1

Assignment 12

Jayati Dutta

Abstract—This is a simple document explaining how to get the basis of a vector space when vectors from another vector space are given and the vector spaces are in isomorphic relationship.

Download all and latex-tikz codes from

svn co https://github.com/gadepall/school/trunk/ncert/geometry/figs

1 Problem

Let V be a vector space over the field of complex numbers and suppose there is an isomorphism T of V onto C^3 . Let α_1 , α_2 , α_3 and α_4 be the vectors in V such that:

$$T\alpha_1 = \begin{pmatrix} 1\\0\\i \end{pmatrix} \tag{1.0.1}$$

$$T\alpha_2 = \begin{pmatrix} -2\\1+i\\0 \end{pmatrix} \tag{1.0.2}$$

$$T\alpha_3 = \begin{pmatrix} -1\\1\\1 \end{pmatrix} \tag{1.0.3}$$

$$T\alpha_4 = \begin{pmatrix} \sqrt{2} \\ i \\ 3 \end{pmatrix} \tag{1.0.4}$$

Find a basis for the subspace of V spanned by the 4 vectors α_i .

2 EXPLANATION

V is a vector space and V is isomorphic to C^3 via isomorphism T which implies that C^3 is also isomorphic to V via isomorphism T^{-1} .

As V is isomorphic to C^3 , so

$$dim(V) = dim(C^3) = 3$$
 (2.0.1)

Now.

$$\begin{pmatrix}
1 & 0 & i \\
-2 & 1+i & 0 \\
-1 & 1 & 1 \\
\sqrt{2} & i & 3
\end{pmatrix}
\xrightarrow{R_3 \leftarrow R_3 + R_1}
\begin{pmatrix}
1 & 0 & i \\
-2 & 1+i & 0 \\
0 & 1 & 1+i \\
2 & i\sqrt{2} & 3\sqrt{2}
\end{pmatrix}$$

$$\xrightarrow{R_4 \leftarrow R_4 + R_2}
\begin{pmatrix}
1 & 0 & i \\
-2 & 1+i & 0 \\
0 & 1 & 1+i \\
0 & 1+i(1+\sqrt{2}) & 3\sqrt{2}
\end{pmatrix}$$

$$\xrightarrow{R_2 \leftarrow R_2 + 2R_1}
\begin{pmatrix}
1 & 0 & i \\
0 & 1+i & 2i \\
0 & 1+i(1+\sqrt{2}) & 3\sqrt{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \leftarrow (1+i)R_3}
\begin{pmatrix}
1 & 0 & i \\
0 & 1+i & 2i \\
0 & 1+i & 2i \\
0 & 1+i(1+\sqrt{2}) & 3\sqrt{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \leftarrow R_3 - R_2}
\begin{pmatrix}
1 & 0 & i \\
0 & 1+i & 2i \\
0 & 1+i(1+\sqrt{2}) & 3\sqrt{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \leftarrow R_3 - R_2}
\begin{pmatrix}
1 & 0 & i \\
0 & 1+i & 2i \\
0 & 1+i(1+\sqrt{2}) & 3\sqrt{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \leftarrow R_3 - R_2}
\begin{pmatrix}
1 & 0 & i \\
0 & 1+i(1+\sqrt{2}) & 3\sqrt{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \leftarrow R_3 - R_2}
\begin{pmatrix}
1 & 0 & i \\
0 & 1+i(1+\sqrt{2}) & 3\sqrt{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \leftarrow R_3 - R_2}
\begin{pmatrix}
1 & 0 & i \\
0 & 1+i(1+\sqrt{2}) & 3\sqrt{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \leftarrow R_3 - R_2}
\begin{pmatrix}
1 & 0 & i \\
0 & 1+i(1+\sqrt{2}) & 3\sqrt{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \leftarrow R_3 - R_2}
\begin{pmatrix}
1 & 0 & i \\
0 & 1+i(1+\sqrt{2}) & 3\sqrt{2}
\end{pmatrix}$$

$$\xrightarrow{R_3 \leftarrow R_3 - R_2}
\begin{pmatrix}
1 & 0 & i \\
0 & 1+i(1+\sqrt{2}) & 3\sqrt{2}
\end{pmatrix}$$

From here we can get that $T\alpha_3$ is dependent vector while $T\alpha_1$, $T\alpha_2$ and $T\alpha_4$ are independent vector. These $T\alpha_1$, $T\alpha_2$ and $T\alpha_4$ also span the vector space C^3 , so these 3 vectors are the basis of C^3 .

As dim(V) = 3, so it must have 3 basis and as V and C^3 are isomorphic so α_1 , α_2 and α_4 are the basis of V.