Lecture 18: Multiclass Support Vector Machines

Hao Helen Zhang

Outlines

- Traditional Methods for Multiclass Problems
 - One-vs-rest approaches
 - Pairwise approaches
- Recent development for Multiclass Problems
 - Simultaneous Classification
 - Various loss functions
- Extensions of SVM

Multiclass Classification Setup

- Label: $\{-1, +1\} \rightarrow \{1, 2, \dots, K\}$.
- Classification decision rule:

$$f: \mathbb{R}^d \Longrightarrow \{1, 2, \dots, K\}.$$

- Classification accuracy is measured by
 - Equal-cost: Generalization Error (GE)

$$Err(\mathbf{f}) = P(Y \neq f(\mathbf{X})).$$

Unequal-cost: the risk

$$R(f) = E_{Y,X}C(Y, f(X)).$$

Traditional Methods

Main ideas:

- (i) Decompose the multiclass classification problem into multiple binary classification problems.
- (ii) Use the majority voting principle (a combined decision from the committee) to predict the label

Common approaches: simple but effective

- One-vs-rest (one-vs-all) approaches
- Pairwise (one-vs-one, all-vs-all) approaches

One-vs-rest Approach

One of the simplest multiclass classifier; commonly used in SVMs; also known as the one-vs-all (OVA) approach

- (i) Solve K different binary problems: classify "class k" versus "the rest classes" for $k=1,\cdots,K$.
- (ii) Assign a test sample to the class giving the largest $f_k(x)$ (most positive) value, where $f_k(x)$ is the solution from the kth problem

Properties:

- Very simple to implement, perform well in practice
- Not optimal (asymptotically): the decision rule is not Fisher consistent if there is no dominating class (i.e. $\arg\max p_k(x) < \frac{1}{2}$).

Read: Rifkin and Klautau (2004) "In Defense of One-vs-all Classification"

Pairwise Approach

Also known as all-vs-all (AVA) approach

- (i) Solve $\binom{K}{2}$ different binary problems: classify "class k" versus "class j" for all $j \neq k$. Each classifier is called g_{ij} .
- (ii) For prediction at a point, each classifier is queried once and issues a vote. The class with the maximum number of (weighted) votes is the winner.

Properties:

- Training process is efficient, by dealing with small binary problems.
- If K is big, there are too many problems to solve. If K = 10, we need to train 45 binary classifiers.
- Simple to implement; perform competitively in practice.

Read: Park and Furnkranz (2007) "Efficient Pairwise Classification"

One Single SVM approach: Simultaneous Classification

- Label: $\{-1, +1\} \rightarrow \{1, 2, \dots, K\}$.
- Use one single SVM to construct a decision function vector

$$\mathbf{f}=(f_1,\ldots,f_K).$$

Classifier (Decision rule):

$$f(\mathbf{x}) = \operatorname{argmax}_{k=1,\cdots,K} f_k(\mathbf{x}).$$

- If K = 2, there is one f_k and the decision rule is sign (f_k) .
- In some sense, multiple logistic regression is a simultaneous classification procedure

엊

×1

SVM for Multiclass Problem

Multiclass SVM: solving one single regularization problem by imposing a penalty on the values of $f_V(\mathbf{x}) - f_I(\mathbf{x})$'s.

- Weston and Watkins (1999)
- Cramer and Singer (2002)
- Lee et al. (2004)
- Liu and Shen (2006); multiclass ψ -learning: Shen et al. (2003)

Various Multiclass SVMs

- Weston and Watkins (1999):
 - a penalty is imposed only if $f_y(\mathbf{x}) < f_k(\mathbf{x}) + 2$ for $k \neq y$.
 - Even if $f_y(\mathbf{x}) < 1$, a penalty is not imposed as long as $f_k(\mathbf{x})$ is sufficiently small for $k \neq y$;
 - Similarly, if $f_k(\mathbf{x}) > 1$ for $k \neq y$, we do not pay a penalty if $f_v(\mathbf{x})$ is sufficiently large.

$$L(y, \mathbf{f}(\mathbf{x})) = \sum_{k \neq y} \left[2 - \left(f_y(\mathbf{x}) - f_k(\mathbf{x}) \right) \right]_+.$$

- Lee et al. (2004): $L(y, \mathbf{f}(\mathbf{x})) = \sum_{k \neq y} [f_k(\mathbf{x}) + 1]_+$.
- Crammer and Singer (2002): Liu and Shen (2006), $L(y, \mathbf{f}(\mathbf{x})) = [1 \min_k \{f_y(\mathbf{x}) f_k(\mathbf{x})\}]_+$.

To avoid the redundancy, a sum-to-zero constraint $\sum_{k=1}^{K} f_k = 0$ is sometimes enforced.

Linear Multiclass SVMs

For linear classification problems, we have

$$f_k(\mathbf{x}) = \boldsymbol{\beta}_k \mathbf{x} + \beta_{0k}, \quad k = 1, \cdots, K.$$

The sum-to-zero constraint can be replaced by

$$\sum_{k=1}^K \beta_{0k} = 0, \quad \sum_{k=1}^K \beta_k = \mathbf{0}.$$

The optimization problem becomes

$$\min_{\mathbf{f}} \sum_{i=1}^{n} L(y_i, \mathbf{f}(\mathbf{x}_i)) + \lambda \sum_{k=1}^{K} \|\boldsymbol{\beta}_k\|^2$$

subject to the sum-to-zero constraint.

Nonlinear Multiclass SVMs

To achieve the nonlinear classification, we assume

$$f_k(\mathbf{x}) = \beta'_k \phi(\mathbf{x}) + \beta_{k0}, \quad k = 1, \dots, K.$$

where $\phi(\mathbf{x})$ represents the basis functions in the feature space \mathcal{F} .

 Similar to the binary classification, the nonlinear MSVM can be conveniently solved using a kernel function.

Regularization Problems for Nonlinear MSVMs

We can represent the MSVM as the solution to a regularization problem in the RKHS.

Assume that

$$\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), \cdots, f_K(\mathbf{x})) \in \prod_{k=1}^K (\{1\} + \mathcal{H}_k)$$

under the sum-to-zero constraint.

• Then a MSVM classifier can be derived by solving

$$\min_{\mathbf{f}} \sum_{i=1}^{n} L(y_i, \mathbf{f}(\mathbf{x}_i)) + \lambda \sum_{k=1}^{K} \|g_k\|_{\mathcal{H}_k}^2,$$

where
$$f_k(\mathbf{x}) = g_k(\mathbf{x}) + \beta_{0k}, g_k \in \mathcal{H}_k, \beta_{0k} \in \mathcal{R}$$
.

Generalized Functional Margin

Given (\mathbf{x}, y) , a reasonable decision vector $\mathbf{f}(\mathbf{x})$ should

- encourage a large value for $f_y(\mathbf{x})$
- have small values for $f_k(\mathbf{x}), k \neq y$.

Define the K-1-vector of relative differences as

$$\mathbf{g} = (f_y(\mathbf{x}) - f_1(\mathbf{x}), \cdots, f_y(\mathbf{x}) - f_{y-1}(\mathbf{x}), f_y(\mathbf{x}) - f_{y+1}(\mathbf{x}), \cdots, f_y(\mathbf{x}) - f_K(\mathbf{x})).$$

Liu et al. (2004) called the vector \mathbf{g} the generalized functional margin of \mathbf{f}

- g characterizes correctness and strength of classification of x by f.
- f indicates a correct classification of (x, y) if

$$g(f(x), y) > 0_{k-1}.$$

0-1 Loss with Functional Margin

A point (\mathbf{x}, y) is misclassified if $y \neq \arg \max_k f_k(\mathbf{x})$. Define the multivariate sign function as

$$\begin{aligned} \operatorname{sign}(\mathbf{u}) &= 1 & \text{if } \mathbf{u}_{\min} = \min(u_1, \cdots, u_m) > 0, \\ &-1 & \text{if } \mathbf{u}_{\min} \leq 0. \end{aligned}$$

where $\mathbf{u} = (u_1, \dots, u_m)$. Using the functional margin,

• The 0-1 loss becomes

$$I(\min \boldsymbol{g}(\boldsymbol{f}(\boldsymbol{x}), y) < 0) = \frac{1}{2} [1 - \operatorname{sign}(\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{x}), y))].$$

The GE becomes to

$$R[f] = \frac{1}{2}E\left[1 - \operatorname{sign}(\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{x}), y))\right].$$

Generalized Loss Functions Using Functional Margin

A natural way to generalize the binary loss is

$$\sum_{i=1}^n \ell(\min \mathbf{g}(\mathbf{f}(\mathbf{x}_i), y_i)).$$

In particular, the loss function $L(y, \mathbf{f}(\mathbf{x}))$ can be expressed as $V(\mathbf{g}(\mathbf{f}(\mathbf{x}), y))$ with

- Weston and Watkins (1999): $V(\mathbf{u}) = \sum_{j=1}^{K-1} \left[2 u_j\right]_+$.
- Lee et al. (2004): $V(\mathbf{u}) = \sum_{j=1}^{K-1} \left[\frac{\sum_{c=1}^{K-1} u_c}{K} u_j + 1 \right]_+$.
- Liu and Shen (2006): $V(\mathbf{u}) = [1 \min_j u_j]_+$.

All of these loss functions are the upper bounds of the 0-1 loss.

Small Round Blue Cell Tumors of Childhood

- Khan et al. (2001) in Nature Medicine
- Tumor types: neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lymphoma (NHL) and the Ewing family of tumors (EWS)
- Number of genes : 2308
- Class distribution of data set

Data set	EWS	BL(NHL)	NB	RMS	total
Training set	23	8	12	20	63
Test set	6	3	6	5	20
Total	29	11	18	25	83

Figure 3: Three principal components of 100 gene expression levels (circles: training samples, squares: test samples including non SRBCT samples). The tumor types are distinguished by colors.

Characteristics of Support Vector Machines

- High accuracy, high flexibility
- Naturally handle large dimensional data
- Sparse representation of the solutions (via support vectors): fast for making future prediction
- No probability estimates (hard classifiers)

Other Active Problems in SVM

- Variable/Feature Selection
 - Linear SVM: Bradley and Mangasarian (1998), Guyon et al. (2000), Rakotomamonjy (2003), Jebara and Jaakkola (2000)
 - Nonlinear SVM: Weston et al. (2002), Grandvalet (2003), Basis pursuit (Zhang 2003), COSSO selection (Lin & Zhang (2003)
- Proximal SVM faster computation
- Robust SVM get rid of outliers
- Choice of kernels

The L_1 SVM

- Replace the L_2 penalty by the L_1 penalty.
- The L_1 penalty tends to give sparse solutions.
- For $f(\mathbf{x}) = h(\mathbf{x})^T \boldsymbol{\beta} + \beta_0$, the L_1 SVM solves

$$\min_{\beta_0,\beta} \sum_{i=1}^{n} [1 - y_i f(\mathbf{x}_i)]_+ + \lambda \sum_{j=1}^{d} |\beta_j|.$$
 (1)

• The solution will have at most n nonzero coefficients β_j .

L_1 Penalty versus L_2 Penalty

Robust Support Vector Machines

- Hinge loss is unbounded; sensitive to outliers (e.g. wrong labels etc)
- Support Vectors: $y_i f(\mathbf{x}_i) \leq 1$.
- Truncated hinge loss: $T_s(u) = H_1(u) H_s(u)$, where

$$H_s(u) = [s-u]_+.$$

• Remove some "bad" SVs (Wu and Liu, 2006).

Decomposition: Difference of Convex Functions

- Key: D.C. decomposition (Diff. Convex functions).
- $T_s(u) = H_1(u) H_s(u)$.

D.C. Algorithm

D.C. Algorithm: The Difference Convex Algorithm for minimizing

$$J(\Theta) = J_{vex}(\Theta) + J_{cav}(\Theta)$$

- 1. Initialize Θ_0 .
- 2. Repeat $\Theta_{t+1} = \operatorname{argmin}_{\Theta}(J_{\text{vex}}(\Theta) + \langle J'_{\text{cav}}(\Theta_t), \Theta \Theta_t \rangle)$ until convergence of Θ_t .

- The algorithm converges in finite steps (Liu et al. (2005)).
- Choice of initial values: Use SVM's solution.
- RSVM: The set of SVs is a only a SUBSET of the original one!
- Nonlinear learning can be achieved by the kernel trick.

