531,446

(12) INTERNATION

PLICATION PUBLISHED UNDER THE PATE

PTO 14 APR 2005 DOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

10/531446

(43) International Publication Date 29 April 2004 (29.04.2004)

PCT

(10) International Publication Number WO 2004/036777 A1

- (51) International Patent Classification7: H04B 1/30, 1/26
- (21) International Application Number:

PCT/GB2003/004484

- (22) International Filing Date: 17 October 2003 (17.10.2003)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 0224133.9

17 October 2002 (17.10.2002) GB

- (71) Applicant (for all designated States except US): TOUMAZ TECHNOLOGY LIMITED [GB/GB]; Building D5, The Innovation Centre, Cullham Science Centre, Abingdon, Oxfordshire OX14 3DB (GB).
- (72) Inventor; and
- (75) Inventor/Applicant (for US only): BURDETT, Alison [GB/GB]; Toumaz Technology Limited, Building D5, The Innovation Centre, Cullham Science Centre, Abingdon, Oxfordshire OX14 3DB (GB).

- (74) Agents: LIND, Robert et al.; Marks & Clerk, 4220 Nash Court, Oxford Business Park South, Oxford, Oxfordshire OX4 2RU (GB).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published

- with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: MULTIMODE RECEIVER

(57) Abstract: An electric circuit suitable for use as a radio receiver or part of a radio receiver, the electric circuit comprising amplification means, frequency mixer means, and filter means, wherein the frequency mixer mans is configurable to down-convert a wanted component of the amplified input signal to one of at least two intermediate frequency bands, and the filter means is dynamically reconfigurable between a first filter configuration which provides a first operating mode, and a second filter configuration which provides a second operating mode.

MULTIMODE RECEIVER

The present invention relates to an electric circuit suitable for use as a radio receiver or as part of a radio receiver.

5

10

A proliferation of standards and modulation techniques for wireless communications has emerged in response to the particular requirements of different applications. These modulation schemes range from simple amplitude modulation (AM) and frequency modulation (FM) to complex multi-carrier digital modulation schemes such as wideband code-division multiple access (WCDMA) and coded orthogonal frequency domain multiplexing (COFDM). This proliferation in standards has led to the development of many different receiver architectures, which are optimised for specific applications.

A modern wireless communications receiver typically has two main parts, an analogue front-end, and a digital back-end. The digital back-end performs such functions as demodulation, decoding, error correction, etc. The analogue front-end typically down converts a particular wanted channel to a low enough frequency to enable it to be digitised (or otherwise further processed), while ensuring that no corruption from adjacent channel signals occurs.

The analogue front-end can be considered as a 'black box' which takes a band of input signals, and converts the particular wanted channel down to a known frequency, referred to as the intermediate frequency (IF). There are various well-known analogue front ends, the most popular of these being the superheterodyne, zero-IF and low-IF. These front-ends are commonly referred to in the prior art as being "receivers" although they do not include digital back-ends. Thus the term "receiver" as used is the following text should not be taken to imply the presence of digital electronics; neither should it be taken to exclude the presence of digital electronics.

30

25

The superheterodyne receiver is widely used because it provides very high selectivity. In one possible arrangement an RF input signal is applied to a low noise amplifier

10

15

20

25

30

(LNA) and is then fed to an image reject (IR) filter which is typically implemented by a surface acoustic wave (SAW) filter. The signal output from the IR-filter is fed to a single mixer where it is combined with a signal from a local oscillator (LO) to perform frequency downconversion to the intermediate frequency (IF). This IF signal is fed through an IF bandpass filter which performs channel selection at the IF. The IF filter is also typically implemented using a SAW filter, although other filter architectures may be used.

The main issue in superheterodyne receiver design is the trade-off between image rejection and channel selection. If the chosen IF is high, the image signal will be greatly attenuated by the IR filter but adjacent channel suppression may not be good. Conversely if the IF is low the image will not be well attenuated although adjacent channels will be well-suppressed. The frequency plan in a superheterodyne receiver must thus be carefully chosen given the input signal frequency and adjacent channel conditions, and often conversion from RF to a final IF occurs in more than one step, requiring additional mixer and local oscillator stages.

The superheterodyne receiver has very good selectivity (i.e. can accurately select the wanted channel and reject unwanted channels), but requires a number of very selective filters which can only be implemented as discrete (off-chip) components. The off-chip filters will significantly increase overall system area and cost.

Zero-IF and low-IF receivers eliminate the need for off-chip filters, and thus are attractive for applications where low power consumption and high integration (minimum size) are important. These two receivers differ in the selection of the down converted intermediate frequency (IF).

For zero-IF, the centre of the wanted signal channel is placed at zero Hz. As a result, one half of the wanted signal channel is located in the positive frequency domain and the other half is in the negative frequency domain. Effectively, the two halves (sidebands) of the wanted signal channel 'overlap'. To avoid signal corruption, it is necessary to use a quadrature receiver architecture having two, quadrature mixers,

20

25

30

with I and Q paths. The quadrature receiver architecture allows signal information to be recovered from the overlapping signal channel sidebands, by combining I and Q channel information. This is recovery is typically done by a digital back-end.

An advantage of the zero-IF receiver is that the wanted channel is converted very quickly to baseband (zero Hz), and thus only low frequency filters and amplifiers are needed on-chip (easy to design). In addition, although the signal channel sidebands overlap in I and Q paths, the signal is effectively interfering with itself, and so the 'interferer' power is the same as the 'wanted' power. However a major disadvantage is that any low frequency noise and offsets which are present in the receiver will directly corrupt the wanted signal channel, since it is centred at zero. In sub-micron CMOS technologies this low frequency noise can be quite significant.

In a low-IF architecture, the wanted channel is converted to a low frequency so that, as in zero-IF, the filters and amplifiers required are easy to design. However, the IF is chosen so that it is in a region where noise and offsets are not a problem. Consider a wanted signal at frequency f_{RF}. This signal is converted to the low IF f_{IF} by multiplying it with an oscillator signal $f_{LO} = f_{RF} - f_{IF}$. However there could well be another channel picked up by the antenna at a frequency $f_{IM} = f_{LO} - f_{IF}$. When this signal is multiplied by the local oscillator (LO) it will be converted to $-f_{IF}$, i.e. the negative frequency 'image' to the wanted channel. So the wanted channel (at positive frequencies) is now overlapped by this image channel (at negative frequencies). In a similar manner to the zero-IF approach, these overlapping signals can be separated by using a quadrature architecture (I and Q paths), and performing suitable signal processing (complex filtering). An alternative approach would be to instead ensure that the interfering signal at frequency $f_{IM} = f_{LO} - f_{IF}$ is filtered out before reaching the multiplier. However, recall that the wanted channel is f_{IF} above the LO, while the interfering image is fir below the LO. Since fir is small, a very sharp filter would be needed in order to pass the wanted channel and reject the image. In practice this is impossible to achieve, and so a low-IF receiver does not reject the image at RF, but instead rejects it at the low IF. A typical low-IF architecture makes use of a quadrature mixer followed by a complex bandpass filter centred at the low IF.

10

15

20

25

30

The main disadvantage of the low-IF receiver architecture compared to a zero IF receiver architecture is that in zero-IF the interfering signal is the wanted channel itself, while in low-IF the interfering signal is some other channel. The other channel could have a power many times greater than that of the wanted channel, which makes signal recovery much more difficult than in the zero-IF case. To improve receiver performance in the presence of a strong image channel signal, the low-IF receiver architecture can be modified to provide some additional image rejection at the RF frequency. This can be achieved by generating quadrature RF signals which are then converted down to the low IF using a full complex mixer (i.e. four separate mixers). The quadrature (I and Q) RF signals can be generated by using an RF polyphase filter, or by using a first stage of quadrature mixers prior to the full complex mixer. The use of a full complex mixer plus RF quadrature generation stage (i.e. a complex low-IF topology) will thus increase image channel rejection compared to the quadrature low-IF topology, but at the cost of increased receiver circuit complexity and possibly degraded receiver sensitivity.

It is often very desirable that a particular receiver should be able to receive signals transmitted under a number of different broadcast standards which may have different signal modulation characteristics. As an example, a multi-standard wireless communications receiver may be required to detect and decode new third generation standards such as wideband code division multiple access (WCDMA), while also being capable of receiving signals transmitted under the GSM or DECT standards. It would be highly desirable to have a single receiver integrated circuit capable of handling these different communication standards.

One approach to the design of such a multi-band multi-standard receiver would be to implement a separate receiver structure for each separate broadcast standard, and then integrate each of these parallel receivers into a single integrated circuit. In this way, each separate receiver could be optimised in terms of performance for the particular standard it will receive, for example by selecting the most suitable receiver

10

20

25

30

architecture and circuit implementation. However a significant disadvantage of such an approach is that a large amount of silicon area will be required at high system cost.

The prior art includes attempts to solve this problem. A prior art switchable multistandard receiver is described in WO02/27953A12. The receiver uses a conventional direct conversion architecture, and comprises three filter stages and three LNAs. The filter stages and the LNAs are selected using switches, depending on the broadcast standard of the incoming signal (e.g. GSM, UMTS or DECT). Common elements of the receiver, a mixer and digital baseband, are connected to each of the outputs of the LNAs. Although the filters and LNAs may be selected for different broadcast standards, the receiver suffers from the disadvantage that the mode of receiver operation is unchanged, i.e. the mode of operation is always direct conversion, as dictated by the architecture of the receiver.

EP1006669A1 describes a prior art superheterodyne receiver. In this receiver a common LNA and mixer are used for all received broadcast standards. The receiver includes multiple switchable filters, a particular filter being selected to receive a particular broadcast standard and frequency band. Although the filters may be selected for different broadcast standards, the mode of operation of the receiver itself is fixed (i.e. superheterodyne) as dictated by the architecture of the receiver.

The lack of flexibility of receiver mode is a substantial disadvantage. For example in a wireless communications receiver, direct conversion may give a compact and low power solution for the reception of wideband signals such as WCDMA, but direct conversion may be unsuitable for reception of narrowband GSM signals.

A second disadvantage of the prior art is that some redundancy in silicon area remains due to the requirement for multiple versions of a given circuit block, i.e. multiple LNAs and filters are required by the receiver of WO02/27953A12, and multiple filters are required by the receiver of EP1006669A1.

10

15

20

25

30

It is an object of the present invention to provide an electric circuit which overcomes at least one of the above disadvantages.

According to a first aspect of the present invention there is provided an electric circuit for use as a radio receiver or as part of a radio receiver, the electric circuit comprising: amplification means for receiving an input signal;

frequency mixer means for receiving an output of the amplification means, the mixer means being configurable to down-convert a wanted component of the amplified input signal to one of at least two intermediate frequency bands;

filter means for receiving an output of the frequency mixer means, the filter means being switchable between at least two filter configurations; and

control means coupled to the frequency mixer means and to the filter means for selecting an intermediate frequency band and filter configuration appropriate to the input signal.

The term 'radio receiver' is intended to refer to an electric circuit capable of receiving a radio signal. It is not intended to imply the presence of digital electronics, neither is it intended to exclude the presence of digital electronics. The filter means may be analogue or digital. The term 'radio receiver' is intended to include an electric circuit which is capable of transmitting signals as well as receiving them, i.e. a transceiver.

The invention is advantageous because it allows the circuit operating mode to be changed, for example in response to a change in a wanted input frequency band or communications standard. This allows the circuit operating mode to be selected for optimal reception of different broadcast standards. In addition, the receiver architecture can be dynamically modified to optimise performance under different reception conditions when receiving a given communications standard. For example in one mode of operation of the circuit, the receiver may be configured as a low-IF architecture with two quadrature mixers. If the presence of a high level image signal is detected, the mixers may be reconfigured to provide full complex operation (four

mixers) to improve image rejection. In this case, additional circuitry is also required to generate the necessary quadrature RF signals for the full complex mixer.

The invention is very different to the prior art, which provides switching between alternative amplifiers or between alternative filters, but which does not provide switching between circuit operating modes. Since the invention uses a reconfigurable mixer and filter configuration (involving the re-use of individual mixers and filter components), rather than switching between alternative mixer and filter configurations, the semiconductor area required by a semiconductor implementation of the invention is low.

The mixer means may comprise a set of interconnected circuit elements, and the reconfigurability may be provided by switches which modify the interconnections between the circuit elements.

15

30

10

5

The filter means may comprise a set of interconnected circuit elements, and the reconfigurability may be provided by switches which modify the interconnections between the circuit elements.

- The filter means may comprise a set of interconnected circuit elements, and the reconfigurability may be provided via adjustable bias signals or connections internal to the circuit elements, so as to substantially change their operating point or transfer function.
- The first and second operating modes may be variously any of zero-IF, quadrature low-IF, complex low-IF, or superheterodyne.

According to a second aspect of the present invention there is provided an electric circuit for use as a radio receiver or as part of a radio receiver, the electric circuit comprising:

amplification means for receiving an input signal;

frequency mixer means for receiving an output of the amplification means, the mixer means comprising a plurality of mixers which can be configured to provide mixer operation in a plurality of modes, at least one of the mixers being reused in different operating modes;

filter means for receiving an output of the frequency mixer means, the filter means being switchable between at least two filter configurations; and

control means coupled to the frequency mixer means and to the filter means for selecting a frequency mixer means operating mode and filter configuration appropriate to the input signal.

10 -

20

5

Specific embodiments of the invention will now be described by way of example only, with reference to the accompanying figures in which:

Figure 1 is a schematic illustration of a radio receiver which embodies the invention;

Figure 2 is a schematic illustration of filters of the radio receiver of figure 1;

15 Figure 3 is a circuit diagram showing a filter which may comprise part of the radio receiver of figure 1;

Figure 4 is a circuit diagram showing an active implementation of the filter of figure 3; Figure 5 is a circuit diagram showing part of the filter of figure 4;

Figure 6 is a circuit diagram showing an alternative active implementation of the filter of figure 3;

Figure 7 is a circuit diagram showing an alternative filter which may comprise part of the radio receiver of figure 1;

Figure 8 is a circuit diagram showing an active implementation of the filter of figure 7; Figure 9 is a circuit diagram showing an active implementation of the filters of figures

25 3 and 7;

Figure 10 is a schematic diagram of an alternative radio receiver which embodies the invention;

Figure 11 is a schematic diagram showing a finite impulse response (FIR) digital filter; and

30 Figure 12 is a schematic diagram of a further alternative radio receiver which embodies the invention.

10

15

20

25

30

: :

A radio receiver which embodies the invention is shown in figure 1. The receiver, which is reconfigurable, comprises an antenna 1, a bandpass filter 2 and a low noise amplifier (LNA) 3. These common elements are connected to an RF quadrature generator 4 which in this embodiment is shown as a passive polyphase filter, and frequency mixers 5a, 5b, 5c, 5d which are provided with a mixing frequency by a synthesiser 6. Outputs of the quadrature mixers 5a - 5d are summed as shown and passed to baseband filters 7, 8, and from the baseband filters to amplifiers 9, 10 and analogue to digital converters 12, 13. As is described below, the baseband filters 9, 10 may be interlinked, and for ease of reference may be referred to as a single entity, baseband filters 11, as shown by box 11.

A controller 11a is coupled to the frequency synthesiser 6 and sets the local oscillator (LO) frequency generated by the synthesiser. The controller is also coupled to the RF filter 4, switches S1-S6, and baseband filters 11, and configures the mixers and filters according to system requirements.

Consider the receiver of figure 1 configured for zero-IF operation. In this case the RF polyphase filter 4 is not required and is bypassed by closing switch S1. A quadrature mixer is required, thus mixers 5a and 5b are selected (by closing switch S2). Mixers 5c, 5d are not required and are deselected by open-circuiting switches S3-S6 and/or by powering down these mixers (e.g. by removing the bias current). Baseband filters 11 are configured as two separate lowpass filters.

Consider the receiver of figure 1 now configured for quadrature low-IF operation. In this case the mixers are configured in a manner similar to the zero-IF receiver (i.e. S1, S2 closed and S3-S6 open), but now the baseband filters 11 are configured to operate as a single complex bandpass filter centred at the low IF.

Consider the receiver of figure 1 now configured as a complex low-IF receiver. In this case the RF polyphase filter 4 is no longer bypassed by switch S1 and thus generates the necessary quadrature RF signals. Mixers 5a, 5b, 5c and 5d are all

selected by closing switches S3, S4, S5, S6 to implement a full complex mixer. The baseband filters are configured to provide a complex bandpass filtering function.

Consider the receiver of figure 1 now configured as a superheterodyne architecture. The RF polyphase filter 4 is bypassed by closing S1, and only a single real mixer (5a) is required. Mixers 5b, 5c, 5d are thus deselected by opening switches S2, S3, S4, S5, S6 and/or powering down these mixers. For superheterodyne operation, a single real bandpass filter is required for channel selection. Baseband filter 7 may be reconfigured to implement the required bandpass functionality. Alternatively, filter 7 may remain as a lowpass architecture but with sufficient bandwidth to pass the wanted IF channel. Channel selection may then be performed by switching in an additional bandpass filter, or may alternatively be performed in the digital domain after analogue-to-digital conversion. Filter 8 is not required and may be powered down, e.g. by removing the bias current.

15

20

25

30

10

Figure 2 shows one possible implementation of the reconfigurable baseband filters 11 for lowpass (zero-IF), complex bandpass (low-IF) and real bandpass (superheterodyne) operational modes. The baseband filters comprise quadrature inputs I_{in} and Q_{in}, which are connected to lowpass filters 15a, 15b. Output from a first lowpass filter 15a is passed as feedback via an inverting amplifier 17 and a switch 18 to an input side of the second lowpass filter 15b. Similarly, output from the second lowpass filter 15b is passed as feedback via an inverting amplifier 19 and a switch 20 to an input side of the first lowpass filter 15a. A highpass filter 16 connected to the output of lowpass filter 15a can be selected by opening switch 16b, or deselected (bypassed) by closing switch 16b as required.

When the switches 18, 20 are open and 16b is closed, a dual channel lowpass filter is implemented suitable for zero-IF mode operation. When the switches 18, 20, and 16b are closed, a complex bandpass filter is implemented suitable for low-IF mode operation. When switches 18, 20 and 16b are open, a real banpass filter function is implemented between I_{in} and I_{out} by the cascade of lowpass 15a and highpass 16 filters. This real bandpass filter is thus suitable for superheterodyne operation. By

selecting the switches 18, 20 and 16b to be either open or closed, the receiver may be reconfigured between zero-IF, low-IF and superheterodyne modes. In practice a number of the filter arrangements shown in figure 2 could be cascaded to implement a higher-order filter.

5

20

25

The analogue front-end of a typical receiver is usually followed by a digital back-end which provides digital post-processing to perform demodulation and decoding functions.

There are many different ways in which component filters 15a, 15b and 16 of the baseband filters 11 may be implemented. The type and/or order of the filters themselves may be varied, for example by switching of their constituent components. The reconfiguration of the filters may involve switching of interconnections between the constituent components of the filters, and/or it may involve switching the values of the constituent components (by varying bias values or by switching in additional elements).

An example of a component filter is shown in figure 3. The filter is a doubly-terminated passive ladder filter which implements a fifth-order all-pole lowpass function. Since the ladder filter is passive, its transfer function is fixed. Figure 4 shows an active implementation of a doubly-terminated ladder filter, which has an adjustable transfer function. The implementation of figure 4 is based on active simulation of the filter transfer function, and is suitable for integrated circuit realisation. The filter of figure 4 is constructed from the interconnection of amplifiers G and integrator sections $1/s\tau$, where various integrator time constants τ determine the pole locations of the filter. By tuning the pole locations (i.e. by varying the integrator time constants), the filter transfer function can be varied, for example from a Chebyshev to a Butterworth response.

30 Figure 5 shows an integrator configuration which allows easy tuning of the time constant τ. The integrator is a transconductor-capacitor (G_m-C) structure. The value of the transconductance G_m depends on the bias current I_B. By tuning I_B, the

integrator time constant changes. Constructing the filter of figure 4 using integrators of the type shown in figure 5 allows convenient variation of the filter transfer function via tuning of the integrators.

An alternative active simulation of the doubly-terminated ladder filter of figure 3 is shown in figure 6. In this circuit the inductors of the passive circuit are simulated using active gyrators formed from transconductors G_m and capacitors C_L . In this instance, the value of a given simulated inductor is determined by the G_m -C elements used to simulate that inductor. To alter the filter response from, for example, a Chebyshev to a Butterworth response, it is not sufficient to simply tune the transconductances of the transconductors, since this will change only the effective inductor values. The values of the capacitors must also be altered. This is achieved by switching in or out additional capacitors C_2 , C_4 , C_6 using switches S_2, S_4, S_6 as shown in Figure 6.

15

20

25

30

5

10

Figure 7 shows an alternative example of a component filter. The filter is a doubly-terminated passive ladder filter which implements a fourth-order elliptic filter. Figure 8 shows an active implementation of the filter, based upon active simulation of inductor values, which can be implemented on an integrated circuit. The filter of figure 8 is based upon gyrators formed from transconductors G_m and capacitors C_L .

From a comparison of the filters shown in figures 6 and 8 it can be seen that these can be conveniently combined as a single circuit. The combined circuit is shown in figure 9. The configuration of the combined circuit of figure 9 may be varied between three different settings, (i) lowpass fifth-order Chebyshev, (ii) lowpass fifth-order Butterworth, and (iii) lowpass fourth-order elliptic. This is achieved as follows:

- (i) with switches S_{2A}, S_{4A} and S_{6A} shut and all others open, and with transconductors G_{ml}-G_{m4} tuned to appropriate values, the circuit implements a lowpass all-pole filter with particular characteristics, e.g. a Chebyshev response.
- (ii) with switches S_{2B} , S_{4B} and S_{6B} shut and all others open, and with transconductors G_{m1} - G_{m4} tuned to appropriate values, the circuit

implements a lowpass all-pole filter with a different transfer function to that in (i), e.g. a Butterworth response,

(iii) with switches S_{2C}, S_{3C} and S_{4C} shut and all others open, and with transconductors G_{m1}-G_{m4} tuned to appropriate values, the circuit implements a lowpass elliptic filter.

The filter examples described in relation to figures 3 to 9 are merely illustrative. It will be appreciated that many different filters, different to those in Figures 3 to 9, may be implemented.

10

5

Figure 10 shows an alternative implementation of a radio receiver which can be reconfigured between zero-IF, low-IF and superheterodyne modes of operation. In this case, the analogue filters are lowpass filters, and the mode reconfiguration is implemented in the digital domain. The receiver comprises an antenna 22, a low noise amplifier (LNA) 23, and two quadrature frequency mixers 24, 25 which are provided with an operating frequency by a synthesiser 26. Outputs of the quadrature mixers 24, 25 pass to analogue lowpass filters 27, 28 and via amplifiers 29, 30 to analogue to digital converters 31, 32. Outputs of the analogue to digital converters 31, 32 pass to reconfigurable digital filters 33.

20

25

30

15

In operation, when a zero-IF mode of operation is required, the analogue lowpass filters 27, 28 are tuned to the appropriate frequency to allow the wanted channel through, but reject the adjacent channel signal. After the analogue to digital conversion, the digital processing circuitry implements the necessary demodulation and decoding functions. If the wanted channel is a narrowband signal, the analogue lowpass filters 27, 28 may be configured not to reject all of the adjacent channel signal but merely act as anti-aliasing filters for the subsequent analogue to digital conversion. This will relax the design constraints on the analogue bandpass filters 27, 28 allowing a more compact design. In this case, the digital circuitry after the analogue to digital converter will first perform lowpass channel select filtering prior to demodulation and decoding functions. A suitable lowpass digital filter could be a finite impulse response (FIR) filter with an appropriate number of taps. Figure 11

shows an example FIR filter structure whereby the output signal y(n) is formed from a summation of the weighted outputs of cascaded delay sections (z⁻¹). The transfer function of the filter depends on the number of delay sections (number of taps), and the relative magnitude of the weights h(0), h(1) etc.

5

10

15

20

25

30

If a low-IF mode of operation is required, the analogue lowpass filters 27, 28 are retuned (for example by varying the filter bias currents) such that the whole of the baseband bandwidth up to (and including) the wanted channel at the low intermediate frequency (IF) is passed through the analogue lowpass filters 27, 28. The analogue to digital converters 31, 32 will convert the whole of this signal to the digital domain. The digital filters are configured such that they implement complex bandpass filtering, rather than lowpass filtering used in the zero-IF case. For example the FIR structure may be maintained but with modified weights and number of taps. The weight values h(0), h(1) etc. can be changed by updating values stored in digital weight registers, while the number of taps may be increased or decreased by switching in or out additional cascaded delay sections.

For superheterodyne operation, a quadrature receiver architecture is not required and circuits in the lower quadrature branch of figure 10 are deselected. The analogue lowpass filter 27 is retuned as in the low-IF mode such that the whole of the baseband bandwidth up to (and including) the wanted channel at the low intermediate frequency (IF) is passed through the analogue lowpass filters 27. The analogue to digital converter 31 will convert the whole of this signal to the digital domain. The digital filter is configured such that a real bandpass filter function is implemented, rather than lowpass filtering or complex bandpass filtering used in the zero-IF and low-IF cases.

An advantage of performing the filter reconfiguration in the digital domain is that digital circuits are easier to reconfigure than analogue circuits, and in addition the complex filters can be implemented with greater matching accuracy (i.e. greater image rejection). However the penalty is a higher ADC conversion bandwidth and thus increased power consumption.

The receiver may be implemented such that both the analogue and digital baseband filters can be reconfigured. In this way, the analogue filters could be fairly narrowband lowpass structures (for a zero-IF receiver), or they may be wideband lowpass filters with complex bandpass filters in the digital domain (for a low-IF digital IR approach), or they may be wideband lowpass filters with real bandpass filters in the digital domain (for a superhet approach); alternatively, the analogue filters may be configured as complex bandpass structures (for a low-IF analogue IR approach). A receiver having reconfigurable analogue and digital baseband filters is shown schematically in Figure 12.

10

20

5

The various circuit blocks such as LNA, mixers, etc may be reconfigured by varying their bias values so as to be optimised for a different frequency band or standard.

The various circuit blocks such as LNA, mixers, etc may also be switchable such that
as the baseband is reconfigured, the front-end circuit elements are also switched so as
to be optimised for a different frequency band or standard.

Although the described embodiments of the invention are receiver architectures, it will be appreciated that the invention may also be implemented in an architecture in which the integrated circuit front-end is capable of performing a transmitter function, i.e. an RF transceiver architecture.

CLAIMS

1. An electric circuit for use as a radio receiver or as part of a radio receiver, the electric circuit comprising:

amplification means for receiving an input signal;

frequency mixer means for receiving an output of the amplification means, the mixer means being configurable to down-convert a wanted component of the amplified input signal to one of at least two intermediate frequency bands;

filter means for receiving an output of the frequency mixer means, the filter means being switchable between at least two filter configurations; and

control means coupled to the frequency mixer means and to the filter means for selecting an intermediate frequency band and filter configuration appropriate to the input signal.

15

10

5

2. An electric circuit according to claim 1, the frequency mixer means comprising a plurality of mixers being switchable into and out of use in order to allow configuration of the frequency mixer means, at least one of the mixers being reused for different configurations of the frequency mixer means.

20

- 3. An electric circuit according to claim 2, the frequency mixer comprising four mixers configurable to provide at least two of:
 - a quadrature mixer for zero-IF use; and
 - a fully complex mixer for low-IF use; and
- 25 a single real mixer for superheterodyne use.
 - 4. An electric circuit according to any one of the preceding claims, wherein the filter means comprises a set of interconnected circuit elements, and switches which modify the interconnections between the circuit elements.

30

5. An electric circuit according to any one of claims 1 to 3, wherein the filter means comprises a set of interconnected circuit elements, and means for providing

15

20

25

adjustable bias signals or connections internal to the circuit elements, so as to substantially change their operating point or transfer function of the filter means.

- 6. An electric circuit according to any preceding claim, wherein one of said filter configurations is a low pass configuration for zero-IF use.
 - 7. An electric circuit according to any preceding claim, wherein one of said filter configurations is a complex bandpass configuration for low-IF use.
- 8. An electric circuit according to any preceding claim, wherein one of said filter configurations is a real bandpass configuration for superheterodyne use.
 - 9. An electric circuit according to any preceding claim, wherein the control means is capable of selecting an intermediate frequency band and filter configuration so that the circuit operates in heterodyne mode.
 - 10. An electric circuit according to any one of the preceding claims, wherein the filter means provides quadrature inputs and quadrature outputs, the filter means being switchable to allow feedback to be passed from the quadrature outputs to opposite quadrature inputs.
 - 11. An electric circuit according to any one of the preceding claim, wherein the filter means comprises amplifiers and integrators arranged to simulate a passive filter, the time constants of the integrators being adjustable to adjust the filter means' transfer function.
 - 12. An electric circuit according to claim 10, wherein the integrator is a transconductor capacitor structure having a tuneable bias current
- 30 13. An electric circuit according to any preceding claim, wherein the filter means comprises transconductors and capacitors arranged to form active gyrators.

- 14. An electric circuit according to claim 13, wherein the transconductors are provided with tuneable bias currents, and the capacitors are provided with switches which may be used to switch the capacitors into or out of the filter active gyrators.
- 5 15. An electric circuit according to any preceding claim, wherein the filter means implements an all-pole lowpass filter.
 - 16. An electric circuit according to any of claims 1 to 14, wherein the filter means implements an elliptic filter.

- 17. An electric circuit according to claim 15 or 16, wherein the filter means is dynamically reconfigurable between the all-pole lowpass filter implementation and the elliptic filter implementation.
- 15 18. An electric circuit according to any preceding claim, wherein the dynamically reconfigurable filter means is implemented in the analogue domain
 - 19. An electric circuit according to any of claims 1 to 8, wherein the dynamically reconfigurable filter means is implemented in the digital domain.

20

30

- 20. An electric circuit according to claim 19, wherein the filter means comprises a finite input response filter with adjustable delay sections and weights.
- 21. An electric circuit according to claim 18 or 19, wherein the analogue dynamically reconfigurable filter means and the digital dynamically reconfigurable filter means are both provided in the electric circuit.
 - 22. An electric circuit according to any one of the preceding claims and comprising detection means coupled to receive at an input the output of the filter means for extracting modulation information therefrom, the detection means being coupled to the control means so that the control means can switch the detection means between at least two operating modes.

15

20

30

- 23. An electric circuit according to claim 22, wherein the detection means can be switched between at least a real value and a complex modulus operating mode.
- 5 24. An electric circuit for use as a radio receiver or as part of a radio receiver, the electric circuit comprising:

amplification means for receiving an input signal;

frequency mixer means for receiving an output of the amplification means, the mixer means comprising a plurality of mixers which can be configured to provide mixer operation in a plurality of modes, at least one of the mixers being reused in different operating modes;

filter means for receiving an output of the frequency mixer means, the filter means being switchable between at least two filter configurations; and

control means coupled to the frequency mixer means and to the filter means for selecting a frequency mixer means operating mode and filter configuration appropriate to the input signal.

- 25. An electric circuit according to claim 24, wherein said filter means comprises a plurality of filters which can be switched into and out of use, at least one of the filters being reused in different filter configurations.
- 26. An electric circuit for use as a radio receiver or as part of a radio receiver, the electric circuit comprising:

amplification means for receiving an input signal;

frequency mixer means for receiving an output of the amplification means; filter means for receiving an output of the frequency mixer means; and control means coupled to the frequency mixer means and to the filter means and capable of selecting a frequency mixer means operating mode and filter configuration to provide each of a low-IF, zero-IF, and superheterodyne architecture.

FIGURE 2

FIGURE 3

FIGURE 4

FIGURE 5

FIGURE 6

FIGURE 7

FIGURE 8

FIGURE 9

FIGURE 10

FIGURE 11

FIGURE 12

INTERNATION SEARCH REPORT

ention No PCT 03/04484

A. CLASS IPC 7	HO4B1/30 HO4B1/26		
According t	to International Patent Classification (IPC) or to both national class	ification and IPC	
	SEARCHED		
IPC 7	ocumentation searched (classification system followed by classific H04B	cation symbols)	
Documenta	ation searched other than minimum documentation to the extent the	at such documents are included in the fields so	Relevant to claim No. 1,4-6, 11-15, 18,21, 22,24,25 1,4,8,9, 18,22 1 I listed in annex. The international filing date cit with the application but e or theory underlying the extremely claimed invention cannot be considered to the document is taken alone a: the claimed invention e an inventive step when the error more other such docur- jobvious to a person skilled patent family
Electronic o	data base consulted during the international search (name of data	base and, where practical, search terms used	0
EPO-In	nternal, PAJ, WPI Data, INSPEC		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	Relevant to daim No.	
X	DIE LOESUNG FUER MOBILFUNKGERAETE DER 11-15, 2UKUNFT?" 18,21,		11-15, 18,21,
×	US 2001/041584 A1 (WATANABE HID 15 November 2001 (2001-11-15) figure 1	EKI)	
A	US 5 564 076 A (AUVRAY GERARD) 8 October 1996 (1996-10-08) figure 2		1
Fur	ther documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
A docum consi *E* earlier filing the docum which citalic to "O" docum other the docum other the docum of the docum other the docum the docum the docum the docum the docum the	ategories of cited documents: nent defining the general state of the an which is not dered to be of particular relevance document but published on or after the International date ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or means tent published prior to the international filing date but than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person stilled in the art. "8" document member of the same patent family 	
Date of the	actual completion of the international search	Date of mailing of the international se	arch report
	30 January 2004	05/02/2004	·
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Douglas, I	

INTERNATIONA EARCH REPORT

enternal atton No PCT/5003/04484

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
US 2001041584	A1	15-11-2001	JP	11298361 A	29-10-1999
			CN	1232354 A ,B	20-10-1999
US 5564076	Α	08-10-1996	FR	2707063 A1	30-12-1994
			AT	184739 T	15-10-1999
			AU	681647 B2	04-09-1997
			AU	6488494 A	05-01-1995
			CA	2126657 A1	26-12-1994
			DE	69420621 D1	21-10-1999
			DE	69420621 T2	25-05-2000
			DK	631400 T3	03-04-2000
			EP	0631400 A1	28-12-1994
			ĒS	2137338 T3	16-12-1999
			FΙ	943030 A	26-12-1994
			JP	3010570 B2	21-02-2000
			ĴΡ	7059162 A	03-03-1995