18.369 Problem Set 3

Problem 0: Scattering and energy

As in the course notes, we can write Maxwell's equations for the 6-component fields ψ as $\frac{\partial \psi}{\partial t} = \hat{C}\psi - \frac{\partial \phi}{\partial t} - \xi$, where the 6-component polarizations $\phi = \chi * \psi$ are a convolution in time with a (passive and causal) linear susceptibility $\chi(\mathbf{x},t)$ at each point \mathbf{x} in space. Now, suppose we have the situation depicted in Fig. 1: sources $(\xi \neq 0)$ lying *outside* some bounded volume Ω produce an incident wave ψ_{inc} that scatters off materials $(\chi \neq 0)$ *inside* of Ω to produce a scattered wave ψ_{scat} . Outside of Ω there are no materials $(\chi = 0)$, while inside of Ω there are no sources $(\xi = 0)$.

- (a) Write the total fields as $\psi = \psi_{\rm inc} + \psi_{\rm scat}$, where $\psi_{\rm inc} = \begin{pmatrix} \mathbf{E}_{\rm inc} \\ \mathbf{H}_{\rm inc} \end{pmatrix}$ satisfies $\frac{\partial \psi_{\rm inc}}{\partial t} = \hat{C}\psi_{\rm inc} \xi$ (Maxwell's equations with the same currents but no materials), and the initial conditions at $t = -\infty$ are $\psi = \psi_{\rm inc} = \psi_{\rm scat} = 0$.
 - (i) What differential equation must ψ_{scat} satisfy?
 - (ii) Fourier transform in time to find equations for $\hat{\psi}_{inc}(x,\omega)$ and $\hat{\psi}_{scat}$ (in terms of $\hat{\xi}$ and $\hat{\chi}$); equivalently, look for time-harmonic

 $^{^1}$ Technically, if you include a convolution $\chi*$ then you have a "pseudodifferential" operator.

Figure 1: Schematic of an incident wave ψ_{inc} created by sources ξ that are only $\neq 0$ *outside* some volume Ω , interacting with materials $\chi \neq 0$ that lie *inside* Ω to produce an outgoing scattered wave ψ_{scat} .

solutions $\hat{\psi}_{inc}e^{-i\omega t}$ and $\hat{\psi}_{scat}e^{-i\omega t}$ from a time-harmonic source $\hat{\xi}(\mathbf{x})e^{-i\omega t}$.

- (b) Applying Poynting's theorem and passivity to your time-harmonic fields, show that $\iint_{\partial\Omega} \operatorname{Re}[\hat{\mathbf{E}}_{\mathrm{inc}}^* \times \hat{\mathbf{H}}_{\mathrm{inc}}] \cdot d\mathbf{A} = 0 \text{ and } P_{\mathrm{abs}} = \iint_{\partial\Omega} \operatorname{Re}[\hat{\mathbf{E}}^* \times \hat{\mathbf{H}}] \cdot d\mathbf{A} \geq 0 \text{ (the absorbed power = inward total flux). (Note that here, <math>\Omega$ is a subset of the whole domain!)
- (c) In order to ensure $P_{\text{scat}} = \oiint_{\partial\Omega} \text{Re}[\hat{\mathbf{E}}_{\text{scat}}^* \times \hat{\mathbf{H}}_{\text{scat}}] \cdot d\mathbf{A} \geq 0$ (the scattered power = outward scattered flux), we need something more: an *outgoing boundary condition* (or "radiation" boundary condition): if we consider *any point* on sphere of radius R (around any point in Ω), then *in the limit* as $R \to \infty$ we require that $R^2 \text{Re}[\hat{\mathbf{E}}_{\text{scat}}^* \times \hat{\mathbf{H}}_{\text{scat}}]$ must point *radially outward*. Use Poynting's theorem to show that such a radiation boundary condition implies $\oiint_{\partial\Omega} \text{Re}[\hat{\mathbf{E}}_{\text{scat}}^* \times \hat{\mathbf{H}}_{\text{scat}}] \cdot d\mathbf{A} \geq 0.^2$
- (d) Show that the "extinguished power" $P_{\text{ext}} = P_{\text{abs}} + P_{\text{scat}}$ can be written in terms of an integral over $\partial \Omega$ involving $\hat{\mathbf{E}}_{\text{inc}}^* \times \hat{\mathbf{H}}_{\text{scat}}$ and $\hat{\mathbf{E}}_{\text{scat}}^* \times \hat{\mathbf{H}}_{\text{inc}}$ only. This is a version of a famous result known as the **optical theorem**.
- (e) Derive an alternative form of the optical theorem: show that $P_{\rm ext}$ can be written as an integral over Ω involving only $\hat{\psi}_{\rm inc}^*\hat{\phi}$. (Hint: use Poynting's theorem to relate $P_{\rm abs}$ and $P_{\rm scat}$ to work on polarization currents, and write $\psi_{\rm scat} = \psi \psi_{\rm inc}$.)

Problem 1: Periodic waveguide guidance proof

In class, we showed by a variational proof that any $\varepsilon(y)$, in two dimensions, gives rise to at least one guided mode whenever $\varepsilon(y)^{-1} = \varepsilon_{\text{lo}}^{-1} - \Delta(y)$ for $\int \Delta > 0$ and $\int |\Delta| < \infty$. At least, we showed it for the TE polarization (**H** in the $\hat{\mathbf{z}}$ direction). Now, you will show the same thing much more generally, but using the same basic technique.

²We also will also need some boundary condition to uniquely determine ψ_{inc} . Not necessarily an outgoing boundary condition, however—often it is convenient to have an incident wave coming in "from infinity", such as an incident planewave, perhaps with no explicit sources ($\xi = 0$) and just appropriate boundary conditions.

 $^{^3}$ As in class, the latter condition on Δ will allow you to swap limits and integrals for any integrand whose magnitude is bounded above by some constant times $|\Delta|$ (by Lebesgue's dominated convergence theorem).

Figure 2: 2d metallic waveguide with perfect electric conductor walls, extending infinitely in the *x* direction.

- (a) Let $\varepsilon(x,y)^{-1} = 1 \Delta(x,y)$ be a periodic function $\Delta(x,y) = \Delta(x+a,y)$, with $\int |\Delta| < \infty$ and $\int_0^a \int_{-\infty}^\infty \Delta(x,y) dx dy > 0$. Prove that at least one TE guided mode exists, by choosing an appropriate (simple!) trial function of the form $\mathbf{H}(x,y) = u(x,y)e^{ikx}\hat{\mathbf{z}}$. That is, show by the variational theorem that $\omega^2 < c^2k^2$ for the lowest-frequency eigenmode. (It is sufficient to show it for $|k| \le \pi/a$, by periodicity in k-space; for $|k| > \pi/a$, the light line is not $\omega = c|k|$.)
- (b) Prove the same thing as in (a), but for the TM polarization (**E** in the $\hat{\mathbf{z}}$ direction). Hint: you will need to pick a trial function of the form $\mathbf{H}(x,y) = [u(x,y)\hat{\mathbf{x}} + v(x,y)\hat{\mathbf{y}}]e^{ikx}$ where u and v are some (simple!) functions such that $\nabla \cdot \mathbf{H} = 0.4$

Problem 2: 2d metallic waveguide

Consider a waveguide depicted in Fig.~2: two *x*-invariant PEC (perfect electric conductor) walls enclosing a width-L region of $\varepsilon = 1$.

- (a) Find the E_z -polarized eigenfunctions. From symmetry, this should be of the form $\mathbf{E} = E_{k,n}(y)e^{ikx-i\omega_n t}$. Hence, obtain the dispersion relation $\omega_n(k)$. Plot it for the first few bands.
- (b) Now, suppose we put in a "point-dipole" current source $\mathbf{J}(x,y) = \delta(x)\delta(y-L/2)\hat{z}e^{-i\omega t}$ in the middle of the waveguide. This is mirror-symmetric (even), so you should be able to find a mirror-symmetric solution that consists of right-traveling (k>0) waves for x>0 and left-traveling (k<0) waves for x<0, where in each region $(x \ge 0)$ you expand the solution in

the basis of the eigenfunctions:

$$E_z = e^{-i\omega t} \begin{cases} \sum_{n=0}^{\infty} c_n E_n(y) e^{+ik_n x} & x > 0\\ \sum_{n=0}^{\infty} c_n E_n(y) e^{-ik_n x} & x < 0 \end{cases},$$

where c_n are some coefficients to be determined, k_n is the positive solution of $\omega_n(k_n) = \omega$ (i.e. the k > 0 matching ω for mode n), and $E_n = E_{k_n,n}$ is the corresponding eigenfunction. Solve for the coefficients c_n by plugging this E_z into Maxwell's equations with that current source.

Hint: To get $\delta(x)$, recall that the derivative of a discontinuous function is a delta function multiplied by the amplitude of the discontinuity. Maxwell's equations contain a $\nabla^2 E_z$ term, so to match the δ function source term, you must have a discontinuity in the slope $\partial E_z/\partial x$ at x=0, while E_z itself must be continuous (otherwise you would get a discontinuity in the first derivative and a "delta derivative" from $\partial^2 E_z/\partial x^2$). From this discontinuity, you will $\partial^2 E_z/\partial x^2 = \delta(x)\sum c_n$ (some Fourier basis), and then you can use the usual Fourier orthogonality relations to match this to $\delta(y-L/2)$.

- (c) Using your answer from the previous part, give a formula for the power P expended by the current source ($P = -\text{Re} \int \mathbf{J}^* \cdot \mathbf{E} dx dy$, from class). (This power is also called the "local density of states" (LDOS) at that position and frequency, a subject we will return to later in class.) Sketch this power $P(\omega)$ as a function of frequency ω —notice anything strange?
- (d) Using Meep (either installed on your own computer or via mybinder.org), compute and polot $P(\omega)$ (in arbitrary units) for exactly the situation in the previous part, with L=1 (= a choice of distance units). It turns out that Meep has a built-in feature to compute the power expended by a dipole source (the "LDOS"): google "Meep LDOS tutorial". Compare to your analytical solution from the previous part.

⁴You might be tempted, for the TM polarization, to use the **E** form of the variational theorem that you derived in problem 1, since the proof in that case will be somewhat simpler: you can just choose $\mathbf{E}(x,y) = u(x,y)e^{ikx}\hat{\mathbf{z}}$ and you will have $\nabla \cdot \varepsilon \mathbf{E} = 0$ automatically. However, this will lead to an inequivalent condition $\int (\varepsilon - 1) > 0$ instead of $\int \Delta = \int \frac{\varepsilon - 1}{\varepsilon} > 0$.