Basics of Digital Imaging

Digital Image Representation

The most standard representation of a digital image, as a grid of **pixels** (picture elements):

Digital Image Representation

A few things to note about the image coordinate systems:

- Where the origin is.
- Axis designations (be careful when doing implementation):

- Representation of multi-valued pixels: The **channel** dimension; f(x, y, c)
 - Color images
 - Hyperspectral images
- Third spatial dimension; **voxels** (volume elements); f(x, y, z)
- \blacksquare Temporal dimension; videos; f(x, y, t)

Sampling and Quantization

- The process of going from the <u>continuous</u> real world to the <u>discrete</u> digital world.
- Sampling: Obtaining values at discrete points in the spatial / temporal domains.
- Quantization: The representation of the sampled values with a set of discrete values (quantization levels).
 - Typically there are 2^k levels (k = bit per pixel).
 - The quantization levels are commonly evenly spaced, but this is not required.

Sampling and Quantization

Spatial Resolution

Intensity Resolution

Resolution and Visual Quality

Compare these two images and assess the visual qualities. How do the two regions differ?

Image Zooming

Goal: To show the same image at a different size.

Interpolation is necessary for obtaining the values of pixels on the new grid from the values of the original grid. Common methods are:

Image Interpolation Methods

Image Interpolation Methods

256x256 original

Bilinear

Geometric Transformations

- Generally speaking, geometric transformations (warping) change the spatial arrangement of pixels.
 - Can be linear or nonlinear.
 - Some examples of linear geometric transformations:

Geometric Transformations

Affine transformations (straight lines and parallelism are preserved):

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} d_1 \\ d_2 \end{bmatrix}$$

A more easy-to-use form of affine transformations:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = A \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

 \blacksquare See the textbook for the expressions of A for scaling, translation, and rotation.

Geometric Transformations

- However, to construct the "transformed" image from a source image, the standard practice is to consider the transformation in the opposite direction.
 - The inverse transform: $\begin{vmatrix} x \\ y \\ 1 \end{vmatrix} = A^{-1} \begin{vmatrix} x' \\ y' \\ 1 \end{vmatrix}$
 - To get the value at pixel (x',y') of the destination (transformed) image, we first find the corresponding point (x,y) in the source image.
 - When (x,y) contains non-integers, apply interpolation.
 - This is called inverse mapping in the textbook.