热电相移器仿真

2019.03.13 畅星兆

衡量热电调制器的几个参数

Table 1. Summary of recent thermo-optic waveguide phase shifter parameters where L is the total heater length, V_{π} and P_{π} are the applied voltage and power necessary to reach π radians of phase shift, respectively, and τ is the limiting rise or fall time constant. In results where τ is not reported, the single-pole approximation $\tau = \frac{0.35}{f_3 dB}$ is used to convert between metrics.

	100.							
	Material	Cladding	L	Loss	V_{π}	P_{π}	τ	$P_{\pi} \cdot \tau$
			(μm)	(dB)	(V)	(mW)	(μs)	$(mW \cdot \mu s)$
Here	SOI	SiO ₂	61.6	0.23 dB	4.36	24.77	2.69	66.9
[10]	Si	Air	>9.42	0.5 dB	11.93	12.7	2.4	30.5
[12]	TiN in SOI	Air	1000	0.3 dB	0.86	0.49	144	70.5
[11]	NiSi in SOI	Air	200	5 dB	1	20	2.8	56
[17]	Cr-Au in SOI	SiO_2	700	32 dB	1.66	46	3.5	160
[14]	Ti in SOI	Air	100	8 dB	13.3	10.6	34.9	370
[16]	Metal in SOI	SiO_2	2500	< 12 dB	-	235	60	14100

需要关注的参数: material, length, loss, V_{π} , P_{π} , τ , P_{π} · τ

对流换热系数

- 单位温差时的单位面积上的热通量, 单位: $W/(m^2 \cdot K)$

影响因素:

- 1.对流运动成因和流动状态
- 2.流体的物理性质(随种类、温度和压力而变化)
- 3.传热表面的形状, 尺寸和相对位置
- 4.流体有无相变(如气态与液态之间的转化)

对流换热系数的大致量级:

水的自然对流 200 ~ 1000 水蒸气的冷凝 5000 ~ 15000

3类边界条件

硫系玻璃(chalcogenide glasses)的热学属性

硫系玻璃总结:

密度(density):

 $\sim 4500 \ kg/m^3$

比热容(heat capacity):

 $\sim 300 J/kg \cdot K$

导热系数(thermal conductivity):

 $\sim 0.3 \text{ W/}m \cdot K$

气凝胶(silica aerogel)的热学属性

导热系数极低。国外阿斯彭气凝胶常温下可以做到0.013。国内气凝胶常温下的导热系数最好可以做到0.017。气凝胶是目前已知的固体材料中,在两百度内保温效果最好的产品。普通隔热材料,例如高温玻璃棉,常温下的导热系数在0.045左右。这意味着1cm厚的气凝胶的保温效果相当于3cm厚的玻璃棉。

A typical silica aerogel has a total thermal conductivity of ~0.017 W/mK (~R10/inch). A major portion of this energy transport results from the gases contained within the aerogel.

Thermal Properties of Silica Aerogels | The Norris Research ... https://pamelanorris.wordpress.com > resources > thermal-properties

使用温度: -200C~650C, 能够满足绝大多数保温温度的需求

AEROGEL THERMAL CONDUCTIVITY RESULTS

The aerogel blanket displayed a thermal conductivity reading of 0.024 W/mK at 20°C.

According to the manufacturer, the known thermal conductivity of this aerogel blanket is 0.023 W/mK at 100°C. As can be seen, by these results, a close correlation exists between the stated manufactured thermal conductivity and the

Supplier	Product	Thermal conductivity [W/mK]	Density [g/cc]	Min. Temp. [°C]	Max. Temp. [°C]	Material
Aspen Aerogels	Cryogel Spaceloft Pyrogel	0.0135 0.0125 - 0.0135 0.0145 - 0.0155	0.13 0.17 0.12-0.17	-200 -200 -200	40 200 650	Foam-like Hydrophobic Tensile strenght 88kPa
Separex	-	0.005-0.02 0.0015-0.0085 0.0175-0.012	0.1 0.209 0.26	-	-	PU (monolith)
MarkeTech International Inc	-	0.004 (vac.) 0.016 (air)	0.1 (0.01 – 0.3)	-	-	Silica (monolith) Tensile strenght 16kPa
Airglass	Airglass	0.021(20°C) 0.2(300°C)	0.05-0.2	-	2	Silica (monolith) 60 x 60 x 2 cm³
Cabot Corporation	translucent IR opac. beds Fine particle Aerogel beds	0.018	0.090 - 0.100 0.090 - 0.100 0.040 - 0.100 0.090 - 0.100	**		Silica (beads / particles) Hydrophobic
NanoPore	HP-150 HT-170	0.0034 - 0.020 0.0038 - 0.021	0.015 - 0.016 0.0165 - 0.017	-273 -273	150 600	VIP

气凝胶总结:

密度(density):

 $\sim 130 \ kg/m^3$

比热容(heat capacity):

 $1900 J/kg \cdot K \sim 2300 J/kg \cdot K$

导热系数(thermal conductivity):

 $0.013 \text{ W/} m \cdot K \sim 0.024 \text{ W/} m \cdot K$

气凝胶的导热系数比空气略低.

论文

1.

3.

Fig. 1. Cross-sectional schematics of (a) Ge and (b) Si TO phase shifters operating at a wavelength of 1.95 μm .

- 1. Joris Van Campenhout et al., Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices, Optics Letters, 2010.
- 2. Aditya Malik et al., Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared, Optics Express, 2014
- 3. Takumi Fujigaki et al., High-efficiency Ge thermo-optic phase shifter on Ge-on-insulator platform, Optics Express, 2019

论文1

Fig. 4. (Color online) (a) Simulated 2-D distribution of the expected temperature increase (in kelvin) for 0.1 mW/ μ m power dissipation. The scale bar is 2 μ m long. (b) Magnification of (a), showing a temperature increase in the waveguide core of 23 K. The scale bar is 500 nm long.

steady-state 2-D thermal simulation, 设定热源, 边界条件, 初始值, 求稳态解. (只有热学仿真)

热源: 面热源(2D图中为两条线) $0.1mW/\mu m \rightarrow 10^8 W/m^2$

变量: w = 1 um, s = 0.5 um

结果: dt(waveguide) ~ 23K

问题

1. 功率的转换

$$0.1mW/\mu m \rightarrow 5 \times 10^7 W/m^2$$

- 2. 网格密度的确定
- 3. 边界条件的确定
- 4. 结构不确定
 - 空气层厚度
 - 仿真区域大小
 - 尝试去掉两边的Si薄板

网格密度的影响

初始结构

网格大小

▼ Element Size Parameters		
✓ Maximum element size:		
1.34E-5	m	
✓ Minimum element size:		
6E-8		

标签: mesh\initial-right-geo.mph

结果:

所有边界: T = 293.15 K

温度(波导中心): 309.01 K, d = 15.86 K

所有边界: T = 293.15 K

温度(波导中心): 309.01 K, d = 15.86 K

所有边界: T = 293.15 K

温度(波导中心): 309.01 K, d = 15.86 K

所有边界: T = 293.15 K

温度(波导中心): 309.01 K, d = 15.86 K

中间区域:

中间区域:

外部区域: (之前 1 µm)

所有边界: T = 293.15 K

温度(波导中心): 309.02 K, d = 15.87 K

所有边界: T = 293.15 K

温度(波导中心): 309.02 K, d = 15.87 K

标签: mesh\initial-right-geo-mesh-

extr	✓	Maximum element size:	
	1e-6		m
	✓	Minimum element size:	
	60e-9	9	m

中间区域:

结论:

在该区间内加密网格对结果基本没有影响.

网格密度(max-size: 1e-6m, min-size: 60e-9m)足够.

边界条件的确定

左右下边界: T = 293.15 K

上边界: heat flux 热交换,

T = 293.15 K, $h = 25 W/(m^2 \cdot K)$

温度(波导中心): 309.21 K,

d = 16.06 K

所有边界: T = 293.15 K

温度(波导中心): 308.23 K,

d = 15.08 K

左右下边界: T = 293.15 K 上边界: heat flux 热交换,

T = 293.15 K, $h = 5 W/(m^2 \cdot K)$

温度(波导中心): 309.21 K,

d = 16.06 K

结论:

- 1. 排除四个边界均为恒温的情况
- 2. 边界条件应为: 左右下边界恒温, 上边界恒定热流密度. (实际情况的理想化) 同时, 这一情况也与文中的温度分布更相符.

增大仿真区域

改变结构

1. 仿真区域: [µm] 100 x 200 (w, h)

仿真区域大小

整个区域温度分布

增大仿真区域

左右下边界: T = 293.15 K

上边界: heat flux 热交换, T = 293.15 K, $h = 25 W/(m^2 \cdot K)$

温度(波导中心): 309.01 K, d =

15.86 K

所有边界: T = 293.15 K

温度(波导中心): 309.01 K, d =

15.86 K

左右下边界: T = 293.15 K

上边界: heat flux 热交换, T = 293.15 K, $h = 5 W/(m^2 \cdot K)$

温度(波导中心): 309.01 K, d =

15.86 K

结论:

- 1. 增大仿真区域基本不改变中心区域温度分布
- 2. 影响成二次方衰减 (中心区域周围的材料对于温度分布的影响更为关键)

去掉两边的Si薄板

原因: 仿真论文中的等温线十分平滑

论文中的 我的

去掉两边的Si薄板

Fig. 4. (Color online) (a) Simulated 2-D distribution of the expected temperature increase (in kelvin) for 0.1 mW/ μ m power dissipation. The scale bar is 2 μ m long. (b) Magnification of (a), showing a temperature increase in the waveguide core of 23 K. The scale bar is 500 nm long.

task:

- 1. 只去掉周围Si平板
- 2. NiSi也同时去掉

去掉两边的Si薄板

原始

温度(波导中心): 309.01 K, d = 15.86 K

只去掉周围Si平板 dT = 20.60 K Si3N4也同时去掉 dT = 20.57 K

结论:温度变化对于周围结构(的导热系数) 很敏感。

论文2

单边加热

波导:[µm] 2.2 x 2 x 1100

heater: :[µm] 4 x 2 x 700

功率: 700 mW

论文中的仿真

- 1. 三维仿真
- 2. 波导中心直线上温度分布
- 3. 由2求得相位变化

问题

- 1. 复现结果
- 2. 网格密度的确定
- 3. 边界条件的确定
- 4. 结构的确定

Initial

Material Property

	Thermal Conductivity (W/m*K)	Density (kg/m3)	Heat capacity (J/kg*K)
silicon	130	2330	711
air		built-in material	
germanium	58	5323	310

Boundary Condition

	Boundary Condition
上	Convective heat flux, h=10 W/(m2*K)
下	fixed temperature, T=initial value
波导方向	Convective heat flux, h=10 W/(m2*K)
其余两个方向	Convective heat flux, h=10 W/(m2*K)

Results

最高温度在303K左右

论文中和initial的结果

论文中的

Tmax = ~310 K

光程差: 1.98π

initial

Tmax = ~302.36 K

光程差: 1.08π

内部, 外部网格大小,单位: m, 后同

论文中结果不匹配

原因分析:

- 1. 可能论文中使用的是线状热源 两图等温线形状无法匹配(圆 椭圆)
- 2. 边界条件错误
- 3. 有无可能是线段不够密集等温线不圆为可见的折线段

变为线状热源

Tmax = 311.59 K

光程差 = 6.8427 = 2.178 pi

论文中:

光程差 = 1.98 pi

网格密度的确定

Initial

热源: 带状热源

边界条件: 固定温度, T = 293.15 K

加密:

区域: 40 µm x 20 µm x 1100 µm

网格大小:

区域内:

✓	Maximum element size:	
2.2E	-5	m
✓	Minimum element size:	
2.2E	-7	m

区域外:

✓ Maximum element size:	
1.1E-4	m
✓ Minimum element size:	
1.98E-5	m

网格密度的确定

Tmax = ~ 302.36 K 光程差: 1.08π

✓	Maximum element size:	✓	Maximum element size:	
10e-6		2.2E-5		
✓	Minimum element size:	✓	Minimum element size:	
100e-9		2.2E-7		

Complete mesh consists of 740090 domain elements, 57029 boundary elements, and 6922 edge elements. Number of degrees of freedom solved for: 998085 (plus 238240 internal DOFs). Solution time (Study 1): 123 s. (2 minutes, 3 seconds)

Tmax = ~ 302.36 K 光程差: 1.08π

✓ Maximum element size:	✓ Maximum element size:
10e-6	10e-6
✓ Minimum element size:	✓ Minimum element size:
100e-9	100e-9

Complete mesh consists of 3428284 domain elements, 103505 boundary elements, and 7492 edge elements. Number of degrees of freedom solved for: 4616425 (plus 349376 internal DOFs). Solution time (Study 1): 622 s. (10 minutes, 22 seconds)

Tmax = ~ 302.37 K 光程差: 1.08π

✓ Maximum element size:	✓ Maximum element size:		
5e-6	10e-6		
✓ Minimum element size:	✓ Minimum element size:		
50e-9	100e-9		

Complete mesh consists of 3515229 domain elements, 110367 boundary elements, and 7955 edge elements. Number of degrees of freedom solved for: 4731839 (plus 379256 internal DOFs). Solution time (Study 1): 680 s. (11 minutes, 20 seconds)

Tmax = ~ 302.36 K 光程差: 1.08π

✓ Maximum element size:	✓ Maximum element size:
2e-6	10e-6
✓ Minimum element size:	✓ Minimum element size:
20e-9	100e-9

Complete mesh consists of 5825842 domain elements, 200806 boundary elements, and 10769 edge elements. Number of degrees of freedom solved for: 7812245 (plus 752570 internal DOFs). Solution time (Study 1): 1256 s. (20 minutes, 56 seconds)

算到这里, mesh的时间已经非常长.(相比其他人) 猜想原因

> 可能是网格疏密没有设置好 模型较大 (1100 µm 400 µm 400 µm) 加密区域z方向较长 (1100 µm/ 2 µm)

但已经足够证明: 网格不是仿真结果不准确的原因...

边界条件的确定

上下左右边界: T = 293.15 K

波导方向边界: heat flux, T = 293.15 K,

 $h = 10 W/(m^2 \cdot K)$

光程差 = 2.17 pi

所有边界: T = 293.15 K

光程差 = 2.15 pi

论文3

Structure

Fig. 1. Cross-sectional schematics of (a) Ge and (b) Si TO phase shifters operating at a wavelength of 1.95 μm .

Simulation

Fig. 2. Simulation results of (a) waveguide temperature and (b) phase shift in Ge and Si TO phase shifters as a function of heater power.

area:

波导中心处温度: [K]

文献中: ~ 314

311.11

311.11

310.14

initial

initial-air-fluid

将air设置为流体

结果: 结果完全相同(exactly the same)

结论: 使用流体应设置压强 流速等

不适用与本情况

initial-pt-added

添加了薄pt层

结果: 轻微变化 (slightly different)

Observation:

- 1. steady-state 与电学联系
 - 形成平衡需要热源(source)和热井(sink), 热井可以是边界条件确定的 可以 类比为高电势和低电势
 - 2. 热的传导: 热源和各个热井之间的材料形成热阻, 类比电阻
 - 3. 稳态解温度分布由热阻分布决定 电势分布由电阻决定
- 2. 稳态解的分布只与物体的导热系数(thermal conductivity)有关, 而与物体的比热容 (specific heat)和密度(density)无关.
- -- 解释上页中添加Pt层后温度变化

仿真结果

验证: 材料的heat capacity, density不影响steady-state仿真结果

改变空气导热系数的影响

猜想: K 上升, 空气侧热阻减小, 热源产生的热更多的从空气侧流失, 下侧温度降低.

结论: 与猜想相同, 但改变幅度 < 1 K

网格密度的确定

数据对比: 波导中心处温度随功率的变化

Heater power [mW]	extremly fine	custom
0	293.15	293.15
2	296.55	296.55
4	299.95	299.95
6	303.35	303.35
8	306.75	306.75
10	310.14	310.15
12	313.54	313.55
14	316.94	316.94
16	320.33	320.34
18	323.73	323.73
20	327.12	327.13

结论: "custom" 和 "extremely fine" 网格已经足够密

仿真方向

- 1. 新结构
- 2. 材料的应用
- 3. 性能优化 占地面积小
- 4.

