	STŘEDNÍ PRŮMYSLOVÁ ŠKOLA ELEKTROTECHNICKÁ HAVÍŘOV		Kurz HARDWARE - ZIM (HAW)			
霏			Jméno	Vojtěch Lisztwan		
	Příspěvková o		Spolupracoval			
			Datum	25.3.2025	Skupina	3C-01
PRAKT. MAT. Skládání PC						

Teoretický rozbor

1. Popis souborového systému a výběr způsobu formátování

Pro formátování disku byl zvolen souborový systém FAT32. Tento systém byl vybrán z důvodu kompatibility se staršími systémy a jednodušší správy. Hlavní nevýhodou je omezení maximální velikosti souboru na 4 GB a méně efektivní práce s velkými disky. FAT32 používá 32 bitové adresování clusterů, takže teoreticky může zaadresovat až 2^32 clusterů(zhruba 4 miliardy). Záznam ve FAT má 32 bitů. FAT32 podporuje jen krátké názvy souborů(8.3). Nepodporuje atributy vlastnictví a oprávnění.

Trošku modernější exFAT už používá 64b bitové adresování. Dokáže zaadresovat až 16 PB. Podporuje dlouhé názvy souborů a má základní správů oprávnění.

Mohli jsme taky použít NTFS(New Technology File System), který je novší a rychlejší. Podporuje velké soubory a je více zabezpečený, využívá MFT tabulku. Ale vzhledek k použitému hardwaru stačí použít starší FAT32.

Při vytváření diskových oddílů byl zvolen MBR (Master Boot Record). Hlavním rozdílem mezi MBR a GPT je, že MBR podporuje maximální velikost disku 2 TB a umožňuje pouze čtyři primární oddíly. Naopak GPT podporuje větší disky a více oddílů, ale vyžaduje UEFI namísto BIOSu.

Byly vytvořeny dva diskové oddíly:

- Jeden určený pro operační systém.
- Druhý určený pro ukládání dat.

2. Popis jednotlivých komponentů a jejich sběrnic

Pevný disk: HDD připojený přes sběrnici PATA (Parallel ATA). Tato sběrnice umožňuje připojení více zařízení na jeden kabel, ale má nižší přenosovou rychlost oproti novějším SATA diskům.

Optická mechanika: CD mechanika připojená přes PATA.

Externí SATA: Byla použita SATA sběrnice pro vyvedení karty na externí SATA port.

Operační paměť: Použit jeden modul DDR paměti o kapacitě 256 MB.

Grafická karta: Připojena grafická karta pomocí PCIE x16.

Napájení: Použit 20pinový main power konektor, ATX 12V a Molex konektory pro napájení pevných disků, mechaniky, zálkadní desky a CPU.

Větev s 12V může mít odběr až 25W, doporučený výkon je >=550W. Záleží na zvoleném procesoru a grifické karty.

Základní deska: Asus A8N-SLI Premium – základní deska s podporou technologie SLI pro zapojení více grafických karet.

Najdeme na ní sběrnici PCI, která má 3 sloty.

Následně PCIE, která má sloty 2x PCIE x16, PCIEx4(1GB/s) a PCIE x1(250MB/s).

Při obsazení obou slotů PCIE budou fungovat pouze v režimu x8.

Konektor IDE, který zvládne 133MB/s.

SATA na této desce zvládá rychlost 3Gb/s.

Výstupní/externí konektory

Procesor: AMD Athlon 64 FX-55.

Bootování

Stisknutí tlačítka napájení:

- Pošle se signál zdroji na vodiči PS ON
- Procesor se drží v resetu dokud se na vodič PW_GOOD nepošle potvrzení o stabilizování napájecích napětí.
- Začíná proces POST (Power-On Self-Test), který kontroluje základní hardware (procesor, RAM, grafická karta).
 - Tato základní deska vypisuje výstup POSTU na obrazovku a pokud je připojený vnitřní reproduktor, tak řekne v angličtině chybovou hlášku. Hlášky jde konfigurovat v SETUP.

Inicializace BIOSu:

• Po dokončení POSTu se aktivuje BIOS, který je uložen na čipu na základní desce.

- Bios je uložen na 4MB chipu od Winbond v pravém dolním rohu desky. Na obrázku je značen jako 4Mb BIOS
- BIOS načte nastavení z EEPROM, kde jsou uloženy základní konfigurace.

Výběr bootovacího zařízení:

- BIOS prohledá seznam bootovacích zařízení, který je definován v nastavení BIOSu.
- Hledá bootovací sektor (Master Boot Record MBR(na adrese 0x00, první sektor)) na prvním bootovacím zařízení, obvykle pevném disku.
- v případě instalace z USB, bios se bude snažit bootovat z USB zařízení.
- V MBR je uložená adresa bootloaderu, tímto se předává pomyslný štafetový kolík OS
- Ten si nahraje svoje ovladače a spustí systém.

BIOS podporuje pouze disky s MBR tabulkou. MBR tabulka umožňuje disk rozdělit pouze na 4 oddíly. Tabulka PT(Partition Table) potom místo 4. oddílu může obsahovat EPT, kde se připojí další oddíly. UEFI podporuje modernější GPT. Kdybysme ale chtěli z UEFI nabootovat z disku s MBR tak můžeme, a to díky CSM(Compatibility Support Module).

Rozdíly mezi BIOSem a UEFI:

BIOS je starší technologie využívající MBR, zatímco UEFI podporuje GPT a má pokročilejší možnosti správy hardwaru

BIOS používá 16bitový režim a má omezení na 1 MB paměti, zatímco UEFI pracuje s 32bitovým nebo 64bitovým režimem.

UEFI podporuje Secure Boot a moderní grafické rozhraní.

Secure Boot ověřuje program OS a ovladače s klíčemi z TPM čipu a chrání tak počítač před spuštěním malwaru. Dnes většinou požadavek na TPM 2.0(požadavek windows pro instalaci).

UEFI je rychlejší než BIOS, protože umožňuje paralelní inicializaci zařízení a efektivněji pracuje s moderními úložnými médii, jako jsou SSD. BIOS provádí sekvenční inicializaci, což zpomaluje celý proces bootování.

UEFI shell může spouštět programy.

Při použití UEFI může OS použít drivery z UEFI, nemusí si nahrávat svoje vlastní jako u BIOS.

Připojení CD mechaniky pomocí EIDE a MOLEX.

Připojení ventilátoru chlazení CPU.

Připojení HDD k napájení a k EIDE.

Připojení MAIN-POWER konektoru a EIDE kabelu. I když se to zdá poněkud neobvykle, tak ano, opravdu to funguje i s 20 pinovým konektorem. Nezapojené 4 piny jsou jen popůrné napájení pro odlehčení zátěže ostatních.

EATXPWR

Vložený DIMM modul ramky DRR.

U této základní desky jsem použil pouze jeden slot, ale jsou dostupné 4. Navíc jsou barevně oddělené, a to proto, že deska podporuje dual channel. V případě 2 modulů DIMM je osadíme do

stejné barvy(ideálně modrých slotů) a rychlost pametí bude dvojnásobná oproti zapojení do jiných barev.

Závěr

Počítač se podařilo složit bez větších problémů. Pro připojení front panelu bylo nutné nahlédnout do datasheetu. Dneska se už takovéto komponenty spíše nepoužívají a používají se o něco modernější. Například větší využití SATA nebo použití SSD disku míto HDD. Disk HDD bude výrazně brzdit celou sestavu. Použil se souborový systém FAT32 a disk byl formátovaný na MBR disk, je to pro totu sestavu dosatčující.