Measuring of Entanglement Entropy in Valence Bond Quantum Monte Carlo Simulations

by

Ann Berlinsky Kallin

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Science
in
Physics

Waterloo, Ontario, Canada, 2010

© Ann Berlinsky Kallin 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

Abstract

In this thesis we present...

We explain VB QMC techniques:

- ${\sf -}$ single projector
- double projector
- loop algorithm

Look at VB EE compared to ${\rm vN}$

Look at Renyi EE

Area Laws

Acknowledgements

I would like to thank all the people who made this possible.

Contents

List of Tables				
Li	st of	Figures	viii	
1	Intr	oduction	1	
	1.1	Entanglement Entropy	1	
		1.1.1 The von Neumann Entanglement Entropy	1	
		1.1.2 The Area Law	1	
	1.2	something else to go in the introduction?	1	
		1.2.1 the VB QMC stuff?	1	
2	Qua	antum Monte Carlo in the Valence Bond Basis	2	
	2.1	Single Projector	2	
	2.2	Double Projector	2	
	2.3	Loop Moves	2	
3	Vale	ence Bond Entanglement Entropy	3	
	3.1	One Dimension	3	
	3.2	Approaching Two Dimensions	3	
	3.3	The Area Law	3	

4	Measuring Rényi Entanglement Entropy				
	4.1	The Swap Operator	4		
	4.2	1D Results	4		
	4.3	The Ratio Operator	4		
	4.4	2D Results	4		
	4.5	The Area Law	4		
5 Conclusions					
APPENDICES					
Re	eferences 7				

List of Tables

List of Figures

Introduction

- 1.1 Entanglement Entropy
- 1.1.1 The von Neumann Entanglement Entropy
- 1.1.2 The Area Law
- 1.2 something else to go in the introduction?
- 1.2.1 the VB QMC stuff?

Quantum Monte Carlo in the Valence Bond Basis

- 2.1 Single Projector
- 2.2 Double Projector
- 2.3 Loop Moves

Valence Bond Entanglement Entropy

- 3.1 One Dimension
- 3.2 Approaching Two Dimensions
- 3.3 The Area Law

Measuring Rényi Entanglement Entropy

- 4.1 The Swap Operator
- 4.2 1D Results
- 4.3 The Ratio Operator
- 4.4 2D Results
- 4.5 The Area Law

Conclusions

APPENDICES

Bibliography

[1] Anders W. Sandvik. Ground state projection of quantum spin systems in the valence-bond basis. *Phys. Rev. Lett.*, 95(20):207203, Nov 2005.