# Elementos extremos y clausuras

Clase 11

IIC 1253

Prof. Cristian Riveros

# Outline

Elementos extremos

Ínfimos y supremos

Clausuras

# Outline

Elementos extremos

Ínfimos y supremos

Clausuras

### Cotas superiores

#### Definición

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

■  $c \in A$  es una cota superior de S ssi  $\forall y \in S$ .  $y \le c$ 



### Cotas superiores

#### Definición

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

•  $c \in A$  es una cota superior de S ssi  $\forall y \in S$ .  $y \le c$ 



 $c \in A$  es una cota superior si es mayor o igual a todos los elementos de S

### Cotas superiores y maximales

#### Definición

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

- $c \in A$  es una cota superior de S ssi  $\forall y \in S$ .  $y \leq c$
- $\hat{x} \in S$  es un maximal ssi  $\forall y \in S$ .  $\hat{x} \le y \rightarrow \hat{x} = y$



### Cotas superiores y maximales

#### Definición

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

- $c \in A$  es una cota superior de S ssi  $\forall y \in S$ .  $y \leq c$
- $\hat{x} \in S$  es un maximal ssi  $\forall y \in S$ .  $\hat{x} \le y \rightarrow \hat{x} = y$

### ¿cuál es un **maximal** para $S_1$ ?

Sea 
$$(2^{\{1,2,3\}},\subseteq)$$
 y   
  $S_1 = \{\{1\},\{3\},\{1,2\},\{1,3\}\}.$ 



 $\hat{x} \in S$  es un maximal si **ningún elemento es mayor que**  $\hat{x}$ 

### Cotas superiores, maximales y máximo

#### Definición

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

- $c \in A$  es una cota superior de S ssi  $\forall y \in S$ .  $y \leq c$
- $\hat{x} \in S$  es un maximal ssi  $\forall y \in S$ .  $\hat{x} \leq y \rightarrow \hat{x} = y$
- $x^{\uparrow} \in S$  es un máximo ssi  $\forall y \in S$ .  $y \leq x^{\uparrow}$

### ¿cuál es un máximo para $S_1$ ?

Sea 
$$(2^{\{1,2,3\}}, \subseteq)$$
 y  
 $S_1 = \{\{1\}, \{3\}, \{1,2\}, \{1,3\}\}.$ 



## Cotas superiores, maximales y máximo

#### Definición

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

- $c \in A$  es una cota superior de S ssi  $\forall y \in S$ .  $y \leq c$
- $\hat{x} \in S$  es un maximal ssi  $\forall y \in S$ .  $\hat{x} \leq y \rightarrow \hat{x} = y$
- $x^{\uparrow} \in S$  es un máximo ssi  $\forall y \in S$ .  $y \leq x^{\uparrow}$

### ¿cuál es un **máximo** para $S_2$ ?

Sea  $(2^{\{1,2,3\}},\subseteq)$  y  $S_2 = \{\{1\}, \{3\}, \{1,3\}\}.$ 



### Cotas superiores, maximales y máximo

#### Definición

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

- $c \in A$  es una cota superior de S ssi  $\forall y \in S$ .  $y \leq c$
- $\hat{x} \in S$  es un maximal ssi  $\forall y \in S$ .  $\hat{x} \leq y \rightarrow \hat{x} = y$
- $\mathbf{x}^{\uparrow} \in S$  es un máximo ssi  $\forall y \in S$ .  $y \leq x^{\uparrow}$

 $x^{\uparrow} \in S$  es un máximo si  $x^{\uparrow}$  es mayor o igual a cualquier elemento en S

### Cotas inferiores

#### Definición

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

•  $c \in A$  es una cota inferior de S ssi  $\forall y \in S$ .  $c \le y$ 



### Cotas inferiores

#### Definición

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

•  $c \in A$  es una cota inferior de S ssi  $\forall y \in S$ .  $c \le y$ 



### Cotas inferiores y minimales

#### Definición

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

- $c \in A$  es una cota inferior de S ssi  $\forall y \in S. c \leq y$
- $\check{x} \in S$  es un minimal ssi  $\forall y \in S$ .  $y \leq \check{x} \rightarrow \check{x} = y$

### ¿cuál es un **minimal** para $T_2$ ?

Sea 
$$(\mathbb{N} - \{0\}, |)$$
 y  $\mathcal{T}_2 = \{2, 3, 5, 10, 15, 20\}.$ 



 $\breve{x} \in S$  es un minimal si **ningún elemento es menor que**  $\breve{x}$ 

## Cotas inferiores, minimales y mínimo

#### Definición

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

- $c \in A$  es una cota inferior de S ssi  $\forall y \in S$ .  $c \le y$
- $\check{x} \in S$  es un minimal ssi  $\forall y \in S$ .  $y \leq \check{x} \rightarrow \check{x} = y$
- $\mathbf{z}^{\downarrow} \in S$  es un mínimo ssi  $\forall y \in S$ .  $x^{\downarrow} \leq y$

### ¿cuál es un **mínimo** para $T_2$ ?

Sea 
$$(\mathbb{N} - \{0\}, |)$$
 y  
 $T_2 = \{2, 3, 5, 10, 15, 20\}.$ 



## Cotas inferiores, minimales y mínimo

#### Definición

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

- $c \in A$  es una cota inferior de S ssi  $\forall y \in S$ .  $c \le y$
- $\check{x} \in S$  es un minimal ssi  $\forall y \in S$ .  $y \leq \check{x} \rightarrow \check{x} = y$
- $\mathbf{z}^{\downarrow} \in S$  es un mínimo ssi  $\forall y \in S$ .  $x^{\downarrow} \leq y$

### ¿cuál es un **mínimo** para $T_1$ ?

Sea  $(\mathbb{N} - \{0\}, |)$  y  $T_1 = \{5, 10, 15, 20\}.$ 



## Cotas inferiores, minimales y mínimo

#### Definición

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

- $c \in A$  es una cota inferior de S ssi  $\forall y \in S$ .  $c \le y$
- $\check{x} \in S$  es un minimal ssi  $\forall y \in S$ .  $y \leq \check{x} \rightarrow \check{x} = y$
- $x^{\downarrow} \in S$  es un mínimo ssi  $\forall y \in S$ .  $x^{\downarrow} \leq y$

 $x^{\downarrow} \in S$  es un mínimo si  $x^{\downarrow}$  es menor o igual a cualquier elemento en S

## Sobre minimales y mínimos

#### Preguntas

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

- 1. Si S tiene un elemento mínimo, entonces ¿es único?
- 2. ¿tiene S siempre un mínimo?
- 3. Si x es mínimo, entonces ¿es x minimal?
- 4. Si x es minimal, entonces ¿es x mínimo?
- 5. ¿tiene S siempre un elemento minimal?

#### Demuestre o de un contra-ejemplo.

...lo mismo es cierto sobre maximales / máximos.

# Outline

Elementos extremos

Ínfimos y supremos

Clausuras

# Ínfimo de un conjunto

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

### Definición

Decimos que  $c^* \in A$  es un **ínfimo** de S si:

- 1.  $c^*$  es una cota inferior de S y
- 2. para toda cota inferior c de S se cumple que  $c \le c^*$ .



# Ínfimo de un conjunto

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

#### Definición

Decimos que  $c^* \in A$  es un **ínfimo** de S si:

- 1.  $c^*$  es una cota inferior de S y
- 2. para toda cota inferior c de S se cumple que  $c \le c^*$ .



Para cualquier  $T \subseteq \mathbb{N} - \{0\}$ , ¿quién es el **ínfimo** de T según  $(\mathbb{N} - \{0\}, |)$ ?

# Ínfimo de un conjunto

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

#### Definición

Decimos que  $c^* \in A$  es un **ínfimo** de S si:

- 1.  $c^*$  es una cota inferior de S y
- 2. para toda cota inferior c de S se cumple que  $c \le c^*$ .

#### c\* es la mayor de las cotas inferiores

#### Definición alternativa

Decimos que  $c^* \in A$  es un **infimo** de S si c es un máximo del conjunto:

$$S_{\geq} = \{ c \mid c \text{ es una cota inferior de } S \}$$

## Supremo de un conjunto

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

#### Definición

Decimos que  $c^* \in A$  es un supremo de S si:

- 1.  $c^*$  es una cota superior de S y
- 2. para toda cota superior c de S se cumple que  $c^* \le c$ .

# ¿cuál es un supremo para $T_2$ ?

Sea 
$$(\mathbb{N} - \{0\}, |)$$
 y  $T_2 = \{2, 3, 5, 10, 15, 20\}.$ 



Para cualquier  $T \subseteq \mathbb{N} - \{0\}$ , ¿quién es el **supremo** de T según  $(\mathbb{N} - \{0\}, |)$ ?

### Supremo de un conjunto

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

#### Definición

Decimos que  $c^* \in A$  es un supremo de S si:

- 1.  $c^*$  es una cota superior de S y
- 2. para toda cota superior c de S se cumple que  $c^* \le c$ .

#### c\* es el menor de las cotas superiores

#### Definición alternativa

Decimos que  $c^* \in A$  es un supremo de S si c es un mínimo del conjunto:

$$S_{\leq} = \{ c \mid c \text{ es una cota superior de } S \}$$

## Sobre ínfimos y supremos

#### Preguntas

Sea  $(A, \leq)$  un orden parcial y  $S \subseteq A$  distinto de  $\emptyset$ .

- 1. Si *S* tiene un ínfimo, entonces ; es único?
- 2. Si x es el mínimo, ¿es x el ínfimo?
- 3. Si S NO tiene mínimo, ¿entonces tiene ínfimo?

#### Demuestre o de un contra-ejemplo.

...lo mismo es cierto sobre máximos / supremos.

# Outline

Elementos extremos

Ínfimos y supremos

Clausuras

## Clausura refleja

Sea A un conjunto y  $R \subseteq A \times A$  una relación.

#### Definición

Una relación  $R' \subseteq A \times A$  es la clausura refleja de R si:

- 1.  $R \subseteq R^r$ .
- 2.  $R^r$  es refleja.
- 3. para toda otra relación refleja R' con  $R \subseteq R'$  se cumple  $R' \subseteq R'$ .

 $R^r$  es la menor relación refleja que contiene a R.

### ¿cuál es la clausura refleja de esta relación?



### Clausura refleja

Sea A un conjunto y  $R \subseteq A \times A$  una relación.

#### Definición

Una relación  $R' \subseteq A \times A$  es la clausura refleja de R si:

- 1.  $R \subseteq R^r$ .
- 2.  $R^r$  es refleja.
- 3. para toda otra relación refleja R' con  $R \subseteq R'$  se cumple  $R' \subseteq R'$ .

 $R^r$  es la menor relación refleja que contiene a R.

¿cuál es la relación de  $R^r$  con el **mínimo** de un conjunto?

### Clausura transitiva

Sea A un conjunto y  $R \subseteq A \times A$  una relación.

#### Definición

Una relación  $R^t \subseteq A \times A$  es la clausura transitiva de R si:

- 1.  $R \subseteq R^t$ .
- 2.  $R^t$  es transitiva.
- 3. para toda otra relación transitiva R' con  $R \subseteq R'$  se cumple  $R^t \subseteq R'$ .

 $R^t$  es la menor relación transitiva que contiene a R.

### ¿cuál es la clausura transitiva de esta relación?



### Clausura transitiva

Sea A un conjunto y  $R \subseteq A \times A$  una relación.

#### Definición

Una relación  $R^t \subseteq A \times A$  es la clausura transitiva de R si:

- 1.  $R \subseteq R^t$ .
- 2.  $R^t$  es transitiva.
- 3. para toda otra relación transitiva R' con  $R \subseteq R'$  se cumple  $R^t \subseteq R'$ .

 $R^{t}$  es la menor relación transitiva que contiene a R.

¿cuál es la relación de  $R^t$  con el mínimo de un conjunto?

# Clausura transitiva y clausura refleja

- $\blacksquare$  ¿siempre existe  $R^r$  o  $R^t$  para un R cualquiera?
- lacktriangle ¿cómo podemos calcular  $R^r$  o  $R^t$  (si existen)?

# ¿cómo calculamos la clausura refleja de una relación?

### Proposición

Sea A un conjunto y  $R \subseteq A \times A$  una relación. Entonces:

$$R^r = R \cup I_A$$

donde  $I_A = \{(x, x) \mid x \in A\}$  es la relación identidad.

Demostración: ejercicio.

# ¿cómo calculamos la clausura refleja de una relación?

### Proposición

Sea A un conjunto y  $R \subseteq A \times A$  una relación. Entonces:

$$R^r = R \cup I_A$$

donde  $I_A = \{(x, x) \mid x \in A\}$  es la relación identidad.

### Propiedad

 $(R^r)^r = R^r$  para todo  $R \subseteq A \times A$ .

Sea A un conjunto y  $R \subseteq A \times A$  una relación.

#### Recordatorio

- $R \circ R = \{ (x,y) \mid \exists z \in A. (x,z) \in R \land (z,y) \in R \}$
- Se define  $R^1 = R$  y  $R^2 = R \circ R$ .
- Se define  $R^i = R^{i-1} \circ R$  para i > 1.

### Proposición

Sea A un conjunto y  $R \subseteq A \times A$  una relación. Entonces:

$$R^t = \bigcup_{i=1}^{\infty} R^i$$

Demostración: 
$$R^t = \bigcup_{i=1}^{\infty} R^i$$

¿qué debemos demostrar?

- 1.  $R \subseteq \bigcup_{i=1}^{\infty} R^i$ .
- 2.  $\bigcup_{i=1}^{\infty} R^i$  es transitiva.
- 3. Para toda otra relación transitiva R' con  $R \subseteq R'$  se cumple:





### Demostración: $R^t = \bigcup_{i=1}^{\infty} R^i$

2.  $\bigcup_{i=1}^{\infty} R^i$  es transitiva.

**PD:** Si 
$$(x,y) \in \bigcup_{i=1}^{\infty} R^i$$
 y  $(y,z) \in \bigcup_{i=1}^{\infty} R^i$ , entonces  $(x,z) \in \bigcup_{i=1}^{\infty} R^i$ .

Supongamos que  $(x, y) \in \bigcup_{i=1}^{\infty} R^i$  y  $(y, z) \in \bigcup_{i=1}^{\infty} R^i$ .

$$\Rightarrow$$
 existe  $k$  y  $j$  tal que  $(x, y) \in R^k$  y  $(y, z) \in R^j$ .

$$\Rightarrow$$
  $(x,z) \in R^k \circ R^j = R^{k+j}$ 

$$\Rightarrow$$
  $(x,z) \in \bigcup_{i=1}^{\infty} R^i$ 

Por lo tanto,  $\bigcup_{i=1}^{\infty} R^i$  es transitiva.

Demostración: 
$$R^t = \bigcup_{i=1}^{\infty} R^i$$

3. Para toda R' transitiva con  $R \subseteq R'$  se cumple:  $\bigcup_{i=1}^{\infty} R^i \subseteq R'$ .

Sea R' transitiva tal que  $R \subseteq R'$ .

**PD:** para todo 
$$i \ge 1$$
,  $R^i \subseteq R'$ . (por inducción)

Caso base: i = 1.

**Caso inductivo:** se cumple  $R^i \subseteq R'$  y demostramos que  $R^{i+1} \subseteq R'$ .

Supongamos que 
$$(x, z) \in R^{i+1}$$
. (PD:  $(x, z) \in R'$ )

$$\Rightarrow$$
 existe  $y \in A$ , tal que  $(x, y) \in R^i$  y  $(y, z) \in R$ .

$$\Rightarrow$$
  $(x,y) \in R'$  y  $(y,z) \in R'$ . (¿por qué?)

$$\Rightarrow$$
  $(x,z) \in R'$ . (¿por qué?)

Por lo tanto,  $\bigcup_{i=1}^{\infty} R^i \subseteq R'$ .

Sea A un conjunto y  $R \subseteq A \times A$  una relación.

### Proposición

Sea A un conjunto y  $R \subseteq A \times A$  una relación. Entonces:

$$R^t = \bigcup_{i=1}^{\infty} R^i$$

#### Algunas preguntas:

- Dado un R finito, ¿podemos computar  $R^t$ ?
- ¿es verdad que  $(R^t)^t = R^t$ ?

#### Demostración (ejercicio)