1.1 L'écosystème Python

- 1. Définir un environnement virtuel que l'on placera dans le répertoire ~/option_python.
- 2. Charger ce nouvel environnement et s'assurer que la commande python pointe bien vers le répertoire bin du répertoire ~/option_python.
- 3. Lister les modules actuellement installés puis suivre les recommendations issues de la précédente commande.
- 4. Installer la version 1.5.2 de la librarie matplotlib puis mettre à jour cette dernière.
- 5. Installer l'interpréteur ipython et l'utiliser pour vérifier que l'installation de matplotlib a été correctement réalisée en important la librairie *via* la commande

import matplotlib

- 6. Afficher la chaîne de caractères "Bonjour tout le monde"
- 7. Définir une première variable x1 égale à 10 et une seconde x2 égale à 10.0. Afficher le statut des variables.
- 8. Afficher la partie réelle puis la partie imaginaire de x1. Afficher la taille en bits de x1. Lors des différentes opérations, on pourra se servir de l'auto-complétion et de la commande d'aide ? pour accéder à la documentation de chaque commande.
- 9. Afficher la documentation de la fonction input puis se servir de cette fonction pour demander à l'utilisateur la saisie d'un nombre y.
 - **①** Dans toute la suite de cette option et notamment lors des prochains exercices, on prendra bien garde de systématiquement charger l'environnement virtuel défini lors de ce premier exercice.

1.2 La calculatrice Python

- 1. Dans l'interpréteur ipython réaliser les opérations arithmétiques d'addition, soustraction, multiplication et division sur des nombres entiers ainsi que sur des nombres flottants.
- 2. Comparer le résultat de la division de deux entiers lorsque vous utilisez l'opérateur / et //. Dans le second cas, afficher le reste de la division.
- 3. À l'aide de la fonction type dont on cherchera le fonctionnement à l'aide de l'opérateur ? de ipython, afficher la nature de nombres entier et flottant.
- 4. Déclarer deux nombres i = 10 et x = 10.0 et tester leur égalité *via* l'opérateur ==. Stocker ce résultat dans une variable test et retourner son type.
- 5. Calculer le nombre de valeurs pouvant être encodées sur 12 bits.
- 6. Importer le module mathématiques de Python à l'aide de la commande

import math

En vous servant de l'aide intéractive fournit par ipython, déterminer la valeur de factoriel 13. Calculer la valeur du cosinus d'un angle mesurant 666°.