

Algorithms of Numerical Linear Algebra Assignment 4

Exercise 1 (Uniqueness of Cholesky Factorization)

7P.

In this exercise we will prove Theorem 23.1. from [1], i.e., that the Cholesky factorization is unique. We will do this in three steps:

- (a) Let $A, B \in \mathbb{C}^{m \times m}$ be upper triangular. Prove that C = AB is also upper triangular with diagonal entries $c_{ii} = a_{ii}b_{ii}$ for i = 1, ..., m.
- (b) Let $A \in \mathbb{C}^{m \times m}$ be upper triangular and nonsingular with inverse $B = A^{-1}$. Prove that B is also upper triangular with diagonal entries $b_{ii} = 1/a_{ii}$ for i = 1, ..., m. Hint: Use the Schur complement of the upper left submatrix and proceed recursively.
- (c) Assume that for every Hermitian and positive definite matrix $A \in \mathbb{C}^{m \times m}$, there exists a Cholesky factorization $A = U^*U$ with upper triangular matrix U. Prove that this factorization is unique when demanding $u_{jj} > 0$ for all j.

Note: The fact that the algorithm presented in [1] yields a unique solution does not necessarily mean that the factorization is unique. There might be another algorithm to compute a different Cholesky factorization.

Exercise 2 (Uniqueness of QR Factorization)

3P.

Let $A \in \mathbb{C}^{m \times m}$ be nonsingular. Assume that there exists a QR factorization A = QR where Q is unitary and R is upper triangular. Prove that this factorization is unique when demanding $r_{jj} > 0$ for all j.

Note: This means that both R and Q are uniquely defined.

Hint: You may use the result from the above exercise.

Exercise 3 (LU decomposition of Banded Matrices)

6P.

Prove the following proposition: Let $A \in \mathbb{C}^{m \times m}$ be a non-singular banded matrix with bandwidth 2p+1, i.e., $a_{ij}=0$ for |i-j|>p. Furthermore, let A=LU be a LU-factorization without pivoting. Then, in addition to being triangular, L and U also have bandwidth 2p+1.

Hint: Show that the statement holds for the first row of U and use induction.

For each of the following statements, prove that it is true or give an example to show it is false. Throughout, $A \in \mathbb{C}^{m \times m}$ unless otherwise indicated, and "ew" stands for eigenvalue.

- (a) If A is real and λ is an ew of A, then so is $-\lambda$.
- (b) If λ is an ew of A, then $\bar{\lambda}$ is an ew of A^* .
- (c) If λ is an ew of A and A is nonsingular, then λ^{-1} is an ew of A^{-1} .
- (d) If A is Hermitian and λ is an ew of A, then $|\lambda|$ is a singular value of A.
- (e) If all the ew's of A are zero, then A = 0.
- (f) If λ is an ew of A, then $(\lambda \mu)$ is an ew of $(A \mu I)$.
- (g) If A is diagonalizable and all its ew's are equal, then A is diagonal.
- (h) The absolute value of the determinant of A is the product of it's singular values, i.e. $|\det A|=\sigma_1\sigma_2...\sigma_m$

References

[1] L.N. Trefethen and D. Bau. *Numerical Linear Algebra*. Society for Industrial and Applied Mathematics, 1997.