- 1. İki farklı ortamın kesişimi xy düzlemi üzerindedir. z<0 olan 1. bölgenin bağıl manyetik geçirgenliği $\mu_{r1}=6$, ikinci ortamın bağıl manyetik geçirgenliği ise $\mu_{r2}=4$ olarak verilmiştir. Ortamların kesişimi üzerinde $\frac{1}{\mu_0}\vec{e}_y$ [A/m] akım yoğunluğu bulunmaktadır. İkinci bölgede $\vec{B}_2=5\vec{e}_x+8\vec{e}_z$ olduğu bilindiğine göre \vec{B}_1 ve \vec{H}_1 vektörlerini bulunuz.
- 2. Yandaki şekilde verilen koaksiyel kablonun $\rho < a$ bölgesinde sayfa dışına doğru, $b < \rho < c$ arasındaki bölgede sayfa içine doğru düzgün şekilde dağılmış I=1 A akımı akmaktadır. Bütün bölgelerdeki manyetik alanı bularak yarıçapa bağlı olarak grafik şeklinde çiziniz.

- 3. Aşağıdaki şekilde verilen hava aralıklı manyetik devrenin merkezdeki bacağı üzerine sarılan N=200 sarımlık tel üzerinden I=3 A değerinde akım akmaktadır. Çekirdeğin enine kesit alanı $S=10^{-3}~{\rm m}^2$ olup, bağıl manyetik geçirgenliği $\mu_r=5000$ olarak verilmiştir.
 - (a) Her bir bacaktaki manyetik akıyı hesaplayınız.
 - (b) Hava aralığı ile çekirdek arasındaki her bir bacakta manyetik alan şiddetini hesaplayınız.

4. Şekildeki devrede A ve B noktaları arasındaki uzaklık ℓ kadardır ve bu noktalar arasındaki tel serbestçe hareket edebilmektedir. Manyetik endüksiyon şiddeti ise uzayın her konumunda $B = B_0 \sin(3.10^6 t)$ değerinde olup sayfa düzleminden içeri doğrudur. Ayrıca devrede R değerinde bir direnç bulunmaktadır. Bu durumda tel şekildeki gibi v sabit hızıyla hareket ettirilirse indüklenen akımı bulunuz ve yönünü belirleyiniz.

