

Optimization for Deep Learning

Lecture 1-4: Introduction

Kun Yuan

Peking University

This lecture previews distributed deep learning

Training deep neural network is notoriously difficult

DNN training = non-convexity + massive dataset + huge models

Distributed learning

- Training deep neural networks typically requires massive datasets; efficient and scalable distributed optimization algorithms are in urgent need
- A network of n nodes (devices such as GPUs) collaborate to solve the problem:

$$\min_{x \in \mathbb{R}^d} \quad f(x) = \frac{1}{n} \sum_{i=1}^n f_i(x), \quad \text{where} \quad f_i(x) = \mathbb{E}_{\xi_i \sim D_i} F(x; \xi_i)$$

- Each component $f_i : \mathbb{R}^d \to \mathbb{R}$ is local and private to node i
- lacktriangle Random variable ξ_i denotes the local data that follows distribution D_i
- Each local distribution D_i is different; data heterogeneity exists

Vanilla parallel stochastic gradient descent (PSGD)

$$g_i^{(k)} = \nabla F(x^{(k)}; \xi_i^{(k)}) \qquad \text{(Local compt.)}$$

$$x^{(k+1)} = x^{(k)} - \frac{\gamma}{n} \sum_{i=1}^n g_i^{(k)} \qquad \text{(Global comm.)}$$

- Each node i samples data $\xi_i^{(k)}$ and computes gradient $\nabla F(x^{(k)}; \xi_i^{(k)})$
- All nodes synchronize (i.e. globally average) to update model x per iteration

Vanilla parallel stochastic gradient descent (PSGD)

- Global average incurs O(n) comm. overhead; proportional to network size n
- When network size n is large, PSGD suffers severe communication overhead

PSGD cannot achieve linear speedup due to comm. overhead

- PSGD cannot achieve ideal linear speedup in throughput due to comm. overhead
- Larger comm-to-compt ratio leads to worse performance in PSGD

Small comm.-to-compt. ratio

Large comm.-to-compt. ratio

How can we accelerate PSGD? We must reduce communication overhead.

B. Ying, K. Yuan, H. Hu, Y. Chen and W. Yin, "BlueFog: Make decentralized algorithms practical for optimization and deep learning", arXiv: 2111. 04287, 2021

Methodologies to save communication

Each node sends a full model (or gradient) to the server; proportional to dimension d
 [Communication compression]

Each node interacts with the server at every iteration; proportional to iteration numbers
 [Lazy communication]

• Global average incurs O(n) comm. overhead; proportional to network size n [Decentralized communication]

Each node has to be synchronized with each other during each iteration

[Asynchronous communication]

Communication compression

• A basic (but not state-of-the-art) algorithm is QSGD [Alistarh et. al., 2017]

$$g_i^{(k)} = \nabla F(x_i^{(k)}; \xi_i^{(k)})$$
$$x_i^{(k+1)} = x_i^{(k)} - \frac{\gamma}{n} \sum_{j=1}^n C(g_j^{(k)})$$

• $C(\cdot)$ is a compressor. It can quantize or sparsify the full gradient

Communication compression

A basic (but not state-of-the-art) algorithm is QSGD [Alistarh et. al., 2017]

$$g_i^{(k)} = \nabla F(x_i^{(k)}; \xi_i^{(k)})$$
$$x_i^{(k+1)} = x_i^{(k)} - \frac{\gamma}{n} \sum_{j=1}^n C(g_j^{(k)})$$

• $C(\cdot)$ is a compressor. It can quantize or sparsify the full gradient

Sparsification

Communication compression

- How to develop effective communication compression strategies?
- How does communication compression effect the convergence rate?
- Is there any advanced optimization algorithm that can handle compression error better?

Lazy communication (Federated Average)

$$x_i^{(k+\frac{1}{2})} = x_i^{(k)} - \gamma \nabla F(x_i^{(k)}; \xi_i^{(k)}) \qquad \text{(Local update)}$$

$$x_i^{(k+1)} = \begin{cases} x_i^{(k+\frac{1}{2})} & \text{if } \operatorname{mod}(k,\tau) \neq 0 \\ \frac{1}{n} \sum_{j=1}^n x_j^{(k+\frac{1}{2})} & \text{if } \operatorname{mod}(k,\tau) = 0 \end{cases} \qquad \text{(Lazy comm.)}$$

- Nodes communicate once every au iterations [Konecny et .al. 2015, 2016]
- Or nodes communicate when necessary, i.e., [Chen et. al. 2018; Liu et.al., 2019]

Lazy compression

- How does lazy communication affect the convergence rate?
- How does data heterogeneity affect the convergence rate?
- How to tune the lazy communication period?
- How to develop efficient algorithms to overcome the data heterogeneity issue?

Decentralized communication

• To break O(n) comm. overhead, we replace global average with partial average

$$x_i^{(k+\frac{1}{2})} = x_i^{(k)} - \gamma \nabla F(x_i^{(k)}; \xi_i^{(k)}) \quad \text{(Local update)}$$

$$x_i^{(k+1)} = \sum_{j \in \mathcal{N}_i} w_{ij} x_j^{(k+\frac{1}{2})} \quad \text{(Partial averaging)}$$

- DSGD = local SGD update + partial averaging [LS08]
- \mathcal{N}_i is the set of neighbors at node i ; w_{ij} scales information from j to i
- Incurs $O(d_{\max})$ comm. overhead per iteration where $d_{\max} = \max_i \{|\mathcal{N}_i|\}$ is the graph maximum degree

DSGD is more communication-efficient than PSGD

• DSGD (BlueFog) has better linear speedup than PSGD (Horovod) due to its small comm. overhead

Large comm.-to-compt. ratio

Lazy compression

- How does graph affect the convergence rate?
- How does data heterogeneity affect the convergence rate?
- How to develop efficient graph that can accelerate the convergence rate?
- How to develop efficient algorithms to overcome the data heterogeneity issue?

Asynchronous communication

Synchronization across nodes causes severe idle time

$$g_i^{(k)} = \nabla F(x^{(k)}; \xi_i^{(k)}) \qquad \text{(synchronization)}$$

$$x^{(k+1)} = x^{(k)} - \frac{\gamma}{n} \sum_{i=1}^n g_i^{(k)}$$

Asynchronous communication

Asynchronization reduces idle time, but it cause delayed gradient

$$x^{(1)} = x^{(0)} - \gamma \nabla F(x^{(0)}, \xi_2^{(0)})$$

$$x^{(2)} = x^{(1)} - \gamma \nabla F(x^{(0)}, \xi_1^{(0)})$$

$$x^{(3)} = x^{(2)} - \gamma \nabla F(x^{(0)}, \xi_3^{(0)})$$

$$\vdots$$

$$x^{(k+1)} = x^{(k)} - \gamma \nabla F(x^{(k-\tau)}, \xi_i^{(k-\tau)})$$

Delayed gradient

Asynchronous compression

- How does delayed gradient affect the convergence rate?
- How does data heterogeneity affect the convergence rate?
- How to develop efficient algorithms to handle delayed gradient?
- How to develop efficient algorithms to overcome the data heterogeneity issue?

Byzantine distributed learning

- In the above scenarios, we assume all nodes are honest. They collaborate to learn better
- In some Byzantine scenario, some nodes are malicious but we do not know their identities

Figure is from (Wu et. al., 2020)

Byzantine distributed learning

Existence of the Byzantine node brings significant challenge in algorithm design

- How to develop algorithms to avoid the attacks from the Byzantine node?
- How does the number of Byzantine nodes affect the convergence rate?
- How does data heterogeneity affect the Byzantine-robust algorithms

Summary

- Distributed deep learning is a very hot research topic
- It is widely used in training large language models and federated learning
- Some of the most important topics are:
 - Compressed/decentralized/lazy/asynchronous communication
 - Byzantine learning