Chapter 7
Clustering Analysis
(1)

CISC 4631

Outline

- Cluster Analysis
- Partitioning Clustering
- Hierarchical Clustering
- Large Size Data Clustering

SC 4631

What is Cluster Analysis?

- Cluster: A collection of data objects
 - similar (or related) to one another within the same group
 - dissimilar (or unrelated) to the objects in other groups
- Cluster analysis
 - Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters
- Clustering vs. classification
 - Clustering Unsupervised learning
 - No predefined classes

CISC 4631

3

Applications

- Marketing
 - Market segmentation (customers) marketing strategy is tailed for each segment.
 - Market structure analysis (products) similar / competitive products are identified
 - Investigation of neighborhood lifestyles potential demand for products and services.
- Finance
 - Balanced portfolios securities from different clusters based on their returns, volatilities, industries, and market capitalization.
 - Industry analysis similar firms based on growth rate, profitability, market size, ..., are studied to understand a given industry.

Applications

- Web search: cluster queries or cluster search results.
- Chemistry: Periodic table of the elements
- Biology: Organizing species based on their similarity (DNA/ Protein sequences)
- Army: a new set of size system for army uniforms.

CISC 4631

Measure the Similarity

- Dissimilarity/Similarity metric
 - Similarity is expressed in terms of a distance function, typically metric: d(i, j)
 - The definitions of distance functions are usually rather different for numerical, boolean, categorical, ordinal, and vector variables
 - Weights should be associated with different variables based on applications and data semantics

Similarity and Dissimilarity

- Similarity
 - Numerical measure of how alike two data objects are
 - Value is higher when objects are more alike
 - □ Often falls in the range [0,1]
- Dissimilarity (i.e., distance)
 - Numerical measure of how different are two data objects
 - Lower when objects are more alike
 - Minimum dissimilarity is often 0
 - Upper limit varies

CISC 4631

7

Difference Measure for Numerical Data

- Numerical (interval)-based:
 - Continuous measurements of a roughly linear scale.
 - Distance between each pair of objects.
 - Euclidean Distance

$$d(i,j) = \sqrt{(|x_{i1} - x_{j1}|^2 + |x_{i2} - x_{j2}|^2 + ... + |x_{ip} - x_{jp}|^2)}$$

Manhattan (city block) Distance

$$d(i,j) = |x_{i_1} - x_{j_1}| + |x_{i_2} - x_{j_2}| + ... + |x_{i_p} - x_{j_p}|$$

Minkowski Distance

$$d(i,j) = (|x_{i_1} - x_{j_1}|^p + |x_{i_2} - x_{j_2}|^p + \dots + |x_{i_p} - x_{j_p}|^p)^{1/p}$$

CISC 4631

8

Example: Distance Measures

Manhattan Distance	p1	p2	р3	p4
p1	0	4	4	6
p2	4	0	2	4
р3	4	2	0	2
p4	6	4	2	0

Euclidean	p1	p2	р3	p4
Distance				
p1	0	2.828	3.162	5.099
p2	2.828	0	1.414	3.162
р3	3.162	1.414	0	2
p4	5.099	3.162	2	0

Distance Matrix

CISC 4631

9

Distance Measures for Binary Variable

- A binary variable has only two states: 0 or 1 (boolean values).
 - Symmetric: both of its states are equally valuable,
 e.g., male and female for Gender.
 - Asymmetric: the outcomes of the states are not equally important, e.g., positive and negative for Test.

Binary Variables

Object j $1 \quad 0 \quad sum$ Object i $0 \quad c \quad d \quad c+d$ $sum \quad a+c \quad b+d \quad p$

 $d_{sym}(i,j) = \frac{b+c}{a+b+c+d}$

- A contingency table for binary data
 (p is the total number of binary variables)
- Distance measure for symmetric binary variables:
- Distance measure for asymmetric binary variables:

$$d_{asym}$$
 $(i, j) = \frac{b+c}{a+b+c}$

$$sim_{Jaccard}(i, j) = \frac{a}{a+b+c} = 1 - d_{asym}(i, j)$$

CISC 4631

11

Example of Dissimilarity between Asymmetric Binary Variables $d_{asym}(i,j) = \frac{b+c}{a+b+c}$

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y (1)	N (0)	P(1)	N (0)	N (0)	N (0)
Mary	F	Y (1)	N (0)	P(1)	N (0)	P(1)	N (0)
Jim	M	Y (1)	P(1)	N (0)	N (0)	N(0)	N (0)

$$d(Jack,Mary) = \frac{1}{2+1} = 0.33$$
$$d(Jack,Jim) = \frac{2}{1+2} = 0.67$$
$$d(Mary,Jim) = \frac{3}{1+3} = 0.75$$

* These measurements suggest that Mary and Jim are unlikely to have a similar disease, and Jack and Mary are the most likely to have a similar disease.

Categorical (Nominal) Variables

- A generalization of the binary variable in that it can take more than 2 states, e.g., red, yellow, blue, green
- Method 1: Simple matching
 - □ m: # of matches, p: total # of variables

$$d\left(i,j\right) = \frac{p-m}{p}$$

- Method 2: Use a large number of binary variables
 - creating a new binary variable for each of the M nominal states

CISC 4631 13

Ordinal Variables

- An ordinal variable can be discrete or continuous, and order is important, e.g., scores, pain levels
- Can be treated like interval-scaled,
 - \Box if f has M_f ordered states, replace x_{if} by their rank

$$r_{if} \in \{1, ..., M_{f}\}$$

 Since each ordinal variable can have different M_f, map the range of each variable onto [0, 1.0] by replacing *i*-th object in the *f*-th variable by

$$z_{if} = \frac{r_{if} - 1}{M_{f} - 1}$$

compute the dissimilarity using methods for interval-scaled variables

Example of Ordinal Variables

Name	Gender	Pain	Blood
		Levels	Pressure
Jack	M	5	140/90
Mary	F	3	120/80
Jim	M	2	160/120

Blood Pressure (High, Normal, Low):

140/90 (High - 3)->(3-1)/(3-1)=1 120/80 (Normal - 2)->(2-1)/(3-1)=0.5 160/120 (High-3) -> (3-1)/(3-1) = 1 Pain levels (1-10):

5 -> (5-1)/(10-1) =0.44

 $3 \rightarrow (3-1)/(10-1) = 0.22$

2 -> (2-1)/(10-1) = 0.11

Name	Gender	Pain	Blood
		Levels	Pressure
Jack	M	0.44	1
Mary	F	0.22	0.5
Jim	M	0.11	1

d(Jack, Mary) =
$$((0.44 - 0.22)^2 + (1 - 0.5)^2)^{1/2} = 0.55$$

d(Jack, Jim) = $((0.44 - 0.11)^2 + (1 - 1)^2)^{1/2} = 0.33$
d (Mary, Jim) = $((0.22 - 0.11)^2 + (0.5 - 1)^2)^{1/2} = 0.51$

CISC 4631

Variables of Mixed Types

- A database may contain different types of variables
 - symmetric binary, asymmetric binary, nominal, ordinal, interval
- One approach is to group each type of variable together, performing a separate cluster analysis for each type.
- One approach is to bring different variables onto a common scale of the interval [0.0, 1.0], performing a single cluster analysis.
 - A weighted formula

A Weighted Formula

$$d(i,j) = \frac{\sum_{f=1}^{p} U_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} U_{ij}^{(f)}}$$

- Weight $_{ij}$ (f)= 0
 - \Box if x_{if} or x_{jf} is missing
 - \Box or $x_{if} = x_{if} = 0$ and variable f is asymmetric binary,

CISC 463

A Weighted Formula

$$d(i,j) = \frac{\sum_{f=1}^{p} \mathsf{U}_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \mathsf{U}_{ij}^{(f)}}$$

- Otherwise, Weight ij (f) = 1.
- The contribution of variable f to d_{ij} (f) is computed depended on its type.
 - □ f is symmetric binary or categorical (nominal): $d_{ij}^{(f)} = 0$ if $x_{if} = x_{if}$, or $d_{ij}^{(f)} = 1$ otherwise
 - \Box f is ordinal, compute ranks r_{if} and treat z_{if} as interval-scaled.
 - f is interval-based: use the normalized distance with range
 [0,1.0]

$$d_{ij}^{(f)} = \frac{|x_{if} - x_{jf}|}{\max_{h} x_{hf} - \min_{h} x_{hf}}$$

Example

Name	Gender	Pain	Blood	Test-1	Test-2	Test-3	Test-4
		Levels	Pressure				
Jack	M	5	140/90	P(1)	N (0)	N (0)	N (0)
Mary	F	3	120/80	P(1)	N(0)	P(1)	N (0)
Jim	M	2	160/120	N (0)	N (0)	N (0)	N (0)

Gender is a symmetric attribute, Pain levels and Blood pressures are ordinal, and the remaining attributes are asymmetric binary

Name	Gender	Pain	Blood	Test-1	Test-2	Test-3	Test-4
		Levels	Pressure				
Jack	M	0.44	1	P(1)	N (0)	N (0)	N (0)
Mary	F	0.22	0.5	P(1)	N (0)	P(1)	N (0)
Jim	M	0.11	1	N (0)	N (0)	N (0)	N (0)

CISC 4631

Name Gender Pain Blood Test-1 Test-2 Test-3 Test-4 Jack M 0.44 P(1) N (0) N(0)N(0)F 0.22 P(1) N(0)N(0)Mary P(1)Jim M 0.11 N(0)N(0)N(0)N(0)

When i = Jack and j = Mary, $_{ij}$ (gender) = 1, $_{ij}$ (Pain Levels) = 1, $_{ij}$ (Blood Pressure)= 1, $_{ij}$ (Test-1)= 1, $_{ij}$ (Test-2)= 0, $_{ij}$ (Test-3)= 1, $_{ij}$ (Test-4)= 0 1+1+1+1+0+1+0 $d(Jack, Jim) = \frac{1*0+1*\frac{|0.44-0.11|}{(0.44-0.11)}+1*\frac{|1-1|}{(1-0.5)}+1*1}{1+1+1+1+0+0+0} = 0.5$ 1+1+1+1+0+0+0 $d(Jim, Mary) = \frac{1*1+1*\frac{|0.22-0.11|}{(0.44-0.11)}+1*\frac{|1-0.5|}{(1-0.5)}+1*1+1*1}{d(Jim, Mary)} = \frac{1*1+1*\frac{|0.22-0.11|}{(0.44-0.11)}+1*\frac{|1-0.5|}{(1-0.5)}}{(1-0.5)} + 1*1+1*1$ = 0.866

CISC 4631

1+1+1+1+0+1+0

Vector Objects: Cosine Similarity

- Vector objects: keywords in documents, gene features in microarrays, ...
- Applications: information retrieval, biologic taxonomy, ...
- Cosine measure: If d_1 and d_2 are two vectors, then $\cos(d_1, d_2) = (d_1 \bullet d_2) / ||d_1|| ||d_2||$, where \bullet indicates vector dot product, ||d||: the length of vector d

Example:

```
\begin{aligned} d_1 &= 3205000200 \\ d_2 &= 100000102 \\ d_1 &= d_2 &= d_1 &= d_2 \\ d_2 &= d_1 &= d_2 \\ d_1 &= d_2 &= d_1 &= d_2 \\ ||d_1|| &= (d_1 &= d_2 &= d_1 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &= d_1 &= d_2 &= d_2 \\ ||d_2|| &= (d_1 &=
```