GuangZhou U-tek Microelectronics Technology Co., Ltd.

数据手册 DATASHEET V1.1

UTouch_04B

广州优硕 4 键触摸 IC

GuangZhou U-tek Microelectronics Technology Co., Ltd.

一、概述

UTouch04B 是是一款使用电容式感应原理设计的触摸 IC, 其稳定的感应方式可以应用到各种不同电子类产品,面板介质可以是完全绝缘的材料, 专为取代传统的机械结构开关或者普通按键而设计。提供4个触摸输入引脚及4个直接输出引脚。

该 IC 采用 CMOS 工艺制造,结构简单,性能稳定。该 IC 通过引脚可配置成多种模式,可广泛应用于灯光控制、玩具、家用电器等产品。

二、特点

- 1、工作电压: 2.0V~5.5V
- 2、工作电流@VDD=3V 无负载时,低功耗模式下典型值小于 4.0uA
- 3、各触摸按键灵敏度可以由外部电容进行调节(0~50pF)
- 4、提供同步输出模式,保持输出模式,开漏输出,CMOS 高电平有效或低电平有效输出, 经由 TOG/AHLB/OD 引脚选择
- 5、上电后约有 0.5 Sec 的系统稳定时间,在此期间内不要触摸 Touch PAD,且触摸功能 无效
- 6、有自动校准功能, 当无按键被触摸时, 系统重新校准周期约为 4.0 Sec

三、应用范围:

- 1、家用电器
- 2、安防产品
- 3、数码产品
- 4、消费类电子产品
- 5、LED 照明
- 6、玩具

四、封装示意图

UTouch04B采用 SOP16 封装, 原理封装示意图如下所示

图 1 封装示意图

GuangZhou U-tek Microelectronics Technology Co., Ltd.

五、引脚描述

表 1 引脚功能描述

引脚编号	引脚名称	I/0 类型	引脚功能	
1	TCH1	I	触摸输入引脚	
2	TCH2	I	触摸输入引脚	
3	ТСН3	I	触摸输入引脚	
4	TCH4	I	触摸输入引脚	
5	AHLB	I/PL	输出高/低有效电平选择,缺省值:0	
6	VDD	Р	正电源	
7	TOG	I/PL	保持/同步模式选择,缺省值:0	
8	LPMB	I/PL	低功耗/快速模式选择,缺省值:0	
9	MOTO	I/PH	最长输出时间选择,缺省值:1	
10	GND	Р	负电源	
11	OD	I/PH	开漏/推挽 输出选择,缺省值:1	
12	SM	I/PH	单键/多键输出选择,缺省值:1	
13	OUT4	0/0D	输出引脚	
14	OUT3	0/0D	输出引脚	
15	OUT2	0/0D	输出引脚	
16	OUT1	0/0D	输出引脚	

注: 引脚类型, I => CMOS 输入, I/PH => 带上拉电阻的 CMOS 输入, I/PL =>带下拉电阻的 CMOS 输入; 0/OD=>CMOS/开漏输出, P =>电源/地。

六、功能描述

6.1 灵敏度调节

PCB 板上感应焊盘尺寸大小及走线会直接影响灵敏度,因此灵敏度调节需要根据实际应用的 PCB 应进行调节,UTouch04B 提供一些外部调节灵敏度的方法。

6.1.1 改变感应焊盘尺寸大小

若其他条件固定不变,使用一个较大的感应焊盘将会增大其灵敏度,反之灵敏度将下降,但是感应焊盘的尺寸大小也必须是在其有效范围值内。

6.1.2 改变面板厚度

若其他条件固定不变,使用一个较薄的面板也会将灵敏度提高,反之灵敏度则下降,但是面板的厚度必须低于其最大值。

6.1.3 通过调节外接电容 CS1~CS4 (参见图 2)

若其他条件固定不变,可以根据各键的实际情况通过调节 CS 电容值使其达到最佳的灵敏度,同时以使各键的灵敏度达到一致。当 CS 电容不接时其灵敏度为最高。CS1 $^{\circ}$ CS4 的容值越大其灵敏度越低,CS 可调节范围为: $0 \le \text{CS1}^{\circ}\text{CS4} \le 50 \text{pF}$ 。

GuangZhou U-tek Microelectronics Technology Co., Ltd.

图 2 调节外接电容原理图

6.2 输出模式选择(由 TOG, OD, AHLB 引脚选择)

UTouch04B 其输出引脚(0UT1~0UT4)可由 AHLB 引脚来设定其输出高电平或低电平有效,同时也可由 TOG 引脚来设定为同步/保持模式或通过 OD 引脚来设定为开漏输出模式 UTouch04B 可通过外部配置引脚设置为多种模式。外部配置引脚悬空时,配置位自动设置为默认值(Default)。

引脚名称	选项	功能描述	
TOG	=1	保持模式	
100	=0(Default)	同步模式	
AHLB	=1	输出低电平有效	
ANLD	=0(Default)	输出高电平有效	
OD	=1(Default)	CMOS 输出	
UD	=0	开漏输出	

表 2 功能描述表

6.2.1 保持/同步模式(TOG)

当 PIN 脚 TOG 悬空时,默认下拉为低电平,置为同步模式。

设置 TOG =0,则选择同步模式,此时 OUT1⁴ 输出状态与触摸响应同步;只有检测到触摸时有输出响应;当触摸消失时,OUT1⁴ 输出状态恢复为初始状态,如下图所示。注: TCH、OUT 分别为触摸输入引脚及相应 OUT1⁴ 输出 IO 的电平变化。

图 3 同步模式示意图

设置 TOG =1,则选择保持模式,此时 OUT1²4 输出状态受在触摸响应控制下保持,当触摸消失后仍保持为响应状态;再次触摸并响应后恢复为初始状态,如下图所示。

GuangZhou U-tek Microelectronics Technology Co., Ltd.

图 4 异步模式示意图

注: Td1 为 TOUCH 响应延迟时间, Td2 为 TOUCH 撤销延迟。

6.2.2 输出电平选择 (AHLB)

UTouch04B 可设置多种输出模式,当 PIN 脚(AHLB)悬空时,默认下拉为低电平,置为高电平有效模式。

表 3 输出模式菜单

AHLB	OUTO~3			
0 (Default)	触摸响应后输出高电平			
1	触摸响应后输出低电平			

6.2.3 有效键输出选择 (SM)

UTouch04B 可通过 SM 引脚来选择单键和多键输出模式。

表 4 有效键输出模式菜单

SM	功能说明		
0	单键模式		
1 (Default)	多键模式		

多键模式:TCH1~TCH4 可同时输出被触摸到的二个或二个以上的键。

单键模式: TCH1~TCH4 只能有一个键输出, 当某一个键被检测到并输出时, 另外 3 个键触 摸将无效。

6.2.3 有效键输出时间设定 (MOTO)

因环境等其他因素碰撞而引起的误触发,会使其一直工作,为了防止此现象发生,UTouch04B 提供了有效键最长时间输出设定功能,当触摸时间超过所设定时间时,系统会返回上电初始 化状态,停止输出直到下次触摸事件发生

表 5 有效键输出时间设定

MOTO	功能说明	
0	最长输出时间为(16)s	
1 (Default)	无穷大(禁止输出时间设定)	

6.2.4 快速模式和低功耗模式设定

UTouch04B 提供快速模式和低功耗模式设定功能,由 LMPB 决定。在快速模式时,响应速度较快,但耗电稍大。低功耗模式,功耗较低,但首次触摸响应时间会慢些,此后切换到快速模式,响应时间将与快速模式一样。所有键释放超过 8s,系统将进入低功耗模式。

表 6 低功耗/快速模式设定

LMPB	功能说明		
1	快速模式		
0 (Default)	低功耗模式		

GuangZhou U-tek Microelectronics Technology Co., Ltd.

七、绝对最大值

表 7 工作条件规格表

项目	符号	范围	单位	
工作电压	VDD	-0.3 [~] 5.5	V	
输入/输出电压	$V_{\rm i}/V_{\rm o}$	GND-0.5~VDD+0.5	V	
工作温度	TOPR	0 [~] 70	${\mathbb C}$	
储藏温度 TSTG −20~125 °C				
所列电压均以 GND 为参考				

八、电气参数

表 8 电气参数表

K O TO VEXA						
参数	符号	条件	最小值	典型值	最大值	单位
工作电压	VDD	T0PR=−20~70°C	2.0		5. 5	V
工作电流	${ m I}_{ m DD}$	10FK20 70 C	1.5	10.0	15.0	uA
输入低电压范围	$V_{\scriptscriptstyle UL}$		0		0.2	VDD
输入高电压范围	$V_{\scriptscriptstyle UL}$		0.8		1.0	VDD
高电平输出电流(OUT)	${ m I}_{ m OL}$	$V_{0L}=0.7V$		9. 5	_	mA
若无特别说明, VDD 为 3. 0V, 环境温度为 25℃, 芯片输出无负载						

九、应用电路图

9.1 参考电路

图 5 参考电路图

以下说明可供应用时参考:

1、CS1^{CS4} 指调节灵敏度的电容,电容值大小 0pF~50pF,其值越小,则灵敏度越高。灵敏度的选择需要根据 PCB 的实际应用进行调节。

GuangZhou U-tek Microelectronics Technology Co., Ltd.

- 2、VDD 与 GND 间需并联滤波电容 C1 以消除噪声,建议值 10uF 或更大。供电电源必须稳定,如果电源 电压漂移或者快速变化,可能引起灵敏度漂移或者检测错误。
- 3、TOUCH PAD 的形状与面积、以及与 TCH 引脚间导线长度,均会对触摸感应灵敏度产生影响。
- 4、从 TOUCH PAD 到 IC 触摸输入引脚不要与其他快速跳变的信号线并行或者与其他线交叉。TOUCH PAD 需用 GROUND 保护,请参考图 6。

图 6 TOUCH PAD 参考画法

- 5、灵敏度调节电容(CS1^{CS4})必须是使用温度变化其稳定性佳的电容,比如 X7R,NPO。对于触摸应用,推荐使用 NP 材质电容,以减少因温度变化对灵敏度造成的影响。
- 6、触摸电极和触摸输入脚之间串联电阻,可提高触摸的抗干扰能力。如果使用环境干扰不 大,电阻可以不接。
- 7、以上功能选项脚若选择默认值,建议接到固定电平,如需选择输出同步模式,TOG 脚建议接到 GND。

9.2 应用电路图

图 7 应用电路图

GuangZhou U-tek Microelectronics Technology Co., Ltd.

十、穿透力应用说明

10.1 穿透力与铺地、感应电极大小对应关系

感应电极面积	PCB 顶层不铺地	PCB 顶层铺实铜	
**************************************	顶层不铺地	底层 35%铺地	
6×6mm	8mm	1.7mm	
7×7mm	10mm	2.8mm	
8×8mm	14mm	2.8mm	
10×10mm	16mm	4.9mm	
12×12mm	18mm	6mm	
15×15mm	22mm	8mm	

说明:

- 1、此表仅供参考,具体焊盘大小应根据实际模具外壳厚度来调整。
- 2、触摸焊盘面积越大,可穿透介质材料越厚。
- 3、PCB 铺地比例越小,PCB 点触焊盘与地之间的寄生电容越小,人体触摸后新生的手指电容相对 PCB 寄生电容变化越大,触摸灵敏度越高,可穿透介质越厚。
- 4、PCB 铺地比例越小,越易受到外界干扰。
- 5、建议实际应用时兼顾灵敏度和抗干扰设计 PCB 的铺地形式。如对穿透介质厚度要求不高,建议增加铺地比例以提高抗干扰性能。

10.2 穿透力与触摸引脚并联电容对应关系

	— <i>></i> •>••
电容值 (pF)	亚克力材料穿透力 (mm)
未接	4.9
1	4.9
5	3
10	2
20	1
30	1

触摸引脚并联电容到地,测试条件:感应电极(直径10mm),PCB 顶层铺实铜,PCB 底层35%铺地

说明:此表仅供参考,并联电容越小,可穿透介质材料越厚。

GuangZhou U-tek Microelectronics Technology Co., Ltd.

十一、封装信息

封装名称: SOP16 (150mil) 单位: mm

Ch.a.l	Dimensions In Millimeters		Dimensions In Inches	
Symbol	Min	Max	Min	Max
A	1. 350	1. 750	0. 053	0.069
A1	0.100	0. 250	0. 004	0.010
A2	1. 350	1. 550	0. 053	0.061
b	0. 330	0. 510	0. 013	0.020
С	0. 170	0. 250	0. 007	0.010
D	9. 800	10. 200	0. 386	0. 402
E	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270 (BSC)		0.050	(BSC)
L	0. 400	1. 270	0. 016	0.050
8	0°	8°	0°	8°

注意:

- 1、以上规格如有更新,恕不另行通知。请在使用前更新该芯片规格书至最新版本。
- 2、对于错误或不恰当操作所导致的后果,我们将不承担责任。