Prine Number

LCM

(CD

Prime Number
Worst T. C

0 (N)

Brime

Jumber

itself 00

00/ divinible

1,2

1

$$n=4$$
 $1,2,4$

Privil

 \mathcal{N}

1,7

$$n = 23$$

1 × 23 = 23

PARK

Diviser always Number always occur in pair

$$\begin{array}{r}
 1 = 29 \\
 1 \times 29 = 29 \\
 2 \times 12 = 29 \\
 3 \times 8 = 29 \\
 4 \times 6 = 29 \\
 -6 \times 3 = 29 \\
 -6 \times 3 = 29 \\
 -2 \times 1 = 29
 \end{array}$$

$$n = 18$$

$$\int n = 18$$

$$5$$

$$2 to 5$$

23%5 X

23%04

Algo

- 1) the Divisors always occur in parts
- (2) 1=2 to coil (sqrt(n));

5 n=1

Classes Page 5

17 n=4 25X Poine Number bool prime Number (int n) & / ig (n==2 || n==3) return true; $\frac{y}{y} (n \% 2 = = 0) || n \% 3 = = 0) return false;$ $\frac{z}{y} (n \% 2 = = 0) || n \% 3 = = 0) return false;$ $\frac{z}{y} (n \% 2 = = 0) || n \% 3 = = 0) return false;$ $\frac{z}{y} (n \% 2 = = 0) || n \% 3 = = 0) return false;$ A Divisors always occur in pairs forlit 1=5; Rx12n; 1=176) 8 1 7 = 28st (2) $\sqrt{\frac{1}{100}} = -0$ refurn Falsi,

$$i=5$$
 $67\%s \times 25 \le 67$
 $i=7$ $67\%s \times 99 \le 67$
 $j = 176$
 $j=11$

$$n=7-3$$

$$i=5 \qquad 73\%5 \otimes 2$$

$$25 \leq +3 \sim 73\% + 8$$

$$49 \leq 73 \qquad 73\% + 8$$

n= 73

return true?

**

T. (- 0 (JT)

$$\frac{610}{8=9}$$

$$\frac{2\times 2}{2\times 3} = \frac{(2)}{\text{Euclid}}$$

$$4) = 6$$

$$\frac{2\times 2}{2\times 3} = \frac{(2)}{\text{Euclid}}$$

$$4) = 6$$

$$\frac{2\times 2}{2\times 3} = \frac{(2)}{\text{Euclid}}$$

$$4) = 6$$

$$\frac{2\times 2}{2\times 3} = \frac{(2)}{2\times 3}$$

$$12 = 36 = 20\times 3 \times 3$$

$$2 = 213$$

Endidis Myonthm a=4 b=6 4) 6 12) 3b GCD (nC)

Recursión

int GCD (lut divisor, lut dividual) of

felicitated o/o divisor = = 0)

return divisor;

return GCD (dividual o/o divisor, divisor);

seturn GCD (dividual o/o divisor, divisor);

seturn GCD (4,6) (4

axb=gcd(a,b) x lcm(a,b) a=4 b=6 4) 4 (2 Kx6- 2x (cm/4,6) 12 = LCM(4,6)7.1-0 (logc(min(9,b))

six LCM(int a, iixt b) ξ iixt j=2; sixt $a_{10}=1$;

while $(a_{1}=1 \ BB \ b|=1) \xi$ $(a_{1}=1$

1.1

(I) GCD (2)