QUI055 - Química	Pontuação ↓		
Data: 29/01/2025	Questões: 3	Pontos totais: 3,0	
Matrícula:	Nome:		

Questão	Pontos	Nota
1	1,0	
2	1,0	
3	1,0	
Total:	3,0	

Instruções:

- 1. Justifique todas as suas respostas.
- 2. Entregue as repostas manuscritas com essa folha anexa.
- 3. A Tabela Periódica dos Elementos está ao final da prova.

Valores de eletronegatividade de Pauling (χ) .

Elemento	χ	Elemento	χ	Elemento	χ	Elemento	χ
F	3,98	О	3,44	Cl	3,16	N	3,04
Br	2,96	I	2,66	\mathbf{S}	2,58	\mathbf{C}	$2,\!55$
Н	2,20	Р	2,19	В	2,04	Si	1,90

1. (1,0) Ao reagir o vinilbenzeno (estireno) com ácido sulfúrico diluído $(10 \% \text{ ou } 100 \text{ g L}^{-1})$, obtevese o 1-feniletanol como produto majoritário, como mostra a reação abaixo:

- (a) Considerando que a reação foi feita à 25 °C, mostre seu mecanismo de formação e justifique a regioquímica e a estereoquímica observada.
- (b) Uma aluna ficou interessada em descobrir se a reação em questão produz excesso de um determinado enantiômero. Para tal, ela reagiu o 1-feniletanol com PBr₃ e verificou que o produto continha 60 % de **A** e 40 % de **B**. Com base nessas informações, mostre a proporção dos enantiômeros do 1-feniletanol formada pela reação do estireno com H₂SO₄ (100 g L⁻¹).

Resposta:

Na letra a, o mecanismo da reação de hidratação é mostrado abaixo.

Observa-se a formação do carbocátion secundário e benzílico de forma preferencial, pois é o mais estabilizado por efeitos conjugativos ($\pi_{\rm C=C} \to 2p$) e hiperconjugativos ($\sigma_{\rm C-H} \to 2p$). Além disso, a estereoquímica é indefinida pela formação do intermediário carbocátion carbocatiônico, cujo orbital 2p vazio não possui preferência aparente por alguma de suas faces.

Na letra b, como a reação de formação de haletos a partir de álcoois utilizando PBr_3 causa inversão de configuração no átomo de carbono, a proporção dos enantiômeros do álcool parental será de 60 % do (R)-1-feniletanol e 40 % do (S)-1-feniletanol.

2. (1,0) Considere as reações mostradas abaixo para a transformação do 3-clorofenol no 3-cloro-1-etoxi-4-nitrobenzeno.

- (a) Considerando que o p K_a do 3-clorofenol é igual a 8,99, qual das bases entre o hidreto de sódio (NaH, p K_a H = 36), hidróxido de sódio (NaOH, p K_a H = 14) e bicarbonato de sódio (NaHCO₃, p K_a H = 6,3) seria a mais recomendada para que a reação em questão ocorra com melhor rendimento global?
- (b) Justifique a regioquímica observada para o processo 3 i.e., reação com HNO₃ e H_2SO_4 .

Resposta:

Para que a reação ocorra com melhores rendimentos, a base utilizada deverá ser a mais forte possível, desde desprotone apenas o grupo -OH. Como nenhuma das bases possui p K_aH maior que 43, pode-se escolher o composto mais básico dentre os três. Sendo assim, o hidreto de sódio, NaH, provocará o maior deslocamento do equilíbrio na direção do fenolato -i.e., fenol desprotonado -, garantindo que a etapa 2 ocorra com maiores rendimentos.

Na letra b, o grupo etóxi (-OEt) é o/p-dirigente, por ser doador de densidade eletrônica e ativador do anel aromático. Embora o cloreto seja desativante do anel aromático, também é um grupo o/p-dirigente. Sendo assim, há um efeito cooperativo de orientação e, nesse caso, o efeito estérico irá desempatar, orientando a entrada do grupo $-NO_2$ na posição para ao grupo etóxi, de modo a minimizar impedimentos estéricos no TS da formação do complexo σ .

3. (1,0) Ao reagir o (E)-3-metilpent-2-eno com ácido meta-cloroperbenzóico (m-CPBA), obteve-se o epóxido (2R,3R)-2-etil-2,3-dimetiloxirano e seu enantiômero. Quando esse epóxido foi tratado com ácido sulfúrico diluído (5% ou $50~{\rm g\,L^{-1}})$, obteve-se o (2R,3S)-3-metilpentano-2,3-diol e seu enantiômero como produtos majoritários.

$$m$$
-CPBA $H_2SO_4 (5\%)$ OH m -CPBA (Ácido $meta$ -cloroperbenzóico)

(a) Caso o ácido *meta*-cloroperbenzóico utilizado fosse marcado isotopicamente com ¹⁸O, conforme mostrado abaixo, qual dos dois átomos de oxigênio do diol seria um ¹⁸O?

(b) Caso o epóxido em questão fosse reagido com uma solução aquosa 3 mol L^{-1} de hidróxido de sódio (NaOH), mostre qual produto seria formado e qual a relação estereoisomérica entre esse produto e o (2R,3S)-3-metilpentano-2,3-diol.

Resposta:

Na letra a, como o oxigênio do grupo OH do peroxiácido é responsável por formar o epóxido e como a abertura de epóxidos em meio ácido ocorre pelo ataque nucleofílico *anti* no átomo de carbono mais substituído, o oxigênio marcado isotopicamente será aquele pertencente ao carbono 2.

Na letra b, a abertura do epóxido ocorre com o ataque nucleofílico no carbono menos substituído, pois o meio é básico e, nesse caso, o efeito estérico é dominante em comparação ao eletrônico.

Além disso, como mostrado, todos os centros quirais do produto formado pela abertura em meio básico tiveram sua configuração invertida. Logo, os produtos são enantiômeros.

