DD2370 Computational Methods for Electromagnetics Finite Difference

Stefano Markidis, KTH Royal Institute of Technology

Motivation

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{j} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}$$

Discretize space and time on finite number of grid points and time steps

1.

Substitute continuous derivatives with algebraic equations for each node

Basic Mechanism for Finite Difference: Taylor Expansion

$$f(x + \Delta x) = f(x) + f'(x)\Delta x/1! + f''(x)\Delta x^2/2! + \dots$$

Finite Difference of First Order – The Building Block

- Want to calculate f'(x) of a function defined only in discrete points ..., $x \Delta x$, x, $x + \Delta x$
- Three different kinds of approximations:
- Forward-difference

$$[f]'(x) = (f(x + \Delta x) - f(x))/\Delta x$$

Backward-difference

$$[f]'(x) = (f(x) - f(x - \Delta x))/\Delta x$$

Central-difference

$$[f]'(x) = (f(x + \Delta x)) - f(x - \Delta x))/2\Delta x$$

What is the best?

How do we Calculate the Truncation Error?

Taylor expansion series

$$f(x + \Delta x) = f(x) + f'(x)\Delta x/1! + f''(x)\Delta x^2/2! + \dots$$

• Forward-difference error

$$f'(x) = (f(x+\Delta x) - f(x))/\Delta x - f''(x)\Delta x/2! + \dots$$
 Forward-difference

5

Truncation error

What is the accuracy order?

Finite Difference of Second Order Derivative

From definition of first order difference we can derive formulation for

Finite Difference Method

1. We start with a differential equation that we want to solve, e.g.

$$\frac{d^2f}{dx^2} - a\frac{df}{dx} - bf = c$$

2. We approximate the derivatives with finite differences

$$\frac{f(k+1)-2f(k)+f(k-1)}{\Delta^{2}}-a(k)\frac{f(k+1)-f(k-1)}{2\Delta}-b(k)f(k)=c(k)$$

Finite Difference Method

The equation is expanded and we collect common terms

$$\frac{1}{\Delta^{2}} f(k+1) - \frac{2}{\Delta^{2}} f(k) + \frac{1}{\Delta^{2}} f(k-1) - \frac{a(k)}{2\Delta} f(k+1) + \frac{a(k)}{2\Delta} f(k-1) - b(k) f(k) = c(k)$$

$$\left[\frac{1}{\Delta^{2}} - \frac{a(k)}{2\Delta}\right] f(k+1) - \left[b(k) + \frac{2}{\Delta^{2}}\right] f(k) + \left[\frac{1}{\Delta^{2}} + \frac{a(k)}{2\Delta}\right] f(k-1) = c(k)$$

Finite Difference Method

4. The final equation is used to populate a matrix equation

Excursus-Interpretation of Matrix

$$a_{11}x + a_{12}y + a_{13}z = b_{1}$$

$$a_{21}x + a_{22}y + a_{23}z = b_{2}$$

$$a_{21}x + a_{32}y + a_{33}z = b_{3}$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix}$$

Excursus - Functions are Put Into Column Vectors

Excursus - Putting Functions into Column Vectors

Solving the Linear System

The matrix equation is solved for the unknown function f(x)

In Matlab: f = L/c

Other linear solvers can be used, see appendix A of the textbook