AD-A171 209

ASSESSMENT OF DAMAGE TOLERANCE REQUIREMENTS AND ANALYSES:
A user's manual for crack growth and crack initiation analysis: "DAMGRO"

M. LEVY A. KUO

Fairchild Industries
Fairchild Republic Company
Farmingdale, N.Y. 11735

May 1986

Final Report for Period September 1982 - May 1986

Approved for public release; distribution is unlimited

FLIGHT DYNAMICS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.

Christopher J. Mazur, 1 Lt, USAF

Project Engineer

TONY G. GERARDI, Chief

Structural Integrity Branch Structures and Dynamics Division

FOR THE COMMANDER

ROGER J. HEGSTROM, Colonel, USAF

Chief. Structures and Dynamics Division

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify $\frac{\text{AFWAL/FIBEC}}{\text{current mailing list.}}$ Wright-Patterson AFB OH 45433- 6553 to help maintain a

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

	REPORT DOCUMENTATION PAGE						
	CURITY CLASS	IFICATION		1b. RESTRICTIVE MARKINGS			
Unclas							
SECURITY	CLASSIFICATIO	N AUTHORITY		1	for Public F		
2b. DECLASSIF	ICATION / DOW	INGRADING SCH	EDULE	Distribu	tion is unlin	nited.	
4. PERFORMIN	G ORGANIZAT	ION REPORT NU	MBER(S)	5. MONITORING	ORGANIZATION REI	PORT NUMBER	(S)
				AFWAL-TR-	-86-3028		
6a. NAME OF	PERFORMING	ORGANIZATION	6b. OFFICE SYMBOL		ONITORING ORGAN		
	ild Indusi ild Republ		(If applicable)	Air Force	e Flight Dyna [BEC)	mics Laboi	ratory
6c. ADDRESS (City, State, and	d ZIP Code)		7b. ADDRESS (Cit	ty, State, and ZIP Co	ode)	
F							,
Farmingdale, N.Y. 11735 Wright-Patterson Air Force Base Ohio, 45433-6553							
8a. NAME OF FUNDING / SPONSORING ORGANIZATION 8b. OFFICE SYMBOL (If applicable) 9. Pl				9. PROCUREMEN	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER		
AFWAL	· · · · · · · · · · · · · · · · · · ·		FIBEC	F33615-82	2-C-3215		
	City, State, and				FUNDING NUMBERS		
Wright-Patterson Air Force Base PROGRAM PROJECT TASK						WORK UNIT	
Dayton, Ohio 45433 ELEMENT NO. NO. NO. ACCESSION NO. 62201F 2401 01 61							
11 TiTLE (Incl	11 TITLE (Include Security Classification)						
Assessment of Damage Tolerance Requirements and Analyses,a User's Manual for Crack Growth							
and Crack Initiation Analysis: DAMGRO							
12 PERSONAL			O TO TO BOTH IN THE		•		
Meir L	evy, Alber	rt Kuo					
a. TYPE OF	REPORT		NE COVERED	14. DATE OF REPO	ORT (Year, Month, D	ay) 15. PAGE	COUNT
Final_	Final FROM Sept. 82 TO May 86 86 May 31 136 16. SUPPLEMENTARY NOTATION						
16. SUPPLEME	10. SUPPLEMENTAKT NUTATION						
17. COSATI CODES 18. SUBJECT TERMS (Continue on revers	e if necessary and	identify by blo	ck number)	
FIELD					: Manual, Crac		
13	13		Initiation,	Damage Tole	rance		
13	13						
			sary and identify by block i				
			of typical aircraf				
	assess the current Air Force damage tolerance design requirements defined in MIL-A-83444. The specimens, made of 2024-T3XX and 7075-T6XX, were subjected to randomized flight-by-						
flight spectra, representative of fighter/trainer and bomber/cargo type loading spectra,							
respectively, and to a constant amplitude loading spectrum. A total of two-hundred fifty-							
six specimens were tested. The test results were correlated with analytical predictions							
	using crack growth and crack initiation methods. As a result of this study, recommendation						
			y of MIL-A-83444,				
			sess the state-of-	the-art anal	ytical capab	ilities ir	predicting
	•		tiation time.		9	9/	
			ser's manual of th				
			unction with this			edict the	crack
			n of the structura			···-	
□ UNCLAS	SIFIED/UNLIMIT	ED SAME		21 ABSTRACT SE Und	CURITY CLASSIFICATION	TION	
	F RESPONSIBLE			226 TELEPHONE	(Include Area Code) -6104	22c. OFFICE S	YMBOL
Lt. U	hristopher	mazur		(213) 255-	0104	<u> </u>	IDEC

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

FOREWORD

This report presents the User's Manual for Crack Growth and Crack Initiation Computer Program "DAMGRO" developed as part of the "Assessment of Damage Tolerance Requirements and Analyses", contract No. F33615-82-C-3215. This program has been administrated by the Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories, Air Force Systems Command, Wright Patterson Air Force Base, Ohio. James L. Rudd (AFWAL/FIBEC) was the Air Force Project Engineer through December 1985. Subsequently, Mr Rudd was replaced by Lt Christopher Mazur. A. Kuo was the Program Manager and Principal Investigator through March 1985. Subsequently, Mr Kuo was replaced by Meir Levy for the completion of the program. The structural test program has been performed at the University of Dayton Research Lab under the supervision of George Roth.

The eight major tasks listed below have been planned to achieve the program objectives. Namely, (a) assessing the validity of, and recommending improvements to the current MIL-A-83444, (b) developing guidelines for identifying the most critical initial primary damage locations for typical aircraft structures, and (c) assessing and improving the state-of-the-art analytical methods to satisfy the requirements of MIL-A-83444.

Task I: Analytical Methods

Task II: Basic Tests

Task III: Analytical Predictions

Task IV: Structural Tests

Task V: Analytical/Experimental Correlations

Task VI: Assessment of and Recommended Improvements to MIL-A-83444

Task VII: Guidelines for Selecting Most Critical Inital Primary Damage

Location

Task VIII: Assessment of and Improvements to Damage Tolerance Analyses

The material presented in this report was developed during Phase I of the contract. Additional five reports were issued including:

Diet Avail arid/or Special

D (A)

Volume I: Executive Summary

Volume II: Analytical Methods

Volume III: Analytical Predictions and Correlations

Volume IV: Raw Test Data

Volume V: Assessment and Recommendations

Volume I report contains an Executive Summary of the entire program including the Basic Test Program for material allowables, test results of the Structural Test Program and Analytical Predictions. It also contains a summary of the Analytical Formulation derived during Task I.

Volume II report contains the Analytical Methodology derived during Task I of the Program, including crack growth and crack initiation techniques, and results of Finite Element Modeling of stress intensity factors.

Volume III report contains Analytical to Experimental Correlation of seventy-two (72) Structural Test Specimens performed during Task IV of the Program.

Volume IV report contains the Raw Test Data obtained during the Basic Test, and the Structural Test Programs.

Volume V report contains an assessment of the Damage Tolerance Design Requirements defined in MIL-A-83444, Analytical methods evaluation and a Guideline for Identifying Critical Locations for Damage Tolerance Analysis. It also contains recommendations and follow-on work.

This program began in September 1982 and was completed in May 1986.

TABLE OF CONTENTS

<u>Section</u>	TITLE	Page
1.0	INTRODUCTION	1
2.0	DAMGRO COMPUTER PROGRAM	3
2.1	CRACK GROWTH "METHOD 1"	3
2.2	COMBINED CRACK GROWTH AND CRACK INITIATION "METHOD 2"	4
2.3	DAMGRO INPUT FORMAT	23
3.0	EXAMPLE RUNS	43
3.1	EXAMPLE 1: SKIN SECTION SUBJECTED TO CONSTANT AMPLITUDE LOADING	44
3.2	EXAMPLE 2: SKIN SECTION SUBJECTED TO RANDOMIZED LOADING SPECTRUM	66
3.3	EXAMPLE 3: STRINGER SECTION SUBJECTED TO CONSTANT AMPLITUDE LOADING	91
Appendix A	COMPUTER PROGRAM FLOW CHART	AO

LIST OF FIGURES

Figure No.	Title	Page
2.1-1	Geometrical Configuration of Crack Growth Routine K1010	7
2.1-2	Geometrical Configuration of Crack Growth Routine K1020	8
2.1-3	Geometrical Configuration of Crack Growth Routine K1030	9
2.1-4	Geometrical Configuration of Crack Growth Routine K1040	10
2.1-5	Geometrical Configuration of Crack Growth Routine K1050	11
2.1-6	Geometrical Configuration of Crack Growth Routine K2010	12
2.1-7	Geometrical Configuration of Crack Growth Routine K2020	13
2.1-8	Geometrical Configuration of Crack Growth Routine K2040	14
2.1-9	Geometrical Configuration of Crack Growth Routine K2050	15
2.1-10	Geometrical Configuration of Crack Growth Routine K2060	16
2.2-1	Geometrical Configuration of Crack Initiation Routine S1010	17
2.2-2	Geometrical Configuration of Crack Initiation Routine S1020	18
2.2-3	Geometrical Configuration of Crack Initiation Routine S1030	19
2.2-4	Geometrical Configuration of Crack Initiation Routine \$1040	20
2.2-5	Geometrical Configuration of Crack Initiation Routine \$1050	21
2.2-6	Geometrical Configuration of Crack Initiation Routine \$1060	22

LIST OF TABLES

Table No.	Title	Page
2.3-1	'DAMGRO' Input File Format	24
2.3-2	Variables Definition of Subroutines K2010, K2020 and K2040	41
2.3-3	Variables Definition of Subroutines K2050	42
2.3-4	Variables Definition of Subroutines K2060	42
3.1.1	Example 1, Method 1 Summary Table	45
3.1.1-1	Example 1, Method 1, Run 1 Output File	46
3.1.1-2	Example 1, Method 1, Run 1 Output File	46
3.1.1-3	Example 1, Method 1, Run 2 Input File	49
3.1.1-4	Example 1, Method 1, Run 2 Output File	49
3.1.2	Example 1, Method 2 Summary Table	52
3.1.2-1	Example 1, Method 2, Run 1 Input File	53
3.1.2-2	Example 1, Method 2, Run 1 Output File	53
3.1.2-3	Example 1, Method 2, Run 2 Input File	57
3.1.2-4	Example 1, Method 2, Run 2 Output File	57
3.1.2-5	Example 1, Method 2, Run 3 Input File	60
3.1.2-6	Example 1, Method 2, Run 3 Output File	60
3.1.2-7	Example 1, Method 2, Run 4 Input File	63
3.1.2-8	Example 1, Method 2, Run 4 Output File	63
3.2.1	Example 2, Method 1 Summary Table	67
3.2.1-1	Example 2, Method 1, Run 1 Input File	68
3.2.1-2	Example 2, Method 1, Run 1 Output File	68
3.2.1-3	Example 2, Method 1, Run 2 Input File	74
3.2.1-4	Example 2, Method 1, Run 2 Output File	74

LIST OF TABLES

Table No.	Title	Page
3.2.2	Example 2. Method 2 Summary Table	77
3.2.2-1	Example 2, Method 2, Run 1 Input File	78
3.2.2-2	Example 2, Method 2, Run 1 Output File	78
3.2.2-3	Example 2, Method 2, Run 2 Input File	82
3.2.2-4	Example 2, Method 2, Run 2 Output File	82
3.2.2-5	Example 2, Method 2, Run 3 Input File	85
3.2.2-6	Example 2, Method 2, Run 3 Output File	85
3.2.2-7	Example 2, Method 2, Run 4 Input File	88
3.2.2-8	Example 2, Method 2, Run 4 Output File	88
3.3.1	Example 3, Method 1 Summary Table	92
3.3.1-1	Example 3, Method 1, Run 1 Input File	93
3.3.1-2	Example 3, Method 1, Run 1 Output File	93
3.3.1-3	Example 3, Method 1, Run 2 Input File	97
3.3.1-4	Example 3, Method 1, Run 2 Output File	97
3.3.2	Example 3, Method 2 Summary Table	100
3.3.2-1	Example 3, Method 2, Run 1 Input File	101
3.3.2-2	Example 3, Method 2, Run 1 Output File	101
3.3.2-3	Example 3, Method 2, Run 2 Input File	105
3.3.2-4	Example 3, Method 2, Run 2 Output File	105

1.0 INTRODUCTION

This report presents a description of the crack growth and crack initiation computer program "DAMGRO". The computer program has the capabilities of simultaneously analyzing crack growth and crack initiation. The three options available are:

- (i) Crack Growth Only "Method 1"
- (ii) Crack Growth and Crack Initiation "Method 2"
- (iii) Crack Initiation Only.

The program is coded in Fortran Computer Language and consists of a total of 22 routines. Various geometrical configurations can be analyzed including plate or stringer sections, subjected to a constant amplitude loading or a randomized spectrum loading. The generalized Willenborg Retardation Model was adopted to be used when a variable amplitude loading spectrum was applied. The crack growth rates 'da/dN' are presented in terms of the modified Walker's equation.

A majority of typical aircraft structural configurations may be accurately modeled using one or more of the available routines. However, some important configurations are not presently available with a prediction accuracy deemed necessary. In particular, growth of two cracks at adjacent holes consistent with the MIL-A-83444 specification. In this case the growth of the primary crack may influence the growth of the secondary one. In performing the prediction, such a configuration was treated independently which may have resulted in unconservative predictions.

In performing crack growth or crack initiation predictions, some structural geometrics are not, explicitly, included in the program. However, modeling techniques may be applied to use available routines to obtain reasonable representations. For example for subroutine K1020, if the two adjacent holes were eliminated, the result will be a crack at the edge of a hole approaching a free edge. Similarly, initiation may be applied to one location when only one hole is present.

The program is constructed in such a way, that additional stress intensity routines may be added. A flow chart of the program is presented in Appendix A. Three examples are presented in Section 3.0.

2.0 DAMGRO COMPUTER PROGRAM

"DAMGRO" Computer Program was developed to have the capability of simultaneously analyzing crack growth and crack initiation at the edge of a hole. Various geometrical configurations may be analyzed using one or more of the routines shown in Figures 2.1-1 through 2.1-10. The program contains ten crack
growth and six crack initiation routines. The crack growth is governed by the
stress intensity factor at the edge of the crack. The crack initiation is
governed by the stress severity factor, which itself is a function of strain
energy density at the edge of a hole. The analytical formulation for both
crack growth and crack initiation are presented in Volume II of the report.

2.1 CRACK GROWTH "METHOD 1"

とのこのののでは、 マンスススを多り、これのこのこのに

PROPERTY AND PROPERTY INVESTIGATION OF THE PROPERTY OF THE PRO

Various geometrical configurations may be analyzed using the 'DAMGRO' computer program "Method 1" of the program includes the following configurations:

- 1. Corner crack emanating from a circular hole, and approaching an adjacent hole (subroutine K1010 Ref. Figure 2.1-1).
- Corner crack emanating from a circular hole with an additional crack through the thickness extending from the hole to the edge of the part (subroutine K1020 Ref. Figure 2.1-2).
- 3. Corner crack emanating from a circular hole with an additional crack, through the thickness extending from the hole to the edge of an adjacent hole (subroutine K1030 Ref. Figure 2.1-3).
- 4. Two equal or unequal size corner cracks at the edge of a circular hole and approaching adjacent holes (subroutine K1040 Ref. Figure 2.1-4).

- 5. Two equal or unequal size corner cracks at the opposite edges of two adjacen't holes, with an additional crack through the thickness extended between the two holes (subroutine K1050 Ref. Figure 2.1-5).
- 6. Corner crack emanating from a circular hole of a stringer section horizontal leg. The crack may approach the free edge or the stringer upstanding leg. (subroutine K2010 Ref. Figure 2.1-6).
- 7. Corner crack emanating from a circular hole of a stringer section. An additional crack extending from the hole to the free edge, (subroutine K2020 Ref. Figure 2.1-7).
- 8. Two corner cracks emanating from a circular hole of a stringer horizontal leg. One crack approaches the stringer upstanding leg, and the second one approaching the free edge of the horizontal leg, (subroutine K2040 Ref. Figure 2.1-8).
- 9. A crack emanating from a circular hole of a stringer tee section, and propagating into the upstanding leg, (subroutine K2050 Ref. Figure 2.1-9).
- 10. A crack emanating from a circular hole of a stringer 'L' section, and propagating into the upstanding leg, (subroutine K2060 Ref. Figure 2.1-10).

2.2 COMBINED CRACK GROWTH AND CRACK INITIATION "METHOD 2"

The combined method routines (Method 2) are capable of predicting crack initiation for the following geometrical configurations:

1. Crack initiation at the edge of two adjacent holes with one crack present at one of the holes, (subroutines S1010 and S1020 Ref. Figures 2.2-1 and 2.2-2).

- Crack initiation at the edge of two holes in an array of three holes with two cracks present at the mid hole, (subroutine S1030 Ref. Figure 2.2-3).
- 3. Crack initiation at the edge of two adjacent holes with a through the thickness crack between them, (subroutine S1040 Ref. Figure 2.2-4).
- 4. Crack initiation at the edge of two holes in an array of three holes with the presence of one crack at the edge of one hole and a second through the thickness crack between two holes, (subroutine S1050 Ref. Figure 2.2-5).
- 5. Crack initiation at the edge of two adjacent holes with a crack extending from one hole to the edge of the part, (subroutine S1060 Ref. Figure 2.2-6).

2.2.1 Input Data Description of "Method 2"

Manager consisted becomes and an analysis and analysis

The input parameters needed to perform the crack initiation (0.050 inch corner crack) are defined in Volume II of the report and summarized below:

- (i) Damage index 'di' for the initiation of a 0.050 inch quarter-circular corner crack was derived during Phase I of the program. The index for 2024-T3 and 7075-T651 is given by the following equation:
 - (i) For Group A (no interference, clamp-up or sealant)

$$di = 1.0 - 0.629 S$$
 for 2024-T3

$$di = 0.873 - 0.795 S_{max}$$
 for 7075-T651

(ii) For Group B, C and D (with interference, clamp-up or sealant)

$$di = 1.0 - 0.580 \text{ S}_{max}$$
 for 2024-T3

$$di = 0.958 - 0.619 S_{max}$$
 for 7075-T651

where $S_{max} = 0.5 (\sigma K)^2/E$, $K = 1 + (K_t - 1)/(1 + \sqrt{\rho/R})$. The equations above represent the damage index for crack initiation of specimens subjected to a constant amplitude loading spectrum. For specimens subjected to a randomized loading spectrum, the damage index 'D_f' to initiate a 0.05 inch quarter-circular corner crack, was determined using weighted average.

- (ii) Crack Initiation Constants
 - 1. Strain energy density $S = S_F(N)^m$

$$S = 10.4261 \text{ N}^{-0.366}$$
 for 2024-T3
 $S = 20.4257 \text{ N}^{-0.4515}$ for 7075-T651

where N is the number of cycles to failure.

- (iii) Geometry parameters α , β , γ
 - (i) Group A

$$\alpha \beta \gamma = 1.0$$

(ii) Group B

$$\alpha \beta \gamma = 0.8503$$
 for 2024-T3
= 0.8126 for 7075-T651

- (iv) Other parameters which were found to improve fatigue initiation life are:
 - (i) Stress due to faying surface, FAYSUR.
 - (ii) Stress level due to Hi-Lok clamp-up, FRICT.

As a conservative assumption, the faying surface stress and the Hi-Lok clamp-up stress may be set to zero.

Figure 2.1-1. Geometrical Configuration of Crack Growth Routine K1010

TALLES CONTRACTOR SOCIETATION OF THE STATE O

Figure 2.1-2. Geometrical Configuration of Crack Growth Routine K1020

Figure 2.1-3. Geometrical Configuration of Crack Growth Routine K1030

Figure 2.1-4. Geometrical Configuration of Crack Growth Routine K1040

CRACK CAN BE ON EITHER SIDE OF THE HOLE.

AND ARROWS INCOME.

Figure 2.1-6. Geometrical Configuration of Crack Growth Routine K2010

Figure 2.1-7. Geometrical Configuration of Crack Growth Routine K2020

Figure 2.1-8. Geometrical Configuration of Crack Growth Routine K2040

Figure 2.1-9. Geometrical Configuration of Crack Growth Routine K2050

Figure 2.1-10. Geometrical Configuration of Crack Growth Routine K2060

Figure 2.2-1. Geometrical Configuration of Crack Initiation Routine S1010

Figure 2.2-2. Geometrical Configuration of Crack Initiation Routine S1020

Figure 2.2-3. Geometrical Configuration of Crack Initiation Routine S1030

Figure 2.2-4. Geometrical Configuration of Crack Initiation Routine S1040

Figure 2.2-5. Geometrical Configuration of Crack Initiation Routine \$1050

Figure 2.2-6. Geometrical Configuration of Crack Initiation Routine S1060

2.3 DAMGRO INPUT FORMAT

The following pages describe the input format for the DAMGRO Computer Program. Two files are needed to run the program. "File 1" contains geometrical configurations and material allowables (Ref. Table 2.3-1 and pages 25 through 39) and "File 2" contains the spectrum loading considered (Ref. page 40)

TABLE 2.3-1. 'DAMGRO' INPUT FILE FORMAT

				INPUT					FORMAT
TITLE									(2044)
RMAT10									(20A4)
WALKC	WALKM	WALKN	WALKMC	WALKMM	WALKMN				(6E10.3)
CKC	AKIC	SIGMAY	СКМХТН	SHUTOF	RCUT	RCUTN			(7F10.4)
SF	R.	DMG	ELAMOD	002	ALPHA	BETA	GAMMA		(8F10.4)
CIJ	CFJ	AII	AFI	C12	CF2	A12	AF2		(8F10.5)
APAOL1	APCOLI	RYAOL1	RYCOL1	AKOLI	CKOL1	A0L1	C0L1		(8E10.4)
APAOL2	APCOL2	RYA0L2	RYCOL2	AK0L2	CKOL2	A012	COL2		(8E10.4)
DMG	DMGOLT	DEL061	DMG2	DMG0L2	DELOG2				(6E10.4)
Ŧ	RADIUS	B	82	BOLTMI	BOLTM2	E00	CSK	PINDEF	(7F10.4, F5.1, F5.2)
RADI	RA02	HODIST	H0D1S2	BOLTRI	BOLTR2	BOLTL1	BOLTL2		(8F10.4)
FRICT	FAYSUR								(2F10.4)
IRESTA	NSOLD	NCRKS	NINITS	IRETAD	NBLKS	KID	710		(815)
VARI		VAR3	VAR4	VARS	VAR6	VAR7	VAR8		(8F10.4)
FLTBLK	BLKLIF	FLTHR	ISTRESS						(3F10.4, I10)

FILE 1: INPUT DATA CARD NO. 1

DESCRIPTION: TITLE

FORMAT: 20A4

FIELD	1 - 80
VARIABLE	TITLE (I)
EXAMPLE	SPECIMEN NO. ABC-1 SUBJECTED TO A-10A LOADING SPECTRUM

VARIABLE **DESCRIPTION**

TITLE (I) I = 1, 20 Any alphanumeric data for problem information, fields 1 through $80. \,$

REMARKS (1) One title card printed on the first page of the output file. FILE 1: INPUT DATA CARD NO. 2

DESCRIPTION:

MATERIAL OR ID INFORMATION

FORMAT:

20A4

FIELD	1 - 80
VARIABLE	RMATID (I)
EXAMPLE	2024-T351 EXT. (REF. DAMAGE TOLERANCE HANDBOOK)

VARIABLE DESCRIPTION

RMATID (I) Any alphanumeric data for material information, fields 1 through 80.

REMARKS (1) One title card printed on the first page of the output file. Non executable data.

FILE 1: INPUT DATA CARD NO. 3

DESCRIPTION: CRACK GROWTH RATE CONSTANTS

FORMAT: 6E10.3

FIELD	1 - 10	11 - 20	21 - 30	31 - 40	41 - 50	51 - 60
VARIABLE	WALKC	WALKM	WALKN	WALKMC	WALKMM	WALKMN
EXAMPLE	0.160E-09	0.650	4.554	0.230E-08	1.00	3.115

VARIABLE	DESCRIPTION
WALKC	'C' coefficient in Walker's equation for $R \ge 0$
WALKin	'm' coefficient in Walker's equation for $R \geq 0$
WALKMC	'n' coefficient in Walker's equation for $R \geq 0$
WALKMC	'C' coefficient in Walker's equation for R < 0
WALKMM	'm' coefficient in Walker's equation for R < 0
WALKMN	'n' coefficient in Walker's equation for $R < 0$

REMARKS (1) To represent the modified Walker's equation:

$$\frac{da}{dN} = C ((1-R)^m K_{max})^n$$

DESCRIPTION: MATERIAL PROPERTIES FOR CRACK GROWTH

FORMAT: 7F10.4

FIELD	1 - 10	11 - 20	21 - 30	31 - 40	41 - 50	51 - 60	61 - 70	
YARIABLE	CKC	K _{IC}	SIGMAY	СКМХТН	SHUTOF	RCUT	RCUTN	
EXAMPLE	58.0	36.0	53.30	2.0	2.3	0.99	-0.99	

VARIABLE	<u>DESCRIPTION</u>
CKC	Plane stress fracture toughness, K _C
KIC	Plane strain fracture toughness, Kic
SIGMAY	Tensile yield stress, F _{tv}
CKMXTH	Tensile yield stress, F _{ty} K _{max} for threshold da/dn
SHUTOF	Retardation shut-off ratio
RCUT	Postive stress ratio 'R' cut-off
RCUTN	Negative stress ratio 'R' cut-off

REMARKS (1) Executable data when Method 1 is used.

DESCRIPTION:

MATERIAL PROPERTIES FOR CRACK INITIATION

FORMAT:

A CONTRACTOR OF THE PROPERTY O

8F10.4

FIELD	1 - 10	11 - 20	21 - 30	31 - 40	41 - 50	51 - 60	61 - 70	71 - 80
VARIABLE	SF	RM	DMG	ELAMOD	ZOU	ALPHA	BETA	GAMMA
EXAMPLE	10.426	-0.366	0.872	0.107E5	0.022	0.875	1.0	1.0

<u>YARIABLE</u>	<u>DESCRIPTION</u>
SF RM	Crack initiation eqn. constant, SF
DMG	Crack initiation eqn. constant, m Damage index for crack initiation, d _i
ELAMOD	Elastic modulus, E
ZOU	Nueber material constant, P
ALPHA	Stress severity factor parameter, α
BETA	Stress severity factor parameter, $oldsymbol{eta}$
GAMMA	Stress severity factor parameter, γ

<u>REMARKS</u> (1) Executable when Method 2 is used.

DESCRIPTION:

CRACK SIZE DATA

FORMAT:

8F10.5

FIELD	1 - 10	11 - 20	21 - 30	31 - 40	41 - 50	51 - 60	61 - 70	71 - 80
VARIABLE	CTI	CFI	AII	AF1	CI2	CF2	CI2	CF2
EXAMPLE	0.050	0.75	0.050	0.188	0.0	0.0	0.0	0.0

<u>YARIABLE</u>	<u>DESCRIPTION</u>
CII	Initial crack length of crack No. 1
CF1	Final crack length of crack No. 1
AII	Initial crack depth of crack No. 1
AFI	Final crack depth of crack No. 1
CI2	Initial crack length of crack No. 2
CF2	Final crack length of crack No. 2
CI2	Initial crack depth of crack No. 2
CF2	Final crack depth of crack No. 2

REMARKS (1) Initial flaw configuration consistent with the subroutines for growth and initiation.

DESCRIPTION: RETARDATION PARAMETERS AT THE EDGE OF CRACK NO. 1

FORMAT: 8E10.4

FIELD	1 - 10	11 - 20	21 - 30	31 - 40	41 - 50	51 - 60	61 - 70	71 - 80
VARIABLE	APAOL1	APCOL1	RYAOL1	RYCOL1	AKOL1	CKOL1	AOL1	COL1
EXAMPLE	0.192E0	.889E0	. 386E -2	.241E-1	.144E2	.208E2	.188E0	.865E0

<u>VARIABLE</u>	DESCRIPTION
APAOL1	Depth of crack No. 1 plus plastic zone size at overload
APCOL1	Length of crack No. 1 plus plastic zone size at overload
RYAOL1	Plane strain plastic zone for crack No. 1 at overload
RYCOL1	Plane stress plastic zone for crack No. 1 at overload
AKOL1	Depth direction K _{max} for crack No. 1 at overload
CKOL1	Surface direction K _{max} for crack No. 1 at overload
AOL1	Depth of crack No. 1 at overload
COLI	Length of crack No. 1 at overload

REMARKS (1) Executable when Method 1 is used.

(2) Initial values are equal to 0.0.

DESCRIPTION: RETARDATION PARAMETERS AT THE EDGE OF CRACK NO. 2

FORMAT: 8E10.4

FIELD	1 - 10	11 - 20	21 - 30	31 - 40	41 - 50	51 - 60	61 - 70	71 - 80
VARIABLE	APAOL2	APCOL2	RYAOL2	RYCOL2	AKOL2	CKOL2	AOL2	COL2
EXAMPLE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

<u>VARIABLE</u>	DESCRIPTION
APAOL2	Depth of crack No. 2 plus plastic zone size at overload
APCOI 2	Length of crack No. 2 plus plastic zone size at overload
RYAOL2	Plane strain plastic zone for crack No. 2 at overload
RYCOL2	Plane stress plastic zone for crack No. 2 at overload
AKOI 2	Depth direction K _{max} for crack No. 2 at overload
CK01.2	Surface direction K _{max} for crack No. 2 at overload
A01-2	Depth of crack No. 2 at overload
COLS	Length of crack No. 2 at overload

REMARKS (1) Executable when Method 1 is used.

(2) Initial values are equal to 0.0.

DESCRIPTION: FATIGUE DAMAGE PARAMETERS

FORMAT:

6E10.4

FIELD	1 - 10	11 - 20	21 - 30	31 - 40	41 - 50	51 - 60
VARIABLE	DMG1	DMGOL1	DELOG1	DMG2	DMGOL2	DELOC2
EXAMPLE	.333E0	.685E-04	0.0	.430E-01	.179E-05	0.0

VARIABLE	DESCRIPTION
DMG1	Accumulated damage for site No. 1
DMGOL1	Damage at overload for site No. 1
DELOGI	Accumulated damage for site No. 1 since last overload
DMG2	Accumulated damage for site No. 2
DMGOL2	Damage at overload for site No. 2
DELOG2	Accumulated damage for site No. 2 since last overload

REMARKS (1) Executable when Method 2 is used.

(2) Initial values are equal to 0.0.

DESCRIPTION: MODEL GEOMETRY AND LOADING CONFIGURATION

FORMAT: 7F10.4, F5.1, F5.2

FIELD	1 - 10	11 - 20	21 - 30	31 - 40	41 - 50	51 - 60	61 - 70	71-75	76-80
VARIABLE	THK	RADIUS	B1	B2	BOLTM1	BOLTM2	EOD	СВК	PINDEF
EXAMPLE	0.188	0.125	2.14	0.5	0.0825	-0.0026	5.0	20.0	1.06

BOLTM2 Fraction of Load transfer by mid bolt -	<u>VARIABLE</u>	DESCRIPTION	
CBK % countersunk height PINDEF Pin deflection	RADIUS B1 B2 BOLTM1 BOLTM2 EOD CBK	Radius of middle hole R.H.S. edge distance to mid hole L.H.S. edge distance to mid hole Fraction of load transfer by mid bolt - (Fraction of Load transfer by mid bolt - (E/D ratio % countersunk height	2

<u>REMARKS</u> (1) Executable for both Methods.

received the second the second the second

DESCRIPTION: MODEL GEOMETRY AND LOADING CONFIGURATION

FORMAT: 8F10.4

FIELD	1 - 10	11 - 20	21 - 30	31 - 40	41 - 50	51 - 60	61 - 70	71 - 80
VARIABI.E	RAD1	RAD2	HODIS1	HODIS2	BOLTRI	BOLTR2	BOLTL1	BOLTL2
EXAMPLE	0.125	0.0	1.64	0.0	0.0825	0.0100	0.0	0.0

<u> VARIABLE</u>	DESCRIPTION
RADI	Radius of R.H.S. hole
RAD2	Radius of L.H.S. hole
HODIS1	Distance between mid and R.H.S. holes
HODIS2	Distance between mid and L.H.S. holes
BOLTRI	Fraction of load transfer in R.H.S. bolt - C1
BOLTR2	Fraction of Load transfer in R.H.S. bolt - C2
BOLTL1	Fraction of load transfer in L.H.S. bolt - C1
BOLTL2	Fraction of Load transfer in L.H.S. bolt - C2

<u>REMARKS</u> (1) Executable for both Methods.

DESCRIPTION:

SURFACE STRESSES

FORMAT:

2F10.4

FIELD	1 - 10	11 - 20	
VARIABLE	FRICT	FAYSUR	
EXAMPLE	3.00	2.00	

DESCRIPTION VARIABLE

FRICT FAYSUR Friction stress due to fastener pre-load Faying surface friction stress

(1) Executable for both Method 1 and Method 2 REMARKS

DESCRIPTION: SPECTRUM AND ROUTINE SELECTION

FORMAT: 815 (RIGHT JUSTIFIED)

FIELD	1 - 5	6 - 10	11 - 15	16 - 20	21 - 25	26- 30	31 - 35	36 - 40
VARIABLE	IRESTA	NSOLD	NCRKS	NINITS	IRETAD	NBLKS	KID	LID
EXAMPLE	0	0	1	2	1	100	1010	1010

VARIABLE	DESCRIPTION
IRESTA	l a re-start problem, otherwise O
NSOLD	Old step number from spectrum at stop
NCRKS	Number of crack tips
NINITS	Number of crack initiation sites
IRETAD	Code to include retardation 1, otherwise 0
NBLKS	Maximum number of blocks for analysis
KID	Stress intensity factor code KXXXX subroutine
LID	Stress concentration factor code SXXXX subroutine

<u>REMARKS</u> (1) Routines selection (Ref. Figures 2.1-1 through 2.2-6).

DESCRIPTION: S

STRINGER'S VARIABLES

FORMAT:

8F10.4

FIELD	1 - 10	11 - 20	21 - 30	31 - 40	41 - 50	51 - 60	61 - 70	71 - 80
VARIABLE	VAR1	VAR2	VAR3	VAR4	VAR5	VAR6	VAR7	VAR8
EXAMPLE	1.226	1.414	0.462	1.0	0.2658	0.0	0.0	0.0

SUBROUTINE

VARIABLE	K2010	K2020	K2040	K2050	K2060
VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7	W1 W2 T2 SFJ CLTD	W1 W2 T2 SFJ CLTD	W1 W2 T2 SFJ CLTD	HTG XBAR YBAR I _{XX} I _{YY} I _{XY} T2	D XBAR YBAR ^I XX IYY IXY TU

REMARKS

I HERECO STONE SELECTION SECURIO SELECTOR SECURIOR SECURIORIO SECURIORIO

- (1) User defined variables used only with subroutines K2010, K2020, K2040, K2050 and K2060.
- (2) Definition of variable reference pages 41 and 42.

DESCRIPTION:

SPECTRUM DESCRIPTION

FORMAT:

3F10.4, I10

FIELD	1 - 10	11 - 20	21 - 30	31 - 40	
VARIABLE	FLTBLK	BLKLIF	FLTHR	ISTRES	
EXAMPLE	120.0	25.0	6000.0	1	

<u>YARIABLE</u>	DESCRIPTION
FLTBLK	Total number of flights in one block
BLKLIF	Total number of blocks in one design lifetime
FLTHR	Total number of flight hours in one design lifetime
ISTRES	Flag for output of stress spectrum (=1 if desired)

<u>REMARKS</u> (1) Non executable variables.

DESCRIPTION:

LOADING SPECTRUM

FORMAT:

3F10.3

FIELD	0 - 10	11 - 20	21 - 30	
VARIABLE	SIGMAX(I)	SIGMIN(I)	CYC(I)	
EXAMPLE	21.7	- 5.0	135.0	
• • • • • • • • • • • • • • • • • • • •	35.0	21.0	3.0	

VARIABI.E	DESCRIPTION

SIGMAX(I) Maximum stress level Minimum stress level

CYC(I) Number of cycles in the layer

REMARKS (1) Maximum 3000 stress layers.

TABLE 2.3-2. VARIABLES DEFINITION OF SUBROUTINES K2010, K2020 AND K2040

CLTD =
$$(T1^2 + T2^2)^{1/2}$$

SFJ = 0 Crack grows toward upstanding leg

= 1 Crack growth away from upstanding leg

(b) 'L' SECTION

TABLE 2.3-3. VARIABLE DEFINITIONS OF SUBROUTINE K2050

HGT = Stringer Height

 $XBAR = \bar{X}$

 $YBAR = \overline{y}$

 $I_{max} = moment of inertia x - x$

 I_{yy} = moment of inertia y - y

 I_{xy} = product of inertia x - y

TU = Thickness of upstanding leg

TABLE 2.3-4. VARIABLE DEFINITION OF SUBROUTINE K2060

D = Distance from \mathbf{C} of hole to outer surface of upstanding leg

 $XBAR = \overline{X}$

 $YBAR = \overline{y}$

 I_{xx} = moment of inertia x - x

 I_{yy} = moment of inertia y - y

 I_{xy} = product of inertia x - y

T2 = Thickness of upstanding leg

3.0 EXAMPLE RUNS

This section presents three (3) examples to illustrate the usage of DAMGRO Computer Program. They include the following:

- (1) Skin section subjected to a constant amplitude loading, with maximum gross stress of 17.0 KSI, R = 0.10 (Ref. pages 44 through 65).
- (2) Skin section subjected to a randomized loading spectrum. The modified Willenborg model was applied (Ref. pages 66 through 90).
- (3) Stringer section subjected to a constant amplitude loading spectrum, with maximum gross stress of 17.0 KSI, R = 0.10 (Ref. pages 91 through 107).

EXAMPLE 1: SKIN SECTION SUBJECTED TO CONSTANT AMPLITUDE LOADING

O.25 CIA
CSK HOLE

INITIAL
FLAW

. 138

1.640 -

MATERIAL:

especies especies exercises are exercises proposes are exercised as a secretary and a second and

2024-T3 SHEET

2.180 ------

LOADING SPECTRUM:

CONSTANT AMPLITUDE

 $\sigma_{\text{max}} = 17.0 \text{ KSI}$

 $\sigma_{\min} = 1.7 \text{ KSI}$

8.180 -

REF. PAGES 45 THROUGH 65

TABLE 3.1.1. EXAMPLE 1, METHOD 1 SUMMARY TABLE

REF. PAGES 46 THROUGH 51

a ₁ (IN)	a ₂ (IN)	a ₃ (IN)	LIFE (CYCLES)	ROUTINE GROWTH	RUN <u>NO.</u>
.050	0	.005	0	K1010	1
.102	0	1	10,000	K1010	1
.220	0	}	20,000	K1010	1
.419	0		30,000	K1010	1
.788	0	1	40,000	K1010	1
1.39	0	₹	46,625	K1010	1
	0	.380	48,025	K1030	2
	0	1.034	50,025	K1030	2
	0	1.955	52,625	K1030	2
	0	3.484	54,625	K1030	2
	0	7.303	56,198	K1030	2

NO. OF CYCLES TO FAILURE = 56,198 CYCLES

WASH TECOPORE DISCIPLINE TO THE PROPERTY OF THE

TABLE 3.1.1-1. EXAMPLE 1, METHOD 1, RUN 1 INPUT FILE

```
EXAMPLE RUN NO. 1 SPECIMEN SUBJECTED TO CONSTANT AMLITUDE LOADING SPECTRUM
2024-13 SHEET
2.2374E-09
                0.70
                        3.3386 6.2126E-9
                                               0.00
                                                       2,9783
    116.00
                36.0
                          53.0
                                     2.0
                                                         0.99
                                                                  -0.99
   10.426
              -.366
                         0.887
                                 10700.0
                                              0.022
                                                        1.000
                                                                    1.0
                                                                               1.0
   0.050
              1.390
                         0.050
                                   0.188
                                              .0000
                                                        0.000
                                                                  0.000
                                                                             0.000
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+00
              0.1250
    0.188
                          8.18
                                    9.82
                                           0.00000
                                                                99.900 50. 1.00
                                                      .00000
    0.0000
              0.1250
                          0.00
                                                                0.00000
                                     1.64
                                            0.00000
                                                      .00000
                                                                           .00000
    0.000
              0.0000
       00
                        1 100 1010 0000
    0
                  ø
               0.000
    0.060
                         0.000
                                   0.000
                                              0.000
                                                        0.000
                                                                  0.000
                                                                             0.000
                25.0
     120.0
                         6000.
```

TABLE 3.1.1-2. EXAMPLE 1, METHOD 1. RUN 1 OUTPUT FILE

```
**** DETAILED DAMAGE GROWTH ANALYSIS PROGRAM
                                                           DAMGRO
 EXAMPLE RUN NO. 1 SPECIMEN SUBJECTED TO CONSTANT AMPLITUDE LOADING SPECTRUM
    * THIS ANALYSIS STARTS AT THE BEGINNING OF THE STRESS SPECTRUM *
NO. OF SITES TO BE ANALYZED :
                                   CRACK GROWTH =
                                                           CRACK INITIATION =
                                                       1:
                                                                                    Θ
 CORRESPONDING DAMAGE CODES :
                                   CRACK GROWTH = 1010; CRACK INITIATION =
                                                                                    Α
                          NONE
LOAD INTERACTION :
              2024-T3 SHEET
MATERIAL :
    WALKER EQ. CONST. (+R): C = 0.224E-08, M =0.700, WALKER EQ. CONST. (-R): C = 0.621E-08, M =0.000,
                                                              N = 3.339
    MAX. K FOR DC/DN THRESHOLD = 2.000
    RETARDATION SHUT-OFF RATIO = 2.300
    +R CUT-OFF = 0.9900,
                             -R CUT-DFF = -0.9900
    YIELD STRENGTH : 53.000
    ELASTIC MODULUS = 0.1070E+05
    PL. STRESS FRACT. TOUGHNESS = 116.00
PL. STRAIN FRACT. TOUGHNESS = 36.00
    DAMAGE INDEX FOR CRACK INITIATION = 0.892
    NEUBER MATERIAL CONST. = 0.022
                                      SF = 10.426, M = -.366
    CRACK INITIATION EQ. CONST. :
    STRESS SEVERITY FACTOR PARAMETERS :
```

SPECIFIED DAMAGE CONDITIONS INITIAL CRACK LENGTH OF CRACK NO. 1 : 0.05000 FINAL CRACK LENGTH OF CRACK NO. 1 : 1.39000 INITIAL CRACK DEPTH OF CRACK NO. 1 : 0.05000 FINAL CRACK DEPTH OF CRACK NO. 1 : 0.18800 INITIAL CRACK LENGTH OF CRACK NO. 2 : 0.00000 FINAL CRACK LENGTH OF CRACK NO. 2 : 0.00000 INITIAL CRACK DEFTH OF CRACK NO. 2 0.00000 FINAL CRACK DEPTH OF CRACK NO. 2 : 0.00000

the to be dead or the late of

ALPHA = 1.0000, BETA = 1.0000, GAMMA = 1.0000

PARAMETERS FROM PREVIOUS CRACK GROWTH HISTORY:

APAOL1 = .000E+00, APCOL1 = .000E+00, RYADL1 = .000E+00, RYCOL1 = .000E+00

AKOL1 = .000E+00, CKOL1 = .000E+00, ADL1 = .000E+00, COL1 = .000E+00

APAOL2 = .000E+00, APCOL2 = .000E+00, RYADL2 = .000E+00, RYCOL2 = .000E+00

AKOL2 = .000E+00, CKOL2 = .000E+00, ADL2 = .000E+00, COL2 = .000E+00

PARAMETERS FROM PREVIOUS CRACK INITIATION HISTORY

PARAMETERS FROM PREVIOUS CRACK INITIATION HISTORY

DMG1 = .000E+00, DMGDL1 =.000E+00, DELDG1 =.000E+00

DMG2 = .000E+00, DMGDL2 =.000E+00, DELDG2 =.000E+00

TABLE 3.1.1-2. EXAMPLE 1, METHOD 1, RUN 1 OUTPUT FILE (CON'T.)

```
COMPONENT GEOMETRY :
    THICKNESS OF PLATE :
                                                             0.18800
    RADIUS OF MID. HOLE :
                                                             0.12500
    RATIO OF PLATE LENGTH TO HOLE DIAMETER, E/D : DISTANCE BETWEEN MID. HOLE AND R.H.S. EDGE :
                                                             99.89999
                                                             9.82000
    DISTANCE BETWEEN MID. HOLE AND L.H.S. EDGE :
                                                             8.18000
    FRACTION OF LOAD TRANSFER BY MID. BOLT : RADIUS OF THE R.H.S. HOLE :
                                                             0.00000,
                                                                         0.00000
                                                             0.12500
                                                             1.64000
    DISTANCE BETWEEN MID. AND R.H.S. HOLES :
    FRACTION OF LOAD TRANSFER BY R.H.S. BOLT :
                                                             0.00000,
                                                                         0.00000
    RADIUS OF THE L.H.S. HOLE
                                                             0.00000
    DISTANCE BETWEEN HID. AND L.H.S. HOLES :
                                                             0.00000
                                                             0.00000, 0.00000
    FRACTION OF LOAD TRANSFER BY L.H.S. BOLT :
    PERCENTAGE OF COUNTERSINK DEPTH W.R.T THICKNESS : 20.0
    STRESS CONCENTRATION DUE TO PIN DEFLECTION :
                                                             1.00
    FASTENER HEAD OR COLLAR FRICTION STRESS :
                                                             0.0000
    FAYING SURFACE FRICTION STRESS :
                                                             0,0000
STRESS SPECTRUM :
    NO. OF BLOCKS SPECIFIED FOR ANALYSIS :
                                                             100
    TOTAL NO. OF CYCLES IN ONE BLOCK : TOTAL NO. OF FLIGHTS IN ONE BLOCK :
                                                           10000.000
                                                            129.000
    NO. OF BLOCKS IN ONE DESIGN LIFETIME :
                                                               25.000
    NO. OF FLIGHT HOURS IN ONE DESIGN LIFETIME : MAXIMUM PEAK STRESS OF THE SPECTRUM :
                                                            6000.000
                                                              17.000
    NO. OF STRESS LAYERS IN ONE BLOCK
                                                               10
STRESS LAYERS IN ONE BLOCK :
    STEP SIGMA-MAX SIGMA-MIN
                                  CYCLES
                                                  STEP SIGMA-MAX SIGMA-MIN
                                                                                 CYCLES
                                                                    1.700 1000.000
                                                2 17.000
4 17.000
             17.000
                         1.700 1000.000
                          1.700 1000.000
                                                           17.000
                                                                        1.700 1000.000
       3
             17.000
                                                 6
                          1.700 1000.000
             17.000
                                                          17.000
                                                                       1.700 1000.000
                                                           17.000
                                                                        1.700 1000.000
1.700 1000.000
       7
             17.000
                          1.700 1000.000
                                                     8
```

10

17.000

1.700 1000.000

17.000

TABLE 3.1.1-2. EXAMPLE 1. METHOD 1. RUN 1 OUTPUT FILE (CONCLUDED)

```
INITIA2
                  A2
                         KMAX-A1
                                 KMAX-A2
                                           DA1/DF
          A1
                                                      DA2/DF
                                                                  KN1
                                                                            KN2
     0.05000 0.00000
                                                   .000E+00
                                                              .000E+00
                                                                        .000E+00
 0.0
                          9.054
                                  0.000 .000E+00
      0.05000 0.00000
                         11.348
                                  0.000 .000E+00 .000E+00
                                                             .000E+00
                                                                       .000E+00
      0.10203
              0.00000
                          12.570
                                   0.000
                                          .434E-03
                                                   .000E+00
                                                              .000E+00
                                                                        .000E+00
       0.13103
               0.00000
                                   0.000 .675E-03 .000E+00
                          13.404
                                                              .000F+00
                                                                        .000F+00
STABLE BREAK-THROUGH OF CRACK NO. 1 OCCURS AT :
   CYC= 135.0, STEP = 6, BLOCK = 2, CRACK DEPTH = 0.18805
CRACK DEPTH IS SET EQUAL TO PLATE THICKNESS 0.1880 INCHES
      0.22022 0.00000
                         15.227
                                   0.000
                                          .985E-03
                                                   .000E+00
                                                             .000E+00
                                                                        .000E+00
                          0.000
                                         .475E-03
                                                   .000E+00
                                                             .000E+00
                                                                        .000E+00
      0.18800 0.00000
                                  0.000
                                 0.000
     0.41962 0.00000
                         17.733
                                         .166E-02 .000E+00
                                                             .000E+00
                                                                       .000E+00
                                          .000E+00
                                                   .000E+00
                                                              .000E+00
      0.18800
              0.00000
                          0.000
                                  0.000
                                                                        .000E+00
                                          .307E-02
                                                   .000E+00
     0.78810 0.00000
                                                             .000E+00
                                                                        .000E+06
                         22.009
                                  0.000
      0.18800 0.00000
                          0.000
                                  0.000
                                         .000E+00
                                                   .000E+00 .000E+00
                                                                       .000E+00
CRACK NO. 1 HAS REACHED THE SPECIFIED LENGTH 1.3900 INCHES AT :
   CYC = 625.0, STEP = 7, BLOCK = 5, CKMAXS = 63.24, C1 = 1.39096
TERMINATE DAMAGE COMPUTATION
   CRACK LENGTHS AT THE TERMINATION OF CRACK INITIATION COMPUTATION :
         C1 = 1.39096,
                        A1 = 0.18890
                                         C2 = 0.00000
   RETARDTION PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION :
      APADL1 = .000E+00, APCOL1 = .000E+00, RYADL1 = .000E+00, RYCOL1 = .000E+00
       AKOL1 = .000E+00, CKOL1 = .000E+00,
                                             AOL1 = .000E+00,
                                                                COL1 = .000E+00
      APADL2 = .000E+00, APCOL2 = .000E+00, RYADL2 = .000E+00, RYCOL2 = .000E+00
       AKOL2 = .000E+00, CKOL2 = .000E+00,
                                           A0L2 = .000E+00
                                                                COL2 = .000E+00
    RETARDATION PARAMETERS AT THE TERMINATION OF CRACK INITIATION COMPUTATION
       DMG1 = .000E+00, DMGOL1 = .000E+00, DELDG1 = .000E+00
DMG2 = .000E+00, DMGOL2 = .000E+00, DELDG2 = .000E+00
```

DAMAGE GROWTH HISTORY

DC1/DF

DC2/DF

INITIA

KMAX-C2

BLOCK

C1

02

KMAX-C1

TABLE 3.1.1-3. EXAMPLE 1, METHOD 1, RUN 2 INPUT FILE

```
EXAMPLE RUN NO. 1 SPECIMEN SUBJECTED TO CONSTANT AMLITUDE LOADING SPECTRUM
    2024-13 SHEET
                                                                                                                        2.9783
    2.2374E-09
                                      0.70
                                                       3.3386 6.2126E-9
                                                                                                       0.00
             116.00
                                                                                                                            0.99
                                                                                                                                                -6.99
                                      36.0
                                                            53.0
                                                                                                        2.3
                                                                           10700.0
                                                         0.887
           10.426
                                  -.366
                                                                                                     0.022
                                                                                                                          1.000
                                                                                                                                                   1.0
    0.055 8.180 0.072 0.188 .0000 0.000 0.000 0.000 0.000 0.000 0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+
                                                                                                                                               0.000
                                                                                                                                                                    0.000
    0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+00
                                                                                                0.00000
                                                                                                                     .00000
                                                                                                                                           99.900 50. 1.00
                                  0.1250
                                                            8.18
                                                                                 9.82
                                                                                                                                           0.00000
             0.0000
                                  0.1250
                                                                                                0.00000
                                                                                                                      .00000
                                                                                                                                                                 .00000
                                                            0.00
             0.000
                                  0.0000
                    00
             ٥
                                           0
                                                            100 1030 0000
               0.000
                                    0.000
                                                                                                                                               0.000
                                                         0.000
                                                                                                     0.000
                                                                                                                          0.000
                                                                                                                                                                    0.000
                                                                               0.000
               120.0
                                      25.0
                                                         4000.
                                TABLE 3.1.1-4. EXAMPLE 1. METHOD 1, RUN 2 OUTPUT FILE
                             DETAILED DAMAGE GROWTH ANALYSIS PROGRAM
                                                                                                                                        D A M G R B ****
  EXAMPLE RUN NO. 1 SPECIMEN SUBJECTED TO CONSTANT AMPLITUDE LOADING SPECTRUM
          * THIS ANALYSIS STARTS AT THE BEGINNING OF THE STRESS SPECTRUM *
NO. OF SITES TO BE ANALYZED :
                                                                                CRACK GROWTH ==
                                                                                                                              1: CRACK INITIATION =
  CORRESPONDING DAMAGE CODES :
                                                                                CRACK GROWTH = 1030; CRACK INITIATION =
LOAD INTERACTION :
                                                            NONE
                                2024-T3 SHEET
          WALKER EQ. CONST. (+R): C = 0.224E-08, M =0.700, N =3.339
WALKER EQ. CONST. (-R): C = 0.421E-08, M =0.000, N =2.978
         MAX. K FOR DC/DN THRESHOLD = 2.000
         RETARDATION SHUT-OFF RATIO = 2.300
          +R CUT-OFF = 0.9900,
                                                                  -R CUT-OFF = -0.9900
          YIELD STRENGTH : 53.000
          ELASTIC MODULUS = 0.1070E+05
         PL. STRESS FRACT. TOUGHNESS = 116.0
PL. STRAIN FRACT. TOUGHNESS = 36.00
                                                                                       116.00
          DAMAGE INDEX FOR CRACK INITIATION = 0.892
          NEUBER MATERIAL CONST. = 0.022
          CRACK INITIATION EQ. CONST.
                                                                                        SF = 10.426, M == .366
         STRESS SEVERITY FACTOR PARAMETERS :
               ALPHA = 1.0000, BETA = 1.0000, GAMMA = 1.0000
SPECIFIED DAMAGE CONDITIONS
```

AUL2 = .000E+00.

8.48600

0.07200

0.49800

0,00000

0.00000

0.00000

ANTI = 1000 + 000 TOO = 100 + 000 +

00+1000, = 030D

APAGL1 = .000E+00, APCGL1 = .000E+00, RYAGL1 = .000E+00, RYCGL1 = .000E+00

APADL2 = .000E+00, APCDL2 = .000E+00, RYADL2 = .000E+00, RYCDL2 = .000F+00

INITIAL CRACK LENGTH OF CRACK NO. 1 : FINAL CRACK LENGTH OF CRACK NO. 1 :

INITIAL CRACK DEPTH OF CRACK NO. 1 .

INITIAL CRACK LENGTH OF CRACK NO. 2 :

PARAMETERS FROM PREVIOUS CRACK GROWTH HISTORY

PARAMETERS FROM PREVIOUS CRACK INSTATION HISTORY

AKOL1 = .000E+00. CKOL1 = .000C+00.

AKDL2 = .000E+00. CKDL2 : ,000E+00.

FINAL CRACK LENGTH OF CRACK NO. 2 :

INITIAL CRACK DEPTH OF CRACK NO. 2

FINAL CRACK DEPTH OF CRACK NO. 2 :

FINAL CRACK DEPTH OF CRACK NO. 1 :

TABLE 3.1.1-4. EXAMPLE 1, METHOD 1, RUN 2 OUTPUT FILE (CON'T.)

COMPONENT GEOMETRY		
THICKNESS OF PLATE :	0.18800	
RADIUS OF MID. HOLE :	0.12500	
RATIO OF PLATE LENGTH TO HOLE DIAMETER, E/D :		
DISTANCE BETWEEN MID. HOLE AND R.H.S. EDGE :	8.18000	
DISTANCE BETWEEN MID. HOLE AND L.H.S. EDGE :		
FRACTION OF LOAD TRANSFER BY MID. BOLT		0.00000
RADIUS OF THE R.H.S. HOLE :	0.00000	
DISTANCE BETWEEN MID. AND R.H.S. HOLES :	0.00000	
FRACTION OF LOAD TRANSFER BY R.H.S. BOLT :	0.00000,	0.00000
RADIUS OF THE L.H.S. HOLE :	0,12500	
DISTANCE BETWEEN MID. AND L.H.S. HOLES :	1,64000	
FRACTION OF LOAD TRANSFER BY L.H.S. BOLT	0.00000,	0.00000
PERCENTAGE OF COUNTERSINK DEPTH W.R.T THICKNESS	20.0	
STRESS CONCENTRATION DUE TO PIN DEFLECTION :	1.00	
FASTENER HEAD OR COLLAR FRICTION STRESS	0 00 00	
FAYING SURFACE TRICTION STRESS :	0,0000	
STRESS SPECTRUM :		
NO. OF BLOCKS SPECIFIED FOR ANALYSIS	100	
TOTAL NO. OF CYCLES IN ONE BLOCK	2000,000	
TOTAL NO. OF FLIGHTS IN ONE BLOCK	120,000	
NO, OF BLOCKS IN ONE DESIGN LIFETIME	25 (666)	
NO. OF FLIGHT HOURS IN ONE DESIGN LIFETIME	6000 000	
MAXIMUM PEAK STRESS OF THE SPECTRUM :	12 600	
NO. OF STRESS LAYERS IN ONE BLOCK	7)	

TABLE 3.1.1-4. EXAMPLE 1. METHOD 1, RUN 2 OUTPUT FILE (CONCLUDED)

```
STRESS LAYERS IN ONE BLOCK :
    STEP SIGMA-MAX SIGMA-MIN
                                 CYCLES
                                                 STEP SIGMA-MAX TIGMA-MIN
                                                                                CYCLES
             17.000
                          1.700 1000,000
                                                    2 17,000
                                                                        1,700 1000,000
STABLE BREAK-THROUGH OF CRACK NO. 1 OCCURS AT :
CYC= 946.0, STEP = 1, BLOCK = 1, CRACK DEPTH CRACK DEPTH IS SET EQUAL TO PLATE THICKNESS 0.1880 INCHES
                                                    CRACK DEPTH = 0.18893
  0.0 0.05500 0.00000
                                              .000F+00
                                                                               .000E+00
                            23.358
                                                         .00000+00
                                                                    .000E+00
                                      0.000
                                              .000E+00
                                                         .000E+00
                                                                   .000E+00
       0.07200 0.00000
                            25.781
                                      0.000
                                                                               .000E+00
  1.0 0.38048 0.00000
                            35,380
                                      0.000
                                              .271E-02
                                                         .0001+00
                                                                    .000E+00
                                                                                .000E+00
                                      0.000
                                                         .000E+00
                                                                                .000E+00
       0.18800
                 0.00000
                             0.000
                                              .967E-03
                                                                    .000E+00
       1.03462
                0.00000
                            39,558
                                      0.000
                                              .545E-02
                                                         00+1000
                                                                    .000F#00
                                                                               ₹600E+00
                0.00000
                                      0.000
                                              .0000+00
                                                         .000E+00
                                                                    .000E+00
                                                                                .000E+00
       0.18800
                             0.000
       1.95571
                 0.00000
                            44.499
                                      0.000
                                              .768E-02
                                                         .000E+00
                                                                    .00000+00
                                                                                .000E+00
  3.0
                                              .000E+00
                                                         .000E+00
                                                                    .000E+00
                                                                               .000E+00
                                      0.000
       0.18800
                0.00000
                             0.000
                                                         .000E+00
  4.0
       3.48375
                0.00000
                            54.072
                                      0.000
                                              .127E-01
                                                                    .000E+00
                                                                                .000E:00
       0.18800
                0.00000
                             0.000
                                      0.000
                                              .000E+00
                                                         .000E+00
                                                                    .000E+00
                                                                                .000E+00
UNSTABLE GROWTH OF CRACK NO. 1 OCCURS AT:
    CYC = 573.0, STEP = 2, BLOCK = 5, CRACK LENGTH = 7.30257, CKHAXS=116.4
THE OTHER CRACK LENGTH = 0.00000
TERMINATE DAMAGE COMPUTATION
    RETARDTION PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION :
      AFAOL1 = .000E+00, APCOL1 = .000E+00, RYAOL1 = .000E+00. RYCOL1 = .000E+00
       AKOL1 = .000E+00, CKOL1 = .000E+00,
                                                  A0L1 = .000E+00, C0L1 = .000E+00
      AFAOL2 = .000E+00, APCDL2 = .000E+00, RYADL2 = .000E+00, RYCDL2 = .000E+00
AKOL2 = .000E+00. CKOL2 = .000E+00, ADL2 = .000E+00, COL2 = .000E+00
    RETARDATION PARAMETERS AT THE TERMINATION OF CRACK INITIATION COMPUTATION
        DMG1 = .000E+00, DMG0L1 =.000E+00, DELDG1 =.000E+00
DMG2 = .000E+00, DMG0L2 =.000E+00, DELDG2 =.000E+00
```

Comments of the second

TABLE 3.1.2. EXAMPLE 1, METHOD 2 SUMMARY TABLE

REF. PAGES 53 THROUGH 65

a 1	a 2	a 3	LIFE	ROU'	TINES	RUN
<u>(IN)</u>	<u>(IN)</u>	<u>(IN)</u>	(CYCLES)	GROWTH	<u>INITIATION</u>	<u>NO.</u>
.050	0	0	0	K1010	\$1010	1
.102	0	0	10,000	K1010	\$1010	1
.220	0	0	20,000	K1010	S1010	1
.419	0	0	30,000	K1010	S1010	1
.788	0	0	40.000	K1010	\$1010	1
.904	0	0	42,000	K1010	\$1010	1
1.048	0	0	44,000	K1010	\$1010	1
1.246	0	0	46.000	K1010	\$1010	1
1.39	0	0	46,625	K1010	\$1010	1
	.050	0	51,625		S1040	2
	.330	0	53,625	K1030	\$1050	3
	.961	0	55,625	K1030	S1050	3
	1.364	0.050	56,625	K1030	S1050	3
	2.618	1.233	58.625	K1050	-	4
	3.254	4.572	59,625	K1050	-	4

NO. OF CYCLES TO SECONDARY CRACK INITIATION = 51,625 CYCLES NO. OF CYCLES TO FAILURE = 59,625 CYCLES

TABLE 3.1.2-1. EXAMPLE 1, METHOD 2, RUN 1 INPUT FILE

```
EXAMPLE RUN NO. 1 SPECIMEN SUBJECTED TO CONSTANT AMLITUDE LOADING SPECTRUM
2024-13 SHEET
2.2374E-09
                0.70
                         3.3386 6.2126E-9
                                                0.00
                                                         2.9783
    116.00
                           53.0
                36.0
                                      2.0
                                                 2.3
                                                          0.99
                                                                    -6.99
   10.426
              -.366
                          0.892
                                  10700.0
                                               0.022
                                                          1 000
                                                                      4 A
   0.050
              1.390
                          0.050
                                    0.188
                                               .0000
                                                          0.000
                                                                    0.000
                                                                               0.000
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+00
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+00
    0.188
              0.1250
                                                        .00000
                           8.18
                                     9.82
                                             0.00000
                                                                  99.900 50. 1.00
0.00000 .00000
    0.0000
              0.1250
                           0.00
                                     1.64
                                             0.00000
                                                        . 00000
    0.000
              0.0000
      90
    0
                         1 100 1010 1010
     0.000
               0.000
                          0.000
                                    0.000
                                               0.000
                                                         0.000
                                                                    0.000
                                                                               0.000
     120.0
                25.0
                          4000.
```

TABLE 3.1.2-2. EXAMPLE 1, METHOD 2. RUN 1 OUTPUT FILE

```
DETAILED DAMAGE GROWTH ANALYSIS PROGRAM
                                                              DAMGRO
 EXAMPLE RUN NO. 1 SPECIMEN SUBJECTED TO CONSTANT AMPLITUDE LOADING SPECTRUM
    * THIS ANALYSIS STARTS AT THE BEGINNING OF THE STRESS SPECTRUM *
NO. OF SITES TO BE ANALYZED :
                                    CRACK GROWTH =
                                                        1;
                                                             CRACK INITIATION =
 CORRESPONDING DAMAGE CODES
                                    CRACK GROWTH = 1010;
                                                             CRACK INITIATION = 1010
LOAD INTERACTION :
                           NONE
              2024-T3 SHEET
MATERIAL
    WALKER EQ. CONST. (+R): C = 0.224E-08, M =0.700, N =3.339
WALKER EQ. CONST. (-R): C = 0.621E-08, M =0.000, N =2.978
    MAX. K FOR DC/DN THRESHOLD = 2.000
    RETARDATION SHUT-OFF RATIO = 2.300
    +R CUT-OFF = 0.9900,
                              -R CUT-OFF = -0.9900
    YIELD STRENGTH : 53,000
    ELASTIC MODULUS = 0.1070E+05
    FL. STRESS FRACT. TOUGHNESS = 116.00
PL. STRAIN FRACT. TOUGHNESS = 36.00
DAMAGE INDEX FOR CRACK INITIATION = 0.892
    NEUBER MATERIAL CONST. = 0.022
    CRACK INITIATION EQ. CONST. :
                                       SF = 10.426, M =-.366
    STRESS SEVERITY FACTOR PARAMETERS
       ALPHA = 1.0000, BETA = 1.0000, GAMMA = 1.0000
SPECIFIED DAMAGE CONDITIONS
    INITIAL CRACK LENGTH OF CRACK NO. 4 ..
                                                  0.05000
    FINAL CRACK LENGTH OF CRACK NO. 1 :
                                                  1.39000
     INITIAL CRACK DEPTH OF CRACK NO. 1 :
                                                  0.05000
    FINAL CRACK DEPTH OF CRACK NO. 1 :
                                                  0.18800
     INITIAL CRACK LENGTH OF CRACK NO. 2 :
                                                  0,00000
    FINAL CRACK LENGTH OF CRACK NO. 2 :
                                                  0.00000
    INITIAL CRACK DEPTH OF CRACK NO. 2 :
                                                  0,0000
    FINAL CRACK DEPTH OF CRACK NO. 2 :
                                                  0.00000
    PARAMETERS FROM PREVIOUS CRACE GROWTH HISTORY
       APADL1 = .000E+00, APCOL1 = .000F+00. RYAUL1 = .000E+00. RYCUL1 = .000F+00

AKOL1 = .000E+00. CKOL1 = .000E+00, GOL1 = .000F+00. COL1 = .000F+00
       00+1000. = .000E+00. APCOL2 = .000E+00, RYAOL2 = .000F+00, RYCOL2 = .000F+00
                                                  A01 " = .000E+00.
```

COL 2 ==

0001 (00

AKOL2 = .000E+00, CKOL2 = .000E+00, AMIN = PAROMETERS FROM PREVIOUS CRACK INITIATION HISTORY

DMG1 = .000[+00, DMG0[1 = 000[+00, DF10G1 = 000] :00 DMG2 = .000E+00. DdG0[2 = .000E+00, DF10G2 = .000]

TABLE 3.1.2-2. EXAMPLE 1. METHOD 2, RUN 1 OUTPUT FILE (CON'T.)

COMPONENT GEOMETRY		
THICKNESS OF PLATE	0.18800	
RADIUS OF MID HOLE	0.12500	
RATIO OF PLATE LENGTH TO HOLE DIAMETER, E/D :	99.89999	
DISTANCE BETWEEN MID. HOLE AND R.H.S. EDGE :	9.82000	
DISTANCE BETWEEN MID. HOLE AND L.H.S. EDGE	8.18900	
FRACTION OF LOAD TRANSFER BY MID. BOLT	0.00000	6,00000
3 10H 2 H & 3HT 30 2010A3	A 425AA	
DISTANCE BETWEEN MID. AND R.H.S. HOLES	1.64000	
FRACTION OF LOAD TRANSFER BY R.H.S. BOLT :	0.00000,	0.00000
RADIUS OF THE L.H.S. HOLE :	0.0000	
DISTANCE BETWEEN MED. AND L.H.S. HOLES :	0.00000	
FRACTION OF LOAD TRANSFER BY L.H.S. BOLT	0.00000,	0.00000
PERCENTAGE OF COUNTERSINK DEPTH W.R.T THICKNESS	: 20.0	
STRESS CONCENTRATION DUE TO PIN DEFLECTION :	1.00	
FASTENER HEAD OR COLLAR FRICTION STRESS	0.0000	
FAYING SURFACE FRICTION STRESS : '	0.0000	
STRESS SPECTRUM		
NO. OF BLOCKS SPECIFIED FOR ANALYSIS :	100	
TOTAL NO. OF CYCLES IN ONE BLOCK :	2000,000	
TOTAL NO. OF FLIGHTS IN ONE BLOCK :	120,600	
NO. OF BLOCKS IN ONE DESIGN LIFETIME :	25,000	
NO. OF FLIGHT HOURS IN ONE DESIGN LIFETIME	6000,000	
MAXIMUM PEAK STRESS OF THE SPECTRUM :	17,000	
NO. OF STRESS LAYERS IN ONE BLOCK	, 2	

STRESS LAYERS IN ONE BLOCK:

SIEP SIGMA-MAX SIGMA-MIN CYCLES

1 17.000 1.700 1000.000 2 17.000 1.700 1000 000

AND THE CONTRACT OF THE PARTIES OF THE PARTIES.

TABLE 3.1.2-2. EXAMPLE 1, METHOD 2, RUN 1 OUTPUT FILE (CON'T.)

	*****	DAM	A G E G	ROWT	н ніз	1 0 R Y	*****	
BLOCK	C1	C2	KMAXC1	KMAX~C2	DCT/DF	DC2/PF	TNITIAL	INITIA
	Ai	A2	KMAX - A1	KMAX-A2	DATZDE	DA2/DF	KNI	FND
0.0	0.05000	0.00000	9.054	0.000	69+3000.	00+1 0 00,	2521 02	37F 00
	0.05000	0.00000	11.348	0.000	.000E+00	004 3000	. 2645 +01	2501 + 01
1.0	0.05630	0.00000	9,840	0.000	.525E-04	. 000F + 00	, (69E- 02	. 160F - 62
	0.06240	0.00000	11.820	0.000	.103E-03	.0001+00	. 266E+01	.250E+01
2.0	0.06449	0.00000	10.579	0.000	.682E-04	00011+00	.131E-01	, 933F - 62
	0.07658	0.00000	12,290	0.000	.118E-03	. 000E+00	. 268E+01	, 250F+01
3.0	0.07468	0.00000	11.249	$\theta \cdot 000$.850E-04	, GOOF + OO	.1888.01	.131E 01
	0.09268	0.00000	12.751	0.000	.134E-03	00411000	,270E+01	. 250E+01
4.0	0.08709	0.00000	11.902	0.000	.103E-03	.00000+00	. 248E 01	.168E-01
	0.11082	0.00000	13,192	0.000	.1516-03	.000E+00	.274E±01	. 250F ±01
5.0	0.10203	0.00000	12.570	0.000	.124E-03	.000E+00	.3130-01	, 205E - 01
	0.13103	0.00000	13.606	0.000	.168E-03	,000⊩+00 0	. 278E ↔)1	.250E+01
6.0	0.11997	0.00000	13,282	0.000	.149E-03	,000E+00	.384E-01	, 243E~01
	0.15333	0.00000	13,987	0.000	.184E-03	.000E+00	. 282E+01	.250F+04
7.0	0.13949	0.00000	13,429	0.000	.163E-03	.0005+00	,448E-01	. 280F. (O)
	0.17540	0.00000	13.725	0.000	.184E-03	.000E+00	.276E+01	.250F+01
CTABLE	DDEAU TI	mouch or	OF ACK NO	4 COCCUE	T AT .			
			CRACK NO.			CV BESTH	A 400AE	
			= 2, . TO PLATE	BLOCK =		CK DEPTH = INCHES	0.1880>	
GNHUN	DELIN TO	SEL EROHE	. IU PLAIC	LUTPVAE	32 6.1000	1140.0002		
8.0	0.16290	0.00000	14.511	0.000	.195E-03	.000E+00	,518E-01	,317E-01
	0.18800	0.00000	0.000	0.000	.105E-03	.000E+00	.282E+01	.250E+01
9.0	0.19041	0.00000	14.852	0.000	.229E-03	, 000E+00	.597E-01	.355E-01
	0.18800	0.00000	0.000	0.000	.000E+00	.00000+00	,288E+01	.250F+01
10.0	0.22022	0.00000	15.227	0.000	.248E-03	, 000E+00	.686E- 01	.392F 01
	0.18800	0.00000	0.000	0.000	.000E+00	, 0 00 00 + 00	. 295E+01	250E+01
41.0	0.25265	0.00000	15.637	0.000	.270E-03	.000E+00	.787E-01	.427F 01
	0.18800	0,00000	0.000	0.000	.000F+00	.000E+00	10+3905.	10+3025
12.0	0.28822	0.00000	16.088	0,000	.296E-03	.000E.+00	. 903E-01	<u>,</u> 4578° -01
	0.18800	0.00000	0.000	0.000	0001+00	, aant ±oa	. 309E +01	7956F + 654
13.0	0.32744	0.00000	16.584	0.000	.3271 03	.0000.+00	.104E+00	, " oat" - 01
	0.18300	0.00000	6,666	0.000	.000 ± 1000 .	.0001+00	.5670 464	2.556t 464
14.0	0.32097	0.00000	17 130	0.000	7.4.71 - 0.7	0000 +00	1191400	5411 -01

TABLE 3.1.2-2. EXAMPLE 1. METHOD 2, RUN 1 OUTPUT FILE (CONCLUDED)

```
.326E+01
       0.18800
               0.00000
                           0.000
                                   0.000
                                          .000E+00
                                                     .000E+00
                                                                         ,250E+01
                                   0.000
                                                                         .579E-01
                                           .405E-03
                                                     .000E+00
                                                               .137E+00
 15.0
      0.41962
                0.00000
                          17.733
                                                               .335E+01
       0.18800
                0.00000
                           0.000
                                   0.000
                                           .000E+00
                                                     .000E+00
                                                                          ,250E+01
                                                     .000E+00
                                                               .158E+00
                                   0.000
                                           .457E-03
 16.0
      0.47447
                0.00000
                          18.4.0
                                                                          .616E 01
                                                     .00000+00
                                                               .3450+01
                                                                         .250E+01
       0.18800
                0.00000
                           0.000
                                   0.000
                                          .000E+00
                                                                          .653E-01
 17.0
      0.53670
                0.00000
                          19,143
                                   0.000
                                           .519E-03
                                                     .000E+00
                                                               .183E+00
                                   0.000
                                           .000E+00
                                                     ,000E+00
                                                               .35AE+01
                                                                          250F+01
       0.18800
                0.00000
                           0.000
                                   0.000
                                          .595E-03
                                                               .212E+00
 18.0 0.60812
                0.00000
                          19,976
                                                     2000E+00
                                                                         ..691E-01
                                                               .369E+01
       0.18800
                0.00000
                           0.000
                                   0.000
                                           .000E+00
                                                     .000E+00
                                                                          .250E+01
19.0
                          20.920
                                           .620E-03
                                                     .000E+00
                                                               .249E+00
                                                                          .728E-01
      0.69090
                0.00000
                                   0.000
       0.18800
                                                               .382E+01
                0.00000
                           0.000
                                   0,000
                                          -000E+00
                                                     .000E+00
                                                                         .. 250F +01
      0.78810
                                                                         .765E-01
20.0
                0.00000
                          22,909
                                   0.000
                                           .810E-03
                                                     .000E+00
                                                               .294E+00
       0.18800
                0.00000
                           0.000
                                   0,000
                                           .000F+00
                                                     .000F+00
                                                               .398E+01
                                                                          . 25 00 + 01
                                   0.000
                                                     .000E+00
                                                               .350E+00
21.0
      0.90453
                0.00000
                          23.313
                                          .970E-03
                                                                         .803E-01
                                                     .0001 +00
                                                               .416E+01
                                                                         .250E+01
       0.18800
                0.00000
                                   0.000
                                           .000E+00
                           0.000
      1.04848
                0.00000
                                           .120E-02
                                                               .424E+00
22.0
                          25.039.
                                   0.000
                                                     .000E+00
                                                                         .840E OF
       0.18800
                0.00000
                           0.000
                                   0.000
                                           .000F+00
                                                     .000E+00
                                                               .436E+01
                                                                          .250E+01
CRACK NO. 1 HAS REACHED THE SPECIFIED LENGTH 1.3900 INCHES AT
                   STEP =
                                 BLOCK = 24, CKMAXS= 63.24, C1= 1.39096
   CYC = 625.0,
                            1,
TERMINATE DAMAGE COMPUTATION
 23.0 1.24675 0.00000
                          29.167
                                   0.000
                                           .165E-02
                                                     .900E+00
                                                                .525E+00
                                                                         .877C ·01
       0.18800 0.00000
                           0.000
                                   0.000
                                           .000E300
                                                      000E+00
                                                                 4645+01
                                                                          127 OE + 01
    CPACK LENGTHS AT THE TERMINATION OF CRACK INITIATION COMPUTATION
                                          C2 = 0.00000.
          C1 = 1.39096.
                         A1 = 0,18800.
                                                          A2 = 0.00-00
```

RETARDITON PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION :

APACL1 = .000E+00. APCCL1 = .000E+00, RYACL1 = .000E+00. RYCCL1 = .000E+00

AKCL1 = .000E+00, CKCL1 = .000E+00, ACL1 = .000E+00. CUL1 = .000E+00

AFACL2 = .000E+00, APCCL2 = .000E+00. RYACL2 = .000E+00. RYCCL2 = .000E+00

AKCL2 = .000E+00, CKCL2 = .000E+00, ACL2 = .000E+00, CCL2 = .000E+00

BETARDATION PARAMETERS AT THE TERMINATION OF CRACK INITIATION COMPUTATION

DMG1 = .525E+00, ONGOL1 = .000E+00, DELD(1 = .000E+00)

DMG2 = .877E-01, DMGOL2 = .000E+00, DELD(1 = .000E+00)

TABLE 3.1.2-3. EXAMPLE 1. METHOD 2. RUN 2 INPUT FILE

EXAMPLE RUN NO. 1 SPECIMEN SUBJECTED TO CONSTANT AMLITUDE LOADING SPECTRUM 2024-T3 SHEET 2.9783 2.2374E-09 0.70 3.3386 6.2126E-9 0.00 -0.99 2.3 116.00 36.0 53.0 0.892 2.0 0.99 0.022 1.000 10700.0 1.0 10.426 -.366 0.000 0.000 0.000 0.000 .0000 0.000 0.000 0.0000E+000.0000E+000.0000E+000.0000E+000.0000F+000.0000E+000.000E+000.0000E+000.0000E+000.0000E+000.000E+000 0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+00 0.5250E+000.0000E+000.0000E+000.8770E-010.0000E+000.0000E+00 99.900 50. 1.00 0.00000 .00000 .00000 0.188 0.1250 8.18 9.82 0.00000 .00000 0.0000 0.00 1.64 0.00000 0.000 0.0000 0 100 0000 1040 00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 120.0 25.0 6000.

TABLE 3.1.2-4. EXAMPLE 1, METHOD 2, RUN 2 OUTPUT FILE

***** DETAILED DOMAGE GROWTH ANALYSIS PROGRAM D A M G R O *****

EXAMPLE RUN NO. 1 SPECIMEN SUBJECTED TO CONSTANT AMPLITUDE LOADING SPECTRUM

* THIS ANALYSIS STARTS AT THE REGINNING OF THE STRESS SPECTRUM *

NO. OF SITES TO BE ANALYZED: CRACK GROWTH = 0; CRACK INITIATION = 2 CORDESPONDING DAMAGE CODES: CRACK GROWTH = 0; CRACK INITIATION = 1040

LOAD INTERACTION NONE

2024-T3 SHEET MATERIAL WALKER EQ. CONST. (+R) : C = 0.224E-08, M = 0.700, WALKER EQ. CONST. (-R) : C = 0.621E-08, M = 0.000, N = 3.339 MAX. K FOR DC/DN THRESHOLD = 2.000 RETARDATION SHUT-OFF RATIO = 2.300 +R CUT-OFF = 0.9900, --R CUT-OFF = -0.9900 YIELD STRENGTH 53.000 ELASTIC MODULUS = 0.1070E+05 PL. STRESS FRACT. TOUGHNESS = 116.00 FL. STRAIN FRACT. TOUGHNESS = 36.00 DAMAGE INDEX FOR CPACK INTITATION = 0.892 NEUBER MATERIAL CONST. = 0.022 CRACK INITIATION EQ. CONST. SF ≈ 10,426. M == .366 STRESS SEVERITY FACTOR PARAMETERS : ALPHA = 1.0000, RETA = 1.0000, GAMMA = 1.0000

SPECIFIED DAMAGE CONDITIONS INITIAL CRACK LENGTH OF CRACK NO. 1 : 0.00000 FINAL CRACK LENGTH OF CRACK NO. 1 : INITIAL CRACK DEPTH OF CRACK NO. 1 0.0000 FINAL CRACK DEPTH OF CRACK NO. 1 0,00000 0.00000 DULTIAL CRACK LENGTH OF CRACK NO. 2 FINAL CRACK LENGTH OF CRACK NO. 2 -0:00000 INITIAL CRACK DEPTH OF CRACK NO. 2 : 0.00000 0.00000 FINAL CRACK DEPTH OF CRACK NO. 2 CARAMETERS FROM PREVIOUS CRACK GROWTH HISTORY

APAOL1 = .000[+00, APCOL1 = .000[+00, PYAOL1 = .000[+00, RYCOL1 = .000[+00]

AKOL1 = .000[+00, CFOL1 = .000[+00, APCOL2 = .000[+00]

APAOL2 = .000[+00, APCOL2 = .000[+00, RYAOL2 = .000[+00, RYCOL2 = .000[+00]

AKOL2 = .000[+00, APCOL2 = .000[+00, RYAOL2 = .000[+00, RYCOL2 = .000[+00]

AKOL2 = .000[+00, CKOL2 = .000[+00, AQL2 = .000[+00, CQL2 = .000[+00]

PARAMETERS FROM PREVIOUS CRACK INITIATION HISTORI

DMC1 = .525F+00. DMG0[1 = .600F+00. DFFDG1 = 000F+60 DMG2 = .827F 01. DMG0[2 = 060F+00. DFFDG2 = 000F:00

TABLE 3.1.2-4. EXAMPLE 1, METHOD 2, RUN 2 OUTPUT FILE (CON'T.)

COMPONENT GEOMETRY :		
THICKNESS OF PLATE	0.18800	
FADIUS OF MID. HOLE :	0.12500	
RATIO OF PLATE LINGTH TO HOLE DIAMETER, EZD		
DISTANCE RETWEEN MID. HOLE AND R.H.S. EDGE	9.82000	
DISTANCE BETWEEN MID. HOLE AND L H.S. EDGE	8.18000	
FRACTION OF LOAD TRANSFER BY MID. BOLT	0.00000	0.00000
RADIUS OF THE R.H.S. HOLE:	0.49860	
DISTANCE BETWEEN MID. AND R.H.S. HOLES	1.64000	
FRACTION OF LOAD TRANSFER BY P.H.S. BOLT	0.00000.	0.00000
RADIUS OF THE L.H.S. HOLF	0,00000	
DISTANCE BETWEEN MTD. AND L.H.S. HOLES	0.00000	
FRACTION OF LOAD TRANSFER BY U.H.S. BOLT	0.00000,	0.00000
PERCENTAGE OF COUNTERSINK DEPTH W.R.T THICKNESS	20.0	
PRINCE PROPERTY AND	1.00	
FASTENER HEAD OR COLLAR FRICTION STRESS	0,0000	
FAYING SURFACE FRICTION STRESS	0,0000	
STRESS SPECTRUM .		
NO. OF BLOCKS SPECIFIED FOR ANALYSIS	100	
TOTAL NO. OF CYCLES IN ONE BLOCK	2000,000	
TOTAL NO. OF FLIGHTS IN ONE BLOCK :	120,000	
NO. DE BLOCKS IN ONE DESIGN LIFETIME	25,000	
NO. OF FLIGHT HOURS IN ONE DESIGN LIFETIME :		
MAXIMUM FEAK STRESS OF THE SPECTRUM	\$7,000	
NO. OF PROPERTY AND ME PROPERTY AND		

THE SECTION OF THE SE

TABLE 3.1.2-4. EXAMPLE 1, METHOD 2, RUN 2 OUTPUT FILE (CONCLUDED)

```
| STEEL SIGNA-MAX | SIGNA-MIN | CYCLES | STEEL SIGNA-MAX | SIGNA-MIN | CYCLES | 1 | 17.000 | 1.700 | 1000 | 000 | 2 | 17.000 | 1.700 | 1000 | 000
```

about the same wastering the solution

****** DAMAGE GROWTH HISTORY *****

RL_OCK	C 1	C2	KMAX-C1	KMAX~C2	DC1/DF	DC2/DF	TNITTAL	SALLINI
	A1	A2	KMAXA1	KHAX-A2	DAIZDE	DARZDE	KNI	KMS
0.0	0.00000	0.00000	0.000	0.000	4000E+00	. 000E+00	.600E+00	. 1630:100
	0.00000	0.00000	0.000	0.000	.000E+00	00:1000.	.492E+01	.4920401
1.0	0.00000	0.00000	0.000	0.000	.000E+00	.000F +00	.752E+00	3441 ±00
	0.00000	0.00000	0.000	0.000	.000E+00	.000E+00	.492E+01	.4920+01

CRACK INITIATION FOR LOCATION 1 00CURS AT:

CYC =1000.000, STEP = 1, RLOCK = 3

2.0 0.00000 0.00000 0.000 0.000 .000E.00 .000F.00 .827E+00 .466E+00

0.00000 0.00000 0.000 0.000 .000E.00 .000E.00 .472E+01 .472E+01

CPACK LENGTHS AT THE TERMINATION OF CRACK INITIATION COMPUTATION \cdot C1 = 0.00000, A1 = 0.00000, C2 = 0.00000, A2 = 0.00000

RETARDITON PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION

APAQUL = .000E+00, APCQL1 = .000E+00, RYAQL1 = .000E+00, RYCQL1 .000 :00

AKQL1 = .000E+00, CKQL4 = .000F+00. AQL1 = .000F+00. PYCQL1 .000 :00

APAQL2 = .000E+00, APCQL2 = .000E+00, RYAQL2 = .000F+00. PYCQL2 = .000E+00

AKQL2 = .000E+00, CKQL3 = .000E+00, RYAQL2 = .000F+00, PYCQL2 = .000E+00

ARGL2 = .000E+00, CFQL3 = .000E+00. AQL3 = .000F+00, CGL2 = .000E+00

RETARDITON PARAMETERS AT THE TERMINATION OF CRACK INITIATION COMPUTATION

PROCESS AT THE TERMINATION OF CRACK INITIATION COMPUTATION

DRG1 = .825E(00), PNGQL3 = .000E+00, DELD(1 = .000E+00)

TABLE 3.1.2-5. EXAMPLE 1, METHOD 2, RUN 3 INPUT FILE

EXAMPLE RUN NO. 1 SPECIMEN SUBJECTED TO CONSTANT AMLITUDE LOADING SPECTRUM 2024-T3 SHEET 2.2374E-09 0.70 3.3386 6.2126E-9 0.00 0.99 -0.99 116.00 36.0 53.0 2.0 2.3 0.892 0.022 1.0 10.426 -. 366 10700.0 1.0 0.050 0.000 0.000 0.000 0.050 0.188 .0000 8.180 0.0000E+000.000E+000 0.0000E+000.000E+000.00 0.4660E+000.000UE+000.0000E+000.0000E+000.0000E+000.0000E+00 .00000 0.188 0.1250 8.18 9.82 0.00000 99.900 50. 1.00 0.00000 0.0000 . 00000 . 00000 0.1250 0.00 1.64 0.00000 0.000 0.0000 00 0 100 1030 1050 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 120.0 6000.

TABLE 3.1.2-6. EXAMPLE 1. METHOD 2, RUN 3 OUTPUT FILE

DETAILED DAMAGE GROWTH ANALYSIS PROGRAM DAMGRO EXAMPLE RUN NO. 1 SPECIMEN SUBJECTED TO CONSTANT AMPLITUDE LOADING SPECTRUM

* THIS ANALYSIS STARTS AT THE BEGINNING OF THE STRESS SPECTRUM *

NO. OF SITES TO BE ANALYZED : CRACK GROWTH = CRACK INITIATION = CRACK GROWTH = 1030; CRACK INITIATION = 1050 CORRESPONDING DAMAGE CODES :

NONE LOAD INTERACTION :

THE PROPERTY OF THE PROPERTY O

いるとうなるない これのないないできていることのなるというと

RIAL : 2024-T3 SHEET WALKER EQ. CONST. (+R) : MATERIAL : C = 0.224E-08, M = 0.700, WALKER EQ. CONST. (-R): C = 0.621E-08, M =0.000. MAX. K FOR DC/DN THRESHOLD = 2.000 RETARDATION SHUT-OFF RATIO = 2.300 +R CUT-OFF = 0.9900, -R CUT-OFF = -0.9900 YIELD STRENGTH : 53.000 ELASTIC MODULUS = 0.1070E+05 PL. STRESS FRACT. TOUGHNESS = 116.00 PL. STRAIN FRACT. TOUGHNESS = 36.00 DAMAGE INDEX FOR CRACK INITIATION = NEURER MATERIAL CONST. = 0.022 CRACK INITIATION EQ. CONST. : SF = 10.426, M = -.346STRESS SEVERITY FACTOR PARAMETERS : ALPHA = 1.0000, BETA = 1.0000. GAMMA = 1.0000

SPECIFIED DAMAGE CONDITIONS

INITIAL CRACK LENGTH OF CRACK NO. 1 -0.05000 FINAL CRACK LENGTH OF CRACK NO. 1 : 8.18000 0.05000 INITIAL CRACK DEPTH OF CRACK NO. 1 : FINAL CRACK DEPTH OF CRACK NO. 1 : A.18800 INITIAL CRACK LENGTH OF CRACK NO. 2 0.00000 FINAL CRACK LENGTH OF CRACK NO. 2 : 0.00000 0.00000 INITIAL CRACK DEPTH OF CRACK NO. 2 FINAL CRACK DEPTH OF CRACK NO. 2 : 0.00000 PARAMETERS FROM PREVIOUS CRACK GROWTH HISTORY

APAOL1 = .000E+00, APCOL1 = .000E+00, RYAOL1 = .000E+00. PYCOL1 = .000E+00 AOL1 = .000E+00. COL1 / .000E+0 AKOL1 = .000F+00, CKOL1 = .000E+00, APADL2 = .000E+00, APCDL2 = .000E+00, RYADL2 = .000E+00. RYEBL2 = .000E+00 AKOL2 = .000E+00, CKDL2 = .000E+00, AUL2 = FARAMETERS FROM PREVIOUS CRACK INITIATION HISTORY AOL2 = .000E+00. 101,2 × .000E (0)

DMG(= ,466E+00, 0MGD(1 = ,000E+00, DELDG) = ,000(+00

TABLE 3.1.2-6. EXAMPLE 1, METHOD 2, RUN 3 OUTPUT FILE (CON'T.)

COMPONENT GEOMETRY		
THICKNESS OF PLATE :	0.18800	
RADIUS OF MID. HOLE :	9,122704	
RATIO OF PLATE LENGTH TO HOLE DIAMETER, E/D	99.89999	
DISTANCE BETWEEN MID. HOLE AND P.H.S. EDGE :	8,18000	
DISTANCE BETWEEN MID. HOLE AND LIH.S. EDGE :	9.82000	
FRACTION OF LOAD TRANSFER BY MID. BOLT	0.00000,	0.00000
RADIUS OF THE R.H.S. HOLE :	0 .0000a	
RADIUS OF THE R.H.S. HOLE : DISTANCE BETWEFN MID. AND R.H.S. HOLES :	0.00000	
FRACTION OF LOAD TRANSFER BY R.H.S. BOLT :	0.00000,	0.00000
RADIUS OF THE L.H.S. HOLE	0.12500	
DISTANCE BETWEEN MID. AND L.H.S. HOLES :	F. 64000	
FRACTION OF LOAD TRANSFER BY L.M.S. BOLT	, ბბები,	0.00000
PERCENTAGE OF COUNTERSINK DEPTH W.R.T THICKNESS	20,0	
STRESS CONCENTRATION DUE TO FIN DEFLECTION	1.00	
FASTENER HEAD OR COLLAR FRICTION STRESS :	0.0000	
FAYING SURFACE PRICTION STRESS :	0.0000	
STRESS SPECTRUM		
NO. OF BLOCKS SPECIFIED FOR ANALYSIS :	100	
TOTAL NO. OF CYCLES IN ONE BLOCK :	2000.000	
	120,000	
NO. OF BLOCKS IN ONE DESIGN LIFETIME	25,000	
NO. OF FLIGHT HOURS IN ONE DESIGN LIFETIME :	6000,000	
MAXIMUM PEAK STRESS OF THE SPECTRUM	17,000	
NO. OF STRESS LAYERS IN ONE BLOCK	(2) (c.	

messes especial hereinan province observe

TABLE 3.1.2-6. EXAMPLE 1, METHOD 2, RUN 3 OUTPUT FILE (CONCLUDED)

STRESS LAYERS IN ONE BLOCK :

CANADA AND COME OF THE PARTY OF

STEP SIGMA-MAX SIGMA-MIN CYCLES

```
17,000
                           1.700 1000.000
                                                             17,000
                                                                              1,700 1000,000
                     DAMAGE GROWTH HISTORY
BLOCK
                                        KMAX-C2
                              KMAX~C1
                                                     DC1/DF
                                                                  DC2/DE
                                                                            INITTAL
                                                                                         INITIA2
                       A2
                              KMAX-A1 KMAX-A2
                                                   DA1/DF
                                                                 DA2/DF
                                                                               KN1
                                                                                            KN2
                                         00+1000.000E+00.000F+00
00+3000.000E+00
                                                              .0000+00
        0.05000 0.00000
                               19.898
                                                                            .546E+00
                                                                                        .000E+00
        0.05000 0.00000
                               24,939
                                                                           .497E+01
                                                                                        .000E+00
STABLE BREAK-THROUGH OF CRACK NO. 1 OCCURS AT :
CYC = 157.0, STEP = 2, BLOCK = 1, CRACK DEPTH = 0.18954
CRACK DEPTH IS SET EQUAL TO PLATE THICKNESS 0.1880 INCHES
                                          0.000 .234E-02 .000E+00 0.000 .115E-02 .000E+00
  1.0 0.33032 0.00000
                               34.706
                                                                           .744E+00
                                                                                        .000E+00
        0.18800 0.00000
                                                                          .526E+91
                                0.000
                                                                                        .000F+00
CRACK INITIATION FOR LOCATION 1 OCCURS AT :
    CYC =1000.000, STEP = 1,
                                         BLOCK ≈
                                                      3
                                          0.000 .526E-02 .000E+00 .890E+00
0.000 .000E+00 .000E+00 .567E+01
  2.0 0.96141 0.00000 39.187
                                                                                       .000E+01
        0.18800 0.00000
                               0.000
                                                                                       .0000190
     CRACK LENGTHS AT THE TERMINATION OF CRACK INITIATION COMPUTATION :
            C1 = 1.36451, A1 = 0.18800, C2 = 0.00000, A2 = 0.00000
     RETARDTION PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION :
       APAOL1 = .000E+00, APCOL1 = .000E+00, RYAOL1 = .000E+00, RYCOL1 = .000E+00

AKOL1 = .000E+00, CKOL1 = .000E+00, AOL1 = .000E+00, COL1 = .000E+00
       APAUL2 = .000E+00. APCUL2 = .000E+00, RYAUL2 - .000E+00. RYCUL2 = .000F+00

AKUL2 = .000E+00, CKUL2 = .000E+00, AUL2 = .000E+00, CUI2 = .000F+00
     RETARDATION PARAMETERS AT THE TERMINATION OF CROCK PRITIATION COMPUTATION
         DMG1 = .390E+00, DMGGL1 =.000E+00, DELOG1 -.000E+00
DMG2 = .000E+00, DMGGL2 =.000E+00, DELDG2 =.000E+00
```

STEP SIGMA-MAX SIGMA-MIN CYCLES

TABLE 3.1.2-7. EXAMPLE 1, METHOD 2, RUN 4 INPUT FILE

```
EXAMPLE RUN NO. 1 SPECIMEN SUBJECTED TO CONSTANT AMLITUDE LOADING SPECTRUM
 2024-T3 SHEET
2.2374E-09
                                                               0.70
                                                                                               3.3386 6.2126E-9
                                                                                                                                                                                      0.00
                                                                                                                                                                                                                     2.9783
                                                                                                                                                                                                                                                                 -0.99
                116.00
                                                              36.0
                                                                                                      53.0
                                                                                                                                                 2.0
                                                                                                                                                                                         2.3
                                                                                                                                                                                                                            0.99
                                                                                                                               10700.0
            10.426
                                                         -. 366
                                                                                                  6.892
                                                                                                                                                                                0.022
                                                                                                                                                                                                                         1.000
                                                                                                                                                                                                                                                                        1.0
                                                                                                                                                                                                                                                                                                                1.0
            1.364
                                                       8.180
                                                                                                   0.188
                                                                                                                                         0.188
                                                                                                                                                                                  .0500
                                                                                                                                                                                                                         8.180
                                                                                                                                                                                                                                                                 0.050
                                                                                                                                                                                                                                                                                                        0.188
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+00
0.0000F+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.0000E+000.000E+000.000E+000.0000E+000.000E+000.0000E+000.0000E+000.000E+000.000E+000.000E+000.000E
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+00
                                                                                                                                                                                                               .00000
                   0.188
                                                      0.1250
                                                                                                      8.18
                                                                                                                                            9.82
                                                                                                                                                                         0.00000
                                                                                                                                                                                                                                                        99.900 50. 1.00
               0.0000
                                                                                                                                                                                                                                                        0.00000
                                                                                                                                                                                                                                                                                              .00000
                                                                                                      0.00
                                                                                                                                             1.64
                                                                                                                                                                         0.00000
                                                                                                                                                                                                                 . 00000
              0.000
                                                      0.0000
                           00
                                                                                             0 100 1050 0000
                                                                        0
                   0.000
                                                          0.000
                                                                                                  0.000
                                                                                                                                         0.000
                                                                                                                                                                                 0.000
                                                                                                                                                                                                                        0.000
                                                                                                                                                                                                                                                               0.000
                                                                                                                                                                                                                                                                                                        0.000
                   120.0
                                                              25.0
                                                                                                  6000.
```

TABLE 3.1.2-8. EXAMPLE 1, METHOD 2, RUN 4 OUTPUT FILE

```
DETAILED DAMAGE GROWTH ANALYSIS PROGRAM
                                     DAMGRO ****
```

EXAMPLE RUN NO. 1 SPECIMEN SUBJECTED TO CONSTANT AMPLITUDE LOADING SPECTRUM

* THIS ANALYSIS STARTS AT THE BEGINNING OF THE STRESS SPECTRUM *

CRACK GROWTH = NO. OF SITES TO BE ANALYZED : 2; CRACK INITIATION = CORRESPONDING DAMAGE CODES : CRACK GROWTH = 1050; CRACK INITIATION =

LOAD INTERACTION : NONE

electric and the second

```
ERIAL : 2024-T3 SHEET
WALKER EQ. CONST. (+R) : C = 0.224E-08, M =0.700, N =3.339
WALKER EQ. CONST. (-R) : C = 0.621E-08, M =0.000, N =2.978
MATERIAL
    MAX. K FOR DC/DN THRESHOLD = 2.000
    RETARDATION SHUT-OFF RATIO = 2.300
    +R CUT-OFF = 0.9900, -R CUT-OFF = -0.9900
    YIELD STRENGTH : 53,000
    ELASTIC MODULUS = 0.1070E+05
    PL. STRESS FRACT. TOUGHNESS = 116.00
    PL. STRAIN FRACT. TOUGHNESS = 36.00
    DAMAGE INDEX FOR CRACK INITIATION = 0.892
    NEUBER MATERIAL CONST. = 0.022
                                       SF = 10.426, M = -.366
    CRACK INITIATION EQ. CONST. :
    STRESS SEVERITY FACTOR PARAMETERS :
```

ALPHA = 1.0000, BETA = 1.0000, GAMMA = 1.0000

SPECIFIED DAMAGE CONDITIONS INITIAL CRACK LENGTH OF CRACK NO. 1 : 1.36400 FINAL CRACK LENGTH OF CRACK NO. 1 : 8.18000 INITIAL CRACK DEPTH OF CRACK NO. 1 : 0.18800 FINAL CRACK DEPTH OF CRACK NO. 1 : 0.18800 INITIAL CRACK LENGTH OF CRACK NO. 2 : 0.05000 FINAL CRACK LENGTH OF CRACK NO. 2 : 8.18000 INITIAL CRACK DEFTH OF CRACK NO. 2 : 0.05000 FINAL CRACK DEPTH OF CRACK NO. 2 : 0.18800 PARAMETERS FROM PREVIOUS CRACK GROWTH HISTORY :

AFAUL1 = .000E+00, APCUL1 = .000E+00, RYAUL1 = .000E+00, RYCUL1 = .000F+00 AKOL1 = .000E+00, CKOL1 = .000E+00, AOL1 APAOL2 = .000E+00, APCOL2 = .000E+00, RYAOL2 AOL1 = .000E+00, COL1 = .000L+00- .000E+00, RYCOL2 = .0001+00 AKOL2 = .000E+00, CKOL2 = .000E+00, AOL2 .000E+00, CUL2 = .000F+00 PARAMETERS FROM PREVIOUS CRACK INITIATION HISTORY

DMG1 = .000E+00, DMG0L1 = .000E+00, DF1 DG1 = .000E+00 DMG2 = .000E+00, DMG0L2 = .000E+00, DE1 DG3 = .000E+00

TABLE 3.1.2-8. EXAMPLE 1, METHOD 2, RUN 4 OUTPUT FILE (CON'T.)

COMPONENT GEOMETRY :		
COMPONENT GEOMETRY: THICKNESS OF PLATE: RADIUS OF MID. HOLE	0.18800	
RADIUS OF MID. HOLE :	0.12500	
RATIO OF PLATE LENGTH TO HOLE DIAMETER, E/D :	99.89999	
DISTANCE BETWEEN MID. HOLE AND R.H.S. EDGE :	8.18000	
DISTANCE BETWEEN MID. HOLE AND L.H.S. EDGE :	9.82000	
FRACTION OF LOAD TRANSFER BY MID. BOLT :	0.00000,	0.00000
RADIUS OF THE R.H.S. HOLE :	0.00000	
RADIUS OF THE R.H.S. HOLE : DISTANCE BETWEEN MID. AND R.H.S. HOLES :	0.00000	
FRACTION OF LOAD TRANSFER BY R.H.S. BOLT :	0.00000,	0.00000
RADIUS OF THE L.H.S. HOLE :	0.12500	
RADIUS OF THE L.H.S. HOLE : DISTANCE BETWEEN MID. AND L.H.S. HOLES :	1.64000	
FRACTION OF LOAD TRANSFER BY L.H.S. BOLT :	0.00000,	0.00000
PERCENTAGE OF COUNTERSINK DEPTH W.R.T THICKNESS	: 20.0	
STRESS CONCENTRATION DUE TO FIN DEFLECTION :	1.00	
FASTENER HEAD OR COLLAR FRICTION STRESS :	0.0000	
FAYING SURFACE FRICTION STRESS :	0.0000	
STRESS SPECTRUM :		
NO. OF BLOCKS SPECIFIED FOR ANALYSIS	100	
TOTAL NO. OF CYCLES IN ONE BLOCK :	2000.000	
TOTAL NO. OF FLIGHTS IN ONE BLOCK :	120.000	
NO. OF BLOCKS IN ONE DESIGN LIFETIME :	25.000	
NO. OF FLIGHT HOURS IN ONE DESIGN LIFETIME :	6000.000	
MAXIMUM FCAK STRESS OF THE SPECTRUM :	17.000	
NO. OF STRESS LAYERS IN ONE BLOCK	2	

TABLE 3.1.2-8. EXAMPLE 1, METHOD 2, RUN 4 OUTPUT FILE (CONCLUDED)

 STRESS LAYERS IN ONE BLOCK:
 STEP SIGNA-MAX SIGNA-MIN CYCLES
 STEP SIGNA-MAX SIGNA-MIN CYCLES
 STEP SIGNA-MAX SIGNA-MIN CYCLES

 1 17.000
 1.700 1000.000
 2 17.000
 1.700 1000.000

UNSTABLE BREAK-THROUGH OF CRACK NO. 2 OCCURS AT:

CYC = 0.0, STEP = 1, BLOCK = 1, DEPTH = 0.05000, AKMAXS= 37.79

10 Sept. 10

STATES CONTROL

***** DAMAGE GROWTH HISTORY *****

BLOCK C1 02KMAX-C1 KMAX-C2 DC1/DF DC2/DF INITIAL INITIA2 A1 A2 KMAX-A1 KMAX-A2 DA1/DF DA2/DF KN1 KN2 1.36400 0.05000 30.154 .000E+00 .000E+00 .000E+00 41.432 .000E+00 0.0 .000E+00 0.18800 0.05000 0.000 37.792 .000E+00 .000E+00 .000E+00 56.095 .105E-01 2.61890 1.23327 56,847 .986E-02 .000E+00 .000E+00 1.0 0.18800 0.18800 0.000 0.000 .000E+00 .115E-02 .000E+00 .000E+00

UNSTABLE GROWTH OF CRACK NO. 1 OCCURS AT:

CYC = 15.0, STEP = 2, BLOCK = 2, CRACK LENGTH = 4.57208, CKMAXS=116.06
THE OTHER CRACK LENGTH = 3.18957
TERMINATE DAMAGE COMPUTATION

UNSTABLE GROWTH OF CRACK NO. 2 OCCURS AT:

CYC = 4.0, STEP = 2, BLOCK = 2, CRACK LENGTH = 3.25368, CKMAXS=117.03
THE OTHER CRACK LENGTH = 4.57208
TERMINATE DAMAGE COMPUTATION

RETARDTION PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION:

APAOL1 = .000E+00, APCOL1 = .000E+00, RYADL1 = .000E+00, RYCOL1 = .000E+00

AKOL1 = .000E+00, CKOL1 = .000E+00, AOL1 = .000E+00, COL1 = .000E+00

APAOL2 = .000E+00, APCOL2 = .000E+00, RYADL2 = .000E+00, RYCOL2 = .000E+00

AKOL2 = .000E+00, CKOL2 = .000E+00, AOL2 = .000E+00, COL2 = .000E+00

RETARDATION PARAMETERS AT THE TERMINATION OF CRACK INITIATION COMPUTATION:

DMG1 = .000E+00, DMGOL1 = .000E+00, DELDG1 = .000E+00

DMG2 = .000E+00, DMGOL2 = .000E+00, DELDG2 = .000E+00

EXAMPLE 2: SKIN SECTION SUBJECTED TO RANDOMIZED LOADING SPECTRUM

O.25 DIA
CSK HOLE

INITIAL
FLAW

1.640

8.180

MATERIAL:

2024-T3 SHEET

LOADING SPECTRUM:

RANDOMIZED BLOCK LOADING

 $\sigma_{\text{max}} = 35.75 \text{ KSI}$

REF. PAGES 67 THROUGH 90

TABLE 3.2.1. EXAMPLE 2, METHOD 1 SUMMARY TABLE

REF. PAGES 68 THROUGH 76

a 1	a 2	a 3	LIFE (BLOCK,	ROUTINE	RUN
<u>(IN)</u>	<u>(IN)</u>	<u>(IN)</u>	LAYER, CYCLES)	GROWTH	NO.
.050	0	.005	0	K1010	1
.065	0	.005	1, 0, 0	K1010	1
.091	0	.005	2, 0, 0	K1010	1
.126	0	.005	3, 0, 0	K1010	1
.164	0	.005	4, 0, 0	K1010	1
. 208	0	.005	5. 0. 0	K1010	1
.258	0	.005	6, 0, 0	K1010	1
.316	0	.005	7, 0, 0	K1010	1
. 384	0	.005	8, 0, 0	K1010	1
.466	0	.005	9, 0, 0	K1010	1
. 566	0	.005	10, 0, 0	K1010	j
.693	0	.005	11, 0, 0	K1010	1
.859	0	.005	12, 0, 0	K1010	1
1.094	0	.005	13, 0, 0	K1010	1
1.39	0	.023	13,119,32	K1010	1
	0	.622	14, 0 .32	K1030	2
	0	2.16	15, 0 ,32	K1030	2
	0	3.6507	15, 98,38	K1030	2

NO. OF CYCLES TO FAILURE = 111,955 CYCLES

DESCRIPTION OF THE PROPERTY OF

TABLE 3.2.1-1. EXAMPLE 2. METHOD 1. RUN 1 INPUT FILE

```
EXAMPLE RUN NO. 2 SPECIMEN SUBJECTED TO RANDOMIZED LOADING SPECTRUM
2024-T3 SHEET
2.2374E-09
                          3.3386 6.2126E-9
                                                   0.00
                 0.20
    116.00
                            53.0
                                                    2.3
                                                                        -0.99
                 36.0
                                    10700.0
   10.426
               -.366
                           0.887
                                                 0.022
                                                             1.000
                                                                          1.0
                                                                                     1.0
                           0.050
                                      0.188
                                                  .0000
                                                            0.000
                                                                        0.000
                                                                                   A AGO
   0.050
               1.390
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+00
                                                                     99.900 50.1.00
0.00000 .00000
                                       8.18
                                              0.00000
                                                          .00000
     0.188
               0.1250
                            9.82
                                               0.00000
                                                           .00000
    0.1250
               0.0000
                            1.64
                                       0.00
               0.0000
    0.000
                          1 100 1010 0000
    ø
       00
                    0
     0.000
                0.000
                           0.000
                                      0.000
                                                 0.000
                                                             0.000
                                                                        0.000
                                                                                   0.000
     120.0
                 25.0
                           6000.
```

TABLE 3.2.1-2. EXAMPLE 2, METHOD 1, RUN 1 OUTPUT FILE

```
**** DETAILED DAMAGE GROWTH ANALYSIS PROGRAM
                                                        DAMGRO
 EXAMPLE RUN NO. 2 SPECIMEN SUBJECTED TO RANDOMIZED LOADING SPECTRUM
    * THIS ANALYSIS STARTS AT THE BEGINNING OF THE STRESS SPECTRUM *
NO. OF SITES TO BE ANALYZED :
                                 CRACK GROWTH =
                                                        CRACK INITIATION =
                                                    1;
 CORRESPONDING DAMAGE CODES :
                                 CRACK GROWTH = 1010; CRACK INITIATION =
LOAD INTERACTION :
                         GENERALIZED WILLENBORG ET AL--CHANG MODEL
MATERIAL :
             2024-T3 SHEET
    WALKER EQ. CONST. (+R): C = 0.224E-08, M =0.700, N =3.339
    WALKER EQ. CONST. (-R): C = 0.621E-08, M = 0.000,
    MAX. K FOR DC/DN THRESHOLD = 2.000
    RETARDATION SHUT-OFF RATIO = 2.300
    +R CUT-OFF = 0.9900,
                            -R CUT-OFF = -0.9900
    YIELD STRENGTH : 53.000
    ELASTIC MODULUS = 0.1070E+05
    PL. STRESS FRACT. TOUGHNESS = 116.00
PL. STRAIN FRACT. TOUGHNESS = 36.00
    DAMAGE INDEX FOR CRACK INITIATION =
    NEUBER MATERIAL CONST. = 0.022
    CRACK INITIATION EQ. CONST. : SF = 10.426, M == .366
    STRESS SEVERITY FACTOR PARAMETERS :
      ALPHA = 1.0000, BETA = 1.0000, GAMMA = 1.0000
SPECIFIED DAMAGE CONDITIONS
    INITIAL CRACK LENGTH OF CRACK NO. 1
    FINAL CRACK LENGTH OF CRACK NO. 1 :
                                             1.39000
    INITIAL CRACK DEPTH OF CRACK NO. 1 :
                                              0.05000
    FINAL CRACK DEPTH OF CRACK NO. 1 :
                                              0.18800
    INITIAL CRACK LENGTH OF CRACK NO. 2 :
                                             0.00000
    FINAL CRACK LENGTH OF CRACK NO. 2 :
                                             0.00000
    INITIAL CRACK DEPTH OF CRACK NO. 2 :
                                             0.00000
    FINAL CRACK DEPTH OF CRACK NO. 2 :
                                              0.00000
    PARAMETERS FROM PREVIOUS CRACK GROWTH HISTORY :
      APAGL1 = .000E+00, APCGL1 = .000E+00, RYAGL1 = .000E+00, RYCGL1 = .000E+00
       AKUL1 = .000E+00, CKUL1 = .000E+00, AUL1 = .000E+00, CUL1 = .000E+00
      APAUL2 = .000E+00, APCUL2 = .000E+00, RYAUL2 = .000E+00, RYCUL2 = .000E+00
       AKUL2 = .000E+00,
                          CKOL2 = .000E+00,
                                                A0L2 = .000E+00.
                                                                   COL2 = .000E+00
    PARAMETERS FROM PREVIOUS CRACK INITIATION HISTORY
        DMG1 = .000E+00, DMGUL1 =.000E+00, DELDG1 =.000E+00
DMG2 = .000E+00, DMGUL2 =.000E+00, DELDG2 =.000E+00
```

TABLE 3.2.1-2. EXAMPLE 2, METHOD 1, RUN 1 OUTPUT FILE (CON'T.)

COMPONENT GEOMETRY :		
THICKNESS OF PLATE : RADIUS OF MID. HOLE :	0.18800	
RADIUS OF MID. HOLE :	0.12500	
RATIO OF PLATE LENGTH TO HOLE DIAMETER, E/D :		
DISTANCE BETWEEN MID. HOLE AND R.H.S. EDGE :	9.82000	
DISTANCE BETWEEN MID. HOLE AND L.H.S. EDGE :	8.18000	
FRACTION OF LOAD TRANSFER BY MID. BOLT	0.00000,	0.00000
RADIUS OF THE R.H.S. HOLE :	0.12500	
FRACTION OF LOAD TRANSFER BY MID. BOLT : RADIUS OF THE R.H.S. HOLE : DISTANCE BETWEEN MID. AND R.H.S. HOLES :	1.64000	
FRACTION OF LOAD TRANSFER BY R.H.S. BOLT	0.00000,	0.00000
RADIUS OF THE L.H.S. HOLE : DISTANCE BETWEEN MID. AND L.H.S. HOLES :	0.00000	
DISTANCE BETWEEN MID. AND L.H.S. HOLES :	0.00000	
FRACTION OF LOAD TRANSFER BY L.H.S. BOLT :	0.00000,	0.00000
PERCENTAGE OF COUNTERSINK DEPTH W.R.T THICKNESS	: 50.0	
STRESS CONCENTRATION DUE TO PIN DEFLECTION :	1.00	
FASTENER HEAD OR COLLAR FRICTION STRESS :	0.0000	
FAYING SURFACE FRICTION STRESS :	0.0000	
STRESS SPECTRUM :		
NO. OF BLOCKS SPECIFIED FOR ANALYSIS: TOTAL NO. OF CYCLES IN ONE BLOCK: TOTAL NO. OF FLIGHTS IN ONE BLOCK: NO. OF BLOCKS IN ONE DESIGN LIFETIME:	100	
TOTAL NO. OF CYCLES IN ONE BLOCK :	7416.500	
TOTAL NO. OF FLIGHTS IN ONE BLOCK :	120.000	
NO. OF BLOCKS IN ONE DESIGN LIFETIME :	25.000	
NO. OF FLIGHT HOURS IN ONE DESIGN LIFETIME :	6000.000	
MAXIMUM PEAK STRESS OF THE SPECTRUM : NO. OF STRESS LAYERS IN ONE BLOCK	35.750	
NO. OF STRESS LAYERS IN ONE BLOCK	204	

Property Charles of Continent Conserved William Pares

TABLE 3.2.1-2. EXAMPLE 2, METHOD 1, RUN 1 OUTPUT FILE (CON'T.)

STRESS LAY	ERS IN ONE	E BLOCK :					
STEP 3	SIGMA-MAX	SIGMA-MIN	CYCLES	STEP	SIGMA-MAX	CTCMA_MTN	
1	33.609	-23.523	1.000	2	35.750	SIGMA-MIN -23.244	Cital
3	16.447	-2.462	1.000	4	32.181	-3.217	4.00
5	3 5.750	-3.579	1.000	6	23.595	-1.179	1.000
7	27.888	-1.396	1.000	8	30.030	-1.500	1.000
9	33.609	-1.676	4.000	10	35.750	-1.790	1.000
11	28.602	0.000	4.000	12	29.316		2.000
13	30.030	0.000	3.000	14	32.181	0.000	1.000
15	33.609	0.000	9.000	16	35.750	0.000	12.000
17	16.447	0.817	2.500	18	17.161	0.000	1.500
19	17.875	0.889	5.000	20	18.589	0.859	2.000
21	19.313	0.962	1.000	22	20.027	0.931	3.000
23	20.740	1.035	1.000	24	21.454	1.004	1.600
25	22,168	1.107	2.000	26	22.882	1.076	6.000
27	23.595	1.179	11.000	28		1.148	1,66
29	26.461	1.324	6.000	30	25.747	1.283	6.000
31	28.602	1.427	4.000	30 32	27.175	1.355	2.060
33	30.030	1.500	2.000		29.316	1.469	3.600
35	32.181	1.614	18.000	34	31.467	1.572	1.000
37	35.750	1.790		36	33.609	1.676	11.000
39	13.582		0.500	38	.10.727	1.076	1.00
41	21.454	1.355	2.000	40	14.306	1.427	1 . (nda)
43	22.882	2.141	12.000	42	22.168	2.214	4.006
45	24.309	2.286	9.000	44	23.595	2.358	21.000
47		2.431	4.000	46	25.033	2.503	1.000
49	25.747	2.576	18.000	48	26.461	2.648	7.600
51	27.175	2.721	4.000	50	27.8 88	2.793	1.000
	28.602	2.865	24.500	52	29.316	2,928	6,000
53	30.030	3.000	32.000	54	31.467	3.145	2.000
5 5	32.181	3.217	3.000	56	33.609	3.362	1.000
57	14.306	2.141	1.000	58	16.447	2.462	10.000
59	17.161	2.576	4.000	60	17.875	2.679	7.000
61	19.313	2.896	4.000	62	20.027	3.000	14.000
63	20.740	3.113	5.000	64	21.454	3.217	3.000
65	22.168	3.320	4.000	66	22.882	3.434	4.000
67	23.595	3.538	18.000	68	24.309	3.652	1.000
69	25.033	3.755	2.000	70	25.747	3.858	11.000
71	26.461	3.972	10.000	72	27.175	4.075	8 000
73	27.888	4.179	1.000	74	28.602	4.293	11.500
75	29.316	4.396	1.000	76	30.030	4.510	7.000
` 77	33.609	5.038	1.000	78	5.720	1.148	5.000
79	7.148	1.427	1.000	80	12.868	2.576	1.000
81	13.582	2.721	2.000	82	14.304	2.865	4.000
83	15.020	3.000	2.000	84	17.875	3.579	12.000
85	18.589	3.714	8.000	86	19.313	3.858	6.000
87	20.027	4.003	22.000	88	20.740	4.148	17.000
89	21.454	4.293	58.000	90	22.168	4.438	24.000
91	22.882	4.572	11.000	92	23.595	4.717	38.000
93	24.309	4.862	6.000	94	25.033	5.007	5.000
95	25.747	5.152	28.000	96	28.602	5.720	20.000
97	29.316	5.865	4.000	98	30.030	6.010	9.00
99	32.181	6.434	10.000	100	33.609	6.724	1.000
101	10.727	2.679	2.000	102	12.155	3,041	2.000
103	12.868	3.217	2.000	104	13.582	3,393	1.000
1 0 5	14.306	3.579	2.000	106	15.020	3.755	3,000
107	16.447	4.107	8.500	108	17.161	4.293	27.000
109	17.875	4.469	134.000	110	18.589	4.645	6. 000
111	19.313	4.831	13.000	112	20.027	5.007	111.000
113	21.454	5.358	1.000	114	22.168	5.544	3.00
115	22.882	5.720	1.000	116	23.595	5.896	89.00

TABLE 3.2.1-2. EXAMPLE 2, METHOD 1, RUN 1 OUTPUT FILE (CON'T.)

STRESS LAYERS IN ONE BLOCK: STEP SIGNA-HAX SIGNA-HIN (17) 24, 309 6, 083 20,000 118 25,033 6,258 119 25,747 6,434 61,000 120 26,461 6,610 121 27,175 6,79 13,000 122 28,607 1,488 121 27,175 6,79 13,000 122 28,607 1,488 125 30,030 7,510 3,000 124 4, 1293 1,263 125 125 30,030 7,510 3,000 124 4, 1293 1,263 125 127 12,866 3,859 2,000 124 12,173 1,744 1,77 1,131 16,447 4,934 111,000 132 17,141 4,77 1,131 16,447 4,934 111,000 132 17,141 1,515 1,5

TABLE 3.2.1-2. EXAMPLE 2, METHOD 1, RUN 1 OUTPUT FILE (CON'T.)

	*****	e Dam	AGE G	ROWT	H HIZ	TORY	*****	
BLOCK	C1	C2	KMAX-C1	KMAX-C2	DC1/DF	DC2/DF	INITIA	INITIA2
	A1	A2	KMAX-A1	KMAX~A2	DA1/DF	DA2/DF	KN1	KN2
0.0	0.05000	0.00000	20,192	0.000	.000E+00	.000E+00	.000E+00	.000E+00
	0.05000	0.00000	25.306	0.000	.000E+00	.000E+00	.000E+00	.000E+00
1.0	0.06587	0.00000	24.246	0.000	.132E-03	.000E+00	.000E+00	.000E+00
	0.08191	0.00000	27.526	9.000	.266E-03	.000E+00	.000E+00	.000E+00
2.0	0.09110	0.00000	27.624	0.000	.210E-03	.000E+00	.000E+00	.000E+00
	0.12312	0.00000	29.527	0.000	.343E-03	.000E+00	.000E+00	.000E+00
3.0	0.12659	0.00000	28.050	0.000	.296E-03	.000E+00	.000E+00	.000E+00
	0.17173	0.00000	28.167	0.000	.405E-03	.000E+00	.000E+00	.000E+00
CTABLE	RREAK TH	IROUGH OF	CRACK NO.	4 0001183	° 41 .			
CY				BLOCK =		CK DEPTH =	A 18808	
		•	TO PLATE		•	INCHES	V. 10000	
CHARLE	D 111 2.5	BET EXCEPTE	TO TESTIC	1113 (21) 1463	35 011000	ATTO/TED		
4.0	0.16422	0.00000	30.549	0.000	,314E-03	.000E+00	.000E+00	.000E+00
	0.18800	0.00000	0.000	0.000	.136E-03	.000E+00	.000E+00	.000E+00
5.0	0.20819	0.00000	31.702	0.000	.366E-03	.000E+00	.000E+00	.000E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.000E+00	.000E+00
6.0	0.25813	0.00000	33.030	0.000	.416E-03	.000E+00	.000E+00	.000E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.000E+00	.000E+00
7.0	0.31610	0.00000	34.575	0.000	.483E-03	.000E+00	.000E+00	.000E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.000E+00	.000E+00
8.0	0.38452	0.00000	36.379	0.000	.570E-03	.000E+00	.000E+00	.000E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.000E+00	.000E+00
9.0	0.46651	0.00000	38.493	0.000	.683E-03	.000E+00	.000E+00	.000E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.000E+00	.000E+00
10.0	0.56608	0.00000	40.982	0.000	.830E-03	.000E+00	.000E+00	.000E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.000E+00	.000E+00
11.0	0.69343	0.00000	44.054	0.000	.106E-02	. 000E+00	.000E+00	.000E+00
	0.18800	0.00000	0.000	0.000	.000E+00	*000E+00	.000E+00	.000E+00
12.0	0.85973	0.00000	47.965	0.000	.139E-02	.000F+00	.000E+00	.000E+00
	0.18800	0.00000	0.000	0.000	.000E+00	, 000E. FQ0	.000E+00	.00000
13.0	1.09410	0.00000	53.984	0.000	.195E-02	.000E+00	, 000F+00	.0001+00
	0.18800	0.00000	0.000	0.000	.000F+00	. 000F +00	. 000E+00	. 000F +00

TABLE 3.2.1-2. EXAMPLE 2, METHOD 1, RUN 1 OUTPUT FILE (CONCLUDED)

UNSTABLE GROWTH OF CRACK NO. 1 OCCURS AT:

CYC = 32.0, STEP =119, BLOCK = 14, CRACK LENGTH = 1.38295, CKMAXS=117.96
THE OTHER CRACK LENGTH = 0.00000
TERMINATE DAMAGE COMPUTATION

RETARDTION PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION:

APAOL1 = .202E+00, APCOL1 = .166E+01, RYADL1 = .137E-01, RYCOL1 = .295E+00

AKOL1 = .269E+02, CKOL1 = .722E+02, AUL1 = .188E+00, COL1 = .137E+01

APAOL2 = .000E+00, APCOL2 = .000E+00, RYADL2 = .000E+00, RYCOL2 = .000E+00

AKOL2 = .000E+00, CKOL2 = .000E+00, AUL2 = .000E+00, COL2 = .000E+00

RETARDATION PARAMETERS AT THE TERMINATION OF CRACK INITIATION COMPUTATION:

DMG1 = .000E+00, DMGOL1 =.000E+00, DELDG1 =.000E+00

DMG2 = .000E+00, DMGOL2 =.000E+00, DELDG2 =.000E+00

TABLE 3.2.1-3. EXAMPLE 2, METHOD 1, RUN 2 INPUT FILE

```
I KAMPLE FOIN NO. 2 STECIMEN SUICICIED TO RANDOMIZED LOGDING SPECTRUM
    924 (13 SHIEL
2.2374E-09
                                                               0.70
                                                                                                3.3386 6.2126L 9
                                                                                                                                                                                       0.00
                                                                                                                                                                                                                        2.9783
               116.00
                                                              36.0
                                                                                                     53.0
                                                                                                                                                2.0
                                                                                                                                                                                           2.3
                                                                                                                                                                                                                           0.99
                                                                                                                                                                                                                                                                   -0.79
                                                                                                  0.887
                                                                                                                                   10700.0
           10.426
                                                        -.366
                                                                                                                                                                                  0.022
                                                                                                                                                                                                                           1.000
                                                                                                                                                                                                                                                                          1.0
                                                                                                                                                                                                                                                                  0.000
                                                      8.180
                                                                                                  0.188
                                                                                                                                          0.188
                                                                                                                                                                                    .0000
                                                                                                                                                                                                                          0.000
                                                                                                                                                                                                                                                                                                           0.000
0.1980E+000.2870E+000.1080E-010.5260E-010.2390E+020.3050E+020.1880E+000.2340E+00
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.00
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+00
                   0.188
                                                       0.1250
                                                                                                      8.18
                                                                                                                                              9.82
                                                                                                                                                                          0.00000
                                                                                                                                                                                                                    .00000
                                                                                                                                                                                                                                                           99.900 50. 1.00
                0.0000
                                                       0.1250
                                                                                                       0.00
                                                                                                                                               1.64
                                                                                                                                                                           0.00000
                                                                                                                                                                                                                   .00000
                                                                                                                                                                                                                                                          0.00000
                                                                                                                                                                                                                                                                                                   .00000
               0.000
                                                       0.0000
                0.000
                                                                                              1 100 1030 0000
                                                                       0
                                                           0.000
                                                                                                  0.006
                                                                                                                                          0.000
                                                                                                                                                                                   0.000
                                                                                                                                                                                                                          0.000
                                                                                                                                                                                                                                                                  0.000
                                                                                                                                                                                                                                                                                                           0.600
                    120.0
                                                               25.0
                                                                                                   6000.
```

TABLE 3.2.1-4. EXAMPLE 2, METHOD 1, RUN 2 OUTPUT FILE

```
DETAILED DAMAGE GROWTH ANALYSIS PROGRAM
                                                        DAMGRO
 EXAMPLE RUN NO. 2 SPECIMEN SUBJECTED TO RANDOMIZED LOADING SPECTRUM
    * THIS ANALYSIS RESTARTS WITH THE STRESS SPECTRUM AT STEP 119 *
NO. OF SITES TO BE ANALYZED :
                                 CRACK GROWTH =
                                                   1;
                                                       CRACK INITIATION =
 CORRESPONDING DAMAGE CODES :
                                 CRACK GROWTH = 1030;
                                                        CRACK INITIATION =
LOAD INTERACTION :
                        GENERALIZED WILLENBORG ET AL--CHANG MODEL
             2024-T3 SHEET
MATERIAL :
    WALKER EQ. CONST. (+R): C = 0.224E-08, M =0.700, N =3.339
WALKER EQ. CONST. (-R): C = 0.621E-08, M =0.000, N =2.978
    MAX. K FOR DC/DN THRESHOLD = 2,000
    RETARDATION SHUT-OFF RATIO = 2.300
    +R CUT-OFF = 0.9900,
                           -R CUT-OFF = -0.9900
    YIELD STRENGTH : 53.000
    ELASTIC MODULUS = 0.1070E+05
    FL. STRESS FRACT. TOUGHNESS = 116.00
FL. STRAIN FRACT. TOUGHNESS = 36.00
    DAMAGE INDEX FOR CRACK INITIATION =
    NEUBER MATERIAL CONST. = 0.022
    CRACK INITIATION EQ. CONST. :
                                    SF = 10.426, M = -.366
    STRESS SEVERITY FACTOR PARAMETERS :
      ALPHA = 1.0000, RETA = 1.0000. GAMMA = 1.0000
SPECIFIED DAMAGE CONDITIONS
    INITIAL CRACK LENGTH OF CRACK NO. 1 :
                                             0.23000
    FINAL CRACK LENGTH OF CRACK NO. 1 :
    INITIAL CRACK DEPTH OF CRACK NO. 1 :
                                             0.18800
    FINAL CRACK DEPTH OF CRACK NO. 1 :
                                              0.18800
    INITIAL CRACK LENGTH OF CRACK NO. 2 :
                                             0.00000
    FINAL CRACK LENGTH OF CRACK NO. 2 :
                                             0.00000
    INITIAL CRACK DEPTH OF CRACK NO. 2 :
                                              0.00000
    FINAL CRACK DEPTH OF CRACK NO. 2 :
                                             0.00000
    PARAMETERS FROM PREVIOUS CRACK GROWTH HISTORY
      APAOL2 = .000E+00. APOOL2 = .000E+00, RYAOL2 = .000E+00, RYCOL2 = .000E+00
       AKOL2 = .0001.+00,
                          ClOL2 = .000E+00,
                                              A0L2 = .000E + 00
                                                                   COL2 = .000E+00
    PARAMETERS FROM PREVIOUS CRACK INLITATION HISTORY
        DMG1 = .000E+00, DMGDL1 =.000E+00, DFLDG1 =.000E+00
DMG2 = .000E+00, DMGDL2 =.000E+00, DFLDG2 =.000E+00
```

TABLE 3.2.1-4. EXAMPLE 2, METHOD 1, RUN 2 OUTPUT FILE (CON'T.)

0.18800	
0.12500	
99.89999	
8.18000	
9.82000	
0.00000,	0.00000
0.00000	
0.00000	
0.00000,	0.00000
0.12500	
1.64000	
0.00000,	0.00000
50.0	
1.00	
0.0000	
0.0000	
100	
7416,500	
120,000	
25,000	
6000,000	
35.750	
204	
	0.12500 99.89999 8.18000 9.82000 0.00000 0.00000 0.00000 0.12500 1.64000 0.00000,

CONTRACT GEORGE GEORGES BUNNING CARSON SECTION

TABLE 3.2.1-4. EXAMPLE 2. METHOD 1. RUN 2 OUTPUT FILE (CONCLUDED)

DAMAGE GROWTH HISTORY BLOCK DC1/DF C1 C2KMAX-C1 KMAX~C2 DC2/DF INITIA INITIA2 A1 A2 KMAX-A1 KMAX-A2 DA1/DF DA2/DF KN1 KN2 0.0 0.23000 0.00000 68.666 0.000 .000E+00 .000E+00 .000E+00 .000E+00 0.18800 .000E+00 0.00000 0.000 0.000 .000E+00 .000E+00 .000E+00 0.62217 0.00000 78.573 0.000 .327E-02 .000E+00 .000E+00 .000E+00 0.000 .000E+00 .000E+00 .000E+00 0.18800 0.00000 .000E+00 0.000 2.16138 0.00000 96.070 0.000 .128E-01 .000E+00 .000E+00 .000E+00 0.00000 0.000 0.000 .000E+00 0.18800 .000E+00 .000E+00 .000E+00 UNSTABLE GROWTH OF CRACK NO. 1 OCCURS AT: CYC = 6.0, STEP = 98, BLOCK = 3, CRACK LENGTH = 3.65077, CKMAXS=116.20 THE OTHER CRACK LENGTH = 0.00000 TERMINATE DAMAGE COMPUTATION RETARDTION PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION :

AFADL1 = .198E+00, AFCOL1 = .415E+01, RYAOL1 = .108E-01, RYCOL1 = .535E+00

APAOL2 = .000E+00, APCOL2 = .000E+00, RYADL2 = .000E+00, RYCOL2 = .000E+00 AKOL2 = .000E+00, CKOL2 = .000E+00, AOL2 = .000E+00, COL2 = .000E+00 AKOL2 = .000E+00, CKOL2 = .000E+00, AOL2 = .000E+00, COL2 = .000E RETARDATION PARAMETERS AT THE TERMINATION OF CRACK INITIATION COMPUTATION

COL1 = .361E + 01

Productions to second

AKOL1 = .239E+02, CKOL1 = .972E+02, AUL1 = .188E+00,

DMG1 = .000E+00, DMGGL1 =.000E+00, DELDG1 =.000E+00 DMG2 = .000E+00, DMGGL2 =.000E+00, DELDG2 =.000E+00

TABLE 3.2.2. EXAMPLE 2, METHOD 2 SUMMARY TABLE

REF. PAGES 78 THROUGH 90

a 1	a 2	α 3	LIFE (BLOCK,		JTINES	RUN
<u>(IN)</u>	<u>(IN)</u>	<u>(IN)</u>	LAYER, CYCLES)	<u>GROWTH</u>	INITIATION	<u>NO.</u>
.050	0	0	0	K1010	\$1010	ì
.065	0	0	1, 0,0	K1010	\$1010	i
.091	0	0	2, 0, 0	K1010	\$1010	i
.126	0	0	3, 0, 0	K1010	\$1010	i
.164	0	0	4, 0, 0	K1010	S1010	i
. 208	0	0	5, 0, 0	K1010	\$1010	i
. 258	0	0	6, 0, 0	K1010	\$1010	ì
.316	0	0	7, 0, 0	K1010	\$1010	i
. 384	0	0	8, 0, 0	K1010	\$1010	i
.466	0	0	9, 0, 0	K1010	\$1010	i
. 566	0	0	10, 0, 0	K1010	\$1010	i
.693	0	0	11, 0, 0	K1010	\$1010	i
.859	0	0	12, 0, 0	K1010	\$1010	i
.901	.050	0	12, 36,11	K1010	\$1010	i
1.218	.45	0	13, 0,22	K1040	S1030	2
1.39	.532	0	13, 34,23	K1040	\$1030	2
	1.044	. 050	13, 96,40	K1030	\$1050	วั
	2.205	1.229	14, 0,40	K1050	-	4

NO. OF CYCLES TO SECONDARY CRACK INITIATION = 89,134 CYCLES NO. OF CYCLES TO FAILURE = 103,871 CYCLES

TABLE 3.2.2-1. EXAMPLE 2, METHOD 2, RUN 1 INPUT FILE

```
EXAMPLE RUN NO. 2 SPECIMEN SUBJECTED TO RANDOMIZED LOADING SPECTRUM
  2024-T3 SHEET
  2.2374E 09
                                                                                                                                                                                                                                                                                                                                      0.00
                                                                                                                                                                        3.3386 6.2126E 9
                            116.00
                                                                                                               36.0
                                                                                                                                                                                   53.0
                                                                                                                                                                                                                                                                     2.0
                                                                                                                                                                                                                                                                                                                                            2.3
                                                                                                                                                                                                                                                                                                                                                                                                      0.99
                                                                                                                                                                                                                                                                                                                                                                                                                                                                               -0.QQ
                                                                                                                                                                                                                                                                                                                               0.022
                                                                                                                                                                                                                                          10700.0
                      10.426
                                                                                                     -. 306
                                                                                                                                                                                0.887
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            1 0
                     0.050
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.000
                                                                                                 1.390
                                                                                                                                                                                0.050
                                                                                                                                                                                                                                                      0.188
                                                                                                                                                                                                                                                                                                                                 .0000
                                                                                                                                                                                                                                                                                                                                                                                                      0.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0.000
G. 9000L +000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.0000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.0
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.0000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+00
                                                                                                                                                                                                                                                                                                                                                                                        .00000
                                0.188
                                                                                                 0.1250
                                                                                                                                                                                      9.82
                                                                                                                                                                                                                                                              8.18
                                                                                                                                                                                                                                                                                                               0.00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 99.900 50.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                0.00000
                            0.1250
                                                                                                 0.0000
                                                                                                                                                                                       1.64
                                                                                                                                                                                                                                                                0.00
                                                                                                                                                                                                                                                                                                                0.00000
                                                                                                                                                                                                                                                                                                                                                                                          .00000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .00000
                           0.000
                                                                                                 0.0000
                                                00
                                                                                                                                                                         1 100 1010 1010
                           0
                                                                                                        0.000
                                  0.000
                                                                                                                                                                                                                                                                                                                               0.000
                                                                                                                                                                                0.000
                                                                                                                                                                                                                                                     0.000
                                                                                                                                                                                                                                                                                                                                                                                                      0.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              0.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     0 000
                                   120.0
                                                                                                                25.0
                                                                                                                                                                                6000.
```

TABLE 3.2.2-2. EXAMPLE 2, METHOD 2, RUN 1 OUTPUT FILE

```
***** DETAILED DAMAGE GROWTH ANALYSIS PROGRAM D A M G R O *****
```

EXAMPLE RUN NO. 2 SPECIMEN SUBJECTED TO RANDOMIZED LOADING SPECTRUM

* THIS ANALYSIS STARTS AT THE BEGINNING OF THE STRESS SPECTRUM *

NO. OF SITES TO BE ANALYZED: CRACK GROWTH = 1; CRACK INITIATION = 2 CORRESPONDING DAMAGE CODES: CRACK GROWTH = 1010; CRACK INITIATION = 1010

LOAD INTERACTION : GENERALIZED WILLENBORG ET AL--CHANG MODEL

```
MATERIAL :
              2024-T3 SHEET
    WALKER EQ. CONST. (+R): C = 0.224E-08, WALKER EQ. CONST. (-R): C = 0.621E-08,
                                                   M = 0.700,
                                                                N =3,339
                                                  M =0.000,
          K FOR DC/DN THRESHOLD = 2.000
    RETARDATION SHUT-OFF RATIO = 2.300
    +R CUT-OFF = 0.9900,
                              -R CUT-OFF = -0.9900
    YIELD STRENGTH: 53.000
    ELASTIC MODULUS = 0.1070E+05
    FL. STRESS FRACT. TOUGHNESS = 116.00
PL. STRAIN FRACT. TOUGHNESS = 36.00
    DAMAGE INDEX FOR CRACK INITIATION =
    NEUBER MATERIAL CONST. = 0.022
    CRACK INITIATION EQ. CONST. : SF = 10.426, M =-.366
    STRESS SEVERITY FACTOR PARAMETERS :
      ALPHA = 1.0000, BETA = 1.0000, GAMMA = 1.0000
```

```
SPECIFIED DAMAGE CONDITIONS :
                                            0.05000
    INITIAL CRACK LENGTH OF CRACK NO. 1 :
    FINAL CRACK LENGTH OF CRACK NO. 1 :-
                                             1.39000
    INITIAL CRACK DEPTH OF CRACK NO. 1 :
                                            0.05900
    FINAL CRACK DEPTH OF CRACK NO. 1 :-
                                            0.18800
    INITIAL CRACK LENGTH OF CRACK NO. 2 :
                                            0.00000
    FINAL CRACK LENGTH OF CRACK NO. 2 :
                                            0.00000
    INITIAL CRACK DEPTH OF CRACK NO. 2 :
                                            0.00000
    FINAL CRACK DUTTH OF CRACK NO. 2
                                             0.00000
    PARAMETERS FROM PREVIOUS CRACK GROWTH HISTORY
```

APAOL1 = .000E+00, APCOL1 = .000E+00, RYAOL1 = .000E+00, RYCOL1 = .000E+00
AKOL1 = .000E+00, CKOL1 = .000E+00, AOL1 = .000E+00, COL1 = .000E+00
APAOL2 = .000E+00, APCOL2 = .000E+00, RYAOL2 = .000E+00, RICOL2 = .000E+00
AKOL2 = .000E+00, CKOL2 = .000E+00, AOL2 = .000E+00, COL2 = .000E+00

PARAMETERS FROM PREVIOUS CHACK INITIATION HISTORY:

DMG4 = .000E+00, DMG0L1 = .000E+00, DELDG1 = .000E+00

DMG2 = .000E+00, DMG0L2 = .000E+00, DELDG2 = .000E+00

TABLE 3.2.2-2. EXAMPLE 2, METHOD 2, RUN 1 OUTPUT FILE (CON'T.)

COMPONENT GEOMETRY		
THICKNESS OF FLATE :	0.18800	
RADIUS OF MID. HOLE :	0.12500	
RATIO OF PLATE LENGTH TO HOLE DIAMETER, E/D :	99 .8 99 99	
DISTANCE BETWEEN MID. HOLE AND R.H.S. EDGE :	9.82000	
DISTANCE BETWEEN MID. HOLE AND L.H.S. EDGE :	8.18000	
FRACTION OF LOAD TRANSFER BY MID. BOLT :	0.00000,	0.00000
RADIUS OF THE R.H.S. HOLE :	0.12500	
RADIUS OF THE R.H.S. HOLE : DISTANCE BETWEEN MID. AND R.H.S. HOLES :	1.64000	
FRACTION OF LOAD TRANSFER BY R.H.S. BOLT :		0.00000
RADIUS OF THE L.H.S. HOLE :	0.00000	
DISTANCE BETWEEN MID. AND L.H.S. HOLES :		
FRACTION OF LOAD TRANSFER BY L.H.S. BOLT :	0.00000,	0.00000
PERCENTAGE OF COUNTERSINK DEPTH W.R.T THICKNESS	50.0	
STRESS CONCENTRATION DUE TO PIN DEFLECTION	1.00	
FASTENER HEAD OR COLLAR FRICTION STRESS :	0.0000	
FAYING SURFACE FRICTION STRESS :	0.0000	
•		
STRESS SPECTRUM :		
NO. OF BLOCKS SPECIFIED FOR ANALYSIS :	100	
TOTAL NO. OF CYCLES IN ONE BLOCK : TOTAL NO. OF FLIGHTS IN ONE BLOCK :	7416.500	
TOTAL NO. OF FLIGHTS IN ONE BLOCK	120.000	
NO. OF BLOCKS IN ONE DESIGN LIFETIME :	25.000	
NO. OF FLIGHT HOURS IN ONE DESIGN LIFETIME :	6000.000	
	35.750	
NO. OF STRESS LAYERS IN ONE BLOCK	204	

COOR SECTION CONTRACT AND ACCOUNT COORS

TABLE 3.2.2-2. EXAMPLE 2, METHOD 2, RUN 1 OUTPUT FILE (CON'T.)

	*****	DAM	AGE G	ROWT	H HIS	TORY	*****	
BLOCK	C1	C2	KMAX~C1	KMAX-C2	DC1/DF	DC2/DF	INITIA	INITIA2
PLOCK	A1	A2	KMAX-A1	KMAX-A2	DA1/DF	DA2/DF	KN1	KN2
0.0	0.05000	0.00000	20,192	0.000	.000E+00	.000E+00	.143E-03	.106E-03
V.V	0.05000	0.00000	25.306	0.000	.000E+00	.000E+00	.143E 03	.263E+01
1.0	0.06587	0.00000	24,246	0.000	.132E-03	.000E+00	.293E-01	.209E-01
1.0	0.08191	0.00000	27.526	0.000	.266E-03	.000E+00	.283E+01	.263E+01
2.0	0.09110	0.00000	27.624	0.000	.210E-03	.000E+00	.618E-01	.418E-01
	0.12312	0.00000	29.527	0.000	.343E-03	.000E+00	.290E+01	.263E+01
3.0	0.12659	0.00000	28.050	0.000	.296E-03	.000E+00	.980E-01	.626E-01
w/ • w	0.17173	0.00000	28.167	0.000	.405E-03	.000E+00	.273E+01	.263E+01
	01	0.0000	201101	0.000	1.000	10000.	121 02.	* *************************************
STABLE	BREAK-TH	ROUGH OF	CRACK NO.	1 OCCUR:	: TA 2			
	C= 1.0			BLOCK ·=		CK DEPTH =	0.18808	
CRACK			•		55 0.1880	INCHES		
4.0	0.16422	0.00000	30.549	0.000	.314E-03	.000E+00	.126E+00	.835E-01
	0.18800	0.00000	0.000	0.000	.136E-03	.000E+00	.282E+01	.263E+01
5.0	0.20819	0.00000	31.702	0.000	.366E-03	.000E+00	.159E+00	.104[]+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.292E+01	.263E+01
6.0	0.25813	0.00000	33.030	9,000	.416E-03	.000E+00	.199E+00	.125E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.303E+01	.263E+01
7.0	0.31610	0.00000	34.575	0.000	.483E-03	.000E+00	.248E+00	.146E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.315E+01	.263E+01
8.0	0.38452	0.00000	36.379	0.000	.570E-03	.000E+00	.309E+00	.167E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.3286+01	.263F+91
9.0	0.46651	0.00000	38.493	0.000	.6836-03	.000E+00	.387E+00	.188E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.344E+01	.263E+01
10.0	0.56608	0.00000	40.982	0.000	.830E-03	.000E+00	.488E+00	.209E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.361E+01	.263E+01
11.0	0.69343	0.00000	44.054	0.000	.106E-02	.000E+00	.622E+00	.22°E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.383E+01	.263E+01
12.0	0.85973	0.0000	47,965	0.000	.139E~02	.000E+00	.809E+00	.250E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.409E+01	.263E+01

TABLE 3.2.2-2. EXAMPLE 2. METHOD 2. RUN 1 OUTPUT FILE (CONCLUDED)

```
CRACK LENGTHS AT THE TERMINATION OF CRACK INITIATION COMPUTATION:

C1 = 0.90143, A1 = 0.18800, C2 = 0.00000, A2 = 0.00000

RETARDTION PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION:

AFAOL1 = .202E+00, AFCOL1 = .101E+01, RYAOL1 = .137E-01, RYCOL1 = .133E+00

AKOL1 = .269E+02, CKOL1 = .485E+02, AOL1 = .188E+00, COL1 = .880E+00

AFAOL2 = .000E+00, AFCOL2 = .000E+00, RYAOL2 = .000E+00, RYCOL2 = .000E+00

AKOL2 = .000E+00, CKOL2 = .000E+00, AOL2 = .000E+00, COL2 = .000E+00

RETARDATION PARAMETERS AT THE TERMINATION OF CRACK INITIATION COMPUTATION:

DMG1 = .879E+00, DMGOL1 = .970E-03, DELDG1 = .000E+00

DMG2 = .257E+00, DMGOL2 = .105E-03, DELDG2 = .000E+00
```

BLOCK = 13

CRACK INITIATION FOR LOCATION 1 OCCURS AT :

STEP = 36

CYC = 11.000

Production of the Park State of the

TABLE 3.2.2-3. EXAMPLE 2, METHOD 2, RUN 2 INPUT FILE

```
FRAMELE RUN NO. 2 SELECTMEN SUBJECTED TO PARDOMIZED FOADING SPECIRUM
2.2374E -09
                                                                   0.70
                                                                                                     3.3386 6.2126E-9
                                                                                                         53.0
0.887
                                                                                                                                                                                              0.022
                116.00
                                                                 36.0
                                                                                                                                                            2.0
                                                                                                                                                                                                                                             0.99
                                                                                                                                                                                                                                                                                    -0.99
             10.426
                                                                                                                                            10700.0
                                                                                                                                                                                                                                         1.000
                                                            - . 366
                                                                                                                                                                                                                                                                                           1.0
            0.900
                                                          1.390
                                                                                                                                                   0.188
                                                                                                                                                                                                                                                                                   0.050
                                                                                                         0.188
                                                                                                                                                                                                .0500
                                                                                                                                                                                                                                         8.180
                                                                                                                                                                                                                                                                                                                              0.183
0.2020E+000.1010E+010.1370E-010.1330E+000.2690E+020.4840E+020.1880E+000.8800E+00
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.000E+000.0000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+00000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000
0.2570E+000.1050E-030.0000E+000.0000E+000.0000E+000.0000E+00
                                                          0.1250
                                                                                                                                                                                                                                 .00000
                                                                                                                                                                                                                                                                           99.900 50. 1.00
0.00000 .00000
                    0.188
                                                                                                            9.82
                                                                                                                                                      8.18
                                                                                                                                                                                     0.00000
                 0.1250
                                                          0.0000
                                                                                                             1 64
                                                                                                                                                        0.00
                                                                                                                                                                                      0.00000
                                                                                                                                                                                                                                  00000
                 0.000
                                                          0.0000
                                                                                                     1 100 1040 1030
                               36
                                                               0.000
                     0.000
                                                                                                         0.000
                                                                                                                                                   0.000
                                                                                                                                                                                               0.000
                                                                                                                                                                                                                                         0.000
                                                                                                                                                                                                                                                                                   0.000
                                                                                                                                                                                                                                                                                                                              0.000
                     120.0
                                                                   25.0
                                                                                                         6000.
```

TABLE 3.2.2-4. EXAMPLE 2, METHOD 2, RUN 2 OUTPUT FILE

```
**** DETAILED DAMAGE GROWTH ANALYSIS PROGRAM
                                                                 DAMGRO
 EXAMPLE RUN NO. 2 SPECIMEN SUBJECTED TO RANDOMIZED LOADING SPECTRUM
     * THIS ANALYSIS RESTARTS WITH THE STRESS SPECTRUM AT STEP
NO. OF SITES TO BE ANALYZED :
                                      CRACK GROWTH =
                                                            2; CRACK INITIATION =
                                      CRACK GROWTH = 1040; CRACK INITIATION = 1030
 CORRESPONDING DAMAGE CODES :
LOAD INTERACTION :
                            GENERALIZED WILLENBORG ET AL--CHANG MODEL
    FIAL: 2024-T3 SHEET
WALKER EQ. CONST. ('+R): C = 0.224E-08, M =0.700,
WALKER EQ. CONST. (-R): C = 0.621E-08, M =0.000,
MATERIAL :
                                                                     N = 3.339
     MAX. K FOR DC/DN THRESHOLD = 2.000
    RETARDATION SHUT-OFF RATIO = 2.300
     +R CUT-OFF = 0.9900,
                                -R CUT-OFF = -0.9900
    YIELD STRENGTH : 53.000
ELASTIC MODULUS = 0.1070E+05
    PL. STRESS FRACT. TOUGHNESS = 116.00
PL. STRAIN FRACT. TOUGHNESS = 36.00
     DAMAGE INDEX FOR CRACK INITIATION =
     NEUBER MATERIAL CONST. = 0.022
     CRACK INITIATION EQ. CONST. :
                                         SF = 10.426, M = -.366
     STRESS SEVERITY FACTOR PARAMETERS :
       ALPHA = 1.0000, BETA = 1.0000, GAMMA = 1.0000
SPECIFIED DAMAGE CONDITIONS
     INITIAL CRACK LENGTH OF CRACK NO. 1 :
                                                     0.90100
     FINAL CRACK LENGTH OF CRACK NO. 1 :
                                                     1,39000
     INITIAL CRACK DEPTH OF CRACK NO. 1 -
                                                     0.18800
     FINAL CRACK DEPTH OF CRACK NO. 1 :
                                                     0.18800
     INITIAL CRACK LENGTH OF CRACK NO. 2
                                                     0.05000
     FINAL CRACK LENGTH OF CRACK NO. 2 :
                                                     8.18000
     INITIAL CRACK DEPTH OF CRACK NO. 2
                                                     0.05000
     FINAL CRACK DEPTH OF CRACK NO. 2
                                                     0.18800
    PARAMETERS FROM PREVIOUS CRACK GROWTH HISTORY
       APAOL1 = .202E+00, APCOL1 = .101E+01, RYAOL1 = .137E-01, RYCOL1 = .133E+00
AKOL1 = .269E+02, CKOL1 = .484E+02, AOL1 = .188E+00, COL1 = .800F+00
    APAOL2 = .000E+00, APCOL2 = .000E+00, RYAOL2 = .000E+00, RYCOL2 = .000I+00

AKOL2 = .000E+00, CKOL2 = .000E+00, AUL2 = .000F+00, COL2 = .000F+00

EARAMETERS FROM PREVIOUS CRACK INITIATION HISTORY
         DMG1 = .257E+00, DMGOL1 =.105E-03, DELDG1 =.000E+00
         DMG2 = .000E+00, DMG0L2 =.000E+00, DELDG2 =.000E+00
```

TABLE 3.2.2-4. EXAMPLE 2, METHOD 2, RUN 2 OUTPUT FILE (CON'T.)

```
COMPONENT GEOMETRY :
    THICKNESS OF PLATE:
RADIUS OF MID. HOLE:
RATIO OF PLATE LENGTH TO HOLE DIAMETER, E/D:
                                                                0.18800
                                                                0.12500
                                                               99.89999
    DISTANCE BETWEEN MID. HOLE AND R.H.S. EDGE : DISTANCE BETWEEN MID. HOLE AND L.H.S. EDGE :
                                                               9.82000
                                                               8.18000
    FRACTION OF LOAD TRANSFER BY MID. BOLT :
                                                               0.00000,
                                                                           0.00000
    RADIUS OF THE R.H.S. HOLE
                                                               0.12500
    DISTANCE BETWEEN MID. AND R.H.S. HOLES :
                                                               1.64000
    FRACTION OF LOAD TRANSFER BY R.H.S. BOLT :
                                                                           0.00000
                                                               0.00000,
    RADIUS OF THE L.H.S. HOLE :
                                                               0.00000
    DISTANCE BETWEEN MID. AND L.H.S. HOLES :
                                                               0.00000
    FRACTION OF LOAD TRANSFER BY L.H.S. BOLT :
                                                                0.00000,
                                                                           0.00000
    PERCENTAGE OF COUNTERSINK DEPTH W.R.T THICKNESS : 50.0
    STRESS CONCENTRATION DUE TO PIN DEFLECTION :
FASTENER HEAD OR COLLAR FRICTION STRESS :
                                                              1.00
                                                                0.0000
    FAYING SURFACE FRICTION STRESS :
                                                               0.0000
STRESS SPECTRUM :
    NO. OF BLOCKS SPECIFIED FOR ANALYSIS :
                                                               100
    TOTAL NO. OF CYCLES IN ONE BLOCK :
                                                               7416,500
    TOTAL NO. OF FLIGHTS IN ONE BLOCK:
NO. OF BLOCKS IN ONE DESIGN LIFETIME:
                                                                120.000
                                                                 25.000
    NO. OF FLIGHT HOURS IN ONE DESIGN LIFETIME :
                                                               6000.000
    MAXIMUM PEAK STRESS OF THE SPECTRUM :
                                                                35.750
    NO. OF STRESS LAYERS IN ONE BLOCK
                                                                204
UNSTABLE BREAK-THROUGH OF CRACK NO. 2 OCCURS AT :
```

CYC = 0.0, STEP = 36, BLOCK = 1, DEPTH = 0.05000, AKMAXS= 52.24

Market Control of the Control of the

TABLE 3.2.2-4. EXAMPLE 2, METHOD 2, RUN 2 OUTPUT FILE (CONCLUDED)

```
DAMAGE GROWTH
                                                      HISTORY
BLOCK
                                                    DC1/DF
             C1
                      C2
                             KMAX-C1
                                        KMAX~C2
                                                                DC2/DF
                                                                           INITIAL
                                                                                       INITIA2
                                                                DA2/DF
                                                    DA1/DF
             A1
                      A2
                             KMAX-A1
                                        KMAX~A2
                                                                              KN1
                                                                                          KN2
        0.90100
                   0.05000
                               49.490
                                        41.685
                                                 .000E+00
                                                              .000E+00
                                                                          .259E+00
                                                                                      .000E+00
                                                  .000E+00
                                                              .000E+00
                                                                                      .000E+00
        0.18800
                                        52.244
                                                                          .263E+01
                  0.05000
                                0.000
                                                              .333E-02
       1.21853
                 0.45006
                               67.869
                                        63.073
                                                 .265E-02
                                                                          .272E+00
                                                                                      .000E+00
                                                 .000E+00
                                                             .115E-02
        0.18800 0.18800
                                0.000
                                         0.000
                                                                          .263E+01
                                                                                      .000E+00
UNSTABLE GROWTH OF CRACK NO. 1 OCCURS AT:
    CYC = 1.0, STEP = 34, BLOCK = 2, CRACK LENGTH = 1.37721, CKMAXS=126.59
THE OTHER CRACK LENGTH = 0.53209
TERMINATE DAMAGE COMPUTATION
    RETARDTION PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION :
       APAOL1 = .202E+00, APCOL1 = .189E+01, RYAOL1 = .137E-01, RYCOL1 = .529E+00
       AKOL1 = .269E+02, CKOL1 = .966E+02, ADL1 = .188E+00, COL1 = .136E+01
AFADL2 = .000E+00, APCOL2 = .763E+00, RYAOL2 = .000E+00, RYCOL2 = .243E+00
AKOL2 = .000E+00, CKOL2 = .655E+02, ADL2 = .000E+00, COL2 = .520E+00
    RETARDATION PARAMETERS AT THE TERMINATION OF CRACK INITIATION COMPUTATION :
         DMG1 = .277E+00, DMGOL1 = .732E-04, DELDG1 = .000E+00
DMG2 = .000E+00, DMGOL2 = .000E+00, DELDG2 = .000E+00
```

SECTION OF THE PROPERTY SECRETARY SECTION OF THE PROPERTY OF T

TABLE 3.2.2-5. EXAMPLE 2, METHOD 2, RUN 3 INPUT FILE

```
EXAMPLE RUN NO. 2 SPECIMEN SUBJECTED TO RANDOMIZED LOADING SPECTRUM
2024-13 SHEET
2.2374L 00
                0.70
                         3.3386 6.2126E-9
                                                0.00
                                                 2.3
                                                                    -0.99
    116.00
                36.0
                           53.0
                                      2.0
                                                          0.99
                                  10700.0
   10.426
                          0.887
                                               0.022
                                                         1.000
                                                                      1.0
   0.532
              8.180
                          0.188
                                    0.188
                                               .0060
                                                         0.000
                                                                    0.000
                                                                               0.000
0.0000E-000.7630E+000.0000E+000.2430E+000.0000E+000.6550E+020.0000F+000.5200E+00
0.0000E+000.0000F+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+00
0.2770E+000.7320E-040.0000E+000.0000E+000.0000E+000.6000E+00
              0.1250
                                                                  99.900 50.1.00
0.00000 .00000
     0.188
                                     9.82
                                             0.00000
                           8.18
                                                        .00000
              0.1250
    0.0000
                           0.00
                                     1.64
                                             0.00000
                                                        .00000
    0.000
              0.0000
       34
                         1 100 1030 1050
     0.000
                          0.000
                                               0.000
                                                         0.000
               0.000
                                    0.000
                                                                    0.000
                                                                               0.000
     120.0
                25.0
                          6000.
```

TABLE 3.2.2-6. EXAMPLE 2, METHOD 2, RUN 3 OUTPUT FILE

```
***** DETAILED DAMAGE GROWTH ANALYSIS PROGRAM
                                                            DAMERO
 EXAMPLE RUN NO. 2 SPECIMEN SUBJECTED TO RANDOMIZED LOADING SPECTRUM
    * THIS ANALYSIS RESTARTS WITH THE STRESS SPECTRUM AT STEP
NO. OF SITES TO BE ANALYZED :
                                    CRACK GROWTH =
                                                        1; CRACK INITIATION =
 CORRESPONDING DAMAGE CODES :
                                    CRACK GROWTH = 1030; CRACK INITIATION = 1050
                           GENERALIZED WILLENBORG ET AL--CHANG MODEL
LOAD INTERACTION :
MATERIAL :
             2024-T3 SHEET
    WALKER EQ. CONST. (+R): C = 0.224E-08, M =0.700, WALKER EQ. CONST. (-R): C = 0.621E-08, M =0.000,
                                                                N = 3.339
    MAX. K FOR DC/DN THRESHOLD = 2.000
    RETARDATION SHUT-OFF RATIO = 2.300
    +R CUT-OFF = 0.9900,
                              -R CUT-OFF = -0.9900
    YIELD STRENGTH : 53.000
    ELASTIC MODULUS = 0.1070E+05
    PL. STRESS FRACT. TOUGHNESS = 116.00
PL. STRAIN FRACT. TOUGHNESS = 36.00
    DAMAGE INDEX FOR CRACK INITIATION = 0.887
    NEUBER MATERIAL CONST. = 0.022
    CRACK INITIATION EQ. CONST. : SF = 10.426, M =-.366
    STRESS SEVERITY FACTOR PARAMETERS :
      ALPHA = 1.0000, BETA = 1.0000,
                                           GAMMA = 1,0000
SPECIFIED DAMAGE CONDITIONS :
    INITIAL CRACK LENGTH OF CRACK NO. 1 :
    FINAL CRACK LENGTH OF CRACK NO. 1 :
                                                 8,18000
    INITIAL CRACK DEPTH OF CRACK NO. 1 :
                                                 0.18800
    FINAL CRACK DEPTH OF CRACK NO. 1 :
                                                 0.18800
    INITIAL CRACK LENGTH OF CRACK NO. 2 :
                                                 0.00000
    FINAL CRACK LENGTH OF CRACK NO. 2 :
                                                 0.00000
    INITIAL CRACK DEPTH OF CRACK NO. 2 :
                                                 0.00000
    FINAL CRACK DEPTH OF CRACK NO. 2
                                                 0.00000
    PARAMETERS FROM PREVIOUS CRACK GROWTH HISTORY :
      APAOL1 = .122E-77, APCOL1 = .763E+00, RYADL1 = .000E+00, RYCOL1 = .243E+00
      AKOL1 = .000E+00, CKOL1 = .655E+02, AUL1 = .000E+00, COL1 = .520E+00 AFAOL2 = .000E+00, AFCOL2 = .000E+00, RYAOL2 = .000E+00, RYCOL2 = .000L+00
       AFOL2 = .000E \pm00, CKOL2 = .000E \pm00, AOL2 = .000E \pm00,
                                                                         00+1000. ~ 1400
    PARAMETERS FROM PREVIOUS CRACK INITIATION HISTORY
        DMG1 = .277E+00, DMGGL1 =.732E-04, DELDG1 =.000E+00
DMG2 = .000E+00, DMGGL2 =.000E+00, DELDG3 =.000E+00
```

TABLE 3.2.2-6. EXAMPLE 2, METHOD 2, RUN 3 OUTPUT FILE (CON'T.)

COMPONENT GEOMETRY :		
THICKNESS OF PLATE :	0.18800	
THICKNESS OF PLATE : RADIUS OF MID. HOLE :	0.12500	
RATIO OF PLATE LENGTH TO HOLE DIAMETER, EZD :	99.89999	
DISTANCE BUTWEEN MID. HOLE AND R.H.S. EDGE	8.18000	
DISTANCE BETWEEN MID. HOLE AND L.H.S. EDGE :	9.82000	
FRACTION OF LOAD TRANSFER BY MID. BOLT	0.00000,	9.00000
RADIUS OF THE R.H.S. HOLE :	0.00000	
RADIUS OF THE R.H.S. HOLE: DISTANCE BETWEEN MID. AND R.H.S. HOLES:	0.00000	
FRACTION OF LOAD TRANSFER BY R.H.S. HOLT	0.00000,	0.00000
RADIUS OF THE L.H.S. HOLE : DISTANCE BETWEEN MID. AND L.H.S. HOLES :	0.12500	
DISTANCE BETWEEN MID. AND L.H.S. HOLES :	1.64000	
FRACTION OF LOAD TRANSFER BY L.H.S. BOLT	0.00000,	0.00000
PERCENTAGE OF COUNTERSINK DEPTH W.R.T THICKNESS	50.0	
STRESS CONCENTRATION DUE TO PIN DEFLECTION :	1.00	
FASTENER HEAD OR COLLAR FRICTION STRESS :	0.0000	
FAYING SURFACE TRICTION STRESS :	0.0000	
STRESS SPECTRUM		
NO. OF BLOCKS SPECIFIED FOR ANALYSIS : TOTAL NO. OF CYCLES 11 ONE BLOCK : TOTAL NO. OF FLIGHTS IN ONE BLOCK :	100	
TOTAL NO. OF CYCLES IN ONE BLOCK :	7416,500	
TOTAL NO. OF FLIGHTS IN ONE BLOCK :	120.000	
NO. OF BLOCKS IN ONE DESIGN LIFETIME	25.000	
NO. OF FLIGHT HOURS IN ONE DESIGN LICETIME	6000,000	
MAXIMUM PEAK STRUSS OF THE SPECTRUM :	35.750	
NO. OF STRESS LAYERS IN ONE BLOCK	204	

TABLE 3.2.2-6. EXAMPLE 2, METHOD 2, RUN 3 OUTPUT FILE (CONCLUDED)

DAMAGE GROWTH HISTORY BLOCK KMAX-C1 KMAX-C2 DC1/DF DC2/DF PAITIME INITIA2 A2 KMAX-A1 KMAX-A2 A1 DA1/DE DACZOF KN1 KN2 0.000 .000E+00 .000E+00 0.000 .000E+00 .000E+00 0.53200 0.00000 0.0 77.318 .281E+00 .000E+00 .546E+01 .000E+00 0.18800 0.00000 0.000 CRACK INITIATION FOR LOCATION 1 OCCURS AT : CYC = 28.000, STEP = 96, CRACK LENGTHS AT THE TERMINATION OF CRACK INITIATION COMPUTATION : C1 = 1.04417, A1 = 0.18800, C2 = 0.00000, A2 = 0.00000RETARDTION PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION APAOL1 = .122E-77, APCOL1 = .129E+01, RYAOL1 = .000E+00, RYCOL1 = .251E+00 AKOL1 = .000E:00, CKOL1 = .666E+02, ADL1 = .000E+00, COL1 = .104E+01 APAOL2 = .000E+00, APCOL2 = .000E+00, RYAOL2 = .000E+00, RYCOL2 = .000E+00 AKOL2 = .000E+00, CKOL2 = .000E+00, AOL2 = .000F+00, COL2 = .000E+00 RETARDATION PARAMETERS AT THE TERMINATION OF CRACK INITIATION COMPUTATION DMG1 = .379E+00, DMGOL1 =.780E-02, DELDG1 =.574E-02 DMG2 = .000E+00, DMGOL2 =.000E+00, DELDG2 =.000E+00

TABLE 3.2.2-7. EXAMPLE 2, METHOD 2, RUN 4 INPUT FILE

```
EXAMPLE FUN NO. 2 SPECIMEN SUBJECTED TO RANDOMIZED LOADING SPECTRUM
 2024-13 SHEET
2.2374E 09
                                                                0.70
                                                                                                 3.3386 6.2126E 9
                                                                                                                                                                                           0.00
                                                                                                                                                                                                                             2.9783
               116.00
                                                               36.0
                                                                                                         53.0
                                                                                                                                                       2.0
                                                                                                                                                                                                                                                                           -0.99
                                                                                                                                                                                                                                    0.99
            10.426
                                                         -. 366
                                                                                                     ú.887
                                                                                                                                      10700.0
                                                                                                                                                                                       0.022
                                                                                                                                                                                                                                1.000
                                                                                                                                                                                                                                                                                 1.0
                                                                                                                                                                                                                                                                                                                           1.0
            1.044
                                                        8.180
                                                                                                    0.188
                                                                                                                                             0.188
                                                                                                                                                                                        .0500
                                                                                                                                                                                                                                                                         0.050
                                                                                                                                                                                                                                8.180
                                                                                                                                                                                                                                                                                                                   0.188
0.0000E 000.1290E+016.0000E+000.2510E+000.0000E+000.0000E+000.0000E+000.0000E+00
0.0000E+000.0000F+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.000E+000.000E+000.0000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+0000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000
0.8790E+000.7800E-020.5740E-020.0000E+000.0000E+000.0000E+00
                                                                                                                                                                                                                                                                 99.900 50. 1.00
0.00000 .00000
                   0.188
                                                        0.1250
                                                                                                       8.18
                                                                                                                                                  9.82
                                                                                                                                                                              0.00000
                                                                                                                                                                                                                         .00000
               0.0000
                                                        0.1250
                                                                                                         0.00
                                                                                                                                                                                                                         .00000
               0.000
                                                        0.0000
                            96
                                                                                                 1 100 1050 9690
                                                                         ٥
                   0.000
                                                            0.000
                                                                                                    0.000
                                                                                                                                              0.000
                                                                                                                                                                                       0.000
                                                                                                                                                                                                                                0.000
                                                                                                                                                                                                                                                                         0.000
                                                                                                                                                                                                                                                                                                                   0.000
                    120.0
                                                                 25.0
                                                                                                     6000.
```

TABLE 3.2.2-8. EXAMPLE 2, METHOD 2, RUN 4 OUTPUT FILE

```
***** DETAILED DAMAGE GROWTH ANALYSIS PROGRAM
                                                              DAMGRO
 EXAMPLE RUN NO. 2 SPECIMEN SUBJECTED TO RANDOMIZED LOADING SPECTRUM
     * THIS ANALYSIS RESTARTS WITH THE STRESS SPECTRUM AT STEP 96 *
NO. OF SITES TO BE ANALYZED :
                                    CRACK GROWTH =
                                                         2; CRACK INITIATION =
 CORRESPONDING DAMAGE CODES :
                                     CRACK GROWTH = 1050;
                                                             CRACK INTTIATION =
LOAD INTERACTION :
                           GENERALIZED WILLENBORG ET AL--CHANG MODEL
              2024-T3 SHEET
MATERIAL :
    WALKER EQ. CONST. (+R)
                                  C = 0.224E-08, M = 0.700,
                                                                 N = 3.339
    WALKER EQ. CONST. (-R): C = 0.621E-08, M =0.000,
    MAX. K FOR DC/DN THRESHOLD = 2.000
    RETARDATION SHUT-OFF RATIO = 2.300
    +R_CUT-OFF = 0.9900,
                              -R CUT-OFF = -0.9900
    YIELD STRENGTH : 53,000
    ELASTIC MODULUS = 0.1070E+05
    PL. STRESS FRACT. TOUGHNESS = 116.00
    PL. STRAIN FRACT. TOUGHNESS = 36.00
    DAMAGE INDEX FOR CRACK INITIATION = 0.837
    NEUBER MATERIAL CONST. = 0.022
    CRACK INITIATION EQ. CONST.
                                        SF = 10.426, M = .366
    STRESS SEVERITY FACTOR PARAMETERS
      ALPHA = 1.0000, BETA = 1.0000, GAMMA = 1.0000
SPECIFIED DAMAGE CONDITIONS
    INTITIAL CRACK LENGTH OF CRACK NO. 1 :
                                                  1.04400
    FINAL CRACK LENGTH OF CRACK NO. 1 :
                                                  8,18000
    INITIAL CRACK DEPTH OF CRACK NO. 1
                                                  0.18800
    FINAL CRACK DEPTH OF CRACK NO. 1 :
                                                  0.18800
    INITIAL CRACK LENGTH OF CRACK NO. 2 :
                                                  0.05000
    FINAL CRACK LENGTH OF CRACK NO. 2 :
                                                  8.18000
    INITIAL CRACK DEPTH OF CRACK NO. 2 .
                                                  0.05000
    FINAL CRACK DEPTH OF CRACK NO. 2
                                                  0.18800
    PARAMETERS FROM PREVIOUS CRACK GROWTH HISTORY
       APAUL1 = .127E-77, APCUL1 = .129E+01, RYAUL1 = .000E+00, RYCUL1 = .251E+00
APUL1 = .000E+00, CKUL1 = .333E+02, APUL1 = .000E+00, CUL1 = .104E+01
    APAGL2 = .000E+00, APCGL2 = .000E+00, RYAGL2 = .000E+00, RYCH2 = .000E+00

AKGL2 = .000E+00, CEGL2 = .000E+00, AGL2 = .000E+00, CGL2 = .000E+00

PARAMETERS FROM PERVIOUS CRACK INITIATION HISTORY
         PMG4 = .877[+00, DMG0L4 = .700[ 02, DLL[:1 = .574[ 02 DMG2 = .000[+00, DMG0L2 = .000[+00, DELTH2 = .000[+00
```

TABLE 3.2.2-8. EXAMPLE 2. METHOD 2. RUN 4 OUTPUT FILE (CON'T.)

```
COMPONENT GEOMETRY :
    THICKNESS OF PLATE :
                                                             0.18800
    RADIUS OF MID. HOLE :
                                                             0.12500
    RATIO OF PLATE LENGTH TO HOLE DIAMETER, EZD :
                                                            99.89999
    DISTANCE RETWEEN MID. HOLE AND R.H.S. EDGE : DISTANCE BETWEEN MID. HOLE AND L.H.S. EDGE :
                                                             8.18060
                                                             9.82000
    FRACTION OF LOAD TRANSFER BY MID. BOLT :
                                                             0.90000,
                                                                        0.00000
    RADIUS OF THE R.H.S. HOLF
                                                             0.00000
    DISTANCE RETWEEN MID. AND R.H.S. HOLES :
                                                             0.00000
    FRACTION OF LOAD TRANSFER BY R.H.S. BOLT :
                                                             0.00000,
                                                                         0.00000
    RADIUS OF THE L.H.S. HOLE :
                                                             0.12500
    DISTANCE BETWEEN MID. AND L.H.S. HOLES :
                                                             1.64000
    FRACTION OF LOAD TRANSFER BY L.H.S. BULT :
                                                             0.00000,
                                                                         0.00000
    PERCENTAGE OF COUNTERSINK DEPTH W.R.T THICKNESS : 50.0
    STRESS CONCENTRATION DUE TO PIN DEFLECTION :
                                                             1.00
    FASTENER HEAD OR COLLAR FRICTION STRESS :
                                                             0.0000
    FAYING SURFACE FRICTION STRESS :
                                                             0.0000
STRESS SPECTRUM
    NO. OF BLOCKS SPECIFIED FOR ANALYSIS :
                                                             100
    TOTAL NO. OF CYCLES IN ONE BLOCK : TOTAL NO. OF FLIGHTS IN ONE BLOCK :
                                                             7416,500
                                                             120.000
    NO. OF BLOCKS IN ONE DESIGN LIFETIME :
                                                               25.000
    NO. OF FLIGHT HOURS IN ONE DESIGN LIFETIME ...
MAXIMUM PEAK STRESS OF THE SPECTRUM :
                                                            6000.000
                                                              35.750
    NO. OF STRESS LAYERS IN ONE BLOCK
                                                             204
UNSTABLE BREAK-THROUGH OF CRACK NO. 2 OCCURS AT
```

0.0, STEP = 96, BLOCK = 1, DEPTH ≈ 0.05000, AKMAXS= 75.65

TABLE 3.2.2-8. EXAMPLE 2, METHOD 2, RUN 4 OUTPUT FILE (CONCLUDED)

```
DAMAGE GROWTH HISTORY
BLOCK
                                                                                       INITIAL
               Cf
                          C2
                                  KMAX-C1 KMAX-C2
                                                             DC1/DF
                                                                           DC2/DF
                                                                                                     INITIA2
               Αí
                          A2
                                  KMAX-A1 KMAX-A2
                                                            DA1/DF
                                                                           DA2/DE
                                                                                           KN1
                                                                                                         KN2
                                              60.363 .000E+00
75.652 .000E+00
                                                                       .000E+00
         1.04400 0.05000
                                                                                     .879E+00
                                                                                                    .000E+00
                                    83.509
                                                                                      .000E+00
         0.18800 0.05000
                                     0.000
                                                                       .000E+00
                                                                                                    .000E+00
UNSTABLE GROWTH OF CRACK NO. 2 OCCURS AT:
CYC = 1.0, STEF = 1, BLO
THE OTHER CRACK LENGTH = 2.22758
                                        BLOCK = 2, CRACK LENGTH = 1.42785, CKMAX3=116.00
TERMINATE DAMAGE COMPUTATION
  1.0 2.20552 1.22989 112.207 113.402 .968E-02 0.18800 0.18800 0.000 0.000 .000E+00
                                                                       .983E-02
                                                                                     .879E+00
                                                                                                    .000E+00
                                                                        .115E-02
                                                                                     .000E+00
                                                                                                    .000E+00
     RETARDTION PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION :
        APAOL1 = .127E-77, APCOL1 = .286E+01, RYAOL1 = .000E+00, RYCOL1 = .634E+00 AKOL1 = .000E+00, CKOL1 = .106E+03, AOL1 = .000E+00, COL1 = .223E+01 APAOL2 = .000E+00, APCOL2 = .209E+01, EYAOL2 = .000E+00, RYCOL2 = .672E+00 AKOL2 = .000E+00, CKOL2 = .109E+03, AUL2 = .000E+00, COL2 = .141E+01
     RETARDATION PARAMETERS AT THE TERMINATION OF CRACK INITIATION COMPUTATION :
          DMG1 = .879E+00, DMGOL1 = .780E-02, DELDG1 = .574E 02
DMG2 = .000E+00, DMGOL2 = .000E+00, DELDG2 = .000E+00
```

EXAMPLE 3: STRINGER SECTION SUBJECTED TO CONSTANT AMPLITUDE LOADING

GEOMETRY:

MATERIAL:

2024-T351 EXTRUSION

LOADING SPECTRUM:

CONSTANT AMPLITUDE

 $\sigma_{\text{max}} = 17.0 \text{ KSI}$ $\sigma_{\text{min}} = 1.70 \text{ KSI}$

REF. PAGES 92 THROUGH 107

TABLE 3.3.1. EXAMPLE 3, NETHOD 1 SUMMARY TABLE

REF. PAGES 93 THROUGH 99

a ₁ (IN)	a ₂ (IN)	a ₃ (IN)	α ₄ (IN)	LIFE (CYCLES)	ROUTINE GROWTH	RUN NO.
.050	0	0	0	0	2020	1
.056	0	0	Ó	2020	2020	i
.066	0	0	0	4000	2020	i
.080	0	0	0	6000	2020	i
.101	0	0	0	8000	2020	i
131	0	0	0	10000	2020	'n
.181	0	0	0	12000	2020	i
. 248	0	0	0	14000	2020	i
. 336	0	0	0	16000	2020	i
.447	0	0	0	18000	2020	i
. 567	0	0	0	20000	2020	i
.700	0	0	0	22000	2020	i
.873	0	. 265	0	23878	2050	2
1.089	0		0	25878	2050	2
1.396	0	. 304	0	26739	2050	2

NO. OF CYCLES TO FAILURE = 26,739 CYCLES

ERROLD ADDROCK TAXBERS CONTROL CONTROL

TABLE 3.3.1-1. EXAMPLE 3, METHOD 1, RUN 1 INPUT FILE

EXAMPLE NO. 3 STRINGER SPECIMEN SUBJECTED TO CONSTANT AMLITUDE LOADING 2624-T351 EXTRUSION 0.65 0.1600E 09 4.554 0.230E-08 1.00 3.115 0.99 2.3 -0.99 58.00 36.0 53.3 2.0 10700.0 1.0 1.0 0.872 1.0 10.4260 ~.3660 0.000 0.188 0.000 0.000 0.000 0.050 .050 1.390 0.0000E+000.0000E+000.0000E+000.0000F+000.0000E+000.000E+ 0.0000E-000.0000E+000.000E+000.0000E+000.0000E+000.0000E+000.000E+000.000E+000.000E+000.0000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.00E+000.000E+000.00 0.0000E+000.0000E+000.0000E+000.0000E-000.0000E+000.0000E+00 0:500 0.1250 99.4999 0.0 1.00 0.188 2.14 0.00000 0.00000 .00000 0.1250 0.0000 -1.640 0.000 0.000 0.000 0.000 0.000 0.0000 0 100 2010 0000 0 00 0 1.226 1.414 0.462 1.000 0.2658 .0000 0.0000 0.000 000.0 90.0 00000.

TABLE 3.3.1-2. EXAMPLE 3, METHOD 1, RUN 1 OUTPUT FILE

***** DETAILED DAMAGE GROWTH ANALYSIS PROGRAM D A M G R O *****

EXAMPLE NO. 3 STRINGER SPECIMEN SUBJECTED TO CONSTANT AMPLITUDE LOADING

* THIS ANALYSIS STARTS AT THE BEGINNING OF THE STRESS SPECTRUM *

NO. OF SITES TO BE ANALYZED: CRACK GROWTH = 1; CRACK INITIATION = 0 CORRESPONDING DAMAGE CODES: CRACK GROWTH = 2010; CRACK INITIATION = 0

LOAD INTERACTION : NONE

MATERIAL : 2024-T351 EXTRUSION WALKER EQ. CONST. (+R): C = 0.160E-07, M =0.650, N =4.554 WALKER EQ. CONST. (-R): C = 0.230E-08, M =1.000, N =3.115 MAX. K FOR DC/DN THRESHOLD = 2.000 RETARDATION SHUT-OFF RATIO = 2.300 +R CUT-OFF = 0.9900, -R CUT OFF = -0.9900 YIELD STRENGTH : 53.300 ELASTIC MODULUS = 0.1070E+05 PL. STRESS FRACT. TOUGHNESS = 58.0 PL. STRAIN FRACT. TOUGHNESS = 36.00 58.00 DAMAGE INDEX FOR CRACK INITIATION = 0.872 NEUBER MATERIAL CONST. = 0.022 SF = 10.426, M = -.366CRACK INITIATION EQ. CONST. STRESS SEVERITY FACTOR PARAMETERS ALPHA = 1.0000, BETA = 1.0000, GAMMA = 1.0000

SPECIFIED DAMAGE CONDITIONS

INITIAL CRACK LENGTH OF CRACK NO. 1 FINAL CRACK LENGTH OF CRACK NO. 1 1.39000 INITIAL CRACK DEPTH OF CRACK NO. 1 : 0.05000 FINAL CRACK DEPTH OF CRACK NO. 1 0.18800 INITIAL CRACK LENGTH OF CRACK NO. 2 0.00000 FINAL CRACK LENGTH OF CRACK NO. 2 0,50000 INITIAL CRACK DEPTH OF CRACK NO. 2 0.00000 FINAL CRACK DEPTH OF CRACK NO. 2 0.00000 PARAMETERS FROM PREVIOUS CRACK GROWTH HISTORY

APAOL1 = .000E+00, APCOL1 = .000E+00, RYAOL1 = .000E+00, RYCOL1 = .000E+00

AKOL1 = .000E+00, CKOL1 = .000E+00, AOL1 = .000E+00, COL1 = .000E+00

APAOL2 = .000E+00, APCOL2 = .000E+00, RYAOL2 = .000E+00, RYCOL2 = .000E+00

AKOL2 = .000E+00, EROL2 = .000E+00, AOL2 = .000E+00, COL2 = .000E+00

PARAMETERS FROM PREVIOUS CRACK INITIATION HISTORY

DMG1 = .000E+00, DMGH.1 = .0001+00, DELOG1 = .000E+00
DMG2 = .000E+00, DMGH.2 = .000E+00, DELOG2 = .000E+00

TABLE 3.3.1-2. EXAMPLE 3, METHOD 1, RUN 1 OUTPUT FILE (CON'T.)

```
COMPONENT GEOMETRY
     THICKNESS OF PLATE :
                                                                           0.18800
     RADIUS OF MID. HOLE
                                                                           0.12500
     RATIO OF PLATE LENGTH TO HOLE DIAMETER, E/D :
                                                                          99.97989
     DISTANCE BETWEEN MID. HOLE AND R.H.S. EDGE :
                                                                           2.14000
     DISTANCE BETWEEN MID. HOLE AND L.H.S. EDGE :
                                                                          0.50000
     FRACTION OF LOAD TRANSFER BY MID. BOLT
                                                                          0.00000,
                                                                                        0.00000
                                                                          0.12500
     RADIUS OF THE R.H.S. HOLE
     DISTANCE BETWEEN MID. AND R.H.S. HOLES
                                                                          1.64000
     FRACTION OF LOAD TRANSFER BY R.H.S. BOLT RADIUS OF THE L.H.S. HOLE
                                                                          0.00000,
                                                                                        0.00000
                                                                           0.00000
     DISTANCE BETWEEN MID. AND L.H.S. HOLES
                                                                          0.00000
     FRACTION OF LOAD TRANSFER BY L.H.S. BOLT :
                                                                           0.00000, 0.00000
     PERCENTAGE OF COUNTERSINK DEPTH W.R.T THICKNESS: 0.0

STRESS CONCENTRATION DUE TO PIN DEFLECTION: 1.60

FASTENER HEAD OR COLLAR FRICTION STRESS: 0.000
                                                                          0.0000
     FASTENER HEAD OR COLLAR FRICTION STRESS :
     FAYING SURFACE FRICTION STRESS :
                                                                           0.0000
USER DEFINED VARIABLES :
     VARIABLE 1 : 1.2260
VARIABLE 2 : 1.4140
VARIABLE 3 : 0.4620
VARIABLE 4 : 1.0000
VARIABLE 5 : 0.2658
VARIABLE 6 : 0.0000
VARIABLE 7 : 0.0000
VARIABLE 8 : 0.0000
STRESS SPECTRUM :
     NO. OF BLOCKS SPECIFIED FOR ANALYSIS:
TOTAL NO. OF CYCLES IN ONE BLOCK
TOTAL NO. OF FLIGHTS IN ONE BLOCK:
NO. OF BLOCKS IN ONE DESIGN LIFETIME
                                                                           100
                                                                       2000.000
                                                                            0.000
                                                                             0.000
     NO. OF FLIGHT HOURS IN ONE DESIGN LIFETIME MAXIMUM PEAK STRESS OF THE SPECTRUM:
                                                                             0.000
                                                                            17.000
     NO. OF STRESS LAYERS IN ONE BLOCK
```

 STRESS LAYERS IN ONE BLOCK
 STEP SIGMA-MAX SIGMA-MIN CYCLES
 STEP SIGMA-MAX SIGMA-MIN CYCLES
 STEP SIGMA-MAX SIGMA-MIN CYCLES

 1 17,000
 1.700 1000.000
 2 17,000
 1.700 1000.000

TABLE 3.3.1-2. EXAMPLE 3, METHOD 1, RUN 1 OUTPUT FILE (CON'T.)

	F 2 2 5 5 5 7		nu. u	K O W I	11 11 13	10 6 1	*****	
BLOCK	C1	C2	KMAX-C1	KMAX-C2	DC1/DF	I C2/DF	INITIA	INITIA2
	A1	A2	KMAX-A1	KMAX-A2	DA1/DF	DA2/DF	KN1	KN2
0.0	0.05000	0.00000	8.892	0.000	.000E+00	.000E+00	.0000+00	.000E+00
	0.05000	0.00000	11.144	0.000	.000E+00	.000E+00	.000E+00	.000E+00
1.0	0 .05 629	0.00000	9. 900	0.000	.315E-05	.000E+00	.000E+00	.000E+00
	0.06504	0.00000	11.627	0.000	.752E-05	.000E+00	.000E+00	.000E+00
2.0	0.06611	0.00000	10.802	0.000	.491E-05	.000E+00	.000E+00	.000E+00
	0.08344	0.00000	12.171	0.000	.920E-05	.000E+00	.000E+00	.000E+00
3.0	0.08041	0.00000	11.684	0.000	.715E-05	.000E+00	.000E+00	.000E+00
	0.10629	0.00000	12.774	0.000	.114E-04	.000E+00	.000E+00	.000E+00
4.0	0.10084	0.00000	12.647	0.000	.102E-04	.000E+00	.000E+00	.000E+00
	0.13484	0.00000	13.415	0.000	.143E-04	.000E+00	.000E+00	.000E+00
STABLE BREAK-THROUGH OF CRACK NO. 1 OCCURS AT :								
CYC= 887.0,								
CRACK	DEPTH IS	SET EQUAL	. TO PLATE	THICKNES	0.1880	INCHES		
5.0	0.13082	0.00000	13.827	0.000	.150E-04	.000E+00	.000E+00	.000E+00
	0.17055	0.00000	14.088	0.000	.179E-04	.000F+00	.000E+00	.000E+00
6.0	0.18029	0.00000	15.384	0.000	.247E-04	00:1000.	.000E+00	.000E+00
	0.18800	0.00000	0.000	0.000	.873E-05	.0001100	.000E+00	.009E+00
7.0	0.24819	0.00000	16.248	0.000	.340E-04	. 0001 +00	.000E+00	.000E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.000E+00	.000E+00
8.0	0.33618	0.00000	17.216	0.000	.440E-04	.000E+00	.000E+00	.000E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.000E+00	.000E+00
9.0	0.44788	0.00000	17.947	0.000	.558E-04	. 000F. +00	.000E+00	.000E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.000E+00	.000E+00
10.0	0.56758	0.00000	17.771	0.000	.599E-04	.000E+00	.000E+00	.000E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.000E+00	.000E+00
11.0	0.70011	0.00000	18.917	0.000	.663E-04	.000E+00	.000E+00	.000E+00
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.000E+00	.000E+00

TABLE 3.3.1-2. EXAMPLE 3, METHOD 1, RUN 1 OUTPUT FILE (CONCLUDED)

```
CRACK NO. 1 EXCEEDS APPLICABLE RANGE OF SUBROUTINE K2010 AT : CYC = 878.0, STEP = 2, BLOCK = 12
CHANGE TO K2050 OR K2060. TERMINATE COMPUTION
```

CRACK LENGTHS AT THE TERMINATION OF CRACK INITIATION COMPUTATION . C1 = 0.87354, A1 = 0.18800, C2 = 0.00000, A2 = 0.00000

RETARDTION PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION

APAOL1 = .000E+00, APCOL1 = .000E+00, RYAOL1 = .000E+00, RYCOL1 = .000E+00

AKOL1 = .000E+00, CKOL1 = .000E+00, AOL1 = .000E+00, COL1 = .000E+00

AFAOL2 = .000E+00, APCOL2 = .000E+00, RYAOL2 = .000E+00, RYCOL2 = .000E+00

AKOL2 = .000E+00, CKOL2 = .000E+00, AOL2 = .000E+00, COL2 = .000E+00

RETARDATION PARAMETERS AT THE TERMINATION OF CRACK INITIATION COMPUTATION

DMG1 = .000E+00, DMGOL1 = .000E+00, DELDG1 = .000E+00

DMG2 = .000E+00, DMGOL2 = .000E+00, DELDG2 = .000E+00

TABLE 3.3.1-3. EXAMPLE 3. METHOD 1. RUN 2 INPUT FILE

EXAMPLE NO. 3 STRINGER SPECIMEN SUBJECTED TO CONSTANT AMLITUDE LOADING 2024-T351 EXTRUSION 0.1600E-09 0.6 4.554 0.230E~08 53,3 2.0 0.45 1.00 0.99 58.00 2.3 -0.99 36.0 10.4260 -.3650 0.872 10700.0 0.022 1.0 1.0 1.390 0.188 0.265 2.250 0.183 .866 0.188 0.188 0.0000E+000.000E+000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+00000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+000000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+00000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+0000.00E+00000.00E+00000.00E+00000.00E+00000.00E+000000.00E+000000.00E+000000 0.0000E-000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+00 0.0000E+000.0000E+000.0000E+000.0000E-000.0000E+000.0000E+00 0.1250 0.500 0.00000 99.9999 0.0 1.00 0.188 0.00000 2.14 0.1250 0.0000 1.640 0.000 0.000 0.000 0.000 .00000 0.000 0.0000 Α 60 2 0 0 100 2050 0000 2.256 0.581 0.416 0.289 .0000 0.1880 0.000 000.0 90.0 00000.

TABLE 3.3.1-4. EXAMPLE 3, METHOD 1, RUN 2 OUTPUT FILE

***** DETAILED DAMAGE GROWTH ANALYSIS PROGRAM EXAMPLE NO. 3 STRINGER SPECIMEN SUBJECTED TO CONSTANT AMPLITUDE LOADING

* THIS ANALYSIS STARTS AT THE BEGINNING OF THE STRESS SPECTRUM *

NO. OF SITES TO BE ANALYZED : CPACK GROWTH = 2; CRACK INITIATION = CORRESPONDING DAMAGE CODES : CRACK GROWTH = 2050; CRACK INITIATION =

LOAD INTERACTION : NUNE

MATERIAL : 2024-T351 EXTRUSION WALKER EQ. CONST. (+R) : C = 0.160E-09, M =0.650, WALKER EQ. CONST. (-R) : C = 0.230E-08, M =1.000, N = 4.554MAX. K FOR DC/DN THRESHOLD 2,000 RETARDATION SHUT-OFF RATIO = 2.300 +R CUT-OFF = 0.9900, -R CUT-OFF = -0.9900 YIELD STRENGTH : 53.300 ELASTIC MODULUS = 0.1070F+05 PL. STRESS FRACT. TOUGHNESS = 58.6 FL. STRAIN FRACT. TOUGHNESS = 36.00 58.00 DAMAGE INDEX FOR CRACK INITIATION = NEUBER MATERIAL CONST. = 0.022 CRACK INITIATION EQ. CONST. : SF = 10.426, M =-.366

SPECIFIED PAMAGE CONDITIONS

STRESS SEVERITY FACTOR PARAMETERS

INITIAL CRACK LENGTH OF CHACK NO. 1 FINAL CRACK LENGTH OF CRACK NO. 1 1.39000 INTTIAL CRACK DEPTH OF CRACK NO. 1 0.18300 FINAL CRACK DEPTH OF CRACK NO. 1 0.18800 INITIAL CRACK LENGTH OF CEACK NO. 2 0.26500 FINAL CRACK LENGTH OF CRACK NO. 2 2.25000 INITIAL CRACK DEPTH OF CRACK NO. 2 FINAL CRACK DEPTH OF CRACK NO. 2 0.18800 0.18800 PARAMETERS FROM PREVIOUS CRACK GROWTH HISTORY

ALPHA = 1.0000, RETA = 1.0000, GAMMA = 1.0000

APAOL1 = .000E+00, APCOL1 = .000E+00, RYAUL1 = .000F+00, RYCOL1 = .000E+00 AKOL1 = .000E+00, CKOL1 = .000E+00, AOL1 = .000E+00, COL1 = .000L+00
AFAOL2 = .000F+00, AFCOL1 = .000F+00, RYAOL2 = .000F+00, RYAOL2 = .000F+00, CKOL2 = .000F+00, AOL2 = .000F+00, CKOL2 = .000F+00 PARAMETERS FROM PREVIOUS PRACK INITIATION HISTORY

PMG1 = .000E+00, DMG0E1 =.000E+00, DELEG1 .000E+00
DMG2 = .000E+00, DMG0E2 =.000E+00, DELEG2 .000E+00

TABLE 3.3.1-4. EXAMPLE 3, METHOD 1, RUN 2 OUTPUT FILE (CON'T.)

```
COMPONENT GEOMETRY
     THICKNESS OF PLATE :
                                                               0.18800
    RADIUS OF MID. HOLF
                                                               0.12500
    RATIO OF PLATE LENGTH TO HOLE DIAMETER, EZD
                                                              99,99989
    DISTANCE BETWEEN MID. HOLE AND R.H.S. EDGE : DISTANCE BETWEEN MID. HOLE AND L.H.S. EDGE :
                                                               2.14000
                                                               0.50000
    FRACTION OF LOAD TRANSFER BY MID. BOLT
                                                              0.00000.
                                                                          0.00000
    RADIUS OF THE M.H.S. HOLE
                                                               0.12500
    DISTANCE ACTWIEN MID. AND R.H.S. HOLES
                                                               1.64000
    FRACTION OF LOAD TRANSFER BY R.H.S. BOLT :
                                                               0.00000,
                                                                          0.00000
    RADIUS OF THE L.H.S. HOLE
                                                               0.00000
    DISTANCE RETWEEN MID. AND L.H.S. HOLES
                                                               0.00000
    FRACTION OF LOAD TRANSFER BY L.H.S. BOLT
                                                              0.00000.
                                                                          0.00000
    PERCENTAGE OF COUNTERSING DEPTH W.R.T THICKNESS
                                                              0.0
    STRESS CONCENTRATION DUE TO PIN DEFLECTION :
FASTENER HEAD OR COLLAR FRICTION STRESS
                                                              1.00
                                                              0.0000
    FAYING SURFACE FRICTION STRESS
                                                              0.0000
USER PEFINED VARIABLES :
    VARIABLE 1 ..
                            2,2500
    VARIABLE 2
                            0.0000
    VARTABLE 3 1
                            0.5810
    VARIABLE 4 :
                            0.4160
    VARIABLE 5
                            0.2890
    VARIABLE 6
                            0.0000
                            0.1800
    VARIABLE 8
                            0.0000
STREES SPECTRUM
    NO. OF BLOCKS SPECIFIED FOR ANALYSIS
                                                              100
    TOTAL NO. OF CYCLES IN ONE BENCK
                                                             2000,000
    TAL NO. OF CLIGHTS IN ONE BESIGN LIFETIME.
                                                                0.000
                                                                0.000
    NO. OF FLIGHT HOURS IN ONE DESIGN LITETIME
                                                                0.000
    MAXIMUM PEAK CIRESS OF THE STECTROM
NO. OF SIRESS LAYERS IN ONE 14 OCK
                                                               17,000
```

CERTARA TESTERIOR

TABLE 3.3.1-4. EXAMPLE 3, METHOD 1, RUN 2 OUTPUT FILE (CONCLUDED)

DAMAGE GROWTH HISTORY INITIA2 BLOCK C2 KMAX-C1 KMAX~C2 DC2ZDE INITIAL C1 DC1/DF A1 A2 KMAX-A1 KMAX-A2 DA1/DF DA2/DF KNI FN2 19.252 .000E+00 009E+00 , ⇔oora oo .0001 +00 0.88600 0.26500 13,435 0.0 .000E400 .000E+00 .0001+00 0.18800 0.13800 0.000 0.000 .000E+00 UNSTABLE GROWTH OF CRACK NO. 1 OCCURS AT: CYC = 861.0, STEP = 1, BLOCK = 2, CRACK LENGTH = 1.39664, CKHAYS= 70.35 THE OTHER CRACK LENGTH = 0.30423 TERMINATE DAMAGE COMPUTATION 1.0 1.03907 **0.30423** 0.18800 **0.1**8800 .112E-03 .196E-04 .000E+00 .000E+00 22.419 14.870 0.000 0.000 .000E+00 .000E+00 .000E+00 .000E+00 RETARDITION PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION AFADL1 = .000E+00, AFCOL1 = .000E+00, RYADL1 = .000E+00, RYCOL1 = .000E+00 AKOL1 = .000E+00, CKOL1 = .000E+00, ADL1 = .000E+00, COL1 = .000E+00 APADL2 = .000E+00, APCOL2 = .000E+00, RYAOL2 = .000E+00, RYCOL1 = .000E+00 AKOL2 = .000E+00, CKOL2 = .000E+00, ADL2 = .000E+00, COL2 = .000E+00 RETARDATION PARAMETERS AT THE TERMINATION OF CRACK INITIATION COMPUTATION DMG1 = .000E+00, DMGDL1 =.000E+00, DELDG1 =.000E+00 DMG2 = .000E+00, DMGOL2 =.000E+00, DELDG2 =.000E+00

THE TAXABLE COMMISSION TO THE PROPERTY OF THE

TABLE 3.3.2. EXAMPLE 3, METHOD 2 SUMMARY TABLE (REF. PAGES 101 THROUGH 107)

а 1	α ₂	<i>a</i> 3	α 4	LIFE	RO	RUN	
(IN)	(IN)	<u>(IN)</u>	(IN)	(CYCLES)	GROWTH	INITIATION	NO.
.050	0	0	0	0	2020	1010	1
.056	0	0	0	2020	2020	1010	j
.066	0	0	0	4000	2020	1010	i
.080	0	0	0	6000	2020	1010	ì
.101	0	0	0	8000	2020	1010	i
.131	0	0	0	10000	2020	1010	i
.181	0	0	0	12000	2020	1010	i
. 248	0	0	0	14000	2020	1010	i
.336	0	0	0	16000	2020	1010	i
.447	0	0	0	18000	2020	1010	i
. 567	0	0	0	20000	2020	1010	i
.700	0	0	0	22000	2020	1010	i
.873	0	. 265	0	23878	2050	1010	,
1.089	0		0	25878	2050	1010	2
1.396	0	.304	0	26739	2050	1010	2

PROGRAMME RESIDENCE RESIDENCE AND SOME RESIDENCE PROGRAMME RESIDENCE RESIDEN

NO. OF CYCLES TO FAILURE = 26,739 CYCLES

TABLE 3.3.2-1. EXAMPLE 3, METHOD 2. RUN 1 INPUT FILE

```
TRAMPLE NO. 3 STRINGER SPECIMEN SUBJECTED TO CONSTANT AMELITUDE LOADING
 2024-1351 EXTRUSION
                                                                                                                                                                                  4.554 0.230E-08
53.3 2.0
0.872 10700.0
 0.1400E-09
                                                                                                                  0.65
                                                                                                                                                                                                                                                                                                                                              1.00
                                                                                                                                                                                                                                                                                                                                                                                                              0.99
                                    58.00
                                                                                                                     36.0
                                                                                                                                                                                                                                                                                                                                            2.3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -0.99
                        10,4260
                                                                                                         -.3660
                                                                                                                                                                                                                                                                                                                                                                                                                                     1.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                1.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.000
                                       .050
                                                                                                       1.390
                                                                                                                                                                                        0.050
                                                                                                                                                                                                                                                                   0.138
                                                                                                                                                                                                                                                                                                                                             0.000
                                                                                                                                                                                                                                                                                                                                                                                                                      0.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.000
 0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00
 0.0000E-000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.000E+000.0000E+000.0000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.000E+000.
0.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.0000E+000.00000 0.00000 0.00000
                                   0.188
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    99,9999 0.0 1.00
                              0.1250
                                                                                                       0.0000
                                                                                                                                                                                        1.640
                                                                                                                                                                                                                                                                   0.000
                                                                                                                                                                                                                                                                                                                                            0.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       .00000
                                                                                                                                                                                                                                                                                                                                                                                                                      0.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 0.000
                             0.000
                                                                                                      0.0000
                             0 00
                                                                                                                                                                           0 100 2010 1010
                                                                                                                                          2
                                                                                                      1.414
                                                                                                                                                                                        0.462
                                                                                                                                                                                                                                          1.000
                                                                                                                                                                                                                                                                                                                                       0.2658
                                                                                                                                                                                                                                                                                                                                                                                                                        .0000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  0.000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             0.000
                                     000.0
                                                                                                                     00.0
                                                                                                                                                                                 00000.
```

TABLE 3.3.2-2. EXAMPLE 3, METHOD 2, RUN 1 OUTPUT FILE

***** DETAILED DAMAGE GROWTH ANALYSIS PROGRAM D A M G R O ****

EXAMPLE NO. 3 STRINGER SPECIMEN SUBJECTED TO CONSTANT AMPLITUDE LOADING

* THIS ANALYSIS STARTS AT THE BEGINNING OF THE STRESS SPECTRUM *

NO. OF SITES TO BE ANALYZED: CRACK GROWTH = 1; CRACK INITIATION = 2 CORRESPONDING DAMAGE CODES: CRACK GROWTH = 2010, CRACK INITIATION = 1010

LOAD INTERACTION : NONE

```
MATERIAL :
              2024-T351 EXTRUSION
    WALKER EQ. CONST. (+R) : C = 0.160E-09, M =0.650, N =4.554
WALKER EQ. CONST. (-R) : C = 0.230E-08, M =1.000, N =3.115
    MAX. K FOR DC/DN THRESHOLD = 2,000
    RETARDATION SHUT-OFF RATIO = 2.300
    +R CUT-OFF = 0.9900,
                               -R CUT-OFF = -0.9900
    YIELD STRENGTH : 53.300
ELASTIC MODULUS = 0.1070E+05
    FL. STRESS FRACT. TOUGHNESS =
    PL. STRAIN FRACT. TOUGHNESS = 36.00
    DAMAGE INDEX FOR CRACK INITIATION = 0.872
    NEUBER MATERIAL CONST. = 0.022
    CRACK INITIATION EQ. CONST.
                                        SF = 10.426, M = .366
    STRESS SEVERITY FACTOR PARAMETERS :
       ALPHA = 1.0000, BETA = 1.0000, GAMMA = 1.0000
```

SPECIFIED DAMAGE CONDITIONS INITIAL CRACK LENGTH OF CRACK NO. 1 : FINAL CRACK LENGTH OF CPACK NO. 1 1.39000 INITIAL CRACK DEPTH OF CRACK NO. 1 : 0.05000 FINAL CRACK DEPTH OF CRACK NO. 1 : 0.18800 INITIAL CRACK LENGTH OF CHACK NO. 2 : 0.00000 0,00000 FINAL CRACK LENGTH OF CRACK NO. 2 -INITIAL CRACK DEPTH OF CRACK NO. 2 0,00000 FINAL CRACK DEFITH OF CRACT NO. 2 : 0.00000 PARAMETERS FROM PREVIOUS CHACK GROWTH HISTORY AFADL1 = .000E+00, AFCUL1 = .000E+00, ETADL1 = .000E+00, AGL1 .0001 +00, RYCHI = .0001 000. .000E+00, - U0L1 = .004 100 ACADL2 = .000E(00, AFCUL2 = .000E(00, RYADL2 = .000E(00, RYFRE2 = .000E(00, ACC) = .000E(00, RYFRE2 = .000E(00, ACC) = .000E(00, RYFRE2 = .000E(00, ACC) = .000

DAGE = .000E+00, PMGRE = 000E+00, PERCE = .000E+00PRCE = .000E+00, PMGRE = .000E+00, PERCE = .000E+00

TABLE 3.3.2-2. EXAMPLE 3, METHOD 2, RUN 1 OUTPUT FILE (CON'T.)

```
COMPONENT GEOMETRY
                                                              0.18800
    THICKNESS OF PLATE :
                                                              0.12500
    RADIUS OF MID. HOLE :
                                                             99.99989
    RATIO OF PLATE LENGTH TO HOLE DIAMETER, E/D DISTANCE BETWEEN HID. HOLE AND E.H.S. EDGE
                                                             2.14000
    DISTANCE BETWEEN MID. HOLE AND L.H.S. EDGE :
                                                              0.50000
                                                                          0.00000
                                                              0.00000.
    FRACTION OF LOAD TRANSFER BY MID. BOLT :
                                                              0.12500
    RADIUS OF THE R.H.S. HOLE
    DISTANCE BETWEEN MID. AND R.H.S. HOLDS
                                                              1.64000
    FRACTION OF LOAD TRANSFER BY R.H.S. BOLT :
                                                              0.00000,
                                                                          0.00000
                                                              0.00000
    RADIUS OF THE L.H.S. HOLE
                                                               0.00000
    DISTANCE BETWEEN MID. AND L.H.S. HOLES
                                                               0.00000,
                                                                         0.00000
    FRACTION OF LOAD TRANSFER BY L.H.S. HOLT
     PERCENTAGE OF COUNTERSING DEPTH W.R.T THICKNESS : 0.0
     STRESS CONCENTRATION DUE TO DIN DEFLECTION :
                                                              1.00
                                                               0.0000
     FASTENER HEAD OR COLLAR FRICTION STRESS
    FAYING SURFACE FRICTION STRESS .
                                                               0.0000
USER DEFINED VARIABLES :
                            1,2260
     VARTABLE 1 :
    VARIABLE 2 : VARIABLE 3 :
                            1.4140
                           0.4620
                            1.0000
     VARIABLE 4
     VARIABLE 5
                            0.2658
                            0.0000
                             0.0000
     VARIABLE 7 :
                            0.0000
     VARIABLE 8 :
STRESS SPECTRUM
     NO. OF BLOCKS SPECIFIED FOR ANALYSIS :
                                                               100
                                                              2000.000
     TOTAL NO. OF CYCLES IN ONE BLOCK :
TOTAL NO. OF FLIGHTS IN ONE BLOCK :
                                                                0.000
                                                                 0.000
     NO. OF BLOCKS IN OUR DESIGN LIFETIME :
     NO. OF FLIGHT HOURS IN ONE BUSIGN LIFETIME :
MAXIMUM FEAK STRESS OF THE SPECIFUM
NO. OF STRESS LAYERS IN ONE BUCK
                                                                0.000
                                                                17,000
```

TABLE 3.3.2-2. EXAMPLE 3, METHOD 2, RUN 1 OUTPUT FILE (CON'T.)

	*****	DAM	A G E G	ROWI	н н г 2	1 U F Y	*****	
RLOCK	Cf	CO	KMAX-C1	KMAX~C2	DC1/DF	DC2/DF	INITIA	INITIA
	A1	A2	KMAX-A1	KMAX~A2	DA17ኮሮ	DAZZDE	KN1	KNP
0.0	0.05000	0.00000	8.872	0.000	.000E+00	.000E+00	.254E-02	.179E-02
	0.05000	0.00000	11.144	0.000	.000E+00	.00000+00	.264E+01	.248E+01
1.0	0.05629	0.00000	9.900	0.000	.315E-05	.000E+00	.778E-02	.537E-02
	0.06504	0.00000	11.627	0.000	.752E-05	.000E+00	.266E+01	.248E+01
2.0	0.06611	0.00000	10.802	0.000	.491E~05	.000[]+00	.133C-01	.895E-02
	0.08344	0.00000	12.171	0.000	.920E-05	.000E+00	.2690+01	.248F.+01
3.0	0.08041	0.00000	11.684	0.000	.715E-05	.000F+00	.194F-01	.12" F-01
	0.10629	0.00000	12,774	0.000	.114E-04	.000F +00	.2740.094	.2400 +01
4.0	0.10034	0.00000	12.647	0.000	.102E-04	.000E+00	.262E -01	.161E-01
	0.13434	0.00000	13.415	0.000	.143E-04	.000E+00	.280L+01	.2480+01
			CRACK NO.					
-	/C= 887.0	•	· •	BLOCK =		CK DEFTH ==	0.18911	
CRACK	DEPTH IS	SET EQUAL	. TO PLATE	THICKNE	0.1880	INCHES		
5.0	0.13082	0.00000	13.827	0.000	.150E-04	.000E+00	.342E-01	.197E-01
	0.17055	0.00000	14.088	0.000	.179E-04	.000E+00	.2900+01	.2486+01
6.0	0.18029	0.0000	15.384	0.000	.247E-04	.000E+00	.445F 01	.233E-01
	0.18800	0.00000	0.000	0.000	.873E-05	.000E+00	.305F±01	. 24:E+01
7.0	0.24819	0.00000	16.248	0.000	.340F-04	.000E+00	.590E 01	. 269E - 01
	0.18800	0.00000	0.000	0.000	.000E+00	_ * 0 000 E + 00 −	.325E+01	.2486+01
8.0	0.33618	0.00000	17.216	0.000	.4400-04	.000E +00	.808E01	.304b -01
	0.18800	0.00000	0.000	0.000	. 00 0E +00	.000E+00	.352E+01	,240F+01
9.0	0.44788	0.00000	17.947	0.000	.558E-04	.000E+00	.116E+00	.340E-01
	0.18800	0.00000	0.000	0.000	.000E+00	.000E+00	.3851+01	.2486.+01
10.0	0.56758	0.00000	17.771	0.000	.599E-04	,000E+00	.173E+00	.376E-01
	0.18800	0.00000	0.000	0.000	*000E+00	.000E+00	.420E+91	. 249E+01
11.0	0.70011	0.0000	18.917	0.000	∡663E-04	.000E+00	.235E±00	.41.4 01
	0.18300	0.00000	0.000	0.000	. 00 0E+00	. 0006 + 00	. 459E+01	. 24:35 + 01

STATE CONTROL MATERIAL DESCRIPTION STATES (CONTROL OF THE CONTROL OF THE CONTROL

TABLE 3.3.2-2. EXAMPLE 3. METHOD 2, RUN 1 OUTPUT FILE (CONCLUDED)

CROC NO. 1 EXCEEDS APPLICABLE RANGE OF SUBROUTINE K2010 AT : CYC = 878.0, STEP = 2, BLOCK = 12
CHANGE TO K2050 OR K2060. TERMINATE COMPUTION

CRACK LENGTHS AT THE TERMINATION OF CRACK INITIATION COMPUTATION : C1 = 0.87354, A1 = 0.18800, C2 = 0.00000, A2 = 0.00000

RETARDITION PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION .

APAGL1 = .000E+00, APCOL1 = .000E+00, RYAOL1 = .000E+00, RYCOL1 = .000E+00

AKOL1 = .000E+00, CKOL1 = .000E+00, AOL1 = .000E+00, COL1 = .000E+00

APAGL2 = .000E+00, APCOL2 = .000E+00, RYAOL2 = .000E+00, RYCOL2 = .000E+00

AKOL2 = .000E+00, CKOL2 = .000E+00, AUL2 = .000E+00, COL2 = .000E+00

RETARDATION PARAMETERS AT THE TERMINATION OF CRACK INITIATION COMPUTATION:

DMG1 = .333E+00, DMGOL1 =.000E+00, DELDG1 =.000E+00

DMG2 = .430E-01, DMGOL2 =.000E+00, DELDG2 =.000E+00

TABLE 3.3.2-3. EXAMPLE 3, METHOD 2, RUN! 2 INPUT FILE

EXAMPLE NO. 3 STRINGER SPECIMEN SUBJECTED TO CONSTANT ANLITUDE LOADING 2024-T351 EXTRUSION 0.1600E-09 0.65 4.554 0.230E 08 1.00 36.0 53.3 0.99 58.00 2.0 -0.99 1.0 10.4260 0.872 10700.0 0.022 1.0 .360 1.390 0.188 0.188 0.265 2.250 0.188 0.188 0,000E+000,0000E+000,0000E+000,0000E+000,000E+000,000E+000,0000E+000,000E+00 0.000E.000.0000E+000.000E+000.000E 0.0000E+000.0000E+000.0000E+000.0000E-000.0000E+000.0000E+00 0.1250 0.500 0.00000 99.9999 0.0 1.00 2.14 0.0000 0.1250 0.0000 0.000 .00000 1.640 0.000 0.000 0.000 0.000 0.0000 0 00 2 2 0 100 2050 1010 0.581 0.416 0.2890 0.188 .0000 0.000 00.0 00000. 000.0

TABLE 3.3.2-4. EXAMPLE 3, METHOD 2, RUN 2 OUTPUT FILE

**** DETAILED DAMAGE GROWTH ANALYSIS PROGRAM D A M G R O *****
EXAMPLE NO. 3 STRINGER SPECIMEN SUBJECTED TO CONSTANT AMPLITUDE LOADING

* THIS ANALYSIS STARTS AT THE BEGINNING OF THE STRESS SPECTRUM *

NO. OF SITES TO BE ANALYZED: CRACK GROWTH = 2; CRACK INITIATION = 2 CRACK GROWTH = 2950; CRACK INITIATION = 1010

LOAD INTERACTION : NONE

MATERIAL: 2024-T351 EXTRUSION

WALKER EQ. CONST. (+R): C = 0.160E-09, M =0.650, N =4.554

WALKER EQ. CONST. (-R): C = 0.230E-08, M =1.000, N =3.115

MAY. K FOR DC/DN THRESHOLD = 2.000

PETARDATION SHUT-OFF RATIO = 2.300

+P CUT-OFF = 0.9900, -R CUT-OFF = -0.9900

YIELD STRENGTH = 53.300

FLASTIC MODULUS = 0.1070E+05

PL. STRESS FRACT. TOUGHNESS = 58.00

PL. STRESS FRACT. TOUGHNESS = 36.00

DAMAGE INDEX FOR CRACK INITIATION = 0.872

NEUBER MATERIAL CONST. = 0.022

CMACK INITIATION EQ. CONST. : SF = 10.426, M =-.366

STPECS SEVERITY FACTOR PARAMETERS:

ALPHA = 1.0000, RETA = 1.0000, GAMMA = 1.0000

SPECIFIED DAMAGE CONDITIONS INITIAL CRACK LENGTH OF CRACK NO. 1 0.86600 1.39000 FINAL CRACK LENGTH OF CRACK NO. 1 : 0.18800 INITIAL CRACK DEFTH OF CRACK NO. 1 % FINAL CRACK DEPTH OF CRACK NO. 1 : 0.18800 INITIAL CRACK LENGTH OF CRACK NO. 2 0.23500 FINAL CRACK LENGTH OF CRACK NO. 2 :-INITIAL CRACK DEPTH OF CRACK NO. 2 : 0,18800 FINAL CRU K DEPTH OF CRACK NO. 2 0.18800 PARAMETERS FROM PREVIOUS CRACK GROWTH HISTORY

AFADL1 = .000E+00, APCOL1 = .000E+00, RYABL1 = .000E+00, PYCUL1 = .000E+00

AKOL1 = .000E+00, CFOL1 = .000E+00, ABL1 = .000E+00, COL1 = .000E+00

APADL2 = .000E+00, AFCOL2 = .000F+00, RYABL2 = .000E+00. RYCOL2 = .000F+00

AKOL2 = .000E+00, CEOL2 = .000F+00, GUL2 = .000F+00, COL2 = .000F+00

PAFAHETERS FROM PREVIOUS CRACK INITIATION HISTORY

TARABETERS FROM PREVIOUS CRACK INTITATION HISTORY

DMG4 = .3331+00, DMGOL4 = .000E+00. DELD64 = .000E+00

DMG7 = .430E-04, DMGOL2 = .000E+00, DELDG2 = .000E+00

TABLE 3.3.2-4. EXAMPLE 3, METHOD 2, RUN 2 OUTPUT FILE (CON'T.)

```
COMPONENT GLOMETRY :
    THICKNESS OF PLATE
                                                            0.18800
    RADIUS OF MID. HOLE :
                                                            0.12500
    RATIO OF PLATE LENGTH TO HOLE DIAMETER, EZD :
                                                           99.99789
    DISTANCE BETWEEN MID. HOLE AND R.H.S. EDGE : DISTANCE BETWEEN MID. HOLE AND L.H.S. EDGE :
                                                            2.14000
                                                            0.50000
    FRACTION OF LOAD TRANSFER BY MID. BOLT :
                                                            0.00000,
                                                                       0.00000
    RADIUS OF THE R.H.S. HOLE
                                                            0.12500
    DISTANCE BETWEEN MID. AND R.H.S. HOLES :
                                                           1.64000
    FRACTION OF LOAD TRANSFER BY R.H.S. BOLT :
                                                            0.00000,
                                                                       0.00000
    RADIUS OF THE L.H.S. HOLE
                                                            0.09000
    DISTANCE BETWEEN MID. AND L.H.S. HOLES :
                                                            0.00000
    FRACTION OF LOAD TRONSFER BY L.H.S. BOLT :
                                                            0.00000, 0.00000
    PERCENTAGE OF COUNTERSINK DEPTH W.R.T THICKNESS : 0.0
    STRESS CONCENTRATION DUE TO PIN DEFLECTION :
                                                            1.00
    FASTENER HEAD OR COLLAR FRICTION STRESS
                                                            0.0000
    FAYING SURFACE FRICTION STRESS :
                                                            0.0000
USER DEFINED VARIABLES :
    VARIABLE 1 :
                           2.2500
    VARIABLE 2 : VARIABLE 3 :
                           0.0000
                        0.56.
0.4160
2000
    VARIABLE 4 :
    VARJABLE 5 :
                         0.2890
    VARIABLE 6 :
                          0.0000
                          9.1880
    VAPIABLE 8 :
                           0.0000
STRESS SPECTRUM :
    NO. OF BLOCKS SPECIFIED FOR ANALYSIS
                                                            100
    TOTAL NO. OF CYCLES IN ONE BLOCK : TOTAL NO. OF FLIGHTS IN ONE BLOCK :
                                                          2000,000
                                                              0.000
    NO. OF BLOCKS IN ONE DESIGN LIFETIME :
                                                              0.000
    NO. OF FLIGHT HOURS IN ONE DESIGN LIFETIME :
                                                             0.000
    MAXIMUM PEAK STRESS OF THE SPECTRUM :
                                                             17,000
```

NO. OF STRESS LAYERS IN ONE BLOCK

TABLE 3.3.2-4. EXAMPLE 3, METHOD 2, RUN 2 OUTPUT FILE (CONCLUDED)

```
BLOCK
                           C2
                C1
                                    KMAX-C1 KMAX-C2
                                                                 DC1/DF
                                                                               DC2/DF
                                                                                             INITIAL
                                                                                                           INITIA2
                A1
                            A2
                                     KMAX-A1
                                                 KMAX-A2
                                                                DA1/DF
                                                                               DA2/DF
                                                                                                 KN1
                                                                                                                KN2
                                      19.252 13.435 .000E+00
                                                                           .000E+00
          0.03600 0.26500
                                                                                           .423E+00
                                                                                                          .448E -01
                                                                                                          .248E+01
          0.18800 0.18800
                                                   0.000 .000E+00 .000E+00
                                       0.000
                                                                                            .507E+01
UNSTABLE GROWTH OF CRACK NO. 1 OCCURS AT:
CYC = 861.0, CTEP = 1, BLI
THE OTHER CRACK LENGTH = 0.30423
                                           BLOCK = 2, CRACK LENGTH = 1.39664, CKMAXS= 70.35
TERMINATE DAM SE COMPUTATION
   1.0 1.0896. 0.30423 22.419 14.870 .112E-03 .196E-04 .721E+00 .484E-01
          0.18800 0.18800
                                       0.000
                                                  0.000 .000E+00 .000E+00
                                                                                           .575E+01
      RETARDTION PARAMETERS AT THE TERMINATION OF CRACK GROWTH COMPUTATION :
     APADL1 = .000E+00, APCDL1 = .000E+00, RYAUL1 = .000E+00, RYCUL1 = .000E+00

AKUL1 = .000E+00, CKUL1 = .000E+00, AUL1 = .000E+00, COL1 = .000E+00

(PAUL2 = .000E+00, AFCUL2 = .000E+00, RYAUL2 = .000E+00, RYCUL2 = .000E+00

AKYUL2 = .000E+00, CKUL2 = .000E+00, AUL2 = .000E+00, CUL2 = .000E+00

PETARDATION PARAMETERS AT THE TERMINATION OF CRACK INITIATION COMPUTATION:
           DMG1 = .721E+00, DMGOL1 =.000E+00, DELDG1 =.000E+00
DMG2 = .484E-01, DMGOL2 =.000E+00, DELDG2 =.000E+00
```

DAMAGE GROWTH HISTORY

APPENDIX A

COMPUTER PROGRAM FLOW CHARTS

This section presents the flow charts of the various subroutines available in the Computer Program "DAMGRO". The analytical formulation associated with the various parameters were derived during Phase I of the program, and defined in Volume II of the Report.

DEFINE

A1, C1, A2, C2, A1NEW, C1NEW, A2NEW, C2NEW, AKMAX1
CKMAX1, AKMAX2, CKMAX2, DA1DF, DC1DF, DA2DF, DC2DF,
SMXS1, SMXS2, BLOK

MYSSI ISANASAN SASASAN KECICION PERIODOS SERVICIOS DAVINOS PERIODOS PERIODOS SERVICIOS ANTONIOS.

response applying reception advances applying the property applying the sections.

The property of the property o

general experience decreases and property services general

227628 227777 CANANA (C. 1888)

CONTRACTOR CONTRACTOR

SCHOOL SCHOOL SECTION OF THE SCHOOL SECTION

MACANES ANTONIA DESCRIPTION OF THE PROPERTY OF

מממממים

PAGGGOOD MASCAGOOD MODERAGE MAGGGOOD MOSCAGOOD (MAGGGGGG) PERSAGOON (PRESERVER)

### ##################################	THE CONTROL OF THE CONTROL OF THE TOTAL OF T	AND A COURT OF THE THE TOTAL OF THE	AND

MANSON GRANGES SERVICE SERVICE STATES

present systematic appropriate appropriate property

SUBROUTINE INIT (NB, NS, NC, SIGMAX, SIGMIN, CYC, INITS)

FERRACI PARAMA PROS

स्टेस्ट्रेस्टरेस स्ट्रिस्टर्स्ट । व्हार हा

SUBROUTINE S 1020

profitable expected establish substantial profitable

