BITCOIN (A BASIC TUTORIAL)

Aviv Zohar

The Rachel & Selim Benin School of Eng. and Computer Science The Hebrew University

In this tutorial:

- What is Bitcoin and how does is work?
- What are the main challenges?
- The surrounding ecosystem
- Pointers to related research & additional sources of information

Money isn't perfect

Currently slower and more expensive than:

A <u>decentralized</u> digital currency

Invented by Satoshi Nakamoto in 2008 Launched in 2009

Built for the age of the internet

Features of Bitcoin

Pseudonymous

Fixed amount

Irreversible Transfers

Cannot be seized

Can not be frozen

Escrow

Joint accounts

Last Price: **\$655.38**

Daily Change: \$8.22 1.27%

Day's Range:

\$635.88 - \$656.84

Today's Open:

24h Volume

\$647.16

8646 BTC

Market Cap: \$8,432,610,615.00 Total BTC: 12,866,750 BTC

*From Bitstamp.net

- Bypass regulation & censorship
- Increase competition
- Disrupt

Transactions are thus public, addresses are (free) pseudonyms

lome Charts

Stats

Markets

Developers

DPR Seized Coins Addresses are identifiers which you use to send bitcoins to another person.

Summary	
Address	1FfmbHfnpaZjKFvyi1okTjJJusN455paPH
Hash 160	a0e6ca5444e4d8b7c80f70237f332320387f18c7
Tools	Taint Analysis - Related Tags - Unspent Outputs

Transactions		
No. Transactions	573	
Total Received	144,341.5244317 BTC	
Final Balance	144,341.5244317 BTC	
Request Payment	Donation Button	

Wallet

The Double-spend problem

A variant of the Byzantine general's problem (Byzantine consensus in asynchronous dist. systems)

- Blocks aggregate transactions in batches
- Each block contains a cryptographic hash of the prev one, "proving" it is created afterwards.
- Can Read ledger from start to finish to "follow the money"
- Each node tries to grow the chain with recent transactions:
 - Create a block with recent consistent transactions
 - Send to peers

- 1. Make block creation hard.
- 2. Adopt conflicting blocks if they make up a longer chain.

Must be a small number for valid block (under some target value)

If not, change Nonce & try again

~ one block per 10 min. in the entire network (Difficulty scales automatically to maintain this) Current traget has ~65 zeros in most significant digits

- Make block creation hard (once every 10 minutes)
- 2. Adopt (conflicting) blocks iff they make up a longer chain.

The Double-Spend Attack

- A payment can be reversed!
- Easy if attacker has >50% of compute power
- Possible with less than 50%

Bitcoin's Guarantee [Satoshi]:

If attacker controls < 50% of compute power, probability of block replacement decreases exponentially with time.

To encourage nodes to authorize transactions:

Block creation is known as "Mining"

Block size is limited (currently to 1MB)
Transactions will compete to enter – highest fee first.
(An auction!)

Hash Rate Source: blockchain.info 125,000,000 100,000,000 75,000,000 -Hash Rate GH/s 50,000,000 25,000,000 Jul'13 Sep '13 Nov '13 Jan '14 Mar '14 May '14

Attacks

Analysis of the Double Spend Attack

The recipient has an acceptance strategy:

- # of "confirmations" (blocks) it waits for before transaction is considered "accepted".
- Assumption: attacker has hashrate q.
 Yields distribution over the # of blocks in its chain.

Analysis of the Attack

 Consider a Markov Process representing the difference in length between the chains

Attacker Network
creates
block (**q**) block (**1-q**)

Honest chain length minus attacker's

If we ever get here, Attacker wins

n blocks built by honest nodes, attacker has strength $q \rightarrow$ probability distribution over initial states $\in \{n, n-1, n-2, ...\}$.

The Result:

Attacker's strength: q < 0.5

Receiver's policy: wait for n confirmations

Probability of successful attack:

$$r = 1 - \sum_{m=0}^{n} {m+n-1 \choose m} \cdot ((1-q)^{n}q^{m} - (1-q)^{m}q^{n})$$

q	1	2	3	4	5	6	7	8	9	10
2%	4%	0.237%	0.016%	0.001%	≈ 0					
4%	8%	0.934%	0.120%	0.016%	0.002%	≈ 0				
6%	12%	2.074%	0.394%	0.078%	0.016%	0.003%	0.001%	≈ 0	≈ 0	≈ 0
8%	16%	3.635%	0.905%	0.235%	0.063%	0.017%	0.005%	0.001%	≈ 0	≈ 0
10%	20%	5.600%	1.712%	0.546%	0.178%	0.059%	0.020%	0.007%	0.002%	0.001%
12%	24%	7.949%	2.864%	1.074%	0.412%	0.161%	0.063%	0.025%	0.010%	0.004%
14%	28%	10.662%	4.400%	1.887%	0.828%	0.369%	0.166%	0.075%	0.034%	0.016%
16%	32%	13.722%	6.352%	3.050%	1.497%	0.745%	0.375%	0.190%	0.097%	0.050%
18%	36%	17.107%	8.741%	4.626%	2.499%	1.369%	0.758%	0.423%	0.237%	0.134%
20%	40%	20.800%	11.584%	6.669%	3.916%	2.331%	1.401%	0.848%	0.516%	0.316%
22%	44%	24.781%	14.887%	9.227%	5.828%	3.729%	2.407%	1.565%	1.023%	0.672%
24%	48%	29.030%	18.650%	12.339%	8.310%	5.664%	3.895%	2.696%	1.876%	1.311%
26%	52%	33.530%	22.868%	16.031%	11.427%	8.238%	5.988%	4.380%	3.220%	2.377%
28%	56%	38.259%	27.530%	20.319%	15.232%	11.539%	8.810%	6.766%	5.221%	4.044%
30%	60%	43.200%	32.616%	25.207%	19.762%	15.645%	12.475%	10.003%	8.055%	6.511%
32%	64%	48.333%	38.105%	30.687%	25.037%	20.611%	17.080%	14.226%	11.897%	9.983%
34%	68%	53.638%	43.970%	36.738%	31.058%	26.470%	22.695%	19.548%	16.900%	14.655%
36%	72%	59.098%	50.179%	43.330%	37.807%	33.226%	29.356%	26.044%	23.182%	20.692%
38%	76%	64.691%	56.698%	50.421%	45.245%	40.854%	37.062%	33.743%	30.811%	28.201%
40%	80%	70.400%	63.488%	57.958%	53.314%	49.300%	45.769%	42.621%	39.787%	37.218%
42%	84%	76.205%	70.508%	65.882%	61.938%	58.480%	55.390%	52.595%	50.042%	47.692%
44%	88%	82.086%	77.715%	74.125%	71.028%	68.282%	65.801%	63.530%	61.431%	59.478%
46%	92%	88.026%	85.064%	82.612%	80.480%	78.573%	76.836%	75.234%	73.742%	72.342%
48%	96%	94.003%	92.508%	91.264%	90.177%	89.201%	88.307%	87.478%	86.703%	85.972%
50%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%

Table 1: The probability of a successful double spend, as a function of the attacker's hashrate q and the number of confirmations n.

From Meni Rosenfeld's paper "Analysis of hash-rate based double spending".

Implications

- To get final approval for a transaction one has to wait several blocks (confirmations).
- Each block takes 10 minutes in expectation.

Risk of an attack should take transaction size into account.

The Finney attack

Some Vendors cannot afford to wait. Accept 0-confirmation transactions.

Susceptible to a simple attack:

- Alice pre-mines block with a transaction to self.
- Alice creates and sends transaction paying bob.
 Instantly receives goods from Bob.
- Alice release pre-mined block before the transaction to Bob is authorized.

Additional Attack Vectors

- Network-structure attacks
 - Isolating a node implies you can use its computational power to launch double spend attacks
 - Sybil attacks
- DDoS attacks with amplification
 - Blocks are secure by difficulty, blocks that are too old are not allowed
 - Transactions are secured by fee
- Clock Drift attacks (Timejacking)
- 0-Confirmation attacks & chain splits based on different versions

Transactions

Addresses

- Addresses are (essentially) public keys
- Allow sending Bitcoins even when recipient is offline
- Signatures are used to prove ownership (generated with private keys)
- Security matters! paper wallets / cold storage.

Transactions

 Each transaction is a transfer of money from inputs to outputs (many-to-many)

(the fee is the difference between outputs and inputs)

A transaction is valid if and only if

It contains all required signatures,

every input matches a previous <u>unspent</u>

output

Two computer scientists in Israel say a bitcoin transaction now worth more than US\$1 million suggests a possible link between a creator of the virtual currency and Ross William Ulbricht, the 29-year-old accused of running the Silk Road underground online marketplace.

Transactions

Txn

outputs specify amount and "script" for redeeming money.

OP_EQUALVERIFY OP_CHECKSIG

Inputs specify data for script to return "True"

Some outputs cannot be redeemed.

Scripts allow for much more...

- k out of n signatures
- Delayed payments
- Savings accounts
- P2P bets
- Derivatives
- Distributed exchanges
- Implemented on top of Bitcoin
- or in alternative chains

Modifications of the protocol

Altcoins

Many Bitcoin clones

Coingen Build a New Coin	Check Status	
Basic Information	Basic Information	
Details		
Advanced Settings	Coin Name (one word, case is ignored)	٦
	MagicCoin	
	Coin Abbreviation (exactly three letters, eg BTC)	٦
	MGC	J
	Coin Icon (256x256)	
	Choose File No file chosen	
	Remove Coingen branding on splash screen (0.10 BTC)	
	□ Include source (+0.05 BTC)	
	Do not display my coin on the public status page (I understand that if I lose my private link, I will lose access to my coin).	
	Details	
	Proof of Work Algorithm	
	SHA256 (like Bitcoin) ▼	
	Block Rate (in seconds)	
	600	
	Initial value per block	
	50	
	Block halving rate	
	210000	3
	Maximum coins: 21000000	

Zerocoin / Zerocash

[Ben-Sasson, Chiesa, Garman, Green, Miers, Tromer, and Virza]

- Improved anonymity for Bitcoin using advanced cryptographic tools
 - zero-knowledge Succinct Non-interactive ARguments of Knowledge (zk-SNARKs)
- Hides transaction origin, destination & amount.
- Most importantly: efficient implementation makes otherwise heavy crypto practical

Can Bitcoin Be Faster?

Block rate: one every 10 minutes

2.5 minutes

12 seconds

What is the effect of this? Why not go even faster?

Two related problems

[Sompolinsky & Zohar]

A block every 10 minutes

A Long wait for transaction confirmations

1MB per block (per 10 minutes)

 A limit on number of transactions per second (3.3 TPS)

Higher block creation rates

More forks in chain

*Data generously shared by Decker & Wattenhofer

Greedy Heaviest Observed Sub-Tree (GHOST)

[Sompolinsky & Zohar]

An alternative chain selection rule (instead of "longest chain")

- Begin at the "Genesis Block"
- At every split, pick the heaviest sub-tree.

Outcome: 50% attack only works with 50% of compute power.

The Pull Towards Centralization

- Advantage of large miners:
 - Economies of scale (e.g. datacenters in Iceland)
 - Block distribution to self not needed.
 - Attractive connections for other miners

Outcome:

- Large miners gain more than proportional share.
- Drive small miners out of business.
- System becomes centralized.
- Gets worse at high block rates / large blocks

Incentives

Is the protocol "incentive compatible"?

Two main issues found thus far:

- Miners lack the incentive to flood transaction messages to others.
 - On Bitcoin and Red Baloons [Babaioff, Dobzinsky, Oren & Zohar]
- 2. Miners do not necessarily want to mine on top of latest block or release their block instantly "Majority is not Enough" [Eyal & Sirer]

Block Withholding

[Ittay Eyal & Emin Gün Sirer]

Miners do not necessarily want to mine on top of latest block.

From: Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." *arXiv preprint arXiv:1311.0243* (2013).

MINING POOLS

Mining Pools

Bitcoin mining is a high risk "lottery"

 Miners can join together to split profits and reduce risk

Hash rate distribution (from Blockchain.info)

How (not) to split rewards

- Miners that contribute more should get higher reward.
- Win: Hash(header) < target</p>
- \bullet Get a share: Hash(header) $< k \cdot target$

Pay per share:

Split wins proportionately to # of shares contributed.

Pool Hopping

It is not known when a block will be created by the pool (a memoryless process).

- The first share may be worth a lot (if block found right after)
- The 50th share is already very "diluted"
- Miners are better off switching to another pool / solo mining after several shares have been found.

Hop-proof reward schemes exist.

Explore tradeoff between risk to pool, risk to player and time. [Meni Rosenfeld]

MORE ON STRUCTURE

More on Block Structure: Merkle Trees

Specifying the root, is equivalent to committing to all transactions in the tree (unless we can easily find hash collisions)

Root of the Merkle tree is thus included in the block header.

Light nodes

 Running a full Bitcoin node may be too expensive. (e.g. for smartphones)

- To prove that transaction occurred:
 - Download block headers and check nonce values, Merkle root
 - Request Merkle "branch"
 leading from some block to root

Saving space

 The same scheme allows full nodes to save space.

"Spent" transactions no longer needed

Unspent transaction outputs

- What about proving that money is in someone else's account? (Unspent output)
- Suggested modification: Include a Merkle root of unspent transactions in the header.
- Show a Merkle branch to the output.

Allows for more space savings

Suggested Reading

- Bitcoin Wiki
- BitcoinTalk forums
- Bitcoin on Stack-Exchange

Some papers (in no particular order):

- Nakamoto, Satoshi. "Bitcoin: A peer-to-peer electronic cash system." (2008).
- Ben-Sasson, Eli, et al. "Zerocash: Decentralized anonymous payments from Bitcoin." Security and Privacy (SP), 2014 IEEE Symposium on. IEEE. 2014.
- Rosenfeld, Meni. "Analysis of hashrate-based double spending." (2012).
- Rosenfeld, Meni. "Analysis of Bitcoin Pooled Mining Reward Systems." arXiv preprint arXiv:1112.4980 (2011).
- Babaioff, Moshe, et al. "On bitcoin and red balloons." Proceedings of the EC 2012.
- Eyal, Ittay, and Emin Gün Sirer. "Majority is not enough: Bitcoin mining is vulnerable." FC 2014.
- Decker, Christian, and Roger Wattenhofer. "Information propagation in the bitcoin network." IEEE P2P 2013.
- Sompolinsky, Yonatan, and Aviv Zohar. "Accelerating Bitcoin's Transaction Processing." IACR eprint archive.
- Ron, Dorit, and Adi Shamir. "Quantitative analysis of the full bitcoin transaction graph." Financial Cryptography and Data Security. Springer Berlin Heidelberg, 2013. 6-24.

Thank You!