On the evaluation of post hoc Out-Of-Distribution detectors

Lorenzo Rossi

Problem definition: Out-Of-Distribution detection

$$G(x_0; f) = \begin{cases} 0 & \text{if } x_0 \sim \mathcal{D}_{out}, \\ 1 & \text{if } x_0 \sim \mathcal{D}_{in}. \end{cases}$$

The post hoc scenario

Pre-trained model Class scores Scoring function OOD score
$$G(x_0;f) = \begin{cases} 0 & \text{if } S(x_0;f) \leq t, \\ 1 & \text{if } S(x_0;f) > t. \end{cases}$$

Softmax score

$$S_{MSP}(x) = \max_{k} \operatorname{softmax}(f(x))_{k}$$

Main claim: Correctly classified samples have a higher maximum softmax probability.

Hendrycks and K. Gimpel. A baseline for detecting misclassified and out-of-distribution examples in neural networks, 2016

ODIN

$$S_{ ext{ODIN}}(ilde{x};T) = \max_k ext{softmax}(rac{f(ilde{x})}{T})_k$$
 $ilde{x} = x - \epsilon ext{sign}(-
abla \log S_{ ext{ODIN}}(x))$

S. Liang, Y. Li, and R. Srikant. Enhancing the reliability of out-of-distribution image detection in neural networks, 2017

Energy-based score

$$S_{\text{energy}}(x) = -\ln \sum_{i=1}^{K} e^{f(i)_i}$$

$$\mathcal{L}_{\text{energy}} = \mathbb{E}[\max(0, S_{\text{energy}}(x_{in}) - m_{in})] + \mathbb{E}[\max(0, m_{out}) - S_{\text{energy}}(x_{out})]$$

W. Liu, X. Wang, J. D. Owens, and Y. Li. Energy-based out-of-distribution detection, 2020

ReAct

$$\operatorname{ReAct}(x;\lambda) = \min(x,\lambda)$$

Y. Sun, C. Guo, and Y. Li. React: Out-of-distribution detection with rectified activations, 2021

Our results

- ODIN with ε =0 and T=1000 is a strong baseline.
- The benefits of adding ReAct are unclear.
- We found no strong correlation between the architecture and the size of the model, and the OOD detection performance.
- All the OOD detection methods show a good dataset transferability.

Methodology

- 8 OOD detectors
 - \circ 4 scoring functions: softmax, ODIN(ε =0), ODIN(ε =0.0014), energy.
 - Each model with and without the ReAct layer
- 10 datasets used (iNaturalist*, SUN*, Places*, ImageNet, ImageNet a, ImageNet V2, Rock Paper Scissors, ImageNette, uniform noise, Gaussian noise.
- A wide range of augmentations (Gaussian noise, blur, pixelization, perspective transformation, adversarial noise, JPEG quality, adversarial noise)
- 9 Models (DensetNet121, DenseNet169, DenseNet201, ResNet50, ResNet101, ResNet152, VGG16, VGG19, EfficientNetB0), however we mainly focus on ResNet101.
- The first group of 64 dataset & augmentation pairs only ResNet101. The second group of 10 dataset & augmentation pairs for all the models.

*A non overlapping dataset is used

Main results

RockPaperScissors - 98.54/99.75 99.98/99.82 0.40/78.12 92.46/5 iNaturalist - 88.42/94.17 92.37/94.18 0.58/78.52 78.13/5 SUN - 86.19/89.78 89.51/89.58 1.26/73.51 81.07/5 Places - 82.86/84.14 87.09/83.39 0.71/71.10 77.79/4 Gaussian Noise - 99.84/100.00 100.00/100.00 0.21/90.88 98.03/9 Uniform Noise - 99.85/100.00 100.00/100.00 0.28/95.04 95.57/9 ImageNet v2* - 55.26/55.55 57.38/55.28 99.64/54.98 57.19/4 ImageNette* - 83.79/75.92 52.58/53.93 1.06/52.70 55.34/5	
iNaturalist - 88.42/94.17 92.37/94.18 0.58/78.52 78.13/5 SUN - 86.19/89.78 89.51/89.58 1.26/73.51 81.07/5 Places - 82.86/84.14 87.09/83.39 0.71/71.10 77.79/4 Gaussian Noise - 99.84/100.00 100.00/100.00 0.21/90.88 98.03/5 Uniform Noise - 99.85/100.00 100.00/100.00 0.28/95.04 95.57/5 ImageNet v2* - 55.26/55.55 57.38/55.28 99.64/54.98 57.19/4 ImageNette* - 83.79/75.92 52.58/53.93 1.06/52.70 55.34/5	nergy
SUN - 86.19/89.78 89.51/89.58 1.26/73.51 81.07/5 Places - 82.86/84.14 87.09/83.39 0.71/71.10 77.79/4 Gaussian Noise - 99.84/100.00 100.00/100.00 0.21/90.88 98.03/9 Uniform Noise - 99.85/100.00 100.00/100.00 0.28/95.04 95.57/9 ImageNet v2* - 55.26/55.55 57.38/55.28 99.64/54.98 57.19/4 ImageNette* - 83.79/75.92 52.58/53.93 1.06/52.70 55.34/5	46/52.22
Places - 82.86/84.14 87.09/83.39 0.71/71.10 77.79/4 Gaussian Noise - 99.84/100.00 100.00/100.00 0.21/90.88 98.03/9 Uniform Noise - 99.85/100.00 100.00/100.00 0.28/95.04 95.57/9 ImageNet v2* - 55.26/55.55 57.38/55.28 99.64/54.98 57.19/4 ImageNette* - 83.79/75.92 52.58/53.93 1.06/52.70 55.34/5	13/56.67
Gaussian Noise - 99.84/100.00 100.00/100.00 0.21/90.88 98.03/9 Uniform Noise - 99.85/100.00 100.00/100.00 0.28/95.04 95.57/9 ImageNet v2* - 55.26/55.55 57.38/55.28 99.64/54.98 57.19/4 ImageNette* - 83.79/75.92 52.58/53.93 1.06/52.70 55.34/5	07/50.09
Uniform Noise - 99.85/100.00 100.00/100.00 0.28/95.04 95.57/9 ImageNet v2* - 55.26/55.55 57.38/55.28 99.64/54.98 57.19/4 ImageNette* - 83.79/75.92 52.58/53.93 1.06/52.70 55.34/5	79/47.96
ImageNet v2* - 55.26/55.55 57.38/55.28 99.64/54.98 57.19/4 ImageNette* - 83.79/75.92 52.58/53.93 1.06/52.70 55.34/5	03/97.56
ImageNette* - 83.79 /75.92 52.58/53.93 1.06/52.70 55.34/5	57/98.25
6	19/48.12
ImageNet Normal($\sigma = 0.002$) 51 31/52 73 52 35/52 56 24 77/52 08 52 91/4	34/53.00
$\frac{1}{2}$ $\frac{1}$	91/48.98
ImageNet Normal($\sigma = 0.25$) 79.69/87.30 88.81 /86.97 3.77/79.54 84.82/6	82/60.31
ImageNet Normal($\sigma = 1.25$) 95.63/98.31 99.50 /98.77 0.49/88.71 97.77/8	77/86.15
ImageNet Blur(r= 1.0) 55.40/54.93 59.80 /54.85 40.10/53.57 58.06/4	06/46.68
ImageNet Pixelation(r= 0.5) $56.16/56.14$ 61.40 /56.30 52.21/54.30 59.16/4	16/48.24
ImageNet JPEG(q= 25) 54.37/55.26 58.53 /55.46 15.52/53.80 59.02/4	02/49.51

Result w/o and w/ ReAct using ResNet101 pre-trained on ImageNet

Best Methods

Scoring	ReAct	average rank
$ODIN(\epsilon=0)$	no	2.27
softmax	yes	2.71
$ODIN(\epsilon=0)$	yes	2.81
energy	no	4.06
softmax	no	4.52
$\texttt{ODIN}(\epsilon = 0.0014)$	yes	5.57
energy	yes	6.76
$\mathrm{ODIN}(\epsilon=0.0014)$	no	7.29

Scoring	Better w/o	Better w/
softmax	10	54
energy	59	5
$\mathtt{ODIN}(\epsilon=0)$	41	23
$\mathrm{ODIN}(\epsilon=0.0014)$	7	57

AUC comparison with and without ReAct

- ODIN (ε =0) is the best
- The benefits of ReAct heavily depends on the scoring function

Adversarial noise (FGSM)

$$\mathcal{L}_{adv}(x) = \ln \sum_{i=0}^{N} e^{\operatorname{softmax}(f(x))_k}$$

$$x_{adv} = \operatorname{clip}(x + \epsilon \operatorname{sign}(\nabla \mathcal{L}_{adv}(x)))$$

Comparison among models

Model	Scorer	ReAct	Avg Rank
EfficientNetB0	$ODIN(\epsilon=0)$	no	1.22
ResNet50	$ODIN(\epsilon=0)$	no	1.33
DenseNet121	$ODIN(\epsilon=0)$	yes	1.44
DenseNet201	$\mathrm{ODIN}(\epsilon=0)$	yes	1.56
VGG19	$\mathrm{ODIN}(\epsilon=0)$	no	2.0
ResNet101	softmax	yes	2.0
ResNet101	$ODIN(\epsilon=0)$	no	2.11
ResNet151	$ODIN(\epsilon=0)$	yes	2.22
VGG16	$\mathrm{ODIN}(\epsilon=0)$	no	2.22
VGG19	$\mathrm{ODIN}(\epsilon=0)$	yes	2.22

We used for the average ranking the second group of 10 dataset and augmentation pairs.