Calendario de clases IMT2112 - Algoritmos Paralelos en Computación Científica

Elwin van 't Wout

10 de agosto de 2020

A continuación se presenta el programa del curso IMT2112 del segundo semestre de 2020. Cabe señalar que el orden y contenido de las clases y evaluaciones puede cambiar durante el semestre.

Modalidad

Las clases, ayudantías e interrogaciones de este curso son virtuales. No habrá actividades presenciales. Para las clases y ayudantías usaremos Zoom. La plataforma de Canvas será usado para anuncios, materiales de clase y las interrogaciones. Es responsabilidad del estudiante estar pendiente de los anuncios en Canvas.

El horario de clases es martes y jueves, módulo 2. El horario de la ayudantía es viernes, módulo 2.

Las clases tendrán el formato siguiente:

- 10:00–10:10 h, consultas;
- 10:10-11:10 h, cátedra;
- 10:10–11:20 h, consultas.

Los estudiantes pueden participar activamente en la cátedra, haciendo consultas y observaciones.

Calendario

Clase	Fecha	Contenido	Bibliografía
C.1	11-8-20	Introducción	Presentación
C.2	13-8-20	Multiprocessing	Eijkhout 1.1
A.1	14-8-20	Python multiprocessing	
C.3	18-8-20	Computer architectures	Eijkhout 1.1
C.4	20-8-20	Instruction-level parallelism	Eijkhout 1.2
A.2	21-8-20	Python multiprocessing	
C.5	25-8-20	Memory hierarchies	Eijkhout 1.3
C.6	27-8-20	Data locality	Eijkhout 1.4–1.6
A.3	28-8-20	C++	
C.7	1-9-20	Parallel efficiency	Eijkhout 2.1–2.3
C.8	3-9-20	Granularity	Eijkhout 2.4+2.5+2.10
A.4	30-8-20	OpenMP	
C.9	8-9-20	Threading	Eijkhout 2.6.1-2.6.2
C.10	10-9-20	Collective operations	Eijkhout 6.1
A.5	11-9-20	OpenMP	
I.1	15-9-20	Interrogación 1	Clases 1–8
C.11	17 - 9 - 20	Parallel matvec	Eijkhout 6.2
	18-9-20	Feriado	
	22-9-20	$Suspensi\'on$	
	24-9-20	$Suspensi\'on$	
	25-9-20	$Suspensi\'on$	

Clase	Fecha	Contenido	Bibliografía
C.12	29-9-20	Parallel LU	Eijkhout 6.3
C.13	1-10-20	Parallel matmat	Eijkhout 6.4
A.6	2-10-20	Clúster	
C.14	6-10-20	Message Passing	Eijkhout 2.6.3
C.15	8-10-20	MPI statics	Eijkhout 2.6.3
A.7	9-10-20	MPI	
C.16	13-10-20	MPI communication	Eijkhout 2.6.3
C.17	15-10-20	Diferencias finitas	Apuntes
A.8	16-10-20	MPI	
C.18	20-10-20	Parallel sparse linear algebra	Eijkhout 6.5
I.2	22-10-20	Interrogación 2	Clases 9–16
A.9	23-10-20	MPI	
C.19	27-10-20	Parallel linear solvers	Eijkhout 6.6
C.20	29-10-20	Parallel preconditioners	Eijkhout 6.7
A.10	30-10-20	OpenCL	
C.21	3-11-20	Colouring strategies	Eijkhout 6.8
C.22	5-11-20	Heterogeneous computing	Presentación
A.11	6-11-20	OpenCL	
C.23	10-11-20	GPU computing	Presentación
C.24	12-11-20	OpenCL	Presentación
A.12	13-11-20	OpenCL	
C.25	14-11-20	OpenCL	Presentación
C.26	16-11-20	Ordenar areglos	Presentación
A.13	20-11-20	OpenCL	
C.27	24-11-20	HPC	Presentación
C.28	26-11-20	HPC	Presentación
A.14	27-11-20	OpenCL	
C.29	1-12-20	Repaso	
I.3	3-12-20	Interrogación 3	Clases 17–28

Evaluación

El curso contempla las evaluaciones siguientes.

- 1. Quizzes, regularmente durante el semestre.
- 2. Interrogación 1, 15-9-2020, 10:00 h. Clases 1–8.
- 3. Interrogación 2, 22-10-2020, 10:00 h. Clases 9–16.
- 4. Interrogación 3, 3-12-2020, 10:00 h. Clases 17–28.
- 5. Tarea 1, 2-9-2020. Python multiprocessing.
- 6. Tarea 2, 30-9-2020. OpenMP threading.
- 7. Tarea 3, 28-10-2020. MPI distributed parallelisation.
- 8. Tarea 4, 25-11-2020. OpenCL GPU computing.

Los lineamientos para las evaluaciones del curso son el siguiente.

- La nota final es el promedio de las ocho evaluaciones, con ponderación uniforme.
- Los quizzes y las interrogaciones son individuales. Los estudiantes no pueden interactuar entre ellos durante las interrogaciones.
- Las tareas de programación deben ser preparados y entregados de forma individual. El código debe ser escrito por el estudiante: no se puede copiar código de compañeros, tampoco usar código de fuentes externos tales como el internet. Los estudiantes sí pueden conversar entre ellos sobre las tareas de programación y compartir experiencias, siempre cuando el código entregado es escrito por su mismo.

Integridad académica

Todos los participantes en el curso (profesor, ayudante y estudiantes) deben cumplir con los estándares comunes de la integridad académica, en particular el Código de Honor UC.

Bibliografía

El libro principal del curso es:

1. Eijkhout, Victor. "Introduction to High Performance Scientific Computing," third edition, TACC, 2020. Online version of 23-1-2020.

Más información se puede encontrar en los libros:

- 1. Eijkhout, Victor. "Introduction to Scientific Programming in C++/Fortran2003," TACC, Feb. 2020.
- 2. Eijkhout, Victor. "Parallel Programming in MPI and OpenMP," TACC, 2017.

Estos libros son de fuente abierto y libremente disponible en: http://www.tacc.utexas.edu/~eijkhout/istc/istc.html