# Análisis Matemático II – Cuestionario del Final del 23/02/21

P1

La región H de la figura tiene frontera  $\partial H = C \cup \overline{AB}$ , donde C es un arco de curva que admite la ecuación:  $\overline{X} = (t \cos(t), 2 \sin(t)) con 0 \le t \le 2\pi$ .

Entonces, el área de  $\,H\,$  es igual a:



Seleccione una:

- $\circ$  a.  $2\pi^2 2\pi$
- $\circ$  b.  $2\pi^2 + 2\pi$
- O c. Ninguna de las otras es correcta
- $\odot$  d.  $\pi^2$
- $\odot$  e.  $2\pi^2$

P2

Sea C la curva de ecuación  $y=f(x \operatorname{Sen}(x-2), x, x^2)$  con  $x \in \mathbb{R}$ , que pasa por el punto  $\overline{A}=(2,4)$ . Sabiendo que  $f \in C^1(\mathbb{R}^3)$  y que  $\nabla f(0,2,4)=(2,4,-1)$ , se puede afirmar que la recta normal a C en  $\overline{A}$  admite la ecuación:

Seleccione una:

- O a. Ninguna de la otras es correcta
- $\bigcirc$  b.  $y-4=\frac{1}{4}(x-2)$
- $\bigcirc$  c.  $y-4=-\frac{1}{4}(x-2)$
- $\bigcirc$  d. y-4=4(x-2)
- $\bigcirc$  e. y-4=-4(x-2)

P3

Un cuerpo semiesférico de radio  $2^{-}$  ha sido elaborado con un material cuya densidad es  $\delta(x,y,z) = k d(x,y,z)$ , donde k > 0 es constante y d(x,y,z) es la distancia desde cada punto al centro de la esfera.

Entonces, la masa de dicho cuerpo semiesférico resulta igual a:

Seleccione una:

- $\bigcirc$  a.  $2 k\pi$
- O b. 8 kπ
- O c. Ninguna de las otras es correcta
- $\odot$  d. 4  $k\pi$
- $\bigcirc$  e.  $\frac{4}{3}k\pi$

P4

Sea el cuerpo D definido por:  $x^2 + y^2 + z^2 \le 2$ ,  $z \ge 1$ . El área de su superficie frontera resulta igual a:

Seleccione una:

- $\bigcirc$  a.  $2\pi(\sqrt{2}-1)$
- b.  $\pi (2\sqrt{2}-1)$
- $\bigcirc$  c.  $2\pi(2-\sqrt{2})$
- $\bigcirc$  d.  $\pi (5-2\sqrt{2})$
- O e. Ninguna de las otras es correcta

# Análisis Matemático II - Cuestionario del Final del 23/02/21

### P5

Siendo  $\overline{f} \in C^1(\mathbb{R}^3)$  tal que  $\overline{f}(x,y,z) = (x^2 + \varphi(y,z), \ 2 \ x \ y + \varphi(x,z), \ x \ z)$  y el cuerpo D definido por:  $z \ge x^2 + 2 \ y^2 \ , \ z \le 8 - x^2 \ , \text{ en el primer octante,}$  el flujo de  $\overline{f}$  a través de la superficie frontera de D -cuando dicha superficie se orienta en forma saliente del cuerpo- es igual a: Seleccione una:  $\bigcirc \text{ a. } 128/3$   $\bigcirc \text{ b. } 512/15$ 

O c. 0

O d. Ninguna de las otras es correcta

O e. 40

### **P6**

Dada D la región acotada del plano xy limitada por las rectas de ecuaciones:

$$y = \frac{x}{2}$$
,  $y = \frac{x}{2} - 2$ ,  $y = 0$ ,  $y = 1$ ,

aplicando el cambio de variables definido por (x,y) = (u+v, v/2), el área de D se calcula mediante:

Seleccione una:

$$\bigcirc a. \int_0^4 dv \int_0^2 2 du$$

$$\bigcirc \text{ b. } \int_0^4 \! \mathrm{d} v \, \int_0^2 \! \frac{1}{2} \! \mathrm{d} u$$

$$\circ$$
 c.  $\int_0^4 du \int_0^2 2 dv$ 

$$\bigcirc d. \int_{0}^{4} du \int_{0}^{2} \frac{1}{2} dv$$

O e. Ninguna de las otras es correcta

### **P7**

La recta tangente a la curva de ecuación  $\overline{X} = (2t^2, t^2, t+2)$  en (8,4,4) es perpendicular a la grafica del campo escalar f en el punto (2,1,4), sabiendo que f es diferenciable en  $\mathbb{R}^2$ , la aproximación lineal de f(1.95, 1.05) resulta igual a:

Seleccione una:

O a. 3.8

O b. Ninguna de las otras es correcta

O c. 4.2

Od. 3.7

O e. 4.3

### **P8**

Sean el campo escalar  $f: \mathbb{R}^2 \to \mathbb{R}$  tal que  $f(u,v) = v^2 - u^2 v$ 

y el campo vectorial  $\overline{g}$  con matriz jacobiana  $D\overline{g}(x,y,z) = \begin{pmatrix} x-y^2 & 2 & y & z^2 \\ 2 & z-x^2 & y & z & y^2 \end{pmatrix}$  en  $\mathbb{R}^3$ .

Sabiendo que  $\overline{g}(2,1,2)=(1,1)$  y que  $h(x,y,z)=f(\overline{g}(x,y,z))$ , entonces, la máxima derivada direccional de h en el punto (2,1,2) es igual a:

Seleccione una:

O a. 3

O b. Ninguna de las otras es correcta

○ c. √73

O d. 11

○ e. √57

# Análisis Matemático II – Cuestionario del Final del 23/02/21

P9

Dado  $\overline{f} \in C^1(\mathbb{R}^2)$  tal que  $\overline{f}(x,y) = (x \ y + g(x), \ x^2 + g(y))$ , sabiendo que la circulación de  $\overline{f}$  desde  $\overline{A} = (-2,0)$  hasta  $\overline{B} = (2,0)$  a lo largo del segmento  $\overline{AB}$  resulta igual a  $\sqrt{5}$ , se puede concluir que la circulación -también desde  $\overline{A}$  hasta  $\overline{B}$ - a lo largo de la curva de ecuación  $y = x^2 - 4$  resulta igual a:

Seleccione una:

- O a. Ninguna de las otras es correcta
- $\bigcirc$  b.  $-\sqrt{5}$
- c. √5
- $\bigcirc$  d.  $\sqrt{5} + 32/3$
- $\circ$  e.  $\sqrt{5} 32/3$

P10

En la figura se representa un segmento orientado  $\Gamma$ , en color rojo. Por otra parte, se tiene el campo vectorial  $\overline{f} = \overline{g} + \overline{h}$  con  $\overline{g}$ ,  $\overline{h} \in C^1(\mathbb{R}^3)$  tales que:

$$\overline{g}(x,y,z) = (x z, x y, y z) , \quad \overline{h} = \nabla \Phi \ con \ \Phi(x,y,z) = x z + y^2 + x^2 .$$

Entonces, la circulación de  $\overline{f}\,$  a lo largo de  $\Gamma\,$  con la orientación que se indica resulta igual a:



Seleccione una:

- O a. Ninguna de las otras es correcta
- О b. 20/3
- c. -4/3
- Od. 4/3
- e. -20/3