1. laboratorijas darba atskaite

Jānis Ģeņģeris, REBM02

2018. gada 23. maijā

1. nodaļa

Teorētiskā daļa

1.1. Ķēdes aprēķins

Lai iegūtu sprieguma avota V_1 sprieguma vērtību voltos, jāizvēlas daļskaitlis, kurš ir studenta apliecības pēdējo trīs ciparu dalījums ar 10. Lai iegūtu rezistor R_1 vērtību, jāņem studenta apliecības priekšpēdējais cipars un tam jāpieskaita 1. Līdzīgi iegūšt arī otra rezistora R_2 vērtību, taču šoreiz ņemot pēdejo studenta apliecības numura ciparu, un pieskaitot tam 1. Mans studenta apliecības numurs ir 171REB166, bet pēdējie 3 cipari ir x=166. Aprēķināsim V_1 , R_1 un R_2 vērtības pēc iepriekš aprakstīta algoritma.

$$V_1 = \frac{x}{10} = \frac{166}{10} = 16.6 \,\mathrm{V}\,,$$
 (1.1)

$$R_1 = \frac{(x \mod 100)}{10} + 1 = \frac{(166 \mod 100)}{10} + 1 = 7\Omega, \tag{1.2}$$

$$R_2 = (x \bmod 10) + 1 = (166 \bmod 10) + 1 = 7\Omega. \tag{1.3}$$

Lai iegūtu spriegumu U_{R_2} uz rezistora R_2 , izmantosim sprieguma dalītāja formulu [1, 43.lpp]

$$U_{R_2} = V_1 \cdot \frac{R_2}{R_1 + R_2} = 16.6 \cdot \frac{7}{7 + 7} = 8.3 \,\text{V}.$$
 (1.4)

Savukārt spriegumu U_{R_1} iegūsim šādi

$$U_{R_1} = V_1 - U_{R_2} = 16.6 - 8.3 = 8.3 \,\text{V} \,.$$
 (1.5)

To pašu var iegūtu izmantojot Oma likumu [1, 30.lpp], lai iegūtu strāvu un pēc tam izrēķinot sperigumus uz katra rezistora

$$I = \frac{U}{R_1 + R_2} = \frac{16.6}{14} = 1.186 \,\mathrm{A} \,,$$

$$U_{R_1} = R_1 \cdot I = 7 \cdot 1.186 = 8.302 \,\mathrm{V} \,,$$

$$U_{R_2} = R_2 \cdot I = 7 \cdot 1.186 = 8.302 \,\mathrm{V} \,.$$
(1.6)

Redzams, ka (1.6) U_{R_1} vērtība atšķiras no (1.5), par $\Delta = 0.002$, kas radies noapaļošanas kļūdu rezultātā.

1.1. att. Dotā ķēde.

Apzīmējums	Vērtība
R_1	7Ω
R_2	7Ω
V_1	16.6 V
U_{R_1}	8.3 V
U_{R_2}	8.3 V

1.1.tabula. Ķēdes elementu raksturlielumi.

1.2. att. U_{R_2} atkarība no R_2 .

2. nodaļa

Praktiskā daļa

2.1. Darbs ar gEDA programmām

2.1.1. Darbs ar gschem

2.1. att. gschem shēma 01.sch.

2.1.2. Darbs ar gnetlist

2.2. att. gnetlist kods shēmai 01.sch.

2.1.3. Darbs ar ngspice

Attēlā nr. 2.3a redzams spriegums uz R_1 elementa, bet attēlā nr. 2.3b spriegums uz R_2 elementa. Savukārt attēlā 2.4. spriegums uz abiem elementiem vienā grafikā.

2.3. att. Spriegums uz rezistoriem R_1 un R_2 .

2.4. att. Spriegums uz R_1 un R_2 vienā grafikā.

2.2. Darbs ar QUCS programmām

QUCS vidē tika izveidota 2.5. attēlā redzamā shēma DC un Sweep simulācijai. Šī shēma tika izmantota abām simulācijām, atbilstoši mainot parametra x vērtības, atkarībā no izvelētās simulācijas.

Lai iegūtu papildus informāciju darbam ar lineāru ķēžu simulācijām QUCS vidē, lietderīgi izmantot dokumnetāciju [3].

2.5. att. QUCS simulācijas principālā shēma.

\boldsymbol{DC} simulācija

Šeit izmantots konstantas rezistoru vērtības, no 2.6. attēla redzams ka grafika un tabulas vērtības ir konstantas uz abiem rezistoriem un tās sakrīt ar ngspice simulācijas rezultātiem sadaļā 2.1.3.

2.6. att. Līdzstrāvas simulācijas grafiks un tabula.

Sweep simulācija

Šeit izmantota mainīga rezistora R_2 vērtība (kurš apzīmēts ar x) intervālā no 0 līdz 50. Rezultātā iegūts nelineārs grafiks kā tas labi redzams 2.7. attēlā un tabulā.

2.7. att. Sweep simulācijas grafiks un tabula.

Literatūra

- [1] Charles Alexander, Matthew Sadiku, Fundamentals of Electric Circuits McGraw-Hill Education, 2th edition, 2012.
- [2] PGFPlots Gallery, PGFPlots grafiku piemēri, http://pgfplots.sourceforge.net/gallery.html, $(p\bar{e}d\bar{e}j\bar{a}\ piek|\bar{u}ve\ 2018.05.23)$
- [3] Stefan Jahn, Chris Pitcher, DC Analysis, Parameter Sweep and Device Models, A Tutorial, Ques, http://ques.sourceforge.net/docs/tutorial/destatic.pdf, 2005, (pēdējā piekļūve 2018.05.23)