Break-Ground:

We can figure it out

Two young mathematicians discuss the derivative of inverse functions.

Check out this dialogue between two calculus students (based on a true story):

Devyn: Riley, I have a calculus question.

Riley: Hit me with it.

Devyn: What's the derivative of arctan(x)?

Riley: Hmmm... we haven't talked about that yet in our class.

Devyn: I know! But maybe we can figure it out.

Riley: Well

$$\arctan(x) = \tan^{-1}(x)$$

and now we can use the chain rule to take its derivative

$$\frac{d}{dx} \tan^{-1}(x) = -\tan^{-2}(x) \sec^{2}(x)$$

$$= -\frac{\cos^{2} x}{\sin^{2} x} \cdot \frac{1}{\cos^{2} x}$$

$$= \frac{-1}{\sin^{2} x}$$

$$= -\csc^{2} x$$

Devyn: But is this right?

Let's see if we can figure out if Devyn and Riley are correct. Start by looking at a plot of $\theta = \arctan(x)$:

Learning outcomes: Recall the meaning and properties of inverse trigonometric functions. Understand how the derivative of an inverse function relates to the original derivative.

Problem 1 Let $f(x) = \arctan(x)$. Use the plot above to determine the behavior of the derivative of f as x gets very large. If the limit does not exist, enter "DNE".

$$\lim_{x \to \infty} f'(x) = \boxed{0}$$

On the other hand,

Problem 2 Compute the limit of $-\csc^2(x)$ as x goes to infinity. If the limit does not exist, enter "DNE".

$$\lim_{x \to \infty} (-\csc^2(x)) = \boxed{DNE}$$

Problem 3 In light of the problems above, is it possible that

$$\frac{d}{dx}\arctan(x) = -\csc^2(x)?$$

Multiple Choice:

- (a) yes
- (b) no√

Problem 4 When our friends wrote $arctan(x) = tan^{-1}(x)$, what do they think the "-1" represents? Are they correct?

Free Response: Riley thinks that we can use the power rule on the -1, which tells us that the students are using -1 as an exponent for the tangent function. However, in the case of inverse functions such as $\arctan(x)$, the -1 is not an exponent.