TD 1 : Espaces métriques

Gönenç Onay

2025-26 GSU - Cours MAT-301

Exercice 1.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite bornée dans \mathbb{R} .

- 1. Justifier l'existence de $\overline{\lim} u_n$.
- 2. Construire une sous-suite de (u_n) convergent vers $\overline{\lim} u_n$.
- 3. En déduire le théorème de Bolzano-Weierstrass.

Exercice 2.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite bornée dans \mathbb{R} et $(u_{\varphi(n)})$ une sous-suite convergente de limite ℓ . Montrer que

$$\lim u_n \le \ell \le \overline{\lim} u_n$$
.

Exercice 3.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite convergente dans \mathbb{R} de limite ℓ . Montrer que toute sous-suite de (u_n) converge vers ℓ .

Exercice 4.

Sur \mathbb{R}^2 , on définit la distance SNCF par :

$$d_{SNCF}((x_1, y_1), (x_2, y_2)) = \begin{cases} |y_1 - y_2| & \text{si } x_1 = x_2 \\ |y_1| + |x_1 - x_2| + |y_2| & \text{si } x_1 \neq x_2 \end{cases}$$

Une boule ouverte -à la SNCF- de centre a et de rayon r>0 est $B(a,r)=\{x\in\mathbb{R}^2:d_{SNCF}(a,x)< r\}.$

- 1. Vérifier que d_{SNCF} définit bien une métrique sur \mathbb{R}^2 .
- 2. Décrire géométriquement les boules-SNCF B((0,0),1) et B((1,1),1), comparer avec les boules euclidiennes que vous avez vu en deuxième année.

Exercice 5.

Soit (E, d) un espace métrique. Montrer que la fonction $d'(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ définit une métrique sur E.

Exercice 6.

Soit (E,d) un espace métrique et $A \subseteq E$. Montrer que la fonction distance à A définie par $d_A(x) = \inf_{a \in A} d(x,a)$ vérifie $|d_A(x) - d_A(y)| \le d(x,y)$ pour tous $x,y \in E$.