Cr(24)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹	4	1 + 5 = 6 (নিয়ম 3)
Mn(25)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ²	4	2 + 5 = 7 (নিয়ম 3)
Fe(26)			
Co(27)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁷ 4s ²	4	2 + 7 = 9 (নিয়ম 3)
Ni(28)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ 4s ²	4	2 + 8 = 10 (নিয়ম 3)
Cu(29)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ¹	4	1 + 10 = 11 (নিয়ম 3)
Zn (30)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ 4s ²	4	2 + 10 = 12 (নিয়ম 3)

শিক্ষার্থীর কাজ: উপরের ছকে পারমাণবিক সংখ্যা 3, 4, 6, 11, 13, 16, 21, 26 বিশিষ্ট মৌলের ইলেকট্রন বিন্যাস লেখো এবং ইলেকট্রন বিন্যাস থেকে পর্যায় সারণিতে সেগুলোর অবস্থান নির্ণয় করো।

4.4 ইলেকট্রন বিন্যাসই পর্যায় সারণির মূল ভিত্তি

(Electronic Configurations of Elements are the Main Basis of the Periodic Table)

ইলেকিট্রন বিন্যাসের মাধ্যমে কোনো মৌল কত নম্বর পর্যায় এবং কত নম্বর গ্রুপে অবস্থান করে তা বের করা যায়। আবার, যে সকল মৌলের বাইরের প্রধান শক্তিস্তরের ইলেকিট্রন বিন্যাস একই রকম সে সকল মৌল একই গ্রুপে অবস্থান করে। অপর্রদিকে যে সকল মৌলের বাইরের প্রধান শক্তিস্তরের ইলেকেট্রন বিন্যাস ভিন্ন রকম সে সকল মৌল ভিন্ন গ্রুপে অবস্থান করে।

টেবিল 4.02: মৌল ও ইলেকট্রন বিন্যাস।

গ্রুপ-1		
মৌল	ইলেকট্রন বিন্যাস	
H(1)	1s ¹	
Li(3)	1s ² 2s ¹	
Na(11)	1s ² 2s ² 2p ⁶ 3s ¹	
K(19)	K(19) 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹	

গ্রুপ-2	
মৌল	ইলেকট্রন বিন্যাস
He(2)	1s ²
Be(4)	1s ² 2s ²
Mg(12)	1s ² 2s ² 2p ⁶ 3s ²
Ca(20)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ²

যে সকল মৌলের ইলেকট্রন বিন্যাসে বাইরের শক্তিস্তরে মোট ইলেকট্রন সংখ্যা 1টি সে সকল মৌল সাধারণত ইলেকট্রন দান করে ধনাত্মক আয়নে পরিণত হওয়ার প্রবণতা দেখায়। যেমন-সোডিয়ামের বাইরের শক্তিস্তরে 1টি ইলেকট্রন আছে। তাই সোডিয়াম ঐ 1টি ইলেকট্রন ত্যাগ করে ধনাত্মক আয়নে পরিণত হয়।

আবার যে সকল মৌলের ইলেকট্রন বিন্যাসে বাইরের শক্তিস্তরে মোট ইলেকট্রন সংখ্যা 7টি সে সকল মৌল সাধারণত 1টি ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়নে পরিণত হবার প্রবণতা দেখায়। যেমন–ক্রোরিনের বাইরের শক্তিস্তরে 7টি ইলেকট্রন আছে। তাই ক্লোরিন 1টি ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়নে পরিণত হয়।

Cl
$$(1s^22s^22p^63s^23p^5) + e^- \longrightarrow Cl^-(1s^22s^22p^63s^23p^6)$$

অতএব ইলেকট্রন বিন্যাসের মাধ্যমে পর্যায় সারণিতে মৌলের অবস্থান নির্ণয় ও মৌলসমূহের অনেক ধর্ম ব্যাখ্যা করা যায়। এজন্য ইলেকট্রন বিন্যাসকেই পর্যায় সারণির মূল ভিত্তি হিসেবে বিবেচনা করা হয়।

4.5 পর্যায় সারণির কিছু ব্যতিক্রম (Some Exceptions in the Periodic Table)

- (a) হাইড্রোজেনের অবস্থান: হাইড্রোজেন একটি অধাতু। কিন্তু পর্যায় সারণিতে হাইড্রোজেনকে তীব্র তিঙ্ৎ ধনাত্মক ক্ষার ধাতু Na, K, Rb, Cs, Fr এর সাথে গ্রুপ-1 এ স্থান দেওয়া হয়েছে। এর কারণ ক্ষার ধাতুর মতো H এর বাইরের প্রধান শক্তিতেরে একটিমাত্র ইলেকট্রন রয়েছে। আবার, হাইড্রোজেনের অনেক ধর্ম ক্ষার ধাতুপুলোর ধর্মের সাথে মিলে যায়। অন্যদিকে, হ্যালোজেন মৌল (F, Cl, Br, I) এর একটি পরমাণু যেমন একটি ইলেকট্রন গ্রহণ করতে পারে, হাইড্রোজেনও তেমনি একটি ইলেকট্রন গ্রহণ করতে পারে অর্থাৎ H এর অনেক ধর্ম হ্যালোজেন মৌলের ধর্মের সাথেও মিলে যায়। তবে হাইড্রোজেনের বেশির ভাগ ধর্ম ক্ষার ধাতুসমূহের ধর্মের সাথে মিলে যাওয়ায় একে ক্ষার ধাতুর সাথে গ্রুপ 1 এ স্থান দেওয়া হয়েছে।
- (b) **হিলিয়ামের অবস্থান:** হিলিয়ামের ইলেকট্রন বিন্যাস He(2)→ 1s²। হিলিয়ামের ইলেকট্রন বিন্যাস অনুসারে একে গ্রুপ-2 এ স্থান দেওয়া উচিত ছিল। কিন্তু গ্রুপ-2 এর মৌলসমূহ তীব্র তড়িৎ ধনাত্মক। এদের মৃৎক্ষার ধাতু বলে। অপরদিকে He একটি নিষ্ক্রিয় গ্যাস। এর ধর্ম অন্যান্য নিষ্ক্রিয় গ্যাস নিয়ন,

আর্গন, ক্রিপ্টন, জেনন, রেডন ইত্যাদির সাথে মিলে যায়। He এর ধর্ম কখনই তীব্র তড়িৎ ধনাত্মক মৃৎক্ষার ধাতুর মতো হয় না। তাই হিলিয়ামকে নিষ্ক্রিয় গ্যাসসমূহের সাথে গ্রুপ-18 তে স্থান দেওয়া হয়েছে।

(c) ল্যান্থানাইড সারির এবং অ্যাকটিনাইড সারির মৌলগুলোর অবস্থান: পর্যায় সারণিতে ল্যান্থানাইড সারির মৌলগুলো 6 নম্বর পর্যায় ও 3 নম্বর গ্রুপে অবস্থিত এবং অ্যাকটিনাইড সারির মৌলগুলো 7 নম্বর পর্যায় ও 3 নম্বর গ্রুপে অবস্থিত। এই অবস্থানগুলোতে ল্যান্থানাইড সারির এবং অ্যাকটিনাইড সারির মৌলগুলোকে বসালে পর্যায় সারণির সৌন্দর্য নন্ট হয়। কাজেই পর্যায় সারণিকে সুন্দরভাবে দেখানোর জন্য ল্যান্থানাইড সারির এবং অ্যাকটিনাইড সারির মৌলগুলোকে পর্যায় সারণির নিচে আলাদাভাবে রাখা হয়েছে।

4.6 মৌলের পর্যায়বৃত্ত ধর্ম (Periodic Properties of Elements)

পর্যায় সারণিতে অবস্থিত মৌলগুলোর কিছু ধর্ম আছে, যেমন-ধাতব ধর্ম, অধাতব ধর্ম, পরমাণুর আকার, আয়নিকরণ শস্তু, তড়িৎ ঋণাত্মকতা ইলেকেট্রন আসন্তু ইত্যাদি। এসব ধর্মকৈ পর্যায়বৃত্ত ধর্ম বলে।

(a) ধাতব ধর্ম (Metallic Properties): যে সকল মৌল চকচকে, আঘাত করলে ধাতব শব্দ করে এবং তাপ ও বিদ্যুৎ পরিবাহী তাদেরকে আমরা ধাতু বলে থাকি। আধুনিক সংজ্ঞা অনুযায়ী যে সকল মৌল এক বা একাধিক ইলেকট্রন ত্যাগ করে ধনাত্মক আয়নে পরিণত হয় তাদেরকে ধাতু বলে। ধাতুর ইলেকট্রন ত্যাগের এই ধর্মকে ধাতব ধর্ম বলে। যে মৌলের পরমাণু যত সহজে ইলেকট্রন ত্যাগ করতে পারবে সেই মৌলের ধাতব ধর্ম তত বেশি।

যেমন— লিথিয়াম (Li) একটি ধাতু কারণ Li একটি ইলেকট্রন ত্যাগ করে Li* এ পরিণত হয়।

পর্যায় সারণিতে যেকোনো পর্যায়ের বাম থেকে ডানে গেলে ধাতব ধর্ম হ্রাস পায়।

(b) অধাতৰ ধৰ্ম (Non-metallic Properties): যে সকল মৌল চকচকে নয়, আঘাত করলে ধাতব শব্দ করে না এবং তাপ ও বিদ্যুৎ পরিবাহী নয় তাদেরকে আমরা অধাতু বলে থাকি। আধুনিক সংজ্ঞা অনুযায়ী যে সকল মৌল এক বা একাধিক ইলেকট্রন গ্রহণ করে ঋণাত্মক আয়নে পরিণত হয় তাদেরকে অধাতু বলে। অধাতুর ইলেকট্রন গ্রহণের এই ধর্মকে অধাতব ধর্ম বলে। যে মৌলের পরমাণু যত সহজে ইলেকট্রন গ্রহণ করতে পারবে সেই মৌলের অধাতব ধর্ম তত বেশি।

যেমন- ক্লোরিন (Cl) একটি অধাতু কারণ Cl একটি ইলেকট্রন গ্রহণ করে Cl এ পরিণত হয়।

 $Cl + e^- \rightarrow Cl^-$

পর্যায় সারণিতে যেকোনো পর্যায়ের বাম থেকে ডানে গেলে অধাতব ধর্ম বৃদ্ধি পায়।

যে সকল মৌল কোনো কোনো সময় ধাতুর মতো আচরণ করে এবং কোনো কোনো সময় অধাতুর মতো আচরণ করে তাদেরকে অর্ধধাতু বা অপধাতু বলা হয়। আবার আধুনিক সংজ্ঞা অনুযায়ী যে সকল মৌল কোনো কোনো সময় ইলেকট্রন ত্যাগ করে এবং কোনো কোনো সময় ইলেকট্রন গ্রহণ করে তাদেরকে অপধাতু বলে। যেমন- সিলিকন (Si) একটি অপধাতু।

পর্যায় সারণির যেকোনো একটি পর্যায়ের দিকে লক্ষ করলে দেখা যাবে যে, বামদিকের মৌলগুলো সাধারণত ধাতু, মাঝের মৌলগুলো সাধারণত অর্ধধাতু বা অপধাতু এবং ডানদিকের মৌলগুলো সাধারণত অধাতু।

(c) পরমাণুর আকার/পারমাণবিক ব্যাসার্ধ (Size of Atom/Atomic Radius): পরমাণুর আকার তথা পারমাণবিক ব্যাসার্ধ একটি পর্যায়বৃত্ত ধর্ম। যেকোনো একটি পর্যায়ের যতই বামদিক থেকে ডান দিকে যাওয়া যায় পরমাণুর আকার/পারমাণবিক ব্যাসার্ধ তত কমতে থাকে এবং যেকোনো একটি গ্রুপের যতই উপর দিক থেকে নিচের দিকে যাওয়া যায় পরমাণুর আকার/পারমাণবিক ব্যাসার্ধ তত বাড়তে থাকে।

একই পর্যায়ের বাম দিক থেকে যত ডান দিকে যাওয়া যায় পারমাণবিক সংখ্যা তত বাড়তে থাকে কিছু প্রধান শক্তিতেরের সংখ্যা বাড়ে না। পারমাণবিক সংখ্যা বাড়লে নিউক্লিয়াসে প্রোটন সংখ্যা বৃদ্ধি পায় এবং ইলেকট্রন সংখ্যাও বৃদ্ধি পায়। নিউক্লিয়াসের অধিক প্রোটন সংখ্যা এবং নিউক্লিয়াসের বাইরের অধিক ইলেকট্রন সংখ্যার মধ্যে আকর্ষণ বেশি হয় ফলে ইলেকট্রনগুলোর শক্তিতের নিউক্লিয়াসের কাছে চলে আসে, ফলে পরমাণুর আকার ছোট হয়ে যায়।

আবার, একই গ্রুপে যতই উপর থেকে নিচের দিকে যাওয়া যায় ততই বাইরের দিকে একটি করে নতুন শক্তিম্তর যুক্ত হয়। একটি করে নতুন শক্তিম্তর যুক্ত হলে পরমাণুর আকার বৃদ্ধি পায়।

একই গ্রুপের উপর থেকে নিচের দিকে গেলে
নিউক্লিয়াসের প্রোটন সংখ্যা এবং বাইরের
কক্ষপথের ইলেকট্রন সংখ্যা বৃদ্ধির জন্য আকর্ষণ
বৃদ্ধি হয়ে পরমাণুর আকার যতটুকু হ্রাস পায়,
নতুন একটি শক্তিম্তর যোগ হওয়ার কারণে

চিত্র 4.01: পরমাণুর আকারের পর্যায়বৃত্ত ধর্ম।

পরমাণুর আকার তার চেয়ে বেশি বৃদ্ধি পায়। যে কারণে উপরের মৌলের চেয়ে নিচের মৌলের আকার বড় হয়।

(d) আয়নিকরণ শক্তি (Ionization Energy): গ্যাসীয় অবস্থায় কোনো মৌলের এক মোল গ্যাসীয় পরমাণু থেকে এক মোল ইলেকট্রন অপসারণ করে এক মোল ধনাত্মক আয়নে পরিণত করতে য়ে শক্তির প্রয়োজন হয়, তাকে ঐ মৌলের আয়নিকরণ শক্তি বলে। আয়নিকরণ শক্তি একটি পর্যায়নৃত্ত ধর্ম। একই পর্যায়ের বামের মৌলের পারমাণবিক ব্যাসার্ধ বেশি

চিত্র 4.02: মৌলের আয়নিকরণ।

এবং ডানের মৌলের পারমাণবিক ব্যাসার্ধ কম। পারমাণবিক ব্যাসার্ধ কমলে আয়নিকরণ শন্তির মান বাড়ে এবং পারমাণবিক ব্যাসার্ধ বাড়লে আয়নিকরণ শন্তির মান কমে।

উদাহরণ

Na, Mg, Al, Si এর মধ্যে Si এর আয়নিকরণ শক্তির মান বেশি। কারণ এই মৌলগুলোর মধ্যে Si এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে কম। পক্ষান্তরে, এই মৌলগুলোর মধ্যে Na এর পারমাণবিক ব্যাসার্ধের মান বেশি বলে এদের মধ্যে সোডিয়ামের আয়নিকরণ শক্তির মান কম।

গ্রুপ-1 এর Li, Na, K, Rb, Cs, Fr ক্ষার ধাতুগুলোর মধ্যে Li এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে কম এজন্য এদের মধ্যে Li এর আয়নিকরণ শক্তির মান সবচেয়ে বেশি।

আবার, গ্রুপ-17 এর F, Cl, Br, I এবং At মৌলগুলোর মধ্যে F এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে কম, কাজেই এই মৌলগুলোর মধ্যে F এর আয়নিকরণ শক্তির মান সবচেয়ে বেশি।

(e) ইলেকট্রন আসন্তি (Electron Affinities): গ্যাসীয় অবস্থায় কোনো মৌলের এক মোল গ্যাসীয় পরমাণুতে এক মোল ইলেকট্রন প্রবেশ করিয়ে এক মোল ঋণাত্মক আয়নে পরিণত করতে যে শন্তি নির্গত হয়, তাকে ঐ মৌলের ইলেকট্রন আসন্তি বলে।

ইলেকট্রন আসন্তি একটি পর্যায়বৃত্ত ধর্ম। একই পর্যায়ের বামের মৌলের পারমাণবিক ব্যাসার্ধ বেশি এবং ডানের মৌলের পারমাণবিক ব্যাসার্ধ কম। পারমাণবিক ব্যাসার্ধ কমলে ইলেকট্রন আসন্তির মান বাড়ে এবং পারমাণবিক ব্যাসার্ধ বাড়লে ইলেকট্রন আসন্তির মান কমে।

একক কাজ

সমস্যা: Be, Ca, Sr, Ba, Mg এবং Ra মৌলগুলোর মধ্যে কোনোটির ইলেকট্রন আসন্তি বেশি এবং কোনোটির ইলেকট্রন আসন্তি কম।

সমাধান: Be, Ca, Sr, Ba, Mg এবং Ra মৌলগুলো পর্যায় সারণির 2 নং গ্রুপ-এর মৌল। এই মৌলগুলোর মধ্যে Be এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে কম, এর জন্য Be এর ইলেকট্রন আসন্তির মান সবচেয়ে বেশি। আবার Ra এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে বেশি, এর জন্য Ra ইলেকট্রন আসন্তি সবচেয়ে কম।

সমস্যা: Na, Mg, Al, Si এর মধ্যে কার ইলেকট্রন আসন্তি বেশি বা কার ইলেকট্রন আসন্তির মান কম?

সমাধান: Na, Mg, Al, Si এর মৌলগুলো পর্যায় সারণির 3 নং পর্যায়ের মৌল। এই মৌলগুলোর মধ্যে Na-এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে বেশি এজন্য সোডিয়াম এর ইলেকট্রন আসন্তির মান সবচেয়ে কম। আবার, Si এর পারমাণবিক ব্যাসার্ধের মান সবচেয়ে কম সেজন্য এর ইলেকট্রন আসন্তির মান সবচেয়ে বেশি।

(f) তড়িৎ ঋণাত্মকতা (Electronegativity): দুটি পরমাণু যখন সমযোজী বন্ধনে আবন্ধ হয়ে অণুতে পরিণত হয় তখন অণুর পরমাণুগুলো বন্ধনের ইলেকট্রন দুটিকে নিজের দিকে আকর্ষণ করে। এই আকর্ষণকে তড়িৎ ঋণাত্মকতা বলা হয়। তড়িৎ ঋণাত্মকতা একটি পর্যায়বৃত্ত ধর্ম। একই পর্যায়ের বামের মৌলের পারমাণবিক ব্যাসার্ধ কম। পারমাণবিক ব্যাসার্ধ কমলে তড়িৎ ঋণাত্মকতার মান বাড়ে এবং পারমাণবিক ব্যাসার্ধ বাড়লে তড়িৎ ঋণাত্মকতার মান কমে।

যেমন- 3 পর্যায়ে মৌলগুলোর মাঝে Na পরমাণুর তড়িৎ ঋণাত্মকতার মান সবচেয়ে কম এবং Cl এর তড়িৎ ঋণাত্মকতা সবচেয়ে বেশি। সাধারণত কোনো মৌলের পরমাণুর আকার ছোট হলে তড়িৎ ঋণাত্মকতার মান বেশি হয় এবং কোনো মৌলের পরমাণুর আকার বড় হলে তড়িৎ ঋণাত্মকতার মান কম হয়।

4.7 বিভিন্ন গ্রুপে উপস্থিত মৌলগুলোর বিশেষ নাম (The Special Names of Elements Present in Various Groups)

মৌলসমূহের ভৌত ও রাসায়নিক ধর্মের উপর ভিত্তি করে বিভিন্ন সময়ে তাদের বিশেষ নাম দেওয়া হয়েছিল। আমরা ইতোমধ্যে ধাতু, অধাতু, অর্ধধাতু বা অপধাতুর কথা আলোচনা করেছি। এছাড়া রয়েছে:

কর্মা নং-১০, রসায়ন- ৯ম-১০ম প্রেপি

ক্ষার ধাতু: পর্যায় সারণির 1 নং গ্রুপে 7টি মৌল আছে। এদের মধ্যে হাইড্রোজেন ছাড়া বাকি 6টি মৌলকে (লিথিয়াম, সোডিয়াম, পটাশিয়াম, রুবিডিয়াম, সিজিয়াম এবং ফ্রানসিয়াম) ক্ষারধাতু বলে। এই ছয়টি মৌলের প্রত্যেকটি পানিতে দ্রবীভূত হয়ে হাইড্রোজেন গ্যাস এবং ক্ষার তৈরি করে বলে এদেরকে ক্ষারধাতু (Alkali Metals) বলা হয়।

মৃৎক্ষার ধাতু: পর্যায় সারণির 2 নং গ্রুপে বেরিলিয়াম, ম্যাগনেসিয়াম, ক্যালসিয়াম, স্ট্রনসিয়াম, বেরিয়াম এবং রেডিয়াম এই 6টি মৌল আছে। এই মৌলগুলোকে মৃৎক্ষার ধাতু বলে। এই ধাতুগুলোকে মাটিতে বিভিন্ন যৌগ হিসেবে পাওয়া যায়। আবার, এরা ক্ষার তৈরি করে। এজন্য সামগ্রিকভাবে এদের মৃৎক্ষার ধাতু (Alkaline Earth Metals) বলা হয়।

মুদ্রা ধাতু: গ্রুপ-11 এর 4টি মৌল হচ্ছে কপার, সিলভার, গোল্ড এবং রন্টজেনিয়াম। এই চারটি মৌলের মধ্যে প্রথম 3টি মৌলকে মুদ্রা ধাতু (Coin Metals) বলা হয়, কারণ এই গ্রুপের সবচেয়ে নিচের মৌল রন্টজেনিয়াম (Rg) ছাড়া অন্য যে 3টি মৌল আছে তা দিয়ে প্রাচীনকালে মুদ্রা তৈরি হতো এবং ব্যবসাবাণিজ্য ও বিনিময়ের মাধ্যম হিসেবে ব্যবহার করা হতো।

হ্যালোজেন গ্রুপ: গ্রুপ-17 এর 6টি মৌলকে হ্যালোজেন (Halogen) বলা হয়। এই হ্যালোজেন গ্রুপের 6টি মৌল হচ্ছে: ফ্লোরিন (F), ক্লোরিন (Cl), ব্রোমিন (Br), আয়োডিন (I), অ্যাস্টাটিন (As) এবং টেনেসিন (Ts)। এসব হ্যালোজেন মৌলকে X দ্বারা প্রকাশ করা হয়। হ্যালোজেন মানে লবণ উৎপাদনকারী এবং এর মূল উৎস সামুদ্রিক লবণ। হ্যালোজেন মৌলগুলোর সাথে ধাতু ফুব্ত হয়ে লবণ গঠিত হয়। যেমন— F এর সাথে Na ফুব্ত হয়ে সোডিয়াম ফ্লোরাইড লবণ কিংবা Cl এর সাথে Na ফুব্ত হয়ে সোডিয়াম ফ্লোরাইড (NaCl) বা খাদ্যলবণ গঠিত হয়। এরা নিজেরাই নিজেদের মধ্যে ইলেকট্রন ভাগাভাগি করে দ্বিমৌল অণু তৈরি করে, যেমন— Cl₂, I₂ ইত্যাদি।

নিষ্ক্রিয় গ্যাস: পর্যায় সারণির 18 নং গ্রুপের মৌলসমূহকে নিষ্ক্রিয় গ্যাস (Inert Gases) বলা হয়। মৌলগুলো হলো: হিলিয়াম (He), নিয়ন (Ne), আর্গন (Ar), ক্রিপ্টন (Kr), জেনন (Xe), রেডন (Rn) এবং ওগানেসন (Og)। এই মৌলগুলোর সবচেয়ে বাইরের শক্তিশ্তরে প্রয়োজনীয় ইলেকট্রন দিয়ে পূর্ণ থাকে বলে এরা ইলেকট্রন বিনিময় বা ভাগাভাগি করে কোনো যৌগ গঠন করতে চায় না। রাসায়নিক বন্ধন গঠন বা রাসায়নিক বিক্রিয়ায় এরা নিষ্ক্রিয় থাকে বলে এদেরকে নিষ্ক্রিয় মৌল বা নিষ্ক্রিয় গ্যাস বলে। নিষ্ক্রিয় গ্যাসগুলো সাধারণ তাপমাত্রায় গ্যাস হিসেবে থাকে।

অবস্থাতর মৌল: পর্যায় সারণির 3 নং গ্রুপ থেকে 12 নং গ্রুপের মৌলগুলোকে অবস্থাতর মৌল বলে।

অবস্থাতর মৌলগুলো যে সকল যৌগ গঠন করে সে সকল যৌগ রঙিন হয়। অবস্থাতর মৌল বিভিন্ন

বিক্রিয়ার প্রভাবক হিসেবে কাজ করে। যেমন- 10 নং গ্রুপের মৌল নিকেল একটি অবস্থাতর মৌল।

নিকেল বিভিন্ন জৈব বিক্রিয়ার প্রভাবক হিসেবে কাজ করে।

সমস্যা: Ca কে মৃৎক্ষার ধাতু বলা হয় কেন?

সমাধান: Ca ধাতুর বিভিন্ন যৌগ মাটিতে পাওয়া যায়। আবার Ca ধাতুর হাইড্রোক্সাইড যৌগ Ca(OH)2 একটি ক্ষার। অতএব Ca একটি সুৎক্ষারধাতু।

সমস্যা: He কেন নিষ্ক্রিয় গ্যাস? ব্যাখ্যা করো।

সমাধান: He নিজেদের সাথে যুক্ত হয় না আবার অন্য মৌলের সাথেও যুক্ত হয় না। এজন্য হিলিয়াম নিষ্ক্রিয় মৌল। আবার হিলিয়াম মৌল গ্যাস হিসেবে অবস্থান করে। এজন্যই সামগ্রিকভাবে He কে নিষ্ক্রিয় গ্যাস বলা হয়।

4.8 পর্যায় সারণির সুবিধা (Advantages of the Periodic Table)

পর্যায় সারণি বিভিন্ন রসায়নবিদের নিরলস প্রচেষ্টায় গড়া রসায়নের জগতে এক অসামান্য অবদান। রসায়ন অধ্যয়ন, নতুন মৌল সম্পর্কে ভবিষ্যদ্বাণী, গবেষণা ইত্যাদিতে পর্যায় সারণি বিরাট ভূমিকা পালন করে। নিচে তার করেকটি উদাহরণ তুলে ধরা হলো:

- (a) রসায়ন পাঠ সহজীকরণ: 2016 সাল পর্যন্ত পৃথিবীতে 118টি মৌল আবিক্ষার করা হয়েছে। আমরা যদি শুধু 4টি ভৌত ধর্ম, যেমন—গলনাজ্ঞক, ক্ষুটনাজ্ঞক, ঘনত্ব ও কঠিন/তরল/গ্যাসীয় অবস্থা এবং 4টি রাসায়নিক ধর্ম, যেমন— অক্সিজেন, পানি, এসিড ও ক্ষারের সাথে বিক্রিয়া বিবেচনা করি তাহলে 118টি মৌলের মোট 118 × (4 + 4) = 944টি ধর্ম বা বৈশিন্ট্য লক্ষ করা যায়। এতপুলো ধর্ম মনে রাখা অসম্ভব ব্যাপার। কিন্তু পর্যায় সারণি সে কাজটিকে অনেক সহজ করে দিয়েছে। এ পর্যায় সারণিতে রয়েছে আঠারোটি গ্রুপ আর সাতটি পর্যায়। প্রতিটি গ্রুপের সাধারণ ধর্ম জানলে 118টি মৌলের ভৌত ও রাসায়নিক ধর্ম সম্বন্ধে একটি মোটামুটি ধারণা লাভ করা যায়। শুধু তাই নয়, পর্যায় সারণি সম্পর্কে ভালোভাবে ধারণা থাকলে বিভিন্ন মৌল দ্বারা গঠিত তাদের যৌগের ধর্ম সম্পর্কেও ধারণা লাভ করা যেতে পারে।
- (b) নতুন মৌলের আবিক্ষার: কিছু দিন আগেও সাতটি পর্যায় আর আঠারোটি গ্রুপ নিয়ে গঠিত পর্যায় সারণিতে বেশ কিছু ফাঁকা ঘর ছিল। এই মৌলগুলো আবিক্ষার হবার আগেই ঐ ফাঁকা ঘরে যে মৌলগুলো বসবে বা তাদের ধর্ম কেমন হবে তা পর্যায় সারণি থেকে ধারণা পাওয়া গিয়েছিল। তোমরা ইতোমধ্যে

জেনে গেছ যে বিজ্ঞানী মেন্ডেলিফ তাঁর সময়ে আবিক্ষৃত 63টি মৌলকে তার আবিক্ষৃত পর্যায় সারণিতে স্থান দিতে গিয়ে যে মৌলগুলো সম্পর্কে ভবিষ্যদ্বাণী করেছিলেন সেগুলো পরে আবিক্ষৃত হয়েছিল।

(c) গবেষণা ক্ষেত্রে: গবেষণার ক্ষেত্রেও পর্যায় সারণির অসামান্য অবদান রয়েছে। মনে করো, কোনো একজন বিজ্ঞানী কোনো একটি বিশেষ প্রয়োজনের জন্য নতুন একটি পদার্থ আবিক্ষার করতে চাইছেন। তাহলে আগেই তাঁকে ধারণা করতে হবে যে, নতুন পদার্থটির ধর্ম কেমন হবে এবং সেই সকল ধর্মবিশিন্ট পদার্থ তৈরি করতে কী ধরনের মৌল প্রয়োজন হবে। তার এ ধারণা পর্যায় সারণি থেকেই পাওয়া যাবে। এছাডা পর্যায় সারণির আরও অনেক ধরনের ব্যবহার আছে যা তোমরা ধীরে ধীরে জানতে পারবে।

4.9 পর্যায় সারণির একই গ্রুপের মৌলগুলো একই রকম রাসায়নিক ধর্ম প্রদর্শন করে (Elements in the Same Group in the Periodic Table Show similar Chemical Properties)

পর্যায় সারণির একই গ্রুপের মৌলগুলো যে একই রকম ধর্ম প্রদর্শন করে তা একটি পরীক্ষার মাধ্যমে তোমরা বুঝতে পারবে।

যেমন- 17 নং গ্রুপের মৌল F_2 , Cl_2 , Br_2 , I_2 ইত্যাদি গ্যাস হাইড্রোজেনের সাথে বিক্রিয়া করে যথাক্রমে HF(g), HCl(g), HBr(g), HI(g) ইত্যাদি গ্যাস উৎপন্ন করে।

$$H_2(g) + F_2(g)$$
 \longrightarrow 2HF (g)
 $H_2(g) + Cl_2(g)$ \longrightarrow 2HCl (g)
 $H_2(g) + Br_2(g)$ \longrightarrow 2HBr (g)
 $H_2(g) + I_2(g)$ \longrightarrow 2HI (g)

আবার, এই উৎপন্ন গ্যাসগুলোকে যদি পানিতে দ্রবীভূত করা হয় তাহলে হাইড্রোহ্যালাইড এসিড যথা হাইড্রোফ্রোরিক এসিড [HF(aq)], হাইড্রোক্লোরিক এসিড [HCl(aq)], হাইড্রোব্রোমিক এসিড [HBr(aq)], হাইড্রোআয়োডিক এসিডে [HI(aq)] পরিণত হয়।

$$HF(g) + H_2O(l) \longrightarrow HF(aq)$$
 $HCl(g) + H_2O(l) \longrightarrow HCl(aq)$
 $HBr(g) + H_2O(l) \longrightarrow HBr(aq)$
 $HI(g) + H_2O(l) \longrightarrow HI(aq)$

এই হাইড্রোহ্যালাইড এসিডসমূহ যেকোনো কার্বনেট লবণের সাথে বিক্রিয়া করে কার্বন ডাই-অক্সাইড গ্যাস উৎপন্ন করে। যেমন— ক্যালসিয়াম কার্বনেটের মধ্যে হাইড্রোফ্রোরিক এসিড যোগ করলেও কার্বন ডাই-অক্সাইড গ্যাস উৎপন্ন হয়।

$$CaCO_3 + 2HF(aq)$$
 \longrightarrow $CaF_2 + H_2O + CO_2$

আবার, ক্যালসিয়াম কার্বনেটের মধ্যে হাইড্রোক্লোরিক এসিড যোগ করলেও কার্বন ডাই-অক্সাইড গ্যাস তৈরি হয়।

উপরের বিক্রিয়াগুলো থেকে বোঝা যায় যে, 17 নং গ্রুপের মৌল, F_2 , Cl_2 , Br_2 , I_2 একই রকমের ধর্ম ও বিক্রিয়া প্রদর্শন করে।

আবার, 2 নং গ্রুপের মৌল Mg এবং Ca একই রকমের ধর্ম ও বিক্রিয়া প্রদর্শন করে।

ম্যাগনেসিয়াম কার্বনেট (MgCO₃) যেমন- লঘু হাইড্রোক্লোরিক এসিডের সাথে বিক্রিয়া করে ম্যাগনেসিয়াম ক্লোরাইড, পানি এবং কার্বন ডাই-অক্সাইড গ্যাস উৎপন্ন করে তেমনি ক্যালসিয়াম কার্বনেট লঘু হাইড্রোক্লোরিক এসিডের সাথে বিক্রিয়া করে ক্যালসিয়াম ক্লোরাইড, পানি এবং কার্বন ডাইঅক্সাইড গ্যাস উৎপন্ন করে।

$$MgCO_3 + 2HCl \longrightarrow MgCl_2 + H_2O + CO_2$$

 $CaCO_3 + 2HCl \longrightarrow CaCl_2 + H_2O + CO_2$

পরীক্ষণের নাম: ক্যালসিয়াম কার্বনেটের সাথে লঘু হাইড্রোক্লোরিক এসিডের বিক্রিয়ায় উৎপন্ন কার্বন ডাই-অক্সাইড গ্যাস শনান্তকরণ।

মূলনীতি: ক্যালসিয়াম কার্বনেট লঘু হাইড্রোক্লোরিক এসিডের সাথে বিক্রিয়া করে ক্যালসিয়াম ক্লোরাইড, পানি এবং কার্বন ডাইঅক্সাইড গ্যাস উৎপন্ন করে।

প্রয়োজনীয় উপকরণ

যবাপতি: 1. একটি গোলতলী ফ্লাম্ক 2. একটি থিসল ফানেল 3. দুইবার সমকোণে বাঁকানো একটি কাচের নির্গম নল 4. কয়েকটি গ্যাসজার 5. ছিদ্রযুক্ত ছিপি।

রাসায়নিক দ্রব্যাদি: 1. ক্যালসিয়াম কার্বনেট 2. লঘু হাইড্রোক্লোরিক এসিড 3. পানি।

কার্যপদ্ধতি:

1. একটি গোলতলী ফ্লাম্কে ক্যালসিয়াম কার্বনেটের কিছু ছোট টুকরো নেওয়া হলো।

 ছিপির সাহায্যে ফ্লাক্কের এক মুখ দিয়ে একটি থিসল ফানেল এবং অপর মুখ দিয়ে দুইবার সমকোণে বাঁকানো নির্গম নলের এক প্রান্ত প্রবেশ করানো হলো।

চিত্র 4.05: কার্বন ডাই-অক্সাইড প্রস্তুতকরণ।

- থিসল ফানেলের মধ্য দিয়ে কিছু পরিমাণ পানি গোলতলী ফ্লাম্কে নেওয়া হলো যেন ক্যালসিয়াম কার্বনেট এবং থিসল ফানেলের নিম্নপ্রান্ত পানিতে ভূবে থাকে।
- 4. নির্গম নলের অন্য প্রান্ত একটি গ্যাসজারে প্রবেশ করানো হলো।
- 5. এরপর থিসল ফানেলের ভিতর দিয়ে ধীরে ধীরে হাইড্রোক্রোরিক এসিড যোগ করা হলো। দেখা গেল ক্যালসিয়াম কার্বনেট এবং হাইড্রোক্রোরিক এসিড বিক্রিয়া করে যে কার্বন ডাই-অক্সাইড গ্যাস তৈরি করছে তা বুদ্বুদ্ আকারে নির্গম নল দিয়ে বের হয়ে আসছে।

6. নির্গম নল দিয়ে বের হয়ে আসা গ্যাসকে গ্যাসজারে সংরক্ষণ করা হলো। য়েহেতু কার্বন ডাই-অক্সাইড বাতাসের অন্যান্য গ্যাস অপেক্ষা তুলনামূলক তারী, সেহেতু কার্বন ডাইঅক্সাইড সিলিভারের নিচের দিকে জমা হবে।

কার্বন ডাই-অক্সাইড গ্যাসের ধর্ম পরীক্ষা: 1. উৎপন্ন কার্বন ডাই-অক্সাইড গ্যাসের বর্ণ লক্ষ করা হলো। কার্বন ডাই-অক্সাইডের কোনো বর্ণ দেখা গেল না।

- গ্যাসজারের মুখে একটি জ্বলন্ত কাঠি ধরা হলো। কাঠিটির আগুন নিভে গেল। সিন্ধান্ত নেওয়া হলো কার্বন ডাই-অক্সাইড গ্যাস আগুন নিভাতে সাহায়্য করে।
- 3. একটি টেস্টটিউব বা পরীক্ষানলে চুনের পানি বা ক্যালসিয়াম হাইড্রোক্সাইড নিয়ে তার মধ্যে উৎপন্ন কার্বন ডাই-অক্সাইড গ্যাস প্রবেশ করানো হলো। প্রথমে সামান্য গ্যাস প্রবেশ করে ক্যালসিয়াম হাইড্রোক্সাইডের সাথে বিক্রিয়া করে ক্যালসিয়াম কার্বনেটের সাদা বর্ণের অধঃক্ষেপ তৈরি হলো। ফলে চুনের পানি ঘোলা হলো। এরপর আরও অধিক গ্যাস এই ঘোলা পানির মধ্যে প্রবেশ করানো হলো ফলে ক্যালসিয়াম কার্বনেট, পানি এবং কার্বন ডাই-অক্সাইড বিক্রিয়া করে ক্যালসিয়াম বাইকার্বনেট তৈরি করল। এতে চুনের ঘোলা পানি আবার পরিক্ষার হয়ে গেল।

সতর্কতা: 1. থিসল ফানেলের শেষ প্রান্ত পানির নিচে যাতে সব সময় ভূবে থাকে সেই ব্যবস্থা নেওয়া হয়েছিল।

গোলতলী ফ্লাম্ককে একটি স্ট্যান্ডের সাথে আটকিয়ে রাখা হয়েছিল।

এই পরীক্ষণের জন্য ক্যালসিয়াম কার্বনেটের পরিবর্তে শামুক, ঝিনুক, ডিমের খোসা এবং হাইড্রোক্রোরিক এসিডের পরিবর্তে ভিনেগার ব্যবহার করা যায়।

বহুনির্বাচনি প্রশ্ন

- 1. আধুনিক পর্যায় সারণির মূল ভিত্তি কী?
 - (ক) পারমাণবিক সংখ্যা
- (খ) পারমাণবিক ভর
- (গ) আপেক্ষিক পারমাণবিক ভর
- (ঘ) ইলেকট্রন বিন্যাস
- 2. A → $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3 4s^2$ মৌলটি পর্যায় সারণির কোন গ্রুপে অবস্থিত?
 - (季) Group-2
- (약) Group-5
- (গ) Group-11
- (덕) Group-13

নিচের সারণি থেকে 3 ও 4 নং প্রশ্নের উত্তর দাও;

পর্যায় সারণির কোনো একটি গ্রুপের খণ্ডিত অংশ। (এখানে X, Y প্রতীকী অর্থে, প্রচলিত কোনো মৌলের প্রতীক নয়)

> ₁₉K ₃₇X ₅₅Y

- 3. 'X' মৌলটি পর্যায় সারণির কোন পর্যায়ের?
 - (ক) ৩য়
- (খ) ৪র্থ
- (গ) ৫ম
- (ঘ) ৬ষ্ঠ
- 4. উল্লিখিত মৌলগুলোর-
 - (i) সর্বশেষ স্তরে 1টি ইলেকট্রন আছে
 - (ii) পারমাণবিক আকার উপর থেকে নিচে ক্রমান্বয়ে হ্রাস পায়
 - (iii) Y মৌলটি X মৌল অপেক্ষা বেশি সক্রিয়

নিচের কোনটি সঠিক?

- (季) i 医 ii
- (খ) ii ଓ iii
- (গ) i ও iii
- (되) i, ii ও iii

সূজনশীল প্রশ্ন

1.

		F
Na	Mg	Cl
	.l	Br

উদ্দীপকের চিত্রটি পর্যায় সারণির একটি খণ্ডিত অংশ।

- (ক) ত্রয়ী সূত্রটি লেখ।
- (খ) বেরিয়ামকে মৃৎক্ষার ধাতু বলা হয় কেন? ব্যাখ্যা করো।
- (গ) উদ্দীপকের কোন মৌলটির আকার সবচেয়ে বড়? ব্যাখ্যা করো।
- (ঘ) উদ্দীপকের পর্যায়ের বাম থেকে ডানে গেলে ইলেকট্রন আসম্ভির মানের পরিবর্তন বিশ্লেষণ করো।

2.

	গ্রুপ 1	গ্রুপ 2	গ্রুপ 3
পর্যায় 2			
পর্যায় 3			
পর্যায় 4	A	В	С

উদ্দীপকের চিত্রটি পর্যায় সারণির একটি খণ্ডিত অংশ।

- (ক) আধুনিক পর্যায় সূত্রটি লেখো।
- (খ) B কে মৃৎক্ষার ধাতু বলা হয় কেন?
- (গ) A থেকে B এর দিকে যেতে পারমাণবিক আকারের পরিবর্তন ব্যাখ্যা করো।
- (ঘ) A থেকে C এর দিকে যেতে আয়নিকরণ শক্তির মানের পরিবর্তন বিশ্লেষণ করো।

পঞ্চম অধ্যায় রাসায়নিক বন্ধন (Chemical Bond)

আমরা জানি, সকল পদার্থই অণু এবং পরমাণু দিয়ে গঠিত। এ পর্যন্ত আবিক্ষৃত 118টি মৌলের 118টি ভিন্ন ভিন্ন পরমাণু রয়েছে। এদের মধ্য থেকে এক বা একাধিক মৌলের পরমাণু দিয়েই সকল পদার্থের অণু গঠিত হয়। পদার্থের অণুতে পরমাণুসমূহ এলোমেলো বা বিক্ষিপ্তভাবে থাকে না। পরমাণুসমূহ সুবিন্যুস্তভাবে থাকে। যে আকর্ষণ শস্তির মাধ্যমে অণুতে দুটি পরমাণু পরপ্রর যুদ্ভ থাকে তাকে রাসায়নিক বন্ধন বলে। এই বন্ধন বিভিন্ন প্রকার হতে পারে। যেমন—আয়নিক বন্ধন, সমযোজী বন্ধন কিংবা ধাতব বন্ধন। এ অধ্যায়ে আয়নিক, সমযোজী বা ধাতব বন্ধন বিশ্বিট যৌগের বন্ধন গঠন প্রক্রিয়া ও তাদের ধর্ম নিয়ে আলোচনা করা হবে।