Branch: CSE/IT

Discrete Mathematics Set Theory

DPP-04

[NAT]

1. Consider a set $x = \{1, 2, 3, 4, 5\}$. The number of symmetric relations for the given set are?

[MCQ]

- 2. Consider the cross product of a set $A = \{1,2,3\}$, set $B = \{x, y, z\}$ and set C. The resultant cross product is ϕ . Then the elements of set C is?
 - (a) $\{a, b\}$
- (b) {0}
- (c)
- (d) None of these

[MCQ]

- **3.** If the number of reflexive relations for a set is 64 then what is the cardinality of the set?
 - (a) 3
- (b) 4
- (c) 6
- (d) 16

[MCQ]

4. Consider the following relations R_1 and R_2 on set $A = \{a, b, c, d\}$

 $R_1 \! : \ \{(a,a),(a,b),(a,c),(b,c),(c,a)\}$

R2: $\{(a, a), (a, b), (a, c), (b, c), (b, a), (c, b), (c, a)\}$

Choose the correct statement from the following:

- (a) R_1 is a symmetric relation but not R_2 .
- (b) R_2 is a symmetric relation but not R_1 .
- (c) Both R_1 and R_2 are symmetric.
- (d) Neither R_1 nor R_2 is symmetric.

[MCQ]

- **5.** Consider the following relation:
 - **I.** Relation R_1 = "Has the same birthday" defined on the set of people.

Batch: Hinglish

- II. Relation R_2 = "Has the same absolute value" defined on the set of real number.
- III. Relation R_3 = "Congruence module $n(\equiv)$ " defined on the set of integers.

Choose the correct statement regarding the given relations.

- (a) Only R_1 and R_2 are equivalence relations.
- (b) Only R_2 and R_3 are equivalence relations.
- (c) Only R_1 and R_3 are equivalence relations.
- (d) All R_1 , R_2 and R_3 are equivalence relations.

[NAT]

- **6.** Consider the given statements:
 - **I:** Every reflexive relation is always symmetric.
 - **II:** "Is a subset of" is a transitive relation defined on a power set of sets.
 - **III.** The inverse of a transitive relation is a transitive relation.

The number of incorrect statements are?

[NAT]

7. For a set a with cardinality 7, what is the total number of reflexive and symmetric relations?

Answer Key

- 1. (32768)
- 2. (c)
- 3. (a)
- **4.** (b)

- 5. (d)
- **6.** (0)
- 7. (2097152)

Hints and Solutions

1. (32768)

The number of symmetric relations $\Rightarrow 2^n \cdot 2^{\frac{n^2-n}{2}}$ or $2^{n(n+1)/2}$

Therefore,
$$2^{5(5+1)/2} \Rightarrow 2^{\frac{5*6}{2}}$$

 $\Rightarrow 2^{3\times 5} = 2^{15} = 32768$

2. (c)

If the cross product of given sets is empty or ϕ then at least one of the set involved in the cross product is empty.

3. (a)

The total number of reflexive relations = 2^{n^2-2} Given, the total number of reflexive relations = 64

Therefore,
$$2^{n^2-n} = 64$$

 $2^{n^2-n} = 2^6$

Substituting n = 3 we get

$$2^{(3)^2-3} \Rightarrow 2^{9-3} = 2^6 = 64.$$

The cardinality of set = 3.

4. (b)

R₁: {(a, a), (a, b), (a, c), (b, c), (c, a)} is not symmetric because (b, a) and (c, b) should be a part of R to make it symmetric.

R₂: {(a, a), (a, b), (a, c) (b, c), (c, a) (b, a), (c, b)} is a symmetric relation. It is R_1 relation including (b, a) and (c, b).

5. (d)

All the given relations are equivalence relations.

 R_1 = 'Has the same birthday'

 R_2 = 'Has the same absolute value'

 R_3 = "Congruence module $n(\equiv)$ " defined on the set of integers.

6. (0)

All the given statement are correct.

- I. Every reflexive relations is also a symmetric relation.
- II. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$, therefore "Is a subset is transitive relation".
- III. The inverse of a transitive relations is also transitive for example "is less than" is a transitive relation, then the inverse "Is greater than" is also a transitive relation.

7. (2097152)

Total number of of reflexive and symmetric

relations for a set of n elements $\Rightarrow 2^{\frac{n^2-n}{2}}$ Here, cardinality = 7 = n

$$\therefore 2^{\frac{7^2-7}{2}} \Rightarrow 2^{\frac{49-7}{2}}$$

$$2^{\frac{42}{2}} = 2^{21}$$
$$= 2097152.$$

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if