State Space Structure of Random Recurrent Neuronal Networks

Alexander van Meegen

Current affiliation: Harvard University

Work done at: Jülich Research Centre

Neural Networks as Dynamical Systems

state space

Neural Networks as Dynamical Systems

state space

fixed points

Opening the Black Box

Sussillo & Barak; Neural Comput. (2013), Fig. 2

Sussillo & Barak; Neural Comput. (2013), Fig. 3

Random Recurrent Neuronal Networks

exponential relaxation

i.i.d. Gaussian coupling weights with strength g, tanh transfer function

Random Recurrent Neuronal Networks

exponential relaxation

i.i.d. Gaussian coupling weights with strength g, tanh transfer function

- Dynamical Mean-Field Theory Sompolinsky, Crisanti, Sommers; Phys. Rev. Lett. (1988)
 - Activity statistics: temporal autocorrelation
 - Chaos above critical connection strength g_c

Random Recurrent Neuronal Networks

exponential relaxation

i.i.d. Gaussian coupling weights with strength g, tanh transfer function

- Dynamical Mean-Field Theory Sompolinsky, Crisanti, Sommers; Phys. Rev. Lett. (1988)
 - Activity statistics: temporal autocorrelation
 - Chaos above critical connection strength g_c
- State space & fixed points:
 - Exponential number of unstable fixed points
 - Where are the fixed points in phase space?

Wainrib & Touboul; Phys. Rev. Lett. (2013)

Distribution of Fixed Points

- Random network → *distribution* of fixed points in state space
- Approach: Kac-Rice formula → random matrix problem

Distribution of fixed-point coordinates (of $\sim 40,000$ fixed points for N = 100)

Distribution of Fixed Points

- Random network → *distribution* of fixed points in state space
- Approach: Kac-Rice formula → random matrix problem

Distribution of fixed-point coordinates (of ~ 40,000 fixed points)

Distribution of Fixed Points

- Random network → distribution of fixed points in state space
- Approach: Kac-Rice formula → random matrix problem

peak at zero: fixed points in the span of a subset of the axes

Distribution of fixed-point coordinates (of ~ 40,000 fixed points)

Separation of Fixed Points and Dynamics

- Distance from origin in state space
 - Dynamics: Zero-lag autocorrelation from Dynamical Mean-Field Theory
 - Fixed points: From distribution of fixed points

Separation of Fixed Points and Dynamics

- Distance from origin in state space
 - Dynamics: Zero-lag autocorrelation from Dynamical Mean-Field Theory
 - Fixed points: From distribution of fixed points

Linearized Dynamics

Jacobian spectrum at fixed points

Radial eigenvalue distribution

Summary & Outlook

- Analytical calculation of fixed point distribution for random recurrent network
 - Located in the span of a subset of axes; radial separation in state space
 - Linearized dynamics (Jacobian)
- Structural backbone for sequence processing

Rabinovich, Huerta, Laurent; Science (2008)

How does training shape the state space structure of the network?

The Team

Jakob Stubenrauch

Christian Keup

Anno Kurth

Moritz Helias

Details: Stubenrauch, Keup, Kurth, Helias, van Meegen; arXiv 2210.07877 (2022)

Kac-Rice Formula

$$\dot{x} = y(x)$$

$$y(x) = -x + J\phi(x) + \eta$$

Counting fixed points

$$N_{\mathrm{fp}}(V) = \int_{V} d\boldsymbol{x} \, \delta\left[\boldsymbol{y}(\boldsymbol{x})\right] |\mathrm{det}\, \boldsymbol{y}'(\boldsymbol{x})|$$

Kac-Rice formula

$$\rho(\boldsymbol{x}) = \langle \delta[\boldsymbol{y}(\boldsymbol{x})] | \det \boldsymbol{y}'(\boldsymbol{x}) | \rangle_{\mathbf{J}, \boldsymbol{\eta}}$$

$$\rho(\boldsymbol{x}) = \int d\boldsymbol{y}' p_{\boldsymbol{x}}(\boldsymbol{y} = 0, \boldsymbol{y}') |\det \boldsymbol{y}'|$$

Velocity & Jacobian Statistics

$$y(x) = -x + J\phi(x) + \eta \qquad y'(x) = -1 + J\operatorname{diag} [\phi'(x)]$$

$$\langle y_i(x) \rangle = -x_i \equiv \mu_i(x), \qquad \langle [y'(x)]_{ik} \rangle = -\delta_{ik} \equiv [\mu_i(x)]_k$$

$$\langle \langle y_i(x)y_j(x) \rangle \rangle = \delta_{ij} \left[\frac{g^2}{N} \sum_k \phi(x_k)^2 + D \right] \equiv \delta_{ij} [\kappa(x) + D]$$

$$\langle \langle y_i(x) [y'(x)]_{jk} \rangle \rangle = \frac{g^2}{N} \delta_{ij} \phi(x_k) \phi'(x_k) \equiv \delta_{ij} [k(x)]_k,$$

$$\langle \langle [y'(x)]_{ik} [y'(x)]_{jl} \rangle \rangle = \delta_{ij} \delta_{kl} \frac{g^2}{N} \phi'(x_k)^2 \equiv \delta_{ij} [K(x)]_{kl}.$$

Random Matrix Problem

Kac-Rice formula
$$\rho(\boldsymbol{x}) = \int d\boldsymbol{y}' \, p_{\boldsymbol{x}}(\boldsymbol{y} = 0, \boldsymbol{y}') \, |\!\det \boldsymbol{y}'|$$

$$\rho(\boldsymbol{x}) = p_{\mathrm{L}}(\boldsymbol{x}) \, \langle |\!\det \boldsymbol{y}'| \rangle_{\boldsymbol{y}' \sim p_{\boldsymbol{x}}(\boldsymbol{y}'|\boldsymbol{y} = 0)}$$

$$\rho(\boldsymbol{x}) = p_{L}(\boldsymbol{x}) \left\langle \left| \det \left[\mathbf{M}(\boldsymbol{x}) + \mathbf{X} \boldsymbol{\Sigma}(\boldsymbol{x}) \right] \right| \right\rangle_{X_{ij}} \mathcal{N}(0,1/N)$$

Fixed Point Distribution

$$\rho(\boldsymbol{x}) \doteq \exp(-NS(\boldsymbol{x}))$$

$$S(\boldsymbol{x}) = \frac{q(\boldsymbol{x})}{2[\kappa(\boldsymbol{x}) + D]} + \frac{1}{2}\ln\{2\pi[\kappa(\boldsymbol{x}) + D]\} - \zeta(\boldsymbol{x})$$

$$q(\boldsymbol{x}) = \frac{1}{N} \sum_{i=1}^{N} x_i^2 \qquad \kappa(\boldsymbol{x}) = \frac{g^2}{N} \sum_{i=1}^{N} \phi(x_i)^2$$

$$\zeta(\boldsymbol{x}) = -\frac{1}{2}z_* + \frac{1}{2N} \sum_{i=1}^{N} \ln[1 + z_* g^2 \phi'(x_i)^2] \qquad 1 = \frac{1}{N} \sum_{i=1}^{N} \frac{g^2 \phi'(x_i)^2}{1 + z_* g^2 \phi'(x_i)^2}$$

Distribution of Coordinates

$$\mu_{\boldsymbol{x}}(y) = \frac{1}{N} \sum_{i=1}^{N} \delta(y - x_i)$$

$$\mu_*(y) \propto \sqrt{1 + \alpha \phi'(y)^2} e^{-\frac{y^2}{2\beta} + \gamma \phi(y)^2}$$

$$1 = g^{2} \langle (\phi'(y)^{-2} + \alpha)^{-1} \rangle_{\mu_{*}}$$

$$\beta = \langle \phi(y)^{2} \rangle_{\mu_{*}} + D$$

$$\gamma = \frac{g^{2}}{2\beta} (\beta^{-1} \langle y^{2} \rangle_{\mu_{*}} - 1)$$

Number of Fixed Points

