Южный федеральный университет Институт математики, механики и компьютерных наук им. И. И. Воровича направление подготовки «Прикладная математика и информатика»

Лабораторная работа по теме «Рекурсивные функции» ¹

Функция называется **рекурсивной**, если она сама себя вызывает. Задачи, которые решаются с использованием рекурсии, можно за один или несколько шагов свести к такой же задачи, но меньшей размерности.

Так же, как и у цикла, у рекурсии должно быть условие остановки (базовый случай). Всё решение сводится к решению базового случая. В случае, когда рекурсивная функция применяется для решения некоторой сложной задачи, не являющейся базовым случаем, выполняется некоторое количество шагов рекурсии (рекурсивная ветвь) до тех пор, пока не получим базовое решение.

Пример 1.

Рекурсивное вычисление факториала n!

```
def fact(n):
   if n == 1 or n == 0: #базовый случай (конечная ветвь)
        return 1
   else:
        return n * fact(n-1) #шаг рекурсии (рекурсивная ветвь)

n = int(input("Введите n"))
print("%d! = %d" %(n, fact(n)))
```

Конечных и рекурсивных ветвей может быть несколько. Рекурсивные ветви сводят общую задачу к более простой задаче того же типа. Конечные ветви прекращают рекурсивные вызовы, когда задача сведена к базовому случаю.

 $a_n = 3 a_{n-1} + 5, \quad a_1 = 3.$

Пример 2.

Вычисление элемента последовательности с заданным номером n по формуле:

```
def a(n):
    if n == 1:  #базовый случай (конечная ветвь)
        return 3
    else:
        return 3 * a(n-1) + 5 #шаг рекурсии (рекурсивная ветвь)

n = int(input("Введите n"))
print("a[%d] = %d" %(n, a(n)))
```

Пример 3.

Проверка, состоит ли строка только из букв

```
def is_string_alpha(s):
    if len(s)<1: #базовый случай (конечная ветвь)
        return True
    else:
        return s[0].isalpha() and is_string_alpha(s[1:]) #waz рекурсии (рекурсивная ветвь)

s = input("Введите строку: ")
print("Строка состоит из букв? - %s" %is_string_alpha(s))
```

 $^{^{1}}$ Разработано А.М. Филимоновой (кафедра ВМиМФ мехмата ЮФУ)

Задачи для самостоятельного решения.

Решение всех задач необходимо оформить в виде рекурсивной функции.

- 1. Дано $x \in R, m \in N$. Вычислить x^m .
- 2. Числа в последовательности Фибоначчи вычисляются по формуле:

$$F_1 = 1$$
, $F_2 = 1$,... $F_k = F_{k-2} + F_{k-1}$, $k = 3, 4, 5, ...$

Найти и вывести на экран элемент последовательности с номером k.

- 3. Дано натуральное число N. Проверить, является ли число N точной степенью двойки.
- 4. Дано натуральное число N. Вычислить сумму его цифр.
- 5. Вывести все числа от 1 до N в строку.
- 6. Дано два числа A и B. Вывести в одну строку все числа от A до B включительно в порядке возрастания, если A < B, или в порядке убывания в противном случае.
- 7. Для двух натуральных чисел m, n найти HOД(m, n), используя рекурсивный алгоритм Евклида.
- 8. Дана строка. Проверить, верно ли, что в строке есть хотя бы один из знаков арифметических операций: +, -, *, /
- 9. Дана строка. Проверить, что она состоит только из заглавных латинских букв.
- 10. Дана строка. Заменить все пробелы на символ '*'.
- 11. Дана строка, состоящая только из букв. Проверить, является ли строка палиндромом.
- 12. Дана строка S. Найти количество цифр в строке.
- 13. Дан список целых чисел a. Проверить, что все ли его элементы чётные.
- 14. Дан список целых чисел a. Проверить, верно ли, что в списке есть хотя бы одно отрицательное число.
- 15. Дан список целых чисел а. Вычислить сумму всех элементов списка.
- 16. Дан список целых чисел a, упорядоченный по возрастанию. Реализовать для такого списка алгоритм двоичного поиска, используя рекурсию.
- 17. Даны два целых неотрицательных числа m и n. Вычислить количество комбинаций из n разных элементов по m по формуле:

$$C_n^m = \left\{ \begin{array}{ll} 1, & m=0 \text{ и } n>0 \text{ или } m=n\geq 0 \\ 0, & m>n\geq 0 \\ C_{n-1}^{m-1}+C_{n-1}^m, & \text{иначе} \end{array} \right.$$

18. Даны три целочисленных списка разной длины, заполненных случайным образом. Найти максимальный элемент в каждом из списков, используя рекурсивную функцию.

19. Дан список целых чисел a длины N, заполненный случайным образом. Проверить, что числа в списке образуют невозрастающую последовательность.

20. Дано натуральное число N. Вычислить максимальную цифру в его восьмеричной записи.

- 21. Даны натуральные числа N и b (2 <= b <= 16). Реализовать перевод числа N из десятичной системы в систему счисления с основанием b.
- 22. Дано натуральное число N. Определить какой степенью числа 5 является число N. В случае, если N не степень пятерки — выдать -1.
- 23. Даны два натуральных числа N и S. Проверить, совпадает ли сумма цифр числа N с числом S.
- 24. Дано натуральное число N. Посчитать количество делителей, отличных от 1 и самого числа N.