2/2

2/2

2/2

2/2

-1/2

0/2

+191/1/49+

QCM T	THLR 2
Nom et prénom, lisibles :	Identifiant (de haut en bas) :
PEGGRICA-LACHMANN	
Theodore	2 □3 □4 □5 □6 □7 □8 □9
	2 0 1 2 3 4 5 6 7 8 9
olutôt que cocher. Renseigner les champs d'identité. sieurs réponses justes. Toutes les autres n'en ont qu'i olus restrictive (par exemple s'il est demandé si 0 es	et: les 1 entêtes sont +191/1/xx+···+191/1/xx+.
z.	
🌉 faux 🗌 vrai	$\Box L(e) = L(f) \qquad \qquad \textcircled{8} L(e) \subseteq L(f)$
Q.3 Pour toute expression rationnelle e , on a $e^* \equiv$	\boxtimes $L(e) \supseteq L(f)$ \square $L(e) \nsubseteq L(f)$
e*)*.	Q.8 Soit Σ un alphabet. Pour tout $a \in \Sigma$, $L_1, L_2 \subseteq$
🗌 faux 🎇 vrai	Σ^* , $n > 1$, on a $L_1^n = L_2^n \Longrightarrow L_1 = L_2$.
Q.4 Pour toutes expressions rationnelles e, f , on a $(e+f)^* \equiv e^*(e+f)^*$.	🗌 vrai 🏿 faux
👪 vrai 🔲 faux	Q.9 L'expression Perl '([-+]*[0-9A-F]+[-+/*])*[-+]*[0-9A-F]+' n'engendre pas :
Q.5 Pour toutes expressions rationnelles e, f , on a $(e+f)^* \equiv (e^*f^*)^*$. Solution faux vrai	☐ '-+-1+-+-2' ☐ '0+1+2+3+4+5+7+8+9' ☐ 'DEADBEEF' ☐ '(20+3)*3'
Q.6 Un langage quelconque peut n'être inclus dans aucun langage dénoté par une expression rationnelle	Q.10 \triangle Soit A, L, M trois langages. Parmi les propositions suivantes, lesquelles sont suffisantes pour garantir $L = M$?
 □ n'est pas nécessairement dénombrable ☑ est toujours inclus (⊆) dans un langage rationnel □ peut avoir une intersection non vide avec son 	$\{a\} \cdot L = \{a\} \cdot M \qquad \qquad \forall n > 1, L^n = M^n$ $ AL = AM \qquad Aucune de ces réponses n'est correcte.$

Fin de l'épreuve.