

Tartalom

1 A projekt bemutatása	3
ReHAB – A magaslégköri ballon	
PicoBalloon	5
2 Nyáron elért eredmények	6
2.1 Kommunikációs Modul (COM)	6
2.2 Kisteljesítményű Fedélzeti Számítógép (OBC)	7
2.3 MATeF POC ballon	8
3 Az őszi félév során elért eredmények	9
3.1 MATeF-1	9
3.1.1 Tesztelés	9
3.1.2 Repülés	12
3.1.3 Eredmények	
3.2 Tartalék GPS modul fejlesztése	14
3.3 UPRA Workshop	
3.4 PicoBalloon	14
3.5 Kiállítások	15
4 További célkitűzések	16

1 A projekt bemutatása

A Projekt célja egy moduláris, nagy megbízhatóságú telemetria egység tervezés és építése, melyet nagy biztonságot igénylő és kemény környezeti hatások között zajló feladatok esetén lehet használni.

Az egység alapelemei:

- Fedélzeti Számítógép (OBC)
- Kommunikációs egység (COM)
- Mérés-adatgyűjtő kártya (DAU)
- Energiaellátó egység (EPS)

A jelenlegi repülő rendszer

A csapat jelenleg elsősorban magaslégköri ballonos repülések tervezésén dolgozik, de a távlati tervek között szerepel egy kutató-roverrel és egy rakétás repüléssel foglalkozó ág elindítása is.

A LEGO Kör ezzel a projekttel szeretne nyitni az aerospace (repülés és űreszközök) terület felé, megismertetni a körtagokat és az érdeklődő hallgatókat e terület fejlesztési kihívásaival és érdekességeivel.

ReHAB – A magaslégköri ballon

Reusable High Altitude Balloon, vagyis többször felhasználható magaslégköri ballon. A névből kiderül, hogy egy olyan eszköz tervezésébe és kivitelezésébe vágtunk bele, amely több repülés során is felhasználható, ezzel kikerülve a későbbi felbocsátások előtt a kapszula (sárkány) elkészítését és univerzális alapot adhat magaslégköri kísérletek elvégzéséhez.

A magaslégköri ballon (HAB) általában személyzet nélküli, könnyű mérőkapszula, melyet egy hidrogén vagy hélium töltetű ballon emel a magasba. A legelterjedtebb felhasználása különböző meteorológia mérések kivitelezése. A HAB-ok legtöbbször 25-30 km magasságig jutnak, majd ejtőernyővel visszatérnek a földre.

A ReHAB projekt fő célja, hogy lehetőséget biztosítson egyetemi kutatócsapatoknak kísérleteik sztratoszférába juttatására. A ReHAB modul biztosítja a kommunikációt, élő követést és a tudományos műszerek felügyeletét. Az UPRA csapat bonyolítja a repülés előkészítését, felbocsátást, követést és a visszatérő egység begyűjtését. Egy magaslégköri ballon megbízható vezérlő hardverének elkészítése idő és tapasztalat igényes feladat, mellyel a legtöbb kutatócsapat nem rendelkezik. A ballonok üzemeltetése szintén szakértelmet kíván, így ezen feladatok átvállalása a tudományos küldetés biztonságosabb kivitelezését eredményezheti.

A repülések lebonyolításában résztvevő hallgatók megismerkedhetnek űrtechnológiai projektek megtervezésének és üzemeltetésének lépéseivel és együttműködhetnek különböző területen tevékenykedő kutatócsapatokkal.

A ReHAB-150-II rendszer, repülésre készen

PicoBalloon

A PicoBalloon Projekt keretein belül a csapat egy kisméretű magaslégköri ballon megépítését és üzemeltetését tűzte ki célul. A PicoBalloon fedélzeti rendszere egyszerűbb felépítésű, mint a ReHAB modul elektronikája, tervezés során azonban az UPRA rendszerben is található megoldásokat és eszközöket használjuk.

A PicoBalloon célja, hogy kis méretéből adódóan kisebb költséggel, egyszerűbb eszközökkel bocsáthassunk fel kis bonyolultságú, elsősorban meteorológiai mérőegységeket (pl.: reptetés viharban, ballonflotta reptetése, rádiókommunikációs kísérletek). A hagyományos begyűjtéssel végződő küldetések mellett a PicoBalloon rendszerrel szeretnénk megkezdeni a felkészülést a hosszú idejű repülésekre, ahol a ballon begyűjtése adott esetben nem megoldható.

Jelenleg a PicoBallon küldetés elsődleges célja egy hosszú távú repülés kivitelezése, mely során a megszokott 3-4 órás repülés helyett több napos illetve több hetes repüléseket valósítunk meg. Ezek során a ballon nagy földrajzi távolságot tesz meg, mely során elosztott rádióállomás hálózatot kell használnunk a követéshez. A követés mellett az energiaellátással és extrém környezeti körülményekkel kapcsolatos problémákat is meg kell oldanunk. A repülések során a hallgatók megismerkedhetnek űrprojektek hosszú távú üzemeltetésének lépéseivel.

2 Nyáron elért eredmények

2.1 Kommunikációs Modul (COM)

A nyár folyamán kifejlesztésre került négy különböző Arduino alapú kommunikációs modul (COM), melyek mindegyike a HopeRF RFM rádiós modul család egy-egy tagját használja. A fejlesztés célja a megfelelő rádiós modul kiválasztása volt a későbbi küldetésekhez. A COM család minden tagját éles repülésen is szeretnénk kipróbálni, melyhez elkészült egy kis költségű tesztballon terve is.

COM modulok és kommunikációs antenna

A következő kommunikációs modulok készültek el:

COM.RF12

- RFM12b modult használ
- A család legkisebb teljesítményű tagja
- o Kompatibilitás: COM.RF69CW

COM.RF26

- RFM26 modult használ
- o Ez a 'legacy' modell, mely leginkább hasonlít a korábban használt COM modulhoz
- A fejlesztéshez külső segítséget kaptunk egy volt LEGO Kör tagtól
- o Kompatibilitás: COM.Proto, BME-GND

COM.RF69CW

- RFM69CW modult használ
- Teljesítményében megegyezik a korábban használt COM modullal
- o Kompatibilitás: COM.RF12, COM.RF69HCW

COM.RF69HCW

- RMF69HCW modult használ
- Az RF69CW verzió nagyteljesítményű változata
- A legígéretesebb jelölt jövőbeni felhasználásra
- Kompatibilitás: COM.RF69CW

Minden modulból két példány készült, melyből egyik a ballon fedélzeti rendszerébe illeszkedő szoftvert kapott, míg a másodpéldány a földi állomáshoz lett felkonfigurálva. A modulok az UPRA Standard formatényező alapján kerültek legyártásra, így megfelelően illeszkedik az UPRA fedélzeti rendszerbe.

2.2 Kisteljesítményű Fedélzeti Számítógép (OBC)

Elkészült egy Arduino alapú, kisteljesítményű Fedélzeti Számítógép (OBC.mega328), mely kisebb küldetések és tesztelések felügyeletére alkalmas. A modul az az UPRA Standard formatényező alapján került legyártásra, így a korábban elkészült modulokkal kompatibilis, belső kommunikációhoz a másodlagos UART vonalat használja.

OBC.mega328:

- Mikrokontroller: Atmega328 Arduino IDE kompatibilis
- UPRA-BUS: Secondary Line (UART)
- GPS: UBLOX NEO-6M kompatibilis
- Külső hőmérő: termisztor
- Beacon: piezzo buzzer
- Opcionális I2C busz

2.3 MATeF POC ballon

Prototípus modulok teszteléséhez kifejlesztettünk egy olcsó, könnyen összeállítható ballonplatformot, mely segítségével a teljes ReHAB rendszer kockáztatása nélkül nyílik lehetőségünk az új modulok kipróbálására éles körülmények között. A kapszula alapja egy 25cm átmérőjű 2.5cm falvastagságú hungarocell szigetelőhéj, a belső váz pedig kartonból készül, mely olcsó és könnyű, ennek ellenére megfelelő stabilitást biztosít az elektronika rögzítéséhez. A platform két fő belső elrendezéssel rendelkezhet, ebből az egyik lehetőséget biztosít egy HD kamera elhelyezésére is.

MATeF POC szonda felépítése

A költségek alacsonyan tartása érdekében egyszerűbb GPS vevővel lett tervezve. Ennek hátránya, hogy 18km magasság alatti repülések kivitelezésére alkalmas az alapkonfiguráció, bár lehetőség van komolyabb 50km-ig üzemelő GPS modul beépítésére is.

MATeF POC belső elrendezések

3 Az őszi félév során elért eredmények

Az őszi félév során megkezdtük a kommunikációs modulok és a kisteljesítményű fedélzeti számítógép tesztelését és megkezdtük a MATeF program előkészítését. A MATeF program során repülés közben teszteljük az elkészült COM prototípusokat és a felbocsátási feladatokat gyakoroljuk. Az őszi félév végén megtörtént az program első repülése MATeF-1 néven.

3.1 MATeF-1

A repülés célja a COM.RF12 modul és tartalék GPS vevő tesztelése mellett a repülési és felbocsátási feladatok gyakorlása volt. A tartalék GPS egy kompletten vásárolt GPS-GSM nyomkövető egység volt, melyet módosítottunk, hogy alkalmas legyen a ballonba való beépítésre.

Repülési konfiguráció:

Kapszula: MATeF Variant A

OBC: OBC.mega328GPS: TYCO A1035 DCOM: COM.RF12

EPS: kompletten vásárolt modul
Tartalék: TK 102b GSM-GPS

Tarraiek: TK 1020 G5W-GP5
 CND: COM DE60CW | E7 CND

GND: COM.RF69CW + EZ-GND szoftver
 Recovery: COM.RF12 + EZ-GND szoftver

Megterveztük és elkészítettük a szonda méretéhez igazított új ejtőernyőnket, mely egy 90cm átmérőjű négypaneles kupola formájú ernyő. Az ernyő 4m/s-os landolási sebességre lett tervezve.

3.1.1 Tesztelés

Modultesztek

Az egyes modulokat egyenként teszteltük, hogy alkalmasak-e a repülésre. Az OBC és a COM modulok működésének teszteléséhez szimulátor programokat használtunk, melyek az UPRA fedélzeti rendszer működését utánozták. A funkcionális tesztelés után egyenként hűtőkamrás stressz-tesztnek vetettük alá a részegységeket. A validáció után integráltuk a fedélzeti rendszert és a tesztelést a komplett rendszeren folytattuk.

Rendszertesztek

Az integrált rendszert először laborkörülmények között teszteltük a kapszulán kívül. Több hosszú idejű működési tesztet végeztünk, mely során komplett repüléseket szimuláltunk. Ezekhez a tesztekhez

egy GPS szimulátor modult használtunk, mely különböző repülések útvonalainak koordinátáit küldte a rendszernek.

Az összeállított rendszert ezután hűtőkamrás tesztelésnek vetettük alá, mely során -12 - -15 °C hőmérsékleten üzemeltettük és kalibráltuk a hőmérőket.

A hűtőkamrás tesztelés után integráltuk a teljes szondát: a fedélzeti rendszert beépítettük a kapszulába, bekötöttük a GPS modult és a kommunikációs antennát, installáltuk a tápellátást biztosító elemeket és a tartalék GPS modult.

Az integrált szondával hosszú idejű működési teszteket végeztünk, mely során a rendszer élettartamát és megbízható működését vizsgáltuk.

Tesztelésre előkészített integrált MATeF szonda

Két tereptesztet is végrehajtottunk, melyek során 1500 méteres távolságból küldtünk telemetria üzeneteket. Ezek során a szonda mellett a földi állomást is teszteltük és meghatároztuk az elméleti maximálisan berádiózható távolságot. Teszteltük a GPS vételt és a tartalék GPS modul újraindulását is vizsgáltuk.

Nagytávolságú rádiós teszt

Összességében ez volt eddig a legátfogóbb és leghosszabb tesztelési ciklus, melyet repülés előtt végrehajtottunk.

3.1.2 Repülés

A repülésre 2016. december 18-án került sor, és a nem sokkal korábban elhunyt amerikai űrhajós, John Glenn emlékének ajánlottuk.

A repüléshez TOTEX 200grammos ballont használtunk, melyet úgy töltöttünk meg, hogy 18km-es magasságban hasadjon szét. A töltés megfelelően sikerült és elértük a tervezett 6.3m/s-os emelkedési sebességet.

Felbocsátás

A ballont 1700m magasságig tudtuk követni. A földi állomás antennáját nem tudtuk a megfelelő szögbe emelni, ezért a ballon kicsúszott az antenna látószögéből és a rövid repülés alatt nem sikerült újra befognunk a jeleit.

Szimulált és valós adatok összehasonlítása

A kereső csapat átvizsgálta a tervezett landolás környékét, de sajnos nem sikerült a mobil földi állomásunkkal sem fogni a ballon jeleit. A tartalék GPS modul többszöri próbálkozás után sem küldött jeleket. A repülés után még egy hétig próbáltuk felvenni a kapcsolatot a tartalék GPS modullal, de nem jártunk sikerrel, így a ballon jelenleg is eltűnt státuszú.

3.1.3 Eredmények

A felbocsátás ismét sikeres volt, a felmerülő problémákat sikeresen megoldottuk. A felbocsátási műveleteket a tapasztalatok alapján tovább fogjuk finomítani a jövőben.

A követés időtartama alatt a fedélzeti rendszer, az OBC, a COM és a tartalék GPS megfelelően működött. A földi állomás elhelyezésén és az antenna kezelési folyamatain a jövőben finomítani fogunk.

Repülés során várható volt a tartalék GPS modul leállása. A tervek és a tesztek alapján a landolás utáni újraindulására számítottunk, mely nem történt meg, ennek legvalószínűbb oka, hogy a modul akkumulátora nem melegedett fel üzemi hőmérsékletre a földet érés után. A jövőben komolyabb tesztelésnek fogjuk alávetni és megfontoljuk az akkumulátor megfelelő fűtésének kialakítását is.

3.2 Tartalék GPS modul fejlesztése

Az őszi félév során csatlakozott újoncok bevonásával megkezdtük a saját tartalék GPS modul fejlesztését. A tervek alapján a saját modulunk is GSM hálózaton keresztül lesz elérhető viszont szélesebb körű diagnosztikára és kezelésre lesz lehetőségünk. A tervezés során a specifikációba beépítettük az akkumulátor környezet-szabályzását is, hogy elkerüljük a rendszer leállását alacsony hőmérsékleten.

3.3 UPRA Workshop

A LEGO Kör őszi tanfolyamával párhuzamosan sor került az UPRA Workshop-ra is, mely során az érdeklődők megismerkedhettek a magaslégköri ballonozás alapjaival. A workshop során a hallgatók megépítettek egy Arduino alapú fedélzeti számítógépet, mely segítségével hőmérsékletmérésre, adatrögzítésre és kommunikációra volt lehetőség. A workshop zárásaként az elkészült rendszereket egy szimulált repüléssel teszteltük, melyhez GPS és COM szimulátort használtunk. A workshop sikerét bizonyítja, hogy az egyik résztvevő azóta aktív tagja az UPRA fejlesztőcsapatának.

3.4 PicoBalloon

A félév során a PicoBalloon csapat egyéb elfoglaltságai miatt szünetelt, de következő félévben újraindul a fejlesztés. A PicoBalloon egyes részeit (pl. termikus stabilitást biztosító rendszer) a tartalék GPS és a ReHAB modul is fel fogja használni.

3.5 Kiállítások

A félév során bemutattuk a projektet a Kutatók Éjszakája Schönherz Zoltán Kollégiumban kialakított állomásán.

Kutatók Éjszakája

A projekttel részt vettünk a BME Középiskolás Nyíltnapon, mely során a laborlátogatások keretében mutattuk be a működő rendszert a HA5KFU szakkollégiumi rádióklubbal karöltve.

4 További célkitűzések

A tavaszi félév célja a MATeF program folytatása, mely során validáljuk az elkészül kommunikációs modulokat. Reményeink szerint márciusra kiválaszthatjuk a végleges COM modult és sor kerülhet a szokásos áprilisi ReHAB repülésre, melynek célmagassága 30km.

A félév során folytatódik a saját tartalék GPS modul fejlesztése, mely remélhetőleg eljut a prototípus elkészítéséig és elkezdhetjük a rendszer tesztelését. Emellett megkezdjük egy általános interfészkártya fejlesztését, mely biztosítja külső fejlesztések illesztését az UPRA rendszerbe.

A tavaszi félévben megismételjük a workshopunkat, melynek lebonyolításához felhasználjuk az őszi félévben szerzett tapasztalatokat.

A földi állomás továbbfejlesztéséhez szeretnénk bevonni külsős közreműködőket is. Ennek részletei még kidolgozás alatt állnak.

