Теория типов

 \Diamond

Содержание

1	λ -и	счисление	2
	1.1	Введение	2
	1.2	Числа Чёрча	
	1.3	Ромбовидное свойство и параллельная редукция	4
	1.4	Порядок редукции	
	1.5	Парадокс Карри	
	1.6	Импликационный фрагмент ИИВ	
2	Пре	осто типизированное λ-исчисление	8
	2.1	Исчисление по Карри	8
	2.2	Исчисление по Чёрчу	
	2.3	Изоморфизм Карри-Ховарда	
3	Зад	дачи в λ-исчислении	1:
	3.1	Вывод типа	11
	3.2	Про ложь	
4	Сис	$oldsymbol{c}$ тема F	13
	4.1	Интуиционистское исчисление предикатов второго порядка	13
	4.2	Система F	
	4.3	Экзистенциальные тип	
	4.4	Типовая система Хиндли-Милнера	
	4.5	Алгоритм W	
5	Ли	нейные и уникальные типы	16
	5.1		16
	F 0	T	

1 λ -исчисление

1.1 Введение

Смысла в этом нет.

Д.Г.

Определение (λ -выражение). λ -выражение — выражение, удовлетворяющее грамматике:

$$\Lambda::=\lambda x.\Lambda$$
 (абстракция)
$$|\Lambda\Lambda| \qquad \text{(аппликация)}$$

$$|x| \qquad |(\Lambda)$$

- (а) аппликация левоассоциативна
- (б) абстракция распространяется как можно дальше вправо

Пример.
$$((\lambda z.(z(yz)))(zx)z) = (\lambda z.z(yz))(zx)z$$

Есть понятия связанного и свободного вхождения переменной (аналогично ИП). $\lambda x.A$ связывает все свободные вхождения x в A. Договоримся, что:

- (a) Переменные x, a, b, c.
- (б) Термы (части λ -выражения) X, A, B, C.
- (в) Фиксированные переменные обозначаются буквами из начала алфавита, метапеременные из конца.

Определение (α -эквивалентность). A и B называются α -эквивалентными ($A =_{\alpha} B$), если выполнено одно из следующих условий:

- 1. $A \equiv x$ и $B \equiv x$.
- 2. $A \equiv \lambda x.P, \, B \equiv \lambda y.Q$ и $P_{[x:=t]} =_{\alpha} Q_{[y:=t]},$ где t новая переменная.
- 3. $A \equiv PQ$, $B \equiv RS$ и $P =_{\alpha} R$, $Q =_{\alpha} S$.

Пример. $\lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx.$

Доказательство.

$$\lambda y.ty =_{\alpha} \lambda x.tx \implies \lambda x.\lambda y.xy =_{\alpha} \lambda y.\lambda x.yx$$
$$tz =_{\alpha} tz \implies \lambda y.ty =_{\alpha} \lambda x.tx$$

 $tz =_{\alpha} tz$ верно по третьему условию.

Определение (β -редекс). Терм вида ($\lambda a.A$) B называется β -редексом.

$$\Pi puмер.$$
В выражении $(\lambda f.\underline{(\lambda x.\overline{f(xx)})}\underline{(\lambda x.f(xx))})\underline{g}_{B_2}$ два β -редекса.

Определение. Множество λ -термов Λ назовём множеством классов эквивалентности Λ по $(=_{\alpha})$.

Определение (β -редукция). $A \to_{\beta} B$ (состоят в отношении β -редукции), если выполняется одно из условий:

1. $A \equiv PQ$, $B \equiv RS$ и

либо
$$P \to_{\beta} R$$
 и $Q =_{\alpha} S$ либо $P =_{\alpha} R$ и $Q \to_{\beta} S$

- 2. $A \equiv \lambda x.P, B \equiv \lambda x.Q, P \rightarrow_{\beta} Q$ (x из какого-то класса из Λ).
- 3. $A \equiv (\lambda x. P)Q, B \equiv P_{[x:=Q]}, Q$ свободно для подстановки в P вместо x.

1.2 Числа Чёрча

Хотите знать, что такое истина?

Д.Г.

$$T = \lambda x \lambda y.x$$
$$F = \lambda x \lambda y.y$$
$$Not = \lambda a.aFT$$

Похоже на тип boolean, не правда ли?

Пример.

Not
$$T = (\lambda a.aFT)T \rightarrow_{\beta} TFT = (\lambda x.\lambda y.x)FT \rightarrow_{\beta} (\lambda y.F)T \rightarrow_{\beta} F$$

Можно продолжить:

And =
$$\lambda a.\lambda b.ab$$
F
Or = $\lambda a.\lambda b.a$ T b

Попробуем определить числа:

Определение (Чёрчевский нумерал).

$$\overline{n} = \lambda f. \lambda x. f^n x$$
, где $f^n x = \begin{cases} f\left(f^{n-1}x\right) & , n > 0 \\ x & , n = 0 \end{cases}$

Пример.

$$\overline{3} = \lambda f. \lambda x. f(f(fx))$$

Несложно определить прибавление единицы к такому нумералу:

$$(+1) = \lambda n.\lambda f.\lambda x.f(nfx)$$

Пример.

$$(+1)\overline{1} = (\lambda n.\lambda f.\lambda x.f(nfx))(\lambda f.\lambda x.fx) \rightarrow_{\beta} \lambda f.\lambda x.f((\lambda f.\lambda x.fx)fx) \twoheadrightarrow_{\beta} \lambda f.\lambda x.f(fx) = \overline{2}$$

Определение (η -эквивалентность).

$$\lambda x.fx =_{\eta} f$$

Аналог из C++: если **int** $f(\textbf{int}\ x)$, то результат её вычисления равен результату вычисления [] (**int** x) { **return** f(x); }.

Арифметические операции:

IsZero =
$$\lambda n.n(\lambda x.F)T$$

IsEven = $\lambda n.n$ Not T
Add = $\lambda a.\lambda b.\lambda f.\lambda x.af(bfx)$
Mul = $\lambda a.\lambda b.a(Add\ b)\overline{0}$
Pow = $\lambda a.\lambda b.b(Mul\ a)\overline{1}$
Pow* = $\lambda a.\lambda b.ba$

Для того, чтобы определить (-1), сначала определим "пару":

$$\langle a, b \rangle = \lambda f. fab$$

First = $\lambda p. pT$
Second = $\lambda p. pF$

n раз применим функцию $f(\langle a,b\rangle)=\langle b,b+1\rangle$ и возьмём первый элемент пары:

$$(-1) = \lambda n. \text{First} \left(n \left(\lambda p. \left\langle (\text{Second } p), (+1) \left(\text{Second } p \right) \right\rangle \right) \left\langle \overline{0}, \overline{0} \right\rangle \right)$$

Введём сокращение записи:

$$\lambda xy.A = \lambda x.\lambda y.A$$

Определение (Нормальная форма).

Терм A — нормальная форма (н.ф.), если в нём нет β -редексов. Нормальной формой A называется такой B, что $A \twoheadrightarrow_{\beta} B$, B — н.ф.

 \rightarrow_{β} — транзитивно-рефлексивное замыкание \rightarrow_{β} .

Утверждение 1.1. Существует λ -выражение, не имеющее н.ф.

Определение (Комбинатор). Комбинатор — λ -выражение без свободных переменных.

Определение.

$$\Omega = \omega \omega$$
$$\omega = \lambda x.xx$$

 Ω не имеет нормальной формы.

Определение (Комбинатор неподвижной точки).

$$Y = \lambda f.(\lambda x. f(xx))(\lambda x. f(xx))$$

Определение (β -эквивалентность). $A =_{\beta} B$, если $\exists C : C \twoheadrightarrow_{\beta} A, C \twoheadrightarrow_{\beta} B$

Утверждение 1.2.

$$Yf =_{\beta} f(Yf)$$

Доказательство. (на лекции не давалось)

$$Yf =_{\beta} (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))f$$

$$=_{\beta} (\lambda x.f(xx))(\lambda x.f(xx))$$

$$=_{\beta} f((\lambda x.f(xx))(\lambda x.f(xx)))$$

$$=_{\beta} f(Yf)$$

Таким образом, с помощью У-комбинатора можно определять рекурсивные функции.

Пример.

Fact =
$$Y(\lambda f n. \text{IsZero } n \ \overline{1} \ (\text{Mul } n \ (f \ (-1) \ n)))$$

TODO

1.3 Ромбовидное свойство и параллельная редукция

Определение (Ромбовидное свойство (diamond)). G обладает ромбовидным свойством, если какие бы ни были a, b, c, что $aGb, aGc, b \neq c$, найдётся такое d, что bGd и cGd.

 $\Pi pumep.$ (<) на натуральных числах обладает ромбовидным свойством. (>) на натуральных числах не обладает ромбовидным свойством.

 β -редукция не обладает ромбовидным свойством.

Пример.

$$a = (\lambda x.xx)(Ia)$$

$$a \to_{\beta} (Ia)(Ia) = b$$

$$a \to_{\beta} (\lambda x.xx)a = c$$

$$b \to_{\beta} (Ia)a \to_{\beta} aa$$

$$b \to_{\beta} a(Ia) \to_{\beta} aa$$

$$c \to_{\beta} aa$$

Нет d, что $b \rightarrow_{\beta} d$ и $c \rightarrow_{\beta} d$.

Теорема 1.3 (Чёрча-Россера). β -редуцируемость обладает ромбовидным свойством.

Лемма 1.4. Если R обладает ромбовидным свойством, то R^* обладает ромбовидным свойством.

Доказательство. (Упражнение) ТООО

- 1. M_1RN_1 и $M_1RM_2...M_{n-1}RM_n \Rightarrow$ есть $N_2...N_n$: $N_1RN_2...N_{n-1}RN_n$ и M_nRN_n .
- 2. Покажем ромбовидное свойство.

Определение (Параллельная β -редукция). $A \rightrightarrows_{\beta} B$

- 1. $A =_{\beta} B$, to $A \rightrightarrows_{\beta} B$
- 2. $A \rightrightarrows_{\beta} B$, to $\lambda x.A \rightrightarrows_{\beta} \lambda x.B$
- 3. $P \rightrightarrows_{\beta} Q$ и $R \rightrightarrows_{\beta} S$, то $PR \rightrightarrows_{\beta} QS$
- 4. $(\lambda x.P)Q \rightrightarrows_{\beta} R_{[x:=S]}$, если $P \rightrightarrows_{\beta} R$ и $Q \rightrightarrows_{\beta} S$.

Утверждение 1.5. (\Rightarrow_{β}) обладает ромбовидным свойством.

Доказательство. (Упражнение) ТООО

Утверждение 1.6. *Если* $A \rightarrow_{\beta} B$, *mo* $A \rightrightarrows_{\beta} B$.

Утверждение 1.7. *Если* A
ightharpoonup B, *mo* A
ightharpoonup B.

Доказательство. (Упражнение) ТООО

При этом, обратное не всегда верно.

Пример.

$$(\lambda x.xx)(\lambda x.xxx) \twoheadrightarrow_{\beta} (\lambda x.xxx)(\lambda x.xxx)(\lambda x.xxx)$$
$$(\lambda x.xxx)(\lambda x.xxx) \cancel{\nearrow}_{\beta} (\lambda x.xxx)(\lambda x.xxx)(\lambda x.xxx)$$

Утверждение 1.8. Из 1.6 и 1.7 следует, что $(\rightarrow_{\beta})^* = (\rightrightarrows_{\beta})^*$.

Доказательство. Теорема Чёрча-Россера следует из 1.5 и 1.8.

Следствие 1.9. Нормальная форма для λ -выражения единственна, если существует.

Теорема 1.10 (Тезис Чёрча). Если функция вычислима с помощью механического аппарата, то она вычислима с помощью λ -выражения.

1.4 Порядок редукции

«Завтра! Завтра! Не сегодня!» — так ленивцы говорят.

Das deutsches Sprichwort

Определение.

$$K = \lambda x \lambda y.x$$

$$I = \lambda x.x$$

$$S = \lambda x y z.x z(yz)$$

I выражается через S и K: I = SKK.

Утверждение 1.11. Пусть A — замкнутое λ -выражение. Тогда найдётся выражение T, состоящее только из S и K, что A = $_{\beta}$ T.

Пример. тут какой-то пример с омегой, подскажите чё там было, ТООО

Определение (Нормальный порядок редукции). Нормальным порядком редукции называется редукция самого левого β -редекса.

«Ленивые вычисления» (ну, почти, в ленивых ещё есть меморизация)

Определение (Аппликативный порядок редукции). Самый левый из самых вложенных.

«Энергичные вычисления»

Утверждение 1.12. Если нормальная форма существует, она может быть достигнута нормальным порядком редукции.

1.5 Парадокс Карри

Если это утверждение верно, то русалки существуют.

Попробуем построить логику на основе λ -исчисления. Введём комбнатор-импликацию, обозначим (\supset). Введём М.Р. и правила:

- 1. $A \supset A$
- 2. $(A \supset (A \supset B)) \supset (A \supset B)$
- 3. $A =_{\beta} B$, тогда $A \supset B$

Покажем, как в полученной логике можно доказать любое утверждение. Введём обозначение: $Y_{\supset a} \equiv Y(\lambda t. t \supset a) =_{\beta} Y(\lambda t. t \supset a) \supset a$.

- 1) $Y_{\supset a} \supset Y_{\supset a}$ (схема аксиом)
- $Y_{\supset a} \supset X_a \supset X_b$ (можно доказать)
- 3) $(Y_{\supset a} \supset Y_{\supset a} \supset a) \supset (Y_{\supset a} \supset a)$ (схема аксиом)
- 4) $Y_{\supset a} \supset a$ (M.P.)
- $(Y_{\supset a} \supset a) \supset Y_{\supset a}$ (третье правило)
- 6) $Y_{\supset a}$ (M.P.) 7) a (M.P.)

Получается, что данная логика противоречива.

1.6 Импликационный фрагмент ИИВ

Определение (импликационный фрагмент ИИВ). Рассмотрим интуиционистское исчисление высказываний.

1. Введём схему аксиом:

$$\overline{\Gamma, \varphi \vdash \varphi}$$

2. Правило введения импликации:

$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \to \psi}$$

3. И правило удаления импликации:

$$\frac{\Gamma \vdash \varphi \to \psi \quad \Gamma \vdash \varphi}{\Gamma \vdash \psi}$$

Мы построили импликационный фрагмент ИИВ (и.ф.и.и.в).

Пример. Докажем $\varphi \to \psi \to \varphi$:

$$\frac{\varphi, \psi \vdash \varphi}{\varphi \vdash \psi \to \varphi} (1)$$

$$\frac{\varphi \vdash \psi \to \varphi}{\varphi \to (\psi \to \varphi)} (2)$$

Теорема 1.13. И.ф.и.и.в полон в моделях Крипке, то есть $\Gamma \vdash \varphi$ т.и.т.т., когда для любой модели крипке C из $\Vdash_C \Gamma$ следует $\Vdash_C \varphi$.

Доказательство. Рассмотрим модель Крипке вида $W = \{\Delta \mid \Gamma \subseteq \Delta, \Delta \text{ замкнуто относительно } \vdash \}, \ \Gamma \leq \Delta$ если $\Gamma \subseteq \Delta$. Индукцией по структуре φ покажем, что $\Delta \Vdash \varphi$ т.и.т.т., когда $\Delta \vdash \varphi$:

- 1. Пусть $\varphi \equiv x$ переменная. Тогда $\Gamma \vdash \varphi$ эквивалентно $x \in \Gamma$, что эквивалентно $\vdash x$ (по определению).
- 2. Пусть $\varphi \equiv \alpha \rightarrow \beta$.
 - (а) Пусть $\Delta \vdash \varphi$. Рассмотрим такое Δ' , что $\Delta \leq \Delta'$ и $\Delta' \Vdash \alpha$.

ой всё \mathbf{TODO}

Следствие 1.14. И.ф.и.и.в замкнут относительно выводимости.

Если некоторое утверждение выводится в ИИВ ($\vdash_{\tt u} \varphi$) и содержит только импликации, то оно выводится и в и.ф.и.и.в. ($\vdash_{\tt u} \varphi$).

2 Просто типизированное λ -исчисление

Определение (Тип). $T = \{\alpha, \beta, \gamma, \ldots\}$ — множество типов. σ , τ — метапеременные для типов. Если τ , σ — типы, то $\sigma \to \tau$ — тип.

$$\Pi ::= T \mid \Pi \to \Pi \mid \ (\Pi)$$

 (\rightarrow) правоассоциативна.

Определение (Контекст). Контекст — Γ .

$$\Gamma = \{ \Lambda_1 : \sigma_1; \ \Lambda_2 : \sigma_2 \ \dots \ \Lambda_n : \sigma_n \}$$
$$|\Gamma| = \{ \sigma_1, \ \sigma_2 \ \dots \ \sigma_n \}$$
$$\operatorname{dom} \Gamma = \{ \Lambda_1, \ \Lambda_2 \ \dots \ \Lambda_n \}$$

2.1 Исчисление по Карри

Определение (Типизируемость по Карри). Рассмотрим исчисление со следующими правилами:

$$\begin{array}{ll} 1. & \overline{\Gamma,x:\sigma \vdash x:\sigma} & (x \not\in \mathrm{dom}(\Gamma)) \\ & \underline{\Gamma \vdash M:\sigma \to \tau \quad \Gamma \vdash N:\sigma} \\ 2. & \overline{\Gamma \vdash MN:\tau} \\ & \underline{\frac{\Gamma,x:\sigma \vdash M:\tau}{\Gamma \vdash \lambda x.M:\sigma \to \tau}} & (x \not\in \mathrm{dom}(\Gamma)) \end{array}$$

Если λ -выражение типизируется этими трёмя правилами, то говорят, что оно типизируется по Карри.

Лемма 2.1 (subject reduction). *Если* $\Gamma \vdash M : \sigma \ u \ M \rightarrow_{\beta} N$, *mo* $\Gamma \vdash N : \sigma$.

Следствие 2.2. $Ec_{\Lambda}u \Gamma \vdash M : \sigma \ u \ M \rightarrow_{\beta} N, \ mo \ \Gamma \vdash N : \sigma.$

Теорема 2.3 (Чёрча-Россера). Если $\Gamma \vdash M : \sigma, M \twoheadrightarrow_{\beta} N \ u \ M \twoheadrightarrow_{\beta} P,$ тогда найдётся Q, что $N \twoheadrightarrow_{\beta} Q,$ $P \twoheadrightarrow_{\beta} Q \ u \ \Gamma \vdash Q : \sigma.$

Пример. Несколько доказательств:

1. Докажем $\lambda x.x: \alpha \to \alpha$:

$$\frac{\overline{x : \alpha \vdash x : \alpha}}{\vdash \lambda x.x : \alpha \to \alpha} (3)$$

2. Докажем $\lambda f.\lambda x.fx:(\alpha \to \beta) \to \alpha \to \beta$:

$$\frac{\overline{\Gamma \vdash f : \sigma \to \tau}}{f : \sigma \to \tau; x : \sigma \vdash fx : \tau} \frac{(1)}{\Gamma \vdash x : \sigma} \frac{(2)}{(2)}$$
$$\frac{f : \sigma \to \tau; x : \sigma \vdash fx : \tau}{f : \sigma \to \tau \vdash \lambda x. fx : \sigma \to \tau} \frac{(3)}{(3)}$$
$$\vdash \lambda f. \lambda x. fx : (\sigma \to \tau) \to (\sigma \to \tau)}$$

3. $\Omega = (\lambda x.xx)(\lambda x.xx)$ не типизируемо: **TODO**

Лемма 2.4 (Свойство subject expansion). *Неверно, что если* $M \to_{\beta} N$, $\Gamma \vdash N : \sigma$, то $\Gamma \vdash M : \sigma$.

Например, для $Ka\Omega$.

В общем случае тип не уникален, бывает, что одновременно $\vdash \lambda x.x: \alpha \to \alpha$ и $\vdash \lambda x.x: (\beta \to \beta) \to (\beta \to \beta)$.

Определение (Сильная нормализация). Назовём исчисление сильно-нормализуемым, если любая последовательность редукций неизбежно приводит к нормальной форме (не существует бесконечной последовательности β -редукций) .

Определение (Слабая нормализация). Назовём исчисление слабо-нормализуемым, если для любого терма существует последовательность β -редукций, приводящая его к нормальной форме.

Теорема 2.5 (о сильной нормализации). Просто типизируемое λ -исчисление сильно нормализуемо. Любое просто типизируемое λ -выражение сильно нормализуемо.

2.2 Исчисление по Чёрчу

Определение (Типизация по Чёрчу).

$$\Lambda_{\mathsf{q}} ::= x \mid \lambda x^{\sigma} . \Lambda_{\mathsf{q}} \mid (\Lambda_{\mathsf{q}}) \mid \Lambda_{\mathsf{q}} \Lambda_{\mathsf{q}}$$

Правила:

$$1. \ \, \overline{\Gamma, x : \sigma \vdash_{^{\mathbf{q}}} x : \sigma} \ \, (x \notin \mathrm{dom}(\Gamma))$$

$$2. \ \, \frac{\Gamma \vdash_{^{\mathbf{q}}} M : \sigma \to \tau \quad \Gamma \vdash_{^{\mathbf{q}}} N : \sigma}{\Gamma \vdash_{^{\mathbf{q}}} MN : \tau}$$

$$3. \ \, \frac{\Gamma, x : \sigma \vdash_{^{\mathbf{q}}} M : \tau}{\Gamma \vdash_{^{\mathbf{q}}} \lambda x^{\sigma} . M : \sigma \to \tau} \ \, (x \notin \mathrm{dom}(\Gamma))$$

Определение.

$$|\Lambda_{\mathbf{q}}| = \begin{cases} x & \Lambda_{\mathbf{q}} \equiv x \\ |\Lambda_1| |\Lambda_2| & \Lambda_{\mathbf{q}} \equiv \Lambda_1 \Lambda_2 \\ \lambda x. |\Lambda| & \Lambda_{\mathbf{q}} \equiv \lambda x^{\sigma}. \Lambda \end{cases}$$

Лемма 2.6 (Subject reduction по Чёрчу). Пусть $\Gamma \vdash_{\mathbf{q}} M : \sigma \ u \ |M| \to_{\beta} N$. Тогда найдётся такое H, что |H| = N, $\Gamma \vdash_{\mathbf{q}} H : \sigma$.

Теорема 2.7 (Чёрча-Россера). Пусть $\Gamma \vdash_{\mathbf{q}} M : \sigma$, $|M| \twoheadrightarrow_{\beta} N$, $|M| \twoheadrightarrow_{\beta} T$. Тогда найдётся такое P, что $\Gamma \vdash_{\mathbf{q}} P : \sigma$, $N \twoheadrightarrow_{\beta} |P|$ и $T \twoheadrightarrow_{\beta} |P|$.

Лемма 2.8 (Уникальность типов). Если $\Gamma \vdash_{\mathbf{q}} M : \gamma \ u \ \Gamma \vdash_{\mathbf{q}} M : \tau, \ mo \ \sigma = \tau.$

Лемма 2.8 показывает, чем исчисление по Чёрчу отличается исчислением по Карри.

Теорема 2.9 (о стирании).

- 1. Ecau $M \to_{\beta} N$ u $\Gamma \vdash_{\P} M : \sigma, mo |M| \to_{\beta} |N|$.
- 2. Если $\Gamma \vdash_{\mathsf{q}} M : \sigma$, то $\Gamma \vdash_{\mathsf{k}} |M| : \sigma$.

Теорема 2.10 (о поднятии). Пусть $P \in \Lambda_{\mathbf{q}}, M, N \in \Lambda_{\mathbf{k}}$.

- 1. Если $M \to_{\beta} N$, |P| = M, то найдётся такое Q, что |Q| = N, $P \to_{\beta} Q$.
- 2. Если $\Gamma \vdash_{\mathsf{K}} M : \sigma$, то найдётся такое $P \in \Lambda_{\mathtt{q}}$, что $\Gamma \vdash_{\mathtt{q}} P : \sigma$, |P| = M.

2.3 Изоморфизм Карри-Ховарда

TODO Многими логиками замечалась связь между выражениями типизированного λ -исчисления и доказательствами выражений ИИВ.

Правило вывода в ИИВ	Правило вывода в типизированном λ -исчислении
$\Gamma \vdash \sigma \to \tau \Gamma \vdash \sigma$	$\Gamma \vdash A : \sigma \to \tau \Gamma \vdash B : \sigma$
$\Gamma \vdash \tau$	$\Gamma \vdash AB : au$
$\Gamma, \sigma \vdash \tau$	$\Gamma, x^{\sigma}: \sigma \vdash A: au$
$\overline{\Gamma \vdash \sigma \to \tau}$	$\Gamma \vdash \lambda x^{\sigma}.A : \sigma \to \tau$
$\Gamma \vdash \varphi \Gamma \vdash \psi$	$\Gamma \vdash A : \varphi \Gamma \vdash B : \psi$
$\overline{ \Gamma \vdash \varphi \And \psi }$	$\Gamma \vdash \langle A, B \rangle : \varphi \And \psi$
$\Gamma \vdash \varphi \And \psi$	$\Gamma \vdash R : \varphi \And \psi$
$\Gamma \vdash \varphi$	$\Gamma \vdash \pi_1 R : \varphi$
$\Gamma \vdash \varphi \And \psi$	$\Gamma \vdash R : \varphi \And \psi$
$\Gamma \vdash \psi$	$\Gamma \vdash \pi_2 R : \psi$
$\Gamma \vdash \varphi$	$\Gamma \vdash A : \varphi$
$\overline{\Gamma \vdash \varphi \lor \psi}$	$\overline{\Gamma \vdash \operatorname{inj}_1 A : \varphi \lor \psi}$
$\Gamma \vdash \psi$	$\Gamma \vdash A : \psi$
$\overline{\Gamma \vdash \varphi \lor \psi}$	$\overline{\Gamma \vdash \operatorname{inj}_2 A : \varphi \lor \psi}$
$\Gamma \vdash \varphi \to \pi \Gamma \vdash \psi \to \pi$	$\Gamma \vdash T : \varphi \lor \psi \Gamma \vdash A : \varphi \to \pi \Gamma \vdash B : \psi \to \pi$
$\Gamma \vdash \varphi \lor \psi \to \pi$	$\Gamma \vdash \mathbf{case} \ T \ A \ B : \pi$

ТОРО Пояснения значений инъекций, проекций и саяе; примеры.

Интуиционистская логика	λ-исчисление
выражение	тип
доказательство	терм (программа)
предположение	свободная переменная
импликация	абстракция (функция)

Теорема 2.11 (об изоморфизме Карри-Ховарда).

- 1. Пусть $\Gamma \vdash \sigma u$.ф.и.и.в., тогда найдётся такой терм M, что $\Delta \vdash_{\mathsf{q}} M : \sigma$, где $\Delta = \{(x^{\varphi} : \varphi) \mid \varphi \in \Gamma\}$.
- 2. Пусть $\Delta \vdash_{\mathbf{q}} M : \sigma$, тогда $|\Delta| \vdash \sigma$.

Доказательство. ТООО

3 Задачи в λ -исчислении

Помните, что в λ -исчислении нет смысла? Здесь смысл отрицательный, скорее.

Д.Г.

В λ -исчислении выделяют 3 задачи:

- (a) Проверка типа: верно ли $\Gamma \vdash M : \sigma$?
- (б) Вывод типа: $? \vdash M : ?$
- (в) Обитаемость типа: ? \vdash ? : σ

В этом разделе будем рассматривать задачу вывода типа.

3.1 Вывод типа

Определение (Алгебраический терм).

$$A ::= x \mid f(A, \dots, A)$$
$$(x \in X)$$

Уравнение в алгебраических термах: A = A.

Определение (S-подстановка).

$$S: X \to A$$

Причём $S-\mathrm{id}$ почти везде. (везде кроме конечного количества)

Определение (Естественное обобщение). Естественное обобщение — такая подстановка $S:A\to A$, что $S(f(A_1,\ldots,A_n))=f(S(f_1),\ldots,S(f_n))$

Определение (Унификатор). S — унификатор (решение уравнения) P = Q, если S(P) = S(Q).

Задача решения уравнение в алгебраических термах—унификация.

Определение (Композиция). $(S \circ T)(A) = S(T(A))$

Определение (Частный случай). T — частный случай U, если существует такое S, что $T = S \circ U$.

Определение (Наибольший общий унификатор). Наибольший общий унификатор U для уравнения A=B-такой унификатор, что:

- 1. U(A) = U(B).
- 2. Любой другой унификатор частный случай U.

Определение (Несовместная система). Назовём систему несовместной, если выполнено одно из условий:

- 1. в ней есть уравнение вида $f(\ldots) = g(\ldots)$
- 2. в ней есть уравнение вида $x = \dots x \dots$

Определение (Эквивалентные системы). Назовём две системы эквивалентными, если они имеют одинаковые решения.

Утверждение 3.1. Для любой системы

$$\begin{cases} A_1 = B_1 \\ \vdots \\ A_n = B_n \end{cases}$$

найдётся эквивалентная ей система из одного уравнения:

$$f(A_1,\ldots,A_n)=f(B_1,\ldots,B_n),$$

 $\epsilon \partial e\ f$ — новый символ.

Определение (Разрешённая система). Назовём систему разрешённой, если:

- 1. все уравнения имеют вид x = A;
- 2. все переменные в левой части встречаются однократно.

Решение по системе в разрешённой форме строится так: По системе в разрешённой форме мы можем построить решение S, определив $S(x_i) = A_i$ для каждого i. **TODO**

Утверждение 3.2. Построенный по системе в разрешённой форме унификатор S — наибольший общий унификатор.

Утверждение 3.3. Несовместная система не имеет решений.

Рассотрим следующие преобразования, которые не меняют свойства системы:

Выражения	Условия	Новые выражения
T=x,T не переменная		x = T
T = T		убрать это уравнение
$f(A_1, \dots A_n) = g(B_1, \dots B_n)$	f = g	$A_1 = B_1 \dots A_n = B_n$
	$f \neq g$	система несовместна
x=T,R=S,x входит в S или T	T не содержит x	$x = T, R[x \coloneqq T] = S[x \coloneqq T]$
	T содержит x	система несовместна

Утверждение 3.4. Последовательное применение правил либо за конечное число шагов приведёт систему в разрешённый вид, либо сделает её несовместной.

Доказательство. **ТОДО** Пусть (n_1, n_2, n_3) — характеристика системы, где n_1 — количество переменных не входящих слева в систему слева от знака равенства только один раз, n_2 — общее количество вхождений функциональных символов в S, n_3 — количество выражений вида x = x или T = x. Каждое преобразование уменьшает эту тройку (если сравнивать лексикографически).

Теорема 3.5. Задача вывода типа в λ -исчислении разрешима.

Доказательство. Опишем алгоритм.

Пусть нам дан λ -терм M. Рекурсивно построим по нему систему уравнений E_m :

$M \equiv x$	$E_m = \{\}$	$\tau_m = \alpha$ — новая переменная.
$M \equiv PR$	$E_m = E_p \cup E_r \cup \{\tau_p = \tau_r \to \pi\}$	$ au_m=\pi$
$M \equiv \lambda x. P$	$E_m = E_p$	$\tau_m = \tau_x \to \tau_p$

Решим построенную систему уравнений.

Можно показать, что алгоритм корректный.

 Π ример. \mathbf{TODO}

3.2 Про ложь

ТООО послушать запись.

4 Система F

Обычное λ -исчисление позволяет слишком много, просто-типизированное — слишком мало ((-1) не выразим). Хотелось бы золотую середину.

4.1 Интуиционистское исчисление предикатов второго порядка

Определение.

$$\Phi ::= (\Phi) \mid p \mid \Phi \to \Phi \mid \forall p. \Phi \underbrace{\mid \exists p. \Phi \mid \bot \mid \Phi \& \Phi \mid \Phi \lor \Phi}_{\text{He существенные}}$$

Введение кванторов:

$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \forall p.\varphi} \ p \not \in \mathrm{FV}(\Gamma) \qquad \frac{\Gamma \vdash \varphi \left[p \coloneqq \psi \right]}{\Gamma \vdash \exists p.\varphi}$$

Удаление кванторов:

$$\frac{\Gamma \vdash \forall p.\varphi}{\Gamma \vdash \varphi \left[p := \sigma\right]} \qquad \frac{\Gamma \vdash \exists p.\varphi \qquad \Gamma, \varphi \vdash \psi}{\Gamma \vdash \psi} \ p \notin \mathrm{FV}(\Gamma, \psi)$$

Последние четыре связки можно выразить через первые:

$$\bot \equiv \forall p.p$$

$$\varphi \& \psi \equiv \forall a.((\varphi \to \psi \to a) \to a)$$

$$\varphi \lor \psi \equiv \forall a.(\varphi \to a) \to (\psi \to a) \to a$$

$$\exists x.\tau \equiv \forall a.(\forall x.\tau \to a) \to a$$

4.2 Система F

Определение (Тип в системе F).

$$\tau = \begin{cases} \alpha, \beta, \gamma, \dots & \text{(атомарный тип)} \\ \tau \to \sigma & \\ \forall \alpha. \tau & \text{(α-переменнная)} \end{cases}$$

Определение (Исчисление по Чёрчу в системе F).

$$\mathbf{\Lambda} ::= x \mid \lambda p^{\alpha}.\mathbf{\Lambda} \mid \mathbf{\Lambda} \mathbf{\Lambda} \mid (\mathbf{\Lambda}) \mid \Lambda \alpha.\mathbf{\Lambda} \mid \mathbf{\Lambda} \tau$$

 $\Lambda \alpha. \Lambda$ — типовая (полиморфная абстракция), $\Lambda \tau$ — применение типа. Правила вывода:

$$\frac{\Gamma \vdash M : \tau \to \sigma \quad \Gamma \vdash N : \tau}{\Gamma \vdash MN : \sigma} \qquad \frac{\Gamma, x : \tau \vdash M : \sigma}{\Gamma \vdash \lambda x^{\tau}.M : \tau \to \sigma} \quad (x \notin \text{dom}(\Gamma))$$

$$\frac{\Gamma \vdash M : \sigma}{\Gamma \vdash \Lambda \alpha.M : \forall \alpha : \sigma} \quad x \in \text{FV}(\Gamma) \qquad \frac{\Gamma \vdash M : \forall \alpha.\sigma}{\Gamma \vdash M\tau : \sigma[\alpha := \tau]} \quad (\text{подстановка типа})$$

Пример. Левая проекция:

Просто типизированное λ -исчисление Система F Тип $\pi_1: \alpha \& \beta \to \alpha$ $\pi_1: \forall \alpha. \forall \beta. \alpha \& \beta \to \alpha$ Выражение $\pi_1 = \lambda p. pT$ $\pi_1 = \Lambda \varphi. \Lambda \psi. \lambda p^{\varphi \& \psi}. pT$

Определение (β -редукция в F).

(a) Типовая редукция: $(\Lambda \alpha. M^{\sigma}) \tau \rightarrow_{\beta} M[\alpha := \tau] : \sigma[\alpha := \tau]$

(б) Классическая β -редукция: $(\lambda x^{\sigma}.M)^{\sigma \to \tau} X \to_{\beta} M[x := X] : \tau$

Теорема 4.1 (Изоморфизм Карри-Ховарда). $\Gamma \vdash_F M : \tau$ *т.и.т.т., когда* $|\Gamma| \vdash \tau$ *в интуиционистском исчислении предикатов второго порядка.*

Теорема 4.2. *F сильно нормализуемо*.

TODO

4.3 Экзистенциальные тип

Допустим, у нас есть абстрактный тип данных «Стек»:

empty : α

 $\mathrm{push} \quad : \alpha \ \& \ \nu \to \alpha$

pop : $\alpha \to \alpha \& \nu$

Можно попробовать сказать это так: «stack : $\alpha \& (\alpha \& \nu \to \alpha) \& (\alpha \to \alpha \& \nu)$ ». Но проблема в том, что у нас есть только интерфейс стека, а не его реализация. Поэтому лучше будет сказать так: $\exists \alpha.\alpha \& (\alpha \& \nu \to \alpha) \& (\alpha \to \alpha \& \nu)$. То есть существует какое-то α , реазизовывающее требуемый интерфейс.

По аналогии с правилом удаления квантора существования, можно определить правила вывода для выражений экзистенциальных типов:

$$\frac{\Gamma \vdash M : \varphi[\alpha := \theta]}{\Gamma \vdash (\mathbf{pack} \ M, \theta \ \mathbf{to} \ \exists \alpha. \varphi) : \exists \alpha. \varphi} \qquad \frac{\Gamma \vdash M : \exists \alpha. \varphi \qquad \Gamma, x : \varphi \vdash N : \psi}{\Gamma \vdash \ \mathbf{abstype} \ \alpha \ \mathbf{with} \ x : \varphi \ \mathbf{in} \ M \ \mathbf{is} \ N : \psi} \ \alpha \not \in \mathrm{FV}(\Gamma, \psi)$$

Пример. ТООО нормально написать пример со стеком.

Если вспомнить, что квантор существования выразим через квантор всеобщности $(\exists \alpha.x \equiv \forall \beta.(\forall \alpha.x \rightarrow \beta) \rightarrow \beta)$, то можно попытаться записать типы выражений **pack** и **abstype** через квантор существования и выразить их без расширения языка.

$$\mathbf{pack} \ M, \theta \ \mathbf{to} \ \exists \alpha. \varphi = \Lambda \beta. \lambda x^{\forall \alpha. \varphi \to \beta}. (x \theta M)$$

$$\mathbf{abstype} \ \alpha \ \mathbf{with} \ x : \varphi \ \mathbf{in} \ M \ \mathbf{is} \ N^{\psi} = M \psi (\Lambda \alpha. \lambda x^{\varphi}. N)$$

Можно показать, что abstype α with $x : \sigma$ in (pack M, τ to $\exists \alpha.\sigma$) is $N \twoheadrightarrow_{\beta} N[\alpha \coloneqq \tau][x \coloneqq M]$. **TODO** Пример. **TODO**

Утверждение 4.3. Г сильно нормализуемо.

Утверждение 4.4. Г неразрешима.

Ни одна из задач λ -исчисления в системе F не разрешима, даже задача проверки типизации. Доказать это можно через сведение к проблеме останова.

Итак, мы попытались добавить к типизированному λ -исчислению абстрактные типы данных, и получили слишком сложный язык. Давайте попробуем немного его упростить, чтобы с ним можно было работать.

4.4 Типовая система Хиндли-Милнера

Определение (Ранг типа).

$$\mathrm{rk}(\tau) = \begin{cases} \max(\mathrm{rk}(\sigma) + 1, \mathrm{rk}(\rho)) & \tau \equiv \sigma \to \rho, \text{ если } \sigma \text{ содержит } \forall \\ \mathrm{rk}(\rho) & \tau \equiv \sigma \to \rho, \text{ если } \sigma \text{ не содержит } \forall \\ 0 & \tau \equiv \alpha \\ \max(\mathrm{rk}(\rho), 1) & \tau \equiv \forall \alpha. \rho \end{cases}$$

Определение.

Тип (монотип) — выражение в грамматике $\tau := \alpha \mid \tau \to \tau \mid (\tau)$.

Типовая схема (политип) — выражение в грамматике $\sigma := \tau \mid \forall \alpha. \sigma$.

Утверждение 4.5. $rk(\tau) = 0$, $rk(\sigma) = 1$.

Пример. Ранг экзистенциального типа

$$\begin{aligned} \operatorname{rk}(\exists \alpha.\beta) &= \operatorname{rk}(\forall \gamma.(\forall \alpha.\beta \to \gamma) \to \gamma) \\ &= \max(\operatorname{rk}((\forall \alpha.\beta \to \gamma) \to \gamma), 1) \\ &= \max(\max(\operatorname{rk}(\forall \alpha.\beta \to \gamma) + 1, \operatorname{rk}(\gamma)), 1) \\ &= \max(\max(2,0), 1) = 2 \end{aligned}$$

Определение. σ_1 — подтип σ_2 , если существует подстановка $[\alpha_1 \coloneqq \theta_1, \alpha_2 \coloneqq \theta_2 \dots \alpha_n \coloneqq \theta_n]$:

1.
$$\sigma_1 = \forall \beta_1 \dots \forall \beta_k. \tau [\alpha_1 \coloneqq \theta_1 \dots \alpha_n \coloneqq \theta_n], \, \alpha_i$$
 не входит свободно в θ_j .

2.
$$\sigma_2 = \forall \alpha_1 \dots \forall \alpha_n \tau$$

Определение (Правила вывода в системе Хиндли-Милнера).

$$\frac{\Gamma \vdash e : \sigma}{\Gamma, x : \sigma \vdash x : \sigma} \text{ (Аксиома)} \qquad \frac{\Gamma \vdash e : \sigma}{\Gamma \vdash e : \sigma'} \text{ (Уточнение), } \sigma_1 - \text{подтип } \sigma$$

$$\frac{\Gamma \vdash e : \sigma}{\Gamma \vdash e : \forall \alpha. \sigma} \text{ (Обобщение), } \sigma \notin \text{FV}(\Gamma) \qquad \frac{\Gamma, x : \tau' \vdash e : \tau}{\Gamma \vdash \lambda x. e : \tau' \to \tau} \text{ (Абстракция)}$$

$$\frac{\Gamma \vdash e : \tau' \to \tau \qquad \Gamma \vdash e' : \tau'}{\Gamma \vdash ee' : \tau} \text{ (Подстановка, применение)} \qquad \frac{\Gamma \vdash e : \sigma \qquad \Gamma \setminus \{x\}, x : \sigma \vdash e' : \tau}{\Gamma \vdash \textbf{let} \ x = e \ \textbf{in} \ e' = \tau} \text{ (Let)}$$

ТООО попросить у Д.Г. оригинальную статью.

Грамматика выражения выглядит следующим образом:

$$\Lambda ::= x \mid \lambda x.\Lambda \mid \Lambda\Lambda \mid (\Lambda) \mid \mathbf{let} \ x = \Lambda \ \mathbf{in} \ \Lambda$$

4.5 Алгоритм W

Утверждение 4.6. Задача вывода типа в X-M разрешима.

Обозначения: $\overline{\Gamma(\tau)} = \forall \alpha_1 \dots \forall \alpha_n . \tau$, где $\alpha_1 \dots \alpha_n \notin \mathrm{FV}(\Gamma)$ (замыкание всех несвязанных переменных); $\Gamma_x = \Gamma \setminus \{x\}$.

Определим $W(\Gamma, e) = (S, \tau)$, принимающую контекст и выражение, и возвращающую такую подстановку и тип, что $S(\Gamma) \vdash e : \tau$.

$$e \equiv x \qquad x: \forall \alpha_1 \dots \alpha_k. \tau' \in \Gamma \qquad S' = \mathrm{Id}$$

$$e \equiv e_1 e_2 \qquad W(\Gamma, e_2) = (S_2, \tau_2) \qquad (V(S_1 \circ S_2), V(\beta))$$

$$W(S_2(\Gamma), e_1) = (S_1, \tau_1)$$

$$U(S_1(\tau_1), \tau_2 \to \beta) = V, \text{ где } \beta - \text{ новый тип}$$

$$e \equiv \lambda x. e \qquad W(\Gamma_x \cup \{x: \beta\}, e) = (S_1, \tau_1), \beta - \text{ новый тип} \qquad (S_1, S_1(\beta \to \tau_1)).$$

$$e \equiv \det x = e_1 \text{ in } e_2 \qquad W(\Gamma, e_1) = (S_1, \tau_1) \qquad (S_2 \circ S_1, \tau_2)$$

$$W(S_1(\Gamma_x \cup \{x: S_1(\overline{\Gamma(\tau_1)})\}), e_2) = (S_2, \tau_2)$$

торо примеры

5 Линейные и уникальные типы

Пусть $A \to_{\beta} A'$. С одной стороны, порядок редукции не важен, $(\lambda x.xx)A \to_{\beta} (\lambda x.xx)A' \to_{\beta} A'A'$ и $(\lambda x.xx)A \to_{\beta} AA \to_{\beta} A'A' \to_{\beta} A'A'$. По теореме Чёрча-Россера нормальная форма единственна, если существует. С другой стороны, реальный мир на самом деле не таков, в нём есть побочные эффекты.

5.1 Комбинаторы

Рассмотрим комбинаторные логики Моисея Шейнфинкеля и Хаскелла Карри: Моисей Шейнфинкель:

I Identität

K Konstanz

S VerSchmelzung

T VerTauschung

Хаскел Карри:

$$B = \lambda xyz.x(yz)$$

$$C = \lambda xyz.xzy$$

$$K = \lambda xy.x$$

$$W = \lambda xy.xyy$$

Докажем 1.11. Определим $T: \Lambda \to \Lambda_{SK} \cup \{$ свободные переменные $\}$:

$$T[x] = x$$

$$T[AB] = T[A] \ T[B]$$

$$T[\lambda x.P] = K \ T[P], \text{ если } x \notin FV(P)$$

$$T[\lambda x.x] = I =_{\beta} SKK$$

$$T[\lambda x.AB] = S \ T[\lambda x.A] \ T[\lambda x.B]$$

$$T[\lambda x.\lambda y.A] = T[\lambda x.T[\lambda y.A]]$$

 $T[\lambda$ -выражение] завершается и не содержит абстракций. Можно показать, что $T[A] =_{\beta} A$.

Можно доказать аналогичную теорему для комбинаторов B, C, K, W, выразив через них S и K: K = K, S = B(BW)(BBC), I = CKK.

А теперь выведем типы у S и K:

$$S = \lambda xyz.xz(yz) : (\alpha \to \beta \to \gamma) \to (\alpha \to \beta) \to (\alpha \to \gamma)$$

$$K = \lambda xy.x : \alpha \to \beta \to \alpha$$

Это похоже на вторую и первую схемы аксиом в ИИВ.

Базис BCKWI по изоморфизму Карри-Ховарда порождает интуиционистскую логику. Можно рассматривать исчисления, прорджённые базисами BCKI и BCI.

$$I: \alpha \to \alpha$$

$$B: (\alpha \to \beta) \to (\beta \to \gamma) \to (\alpha \to \gamma)$$

$$C: (\alpha \to \beta \to \gamma) \to (\beta \to \alpha \to \gamma)$$

$$K: \alpha \to \beta \to \alpha$$

$$W: (\alpha \to \alpha \to \beta) \to (\alpha \to \beta)$$

Сейчас мы выпишем какое-то исчисление.

$$\frac{\Gamma \vdash A \qquad \Gamma \vdash B}{\Gamma \vdash A \times B} \qquad \frac{\Gamma \vdash A \times B}{\Gamma \vdash A} \qquad \frac{\Gamma \vdash A \times B}{\Gamma \vdash B}$$

торо шенька

5.2 Линейные высказывания

Определение.

$$T ::= x \mid T \multimap T \mid T \otimes T \mid T \& T \mid T \oplus T \mid !T$$

Контексты двух сортов. $\langle A \rangle$ — линейный, [A] — интуиционистский.

$$\frac{}{\langle A \rangle \vdash A} \qquad \frac{\Gamma, \Delta \vdash A}{[A] \vdash A} \qquad \frac{\Gamma, [A], [A] \vdash B}{\Delta, \Gamma \vdash A} \qquad \frac{\Gamma, [A], [A] \vdash B}{\Gamma, [A] \vdash B} \qquad \frac{\Gamma \vdash B}{\Gamma, [A] \vdash B}$$

Докажем закон Де-Моргана:

$$\frac{ \overline{[A \& B] \vdash A \& B} }{ \overline{[A \& B] \vdash A} } \qquad \frac{ \overline{[A \& B] \vdash A \& B} }{ \overline{[A \& B] \vdash B} }$$

$$\overline{[A \& B] \vdash !A} \qquad \overline{[A \& B] \vdash !B}$$

$$\overline{[A \& B] \vdash !A \otimes !B}$$

$$\overline{[A \& B] \vdash !A \otimes !B}$$

$$\overline{[A \& B] \vdash !A \otimes !B}$$

$$\overline{(A \& B) \vdash !A \otimes !B}$$

$$\overline{(A \& B) \vdash !A \otimes !B}$$

Вложение интуиционистских связок в нашу логику:

$$A \rightarrow B = !A \multimap B$$
$$A \times B = A \& B$$
$$A + B = !A \oplus !B$$

Также можно вкладывать $A \times B$ как $!A \otimes !B$.