Legea	Denumirea	Valoarea medie şi dispersia
$\mathcal{U}\left(N ight)$	unid	$E(X) = \frac{N+1}{2}, Var(X) = \frac{N^2-1}{12}$
$\mathcal{B}(n,p)$	bino	E(X) = np, Var(X) = np(1-p)
$\mathcal{H}(n,M,K)$	hyge	$E(X) = n \frac{K}{M}, Var(X) = n \frac{K}{M} \frac{M-K}{M} \frac{M-n}{M-1}$
$\mathcal{P}o\left(\lambda ight)$	poiss	$E(X) = \lambda, Var(X) = \lambda$
$\mathcal{BN}\left(r,p ight)$	nbin	$E(X) = \frac{r(1-p)}{p}, Var(X) = \frac{r(1-p)}{p^2}$
$\mathcal{G}e\left(p ight)$	geo	$E(X) = \frac{1-p}{p}, Var(X) = \frac{1-p}{p^2}$
$\mathcal{U}(a,b)$	unif	$E(X) = \frac{a+b}{2}, Var(X) = \frac{(b-a)^2}{12}$
$\mathcal{N}\left(\mu,\sigma ight)$	norm	$E(X) = \mu, Var(X) = \sigma^2$
$\mathcal{LN}\left(\mu,\sigma ight)$	logn	$E(X) = e^{\mu + \frac{\sigma^2}{2}}, Var(X) = e^{2\mu + 2\sigma^2} - e^{2\mu + \sigma^2}$
$\mathcal{G}a\left(a,b ight)$	gam	$E(X) = ab, Var(X) = ab^{2}$
$\mathcal{E}xp\left(\mu\right)$	exp	$E(X) = \mu, Var(X) = \mu^2$
$\mathcal{B}eta\left(a,b ight)$	beta	$E(X) = \frac{a}{a+b}, Var(X) = \frac{ab}{(a+b+1)(a+b)^2}$
$\mathcal{W}\left(a,b ight)$	weib	$E(X) = a^{-\frac{1}{b}} \Gamma\left(1 + \frac{1}{b}\right),$
		$Var\left(X ight) = a^{-rac{2}{b}}\left[\Gamma\left(1+rac{2}{b} ight) - \Gamma^{2}\left(1+rac{1}{b} ight) ight]$
$\mathcal{R}(b)$	rayl	$E(X) = b\sqrt{\frac{\pi}{2}}, Var(X) = \frac{4-\pi}{2}b^2$
$\mathcal{T}(n)$	t	$E(X) = 0, Var(X) = \frac{n}{n-2}, n > 2$
$\mathcal{T}nc\left(n,\delta ight)$	nct	$E(X) = \frac{\delta\sqrt{\frac{n}{2}}\Gamma(\frac{n-1}{2})}{\Gamma(\frac{n}{2})},$
		$Var\left(X ight) = rac{n\left(1+\delta^2 ight)}{n-2} - rac{n\delta^2}{2} \left[rac{\Gamma\left(rac{n-1}{2} ight)}{\Gamma\left(rac{n}{2} ight)} ight]^2, n > 2$
$\chi^{2}\left(n ight)$	chi2	E(X) = n, Var(X) = 2n
$\chi^{2}\left(n,\delta ight)$	ncx2	$E(X) = n + \delta, Var(X) = 2(n + 2\delta)$
$\mathcal{F}(m,n)$	f	$E(X) = \frac{n}{n-2}, \ n > 2,$
		$Var(X) = \frac{2n^{2}(m+n-2)}{m(n-2)^{2}(n-4)}, \ n > 4$
$\mathcal{F}nc\left(m,n,\delta ight)$	ncf	$E(X) = \frac{n(m+\delta)}{m(n-2)}, \ n > 2,$
		$Var(X) = 2\left(\frac{n}{m}\right)^2 \frac{(m+\delta)^2 + (m+2\delta)(n-2)}{(n-2)^2(n-4)}, \ n > 4$

Tabelul 2.1: Tabelul valorilor medii şi dispersiilor