

8th May 2012

(CMX7011 - Demonstrator 2)

Digital voice scrambler for analogue radio using the PE0101-7010

Introduction

This document is intended to assist with the evaluation and demonstration of the CMX7011 Digital Voice Processor and the Digital Voice Scrambler Function Image™ 7011FI-1.x. It describes the use of the PE0002 Interface Card for easy connection to a computer via a USB cable and two PE0101-7010 (CMX7011 demonstrator board), one for transmit; connected to the PE0002 C-BUS1 port and the other for receive; connected to the PE0002 C-BUS2 port.

General description

Scripts are provided to demonstrate digital voice scrambling functionality with the device. Using digital audio editing software such as Audacity®, allows the transmit signal to be saved and then played back to the device, to recover the analogue voice.

Transmit – Analogue voice applied to the mic input is digitised, scrambled and passed to the audio band modem where it is fed into an over-air protocol and presented to the Tx out pin. This transmit signal would, in a radio application, then be inserted into the radio's audio Tx path.

Receive – The receive signal (scrambled modem data), in a radio application from the radio's audio Rx path, is applied to the Rx in pin, where it is descrambled, converted back to analogue voice and presented to the speaker output.

Key Items Required

- 1 off PE0002 Interface card
- 2 off PE0101-7010 (CMX7011 demonstrator board)
- USB audio card with mic/line and speaker connections
- 5V power supply
- Digital audio editor software such as Audacity® (http://audacity.sourceforge.net)
- PE0002 GUI Software ES000243.exe
- Tx/Rx script txbusrxbus2.pes
- USB Speaker Out Function Image 7011FI-1.x - (fi7011 1000.ped or later) Mic/Line In Card Voice sound file example Audio Header **Connection Diagram** PE0101-7010 PE0101-7010 PE0002 5V power

1

Demonstration Procedure

- 1. Make connections as shown in the diagram
- 2. Turn on power supply
- 3. Setup signal levels
 - a. Play audio level from USB sound card, should be ~ 2Vp-p
 - b. Record level on the USB sound card should be set to prevent clipping
- 4. Run Audacity®
 - a. Setup to allow simultaneous play and record on the USB sound card
 - b. Load in an appropriate sound file and set the project rate to say 44100Hz
 - c. Run PE0002 GUI program (ES000243.exe)
- 5. Operation
 - a. Select 'Script handler' tab (PE0002 GUI program)
 - b. Find folder where script files are located (> button)
 - c. Click 'Select Script' button
 - d. Select txbusrxbus2.pes and 'Open'
 - e. Select 'Run' in the ES000243.exe window
 - f. In Audacity®
 - i. Select record to simultaneously play the voice sound file signal and record the recovered analogue voice
 - g. In the PE0002 GUI program
 - i. Press 'OK' after a short while to end transmission
 - h. In Audacity® press 'Stop' to end recording
- 6. Review stored recovered analogue voice
 - a. The original and recovered analogue voice signal can be played using the mute and play facilities within Audacity®

Example Audacity Screen Shot

