

Fig. 1

```
(SEQ ID NO: 54)
Human Antibody sequence (TT sequence)
Heavy Chain: cloning sites Xho I and Spe I are underlined
gag gtg cag ctg CTC GAG CAG TCT GGG GCT GAG GTG AAG AAG CCT GGG TCC TCG GTG AAG
glu val gln leu leu glu gln ser gly ala glu val lys lys pro gly ser ser val lys
21
                                        31
GTC TCC TGC AGG GCT TCT GGA GGC ACC TTC AAC AAT TAT GCC ATC AGC TGG GTG CGA CAG
val ser cys arg ala ser gly gly thr phe asn asn tyr ala ile ser trp val arg gln
GCC CCT GGA CAA GGG CTT GAG TGG ATG GGA GGG ATC TTC CCT TTC CGT AAT ACA GCA AAG
ala pro gly gln gly leu glu trp met gly gly ile phe pro phe arg asn thr ala lys
                                        71
TAC GCA CAA CAC TTC CAG GGC AGA GTC ACC ATT ACC GCG GAC GAA TCC ACG GGC ACA GCC
tyr ala gln his phe gln gly arg val thr ile thr ala asp glu ser thr gly thr ala
81
                                        91
TAC ATG GAG CTG AGC CTG AGA TCT GAG GAC ACG GCC ATA TAT TAT TGT GCG AGA GGG
tyr met glu leu ser ser leu arg ser glu asp thr ala ile tyr tyr cys ala arg gly
                                        111
GAT ACG ATT TTT GGA GTG ACC ATG GGA TAC TAC GCT ATG GAC GTC TGG GGC CAA GGG ACC
asp thr ile phe gly val thr met gly tyr tyr ala met asp val trp gly gln gly thr
121
                                        131
ACG GTC ACC GTC TCC GCA GCC TCC ACC AAG GGC CCA TCG GTC TTC CCC CTG GCA CCC TCC
thr val thr val ser ala ala ser thr lys gly pro ser val phe pro leu ala pro ser
                                        151
TCC AAG AGC ACC TCT GGG GGC ACA GCG GCC CTG GGC TGC CTG GTC AAG GAC TAC TTC CCC
ser lys ser thr ser gly gly thr ala ala leu gly cys leu val lys asp tyr phe pro
161
                                        171
GAA CCG GTG ACG GTG TCG TGG AAC TCA GGC GCC CTG ACC AGC GGC GTG CAC ACC TTC CCG
glu pro val thr val ser trp asn ser gly ala leu thr ser gly val his thr phe pro
181
                                        191
GCT GTC CTA CAG TCC TCA GGA CTC TAC TCC CTC AGC AGC GTG GTG ACC GTG CCC TCC AGC
ala val leu gln ser ser gly leu tyr ser leu ser ser val val thr val pro ser ser
201
                                        211
AGC TTG GGC ACC CAG ACC TAC ATC TGC AAC GTG AAT CAC AAG CCC AGC AAC ACC AAG GTG
ser leu gly thr gln thr tyr ile cys asn val asn his lys pro ser asn thr lys val
GAC AAG AAA GTT GAG CCC AAA TCT TGT GAC AAA act agt
asp lys lys val glu pro lys ser cys asp lys thr ser
```

Fig. 2A

Human Antibody Sequence (TT sequence) (SEQ ID NO: 5.5)

Light Chain: cloning sites Sac I and Xba I are underlined gaq etc acg cag tot cca ggc acc etg tot ttg tot ccA ggg gaa aga gcc acc etc tec glu leu thr gln ser pro gly thr leu ser leu ser pro gly glu arg ala thr leu ser tgc agg gcc agt cac agt gtt agc agg gcc tac tta gcc tgg tac cag cag aaa cct ggc cys arg ala ser his ser val ser arg ala tyr leu ala trp tyr gln gln lys pro gly 51 cag get eee agg ete ete ate tat ggt aca tee age agg gee aet gge ate eea gae agg gln ala pro arg leu leu ile tyr gly thr ser ser arg ala thr gly ile pro asp arg 71 61 tte agt gge agt ggg tet ggg aca gae tte act etc ace ate age aga etg gag eet gaa .. phe ser gly ser gly ser gly thr asp phe thr leu thr ile ser arg leu glu pro glu 81 gat ttt gca gtg tac tac tgt cag cag tat ggt ggc tca ccg tgg ttc ggc caa ggg acC asp phe ala val tyr tyr cys gln gln tyr gly gly ser pro trp phe gly gln gly thr 111 101 AAG GTG GAA CTC AAA CGA ACT GTG GCT GCA CCA TCT GTC TTC ATC TTC CCG CCA TCT GAT lys val glu leu lys arg thr val ala ala pro ser val phe ile phe pro pro ser asp 131 GAG CAG TTG AAA TCT GGA ACT GCC TCT GTT GTG TGC CTG CTG AAT AAC TTC TAT CCC AGA glu gln leu lys ser gly thr ala ser val val cys leu leu asn asn phe tyr pro arg 141 151 GAG GCC AAA GTA CAG TGG AAG GTG GAT AAC GCC CTC CAA TCG GGT AAC TCC CAG GAG AGT glu ala lys val gln trp lys val asp asn ala leu gln ser gly asn ser gln glu ser 171 161 GTC ACA GAG CAG GAC AGC AAG GAC AGC ACC TAC AGC CTC AGC AGC ACC CTG ACG CTG AGC val thr glu gln asp ser lys asp ser thr tyr ser leu ser ser thr leu thr leu ser 191 AAA GCA GAC TAC GAG AAA CAC AAA GTC TAC GCC TGC GAA GTC ACC CAT CAG GGC CTG AGC lys ala asp tyr glu lys his lys val tyr ala cys glu val thr his gln gly leu ser 201 211 TTG CCC GTC ACA AAG AGC TTC AAC AGG GGA GAG TGT TAG Ttc tag a leu pro val thr lys ser phe asn arg gly glu cys AMB

Method of grafting peptide into antibody with random sequences surrounding peptide TPO Mimetic Peptide sednence

(SEQID NO: 56) Z Y Y C A R X X I E G P T L R Q

SEQID NO: 56) Z Y Y C A R X X I E G P T L R Q

TATTAT-TGT-GCG-AGA-NNR-NNR-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-

W L A A R A X X W G Q G T TGG-CTG-GCG-CGC-GCG-NNY-NNY-TGG-GGC-CAA-GGG-ACC-

(SEQ ID NO: 5'7) →

The TPO mimetic peptide was grafted into the heavy chain CDR3 region of the tetanus toxoid antibody. The peptide was flanked on either side by two random amino acids, shown as "X"s in the figure.

Fig. 4

TINO 10	AMINO ACID SEQUENCE	SEO ID NO.
X1a	Pro-Pro-1 e-G u-G y-Pro-Thr-Leu-Arg-G n-Trp-Leu-A a-A a-A a-A a-G y-G y-G	25 26
X1a-11	GGG-GGG-GG u-GI u-GI y-Pro-Thr-Leu-Arg-GI n-Trp-Leu-AIa-AIa-AIa-GI y-GI y-GI y-GI y-GI y-GGG-GGG-GGG-GGG-GGG-GGG-GGG-GGG-GGG-G	27 28
X1a-13	G1y-G1y-11e-G1u-G1y-Pro-Thr-Leu-Arg-G1n-Trp-Leu-Ala-Ala-Arg-Ala-G1y-G1y G1y-G1y-11e-G1u-G1y-Pro-Thr-Leu-Arg-G1n-Trp-Leu-Ala-Arg-GCG-GCG-GCG-GCG-GCG-GCG-GCG-GCG-GCG-GC	30
X1c	Trp-Leu-lie-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala-Pro-Val TG-GC-GCG-GCG-CG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCT-GTC	31 32
X2c	Met-11e-11e-61u-61y-Pro-Thr-Leu-Arg-61n-Trp-Leu-Ala-Ala-Arg-Ala-Val-Gly Arg-Ara-Arr-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-GTT-GGC	33 34
X3a	Val-Val-IIe-GIu-GIy-Pro-Thr-Leu-Arg-GIn-Trp-Leu-AIa-AIa-Arg-AIa-Pro-Val GTG-GTA-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCT-GTT	35 36
X3b	GIy-Pro-IIe-GIu-GIy-Pro-Thr-Leu-Arg-GIn-Trp-Leu-Ala-Ala-Arg-Ala-Pro-Asp GGG-CGG-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCC-GAT	37 38
X4b	Leu-Pro-11e-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala-Pro-Val TTG-CCA-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCT-GTT	39 40
X4c	Serteu-He-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Alg-Ala-Pro-He TCA-CTG-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCC-ATC	41
X5a	Thr-Met-11e-G1u-G1y-Pro-Thr-Leu-Arg-G1n-Trp-Leu-A1a-A1a-Arg-A1a-Pro-Val ACA-ATG-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-GCT-	43 44
X5c	Thr-Thr-11e-G1u-G1y-Pro-Thr-Leu-Arg-G1n-Trp-Leu-A1a-A1a-Arg-A1a-Pro-Val Acg-ACA-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCT-GTC	45 46
X7a	Thr-Arg-11e-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Ala-Cys-Ser ACA-CGG-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-TGC-AGC	47 48
X7b	no peptide deletion mutant	;
X7c	GIn-Thr-Ile-Glu-Gly-Pro-Thr-Leu-Arg-Gln-Trp-Leu-Ala-Ala-Arg-Ala-Pro-Asp CAG-ACA-ATT-GAA-GGG-CCG-ACG-CTG-CGG-CAA-TGG-CTG-GCG-GCG-CGC-GCG-CCT-CAC	50°.

pRL8

(SEQ ID NO: 60)

GGGAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAA ATCAGCTCATTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATC AAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGT CCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATC AGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTC GAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGA GAAAGGAGCGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGT AACCACCACACCGCGCGCTTAATGCGCCGCTACAGGGCGCGTCAGGTGGC ACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTTTTCTAAATACA TTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAAT ATTGAAAAGGAAGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCC TTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAA GTAAAAGATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGG ATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCA ATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGA CGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTG GTTGAGTACTCACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAA GAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTT ACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAAC CCATACCAAACGACGAGCTGTACACCACGATGCCTGTAGCAATGGCAACAAC GTTGCGCAAACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAAT TAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGC CCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGT CTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCGT AGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACA GATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAA GTTTACTCATATACTTTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGG ATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGA GTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATCAAAGGATCTTCTT CTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAA GGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAG CCGTAGTTAGGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGC TCTGCTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTTA CCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCGGGCTG AACGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGA

Fig. 6A

ACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGG AGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGC ACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGT AGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTG CTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAA CCGTATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACC GAGCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAA CCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTT TCCCGACTGGAAAGCGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTC ACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTG TGGAATTGTGAGCGGATAACAATTGAATTCAGGAGGAATTTAAAATGAAAAA GACAGCTATCGCGATTGCAGTGGCACTGGCTGGTTTCGCTACCGTGGCCCAG GCGGCCGAGCTCGGCCATGGCTGGTTGGGCAGCGAGTAATAACAATCCAGCG GCTGCCGTAGGCAATAGGTATTTCATTATGACTGTCTCCTTGGCGACTAGCTA GTTTAGAATTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCC GCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCTGG GGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTGCCCGC TTTCCAGTCGGGAAACCTGTCGTGTTACTAATGATGGTGATGGTGATGGCTAG TTTTGTCACAAGATTTGGGCTCAACTTTCTTGTCCACCTTGGTGTTGCTGGGCT TGTGATTCACGTTGCAGATGTAGGTCTGGGTGCCCAAGCTGCTGGAGGGCAC GGTCACCACGCTGCTGAgGGAGTAGAGTCCTGAGGACTGTAGGACAGCCGGG TTCgGGGAAGTAGTCCTTGACCAGGCAGCCCAGGGCCGCTGTGCCCCCAGAG GTGCTCTTGGAGGAGGGTGCCAGGGGGAAGACCGATGGGCCCTTGGTGGAG GCTGCGGAGACGGTGACCGTGGTACCAGCAGAAACCTGGCCAGGCTCCCAG GCTCCTCATCTATGGTACATCCAGCAGGGCCACTGGCATCCCAGACAGGTTC AGTGGCAGTGGGTCTGGGACAGACTTCACTCTCACCATCAGCAGACTGGAGC CTGAAGATTTTGCAGTGTACTACTGTCAGCAGTATGGTGGCTCACCGTGGTTC GGCCAAGGGACCAAGGTGGAACTCAAACGAACTGTGGCTGCACCATCTGTCT TCATCTTCCCGCCATCTGATGAGCAGTTGAAATCTGGAACTGCCTCTGTTGTG TGCCTGCTGAATAACTTCTATCCCAGAGAGGCCAAAGTACAGTGGAAGGTGG ATAACGCCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGCAGGACAG CAAGGACAGCACCTACAGCCTCAGCAGCACCCTGACGCTGAGCAAAGCAGA CTACGAGAAACACAAAGTCTACGCCTGCGAAGTC acccat cagggcctgagt to gcccgtcaca a a gag ctt caa cgg ag gag ag tgtta at TCTAGATAATTAATTAGGAGGAATTTAAAATGAAATACCTATTGCCTACGGCAGCCGCTGGATTGTTATTACTCGCTGCCCAACCAG CCATGGCCGAGGTGCAGCTGCTCGAGATGAGCGATAAAATTATTCACCTGAC TGACGACAGTTTTGACACGGATGTACTCAAAGCGGACGGGGCGATCCTCGTC GATTTCTGGGCAGAGTGGTGCGGTCCGTGCAAAATGATCGCCCCGATTCTGG ATGAAATCGCTGACGAATATCAGGGCAAACTGACCGTTGCAAAACTGAACAT CGATCAAAACCCTGGCACTGCGCCGAAATATGGCATCCGTGGTATCCCGACT CTGCTGCTGTTCAAAAACGGTGAAGTGGCGCCAACCAAAGTGGGTGCACTTG TCTAAAGGTCAGTTGAAAGAGTTCCTCGACGCTAACCTGGCGTACCCGTACG ACGTTCCGGACTACGGTTCTACTAGTccgaaaccgtctaccccaccgggctcttcctgcggtggccgc ategecegtetggaggaaaaagtgaaaaccetgaaageteagaacteegagetggegteeactgeeaacatgetgegegaac

Fig. 6C

Fig. 7

	= = = = = = = = = = = = = = = = = = = =		. 530		
(SEQ ID NO: ギス) Spe l	(SEQ ID NO: 53) - PKPSTPPGSSCGGRIARLEEKVKTLKAONSELASTA indimerization domain	SHI j Acatoctocgaacagagggggacagaatagaaagatatatgaaccatggcgttgtggcyagiggccaggccggccagcatcacatcacatggcgataccgtagga	N M L R E O V A O L K O K V M N H G G C A S G O A G O H H H H H G A Y P Y D Jun dimerization domain	CGTTCCGGAC74CGCTTCTTAGGAGSGTGGTGGCTCTGAG	y P D Y A S . — HA tag and Amber stop — — HA tag and Amber stop —

Fig. 8

	Sample	nnk	nnk	nnk	nnk	Amin	Acids	Amino A	Acids
		1	2	3	4	1	2	3 4	1
HC CDR3	X1c	tgg	ctg	cct	gtc	Trp	Leu	Pro Va	al
	X3a	gtg	gta	cct	gtt	Val	Val	Pro Va	al.
	X3b	ggg	ccg	ccc	gat	Gly	Pro	Pro As	3p
	X4b	ttg	cca	cct	gtt	Leu	Pro	Pro Va	11
	X4c	tca	ctg	ccc	atc	Ser	Leu	Pro II	Le
	X5a	aca	atg	ccc	gtt	Thr	Met	Pro Va	1
	X5c	acg	aca	cct	gtc	Trp	Leu	Pro Va	al
	X7c	cag	aca	cct	cac	Gln	Thr	 	g
HC CDR2	24	ctt	tat	tct	aat	Leu	Tyr		sn
	39	act	tac	ttg	cat	Thr	Tyr	Leu H	Ls
~	3	agg	atg	ctc	gag	Arg	Met		Lu
	7	aag	gaa	tct	aag	Lys	Glu	 	/S
	8	gcg	cat	gtg	cag	Ala	His	}	Ln
	10	cag	gag	att	agt	Gln	Glu		er
	11	cgg	aat	aat	ccg	Arg	Asn		0
	19		cta	aat	tct	Gln	Leu		er
	25	cag		ttt	qtc	Ser	Ile		al
	28	agt	att			Gly	Pro	+	er
		aga	ccc	act	agt				
LC CDR1	10	aag	ggt	gtt	agt	Lys	Gly		er
	11	cat	ggg	gtg	gct	His	Gly		la
	12a	cgt	acg	atg	gct	Arg	Thr		la
	12b	cgt	ggt	gtt	aat	Arg	Gly		sn
	14	cgt	tcg	ctt	gcg	Arg	Ser	+	la
	16	cgg	ggt	gtt	gcg	Arg	Gly	 	la
	18	agg	acg	gtg	tct	Arg	Thr		er
	47	aag	ggg	gtg	gcg	Lys	Gly		la
LC CDR2	1	aat	ccg	agg	ggt	Asn	Pro		ly
	2	tcg	cct	cgg	agt	Ser	Pro	Arg S	er
	3	tcg	cct	cgt	acg	Ser	Pro		hr
	4	tcg	cct	tgg	cgt	Ser	Pro	Trp A	rg
	5	act	ccg	aat	tgg	Thr	Pro		rp
	6	aat	cct	gcg	agg	Asn	Pro		rg
	7	aat	ccg	tcg	ggg	Asn	Pro		ly
	9	aat	cct	tat	tag	Asn	Pro	Tyr S	top
	10	aat	ccg	cgg	tct	Asn	Pro		er
	11	aat	ccg	gat	gtg	Asn	Pro	Asp V	al
	12	tcg	ccg	tcg	cgg	Ser	Pro	Ser A	rg
	13	aat	cct	ctg	ttt	Asn	Pro	Leu P	he
	14	aat	ctt	ggg	tat	Asn	Pro	Gly T	yr
	15	aat	cct	att	agt	Asn	Pro		er
	16	aat	cct	cag	cgg	Asn	Pro		rg
	18	aat	ccg	cgg	acg	Asn	Pro	Arg T	hr
	19	aat	ccg	cgt	ggg	Asn	Pro		ly
	20	cat	ttg	aga	ctg	His	Leu		eu
	21	aag	tag	att	tat	Lys	Stop		yr
	23	aat	cct	ggt	aag	Asn	Pro		ys ys
	24	aat	cct			Asn	Pro		ly
 	26			cgt	ggg				
		aat	cct	aat	gtg	Asn	Pro		al
	27	tct	ccg	cgg	gtt	Ser	Pro		al
- 	29	acg	cct	cgg	ggt	Thr	Pro		ly
	30	cct	tag	tgg	tgg	Pro	Stop	Trp T	rp

FIG. 9

Activity of Fab clones containing 2 TPO mimetic peptides

FIGURE 10

Activity of Fab clones containing 2 or 3 TPO mimetic peptides

FIGURE 11

Fig. 12

-(SEQ ID NO: 67)

<u>SG1.1 - TPO Heavy Chain (Bold denotes TPO mimetic) Amino acid sequence:</u>

→ MKWSWVILFLLSVTAGVHSQVQLVQSGAEVKKPGASVKVSCKASGYIFSNYWIQW VRQAPGQGLEWMGEILPGSGSTEYTENFKDRVTMTRDTSTSTVYMELSSLRSED TAVYYCARLPIEGPTLRQWLAARAPVWGQGTLVTVSSASTKGPSVFPLAPCSR STSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTV PSSNFGTQTYTCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPPKP KDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTY RVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQ EEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRL TVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLGK.

(SEQ ID NO: **&8**)

5G1.1 - TPO Heavy Chain (Bold denotes TPO mimetic) Nucleic acid sequence: → ATGAAGTGGAGCTGGGTTATTCTCTTCCTCCTGTCAGTAACTGCCGGCGTCCA CTCCCAAGTCCAACTGGTGCAATCCGGCGCCGAGGTCAAGAAGCCAGGGGCC TCAGTCAAAGTGTCCTGTAAAGCTAGCGGCTATATTTTTCTAATTATTGGAT TTACCGGGCTCTGGTAGCACCGAATATACCGAAAATTTTAAAGACCGTGTTA CTATGACGCGTGACACTTCGACTAGTACAGTATACATGGAGCTCTCCAGCCTG CGATCGGAGGACACGGCCGTCTATTATTGCGCGCGTTTGCCAATTGAAGGG CCGACGCTGCGGCAATGGCTGGCGGCGCGCGCGCCTGTTTGGGGTCAAG GAACCCTGGTCACTGTCTCGAGCGCCTCCACCAAGGGCCCATCCGTCTTCCCC CTGGCGCCCTGCTCCAGGAGCACCTCCGAGAGCACAGCCGCCCTGGGCTGCC TGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGC CCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCT ACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAACTTCGGCACCCAGAC CTACACCTGCAACGTAGATCACAAGCCCAGCAACACCAAGGTGGACAAGAC AGTTGAGCGCAAATGTTGTGTCGAGTGCCCACCGTGCCCAGCACCACCTGTG GCAGGACCGTCAGTCTTCCTCTTCCCCCAAAACCCAAGGACACCCTCATGAT CTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGAC CCCGAGGTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCATAATGCCA AGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCG TCCTCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAA GGTCTCCAACAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGCC AAAGGGCAGCCCGAGAGCCACAGGTGTACACCCTGCCCCCATCCCAGGAG GAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTACC CCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACT ACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGC AGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCT CCGTGATGCATGAGGCTCTGCACAACCACTACACACAGAAGAGCCTCTCCCT **GTCTCTGGGTAAATGA**

(SEQ ID NO: **69**)

<u>5G1.1 Light Chain Amino Acid Sequence</u>

<u>→ MDMRVPAQLIGLLLWLRGARC</u>DIQMTQSPSSLSASVGDRVTITCGASENIYGALN
WYQQKPGKAPKLLIYGATNLADGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQ
NVLNTPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAK
VQWKVDNALQSGNSQESVTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTH
QGLSSPVTKSFNRGEC.

(SEQ ID NO: 70)

Note: Italics denotes leader sequence

FACS staining on transfected 293 cells

FIGURE 14

FIGURE 15

VARIABLE REGION OF 4-29 LIGHT CHAIN

-(SEQ ID NO: 116)

Grafted CDR2 52k 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 ACT CGC GCT CGT GGT GGG GTC CCA TCA AGG TTC AGC GGC AGT GGA TCT GGG ACA GAT TTC ACT CTC ACC ATC AGC AGC CTG CAG CCT GAA GAT TTT GCA ACT

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 INT TAC TGC CAA CAG TAT AAT AGT TAC CCT CCC ACT TTC GGC CCT GGG ACC AAA GTG GAT ATC AAA

Fig. 18

Fig. 19

+ EcoRI to XhoI fragment of pAX 131 Kappa

Fig. 20

			A12	Z.giH		
Psil	100	200	300	400	500	009
BseRI Sspl	GGGAAATTGTAAGCGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTA	BSaXI DrdI BSaXI TAAATCAAAAGAATAGACTTGAGTTGTTCCAGTTTGGAACAAGAAGATCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGGGGAAAAAAAA	f1 ori Dralli ACCGTCTATCAGGGCGATGGCCCACTACATCAATCAAGTTTTTTTGGGGTGGAGGTGCCGTAAAGCACTAAAATCGGAACCCTAAAGGAA F1 ori	NgoMIV Nael GCCCCCGATTTAGAGGGGAAAGCGAAAGGAAAGGAAAGG	GGTCACGCTGCGCGTAACCACCACCACCGCGCGCTTAATGCGCCGCTACAGGGCGCGTCAGGTGGCACTTTTCGGGGAAATGTGCGGGAACCCCTATT	BSPHI BSPHI BCIVI TGTTTATTTTTCTAAAATACGATATGTATCCGCTCATGAGAAAAAGGAAGAGTATGAAAATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTC

		Fig. 21B		
700	Draf	006	1000	1100
AACATTICCGIGICGCCCTTATICCCTTTTIGCGGCATITIGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGAAAAGATGCTGAAGATCTAAAAGATGCTGAAGATCAAAAGATGCTGAAGATCAAAAAAAA	ApaLI BSSSI Eco571 GTTGGGTGCACGAGGGTAACATCCTTGAGAGTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGACTTTT	Begl' Begl' AAAGTTCTGCTATGGCGGGGTATTGACGCCGGCGGGCAAGAGCAACTCGGTCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACT	Btsl CACCAGTCACAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCATGAGTGATAACACTGCGGCCAACTTACTT	Pvul GACAACGATCGGAGGAGCGAAGGAGCTAACCGCTTTTTGCACAACATGGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAA

				71C	.gi	E								
3400		3500		3600		BgIII	3700		Bsgl	3800			3900	
CCGTGGGGCTGGCGGCTGACGAGAGCGCCACGTAGTGTTGCGCTGGCTCCCGCCGCCTGAGACACCCATGACGTCTCACATCCGCTACGA	HC stuffer	Aatii Eagi BsmBi NgoMiV Naei GGTGGACGTCTCGGCCGCAACGGCGCAGCGTGGAGGTCCTGGAGGCCCGCACCGAGTGTGTGCTGAGCAACCTGCGGGGCCGCACG	HC stuffer	BSAXI BIPI BIPI BIPI COCTACACCTTCGCAGCTTCTGGAGCGCTGGTCGGAGCCTGTGTCGCTGAGCCTTGAGCGAGC	HC stuffer	BSSSI	TGGACCCCCTCATCCTGACGCTCTCCTCCTCGTGGTCATCCTGGTGCTGCTGACCGTGCTCGCGCTGCTCTCCCACCGGGGCTCTGAAGCAGAA	HC stuffer	Eco57I Stul Earl Pvull BstXI	GATCTGGCCTGGCATCCCGAGCCCAGAGAGCGAGTTTGAAGGCCTCTTCACCACCACAAGGGTAACTTCCAGCTGTGGCTGTACCAGAATGATGGCTGC	HC stuffer	. Btsl Afel Btsl	CTGTGGTGGAGCCCCTGCACCCCTTCACGGAGGACCCACCTGCTTCCTGGAAGTCCTCTCAGAGCGCTGCTGGGGGACGATGCAGGCAG	HC stuffer

		Tig. 21D		
1200	1300	1400	1500	1700
BsrGl BsrGl BsrDl Acil Fspl ATACCAAACGACGAACTGCCAAACTTATTAACTGGCGAACTACTTACT	Asel AATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCTTCCGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGA AATTAATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCGGTGA — beta-lactamase	Bpml Bsal BsrDI Bsal BsrDI Bcccccccccccccccccccccccccccccccccccc	Dral CGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGAGTTTACTCATATATACTTTAGATTGATT	Dral ATTITTAATITTAAAGGATCTTAGGTGAAGGATCCTTTTTGATAATCTCATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGT AGAAAAGATCAAAGGATCTTTTTTTTTT

			giЯ		
1800	1900	C 5000	2100	2200	2300
Eco57I GATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACCAAATACTGTCCTTCTAGTGTAGCCGTAGTTAGGCCACCACCACCACCACCACCACCACCACCACCACCAC	AIWNI TCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTGCTGTTACCAGTGCCTGCTGCTGCGCGTTACCGGGTTGGACTC cole I origin	AAGACGATAGTTACCGGATAAGGCGCGGGGGCTCGGGGGGGG	Ecil BciVI BSSSI Ectatore de la Bestima Bassi Company de la Company de l	Drdl AGCTICCAGGGGGAAACGCCTGGTATCTITATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGGG	Ecil CCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATGTTCTTTCCTGCGTTATCCCTGATTCTGTG cole lorigin

BsrBl Sapl BsaXI TGATACCGCTCGCCGCAGCCGAACGAGCGCCCCAA 2400	BsaXI' Asel Pvull TACGCAAACCGCCTCTCCCCGCGCTTGGCATTCATTAATGCAGCTGGCACGGGCAGTGAGCGGGCAGTGAGCGCAATTAA Iac promoter	BSrBI Mfel EcoRI TGTGAGTTAGCTCATTAGCTTTACACTTTATGCTTCCGGCTCGTATGTGTGTG	Bgll Bsgl Sfil Xbal Bbsl Sfil Xbal Bbsl TTTGCGACCGTGGCCCAGGCGCCTCTAGATAACTGTGGCTGCACCATCT 2700	Xmnl ighteaaatcrecaccacaagtaccaccacaccaaagtacat 2800 Kappa constant
BSrBI 	BsaXI' Asel Pvull TACGCAAACCGCCTCTCGCCGTTGGCCGATTCATTAATGCAGCTGCCACGA()	TGTGAGTTAGCTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCT	AGTTAATTATGAAAAAAACCGCGATTGCGATTGCGGTGGCGCTGGCGGCTTTGC	GTCTTCATCTTCCCGCCATCTGAGCAGTTGAAATCTGGAACTGCCTCTGTTG

pl 2900 ·	3000	ë Fig. 21G	3200	3300
BbvCI Bpu101 GGAAGGTGGATAACGCCTCCAATCGGGTAACTCCCAGGAGAGTGTCACAGAGGACAGGACAGGACAGGACAGCACCTACAGCAGCACCTGACGCT 25	AlwNI Bpu10I EcolCRI SacI CACCAAACCACACACACACACACCCTGCGAAGTCACCCATCAGGGCCTCGCCCGTCACAAAGAGCTTCAACAGGGGAAGATGT	NgoMIV Sacil Nael Nael Irbs L NgoMIV Nael Nael Nael Nael Nael Nael Nael Nael	Xhol Bsgl EcoNI BssSl Btrl CGCTCGAGCTGATGAGCCTGTGTCGCCTGCACCACGCTCCTGTGTGCGTGC	Bcgl' EcoRV CGAGCTTCGTGCCCTTCGGCGCTCCGCGATATCACCGTGTCATCACTCAATGAAGTAGTGCTCCTAGACGCCC 3. HO stuffer

