

SF1624 Algebra och geometri **Tentamen** 9 april 2021

KTH Teknikvetenskar

Skrivtid: 08:00-11:00

Tillåtna hjälpmedel: inga.

Allt plagiat som vi hittar i inlämnade lösningar kommer att rapporteras.

Examinator: Danijela Damjanović

Tentamen består av sex uppgifter som vardera ger maximalt sex poäng.

Del A på tentamen utgörs av de två första uppgifterna. Till antalet erhållna poäng från uppgift 1 adderas dina bonuspoäng. Poängsumman på uppgift 1 kan dock som högst bli 6 poäng.

De två följande uppgifterna utgör del B och de två sista uppgifterna del C, som främst är till för de högre

Betygsgränserna vid tentamen kommer att ges av

Betyg	A	В	C	D	E	Fx
Total poäng	27	24	21	18	16	15
varav från del C	6	3	_	_	_	_

Instruktioner

- För poäng på en uppgift krävs att lösningen är väl presenterad och lätt att följa.
- Det innebär att lösningarna ska vara prydligt skrivna med en handstil som är lätt att läsa.
- Det innebär också att införda beteckningar ska definieras, att den logiska strukturen tydligt beskrivs i ord eller symboler och att resonemangen är väl motiverade och tydligt förklarade. Alla steg i alla beräkningar ska finnas redovisade och vara lätta att följa.
- Lösningar och svar utan korrekta, utförliga och tydliga motiveringar ger inga poäng.

0. Hederskodex. Se uppgift 0 i Canvas. Hederskodex är obligatorisk och tentamen rättas inte (blir underkänd) om du inte har lämnat in hederskodex.

DEL A

1. Låt
$$\vec{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 och $\vec{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$.

(a) Bestäm basbytesmatrisen P som byter från standardbasen \mathcal{E} till basen $\mathcal{B} = \{\vec{u}, \vec{v}\}\$, dvs bestäm P (3p)

sådan att
$$P[\vec{x}]_{\mathcal{E}} = [\vec{x}]_{\mathcal{B}}$$
 för alla vektorer $[\vec{x}]$. (3 p)

(b) Bestäm koordinaterna för vektorn $\vec{w} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ i basen $\{\vec{u}, \vec{v}\}$.

2. Bestäm parametrarna a och b så att det linjäara ekvationssystemet

$$\begin{bmatrix} 1 & 4 & 2 \\ 2 & 9 & 3 \\ -1 & 0 & a \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ b \\ 1 \end{bmatrix}$$

(a) Har exakt en lösning. (2p)

(b) Har oändligt många lösningar. (2 p)

(c) Har ingen lösning. (2 p)

DEL B

- **3.** Låt H vara planet i \mathbb{R}^3 som ges av ekvationen x+2y+2z=0. Låt $T\colon \mathbb{R}^3\to \mathbb{R}^3$ vara avbildningen som projicerar vektorer ned på planet H.
 - (a) Bestäm standardmatrisen för avbildningen T. (3 p)
 - (b) Bestäm en bas för \mathbb{R}^3 i vilken $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ är matrisen för T. (3 **p**)
- **4.** En liksidig triangel ABC ligger i planet x-y+2z=0. Triangeln har ett hörn i origo (dvs A= origo), ett till hörn i punkten B=(1,1,0), och dess tredje hörn C har positiv x-komponent. Bestäm triangelns tredje hörn C.

DEL C

- 5. (a) Låt V_1 och V_2 vara två delrum i \mathbb{R}^n . Bevisa att snittet $W=V_1\cap V_2$ också är ett delrum till \mathbb{R}^n . (2 p)
 - (b) Låt $V_1 = \operatorname{span}\left(\begin{bmatrix}1\\0\\1\\0\end{bmatrix},\begin{bmatrix}3\\2\\2\\1\end{bmatrix}\right) \operatorname{och} V_2 = \operatorname{span}\left(\begin{bmatrix}0\\1\\0\\1\end{bmatrix},\begin{bmatrix}1\\3\\0\\2\end{bmatrix}\right)$. Låt $W = V_1 \cap V_2$.

Den linjära avbildningen T definieras som ortogonala projektionen av vektorer i \mathbb{R}^4 på delrummet W. Bestäm avbildningens standardmatris [T].

- **6.** Låt A vara en $n \times n$ matris och A^T dess transponat. Bevisa följande påståenden:
 - (a) $A \operatorname{och} A^T A \operatorname{har} \operatorname{samma} \operatorname{nollrum}$.
 - (b) Om $n \geq 2$ då existerar n ortogonala enhetsvektorer $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_n$ i \mathbb{R}^n sådana att $A\vec{u}_1, A\vec{u}_2, \dots, A\vec{u}_n$ är också ortogonala . (3 **p**)