

MOSFET

Metal Oxide Semiconductor Field Effect Transistor

CoolMOS™ C7

650V CoolMOS™ C7 Power Transistor IPZ65R019C7

Data Sheet

Rev. 2.0 Final

IPZ65R019C7

1 Description

CoolMOS™ is a revolutionary technology for high voltage power MOSFETs, designed according to the superjunction (SJ) principle and pioneered by Infineon Technologies.

CoolMOS™ C7 series combines the experience of the leading SJ MOSFET supplier with high class innovation. The product portfolio provides all benefits of fast switching superjunction MOSFETs offering better efficiency, reduced gate charge, easy implementation and outstanding reliability.

Features

- Increased MOSFET dv/dt ruggedness
- Better efficiency due to best in class FOM R_{DS(on)}*E_{oss} and R_{DS(on)}*Q_g
- Best in class R_{DS(on)} /package
- Easy to use/drive due to driver source pin for better control of the gate.
- Pb-free plating, halogen free mold compound
- Qualified for industrial grade applications according to JEDEC (J-STD20 and JESD22)

Benefits

- · Enabling higher system efficiency
- Enabling higher frequency / increased power density solutions
- System cost / size savings due to reduced cooling requirements
- Higher system reliability due to lower operating temperatures

Applications

PFC stages and hard switching PWM stages for e.g. Computing, Server, Telecom, UPS and Solar.

Please note: The source and sense source pins are not exchangeable. Their exchange might lead to malfunction.

Table 1 Key Performance Parameters

Tubio I Roy I or Iorinanoo I aramotoro							
Parameter	Value	Unit					
V _{DS} @ T _{j,max}	700	V					
R _{DS(on),max}	19	mΩ					
$Q_{g.typ}$	215	nC					
I _{D,pulse}	496	A					
E _{oss} @400V	27	μJ					
Body diode di/dt	70	A/µs					

Type / Ordering Code	Package	Marking	Related Links
IPZ65R019C7	PG-TO 247-4	65C7019	see Appendix A

IPZ65R019C7

Table of Contents

Description
Maximum ratings
Thermal characteristics
Electrical characteristics
Electrical characteristics diagrams
Test Circuits
Package Outlines
Appendix A
Revision History
Disclaimer

2 Maximum ratings at $T_j = 25$ °C, unless otherwise specified

Table 2 **Maximum ratings**

Barranatan	0		Values			Nata / Tank One all the	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Continuous drain current 1)	I _D	-	-	75 62	А	T _C =25°C T _C =100°C	
Pulsed drain current 2)	I _{D,pulse}	-	-	496	Α	T _C =25°C	
Avalanche energy, single pulse	E AS	-	-	583	mJ	I _D =12.4A; V _{DD} =50V	
Avalanche energy, repetitive	E AR	-	-	2.92	mJ	I _D =12.4A; V _{DD} =50V	
Avalanche current, single pulse	I _{AS}	-	-	12.4	Α	-	
MOSFET dv/dt ruggedness	dv/dt	-	-	100	V/ns	V _{DS} =0400V	
Gate source voltage (static)	V _{GS}	-20	-	20	V	static;	
Gate source voltage (dynamic)	V _{GS}	-30	-	30	V	AC (f>1 Hz)	
Power dissipation	P _{tot}	-	-	446	W	T _C =25°C	
Storage temperature	$T_{ m stg}$	-55	-	150	°C	-	
Operating junction temperature	T _j	-55	-	150	°C	-	
Mounting torque	-	-	-	60	Ncm	M3 and M3.5 screws	
Continuous diode forward current	Is	-	-	75	Α	T _C =25°C	
Diode pulse current ²⁾	I _{S,pulse}	-	-	496	Α	T _C =25°C	
Reverse diode dv/dt 3)	dv/dt	-	-	1.5	V/ns	V _{DS} =0400V, I _{SD} <=I _S , T _j =25°C	
Maximum diode commutation speed	di _f /dt	-	-	70	A/μs	V_{DS} =0400V, I_{SD} <= I_{S} , T_{j} =25°C	
Insulation withstand voltage	V _{ISO}	-	-	n.a.	V	V _{rms} , T _C =25°C, t=1min	

 $^{^{1)}}$ Limited by $T_{j\,max}.$ $^{2)}$ Pulse width t_p limited by $T_{j,max}$ $^{3)}$ Identical low side and high side switch with identical $\textit{R}_{\textrm{G}}$

3 Thermal characteristics

Table 3 Thermal characteristics

Doromotor	C. mah al	Values			11:4	Nata / Tank Canadiki an	
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Thermal resistance, junction - case	R _{thJC}	-	-	0.28	°C/W	-	
Thermal resistance, junction - ambient	R _{thJA}	-	-	62	°C/W	leaded	
Thermal resistance, junction - ambient for SMD version	R _{thJA}	-	-	-	°C/W	n.a.	
Soldering temperature, wavesoldering only allowed at leads	T_{sold}	-	-	260	°C	1.6mm (0.063 in.) from case for 10s	

4 Electrical characteristics at T_j =25°C, unless otherwise specified

Table 4 **Static characteristics**

Danamatan	O. mala al		Values				
Parameter	Symbol	Min.	Min. Typ. Max.		Unit	Note / Test Condition	
Drain-source breakdown voltage	V _{(BR)DSS}	650	-	-	V	V_{GS} =0V, I_D =1mA	
Gate threshold voltage	V _{(GS)th}	3	3.5	4	V	$V_{\rm DS}=V_{\rm GS},\ I_{\rm D}=2.92{\rm mA}$	
Zero gate voltage drain current	I _{DSS}	-	- 50	5 -	μА	V _{DS} =650, V _{GS} =0V, T _j =25°C V _{DS} =650, V _{GS} =0V, T _j =150°C	
Gate-source leakage current	I _{GSS}	-	-	100	nA	V _{GS} =20V, V _{DS} =0V	
Drain-source on-state resistance	R _{DS(on)}	-	0.017 0.040	0.019	Ω	V _{GS} =10V, I _D =58.3A, T _j =25°C V _{GS} =10V, I _D =58.3A, T _j =150°C	
Gate resistance	R _G	-	0.45	-	Ω	f=1MHz, open drain	

Table 5 **Dynamic characteristics**

Domeston.	Oh a l	Values					
Parameter	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Input capacitance	Ciss	-	9900	-	pF	V _{GS} =0V, V _{DS} =400V, f=250kHz	
Output capacitance	Coss	-	160	-	pF	V _{GS} =0V, V _{DS} =400V, f=250kHz	
Effective output capacitance, energy related 1)	C _{o(er)}	-	338	-	pF	V _{GS} =0V, V _{DS} =0400V	
Effective output capacitance, time related	C _{o(tr)}	-	3320	-	pF	I_D =constant, V_{GS} =0V, V_{DS} =0400V	
Turn-on delay time	t _{d(on)}	-	30	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =58.3A, $R_{\rm G}$ =1.8 Ω	
Rise time	t _r	-	27	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =58.3A, $R_{\rm G}$ =1.8 Ω	
Turn-off delay time	$t_{ m d(off)}$	-	106	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13V, $I_{\rm D}$ =58.3A, $R_{\rm G}$ =1.8 Ω	
=all time		5	-	ns	$V_{\rm DD}$ =400V, $V_{\rm GS}$ =13 V, $I_{\rm D}$ =58.3A, $R_{\rm G}$ =1.8 Ω		

Table 6 **Gate charge characteristics**

Parameter	O. wala a l		Values			Nada / Tank Oan Hillian	
	Symbol	Min.	Тур.	Max.	Unit	Note / Test Condition	
Gate to source charge	Q_{gs}	-	53	-	nC	$V_{\rm DD}$ =400V, $I_{\rm D}$ =58.3A, $V_{\rm GS}$ =0 to 10V	
Gate to drain charge	$Q_{ m gd}$	-	71	-	nC	$V_{\rm DD}$ =400V, $I_{\rm D}$ =58.3A, $V_{\rm GS}$ =0 to 10V	
Gate charge total	Qg	-	215	-	nC	$V_{\rm DD}$ =400V, $I_{\rm D}$ =58.3A, $V_{\rm GS}$ =0 to 10V	
Gate plateau voltage	V _{plateau}	-	5.4	-	V	$V_{\rm DD}$ =400V, $I_{\rm D}$ =58.3A, $V_{\rm GS}$ =0 to 10V	

 $^{^{1)}}$ $C_{\text{o(er)}}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400V $^{2)}$ $C_{\text{o(tr)}}$ is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400V

IPZ65R019C7

Table 7 Reverse diode characteristics

Davamatar	Cymbol		Values			Note / Test Condition	
Parameter	Symbol	Min.	Min. Typ.		Unit	Note / Test Condition	
Diode forward voltage	V _{SD}	-	0.9	-	V	V _{GS} =0V, I _F =58.3A, T _j =25°C	
Reverse recovery time	t _{rr}	-	760	-	ns	V_R =400V, I_F =75A, d i_F /d t =70A/ μ s	
Reverse recovery charge	Qrr	-	20	-	μC	V_R =400V, I_F =75A, d i_F /d t =70A/ μ s	
Peak reverse recovery current	I _{rrm}	-	50	-	Α	V _R =400V, I _F =75A, d <i>i</i> _F /d <i>t</i> =70A/μs	

5 Electrical characteristics diagrams

Table 8

Table 9

Table 10

Table 11

Table 12

Table 13

Table 14

Table 15

6 Test Circuits

Table 16 Diode characteristics

Table 17 switching times (ss)

Table 18 Unclamped inductive load (ss)

7 Package Outlines

DIM	MILLIM	ETERS	INCI	HES
DIM	MIN	MAX	MIN	MAX
Α	4.83	5.21	0.190	0.205
A1	2.29	2.54	0.090	0.100
A2	1.90	2.16	0.075	0.085
b	1.07	1.33	0.042	0.052
b1	1.10	1.70	0.043	0.067
С	0.50	0.70	0.020	0.028
D	20.80	21.10	0.819	0.831
D1	16.25	17.65	0.640	0.695
D2	0.95	1.35	0.037	0.053
E	15.70	16.13	0.618	0.635
E1	13.10	14.15	0.516	0.557
E2	3.68	5.10	0.145	0.201
E3	1.00	2.60	0.039	0.102
е	2.54	(BSC)	0.100	(BSC)
e1	5.	08	0.2	00
N		4		4
L	19.72	20.32	0.776	0.800
L1	4.02	4.40 0.158		0.173
øР	3.50	3.70	0.138	0.146
øP1	7.00	7.40	7.40 0.276	
Q	5.49	6.00	0.216	0.236
S	6.04	6.30	0.238	0.248

Figure 1 Outline PG-TO 247-4, dimensions in mm/inches

8 Appendix A

Table 19 Related Links

- IFX CoolMOS[™] C7 Webpage: <u>www.infineon.com</u>
- IFX CoolMOS[™] C7 application note: <u>www.infineon.com</u>
- IFX CoolMOS[™] C7 simulation model: www.infineon.com
- IFX Design tools: www.infineon.com

650V CoolMOS™ C7 Power Transistor

IPZ65R019C7

Revision History

IPZ65R019C7

Revision: 2013-04-30, Rev. 2.0

Previous Revision

Revision	Date	Subjects (major changes since last revision)
2.0	2013-04-30	Release of final version

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: erratum@infineon.com

Edition 2011-08-01 Published by Infineon Technologies AG 81726 München, Germany © 2011 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.