Einige Rechenaufgaben

Simon King

24. Januar 2024

Beispiel 1: Berechnen Sie...

- a) $(\frac{1}{2} + \frac{\sqrt{3}}{2}i)^{100}$.
- b) alle $z \in \mathbb{C}$ mit $z^4 = 8 8\sqrt{3}$ i.
- c) alle $x \in \mathbb{C}$ mit $x^3 + 22x^2 22x + 23 = 0$. **Hinweis:** Eine der Lösungen ist eine ganze Zahl.
- d) alle $x \in \mathbb{C}$ mit $x^4 12x^2 + 4 = 0$.
- e) Berechnen Sie die inverse Matrix von $A:=\begin{pmatrix}2i&1\\-1&i-1\end{pmatrix}\in M_2(\mathbb{C})$ und $B:=\begin{pmatrix}-i+2&-1\\i-1&1\end{pmatrix}$.

Beispiel 2: Sei $A:=\begin{pmatrix}4&-5&-1&-4\\8&-8&-8&-10\\-2&2&2&3\\3&-3&-3&-6&-5\end{pmatrix}\in\mathbb{R}^{5\times 4}$. Berechnen Sie jeweils Basen von $\mathrm{SR}(A),\,\mathrm{ZR}(A),\,\mathrm{LR}(A;\vec{0}).$ Ergänzen Sie die gefundene Basis von $\mathrm{SR}(A)$ zu einer Basis von \mathbb{R}^5 .

Beispiel 3: Sei $R := \mathbb{Z}/18\mathbb{Z}$. Berechnen Sie

- a) die Menge der in R bzgl. Multiplikation invertierbaren Elemente.
- b) die Menge der Nullteiler in R (also $x \in R^*$, so dass ein $y \in R^*$ mit xy = 0 existiert).
- c) die Menge aller Idempotenten in R (also $x \in R$ mit $x^2 = x$).

Beispiel 4: Untersuchen Sie jeweils, ob $A \in M_n(\mathbb{Q})$ invertierbar ist, und berechnen Sie ggf. A^{-1} .

a)
$$A := \begin{pmatrix} -1 & 2 \\ -\frac{1}{2} & 1 \end{pmatrix}$$
.

b)
$$A := \begin{pmatrix} 2 & -1 \\ -\frac{1}{2} & -2 \end{pmatrix}$$
.

c)
$$A := \begin{pmatrix} 1 & -1 & -1 \\ 0 & 1 & -1 \\ -1 & -3 & 2 \end{pmatrix}$$
.

d)
$$A := \begin{pmatrix} -5 & 5 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
.

Beispiel 5: Berechnen Sie jeweils die Determinante der Matrix in $M_4(\mathbb{Q})$.

a)
$$\begin{bmatrix} -2 & 1 & -1 & -2 \\ 5 & -1 & -1 & 1 \\ 2 & 1 & -2 & 3 \\ 1 & -2 & 1 & 1 \end{bmatrix}$$
.

b)
$$\begin{vmatrix} 0 & 0 & 0 & 1 \\ 1 & -2 & 0 & 0 \\ 3 & 0 & 4 & 1 \\ -1 & 2 & 1 & -2 \end{vmatrix}.$$

c)
$$\begin{bmatrix} -3 & 0 & -1 & -1 \\ -3 & 1 & -1 & 0 \\ 3 & -1 & -1 & 1 \\ 3 & 1 & 1 & 2 \end{bmatrix}.$$

d)
$$\begin{bmatrix} 1 & -2 & 2 & -1 \\ -1 & 1 & 1 & -1 \\ 1 & -1 & 2 & 1 \\ 0 & 2 & 2 & 1 \end{bmatrix}$$
.

e)
$$\begin{bmatrix} -1 & -1 & 1 & 2 \\ 2 & 5 & 1 & -1 \\ 1 & 0 & 1 & 1 \\ 4 & -2 & 1 & 0 \end{bmatrix}$$
.

Beispiel 6: Berechnen Sie jeweils die Menge aller Nullstellen von $\chi_A(X)$ in \mathbb{C} (dies nennt man das **Spektrum** $\sigma(A)$) und untersuchen Sie, ob A diagonalisierbar in $M_n(\mathbb{R})$ ist. **Hinweis:** A hat jeweils mindestens einen ganzzahligen Eigenwert.

a)
$$A := \begin{pmatrix} -1 & 1 & 1 \\ 2 & 0 & 2 \\ \frac{1}{2} & 1 & 0 \end{pmatrix}$$
.

b)
$$A := \begin{pmatrix} -1 & -1 & 2 \\ 2 & 1 & -2 \\ 0 & 2 & 1 \end{pmatrix}$$
.

c)
$$A := \begin{pmatrix} 2 & 0 & 0 \\ -1 & -1 & 2 \\ 1 & 0 & -1 \end{pmatrix}$$
.

d)
$$A := \begin{pmatrix} 1 & 2 & 0 \\ \frac{1}{2} & 1 & 0 \\ \frac{1}{2} & -1 & 2 \end{pmatrix}$$
.

Beispiel 7: Die folgenden Matrizen sind jeweils in $M_2(\mathbb{R})$ diagonalisierbar. Berechnen Sie jeweils eine diagonalisierende Matrix (nicht in allen Fällen lassen sich Wurzelterme vermeiden).

- a) $\begin{pmatrix} -6 & 2 \\ 2 & 6 \end{pmatrix}$.
- b) $\begin{pmatrix} -2 & 0 \\ 1 & -4 \end{pmatrix}$.
- c) $\begin{pmatrix} -4 & 2 \\ 2 & 2 \end{pmatrix}$.
- d) $\begin{pmatrix} 2 & -12 \\ -12 & 2 \end{pmatrix}$.

Beispiel 8: Die folgenden Matrizen sind in $M_3(\mathbb{Q})$ diagonalisierbar und haben ganzzahlige Eigenwerte. Berechnen Sie jeweils eine diagonalisierende Matrix.

- a) $\begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$.
- b) $\begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$.
- c) $\begin{pmatrix} -1 & -1 & -1 \\ -2 & 0 & 2 \\ -1 & 1 & -1 \end{pmatrix}$.

Beispiel 9: Berechnen Sie jeweils eine ONB von $\operatorname{Span}_{\mathbb{R}}(\vec{u}_1,...,\vec{u}_d) \leq \mathbb{R}^n$ bezüglich des Standardskalarprodukts:

a)
$$\vec{u}_1 := \begin{pmatrix} 1 \\ -1 \\ 1 \\ 1 \end{pmatrix}$$
, $\vec{u}_2 := \begin{pmatrix} 1 \\ 1 \\ 3 \\ -1 \end{pmatrix}$, $\vec{u}_3 := \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}$.

b)
$$\vec{u}_1 := \begin{pmatrix} -1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$
, $\vec{u}_2 := \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $\vec{u}_3 := \begin{pmatrix} -1 \\ 0 \\ -4 \\ 1 \end{pmatrix}$.

Beispiel 10: Sei $V:=\mathbb{R}[X]_{\leq 2}$ der Vektorraum der Polynome vom Grad ≤ 2 mit reellen Koeffizienten. Auf V betrachten wir das Skalarprodukt $\langle f|g\rangle:=\int\limits_{-1}^{1}f(x)g(x)\,\mathrm{d}x$. Berechnen Sie eine Orthogonalbasis von V, indem Sie das Gram-Schmidt-Verfahren auf die Basis $[X^0,X^1,X^2]$ von V anwenden.

Beispiel 11: a) Sei
$$F:=\begin{pmatrix} -\frac{3}{4} & \frac{1}{4} & \frac{\sqrt{6}}{4} \\ \frac{1}{4} & -\frac{3}{4} & \frac{\sqrt{6}}{4} \\ -\frac{\sqrt{6}}{4} & -\frac{\sqrt{6}}{4} & -\frac{1}{2} \end{pmatrix} \in M_3(\mathbb{R})$$
 und sei $f\colon \mathbb{R}^3 \to \mathbb{R}^3$ definiert durch $\forall \vec{x} \in \mathbb{R}^3 \colon f(\vec{x}) := F \cdot \vec{x}$. Verifizieren Sie, dass f eine ortho-

definiert durch $\forall \vec{x} \in \mathbb{R}^3$: $f(\vec{x}) := F \cdot \vec{x}$. Verifizieren Sie, dass f eine orthogonale Abbildung bzgl. des Standardskalraprodukts ist, bestimmen Sie den Typ von f (Drehung, Drehspiegelung, Punktspiegelung?) und berechnen Sie den Betrag des Drehwinkels.

b) Sei
$$F:=\begin{pmatrix} \frac{1}{4}\sqrt{2}+\frac{1}{2} & -\frac{1}{2} & -\frac{1}{4}\sqrt{2}+\frac{1}{2}\\ \frac{1}{2} & \frac{1}{2}\sqrt{2} & -\frac{1}{2}\\ -\frac{1}{4}\sqrt{2}+\frac{1}{2} & \frac{1}{2} & \frac{1}{4}\sqrt{2}+\frac{1}{2} \end{pmatrix} \in M_3(\mathbb{R}).$$
 Sie dürfen verwenden, dass $F\in O_3$. Sei $f\colon \mathbb{R}^3\to\mathbb{R}^3$ definiert durch $f(\vec{x}):=F\cdot\vec{x}$. Untersuchen Sie den Typ von f (Drehung? Drehspiegelung?) und berechnen Sie den Betrag des Drehwinkels sowie die Achse von f .

Ergebnisse, allerdings ohne Gewähr (es können beim Bearbeiten dieses Dokuments copy&paste-Fehler aufgetreten sein, natürlich kann ich auch Rechenfehler nicht ausschließen, und abgesehen davon werden wir in diesem Semester nicht alle der hier angeschnittenen Themen behandeln können.

Ergebnis 1: a) $-(\frac{1}{2} + \frac{\sqrt{3}}{2}i)$

b)
$$z_0 := \frac{1}{2}\sqrt{2}(\sqrt{3}-1) + \frac{i}{2}\sqrt{2}(\sqrt{3}+1)$$
 und dann noch i $z_0, -z_0, -i z_0$.

c)
$$x \in \left\{-23, \frac{1}{2} + \frac{\sqrt{3}}{2}i, \frac{1}{2} - \frac{\sqrt{3}}{2}i\right\}$$

d)
$$x \in \left\{ -\sqrt{4\sqrt{2}+6}, \sqrt{4\sqrt{2}+6}, -\sqrt{-4\sqrt{2}+6}, \sqrt{-4\sqrt{2}+6} \right\}$$

e)
$$A^{-1} = \begin{pmatrix} -\frac{3}{5}i - \frac{1}{5} & -\frac{2}{5}i + \frac{1}{5} \\ \frac{2}{5}i - \frac{1}{5} & -\frac{2}{5}i - \frac{4}{5} \end{pmatrix}$$
, $B^{-1} = \begin{pmatrix} 1 & 1 \\ -i + 1 & -i + 2 \end{pmatrix}$.

$$\begin{aligned} & \textit{Ergebnis 2: } A \leadsto \begin{pmatrix} \frac{1}{0} & \frac{-1}{1} & -\frac{1}{3} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \leadsto \mathrm{SR}(A) = \mathrm{Span}_{\mathbb{R}}(\begin{pmatrix} \frac{4}{8} \\ \frac{-2}{2} \\ \frac{3}{3} \end{pmatrix}, \begin{pmatrix} \frac{-5}{-8} \\ \frac{2}{3} \\ \frac{-3}{2} \end{pmatrix}, \begin{pmatrix} \frac{-4}{-10} \\ \frac{3}{3} \\ \frac{-4}{-5} \end{pmatrix}), \\ & \mathrm{ZR}(A) = \mathrm{Span}_{\mathbb{R}}(\begin{pmatrix} 1 & -1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & -3 & -2 \\ 0 & 0 & 0 & 1 \end{pmatrix}), \ \mathrm{LR}(A; \vec{0}) = \mathrm{Span}_{\mathbb{R}}(\begin{pmatrix} \frac{4}{3} \\ \frac{1}{0} \end{pmatrix}). \\ & \vec{e}_1, \vec{e}_2 \in \mathbb{R}^5 \text{ ergänzt die Basis von } \mathrm{SR}(A) \text{ zu einer Basis von } \mathbb{R}^5. \end{aligned}$$

Ergebnis 3: a) $\{[1], [5], [7], [11], [13], [17]\}.$

c)
$$\{[0], [1], [9], [10]\}.$$

Ergebnis 4: a) Nicht invertierbar.

b)
$$A^{-1} = \begin{pmatrix} \frac{4}{9} & -\frac{2}{9} \\ -\frac{1}{9} & -\frac{4}{9} \end{pmatrix}$$

c)
$$A^{-1} = \begin{pmatrix} \frac{1}{3} & -\frac{5}{3} & -\frac{2}{3} \\ -\frac{1}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{4}{3} & -\frac{1}{3} \end{pmatrix}$$

d)
$$A^{-1} = \begin{pmatrix} \frac{1}{4} & -\frac{5}{4} & 1\\ \frac{1}{2} & -\frac{3}{2} & 1\\ -\frac{1}{4} & \frac{5}{4} & 0 \end{pmatrix}$$

Ergebnis 5: a) -37.

- b) -6
- c) 0
- d) 9
- e) 6

Ergebnis 6: a) $\sigma(A) = \left\{-\frac{1}{2}\sqrt{11} + \frac{1}{2}, \frac{1}{2}\sqrt{11} + \frac{1}{2}, -2\right\} \rightsquigarrow \text{diagonalisierbar, da}$ drei verschiedene reelle EW.

- b) $\sigma(A) = \{\sqrt{5}i, -\sqrt{5}i, 1\}$, also nicht diagonalisierbar in $M_3(\mathbb{R})$ (wohl aber in $M_3(\mathbb{C})$) wegen nicht-reeller Eigenwerte.
- c) $\sigma(A) = \{-1, 2\}$, der EW -1 hat die algebraische Vielfachheit 2, aber geometrische Vielfachheit 1. Daher nicht diagonalisierbar.
- d) $\sigma(A)=\{0,\ 2\}$. Eigenwert 2 hat algebraische Vielfachheit 2, das ist aber auch die geometrische Vielfachheit, also diagonalisierbar. Übrigens: $\begin{pmatrix} 1 & 1 & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & 0 & 1 \end{pmatrix}$ ist eine diagonalisierende Matrix.

Ergebnis 7: a) EW $\pm 2\sqrt{10}$. $\begin{pmatrix} 1 & -3-\sqrt{10} \\ 3+\sqrt{10} & 1 \end{pmatrix}$ ist eine diagonalisierende Matrix.

- b) EW $-2, -4. \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$ ist eine diagonalisierende Matrix.
- c) EW $-1 \pm \sqrt{13}$. $\begin{pmatrix} 1 & -\frac{3}{2} + \frac{\sqrt{13}}{2} \\ \frac{3}{2} \frac{\sqrt{13}}{2} & 1 \end{pmatrix}$ ist eine diagonalisierende Matrix.
- d) EW 14, -10. $\begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ ist eine diagonalisierende Matrix.

Ergebnis 8: a) EW 2, 1. Diagonalisierende Matrix: $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ -1 & -1 & 1 \end{pmatrix}$

- b) EW 3, 0. Diagonalisierende Matrix: $\begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & -1 & 1 \end{pmatrix}$.
- c) EW 2, -2. Diagonalisierende Matrix: $\begin{pmatrix} 1 & 1 & 0 \\ -2 & 0 & 1 \\ -1 & 1 & -1 \end{pmatrix}$

Ergebnis 9: a) $\begin{bmatrix} \begin{pmatrix} 1/2 \\ -1/2 \\ 1/2 \\ -1/2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{1}{2\sqrt{3}} \\ -\frac{1}{2\sqrt{3}} \\ \frac{1}{2\sqrt{3}} \\ \frac{\sqrt{3}}{2} \end{bmatrix} \end{bmatrix}$ ist die gesuchte ONB.

b)
$$\begin{bmatrix} \begin{pmatrix} -1/2 \\ -1/2 \\ 1/2 \\ -1/2 \end{pmatrix}, \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ -1/2 \end{pmatrix}, \begin{pmatrix} -1/2\sqrt{5} \\ 1/2\sqrt{5} \\ -3/2\sqrt{5} \\ -3/2\sqrt{5} \end{bmatrix} \end{bmatrix}$$
. ist die gesuchte ONB.

 $Ergebnis~10:~[X^0,X^1,X^2-\frac{1}{3}X^0]$ ist die gesuchte Orthogonalbasis.

Ergebnis 11: a) Prüfe, dass die Spalten von F ein Orthonormalsystem bilden. $\det(F)=-1 \leadsto$ Drehspiegelung. Betrag des Drehwinkels: $\frac{2}{3}\pi$

b) $\det(F) = 1 \leadsto$. Drehung. Betrag des Drehwinkels: $\pi/4$. Drehachse $\operatorname{LR}\left(\mathbb{1}_3 - F; \vec{0}\right) = \operatorname{Span}_{\mathbb{R}}\left(\left(\begin{smallmatrix} 1 \\ 0 \\ 1 \end{smallmatrix}\right)$