Northeastern University

CS5800 Algorithms, Fall 2024

Instructor: Hyonho Lee

1. Prove $n^3 + 4n^2 + 5 = O(n^3)$.

Proof. If $n^3 + 4n^2 + 5 = O(n^3)$, there must exist positive constants, c and n_0 , such that, for all $n > n_0$, $n^3 + 4n^2 + 5 \le c \cdot n^3$. Let's choose c = 2.

Then, we have $n^3 + 4n^2 + 5 \le 2n^3$.

We want to prove this inequality holds for all $n > n_0$.

$$n^3 + 4n^2 + 5 \le 2n^3 \Longleftrightarrow$$

$$4n^2 + 5 \le n^3$$

Let's divide both sides by n^2 . (Note that we consider only $n > n_0$, so $n \neq 0$).

So, we have $4 + \frac{5}{n^2} \le n$.

Note that $\frac{5}{n^2} < 1$ if $n > \sqrt{5}$. So, if $n \ge 5$, $4 + \frac{5}{n^2} \le n$ holds.

Hence, if we choose some number greater than equal to 5 for n_0 , the inequality holds.

So, let's choose c = 2 and $n_0 = 5$.

Then, for any $n \ge 5$, $n^3 + 4n^2 + 5 \le 2n^3$.

2. Prove that $\log n = o(n)$.

Proof. Let's use the limit property of o instead of the definition of o.

$$\lim_{n\to\infty}\frac{n}{\log n}=\lim_{n\to\infty}\frac{(n)'}{(\log n)'}(\text{ by L'Hôpital's rule})=\lim_{n\to\infty}\frac{1}{\frac{1}{n}}=\lim_{n\to\infty}n=\infty$$

Hence, $\log n = o(n)$.