From SVD to PCA

Xin Li

April 6, 2009

SVD Review

The statement of SVD A closer look at SVD

PCA from SVD

Principal components
PCA and SVD in Matlab
Application to face recognition

▶ Given a matrix $\mathbf{X}_{m \times n}$ of rank n.

- ▶ Given a matrix $\mathbf{X}_{m \times n}$ of rank n.
- ▶ We can find orthogonal matrices $\mathbf{U}_{m \times n}$ and $\mathbf{V}_{n \times n}$,

- ▶ Given a matrix $\mathbf{X}_{m \times n}$ of rank n.
- ▶ We can find orthogonal matrices $\mathbf{U}_{m \times n}$ and $\mathbf{V}_{n \times n}$,
- ▶ and diagonal matrix $\mathbf{D}_{n \times n}$:

$$X = UDV^T$$

- ▶ Given a matrix $\mathbf{X}_{m \times n}$ of rank n.
- \blacktriangleright We can find orthogonal matrices $\mathbf{U}_{m\times n}$ and $\mathbf{V}_{n\times n}$
- ▶ and diagonal matrix $\mathbf{D}_{n \times n}$:

$$X = UDV^T$$

Visualize it as:

$$\left[\begin{array}{c} \mathbf{X} \end{array}\right]_{m \times n} = \left[\begin{array}{c} \mathbf{U} \end{array}\right]_{m \times n} \left[\begin{array}{c} \mathbf{V}^{\mathsf{T}} \end{array}\right]_{n \times n}$$

- ▶ Given a matrix $\mathbf{X}_{m \times n}$ of rank n.
- ▶ We can find orthogonal matrices $\mathbf{U}_{m \times n}$ and $\mathbf{V}_{n \times n}$
- ▶ and diagonal matrix $\mathbf{D}_{n \times n}$:

$$X = UDV^T$$

Visualize it as:

$$\left[\begin{array}{c} \mathbf{X} \end{array}\right]_{m \times n} = \left[\begin{array}{c} \mathbf{U} \end{array}\right]_{m \times n} \left[\begin{array}{c} \mathbf{V}^{T} \end{array}\right]_{n \times n}$$

Now we drive SVD when the rank of **X** is r < n.

► Find the eigen decomposition of **X**^T**X**:

$$\mathbf{X}^T\mathbf{X} = \mathbf{V} \wedge \mathbf{V}^T$$

where Λ is the diagonal matrix with the eigenvalues λ_i 's of $\mathbf{X}^T\mathbf{X}$ on its diagonal.

► Find the eigen decomposition of **X**^T**X**:

$$\mathbf{X}^T\mathbf{X} = \mathbf{V} \wedge \mathbf{V}^T$$

where Λ is the diagonal matrix with the eigenvalues λ_i 's of $\mathbf{X}^T\mathbf{X}$ on its diagonal.

► The matrix **V** is orthogonal whose columns \mathbf{v}_i 's are eigenvectors of $\mathbf{X}^T\mathbf{X}$: $\mathbf{X}^T\mathbf{X}\mathbf{v}_i = \lambda_i\mathbf{v}_i$, i = 1:n

► Find the eigen decomposition of **X**^T**X**:

$$\mathbf{X}^T\mathbf{X} = \mathbf{V} \wedge \mathbf{V}^T$$

where Λ is the diagonal matrix with the eigenvalues λ_i 's of $\mathbf{X}^T\mathbf{X}$ on its diagonal.

- The matrix V is orthogonal whose columns v_i's are eigenvectors of X^TX: X^TXv_i = λ_iv_i, i = 1: n
- ▶ It is also known that $\lambda_i \geq 0$ (Homework: Verify it!). If the rank of **X** is r ($r \leq n$), there are exactly r positive eigenvalues, say

$$\lambda_1, \lambda_2, ..., \lambda_r$$

► Find the eigen decomposition of **X**^T**X**:

$$\mathbf{X}^T\mathbf{X} = \mathbf{V} \wedge \mathbf{V}^T$$

where Λ is the diagonal matrix with the eigenvalues λ_i 's of $\mathbf{X}^T\mathbf{X}$ on its diagonal.

- The matrix V is orthogonal whose columns v_i's are eigenvectors of X^TX: X^TXv_i = λ_iv_i, i = 1: n
- ▶ It is also known that $\lambda_i \geq 0$ (Homework: Verify it!). If the rank of **X** is r ($r \leq n$), there are exactly r positive eigenvalues, say

$$\lambda_1, \lambda_2, ..., \lambda_r$$

▶ For i = 1 : r, define $\sigma_i = \sqrt{\lambda_i}$ and $\mathbf{u}_i = X\mathbf{v}_i/\sigma_i$.

► Find the eigen decomposition of **X**^T**X**:

$$\mathbf{X}^T\mathbf{X} = \mathbf{V} \wedge \mathbf{V}^T$$

where Λ is the diagonal matrix with the eigenvalues λ_i 's of $\mathbf{X}^T\mathbf{X}$ on its diagonal.

- The matrix V is orthogonal whose columns v_i's are eigenvectors of X^TX: X^TXv_i = λ_iv_i, i = 1: n
- ▶ It is also known that $\lambda_i \geq 0$ (Homework: Verify it!). If the rank of **X** is r ($r \leq n$), there are exactly r positive eigenvalues, say

$$\lambda_1, \lambda_2, ..., \lambda_r$$

- ▶ For i = 1 : r, define $\sigma_i = \sqrt{\lambda_i}$ and $\mathbf{u}_i = X\mathbf{v}_i/\sigma_i$.
- ► Then

$$\mathbf{X}^T\mathbf{u}_i=\sigma_i\mathbf{v}_i$$

$$\mathbf{X}[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_r] = [\sigma_1 \mathbf{u}_1 \ \sigma_2 \mathbf{u}_2 \ \cdots \ \sigma_r \mathbf{u}_r]$$
$$\mathbf{X}^T[\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_r] = [\sigma_1 \mathbf{v}_1 \ \sigma_2 \mathbf{v}_2 \ \cdots \ \sigma_r \mathbf{v}_r]$$

Put in matrix notation:

$$\mathbf{X}[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_r] = [\sigma_1 \mathbf{u}_1 \ \sigma_2 \mathbf{u}_2 \ \cdots \ \sigma_r \mathbf{u}_r]$$
$$\mathbf{X}^T[\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_r] = [\sigma_1 \mathbf{v}_1 \ \sigma_2 \mathbf{v}_2 \ \cdots \ \sigma_r \mathbf{v}_r]$$

Note that $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r\}$ is an orthogonal set in \mathbb{R}^n . We can extend it to an orthogonal basis.

$$\mathbf{X}[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_r] = [\sigma_1 \mathbf{u}_1 \ \sigma_2 \mathbf{u}_2 \ \cdots \ \sigma_r \mathbf{u}_r]$$
$$\mathbf{X}^T[\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_r] = [\sigma_1 \mathbf{v}_1 \ \sigma_2 \mathbf{v}_2 \ \cdots \ \sigma_r \mathbf{v}_r]$$

- Note that $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r\}$ is an orthogonal set in \mathbb{R}^n . We can extend it to an orthogonal basis.
- Solve [v₁ v₂ ··· v_r]v = 0 (What is the dimension of the solution space of this homogeneous system?)

$$\mathbf{X}[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_r] = [\sigma_1 \mathbf{u}_1 \ \sigma_2 \mathbf{u}_2 \ \cdots \ \sigma_r \mathbf{u}_r]$$
$$\mathbf{X}^T[\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_r] = [\sigma_1 \mathbf{v}_1 \ \sigma_2 \mathbf{v}_2 \ \cdots \ \sigma_r \mathbf{v}_r]$$

- Note that $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r\}$ is an orthogonal set in \mathbb{R}^n . We can extend it to an orthogonal basis.
- Solve [v₁ v₂ ··· v_r]v = 0 (What is the dimension of the solution space of this homogeneous system?)
- Answer: Since the coefficient matrix $V_1 := [v_1 \ v_2 \ \cdots \ v_r]$ has rank r (Why?), the dimension of the solution space is n r.

$$\mathbf{X}[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_r] = [\sigma_1 \mathbf{u}_1 \ \sigma_2 \mathbf{u}_2 \ \cdots \ \sigma_r \mathbf{u}_r]$$
$$\mathbf{X}^T[\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_r] = [\sigma_1 \mathbf{v}_1 \ \sigma_2 \mathbf{v}_2 \ \cdots \ \sigma_r \mathbf{v}_r]$$

- Note that $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r\}$ is an orthogonal set in \mathbb{R}^n . We can extend it to an orthogonal basis.
- Solve [v₁ v₂ ··· v_r]v = 0 (What is the dimension of the solution space of this homogeneous system?)
- Answer: Since the coefficient matrix $\mathbf{V}_1 := [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_r]$ has rank r (Why?), the dimension of the solution space is n r.
- ▶ So, there are exactly n-r orthogonal vectors \mathbf{v}_{r+1} , \mathbf{v}_{r+2} , ..., \mathbf{v}_n such that \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n form an orthogonal basis of \mathbb{R}^n .

▶ Use the extended basis:

$$\mathbf{X}[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \ \sigma_2 \mathbf{u}_2 \ \cdots \ \sigma_r \mathbf{u}_r \ \mathbf{X} \mathbf{v}_{r+1} \ \cdots \ \mathbf{X} \mathbf{v}_n]$$

Use the extended basis:

$$\mathbf{X}[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \ \sigma_2 \mathbf{u}_2 \ \cdots \ \sigma_r \mathbf{u}_r \ \mathbf{X} \mathbf{v}_{r+1} \ \cdots \ \mathbf{X} \mathbf{v}_n]$$

▶ Claim: $\mathbf{X}\mathbf{v}_j = \mathbf{0}$, j = r + 1: n (Homework: Verify it!).

Use the extended basis:

$$\mathbf{X}[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \ \sigma_2 \mathbf{u}_2 \ \cdots \ \sigma_r \mathbf{u}_r \ \mathbf{X} \mathbf{v}_{r+1} \ \cdots \ \mathbf{X} \mathbf{v}_n]$$

- ▶ Claim: $\mathbf{X}\mathbf{v}_i = \mathbf{0}$, j = r + 1: n (Homework: Verify it!).
- Thus,

$$\mathbf{X}[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \ \sigma_2 \mathbf{u}_2 \ \cdots \ \sigma_r \mathbf{u}_r \ \mathbf{0} \ \cdots \ \mathbf{0}]$$

Use the extended basis:

$$\mathbf{X}[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \ \sigma_2 \mathbf{u}_2 \ \cdots \ \sigma_r \mathbf{u}_r \ \mathbf{X} \mathbf{v}_{r+1} \ \cdots \ \mathbf{X} \mathbf{v}_n]$$

- ▶ Claim: $\mathbf{X}\mathbf{v}_i = \mathbf{0}$, j = r + 1: n (Homework: Verify it!).
- ► Thus,

$$\mathbf{X}[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \ \sigma_2 \mathbf{u}_2 \ \cdots \ \sigma_r \mathbf{u}_r \ \mathbf{0} \ \cdots \ \mathbf{0}]$$

▶ Let $\mathbf{V} := [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n]$ and $D = \operatorname{diag}(\sigma_1, ..., \sigma_r)$.

Use the extended basis:

$$\mathbf{X}[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \ \sigma_2 \mathbf{u}_2 \ \cdots \ \sigma_r \mathbf{u}_r \ \mathbf{X} \mathbf{v}_{r+1} \ \cdots \ \mathbf{X} \mathbf{v}_n]$$

- ▶ Claim: $\mathbf{X}\mathbf{v}_i = \mathbf{0}$, j = r + 1: n (Homework: Verify it!).
- Thus,

$$\mathbf{X}[\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n] = [\sigma_1 \mathbf{u}_1 \ \sigma_2 \mathbf{u}_2 \ \cdots \ \sigma_r \mathbf{u}_r \ \mathbf{0} \ \cdots \ \mathbf{0}]$$

- ▶ Let $\mathbf{V} := [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_n]$ and $D = \operatorname{diag}(\sigma_1, ..., \sigma_r)$.
- ▶ So, $XV = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_r][D:\mathbf{0}_{r\times(n-r)}]$. Thus

$$\mathbf{X} = [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_r][D:\mathbf{0}_{r\times(n-r)}]\mathbf{V}^T$$

► Finally, to make the u_i matrix a square matrix, we extend it an orthogonal basis: u₁, u₂, ..., u_m.

- Finally, to make the \mathbf{u}_i matrix a square matrix, we extend it an orthogonal basis: $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m$.
- ▶ Define $U := [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_m]$ and fill 0's under $[D: \mathbf{0}_{r \times (n-r)}]$:

$$\mathbf{X} = \mathbf{U} \begin{bmatrix} D: \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{m-r \times n} \end{bmatrix} \mathbf{V}^T$$

- ▶ Finally, to make the \mathbf{u}_i matrix a square matrix, we extend it an orthogonal basis: $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m$.
- ▶ Define $U := [\mathbf{u}_1 \ \mathbf{u}_2 \ \cdots \ \mathbf{u}_m]$ and fill 0's under $[D: \mathbf{0}_{r \times (n-r)}]$:

$$\mathbf{X} = \mathbf{U} \begin{bmatrix} D: \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{m-r \times n} \end{bmatrix} \mathbf{V}^T$$

We are done!

Back to column vector form

▶ Put **U** and **V** back to column vector form in SVD:

$$\mathbf{X} = \mathbf{U} \begin{bmatrix} D:\mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{m-r \times n} \end{bmatrix} \mathbf{V}^T$$

Back to column vector form

▶ Put **U** and **V** back to column vector form in SVD:

$$\mathbf{X} = \mathbf{U} \begin{bmatrix} D:\mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{m-r \times n} \end{bmatrix} \mathbf{V}^T$$

we have

$$\mathbf{X} = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_m \end{bmatrix} \begin{bmatrix} D \vdots \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{m-r \times n} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1' \\ \mathbf{v}_2^T \\ \vdots \\ \mathbf{v}_n^T \end{bmatrix}$$

Back to column vector form

▶ Put **U** and **V** back to column vector form in SVD:

$$\mathbf{X} = \mathbf{U} \begin{bmatrix} D:\mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{m-r \times n} \end{bmatrix} \mathbf{V}^T$$

we have

$$\mathbf{X} = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_m \end{bmatrix} \begin{bmatrix} D : \mathbf{0}_{r \times (n-r)} \\ \mathbf{0}_{m-r \times n} \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^T \\ \mathbf{v}_2^T \\ \vdots \\ \mathbf{v}_n^T \end{bmatrix}$$

► So,

$$\mathbf{X} = [\sigma_1 \mathbf{u}_1 \cdots \sigma_r \mathbf{u}_r \ \mathbf{0} \cdots \mathbf{0}] \begin{bmatrix} \mathbf{v}_1^T \\ \mathbf{v}_2^T \\ \vdots \\ \mathbf{v}_T^{T_i} \end{bmatrix} = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$$

Assume we have a collection data of column vectors $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$ of \mathbb{R}^n .

- Assume we have a collection data of column vectors $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$ of \mathbb{R}^n .
- \blacktriangleright When n is large, we want "reduce" the dimension the data.

- Assume we have a collection data of column vectors $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$ of \mathbb{R}^n .
- \blacktriangleright When n is large, we want "reduce" the dimension the data.
- How could this be possible?

- Assume we have a collection data of column vectors $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$ of \mathbb{R}^n .
- ▶ When *n* is large, we want "reduce" the dimension the data.
- How could this be possible?
- ► This is possible in the case that all data vectors are actually coming from a subspace U of small dimension (say, r).

- Assume we have a collection data of column vectors $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$ of \mathbb{R}^n .
- ▶ When *n* is large, we want "reduce" the dimension the data.
- ▶ How could this be possible?
- ► This is possible in the case that all data vectors are actually coming from a subspace U of small dimension (say, r).
- ▶ Find an orthogonal set of vectors \mathbf{u}_1 , ..., \mathbf{u}_r that forms a basis for U!

- Assume we have a collection data of column vectors $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$ of \mathbb{R}^n .
- ▶ When *n* is large, we want "reduce" the dimension the data.
- ▶ How could this be possible?
- ► This is possible in the case that all data vectors are actually coming from a subspace U of small dimension (say, r).
- ▶ Find an orthogonal set of vectors \mathbf{u}_1 , ..., \mathbf{u}_r that forms a basis for U!
- ▶ If we can do so, then

$$\mathbf{a}_i = f_{i1}\mathbf{u}_1 + f_{i2}\mathbf{u}_2 + \cdots + f_{ir}\mathbf{u}_r, \quad i = 1:m$$

for some coefficients f_{ij} 's.

- Assume we have a collection data of column vectors $\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_m$ of \mathbb{R}^n .
- ▶ When *n* is large, we want "reduce" the dimension the data.
- How could this be possible?
- ► This is possible in the case that all data vectors are actually coming from a subspace U of small dimension (say, r).
- ▶ Find an orthogonal set of vectors \mathbf{u}_1 , ..., \mathbf{u}_r that forms a basis for U!
- ▶ If we can do so, then

$$\mathbf{a}_{i} = f_{i1}\mathbf{u}_{1} + f_{i2}\mathbf{u}_{2} + \cdots + f_{ir}\mathbf{u}_{r}, \quad i = 1 : m$$

for some coefficients f_{ij} 's.

Note that $f_{ij} = \mathbf{a}_i^T \mathbf{u}_j$, the projection of \mathbf{a}_i along the direction of \mathbf{u}_j .

How to find the first principal component?

▶ Let us find \mathbf{u}_1 .

How to find the first principal component?

- ▶ Let us find **u**₁.
- ▶ A good choice of **u**₁: the data vectors have the greatest total projection along the direction of **u**₁:

$$\max_{\|\boldsymbol{w}\|=1} \sum_{i=1}^{m} |\mathbf{a}_{i}^{T} \mathbf{w}|^{2}$$

How to find the first principal component?

- Let us find u₁.
- ▶ A good choice of **u**₁: the data vectors have the greatest total projection along the direction of **u**₁:

$$\max_{\|\boldsymbol{w}\|=1} \sum_{i=1}^{m} |\mathbf{a}_{i}^{T} \mathbf{w}|^{2}$$

Note that

$$\sum_{i=1}^{m} |\mathbf{a}_{i}^{T} \mathbf{w}|^{2} = \left\| \mathbf{A}^{T} \mathbf{w} \right\|^{2}$$
$$= (\mathbf{A}^{T} \mathbf{w})^{T} (\mathbf{A}^{T} \mathbf{w}) = \mathbf{w}^{T} \mathbf{A} \mathbf{A}^{T} \mathbf{w}$$

How to find the first principal component?

- Let us find u₁.
- ▶ A good choice of \mathbf{u}_1 : the data vectors have the greatest total projection along the direction of \mathbf{u}_1 :

$$\max_{\|\boldsymbol{w}\|=1} \sum_{i=1}^{m} |\mathbf{a}_{i}^{T} \mathbf{w}|^{2}$$

Note that

$$\sum_{i=1}^{m} |\mathbf{a}_{i}^{T} \mathbf{w}|^{2} = \left\| \mathbf{A}^{T} \mathbf{w} \right\|^{2}$$
$$= (\mathbf{A}^{T} \mathbf{w})^{T} (\mathbf{A}^{T} \mathbf{w}) = \mathbf{w}^{T} \mathbf{A} \mathbf{A}^{T} \mathbf{w}$$

► So.

$$\max_{\|\boldsymbol{w}\|=1} \sum_{i=1}^m |\mathbf{a}_i \mathbf{w}|^2 = \max_{\|\boldsymbol{w}\|=1} \mathbf{w}^T (\mathbf{A} \mathbf{A}^T) \mathbf{w} = \max_{\boldsymbol{w} \neq 0} \frac{\mathbf{w}^T (\mathbf{A} \mathbf{A}^T) \mathbf{w}}{\mathbf{w}^T \mathbf{w}}$$

▶ Let us use SVD of **A**:

$$\mathbf{A} = \mathbf{U}\mathbf{D}\mathbf{V}^T$$

▶ Let us use SVD of **A**:

$$A = UDV^T$$

► Then,

$$\mathbf{A}\mathbf{A}^T = \mathbf{U}\mathbf{D}\mathbf{V}^T\mathbf{V}\mathbf{D}^T\mathbf{U}^T = \mathbf{U}\mathbf{D}\mathbf{D}^T\mathbf{U}^T$$

Let us use SVD of A:

$$A = UDV^T$$

► Then,

$$\mathbf{A}\mathbf{A}^T = \mathbf{U}\mathbf{D}\mathbf{V}^T\mathbf{V}\mathbf{D}^T\mathbf{U}^T = \mathbf{U}\mathbf{D}\mathbf{D}^T\mathbf{U}^T$$

and

$$\frac{\mathbf{w}^T (\mathbf{A} \mathbf{A}^T) \mathbf{w}}{\mathbf{w}^T \mathbf{w}} = \frac{(\mathbf{U}^T \mathbf{w})^T \mathbf{D} \mathbf{D}^T (\mathbf{U}^T \mathbf{w})}{(\mathbf{U}^T \mathbf{w})^T (\mathbf{U}^T \mathbf{w})}$$

▶ Let us use SVD of **A**:

$$A = UDV^T$$

Then,

$$\mathbf{A}\mathbf{A}^T = \mathbf{U}\mathbf{D}\mathbf{V}^T\mathbf{V}\mathbf{D}^T\mathbf{U}^T = \mathbf{U}\mathbf{D}\mathbf{D}^T\mathbf{U}^T$$

and

$$\frac{\mathbf{w}^T (\mathbf{A} \mathbf{A}^T) \mathbf{w}}{\mathbf{w}^T \mathbf{w}} = \frac{(\mathbf{U}^T \mathbf{w})^T \mathbf{D} \mathbf{D}^T (\mathbf{U}^T \mathbf{w})}{(\mathbf{U}^T \mathbf{w})^T (\mathbf{U}^T \mathbf{w})}$$

Let $\mathbf{x} := \mathbf{U}^T \mathbf{w}$ and notice that there are only r non-zero entries $\sigma_1, ..., \sigma_r$ in \mathbf{D} .

Let us use SVD of A:

$$A = UDV^T$$

Then,

$$\mathbf{A}\mathbf{A}^T = \mathbf{U}\mathbf{D}\mathbf{V}^T\mathbf{V}\mathbf{D}^T\mathbf{U}^T = \mathbf{U}\mathbf{D}\mathbf{D}^T\mathbf{U}^T$$

and

$$\frac{\mathbf{w}^T (\mathbf{A} \mathbf{A}^T) \mathbf{w}}{\mathbf{w}^T \mathbf{w}} = \frac{(\mathbf{U}^T \mathbf{w})^T \mathbf{D} \mathbf{D}^T (\mathbf{U}^T \mathbf{w})}{(\mathbf{U}^T \mathbf{w})^T (\mathbf{U}^T \mathbf{w})}$$

- Let $\mathbf{x} := \mathbf{U}^T \mathbf{w}$ and notice that there are only r non-zero entries $\sigma_1, ..., \sigma_r$ in \mathbf{D} .
- We have

$$\frac{\mathbf{w}^{T}(\mathbf{A}\mathbf{A}^{T})\mathbf{w}}{\mathbf{w}^{T}\mathbf{w}} = \frac{\sigma_{1}^{2}x_{1}^{2} + \sigma_{2}^{2}x_{2}^{2} + \cdots + \sigma_{r}^{2}x_{r}^{2}}{x_{1}^{2} + x_{2}^{2} + \cdots + x_{m}^{2}}$$

▶ We have

$$\max_{w \neq 0} \frac{\mathbf{w}^{T} (\mathbf{A} \mathbf{A}^{T}) \mathbf{w}}{\mathbf{w}^{T} \mathbf{w}} = \max_{x \neq 0} \frac{\sigma_{1}^{2} x_{1}^{2} + \sigma_{2}^{2} x_{2}^{2} + \dots + \sigma_{r}^{2} x_{r}^{2}}{x_{1}^{2} + x_{2}^{2} + \dots + x_{m}^{2}}$$

We have

$$\max_{w \neq 0} \frac{\mathbf{w}^{T} (\mathbf{A} \mathbf{A}^{T}) \mathbf{w}}{\mathbf{w}^{T} \mathbf{w}} = \max_{x \neq 0} \frac{\sigma_{1}^{2} x_{1}^{2} + \sigma_{2}^{2} x_{2}^{2} + \dots + \sigma_{r}^{2} x_{r}^{2}}{x_{1}^{2} + x_{2}^{2} + \dots + x_{m}^{2}}$$

• Assume $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r$. Then

$$\max_{x \neq 0} \frac{\sigma_1^2 x_1^2 + \sigma_2^2 x_2^2 + \dots + \sigma_r^2 x_r^2}{x_1^2 + x_2^2 + \dots + x_m^2} = \sigma_1^2 = \lambda_1$$

This is the largest eigenvalue of A.

▶ We have

$$\max_{\mathbf{w} \neq 0} \frac{\mathbf{w}^T (\mathbf{A} \mathbf{A}^T) \mathbf{w}}{\mathbf{w}^T \mathbf{w}} = \max_{\mathbf{x} \neq 0} \frac{\sigma_1^2 x_1^2 + \sigma_2^2 x_2^2 + \dots + \sigma_r^2 x_r^2}{x_1^2 + x_2^2 + \dots + x_m^2}$$

▶ Assume $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$. Then

$$\max_{x \neq 0} \frac{\sigma_1^2 x_1^2 + \sigma_2^2 x_2^2 + \dots + \sigma_r^2 x_r^2}{x_1^2 + x_2^2 + \dots + x_m^2} = \sigma_1^2 = \lambda_1$$

This is the largest eigenvalue of A.

▶ A vector **x** that makes the maximum is $x_1 = 1$ and $x_i = 0$ for i = 2 : m

We have

$$\max_{\mathbf{w} \neq 0} \frac{\mathbf{w}^{T} (\mathbf{A} \mathbf{A}^{T}) \mathbf{w}}{\mathbf{w}^{T} \mathbf{w}} = \max_{\mathbf{x} \neq 0} \frac{\sigma_{1}^{2} x_{1}^{2} + \sigma_{2}^{2} x_{2}^{2} + \cdots + \sigma_{r}^{2} x_{r}^{2}}{x_{1}^{2} + x_{2}^{2} + \cdots + x_{m}^{2}}$$

▶ Assume $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$. Then

$$\max_{x \neq 0} \frac{\sigma_1^2 x_1^2 + \sigma_2^2 x_2^2 + \dots + \sigma_r^2 x_r^2}{x_1^2 + x_2^2 + \dots + x_m^2} = \sigma_1^2 = \lambda_1$$

This is the largest eigenvalue of A.

- A vector **x** that makes the maximum is $x_1 = 1$ and $x_i = 0$ for i = 2 : m
- ▶ This corresponds to $\mathbf{w} = \mathbf{U}\mathbf{x} = \mathbf{u}_1$.

We have

$$\max_{\mathbf{w} \neq 0} \frac{\mathbf{w}^{T} (\mathbf{A} \mathbf{A}^{T}) \mathbf{w}}{\mathbf{w}^{T} \mathbf{w}} = \max_{\mathbf{x} \neq 0} \frac{\sigma_{1}^{2} x_{1}^{2} + \sigma_{2}^{2} x_{2}^{2} + \dots + \sigma_{r}^{2} x_{r}^{2}}{x_{1}^{2} + x_{2}^{2} + \dots + x_{m}^{2}}$$

▶ Assume $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r$. Then

$$\max_{x \neq 0} \frac{\sigma_1^2 x_1^2 + \sigma_2^2 x_2^2 + \dots + \sigma_r^2 x_r^2}{x_1^2 + x_2^2 + \dots + x_m^2} = \sigma_1^2 = \lambda_1$$

This is the largest eigenvalue of A.

- A vector **x** that makes the maximum is $x_1 = 1$ and $x_i = 0$ for i = 2 : m
- ▶ This corresponds to $\mathbf{w} = \mathbf{U}\mathbf{x} = \mathbf{u}_1$.
- So, the first principal component is indeed achieved by the first eigenvector u₁ of AA^T

How about the 2nd, 3rd, ... principal components?

Using the same idea, the second principal component is the direction: be orthogonal to the first and maximize the total projection:

$$\max_{\|\boldsymbol{w}\|=1, \boldsymbol{w}^T \mathbf{u}_1 = 0} \sum_{i=1}^m |\mathbf{a}_i^T \mathbf{w}|^2$$

How about the 2nd, 3rd, ... principal components?

Using the same idea, the second principal component is the direction: be orthogonal to the first and maximize the total projection:

$$\max_{\|\boldsymbol{w}\|=1, \boldsymbol{w}^T \mathbf{u}_1 = 0} \sum_{i=1}^m |\mathbf{a}_i^T \mathbf{w}|^2$$

▶ This is the same to

$$\max_{\mathbf{w} \neq 0, \mathbf{w}^{T} \mathbf{u}_{1} = 0} \frac{\mathbf{w}^{T} (\mathbf{A} \mathbf{A}^{T}) \mathbf{w}}{\mathbf{w}^{T} \mathbf{w}} = \max_{x \neq 0, x^{T} \mathbf{U}^{T} \mathbf{u}_{1} = 0} \frac{\sigma_{1}^{2} x_{1}^{2} + \sigma_{2}^{2} x_{2}^{2} + \dots + \sigma_{r}^{2} x_{r}^{2}}{x_{1}^{2} + x_{2}^{2} + \dots + x_{m}^{2}}$$

$$= \max_{x \neq 0, x_{1} = 0} \frac{\sigma_{1}^{2} x_{1}^{2} + \sigma_{2}^{2} x_{2}^{2} + \dots + \sigma_{r}^{2} x_{r}^{2}}{x_{1}^{2} + x_{2}^{2} + \dots + x_{m}^{2}} = \sigma_{2}^{2} = \lambda_{2}$$

This is the largest eigenvalue of $\mathbf{A}\mathbf{A}^T$.

▶ A vector **x** that makes the maximum is $x_2 = 1$ and $x_i = 0$ for i = 1, 3 : m

- A vector **x** that makes the maximum is $x_2 = 1$ and $x_i = 0$ for i = 1, 3 : m
- ▶ This corresponds to $\mathbf{w} = \mathbf{U}\mathbf{x} = \mathbf{u}_2$.

- A vector **x** that makes the maximum is $x_2 = 1$ and $x_i = 0$ for i = 1, 3 : m
- ▶ This corresponds to $\mathbf{w} = \mathbf{U}\mathbf{x} = \mathbf{u}_2$.
- So, the second principal component is indeed achieved by the second eigenvector u₂ of AA^T.

- A vector **x** that makes the maximum is $x_2 = 1$ and $x_i = 0$ for i = 1, 3 : m
- ▶ This corresponds to $\mathbf{w} = \mathbf{U}\mathbf{x} = \mathbf{u}_2$.
- So, the second principal component is indeed achieved by the second eigenvector u₂ of AA^T.
- Now you see the pattern:
 u_i is the ith principal component.

► Let us randomly choose 20 points on a line in space (3-dimension).

- ► Let us randomly choose 20 points on a line in space (3-dimension).
- p=100;r=rand(1,p);x=2*r-1;y=r+2;z=3-r; scatter3(x,y,z,3*ones(1,p),1:p);colorbar;view(-30,10);

- ► Let us randomly choose 20 points on a line in space (3-dimension).
- p=100;r=rand(1,p);x=2*r-1;y=r+2;z=3-r; scatter3(x,y,z,3*ones(1,p),1:p);colorbar;view(-30,10);
- We want to find the first principal component.

- ► Let us randomly choose 20 points on a line in space (3-dimension).
- p=100;r=rand(1,p);x=2*r-1;y=r+2;z=3-r; scatter3(x,y,z,3*ones(1,p),1:p);colorbar;view(-30,10);
- We want to find the first principal component.
- First, we center the data by remove the mean of all points.

- ► Let us randomly choose 20 points on a line in space (3-dimension).
- p=100;r=rand(1,p);x=2*r-1;y=r+2;z=3-r; scatter3(x,y,z,3*ones(1,p),1:p);colorbar;view(-30,10);
- We want to find the first principal component.
- First, we center the data by remove the mean of all points.
- x=x-mean(x);y=y-mean(y);z=z-mean(z);hold on;scatter3(x,y,z,3*ones(1,p),1:p);

- ► Let us randomly choose 20 points on a line in space (3-dimension).
- p=100;r=rand(1,p);x=2*r-1;y=r+2;z=3-r; scatter3(x,y,z,3*ones(1,p),1:p);colorbar;view(-30,10);
- We want to find the first principal component.
- First, we center the data by remove the mean of all points.
- x=x-mean(x);y=y-mean(y);z=z-mean(z);hold on;scatter3(x,y,z,3*ones(1,p),1:p);
- Now, we use PCA to find the principal direction of these points

- ► Let us randomly choose 20 points on a line in space (3-dimension).
- p=100;r=rand(1,p);x=2*r-1;y=r+2;z=3-r; scatter3(x,y,z,3*ones(1,p),1:p);colorbar;view(-30,10);
- We want to find the first principal component.
- First, we center the data by remove the mean of all points.
- x=x-mean(x);y=y-mean(y);z=z-mean(z);hold on;scatter3(x,y,z,3*ones(1,p),1:p);
- Now, we use PCA to find the principal direction of these points
- A=[x;y;z];[U,S,V]=svds(A);scatter3(x,y,z,3*ones(1,p),U(:,1)'*A);

- ► Let us randomly choose 20 points on a line in space (3-dimension).
- p=100;r=rand(1,p);x=2*r-1;y=r+2;z=3-r; scatter3(x,y,z,3*ones(1,p),1:p);colorbar;view(-30,10);
- We want to find the first principal component.
- First, we center the data by remove the mean of all points.
- x=x-mean(x);y=y-mean(y);z=z-mean(z);hold on;scatter3(x,y,z,3*ones(1,p),1:p);
- Now, we use PCA to find the principal direction of these points
- A=[x;y;z];[U,S,V]=svds(A);scatter3(x,y,z,3*ones(1,p),U(:,1)'*A);
- Color is according to x-projection

The m-file and plot

```
p=100;r=rand(1,p);x=2*r-1;y=r+2;z=3-r;
scatter3(x,y,z,3*ones(1,p),2*[1:p]/p-1);view(-30,10);
x=x-mean(x);y=y-mean(y);z=z-mean(z);
A=[x;y;z];[U,S,V]=svds(A);
hold on;
scatter3(x,y,z,3*ones(1,p),U(:,1)'*A);
```

The m-file and plot

```
p=100;r=rand(1,p);x=2*r-1;y=r+2;z=3-r;
scatter3(x,y,z,3*ones(1,p),2*[1:p]/p-1);view(-30,10);
x=x-mean(x);y=y-mean(y);z=z-mean(z);
A=[x;y;z];[U,S,V]=svds(A);
hold on;
scatter3(x,y,z,3*ones(1,p),U(:,1)'*A);
```


Assume we have a set of n images of the same size (say, $p \times q$): \mathbf{I}_1 , \mathbf{I}_2 , ..., \mathbf{I}_n .

- Assume we have a set of n images of the same size (say, $p \times q$): \mathbf{I}_1 , \mathbf{I}_2 , ..., \mathbf{I}_n .
- ▶ We transform the $p \times q$ image matrix \mathbf{I}_i to a column vector of size m := pq by stacking its columns. For simplicity, we use the same notation to denote the column vector.

- Assume we have a set of n images of the same size (say, $p \times q$): \mathbf{I}_1 , \mathbf{I}_2 , ..., \mathbf{I}_n .
- We transform the p × q image matrix I; to a column vector of size m := pq by stacking its columns. For simplicity, we use the same notation to denote the column vector.
- Now, as a standard step, we take out the mean image $\mathbf{I} := \frac{1}{n} \sum_{i=1}^{n} \mathbf{I}_{i}$ from every image:

$$\tilde{\mathbf{I}}_i := \mathbf{I}_i - \mathbf{I}, \quad i = 1 : n$$

This step guarantees $\tilde{\mathbf{I}}_i$ are centered at the origin (and hence contained in a true **subspace**).

- Assume we have a set of n images of the same size (say, $p \times q$): \mathbf{I}_1 , \mathbf{I}_2 , ..., \mathbf{I}_n .
- We transform the p × q image matrix I₁ to a column vector of size m := pq by stacking its columns. For simplicity, we use the same notation to denote the column vector.
- Now, as a standard step, we take out the mean image $\mathbf{I} := \frac{1}{n} \sum_{i=1}^{n} \mathbf{I}_{i}$ from every image:

$$\tilde{\mathbf{I}}_i := \mathbf{I}_i - \mathbf{I}, \quad i = 1 : n$$

This step guarantees $\tilde{\mathbf{I}}_i$ are centered at the origin (and hence contained in a true **subspace**).

▶ Form the $m \times n$ data matrix

$$X := [\tilde{\mathbf{I}}_1 \ \tilde{\mathbf{I}}_2 \ \cdots \ \tilde{\mathbf{I}}_n]$$

