### CS4102 Algorithms

Nate Brunelle

Fall 2017

Warm up: What is a Decision Problem?

### Max Independent Set



Find the largest set of non-adjacent nodes



### k Independent Set



Is there a set of non-adjacent nodes of size k?



### Maximum Independent Set

- Independent set:  $S \subseteq V$  is an independent set if no two nodes in S share an edge
- Maximum Independent Set Problem: Given a graph G = (V, E) find the maximum independent set S

### k Independent Set

- Independent set:  $S \subseteq V$  is an independent set if no two nodes in S share an edge
- k Independent Set Problem: Given a graph G = (V, E) and a number k, determine whether there is an independent set S of size k

#### Min Vertex Cover



#### k Vertex Cover



#### Minimum Vertex Cover

- Vertex Cover:  $C \subseteq V$  is a vertex cover if every edge in E has one of its endpoints in C
- Minimum Vertex Cover: Given a graph G = (V, E) find the minimum vertex cover C

#### k Vertex Cover

- Vertex Cover:  $C \subseteq V$  is a vertex cover if every edge in E has one of its endpoints in C
- k Vertex Cover: Given a graph G = (V, E) and a number k, determine whether there is a vertex cover C of size k

#### **Problem Types**

- Decision Problems: If we can solve this
  - Is there a solution?
    - Output is True/False
  - Is there a vertex cover of size k?
- Search Problems: Then we can solve this
  - Find a solution
    - Output is complex
  - Give a vertex cover of size k
- Verification Problems:
  - Given a potential solution, is it valid?
    - Output is True/False
  - Is this a vertex cover of size k?

# Using a k-VertexCover decider to build a searcher

- Set i = k 1
- Remove nodes (and incident edges) one at a time
- Check if there is a vertex cover of size i
  - If so, then that removed node was part of the k vertex cover, set i=i-1
  - Else, it wasn't









#### Reduction

#### *k*-VertexCover Solver



Solution for *A* 





*k*-VertexCover Decider



Using any Algorithm for **B** 

Solution for **B** 



### Today's Keywords

- Reductions
- NP-Completeness
- Vertex Cover
- Independent Set
- 3-SAT
- Clique

### **CLRS** Readings

• Chapter 34

#### Homeworks

- HW8 Released
  - Due Wednesday 5/2 at 11pm
  - Written (use LaTeX)
  - Reductions

#### P vs NP

- P
  - Deterministic Polynomial Time
  - Problems solvable in polynomial time
    - $O(n^p)$  for some number p
- NP
  - Non-Deterministic Polynomial Time
  - Problems verifiable in polynomial time
    - $O(n^p)$  for some number p
- Open Problem: Does P=NP?
  - Certainly P ⊆ NP



### k-Independent Set is NP

• To show: Given a potential solution, can we verify it in  $O(n^p)$ ? [n = V + E]

How can we verify it?

- 1. Check that it's of size k O(V)
- 2. Check that it's an independent set  $O(V^2)$

#### k-Vertex Cover is NP

• To show: Given a potential solution, can we verify it in  $O(n^p)$ ? [n = V + E]

How can we verify it?

- 1. Check that it's of size k O(V)
- 2. Check that it's a Vertex Cover O(E)

#### **NP-Hard**

- How can we try to figure out if P=NP?
- Identify problems at least as "hard" as NP
  - If any of these "hard" problems can be solved in polynomial time, then all NP problems can be solved in polynomial time.
- Definition: NP-Hard:
  - -B is NP-Hard if  $\forall A \in NP$ ,  $A \leq_p B$
  - $-A \leq_p B$  means A reduces to B in polynomial time



#### NP-Hardness Reduction



### NP-Complete

- "Together they stand, together they fall"
- Problems solvable in polynomial time iff ALL NP problems are
- NP-Complete = NP ∩ NP-Hard
- How to show a problem is NP-Complete?
  - Show it belongs to NP
    - Give a polynomial time verifier
  - Show it is NP-Hard
    - Give a reduction from another NP-H problem

We now just need a FIRST NP-Hard problem



### NP-Completeness



### NP-Completeness



#### 3-SAT

- Shown to be NP-Hard by Cook and Levin (independently)
- Given a 3-CNF formula (logical AND of clauses, each an OR of 3 variables), Is there an assignment of true/false to each variable to make the formula true?

$$(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$$
Clause
$$x = true$$

$$y = false$$

$$z = false$$

$$u = true$$

### k-Independent Set is NP-Complete

#### 1. Show that it belongs to NP

Give a polynomial time verifier (slide 21)

#### 2. Show it is NP-Hard

- Give a reduction from a known NP-Hard problem
- Show  $3SAT ≤_p kIndSet$

# $3SAT \leq_p kIndSet$



#### Instance of 3SAT to Instance of kIndSet

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$ 



For each clause, produce a triangle graph with its three variables as nodes

#### Connect each node to all of its opposites

Let k = number of clausesThere is a k-IndSet in this graph, iff there is a satisfying assignment

### kIndSet $\Rightarrow$ Satisfying Assignment

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$ 



One node per triangle is in the Independent set: because we can have exactly k total in the set,

and 2 in a triangle would be adjacent

If x is selected in some triangle,  $\bar{x}$  is not selected in any triangle: Because every x is adjacent to every  $\bar{x}$ 

Set the variable which each included node represents to "true"

z = false

u = true

### Satisfying Assignment $\Rightarrow k$ IndSet

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$ 



Use one true variable from the assignment for each triangle

z = false

u = true

The independent set has k nodes, because there are k clauses

If any variable x is true then  $\bar{x}$  cannot be true

# $3SAT \leq_{p} kIndSet$



### k-Vertex Cover is NP-Complete

#### 1. Show that it belongs to NP

Give a polynomial time verifier (slide 22)

#### 2. Show it is NP-Hard

- Give a reduction from a known NP-Hard problem
- We showed  $kIndSet ≤_p kVertCov$ 
  - (Last Class)

## $kIndSet \leq_p kVertCov$



### k-Clique Problem

 Clique: A complete subgraph

• *k*-Clique Problem:

– Given a graph G and a number k, is there a clique of size k?



### k-Clique is NP-Complete

- 1. Show that it belongs to NP
  - Give a polynomial time verifier
- 2. Show it is NP-Hard
  - Give a reduction from a known NP-Hard problem
  - We will show  $3SAT \leq_p kClique$

### *k*-Clique is NP

- 1. Given a Graph and a potential solution
- 2. Check that the solution has k nodes
- 3. Check that every pair of nodes share an edge



# $3SAT \leq_p kClique$



#### Instance of 3SAT to Instance of kClique

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$ 



For each clause, produce a node for each of its three variables

Connect each node to all non-contradictory nodes in the other clauses (i.e., anything that's not its negation)

Let k = number of clausesThere is a k-Clique in this graph, iff there is a satisfying assignment

### kClique $\Rightarrow$ Satisfying Assignment

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$ 



There are k triplets in the graph, and no two nodes in the same triplet are adjacent

To have a k-Clique, must have one node from each triplet

Cannot select a node for both a variable and its negation

Therefore selection of nodes is a satisfying assignment

### Satisfying Assignment $\Rightarrow k$ Clique

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z}) \land (z \lor \overline{x} \lor u) \land (\overline{x} \lor \overline{y} \lor \overline{z})$ 



Select one node for a true variable from each clause

There will be k nodes selected

We can't select both a node and its negation

All nodes will be non-contradictory, so they will be pairwise adjacent

# $3SAT \leq_{p} kClique$

3SAT*kClique* Make a triplet per clause, connect non-contraditcory nodes among clauses If This could be done in Then This could be done **Polynomial time** in polynomial time Solution for 3*SAT* Solution for *kClique* Assign each variable selected to True Reduction