GESTÃO DE ESTOQUES

Prof. Hugo Yoshizaki

HTYY

Funções do Estoque:

- Garantir produção econômica
- Melhorar nível de serviço
- Permitir ganhos de escala em compras/transporte
- Proteger contra sazonalidades
- Proteger contra inconstância na demanda ou no tempo de entrega
- Proteger contra contigências
- Atuar como segurança contra elevações de preço

Fatores fundamentais:

- CUSTOS
 - REQUISIÇÃO OU COMPRA
 - MANUTENÇÃO OU ARMAZENAGEM
 - FALTA
- PADRÃO DE NECESSIDADE DE PRODUTO
- TEMPO DE RESSUPRIMENTO OU CARÊNCIA
 - LEAD-TIME OU TEMPO MORTO
- NÍVEL DE SERVIÇO

(Ballou, 1985)

HTY

A - CUSTOS:

1 - CUSTOS DE REQUISIÇÃO OU COMPRA

- EMISSÃO DO PEDIDO (TAMANHO DO PEDIDO)
- PROCESSAMENTO INTERNO (CONTABILIDADE ETC)
- TRANSMISSÃO DO PEDIDO AO FORNECEDOR
- MANUSEIO NO RECEBIMENTO
- RECEPÇÃO DO MATERIAL
- INSPEÇÃO DE QUALIDADE
- TRANSPORTE DO MATERIAL

2. CUSTOS DE MANUTENÇÃO DO ESTOQUE

- ESPAÇOS DE ARMAZENAGEM FÍSICA
- CAPITAL (CUSTOS DE OPORTUNIDADE)
- SERVIÇOS (TAXAS, SEGUROS)
- RISCOS (DETERIORAÇÃO, EVASÃO, DANO, OBSOLÊSCENCIA)

ASSOCIADO AO ESTOQUE MÉDIO.

3. CUSTOS DE FALTAS

- VENDAS PERDIDAS
- RE-EMISSÃO DE PEDIDO
- PARADA DE OPERAÇÃO/PRODUÇÃO

HTY

B-PADRÕES DE DEMANDA

1. PARTE PREVISÍVEL

- REGULARIDADE (MÉDIA CONSTANTE)
- TENDÊNCIA
- SAZONALIDADE

2. PARTE ALEATÓRIA

- VARIAÇÃO IRREGULAR

Uso de técnicas de previsão (as mesmas!)

- MÉTODOS GRÁFICOS E HEURÍSTICOS
- MÉTODOS HISTÓRICOS (séries temporais, Box-Jenkins, regressão, redes neurais)
- MÉTODOS DE CAUSA-EFEITO (regressão, redes neurais)

HTY

Lembrando: distribuição normal

- Lei dos grandes números
- P (a<x<b) = área sob a curva entre a e b

D - NÍVEL DE SERVIÇO

Para um único item i
 α_i = probabilidade de falta de estoque

 $NS_i = 1 - \alpha_i = disponibilidade do item$

- Para diversos itens: "fill rate" do pedido
 - quando clientes costumam pedir mais de um item por pedido
 - taxa de preeenchimento ponderada

HTY

Estoque	e de Seguranç	a
	semana	consumo (cx)
	1	28
Exemplo:	2	29
-	3	31
venda	4	27
semanal de	5	34
batata	6	30
inglesa (cx).	7	28
3 11 (1 /	8	25
	9	28
	10	30
	Total	290
	Média semanal	29
	Valor acima da média	5
	Desvio-padrão	2,32
	нтүү	

Cálculo do ES

 b) Usando distribuição normal (cont.):

$$z = \frac{d - 29}{\sigma}$$

 $z_m = z_{5\%} = 1,645$ (tabela)

$$ES = z_m \cdot s = 1,645 \cdot 2,32 = 3,82 \sim 4 cx$$

$$d_{max, 5\%} = 29 + 4 = 33 cx$$

$$ES = 4 cx$$

. .__

Modelos de gestão de estoques

- Demanda independente
 - necessidade gerada pelo usuário final
 - natureza aleatória
 - modelos clássicos
- Demanda dependente
 - ou cálculo de necessidades (MRP)
 - necessidades encadeadas
 - conhecida necessidade final, as derivadas são determinísticas

Modelos básicos de demanda independente

- Pedido único
- Pedidos repetidos: modelos de lote econômico e ponto de reposição

Pedido único

- Quando é venda única (Ovos de Páscoa, maionese, etc): problema do jornaleiro
- Usar balanceamento entre lucro unitário e perda unitária
- F(n) = probabilidade de vender pelo menos n unidades do produto

F (n) . Perda = (1- F (n)) . Lucro
F(n) = Lucro / (Lucro + Perda)

$$Q^* = \mu + Z (P(n)).\sigma$$

Lote econômico Q*

• Mínimo custo total de estoque

$$Q^* = \sqrt{\frac{2 \cdot CP \cdot D}{CM \cdot PU}}$$

CP = custo por pedido

D = consumo por período

PU = custo unitário do ítem

CM = custo de manutenção por período (% de PU)

Modelos de demanda independente

- Demanda e/ou lead time aleatórios
- Englobam estoque de segurança: consideram a possibilidade de faltas explicitamente
- Dois tipos:
 - PONTO DE REPOSIÇÃO (SISTEMAS Q)
 - REVISÃO PERIÓDICA (SISTEMAS P)
- Adaptações e aperfeiçoamentos dos mesmos estão no núcleo de sistemas VMI/CRP

HTYY

SISTEMA Q COM DEMANDA INCERTA

- Assume demanda perpétua
- Pedido disparado quando nível efetivo de estoque chega no ponto R
- Nível efetivo de estoque = quantidade disponível mais pedidos em carteira (em trânsito) menos outros compromissos
- Risco (incerteza) apenas com respeito à demanda durante o lead time

Sistema Q com demanda incerta

• Fazer:

Q* = valor tradicional (Harris)

$$R = d.LT + z.s'_d$$

onde z é o valor da Normal para P_r (Tab. A)

 Se R > Q*, não esquecer que deve-se usar nível efetivo de estoque.

HTY

Estoque Médio e Custo Total Final

EM = Estoque Regular + Estoque da Segurança

$$EM = \frac{1}{2} Q + z \cdot s'_d$$

Custo Total = $CT = C_p + C_{er} + C_{es} + C_f$

$$CT = \frac{D}{Q} CP + CM.PU \frac{1}{2} Q + CM PU z s'_d + \frac{D}{Q} CF s'_d E(z)$$

CF = custo unitário de falta E(z) = integral de perda normal unitária (Tab.2)

Nível de serviço

NS = 1 - (Número Esperado de Faltas)/Demanda Total = Função da Probabilidade de Faltas

NS = 1 -
$$\frac{(D/Q) s'_d E(z)}{D}$$
 = 1 - $\frac{s'_d E(z)}{Q}$

HTYY

- Se custo de falta é conhecido, pode-se tentar balancear NS e faltas, como no problema do jornaleiro, usando um processo iterativo:
 - 1. Calcular Q pela fórmula básica de Harris
 - 2. Calcular a probabilidade de ter estoque por:

$$P_r = 1 - (Q. CM.PU)/(D.CF)$$

Achar s'_d e o valor de z equivalente a P_r (tab. A).

Achar E(z) a partir da tabela B.

3. Encontrar Q revisado por:

$$Q = \sqrt{2 D [CP + CF. s'_d.E(z)] / CM. PU}$$

- 4. Repetir passos 2 e 3 até P, e Q convergirem
- 5. Calcular R e outras estatísticas

HTY

Sistema Q com demanda e lead time incertos

Calcular desvio combinado por:

$$s'_{d} = \sqrt{LT. s^{2}_{d} + d^{2}s^{2}_{LT}}$$

onde s_{LT} é o desvio padrão do lead time, assume independência entre LT e demanda

- O estoque de segurança pode aumentar muito
 - Fazer levantamento da distribuição conjunta
 - Ou usar maior LT com $s_{LT} = 0$, e $s'_d = s_d \sqrt{LT}$

HTYY

Modelo de duas gavetas

Caso particular do sistema de ponto de pedido:

- Lote de material é separado em duas partes: assim que a primeira é consumida, é feita a encomenda do novo lote, sendo a segunda parte consumida até a chegada do novo lote
- Muito usada em itens de manutenção e no kanban/JIT

SISTEMA P (REVISÃO PERIÓDICA) COM DEMANDA INCERTA

O estoque é verificado em intervalos de tempo fixos (T), quando são feitos pedidos com tamanhos de lote definidos pela diferença entre um estoque máximo (M) e o nível de estoque (q_i) no instante da verificação.

Permite agrupar itens na mesma data e período de reposição, de forma a permitir melhores condições de compra e de transporte.

Sistema P

- Sistema funciona com a definição de T* e M*:
 - 1. Iniciar calculando Q* pela fórmula de Harris
 - 2. T* = Q*/D ou um valor arbitrário (de conveniência)
 - 3. Encontrar distribuição da demanda no período mais o lead time [DD(T* + LT)]:

4. Estoque médio fica EM = (dT*/2) + z s'd

Sistema P com pedidos casados

Achar o valor de T comum e M* individuais

$$T^* = 2\sqrt{(CP' + \Sigma_i CP_i) / (CM \Sigma_i PU_i D_i)}$$

onde CP' é o custo comum de pedido e o nível de estoque do item i:

$$M_i^* = d_i (T^* + LT) + z_i (s'_d)_i$$

e o custo total fica:

$$CT = \frac{CP' + \sum_{i}CP_{j}}{T} + \frac{T.CM \sum_{i} PU_{i} D_{i}}{2} + CM \sum_{i} PU_{i} z_{i} (s'_{d})_{i} +$$

$$+ (1/T) \sum_{i} CF_{i} z_{i} (s'_{d})_{i} E(z_{i})$$

Centralizar ES: demandas independentes -Consumo semanal de biscoitos (milhares de unidades) Demanda Demanda por local Semana combinada 2 3 13 12 8 10 11 **TOTAL** 265 124 Média Valor 22,1 7,5 4,3 10,3 acima 6,9 4,5 3,7 Lei da raiz quadrada 2,7 HTYY

^		de bleedin	- /!!!			_\	
Jonsumo	semanai	de biscoito	s (miina	res a	e unidades	s)	
	Semana	Demanda combinada	Demanda por local				
			Α	В	С		
	1	21	7	5	9		
	2 3 4 5 6	24	7	4	13		
	3	21	5	4	12		
	4	22	9	5	8		
	5	25	8	6	11		
	<u>6</u>	33	12	7	14		
	7	23	9	6	8		
	8 9	23	6	5	12		
		18	7	4	7		
	10 11	20	8 2	2 0	10		
	12	13	10	3	11 9		
	12	22	10	3	9		
	TOTAL	265	90	51	124		
	Média						
	Valor acima	22,1	7,5	4,3	10,3		
	acıma	22,1	7,5	4,3	10,3		
		10,9	4,5	2,7	3,7		

			i es u	e unidad	es)
Semana	Demanda	Demar			
Semana	combinada	A	В	C	
1	28	12	7	9	
2	28	9	6	13	
3	23	6	5	12	
4	19	7	4	8	
5	21	8	2	11	
6	16	2	0	14	
7	21	10	3 5	8	
8 9	24 18	7 7	5 4	12 7	
10	18 19	5	4	10	
11	25	9	5	11	
12	23	8	6	9	
TOTAL	265	90	51	124	
acima	22,1	7,5	4,3	10,3	
	5,9	4,5	2,7	3,7	
Média Valor	22,1	7,5	4,3	10,3	