

Licenciatura em Engenharia Informática FSIAP – 2020/2021

Estrutura do RELATÓRIO RESUMO

Relatório Resumo

Carga e Descarga de um Condensador

Autores:

1190336 Alexandre Rosa 1190452 Bruno Pereira

Turma: 2DM Grupo: 02

Data: 26/11/2020

Docente: Lijian Meng

No âmbito da unidade curricular de Física Aplicada, realizamos o 3 trabalho laboratorial relacionado com a carga e descarga de um condensador. Para tal, foi utilizada uma placa de montagem, um conjunto de resistências, fios de ligação, um condensador, um cronometro, um multímetro e uma fonte. A fonte de alimentação foi regulada a 6,0 V. Através da energia fornecida pela fonte, estando esta ligada em paralelo com o multímetro, este permitia-nos medir as diferentes tensões nos terminais do condensador. Como tal, inicialmente fomos verificar a resistência elétrica de cada resistência e do condensador, de modo a registarmos os valores experimentais.

No ponto 4,7 e 10 montamos cada circuito de acordo com as instruções dadas e registamos as quedas de tensão e o tempo durante a carga e descarga do condensador. Os resultados dos procedimentos referidos anteriormente encontram-se nas seguintes tabelas:

Tempo(s)	Tensão(V)
0	0,053
5	1,113
10	1,812
15	2,236
20	2,679
25	2,78
30	2,913
35	3,001
40	3,059
45	3,097
50	3,123
55	3,14
60	3,151
65	3,159
70	3,163
75	3,167
80	3,17
85	3,173

Tempo(s)	Tensão(V)
0	5,98
5	4,04
10	2,639
15	1,672
20	1,152
25	0,762
30	0,504
35	0,334
40	0,222
45	0,154
50	0,099
55	0,066
60	0,045
65	0,031
70	0,021
75	0,015
80	0,011
85	0,008
90	0,006
95	0,005
100	0,004
105	0,004
110	0,003

Tempo(s)	Tensão(V)
0	5,98
5	3,06
10	1,623
15	0,859
20	0,427
25	0,227
30	0,121
35	0,07
40	0,036
45	0,021
50	0,012
55	0,007
60	0,004
65	0,003
70	0,002
75	0,002
80	0,001

Na carga do condensador

12.

12.
.
$$V_{Teorico} = 6 (1 - e^{-\frac{85}{5C}})$$

. $T = R_{eq} \cdot C (=) T = 10 \times 10^6 \cdot 2.2 \times 10^{-6} =) T = 22$
. $R_{eq} = R_{1.4} =) R_{eq} = 10 \times 10^6 \Omega$
. $V_{Teorico} = 3.229 V$

Figura 1 - Tensão do Condensador em função do tempo

De acordo com a visualização da Figura 1, através da traçagem da reta tangente à curva da carga e a interseção da mesma com a linha de tensão máxima no condensador conseguimos obter uma aproximação do valor $\tau=14,5$ segundos.

15.

Durante a carga do condensador, este vai aumentado a sua tensão até que atinge o valor máximo. Posto isto, espera-se "teoricamente" que o valor da carga do condensador dure para $t = \infty$.

Na descarga do condensador

16.

Figura 2 - Tensão do Condensador em função do tempo R1 = 10MΩ

(17)
$$4,4262 = 0,072x = (4,4262 = 0,072x0) \cdot 0,368 = 0$$

(=) $4,4262 = 0,072x = 4,4262 \cdot 0,368 = 0$
(=) $-0,072x = \ln(0,368) = 0$
=) $\lambda = \ln(0,368) = 0$
 $-0,072$

De acordo com a visualização da Figura 2, através da traçagem da reta tangente à curva da descarga e a interseção da mesma com a linha de tempo (no eixo xx) conseguimos obter uma aproximação do valor $\tau=14$ segundos.

Figura 3 - Tensão do Condensador em função do tempo R1 = $5M\Omega$

(a)
$$4,0241 e^{-0,11x} = (4,0241 e^{-0,11x0}) \cdot 0,368 = 0$$
(b) $4,0241 e^{-0,11x} = 4,0241 \cdot 0,368 = 0$
(c) $-0,11x = \ln(0,368) = 0$
(d) $-0,11x = \ln(0,368) = 0$
(e) $x = \ln(0,368) = 0$
 $x = 9,09$

21.

De acordo com a visualização da Figura 3, através da traçagem da reta tangente à curva da descarga e a interseção da mesma com a linha de tempo (no eixo xx) conseguimos obter uma aproximação do valor $\tau=9,5$ segundos.

Questão 1:

Questão 2:

Valor Teorico:
$$Re_1 = \frac{1}{10 \times 10^6}$$
 + 10×10^3 = 10×10^6 Ω

$$= 10,01 \times 10^6 \Omega$$

$$= 10,01 \times 10^6 \times 2.2 \times 10^6$$

$$= 220 \text{ Argundos}$$

• $\overline{L}_1 = 13,9 \text{ (ex It)}$
• $\overline{L}_2 = 14,0 \text{ (ex It)}$
• $\overline{L}_3 = 22,0 \text{ (Valor Teórico)}$
 $E_{1/2} = \frac{17_1 - \overline{L}_2}{\overline{L}_2} + \frac{1}{2} = 0,7^6$
 $E_{1/2} = \frac{17_1 - \overline{L}_3}{\overline{L}_3} \times 100 = 36,4^6$

$$Req = \left(\frac{1}{5 \times 10^{6}}\right)^{-1} + \frac{10 \times 10^{3}}{10 \times 10^{6}}$$

$$= 5,01 \times 10^{6} \Omega$$

$$T_3 = 5.01 \times 10^6 \times 2.2 \times 10^{-6}$$

= 11.02 segundos

$$\xi \%_1 = \frac{19.09 - 9.5}{9.5} \times 100 = \frac{4.3\%}{}$$

$$E\%2 = \frac{19.5 - 11.021}{11.02} \times 100 = 13.8\%$$

$$\frac{2\%}{11.02} = \frac{19.09 - 11.021}{11.02} \times 100 = 17.5\%$$

Conclusões sobre a questão 2:

Como podemos verificar, $\tau 1$ e o $\tau 2$ são valores muito próximos, pois são feitos com os valores experimentais, ou seja, tem inerente a eles a resistência interna do voltímetro.

Dado que $\tau = \text{Req} * C$, colocando o multímetro a ler a queda de tensão em paralelo com o circuito, este afeta o valor do τ como podemos verificar nos erros calculados entre o $\tau 3(\tau \text{ teórico})$ e os dois τ experimentais ($\tau 1$ e $\tau 2$), pois a Req em vez de ser calculada apenas com uma resistência de $10M\Omega$, é calculada com duas.

Em suma, podemos concluir que quanto maior a resistência equivalente maior é o valor do τ , logo quanto mais resistências em paralelo possuirmos, menor será o valor do Tau, daí as diferenças entre o valor teórico e os experimentais serem tão significativas.

10% - Comentários ou observações

Nos pontos 14, 18, 21, por falta de ferramentas Excel para calcular a tangente no ponto x=0, foi traçada "à mão" a tangente nesse ponto, o que pode causar imprecisões na determinação das constantes de tempo.

Relativamente a algarismos significativos, mais precisamente nos pontos 14, 17 e 20, de notar que foram utilizados 4 algarismos significativos em cálculos intermédios e 3 no resultado final.

Por fim, achamos importante deixar também uma nota para os valores apontados nas alíneas 6, 10 e 11, que podem apresentar uma pequena margem de erro, por serem valores de tensão que estão constantemente a mudar (não é fácil a olho humano detetar e apontar todos os valores corretos de 5 em 5 segundos).