#### 실습 자료 안내



- 15만여개 Inorganic 물질에 대한 DFT 계산 정보를 포함하고 있는 Materials Project 데이터 베이스 활용
- 물질의 전자 상태를 나타내는 값인 Bandgap 예측하는 모델 생성

- 1. Colab 접속 (<a href="https://colab.google/">https://colab.google/</a>)
- 2. 파일 → 노트 열기 → GitHub → URL 검색





URL: https://github.com/Juo-kim/KSME-Al-winter.git





# KSME-Al-winter

Juo Kim

CS-AI Lab
School of Mechanical Engineering
Soongsil University

Contact: rlawndh14@gmail.com





#### **Bandgap?**

- Energy gap : 전자가 존재하고 있는 가장 높은 에너지 레벨 (Valence Band) 부터 전자가 존재하지 않는 가장 낮은 에너지레벨 (Conduction Band) 사이의 에너지 준위
- 물질이 외부에서 충분한 에너지를 공급받게 된다면, Valence band에 위치한 전자가 Conduction Band로 뛰어넘는 것이 가능함
- Bandgap의 크기에 따라 물질의 전기적 성질을 확인할 수 있음
- Metal = 0 eV, 0 eV < Semiconductor < 4 eV, Insulator ≥ 4 eV</li>
- 전기적 성질을 알아보기 위해서 매우 중요하지만, Bandgap 계산을 위해 필요한 계산적, 실험적 cost가 큼







http://solarcellcentral.com/junction\_page.html





#### **Materials Project**

- Open source Inorganic database 중 하나
- 154,718개의 Inorganic 물질에 대한 DFT 계산 기반의 물성 포함
- Bandgap, Energy above hull, Space group number,
   Crystal structure 등 많은 계산 결과
- → <u>Materials Project database로 bandgap을 예측할 수</u> <u>있는 regression model을 만드는 것이 실습의 목표</u>



#### The Materials Project

Harnessing the power of supercomputing and state-of-the-art methods, the Materials Project provides open web-based access to computed information on known and predicted materials as well as powerful analysis tools to inspire and design novel materials.

#### The Materials Project by the numbers MATERIALS REGISTERED USERS DATABASE ENTRIES 154,718 400.000+ Charge Densities === EXAFS Tensor Properties (Elastic, Dielectric, Piezoelectric) Density of States CITATIONS INTERCALATION ELECTRODES Crystal Structures (SCAN/R2SCAN) 4,351 19,000+ MOLECULES CPU HOURS/YEAR 172,874 100 million



#### **Chemical Descriptor**



| Meaning of chemical descriptors (CDs) | Number of attributes |            | Attributes                                                                                                                                                                                                                                                                              |
|---------------------------------------|----------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Stoichiometric attributes             | 6                    |            | Ncomp, Comp_L2Norm, Comp_L3Norm, Comp_L5Norm, Comp_L7Norm, Comp_L10Norm                                                                                                                                                                                                                 |
| Elemental-property-based attributes   | 132                  | Mean (22)  | Atomic Number, MendeleevNumber, AtomicWeight, MeltingT,<br>Column, Row, CovalentRadius, Electronegativity,<br>NsValence, NpValence, NdValence, NfValence, NValance,<br>NsUnfilled, NpUnfilled, NdUnfilled, NfUnfilled, NUnfilled,<br>GSvolume_pa, GSbandgap, GSmagmom, SpaceGroupNumber |
|                                       |                      | Range (22) |                                                                                                                                                                                                                                                                                         |
|                                       |                      | Dev (22)   |                                                                                                                                                                                                                                                                                         |
|                                       |                      | Max (22)   |                                                                                                                                                                                                                                                                                         |
|                                       |                      | Min (22)   |                                                                                                                                                                                                                                                                                         |
|                                       |                      | Most (22)  |                                                                                                                                                                                                                                                                                         |
| Valance orbital occupation attributes | 4                    |            | frac_sValence, frac_pValence, frac_dValence, frac_fValence                                                                                                                                                                                                                              |
| Ionic compound attributes             | 3                    |            | CanFormlonic, MaxlonicChar, MeanlonicChar                                                                                                                                                                                                                                               |



### Data distribution







## Random vs Stratified sampling





■ Overall ■ Stratified ■ Random







Thank you



