Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes
5	Cloudy	Warm	High	Weak	Cool	Same	Yes
6	Cloudy	Cold	High	Weak	Cool	Same	No

No.	Sky	AirTemp	Humidity	Wind	Water	Forecast	Enjoy
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes
5	Cloudy	Warm	High	Weak	Cool	Same	Yes
6	Cloudy	Cold	High	Weak	Cool	Same	No

(Sky = Sunny) ∨ (Sky = Cloudy ∧ AirTemp = Warm)

7	Rainy	Warm	Normal	Weak	Cool	Same	?
8	Cloudy	Warm	High	Strong	Cool	Change	?

57 May 3, 2014

No.

1

2

3

4

5

6

Sky

Sunny

Sunny

Rainy

Sunny

Cloudy

Cloudy

Warm

Warm

Cold

Warm

Warm

Cold

Cao Hoang Tru CSE Faculty - HCMUT

Homogenity of Examples

• Entropy(S) = $-p_+log_2p_+ - p_-log_2p_-$

Homogenity of Examples

• Entropy(S) = $\sum_{i=1,c}$ - $p_i log_2 p_i$ impurity measure

Information Gain

• Gain(S, A) = Entropy(S) – $\sum_{v \in Values(A)} (|S_v|/|S|)$. Entropy(S_v)

Example

• Entropy(S) =
$$-p_+\log_2 p_+ - p_-\log_2 p_- = -(4/6)\log_2(4/6) - (2/6)\log_2(2/6)$$

= $0.389 + 0.528 = 0.917$

- Gain(S, Sky)
 - = Entropy(S) $\sum_{v \in \{Sunnv, Rainv, Cloudv\}} (|S_v|/|S|)$ Entropy(S_v)
 - = Entropy(S) $[(3/6).Entropy(S_{Sunny}) + (1/6).Entropy(S_{Rainy}) + (2/6).Entropy(S_{Cloudy})]$
 - = Entropy(S) (2/6).Entropy(S_{Cloudy})
 - = Entropy(S) $-(2/6)[-(1/2)\log_2(1/2) (1/2)\log_2(1/2)]$
 - = 0.917 0.333 = 0.584

Example

• Entropy(S) =
$$-p_+\log_2 p_+ - p_-\log_2 p_- = -(4/6)\log_2(4/6) - (2/6)\log_2(2/6)$$

= $0.389 + 0.528 = 0.917$

- Gain(S, Water)
 - = Entropy(S) $\sum_{v \in \{Warm, Cool\}} (|S_v|/|S|)$ Entropy(S_v)
 - = Entropy(S) $[(3/6).Entropy(S_{Warm}) + (3/6).Entropy(S_{Cool})]$
 - = Entropy(S) $-(3/6).2.[-(2/3)log_2(2/3) (1/3)log_2(1/3)]$
 - = Entropy(S) 0.389 0.528
 - = 0

Example

- Gain(S_{Cloudy}, AirTemp)
 - = Entropy(S_{Cloudy}) $\sum_{v \in \{Warm, Cold\}} (|S_v|/|S|) Entropy(S_v)$
 - = 1
- Gain(S_{Cloudy}, Humidity)
 - = Entropy(S_{Cloudy}) $\sum_{v \in \{Normal, High\}} (|S_v|/|S|) Entropy(S_v)$
 - = 0

Inductive Bias

Hypothesis space: complete!

Inductive Bias

- Hypothesis space: complete!
- Shorter trees are preferred over larger trees
- Prefer the simplest hypothesis that fits the data

Inductive Bias

- Decision Tree algorithm: searches incompletely thru a complete hypothesis space.
 - ⇒ Preference bias
- Cadidate-Elimination searches completely thru an incomplete hypothesis space.
 - ⇒ Restriction bias