

Содержание

- Введение
- Характеристики
- Архитектура МАХ ІІ
- Возможности MAXII
- Конкуренция
- Новое семейство MAX V

MAX II: Самая дешевая CPLD

- Новая архитектура логики для CPLD
 - Вдвое дешевле
 - В 10 раз ниже потребление
 - В 2 раза выше производительность
 - В 4 раза выше емкость
- Энергонезависимы, быстрый выход на рабочий режим
- Поддерживает напряжения питания 3.3, 2.5 и 1.8В
- Время выхода на рабочий режим от 200 до 450 мкс после установления напряжения питания ядра

Революционная технология, расширяющая рынки

CPLD на основе таблиц перекодировки?

Требования к CPLD:

Быстрое включение
Низкая цена
Простота использования
Энергонезависимость
Одна микросхема

Требования к FPGA:

Высокая степень интеграции Высокая fмах Встроенное ОЗУ ФАПЧ Готовые ядра интеллектуальной собственности (IP)

Архитектура MAX II

Пользовательская Flash память

Семейство MAX II

Тип	Лог. элементов	Макро- ячеек (прибл.)	Макс. пользоват. выводов	Градации по быстро- действию	Наименьше е t _{pd} (нс)	Объем пользоват. Flash (бит)
EPM240	240	192	80	3, 4, 5	4.5	8,192
EPM570	570	440	160	3, 4, 5	5.5	8,192
EPM1270	1,270	980	212	3, 4, 5	6.0	8,192
EPM2210	2,210	1,700	272	3, 4, 5	6.5	8,192

Корпуса и число пользовательских выводов МАХ II

Тип	uFBGA 68 0.5мм 5 x 5	uFBGA 100 0.5мм 6 x 6	FBGA 100 1.0 мм 11 x 11	TQFР 100 0.5 мм 16 x 16	TQFP 144 0.5 мм 22 x 22	uFBGA 144 0.5 мм 7 х 7	uFBGA 256 0.5 мм 11 х 11	FBGA 256 1.0 мм 17 x 17	FBGA 324 1.0 мм 19 x 19
EPM240		80	80	80					
EPM570		76	76	76	116		160	160	
EPM1270					116		212	212	
EPM2210								204	272
EPM240Z	54	80							
EPM570Z		76				116	160		

Совместимы по выводам

Сравнение MAX и MAX II

Параметр	MAX	MAX II		
Тех. процесс	0.3мкм EEPROM	0.18мкм Flash		
Архитектура логики	Матрица И-ИЛИ	Табл. перекодировки (LUT)		
Логическая емкость	От 32 до 512 макроячеек	От 128 до 2210 экв. макроячеек (от 240 до 2,210 ЛЭ)		
Матрица соединений	Одноуровневая (глобальная)	Двухуровневая (строки R4 и столбцы C4)		
Пользовательская Flash память на кристалле	Нет	8 кбит		
Макс. польз. выводов	212	272		
Напряжение питания ядра	5.0B, 3.3B, 2.5B	3.3B/2.5B, 1.8B		
Напряжения питания ЭВВ	5.0B, 3.3B, 2.5B, 1.8B	3.3B, 2.5B, 1.8B, 1.5B		
Глобальных ТИ	2 в устройстве	4 в устройстве		
Разрешений выходов	От 6 до 10 в устройстве	1 на вывод		
Триггеры Шмитта	Нет	1 на вывод		

Архитектура MAX II

Логический блок MAX II

- 10 логических элементов
- Локальная матрица соединений
- Управляющие сигналы логического блока

LE4 LE5 LE6 LE7 30 входов в ЛБ LE8 10 линий обратной связи от ЛЭ

Цепи

цепи

переноса и

регистровые

Управляющие сигналы

Логический элемент МАХ II Нормальный режим

Погический элемент MAXII Режим динамической арифметики

Логика CSA

- Каждая ячейка рассчитывает выходные сумму и перенос для значений входного переноса 0 и 1
- Входные переносы от логического блока и от предыдущего логического элемента выбирают, какой результат используется

Сравнение 24-битных счетчиков

Межсоединения

- Имеются связи между всеми блоками устройства
- Горизонтальные соединения
 - DirectLink
 - R4
- Вертикальные соединения
 - Цепи переноса и регистровые цепи
 - C4

Ресурсы горизонтальных шин

Каждый блок имеет одинаковые возможности коммутации на проводники горизонтальной шины слева и справа

DirectLink

 Позволяет передавать сигналы в соседний блок в одной строке

DirectLink

- Быстрое соединение между блоками
 - Один логический элемент имеет быстрое соединение с 30 соседними ЛЭ
- Освобождает линии строк глобальной матрицы соединений

Быстрые межсоединения – ключ к быстродействию ПЛИС

Возможности МАХ II

Гибкость формирования питания ядра

- Входные напряжения питания ядра 3.3/2.5B и 1.8B
- В устройствах с питанием 3.3/2.5В имеется в встроенный регулятор, формирующий напряжение питания ядра 1.8B
- Есть версии ЕРМ240Z и ЕРМ570Z со сверхнизким статическим потреблением
- Быстродействие MAXIIZ ниже
 - Максимальная частота MAXII и MAXIIG -304МГц, MAXIIZ – 152МГц
 - Больше задержки по входу и выходу

Удобство использования схем с питанием 3.3В, потребление и производительность схем с питанием 1.8В

Энергопотребление MAXII

- Устройства со встроенным регулятором MAXII значительно проигрывают по статическому потреблению устройствам с заблокированным регулятором MAXIIG и MAXIIZ
- Типичное статическое потребление EPM240G составляет около 4мВт
- Типичное статическое потребление EPM240Z составляет около 60мкВт

Пользовательская Flash-память

Характеристики

- 8,192 бит в устройстве
- Параллельный, SPI и пользовательский интерфейсы
- Интерфейс реализуется автоматически в CAПР Quartus II

Назначение

- Хранение идентификационного номера
- Хранение загрузочной информации и конфигурации пользователя

Низкочастотный внутренний генератор

- Основное назначение формирование циклов программирования/стирания внутренней Flash-памяти
- Выход (f/4) с частотой от 4.6МГц до 7.4МГц может быть использован в массиве логики
 - ТИ для начального тактирования конечных автоматов
 - Синхронный ТИ интерфейса пользовательской Flash памяти

Программирование в системе в реальном масштабе времени

Обновление прошивки во время работы

- Сокращает время простоя системы при обновлении прошивки
- Опция мгновенного изменения или изменения после включения/выключения питания

Элемент ввода/вывода МАХ II

Возможности ЭВВ МАХ II

- Индивидуальное разрешение выхода (ОЕ) для каждого вывода
- Поддержка LVTTL, LVCMOS и PCI
- Новые и улучшенные возможности по контролю шумов
- Программируемый подтягивающий резистор
- Bus Hold
- Режим открытого коллектора
- Программируемые выводы земли
- Поддержка горячего включения

Стандарты ввода/вывода

- Интерфейс MultiVolt I/O совместимость с уровнями 3.3, 2.5, 1.8 и 1.5 вольтовой логики
- Поддержка требований 3.3В РСІ в двух старших устройствах

Контроль шумов в ЭВВ МАХ II

- Возможность включения триггера Шмитта на каждом выводе при питании выводов от 3.3В и 2.5В
 - Обеспечивает гистерезис и уменьшение чувствительности к шумам для медленно изменяющихся входов
 - Предотвращает возможность осцилляций входного буфера когда входное напряжение близко к пороговому
 - При использовании вносит дополнительную задержку по входу ~300ps

Контроль шумов в ЭВВ МАХ II

- Опция низкой скорости нарастания вносит большее влияние, чем в МАХ
 - Разница в скорости нарастания 5 раз
 - Влияет на оба фронта
 - Изменение длительности фронта влечет задержку формирования примерно на 8 нс для 3.3В LVTTL
- Программируемая мощность выхода
 - Две настройки для каждого стандарта I/O
 - Максимальная мощность выхода меньше чем в МАХ 7000AE
 - Предоставляет возможность контроля выбросов в сигналах на плате
 - Также изменяет скорость нарастания, в меньшей степени, но без внесения большой задержки формирования

Применение в 5В системах

- Входы MAX II не толерантны к 5В сигналам
 - Буфер, толерантный к уровню 5В, требует слишком много места на кристалле
 - Рассчитайте и используйте внешний последовательный резистор (R_2)
 - Включите ограничивающий диод PCI (PCI Clamp)
 - Доступен только в банке 3 устройств EPM1270 и EPM2210
 - Используйте внешний для ЕРМ240 и
 - При применении такого решения недопустимо подавать входные сигналы до подачи питания на ПЛИС!

Применение в 5В системах

Входы всех современных ПЛИС не толерантны к 5В сигналам

Наилучшим решением проблемы является применение специальных трансляторов, например, двунаправленных ключей Bus Switch

SN74CBDT3861 (Texas Instruments) SN74CBDT3384 (Texas Instruments)

Также см. IDT, Pericom и др.

Стоимость трансляции 8 бит составляет менее \$1

Емкость и цена CPLD

© 2007 Altera Corporation

Два недорогих семейства

© 2007 Altera Corporation

Цена определяется размером кристалла

Lattice ispXPLD5256

256 Макроячеек 141 Польз. вывод

Xilinx XC2C256

256 Макроячеек 184 Польз. вывода

Altera EPM1270

980 Экв. макроячеек 212 Польз. выводов

Процесс 0.18 мкм

Потребление MAX II

Потребление ниже на 90%

Потребление MAX II

Altera, Stratix, Cyclone, Arria, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

Новое семейство МАХ V

- Аналогичные характеристики, меньшая стоимость
- Добавлены устройства меньшего объема:
 - 40 ЛЭ
 - 80 ЛЭ
 - 160 ЛЭ
- Питание ядра 1.8В
- Устройства малого объема (до 570 ЛЭ) соответствуют MAXIIZ, большого объема (1270 и 2210 ЛЭ) - MAXIIG
- Поддержка стандартов 1.2В
- Эмуляция RSDS и LVDS

