§1 Sequences

Definition 1.1. Limit. $x_n \to x$ if $\forall \epsilon > 0$, $\exists k \in \mathbb{N}$ such that $|x_n - x| < \epsilon$. $\forall n \geq K$.

Example 1.2

$$\lim(\frac{2n}{n+1}) = 2$$

Let $\epsilon>0.$ Compute (for any $n\in\mathbb{N}$)

$$\left|\frac{2n}{n+1} - 2\right| = \left|\frac{2n-2n-2}{n+1}\right| = \frac{2}{n+1} < \frac{2}{n}$$

By A.P, $\exists k \in \mathbb{N}$ such that $K > \frac{2}{\epsilon}$. Then $\forall n \geq K$:

$$\left|\frac{2n}{n+1} - 2\right| < \frac{2}{n} \le \frac{2}{k} < \epsilon$$

Example 1.3

$$\lim \frac{3n+1}{2n+5} = \frac{3}{2}$$

First, for any $n \in \mathbb{N}$, we have that

$$\left|\frac{3n+1}{2n+5} - \frac{3}{2}\right| = \left|\frac{6n+2-6N-15}{2(2n+5)}\right| = \frac{13}{4n+10} \le \frac{10^6}{n}$$

Note: If unsure, use number much bigger i.e. $10^6 > 13$.

Now, for any $\epsilon > 0$, by A.P, $\exists k \in \mathbb{N}$ such that $k > \frac{10^6}{\epsilon}$. Then, $\forall n \geq K$:

$$\left|\frac{3n+1}{2n+5} - \frac{3}{2}\right| \le \frac{10^6}{n} \le \frac{10^6}{k} < \epsilon$$

Example 1.4

$$\lim \frac{n^2 - 1}{2n^2 + 3} = \frac{1}{2}$$

First, $\forall n \in \mathbb{N}$,

$$|\frac{n^2-1}{2n^2+3}-\frac{1}{2}|=|\frac{2n^2-2-2n^2-3}{2(2n^2+3)}|=\frac{5}{4n^2+6}\leq \frac{5}{n^2}$$

$$\forall \epsilon>0, \ \exists k\in \mathbb{N} \ \text{such that} \ k>\sqrt{\frac{5}{\epsilon}}$$
 Then, for any $n\geq k$
$$|\frac{n^2-1}{2n^2+3}-\frac{1}{2}|\leq \frac{5}{n^2}\leq \frac{5}{k^2}<\epsilon$$

$$|\frac{n^2-1}{2n^2+3}-\frac{1}{2}| \leq \frac{5}{n^2} \leq \frac{5}{k^2} < \epsilon$$

Example 1.5

$$\lim \frac{\sqrt{n}}{n+1} = 0$$

For any $n \in \mathbb{N}$:

$$\left|\frac{\sqrt{n}}{n+1} - 0\right| = \frac{\sqrt{n}}{n+1} \le \frac{\sqrt{n}}{n} = \frac{1}{\sqrt{n}}$$

So, $\forall \epsilon > 0$, let $k \in \mathbb{N}$ be such that $k > \frac{1}{\epsilon^2} \Rightarrow \epsilon^2 > \frac{1}{k} \Rightarrow \epsilon > \frac{1}{\sqrt{k}}$ Then for any $n \ge k$,

$$|\frac{\sqrt{n}}{n+1}-0|\leq \frac{1}{\sqrt{n}}\leq \frac{1}{\sqrt{k}}<\epsilon$$
 Note: $\epsilon>\frac{1}{\sqrt{k}}\Leftrightarrow \epsilon^2>\frac{1}{k}\Leftrightarrow k>\frac{1}{\epsilon^2}$

Proposition 1.6

If $x_n \to x$, then $|x_n| \to |x|$.

Proof. Let $\epsilon > 0$ be arbitrary. We know that $\exists k \in \mathbb{N}$ such that $|x_n - x| < \epsilon \quad \forall n \geq K$.

$$||x_n| - |x|| \le |x_n - x| < \epsilon \quad \forall n \ge k$$

Side proof

$$|x_n| = |x_n - x + x| \le |x_n - x| + |x|$$

$$\Rightarrow |x_n| - |x| \le |x_n - x|$$

Proposition 1.7

If $|x_n| \to 0$, then $x_n \to 0$.

Proof. Let $\epsilon > 0$. Then $\exists k \in \mathbb{N}$ such that

$$|x_n - 0| = |x_n| = ||x_n| - 0| < \epsilon \quad \forall n \ge k$$

Exercise 1.8. Show that if a > 1, then $\frac{1}{a^n} \to 0$.

Proof. If a > 1, then a = 1 + r where r > 0.

$$a^n = (1+r)^n \ge 1 + rn$$
 Bernoulli

$$\Rightarrow \left| \frac{1}{a^n} - 0 \right| = \frac{1}{a^n} \le \frac{1}{1+rn} \le \frac{1}{rn}$$

For any $\epsilon > 0$, we can pick $K \in \mathbb{N}$ such that $K > \frac{1}{r\epsilon}$. Then $\forall n \geq k$

$$\left|\frac{1}{a^n} - 0\right| \le \frac{1}{rn} \le \frac{1}{rK} < \epsilon$$

Exercise 1.9. Show that if $a \in (-1,1)$, then $a^n \to 0$.

Proof. First, if a = 0, we are done.

If a > 0, pick $b = \frac{1}{a}$. $a^n = \frac{1}{b^n} \to 0$.

If
$$a < 0$$
, then $0 < |a| < 1 \Rightarrow |a|^n \to 0 \Rightarrow |a^n| \to 0 \Rightarrow a^n \to 0$

Note 1.10.

$$\lim_{m \to \infty} \lim_{n \to \infty} a_{n,m} \neq \lim_{n \to \infty} \lim_{m \to \infty} a_{n,m}$$

Definition 1.11. Another definition of limit: We have $x_n \to x$ if and only if for any open set $x \in U$, $\forall \epsilon > 0$, $\exists K \in \mathbb{N}$ such that $x_n \in U$ for all $n \geq K$.

 (\Rightarrow) First, suppose $x_n \to x$. Let $U \ni x$ where U is open. We know that $\exists \epsilon > 0$ such that $V_{\epsilon}(x) \subseteq U$. This means that $y \in \mathbb{R}$ such that $|x - y| < \epsilon \Rightarrow y \in U$.

 $\exists K \in \mathbb{N} \text{ such that } |x_n - x| < \epsilon \quad \forall n \geq K. \text{ So, if } n \geq K, \text{ then } |x_n - x| < \epsilon \Rightarrow x_n \in V_{\epsilon}(x) \subseteq U$

(\Leftarrow) Fix $\epsilon > 0$. We know that $V_{\epsilon}(x)$ is open. So, $\exists K \in \mathbb{N}$ such that $x_n \in V_{\epsilon}(x) \forall n \geq K \Rightarrow |x_n - x| < \epsilon \quad \forall n \geq K$

Proposition 1.12

Let x_n be a positive sequence. If \lim ...