H - 170 - 2015

인듐 취급 근로자의 보건관리지침

2015. 11

한국산업안전보건공단

안전보건기술지침의 개요

- 작성자 : 부산가톨릭대학교 문찬석
- 제·개정 경과
- 2015년 11월 산업위생분야 제정위원회 심의(제정)
- 관련규격 및 자료
- CDC, NIOSH. An evaluation of preventive measures at an indium-tin oxide production facility, 2012
- 안전보건공단. 난용성 인듐에 의한 직업성 폐질환 발생과 예방 46-51, 안전보 건연구동향, 2012
- 日本厚生勞働省. インジウム・スズ酸化物等の取扱い作業による健康障害防止に 關する技術指針, 2013
- 기술지침의 적용 및 문의
- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관분야별 문의처 안내를 참고하시기 바랍니다.
- 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2015년 12월 7일

제 정 자 : 한국산업안전보건공단 이사장

H - 170 - 2015

인듐 취급 근로자의 보건관리지침

1. 목 적

이 지침은 산업안전보건기준에 관한 규칙(이하 "안전보건규칙"이라 한다)에 의거하여, 인듐 및 인듐주석산화물을 제조하거나 취급하는 근로자의 건강장해를 방지하기 위한 보건관리적 사항을 정하는 것을 목적으로 한다.

2. 적용범위

이 지침은 인듐 및 인듐주석산화물을 제조, 취급하는 모든 작업에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용되는 용어의 뜻은 다음과 같다.
- (가) "ITOc(Indium and Indium-Tin Oxide compounds)"는 인듐 및 인듐주석산화 물을 말한다.
- (나) "LOAEL(Lowest Observable Adverse Effect Level)"은 독성인정최저농도를 말한다.
- (다) "NOAEL(No Observable Adverse Effect Level)"은 최대허용독성농도를 말한다.
- (2) 그 밖의 이 지침에서 사용하는 용어의 정의는 이 지침에서 특별히 규정하는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙, 산업안전 보건기준에 관한 규칙 및 고시에서 정하는 바에 따른다.

4. 물리·화학적 성상 및 유해성

4.1 물리적 성상

다음은 <표 1>에서 인듐 및 인듐화합물의 기본정보, <표 2>에서 물리화학적 성상, <표 3>에서 물리화학적 위험성, <표 4>에서 용도에 관해 나타내었다.

<표 1> 인듐 및 주요 인듐화합물의 기본정보

명칭	인듐 주석 산화물	인듐	산화 인듐	삼염화 인듐	수산화 인듐
화학식	In ₂ O ₃ /SnO ₂	In	In ₂ O ₃	InCl ₃	In(OH) ₃
분자량		114.82	277.64	221.18	165.84
CAS 번호	50926-11-9	7440-74-6	1312-43-2	10025-82-8	20661-21-6
	산업안전보건기준에 관한 규칙 제16조(위험물등의 보관),				
관련법규	제17조(비상구의 설치), 제225조(위험물질 등의 제조 등 작업 시의				
	조치, 제273조(계측장치 등의 설치)				

<표 2> 인듐 및 주요 인듐화합물의 물리화학적 성상

물질명	인듐 주석 산화물	인듐	산화 인듐	삼염화 인듐	수산화 인듐
외관	짙은회색~녹색을 띄는 고체	은백색의 부드러운 금속	담황색 결정	흰색결정	백색 분말
비중 (물 = 1)	$$^{\circ}$ 7.15$ $(In_2O_3: SnO_2 = 64^{\sim}100\%: 0^{\sim}36\%)$ $	7.282 (24℃)	7.179	3.46 (25℃)	-
비등점	_	2072℃	850°C	500℃에서 분해	-
융점	_	156.6℃	_	_	150℃ 부근에서 분해
물 용해도 g/100ml (25 ℃)	불용	-	불용	212	불용

<표 3> 인듐 및 인듐주석산화물의 물리화학적 위험성

	인듐 주석 산화물	인듐
화재 위험	불연성	불연성
폭발 위험	없음	공기 입자가 미세 확산하고 폭발성 혼합 기체를 발생한다.
물리적 위험	1500℃ 이상의 고온에서 흄과 가스를 발생할 수 있다 (환원 감압 하에서는 낮은 온도에서 발생).	분말이나 과립 형태로 공기와 혼합 분진 폭발의 가능성이 있다.
화학적 위험	정보 없음	강산, 강산 화제, 유황과 반응하여 화재나 폭발의 위험을 초래한다.

<표 4> 다음은 인듐 및 인듐화합물의 용도

물질명	용도
인듐 주석 산화물	PC, TV, 휴대용 정보 단말기 등의 평면 디스플레이, 터치패널, 태양 전지 등의 투명 전극 재료
인듐	실버 로우, 실버 합금 접점, 납땜, 저 융점 합금, 액정 셀전극 용, 치과 용 합금, 내식성 알루미늄, TV 카메라, 게르마늄 트랜지스터, 광통신, 태양열 발전, 전자 부품, 베어링금속, 인듐 인화물 크리스탈 원료
산화 인듐	ITOc용 원료
삼염화 인듐	ITOc용 원료
수산화 인듐	투명 전극 제조용 원료
기타	산화 인듐 제조용 원료, 질산 인듐, 황산 인듐 제조용 원료 전지 전극 재료

4.2 유해성

다음은 인듐 및 인듐화합물의 발암성에 대한 동물실험 결과를 나타내었다.

<표 5> 인듐 및 인듐화합물의 발암성

구분	동물 실험 결과	
발암성	① IARC에서는 인화(鱗化)인듐으로서 발암성 물질 그룹 2A로 분류했다. 인화(鱗化)인듐 이외의 인듐 화합물의 발암성은 불분명하나, 발암은 인듐에 기인하는 것으로 추정하고 있다. ② 일본 바이오분석연구센터의 장기 발암성 시험결과로서 암수 쥐에 104주 동안 0.01, 0.03, 0.1 mg/m³ 농도로 인듐 연삭가루를 노출시킨 결과, 최소 농도 0.01 mg/m³에서 폐 세기관지의 폐포상피암 및세기관지의 폐포상피선종 발생이 증가되었으며, 수컷은 폐동맥 편평세포암종, 암컷에서는 폐동맥편평세포암과 편평세포암종도 확인되었다. 마우스 경우에는 비슷한 농도에서 104주 동안 인듐 연삭가루를 노출시켰으나 발암성은 확인되지 않았다.	
발암성 역치	흡입 노출 실험의 결과로 부터 폐의 지속적인 염증 반응이 나타나며 폐 포·세기관지 상피 증가가 나타난 후 폐암으로 진전되는 것으로 보고 있 다.	
대기 중 발암 추정 농도	3.0 × 10 ⁻⁴ mg/m ³ 산정식: 0.01 mg/m ³ (LOAEL) × 1/25(UF) × 6/8 (작업시간보정) = 3.0×10 ⁻⁴ mg/m ³ LOAEL: 일본 바이오분석연구센터의 쥐의 흡입에 의한 장기 발암성 시험 UF(uncertainty factor; 불확실인자): LOAEL → NOAEL의 변환의 경우 10배(10X), 종(種)간의 차이의 경우 2.5배(2.5X)를 적용함.	

다음은 인듐 및 인듐화합물의 발암성 이외의 유해성이다.

<표 6> 인듐 및 인듐화합물의 독성

유해성	내 용
급성 독성	LD ₅₀ : 4200 mg/kg(취, 경구)
피부 부식성 / 자극성	
눈에 심한 손상성 / 자극성	가용성 염은 눈에 강한 자극 있음
피부 감작성	
반복투여독성(생식·발 생 독성/발암성 제외)	폐부종, 폐포단백증(쥐) 페의 만성염증(마우스) (참고) 일본 바이오분석연구센터의 장기 발암성 시험결과는 암수 쥐에 104주 0.01, 0.03, 0.1 mg/m³ 농도에서 인듐 연삭 가루를 노출시킨 결과 최소 농도 0.01 mg/m³에서 쥐에서 폐포단백증, 폐포상피의 과형성, 폐포벽의 섬유화, 마우스에서도 폐포단백증의 발생 증가가 나타났다. [노출 허용 농도의 계산] 추정치: 3.0 × 10⁻⁴ mg/m³ 산정식: 0.01 mg/m³(LOAEL) × 1/25(UF) × 6/8 (작업시간보정) = 3.0 × 10⁻⁴mg/m³ LOAEL: 일본 바이오 분석연구센터의 생쥐 흡입에 의한 장기 발암성 시험 UF(uncertainty factor; 불확실인자): LOAEL → NOAEL의 변환의 경우 10배(10X), 종(種)간의 차이의 경우 2.5배(2.5X)를 적용함.
생식 독성	

H - 170 - 2015

5. 작업환경관리 및 작업관리

사업주는 실내 작업장에서 ITOc 등을 제조 또는 취급하는 근로자가 ITOc 등에 노출되는 것을 방지하기 위해 다음과 같은 조치를 취해야 한다.

5.1 시설에 관한 조치

다음 중 하나의 조치를 취해야 한다.

- (1) 원격 조작의 도입 또는 공정의 자동화
- (가) 작업장에 들어가지 않고 작업을 할 수 있도록 한다.
- (나) 수작업을 기계화 한다.
- (2) 분진 발생원 밀폐 및 격리 시설의 설치
- (가) 발생원 시설과 장비 전체를 밀폐한다.
- (나) 지그(Jig)를 이용하는 등 발생원이 되는 시설·장비의 개구부(창문 등)의 크기를 최소화 한다.
- (다) 분진이 비산하지 않도록 호퍼(hopper), 슈터(chute)의 형태를 변경한다.
- (라) 모든 용기를 밀폐화 한다.
- (마) 발생원의 주위에 비닐커튼을 설치하여 작업 주변과 최대한 격리시킨다.
- (바) 발생원을 포함한 작업장소의 공간을 최대한 좁힌다.
- (사) 발생 원인이 되는 장치를 격리하여 필요시에만 출입한다.

H - 170 - 2015

(3) 국소 배기 장치 설치

작업 장소의 실태 및 작업 형태에 따라 국소 배기 장치를 선정하고 그 효과를 아래의 사항 등에 의해 확인한다.

- (가) 흡입구의 개구 면적을 최소화하여 흡입효율을 높인다.
- (나) 집진용 헤파필터를 활용하여 집진 능력이 확보되도록 한다.
- (다) 국소 배기 장치의 제어 풍속이 적절히 유지되어야 한다.
- (라) 국소 배기 장치의 이상 유무, 흡입 풍속에 대하여 일상적으로 점검해야 한다.
- (4) 푸시 풀형 환기 장치의 설치
- (5) 습윤 상태로 유지하기 위한 설비의 설치
- (가) 가능한 습식 작업 방법을 변경한다.
- (나) 비품, 걸레 등을 물로 습윤화하여 수분이 증발 한 후에도 확산하지 않도록 덮 개가 있는 용기에 보관
- (6) 기타 발생 억제 조치
- (가) 분진이 작업장 외부로 배출되지 않도록 작업실 출구에 끈끈한 매트(점착 시트)를 설치하고 주기적으로 교체한다.
- (나) 작업 장소의 출구에 발바닥 세척 브러시 매트를 설치한다.
- (다) 작업실의 출구에 에어 샤워를 설치한다.

H - 170 - 2015

(라) 방진 소재의 작업복과 작업모를 사용한다.

5.2 작업 관리

단위 작업장의 작업 관리자를 선임한다. 작업 관리를 지휘하는 자는 다음의 사항을 실시해야한다.

- (1) 근로자가 노출되지 않도록 작업 위치, 작업 자세 및 작업 방법 등의 선택
- (2) 작업 절차서 작성 및 수행 확인
- (3) 해당 물질에 노출되는 시간의 단축
- (4) 보호장비의 철저한 사용(호흡용 보호구 외에 필요한 경우 보호 안경을 사용)
- (5) 청소 작업
- (가) ITOc 취급 작업에 의해 작업대 등에 비산 ITOc는 2차 비산 분진의 방지를 위해 정기적으로 청소를 한다. (원격조작의 도입 또는 공정의 자동화 포함)
- (나) ITOc의 청소 또는 장치 내부에 부착된 물질의 회수에 종사하는 근로자는 ITOc에 적합한 호흡용 보호구를 착용해야 한다.
- (다) 작업복은 사업장 내에서 세탁한다. 사복과 작업복 사물함을 별도로 구분해서 사용한다.

5.4 호흡 보호구 사용

(1) 작업환경측정 결과가 허용농도를 초과하는 경우, ITOc 취급 작업에 종사하는 근로자는 효과적인 호흡용 보호구를 선택하여 작업 중 반드시 착용한다. 방진 마스크는 국가 검정에 합격한 것을 사용한다.

H - 170 - 2015

- (2) 호흡용 보호구의 선정은 <부록 1>의 "인듐 취급 작업에 대한 호흡 보호구의 선정」에 의해, 각 작업장의 상황에 맞는 적절한 지정 보호 계수의 호흡 보호 재료를 선정한다. (일본 예시 참조)
- (3) 비상시 사용하기 위해 ITOc의 노출을 방지하는 적절한 호흡 보호구를 필요한 수량으로 마련해 두고 항상 청결을 유지하도록 한다.
- (4) 방진 마스크를 사용할 경우 적절한 검사기를 이용하여 면체와 안면 밀착성을 확인하여 적합한 것을 선택하고, 장착 할 때마다 확인한다.

6. 건강 관리

6.1 건강 진단 실시

ITOc 취급 작업 근로자의 입사시 또는 작업장 전환 배치 시에 법에 정한 바에 따라 건강 진단을 실시한다.

건강 진단 항목 및 건강 진단 방법 등에 대한 참고자료로서 일본의 예시를 <부록 2>에 나타내었다.

6.2 건강 진단 실시 후 조치

사업주는 건강 진단 결과를 기본으로 한 의사 진단을 바탕으로 하여 해당 근로자의 근로 조건을 고려해야 한다. 취업 및 근무는 다음<표 7>과 같은 기준을 참고로 하여 의사의 소견을 고려해야 한다. 건강 진단 결과의 검토는 <부록3>의 '건강 진단 결과 검토에 있어 유의 사항'을 예시로 나타내었다.

H - 170 - 2015

<표 7> 건강진단 결과 검토 시 유의사항

취업 구분	건강 진단 결과
정상 근무	이상소견이 인정되지 않는 경우
취업 제한 (근무 시간 단축, 작업의 전환, 취업 장소의 변경, 치료를 위한 휴직 등)	다음 중 하나에 해당하는 경우 1 혈청 인듐이 3 µg/L 이상인 경우 2 간질성 폐렴 또는 폐기종성 변화에 따른 호흡기 자각 증상을 나타내고, 혈액중의 시알화 당사슬항원 KL-6의 측정값(이하 "혈청 KL-6 값"이라한다)이 500U/ml 이상 또는 폐 기능 검사와 흉부 특수 X선 촬영에 의한 검사 (이하 "흉부 CT 검사 (컴퓨터 단층 촬영)"이라한다) 등에 의해 인듐에 의한 이상 소견이 확인되는 경우

사업주는 상기의 유의사항을 감안하여 취업 구분에 따른 취업상의 조치를 취한다. 사업주는 근로자의 의견을 충분히 청취하고, ITOc의 유해성과 건강 영향에 관한 정 보를 제공해야 하며 근로자가 이해할 수 있도록 노력해야 한다. 근로자의 취업 및 근무는 해당 근로자의 건강을 가장 염두에 두어야 한다.

6.3 건강 진단 결과의 보존

건강 진단을 실시한 때에는 그 결과에 따라 근로자 별로 기록을 작성하고 법에 의한 기간 동안 보존한다.

6.4 건강 진단 결과의 통지

건강 진단을 실시한 경우에는 건강 진단을 받은 근로자에 대하여 지체 없이 건강 진단 결과를 통지한다.

6.5 기타 유의해야 할 사항

H - 170 - 2015

사업주는 ITOc 등 취급 작업에 종사하는 근로자에 대해서는 ITOc 등에 의한 폐 손상에 영향을 미칠 우려가 있기 때문에, 금연을 지도하는 것이 바람직하다.

7. 보건 교육

사업자는 본 기술지침, MSDS 등으로 얻은 정보를 바탕으로 관계 근로자에 대하여 다음 사항 관한 보건 교육을 실시한다.

- (1) ITOc 등의 물리 화학적 성질
- (2) ITOc 등의 유해 작용, 노출로 발생하는 증상·장해 및 동물을 이용한 장기 발암 성 시험에서 도출된 노출 허용 농도에 관한 내용
- (3) 목표 농도 및 작업 규정에 따른 작업 방법
- (4) 호흡용 보호구의 사용 방법
- (5) 건강 진단 및 그 결과의 활용

<부 록1>

다음은 일본 후생노동성의 자료를 예시로 나타내었다.

인듐 취급 작업에 대한 호흡 보호구의 선정

- 허용 농도를 3×10⁻⁴ mg/m³했을 때의 선정 기준표 -

작업환경측정결과 (작업환경측정평가기준 으로 산출한 제1평가치에 따른 판단)	선정 보호구 기준
측정 면제 3×10 ⁻² mg/m ³ 이상	[지정 보호 계수 100 ~ 1,000 수준 이상의 보호 성능을 기대할 수 있는 것] ● 면체 모양(전면) 전동 팬 부착 호흡 보호구(입자 포집 효율 : 99.9% 이상) ● 전면형 일정 유량형 에어라인 마스크 ● 압력 디맨드형 에어라인 마스크
목표 농도 1×10 ⁻² 3×10 ⁻³ mg/m ³ 이상	[지정 보호 계수 50~100 레벨 이상의 보호 성능을 기대할 수 있는 것] ● 면체모양 (반면) 전동팬 부착 호흡용 보호구 (입자 포집 효율: 99.9% 이상) ● 교체식 전면형 방진 마스크 - 국가 검정 합격품: 입자 포집 효율 99.9% 이상 - 착용자가 이러한 호흡 보호구를 착용하고 정기적으로 마스크 피팅 테스터에 의해 누설률 측정에서 2% 미만 (보호 계수 50 이상)임을 확인
3×10 ⁻⁴ mg/m³ 초과	[지정 보호 계수 10 레벨 이상의 보호 성능을 기대할 수 있는 것] ● 교체식 반면형 방진 마스크(입자 포집 효율 99.9% 이상)
허용 농도 3×10 ⁻⁴	
3×10 ⁻⁴ mg/m³ 이하	호흡용 보호구의 사용이 바람직함

H - 170 - 2015

<부 록2>

ITOc 취급 작업에 종사하는 근로자 건강 진단 항목(일본 사례)

1 입사시 또는 재배치시 건강 검진

사업주는 ITOc 취급 작업에 상시 종사하는 근로자에 대하여 입사시 또는 전환 배치 시 다음의 항목에 대해 건강 진단을 실시한다.

- (1) 업무 경력 조사
- (2) 흡연력
- (3) 병력 조사
- (4) 인듐 또는 그 화합물에 의한 기침, 가래, 호흡 곤란 등의 자각 증상 또는 청색 증, 발가락형 손가락 등의 현재 증상 및 기왕력 조사
- (5) 기침, 가래, 호흡 곤란 등 자각 증상의 유무 조사
- (6) 혈청 인듐 농도 측정
- (7) 혈청 KL-6 값의 측정
- (8) 흉부 CT 검사
- 2 정기 건강 진단
 - (1) 1차 건강 진단

사업자는 ITOc 등 취급 작업에 상시 종사하는 근로자에 대하여 6개월에 1회 정기적으로 다음의 항목에 대해 건강 진단을 실시한다.

H - 170 - 2015

- (가) 업무 경력 조사
- (나) 작업 조건 조사
- (다) 흡연력
- (라) 병력의 유무의 검사
- (마) 인듐 또는 그 화합물에 의한 기침, 가래, 호흡 곤란 등의 자각 증상 또는 청 색증, 발가락형 손가락 등 증상의 기왕력 유무 검사
- (바) 기침, 가래, 호흡 곤란 등의 자각 증상 유무의 검사
- (사) 혈청 인듐 농도 측정
- (아) 혈청 KL-6 값의 측정

(2) 2차 건강 진단

사업주는 건강 진단 결과 이상소견자 또는 의사가 필요하다고 인정하는 자에 대해서는 다음의 항목에 대해 건강 진단을 실시한다.

- (가) 작업 조건 조사
- (나) 의사가 필요하다고 인정하는 경우 흉부X선 검사, 흉부 CT 검사, 설펙턴트프로테인 D(surfactant protein D; 혈청 SP-D) 검사 등의 혈액 화학 검사, 폐기능 검사, 가래세포 또는 기관지경 검사
- 3 전환 배치 후의 근로자에 대한 건강 진단

사업주는 과거에 ITOc 등의 취급 작업에 상시 종사하였으며 현재 취업중인 근로자에 대하여 상기 (2)에 규정하는 건강 진단 항목에 대해 건강 진단을 실시한다.

H - 170 - 2015

<부 록3>

건강 진단 결과 검토에 있어 유의 사항

1 혈청 인듐 농도 및 혈청 KL-6 값

- (1) ITOc 등에 의한 폐 손상 (특히 간질성 변화 및 폐기종성 변화)은 발병 후 작업 지속여부에 관계없이 병이 진행하는 사례가 있으며, 폐기종성 변화에 대해서는 기간이 경과함에 따라 악화되는 경우가 많다. 발병 초기에는 자각 증상이 나타나지 않는 경우도 있으므로 주의해야 한다.
- (2) ITOc 등에 의한 건강 영향을 조기에 발견하는데는 혈청 인듐 농도 및 간질성 폐렴의 혈액 표지자인 혈청 KL-6 값 등이 유용하다고 알려져 있다. 혈청 인듐 농도는 3 μg/L 이상인 경우에는 폐 간질성 변화의 위험이 증가하는 것으로 보고 있다.
- (3) 혈청 KL-6 값은 500 U/mL 이상인 경우, 간질성 폐렴의 발병 가능성이 나타나 기 시작한다. 그러나 혈청 KL-6 값은 간질성 폐렴의 발병 후 지속적으로 높게 나타나는 것은 아니다. 노출의 감소로 폐간질성염증이 진정됨에 따라 정상치로 회복 할 수도 있으나 폐의 섬유화를 남겨 기능 장해를 초래하는 경우가 있다.
- (4) 혈청 KL-6값의 정상치는 활동성 간질성 폐렴이 발생하지 않는다는 것이며, 폐손상이 인정되지 않거나, 간질성 변화가 치유되었다는 것을 의미하는 것은 아니다. 특히 지난 혈청 인듐 농도가 3 μg/L 이상인 사람의 경우는 폐의 간질성 변화 및 폐기종성 변화 등이 진행 될 수 있음에 유의해야 한다.
- (5) 혈청 인듐 농도, 혈청 KL-6에서 각각 1회 시험값만 폐손상의 유무 검토에 이용하는 것이 아니라, 정기 건강 진단에서 혈청 인듐 농도의 측정 결과의 추이를 확인 한 후 가장 높았던 농도수준을 고려하여 건강장해의 유무를 판단하는 것이 필요하다.

2 흉부 CT 검사

H - 170 - 2015

- (1) 흉부 CT 검사에서 나타난 ITOc에 의한 폐 손상은 간질성 변화에 기종성 변화를 수반하는 것으로 보고 있다. 이러한 소견은 혈청 인듐 농도 상승 후 일정 기간 후에 나타나는 경우가 있기 때문에 과거에 혈청 인듐 농도에서 이상 소견이 있었던 근로자에 대해서는 다음 2차 건강 진단에 있어서 흉부 CT 검사를 실시한다.
- (2) 2차 건강진단 흉부 CT 검사를 할 경우에는 처음 고용 시 또는 재배치 시에 촬영한 이미지를 기초 데이터로 활용함으로써 흡연 등 ITOc 등에 의하지 않는 소견은 제외시킨다.