

Issued to

The Nest Network S.L.

For

eNEST Bracelet

Model Name:

NE201

Trade Name:

eNEST Brace

Brand Name:

Nestwork

FCC ID:

2ABF8-NE201

Standard:

47 CFR Part 15 Subpart C 2013-10-23 to 2013-11-19

Test date:

2014-2-10

by

Shenzhen Morlab Communications Technology Co., Ltd.

FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn-District,

ShenZhen, GuangDong Province P.R. China 518101

Tested by

Nie own

Nie Quan (Test Engineer)

Date 2014. 2.10

Approve

Certification

(Chief Engineer

Date

Reviewed by

Peng Huarui (Dept. Manager)

Date 7

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it. or a certified copy there of prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his customer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate

Web site: http://www.morlab.cn/

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525

TABLE OF CONTENTS

<u>1. (</u>	SENERAL INFO	DRMATION	3
1.1.	EUT DESCRIPT	ΓΙΟΝ	3
1.2.	TEST STANDAR	RDS AND RESULTS	4
1.3.	FACILITIES AND	ACCREDITATIONS	5
			5
1.3.2	. TEST ENVIRO	NMENT CONDITIONS	5
<u>2.</u> 4	7 CFR PART 1	5C REQUIREMENTS	<u>6</u>
2.1.	ANTENNA REQI	IIREMENT	6
	-		6
			6
			6
	_		6
			6
2.2.1			6
2.2.2			7
2.3.	BAND EDGE	•••••	9
2.3.1	. REQUIREMEN	IT	9
2.3.2	. TEST DESCR	IPTION	9
2.3.3	. TEST PROCE	DURE	10
2.3.4	. TEST RESULT	Γ	10
2.4.	CONDUCTED E	MISSION	13
2.4.1	. REQUIREMEN	۱T	13
2.4.2	. Test Descr	IPTION	13
2.4.3	. TEST RESULT	Г	14
2.5.	FIELD STRENGT	тн	15
2.5.1	. REQUIREMEN	۱T	15
2.5.2	. TEST DESCR	IPTION	16
2.5.3	. TEST PROCE	DURE	17
2.5.4	. TEST RESULT	Г	18
r			
		С	hange History
	Issue	Date	Reason for change
	1.0	February 10, 2014	First edition

Email: info sz@morlab.cn

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525

1. GENERAL INFORMATION

1.1. EUT Description

EUT Type.....: eNEST Bracelet

Serial No. (n.a, marked #1 by test site)

Hardware Version.....: V4.0 Software Version....: V1.5.2

Applicant...... The Nest Network S.L.

Plaza Republica Argentina 3 Madrid Spain

Manufacturer: The Nest Network S.L.

Plaza Republica Argentina 3 Madrid Spain

Frequency Range.....: The frequency range used is 2427MHz~2431MHz

Channel Number: 3(2427MHz,2429MHz,2431MHz)

Modulation Type.....: GFSK

Antenna Type.....: Integral Antenna

Antenna Gain.....: 0dBi

Note:

- 1. The EUT is a eNEST Bracelet, it contains 2.4G Module operating at 2.4GHz ISM band, they are all tested in this report.
- 2. For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: info sz@morlab.cn

1.2. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices
	(10-1-12 Edition)	

Test detailed items/section required by FCC rules and results are as below:

No.	Section in CFR 47	Description	Result
1	15.203	Antenna Requirement	<u>PASS</u>
2	15.215	20dB Bandwidth	<u>N/A</u>
3	15.249(d)	Band Edge	PASS
4	15.207	Conducted Emission	<u>N.A</u>
5	15.209	Radiated Emission	<u>PASS</u>
	15.249(a)	Field Strength	

NOTE:

All measurements contained in this report were conducted with ANSI C63.4-2009, American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Equipment in the range of 9 kHz to 40GHz for FCC ID Certification,.

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: info sz@morlab.cn

1.3. Facilities and Accreditations

1.3.1. Facilities

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.1, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10 2009, ANSI C63.4 2009 and CISPR Publication 22; the FCC registration number is 695796.

1.3.2. Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

Shenzhen Morlab Communications Technology Co., Ltd Phone: +86 (0) 755 36698555

Web site: http://www.morlab.cn/
Fax: +86 (0) 755 36698525
Email: info-sz@morlab.cn
Page 5 of 25

2. 47 CFR PART 15C REQUIREMENTS

2.1. Antenna requirement

2.1.1. Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2. Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2. 20dBandwidth

2.2.1. Requirement

None; for reporting purpose only.

2.2.2. Test Description

A. Test Setup:

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Spectrum analyzer	Agilent	E4407B	MY45101810	2013.05.12	2014.05.11

2.2.1. Test Procedure

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth

RBW =100KHz

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/

Email: info sz@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

. ,

VBW = 300kHz

Sweep = auto

Detector function = peak

Trace = max hold

2.2.2. Test Result

A. Test Verdict:

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
L	2427	1.478	Plot A
M	2429	1.376	Plot B
Н	2431	1.514	Plot C

B. Test Plots:

(Plot A: Channel = 2427 @ GFSK)

Web site: http://www.morlab.cn/

Email: info_sz@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 7 of 25

(Plot B: Channel = 2429 @ GFSK)

(Plot C: Channel = 2431 @ GFSK)

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: info_sz@morlab.cn

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525

2.3. Band Edge

2.3.1. Requirement

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

2.3.2. Test Description

A. Test Setup:

The RF Module of the EUT is powered by the Battery. The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the RF Module is activated and controlled by the software.

For the Test Antenna:

Horn Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2013.05.12	2014.05.11
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2012.05.12	2014.05.11
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2013.05.12	2014.05.11

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/

Email: info sz@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 9 of 25

2.3.3. Test Procedure

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 KHz for f < 1GHz

VBW = 3 MHz for peak and 10Hz for average

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize.

2.3.4. Test Result

The lowest and highest channels are tested to verify the band edge emissions.

The measurement results are obtained as below:

 $E \left[dB\mu V/m \right] = U_R + A_T + A_{Factor} \left[dB \right]; A_T = L_{Cable \ loss} \left[dB \right] - G_{preamp} \left[dB \right]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

Note: Test were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

A. Test Verdict:

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading UR (dBuV)	AT (dB)	AFactor (dB@3m)	Max. Emission E (dBµV/m)	Limit (dBµV/m)	Verdict
L	2384.19	PK	52.54	-30.93	32.56	54.17	74	Pass
L	2384.49	AV	39.83	-30.93	32.56	41.46	54	Pass
Н	2484.94	PK	54.17	-29.05	32.50	57.62	74	Pass
Н	2491.94	AV	42.42	-29.05	32.50	45.87	54	Pass

B. Test Plots:

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/

Fax: +86 (0) 755 36698525

Phone: +86 (0) 755 36698555

Email: info sz@morlab.cn Page 10 of 25

(Plot A1: Channel L PEAK @ GFSK)

(Plot A2:Channel = L AVERAGE @ GFSK)

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/

(Plot B1: Channel H PEAK @ GFSK)

(Plot B2: Channel = H AVERAGE @ GFSK)

2.4. Conducted Emission

2.4.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/50 Ω line impedance stabilization network (LISN).

Fraguency range (MHz)	Conducted Limit (dBµV)			
Frequency range (MHz)	Quai-peak	Average		
0.15 - 0.50	66 to 56	56 to 46		
0.50 - 5 56		46		
0.50 - 30 60		50		

NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

2.4.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.4:2009

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/

Email: info sz@morlab.cn

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2013.05.12	2014.05.11
LISN	Schwarzbeck	NSLK 8127	812744	2013.05.12	2014.05.11
Service Supplier	R&S	CMU200	100448	2013.05.12	2014.05.11
Pulse Limiter (20dB)	Schwarzbeck	VTSD 9561-D	9391	2013.05.12	2014.05.11

2.4.3. Test Result

This test item is not applicable, since the EUT powered by button battery.

Web site: http://www.morlab.cn/
Email: info-sz@morlab.cn

Page 14 of 25

2.5. Field strength

2.5.1. Requirement

According to section 15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Frequency (MHz)	Field strength of Fundamental	Field strength of Harmonics	Distance (m)
902~928	50mV/m (94dBμV/m)	500μV/m (54dBμV/m)	3
2400~2483.5	50mV/m (94dBµV/m)	500μV/m (54dBμV/m)	3
5725~5875	50mV/m (94dBμV/m)	500μV/m (54dBμV/m)	3

According to section 15.249(d), Emission Radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50dB below the level of the fundamental or to the general radiated emission limits in Section 15.209:

Frequency	Field Strength		Field Strength Limitatio	Field Strength Limitation at 3m Measurement Dist		
range (MHz)	μV/m	Dist	(uV/m)	(dBuV/m)		
0.009 - 0.490	2400/F(KHz)	300m	10000* 2400/F(KHz)	20log 2400/F(KHz) + 80		
0.490 - 1.705	2400/F(KHz)	30m	100* 2400/F(KHz)	20log 2400/F(KHz) + 40		
1.705 - 30.00	30	30m	100*30	20log 30 + 40		
30.0 - 88.0	100	3m	100	20log 100		
88.0 - 216.0	150	3m	150	20log 150		
216.0 - 960.0	200	3m	200	20log 200		
Above 960.0	500	3m	500	20log 500		

According to section 15.249(e), for frequencies above 1000MHz, the above field strength limits are based on average limits. The peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20dB under any condition of modulation.

Note:

- 1) The tighter limit shall apply at the boundary between two frequency range.
- 2) Limitation expressed in dBuV/m is calculated by 20log Emission Level(uV/m).
- 3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of Ld1 = Ld2 * $(d2/d1)^2$.

Example: F.S Limit at 30m distance is 30uV/m, then F.S Limitation at 3m distance is adjusted as Ld1 = L1 = $30uV/m * (10)^2 = 100 * 30uV/m$

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: info sz@morlab.cn

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525

Page 15 of 25

2.5.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: info sz@morlab.cn

3) For radiated emissions above 1GHz

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	R&S	CMU200	100448	2013.05.12	2014.05.11
Receiver	Agilent	E7405A	US44210471	2013.05.12	2014.05.11
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2012.05.12	2014.05.11
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2013.05.12	2014.05.11
Test Antenna - Horn	Schwarzbeck	BBHA 9120C	9120C-384	2013.05.12	2014.05.11
Test Antenna - Horn	R&S	HL050S7	71688	2013.05.12	2014.05.11
Test Antenna - Loop	Schwarzbeck	FMZB 1519	1519-022	2013.05.12	2014.05.11

2.5.3. Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/

Email: info sz@morlab.cn

Phone: +86 (0) 755 36698555 Fax: +86 (0) 755 36698525

Page 17 of 25

2.5.4. Test Result

According to ANSI C63.4 selection 4.2.2, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading G_{preamp}: Preamplifier Gain A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor AT and A_{Factor} were built in test software.

Note: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

A. Test Plots for Field strength of Fundamental:

Frequency	Detector	Receiver Reading	Antenna	AT	AFactor	Max. Emission	Limit	Verdict
(MHz)		UR	polarization	(dB)	(dB@3m)	E	(dBµV/m)	
	PK/ AV	(dBuV)				(dBµV/m)		
2427	PK	78.46	Н	-30.93	32.56	80.09	114	Pass
		78.60	V	-30.93	32.56	80.23		Pass
	AV	65.66	Н	-30.93	32.56	67.29	94	Pass
		65.60	V	-30.93	32.56	67.23		Pass

Frequency (MHz)	Detector	Receiver Reading UR	Antenna polarization	AT (dB)	AFactor (dB@3m)	Max. Emission E	Limit (dBµV/m)	Verdict
(PK/ AV	(dBuV)	P	(3-2)	(== 0 =)	(dBµV/m)	(р)	
2429	PK	80.63	Н	-30.93	32.56	82.26	114	Pass
		80.48	V	-30.93	32.56	82.11		Pass
	AV	66.71	Н	-30.93	32.56	68.34	94	Pass
		67.02	V	-30.93	32.56	68.65		Pass

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/

Email: info sz@morlab.cn

Phone: +86 (0) 755 36698555

Frequency	Detector	Receiver Reading	Antenna	AT	AFactor	Max. Emission E	Limit	Verdict
(MHz)	PK/ AV	UR (dBuV)	polarization	(dB)	(dB@3m)	(dBµV/m)	(dBµV/m)	
2431	PK	75.54	Н	-30.93	32.56	77.17	114	Pass
		75.59	V	-30.93	32.56	77.22		Pass
	AV	65.26	Н	-30.93	32.56	66.89	94	Pass
		65.54	V	-30.93	32.56	67.17		Pass

B. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel L

(Plot A.0: 9kHz to 30MHz)

Web site: http://www.morlab.cn/
Email: info sz@morlab.cn

(Plot A.1: 30MHz to 25GHz, Antenna Horizontal)

Web site: http://www.morlab.cn/

(Plot A.2: 30MHz to 25GHz, Antenna Vertical)

Web site: http://www.morlab.cn/

Plots for Channel M

(Plot A.0: 9kHz to 30MHz)

(Plot A.1: 30MHz to 25GHz, Antenna Horizontal)

Shenzhen Morlab Communications Technology Co., Ltd

Web site: http://www.morlab.cn/
Email: info sz@morlab.cn

Phone: +86 (0) 755 36698555

Fax: +86 (0) 755 36698525

Page 22 of 25

(Plot A.2: 30MHz to 25GHz, Antenna Vertical)

Plots for Channel H

(Plot A.0: 9kHz to 30MHz)

Web site: http://www.morlab.cn/

(Plot A.1: 30MHz to 25GHz, Antenna Horizontal)

Web site: http://www.morlab.cn/

(Plot A.2: 30MHz to 25GHz, Antenna Vertical)

Web site: http://www.morlab.cn/
Email: info sz@morlab.cn

^{**} END OF REPORT **