Universidad Nacional Autónoma de Honduras Departamento de Matemática Pura Ejercicios complementarios de repaso para el Parcial I MM 425 Topología

Profesor: Dr. Fredy Vides

Instrucciones: Resolver las siguientes problemas, dejando evidencia de argumentos precisos y rigurosos que respalden sus resultados y conclusiones.

1. Considerando las normas vectoriales definidas para cualquier $x = [x_j] \in \mathbb{R}^n$ por las expresiones:

$$||x||_1 = \sum_{j=1}^n |x_j|$$

у

$$||x||_2 = \left(\sum_{j=1}^n x_j^2\right)^{\frac{1}{2}}$$

- Probar que las funciones $d_1(x,y) = ||x-y||_1$ y $d_2(x,y) = ||x-y||_2$ definen métricas en \mathbb{R}^n .
- Probar o refutar que $d_2(x,y) \leq d_1(x,y)$ para cualquier par $x,y \in \mathbb{R}^n$.
- 2. Dada $A = [a_{jk}] \in \mathbb{R}^{m \times n}$, probar o refutar que para cada $x = [x_j] \in \mathbb{R}^n$.

$$||Ax||_2 \le \left(\sum_{j=1}^m \sum_{k=1}^n |a_{jk}|\right) ||x||_2$$

- 3. Considerando la función $f: \mathbb{R}^n \to \mathbb{R}^n$ definida por f(x) = Ax + b para $A \in \mathbb{R}^{n \times n}$ y $b \in \mathbb{R}^n$.
 - (a) Es la función f continua?
 - (b) Es la función f uniformemente continua?
 - (c) Existen condiciones para A, b que garanticen que la función f sea un homeomorfismo?

Idea: Considere la designaldad de Cauchy-Schwarz $|x \cdot y| \leq ||x||_2 ||y||_2$, $x, y \in \mathbb{R}^n$.

- 4. Sea $\mathbf{1}_n$ la matriz identidad en $\mathbb{R}^{n \times n}$. Dada $A \in \mathbb{R}^{n \times n}$ tal que la matriz $T_A = [t_{jk}] = \mathbf{1}_n A$ es invertible:
 - (a) Probar que la función f(x) = Ax + b tiene un único punto fijo $x \in \mathbb{R}^n$ para cualquier $b \in \mathbb{R}^n$
 - (b) Suponiendo que:

$$0 < \sum_{j=1}^{m} \sum_{k=1}^{n} |t_{jk}| < 1$$

Probar que para $\{x_k\}_{k\geq 1}\subseteq \mathbb{R}^n$ definida en por las ecuaciones de recurrencia:

$$x_{k+1} = T_A x_k + b, x_1 = b$$

- $\{x_k\}_{k\geq 1}$ es de Cauchy $x=\lim_{t\to\infty}x_k$ es un punto fijo de f(x).
- $\bullet \ x_k \to (\mathbf{1}_n A)^{-1}b.$