

Espiral

Modelagem de Sistemas **Professor:** Bruno B. Fernandes

Processo de Desenvolvimento de Sistemas

Processo de Desenvolvimento de Sistemas

Para se criar um novo software é necessário um processo de desenvolvimento, que pode ser um conjunto de atividades organizadas, usadas para definir, desenvolver, testar e manter um software. O desenvolvimento de um software precisa de um projeto de manutenção, para evitar problemas e otimizar possíveis pontos do processo da atividade.

Como funciona o Desenvolvimento de Software?

Dentro do desenvolvimento de software existem diversos processos diferentes. O Levantamento de requisitos como a etapa mais importante do processo, para que o investimento com o projeto tenha o retorno esperado.

Processo de Desenvolvimento de Sistemas

Análise de requisitos:

A etapa de análise de requisitos é onde os desenvolvedores fazem o estudo aprofundado daqueles dados de requisitos coletados na etapa anterior.

Projeto:

É o momento de se iniciar o projeto de forma mais concreta, isto é, definir alguns aspectos importantes.

Etapas genéricas de um processo de desenvolvimento

Etapas do processo de desenvolvimento

1. Conhecer as necessidades do cliente

a. Através de pesquisas, reunioes ou formularios

2. Definir os requisitos:

Elabora-se uma lista de prioridades após uma profunda análise de requisitos. Esta lista mostrará o que o software precisa ter, o que pode limitar cada função e quanto tempo aquilo poderá demorar, em teoria

Etapas do processo de desenvolvimento

- Avaliar a viabilidade do projeto:
 - Pré-existência de soluções que façam o mesmo e por um preço menor. O que, no final das contas, pode ser mais vantajoso para o cliente;
 - Pré-existência de frameworks e códigos que possam ser reaproveitados de alguma forma;

Etapas genéricas do processo de desenvolvimento

Número de pessoas e capacidades necessárias para a formação de uma equipe;

Quais tecnologias serão usadas, como o banco de dados, serviço de cloud, linguagens de programação, etc.

Documentar todos os procedimentos: Nessa etapa, são criadas as documentações que listam o que será desenvolvido e como o processo terá que acontecer.

Etapas genéricas do processo de desenvolvimento

Escolher a metodologia de desenvolvimento: Uma decisão muito importante pois ela direciona a forma como o projeto será desenvolvido, as pessoas que farão parte, quando e quais entregas serão feitas, além de outros detalhes importantes.

Testar as funcionalidades criadas: Os testes devem ser muito bem documentados e realizados, buscando emular o uso real da aplicação.

• • • •

Modelo Espiral

O que é?

Criado em 1988, é uma melhora do Modelo Incremental. Nele, cada volta do espiral passa pelas fases do processo de software. Essas voltas devem ser feitas até que o modelo esteja completo. Idealizado para projetos que precisam passar por várias evoluções ao desenvolver certo projeto.

Etapas:

Constituído por 4 quadrantes principais:

1. Definição de Objetivos:

Os objetivos específicos para esta etapa são identificados e alternativas para realizar os objetivos e restrições são encontradas.

Etapas:

2. Avaliação e redução de riscos:

Para cada risco que for identificado na etapa anterior, será realizada uma descrição dos possíveis riscos, este serve para criar estratégias para evitá-los ou amenizá-los.

Etapas:

Implementação e validação:

Com as estratégias definidas, é escolhido um modelo de desenvolvimento. Pode-se utilizar modelos diferentes em cada volta de implementação, conforme a necessidade.

Planejamento e Especificação:

O projeto é revisto e tomada uma decisão de continuidade, se é decidido continuar, são projetados planos para a próxima fase/protótipo do projeto.

Pontos Fortes

- Inclui a **interação** entre os desenvolvedores e o cliente:
- Apresenta uma abordagem sistemática;
- Melhora o **tempo de implementação** do sistema;
- Mais versátil para lidar com mudanças, que podem acontecer, durante qualquer fase do projeto;

- Reflete as **práticas reais** da engenharia atual;
- Fácil de decidir o quanto e quando testar;
- À medida que os custos aumentam, os riscos diminuem;
- As primeiras iterações são as mais baratas (tempo e recursos), desde que o protótipo seja feito em pequenos pedaços.

Pontos Fortes

- **Estimativas** tornam-se mais realísticas com o progresso do trabalho, porque problemas importantes são descobertos mais cedo;
- Engenheiros de software podem começar o **trabalho** no sistema **mais** cedo;
- Suporta diversos mecanismos de redução de **risco**;

Os desenvolvedores e programadores descrevem as características com alta prioridade em primeiro lugar e, então, desenvolvem um protótipo baseado sobre estes.

Pontos Fracos

- Muita ênfase a parte funcional;
- É necessária uma **habilidade** mais elevada, para a avaliação de incertezas ou riscos associados ao projeto e sua redução;
- Tem um **melhor funcionamento** em softwares que necessitam de requisitos de maiores complexibilidades, onde os custos envolvidos são muito elevados:

- É **bem aplicado** somente a sistemas de larga escala;
- Elaboração de um **script** (Protocolo), que deve ser **seguido** estritamente para que se tenha um bom funcionamento, sendo muitas das vezes difícil segui-lo;
- Esse modelo possui movimentação entre fases complexas o que torna complexo o gerenciamento do projeto:

Pontos Fracos

- O modelo **não é usado** na mesma extensão que o linear e o de prototipação, e, por isso, não foi "testado" o suficiente:
- Ele **não fornece** indicações suficientes sobre quantidade de trabalho **esperada** em cada **ciclo**;

- O tempo de desenvolvimento (prazo) se torna imprevisível:
- Avaliar os **riscos** no projeto pode acabar aumentando o custo, e o custo ser maior que o orçamento inicial.
- Se um **risco importante** não for descoberto, fatalmente ocorrerão problemas.

Exemplo em um sistema

Exemplo em um sistema

O modelo espiral é usado com mais frequência em projetos mais extensos. Para pequenos projetos, é mais viável a utilização dos sistemas de desenvolvimento de software ágil.

Exemplo em um sistema

- Um exemplo no mínimo diferente é o Sistemas de combate do futuro.
- Um programa feito pelo Exército dos Estados Unidos que têm adotado o modelo em espiral.
- "Exército, os Sistemas de Combate do Futuro (FCS, na sigla em inglês) pretendem proporcionar uma capacidade sem precedentes para detectar e derrotar o inimigo, tanto nos conflitos atuais quanto nos vindouro"

Considerações Finais

Considerações Finais

Mesmo que muito eficaz, o modelo de desenvolvimento em espiral por ser muito maçante e repetitivo, acaba por ser pouco utilizado em projetos de pequeno porte, e também por vezes, é visto como um modelo ineficaz.

Porém quando aplicado da forma correta em projetos de larga escala como equipe grande, o modelo em questão acaba por ser muito eficiente e ao contrário de projetos pequenos, reduz consideravelmente os gastos.

Trabalho feito por:

Cezar Peterson, Emanuelli de Oliveira, Emili da Costa, Jhonatan Pereira, Kauan Fernandes, Kayla Zaja,

Larissa Pluijlaar, Luana Furini, Pedro Sarmento, Rafael Rakochinski, Sofia Benedet Brandl

https://forms.gle/HV9rpktNLuuo4czK7

