SBML2SHACL

Edoardo De Matteis 1746561

10 agosto 2020

Indice

1	Introduzione	1
2	Modellazione	2
3	Test	4
4	Commenti e critiche	5
5	Fonti	6

1 Introduzione

SBML è un formato basato su XML per definire conoscenza medica e biochimica, più che di linguaggio si parla di lingua franca dal momento che si pone come tale, risolvendo il problema causato dall'eterogeneità di standard tra software in ambito biomedico.

SHACL invece è uno standard del W3C per la verifica di grafi rispetto a dei vincoli definiti, questi grafi sono rappresentati in qualsiasi formato RDF, ad esempio Turtle; Il Resource Description Network (RDF) è necessario per la codifica e la manipolazione di metadati e consente la modellazione di informazioni come risorse web, dal momento che si fa uso di logiche descrittive tali informazioni sono codificate sotto forma di triple <subject> predicate><object> equivalente in logica del primo ordine ad una formula ove subject e object sono due termini ground e predicate un predicato binario.

Dato un modello SHACL il linguaggio di query che permette di interrogarlo è SPARQL; RDF, SHACL e SPARQL sono standard del World Wide Web Consortium (W3C).

L'obiettivo di questo progetto, sotto la guida del Professor Tronci, è quello di convertire automaticamente codice SBML in SHACL. A tal fine il problema è stato diviso in tre fasi:

1. Selezionare un sottoinsieme di costrutti in SBML e modellarlo in SHACL.

- 2. Scrivere un parser che traduca una specifica SBML in SHACL.
- 3. Scrivere un parser che traduca una specifica SHACL in SBML.

2 Modellazione

Nella prima fase si è scelto un sottoinsieme di SBML 3.2 e la totalità dei costrutti aggiuntivi di extended SBML, nella tabella 1 vengono descritti i principali costrutti, sono state volontariamente omesse entità quali list0f* il cui significato è intuitivo e avrebbero solo reso la tabella meno leggibile, in ogni caso è possibile consultare ulteriormente il diagramma diagram.png e il file shapes.ttl, in qest'ultimo è scritta la definizione del modello con i vincoli che dovranno essere rispettati dai file di output del parser. Per entrambi i file si è scelto di utilizzare il formato Turtle.

Extended SBML introduce la definizione di una gerarchia, è possibile definire ad esempio l'annidamento "cellula-nucleo-dna", aggiunge inoltre la possibilità di definire modelli e poterli importare ed esportare, favorendo il riuso di codice.

Entità	Descrizione			
SBML 3				
SBase	Classe astratta che viene definita tipo, è vero dal			
	momento che ogni classe definisce un tipo e ogni			
	nodo sarà sottoclasse di SBase ma poiché non			
	esistono attributi di tipo SBase a questa classe si			
	riserva un trattamento differente rispetto ai tipi			
	modellati quali ID, SId, ecc che sono omessi			
	nel diagramma ma sono presenti nel file Turtle.			
Sbml	Ogni file SBML ha un'etichetta con tag sbml,			
	grazie a questo nodo è possibile costruire grafi			
	SHACL composti da multipli modelli SBML in			
	input dato che saranno sempre radicati in questo			
	nodo.			
Model	Rappresenta il modello, se ne possono avere più			
	di uno per come detto sopra ed è in relazio-			
	ne con numerosi "List", dal momento che que-			
	ste sono abbastanza esplicative da qui in poi ci			
	concentriamo solo sulla classe di interesse.			

TT: ±	D-C-:
Unit	Definisce un'unità di misura definita dall'utente, sono definite nel linguaggio delle unità base (i.e. le unità del SI e altre scelte dagli sviluppatori
	di SBML) e queste sono usate per definire nuovi
	tipi. Le unità base - kind - in shapes.ttl sono
	trattate come normalissime unità di misura, in
	SBML non è concesso avere come attributo kind
	un'unità di misura che non lo sia indi per cui il
	nostro modello non fa alcuna differenza.
Compartment	Rappresenta un compartimento in cui racco-
	gliere qualche oggetto, spesso Species, come ad
	esempio una cellula.
Species	Rappresentano specie quali ad esempio differen-
	ti tipi di proteine.
Parameter	In SBML si possono definire parametri sia lo-
	cali che non, il nostro sottoinsieme di SBML
	non presenta ancora località, una conseguen-
	za è che Model avrà come attributo ListOf-
	Parameters con moltiplicità [0,n] piuttosto che
	[0,1] perché quando incontra un parametro lo
	considera globale anche se appartiene ad una
	ListOfParameters differente.
	Extended SBML
${\bf External Model Definition}$	In extended SBML è possibile importare modelli
	differenti (ad esempio scaricati da internet) e
	introdurli nel proprio.
ModelDefinition	Dal momento che viene introdotta la gerarchia
	per farlo ci si serve di due costrutti che colla-
	borano, questo è il primo e tramite ModelDe-
	finition si dà una definizione del modello che
	poi vorrà essere usato e al quale si vorrà fare
C 1 1 1	riferimento.
Submodel	L'istanza di una ModelDefinition è rappresen-
	tata da Submodel e si ha effettivamente un mo-
	dello dentro ad un altro modello. Durante la
	fase di test non ho usato esempi da Biomodels
	per extended SBML perché la gerarchia non veniva rappresentata tramite Submodel ma facen-
	do uso di un attributo "outer" in Compartment,
	con il Professor Tronci si è ritenuto fosse una de-
	finizione di terze parti e si è preferito attenersi
	allo standard W3C per la scrittura del parser.
	ano standard woo per la scrittura dei parser.

Port	Un'istanza di Port permette di definire allo
	sviluppatore come ci si deve interfacciare con
	un Model, di norma è preferibile seguire le
	indicazioni dello sviluppatore.
Deletion	Non è detto che i modelli importati abbiano solo
	ed esclusivamente componenti desiderabili e con
	Deletion è possibile ignorare quelle ridondanti.
Replacement	Come sopra ma si considera una sostituzione.
	A causa di Replacement sono presenti più par-
	ser, il primo parser.py esplora il file XML co-
	me una lista e associare un Replacement ad
	un componente risulta estremamente macchino-
	so se non impossibile, in extended_parser.py
	questo problema non si presenta perché il file
	XML viene esplorato come un albero.
SBaseRef	Port, Deletion, Replacement e Submodel utiliz-
	zano dei riferimenti, essendo sottoclassi di SBa-
	seRef - che similmente a SBase è astratta - li
	ereditano.

Tabella 1: Modellazione SHACL

Come già detto si assume a priori che i file SBML in input siano corretti, la verifica è eseguibile online.

3 Test

Nella cartella dei test sono presenti dei file XML, alcuni sono scaricati dal sito Biomodels e usano solo SBML 3 mentre altri (nella sottocartella custom) sono esempi forniti direttamente dal W3C. Quindi questi ultimi potranno essere usati solo per il file extended_parser.py il quale rispetto a parser.py aggiunge SBML gerarchico, il codice è più conciso, può essere esteso più facilmente ed è più veloce come si può vedere dai risultati dell'esecuzione del file test.sh.

Tabella 2: Performance

${f File}$	System (s)	User(s)	Total	\mathbf{CPU}
parser.py	52.90	2445.38	42:54.54	97 %
extended_parser.py	42.48	833.54	15:02.19	97 %

4 Commenti e critiche

Durante lo sviluppo del progetto sotto direttive del Professor Enrico Tronci si è tenuto conto dei seguenti commenti e critiche.

Tabella 4: Cronologia

Data	Commento
22/07/20	Videochiamata con specifica del problema da parte del
	Professor Tronci.
27/07/20	Prima stesura di una modellazione dei costrutti in SBML
	ma avendo io dimenticato di modellare SBML gerarchico
	mi è stato fatto notare e ho risolto, il materiale consultato
	è stato reso disponibile dal Professore stesso.
28/07/20	Corretto il punto precedente non avevo implementato De-
	letions e Replacements, il professore ha inoltre consigliato
	una strategia di testing.
31/07/20	Dopo aver corretto le mie mancanze e eseguito dei test con
	risultati positivi è seguita una videochiamata con il Profes-
	sor Tronci in cui mi è stato indicato di modificare il parser
	in maniera tale da poter ricevere in input più modelli SBML
	creando quindi un grafo più complesso, e di capire se il ri-
	sultato di una query SPARQL rappresenti lo stesso tipo di
	conoscenza di un file XML/SBML, così da poter sfruttare
	questa corrispondenza per eseguire dei controtest. Questa
	corrispondenza esiste ed è usata spesso.

5 Fonti

- The systems biology markup language.
- Sparql query language for rdf, 2008.
- Sparql query results xml format (second edition), 2013.
- Rdf 1.1 concepts and abstract syntax, 2014.
- Shapes constraint language (shacl), 2017.
- Michael Hucka, Frank T. Bergmann, Claudine Chaouiya, Andreas Dräger, Stefan Hoops, Sarah M. Keating, Matthias König, Nicolas Le Novère, Chris J. Myers, Brett G. Olivier, Sven Sahle, James C. Schaff, RahumanSheriff, Lucian P. Smith, Dagmar Waltemath, Darren J. Wilkinson, and Fengkai Zhang. The systems biology markup language (sbml): Languagespecification for level 3 version 2 core, 2019.
- Lucian P. Smith, Stefan Hoops, Martin Ginkel, Ion Moraru, Michael Hucka, Andrew Finney, Chris J. Myers, and Wolfram Liebermeister. Hierarchicalmodel composition, 2013.