

Error Bars of Effective Areas

Jason

09-05-2024

• Need to quantify the detector efficiency.

_

- Need to quantify the detector efficiency.
- Relevant variables:
 - neutrino-ice interaction volume $V_{
 m thrown}$
 - **>**

 - **>**

Introduction

- Need to quantify the detector efficiency.
- Relevant variables:
 - neutrino-ice interaction volume $V_{
 m thrown}$
 - number of neutrinos thrown $N_{
 m thrown}$

▶

Introduction

- Need to quantify the detector efficiency.
- Relevant variables:
 - neutrino-ice interaction volume $V_{
 m thrown}$
 - number of neutrinos thrown $N_{
 m thrown}$
 - number of neutrinos detected N_{det}

- Need to quantify the detector efficiency.
- Relevant variables:
 - neutrino-ice interaction volume $V_{
 m thrown}$
 - number of neutrinos thrown $N_{
 m thrown}$
 - number of neutrinos detected $N_{\rm det}$
 - sky coverage (all-sky $\Rightarrow \Omega = 4\pi$)

- Need to quantify the detector efficiency.
- Relevant variables:
 - neutrino-ice interaction volume $V_{
 m thrown}$
 - number of neutrinos thrown $N_{
 m thrown}$
 - number of neutrinos detected $N_{
 m det}$
 - sky coverage (all-sky $\Rightarrow \Omega = 4\pi$)

$$\left[V\Omega
ight]_{ ext{eff}} = rac{N_{ ext{det}}}{N_{ ext{thrown}}} imes V_{ ext{thrown}} imes 4\pi$$

- Need to quantify the detector efficiency.
- Relevant variables:
 - neutrino-ice interaction volume $V_{
 m thrown}$
 - number of neutrinos thrown $N_{
 m thrown}$
 - number of neutrinos detected $N_{
 m det}$
 - sky coverage (all-sky $\Rightarrow \Omega = 4\pi$)

$$\left[V\Omega
ight]_{
m eff} = rac{N_{
m det}}{N_{
m thrown}} imes V_{
m thrown} imes 4\pi$$
 "effecitve volume"

To convert an effective volume into an effective area:

$$\left[A\Omega
ight]_{ ext{eff}} = rac{\left[V\Omega
ight]_{ ext{eff}}}{\mathcal{L}_{ ext{int}}}$$

To convert an effective volume into an effective area:

$$\left[A\Omega\right]_{\mathrm{eff}} = \frac{\left[V\Omega\right]_{\mathrm{eff}}}{\mathcal{L}_{\mathrm{int}}} \longleftarrow \text{ interaction length}$$

To convert an effective volume into an effective area:

$$\left[A\Omega\right]_{\mathrm{eff}} = \frac{\left[V\Omega\right]_{\mathrm{eff}}}{\mathcal{L}_{\mathrm{int}}} \longleftarrow \text{ interaction length}$$

So,

$$\left[A\Omega
ight]_{ ext{eff}} = rac{N_{ ext{det}}}{N_{ ext{thrown}}} imes rac{4\pi V_{ ext{thrown}}}{\mathcal{L}_{ ext{int}}}$$

To convert an effective volume into an effective area:

$$\left[A\Omega\right]_{\mathrm{eff}} = \frac{\left[V\Omega\right]_{\mathrm{eff}}}{\mathcal{L}_{\mathrm{int}}} \longleftarrow \text{ interaction length}$$

So,

$$\left[A\Omega
ight]_{ ext{eff}} = rac{N_{ ext{det}}}{N_{ ext{thrown}}} imes rac{4\pi V_{ ext{thrown}}}{\mathcal{L}_{ ext{int}}}$$

 $N_{\rm det}$ is not an integer, more on this below.

Detected Number $N_{ m det}$

• Neutrinos are thrown in ice isotropically.

•

•

Detected Number $N_{ m det}$

- Neutrinos are thrown in ice isotropically.
- But high energy neutrinos do not penetrate all of Earth.

•

Detected Number $N_{\rm det}$

- Neutrinos are thrown in ice isotropically.
- But high energy neutrinos do not penetrate all of Earth.
 - \Rightarrow Some directions are less likely.

•

Detected Number $N_{ m det}$

- Neutrinos are thrown in ice isotropically.
- But high energy neutrinos do not penetrate all of Earth.
 - \Rightarrow Some directions are less likely.
- Therefore, each passed event is weighted to reflect the reality.

Detected Number $N_{ m det}$

- Neutrinos are thrown in ice isotropically.
- But high energy neutrinos do not penetrate all of Earth.
 - \Rightarrow Some directions are less likely.
- Therefore, each passed event is weighted to reflect the reality.
- In practice, then, $N_{\rm det}$ is an array of floats.