```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Importing Data.

```
df = pd.read csv('Car Tyres Dataset.csv')
          df.head()
In [ ]:
Out[ ]:
                                                                                              Selling
                                                                                                       Original
                                                            Serial
                                                                              Load
              Brand
                      Model Submodel Tyre Brand
                                                                       Type
                                                                                        Size
                                                              No.
                                                                              Index
                                                                                                Price
                                                                                                          Price
                        Swift
                                      LDI
                                                                                      165/80
              Maruti
                                                JKTyre
                                                         Taximaxx
                                                                   Tubeless
                                                                                                3,255
                                                                                                          3,255
                        Dzire
                                  (Diesel)
                                                                                        R 14
                        Swift
                                      LDI
                                                                                     165/80
              Maruti
                                                 CEAT
                                                        Milage X3 Tubeless
                                                                                 85
                                                                                                3,406
                                                                                                          3,406
                        Dzire
                                  (Diesel)
                                                                                        R 14
                        Swift
                                      LDI
                                                                                      165/80
                                                          Amazer
          2 Maruti
                                                Apollo
                                                                   Tubeless
                                                                                 85
                                                                                                3,490
                                                                                                          4,319
                                                           4G Life
                        Dzire
                                  (Diesel)
                                                                                        R 14
                                                          Comfort
                        Swift
                                      LDI
                                                                                      165/80
                                                                   Tubeless
                                                                                 85
                                                                                                4,484
                                                                                                          4,244
          3 Maruti
                                           Continental
                                                          Contact
                        Dzire
                                  (Diesel)
                                                                                        R 14
                                                              CC6
                                                        Assurance
                        Swift
                                      LDI
                                                                                      165/80
                                             GoodYear
                                                                   Tubeless
                                                                                                3,025
                                                                                                          3,025
             Maruti
                                                         Duraplus
                                                                                 85
                        Dzire
                                  (Diesel)
                                                                                        R 14
```

Gathering information about data.

```
In [ ]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 4350 entries, 0 to 4349
        Data columns (total 11 columns):
              Column
                              Non-Null Count Dtype
         0
              Brand
                              4350 non-null
                                               object
         1
             Model
                              4350 non-null
                                               object
         2
              Submodel
                              4350 non-null
                                               object
         3
              Tyre Brand
                              4350 non-null
                                               object
         4
             Serial No.
                              4350 non-null
                                               object
         5
             Type
                              4350 non-null
                                               object
         6
              Load Index
                              4350 non-null
                                               int64
         7
                              4350 non-null
                                               object
         8
             Selling Price
                              4350 non-null
                                               object
         9
              Original Price 4350 non-null
                                               object
             Rating
                              2248 non-null
                                               float64
        dtypes: float64(1), int64(1), object(9)
        memory usage: 374.0+ KB
```

Selling Prince and Original Price is in object form, but it should be in int64. So, we need to convert datatype of these 2 columns.

```
In [ ]: df['Selling Price'] = df['Selling Price'].str.replace(',',').astype(int)
        df['Original Price'] = df['Original Price'].str.replace(',',').astype(int)
In [ ]: # Now again checking the Dtype of all columns.
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 4350 entries, 0 to 4349
        Data columns (total 11 columns):
                        Non-Null Count Dtype
            Column
            ____
                            _____
                           4350 non-null object
         0
            Brand
         1 Model
                           4350 non-null object
                         4350 non-null object
4350 non-null object
4350 non-null object
         2 Submodel
            Tyre Brand
         3
         4 Serial No.
                           4350 non-null object
         5 Type
                          4350 non-null int64
4350 non-null object
         6 Load Index
         7
            Size
           Selling Price 4350 non-null int32
            Original Price 4350 non-null int32
                           2248 non-null float64
         10 Rating
        dtypes: float64(1), int32(2), int64(1), object(7)
        memory usage: 340.0+ KB
```

Checking the statistical information of the data set for numerical columns.

In []:	<pre>df.describe()</pre>					
Out[]:	Load Index		Selling Price	Original Price	Rating	
	count	4350.000000	4350.000000	4350.000000	2248.000000	
	mean	84.101609	4724.982989	4762.234943	4.297598	
	std	6.716769	1848.303937	1869.111942	0.698433	
	min	69.000000	2248.000000	2248.000000	1.900000	
	25%	79.000000	3400.000000	3401.250000	4.000000	
	50%	86.000000	4300.000000	4319.000000	4.300000	
	75%	88.000000	5594.000000	5594.000000	5.000000	
	max	106.000000	20257.000000	20257.000000	5.000000	

Checking for duplicate values in the data set.

```
In [ ]: df.duplicated().sum()
```

```
Out[]: 134

In []: # Droping all duplicate values.
    df.drop_duplicates(inplace=True)

In []: df.duplicated().sum()

Out[]: 0
```

Checking for null values.

```
In [ ]: df.isnull().sum()
Out[]: Brand
        Model
                             0
        Submodel
        Tyre Brand
        Serial No.
                             0
        Type
        Load Index
        Size
        Selling Price
        Original Price
        Rating
                          2032
        dtype: int64
```

There are 2032 null values in 'Rating' column. Either we can remove these values, but removing such huge amount of rows is not good for analysis part. We can fill these null values with 0 or mean value of column. So, for better analysis I am going to fill these null values with mean value.

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 4216 entries, 0 to 4349
Data columns (total 11 columns):
    Column
                Non-Null Count Dtype
                   -----
                  4216 non-null object
0
    Brand
                  4216 non-null object
4216 non-null object
    Model
1
 2 Submodel
                  4216 non-null object
4216 non-null object
 3 Tyre Brand
   Serial No.
 4
 5
                  4216 non-null object
   Type
6 Load Index 4216 non-null int64
7 Size 4216 non-null object
   Selling Price 4216 non-null int32
 8
9 Original Price 4216 non-null int32
10 Rating
                   4216 non-null float64
dtypes: float64(1), int32(2), int64(1), object(7)
memory usage: 362.3+ KB
```

Product count on the basis of Type.

Major brands in the market.

```
In [ ]: brands = df['Tyre Brand'].value_counts().reset_index()
    brands.columns = ('Tyre Brand','Count')
    brands
```

Out[]:		Tyre Brand	Count
		0	BridgeStone	593
		1	GoodYear	487
		2	CEAT	435
		3	JKTyre	434
		4	Apollo	386
		5	Yokohama	362
		6	Continental	331
		7	Falken	259
		8	MRF	259
		9	Firestone	167
		10	UltraMile	144
		11	Michelin	125
		12	Pirelli	99
		13	Hankook	64
		14	Kumho	53
		15	Maxxis	18

```
In []: x = brands['Tyre Brand']
y = brands['Count']
plt.figure(figsize=(10,5))
plt.title('Major Brands')
plt.bar(x,y,color='yellow')
plt.xlabel('Tyre Brands')
plt.xticks(rotation=45)
for i in range(len(x)):
    plt.text(x[i],y[i],f'{y[i]}',ha='center',va='bottom',fontsize=8)
plt.show()
```


Top 5 brands with most tyre model with tyre types.

```
In [ ]:
         sns.set_style('white')
          plt.figure(figsize=(10,5))
          sns.countplot(x='Tyre Brand',hue='Type',data=df,order=df['Tyre Brand'].value_cou
          plt.show()
                                                                                               Туре
                                                                                               Tubeless
            500
                                                                                               Tube
            400
          300
300
            200
            100
                    BridgeStone
                                       GoodYear
                                                          CEAT
                                                                          JKTyre
                                                                                            Apollo
                                                        Tyre Brand
```

Car model has the highest number of typre models.

```
In [ ]: plt.figure(figsize=(10,5))
    sns.countplot(y='Model',hue='Tyre Brand',data=df,order=df['Model'].value_counts(
    plt.show()
```


Tyre Brands with maximum ratings.

```
ratings = df.groupby('Tyre Brand')['Rating'].mean().sort_values(ascending=False)
In [ ]:
        ratings = round(ratings,2)
        ratings
Out[]: Tyre Brand
        Pirelli
                        4.55
        CEAT
                        4.33
        Apollo
                        4.21
        JKTyre
                        4.20
        BridgeStone
                        4.19
        GoodYear
                        4.16
        Yokohama
                        4.12
        Falken
                        4.10
                        4.06
        Michelin
        Firestone
                        4.04
        MRF
                        4.02
        Hankook
                        4.00
        Kumho
                        4.00
        Maxxis
                        4.00
                        4.00
        Continental
        UltraMile
                        3.97
        Name: Rating, dtype: float64
```

Average Selling Price of Tyre Brands.

```
In [ ]: avg_sp = df.groupby('Tyre Brand')['Selling Price'].mean().apply(np.ceil)
    avg_sp = avg_sp.to_frame().reset_index()
    avg_sp
```

Out[]:		Tyre Brand	Selling Price
	0	Apollo	4614.0
	1	BridgeStone	5155.0
	2	CEAT	4097.0
	3	Continental	5218.0
	4	Falken	5026.0
	5	Firestone	3457.0
	6	GoodYear	3968.0
	7	Hankook	4937.0
	8	JKTyre	3543.0
	9	Kumho	4643.0
	10	MRF	3704.0
	11	Maxxis	6187.0
	12	Michelin	6869.0
	13	Pirelli	7399.0
	14	UltraMile	4453.0
	15	Yokohama	6091.0

```
In []: x = avg_sp['Tyre Brand']
y = avg_sp['Selling Price']
plt.figure(figsize=(10,5))
plt.plot(x,y,'*y--')
plt.title('Price of Tyres')
plt.xlabel('Tyre Brands')
plt.grid()
plt.xticks(rotation=90)
for i in range(len(x)):
    plt.text(x[i],y[i],f'{y[i]}',ha='center',va='bottom',fontsize=8)
plt.show()
```


Different Sizes of tyres.

```
In [ ]: tyre_size = df['Size'].value_counts().reset_index()
    tyre_size.columns = ('Size', 'Count')
    tyre_size
```

Out[]: Size Count 185/65 R 15 1 165/80 R 14 2 145/80 R 12 155/80 R 13 165/70 R 14 155/65 R 13 6 205/60 R 16 195/55 R 16 8 215/60 R 16 9 145/70 R 13 185/70 R 14 155/65 R 14 175/70 R 13 155 R 13 195/65 R 15 145/80 R 13 185/65 R 14 225/65 R 17 185/70 R14 215/55 R 17 205/70 R 15 205/70 R 16 22 205/70 R 17 23 185/70 R 20 185/70 R 19 225/70 R 16 205/70 R 18 145/70 R 19 145/70 R 20 29 185/70 R 23 185/70 R 15 145/70 R 17 145/70 R 18 145/70 R 12 145/70 R 16

	Size	Count
35	145/70 R 15	1
36	145/70 R 14	1
37	185/70 R 24	1
38	185/70 R 16	1
39	185/70 R 21	1
40	185/70 R 22	1
41	185/70 R 29	1
42	185/70 R 28	1
43	185/70 R 27	1
44	185/70 R 26	1
45	185/70 R 25	1
46	225/70 R 17	1

Different Car models in Maruti.

```
In [ ]: car_models = df['Model'].value_counts().reset_index()
    car_models.columns = ('Model','Count')
    car_models
```

Out[]:

	Model	Count
0	Ciaz	609
1	Ertiga	325
2	Alto	299
3	Swift Dzire	242
4	Alto K10	224
5	Ritz	222
6	Esteem	215
7	Vitara Brezza	206
8	New Swift (2018)	198
9	SX4	195
10	Celerio	184
11	Dzire	168
12	Swift Dzire 2008	146
13	Omni	120
14	Celerio X	104
15	A-Star	100
16	Wagon R	97
17	Zen Estilo	96
18	Eeco	80
19	Swift	75
20	Stingray	60
21	Baleno	55
22	Swift Deca	48
23	Fronx	35
24	Swift	35
25	Grand Vitara	26
26	Kizashi	14
27	Gypsy	12
28	800	9
29	Zen	6
30	Swift	5
31	Zen	2
32	Zen	2
33	Grand Vitara 2003-2007 XI	2

```
In [ ]: x = car_models['Model']
          y = car_models['Count']
          plt.figure(figsize=(15,5))
          plt.plot(x,y,'or-')
          plt.xlabel('Car Models')
          plt.xticks(rotation=90)
          for i in range(len(x)):
               plt.text(x[i],y[i],f'{y[i]}',ha='center',va='bottom',fontsize=9)
          plt.grid()
          plt.show()
          600
          500
          400
          300
          200
          100
                                      Vew Swift (2018)
                                                Swift Dzire 2008
                                                          Car Models
In [ ]: x = car_models['Model']
          y = car_models['Count']
          plt.figure(figsize=(15,5))
          plt.plot(x,y,'*r-')
          plt.xticks(rotation='vertical')
          for i in range(len(x)):
               plt.text(x[i],y[i],f'{y[i]}',ha='center',va='bottom',fontsize=8)
          plt.grid()
          plt.show()
          600
          500
          400
          300
          200
          100
                        Swift Dzire
                Ciaz
Ertiga
Alto
                                                Swift Dzire 2008
                                              Dzire
                              Ritz
                                      Vew Swift (2018)
```

Top 10 Tyre Models Used by Maruti Suzuki.

```
In [ ]: tyre_model = df['Serial No.'].value_counts().reset_index().head(10)
    tyre_model.columns = ('Tyre Model','Quantity')
    tyre_model
```

Out[]:		Tyre Model	Quantity
	0	Milage X3	192
	1	Amazer 4G Life	177
	2	B-Series B290	176
	3	Earth-1 E400	164
	4	FR500	163
	5	UM 551	136
	6	FuelSmart	135
	7	Comfort Contact CC6	127
	8	Ecopia EP150	115
	9	Assurance Duraplus 2	109

```
In []: x = tyre_model['Tyre Model']
y = tyre_model['Quantity']
plt.figure(figsize=(10,5))
plt.xlabel('Tyre Models')
plt.plot(x,y,'o-')
plt.xticks(rotation=45)
for i in range(len(x)):
    plt.text(x[i],y[i],f'{y[i]}',ha='center',va='bottom',fontsize=8)
plt.grid()
plt.show()
```

