The following objects are masked from 'package:stats': ## ## filter, lag ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union library(ggplot2) library(ggridges) library(dslabs) library(readx1) library(cowplot) library(reshape2) library(RColorBrewer) library(tidyverse) ## -- Attaching packages ---------- tidyverse 1.3.1 --## v tidvr 1.1.3 v stringr 1.4.0 ## v readr 2.0.1 v forcats 0.5.1 ## v purrr 0.3.4 ## -- Conflicts ----- tidyverse_conflicts() --## x dplyr::filter() masks stats::filter() ## x dplyr::lag() masks stats::lag() library(ggside) ## Registered S3 method overwritten by 'ggside': method from ## +.gg ggplot2 library(janitor) ## 다음의 패키지를 부착합니다: 'janitor' ## The following objects are masked from 'package:stats': ## ## chisq.test, fisher.test library(ggpubr) ## 다음의 패키지를 부착합니다: 'ggpubr' ## The following object is masked from 'package:cowplot': ## get_legend ## #load data S1A <- as.data.frame(read_excel("C:/Users/user/Desktop/github/bsms222_158_mun//1-s2.0-S0092867420307431 -mmc1.xlsx", sheet = "Table S1A_clinical_103patient")) S1D <- as.data.frame(read_excel("C:/Users/user/Desktop/github/bsms222_158_mun//1-s2.0-S0092867420307431 -mmc1.xlsx", sheet = "Table S1D_transcriptome_log2TN")) S1E <- as.data.frame(read_excel("C:/Users/user/Desktop/github/bsms222_158_mun//1-s2.0-S0092867420307431 -mmc1.xlsx", sheet = "Table S1E_ProteomeLog2TN", na = "NA")) S1C <- as.data.frame(read_excel("C:/Users/user/Desktop/github/bsms222_158_mun//1-s2.0-S0092867420307431 -mmc1.xlsx", sheet = "Table S1C_SNV", na = "NA")) ## New names: ## * `` -> ...1 ## * `` -> ...2 ## * `256` -> `256...6 ## * `86` -> `86...8` ## * `64` -> `64...11` ## * ... gS1A <- as.data.frame(read_excel("C:/Users/user/Desktop/github/bsms222_158_mun//mmc1.xlsx", sheet = "An notions_S1A", na = "NA")) gS2D <- as.data.frame(read_excel("C:/Users/user/Desktop/github/bsms222_158_mun//mmc2.xlsx", sheet = "Ta ## New names: ## * `` -> ...2 ## * `` -> ...3 ## * `` -> ...4 ## * `` -> ...5 ## * `` -> ...6 ## * ... qS3A <- as.data.frame(read_excel("C:/Users/user/Desktop/qithub/bsms222_158_mun//mmc3.xlsx", sheet = "Ta ble S3A", na = "NA")) ## New names: ## * `` -> ...2 ## * `` -> ...3 ## * `` -> ...4 ## * `` -> ...5 ## * `` -> ...6 ## * ... #Make data tidy & usable S1A <- S1A %>% rename("variable" = ID) S1C <- S1C %>% row_to_names(row_number = 1) %>% subset(select = -c(`COUNT`, `%`)) %>% pivot_longer(!Gene, names_to = "variable", values_to = "SNV") S1D <- subset(S1D, select = -c(ensembl_gene_id, Median)) %>% pivot_longer(!gene, names_to = "variable", values_to = "value") S1E <- subset(S1E, select = -c(Accession, Protein)) %>% pivot_longer(!Gene, names_to = "variable", values_to = "value") %>% rename("gene" = "Gene") gS1A <- gS1A %>% rename("variable" = "Participant") gS2D <- gS2D %>% subset(select = -c(`...2`, `...3`, `...4`, `...5`, `...6`)) %>%row_to_names(row_number = 2, remove_rows_above = TRUE) %>% slice(-c(1:68)) %>% pivot_longer(!id, names_to = "variable", values_to = "log2value") %>% rename("gene" = "id") qS3A <- qS3A %>% subset(select = -c(`...2`, `...4`, `#1.3`, `...5`, `...6`, `...7`, `...8`, `...9`, `...10`, `...11`,`...15`, `...16`, `...17`)) %>% ·...12`, `...13`, `...14`, row_to_names(row_number = 2, remove_rows_above = TRUE) %>% slice(-c(1:16)) %>% pivot_longer(!geneSymbol, names_to = "variable" values_to = "log2value") %>% rename("gene" = "geneSymbol") II-2 Figure 1 Figure 1 will be density_ridges plot for expression of Ahr dowstream genes at transcriptomic/proteomic level. #Make dataframe with patients' clinical data and Ahr downstream genes for Ahr downstream genes de <-S1E %>% filter(gene %in% c("CYP1A1", "CYP1B1", "GSTA1", "CDA")) de <- merge(S1A, de, by = "variable") %>% mutate(level = "Proteome") dd <- S1D %>% filter(gene %in% c("CYP1A1", "CYP1B1", "GSTA1", "CDA")) dd <- merge(S1A, dd, by = "variable") %>% mutate(level = "Transcriptome") TWDownstream_DE <- rbind(dd, de)</pre> #Draw plot for total(TW) TWDownstream_DE\$level <- factor(TWDownstream_DE\$level, levels=c("Transcriptome", "Proteome")) TWDownstream_DE\$gene <- factor(TWDownstream_DE\$gene, levels=c("CYP1A1", "CYP1B1", "CDA", "GSTA1")) Total_downstream <- TWDownstream_DE %>% filter(gene %in% c("CYP1A1", "CYP1B1", "GSTA1", "CDA")) %>% ggplot(aes(value, gene, fill = stat(x))) +geom_density_ridges_gradient() + scale_fill_gradient2(high = "red", mid = "white", low = "blue") + $geom_point(aes(col = stat(x))) +$ scale_color_gradient2(high = "red", mid = "gray90", low = "blue4") + guides(color = "none", fill = "none") + $scale_x_continuous(limits = c(-8, 8)) +$ theme_ridges() + geom_vline(xintercept = 0, col = "black", linetype = "dashed") + labs(x = 'Log2T/N',y = 'Ahr downstream genes', fill = 'Log2 \n T/N', title = "", subtitle = "TW cohort - total") + theme(axis.text.x = element_text(size = 9, face = "bold"), axis.text.y = element_text(size = 13), legend.title = element_text(size = 10), legend.text = element_text(size = 8), axis.title.x = element_text(size = 11, hjust = 0.5), axis.title.y = element_text(size = 17, hjust = 0.5), plot.subtitle = element_text(color = "gray40", face = "italic")) + geom_vline(xintercept = 0, col = "black", linetype = "dashed") + facet_wrap(~level) #Draw plot with category(TW) Categorized_downstream <- TWDownstream_DE %>% mutate(class = case_when(Gender == "Female" & `Smoking Status` == "Nonsmoke" & Age <= 60 ~ "A",</pre> Gender == "Female" & `Smoking Status` == "Nonsmoke" & Age >= 60 ~ "B", Gender == "Male" & `Smoking Status` %in% c("Current_Smoker", "Ex-smoker") ~ "C", Gender == "Male" & `Smoking Status` == "Nonsmoke" ~ "D" filter(gene %in% c("CYP1A1", "CYP1B1", "GSTA1", "CDA")) %>% ggplot(aes(value, gene, fill = stat(x))) +geom_density_ridges_gradient() + scale_fill_gradient2(high = "red", mid = "white", low = "blue") + $geom_point(aes(col = stat(x))) +$ scale_color_gradient2(high = "red", mid = "gray90", low = "blue4") + guides(color = "none") + $scale_x_continuous(limits = c(-8, 8)) +$ theme_ridges() + labs(x = 'Log2T/N',y = 11, fill = 'Log2 \n T/N', title = "", subtitle = "TW cohort - categorized by patients", caption = "A = Young(<=60) Nonsmoker Female / B = Old(>60) Nonsmoker Female \n C = Ex/Current Sm oker Male / D = Nonsmoker Male") + theme(axis.text.x = element_text(size = 9, face = "bold"), axis.text.y = element_text(size = 13), legend.title = element_text(size = 10), legend.text = element_text(size = 8), axis.title.x = element_text(size = 11, hjust = 0.5), axis.title.y = element_text(size = 17, vjust = 0.5), plot.caption = element_text(size = 10, face = "italic", hjust = 0), plot.subtitle = element_text(color = "gray40", face = "italic")) + geom_vline(xintercept = 0, col = "black", linetype = "dashed") + facet_grid(level~class) #Bring together and add title by plot_grid plot_row <- plot_grid(Total_downstream, Categorized_downstream, labels = c("A", "B"))</pre> ## Picking joint bandwidth of 0.714 ## Picking joint bandwidth of 0.311 ## Warning: Removed 111 rows containing missing values (geom_point). ## Picking joint bandwidth of 0.908 ## Picking joint bandwidth of 0.96 ## Picking joint bandwidth of 1.18 ## Picking joint bandwidth of 0.778 ## Picking joint bandwidth of 0.2 ## Picking joint bandwidth of 0.355 ## Picking joint bandwidth of 0.346 ## Picking joint bandwidth of 0.313 ## Warning: Removed 111 rows containing missing values (geom_point). title <- ggdraw() + draw_label("Figure 1 - Expression of Ahr downstream genes at transcriptomic/proteomic level", fontface = "bold", $\times = \mathbf{0}$ hjust = 0, size = 20theme(plot.title = element_text(hjust = 0.5), plot.margin = margin(0, 0, 0, 7)) $AHR_downstream <- plot_grid(title, plot_row, ncol = 1, rel_heights = c(0.1,1))$ #Calculating Log2T/N DST <- gS2D %>% filter(gene %in% c("CYP1A1", "CYP1B1", "GSTA1", "CDA")) %>% rename("Sample.ID" = "variable") DST <- merge(gS1A, DST, by = "Sample.ID") %>% mutate(level = "Transcriptome") DSP <- gS3A %>% filter(gene %in% c("CYP1A1", "CYP1B1", "GSTA1", "CDA")) %>% rename("Sample.ID" = "variable") DSP <- merge(gS1A, DSP, by = "Sample.ID") %>% mutate(level = "Proteome") gDownstream <- rbind(DST, DSP) %>% subset(select = c(Sample.ID, variable, Type, Smoking.Status, Age, Gender, Stage, Ethnicity, TP53.muta tion, EGFR.mutation, gene, log2value, level)) %>% slice(-c(1673:1688, 829:844)) NAT <- gDownstream %>% filter(Type == "NAT") %>% subset(select = c("Sample.ID", "variable", "gene", "log2value", "level")) Tumor <- gDownstream %>% filter(Type == "Tumor", !(variable %in% c("C3L-01862", "C3N-00294", "C3N-01074", "C3N-01842", "C3N-02 422"))) gAHRdownstream <- merge(Tumor, NAT, by = c("variable", "gene", "level")) %>% rename("Tumor.Sample.ID" = "Sample.ID.x", "NAT.Sample.ID" = "Sample.ID.y", "Tumor.value" = "log2valu e.x", "NAT.value" = "log2value.y") gAHRdownstream\$Tumor.value <- as.numeric(gAHRdownstream\$Tumor.value) gAHRdownstream\$NAT.value <- as.numeric(gAHRdownstream\$NAT.value)</pre> gAHRdownstream\$Tumor.value <- 2^(gAHRdownstream\$Tumor.value)</pre> gAHRdownstream\$NAT.value <- 2^(gAHRdownstream\$NAT.value)</pre> gAHRdownstream <- gAHRdownstream %>% mutate(logvalue = log2(Tumor.value / NAT.value)) #Draw plot for total(g) gAHRdownstream\$level <- factor(gAHRdownstream\$level, levels=c("Transcriptome", "Proteome")) gAHRdownstream\$gene <- factor(gAHRdownstream\$gene, levels=c("CYP1A1", "CYP1B1", "CDA", "GSTA1"))</pre> g_total <- gAHRdownstream %>% ggplot(aes(logvalue, gene, fill = stat(x))) +geom_density_ridges_gradient() + scale_fill_gradient2(high = "red", mid = "white", low = "blue") + $geom_point(aes(col = stat(x))) +$ scale_color_gradient2(high = "red", mid = "gray90", low = "blue4") + guides(color = "none", fill = "none") + $scale_x_continuous(limits = c(-8, 8)) +$ theme_ridges() + geom_vline(xintercept = 0, col = "black", linetype = "dashed") + labs(x = 'Log2T/N',y = 'Ahr downstream genes', fill = 'Log2 \n T/N', title = "", subtitle = "General cohort - total") + theme(axis.text.x = element_text(size = 9, face = "bold"), axis.text.y = element_text(size = 13),

Characteristics of Ahr downstream genes at

Ahr signaling pathway is ~~~~(뭔지, 뭐 포함돼있는지, 어떤 작용하는지, 어떻게 작동/활성화되는지, 논문에서는 어떻게 다뤄졌는지) 논 문에서 깊게 다뤄지지 않았는데, anti-apoptosis를 통해 tumorigenesis에 기여할 수 있다는 부분을 보고 흥미가 생겨서 data visualization

To see the characteristics of Ahr downstream genes among patients, comparing cohort from the paper with other cohort would be helpful. So I used tables from Chen et al. (2020), which has informations about Taiwan cohort (hencforth TW), and Gillette et al. (2020), which cover geographically diverse population(henceforth g; general). The tables I used include patients' clinical data(TW-S1A, g-S1A), SNV informations(TW-S1C, g-S1A), gene expressions at transcriptomic level(TW-S1D, g-S2D), and gene expressions at proteomic

transcriptomic/proteomic level

• I. Introduction II. Visualization

 II-2 Figure 1 • II-3 Figure 2 • III Consclusion & Discission • III-1 Figure 1 • III-2 Figure 2

I. Introduction

II. Visualization

의 주제로 선정했다

level(TW-S1E, g-S3A).

library(tibble) library(dplyr)

##

##

#load packages I need

다음의 패키지를 부착합니다: 'dplyr'

II-1 Loading/Manipulating data

@@ warning 끌까? 어떻게 끄지 @@ sandstone/simplex/

II-1 Loading/Manipulating data

guides(color = "none") +

fill = 'Log2 \n T/N',

theme_ridges() + labs(x = 'Log2T/N',y = 11

title = "",

facet_grid(level~class)

Picking joint bandwidth of 0.746

Picking joint bandwidth of 0.983

Picking joint bandwidth of 0.805

Picking joint bandwidth of 0.745

Picking joint bandwidth of 0.721

Picking joint bandwidth of 0.991

Picking joint bandwidth of 1.23

Picking joint bandwidth of 1.05

Picking joint bandwidth of 1.24

Picking joint bandwidth of 1.31

#Bring all 4 plots together

dens <- gAHRdownstream %>% mutate(region = case_when(

TRUE ~ "Non-Asian"

)) %>%

is.na(Ethnicity) ~ "NA",

geom_density_ridges_gradient() +

 $geom_point(aes(col = stat(x))) +$

fill = 'Log2 \n T/N',

 $scale_x_continuous(limits = c(-8, 8)) +$

guides(color = "none") +

theme_ridges() + labs(x = 'Log2T/N',y = 11,

title = "",

facet_grid(Gender~region)

is.na(Ethnicity) ~ "NA",

theme(legend.position = "none",

Picking joint bandwidth of 1.84

Picking joint bandwidth of 2.24

Picking joint bandwidth of 1.06

Picking joint bandwidth of 2.09

box <- gAHRdownstream %>% mutate(region = case_when(

TRUE ~ "Non-Asian"

theme_classic() +

labs(x = "Region",

#Bring together

경향성 clearly.

II-3 Figure 2

mutation informations.

tp53 <- S1C %>%

)) %>%

)) %>%

)) %>%

mutate(TP53 = case_when(is.na(SNV) ~ "TP53_WT", TRUE ~ "TP53_mutated"

rename("gene" = "Gene")

#Draw heatmap for TW cohort

TWtile <- TWDownstream_DE %>%

mutate(smoke = case_when(

mutate(EGFR = case when(

mutate(Stage = case_when(Stage == "IA" ~ "=IA", Stage == "IB" ~ "=IB",

mutate(Age = case_when(

TRUE ~ "Age_older"

Age <=60 ~ "Age_younger",

geom_tile(aes(fill = value)) +

TRUE ~ ">=II"

theme_light() + facet_wrap(~level) +

stage = "Stage",

mutate(Smoking_Status = "Smoking_Status", EGFR_mutation = "EGFR_mutation" TP53_mutation = ">TP53_mutation",

age = "Patient_age") %>%

TRUE ~ "EGFR_L858R/Del19")) %>%

ggplot(aes(x = variable, y = gene)) +

geom_xsidetile(aes(y = age, xfill = Age)) + geom_xsidetile(aes(y = stage, xfill = Stage)) +

scale_xsidey_discrete(labels = NULL) +

y = "Ahr downstream genes", subtitle = "TW cohort") + theme(axis.text.x = element_blank(),

legend.position = "none",

#Draw heatmap for g cohort

gtile <- gAHRdownstream %>%

stage = "Stage",

mutate(smoke = case_when(

mutate(EGFR = case_when(

 $mutate(TP53 = case_when($

TRUE ~ "TP53_mutated"

mutate(Stage = case_when(Stage == "1A" ~ "=IA", Stage == "1B" ~ "=IB",

mutate(Age = case_when(

TRUE ~ "Age_older"

Age <= 60 ~ "Age_younger",

TRUE ~ ">=II"

theme_light() + facet_wrap(~level) +

#Make legends

legend_C <- get_legend(</pre> TWDownstream_DE %>%

)) %>%

ggplot() +

ggplot() +

ggplot() +

legend_T <- get_legend(</pre> TWDownstream_DE %>%

legend_S <- get_legend(</pre> TWDownstream_DE %>%

TRUE ~ ">=II"

ggplot() +

legend_A <- get_legend(</pre> TWDownstream_DE %>%

TRUE ~ "Age_older"

mutate(Age = case_when(Age <= 60 ~ "Age_younger",

mutate(age = "Patient_age") %>%

#Bring plots together and put legends inside

TWgtile <- plot_grid(TWtile, gtile, ncol = 1)</pre>

displayed by color. Large grey 구간 is NAs

III Consclusion & Discission

ggsave("Figure2.pdf", fig2, width = 12, height = 10)

)) %>%

)) %>%

ggplot() +

III-1 Figure 1

III-2 Figure 2

mutate(Stage = case_when(Stage == "IA" ~ "=IA", Stage == "IB" ~ "=IB",

mutate(stage = "Stage") %>%

legend_E <- get_legend(</pre> TWDownstream_DE %>%

mutate(Smoke = case_when(

TRUE ~ ".non-smoker"

 $mutate(EGFR = case_when($

TRUE ~ "EGFR_L858R/Del19")) %>%

)) %>%

)) %>%

)) %>%

axis.ticks.x = element_blank(),

axis.title.x = element_blank(),

mutate(Smoking_Status = "Smoking_Status", EGFR_mutation = "EGFR_mutation", TP53_mutation = ">TP53_mutation",

age = "Patient_age") %>%

is.na(EGFR.mutation) ~ "EGFR_WT",

is.na(TP53.mutation) ~ "TP53_WT",

Stage == "1" & is.na(Stage) ~ "NA",

ggplot(aes(x = variable, y = gene)) +geom_tile(aes(fill = logvalue)) +

 $geom_xsidetile(aes(y = age, xfill = Age)) +$ geom_xsidetile(aes(y = stage, xfill = Stage)) +

scale_xsidey_discrete(labels = NULL) +

subtitle = "General cohort") + theme(axis.text.x = element_blank(),

legend.position = "none",

axis.ticks.x = element_blank(),

strip.text = element_blank(), axis.title.x = element_blank(),

strip.background = element_blank(),

mutate(variable = reorder(variable, value, median)) %>%

mutate(Smoking_Status = "Smoking_Status") %>%

mutate(EGFR_mutation = "EGFR_mutation") %>%

mutate(TP53_mutation = ">TP53_mutation") %>%

EGFR_Status %in% c("WT", "others") ~ "EGFR_WT/others",

mutate(variable = reorder(variable, value, median)) %>%

mutate(variable = reorder(variable, value, median)) %>%

 $geom_tile(aes(x = variable, y = stage, fill = Stage)) +$

 $geom_tile(aes(x = variable, y = age, fill = Age)) +$ scale_fill_manual(values = c("wheat3", "wheat1")))

scale_fill_manual(values = c("darkslategray1", "deepskyblue2", "deepskyblue4")))

legends <- plot_grid(legend_S, legend_C, legend_A, legend_E, legend_T, ncol = 1)</pre>

Figure 2 is heatmap for Ahr downstream gene expression of TW and g cohort at

transcriptomic/proteomic level. The heatmap is drawn with geom_tile. Stage, smoking status, age, EGFR mutation, TP53 mutation informations are included by geom_xsidetile, and each variables are

fig2 <- plot_grid(TWgtile, legends, byrow = TRUE, rel_widths = c(6.6,1))

 $geom_tile(aes(x = variable, y = EGFR_mutation, fill = EGFR)) +$ scale_fill_manual(values = c("mediumorchid4", "mediumorchid1")))

 $geom_tile(aes(x = variable, y = TP53_mutation, fill = TP53)) +$ scale_fill_manual(values = c("black", "floralwhite")))

labs(y = "Ahr downstream genes",

TRUE ~ "EGFR_mutated")) %>%

Smoking.Status == "smoker" ~ ".smoker",

Smoking.Status == "non-smoker" ~ ".non-smoker"

mutate(variable = reorder(variable, logvalue, median)) %>%

geom_xsidetile(aes(y = Smoking_Status, xfill = smoke)) + geom_xsidetile(aes(y = EGFR_mutation, xfill = EGFR)) + $geom_xsidetile(aes(y = TP53_mutation, xfill = TP53)) +$

scale_fill_gradient2(high = "red", mid = "white", low = "blue") +

scale_xfill_manual(values = c("darkorange", "darkolivegreen4", "darkslategray1", "deepskyblue2", "dee

pskyblue4", "wheat3", "wheat1", "mediumorchid4", "mediumorchid1", "black", "floralwhite")) +

plot.subtitle = element_text(color = "gray40", face = "italic"))

`Smoking Status` %**in**% c("Ex-smoker", "Current_Smoker") ~ ".smoker",

geom_tile(aes(x = variable, y = Smoking_Status, fill = Smoke)) + scale_fill_manual(values = c("darkorange", "darkolivegreen4")))

subset(select = -c(SNV)) %>%

y = "Log2T/N")

)) %>%

#Bring together(g)

 $scale_x_continuous(limits = c(-8, 8)) +$

moker Female / D = Ex/Current smoker Male") +

subtitle = "General cohort - categorized by patients",

axis.title.x = element_text(size = 11, hjust = 0.5), axis.title.y = element_text(size = 17, vjust = 0.5),

geom_vline(xintercept = 0, col = "black", linetype = "dashed") +

Warning: Removed 124 rows containing missing values (geom_point).

Warning: Removed 94 rows containing missing values (geom_point).

이렇게 하니까 ~~~ bimodal~~ 한게 나타났다 그래서 그부분만 빼서 나타내봤다

#density plot for GSTA1(Asian vs Non-Asian)

Ethnicity %in% c("asian", "han") ~ "Asian",

filter(region %in% c("Non-Asian", "Asian")) %>% filter(level == "Proteome", gene == "GSTA1") %>% ggplot(aes(logvalue, gene, fill = stat(x))) +

scale_fill_gradient2(high = "red", mid = "white", low = "blue") +

theme(axis.text.x = element_text(size = 9, face = "bold"),

axis.title.x = element_text(size = 11, hjust = 0.5), axis.title.y = element_text(size = 17, vjust = 0.5),

geom_vline(xintercept = 0, col = "black", linetype = "dashed") +

filter(region %in% c("Non-Asian", "Asian"), Gender == "male") %>%

 $geom_boxplot(aes(fill = region), width = 0.3, alpha = 0.7) +$ scale_fill_manual(values = c("dodgerblue4", "firebrick4")) +

scale_color_manual(values = c("dodgerblue4", "firebrick4")) +

axis.title.y = element_text(face = "bold"),

GSTA1 <- plot_grid(dens, box, ncol = 2, labels = c("E"))

axis.text.x = element_text(face = "bold", size = 12),

geom_hline(yintercept = 0, col = "black", linetype = "dashed") +

Warning: Removed 10 rows containing missing values (geom_point).

fig1 <- plot_grid(expression_TW_general, GSTA1, ncol = 1, rel_heights = c(4, 1))

Figure 1 is about ~~~. Plot A and C shows the relative expression of Ahr downstream genes of TW

cohort and g cohort, respectively. Plot B and D shows the relative expression of Ahr downstream

status/gender. I used scale_fill_gradient_2 so that 눈에 잘띄는 red~blue 쓸 수 있게. Also, I drew a vertical line at x=0 by geom_vline to make it easier to see whether the expression이 높은/낮은 경향

을 보이는지. geom_point on x axis is to helps the viewers to see the 분포/밀집도 easily, and can

show values that did not draw a density plot because of small number. Plot E shows the expression

of GSTA1 gene, comparing Asian with Non-Asian, male with female. The boxplot helps to see the

Figure 2 will be heatmaps for Ahr downstream genes' expression, with patiens' age/smoking stats/stage/TP53 mutation/EGFR

genes of TW cohort and g cohort, respectively, categorized by patients' age/smoking

#Bring all the plots for Ahr downstream expression together

ggsave("Figure1.pdf", fig1, width = 12, height = 16)

#Merge TP53 mutation information to previous dataframe

TWDownstream_DE <- merge(TWDownstream_DE, tp53, by = c("variable", "gene"))

`Smoking Status` %**in**% c("Ex-smoker", "Current_Smoker") ~ ".smoker",

EGFR_Status %in% c("WT", "others") ~ "EGFR_WT/others",

mutate(variable = reorder(variable, value, median)) %>%

geom_xsidetile(aes(y = Smoking_Status, xfill = smoke)) + geom_xsidetile(aes(y = EGFR_mutation, xfill = EGFR)) + geom_xsidetile(aes(y = TP53_mutation, xfill = TP53)) +

strip.background = element_rect(fill = "gray88"),

strip.text = element_text(size = 15, color = "black"),

plot.subtitle = element_text(color = "gray40", face = "italic"))

scale_fill_gradient2(high = "red", mid = "white", low = "blue") +

scale_xfill_manual(values = c("darkorange", "darkolivegreen4", "darkslategray1", "deepskyblue2", "dee

labs(title = "Figure 2 - Correlation between EGFR/TP53 mutation and Ahr downstream gene expression",

pskyblue4", "wheat3", "wheat1", "mediumorchid4", "mediumorchid1", "black", "floralwhite")) +

#Draw boxplot for GSTA1 expression of Asian/Non-Asian males

Ethnicity %in% c("asian", "han") ~ "Asian",

filter(level == "Proteome", gene == "GSTA1") %>%

geom_jitter(aes(color = region), alpha = 0.4) +

axis.title.x = element_blank()) +

ggplot(aes(x = region, y = logvalue)) +

axis.text.y = element_text(size = 13), legend.title = element_text(size = 10), legend.text = element_text(size = 8),

scale_color_gradient2(high = "red", mid = "gray90", low = "blue4") +

subtitle = "GSTA1 expression(General cohort, proteomic level)") +

plot.subtitle = element_text(color = "gray40", face = "italic")) +

expression_TW_general <- plot_grid(AHR_downstream, g_AHR_downstream, ncol = 1)

 $g_AHR_downstream <- plot_grid(g_total, g_categorized, labels = c("C", "D"))$

plot.caption = element_text(size = 10, face = "italic", hjust = 0), plot.subtitle = element_text(color = "gray40", face = "italic")) +

theme(axis.text.x = element_text(size = 9, face = "bold"),

axis.text.y = element_text(size = 13), legend.title = element_text(size = 10), legend.text = element_text(size = 8),

caption = "A = Young(<=60) Nonsmoker Female / B = Old(>60) Nonsmoker Female \n C = Ex/Current S

Figure 1 – Expression of Ahr downstream genes at transcriptomic/proteomic level

Figure 2 – Correlation between EGFR/TP53 mutation and Ahr downstream gene expression TW cohort

