INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4021B MSI 8-bit static shift register

Product specification
File under Integrated Circuits, IC04

January 1995

8-bit static shift register

HEF4021B MSI

DESCRIPTION

The HEF4021B is an 8-bit static shift register (parallel-to-serial converter) with a synchronous serial data input (D_S), a clock input (CP), an asynchronous active HIGH parallel load input (PL), eight asynchronous parallel data inputs (P_0 to P_7) and buffered parallel outputs from the last three stages (O_5 to O_7).

Each register stage is a D-type master-slave flip-flop with a set direct/clear direct input. Information on P_0 to P_7 is asynchronously loaded into the register while PL is HIGH, independent of CP and DS. When PL is LOW, data on D_S is shifted into the first register position and all the data in the register is shifted one position to the right on the LOW to HIGH transition of CP. Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

HEF4021BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4021BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4021BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

PINNING

 $\begin{array}{ll} \text{PL} & \text{parallel load input} \\ \text{P}_0 \text{ to P}_7 & \text{parallel data inputs} \\ \text{D}_S & \text{serial data input} \end{array}$

CP clock input (LOW to HIGH edge-triggered)

O₅ to O₇ buffered parallel outputs from the last three stages

8-bit static shift register

NSI

Product specification

8-bit static shift register

HEF4021B MSI

FUNCTION TABLES

Serial operation

		INPUTS	}	OUTPUTS		
n	СР	Ds	PL	O ₅	O ₆	07
1		D ₁	L	Х	Х	Х
2		D ₂	L	Х	Х	Х
3		D_3	L	Х	Х	Х
6		X	L	D_1	Х	Х
7		X	L	D ₂	D ₁	Х
8		Х	L	D ₃	D ₂	D ₁
	\ \ X			no change		

Parallel operation

		INPUTS		OUTPUTS		
n	СР	D _S PL		O ₅	O ₆	07
	Х	Х	Н	P ₅	P ₆	P ₇

Notes

1. H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

 D_n = either HIGH or LOW

n = number of clock pulse transitions

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP \to O_n$	5			125	250	ns	98 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
	5			115	230	ns	88 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
$PL \rightarrow O_n$	5			120	240	ns	93 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
	5			105	210	ns	78 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		50	100	ns	39 ns + (0,23 ns/pF) C _L
	15			40	80	ns	32 ns + (0,16 ns/pF) C _L
Output transition	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
times	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
HIGH to LOW	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L

Philips Semiconductors Product specification

8-bit static shift register

HEF4021B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	SYMBOL	MIN.	TYP.	MAX.	
Set-up time	5		25	-15	ns	
$D_S \to CP$	10	t _{su}	25	-10	ns	
	15		15	-5	ns	
	5		50	25	ns	
$P_n \rightarrow PL$	10	t _{su}	30	10	ns	
	15		20	5	ns	
Hold times	5		40	20	ns	
$D_S \to CP$	10	t _{hold}	20	10	ns	
	15		15	8	ns	
	5		15	-10	ns	
$P_n \rightarrow PL$	10	t _{hold}	15	0	ns	see also waveforms Figs 4 and 5
	15		15	0	ns	rigo rana o
Minimum clock	5		70	35	ns	
pulse width; LOW	10	t _{WCPL}	30	15	ns	
	15		24	12	ns	
Minimum PL	5		70	35	ns	
pulse width; HIGH	10	t _{WPLH}	30	15	ns	
	15		24	12	ns	
Recovery time	5		50	10	ns	
for PL	10	t _{RPL}	40	5	ns	
	15		35	5	ns	
Maximum clock	5		6	13	MHz	
pulse frequency	10	f _{max}	15	30	MHz	
	15		20	40	MHz	

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	900 $f_i + \sum (f_0 C_L) \times V_{DD}^2$	where
dissipation per	10	4 300 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f_i = input freq. (MHz)
package (P)	15	12 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Philips Semiconductors Product specification

8-bit static shift register

HEF4021B MSI

Fig.5 Waveforms showing minimum PL pulse width, recovery time for PL, and set-up and hold times for P_n to PL. Set-up and hold times are shown as positive values but may be specified as negative values.