Листок № 9

Литература: recursive simple.

- 1. Пусть функция $f: \mathbb{N} \to \mathbb{N}$ невозрастающая. Тогда f вычислима.
- **2.** Функция $f: \mathbb{N} \to \mathbb{N}$ в точке n принимает значение 1, если в десятичной записи числа π есть n девяток подряд. Иначе f(n) = 0. Докажите, что f вычислима.
 - 3. Являются ли следующие множества разрешимыми? Перечислимыми?
 - а) множество всех простых чисел;
 - б) множество $\{xy \mid x \in A, y \in B\}$, где A и B разрешимы (перечислимы);
 - в) множество $A \subseteq B$, где B разрешимо (перечислимо).
- **4.** Допустим, множества A_i перечислимы при всех $i \in \mathbb{N}$. Всегда ли перечислимо $\bigcup_{i \in \mathbb{N}} A_i$?
 - 5. Докажите, что перечислимое множество можно перечислить без повторений.
- **6.** Докажите, что непустое множество $A \subseteq \mathbb{N}$ разрешимо тогда и только тогда, когда существует вычислимая тотальная *неубывающая* функция $f : \mathbb{N} \to \mathbb{N}$, т. ч. $A = \operatorname{rng} f$.
- **7.** Докажите, что в каждом бесконечном перечислимом множестве есть бесконечное разрешимое подмножество.
- 8. Пусть множество $U\subseteq \mathbb{N}^2$ перечислимо. Тогда существует вычислимая функция $f\colon \mathbb{N}\xrightarrow{p} \mathbb{N}$, т.ч. dom $f=\operatorname{pr}^1 U$ и $\Gamma_f\subseteq U$.
- **9.** Докажите, что произвольные перечислимые множества $A, B \subseteq \mathbb{N}$ можно разделить на перечислимые непересекающиеся части. Именно, существуют перечислимые A', B', такие что $A' \subseteq A, B' \subseteq B, A' \cup B' = A \cup B$ и $A' \cap B' = \emptyset$.
- **10.** Докажите, что существует невычислимая функция двух аргументов, все сечения которой по одному из аргументов вычислимы.
- **11.** Докажите, что существует вычислимая функция f, не имеющая вычислимого тотального продолжения, т. ч. rng $f = \{0, 1\}$.

Множество C от множество A от множества B, если $A \subseteq C$ и $B \subseteq \bar{C}$.

- **12.** Существуют перечислимые множества $A, B \subseteq \mathbb{N}$, т. ч. $A \cap B = \emptyset$, но никакое разрешимое множество C не отделяет A от B.
- **13.** Существует счетно много перечислимых множеств, попарно не пересекающихся и попарно не отделимых никакими разрешимыми множествами.
 - **14.** Докажите, что существует у. в. ф. V, т. ч.
 - а) V_p нигде не определена при всех четных p;
 - б) если V_p нигде не определена, то p четно.
 - **15.** Докажите, что не существует универсальной momanьнoй вычислимой функции.
- **16.** Докажите, что для *любой* у.в.ф. U множество $T = \{n \in \mathbb{N} \mid \text{dom}\, U_n = \mathbb{N}\}$ неперечислимо.

- **17.** Докажите, что существует вычислимая функция $f: \mathbb{N} \xrightarrow{p} \mathbb{N}$, т. ч. $f(x) \simeq (f(x+1))^2$ при всех $x \in \mathbb{N}$. Найдите все такие функции.
- **18.** Пусть U г. у. в. ф. Докажите, что существует «программа» $n \in \mathbb{N}$, т. ч. $U(n,x) \simeq n^{U(x^2,n+x)}$ при всех $x \in \mathbb{N}$.
- **19.** Пусть U г. у. в. ф. Докажите, что существуют две *различные* «программы» $a,b \in \mathbb{N}$, т. ч. U(a,x)=b и U(b,x)=a+1 при всех $x \in \mathbb{N}$.
- **20.** Пусть U г. у. в. ф. Является ли множество $\{n \in \mathbb{N} \mid \forall x, y \in \text{dom } U_n \, (x \neq y \to |U_n(x) U_n(y)| > 2019)\}$ перечислимым? Коперечислимым?
 - **21.** Вспомните известные свойства отношения \leq_m .
 - **22.** Пусть $\emptyset \neq B \subsetneq \mathbb{N}$ и A разрешимо. Докажите, что $A \leq_m B$.
- **23.** Докажите, что нет подмножества \mathbb{N} , к которому сводились бы все прочие подмножества.
 - **24.** Какие множества m-сводятся к \mathbb{N} и \emptyset ?
 - 25. Докажите, что существует неперечислимое множество:
 - а) все элементы которого просты;
 - б) содержащее все степени двойки, а все элементы которого не имеют простых делителей, кроме 2 и 3.
- **26.** Докажите, что если U г. у. в. ф., то $A \leq_m K_U$ для каждого перечислимого множества A.
 - **27.** Пусть U г. у. в. ф. Проверьте перечислимость и коперечислимость множеств:
 - a) $\{n \in \mathbb{N} \mid \text{dom } U_n \text{ конечно}\};$
 - б) $\{n \in \mathbb{N} \mid U_n \text{ есть биекция } \mathbb{N} \to \mathbb{N}\};$
 - в) $\{n \in \mathbb{N} \mid 0 \in \text{dom } U_n, \text{ но } 1 \notin \text{dom } U_n\}.$
- **28*.** Пусть $D = \{n \in \mathbb{N} \mid \text{dom } U_n \text{ конечно}\}$ и $D' = \{n \in \mathbb{N} \mid \text{dom } U_n \text{ коконечно}\}$. Докажите, что $G \leq_m G'$.