

Manual Técnico

Inteligência Artificial 2016/2017

Problema do Puzzle dos Pontos e das Caixas

Professores:

Joaquim Filipe Cédric Grueau

Turma: 3º-Inf-ES2

140221017 – André Bastos 140221002 – Luís Mestre

INTELIGÊNCIA ARTIFICIAL – O PROBLEMA DOS PONTOS E DAS CAIXAS

Índice

1.	. Introdução			. 3
2.	Obje	etos (que compõem o projeto	. 4
	2.1.	dots	s-boxes.lisp	. 4
	2.1.	1.	Variáveis globais	. 4
	2.1.	2.	Escrita das estatísticas	. 4
	2.1.	3.	Jogo	. 4
	2.1.	4.	Auxiliares ao alfabeta	. 5
	2.1.	5.	Operadores	. 5
	2.1.	6.	Construtor	. 6
	2.1.	7.	Métodos seletores	. 6
	2.2.	alfal	beta.lisp	. 6
	2.2.	1.	Algoritmo Alfabeta	. 6
3. Função d		ção d	e avaliação	. 7
4.	Test	es ac	o algoritmo	. 7
	4.1.	1º T	este: Tabuleiro 7x7 vazio	. 7
	4.2.	2º T	este: Tabuleiro 3x3 meio cheio	. 8
	4.1.	3º T	este: Tabuleiro 3x3 cheio	. 8

1. Introdução

Este documento tem a finalidade de informar o utilizador dos aspetos mais técnicos do projeto. Tendo assim como tópicos o algoritmo geral utilizado, a descrição dos objetos que compõem o projeto (dados e procedimentos), identificação das limitações e opções técnicas. Tem também análises críticas de resultados das execuções do programa, análises comparativas do conjunto de execuções do programa para cada problema.

Como este projeto é em conjunto com a UC de Computação Móvel, foi-nos solicitado pelos docentes a separação do projeto em 2 ficheiros (dots-boxes.lisp e alfabeta.lisp) diferentes para separar o algoritmo alfabeta do problema. Sendo a dots-boxes.lisp destinada aos objetos que fazem parte da implementação do problema e o alfabeta.lisp tem a implementação do algoritmo.

Este manual destina-se a utilizadores que compreendam minimamente a linguagem Lisp, visto que é a linguagem que foi sugerida para a implementação do projeto.

2. Objetos que compõem o projeto

2.1. dots-boxes.lisp

2.1.1. Variáveis globais

- *jogada*
- *peca-maquina*
- *cortes-alfa*
- *cortes-beta*
- *nos-explorados*

2.1.2. Escrita das estatísticas

Estes vão estar em comentário pois são métodos usados para gerar os testes e nada mais.

- escreve
- escreve-ecra-ficheiro

2.1.3. Jogo

- jogar
- ver-prof-max
- ver-nr-nils
- ver-nr-nils-arcos
- ver-nr-nils-lista
- reset-cortes
- peca-jogada-atual
- jogador-jogada-atual
- ordena-sucessores
- numero-caixas-fechadas
- limite-numero-caixas-fechadas
- tabuleiro-preenchido-p
- tira-primeiras
- numero-caixas-fechadas-horizontal

- ver-caixa-fechada
- ver-se-1a-caixa-potencial
- ver-pos-lista-ligadas
- ver-pos-lista-ligadas-aux
- intersecao
- esta-no-conjunto
- posicoes-dos-sucessores
- lista-posicao
- posição
- sucessores-no
- sucessores-no-aux
- numero-caixas-quase-fechadas
- numero-caixas-quase-fechadas-horizontal
- ver-caixa-quase-fechada
- ver-se-1a-caixa-tem-possivel-quase-caixa
- inserir-na-lista

2.1.4. Auxiliares ao alfabeta

- alisa-sucessores
- vencedor-p
- avaliar-folha
- avaliar-folha-aux
- solucaop
- avaliar-folha-limite
- avaliar-no

2.1.5. Operadores

- operadores
- arco-vertical
- arco-horizontal
- arco-aux
- arco-na-posicao
- arco-vertical-tabuleiro

- arco-horizontal-tabuleiro
- arco-aux-tabuleiro
- arco-na-posicao-tabuleiro

2.1.6. Construtor

• cria-no

2.1.7. Métodos seletores

- get-tabuleiro
- get-profundidade
- get-peca-maquina
- get-arcos-horizontais
- get-arcos-verticais
- get-tabuleiro-no
- get-numero-caixas
- get-numero-caixas-jogador1
- get-numero-caixas-jogador2
- get-elemento-lista

2.2. alfabeta.lisp

2.2.1. Algoritmo Alfabeta

- alfabeta
- jogadorMax
- jogadorMin

3. Função de avaliação

A função avaliar-folha-limite é a função de avaliação usada. Esta função tem em conta o número de caixas fechadas por cada jogador. Se o número for igual então devolve 0. Caso contrário, damos um peso de 1 às caixas fechadas pelo jogador 1 e um peso de 1.2 às caixas fechadas pelo jogador 2. Subtraímos um ao outro dependendo do tipo de jogador que é a máquina.

4. Testes ao algoritmo

Nesta secção o algoritmo vai ser testado.

4.1. 1º Teste: Tabuleiro 7x7 vazio

Resultado:

Chamada ao alfabeta

Cortes Alfa: 111

Cortes Beta: 110

Nos explorados: 12542

Como no inicio do jogo todas as jogadas são "iguais" em termos de vantagem, o algoritmo escolhe a ultima jogada considerada que será uma vertical no final do tabuleiro.

4.2. 2º Teste: Tabuleiro 3x3 meio cheio

Nestes próximos testes fazemos com um tabuleiro mais pequeno, pois da maneira como nos foi solicitado para fazer os sucessores, a gerarem os sucessores dos próximos quando fecham uma caixa existe uma explosão combinatória a meio. Para satisfazer a funcionalidade de quando se fecha uma caixa, joga-se outra vez.

[[[2,1,1],[null,1,null],[1,2,2],[null,1,null]],[[2,2,null],[null,null,null],[null,null],[null,null]

Resultado:

[[[2,1,1],[null,1,null],[1,2,2],[null,1,null]],[[2,2,null],[null,null,null],[null,null],[null,null],[null,null]

Chamada ao alfabeta

Cortes Alfa: 10

Cortes Beta: 169

Nos explorados: 30612

4.1. 3º Teste: Tabuleiro 3x3 cheio

[[[2,2,null],[null,null],[null,null],[null,null],[null,null], [[2,1,1],[null,1,2],[1,2,2],[1,1,2]]]

Resultado:

[[[2,2,null],[null,null,null],[null,null],[null,null,2]],[[2,1,1],[null,1,2],[1, 2,2],[1,1,2]]]

INTELIGÊNCIA ARTIFICIAL – O PROBLEMA DOS PONTOS E DAS CAIXAS

Chamada ao alfabeta

Cortes Alfa: 0

Cortes Beta: 0

Nos explorados: 2

5. Limitações

Se o tamanho do tabuleiro for grande (como um 7x7) é possível que o dê erro devido a flata de memória (stackOverFlow), isto deve-se ao tamanho do tabuleiro e graças à funcionalidade do jogo de quando se fecha uma caixa joga-se de novo, pois ao termos feito nos sucessores para fechar múltiplas caixas, uma grande sobrecarga pode ser adicionada ao programa.