JQ.3.6.Soln

October 6, 2014

(3.6) C_3H_8 is burned with 10 times the stocihiometric air in a steady flow process. the reaction is complete, forming CO_2 and H_2O . The fuel and air are mixed at $400^{\circ}C$ before entering the combustor. The combustor is adiabatic. Specific heats are all constant, $c_p = 1J/(gK)$.

- (a) Calculate the stoichiometric air to fuel mass ratio.
- (b) Calculate the stoichiometric oxygen to fuel mass ratio.
- (c) If the flow rate of the C_3H_8 is 10 g/s, calculate the exit flow rate.
- (d) Calculate the oxygen mass fraction at the exit.
- (e) Calculate the C_3H_8 mass fraction at the inlet.
- (f) Calculate the exit temperature.
- (g) Calculate the enthalpy per unit mass for the $H_2O(g)$ in the exit stream (with respect to the $25^{\circ}C$ reference state).

Setup: With the exception of part (g), this problem is a continuation of previous problems and should not pose any particular conceptual challenges. Part (g) is not clear and I don't want you to do it.

$$C_3H_8 + 5(O_2 + 3.76N_2) \rightarrow 3CO_2 + 4H_2O + 18.8N_2$$

a) The AF is $\frac{5\times4.76\times28.8}{44}$.

In [70]: AF_STOICH=(5*4.76*28.8)/44; AF_STOICH

Out[70]: 15.578181818181816

In [77]: 1/AF_STOICH

Out[77]: 0.06419234360410832

The stoichiometric Air to Fuel ratio is 15.6.

(b) The stoichiometric oxygen to fuel ratio is found from $\frac{5\times1\times32}{44}$

In [71]: OF_STOICH=(5*1.*32.)/44; OF_STOICH

Out[71]: 3.6363636363636362

The stoichiometric oxygen to fuel ratio is 3.64.

(c) If the C_3H_8 flow rate is 10 g/s, the exit flow rate is found by considering the reaction with $10 \times$ stoichiometric air:

$$C_3H_8 + 50(O_2 + 3.76N_2) \rightarrow 3CO_2 + 4H_2O + 18.8N_2 + 45(O_2 + 3.76N_2)$$

The air to fuel ratio for this case is 156. The flow rate of air would be $156 \times 10g/s$.

In [72]: mdot_F= 10.; mdot_air=10.*AF_STOICH*mdot_F; mdot_total=mdot_air+mdot_F; mdot_total

Out[72]: 1567.8181818181815

The total exhaust mass flow rate is 1567g/s

(d) The oxygen mass fraction at the exit is $\frac{45\times32}{44+50\times4.76\times28.8}$

In [73]: Y_02= 45.*32./(44.+50.*4.76*28.8); Y_02

Out [73]: 0.2087440565928331

(e) The mass fraction of fuel in the inlet is found from $\frac{m_F}{m_F+m_A} = \frac{1}{1+A/F}$

In [74]: $Y_F = 1./(1.+157.)$; Y_F

Out [74]: 0.006329113924050633

f) Assume that the reactants are at $25^{\circ}C$.

$$T_P = 25 + \frac{m_F}{m_T} \frac{\Delta h_c}{\bar{c}} = 25 + Y_F \frac{\Delta h_c}{\bar{c}}$$

In [75]: Dhc_mass_F= 46.; c_mix=29.1/28.

In [76]: T_P=400. + Y_F*Dhc_mass_F*1000./c_mix ; T_P

Out [76]: 680.1339771194919

We find that the product temperature is $53^{o}C$. This is not the flame temperature. It is the temperature of the product gases (including excess air) after mixing the reaction generated hot gases with the cold excess air.