Optimización PARCIAL 1

24 de Septiembre de 2024

- 1. En cada uno de los siguientes problemas justifique su respuesta usando condiciones de optimalidad:
 - a) Mostrar que la función $f(x,y) = (x^2 4)^2 + y^2$ tiene dos mínimos globales y un punto estacionario, que no es ni máximo local ni mínimo local.
 - b) Encontrar todos los mínimos locales de la función $f(x,y) = \frac{1}{2}x^2 + x \cos(y)$.
 - c) Encontrar todos los mínimos y máximos locales de la función $f(x,y) = \sin(x) + \sin(y) + \sin(x+y)$ en el cojunto $\{(x,y) \mid 0 < x < 2\pi, 0 < y < 2\pi\}$
 - d) Mostrar que la función $f(x,y) = (y-x^2)^2 x^2$ tiene sólo un punto estacionario que no es ni máximo ni mínimo local.
 - e) Considere la función $f(x,y) = (y-x^2)^2 x^2$ en el conjunto $\{(x,y) \mid -1 \le y \le 1\}$. Mostrar que existe al menos un mínimo global y encontrarlos todos los mínimos globales.
- 2. Considere el problema irrestricto

minimizar
$$f(x_1, x_2) = x_1^2 - x_1 x_2 + 2x_2^2 - 2x_1 + e^{(x_1 + x_2)}$$

- a) Escriba las condiciones necesarias de optimalidad de primer orden. ¿Para esta función también son condiciones suficientes? Justificar.
- b) ¿Es el punto $\bar{x} = (0,0)$ un mínimo?
- c) Halle una dirección $d \in \mathbb{R}^2$ tal que $\nabla f(\bar{x})^T d < 0$.
- d) Minimice la función f a partir de \bar{x} con la dirección obtenida en (c).
- 3. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - a) Sea $F: \mathbb{R}^n \to \mathbb{R}^n$ con derivadas continuas. Sea $f: \mathbb{R}^n \to \mathbb{R}$ dada por $f(x) = ||F(x)||^2$. Sea \tilde{x} minimizador local de f tal que $J_F(\tilde{x})$ es no singular. Entonces \tilde{x} es solución del sistema F(x) = 0.
 - b) Sea $f: \mathbb{R} \to \mathbb{R}$, $f \in C^2$, f'(0) < 0 y f''(x) < 0 para todo $x \in \mathbb{R}$. Sea $\alpha \in (0,1)$. Entonces para todo x > 0 vale que $f(x) \le f(0) + \alpha x f'(0)$.
 - c) Sea $f: \mathbb{R}^n \to \mathbb{R}$, $f \in C^1$. Suponga que para k = 0, 1, 2, ..., sea $x^{k+1} = x^k \lambda_k \nabla f(x^k)$, donde $\lambda^k \geq \bar{\lambda} > 0$ para todo $k \geq 0$. Entonces, si $x^k \to x^*$ vale que $\nabla f(x^*) = 0$.
- 4. Encontrar el paralelepípedo rectangular de volumen unitario que tiene la superficie de menor área. Sugerencia, despejando de una de las dimensiones, mostrar que el problema es equivalente a minimizar sobre x>0 e y>0 la función $f(x,y)=xy+\frac{1}{x}+\frac{1}{y}$.
- 5. Sea $f:\mathbb{R}^n\to\mathbb{R}$ un función dos veces continuamente diferenciable que satisface

$$m||y||^2 \le y^T \nabla^2 f(x)y \le M||y||^2, \quad \forall x, y \in \mathbb{R}^n,$$

donde m y M son escalares positivos. Mostrar que f tiene un único mínimo global x^* que satisface

$$\frac{1}{2M} \|\nabla f(x)\|^2 \le f(x) - f(x^*) \le \frac{1}{2m} \|\nabla f(x)\|^2, \quad \forall x \in \mathbb{R}^n,$$

у

$$\frac{m}{2} \|x - x^*\|^2 \le f(x) - f(x^*) \le \frac{M}{2} \|x - x^*\|^2, \quad \forall x \in \mathbb{R}^n.$$

- 6. Considere el método de descenso $x^{k+1} = x^k \alpha^k \nabla f(x^k)$ donde α^k es una suceción de números reales y asuma que la función f(x) es convexa.
 - a) Usar la convexidad de f para probar que para cualquier $y \in \mathbb{R}^n$, se tiene que

$$||x^{k+1} - y||^2 \le ||x^k - y||^2 - 2\alpha^k (f(x^k) - f(y)) + (\alpha^k ||\nabla f(x^k)||)^2.$$

b) Asuma que

$$\sum_{k=0}^{\infty} a^k = \infty, \quad \alpha^k \|\nabla f(x^k)\|^1 \to 0.$$

Mostrar que lím $\inf_{k \to \infty} f(x^k) = \inf_{x \in \mathbb{R}^n} f(x)$. Sugerencia, asumir que para algún $\delta > 0$, existe y con $f(y) < f(x^k) - \delta$ para todo k suficientemente grande y probar por contradicción.

7. Resolver computacionalmente con el método que considere apropiado el problema $F(x) = (f_1(x), \dots, f_n(x))^T = 0$, con $f_i(x) : \mathbb{R}^n \to \mathbb{R}$ dadas por:

$$f_i(x) = x_3 \exp(-t_i x_1) - x_4 \exp(-t_i x_2) + x_6 \exp(-t_i x_5) - y_i$$
 para $i = 1, ..., 6$

donde

$$t_i = i/10$$
, y $y_i = \exp(-t_i) - 5\exp(-10t_i) + 3\exp(-4t_i)$

con $x^0 = (1, 2, 1, 1, 1, 1)$.