# Chapter 6

Roots: Open Methods

Numerical Methods Fall 2019

# Open Methods

- Open methods differ from bracketing methods, in that open methods require only a single starting value or two starting values that do not necessarily bracket a root.
- Open methods may diverge as the computation progresses, but when they do converge, they usually do so much faster than bracketing methods.

# Graphical Comparison of Methods

- a) Bracketing method
- b) Diverging open method
- Converging open method note speed!



## Simple Fixed-Point Iteration

- Rearrange the function f(x)=0 so that x is on the left-hand side of the equation: x=g(x)
- Use the new function g to predict a new value of x, that is,  $x_{i+1}=g(x_i)$
- The approximate error is given by:

$$\varepsilon_a = \left| \frac{x_{i+1} - xi}{x_{i+1}} \right| 100\%$$

## Example

- Solve  $f(x) = e^{-x} x$
- Re-write as x = g(x) by isolating x (example:  $x = e^{-x}$ )
- Start with an initial guess (here, 0)

| i  | $x_i$  | $ \varepsilon_a $ , % | $ \varepsilon_t $ , % | $ arepsilon_t _i/ arepsilon_t _{i-1}$ |
|----|--------|-----------------------|-----------------------|---------------------------------------|
| 0  | 0.0000 |                       | 100.000               |                                       |
| 1  | 1.0000 | 100.000               | 76.322                | 0.763                                 |
| 2  | 0.3679 | 171.828               | 35.135                | 0.460                                 |
| 3  | 0.6922 | 46.854                | 22.050                | 0.628                                 |
| 4  | 0.5005 | 38.309                | 11.755                | 0.533                                 |
| 5  | 0.6062 | 17.447                | 6.894                 | 0.586                                 |
| 6  | 0.5454 | 11.157                | 3.835                 | 0.556                                 |
| 7  | 0.5796 | 5.903                 | 2.199                 | 0.573                                 |
| 8  | 0.5601 | 3.481                 | 1.239                 | 0.564                                 |
| 9  | 0.5711 | 1.931                 | 0.705                 | 0.569                                 |
| 10 | 0.5649 | 1.109                 | 0.399                 | 0.566                                 |

# Example



#### Convergence

- Convergence of the simple fixed-point iteration method requires that the derivative of g(x) near the root has a magnitude less than 1.
- a) Convergent,  $0 \le g' < 1$
- b) Convergent,  $-1 < g' \le 0$
- c) Divergent, g' > 1
- d) Divergent, g' < -1

Convergence



# Newton-Raphson Method

• Based on forming the tangent line to the f(x) curve at some guess x, then following the tangent line to where it crosses the x-axis.

$$f'(x_i) = \frac{f(x_i) - 0}{x_i - xi_{+1}}$$
$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$



## Newton-Raphson Method

#### Example

$$f(x) = e^{-x} - x$$

*Sol*) 
$$f'(x) = -e^{-x} - 1$$

$$x_{i+1} = x_i - \frac{e^{-x_i} - x_i}{-e^{-x_i} - 1}$$

| i | $x_i$       | $ arepsilon_t $ , % |
|---|-------------|---------------------|
| 0 | Ο           | 100                 |
| 1 | 0.50000000  | 11.8                |
| 2 | 0.566311003 | 0.147               |
| 3 | 0.567143165 | 0.0000220           |
| 4 | 0.567143290 | < 10-8              |

#### **Pros and Cons**

Pro: The error of the i+1<sup>th</sup> iteration is roughly proportional to the square of the error of the i<sup>th</sup> iteration – this is called quadratic convergence

$$E_{t,i+1} = \frac{-f''(x_r)}{2f'(x_r)} E_{t,i}^2$$

Con: Some functions show slow or poor convergence or divergence!

#### **Pros and Cons**

#### Example

$$f(x) = x^{10} - 1$$

$$x_{i+1} = x_i - \frac{x_i^{10} - 1}{10x_i^9}$$

| i                     | $x_i$                                         | $ \varepsilon_a $ , %      |
|-----------------------|-----------------------------------------------|----------------------------|
| 0<br>1<br>2<br>3<br>4 | 0.5<br>51.65<br>46.485<br>41.8365<br>37.65285 | 99.032<br>11.111<br>11.111 |
| 40<br>41<br>42        | 1.002316<br>1.000024<br>1                     | 2.130<br>0.229<br>0.002    |

# **Pros and Cons**



## Secant Methods (1)

- A potential problem in implementing the Newton-Raphson method is the evaluation of the derivative – there are certain functions whose derivatives may be difficult or inconvenient to evaluate.
- For these cases, the derivative can be approximated by a backward finite divided difference:

$$f'(xi) \cong \frac{f(x_{i-1}) - f(xi)}{x_{i-1} - xi}$$

## Secant Methods (2)

Substitution of this approximation for the derivative to the Newton-Raphson method equation gives:

$$x_{i+1} = xi - \frac{f(xi)(xi_{-1} - xi)}{f(x_{i-1}) - f(xi)}$$

Note – this method requires two initial estimates of x but does not require an analytical expression of the derivative.

• Rather than using two arbitrary values to estimate the derivative, an alternative approach involves a fractional perturbation of the independent variable to estimate f'(x)

$$f'(x_i) \cong \frac{f(x_i + \delta x_i) - f(x_i)}{\delta x_i}$$

$$x_{i+1} = x_i - \frac{\delta x_i f(x_i)}{f(x_i + \delta x_i) - f(x_i)}$$

▶ Example: Use the modified secant method to determine the mass of the bungee jumper with a drag coefficient of 0.25 kg/m to have a velocity of 36 m/s after 4 s of free fall. Note: The acceleration of gravity is 9.81 m/s². Use an initial guess of 50 kg and a value of 10<sup>-6</sup> for the perturbation fraction.

#### Solution:

#### First iteration:

$$x_0 = 50$$
  $f(x_0) = -4.57938708$   
 $x_0 + \delta x_0 = 50.00005$   $f(x_0 + \delta x_0) = -4.579381118$   
 $x_1 = 50 - \frac{10^{-6}(50)(-4.57938708)}{-4.579381118 - (-4.57938708)}$   
 $= 88.39931(|\varepsilon_t| = 38.1\%; |\varepsilon_a| = 43.4\%)$ 

#### Second iteration:

$$x_1 = 88.39931$$
  $f(x_1) = -1.69220771$   
 $x_1 + \delta x_1 = 88.39940$   $f(x_1 + \delta x_1) = -1.692203516$   
 $x_2 = 88.39931 - \frac{10^{-6}(88.39931)(-1.69220771)}{-1.692203516 - (-1.69220771)}$   
 $= 124.08970(|\varepsilon_t| = 13.1\%; |\varepsilon_a| = 28.76\%)$ 

| i | $x_i$    | $ \varepsilon_t $ , % | $ arepsilon_a $ , %  |
|---|----------|-----------------------|----------------------|
| 0 | 50.0000  | 64.971                |                      |
| 1 | 88.3993  | 38.069                | 43.438               |
| 2 | 124.0897 | 13.064                | 28.762               |
| 3 | 140.5417 | 1.538                 | 11.706               |
| 4 | 142.7072 | 0.021                 | 1.517                |
| 5 | 142.7376 | $4.1 \times 10^{-6}$  | 0.021                |
| 6 | 142.7376 | $3.4 \times 10^{-12}$ | $4.1 \times 10^{-6}$ |
|   |          |                       |                      |

#### MATLAB's fzero Function

- MATLAB's fzero provides the best qualities of both bracketing methods and open methods.
  - Using an initial guess:

```
x = fzero(function, x0)

[x, fx] = fzero(function, x0)
```

- function is a function handle to the function being evaluated
- x0 is the initial guess
- x is the location of the root
- fx is the function evaluated at that root
- Using an initial bracket:

```
x = fzero(function, [x0 x1])

[x, fx] = fzero(function, [x0 x1])
```

 As above, except x0 and x1 are guesses that must bracket a sign change

#### fzero Options

- Options may be passed to fzero as a third input argument – the options are a data structure created by the optimset command
- options = optimset('par<sub>1</sub>', val<sub>1</sub>, 'par<sub>2</sub>', val<sub>2</sub>,...)
  - par<sub>n</sub> is the name of the parameter to be set
  - $val_n$  is the value to which to set that parameter
  - The parameters commonly used with fzero are:
    - display: when set to 'iter' displays a detailed record of all the iterations
    - tolx: A positive scalar that sets a termination tolerance on x.

#### fzero Example

- poptions = optimset('display', 'iter');
  - Sets options to display each iteration of root finding process
- $[x, fx] = fzero(@(x) x^10-1, 0.5, options)$ 
  - Uses fzero to find roots of  $f(x)=x^{10}-1$  starting with an initial guess of x=0.5.
- MATLAB reports x=1, fx=0 after 35 function counts

# Polynomials (1)

Polynomials are a special type of nonlinear algebraic equation of the general form

$$f_n(x) = a_1 x^n + a_2 x^{n-1} + \dots + a_{n-1} x^2 + a_n x + a_{n+1}$$

- MATLAB has a built in program called roots to determine all the roots of a polynomial – including imaginary and complex ones.
- x = roots(c)
  - x is a column vector containing the roots
  - c is a row vector containing the polynomial coefficients
- Example:
  - Find the roots of

$$f(x) = x^5 - 3.5x^4 + 2.75x^3 + 2.125x^2 - 3.875x + 1.25$$

$$x = roots([1 -3.5 2.75 2.125 -3.875 1.25])$$

# Polynomials (2)

MATLAB's poly function can be used to determine polynomial coefficients if roots are given:

```
\circ b = poly([0.5 -1])
```

- Finds f(x) where f(x) = 0 for x = 0.5 and x = -1
- MATLAB reports  $b = [1.000 \ 0.5000 \ -0.5000]$
- This corresponds to  $f(x)=x^2+0.5x-0.5$
- MATLAB's polyval function can evaluate a polynomial at one or more points:

```
\Rightarrow a = [1 -3.5 2.75 2.125 -3.875 1.25];
```

- If used as coefficients of a polynomial, this corresponds to  $f(x) = x^5 3.5x^4 + 2.75x^3 + 2.125x^2 3.875x + 1.25$
- o polyval(a, 1)
  - This calculates f(1), which MATLAB reports as -0.2500

#### Homework #2

- 연습문제 풀이 (교재 3판)
  - 5장 연습문제 5.5, 5.7번. 각 문제의 (a) (b) (c) 를 계산기만으로 풀기
  - 6장 연습문제 6.2 (a) (b), 6.3 (a) (b) (c) (d) 계산기만으로 풀기
  - 6.3(e)는 MATLAB code 작성으로 원하는 사람만.
- 주의: 답지에는 풀이과정을 모두 적어야 함
- ▶ 제출일: 10월 2일 수업시간