INTÉGRALE DE WIENER

Dans toute cette feuille, on considère un espace filtré $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ sur lequel est défini un $(\mathcal{F}_t)_{t\geq 0}$ —mouvement brownien $(B_t)_{t\geq 0}$.

Exercice 1 (Propriétés générales). Δ Soit f une fonction continue de $\mathbb R$ dans $\mathbb R$. Pour $t \geq 0$ on pose

$$M_t := \int_0^t f(s) \, \mathrm{d}B_s.$$

1. Montrer que $(M_t)_{t>0}$ est un processus gaussien à accroissements indépendants.

 M_t est un processus Gaussien comme limite de processus gaussiens. Pour a < b < c < d, il est facile de voir que $M_b - M_a$ est mesurable par rapport à $(B_t - B_a)_{a \le t \le b}$ et de même pour $M_d - M_c$. Comme les incréments du browniens sont indépendants, on a en particulier que $M_b - M_a$ et $M_d - M_c$ sont indépendants. Par ailleurs, on a que $M_d - M_b = \lim_{c \to b} M_d - M_c$ (ps d'après la continuité de M) donc $M_d - M_b$ est bien aussi indépendant de $M_b - M_a$.

2. Montrer que $(M_t)_{t>0}$ est une martingale.

Trivial par indépendance des incréments et le fait que l'espérance soit nulle.

3. Construire une martingale à partir de $(M_t^2)_{t>0}$

On veut calculer $\mathrm{Var}(M_t)$ dans un premier temps. On admet qu'il suffit de considérer le cas d'un f continu. On revient à la définition comme limite, soit $M_t^{(n)} = \sum f(\frac{ti}{n})[B_{\frac{ti}{n}} - B_{\frac{t(i-1)}{n}}]$, on a $\mathrm{Var}(M_t^{(n)}) = \sum f^2(\frac{ti}{n})\frac{t}{n}$ donc par la théorie de l'intégrale de Riemann, $\mathrm{Var}(M_t^{(n)}) \to \int_0^n f^2$. Maintenant comme M est une martingale, on remarque que $\mathbb{E}(M_{t+s}^2 \mid \mathcal{F}_t) = M_t^2 + \mathbb{E}[(\int_t t + sfdB)^2] = M_t^2 + \int_t^{t+s} f^2$ et donc $M_t^2 - \int_0^t f^2$ est une martingale.

4. Soit $\theta \in \mathbb{C}$. Construire une martingale à partir de $(e^{\theta M_t})_{t>0}$.

Comme ci-dessus par indépendance des incréments, on a $\mathbb{E}(e^{\theta M_{t+s}} \mid \mathcal{F}_t) = e^{\theta M_t} \mathbb{E}(e^{\theta (M_{t+s}-M_t)})$. Comme $M_{t+s}-M_t$ est une gaussienne d'espérance nulle et de variance connue, on voit que

$$\mathbb{E}(e^{\theta M_{t+s}} \mid \mathcal{F}_t) = e^{\theta M_t} e^{\frac{1}{2}\theta^2 \int_t^{t+s} f^2}$$

et donc $e^{\theta M_t - \frac{\theta^2}{2} \int_0^t f^2}$ est une martingale.

5. Pour quels choix de f le processus $(M_t)_{t>0}$ est-il un mouvement brownien?

On voit que pour que M soit un mouvement Brownien, on doit avoir $\int_0^t f^2 = t$ pour tout t. Cela implique $f^2 = 1$ pour presque tout t. Comme la fonction caractéristique caractérise la loi, la réciproque est aussi vraie donc on voit que M est un mouvement brownien si et seulement si f est à valeur dans $\{-1,1\}$ presque partout.

6. Soit $g \in L^2_{loc}(\mathbb{R}_+)$ et $N_t := \int_0^t g(s) \, \mathrm{d} B_s$. À quelle condition $(M_t)_{t \geq 0}$ et $(N_t)_{t \geq 0}$ sont-ils indépendants?

À nouveau en discrétisant les intégrales de Wiener en utilisant les mêmes intervalles, on voit comme dans la question 3 que $\mathrm{Cov}(M_t,N_t)=\int_0^t fg$. Les processus sont donc indépendants si et seulement si f(t)g(t)=0 pour presque tout t, c.a.d si f et g ont des supports disjoints.

7. On suppose maintenant seulement que $f \in L^2_{loc}(\mathbb{R}_+)$, esquisser pourquoi les résultats précédents sont toujours valables.

Il s'agit principalement de rappeler comment l'intégrale de Wiener peut s'étendre à $f \in L^2_{\mathrm{loc}}(\mathbb{R}_+)$. La première observation (liée au calcul de variance dans la question 3) est que $\mathbb{E}|\int_0^t f(s)dB_s - \int_0^t g(s)dB_s| = \int_0^t |f-g|ds$, où en d'autre terme que l'intégrale de Wiener est un isomorphisme entre $L^2(\Omega)$ et $L^2([0,t])$. On peut donc définir l'intégrale pour $f \in L^2_{\mathrm{loc}}(\mathbb{R}_+)$ et par densité et tous les calculs de variance s'étendent à ce cas par construction. La limite reste un processus gaussien comme limite en loi de processus gaussiens.

Exercice 2 (Exemple). Que dire du processus $(X_t)_{t\geq 0}$ défini par la formule suivante?

$$X_t := \int_0^{\sqrt{t}} \sqrt{2s} \, \mathrm{d}B_s.$$

 X_t est un changement de temps dans une intégrale de Wiener donc d'après les points 1 et 2 de l'exercice 1, c'est un processus gaussien à accroissement indépendants et une martingale. On a par ailleurs que $\mathrm{Var}(X_t) = \int_0^{\sqrt{t}} 2s ds = t$ donc X est un mouvement Brownien.

Exercice 3 (Pont brownien). Soit $(a,b) \in \mathbb{R}^2$. On considère le processus $(Z_t)_{0 \le t < 1}$ défini par

$$Z_t := a(1-t) + bt + (1-t) \int_0^t \frac{1}{1-s} dB_s \qquad (0 \le t < 1).$$

1. Montrer que $(Z_t)_{0 \le t \le 1}$ est un processus gaussien dont on explicitera les paramètres.

D'après l'exercice 1, la partie intégrale stochastique est un processus gaussien à accroissements indépendants et de variance connue. Par stabilité par combinaison linéaire, Z_t est toujours un processus gaussien et vérifie $\mathbb{E}(Z_t) = a(1-t) + bt$ et

$$Var(Z_t) = (1-t)^2 Var(\int_0^t \frac{1}{(1-s)} dBs) = (1-t)^2 \left[\frac{1}{1-s}\right]_0^t = t(1-t).$$

et pour t < t'

$$Cov(Z_t, Z_{t'}) = (1-t)(1-t') Cov(\int_0^t \dots, \int_0^t \dots + \int_0^{t'} \dots) = (1-t)(1-t') Var(\int_0^t \dots) = t(1-t').$$

2. Que dire de ce processus dans le cas a = b = 0?

On l'a déjà vu dans une feuille précédente. On peut l'écrire en loi comme $Z_t = B_t - tB_1$.

3. Montrer que lorsque $t \to 1$, on a $Z_t \to b$ au sens de la convergence L^2 .

On a déjà calculé que l'espérance tends vers b et que la variance tends vers 0.

4. Montrer que la convergence a en fait lieu presque-sûrement.

On sait qu'il existe une version du processus qui est continue presque sûrement en 1 et pour cette version la convergence a clairement lieu presque sûrement. Comme la convergence ne dépend que de la loi restreinte à [0,1), la convergence doit être vraie pour toute version du processus. (C'est le même argument qu'on avait utilisé pour le mouvement brownien dans la feuille 3).

Exercice 4 (Processus d'Ornstein-Uhlenbeck). Δ Soit V_0 une variable aléatoire réelle indépendante de $(B_t)_{t\geq 0}$, et $b,\sigma>0$. On définit un processus $(V_t)_{t\geq 0}$ par

$$V_t := e^{-bt} \left(V_0 + \sigma \int_0^t e^{bs} \, \mathrm{d}B_s \right).$$

1. Montrer que V_t converge en loi lorsque $t \to \infty$, et déterminer la limite.

On sait que $V_t - e^{-bt}$ est un processus Gaussien. On a $\mathbb{E}(V_t - e^{-bt}) = 0$ et $\mathrm{Var}(V_t - e^{-bt}) = e^{-2bt}\sigma^2 \int_0^t e^{2bs} = \sigma^2(1 - e^{-2bt})$. D'après le critère de convergence des gaussiennes, $V_t - e^{-2bt}V_0 \to N(0,\sigma^2/2b)$ ce qui conclue car clairement $e^{-2bt}V_0 \to 0$ en loi.

2. On suppose désormais que $V_0 \sim \mathcal{N}\left(0, \frac{\sigma^2}{2b}\right)$. Montrer que $(V_t)_{t\geq 0}$ est un processus gaussien stationnaire dont on précisera les paramètres.

Si V_0 est gaussien, clairement V_t est gaussien pour tout t. Le même calcul qu'à la question 1 montre que $V_t \sim N(0, \frac{\sigma^2}{2b})$ pour tout t. La covariance donne (pour t < t')

$$Cov(V_t, V_{t'}) = e^{-b(t+t')}[Var(V_0) + \sigma^2 Var(\int_0^t e^{bs} dB_s)] = \frac{\sigma^2}{2} e^{t'-t}.$$

Comme la matrice de covariance et l'espérance sont indépendantes par translation du temps, le processus est bien stationnaire.

3. Que dire du processus $(W_t)_{t\in\mathbb{R}}$ défini ci-dessous?

$$W_t := \frac{\sigma}{\sqrt{2b}} e^{-bt} B_{e^{2bt}}.$$

Un calcul direct des covariances montrer qu'il a la loi d'un processus d'Ornstein-Uhlenbeck.

Exercice 5 (Intégration par partie). Soit $f \in C^1(\mathbb{R}_+, \mathbb{R})$.

1. Établir que pour tout $t \ge 0$, on a presque-sûrement

$$\int_0^t f(s) dB_s + \int_0^t f'(s)B_s ds = f(t)B_t.$$

On reprend la définition de l'intégrale de Wiener comme une limite. Pour simplifier les notations on considère t=1. On remarque que

$$f(1)B_{1} = \sum_{i=1}^{n} f(\frac{i}{n})B_{\frac{i}{n}} - f(\frac{i-1}{n})B_{\frac{i-1}{n}}$$

$$= \sum_{i=1}^{n} f(\frac{i}{n})[B_{\frac{i}{n}} - B_{\frac{i-1}{n}}] + \sum_{i=1}^{n} [f(\frac{i}{n}) - f(\frac{i-1}{n})]B_{\frac{i-1}{n}}$$

$$= \sum_{i=1}^{n} f(\frac{i}{n})[B_{\frac{i}{n}} - B_{\frac{i-1}{n}}] + \frac{1}{n} \sum_{i=1}^{n} f'(\frac{i-1}{n})B_{\frac{i-1}{n}}$$

$$+ O(\sup_{|s-t| < 1/n} [f'(s) - f'(t)] \sup_{[0,1]} |B_{t}|)$$

Le premier terme converge d'après la théorie de l'intégrale de Wiener et le second d'après celle de l'intégrale de Riemann.

2. Sous les hypothèses supplémentaires $f(t) \xrightarrow[t \to \infty]{} 0$ et $\int_0^\infty |f'(t)| \sqrt{t} \ \mathrm{d}t < \infty$, en déduire

$$\int_{\mathbb{R}_+} f(s) dB_s = -\int_{\mathbb{R}_+} f'(s) B_s ds.$$

On remarque que des hypothèses supplémentaires sont forcément nécessaires pour garantir que $f(t)B_t$ tends vers 0 et que comme B_t devient de plus en plus grand, il ne peut pas être suffisant de juste dire $f(t) \to 0$. On remarque que $f(t) = -\int_t^\infty f'(s)ds$ donc

$$|f(t)| \le \frac{1}{\sqrt{t}} \int_{t}^{\infty} |f'(s)| \sqrt{s} ds$$
$$= o(\frac{1}{\sqrt{t}})$$

puisque le second terme est le reste d'une intégrale convergente. On a donc $f(t)B_t \rightarrow 0$ dans L^2 . Pour conclure il faudrait borner dans L^2 au moins l'une des intégrales. Clairement l'intégrale de Wiener est plus simple. On peut clairement commencer l'intégrale en 1 sans perte de généralité (pour éviter d'introduire une singularité avec des $1\sqrt{t}$)

$$\operatorname{Var}(\int_{1}^{t} f dB) = \int_{1}^{t} f^{2}(s) ds$$

$$\leq C \int_{1}^{t} \frac{f}{\sqrt{s}} ds$$

$$\leq C \int_{1}^{t} ds \int_{s}^{\infty} du \frac{|f'(u)|}{\sqrt{s}}$$

$$\leq C \int_{1}^{\infty} du |f'(u)| \int_{1}^{u \wedge t} ds \frac{1}{\sqrt{s}}$$

$$\leq C \int |f'(u) \sqrt{u} < \infty$$

où la constante C change de ligne en ligne. Les intégrales sont bien bornées dans L^2 donc elles ont du sens sur ℝ et on a l'égalité demandée.

Exercice 6 (Espace gaussien). Soit H^B l'espace gaussien engendré par $(B_t)_{t\geq 0}$:

$$H^B := \overline{\operatorname{Vect}(B_t \colon t \ge 0)}^{L^2(\Omega, \mathcal{A}, \mathbb{P})}.$$

1. Établir l'égalité

$$H^B = \left\{ \int_{\mathbb{R}_+} f(s) dB_s \colon f \in L^2(\mathbb{R}_+) \right\}.$$

Soit X de la forme $X=\int_{\mathbb{R}_+}f(s)dB_s$, par construction de l'intégrale de Wiener X est une limite de combinaison linéaire de variables B_t et X est dans L^2 donc $X\in H^B$. Réciproquement, on commence par écrire $Vect(B_t)$ sous forme d'intégrale de Wiener. Soit $X=\sum_{i=1}^n\alpha_iB_{t_i}$ avec sans perte de généralité t_i croissant. Clairement par un changement de base dans \mathbb{R}^n , on peut écrire $X=\sum_i\beta_i(B_{t_i}-B_{t_{i-1}})$ avec comme convention $B_0=0$. On a alors $X=\int fdB$ avec $f=\sum_i\beta_i1_{[t_{i-1},t_i]}$. Il suffit donc de vérifier que H^B est fermé dans L^2 . Si X^n est une suite de variables obtenues par intégrale de Wiener(i.e $f_n=\int f_n dB$) qui forme une suite de Cauchy dans $L^2(\mathbb{P})$, alors il est facile de voir que f_n est une suite de Cauchy dans $L^2(\mathbb{R}_+)$ et donc converge vers un certain $f\in L^2(\mathbb{R}_+)$. On vérifie enfin facilement que $X_n\to\int fdB$ dans L^2 , ce qui conclue.

- 2. Soit $X \in H^B$ et $f \in L^2(\mathbb{R}_+)$. Montrer l'équivalence des deux conditions suivantes :
 - (a) $X = \int_{\mathbb{R}_+} f(s) dB_s$
 - (b) $\mathbb{E}[XB_t] = \int_0^t f(s) \, ds$ pour tout $t \in \mathbb{R}$.

Pour passer de (a) à (b), si $X=\int f(s)dB_s$, alors on a $\mathbb{E}(XB_t)=\operatorname{Cov}(\int fdB,\int 1_{[0,t]}dB)=\int f1_{[0,t]}ds$ qui est bien la formule désirée. Pour passer de (b) à (a), soit X vérifiant le (b). Comme $X\in H^B$ on écrit $X=\int gdB$ et on a donc $\int_0^t f=\int_0^t g$ pour tout t. On a donc f=g presque partout et donc aussi $X=\int fdB$.