DMRG

一、文件说明

- 1) Sub180221.py: 老师提供的张量运算文件;
- 2) Simple_dmrg.py: 课件上提到的传统 DMRG 算法实现,原文件计算 Heisenberg 模型。修改了其中的哈密顿算符,可以计算 Ising 模型的能量;
- 3) Exact_Diagonalization.py: 使用矩阵直积表示 Ising 模型哈密顿算符,精确对角化求解基态能量、基态波函数,并在此基础上计算每一格点上的<Sx>与<Sz>;
- 4) MPS_OneSite.py: 老师提供的用矩阵乘积态方式实现的 DMRG 算法,原文件计算 Heisenberg 模型。修改了其中哈密顿量的矩阵乘积算符,可以计算 Ising 模型基态能量、基态波函数,并在此基础上实现了计算每一格点上<Sx>与<Sz>值的功能;
- 5) MPS_TwoSite.py: 在 MPS_OneSite.py 基础上,将单点优化改写为两点优化。在原有的功能基础上增加了在扫描优化时求纠缠熵的功能。

纠缠熵求解:

$$\begin{split} &T_1*T_2=T_{mix}\,;\\ &H_{eff}*T_{mix}=E*T_{mix};\\ &SVD(T_{mix})=T_1,s,T_2;\\ &S=&-\sum_{\alpha}s_{\alpha}^2*~\ln s_{\alpha}^2; \end{split}$$

二、结果说明

1、基态能量对比

Energy (g=	:1)	Ns = 10	Ns = 16	Ns = 20	
Sinple_dmrg		-1.238149	-1.251024	-1.255390	
MPS_OneSite	Dmax=3	-1.237926	-1.250530	-1.254751	
	Dmax=4	-1.238148	-1.251018	-1.255379	
MPS_TwoSite	Dmax=3	-1.237926	-1.250530	-1.254750	
	Dmax=4	-1.238148	-1.251018	-1.255378	
Exact_Diagonalization		-1.238149	\	\	

固定 g=1,计算不同 Ns 情况下的基态能量。可以看出四种不同方法的结果几乎完全相同,侧面证明了四种方法的正确性。同时,对比 Dmax=3 与 Dmax=4 两种情况,发现 Dmax增加确实能有效地增加 MPS 方法的计算精度。而 Sinple_dmrg 中的近似相当于 Dmax=40,在 Ns=10 的条件下与精确对角化能量相同。对更大的两个体系,没有使用对称性优化的精确对角化短时间无法得到结果。

2、各物理量随 g 的变化趋势

以下各图中 site1 表示一维链两端的格点, site2 表示其它一维链中间的格点。

1) 精确对角化方法的计算结果:

2) MPS_DMRG 单点优化的结果:

3) MPS_DMRG 两点优化的结果:

4) 异常结果

MPS_DMRG_TwoSite, Dmax = 4

对比各方法的计算结果,发现<Sz>的计算结果不容易收敛。由精确对角化结果可知,<Sz>仅在 $g\approx 0$ 时为 1,其余情况为 0。而在 DMRG 算法的结果中,<Sz>的值需要用较大的 Dmax 值,即更高精度的近似才能接近精确对角化结果。

在 MPS_DMRG_TwoSite , Dmax = 4 的条件下计算,有时出现如图的异常情况,暂时还不清楚原因。

3、纠缠熵结果

L->R 时, S[i]是格点 i 与格点 i+1 之间的纠缠熵;

R->L 时, S[i]是格点 i 与格点 i-1 之间的纠缠熵;

S	1	2	3	4	5	6	7	8	9	10
L->R	0.2252	0.1858	0.3243	0.2593	0.2789	0.2277	0.3584	0.3283	0.2647	None
R->L	None	0.2648	0.3287	0.3593	0.3743	0.3787	0.3737	0.3584	0.3283	0.2647
L->R	0.2648	0.3287	0.3593	0.3744	0.3790	0.3744	0.3593	0.3287	0.2649	None
R->L	None	0.2649	0.3287	0.3593	0.3744	0.3790	0.3744	0.3593	0.3287	0.2649

上表结果为 Ns = 10, Dmax = 4, g=1 时的计算结果,可以发现在扫描过程中纠缠熵逐渐增大。