

ÉPREUVE SPÉCIFIQUE-FILIÈRE MP

MATHÉMATIQUES 1

Durée: 4 heures

Les calculatrices programmables et alphanumériques sont autorisées, sous réserve des conditions définies dans la circulaire n° 99-018 du 01.02.99.

Le problème proposé a pour but la démonstration d'un théorème relatif aux contractions d'un espace de Banach et l'étude, grâce à ce théorème, d'une équation fonctionnelle.

Si X et Y sont des ensembles, Y^X désigne l'ensemble des applications de X dans Y.

Si X est un ensemble non vide, \mathcal{N}_{∞} désigne la norme de la convergence uniforme sur l'espace vectoriel des applications bornées de X dans \mathbb{R} : $\mathcal{N}_{\infty}(f) = \sup \{ |f(x)| : x \in X \}$.

I. Convergence uniforme dans $C([0,1],\mathbb{R})$

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy, pour \mathcal{N}_{∞} , de $C([0,1],\mathbb{R})$.

- **1.** Montrer que, pour tout $x \in [0,1]$, $(f_n(x))_{n \in \mathbb{N}}$ converge. Soit f la limite simple de la suite $(f_n)_{n \in \mathbb{N}}$.
- 2. Montrer que f est bornée et que $\mathcal{N}_{\infty}(f_n f) \underset{n \to +\infty}{\longrightarrow} 0$.
- 3. Justifier que $(C([0,1],\mathbb{R}), \mathcal{N}_{\infty})$ est un espace de Banach.
- **4.** Soit $(u_n)_{n\in\mathbb{N}}$ la suite de $C([0,1],\mathbb{R})$ définie par : $u_n(x) = e^{x^n}$ pour tout $x \in [0,1]$. Montrer que, pour tout $x \in [0,1]$, $(u_n(x))_{n\in\mathbb{N}}$ converge. La suite $(u_n)_{n\in\mathbb{N}}$ est-elle de Cauchy pour \mathscr{N}_{∞} ?
- 5. Soit $(v_n)_{n \in \mathbb{N}}$ la suite de $C([0,1], \mathbb{R})$ définie par : $v_n(x) = \int_0^x e^{t^n} dt$ pour tout $x \in [0,1]$. Montrer que $(v_n)_{n \in \mathbb{N}}$ converge uniformément sur [0,1] vers un élément v de $C([0,1], \mathbb{R})$.

II. Théorème du point fixe de Banach

Soit $(E, \| \|)$ un espace de Banach réel, soit A un sous-ensemble fermé non vide de E et soit $T \in A^A$ vérifiant : il existe $\alpha \in [0,1[$ tel que $\|T(x) - T(y)\| \le \alpha \|x - y\|$ pour tout $(x,y) \in A^2$ (on dit que T est contractante ou encore que T est une contraction).

- 1. Soit $(x, y) \in A^2$ tel que : T(x) = x, T(y) = y. Montrer que x = y.
- **2.** Soit $a \in A$, on définit $(a_n)_{n \in \mathbb{N}}$ par : $a_0 = a$, $a_{n+1} = T(a_n)$.
 - **2.1** Montrer que : $||a_{n+1} a_n|| \le \alpha^n ||a_1 a_0||$. En déduire que si $(n, p) \in \mathbb{N} \times \mathbb{N}^*$ on a : $||a_{n+p} a_n|| \le ||a_1 a_0|| \left(\sum_{i=0}^{p-1} \alpha^{n+i}\right)$.
 - **2.2** Montrer que $(a_n)_{n\in\mathbb{N}}$ est convergente et que sa limite est élément de A.
 - 2.3 Montrer que T possède un unique point fixe qui est la limite de $\left(a_n\right)_{n\in\mathbb{N}}$. On établit ainsi le théorème du point fixe de Banach « Toute contraction T d'un fermé non vide A d'un espace de Banach possède un point fixe unique, de plus si $a\in A$, la suite $\left(a_n\right)_{n\in\mathbb{N}}$ définie par $a_0=a$, $a_{n+1}=T\left(a_n\right)$, converge vers ce point fixe ».
- **3.** On suppose que A = E, soit alors, $U \in E^E$ définie par : U(x) = x + T(x).
 - **3.1** Montrer que U est une bijection continue de E sur E.
 - 3.2 Montrer que, pour tout $(x, y) \in E^2$ on a : $||U^{-1}(x) U^{-1}(y)|| \le (1 \alpha)^{-1} ||x y||$ (*U* est donc un homéomorphisme de *E* sur *E*).
- **4.** Soit $\mathcal{L}(E) = \{ V \in E^E : (V \text{ linéaire}) \text{ et } (V \text{ continue}) \}$, on note encore $||V|| = \sup(\{||V(x)|| : ||x|| \le 1\})$ la norme subordonnée de $V(V \in \mathcal{L}(E))$; soit I l'identité de E.
 - **4.1** Soit $V \in \mathcal{L}(E)$ telle que ||V|| < 1, montrer que V est contractante.
 - **4.2** Soit $(V_n)_{n\in\mathbb{N}}$ une suite de $\mathcal{L}(E)$ et soit $V\in\mathcal{L}(E)$ tels que : $\|V_n\|<1$ pour tout $n\in\mathbb{N}$, $\|V\|<1$, $\|V_n-V\|\underset{n\to+\infty}{\longrightarrow}0$.

Soit $y \in E$ alors, d'après 3. $I + V_n$ et I + V sont des isomorphismes de E; on peut donc définir $\left(x_n\right)_{n \in \mathbb{N}} = \left(\left(I + V_n\right)^{-1}(y)\right)_{n \in \mathbb{N}}$ et $x = (I + V)^{-1}(y)$, montrer que : $\left\|x_n - x\right\| \underset{n \to +\infty}{\longrightarrow} 0$ (on aura intérêt à écrire : $V(x) - V_n(x_n) = \left(V(x) - V_n(x)\right) + \left(V_n(x - x_n)\right)$).

III. Etude d'une transformation de l'ensemble $C([0,1],\mathbb{R})$.

Soit $\phi:[0,1]\times[0,1]\times\mathbb{R}\to\mathbb{R}$, on dira que ϕ est de type \mathscr{U} si :

 φ est continue et, il existe $r \in \mathbb{R}_+$ tel que l'on ait : $|\varphi(x, y, z) - \varphi(x, y, z')| \le r|z - z'|$ pour tout $(x, y, z, z') \in [0,1] \times [0,1] \times \mathbb{R} \times \mathbb{R}$.

- 1. Montrer que s'il existe $(\Psi, M) \in C^1(\mathbb{R}^3, \mathbb{R}) \times \mathbb{R}_+$ tel que : $\varphi = \Psi \Big|_{[0,1] \times [0,1] \times \mathbb{R}}$ et $\Big|\frac{\partial \Psi}{\partial z}(x, y, z)\Big| \le M$ pour tout $(x, y, z) \in [0,1] \times [0,1] \times \mathbb{R}$, alors φ est de type \mathscr{U} .
- **2.** On suppose que φ est de type \mathcal{U} .
 - 2.1 Soit $u \in C([0,1], \mathbb{R})$, montrer que pour tout $x \in [0,1] : (y \to \varphi(x, y, u(y))) \in C([0,1], \mathbb{R})$.
 - 2.2 Montrer que l'on peut définir $T_{\varphi}: C([0,1],\mathbb{R}) \to \mathbb{R}^{[0,1]}$ par : $\Big(T_{\varphi}(u)\Big)(x) = \int_0^1 \varphi(x,y,u(y)) \, dy \, .$ Montrer que, pour tout $u \in C([0,1],\mathbb{R}), \ T_{\varphi}(u) \in C([0,1],\mathbb{R}).$
 - 2.3 Montrer que l'on a : $\mathcal{N}_{\infty} \Big(T_{\varphi}(u_1) T_{\varphi}(u_2) \Big) \le r \, \, \mathcal{N}_{\infty} \Big(u_1 u_2 \Big), \text{ pour tout } \Big(u_1, u_2 \Big) \in (C([0,1], \mathbb{R}))^2.$
 - 2.4 On définit, pour $\lambda \in \mathbb{R}$, $S_{(\phi,\lambda)}: C([0,1],\mathbb{R}) \to C([0,1],\mathbb{R})$ par : $S_{(\phi,\lambda)}(u) = u + \lambda T_{\phi}(u)$.

 On suppose r > 0, montrer que l'on a : $\lambda \in \left] -\frac{1}{r}, \frac{1}{r} \right[\Rightarrow S_{(\phi,\lambda)}$ est un homéomorphisme de $(C([0,1],\mathbb{R}), \mathcal{N}_{\infty})$ sur lui même.

- 3. Soit $\mu \in C([0,1]^2, \mathbb{R})$, soit $\phi: [0,1] \times [0,1] \times \mathbb{R} \to \mathbb{R}$ définie par : $\phi(x, y, z) = \mu(x, y)z$; on supposera $\mu \neq 0$.
 - **3.1** Montrer que ϕ est de type \mathscr{U} et que si $\lambda \in \left] 1 \middle/ \mathscr{N}_{\infty}(\mu), 1 \middle/ \mathscr{N}_{\infty}(\mu) \right[$, on a : $\mathcal{S}_{(\phi, \lambda)}$ est un isomorphisme de $(C([0,1], \mathbb{R}), \mathscr{N}_{\infty})$, sur lui même.
 - 3.2 Soit $(\mu_n)_{n\in\mathbb{N}}$ une suite de $C([0,1]^2,\mathbb{R})$, telle que : $\mathcal{N}_{\infty}(\mu_n-\mu)\underset{n\to+\infty}{\longrightarrow} 0$. On note $\|\cdot\|_{\infty}$ la norme subordonnée, associée à \mathcal{N}_{∞} , définie sur $\mathcal{L}(C([0,1],\mathbb{R}))$. Si $(\phi_n)_{n\in\mathbb{N}}$ est la suite de $C([0,1]\times[0,1]\times\mathbb{R},\mathbb{R})$ définie par $\phi_n(x,y,z)=\mu_n(x,y)z$ montrer que : $\|T_{\phi_n}-T_{\phi}\|_{\infty} \underset{n\to+\infty}{\longrightarrow} 0$.

IV. Etude d'une application

On considère l'équation intégrale de Fredholm : (E) $w(x) = x + \int_0^1 \sin(xy) w(y) dy$.

Une solution de (E) (s'il en existe) est donc un élément w de $\mathbb{R}^{[0,1]}$ tel que, pour tout $x \in [0,1]$, on ait : $w(x) = x + \int_0^1 \sin(xy)w(y)dy$. On s'intéresse à la résolution de (E) dans $C([0,1], \mathbb{R})$.

- 1. Montrer, en utilisant III) que (E) possède une solution unique $w \in C([0,1], \mathbb{R})$.
- 2. Soit, $(v_n)_{n \in \mathbb{N}^*}$ la suite de $C([0,1]^2, \mathbb{R})$ définie par : $v_n(x,y) = \sum_{i=1}^n \frac{(-1)^{i+1}}{(2i-1)!} (xy)^{2i-1}$. Pour $n \in \mathbb{N}^*$ on définit l'équation intégrale (E_n) par : $w_n(x) = x + \int_0^1 v_n(x,y) \ w_n(y) \ dy$.
 - **2.1** Montrer que (E_1) possède une solution unique $w_1 \in C([0,1], \mathbb{R})$ et expliciter w_1 .
 - 2.2 Montrer que, pour tout $n \ge 2$, la résolution de (E_n) se ramène à celle d'un système linéaire que l'on explicitera.
 - **2.3** Montrer, en utilisant III.3) que, si $n \ge 2$, (E_n) possède une solution unique $w_n \in C([0,1],\mathbb{R})$. (on aura intérêt à montrer que : $-1 \in]-1/\mathcal{N}_{\infty}(v_n),1/\mathcal{N}_{\infty}(v_n)[$ si $n \ge 2)$.
 - **2.4** Montrer que $\mathcal{N}_{\infty}(w_n w) \underset{n \to +\infty}{\longrightarrow} 0$.