香港中文大學 The Chinese University of Hong Kong

Course Code & Title: CSCI 3130: Formal languages and automata theory

Time allowed : 2 hours

版權所有 不得翻印 Copyright Reserved

Course Examination 1st Term, 2010 - 2011

Student I.D. No. :	Seat No.:
Questions 1–2:	
Questions 3–4:	
Questions 5–6:	***************************************
Questions 7–8:	
Questions 9–10:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Total:	
The exam consists of 10 questions, worth 10 points each. In each of the questions you are given a statement with a true/false choice. Circle one of the choices and explain your answer. It is always to your advantage to circle a choice and explain your answer.	
Possibly useful facts:	
A _{TM} = { $\langle M, w \rangle$: TM M accepts input w } is not decidable.	
$SOME_{TM} = \{ \langle M \rangle : TM M \text{ accepts input } W \} \text{ is not decidable.}$	
$ALL_{CFG} = \{ \langle G \rangle : CFG G \text{ generates all inputs } \}$ is not decidable, even if G has alphabet $\{0, 1\}$.	
$CLIQUE = \{ \langle G, k \rangle : Graph G \text{ has a clique of size } k \} \text{ is NP-complete.}$	

1. The language $L = \{waw^R \colon w \in \Sigma^*\}$ is regular over $\Sigma = \{a, b\}$. (w^R) is the reverse of w.)

true false

2. The following language over $\Sigma = \{\mathtt{a},\mathtt{b}\}$ has a DFA with 4 states:

 $L = \{w \in \Sigma^* \colon w \neq \varepsilon \text{ and } w \text{ starts and ends with the same symbol.} \}$

3. If L is regular over $\Sigma = \{a,b\}$ then the following language is regular over $\Sigma' = \{a,b,\star\}$:

$$L' = \{w_1 \star w_2 \star \dots w_k \star \colon w_1 \dots w_k \in L \text{ and } w_1, \dots, w_k \in \Sigma\}.$$

true false

4. The language $L = \{x \# y \colon x, y \in \{\mathtt{a}, \mathtt{b}\}^* \text{ and } |x| \neq |y|\}$ is **context-free** over $\Sigma = \{\mathtt{a}, \mathtt{b}, \#\}$.

5. The context-free grammar $E \to E + \mathbf{x} \mid \mathbf{x}$ is $\mathbf{LR}(\mathbf{0})$.

true false

6. There is an unambiguous context-free grammar for the language (a*b)*.

7. The language $L = \{\langle D \rangle \colon \text{The language of DFA } D \text{ is } (00+11)^*\}$ is **decidable**.

true false

8. The language $L = \{\langle G \rangle \colon \text{The language of CFG } G \text{ is } (00+11)^*\}$ is **decidable**.

9. The following language is $\mathbf{decidable}$ (you may assume $\Sigma = \{0,1\})$:

 $L = \{\langle M_1, M_2 \rangle \colon \text{For some } w \in \Sigma^*, \, \text{TMs } M_1 \text{ and } M_2 \text{ both accept } w \}.$

true false

10. A k-sun is a graph with 2k vertices $\{v_1, \ldots, v_{2k}\}$, where $\{v_1, \ldots, v_k\}$ is a clique and (v_1, v_{k+1}) , $(v_2, v_{k+2}), \ldots, (v_k, v_{2k})$ are additional edges.

The language $L = \{\langle G, k \rangle \colon G \text{ is a graph that contains a k-sun} \}$ is NP-complete.

