QTL mapping in MAGIC populations

Karl Broman

Biostatistics & Medical Informatics, UW-Madison

kbroman.org github.com/kbroman @kwbroman

Slides: kbroman.org/Talk_MAGIC2021

daviddeen.com

Intercross

QTL mapping

Congenic line/NIL

Improving precision

- more recombinations
- ▶ more individuals
- ▶ more precise phenotype
- lower-level phenotypes
 - transcripts, proteins, metabolites

Genome-scale phenotypes

Advanced intercross lines

Recombinant inbred lines

Recombinant inbred lines

Collaborative Cross

MAGIC

Heterogeneous stock

MAGIC is magic

- ► Genetic diversity
- ► High-precision mapping
- Predictable linkage disequilibrium
- Phenotype replicates to reduce individual variation
- ► Pool phenotypes from multiple labs, environments, treatments
- Genotype once

MAGIC is magic

- ► Genetic diversity
- ► High-precision mapping
- Predictable linkage disequilibrium
- Phenotype replicates to reduce individual variation
- ► Pool phenotypes from multiple labs, environments, treatments
- Genotype once
- ▶ Cool name

How many?

How many?

Which?

How many?

How long?

Which?

Valdar et al., Genetics 172:1783, 2006

Valdar et al., Genetics 172:1783, 2006

The goal

Identify QTL

- ▶ Power
- Mapping precision

The goal

Identify QTG

- ▶ Power
- Mapping precision

The goal

Identify QTG

- ▶ Power
- Mapping precision
- ► Estimate QTL allele frequencies

Principles

- Avoid population structure
- Tradeoff between power for de novo discovery and mapping precision
- ► More QTL to find ⇒ more QTL getting in the way?
- ► More QTL alleles ⇒ less information about each
- ► Are QTL alleles common or rare?

How many founders?

More

- ► More general use
- More QTL
- Greater precision
- Estimate allele frequencies
- Haplotype analysis in founders

Fewer

- ► Lower residual variance
- Greater power for a particular QTL?
- Better power for epistasis
- Rare alleles are less rare

Which founders?

- Diverse
- Interesting
- No breeding problems
- ► Balanced: star phylogeny

How much mixing?

- ► More mixing ⇒ Greater mapping precision
- ► ...but lower power for de novo mapping
- Potential for population structure, missing alleles
- Random mating or curated mating?
- ► Start with many random cross directions?

Selfing or DH?

- Inbreeding gives added recombination
- But not so much as at the mixing stage
- ► If doubled haploids are feasible, use them

Sharing is also key

- The greatest power of MAGIC comes from sharing Pooling data, exploring multiple environments/treatments
- Common software needs
 Analysis software, database infrastructure
- Many students need to learn the same stuff Joint training opportunities

Summary

- ► How many founders?
 - Tradeoff between diversity and information about particular alleles
- ▶ Which founders?
 - Diverse, interesting, no breeding problems, star phylogeny
- ► How long to mix?
 - Tradeoff between power and precision
- ► How to fix?
 - Doubled haploids are great if feasible
- ► Let's share!
 - Lines, data, software, training

Slides: kbroman.org/Talk_MAGIC2021

kbroman.org

kbroman.org/qt12

github.com/kbroman

@kwbroman