Approximation Algorithms for Label Cover and the Log-Density Threshold

Aravindan Vijayaraghavan

Northwestern University

Based on joint works with

Eden Chlamtac

Ben-Gurion University

Pasin Manurangsi

UC Berkeley

Dana Moshkovitz

UT Austin

Label Cover

Input

- A bipartite graph G = (L, R, E) constraint graph
- Alphabet sets Σ_L , Σ_R
- Projections $\pi_e : \Sigma_L \to \Sigma_R$ for each $e \in E$

Goal

• Find assignments $\phi_L: L \to \Sigma_L$ and $\phi_R: R \to \Sigma_R$ maximizing the number of edges e = (a, b) s.t.

$$\pi_{e}(\varphi_{L}(a)) = \varphi_{R}(b).$$

Value – fraction of edges satisfied.

Some Notation

- n = number of vertices in the graph,
 i.e., n = |L| + |R|
- k = the size of left alphabet set, i.e., k = $|\Sigma_L| \ge |\Sigma_R|$
- N = the size of instance, i.e., N = nk
- δ = the approximation ratio

Why is Label Cover Important?

PCP Theorem ([AS98][ALMSS98]...)

Given a Label Cover instance, it is NP-Hard to distinguish between the following two cases:

- The instance is satisfiable, i.e., its value is 1.
- Its value is at most δ.

Max-3SAT is NP-Hard to approximate. [Hastad97] [BGS95] **Set Cover** is NP-Hard to approximate. [Lund-Yannakakis94]

[Feige98] [Moshkovitz12] [Moshkovitz-Raz08]+ [Dinur-Steurer13] Closest Vector Problem is NP-Hard to approximate. [Khot10] **Directed Sparsest Cut** is NP-Hard to approximate. [Chuzhoy-Khanna09]

•••

Label Cover: what do we know?

Approximation factor δ : given a satisfiable instance of Label Cover, how many constraints does the algorithm satisfy?

	Hardness Results	(Note: $N = nk$)
[Arora-Safra98, ALMSS98]	NP-hard	Some constant $0 < \delta < 1$
[Raz98]	NP-hard	Every constant 0 < δ
[Moshkovitz-Raz08]	NP-hard	$\delta = 1/\log^c N$ for some $c > 0$
[Dinur-Steurer13]	NP-hard	$\delta = 1/\log^c N$ for every $c > 0$
[Dinur07] + [Raz98]	ETH-hard	$\delta = 1/N^{1/poly\log\log\log N}$
Projection Games Conjecture	NP-hard	$\delta = 1/N^c$ for some $c > 0$
[BGLR93, Moskovitz15]		

Approximation Algorithms

	_
Folklore	$\delta \geq 1/n, 1/k$
[Peleg02]	$\delta \geq 1/N^{1/2}$
[Charikar-Hajiaghayi-Karloff09]	$\delta \geq 1/N^{1/3}$
[M-Moshkovitz13]	$\delta \geq 1/N^{1/4}$

Q: What's the right

Better Inapproximability from LC?

PCP Theorem ([AS98][ALMSS98]...)

Given a Label Cover instance, it is NP-Hard to distinguish between the following two cases:

- The instance is satisfiable, i.e., its value is 1.
- Its value is at most δ.

 $\delta = 1/N^c$

Max-3SAT is NP-Hard to approximate. [Hastad97] [BGS95] **Set Cover** is NP-Hard to approximate. [Lund-Yannakakis94]

... [Feige98] [Moshkovitz12] [Moshkovitz-Raz08]+ [Dinur-Steurer13] Closest Vector Problem is NP-Hard to approximate. [Khot10] Directed Sparsest Cut is NP-Hard to approximate. [Chuzhoy-Khanna09]

 $\delta = 1/N^{c'}$

This Work

Conjecture $\mathbf{c} = \mathbf{3} - 2\sqrt{2} \approx \mathbf{0}.1716$ (approximability threshold \mathbf{N}^{-c}), using the Log-density method

Results:

- A matching $N^{-(3-2\sqrt{2})}$ —approximation algorithm for semi-random case where the constraint graph is random.
- An improved $N^{-0.2325}$ —approximation algorithm for worst case instances.
- A $N^{-1/8+O(\varepsilon)}$ integrality gap for N^{ε} —level Lasserre SDP (aka Sum-of-Square) relaxation of Label Cover.

Log-Density Method

- Introduced while studying Densest k-subgraph by Bhaskara-Charikar-Chlamtac-Feige-V [2010]
- Study how "simple local" algorithms perform on averagecase instances
- Use the insight to come up with an algorithm and/or lower bounds for more general (worst-case) instances
- Results in state-of-the-art algorithms (and some lower bounds) for Densest-k-Subgraph[BCCFV'10], Degreebounded Spanners[CDK'12], Small-Set Vertex Expansion [CDM'17]...

Random vs Planted

Consider a distinguishing problem between a "random" instance and one with a "planted" solution

Random vs Planted	Consider a distinguishing problem between a "random" instance and one with a "planted" solution
Counting Witnesses	Restrict ourselves to algorithms that only count a certain kind of "witnesses"

Random vs Planted	Consider a distinguishing problem between a "random" instance and one with a "planted" solution
	Restrict ourselves to algorithms that only count a certain kind of "witnesses"
Log Density Threshold	Compute the threshold at which witness counting algorithms stop/start working

Random vs Planted	Consider a distinguishing problem between a "random" instance and one with a "planted" solution
Counting Witnesses	"witnesses"
Log Density Threshold	Compute the threshold at which witness counting algorithms stop/start working
Algorithm	Use the ideas from previous steps to come up with an algorithm

Distinguish Random vs Planted

Witness-Based Algorithm

Witness: a constant-size graph W

Distinguishing Algorithm

- Find each occurrence H of W in the constraint graph G(L,R,E)
 - Check whether there is a satisfying assignment of H
- If there are satisfying assignments for each H, output "PLANTED".
- Otherwise, output "RANDOM".

The Log-density Threshold

Witness: a constant-size

graph W

When does the algorithm work?

- W must appear (w.h.p.) in the constraint graph G = (L, R, E)
- There must be no satisfying assignment for W (w.h.p.) for RANDOM instances (random projections)

The Log-density Threshold

Witness exists exactly when:

Log-density of the projection

 $2 \log_n \Delta > \log_k d$

Log-density of the **constraint graph**

 Δ : degree, **n**: # of vertices

k: alphabet size, **d**: # of preimages

When does the algorithm work?

- 1. W must appear (w.h.p.) in the constraint graph G = (L, R, E)
- 2. There must be no satisfying assignment for **W** (w.h.p.) for random instances

Towards an Approximation Algorithm

Random Planted Model

Step 1: Constraint graph **G** = (L, R, E) is random.

An Erdős-Rényi random bipartite graph $G(n/2, n/2, p = \Delta/n)$.

Step 2: Fix a planted solution/ assignment φ_L , φ_R .

Each projection $\pi_{(a,b)}$ is a random d-to-1 function s.t.

$$\pi_{(a,b)}(\varphi_L(a)) = \varphi_R(b)$$

Goal: Find an assignment that satisfies as many edges as possible

Note: easier than semi-random model

Algorithm for Planted Model

Case 1 (Lower Log-density of G): $2 \log_n \Delta \le \log_k d$

Pick the best of the following:

- d/k-approx: pick a random assignment
- $1/\Delta$ -approx: satisfy a spanning tree

 $N^{-(3-2\sqrt{2})}$ —
approximatio
n algorithm

- Hard for local witnesses. Output something trivial.
- Better approx. guarantee would solve distinguishing problem in this regime as value of a random instance is at most $O(max\{d/k, 1/\Delta\})$

Algorithm for Planted Model

Case 2 (Higher Log-density of G): $2 \log_n \Delta > \log_k d$

for each u ∈ L ∪ R of size

much less than Σ ($\lesssim |\Sigma|^{1-\epsilon}$).

Alphabet Reduction Algorithm

Algorithm works in multiple steps and maintains

- a candidate set S, and
- a candidate set of labels $\Sigma_{\mathbf{u}}$ for each vertex $\mathbf{u} \in S$

The sequence of Growth and Shrink steps given by the local witness

Alphabet Reduction Algorithm

Algorithm for Planted Model

ALPHABET-REDUCTION: If $2\log_n \Delta \geq \log_k d + \epsilon$, we can find in polynomial time, an instance on G(V,E) with alphabets Σ'_L , Σ'_R that is satisfiable and has $|\Sigma'_L| \lesssim |\Sigma_L|^{1-\epsilon}$.

Implies a $N^{-(3-2\sqrt{2})}$ —approximation algorithm for planted random instances.

Semi-random Models

Semi-Random Model 1 (easy)

Step 1: Constraint graph G = (L, R, E) is random arbitrary An Erdős-Rényi random bipartite graph $G(n/2, n/2, p = \Delta/n)$.

Step 2: Fix φ_L , φ_R . Each projection $\pi_{(a,b)}$ is a random d-to-1 function s.t. $\pi_{(a,b)}\big(\varphi_L(a)\big)=\varphi_R(b)$

Semi-Random Model 2 (more challenging)

Step 1: Constraint graph G = (L, R, E) is random An Erdős-Rényi random bipartite graph $G(n/2, n/2, p = \Delta/n)$.

Step 2:Fix φ_L , φ_R . Each projection $\pi_{(a,b)}$ is a random arbitrary d-to-1 function s.t. $\pi_{(a,b)}\big(\varphi_L(a)\big)=\varphi_R(b)$

Semi-random models

Semi-Random model 2:

Step 1: Constraint graph G = (L, R, E) is random An Erdős-Rényi random bipartite graph $G(n/2, n/2, p = \Delta/n)$.

Step 2:Fix φ_L , φ_R . Each projection $\pi_{(a,b)}$ is a random arbitrary d-to-1 function s.t. $\pi_{(a,b)}\big(\varphi_L(a)\big)=\varphi_R(b)$

The projections are not d-to-1 or random
 Solution: Bucketing, and ensuring approximate regularity

Problem: The alphabet reduction algorithm may not reduce size of compatible alphabet; **SHRINK** fails!

Main Idea: If SHRINK fails, we can find a good assignment to the whole instance (need "robust" vertex expansion of instance)

Worst-Case Instances

Step 1: Constraint graph G = (L, R, E) is random arbitrary An Erdős-Rényi random bipartite graph $G(n/2, n/2, p = \Delta/n)$.

Step 2: Fix φ_L , φ_R . Each projection $\pi_{(a,b)}$ is a random arbitrary d-to-1 function s.t. $\pi_{(a,b)}\big(\varphi_L(a)\big)=\varphi_R(b)$

Problem: The constraint graph may not be expanding. **GROW** fails!

Partial Solution: Partitioning the instance into subinstances

Takeaways

- Via log-density method, identify a barrier for algorithms, and conjecture a threshold at which Label Cover becomes hard.
- An algorithm for semi-random case that matches threshold
- An improved (but not matching) algorithm for worst case
- A polynomial (not matching) Sumof-Squares lower bound
- Similar results for Max-CSPs with approximability threshold at $N^{-1/4}$

Log-density of the projection

Log-density of the constraint graph

 Δ : degree, **n**: # of vertices

k: alphabet size, **d**: # of preimages

Open Questions

Conjecture $\mathbf{c} = \mathbf{3} - \mathbf{2}\sqrt{\mathbf{2}} \approx \mathbf{0}.\mathbf{1716}$ (approximability threshold \mathbf{N}^{-c}), using the Log-density method

- A matching algorithm for worst case?
- Is our conjectured threshold correct even in average-case?
- Evidence for hardness using Sum-of-Squares lower bounds?
- A useful average-case hardness assumption?

Thank you!

Questions?