PREPOR	ation of namines withted an internace of ideals (p
V RY	ammonolyer's of alty halides:
2) 000	webien at alto compounds
3) Red	uction of alkyl reganide (Mendius Reduction)
1.) 12 -1	inhow of amides
5) Gab	riel ponthalimide systhesis - (only 1 amine)
1) HOH	mann degradation
4) Curt	US RXM
	cal Properties
-) Labo	ratory test for amines
+	lest to 7 amiles as the pare
+	Diazotization reaction / oxange due test.
DAIK	lation of anines: Hoffman's exhaustive appliation
	iann Elimination
. 11	whom of amines
Sicasi	y lamine reaction
	ron with nitrous acid
,	of asene Diazonium salts:
+ R	eactions involving displacement of diazo group
	+ Gatterman reaction
	- Sandmeyar XXN -> No F&I Benzene
	Todo arone formation
	+ Reaction with fluxoboxic acid
	- Mild Reduction
	+ Phenol formation
+ 6	oupling exn
	+ Pheno orange"
	- Anitine Yellow
1 1112	+ Nepthot "Red"
B) Rxn	with rovenesulfory chloride (Minsberg & test)
/	

 $R-NN_2+HND_2 \xrightarrow{273-278} \left[R-N_2Q\right] \xrightarrow{N_2O} R-ON+N_2T+NCI$ $(NQNO_2+NQ) = (alkyl diazonium chloride)$

-> we can only form 1° alkylamine & No arylamine. \$

phthalimide

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

5 Reduction of amides:

@ Hoffmann - degradation / Holfmann Bromamide degradation 4No 3° amine P R-E-NK2 + 1Br2 + 4 Naon(ag) - R-NH2 + Na2 Co2 + 2420 + 2 Nabr amide OTE-NH2 + Br2 + 4 NaON - OTNA2 + 2 NaBr + NaCOZ Aniline (Benzamide) 7 Custius Reaction: $CH_{3} - \stackrel{\parallel}{C} - N_{3} \xrightarrow{\stackrel{?}{i}} \Delta \longrightarrow CH_{3} - NH_{2} + CO_{2}T$ Physical Properties: 1 Lower aliphatic amines are gases, smell -> fishy smell @ Middle member or more than 30 amines -> liquid (3) Higher member or more than 8 to 100 amines -> solids 1 Aniline & other anylamines are usually colourless liquid D SolvBility: - Alcohol > Amines > Alkanes → [AAA] Boiling. P:- l'amine > 2° amine > 5° amine Carboxylic acid > Alcohols > Amines > alkane. Order of Basicity of amine: ONT | Kot Pky | Bosict | Aniline < NK3 < Alkylamine a) R => (C21/5) b) R => (C1/3) Aq. $2^{\circ} > 3^{\circ} > 1^{\circ}$ $\left[2^{\circ} > 1^{\circ} > 3^{\circ}\right]$ phase R-Me 3°>2°>1° 2 gas R-Et 3°>2°>1° J phose.

In sbesg's Reaction: (645 802 C)

I amine M.R. Mook soluble in alkali

2° amine M.R. Mook soluble in alkali

2° amine M.R. Moon, y Inaduble

$$C_{2}N_{5}-N^{2}=C_{6}N_{5}$$
 $C_{2}N_{5}-N^{2}=C_{6}N_{5}$
 $C_{2}N_{5}-N$

omologous Series General formula Alkane Cn H2n+2 Alkene & Cycloalkane $C_n V_{2n}$ Alkyne / Alkadiene & $C_n H_{2n-2}$ ay do al kone Alkyl Kalide Cn M2n+1X Alcohol & Ether Cn 1/21/20 Aldehyde & Ketone Cn 421 0 Amide, Oximes & Cn Manti No Nitroso Compounds Cn M2n O2 Carboxylic acid & ester Cn K2n+1 N Granides & Isocyanides

Paraffine -> alkane
Olefins -> alkane
outcome

In Koffmann elimination,
the major product is

Least substituted alkene

Action of nitrous acid (MND)

Nitro & Nitrote

 $(M_{2})-N-(N_{2})+N_{2}-N=0$ $(M_{3})-N-(N_{3})-N=0$ $(M_{3})-N-(N_{3})-N-(N_{3})-N=0$ $(M_{3})-N-(N_{3})-N-(N_{3})-N-(N_{3})-N=0$ $(M_{3})-N-(N_{3}$

Cn 1/21+1 NO2