Ingeniería de Software I 2016 Guía Práctica 4

Redes de Petri

Parte I: Redes de Petri

- a) Describa qué tipos de problemas se pueden modelar utilizando redes de petri.
- b) Enumere y explique elementos, vistos en teoría, se utilizan para modelar las redes de petri.
- c) Explique que son las marcas o tokens.
- d) Explique qué significa una transición que tiene salidas pero no entradas.
- e) Explique qué significa una transición que tiene entradas pero no salidas.

Parte II: Ejemplo

Una empresa de la ciudad de La Plata desea modelar el funcionamiento de envasado de cerveza artesanal. El proceso comienza con el llenado de la botella. Una vez que la botella está llena, es tapada y luego etiquetada. Sólo se llena, tapa y etiqueta de una botella por vez. Las botellas se almacenan en cajones de 6 unidades. Una vez completo el cajón se registra en el sistema para envíos. Luego se carga el camión con los cajones de cerveza para su distribución.

Parte III: Ejercitación

Ejercicio 1. Dado el siguiente enunciado y la solución propuesta, Identifique y corrija los 5 errores existentes en dicha solución. Exprese la solución correcta.

Se debe modelar una parte del funcionamiento de una arquitectura de procesadores para realizar tareas en paralelo. Inicialmente se generan pedidos del sistema operativo que se van encolando a la espera de ser atendidos. Se sabe que la arquitectura cuenta con tres procesadores, el procesador 1, el procesador 2, y el procesador 3 que pueden trabajar en forma simultánea. Cuando uno de los procesadores está libre, toma un pedido de la cola de pedidos y lo procesa por un determinado tiempo. Luego, el pedido pasa a un buffer en común y de ahí es derivado al sector o buffer de salida para luego finalizar.

Cada procesador atiende de a un solo pedido por vez.

Ejercicio 2. Dado el siguiente enunciado y la solución propuesta, identifique y corrija los 6 errores existentes en dicha solución. Exprese la solución correcta.

Se desea modelar el modo en que funciona una oficina de correos.

A la oficina pueden llegar cartas o paquetes, los cuales entran por canales diferentes. Tanto las cartas como los paquetes necesitan ser sellados. Para esto, existen 3 empleados que sellan indistintamente de uno u otro canal.

Luego de ser selladas, las cartas deben ser empaquetadas de a 6, para formar un grupo. Luego, estos grupos son enviados al depósito de envío, para ser cargados en el camión de reparto para su posterior entrega.

Los paquetes se procesan de modo similar a las cartas, pero se agrupan de a 2. También llegan al mismo depósito de común para luego ser enviados.

Ejercicio 3. Modelar el siguiente problema:

Dos peluqueros trabajan en una peluquería. La peluquería cuenta con una sala de espera con sólo 3 sillas para que los clientes esperen por ser atendidos. Cuando alguno de los peluqueros se libera atiende a uno de los clientes de cualquiera de las sillas para cortarle el cabello, liberando la silla de la sala de espera, para que se siente un nuevo cliente. Una vez que terminó de cortarle el cabello el peluquero es liberado y puede atender a otro cliente. Finalmente los clientes deben pasar por la caja en la cual se atiende a un cliente por vez. Cuando llegan clientes y las tres sillas están ocupadas deben formar una única fila en la puerta de la peluquería.

Ejercicio 4. Modelar el siguiente problema:

Una estación de servicio cuenta con tres surtidores con sus respectivos empleados (uno por surtidor) y dos cobradores (los empleados de los surtidores no pueden cobrar).

Cuando los autos llegan, forman fila en cualquiera de los surtidores. Una vez que se terminó de cargar combustible al auto, se libera el surtidor y se pasa al sector de pago. En este sector cualquiera de los cobradores le cobra al conductor del auto. Si no hay cobradores libres, debe esperar a que uno se libere. Cuando el cobrador termina, el auto se retira de la estación y el cobrador queda libre para atender a un nuevo auto.

Ejercicio 5. Modelar el siguiente problema:

Modelar una elección mediante voto electrónico, para ello se disponen de dos mesas y dos terminales de voto (una para cada mesa). A medida que los votantes llegan, forman una única fila y luego son derivados indistintamente a la mesa 1 o a la mesa 2. En cada mesa hay una autoridad para atender y tomar los datos del votante. Cada mesa atiende de a un votante a la vez. Una vez que la autoridad le tomó los datos, el votante pasa a votar a la terminal electrónica de la mesa correspondiente. Una vez que el votante emitió su voto, debe pasar a firmar que efectivamente votó, en ese mismo instante puede ingresar otra persona a la mesa. Luego, el votante que estaba firmando se retira.

Ejercicio 6.

- a) Modelar el pasaje de vehículos a través de un puente el cual posee una sola mano por donde pasan los vehículos. El máximo permitido es de 3 vehículos por vez.
- b) Agregar al modelo anterior una segunda mano. Los vehículos pueden ingresar al puente por cualquiera de las dos manos y en cada puede haber un máximo de 3 vehículos a la vez.
- c) Agregar al modelo anterior la restricción de que sólo puede haber 4 vehículos en total sobre el puente.

Ejercicio 7. Modelar el siguiente problema:

Un puesto de trabajo recibe pedidos de dos líneas de montaje distintas. El puesto procesa los pedidos y los deriva indistintamente por uno de sus dos canales. Se procesa/deriva de a un pedido por vez.

Si el pedido es enviado a través del canal 1, se lo deposita en una cinta transportadora que lo conduce al sector de pedidos anulados, en donde un empleado les coloca el sello de anulado, se sabe que el empleado puede sellar de un pedido por vez. Una vez sellado se lo envía a un depósito de pedidos descartados, donde finalmente son retirados del puesto de trabajo.

Si el pedido es enviado a través del canal 2, se lo deposita en un contenedor que tiene una capacidad máxima de 4 pedidos. Cuando el contenedor está lleno se envían los 4 pedidos al sector de logística, donde serán finalmente despachados simultáneamente.

Ejercicio 8. Modelar el siguiente problema:

Modelar el acceso del personal de una empresa a sus puestos de trabajo.

A medida que los empleados llegan a la empresa acceden por una única puerta y se dirigen indistintamente a uno de los tres puestos lectores de tarjetas ubicados uno al lado del otro, donde introducen su tarjeta personal para validar su identidad.

Por cada lector se puede pasar sólo una tarjeta por vez. Luego de la validación, los empleados se dirigen indistintamente a un control de seguridad, para este último control hay dos detectores de metales y sólo una persona de seguridad controlando ambos detectores. Los empleados van a pasar por cualquiera de los detectores sólo cuando la persona de seguridad se encuentre libre. La persona de seguridad puede controlar de a un detector a la vez. Pasado todos los controles continúan a su puesto de trabajo.

Ejercicio 9. Modelar el siguiente problema:

Una distribuidora mobiliaria de la ciudad recibe pedidos de muebles desarmados y empaquetados, los cuales deben ser armados y ensamblados para su posterior envío y entrega a domicilio.

Los pedidos ingresan a la distribuidora por una línea única de montaje y luego son derivados al puesto A o al puesto B que posee dicha distribuidora. Allí los pedidos son analizados. Cada puesto atiende un pedido por vez.

Luego, los pedidos pasan al depósito del sector de ensamblado para su armado y embalaje. Se sabe que en este sector hay un conjunto de empleados que trabajan juntos y van tomando los pedidos del depósito y pueden, como máximo, armar y embalar 3 pedidos simultáneamente. Una vez que el pedido está listo se lo pasa al sector de envíos en donde se esperan 5 pedidos para armar un lote que será cargado en el camión de reparto para su posterior entrega.

Ejercicio 10. Modelar el siguiente problema:

Modelar un campeonato de tenis amateur en un club privado de la ciudad.

Las personas interesadas en participar llegan al club y forman una única fila esperando para abonar la inscripción al campeonato. Hay un solo cobrador que puede atender de a una persona por vez. Una vez abonado el torneo, la persona (o jugador) espera por algún otro jugador para disputar su partido; luego, ambos jugadores pasan a jugar su partido a cualquiera de las dos canchas que posee el club (en una cancha se puede jugar de un partido por vez). Si las dos canchas se encuentran ocupadas deben esperar a que se libere alguna de ellas para poder jugar su partido. Una vez finalizado el partido se retiran a la zona de vestuarios para finalmente retirarse del club.

Ejercicio 11. Modelar el siguiente problema:

Modelar un juego en donde participan los alumnos/as de una escuela. Al patio de la escuela llegan los alumnos/as por separado, los nenes por un lado y las nenas por otro. Para el inicio del juego se necesitan de 6 alumnos/as, 3 nenes y 3 nenas. Una vez finalizado el juego juegan los siguientes 6 alumnos y así sucesivamente.

Ejercicio 12. Modelar el siguiente problema:

Suponga que dispone de un procesador que permite ejecutar sentencias en paralelo. Modelar las variables y operaciones entre ellas. Tenga en cuenta que cada instrucción debe ejecutarse solo 1 vez.

```
x := x + 5;

y := (y * 4) + 12;

z := (x + y) DIV 8;

w := (y + 2) MOD x;

z := (z + w) - 4;
```

Ejercicio 13. Modelar el siguiente problema:

Modelar el problema del productor consumidor. Hay un maquina va generando pedidos a medida que recibe las solicitudes de los mismos. Una vez generados los pedidos los deposita en un contenedor compartido con otra máquina que consume los pedidos de dicho contenedor para despacharlos, esto significa, ensamble y empaquetamiento. Hay que tener en cuenta que el consumidor no debe intentar tomar pedidos si el contenedor común está vacío y además en dicho contenedor puede haber una cantidad máxima de diez pedidos, en dicho caso el productor deberá esperar a que se consuma algún pedido para poder depositar un nuevo pedido.

Ejercicio 14. Dado el siguiente enunciado y la solución propuesta:

Identifique cual es la solución correcta. Para aquellas soluciones que crea incorrectas, explique cuáles son los errores que hacen a dicha solución incorrecta.

Se desea modelar la atención de vehículos en un centro gratuito para realizar la verificación técnica vehícular (vtv). Los vehículos llegan al centro de verificación e ingresan por cualquiera de los tres accesos disponibles y aguardan en su fila correspondiente para ser atendidos. En cada uno de estos accesos existe una cabina con un solo empleado en donde se solicita la documentación de la persona y del vehículo a verificar. Se atiende de a uno a la vez.

Una vez presentada la documentación, los vehículos pasan a un sector común, formando una única fila, en donde aguardan a ser evaluados.

Un detalle importante es que en el sector común hay capacidad para que esperen solamente 8 vehículos. En caso de que se complete dicho sector se deberá detener la atención en las tres cabinas de ingreso, hasta que alguno de los 8 vehículos inicie su evaluación.

Para ser evaluados, el centro de verificación posee dos puestos distintos de evaluación donde los vehículos van pasando de a uno y son testeados. Para cada puesto se requieren dos empleados que van realizando las anotaciones necesarias del test del vehículo. Un vehículo puede pasar indistintamente por cualquiera de ambos puestos. Una vez que el vehículo es evaluado, los empleados del puesto correspondiente le entregan el informe al dueño del vehículo y la documentación correspondiente. Luego los vehículos se retiran del centro de verificación por una única salida.

Solución propuesta 1:

Solución propuesta 2:

Solución propuesta 3:

