Lab 3 – Timing Optimizations

Optimization 1:

Figure 1 - Summary of Paths

	Slack	From Node	To Node	Launch Clock	Latch Clock	Relationship	Clock Skew	Data Delay
1	-5.583	fifo:fifo_ altsyncram:ram_rtl_0 ram_block1a0~portb_address_reg0	mult_out[9][0]	clk	clk	4.000	-0.394	8.945
2	-5.583	fifo:fifo_ altsyncram:ram_rtl_0 ram_block1a0~portb_address_reg0	mult_out[9][1]	clk	clk	4.000	-0.394	8.945
3	-5.583	fifo:fifo_ altsyncram:ram_rtl_0 ram_block1a0~portb_address_reg0	mult_out[9][2]	clk	clk	4.000	-0.394	8.945
4	-5.583	fifo:fifo_ altsyncram:ram_rtl_0 ram_block1a0~portb_address_reg0	mult_out[9][3]	clk	clk	4.000	-0.394	8.945
5	-5.583	fifo:fifo_ altsyncram:ram_rtl_0 ram_block1a0~portb_address_reg0	mult_out[9][4]	clk	clk	4.000	-0.394	8.945
6	-5.583	fifo:fifo_ altsyncram:ram_rtl_0 ram_block1a0~portb_address_reg0	mult_out[9][5]	clk	clk	4.000	-0.394	8.945
7	-5.583	fifo:fifo_ altsyncram:ram_rtl_0 ram_block1a0~portb_address_reg0	mult_out[9][6]	clk	clk	4.000	-0.394	8.945
8	-5.583	fifo:fifo_ altsyncram:ram_rtl_0 ram_block1a0~portb_address_reg0	mult_out[9][7]	clk	clk	4.000	-0.394	8.945
9	-5.583	fifo:fifo_ altsyncram:ram_rtl_0 ram_block1a0~portb_address_reg0	mult_out[8][0]	clk	clk	4.000	-0.394	8.945
10	-5.583	fifo:fifo_ altsyncram:ram_rtl_0 ram_block1a0~portb_address_reg0	mult_out[8][1]	clk	clk	4.000	-0.394	8.945
11	-5.583	fifo:fifo_ altsyncram:ram_rtl_0 ram_block1a0~portb_address_reg0	mult_out[8][2]	clk	clk	4.000	-0.394	8.945
12	-5.583	fifo:fifo_ altsyncram:ram_rtl_0 ram_block1a0~portb_address_reg0	mult_out[8][3]	clk	clk	4.000	-0.394	8.945
13	-5.583	fifo:fifo_ altsyncram:ram_rtl_0 ram_block1a0~portb_address_reg0	mult_out[8][4]	clk	clk	4.000	-0.394	8.945
14	-5.583	fifo:fifo_ altsyncram:ram_rtl_0 ram_block1a0~portb_address_reg0	mult_out[8][5]	clk	clk	4.000	-0.394	8.945
15	-5.583	fifo:fifo_ altsyncram:ram_rtl_0 ram_block1a0~portb_address_reg0	mult_out[8][6]	clk	clk	4.000	-0.394	8.945
16	-5.583	fifo:fifo laltsvncram:ram rtl Ollram block1a0~portb address reg0	mult_out[8][7]	clk	clk	4.000	-0.394	8.945

Critical Path: FIFO -> mult_out

Figure 2 - Statistics showing Cell Data as 68% of the delay

Property	Value	Count	Total Delay	% of Total	Min	M
- Arrival Path						
□ Clock						
IC		3	1.311	42	0.000	0.94
Cell		3	1.805	58	0.000	1.01
⊟ Data						
IC		4	2.522	28	0.000	1.16
Cell		5	6.116	68	0.047	3.07
uTco		1	0.307	3	0.307	0.30
∃ Required Path						
Clock						
IC		3	1.590	59	0.000	1.23
Cell		3	1.111	41	0.000	0.79

Figure 3 - Data Arrival Path Showing dataout[17] with 3.076 delay

Data	ata Arrival Path							
	Total	Incr	RF	Туре	ino	Location	Element	
	- 6.022	2.599	RR	CELL	2	M9K_X26_Y9_N0	fifo_ ram_rtl_0 auto_generated ram_block1a0 portbdataout[2]	
	7.184	1.162	RR	IC	1	LCCOMB_X22_Y9_N28	fifo_ ram~8 datad	
	7.381	0.197	RR	CELL	1	LCCOMB_X22_Y9_N28	fifo_ ram~8 combout	
	7.605	0.224	RR	IC	1	LCCOMB_X22_Y9_N14	fifo_ ram~9 datad	
	7.802	0.197	RR	CELL	16	LCCOMB_X22_Y9_N14	fifo_ ram~9 combout	
	8.938	1.136	RR	IC	1	DSPMULT_X21_Y8_N0	Mult9 auto_generated mac_mult1 datab[4]	
	12.014	3.076	RR	CELL	8	DSPMULT_X21_Y8_N0	Mult9 auto_generated mac_mult1 dataout[17]	
	12.014	0.000	RR	IC	1	DSPOUT_X21_Y8_N2	Mult9 auto_generated mac_out2 dataa[3]	
)	12.061	0.047	RR	CELL	1	DSPOUT_X21_Y8_N2	mult_out[9][0]	

- Can infer the longest path of 3.076 is talking about the output data from the multiplier
- Can infer it is talking about the FIFO read data coming into the multiplier and the output from the multiplier.

After Optimization:

	Fmax	Restricted Fmax	Clock Name	Note
1	120.19 MHz	120.19 MHz	clk	

• The same paths still had the worst slack, so I registered the rd_data output which increased the clock again.

After optimization:

	Fmax	Restricted Fmax	Clock Name	Note
1	168.52 MHz	168.52 MHz	clk	

Optimization 2:

Figure 4 - Summary of Paths and Statistics for Optimization 3

Critical Path:

- total_count_r -> total_count_r
- Since this signal only gets updated occasionally, it is considered a multicycle path.

Code Changed:

```
set_multicycle_path -setup -end -from [get_keepers {total_count_r*}] -to [get_keepers {total_count_r*}] 2
set_multicycle_path -hold -end -from [get_keepers {total_count_r*}] -to [get_keepers {total_count_r*}] 1
```

After Optimization:

Fmax	Restricted Fmax	Clock Name	Note
175.28 MHz	175.28 MHz	clk	

Optimization 3:

Summary of Paths and Statistics for Optimization 4

Figure 5 - Path of Longest Slack

Critical Path: IC and CELL of multiply.

Code Changed:

Registered the fifo_rd_data signal

After Optimization:

	Fmax	Restricted Fmax	Clock Name	Note	
1	215.19 MHz	210.04 MHz	clk	limin)	

Optimization 4:

Summary of Paths and Statistics for Optimization 5

Critical Path:

Count_r

Code Changed:

• Removed one bit from count_r, used the almost full signal instead of FULL, removed the rd_en, since valid_rd is only based on !empty

After Optimization:

Optimization 5:

Summary of Paths and Statistics for Optimization 6

```
create_clock -name {clk} -period 2.000 -waveform { 0.000 2.000 } [get_ports {clk}]
```

Applied faster clock constraint

Critical Path:

Total_count_r

Code Changed:

• Increased the multicycle clock path by 1 temporarily to find more bottlenecks

List of Code Changes

- 1. Got rid of read during write behavior and optimized the counter
- 2. Registered the rd_data output
- 3. Set up multicycle paths