

Source

Coursera course on Discrete Optimization

Bertsimas, Tsiliklis, Introduction to Linear Optimization, chapter 10, 11-2

http://www.sce.carleton.ca/faculty/chinneck/po.html chapter 12,13

Planning the optimal study plan

- You are given a list of courses and their schedule
- Each course has a certain attractiveness (can be negative)
- There are constraints on credits you have to get
- There are constraints on how many classes you can take in each term
- There are prerequisites

Binary integer linear program

Binary ILP is a systematic approach for modeling such problems: i - courses, j - terms

 $X_{i,j} \in \{0,1\}$ whether we take *i*th course in the *j*th term

maximize total attractiveness of the schedule

 $\int x_{1} + \int x_{2} + \int x_{3} + \int x_{4} + \int x_$

$$x_{i,j} \in \sum_{k=1}^{j-1} x_{i,k}$$
 i' is a prerequisite for i

$$\sum_{i} \ell_i \times_{i,j} \leq L_i$$
 you have to survive it

General patterns in binary ILPs

$$X: \in \{0,1\}$$

$$\sum_{i \in I} x_i \leq 1$$

$$\sum_{i \in I} x_i \geq 1$$

$$\sum x_{c} = 1$$

$$\times_i \leq \times_j$$

"at most one is on"

"at least one is on"

"exactly one is on"

"i th variable can be on only when jth variable can be on"

Team selection

suitability of the ith player for jth position

How to pick the optimal starting team?

Team selection

suitability of the ith player for the jth position

whether the *i*th player is chosen for the *i*th position ...wait, but players 12 and

17 are terrific together!

$$Z \leq \sum_{j=1}^{N} X_{j}$$

$$Z \leq \sum_{j=1}^{N} X_{j}$$

 $X_{ij} \in \{0,1\}$

Set problems

Minimal weight set cover and ILP

Facility location

Travelling salesman problem

Job shop has two machines ("red" and "blue")

Possible schedule:

Joba 1 1
$$t_{1,1} d_{1,1} t_{1,2} d_{1,2}$$

Joba 2 2 $t_{2,2} d_{2,2} t_{2,1} d_{2,1}$

Joba 3 $t_{3,1} d_{3,1}$

Joba 4 4 $t_{4,2} d_{4,2} t_{4,3} d_{4,1}$

min
$$\pm$$
 t, z
 $s.t: z > t_{1,2} + d_{1,2} = t_{1,2} > t_{1,1} + d_{1,1}$
 $z > t_{2,1} + d_{2,1} = t_{2,1} > t_{2,2} + d_{2,2}$
 $z > t_{3,1} + d_{3,1} = t_{4,1} > t_{4,2} + d_{4,1}$
 $z > t_{4,1} + d_{4,1} = t_{4,1} > t_{4,2} + d_{4,1}$

+ different jobs are for the same mach

$$t_{1,2} \ge t_{1,1} + d_{1,1}$$
 $t_{2,1} \ge t_{2,2} + d_{2,2}$
 $t_{4,1} \ge t_{4,2} + d_{4,2}$

+ different jobs are competing for the same machines

constraints in this case?

Job1 1 1
$$t_{1,2}$$
 $t_{1,2}$ $t_{1,2}$ $t_{1,2}$ $t_{1,2}$ $t_{2,1}$ $t_{2,2}$ $t_{2,$

"Optimization methods", Fall 2015: Lecture 8, "Integer programming"

The "Big M" trick

$$\begin{bmatrix} t_{2,1} > t_{1,1} + d_{1,1} \\ t_{1,1} > t_{2,1} + d_{2,1} \end{bmatrix}$$

M is a big constant (e.g. bigger than the time needed for some poor schedule)

$$\begin{cases} M \times_{1-2,1} + t_{2,1} > t_{1,1} + d_{1,1} \\ M (1-x_{1-2,1}) + t_{1,1} > t_{2,1} + d_{2,1} \\ X_{1-2,1} \in \{0;1\} \end{cases}$$

After expressing conflicts via the "Big M" trick, we get a *mixed-integer program* (combines integer and real variables)

$$t_{1,2} \ge t_{1,1} + d_{1,1}$$
 $t_{2,1} \ge t_{2,2} + d_{2,2}$
 $t_{4,1} \ge t_{4,2} + d_{4,2}$

LP relaxation

$$Min \omega^{T} \times Iinear program (relaxation)$$

$$S.t.: \forall j \geq X : \geq 1$$

$$i: V. \in M_i$$

$$X_i \geq 0$$

 $\times (\leq 1 \pmod{\text{redundant if } w > 0})$

LP relaxation

- In some cases, the solution will be integer
- In many cases, the solution will be fractional

 No free lunch: the harder the problem, the smaller are our chances to get an integer solution

Facility location: two ILPs

Two ways to define the consistency constraints:

$$\forall i \} \quad \forall j \in \mathcal{Y} : \qquad \sum_{j=1}^{C} x_j \in \mathcal{C} \cdot \mathcal{Y} :$$

Lots of $(C \times F)$ constraints

Fewer (F) constraints

Two equivalent formulations. Which one is preferable?

Comparison

Comparison

Integer	program	Re	laxation 1	Relaxation 2
	1		1.0000	0.2000
	0		0.0000	0
	0		0.0000	0.0667
	0		0.0000	0.0667
	0		0.0000	0.0333
	0		0.0000	O
	1		1.0000	0.0667
	1		1.0000	0.1667
	1		1.0000	0.0333
	1		1.0000	0.1000
	0		0.0000	0.0333
	0		0.0000	0.0333
	0		0.0000	0.1333
	0		0.0000	0
1.6871	1	1.6871	1.0000	1.0105 0.0667

Geometric scheme

inside relaxations

When constructing of the ILP...

- Try to think of as many valid constraints as possible (as long as they are not redundant from LP point of view)
- Resolving fractional values is much harder then solving even very big LPs
- Even exponential number of constraints can be dealt with (more in the next lecture)