4.2. ESERCIZI 83

4.2 Esercizi

Esercizio 4.1 Sia $G = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{Z} \}$. Dimostrare che:

1. $G < GL_3(\mathbb{Q});$

2.
$$Z(G) = \begin{pmatrix} 1 & 0 & b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{Z}\};$$

3.
$$N = \begin{pmatrix} 1 & 2a & 2b \\ 0 & 1 & 2c \\ 0 & 0 & 1 \end{pmatrix} \mid a, b, c \in \mathbb{Z} \}$$
 è un sottogruppo normale di G .

Esercizio 4.2 Sull'insieme $G=\mathbb{Z}_2\times\{-1,1\}$ si definisca un'operazione binaria ponendo per ogni $(x,u),(y,v)\in G$

$$(x,u)\cdot(y,v)=(x+uy,uv).$$

- 1. Si dimostri che *G* con questa operazione é un gruppo non abeliano;
- 2. Si trovi un sottogruppo di *G* che non é normale.

Esercizio 4.3 Sia $n \in \mathbb{N}_+$ e p un primo. Si calcolino le cardinalitá di $Z(GL_n(\mathbb{Z}_p))$ e $SL_n(\mathbb{Z}_p)$.

Esercizio 4.4 Sia G un gruppo finito e H un suo sottogruppo di indice p, con p primo. Supponiamo che esista $x \in G \setminus H$ tale che xH = Hx. Dimostrare che H é normale in G. (Suggerimento: si consideri il gruppo $K = \langle x, H \rangle$, si usi l'Esercizio 3.10 per dedurre che K = G e si dimostri che H é normale in K).

Esercizio 4.5 Sia G un gruppo di ordine |G|=2n, $n \geq 2$. Supponiamo che G abbia esattamente n elementi di ordine 2 e che i restanti n elementi formino un gruppo H. Dimostrare che H é un sottogruppo abeliano e normale di G di ordine dispari. (Suggerimento: per dimostrare che H é abeliano, si fissi $s \in G$ di ordine 2, si osservi che sh ha ordine 2 per ogni $h \in H$).

Esercizio 4.6 Sia Z(G) il centro di un gruppo G e $H \leq G$. Si dimostri che

$$Z(G) \subseteq G \cap Z(H)$$

e che l'inclusione puó essere stretta.

Esercizio 4.7 Dimostrare che o(xy) = o(yx) per ogni x, y in un gruppo G. Inoltre se x é l'unico elemento di G che ha ordine k allora $x \in Z(G)$.

Esercizio 4.8 Dimostrare che il centro del gruppo simmetrico S_n é banale per $n \geq 3$. (Suggerimento: sia $f \in S_n$, $f \neq id$. Allora esistono $i, j \in \{1, 2, ..., n\}$ tali che $i \neq j$ e f(i) = j. Sia k = f(j). Allora $j \neq k$. Siccome $n \geq 3$ esiste $l \neq j$ e $l \neq k$ e possiamo scegliere la trasposizione $\tau = (jl)$. Allora $(f \circ \tau)(j) = f(l) \neq f(j) = (\tau \circ f)(j)$.

Esercizio 4.9 Dimostrare che il centro del gruppo alterno A_n é banale per $n \ge 4$. (Suggerimento: sia $f \in A_n$, $f \ne id$. Allora esistono $i, j \in \{1, 2, ..., n\}$ tali che $i \ne j$ e f(i) = j. Siccome $n \ge 4$ esistono $k, l \in \{1, 2, ..., n\}$, distinti e diversi da i e j. Allora $(f \circ (jkl))(i) = f(i) = j \ne k = ((jkl) \circ f)(i)$.

Esercizio 4.10 Sia $D_n = \{1, r, \dots, r^{n-1}, rs, \dots, r^{n-1}s\}$ il gruppo diedrale, $n \ge 3$. Dimostrare che $Z(D_n) = \{1\}$ se n é dispari e $Z(D_n) = \{1, r^{\frac{n}{2}}\}$ se n é pari. (Suggerimento: mostrare preliminarmente che se $x \in Z(D_n)$ allora $x = r^k$ e dedurre che $r^{2k} = \mathrm{id}$).