第16章 基于Copula的VaR度量与事后检验

清华大学经管学院 朱世武

Zhushw@sem.tsinghua.edu.cn

Resdat样本数据: www.resset.cn

SAS论坛: <u>www.resset.cn</u>

Copula函数

最常见的两种Copula函数是正态Copula函数和t-分布Copula函数。

正态Copula函数

正态分布随机变量 X_1, \dots, X_n 的均值分别为 μ_1, \dots, μ_n , 方差分别为 $\sigma_1, \dots, \sigma_n$, 相关矩阵为R,则随机变量 $\upsilon_i := \Phi(\frac{X_i - \mu_i}{2}), i \in I$ 的分布函数 $c_R(u_1, \dots, u_n)$ Copula函数,称为协方差矩阵为R的正态Copula函数,或称为Gauss Copula函数。(Φ 为标准正态分布函数)。

$$C_{R}^{Ga}(u_{1}, \cdots, u_{n}) = \Phi_{R}(\Phi^{-1}(u_{1}), \cdots, \Phi^{-1}(u_{n}))$$

t-分布Copula函数

t-分布Copula函数是正态Copula函数的变形。

正态分布随机变量 x_1, \dots, x_n 的均值分别为0,方差分别为1,相关矩阵为R。Y为 x^2 分布随机变量,自由度为v ,与 $(x_1, \dots, x_n)'$ 独立。则随机变量 $v_i = t_v (\sqrt[]{v} x_i)$,的分布函数 $c_{v,R}(u_1, \dots, u_n)$ Copula函数,称为自由度为 ,相关矩阵为R的t-分布Copula函数。

$$C_{v,R}^{t}(u_{1},\cdots,u_{n})=t_{v,R}(t_{v}^{-1}(u_{1}),\cdots,t_{v}^{-1}(u_{n}))$$

t-分布Copula函数继承了正态Copula函数的几乎全部性质。但在正态Copula函数模型中,极端事件的发生总是彼此独立的,即v,接近于0或1的可能性彼此独立。而在t-分布Copula函数中,极端事件是相关的。

The Power to Know.

联合分布模拟与收益率映射

假设有一个包括n个资产的组合,收益率为向量为 $(z_1, z_2, \dots, z_n)'$ 。设 z_1, z_2, \dots, z_n 的边际分布分别为 F_1, F_2, \dots, F_n , $(z_1, z_2, \dots, z_n)'$ 的联合分布为 $F(z_1, z_2, \dots, z_n)$ 。

正态Copula模拟

- 1. 对R进行Cholesky分解 R = AA'
- 2. 生成一个 $n \times 1$ 的服从独立标准正态分布的随机向量

$$\mathbf{Z} = (z_1, \dots z_n)' \sim N \left[\begin{array}{ccc} 1 & \dots & 0 \\ 0, & \ddots & \\ 0 & \dots & 1 \end{array} \right]$$

Corr(X) = Cov(X) = E(XX') = E(AZZ'A') = AE(ZZ')A' = AIA' = AA' = R 即X向量中的每一个随机变量均服从期望为0,方差为1的正态分布,并且它们相关矩阵正好为R。

- 4. 计算 $u_i = F(x_i)$ i = 1,L ,n ,得到
- 5. 用边际分布函数的反函数把 u_1,\ldots,u_n)' $C_{\mathbf{R}}^{Ga}$ 映射到收益率

$$\mathbf{z} = (z_1, \dots, z_n)' = (F_1^{-1}(u_1), \dots, F_n^{-1}(u_n))'$$

若边际分布为正态分布,则 $\mathbf{z} = (z_1, \dots, z_n)' = (\Phi_1^{-1}(u_1), \dots, \Phi_n^{-1}(u_n))'$ 若边际分布为t分布,则 $\mathbf{z} = (z_1, \dots, z_n)' = (t_{v_1}^{-1}(u_1), \dots, t_{v_n}^{-1}(u_n))'$ 其中 v_1, \dots, v_n 分别是相应t分布的自由度。

t-分布Copula模拟

- 1. 对R进行Cholesky分解 R = AA'
- 2. 生成一个 $n \times 1$ 的服从独立标准正态分布的随机向量

$$\mathbf{Z} = (z_1, \dots z_n)' \sim N \left[0, \begin{bmatrix} 1 & \dots & 0 \\ 0, \begin{bmatrix} & \ddots & \\ & \ddots & \\ 0 & \dots & 1 \end{bmatrix} \right]$$

3. $\phi_{Y=AZ}$, 产生 $n \times 1$ 维向量, 这时,

CorrY = Cov(X) = E(XX') = E(AZZ'A') = AE(ZZ')A' = AIA' = AA' = R 即Y向量中的每一个随机变量均服从期望为0,方差为1的正态分布,并且它们相关矩阵正好为R。

- 4. 产生与Y相互独立的变量S, 服从₂ 分布。
- 5. 令 $\mathbf{x} = \frac{\sqrt{u}}{\sqrt{s}}\mathbf{y}$,则X服从自由度为u 的t分布。
- 6. 计算 $u_i = t_u(x_i)$ i = 1, L, n, 得到 (u_1, L, u_n) ¢: $C_{u,R}^n$
- 7. 用边际分布函数的反函数把 u_1, L_1, u_n) ¢: $C'_{u,R}$ 映射到收益率 $\mathbf{z} = (z_1, \dots, z_n)' = (F_1^{-1}(u_1), \dots, F_n^{-1}(u_n))'$

若边际分布为正态分布,则 $\mathbf{z} = (z_1, \dots, z_n)' = (\Phi_1^{-1}(u_1), \dots, \Phi_n^{-1}(u_n))'$ 若边际分布为t分布,则 $\mathbf{z} = (z_1, \dots, z_n)' = (t_{v_1}^{-1}(u_1), \dots, t_{v_n}^{-1}(u_n))'$ 其中 v_1, \dots, v_n 分别是相应t分布的自由度。

投资组合VaR度量

假设一资产组合中包含20只股票,利用前面介绍的方法估计该资产组合特定置信水平下的日风险值(VaR)。

计算环境

2004年12月底以前的历史数据,计算2005年第一个交易日的VaR。假设投资总额为100万元,构造股票投资组合,针对投资组合做相应计算。

类似地,可以计算2005年全年交易日的VaR,并作相应的事后检验。

数据集:

个股数据集ResDat.Qttndist;

计算步骤

第一步:确定权重,构造投资组合;

第二步:对每只股票的收益率进行模拟;

第三步: 利用前两步所得, 计算组合的的收益率;

第四步:利用第三步所得的组合的收益率,计算投资

组合的VaR;

第五步:对投资组合的VaR作相应的事后检验。

计算结果

表16.1 正态Copula相关结果

标识	置信 水平	t边际分布下的 VaR(百万元)	正态边际分布 下的VaR(百万 元)	实际失效天 数(t边际分 布)	实际失效天 数(正态边 际分布)	理论 失效 天数
ncopula+02+5	95%	0.030049	0.026622	4	9	12
ncopula+02+1	99%	0.046011	0.040755	1	2	2
ncopula+04+5	95%	0.028293	0.026592	7	10	12
ncopula+04+1	99%	0.041623	0.039117	1	2	2
ncopula+10+5	95%	0.025758	0.025122	9	9	12
ncopula+10+1	99%	0.038854	0.037894	2	2	2
ncopula+20+5	95%	0.026524	0.026194	7	8	12
ncopula+20+1	99%	0.038349	0.037871	2	2	2
ncopula+40+5	95%	0.027491	0.02732	10	10	12
ncopula+40+1	99%	0.037167	0.036935	2	2	2

表16.2 t-分布Copula相关结果

标识	置信 水平	t边际分布下的VaR (百万元)	正态边际分 布下的VaR (百万元)	实际失效天 数(t边际分 布)	实际失效天数 (正态边际分 布)	理论失 效天数
tcopula+02+02+5	95%	0.046792	0.041422	1	1	12
tcopula+02+02+1	99%	0.132916	0.112787	0	0	2
tcopula+02+04+5	95%	0.042522	0.039959	1	2	12
tcopula+02+04+1	99%	0.151929	0.14079	0	0	2
tcopula+02+10+5	95%	0.042293	0.041247	2	2	12
tcopula+02+10+1	99%	0.097435	0.094938	0	0	2
tcopula+02+20+5	95%	0.045533	0.044946	2	2	12
tcopula+02+20+1	99%	0.095744	0.094541	0	0	2
tcopula+02+40+5	95%	0.047528	0.04723	1	1	12
tcopula+02+40+1	99%	0.085071	0.084532	0	0	2

以上结果表明,采用Copula计算的VaR比上章只用正分布的VaR大,所以,事后检验效果更好。

极大似然法拟合t分布

从事后检验结果可以看出,不同自由度下,t分布的检验效果均优于正态边际分布。下面给出确定t分布自由度n的极大似然法。

t分布概率密度函数为,

$$t(x; n) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})} (1 + \frac{x^2}{n})^{-(n+1)/2}$$

其中n为自由度。t分布拟合就是估计该密度函数的自由度参数n。

通过最大化样本的对数似然函数,

$$Max \sum_{i=1}^{m} \log t(x_i; n)$$

就可以得到参数n的估计值。

 $Max\sum_{i=1}^{m}\log t(x_i;n)$ 对迭代方法与初值都有很多要求,此处采用一种比较直观的方法。即通过令n取一列值,分别计算对数似然函数 $\sum_{i=1}^{n}\log t(x_i;n)$ 的值,取其最大值所对应的 \hat{n} 值为自由度参数n的估计值。

```
/*求t边际分布的自由度*/
options nodate nosource nonotes;
proc means data=return1 noprint;
var return1;
output out=b mean=m std=std;
data b;
set b;
call symput('mean', m);/*求组合收益率的均值和方差*/
call symput('std', std);
data result;
delete;
%macro a(x);
%do i=2 %to &x;
data t;
set return1;
n=&i;
t=(Gamma((n+1)/2)*(1+((return 1-\&mean)/(\&std))**2/n)**(-
(n+1)/2)/(gamma(n/2)*(3.14159*n)**0.5);
lnt=log(t);
```

```
proc means data=t noprint;
var Int;
output out=t1 sum=sum;
data t1;
set t1;
n=&i;
data result;
set result t1;
%end;
%mend a;
%a(40);
run;
proc sort data=result;
by descending sum;
data result;
set result;
if _n_=1;
call symput('n', n);
run;
```

计算结果:

Obs	T	YPE_	FREQ_	sum	n
1	0	961	-1337.83	10	
2	0	961	-1337.93	11	
3	0	961	-1337.99	9	
4	0	961	-1338.20	12	
5	0	961	-1338.57	8	
6	0	961	-1338.57	13	
7	0	961	-1339.01	14	
8	0	961	-1339.48	15	
9	0	961	-1339.84	7	
10	0	961	-1339.98	16	
11	0	961	-1340.48	17	
12	0	961	-1340.98	18	
13 0		961 -1	341.48 1	9	
				*	

从结果可以看出,当自由度取10时,似然函数取得极大值。
The Power to Know