Bayesian Fama-French Portfolio Analysis

Nick Zehnle

Background and Motivation

- Interested in analyzing portfolio excess returns (alpha) as a Bayesian
- We use the Fama-French 5-factor model including long-term reversals and momentum
- Some limitations of Fama-French
 - Difficult to find statistically significant alpha for daily returns
 - Monthly returns generally require long lookback periods to ensure enough data points
- In literature, it is common to hear that small-cap, high-value portfolios tend to display significant alpha
- Our goal is to perform a more in-depth Bayesian analysis of alpha for a small-cap, high-value portfolio over the past 10 years (only 120 data points monthly)

Fama-French 5-Factor Model

$$R_{it} - R_{ft} = \alpha_{it} + \beta_1 (R_{mt} - R_{ft}) + \beta_2 SML_t + \beta_3 VMG_t + \beta_4 RMW_t + \beta_5 CMA_t + \epsilon_t$$

Where,

 R_{it} = total return of a portfolio i at time t

 R_{ft} = risk free rate of return at time t

 R_{mt} = total market portfolio return at time t

 SML_t = size premium (small minus large)

 VMG_t = value premium (value minus growth)

 RMW_t = profitability premium reclassified as the quality premium

 CMA_t = investment conservatism premium reclassified as the momentum premium

 $\beta_{1,2,3,4,5}$ = factor coefficients

* Note in our data HML (high minus low) is the same as VMG here

Data Retrieval

- All data is retrieved from the Kenneth French website
- The small, high book-to-market portfolio is selected due to its greater tendency to showcase significant positive alpha
- Returns and factors are monthly

*	Date ‡	SMALL_HIBM [‡]	LT_Rev [‡]	Mom [‡]	Mkt [‡]	SMB ‡	HML ‡	RMW [‡]	CMA [‡]
1	2015-01	-3.3593	-3.34	3.84	-3.11	-0.92	-3.59	1.61	-1.65
2	2015-02	3.6986	-2.04	-2.82	6.13	0.32	-1.86	-1.12	-1.82
3	2015-03	1.7875	-2.52	2.74	-1.12	3.07	-0.38	0.09	-0.52

Data Exploration: Distribution

Histogram of Small, High B-M Returns

Histogram of Market Returns

Data Exploration: Pairs Plot

Data Exploration: Pairs Plot Continued

Outline

- Provide frequentist linear regression as baseline
- Use Stochastic Search Variable Selection (SSVS) in Bayesian linear regression
- Investigate time-varying alpha by implementing a random walk for the alpha prior
- Bayesian LASSO is adopted whenever possible (double exponential beta priors) for more robust alpha estimates
- Time-varying beta is considered (random walk for beta priors)
- K-means clustering is applied to separate data into 4 types of market regimes and then random effects for the regimes are added

Frequentist Linear Model and SSVS

```
Std. Error t value Pr(>|t|)
         Estimate
                 0.25503 1.196 0.234394
(Intercept) 0.30491
                                                            Inc Prob 50% 5% 95%
LT Rev
         0.47845  0.12776  3.745  0.000287***
                                                              1.00
                                                                   0.27
                                                                         -0.14
                                                      alpha
                                                                               0.69
Mom
        -0.07107 0.07403 -0.960 0.339081
                                                      LT Rev
                                                              1.00
                                                                    0.58
                                                                         0.35
                                                                               0.78
Mkt
        0.89493
                 0.06269 14.275 < 2e-16***
                                                              0.12
                                                                   0.00
                                                      Mom
                                                                         -0.09
                                                                               0.00
                                                      Mkt
                                                              1.00
                                                                   0.88
                                                                         0.79
                                                                               0.98
                 0.11116 9.376 9.12e-16***
SMB
        1.04225
                                                                    1.06
                                                      SMB
                                                              1.00
                                                                         0.90
                                                                               1.22
                 0.10728 0.247 0.805700
HML
        0.02645
                                                                               0.12
                                                      HML
                                                              0.14
                                                                    0.00
                                                                         0.00
RMW
        -0.09605 0.14010 -0.686 0.494387
                                                      RMW
                                                              0.14
                                                                    0.00
                                                                         -0.11
                                                                                0.00
                                                              0.61
                                                                    0.18
                 0.16535 2.031 0.044589*
                                                      CMA
                                                                          0.00
                                                                                0.51
CMA
        0.33589
```

Residual standard error: 2.658 on 112 degrees of freedom

Multiple R-squared: 0.8761, Adjusted R-squared: 0.8684

F-statistic: 113.2 on 7 and 112 DF, p-value: < 2.2e-16

Models Investigated

- Linear Model after SSVS
- Time-Varying Alpha LASSO Model
- Time-Varying Alpha and Beta Model
- Time-Varying Alpha LASSO Model with Regime Random Effects
- Time-Varying Alpha and Beta Model with Regime Random Effects

Market Regime Random Effects

- Applied K-means clustering to separate data into 4 market regimes
- The features used to cluster the data are derived from the market factor:
 - Current market return
 - 3-month rolling market volatility
 - 3-month momentum
- Market regimes:
 - Volatile bull
 - Non-volatile bull
 - Volatile bear
 - Non-volatile bear

Model Comparison

	Penalty term for Watanabe-Akaike Information	Watanabe-Akaike Information
Model	Criterion (WAIC)	Criterion
Linear with SSVS	8.058412	583.1164
Time-Varying Alpha LASSO	14.96284	584.2297
Time-Varying Alpha and Beta	47.097	563.321
Time-Varying Alpha LASSO with Regime Random		
Effects	16.432	574.651
Time-Varying Alpha and Beta with Regime Random		
Effects	48.02771	538.1327

Selected Model: Goodness of Fit

Selected Model: Alpha Analysis

Probability of Positive Alpha over Time

Posterior of Mean Alpha

Selected Model: Beta Analysis

Implications

- Portfolio exposures are not constant over time and neither are excess returns
 - Portfolio exposures are likely mean-reverting
- Our Bayesian time-varying analysis provides more valuable insight
 - Probability of positive alpha for each month
 - Posterior distribution of alpha
 - Time-dependent path of alpha on average

Further Research

- Although Fama-French factors tend to display linear relationships, adding polynomial or interaction terms could be a logical extension
- Daily returns could be analyzed instead of monthly returns
- Ornstein-Uhlenbeck process for betas since they appear mean-reverting
- More informative beta priors; e.g. Normal(1, 0.01) for the market factor
- Time-series analysis of alpha path; e.g. ARIMA to forecast alpha or other models to conduct stress tests on alpha
- Hidden Markov Model (HMM) could be trained on past data to determine market regimes

Thank you!