Multiple Linear Regression: Model Selection and Model Checking

Model Diagnostics

Non-Constant Variance & Transformation

Lecture 4

Multiple Linear Regression: Model Selection and Model Checking

Reading: Faraway (2014) Chapters 6, 9.1, and 10

DSA 8020 Statistical Methods II

Whitney Huang Clemson University

Agenda

Multiple Linear Regression: Model Selection and Model Checking

Model Selection

Model Diagnostic

on-Constant riance & ansformation

Model Selection

Model Diagnostics

Non-Constant Variance & Transformation

CLEMS N

Multiple Linear Regression Model:

 $Y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon_i, \quad \varepsilon_i \overset{i.i.d.}{\sim} \mathrm{N}(0, \sigma^2)$

Basic Problem: how to choose between competing linear regression models?

- Model too "small": underfit the data; poor predictions; high bias; low variance
- Model too big: "overfit" the data; poor predictions; low bias; high variance

In the next few slides we will discuss some commonly used model selection criteria to choose the "right" model

An Example of Bias and Variance Tradeoff

Multiple Linear Regression: Model Selection and Model Checking

Model Selection

Model Diagnostic

on-Constant ariance & ansformation A good model should balance **bias** and **variance** to get good predictions

$$\begin{split} (\hat{Y}_i - \mu_i)^2 &= (\hat{Y}_i - \mathbf{E}(\hat{Y}_i) + \mathbf{E}(\hat{Y}_i) - \mu_i)^2 \\ &= \underbrace{(\hat{Y}_i - \mathbf{E}(\hat{Y}_i))^2}_{\sigma^2_{\hat{Y}_i} \text{ Variance}} + \underbrace{(\mathbf{E}(\hat{Y}_i) - \mu_i)^2}_{\text{Bias}^2}, \end{split}$$

where
$$\mu_i = \mathrm{E}(Y_i|X_i = x_i)$$

- Mean squared prediction error (MSPE): $\sum_{i=1}^{n} \sigma_{\hat{Y}_{i}}^{2} + \sum_{i=1}^{n} (\mathrm{E}(\hat{Y}_{i}) \mu_{i})^{2}$
- ullet C_p criterion measure:

$$\Gamma_p = \frac{\sum_{i=1}^{n} \sigma_{\hat{Y}_i}^2 + \sum_{i=1}^{n} (E(\hat{Y}_i) - \mu_i)^2}{\sigma^2}$$
$$= \frac{\sum Var_{pred} + \sum Bias^2}{Var_{error}}$$

Model Selection

Model Diagnostics

lon-Constant ariance & ransformation

CLEMS N

Model Selection

Model Diagnostics

Non-Constant /ariance & Fransformation

 C_p statistic:

- $C_p = \frac{\mathsf{SSE}}{\mathsf{MSE}_\mathsf{F}} + 2p n$
- When model is correct $E(C_p) \approx p$
- When plotting models against p
 - ullet Biased models will fall above C_p = p
 - Unbiased models will fall around line $C_p = p$
 - ullet By definition: C_p for full model equals p

We desire models with small p and C_p around or less than p. See R session for an example

Adjusted R^2 , denoted by $R^2_{\rm adj}$, attempts to take account of the phenomenon of the R^2 automatically and spuriously increasing when extra explanatory variables are added to the model.

$$R_{\text{adj}}^2 = 1 - \frac{\text{SSE}/(n-p-1)}{\text{SST}/(n-1)}$$

- Choose model which maximizes R²_{adj}
- Same approach as choosing model with smallest MSE

Predicted Residual Sum of Squares PRESS Criterion

Multiple Linear Regression: Model Selection and Model Checking

Model Selection

lodel Diagnostics on-Constant ariance &

- For each observation i, predict Y_i using model generated from other n-1 observations
- Use $PRESS = \sum_{i=1}^{n} (Y_i \hat{Y}_{i(i)})^2$ to quantify the out-of-sample prediction performance
- Want to select model with smallest PRESS
- PRESS statistic is a form of cross-validation

There are two widely used information criteria:

Akaike's information criterion (AIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + 2k$$

Bayesian information criterion (BIC)

$$n\log(\frac{\mathsf{SSE}_k}{n}) + k\log(n)$$

Here k is the number of the parameters in the model.

Model Selection

Non-Constant Variance & Transformation

- Forward Selection: begins with no predictors and then adds in predictors one by one using some criterion (e.g., p-value or AIC)
- Backward Elimination: starts with all the predictors and then removes predictors one by one using some criterion
- Stepwise Search: a combination of backward elimination and forward selection. Can add or delete predictor at each stage
- All Subset Selection: Comparing all possible models using a selected criterion. Impractical for "large" number of predictors

Model:

$$Y_i = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1} + \varepsilon_i, \quad \varepsilon_i \overset{i.i.d.}{\sim} \mathrm{N}(0, \sigma^2)$$

We make the following assumptions:

Linearity:

$$E(Y|x_1, x_2, \dots, x_{p-1}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_{p-1} x_{p-1}$$

 Errors have constant variance, are independent, and normally distributed

$$\varepsilon_i \stackrel{i.i.d.}{\sim} N(0, \sigma^2)$$

Model Selection

Model Diagnostics

Non-Constant /ariance & Fransformation

George E.P. Box

Model Selection

Model Diagnostics

on-Constant triance & ansformatior

We will revisit this in the end of the lecture

Assessing Normality of Residuals: Histogram

Histogram of mod\$residuals

Multiple Linear Regression: Model Selection and Model Checking

Model Selection

Model Diagnostics

lon-Constant ariance & ransformation

Madaloutage

Model Diagnostics

on-Constant triance & ansformation

- Recall in MLR that $\hat{y} = X(X^TX)^{-1}X^Ty = Hy$ where H is the hat-matrix
 - The leverage value for the i_{th} observation is defined as:

$$h_i = \boldsymbol{H}_{ii}$$

- Can show that $Var(e_i) = \sigma^2(1 h_i)$, where $e_i = y_i \hat{y}_i$ is the residual for the i_{th} observation
- $\frac{1}{n} \le h_i \le 1$, $1 \le i \le n$ and $\bar{h} = \sum_{i=1}^n \frac{h_i}{n} = \frac{p}{n} \Rightarrow$ a "rule of thumb" is that leverages of more than $\frac{2p}{n}$ should be looked at more closely

Leverage Values of Species ~ Elev + Adj

Multiple Linear Regression: Model Selection and Model Checking

Model Selection

Model Diagnostics

Non-Constant /ariance & Fransformation

- As we have seen $Var(e_i) = \sigma^2(1 h_i)$, this suggests the use of $r_i = \frac{e_i}{\hat{\sigma}\sqrt{(1-h_i)}}$
 - r_i 's are called **studentized residuals**. r_i 's are sometimes preferred in residual plots as they have been standardized to have equal variance.
 - If the model assumptions are correct then ${\rm Var}(r_i)$ = 1 and ${\rm Corr}(r_i,r_j)$ tends to be small

Studentized Residuals of Species ~ Elev + Adj

Studentized Residuals

Multiple Linear Regression: Model Selection and Model Checking

Model Selection

Model Diagnostics

Von-Constant Variance & Transformation

- For a given model, exclude the observation i and recompute $\hat{\beta}_{(i)}$, $\hat{\sigma}_{(i)}$ to obtain $\hat{y}_{i(i)}$
- The observation i is an outlier if $\hat{y}_{i(i)}$ y_i is "large"
- Can show $\text{Var}(\hat{y}_{i(i)} y_i) = \sigma_{(i)}^2 \left(1 + \boldsymbol{x}_i^T (\boldsymbol{X}_{(i)}^T \boldsymbol{X}_{(i)})^{-1} \boldsymbol{x}_i \right) = \frac{\sigma_{(i)}^2}{1 h_i}$
- Define the Studentized Deleted Residuals as

$$t_i = \frac{\hat{y}_{i(i)} - y_i}{\sqrt{\hat{\sigma}_{(i)}^2 (1 - h_i)}} = \frac{\hat{y}_{i(i)} - y_i}{\sqrt{\mathsf{MSE}_{(i)} (1 - h_i)^{-1}}}$$

which are distributed as a t_{n-p-1} if the model is correct and $\varepsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$

Jackknife Residuals of Species ~ Elev + Adj

Jacknife Residuals

Multiple Linear Regression: Model Selection and Model Checking

Model Selection

Model Diagnostics

Von-Constant Variance & Variansformation

DFFITS

- Difference between the fitted values \hat{y}_i and the predicted values $\hat{y}_{i(i)}$
- $\bullet \ \mathsf{DFFITS}_i = \frac{\hat{y}_i \hat{y}_{i(i)}}{\sqrt{\mathsf{MSE}_{(i)} h_i}}$
- Concern if absolute value greater than 1 for small data sets, or greater than $2\sqrt{p/n}$ for large data sets

DFFITS of Species ~ **Elev** + **Adj**

Multiple Linear Regression: Model Selection and Model Checking

Model Selection

Model Diagnostics

Von-Constant Variance & Transformation

Residual Plot of Species ~ Elev + Adj

Residuals

Multiple Linear Regression: Model Selection and Model Checking

Model Selection

Non-Constant

Variance &

Residual Plot After Square Root Transformation

$$\sqrt{\text{Species}} \sim \text{Elev} + \text{Adj}$$

Residuals

Multiple Linear Regression: Model Selection and Model Checking

Model Selection

Model Diagnostics

Non-Constant Variance & Transformation The Box-Cox method [Box and Cox, 1964] is a powerful way to determine if a transformation on the response is needed

$$g_{\lambda}(y) = \begin{cases} \frac{y^{\lambda}-1}{\lambda} & \text{if } \lambda \neq 0; \\ \log(y) & \text{if } \lambda = 0. \end{cases}$$

In R, we can use the <code>boxcox</code> function from the MASS package to perform a Box-Cox transformation. The plot suggests a cube root may be needed

This slides cover:

- Model/variable selection can be done via some criterion-based methods to balance bias and variance
- Model diagnostics is crucial to ensure valid statistical inference
- Box-Cox Transformation can be used to transform the response in order to correct model violations