

Lecture Slides for

INTRODUCTION TO

Machine Learning

© The MIT Press, 2010

alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml2e

CHAPTER 2:

Supervised Learning

Learning a Class from Examples

- Class C of a "family car"
 - Prediction: Is car x a family car?
 - Knowledge extraction: What do people expect from a family car?
- Output:

Positive (+) and negative (-) examples

• Input representation:

 x_1 : price, x_2 : engine power

Training set X

$$\mathcal{X} = \{\mathbf{x}^t, r^t\}_{t=1}^N$$

$$r = \begin{cases} 1 & \text{if } \mathbf{x} \text{ is positive} \\ 0 & \text{if } \mathbf{x} \text{ is negative} \end{cases}$$

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix}$$

Class C

Hypothesis class ${\mathcal H}$

S, G, and the Version Space

Margin

• Choose *h* with largest margin

VC Dimension

- N points can be labeled in 2^N ways as +/-
- \mathcal{H} shatters N if there exists $h \in \mathcal{H}$ consistent for any of these: $VC(\mathcal{H}) = N$

An axis-aligned rectangle shatters 4 points only!

Probably Approximately Correct (PAC) Learning

How many training examples N should we have, such that with probability at least 1 – δ, h has error at most ε?
 (Blumer et al., 1989)

- Each strip is at most ε/4
- Pr that we miss a strip $1-\epsilon/4$
- Pr that N instances miss a strip $(1 \varepsilon/4)^N$
- Pr that N instances miss 4 strips $4(1 \varepsilon/4)^N$
- $4(1 ε/4)^N ≤ δ$ and (1 x)≤exp(-x)
- $4\exp(-\epsilon N/4) \le \delta$ and $N \ge (4/\epsilon)\log(4/\delta)$

Noise and Model Complexity

Use the simpler one because

- Simpler to use (lower computational complexity)
- Easier to train (lower) space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower) variance - Occam's razor)

Multiple Classes, C_i i=1,...,K

Regression

$$\mathcal{X} = \{x^{t}, r^{t}\}_{t=1}^{N}
r^{t} \in \Re
r^{t} = f(x^{t}) + \varepsilon$$

$$g(x) = w_{1}x + w_{0}$$

$$g(x) = w_{2}x^{2} + w_{1}x + w_{0}$$

$$E(g \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} [r^{t} - g(x^{t})]^{2}$$

$$E(w_{1}, w_{0} \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} [r^{t} - (w_{1}x^{t} + w_{0})]^{2}$$

$$x \text{ milage}$$

Model Selection & Generalization

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- ullet The need for inductive bias, assumptions about ${\mathcal H}$
- Generalization: How well a model performs on new data
- Overfitting: \mathcal{H} more complex than C or f
- Underfitting: \mathcal{H} less complex than C or f

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):
 - 1. Complexity of \mathcal{H} , $c(\mathcal{H})$,
 - 2. Training set size, N,
 - 3. Generalization error, E, on new data
- \square As N^{\uparrow} , E^{\downarrow}
- \square As $c(\mathcal{H})\uparrow$, first $E\downarrow$ and then $E\uparrow$

Cross-Validation

- To estimate generalization error, we need data unseen during training. We split the data as
 - Training set (50%)
 - Validation set (25%)
 - Test (publication) set (25%)
- Resampling when there is few data

Dimensions of a Supervised Learner

- 1. Model: $g(\mathbf{x} | \theta)$
- 2. Loss function: $E(\theta \mid X) = \sum_{t} L(r^{t}, g(\mathbf{x}^{t} \mid \theta))$
- 3. Optimization procedure:

$$\theta^* = \operatorname{argmin}_{\theta} \operatorname{nE}(\theta \mid X)$$