Обучение без учителя

Всем привет, сегодня мы разберем метод машинного обучения, когда у объекта изучения мы не знаем истинного значения, тем самым машина пытается сама найти какую-то закономерность на тех данных, которые мы ей дали на примере задачи, которая называется

Задача кластеризации

Кластерный анализ - задача разбиения заданной выборки на непересекающиеся подмножества, которые называются кластерами. Каждый кластер должен состоять из схожих объектов, а объекты разных кластеров должны существенно отличаться.

Вот, например, на картинке есть выборка, где у каждого объекта две фичи - x_1 и x_2 . Визуально заметно, что объекты разделяются на три отдельные группы - внутри группы объекты очень похожи, а вот между группами есть отличия. Синим крестиком я отметил центр кластера и добавил отрезки, соединяющие центры кластеров (для наглядности)

Estimated number of clusters: 3

Задача кластеризации звучит таким образом:

у нас есть координаты точек, все точки объединяются в два (или большее количество) кластеров, каждый кластер получает свой номер от 0 до N. Мы хотим построить алгоритм, который

- обработает весь доступный массив точек
- выяснит автоматически количество кластеров
- для каждой новой точки наша модель будет выдавать номер кластера, к которому эта точка относится

Но для начала давайте вспомним из предыдущего урока, как, работая с координатами, находить расстояние между

Для этого воспользуемся уже готовой формулой euclidean из scipy

```
from scipy.spatial.distance import euclidean
c1=[1.0,1.5]
c2=[2.0, 3.0]
dist=euclidean(c1,c2)
print(f"Paccтoяние между точками c1 и c2: {round(dist,3)}")
```

Самый простой метод решения поставленной выше задачи является использование метода К-средних. Гениальный метод, если честно, пахпх.

Алгоритм основан на следующей идее: давайте разместим центры кластеров в случайных местах, а потом будем их двигать таким образом, чтобы "центры" совпали с областями, где точек больше всего. Визуализация этого алгоритма отображена на gif:

Но, как видите, в таком алгоритме есть своя проблема. из-за того что мы на самом деле делаем всё довольно случайно, количество кластеров без начальной обработки данных узнать невозможно, только если рассматривать данные графически, пытаясь найти закономерности.

Описание алгоритма

Алгоритм описывается следующим образом:

- 1. Выберите количество кластеров k. Количество кластеров можно задать с помощью эксперта (который скажет, сколько должно быть кластеров в датасете), либо выбрать количество кластеров интуитивно (я рекомендую всегда использовать количество кластеров k=2). О том, как выбирать количество кластеров автоматически, а не вручную, мы поговорим в моей следующей статье
- 2. Инициализировать случайными значениями координаты кластеров (они называются центроиды)
- 3. Для каждой точки нашего набора данных посчитать, к какому центроиду она ближе и раскрасить точку в цвет этого кластера
- 4. Переместить каждый центроид в центр выборки соответствующих ему элементов. Центр выборки находится как *среднее* всех элементов, входящих в выборку (отсюда и вторая часть названия алгоритма усреднение).
- 5. Повторять до выполнения одного из условий
 - 1. Алгоритм сошелся (положение центроидов не меняется)
 - 2. Превышено максимально допустимое число итераций

```
import pickle
import numpy as np

# данные получены с помощью функции make_classification
with open('7.10._clustering.pkl', 'rb') as f:
    data_clustering = pickle.load(f)

X = np.array(data_clustering['X'])
Y = np.array(data_clustering['Y'])
```

```
print(Y)
```

```
import matplotlib.pyplot as plt
%matplotlib inline

plt.scatter(X[:, 0], X[:, 1], s=40, c=Y, marker='o', alpha=0.8, label='data')
plt.title("данные, которые должны получиться)")
plt.xlabel("x1")
plt.ylabel("x2")
plt.show()
```


В библиотеке sklearn уже есть готовая реализация алгоритма sklearn.cluster. $\!^{\text{KMeans}}$ - давайте просто применим её к нашим данным. Точки разобъём на два кластера (параметр $n_{clusters}$ =2):

```
from sklearn.cluster import KMeans
kmeans_model = KMeans(n_clusters=2, random_state=51)
kmeans_model.fit(X)

plt.scatter(X[:, 0], X[:, 1], s=40, c=kmeans_model.labels_, marker='o', alpha=0.8, label='data')
plt.show()
```


Круто! Как видите, машина самостоятельно смогла определить почти все точки именно так, как они и были изначально распределены. Причем всё, что мы дали машине кроме каких-то данных, это только количество кластеров, на которые мы хотим чтобы датасет был разбит

Минусы

Как видите, алгоритм вроде бы простой и понятный, но и нем есть свои минусы. Представьте, что у нас не 100 точек, к примеру, а 100k. И получается, что для каждого прохода алгоритма придется высчитывать большое количество данных, причем в нашей случае это и квадратные корни, и просто квадраты, и тд. Крч получается довольно долго для больших данных

Также хочется выделить, что в зависимости от начальных точек, метод может не сойтись, поэтому обычно используют улучшенную версию этого метода, где проводится несколько таких алгоритмов, и выбирается среди них тот, который намного точнее сводится к реальным данным. Но об этом уже в следующий раз) До встречи!