Lecture 1 Eye and Human Vision

COMP3204 Computer Vision

Is human vision a good model for computer vision?

Content

- 1. Is human vision a good model for computer vision?
- 2. How does human vision work (and how does it fail)?

Modelling the eye in three parts

Each is not fully understood, especially the brain

Human eye

Evolved for survival

Function of the eye is to form an image on the retina (on fovea)

The lens is shaped, rather than moved Image is transmitted via optic nerve

Optics

Your brain must invert the image

http://hyperphysics.phy-astr.gsu.edu/hbase/vision/rfreye.html

Sensors

There must be a lot!

Cones (10^7) and rods (10^8)

Cones – colour; rods – greylevel

photopic scotopic

Cones come in three types

- 1. S short wavelength (blue)
- 2. M medium wavelength (green)
- 3. L long wavelength (red)

Insufficient bandwidth of optic nerve implies coding

Rod and cone densities

No sensors on blind spot Most cones on fovea Rods elsewhere

http://webvision.med.utah.edu/wpcontent/uploads/2011/03/Spectrum.jpeg

Spectral response

Spectral response

Mach bands

Mach bands are **not** in the image: your vision introduces them

Result of brightness adaption

Section of retina

Cortices

Neural processing

Sensor information must be combined

Note Weber's law

Where are we?

How human vision uses edges

The human eye needs training and can be deceived

(a) word?

(b) Pacmen?

Static illusions

Measurement needs comparison

(a) Zollner

(b) Ebbinghaus

Benham's disk

Illusions are a consequence of complex function

Combining Computer and Human Vision

Eyewitness statement

"24 year old male average height wearing shirt"

Human vision with notions of psychology

Database of images

Generate descriptions

Computer vision by human vision

Generate description

Subject	Gender	Age	Height	Nose W	Тор
Ş	M	24	171	2.4	Shirt

Subject	Gender	Age	Height	Nose W	Тор
123456	М	25	172	2.3	Shirt
123457	F	36	156	2.2	Blouse
123458	М	58	182	1.2	T shirt

Database of descriptions

Image of crime

Computer vision by human vision

Martinho-Corbishley, Nixon and Carter, *IEEE TPAMI* 2019

Takeaway time – four main points

- 1 human eye can be modelled in three sections
- 2 it works very well
- 3 but it can be deceived
- 4 is it a good model for computer vision?

Next up, how images are formed

