If \mathcal{U} is the topology on X, then \mathcal{U} is a set, and so \mathcal{U} is a small category; as in Example 1.19(iv), all presheaves form a category $\mathbf{pSh}(X, \mathbf{Ab})$, with morphisms $\mathrm{Hom}(\mathcal{P}, \mathcal{Q}) = \mathrm{Nat}(\mathcal{P}, \mathcal{Q})$. We call morphisms $\mathcal{P} \to \mathcal{Q}$ presheaf maps. It follows that if \mathcal{F} and \mathcal{G} are sheaves, then every presheaf map $\mathcal{F} \to \mathcal{G}$ is a sheaf map.

Notation. Define $\mathbf{Sh}(X, \mathbf{Ab})$ to be the full subcategory of $\mathbf{pSh}(X, \mathbf{Ab})$ generated by all sheaves over a space X. We denote the Hom sets by

$$\text{Hom}_{\text{sh}}(\mathcal{F}, \mathcal{F}') = \text{Nat}(\mathcal{F}, \mathcal{F}').$$

Example 5.67. For each open set U of a topological space X, define

$$\mathcal{F}(U) = \{\text{continuous } f: U \to \mathbb{R}\}.$$

It is routine to see that $\mathcal{F}(U)$ is an abelian group under pointwise addition: $f+g\colon x\mapsto f(x)+g(x)$, and that \mathcal{F} is a presheaf over X. For each $x\in X$, define an equivalence relation on $\bigcup_{U\ni x}\mathcal{F}(U)$ by $f\sim g$ if there is some open set W containing x with f|W=g|W. The equivalence class of f, denoted by [x,f], is called a germ at x. Define E_x to be the family of all germs at x, define $E=\bigcup_{x\in X}E_x$, and define $p\colon E\to X$ by $p\colon [x,f]\mapsto x$. In our coming discussion of $associated\ etale$ -sheaves, we will see how to topologize E so that (E,p,X) is an etale-sheaf (called the $sheaf\ of\ germs\ of\ continuous\ functions\ over\ X$). The stalks E_x of this etale-sheaf can be viewed as direct limits: the family of all open sets U containing x is a directed partially ordered set and, by Corollary 5.31, a germ [x,f] is just an element of the direct limit $\lim_{U\ni x}\mathcal{F}(U)$. Variations of this construction are the sheaves of $germs\ of\ differentiable\ functions\ and\ of\ germs\ of\ holomorphic\ functions.$

Example 5.67 generalizes; we shall see, in Theorem 5.68, that the stalks of every etale-sheaf are direct limits.

We now construct an etale-sheaf from any presheaf \mathcal{P} (we do not assume that \mathcal{P} is the sheaf of sections of an etale-sheaf). The next result shows that there is no essential difference between sheaves and etale-sheaves.

Theorem 5.68.

- (i) The sheaf of sections defines a functor $\Gamma \colon \mathbf{Sh}_{\mathrm{et}}(X, \mathbf{Ab}) \to \mathbf{pSh}(X, \mathbf{Ab})$, and im $\Gamma \subseteq \mathbf{Sh}(X, \mathbf{Ab})$.
- (ii) There are a functor $\Phi \colon \mathbf{pSh}(X, \mathbf{Ab}) \to \mathbf{Sh}_{et}(X, \mathbf{Ab})$ (which is injective on objects) and a natural transformation $v \colon 1_{\mathbf{pSh}(X, \mathbf{Ab})} \to \Gamma \Phi$ such that $v_{\mathcal{F}} \colon \mathcal{F} \to \Gamma \Phi(\mathcal{F})$ is an isomorphism whenever \mathcal{F} is a sheaf.

(iii) The restriction $\Phi | \mathbf{Sh}(X, \mathbf{Ab})$ is an isomorphism of categories:

$$\mathbf{Sh}(X, \mathbf{Ab}) \cong \mathbf{Sh}_{\mathrm{et}}(X, \mathbf{Ab}).$$

Proof.

- (i) If $\varphi \colon \mathcal{S} \to \mathcal{S}'$, define $\Gamma(\varphi) \colon \Gamma(U, \mathcal{S}) \to \Gamma(U, \mathcal{S}')$ by $\sigma \mapsto \varphi \sigma$. The reader may check that Γ is a functor. Proposition 5.63 says that $\Gamma(\square, \mathcal{S})$ is a sheaf.
- (ii) Given a presheaf \mathcal{P} of abelian groups over a space X, we first construct its *associated etale-sheaf* $\mathcal{P}^{\text{et}} = (E^{\text{et}}, p^{\text{et}}, X)$. For each $x \in X$, the index set consisting of all open neighborhoods $U \ni x$, partially ordered by reverse inclusion, is a directed set. Define $E_x^{\text{et}} = \varinjlim_{U \ni x} \mathcal{P}(U)$ (generalizing the stalks of the sheaf of germs in Example 5.67).

Since the index set is directed, Corollary 5.31(iii) says that the elements of $E_x^{\text{et}} = \varinjlim \mathcal{P}(U)$ are equivalence classes $[\rho_x^U(\sigma)]$, where $U \ni x$, $\sigma \in \mathcal{P}(U)$, and $\rho_x^U \colon \mathcal{P}(U) \to E_x^{\text{et}}$ is an insertion morphism of the direct limit; moreover, $[\rho_x^U(\sigma)] + [\rho_x^{U'}(\sigma')] = [\rho_x^W \rho_W^U(\sigma) + \rho_x^W \rho_W^{U'}(\sigma')]$, where $W \subseteq U \cap U'$ (thus, $[\rho_x^U(\sigma)]$ generalizes [x, f] in Example 5.67). Define $E^{\text{et}} = \bigcup_{x \in X} E_x^{\text{et}}$, and define a surjection $p^{\text{et}} \colon E^{\text{et}} \to X$ by $[\rho_x^U(\sigma)] \mapsto x$.

If $U \subseteq X$ is a nonempty open set and $\sigma \in \mathcal{P}(U)$, define

$$\langle \sigma, U \rangle = \{ [\rho_x^U(\sigma)] : x \in U \}.$$

We claim that $\langle \sigma, U \rangle \cap \langle \sigma', U' \rangle$ either is empty or contains a subset of the same form. If $e \in \langle \sigma, U \rangle \cap \langle \sigma', U' \rangle$, then $e = [\rho_x^U(\sigma)] = [\rho_y^{U'}(\sigma')]$, where $x \in U$, $\sigma \in \mathcal{P}(U)$, and $y \in U'$, $\sigma' \in \mathcal{P}(U')$. But $x = p^{\text{et}}[\rho_x^U(\sigma)] = p^{\text{et}}[\rho_y^{U'}(\sigma')] = y$, so that $x \in U \cap U'$. By Lemma 5.30(ii), there is an open $W \subseteq U \cap U'$ with $W \ni x$ and $[\rho_W^U \rho_x^W(\sigma)] = [\rho_W^{U'} \rho_x^W(\sigma')]$; call this element $[\tau]$; note that $\langle \tau, W \rangle \subseteq \langle \sigma, U \rangle \cap \langle \sigma', U' \rangle$, as desired. Equip E^{et} with the topology \mathcal{T} generated

⁷This is the coarsest topology on E that makes all sections continuous.

by all $\langle \sigma, U \rangle$; it follows that these sets form a base for the topology; that is, every open set is a union of $\langle \sigma, U \rangle$ s.

To see that $(E^{\text{et}}, p^{\text{et}}, X)$ is a protosheaf, we must show that the surjection p^{et} is a local homeomorphism. If $e \in E^{\text{et}}$, then $e = [\rho_x^U(\sigma)]$ for some $x \in X$, where U is an open neighborhood of x and $\sigma \in \mathcal{P}(U)$. If $S = \langle \sigma, U \rangle$, then S is an open neighborhood of e, and it is routine to see that $p^{\text{et}}|S: S \to U$ is a homeomorphism.

Now each stalk E_x^{et} is an abelian group. To see that addition is continuous, take $(e,e') \in E^{\text{et}} + E^{\text{et}}$; that is, $e = [\rho_x^U(\sigma)]$ and $e' = [\rho_x^{U'}(\sigma')]$. We may assume the representatives have been chosen so that $\sigma, \sigma' \in \mathcal{P}(U)$ for some U, so that $e+e' = [\rho_x^U(\sigma+\sigma')]$. Let $V^{\text{et}} = \langle \sigma+\sigma', V \rangle$ be a basic open neighborhood of e+e'. If $\alpha: E^{\text{et}} + E^{\text{et}} \to E^{\text{et}}$ is addition, then it is easy to see that if $U^{\text{et}} = [\langle \tau, W \rangle \times \langle \tau', W \rangle] \cap (E^{\text{et}} + E^{\text{et}})$, then $\alpha(U^{\text{et}}) \subseteq V^{\text{et}}$. Thus, α is continuous. As inversion $E^{\text{et}} \to E^{\text{et}}$ is also continuous, $\mathcal{P}^{\text{et}} = (E^{\text{et}}, p^{\text{et}}, X)$ is an etale-sheaf.

Define $\Phi: \mathbf{pSh}(X, \mathbf{Ab}) \to \mathbf{Sh}_{\mathrm{et}}(X, \mathbf{Ab})$ on objects by $\Phi(\mathcal{P}) = \mathcal{P}^{\mathrm{et}} = (E^{\mathrm{et}}, p^{\mathrm{et}}, X)$. Note that Φ is injective on objects, for if $\mathcal{P} \neq \mathcal{P}'$, then $\{\lim_{\to U \ni x} \mathcal{P}(U)\} \neq \{\lim_{\to U \ni x} \mathcal{P}'(U)\}$, and so their direct limits are distinct (of course, they may be isomorphic). Hence, $\mathcal{P}^{\mathrm{et}} \neq \mathcal{P}'^{\mathrm{et}}$ and $\Phi\mathcal{P} \neq \Phi\mathcal{P}'$. To define Φ on morphisms, let $\varphi: \mathcal{P}_1 \to \mathcal{P}_2$ be a presheaf map, and let $\mathcal{P}_i^{\mathrm{et}} = (E_i^{\mathrm{et}}, p_i^{\mathrm{et}}, X)$ for i = 1, 2. For each $x \in X$, φ induces a morphism of direct systems $\{\mathcal{P}_1(U): U \ni x\} \to \{\mathcal{P}_2(U): U \ni x\}$ and, hence, a homomorphism $\varphi_x: \varinjlim_{U\ni x} \mathcal{P}_1(U) \to \varinjlim_{U\ni x} \mathcal{P}_1(U)$; that is, $\varphi_x: (E_1^{\mathrm{et}})_x \to (E_2^{\mathrm{et}})_x$. Finally, define $\Phi(\varphi): E_1^{\mathrm{et}} \to E_2^{\mathrm{et}}$ by $e_x \mapsto \varphi_x(e_x)$ for all $e_x \in (E_1^{\mathrm{et}})_x$. We let the reader prove that $\Phi(\varphi)$ is an etale-map and that Φ is a functor.

Given a presheaf $\{\mathcal{P}, \rho_U^V\}$ and an open subset $U \subseteq X$ (that is, $U \in \mathcal{U}$), a base for the topology of E^{et} consists of all $\langle \sigma, U \rangle = \{[\rho_x^U(\sigma)] : x \in U\}$. Define $\sigma^{\text{et}} : U \to E^{\text{et}}$ by $\sigma^{\text{et}}(x) = [\rho_x^U(\sigma)]$; Exercise 5.39(i) on page 301 now says that $\sigma^{\text{et}} \in \Gamma(U, \mathcal{P}^{\text{et}})$. Define $\nu_U : \mathcal{P}(U) \to \Gamma(U, \mathcal{P}^{\text{et}})$ by $\sigma \mapsto \sigma^{\text{et}}$. If V is an open set containing U, then it easy to see that $\nu_V = \nu_U \rho_U^V$, so that the family $\{\nu_U : U \in \mathcal{U}\}$ gives a presheaf map $\nu_{\mathcal{P}} : \mathcal{P} \to \Gamma(\square, \mathcal{P}^{\text{et}})$. We let the reader check that $\nu = (\nu_U)$ is a natural transformation $1_{\mathbf{pSh}(X, \mathbf{Ab})} \to \Gamma \Phi$.

If \mathcal{F} is a sheaf, we show that $v_{\mathcal{F}} \colon \mathcal{F} \to \Gamma(\square, \mathcal{F}^{\text{et}})$ is an isomorphism using Exercise 5.41 on page 301. It suffices to prove, for each open U, that $v_U \colon \mathcal{F}(U) \to \Gamma(U, \mathcal{F}^{\text{et}})$, given by $\sigma \to \sigma^{\text{et}}$, is a bijection. To see that v_U is injective, suppose that $\sigma, \tau \in \mathcal{F}(U)$ and $\sigma^{\text{et}} = \tau^{\text{et}}$. For each $x \in U$, we have $\rho_x^U(\sigma) = \rho_x^U(\tau)$; that is, there is an open neighborhood W_x of x with $\sigma|W_x = \tau|W_x$. The family of all such W_x is an open cover of U, and so Proposition 5.58(iv) gives $\sigma = \tau$. To see that v_U is

surjective, let $\beta \in \Gamma(U, \mathcal{F}^{et})$. For each $x \in U$, there is a basic open set $\langle U, \sigma_x \rangle$ containing $\beta(x)$, where $\sigma_x \in \mathcal{F}(U_x)$. The gluing condition, Proposition 5.58(v), shows that there is $\sigma \in \mathcal{F}(U)$ with $\sigma | U_x = \sigma_x$ for all $x \in U$, and another application of Proposition 5.58(iv) gives $\beta = \sigma^{\text{et}}$. Thus, ν_U is a bijection.

(iii) This follows easily from parts (i) and (ii). •

The stalks of the etale-sheaf of germs in Example 5.67 are direct limits, as are the stalks of \mathcal{P}^{et} ; we now define the stalks of an arbitrary presheaf.

Definition. If \mathcal{P} is a presheaf on a space X, then the *stalk* at $x \in X$ is

$$\mathcal{P}_x = \lim_{U \ni x} \mathcal{P}(U).$$

For each $x \in X$, the presheaf map $\varphi \colon \mathcal{P} \to \mathcal{Q}$ induces a morphism of direct systems $\{\mathcal{P}(U): U \ni x\} \to \{\mathcal{Q}(U): U \ni x\}$, which, in turn, gives the homomorphism $\varphi_x \colon \lim_{U \ni x} \mathcal{P}(U) \to \lim_{U \ni x} \mathcal{Q}(U)$ defined by $\varphi_x \colon [\sigma] \mapsto [\varphi\sigma]$, where $\sigma \in \mathcal{P}(U)$ and $x \in U$. Exercise 5.33 on page 272 shows that \lim is a functor $Dir(I, Ab) \rightarrow Ab$, where Dir(I, Ab) is the category of direct systems of abelian groups over $I = \{U \ni x\}$. Hence, if $\mathcal{P} \xrightarrow{\varphi} \mathcal{Q} \xrightarrow{\psi} \mathcal{R}$ are presheaf maps, then $(\psi \varphi)_x = \psi_x \varphi_x$. See Exercise 5.45 on page 302 for a description of ν_x , where $\nu \colon \mathcal{P} \to \Gamma(\square, \mathcal{P}^{\text{et}})$ is the natural map in Theorem 5.68.

Lemma 5.69. Let $\varphi, \psi : \mathcal{P} \to \mathcal{F}$ be presheaf maps, where \mathcal{P} is a presheaf and \mathcal{F} is a sheaf. If φ , ψ agree on stalks, that is, $\varphi_x = \psi_x$ for all $x \in X$, then $\varphi = \psi$.

Proof. We must show that $\varphi_U = \psi_U$ for all open U. Given U, choose $x \in U$ and $e_x = [\sigma_x] \in \mathcal{P}_x$, where $\sigma_x \in \mathcal{P}(U_x)$ for some open $U_x \ni x$ with $U_x \subseteq U$. By hypothesis,

$$[\varphi \sigma_x] = \varphi_x([\sigma_x]) = \psi_x([\sigma_x]) = [\psi \sigma_x] \text{ in } \varinjlim_{U \ni x} \mathcal{F}(U).$$

By the definition of equality in direct limits, there are open neighborhoods W_x of x with $\varphi \sigma_x | W_x = \psi \sigma_x | W_x$, and $(W_x)_{x \in U}$ is an open cover of U. Since the equalizer condition holds for the sheaf \mathcal{F} , the restrictions determine a unique section; that is, $\varphi \sigma_x = \psi \sigma_x$. Hence, $\varphi_U = \psi_U$ and $\varphi = \psi$.

Theorem 5.70. Let $\mathcal{P} = \{\mathcal{P}(U), \rho_U^V\}$ be a presheaf of abelian groups over a space X, let $\mathcal{P}^{\text{et}} = (E^{\text{et}}, p^{\text{et}}, X)$ be its associated etale-sheaf, and let