

"Synthesis, Processing, and Properties of TaC-TaB₂-C Ceramics"

I. Talmy and J. Zaykoski

NSWCCD

Sub-Micron and Nanostructured Ceramics Colorado Springs, CO June 9, 2009

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of the , 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
I. REPORT DATE JUN 2010		2. REPORT TYPE N/A		3. DATES COVERED			
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER				
Synthesis, Processi	ng, and Properties o	5b. GRANT NUMBER					
		5c. PROGRAM ELEMENT NUMBER					
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
	5f. WORK UNIT NUMBER				NUMBER		
7. PERFORMING ORGANI NSWCCD	ZATION NAME(S) AND AD	8. PERFORMING ORGANIZATION REPORT NUMBER					
9. SPONSORING/MONITO		10. SPONSOR/MONITOR'S ACRONYM(S)					
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
	otes 07. ECI Internation Colorado on 7-12 J u						
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 32	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Acknowledgement:

- AFOSR (Dr. Joan Fuller) for funding the project
- SEAP student Esther Showalter for participation in the experiments

Background

- TaC and TaB₂ with melting temperatures of 3980°C and 3037°C, respectively, are candidates for ultra-high temperature applications, such as propulsion systems and hypersonic vehicles. There are very limited data on the preparation and properties of ceramics containing both TaC and TaB₂.
- TaB₂-TaC system has a eutectic at 2730°C at 34 wt.% TaC and no component solubility below 2100°C.
- Intermediate composition ceramics in the TaC-TaB₂ system had higher hardness and lower wear at 800 900 °C than the end members.
- Densification of TaC requires temperatures up to 2400°C and TaB $_2$ 2100-2200 °C.
- Densification temperature of TaC was decreased to 2100-2200°C by the addition of 10 wt. % fine TaB₂ and B₄C/C mixture (0.43/0.13 wt.%).
- \bullet The reactions of transition metals, carbides, and oxides with B_4C are well known and used for synthesis of diboride-based ceramics.
- Pressureless sintering of fine B_4C to relative density above 95% at 2100-2250°C was accomplished by the addition of Group IV-VI transition metal carbides.
- Diborides and active carbon formed during processing accelerated diffusion in the bulk and along grain boundaries. MeB_2 had a grain-growth-inhibiting effect.

Objective:

- Synthesize ceramic materials in the system $TaC TaB_2 C$ using displacement reactions between sub-micron TaC and B_4C
- Develop processing procedure for materials densification
- Characterize the microstructure and properties of ceramics

Reactions in TaC+B₄C Mixtures and Composition of the Reaction Products (in volume fractions)

 $2\text{TaC} + \text{B}_4\text{C} \Rightarrow 2\text{TaB}_2 + 3\text{C}$ $4\text{TaC} + \text{B}_4\text{C} \Rightarrow 2\text{TaC} + 2\text{TaB}_2 + 3\text{C}$ $8\text{TaC} + \text{B}_4\text{C} \Rightarrow 6\text{TaC} + 2\text{TaB}_2 + 3\text{C}$ $12\text{TaC} + \text{B}_4\text{C} \Rightarrow 10\text{TaC} + 2\text{TaB}_2 + 3\text{C}$ $16\text{TaC} + \text{B}_4\text{C} \Rightarrow 14\text{TaC} + 2\text{TaB}_2 + 3\text{C}$

Volume Fraction of Reaction Products from Heating x moles TaC + B₄C Mixtures

Composition of Starting and Reaction Product Components

TaC/B ₄ C Ratio	Wt% B ₄ C in raw materia ls	Calculated Volume% of Reaction Products			Calculated Wt% of Reaction Products		
		TaC	TaB ₂	С	TaC	TaB ₂	C
2	12.5	0	67	33	0	91.8	8.2
4	6.65	35	42.5	22.5	46.6	49.0	4.4
8	3.45	62	25	13	72.4	25.3	2.2
12	2.3	73.8	17.6	8.6	81.4	17.1	1.5
16	1.75	79.9	13.4	6.7	85.9	12.9	1.15

Actual carbon content in ceramics was lower. It was consumed by oxygen (3.02 wt.%) present in starting TaC during firing.

Starting Materials

<u>TaC</u> - 99.9% pure, 100 nm, <u>made in 1976</u> by Atomergic Chemetals Corp., which does not make it any more.

Stoichiometry - $TaC_{0.96}$ (Chemical and XRD analysis). Oxygen content – 3.02 wt. % (Laboratory Testing Inc., Hatfield, PA). Surface area - 11.74 m²/g (NSWCCD by BET).

W was not detected by EDS or XPS. The presence of Cl and H-C bonds was determined by XPS.

It can be assumed that the powder was prepared by gas phase deposition using Ta chloride/hydrocarbon mixtures.

TaC - 99.5% pure; -325 mesh, CERAC Inc. Surface area - 1.02 m²/g

B₄**C** - 99.4% pure (metals basis), 1-7 Micron powder, Alfa Aesar Surface area - 4.84 m²/g.

C black – surface area about 25 m²/g

Experimental Procedure

- Mixing the components in selected molar ratios.
- Sample preparation by cold pressing and following CIPing.
- Heating in the furnace with graphite heaters at 1500 –2100°C for 2 hours in Ar.
- Hot Pressing at 1700 and 1900°C and 20 MPa for 1hr in He.
- Characterization:
 - Phase composition by XRD
 - Microstructure by SEM
 - Vickers hardness (Load 1kg and 10kg for 15 seconds)
 - Flexural strength (3-point)

XRD of Ceramics Prepared from 2TaC+B₄C Mixture by Pressureless Sintering at 1500, 1700, and 1900°C for 2 hours in He

Open Porosity of Ceramics Prepared from TaC/B₄C Mixtures by Pressureless Sintering as a Function of Composition and Temperature

TaC content (mole fraction) in reactants, $TaC / (TaC + B_4C)$

Open Porosity of Ceramics Prepared from TaC/B₄C Mixtures by Pressureless Sintering as a Function of Composition and Temperature

TaC content (mole fraction) in reactants, $TaC / (TaC + B_4C)$

Open Porosity of Ceramics Prepared from TaC/B₄C Mixtures by Pressureless Sintering as a Function of Composition and Temperature

Shrinkage of Ceramics Prepared from TaC/B₄C Mixtures by Pressureless Sintering as a Function of Composition and Temperature

TaC content (mole fraction) in reactants, TaC/(TaC+B₄C)

SEM of TaB₂ - C Ceramics Prepared from TaC+B₄C Mixtures by Pressureless Reaction Sintering at 1900°C for 2 hours

SEM of TaC-TaB₂ - C Ceramics Prepared from TaC+B₄C Mixtures by Pressureless Sintering at 1900°C for 2 hours

Calculated Composition in vol.%

8TaC

$$8:1$$
, $TaC - 62$, $TaB_2 - 25$, $C - 13$

12:1,
$$TaC - 73.8$$
, $TaB_2 - 17.6$, $C - 8.6$

12 TaC

SEM of TaC-TaB₂ - C Ceramics Prepared from 4TaC+B₄C Mixture by Pressureless Sintering at 1700 and 1900°C for 2 hours

Calculated composition in vol. %: TaC - 35, $TaB_2 - 42.5$, C - 22.5

1700°C (Open porosity **3.1**%)

1900°C (Open porosity 0%)

SEM of TaC-TaB₂ - C Ceramics Prepared from 8TaC+B₄C Mixture by Pressureless Reaction Sintering

 $(TaC - 62, TaB_2 - 25, C - 13 \text{ vol. } \%)$

1700°C

1800°C

1900°C

2000°C, overfired

SEM of TaC-TaB₂ - C Ceramics Prepared from 8TaC+B₄C Mixture by Pressureless Reaction Sintering at 1900°C for 2 hours in He

Polished Surface

Composition in vol. %: TaC - 62, TaB₂ - 25, C - 13

Mechanical Properties of 8TaC/B₄C (TaC-62, TaB₂-25, C - 13 vol. %) Ceramics Pressureless sintered at 1900°C

Flexural Strength (3-point)

221 MPa

Vickers Hardness

22.2 GPa

SEM of an Indent (10 kg load) in Ceramics from 8TaC+B₄C Mixture Pressureless Sintered at 1900 C

SEM of an Indent (10 kg load) in Ceramics from $12\text{TaC} + B_4\text{C}$ Mixture (TaC – 73.8, TaB₂ – 17.6, C – 8.6 vol. %) Hot Pressed at 1700 C

Use of nano-TaC and nano-C black to Densify the End Members of the Reaction:

$$8\text{TaC} + \text{B}_4\text{C} \Rightarrow 6\text{TaC} + 2\text{TaB}_2 + 3\text{C}$$

- The end-member mixture was pressureless sintered to full density at 1850°C (2 hours).
- The mixture of nano TaC and TaB₂ (without carbon black) had open porosity of 19% after firing at 1800°C for 2 hours.
- The mixture of 6TaC, 2TaB₂ and 3C containing coarse TaC (-325 mesh) and C black had open porosity of 32.5% after pressureless firing at 2100°C

Both sub-micron TaC and carbon black are needed for pressureless densification of TaC/TaB₂/C ceramics. C black should be in the range of 2 to 8 wt. % of the TaC/Cmixture.

SEM of TaC-TaB₂ - C Ceramics Prepared from 6TaC + 2TaB₂+ 3C Mixture Pressurless Sintered at 1850°C

SEM of $TaC-TaB_2$ - C Ceramics Prepared from $8TaC+B_4C$ (reaction) and from $6TaC + 2TaB_2 + 3C$ (end members) Mixtures by Pressurless Sintering

 $6\text{TaC} + 2\text{TaB}_2 + 3\text{C}, 1850^{\circ}\text{C}$

Flexural Strength – 391 MPa

8TaC+B₄C, 1800°C

Flexural Strength – 221 MPa

SEM of an Indent (10 kg load) in Ceramics from 6TaC + 2TaB₂+ 3C (end members) Mixture Pressurless Sintered at 1850°C

Hot Pressing Experiments

SEM of TaC-TaB₂ - C Ceramics Prepared from 8TaC+B₄C Mixture by Reaction Hot Pressing at 1700 and 1900°C for 1 hours in Ar

1700°C 1900°C

Open porosity about 12%

SEM of TaC-TaB₂ - C Ceramics Prepared from 8TaC+B₄C Mixture by Reaction Pressureless Sintering and Hot Pressing at 1700 C

Pressureless Sintering

Open porosity 0.2%

Hot Pressing

Open porosity 12%

SEM of TaC-TaB₂ - C Ceramics Prepared from 8TaC+B₄C Mixture by Reaction Pressureless Sintering and Hot Pressing at 1900° C

Pressureless Sintering

Fully dense sample

Hot Pressing

Open porosity 12.5%

SEM of TaC-TaB₂ - C Ceramics Prepared from 12TaC+B₄C Mixture by Reaction Sintering and Hot Pressing

Open porosity 4.5%

HP at 1700°C for 1 hour

Open porosity 12.5%

SEM, Flexural Strength (3-point), and Vickers Hardness of Ceramics: 8TaC/B₄C (TaC – 62, TaB₂ – 25, C – 13 vol. %)

Pressureless sintered 1900°C

Strength-221 MPa

Hardness-22.2 GPa

Hot pressed 1700°C and 20MPa

Strength-293MPa

Hardness-8.2 GPa

Summary

- Dense ceramics containing (in v.%) 35-73.8 TaC, 25-62 TaB₂, and 8.6-22.5 C were prepared by reactive pressureless sintering of sub-micron TaC with B_4C at 1700-1900°C.
- Reaction between TaC and B₄C was completed at about 1700°C.
- ullet The densification of multi-phase ceramics was promoted by the formation of ${\rm TaB}_2$ and active carbon. Carbon eliminated oxygen from the grain boundaries additionally enhancing sintering.
- Use of sub-micron TaC and carbon black together led to pressureless densification of non-reactive mixture of 6TaC, 2TaB₂, 3C at 1850°C.
- The materials of all the tested compositions were not densified if a coarse TaC powder was used even in the presence of carbon black.
- Additional work is necessary to optimize processing parameters to remove oxygen at low temperatures, decrease shrinkage and stresses to increase the strength of ceramics.
- Low-temperature hot pressing is very promising for the development of high-strength multi-phase ceramics with a sub-micron grain size.
- Based on the results of this work and considering high potential of TaC for UHT applications, it is important to develop feasible low-cost method to produce sub-micron TaC and other carbides.