

Università degli studi di Cagliari Facoltà di Scienze Corso di Laurea in Matematica

Semplici dimostrazioni dei Teoremi di Hadamard e Poincarè-Miranda utilizzando il Teorema di Brouwer

Anno accademico: 2018/2019

Relatore: Prof. Andrea Loi Studente: Alessandro Columbu

Outline

• Definizione di punto fisso e di proprietà del punto fisso

• Enunciato del Teorema di Brouwer

- Il Teorema di Hadamard (usando Brouwer)
- Il Teorema di Poincarè-Miranda (usando Brouwer)

 Il Teorema di Birkhoff-Kellogg (usando Hadamard e Poincarè-Miranda)

Definizione di punto fisso e di proprietà del punto fisso

Definizione:

Sia \mathcal{X} spazio topologico e $f: \mathcal{X} \to \mathcal{X}$ una funzione continua. $x \in \mathcal{X}$ si dice punto fisso per f se f(x)=x.

Definizione:

 \mathcal{X} ha la *proprietà del punto fisso* se per ogni $f: \mathcal{X} \to \mathcal{X}$ continua $\exists x \in \mathcal{X}$ tale che x è un punto fisso per f.

Proprietà:

La *proprietà del punto fisso* è un invariante topologico, viene cioè preservata dagli omeomorfismi.

Il Teorema di Brouwer

Nel 1912, Brouwer dimostra il seguente

Teorema (Brouwer):

Sia $B_R = \{x \in \mathbb{R}^n : |x| \le R\}$ la palla chiusa di centro 0 e raggio R e $f: B_R \to B_R$ continua. Allora f ha almeno un punto fisso.

Corollario:

Ogni sottospazio compatto e convesso di \mathbb{R}^n ha la proprietà del punto fisso.

Il Teorema di Hadamard

Teorema (Hadamard):

Sia $g: B_R \to \mathbb{R}^n$ continua. Se $\langle g(x), x \rangle \geq 0 \ \forall x \in \partial B_R$, allora g si annulla in B_R .

Dimostrazione:

Sia $h: \mathbb{R}^n \to B_R$ definita in questo modo

$$h = \begin{cases} R & \frac{x}{|x|} & \text{se } |x| > R, \\ x & \text{se } |x| \le R \end{cases}$$

e
$$f: \mathbb{R}^n \to \mathbb{R}^n$$
 con $f = h - g \circ h$
Allora, $\forall x \in \mathbb{R}^n$, si ha che:

$$|f(x)| \le |h(x)| + |g(h(x))| \le R + \max_{B_R} |g| := R_0$$

Il Teorema di Hadamard

Questo significa che $f: \mathbb{R}^n \to B_{R_0}$ manda B_{R_0} in se stesso. Per il Teorema di Brouwer: f possiede un punto fisso $x^* \in B_{R_0}$

$$x^* = h(x^*) - g(h(x^*))$$

Se $|x^*| > R$, si ha che:

$$|x^*|^2 = \left\langle R \frac{x^*}{|x^*|}, x^* \right\rangle - \left\langle g \left(R \frac{x^*}{|x^*|} \right), x^* \right\rangle =$$

$$= R|x^*| - \frac{|x^*|}{R} \left\langle g \left(R \frac{x^*}{|x^*|} \right), R \frac{x^*}{|x^*|} \right\rangle \le R|x^*| < |x^*|^2$$

che è una contraddizione. Di conseguenza, $|x^*| \le R$ e perciò $x^* = h(x^*)$.

Dalla definizione di f ricaviamo che $x^* = x^* - g(x^*)$ e quindi che $g(x^*) = 0$.

Q.E.D.

Teorema (Poincarè-Miranda):

Sia $P = [-R_1, R_1] \times \cdots \times [-R_n, R_n]$ e $g : P \to \mathbb{R}^n$ continua.

Se $\forall i = 1, 2, ..., n$ si ha che:

 $g_i(x) \le 0$ in $\{x \in P : x_i = -R_i\}$ e $g_i(x) \ge 0$ in $\{x \in P : x_i = R_i\}$ allora g si annulla in P allora g si annulla in P.

Dimostrazione:

Sia $h: \mathbb{R}^n \to \mathbb{R}^n$ la funzione definita come:

$$h_i(x) = \begin{cases} -R_i & \text{se } x_i \in (-\infty, -R_i) \\ x_i & \text{se } x_i \in [-R_i, R_i] \\ R_i & \text{se } x_i \in (R_i, +\infty) \end{cases} \forall i = 1, 2, ..., n$$

É facile vedere che, $\forall i = 1, 2, ..., n$ e $\forall x, y \in \mathbb{R}^n$,

$$|h_i(x)-h_i(y)|\leq |x_i-y_i|\leq |x-y|$$

Inoltre $h(\mathbb{R}^n) \subseteq P$ e $h(x) = x \ \forall x \in P$.

Sia $f:\mathbb{R}^n o \mathbb{R}^n$ la funzione continua definita come: $f=h-g\circ h$.

Allora, $\forall x \in \mathbb{R}^n$, si ha che:

$$|f(x)| \le |h(x)| + |g(h(x))| \le \left(\sum_{j=1}^n R_j^2\right)^{\frac{1}{2}} + \max_P |g| := R_0$$

Questo significa che $f(\mathbb{R}^n)\subseteq B_{R_0}$, quindi $f(B_{R_0})\subseteq B_{R_0}$.

Utilizzando II Teorema di Brouwer possiamo affermare che f possiede un punto fisso $x^* \in B_{R_0}$ che soddisfa l'equazione:

$$x^* = h(x^*) - g(h(x^*))$$

Se $x^* \notin P$, allora $\exists i \in \{1, 2, ..., n\}$ tale che $x_i^* < -R_i$ oppure $x_i^* > R_i$

Nel primo caso si ha che:

$$-R_i > x_i^* = h_i(x^*) - g_i(h_i(x^*)) = -R_i - g_i(h_i(x^*)) \ge -R_i$$

e siamo giunti a una contraddizione.

Analogamente, nel secondo caso:

$$R_i < x_i^* = h_i(x^*) - g_i(h_i(x^*)) = R_i - g_i(h_i(x^*)) \le R_i$$

Perciò $x^* \in P$ e, per la definizione di h, si ha che

$$x^* = x^* - g(x^*)$$

Questo vuol dire che

$$g(x^*)=0$$

Q.E.D.

Il Teorema di Birkhoff-Kellogg

Sia
$$C = B_R$$
 oppure $C = P$, con $P = [-R_1, R_1]x \cdots x[-R_n, R_n]$

Teorema (Birkhoff-Kellogg):

Se $f: C \to \mathbb{R}^n$ è continua e $f(\partial C) \subset C$, allora f ha almeno un punto fisso.

Il Teorema di Birkhoff-Kellogg

Caso 1:
$$C = B_R$$

 $f:B_R o\mathbb{R}^n$ continua e $f(\partial B_R)\subset B_R$.

Sia
$$g = I - f$$
. Allora, $\forall x \in \partial B_R$
$$\langle g(x), x \rangle = \langle x - f(x), x \rangle = |x|^2 - \langle f(x), x \rangle \ge$$

$$\geq R^2 - |f(x)|R \geq R^2 - R^2 = 0$$

Utilizzando il Teorema di Hadamard, abbiamo che g ha uno zero in B_R , quindi f ha un punto fisso.

Il Teorema di Birkhoff-Kellogg

Caso 2:
$$C = P = [-R_1, R_1]x \cdots x[-R_n, R_n]$$

 $f:P\to\mathbb{R}^n$ continua e $f(\partial P)\subset P$.

Sia g = I - f. Allora, siccome $-R_i \le f_i(x) \le R_i \ \forall x \in \partial P$, si ha che: per $x \in P$ tali che $x_i = -R_i$,

$$g_i(x) = x_i - f_i(x) = -R_i - f_i(x) \le 0$$

e, per $x \in P$ tali che $x_i = R_i$,

$$g_i(x) = x_i - f_i(x) = R_i - f_i(x) \ge 0$$

Utilizzando ora il Teorema di Poincarè-Miranda possiamo affermare che g ha almeno uno zero in P, che sarà il punto fisso di f.

Grazie per l'attenzione