Problem Statement

A real estate agent want help to predict the house price for regions in USA.He gave us the dataset to work on to use linear regression model.Create a model that helps him to estimate of what the house would sell for

Import libraries

```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
```

```
In [2]: # To import dataset
    df=pd.read_csv('14 Iris csv')
    df
```

/ No.		
υu	L	

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa
				•••	•••	
145	146	6.7	3.0	5.2	2.3	Iris-virginica
146	147	6.3	2.5	5.0	1.9	Iris-virginica
147	148	6.5	3.0	5.2	2.0	Iris-virginica
148	149	6.2	3.4	5.4	2.3	Iris-virginica
149	150	5.9	3.0	5.1	1.8	Iris-virginica

150 rows × 6 columns

```
In [3]: # To display top 10 rows
df.head(10)
```

Out[3]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
	0	1	5.1	3.5	1.4	0.2	Iris-setosa
	1	2	4.9	3.0	1.4	0.2	Iris-setosa
	2	3	4.7	3.2	1.3	0.2	Iris-setosa
	3	4	4.6	3.1	1.5	0.2	Iris-setosa
	4	5	5.0	3.6	1.4	0.2	Iris-setosa
	5	6	5.4	3.9	1.7	0.4	Iris-setosa
	6	7	4.6	3.4	1.4	0.3	Iris-setosa
	7	8	5.0	3.4	1.5	0.2	Iris-setosa
	8	9	4.4	2.9	1.4	0.2	Iris-setosa
	9	10	4.9	3.1	1.5	0.1	Iris-setosa

Data Cleaning and Pre-Processing

```
In [4]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150 entries, 0 to 149
        Data columns (total 6 columns):
         #
             Column
                            Non-Null Count Dtype
             -----
         0
             Ιd
                             150 non-null
                                             int64
             SepalLengthCm 150 non-null
                                             float64
         1
         2
             SepalWidthCm
                                             float64
                            150 non-null
         3
             PetalLengthCm 150 non-null
                                             float64
         4
             PetalWidthCm
                            150 non-null
                                             float64
         5
             Species
                            150 non-null
                                             object
        dtypes: float64(4), int64(1), object(1)
```

```
In [5]:
         df.describe()
Out[5]:
                         Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
          count 150.000000
                                150.000000
                                               150.000000
                                                              150.000000
                                                                            150.000000
                  75.500000
                                  5.843333
                                                 3.054000
                                                               3.758667
                                                                             1.198667
          mean
                  43.445368
                                  0.828066
                                                0.433594
                                                               1.764420
                                                                             0.763161
            std
                   1.000000
                                  4.300000
                                                2.000000
                                                               1.000000
                                                                             0.100000
            min
            25%
                  38.250000
                                  5.100000
                                                                             0.300000
                                                2.800000
                                                               1.600000
            50%
                                                3.000000
                                                                             1.300000
                  75.500000
                                  5.800000
                                                               4.350000
           75%
                 112.750000
                                  6.400000
                                                 3.300000
                                                               5.100000
                                                                             1.800000
            max 150.000000
                                  7.900000
                                                 4.400000
                                                               6.900000
                                                                             2.500000
In [6]:
         df.columns
Out[6]: Index(['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthC
         m',
                  'Species'],
                dtype='object')
In [7]: | a = df.dropna(axis='columns')
         a.columns
Out[7]: Index(['Id', 'SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthC
         m',
                  'Species'],
                dtype='object')
```

EDA and Visualization

In [8]: sns.pairplot(a)

Out[8]: <seaborn.axisgrid.PairGrid at 0x27fd7230c10>


```
In [9]: | sns.distplot(a['SepalLengthCm'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='SepalLengthCm', ylabel='Density'>

In [13]: a1=a[['Id','SepalLengthCm', 'SepalWidthCm', 'PetalLengthCm', 'PetalWidthCm',]]

In [14]: sns.heatmap(a1.corr())

Out[14]: <AxesSubplot:>

To Train the Model - Model Building

We are going to train Linear Regression model; We need to split out data into two variables x and y where x is independent variable (input) and y is dependent on x(output). We could ignore address column as it is not required for our model.

To split my dataset into training and test data

```
In [16]: | from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.3)
In [17]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
          lr.fit(x_train,y_train)
Out[17]: LinearRegression()
In [18]:
         print(lr.intercept )
          1.8493559681338496
          coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
In [19]:
          coeff
Out[19]:
                        Co-efficient
                     ld
                          -0.003029
           SepalWidthCm
                          0.650862
          PetalLengthCm
                          0.710207
           PetalWidthCm
                          -0.344847
```

```
In [20]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[20]: <matplotlib.collections.PathCollection at 0x27fda530fa0>


```
In [21]: print(lr.score(x_test,y_test))
```

0.8213752794855974

ACCURACY

```
In [24]: from sklearn.linear_model import Ridge,Lasso
In [28]:
         rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
         rr.score(x_test,y_test)
         rr.score(x_train,y_train)
Out[28]: 0.8387282683516046
In [29]: |rr.score(x_test,y_test)
Out[29]: 0.7997480040189441
In [30]:
         la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[30]: Lasso(alpha=10)
In [31]: la.score(x_test,y_test)
Out[31]: 0.34740394837078914
 In [ ]:
```