

## Architektur

## Übungen Computerarchitektur

## 1 | Architektur

#### 1.1 Stack-Architektur

Auswertung des Ausdrucks  $\frac{a+bc}{a+dc-e}$  unter Verwendung eines stack-basierten Prozessors.

- a) Schreibe Pseudo-Code der Berechnung.
- b) Wie viele direkte und indirekte Speicherreferenzen sind bei einer unendlichen Stackgrösse?
- c) Wie viele direkte und indirekte Speicherreferenzen sind bei einer Stackgrösse von 2 erforderlich?

arc/stack-01

#### 1.2 Stack-Architektur

Auswertung des Ausdrucks  $\frac{(a+b)^2}{\pi}*(a+b+c)$  unter Verwendung eines stack-basierten Prozessors.

- a) Schreibe Pseudo-Code der Berechnung.
- b) Wie viele direkte und indirekte Speicherreferenzen sind bei einer Stackgrösse von 4 erforderlich?
- c) Wie viele direkte und indirekte Speicherreferenzen sind bei einer Stackgrösse von 3 erforderlich?
- d) Wie viele direkte und indirekte Speicherreferenzen sind bei einer Staclgrösse von 2 erforderlich?

arc/stack-02

# 2 | Single-Cycle RISC-V

### 2.1 Single-Cycle-Prozessorbetrieb

Bestimmen Sie die Werte der Steuersignale und die Teile des Datenpfads, die bei der Ausführung einer and-Anweisung verwendet werden. Zeichnen Sie direkt auf dem Bild das Innenleben des Prozessors.





arc/scr-01

### 2.2 Einzelzyklus mit Anweisung jal verlängern

Zeigen Sie, wie der gegebene RISC-V-Einzyklusprozessor so geändert werden kann, dass er den Sprung- und Verknüpfungsbefehl jal unterstützt. jal schreibt PC+4 nach rd und ändert den PC auf die Sprungzieladresse PC+imm.



arc/scr-02

#### 2.3 Einzelzyklus-Prozessorleistung

Ein mit einem 7-nm-CMOS-Fertigungsprozess hergestellter Einzyklus Prozessor weist die folgenden Zeitmerkmale auf.

HEI-Vs / ZaS, AmA / 2025



| Element                | Parameter              | Delay(ps) |
|------------------------|------------------------|-----------|
| Register clk-to-Q      | $t_{ m peq}$           | 40        |
| Register Setup         | $t_{ m setup}$         | 50        |
| Multiplexer            | $t_{ m mux}$           | 30        |
| AND-OR Gate            | $t_{ m AND\_OR}$       | 20        |
| ALU                    | $t_{ m ALU}$           | 120       |
| Decoder (Control Unit) | $t_{ m dec}$           | 25        |
| Extend Unit            | $\mid t_{ m ext} \mid$ | 35        |
| Memory Read            | $t_{ m mem}$           | 200       |
| Register File Read     | $t_{ m RFread}$        | 100       |
| Register File Setup    | $t_{ m RFSetup}$       | 60        |

Das Programm für den SPECINT2000-Benchmark enthält 100 Milliarden Anweisungen.

Berechnen Sie die Berechnungszeit des Benchmarks für diesen Einzyklus Prozessor.

arc/scr-03

# 3 | Multi-Cycle RISC-V

#### 3.1 Mehrzyklus-Prozessorleistung

Das Programm für den SPECINT2000-Benchmark besteht aus ungefähr 25% loads, 10% stores, 11% branches, 2% jumps und 52% R- oder I-Typ ALU-Befehlen.

Ermitteln Sie den durchschnittlichen CPI für diesen Benchmark für den von uns entwickelten Multi-Cycle-Prozessor.

arc/mcr-01

### 3.2 Multi-Zyklus-Prozessorleistung

Ein mit einem 7-nm-CMOS-Fertigungsprozess hergestellter Multi-Zyklus Prozessor weist die folgenden Zeitmerkmale auf.

HEI-Vs / ZaS, AmA / 2025



| Element                | Parameter        | Delay(ps) |
|------------------------|------------------|-----------|
| Register clk-to-Q      | $t_{ m pc}$      | 40        |
| Register Setup         | $t_{ m setup}$   | 50        |
| Multiplexer            | $t_{ m mux}$     | 30        |
| AND-OR Gate            | $t_{ m AND\_OR}$ | 20        |
| ALU                    | $t_{ m ALU}$     | 120       |
| Decoder (Control Unit) | $t_{ m dec}$     | 25        |
| Extend Unit            | $t_{ m ext}$     | 35        |
| Memory Read            | $t_{ m mem}$     | 200       |
| Register File Read     | $t_{ m RFread}$  | 100       |
| Register File Setup    | $t_{ m RFSetup}$ | 60        |

Das Programm für den SPECINT2000-Benchmark enthält 100 Milliarden Anweisungen. Nutzen sie die  $\mathrm{CPI}_{\mathrm{avg}}$  der vorherigen Aufgabe.

Berechnen Sie die Berechnungszeit des Benchmarks für diesen Multi-Zyklus Prozessor.

arc/mcr-02

HEI-Vs / ZaS, AmA / 2025