Blatt 2: Tiefen- und Breitensuche, A* (16 Punkte)

Carsten Gips, FH Bielefeld

Praktikum: 22./23.10.18

ILIAS: 22.10.2018

1 Uninformierte Suchverfahren

(4 Punkte)

Betrachten Sie folgende Landkarte und Restwegschätzungen:

Stadt	h(n)
Augsburg	0 km
Erfurt	$400~\mathrm{km}$
Frankfurt	100 km
Karlsruhe	10 km
Kassel	$460~\mathrm{km}$
Mannheim	200 km
$M\ddot{u}nchen$	0 km
Nürnberg	$537~\mathrm{km}$
Stuttgart	$300~\mathrm{km}$
Würzburg	$170~\mathrm{km}$

Schätzungen der Restwegkosten für das Ziel *München*.

- a) Finden Sie mit **Tiefensuche** einen Weg von Würzburg nach München. Führen Sie eine Handsimulation (Notation analog zur Vorlesung) durch und zeichnen Sie den Suchbaum. An welchen Stellen findet Backtracking statt?
- b) Führen Sie die Wegesuche mit Breitensuche durch (Handsimulation). Wird die optimale Lösung gefunden?

Hinweis: Nutzen Sie für beide Algorithmen die Graph-Search-Variante.

Hinweis: Tiefensuche/Breitensuche: Nachfolgeknoten werden in alphabetischer Reihenfolge expandiert. Beispiel: Mannheim kommt vor München, Karlsruhe vor Kassel, . . .

Thema: Ablauf von Tiefensuche, Breitensuche, Handsimulation und Notation

2 Informierte Suchverfahren

(6 Punkte)

Betrachten Sie erneut die in der vorigen Aufgabe gegebene Landkarte samt Restwegschätzungen.

- a) Finden Sie einen Weg von Würzburg nach München mit dem A*-Algorithmus (**Tree-Search-Variante** mit Verbesserung "keine Zyklen", siehe VL02). Führen Sie dazu eine Handsimulation unter Nutzung der oben gegebenen Restkostenabschätzungen durch. Wird dabei eine optimale Lösung gefunden?
- b) Können die oben gegebenen Restkostenabschätzungen in A^* und Best-First-Suche verwendet werden?
 - Falls ja, warum?
 - Falls nein, warum? Wie müssten die Abschätzungen ggf. korrigiert werden?
- c) Falls Sie der Meinung waren, die Abschätzungen sind nicht korrekt, korrigieren Sie die Abschätzungen nun und führen Sie erneut eine Suche mit A^* durch.

Hinweis: Reihenfolge bei gleichen f(n)-Kosten: alphabetische Reihenfolge, d.h. Mannheim käme vor München, Karlsruhe vor Kassel etc.

Thema: A^* -Algorithmus, Handsimulation und Notation

3 Schiebepuzzle (1 Punkt)

Betrachten Sie das Schiebepuzzle-Problem.

Quelle: AIMA 3rd ed.

Geben Sie zwei zulässige Heuristiken an, die Sie mit A^* nutzen könnten. Erklären Sie jeweils die Idee hinter der Heuristik und begründen Sie, warum diese zulässig ist.

Thema: Heuristiken für A^* -Algorithmus

4 Dominanz (1 Punkt)

Was bedeutet "Eine Heuristik $h_1(n)$ dominiert eine Heuristik $h_2(n)$ "?

Wie wirkt sich die Nutzung einer dominierenden Heuristik $h_1(n)$ in A^* aus (im Vergleich zur Nutzung einer Heuristik h_2 , die von h_1 dominiert wird)?

Thema: Begriff der dominierenden Heuristik (Selbststudium)

5 Beweis der Optimalität von A*

(2 Punkte)

Beweisen Sie, dass A^* in der Tree-Search-Variante bei Nutzung einer zulässigen Heuristik optimal ist.

Thema: Bedeutung einer zulässigen Heuristik (Selbststudium)

6 Anwendungen (2 Punkte)

Recherchieren Sie, in welchen Anwendungen Suchalgorithmen eingesetzt werden. Erklären Sie kurz, wie und wofür die Suchalgorithmen jeweils genutzt werden.

Thema: Anwendungen von Suchalgorithmen