

Grundbegriffe der Informatik Tutorium 33

Lukas Bach, lukas.bach@student.kit.edu | 10. November 2016

Gliederung

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Wiederholung

Formale Sprachen

Wörter

Formale Sprachen

Wiederholung

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Sprachen

 $A := \{a, b, c\}, B := \{b, c, d\}, C := \{a, d\}$

- $\bullet A \cap B = \{b, c\}$
- $A \cup B = \{a, b, c, d\}$
- $A \backslash B = \{a\}$
- $C^2 = C \times C = \{(a, a), (a, d), (d, a), (d, d)\}$
- $2^C = \{\emptyset, \{a, d\}, \{a\}, \{d\}\}$
- Unterschied zwischen {a, b} und (a, b)?
- Definition von...
 - Alphabet?
 - Abbildung?

Wörter

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprache

Konkatenation

Durch Konkatenation werden einzelne Buchstaben aus einem Alphabet miteinander verbunden.

- Symbol: ·, also zwei Buchstaben a und b miteinander konkateniert: a · b.
- Nicht kommutativ: $a \cdot b \neq b \cdot a$
- Aber assoziativ: $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Kurzschreibweise: Ohne Punkte, also $a \cdot b = ab$

Wörter

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Wörter: Intuitivere Definition

Ein Wort *w* entsteht durch die Konkatenation durch Buchstaben aus einem Alphabet.

Also Abfolge von Zeichen.

Sei $A := \{a, b, c\}$.

- Mögliche Worte: $w_1 := a \cdot b$, $w_2 = b \cdot c \cdot c$, $w_3 = a \cdot c \cdot c \cdot b \cdot a$.
- Keine möglichen Worte: d.
- Konkatenation nicht kommutativ: Wort abc ist ungleich dem Wort bca.

Wörter

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Sprache

Wörter: Abstraktere Definition

Ein Wort w über dem Alphabet A ist definiert als surjektive Abbildung $w: \mathbb{Z}_n \to A$. Dabei heißt n die Länge |w| des Wortes.

- $\mathbb{Z}_n = \{ i \in \mathbb{N} : 0 \le i < n \}$ $\mathbb{Z}_3 = \{ 0, 1, 2 \}, \mathbb{Z}_2 = \{ 0, 1 \}, \mathbb{Z}_0 = \emptyset.$
- Länge oder Kardinalität eines Wortes: |w|. |abcde| = 5.
- Wort w = abdec als Relation aufgeschrieben: $w = \{(0, a), (1, b), (2, d), (3, e), (4, c)\}$. Also w(0) = a, w(1) = b, w(2) = d, ...Damit sieht man auch:

$$|w| = |\{(0, a), (1, b), (2, d), (3, e), (4, c)\}| = 5.$$

Wörter

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wort der Kardinalität 0?

Wörter

Spracher

Das leere Wort

Das leere Wort ε ist definiert ein Wort mit Kardinalität 0, also mit 0 Zeichen.

- Leere Wort wird interpretiert als "nicht sichtbar" und kann überall platziert werden: $aabc = a\varepsilon abc = \varepsilon \varepsilon a\varepsilon bc\varepsilon$.
- $|\{\varepsilon\}| = 1$, die Menge ist nicht leer! Das leere Wort ist nicht *nichts*! (Vergleiche leere Menge)
- $|\varepsilon|=0.$

Mehr über Wörter

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Spracher

A^n

Zu einem Alphabet A ist A^n definiert als die Menge aller Wörter der Länge n über dem Alphabet A.

- Nicht mit Mengenpotenz verwechseln!
- $A := \{a, b, c\}, A^2 = \{aa, ab, ac, ba, bb, bc, ca, cb, cc\}.$ $A^1 = A, A^0 = \{\varepsilon\}.$

Die Menge aller Wörter beliebiger Länge:

- lacksquare $A^* := \bigcup_{i \in \mathbb{N}_0} A_i$
- $A := \{a, b, c\}$. $aa \in A^*$, $abcabcabc \in A^*$, $aaaa \in A^*$, $\varepsilon \in A^*$.

Mehr über Wörter

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Spracher

Konkatenation von Wörtern:

- lager · regal = lagerregal
- lag · erregal = lagerregal

Konkatenation von Wörtern.

$$w_1 \cdot w_2 : \mathbb{Z}_{m+n} \to A_1 \cup A_2$$

$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \leq i < m \\ w_2(i-m) & \text{falls } m \leq i < m+n \end{cases}$$

■ Warum \mathbb{Z}_{m+n} ? Wörter w_1 und w_2 mit $|w_1| = m$ und $|w_2| = n$ werden konkateniert, also neues Wort hat Länge m + n.

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Spracher

Mehr über Wörter

Konkatenation von Wörtern.

$$w_1 \cdot w_2 : \mathbb{Z}_{m+n} \to A_1 \cup A_2$$

$$i \mapsto \begin{cases} w_1(i) & \text{falls } 0 \le i < m \\ w_2(i-m) & \text{falls } m \le i < m+n \end{cases}$$

Mehr über Wörter

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Sprachen

■ Immernoch: Reihenfolge ist wichtig! $OTT \cdot O = OTTO \neq OOTT = O \cdot OTT$

- Auf wieviele Weisen kann man abc als Konkatenation nichtleerer Wörter schreiben? abc, a · bc, ab · c, a · b · c.
- Wortkonkatenation mit dem leeren Wort: $w \cdot \varepsilon = w = \varepsilon \cdot w$.

Mehr über Wörter

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprache

Wort Potenzen

Sich direkt wiederholende Teilworte kann man als Wortpotenz darstellen, daher $w_i^n = w_i \cdot w_i \cdots w_i$ (n × mal).

- $a^4 = aaaa, b^3 = bbb, c^0 = \varepsilon, d^1 = d.$
- \bullet $a^3c^2b^6 = aaaccbbbbbbb.$
- $b \cdot a \cdot (n \cdot a)^2 = banana$.
- $(a^3b^2)^2c(a^2bcb^3)^3dd = (aaabb)^2c(aabcbbb)^3dd$ $= aaabb \cdot aaabb \cdot c \cdot aabcbbb \cdot aabcbbb \cdot aabcbbb \cdot dd.$

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen

Übung zu Wörter

Sei A ein Alphabet.

Übung zu Wörter

- 1. Finde Abbildung $f: A^* \to A^*$, sodass für alle $w \in A^*$ gilt:
 - $2\cdot |w|=|f(w)|.$
- 2. Finde Abbildung $g: A^* \to A^*$, sodass für alle $w \in A^*$ gilt: |w| + 1 = |g(w)|.
- 3. Finde Abbildung $h: A^* \to A^*$, sodass für alle $w \in A^*$ gilt: $\lfloor \frac{|w|}{2} \rfloor = |h(w)|$. (Zusatz)
- 4. Sind f, g, h injektiv und/oder surjektiv?
- 1. $f: A^* \rightarrow A^*, w \mapsto w \cdot w$.
- 2. $g: A^* \rightarrow A^*, w \mapsto w \cdot x, x \in A$.
- 3. $h: A^* \to A^*, w \mapsto \hat{w} \text{ mit } \hat{w}_i = \left\{ egin{array}{cc} w_i & \text{wenn } i \leq \lfloor rac{|w|}{2} \rfloor \\ arepsilon & \text{sonst} \end{array}
 ight\} \text{ und } i \in \mathbb{Z}_{|w|}.$

Übung zu Wörter

Lukas Bach, lukas.bach@student.kit.edu

Wörter

1. $f: A^* \rightarrow A^*, w \mapsto w \cdot w$.

- - f ist injektiv, denn jedes w aus der Bildmenge wird von maximal einem Wort abgebildet.
 - f ist nicht surjektiv, denn z.B. bildet nichts auf $x \in A$ ab (oder auf andere Wörter mit ungerader Anzahl an Buchstaben).
- 2. $g: A^* \to A^*, w \mapsto w \cdot x, x \in A$.
 - g ist injektiv.
 - **a** q ist nicht surjektiv, denn z.B. bildet nichts auf ε ab.

3.
$$h: A^* \to A^*, w \mapsto \hat{w} \text{ mit } \hat{w}_i = \left\{ egin{array}{c} w_i & \text{wenn } i \leq \lfloor rac{|w|}{2} \rfloor \\ arepsilon & \text{sonst} \end{array}
ight\} \text{ und } i \in \mathbb{Z}_{|w|}.$$

- h ist nicht injektiv, denn z.B. x = h(xy) = h(xz) mit $x, y, z \in A$.
- h ist surjektiv, denn für jedes $w \in A^*$ existiert ein $\hat{w} \in A^*$ mit $\hat{w} = w \cdot w$ sodass $h(\hat{w}) = w$.

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen

Formale Sprache

Was war nochmal A*? Menge aller Wörter beliebiger Länge über Alphabet A.

Formale Sprache

Eine Formale Sprache L über einem Alphabet A ist eine Teilmenge $L \subseteq A^*$.

- Zufälliges Beispiel: $A := \{b, n, a\}$.
 - $L_1 := \{ban, baan, nba, aa\}$ ist eine mögliche formale Sprache über A.
 - $L_2 := \{banana, bananana, banananana, ...\}$
 - $=\{w: w=bana(na)^k, k\in\mathbb{N}\}$ auch.
 - $L_3 := \{ban, baan, baaan, ...\}$ auch. Andere Schreibweise? $L_3 = \{w : w = ba^k n, k \in \mathbb{N}\}$
- Formale Sprachen sind also nicht zwangsweise endliche Mengen.
- Praktischeres Beispiel: $A := \{w : w \text{ ist ein ASCII Symbol }\}.$
 - $L_4 := \{ class, if, else, while, for, ... \}$ ist eine formale Sprache über A.
 - $L_5 := \{ w : w = a \cdot b \text{ mit } a \text{ als Großbuchstabe und } b \text{ als Groß- oder Kleinbuchstabe } \} \setminus L_4 \text{ ist eine formale Sprache von korrekten Klassennamen in Java.}$

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen $A := \{a, b\}$

- Sprache *L* aller Wörter über *A*, die nicht das Teilwort *ab* enthalten?
 - Was passiert wenn ein solches Wort ein a enthält? Dann keine b's mehr!
 - $L = \{w_1 \cdot w_2 : w_1 \in \{b\}^* \text{ und } w_2 \in \{a\}^*\}$
 - Andere Möglichkeit: Suche Wörter mit ab und nehme diese Weg.
 - $L = \{a, b\}^* \setminus \{w_1 \cdot ab \cdot w_2 : w_1, w_2 \in \{a, b\}^*\}$

Übung zu formalen Sprachen

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörter

Formale Sprachen Sei $A := \{a, b\}, B := \{0, 1\}.$

Aufgabe zu formalen Sprachen

- 1. Sprache $L_1 \subseteq A^*$ von Wörtern, die mindestens drei *b*'s enthalten.
- 2. Sprache $L_2 \subseteq A^*$ von Wörtern, die gerade Zahl von a's enthält.
- 3. Sprache $L_3 \subseteq B^*$ von Wörtern, die, interpretiert als Binärzahl eine gerade Zahl sind.
- 1. $L_1 = \{ w = w_1 b w_2 b w_3 b w_4 : w_1, w_2, w_3, w_4 \in A^* \}$
- 2. $L_2 = \{ w = (w_1 a w_2 a w_3)^* : w_1, w_2, w_3 \in \{b\}^* \}$ (Ist da ε drin?)
- 3. $L_3 = \{ w = w \cdot 0 : w \in B^* \}$

Informationen

Lukas Bach, lukas.bach@student.kit.edu

Wiederholung

Wörte

Formale Sprachen

Zum Tutorium

- Lukas Bach
- Tutorienfolien auf:
 - http:

//gbi.lukasbach.com

- Tutorium findet statt:
 - Donnerstags, 14:00 15:30
 - 50.34 Informatikbau, -107

Zur Veranstaltung

- Grundbegriffe der Informatik
- Klausurtermin:
 - **o** 06.03.2017, 11:00
 - Zwei Stunden
 Bearbeitungszeit
 - 6 ECTS für Informatiker und Informationswirte, 4 ECTS für Mathematiker und Physiker

Mehr Material

- ILIAS der Vorlesung:
 - kommt noch.
- Ehemalige GBI Webseite:
 - http://gbi.ira.uka.de
 - Altklausuren!

Zum Übungsschein

- Übungsblatt jede Woche
- Ab 50% insgesamt hat man den Übungsschein
- Keine Voraussetzung für die Klausur, aber für das Modul