Financial Engineering Lecture 3

Orimar Sauri

Department of Mathematics
Aalborg University

AAU February 20, 2020

General comments

- Questions or comments about the previous lecture and/or exercise set?
- There was typo in the exercise set.
- Exercise 3: It should be

i)
$$(\varphi, \theta) \cdot P_0 = 0$$
,
ii) $\mathbb{P}[(\varphi, \theta) \cdot P_1 \ge 0] = 1$,
iii) $\mathbb{P}[(\varphi, \theta) \cdot P_1 > 0] > 0$.

and $R_d < K_B(1) < R_u$.

Review of the previous lecture

What did we do in the previous lecture?

Review of the previous lecture

- Coupon Bonds.
- Risky Assets.
- Returns.
- One-Step Binomial model.
- Portfolios and strategies in discrete-time financial markets.

Outline for today

- Portfolio Return.
- Portfolio Allocation.
- Risk Measures:
 - Deviation Measures: The CAPM setting.
 - Coherent Risk Measures: (Conditional) Value at Risk.

Portfolio Allocation

Portfolios in a one-step financial market:

We will concentrate in the one-step finite-horizon financial market:

$$\mathfrak{M} = \left\{ (\Omega, \mathscr{F}, \mathbb{P}), P = (B_t, S_t^{(1)} \dots, S_t^{(d)})_{t=0,1} \right\},$$

consisting of

- **1** A probability space $(\Omega, \mathcal{F}, \mathbb{P})$.
- 2 $S^{(j)}$ is a risky asset.
- 3 B is a bond, such that $B_0 = 1$ and $B_1 = (1 + r)$, for some r > 0.

Portfolios and Returns

 In this set-up a portfolio and strategy are the same: a (d + 1)-dimensional vector

$$\Theta = (\varphi, \theta^{(1)}, \dots, \theta^{(d)}) \in \mathbb{R}^{d+1}.$$

• Moreover, the wealth process consists of our initial capital $V_0 = v_0$ and the random variable

$$V_1 = \varphi(1+r) + \sum_{j=1}^d \theta^{(j)} S^{(j)}.$$

• Therefore, the return process is also a single random variable

$$K_V = \frac{V_1}{V_0} - 1.$$

Portfolio Weights

Proposition (Proposition 1)

Let $\Theta = (\varphi, \theta^{(1)}, \dots, \theta^{(d)}) \in \mathbb{R}^{d+1}$ be a portfolio in one-step finite-horizon financial market. Put

$$w_{j-1} := \frac{\Theta^j S_0^{(j)}}{V_0}, \ j = 1, \dots, d+1.$$

Then, $\sum_{j=1}^{d+1} w_{j-1} = 1$ and

$$K_V = \sum_{j=1}^{a+1} w_{j-1} K_{P(j)} = \mathbf{w} \cdot \mathbf{K}_P,$$

where $\mathbf{w}=(w_0,\ldots,w_d)$ and $\mathbf{K}_P=(r,K_{S^{(1)}},\ldots,K_{S^{(d)}}).$

Proof.

See the Exercise Set.

Portfolio Weights and Portfolio Allocation

• Suppose that we want to invest $V_0 > 0$ on the market

$$\mathfrak{M} = \left\{ (\Omega, \mathscr{F}, \mathbb{P}), S = (B_t, S_t^{(1)} \dots, S_t^{(d)})_{t=0,1} \right\}.$$

- The previous result says that we only need to choose the percentage of V_0 that we want to invest in each asset.
- This procedure of choosing (w_0, \ldots, w_d) is known as portfolio allocation.

Portfolio Weights and Portfolio Allocation

- The behavior of returns plays a crucial role in the allocation: They
 are unpredictable.
- An agent always will take a look at the utility that a particular investment generates:

$$U(\mathbf{w} \cdot \mathbf{K}_P)$$
,

for some utility function U and decide whether it is convenient or not to take such a position.

- The natural question here is how risky is this investment?
- Even tho the word risk is intuitively clear for most of the people, its quantification is not a trivial task.

Allocation as an Optimization Problem

Optimization Problem:

$$\arg\min_{\mathbf{w}\in\mathbb{R}^{d+1}}\mathcal{R}(\mathbf{w}\cdot\mathbf{K}_P).$$

Subject to:

$$\sum_{j=0}^d w_j = 1, \;\; \mathbb{E}\left[U(\mathbf{w}\cdot \mathbf{K}_P)
ight] = \mu, \;\; \mu \in \mathbb{R},$$

where

 \mathcal{R} is a measure of risk.

 $U(\mathbf{w} \cdot \mathbf{K}_P)$ is the utility of such strategy.

How to Measure the Risk

- Unless the market allows arbitrage, it is clear that any strategy carries a risk: it's random so we cannot predict our profit or losses with certainty.
- How do we measure the risk?
- It depends on the agent!
- Some agents wants to maximizes profit while reducing the variation of such investment: Mean-Variance approach.
- Some agents would prefer to minimizes their chances of default: Value At Risk approach.

• The classical way of measuring risk is via standard deviations:

$$\mathcal{R}(X) = \sigma(X) = \sqrt{\operatorname{Var}(X)} = \sqrt{\mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right]}.$$

The classical way of measuring risk is via standard deviations:

$$\mathcal{R}(X) = \sigma(X) = \sqrt{\operatorname{Var}(X)} = \sqrt{\mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right]}.$$

 Thus, if X, Y represents the outcome of two different portfolios, then X is considered riskier than Y if and only if

$$\mathcal{R}(X) \geq \mathcal{R}(Y)$$
.

The classical way of measuring risk is via standard deviations:

$$\mathcal{R}(X) = \sigma(X) = \sqrt{\operatorname{Var}(X)} = \sqrt{\mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right]}.$$

 Thus, if X, Y represents the outcome of two different portfolios, then X is considered riskier than Y if and only if

$$\mathcal{R}(X) \geq \mathcal{R}(Y)$$
.

 In particular for a portfolio with weights w, we have that (see the exercise set)

$$\mathcal{R}(\mathbf{w} \cdot \mathbf{K}_P) = \sqrt{\mathbf{w}' C \mathbf{w}},$$

where C is a $(d+1) \times (d+1)$ matrix given by

$$C^{i,j} = \operatorname{Cov}(\mathsf{K}_P^i, \mathsf{K}_P^j) = \sqrt{\mathbb{E}\left[\left(\mathsf{K}_P^i - \mathbb{E}(\mathsf{K}_P^i)\right)\left(\mathsf{K}_P^j - \mathbb{E}(\mathsf{K}_P^j)\right)\right]}.$$

 In the CAPM set-up the utility function is the identity function, that is

$$U(x) = x$$
.

By letting

$$\mu_{\mathsf{K}} := \mathbb{E}\left[\mathsf{K}_{\mathsf{P}}\right],$$

we see that

$$\mathbb{E}\left[U(\mathbf{w}\cdot\mathbf{K}_{P})\right]=\mathbf{w}\cdot\mu_{\mathbf{K}}.$$

In this situation, the way of allocating our portfolio reduces to solve Problem (Optimization Problem 1)

$$\begin{split} & \arg \min_{\mathbf{w} \in \mathbb{R}^{d+1}} \sqrt{\mathbf{w}' C \mathbf{w}}. \\ & \textit{Subject to: i}) \sum_{j=0}^d w_j = 1. \\ & \textit{ii}) \, \mathbf{w} \cdot \mu_{\mathbf{KP}} = \mu, \,\, \mu \in \mathbb{R}. \end{split}$$

Theorem (Allocation in the CAPM set-up)

Let $C_S = (C^{i,j})_{i,j=1}^d$ and put $\mathbf{m} := (K_{S^{(1)}}, \dots, K_{S^{(d)}})$ as well as $\mathbf{u}' = (1, \dots, 1) \in \mathbb{R}^d$. If $\det C_S \neq 0$ and μ_S and \mathbf{u} are linearly independent, then the solutions to the Optimization Problem 1 are given by

$$\mathbf{w}_{x}^{*}=(x,\widetilde{\mathbf{w}}_{x}^{*}), \ x\in\mathbb{R},$$

where

$$\widetilde{\mathbf{w}}_{x}^{*} = C_{S}^{-1} \left(a_{1}(x)\mathbf{u} + a_{2}(x)\mathbf{m} \right),$$

in which

$$\begin{pmatrix} a_1(x) \\ a_2(x) \end{pmatrix} = \begin{bmatrix} \mathbf{u}'C_S^{-1}\mathbf{u} & \mathbf{m}'C_S^{-1}\mathbf{u} \\ \mathbf{u}'C_S^{-1}\mathbf{m} & \mathbf{m}C_S^{-1}\mathbf{m} \end{bmatrix}^{-1} \begin{pmatrix} 1-x \\ \mu-rx \end{pmatrix}.$$

Proof.

On the blackboard.

An illustrative example

Consider the portfolios that generates the wealth

$$V_1^{(1)} = egin{cases} 1 & \text{with probability } 1/2; \\ -9 & \text{with probability } 1/2, \end{cases}$$

and

$$V_1^{(2)} = \begin{cases} 5 & \text{with probability } 1/2; \\ -5 & \text{with probability } 1/2, \end{cases}$$

• Which one is riskier?

An illustrative example

Consider the portfolios that generates the wealth

$$V_1^{(1)} = egin{cases} 1 & \text{with probability } 1/2; \\ -9 & \text{with probability } 1/2, \end{cases}$$

and

$$V_1^{(2)} = \begin{cases} 5 & \text{with probability } 1/2; \\ -5 & \text{with probability } 1/2, \end{cases}$$

- Which one is riskier?
- Their standard deviations are the same (see the exercise set), so they carry the same risk.

Risk Measures

• Instead of considering the variation of our profits, we may try to control our losses.

- Instead of considering the variation of our profits, we may try to control our losses.
- If V_1 represents the outcome of an investment, then $-V_1$ describe our losses.

- Instead of considering the variation of our profits, we may try to control our losses.
- If V_1 represents the outcome of an investment, then $-V_1$ describe our losses.
- Therefore, if we know that for some $x \in \mathbb{R}$

$$-V_1 \leq x$$
.

 Then to cover the risk of bankruptcy, we must have at least have the amount x in our bank account.

- Instead of considering the variation of our profits, we may try to control our losses.
- If V_1 represents the outcome of an investment, then $-V_1$ describe our losses.
- Therefore, if we know that for some $x \in \mathbb{R}$

$$-V_1 \leq x$$
.

- Then to cover the risk of bankruptcy, we must have at least have the amount x in our bank account.
- In reality we can only quantify the chances of this happening with

$$\mathbb{P}(-V_1 \leq x).$$

 This is the key motivation for considering the Value at Risk as a risk measure.

Definition

Let $0 < \alpha < 1$ and X be a random variable. The Value at Risk (VaR from now on) of X is defined and denoted by

$$\operatorname{VaR}_{\alpha}(X) := \inf\{x \in \mathbb{R} : \mathbb{P}(X + x \ge 0) \ge 1 - \alpha\}.$$

Remarks $\left(\operatorname{VaR}_{\alpha}(X) = \inf\{x \in \mathbb{R} : \mathbb{P}(-X \leq x) \geq 1 - \alpha\}\right)$

We observe the following:

1 If X represents the outcome of an investment, then $\mathrm{VaR}_{\alpha}(X)$ represents the extra amount of extra capital we need to reduce the probability of bankruptcy to α :

$$\mathbb{P}(-X \le x) \ge 1 - \alpha \iff \mathbb{P}(X + x < 0) \le \alpha.$$

Remarks
$$\left(\operatorname{VaR}_{\alpha}(X) = \inf\{x \in \mathbb{R} : \mathbb{P}(-X \le x) \ge 1 - \alpha\}\right)$$

We observe the following:

1 If X represents the outcome of an investment, then $VaR_{\alpha}(X)$ represents the extra amount of extra capital we need to reduce the probability of bankruptcy to α :

$$\mathbb{P}(-X \le x) \ge 1 - \alpha \Longleftrightarrow \mathbb{P}(X + x < 0) \le \alpha.$$

② If $VaR_{\alpha}(X) \leq 0$, then with probability at least $1 - \alpha$ we will obtain a positive return.

Remarks
$$\left(\operatorname{VaR}_{\alpha}(X) = \inf\{x \in \mathbb{R} : \mathbb{P}(-X \leq x) \geq 1 - \alpha\}\right)$$

We observe the following:

1 If X represents the outcome of an investment, then $\mathrm{VaR}_{\alpha}(X)$ represents the extra amount of extra capital we need to reduce the probability of bankruptcy to α :

$$\mathbb{P}(-X \le x) \ge 1 - \alpha \iff \mathbb{P}(X + x < 0) \le \alpha.$$

- 2 If $VaR_{\alpha}(X) \leq 0$, then with probability at least 1α we will obtain a positive return.
- 3 In F_X is the cdf of X, then

$$\operatorname{VaR}_{\alpha}(X) = \inf\{x \in \mathbb{R} : \mathbb{P}(X < -x) \le \alpha\} = -\inf\{x \in \mathbb{R} : F_X(x) > \alpha\}$$

Remarks
$$\left(\operatorname{VaR}_{\alpha}(X) = \inf\{x \in \mathbb{R} : \mathbb{P}(-X \le x) \ge 1 - \alpha\}\right)$$

We observe the following:

1 If X represents the outcome of an investment, then $VaR_{\alpha}(X)$ represents the extra amount of extra capital we need to reduce the probability of bankruptcy to α :

$$\mathbb{P}(-X \le x) \ge 1 - \alpha \iff \mathbb{P}(X + x < 0) \le \alpha.$$

- 2 If $VaR_{\alpha}(X) \leq 0$, then with probability at least $1-\alpha$ we will obtain a positive return.
- 3 In F_X is the cdf of X, then

$$\operatorname{VaR}_{\alpha}(X) = \inf\{x \in \mathbb{R} : \mathbb{P}(X < -x) \le \alpha\} = -\inf\{x \in \mathbb{R} : F_X(x) > \alpha\}$$

4 In particular, if F_X is strictly increasing, then

$$\operatorname{VaR}_{\alpha}(X) = -F_{\mathbf{Y}}^{-1}(\alpha).$$

Value at Risk: Basic Properties

Recall that

$$\operatorname{VaR}_{\alpha}(X) := \inf \underbrace{\{x \in \mathbb{R} : \mathbb{P}(X < -x) \leq \alpha\}}_{A_{\alpha}(X)}.$$

Proposition (Proposition 2)

Let X, Y be arbitrary random variables. Then, the following holds

- 1 If $X \ge 0$ almost surely, then $VaR_{\alpha}(X) \le 0$.
- 2 For all $y \in \mathbb{R}$ we have that $\operatorname{VaR}_{\alpha}(X + y) = \operatorname{VaR}_{\alpha}(X) y$. In particular $\operatorname{VaR}_{\alpha}(X + \operatorname{VaR}_{\alpha}(X)) = 0$.
- 3 If $\lambda \geq 0$, then $VaR_{\alpha}(\lambda X) = \lambda VaR_{\alpha}(X)$.
- **4** If $X \geq Y$ almost surely, then $VaR_{\alpha}(X) \leq VaR_{\alpha}(Y)$.

Proof.

On the blackboard.