

FIT 3181/5215 Deep Learning

Quiz for: Advanced Convolutional Neural Networks

Teaching team

Department of Data Science and Al Faculty of Information Technology, Monash University Email: trunglm@monash.edu

Which statements are correct? (MC)

- □ A. In traditional approach, the training signal from classifier can be used to improve feature extractor.
- □ B. In deep learning approach, the training signal from classifier can be used to improve feature extractor.
- C. In traditional approach, the training signal from classifier cannot be used to improve feature extractor.
- D. In deep learning approach, the training signal from classifier cannot be used to improve feature extractor.

What are the shapes of tensors in A, B and the value of the width in C?

- □ A. [15,15,4], [8,8,4], 8x8x4
- □ B. [2,15,15,4], [2,8,8,4], 2x8x8x4
- □ C. [2,16,16,4], [2,8,8,4], 2x8x8x4
- □ D. [2,16,16,4], [2,8,8,4], 8x8x4

What are correct statements about the receptive field? (MC)

- □ A. Receptive field of neurons on higher layers become smaller.
- □ B. The value of a neuron is not computationally relevant to its receptive field.
- C. Receptive field of neurons on higher layers become larger.
- □ D. The value of a neuron is computationally relevant to its receptive field.

Which illustration is correct for the residual block? (SC).

Given an implementation of the residual block as below? What is the shape of Y (SC).

- A. [10,32,32,3]
- B. [10,16,16,3]
- c. [3,32,32,3]
- D. Raise an error.

```
class Residual(tf.keras.Model):
    def init (self, num channels, use 1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = tf.keras.layers.Conv2D(
            num channels, padding='same', kernel size=3, strides=strides)
        self.conv2 = tf.keras.layers.Conv2D(num_channels, kernel_size=3, padding='same')
        self.conv3 = None
        if use 1x1conv:
            self.conv3 = tf.keras.layers.Conv2D(
                num_channels, kernel_size=1, strides=strides)
        self.bn1 = tf.keras.layers.BatchNormalization()
        self.bn2 = tf.keras.layers.BatchNormalization()
    def call(self, X):
        Y = tf.keras.activations.relu(self.bn1(self.conv1(X)))
       Y = self_bn2(self_conv2(Y))
       if self.conv3 is not None:
            X = self.conv3(X)
       Y += X
        return tf.keras.activations.relu(Y)
blk = Residual(num_channels=3)
X = tf.random.uniform((10, 32, 32, 3))
Y = blk(X)
print(Y.shape)
```

Given an implementation of the residual block as below? What is the shape of Y (SC).

- A. [10,32,32,3]
- B. [10,16,16,3]
- c. [3,32,32,3]
- D. Raise an error.

```
class Residual(tf.keras.Model):
    def __init__(self, num_channels, use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = tf.keras.layers.Conv2D(
            num_channels, padding='same', kernel_size=3, strides=strides)
        self.conv2 = tf.keras.layers.Conv2D(num_channels, kernel_size=3, padding='same')
        self.conv3 = None
        if use 1x1conv:
            self.conv3 = tf.keras.layers.Conv2D(
                num_channels, kernel_size=1, strides=strides)
        self.bn1 = tf.keras.layers.BatchNormalization()
        self.bn2 = tf.keras.layers.BatchNormalization()
    def call(self, X):
        Y = tf.keras.activations.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3 is not None:
            X = self.conv3(X)
        Y += X
        return tf.keras.activations.relu(Y)
blk = Residual(num_channels=6)
X = tf.random.uniform((10, 32, 32, 3))
Y = blk(X)
print(Y.shape)
```

Which statements are correct for ResNet architecture? (MC).

- □ A. In ResNet architecture, ReLU activation function is followed by Batch Normalization layer.
- B. It is possible to replace ReLU by Sigmoid activation function because of the skip-connection can help to reduce gradient vanishing.
- C. 1x1 Conv in skip-connection is used to change number of output channels.
- D. A ResNet model consists of many ResNet blocks, each ResNet block consists of many residual blocks, each residual block includes several convolutional and activation layers.

Given an adversarial example x_{adv} of a clean example x w.r.t. model $f, y \in \{1,2,...,M\}$ is the true label. Which statements are correct? (MC).

- □ A. x_{adv} and x look very similar under human perspective
- □ B. x_{adv} and x look very different under human perspective
- \square C. $argmax_{1 \leq m \leq M} f_m(x_{adv}) = y$
- \square D. $argmax_{1 \leq m \leq M} f_m(x_{adv}) \neq y$

Given a constraint of an adversarial example as follow: $x_{adv} \in B_{\epsilon}(x) = \{x': ||x'-x||_{\infty} \le \epsilon\}$. Which statements are correct? (MC)

- \square A. This constraint to make sure that x_{adv} and x look very similar under human perspective
- \square B. This constraint to make sure that x_{adv} and x look very different under human perspective
- \square C. This constraint to make sure that $argmax_{1 \le m \le M} f_m(x_{adv}) = argmax_{1 \le m \le M} f_m(x)$
- ullet D. The highest absolute difference between pixels of x_{adv} and x is less than or equal ϵ

Given a DL model $f(x;\theta)$ parameterized by θ where $f(x;\theta)$ represents the prediction probabilities of x associated with a ground-truth label $y \in \{1, ..., M\}$, we find an adversarial example by $x_{adv} = argmax_{x' \in B_{\epsilon}(x)} l(f(x';\theta), y)$. Which statements are correct? (MC)

- \square A. We maximally increase the chance to predict x_{adv} with label y.
- \square B. We maximally decrease the chance to predict x_{adv} with label y.
- \square C. We maximally increase the chance to predict x_{adv} with any else label $y' \neq y$.
- D. It is a targeted attack.
- □ E. It is an untargeted attack.

Given a DL model $f(x;\theta)$ parameterized by θ where $f(x;\theta)$ represents the prediction probabilities of x associated with a ground-truth label $y \in \{1, ..., M\}$, we find an adversarial example by $\mathbf{x}_{adv} = \underset{\mathbf{x}_{dv}}{argmin}_{x' \in B_{\epsilon}(x)} \mathbf{l}(f(x';\theta), \mathbf{y}_{\neq})$ with $\mathbf{y}_{\neq} \neq y$. Which statements are correct? (MC)

- \square A. We maximally increase the chance to predict x_{adv} with label y.
- \square B. We maximally increase the chance to predict x_{adv} with label y_{\neq} .
- □ C. It is a targeted attack.
- □ D. It is an untargeted attack.