10/2/2021	Lecture 10	Construct	on of
		L Finite fie	elds)
Annous Cen e	ent		
-> Qui z 2	will be on	Feb 21	
- Please f	11 forms w. r. E	tesm po	yer.
Prime Fiel	lds -> Finite fie	lds whose	Size
is a	poine number	•	
Fp = {	addit ve identily multiplicative ide	- 1g. additi	m 2
<i>O</i> →	additve identify	y are (mo	dP
1 ->	multiplicative ide	ntly of	peratons
Existence	of multiplication	e ih ve 8 se	was
	ed using Extend		
division	algorithm.		
Size of a	finite field co	n be eit	er a
prine run	finite field co bex or power	of a pri	me
hun be y.			

Polynomial Arithmetic

d is the largest integer s-t ad \$ 0 d is known as deg(f).

$$(F_{\rho}[x], +, F_{\rho}, \cdot)$$

$$E \times \text{comple:-} f(x) = 1 + 2x + 3x^2$$
 $g(x) = (1 + 4x)$

$$f(x) - g(x) = (1 + 2x + 3x^{2})(1 + 4x)$$

$$= 1 + x + x^{2} + 2x^{3}$$

for every beff, you are doing a (mod 5) operation.

Euclidean Division algorithm & Extended EDA adgosithm for polyromials. f(n) with deg(f)=t g(n) with deg(g) = s. t > 3. f(x) = q(x)g(x) + g(x) + viguerepresentation deg(r(n)) < deg(g(n)) acd of two polynomials (f, g) Let f(x) and g(x) be two polynomials in Fp[x] gcd of f(x) and g(x) is a polynomial h(x) satisfying the following properties

(1) L(n)/f(n) and L(n)/g(n)1 It any other polynomial p(x) p(x)/f(x) and p(x)/g(x). then p(x)/L(x).

h(x) is required to be a monic polynomial for it to be called a g cd. If d = deg(h); $ad \neq 0$ For monic polynomials, ad = 1. Using EDA; we want to compute the gcd of 26+23+22+1 and 23+1. over Fz $\frac{\chi^{3}+1}{\chi^{6}+\chi^{3}+\chi^{2}+1}$ $\frac{\chi^{6}+\chi^{3}}{\chi^{7}+1}$ $\frac{\chi^{3}+\chi}{\chi^{3}+\chi}$ $\frac{\chi^{3}+\chi}{\chi^{4}+1}$ $\frac{\chi^{4}+1}{\chi^{4}+1}$ $\frac{\chi^{4}+1}{\chi^{4}$ g(d (x+x+x+1, x+1)
= (ast ronzero remainder (1+1)

gicd c	ged can be expressed as linear				
Combination of the polynomials of (x) & g(x).					
		. , `	1		
Remainders	x+ x+ x+	1 23+1	Quotents		
72 + 72 + 72+1	(I)	O			
			(3)		
~ x3+1	(e)	, ,	(73)		
> 22+1	1-0. x3=1	0-1. 23 23	L .		
(X+1)	0-1. 火: メ	1-x, x. 1+x,			
			X+1		
0 1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
$gcd(\chi^{3}+\chi^{3}+\chi^{2}+1):\chi^{3}+1):\chi+1$					
h(x)= 8(x)f(x)+ s(x)g(x)					
Extended EDA allows you to compute $\gamma(x)$ & $s(x)$ as well. $\gamma(x)$					
$\sigma(x)$ & $s(x)$ as well. $\sqrt{\chi(\chi^6 + \chi^3 + \chi + 1)}$					
$\Rightarrow \delta(\chi) = \chi \qquad + (1+\chi^{5})(1+\chi^{2})$					
$S(\chi) = 1 + \chi^4$.					
$\frac{1}{1+x^2+x^4+x^3+1}$					
= 1+2.					

Suppose we are operating on Fz. and suppose if gcd turned out to be

 $\frac{1}{2}(2x+1)=\frac{x+2}{2}$

2x+1 & x+2 both very well qualify
to be called gcd.
To serolve the ambiguity, we include that
gcd by definition has to be a monic
polynomials.

Irreducible Polynomials $f(x) \in \mathbb{F}_p[x].$

f(x) is said to be irreducible if. f(x)= g(x) h(x) is not possible where deg (g(x)) < deg(f(x))deg(h(n)) < deg(f(n))

27+1:2(1+2) Irreducible polynomials are analogs of prime numbers.

To construct prime fields, we were looking at Fp and doing (mod p) operations.

To construct fields of prime power, we will look at fp[x] and do (mod f(x)) operations, where f(x) is an irreducible polynomial over Fp.

[Fp[x] \ f(x)] = finite field with wo. of elements which is a power of prime" p"

[Mas p d elements where d = deg(f).

Elements of this finite field will be equivalence classes of a certain relation.

Define a relation on $F_p(x)$ w.r.t f(x) as $g(x) \sim h(x)$ iff f(x) | (g(x) - h(x)).

claimi- The above relation is an equivalence relation.

(i) Reflexiver g ~g , f(x) ∫o.
Symmetry: f (g-L) then it also divides f (h-g).
(iii) Transitive of (g-h) and of (h-p).
then $f(g-p)$.
=> Equivalence relation partitions Fo(x)
=> Equivalence relation pastitous Fp[x) into equivalence claves.
in of warter costs.
Notation used for epivalence class is
[a(x)] - denotes equivalence das
Lucian to the state of the stat
Gorresponding to element a(x).
We will construct a finite field of 16=24
elements -> Need on is reducible polynomial of
deg 4: =) f(x)= x4+x+1.
E(x) (x4, xxx) a Fallivalence classes
Fi[x] (x+x+1). + Equivalence classes Wirt polynomial f(x)
= x ⁴ + x + 1.
, , , , , , , , , , , , , , , , , , , ,

$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} \chi \end{bmatrix} \begin{bmatrix} \chi^2 \end{bmatrix} \begin{bmatrix} \chi^3 \\ 1+\chi^2 \end{bmatrix} \begin{bmatrix} 1+\chi^2 \end{bmatrix} \begin{bmatrix} 1+\chi^3 \end{bmatrix} \begin{bmatrix} \chi+\chi^2 \end{bmatrix}$$

$$\begin{bmatrix} \chi+\chi^3 \end{bmatrix} \begin{bmatrix} \chi^2+\chi^3 \end{bmatrix} \begin{bmatrix} 1+\chi+\chi^2 \end{bmatrix} \begin{bmatrix} 1+\chi+\chi^3 \end{bmatrix} \begin{bmatrix} 1+\chi+\chi^2 \end{bmatrix}$$

$$\begin{bmatrix} 1+\chi^2+\chi^3 \end{bmatrix} \begin{bmatrix} \chi+\chi^2+\chi^3 \end{bmatrix} \begin{bmatrix} 1+\chi+\chi^2+\chi^3 \end{bmatrix} \begin{bmatrix} 1+\chi+\chi^2+\chi^3 \end{bmatrix}$$

of x^2 cannot be in the same equivalence class $w \cdot x \cdot t = f(x) : x^4 + x + 1$. f((g-h)).

 $(\chi^4 + \chi + 1)$ $(\chi + \chi^2)$

Any g(x) which has a deg < 4; has to belong to a district equivalence class.

List all possible polynomials of def ≤ 3 .

8 trey all constitute distinct excivalence classes. $a_3 n^3 + a_2 n^2 + a_3 n + a_0$. $\Rightarrow No. of Polynomials$

= 24= 16.

How do you add and multiply

equivalence classes?

\[
\begin{align*}
 \begin{align*}