Clinical implementation of deep learning: Automatic contouring via U-net architecture

Matthew Cooper¹

Simon Biggs²
Yu Sun¹
Matthew Sobolewski²

¹The University of Sydney (USyd). School of Physics. Institute of Medical Physics.

²Riverina Cancer Care Centre (RCCC). Cancer Care Associates.

Thesis: github.com/matthewdeancooper/masters_thesis **Docs:** docs.pymedphys/com/background/autocontouring

Introduction: Motivation

Variability

- Large intra and inter-observer variance (IOV).¹
- AAPM TG275 risk assessment multiple human-factor failure modes in RT.²

Time constraints

- Manual \implies \leq 4 hrs (head & neck).³
- Barrier to future technologies that require fast contouring.⁴

Current deep learning methods

- Shown to reduce IOV and contouring time.⁴
- Significant improvement cf. atlas methods (time & accuracy).³

¹ Dale Roach et al. "Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest". In: Journal of Medical Imaging and Radiation Oncology 63.2 (2019), pp. 264–271. DOI: 10.1111/1754-9485.12844

² Eric Ford et al. "Strategies for effective physics plan and chart review in radiation therapy: Report of AAPM Task Group 275". In: Medical Physics 47.6 (2020), e236-e272. DOI: https://doi.org/10.1002/mp.14030. eprint: https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1002/mp.14030. URL: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.14030.

³Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV]

⁴ Shalini K Vinod et al. "A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology". In: Journal of Medical Imaging and Radiation Oncology 60.3 (2016), pp. 393–406. DOI: 10.1111/1754-9485.12462

Introduction: Clinical application

Model 1: QA tool (RCCC) - Pelvic imaging (Patient, bladder, rectum).

- Need for delineation to be part of regular QA.⁴
- Potential to manage some prominent hazards identified by the task group TG275
- Alert if prediction differs significantly from expert.

Model 2: Automatic contouring (SASH) - Canine vacuum bag

- ullet Currently: Manual vacuum bag contouring (\sim 30 min)
- Lower barrier to entry wrt. implementation.

Goal: Achieve performance similar to human experts.

- Performance metric (sDSC) that takes into account expert IOV.³
- Stronger correlation with correction time cf. DSC.⁵

³Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV]

⁴Shalini K Vinod et al. "A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology". In: Journal of Medical Imaging and Radiation Oncology 60.3 (2016), pp. 393–406. DOI: 10.1111/1754-9485.12462

Femke Vaassen et al. "Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy". In: Physics and Imaging in Radiation Oncology 13 (2020), 1–6. ISSN: 2405-6316. DOI: 10.1016/j.phro.2019.12.001. URL: http://dx.doi.ore/10.1016/j.phro.2019.12.001

Figure: Modified 2D U-net architecture:⁸ Composed of encoding (blue) and decoding blocks (yellow). MaxPooling layers replaced by strided convolution¹¹. Added batch normalisation¹² and final sigmoid activation.³ Tensor dimensions (Batch size, X, Y, Channels).

³Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV]

⁸Olaf Ronneberger, Philipp Fischer, and Thomas Brox. *U-Net: Convolutional Networks for Biomedical Image Segmentation*. 2015. arXiv: 1505.04597 [cs.CV]

¹¹ Jost Tobias Springenberg et al. Striving for Simplicity: The All Convolutional Net. 2014. arXiv: 1412.6806 [cs.LG]

¹² Sergey loffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.03167 [cs.LG]

Method: Why downsample?

Figure: Multi-resolution analysis: Edge detection shown over encoder-decoder pathway: \downarrow resolution $\implies \uparrow$ relative kernel size (grey) to extract coarser (high level) image features for general localisation. Concatenate with high resolution features for local border segmentation.

Matthew Cooper (USyd) U-net automated contouring November 16, 2020

⁶Takafumi Nemoto et al. "Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based segmentation of normal lungs excluding the trachea and main bronchi". In: Journal of Radiation Research 61.2 (Feb. 2020), pp. 257–264. ISSN: 1349-9157. DOI: 10.1093/jrr/rrz086

Code: All happy models are alike...

Figure: Modules required for end-to-end deep learning model deployment

Code: Deployment loop

Figure: Implementation of DICOM network - demonstration!

Code: Forced multi-threading

MULTITHREADING

THREADS ARE NOT GOING TO SYNCHRONIZE THEMSELVES

Figure: Representative output for **patient**. Truth contour (yellow), prediction contour (red). Mean surface distance (MSD) mm.

Figure: Representative output for bladder. Truth contour (yellow), prediction contour (red). Mean surface distance (MSD) mm. sDSC calculated at τ of 1.46 mm.²

Figure: Representative output for rectum. Truth contour (yellow), prediction contour (red). Mean surface distance (MSD) mm. sDSC calculated at τ of 6.99 mm.²

Figure: Representative output for **vacuum bag**. Truth contour (yellow), prediction contour (red). Mean surface distance (MSD) mm.

Discussion: Structure specific metrics

Table: Organ specific evaluation for proposed models on independent test dataset

Organ: Mean(Std)	sDSC (au)	DSC	MSD (mm)	Sensitivity	Specificity
Pelvic imaging Patient Bladder ($ au$ 1.46 mm) Rectum ($ au$ 6.99 mm) Average	0.9(0.2) 0.9(0.1)	0.998(0.001) 0.9(0.2) 0.7(0.1) 0.9(0.2)	0.002(0.005) 1(3) 1(2) 0.6(2)	0.997 0.786 0.619 0.991	0.999 0.999 0.999 0.999
Canine imaging Vacbag		0.952(0.001)	0.2(0.3)	0.953	0.995

• Organ specific tolerance $\tau = \mathsf{MSD}_{95}$ (ie. Top 95% expert performance).³

Cf. Experts IOV.²

- \bullet Clinically 'acceptable' bladder and rectum DSC ≥ 0.7
- ullet Bladder: DSC 0.93 \pm 0.03, MSD 0.99(0.30) mm.
- \bullet Rectum: DSC 0.81 \pm 0.07, MSD 2.862(2.066) mm.

1809.04430 [cs.CV]

²Dale Roach et al. "Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest". In: Journal of Medical Imaging and Radiation Oncology 63.2 (2019), pp. 264–271. DOI: 10.1111/1754–9485.12844

terest". In: Journal of Medical Imaging and Radiation Oncology 63.2 (2019), pp. 264–271. DOI: 10.1111/1754–9485.12844

3 Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv:

Conclusion: Summary

Pelvic imaging model:

- Patient contouring within tolerances (DSC 0.998).
- Suspect more data will improve bladder and rectum volumes (DSC 0.860, 0.670).
 S.O.T.A commercial DL solution (0.97, 0.79).¹⁵
 S.O.T.A open-source DL solution (0.95, 0.92).¹⁶
- Weighted soft DSC loss significantly improved performance on class imbalanced data.

Canine imaging model:

- Successfully deployed to clinic under a prototype warning
- Performance improvement of approximately 30 minutes per patient

¹⁵ Jordan Wong et al. "Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning". in: Radiotherapy and Oncology 144 (2020), 152–158. ISSN: 0167-8140. DOI: 10.1016/j.radonc.2019.10.019. URL: http://dx.doi.org/10.1016/j.radonc.2019.10.019

http://dx.doi.org/10.1016/j.radonc.2019.10.019

16 Samaneh Kazemifar et al. "Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning". In: Biomedical Physics and Engineering Express 4.5 (2018), p. 055001, ISSN: 2057-1976. DOI: 10.1088/2057-1976/aad100. URL: http://dx.doi.org/10.1088/2057-1976/aad100

Conclusion: Future work

Post-project goals:

- Need for more data limited dataset reduces generalisability.
 - S.O.T.A open-source: 600 1000 patients cf. 15.3
- sDSC is a 'hard' metric. Developing a soft surrogate may allow for the direct optimisation of this metric
- Potential improvements under more complicated architecture

[DOI:10.1146/annurev-bioeng-071516-044442], pp. 221-248

³Stanislav Nikolov et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV]

⁶Takafumi Nemoto et al. "Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based segmentation of normal lungs excluding the trachea and main bronchi". In: Journal of Radiation Research 61.2 (Feb. 2020), pp. 257–264. ISSN: 1349-9157. DOI: 10.1093/jrr/rrz086

¹⁷ D. Shen, G. Wu, and H. I. Suk. "Deep Learning in Medical Image Analysis". In: Annu Rev Biomed Eng 19 (June 2017).

References I

- Ford, Eric et al. "Strategies for effective physics plan and chart review in radiation therapy: Report of AAPM Task Group 275". In: Medical Physics 47.6 (2020), e236—e272. DOI: https://doi.org/10.1002/mp.14030. eprint: https://aapm.onlinelibrary.wiley.com/doi/pdf/10.1002/mp.14030. URL: https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.14030.
- loffe, Sergey and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.03167 [cs.LG].
- Kazemifar, Samaneh et al. "Segmentation of the prostate and organs at risk in male pelvic CT images using deep learning". In: Biomedical Physics and Engineering Express 4.5 (2018), p. 055003. ISSN: 2057-1976. DOI: 10.1088/2057-1976/aad100. URL: http://dx.doi.org/10.1088/2057-1976/aad100.
- Nemoto, Takafumi et al. "Efficacy evaluation of 2D, 3D U-Net semantic segmentation and atlas-based segmentation of normal lungs excluding the trachea and main bronchi". In: *Journal of Radiation Research* 61.2 (Feb. 2020), pp. 257–264. ISSN: 1349-9157. DOI: 10.1093/jrr/rrz086.
- Nikolov, Stanislav et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for radiotherapy. 2018. arXiv: 1809.04430 [cs.CV].
- Roach, Dale et al. "Multi-observer contouring of male pelvic anatomy: Highly variable agreement across conventional and emerging structures of interest". In: *Journal of Medical Imaging and Radiation Oncology* 63.2 (2019), pp. 264–271. DOI: 10.1111/1754-9485.12844.
- Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. *U-Net: Convolutional Networks for Biomedical Image Segmentation*. 2015. arXiv: 1505.04597 [cs.CV].

References II

- Shen, D., G. Wu, and H. I. Suk. "Deep Learning in Medical Image Analysis". In: Annu Rev Biomed Eng 19 (June 2017). [DOI:10.1146/annurev-bioeng-071516-044442], pp. 221–248.
 Springenberg, Jost Tobias et al. Striving for Simplicity: The All Convolutional Net. 2014. arXiv:
- Springenberg, Jost Tobias et al. Striving for Simplicity: The All Convolutional Net. 2014. arXiv: 1412.6806 [cs.LG].
- Vaassen, Femke et al. "Evaluation of measures for assessing time-saving of automatic organ-at-risk segmentation in radiotherapy". In: *Physics and Imaging in Radiation Oncology* 13 (2020), 1–6. ISSN: 2405-6316. DOI: 10.1016/j.phro.2019.12.001. URL: http://dx.doi.org/10.1016/j.phro.2019.12.001.
- Vinod, Shalini K et al. "A review of interventions to reduce inter-observer variability in volume delineation in radiation oncology". In: *Journal of Medical Imaging and Radiation Oncology* 60.3 (2016), pp. 393–406. DOI: 10.1111/1754-9485.12462.
- Wong, Jordan et al. "Comparing deep learning-based auto-segmentation of organs at risk and clinical target volumes to expert inter-observer variability in radiotherapy planning". In: Radiotherapy and Oncology 144 (2020), 152–158. ISSN: 0167-8140. DOI: 10.1016/j.radonc.2019.10.019. URL:
 - http://dx.doi.org/10.1016/j.radonc.2019.10.019.