MATH 4242 Applied Linear Algebra

Sylvester W. Zhang^{\(\beta\)}

 $Summer\ 2024$

Contents

1. Systems of Linear Equations]
1.1. Systems of $n \times n$ Equations.	2
1.2. Systems of $m \times n$ Equations.	2
2. Vector Spaces	
2.1. Some Basic Setup	
2.2. Vector Spaces and Subspaces	
2.3. Linear Combination, Span, and Dimension	4
3. Linear Maps and Matrices	Ę
3.1. Linear Maps	Ę
3.2. Fundamental Subspaces	(

1. Systems of Linear Equations

A $m \times n$ system of linear equation is of the form

$$a_{11}x_1 + \dots + a_{n1}x_n = b_1$$

$$a_{21}x_1 + \dots + a_{n2}x_n = b_n$$

$$\dots \dots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = b_n$$

Such equation can be represented using product of matrices.

$$\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{21} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \ddots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

or by an augmented matrix.

$$\begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} & b_1 \\ a_{21} & a_{22} & \cdots & a_{m2} & b_2 \\ \cdots & \cdots & \cdots & \cdots & \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_n \end{bmatrix}$$

Definition 1.1. We have three types of elementary row operations.

^{\$\}dagger*\swzhang@umn.edu University of Minnesota.

2 S. ZHANG

- (1) Multiply the *i*-th equation (or the *i*-th row of the augmented matrix), then add it to the *j*-th equation (or the *j*-th row of the augmented matrix).
- (2) Permute the equations (or the rows of the augmented matrix)
- (3) Multiply one equation (or one row of the augmented matrix) by a non-zero number.

1.1. Systems of $n \times n$ Equations. Matrices considered in this sections are all $n \times n$.

Definition 1.2. A matrix is regular if it can be turned into a upper triangular matrix such that every entry on the diagonal is non-zero.

Proposition 1.3. Let E be the matrix with 1's on the diagonal and $E_{ij} = k \neq 0$ is the only other non-zero entry in the lower triangular part. Then for any matrix M, EM is the matrix obtained by multiplying the j-th row of M then adding to the i-th row of M.

Proposition 1.4. A matrix A is regular if and only if it has an LU factorization, i.e.

$$A = LU$$

where L is a lower uni-triangular matrix, and U is a upper triangular matrix with non-zero diagonal entries.

Definition 1.5. Let $w \in S_n$ be a permutation, then define $P_w = \{a_{ij}\}$ to be the matrix such that

$$a_{i,j} = \begin{cases} 1 & j = w(i) \\ 0 & \text{otherwise.} \end{cases}$$

Proposition 1.6. For any matrix M, P_wM is the matrix obtained by permuting the rows of M according to the permutation w.

Definition 1.7. A matrix A is called non-singular if it can be turned into a upper triangular matrix without non-zero diagonal entry via row operations of the first two types.

Proposition 1.8. A matrix A is non-singular if and only if it has a permuted LU factorization: PA = LU where P is some permutation matrix.

Proposition 1.9. Denote A^T the transpose of A. We have that $AB = (BA)^T$.

Proposition 1.10. A matrix A is regular if it admits an LDV factorization, A = LDU where L is lower-unitriangular matrix, D is a diagonal matrix, and U is a uni-upper triangular matrix.

1.2. Systems of $m \times n$ Equations.

Definition 1.11. A matrix is in row echelon form if it looks like,

$$\begin{pmatrix} \bullet & * & * & * & * & * \\ 0 & \bullet & * & * & * & * \\ 0 & 0 & 0 & \bullet & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

where \bullet 's are non-zero entries (called *pivots*) and * represent generic entries. The pivots are the first non-zero entries in each rows. We require the pivots occupy the first several rows consecutively.

Proposition 1.12. Every matrix can be turned into a row echelon form using elementary row operations of type I and II. In other words, every matrix A has a factorization PA = LU where P is a permutation matrix, L is a lower uni-triangular matrix, and U a matrix in row-echelon form.

Definition 1.13. Since every matrix can be turned in to row-echelon form using elementary row operations, we define its rank to be the number of pivots.

Proposition 1.14. A square $n \times n$ matrix is non-singular if its rank is n (full-rank).

2. Vector Spaces

2.1. Some Basic Setup.

Definition 2.1. 1 A field is a set \mathbb{F} with two binary operations \times (multiplication) and + (addition), satisfying the following axioms.

- a + b = b + a and $a \times b = b \times a$ for all $a, b \in \mathbb{F}$.
- There exists an additive identity 0 such that 0 + a = a + 0 = a for all $a \in \mathbb{F}$.
- There exists a multiplication identity 1 such that $1 \times a = a \times 1 = a$ for all $a \in \mathbb{F}$.
- For every $a \in \mathbb{F}$, there exists an element denoted -a, such that a + (-a) = 0.
- $0 \neq 1$.
- For every $a \in \mathbb{F}$ and $a \neq 0$, there exists an element denoted a^{-1} , such that $a \times (a^{-1}) = 1$.
- For every $a, b, c \in \mathbb{F}$, $a \times (b+c) = ab + ac$.

For most part of this class, we will take $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C} = \{a + bi | a, b \in \mathbb{R} \text{ and } i^2 = -1\}.$

Definition 2.2. For a field \mathbb{F} , denote $\mathbb{F}[x]$ the ring² of polynomials over \mathbb{F} .

$$\mathbb{F}[x] = \{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n | a_0, \dots, a_n \in \mathbb{F}, n \geqslant 0, x^m x^n = x^{m+n}\}\$$

Proposition 2.3. Every polynomial $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n = 0$ with complex coefficient has at least one complex solution. Note that this is not true for real polynomials.

Definition 2.4. A field \mathbb{F} is called algebraically closed if every polynomial in $\mathbb{F}[x]$ has a solution in \mathbb{F} . (By Proposition 2.3, \mathbb{C} is algebraically closed).

Proposition 2.5. The field of complex numbers \mathbb{C} is the algebraic closure of \mathbb{R} . In other words, \mathbb{C} is the smallest algebraically closed field that contains \mathbb{R} .

2.2. Vector Spaces and Subspaces. Let \mathbb{F} be a field.

Definition 2.6. A set V is called a vector space over \mathbb{F} if there exists an addition map

$$add: V \times V \rightarrow V$$

and a scalar multiplication map

$$mult : \mathbb{F} \times V \to V$$

¹You don't need to worry too much about the abstract structures of a field. The purpose of this definition is to make everything self-contained. You can basically think of a field as a set on which you can do some sort of arithmetic.

²A ring is a field, where multiplication need not to be commutative, and multiplicative identity (0) need not exists.

4 S. ZHANG

(Here \times denote the Cartesian product of sets³.) We will abbreviate them by $a(v_1, v_2) = v_1 + v_2$ and mult(a, v) = av.

Note that this definition (implicitly) requires that a vector space V is closed under addition and scalar multiplication, i.e. $v_1 + v_2 = add(v_1, v_2) \in V$ and $av = mult(a, v) \in V$.

Elements of a vector spaces are called *vectors*.

Definition 2.7. Let V be a vector space over \mathbb{F} . A subset U of V is a subspace if it is closed under addition and scalar multiplication. (In other words, a subspace is a subset that is a vector space itself.)

Definition 2.8. Let U_1, \dots, U_m be subspaces of V. Then define their sum to be

$$U_1 + \cdots + U_m = \{u_1 + \cdots + u_m | u_1 \in U_1, \cdots, u_m \in U_m\}$$

Proposition 2.9. Let U_1, \dots, U_m be subspaces of V. Then $U_1 + \dots + U_m$ is also a subspace of V, furthermore, it's the smallest subspace of V that contain all of U_1, \dots, U_m .

Definition 2.10. A sum of subspaces $U_1 + \cdots + U_m$ of V is a direct sum if every vector $v \in U_1 + \cdots + U_m$ can be uniquely written as $v = u_1 + \cdots + u_m$ where $u_i \in U_i$ for each i. When a summation is direct, we denote it as $U_1 \oplus \cdots \oplus U_m$.

2.3. Linear Combination, Span, and Dimension. Let V be a vector space over \mathbb{F} .

Definition 2.11. Let $v_1, v_2, \dots, v_n \in V$, a vector $v \in V$ is a linear combination of $\{v_1, \dots, v_n\}$ if there exists $a_1, \dots, a_n \in \mathbb{F}$ such that

$$v = a_1 v_1 + \dots + a_n v_n$$

Definition 2.12. Let v_1, v_2, \dots, v_n be a list of vectors in V, define their span to be the set of all linear combinations of v_1, \dots, v_n .

$$\operatorname{span}(v_1, \dots, v_n) = \{a_1v_1 + \dots + a_nv_n | a_1, \dots, a_n \in \mathbb{F}\}\$$

Proposition 2.13. For a list of vectors $v_1, \dots, v_n \in V$, $\operatorname{span}(v_1, \dots, v_n)$ is a subspace of V. Furthermore, it's the smallest subspace containing all of v_1, \dots, v_n .

Definition 2.14. A vector space V is said to be finite dimensional it it is the span of a finitely many vectors.

Definition 2.15. $v_1, \dots, v_m \in V$ are linearly independent if the only way to write 0 as a linear combination of v_1, \dots, v_n is

$$0 = 0v_1 + 0v_2 + \dots + 0v_n.$$

Proposition 2.16. $v_1, \dots, v_m \in V$ are linearly independent if and only if any vector $v \in \text{span}(v_1, \dots, v_m)$ can be uniquely written as a linear combination of v_1, \dots, v_n .

Definition 2.17. A list of vectors v_1, \dots, v_n is a basis of V if

- $V = \operatorname{span}(v_1, \dots, v_n)$
- v_1, \dots, v_n are linearly independent.

Proposition 2.18. v_1, \dots, v_n is a basis of V iff every vector $v \in V$ can be uniquely written as a linear combination of v_1, \dots, v_n .

³For sets A and B, defined $A \times B = \{(a,b) | a \in A, b \in B\}$

Lemma 2.19. Let $v_1, \dots, v_m \in V$ be a list of vectors that spans V, i.e. $\operatorname{span}(v_1, \dots, v_m) = V$. Then $\{v_1, \dots, v_m\}$ can be reduced to a basis of V. In other words, there exists a basis $\{w_1, \dots, w_n\}$ of V such that $w_i \in \{v_1, \dots, v_m\}$ for all i and $n \leq m$.

Lemma 2.20. Let $v_1, \dots, v_k \in V$ be linearly independent. Then there exists a basis of V in the form

$$\{v_1,\cdots,v_k,w_1,\cdots,w_m\}$$

Note that it's possible that m = 0, in the case when $\{v_1 \cdots v_k\}$ is already a basis.

Corollary 2.21. If U is a subspace of V, then there exists another subspace W such that $V = U \oplus W$.

Proposition 2.22. If v_1, \dots, v_n is a basis of V and w_1, \dots, w_m is another basis of V. Then n = m.

Definition 2.23. Define the dimension of a vector space to be the size of its basis.

Proposition 2.24. If $\{v_1, \dots, v_n\}$ linearly independent and $n = \dim(V)$, then $\{v_1, \dots, v_n\}$ is a basis.

Proposition 2.25. If U is a subspace of V, then $\dim(U) \leq \dim(V)$. Furthermore, $\dim(U) = \dim(V)$ iff U = V.

Proposition 2.26. If span $(v_1, \dots, v_n) = V$ and $n = \dim(V)$, then $\{v_1, \dots, v_n\}$ is a basis.

Theorem 2.27. Let V be a finite dimensional vector space and V_1, V_2 subspaces. Then

$$\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$$

Corollary 2.28. $\dim(V_1 \oplus V_2) = \dim(V_1) + \dim(V_2)$.

3. Linear Maps and Matrices

3.1. Linear Maps. Let V, W be vector spaces over \mathbb{F} .

Definition 3.1. A map $T: V \to W$ is linear if

- (1) T(u+v) = T(u) + T(v) for all $u, v \in V$.
- (2) $T(\lambda v) = \lambda T(v)$ for all $\lambda \in \mathbb{F}$ and $v \in V$.

Definition 3.2. We denote the set of all linear maps from $V \to W$ by Hom(V, W). And define End(V) = Hom(V, V).

Lemma 3.3. Let v_1, \dots, v_n be a basis for V and w_1, \dots, w_n a basis for W (i.e. V, W same dimension). Then there exists a unique linear map $T \in \text{Hom}(V, W)$ such that $T(v_i) = w_i$ for all i. The map is given by $T(a_1v_1 + \dots + a_nv_n) = a_1w_1 + \dots + a_nw_n$.

Proposition 3.4. The set Hom(V, W) is a vector space over \mathbb{F} , with addition and scalar multiplication given as follows.

$$(\varphi + \psi)(v) := \varphi(v) + \psi(v)$$
$$(\lambda \varphi)(v) := \lambda \varphi(v)$$

Proposition 3.5. Compositions of linear maps have the following properties.

$$(T_1T_2)T_3 = T_1(T_2T_3)$$
$$(T_1 + T_2)T_3 = T_1T_3 + T_1T_2$$

Lemma 3.6. Let $T \in \text{Hom}(V, W)$, then $T(0_V) = 0_W$.

6 S. ZHANG

3.2. Fundamental Subspaces. Let $T \in \text{Hom}(V, W)$.

Definition 3.7. The kernal (or null space) of T is $\operatorname{Ker}(T) = \{v \in V : Tv = 0\}$

Proposition 3.8. Ker(T) is a subspace.

Proposition 3.9. $Ker(T) = \{0\}$ if and only if T is injective.

Definition 3.10. The image (or range) of T is Img(T) =