DECISION MODELLING DR. BRENDA MULLALLY

- WHY DO WE NEED MODELS?
 - APPROXIMATION OF REALITY
 - UNDERSTAND PAST
 - PREDICT FUTURE
 - SEPARATE UNPREDICTABLE AND PREDICTABLE
 - A PICTURE, A SPREADSHEET, A SET OF MATHEMATICAL RELATIONSHIPS.
- WHAT IS A DECISION MODEL?
 - IS A MODEL THAT CAN BE USED TO UNDERSTAND, ANALYSE, OR FACILITATE MAKING A DECISION.

- DEVELOPING STRATEGIES TO DEAL WITH:
 - WHAT PRICE TO CHARGE FOR A PRODUCT
 - WHERE TO LOCATE A NEW FACILITY
 - HOW MANY PEOPLE TO HIRE
 - WHERE TO ALLOCATE ADVERTISING BUDGETS
 - HOW TO SCHEDULE PRODUCTION
- QUANTITATIVE DECISION MODELS CAN GREATLY ASSIST IN THESE TYPES OF DECISIONS.
- SPREADSHEETS, IN PARTICULAR, PROVIDE A CONVENIENT MEANS TO MANAGE DATA, CONSTRUCT MODELS, AND ANALYSE THEM FOR GAINING INSIGHT AND SUPPORTING DECISIONS.

- DECISION MODELS CHARACTERIZE THE RELATIONSHIPS BETWEEN DATA, UNCONTROLLABLE
 VARIABLES, AND DECISION VARIABLES AND THE OUTPUTS OF INTEREST TO THE DECISION MAKER.
- A SPREADSHEET IS ONE WAY OF EXPRESSING A DECISION MODEL THROUGH THE FORMULAS
 ENTERED IN THE CELLS THAT REFLECT THE RELATIONSHIPS AMONG THE MODEL COMPONENTS. FOR
 ANY SET OF INPUTS, THE SPREADSHEET CALCULATES SOME OUTPUT MEASURES OF INTEREST.
- SPREADSHEETS ARE IDEAL VEHICLES FOR IMPLEMENTING DECISION MODELS BECAUSE OF THEIR VERSATILITY IN MANAGING DATA, EVALUATING DIFFERENT SCENARIOS, AND PRESENTING RESULTS IN A MEANINGFUL FASHION.

DECISION MODELS - OUTSOURCING EXAMPLE

DECISION MODELS ARE MODELS THAT CAN BE USED TO UNDERSTAND, ANALYZE, OR

FACILITATE MAKING A DECISION

Copyright

	А	В
1	Outsourcing Decision Model	
2	_	
3	Data	
4		
5	Manufactured in-house	
6	Fixed cost	\$ 50,000
7	Unit variable cost	\$ 125
8		
9	Purchased from supplier	
10	Unit cost	\$ 175
11		
12	Model	
13		
14	Demand volume	1500
15		
16	Total manufacturing cost	\$ 237,500
17	Total purchased cost	\$ 262,500
18	Difference	\$ (25,000)
19		
20	Decision	Manufacture

Α В Outsourcing Decision Model Data Manufactured in-house Fixed cost 50000 Unit variable cost 125 Purchased from supplier 10 Unit cost 175 12 Model 14 Demand volume 1500 Total manufacturing cost =B6+B7*B14 17 Total purchased cost =B14*B10 18 Difference =B16-B17 19 =IF(B18<=0, "Manufacture", "Outsource") 20 Decision

OUTSOURCING MODEL

- MODEL COMPONENTS
 - F = FIXED COST OF IN-HOUSE MANUFACTURING
 - V = UNIT VARIABLE COST OF IN-HOUSE MANUFACTURING
 - C = UNIT COST OF OUTSOURCING
 - D = DEMAND VOLUME
- TOTAL MANUFACTURING COST = TMC = F + V * D
- TOTAL OUTSOURCING COST = TOC = C * D.

AIRLINE PRICING MODEL

	Α	В
1	Airline Pricing Model	
2	_	
3	Data	
4	Airplane capacity	300
5	Fixed cost	\$ 90,000
6	Demand function	
7	slope	-2.33
8	intercept	1900
9		
10	Model	
11		
12	Revenue	
13	Unit price	\$ 500.00
14	Demand	733
15	Number of flights/day	3
16	Total Revenue	\$366,666.67
17	Cost	
18	Fixed Cost	\$270,000.00
19		
20	Profit	\$96,666.67

	Α	В
4	, ,	В
1	Airline Pricing Model	
2		
3	Data	
4	Airplane capacity	300
5	Fixed cost	90000
6	Demand function	
7	slope	=-7/3
8	intercept	1900
9		
10	Model	
11		
12	Revenue	
13	Unit price	500
14	Demand	=B8+B7*B13
15	Number of flights/day	=ROUNDUP(B14/B4,0)
16	Total Revenue	=B13*B14
17	Cost	
18	Fixed Cost	=B5*B15
19		
20	Profit	=B16-B18

MODEL ANALYSIS

- WHAT-IF ANALYSIS EVALUATE HOW SPECIFIC COMBINATIONS OF MODEL INPUTS THAT REFLECT KEY MODEL ASSUMPTIONS AFFECT MODEL OUTPUTS (OFTEN CALLED SENSITIVITY ANALYSIS).
- EXCEL TOOLS
 - DATA TABLES
 - SCENARIO MANAGER
 - GOAL SEEK

GOAL SEEK

- GOAL SEEKING IS THE ABILITY TO CALCULATE BACKWARDS TO OBTAIN AN INPUT THAT WOULD RESULT IN A GIVEN OUTPUT.
- ALSO CALLED WHAT IF ANALYSIS OR BACK SOLVING.
- EXCEL ALLOWS YOU TO ADJUST A VALUE IN A FORMULA TO ACHIEVE A SPECIFIC GOAL. OR PUT ANOTHER WAY, EXCEL ALLOWS YOU TO DISCOVER THE INPUT VALUES NEEDED TO ACHIEVE A SPECIFIC GOAL.

GOAL SEEK

- FIND THE VALUE OF AN INPUT
 THAT PRODUCES A KNOWN
 RESULT WITHIN A
 SPREADSHEET
- EXAMPLE: FIND THE
 BREAKEVEN POINT IN THE
 OUTSOURCING DECISION
 MODEL

Set cell is B18; To value = 0; By changing cell is B14

- SCENARIO ANALYSIS IS A PROCESS OF ANALYZING POSSIBLE FUTURE EVENTS BY CONSIDERING ALTERNATIVE POSSIBLE OUTCOMES.
- SCENARIO ANALYSIS IS ONE OF THE MAIN FORMS OF PROJECTION DOES NOT TRY TO SHOW ONE EXACT PICTURE OF THE FUTURE.
- SCENARIO MANAGER IN EXCEL IS A TOOL THAT ALLOWS USERS TO DEAL WITH CHANGING UP TO 32 VARIABLES SIMULTANEOUSLY.
- USUALLY A MINIMUM OF THREE SCENARIOS ARE DEVELOPED, BEST CASE, LIKELY CASE, WORST CASE.

SCENARIO MANAGER

	Fixed Cost	Unit Variable Cost	Demand Volume
Best case	\$40,000	\$120	1,800
Worst case	\$60,000	\$140	1,000
Most likely case	\$55,000	\$125	1,500

2	
3	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	

Copyrig

Scenario Summary									
	Cur	rent Values:		Best case		Worst case	Most	likely case	
Changing Cells:									
\$B\$6	\$	50,000	\$	40,000	\$	60,000	\$	55,000	
\$B\$7	\$	125	\$	120	\$	140	\$	125	
\$B\$14		1500		1800		1000		1500	
Result Cells:									
\$B\$18	\$	(25,000)	\$	(59,000)	\$	25,000	\$	(20,000)	
\$B\$20	Man	ufacture	Mar	nufacture	Ou	tsource	Manu	ıfacture	
Notes: Current Values column represents values of changing cells at									

Notes: Current Values column represents values of changing cells at time Scenario Summary Report was created. Changing cells for each scenario are highlighted in gray.

- TABLES PROVIDE A STRAIGHTFORWARD VIEW OF YOUR DATA.
- INSTEAD OF CREATING DIFFERENT SCENARIOS YOU CAN CREATE A DATA TABLE TO QUICKLY TRY OUT DIFFERENT VALUES FOR FORMULAS.
 - ONE WAY TABLES PRESENT DATA FOR A SINGLE INPUT VARIABLES AFFECT ON THE OUTCOME.
 - TWO WAY TABLES PRESENT DATA FOR TWO INPUT VARIABLES' AFFECT ON THE OUTCOME

ONE WAY DATA TABLE

					1		
	Α	В	С	D	E	F	G
1	Outsourcing Decision Model						
2			Column		Fixed Costs	Difference	Decision
3	Data		input cell			\$ (25,000)	Manufacture
4			parec		\$ 30,000	\$ (45,000)	Manufacture
5	Manufactured in-house	K			\$ 40,000	\$ (35,000)	Manufacture
6	Fixed cost	\$ 50,000			\$ 50,000	\$(25,000)	Manufacture
7	Unit variable cost	\$ 125			\$ 60,000	\$(15,000)	Manufacture
8					\$ 70,000	\$ (5,000)	Manufacture
9	Purchased from supplier				\$ 80,000	\$ 5,000	Outsource
10	Unit cost	\$ 175			\$ 90,000	\$ 15,000	Outsource
11					\$ 100,000	\$ 25,000	Outsource
12	Model						
13							
14	Demand volume	1500					
15							
16	Total manufacturing cost	\$ 237,500					
17	Total purchased cost	\$ 262,500					
18	Difference	\$ (25,000)					
19		,					
20	Decision	Manufacture					

TWO WAY DATA TABLE

	A	В	С	D	E	F	G	н	1	1	К
1	Outsourcing Decision Model							••	•	,	K
2	3		Column		Fixed Cost			Variable Cost			
3	Data		input cell		Manufacture	\$ 100	\$ 110	\$ 120	\$ 130	\$ 140	\$ 150
4					\$ 30,000	Manufacture	Manufacture	Manufacture	Manufacture	Manufacture	Manufacture
5	Manufactured in-house					Manufacture			Manufacture	Manufacture	Outsource
6	Fixed cost	\$ 50,000			\$ 50,000	Manufacture	Manufacture	Manufacture	Manufacture	Manufacture	Outsource
7	Unit variable cost	\$ 125				Manufacture			Manufacture	Outsource	Outsource
8		K	Row			Manufacture	Manufacture	Manufacture	Outsource	Outsource	Outsource
9	Purchased from supplier		input cell		\$ 80,000	Manufacture	Manufacture	Manufacture	Outsource	Outsource	Outsource
10	Unit cost	\$ 175			\$ 90,000	Manufacture	Manufacture	Outsource	Outsource	Outsource	Outsource
11					\$ 100,000	Manufacture	Outsource	Outsource	Outsource	Outsource	Outsource
12	Model										
13											
14	Demand volume	1500									
15											
	Total manufacturing cost	\$ 237,500									
17	Total purchased cost	\$ 262,500									
18	Difference	\$ (25,000)									
19											
20	Decision	Manufacture									

- DATA SIMULATIONS USE RANDOM NUMBERS TO SIMULATE REAL WORLD MODELS.
- EXCEL HAS A RAND() FUNCTION FOR GENERATING RANDOM NUMBERS.
- SIMULATIONS LET YOU EXPERIMENT WITH DIFFERENT DECISIONS AND SEE THEIR OUTCOMES.
- YOU CAN USE REPEATED SIMULATION "TRIALS" TO ASSESS ODDS OF VARIOUS OUTCOMES.
- COMPANIES TYPICALLY USE SIMULATIONS TO ASSESS THE LIKELIHOOD OUTCOMES THAT MAY FOLLOW FROM DIFFERENT ACTIONS

- 5b) Create 90 simulations of the Passenger Revenue using VLOOKUP, the Likelihood Bins and the RAND function
- 5c) Create 90 simulations of the average annual profit using the Cost per Mile and Passenger Revenues
- 5d) Determine the probability of making a profit on the new Chicago Atlanta Route
- 5d) Determine the probability of making a profit on the new Chicago Atlanta Route

Likelihood bins	Passengers per Flight	Annual Passenger Revenue
0%	150	\$8,662,500.00
41%	175	\$10,106,250.00
71%	185	\$10,683,750.00
91%	135	\$7,796,250.00

Summary Information					
Average annual profit	\$1,448,448				
Probability of profit	81%				
Establish the route?					

SIMULATIONS

_			
Runs	Cost / Mile	Annual Revenue	Profit
1	\$40	\$10,106,250	\$2,285,328.81
2	\$38	\$8,662,500	\$1,185,536.41
3	\$37	\$10,683,750	\$3,432,810.64
4	\$37	\$8,662,500	\$1,420,183.26
5	\$35	\$8,662,500	\$1,761,723.23
6	\$47	\$8,662,500	(\$609,521.20)
7	\$40	\$8,662,500	\$892,272.43
8	\$30	\$8,662,500	\$2,693,852.09
9	\$43	\$8,662,500	\$251,319.06
10	\$49	\$10,106,250	\$456,854.97
11	\$43	\$10,106,250	\$1,643,053.29
12	\$41	\$10,106,250	\$2,093,517.66
13	\$32	\$8,662,500	\$2,309,283.80
14	\$47	\$10,683,750	\$1,413,048.36
15	\$45	\$8,662,500	(\$242,446.36)
16	\$49	\$8,662,500	(\$1,036,494.35)
17	\$50	\$10,683,750	\$909,970.32
18	\$44	\$10,683,750	\$2,076,814.35
19	\$42	\$10,106,250	\$1,926,409.37
20	\$46	\$8,662,500	(\$399,006.66)
21	\$47	\$7,796,250	(\$1,510,751.23)
22	\$45	\$7,796,250	(\$1,010,427.60)
23	\$36	\$10,683,750	\$ 3,551,023.30
24	\$46	\$10,106,250	\$1,111,924.31
25	\$42	\$8,662,500	\$470,447.66
26	\$43	\$10,683,750	\$2,289,803.04
27	\$39	\$8,662,500	\$1,074,241.07
28	\$32	\$10,106,250	\$3,897,590.34
29	\$43	\$10,106,250	\$1,601,567.80
30	\$48	\$10,106,250	\$694,139.50
31	\$50	\$8,662,500	(\$1,060,957.73)
32	\$44	\$7,796,250	(\$760,135.84)
33	\$48	\$7,796,250	(\$1,585,636.06)
34	\$33	\$10,106,250	\$3,537,029.53
35	\$39	\$10,683,750	\$2,999,275.53
36	\$42	\$10,106,250	\$1,881,568.28
37	\$32	\$8,662,500	\$2,340,323.15
.38.	\$43 l	\$10,683,750	\$2 152 781 86

- OPTIMISATION
- SOLVER IN EXCEL ALLOWS YOU TO FIND AN OPTIMAL (MAX OR MIN) VALUE FOR A FORMULA
 IN ONE CELL CALLED THE OBJECTIVE CELL SUBJECT TO CONSTRAINTS, OR LIMITS, ON THE
 VALUES OF OTHER FORMULA CELLS ON A WORKSHEET.
- SOLVER WORKS ON A GROUP OF CELLS CALLED DECISION VARIABLES THAT PARTICIPATE IN FORMULAS IN THE OBJECTIVE CELLS. SOLVER ADJUSTS THE VALUES IN THE DECISION CELLS TO SATISFY LIMITS AND PRODUCE THE RESULTS YOU WANT FOR THE OBJECTIVE CELL.
- IT FINDS THE VALUES NEEDED FOR THE BEST OUTCOME.

Solution: Price = \$428.57; profit = \$115,714.28

9-19