Homework 2

Miriam Wagner 373045

June 27, 2018

Introduction

Process Models

The model of the application's lifecycle

For modeling the application lifecycle first the data has been filtered. Just the events beginning with "App_..." are required. This data set is saved by the name "Filtered App".

(c) Directly followed graph 0.1 frequency (d) Directly followed graph 0.2 frequency

Figure 1: Considered directly followed graphs

The first try I choose the frequency 0.1 and had a look at the directly followed graph. I also checked 0.2 and 0.51. For comparison in the end I checked also

the original directly followed graph. My first choice was the directly followed graph with 0.1 as threhold for frequency, because it was a simple model that still tells us a lot about the main process. In figure 1 the 4 considered directly followed graphs can be seen. Obviously the original graph does not fullfill the criterium of simplicity and also the graph with frequency 0.051 still looks not as simple as I would like.

Figure 2: Conformance checking

In the next step I checked the conformance of the corresponding petri net, which I exported from the Interactive Data-aware Heuristic Miner, by combining the data and the petri net for the conformance checking with the Replay tool for Conformance checking. The results in 2 showed me, that the model with 0.2 also has the same conformance than 0.1, what is not surprising, because they have the same petri-net. Based on this and the fact, that the conformance of 0.1 filtered is still not so bad I considered 0.051 and 0.1 for the precision check. Applying the Multi-perspective Process Explorer and choosing "show precision mode".

Avg activity precision	100%	Avg activity precision	88,1%	
# Moves Observed	144.789	# Moves Observed	97.074	
# Moves Possible	144.789	# Moves Possible	110.161	
Avg fitness	99,6%	Avg fitness	88,6%	
% Violations	0,8%	% Violations	21,7%	
% Event Violations	0,8%	% Event Violations	21,7%	
% Data Violations	0%	% Data Violations	0%	
# Correct Events	60.849	# Correct Events	52.096	
# Wrong Events	0	# Wrong Events	8.753	
# Missing Events	498	# Missing Events	5.717	

- (a) Precision for 0.051 as frequency
- (b) Precision for 0.1 as frequency

Figure 3: Precision checking

Checking the precision, 4, and combine it with the results before, I came to the conclusion, that 0.1 is not good enough as model and 0.051 is good enough, but too complicated. Starting by this I again tried different frequency filters outgoing by 0.075 to find a model, which has a similar simplicity than the 0.1 frequency model, but a better conformance and precision. And already the frequency filtering 0.076 gives me the wished result.

This model has a good simplicity, but still has a path fitness of 96.58% and precision of 94.8%, so it is still pretty good. Overall I so decided to choose the 0.076 frequency model for the application's lifecycle.

(c) Directly followed graph

Figure 4: Frequency 0.076

The model of the proposal's lifecycle

Applying the same steps on the proposal lifecycle gave me first 4 models to have a closer look at.

Because of simplicity I first checked the conformance and precision just for 0.051 and 0.1 frequency filtering.

Having a look at the different conformance and precision outcomes 6, I decided, that the 0.1 frequency model is not good enough, but wanted to check, if there is a model better or in simplicity or in performance for the 0.51 model. The models best for simplicity fitting had 0.08 frequency or 0.025.

Figure 5: Considered directly followed graphs

Combinded Model

First I filtered the data 3 times to have a dataset with all p

C-net of the proposal process

Own Petri net of the proposal process

Analysis of the performance of Application and work process

Questions

Conclusion

Figure 6: Conformance and precision checking

(a) Directly followed graph without fre-(b) Directly followed graph 0.051 frequency filtering quency

Property	Value	Property	Value	
Raw Fitness Cost Max Move-Log Cost Num. States Trace Fitness Move-Model Fitness Move-Log Fitness Max Fitness Cost Trace Length Queued States	2.133713534132 0.7597615954764291 2.387407350806137 6.684114006265772 0.9154572453183918 0.9867960571559562 0.9298519372518611 2.387407350806137 12.337407350806137 12.33177962863913	Raw Fitness Cost Max Move-Log Cost Num. States Trace Fitness Move-Model Fitness Move-Log Fitness Max Fitness Cost Trace Length Queued States	0.07778711698632224 2.3874073508061433 6.670130664017713 0.9882694969197188 0.9937748638349697 0.9959403350088936 2.3874073508061433 1.3874073508061433	

(c) Conformance for 0.08 frequency

(d) Conformance 0.025

Avg activity precision	80%	Avg activity precision	83,6%
# Moves Observed	72.228	# Moves Observed	103.538
# Moves Possible	90.330	# Moves Possible	123.899
Avg fitness	30,3%	Avg fitness	37,4%
% Violations	31%	% Violations	3,2%
% Event Violations	31%	% Event Violations	3,2%
% Data Violations	0%	% Data Violations	0%
# Correct Events	22.119	# Correct Events	30.740
# Wrong Events	9.125	# Wrong Events	504
# Missing Events	818	# Missing Events	514

(e) Precision for 0.08 as frequency

(f) Precision for 0.025 as frequency

Figure 7: Directly followeg graphs, conformance and precision