1 Probability

1.1 Probability Space

- Sample space Ω is the collection of all possible outcomes.
- An event A is a subset of Ω .
- A σ -field, denoted by \mathcal{F} , is a collection of events such that: (i) $\emptyset \in \mathcal{F}$; (ii) if an event $A \in \mathcal{F}$, then $A^c \in \mathcal{F}$; (iii) if $A_i \in \mathcal{F}$ for $i \in \mathbb{N}$, then $\bigcup_{i \in \mathbb{N}} A_i \in \mathcal{F}$.
- (Ω, \mathcal{F}) is called a measure space.
- A function $\mu : \mathcal{F} \mapsto [0, \infty]$ is called a *measure* if it satisfies (i) $\mu(A) \geq 0$ for all $A \in \mathcal{F}$; (ii) if $A_i \in \mathcal{F}$, $i \in \mathbb{N}$, are mutually disjoint, then $\mu\left(\bigcup_{i \in \mathbb{N}} A_i\right) = \sum_{i \in \mathbb{N}} \mu(A_i)$
- If $\mu(\Omega) = 1$, we call μ a probability measure. A probability measure is often denoted as P.
- (Ω, \mathcal{F}, P) is called a *probability space*.

1.2 Random Variable

- A function $X : \Omega \to \mathbb{R}$ is $(\Omega, \mathcal{F}) \setminus (\mathbb{R}, \mathcal{R})$ measurable if $X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{F}$ for any $B \in \mathcal{R}$, where \mathcal{R} is the Borel σ -field on the real line. Random variable is an alternative name for a measurable function.
- Discrete random variable: the set $\{X(\omega) : \omega \in \Omega\}$ is finite or countable.
- Continuous random variable: the set $\{X(\omega) : \omega \in \Omega\}$ is uncountable.
- $P_X : \mathcal{R} \mapsto [0,1]$ is also a probability measure if defined as $P_X(B) = P(X^{-1}(B))$ for any $B \in \mathcal{R}$. This P_X is called the probability measure *induced* by the measurable function X.

1.3 Distribution Function

• (Cumulative) distribution function

$$F(x) = P(X \le x) = P(\{\omega \in \Omega : X(\omega) \le x\}).$$

• Properties of CDF: $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$, non-decreasing, and right-continuous

$$\lim_{y \to x^{+}} F(y) = F(x).$$

• Probability density function (PDF): if there exists a function f such that for all x,

$$F(x) = \int_{-\infty}^{x} f(y) \, dy,$$

then f is called the PDF of X.

• Properties: $f(x) \ge 0$. $\int_a^b f(x) dx = F(b) - F(a)$

1.4 Examples

- Binary, Poisson, uniform, normal, χ^2 , t, F.
- Parametric distribution verses nonparametric distribution.
- Implementation in R: d for density, p for probability, q for quantile, and r for random variable. For instance, dnorm, pnorm, qnorm, and rnorm.

2 Expected Value

2.1 Integration

- X is called a *simple function* on a measurable space (Ω, \mathcal{F}) if $X = \sum_i a_i 1\{A_i\}$ is a finite sum, where $a_i \in \mathbb{R}$ and $A_i \in \mathcal{F}$.
- Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $a_i \geq 0$ for all i. The integral of X with respect to μ is

$$\int X d\mu = \sum_{i} a_{i} \mu (A_{i}).$$

• Let X be a non-negative measurable function. The integral of X with respect to μ is

$$\int X\mathrm{d}\mu = \sup\left\{\int Y\mathrm{d}\mu: 0 \leq Y \leq X, \ Y \text{ is simple}\right\}.$$

• Let X be a measurable function. Define $X^+ = \max\{X,0\}$ and $X^- = -\min\{X,0\}$. Both X^+ and X^- are non-negative functions. The integral of X with respect to μ is

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu.$$

• If the measure μ is a probability measure P, then the integral $\int X dP$ is called the *expected value*, or *expectation*, of X. We often use the popular notation E[X], instead of $\int X dP$, for convenience.

2.2 Properties

- Elementary calculation: $E\left[X\right] = \sum_{x} x P\left(X=x\right)$ or $E\left[X\right] = \int x f\left(x\right) \mathrm{d}x$.
- $E[1\{A\}] = P(A)$.
- $E[X^r]$ is call the r-moment of X. Mean $\mu = E[X]$, variance $var[X] = E[(X \mu)^2]$, skewness $E[(X \mu)^3]$ and kurtosis $E[(X \mu)^4]$.
- Skewness coefficient $E\left[\left(X-\mu\right)^3\right]/\sigma^3$, degree of excess $E\left[\left(X-\mu\right)^4\right]/\sigma^4-3$.
 - Application: The formula that killed Wall Street
- Jensen's inequality. If $\varphi(\cdot)$ is a convex function, then $\varphi(E[X]) \leq E[\varphi(X)]$.
 - Application: Kullback-Leibler distance $d(p,q) = \int \log(p/q) dP = E_P[\log(p/q)]$
- Markov inequality: if $E\left[\left|X\right|^{r}\right]$ exists, then $P\left(\left|X\right|>\epsilon\right)\leq E\left[\left|X\right|^{r}\right]/\epsilon^{r}$ for all $r\geq1$.
 - Application: Chebyshev inequality: $P\left(|X| > \epsilon\right) \le E\left[X^2\right]/\epsilon^2$.

3 Multivariate Random Variable

- Bivariate random variable: $X: \Omega \mapsto \mathbb{R}^2$.
- Multivariate random variable $X: \Omega \to \mathbb{R}^n$.
- Joint CDF: $F(x_1, ..., x_n) = P(X_1 \le x_1, ..., X_n \le x_n)$. Joint PDF is defined similarly.

3.1 Elementary Formulas

- conditional density f(Y|X) = f(X,Y)/f(X)
- marginal density $f(Y) = \int f(X, Y) dX$.
- conditional expectation $E[Y|X] = \int Y f(Y|X) dY$

• proof of law of iterated expectation

$$E\left[E\left[Y|X\right]\right] = \int E\left[Y|X\right] f\left(X\right) dX = \int \left(\int Y f\left(Y|X\right) dY\right) f\left(X\right) dX = \int \int Y f\left(Y|X\right) f\left(X\right) dY dX$$
$$= \int \int Y f\left(X,Y\right) dY dX = \int Y \left(\int f\left(X,Y\right) dX\right) dY = \int Y dY = E\left[Y\right].$$

• conditional probability, or Bayes' Theorem $P\left(A|B\right) = \frac{P(A,B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$.

3.2 Independence

X and Y are independent if $P(X \in A, Y \in B) = P(X \in A) P(Y \in B)$ for all A and B.

Application: (Chebyshev law of large numbers) If X_1, X_2, \ldots, X_n are independent, and they have the same mean μ and variance $\sigma^2 < \infty$. Let $Z_n = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)$. Then the probability $P(|Z_n| > \epsilon) \to 0$ as $n \to \infty$,

3.3 Law of Iterated Expectations

- Given a probability space (Ω, \mathcal{F}, P) , a sub σ -algebra $\mathcal{G} \subset \mathcal{F}$ and a \mathcal{F} -measurable function X with $E|X| < \infty$, the *conditional expectation* $E[X|\mathcal{G}]$ is defined as a \mathcal{G} -measurable function such that $\int_A X dP = \int_A E[X|\mathcal{G}] dP$ for all $A \in \mathcal{G}$.
- Law of iterated expectations

$$E[E[Y|X]] = E[Y]$$

is a trivial fact from the definition of the conditional expectation by taking $A = \Omega$.

- Properties of conditional expectations
 - 1. $E[E[Y|X_1, X_2]|X_1] = E[Y|X_1]$
 - 2. $E[E[Y|X_1]|X_1, X_2] = E[Y|X_1]$
 - 3. E[h(X)Y|X] = h(X)E[Y|X]

Application: Regression $Y = E[Y|X] + \epsilon$, where $\epsilon = Y - E[Y|X]$.