Quiz

- Maximum 20 minutes
- 10 minutes later → first check
- 15 minuets later → second check
- Nothing is allowed on the table except test papers and pens → 0 point
- Cheat behaviors → 0 point

模型品質與改進

授課老師: 楊景明

評估模型

Training, Validation, and Test Datasets

- 模型使用Training data來學習參數
- Validation data是我們在訓練期間用來對模型進行公正評估的資料集(每個epoch訓練完出現)
- **Test data**通常是指我們最終測試模型效能的資料集(Ex: Kaggle competetion)
- "Validation"和"Test"常常被交換使用

Optimize Weights using Gradient Descent and BackProp

Epoch 1

Epoch 2

Epoch 3

Epoch :

Epoch n

Test

Train	Val	Get loss and accuracy on Validate
Train	Val	Get loss and accuracy on Validate
Train	Val	Get loss and accuracy on Validate
Train	Val	Get loss and accuracy on Validate
Train	Val	Get loss and accuracy on Validate

Get loss and accuracy on our separate unseen Test Data

基本的評估指標

- Training Loss
- Training Accuracy
- Test/Validation Loss
- Test/Validation Accuracy

假如模型無法分辨"3"和"8"

- 如何找出這種問題?
- 如何知道哪個類別表現得比較差?
- 如何知道模型傾向將"8"分辨成"3"?

Accuracy is not enough

MNIST Confusion Matrix Example

Predicted Labels								_				
	0	1	2	3	4	5	6	7	8	9		
]]	973	0	2	0	0	1	1	1	2	0]	0	
[0	1128	1	1	0	0	2	1	2	0]	1	
[2	2	1018	1	1	0	0	4	4	0]	2	
[0	0	0	1001	0	5	0	0	4	0]	3	(0
[0	0	2	0	971	0	0	0	0	9]	4	Labels
[2	0	0	3	0	884	1	0	0	2]	5	
[6	2	1	0	2	5	939	0	3	0]	6	True
[0	2	7	1	0	0	0	1014	2	2]	7	
[5	0	3	0	0	1	1	2	959	3]	8	
[2	2	0	3	5	3	0	5	3	986]]	9	

● 綠色:預測正確

● 紅色:預測錯誤

找出容易預測錯誤的類別

Predicted Labels												
	0	1	2	3	4	5	6	7	8	9		
]]	973	0	2	0	0	1	1	1	2	0]	0	
[0	1128	1	1	0	0	2	1	2	0]	1	
[2	2	1018	1	1	0	0	4	4	0]	2	
[0	0	0	1001	0	5	0	0	4	0]	3	(0
[0	0	2	0	971	0	0	0	0	9]	4	Labels
[2	0	0	3	0	884	1	0	0	2]	5	
[6	2	1	0	2	5	939	0	3	0]	6	True
[0	2	7	1	0	0	0	1014	2	2]	7	
[5	0	3	0	0	1	1	2	959	3]	8	
[2	2	0	3	5	3	0	5	3	986]]	9	

- 4容易被預測為9
- 7容易被預測為2

二元分類

預測病患是否有 COVID...

N = 145	Predicted NO	Predicted YES	
True Label NO	True Negatives:	False Positives: 5	Total True Negatives: 45
True Label YES	False Negatives:	True Positives:	Total True Positives:
	Predicted Negatives: 50	Predicted Positives: 95	

意建要会管! Accuracy; 所有澳门對的 Recall 真果 true 则出多少人 (有 covid 5) True Positive labe) Precision: Boily Positive A SS JIER erros - migs classification = 1 - Accuracy False Positive vate true Negative vote

這兩分都是問一abel No 的人的情况 (沒中covid 64)(身体健康的) False Positive rate; 沒戶的情況下這是了了 true Megative vote; 3065 1 2 2 3 4 5 1

二元分類

預測病患是否有 COVID...

N = 145	Predicted NO	Predicted YES	
True Label	True Negatives:	False Positives: 5	Total True Negatives: 45
True Label YES	False Negatives:	True Positives:	Total True Positives:
	Predicted Negatives: 50	Predicted Positives: 95	

- True Positive Rate or Sensitivity or Recall = TP / TruePositiveLabels = 90 / 100 = 0.9
 - 患有COVID的病人中,我們預測出了多少
- False Positive Rate = FP / TrueNegativeLabels = 5 / 45 = 0.11
 - 沒有患COVID的病人中,我們誤判了多少患者有得 COVID

二元分類

預測病患是否有COVID...

N = 145	Predicted NO	Predicted YES	
True Label NO	True Negatives:	False Positives: 5	Total True Negatives: 45
True Label YES	False Negatives:	True Positives:	Total True Positives:
	Predicted Negatives: 50	Predicted Positives: 95	

• True Negative Rate or Specificity = TN / TrueNegativeLabels = 40 / 45 = 0.89

○ 沒有患COVID的病人中, 我們正確預測出了多少

Precision = TP / PredictedYes = 90 / 95 = 0/95

我們預測有得COVID的病患, 有多少是正確的

Precision, Recall, F1

- Precision/Recall tradeoff 通常提升Precision或Recall會導致另一方下降
- 有時候我們可以接受犧牲一些Precision來提高Recall (看診)
- F1 Precision和Recall的調和平均數(harmonic mean)

$$F_1 = 2 \times \frac{precision \times recall}{precision + recall}$$

Classification Report

	precision	recall	f1-score	support
0	0.98	0.99	0.99	980
1	0.99	0.99	0.99	1135
2	0.98	0.99	0.99	1032
3	0.99	0.99	0.99	1010
4	0.99	0.99	0.99	982
5	0.98	0.99	0.99	892
6	0.99	0.98	0.99	958
7	0.99	0.99	0.99	1028
8	0.98	0.98	0.98	974
9	0.98	0.98	0.98	1009
accuracy			0.99	10000
macro avg	0.99	0.99	0.99	10000
weighted avg	0.99	0.99	0.99	10000

● Support代表各類別出現的次數

Implementation

Download notebook at:

https://github.com/albert831229/nchu-computer-vision/tree/main/113/day

Overfitting and Generalization

如何避免Overfitting

- 如何讓模型取得好表現
 - 更多資料?
 - 更大更深的模型?
 - 更多Epochs?
- 在訓練期間,我們可以使用一些技巧來降低Overfitting以及增加 Generalization

Overfitting and Generalisation

- 當模型在訓練資料上過度訓練,並在測試資料上表現很差(很常發生)
- 當我們的訓練資料太少、使用太多Features、或使用太複雜的模型
- Generalization代表模型在沒見過的資料上的表現

Overfitting Example

假設模型 學會利用 顏色分辨

● 消防車!:(

如何避免Overfitting

- 最簡單方法:增加訓練資料或降低模型複雜度
- 使用Regularization:限制模型的複雜度,並讓模型透過正確的特徵學習
- Ex: 我們希望模型能夠學習和狗相關的特徵 (尾巴、鼻子、耳朵), 而不是其他一般的特徵 (樹、草)

如何欺騙模型

Source: https://twitter.com/drjuliashaw/status/874293864814845952

Regularization Methods

Regularization Methods

- L1 & L2 Regularization
- Drop Out
- Data Augmentation
- Early Stopping
- Batch Normalization

L1 and L2 Regularization

- 迫使模型使用較小的參數 (weights and biases)
- 避免特定的節點產生過大的影響

Loss Function + Penalty (L1 or L2)

L1 Regularization

Also called L1-Norm or Lasso Regression

Loss Function +
$$\lambda \sum_{j=1}^{p} |\beta_j|$$

- β_j: 參數
 λ: 控制Penalty的效果
- 越大的λ代表Penalty越重

L2 Regularization

Also called Ridge Regression

$$LossFunction + \lambda \sum_{j=1}^{p} \beta_{j}^{2}$$

- β_j: 參數
 λ: 控制Penalty的效果
- 越大的λ代表Penalty越重

L1與L2的區別

- L1會優先將不重要的特徵的權 重降為0
 - 特徵選取
- L2會優先將所有的權重減小
 - 大的權重會產生更大的Penalty

L1: $LossFunction + \lambda \sum_{j=1}^{r} |\beta_j|$

L2: LossFunction + $\lambda \sum_{i=1}^{p} \beta_{j}^{2}$

L1與L2總結

- L1和L2都會使模型使用較小的權重
- 除非使用大的權重可以顯著降低原有的Loss
- 在較小的權重和較低的原有Loss間做選擇 (透過λ控制)

Dropout

- Dropout影響的不是訓練損失,而是模型本身
- 在訓練過程中, 隨機關閉某一層的一些節點

(a) Standard Neural Net

(b) After applying dropout.

- 隨機關閉一些節點(ex: 一半)
- 將一個Mini-Batch前向傳遞,並用反向傳遞計算梯度
- 更新開放的節點的權重
- 恢復所有節點、再次隨機關閉一些 節點、並傳遞下一組Mini-Batch

Srivastava, Nitish, et al. "Dropout: a simple way to prevent neural networks from overfitting", JMLR 2014

Dropout

(a) Standard Neural Net

(b) After applying dropout.

- 使用Dropout Rate來控制關閉節點的數量
- 迫使模型學習更可靠的特徵(每次 訓練不一樣的模型)
- Dropout也會增加模型Converge所需要的時間
- 在測試模型時,我們會使用所有的 節點來做預測

Data Augmentation

但是 過度的 資料擴增 或 不合理的資料擴增 也可能會導致 模型準確率 難以提升 要一步或兩步 步步擴增 不要一股腦的都加上去

- 其中一個導致Overfitting的原因:沒有足夠的訓練資料
- 使用Data Augmentation可以解決這個問題
- 圖像資料特別適合使用Data Augmentation

Data Augmentation in Keras and Pytorch

- Keras和Pytorch都提供許多基本的Data Augmentation方法
 - 翻轉 (水平/垂直)
 - 亮度和對比
 - 旋轉
 - 縮放
 - 裁切
 - 扭曲
- 一般只會對訓練資料進行資料擴增
- Data Augmentation通常發生在Data Loader搬運資料時 (相當於每次讓模型看不同版本的圖片)

Early Stopping

- 我們可以設定一個threshold, 告訴模型如果在接下來的 P 個 Epochs 都沒有更好的結果, 就停止訓練
- 在每個Epoch,我們都會儲存模型的權重

Early Stopping in Keras and Pytorch

- In Keras
 - 使用Callback
- In Pytorch
 - 需要手動實作

Batch Normalization

Batch Normalization

Batch Normalization怎麼運作

- 個別對每組Mini-Batch計算mean和STD以及進行標準化
- 針對CNN,每一層會有d個means和STDs (取決於有幾個filters)
- 通常會設在Conv Layer和Activation Function Layer之間
- 假如有使用Dropout, 層的順序為:
 - Conv -> BacthNorm -> ReLU -> Dropout

Regularization小建議

- 不要一開始就使用Regularization (建立Baseline Model)
- 有時Regularization會對模型性能產生不利影響(例如, 如果我們使用一 些錯誤的參數設定)
- Dropout和Batch Norm會增加訓練時間
- Dropout: 不要在Softmax Layer的前一層使用
- 很簡單的模型不太需要使用Regularization
- 更多Epochs
- 如果L2 Penalty太高,模型可能會Underfitting

Implementation

Download notebook at:

https://github.com/albert831229/nchu-computer-vision/tree/main/113/day