

Multi-Task Recurrent Modular Networks

Dongkuan Xu¹, Wei Cheng², Xin Dong³, Bo Zong², Wenchao Yu², Jingchao Ni², Dongjin Song⁴, Xuchao Zhang², Haifeng Chen², Xiang Zhang¹

¹The Pennsylvania State University, ²NEC Laboratories America, Inc., ³Rutgers University, ⁴University of Connecticut

Motivation

Multi-Task Sequence Tasks

- Sequence Learning
- E.g., sentiment classification, sequence labelling
- Multi-Task Learning
 - Advantages include computational advantage
- However, multi-task architectures applicable to recurrent models are underexplored

Goal

• A Recurrent Module

- Can be integrated into any multi-task learning approach for sequential data
- To improve model capacity, flexibility, generalization

Challenges

- Dynamics of task relationships
- Limited knowledge of the task relatedness
- Generalization ability
- **→** Example: Dynamic task relatedness in NLP — Sentiment prediction of 16 datasets (multi-task learning)

It is not a very flexible plastic and breaks easily, I think the full ads on website give an wrong imply (a) Kitchen Task

The Illustrations of the three most relevant tasks for each word in the "Kitchen" task (AAAI'19, Liu et al.)

Typical Architecture

PSP-MTL (IJCAI'16)

However, existing approaches are not flexible enough to learn the dynamic relationship

Proposed Model: MT-RMN

Architecture

How to Make Connection Decision

- ullet Generate decision vector via policy network: $m{eta}_{t,j}^k = \widehat{\mathcal{N}}^k(m{u}_{t,j}) = MLP(m{u}_{t,j} \oplus m{W}_km{h}_t^k)$
- ullet Estimate the binary decision value via Straight-Through Router: $\zeta = rg \max[lpha_i + g_i], i \in \{0,1\}$

Experiments

Experiments on Task-fMRI

Task-Evoked Functional MRI Data

The task-fMRI data of twelve high-order brain regions of a participant. The regions are grouped into four groups based on their functionalities. Each group is used to construct a multi-class classification task of time series. The participant was asked to perform seven tasks successively.

Groups		Group-1		Group-2				
oroups	Task-1	Task-2	Task-3	Task-1	Task-3	Task-4		
FS-MTL SP-MTL DC-MTL IC-MTL RRNs	89.7±0.6 88.7±1.4 89.2±0.6 89.6±0.4 88.9±3.4	93.5 ± 1.1 94.0 ± 1.9 95.6 ± 1.2 95.7 ± 1.1 95.4 ± 2.2	89.1±0.3 90.7±2.3 90.8±1.0 91.3±1.7 90.5±2.8	73.2±0.5 73.7±1.5 74.5±0.6 74.5±0.4 75.4±2.2	81.2±0.6 78.0±1.5 80.0±0.7 81.4±1.1 83.2±3.0	81.3±1.4 81.2±2.1 80.8±1.3 81.8±2.6 82.6±3.8		
mtl-RMN	90.8±2.1	96.7±1.6	92.9±2.4	76.1±1.8	84.4±2.4	83.5±2.2		

Table 1: Results (accuracy %) on two groups of *tfMRI* tasks.

Table 2: Four test-time scenarios to evaluate generalization ability and the results (accuracy%).

Scenario settings						Results of different methods				
Scenarios	T	raining task	S	Test task	LSTM	RMN_{un}	RRNs	IC-MTL	RMN_{tr}	
A B C D	Task-1 Task-1 Task-1 Task-2	Task-2 Task-2 Task-3 Task-3	Task-3 Task-4 Task-4 Task-4	Task-4 Task-3 Task-2 Task-1	82.6±1.0 82.3±0.6 93.7±0.6 71.7±1.4	82.9 ± 1.2 84.5 ± 1.5 95.3 ± 0.8 73.1 ± 1.7	83.0 ± 2.7 84.8 ± 2.5 95.6 ± 1.7 78.4 ± 4.0	81.2±1.7 82.7±1.3 95.5±0.7 77.3±2.1	$83.3{\pm}2.3$ $85.6{\pm}1.7$ $97.0{\pm}1.8$ $79.3{\pm}2.6$	

Experiments on POS Tagging

- Task: POS Tagging of Code-**Switched Sentences**
 - POS Tagging: to mark up a word in a corpus to a corresponding speech tag — Code-Switched Text: words from multiple languages
- **Data Sets**
 - Task 1: A Hindi-English codeswitch data POS tagging
- Task 2: Hindi POS tagging
- Task 3: English POS tagging

Methods	Original		DC-MTL		IC-MTL		$rrn ext{-RMN}$		MT-RMN	
	Accuracy	F_1	Accuracy	F_1	Accuracy	F_1	Accuracy	F_1	Accuracy	F_1
NS-MTL	44.3±0.7	38.9±1.6	51.5±0.5	49.4±0.9	51.4±1.4	49.7±0.8	53.5±1.9	52.7±0.8	55.2±1.2	53.4±2.4
Cross-stitch.	46.0 ± 1.9	12.7 ± 0.8			1		1		51.7±1.9	
Sluice	58.7 ± 0.7	55.4 ± 2.1	59.2±1.7	56.0 ± 2.3	59.5±1.9	56.2 ± 0.7	60.4 ± 1.2	56.6 ± 0.7	61.5±1.7	57.2 ± 1.8
GIRNet	62.8 ± 0.6	46.6 ± 0.4	62.5±1.1	57.4 ± 0.5	63.1±1.5	58.6 ± 1.3	63.6±1.7	61.3 ± 1.5	64.5±2.1	62.6 ± 2.4

Sub-network

- 1) The proportion of tasks assigned to each sub-network 2) Different colors distinguish different tasks
- 3) A-F represent the six sub-networks

Welcome! Email: dux19@psu.edu Twitter: DongkuanXu WeChat: xudongkuan220019