Цель работы:

- Изучить методы построения логических функций в совершенной дизъюнктивной нормальной форме (СДНФ) и совершенной конъюнктивной нормальной форме (СКНФ).
- Научиться восстанавливать таблицы истинности для логических функций от четырёх переменных на основе 16-теричных значений.
 - Освоить запись и анализ логических функций в форме СДНФ и СКНФ.
- Применить полученные знания для построения комбинационных схем с использованием СДНФ и СКНФ в цифровых системах.

Задание №1. Восстановите таблицу истинности для заданной по варианту логической функции на основе 16-теричного представления.

Исходное выражение: $F(a, b, c, d) = 9E83_{16}$

Переведём значение функции в двоичную систему счисления:

 $9E83_{16} = 1001 1110 1000 0011_2$

Получаем следующую таблицу истинности:

а	b	С	d	F(a, b, c, d)	
0	0	0	0	1	
0	0	0	1	0	
0	0	1	0	0	
0	0	1	1	1	
0	1	0	0	1	
0	1	0	1	1	
0	1	1	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	0	
1	1	0	0	0	
1	1	0	1	0	
1	1	1	0	1	
1	1	1	1	1	

Задание №2. Постройте формулы СДНФ и СКНФ для заданной логической функции на основании таблицы истинности.

Запишем формулу СДНФ. Рассмотрим строки таблицы, на которых функция принимает значение 1, и запишем для каждой из них конъюнкции:

- $\bar{a} \wedge \bar{b} \wedge \bar{c} \wedge \bar{d}$
- $\bar{a} \wedge \bar{b} \wedge c \wedge d$
- $\bar{a} \wedge b \wedge \bar{c} \wedge \bar{d}$
- $a \wedge \overline{b} \wedge c \wedge \overline{d}$
- $\bar{a} \wedge b \wedge c \wedge \bar{d}$
- $a \wedge \bar{b} \wedge \bar{c} \wedge \bar{d}$
- $a \wedge b \wedge c \wedge \bar{d}$
- $a \wedge b \wedge c \wedge d$

Объединим все конъюнкции через дизъюнкцию, чтобы получить формулу СДНФ: $F_{\text{СДН}\Phi} = (\bar{a} \land \bar{b} \land \bar{c} \land \bar{d}) \lor (\bar{a} \land \bar{b} \land c \land d) \lor (\bar{a} \land b \land \bar{c} \land \bar{d}) \lor (a \land \bar{b} \land c \land \bar{d}) \lor (\bar{a} \land b \land c \land \bar{d}) \lor (a \land b \land c \land \bar{d}) \lor (a \land b \land c \land \bar{d})$

Запишем формулу СКНФ. Рассмотрим строки таблицы, на которых функция принимает значение 0, и запишем для каждой из них дизъюнкции:

- $\bar{a} \wedge \bar{b} \wedge \bar{c} \wedge d$
- $\bar{a} \wedge \bar{b} \wedge c \wedge \bar{d}$
- $\bar{a} \wedge b \wedge c \wedge d$
- $a \wedge \overline{b} \wedge \overline{c} \wedge d$
- $a \wedge \overline{b} \wedge c \wedge \overline{d}$
- $a \wedge \overline{b} \wedge c \wedge d$
- $a \wedge b \wedge \bar{c} \wedge \bar{d}$
- $a \wedge b \wedge \bar{c} \wedge d$

Объединим все дизъюнкции через конъюнкцию, чтобы получить формулу СКНФ:

• $F_{\text{CKH}\Phi} = (\bar{a} \wedge \bar{b} \wedge \bar{c} \wedge d) \vee (\bar{a} \wedge \bar{b} \wedge c \wedge \bar{d}) \vee (\bar{a} \wedge b \wedge c \wedge d) \vee (a \wedge \bar{b} \wedge \bar{c} \wedge d) \vee (a \wedge \bar{b} \wedge c \wedge \bar{d}) \vee (a \wedge \bar{b} \wedge c \wedge \bar{d}) \vee (a \wedge b \wedge \bar{c} \wedge \bar{d}) \vee (a \wedge b \wedge \bar{c} \wedge \bar{d})$

Задание №3. Реализуйте таблицу истинности и построение логической схемы. Для этого введите таблицу истинности вашей логической функции в Excel, используя функции AND (И), OR (ИЛИ) и NOT (НЕ), постройте логическую схему для реализации вашей функции в форме СДНФ. Постройте логическую схему для реализации вашей функции в форме СКНФ. Проверьте корректность работы схемы, заполнив результаты и сравнив их с исходными данными таблицы истинности.

a	b	С	d	F(a, b, c, d)	СДНФ	СКНФ
0	0	0	0	1	1	1
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	1	1	1
0	1	0	0	1	1	1
0	1	0	1	1	1	1
0	1	1	0	1	1	1
0	1	1	1	0	0	0
1	0	0	0	1	1	1
1	0	0	1	0	0	0
1	0	1	0	0	0	0
1	0	1	1	0	0	0
1	1	0	0	0	0	0
1	1	0	1	0	0	0
1	1	1	0	1	1	1
1	1	1	1	1	1	1

Построим логическую схему функции в форме СДНФ:

Построим логическую схему функции в форме СКНФ:

Вывод: в результате работы были изучены способы построения СКНФ и СДНФ.