Automi

github.com/asdrubalini

November 3, 2021

Automa: software generico che può funzionare su qualsiasi dispositivo programmabile. Un automa può essere progettato graficamente con l'utilizzo di due simboli: freccia e cerchio. Una volta che la progettazione è conclusa, l'automa deve essere programmato con un vero e proprio linguaggio di programmazione.

esempio di diagramma che descrive un'automa

Lo stato del sistema può mutare grazie ad un evento che può essere interno (un timer) o esterno (la pressione di un bottone). Lo stato di partenza è essenziale, e coincide con lo stato che viene eseguito dopo l'attivazione del programma.

Esercitazione: progettare l'automa che fa funzionare un semaforo. Verde e rosso devono avere la stessa durata (30s) mentre l'arancione deve avere un quarto della durata (7.5s).

PLC: Programmable Logic Controller

Nati per risolvere in modo automatico reti elettriche e automi elettromeccanici. Da un punto di vista elettronico sono reti combinatorie e automi con flip flop.

Oggi i TLC sono connessi in rete ma non è necessario che sia così. Originariamente i PLC venivano programmati in un linguaggio particolare chiamato KOP o Ladder che si basa sulle porte logiche, interruttori e bobine.

DSP permettono di eseguire azioni in tempi rapidissimi.

1 Progettazione centralina

Tutte le combinazioni logiche sono state radunate e influenzano un marker. Esiste un contatto SpecialMerker0.0 (SM00) che indica lo stato di accensione e quindi è sempre ON. SpecialMerker0.1 (SM01) è ON solo durante il primo ciclo. Ciclo = lettura degli ingressi. Possiamo usarlo per passare allo stato di accensione.

Per ogni stato serve un flag (ovvero un merker).

- 1. Merker 0.0 (rete AND)
- 2. Merker 1.0 (fermo)

- 3. Merker 1.1 (irrigazione)
- 4. Merker 1.2 (avaria)
- 5 network per risolvere l'automa + 1 per la rete AND

(S) = bobina di settaggio

Ogni volta che cambio lo stato, setto quello nuovo e resetto quello precedente. In tutto 6 network.

Aggiungere anche un allarme acqua che viene attivato quando non c'è abbastanza acqua.

Tabella di stato (stato -¿ uscita)

- 1. Irriga \rightarrow Q1.0
- 2. Allarme \rightarrow Q1.1
- 3. Livello \rightarrow Q1.2

Mettere tutto in bella e consegnare in PDF

2 Perchè usiamo i sensori:

1. Perchè sono una tecnologia emergente

- 2. Perchè potrebbero essere utili a chi frequenterà l'università
- 3. Perchè potrebbero essere richiesti nell'esame di Stato

Solitamente una rete di sensori è composta da sensori wireless. Spesso, uno dei problemi da affrontare è l'alimentazione.

3 Come lavora un PLC

Nomenclatura:

1. Merker: M

2. Ingressi: I

3. Uscite: U

4. Temporizzatori: T

Tutte queste cose occupano risorse nella memoria del PLC.

Il PLC lavora sempre ciclicamente, ogni ciclo è fatto da questi step:

- 1. Lettura ingressi \to Immagine di processo degli ingressi d'ora in poi gli ingressi possono cambiare ma il PLC fa affidamento a quelli appena letti
- 2. Esecuzione programma \rightarrow Elabora il programma scritto e va a modificare qualcosa nelle risorse ma finchè non arrivo in fondo al programma e scrivo le uscite, le uscite non cambiano
- 3. Scrittura delle uscite

Un sistema realtime assicura il fatto che ogni millisecondo gli ingressi vengono letti.

3.1 Temporizzatori

Esistono tre tipi di temporizzatori:

- 1. TON \rightarrow dopo un certo tempo si accende
- 2. TOFF \rightarrow accende subito qualcosa e poi lo spegne
- 3. TONR

Un timer può essere visto come una funzione lineare che ogni base tempi viene incrementata. Quando il conteggio supera il tempo che ho impostato, l'uscita viene modificata

Un temporizzatore occupa un'area di memoria di $2\ {\rm bytes}.$ Un bit contiene l'informazione del contatto.

Fino alla terza generazione dei PLC, le basi tempi erano fisse per ogni temporizzatore. Nei PLC della nuova generazione posso decidere io la base tempi, essendo puramente software.

Traccia: costruire un'automa che faccia ping-pong. Uno stato chiamato ping ed uno chiamato pong.

- 1. Desc automa
- 2. Tabella ingressi
- 3. Tabella risorse
- 4. Tabella temporizzatori
- 5. Tabella uscite

Nell'esercitazione base del timer bisogna usare necessariamente 9 righe. Versione aggiornata con il lampeggio di un led alla fine