Homework_2-DispersionRelation

April 22, 2019

1 Visualization of quadratic and honeycomb lattice dispersion relations in tight-binding model

1.1 Quadratic lattice

```
Quadratic lattice dispersion relation:
```

```
\epsilon_{\vec{k}} = \epsilon_0 - 2t \cdot (\cos(k_x a_x) + \cos(k_y a_y))
```

Where ϵ_0 is ground level energy at given site and -t is hopping energy for nearest neighbours.

1.2 Honeycomb lattice (graphene)

Quadratic lattice dispersion relation:

$$\epsilon_{\vec{k}} = \pm t \cdot |\sum_i e^{i\vec{k}\cdot\vec{\delta}_i}|$$

 $\epsilon_{\vec{k}} = \pm t \cdot |\sum_i e^{i\vec{k}\cdot\vec{\delta_i}}|$ Where ϵ_0 is ground level energy at given site and -t is hopping energy for nearest neighbours.

Vectors
$$\vec{\delta}_{1}$$
, $\vec{\delta}_{2}$, $\vec{\delta}_{3}$ describe lattice:

$$\vec{\delta}_{1} = a_{0}(\frac{1}{2}, \frac{\sqrt{3}}{2})$$

$$\vec{\delta}_{2} = a_{0}(\frac{1}{2}, -\frac{\sqrt{3}}{2})$$

$$\vec{\delta}_{3} = a_{0}(-\frac{1}{2}, 0)$$

$$\vec{\delta}_3 = a_0(-\frac{1}{2},0)$$

In [8]: disp = graphene_dispersion_calculator()

In [9]: no_of_grid_points = 200 grid = np.array([np.linspace(-np.pi, np.pi, no_of_grid_points), np.linspace(-np.pi, np.

In [10]: calc = DensityOfStatesCalculator(disp, grid)

In [11]: fig, ax = calc.get_2d_contourf_plot() #fig

In []: