RESEARCH

Hoffmann's sign

Jane E. Doe* and Alejandro Silva Rodríguez

*Correspondence:

jane.e.doe@cambridge.co.uk ETSI Informática, Universidad de Málaga, Málaga, España Full list of author information is available at the end of the article

Abstract

Keywords: sample; article; author

Content

Text and results for this section, as per the individual journal's instructions for authors. Here, we reference the figure xd but also the table 1.

Section title

Text for this section...

In this section we examine the growth rate of the mean of Z_0 , Z_1 and Z_2 . In addition, we examine a common modeling assumption and note the importance of considering the tails of the extinction time T_x in studies of escape dynamics. We will first consider the expected resistant population at vT_x for some v > 0, (and temporarily assume $\alpha = 0$)

$$E[Z_1(vT_x)] = \int_0^{v \wedge 1} Z_0(uT_x) \exp(\lambda_1) du.$$

If we assume that sensitive cells follow a deterministic decay $Z_0(t) = xe^{\lambda_0 t}$ and approximate their extinction time as $T_x \approx -\frac{1}{\lambda_0} \log x$, then we can heuristically estimate the expected value as

$$E[Z_1(vT_x)]$$

$$= \frac{\mu}{r} \log x \int_0^{v \wedge 1} x^{1-u} x^{(\lambda_1/r)(v-u)} du.$$
(1)

Thus we observe that this expected value is finite for all v > 0

Table 1 Sample table title. This is where the description of the table should go

	B1	B2	B3
A1	0.1	0.2	0.3
A2			
A3			
	• • • • • • • • • • • • • • • • • • • •	•	

Sub-heading for section

Text for this sub-heading...

Sub-sub heading for section

Text for this sub-sub-heading...

Doe and Silva Rodríguez Page 2 of 5

Sub-sub-sub heading for section Text for this sub-sub-heading...

1 Introducción

Parrafo sin corregir: El signo de Hoffmann es un reflejo muscular que se produce al percutir suavemente el lecho ungueal del dedo medio o índice, como se muestra en la figura 1, produciéndose un movimiento de flexión involuntario del pulgar cuando el examinador hace girar la uña del dedo medio hacia abajo. Fue propuesto por primera vez por Johann Hoffmann, un neurólogo alemán, a finales del siglo XIX, y descrito por primera vez por Hans Curschmann, uno de sus asistentes, en 1911 [1]. El signo de Hoffmann también ha sido denominado de diferentes formas, como 'reflejo digital', 'reflejo de chasquido', 'signo de Tromner' y 'signo de Jakobson' [2].

Parrafo Corregido: El signo de Hoffmann es un reflejo patológico que se desencadena al percutir la uña del dedo medio, produciéndose un movimiento de flexión involuntario del pulgar cuando el examinador mueve la uña del dedo medio hacia abajo (ver Figur 1). Fue propuesto por el neurólogo alemán Johann Hoffmann, a finales del siglo XIX, y descrito por primera vez por su asistente Hans Curschmann, en 1911 [1]. El signo de Hoffmann también ha sido denominado de diferentes formas, como 'reflejo digital', 'signo de Jakobson', entre otros [2].

Figure 1 Signo de Hoffmann. Este diagrama muestra un signo de Hoffmann positivo, una parte estándar del examen neurológico común. Contribución de R Kabir, MD

Parrafo sin corregir: Se ha utilizado en la práctica clínica durante aproximadamente cien años como una herramienta para detectar alteraciones en las vías corticoespinales, las cuales conectan la corteza cerebral con la médula espinal. Estudios realizados en la década de 1930 evaluaron la incidencia del signo en estudiantes universitarios sanos, encontrando una incidencia del 2% y 1.63% [3] [4], respectivamente, aunque solo se incluyeron sujetos masculinos [2]. Este hallazgo clínico ha sido útil en la detección de mielopatía cervical espondilótica temprana [5], como lo propusieron Denno y Meadows al describir el signo de Hoffmann 'dinámico', una variante de la prueba con flexiones activas del cuello [2].

Parrafo Corregido: Se ha utilizado en la práctica clínica durante aproximadamente cien años. Es una herramienta para detectar alteraciones en las vías corticoespinales. Estas vías conectan la corteza cerebral con la médula espinal. [1]

Doe and Silva Rodríguez Page 3 of 5

En la década de 1930, se realizaron estudios sobre la incidencia del signo de Hoffmann en estudiantes universitarios sanos. Los resultados mostraron una incidencia del 2% y 1.63% [3] [4], aunque solo incluyeron sujetos masculinos [2].

Este hallazgo clínico ha sido útil para detectar mielopatía cervical espondilótica temprana [5]. Denno y Meadows propusieron una variante de la prueba, el signo de Hoffmann 'dinámico'. Esta variante incluye flexiones activas del cuello [2].

Es importante destacar que el signo de Hoffmann es un fenotipo y no una enfermedad en sí, ya que se ha descubierto que hasta el 3% de la población presenta un signo de Hoffmann positivo sin que haya compresión de la médula. Este fenotipo actualmente está asociado a 12 enfermedades diferentes [6].

El signo de Hoffmann ha sido identificado en una serie de enfermedades neurodegenerativas y trastornos del tracto corticoespinal, muchas de ellas caracterizadas por alteraciones motoras progresivas. Entre estas patologías se encuentran diversas formas de paraplejía espástica hereditaria. Estas son un grupo clínicamente y genéticamente heterogéneo de trastornos neurológicos, caracterizados principalmente por espasticidad progresiva y, a menudo, pérdida del sentido de la vibración en los miembros inferiores [7], tanto autosómica dominante como recesiva. Por ejemplo, la paraplejía espástica 9A, de herencia autosómica dominante [8], y las formas recesivas como la paraplejía espástica 72, asociadas con disfunción motora grave.

Enfermedades neurodegenerativas más conocidas, como la esclerosis lateral amiotrófica (ELA), también muestran una asociación con el signo de Hoffmann, debido a la degeneración de las motoneuronas superiores [9]. Diversas formas de ataxias espásticas, relacionadas con la falta de coordinación motora [10], como la ataxia espástica 9 y 10, completan el espectro de condiciones en las que este reflejo patológico se manifiesta.

Table 2 Lista de enfermedades con sus respectivos identificadores de las bases de datos Online Mendelian Inheritance in Man (OMIM)[15] y Online Database of Rare Diseases and Orphan Drugs (ORPHA)[16].

Disease Id	Disease Name	
OMIM:601162	Spastic paraplegia 9A, autosomal dominant	
OMIM:618850	Hypervalinemia or hyperleucine-isoleucinemia	
ORPHA:206448	Adult Krabbe disease	
OMIM:615625	Spastic paraplegia 72, autosomal recessive	
ORPHA:803	Amyotrophic lateral sclerosis	
OMIM:620402	Neuronopathy, distal hereditary motor, autosomal recessive 9	
OMIM:615491	Spastic paraplegia 79, autosomal recessive	
OMIM:615681	Spastic paraplegia 62, autosomal recessive	
ORPHA:139396	X-linked cerebral adrenoleukodystrophy	
OMIM:620666	Spastic ataxia 10, autosomal recessive	
OMIM:618438	Spastic ataxia 9, autosomal recessive	
OMIM:619621	Spastic paraplegia 84, autosomal recessive	

A nivel molecular, diversos genes han sido asociados con condiciones que incluyen este signo, reflejo que indica alteraciones en los tractos corticoespinales. Entre estos genes destacan SOD1, TARDBP, UBQLN2 y NEK1, todos vinculados a la esclerosis lateral amiotrófica. Las mutaciones en SOD1 [11], TARDBP [12] y UBQLN2 [13] afectan las motoneuronas superiores, contribuyendo a la aparición de reflejos patológicos como el signo de Hoffmann. Además, NEK1 ha sido recientemente asociado con formas hereditarias de ELA [14], lo que refuerza su implicación en el

Doe and Silva Rodríguez Page 4 of 5

deterioro de las vías motoras. Las alteraciones en estos genes provocan una degeneración progresiva de las neuronas motoras, subrayando la relevancia del signo de Hoffmann como un marcador clínico clave en enfermedades neurodegenerativas.

A pesar de los avances en la comprensión del signo de Hoffmann, sigue siendo necesario integrar datos moleculares y fenotípicos para analizar mejor su papel en enfermedades neurodegenerativas. La creación de redes biológicas podria permitir identificar patrones clave y mejorar el entendimiento de estas condiciones.

- 2 Materiales y métodos
- 3 Resultados
- 4 Discusión
- 5 Conclusiones

Abreviaciones

- HPO: Human Phenotype Ontology, En español: La ontología del fenotipo humano.
- OMIM: Online Mendelian Inheritance in Man, En español: Herencia mendeliana en línea en el hombre.
- ELA: esclerosis lateral amiotrófica.

Disponibilidad de datos y materiales

Puedes encontrar más información en el repositorio de github

Contribución de los autores

Usando las iniciales que habéis definido al comienzo del documento, debeis indicar la contribución al proyecto en el estilo: J.E: Encargado del análisis de coexpresión con R, escritura de resultados; J.R.S: modelado de red con python y automatizado del código, escritura de métodos; ... OJO: que sea realista con los registros que hay en vuestros repositorios de github.

Author details

ETSI Informática, Universidad de Málaga, Málaga, España.

References

- BENDHEIM, O.L.: On the history of hoffmann's sign. Bulletin of the Institute of the History of Medicine 5(7), 684–686 (1937). Accessed 2024-10-01
- Glaser, J.A., Curé, J.K., Bailey, K.L., Morrow, D.L.: Cervical spinal cord compression and the hoffmann sign. lowa Orthop J 21, 49–52 (2001)
- 3. Echols, D.H.: The hoffmann sign. The Journal of Nervous and Mental Disease 84(4), 427-431 (1936)
- 4. FAY, T., GOTTEN, H.B.: Clinical observations on the value of the hoffmann sign. The Journal of Nervous and Mental Disease 77(6). 594–600 (1933)
- DENNO, J.J., MEADOWS, G.R.: Early diagnosis of cervical spondylotic myelopathy: a useful clinical sign. Spine 16(12), 1353–1355 (1991)
- 6. Whitney, E., Munakomi, S.: Hoffmann sign. StatPearls [Internet] (2022). 2024 Jan-
- 7. Esteves, T., Durr, A., Mundwiller, E., Loureiro, J.L., Boutry, M., Gonzalez, M.A., Gauthier, J., El-Hachimi, K.H., Depienne, C., Muriel, M.-P., Lebrigio, R.F.A., Gaussen, M., Noreau, A., Speziani, F., Dionne-Laporte, A., Deleuze, J.-F., Dion, P., Coutinho, P., Rouleau, G.A., Zuchner, S., Brice, A., Stevanin, G., Darios, F.: Loss of association of reep2 with membranes leads to hereditary spastic paraplegia. The American Journal of Human Genetics 94(2), 268–277 (2014). doi:10.1016/j.ajhg.2013.12.005
- Coutelier, M., Goizet, C., Durr, A., Habarou, F., Morais, S., Dionne-Laporte, A., Tao, F., Konop, J., Stoll, M., Charles, P., Jacoupy, M., Matusiak, R., Alonso, I., Tallaksen, C., Mairey, M., Kennerson, M., Gaussen, M., Schule, R., Janin, M., Morice-Picard, F., Durand, C.M., Depienne, C., Calvas, P., Coutinho, P., Saudubray, J.-M., Rouleau, G., Brice, A., Nicholson, G., Darios, F., Loureiro, J.L., Zuchner, S., Ottolenghi, C., Mochel, F., Stevanin, G.: Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain 138(8), 2191–2205 (2015). doi:10.1093/brain/awv143. https://academic.oup.com/brain/article-pdf/138/8/2191/13800016/awv143.pdf
- 9. Riancho, J., Gonzalo, I., Ruiz-Soto, M., Berciano, J.: ¿por qué degeneran las motoneuronas? actualización en la
- patogenia de la esclerosis lateral amiotrófica. Neurología 34(1), 27–37 (2019). doi:10.1016/j.nrl.2015.12.001
 Pedroso, J.L., Vale, T.C., Junior, M.C.F., Kauffman, M.A., Teive, H., Barsottini, O.G.P., Munhoz, R.P.: A diagnostic approach to spastic ataxia syndromes. The Cerebellum 21(6), 1073–1084 (2022). doi:10.1007/s12311-021-01345-5. Published on 2022/12/01
- Zhao, X., Feng, X., Li, X., Mou, J., Liu, H., Chen, J., Wu, J.: The g41d mutation in sod1-related amyotrophic lateral sclerosis exhibits phenotypic heterogeneity among individuals: A case report and literature review. Medicine (Baltimore) 101(6), 28771 (2022). doi:10.1097/MD.0000000000028771
- Sánchez-Tejerina, D., Restrepo-Vera, J.L., Rovira-Moreno, E., Codina-Sola, M., Llauradó, A., Sotoca, J., Salvado, M., Raguer, N., García-Arumí, E., Juntas-Morales, R.: An atypical presentation of upper motor neuron predominant juvenile amyotrophic lateral sclerosis associated with tardbp gene: A case report and review of the literature. Genes (Basel) 13(8), 1483 (2022). doi:10.3390/genes13081483

Doe and Silva Rodríguez Page 5 of 5

 Teyssou, E., Chartier, L., Amador, M.-D.-M., Lam, R., Lautrette, G., Nicol, M., Machat, S., da Barroca, S., Moigneu, C., Mairey, M., Larmonier, T., Saker, S., Dussert, C., Forlani, S., Fontaine, B., Seilhean, D., Bohl, D., Boillée, S., Meininger, V., Couratier, P., Salachas, F., Stevanin, G., Millecamps, S.: Novel UBQLN2 mutations linked to Amyotrophic Lateral Sclerosis and atypical Hereditary Spastic Paraplegia phenotype through defective HSP70-mediated proteolysis. Neurobiology of Aging 58, 239–1123920 (2017). doi:10.1016/j.neurobiolaging.2017.06.018

- Mann, J.R., McKenna, E.D., Mawrie, D., Papakis, V., Alessandrini, F., Anderson, E.N., Mayers, R., Ball, H.E., Kaspi, E., Lubinski, K., Baron, D.M., Tellez, L., Landers, J.E., Pandey, U.B., Kiskinis, E.: Loss of function of the als-associated nek1 kinase disrupts microtubule homeostasis and nuclear import. Science Advances 9(33), 5548 (2023). doi:10.1126/sciadv.adi5548. Epub 2023 Aug 16
- 15. Online Mendelian Inheritance in Man, OMIM®: McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD). https://omim.org/. Accessed: 3 October 2024
- An Online Database of Rare Diseases and Orphan Drugs, O.: INSERM, US14. Available at https://www.orpha.net/. Accessed: 3 October 2024