洲江水学

本科实验报告

课程名称:		数字逻辑电路设计
姓	名:	
学	院:	计算机科学与技术学院
专	业:	计算机
即	箱:	
QQ	号:	
电	话:	
指导	教师:	洪奇军
报告日期:		2020年9月22日

浙江大学实验报告

课程名称:	数字逻辑设计	实验类型	ၑ:	4	宗合		
实验项目名称:	:实验二——基本开	关电路					
学生姓名:	学号: 同约	且学生姓名:					_
实验地点:	紫金港东四 509 室	实验日期:	2020	年	9 月	1 22 ⊟	

一、实验目的

- 1.1 掌握逻辑开关电路的基本结构
- 1.2 掌握二极管导通和截止的概念
- 1.3 用二极管、三极管构成简单逻辑电路
- 1.4 掌握最简单的逻辑门电路构成

二、实验内容和原理

2.1 实验内容

在实验箱中,用二极管、三极管以及电阻等器件分别构成如下电路并测试,记录下有关实验数据:

- 1. 用二极管实现正逻辑"与"门
- 2. 用二极管实现正逻辑"或"门
- 3. 用二极管实现正逻辑"非"门
- 4. 用二极管实现正逻辑"与非"门
- 5. 三极管极性测量

2.2 实验原理

2.2.1 常用逻辑电平标准

逻辑电平	V_{cc}/V	V_{OH}/V	V _{OL} / V	V_{IH}/V	V_{IL}/V	说明
TTL	5.0	≥ 2.4	≤ 0.4	≥ 2.0	≤ 0.8	输入脚悬
LVTTL	3.3	≥ 2.4	≤ 0.4	≥ 2.0	≤ 0.8	空时默认
LVTTL	2.5	≥ 2.0	≤ 0.2	≥ 1.7	≤ 0.7	为高电平
CMOS	5.0	≥ 4.45	≤ 0.5	≥3.5	≤1.5	
LVCMOS	3.3	≥ 3.2	≤ 0.1	≥ 2.0V	≤ 0.7	输入阻抗非常之大
LVCMOS	2.5	≥ 2.0	≤ 0.1	≥ 1.7	≤ 0.7	
RS232	±12~15	-3 ~ −15	3~15	-3 ~ −15	3~15	负逻辑

TTL: Transistor-Transistor Logic 晶体管-晶体管逻辑(电路)

LVTTL: Low voltage transistor transistor logic 低电压晶体管晶体管逻辑.

Complementary Metal Oxide Semiconductor: 互补金属氧化物半导体

RS232: 异步传输标准接口,个人计算机上会有两组 RS-232 接口,COM1 和 COM2

2.2.2 用二极管实现正逻辑"与"门

实验电路如右图,根据右图在实验箱连接电路。

当输入 A、B 均为高电平, 二极管 D1、D2 均截止, 则输出 F 为高电平。

当输入 A、B 至少有一个接地(低电平),二极管 D1、D2 至少有一个导通,则输出 F 为低电平。故当且仅当 A、B 均为高电平时,输出高电平。

图表 2.2.2-1 与门电路图

2.2.3 用二极管实现正逻辑"或"门

实验电路如右图,根据右图在实验箱连接电路。

当输入 A、B 至少有一个为高电平, 二极管 D1、D2 至少有一个导通, 则输出 F 为高电平。

当输入 A、B 均接地(低电平), 二极管 D1、D2 均截止,则输出 F 为低电平。

故当且仅当 A、B 均接地,输出低电平。

图表 2.2.3-1 或门电路图

2.2.4 用二极管实现正逻辑"非"门

实验电路如右图,根据右图在实验箱连接电路。

当输入 A 为高电平,三极管 T1 为饱和状态,输出 F 为低电平。

当输入 A 接地 (低电平), 三极管 T1 处于截止状态,输出 F 为高电平。

故当 A 为高电平,输出低电平; A 为低电平,输出高电平。

图表 2.2.4-1 非门电路图

2.2.5 用二极管实现正逻辑"与非"门

实验电路如右图,根据右图在实验箱连接 电路。实验电路即为"与"门和"非"门的组 合。

当输入 A、B 均为高电平, 二极管 D1、D2 均截止, F1 为高电平, 使得三极管 T1 处于饱和状态, 输出 F 为低电平。

当输入 A、B 至少有一个接地(低电平), 二极管 D1、D2 至少有一个导通,F1 为低电平, 使得三极管 T1 处于截止状态,输出 F 为高电平。

故当且仅当 A、B 均为高电平,输出低电平。

图表 2.2.5-1 与非门电路图

2.2.6 三极管极性测量

PNP 型三极管、NPN 型三极管的符号及电路符号如右图所示。

对于 PNP 型三极管,b 极应接负极,c 极和 e 极应接正极。对于 NPN 型三极管,b 极应接正极,c 极和 e 极应接负极。因此,万用表功能量程开关置于半导体位置时,当红表笔固定一个点,黑表笔测另外两点均能导通时,该三极管为 NPN 型;当黑表笔固定一个点,红表笔测另外两点均能导通时,该三极管为 PNP 型。

此后,将万用表功能量程置于 hFE 位置,将三极管插入面板上三极管测试插座,要确保基极 b 插对。如果万用表显示 hFE 近似值较大,说明三极管 c 极、e 极与插座上的 c 极、e 极对应;若 hFE 近似值很小,说明反插。

图表 2.2.6-1 三极管图例

三、操作方法与实验步骤

3.1 实验设备与材料

1.	数字示波器 RIGOL-DS162	1台
2.	函数发生器 YB1638	1台
3.	数字万用表	1 只
4.	电路设计实验箱	1台
5.	二极管 IN4001	3 只
6.	三极管 9013	1 只
7.	发光二极管	1 只
8.	电阻	
	• 10 ΚΩ	5 只
	• 5.1 KΩ	3 只
	• 1 ΚΩ	5 只

3.2 实验步骤

3.2.1 用二极管实现正逻辑"与"门

根据实验电路在实验箱中用导线连接电路(如右图)。

其中 V_{cc} 连接 5V 直流电源。S1 与 S2 开关控制输入电压。

图中红色电压表测量的是 S1 或 S2 的输入电压,蓝色电压表测量的是实验电路中 F 处的输出电压。

拨动 S1、S2 开关遍历四种输入状态,分别测量并记录每种状态下的 S1、S2 的输入电压以及 F 处的输出电压。

图表 3.2.1-1 与门实验电路图

3.2.2 用二极管实现正逻辑"或"门

根据实验电路在实验箱中用导线连接电路(如右图)。

其中 V_{cc} 连接 5V 直流电源。S1 与 S2 开关控制输入电压。

图中红色电压表测量的是 S1 或 S2 的输入电压,蓝色电压表测量的是实验电路中 F 处的输出电压。

拨动 S1、S2 开关遍历四种输入状态,分别测量并记录每种状态下的 S1、S2 的输入电压以及 F 处的输出电压。调整 F 与 GND 处之间电阻为 0 Ω ,10 K Ω 与 20 K Ω ,分别进行三次实验。

图表 3.2.2-1 或门实验电路图

3.2.3 用二极管实现正逻辑"非"门

根据实验电路在实验箱中用导线连接电路(如右图)。

其中 V_{cc} 连接 5V 直流电源。S1 开关控制输入电压。 图中红色电压表测量的是 S1 的输入电压,蓝色电压表测量的是实验电路中 F 处的输出电压。

拨动 S1、S2 开关遍历四种输入状态,分别测量并记录每种状态下的 S1、S2 的输入电压以及 F 处的输出电压。调整 A 与 B 处之间电阻为 5 K Ω ,10 K Ω 与 47 K Ω ,分别进行三次实验。

图表 3.2.3-1 非门实验电路图

3.2.4 用二极管实现正逻辑"与非"门

根据实验电路在实验箱中用导线连接电路(如右图)。

其中 V_{cc} 连接 5V 直流电源。S1 与 S2 开关控制输入电压。

图中红色电压表测量的是 S1 或 S2 的输入电压,蓝色电压表测量的是实验电路中 F 处的输出电压。

拨动 S1、S2 开关遍历四种输入状态,分别测量并记录每种状态下的 S1、S2 的输入电压以及 F 处的输出电压。调整 V_{cc} 与 F_{1} 处之间、 V_{cc} 与 F 处之间电阻为 94 $K\Omega$ 和 5.1 $K\Omega$,47 $K\Omega$ 和 10 $K\Omega$,分别进行三次实验。

图表 3.2.4-1 与非门实验电路图

3.2.5 三极管极性测量

- 1. 首先将三极管插入到实验箱中相应的位置。
- 2. 将万用表功能量程开关置于半导体位置。将红表笔固定在 b 端,用黑表笔接触 c、e 端。若都可以导通,说明该三极管是 NPN 型三极管。否则,将黑表笔固定在 b 端。用红表笔接触 c、e 端,若都可以导通,说明该三极管是 PNP 型三极管。若上述情形都不出现,可能是三极管损坏,需要更换。
- 3. 将万用表的功能量程置于 hEF 位置,根据 2 中的测试结果将三极管插入万用表相应位置,其中基极 b 要插对。从显示屏上读取近似值,若该值较大,说明三极管 c、e 极与插座上的 c、e 极对应;若该值很小,则说明三极管 c、e 极插反。

四、实验结果与分析

4.1 用二极管实现正逻辑"与"门

图表 4.1-1 与门实验结果

V _A /V	V _B /V	V _F /V	F逻辑值
0.12	0.12	0.62	L
0.13	4.50	0.67	L
4.50	0.13	0.67	L
4.50	4.50	4.10	Н

由表格可见,当且仅当输入 A、B 均为高电平时,输出 F 才为高电平。低电平输出不为 0,是由于电阻带来的压降以及二极管的正向压降;而高电平输出不为 5V,主要是由于串联 的电阻带来的压降。

图表 4.1-2 与门实验结果

4.2 用二极管实现正逻辑"或"门

图表 4.2-1 或门实验结果 (F与 GND 间直连)

V _A /V	V _B /V	V _F /V	F逻辑值
0.09	0.09	0.00	L
0.09	4.16	4.05	Н
4.16	0.09	4.06	Н
4.47	4.47	4.08	Н

图表 4.2-2 或门实验结果 (F与 GND 间连 10 KΩ)

V _A /V	V _B /V	V _F /V	F逻辑值
0.09	0.09	0.00	L
0.09	3.10	2.56	Н
3.11	0.09	2.56	Н
3.78	3.78	3.26	Н

图表 4.2-3 或门实验结果 (F 与 GND 间连 20 $K\Omega$)

V _A /V	V _B /V	V _F /V	F逻辑值
0.09	0.09	0.00	L
0.09	3.54	3.01	Н
3.54	0.09	3.01	Н
4.09	4.09	3.61	Н

由表格可见,当且仅当输入 $A \times B$ 均为低电平时,输出 F 才为低电平。高电平输出不为 5V,主要是由于串联的电阻带来的压降,其中可见当 F 与 GND 间接入的电阻增大,其带来的分压作用越强,测得 F 输出高电平越高。

而输入电平并不总是相同,是由于 F 与 GND 间串联接入的电阻不同,带来的分压作用不用,进而导致输入电压的变化。

图表 4.2-4 或门实验结果

4.3 用二极管实现正逻辑"非"门

图表 4.3-1 非门实验结果 (A 与 B 间接 5 KΩ)

V _A /V	V _F /V	F 逻辑值
0.09	4.12	Н
2.69	0.00	L

图表 4.3-2 非门实验结果 (A 与 B 间接 10 KΩ)

V _A /V	V _F /V	F 逻辑值
0.09	4.12	Н
3.31	0.00	L

图表 4.3-3 非门实验结果 (A 与 B 间接 47 KΩ)

V _A /V	V _F /V	F 逻辑值
0.09	4.12	Н
4.15	0.01	L

由表格可见,当输入高电平,输出 F 为低电平;当输入低电平,输出 F 为高电平。高电平输出不为 5V,是由于 V_{cc}和 F 之间的电阻带来的压降(三次结果中的高电平输出数值相等);而低电平输出几乎都为 0,是由于三极管处于截止状态时,F 与大地等势,为 0V。

而输入电平并不总是相同,是由于 A 与 B 间串联接入的电阻不同,带来的分压作用不用,进而导致输入电压的变化。

图表 4.3-4 非门实验结果

4.4 用二极管实现正逻辑"与非"门

图表 4.4-1 与非门实验结果(47 KΩ+5.1 KΩ)

V _A /V	V _B /V	V _F /V	F逻辑值
0.10	0.10	4.32	Н
0.10	4.50	3.99	Н
4.50	0.10	3.93	Н
4.50	4.50	0.02	L

图表 4.4-1 与非门实验结果(47 KΩ+10 KΩ)

V _A /V	V _B /V	V _F /V	F 逻辑值
0.10	0.10	3.84	Н
0.10	4.50	3.26	Н
4.50	0.10	3.13	Н
4.50	4.50	0.01	L

图表 4.4-1 与非门实验结果(94 KΩ+5.1 KΩ)

V _A /V	V _B /V	V _F /V	F逻辑值
0.10	0.10	4.42	Н
0.10	4.50	4.33	Н
4.50	0.10	4.30	Н
4.50	4.50	0.04	L

由表格可见,当且仅当输入 $A \times B$ 均为高电平时,输出 F 才为低电平。高电平的输出值不为 5V,是由于 V_{cc} 与 F 之间的电阻的分压作用。当只改变 V_{cc} 与 F 之间的电阻大小,电阻越大,F 输出值越小,这是由于电阻的分压作用。

而当只改变 V_{cc} 与 F_1 之间的电阻大小,F 输出值也会发生一定改变。猜测是由于 V_{cc} 与 F_1 之间的电阻不同,导致三极管 b 极与 e 极电压差 V_{ce} 不同,从而导致三极管的压降不同。

图表 4.4-4 与非门实验结果

4.5 三极管极性测量

图表 4.5-1 三极管极性测量实验结果

hFE 近似值	202

实验测得 hFE 数值较大,说明三极管的 c、e 极与万用表上的 c、e 极对应。

五、讨论、心得

通过本次实验, 我亲手用基本电路元件搭建基础逻辑电路。

值得一提的是,在或门等实验中,我发现当一个电压表测量高电平的输入电压时,输出电压的电压表示数会比测量低电平的输入电压时低。经过重复尝试与分析,个人推测原因可能有二:一是本次实验采用电阻较大,与电压表的电阻数量级相近,因此电压表的影响不可忽略;二是器材或者导线有老化,影响了电压表的示数。

本次实验让我对电路有了更深入的理解,同时也有了亲自动手搭建电路的体验。希望未来能不断深入,有更多收获。