МИНОБРНАУКИ РОССИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Южный федеральный университет»

Институт математики, механики и компьютерных наук им. И.И.Воровича Кафедра информатики и вычислительного эксперимента

Направление подготовки 02.04.02 — Фундаментальная информатика и информационные технологии

ОТЧЕТ ПО ТЕМЕ «Блочное перемножение матриц»

Выполнил:

магистр 1 года 6 группы

Домбровская А.В.

Реферат

В основе эксперимента лежит задача перемножения двух вещественных матриц с использованием технологии OpenMP, где симметричная матрица А умножается справа на верхне-треугольную матрицу В. В памяти матрица А хранится как нижне-треугольная матрица в виде одномерного массива по блочным столбцам. Матрица В хранится в виде одномерного массива по блочным столбцам.

Задачу требовалось решить тремя способами:

- выполнить блочное последовательное перемножение без использования параллельности;
- выполнить перемножение различных пар блоков параллельно;
- выполнить перемножение каждого отдельного блока параллельно;

По результатам численных вычислений был проведен анализ реализаций решения задачи с матрицами двух различных типов данных и с ипользованием двух компиляторов. Результаты работы созданной программы были сверены с результатами работы не блочного перемножения матриц.

Основаная часть

Характиристики компьютера

Processor: Intel® CoreTM i5-8300 CPU @ 2.30GHz; 4 cores;

L3: 8 MB; L2: 1 MB; L1: 256 KB;

RAM: DDR4, 8 GB, clock speed: 2667 MHz.

Характиристики компиляторов

Programming language: C++;

Compiler: MSVC2019 v14.16.27023, compiler option: -O2; OpenMP v. 2.0;

Compiler: GCC v. 8.3.0, compiler option: -Ofast; OpenMP v. 4.5;

OS: Windows 10 Education v1903

Результаты для MSVC2019

Table 1: Double

Размер блока	Последовательное выполнение	Параллельное умножение различных пар блоков	Параллельное умножение каждого отдельного блока
1	138.053846	>2000	>2000
6	27.846353	4.180622	161.967205
10	20.785998	3.361242	43.516863
15	18.506775	3.187226	18.357782
20	16.594656	3.293959	17.703939
24	16.254516	2.840943	11.640018
30	17.348134	3.028692	11.695159
36	17.254998	2.904548	12.209977
40	17.584581	3.084133	13.200694
60	18.209153	2.949771	10.034205
72	19.155187	2.916666	9.517371
80	19.119615	3.228302	9.243961
96	20.945467	3.720901	9.612271
120	20.590226	3.269624	9.660214
144	21.693518	4.227735	10.275369
160	23.026291	5.179367	10.967122
180	22.659279	3.988872	10.420435
240	23.959650	5.115210	11.061807
360	25.057874	5.204494	12.109950
480	27.247476	6.830716	14.326010
720	31.604413	11.754522	24.239679

Table 2: Float

Размер блока	Последовательное выполнение	Параллельное умножение различных пар блоков	Параллельное умножение каждого отдельного блока
1	126.76485	>2000	>2000
6	26.831554	6.443908	135.507158
10	19.616943	4.603957	38.301464
15	17.104209	3.968277	17.048714
20	15.852124	3.447534	14.182890
24	15.655131	3.398218	9.956785
30	16.751926	3.406890	10.086870
36	16.455042	3.164320	9.887745
40	16.435133	3.226078	8.873160
60	17.461879	3.064032	8.907447
72	18.286148	3.062220	8.203078
80	18.817116	3.283811	8.487900
96	19.400041	3.374524	8.609305
120	20.274852	3.094009	8.407928
144	20.872614	3.750691	8.605896
160	21.778877	4.566494	9.063349
180	21.730373	3.719191	8.948711
240	22.680135	4.614893	10.270536
360	24.215600	4.807746	11.031471
480	25.814551	5.477103	11.143063
720	27.479652	7.066395	14.969616

Результаты для GCC

Table 3: Double

Размер блока	Последовательное выполнение	Параллельное умножение различных пар блоков	Параллельное умножение каждого отдельного блока
1	48.546000	13.410000	>4000
6	8.46	2.341000	>2000
10	8.344000	2.202000	841.107000
15	8.583000	1.935000	248.689000
20	7.758000	1.844000	105.270000
24	7.678000	1.817000	62.030000
30	8.524000	1.839000	31.774000
36	8.754000	1.887000	18.780000
40	9.323000	1.910000	15.029000
60	9.506000	1.766000	5.792000
72	9.978000	1.762000	4.190000
80	10.716000	2.081000	3.657000
96	11.628000	2.272000	3.184000
120	11.676000	1.952000	2.461000
144	12.247000	2.624000	2.570000
160	12.887000	3.188000	2.779000
180	12.584000	2.443000	2.391000
240	13.507000	3.058000	2.642000
360	13.986000	2.870000	2.738000
480	15.131000	3.792000	3.891000
720	18.176000	7.093000	8.766000

Table 4: Float

Размер блока	Последовательное выполнение	Параллельное умножение различных пар блоков	Параллельное умножение каждого отдельного блока
1	46.56000	11.35000	>4000
6	7.806000	2.043000	>2000
10	7.090000	1.769000	770.822000
15	7.072000	2.144000	244.338000
20	7.923000	2.030000	110.936000
24	8.089000	1.995000	66.423000
30	8.678000	1.966000	34.324000
36	9.389000	2.081000	20.549000
40	9.733000	2.087000	15.998000
60	9.916000	1.959000	6.118000
72	10.387000	1.952000	4.563000
80	11.175000	2.232000	3.913000
96	11.639000	2.122000	3.205000
120	12.275000	2.048000	2.685000
144	12.600000	2.385000	2.551000
160	12.998000	3.081000	2.640000
180	13.310000	2.500000	2.682000
240	13.610000	3.226000	2.562000
360	14.683000	3.466000	3.127000
480	16.126000	3.169000	3.169000
720	17.575000	4.155000	4.512000

Сравнительный анализ компиляторов

По результатам проведенных экспериментов было установлено, что результаты компиляции программы с помощью GCC v8.3.0 значительно превосходят по скорости результаты, полученные при компиляции MSVC2019. Также на графике можно заметить, что в случае компиляции MSVC2019 параллельное перемножение двух различных пар блоков в два раза быстрее параллельного перемножения каждого отдельного блока. В случае GCC компиляции скорость между соотвественными способами отличается мало.

Следует также обратить внимание, что скорость работы программы в случае, когда размер блока равен 1 или 6, для последовательного перемножения с компилятором GCC в три раза быстрее, чем соответствующее перемножение с MSVC2019, однако в случае параллельного перемножения какждого отдельного блока GCC значительно проигрывает в скорости MSVC2019.

Заключение

По результатам проведенных исследований можно сделать вывод, что скорость перемножения матриц во многом зависит от выбора способа их перемножения. В частности, в данной работе было показано, что параллельное перемножение различных пар блоков в подавляющем большинстве случаев превосходит по скорости выполнения параллельное умножение каждого блока отдельно и непараллельное умножение. Однако данное утверждение справедливо исключительно для компилятора GCC. В случае использования компилятора MSVC2019 необходимо также подбирать размер блоков, на которые будут разбиваться матрицы, так как это оказывает большое влияние на скорость выполнения программы.