Lecture: Matchings (3)

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Hungarian algorithm

- Input: Weighted $K_{n,n} = B(X,Y)$
- Idea: Iteratively adjusting the cover (u, v) until the equality subgraph $G_{u,v}$ has a perfect matching
- Initialization: Let (u, v) be a cover, such as $u_i = \max_j w_{i,j}$, $v_j = 0$

(Dual)
$$\min \sum_{i} u_{i} + \sum_{j} v_{j}$$

$$s. t. u_{i} + v_{j} \ge w_{i,j} \text{ for any } i, j$$

$$u_{i}, v_{j} \ge 0$$

Hungarian algorithm (cont.)

- Iteration: Find a maximum matching M in $G_{u,v}$
 - If *M* is a perfect matching, stop and report *M* as a maximum weight matching
 - Otherwise, let Q be a vertex cover of size |M| in $G_{u,v}$
 - Let $R = X \cap Q$, $T = Y \cap Q$ $\epsilon = \min\{u_i + v_j - w_{i,j} : x_i \in X - R, y_j \in Y - T\}$
 - Decrease u_i by ϵ for $x_i \in X R$ and increase v_j by ϵ for $y_j \in T$
 - Form the new equality subgraph and repeat

Example

Example 2

Optimal value is the same But the solution is not unique

Theoretical guarantee for Hungarian algorithm

 Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover

Back to (unweighted) bipartite graph

- The weights are binary 0,1
- Hungarian algorithm always maintain integer labels in the weighted cover, thus the solution will always be 0.1
- The vertices receiving label 1 must cover the weight on the edges, thus cover all edges
- So the solution is a minimum vertex cover

Stable Matchings

Stable matching

- A family $(\leq_v)_{v\in V}$ of linear orderings \leq_v on E(v) is a set of preferences for G
- A matching M in G is stable if for any edge $e \in E \setminus M$, there exists an edge $f \in M$ such that e and f have a common vertex v with $e <_v f$
 - Unstable: There exists $xy \in E \setminus M$ but $xy', x'y \in M$ with $xy' <_x xy$ $x'y <_y xy$
 - **3.2.16. Example.** Given men x, y, z, w, women a, b, c, d, and preferences listed below, the matching $\{xa, yb, zd, wc\}$ is a stable matching.

```
Men \{x, y, z, w\} Women \{a, b, c, d\}

x: a > b > c > d a: z > x > y > w

y: a > c > b > d b: y > w > x > z

z: c > d > a > b c: w > x > y > z

w: c > b > a > d d: x > y > z > w
```

Gale-Shapley Proposal Algorithm

- Input: Preference rankings by each of n men and n women
- Idea: Produce a stable matching using proposals by maintaining information about who has proposed to whom and who has rejected whom
- Iteration: Each man proposes to the highest woman on his preference list who has not previously rejected him
 - If each woman receives exactly one proposal, stop and use the resulting matching
 - Otherwise, every woman receiving more than one proposal rejects all of them except the one that is highest on her preference list
 - Every woman receiving a proposal says "maybe" to the most attractive proposal received

Example

Example (gif)

Theoretical guarantee for the Proposal Algorithm

- Theorem (3.2.18, W, Gale-Shapley 1962) The Proposal Algorithm produces a stable matching
- Who proposes matters (jobs/candidates)
- When the algorithm runs with women proposing, every woman is as least as happy as when men do the proposing
 - And every man is at least as unhappy

3.2.16. Example. Given men x, y, z, w, women a, b, c, d, and preferences listed below, the matching $\{xa, yb, zd, wc\}$ is a stable matching.

```
Men \{x, y, z, w\} Women \{a, b, c, d\}

x: a > b > c > d a: z > x > y > w

y: a > c > b > d b: y > w > x > z

z: c > d > a > b c: w > x > y > z

w: c > b > a > d d: x > y > z > w
```

Matchings in general graphs

Perfect matchings

- K_{2n} , C_{2n} , P_{2n} have perfect matchings
- Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph has a perfect matching
- Theorem(1.58, H) If G is a graph of order 2n such that $\delta(G) \geq n$, then G has a perfect matching

Theorem (1.22, H, Dirac) Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n/2$, then G is Hamiltonian

Tutte's Theorem (TONCAS)

- Let q(G) be the number of connected components with odd order
- Theorem (1.59, H; 2.2.1, D; 3.3.3, W) Let G be a graph of order $n \ge 2$. G has a perfect matching $\Leftrightarrow q(G - S) \le |S|$ for all $S \subseteq V$

Fig. 2.2.1. Tutte's condition $q(G-S) \leq |S|$ for q=3, and the contracted graph G_S from Theorem 2.2.3.

Petersen's Theorem

• Theorem (1.60, H; 2.2.2, D;3.3.8, W) Every bridgeless, 3-regular graph contains a perfect matching

Find augmenting paths in general graphs

- Different from bipartite graphs
- ullet Example: How to explore from M-unsaturated point u

Flower/stem/blossom

 \boldsymbol{x}

Lifting

Edmonds' blossom algorithm (3.3.17, W)

- Input: A graph G, a matching M in G, an M-unsaturated vertex u
- Idea: Explore M-alternating paths from u, recording for each vertex the vertex from which it was reached, and contracting blossoms when found
 - Maintain sets S and T analogous to those in Augmenting Path Algorithm, with S consisting of u and the vertices reached along saturated edges
 - Reaching an unsaturated vertex yields an augmentation.
- Initialization: $S = \{u\}$ and $T = \emptyset$
- Iteration: If S has no unmarked vertex, stop; there is no M-augmenting path from u
 - Otherwise, select an unmarked $v \in S$. To explore from v, successively consider each $y \in N(v)$ s.t. $y \notin T$
 - If y is unsaturated by M, then trace back from y (expanding blossoms as needed) to report an M-augmenting u, y-path
 - If $y \in S$, then a blossom has been found. Suspend the exploration of v and contract the blossom, replacing its vertices in S and T by a single new vertex in S. Continue the search from this vertex in the smaller graph.
 - Otherwise, y is matched to some w by M. Include y in T (reached from v), and include w in S (reached from y)
 - After exploring all such neighbors of v, mark v and iterate

Illustration

Example

