ASSIGNMENT 1

Problem 1:

Given Data about the product:

Product	Material Required (sq. ft)	Labour Required (minutes)	Profit (Per unit)
Collegiate	3	45	32\$
Mini	2	40	24\$

Decision Variables:

Let C be the number of Collegiate bag product units

Let M be the number of Mini bag product units

Objective Function:

The management wishes to maximize the profit by knowing the quantities of each product to produce per week which is, let Z be the function then the objective would be,

Constraints:

Material Constraint:

It has been stated that a total of 5000 sq. ft of material will be received every week

Therefore,

$$3*C + 2*M \le 5000$$

Time Constraint:

The problem states that there are 35 laborers and each work 40 hours per week. Hence total hours available per week is 35*40=1400 hrs

Total Minutes of labour available in week=1400*60=84000

Therefore, the time constraint will be,

 $45*C + 40*M \le 84000$

Also given that at most 1000 collegiates and 1200 minis can be sold in a week,

Therefore,

M ≤ 1200

Non-negativity constraints,

$$C \ge 0$$
, $M \ge 0$

Therefore, the mathematical model for the problem is,

Subject to,

$$3*C + 2*M \le 5000$$
,

$$45*C + 40*M \le 84000$$
,

$$C \ge 0$$
, $M \ge 0$

Problem 2

Given data about plants of Weigelt corporation,

Plants	Excess Capacity to Available exces	
	produce units per day	storage space
		(Sq. ft)
Plant 1	750	13000
Plant 2	900	12000
Plant 3	450	5000

New Product data that needs to be produced in the plants

Product Size	Units to be	Space required	Net profit per
	produced per per unit		unit
	day	(Sq. ft)	
Large	900	20	420\$
	1200	15	360\$
Medium			
Small	750	12	300\$

Decision Variables:

Let L₁, M₁, and S₁ be the quantities of products with large, medium, and small sizes of Plant 1. Let L₂, M₂, and S₂ be the quantities of products with large, medium, and small sizes of Plant 2. Let L₃, M₃, and S₃ be the quantities of products with large, medium, and small sizes of Plant 3. Similarly, below is the table which provides all the decision variables for the 3 plants,

	Plants			
Product		1	2	3
Sizes	Large	L ₁	L ₂	L ₃
	Medium	M ₁	M ₂	M ₃
	Small	S ₁	S ₂	S ₃

Objective Function:

The company wants to maximize profit by increasing the quantities produced by each plant, let Z be the function then the objective would be,

Maximise Z = 420 *
$$(L_1 + L_2 + L_3) + 360 * (M_1 + M_2 + M_3) + 300 * (S_1 + S_2 + S_3)$$

Constraints:

Space Constraint:

It has been stated that the production is limited to the available storage in each plant,

Therefore, from the above table references,

20 *
$$L_1 + 15$$
 * $M_1 + 12$ * $S_1 \le 13000$
20 * $L_2 + 15$ * $M_2 + 12$ * $S_2 \le 12000$
20 * $L_3 + 15$ * $M_3 + 12$ * $S_3 \le 5000$

Time Constraint:

No. of units produced by plants per day is limited by the constraints below,

$$L_1 + M_1 + S_1 \le 750$$

$$L_2 + M_2 + S_2 \le 900$$

$$L_3 + M_3 + S_3 \le 450$$

Given that at most sold in a day for each size is,

$$L_1 + L_2 + L_3 \le 900$$

$$M_1 + M_2 + M_3 \le 1200$$

$$S_1 + S_2 + S_3 \le 750$$

Also given that each plant should use an equal percentage of its production units.

Therefore,

$$(L_1 + M_1 + S_1)/750 = (L_2 + M_2 + S_2)/900$$

$$(L_2 + M_2 + S_2)/900 = (L_3 + M_3 + S_3)/450$$
Which can be written as,
$$900 * (L_1 + M_1 + S_1) = 750 * (L_2 + M_2 + S_2)$$

$$450 * (L_2 + M_2 + S_2) = 900 * (L_3 + M_3 + S_3)$$

Non-Negativity:

$$L_1$$
, L_2 , L_3 , M_1 , M_2 , M_3 , S_1 , S_2 , $S_3 \ge 0$

Therefore, the mathematical model for the problem is,

Maximise Z = 420 * (L₁ + L₂ + L₃) + 360 * (M₁ + M₂ + M₃) + 300 * (S₁ + S₂ + S₃)

Subject to,

20 * L₁ + 15 * M₁ + 12 * S₁
$$\leq$$
 13000

20 * L₂ + 15 * M₂ + 12 * S₂ \leq 12000

20 * L₃ + 15 * M₃ + 12 * S₃ \leq 5000

L₁ + M₁ + S₁ \leq 750

L₂ + M₂ + S₂ \leq 900

L₃ + M₃ + S₃ \leq 450

L₁ + L₂ + L₃ \leq 900

M₁ + M₂ + M₃ \leq 1200

S₁ + S₂ + S₃ \leq 750

900 * (L₁ + M₁ + S₁) = 750 * (L₂ + M₂ + S₂)

450 * (L₂ + M₂ + S₂) = 900 * (L₃ + M₃ + S₃)

L₁, L₂, L₃, M₁, M₂, M₃, S₁, S₂, S₃ \geq 0