```
# Data Cleaning for Bat vs Rat Project
import pandas as pd
import numpy as np
# Load datasets (update with your correct file paths)
dataset1 = pd.read_csv("/content/dataset1.csv")
dataset2 = pd.read_csv("/content/dataset2.csv")
# 1. Inspect datasets
print("Dataset1 Info:")
print(dataset1.info())
print("\nDataset1 Head:")
print(dataset1.head())
print("\nDataset2 Info:")
print(dataset2.info())
print("\nDataset2 Head:")
print(dataset2.head())
# 2. Check for missing values
print("\nMissing values in Dataset1:")
print(dataset1.isna().sum())
print("\nMissing values in Dataset2:")
print(dataset2.isna().sum())
# 3. Remove duplicates
dataset1 = dataset1.drop_duplicates()
dataset2 = dataset2.drop duplicates()
```

```
# 4. Convert columns to correct types
# (Adjust column names if needed)
# Convert time columns with day-first format
time cols1 = ["start time", "rat period start", "rat period end", "sunset time"]
for col in time cols1:
    if col in dataset1.columns:
        dataset1[col] = pd.to datetime(dataset1[col], errors="coerce", dayfirst=True)
if "time" in dataset2.columns:
    dataset2["time"] = pd.to datetime(dataset2["time"], errors="coerce", dayfirst=True)
# Convert time columns to datetime
#time cols1 = ["start time", "rat period start", "rat period end", "sunset time"]
#for col in time cols1:
# if col in dataset1.columns:
         dataset1[col] = pd.to datetime(dataset1[col], errors="coerce")
#if "time" in dataset2.columns:
     dataset2["time"] = pd.to datetime(dataset2["time"], errors="coerce")##
# Ensure categorical variables are categorical
cat_cols1 = ["habit", "risk", "reward", "month", "season"]
for col in cat cols1:
    if col in dataset1.columns:
        dataset1[col] = dataset1[col].astype("category")
cat cols2 = ["month"]
for col in cat cols2:
    if col in dataset2.columns:
        dataset2[col] = dataset2[col].astype("category")
# 5. Handle missing values
# Example: Fill missing numerical values with median
dataset1 = dataset1.fillna(dataset1.median(numeric only=True))
dataset2 = dataset2.fillna(dataset2.median(numeric only=True))
# Example: Drop rows where essential categorical values are missing
dataset1 = dataset1.dropna(subset=["risk", "reward", "season"])
dataset2 = dataset2.dropna(subset=["month"])
```

```
# 6. Save cleaned datasets

dataset1.to_csv("dataset1_cleaned.csv", index=False)

dataset2.to_csv("dataset2_cleaned.csv", index=False)

print("\nData cleaning completed! Cleaned files saved as 'dataset1_cleaned.csv' and 'dataset2_cleaned.csv'.")
```

```
паріт
rat period start
                             0
rat_period_end
                             0
seconds_after_rat_arrival
                             0
risk
                             0
                             0
reward
month
                             0
sunset_time
hours_after_sunset
season
dtype: int64
Missing values in Dataset2:
time
month
                      0
hours_after_sunset
bat landing number
food_availability
rat minutes
rat arrival number
dtype: int64
Data cleaning completed! Cleaned files saved as 'dataset1_cleaned.csv' and 'dataset2_cleaned.csv'.
```

```
pd.to_datetime(dataset1[col], errors="coerce", dayfirst=True)
```

month

- **0** 1970-01-01 00:00:00.000000000
- **1** 1970-01-01 00:00:00.000000000
- **2** 1970-01-01 00:00:00.0000000000

```
# Bat vs Rat Project - EDA & Statistical Analysis
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.stats import chi2_contingency, ttest_ind, f_oneway
import statsmodels.api as sm
# -----
# Load cleaned datasets
# -----
dataset1 = pd.read csv("dataset1 cleaned.csv")
dataset2 = pd.read csv("dataset2 cleaned.csv")
# -----
# Exploratory Data Analysis (EDA)
# -----
print("\nDataset1 Summary:")
print(dataset1.describe(include="all"))
print("\nDataset2 Summary:")
print(dataset2.describe(include="all"))
# Risk-taking behaviour distribution
sns.countplot(x="risk", data=dataset1)
plt.title("Distribution of Risk-Taking Behaviour (Dataset1)")
plt.show()
# Reward vs Risk
sns.countplot(x="reward", hue="risk", data=dataset1)
plt.title("Reward Outcome vs Risk Behaviour (Dataset1)")
plt.show()
```

```
# Risk-taking across seasons
sns.countplot(x="season", hue="risk", data=dataset1)
plt.title("Risk-Taking Across Seasons (Dataset1)")
plt.show()
# Bat landings per month
sns.barplot(x="month", y="bat landing number", data=dataset2, ci=None)
plt.title("Bat Landings per Month (Dataset2)")
plt.show()
# Rat arrivals vs bat landings
sns.scatterplot(x="rat arrival number", y="bat landing number", data=dataset2)
plt.title("Rat Arrivals vs Bat Landings (Dataset2)")
plt.show()
# Correlation heatmap
sns.heatmap(dataset2.corr(numeric only=True), annot=True, cmap="coolwarm")
plt.title("Correlation Heatmap (Dataset2)")
plt.show()
# -----
# Investigation A - Predator Perception
# -----
print("\n--- Investigation A ---")
# Chi-Square Test: Risk vs Habit
contingency = pd.crosstab(dataset1['risk'], dataset1['habit'])
chi2, p, dof, expected = chi2 contingency(contingency)
print("Chi-square test p-value (risk vs habit):", p)
# Logistic Regression: Predictors of Risk
X = dataset1[["seconds after rat arrival", "hours after sunset", "season"]]
y = dataset1["risk"]
X = sm.add_constant(X)
logit model = sm.Logit(y, X).fit()
print(logit model.summary())
# Investigation B - Seasonal Changes
# -----
print("\n--- Investigation B ---")
```

```
# T-test (Risk by Season: Winter=0 vs Spring=1)
season0 = dataset1[dataset1["season"]==0]["risk"]
season1 = dataset1[dataset1["season"]==1]["risk"]
t_stat, p_val = ttest_ind(season0, season1, equal_var=False)
print("T-test Risk (Winter vs Spring) p-value:", p_val)

# ANOVA example (if >2 seasons available)
anova = f_oneway(*[dataset1[dataset1["season"]==s]["risk"] for s in dataset1["season"].unique()])
print("ANOVA Risk by Season p-value:", anova.pvalue)

# Seasonal trend in bat landings
sns.barplot(x="month", y="bat_landing_number", data=dataset2, errorbar=None)
plt.title("Monthly Trends in Bat Landings (Dataset2)")
plt.show()

print("\nAnalysis Complete ♥")
```

	st	art_time	bat_landing_to_food h	abit	rat_period_sta	art
count		906	906.000000	865		906
unique		628	NaN	81	2	268
top	2018-01-28	20:05:00	NaN	fast	2018-04-26 22:25	:00
freq		6	NaN	245		29
mean		NaN	11.720544	NaN	ľ	NaN
std		NaN	27.658777	NaN	N	NaN
min		NaN	0.010238	NaN	N	NaN
25%		NaN	1.000000	NaN	N	NaN
50%		NaN	4.000000	NaN	N	NaN
75%		NaN	11.750000	NaN	N	NaN
max		NaN	443.000000	NaN	1	NaN
	rat_pe	eriod_end	seconds_after_rat_arr	ival	risk \	
count		906	906.00	0000	906.000000	
unique		268		NaN	NaN	
top	2018-04-26	22:36:00		NaN	NaN	
freq		29		NaN	NaN	
mean		NaN	282.78	6976	0.494481	
std		NaN	241.09	2545	0.500246	
min		NaN	0.00	0000	0.000000	
25%		NaN	89.25	0000	0.000000	
50%		NaN	206.00	0000	0.000000	
75%		NaN	447.25	0000	1.000000	
max		NaN	949.00	0000	1.000000	
	reward	mont	_	ie ho	urs_after_sunset	\
count	906.000000	906.00000	0 90	6	906.000000	
unique	NaN	Na		5	NaN	
top	NaN	Na	N 2018-04-26 19:17:0	0	NaN	
freq	NaN	Na			NaN	
mean	0.534216	3.80022			5.532579	
std	0.499103	1.19983			2.415383	
min	0.000000	0.00000			-0.261667	
25%	0.000000	4.00000			3.775069	
50%	1.000000	4.00000			5.627083	
75%	1.000000	5.00000			7.406250	
max	1.000000	5.00000	0 Na	N	12.091944	
60.us±	season					
count	906.000000					
unique	NaN					
top	NaN					

freq	NaN
nean	0.833333
std	0.372884
min	0.000000
25%	1.000000
50%	1.000000
75%	1.000000
nax	1.000000

Dataset2 Summary:

	time	month	hours_after_sunset	\
count	2123	2123.000000	2123.000000	
unique	2123	NaN	NaN	
top	2018-06-01 05:41:00	NaN	NaN	
freq	1	NaN	NaN	
mean	NaN	3.083844	5.265426	
std	NaN	1.642261	4.076188	
min	NaN	0.000000	-2.000000	
25%	NaN	2.000000	2.000000	
50%	NaN	4.000000	5.000000	
75%	NaN	4.000000	8.500000	
max	NaN	6.000000	13.500000	

	<pre>bat_landing_number</pre>	<pre>food_availability</pre>	rat_minutes	rat_arrival_number
count	2123.000000	2123.000000	2123.000000	2123.000000
unique	NaN	NaN	NaN	NaN
top	NaN	NaN	NaN	NaN
freq	NaN	NaN	NaN	NaN
mean	32.083373	2.445874	1.994442	0.444654
std	25.614431	1.218353	6.793397	1.019195
min	0.000000	0.000000	0.000000	0.000000
25%	11.000000	1.962206	0.000000	0.000000
50%	27.000000	2.951877	0.000000	0.000000
75%	48.000000	3.105873	0.158333	1.000000
max	178.000000	4.000000	120.000000	17.000000

Distribution of Risk-Taking Behaviour (Dataset1)

Reward Outcome vs Risk Behaviour (Dataset1)

Risk-Taking Across Seasons (Dataset1)

/tmp/ipython-input-384532454.py:41: FutureWarning:

The `ci` parameter is deprecated. Use `errorbar=None` for the same effect.

sns.barplot(x="month", y="bat_landing_number", data=dataset2, ci=None)

Rat Arrivals vs Bat Landings (Dataset2)

Correlation Heatmap (Dataset2)

--- Investigation A ---

Chi-square test p-value (risk vs habit): 5.040138482485281e-132

Optimization terminated successfully.

Current function value: 0.688802

Iterations 4

Logit Regression Results

Dep. Variable:		No. Observations:		906				
Model: Log		Df Residuals:		902				
Method:	Method: MLE		Df Model:		3			
Date: Tu	ue, 09 Sep 2025	Pseudo R-squ.:		0.006182				
Time:	12:00:42	Log-Likel:	ihood:	-624.05				
converged:	True	LL-Null: LLR p-value:		-627.94				
Covariance Type:	nonrobust			0.05116				
	coef	std err	z	P> z	[0.025	0.975]		
const	0.4814	0.231	2.086	0.037	0.029	0.934		
seconds_after_rat_arriv	/al 0.0003	0.000	1.071	0.284	-0.000	0.001		
hours_after_sunset	-0.0520	0.028	-1.869	0.062	-0.107	0.003		
season	-0.3609	0.182	-1.982	0.047	-0.718	-0.004		
=======================================		========	========	-========	:========	========		

Towartication D

--- TIINESCTRUCTOIL D ---

Start coding or generate with AI.

```
Monthly Trands in Bat Landings (Datacet2)
# -----
# Bat vs Rat Project - Visualisations
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Load your cleaned datasets
dataset1 = pd.read csv("/content/dataset1.csv")
dataset2 = pd.read csv("/content/dataset2.csv")
# -----
# 1. Risk-taking behaviour distribution (Dataset1)
# -----
plt.figure(figsize=(6,4))
sns.countplot(x="risk", data=dataset1)
plt.title("Distribution of Risk-Taking Behaviour (Dataset1)")
plt.xlabel("Risk (0 = Avoidance, 1 = Risk-Taking)")
plt.ylabel("Count")
plt.show()
# -----
# 2. Reward vs Risk (Dataset1)
# -----
plt.figure(figsize=(6,4))
sns.countplot(x="reward", hue="risk", data=dataset1)
plt.title("Reward Outcome vs Risk Behaviour (Dataset1)")
plt.xlabel("Reward (0 = No, 1 = Yes)")
plt.ylabel("Count")
plt.show()
# -----
# 3. Risk-taking across seasons (Dataset1)
# -----
plt.figure(figsize=(6,4))
sns.countplot(x="season", hue="risk", data=dataset1)
plt.title("Risk-Taking Across Seasons (Dataset1)")
```

```
plt.xlabel("Season")
plt.ylabel("Count")
plt.show()
# -----
# 4. Bat landings per month (Dataset2)
# -----
plt.figure(figsize=(8,5))
sns.barplot(x="month", y="bat landing number", data=dataset2, errorbar=None)
plt.title("Bat Landings per Month (Dataset2)")
plt.xlabel("Month")
plt.ylabel("Number of Bat Landings")
plt.show()
# -----
# 5. Rat arrivals vs Bat landings (Dataset2)
# -----
plt.figure(figsize=(6,4))
sns.scatterplot(x="rat arrival number", y="bat landing number", data=dataset2)
plt.title("Rat Arrivals vs Bat Landings (Dataset2)")
plt.xlabel("Rat Arrivals")
plt.ylabel("Bat Landings")
plt.show()
# -----
# 6. Correlation heatmap (Dataset2)
# -----
plt.figure(figsize=(8,6))
corr = dataset2.corr(numeric only=True)
sns.heatmap(corr, annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Correlation Heatmap (Dataset2)")
plt.show()
```


