Задача 1. Добыча радия

Ограничение по времени: 1 секунда Ограничение по памяти: 512 мегабайт

Для геологической разведки перед добычей радия на плато Меридиана на орбиту Марса выведен специальный спутник, позволяющий измерять уровень радиоактивности на поверхности.

Представим плато как прямоугольник, состоящий из $n \times m$ единичных квадратов, обозначим j-й квадрат в i-м ряду как (i, j).

В результате сканирования плато для каждого единичного квадрата был определён уровень радиоактивности. Уровень радиоактивности квадрата (i,j) задаётся целым положительным числом a_{ij} . Точность измерений настолько велика, что все числа a_{ij} различны. Единичный квадрат (i,j) считается подходящим для добычи радия, если значение a_{ij} является максимальным в i-й строке, а также максимальным в j-м столбце.

В процессе наблюдений было проведено q последовательных уточнений уровня радиоактивности. А именно, k-е уточнение изменяло значение $a_{r_kc_k}$ на некоторое **строго большее** значение. При этом после каждого уточнения все значения a_{ij} оставались различными.

Требуется написать программу, которая по заданным исходным значениям a_{ij} и списку уточнений после каждого уточнения информации определяет количество подходящих для добычи радия единичных квадратов.

Формат входных данных

Первая строка входных данных содержит три положительных целых числа: n, m и q ($1 \le n \times m \le 200\,000, 1 \le q \le 200\,000$). Обратите внимание, что ограничение сверху дано на площадь плато, а не на количество столбцов и строк по отдельности.

Следующие n строк содержат по m положительных целых чисел, j-е число в i-й из этих строк задаёт начальное значение a_{ij} ($1 \le a_{ij} \le 10^7$, все a_{ij} различны).

Следующие q строк описывают уточнения данных, k-я из них содержит три целых числа r_k , c_k и x_k и задаёт изменение информации об уровне радиоактивности единичного квадрата (r_k, c_k) , новое значение равно x_k ($1 \le r_k \le n$, $1 \le c_k \le m$, $1 \le x_k \le 10^7$). Гарантируется, что x_k строго больше предыдущего уровня радиоактивности в этом квадрате, и что все уровни радиоактивности различны после каждого изменения.

Формат выходных данных

Выходные данные должны содержать q строк, в k-й из этих строк требуется вывести одно число — количество подходящих для добычи радия единичных квадратов после k-го обновления информации.

Пример

стандартный ввод	стандартный вывод
2 3 3	1
1 4 3	2
6 5 2	2
2 2 9	
1 3 5	
2 2 10	