

Example: map coloring-

Assignment:

 $x = \{WA : R, NT : G, SA : B, Q : R, NSW : G, V : R, T : G\}$

Weight:

Weight(x) = $1 \cdot 1 = 1$

Assignment:

 $x' = \{WA : \mathbb{R}, NT : \mathbb{R}, SA : \mathbb{B}, Q : \mathbb{R}, NSW : \mathbb{G}, V : \mathbb{R}, T : \mathbb{G}\}$

Weight:

 $\operatorname{Weight}(x') = 0 \cdot 0 \cdot 1 = 0$

Example: map coloring-

Assignment:

 $x = \{ \text{WA} : \frac{\mathbf{R}}{\mathbf{R}}, \text{NT} : \mathbf{G}, \text{SA} : \frac{\mathbf{B}}{\mathbf{B}}, \text{Q} : \frac{\mathbf{R}}{\mathbf{R}}, \text{NSW} : \mathbf{G}, \text{V} : \frac{\mathbf{R}}{\mathbf{R}}, \text{T} : \mathbf{G} \}$

Weight:

Weight(x) = $1 \cdot 1 = 1$

Assignment:

 $x' = \{ WA : \mathbb{R}, NT : \mathbb{R}, SA : \mathbb{B}, Q : \mathbb{R}, NSW : \mathbb{G}, V : \mathbb{R}, T : \mathbb{G} \}$

Weight:

 $\operatorname{Weight}(x') = 0 \cdot 0 \cdot 1 = 0$

Arc consistency

Idea: eliminate values from domains ⇒ reduce branching

Example: numbers—

Before enforcing arc consistency on X_i :

$$X_i \in {
m Domain}_i = \{1, 2, 3, 4, 5\}$$

$$X_j \in \mathrm{Domain}_j = \{1, 2\}$$

$$f_1(X) = [X_i + X_j = 4]$$

[whiteboard]

AC-3

Forward checking: when assign $X_j:x_j$, set $\mathrm{Domain}_j=\{x_j\}$ and enforce arc consistency on all neighbors X_i with respect to X_j

AC-3: repeatedly enforce arc consistency on all variables

Algorithm: AC-3-

Add X_j to set.

While set is non-empty:

- Remove any X_k from set.
- ullet For all neighbors X_l of X_k :
 - ullet Enforce arc consistency on X_l w.r.t. X_k .
 - If $\operatorname{Domain}_{l}$ changed, add X_{l} to set.

AC-3 (example)

CS221 / Spring 2020 / Finn & Anari