Quiz 2

Name and KAUST ID

November 14, 2022

- 1. Consider the following statements. Judge whether each of them is true or false. You don't need to explain the reason.
 - For (ϵ, δ) -DP algorithms, the privacy budget δ must satisfy $\delta \ll \frac{1}{n}$. Equivalently, there is an $(\epsilon = 0, \delta)$ -DP algorithm such that if $\delta \gg \frac{1}{n}$ then with high probability its output will reveal individuals information.
 - Consider the following the statement: For a mechanism $A: \mathcal{X}^n \mapsto \mathcal{Y}$, a pair of neighboring data $D \sim D'$, defines the sets

Good =
$$\{y \in \mathcal{Y} : \frac{\mathbb{P}(A(D) = y)}{\mathbb{P}(A(D') = y)} \le e^{\epsilon}\}, \text{Bad} = \mathcal{Y} - \text{Good}.$$
 (1)

Then A is (ϵ, δ) -DP if and only if $\mathbb{P}(A(D) \in \text{Bad}) \leq \delta$ for every pair of neighboring datasets. Note that is A(D) and A(D') are continuous distributions then we just replace the probability to the probability density functions.

- For a given privacy budget ϵ , the error of Laplacian mechanism to achieve ϵ -DP is always smaller than the error of Gaussian mechanism to achieve $(\epsilon, \delta = \frac{1}{n})$ -DP.
- We know that Differential privacy has the subsampling property. However, different subsampling approaches may lead different level of privacy guarantees.
- Like the approximate (or (ϵ, δ)) DP, Rényi-DP also has a similar form the advanced composition theorem.