UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE COMPUTAÇÃO

MO420/MC908: Tópicos em Otimização Combinatória Prof. Cid Carvalho de Souza - IC/UNICAMP 10. Trabalho Prático - 20. semestre de 2012

Otimização Combinatória com Relaxação Lagrangiana para o Problema de Designação Generalizada (GAP)

Aluno: Diego Rodrigo Hachmann RA: 134047

CAMPINAS

Resumo

1 Introdução ¹

O Problema Designação Generalizada (Generalized Assignment Problem, em inglês) (GAP) consiste em obter o maior ganho atribuindo M atividades a N agentes de forma que cada atividade é executada por no máximo um agente, respeitando a capacidade limite dos agentes. Trata-se de um problema de otimização combinatória \mathcal{NP} -difícil que aparece em várias situações práticas como alocação de recursos, atribuição de tarefas de desenvolvimento a programadores, distribuição de tarefas a computadores em redes de processamento, entre outras.

2 Modelo PLI para o GAP ²

Seja M o conjunto de m tarefas, N o conjunto de n agentes (m > n), c_{ij} e a_{ij} o ganho e a carga, respectivamente, por atribuir a atividade i ao agente j e b_j a capacidade do agente j. Define-se a variável binária x_{ij} com valor um se a atividade i for atribuída ao agente j e zero caso contrário. A partir disso, pode-se modelar o gap como descrito a seguir:

$$\max \ z = \sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij} \tag{1}$$

s.a.
$$\sum_{i \in N} x_{ij} \le 1$$
, $\forall i \in M$ (2)

$$\sum_{j \in N} a_{ij} x_{ij} \le b_j \quad \forall j \in N$$
 (3)

$$x \in \mathbb{B}^{mxn}$$
 (4)

onde as restrições 3 garantem que cada tarefa é atribuída a até um agente e as restrições 3 limitam a carga atribuída a cada agente à sua respectiva capacidade.

3 Relaxação Lagrangiana para o GAP

Abaixo são apresentadas as três relaxações lagrangianas tratadas neste trabalho, bem como suas três duais lagrangianas. Também são apresentados os gradientes e as soluções equivalentes aos problemas duais.

¹Trecho retirado do enunciado do trabalho

²Trecho retirado do enunciado do trabalho

3.1 Relaxação 1: Dualizar restrições (2) e (3)

• Primal Lagrangiano:

$$w^{1}(u,v) = \max_{x \in \mathbb{B}^{m \times n}} \{ \sum_{i \in M} \sum_{j \in N} (c_{ij} - u_{i} - a_{ij}v_{j}) x_{ij} + \sum_{i \in M} u_{i} + \sum_{j \in N} v_{j}b_{j} \}$$
 (5)

• Gradientes:

$$G_{\mathfrak{u}}: 1 - \sum_{j \in \mathbb{N}} x_{ij}, \quad \forall i \in M$$
 (6)

$$G_{\nu}: b_{j} - \sum_{i \in \mathbb{N}} a_{ij} x_{ij} \quad \forall j \in \mathbb{N}$$
 (7)

• Dual Lagrangiano:

$$w_{LD}^{1} = \min\{w^{1}(u, v) : u, v >= 0\}$$
(8)

• Equivalente Dual Lagrangiano:

$$w_{LD}^{1} = \max\{\sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij}\}$$

$$(9)$$

$$s.a.: \sum_{i \in N} x_{ij} \le 1, \quad \forall i \in M$$
 (2)

$$\sum_{j \in N} a_{ij} x_{ij} \le b_j \quad \forall j \in N \tag{3}$$

$$x \in \mathbb{R}_{+}^{mxn}$$
 (10)

3.2 Relaxação 2: Dualizar restrições (2)

• Primal Lagrangiano:

$$w^{2}(u) = \max\{\sum_{i \in M} \sum_{j \in N} (c_{ij} - u_{i})x_{ij} + \sum_{i \in M} u_{i}\}$$
(11)

$$s.a: \sum_{i \in N} a_{ij} x_{ij} \le b_j \quad \forall j \in N \tag{3}$$

$$x \in \mathbb{B}^{mxn}$$
 (4)

• Gradiente:

$$G_{u}: 1 - \sum_{i \in N} x_{ij}, \quad \forall i \in M$$
 (6)

• Dual Lagrangiano:

$$w_{LD}^2 = \min\{w^2(u) : u >= 0\}$$
 (12)

• Equivalente Dual Lagrangiano

$$w_{LD}^2 = \max\{\sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij}\}$$

$$\tag{13}$$

$$s.a: \sum_{j \in N} x_{ij} \le 1, \quad \forall i \in M$$
 (2)

$$x \in \mathbb{B}^{mxn} : \sum_{j \in N} a_{ij} x_{ij} \le b_j, \ \forall j \in N$$
 (14)

3.3 Relaxação 3: Dualizar restrições(3)

• Primal Lagrangiano

$$w^{3}(u) = \max \sum_{i \in M} \sum_{j \in N} (c_{ij} - a_{ij}v_{j})x_{ij} + \sum_{j \in N} v_{j}b_{j}$$
 (15)

s.a.
$$\sum_{j \in N} x_{ij} \le 1$$
, $\forall i \in M$ (2)

$$x \in \mathbb{B}^{mxn}$$
 (4)

• Gradiente:

$$G_{v}: b_{j} - \sum_{j \in N} a_{ij} x_{ij} \quad \forall j \in N$$
 (7)

• Dual Lagrangiano:

$$w_{\rm LD}^3 = \min\{w^3(v) : v >= 0\}$$
 (16)

• Equivalente Dual Lagrangiano:

$$w_{LD}^{3} = \max\{\sum_{i \in M} \sum_{j \in N} c_{ij} x_{ij}\}$$

$$(17)$$

$$s.a: \sum_{i \in N} a_{ij} x_{ij} \le b_j \quad \forall j \in N$$
 (3)

$$\sum_{i \in N} x_{ij} \le 1, \quad \forall i \in M \tag{2}$$

$$x \in \mathbb{R}_{+}^{mxn} \tag{10}$$

4 Problema da Mochila

O problema da mochila foi utilizado para resolver o primal Lagrangiano (w^2) da segunda relaxação. Apesar deste problema estar na classe \mathcal{NP} -Difícil, existem algoritmos que, na prática, se mostram bastante eficientes para sua resolução. Utilizando Programação Dinâmica, é possível projetar um algoritmo de tempo pseudo-polinomial, de forma sua complexidade depende, além do tamanho da entrada, dos valores da entrada. O algoritmo utilizado neste trabalho é inspirado naquele apresentado em [2] e possui complexidade O(nP) onde n é o número de itens a ser considerado no problema e P é a capacidade da mochila. Não é difícil perceber que, apesar do pertencer a classe de problemas que não se conhece algoritmos polinomiais para resolvê-los, ele é tratável computacionalmente para valores razoáveis. Por exemplo, se $P = \mathcal{O}(n^2)$, então o algoritmo terá tempo $\mathcal{O}(n^3)$.

5 Características do ambiente

Os testes foram realizados em um notebook com processador Core 2 duo t5760 de 1.8GHz e com 4GHz de memória RAM.

6 Limitantes primais e duas encontrados

Na tabela 1 são apresentados os limitantes primais e duas encontrados com o método do subgradiente para as 18 instâncias de teste consideradas neste trabalho. O tempo é dado em milissegundos e o erro máximo da solução viável (primal) em relação a solução ótima é dado em porcentagem, fazendo (dual-primal)/dual. OPT significa que o resultado encontrado foi ótimo. O número de iterações não é dado aqui, mas a Tabela 2 pode ser consultada para se ter uma idéia da quantidade de iterações x tempo de execução.

Instância	Relaxação	Tempo Total $(10^{-3}s)$	Valor Primal	Valor Dual	Erro (%)	Tempo Primal $(10^{-3}s)$	Tempo Dual $(10^{-3}s)$
a05100	1	952	4456	4462	0.13	63	187
a05100	2	687	4456	4456	OPT	188	687
a05100	3	93	4456	4456	OPT	46	93
a05200	1	842	8788	8788	OPT	15	842
a05200	2	3869	8788	8788	OPT	47	3869
a05200	3	0	8788	8788	OPT	0	0
a10100	1	640	4698	4706	0.17	16	172
a10100	2	764	4700	4700	OPT	686	764
a10100	3	889	4700	4702	0.04	93	140
a10200	1	515	9413	9413	OPT	250	515
a10200	2	3525	9413	9413	OPT	1404	3525

Instância	Relaxação	Tempo Total (10 ⁻³ s)	Valor Primal	Valor Dual	Erro (%)	Tempo Primal (10 ⁻³ s)	Tempo Dual $(10^{-3}s)$
a10200	3	187	9413	9413	OPT	187	0
a20100	1	421	4857	4860	0.06	31	78
a20100	2	687	4857	4857	OPT	109	687
a20100	3	500	4857	4858	0.02	63	63
a20200	2	1514	9666	9669	0.03	780	437
a20200		4493	9666	9666	OPT	2075	4493
a20200	3	1544	9666	9667	0.01	249	218
b05100	1	717	3821	4420	13.55	0	125
b05100	2	3058	4035	4042	0.17	874	624
b05100	3	640	4016	4054	0.93	62	125
b05200	1	2699	8259	8774	5.86	32	734
b05200	2	14072	8507	8511	0.04	3885	2980
b05200	3	2606	8495	8514	0.22	562	562
b10100	1	453	4558	4679	2.58	32	94
b10100	2	2964	4631	4633	0.04	1388	795
b10100	3	406	4627	4639	0.25	47	78
b10200	1	1607	9070	9372	3.22	156	484
b10200	2	11841	9255	9257	0.02	3183	2590
b10200	3	1451	9239	9262	0.24	484	328
b20100	1	343	4735	4880	2.97	0	94
b20100	2	2886	4817	4818	0.02	640	702
b20100	3	374	4800	4832	0.66	172	78
b20200	1	1139	9574	9710	1.40	78	328
b20200	2	11466	9674	9682	0.08	3135	2745
b20200	3	1045	9649	9690	0.42	358	265
c05100	1	671	4302	4480	3.97	16	172
c05100	2	640	4411	4411	OPT	468	640
c05100	3	702	4397	4416	0.43	93	109
c05200	1	2699	8126	8674	6.31	16	640
c05200	2	14118	8348	8352	0.04	9360	3042
c05200	3	2558	8337	8356	0.22	546	484
c10100	1	405	4442	4649	4.45	15	124
c10100	2	2730	4523	4538	0.33	1685	702
c10100	3	374	4514	4548	0.74	109	93
c10200	1	1638	9070	9351	3.00	15	546
c10200	2	11669	9251	9260	0.09	4758	2824
c10200	3	1419	9233	9267	0.36	265	280

Instância	Relaxação	Tempo Total $(10^{-3}s)$	Valor Primal	Valor Dual	Erro (%)	Tempo Primal $(10^{-3}s)$	Tempo Dual $(10^{-3}s)$
c20100	1	328	4688	4866	3.65	16	94
c20100	2	2730	4787	4791	0.08	920	826
c20100	3	359	4758	4808	1.04	15	62
c20200	1	1248	9406	9716	3.19	141	390
c20200	2	11060	9593	9628	0.36	8549	2933
c20200	3	998	9608	9641	0.34	296	156

Tabela 1: Instâncias e Resultados

7 Resultados Ótimos

Abaixo, na tabela 2, são apresentadas as instâncias que obtiveram valores ótimos para as 18 instâncias de teste. Como era se de esperar, a relaxação 2 apresentou melhores resultados, pois seu dual é mais forte que o dual das outras relaxações (veja Seção 3).

Instância Relaxação Valor Otimo Iterações Tempo (milisegundos) a05200 a10200 a05100 a05200 a10100 a10200 a20100 a20200 c05100 a05200

Tabela 2: Instâncias com valores ótimos

8 Heurísticas Primáis

a05100

a10200

8.1 Heurística 1: Uma Tarefa - $\mathcal{O}(mn)$

Esta heurística recebe uma solução que respeita as restrições (3), mas possivelmente não respeita as restrições (2), de modo que algumas tarefas podem estar alocadas a mais de

um agente. Esta solução, possivelmente não viável, é transformada em uma solução viável através da heurística apresentado no Algoritmo 1. Para todas as m tarefas é realizada uma busca entre todos os seus n possíveis agentes, de forma que a complexidade da heurística é $\mathcal{O}(mn)$.

```
Entrada: Solução (possívelmente) não viável - não respeita as restrição (2) Saída: Solução viável 
Para cada Tarefa T_i que estiver alocada a mais que um agente faça 
A = Agente alocado a tarefa T_i que tiver maior ganho; 
Atribua à tarefa T_i apenas o agente A, eliminando as outras atribuições fim
```

Algoritmo 1: Heurística 1

8.2 Heurística 2: Capacidade - $\mathcal{O}(mnP)$

Esta heurística recebe uma solução que respeita as restrições (2), mas possivelmente não respeita as restrições (3), de modo que alguns agentes podem estar alocados a uma quantidade de tarefas que excedam sua carga. O Algoritmo 2 mostra a heurística. Para todos os n agentes é resolvido o problema da mochila com m tarefas e carga máxima b_j , de forma que a complexidade do algoritmo é $\mathcal{O}(mnP)$, onde P é o peso da maior carga entre todos os agentes.

Algoritmo 2: Heurística 2

8.3 Heurística 3: Geral - $\mathcal{O}(mn)$

Ao contrário das outras heurísticas anteriores, esta receberá uma solução viável e tentará melhorá-la. Quando aplicamos as heurísticas 1 e 2, pode acontecer de ficarmos com tarefas sem agente atribuído e agentes que ainda podem executar alguma tarefa pois não atingiu sua carga máxima. O Algoritmo 3 mostra a heurística. Para todas as m tarefas é feito uma busca em todos os n agentes, de forma que o complexidade do algoritmo é $\mathcal{O}(mn)$.

```
Entrada: Solução viável
Saída: Solução viável (possívelmente) melhorada
Para cada Tarefa T<sub>i</sub> sem agente faça
S = Agentes que ao serem alocados à tarefa T<sub>i</sub> não excedam suas cargas ;
Se S != ∅ então
Atribua a tarefa Ti ao agente a ∈ S com o maior ganho;
fim
```

Algoritmo 3: Heurística 3

9 Vericação de Otimilidade

As soluções primais para o GAP são solução inteiras viáveis baseadas em heurísticas que dão um limite inferior para a solução ótima. Por outro lado, as soluções duais apresentam valores reais e são obtidas da relaxação lagrangiana, representando um limite superior para a solução ótima. Como estamos interessados nas soluções inteiras para o problema, não é difícil perceber que podemos ignorar a a parte fracionária da solução dual e ficar apenas com a parte inteira. Por exemplo, se a solução do dual diz que o solução ótima não poderá superar o valor de 40.3, podemos afirmar que a solução ótima pode ter valor máximo igual a 40, pois procuramos soluções inteiras. No momento em que os valores das soluções primais e duais (parte inteira) forem iguais, então alcançamos o valor ótimo. Por exemplo, se o valor primal diz que a solução ótima é maior ou igual a 40, ao passo que o dual diz que solução ótima é menor ou igual a 40, então a solução ótima deve, necessariamente, ser 40. Os resultados (18) e (19) mostram estas duas ideias.

$$\chi < \chi^* < \chi \Rightarrow \chi^* \text{ \'e \'otimo}$$
 (18)

$$x^* = primal = \lfloor dual \rfloor \Rightarrow x^* \text{ \'e \'otimo}$$
 (19)

10 Algoritmos das relaxações

Nesta seção são apresentado os principais passos que cada iteração das relaxações executam. Primeiro é resolvido o dual lagrangiano e após são aplicadas heurísticas para obter uma solução primal com base na solução dual.

10.1 Relaxação 1

Resolve o dual lagrangiano por inspeção - $\mathcal{O}(mn)$ Aplica a heurística Capacidade (Algoritmo 2) - $\mathcal{O}(mnP)$ Aplica a heurística Uma Tarefa (Algoritmo 1) - $\mathcal{O}(mn)$ Aplica a heurística Geral (Algoritmo 3) - $\mathcal{O}(mn)$ Algoritmo 4: Relaxação 1 - Passos principais

10.2 Relaxação 2

Resolve o dual através de n problemas da mochila - $\mathcal{O}(mnP)$ Aplica a heurística Uma Tarefa (Algoritmo 1) - $\mathcal{O}(mn)$ Aplica a heurística Geral (Algoritmo 3) - $\mathcal{O}(mn)$ Algoritmo 5: Relaxação 2 - Passos principais

10.3 Relaxação 3

Resolve o dual lagrangiano por inspeção - $\mathcal{O}(mn)$ Aplica a heurística Capacidade (Algoritmo 2) - $\mathcal{O}(mnP)$ Aplica a heurística Geral (Algoritmo 3) - $\mathcal{O}(mn)$ Algoritmo 6: Relaxação 3 - Passos principais

11 Análise Comparativa dos Tempos

Analisando os passos principais das 3 relaxações apresentadas da Seção 10, percebemos que todas as elas tem complexidade $\mathcal{O}(mnP)$. Porém, na relaxação 2 o limite é apertado $(\Theta(mnP))$, pois o problema da mochila é resolvida para todos os agentes com sua respectiva capacidade e com todas as tarefas possíveisl. Já os limites $\mathcal{O}(mnP)$ obtidos nas relaxações 1 e 3 são advindos da heurística Capacidade e não são apertados, pois o problema da mochila não é resolvido para todas as tarefas de cada agente, mas somente para as tarefas atribuídas na solução dual. Como o dual lagrangiano tende a tornar "mais viável" as soluções duais a cada passo, em geral o número de itens atribuídos para cada agente é bastante inferior ao número total de itens da instância do problema.

Comparando os passos das relaxações 1 e 3, eles possuem a mesma complexidade assintótica, porém a relaxação 3 possui escondida na complexidade um passo a mais que a relaxação 3 que executa em $\mathcal{O}(mn)$. Este resultado teórico pode ser visto, na prática, através da dos resultados apresentados na Tabela 1. Como era de se esperar, os tempos obtidos na relaxação 2 foram bem superiores aos obtidos nas outras relaxações (entre 5 e 10 vezes). Já os tempos encontrados na relaxação 1 foram ligeiramente maiores que os encontrados na relaxação 3.

12 Parâmetros do Método do Subgradiente (MS)

A Tabela3 mostra os parâmetros utilizados pelo método do subgradiente neste trabalho. A seguir discutimos a alteração e o impacto na mudança de alguns destes parâmetros. Mudamos apenas um parâmetro por vez, enquanto os restantes permanecem igual aos da tabela 3.

Tabela 3: Parâmetros MS

Parâmetro	Valor	Significado
REPETITIONS	2000	Número de repetições do MS
MULTIPL_DUAL	1.05	Multiplicador do dual no cálculo do passo
INIT_PI	2.00	Valor inicial do PI (PI) $0 < \pi < 2$
INIT_V	0.00	Valor inicial do vetor V (todos elementos)
INIT_U	0.00	Valor inicial do vetor U (todos elementos)
STEPS_CHANGE_PI	30	Qntd. de iterações sem melhora no dual p/ mudar o PI
ADJUST_SUBGRADIENT	YES	G[i] = 0 se, $u[i] = 0$ && $G[i] < 0$
NORMALIZE_SUBGRADIENT	YES	Normaliza, quando houver mais que um subgradiente

12.1 Multiplicador do limitante superior

Segundo Beasley [1], devido a proximidade dos limitantes duais e primais quando eles se encontram perto um do outro, multiplicar o valor do melhor limite superior por 1.05 (veja Equação 20), na hora de calcular o tamanho do passo, faz com que o método do subgradiente obtenha resultados melhores. Foram realizados testes com multiplicadores 1.00, 1.05 e 1.10. Comparados ao multiplicador 1.05, os multiplicadores 1.00 e 1.10 obtiveram melhores resultados em aproximadamente 20% dos casos de teste (3 relaxações para cada uma das 18 instâncias) e uma piora nos resultados em aproximadamente 30% dos casos. Nos outros 50% os resultados foram iguais. Quando havia divergência nos valores obtidos, essa representava menos de 1% de erro. A quantidade de soluções ótimas obtidas foram as mesmas, a menos do multiplicador 1.00 para a relaxação 2 na instância c05100. Concluímos assim, que a o multiplicador 1.05 foi ligeiramente melhor que os multiplicadores 1.00 e 1.10 para o problema GAP com as instâncias testadas.

$$T = \frac{\pi (Z_{UB} - Z_{LB})}{\sum_{i=1}^{m} G_i^2}$$
 (20)

12.2 Ajuste do Subgradiente

Beasley [1], recomenda atualizarmos os valores de G_i antes de calcularmos o valor de G_i^2 na equação 20, conforme Equação 21. Nos testes realizados, os resultados obtidos com e sem o uso do ajuste do gradiente tiveram diferença de erro menor que 0.2%, sendo que hora uma instância dava um resultado um pouco mais preciso (de algumas unidades), hora outra, e em muitos casos os valores eram iguais. Concluímos assim que para o problema GAP com as instâncias de testes utilizadas, o ajuste de subgradiente teve pouco impacto.

$$G_i = 0$$
, if $\lambda_i = 0$ and $G_i < 0$ (21)

12.3 Normalização do Subgradiente

O método do subgradiente procura penalizar as soluções inviáveis encontradas em cada iteração, com a esperança que, com a penalização, ela se torna "mais viável" nas próximas iterações. Quando relaxamos mais que dois tipos de equações, como é o caso da relaxação 1, um subgradiente pode influenciar mais do que o outro, apesar de os dois serem igualmente importantes do ponto de vista da viabilidade. O que Beasley recomenda em [1], é ajustar os diferentes subgradientes de forma que o lado direito da igualdade tenha valor igual a 1.

Na relaxação 1, a restrição 2 já possui o lado direito limitado a uma unidade e epenas mudamos os valores do gradiente da restrição 3, dividindo eles por b_j . Foram realizados testes com e sem o ajuste do subgradiente na relaxação 1. Os resultados das instâncias são apresentados na Tabela 4. O método do subgradiente sem ajuste obteve resultados piores (ou iguais) em todas as instâncias, sendo que na instância a10100, o erro aumentou mais de 3x. Concluímos assim que o ajuste do subgradiente para a relaxação 1 do problema GAP, com as instâncias testadas, proveu uma melhora significativa nos resultados.

Tabela 4: Resultados obtidos com e sem ajuste do subgradiente para a relaxação 01

Instância	Primal (sem)	Primal(com)	Dual(sem)	Dual(com)	Erro % (sem)	Erro % (com)
a05100	4456	4456	4465	4462	0.2	0.13
a05200	8788	8788	8788	8788	OPT	OPT
a10100	4700	4698	4729	4706	0.62	0.17
a10200	9413	9413	9413	9413	OPT	OPT
a20100	4857	4857	4867	4860	0.21	0.06
a20200	9666	9666	9680	9669	0.14	0.03
b05100	4016	3821	4827	4420	20.19	15.68
b05200	8490	8259	9777	8774	15.16	6.24
b10100	4624	4558	4830	4679	4.46	2.65
b10200	9228	9070	9983	9372	8.18	3.33
b20100	4798	4735	4982	4880	3.83	3.06
b20200	9642	9574	9885	9710	2.52	1.42
c05100	4409	4302	4785	4480	8.53	4.14
c05200	8328	8126	9781	8674	17.45	6.74
c10100	4499	4442	4840	4649	7.58	4.66
c10200	9240	9070	9559	9351	3.45	3.10
c20100	4745	4688	5012	4866	5.63	3.80
c20200	9611	9406	9972	9716	3.76	3.30

12.4 Valor Inicial de π

Beasley [1], com base na sua experiencia prática, recomenda que o valor de π inicie com o valor 2 e que seja reduzido a metade após 30 iterações sem melhora no limitante dual. Diversos testes foram realizados. A Tabela 5 mostra os resultados para diferentes valores inicias de π . Já a Tabela 6 mostra os resultados para diferentes números de iterações sem mundança do valor de π . É possível observar que não há uma mudança significativa nos resultados obtidos, a não ser pela quantidade de resultados ótimos encontrados.

Tabela 5: Resultados para diferentes valores inicias de π

Instância	Relaxação	Erro(%) - $pi=1.0$	Erro(%) - pi=1.5	Erro(%) - pi=2.0
a05100	1	0.16	0.18	0.13
a05100	2	OPT	OPT	OPT
a10100	1	0.19	0.17	0.17
a10100	2	OPT	OPT	OPT
a10100	3	0.04	0.04	0.04
a20100	1	0.06	0.06	0.06
a20100	2	OPT	OPT	OPT
b05100	1	13.55	13.55	13.55
b05100	2	0.17	0.17	0.17
b05200	2	0.05	0.05	0.05
b10100	3	0.26	0.3	0.26
b20100	1	3.4	2.79	2.97
b20100	2	0.02	0.02	0.02
b20200	3	0.47	0.43	0.42
c05100	2	0.05	0.05	OPT
c05200	1	6.32	6.32	6.32
c05200	2	0.05	0.22	0.05
c10100	2	0.44	0.35	0.33
c10200	3	0.32	0.3	0.37
c20100	1	3.82	3.64	3.66
c20100	3	0.92	0.75	1.04
c20200	1	2.82	3.26	3.19

12.5 Estatística do número de iterações para as 18 instâncias

Para as instâncias testadas, o algoritmo do MS implementado encontrava a melhor solução, em média, com aproximadamente 500 iterações. A Tabela 7 mostra alguns dados estatísticos do número de iterações necessários para encontrar os limitantes apresentado na Tabela 1.

Tabela 6: Resultados para diferentes números de iterações sem mudança no valor dual

		Erro (um. Iterações	
Instância	Relaxação	20 it.	30 it.	50 it.
a05100	2	OPT	OPT	OPT
a05200	2	OPT	OPT	OPT
a10100	2	OPT	OPT	OPT
a10200	2	OPT	OPT	OPT
a20100	2	OPT	OPT	OPT
a20200	2	OPT	OPT	OPT
b05100	2	0.17	0.17	0.17
b05200	2	0.05	0.05	0.05
b10100	2	0.04	0.04	0.04
b10200	2	0.02	0.02	0.02
b20100	2	0.02	0.02	0.02
b20200	2	0.06	0.08	OPT
c05100	2	0.05	OPT	OPT
c05200	2	0.22	0.05	0.2
c10100	2	0.51	0.33	0.37
c10200	2	0.08	0.1	0.09
c20100	2	0.08	0.08	0.21
c20200	2	0.22	0.36	0.22

Tabela 7: Número de iterações para os melhores limitantes

	Relaxação 1		Relaxa	ação 2	Relaxação 3	
	Priamal Dual		Primal	Dual	Primal	Dual
Média	94	430	562	436	349	303
Desvio Padrão	213	57	396	79	248	139
Máximo	933	557	1302	590	926	486
Mínimo	0	342	3.00	285.00	0	0
Mediana	28	433	547	430	259	332

¹Foram omitidas as casas decimais

13 Variação dos valor em função das iterações do MS

A Figura 13 mostra o comportamento dos limitantes dual e primal em função do número de iterações do MS. Um ponto em cima da reta significa que houve uma mudança no valor da variável. Nota-se que há um certo padrão na ocorrência destes pontos para o limitante dual. Isto ocorre justamente quando o tamanho do passo muda (se reduz a metade), após 30 iterações sem melhora no valor dual. Várias melhoras no limitante dual são obtidas em seguida assim que o valor do passo muda (entre 5 e 15).

Quanto ao primal, ele sofre menos mudanças, sendo o mesmo observado em outras instâncias. Como é possível observar pelo gráfico da Figura 13, o valor do limitante primal pode mudar sem que ocorra uma mudança no valor do dual. Isto ocorre porque pode ocorrer uma mudança na solução dual, preservando o valor da função objetivo, fazendo com que a heurística, que produz a solução primal, produza uma solução melhor.

Figura 1: Valor dos limitantes dual e primal x número de iterações do MS

Referências

- [1] John E. Beasley. Modern heuristic techniques for combinatorial problems. chapter Lagrangian relaxation, pages 243–303. John Wiley & Sons, Inc., New York, NY, USA, 1993.
- [2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. *Introduction to Algorithms*. The MIT Press, 2 edition, 2001.