CS3200: Computer Networks Lecture 2

IIT Palakkad

29 Jul, 2019

Layered Architecture

Figure: [Kurose and Ross] Layering of airline functionality.

Protocol Layering

Application
Transport
Network
Link
Physical

a. Five-layer Internet protocol stack Application
Presentation
Session
Transport
Network
Link
Physical

b. Seven-layer
 ISO OSI
 reference model

Figure: [Kurose and Ross] The Internet protocol stack (a) and OSI reference model (b).

Protocol Layering: Encapsulation

Figure: [Kurose and Ross] Hosts, routers, and link-layer switches; each contains a different set of layers, reflecting their differences in functionality.

Physical Layer

Physical Layer

- Lowest layer in the protocol stack.
- Defines the electrical, timing and other interfaces by which bits are sent as signals over channels.

Theoretical Basis for Data Communication

Fourier Analysis

Any reasonably behaved periodic function, g(t) with period T, can be constructed as the sum of a (possibly infinite) number of sines and cosines:

$$g(t) = \frac{c}{2} + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t),$$

where f = 1/T is known as the fundamental frequency.

The constants can be computed as follows

$$a_n = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$$
 $b_n = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$

$$c = \frac{2}{T} \int_0^T g(t) dt$$

Suppose you would like to send the character 'b' encoded in an 8-bit byte

The Fourier series of this signal has the following coefficients:

$$a_n = \frac{1}{\pi n} [\cos(\pi n/4) - \cos(3\pi n/4) + \cos(6\pi n/4) - \cos(7\pi n/4)]$$

$$b_n = \frac{1}{\pi n} [\sin(3\pi n/4) - \sin(\pi n/4) + \sin(7\pi n/4) - \sin(6\pi n/4)]$$

$$c = 3/4$$

- No transmission facility can transmit signals without losing some power in the process.
- Almost all transmission facilities diminish different Fourier components by different amounts, thus introducing distortion.
- The width of frequency range transmitted without being strongly attenuated is called the **bandwidth**.
- Signals that run from 0 up to a maximum frequency are called baseband signals.
- Signals that are shifted to occupy a higher range of frequencies, as is the case for all wireless transmissions, are called passband signals.

With only the first harmonic

With the first two harmonics

With the first 4 harmonics

With the first 8 harmonics

Maximum Data Rate

Nyquist - Shannon Theorem

An arbitrary signal containing no frequencies higher than B Hertz can be completely reconstructed by making only 2B samples per second.

If the signal consists of V discrete levels, Nyquist's theorem states that maximum data rate = $2B \log_2 V$ bits/sec.

The above is valid for noiseless channel. What is the channel has random noise present?

Shannon - Hartley Theorem

Maximum data rate or capacity of a noisy channel whose bandwidth is B Hz and whose signal-to-noise ratio is S/N, is given by $B \log_2(1 + S/N)$ bits/sec.