CVPR 2017 Aggregated Residual Transformations for Deep Neural Networks

2022.07.27

논문 리뷰

배성훈

- Research Background:
 - 문제: Network Depth가 깊어질수록 <u>Hyper-parameters 증가</u>하는 어려움 발생
 - 해결: Cardinality 라는 새로운 차원의 도입과 Hyper-parameter 효율적 조절을 통해 성능 향상 (ResNet에서 발전)

Repeating layer 전략(VGG, ResNet) + "Cardinarity" + Split/Transform/Merge 전략(InceptionNet) + Grouped convolution

• Research Background:

Repeating layer 전략(VGG, ResNet) + "Cardinarity" + Split/Transform/Merge 전략(InceptionNet) + Grouped convolution

ResNeXt (C=32, d=4)

C: **Cardinality**, ConvNet을 몇 개로 나눌지

d: ConvNet의 Channel

• Research Background:

Repeating layer 전략(VGG, ResNet) + "Cardinarity" + Split/Transform/Merge 전략(InceptionNet) + Grouped convolution

Split: x를 split $(x_1, x_2, x_3, ..., x_D)$

Transform: weigh을 곱함 $(x_1W_1, x_2W_2, ..., x_DW_D)$ **Merge**: 전체 결과 합 $(x_1W_1 + x_2W_2 + \cdots + x_DW_D)$

$$F(x) = \sum_{i=1}^{C} T_i(x) + x_{identity}$$
 $y = x + \sum_{i=1}^{C} T_i(x)$

- Research Background:
 - Grouped convolution 사용으로 구현을 간단하게 함

Repeating layer 전략(VGG, ResNet) + "Cardinarity" + Split/Transform/Merge 전략(InceptionNet) + Grouped convolution

- Method:
 - 같은 Spatial map인 경우, block들은 같은 hyper-parameter 공유 => <u>Hyper-Parameter 선택 부담감↓</u>

ResNeXt Architecture Input Convolution 7x7, 64, stride 2 Max Pooling 3x3, stride 2 Convolution [1x1, 128] $3x3, 128, C = 32 \times 3$ 1x1, 256 Convolution [1x1, 256] $3x3,256, C = 32 \times 4$ 1x1,512Convolution 1x1,5123x3,512, C = 32 x6 1x1.1024Convolution [1x1, 1024] $\begin{bmatrix} 3x3, 1024, C = 32 \\ 1x1, 2048 \end{bmatrix}$ x3 Global average pooling Fully connected+Softmax

Output

• Experiment:

Cardinality라는 새로운 차원을 활용한 ResNeXt가 기존의 ResNet 보다 더 좋은 성능을 달성

• Experiment:

- 1. ResNet 보다 ResNeXt가 더 좋은 성능을 보임
- 2. Cardinality(C)와 width(d)의 설정 값에 따른 비교, 32 x 4d가 가장 좋은 성능을 보임

Ablation experiments on ImageNet-1K

	setting	top-1 error (%)	
ResNet-50	$1 \times 64d$	23.9	
ResNeXt-50	$2 \times 40d$	23.0	
ResNeXt-50	$4 \times 24d$	22.6	
ResNeXt-50	$8 \times 14d$	22.3	
ResNeXt-50	$32 \times 4d$	22,2	
ResNet-101	$1 \times 64d$	22.0	
ResNeXt-101	$2 \times 40d$	21.7	
ResNeXt-101	$4 \times 24d$	21.4	
ResNeXt-101	$8 \times 14d$	21.3	
ResNeXt-101	$32 \times 4d$	21.2	

• Experiment:

• Cardinality의 증가가 Network의 wider, deeper보다 더 좋은 성능을 보임

Increasing Cardinality vs Deeper/Wider

	setting	top-1 err (%)	top-5 err (%)						
1× complexity references:									
ResNet-101	1 × 64d	22.0	6.0						
ResNeXt-101	$32 \times 4d$	21.2	5.6						
2× complexity models follow:									
ResNet-200 [15]	1 × 64d	21.7	5.8						
ResNet-101, wider	1 × 100 d	21.3	5.7						
ResNeXt-101	2 × 64d	20.7	5.5						
ResNeXt-101	64 × 4d	20.4	5.3						

State-of-the-art models on ImageNet-1K Validation

		224×224		320×320 / 299×299	
		top-1 err	top-5 err	top-1 err	top-5 err
Depth	ResNet-101 [14]	22.0	6.0	-	-
	ResNet-200 [15]	21.7	5.8	20.1	4.8
Width $ m _{I_1}$	Inception-v3 [39]	-	-	21.2	5.6
	inception-v+[37]	-	-	20.0	5.0
	Inception-ResNet-v2 [37]	-	-	19.9	4.9
rdinality	ResNeXt-101 ($64 \times \mathbf{4d}$)	20.4	5.3	19.1	4.4

성능: deeper < wider << Cardinality

한줄평: 개인적으로, 본 논문은 Network Depth와 Width를 함께 활용한 방법이라 생각함 Cardinality는 결국 convolution을 얼마나 분할할지 나타내는 것 -> Residual block을 wider하게 만듬