Let $f: \mathbb{Q} \to \mathbb{Q} \times \mathbb{Q}$ be a function defined as $f(x) = (x^3, x^4)$.

Is f injective?

Suppose f(x) = f(y) for some $x, y \in \mathbb{R}$ (domain). Then $(x^3, x^4) = (y^3, y^4)$. So $x^3 = y^3$ and $x^4 = y^4$. Then from $x^3 = y^3$ we get x = y. So, we have shown that f(x) = f(y) = 9 x = y. Therefore, f(x) = f(y) = 9 x = y.

codomain MARIANA (10) FRXQ

Is f onto? Consider $(1,0) \in \mathbb{R} \times \mathbb{Q}$. Is written we claim that (1,0) for the image of f. To show this, suppose (1,0) is in the image. Then there must be $x \in \mathbb{R}$ such that f(x) = (1,0). This means that $(x^3, x^4) = (1,0)$. So, $x^3 = 1$ and $x^4 = 0$. $x^4 = 0 = x = 0$, which contradicts $x^3 = 1$, which proves our claim. Therefore, f is not onto.

Is f a bijection? Is f invertible?

not a bijection becomes it's not onto.

not invertible since it's not a bijection.

Relations

When defining a function we require that the function takes each element from the domain to exactly one element in the codomain.

Given a function $f: A \to B$, one can associate it to a subset G_f of $A \times B$, where elements are some ordered pairs (a, b) $(a \in A, b \in B)$.

Note that since f is a function from A to B, for each $x \in A$, there is exactly one $(x, y) \in G_f$.

Now we introduce a new notion, called a **relation**, which will serve as a generalization of the notion of function:

Defn: A binary relation \mathcal{R} from a set A to a set B is a subset of $A \times B$. We write $(a, b) \in \mathcal{R}$ (or $a\mathcal{R}b$) to denote that "a is related to b by R".

$$A = \{a,b,c\}$$
 $P(A) = \{a,b,c\}, \{a,b\}, \{a,c\}, \{a,b\}, \{a,c\}, \{a,b\}, \{a,c\}, \{a,b\}, \{a,b\}$

From this definition we observe that a relation is similar to a function in that it relates elements of a set A to elements of a set B, but there is a significant difference: unlike functions, a relation is not required to assign each element of A to exactly one element in B.

Fact: For finite sets A and B, the number of relations from A to Bis $|\mathcal{P}(A \times B)| = 2^{|A \times B|} = 2^{|A||B|}$

Goower set One can also define a relation from a set to itself.

Defn: A binary relation from A to A (i.e. a subset of $A \times A$) is referred to as a binary relation on A.

Properties of Relations

Defn: A relation \mathcal{R} on a set A is

A = {a,b,c} A relation of A is a subset of A × A

- reflexive if for all $a \in A$, $(a, a) \in \mathcal{R}$
- symmetric if for all a, b ∈ A, (a, b) ∈ R ⇒ (b, a) ∈ R (a,a),
 antisymmetric if for all a, b ∈ A,
 ((a,b) ∈ R and (b) = R
- $((a,b) \in \mathcal{R} \text{ and } (b,a) \in \mathcal{R}) \Rightarrow a = b$

• transitive if for all $a, b, c \in A$, $((a,b) \in \mathcal{R} \text{ and } (b,c) \in \mathcal{R}) \Rightarrow (a,c) \in \mathcal{R}$ (b,a), (b,b), (b,c), (c,a), (c,b), (c,c)}

Examples: For each relation defined on \mathbb{Z} , determine if it is reflexive, symmetric, antisymmetric or transitive. 1R,1 -3R-3 -4×3 • $\mathcal{R}_1 = \{(a,b) : a = b\}$ (-4,3) &R, R, is reflexive becomes for any a EZ, a=a. (So Ya EZ, aR,a) R, is symmetric becomes for only $a,b \in \mathbb{Z}$, a = b = 3b = a. So, $(a,b) \in \mathbb{R}$, is antisymmetric becomes a = b = 3b = a. So, $(a,b) \in \mathbb{R}$, $(a,b) \in$ for any a, b EZ s.+ a=b and b=a, it follows that a=b So, $(a,b) \in \mathbb{R}$, and $(b,a) \in \mathbb{R}$, = > a = b. \mathbb{R} , is transitive because for all $a,b,c \in \mathbb{Z}$, s.t a = b $\bullet \mathbb{R}_2 = \{(a,b) : a \ge b\}$ and b = c, we have reflexive?: Let a E Z be (b=c. So)ta, b) ER, and (b,c) ER, , then (a,c) ER, an arbitrary element. Since a zative have that (a, a) ER. Therefore, Rz is reflexive. symmetric?: Re is not symmetric because for example (1, P) ER2 (since 120), but (D,1) & R2 ountisymmetric?: Let a,b $\in \mathbb{Z}$ sit $(a,b)\in R_z$ and $(b,a)\in R_z$. Then a z b and b z a. Therefore a a z b, which shows that Rz is out symmetric. trans. Yive ?: Let a, b, c & Z. Suppose (a, b) ERz and (b,c) ERz. Then azb and bzc. So azbzc, hence azc. Therefore (a, C) ERz. This means that Rz is trans: tive. 79

Let a,b,c $\in \mathbb{Z}$, suppose $(a,b)\in \mathbb{R}_3$ and $(b,c)\in \mathbb{R}_3$. So, a < b and b < c. Then a < b < c, hence a < c. So, $(a,c)\in \mathbb{R}_3$. This shows that \mathbb{R}_3 is transitive

• $R_3 = \{(a,b): a < b\}$ reflexive ? : • $R_3 = \{(a,b): a < b\}$ reflexive ? : • $R_3 = \{(a,b): a < b\}$ reflexive ? : • $R_3 = \{(a,b): a < b\}$ reflexive ? : • $R_3 = \{(a,b): a < b\}$ reflexive ? : • $R_3 = \{(a,b): a < b\}$ reflexive ? : • $R_4 = \{(a,b): a | b]$ reflexive ? : • $R_4 = \{(a,b): a | b]$ reflexive ?

exercise

• $\mathcal{R}_5 = \{(a,b) : a = 2b+1\}$

exercise

Let $a_1b_1c \in \mathbb{Z}$. Suppose that $(a_1b) \in R_6$ and $(b_1c) \in R_6$. Then |a| = |b| and |b| = |c|. So |a| = |b| = |c|, hence |a| = |c|, which means that $(a_1c) \in R_6$. Therefore R_6 is transitive.

- $\mathcal{R}_6 = \{(a,b): |a|=|b|\}$ Let $a\in\mathbb{Z}$ be an arbitrary elt. Since |a|=|a|, we have $(a,a)\in\mathcal{R}_6$. Therefore, \mathcal{R}_6 . It reflexive. Reflexive. Reflexive. Reflexive. |a|=|b|. Then |b|=|a|, so $(b,a)\in\mathcal{R}_6$. |a|=|b|. Then |b|=|a|, so $(b,a)\in\mathcal{R}_6$. Reflexive. |a|=|b|. Then |b|=|a|, so $(b,a)\in\mathcal{R}_6$. |a|=|b|. Then |b|=|a|, so $(b,a)\in\mathcal{R}_6$. Reflexive.
- since $a \le a + 5$, $(a_1a) \in R_7$. Therefore, R_7 is defleptive R_7 is not symmethic. To see this, consider $a = 2 \in \mathbb{Z}$ and $b = 9 \in \mathbb{Z}$. $(a_1b) \in R_7$ because $z \le 9 + 5$, but $(b_1a) \notin R_7$ because $q \ne z + 5$.

 Ref. is not antisymmetric because $(I_1z) \in R_7$. $(1 \le 2 + 5)$ and $(z_11) \in R_7$ $(z \le 1 + 5)$ but $(z_12) \in R_7$.

 Consider a = 6, b = 3 and c = 0 $(a_1b_1c \in \mathbb{Z})$.

 Observe that $(a_1b) \in R_7$ $(6 \le 3 + 5)$ and $(b_1c) \in R_7$ $(6 \ne 0 + 5)$.

 So I_1 is not transitive.