DELIGHT PHYSICS LAB

Algorithms for Numerical Computations

Bisection Method:

The method is also called the interval halving method, the binary search method or the dichotomy method. This method is used to find root of an equation in a given interval that is value of 'x' for which f(x) = 0

The method is based on **The Intermediate Value Theorem** which states that if f(x) is a continuous function and there are two real numbers a and b such that f(a)*f(b) 0 and f(b) < 0), then it is guaranteed that it has at least one root between them.

If f(x) is a continuous function within the inteval [a,b] and if the root of f(x) also lies in the given limit:

Algorithm: 1. Find middle point c = (a + b)/2.

- 2. If f(c) == 0, then c is the root of the solution.
- 3. Else f(c) != 0
 - A. If value f(a)*f(c) < 0 then root lies between a and c. So we recur for a and c
 - B. Else If f(b)*f(c) < 0 then root lies between b and c. So we recur b and c.
 - C. Else given function doesn't follow one of assumptions.
- 4. If A or B is satisfied then repeat from 2 till certain accuracy is achieved.

Newton Raphson Method:

Starting from initial guess x_1 the Newton Raphson method uses below formula to find next value of x, i.e., x_{n+1} from previous value x_n .

Algorithm:

- 1. Start the program.
- 2. Define the function f(x), f'(x)
- 3. Enter the initial guess of the root , say $x_{\rm 0}$
- 4. Calculate $x_{n+1} = x_n [f(x_n)/f'(x_n)],$ where n = 0, 1, 2, ...
- 5. If $|\mathbf{x}_{n+1} \mathbf{x}_n| < \epsilon$, ϵ being prescribed accuracy then go to step 7.
- 6. Set $x_n = x_{n+1}$ and go to step 4.
- 7. Print the value of X_n .
- 8. Stop the program.

$$x_1 = x_0 - rac{f(x_0)}{f'(x_0)} \, . \ \ x_{n+1} = x_n - rac{f(x_n)}{f'(x_n)}$$

Euler Method for Solving ODE (1st Order):

In mathematics and computational science, the Euler method is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Consider a differential equation

dy/dx = f(x, y) with initial condition $y(x_0) = y_0$

then succesive approximation of this equation can be given by: $y_{n+1} = y_n + hf(t_n, y_n)$.

Algorithm:

- 1. Define function f(x,y)
- 2. Get the values of x₀, y₀, h and n*Here x₀ and y₀ are the initial conditions h is the interval sizen is the interval number
- 3. Start loop from i=1 to n
- 4. $y = y_0 + h*f(x_0,y_0)$ x = x + h
- 5. Print values of y_0 and x_0
- 6. Check if i < n, If yes, assign $x_0 = x$ and $y_0 = y$ If no, goto 7
- 7. End loop i
- 8. Stop the program

Gauss Seidel Method:

In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a linear system of equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel.

Algorithm

- 1. Input A and b as array(Matrix).
- 2. Guess the solution & push them into 1d matrix X.
- 3. Create a lower triangular matrix(L) from A.
- 4. Construct a upper triangulat matrix(U)
- 5. Iterate $L^{-1}(b UX)$ with certain number of loops.
- 6. Stop the program and print the final solutions of the variables.

$$A\mathbf{x} = \mathbf{b}$$

$$A=egin{bmatrix} a_{11}&a_{12}&\cdots&a_{1n}\ a_{21}&a_{22}&\cdots&a_{2n}\ dots&dots&\ddots&dots\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{bmatrix}, \qquad \mathbf{x}=egin{bmatrix} x_1\ x_2\ dots\ x_n \end{bmatrix}, \qquad \mathbf{b}=egin{bmatrix} b_1\ b_2\ dots\ b_n \end{bmatrix}.$$

$$A = L_* + U \qquad ext{where} \qquad L_* = egin{bmatrix} a_{11} & 0 & \cdots & 0 \ a_{21} & a_{22} & \cdots & 0 \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad U = egin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \ 0 & 0 & \cdots & a_{2n} \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & 0 \end{bmatrix}.$$

$$L_* \mathbf{x} = \mathbf{b} - U \mathbf{x}$$
 $\mathbf{x}^{(k+1)} = L_*^{-1} (\mathbf{b} - U \mathbf{x}^{(k)}).$