- (21) Application No 0001184.1
- (22) Date of Filing 20.01.2000
- (30) Priority Data
 - (31) 17899
- (32) 01.02.1999
- (33) CH
- (71) Applicant(s) Ciba Specialty Chemicals Holding Inc. (Incorporated in Switzerland) Klybeckstrasse 141, 4057 Basel, Switzerland
- (72) Inventor(s) **Rudolf Schaulin** Silvia Strähl **AndréCron**
- (74) Agent and/or Address for Service Ciba Specialty Chemicals Holding Inc. UK Patents Department, Cleckheaton Road, Low Moor, BRADFORD, BD12 0JZ, United Kingdom

- (51) INT CL7 C09B 67/22
- (52) UK CL (Edition R) C4P PAC04 PAM03 PAM04 PAM05 PAM10A PAM12B PAM14A PAM14B PAM15C PAM15T PAM18A PAM22 PAM24 PAZ PAZ01A PAZ01B PAZ01N PM PT01 PT04 PT07 PT08 PT09 PT10 PT11 PT12 PT14 PT15 PT17 PT18 PT99 P130 U1S S1537
- (56) Documents Cited EP 0827988 A1 EP 0802239 A1 EP 0735110 A1 EP 0684290 A2 WO 97/21773 A1 WO 97/21772 A1 WO 96/16129 A1
- (58) Field of Search INT CL7 C09B 67/22
- (54) Abstract Title Dye mixtures and their use for dyeing or printing cellulose acetate-containing fibre materials
- (57) This invention relates to dye mixtures, which comprise at least two dyes of formulae

$$O_{2}N \longrightarrow \bigcap_{R_{2}}^{R_{3}} \bigcap_{R_{3}}^{R_{3}} (1), \quad O_{R_{3}} \longrightarrow \bigcap_{NO_{2}}^{R_{3}} \bigcap_{NO_{2}}^{R_{3}} (2),$$

$$A \longrightarrow NO_{3} \longrightarrow \bigcap_{NO_{3}}^{R_{3}} \bigcap_{NO_{3}}^{R_{3}} \bigcap_{NO_{3}}^{R_{3}} \bigcap_{NO_{3}}^{R_{3}} \bigcap_{NO_{3}}^{R_{3}} \bigcap_{NO_{4}}^{R_{3}} \bigcap_{NO_{4}}^{R_{4}} \bigcap_{NO_{4}}^{R_{4}} \bigcap_{NO_{4}}^{R_{4}} \bigcap_{NO_{4}}^{R_{4}} \bigcap_{$$

have the meanings defined in claim 1, and to the use of these mixtures for dyeing or printing semisynthetic hydrophobic cellulose acetate-containing fibre materials. These mixtures do not stain wool or cotton if present in blends with cellulose acetate (or effect only minor staining).

Dye mixtures and their use for dyeing or printing cellulose acetate-containing fibre materials

The present invention relates to mixtures of dyes, to their preparation and to their use for dyeing or printing cellulose acetate-containing fibre materials.

Dyes and dye mixtures for dyeing semisynthetic or synthetic hydrophobic cellulose acetate-containing fibre materials, for example cellulose-2¹/₂ acetate and cellulose triacetate, are known. However, it has been found that these dyes or the mixtures thereof do not always fully meet the highest requirements, especially with regard to reproducibility, susceptibility to the temperature of the dyebath or suitability for specific dyeing processes, in particular when a jigger or jet dyeing apparatus is used. There is thus a demand for novel dyes or dye mixtures which do not have these drawbacks.

Surprisingly, it has now been found that the mixtures of this invention substantially fulfil the above criteria.

Accordingly, this invention relates to a dye mixture, which comprises at least two dyes of formulae

$$O_{2}N \longrightarrow \begin{array}{c} R_{1} \\ N = N \end{array} \longrightarrow \begin{array}{c} R_{3} \\ N \\ R_{6} \end{array}$$

$$(1),$$

wherein

R₁ is hydrogen, halogen, nitro or cyano,

R₂ is hydrogen, halogen, nitro or cyano,

R₃ is hydrogen, halogen or C₁-C₄alkoxy,

R₄ is hydrogen, C₁-C₄alkylcarbonylamino,

R₅ is hydrogen; C₁-C₄alkyl which is unsubstituted or substituted by hydroxy, cyano, C₁-C₄-alkylcarbonyloxy,

 R_6 is C_1 - C_4 alkyl which is unsubstituted or substituted by hydroxy, cyano, C_1 - C_4 alkylcarbonyloxy, C_1 - C_4 alkoxycarbonyl,

$$NC$$
 R_7
 $N = N$
 N

wherein

R7 is C1-C4alkyl, R8 is C1-C4alkyl, and Hal is halogen,

$$A$$
 NH SO₂-NH B (3),

wherein the rings A and B may be further substituted,

$$R_g$$
-CO-NH— C $N = N$ D D (4),

wherein

 R_{9} is $C_{1}\text{-}C_{4}$ alkyl and the rings C and D may be further substituted,

$$R_{29}$$
 $N = N$ R_{10} R_{11} R_{11} R_{11}

wherein

 R_{10} is unsubstituted or hydroxy- or cyano-substituted C_1 - C_4 alkyl, R_{11} is unsubstituted or -O-COR₁₂-substituted C_1 - C_4 alkyl, wherein R_{12} is C_1 - C_4 alkyl, R_{29} is nitro, C_1 - C_4 alkoxy or -SO₂CH₃, and R_{30} is hydrogen or C_1 - C_4 alkyl,

$$R_{14}$$
 $N = N - N$ SR_{15} R_{16} R_{16}

wherein

 R_{13} is C_1 - C_4 alkyl, R_{14} is C_1 - C_4 alkyl, R_{15} is C_1 - C_4 alkyl, and R_{16} is C_1 - C_4 alkyl or -NHCOR₁₇, wherein R_{17} is C_1 - C_4 alkyl,

$$N = N$$
 R_{19}
 R_{20}
 R_{19}
 R_{19}
 R_{19}
 R_{19}
 R_{19}

wherein

 R_{18} is unsubstituted or hydroxy- or cyano-substituted C_1 - C_4 alkyl, R_{19} is unsubstituted or hydroxy- or C_1 - C_4 alkoxycarbonyl-substituted C_1 - C_4 alkyl, and R_{20} is hydrogen, C_1 - C_4 alkyl or NHCOR₁₇, R_{17} is C_1 - C_4 alkyl,

BNSDOCID: <GB__2346150A_I_>

$$\begin{array}{c|c}
NH_2 & O & NH_2 \\
\hline
OH & O & OH
\end{array}$$
(10),

wherein R21 is halogen,

$$O_2N - \bigvee_{R_{23}} P_{22} = N - \bigvee_{R_{25}} P_{25}$$
(11)

wherein

R₂₂ is cyano, nitro or halogen, R₂₃ is halogen, R₂₄ is unsubstituted or hydroxy-substituted C₁-C₄alkyl, and R₂₅ is unsubstituted or hydroxy-substituted C₁-C₄alkyl, and the naphthyl ring E may be further substituted,

and

$$NO_{2}$$
 $N = N$
 $N =$

wherein

 R_{26} is C_1 - C_4 alkyl or the radical NHCOR₁₇, wherein R_{17} is C_1 - C_4 alkyl, R_{27} is C_1 - C_4 alkyl or C_1 - C_4 alkyl.

The dye mixture defined above advantageously comprises at least one dye of formula (1).

 C_1 - C_4 Alkyl as such and as a radical in C_1 - C_4 alkylcarbonylamino or C_1 - C_4 alkylcarbonyloxy is methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl or tert-butyl.

 C_1 - C_4 Alkoxy as such or as a radical in C_1 - C_4 alkoxycarbonyl is, for example, methoxy, ethoxy propoxy or butoxy.

R₁, R₃, R₂₂ and R₂₃ defined as halogen are, for example, bromo or, preferably, chloro.

R₂ and R₂₁ defined as halogen are, for example, chloro or, preferably, bromo.

Halogen in formula (2) is, for example, bromo or, preferably, chloro.

R₃ defined as C₁-C₄alkoxy is preferably ethoxy and, more preferably, methoxy.

 R_4 defined as C_1 - C_4 alkylcarbonylamino is preferably propionylamino and, more preferably, acetylamino.

 R_5 , R_6 and R_{10} defined as C_1 - C_4 alkyl are propyl or isopropyl and, preferably, ethyl.

 R_7 , R_9 , R_{12} , R_{16} , R_{17} , R_{20} , R_{26} and R_{30} defined as C_1 - C_4 alkyl are preferably ethyl and, more preferably, methyl.

 R_{8} , R_{11} , R_{15} , R_{18} , R_{19} , R_{27} and R_{28} defined as C_1 - C_4 alkyl are preferably methyl and, more preferably, ethyl.

 R_{13} , R_{14} , R_{24} and R_{25} defined as C_1 - C_4 alkyl are preferably ethyl and, more preferably, propyl. R_{27} and R_{28} are preferably C_1 - C_4 alkyl.

R₂₉ is preferably nitro or the radical -SO₂CH₃.

The C₁-C₄alkyl radicals are usually substituted once or twice with the substituents cited above.

Preferred dye mixtures are those, which comprise at least two dyes of formulae

$$O = \begin{array}{c} O = \begin{array}{c} O = \\ O =$$

BNSDCCID: <GB__2346150A_1_>

$$H_3$$
C-CO-NH— N = N— (15),

$$O_{2}N \longrightarrow S \longrightarrow N = N \longrightarrow CH_{2}CH_{2}CN$$

$$CH_{2}CH_{2}-O-COCH_{3}$$
(16),

$$O_{2}N \longrightarrow N = N \longrightarrow N = N \longrightarrow CH_{2}CH_{2}-O-COCH_{3}$$

$$CH_{2}CH_{2}-O-COCH_{3}$$

$$CH_{2}CH_{2}-O-COCH_{3}$$

$$O_2N \longrightarrow N = N \longrightarrow N$$

$$CH_2CH_3$$

$$CH_2CH_2CN$$

$$CH_2CH_2CN$$

$$H_3CH_2CH_2C$$

$$N = N$$

BNSDOCID: <GB__2348150A_I_>

$$O_2N$$

$$N = N$$

$$O_2N \longrightarrow N = N \longrightarrow N = N \longrightarrow CH_2CH_2-O-COCH_3$$

$$CH_2CH_2CN$$

$$CH_2CH_2CN$$

$$(21),$$

$$O_2N \longrightarrow N = N \longrightarrow N = N \longrightarrow CH_2CH_2OH$$

$$CH_2CH_2CN$$

$$CH_2CH_2CN$$

$$CH_2CH_2CN$$

$$N = N - CH_2CH_3$$

$$CH_2CH_2COOCH_3$$

$$NO_2$$
(23),

$$N = N$$

$$CH_2CH_2OH$$

$$CH_2CH_2OH$$

$$CH_2CH_2OH$$

$$(27),$$

$$O_{2}N \longrightarrow \begin{array}{c} OCH_{3} \\ CH_{2}CH_{3} \\ CH_{2}CH_{3} \\ CH_{2}CH_{3} \\ \end{array}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$O_2N$$
 $N = N$
 CH_2 - $CH(OH)$ - CH_2OH
 CH_2 - $CH(OH)$ - CH_2OH
 CH_2 - $CH(OH)$ - CH_2OH

$$O_2N \longrightarrow N = N \longrightarrow H$$

$$CH_2CH_2OH$$
(30),

$$O_2N$$

$$N = N$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_3$$

$$CH_$$

$$O_2N$$
 $N = N$
 CH_2CH_3
 CH_3
 CH_3

$$O_2N$$

$$O_2N$$

$$O_2N$$

$$O_2N$$

$$O_2N$$

$$O_2CH_2CH_2-O-COCH_3$$

$$CH_2CH_2-O-COCH_3$$

$$O_3(33)$$

$$O_3(33)$$

$$O_2N$$

$$N = N$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$O_2N$$
 $N = N$
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3

$$O_2N \longrightarrow N = N \longrightarrow N$$

$$CH_2CH_2-O-COCH_3$$
(36),

$$O_{2}N \longrightarrow \begin{array}{c} CI \\ \\ \\ \\ CI \end{array} \longrightarrow \begin{array}{c} CH_{2}CH_{2}OH \\ \\ \\ CH_{2}CH_{2}OH \end{array}$$
 (37),

$$O_2N$$
 NO_2
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3

$$H_3CO_2S$$

$$N = N$$

$$CH_2CH_2CN$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$H_3CO$$
 $N = N$
 CH_2CH_2OH
 CH_2CH_3
(40) and

$$O_2N$$
 S
 $N = N$
 $CH_2CH_2-O-COCH_3$
 $CH_2CH_2-O-COCH_3$
 $CH_2CH_2-O-COCH_3$

The dyes of formulae (1) to (41) are known or can be prepared by commonly known methods.

A particularly preferred dye mixture is that, which comprises the dyes of formulae (23) and (41).

A particularly preferred dye mixture is that, which comprises the dyes of formulae (13), (14) and (15).

Another particularly preferred dye mixture is that, which comprises the dyes of formulae (17), (18), (21) and (22).

A particularly preferred dye mixture is also that, which comprises the dyes of formulae (16), (17), (39) and (18).

A particularly preferred dye mixture is also that, which comprises the dyes of formulae (20), (19) and (39).

Also particularly preferred is a dye mixture, which comprises the dyes of formulae (23), (24), (25) and (26).

Another particularly preferred dye mixture is that, which comprises the dyes of formulae (32), (38), (23), (28), (33) and (27).

Also particularly preferred is a dye mixture, which comprises the dyes of formulae (29), (30), (23), (32), (34) and (33).

Another particularly preferred dye mixture is that, which comprises the dyes of formulae (35), (27) and (28).

A particularly preferred dye mixture is also that, which comprises the dyes of formulae (29), (30), (28), (36), (32), (34), (33), (38) and (17).

Another particularly preferred dye mixture is that, which comprises the dyes of formulae (24), (25), (26), (30), (29), (23), (37), (13), (34) and (33).

Also particularly preferred is a dye-mixture, which comprises the dyes of formulae (28), (30), (29), (13), (21), (22), (34), (33), (36), (32) and (38).

A particularly preferred dye mixture is also that, which comprises the dyes of formulae (16), (17), (18) and (40).

Another particularly preferred dye mixture is that, which comprises the dyes of formulae (19), (20) and (40).

A very particularly preferred dye mixture is that, which comprises 5 to 15 parts by weight of the dye of formula (13), 22 to 48 parts by weight of the dye of formula (14), and 12 to 37 parts by weight of the dye of formula (15).

Another very particularly preferred dye mixture is that, which comprises 12 to 39 parts by weight of the dye of formula (18), 5 to 18 parts by weight of the dye of formula (17), 15 to 36 parts by weight of the dye of formula (21), and 2 to 7 parts by weight of the dye of formula (22).

Also very particularly preferred is a dye mixture, which comprises 6 to 23 parts by weight of the dye of formula (18), 7 to 23 parts by weight of the dye of formula (17), 10 to 31 parts by weight of the dye of formula (39), and 6 to 23 parts by weight of the dye of formula (16).

Another very particularly preferred dye mixture is that, which comprises 7 to 22 parts by weight of the dye of formula (20), 12 to 44 parts by weight of the dye of formula (19), and 10 to 34 parts by weight of the dye of formula (39).

Likewise very particularly preferred is a dye mixture, which comprises 9 to 24 parts by weight of the dye of formula (24), 9 to 24 parts by weight of the dye of formula (25), 9 to 24 parts by weight of the dye of formula (26), and 10 to 28 parts by weight of the dye of formula (23).

Also very particularly preferred is a dye mixture, which comprises 4 to 19 parts by weight of the dye of formula (32), 5 to 19 parts by weight of the dye of formula (38), 6 to 21 parts by weight of the dye of formula (23), 3 to 15 parts by weight of the dye of formula (33), 3 to 15 parts by weight of the dye of formula (28), and 5 to 21 parts by weight of the dye of formula (27).

Another very particularly preferred dye mixture is that, which comprises 7 to 25 parts by weight of the dye of formula (29), 8 to 25 parts by weight of the dye of formula (30), 3 to 14 parts by weight of the dye of formula (23), 2 to 12 parts by weight of the dye of formula (32), 1 to 8 parts by weight of the dye of formula (28), 2 to 10 parts by weight of the dye of formula (34), and 1 to 6 parts by weight of the dye of formula (33).

Also very particularly preferred is a dye mixture, which comprises 15 to 54 parts by weight of the dye of formula (35), 10 to 35 parts by weight of the dye of formula (27), and 2 to 11 parts by weight of the dye of formula (28).

Likewise very particularly preferred is a dye mixture, which comprises 8 to 25 parts by weight of the dye of formula (29), 3 to 11 parts by weight of the dye of formula (30), 1 to 8 parts by weight of the dye of formula (28), 3 to 6 parts by weight of the dye of formula (36), 3 to 12 parts by weight of the dye of formula (32), 2 to 9 parts by weight of the dye of formula (34), 3 to 13 parts by weight of the dye of formula (33), 0.5 to 3 parts by weight of the dye of formula (17), and 4 to 13 parts by weight of the dye of formula (38).——

Also very particularly preferred is a dye mixture, which comprises 1.2 to 6 parts by weight of the dye of formula (24), 1.2 to 6 parts by weight of the dye of formula (25), 1.2 to 6 parts by weight of the dye of formula (26), 3 to 13 parts by weight of the dye of formula (30), 4 to 17 parts by weight of the dye of formula (29), 1 to 7 parts by weight of the dye of formula (23), 6 to 19 parts by weight of the dye of formula (37), 4 to 14 parts by weight of the dye of formula (13), 1 to 5 parts by weight of the dye of formula (34), and 1 to 7 parts by weight of the dye of formula (33).

Another very particularly preferred dye mixture is that, which comprises 2 to 9 parts by weight of the dye of formula (28), 2 to 10 parts by weight of the dye of formula (30), 3 to 13 parts by weight of the dye of formula (29), 2 to 9 parts by weight of the dye of formula (13), 2 to 10 parts by weight of the dye of formula (21),

0.3 to 3 parts by weight of the dye of formula (22)

1 to 6 parts by weight of the dye of formula (34),

1 to 7 parts by weight of the dye of formula (33),

2 to 11 parts by weight of the dye of formula (36).

2 to 11 parts by weight of the dye of formula (32), and

2 to 11 parts by weight of the dye of formula (38).

The novel dye mixtures can be used as dyes for dyeing and printing semisynthetic hydrophobic, cellulose acetate-containing fibre materials, in particular textile materials. Textile materials consisting of blended fabrics containing semisynthetic hydrophobic, cellulose acetate-containing textile materials and e.g. viscose or polyamide can also be dyed or printed by means of the dye mixtures of this invention.

Suitable semisynthetic hydrophobic, cellulose acetate-containing textile materials are especially cellulose-2¹/₂acetate_and cellulose triacetate.

The novel compounds are applied to the textile materials by known dyeing processes. Cellulose-2¹/₂acetate, for example, is preferably dyed in the temperature range from about 65 to 95°C and cellulose triacetate in the temperature range from 65 to 130°C, preferably from 90 to 125°C.

The novel dye mixtures do not stain wool and cotton simultaneously present in the dyebath or effect only minor staining (very good resist), so that they can also readily be used for dyeing cellulose acetate/wool and cellulose acetate/cellulose blends.

The novel dye mixtures are suitable for dyeing by the thermosol, pad steam, pad roll and pad jig process and for printing processes.

The cited textile material can be in a very wide range of forms of presentation, such as fibre, thread or nonwoven fabric, or wovens or knitgoods.

It is expedient to convert the novel dye mixtures, before use, into a dye formulation. This is done by milling the dye mixture to an average particle size of 0.1 to 10 microns. Milling can usefully be carried out in the presence of dispersants. Typically, the dried dye mixture is

milled with one or more than one dispersant, or kneaded in paste form with one or more than one dispersant, and thereafter dried under vacuum or by spray drying. Printing pastes and dyebaths can be prepared by adding water to the formulations so obtained. Suitable dispersants are those customarily used for dyeing with disperse dyes, for example the dispersants cited in EP-A-0 280 654.

However, the dyes can also be formulated singly, as described above, and then converted into the corresponding dye formulation by a simple blending process.

The amount of the dispersant(s) present in the dye formulation can range from 0 to 75 % by weight, based on the weight of the dye formulation.

The amount of the dye mixtures in the dye liquor depends on the desired shade. Amounts which have been found to be useful range from 0.01 to 15 % by weight, preferably from 0.02 to 10 % by weight, most preferably from 0.1 to 5 % by weight, based on the weight of the fibre material to be dyed.

The dye liquors can also contain other additives, for example dyeing auxiliaries, wetting agents and defoamers.

The dye liquors can also contain mineral acids, for example sulfuric acid or phosphoric acid, or, preferably, organic acids, for example fumaric acid or acetic acid and/or salts, such as ammonium acetate or sodium sulfates. The acids serve mainly to adjust the pH value of the dye liquors which is preferably from 4 to 7.

The customary thickeners will be used for printing, for example modified or nonmodified natural products, such as alginates, British gum, gum arabic, crystal gum, carob bean gum, tragacanth, carboxymethylcellulose, hydroxyethylcellulose, starch or synthetic products, for example polyacrylamides, polyacrylic acid or copolymers thereof, or polyvinyl alcohols.

The cited materials, especially the cellulose-2¹/₂acetate and cellulose triacetate, are dyed with the novel dye mixtures in level shades having very good end use properties, in particular good fastness to light, thermofixation, pleating, chlorinating and good fastness to wet treatments, such as fastness to water, sweat and washing; and the dyeings are also distin-

guished by excellent fastness to rubbing. To be highlighted in particular is the good dye yield and good build-up of the novel dye mixtures.

The novel dye mixtures can also be readily used for obtaining mixed shades in conjunction with other dyes.

In addition, the novel dye mixtures are also very suitable for dyeing hydrophobic textile material from supercritical CO₂.

Further objects of the invention are the aforementioned use of the dye mixtures of this invention and a process for dyeing or printing semisynthetic hydrophobic, cellulose acetate-containing fibre material, in particular textile material consisting of cellulose-2½ acetate and cellulose triacetate, which comprises applying the novel dye mixture to said material or incorporating it therein. Other substrates which can be treated by the process of this invention and preferred process conditions have been discussed above in the more detailed description of the use of the novel dye mixtures. The definitions and preferred meanings mentioned for the dyes and dye mixtures apply to the dye mixtures used according to this invention.

This invention also relates to the semisynthetic, cellulose acetate-containing hydrophobic fibre material, preferably to textile material consisting of cellulose-2¹/₂acetate and cellulose triacetate, which is dyed or printed by the cited process.

This invention is illustrated in more detail by the following Examples. Parts and percentages are by weight, unless otherwise stated. Temperatures are given in degrees Celsius. The relationship between parts by weight and parts by volume is the same as that of the gramme and the cubic centimetre.

Example 1:

In an AHIBA laboratory dyeing apparatus, a 10 g piece of a textile material consisting of cellulose-2¹/₂acetate is dipped at 40°C into a liquor containing (Rm)

0.5 g/l of a commercially available penetration accelerator (°Cibaflow/CIR),

0.3 g/l of a commercially available dispersant (°Albatex/PON conc.), and

0.2 g of a dye formulation (A) containing

0.0122 g of the dye of formula

$$O = \begin{array}{c} CH_3 \\ O = N \\ OH \end{array}$$
 OH NO₂ (13),

0.0484 g of the dye of formula

0.031 g of the dye of formula

$$H_3C-CO-NH$$
 $N=N$ (15) and

0.1084 g of a commercially available dispersant (*Dispergator CC), which is adjusted to pH 6.0 with 80% fumaric acid. The liquor is then heated to 90°C at a heating rate of 1-2° C/minute and the textile material is dyed at this temperature for 60 minutes.

The liquor is then cooled to 40° C and the dyed textile material is washed with warm and cold water and then dried.

This gives a brilliant golden yellow dyeing having excellent end use fastness properties.

Examples 2 to 10:

The procedure of Example 1 is repeated, but replacing the 0.2 g of the dye formulation (A) used in that Example with the dye formulations (B) to (K) listed in Table 1 in the amounts stated there, which also yields dyeings having very good end use fastness properties.

Table 1:

Dye formulation	Composition of the dye formulation		Amount	Chada
(B)	14.0.% by weight of the dye of formul	2 (18)		Shade
	6.9 % by weight of the dye of formula	• • •	0.1 g	scarlet
	16.83 % by weight of the dye of formu			
	2.97 % by weight of the dye of formula			
	59.3 % by weight of a commercially a			
	dispersant	valiable		
(C)				
(0)	8.0 % by weight of the dye of formula	• • • •	0.1 g	red
	9.2 % by weight of the dye of formula			
	12.0 % by weight of the dye of formula			
	8.0 % by weight of the dye of formula			
	62.8 % by weight of a commercially a	railable		
	dispersant	_		
(D)	8.3 % by weight of the dye of formula	•	0.1 g	pink
	15.2 % by weight of the dye of formula	·		
	12.0 % by weight of the dye of formula			ĺ
	64.5 % by weight of a commercially av	ailable	-	
	dispersant			
(E)	9.93 % by weight of the dye of formula	(24),	0.17 g	blue
	9.93 % by weight of the dye of formula	(25),	(), g	2,00
	9.93 % by weight of the dye of formula	(26),		
	11.8 % by weight of the dye of formula	(23), and		
	58.41 % by weight of a commercially a			
	dispersant			
(F)	5.9 % by weight of the dye of formula	32).	0.18 g	blue
	6.5 % by weight of the dye of formula		0.18 g	Dide
	7.1 % by weight of the dye of formula			
	4.2 % by weight of the dye of formula			
	4.5 % by weight of the dye of formula			
	6.3 % by weight of the dye of formula			
	65.5 % by weight of a commercially ava			
	dispersant			
	9.0 % by weight of the dye of formula (2	99)	0.45	
•	9.6 % by weight of the dye of formula (3	• • • • • • • • • • • • • • • • • • • •	0.45 g	dark blue
I I	4.7 % by weight of the dye of formula (2	• •	ļ	
1	3.6 % by weight of the dye of formula (3	• •		
	1.8 % by weight of the dye of formula (2			
	2.9 % by weight of the dye of formula (3			
	1.7 % by weight of the dye of formula (3	* .		
	66.7 % by weight of a commercially ava	•	·	
· · · · · · · · · · · · · · · · · · ·	dispersant	IIaDle		
		i	j	

H)	17.7 % by weight of the dye of formula (35),	0.15 g	turquoise
	12.6 % by weight of the dye of formula (27),		
	3.2 % by weight of the dye of formula (28), and		
	66.5 % by weight of a commercially available		
	dispersant		
1)	9.1 % by weight of the dye of formula (29),	0.45 g	navy
.,	4.2 % by weight of the dye of formula (30),		
	3.2 % by weight of the dye of formula (28),		
	2.3 % by weight of the dye of formula (36),		
	4.5 % by weight of the dye of formula (32),		
	3.8 % by weight of the dye of formula (34),		
	4.5 % by weight of the dye of formula (33),		
	5.0 % by weight of the dye of formula (38),		
	0.7 % by weight of the dye of formula (17), and		
	62.7 % by weight of a commercially available		
	dispersant		
(1)	1.4 % by weight of the dye of formula (24),	0.45 g	black
(J)	1.4 % by weight of the dye of formula (25),		
	1.4 % by weight of the dye of formula (26),		
	4.6 % by weight of the dye of formula (30),		
	6.0 % by weight of the dye of formula (29),		
	1.8 % by weight of the dye of formula (23),		
	7.4 % by weight of the dye of formula (37),		
	5.1 % by weight of the dye of formula (13),		
	1.5 % by weight of the dye of formula (34),		
	1.7 % by weight of the dye of formula (33), and		
	67.7 % by weight of a commercially available		
	dispersant		
//	2.7 % by weight of the dye of formula (28),	0.5 g	black
(K)	3.2 % by weight of the dye of formula (30),		
	4.1 % by weight of the dye of formula (29),		·
	3.0 % by weight of the dye of formula (13),		
	2.72 % by weight of the dye of formula (21),		
	0.48 % by weight of the dye of formula (22).		
	1.5 % by weight of the dye of formula (34),		1
	1.6 % by weight of the dye of formula (33),		
	3.5 % by weight of the dye of formula (36),		
	3.4 % by weight of the dye of formula (32).		
	3.7 % by weight of the dye of formula (38), and		
	70.1 % by weight of a commercially available		
	dispersant		

What is claimed is

1. A dye mixture, which comprises at least two dyes of formula

$$O_{2}N \longrightarrow \begin{array}{c} R_{1} \\ R_{2} \\ R_{2} \end{array} \qquad \begin{array}{c} R_{3} \\ R_{6} \end{array} \qquad (1),$$

wherein

 R_1 is hydrogen, halogen, nitro or cyano, R_2 is hydrogen, halogen, nitro or cyano, R_3 is hydrogen, halogen or C_1 - C_4 alkoxy, R_4 is hydrogen, C_1 - C_4 alkylcarbonylamino, R_5 is hydrogen; C_1 - C_4 alkyl which is unsubstituted or substituted by hydroxy, cyano, C_1 - C_4 alkylcarbonyloxy, R_6 is C_1 - C_4 alkyl which is unsubstituted or substituted by hydroxy, cyano, C_1 - C_4 alkylcarbonyloxy, C_1 - C_4 alkoxycarbonyl,

$$NC$$
 R_7
 $N = N$
 $N = N$
 R_8
 OH
 NO_2
 (2)

wherein

 R_7 is C_1 - C_4 alkyl, R_8 is C_1 - C_4 alkyl, and Hal is halogen,

$$A$$
 NH SO_2 - NH B $(3),$

wherein the rings A and B may be further substituted,

BNSDOCID: <GB___2348150A__I_>

$$R_g$$
-CO-NH- C $N = N$ D (4),

wherein

 R_9 is C_1 - C_4 alkyl and the rings C and D may be further substituted,

$$R_{30}$$
 $N = N$
 R_{10}
 R_{11}
 R_{11}
 R_{11}

wherein

 R_{10} is unsubstituted or hydroxy- or cyano-substituted C_1 - C_4 alkyl, R_{11} is unsubstituted or -O-COR₁₂-substituted C_1 - C_4 alkyl, wherein R_{12} is C_1 - C_4 alkyl, R_{29} is nitro, C_1 - C_4 alkoxy or -SO₂CH₃, and R_{30} is hydrogen or C_1 - C_4 alkyl,

wherein

 R_{13} is $C_1\text{-}C_4$ alkyl, R_{14} is $C_1\text{-}C_4$ alkyl, R_{15} is $C_1\text{-}C_4$ alkyl, and R_{16} is $C_1\text{-}C_4$ alkyl or -NHCOR $_{17}$, wherein R_{17} is $C_1\text{-}C_4$ alkyl,

$$N - S$$
 $N = N - N$
 R_{18}
 R_{19}
 R_{20}
 R_{19}
 R_{20}
 R_{20}

wherein

 R_{18} is unsubstituted or hydroxy- or cyano-substituted C_1 - C_4 alkyl, R_{19} is unsubstituted or hydroxy- or C_1 - C_4 alkoxycarbonyl-substituted C_1 - C_4 alkyl, and R_{20} is hydrogen, C_1 - C_4 alkyl, NHCOR₁₇, R_{17} is C_1 - C_4 alkyl,

wherein R21 is halogen,

$$O_2N \longrightarrow R_{22}$$
 $N = N \longrightarrow R_{24}$
 R_{23}
 R_{23}
 R_{25}
(11)

wherein

 R_{22} is cyano, nitro or halogen, R_{23} is halogen, R_{24} s unsubstituted or hydroxy-substituted C_1 - C_4 alkyl, and R_{25} is unsubstituted or hydroxy-substituted C_1 - C_4 alkyl, and the naphthyl ring E may be further substituted,

and

$$O_2N$$
 S
 $N = N$
 R_{26}
 R_{28}
 R_{28}
 R_{28}
 R_{28}

wherein

 R_{26} is C_1 - C_4 alkyl or the radical NHCOR₁₇, wherein R_{17} is C_1 - C_4 alkyl, R_{27} is C_1 - C_4 alkyl or C_1 - C_4 alkyl or C_1 - C_4 alkyl or C_1 - C_4 alkyl.

- 2. A dye mixture according to claim 1, wherein in formula (12) R_{27} is C_1 - C_4 alkyl and R_{28} is C_1 - C_4 alkyl, and in formula (5) R_{29} is nitro or the radical -SO₂CH₃.
- 3. A dye mixture according to either claim 1 or claim 2, which comprises the dyes of formulae

$$NH$$
 $SO_2 - NH$ (14) and

$$H_3C-CO-NH$$
 $N=N$ (15).

$$O_2N$$
 $= N$ $CH_2CH_2-O-COCH_3$ (17), $CH_2CH_2-O-COCH_3$

$$O_2N \longrightarrow N = N \longrightarrow N = N \longrightarrow CH_2CH_3$$

$$CH_2CH_2CN$$
(18),

$$O_2N$$
 $= N$ $CH_2CH_2-O-COCH_3$ (21) and CH_2CH_2CN

$$O_{2}N = N - CH_{2}CH_{2}CN$$

$$CH_{2}CH_{2}-O-COCH_{3}$$
(16),

$$CH_3$$
 CH_2CH_2CN
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3

$$O_{2}N \longrightarrow N = N \longrightarrow N$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{2}CN$$

$$CH_{2}CH_{2}CN$$

$$(18).$$

$$H_3CH_2CH_2C$$

$$N = N - N$$

$$N = N$$

$$N = N - N$$

$$N = N$$

$$N$$

$$O_2N$$
 $= N$ $= N$ CI CH_2 - $CH(CH_3)$ - OH O_2N $= N$ N $= N$ N $= N$ $=$

$$H_3CO_2S$$

$$CH_3$$

$$CH_2CH_2CN$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$N = N$$

$$CH_2CH_3$$

$$CH_2CH_2COOCH_3$$

$$NO_2$$
(23),

$$N = N$$

$$CH_2CH_3$$

$$CH_2CH_2COOCH_3$$

$$NO_2$$
(23),

$$O_{2}N \longrightarrow N = N \longrightarrow N$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$O_2N$$
 $N = N$
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_3CH_3
 CH_3
 CH_3CH_3
 CH_3
 CH_3

$$O_{2}N \longrightarrow \begin{array}{c} OCH_{3} \\ CH_{2}CH_{2}\text{-O-COCH}_{3} \\ CH_{2}CH_{2}\text{-O-COCH}_{3} \\ \end{array}$$

$$O_{2}N \longrightarrow N = N \longrightarrow N$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$N = N$$

$$CH_2CH_3$$

$$CH_2CH_2COOCH_3$$

$$NO_2$$
(23),

$$O_{2}N \longrightarrow \begin{array}{c} NO_{2} & OCH_{3} \\ CH_{2}CH_{3} \\ CH_{2}CH_{3} \\ CH_{2}CH_{3} \\ \end{array}$$
(28),

$$O_{2}N \longrightarrow \begin{matrix} NO_{2} \\ N = N \end{matrix} \longrightarrow \begin{matrix} H \\ CH_{2}CH_{2}OH \end{matrix}$$
 (30),

$$O_{2}N \longrightarrow \begin{array}{c} CN \\ N = N \longrightarrow \\ CN \\ NHCOCH_{3} \end{array}$$
(32),

$$O_{2}N \longrightarrow \begin{array}{c} OCH_{3} \\ CH_{2}CH_{2}-O-COCH_{3} \\ CH_{2}CH_{2}-O-COCH_{3} \\ \end{array}$$
 (33) and
$$CH_{2}CH_{2}-O-COCH_{3}$$

$$O_{2}N \longrightarrow N = N \longrightarrow N$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$O_{2}N \longrightarrow O_{2}$$

$$O_{2}N \longrightarrow O_{2}$$

$$O_{3}N \longrightarrow O_{3}$$

$$O_{3}N \longrightarrow O_{3}$$

$$O_{4}N \longrightarrow O_{4}$$

$$O_{5}N \longrightarrow O_{5}$$

$$O_{7}N \longrightarrow O_{7}$$

$$O_{8}N \longrightarrow O_{8}$$

$$O_{8}N$$

$$N = N$$

$$CH_2CH_2OH$$

$$CH_2CH_2OH$$

$$CH_2CH_2OH$$

$$NO_2$$

$$(27),$$

$$O_2N$$
 O_2
 OCH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 OH_2CH_3
 OH_3
 OH_3

$$O_2N$$
 S
 $N = N$
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3

$$O_2N \longrightarrow N = N \longrightarrow N = N \longrightarrow CH_2CH_2-O-COCH_3$$

$$CH_2CH_2-O-COCH_3$$

$$CH_2CH_2-O-COCH_3$$

$$O_2N$$

$$N = N$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_3$$

$$CH_$$

$$O_2N - V = N - V - CH_2-CH(OH)-CH_2OH$$
 $CH_2-CH(OH)-CH_2OH$
 $CH_2-CH(OH)-CH_2OH$
 $CH_2-CH(OH)-CH_2OH$

$$O_{2}N - \bigvee_{CI} N = N - \bigvee_{CH_{2}CH_{2}OH} H$$
(30),

$$O_2N$$
 $N = N$
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3

$$O_{2}N \longrightarrow \begin{array}{c} OCH_{3} \\ CH_{2}CH_{2}\text{-O-COCH}_{3} \\ CH_{2}CH_{2}\text{-O-COCH}_{3} \\ \end{array}$$

$$CH_{2}CH_{2}\text{-O-COCH}_{3}$$

$$CH_{2}CH_{2}\text{-O-COCH}_{3}$$

$$O_2N$$

$$N = N$$

$$N = N$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$O_2N$$
 $N = N$ CH_2CH_2CN (36) and CH_2CH_2 -O-COCH₃

$$O_{2}N \longrightarrow N = N \longrightarrow N + CH_{2}CH_{3}$$

$$CN \qquad NHCOCH_{3}$$

$$(38).$$

$$O \longrightarrow \begin{array}{c} CH_3 \\ O \longrightarrow \\ N \longrightarrow \\ OH \end{array} \longrightarrow \begin{array}{c} CI \\ NO_2 \end{array}$$

$$(13),$$

$$N = N$$

$$CH_2CH_3$$

$$CH_2CH_2COOCH_3$$

$$NO_2$$

$$(23),$$

$$O_2N$$

$$O_2 = N$$

$$CH_2-CH(OH)-CH_2OH$$

$$CH_2-CH(OH)-CH_2OH$$

$$CH_2-CH(OH)-CH_2OH$$

$$O_{2}N \longrightarrow \begin{array}{c} NO_{2} \\ N = N \end{array} \longrightarrow \begin{array}{c} H \\ N \\ CH_{2}CH_{2}OH \end{array}$$
 (30),

$$O_{2}N \longrightarrow OCH_{3}$$

$$CH_{2}CH_{2}-O-COCH_{3}$$

$$CH_{2}CH_{2}-O-COCH_{3}$$

$$CH_{2}CH_{2}-O-COCH_{3}$$

$$O_{2}N \longrightarrow OCH_{3}$$

$$O_{3}N \longrightarrow OCH_{3}$$

$$O_{3}N \longrightarrow OCH_{3}$$

$$O_{4}N \longrightarrow OCH_{3}$$

$$O_{5}N \longrightarrow OCH_{3}$$

$$O_{7}N \longrightarrow OCH_{3}$$

$$O_{8}N \longrightarrow OCH_{3}$$

$$OCH_{3}N \longrightarrow OCH_{3}$$

$$OCH_{4}N \longrightarrow OCH_{4}$$

$$OCH_{4}N \longrightarrow OC$$

$$O_2N$$
 NO_2
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3
 CH_3
 CH_3

$$O_{2}N \longrightarrow \begin{array}{c} CI \\ CH_{2}CH_{2}OH \\ CH_{2}CH_{2}OH \end{array}$$

$$CH_{2}CH_{2}OH$$

$$CH_{2}CH_{2}OH$$

$$CH_{2}CH_{2}OH$$

$$O_{2}N \longrightarrow \begin{array}{c} CI \\ N = N \end{array} \longrightarrow \begin{array}{c} CH_{2}CH_{2}-O-COCH_{3} \\ CH_{2}CH_{2}CN \end{array} \tag{21},$$

$$O_2N \longrightarrow N = N \longrightarrow N$$

$$CH_2CH_2OH$$

$$CH_2CH_2CN$$

$$CH_2CH_2CN$$

$$CH_2CH_2CN$$

$$O_2N$$

$$O_2 \qquad OCH_3 \qquad CH_2CH_3 \qquad (28),$$

$$CH_2CH_3 \qquad OCH_3 \qquad (28),$$

$$CH_2CH_3 \qquad OCH_3 \qquad (28),$$

$$O_2N$$
 O_2 CH_2 - $CH(OH)$ - CH_2OH CH_2 - $CH(OH)$ - CH_2 - $CH(O$

$$O_2N$$
 CN
 CH_2CH_3
 CH_3
 CH_2CH_3
 CH_3
 $CH_$

$$O_{2}N \longrightarrow \begin{array}{c} OCH_{3} \\ CH_{2}CH_{2}\text{-O-COCH}_{3} \\ CH_{2}CH_{2}\text{-O-COCH}_{3} \\ \end{array}$$

$$CH_{2}CH_{2}\text{-O-COCH}_{3}$$

$$OCH_{3}$$

$$OCH_{2}CH_{2}\text{-O-COCH}_{3}$$

$$OCH_{3}$$

$$OCH_{2}CH_{2}\text{-O-COCH}_{3}$$

$$O_2N$$

$$N = N$$

$$N = N$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$CH_2CH_3$$

$$O_{2}N \longrightarrow N = N \longrightarrow N$$

$$CH_{2}CH_{2}-O-COCH_{3}$$
(36) and

$$O_{2}N \longrightarrow N = N \longrightarrow N$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

$$CH_{2}CH_{3}$$

- 14. Use of the dye mixture according to either claim 1 or claim 2 for dyeing or printing cellulose acetate-containing fibre materials.
- 15. A process for dyeing or printing cellulose acetate-containing fibre materials, wherein a dye mixture according to either claim 1 or claim 2 is applied to, or incorporated into, these materials.
- 16. A process according to claim 15, wherein the cellulose acetate-containing fibre material is cellulose-2¹/₂acetate or cellulose triacetate.
- 17. The fibre material dyed by the process according to either claim 14 or claim 15.

Application No:

GB 0001184.1

Claims searched: 1-17

Examiner:

Stephen Quick

Date of search:

22 March 2000

Patents Act 1977 Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK Cl (Ed.R):

Int Cl (Ed.7): C09B 67/22

Other:

Documents considered to be relevant:

Category	Identity of document and relevant passage		Relevant to claims
X	EP 0827988 A1	(DYSTAR TEXT LFARBEN), see especially examples 1 & 2, and page 8, line 40	l at least
Х	EP 0802239 A1	(NIPPON KAYAKU), see especially examples 1-3, 6 & 7, comparative examples 1 & 3-5, and page 7, lines 3-4	l at least
X	EP 0735110 A1	(DYSTAR JAPAN), see especially examples 2 & 3, and page 8, line 33	1 at least
Х	EP 0684290 A2	(HOECHST MIT\$UBISHI KASEI), see especially examples 6, 7-1, 7-2 & 7-6	
X	WO 97/21773 A1	(BASF), see especially examples 1-6 & 8, and abstract, last two lines	1 at least
X	WO 97/21772 A1	(BASF), see especially examples 4, 6-8 & 10, and abstract, penultimate line	l at least
X	WO 96/16129 A1	(BASF), see especially examples 3 & 4, and page 10, line 2	1 at least

Document indicating lack of novelty or inventive step Document indicating lack of inventive step if combined with

one or more other documents of same category.

Member of the same patent family

Discument indicating technological background and/or state of the art.

Document published on or after the declared priority date but before the filing date of this invention.

Patent document published on or after, but with priority date earlier than, the filing date of this application.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

D BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.