Behcet DAĞHAN

MÜHENDİSLİK MEKANİĞİ

STATİK

Behcet DAĞHAN

MÜHENDİSLİK MEKANİĞİ

STATİK

İÇİNDEKİLER

1. GİRİŞ

- Skalerler ve Vektörler
- Newton Kanunları

2. KUVVET SİSTEMLERİ

- İki Boyutlu Kuvvet Sistemleri
- Üç Boyutlu Kuvvet Sistemleri

3. DENGE

- Düzlemde Denge
- Üç Boyutta Denge

4. YAPILAR

- Düzlem Kafes Sistemler
- Çerçeveler ve Makinalar

5. SÜRTÜNME

6. KÜTLE MERKEZLERİ ve GEOMETRİK MERKEZLER

STATİK SÜRTÜNME

Kuru sürtünme

Yatay yüzey ile arasında sürtünme olan bir blok göz önüne alalım. Şiddeti P = 0 dan başlayarak gittikçe artan yatay bir P kuvveti uygulayalım.

$$\Sigma F_{\rm x} = 0 \longrightarrow F = P = 0$$

$$\rightarrow$$

$$F = P = 0$$

$$\alpha = 0$$

F : Sürtünme kuvveti

$$\Sigma F_x = 0$$
 \longrightarrow $F = P$

$$F = P$$

Harekete başlamak üzere değil.

$$m \longrightarrow P$$

$$\alpha = \alpha_{max} = \emptyset_{s}$$

$$R$$

$$R^{2} = F^{2} + N^{2}$$

$$R$$
Harekete başlam
$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_{s}$$

$$A = A_{max} = \emptyset_$$

$$\Sigma F_x = 0$$

$$\Sigma F_x = 0$$
 \longrightarrow $F = F_{max} = P$

Harekete başlamak üzere.

$$\alpha = \alpha_{max} = \emptyset$$

$$\tan \varphi_s = \mu_s = \frac{F_{max}}{N}$$

$$R^2 = F^2 + N^2$$

 $R^2 = F^2 + N^2$

$$0 \le F \le \mu_s N$$

Sürtünme kuvveti daima kaymayı önleyici yöndedir.

$$\tan \varphi_s = \mu_s$$

P kuvveti artırılmaya devam edilirse:

$$\Sigma F_x = m a_x \quad \longrightarrow \qquad \qquad F = F_k \neq P$$

$$F = F_k \neq I$$

Hareket var.

$$= \emptyset_k \qquad \longrightarrow \qquad \tan \emptyset_k = \mu_k =$$

$$\int F_k = \mu_k N$$

Kinetik sürtünme açısı

Kinetik sürtünme katsayısı

F Sürtünme kuvveti

Temas yüzey çifti	μ_s	μ_k
Buz üzerinde metal		0.02
Çelik üzerinde teflon	0.04	0.04
Dökme demir üzerinde fren balatası	0.4	0.3
Çelik üzerinde çelik	0.6	0.4
Asfalt yol üzerinde lastik tekerlek	0.9	0.8

Sürtünme kuvvetini doğuran sebep

Şekildeki P kuvvetinin şiddeti yavaş yavaş artırılmaktadır. Sandık kayar mı voksa devrilir mi? Ayaklar küçük olduğu için boyutlarının etkisini ihmal ediniz.

Verilenler:

Sandığın kayması için gerekli olan kuvveti bulalım. Sandık tam kaymaya başlamak üzere olsun.

> $F_B = \mu_s N_B$ $F_C = \mu_s N_C$

İstenenler:

$$\Sigma F_x = 0$$

$$P \cos 30^\circ - F_B - F_C = 0$$

$$\Sigma F_y = 0$$

$$P \sin 30^\circ - W + N_B + N_C = 0$$

$$P = \frac{\mu_s W}{\mu_s \sin 30^\circ + \cos 30^\circ}$$

$$P = 0.448 W$$

Sandığın devrilmesi için gerekli olan kuvveti bulalım. Sandık tam devrilmeye başlamak üzere olsun.

$$N_B=0$$

$$F_B=0$$

$$\Sigma M_C = 0$$

$$W(d) - P\cos 30^{\circ}(d) - P\sin 30^{\circ}(2d) = 0$$

$$P = \frac{W}{2\sin 30^\circ + \cos 30^\circ}$$

$$P = 0.536 W$$

Sandığın devrilmesi için gerekli olan kuvvet daha büyük olduğu için:

Sandık devrilemez, kayar.

Örnek Problem 5/2

Bir kuvvet çifti bir silindire şekildeki gibi uygulanmıştır. $m_B = 3$ kg, $m_C = 6$ kg, $(\mu_s)_B = 0.50$, $(\mu_s)_C = 0.40$ ve r = 0.2 m olduğuna göre hareketi başlatmaya yetecek M değerini bulunuz. C silindiri ile B bloğu arasındaki sürtünme ihmal edilebilir.

Verilenler:

$$m_B = 3 \text{ kg}$$

$$m_C = 6 \text{ kg}$$

$$(\mu_s)_B = 0.50$$

$$(\mu_s)_C = 0.40$$

$$r = 0.2 \text{ m}$$

$$g = 9.81 \text{ m/s}^2$$

İstenenler:

M = ?

M momenti yavaş yavaş artırılırken F_C daima F_B ye eşittir.

F_{C} $F_{C/B}$ $F_{C/B}$ $F_{C/B}$ $F_{B/C}$ $F_{B/C}$ $F_{B/C}$ $F_{B/C}$ $F_{B/C}$ $F_{B/C}$ $F_{B/C}$ $F_{B/C}$ $F_{B/C}$ $F_{C/B}$

 $\Sigma F_v = 0 \rightarrow N_B = W_B$

$$F_{max} = \mu_s N$$

$$(F_{max})_C = (\mu_s)_C N_C \qquad (F_{max})_B = (\mu_s)_B N_B$$

$$(F_{max})_C = 23.5 \text{ N}$$
 $(F_{max})_B = 14.7 \text{ N}$

 F_B kuvveti maksimum değerine önce ulaşır. B kaymaya, C de yuvarlanmaya başlamak üzeredir.

$$F_C = (F_R)_{max} = 14.7 \text{ N}$$

Yön belirtir. Şekildeki yöndedir.

Behcet DAGHAN

 $\Sigma F_v = 0 \rightarrow N_C = W_C$

......

Örnek Problem 5/3

Şekildeki 90 kg kütleli boyacının 4 m-lik merdiveni kaydırmadan tırmanabileceği *s* mesafesini bulunuz. 15 kg-lık merdivenin tepesinde bir tekerlek vardır ve yer ile arasındaki statik sürtünme katsayısı 0.25 tir. Boyacının kütle merkezi ayakları ile aynı düşey doğrultu üzerindedir.

Çözüm

Verilenler:

$$m_B = 90 \text{ kg}$$

$$m_M = 15 \text{ kg}$$

$$\mu_{s} = 0.25$$

$$g = 9.81 \text{ m/s}^2$$

W = mg

$$\Sigma F_y = 0$$

$$N-W_B-W_M=0$$

$$N = W_B + W_M$$

$$N = 1030 \text{ N}$$

Merdiven tam kaymaya başlamak üzere iken:

$$F = F_{max} = \mu_s N$$

$$F = 257.5 \text{ N}$$

$$\Sigma M_B = 0$$

$$W_M(0.75) + W_B(1.5 - s\cos 68^\circ) + F(4\sin 68^\circ) - N(1.5) = 0$$

İstenenler:

$$s = ?$$

s = 2.55 m

Örnek Problem 5/4

Kütlesi m, ortalama yarıçapı r olan ve kalınlığı ihmal edilebilen bir halka A mesnedine asılmıştır. Mesnet ile halka arasındaki sürtünme katsayısı μ ise halkayı mesnet üzerinde kaydırabilecek olan düşey P kuvvetini bulunuz. Kayma başlamak üzere iken β açısının değeri ne olur?

Verilenler:

m

r

μ

 $\varphi = \tan^{-1}\mu$

İstenenler:

$\Sigma M_A = 0$

 $W(r\sin\beta) - P(r - r\sin\beta) = 0$

$$P = mg \frac{\sin \emptyset}{1 - \sin \emptyset}$$

Çözüm

Sürtünmeli yüzeylerde kayma başlamak üzere iken tepki kuvvetinin yüzey normali ile yaptığı açı, "sürtünme açısı" olur.

$$\beta = \emptyset = \tan^{-1}\mu$$

$$F_{max} = \mu_s N$$

$$F = \mu N$$

$$A^2 = N^2 + F^2$$

$$\sin \varphi = F/A$$

$$P = mg - \frac{\sin \emptyset}{1 - \sin \emptyset}$$

$$P = mg \frac{\mu}{\sqrt{1 + \mu^2} - \mu}$$

Behcet DAĞHAN