定理 11.14 图 G 是平面图当且仅当 G 中没有可以收缩到 K_5 的子图,也没有可以收缩到 $K_{3,3}$ 的子图.

定理 11.15 设 G^* 是连通平面图 G 的对偶图, n^*, m^*, r^* 和 n, m, r 分别为 G^* 和 G 的顶点数、边数和面数,则

- (1) $n^* = r;$ (2) $m^* = m;$ (3) $r^* = n;$
- (4) 设 G^* 的顶点 v_i^* 位于 G 的面 R_i 中,则 $d_{G^*}(v_i^*) = \deg(R_i)$.

定理 11.16 设 G^* 是具有 $p(p \ge 2)$ 个连通分支的的对偶图,则

- (1) $n^* = r;$ (2) $m^* = m;$ (3) $r^* = n p + 1;$
- (4) $\[v_i^* \] \text{ def} \[G \] \text{ of } R_i \] +, \[\[\] \] d_{G^*}(v_i^*) = \deg(R_i).$

其中 n^*, m^*, r^*, n, m, r 同定理 11.15.

定理 11.17 设 G^* 是某平面图 G 的对偶图,在 G^* 的图形不改变的条件下, $G^{**}\cong G$ 当且仅当 G 是连通图.

定理 11.18 $n(n \ge 4)$ 阶轮图 W_n 是自对偶图.

定理 11.19 所有顶点都在外部面边界上的 $n(n \ge 3)$ 阶外可平面图是极大外可平面图当且仅当 G 的每个内部面的边界都是长为 3 的圈,外部面的边界是一个长为 n 的圈.

推论 对于n 阶外平面图,总可以用添加新边的方法得到极大外平面图.

定理 11.20 设 G 是所有顶点均在外部面边界上的 $n(n \ge 3)$ 阶极大外平面图,则 G 有 n-2 个内部面.

定理 11.21 设 $G \in \mathcal{L}$ $n(n \geq 3)$ 阶极大外平面图,则

- (1) m = 2n 3, 其中 m 为 G 中边数;
- (2) G中至少有3个顶点的度数小于等于3;
- (3) G中至少有2个顶点的度数为2;
- (4) G 的点连通度 $\kappa = 2$.

定理 11.22 一个图 G 是外平面图当且仅当 G 中不含与 K_4 或 $K_{2,3}$ 同胚的子图.

定理 11.23 设 G 是 n 阶简单平面图且是哈密顿图,C 为 G 中一条哈密顿回路. 以 r'_i, r''_i 分别表示在 C 的内部和在 C 的外部的次数为 i 的面数,则

$$\sum_{i=3}^{n} (i-2)(r_i' - r_i'') = 0.$$

定理 11.24 任何 4-连通平面图都是哈密顿图.