A

北京航空航天大学 2018-2019 学年 第二学期期末

《 工科数学分析 (2) 》 试 卷 (A)

班 号	学号	姓名
任课教师	考场	成绩

题号	1	1 1	=	四	五.	六	七	总分
成绩								
阅卷人								
校对人								

2019年06月24日

一、选择题(每小题4分,共20分)

- 1. 将 $\int_0^2 dx \int_0^{\sqrt{3}x} f(\sqrt{x^2 + y^2}) dy$ 化为极坐标下的二次积分为 ().
 - A. $\int_0^{\frac{\pi}{3}} d\theta \int_0^{\frac{2}{\cos\theta}} f(r) dr$

B. $\int_0^{\frac{\pi}{3}} d\theta \int_0^{\frac{2}{\cos\theta}} f(r) r dr$

C. $\int_0^{2\pi} d\theta \int_0^{\frac{2}{\cos\theta}} f(r) r dr$

D. $\int_0^{\frac{\pi}{3}} d\theta \int_0^{\frac{2}{\sin \theta}} f(r) dr$

- 2. 下列论断中正确的是()
 - A. $\int_0^1 dx \int_0^x f(x, y) dy = \int_0^1 dy \int_0^y f(x, y) dx$, 其中f(x, y)是连续函数;
 - B. $\iiint_{x^2+y^2+z^2\leq a^2} f(x^2+y^2+z^2) dv = \int_0^{2\pi} d\theta \int_0^{\pi} d\varphi \int_0^a f(r^2) r^2 \sin\varphi dr, 其中f(t)$ 是连续函数;
 - C. 有界闭区域D由分段光滑的闭曲线L围成, P(x,y),Q(x,y)在D上有一阶连续的

偏导数,则 $\oint_L P(x,y)dy + Q(x,y)dx = \iint_D (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})dxdy;$

- D. 若空间有界区域 V 关于 xOy 平面对称,函数 f(x,y,z)在V上连续,且 $f(x,y,-z)=f(x,y,z), 则 \iiint\limits_V f(x,y,z) dx dy dz = 0.$
- 3. 设 f(x,y)连续, $L = \{(x,y) | (x-1)^2 + (y-1)^2 = R^2 \}$,则 $\lim_{R \to 0^+} \frac{\int_L f(x,y) ds}{2\pi R} = ($).
 - A. f(0,0);

B. 2f(0,0);

C. f(1,1);

- D. 2f(1,1).
- 4. 设 $F(x) = \int_0^{2\pi} d\theta \int_0^x f(t)dt$, 其中 f(t) 为连续函数,则 F'(x) = ().
 - A. f(x);

B. $\pi f(x)$;

c. $2\pi f(x)$;

- D. 0.
- 5. 设 Σ 为球面 $x^2 + y^2 + z^2 = 1$, 则 $\iint_{\Sigma} (x^2 + y^2) dS = ($).
 - A. $\frac{2\pi}{3}$;

B. $\frac{4\pi}{3}$;

C. 2π ;

D. $\frac{8\pi}{3}$.

二、计算题(每小题5分,满分30分)

1. 设数量场 $f(x, y, z) = x^2 + 2yz + xz$, 求 f 的梯度 gradf 以及向量场 gradf 的旋度.

2. 计算
$$\iint_{D} \frac{1}{1+x^2+y^2} dxdy$$
, 其中 $D: 1 \le x^2+y^2 \le 4$.

3. 计算
$$\iint_{\Omega} (x+y+z) dx dy dz$$
, 其中 $\Omega = \{(x,y,z) | \sqrt{x^2+y^2} \le z \le 1\}$.

A

4. 计算第一型曲线积分 $\int_L (x^2 + y^2 + z^2) ds$, 其中 $L: x = 3\cos t$, $y = 3\sin t$, z = 4t, $0 \le t \le 2\pi$.

5. 计算第二型曲线积分 $\int_L (x+y)dx + (y-x)dy$, 其中 L 为从 (2,0) 沿上半椭圆 $\frac{x^2}{4} + \frac{y^2}{9} = 1$ 到 (-2,0) 的曲线.

6. 设 Σ 是平面 6x + 4y + 3z = 12, x, y, $z \ge 0$, 计算第一型曲面积分 $\iint_{\Sigma} \left(\frac{x}{2} + \frac{y}{3} + \frac{z}{4}\right) dS$.

三、(10 分) 计算第二型曲面积分 $\iint_\Sigma y^3 z^2 dy dz + (z+1) dx dy$, 其中 Σ 为 上半球面 $z = \sqrt{1-x^2-y^2} \ , \ \text{取上侧}.$

五、(10分) (利用 Gauss 公式)

计算
$$\iint\limits_S (y-z+x^2) dy dz + (z-x+y^2) dz dx + (x-y+z^2) dx dy$$
 , 其中 S 为锥面

$$z = \sqrt{x^2 + y^2}$$
, $0 \le z \le 1$, 方向取下侧.

六、(10 分) 已知 $\int_L xy^2 dx + yf(x) dy$ 与路径无关,f(x) 具有连续导数,且 f(0) = 0,计算 $\int_{(0,0)}^{(2,2)} xy^2 dx + yf(x) dy$.

七、(10分) (利用 Stokes 公式)

计算 $\mathbf{N}(z-y)dx+(x-z)dy+(y-x)dz$, 其中 L 为 (1,0,0),(0,1,0),(0,0,1) 为顶点的三角形边界,从 x 轴正向看过去,方向取逆时针.