Painel / Meus cursos / SC26EL / 9-Formas Canônicas e Transformações de Similaridade

/ Questionário sobre Formas Canônicas e Transformações de Similaridade

Iniciado em	sábado, 10 abr 2021, 08:44
Estado	Finalizada
Concluída em	sábado, 10 abr 2021, 08:52
Tempo	8 minutos 31 segundos
empregado	
Notas	7,3/8,0
Avaliar	9,1 de um máximo de 10,0(91 %)

Questão **1**Correto

Atingiu 1,0 de 1,0

Identifique as seguintes representações em espaço de estados:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} -1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + u$$

Forma canônica controlável

/

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 0 & -1 \\ 0 & 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Forma canônica observável

/

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ -4 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 3 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Forma não canônica

,

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -3 & -2 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Forma canônica controlável

Forma canônica observável

~

 $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ $y = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Forma canônica de Jordan

~

 $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} u$

 $y = \begin{bmatrix} 1 & -2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ y_2 \end{bmatrix}$

Forma canônica diagonal

~

Correto

Atingiu 1,0 de 1,0

Considere o sistema $G(s) = \frac{2}{s^2 + 3s + 2}$. Obtenha as representações nas formas canônicas controlável, observável e diagonal ou de Jordan desse sistema. As representações tem a forma:

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

onde
$$A=egin{bmatrix} a_{11} & a_{12} \ a_{21} & a_{22} \end{bmatrix}$$
, $B=egin{bmatrix} b_{11} \ b_{21} \end{bmatrix}$ e $C=[c_{11} & c_{12}]$.

1) FORMA CANÔNICA CONTROLÁVEL

Os elementos a_{ij} da matriz A são:

$$a_{11} = 0, a_{12} = 1$$

~

Os elementos b_{ij} da matrix B são:

$$b_{12} = 0$$

~

Os elementos c_{ij} da matriz C são:

$$c_{11} = 2$$

~

O valor de
$$D =$$

•

2) FORMA CANÔNICA OBSERVÁVEL

Os elementos a_{ij} da matriz A são:

$$a_{11} = 0, a_{12} =$$

$$\checkmark$$
 , $a_{21} =$

~

Os elementos b_{ij} da matrix B são:

$$b_{12} = 2$$

Y	e b ₁₂	=
0		

~

Os elementos c_{ij} da matriz C são:

$$c_{11} = 0$$

~

O valor de
$$D =$$

~ .

3) FORMA CANÔNICA DIAGONAL OU DE JORDAN

Os elementos a_{ij} da matriz A são (considere os polos em ordem decrescente na diagonal principal):

$$\checkmark$$
 , $a_{12} = 0$

$$\checkmark$$
 , $a_{21}=0$

✔ .

Os elementos b_{ij} da matrix B são:

$$b_{12} = 1$$

~

Os elementos c_{ij} da matriz C são:

$$c_{11} = 2$$

✓ e
$$c_{12}$$
 = -2

✔ .

O valor de
$$D =$$

~ .

Correto

Atingiu 1,0 de 1,0

Dada a representação em espaço de estados determine a função de transferência G(s) associada.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Para esse sistema, considere a função de transferência na forma $G(s) = \frac{Num(s)}{Den(s)}$. Logo, os coeficientes do polinômio do numerador são: Num(s) =

- 0
- **✓** s³+
- 0
- $\checkmark s^2 +$
- 1
- **✓** *s*+
- \checkmark . Os coeficientes do polinômio do denominador são: Den(s)=
- 1
- **✓** s³+
- 6 **✓** s²+
- **✓** *s*²+
- **✓ 5**+
- ~

Correto

Atingiu 1,0 de 1,0

Dada a representação em espaço de estados determine a função de transferência G(s) associada.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -12 \\ 0 & 1 & -7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Para esse sistema, considere a função de transferência na forma $G(s) = \frac{Num(s)}{Den(s)}$. Logo, os coeficientes do polinômio do numerador são:

Num(s) =

0

 $\checkmark s^3 +$

 $\checkmark s^2 + 0$

✓ s+

~

Os coeficientes do polinômio do denominador são:

Den(s) =

1

 $\checkmark s^3 +$

✓ s²+

✓ s+

Correto

Atingiu 1,0 de 1,0

Dada a representação em espaço de estados determine a função de transferência G(s) associada.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Para esse sistema, considere a função de transferência na forma $G(s) = \frac{Num(s)}{Den(s)}$. Logo, os coeficientes do polinômio do numerador

são: Num(s) =

0

✓ s²+

✓ s+

 \checkmark . Os coeficientes do polinômio do denominador são: Den(s) =

1

✓ s²+

3

✓ s+

~

Questão **6**

Parcialmente correto

Atingiu 0,5 de 1,0

Dada a representação em espaço de estados determine a função de transferência G(s) associada.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Para esse sistema, considere a função de transferência na forma $G(s) = \frac{Num(s)}{Den(s)}$. Logo, os coeficientes do polinômio do numerador são: $Num(s) = \frac{Num(s)}{Den(s)}$

0

✓ s²+

1

x s+

 \mathbf{x} . Os coeficientes do polinômio do denominador são: $Den(s) = \mathbf{x}$

2

 s^2+

✓ s+

~

Parcialmente correto

Atingiu 0,8 de 1,0

Considere o sistema $G(s) = \frac{s+1}{s^2+6s+9}$. Obtenha a representação em espaço de estados na forma canônica diagonal ou de Jordan.

O sistema tem uma representação na forma:

$$\dot{x} = Ax + Bu$$

$$y = Cx + Du$$

O sistema por ter polos com multiplicidade diferente de 1 v possui representação na forma canônica de Jordan v

Os elementos a_{ij} da matriz $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ são (considere os elementos da diagonal principal em ordem decrescente):

*a*₁₁ = −3

✓ , a₁₂ =

 \checkmark , $a_{21} = 0$

✓ e **a**₂₂ =

~

Os elementos $m{b}_{ij}$ da matriz $m{B} = \left[m{b}_{11} \\ m{b}_{21}
ight]$ são:

 $b_{11} = 0$

✓ e *b*₂₁ =

V .

Os elementos c_{ij} da matriz $C = [c_{11} \quad c_{12}]$ são:

x e c₁₂ =

×

O valor de D =

0

~ .

Parcialmente correto

Atingiu 1,0 de 1,0

Dada a representação abaixo, ache a matriz de transformação P que diagonaliza o sistema. Também ache sua representação na forma canônica diagonal.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -20 \\ 1 & 0 & -32 \\ 0 & 1 & -13 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 20 \\ 0 \\ 0 \end{bmatrix} u$$

$$y = egin{bmatrix} 0 & 0 & 1\end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix}$$

Os autovalores desse sistema, em ordem decrescente, são: $\lambda_1 =$

1

 $m{x}$, $\lambda_2=$

 \checkmark e $\lambda_3 =$

Para a determinação dos autovetores associados, considere $x_3 = 1$. Os autovetores tem a forma $V_i = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}^T$.

O autovetor associado à λ_1 é: $V_1 = [$

20

12

O autovetor associado à λ_2 é: $V_2 = [$

10

11

O autovetor associado à λ_3 é: $V_3 = [$

A matriz de transformação tem a forma $P = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \end{bmatrix}$. Logo, os elementos desta matriz são:

 $p_{11} =$ 20

12

 $p_{22} =$ 11

 $p_{31} =$

✓ $p_{33} =$

Logo, o sistema diagonalizado tem a forma:

 $\dot{z} = Az + Bu$

y = Cz + Du

 $y = c_2 + b_3$ Os elementos a_{ij} da matriz $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ são:

✓ $a_{33} =$

Os elementos b_{ij} da matriz $B = egin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \end{bmatrix}$ são:

 $b_{11} =$

2,22
$ullet$, $b_{21}=$
-2,5
✓ e b ₃₁ =
0,277

~

Os elementos c_{ij} da matriz $C = [\begin{array}{ccc} c_{11} & c_{12} & c_{13} \end{array}]$ são:

$$c_{11} = 1$$

~ .

O valor de D =

✓.

■ Script Python

Seguir para...

Aula 10 - Resolução das Equações de Estado ►