Поддерживающие временные ряды в MSSA

Федоров Никита Алексеевич, гр. 14.Б02-мм

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к. ф.-м. н. доц. Голяндина Нина Эдуардовна Рецензент: м. н. с. Шлемов Александр Юрьевич

Санкт-Петербург 2018г.

Введение: общая постановка задачи

Временной ряд

Вещественный временной ряд длины N: $\mathsf{F}=(f_0,\ldots,f_{N-1})$, $f_i\in\mathbb{R}$.

Пусть имеется временной ряд $\mathsf{F}_1 = \mathsf{S}_1 + \mathsf{R}_1$ длины N, где

- lacktriangle Сигнал S_1 детерминированная составляющая ряда.
- ② Шум R₁ случайная (мешающая) составляющая ряда.

Задача: выделить сигнал S_1 .

Пусть помимо ряда F_1 имеется временной ряд F_2 длины N.

Идея: использование ряда F_2 при выделении сигнала S_1 может помочь выделить сигнал более точно.

В работе используется:

- Для анализа одного ряда метод SSA.
- Для анализа двух рядов метод MSSA.

Подробное описание теории методов SSA и MSSA — в работе [Golyandina et al., 2015].

Cxeма получения оценок сигнала методами SSA и MSSA

Вход:

- ullet Ряд $\mathsf{F}_1 = \mathsf{S}_1 + \mathsf{R}_1$ длины N, длина окна $1 \leq L \leq N$, r
- ullet (MSSA) Ряд F_2 длины N

$$egin{align*} extbf{Cxema:} & extbf{Oбъект F} & ext{оценка сигнала $\widetilde{\mathsf{S}}_1$} \ & L\downarrow & \uparrow \ & \text{матрица ряда $\mathbf{X}=\mathcal{T}(\mathsf{F})} & \stackrel{r}{ o} & \text{оценка матрицы сигнала \mathbf{X}_r} \ \end{aligned}$$

Рекомендации (SSA):
$$L \sim N/2$$
, $r = \operatorname{rank} \mathcal{T}(\mathsf{S}_1)$ SSA: $\mathsf{F} = \mathsf{F}_1$, $\mathbf{X} = \mathcal{T}(\mathsf{F}_1) = \begin{pmatrix} f_0^{(1)} & f_1^{(1)} & \cdots & f_{K-1}^{(1)} \\ f_0^{(1)} & f_1^{(1)} & \cdots & \vdots \\ f_1^{(1)} & f_2^{(1)} & \ddots & \vdots \\ \vdots & \vdots & \cdots & \vdots \\ f_{L-1}^{(1)} & f_L^{(1)} & \cdots & f_{N-1}^{(1)} \end{pmatrix}$ MSSA: $\mathsf{F} = (\mathsf{F}_1; \mathsf{F}_2)$, $\mathbf{X} = [\mathcal{T}(\mathsf{F}_1); \mathcal{T}(\mathsf{F}_2)] = [\mathbf{X}_1; \mathbf{X}_2]$ Выход:

- ullet $\widetilde{\mathsf{S}}_{\mathrm{SSA}}$ оценка S_1 методом SSA
- \widetilde{S}_{MSSA} оценка S_1 методом MSSA

Формализация: общая постановка

Модель:
$$F_1 = S_1 + R_1$$

$$\widetilde{\mathsf{S}}_{\mathrm{SSA}}$$
, $\widetilde{\mathsf{S}}_{\mathrm{MSSA}}$ – оценки S_1

Ошибка оценки
$$\widetilde{\mathsf{S}}_1$$
 сигнала S_1 : $\mathrm{MSE}(\widetilde{\mathsf{S}};\mathsf{S}_1) = \frac{1}{N} \sum_{i=0}^{N-1} \left(\widetilde{s}_i - s_i\right)^2$, где $\mathsf{S}_1 = (s_0,\dots,s_{N-1})$, а $\widetilde{\mathsf{S}} = (\widetilde{s}_0,\dots,\widetilde{s}_{N-1})$

- ullet $\mathrm{MSE}_{\mathrm{SSA}} = \mathrm{MSE}(\widetilde{\mathsf{S}}_{\mathrm{SSA}}, \mathsf{S}_1)$ ошибка оценки сигнала методом SSA
- ullet $\mathrm{MSE}_{\mathrm{MSSA}} = \mathrm{MSE}(\widetilde{\mathsf{S}}_{\mathrm{MSSA}}, \mathsf{S}_1)$ ошибка оценки сигнала методом MSSA

Определение

 F_2 поддерживающий для $\mathsf{F}_1\colon \mathrm{MSE}_{\mathrm{MSSA}} < \mathrm{MSE}_{\mathrm{SSA}}$

Формализация: модель для исследования

Модель:

- \bullet $F_1 = S_1 + R_1$, $F_2 = S_2 + R_2$
- R_1 , R_2 два независимых белых гауссовских шума со средними, равными 0, и дисперсиями σ_1^2 , σ_2^2 , соответственно.
- $r=r_{\mathrm{SSA}}$ для $\widetilde{\mathsf{S}}_{\mathrm{SSA}}$, $r=r_{\mathrm{MSSA}}$ для $\widetilde{\mathsf{S}}_{\mathrm{MSSA}}$

Рассматриваем случаи:

- ullet Константных сигналов: $s_j^{(i)} \equiv c_i$ константы
- ullet Гармонических сигналов: $s_j^{(i)} = A_i \cos(2\pi(j+1)/T_i)$

Для гармонических сигналов:

- Сигналы одинаковой структуры:
 - $T_1 = T_2 \neq 2 \Rightarrow r_{\text{SSA}} = r_{\text{MSSA}} = 2$
- ullet Сигналы разной структуры: $T_1
 eq T_2, T_1, T_2
 eq 2 \Rightarrow r_{\mathrm{SSA}} = 2$, $r_{\mathrm{MSSA}} = 4$

Для константных сигналов: сигналы всегда одинаковой структуры: $r_{\rm SSA} = r_{\rm MSSA} = 1$

Схема исследования

Задачи:

- Исследование структуры: определить, как структура рядов F_1, F_2 влияет на то, является ли F_2 поддерживающим для F_1 .
- **2** Случай неизвестного сигнала: выяснить, как, не зная сигнала S_1 , определить, является ли F_2 поддерживающим для F_1 .

Схема исследования:

- Исследование структуры:
 - Теоретические результаты для константных сигналов
 - 2 Численные эксперименты для гармонических сигналов
 - lacktriangled Задача масштабирования F_2 для константных сигналов аналитически
- 2 Случай неизвестного сигнала:
 - Идея алгоритма СНОІСЕ определения поддерживающих рядов
 - Исследование качества алгоритма СНОІСЕ
 - Приведение рекомендаций по выбору параметров алгоритма СНОІСЕ

Исследование структуры: теоретические результаты

Результаты для константных сигналов:

- c_1 , c_2 значения констант
- ullet σ_1 , σ_2 значения уровня шума
- ullet $\mathbb{E} \operatorname{MSE}_{\mathrm{SSA}}$, $\mathbb{E} \operatorname{MSE}_{\mathrm{MSSA}}$ матожидания ошибок оценки сигнала

Утверждение

Для первого порядка $\mathbb{E} ext{MSE}_{ ext{SSA}}$ при $L = \left[\frac{N+1}{2} \right]$ верно: $\mathbb{E} ext{MSE}_{ ext{SSA}}^{(1)} \sim \frac{26\sigma_1^2}{9N}$ при $N \to \infty$.

Утверждение

Пусть $a=rac{c_2}{c_1}$ и $b=rac{\sigma_2}{\sigma_1}$. Для первого порядка $\mathbb{E} ext{MSE}_{ ext{MSSA}}$ при $L=\left[rac{N+1}{2}
ight]$ верно: $\mathbb{E} ext{MSE}_{ ext{MSSA}}^{(1)} \sim rac{\sigma_1^2}{9N} \cdot rac{15a^4+4a^2b^2+37a^2+26}{a^4+2a^2+1}$ при $N o \infty$.

Исследование структуры: теоретические результаты

Результаты для константных сигналов:

- $\widehat{s}_l^{(1)}$ первый порядок восстановления сигнала S_1 в точке на l-ой позиции
- ullet $\mathbb{D}\widetilde{s}_{l}^{(1)}$ дисперсия $\widetilde{s}_{l}^{(1)}$

Утверждение

Пусть $L-1\leq l\leq K-1$. При $L<\frac{N}{2}$ $\mathbb{D}\widetilde{s}_l^{(1)}$ не зависит от F_2 и задаётся выражением $\mathbb{D}\widetilde{s}_l^{(1)}=\frac{\sigma_1^2(1+2L^2)}{3L^3}$.

Следствие: наибольшее влияние F_2 на $\mathrm{MSE}_{\mathrm{MSSA}}$ при $L = \left[\frac{N+1}{2} \right]$.

Исследование структуры: гармонические сигналы

- (a) Сигналы одинаковой структуры $(T_1 = T_2 = 10)$
- (b) Сигналы разной структуры ($T_1 = 10, T_2 = 7$)

Рис. 1: Зависимость $\hat{\mathbb{E}}$ MSE_{MSSA} от σ_2 и сравнение с $\hat{\mathbb{E}}$ MSE_{SSA} для гармонических сигналов ($A_1=30,\ A_2=20,\ \sigma_1=5,\ N=100$)

Пороговое значение: для сигналов одинаковой структуры $\exists \sigma_2^{(0)}$:

- $\sigma_2 < \sigma_2^{(0)} \Rightarrow \hat{\mathbb{E}} MSE_{MSSA} < \hat{\mathbb{E}} MSE_{SSA}$
- $\sigma_2 > \sigma_2^{(0)} \Rightarrow \hat{\mathbb{E}} MSE_{MSSA} > \hat{\mathbb{E}} MSE_{SSA}$

Исследование структуры: масштабирование F_2

Идея: $F_2 \rightarrow \alpha F_2$, $\alpha > 0$.

Введём: $U(\alpha) = \mathbb{E} \operatorname{MSE}_{\mathrm{MSSA}} / \mathbb{E} \operatorname{MSE}_{\mathrm{SSA}}$

Утверждение

Опишем поведение $\mathrm{U}(\alpha)$ в зависимости от $\mathrm{SNR}(\mathsf{F}_1)/\,\mathrm{SNR}(\mathsf{F}_2)$:

- При ${
 m SNR}({\sf F}_1)/{
 m SNR}({\sf F}_2)< \frac{7}{8}~{
 m U}(\alpha)$ убывает на $(0,+\infty)$. При всех значениях α ряд $\alpha{\sf F}_2$ в среднем является поддерживающим для ${\sf F}_1$.
- ② При $\frac{7}{8} \leq {
 m SNR}({\sf F}_1)/\,{
 m SNR}({\sf F}_2)\,\,{
 m U}(\alpha)$, убывая, достигает своего минимума в точке α_0 , после чего, возрастая, сходится к некоторому значению $U_{+\infty}$:
 - В случае $\mathrm{SNR}(\mathsf{F}_1)/\mathrm{SNR}(\mathsf{F}_2) < \frac{11}{4}$ значение $U_{+\infty} < 1$ и ряд $\alpha\mathsf{F}_2$ также в среднем остаётся поддерживающим для F_1 при всех значениях α .
 - В случае $\mathrm{SNR}(\mathsf{F}_1)/\mathrm{SNR}(\mathsf{F}_2) \geq \frac{11}{4}$ значение $U_{+\infty} \geq 1$ и ряд $\alpha \mathsf{F}_2$ в среднем уже не будет поддерживающим для F_1 при достаточно больших значениях α .

Исследование структуры: масштабирование F_2

Рис. 2: Зависимость поведения отношения ошибок оценки сигнала $\mathrm{U}(\alpha)$ от масштабирующего параметра α

Случай неизвестного сигнала: идея

По определению: $\mathrm{MSE}_{\mathsf{SSA}} \leq \mathrm{MSE}_{\mathsf{MSSA}} \to \mathsf{P}$ яд F_2 (не) поддерживающий для F_1 .

Проблема: в реальных задачах сигнал неизвестен \Leftrightarrow не вычислить $\mathrm{MSE}_{\mathrm{SSA}},\,\mathrm{MSE}_{\mathrm{MSSA}}.$

Идея:

- Делить ряд на две части
- 2 Строить прогноз одной части ряда по другой
- $oldsymbol{3}$ Вычислять $\gamma_{
 m SSA}$, $\gamma_{
 m MSSA}$ ошибки прогноза
- $oldsymbol{\bullet}$ $\gamma_{
 m SSA} \lesssim \gamma_{
 m MSSA} o$ Решение: ряд ${\sf F}_2$ (не) поддерживающий для ${\sf F}_1$

Алгоритм: $CHOICE(k, r_{SSA}, r_{MSSA}, L = L(k))$

- ullet k длина отрезка, по которому строится прогноз
- ullet $r_{\mathsf{SSA}},\,r_{\mathsf{MSSA}}$ значения параметра r для SSA и MSSA прогнозов
- ullet L значение параметра длины окна для SSA и MSSA прогнозов

Для исследования качества:

 $\mathbb{P}_{\mathsf{CHOICE}} = \mathbb{P}(\mathbb{1}_{\{\gamma_{\mathrm{MSSA}} < \gamma_{\mathrm{SSA}}\}} = \mathbb{1}_{\{\mathrm{MSE}_{\mathrm{MSSA}} < \mathrm{MSE}_{\mathrm{SSA}}\}})$ – вероятность правильного определения, является ли ряд поддерживающим

Случай неизвестного сигнала: качество алгоритма для гармонических сигналов

Пусть известна структура двумерного сигнала $(S_1; S_2)$. При всех значениях $\sigma_2 \ \hat{\mathbb{P}}_{\text{CHOICE}} > 0.5$.

(a) Сигналы одинаковой структуры (b) Сигналы разной структуры $(T_1 =$ $(T_1 = T_2 = 10, r_{SSA} = r_{MSSA} = 2)$

10, $T_2 = 7$, $r_{SSA} = 2$, $r_{MSSA} = 4$)

Рис. 3: Зависимость $\hat{\mathbb{P}}_{\mathrm{CHOICE}}$ от σ_2 для гармонических сигналов для $N = 100, k = \left[\frac{3N}{4}\right], L = \left[\frac{k+1}{2}\right]$

Случай неизвестного сигнала: рекомендации по выбору параметров

Пусть известны ранги сигналов S_1 , S_2 .

Проблема: неизвестно, имеют ли сигналы S_1 , S_2 одинаковую или разную структуру \Rightarrow неизвестен ранг сигнала $(S_1;S_2)$.

Численное моделирование (гармонические сигналы):

- ullet Параметры $r_{\mathsf{SSA}}, r_{\mathsf{MSSA}}$ рекомендуется брать равными $\mathrm{rank}\,\mathsf{S}_1 + \mathrm{rank}\,\mathsf{S}_2$
- ullet Параметр k рекомендуется брать достаточно большим $(k \geq rac{N}{2})$

Заключение

В моей работе были получены следующие результаты:

- В задаче об исследовании структуры:
 - Были получены теоретические результаты, описывающие поведение MSE_{SSA}, MSE_{MSSA} для константных сигналов.
 - С помощью моделирования были исследованы свойства ${
 m MSE}_{
 m SSA}, {
 m MSE}_{
 m MSSA}$ для гармонических сигналов одинаковой и разной структуры.
 - Получены теоретические результаты, описывающие поведение MSE_{MSSA} при масштабировании второго ряда в случае константных сигналов
- 2 В задаче о неизвестном сигнале:
 - Был разработан алгоритм CHOICE определения того, является ли ряд поддерживающим.
 - С помощью моделирования было исследовано качество алгоритма CHOICE в случае гармонических сигналов.
 - Были приведены рекомендации по выбору параметров алгоритма CHOICE.