Introduction to Machine Learning

Dr. Vishan Kumar Gupta

Associate Professor
Computer Science and Engineering Department
Graphic Era Deemed to be University, Ghaziabad
vishangupta@gmail.com

Example1: Email classification in Gmail

Example2: Suggestions in youtube

Example3: suggestions in reply according to the contents of e-mail

What is Learning?

Definition:- The ability to improve one's behavior based on experience.

 Simple Definition I - Branch of Artificial Intelligence that gives computers to learn without being explicitly programmed.

 Simple Definition II - Branch of Artificial Intelligence, about to construct a system that <u>learn from data</u>.

According to **Arthur Samuels**

- Actual Definition A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E.
- For example:-
- Task: Cricket score prediction between India and England.
- Experience: Old data of India between England match/ pitch/members of team.
- Performance: How actually you predict.

Categories of Machine Learning

Supervised/Unsupervised Learning

Supervised Learning is applied when the input data collected has some kind of known labels or results. input data is called training data and model is prepared by using this data.

Example: Classification & Regression Problems.

Supervised/Unsupervised Learning

 Unsupervised Learning refers to the problem of trying to find hidden structure in <u>unlabeled</u> data.

Example: Clustering Problems and Association Rule Mining.

Examples

Classification Problems

- Prediction of cancer.
- Win prediction of Mr. Narendra Modi.
- Diabetic Prediction.
- Classification of e-mail spam or not-spam.

Regression Problem

- Prediction of wheat production.
- Prediction of rainfall.
- Point prediction of Stock Exchange.

weather

ID code	Outlook	Temperature	Humidity	Windy	Play
a	Sunny	Hot	High	False	No
Ъ	Sunny	Hot	High	True	No
С	Overcast	Hot	High	False	Yes
d	Rainy	Mild	High	False	Yes
e	Rainy	Cool	Normal	False	Yes
f	Rainy	Cool	Normal	True	No
g	Overcast	Cool	Normal	True	Yes
h	Sunny	Mild	High	False	No
i	Sunny	Cool	Normal	False	Yes
j	Rainy	Mild	Normal	False	Yes

Classification

 A classification technique is a systematic approach to building classification models from an input data set.
 Decision tree, neural networks, linear model, random forest and support vector machines are the classifiers.

Understand the Data......

Class / Target Features / Properties code Clump Th Cell Size Cell Shap Marginal / Single Epi Bare Nucl Bland Chr Normal N Mitoses Class

Classification & Regression

Classification: Predict discrete valued output.

Regression: Predict real valued output.

Class	F1	F2	F3	F4	F5
5	5769.3	1634.9	0.3	57.0	76946
3	12962.3	3389.2	0.3	141.3	17618
13	5960.2	2230.7	0.4	64.3	84555
11	9926.8	3276.7	0.3	102.0	13869.
15	6658.5	2590.6	0.4	62.2	95121
3	12272.7	2836.1	0.2	140.0	16656
2	12579.2	3473.6	0.3	129.4	17371
19	11969.7	4721.9	0.4	110.1	15700
19	21779.3	8269.9	0.4	250.2	29574
20	9020.8	2509.4	0.3	97.9	12392

Class	F1	F2	F3	F4
4.5	5769.3	1634.9	0.3	57.0
3.0	12962.3	3389.2	0.3	141.3
12.7	5960.2	2230.7	0.4	64.3
11.5	9926.8	3276.7	0.3	102.0
14.9	6658.5	2590.6	0.4	62.2
2.5	12272.7	2836.1	0.2	140.0
2.2	12579.2	3473.6	0.3	129.4
18.8	11969.7	4721.9	0.4	110.1
19.4	21779.3	8269.9	0.4	250.2
19.6	9020.8	2509.4	0.3	97.9

1 Classification Data

2 Regression Data

Machine Learning models

- Most Common models
 - Decision tree model
 - Random forest
 - SVM (Support Vector Machine)
 - Linear model
 - Neural network
 - AdaBoost

Examples

- Clustering: Clustering is the task of dividing the population or data points into a number of groups such that data points in the same groups are more similar to other data points and dissimilar to the data points in other groups. It is basically a collection of objects on the basis of similarity and dissimilarity between them.
 - Grouping of NEWS.
 - Grouping the people on their similar hobbies/ interests.
 - Grouping of animals.
 - Grouping of customers based on their performance.
 e.g. bank customers.

...... Many more. W Edit with WPS Office

Clustering Data

Features / Properties

	Α	В	С	D	Е	F	G	Н	I	J
1	Code	Clump_Th	Cell_Size	Cell_Shap	Marginal A	Single Epi	Bare Nucl	Bland Chr	Normal N	Mitoses
2	1000025	5	1	1	1	2	1	3	1	1
3	1002945	5	4	4	5	7	10	3	2	1
4	1015425	3	1	1	1	2	2	3	1	1
5	1016277	6	8	8	1	3	4	3	7	1
6	1017023	4	1	1	3	2	1	3	1	1
7	1017122	8	10	10	8	7	10	9	7	1
8	1018099	1	1	1	1	2	10	3	1	1
9	1018561	2	1	2	1	2	1	3	1	1
10	1033078	2	1	1	1	2	1	1	1	5
11	1033078	4	2	1	1	2	1	2	1	1
12	1035283	1	1	1	1	1	1	3	1	1
13	1036172	2	1	1	1	2	1	2	1	1
14	1041801	5	3	3	3	2	3	4	4	1
15	1043999	1	1	1	1	2	3	3	1	1
16	1044572	8	7	5	10	7	9	5	5	4

Only Features; No class/target/label

Examples

- Association Rule Mining: Association rule mining is a procedure which aims to observe frequently occurring patterns, correlations, or associations from datasets found in various kinds of databases such as relational databases, transactional databases, and other forms of repositories.
 - Market Basket Analysis
 - Medical Diagnosis
 - Census Data
 - Protein Sequence
 - •..... Many more.

Data Set: UCI Library (Datasets Repository)

Google → "uci dataset"

Browse Through: 246 Data Sets

Drowse Through.	240 Data Sets					Table view L	JOE VICYV
Default Task Classification (171)	<u>Name</u>	<u>Data Types</u>	<u>Default Task</u>	Attribute Types	# Instances	<u>#</u> <u>Attributes</u>	<u>Year</u>
Regression (29) Clustering (17) Other (48)	Abalone	Multivariate	Classification	Categorical, Integer, Real	4177	8	1995
Categorical (36) Numerical (122) Mixed (56)	Adult	Multivariate	Classification	Categorical, Integer	48842	14	1996
Data Type Multivariate (186) Univariate (11)	<u>UCI</u> <u>Annealing</u>	Multivariate	Classification	Categorical, Integer, Real	798	38	
Sequential (17) Time-Series (30) Text (22) Domain-Theory (18)	Anonymous Microsoft Web Data		Recommender- Systems	Categorical	37711	294	1998
Other (21) Area Life Sciences (65)	Arrhythmia Arrhythmia	Multivariate	Classification	Categorical, Integer, Real	452	279	1998
Physical Sciences (36) CS / Engineering (57) Social Sciences (16)	Aa Artificial Characters	Multivariate Edit with WPS	Classification Office	Categorical, Integer, Real	6000	7	1992

Flow of Machine Learning based Application

- Data collection
- Data cleansing
- Feature selection
- Division of data into training and testing
- K-fold cross validation
- Result analysis

Thank s