CS & IT ENGINEERING

LOGIC

Lecture No: 09

TOPICS TO BE COVERED Inference Rule

Quantifier

Negation of Quantifier

Nested Quantifier

$$p \rightarrow q$$

$$p \leftarrow c$$

$$r \rightarrow \neg q$$

$$p \rightarrow q$$

2:
$$P \rightarrow a$$
 $P \rightarrow a$ $P \rightarrow \gamma R = R \rightarrow \gamma P$
 $R \rightarrow \gamma a = a \rightarrow \gamma R$
 $R \rightarrow \gamma R$

$$p \rightarrow (q \rightarrow r)$$

 $\neg q \rightarrow \neg p$

$$Q \rightarrow R(2A)$$

Q.3

$$p \rightarrow (q \rightarrow r)$$

P=T

R=F

9=7

$$\neg q \rightarrow \neg p$$

Q.4

$$p \wedge q$$

$$p \rightarrow (r \land q)$$

$$r \rightarrow (s \lor t)$$

$$\neg s$$

$$\dot{}$$

$$p \rightarrow (q \rightarrow r)$$

$$t \rightarrow q$$

$$\neg S$$

$$\therefore \neg r \rightarrow \neg t$$

$$(\neg p \lor \neg q) \rightarrow (r \land s)$$

$$r \rightarrow t$$

$$\frac{\neg t}{\Rightarrow p}$$

$$r \rightarrow t$$

$$p$$

$$r \rightarrow t$$

(Addition) J 7RV75.

$$\begin{array}{c} (\gamma p \vee \gamma q) \rightarrow (R \wedge S) \\ \neg (R \wedge S) \rightarrow \gamma (\gamma p \vee \gamma q) \\ (\gamma R \vee \gamma S) \rightarrow p \wedge q \\ \hline \gamma R \vee \gamma S \\ \hline p \wedge q \longrightarrow p \end{array}$$
modus ponens.

Q.8

$$u \rightarrow r$$

$$(r \land s) \rightarrow (p \lor t)$$

$$q \rightarrow (u \land s)$$

$$\neg t$$

Negate and simplify each of the following.

1)
$$\exists n [p(n) \vee q(n)]$$
 $aegate$
 $\exists n [p(n) \vee q(n)]$

Hn[7p(n)ハフの(m)

A.
$$\exists x[p(x) \lor q(x)]$$

B.
$$\forall x[p(x) \land \neg q(x)]$$

$$\forall x [p(x) \to q(x)]$$

$$\exists x [(p(x) \lor q(x)) \to r(x)]$$

$$p(x): x^2 - 7x + 10 = 0 (n = 2, 5)$$

$$q(x): x^2 - 2x - 3 = 0 \ (n = -1, 3)$$

$$r(x): x < 0$$
 (negative)

Determine the truth or falsity of the following statements, where the universe is all integers.

a)
$$\forall n [p(n) \rightarrow \tau R(n)]$$

7 R(n): +ve

A.
$$\forall x[p(x) \rightarrow \neg r(x)]$$

$$\forall x[p(x) \rightarrow \neg r(x)] \qquad \qquad \gamma \leftarrow 2 \qquad \gamma(2) \qquad \rightarrow \neg R(2)$$

B.
$$\forall x[q(x)\rightarrow r(x)]$$

$$\exists x[q(x)\rightarrow r(x)]$$

$$\exists x[p(x) \rightarrow r(x)]$$

$$N=5$$
. $T \rightarrow T$.

$$p(x): x^2 - 7x + 10 = 0 (n = 2, 5)$$

$$q(x): x^2 - 2x - 3 = 0 \ (\lambda = 4,3)$$

$$q(x): x^2 - 2x - 3 = 0$$

$$r(x): x < 0$$
 (negative)

Determine the truth or falsity of the following statements, where the universe is all integers.

b) $\forall n (2(n) \rightarrow R(n))$

A.
$$\forall x[p(x) \rightarrow \neg r(x)] \quad \pi = 3$$

$$\forall x[q(x)\rightarrow r(x)](false)$$

$$\exists x[q(x)\rightarrow r(x)]$$

$$\exists x[p(x) \rightarrow r(x)]$$

$$p(x): x^2 - 7x + 10 = 0 (n = 2, 5)$$

$$q(x): x^2 - 2x - 3 = 0$$
 ($\chi = 4,3$)

$$r(x): x < 0$$
 (negative)

7 R(n): +ve

Determine the truth or falsity of the following statements, where the universe is all integers.

A.
$$\forall x[p(x) \rightarrow \neg r(x)] \gamma = 999$$

- $\forall x[q(x)\rightarrow r(x)]$
- $\exists x[q(x)\rightarrow r(x)](\neg vw)$
- $\exists x[p(x)\rightarrow r(x)](\neg v)$

$$p(x): x^2 - 7x + 10 = 0 (n = 2, 5)$$

$$q(x): x^2 - 2x - 3 = 0 \ (\lambda = 4,3)$$

$$r(x): x < 0$$
 (negative)

Determine the truth or falsity of the following statements, where the universe is all integers.

A.
$$\forall x[p(x) \rightarrow \neg r(x)]$$

d)
$$\exists n (p(n) \rightarrow r(n))$$

B. $\forall x[q(x)\rightarrow r(x)]$

 $\exists x[p(x)\rightarrow r(x)](1\rightarrow v)$

$$p(x,y): y - x = y + x^2$$

where the universe for each of the variables x,y comprises all integers. Determine the truth value for

each of the following statements. P(n,y) n=1 4=1

a)
$$p(0,0)(\tau)$$
 e) $\exists yp(1,y)$

b)
$$p(1,1)(f)$$
 f) $\forall x \exists y p(x,y)$

$$p(n,y): y-n=y+n^2$$

$$|-|=|+|^2$$

0 = 2

c)
$$p(0,1)$$

c)
$$p(0,1)$$
 g) $\exists y \forall x p(x,y)$

d)
$$\forall yp(0,y)$$
 h) $\forall y\exists xp(x,y)$

d)
$$\forall yp(0,y)$$
 h) $\forall y\exists xp(x,y)$

Pw

$$p(x,y): y-x=y+x^2$$
 d) $\forall y(0,y) \quad y-x-y+x^2$

where the universe for each of the variables x,y comprises all integers. Determine the truth value for each of the following statements.

a)
$$p(0,0)(\tau)$$
 e) $\exists yp(1,y)$

b)
$$p(1,1)(f)$$
 f) $\forall x \exists y p(x,y)$

c)
$$p(0,1)(T)$$
 g) $\exists y \forall x p(x,y)$

d)
$$\forall yp(0,y) \rightarrow h) \forall y\exists xp(x,y)$$

c)
$$p(0,1)$$
 $n=0$ $y=1$
 $y-n=y+n^2$
 $|-0=|+(0)^2$

$$p(x,y): y-x=y+x^2$$

 $y-x=y+x^2$
 $y-1=y+x^2$
 $y-1=y+x^2$

where the universe for each of the variables x,y comprises all integers. Determine the truth value for each of the following statements.

9-2-1+4

a)
$$p(0,0)(\tau)$$
 e) $\exists yp(1,y)(false)$ $\forall n \exists y(y-n=y+n^2)$

c)
$$p(0,1)(\tau)$$
 g) $\exists y \forall x p(x,y)$

d)
$$\forall yp(0,y) \rightarrow h) \forall y\exists xp(x,y)$$

$$p(x,y): y - x = y + x^2$$

where the universe for each of the variables x,y comprises all integers. Determine the truth value for each of the following statements.

a)
$$p(0,0)(\tau, e) \exists yp(1,y)$$

b)
$$p(1,1)(f)$$
 f) $\forall x \exists y p(x,y)$

c)
$$p(0,1)(7)$$
 g) $\exists y \forall x p(x,y)(f_{obs})$

d)
$$\forall yp(0,y) \rightarrow h) \forall y\exists xp(x,y)$$

$$p(x,y): y - x = y + x^2$$

where the universe for each of the variables x,y comprises all integers. Determine the truth value for each of the following statements.

a)
$$p(0,0)(\tau, e) \exists yp(1,y)$$

b)
$$p(1,1)(f)$$
 f) $\forall x \exists y p(x,y)$

c)
$$p(0,1)(T)$$
 g) $\exists y \forall x p(x,y)$

d)
$$\forall yp(0,y) \rightarrow h) \forall y\exists xp(x,y)$$

Determine whether each of the following statements is true or false.

The universe comprises all integers.

a)
$$\forall x \exists y \exists z (x = 7y + 5z) (7)$$

b)
$$\forall x \exists y \exists z (x = 4y + 6z)(f)$$

2.
$$r \rightarrow s$$

$$p \rightarrow q$$

$$r \lor p$$

$$\therefore s \lor q$$

4.
$$p \rightarrow (r \rightarrow s)$$

 $\sim r \rightarrow \sim p$
 p
 $\therefore s$

5.
$$(p \land q) \rightarrow \sim t$$

 $w \lor r$
 $w \rightarrow p$
 $r \rightarrow q$
 $\therefore (w \lor r) \rightarrow \sim t$

$$6. \sim t \rightarrow \sim r$$

$$\sim s$$

$$t \rightarrow w$$

$$r \lor s$$

$$\therefore w$$

7.
$$(p \land q) \rightarrow \sim t$$

 $w \lor r$
 $w \rightarrow p$
 $r \rightarrow q$
 $\therefore (w \lor r) \rightarrow \sim t$

8.
$$p$$

$$p \rightarrow q$$

$$q \rightarrow r$$

$$\therefore r$$

$$11. r$$

$$p \rightarrow q$$

$$q \rightarrow r$$

$$\vdots p$$

