# APPUNTI DI GEOMETRIA DIFFERENZIALE

Marco Casu





I seguenti appunti sono tratti dal corso di Geometria Differenziale tenuto dal docente Francesco Bottacin per l'Università degli Studi di Padova.

# INDICE

| 1 | Var | rietă Differenziabili                           | 4         |
|---|-----|-------------------------------------------------|-----------|
|   | 1.1 | Definizioni Preliminari, Varietà Topologiche    | 4         |
|   | 1.2 | Funzioni Differenziabili sulle Varietà          | 6         |
|   |     | 1.2.1 Esempi di Varietà                         | 8         |
|   |     | 1.2.2 Il Teorema degli Insiemi di Livello       | 11        |
|   | 1.3 | Funzioni Differenziabili fra Varietà            | 15        |
|   |     | 1.3.1 Esempi di Gruppi di Lie                   | 18        |
|   | 1.4 |                                                 | 19        |
| 2 | Lo  | Spazio Tangente                                 | <b>21</b> |
|   | 2.1 | Lo Spazio delle Derivazioni                     | 21        |
|   |     | 2.1.1 Lo Spazio Cotangente                      | 23        |
|   | 2.2 | Derivazioni e Carte Locali                      |           |
|   |     | 2.2.1 Differenziale di una Funzione fra Varietà | 26        |
|   | 2.3 | La Dimensione dello Spazio Tangente             | 27        |
|   |     | 2.3.1 Il Differenziale in Coordinate Locali     |           |
| 3 | Imr | mersioni e Sommersioni                          | <b>34</b> |
|   | 3.1 | Sottovarietà                                    | 36        |
|   |     |                                                 |           |

### **CAPITOLO**

1

# VARIETÀ DIFFERENZIABILI

# 1.1 Definizioni Preliminari, Varietà Topologiche

Uno degli scopi della geometria differenziale è quello di ricondurro lo studio di oggetti di forme complicate allo studio di un certo sotto-insieme di  $\mathbb{R}^n$ , si consideri una superficie sferica in  $\mathbb{R}^3$ 

$$S^{2} = \{ \mathbf{x} \in \mathbb{R}^{3} : \|\mathbf{x}\|_{2} = 1 \}$$
(1.1)

denotando con  $\|\cdot\|_2$  la norma euclidea. Ogni punto della sfera (esclusi i poli) può essere individuato da due coordinate reali  $(\varphi, \theta) \in [-\frac{\pi}{2}, \frac{\pi}{2}] \times [0, 2\pi] \subset \mathbb{R}^2$ , dette latitudine e longitudine, come mostrato in figura 1.1. Si è introdotto un'opportuno sistema di coordinate allo scopo di ricondurre lo studio della sfera allo studio di un sottoinsieme di  $\mathbb{R}^2$ .





Figura 1.1: Sistema di coordinate per la sfera in  $\mathbb{R}^3$ 

Definizione 1 Sia X un'insieme, e  $\tau$  una collezione di sottoinsiemi di X,  $\tau$  è una topologia in X se

- $\emptyset \in \tau \ e \ X \in \tau$
- Se  $V_i \in \tau$  per  $i = 1, 2 \dots, n$  allora  $\bigcap_{1 \le i \le n} V_i \in \tau$
- Se  $\{V_{\alpha}\}$  è una collezione di elementi di  $\tau$  (finita, numerabile o non numerabile) allora  $\bigcup_{\alpha} V_i \in \tau$ .

**Definizione 2** Se un'insieme X ammette una topologia  $\tau$  allora X è uno **spazio topologico** e gli insiemi in  $\tau$  si dicono **insiemi aperti** di X.

**Definizione 3** Se X e Y sono due spazi topologici, una funzione  $f: X \to Y$  è **continua** se, per ogni aperto V di Y, l'insieme  $f^{-1}(V)$  è un'aperto di X.

**Definizione 4** Una funzione  $f: X \to Y$  fra due spazi topologici è un **omeomorfismo** se è biettiva, continua, e la sua inversa  $f^{-1}$  è anch'essa continua.

 $\mathbb{R}^n$  è il più semplice esempio di spazio topologico. La seguente definizione è fondamentale e necessaria alla successiva definizione di varietà.

**Definizione 5** Sia X uno spazio topologico e  $U \subset X$  un'aperto, sia  $\varphi$  un omeomorfismo da U ad un aperto di  $\mathbb{R}^n$ 

$$\varphi: U \to \varphi(U) \subset \mathbb{R}^n \tag{1.2}$$

$$\varphi(U)$$
 è un'insieme aperto (1.3)

allora la coppia  $(U, \varphi)$  è una carta per X.



Figura 1.2: Una carta da un'insieme X ad un'aperto di  $\mathbb{R}^2$ 

In tal contesto la funzione inversa  $\varphi^{-1}$  è detta parametrizzazione locale. Si considera ora il caso in cui due carte si intersecano, ossia, per uno stesso spazio topologico X, vi sono due carte  $(U_1, \varphi_1), (U_2, \varphi_2)$  tali per cui  $U_1 \cap U_2 \neq \emptyset$ , come mostrato in figura 1.3.



Figura 1.3: Intersezione fra due carte in X

La funzione  $\varphi_2 \circ \varphi_1^{-1}$  è definita solamente sulla regione  $\varphi_1(U_1 \cap U_2) \subset \mathbb{R}^n$ , mentre  $\varphi_1 \circ \varphi_2^{-1}$  è definita solamente sulla regione  $\varphi_2(U_1 \cap U_2) \subset \mathbb{R}^n$ , si ometterà tale restrizione nella notazione, e si assumerà che tali funzioni sono definite esclusivamente sugli insiemi menzionati.

Le funzioni  $\varphi_2 \circ \varphi_1^{-1}, \varphi_1 \circ \varphi_2^{-1}$  sono omeomorfismi tra aperti di  $\mathbb{R}^n$ . Da questo punto in avanti, date due carte  $(U_i, \varphi_i), (U_j, \varphi_j)$ , si denoterà

$$\eta_{ij} = \varphi_i \circ \varphi_i^{-1} \tag{1.4}$$

queste sono denominate funzioni di transizione e descrivono il cambiamento di coordinate fra due differenti aperti di  $\mathbb{R}^n$ . Le funzioni di transizione definiscono la relazione fra punti che si trovano su più insiemi aperti di X sui quali sono definite differenti carte. Le funzioni di transizione soddisfano le seguenti identità:



- $\eta_{ii} = \operatorname{Id}$
- $\eta_{ij} = \eta_{ji}^{-1}$
- su  $U_i \cap U_j \cap U_k$  si ha  $\eta_{ij} \circ \eta_{jk} = \eta_{ik}$ .

**Definizione 6** Sia X uno spazio topologico, e sia  $\{(U_i, \varphi_i)\}_{i \in I}$  una famiglia di carte tali per cui

$$X = \bigcup_{i \in I} U_i \tag{1.5}$$

in tal caso l'insieme  $\{(U_i, \varphi_i)\}_{i \in I}$  è un atlante per X.

Definizione 7 Sia X uno spazio topologico, se esiste un atlante per X, quest'ultima è detta varietà topologica.

**Definizione 8** Uno spazio topologico si dice **connesso** se non può essere rappresentato come l'unione di due o più insiemi aperti non vuoti e disgiunti.

Da questo punto in avanti si assumerà che gli spazi topologici considerati siano connessi. Un'atlante per uno spazio topologico X è una famiglia di carte che ricopre l'intero spazio, si considerino due differenti carte su X tali per cui

$$\varphi_1: U_1 \to \varphi_1(U_1) \subset \mathbb{R}^n \tag{1.6}$$

$$\varphi_2: U_2 \to \varphi_2(U_2) \subset \mathbb{R}^m \tag{1.7}$$

se  $U_1 \cap U_2 \neq \emptyset$  la funzione di transizione  $\eta_{12}$  è un omeomorfismo tra un'aperto di  $\mathbb{R}^m$  ad un'aperto di  $\mathbb{R}^n$ , necessariamente n = m (la dimostrazione è omessa).

Osservazione 1 Se X è una varietà topologica connessa, tutte le carte di un'atlante per X sono funzioni che hanno come ambiente per il codominio  $\mathbb{R}^n$ , con n fissato in comune per ogni carta, in tal caso si dice che n è la **dimensione** della varietà X.

La dimensione di una varietà è quindi ben definita dalle carte locali.

### 1.2 Funzioni Differenziabili sulle Varietà

Sia X una varietà topologica di dimensione n, con atlante  $\{(U_i, \varphi_i)\}$ . Si consideri una funzione continua  $f: X \to \mathbb{R}$ , si ha:

$$X \supset U_i \xrightarrow{\varphi_i} \varphi(U_i) \subset \mathbb{R}^n$$

$$f_{|U_i|} \downarrow \qquad \qquad \qquad \tilde{f_i}$$

ove  $\tilde{f}_i = f_{|U_i} \circ \varphi_i^{-1}$ . La funzione  $\tilde{f}_i : \varphi(U_i) \to \mathbb{R}$  è una funzione definita su un'aperto di  $\mathbb{R}^n$ , sui quali si possono adoperare i metodi di studio dell'Analisi. Se  $U_i \cap U_j \neq \emptyset$ , allora la funzione  $\tilde{f}_j : \varphi(U_j) \to \mathbb{R}$  si può riscrivere  $\tilde{f}_j = \tilde{f}_i \circ \eta_{ij}$ 

- $\eta_{ij}$  è un omeomorfismo da un'aperto di  $\mathbb{R}^n$  ad'un aperto di  $\mathbb{R}^n$
- $\tilde{f}_i$  è una funzione da un'aperto di  $\mathbb{R}^n$  ad'un'aperto di  $\mathbb{R}$
- $\tilde{f}_i = \tilde{f}_i \circ \eta_{ij}$  è una funzione da un'aperto di  $\mathbb{R}^n$  ad'un'aperto di  $\mathbb{R}$ .

Un diagramma commutativo è dato in figura 1.4.  $\tilde{f}_i$  è la rappresentazione locale della funzione f sull'aperto  $U_i \subset X$ .  $\tilde{f}_i$  e  $\tilde{f}_j$  sono funzioni differenti che rappresentano però la stessa funzione f, ma in sistemi di coordinate differenti.

Se si vuole descrivere una funzione f definita in X, si può definire localmente tramite un'atlante su X, ove per ciascuna carta locale  $\varphi_i$  si identifica l'espressione locale di f, denotata  $\tilde{f}_i$ , vi è una funzione di questo tipo per ogni carta dell'atlante. Le funzioni  $\tilde{f}_i$  sono descrizioni di f, non possono essere funzioni scelte arbitrariamente, ma devono soddisfare la relazione

$$\tilde{f}_j = \tilde{f}_i \circ \eta_{ij} \tag{1.8}$$

per ogni funzione di transizione  $\eta_{ij}$ .



Figura 1.4: La funzione f in relazione con l'intersezione fra due carte in X

Osservazione 2 Usando tale fatto, si è ricondotto il problema di studiare una funzione f su una varietà topologica, al problema dello studio di funzioni  $\tilde{f}_i$  definite su aperti di  $\mathbb{R}^n$ .

Si vuole definire ora la differenziabilità di f definita su una varietà topologica. Una funzione è di classe  $C^r$  definita su U aperto di  $\mathbb{R}^n$  se tutte le sue derivate parziali fino all'ordine r esistono e sono continue su U. Potremmo dire che f definita su una varietà topologica X è di classe  $C^r$  su  $U_i$  aperto di X se e solo se una sua rappresentazione locale  $\tilde{f}_i$  è di classe  $C^r$  in  $\varphi(U_i)$ , ma ciò è errato in quanto si deve considerare il fatto che possa esistere una differente carta  $(U_j, \varphi_j)$  che si interseca con  $U_i$ , tale per cui  $\tilde{f}_j$  è di classe  $C^{r'}$  con r' < r.

**Definizione 9** Una varietà topologica X è di classe  $C^r$  se tutte le funzioni di transizione  $\eta_{ij}$  sono di classe  $C^s$  con  $s \ge r$ .

Osservazione 3 Se una varietà X è di classe  $C^s$ , si può definire la nozione di funzione f di classe  $C^r$  su X, con  $r \le s$ .

**Definizione 10** Una varietà topologica di classe  $C^{\infty}$  è detta **varietà differenziabile**. Se n è la dimensione della varietà, si denominerà semplicemente n-varietà.

Sulle funzioni definite su una varietà differenziabile si possono applicare i metodi del calcolo differenziale propri dell'Analisi. Essendo che ogni punto di una varietà X è contenuto in un'intorno aperto omeomorfo ad un'insieme aperto di  $\mathbb{R}^n$ , le proprietà locali di una varietà sono le stesse della topologia in  $\mathbb{R}^n$ , in particolare ogni varietà è:

- localmente compatta
- localmente connessa

per completezza, saranno date le definizioni di tali proprietà.

**Definizione 11** Uno spazio topologico X si dice **compatto** se da ogni suo ricoprimento costituito da una famiglia di insiemi aperti si può estrarre una sottofamiglia finita che è ancora un ricoprimento. Sia  $\{U_i\}_{i\in I}$  una qualsiasi famiglia di sottoinsiemi aperti di X tali per cui

$$\bigcup_{i \in I} U_i = X \tag{1.9}$$

allora esiste un sottoinsieme finito  $J \subset I$  tale per cui

$$\bigcup_{i \in J} U_i = X.$$
(1.10)

**Definizione 12** uno spazio topologico X è detto **localmente compatto** se per ogni suo punto esiste un intorno la cui chiusura è un insieme compatto. Si ricordi che la chiusura di un'aperto U è l'intersezione di tutti gli insiemi chiusi contenenti U.

**Definizione 13** Uno spazio topologico X è **localmente connesso** se ogni punto dello spazio ha un sistema di intorni connessi. Si ricordi che un sistema di intorni è un insieme di intorni tale che qualsiasi intorno aperto di  $x \in X$  contiene uno di questi intorni.

Si assumerà (solitamente) che ogni varietà differenziabile X considerata sia uno spazio topologico di Hausdorff, ossia per il quale vale il seguente assioma:

$$\forall x, y \in X : x \neq y \; \exists U, V \text{ intorni aperti di } x, y \text{ tali che } U \cap V = \emptyset.$$
 (1.11)

### 1.2.1 Esempi di Varietà

Sono dati in seguito alcuni esempi di varietà differenziabili.

**Esempio 1**  $\mathbb{R}^n$  è una varietà differenziabile, anche ogni aperto di  $\mathbb{R}^n$  lo è. Un qualunque spazio vettoriale reale di dimensione finita è isomorfo a  $\mathbb{R}^n$ , è quindi anch'esso una varietà.

Osservazione 4 Anche uno spazio vettoriale a dimensione infinita può essere una varietà differenziabile, è però necessario considerare una definizione alternativa di carta, in cui non si esclude il fatto che l'immagine di una carta locale possa essere uno spazio vettoriale di dimensione infinita.

Esempio 2 Se X è una varietà e  $U \subset X$  è un'insieme aperto, allora U è una varietà.

**Esempio 3** Il prodotto di due varietà è una varietà. Si consideri una m-varietà X ed una n-varietà Y, sia  $\mathcal{A}$  un'atlante per X e  $\mathcal{B}$  un'atlante per Y

$$\mathcal{A} = \{ (U_{\alpha}, \varphi_{\alpha}) \} \tag{1.12}$$

$$\mathcal{B} = \{ (V_{\beta}, \psi_{\beta}) \}. \tag{1.13}$$

Sia  $\mathcal{A} \times \mathcal{B} = \{(U_{\alpha} \times V_{\beta}, \varphi_{\alpha} \times \psi_{\beta})\}$  ove

$$\varphi_{\alpha} \times \psi_{\beta} : U_{\alpha} \times V_{\beta} \to \mathbb{R}^{m} \times \mathbb{R}^{n} = R^{m+n} \tag{1.14}$$

$$(x,y) \longmapsto (\varphi_{\alpha}(x), \psi_{\beta}(y)).$$
 (1.15)

Questo è un atlante per  $X \times Y$ , quest'ultima è quindi una n + m-varietà.

Esempio 4 Si consideri l'insieme

$$GL(n,\mathbb{R}) = \{ A \in M(n,\mathbb{R}) : \det A \neq 0 \}$$

$$(1.16)$$

ossia l'insieme delle matrici quadrate  $n \times n$  a valori reali il cui determinante è diverso da zero, questo è un sottoinsieme aperto di  $\mathbb{R}^{n^2}$ , quindi è una varietà. Il fatto che sia aperto è dato dal fatto che l'insieme delle matrici con determinante nullo è un'insieme chiuso.

**Esempio 5** Si consideri la sfera  $S_R^n$  di raggio R in  $\mathbb{R}^{n+1}$ 

$$S_R^n = \{ \mathbf{x} \in \mathbb{R}^{n+1} : \|\mathbf{x}\|_2 = R \}$$
 (1.17)

è uno spazio topologico la cui topologia è quella indotta di  $\mathbb{R}^{n+1}$ . Si definirà un'atlante per  $S_R^n$  costituito da due carte. Si considerino i due poli

$$N = (0, 0, 0 \dots, R) \tag{1.18}$$

$$S = (0, 0, 0, \dots, -R) \tag{1.19}$$

si denota  $p = (p^1, \dots, p^{n+1})$  un generico punto della sfera, si noti come le coordinate si identificano con degli apici piuttosto che con dei pedici, l'utilità di tale notazione sarà chiarita in seguito.

Sia  $\pi$  l'iperpiano di equazione  $x^{n+1}=0$ , naturalmente identificato con  $\mathbb{R}^n$ . La prima carta è  $(S_R^n\setminus\{N\},\varphi_N)$ 

$$\varphi_N: S_R^n \backslash \{N\} \to \pi \simeq \mathbb{R}^n \tag{1.20}$$

definita come la proiezione stereografica. Il punto  $\varphi_N(p) \in \mathbb{R}^n$  identificato, è il punto che si trova su  $\pi$  attraversato dall'unica retta che passa per p e per N. Un'esempio in  $\mathbb{R}^3$  è riportato in figura 1.5.



Figura 1.5: Proiezione stereografica in  $\mathbb{R}^3$ 

Tale retta è definita dall'equazione

$$\mathbf{x}(t) = N + t(p - N) \tag{1.21}$$

con  $t \in \mathbb{R}$ . Le singole coordinate della retta al variare di t sono date da

$$\begin{cases} x^{1}(t) = tp^{1} \\ x^{2}(t) = tp^{2} \\ \vdots \\ x^{n}(t) = tp^{n} \\ x^{n+1}(t) = R + t(p^{n+1} - R) \end{cases}$$
 (1.22)

considerando l'intersezione con l'iperpiano  $\pi$  si ricava

$$t = \frac{R}{R - p^{n+1}} \tag{1.23}$$

l'espressione di  $\varphi_N$  è quindi

$$N + \frac{R}{R - p^{n+1}}(p - N) \tag{1.24}$$

ristretta alle prime n componenti

$$\varphi_N(p) = \left(\frac{Rp^1}{R - p^{n+1}}, \frac{Rp^2}{R - p^{n+1}}, \dots, \frac{Rp^n}{R - p^{n+1}}\right)$$
(1.25)

tale funzione è biettiva. Si noti come essendo  $p \neq N$  i denominatori di ogni componente di  $\varphi_N(p)$  non sono mai nulli. L'inversa di tale funzione è la seguente

$$\varphi_N^{-1}((y^1 \dots, y^n)) = \left(y^1 \frac{2R^2}{(\|y\|_2)^2 + R^2} \dots, y^n \frac{2R^2}{(\|y\|_2)^2 + R^2}, R \frac{(\|y\|_2)^2 - R^2}{(\|y\|_2)^2 + R^2}\right). \tag{1.26}$$

Come seconda carta si considera la proiezione analoga  $\phi_S$  dal punto S

$$\varphi_S: S_R^n \setminus \{S\} \to \pi \simeq \mathbb{R}^n. \tag{1.27}$$

L'espressione di  $\varphi_S$  è

$$\varphi_S(p) = \frac{R}{R + p^{n+1}}(p^1, \dots, p^n)$$
(1.28)

queste due carte costituiscono un'atlante per la sfera  $S_R^n$ . Bisogna verificare che le due carte siano compatibili, ossia che le funzioni di transizione siano di classe  $C^{\infty}$ , in modo da dimostrare che la varietà sia differenziabile.

L'intersezione dei due aperti di  $S_R^n \in S_R^n \setminus \{N, S\}$ , si ha che  $\varphi_N(S_R^n \setminus \{N, S\}) = \mathbb{R}^n \setminus \{0\}$ . La funzione di transizione  $\varphi_S \circ \varphi_N^{-1} : \mathbb{R}^n \setminus \{0\} \to \mathbb{R}^n \setminus \{0\}$  è la seguente

$$\eta_{SN}(y) = \frac{R^2}{(\|y\|_2)^2} y \tag{1.29}$$

questa è di classe  $C^{\infty}$  (la dimostrazione è omessa). L'altra funzione, ossia  $\eta_{NS} = \eta_{SN}^{-1}$  è a sua volta di classe  $C^{\infty}$ . La sfera  $S_R^n$  è una n-varietà differenziabile.

Osservazione 5 Due è il numero minimo di carte per ricoprire una sfere.

Esempio 6 Prodotti di sfere sono varietà differenziabili, come il toro

$$T^2 = S^1 \times S^1 \tag{1.30}$$

mostrato in figura 1.6.



Figura 1.6: Rappresentazione geometrica del toro  $T^2$ 

Esempio 7 Gli esempi precedenti consideravano varietà "immerse" in  $\mathbb{R}^n$ , il seguente esempio riguarda una varietà differenziabile che non nasce come sotto varietà contenuta in  $\mathbb{R}^n$ . Lo spazio **proiettivo reale** di dimensione n si può costruire come segue, si consideri la seguente relazione di equivalenza fra vettori in  $\mathbb{R}^{n+1}\setminus\{\mathbf{0}\}$ :

$$(x^0, x^1, \dots, x^n) \sim (y^0, y^1, \dots, y^n) \iff (y^0, y^1, \dots, y^n) = (\lambda x^0, \lambda x^1, \dots, \lambda x^n) \ \forall \lambda \neq 0.$$
 (1.31)

Si considera l'insieme quoziente delle classi di equivalenza rispetto tale relazione

$$\mathbb{P}_{\mathbb{R}}^{n} = \frac{\mathbb{R}^{n+1} \setminus \{\mathbf{0}\}}{\sim} \tag{1.32}$$

si denota  $(x^0: x^1 \cdots : x^n)$  un'elemento di  $\mathbb{P}^n_{\mathbb{R}}$ . Dal punto di vista geometrico, ogni elemento di  $\mathbb{P}^n_{\mathbb{R}}$  è una retta passante per l'origine, come mostrato in figura 1.7.



Figura 1.7: Lo spazio  $\mathbb{P}^1_{\mathbb{R}}$ 

I punti  $(x^0 : x^1 \cdots : x^n)$  si denominano **coordinate omogenee** in  $\mathbb{P}^n$  (da ora in poi si omette il pedice  $\mathbb{R}$ ). Lo spazio proiettivo deve essere dotato di una topologia, siccome  $\mathbb{P}^n$  è un'insieme quoziente, è quindi dotato della *topologia quoziente*, ai fini dell'esempio, non è necessario conoscere i dettagli di tale topologia.

Si vuole ora costruire un atlante per  $\mathbb{P}^n$ , si pone

$$U_i = \{ (x^0 : x^1 \dots : x^n) \in \mathbb{P}^n : x^i \neq 0 \}$$
 (1.33)

di tali insiemi  $U_i$  ce ne sono n+1, per  $i=0,1\ldots n$ . Si ha che

$$\mathbb{P}^n = \bigcup_{0 \le i \le n} U_i \tag{1.34}$$

ogni punto dello spazio proiettivo deve avere almeno una coordinata diversa da zero, quindi deve essere necessariamente in uno degli insiemi  $U_i$ . Bisogna definire ora le carte locali, si pone  $\varphi_i:U_i\to\mathbb{R}^n$  come

$$\varphi_i(x^0 : \dots : x^n) = \left(\frac{x^0}{x_i}, \dots, \frac{x^{i-1}}{x_i}, \frac{x^{i+1}}{x_i}, \dots, \frac{x^n}{x_i}\right)$$
 (1.35)

nell'immagine di  $\varphi_i$  si è esclusa la coordinata  $x_i, \varphi_i$  è ben definita in quanto

$$\varphi_i(x^0:\dots:x^n) = \varphi_i(\lambda x^0:\dots:\lambda x^n)$$
(1.36)

non è difficile da verificare

$$\varphi_i(\lambda x^0 : \dots : \lambda x^n) = \left(\frac{\lambda x^0}{\lambda x_i}, \dots \frac{\lambda x^{i-1}}{\lambda x_i}, \frac{\lambda x^{i+1}}{\lambda x_i}, \dots \frac{\lambda x^n}{\lambda x_i}\right) =$$
(1.37)

$$\left(\frac{x^0}{x_i}, \dots, \frac{x^{i-1}}{x_i}, \frac{x^{i+1}}{x_i}, \dots, \frac{x^n}{x_i}\right) = \varphi_i(x^0 : \dots : x^n).$$
 (1.38)

La funzione inversa è la seguente

$$\varphi_i^{-1}: \mathbb{R}^n \to U_i \tag{1.39}$$

$$(y^1 \dots, y^n) \longmapsto (y^1 : \dots : y^i : 1 : y^{i+1} : \dots : y^n)$$
 (1.40)

l'insieme  $\{(U_i, \varphi_i)\}_{i=0,...n}$  è un atlante per  $\mathbb{P}^n$ . Bisogna verificare ora la regolarità delle funzioni di transizione. Siano  $(U_i, \varphi_i), (U_j, \varphi_j)$  due carte, si considera  $\eta_{ij}$ :

$$\eta_{ij}(y^1 \dots, y^n) = \tag{1.41}$$

$$\varphi_i \circ \varphi_j^{-1}(y^1 \dots, y^n) = \tag{1.42}$$

$$\varphi_i(y^1 : \dots : y^j : 1 : y^{j+1} : \dots : y^n) =$$
 (1.43)

$$\varphi_{i}(y^{1}:\dots:y^{j}:1:y^{j+1}:\dots:y^{n}) =$$

$$\left(\frac{y^{1}}{y^{i}}:\dots:\frac{y^{i-1}}{y^{i}}:\frac{y^{i+1}}{y^{i}}:\dots:\frac{y^{j}}{y^{i}}:\frac{1}{y^{i}}:\frac{y^{j+1}}{y^{i}}:\dots:\frac{y^{n}}{y^{i}}\right)$$

$$(1.43)$$

essendo che  $y^i \neq 0 \neq y^j$ , ogni funzione di transizione  $\eta_{ij}$  è di classe  $C^{\infty}$ . In conclusione,  $\mathbb{P}^n$  è una n-varietà differenziabile.

Osservazione 6  $\mathbb{P}^n_{\mathbb{R}}$  è l'insieme dei sotto spazi vettoriali di dimensione 1 di  $\mathbb{R}^{n+1}$ , dato che contiene tutte le rette passanti per l'origine.

Tale struttura si può generalizzare, sia V uno spazio vettoriale sul campo reale di dimensione n, si definisce

$$Gr_k(V) = \{ \text{ insieme dei sottospazi di } V \text{ di dimensione } k \}$$
 (1.45)

si ha che  $\mathbb{P}^n_{\mathbb{R}}=Gr_1(\mathbb{R}^{n+1})$ . L'insieme  $Gr_2(\mathbb{R}^{n+1})$  contiene tutti gli iperpiani passanti per l'origine. Anche  $Gr_k(V)$  è una varietà differenziabile di dimensione k(n-k) ed è detta varietà grassmanniana.

#### Il Teorema degli Insiemi di Livello

Il teorema presentato in tale sezione è rilevante. Sono necessari prima alcuni risultati, ed alcune definizioni.

**Definizione 14** Sia  $\Omega \subset \mathbb{R}^n$  un'aperto e sia  $F: \Omega \to \mathbb{R}^m$  una funzione di classe  $C^1$ . Un punto  $p \in \Omega$ è un punto critico di F se il differenziale  $dF_p:\mathbb{R}^n\to\mathbb{R}^m$  non è suriettivo (il rango della matrice Jacobiana in tal punto non è m). Il punto F(p) è detto valore critico.

Sia  $Crit(F) \subset \Omega$  l'insieme dei punti critici di F, tale insieme è chiuso (la dimostrazione è omessa). Si ricordi che nel caso m=1, un punto critico è un punto in cui il gradiente di F si annulla. Se n=m, un punto è critico se la matrice Jacobiana ha determinante nullo.

Un punto è regolare se non è critico, e la sua immagine tramite F è un valore regolare.

**Teorema 1** (della funzione inversa) Sia  $\Omega \subset \mathbb{R}^n$  un aperto,  $e F : \Omega \to \mathbb{R}^n$  una funzione di classe  $C^k$  con  $k \geq 1$ . Sia  $p_0 \in \Omega$  un punto regolare, ossia  $\det(JacF(p_0)) \neq 0$ , esiste un'intorno U di  $p_0$  ed un'intorno V di  $F(p_0)$  in  $\mathbb{R}^n$  tali per cui la funzione

$$F_{|U}: U \to V \tag{1.46}$$

è un diffeomorfismo (essa e la sua inversa sono differenziabili) la cui inversa è di classe  $C^k$ .

Intuitivamente, il teorema afferma che, se una funzione F in un punto  $p_0$  è approssimabile da un'applicazione lineare invertibile, anche F stessa sarà localmente invertibile in un intorno di  $p_0$ .

Il seguente teorema è fondamentale ed afferma che le curve di livello di una funzione di classe  $C^{\infty}$  sono varietà differenziabili.

Teorema 2 Sia  $\Omega \subset \mathbb{R}^{m+n}$  un aperto, e sia

$$F: \Omega \to \mathbb{R}^m \tag{1.47}$$

una funzione di classe  $C^{\infty}$ . Sia  $a \in F(\Omega)$ , si consideri l'insieme di livello di a, ossia l'insieme dei punti in  $\Omega$  in cui la funzione assume valore a, escludendo i punti critici:

$$F^{-1}(a) = \{x \in \Omega : F(x) = a\}$$
(1.48)

$$M_a = F^{-1}(a) \backslash Crit(F) \tag{1.49}$$

allora  $M_a$  è uno spazio topologico, la cui topologia è quella indotta da  $\mathbb{R}^{m+n}$ , inoltre è una n-varietà differenziabile. Se a è regolare,  $M_a = F^{-1}(a)$ .

Dimostrazione: Bisogna costruire un atlante per  $M_a$ , e mostrare che le funzioni di transizione sono di classe  $C^{\infty}$ . Si consideri un punto  $p_0 \in M_a$ , siccome tale punto non è critico (per ipotesi), la matrice Jacobiana  $\operatorname{Jac} F(p_0)$  ha rango massimo, ossia m. Questo significa che esiste almeno una sotto-matrice di  $\operatorname{Jac} F(p_0)$  costituita da n righe ed m colonne che ha determinante diverso da zero. A meno di permutare le coordinate, si può assumere che queste siano le ultime m colonne

$$\det \begin{pmatrix} \frac{\partial F^1}{\partial x^{n+1}(p_0)} & \cdots & \frac{\partial F^1}{\partial x^{n+m}(p_0)} \\ \vdots & & \vdots \\ \frac{\partial F^m}{\partial x^{n+1}(p_0)} & \cdots & \frac{\partial F^m}{\partial x^{n+m}(p_0)} \end{pmatrix} \neq 0$$
(1.50)

denotiamo tale matrice B, essa è invertibile. Si costruisce una funzione  $G: \Omega \to \mathbb{R}^{n+m}$  definita ponendo

$$G(x) = (x^1, \dots, x^n, F(x)).$$
 (1.51)

si considera poi la Jacobiana di  ${\cal G}$  in  $p_0$ 

$$\operatorname{Jac}G(p_0) = \begin{pmatrix} \operatorname{Id} & \mathbf{0} \\ * & B \end{pmatrix} \tag{1.52}$$

è una matrice quadrata di n+m righe e colonne,  $Jac G(p_0)$  è suddivisa in quattro componenti come mostrato, in particolare

• Id è la matrice identità, in quanto gli elementi di tali componenti sono del tipo

$$\frac{\partial x^i}{\partial x^j} \tag{1.53}$$

e chiaramente, se i=j allora  $\frac{\partial x^i}{\partial x^j} = \frac{\partial x^i}{\partial x^i} = 1$ , differentemente, se  $i \neq j$  si ha che  $\frac{\partial x^i}{\partial x^j} = 0$ , quindi la matrice risultante è l'identità.

• La componente in alto a destra è la matrice nulla perché i termini sono tutti del tipo

$$\frac{\partial x^i}{\partial x^{n+j}} \tag{1.54}$$

e per ognii, j tale derivata è nulla.

• La componente in basso a sinistra è composta dai termini del tipo

$$\frac{\partial F^i}{\partial x^{n+j}}(p_0) \tag{1.55}$$

non vi sono assunzioni sui tali valori e con  ${\bf x}$  si indica che tale matrice può assumere qualsiasi valore.

• L'ultima componente contiene termini del tipo

$$\frac{\partial F^i}{\partial x^{n+j}} \tag{1.56}$$

ed è chiaramente la matrice B, come dall'equazione (1.50).

si conclude che il determinante di  $JacG(p_0)$  è uguale al determinante di B, quindi diverso da zero

$$\det\begin{pmatrix} \operatorname{Id} & \mathbf{0} \\ * & B \end{pmatrix} = \det B \neq 0. \tag{1.57}$$

A tal punto si può applicare il Teorema (1), G è localmente invertibile, ossia esistono degli intorni  $\tilde{U} \subset \Omega \backslash Crit(F)$  di  $p_0$ , e  $W \subset \mathbb{R}^{n+m}$  di  $G(p_0)$  tali che

$$G_{|\tilde{U}}: \tilde{U} \to W$$
 (1.58)

è un diffeomorfismo. Sia H l'inversa di  $G_{|\tilde{U}|}$ 

$$H(y) = (h^1(y), \dots h^{n+m}(y))$$
 (1.59)

essendo H l'inversa di G si ha che G(H(y)) = y, in particolare

$$y = (y^1, \dots y^{n+m}) = G(H(y)) =$$
 (1.60)

$$(h^1(y), \dots h^{n+m}(y), F(H(y)))$$
 (1.61)

quindi per i = 1, 2, ..., n si ha che  $h^i(y) = y^i$ . Pertanto

$$F(H(y)) = F(h^{1}(y), \dots, h^{n}(y), h^{n+1}(y), \dots h^{n+m}(y)) =$$
(1.62)

$$F(y^1, \dots, y^n, h^{n+1}(y), \dots h^{n+m}(y))$$
 (1.63)

ma dato che  $y = (h^1(y), \dots h^{n+m}(y), F(H(y)))$  si ha che l'ultimo blocco di  $F(y^1, \dots, y^n, h^{n+1}(y), \dots h^{n+m}(y))$ , ossia  $h^{n+1}(y), \dots h^{n+m}(y)$ , deve essere uguale all'ultimo blocco di y, quindi

$$F(H(y)) = (y^{n+1}..., y^{n+m}) \ \forall y \in W$$
 (1.64)

Si pone  $U = M_a \cap \tilde{U}$  e si definisce l'insieme

$$V = \{x \in \mathbb{R}^n : (x, a) \in W\}$$

$$\tag{1.65}$$

è un aperto di  $\mathbb{R}^n$  dato che W è un aperto di  $\mathbb{R}^{n+m}$ . Si definisce una funzione

$$\psi: V \to \mathbb{R}^{n+m} \tag{1.66}$$

ponendo

$$\psi(x) = (x, h^{n+1}(x, a) \dots, h^{n+m}(x, a))$$
(1.67)

dall'uguaglianza ricavata prima

$$F(y^{1}...,y^{n},h^{n+1}(y)...,h^{n+m}(y)) = (y^{n+1}...,y^{n+m})$$
(1.68)

si deduce che  $\psi(V) = U = M_a \cap \tilde{U}$ 

$$\psi: \mathbb{R}^n \supset V \to U \subset M_a \subset \mathbb{R}^{n+m} \tag{1.69}$$

si pone  $\varphi = \psi^{-1}$ , questa è una carta locale su  $M_a$ , definita su un'intorno U di  $p_0$ . Tale costruzione può avvenire per ogni punto  $p_0$ , per tanto questo definisce un'atlante,  $M_a$  è quindi una varietà topologica. Bisogna ora mostrare che le funzioni di transizione siano differenziabili.

Siano  $(U, \varphi)$  e  $(U', \varphi')$  due carte, la funzione di transizione  $\varphi' \circ \varphi^{-1} = \varphi' \circ \psi$  ha come coordinate termini del tipo  $x^i$  oppure  $h^j(x, a)$  (per costruzione), queste funzioni sono quindi di classe  $C^{\infty}$ .

Saranno presi in considerazione alcuni esempi di applicazione di tale teorema. Sia  $F: \mathbb{R}^{n+1} \to \mathbb{R}$  la seguente funzione:

$$F(x) = (\|x\|_2)^2 \tag{1.70}$$

ossia la funzione che associa ad ogni vettore la sua norma euclidea elevata al quadrato. La funzione è chiaramente di classe  $C^{\infty}$ , l'unico valore critico è  $x=\mathbf{0}$ , in ogni altro punto, la matrice Jacobiana ha determinante diverso da zero, quindi per ogni  $R \neq 0$  l'insieme di livello

$$F^{-1}(R^2) = S_R^n (1.71)$$

è una ((n+1)-1)-varietà (è la sfera di raggio R). La dimensione della varietà è la differenza fra la dimensione del dominio con quella del codominio.

Si consideri ora la funzione  $F:M_n(\mathbb{R})\simeq \mathbb{R}^{n^2}\to \mathbb{R}$  che assegna ad ogni matrice quadrata il suo determinante

$$F(A) = \det A. \tag{1.72}$$

Sia  $X=(x_i^j)\in M_n(\mathbb{R})$ , il determinante si calcola tramite lo sviluppo di Laplace:

$$\det X = \sum_{i=1}^{n} (-1)^{i+j} x_i^j \det X_i^j \tag{1.73}$$

dove  $X_i^j$  è la sotto-matrice di X ottenuta eliminando la i-esima riga e la j-esima colonna. Da tale formula, si deduce che la derivata parziale di F è la seguente

$$\frac{\partial F}{\partial x_i^j} = (-1)^{i+j} \det X_i^j \tag{1.74}$$

Il differenziale di questa funzione non è suriettivo sui punti critici, essendo il codominio di dimensione 1, il differenziale non è suriettivo se la matrice Jacobiana ha rango zero, ossia è la funzione nulla, in tal caso i punti critici di F sono le matrici che hanno derivate parziali nulle, X è un punto critico se tutte le sotto-matrici  $X_i^j$  hanno determinante nullo

$$X \ \text{è critico} \iff \det X_i^j = 0 \ \forall i, j.$$
 (1.75)

Ciò avviene se il rango di X è minore o uguale di n-2

$$Crit(F) = \{ X \in M_2(\mathbb{R}) : rk(X) \le n - 2 \}.$$
 (1.76)

Il determinante di una matrice quadrata di rango non massimo è nullo, quindi l'unico valore critico di F è zero

$$\forall X \in Crit(F), \ F(X) = \det X = 0. \tag{1.77}$$

Si consideri un valore non critico, ad esempio 1, l'insieme di livello

$$SL(n,\mathbb{R}) = F^{-1}(1) = \{X \in M_2(\mathbb{R}) : \det X = 1\}$$
 (1.78)

questo è il gruppo speciale lineare, è una varietà differenziabile di dimensione  $n^2 - 1$ .

Tale teorema seppur potente nel suo enunciato va utilizzato in maniera corretta, si considerino le seguenti funzioni  $F: \mathbb{R}^2 \to \mathbb{R}$  e  $G: \mathbb{R}^2 \to \mathbb{R}$ :

$$F(x,y) = y (1.79)$$

$$G(x,y) = y^2 \tag{1.80}$$

condividono l'insieme di livello per il valore 0:

$$F^{-1}(0) = \{(x, y) : y = 0\}$$
(1.81)

$$G^{-1}(0) = \{(x,y) : y^2 = 0\} = \{(x,y) : y = 0\}.$$
 (1.82)

 $F^{-1}(0) = G^{-1}(0)$  indica la retta di equazione y = 0 ed è una 1-varietà. Il Jacobiano di F è costante ed è JacF = (0, 1), il rango è 1, non ci sono quindi valori critici per F.

Il Jacobiano di G è JacG = (0, 2y), ha rango nullo ove y = 0, 0 è quindi un valore critico per G, il teorema non si può applicare per  $G^{-1}(0)$  perchè il valore non deve essere critico, nonostante ciò, questo insieme è comunque una varietà.

Le funzioni F e G hanno lo stesso insieme di livello per il valore 0 il teorema enuncia che

l'antimmagine di un valore regolare è una varietà

non dice che

l'antimmagine di un valore critico non è una varietà quest'ultima condizione si può comunque verificare.

### 1.3 Funzioni Differenziabili fra Varietà

Si considerino due varietà differenziabili X, Y, di dimensioni n ed m. Sia F una funzione continua

$$F: X \to Y \tag{1.83}$$

si vuole definire il concetto di funzione di classe  $C^r$  fra due varietà differenziabili. Ci si riconduce sempre ad insiemi aperti di  $\mathbb{R}^n$ , si considerino due carte per X e per Y:

$$(U,\varphi)$$
 carta per  $X, p \in U$  (1.84)

$$(V, \psi)$$
 carta per  $Y, q \in V$  (1.85)

si considera  $\tilde{F}$  la rappresentazione locale di F:

$$X\supset U \xrightarrow{F_{|U}} V\subset Y$$

$$\downarrow^{\varphi} \qquad \qquad \downarrow^{\psi}$$

$$\mathbb{R}^m\supset \varphi(U) \xrightarrow{\widetilde{F}} \psi(V)\subset \mathbb{R}^m$$

si ha che

$$\tilde{F} = \psi \circ F \circ \varphi^{-1}. \tag{1.86}$$

 $\tilde{F}$  è una funzione definita su un'aperto di  $\mathbb{R}^n$  ad immagine su un'aperto di  $\mathbb{R}^m$ .

**Definizione 15** Una funzione F definita fra due varietà differenziabili è di classe  $C^r$  in un'intorno di  $p \in U$  se la sua rappresentazione locale  $\tilde{F}$  è di classe  $C^r$  in un'intorno di  $q \in \varphi(p)$ .

La definizione è ben posta se non dipende dalla scelta delle carte locali.

Si considerino due carte per X  $(U_1, \varphi_1), (U_2, \varphi_2)$  con  $p \in U_1 \cap U_2$ . Siano  $(V_1, \psi_1), (V_2, \psi_2)$  due carte per Y, con  $q = F(p) \in V_1 \cap V_2$ . Si ha che



F ha due rappresentazioni locali,  $\tilde{F}_1$  e  $\tilde{F}_2$ , sono tali che:

$$\tilde{F}_2 = \vartheta_{12}^{-1} \circ \tilde{F}_1 \circ \eta_{12}. \tag{1.87}$$

La Definizione 15 è ben posta se, ogni qual volta una rappresentazione locale di F ha una certa regolarità (è di classe  $C^r$ ), allora anche una sua altra rappresentazione deve esserlo, siccome queste sono collegate dalle funzioni di transizione, l'unico modo per garantire ciò è che le funzioni di transizione siano a loro volta di classe  $C^r$ , ma queste per definizione di varietà differenziabile sono di classe  $C^{\infty}$ .

**Definizione 16** Una funzione  $F: X \to Y$  definita fra due varietà differenziabili è differenziabile se è di classe  $C^{\infty}$  in ogni punto di X.

Proposizione 1 Siano X, Y, Z tre varietà differenziabili, e siano

$$F: X \to Y \tag{1.88}$$

$$G: Y \to Z$$
 (1.89)

funzioni differenziabili, allora

$$G \circ F : X \to Z$$
 (1.90)

è differenziabile.

**Definizione 17** Una funzione  $F: X \to Y$  fra varietà differenziabili è un diffeomorfismo di classe  $C^r$  se è biettiva, di classe  $C^r$ , e la sua inversa è di classe  $C^r$ . Se non specificato, un diffeomorfismo è inteso di classe  $C^{\infty}$ .

Esempio Si consideri la varietà

$$X = GL(n, \mathbb{R}) = \{ A \in M(n, \mathbb{R}) : \det A \neq 0 \}$$

$$\tag{1.91}$$

è di dimensione  $n^2$ , la varietà  $X \times X$  è di dimensione  $2n^2$ . L'applicazione

$$F: X \times X \to X \tag{1.92}$$

$$F(A,B) = A \cdot B \tag{1.93}$$

che associa a due matrici il loro prodotto

$$C = A \cdot B \tag{1.94}$$

$$c_j^i = \sum_h a_h^i b_j^h \tag{1.95}$$

le componenti di F sono funzioni polinomiali, quindi F è di classe  $C^{\infty}$ , pertanto è differenziabile.

Si consideri ora la funzione  $G: X \to X$  definita come segue

$$G(A) = A^{-1} (1.96)$$

per le stesse ragioni, G è differenziabile. Le funzioni F e G determinano il gruppo moltiplicativo delle matrici quadrate a determinante non nullo, tali funzioni sono differenziabili, il gruppo  $GL_n(\mathbb{R})$  è un gruppo di Lie.

**Definizione 18** Un gruppo di Lie è un gruppo G, dotato di una struttura di varietà differenziabile, e per cui le funzioni che lo definiscono

$$G \times G \to G$$
 operazione binaria (1.97)

$$G \to G \ inverso$$
 (1.98)

 $sono\ entrambe\ differenziabili.$ 

Il gruppo ( $\mathbb{R}^n, +$ ) è un gruppo di Lie.

Esempio Si consideri la varietà  $X_1 = \mathbb{R}$  (la retta reale) con unica carta  $(U, \varphi)$  la funzione identità

$$\varphi: U \to \mathbb{R} \tag{1.99}$$

$$\varphi(x) = x \tag{1.100}$$

$$U = X_1. (1.101)$$

Si consideri poi  $X_2 = \mathbb{R}$  con unica carta  $(V, \psi)$  la funzione cubica

$$\varphi: V \to \mathbb{R} \tag{1.102}$$

$$\varphi(x) = x^3 \tag{1.103}$$

$$V = X_2. (1.104)$$

anche  $X_2$  è la retta reale, ma dotata di una differente carta. Esistono varietà differenziabili diverse ma tra loro **diffeomorfe**, possono essere identificate da un diffeomorfismo, è il corrispettivo dell'isomorfismo fra gruppi. Due varietà sono uguali se diffeomorfe ed il diffeomorfismo che le mette in relazione è l'identità.

 $X_1$  e  $X_2$  sono diverse perché l'identità non è un diffeomorfismo, si consideri però la funzione

$$F: X_1 \to X_2$$
 (1.105)

$$F(x) = \sqrt[3]{x} \tag{1.106}$$

questa è un diffeomorfismo:



- F è biettiva
- F è continua

la rappresentazione locale  $\tilde{F}$  è la funzione identità

$$\tilde{F} = x^3 \circ \sqrt[3]{x} \circ x = x \tag{1.107}$$

 $\tilde{F}$  è chiaramente un diffeomorfismo.

Osservazione 7 Come nell'Algebra si possono classificare i gruppi a meno di isomorfismi, si possono classificare le varietà differenziabili a meno di diffeomorfismi.

In seguito, sono riportati alcuni risultati riguardanti la classificazione delle varietà differenziabili.

- Esistono varietà topologiche che non ammettono alcuna struttura differenziabile. Le varietà topologiche di dimensioni 1, 2 e 3 ammettono sempre una struttura differenziabile
- Le varietà topologiche di dimensioni 1, 2 e 3 ammettono un'unica struttura di differenziabile (a meno di diffeomorfismi).
- Se n ≠ 4, la varietà R<sup>n</sup> ammette un'unica struttura differenziabile a meno di diffeomorfismi. R<sup>4</sup> è uno spazio topologico speciale perché ammette un'infinità non numerabile di strutture di varietà differenziabile. Si noti come lo spazio tempo in Relatività Generale è descritto come una 4-varietà.
- La sfera unitaria  $S^7$  ha 28 strutture differenziabili distinte non diffeomorfe e sono descritte tutte esplicitamente.
- Non è ancora noto quale sia il numero di strutture differenziabili distinte non diffeomorfe per  $S^4$ .

**Definizione 19** Una funzione  $F: X \to Y$  è un diffeomorfismo locale se ogni  $p \in X$  ha un'intorno aperto U tale per cui F(U) è aperto in Y e la funzione

$$F_{|U}: U \to F(U) \tag{1.108}$$

è un diffeomorfismo.

Definizione 20 Una funzione

$$\pi: \tilde{X} \to X \tag{1.109}$$

fra due varietà è un **rivestimento** se

- 1.  $\pi$  è suriettiva e differenziabile
- 2. per ogni  $p \in X$  vi è un intorno aperto connesso  $U \subset X$  tale per cui, per ogni componente connessa  $\tilde{U}$  di  $\pi^{-1}(U)$ , la restrizione

$$\pi_{|\tilde{U}}$$

è un diffeomorfismo fra  $\tilde{U}$  e U.

Se  $\tilde{X}$  è semplicemente connesso,  $\pi$  è un rivestimento universale.

Un'esempio è il seguente, siano

$$\tilde{X} = \mathbb{R} \tag{1.110}$$

$$X = S_R^1 \subset \mathbb{R}^2 \tag{1.111}$$

$$\pi: \tilde{X} \to X \tag{1.112}$$

$$\pi(t) = (R\cos t, R\sin t) \tag{1.113}$$

 $\pi$  è un rivestimento universale.

### 1.3.1 Esempi di Gruppi di Lie

Si consideri  $\mathbb{R}^2$ , questo si può identificare come il campo dei numeri complessi, ereditandone la struttura $\mathbb{C}$ 

$$(a,b) \longleftrightarrow z = a + ib \tag{1.114}$$

inoltre

$$U(1) = \{ z \in \mathbb{C} : |z| = 1 \} = \{ (a, b) \in \mathbb{R}^2 : a^2 + b^2 = 1 \} = S^1$$
(1.115)

U(1) è un gruppo rispetto l'operazione di prodotto (il prodotto di due numeri complessi di norma unitaria è un numero di norma unitaria).  $S^1$  eredita da U(1) la struttura di gruppo abeliano (è un gruppo di Lie commutativo).

Si consideri  $\mathbb{R}^4$  questo si identifica come l'insieme dei quaternioni

$$\mathbb{R}^4 \simeq \mathbb{H} \tag{1.116}$$

$$(a, b, c, d) \longleftrightarrow z = a + bi + cj + dk \tag{1.117}$$

dove

$$i^2 = j^2 = j^2 = -1, ij = k, ji = -k, \text{ ecc.}$$
 (1.118)

il prodotto nell'insieme H non è commutativo. Il modulo per un quaternione si definisce come segue:

$$|z|^2 = z \cdot \overline{z} = (a+bi+cj+dk)(a-bi-cj-dk) = a^2+b^2+c^2+d^2$$
(1.119)

Il gruppo dei quaternioni unitari identifica la sfera  ${\cal S}^3$ 

$$\{z \in \mathbb{H} : |z| = 1\} = \{(a, b, c, d) \in \mathbb{R}^4 : a^2 + b^2 + c^2 + d^2 = 1\} = S^3$$
 (1.120)

 $S^3$  eredita dal gruppo dei quaternioni unitari una struttura di gruppo di Lie non abeliano.

Si considerino adesso le tre matrici di Pauli:

$$\sigma_X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \tag{1.121}$$

sono matrici complesse ed unitarie (svolgono un ruolo fondamentale nel calcolo quantistico). Si ha che

$$\sigma_X^2 = \sigma_Y^2 = \sigma_Z^2 = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 (1.122)

inoltre

$$\sigma_X \sigma_Y = i\sigma_Z, \quad \sigma_Y \sigma_X = -i\sigma_Z, \quad \text{ecc.}$$
 (1.123)

Se si moltiplica ogni matrice per i si costruiscono tre nuove matrici:

$$\tilde{\sigma}_X = i\sigma_X \quad \tilde{\sigma}_Y = i\sigma_Y \quad \tilde{\sigma}_Z = i\sigma_Z$$
 (1.124)

queste soddisfano le seguenti relazioni

$$\tilde{\sigma}_X^2 = \tilde{\sigma}_Y^2 = \tilde{\sigma}_Z^2 = -I \tag{1.125}$$

$$\tilde{\sigma}_X \tilde{\sigma}_Y = -\tilde{\sigma}_Z, \quad \tilde{\sigma}_Y \tilde{\sigma}_X = \tilde{\sigma}_Z, \quad \tilde{\sigma}_Y \tilde{\sigma}_Z = -\tilde{\sigma}_X$$
 (1.126)

$$\tilde{\sigma}_Z \tilde{\sigma}_Y = \tilde{\sigma}_X, \quad \tilde{\sigma}_X \tilde{\sigma}_Z = \tilde{\sigma}_Y, \quad \tilde{\sigma}_Z \tilde{\sigma}_X = -\tilde{\sigma}_Y$$
 (1.127)

confrontando tali relazioni con quelle dei quaternioni, si stabilisce la seguente corrispondenza

$$1 \leftrightarrow I \tag{1.128}$$

$$i \leftrightarrow \tilde{\sigma}_Z$$
 (1.129)

$$j \leftrightarrow \tilde{\sigma}_Y$$
 (1.130)

$$k \leftrightarrow \tilde{\sigma}_X$$
 (1.131)

i quaternioni si possono quindi rappresentare come delle matrici

$$z = a + bi + cj + dk \longleftrightarrow aI + b\tilde{\sigma}_Z + c\tilde{\sigma}_Y + d\tilde{\sigma}_X = \tag{1.132}$$

$$\begin{pmatrix} a+ib & c+id \\ -c+id & a-ib \end{pmatrix} = A_z \in M(2,\mathbb{C})$$
 (1.133)

si noti che l'operazione di determinante è l'equivalente del modulo

$$\det A_z = (a+ib)(a-ib) - (c+id)(-c+id) = a^2 + b^2 + c^2 + d^2$$
(1.134)

vi è quindi una corrispondenza fra il gruppo dei quaternioni unitari ed il gruppo delle matrici  $2 \times 2$  unitarie a valori complessi SU(2) con determinante uguale ad 1, in particolare, i due gruppi sono isomorfi. In conclusione:

$$SU(2) \simeq \{ z \in \mathbb{H} : |z| = 1 \} \simeq S^3.$$
 (1.135)

# 1.4 Quaternioni Unitari e Rotazioni

Si consideri l'insieme dei quaternioni con prima coordinata nulla

$$\mathbb{H}_0 = \{0 + bi + cj + dk\} \subset \mathbb{H}_0 \tag{1.136}$$

 $\mathbb{H}_0$ si può identificare con  $\mathbb{R}^3$  tramite la seguente mappa  $q:\mathbb{R}^3\to\mathbb{H}_0$ :

$$q(x^{1}, x^{2}, x^{3}) = x^{1}i + x^{2}j + x^{3}k.$$
(1.137)

Sia  $z \in \mathbb{H}$  un quaternione unitario, si definisce una trasformazione  $R_z : \mathbb{H}_0 \to \mathbb{H}_0$  come segue:

$$x \in \mathbb{R}^3 \tag{1.138}$$

$$R_z(q(x)) = zq(x)z^{-1} (1.139)$$

il quaternione risultante avrà ancora parte reale nulla (facile da verificare). Siccome  $\mathbb{H}_0$  si identifica come  $\mathbb{R}^3$ , la funzione  $R_z$  è identicamente una mappa fra vettori in  $\mathbb{R}^3$ . Si ha inoltre che la mappa  $R_z$  è un'isometria di  $\mathbb{H}_0 \simeq \mathbb{R}^3$ :

$$|R_z(q(z))| = |zq(x)z^{-1}| = |z| \cdot |q(x)| \cdot |z^{-1}| = |q(x)|$$
(1.140)

 $R_z$  è un'applicazione lineare, ha determinante unitario

$$\det R_z = 1 \tag{1.141}$$

la mappa  $R_z: \mathbb{R}^3 \to \mathbb{R}^3$  è una **rotazione** nello spazio  $\forall z \in \mathbb{H}, \ |z| = 1$ . Una rotazione si può sempre scrivere sotto forma di matrice (essendo lineare), se z = a + bi + cj + dk con |z| = 1,  $R_z$  è rappresentata dalla seguente:

$$R_z = \begin{pmatrix} a^2 + b^2 - c^2 - d^2 & 2bc - 2ad & 2bd + 2ac \\ 2bc + 2ad & a^2 - b^2 + c^2 - d^2 & 2cd - 2ab \\ 2bd - 2ac & 2cd + 2ab & a^2 - b^2 - c^2 + d^2 \end{pmatrix}$$
(1.142)

si dimostra che ogni rotazione in  $\mathbb{R}^3$  è del tipo  $R_z$  per qualche quaternione unitario z. Per ogni rotazione in  $\mathbb{R}^3$  esistono esattamente due quaternioni unitari che la descrivono

$$R_z = R_z' \iff \begin{cases} z = z' \text{ oppure} \\ z = -z' \end{cases}$$
 (1.143)

Ricapitolando:

- Ad ogni quaternione di modulo 1 si è associata una matrice  $A_z \in M(2,\mathbb{C})$  tramite una corrispondenza biettiva
- questa identifica il gruppo dei quaternioni unitari con il gruppo SU(2).
- Ad ogni quaternione di modulo 1 si è associata una matrice di rotazione  $R_z \in SO(3)$  tramite una corrispondenza non biettiva



• si ricordi che SO(3) è il gruppo delle matrici ortogonali con determinante uguale ad 1.

Questo è un omomorfismo suriettivo di gruppi di Lie. Il nucleo dell'omomorfismo è  $\{-I,I\}$ :

$$\frac{SU(2)}{\{I, -I\}} \simeq SO(3)$$
 (1.144)

SU(2) e SO(3) hanno una struttura di varietà differenziabile. Si noti come  $SU(2) \simeq S^3$  è semplicemente connesso, quindi SU(2) è il rivestimento universale di SO(3).

Dall'equazione (1.144), si ha che prendere il quoziente di  $S^3$  rispetto il sottogruppo  $\{I, -I\}$  significa identificare punti diametralmente opposti su  $S^3$ , ma le coppie di punti diametralmente opposti sulla sfera rappresentano lo spazio proiettivo  $\mathbb{P}^3_{\mathbb{R}}$ , considerando la relazione  $\sim$  fra due punti su  $S^3$ 

$$x \sim y \iff x = -y \tag{1.145}$$

si hanno pertanto i seguenti diffeomorfismi:

$$\mathbb{P}^3_{\mathbb{R}} \simeq \frac{S^3}{\sim} \simeq \frac{SU(2)}{\{I, -I\}} \simeq SO(3). \tag{1.146}$$

## **CAPITOLO**

2

# LO SPAZIO TANGENTE

Si vuole definire il concetto di vettore tangente ad una varietà in un suo punto.



Figura 2.1: Vettore tangente ad un punto di X

L'idea è quella di rappresentare un vettore tangente ad una varietà X in un punto p come vettore tangente ad un'arco di curva  $\gamma$  contenuta in X passante per p, come mostrato in figura 2.1. Tale idea va formalizzata utilizzando le carte locali di X. Tale idea è poco elegante dato che il vettore tangente in questo caso dipenderà dalla scelta della carta, va quindi considerato un'altro approccio.

# 2.1 Lo Spazio delle Derivazioni

Per spiegare l'idea si comincia con un caso semplice, si consideri la varietà  $X = \mathbb{R}^n$ . Dato un qualsiasi punto  $p \in \mathbb{R}^n$ , lo spazio tangente a tale punto, denotato  $T_p\mathbb{R}^n$ , è esattamente  $\mathbb{R}^n$ .

La definizione formale di spazio tangente sarà data in seguito, considerando la definizione poco elegante, è chiaro che nel caso di  $\mathbb{R}^n$ , una qualsiasi curva passante per un punto può identificare un qualsiasi vettore tangente.

Sia  $v \in T_p \mathbb{R}^n \in \mathbb{R}^n$  un vettore tangente e sia f una funzione di classe  $C^{\infty}$  definita in un'intorno di P. Si può calcolare la **derivata direzionale** di f in p rispetto al vettore v:

$$v = (a^1, a^2 \dots, a^n) \in T_p \mathbb{R}^n$$

$$(2.1)$$

$$\partial_v f(p) = \sum_{i=1}^n a^i \frac{\partial f}{\partial x_i}(p) \tag{2.2}$$

Si consideri ora l'insieme delle funzioni a valori reali derivabili infinite volte in  $\boldsymbol{p}$ 

$$C_p^\infty = \{f: U \to \mathbb{R} \ : \ f \ \text{\`e} \ \text{di classe} \ C^\infty \ \text{in un'intorno aperto} \ U \ \text{di} \ p\} \eqno(2.3)$$

la derivata direzionale valutata in p è un'operatore da  $C_p^{\infty}$  ad  $\mathbb{R}$ 

$$\partial_{v_{|p}}: C_p^{\infty} \to \mathbb{R} \tag{2.4}$$

$$f \longmapsto \partial_v f(p)$$
 (2.5)

questa soddisfa le seguenti proprietà

- $\partial_{v_{|p}}(f+g) = \partial_{v_{|p}}(f) + \partial_{v_{|p}}(g)$
- $\partial_{v_{\mid n}}(\text{costante}) = 0$
- $\partial_{v_{|p}}(fg) = \partial_{v_{|p}}(f)g(p) + f(p)\partial_{v_{|p}}(g)$  regola di Leibniz.

**Definizione 21** Un'operatore  $D: C_p^{\infty} \to \mathbb{R}$  che soddisfa le tre proprietà elencate in un punto p è detto derivazione centrata in p.

Si denota  $Der_p$  l'insieme di tali derivazioni. Ad ogni vettore di  $\mathbb{R}^n$  risulta associata una di queste derivazioni,  $Der_p$  ha la proprietà di essere uno spazio vettoriale sul campo dei reali, de facto

$$D_1, D_2 \in Der_p \implies D_1 + D_2 \in Der_p$$
 (2.6)

$$D \in Der_p, \lambda \in \mathbb{R} \implies \lambda D \in Der_p$$
 (2.7)

Ritornando alla varietà  $X = \mathbb{R}^n$  e allo spazio tangente  $T_pX$ , ad ogni vettore  $v = (a^1, a^2, \dots, a^n)$  in tale spazio, è associata una derivazione centrata in p:

$$\partial_{v|p} = \sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x_{i}}|_{p} \in Der_{p}$$
(2.8)

questa associazione è lineare ed è un'omeomorfismo fra spazi vettoriali

$$T_p \mathbb{R}^n \to Der_p$$
 (2.9)

$$v \longmapsto \partial_{v_{|_{\mathcal{D}}}}$$
 (2.10)

Questo spazio vettoriale è relativo ad un punto p. Ad ogni punto p si può associare uno spazio vettoriale  $T_p\mathbb{R}^n$ . Si vedrà in seguito che in realtà tale omeomorfismo è un'isomorfismo, gli spazi vettoriali  $T_p\mathbb{R}^n$ ,  $Der_p$  si possono identificare, in tal modo lo spazio vettoriale delle derivazioni si può identificare con lo spazio tangente (almeno nel caso di  $\mathbb{R}^n$ ).

Si comincia definendo in maniera più rigorosa  $C_p^{\infty}$ . Sia X una varietà differenziabile, e  $p \in X$ , se  $U \subset X$  è un'aperto, si pone

$$C^{\infty}(U) = \{ f : U \to \mathbb{R} : f \text{ è di classe } C^{\infty} \}$$
 (2.11)

si considera l'insieme delle coppie (U, f) tali per cui U è un'aperto di X contenente p e  $f \in C^{\infty}(U)$ . Sull'insieme  $\{(U, f)\}$  di tutte le coppie di questo tipo si definisce una relazione di equivalenza:

$$(U_1, f_1) \sim (U_2, f_2) \iff \exists W \text{ intorno aperto di } p \text{ tale che}$$

$$W \subset U_1 \cap U_2 \text{ ove } f_{1_{|W}} = f_{2_{|W}}$$

$$\tag{2.12}$$



Si richiede che  $f_1$  ed  $f_2$  coincidano in un qualche intorno aperto W di p.

Definizione 22 Si pone

$$C_p^{\infty} = \frac{\{(U, f) : p \in U, f \in C^{\infty}(U)\}}{\sim}$$
 (2.13)

come insieme quoziente. Si indicherà  $[(U,f)] \in C_p^{\infty}$  una classe di equivalenza.

Si pone  $f_p = [(U, f)]$  e si denomina **germe** di f in p. Intuitivamente il germe di una funzione in un punto p è semplicemente una funzione definita in un qualche intorno U di p che è di classe  $C^{\infty}$ . Nell'insieme  $C_p^{\infty}$  si possono definire somma e prodotto:

$$[(U_1, f_1)] + [(U_2, f_2)] = [[(U_1 \cap U_2, f_1 + f_2)]]$$
(2.14)

$$[(U_1, f_1)] \cdot [(U_2, f_2)] = [[(U_1 \cap U_2, f_1 f_2)]]. \tag{2.15}$$

 $C_p^{\infty}$  ha una struttura di anello, si può verificare facilmente, è detto anello dei germi delle funzioni di classe  $C^{\infty}$  in p.

L'anello  $C^{\infty}(U)$  prima definito, con  $p \in U$ , è omeomorfo a  $C_p^{\infty}$  tramite la mappa:

$$f \longmapsto f_p = [(U, f)] \tag{2.16}$$

che associa ad una funzione f il suo germe in p.

**Osservazione 8** Sia  $F: X \to Y$  una funzione differenziabile fra due varietà, se  $U \subset Y$ , allora  $F^{-1}(U)$  è un'aperto di X, dato che F è continua, se  $f \in C^{\infty}(U)$ , ossia è di classe  $C^{\infty}$  su U, allora è valido il sequente diagramma commutativo:

$$X\supset F^{-1}(U) \xrightarrow{F} U\subset Y$$

Dato che f e F sono di classe  $C^{\infty}$ , lo è anche  $f \circ F$  nell'insieme  $F^{-1}(U)$ . Per ogni aperto  $U \subset Y$ , la funzione  $F: X \to Y$  induce una funzione  $F^*$  come segue

$$F^*: C^{\infty}(U) \to C^{\infty}(F^{-1}(U))$$
 (2.17)

$$f \longmapsto F^*(f) = f \circ F$$
 (2.18)

si verifica che  $F^*$  è un'omomorfismo di anelli. Questo vale per ogni aperto U, vi è un'analoga funzione di  $F^*$  definita sui germi delle funzioni, sia  $p \in X$  e  $q = F(p) \in Y$ :

$$F_p^*: C_q^{\infty} \to C_p^{\infty} \tag{2.19}$$

$$[(U,f)] \longmapsto [(F^{-1}(U), f \circ F)]. \tag{2.20}$$

La funzione  $F^*$  è detta "pull back".

#### 2.1.1 Lo Spazio Cotangente

Si vuole definire in maniera ora formalmente il concetto di vettore tangente ad una varietà. La definizione di derivazione è stata già accennata:

**Definizione 23** Sia X una varietà e  $p \in X$ . Una **derivazione** in p è un'operatore

$$D: C_p^{\infty} \to \mathbb{R} \tag{2.21}$$

che soddisfa le sequenti proprietà:

- D(f+q) = D(f) + D(q)
- D(costante) = 0
- $D(fg) = D(f)g(p) + D(g)f(p), \forall f, g \in C_p^{\infty}$

L'insieme delle derivazioni per X in p è denotato  $Der_p$ . Il numero reale associato è da intendersi come la derivata di una funzione del germe contenuto in  $C_p^{\infty}$  calcolata in p.

**Definizione 24** Sia X una varietà e  $p \in X$ . Lo **spazio tangente** a X in p è uno spazio vettoriale reale denotato  $T_pX$  costituito da tutte le derivazioni di X

$$T_p X = Der_p. (2.22)$$



Se n è la dimensione della varietà X,  $Der_p$  è isomorfo a  $\mathbb{R}^n$ .  $T_pX$  è definito esclusivamente dalla varietà X e da un punto p, e non dipende dalle carte locali.

Si consideri un punto  $p \in X$  di una varietà, ad ogni punto possiamo associare l'anello  $C_p^{\infty}$ , vogliamo però associare ad ogni punto uno spazio tangente. In  $C_p^{\infty}$  potremmo considerare il sottoinsieme di tutti i germi di funzioni che si annullano in p

$$C_p^{\infty} \supset m_p = \{ f_p \in C_p^{\infty} : f_p(p) = 0 \}$$
 (2.23)

si ricordi che  $f_p$  non è una funzione ma una classe di equivalenza [(U, f)], dire  $f_p(p) = 0$  equivale a dire f(p) = 0.  $m_p$  è un **ideale**, perché è un sotto anello, ed un elemento di  $m_p$  moltiplicato per un qualsiasi elemento di  $C_p^{\infty}$  produce un elemento a sua volta in  $m_p$ :

$$f_p \in m_p \tag{2.24}$$

$$f_p' \in C_p^{\infty} \tag{2.25}$$

$$f_p(p) = 0 \in \mathbb{R} \tag{2.26}$$

$$f'_p f_p(p) = f_p(p) f'_p(p) =$$
 (2.27)

$$0 \cdot f_p'(p) = 0 \implies (2.28)$$

$$f_p' \in m_p. (2.29)$$

 $m_p$  è un modulo sull'anello  $C_p^{\infty}$ , se si prende il quoziente

$$\frac{m_p}{m_p^2} \tag{2.30}$$

si ha un modulo sull'anello quoziente  $\frac{C_p^{\infty}}{m_p}$ . Tale quoziente è isomorfo a  $\mathbb R$  (i dettagli verranno omessi), si ha una funzione  $\phi: C_p^{\infty} \to \mathbb R$  definita

$$\phi(g_p) = g_p(p) \tag{2.31}$$

il nucleo di questa funzione (gli elementi che la annullano) è esattamente  $m_p$ , per definizione

$$\ker \phi = m_p \tag{2.32}$$

come detto prima, se si considera il quoziente  $C_p^\infty$  modulo il nucleo di  $\phi$ , si ottiene uno spazio isomorfo a  $\mathbb{R}$ .  $\frac{m_p}{m_p^2}$  è un modulo sull'anello  $\frac{C_p^\infty}{m_p} \simeq \mathbb{R}$ , questo è un campo (il campo dei numeri reali), ma per definizione, un modulo su un campo è uno spazio vettoriale, conclusione:

$$\frac{m_p}{m_p^2}$$
 è uno spazio vettoriale reale (2.33)

in particolare, è uno spazio associato in modo canonico al punto p. Questa è una definizione nei termini dell'algebra commutativa, non ne è necessario conoscere i dettagli (io stesso non l'ho compresa). Lo spazio  $\frac{m_p}{m_p^2}$  non è lo spazio tangente  $T_pX$ , ma il suo spazio duale:

$$\frac{m_p}{m_p^2} \simeq \hom(T_p X, \mathbb{R}) = T_p^* X \tag{2.34}$$

 $\frac{m_p}{m_p^2} = T_p^* X$ è detto lo spazio cotangente.

Nota: Il fatto che la dimensione dello spazio tangente ad un punto di una varietà sia la stessa della varietà, va dimostrato.

### 2.2 Derivazioni e Carte Locali

Si introducono ora le carte locali nel contesto dello spazio tangente. Sia  $(U, \varphi)$  una carta per una varietà X tale per cui  $p \in U$ . Siano  $(x^1, \dots, x^n) \in \mathbb{R}^n$  le coordinate di  $\varphi(p)$ . Le coordinate cartesiane in  $\mathbb{R}^n$  determinano delle derivazioni naturali rispetto tali coordinate (le derivate parziali)

$$\partial_1 = \frac{\partial}{\partial x^1}, \ \partial_2 = \frac{\partial}{\partial x^2} \dots, \partial_n = \frac{\partial}{\partial x^n}$$
 (2.35)

 $\partial_i$  è la derivata nella direzione del versore determinato dall'asse  $x^i$ . Le derivate parziali corrispondo ad i versori degli assi, che sono la base canonica  $(e_1, \ldots, e_n)$  di  $T_q \mathbb{R}^n \simeq \mathbb{R}^n$  per ogni  $q \in \mathbb{R}^n$ .

Si vogliono definire delle derivazioni definite su  $U \subset X$ . Usando  $\varphi$  si possono associare derivazioni definite su X a derivazioni classiche su  $\mathbb{R}^n$  (le derivate parziali). Sia

$$f_p = [(V, f)] \in C_p^{\infty} \tag{2.36}$$

un germe nel punto p. Si può supporre che  $V \subset U$  (dominio della carta locale), considerando eventualmente un'aperto più piccolo contenente p.



Si pone

$$\partial_{i_{|p}}(f_p) = \frac{\partial (f \circ \varphi^{-1})}{\partial x_i}(\varphi(p)) \tag{2.37}$$

 $\partial_{i|p}(f_p) \in T_pX$  rappresenta il vettore tangente a X lunga la curva che si ottiene come anti immagine del versore  $x^i$  tramite la carta locale  $\varphi$ :

- In  $\mathbb{R}^n$  vi è  $\varphi(p) = (\varphi_1(p), \dots \varphi_n(p))(x^1, \dots, x^n)$
- si consideri la curva  $\gamma_i(t) = (x^1, x^2, \dots, x^i + t, \dots, x^n)$  che è una retta parallela all'i-esimo asse passante per  $\varphi(p)$ .
- si considera l'anti-immagine di questa curva  $\gamma(t)$  tramite la carta locale, ossia la curva  $\varphi^{-1}(\gamma(t))$ , questa è una curva su X passante per p
- il vettore  $\partial_{i|p}(f_p)$  è tangente a questa curva  $\varphi^{-1}(\gamma(t))$  nel punto p (ossia per t=0).  $\partial_{i|p}(f_p)$  rappresenta la direzione in cui "cambia" la varietà quando ti muovi lungo la curva che corrisponde all'i-esimo asse coordinato locale. Una rappresentazione è riportata in figura 2.2.



Figura 2.2: Un esempio per una 2-varietà.

 $\partial_{i_p}(f_p)$  è un numero reale che rappresenta la variazione della funzione  $f_p = [(f, U)]$  lungo la curva  $\varphi^{-1}(\gamma(t))$ .

Le funzioni  $\partial_{i_{|p}}$  sono delle derivazioni, soddisfano le proprietà date nella Definizione 23, sono quindi i vettori tangenti (elementi dello spazio tangente  $T_pX$ ). Gli operatori  $\partial_{i_{|p}}$  dipendono dalla scelta di una carta locale  $\varphi$ , come si può notare dalla definizione in (2.37). L'analogo della derivata parziale sulla carta locale dipende dalla scelta della carta locale, l'unica cosa indipendente da tale scelta è lo spazio tangente in un punto  $T_pX$ .

### 2.2.1 Differenziale di una Funzione fra Varietà

Si consideri una funzione  $F: X \to Y$  fra due varietà, sia  $p \in X$  e  $q = F(p) \in Y$ . Si consideri un vettore  $v \in T_pX$ , v è tangente ad un'arco di curva  $\sigma \subset X$  ove  $p \in \sigma$ , tramite F, si identifica una curva  $F(\sigma) \subset Y$ , chiaramente  $q \in F(\sigma)$  e vi sarà un vettore w tangente a q lungo la curva  $F(\sigma)$ .



La funzione F induce una mappa (quella che associa w a v) fra gli spazi tangenti  $T_pX$  e  $T_qY$ . Tale mappa è detta **differenziale** di F in p, ed è una funzione lineare fra spazi vettoriali. La definizione di differenziale sarà data interpretando  $T_pX$  e  $T_qY$  come gli spazi delle derivazioni.

Si ricordi che F induce una funzione  $F_p^*$  che è un'omomorfismo di anelli:

$$F_p^*: C_{F(p)}^{\infty} \to C_p^{\infty} \tag{2.38}$$

$$[(U,f)] \longmapsto f \circ F. \tag{2.39}$$

questa era il pull back, sia  $D \in T_pX$  una derivazione, si ha il seguente diagramma:



La funzione  $D\circ F_p^*$ associa ad ogni germe di funzione un numero reale

$$D \circ F_p^* : C_{F(p)}^{\infty} \to \mathbb{R} \tag{2.40}$$

Dato che D è una derivazione, anche  $D \circ F_p^*$  è una derivazione, si verifica facilmente:

$$(D \circ F_p^*)(f) = D(F_p^*(f)) = D(f \circ F). \tag{2.41}$$

L'applicazione lineare che associa elementi fra gli spazi tangenti (il differenziale di F) è la seguente

$$T_p X \to T_{F(p)} Y$$
 (2.42)

$$D \longmapsto D \circ F_n^* \tag{2.43}$$

**Definizione 25** Sia  $F: X \to Y$  una funzione fra due varietà differenziabili. Si definisce il **differenziale** di F in un punto  $p \in X$  la seguente applicazione lineare

$$dF_p: T_pX \longrightarrow T_{F(p)}Y$$
 (2.44)

$$D \longmapsto dF_p(D) = D \circ F_p^*. \tag{2.45}$$

A volte si denota  $T_pF$ .

Vediamo adesso alcune proprietà del differenziale.

Proposizione 2 1. Sia F la funzione identità su una varietà X

$$F = Id_X : X \to X \tag{2.46}$$

il suo differenziale è la funzione identità sullo spazio tangente

$$dF_p = d(Id_X)_p = Id_{T_pX}. (2.47)$$

2. Se X, Y, Z sono varietà e

$$F: X \to Y \tag{2.48}$$

$$G: Y \to Z$$
 (2.49)

sono funzioni differenziabili, allora

$$d(G \circ F)_p = dG_{F(p)} \circ dF_p. \tag{2.50}$$



Inoltre, se F è un diffeomorfismo,  $dF_p$  è un'isomorfismo di spazi vettoriali.

Dimostrazione: Se  $F=\mathrm{Id}_X,$ allora anche il pull back  $F_p^*$  è l'identità, pertanto:

$$d(\mathrm{Id}_x)_p: D \to D \circ F_p^* = D \circ \mathrm{Id} = D \tag{2.51}$$

 $d(\mathrm{Id}_x)_p$  è quindi l'identità. La seconda proprietà si dimostra facilmente, sia  $D\in T_pX$ :

$$d(G \circ F)_p(D) = D \circ (G \circ F)_p^* = D \circ (F_p^* \circ G_{F(p)}^*) =$$
(2.52)

$$(D \circ F_p^*) \circ G_{F(p)}^* = dF_p(D) \circ G_{F(p)}^* =$$
 (2.53)

$$dG_{F(p)}(dF_p(D)) = (dG_{F(p)} \circ dF_p)(D)$$
(2.54)

le due proprietà sono dimostrate.

# 2.3 La Dimensione dello Spazio Tangente

In questa sezione, verrà dimostrato che lo spazio tangente ad un punto di una n-varietà, è uno spazio vettoriale n-dimensionale

$$\dim X = n \implies \dim T_p X = n. \tag{2.55}$$

È necessario un lemma.

**Lemma 1** Sia  $x_0 = (x^1, \dots x^n) \in \mathbb{R}^n$  un punto, e sia  $f \in C^{\infty}_{x_0}$ . Esistono dei germi di funzioni

$$g_1, \dots g_n \in C_{x_0}^{\infty} \tag{2.56}$$

tali per cui

$$g_j(x_0) = \frac{\partial f}{\partial x^j}(x_0) \tag{2.57}$$

e per ogni x contenuto in un intorno sufficientemente piccolo di  $x_0$  si ha:

$$f(x) = f(x_0) + \sum_{j=1}^{n} (x^j - x_0^j) g_j(x_0)$$
(2.58)

equivalente mente

$$f(x) = f(x_0) + \sum_{j=1}^{n} (x^j - x_0^j) \frac{\partial f}{\partial x^j}(x_0).$$
 (2.59)

Questa approssimazione si può interpretare come uno sviluppo in serie di Taylor troncato all'*n*-esimo termine della sommatoria.

Dimostrazione: Siccome si considerano germi di funzioni, sia (U, f) un rappresentante di  $f \in C^{\infty}_{x_0}$ . U si può considerare un'intorno sufficientemente piccolo da contenere sia  $x_0$  che x, tale per cui il segmento di linea che congiunge questi due è ancora contenuto in U.



Si può scrivere la differenza fra f(x) e  $f(x_0)$  sotto forma di integrale:

$$f(x) - f(x_0) = \int_0^1 \frac{\partial}{\partial t} f(x_0 + t(x - x_0)) dt =$$
 (2.60)

$$\sum_{j=1}^{n} (x^{j} - x_{0}^{j}) \int_{0}^{1} \frac{\partial f}{\partial x^{j}} (x_{0} + t(x - x_{0})) dt$$
(2.61)

Si definisce  $g_j$  come segue

$$g_j(x) = \int_0^1 \frac{\partial f}{\partial x^j} (x_0 + t(x - x_0)) dt$$

$$(2.62)$$

chiaramente

$$g_j(x_0) = \int_0^1 \frac{\partial f}{\partial x_0^j} (x_0 + t(x_0 - x_0)) dt =$$
 (2.63)

$$\int_0^1 \frac{\partial f}{\partial x_0^j}(x_0)dt = \frac{\partial f}{\partial x_0^j}(x_0) \int_0^1 dt = \frac{\partial f}{\partial x^j}(x_0)$$
(2.64)

allora

$$f(x) - f(x_0) = \sum_{j=1}^{n} (x^j - x_0^j) g_j(x) \implies (2.65)$$

$$f(x) = f(x_0) + \sum_{j=1}^{n} (x^j - x_0^j)g_j(x).$$
(2.66)

 $g_j(x)$  sono di classe  $C^{\infty}$  in U quindi sono contenute nei germi  $g_j \in C^{\infty}_{x_0}$ 

Osservazione 9 Tale lemma è valido esclusivamente per funzioni di classe  $C^{\infty}$ .

Si vuole dimostrare ora che dim  $X = n \implies \dim T_p X = n$ , si dimostra prima un caso pià semplice in cui la varietà X è un'aperto di  $\mathbb{R}^n$ , si sfrutta poi il fatto che localmente ogni varietà è identificata tramite una carta locale da un'aperto di  $\mathbb{R}^n$ .

Proposizione 3 La proposizione è divisa in due punti.

 $\boxed{1}$ : Sia  $U \subset \mathbb{R}^n$  un'aperto, sia  $x_0 \in U$ , si consideri la funzione

$$\iota: \mathbb{R}^n \to T_{x_0} U \tag{2.67}$$

$$(a^{1} \dots, a^{n}) = v \longmapsto \iota(v) = \sum_{j=1}^{n} a^{j} \frac{\partial}{\partial x^{j}} |_{x_{0}}$$

$$(2.68)$$

 $\iota(v)$  non è altro che la derivata direzionale nella direzione specificata da v.  $\iota$  è un'isomorfismo di spazi vettoriali.

2: Sia X una n-varietà, e sia  $p \in X$ . Lo spazio tangente  $T_pX$  è uno spazio vettoriale di dimensione p. Se  $\varphi = (x^1, \dots, x^n)$  è una carta locale in p, allora

$$\left\{ \frac{\partial}{\partial x^1} \mid_p, \frac{\partial}{\partial x^2} \mid_p, \dots \frac{\partial}{\partial x^n} \mid_p \right\} \tag{2.69}$$

è una base per  $T_pX$ .

Dimostrazione: Si dimostrano separatamente i due punti.

1 :Si comincia col dimostrare che  $\iota$  è un'isomorfismo, per definizione è chiaramente lineare, bisogna dimostrare che è biettiva. Sia  $v=(a^1\ldots,a^n)\neq 0$  un vettore, per qualche  $1\leq h\leq n$ , si ha  $a^h\neq 0$ . Si consideri l'immagine di  $\iota$  su v:

$$\iota(v) = \sum_{i=1}^{n} a^{j} \frac{\partial}{\partial x^{j}} |_{x_{0}}$$

$$\tag{2.70}$$

si deve dimostrare che  $\iota(v)$  non è la derivazione nulla. Bisogna trovare una funzione tale per cui, applicando tale derivazione su questa funzione non si trova 0. Si consideri la funzione  $\mathbf{x}: \mathbb{R}^n \to \mathbb{R}$  definita in tal modo

$$\mathbf{x}^h(q^1\dots,q^n) = q^h \tag{2.71}$$

ossia la funzione che ad ogni vettore associa la h-esima coordinata, si ha

$$\iota(v)(\mathbf{x}^h) = \sum_{j=1}^n a^j \frac{\partial \mathbf{x}^h}{\partial x^j}|_{x_0} = \sum_{j=1}^{h-1} a^j \cdot 0 + a^h + \sum_{j=h+1}^n a^j \cdot 0 = a^h \neq 0$$
 (2.72)

quindi  $\iota(v)$  non è la derivazione nulla,  $\iota$  è quindi iniettiva. Bisogna ora dimostrare la suriettività di  $\iota$ , sia  $D \in T_{x_0}U$  una qualunque derivazione. Bisogna trovare v tale che  $D = \iota(v)$ .

Sia  $x^j \in C^{\infty}_{x_0}$  una funzione definita come in (2.71), si pone  $D(x^j) = a^j \in \mathbb{R}$ . Si costruisce un vettore

$$v = (a^1, a^2 \dots a^n) = (D(x^1) \dots, D(x^n))$$
(2.73)

Si vuole dimostrare che  $D=\iota(v)$ , ossia, si vuole mostrare che  $D(f)=\iota(v)(f)$  per ogni  $f\in C^\infty_{x_0}$ . Si utilizza il Lemma 1:

$$D(f) = D[f(x_0) + \sum_{j=1}^{n} (x^j - x_0^j)g_j(x)] =$$
(2.74)

$$D(f(x_0)) + \sum_{i=1}^{n} D[(x^j - x_0^j)g_j(x)]$$
(2.75)

 $D(f(x_0))$  è 0 dato che  $f(x_0)$  è una costante

$$D(f(x_0)) + \sum_{j=1}^{n} D[(x^j - x_0^j)g_j(x)] =$$
(2.76)

$$\sum_{j=1}^{n} D[(x^{j} - x_{0}^{j})g_{j}(x)]$$
(2.77)

essendo che D è una derivazione, si applica la regola di Leibniz

$$\sum_{j=1}^{n} \left[ D(x^{j} - x_{0}^{j})g_{j}(x_{0}) + ((x^{j}(x_{0}) - x_{0}^{j}))D(g_{j}) \right]$$
(2.78)

per definizione  $x^{j}(x_{0}) = x_{0}^{j}$  quindi

$$\sum_{j=1}^{n} [D(x^{j} - x_{0}^{j})g_{j}(x_{0}) + ((x^{j}(x_{0}) - x_{0}^{j}))D(g_{j})] =$$
(2.79)

$$\sum_{j=1}^{n} \left[ D(x^{j} - x_{0}^{j})g_{j}(x_{0}) + ((x_{0}^{j} - x_{0}^{j}))D(g_{j}) \right] =$$
(2.80)

$$\sum_{j=1}^{n} D(x^{j} - x_{0}^{j})g_{j}(x_{0})$$
(2.81)

si sfrutta nuovamente l'additività di D

$$\sum_{j=1}^{n} D(x^{j} - x_{0}^{j})g_{j}(x_{0}) =$$
(2.82)

$$\sum_{j=1}^{n} [D(x^{j}) - D(x_{0}^{j})]g_{j}(x_{0}) =$$
(2.83)

$$\sum_{j=1}^{n} D(x^{j})g_{j}(x_{0}) \tag{2.84}$$

per definizione  $D(x^j) = a^j$ 

$$\sum_{j=1}^{n} D(x^{j})g_{j}(x_{0}) = \tag{2.85}$$

$$\sum_{j=1}^{n} a^{j} g_{j}(x_{0}) \tag{2.86}$$

per il lemma, la funzione  $g_j$  in  $x_0$  assume lo stesso valore della derivata parziale di f rispetto  $x^j$ 

$$\sum_{j=1}^{n} a^{j} g_{j}(x_{0}) = \tag{2.87}$$

$$\sum_{j=1}^{n} a^{j} \frac{\partial f}{\partial x^{j}}(x_{0}) = \iota(v)(f). \tag{2.88}$$

Si è dimostrato che  $D = \iota(v)$ ,  $\iota$  è un'isomorfismo di spazi vettoriali,  $T_{x_0}U$  ha la stessa dimensione di  $U \subset \mathbb{R}^n$ .

2: Bisogna mostrare che lo stesso risultato si estende ad ogni varietà. Sia X una varietà con  $p \in X$ , sia  $(U, \varphi)$  una carta locale con  $p \in U$ . È banale che  $\varphi$  sia un diffeomorfismo di varietà, sappiamo essere un omeomorfismo fra X e  $\mathbb{R}^n$ 

$$X \supset U \longrightarrow V = \varphi(U) \subset \mathbb{R}^n \tag{2.89}$$

se l'espressione locale di  $\varphi$  è un diffeomorfismo fra aperti di  $\mathbb{R}^n$  allora anche  $\varphi$  lo è, ma la rappresentazione locale di  $\varphi$  è la composizione fra  $\varphi$  e  $\varphi^{-1}$  (è l'identità in V).

$$\begin{array}{cccc} X\supset U & \stackrel{\varphi}{\longrightarrow} V \subset \mathbb{R}^n \\ \varphi & & & & | \operatorname{Id} \\ \mathbb{R}^n\supset \varphi(U)=V & \stackrel{\widetilde{\varphi}}{\longrightarrow} V \subset \mathbb{R}^n \end{array}$$

L'identità è ovviamente un diffeomorfismo. Si consideri il differenziale di  $\varphi$  in p

$$d\varphi_p: T_p U = T_p X \longrightarrow T_{\varphi(p)} \varphi(U) \tag{2.90}$$

Ma  $T_{\varphi(p)}\varphi(U)$  è isomorfo ad  $\mathbb{R}^n$  (per il punto 1 della dimostrazione). Per le proprietà del differenziale, se la funzione fra varietà  $\varphi$  è un diffeomorfismo, il differenziale  $d\varphi_p$  è un'isomorfismo, ma questo allora è isomorfo ad  $\mathbb{R}^n$ , allora la dimensione di  $T_pX$  è n. Un'isomorfismo mappa i vettori di una base nell'altra, i vettori

$$\left\{ \frac{\partial}{\partial x^1} \mid_p, \frac{\partial}{\partial x^2} \mid_p, \dots \frac{\partial}{\partial x^n} \mid_p \right\} \tag{2.91}$$

Sono le immagini tramite  $d\varphi_p^{-1}$  dei vettori della base canonica di  $\mathbb{R}^n$ , sono quindi una base per  $T_pX$ .

In conclusione, lo spazio tangente in un punto di una varietà n-dimensionale è isomorfo ad  $\mathbb{R}^n$ .

### 2.3.1 Il Differenziale in Coordinate Locali

Si consideri una varietà X con  $(U,\varphi)$  una carta, ed una varietà Y con una carta  $(V,\psi)$ , sia  $F:X\to Y$  una funzione differenziabile, l'espressione locale di F è

$$\tilde{F}: \mathbb{R}^m \supset \varphi(U) \longrightarrow \psi(V) \subset \mathbb{R}^n$$
 (2.92)

$$\tilde{F} = \psi \circ F \circ \varphi^{-1} \tag{2.93}$$

considerando la restrizione di F su U.  $\tilde{F}$  è definita da un aperto di  $\mathbb{R}^m$  ad un'aperto di  $\mathbb{R}^n$ , si identifichino con  $x = (x^1, \dots x^m)$  le coordinate del dominio e con  $y = (y^1, \dots, y^n)$  quelle del codominio

$$y = \tilde{F}(x). \tag{2.94}$$

Sia  $p \in U$ , Tramite  $\varphi$  si identifica la base dello spazio tangente  $T_pX$ :

$$\frac{\partial}{\partial x^1} |_p, \frac{\partial}{\partial x^2} |_p, \dots \frac{\partial}{\partial x^m} |_p. \tag{2.95}$$

Tramite  $\psi$  si identifica la base dello spazio tangente  $T_{F(p)}Y$ :

$$\frac{\partial}{\partial u^1} |_{F(p)}, \frac{\partial}{\partial u^2} |_{F(p)}, \dots \frac{\partial}{\partial u^n} |_{F(p)}. \tag{2.96}$$

Il differenziale di F in p è

$$dF_p: T_pX \to T_{F(p)}Y \tag{2.97}$$

si vuole scrivere la matrice della funzione  $dF_p$ , essendo questa lineare, tale matrice dipende dalle basi fissate.

- $dF_p$  è definita in maniera canonica.
- La sua matrice dipende dalle basi scelte, che a loro volta dipendono dalle carte locali.

Si vuole trovare la matrice

$$A = \begin{pmatrix} a_1^1 & \dots & a_1^k & \dots & a_1^n \\ \vdots & & \vdots & & \vdots \\ a_h^1 & \dots & a_h^k & \dots & a_h^n \\ \vdots & & \vdots & & \vdots \\ a_m^1 & \dots & a_m^k & \dots & a_m^n \end{pmatrix} = (a_h^k)$$
(2.98)

tale per cui

$$dF_p(\frac{\partial}{\partial x^h}|_p) = \sum_{k=1}^n a_h^k \frac{\partial}{\partial y^k}|_{F(p)}.$$
 (2.99)

I vettori tangenti sono derivazioni, è necessaria una funzione su cui applicare tali derivazioni, si consideri un germe di funzione  $g_{F(p)} \in C^{\infty}_{F(p)}$ , scegliendone un rappresentante g definito in un'intorno aperto W di F(p) tale che  $W \subset V$ .

$$V \supset W \xrightarrow{g} \mathbb{R}$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\tilde{g}}$$

$$\psi(V) \supset \psi(W)$$

Dove  $\tilde{g} = g \circ \psi^{-1}$  è la rappresentazione locale di g.  $\tilde{g}$  è una funzione di n variabili reali a valori reali. Si consideri il differenziale di F applicato al vettore tangente in p:

$$dF_p(\frac{\partial}{\partial x^h}|_p)(g) = \tag{2.100}$$

$$\left(\frac{\partial}{\partial x^h}_{|p} \circ F_p^*\right)(g) = \tag{2.101}$$

Il differenziale è la composizione della derivazione con il pull back  $F_p^*$ 

$$\left(\frac{\partial}{\partial x^h}_{|p} \circ F_p^*\right)(g) = \frac{\partial}{\partial x^h}_{|p}(g \circ F) \tag{2.102}$$

Per calcolare la derivata  $\frac{\partial}{\partial x^h}|_p(g\circ F)$  in un punto della varietà differenziabile bisogna calcolare la derivata parziale sulle coordinate locali

$$\frac{\partial}{\partial x^h} (\tilde{g} \circ \tilde{F})_{|\varphi(p)} \tag{2.103}$$

si applica il teorema di derivazione di funzioni composte,  $\tilde{g} \circ \tilde{F}$  è in funzione delle variabili  $x = (x^1, \dots x^m)$  e si ha che  $y = \tilde{F}(x)$ 

$$y^k = \tilde{F}^k(x) \tag{2.104}$$

$$\frac{\partial}{\partial x^h} (\tilde{g} \circ \tilde{F})_{|\varphi(p)} = \sum_{k=1}^n \frac{\partial \tilde{g}}{\partial y^k}_{|\tilde{F}(\varphi(p))} \frac{\partial y^k}{x^h}_{|\varphi(p)} =$$
(2.105)

$$\sum_{k=1}^{n} \left( \frac{\partial \tilde{F}^{k}}{\partial x^{h}} |_{\varphi(p)} \frac{\partial}{\partial y^{k}} |_{\tilde{F}(\varphi(p))} \right) (\tilde{g}) = \tag{2.106}$$

$$\sum_{k=1}^{n} \left( \frac{\partial \tilde{F}^{k}}{\partial x^{h}} |_{\varphi(p)} \frac{\partial}{\partial y^{k}} |_{\tilde{F}(p)} \right) (g)$$
 (2.107)

si ha quindi

$$dF_p(\frac{\partial}{\partial x^h}|_p) = \sum_{k=1}^n \frac{\partial \tilde{F}^k}{\partial x^h}|_{\varphi(p)} \frac{\partial}{\partial y^k}|_{\tilde{F}(p)}$$
(2.108)

inoltre prima si è posto che

$$dF_p(\frac{\partial}{\partial x^h}|_p) = \sum_{k=1}^n a_h^k \frac{\partial}{\partial y^k}|_{F(p)}.$$
 (2.109)

ne consegue che

$$a_h^k = \frac{\partial \tilde{F}^k}{\partial x^h} |_{\varphi(p)} \tag{2.110}$$

si è così definita la matrice del differenziale  $dF_p$ . Ne consegue che la matrice che rappresenta il differenziale  $dF_p$  è la matrice Jacobiana della funzione  $\tilde{F}=\psi\circ F\circ \varphi^{-1}$ .

**Teorema 3** (della funzione inversa per varietà) Sia  $F: X \to Y$  una funzione differenziabile fra due varietà, sia  $p \in X$  tale che il differenziale  $dF_p: T_pX \to T_{F(p)}Y$  sia un isomorfismo. Esistono un intorno  $U \subset X$  di p ed un intorno  $V \subset Y$  di F(p) tali per cui

$$F_{|U}: U \to V \tag{2.111}$$

è un diffeomorfismo.

Dimostrazione: è un problema di natura locale, localmente una varietà si identifica con un aperto di  $\mathbb{R}^n$ . Si scelgono due carte per X e per Y

$$(U,\varphi) \text{ per } X$$
 (2.112)

$$(V, \psi) \text{ per } Y \tag{2.113}$$

con  $F(p) \in V$ ,  $\tilde{F}$  è la rappresentazione locale rispetto  $\varphi$  e  $\psi$ , ed il differenziale è rappresentato dalla matrice

$$\operatorname{Jac}\tilde{F} = \left(\frac{\partial \tilde{F}^k}{\partial x^h}\right) \tag{2.114}$$

Se  $dF_p$  è un'isomorfismo, allora  $\operatorname{Jac} \tilde{F}_{|\varphi(p)}$  è invertibile, a tal punto si può applicare il classico teorema della funzione inversa per  $\tilde{F}$ .

Anche il teorema della funzione implicita si può generalizzare al caso delle varietà differenziabili, nel caso classico, il teorema è il seguente.

**Teorema 4** (funzione implicita) Sia U un aperto di  $\mathbb{R}^n \times \mathbb{R}^m$ , di coordinate  $(x^1, \dots x^n, y^1, \dots, y^m)$ . Sia  $\phi: U \to \mathbb{R}^m$  una funzione differenziabile e sia  $(x_0, y_0) \in U$  tale che la matrice

$$\left(\frac{\partial \phi^i}{\partial y^j}(x_0, y_0)\right), \quad 1 \le j \le m \\
1 \le i \le m$$
(2.115)

sia invertibile, allora esistono due intorni di  $x_0$  e  $y_0$ 

$$x_0 \in V_0 \subset \mathbb{R}^n \tag{2.116}$$

$$y_0 \in W_0 \subset \mathbb{R}^m \tag{2.117}$$

 $ed\ una\ funzione\ differenziabile$ 

$$F: V_0 \longrightarrow W_0 \tag{2.118}$$

tale che, dato  $z_0 = \phi(x_0, y_0)$ , l'insieme  $\phi^{-1}(z_0) \cap (V_0 \times W_0)$  coincide con il grafico di F, ossia, per ogni  $(x, y) \in V_0 \times W_0$  si ha

$$\phi(x,y) = z_0 \iff y = F(x). \tag{2.119}$$

È un modo formale per dire che data un'equazione del tipo  $\phi(x,y)=z_0$  con  $z_0$  costante, si può ricavare y in funzione di x tramite F.

**Teorema 5** (funzione implicita per le varietà) Sia  $\phi: X \times Y \to Y$  una funzione differenziabile con X, Y due varietà, per ogni  $p \in X$  si definisce una funzione

$$\phi_p: Y \to Y \tag{2.120}$$

ponendo

$$\phi_p(q) = \phi(p, q). \tag{2.121}$$

Si consideri  $(p_0, q_0) \in X \times Y$  tale che il differenziale

$$d(\phi_{p_0})_{q_0}: T_{q_0}Y \longrightarrow T_{r_0}Y \tag{2.122}$$

ha matrice associata invertibile  $(d(\phi_{p_0})_{q_0} \ \dot{e} \ un \ isomorfismo)$ , dove  $r_0 = \phi(p_0, q_0)$ . Allora esistono due intorni

$$p_0 \in V_0 \subset X \tag{2.123}$$

$$q_0 \in W_0 \subset Y \tag{2.124}$$

ed una funzione differenziabile

$$F: V_0 \longrightarrow W_0 \tag{2.125}$$

tale che l'insieme

$$\phi^{-1}(r_0) \cap (V_0 \times W_0) \tag{2.126}$$

coincide con il grafico di F, ossia per ogni  $(p,q) \in V_0 \times W_0$  si ha

$$\phi(p,q) = r_0 \iff q = F(p). \tag{2.127}$$

La dimostrazione procede con il ricondursi al caso degli aperti di  $\mathbb{R}^n$  tramite le carte locali.

### **CAPITOLO**

3

# IMMERSIONI E SOMMERSIONI

Si consideri una funzione differenziabile  $F: X \to Y$  fra due varietà. Si definisce rango di F in  $p \in X$ , il rango della matrice associata al differenziale  $dF_p$ , questo è il rango della matrice Jacobiana della rappresentazione local  $\tilde{F}$  in un punto  $\varphi(p)$ , dove  $\varphi$  è una carta locale.

**Definizione 26** La funzione F può essere caratterizzata come segue:

- 1.  $F \ e$  un'immersione se il differenziale  $dF_p: T_pX \to T_{F(p)}Y \ e$  iniettivo  $\forall p \in X$ .
- 2. F è una sommersione se il differenziale  $dF_p: T_pX \to T_{F(p)}Y$  è suriettivo  $\forall p \in X$ .
- 3. F è un **embedding** se è un'immersione e se F è un'omeomorfismo sull'immagine, ossia, F è un'omeomorfismo fra X ed F(X).

Si considerano adesso alcuni esempi, sia  $\alpha$  la curva

$$\alpha: \mathbb{R} \to \mathbb{R}^2 \tag{3.1}$$

$$t \longmapsto (t^2, t^3) \tag{3.2}$$

è la curva riportata in figura 3.1.



Figura 3.1: La curva  $\alpha$ .

La funzione  $\alpha$  è iniettiva, ma il differenziale non è sempre iniettivo, il differenziale è

$$d\alpha(t) = \begin{pmatrix} 2t\\3t^2 \end{pmatrix} \tag{3.3}$$

si annulla in t = 0, quindi  $d\alpha(0)$  non è iniettivo.  $\alpha$  non è quindi un'immersione.

Si consideri ora la curva

$$\beta: \mathbb{R} \to \mathbb{R}^2 \tag{3.4}$$

$$t \longmapsto (t^3 - 4t, t^2 - 4) \tag{3.5}$$

riportata in figura 3.2.



Figura 3.2: La curva  $\beta$ .

 $\beta$  è un'immersione perché il differenziale

$$d\beta(t) = \begin{pmatrix} 3t^2 - 4\\ 2t \end{pmatrix} \tag{3.6}$$

non è mai nullo, tutta via,  $\beta$  non è iniettiva, dato che  $\beta(-2) = \beta(2) = (0,0)$ , quindi non è un'embedding.

Si consideri infine la curva  $\gamma: (-\frac{\pi}{2}, \frac{3}{2}\pi) \to \mathbb{R}^2$  definita come segue

$$\gamma(t) = (\sin(2t), \cos t) \tag{3.7}$$

riportata in figura 3.2. il differenziale  $d\gamma$  non si annulla mai



Figura 3.3: La curva  $\gamma$ .

$$d\gamma(t) = \begin{pmatrix} 2\cos(2t) \\ -\sin t \end{pmatrix} \tag{3.8}$$

 $\gamma$  è quindi un'immersione, dato che è iniettiva, l'inversa di  $\gamma$  non è una funzione continua, dato che l'immagine di  $\gamma$  è compatta, mentre il dominio no, quindi non avendo le stesse proprietà topologiche,  $\gamma$  non può essere un omeomorfismo, non può quindi essere un embedding.

Una proprietà importante è la seguente: Ogni immersione, è localmente un embedding.

**Teorema 6** Sia  $F: X_1 \to X_2$  una immersione, per ogni  $p \in X_1$  esiste un'aperto arbitrariamente piccolo  $U \subset X_1$  di p tale che

$$F_{|U}: U \to X_2 \tag{3.9}$$

è un embedding.

La dimostrazione è omessa.

Osservazione 10 Se una funzione  $F: X \to Y$  è una immersione iniettiva, allora l'immagine F(X) ha una struttura di varietà differenziabile indotta da quella di X, l'atlante che esiste su X è valido anche su F(X):

- $\{(U_{\alpha}, \varphi_{\alpha})\}\ atlante\ per\ X$
- $\{(F(U_{\alpha}), \varphi_{\alpha} \circ F_{|U_{\alpha}}^{-1})\}\ atlante\ per\ F(X).$



Sorge un problema,  $F(X) \subset Y$ , ed Y è una varietà, è possibile che la struttura di varietà costruita su F(X) utilizzando l'atlante di X, non sia compatibile con la struttura di varietà di Y.

Osservazione 11 Non è facile in generale stabilire se un'immersione iniettiva è un embedding.

**Teorema 7** Sia  $f: M \to N$  un'immersione iniettiva. Se M è compatta, f è un embedding.

Dimostrazione: M è uno spazio topologico compatto. N è uno spazio topologico di Hausdorff (per ipotesi stabilite fin dall'inizio), f è differenziabile, quindi continua, ed iniettiva per ipotesi. f determina un omeomorfismo fra M e f(M), bisogna solo mostrare che  $f^{-1}$  è continua, ma essendo M compatto, questo è assicurato (risultato standard della topologia).

Il risultato è una conseguenza del seguente teorema.

**Teorema 8** Sia  $f: X \to Y$  una funzione biettiva e continua fra due spazi topologici, tali per cui X è compatto ed Y è di Hausdorff, allora f è un omeomorfismo.

Dimostrazione: Sia g l'inversa di f

$$g = f^{-1}: Y \to X \tag{3.10}$$

bisogna dimostrare che g sia continua. Basta dimostrare che, per ogni insieme chiuso  $V \subset Y$ , l'antiimmagine  $g^{-1}(V) = f(V)$  è un'insieme chiuso, ma V essendo chiuso in X, ed essendo X compatto,
risulta anche esso stesso compatto, e f(V) è l'immagine tramite una funzione continua di un'insieme
compatto, quindi f(V) è compatto.  $f(V) \subset Y$ , Y è di Hausdorff, quindi f(V) essendo compatto è anche
chiuso.

Un corollario è il seguente: Se  $f: X \to Y$  è continua ed iniettiva, con X compatto e Y di Hausdorff, f determina un omeomorfismo fra X e f(X), f è quindi un embedding (fra spazi topologici) di X in Y.

### 3.1 Sottovarietà

**Definizione 27** Una sottovarietà embedded (o semplicemente sottovarietà) di una varietà X è un sottoinsieme  $Z \subset X$  dotato di una struttura di varietà differenziabile, tale per cui la mappa di inclusione canonica  $\iota: Z \to X$  sia un embedding.

**Definizione 28** Sia  $F: X \to Y$  una immersione iniettiva, F(X) è una **sottovarietà immersa**, ed eredita la struttura di varietà indotta da X tramite F.

La condizione di sottovarietà embedded è più forte rispetto la condizione di sottovarietà immersa.

Si considera ora un esempio di sottovarietà immersa, che non è embedded, lezione 8 minuto 9.40