Statistic

for machine learning

Tran Trong Khiem

AI lab tranning

2024/05/29

Tran Trong Khiem Statistic 1 / 24

- 1 Kullback–Leibler and Jensen–Shannon Divergence
- 2 Generative Adversarial Network (GAN)
- 3 Problems in GANs
- 4 Improved GAN Training
- Wasserstein GAN (WGAN)

Tran Trong Khiem Statistic 2 / 24

Kullback-Leibler

KL (Kullback-Leibler) divergence measures how one probability distribution p diverges from a second expected probability distribution q:

$$D_{KL}(p||q) = \int_{x} p(x) ln(\frac{p(x)}{q(x)})$$

 D_{KL} is min when q(x) = p(x) have : $D_{KL} = 0$

- KL divergence is asymmetric: $D_{KL}(q||p) \ll D_{KL}(p||q)$
- if p(x) is close to 0, q(x) is not close to 0, $D_{KL}(p||q)$ almost not depend on $q(x) => \mathbf{Bug}$.

Tran Trong Khiem Statistic 3 / 24

Jensen-Shannon Divergence

Another measure of similarity between two probability distribution:

$$D_{JS}(q||p) = \frac{1}{2}D_{\mathit{KL}}(q||\frac{q+p}{2}) + \frac{1}{2}D_{\mathit{KL}}(p||\frac{q+p}{2})$$

- JS divergence is symmetric: $D_{JS}(q||p) = D_{JS}(p||q)$
- JS divergence value is in [0,1]

Set
$$m(x) = \frac{p(x) + q(x)}{2}$$

Tran Trong Khiem Statistic 4 / 24

- 1 Kullback–Leibler and Jensen–Shannon Divergence
- 2 Generative Adversarial Network (GAN)

Tran Trong Khiem 5 / 24 Statistic

GAN consists of two models:

- A discriminator \mathcal{D} estimates the probability of a given sample coming from the real dataset. It optimized to tell the fake samples from the real ones(0 for fake, 1 for real).
- A generator G, trained to capture the real data distribution and gen samples close as posible with real distribution.

Tran Trong Khiem Statistic 6 / 24

Optimization

Given:

- p_z data distribution over noise z (usually uniform)
- p_g generator's distribution over data x
- p_r data distribution over real sample x

Model D is trying hard not to be cheated:

- Decisions over real data are accurate : maximizing $\mathbb{E}_{x \sim p_r(x)}[log(D(x))]$
- Detect fake sample gen by G : maximizing $\mathbb{E}_{x \sim p_g(x)}[log(1 D(x))]$

Model G is trying to fool D:

• Trained to increase the chances of D producing a high probability for a fake example : minimizing $\mathbb{E}_{z \sim p_z(z)}[log(1 - D(G(z)))]$

Combining together, we have **loss function**:

$$\mathcal{L}(G,D) = \mathbb{E}_{x \sim p_r(x)}[log(D(x))] + \mathbb{E}_{z \sim p_r(z)}[log(1 - D(G(z)))]$$

Tran Trong Khiem Statistic 7 / 24

What is the optimal value for D?

Goal: examine the best value for D We have loss function:

$$\mathcal{L}(G,D) = \int_{x} [p_r(x)log(D(x)) + p_g(x)log(1 - D(x))]dx$$

We need to find $D_{op} = argmax_D \mathcal{L}(G, D)$ Set $\frac{\partial \mathcal{L}(G,D)}{\partial D} = 0$, we have :

$$D^*(x) = \frac{p_r(x)}{p_r(x) + p_g(x)} \in [0, 1]$$

- generator is trained to its optimal, $p_r(x) \approx p_g(x) = D^*(x) \approx 0.5$ (Global optimal)
- Global optimal : $p_r(x) = p_g(x)$ and $D^*(x) = 1/2$, we have $\mathcal{L}(G^*, D^*) = -2log(2)$

Tran Trong Khiem Statistic 8 / 24

Generator optimal

We have:

$$egin{aligned} D_{JS}(p_r||p_g) &= rac{1}{2}D_{KL}(p_r||rac{p_r+p_z}{2}) + rac{1}{2}D_{KL}(p_g||rac{p_g+p_r}{2}) \ &= rac{1}{2}(log(4) + \mathcal{L}(G,D^*)) \end{aligned}$$

Thus, $\mathcal{L}(G, D^*) = 2D_{JS}(p_r||p_\sigma) - \log(4)$

- GAN using D_{JS} to quantifies the similarity between p_r (real data distribution) and p_g (gen data distibution).
- There are many variations of GANs in different contexts or designed for different tasks.
- Depend on task, only need to save Generator to gen data.

9 / 24 Tran Trong Khiem Statistic

- Kullback–Leibler and Jensen–Shannon Divergence
- 2 Generative Adversarial Network (GAN)
- 3 Problems in GANs
- 4 Improved GAN Training
- **5** Wasserstein GAN (WGAN)

Tran Trong Khiem Statistic 10 / 24

Nash equilibrium: situation where no player could gain by changing their own strategy (global optimal)

Goal: Two model are trained to achive global opimal Hard because:

- Each model updates its weight independently
- Updating the gradient of both models at the same time => cannot coveragence (need freeze D when train G)

Example: player 1 minimize $f_1(x) = xy$, player 2 minimize $f_2(x) = xy$ -xy(maximize f_1)

Tran Trong Khiem Statistic 11 / 24

When D is perfect:

- If $x \sim p_r$ then D(x) = 1
- If $x \sim p_g$ then D(x) = 0
- => $\mathcal{L}(D,G) = 0$ then vanishing gradient

G is also in problem:

- if **D** is bad then G does'n have accuracy feedback > cannot gen reality
- if D is very good then gradient of loss close to zezo > traning very slow

12 / 24 Tran Trong Khiem Statistic

Low dimensional supports

Define:

- manifold: n-manifold, is a topological space with the property that each point has a neighborhood that is same shape to an open subset of n-dimensional Euclidean space.
 - One-dimensional manifolds include lines and circles, but not self-crossing curves.
 - Two-dimensional manifolds are called surfaces
- p_r in low dimention manifolds
 - fundamental assumption for Manifold Learning
 - E.g:The images have a lot of restrictions to follow
- p_g lies in a **low dimensional manifolds**, too
- p_g and p_r are almost gonna be disjoint
 - bacause, p_g and p_r in low dimensional manifolds.
 - capable of finding a perfect D that separates real and fake samples 100%correctly.

Tran Trong Khiem Statistic 13 / 24

Mode collapse

- G only gen the same output
- Can fool D, but fail to to learn to represent the complex real-world data distribution.

• Lack of a proper evaluation metric

- No good sign to stop learning
- No good indicator to compare the performance of multiple models

Tran Trong Khiem Statistic 14 / 24

- 1 Kullback–Leibler and Jensen–Shannon Divergence
- 2 Generative Adversarial Network (GAN)
- 3 Problems in GANs
- 4 Improved GAN Training
- **5** Wasserstein GAN (WGAN)

Tran Trong Khiem Statistic 15 / 24

Improved GAN Training

Feature Matching

- Optimize D to check if G's output matches expected statistics of the real samples.
- $\mathcal{L} = \left| \mathbb{E}_{x \sim p_r}[f(x)] \mathbb{E}_{x \sim p_g}[f(x)] \right|_2^2$, f(x) can be mod or mean.

Minibatch Discrimination

 D able uncover the relationship between training data points in one batch, instead of each point independently.

Historical Averaging

- For boths models, add to loss function $\left|\Theta \frac{1}{t} \sum_{t} \Theta_{t}\right|^{2}$, where Θ_{i} is model parameter at i.
- Help ⊖ changing smoothly.

One-sided Label Smoothing

 When feeding the discriminator, instead of providing 1 and 0 labels, use soften values such as 0.9 and 0.1.

Tran Trong Khiem Statistic 16 / 24

Improved GAN Training

- Virtual Batch Normalization (VBN)
 - Each data sample is normalized based on a fixed batch ("reference batch")
 - Reference batch is chosen from begin and remain to the end of traing.
- Adding Noises
 - Add noise in input of D
 - Create higher chances for p_g and p_r to have overlaps.
- Use Better Metric of Distribution Similarity
 - use Wasserstein matrix

Tran Trong Khiem Statistic 17 / 24

- 1 Kullback–Leibler and Jensen–Shannon Divergence
- 2 Generative Adversarial Network (GAN)

- **5** Wasserstein GAN (WGAN)

Tran Trong Khiem Statistic 18 / 24

Wasserstein Distance is a measure of the distance between two prob-

ability distributions.Discrete case

- δ_i is the cost make $P_i = Q_i$, we have : $\delta_i = \delta_{i-1} + P_i Q_i$
- Wasserstein distance : $W = \sum_{i} |\delta_{i}|$

Tran Trong Khiem Statistic 19 / 24

Continous case

- We have
 - II(p_r, p_g) is set of all possible joint probability distributions between p_r and p_g
 - $\gamma \in II(p_r, p_g)$ describes one dirt transport plan, (as discrete case)
 - • γ(x,y) is probability of dirt should move from x to y − > make x follow same distribution as y
 - $\sum_{x} \gamma(x,y) = p_g(y)$ and $\sum_{y} \gamma(x,y) = p_r(x)$
- When moving from distribution of piont x to distribution of point y, total cost is given by:

$$\sum_{x,y} \gamma(x,y)||x-y|| = \mathbb{E}_{x,y \sim \gamma}[||x-y||]$$

 we take the minimum one among the costs of all dirt moving solutions as Wasserstein distance:

$$W(p_r, p_g) = \inf_{\gamma \sim II(p_r, p_g)} \mathbb{E}_{(x, y) \sim \gamma}[||x - y||]$$

Tran Trong Khiem Statistic 20 / 24

Why Wasserstein(W) is better than JS or KL divergence?

- When two distribution are located in lower dimensional manifolds **not overlaps**
 - W still provide a meaningful and smooth representation
- Example : $(x, y) \in P, x = 0, y \sim U(0, 1)$ $(x, y) \in Q, x = \theta, y \sim U(0, 1)$
- We have
 - W still smooth and meaningful
 - KL inifity when two distributions are disjoint
 - JS not depend at θ , and not differentiable at $\theta = 0$

Tran Trong Khiem Statistic 21 / 24

Use Wasserstein distance as GAN loss function

- **Problem:** It is **intractable** to compute **all the possible joint distributions** in $II(p_r, p_g)$ to compute $\inf_{\gamma \sim II(p_r, p_g)}$
- Lipschitz continuity?
 - Denote $|f|_L < K$ meaning f is K-Lipschiz continous.
 - $f : \mathbb{R} \to \mathbb{R}$ is K-Lipschiz countinous if :

$$|f(x_1) - f(x_2)| \le K|x_1 - x_2|$$

where K is const, $K \geq 0$, $(x_1, x_2) \in \mathbb{R}$

- Functions that are everywhere continuously differentiable is Lipschitz continuous, otherwise not
- We have: $W(p_r, p_g) = \frac{1}{K} \sup_{|f|_r < K} \mathbb{E}_{x \sim p_r}[f(x)] \mathbb{E}_{x \sim p_\sigma}[f(x)]$
 - Why have this transfomation?

Tran Trong Khiem Statistic 22 / 24

We have :
$$\mathcal{L}(p_r, p_g) = W(p_r, p_g) = \max_{w \in W} \mathbb{E}_{x \sim p_r}[f_w(x)] - \mathbb{E}_{z \sim p_r(z)}[f_w(g_\theta(z))]$$

- f come from K-Lipschitz continous family
 - f_w parameterized by w
 - D learn to find w for good f_w
- D not direct tell what sample is fake, trained to learn f_w
- **Problem**: Keep f_w remain K-Lipschitz continuous during traning.
 - After every gradient update, clamp the weights w in to small window.
- WGan is not perfect
 - Suffers from unstable training
 - If clipping window is too large then slow convergence
 - If clipping window is too small then vanishing gradients

Tran Trong Khiem Statistic 23 / 24

Use Wasserstein distance as GAN loss function

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used the default values $\alpha = 0.00005$, c = 0.01, m = 64, $n_{critic} = 5$.

Require: : α , the learning rate. c, the clipping parameter. m, the batch size. n_{critic} , the number of iterations of the critic per generator iteration.

Require: : w_0 , initial critic parameters. θ_0 , initial generator's parameters.

```
1: while \theta has not converged do
 2:
            for t = 0, ..., n_{\text{critic}} do
                  Sample \{x^{(i)}\}_{i=1}^m \sim \mathbb{P}_r a batch from the real data.
 3:
                  Sample \{z^{(i)}\}_{i=1}^m \sim p(z) a batch of prior samples.
 4:
                  g_w \leftarrow \nabla_w \left[ \frac{1}{m} \sum_{i=1}^m f_w(x^{(i)}) - \frac{1}{m} \sum_{i=1}^m f_w(g_\theta(z^{(i)})) \right]
 5:
                  w \leftarrow w + \alpha \cdot \text{RMSProp}(w, q_w)
 6:
                  w \leftarrow \text{clip}(w, -c, c)
 7:
            end for
 8:
            Sample \{z^{(i)}\}_{i=1}^m \sim p(z) a batch of prior samples.
            g_{\theta} \leftarrow -\nabla_{\theta} \frac{1}{m} \sum_{i=1}^{m} f_{w}(g_{\theta}(z^{(i)}))
10:
            \theta \leftarrow \theta - \alpha \cdot \text{RMSProp}(\theta, q_{\theta})
11:
```

12: end while

Tran Trong Khiem Statistic 24 / 24