Методы обработки данных. Задача классификации

Зуева Надежда ФИВТ МФТИ

March 2018

План

- Данные
 - Источники данных
 - Качество данных
 - Методы обработки
- Выборки: train test
- Функция ошибки
 - Что такое "ошибка"
 - Функциаонал ошибки
 - Accuracy
 - Оценка качества алгоритма
- Классификация
 - Постановка задачи
 - Классификатор kNN
 - О Алгоритм
 - Плюсы и минусы
 - Модернизации kNN

Основные понятия

- X множество **объектов**
- У множество допустимых ответов
- y^* целевая функция, $y^*: X \to Y, y_i = y^*(x_i)$ известны только на **конечном** подмножестве объектов $x_1, ..., x_m$ из X
- Пары (x_i, y_i) прецеденты
- Совокупность пар таких пар при i из 1,..,m обучающая выборка (X_{train})
- a **решающая функция** (алгоритм), которая любому объекту из X ставит в соответсвие допустимый ответ из Y и приближает целевую функцию y^*
- X_{test} выборка прецедентов для тестирования построеннного алгоритма a
- Для решения задачи обучения по прецедентам в первую очередь фиксируется восстанавливаемой зависимости.

Основные понятия

Признак (feature) f объекта x — это результат измерения некоторой характеристики объекта. Формально признаком называется отображение $f: X \to D_f$, где D_f — множество допустимых значений признака. В частности, любой алгоритм $a: X \to Y$ также можно рассматривать как признак

Пусть дан набор признаков $f_1(x), ..., f_n(x)$.

Признаковое описание объекта X — вектор (одномерный массив) $(f_1,...,f_n)$. Совокупность признаковых описаний всех объектов выборки длины m, записанную в виде таблицы размера mn, называют матрицей объектов-признаков.

Виды признаков

$$f: X \rightarrow D_f$$

- **1** Бинарный признак: $D_f = 0, 1$
- ullet Номинальный признак: $|D_f| < \infty$
- ullet Порядковый признак: $|D_f| < \infty$ D_f упорядочено
- ullet Количественный признак: $D_f = \mathbb{R}$

Данные

Датасеты на www.kaggle.com

Data on over 75,000 homemade beers jtrofe updated 2 days ago

food and drink III CSV alcohol · CCO

IIII CSV

CC0

IIII CSV

Data Science for Good: Kiva Crowdfunding

Use Kernels to assess welfare of Kiva borrowers for \$30k in prizes Kiva updated 21 days ago

9 31 @ 61k

ACLED African Conflicts, 1997-2017

Details on 165k Conflicts Across Africa Over Twenty Years Jacob Boysen updated 8 months ago

40-1 · CCO 00 2k

Historical daily prices and volumes of all U.S. stocks and ETFs Boris Marjanovic updated 4 months ago

8 · CCO @ 36k

NOAA GOES-16

Next generation geostationary weather satellites data NOAA updated 10 days ago

BigQuery .0 CC0 @ 673

News headlines published over a period of 14 years. Rohk updated 3 months ago

III CSV **4**

● CC4 on 17k

Качество данных

Как можно исследовать качество датасета?

df = pd.read_csv('assets/train.csv')
df.head()

Ξ	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Curnings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	s
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	s

Оценка качества

- Достаточно данных для обучения
- Полнота (признаки)
- Полнота (объекты)
- Другие оценки

Датасеты в библиотеках

В библиотеке **Sklearn** есть набор датасетов, которые можно использовать. Например, датасет *iris*.

```
In [14]: from sklearn.datasets import load iris
         data = load iris()
         data.target[[10, 25, 50]]
         list(data.target_names)
Out[14]: ['setosa', 'versicolor', 'virginica']
In [16]: print(data)
         {'data': array([[5.1, 3.5, 1.4, 0.2],
                 [4.9, 3., 1.4, 0.2],
                [4.7, 3.2, 1.3, 0.2],
                 [4.6, 3.1, 1.5, 0.2],
                 [5. , 3.6, 1.4, 0.2],
                 [5.4, 3.9, 1.7, 0.4],
                 [4.6, 3.4, 1.4, 0.3],
                [5. , 3.4, 1.5, 0.2],
                 [4.4, 2.9, 1.4, 0.2],
                [4.9, 3.1, 1.5, 0.1],
```

Подготовка датасета к работе с ним

- Выкинуть дублирующие столбцы
- ② Убрать пустые строки с помощью метода fillna
- перекодировка категориальных признаков
- графики!

Графики

Прогнозирование цен

```
fig = plt.figure(figsize=(19,8))
cols = 5
rows = np.ceil(float(encoded data.shape[1]) / cols)
for i, column in enumerate(encoded data.columns):
     ax = fig.add subplot(rows, cols, i + 1)
    ax.set title(column)
    encoded data[column].hist(axes=ax)
    plt.xticks(rotation="vertical")
plt.subplots adjust(hspace=0.7, wspace=0.2)
                                                            fnlwgt
                                                                                   education
                                                                                                           educ.cum
 6000
                        20000
 2000
          marital-status
                                   occupation
15000
                                                                        20000
10000
                                                                                                       5
           capital-gain
                                   capital-loss
                                                                                  native-country
                                                         hours-per-week
                                                15000
                                                                        20000
20000
                                                10000
10000
```

March 2018

Выборки

Обучающая выборка — выборка, по которой производится настройка (оптимизация параметров) модели зависимости.

Тестовая выборка — выборка, по которой оценивается качество построенной модели.

Функционал качества (обучение с учителем) — определяется как средняя ошибка ответов, выданных алгоритмом, по всем объектам выборки.

Функционал ошибки

$$x_i \in X$$
, $y_i \in Y$ $a(x_i)$ — наш алгоритм, y_i — верный ответ

- **①** доля верных ответов (она же -accuracy) : $R(a,X) = \frac{1}{|X|} \sum_{|X|} [a(x_i) == y_i]$
- **②** доля ошибочных ответов: $W(a,X) = \frac{1}{|X|} \sum_{|X|} [a(x_i)! = y_i]$

Kaчество алгоритма нельзя оценить по train sample!

Разбиение выборки

Маленькая тестовая выборка, большая обучающая выборка

- (+) Обучающая выборка репрезентативная
- (-) Оценка качества ненадежная

Большая тестовая выборка, маленькая обучающая выборка

- (+) Оценка качества надежная
- (-) Оценка качества смещенная

	Size	Price	7
	2104	400 $(x^{(1)}, y^{(1)})$	
	1600	$(x^{(2)}, y^{(2)})$	1
- 1	2400	369 Set	
20%	1416	232	
	3000	$ 540 \longrightarrow (x^{(m)}, y^{(m)}) $	
	1985	300	\
	1534	315	
	1427	$199 \longrightarrow (x_{test}^{(1)}, y_{test}^{(1)})$	1
30.1	. 1380	212 (x_{est}, y_{test}) 243 (x_{test}, y_{test})	١
30.	1494	243 _ Se+ (************************************	
		$(x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$	

Классификация

Ирисы Фишера — это набор данных для задачи классификации, на примере которого Рональд Фишер в 1936 году продемонстрировал работу разработанного им метода дискриминантного анализа.

Ирис щетинистый (Iris setosa)

Ирис разноцветный (Iris versicolor)

Ирис виргинский (Iris virginica)

Расстояние

Близкие объекты обычно лежат в одном классе какие объекты считать близкими? Пусть $\rho(x,y)$ — функция расстояния

Iris Data (red=setosa,green=versicolor,blue=virginica)

Пусть $\rho(x,y)$ — функция расстояния **Евклидово расстояние**:

$$\rho(x,y) = \sqrt{\sum (x_i^2 - y_i^2)}$$

Пусть $\rho(x,y)$ — функция расстояния

Расстояние Хэмминга:

число позиций, в которых соответствующие символы двух слов одинаковой длины различны. Насстояние Хэмминга применяется для строк одинаковой длины любых q-ичных алфавитов и служит метрикой различия (функцией, определяющей расстояние в метрическом пространстве) объектов одинаковой размерности.

Как можно вводить расстояние на временных рядах?

Евклидово расстояние (пики, периоды) DTWM

Dynamic Time Warping Matching

Постановка задачи классификации

Имеется множество <u>объектов</u>, разделённых некоторым образом на классы.

Задано конечное множество объектов, для которых известно, к каким классам они относятся. Это множество называется обучающей выборкой. Классовая принадлежность остальных объектов не известна. Требуется построить алгоритм (классификатор), способный классифицировать произвольный объект из исходного множества.

Классифицировать объект — указать номер (или наименование класса), к которому относится данный объект. Классификация объекта — номер или наименование класса, выдаваемый алгоритмом классификации в результате его применения к данному конкретному объекту.

В математической статистике задачи классификации называются также задачами дискриминантного анализа.

Классификаторы.kNN

Метод ближайших соседей — метрический классификатор, основанный на оценивании расстояний между объектамми. Классифицируемый объект относится к тому классу, которому принадлежат ближайшие к нему объекты обучающей выборки.

Алгоритм

Для классификации каждого из объектов тестовой выборки необходимо последовательно выполнить следующие операции:

- Вычислить расстояние до каждого из объектов обучающей выборки
- Отобрать к объектов обучающей выборки, расстояние до которых минимально
- Класс классифицируемого объекта это класс, наиболее часто встречающийся среди к ближайших соседей

Выбор k

k=0.6

гиперпараметр k

Алгоритм можно выразить формулой:

$$a(x) = argmax(\sum_{i=1}^{k} a_i \cdot [y_{(i)} == y]), y \in Y$$
 Подбирается с помощью **holdout-выборки** или **кросс-валидации**

Чем больше k, тем проще разделяющая поверхность

Проблема расстояний

Пусть $\underline{k=5}$, тогда как будет классифицирован объект?

March 2018

Взвешенный kNN

Решение — учитывать расстояния среди k ближайших соседей: те объекты, которые расположены ближе, должны иметь больший вес.

Пример классификации (k = 6):

kNN в Sklearn

