

"绝影"机器人 用户手册

Sep. 2018

V1.0

杭州云深处科技有限公司

声明

- 本手册包含的信息是杭州云深处科技有限公司的资产,在未经杭州云深处科技有限公司许可的情况下,严禁转载本手册的部分或全部内容。
- 本手册对"绝影"四足机器人的基本组件、运输储存、具体操作、异常处理及技术参数等内容进行了全面的说明。请务必在认真阅读并充分理解本手册的基础上操作机器人。
- 有关安全使用的基本事项,在"1.4注意事项"中有详细描述,阅读本手册前请务 必熟读,以确保正确使用。
- 本手册中的图及照片,为代表性示例,可能与所购买产品不同。
- 本手册会根据产品改进、规格变更等原因进行适当地修改。
- 本手册所记载的内容,不排除有误记或遗漏的可能性。如本手册破损、丢失或对本手册内容有疑问,请及时与我公司联系。
- 客户擅自进行产品拆卸、改造,不在本公司保修范围之内,本公司概不负责。

目 录

1.	前	言	1
	1.1.	"绝影"简介	1
	1.2.	基本组件	1
	1.3.	规格参数	3
	1.4.	注意事项	3
	1.5.	获取帮助	4
2.	运	输储存	5
	2.1.	储存运输	5
	2.2.	开箱检查	5
	2.3.	搬运	5
3.	系	统与规格参数	7
	3.1.	硬件系统	7
	3	3.1.1. 机械系统	7
	3	3.1.2. 电气系统	8
	3.2.	规格参数	9
	3	3.2.1. 坐标系	9
	3	3.2.2. 结构参数	10
	3	3.2.3. 关节性能参数	12
4.	操	作流程	13
	4.1.	执行系统搭建	13
	4.2.	运动操控流程	14
	4	4.2.1. 手柄操作说明	15
	4	4.2.2. 初始状态与检查	18
	4.3.	运动能力展现	18
	4	4.3.1. 侧推	18
	4	4.3.2. 不平整路面	19
	4	4.3.3. 原地抬头	19

	4	4.3.4. 平地匍匐行走	19
	4.4.	日志功能	20
	4.5.	应急操作	20
	4	4.5.1. 停障功能	20
	۷	4.5.2. 过温保护	20
	4	4.5.3. 摔倒自锁保护	21
	۷	4.5.4. 软急停按钮	21
	۷	4.5.5. 硬急停功能	22
	4.6.	系统功能	22
	2	4.6.1. 温度采集	23
	2	4.6.2. 异常监测	23
	4.7.	充电	23
5.	程	序二次开发说明	24
	5.1.	开发环境搭建	26
	5.2.	设备驱动库 API 说明	29
	5	5.2.1. API 框架说明	错误!未定义书签。
	5	5.2.2. 程序流程说明	错误!未定义书签。
	5.3.	基本 API 说明	错误!未定义书签。
	5.4.	演示源代码介绍	错误!未定义书签。
	5.5.	运算日志	30
	5.6.	远程控制接口	错误!未定义书签。
	5.7.	远程访问运动主机	31
6.	问	题处理	32
	6.1.	常见问题	32
	6.2.	紧急处置	33
7.	质	量保证与售后服务	34
	7.1.	质量保证	34
	7.2.	售后服务	34
附件	4: 机氢	器人相关的账号与密码	35

图表目录

图	1-1	"绝影"	机器人	1
图	1-2	"绝影"	机器人搬运杆	2
图	1-3	"绝影"	机器人充电口与充电器	2
图	2-1	搬运手机	两安装位置	6
图	2-2	"绝影"	后部抬起位置	6
图	3-1	"绝影"	右侧视图	7
图	3-2	操作部分	分局部图	8
图	3-3	"绝影"	电气系统	8
图	3-4	身体坐板	示系	9
图	3-5	腿部各急	关节和足底坐标系	9
图	3-6	身体参数	牧1	0
图	3-7	腿部参数	效图1	.1
图	4-1	手柄程序	序图标1	3
图	4-2	手柄没有	写连接上的错误提示1	3
图	4-3	手柄连持	妾正常的提示1	4
图	4-4	"绝影"	操作流程图1	5
图	4-5	手柄按钮	建示意图1	6
图	4-6	手柄操作	乍流程 1	7
图	4-7	初始坐均	也状态右视图1	8
图	4-8	初始坐地	也状态俯视图 1	8

图	4-9 "绝影"	抬头姿态	19
图	4-10 "绝影"	匍匐行走	19
图	4-11 软急停开	开关	21
图	4-12 机器人	状态图	22
图	5-1 "绝影"	程序结构图	24
图	5-2 程序功能	?框图	错误!未定义书签。
图	5-3 QNX 开	发环境配置	28
		发环境配置 程序流程图	
图	5-4 "绝影"		错误!未定义书签。
图表	5-4 "绝影"	程序流程图	错误!未定义书签。 3
图表表	5-4 "绝影" 1-1 "绝影" 3-1 腿部各关	程序流程图	错误!未定义书签。 3
图表表表	5-4 "绝影" 1-1 "绝影" 3-1 腿部各关 3-2 身体参数	程序流程图主要规格参数	错误!未定义书签。 3 10

1. 前言

1.1. "绝影" 简介

杭州云深处科技是一家致力于腿足机器人产品研发的科技公司,潜心打造具有全球竞争力的腿足机器人产品,实现自然条件和复杂环境中的智能作业,立志成为世界领先的创新型机器人技术公司。"绝影"是公司研发的机器人产品,具备行走和跑跳等各种运动能力,可以适应未知复杂路面和外力扰动。产品主要面向科研和二次开发,提供运动控制和感知导航2个开发平台,便于用户快速便捷的进行算法开发。

"绝影"由4条腿和身体部分共同组成。每条腿有3个关节,共计12个关节。关节由大功率直流电机、精密减速机构和绝对式旋转编码器组成,可提供强大的关节动力、良好的力控性能以及高精度的角度反馈信息,可以满足各种高动态运动控制和步态规划开发的需要,包括:爬行、行走、跑跳等。身体部分由本体框架、电气-传感系统、运动控制系统、视觉感知系统、高速网络通讯系统等部分组成,满足各种感知伺服算法开发的硬件条件。

1.2. 基本组件

"绝影"基本组件包括: 机器人本体、遥控手柄、搬运杆和充电器 4 个部分。

• "绝影" 本体

图 1-1 "绝影" 机器人

第1页, 共37页

• 遥控手柄

"绝影"选用微软Xbox无线手柄实现遥控操作(详见章节4.2.1)。

搬运杆

用于搬运"绝影"的辅助配件(详见章节2.3)。

图 1-2 "绝影" 机器人搬运杆

• 充电器

操作人员可以通过充电器将机器人与220V交流电源对接,进行充电工作,充电口位于机器人后部下方。

操作顺序: 先接机器人端充电口, 再接220V交流电源。

图 1-3 "绝影" 机器人充电口与充电器

1.3. 规格参数

表 1-1 "绝影" 主要规格参数

尺寸 (站立时)	1.0m*0.5m*0.75m (长*宽*高)
自重	70±2kg
连续运行速度	3.6km/h
运动方式	行走、转弯、侧移、抬头、匍匐
通讯方式	WiFi+蓝牙
控制方式	手柄、触摸、视觉
保护模式	软急停保护、过温保护、摔倒保护
充电方式	交流 220V
电池组	锂电池 74V24Ah
电池循环使用寿命	500 次
地面要求	推荐地毯或塑胶等摩擦力较大地面
报警系统	低电压报警、过温报警
工作环境温度	-10°C-40°C

1.4. 注意事项

使用前(安装、运输、保养、检修),请务必熟读并掌握本手册,熟知设备知识和 安全事项后再开始使用,本手册的安全事项分为"危险"、"注意"、"强制"、"禁 止"四大项,即使是"注意"所记载的内容,也会因情况不同而产生严重后果,因此任 何一条注意事项都极为重要,请务必严格遵守。

危险 误操作时有危险,可能发生死亡或重伤事故。

注意 误操作时有危险,可能发生轻伤事故或对设备造成损害。

1.5. 获取帮助

为了获得更多帮助资源,以协助您熟练的使用"绝影"的软件和硬件,您还可以访问杭州云深处科技的企业网站:http://www.deeprobotics.cn/。

2.运输储存

2.1. 储存运输

储存

- "绝影"机器人要求洁净、干燥的储存环境,存储温度-10℃-40℃。
- 必须关闭主电源。
- 严禁水或其他液体淋到机器人上。
- 严禁各类物品掉落到机器人身体或者关节中。
- 使用结束后,请使用干净的防静电布完整遮盖。

运输

建议使用专门为"绝影"机器人设计的运输箱来储存,防止冲击和振动。运输箱的尺寸为1.3m×0.6m×0.5m,"绝影"机器人在箱中必须背部朝上放置。建议使用叉车、平板推车或类似的装置来移动运输箱。

2.2. 开箱检查

在签署货物签收单前,请仔细检查运输箱是否有损坏。如果有任何损坏,要求承运人确认运输箱的损坏情况,同时确认装箱内容。标准规格"绝影"机器人产品有以下5部分:

- 机器人本体×1
- 充电器×1
- Xbox无线手柄×1
- 搬运手柄×2
- 程序U盘×1 (手柄程序、手柄驱动、演示程序、设备驱动接口库及手册)

2.3. 搬运

注意:搬运"绝影"时,必须关闭主电源。由于"绝影"质量约为70千克,搬运本机器人至少需要四位成年人。搬运前,将两个搬运手柄依图所示,顺时针旋转安装在机器人前部,前部通过搬运手柄抬起搬运。

图 2-1 搬运手柄安装位置

如下图所示,抬起机器人的两个后小腿,配合前部搬运手柄完成搬运工作。注意:抬后腿时请务必带上手套,以防止夹伤甚至划伤。

图 2-2 "绝影" 后部抬起位置

3. 系统与规格参数

3.1. 硬件系统

3.1.1.机械系统

"绝影"由4条腿和身体部分共同组成。每条腿有3个关节,每个关节均由大功率电机、精密减速机构和绝对式编码器组成,可提供强劲动力和高精度角度反馈信息,以满足机器人各种高动态运动的需要,包括:走、跑、跳等。身体部分由本体框架、电源管理系统、传感系统、运动控制系统、视觉感知和控制系统、信息通讯模块、辅助调试系统等组成。

• 电源管理系统

1个高容量锂电池、1个电源管理模块、1个电量显示屏、1个总电源按钮、1个电机 电源按钮、1个运动控制主机按钮、1个感知系统主机按钮、1个软急停触摸开关、1个硬 急停按钮和1个手动充电口。

• 传感模块

1个IMU,用于检测身体姿态、角速度和各方向加速度。

图 3-1 "绝影"右侧视图

第7页,共37页

图 3-2 操作部分局部图

机身操作部分的从左往右依次为:

- 运动控制主机按钮 (左1)
- 主电源按钮 (左2)
- 电池电压、电量显示屏(左3)
- 电机供电按钮 (右2)
- 感知系统主机按钮 (右1)

3.1.2.电气系统

图 3-3 "绝影" 电气系统

"绝影" 电气系统主要包括以下部分:

- 运动控制器: Intel Core™ i7-5650U, 4G内存, 64G固态硬盘
- 感知控制器: Intel Core™ i7-7567U, Intel Iris™ Plus Graphics 650, 双通 道DDR4 SO-DIMMs

• IMU: Xsens MTI300

• 激光: Velodyne VLP-16

• 锂电池: 74V24Ah

3.2. 规格参数

3.2.1.**坐标系**

• 身体坐标系

图 3-4 身体坐标系

• 各关节和足底坐标系

图 3-5 腿部各关节和足底坐标系

表 3-1 腿部各关节和足底坐标系位置	=
---------------------	---

坐标系	颜色	X(m)	Y(m)	Z(m)	备注
FL_HipX	红	0.3175	0.136	0	相对身体坐标系
FL_HipY	黄	0	0.037	0	相对 FL_HipX 坐标系
FL_Knee	蓝	0	0	-0.3	相对 FL_HipY 坐标系
FL_Foot	绿	0	0	-0.3	相对 FL_Knee 坐标系
FR_HipX	红	0.3175	-0.136	0	相对身体坐标系
FR_HipY	黄	0	-0.037	0	相对 FR_HipX 坐标系
FR_Knee	蓝	0	0	-0.3	相对 FR_HipY 坐标系
FR_Foot	绿	0.0	0	-0.3	相对 FR_Knee 坐标系
HL_HipX	红	-0.3175	0.136	0	相对身体坐标系
HL_HipY	黄	0.0	0.037	0	相对 HL_HipX 坐标系
HL_Knee	蓝	0.0	0	-0.3	相对 HL_HipY 坐标系
HL_Foot	绿	0	0	-0.3	相对 HL_Knee 坐标系
HR_HipX	红	-0.3175	-0.136	0	相对身体坐标系
HR_HipY	黄	0	-0.037	0	相对 HR_HipX 坐标系
HR_Knee	蓝	0	0	-0.3	相对 HR_HipY 坐标系
HR_Foot	绿	0	0	-0.3	相对 HR_Knee 坐标系

3.2.2.**结构参数**

身体参数

图 3-6 身体参数

第10页, 共37页

表 3-2 身体参数

参数	数值	说明	
重量 (mbody)	30kg	身体重量(包括电池)	
长度 (Lbody)	1.0m	身体总长度	
宽度 (Wbody)	0.51m	身体总宽度	
身体顶部高度(Hup)	0.281m	身体顶部距离身体坐标系距离	
身体底部高度 (Hdown)	0.156m	身体底部距离身体坐标系距离	
髋左右间距(Whip)	0.272m	左右髋关节中心距离	
髋前后间距(Lhip)	0.635m	前后髋关节中心距离	
腿平面左右间距(Wleg)	0.346m	腿平面左右距离	

• 腿部参数

图 3-7 腿部参数图

表 3-3 腿部参数

名称	数值	说明
单腿重量 (mleg)	10kg	腿部重量
腿平面与髋侧摆关节距离(LO)	0.037m	髋侧摆关节与腿平面距离
大腿长度 (L1)	0.3m	髋前摆关节中心与膝关节中心距离
小腿长度(L2)	0.3m	膝关节中心与足底圆心距离
足底半径(Rfoot)	0.03m	足底缓冲件半径

3.2.3.**关节性能参数**

表 3-4 各关节性能参数

关节	运动范围	额定转矩	额定转速	峰值转矩	峰值转速
髋侧摆(HipX)	-22°~22°	37.8Nm	13.6rad/s	108Nm	18.6rad/s
髋前摆(HipY)	-95°~10°	58.3Nm	13.4rad/s	140Nm	19.0rad/s
膝关节(Knee)	38°~156°	58.3Nm	13.4rad/s	140Nm	19.0rad/s

4. 操作流程

4.1. 执行系统搭建

请仔细地阅读以下内容:

手柄程序

图 4-1 手柄程序图标

手柄程序运行环境需要 Win10 的 1709 补丁之后的系统版本。

- 1) 打开手柄包装盒,将手柄接收器插到电脑 USB 口;
- 2) 安装 U 盘中提供的手柄驱动,参考 Xbox 手柄官方使用说明,连接手柄和电脑;
- 3) 按:控制面板→硬件和声音→设备和打印机→Xbox Pad,打开手柄配置界面, 确认手柄被系统正确识别;
- 4) 运行 U 盘中提供的手柄程序, 摇动手柄看到程序上如图 4-3 同步显示数据即可。

```
Doy stick is disconnected.
Joy stick is disconnected.
```

图 4-2 手柄没有连接上的错误提示

图 4-3 手柄连接正常的提示

4.2. 运动操控流程

"绝影"已内置演示程序,按以下流程可以最快实现机器人运动。

- 1) 在平整路面,按要求摆放好"绝影"; (如图 4-7 所示,膝关节收起、髋前摆关节后摆、侧摆关节垂直,身体底部着地,观察有没有线被身体压到)
- 2) 按下机身左侧所有 4 个按钮, 机器人上电开机, 等待 25 秒;
- 3) 用户电脑连接到机器人 WiFi, 账号和密码参见附件一;
- 4) 用户电脑连接手柄,并运行手柄程序
- 5) 按 4.2.1 手柄操作说明操作"绝影",完成各类演示;
- 6) 演示结束, 机器人身体底部着地坐下;
- 7) 按下主电源按钮,机器人关机,一次运动结束。
- 8) 机器人盖上静电布,避免激光雷达及其它器件受到粉尘污染。

图 4-4 "绝影"操作流程图

4.2.1. 手柄操作说明

手柄按键示意图:

图 4-5 手柄按键示意图

• 按钮①: 起立/蹲下

• 按钮②: 切换力控模式

• 按钮③:开始运动/停止运动

• 按钮④: 前进/后退

• 按钮⑤: 左转/右转

• 按钮⑥: 左平移

• 按钮⑦: 右平移

• 按钮⑧:切换到自主运动模式

• 按钮⑨:切换到手柄控制模式

• 按钮⑩:降低高度/还原

• 按钮①: 抬头/还原

• 组合键 B:按一下 B键,再在十字键上按满上下左右键,即可保存过程数

据并停止程序

手柄操作流程图:

图 4-6 手柄操作流程

手柄操作文字说明:

- 机器人处于蹲下状态:按①,机器人起立,处于站立(位置模式)。
- 机器人处于站立(位置模式):按②,切换到站立(力控模式),按①,机器
 人蹲下。
- 机器人处于站立(力控模式):按①,机器人蹲下,按⑩,改变身体高度,按⑪,切换到抬头状态,按③,机器人开始行走。
- 机器人处于抬头状态:按(1),切换回站立(力控模式)状态。
- 机器人处于行走(手柄控制模式)下:可以用摇杆④控制机器人前进后退,用 摇杆⑤控制机器人左右转弯,用⑥控制左平移,用⑦控制右平移。按③,机器 人停止行走,如果此时机器人处于往前行走的状态,机器人可能需要一点时间 将速度降下来后才会停下。按⑧,切换到视觉控制模式。
- 机器人处于视觉控制模式下:按⑨,切换到手柄控制模式。
- 摇杆④说明:往上推,机器人往前加速直到达到最大速度,并保持最大速度匀速运动,往下推,机器人往后运动,松开后,机器人减速到零,并原地运动。请注意,如果开启停障功能,并且机器人前方有障碍物,往上推,机器人也无法往前行走。
- 摇杆⑤说明:往左推,机器人往左转弯,往右推,机器人往右转弯,松开后,机器人停止转弯,④和⑤可同时操控,实现同时往前和转弯等操作。

4.2.2.初始状态与检查

当以上状态正常后,机器人将自动进入收腿的初始状态,表示系统初始化完毕,可以进行下一步交互和运动操作。

图 4-7 初始坐地状态右视图

图 4-8 初始坐地状态俯视图

4.3. 运动能力展现

4.3.1.**侧推**

机器人对一定程度的外部扰动有自我恢复平衡的能力,请特别注意,展示时对机器人施加一定外力请务必选择空旷的地方,首次尝试时,可先施加小一点的推力,再慢慢地增加推力,为了安全起见,切勿施加太大的推力,切勿让对机器人不熟悉的人来尝试这个动作,避免推力超过机器人能力范围,造成机器人侧翻发生危险。

4.3.2. 不平整路面

(部分型号支持)

将控制模式切换到室内复杂路面模式,机器人可平稳地踏过砖块等不平整的路面,请注意障碍物高度不要超过机器人的抬腿高度,障碍物高度控制在 6cm 以下,如果机器人一直处于复杂路面行走,可能会因为误差累积导致机器人身体高度下降,此时只要将控制模式切换为其他模式,就可以恢复正常的身体高度。

4.3.3.**原地抬头**

实现动作如下图所示:

图 4-9 "绝影" 抬头姿态

4.3.4. 平地匍匐行走

机器人在平整路面上,可以降低身体高度行走。

图 4-10 "绝影" 匍匐行走

4.4. 日志功能

系统在运动过程中会产生三种日志文件,都会保存在机器人内部主机硬盘的/tmp目录下。

- 事件日志: 机器人运行过程每个事件都会被记录此文件中
- 运算日志: 机器人的运动状态数据都会被记录在其中, 最长保存时间大约为83分钟。
- 故障快照:机器人在运行中如何出现故障,会立即进入锁定状态,并保存故障 快照,保存的数据是故障前2分钟的数据,需要9秒时间保存。

【注意】运算日志需要手动保存,并且保存时间需要7分钟。

 Image: Street Street

如上图所示,.csv为运算日志,.snapshot.csv为故障快照,.log为事件日志。 具体的获取方式联系供应商。

主机内日志保存时间为7天(即168小时),每次运行程序都会调用一个清理过期日志的脚本,以防硬盘空间不足。

4.5. 应急操作

4.5.1.停障功能

(部分型号机器人具备)

机器人通过头部激光扫描,感知到前方的障碍物,如果障碍物进入了警戒范围,机器人将原地踏步并无法再操控前进(可以操控其它动作)。

【说明】在机器人水平站立时,警戒范围为与头部激光等高的水平面,大小为头前 方1.5米,机器人中轴线左右两侧0.3米的矩形区域。

4.5.2.过温保护

系统自带温度感知,一旦机器人长时间运行导致电机或者驱动器过热,将进入过温 保护状态,机器人将自动停止运动,原地下蹲。

4.5.3.摔倒自锁保护

当IMU模块检测到姿态改变过大,而判断机器人将不可避免摔倒时,机器人将自动进入自锁状态,各关节将锁死在当前角度,即立即保持当前状态不动。请等待手动将它放倒,按下急停后关机或保存数据。

4.5.4. 软急停按钮

软急停,即程控紧急制动,一般使用情景是在手柄、导航等远程操控手段都失效的 时候,通过软急停使机器人在原地蹲下,等待故障排查。

图 4-11 软急停开关

【触发方式】

通过触摸开关,当在触摸时观察到开关的环状蓝光亮起,说明软急停被触发。

说明: 软急停被触发后, 机器人程序进行锁定状态, 任何正常操作都无法控制机器 人运动。

【解锁方式】

因为机器人因软急停进行了锁定状态,所以需要通过软急停进行解锁。

解锁的方式的为长按软急停,长按时开关会亮起环状蓝光,当蓝光灭了,说明解锁动作成功。

【说明】: 当前需要的长按时间为2秒以上。

4.5.5.硬急停功能

硬急停,即硬件紧急宕机。

【注意】一旦硬急停被触发,将导致机器人四肢无力,从而从站立状态中下 坠,存在损伤地面、机器人损坏等风险,正常运动过程中严禁使用。

4.6. 系统功能

机器人有五种状态:

- 关机状态: 没上电,不工作的状态;
- 激活状态: 上电后,程序运行,开始采集各路信号;
- **受限状态**:程序可以控制机器人进行简单的固定模式的慢动作;
- 运动状态: 机器人进行灵活的运动能力展示,其中又有正常状态、匍匐状态、 导航状态;
- 锁定状态: 机器人因故障受控地进入安全自锁状态;

状态图如下所示:

图 4-12 机器人状态图

4.6.1.温度采集

系统采集了12个电机和驱动器的温度, 当电机或驱动器的某一个设备的温度超过警戒温度, 会使机器人进入锁定状态; 当温度低于临界温度, 就可以再次继续工作。

! 【注意】当机器人长时间运动后无故自动蹲下,请检测机器人电机是否过热,如果是请休息后再次运动。

如果需要采集通道的对应的传感器位置及警戒温度范围,请联系供应商。

4.6.2.异常监测

在机器人启动时和运行中,都会对以下几个环节进行异常监测:

- 1. 电机温度过高
- 2. 驱动器温度过高
- 3. 与上位机通信中断
- 4. 手柄断连
- 5. 驱动器断连

4.7. 充电

"绝影"由电池供电,为驱动装置、电路和配件供应充足的动力。空载情况下,电池可支持机器人连续正常高度行走2个小时以上,也可能根据不同的负载略有差别。充满一次电的时间为2.5小时(电量从10%到100%)。

用户需通过手动方式完成充电,将机器人移动到电源位置,通过充电器将电源和充电口连接,即可开始充电过程。

- 1) 接头操作顺序: 首先接机器人端充电头, 再接220V交流电充电头。
- 2) 开始充电时,充电器上的电源指示灯和充电指示灯均为红色。
- 3) 两孔航空充电插座采用防接反结构,正极、负极必须准确对接才能正常充电。

【注意】当电池电压低于72V时, 电量显示模块会发出"滴滴"的报警声, 请及时停止运动并关机充电。

5.程序二次开发说明

"绝影"控制系统由三个部分组成,即演示算法库(DeepRAS API)、底层操作库(DeepROS API)、机器人描述库(Robot_Profile API),以及主流程框架(DeepRCS)组成。

- DeepRAS负责运动规划。
- DeepROS负责电机驱动命令发送、机器人状态和温度等数据采集、网络数据获取。
- DeepRCS的主流程负责对DeepRAS和DeepROS API的调用、数据保存等功能
- Robot Profile管理了机器人的参数

程序结构如下所示:

图 5-1 "绝影"程序结构图

Motion SDK包含3大部分内容:

- 1. 演示代码,及构建和运行需要的配置文件
- 2. 底层库及相关头文件
- 3. 运动控制中需要部署的文件

进行二次开发的方式,通过修改开发包中的main.cpp中的代码,实现新的运动规划

和机器人表现。

5.1.1. 程序流程介绍

"绝影"程序流程图如下。

图 5-2 "绝影"程序流程图

- 一个典型的程序流程说明如下:
- 1. 初始化电机驱动模块;
- 2. 初始化各个需要的处理对象;
- 3. 切换机器人进入电流模式;
- 4. 进入主循环
 - a) 读取机器人运动状态
 - b) 调用运动算法

- c) 执行算法结果
- d) 记录过程数据到内存
- 5. 保存数据到硬盘
- 6. 结束

5.2. 开发环境搭建

5.2.1.**安装 QDE**

部署前,先安装了QNX IDE,这部分教程请咨询QNX官方。

5.2.2.选择 workspace

开发者自行选择一个文件夹,要求该文件夹的完整路径中不能含有空格和非英文字符。

5.2.3.解压 Motion SDK

将Motion SDK中的文件夹解压到workspace,然后将解压出来的文件夹重命名为robot_control_system。

【注意】:./workspace/robot_control_system目录下已经是多个文件夹的代码工程了,如果此目录下只有一个文件夹,那还需要将其剪切到./workspace目录下,再重命名为robot_control_system。

5.2.4.**打开 QDE**

打开QDE, 选择workspace为工作目录。

关闭欢迎页Welcome。

5.2.5. 导入代码工程

在Project Explorer窗口中:

空白处右键 -> Import -> General -> Existing Projects into Workspace

- -> Next -> Browse.. -> 确认
- -> 选择robot_control_system项目 -> Finish

如此,代码工程导入完成。

5.2.6.**配置工程**

因为有些配置是在QDE环境中的,并不随SDK发布,所以需要手动配置,如图5-3 所示。

Project Explorer -> 右键robot_control_system -> properties->QNX C/C++ Project

-> Build Variants -> 在X86中选择`release -> OK

在之后弹出的对话框中,选择No,即 not rebuild the project。

5.2.7.添加目标机

首先打开目标机配置界面:

QDE最上方的Window选项 -> Show View -> Target Navigator 然后添加目标机:

在Target Navigator窗口的空白处右键 -> New QNX target...

-> 在IP框内输入192.168.1.120 -> Finish

图 5-3 QNX 开发环境配置

5.2.8. 编译生成程序

Project Explorer -> 右键robot_control_system -> Build

5.2.9.配置运行调试

首先打开配置界面:

Project Explorer -> 右键robot_control_system -> Run As -> 1C/C++ QNX Application

然后修改程序优先级和方式:

Priority从10改到100;

Scheduling从SCHED_RR改为SCHED_FIFO

接着选择目标机: (可能需要拉大一下界面)

点击一下名为192.168.1.120的目标机

最后设置环境变量:

在当前设置界面中选择`Environment`选项卡 -> Import...

- -> 打开workspace中当前工程下的resources目录
- -> 选中ecat_environment.ini -> Apply

不要点按钮Run。

5.2.10. 配置目标机

首先打开目标机资源管理界面:

QDE最上方的Window选项 -> Show View -> Target File System Navigator 接着将左边Project Explorer中的工程中的一些文件拖到右边目标机资源管理界面中:

将左边的deepras/lib/so/libsbs_sio_cnts_so.so.1 拖入右边的/lib下将左边的deepras/resources/12_slave__-dc_+vcc.xml 拖入右边的/home下将左边的deepras/resources/deeprcs.json 拖入右边的/home下

5.2.11. 运行

注意:运行前请先查看和参考机器人控制程序运行方式管理说明书,主要是适用于导航的运动控制程序是开机运行,并一直存在,需要停止其运行,才能运行本工程生成的程序。

运行方式:

在QDE上方点击绿三角形按钮

开始运行。

5.3. 运动规划 API 说明

API如下所示:

void Motion(const DataLegs *leg_input, const DataGyro &gyro_data_raw,
const double &time_stamp, const double &cycle_time, const
ControlCommands &control_commands_raw, scope_output *scope_output,
DataLegs *leg_output)

用于接收控制指令、传感器数据,完成运动控制计算,并输出电机力矩。

输入量:

leg input: 12个关节实际角度、角速度、力矩

gyro_data_raw: 陀螺仪数据

time stamp: 时间戳

cycle_time: 控制周期, 1ms

control_commands_raw: 控制指令,主要由手柄指令、错误信息(温度、网络状态等)组成,具体定义请查看external type.h

输出量:

Scope_output: 用于观测数据

Leg_output: 12个关节期望角度、角速度、力矩

示例代码说明:

示例代码完成一个腿部回零动作,用有限状态机控制状态间切换,目标回零角度已 经离线算好。包含有腿部摆动规划、PD控制。

注意: 出于安全性考量, 建议在调试过程中对输出力矩做限幅!

5.4. 运算日志

机器人在正常结束后,都会生成一个/tmp/time.csv的日志文件,日志文件默认的记录频率是200Hz,每一次记录的结构可以用Microsoft Excel直接查看。

5.5. 程序运行方式管理

因为机器人同时需要满足演出和运动功能开发的需要,所以要进行机器人上控制程序运行方式的管理。

5.5.1.随系统启动程序

机器人上的运动控制程序用于演出任务时,使用的是随系统自启动的方式,也是默认的方式。

这个开关是在机器人上控制机的文件系统中,如果存在此文件 `/home/autorun.yes`,运动控制程序会随系统启动。如果不存在此文件,运动控制 程序不会自动启动。

运动控制程序存放目录是'/home/bin/'

5.5.2.调试开发方式启动程序

因为只能有运行一个运动控制程序,所以,在启动调试程序前需要终止"随系统启动的"运动控制程序。

终止的方式有两种:

- 1. 修改'/home/autorun.yes'文件名, 然后重启系统;
- 2. 在 Target Navigator 中 打 开 `192.168.1.120` 目 标 机 , 找 到 robot_control_system 进程, 在其上右键, send signal, 选择 SIG_TERM (默认项), 确认即可。

注:如果使用第一种终止方式,在调试结束后演出任务开始前,需要将修改后的文件改回`/home/autorun.yes`才能实现程序随系统启动。

5.5.3.修改文件名的方式

QDE 中,在 Target File System Navigator 中打开目标机,在目录树中找到目标文件,右键,点击 Rename,即可修改文件文件名。

注: 打开目标机资源管理界面 Target File System Navigator:

QDE 最上方的 Window 选项 -> Show View -> Target File System Navigator

5.6. 远程访问运动主机

一般远程访问会采用两种方式: telnet和ftp。

运动主机的IP为192.168.1.120.

具体的登陆账号请参见附件。

6. 问题处理

6.1. **常见问题**

流程阶段	异常表现	紧急处理
		1、确认四个开关已经被按下并灯亮
		2、确认急停开关被弹起
		3、确定短路帽有没有连接
交互	手柄操作没有反应	4、确认电脑连接到机器人 WIFI,并打开了手柄
次日		程序,界面上无失连的字符提示
		5、确认手柄接收器插在电脑上
		6、确认手柄上的西瓜灯常亮
	触摸操作没有反应	先参考异常: 手柄操作没有反应
	 自己停止坐下	1、电机或者驱动器过温保护
		2、WiFi 或者手柄信号断连
	完全没有反应	先参考异常: 手柄操作没有反应
	关节异响	请及时联系供应商
运动		1、可能是过温保护,请等待 10 分钟以上后再次
154)	运动后无法继续运动	尝试
		2、电量不足,及时充电
		3、电脑休眠或电脑的其它状况
		4、确认急停没有被按下
		5、确认异常: 手柄操作没有反应

6.2. 紧急处置

- 如果遇到自主导航出现问题,请及时切换到手柄模式。
- 如果路径走偏,手柄不好控制,可以轻拉/拽机器人。
- 如果遇到机器人摔倒的紧急情况,机器人将以锁死的状态侧倒在地,请按下身 体背部急停按钮或者身体右侧的黑色电机按钮。
- 如果遇到摔倒后机器人关节没锁死,仍在摆动的紧急情况,请等到机器人各关 节完全停止运动后30秒,再按下身体背部急停按钮或者身体右侧的黑色电机按 钮。
- 如果遇到起火,请就近使用以下任意一种类型的灭火器:泡沫、干粉或二氧化碳。

7. 质量保证与售后服务

7.1. 质量保证

我司提供整个系统 1 年的质量保证维修期(自系统上线之日起),在质保期内,设备正常存储、使用、维护情况下,因产品制造工艺或设计缺陷、材料缺陷引起的设备损坏、不能正常使用,由我司负责修理和更换。

在质保期内,有如下情况发生需要进行修复时,我司需要收取配件及设备的成本费用:

- 1) 由于错误的使用以及不当修理和改造导致的故障或者损坏。
- 2) 由于不可抗力的因素如台风、地震、火灾、雷击、异常电压导致的故障或损坏。

7.2. 售后服务

- 3) 设备发货后,由我司派遣专职的实施人员到场,按照客户的要求进行设备的开箱验收和清点。
- 4) 设备进场后,由我司的实施人员负责系统的安装和调试,保证系统的顺利上线运行。
- 5) 提供免费的用户培训,指导用户操作,并在系统上线运行后,安排现场技术支持人员,提供及时的售后服务,保障系统顺利运行。

附件: 机器人相关账号与密码

运动主机的telnet账号

用户名: root

密码: 空

运动主机的ftp账号

用户名: <u>ntuser</u>

密码: ntuser

杭州云深处科技有限公司

地址: 浙江省杭州市西湖区西溪路525号A楼西区108室

电话: 0571-85073796

网址: www.deeprobotics.cn