

2022 EV Trends: Quantum leap in power density of eDrive Disruptive Technological innovations, such as the first motor in market with continuous hairpins, enable a jump in KPIs.

- Mencedes EQS Resi

Main 2022 e-Drive Trends

- High integration of E-drive modules result in smaller volume and provide more space for occupant package.
- SiC provides better performance than IGBT but at a higher cost
- RC-IGBT (reverse current IGBT) is the best available alternative. This technology has been seen in BMW ad Ford EVs

Case study: 2022 Lucid Air

- Outstanding performance of Lucid Air E-Motor versus main competitors thanks to:
 - · High Integration degree between motor and gearbox
 - Innovative continuous hairpin winding (wave winding) to maximize the power output
 - Higher e-drive input voltage (>900V) for higher rotation speed without loosing
 - · SIC technology makes the Inverter unit compacter and more efficient

FACT: Lucid E-drive has 2.3x the volumetric power d gravimetric power density than the Tesla model

metric Power Density (active) [kW/kg] drivel

25 Trends in EV Market 2022 AII A2MAC1 leverages the full data to generate Insights & Improvement ideas Cost

d its contents may not be reproduced, published or distributed in any way without the prior written consent of A2

2022 EV Trends: Next level of integration in Power Electronics As technology matures, first OEMs are ready to launch fully-integrated Power Electronics concepts.

Integration of power electronics modules

- Even lowest degree of integration of power electronics modules (i.e., OBC and DCDC just share the housing) can lead to cost reduction.
- Higher degree of integration involves sharing of power path, power transformers and control functions.
- High degree of integration can improve the powertrain electrical architecture and therefore minimize HV cable cost.

Case study: BYD Dolphin Flagship

- BYD Dolphin is a good example of low cost, city car with relatively small battery capacity of 47 kWh and cost of less than 15 kS.
- BYD Dolphin integrates inverter, OBC and DC/DC in one unit, which is mounted on $\frac{1}{2}$ op of emotor assembly.
- With this special design, BYD also minimizes effort for HV cable cost, cable in powertrain $% \left(1\right) =\left\{ 1\right\} =\left\{ 1\right\}$

Cost optimization in electric vehicles

Holistic view is key to be cost competitive...

Aerodynamic improvements seen on the Model S plaid serve as performance optimization as well as cost reduction measures

<u>Parameter</u>	<u>Value</u>	Unit
Cost for Aero Improvement guides:	8.9	s
Battery Cost: 2021	15.0	5
Battery Capacity:	100	kWh
Cost / Wh	0.15	S/Wh
Energy Consumption (WLTP, researched)	170	Wh/km
Battery Cost /km of range	0.15	\$/km
Range Gain	1.7	km
Energy used for 1.5km	289	Wh
Battery Cost for 298 Wh or 1.5km Range	43.5	
Savings per Vehicle	34.6	
	STATE OF STREET	N OTTO

