Competência 7: Recursos de sistema, recursos de hardware e visualizador de eventos

Sistemas Operacionais

## Competência 7

 Objetivo: Avaliar a utilização de CPU, memória RAM, armazenamento e outros recursos para estimar a capacidade necessária de hardware para um ambiente operacional

#### Conteúdo:

- Recursos de sistemas.
- Recursos de hardware.
- Visualizador de eventos.

Recursos do Sistema Operacional







## Recursos de Sistema

- Gerenciamento de Processos
  - O sistema operacional é responsável pelo ciclo de execução dos processos: carga, execução e finalização
- Gerenciamento de Memória
  - O sistema operacional deve gerenciar a memória disponível no computador
- Gerenciamento de Arquivos
  - O sistema operacional deve armazenar e acessar os arquivos de maneira eficiente
- Gerenciamento de Dispositivos (E/S)
  - O sistema operacional deve permitir a comunicação com diferentes tipos de periféricos.



## Recursos de Hardware



## **CPU Características**

- Frequência de Processador (Velocidade, clock). Medido em hertz, define a capacidade do processador em processar informações ao mesmo tempo.
- Cores: O core é o núcleo do processador. Existem processadores core e multicore, ou seja, processadores com um núcleo e com vários núcleos na mesma peça.
- Cache: é um tipo de memória auxiliar, que faz diminuir o tempo de transmissão de informações entre o processador e outros componentes
- Potência: Medida em Watts é a quantia de energia que é consumida por segundo. 1W = 1 J/s (Joule por segundo)

## Memória RAM - Características

- A capacidade de uma memória é medida em <u>Bytes</u>, Kilobyte (1 KB = 1 024 ou  $2^{10}$  Bytes), Megabyte (1 MB = 1 024 KB ou  $2^{20}$  Bytes), Gigabyte (1 <u>GB</u> = 1 024 MB ou  $2^{30}$  Bytes) e Terabyte (1 <u>TB</u> = 1 024 GB ou  $2^{40}$  Bytes). [5]
- A velocidade de funcionamento de uma memória é medida em Hz ou MHz. Este valor está relacionado com a quantidade de blocos de dados que podem ser transferidos durante um segundo. Existem no entanto algumas RAMs que podem efetuar duas transferências de dados no mesmo ciclo de clock, duplicando a taxa de transferência de informação para a mesma frequência de trabalho. Além disso, a colocação das memórias em paralelo (propriedade da arquitetura de certos sistemas) permite multiplicar a velocidade aparente da memória.

## Disco de Armazenamento - Características

- **IOPS** é uma abreviação para *Input/Output per Second*, ou operações de entrada e saída por segundo, aplicada sobre dispositivos de armazenamento, como drives de discos, drives SSD e Storages.
- O **Seek Time** normalmente indica o tempo que a cabeça de leitura e gravação leva para se deslocar até uma trilha do disco ou mesmo de uma trilha a outra.
- O **Latency Time** é a medida que indica o tempo necessário para que a cabeça de leitura e gravação se posicione no setor do disco que deve ser lido ou mesmo gravado.
- Taxa de transferência de dados do HD.

# Gerenciador de Tarefas



#### Consumo de CPU



## Consumo de Memória



#### Uso do Disco



#### Uso do GPU



# Monitor de Recursos



### Monitor de Recursos – Consumo de CPU



#### Monitor de Recursos – Consumo de Memória



#### Monitor de Recursos – Uso de Disco



## Linux – comando top

```
top - 15:55:41 up 13 min, 1 user, load average: 0,49, 0,18, 0,08
Tasks: 209 total, 1 running, 173 sleeping, 0 stopped, 0 zombie
%Cpu(s): 25,2 us, 1,3 sy, 0,0 ni, 70,8 id, 0,0 wa, 1,3 hi, 1,3 si, 0,0 st
KiB Mem : 2040308 total, 416660 free, 1087696 used, 535952 buff/cache
KiB Swap: 2097148 total, 2097148 free, 0 used. 787528 avail Mem
```

| PID | USER  | PR | NI | VIRT   | RES   | SHR S   | %CPU | %MEM | TIME+ COMMAND           |
|-----|-------|----|----|--------|-------|---------|------|------|-------------------------|
| 1   | root  | 20 | 0  | 173504 | 12148 | 7628 S  | 0,0  | 0,6  | 0:01.13 systemd         |
| 2   | root  | 20 | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 kthreadd        |
| 8   | root  | 20 | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.06 ksoftirqd/0     |
| 11  | root  | rt | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 migration/0     |
| 12  | root  | rt | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 watchdog/0      |
| 13  | root  | 20 | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 cpuhp/0         |
| 14  | root  | 20 | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 kdevtmpfs       |
| 16  | root  | 20 | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 rcu_tasks_kthre |
| 17  | root  | 20 | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 kauditd         |
| 18  | root  | 20 | 0  | 0      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 oom_reaper      |
| 20  | root  | 20 | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 kcompactd0      |
| 21  | root  | 25 | 5  | 0      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 ksmd            |
| 22  | root  | 39 | 19 | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 khugepaged      |
| 30  | root  | rt | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 watchdogd       |
| 33  | root  | 20 | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 kswapd0         |
| 89  | root  | 20 | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 scsi_eh_0       |
| 91  | root  | 20 | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 scsi_eh_1       |
| 93  | root  | 20 | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 scsi_eh_2       |
| 444 | root  | 20 | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 jbd2/dm-0-8     |
| 529 | root  | 20 | 0  | 141188 | 38048 | 36824 S | 0,0  | 1,9  | 0:00.40 systemd-journal |
| 549 | root  | 20 | 0  | 97976  | 9972  | 6612 S  | 0,0  | 0,5  | 0:00.16 systemd-udevd   |
| 609 | root  | 20 | 0  | 185136 | 5632  | 3640 S  | 0,0  | 0,3  | 0:00.00 lvmetad         |
| 623 | root  | 20 | 0  | Θ      | 0     | 0 S     | 0,0  | 0,0  | 0:00.00 jbd2/sda1-8     |
| 647 | root  | 16 | -4 | 60776  | 2128  | 1552 S  | 0,0  | 0,1  | 0:00.00 auditd          |
| 670 | rtkit | 21 | 1  | 192976 | 3344  | 3012 S  | 0,0  | θ,2  | 0:00.00 rtkit-daemon    |

#### Linux – comando ps-aux

```
[root@localhost ~]# ps aux
JSER
          PID %CPU %MEM
                           VSZ
                                 RSS TTY
                                              STAT START
                                                           TIME COMMAND
                                                           0:01 /usr/lib/systemd/systemd --switched-root
root
            1 0.0 0.5 239172 12204 ?
                                                   15:42
                                                   15:42
                                                           0:00 [kthreadd]
root
               0.0
                   0.0
                                                   15:42
                                                           0:00 [rcu gp]
root
            3 0.0 0.0
                                   0 ?
                                                           0:00 [kworker/0:0H]
root
                                   0 ?
                                                   15:42
               0.0
                   0.0
                                                   15:42
root
                   0.0
                                   0 ?
                                                           0:00 [mm_percpu_wq]
            7 0.0
root
                                                   15:42
                                                           0:00 [ksoftirqd/0]
                    0.0
               0.0
                                                   15:42
                                                           0:00 [rcu sched]
                                   0 ?
root
              0.0 0.0
                                                   15:42
root
                                                           0:00 [rcu bh]
               0.0
                   0.0
                                   0 ?
                                   0 ?
                                                   15:42
                                                           0:00 [migration/0]
root
           11 0.0 0.0
              0.0 0.0
                                                           0:00 [watchdog/0]
                                                   15:42
root
           13 0.0 0.0
                                   0 ?
                                                   15:42
                                                           0:00 [cpuhp/0]
root
              0.0 0.0
                                                           0:00 [kdevtmpfs]
root
                                   0 ?
                                                   15:42
              0.0 0.0
                                                   15:42
                                                           0:00 [netns]
root
                                   0 ?
root
               0.0
                    0.0
                                                   15:42
                                                           0:00 [rcu_tasks_kthre]
root
              0.0 0.0
                                   0 ?
                                                   15:42
                                                           0:00 [kauditd]
                                                   15:42
                                                           0:00 [oom_reaper]
root
              0.0
                   0.0
                                   0 ?
                                                           0:00 [writeback]
              0.0
                                                   15:42
root
                   0.0
                                   0 ?
                                                           0:00 [kcompactd0]
                                                   15:42
root
              0.0
                    0.0
                                                           0:00 [ksmd]
                                                   15:42
root
              0.0
                    0.0
                                                   15:42
           22 0.0 0.0
                                                           0:00 [khugepaged]
root
                                                   15:42
                                                           0:00 [crypto]
root
               0.0
                   0.0
                                                           0:00 [kintegrityd]
                                                   15:42
root
              0.0
                   0.0
                                   0 ?
                    0.0
                                                   15:42
                                                           0:00 [kblockd]
root
               0.0
                                                   15:42
root
              0.0 0.0
                                   0 ?
                                                           0:00 [ata sff]
                                                   15:42
              0.0 0.0
                                                           0:00 [md]
root
                                                           0:00 [edac-poller]
                                                   15:42
root
           28 0.0 0.0
                                              I<
                                                   15:42
                                                           0:00 [devfreq wq]
root
              0.0 0.0
              0.0 0.0
                                                           0:00 [watchdogd]
                                                   15:42
root
                                   0 ?
                                                           0:00 [kworker/0:1]
           31 0.0 0.0
                                   0 ?
                                                   15:42
root
```

## Visualizador de Eventos



O Windows conta com uma ferramenta nativa que registra detalhes sobre erros no sistema, inclusive os que são causados por falha de hardware, como HD ou memória RAM.



O recurso pode ser útil para descobrir a origem do problema e pesquisar a solução caso seu computador apresente tela azul com frequência.

## Visualizador de Eventos

- Todos os eventos possuem categorias e são armazenados em categorias diferentes, cada um destes eventos está relacionado a um log que o Windows mantém. Você terá 3 categorias principais.
  - Aplicativo: Os eventos de log de aplicativo se relacionam aos componentes do sistema, como drivers e desktop.
  - ↑ Segurança: Quando você habilita o log de segurança que vem desabilitado por padrão, eventos relacionados a segurança, como: tentativas de logon e acesso a recursos são monitorados.
- Sistema: O log de sistema apenas registra eventos relacionados aos programas instalados no Windows.

