Многочлены и теория чисел

Показатель, к которому принадлежит вычет

Пусть $p\in\mathbb{P},$ $a\in\mathbb{Z}_p,$ $a\neq0,$ $d\in\mathbb{N}.$ Вычет принадлежит к показателю d, если $a^d=1$, но $a^s\neq1$ при $s\in\mathbb{N},$ s< d. Обозначение: $a\in d$

Лемма 1

Пусть $p \in \mathbb{P}, a \in \mathbb{Z}_p$. Тогда выполнены следующие утверждения:

- 1. Если $a^d=1$ и $a \in s$, то $s \mid d$.
- 2. Если $a \in d$, то $d \mid p-1$

Лемма 2

Если $p\in\mathbb{P}$ и $d\mid p-1$, то многочлен $t^d-1\in Z_p[t]$ имеет ровно d корней, и все они не 0.

Теорема 1

Если $p\in\mathbb{P}$ и $d\mid p-1$, то к показателю d принадлежит ровно $\varphi(d)$ вычетов.

Первообразный корень по модулю р

Пусть $p\in\mathbb{P}$. Вычет $a\in\mathbb{Z}_p$ - первообразный корень по модулю p, если $a\in p-1$. По теореме 1 существует в точности $\varphi(p-1)$ первообразных корней по модулю p.

Теорема 2

Пусть $p \in \mathbb{P}$, а a - первообразный корень по модулю р. Тогда $a, a^2, ..., a^{p-1} = 1$ - ПрСВ (mod p), то есть, в точности все ненулевые вычеты из \mathbb{Z}_p .

Квадратичный вычет и невычет в \mathbb{Z}_p

Пусть $p \in \mathbb{P}, a \in \mathbb{Z}_p, a \neq 0.$

- Тогда а квадратичный вычет, если сущестует такой $b \in \mathbb{Z}_p$, что $b^2 = a$.
- Если такого b не сущесвует, то а квадратичный невычет.

Лемма 3

Пусть $p \in \mathbb{P}, p_1 \coloneqq \frac{p-1}{2}.$ Тогда:

- 1. квадратичные вычеты в \mathbb{Z}_p корни многочлена $t^{\frac{p-1}{2}}-1$;
- 2. если $x^2 = y^2$, то x = y или x = -y;
- 3. существует в точности $\frac{p-1}{2}$ квадратичных вычтов в \mathbb{Z}_p

Лемма 4

Пусть $p \in \mathbb{P}$. Тогда выполнены следующие утверждения:

- 1. Квадратичный невычет в \mathbb{Z}_p корни многочлена $t^{\frac{p-1}{2}}+1.$
- 2. Существует в точности $\frac{p-1}{2}$ квадратичных невычето в в \mathbb{Z}_p .

Решение квадратных уровнений в \mathbb{Z}_p

- Если D квадратичный вычет, то $D=d^2$ для некоторого $d\in\mathbb{Z}_p$ и $\frac{D}{4a^2}=\left(\frac{\pm d}{2a}\right)^2$. Тогда уравнение имеет два решения: $x_{1,2}=\frac{-b\pm d}{2a}$.
- Если D = 0, то уравнение имеет одно решение $x_1 = \frac{-b}{2a}$.
- Если D квадратичный невычет, то $\frac{D^2}{4a^2}$ квадратичный невычет, а значит, решений нет

Символ Лежандра

Пусть $p \in \mathbb{P}, a \in \mathbb{Z}, a \not\mid p$.

- Тогда а квадратичный вычет по модулю p, если a в \mathbb{Z}_p квадратичный вычет
- Аналогично для невычета

Символ Лежандра определение

Пусть $p \in \mathbb{P}, a \in \mathbb{Z}$

$$\left(rac{a}{p}
ight) = egin{cases} 1$$
 , если ${\bf a}$ - квадратичный вычет по модулю р -1 , если ${\bf a}$ - квадратичный невычет по модулю р 0 , если ${\bf a}$: p

Свойство 1

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} (\operatorname{mod} p)$$

Свойство 2

$$\left(\frac{-1}{p}\right) \equiv \left(-1\right)^{\frac{p-1}{2}}$$

Свойство 3

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \cdot \left(\frac{b}{p}\right)$$

Лемма 6

Пусть $p \in \mathbb{P}$, $a \in \mathbb{Z}$, $a \nmid p$.

$$\left(\frac{a}{p}\right) = (-1)^{\sum_{x=1}^{\frac{p-1}{2}} \left[\frac{2ax}{p}\right]}$$

Лемма 7

$$\left(\frac{2}{p}\right) = \left(-1\right)^{\frac{p^2 - 1}{8}}$$

Теорема 3 (закон взаимности Гаусса)

 $p,q\in\mathbb{P},p
eq2,q
eq2$. Тогда:

$$\left(\frac{q}{p}\right) \cdot \left(\frac{p}{q}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}$$

Кольцо многочленов $\mathbb{Z}[t]$. Соедержание многочлена.

Пусть $f(t)=a_nt^n+\ldots+a_0\in\mathbb{Z}[t]$. Тогда его **содержание** $c(f)=(a_0,\ldots,a_n)$.

Лемма 8 (лемма Гаусса)

Пусть
$$f,g \in \mathbb{Z}[x], c(f) = c(g) = 1 \Rightarrow c(fg) = 1$$

Следствие 1

Для $f,g\in\mathbb{Z}[x]$ выполнено c(fg)=c(f)c(g)

Связь неприводимости в $\mathbb{Q}[x]$ и $\mathbb{Z}[x]$

Если многочлен $f \in \mathbb{Z}[x]$ неприводим в $\mathbb{Q}[x]$, то он, очевидно, неприводим и в $\mathbb{Z}[x]$.

Основная теорема арифметики в $\mathbb{Z}[t]$

Многочлен $f \in \mathbb{Z}[t]$ - тривиальный, если c(f) = 1.

Теорема 4

Любой многочлен $f\in\mathbb{Z}[x]$ с положительным старшим коэффициентов расскладывается в произведение $f=r_1...r_k\cdot p_1...p_n$, где $r_1,...,r_k\in\mathbb{P}$, а $p_1,...,p_n\in\mathbb{Z}[x]$ - тривиальные неприводимые многочлены с положительными старшими коэффициентами. Разложение единственно с точностью до перестановки сомножителей.

Критерий Эйзенштейна

Теорема 5

Пусть $f(x) = a_n t^n + ... + a_1 t + a_0 \in \mathbb{Z}[t]$ и $p \in \mathbb{P}$ таковы, что $a_n \not\mid p, a_{n-1}, ..., a_0 \mid p$ и $a_0 \not\mid p^2$. Тогда f - неприводим в $\mathbb{Z}[x]$.

Следствие 3

Пусть $f(x)=a_nt^n+...+a_1t+a_0\in\mathbb{Z}[t]$ и $p\in\mathbb{P}$ таковы, что $a_0\not\mid p,a_1,...,a_n$ $\not\mid p$ и $a_n\not\mid p^2$. Тогда \mathbf{f} - неприводим в $\mathbb{Z}[x]$.

Значения в целых точках многочлена из $\mathbb{Z}[t]$

Лемма 10

Пусть
$$f(x) = a_n t^n + \dots + a_1 t + a_0 \in \mathbb{Z}[t], x, y \in \mathbb{Z}, x \neq y \Rightarrow f(x) - f(y) \vdots x - y.$$

Разностный многочлен

Пусть $f \in K[x]$, где K - коммутативное кольцо с 1, причем $\mathbb{Z} \subset K$

Разностный многочлен

$$\Delta f(x) \coloneqq f(x+1) - f(x)$$

Лемма 13

Пусть $f\in K[x]$, где K - коммутативное кольцо с 1, причем $\mathbb{Z}\subset K$. Тогда $\Delta f\in K[x], \deg{(\Delta f)}=\deg(f)-1$