Introduction to Databases

Gianluca Quercini

Laboratoire de Recherche en Informatique CentraleSupélec

2019 - 2020

Graph Databases

Where do Graphs Come From?

- Leonhard Euler set the foundations of graph theory in 1736.
- Famous problem of the seven bridges of Königsberg.
- Is it possible to visit Königsberg by crossing each bridge only once?
- Graphs used across numerous domains.

What Revived Graph Theory?

An Example: Wikipedia

A Graph in a Relational Database

• Impedance mismatch. Graph represented as a set of tables.

Page						
id	title	lang	type			
0	Paris	en	article			
1	Musée Rodin	en	article			
2	Eiffel Tower	en	article			
	•					
٠	•	•	•			
50	Tour Eiffel	fr	article			
	•					
	•		•			
99	Capitals in Europe	en	category			
	•		•			

Link					
src	dst	type			
0	1	link			
0	2	link			
0	99	belongsTo			
1	0	link			
2	0	link			
•	•	-			
•	•	•			
2	50	crosslink			

Graph Traversal in SQL

- *n*: number of pages.
- Indexes (B+ trees) on Page.id, Page.title, Page.lang, Link.src.

Get the articles that have a link from Paris

```
SELECT p1.title
FROM Page p1 JOIN Link 1 ON p1.id = 1.dst
JOIN Page p2 ON p2.id = 1.src
WHERE p2.title = 'Paris' AND p2.lang = 'en'
```

- Two join operations: Page ⋈ (Link ⋈ Page)
 - Link \bowtie Page = Temp with κ rows.
- Cost of WHERE: $O(\log n)$.
- Cost of Link \bowtie Page: $O(\log n) + \kappa$.
- Cost of Page \bowtie Temp: $\kappa \cdot O(\log n)$.
- The cost of the query depends on the size of the whole graph.
 - Even if the operation is local to a node.

Graph Traversal in SQL

Articles that have a link from the articles that have a link from Paris

```
SELECT p2.title
FROM Page p1 JOIN Link l1
ON p1.id = l.src
JOIN Link l2
ON 12.src = l1.dst
JOIN Page p2
ON 12.dst = p2.id
WHERE p1.title = 'Paris' AND p1.lang = 'en'
AND 12.dst <> p1.id
```

Graph databases Vs Relational databases

Wikipedia in a Aggregate-based NoSQL Store

- Source and destination node of an edge: src and dst
- If nodes are indexed, the cost of traversing an edge is $O(\log n)$.
- The model does not have a linksFrom property.

```
nodeld: 0,
                                 nodeld: 1,
title
        : "Paris".
                                         : "Musée Rodin".
                                         : "en",
lang
        : "en",
                                 lang
type
        : "article".
                                 type
                                         : "article".
linksTo: [
                                 linksTo: [
         edgeld: 0,
                  : 0.
          src
         dst
                  : 1,
         type
                  : "link"
                                 nodeld: 2,
                                         : "Eiffel Tower".
                                         : "en",
         edgeld: 1,
                                 lang
                  : 0
                                         : "article".
                                 type
         dst
                                 linksTo : [
                 : "link"
          type
```

Neo4j

- Neo4j is the most used graph database today.
- Neo4j uses the labelled property graph model to represent a graph.
- Neo4j provides a query language called Cypher.
 - declarative language (like SQL).
 - not standard (unlike SQL).
- Neo4j supports a standard Language: SPARQL
 - Used in the Semantic Web to query RDF data.
 - Syntax similar to SQL.
 - Complicated syntax.

The Labelled Property Graph Model

Storage in Neo4j

Node record

inUse	nextRelld	nextPropId	labels	extra	15 B	
1 B	4 B	4 B	5 B	1 B		

Relationship record

inUse	srcNodeld	trgNodeld	relType	srcPrevRelId	srcNextRelld	trgPrevRelId	trgNextRelId	nextPropId	flag	34 B
1 B	4 B	4 B	4 B	4 B	4 B	4 B	4 B	4 B	1 B	

Storage in Neo4j

Patterns in Cypher

• Idea of Cypher: query by drawing patterns.

$$(a)-[:redirectsTo]\rightarrow(b)-[:link]\rightarrow(c)-[:link]\rightarrow(a)$$

Binding a pattern to specific nodes and links

(a:Redirect)-[:redirectsTo]->(b:Article {title:'Paris', lang:'en'})

Queries

```
MATCH (n:Article {title:"Paris"})
RETURN n
```

```
MATCH (n:Article)
WHERE n.title="Paris"
RETURN n
```

```
MATCH (:Article {title:"Paris", lang:"en"})-[:link]->(m:Article)
RETURN m.title
```

```
MATCH (n:Article)
RETURN DISTINCT n.title
```

```
MATCH (n:Article {title:"Paris", lang:"en"})-[r:link]->(m:Article)
RETURN *
```

Aggregating functions in Cypher

```
MATCH (n:Article {title:"Paris", lang:"en"})-[:belongsTo]->(m:Category)
RETURN n.title, COUNT(m) AS nbCategories
```

```
MATCH (n:Article)-[r:link]->(m:Article)
RETURN n.title, COUNT(r) AS nbLinks
ORDER BY nbLinks DESC
```

```
MATCH (n:Article)-[r:link]->(m:Article)
WITH n.title AS title, COUNT(r) AS nbLinks
RETURN AVG(nbLinks)
```

Transactions

- Since its inception, Neo4j has supported ACID transactions.
- It was an exception in the NoSQL world.
- The primary goal of a graph database was not data distribution.
- Today other NoSQL databases acknowledge the usefulness of ACID transactions (even in a distributed context).

Data distribution in Neo4j

- Master-slave data replication.
- No sharding (unusual for NoSQL datastores), partitioning a graph is NP-hard.
 - Approximation: cache sharding.

