean squared error
$$\iff E = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\hat{\theta}_i - \theta_i)^2}.$$

Met $\hat{\theta}_i$ het aantal gemeten stappen, en θ_i het aantal stappen effectief gezet.

$$E = \sqrt{2,75}.$$