Model Checking: exercise set 4 - DTMCs

These exercises are from the *Principles of Model Checking* book. *Due date: February 27*

10.1 Consider the Markov chain \mathcal{M} shown below:

Let $C = \{s_0, s_1, s_4, s_6\}$ and $B = \{s_2, s_3\}$.

(a) Compute the probability measure of the union of the following cylinder sets:

$$Cyl(s_0s_1), Cyl(s_0s_5s_6), Cyl(s_0s_5s_4s_3), Cyl(s_0s_1s_6)$$

given that the initial distribution is given by $i_{init}(s_0) = 1$.

- (b) Compute $Pr(s_0 \models \Diamond B)$ using the least fixed point characterization.
- (c) Compute $Pr(s_0 \models C \cup S^{5}B)$ using:
 - (i) the least fixed point characterization;
 - (ii) transient state probabilities (optional).
- (d) Determine $\Pr(s_0 \models \Diamond \square D)$ with $D = \{s_3, s_4\}$.
- 10.3 Let $\mathcal{M} = (S, \mathbf{P}, i_{init}, AP, L)$ be a finite Markov chain, $s \in S$ and $C, B \subseteq S$ with $C \cap B = \emptyset$, and $n \in \mathbb{N}$ with $n \ge 1$. Let $C \cup \mathbb{I}^{=n}B$ denote the event that a B-state will be entered after exactly n steps and all states that are visited before belong the C. That is, $s_0s_1s_2\cdots \models C \cup \mathbb{I}^{=n}B$ is and only if $s_n \in B$ and $s_i \in C$ for $0 \le i < n$. The event $C \cup \mathbb{I}^{=n}B$ denotes the union of the events $C \cup \mathbb{I}^{=k}B$ where k ranges over all natural numbers $k \in \mathbb{I}$. Provide an algorithm to compute:
 - (a) $\Pr(s \models C \cup {}^{=n}B)$;
 - (b) $\Pr(s \models C \cup \subseteq nB)$.