Later Author Guidelines for CVPR Proceedings

Anonymous CVPR submission

Paper ID ****

Abstract

pass

1. Introduction

The importance of our research area

Some progress in sketch based image retrieval

Difficulty in Zero-shot setup and some possible solutions

Our proposed methods and their advantages

itemize our contributions in this paper

- 2. Related Work
- 2.1. Sketch-based image retrieval
- 2.2. Zero-Shot Learning
- 2.3. Disentangled Representation

3. Methodology

There will be five parts in this section. Sec. 3.1 defines the our targeted problem and briefly introduce our framework. Sec.3.2 introduce the encoders in our model. Sec. 3.3 introduce the decoder in our model. Sec. 3.4 introduce the discriminator in our model. Sec. 3.5 introduce the design of loss functions during training procedure.

3.1. Problem Definition

In this paper, we focus on solving the problem of handfree sketch-based image retrieval using disentangled feature representation under zero-shot setup, where only the sketches and images from seen class are used during training stage. Our proposed framework is expected to use the sketchs to retrieve the images, the categories of which have never appeared during training. We first provide a definition of the SBIR in zero-shot setting. Given a dataset $S = \{(x_i^{img}, x_i^{ske}, x_i^{sem}, y_i) | y_i \in \mathcal{Y}\}$, where x_i^{img} , x_i^{ske} , x_i^{sem} and y_i are corresponding to the image, sketch, semantic representation and class label. Following the zero-shot setting in [2], we split all classes \mathcal{Y} into \mathcal{Y}_{train} and \mathcal{Y}_{test} according to whether the label exists in ImageNet[1], where no overlap exists between two label set, i.e. $\mathcal{Y}_{train} \cap \mathcal{Y}_{test} = \emptyset$. Based on the partition of label set \mathcal{Y} , we split dataset into S_{train} and S_{test} . Our model need to disentangle structure representations of image using data in S_{train} . During test, given x^{ske} from S_{test} , our model need to retrieve several images from test images candidate.

Our goal is to disentangle image structure features from image. The architecture of our proposed model shows in Figure $\ref{equation}$, which contains two structure encoders $\{E_s^{img}, E^{ske}\}$, one apearance encoder E_a^{img} , two feature generator $\{G^{img}, G^{ske}\}$ and two domain discriminators $\{D^{img}, D^{ske}\}$. As the main part of model, the E_s^{img} disentangle the structure features of image into a shared structure feature space along with the E^{ske} operating on sketch.

	162
3.2. Encoder	163
3.3. Generator	164
3.4. Discriminator	165
3.5. Loss Function	166 167
4. Experiment	168
-	169
4.1. Experiment Setup	170
4.1.1 Dataset	171 172
4.1.2 Implementation Details	173
4.2. Comparison	174
	175 176
4.3. Ablation Study	170
4.4. Case study	178
5. Conclusion	179
	180
6. To Discuss	181 182
• Whether to generator the whole image/sketch.	183
• If the poses between the image and the sketch are dif-	184
ferent, can the model learn the sketch information be-	185
tween image and sketch.	186 187
Where to add the semantics information to further su-	188
pervise the model's training.	189
	190
References	191 192
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li	193
Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern	194
recognition, pages 248–255. IEEE, 2009. 1	195
[2] Sasi Kiran Yelamarthi, Shiva Krishna Reddy, Ashish Mishra,	196
and Anurag Mittal. A zero-shot framework for sketch based	197 198
image retrieval. In European Conference on Computer Vision, pages 316–333. Springer, 2018. 1	199
16	200
	201
	202
	203 204
	205
	206
	207
	208
	209
	210 211
	212
	213
	214
	215