First Year Maths and Further Maths combined Test B9 Lower sixth differentiation including exponentials/logarithms 32 minutes

Throughout the entire test all working must be shown and solutions based entirely on graphical or numerical methods may not be acceptable.

1.			
The curve	C has	equation	1

$$y = \frac{(x^2 + 4)(x - 3)}{2x}, \quad x \neq 0$$

- (a) Find $\frac{dy}{dx}$ in its simplest form. (5)
- (b) Find an equation of the tangent to C at the point where x = -1

Give your answer in the form ax + by + c = 0, where a, b and c are integers.

(5)

Fig. 9 shows the curve y = f(x), where $f(x) = e^{2x} + k e^{-2x}$ and k is a constant greater than 1.

The curve crosses the y-axis at P and has a turning point Q.

Fig. 9

(i) Find the y-coordinate of P in terms of k.

[1]

(ii) S	(ii) Show that the x-coordinate of Q is $\frac{1}{4} \ln k$, and find the y-coordinate in its simplest form.		

3.

A solid glass cylinder, which is used in an expensive laser amplifier, has a volume of 75 π cm³.

The cost of polishing the surface area of this glass cylinder is £2 per cm² for the curved surface area and £3 per cm² for the circular top and base areas.

Given that the radius of the cylinder is r cm,

(a) show that the cost of the polishing, £C, is given by

$$C = 6\pi r^2 + \frac{300\pi}{r} \tag{4}$$

(5)

- (b) Use calculus to find the minimum cost of the polishing, giving your answer to the nearest pound.
- (c) Justify that the answer that you have obtained in part (b) is a minimum.

(1)