Lenguaje matemático, conjuntos y números

Pregunta 1 (2,5 puntos)

Demuestre que dados tres subconjuntos A, B, y C de un conjunto U se tiene:

$$A \cap B = A \cap C \iff A \cap \overline{B} = A \cap \overline{C}$$

Solución: Observemos que basta demostrar una de las dos implicaciones. En efecto, si sabemos que

$$A \cap B = A \cap C \Longrightarrow A \cap \overline{B} = A \cap \overline{C}$$

para todo A, B y C, aplicando la implicación a los conjuntos $A, \overline{B} y \overline{C}$ se obtiene que

$$A \cap \overline{B} = A \cap \overline{C} \Longrightarrow A \cap \overline{\overline{B}} = A \cap \overline{\overline{C}}$$
.

Basta aplicar que $\overline{\overline{B}} = B$ y $\overline{\overline{C}} = C$ para obtener que

$$A \cap \overline{B} = A \cap \overline{C} \Longrightarrow A \cap B = A \cap C$$
.

Demostramos la implicación $A \cap B = A \cap C \Longrightarrow A \cap \overline{B} = A \cap \overline{C}$.

$$A \cap \overline{B} = A \setminus (A \cap B) = A \setminus (A \cap C) = A \cap \overline{C}.$$

Nota: Directamente, la implicación $A \cap \overline{B} = A \cap \overline{C} \Longrightarrow A \cap B = A \cap C$ se obtiene de

$$A \cap B = A \cap \overline{\overline{B}} = A \setminus (A \cap \overline{B}) = A \setminus (A \cap \overline{C}) = A \cap \overline{\overline{C}} = A \cap C.$$

Pregunta 2 (2,5 puntos)

Se define en \mathbb{R} la relación definida para todo $x, y \in \mathbb{R}$ mediante:

$$x \mathcal{R} y$$
 si v sólo si $x - y \in \mathbb{N}$

- a) Demuestre que \mathcal{R} es una relación de orden en \mathbb{R} . ¿Es orden total?
- b) Dado el subconjunto $A \subset \mathbb{R}$, $A = \{0, \frac{1}{4}, \frac{1}{3}, 1\}$, determine, respecto del orden \mathcal{R} definido anteriormente, si A es un conjunto acotado en \mathbb{R} y especifique los maximales del conjunto A.

Solución: a)

Es reflexiva: para todo $x \in \mathbb{R}$ se tiene que $x \Re x$ pues $x - x = 0 \in \mathbb{N}$.

Es antisimétrica: para todo $x, y \in \mathbb{R}$ si $x \mathcal{R} y$ e $y \mathcal{R} x$ entonces $x - y \in \mathbb{N}$ e $y - x \in \mathbb{N}$. Es decir, $x - y \in \mathbb{N}$ y $-(x - y) \in \mathbb{N}$. Por tanto, x - y = 0 y resulta x = y

Es transitiva: para todo $x,y,z\in\mathbb{R}$ si $x\,\Re\,y$ e $y\,\Re\,z$ entonces $x-y\in\mathbb{N}$ e $y-z\in\mathbb{N}$. Por tanto, $(x-y)+(y-z)=x-z\in\mathbb{N}$. En consecuencia, $x\,\Re\,z$.

 \mathcal{R} no es una relación de orden total. Por ejemplo, los elementos 1 y $\sqrt{2}$ no están relacionados entre sí pues pues no es cierto que $1\mathcal{R}\sqrt{2}$ ni tampoco $\sqrt{2}\mathcal{R}1$.

El conjunto de las cotas superiores de 0 es $B = \left\{ -n \mid n \in \mathbb{N} \right\}$ mientras que el conjunto de las cotas superiores de $\frac{1}{4}$ es el conjunto $C = \left\{ \frac{1}{4} - n \mid n \in \mathbb{N} \right\}$. Puesto que $B \cap C = \emptyset$ podemos concluir que A no es un conjunto acotado superiormente.

Análogamente, el conjunto de las cotas inferiores de 0 es $B' = \{n \mid n \in \mathbb{N}\}$ mientras que el conjunto de las cotas inferiores de $\frac{1}{4}$ es el conjunto $C' = \left\{\frac{1}{4} + n \mid n \in \mathbb{N}\right\}$. Puesto que $B' \cap C' = \emptyset$ podemos concluir que A no es un conjunto acotado inferiormente.

b) Los maximales del conjunto A son 0, 1/4 y 1/3. En efecto, no existe ningún elemento en A, $x \neq 0$, tal que $0 \Re x$, es decir, tal que $-x \in \mathbb{N}$. Análogamente, no existe ningún elemento en A, $x \neq 1/4$, tal que $1/4 \Re x$, (es

decir, tal que $1/4 - x \in \mathbb{N}$ y lo mismo ocurre con 1/3. Sin embargo, 1 no es maximal puesto que 1 \Re 0, ya que $1-0 \in \mathbb{N} \text{ y } 0 \in A.$

Pregunta 3 (2,5 puntos)

Demuestre, utilizando la identidad de Bézout que,

$$5^{n+1} + 6^{n+1}$$
 y $5^n + 6^n$

son dos números primos entre sí para todo $n \in \mathbb{N}^*$.

Solución: Comprobamos que $5^{n+1} + 6^{n+1}$ y $5^n + 6^n$ son dos números primos entre sí para todo $n \in \mathbb{N}^*$ viendo que cumple la identidad de Bézout. Sea $n \in \mathbb{N}^*$ fijo. Tenemos que ver que existen $a, b \in \mathbb{Z}$ tales que

$$a(5^{n+1} + 6^{n+1}) + b(5^n + 6^n) = 1.$$

En ese caso se cumpliría:

$$5^{n+1}a + 5^nb + 6^{n+1}a + 6^nb = 1$$
, es decir,
 $5^n(5a+b) + 6^n(6a+b) = 1$

Para todo $n \in \mathbb{N}^*$, 5^n y 6^n son números primos entre sí pues 5 y 6 lo son. Por tanto, para cada $n \in \mathbb{N}^*$ fijo, existen Para todo $n \in \mathbb{N}^*$, 5^n y 6^n son numeros primos entre si pace 5^n , 5^n and 5^n and 5^n and 5^n and 5^n and 5^n are 5^n and 5^n are 5^n and 5^n are 5^n a

a y b en el sistema anterior y se obtiene $\begin{cases} a=B-A\\ b=A-5a=A-5(B-A)=6A-5B \end{cases}$. Nótese que $A,B\in\mathbb{Z}$ y en consecuencia, a=B-A y $b=6A-5B\in\mathbb{Z}$ y se deduce que $5^{n+1}+6^{n+1}$ y 5^n+6^n

son dos números primos entre sí.

Pregunta 4 (2,5 puntos)

Resuelva en $\mathbb C$ la ecuación:

$$\left(\frac{2z+1}{z-1}\right)^4 = 1$$

Solución: Sea $\omega = \frac{2z+1}{z-1}$ siendo $z \neq 1$. Sustituyendo se obtiene $\omega^4 = 1$. Hallamos las raíces cuartas de la unidad: $r_{4\alpha}^4 = 1_0$ y se obtiene r = 1 y $4\alpha = 0$ [mód 2π]. Obtenemos las soluciones para ω , 1_0 , $1_{\pi/2}$, 1_{π} , y $1_{3\pi/2}$, que en forma binómica son:

$$1, i, -1, -i$$

Se despeja z en $\omega = \frac{2z+1}{z-1}$. Tenemos $2z+1 = \omega(z-1)$, es decir, $1+\omega = z(\omega-2)$. Por tanto, $z = \frac{\omega+1}{\omega-2}$. Sustituyendo los valores 1, i, -1, y -i de ω se hallan respectivamente los valores de z,

$$-2, \qquad \frac{i+1}{i-2} = \frac{(i+1)(i+2)}{-5} = \frac{1+3i}{-5} = -\frac{1}{5} - \frac{3}{5}i, \qquad 0, \quad y \qquad \frac{-i+1}{-i-2} = \frac{(-i+1)(-i+2)}{-5} = -\frac{1}{5} + \frac{3}{5}i$$