

Математический анализ-3 семестр

Часть II. Теория функции комплексного переменного

Лекция 9

Тема 1. Комплексные числа и действия над ними

- 1.1. Алгебраическая форма комплексного числа
- 1.2. Геометрическое представление комплексного числа
- 1.3. Действия над комплексными числами
- 1.4. Тригонометрическая форма комплексного числа
- 1.5. Действия над комплексными числами, заданными в тригонометрической форме.
- 1.6. Показательная форма записи комплексного числа
- 1.7. Изображение множеств на комплексной плоскости

1.1. Алгебраическая форма комплексного числа

Определение 1. Комплексным числом называется выражение вида z = x + iy, где x и y — действительные числа, i — мнимая единица, определяемая условием $i^2 = -1$.

Числа x и y называются соответственно действительной и мнимой частями комплексного числа z и обозначаются x = Rez, y = Imz.

Такое представление комплексного числа z называется алгебраической формой комплексного числа.

Комплексное число $\overline{z} = x - iy$ называется *сопряженным* комплексному числу z = x + iy.

Пример 1. 1)
$$z = 2 + i$$
, $\bar{z} = 2 - i$, 2) $z = -5 - 3i$, $\bar{z} = -5 + 3i$

Комплексные числа $\mathbf{z_1} = x_1 + i y_1$ и $\mathbf{z_2} = x_2 + i y_2$ считаются равными тогда и только тогда, когда $x_1 = x_2$, $y_1 = y_2$.

Пример 2.

Решить уравнение (5 - i)x + (3 + 2i)y = 1 + 5i.

Выделим в левой части уравнения действительную и мнимую части:

$$(5x + 3y) + (-x + 2y)i = 1 + 5i.$$

Из определения равенства двух комплексных чисел получаем

$$\begin{cases} 5x + 3y = 1 \\ -x + 2y = 5. \end{cases}$$

Решая эту систему, находим x = -1, y = 2.

1.2. Геометрическое представление комплексного числа

Комплексное число z = x + iy изображается на плоскости xOy точкой M с координатами (x,y), либо вектором $\overrightarrow{OM} = \overrightarrow{r}$, начало которого находится в точке O(0,0), а конец в точке M(x,y) $(\overrightarrow{r}$ – радиус-вектор из начала координат).

И наоборот, каждой точке M(x,y) соответствует одно комплексное число z = x + iy.

Сопряженные числа на комплексной плоскости расположены симметрично относительно оси OX.

Если y = 0, то $z = x + i \cdot 0 = x$, то есть получаем обычное вещественное, расположенное на оси OX, число.

Если x = 0, то z = iy. Такие числа называются чисто мнимыми. Они

изображаются точками на оси ОУ.

Определение 2. Длина вектора (\vec{OM}) называется *модулем* комплексного числа и обозначается $|z| = r = \sqrt{x^2 + y^2}$.

Определение 3. Угол φ , образованный вектором \overrightarrow{OM} с положительным направлением оси OX, называется аргументом комплексного числа zи обозначается $\varphi = Argz$; определяется с точностью до слагаемого $2\pi k(k = 0, \pm 1,...)$:

$$Argz = argz + 2\pi k, (k = 0, \pm 1, \pm 2, \dots)$$

где argz есть главное значение Argz, определяемое условиями $-\pi <$ $atgz \leq \pi$.

В зависимости от положения точки на комплексной плоскости,

В зависимости от положения точки на комплексной пл
$$argz == \begin{bmatrix} arctg \frac{y}{x}, & \text{если z в I , IV четверти,} \\ \pi - arctg \left| \frac{y}{x} \right|, & \text{если z во II четверти,} \\ -\pi + arctg \left| \frac{y}{x} \right|, & \text{если z в III четверти,} \\ 0, & \text{если x>0, y=0,} \\ \pi, & \text{если x<0, y=0,} \\ \frac{\pi}{2}, & \text{если x=0, y>0,} \\ \frac{-\pi}{2}, & \text{если x=0, y<0.} \end{bmatrix}$$

Примеры.

Найти модуль и аргумент комплексного числа.

1)
$$z=1+i$$
. $|z|=r=|1+i|=\sqrt{1^2+1^2}=\sqrt{2}$. Для нахождения аргумента определим положение числа на комплексной плоскости: $z=1+i$ лежит в I четверти. $argz=arctg\frac{y}{x}=arctg1=\frac{\pi}{4}$.

$$z=-2+2\sqrt{3}i$$
, II четверть
$$|z|=\sqrt{(-2)^2+(2\sqrt{3})^2}=4,$$
 $argz=\pi-arctg\left|\frac{2\sqrt{3}}{-2}\right|=\pi-arctg\sqrt{3}=\frac{2\pi}{3}$

2)
$$z = -\sqrt{3} - i$$
, III четверть
$$|z| = \sqrt{(-\sqrt{3})^2 + (-1)^2} = 2,$$

$$argz = -\pi + arctg \left| \frac{-1}{-\sqrt{3}} \right| = -\pi + \frac{\pi}{6} = -\frac{5\pi}{6}$$

3)
$$z = 1 - i$$
, IV четверть $|z| = \sqrt{1^2 + (-1)^2} = \sqrt{2}$, $argz = -arctg \left| \frac{-1}{-1} \right| = -\frac{\pi}{4}$

4)
$$z = 2$$
 $|z| = 2$, $argz = 0$

5)
$$z = 3i$$
 $|z| = 3$, $argz = \frac{\pi}{2}$

6)
$$z = -5$$
 $|z| = 5$, $argz = \pi$

7)
$$z = -2i$$
 $|z| = 2$, $argz = -\frac{\pi}{2}$

1.3. Действия над комплексными числами (сложение, вычитание, умножение и деление)

Пусть даны два комплексных числа $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$.

Определение 4. Суммой $\mathbf{z_1} + \mathbf{z_2}$ комплексных чисел $\mathbf{z_1}$ и $\mathbf{z_2}$ называется комплексное число

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2).$$

Определение 5. Разностью $z_1 - z_2$ комплексных чисел z_1 и z_2 называется комплексное число

$$z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2).$$

Oпределение 6. Произведением $oldsymbol{z_1}oldsymbol{z_2}$ комплексных чисел $oldsymbol{z_1}$ и $oldsymbol{z_2}$

называется комплексное число

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1).$$

Определение 7. Частным $\frac{z_1}{z_2}$ от деления комплексного числа z_1 на комплексное число $z_2 \neq 0$ называется такое комплексное число z, которое удовлетворяет уравнению $zz_2 = z_1$.

Для частного имеет место формула

$$\frac{z_1}{z_2} = \frac{z_1\overline{z_2}}{|z_2|^2} = \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} + i\frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2}.$$

<u>Примеры.</u> $z_1 = 5 - i, z_2 = -1 - 2i$

1)
$$z_1 + z_2 = 4 - 3i$$

2)
$$z_1 - z_2 = 6 + i$$

3)
$$z_1 z_2 = (5 - i)(-1 - 2i) = -5 + i - 10i + 2i^2 = -7 - 9i$$

4)
$$\frac{z_1}{z_2} = \frac{(5-i)(-1+2i)}{(-1-2i)(-1+2i)} = \frac{-5+i+10i+2}{1+4} = -\frac{3}{5} + \frac{11}{5}i$$

5) Вычислить i^{27} .

Так как

$$i^1=i, \qquad i^2=-1, \qquad i^3=-i, \qquad i^4=1, \qquad i^5=i,$$
 $i^6=-1, \qquad i^7=-i, \qquad i^8=1, \qquad$ и т. д., то $i^{27}=(i^4)^6\cdot i^3=1\cdot (-i)=-i.$

1.4. Тригонометрическая форма комплексного числа

Любое комплексное число z = x + iy ($z \neq 0$) можно записать в тригонометрической форме

$$z = |z| \cdot \left(\frac{x}{|z|} + i \frac{y}{|z|}\right) = r(\cos\varphi + i\sin\varphi),$$

где
$$r = |z|, \varphi = argz$$
.

<u>Пример.</u> Записать число в тригонометрической форме:

$$z = -\sqrt{3} - i.$$

$$|z| = r = \sqrt{(-\sqrt{3})^2 + (-1)^2} = 2.$$

Для нахождения аргумента определим положение z на комплексной плоскости: z лежит в III четверти, тогда

$$argz = -\pi + arctg \frac{1}{\sqrt{3}} = -\pi + \frac{\pi}{6} = -\frac{5\pi}{6}.$$

Подставляя значения модуля и аргумента в формулу, получим

$$z = -\sqrt{3} - i = 2\left[\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right)\right].$$

1.5. Действия над комплексными числами, заданными в тригонометрической форме.

Пусть комплексные числа z_1 и z_2 даны в тригонометрической форме $z_1 = r_1(\cos\varphi_1 + i\sin\varphi_1), z_2 = r_2(\cos\varphi_2 + i\sin\varphi_2).$

1. Произведение z_1z_2 комплексных чисел z_1 и z_2 находится по формуле $z_1z_2=r_1r_2[cos(\varphi_1+\varphi_2)+isin(\varphi_1+\varphi_2)],$

т.е. при умножении комплексных чисел их модули перемножаются, а аргументы складываются

$$|z_1z_2| = |z_1||z_2|, \quad argz(z_1z_2) = argz_1 + argz_2.$$

2. Частное двух комплексных чисел z_1 и $z_2 \neq 0$ находится по формуле

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} [cos(\varphi_1 - \varphi_2) + isin(\varphi_1 - \varphi_2)],$$

т.е. при делении комплексных чисел их модули делятся, а аргументы вычитаются

$$\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}, arg \frac{z_1}{z_2} = arg z_1 - arg z_2.$$

3. Возведение комплексного числа $z = r(cos\varphi + isin\varphi)$ в натуральную степень n производится по формуле

$$z^n = r^n(\cos(n\varphi) + i\sin(n\varphi)),$$

T. e.
$$|z^n| = |z|^n$$
, $arg(z^n) = n \cdot argz$

Формула Муавра:

$$(\cos\varphi + i\sin\varphi)^n = \cos(n\varphi) + i\sin(n\varphi).$$

4. Корень n-й степени из комплексного числа $z \neq 0$ имеет n различных значений, которые находятся по формуле

$$\sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right),$$

где $\varphi = argz, k = 0,1,2,...,n-1$.

<u>Пример.</u> Вычислить $(2-2i)^{10}$.

Pешение: представим число z = 2 - 2i в тригонометрической форме:

$$2 - 2i = 2\sqrt{2} \left[\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right) \right].$$

$$(2 - 2i)^{10} = \left(2\sqrt{2}\right)^{10} \left[\cos\left(-\frac{10\pi}{4}\right) + i\sin\left(-\frac{10\pi}{4}\right) \right] =$$

$$= 2^{15} \left[\cos\left(\frac{5\pi}{2}\right) - i\sin\left(\frac{5\pi}{2}\right) \right] = -2^{15} \cdot i.$$

<u>Пример.</u> Вычислить $\sqrt[4]{-16}$.

Решение: представим число −16 в тригонометрической форме. Число лежит на действительной оси:

$$x < 0, y = 0.$$

$$\begin{aligned} |-16| &= \sqrt{(-16)^2 + 0^2} = 16, \, \varphi = \pi. \\ \sqrt[4]{-16} &= \sqrt[4]{16} \left(\cos \frac{\pi + 2\pi k}{4} + i \sin \frac{\pi + 2\pi k}{4} \right) = \\ &= 2 \left(\cos \frac{\pi + 2\pi k}{4} + i \sin \frac{\pi + 2\pi k}{4} \right), \, k = 0, 1, 2, 3. \end{aligned}$$

Полагая последовательно k = 0,1,2,3, выпишем все корни

$$k = 0: z_0 = 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right),$$

 $k = 1: z_1 = 2\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right),$

$$k = 2: z_2 = 2\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right),$$

$$k = 3: z_3 = 2\left(\cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4}\right).$$

На плоскости корни располагаются на окружности радиуса 2 в вершинах правильного четырехугольника, вписанного в окружность радиуса R=2 с центром в начале координат:

5) Решить уравнение $z^4 - 2z^2 + 4 = 0$. Корни уравнения изобразить на комплексной плоскости.

Обозначим $t=z^2$. Тогда уравнение примет вид $t^2-2t+4=0$.

Корни этого уравнения

$$t_1=1+\sqrt{3}i, \qquad \qquad t_2=1-\sqrt{3}t,$$
 откуда $z_{1,2}=\sqrt{t_1}, \qquad \qquad z_{3,4}=\sqrt{t_2}.$

Пусть
$$z = \sqrt{1 + \sqrt{3}i}$$
.

Представим в тригонометрической форме:

$$1 + \sqrt{3}i = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right).$$

Число $1 + \sqrt{3}i$ находится в I четверти, найдем модуль и аргумент:

$$\left|1 + \sqrt{3}i\right| = \sqrt{1 + \left(\sqrt{3}\right)^2} = 2, \quad arg(1 + \sqrt{3}i) = \frac{\pi}{3}.$$

$$z_{1,2} = \sqrt{1 + \sqrt{3}i} = \sqrt{2}\left(\cos\frac{\frac{\pi}{3} + 2\pi k}{2} + i\sin\frac{\frac{\pi}{3} + 2\pi k}{2}\right), k = 0,1,$$

T.e.

$$z_1 = \sqrt{2} \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right), k = 0,$$
 $z_2 = \sqrt{2} \left(\cos \frac{7\pi}{6} + i \sin \frac{7\pi}{6} \right), k = 1.$

Пусть
$$z = \sqrt{1 - \sqrt{3}i}$$
.

Представим в тригонометрической форме:

$$1-\sqrt{3}i.$$

Число $1 - \sqrt{3}i$ находится в IV четверти, найдем модуль и аргумент:

$$\begin{aligned} \left| 1 - \sqrt{3}i \right| &= \sqrt{1 + \left(\sqrt{3}\right)^2} = 2, & arg\left(1 - \sqrt{3}i\right) = -\frac{\pi}{3} \\ \text{T. e. } 1 - \sqrt{3}i &= 2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right). \\ z_{3,4} &= \sqrt{2}\left(\cos\frac{-\frac{\pi}{3} + 2\pi k}{2} + i\sin\frac{-\frac{\pi}{3} + 2\pi k}{2}\right), k = 0, 1. \\ z_3 &= \sqrt{2}\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right), k = 0, \end{aligned}$$

$$z_4 = \sqrt{2} \left(\cos \left(-\frac{5\pi}{6} \right) + i \sin \left(-\frac{5\pi}{6} \right) \right)$$
, $k = 1$.

Все корни находятся на окружности радиуса $R=\sqrt{2}$.

1.6. Показательная форма записи комплексного числа

Используя формулу Эйлера $e^{i\varphi}=\cos\varphi+i\sin\varphi,$

перепишем тригонометрическую форму записи комплексного числа в виде

$$z = r(\cos\varphi + i\sin\varphi) = re^{i\varphi},$$

где $r = |z|, \varphi = argz$.

Отметим, что
$$z_1z_2=r_1r_2e^{i(\varphi_1+\varphi_2)},\; \frac{z_1}{z_2}=\frac{r_1}{r_2}e^{i(\varphi_1-\varphi_2)}.$$

<u>Пример.</u> Записать комплексное число z = -3 - 3i в тригонометрической и показательной форме.

Число находится в III четверти. Найдем модуль и аргумент:

$$|z| = \sqrt{(-3)^2 + (-3)^2} = 3\sqrt{2},$$

$$argz = -\pi + arctg\left|\frac{y}{x}\right| = -\pi + arctg\left(\frac{-3}{-3}\right) = -\pi + \frac{\pi}{4} = -\frac{3\pi}{4}.$$

Тригонометрическая форма записи z

$$z = 3\sqrt{2}\left(\cos\left(-\frac{3\pi}{4}\right) + i\sin\left(-\frac{3\pi}{4}\right)\right),\,$$

Показательная форма записи $z = 3\sqrt{2}e^{i\left(-\frac{3\pi}{4}\right)}$.

1.7. Изображение множеств на комплексной плоскости

Изобразить на комплексной плоскости линии и области, заданные уравнениями и неравенствами.

Пример 1.

Re
$$z \leq 3$$
.

Т.к. Re z = x, то неравенство можно переписать так: $x \le 3$. На плоскости xOy это определяет полуплоскость левее прямой x = 3.

<u>Пример 2.</u>

$$|z| = 4$$

По определению, |z| — это расстояние от начала координат до точки z, т.е. |z| = 4 — это геометрическое множество точек, равноудаленных от начала координат. Таким геометрическим местом является окружность с центром в начале координат радиуса R = 4.

Также можно вывести уравнение кривой алгебраическим способом. $|z| = \sqrt{x^2 + y^2}$, т. е. уравнение переписывается в виде $\sqrt{x^2 + y^2} = 4$, или $x^2 + y^2 = 4^2$ – это и есть уравнение окружности с центром в точке 0 и R = 4).

Пример 3.

$$1 < |z - 1 + i| \le 2$$
.

$$|z-1+i| = |z-(1-i)| \le 2$$

Это множество точек z, расстояние которых от точки 1-i не больше 2, то есть круг с центром в 1-i радиуса 2. Множество точек z таких, что $1 \le |z-(1-i)|$, представляет собой внешность круга радиуса 1 с центром в точке 1-i. Таким образом, исходное множество – кольцо с центром в точке 1-i.

Пример 4.

$$-\frac{\pi}{6} < argz \le \frac{\pi}{3}.$$

Множество точек, удовлетворяющих двойному неравенству, совпадает с точками угла с вершиной в начале координат, заключенного между лучами $\varphi_1=-\frac{\pi}{6}$ и $\varphi_2=\frac{\pi}{3}$. Луч $\varphi_2=\frac{\pi}{3}$ входит в данное множество, а луч $\varphi_1=-\frac{\pi}{6}$ не входит.

