DIFFERENTIAL EQUATIONS

Class XII

DIFFERENTIAL EQUATIONS

An equation involving dependent variable, independent variable and derivative(s) of dependent variable(s) w.r.t. independent variable(s) is called differential equation.

Solution of Differential Equation

function of the form y = f(x) + c, which satisfies the iven differential equation is the solution of the differential quation.

- General Solution: Contains as many arbitrary constants as order of equation.
- Particular Solution: Obtained by assigning values to arbitrary constants.

Methods of Solving First Order and First Degree Differential Equations

Variable Separable

If
$$\frac{dy}{dx} = f(x)g(y)$$
, then $\int \frac{dy}{g(y)} = \int f(x)dx + c$.

If
$$\frac{dy}{dx} = f(ax + by + c)$$
, then put $ax + by + c = z$ and

$$b\frac{dy}{dx} = \frac{dz}{dx} - a$$
, then apply variable separable method.

Homogeneous Differential Equation

$$f(\frac{dy}{dx}) = \frac{f(x, y)}{g(x, y)}$$
, where $f(x, y)$, $g(x, y)$ are homogeneous

unctions of the same degree in x and y, then put y = vx and

$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$
, then apply variable separable method.

Linear Differential Equation

f
$$\frac{dy}{dx} + Py = Q$$
, where P, Q are functions of x, then

$$ve^{\int Pdx} = \int Qe^{\int Pdx} dx + c$$
, where $e^{\int Pdx}$ is the integrating actor (I.F.).

Order and Degree of Differential Equation

Order: The order of a differential equation is the order of it highest order derivative.

Degree: Degree is the highest power of the highest order derivative in a polynomial equation of differentials.

Formation of Differential Equation

- Differentiate the given equation as many times as the number of arbitrary constants and then eliminate the arbitrary constants from them.
- Order of differential equation = Number of arbitrar constants in differential equation.

Orthogonal Trajectory

Any curve which meet each member of a given family of curve at right angle is called an orthogonal trajectory of the family. Steps to Find the Orthogonal Trajectory:

- Let g(x, y, c) = 0 be the equation of the given family of curve
- Differentiate the equation g(x, y, c) = 0 w.r.t. x and eliminate the parameter c.
- Put $-\frac{dx}{dy}$ for $\frac{dy}{dx}$ in the differential equation so obtained
- Now, solve this differential equation to get the orthogonatrajectories.

Method of Solving Differential Equations of Second Order

Consider a differential equation of second order.

$$A_0 \frac{d^2 y}{dx^2} + A_1 \frac{dy}{dx} + A_2 y = 0$$
Putting $\frac{d}{dx} = D$ in (i), we get

...(ii

$$A_0 D^2 + A_1 D + A_2 = 0$$

which is a quadratic equation in D. Let roots of (iii) be given by $D = C_1$, C_2

Roots	Solution
$C_1 \neq C_2$	$y = Ae^{C_1x} + Be^{C_2x}$
$C_1 = C_2(C)$	$y = (A + Bx)e^{Cx}$