c. Quelle est la probabilité d'obtenir l'une de ces sommes ?
Les événements élémentaires de
$$\Omega$$
 sont équiprobables :
 $P(\{(1, 1)\}) = P(\{(1, 2)\}) = \dots = \frac{1}{\Omega}$.

À chaque couple, on fait correspondre la somme des numéros. On définit ainsi une application X de Ω dans \mathbb{R} .

La somme 2 correspond à l'événement $\{(1, 1)\}$, noté $\{X = 2\}$ d'où $P(\{(1, 1)\}) = P(\{X = 2\}) = \frac{1}{0}$.

Dans la suite on notera
$$P(X = ...)$$
 pour alléger les notations.
La somme 3 correspond à l'événement $\{(1, 2), (2, 1)\}$, noté $(X = 3)$,

d'où $P(X=3) = P(\{(1, 2), (2, 1)\}) = \frac{2}{9}$.

d'où
$$P(X = 3) = P(\{(1, 2), (2, 1)\}) = \frac{2}{9}$$
.
On définit de même $P(X = 4)$, $P(X = 5)$ et $P(X = 6)$.

On définit de même
$$P(X = 4)$$
, $P(X = 5)$ et $P(X = 6)$.
 $P(X = 4) = P(\{(1, 3), (2, 2), (3, 1)\}) = \frac{3}{9}$.

$$P(X = 4) = P(\{(1, 3), (2, 2), (3, 1)\}) = \frac{3}{9}.$$

 $P(X = 5) = P(\{(2, 3), (3, 2)\}) = \frac{2}{9}$.

 $P(X = 6) = P(\{(3, 3)\}) = \frac{1}{0}.$