Chapter 4 Solutions

Exercise 4.1.

Programming assignment.

Exercise 4.2.

By inspection M can be obtained as

$$M = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & \ell_1 + \ell_2 \ 0 & 0 & 1 & \ell_0 \ 0 & 0 & 0 & 1 \end{array}
ight].$$

The screw axes $S_i = (\omega_i, v_i)$ are listed in the following table:

i	ω_i	v_i
1	(0, 0, 1)	(0, 0, 0)
2	(0, 0, 1)	$(\ell_1, 0, 0)$
3	(0, 0, 1)	$(\ell_1 + \ell_2, 0, 0)$
4	(0, 0, 0)	(0, 0, 1)

The screw axes $\mathcal{B}_i = (\omega_i, v_i)$ are listed in the following table:

i	ω_i	v_i	
1	(0, 0, 1)	$(-\ell_1 - \ell_2, 0, 0)$	
2	(0, 0, 1)	$(-\ell_2, 0, 0)$	
3	(0, 0, 1)	(0, 0, 0)	
4	(0, 0, 0)	(0, 0, 1)	

The end-effector configuration $T \in SE(3)$ can be found, using the FKinSpace and the FKinBody functions, as

$$T = \left[\begin{array}{cccc} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

Exercise 4.3.

$$T(\theta) = Me^{[\mathcal{B}_1]\theta_1}e^{[\mathcal{B}_2]\theta_2}e^{[\mathcal{B}_3]\theta_3}$$

The end-effector zero position configuration M is given by

$$M = \left[egin{array}{ccc} R & p \ 0 & 1 \end{array}
ight] = \left[egin{array}{cccc} 0 & 0 & 1 & L_1 \ 0 & 1 & 0 & 0 \ -1 & 0 & 0 & -L_2 \ 0 & 0 & 0 & 1 \end{array}
ight].$$

The values of the screw parameters $\mathcal{B}_i = (\omega_i, v_i)$ are listed in the following table:

frame i	ω_i	q_i	v_i
1	(-1,0,0)	$(0,0,-L_1)$	$(0, L_1, 0)$
2	(0, -1, 0)	$(-L_2,0,0)$	$(0,0,L_2)$
3	(0,0,1)	(0,0,0)	(0,0,0)

Exercise 4.4.

$$T(\theta) = Me^{[\mathcal{B}_1]\theta_1}e^{[\mathcal{B}_2]\theta_2}\cdots e^{[\mathcal{B}_6]\theta_6}$$

The end-effector zero position configuration M is given by

$$M = \left[egin{array}{ccc} R & p \ 0 & 1 \end{array}
ight] = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & L_1 + L_2 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight].$$

The values of the screw parameters $\mathcal{B}_i = (\omega_i, v_i)$ are listed in the following table:

frame i	ω_i	q_i	v_i
1	(0,0,1)	$(0, -L_1 - L_2, 0)$	$(-L_1-L_2,0,0)$
2	(1,0,0)	$(0, -L_1 - L_2, 0)$	$(0,0,L_1+L_2)$
3	(0,0,0)	-	(0,1,0)
4	(0,1,0)	(0,0,0)	(0,0,0)
5	(1,0,0)	$(0, -L_2, 0)$	$(0,0,L_2)$
6	(0,1,0)	(0,0,0)	(0,0,0)

Exercise 4.5.

Screw axes in the body frame for UR5 \mathcal{B}_i :

i	ω_i	v_i
1	(0, 1, 0)	$(W_1+W_2,0,L_1+L_2)$
2	(0, 0, 1)	$(H_2, -L_1 - L_2, 0)$
3	(0, 0, 1)	$(H_2, -L_2, 0)$
4	(0, 0, 1)	$(H_2, 0, 0)$
5	(0, -1, 0)	$(-W_2, 0, 0)$
6	(0, 0, 1)	(0, 0, 0)

Exercise 4.6.

Screw axes in the body frame for the WAM arm S_i :

i	ω_i	v_i
1	(0, 1, 0)	$(-H_1+H_2,0,L_1+L_2)$
2	(0, 0, 1)	$(-L_1-L_2-L_3+W_1+W_2, -L_1-L_2, 0)$
3	(0, 1, 0)	$(-H_1+H_2,0,L_1+L_2)$
4	(0, 0, 1)	$(-L_2-L_3+W_1+W_2, -L_1-L_2+W_1, 0)$
5	(0, 1, 0)	$(-H_1+H_2,0,L_1+L_2)$
6	(0, 1, 0)	$(-H_1+H_2-L_3,0,L_1+L_2)$
7	(0, 1, 0)	$(-H_1+H_2,0,L_1+L_2)$

Exercise 4.7.

By inspection M can be obtained as

$$M = \left[\begin{array}{cccc} 1 & 0 & 0 & & 0 \\ 0 & 1 & 0 & L_1 + L_2 + L_3 + L_4 \\ 0 & 0 & 1 & & h \\ 0 & 0 & 0 & & 1 \end{array} \right].$$

The screw axes $S_i = (\omega_i, v_i)$ are listed in the following table:

i	ω_i	v_i
1	(0, 0, 0)	(0, 1, 0)
2	(0, 0, 1)	$(L_1, 0, 0)$
3	(-1, 0, 0)	$(0, -h, L_1)$
4	(-1, 0, 0)	$(0, -h, L_1 + L_2)$
5	(-1, 0, 0)	$(0, -h, L_1 + L_2 + L_3)$
6	(0, 1, 0)	(-h, 0, 1)

The screw axes $\mathcal{B}_i = (\omega_i, v_i)$ are listed in the following table:

i	ω_i	v_i
1	(0, 0, 0)	(0, 1, 0)
2	(0, 0, 1)	$(-L_2-L_3-L_4, 0, 0)$
3	(-1, 0, 0)	$(0, 0, -L_2 - L_3 - L_4)$
4	(-1, 0, 0)	$(0, 0, -L_3 - L_4)$
5	(-1, 0, 0)	$(0, 0, -L_4)$
6	(0, 1, 0)	(0, 0, 0)

Exercise 4.8.

$$\begin{array}{lcl} T(\theta) & = & e^{[S_1]\theta_1}e^{[S_2]\theta_2}\cdots e^{[S_6]\theta_6}M \\ & = & Me^{[B_1]\theta_1}e^{[B_2]\theta_2}\cdots e^{[B_6]\theta_6} \end{array}$$

The end-effector zero position configuration M is given by

$$M = \left[egin{array}{ccc} R & p \ 0 & 1 \end{array}
ight] = \left[egin{array}{cccc} 1 & 0 & 0 & L_1 \ 0 & 1 & 0 & L_3 + L_4 \ 0 & 0 & 1 & -L_5 - L_6 \ 0 & 0 & 0 & 1 \end{array}
ight].$$

The values of the screw parameters $S_i = (\omega_i, v_i)$ are listed in the following table:

frame i	ω_i	q_i	v_i
1	(1,0,0)	(0,0,0)	(0,0,0)
2	(0,0,-1)	$(L_1,0,0)$	$(0, L_1, 0)$
3	(0,1,0)	$(L_1,0,L_2)$	$(-L_2,0,L_1)$
4	(1,0,0)	$(0, L_3, 0)$	$(0,0,-L_3)$
5	(0,0,0)	-	(0,1,0)
6	(0,1,0)	$(L_1,0,-L_5)$	$(L_5, 0, L_1)$

The values of the screw parameters $\mathcal{B}_i = (\omega_i, v_i)$ are listed in the following table:

frame i	ω_i	q_i	v_i
1	(1,0,0)	$(0, -L_3 - L_4, L_5 + L_6)$	$(0, L_5 + L_6, L_3 + L_4)$
2	(0,0,-1)	$(0, -L_3 - L_4, 0)$	$(L_3 + L_4, 0, 0)$
3	(0,1,0)	$(0,0,L_2+L_5+L_6)$	$(-L_2-L_5-L_6,0,0)$
4	(1,0,0)	$(0, -L_4, L_5 + L_6)$	$(0, L_5 + L_6, L_4)$
5	(0,0,0)	-	(0,1,0)
6	(0,1,0)	$(0,0,L_6)$	$(-L_6,0,0)$

Exercise 4.9.

$$\begin{array}{lcl} T(\theta) & = & e^{[S_1]\theta_1}e^{[S_2]\theta_2}\cdots e^{[S_6]\theta_6}M \\ & = & Me^{[\mathcal{B}_1]\theta_1}e^{[\mathcal{B}_2]\theta_2}\cdots e^{[\mathcal{B}_6]\theta_6} \end{array}$$

The end-effector zero position configuration M is given by

$$M = \left[\begin{array}{ccc} R & p \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 3L \\ 0 & 0 & -1 & -2L \\ 0 & 0 & 0 & 1 \end{array} \right].$$

The values of the screw parameters $S_i = (\omega_i, v_i)$ are listed in the following table:

frame i	w_i	q_i	v_i
1	(0,0,1)	(0,0,0)	(0,0,0)
2	(1,0,0)	(0,0,-2L)	(0, -2L, 0)
3	(0,0,0)	-	(0,1,0)
4	(0,0,0)	-	(0,0,1)
5	(0,1,0)	(0,0,-L)	(L,0,0)
6	(0,0,-1)	(0, 3L, 0)	(-3L,0,0)

The values of the screw parameters $\mathcal{B}_i = (\omega_i, v_i)$ are listed in the following table:

frame i	w_i	q_i	v_i
1	(0,0,-1)	(-3L,0,0)	(0, -3L, 0)
2	(0,1,0)	(-3L,0,0)	(0,0,-3L)
3	(0,0,0)	-	(1,0,0)
4	(0,0,0)	-	(0,0,-1)
5	(1,0,0)	(0,0,-L)	(0, -L, 0)
6	(0,0,1)	(0,0,0)	(0,0,0)

Exercise 4.10.

$$\begin{array}{lcl} T(\theta) & = & e^{[S_1]\theta_1}e^{[S_2]\theta_2}\cdots e^{[S_6]\theta_6}M \\ & = & Me^{[\mathcal{B}_1]\theta_1}e^{[\mathcal{B}_2]\theta_2}\cdots e^{[\mathcal{B}_6]\theta_6} \end{array}$$

The end-effector zero position configuration M is given by

$$M = \left[\begin{array}{ccc} R & p \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cccc} 1 & 0 & 0 & (2 + \sqrt{3})L \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & (1 + \sqrt{3})L \\ 0 & 0 & 0 & 1 \end{array} \right].$$

The values of the screw parameters $S_i = (\omega_i, v_i)$ are listed in the following table:

frame i	w_i	q_i	v_i
1	(0,0,1)	(L, 0, 0)	(0, -L, 0)
2	(0,1,0)	(L, 0, 0)	(0, 0, L)
3	(0,1,0)	$((1+\sqrt{3})L,0,-L)$	$(L,0,(1+\sqrt{3})L)$
4	(0,1,0)	$((2+\sqrt{3})L,0,(\sqrt{3}-1)L)$	$((1-\sqrt{3})L,0,(2+\sqrt{3})L)$
5	(0,0,0)	-	(0,0,1)
6	(0,0,1)	$((2+\sqrt{3})L,0,0)$	$(0, -(2+\sqrt{3})L, 0)$

The values of the screw parameters $\mathcal{B}_i = (\omega_i, v_i)$ are listed in the following table:

frame i	w_i	q_i	v_i
1	(0,0,1)	$(-(1+\sqrt{3})L,0,0)$	$(0,(1+\sqrt{3})L,0)$
2	(0, 1, 0)	$(-(1+\sqrt{3})L,0,-(1+\sqrt{3})L)$	$((1+\sqrt{3})L,0,-(1+\sqrt{3})L)$
3	(0, 1, 0)	$(-L,0,-(2+\sqrt{3})L)$	$((2+\sqrt{3})L,0,-L)$
4	(0,1,0)	(0,0,-2L)	(2L, 0, 0)
5	(0,0,0)	-	(0, 0, 1)
6	(0,0,1)	(0,0,0)	(0,0,0)

Exercise 4.11.

$$T(\theta) = e^{[S_1]\theta_1} e^{[S_2]\theta_2} \cdots e^{[S_5]\theta_5} M$$
$$= M e^{[B_1]\theta_1} e^{[B_2]\theta_2} \cdots e^{[B_5]\theta_5}$$

The end-effector zero position configuration M is given by

$$M = \left[\begin{array}{cc} R & p \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cccc} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

The values of the screw parameters $S_i = (\omega_i, v_i)$ are listed in the following table:

frame i	ω_i	q_i	v_i
1	(0,0,1)	(0,0,0)	(0,0,0)
2	(0,0,0)	-	(1,0,0)
3	(0,0,1)	(1,0,0)	(0, -1, 0)
4	(0, -1, 0)	(1,0,-1)	(-1,0,-1)
5	$\left(-\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$	(1,0,0)	$(0, -\frac{1}{\sqrt{2}}, 0)$

The values of the screw parameters $\mathcal{B}_i = (\omega_i, v_i)$ are listed in the following table:

frame i	ω_i	q_i	v_i
1	(0,0,1)	(-3,0,0)	(0,3,0)
2	(0,0,0)	-	(1,0,0)
3	(0,0,1)	(-2,0,0)	(0,2,0)
4	(0, -1, 0)	(-2,0,-1)	(-1,0,2)
5	$\left(-\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right)$	(-2,0,0)	$(0,\sqrt{2},0)$

Exercise 4.12.

$$\begin{array}{lcl} T(\theta) & = & e^{[S_1]\theta_1}e^{[S_2]\theta_2}\cdots e^{[S_6]\theta_6}M \\ & = & Me^{[B_1]\theta_1}e^{[B_2]\theta_2}\cdots e^{[B_6]\theta_6} \end{array}$$

The end-effector zero position configuration M is given by

$$M = \left[\begin{array}{ccc} R & p \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cccc} 1 & 0 & 0 & L \\ 0 & 1 & 0 & (4 + \sqrt{2})L \\ 0 & 0 & 1 & -\sqrt{2}L \\ 0 & 0 & 0 & 1 \end{array} \right].$$

The values of the screw parameters $S_i = (\omega_i, v_i)$ are listed in the following table:

frame i	w_i	q_i	v_i
1	(0,1,0)	(0,0,0)	(0,0,0)
2	(0,0,1)	(0, L, 0)	(L,0,0)
3	(0,0,0)	-	(0,1,0)
4	(0,1,0)	(0,0,L)	(-L,0,0)
5	$(0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$	(0,4L,L)	$(-\frac{5}{\sqrt{2}}L,0,0)$
6	(1,0,0)	$(0,(4+\sqrt{2})L,-\sqrt{2}L)$	$(0, -\sqrt{2}L, -(4+\sqrt{2})L)$

(0,0,0)

frame i	w_i	q_i	v_i
1	(0, 1, 0)	$(-L,0,\sqrt{2}L)$	$(-\sqrt{2}L,0,-L)$
2	(0,0,1)	$(-L, -(3+\sqrt{2})L, 0)$	$(-(3+\sqrt{2})L, L, 0)$
3	(0,0,0)	-	(0,1,0)
4	(0, 1, 0)	$(-L, 0, (1+\sqrt{2})L)$	$(-(1+\sqrt{2})L,0,-L)$
5	$(0,\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})$	(-L,0,L)	$(-\frac{1}{\sqrt{2}}L, -\frac{1}{\sqrt{2}}L, -\frac{1}{\sqrt{2}}L)$

The values of the screw parameters $\mathcal{B}_i = (\omega_i, v_i)$ are listed in the following table:

(1,0,0)

6

Setting $\theta_5 = \pi$ and all other joint variables to zero, $e^{[S_1]\theta_1} = e^{[S_2]\theta_2} = e^{[S_3]\theta_3} = e^{[S_4]\theta_4} = e^{[S_6]\theta_6} = I$, while $e^{[S_5]\theta_5}$ can be expressed by following formula:

(0,0,0)

$$e^{[\mathcal{S}]\theta} = \left[\begin{array}{cc} e^{[\omega]\theta} & \left(I\theta + (1-\cos\theta)[\omega] + (\theta-\sin\theta)[\omega]^2\right)v \\ 0 & 1 \end{array} \right].$$

Then $e^{[S_5]\theta_5}$ becomes

$$e^{[\mathcal{S}_5] heta_5} = \left[egin{array}{cccc} -1 & 0 & 0 & 0 \ 0 & 0 & -1 & 5L \ 0 & -1 & 0 & 5L \ 0 & 0 & 0 & 1 \end{array}
ight].$$

Hence T_{06} becomes

$$T_{06} = e^{[S_5] heta_5} M = \left[egin{array}{cccc} -1 & 0 & 0 & -L \ 0 & 0 & -1 & (5+\sqrt{2})L \ 0 & -1 & 0 & (1-\sqrt{2})L \ 0 & 0 & 0 & 1 \end{array}
ight],$$

and T_{60} is T_{06}^{-1} .

Exercise 4.13.

$$T(\theta) = e^{[S_1]\theta_1} e^{[S_2]\theta_2} \cdots e^{[S_6]\theta_6} M$$
$$= M e^{[B_1]\theta_1} e^{[B_2]\theta_2} \cdots e^{[S_6]\theta_6}$$

The end-effector zero position configuration M is given by

$$M = \left[\begin{array}{cccc} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

The values of the screw parameters $S_i = (\omega_i, v_i)$ are listed in the following table:

frame i	w_i	q_i	v_i
1	(0,0,1)	(0,0,0)	(0,0,0)
2	(1,0,0)	(0,0,2)	(0, 2, 0)
3	(1,0,0)	(0,1,2)	(0,2,-1)
4	(0,0,0)	-	(0, 1, 0)
5	$(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$	(0,1,0)	$(\frac{1}{\sqrt{2}},0,0)$
6	(0,0,-1)	(0,4,0)	(-4,0,0)

The values of the screw parameters $\mathcal{B}_i = (\omega_i, v_i)$ are listed in the following table:

frame i	w_i	q_i	v_i
1	(0,0,-1)	(0, -4, 0)	(4,0,0)
2	(-1,0,0)	(0, -4, -1)	(0,1,-4)
3	(-1,0,0)	(0, -3, -1)	(0,1,-3)
4	(0,0,0)	-	(0,1,0)
5	$(0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}})$	(0,-1,-1)	$(\sqrt{2},0,0)$
6	(0,0,1)	(0,0,0)	(0,0,0)

Exercise 4.14.

By inspection M can be obtained as:

$$M = \left[egin{array}{ccccc} -1 & 0 & 0 & 0 \ 0 & 1 & 0 & L_0 + L_2 \ 0 & 0 & -1 & L_1 - L_3 \ 0 & 0 & 0 & 1 \end{array}
ight].$$

The screw axes $S_i = (\omega_i, v_i)$ are listed in the following table:

i	ω_i	v_i
1	(0, 0, 1)	$(L_0, 0, 0)$
2	(0, 0, 0)	(0, 1, 0)
3	(0, 0, -1)	$(-L_0-L_2,0,h)$

where $L_0 = 4$, $L_1 = 3$, $L_2 = 2$, $L_3 = 1$, and h = 0.1.

The screw axes $\mathcal{B}_i = (\omega_i, v_i)$ are listed in the following table:

i	ω_i	v_i
1	(0, 0, -1)	$(L_2, 0, 0)$
2	(0, 0, 0)	(0, 1, 0)
3	(0, 0, 1)	(0, 0, -h)

Using FKinSpace and FKinBody should give the following configuration T:

$$T = \left[\begin{array}{cccc} 0 & 1 & 0 & -3 - L_2 \\ 1 & 0 & 0 & L_0 \\ 0 & 0 & -1 & \pi h + L_1 - L_3 \\ 0 & 0 & 0 & 1 \end{array} \right] = \left[\begin{array}{cccc} 0 & 1 & 0 & -5 \\ 1 & 0 & 0 & 4 \\ 0 & 0 & -1 & 2.314 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

Exercise 4.15.

$$\begin{array}{lcl} T(\theta) & = & e^{[S_1]\theta_1}e^{[S_2]\theta_2}e^{[S_8]\theta_8}M \\ & = & Me^{[\mathcal{B}_1]\theta_1}e^{[\mathcal{B}_2]\theta_2}e^{[\mathcal{B}_8]\theta_8} \end{array}$$

The end-effector zero position configuration M is given by

$$M = \left[egin{array}{ccc} R & p \ 0 & 1 \end{array}
ight] = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & L_2 + L_4 \ 0 & 0 & 1 & -L_3 \ 0 & 0 & 0 & 1 \end{array}
ight].$$

Note that the first joint of the robot is a screw joint with nonzero pitch h. Hence, for frame $\{1\}$ we should use $v = -\omega \times q + h\omega$.

The values of the screw parameters $S_i = (\omega_i, v_i)$ are listed in the following table:

frame i	ω_i	q_i	v_i
1	(0,0,1)	(0,0,0)	(0, 0, h)
2	(0,1,0)	(0,0,0)	(0,0,0)
3	(1,0,0)	$(0, L_2, -L_3)$	$(0, -L_3, -L_2)$

The values of the screw parameters $\mathcal{B}_i = (\omega_i, v_i)$ are listed in the following table:

frame i	ω_i	q_i	v_i
1	(0,0,1)	$(0, -L_2 - L_4, 0)$	$(-L_2-L_4,0,h)$
2	(0,1,0)	$(0,0,L_3)$	$(-L_3,0,0)$
3	(1,0,0)	$(0, -L_4, 0)$	$(0,0,L_4)$

Exercise 4.16

The forward kinematics of a four-dof open chain manipulator in its zero position is written in the following exponential form:

$$T_{04}(\theta_1, \theta_2, \theta_3, \theta_4) = e^{[A_1]\theta_1} e^{[A_2]\theta_2} M e^{[A_3]\theta_3} e^{[A_4]\theta_4}.$$

Substituting $\theta_i = \theta'_i + \alpha_i$ ($i = 1, \dots, 4$) into the above formula, the forward kinematics is of the form:

$$\begin{array}{lcl} T_{04}(\theta'_1,\theta'_2,\theta'_3,\theta'_4) & = & e^{[A_1](\theta'_1+\alpha_1)}e^{[A_2](\theta'_2+\alpha_2)}Me^{[A_3](\theta'_3+\alpha_3)}e^{[A_4](\theta'_4+\alpha_4)} \\ & = & e^{[A_1]\theta'_1}e^{[A_1]\alpha_1}e^{[A_2]\theta'_2}e^{[A_2]\alpha_2}Me^{[A_3]\alpha_3}e^{[A_3]\theta'_3}e^{[A_4]\alpha_4}e^{[A_4]\theta'_4} \\ & = & e^{[A_1]\theta'_1}e^{[A'_2]\theta'_2}e^{[A_1]\alpha_1}e^{[A_2]\alpha_2}Me^{[A_3]\alpha_3}e^{[A_4]\alpha_4}e^{[A'_3]\theta'_3}e^{[A_4]\theta'_4}. \end{array}$$

where $A'_2 = [\mathrm{Ad}_{e^{[A_1]_{\alpha_1}}}]A_2$ and $A'_3 = [\mathrm{Ad}_{e^{-[A_4]_{\alpha_4}}}]A_3$.

$$\begin{array}{rcl} \therefore [A'_1] & = & [A_1] \\ [A'_2] & = & e^{[A_1]\alpha_1}[A_2]e^{-[A_1]\alpha_1} \\ [A'_3] & = & e^{-[A_4]\alpha_4}[A_3]e^{[A_4]\alpha_4} \\ [A'_4] & = & [A_4] \\ M' & = & e^{[A_1]\alpha_1}e^{[A_2]\alpha_2}Me^{[A_3]\alpha_3}e^{[A_4]\alpha_4} \end{array}$$

Exercise 4.17.

(a) As given in the problem, the forward kinematics of the manipulator is expressed as $T_{b_1b_2} = e^{[S_1]\theta_1}e^{[S_2]\theta_2}\cdots e^{[S_5]\theta_5}M$, with the end-effector 1 grasping the tree. Let S_i be the screw parameter of the i^{th} joint expressed in the $\{b_1\}$ frame, and $M \in SE(3)$ be the displacement from the $\{b_1\}$ frame to the $\{b_2\}$ frame. M and S_i can be derived as follows:

$$M = \left[\begin{array}{ccc} R & p \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cccc} 1 & 0 & 0 & 4L \\ 0 & 0 & -1 & L \\ 0 & 1 & 0 & L \\ 0 & 0 & 0 & 1 \end{array} \right]$$

$$\begin{array}{l} \mathcal{S}_{1} & : & w_{1} = \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right], q_{1} = \left[\begin{array}{c} L \\ 0 \\ 0 \end{array} \right], v_{1} = \left[\begin{array}{c} 0 \\ -L \\ 0 \end{array} \right] \\ \mathcal{S}_{2} & : & w_{2} = \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right], q_{2} = \left[\begin{array}{c} 0 \\ L \\ 0 \end{array} \right], v_{2} = \left[\begin{array}{c} 0 \\ 0 \\ -L \end{array} \right] \\ \mathcal{S}_{3} & : & w_{3} = \left[\begin{array}{c} 0 \\ -1 \\ 0 \end{array} \right], q_{3} = \left[\begin{array}{c} L \\ 0 \\ L \end{array} \right], v_{3} = \left[\begin{array}{c} L \\ 0 \\ -L \end{array} \right] \\ \mathcal{S}_{4} & : & w_{4} = \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right], q_{4} = \left[\begin{array}{c} 2L \\ L \\ 0 \end{array} \right], v_{4} = \left[\begin{array}{c} L \\ -2L \\ 0 \end{array} \right] \\ \mathcal{S}_{5} & : & w_{5} = \left[\begin{array}{c} 0 \\ -1 \\ 0 \end{array} \right], q_{5} = \left[\begin{array}{c} 3L \\ 0 \\ L \end{array} \right], v_{5} = \left[\begin{array}{c} L \\ 0 \\ -3L \end{array} \right].$$

(b) Here end-effector 2 is rigidly grasping a tree; the forward kinematics of the manipulator is expressed as

$$T_{b_2b_1} = e^{[A_5]\theta_5} e^{[A_4]\theta_4} e^{[A_8]\theta_3} N e^{[A_2]\theta_2} e^{[A_1]\theta_1}. \tag{4.1}$$

This equation can be modified as follows:

$$T_{h_2h_3} = e^{[A_5]\theta_5}e^{[A_4]\theta_4}e^{[A_3]\theta_3}e^{[A'_2]\theta_2}e^{[A'_1]\theta_1}N.$$

 $A_1' - A_5$ are the screw parameters of the i^{th} joint expressed in the $\{b_2\}$ frame, and $N \in SE(3)$ is the displacement from the $\{b_2\}$ frame to the $\{b_1\}$ frame. Therefore, N and $A_1' - A_5$ can be derived as follows:

$$N = \left[\begin{array}{cccc} 1 & 0 & 0 & -4L \\ 0 & 0 & 1 & -L \\ 0 & -1 & 0 & L \\ 0 & 0 & 0 & 1 \end{array} \right]$$

$$A_5$$
 : $w_5 = \left[egin{array}{c} 0 \ 0 \ 1 \end{array}
ight], q_5 = \left[egin{array}{c} -L \ 0 \ 0 \end{array}
ight], v_5 = \left[egin{array}{c} 0 \ L \ 0 \end{array}
ight]$

$$A_4 \quad : \quad w_4 = \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right], q_4 = \left[\begin{array}{c} -2L \\ 0 \\ 0 \end{array} \right], v_4 = \left[\begin{array}{c} 0 \\ 0 \\ -2L \end{array} \right]$$

$$A_3$$
 : $w_3=\left[egin{array}{c} 0 \ 0 \ 1 \end{array}
ight], q_3=\left[egin{array}{c} -3L \ 0 \ 0 \end{array}
ight], v_3=\left[egin{array}{c} 0 \ 3L \ 0 \end{array}
ight]$

$$A_2'$$
 : $w_2 = \left[egin{array}{c} 1 \ 0 \ 0 \end{array}
ight], q_2 = \left[egin{array}{c} 0 \ -L \ 0 \end{array}
ight], v_2 = \left[egin{array}{c} 0 \ 0 \ L \end{array}
ight]$

$$A_1' \quad : \quad w_1 = \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right], q_1 = \left[\begin{array}{c} -3L \\ 0 \\ L \end{array} \right], v_1 = \left[\begin{array}{c} -L \\ 0 \\ 3L \end{array} \right].$$

Now if we move N as below and compare it with Equation (4.1), we get the following:

$$T_{b_2b_1} = e^{[A_5]\theta_5}e^{[A_4]\theta_4}e^{[A_3]\theta_3}Ne^{N^{-1}[A_2']N\theta_2}e^{N^{-1}[A_1']N\theta_1}$$

$$[A_2] = N^{-1}[A'_2]N$$

$$[A_1] = N^{-1}[A'_1]N$$

$$A_2 : w_2 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, q_2 = \begin{bmatrix} 0 \\ L \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 0 \\ -L \end{bmatrix}$$

$$A_1 : w_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, q_1 = \begin{bmatrix} L \\ 0 \\ 0 \end{bmatrix}, v_1 = \begin{bmatrix} 0 \\ -L \\ 0 \end{bmatrix}.$$

Exercise 4.18.

(a) As given in the problem, the forward kinematics of the robot A is expressed as

$$T_{Aa} = e^{[\mathcal{S}_1]\theta_1} e^{[\mathcal{S}_2]\theta_2} e^{[\mathcal{S}_3]\theta_3} e^{[\mathcal{S}_4]\theta_4} e^{[\mathcal{S}_5]\theta_5} M_a,$$

 S_i is the screw parameter of the i^{th} joint expressed in the $\{A\}$ frame, and $M_a \in SE(3)$ is the displacement from the $\{A\}$ frame to the $\{a\}$ frame at the zero position. Therefore, M_a and S_i are derived as follows:

$$M = \begin{bmatrix} 1 & 0 & 0 & L_2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & L_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

$$S_1 : w_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, v_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$S_2 : w_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, q_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$S_3 : w_3 = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}, q_3 = \begin{bmatrix} 0 \\ 0 \\ L_1 \end{bmatrix}, v_3 = \begin{bmatrix} L_1 \\ 0 \\ 0 \end{bmatrix}$$

$$S_4 : w_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, v_4 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$S_5 : w_5 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, q_5 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, v_5 = \begin{bmatrix} 0 \\ L_1 \\ 0 \end{bmatrix}.$$

(b) Because robots A and B are the same robot, T_{Bb} can be expressed as

$$T_{Bb} = e^{[S_1]\phi_1} e^{[S_2]\phi_2} e^{[S_3]\phi_3} e^{[S_4]\phi_4} e^{[S_5]\phi_5} M_a,$$

where S_i and M_a are the same as in (a). The displacement T_{AB} from the $\{A\}$ frame to the $\{B\}$ frame, and the displacement T_{ab} from the $\{a\}$ frame to the $\{b\}$ frame, are derived as follows:

$$T_{AB} = egin{bmatrix} -1 & 0 & 0 & L_3 \ 0 & -1 & 0 & L_4 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix},$$
 $T_{ab} = T_{ba} = egin{bmatrix} -1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}.$

Using the relation $T_{Aa} = T_{AB}T_{Bb}T_{ba}$,

$$T_{Aa} = T_{AB}T_{Bb}T_{ba}$$

$$e^{[S_1]\theta_1}e^{[S_2]\theta_2}\cdots e^{[S_5]\theta_5}M_a = T_{AB}e^{[S_1]\phi_1}e^{[S_2]\phi_2}\cdots e^{[S_5]\phi_5}M_aT_{ab},$$

$$e^{[S_1]\theta_1}e^{[S_2]\theta_2}\cdots e^{[S_5]\theta_5}M_a = e^{T_{AB}[S_1]T_{AB}^{-1}\phi_1}\cdots e^{T_{AB}[S_5]T_{AB}^{-1}\phi_5}T_{AB}M_aT_{ba},$$

$$(\because Pe^S = e^{PSP^{-1}}P)$$

$$e^{[S_1]\theta_1}e^{[S_2]\theta_2}\cdots e^{[S_5]\theta_5}M_a = e^{[B_1]\phi_1}e^{[B_2]\phi_2}\cdots e^{[B_5]\phi_5}T_{AB}M_aT_{ba},$$

$$e^{-[B_5]\phi_5}\cdots e^{-[B_1]\phi_1}e^{[S_1]\theta_1}\cdots e^{[S_5]\theta_5} = T_{AB}M_aT_{ba}M_a^{-1}.$$

where $[\mathcal{B}_i] = T_{AB}[\mathcal{S}_i]T_{AB}^{-1}$ or $\mathcal{B}_i = Ad_{T_{AB}}(\mathcal{A}_i)$, and $M = T_{AB}M_aT_{ba}M_a^{-1}$. The \mathcal{B}_i are the screw parameters of robot B as seen from $\{A\}$:

$$\begin{split} \mathcal{B}_{1} &: w_{1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, v_{1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \\ \mathcal{B}_{2} &: w_{2} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, q_{2} = \begin{bmatrix} L_{3} \\ L_{4} \\ 0 \end{bmatrix}, v_{2} = \begin{bmatrix} L_{4} \\ -L_{3} \\ 0 \end{bmatrix} \\ \mathcal{B}_{3} &: w_{3} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, q_{3} = \begin{bmatrix} L_{3} \\ 0 \\ L_{1} \end{bmatrix}, v_{3} = \begin{bmatrix} -L_{1} \\ 0 \\ L_{3} \end{bmatrix} \\ \mathcal{B}_{4} &: w_{4} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, v_{4} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \\ \mathcal{B}_{5} &: w_{5} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, q_{5} = \begin{bmatrix} 0 \\ L_{4} \\ L_{1} \end{bmatrix}, v_{5} = \begin{bmatrix} 0 \\ -L_{1} \\ L_{4} \end{bmatrix} \end{split}$$

$$\begin{array}{llll} M & = & T_{AB}M_aT_{ba}M_a^{-1} \\ & = & \left[\begin{array}{ccccc} -1 & 0 & 0 & L_3 \\ 0 & -1 & 0 & L_4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccccc} 1 & 0 & 0 & L_2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & L_1 \\ 0 & 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccccc} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccccc} 1 & 0 & 0 & -L_2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -L_1 \\ 0 & 0 & 0 & 1 \end{array} \right] \\ & = & \left[\begin{array}{ccccc} 1 & 0 & 0 & -2L_2 + L_3 \\ 0 & 1 & 0 & L_4 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right]. \end{array}$$

Exercise 4.19.

(a) To derive the forward kinematics in the given form, it is convenient to use the Denavit-Hartenberg parameters. However, we are not able to find the Denavit-Hartenberg parameters for the given link reference frames. Correct link frames for finding the Denavit-Hartenberg parameters are given in Figure (4.1). Using frame {3} of the third link, the corresponding Denavit-Hartenberg parameters are as follows:

i	α_{i-1}	a_{i-1}	d_i	θ_i
1	$-\frac{\pi}{2}$	0	2L	θ_1
2	$-\frac{\pi}{2}$	L	0	$\theta_2 - \frac{\pi}{2}$
3	$-\frac{\pi}{2}$	0	$L + \theta_3$	$\frac{\pi}{2}$
4	$\frac{\pi}{2}$	0	-2L	$\overline{ heta_4}$
5	$-\frac{\pi}{2}$	0	L	$\theta_5 - \frac{\pi}{2}$

Figure 4.1

Otherwise, using the frame $\{3'\}$ of the third link, the corresponding Denavit-Hartenberg parameters for i = 3, 4 transform as follows:

i	α_{i-1}	a_{i-1}	d_i	θ_i
3	$-\frac{\pi}{2}$	0	$L + \theta_3$	$-\frac{\pi}{2}$
4	$-\frac{\pi}{2}$	0	-2L	$\theta_4 + \pi$

Using the Denavit-Hartenberg parameters derived above,

$$\begin{array}{lll} M_2 & = & \operatorname{Rot}\left(\hat{\mathbf{x}}, -\frac{\pi}{2}\right) \cdot \operatorname{Trans}\left(\hat{\mathbf{x}}, L\right) \cdot \operatorname{Rot}\left(\hat{\mathbf{z}}, -\frac{\pi}{2}\right) \\ & = & \begin{bmatrix} 0 & 1 & 0 & L \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \\ M_3 & = & \operatorname{Rot}\left(\hat{\mathbf{x}}, -\frac{\pi}{2}\right) \cdot \operatorname{Trans}\left(\hat{\mathbf{z}}, L\right) \cdot \operatorname{Rot}\left(\hat{\mathbf{z}}, \frac{\pi}{2}\right) \\ & = & \begin{bmatrix} 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & L \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \left(\text{or using the frame } \{3'\}, \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & L \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right), \\ \mathcal{A}_2 & = & \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}^T, \\ \mathcal{A}_3 & = & \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}^T. \end{array}$$

(b) From the given forward kinematics in (a),

$$\begin{split} T_{sb} &= M_1 e^{[\mathcal{A}_1]\theta_1} M_2 e^{[\mathcal{A}_2]\theta_2} \cdots M_5 e^{[\mathcal{A}_5]\theta_5} \\ &= \left(M_1 e^{[\mathcal{A}_1]\theta_1} M_1^{-1} \right) \left(M_1 M_2 e^{[\mathcal{A}_2]\theta_2} M_2^{-1} M_1^{-1} \right) \\ &\qquad \cdots \left(M_1 \cdots M_5 e^{[\mathcal{A}_5]\theta_5} M_5^{-1} \cdots M_1^{-1} \right) \left(M_1 \cdots M_5 \right) \\ &= e^{M_1[\mathcal{A}_1]M_1^{-1}\theta_1} e^{(M_1 M_2)[\mathcal{A}_2](M_1 M_2)^{-1}\theta_2} \cdots e^{(M_1 \cdots M_5)[\mathcal{A}_5](M_1 \cdots M_5)^{-1}\theta_5} \left(M_1 \cdots M_5 \right) \\ &= e^{[\mathcal{S}_1]\theta_1} e^{[\mathcal{S}_2]\theta_2} \cdots e^{[\mathcal{S}_5]\theta_5} M. \end{split}$$

Therefore,

$$\begin{array}{rcl} \mathcal{S}_{1} & = & \operatorname{Ad}_{M_{1}}\left(\mathcal{A}_{1}\right), \\ \mathcal{S}_{2} & = & \operatorname{Ad}_{M_{1}M_{2}}\left(\mathcal{A}_{2}\right), \\ & \vdots & & \\ \mathcal{S}_{5} & = & \operatorname{Ad}_{M_{1}\cdots M_{5}}\left(\mathcal{A}_{5}\right), \\ M & = & M_{1}\cdots M_{5}. \end{array}$$

Exercise 4.20.

The end-effector frame $\{b\}$ as seen from the fixed frame $\{0\}$ is

$$M = \begin{bmatrix} 0 & 1 & 0 & -3L \\ 1 & 0 & 0 & -L \\ 0 & 0 & -1 & -2L \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

The values of the screw parameters $S_i = (\omega_i, v_i)$ are listed in the following table:

frame i	ω_i	q_i	v_i
1	(0,0,0)	-	(0,0,1)
2	(0,0,1)	(0,0,0)	(0,0,0)
3	(0, -1, 0)	(-L, 0, L)	(L,0,L)
4	(0,0,0)	-	(-1,0,0)
5	(1,0,0)	(0, 0, L)	(0, L, 0)
6	(0,0,1)	(0,0,0)	(0,0,0)

Notice that the last row of above table corresponds to the screw parameters as seen from the end-effector frame {b}. The forward kinematics is written in the following exponential form:

$$T_{06} = e^{[S_1]\theta_1} \cdots e^{[S_5]\theta_5} e^{[S'_6]\theta_6} M = e^{[S_1]\theta_1} \cdots e^{[S_5]\theta_5} M e^{M^{-1}[S'_6]M\theta_6}$$

$$= e^{[S_1]\theta_1} \cdots e^{[S_5]\theta_5} M e^{[S_6]\theta_6}$$

where $[S_6] = M^{-1}[S'_6]M$.

 $[S_6] = M^{-1}[S_6]M$ can be verified using following matrices:

Exercise 4.21.

$$T = \text{Rot}(\hat{\mathbf{x}}, \alpha) \text{Trans}(\hat{\mathbf{x}}, a) \text{Trans}(\hat{\mathbf{z}}, d) \text{Rot}(\hat{\mathbf{z}}, \phi)$$

$$\tag{4.2}$$

$$= \begin{bmatrix} \cos \phi & -\sin \phi_i & 0 & a \\ \sin \phi \cos \alpha & \cos \phi \cos \alpha & -\sin \alpha & -d \sin \alpha \\ \sin \phi \sin \alpha & \cos \phi \sin \alpha & \cos \alpha & d \cos \alpha \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(4.3)

(a)

$$T = \begin{bmatrix} 0 & 1 & 1 & 3 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} R_a & p_a \\ 0 & 1 \end{bmatrix}$$

Since $R_a \notin SO(3)$, there is no solution for this T.

(b)

$$T = \begin{bmatrix} \cos \beta & \sin \beta & 0 & 1\\ \sin \beta & -\cos \beta & 0 & 0\\ 0 & 0 & -1 & -2\\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} R_b & p_b\\ 0 & 1 \end{bmatrix}$$

By a correspondence with Equation (4.3),

$$\begin{array}{rcl} \alpha & = & \pi \\ a & = & 1 \\ d & = & 2 \\ \phi & = & -\beta & (\because \cos \phi = \cos \beta, & \sin \phi = -\sin \beta). \end{array}$$

(c)

$$T = \left[\begin{array}{cccc} 0 & -1 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{array} \right] = \left[\begin{array}{ccc} R_c & p_c \\ 0 & 1 \end{array} \right]$$

By a correspondence with Equation (4.3),

$$\cos \alpha = 0$$

$$d\cos \alpha = 2,$$

from which it follows that there is no solution for this T.