

Winning Space Race with Data Science

<AC> <1st Dec 2024>

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion

Executive Summary

- Summary of methodology:
 - Using API to get the launch data and results from SpaceX
 - Grid search, logistic regression, decision tree, Support Vector Machine (SVM), k-nearest neighbors
- Summary of all results
- Launch success rate has been increasing
- ES-L1, GEO, HEO and SSO orbit type has had 100% success rate
- KSC LC-39A had the highest launch success rate of 76.9%
- Decision tree classification model has the highest accuracy

Introduction

- Goal: to understand the relationships between factors like payload mass and launch site, and the launch outcome of Falcon 9
- Problems to find answers:
 - Launch success rate trend
 - What are the orbit types with the highest success rate?
 - Which launch site has the highest launch success rate?
 - Which classification model has the highest accuracy?

Methodology

Executive Summary

- Data collection methodology:
 - Use SpaceX API to download launch data of Falcon 9
- Perform data wrangling
 - Re-classifying the outcomes of launch into dummy variables 1 and 0
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - Use logistic regression, decision tree, Support Vector Machine (SVM), k-nearest neighbors
 - Scale the input data and fit them in different classification models
 - Compare the scores of test data in different classification models

Data Collection

• Data sets were collected via SpaceX API or wiki page

Data Collection – SpaceX API

- spacex_url=<u>https://api.spacexdata.</u>
 <u>com/v4/launches/past</u>
- response = requests.get(spacex_url)
- data_falcon9_ ['PayloadMass'] = data_falcon9['PayloadMass'].replac e(np.nan, load_mean)
- Github link to data collection API notebook

Data Collection - Scraping

- response = requests.get(static_url)
- soup = BeautifulSoup(response.text, 'html.parser')
- html_tables =
 soup.find_all('table',
 class_="wikitable
 plainrowheaders collapsible")
- Github link to data collection scraping notebook

Data Wrangling

- Missing values of Payload Mass have been replaced by the mean
- Outcomes of launches have been converted to 1 (success) and 0 (failure) and stored in 'class'
- Github link to data wrangling notebook

EDA with Data Visualization

- Flight number and launch site and success or not: if there is a pattern of using a certain launch site and the success, and to see if a launch site has more success, and if the launches become more likely to succeed
- Payload mass and launch site and success or not: find out if there is a pattern of payload mass affecting success rate
- Orbit type and success rate: which orbit type is more likely to succeed: how the launch outcomes progress over time in different types of orbit
- Flight number, orbit type and success or not & Payload mass, orbit type and success or not: how orbit type affects success rate over time and its relationship with payload mass affecting success rate
- Line chart of yearly success rate: if success rate increases over the years
- Github link to EDA with data visualization notebook

EDA with SQL

- Find out total and sum of payload mass of a certain customer and booster version
- Date of first successful ground pad landing: SELECT MIN(Date) FROM SPACEXTABLE WHERE "Landing_Outcome" = \'Success (ground pad)\'
- Finding out booster version of successful drop ship landings given payload mass is between 4000 and 6000 kg
- Find out the month that there was landing failure in 2015
- Find out the most frequent landing outcomes and number of occurrences between 2010 June 4th and 2017 March 20th
- Gibhub link to EDA with SQL notebook

Build an Interactive Map with Folium

- Marker and circles: location of launch sites, adding each launch at its launch site on the map => see clear distribution of launches
- Adding 'mouse position' to the map so the coordinates of the position the mouse hovering will be shown => easy to find out coordinates to calculate distance
- Lines: displaying the distance from the launch site and other locations, e.g. railway => how close or far are the launch sites from other locations
- Github link to Folium map notebook

Build a Dashboard with Plotly Dash

- Pie chart of all sites: success launches of each launch site
- Or a pie chart of a selected site: success rate of launch at the site
- => how success rate changes in different sites. Find out the launch site with highest success rate
- Scatter chart of launches' payload mass and whether it's successful or not, along with the booster version
- => relationship between payload mass the launch outcome
- Github link to plotly dash

Predictive Analysis (Classification)

- Scale the input data
- Use Grid search to explore different parameters and cross validation of the classification models used: logistic regression, decision tree, supporting vector machine (SVM) and k-nearest neighbors
- Compare the score of fitting the train data sets and the test data set => choose the model with the highest score
- Github link to classification notebook

Results

- High success rate when payload mass >8000 kg; 100% success rate at CCAFS SLC
 40
- ES-L1, GEO, HEL and SSO orbit types have 100% success rate; while SO with 0% success rate
- In the earlier stage, more launches were of LEO, PO and GTP orbit types; in more recent stage, launches are more of SSO, MEO, VLEO
- For payload mass < 8000 kg, orbit types are mainly GTO and ISS; for payload mass
 > 8000 kg, it's more likely to be VLEO
- Success rate has been generally increasing since year 2014

Results

• Interactive dashboard:

Results

• Predictive analytics:

	Accuracy of train data	Test data score
Logistic regression	0.8464	0.8333
Support Vector Machine (SVM)	0.8482	0.8333
Decision tree	0.875	0.8333
K-nearest neighbors	0.8482	0.8333

• Decision tree has the highest accuracy of train data, and highest test data score. So it should be chosen as the classification model

Flight Number vs. Launch Site

 a scatter plot of Flight Number vs. Launch Site

- CCAFS SLC 40 has been the most used launch site since the beginning; CAFB SLC 4E is more used in earlier launches, while KSC LC 39A is more used in later launches
- Most recent launches have relatively high success rate

Payload vs. Launch Site

scatter plot of Payload vs.
 Launch Site

 For payload mass >8000 kg, the success rate has been 100%

Success Rate vs. Orbit Type

- bar chart for the success rate of each orbit type
- ES-L1, GEO, HEO and SSO orbit type has had 100% success rate

 SO has 0% success rate (only 1 launch)

Flight Number vs. Orbit Type

 a scatter point of Flight number vs. Orbit type

 VLEO has been used in recent launches

 Recent launches after flight number 80 has been 100%

Payload vs. Orbit Type

 a scatter point of payload vs. orbit type

 High success rate of payload mass >8000 kg

 ISS and PO have 100% success rate for payload mass >8000 kg

Launch Success Yearly Trend

 line chart of yearly average success rate

- Success rate has been increasing since 2014
- 2019 has the highest success rate from 2010 to 2020

All Launch Site Names

names of the unique launch sites:

```
Task 1

Display the names of the unique launch sites in the space mission

[19]: 

sta = 'SELECT DISTINCT("Launch Site") FROM SPACEXTABLE'

cur.execute(sta)

druck
druck
druck

[19]: 
[('CCAFS LC-40',), ('VAFB SLC-4E',), ('KSC LC-39A',), ('CCAFS SLC-40',)]
```

• Using DISTINCT() to find out the list of names of unique launch sites

Launch Site Names Begin with 'CCA'

- 5 records where launch sites begin with `CCA`
- Using 'LIKE' and wildcard '%' to find out the records
- LIMIT 5 limits the results to only 5 records

```
[22]: sta = 'SELECT * FROM SPACEXTABLE WHERE "Launch Site" LIKE \'CCA%\' LIMIT 5'
      cur.execute(sta)
      druck = cur.fetchall()
      druck
                                                                            ('2012-05-22',
[22]: [('2010-06-04',
                                                                             '7:44:00',
         '18:45:00',
                                                                             'F9 v1.0 B0005',
         'F9 v1.0 B0003',
                                                                             'CCAFS LC-40',
         'CCAFS LC-40',
                                                                             'Dragon demo flight C2',
         'Dragon Spacecraft Qualification Unit',
                                                                             525,
                                                                             'LEO (ISS)',
         'LEO',
                                                                             'NASA (COTS)',
         'SpaceX',
                                                                             'Success',
         'Success',
                                                                             'No attempt'),
         'Failure (parachute)'),
                                                                            ('2012-10-08',
        ('2010-12-08',
                                                                             '0:35:00',
         '15:43:00',
                                                                             'F9 v1.0 B0006',
        'F9 v1.0 B0004',
                                                                             'CCAFS LC-40',
         'CCAFS LC-40',
                                                                              'SpaceX CRS-1',
         'Dragon demo flight C1, two CubeSats, barrel of Brouere cheese',
                                                                             500,
                                                                             'LEO (ISS)',
        'LEO (ISS)',
                                                                             'NASA (CRS)',
         'NASA (COTS) NRO',
                                                                             'Success',
         'Success',
                                                                              'No attempt'),
         'Failure (parachute)'),
                                                                            ('2013-03-01',
                                                                             '15:10:00',
                                                                             'F9 v1.0 B0007',
                                                                             'CCAFS LC-40',
                                                                             'SpaceX CRS-2',
                                                                             677,
                                                                             'LEO (ISS)',
                                                                             'NASA (CRS)',
                                                                             'Success',
                                                                              'No attempt')]
```

Total Payload Mass

total payload carried by boosters from NASA is 45596 kg

```
Task 3 ¶

Display the total payload mass carried by boosters launched by NASA (CRS)

[23]: 

sta = 'SELECT SUM(PAYLOAD MASS KG ) FROM SPACEXTABLE WHERE Customer = \'NASA (CRS)\' '

cur.execute(sta)

druck = cur.fetchall()

druck

[23]: [(45596,)]
```

 Using SUM() to find out the total payload and specifying customer is NASA in the where clause

Average Payload Mass by F9 v1.1

• the average payload mass carried by booster version F9 v1.1 is 2928.4

```
Task 4

Display average payload mass carried by booster version F9 v1.1

[24]: 

sta = 'SELECT AVG(PAYLOAD MASS KG ) FROM SPACEXTABLE WHERE "Booster Version" = \'F9 v1.1\' '

cur.execute(sta)

druck = cur.fetchall()

druck

[24]: 
[(2928.4,)]
```

 Using AVG() to find out the average, stating the booster version in the where clause

First Successful Ground Landing Date

• Date of the first successful landing outcome on ground pad is Dec 22nd 2015

```
Task 5

List the date when the first succesful landing outcome in ground pad was acheived.

Hint:Use min function

[25]: sta = 'SELECT MIN(Date) FROM SPACEXTABLE WHERE "Landing Outcome" = \'Success (ground pad)\' 'cur.execute(sta) druck = cur.fetchall() druck

[25]: [('2015-12-22',)]
```

 Using MIN(DATE) to find out the earliest date; specifying the landing outcome is success ground pad in where clause

Successful Drone Ship Landing with Payload between 4000 and 6000

- the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000:
- F9 FT B1022, F9 FT B1026, F9 FT B1021.2, F9 FT B1031.2

```
Task 6

List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

[26]: 

sta = 'SELECT "Booster Version" FROM SPACEXTABLE WHERE "Landing Outcome" = \'Success (drone ship)\' AND PAYLOAD MASS KG BETWEEN 4000 AND 6000' cur.execute(sta) druck = cur.fetchall() druck

[26]: 
[('F9 FT B1022',), ('F9 FT B1026',), ('F9 FT B1021.2',), ('F9 FT B1031.2',)]
```

 Specifying the type of landing outcome and the range of payload mass in the where clause

Total Number of Successful and Failure Mission Outcomes

total number of successful and failure mission outcomes is 61

```
Task 7

List the total number of successful and failure mission outcomes

[27]: sta = 'SELECT COUNT(*) FROM SPACEXTABLE WHERE "Landing Outcome" LIKE \'Success%\' OR "Landing Outcome" LIKE \'Faillure%\'' cur.execute(sta), druck = cur.fetchall() druck

[27]: [(61,)]
```

• Using COUNT(*) to count the number of times of success and failure of launches. Specified the condition using 'LIKE' and '%' in the where clause

Boosters Carried Maximum Payload

• List the names of the booster which have carried the maximum payload mass:

```
Task 8
      List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
[28]: | sta = 'SELECT "Booster Version" FROM SPACEXTABLE WHERE PAYLOAD MASS KG in (SELECT MAX(PAYLOAD MASS KG) FROM SPACEXTABLE)
      cur.execute(sta)
      druck = cur.fetchall()
      druck
[28]: [('F9 B5 B1048.4',),
       ('F9 B5 B1049.4',),
       ('F9 B5 B1051.3',),
       ('F9 B5 B1056.4',),
       ('F9 B5 B1048.5',),
        ('F9 B5 B1051.4',),
       ('F9 B5 B1049.5',),
        ('F9 B5 B1060.2 ',),
       ('F9 B5 B1058.3 ',),
        ('F9 B5 B1051.6',),
        ('F9 B5 B1060.3',),
        ('F9 B5 B1049.7 ',)]
```

• Selecting the records where the payload mass is maximum using MAX() in a subquery, then select the booster version with the maximum payload mass from that subquery

12 boosters

2015 Launch Records

 List the failed landing_outcomes in drone ship, their booster versions, and launch site names for in year 2015

```
[35]: sta = 'SELECT substr(Date, 6, 2), "Landing_Outcome" FROM SPACEXTABLE WHERE substr(Date, 1, 4) = \'2015\' AND "Landing Outcome" LIKE \'Failure%\''
cur.execute(sta)
druck = cur.fetchall()
druck
[35]: [('01', 'Failure (drone ship)'), ('04', 'Failure (drone ship)')]
```

- Only 2 records fit the requirement
- Using substr(Date, position to start, length to extract) to extract the month and specify the year in where clause

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

 Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

```
Task 10

Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order.

[41]: 

| sta = 'SELECT "Landing Outcome", COUNT ("Landing Outcome") FROM SPACEXTABLE WHERE Date BETWEEN \'2010-06-04\' AND \'2017-03-20\' GROUP BY "Landing Outcome" ORDER BY COUNT ("Landing Outcome") DESC' cur.execute(sta) druck = cur.fetchall() druck
| 4 | | [('No attempt', 10), ('Success (drone ship)', 5), ('Failure (drone ship)', 5), ('Failure (drone ship)', 3), ('Controlled (ocean)', 3), ('Controlled (ocean)', 3), ('Incontrolled (ocean)', 2), ('Failure (parachute)', 2), ('Precluded (drone ship)', 1)]
```

- The landing outcome took place most frequently is 'No attempt' with 10 times, then Success (drone ship) and Failure (drone ship), both occurred 5 times
- Used COUNT(), GROUP BY, ORDER BY and DESC

All Launch Sites' Location

• 3 launch sites are in the east coast while 1 launch site is in the west coast

Launch outcomes at launch sites

- All launches are grouped according to their launch site
- More launches were in the east coast

Distance

• 213 km from Jacksonville

- 14.78 km from railway
- 21.21 km from highway

Percentages of Successful Launches from All Sites

 Most successful launches were at KSC LC-39A with 41.7%, while CCAFS SLC-40 had the lowest success rate of 12.5%

Success Rate of Launch Site with the Highest Launch Success Ratio

• KSC LC-39A had the highest launch success rate of 76.9%

Payload mass range and outcomes

Payload mass range and outcomes

Classification Accuracy

 Decision tree classification model has the highest accuracy

Confusion Matrix

- Decision tree classification model correctly predicted those actually landed
- True Positive: 3, True Negative: 12
- But 3 launches that did not land were predicted to "land" successfully

Conclusions

- Launch success rate has been increasing
- ES-L1, GEO, HEO and SSO orbit type has had 100% success rate
- KSC LC-39A had the highest launch success rate of 76.9%
- Decision tree classification model has the highest accuracy

