Tarefas não supervisionadas

Conceitos

Não existe classe

Objetivo é criar grupos a partir de atributos (características) das instâncias

Conceitos

Age	Income	Gender	Education Level	Cluster
32	50000	Male	Bachelor's	1
45	70000	Female	Master's	0
22	25000	Male	High School	2
38	80000	Male	Doctorate	0
28	40000	Female	Bachelor's	1
52	100000	Female	Bachelor's	0
26	35000	Male	Associate's	2
44	90000	Female	Master's	0
31	55000	Male	Bachelor's	1
39	75000	Male	Master's	0

Aplicações

- Dividir clientes em diferentes segmentos
- Reconhecimento de comunidades em análises de redes sociais
- Divisão de imagem em diferentes segmentos
- > Detecção de anomalias em dados
- Combate ao crime: identificação de regiões com maior incidência

Tipos

• Agrupamento completo: cada elemento é adicionado em um único

grupo

• Agrupamento parcial: cada instancia pode pertencer a mais de um

grupo

Tipos

> Modelo Difuso: cada elemento pertence a um grupo segundo uma

probabilidade

	Grupo A	Grupo B	Grupo C
Elemento A	0.5	0.3	0.2
Elemento B	0.1	0.1	0.8
Elemento C	0.3	0.4	0.3

> Modelo Hierárquico: permite que o grupo tenha subgrupos

Tipos

> Agrupa todos os elementos

➤ Pode deixar elementos sem agrupar (ruído)

K-means e K-medoid

- **→** Simples
- ➤ Baseado em protótipo
- Encontra um número de grupos definido pelo usuário
- > Agrupa todos os objetos
- ➤ Definir os centróides é uma etapa fundamental
- ➤ Distância Euclidiana
- >K-means:
 - ➤ Protótipo é um centróide: média de grupo de pontos.
 - ➤ Quase nunca é um ponto real de dados.
- >K-medoid:
 - > Protótipo baseado em medóide: ponto mais representativo.
 - >É um ponto real de dados.

K-means e K-medoid

- Tem dificuldade para detectar grupos naturais, não esféricas, de tamanho ou densidades muito diferentes
- Restrito a dados que exista uma noção de centro
- ➤ Pode ser melhorado escolhendo os centros

DBSCAN

- ➤ Baseado em Densidade
- > Menos afetado por ruído
- Número de grupos definido automaticamente
- Pontos de baixa densidade são definidos com ruído e não agrupados
- A densidade é baseada no raio especificado. Um ponto pode estar no interior, no limite, ou sem classificação (ruído)
- ➤ Não é bom em grupos cujas densidades variam muito

Hierárquico

- Aglomerativa: começa com pontos em grupos individuais e a cada etapa funde os pares mais próximos. Requer uma noção de proximidade. Mais comuns
- Divisiva: Começa incluindo todos, e a cada etapa divide até que reste apenas grupos únicos
- **>** Dendograma

