7.3 Qualitative Changes in Equilibrium Systems aka: Le Châtelier's Principle

- If a system in equilibrium is disturbed, the system will tend to react so as to establish a new equilibrium.
- Le Châtelier's Principle states that when a stress is applied to a system at equilibrium, the system readjusts so as to relieve or offset the stress.
- An external stress to an equilibrium could be any one or more of the following:
 - a) Change in [reactant]
 - b) Change in [product]
 - c) Change in temperature
 - d) Change in pressure –
 - e) Change in volume only for gases

Effect of a Change in Conc. of an Equilibrium System

• E.g. $H_{2(g)} + I_{2(g)} \leftrightarrow 2HI_{(g)}$

Change (Stress)	Response	Result
\uparrow [H ₂]	$shift \rightarrow$	↑ [HI]
	to decrease [H ₂]	
$\uparrow [I_2]$	shift →	↑[HI]
	to decrease [I ₂]	
\downarrow [H ₂] or \downarrow [I ₂]	shift ←	$\uparrow [H_2] + \uparrow [I_2]$
	to decrease [HI]	
↑ [HI]	shift ←	$\uparrow [H_2] + \uparrow [I_2]$
	to decrease [HI]	
↓ [HI]	shift →	↑ [HI]
	to decrease [H ₂] & [I ₂]	

Effect of a Change in Volume or Pressure

• When the volume of a gaseous reaction that has an unequal number of gases on each side of the equation is decreased, the equilibrium will shift so as to reduce the number of gas molecules.

• E.g. $N_{2(g)} + 3H_{2(g)} \leftrightarrow 2NH_{3(g)}$ $\Delta H = -92 \text{ kJ}$

Change (Stress)	Response	Result
↑ pressure = ↓	shift →	\uparrow [NH ₃]
volume	to decrease # of gas molecules	
↓ pressure =	shift ←	$\uparrow [N_2] + \uparrow [H_2]$
↑volume	to increase # of gas molecules	

• E.g. $H_{2(g)} + I_{2(g)} \leftrightarrow 2HI_{(g)}$ Changing the pressure in this reaction will not change equilibrium since there is an equal number of reactant and product molecules.

Effect of a Change in Temperature

• Increasing the temperature shifts the reaction in the direction that produces an endothermic change, while decreasing the temperature shifts the reaction in a direction that produces an exothermic change.

• E.g. $N_{2(g)} + 3H_{2(g)} \leftrightarrow 2NH_{3(g)} \Delta H = -92 \text{ kJ}$

Change (Stress)	Response	Result
↑ temperature	shift ←	$\uparrow [N_2] + \uparrow [H_2]$
	decomposition of NH ₃ to absorb	
	heat to compensate (favours	
	endothermic reaction)	
↓ temperature	$shift \rightarrow$	\uparrow [NH ₃]
	formation of NH ₃ to generate heat	
	to compensate (favours	
	exothermic reaction)	

Effect of Catalysts

- Catalysts cause reactions to reach equilibrium faster, but they do not alter the amounts of components at equilibrium.
- A catalyst speeds up the forward and reverse reaction to the same degree. It only allows the system to reach equilibrium faster.

Homework:

- Practice 1,2,3,4,5,6
- Questions 1,2,3,4,5,6