

Small Polynomial Path Orders in TCT

Naohi Eguchi Martin Avanzini Georg Moser Michael Schaper

Institute of Computer Science University of Innsbruck, Austria

August 29, 2013

Tyrolean Complexity Tool TCT

► (runtime) complexity analyser for term rewrite systems (TRSs)

http://cl-informatik.uibk.ac.at/software/tct

Tyrolean Complexity Tool TCT

► (runtime) complexity analyser for term rewrite systems (TRSs)

http://cl-informatik.uibk.ac.at/software/tct

Content

- small polynomial path orders
- extension to complexity problems of TcT
- 3 conclusion & experiments

Bellantoni & Cooks Definition of FP

Predicative Recursion on Notation

$$f(\varepsilon, \vec{x}; \vec{y}) = g(\vec{x}; \vec{y})$$

$$f(zi, \vec{x}; \vec{y}) = h_i(z, \vec{x}; \vec{y}, f(z, \vec{x}; \vec{y})) \quad \text{for } i = 0, 1$$

uses separation of arguments

$$f(\underline{n_1,\ldots,n_l};\underline{n_{l+1},\ldots,n_{l+k}})$$

Stephen Bellantoni and Stephen A. Cook

A New Recursion-Theoretic Characterization of the Polytime Functions.

Computational Complexity, Vol. 2, pages 97-110, 1992

Bellantoni & Cooks Definition of FP

Predicative Recursion on Notation

$$f(\varepsilon, \vec{x}; \vec{y}) = g(\vec{x}; \vec{y})$$

$$f(zi, \vec{x}; \vec{y}) = h_i(z, \vec{x}; \vec{y}, f(z, \vec{x}; \vec{y})) \quad \text{for } i = 0, 1$$

uses separation of arguments

$$f(\underbrace{n_1,\ldots,n_l}_{normal};\underbrace{n_{l+1},\ldots,n_{l+k}}_{safe})$$

Weak Safe Composition

$$f(\vec{x}; \vec{y}) = g(\vec{x}; h_1(\vec{x}; \vec{y}), \dots, h_k(\vec{x}; \vec{y}))$$

Bellantoni & Cooks Definition of FP

Predicative Recursion on Notation

$$f(\varepsilon, \vec{x}; \vec{y}) = g(\vec{x}; \vec{y})$$

$$f(zi, \vec{x}; \vec{y}) = h_i(z, \vec{x}; \vec{y}, f(z, \vec{x}; \vec{y})) \quad \text{for } i = 0, 1$$

uses separation of arguments

$$f(\underbrace{n_1,\ldots,n_l}_{normal};\underbrace{n_{l+1},\ldots,n_{l+k}}_{safe})$$

Weak Safe Composition

$$f(\vec{x}; \vec{y}) = g(\vec{x}; h_1(\vec{x}; \vec{y}), \dots, h_k(\vec{x}; \vec{y}))$$

 complexity depends essentially only on normal argument and nesting of recursive functions

```
f(s_k,\ldots,s_1;s_{k+1},\ldots,s_{k+1})>_{\text{spop}*} t \text{ if }
```

1 $s_i \geqslant_{\text{spop}*} t$ for some argument s_i

$$f(s_k,\ldots,s_1;s_{k+1},\ldots,s_{k+1})>_{\mathsf{spop}*} t \mathsf{if}$$

- **1** $s_i \geqslant_{\text{spop}*} t$ for some argument s_i
- 2 $t = g(t_m, \dots, t_1; t_{m+n}, \dots, t_{m+1})$ where $f \in \mathcal{D}$ and f > g
 - $f(s_k, \ldots, s_1; s_{k+1}, \ldots, s_{k+1}) \triangleright_n t_j$ for all normal arguments t_j
 - $f(s_k, \ldots, s_1; s_{k+1}, \ldots, s_{k+1}) >_{\text{spop}*} t_j$ for all safe arguments t_j
 - t contains symbol f at most once

$$f(s_1,\ldots,s_k;\ldots)
ightharpoonup_n t:\Leftrightarrow t$$
 is subterm of normal argument s_i

$$f(s_k,\ldots,s_1;s_{k+1},\ldots,s_{k+1})>_{\mathsf{spop}*} t \mathsf{if}$$

- **1** $s_i \geqslant_{\mathsf{spop}*} t$ for some argument s_i
- 2 $t = g(t_m, \ldots, t_1; t_{m+n}, \ldots, t_{m+1})$ where $f \in \mathcal{D}$ and f > g
 - $f(s_k, \ldots, s_1; s_{k+1}, \ldots, s_{k+1}) \triangleright_n t_j$ for all normal arguments t_j
 - $f(s_k, \ldots, s_1; s_{k+1}, \ldots, s_{k+1}) >_{\text{spop}*} t_j$ for all safe arguments t_j
 - t contains symbol f at most once

$$f(s_k,\ldots,s_1;s_{k+1},\ldots,s_{k+1})>_{\mathsf{spop}*} t \mathsf{if}$$

- **1** $s_i \geqslant_{\text{spop}*} t$ for some argument s_i
- 2 $t = g(t_m, \dots, t_1; t_{m+n}, \dots, t_{m+1})$ where $f \in \mathcal{D}$ and f > g
 - $f(s_k, \ldots, s_1; s_{k+1}, \ldots, s_{k+1}) \triangleright_n t_j$ for all normal arguments t_j
 - $f(s_k, \ldots, s_1; s_{k+l}, \ldots, s_{k+1}) >_{\mathsf{spop}*} t_j$ for all safe arguments t_j
 - t contains symbol f at most once

$$f(\vec{x}; \vec{y}) >_{\mathsf{spop}*} g(\vec{x}; h_1(\vec{x}; \vec{y}), \dots, h_k(\vec{x}; \vec{y}))$$

$$f(s_k,\ldots,s_1;s_{k+1},\ldots,s_{k+1})>_{\mathsf{spop}*} t$$
 if

- **1** $s_i \geqslant_{\mathsf{spop}*} t$ for some argument s_i
- 2 $t = g(t_m, \ldots, t_1; t_{m+n}, \ldots, t_{m+1})$ where $f \in \mathcal{D}$ and f > g
 - $f(s_k,\ldots,s_1;s_{k+l},\ldots,s_{k+1}) \triangleright_n t_j$ for all normal arguments t_j
 - $f(s_k, \ldots, s_1; s_{k+1}, \ldots, s_{k+1}) >_{\text{spop}*} t_j$ for all safe arguments t_j
 - t contains symbol f at most once
- 3 $t = f(t_k, \ldots, t_1; t_{k+1}, \ldots, t_{k+1})$ where $f \in \mathcal{D}$
 - $\langle s_1, \ldots, s_k \rangle >_{\mathsf{spop}*} \langle t_{\pi(1)}, \ldots, t_{\pi(k)} \rangle$
 - $\langle s_{k+1}, \ldots, s_{k+l} \rangle >_{\text{spop}*} \langle t_{\tau(k+1)}, \ldots, t_{\tau(k+l)} \rangle$

```
f(s_k,\ldots,s_1;s_{k+1},\ldots,s_{k+1})>_{\mathsf{spop}*} t \mathsf{if}
```

- **1** $s_i \geqslant_{\text{spop}*} t$ for some argument s_i
- 2 $t = g(t_m, \ldots, t_1; t_{m+n}, \ldots, t_{m+1})$ where $f \in \mathcal{D}$ and f > g
 - $f(s_k, \ldots, s_1; s_{k+1}, \ldots, s_{k+1}) \triangleright_n t_j$ for all normal arguments t_j
 - $f(s_k, \ldots, s_1; s_{k+l}, \ldots, s_{k+1}) >_{\text{spop}*} t_j$ for all safe arguments t_j
 - t contains symbol f at most once
- **3** $t = f(t_k, ..., t_1; t_{k+1}, ..., t_{k+1})$ where $f \in \mathcal{D}$
 - $\langle s_1, \ldots, s_k \rangle >_{\mathsf{spop}*} \langle t_{\pi(1)}, \ldots, t_{\pi(k)} \rangle$
 - $\langle s_{k+1}, \ldots, s_{k+l} \rangle >_{\text{spop}*} \langle t_{\tau(k+1)}, \ldots, t_{\tau(k+l)} \rangle$

$$\begin{split} &f(\varepsilon, \vec{x}; \vec{y})>_{\mathsf{spop}*} g(\vec{x}; \vec{y}) \\ &f(zi, \vec{x}; \vec{y})>_{\mathsf{spop}*} h_i(z, \vec{x}; \vec{y}, f(z, \vec{x}; \vec{y})) \quad \text{for } i=0,1 \end{split}$$

$$f(s_k,\ldots,s_1;s_{k+1},\ldots,s_{k+1})>_{\mathsf{spop}*} t \mathsf{if}$$

- **1** $s_i \geqslant_{\text{spop}*} t$ for some argument s_i
- 2 $t = g(t_m, \ldots, t_1; t_{m+n}, \ldots, t_{m+1})$ where $f \in \mathcal{D}$ and f > g
 - $f(s_k, \ldots, s_1; s_{k+1}, \ldots, s_{k+1}) \triangleright_n t_j$ for all normal arguments t_j
 - $f(s_k, \ldots, s_1; s_{k+1}, \ldots, s_{k+1}) >_{\text{spop}*} t_j$ for all safe arguments t_j
 - t contains symbol f at most once
- $t = f(t_k, \ldots, t_1; t_{k+1}, \ldots, t_{k+1})$ where $f \in \mathcal{D}_{rec}$
 - $\langle s_1, \ldots, s_k \rangle >_{\mathsf{spop}*} \langle t_{\pi(1)}, \ldots, t_{\pi(k)} \rangle$
 - $\langle s_{k+1}, \ldots, s_{k+l} \rangle >_{\text{spop}*} \langle t_{\tau(k+1)}, \ldots, t_{\tau(k+l)} \rangle$

assume designated set of recursive symbols $\mathcal{D}_{\mathsf{rec}} \subseteq \mathcal{D}$

$$f(s_k,\ldots,s_1;s_{k+1},\ldots,s_{k+1})>_{\mathsf{spop}*} t \mathsf{if}$$

- **1** $s_i \geqslant_{\text{spop}*} t$ for some argument s_i
- 2 $t = g(t_m, \ldots, t_1; t_{m+n}, \ldots, t_{m+1})$ where $f \in \mathcal{D}$ and f > g
 - $f(s_k,\ldots,s_1;s_{k+l},\ldots,s_{k+1}) \triangleright_n t_j$ for all normal arguments t_j
 - $f(s_k, \ldots, s_1; s_{k+1}, \ldots, s_{k+1}) >_{\text{spop}*} t_j$ for all safe arguments t_j
 - t contains symbol f at most once
- 3 $t = f(t_k, \ldots, t_1; t_{k+1}, \ldots, t_{k+1})$ where $f \in \mathcal{D}_{rec}$
 - $\langle s_1, \ldots, s_k \rangle >_{\mathsf{spop}*} \langle t_{\pi(1)}, \ldots, t_{\pi(k)} \rangle$
 - $\langle s_{k+1}, \ldots, s_{k+l} \rangle >_{\text{spop}*} \langle t_{\tau(k+1)}, \ldots, t_{\tau(k+l)} \rangle$

Runtime Complexity Analysis

▶ the depth of recursion rd(f) of symbol f is defined as follows:

$$\operatorname{rd}_{>}(f) := \begin{cases} 1 + \max\{\operatorname{rd}(g) \mid f > g\} & \text{if } f \in \mathcal{D}_{\operatorname{rec}} \\ \max\{\operatorname{rd}(g) \mid f > g\} & \text{otherwise} \end{cases}$$

Runtime Complexity Analysis

▶ the depth of recursion rd(f) of symbol f is defined as follows:

$$\operatorname{rd}_{>}(f) := egin{cases} 1 + \max\{\operatorname{rd}(g) \mid f > g\} & ext{if } f \in \mathcal{D}_{\operatorname{rec}} \\ \max\{\operatorname{rd}(g) \mid f > g\} & ext{otherwise} \end{cases}$$

Theorem

Suppose $\mathcal R$ is constructor TRS compatible with $>_{\mathsf{spop}*}$. $\mathcal R \subseteq >_{\mathsf{spop}*}$

Then the innermost runtime complexity of $\mathcal R$ is polynomial, where the degree of the polynomial is the maximal depth of recursion.

Runtime Complexity Analysis

Example

```
1: +(0; y) \rightarrow y 3: \times (0, y;) \rightarrow 0

2: +(s(x); y) \rightarrow s(+(x; y)) 4: \times (s(x), y;) \rightarrow +(y; \times (x, y;))

5: sq(x;) \rightarrow \times (x, x;)
```

- ▶ TRS is compatible with $>_{spop*}$ using precedence $sq > \times > + > s$
- ▶ only × and + are recursive, but not sq
- ▶ innermost runtime complexity is bounded by quadratic polynomial

small polynomial path orders in TCT

Complexity Problem in TCT

- ▶ (complexity) problem \mathcal{P} is tuple $\langle \mathcal{S}/\mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle$
 - $\bullet \to_{\mathcal{P}}$ is binary relation on terms

$$\underline{\mathcal{Q}}_{\mathcal{S}/\mathcal{W}} := \underline{\mathcal{Q}}_{\mathcal{W}}^* \cdot \underline{\mathcal{Q}}_{\mathcal{S}} \cdot \underline{\mathcal{Q}}_{\mathcal{W}}^*$$

- S,W are TRSs
- $s \xrightarrow{\mathcal{Q}}_{\mathcal{R}} t$ if $s \to_{\mathcal{R}} t$ and arguments of redex in s are \mathcal{Q} normal forms
- ${f 2}$ ${f \mathcal{T}}$ is set of starting terms
- **ightharpoonup** complexity function of $\mathcal P$ is

$$\operatorname{cp}_{\mathcal{P}}(n) := \max\{\operatorname{dh}(t, \rightarrow_{\mathcal{P}}) \mid t \in \mathcal{T} \text{ is term of size upto } n\}$$

Complexity Problem in TCT

- ▶ (complexity) problem \mathcal{P} is tuple $\langle \mathcal{S}/\mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle$
 - $\bullet \to_{\mathcal{P}}$ is binary relation on terms

$$\underline{\mathcal{Q}}_{\mathcal{S}/\mathcal{W}} := \underline{\mathcal{Q}}_{\mathcal{W}}^* \cdot \underline{\mathcal{Q}}_{\mathcal{S}} \cdot \underline{\mathcal{Q}}_{\mathcal{W}}^*$$

- S.W are TRSs
- $s \xrightarrow{\mathcal{Q}}_{\mathcal{R}} t$ if $s \to_{\mathcal{R}} t$ and arguments of redex in s are \mathcal{Q} normal forms
- $2 \mathcal{T}$ is set of starting terms
- ightharpoonup complexity function of $\mathcal P$ is

$$\operatorname{cp}_{\mathcal{P}}(n) := \max\{\operatorname{dh}(t, \to_{\mathcal{P}}) \mid t \in \mathcal{T} \text{ is term of size upto } n\}$$

- lacktriangleright innermost problem if normal forms of $\mathcal Q$ are normal forms of $\mathcal S$, $\mathcal W$
- ▶ runtime problem if start terms T are constructor based

on complexity problems

Theorem (A)

Consider innermost runtime problem $\mathcal{P} = \langle \mathcal{S}/\mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle$

- lacktriangle lacktriangle and lacktriangle are constructor TRSs
- 2 $S \subseteq >_{\mathsf{spop}*}$ and $W \subseteq \geqslant_{\mathsf{spop}*}$

Then the complexity of $\mathcal P$ is polynomial, where the degree of the polynomial is the maximal depth of recursion.

on complexity problems

Example

consider innermost runtime problem $\mathcal{P}_{\times} := \langle \{3,4\}/\{1,2\}, \{1-4\}, \mathcal{T} \rangle$

1:
$$+(0,y) \rightarrow y$$
 3: $\times (0,y) \rightarrow 0$

2:
$$+(s(x), y) \rightarrow s(+(x, y))$$
 4: $\times (s(x), y) \rightarrow +(y, \times (x, y))$

Observations

- ► complexity analysis needs to trace only applications of ×-rules
- ×-rule applications only second argument of +

on complexity problems

Example

consider innermost runtime problem $\mathcal{P}_{\times} := \langle \{3,4\}/\{1,2\}, \{1-4\}, \mathcal{T} \rangle$

1:
$$+(0,y) \to y$$
 3: $\times (0,y) \to 0$
2: $+(s(x),y) \to s(+(x,y))$ 4: $\times (s(x),y) \to +(y,\times(x,y))$

Observations

- ▶ complexity analysis needs to trace only applications of ×-rules
- ×-rule applications only second argument of +

Idea

- arguments never containing ×-redex can be dropped
- ▶ to this end, incorporate argument filtering in order

with argument filtering

ightharpoonup argument filtering π is mapping on function symbols f to argument position or list of argument positions

with argument filtering

- ightharpoonup argument filtering π is mapping on function symbols f to argument position or list of argument positions
- ► for order > on terms, define

$$s >^{\pi} t : \Leftrightarrow \pi(s) > \pi(t)$$

$$\pi(t) := \begin{cases} t & \text{if } t \text{ a variable} \\ \pi(t_i) & \text{if } t = f(t_1, \dots, t_n) \text{ and } \pi(f) = i \\ f(\pi(t_{i_1}), \dots, \pi(t_{i_k})) & \text{if } t = f(t_1, \dots, t_n) \text{ and } \pi(f) = [i_1, \dots, i_k] \end{cases}$$

with argument filtering

Consider innermost runtime problem $\mathcal{P} = \langle \mathcal{S}/\mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle$

- \odot S and \mathcal{W} are constructor TRSs
- 2 $\mathcal{S} \subseteq >_{\mathsf{spop}*}^{\pi} \mathsf{and} \ \mathcal{W} \subseteq \geqslant_{\mathsf{spop}*}^{\pi}$
- 3π is argument filtering
 - " π does not delete S-redexes"

account for all S-applications

Then the complexity of \mathcal{P} is polynomial, where the degree of the polynomial is the maximal depth of recursion.

with argument filtering

Consider innermost runtime problem $\mathcal{P} = \langle \mathcal{S}/\mathcal{W}, \mathcal{Q}, \mathcal{T} \rangle$

- \bullet S and \mathcal{W} are constructor TRSs
- 2 $\mathcal{S} \subseteq >_{\mathsf{spop}*}^{\pi} \mathsf{and} \ \mathcal{W} \subseteq \geqslant_{\mathsf{spop}*}^{\pi}$
- \odot π is argument filtering
 - " π does not delete S-redexes" account for all S-applications
 - $\pi(f)$ is list for every symbol f defined by $\mathcal S$ don't break predicative recursion

Then the complexity of \mathcal{P} is polynomial, where the degree of the polynomial is the maximal depth of recursion.

with argument filtering - Example 1

Example

1:
$$+(0,y) \to y$$
 3: $\times (0,y) \to 0$

2:
$$+(s(x), y) \rightarrow s(+(x, y))$$
 4: $\times (s(x), y) \rightarrow +(y, \times (x, y))$

with argument filtering - Example 1

Example

1:
$$+(0,y) \to y$$
 3: $\times (0,y) \to 0$

2:
$$+(s(x), y) \rightarrow s(+(x, y))$$
 4: $\times(s(x), y) \rightarrow +(y, \times(x, y))$

$$\pi(s) = \{1\}$$
 $\pi(+) = \{1, 2\}$ $\pi(\times) = \{1, 2\}$

with argument filtering - Example 1

Example

consider innermost runtime problem
$$\mathcal{P}_{\times} := \langle \{3,4\}/\{1,2\}, \{1-4\}, \mathcal{T} \rangle$$

1:
$$+(0,y) \to y$$
 3: $\times (0,y) \to 0$
2: $+(s(x),y) \to s(+(x,y))$ 4: $\times (s(x),y) \to +(y,\times(x,y))$

$$\pi(s) = \{1\}$$
 $\pi(+) = \{1, 2\}$ $\pi(\times) = \{1, 2\}$ $\pi(s) = \{1\}$ $\pi(+) = 2$ $\pi(\times) = \{1, 2\}$

with argument filtering - Example 1

Example

1:
$$+(0,y) \to y$$
 3: $\times (0,y) \to 0$

2:
$$+(s(x), y) \rightarrow s(+(x, y))$$
 4: $\times (s(x), y) \rightarrow +(y, \times (x, y))$

$$\pi(s) = \{1\}$$
 $\pi(+) = \{1, 2\}$ $\pi(\times) = \{1, 2\}$ $\pi(s) = \{1\}$ $\pi(+) = 2$ $\pi(\times) = \{1, 2\}$ $\pi(s) = \{1\}$ $\pi(+) = 2$ $\pi(\times) = \{1\}$

with argument filtering - Example 1

Example

1:
$$+(0,y) \to y$$
 3: $\times (0,y) \to 0$

2:
$$+(s(x), y) \rightarrow s(+(x, y))$$
 4: $\times (s(x), y) \rightarrow +(y, \times (x, y))$

$$\pi(s) = \{1\}$$
 $\pi(+) = \{1, 2\}$ $\pi(\times) = \{1, 2\}$ $\pi(s) = \{1\}$ $\pi(+) = 2$ $\pi(\times) = \{1, 2\}$ $\pi(s) = \{1\}$ $\pi(+) = 2$ $\pi(\times) = \{1\}$ $\pi(s) = \{1\}$ $\pi(+) = 1$ $\pi(\times) = \{1\}$

with argument filtering - Example 1

Example

1:
$$+(0, y) \rightarrow y$$
 3: $\times (0, y) \rightarrow 0$
2: $+(s(x), y) \rightarrow s(+(x, y))$ 4: $\times (s(x), y) \rightarrow +(y, \times(x, y))$

$$\pi(s) = \{1\}$$
 $\pi(+) = \{1, 2\}$ $\pi(\times) = \{1, 2\}$ $\pi(s) = \{1\}$ $\pi(+) = 2$ $\pi(\times) = \{1, 2\}$ $\pi(s) = \{1\}$ $\pi(+) = 2$ $\pi(\times) = \{1\}$ $\pi(s) = \{1\}$ $\pi(+) = 1$ $\pi(\times) = \{1\}$ $\pi(s) = \{1\}$ $\pi(+) = 2$ $\pi(\times) = 1$

with argument filtering - Example 2

Example

- 1: $\mathsf{half}(0) \to 0$ 3: $\mathsf{half}^\sharp(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{half}^\sharp(x)$
- $\mathbf{2}: \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{half}(x)) \qquad \mathbf{4}: \ \mathsf{log}^\sharp(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{log}^\sharp(\mathsf{s}(\mathsf{half}(x)))$

- ▶ obtained by dependency pair transformation on AG01/#3.7
- ► rule 4 not orientable by >_{spop*}

with argument filtering - Example 2

Example

- $\mathbf{1}: \qquad \mathsf{half}(\mathsf{0}) \to \mathsf{0} \qquad \qquad \mathbf{3}: \mathsf{half}^\sharp(\mathsf{s}(\mathsf{s}(\mathsf{x}))) \to \mathsf{half}^\sharp(\mathsf{x})$
- $2: \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{half}(x)) \qquad 4: \ \mathsf{log}^\sharp(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{log}^\sharp(\mathsf{s}(\mathsf{half}(x)))$
- ► take argument filtering

$$\pi(\mathsf{half}) = 1 \quad \pi(\mathsf{s}) = \{1\} \quad \pi(\mathsf{half}^\sharp) = \{1\} \quad \pi(\mathsf{log}^\sharp) = \{1\}$$

- ► take empty precedence, recursive symbols are half[‡], log[‡]
 - 1: $0 \geqslant_{\text{spop}*} 0$ 3: $\text{half}^{\sharp}(s(s(x));) >_{\text{spop}*} \text{half}^{\sharp}(x;)$
 - 2: $s(s(x)) \geqslant_{spop*} s(x)$ 4: $log^{\sharp}(s(s(x));) >_{spop*} log^{\sharp}(s(x);)$

Small Polynomial Path Order >_{spop*}

with argument filtering - Example 2

Example

consider innermost runtime problem $\mathcal{P}_{log} := \langle \{3,4\}/\{1,2\}, \{1-4\}, \mathcal{T} \rangle$

- 1: $\mathsf{half}(0) \to 0$ 3: $\mathsf{half}^\sharp(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{half}^\sharp(x)$
- $\mathbf{2}: \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{half}(x)) \qquad \mathbf{4}: \ \mathsf{log}^\sharp(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{log}^\sharp(\mathsf{s}(\mathsf{half}(x)))$
- ► take argument filtering

$$\pi(\mathsf{half}) = 1 \quad \pi(\mathsf{s}) = \{1\} \quad \pi(\mathsf{half}^\sharp) = \{1\} \quad \pi(\mathsf{log}^\sharp) = \{1\}$$

- ► take empty precedence, recursive symbols are half[‡], log[‡]
- ightharpoonup maximal recursion depth is one \Rightarrow complexity of $\mathcal{P}_{\mathsf{log}}$ is linear

Small Polynomial Path Order >_{spop*}

with argument filtering - Example 2

Example

consider innermost runtime problem $\mathcal{P}_{log} := \langle \{3,4\}/\{1,2\}, \{1-4\}, \mathcal{T} \rangle$

- 1: $\mathsf{half}(0) \to 0$ 3: $\mathsf{half}^\sharp(\mathsf{s}(\mathsf{s}(\mathsf{x}))) \to \mathsf{half}^\sharp(\mathsf{x})$
- $2: \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{half}(x)) \qquad 4: \ \mathsf{log}^\sharp(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{log}^\sharp(\mathsf{s}(\mathsf{half}(x)))$
- ► take argument filtering

$$\pi(\mathsf{half}) = 1$$
 $\pi(\mathsf{s}) = \{1\}$ $\pi(\mathsf{half}^\sharp) = \mathbf{1}$ $\pi(\mathsf{log}^\sharp) = \mathbf{1}$ $m{\mathsf{X}}$

► take empty precedence

1:
$$0 \ge_{\text{spop}*} 0$$
 3: $s(s(x)) >_{\text{spop}*} x$
2: $s(s(x)) \ge_{\text{spop}*} s(x)$ 4: $s(s(x)) >_{\text{spop}*} s(x)$

Small Polynomial Path Order >_{spop*}

with argument filtering - Example 2

Example

consider innermost runtime problem $\mathcal{P}_{log} := \langle \{3,4\}/\{1,2\}, \{1-4\}, \mathcal{T} \rangle$

- 1: $\mathsf{half}(0) \to 0$ 3: $\mathsf{half}^\sharp(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{half}^\sharp(x)$
- $2: \mathsf{half}(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{s}(\mathsf{half}(x)) \qquad 4: \ \mathsf{log}^\sharp(\mathsf{s}(\mathsf{s}(x))) \to \mathsf{log}^\sharp(\mathsf{s}(\mathsf{half}(x)))$
- ► take argument filtering

$$\pi(\mathsf{half}) = 1$$
 $\pi(\mathsf{s}) = \{1\}$ $\pi(\mathsf{half}^\sharp) = 1$ $\pi(\mathsf{log}^\sharp) = 1$ X

- take empty precedence
- ightharpoonup maximal recursion depth is 0 \Rightarrow complexity of \mathcal{P}_{log} wrongly inferred constant

- small polynomial path orders have been extended to notion of complexity problem in TCT
 - complexity pair ($\geqslant_{spop*}, >_{spop*}$) used in relative setting
 - argument filterings π integrated

- small polynomial path orders have been extended to notion of complexity problem in TCT
 - complexity pair ($\geqslant_{spop*}, >_{spop*}$) used in relative setting
 - ullet argument filterings π integrated

not shown...

quasi-precedence can be used

- small polynomial path orders have been extended to notion of complexity problem in TCT
 - complexity pair ($\geqslant_{spop*}, >_{spop*}$) used in relative setting
 - ullet argument filterings π integrated

not shown...

- quasi-precedence can be used
- order can be extended to allow parameter substitution

- small polynomial path orders have been extended to notion of complexity problem in TCT
 - complexity pair ($\geqslant_{spop*}, >_{spop*}$) used in relative setting
 - argument filterings π integrated

not shown...

- quasi-precedence can be used
- order can be extended to allow parameter substitution
- ▶ generalises safe reduction pairs on (innermost) DP problems

- small polynomial path orders have been extended to notion of complexity problem in TCT
 - complexity pair ($\geqslant_{spop*}, >_{spop*}$) used in relative setting
 - argument filterings π integrated

not shown...

- quasi-precedence can be used
- order can be extended to allow parameter substitution
- generalises safe reduction pairs on (innermost) DP problems
- non-collapsing constraint on π can be dropped
 - · degree of bounding function doubles
 - bound is tight

bound	sPOP*	DP+sPOP*	DP+MI	
$O(1)$ $O(n)$ $O(n^2)$	4/0.17 20/0.17 23/0.19	20/0.28 72/0.31 11/0.44	20/0.27 98/0.48 17/4.67	
$O(n^3)$	6/0.23	3/0.60	8/14.7	
total maybe	54/0.19 703/0.34	106/0.32 651/1.20	143/1.55 614/18.3	

Table : # oriented problems / average execution times (secs.)

- ▶ 757 well-formed constructor TRSs from TPDB 8.0
- ▶ 8 Dual-Core Opteron TM 885 processors (2.6GHz)

Table : # oriented problems / average execution times (secs.)

- ▶ 757 well-formed constructor TRSs from TPDB 8.0
- ▶ 8 Dual-Core Opteron TM 885 processors (2.6GHz)

bound	sPOP*	DP+sPOP*	DP+MI	
O(1)	4/0.17	20/0.28	20/0.27	
O(n)	20/0.17	72/0.31	98/0.48	
$O(n^2)$	23/0.19	11/0.44	17/4.67	
$O(n^3)$	6/0.23	3/0.60	8/14.7	
total	54/0.19	106 /0.32	143 /1.55	
maybe	703/0.34	651/1.20	614/18.3	

Table : # oriented problems / average execution times (secs.)

- ▶ 757 well-formed constructor TRSs from TPDB 8.0
- ▶ 8 Dual-Core Opteron TM 885 processors (2.6GHz)

bound	sPOP*	DP+sPOP*	DP+MI	
O(1)	4/0.17	20/0.28	20/0.27	
O(n)	20/0.17	72/0.31	98/0.48	
$O(n^2)$	23/0.19	11/0.44	17/4.67	
$O(n^3)$	6/0.23	3/0.60	8/14.7	
total	54/0.19	106/0.32	143/1.55	
maybe	703/0.34	651/1.20	614/18.3	

Table : # oriented problems / average execution times (secs.)

- ▶ 757 well-formed constructor TRSs from TPDB 8.0
- ▶ 8 Dual-Core Opteron TM 885 processors (2.6GHz)

bound	sPOP*	DP+sPOP*	DP+MI	Σ
$O(1)$ $O(n)$ $O(n^2)$ $O(n^3)$	4/0.17 20/0.17 23/0.19 6/0.23	20/0.28 72/0.31 11/0.44 3/0.60	20/0.27 98/0.48 17/4.67 8/14.7	20 98 22 9
total maybe	54 /0.19 703/0.34	106 /0.32 651/1.20	143 /1.55 614/18.3	149 608

Table : # oriented problems / average execution times (secs.)

- ▶ 757 well-formed constructor TRSs from TPDB 8.0
- ▶ 8 Dual-Core Opteron TM 885 processors (2.6GHz)