Kapitel L: V (Fortsetzung)

V. Produktionsregelsysteme

- □ Produktionsregelsysteme
- □ Forward-Chaining
- □ Backward-Chaining
- □ Verkettungsstrategien
- □ Produktionsregelsysteme mit Negation

L: V-40 Production Systems ©STEIN 1996-2008

Definition 9 (PS mit Negation)

Ein Produktionsregelsystem mit Negation $P_N=(D,R_N)$ ist ein Produktionsregelsystem, bei dem der Bedingungsteil von Regeln auch die Negation No \mathtt{T} enthalten kann.

Beispiel:

IF NOT
$$X \neq a \land \text{NOT} (Y = a \land Z \neq b)$$
 THEN $W = a$

Zwei Paradigmen zur Interpretation von NOT:

- 1. Negation-as-Failure
- 2. bezogen auf eine aktuelle, "statische" Datenbasis

L: V-41 Production Systems ©STEIN 1996-2008

1. Mit Hilfe von de Morgan lassen sich Regeln mit NOT so umformen, dass die Negation nur bei Atomen steht. (Negationsnormalform des Bedingungsteils)

NOT
$$(\alpha_1 \wedge \ldots \wedge \alpha_n) \approx \text{NOT}(\alpha_1) \vee \ldots \vee \text{NOT}(\alpha_n)$$

NOT $(\alpha_1 \vee \ldots \vee \alpha_n) \approx \text{NOT}(\alpha_1) \wedge \ldots \wedge \text{NOT}(\alpha_n)$

Beispiel:

IF NOT
$$X \neq a \land$$
 NOT $(Y = a \land Z \neq b)$ THEN $W = a$
$$\approx \text{ IF NOT } X \neq a \land (\text{NOT } Y = a \lor \text{NOT } Z \neq b) \text{ THEN } W = a$$

L: V-42 Production Systems ©STEIN 1996-2008

1. Mit Hilfe von de Morgan lassen sich Regeln mit NOT so umformen, dass die Negation nur bei Atomen steht. (Negationsnormalform des Bedingungsteils)

NOT
$$(\alpha_1 \wedge \ldots \wedge \alpha_n) \approx \text{NOT}(\alpha_1) \vee \ldots \vee \text{NOT}(\alpha_n)$$

NOT $(\alpha_1 \vee \ldots \vee \alpha_n) \approx \text{NOT}(\alpha_1) \wedge \ldots \wedge \text{NOT}(\alpha_n)$

Beispiel:

IF NOT
$$X \neq a \wedge$$
 NOT $(Y = a \wedge Z \neq b)$ THEN $W = a$
$$\approx \text{ IF NOT } X \neq a \wedge (\text{NOT } Y = a \vee \text{NOT } Z \neq b) \text{ THEN } W = a$$

2. Darauf aufbauend lässt sich die disjunktive Normalform herstellen und die Regeln aufspalten:

IF NOT
$$X \neq a \land (\operatorname{NOT} Y = a \lor \operatorname{NOT} Z \neq b)$$
 THEN $W = a$
$$\approx \qquad \text{IF NOT } X \neq a \land \operatorname{NOT} Y = a \text{ THEN } W = a$$

$$\text{IF NOT } X \neq a \land \operatorname{NOT} Z \neq b \text{ THEN } W = a$$

L: V-43 Production Systems ©STEIN 1996-2008

Interpretation von NOT als Negation-as-Failure

- □ wird in der Programmiersprache PROLOG verwandt
- $exttt{ iny hier rein aussagenlogischer Fall:}$ Die "Bedingung NOT au" für ein Atom au ist erfüllt, falls au nicht ableitbar ist.
- □ Hintergrund dieser Interpretation ist die Closed World Assumption (CWA).

Annahme:

- \Box Die Diskurswelt (Domäne, Situation) ist vollständig durch $P_N = (D, R_N)$ beschrieben.
- ⇒ Alle Fakten, die in der Diskurswelt gültig sind, sind auch ableitbar.

 \Rightarrow

Failure bzgl. des Ableitens von au

 \Leftrightarrow

"NOT τ " gilt in der Diskurswelt

L: V-44 Production Systems ©STEIN 1996-2008

Definition 10 (Semantik von NOT unter CWA)

In einem Produktionsregelsystem $P_N = (D, R_N)$ ist eine Bedingung NOT α genau dann erfüllt (wahr), wenn α nicht aus P_N ableitbar ist. Das heißt:

- 1. Ist α eine Konjunktion von Teilformeln α_i darf mindestens ein α_i nicht ableitbar sein, damit NOT α erfüllt ist.
- 2. Ist α eine Disjunktion von Teilformeln α_i so darf kein α_i ableitbar sein, damit NOT α erfüllt ist.

L: V-45 Production Systems ©STEIN 1996-2008

Bemerkungen:

- □ Dieser Erfüllbarkeitsbegriff kann unmittelbar in den Algorithmus BC-DFS integriert werden.
- □ Mit Negation-as-Failure wird eine neue Schlussregel eingeführt in Zeichen:

$$(\alpha \mid_{\overrightarrow{PS}} \tau) \mid_{\underset{CWA}{PS_N}} \neg \tau$$

In Worten: Falls τ aus α nicht mittels $\mid_{\overline{PS}}$ ableitbar ist, so ist $\neg \tau$ unter der Closed-World-Assumption ableitbar.

L: V-46 Production Systems ©STEIN 1996-2008

Algorithm: BC-DFS-N

Input: Startdatenbasis D, Regelmenge R, Formel α

Output: true, falls α ableitbar unter CWA, false sonst; evtl. Endlosschleife

```
BEGIN
```

```
IF \alpha=\text{NOT}\,\alpha_1 THEN RETURN (NOT BC\text{-}DFS\text{-}N(\alpha_1)) ENDIF IF \alpha=\alpha_1\wedge\alpha_2 THEN RETURN (BC\text{-}DFS\text{-}N(\alpha_1) AND BC\text{-}DFS\text{-}N(\alpha_2)) ENDIF IF \alpha=\alpha_1\vee\alpha_2 THEN RETURN (BC\text{-}DFS\text{-}N(\alpha_1) OR BC\text{-}DFS\text{-}N(\alpha_2)) ENDIF IF \alpha\in D THEN RETURN (true) ENDIF
```

L: V-47 Production Systems ©STEIN 1996-2008

Algorithm: BC-DFS-N

Input: Startdatenbasis D, Regelmenge R, Formel α

Output: true, falls α ableitbar unter CWA, false sonst; evtl. Endlosschleife

```
BEGIN
  IF \alpha = \text{NOT } \alpha_1 THEN RETURN (NOT BC-DFS-N(\alpha_1)) ENDIF
  IF \alpha = \alpha_1 \wedge \alpha_2 THEN RETURN (BC-DFS-N(\alpha_1) AND BC-DFS-N(\alpha_2)) ENDIF
  IF \alpha = \alpha_1 \vee \alpha_2 THEN RETURN (BC-DFS-N(\alpha_1) OR BC-DFS-N(\alpha_2)) ENDIF
  IF \alpha \in D THEN RETURN (true) ENDIF
  R^* = \{r \mid r = (\text{IF } \gamma \text{ THEN } \alpha) \text{ und } r \in R\}
  stop=false
  WHILE R^* \neq \emptyset AND stop = false do
       r = choose(R^*)
       IF BC-DFS-N(premise(r)) = true
       THEN stop=true
       ELSE R^* = R^* \setminus \{r\}
  END
  IF stop=true
  THEN RETURN (true)
  ELSE RETURN (false)
END
```

L: V-48 Production Systems ©STEIN 1996-2008

Zyklische Regelmengen und NOT

Sei folgendes Produktionsregelsystem $P_N = (D, R_N)$ gegeben:

$$D = \{\}$$
 $R_N = \{r_1 : \text{IF NOT } X = a \text{ THEN } Y = b,$ $r_2 : \text{IF NOT } Y = b \text{ THEN } X = a\}$

- \Box In R_N enthält eine Schleife für das Ziel Y=b und für das Ziel X=a.
- □ Schleifen (unendliche Ableitungen) dürfen nicht mit der Nicht-Ableitbarkeit eines Faktes gleichgesetzt werden.

L: V-49 Production Systems ©STEIN 1996-2008

Negation-as-Failure und Vorwärtsverkettung

Bei der Vorwärtsverkettung hängt die Erfüllung einer Bedingung von der aktuellen Datenbasis D ab.

 \Rightarrow Die Bildung der Konfliktmenge hängt vom aktuellen D ab.

Im Widerspruch dazu steht Negation-as-Failure:

- □ Die Erfüllung einer Bedingung hängt von der Ableitbarkeit ab.
- \Rightarrow Für (D,R_N) macht ein rein vorwärtsverkettendes Verfahren keinen Sinn, weil bei negierten Bedingungen die Ableitbarkeit von Atomen getestet werden muss.
- ⇒ Die Integration eines rückwärtsverkettenden Verfahrens und die Kombination beider Verkettungsstrategien ist notwendig.

L: V-50 Production Systems ©STEIN 1996-2008

Negation-as-Failure und Vorwärtsverkettung

Sei folgendes Produktionsregelsystem $P_N = (D, R_N)$ gegeben:

```
D=\{\} R_N=\{r_1: \text{If }Z=a \text{ THEN }X=b, r_2: \text{If NOT }Y=b \text{ THEN }Z=a, r_3: \text{If }U=1 \text{ THEN }Y=b\}
```

- \square Test, ob r_2 in die Konfliktmenge kommt.
- \Rightarrow Test, ob Y = b abgeleitet werden kann.
- ⇒ Backward-Chaining

Alternative

Anwendung einer anderen Interpretation der Negation bei vorwärtsverkettenden Verfahren. Idee: Konfliktmengenbildung bei statischer Datenbasis D.

L: V-51 Production Systems © STEIN 1996-2008

Statische Interpretation von NOT und Vorwärtsverkettung

Definition 11 (Semantik von NOT unter *D***)**

Eine Bedingung NOT α ist in Bezug auf eine Datenbasis D genau dann erfüllt, wenn α in Bezug auf D nicht erfüllt ist:

- \Box Ist α ein Atom, so muss $\alpha \not\in D$ gelten.
- \Box Andernfalls wird das Erfülltsein von α entsprechend der Junktoren auf das Erfülltsein der Teilformeln zurückgeführt.

L: V-52 Production Systems ©STEIN 1996-2008

Statische Interpretation von NOT und Vorwärtsverkettung

Lemma 2

Produktionsregelsysteme mit Negation und der Interpretation der Negation in Bezug auf die Datenbasis sind nicht kommutativ.

Beweis 2 (Lemma)

Sei folgendes Produktionsregelsystem $P_N = (D, R_N)$ gegeben:

$$D = \{\}$$
 $R_N = \{r_1 : \text{IF NOT } X = a \text{ THEN } Y = b,$ $r_2 : \text{IF NOT } Y = b \text{ THEN } X = a\}$

Wegen $D = \emptyset$ ist sowohl r_1 als auch r_2 anwendbar. Wähle r_1 .

$$\Rightarrow (D, R_N) \frac{1}{|P|} (D_1, R_N) \text{ mit } D_1 = \{Y = b\}.$$

- \Rightarrow Für D_1 ist die Bedingung von r_2 nicht länger erfüllt.
- $\Rightarrow r_2$ ist nicht anwendbar.

 $\Rightarrow P_N$ nicht kommutativ.

L: V-53 Production Systems ©STEIN 1996-2008

Statische Interpretation von NOT und Vorwärtsverkettung

```
Algorithm: FC-N-test
Input:
                 Startdatenbasis D, Regelmenge R_N, Atom \tau^*
Output: true, falls (D, R) \mid_{\overline{PS}} \tau^*, unknown sonst
   BEGIN
      D^* = D
      R_{\mathsf{tmp}} = R
      REPEAT
         R^* = \{ (\text{IF } \alpha \text{ THEN } \tau) \in R_{\text{tmp}} \mid \alpha \text{ wahr bzgl. } D^* \}
         IF R^* \neq \emptyset
         THEN BEGIN
            r = choose(R^*)
            D^* = D^* \cup \{ conclusion(r) \}
            R_{\mathsf{tmp}} = R_{\mathsf{tmp}} \setminus \{r\}
         END
         ELSE R_{\mathsf{tmp}} = \emptyset
      UNTIL R_{\mathsf{tmp}} = \emptyset
      IF \tau^* \in D^*
      THEN RETURN (true)
      ELSE RETURN (unknown)
   END
```

L: V-54 Production Systems ©STEIN 1996-2008

Bemerkungen:

- □ FC-N-test terminiert bei jeder Eingabe.
- \Box Aufgrund der Nicht-Kommutativität kommt dem Aufruf *choose*(R^*) eine besondere Bedeutung zu: Nicht jede Auswahl von Regeln liefert das Ergebnis *true*, auch wenn $(D,R_N)\mid_{\overline{PS}} \tau$ gilt.

L: V-55 Production Systems ©STEIN 1996-2008

Statische Interpretation von NOT und Vorwärtsverkettung

Satz 3 (Korrektheit und Vollständigkeit von FC-N-test)

Es sei P_N ein Produktionsregelsystem mit Negation und τ ein Atom. Dann gilt FC-N-test (D,R_N,τ) = true ist möglich genau dann, wenn sich τ aus P_N ableiten lässt, d.h. $(D,R_N)\mid_{\overline{PS}}\tau$ gilt.

L: V-56 Production Systems ©STEIN 1996-2008

Beweis 3 (Korrektheit und Vollständigkeit von FC-N-test)

"⇒" Korrektheit

Aus FC-N-test (D, R_N, τ) = true ist möglich folgt $(D, R_N) \mid_{\overline{PS}} \tau$.

Klar, weil jeder Iterationsschritt des Algorithmus genau einem Schritt der Ableitung $\frac{1}{PS}$ entspricht.

" —" Vollständigkeit

Aus $(D,R_N)|_{\overline{PS}}\tau$ folgt, dass eine Ableitungsfolge für FC-N-test (D,R_N,τ) existiert mit FC-N-test (D,R_N,τ) = true.

□ Nach Voraussetzung existiert eine Folge von Regelanwendungen

$$(D, R_N) \mid_{\overline{PS}} 1$$
 $(D_1, R_N) \mid_{\overline{PS}} 1$... $\mid_{\overline{PS}} 1$ (D_k, R_N) mit $\tau \in D_k$,

wobei D_i aus D_{i-1} durch Anwendung einer Regel entsteht.

□ Wähle die entsprechenden Regeln in dieser Reihenfolge für die ersten *k* Schleifendurchläufe in FC-N-test.

$$\Rightarrow D_k \subseteq D^*$$

 $\Rightarrow \tau$ wurde abgeleitet.

L: V-57 Production Systems ©STEIN 1996-2008

Nicht-Determinismus von FC-N-test

- \Box Aus $(D,R_N)|_{\overline{PS}}\tau$ folgt nicht, dass FC-N-test (D,R_N,τ) den Rückgabewert *true* liefern muss.
- \Box Im Falle der Nichtableitung von τ ist der Rückgabewert von FC-N-test *unknown*.
- □ Unter der Voraussetzung P ≠ NP lässt sich der Nichtdeterminismus von FC-N-test auch nicht so auflösen, dass ein polynomiell beschränktes deterministisches Verfahren zur Bestimmung der Ableitbarkeit entsteht:

Satz 4 (NP-Vollständigkeit des Ableitbarkeitsproblems)

Es sei P_N ein Produktionsregelsystem mit Negation und τ ein Atom. Das Entscheidungsproblem "Lässt sich τ aus P_N ableiten?" – kurz: "Gilt $P_N \mid_{\overline{PS}} \tau$?" – ist NP-vollständig.

L: V-58 Production Systems ©STEIN 1996-2008

Beweisidee (NP-Vollständigkeit des Ableitbarkeitsproblems)

- 1. Obere Schranke.
 - $P_N \mid_{\overline{PS}} \tau$ ist in NP; Argumentation über FC-N-test.
- 2. Vollständigkeit. Reduktion von 3SAT auf $P_N \mid_{\overline{PS}} \tau$. Konstruktion einer Menge R_α von Regeln zu einer aussagenlogischen Formel α mit

$$\alpha$$
 erfüllbar \Leftrightarrow $P_{\alpha} = (\emptyset, R_{\alpha}) \mid_{\overline{PS}} \tau, \ \tau = (Y = 1)$

Argumentation zu Punkt 2:

- "⇒" Mit Erfüllbarkeit von α folgt $P_{\alpha} \mid_{\overline{PS}} (Y=1)$: Die erfüllende Belegung \Im der Atome in α lässt die Regeln so feuern, dass Y=1 von P_{α} abgeleitet werden kann.
- " \Leftarrow " Mit $P_{\alpha} \mid_{\overline{PS}} (Y = 1)$ folgt die Erfüllbarkeit von α : Aus den gefeuerten Regeln folgt eine erfüllende Belegung \Im der Atome in α .

L: V-59 Production Systems ©STEIN 1996-2008