Subfile Example

Team Learn ShareLaTeX

9 Вопросы на 9

9.1 Эквивалентность определений нормального сепарабельного расширения (расширения Галуа)

Пусть $K\supset F$ — конечное сепарабельное расширение. Тогда следуещие условия эквивалентны:

- 1. Для любого элемента $\alpha \in K$, любой сопряженный к α над F тоже лежит в K
- $2.\ K$ является полем разложения какого-либо многолена надF
- 3. $|Aut_F K| = [K:F]$
- 4. $K^{Aut_FK} = F$

Такое расширение называется *нормальным* или *расширением* Γ *алуа*. 1 \rightarrow 2

Так как расширение конечное, $K = F(\alpha_1, \ldots, \alpha_n)$.

Положим $f:=m_{\alpha_1,F}\cdot\ldots\cdot m_{\alpha_n,F}$. Тогда, поскольку все сопряженные к α_1,\ldots,α_n лежат в K, K содержит все корни f. С другой стороны, если $K\supset L$ содержит все корни F, то $\alpha_1,\ldots,\alpha_n\in L\Rightarrow F(\alpha_1,\ldots,\alpha_n)\subset L\Rightarrow K\subset L\subset K\Rightarrow L=K,$ то есть K— поле разложения f над F.

Утверждение 1. Любой гомоморфизм $\varphi K \to \overline{F}$, сохраняющий F переводит элементы K в сопряженные к ним над F.

Доказательство утверждения 1:

Пусть
$$\alpha \in K$$
, $m_{\alpha,F} = \sum_{k=0}^{n} a_k x^k . m_{\alpha,F}(\alpha) = 0 \Rightarrow \varphi(m_{\alpha,F}(\alpha)) = \varphi(0) = 0.$

С другой стороны $0=\varphi(m_{\alpha,F}(\alpha))=\varphi(\sum\limits_{k=0}^n a_k\alpha^k)=\sum\limits_{k=0}^n a_k\varphi(\alpha)^k=m_{\alpha,F}(\varphi(\alpha)),$ что и означает, что $\varphi(\alpha)$ сопряжен к α над F.

Утверждение 2. Пусть $\varphi:K\to \overline{F}$ — гомоморфизм, сохраняющий F. Тогда φ является автоморфизмом K.

Действительно, пусть K — поле разложения f над F, и α_1,\dots,α_n — корни f.

Тогда $K = F(\alpha_1, \ldots, \alpha_n)$.

Поскольку для любого $i:m_{\alpha_i,F}|f\Rightarrow$ то все сопряженные к α_i над Fнаходятся среди корней f.

По утверждению 1 множество $\{\alpha_1, \ldots, \alpha_n\}$ переходит в свое подмножество, а учитывая, что любой нетривиальный гомоморфизм полей инъективен, то на самом деле оно переходит само в себя (в силу конечности). Тогда φ задает на множестве индексов корней f некую перестановку $\sigma.$

Пусть
$$\beta \in K, \beta = \sum_{k=0}^n a_k \alpha_k, a_k \in F$$
. Тогда $\varphi(\beta) = \varphi(\sum_{k=0}^n a_k \alpha_k) ==$

$$\sum_{k=0}^n a_k \alpha_{\sigma(k)} \in K.$$

 То есть $\varphi(K) \subset K.$

С другой стороны
$$\varphi(\sum_{k=0}^n a_k \alpha_{\sigma^{-1}(k)}) = \sum_{k=0}^n a_k \alpha_k = \beta$$
. То есть $\varphi(K) = K$. Итого, $\varphi: K \to K$ — сюръективный гомоморфизм полей, а значит —

автоморфизм K.

Поскольку $K \supset F$ — конечное сепарабельное, то по теореме о примитивном элементе найдется такое γ , что $K = F(\gamma)$.

Пусть $\gamma=\gamma_1,\gamma_2,\dots,\gamma_m$ — корни $m_{\gamma,F}.$ Вспомним утверждение 6.13 (точнее, его доказательство).

$$K=F(\gamma_1)\stackrel{\varphi}{\cong} F(\gamma_i)$$
, причем φ сохраняет F и $\varphi(\gamma_1)=\gamma_2$.

 $\varphi:K o \overline{F}$ — гомоморфизм, сохраняющий F, следовательно, по утверждению 2 он является автоморфизмом K, сохраняющем F. То есть для любого i существует $\varphi \in Aut_F K : \varphi(\gamma_1) = \gamma_i \Rightarrow |Aut_F K| \geqslant m$.

С другой стороны, тем, куда переходит $\gamma = \gamma_1$ автоморфизм, сохраняющий F полностью определяется (поскольку любой элемент K разлагается по степеням γ с коэффициентами из F). Значит, $Aut_FK \leqslant m$. Значит, $Aut_FK = m = \deg m_{\gamma,F} = [K:F]$, что и требовалось доказать.

$$3 \Rightarrow 4$$

Пусть
$$K^{Aut_FK} = L.K \supset L \supset F$$
 (5.31)

Пусть, по-прежнему, $K = F(\gamma)$. Мы уже выяснили, что при автоморфизме K, сохраняющем F γ переходит в корень $m_{\gamma,F}$, причем тем, куда переходит γ полностью определяется автоморфизм.

Заметим, что $K = L(\gamma)$, и что все вышесказанное справедливо и для расширения $K \supset L$, то есть $|Aut_L K| \leq \deg m_{\gamma,L} = [K:L]$

Все автоморфизмы, сохраняющие F сохраняют и L (по определению L), значит, $|Aut_FK| \leq |Aut_LK| \leq [K:L] \leq [K:F]$.

Ho
$$|Aut_FK| = [K:F] \Rightarrow [K:L] = [K:F] \Rightarrow L = F$$
.

Рассмотрим вспомогательное утверждение:

Пусть $K^H = F$. Тогда для любого $\beta \in K : |H| \geqslant m_{\alpha,F}$ (это нам конкретно сейчас не понадобится) и любой сопряженный к β над F лежит в K (а вот это будем использовать).

Докажем его. Рассмотрим
$$f_{\beta} = \prod_{h \in H} (x - h(\beta)).$$

Рассмотрим действие элементами H на элементах K[x]:

$$H \ni h \mapsto \alpha_h(\sum a_k x^k) = \sum h(a_k) x^k.$$

Проверим, что это действие (напомню: действие, это гомомофизм из Hв группу биекций K[x]).

1) Инъективность:

Пусть $\alpha_h(g_1) = \alpha_h(g_2)$, тогда образы всех коэффициенто g_1 совпадают с образами всех коэффициентов g_2 . Но h — автоморфизм, так что все κo эф- $\phi uuuehmu g_1$ совпадают с коэффициентами g_2

2) Сюръективность:

$$\alpha_h(\sum h^{-1}(\alpha_k)x^k) = \sum \alpha_k x^k$$

3) Гомоморфность:

3) Гомоморфность:
$$\alpha_{h_1} \circ \alpha_{h_2}(\sum a_k x^k) = \alpha_{h_1}(\sum h_2(a_k)x^k) = \sum h_1 h_2(a_k)x^k = \alpha_{h_1 h_2}$$
 Заметим также, что
$$\alpha_h((\sum a_k x^k)(\sum b_k x^k)) = \alpha_h(\sum (\sum_{i+j=k} a_i b_j)x^k) = \sum h(\sum_{i+j=k} a_i b_j)x^k = \sum (\sum_{i+j=k} h(a_i)h(b_j))x^k = (\sum h(a_k)x^k)(\sum h(b_k)x^k) = \alpha_h(\sum a_k x^k)\alpha_h(\sum b_k x^k).$$

$$\sum \left(\sum_{i+j=k} h(a_i)h(b_j)\right)x^k = \left(\sum h(a_k)x^k\right)\left(\sum h(b_k)x^k\right) = \alpha_h\left(\sum a_k x^k\right)\alpha_h\left(\sum b_k x^k\right)$$

Иными словами, $\alpha_h(fg) = \alpha_h(f)\alpha_h(g)$.

Возьмем произвольный $g \in H$. Учитывая вышесказанное

$$\alpha_g(f_\beta) = \prod_{h \in H} \alpha_g(x - h(\beta)) = \prod_{h \in H} (x - gh(\beta))$$
. Но умножение на элемент

группы есть автоморфизм группы, то есть gH = H, то есть $\alpha_q(f_\beta) = f_\beta$. То есть все коэфиициенты f_{β} сохраняются под действием любого элемента H.

Поскольку $K^H = F$, все коэффициенты f_β лежат в F, то есть $f_\beta \in F[x]$.

Поскольку $id \in H \Rightarrow f_{\beta}(\beta) = 0 \Rightarrow m_{\beta,F}|f_{\beta}$. То есть, во первых, $\deg m_{\beta,f} \leqslant$ $\deg f_{\beta} = |H|$ (последнее равенство – из определения f_{β}).

Во-вторых, все корни $m_{\beta,f}$ являются корнями f_{β} , то есть образами β при каком-то автоморфизме K, то есть лежат в K.

Значит, все сопряженные к β лежат в K.

По условию $K^{Aut_FK} = F$, значит, по утверждению, любой сопряженный к любому элементу K лежит в K. Что и требовалось доказать.

9.2Теорема Гильберта о базисе

Нужно доказать, что если K — нетерово, то и K[x] тоже нетерово (это и есть теорема Гильберта о базисе).

Пусть есть цепочка строго вложеных в K[x] идеалов $I_1 \subsetneq I_2 \subsetneq \ldots \subsetneq$ $I_n \subsetneq \dots$

Положим $I = \bigcup I_i$. Как неоднократно обсуждалось (5.6, 8.2) I — идеал.

Будем итеративно строить последовательность $f_1, \ldots, f_n, \ldots \in K[x]$

На i-м шаге будем выбирать $f_i \in I \setminus (f_1, f_2, \dots, f_{i-1}) : \deg f_i \to \min$.

(На первом шаге просто выберем $f_i \in I : \deg f_1 \to \min$. Под (f_1, \ldots, f_{i-1}) подразумевается идеал, порожденный соответствующими многочленами).

Корректность выбора (т.е что такое f_i существует) следует из того, что $f_1, \ldots f_{i-1} \in I_{i-1} \Rightarrow (f_1, \ldots, f_{i-1}) \subset I_{i-1} \subsetneq I_i \subset I.$

Рассмотрим теперь старшие коэффициенты этих многочленов $a_1, a_2, \ldots, a_n, \ldots$ Сразу заметим, что при $i < j : I \setminus (f_1, \ldots, f_i) \supset I \setminus (f_1, \ldots, f_j) \Rightarrow \deg f_i \leqslant I$ $\deg f_i$

Рассмотрим цепочку идеалов $(a_1)\subset (a_1,a_2)\subset \ldots\subset (a_1,\ldots,a_n)\subset \ldots$ Это последовательность вложенных идеалов из K. Поскольку K — нетерово, она стабилизируется, то есть существует такое N, что $a_{N+1}\in$

$$(a_1, \dots, a_N) \Rightarrow \exists b_1, b_2, \dots b_N : a_{N+1} = \sum_{i=1}^N b_i a_i.$$

Рассмотрим $f = f_{N+1} - \sum_{i=1}^N b_i \cdot f_i \cdot x^{\deg f_{N+1} - \deg f_i}$. (Все степени x-ов неотрицательны по замечанию выше). Степень f строго меньше степени f_{N+1} . С другой стороны, если $f \in (f_1, \dots, f_N) \Rightarrow f_{N+1} \in (f_1, \dots, f_N)$, что не так. Получили противоречие с минимальностью степени f_{N+1} .

То есть в K[x] не существует последовательности строго вложенных идеалов.

Пусть в K[x] есть последовательность вложенных идеалов, которая не стабилизируется. Тогда из нее можно выделить подпоследовательность строго вложенных идеалов. (Не стабилизируется равносильно тому, что $\forall N \exists n > N: I_N \subsetneq I_n$).

Получили, что K[x] нетерово, что и требовалось.

9.3 Если кольцо K факториально, то K[x] тоже факториально

Известное всем утверждение: если K — область целостности, то и K[x] — область целостности, причем $\deg ab \geqslant \deg a, \deg b$. ($\bigcap CBIJKa!!!$)

Для начала покажем, что если p неразложим в K, то p неразложим в K[x]. Действительно, пусть $\deg p\leqslant 0, p=ab$. Тогда $\deg a, \deg b\leqslant 0$, то есть $a\in K, b\in K$. Но поскольку p неразложим в K, то $a\in K^*\vee b\in K^*$. А поскольку обратимые элементы K — это в точности обратимые элементы K[x] (в силу того, что единица одна и та же и соображений степеней), получаем требуемое утверждение.

Теперь покажем, что если p неразложим в K, то p прост в K[x].

Пусть p|gh. Посмотрим на g и h как на элементы (K/(p))[x]. (то есть рассмотрим коэффициенты по модулю p). (Обозначим их как \overline{g} и \overline{h} соответственно).

Поскольку p неприводим в K и K факториально, то p прост в K (7.3), а значит, (K/(p)) — область целостности (6.9), а значит (K/(p))[x] — область целостности.

$$p|gh \Rightarrow \overline{g}\overline{h} = 0 \Rightarrow \overline{g} = 0 \lor \overline{h} = 0 \Rightarrow p|g \lor p|h.$$

(Тут неявно используется простое утверждение, что $K\ni p|g\Leftrightarrow$ все коэффициенты g делятся на p: просто вынести p за скобку или наоборот, внести).

Теперь пусть f примитивный элемент K[x] (то есть НОД всех его коэффициентов равен единице). Пусть $f = g \cdot h$ в $\mathrm{Quot}(K)[x]$, причем $\deg g, \deg h \geqslant 1$. Тогда существуют такие $\hat{g}, \hat{h} \in K[x]$: $f = \hat{g} \cdot \hat{h}, \deg \hat{g}, \deg \hat{h} \geqslant 1$.

В дальнейших рассуждениях, когда я буду говорить "числитель" и "знаменатель", я буду иметь в виду, что все дроби записаны в несократимом виде (то есть что числитель и знаменатель взаимно просты)

Действительно, пусть $c_g = \frac{\text{НОД всех числителей g}}{\text{НОК всех знаменателей g}}$

Обозначим $\hat{g} = \frac{1}{c_q} g, \hat{h} = \frac{1}{c_h} h.$

Утверждение: \hat{g} — примитивный многочлен из K[x].

Доказательство утверждения: Пусть a_n, \ldots, a_0 — числители g, b_n, \ldots, b_0 — знаменатели. Обозначим за (a,b) НОД двух (или более) чисел, за [a,b] — HOK.

Пусть $a_i = (a_0, \ldots, a_n) \cdot a'_i, b'_i = [b_n, \ldots, b_0]/b_i$.

 a_0,\ldots,a_n делятся на $(a_0,\ldots,a_n)\cdot(a_0',\ldots,a_n')\Rightarrow (a_0,\ldots,a_n)\cdot(a_0',\ldots,a_n')|(a_0,\ldots,a_n)$ (поскольку (a_0,\ldots,a_n) — НОД). Но это значит, что $(a'_0,\ldots,a'_n)=1$ и значит a_i' взаимно просты.

 b_i' тоже взаимно просты: $b_i|[b_0,\ldots,b_n]/b_i'\Rightarrow b_i|[b_0,\ldots,b_n]/(b_0',\ldots,b_n')\forall i\Rightarrow$ $[b_0,\ldots,b_n][b_0,\ldots,b_n]/(b_0',\ldots,b_n')$ (в силу определения НОК).

Теперь покажем, что $a_i' \cdot b_i'$ взаимно просты. (Эти числа и будут коэффициентами \hat{g}). Пусть они все делятся на какое-то необратимое число p. В силу факториальности K p можно считать простым. Каждое число $a_i' \cdot [b_0, \ldots, b_n]/b_i$ делится на p, значит, в силу определения простоты, для любого i либо a_i делится на p, либо $[b_0,\ldots,b_n]/b_i$ делится на p.

Все a_i одновременно делится на p не могут. Пусть k такое, что b_k делится на максимальную степень p (среди b_i). Пусть $p^l|b_k;p^{l+1}\nmid b_k$. Заметим, что именно на такую степень делится $[b_0,\ldots,b_n]$ (меньше не может быть, ведь $b_k[[b_0,\ldots,b_n],$ Пусть $p^{l+1}[[b_0,\ldots,b_n]. \forall i[b_0,\ldots b_n]=b_i'\cdot b_i.$ Поскольку в разложении на неразложимые в левой части p входит в хотя бы p^{l+1} степени, а $p^{l+1} \nmid b_i$, то все b_i' делятся на p, что невозможно в силу их взаимной простоты).

Рассмотрим $a_k' \cdot [b_0, \dots, b_n]/b_k$. С одной стороны, a_k' взаимно просто с b_k (так как a_k взаимно просто с b_k , а $a_k'|a_k$, то есть $p \nmid a_k'$. С другой стороны, в разложение на неразложимые $[b_0,\ldots,b_n]$ и b_k p входит в одной и той же степени). Значит, $[b_0, \ldots, b_n]/b_k$ не делится на p. Противоречие.

Продолжим.

Тогда $g = c_g \hat{g}, \ h = c_h \hat{h}, \ \text{где } \hat{g}, \hat{h} \in K[x]$ — примитивные многочлены. Пусть $c_g \cdot c_h = \frac{u \cdot p_1^{\alpha_1} \cdot \ldots \cdot p_k^{\alpha_k}}{v \cdot q_1^{\beta_1} \cdot \ldots \cdot q_k^{\beta_l}}$. (Разложили числитель и знаменатель дроби на неразложимые и обратимые. Напомню, что мы считаем, что числитель и знаменатель взаимно просты).

Рассмотрим q_1 . $q_1 \cdot v \cdot q_1^{\beta_1 - 1} \cdot \ldots \cdot q_l^{\beta_l} \cdot f = u \cdot p_1^{\alpha_1} \cdot \ldots \cdot p_k^{\alpha_k} \cdot \hat{g} \cdot \hat{h}$, то есть $u\cdot p_1^{\alpha_1}\cdot\ldots\cdot p_k^{\alpha_k}\cdot \hat{g}\cdot \hat{h}$ делится на q_1 в K. q_1 прост в K, значит он прост в K[x]. Тогда либо $u\cdot p_1^{\alpha_1}\cdot\ldots\cdot p_k^{\alpha_k}$ делится на q_1 (что не так в силу взаимной простоты числителя и знаменателя), либо \hat{g} делится на q_1 либо \hat{h} . Но это тоже не так в силу примитивности \hat{q}, \hat{h} . То есть на самом деле никакого знаменателя нет (можно считать, что нет даже "обратимой" его части (v)так как ее всегда можно засунуть в \hat{g} , например. Давайте также считать, что и u = 1).

Итак, $f = p_1^{\alpha_1} \cdot \dots \cdot p_k^{\alpha_k} \cdot \hat{g}\hat{h}$. В силу примитивности f все α_i равны нулю, так что $f = \hat{g} \cdot \hat{h}$. Поскольку $\deg \hat{g} = \deg g, \deg \hat{h} = \deg h$ заключаем требуемое.

То есть мы доказали, что если f — примитивный элемент K[x], то он неразложим тогда и только тогда, когда f неразложим в $\mathrm{Quot}(K)[x]$.

Покажем, что если f неразложим в K[x], то f прост в K[x].

Если $\deg f \leqslant 0$ то мы это уже показывали. Если $\deg f > 0$ и f не примитивный, то он не неразложим (f делится на НОД своих коэффициентов). Иначе же f неразложим в $\mathrm{Quot}(K)[x]$, следовательно, прост в $\mathrm{Quot}(K)[x]$. (Так как многочлены над полем — евклидово кольцо).

Пусть $f|gg_1$ в K[x]. Тогда $f|gg_1$ в $\mathrm{Quot}(K)[x]$, и значит $f|g\vee f|g_1$. Пусть, без потери общности, $f|g\Rightarrow fh=g$ в $\mathrm{Quot}(K)$. Заметим, что $f,g\in K[x]$. Покажем, что $h\in K[x]$.

 $h = c_h \cdot \hat{h}$, где \hat{h} — примитивный. f тоже примитивный и, значит, у c_h нет знаменателя (рассуждение недавно проводилось выше — пусть есть, возьмем простой делитель . . .), то есть $h \in K[x]$.

Таким образом мы показали, что любой неразложимый элемент K[x] прост.

Покажем существование разложения индукцией по степени.

Если $\deg f \leqslant 0$ то разложение совпадает с разложением в K.

Пусть $\deg f \neq 0$. Тогда $f = c_f \cdot \hat{f}$, где \hat{f} — примитивный. У c_f есть разложение. Пусть \hat{f} разложим, тогда $\hat{f} = gh$, где $\deg g$, $\deg h < \deg \hat{f} = \deg f$ (в силу примитивности \hat{f}), и значит, у g, h существуют разложения по предположению индукции. Перемножая разложения c_f , g, h получим разложение f в неразложимые.

Остается воспользоваться утверждением 7.2 и требуемое доказано.

9.4 Основная теорема теории Галуа

Теорема. (Основная теорема теории Галуа) Пусть $K \supset F$ — расширение Галуа. Тогда:

- 1) Существует биективное соответствие между подполями $K \supset L \supset F$ и подгруппами Aut_FK , задаваемое отображениями:
 - $\varphi: L \mapsto Aut_L K$ и $\psi: H \mapsto K^H$
- 2) $L\supset F$ нормальное тогда и только тогда, когда Aut_LK нормальна в Aut_FK .
 - 3) $[L:F] = [Aut_FK: Aut_LK]$

Докажем ее:

1) Заметим, что если $K\supset L\supset F$, то $K\supset L$ — расширение Галуа, поскольку K является полем разложения некоторого многочлена f над F (в силу нормальности $K\supset F$), а значит, K является полем разложения f над L (f раскладывается к K на линейные множители, а если есть какое-то промежуточное поле $K\supset K'\supset L$, что в K' f раскладывается на линейные множители, то существует $K\supset K'\supset F$ с нужными свойствами, что противоречит тому, что K — поле разложения f над F)

Итак, $\psi(\varphi(L)) = \psi(Aut_L K) = K^{Aut_L K} = L$ в силу 3-го определения расширения Галуа.

Пусть $\psi(H) = K^H =: L$, тогда пусть $\varphi(\psi(H)) = Aut_L K =: H'$. Заметим, что из определения $L H \subset H'$. Поскольку $K \supset L$ — расширение Галуа, а значит конечное и сепарабельное, можно применить теорему о примитивном элементе (или ее конечный аналог — теорему о цикличности мультипликативной группы поля), то есть $K = L(\gamma)$.

С другой стороны, по утверждению из доказательства 9.1, примененного к расширению $K\supset L$ и $H:|H|\geqslant \deg m_{\gamma,L}=[K:L]=|H'|$. То есть на самом деле H'=H.

Таким образом, φ и ψ — взаимно обратные преобразования, а значит биекции.

2) Возьмем $g \in Aut_FK$. $K^{gHg^{-1}} = \{x \in K \mid \forall h \in Hghg^{-1}(x) = x\} = \{x \in K \mid \forall h \in Hhg^{-1}(x) = g^{-1}(x) = \{x \in gK \mid \forall h \in Hh(x) = x\} = gK^H$ То есть $H \triangleleft Aut_FK \Leftrightarrow \forall g \in Aut_FK \ gHg^{-1} = H \stackrel{\varphi - \text{биекция}}{\Leftrightarrow} \ \forall g \in Aut_FKK^H = H \stackrel{q}{\to}$

 $K^{gHg^{-1}} = qK^H$

Покажем, что $\forall g \in Aut_F KK^H = gK^H \Leftrightarrow K \supset K^H$ — нормальное.

Пусть $\forall g \in Aut_F K K^H = gK^H$. Пусть $\alpha \in K^H$. Поскольку группа Галуа Aut_FK действует транзитивно на корнях $m_{\alpha,F}$, для любого β сопряженного с α над F существует $g \in Aut_F K : g(\alpha) = \beta$. Но $\alpha \in K^H \Rightarrow \beta \in g(K^H) =$ K^H , то есть все сопряженные к любому элементу K^H лежат в K^H , то есть $K^H \supset F$ — нормальное.

Поскольку $\forall \alpha \in K^H, \forall g \in Aut_FK : g(\alpha)$ сопряжен к α , а все сопряженные к α элементы лежат в K^H поскольку $K^H\supset F$ — нормальное, то $g(K^H) \subset K^H \forall g \in Aut_F K$.

Но тогда $g^{-1}(K^H) \subset K^H \Rightarrow g(K^H) = K^H$.

Что и требовалось доказать.

- 3) $[L:F] = [K:F]/[K:L] = |Aut_FK|/|Aut_LK| = [Aut_FK:Aut_LK].$ Второе равенство выполнено, так как $K\supset L$ и $K\supset F$ — расширения Галуа.
- 4) (Бонус) Если $K\supset L\supset F$, и $K\supset F$, $L\supset F$ нормальные, то $Aut_FL\cong$ $Aut_F K / Aut_I K$

Доказательство: Построим гомоморфизм $\varphi: Aut_FK \to Aut_FL$ следующим образом: $\varphi(g) = g|_L$. Это определение корректно, так как $g|_L$ — гомоморфизм из L в \overline{F} , а значит, по утверждению из доказательства $9.1, g|_L$ автоморфизм L. Ядро же этого гомоморфизма, очевидно Aut_LK .

Применим основную теорему о гомоморфизмах: $Aut_FL \gtrsim Aut_FK /_{Aut_LK}$. Но по пункту 3 порядки этих групп равны, то есть $Aut_FL \cong Aut_FK / Aut_FK$, что и требовалось.

9.5Основная теорема алгебры

Teopema. \mathbb{C} — алгебраически замкнутое поле.

Нам понадобятся два следующих утверждения:

1) Над $\mathbb R$ не бывает нетривиальных конечных расширений нечетной степени.

Доказательство: Пусть $K \supset \mathbb{R}$ — конечное расширение.

По теореме о примитивном элементе $K=\mathbb{R}(\gamma)$. $\deg m_{\gamma,\mathbb{R}}=[K:\mathbb{R}]$. Если $[K:\mathbb{R}]$ нечетно, то по известному факту из анализа, $m_{\gamma,\mathbb{R}}$ имеет корень. Но тогда, в силу неприводимости, его степень равна единице, то есть расширение — тривиально.

2) Над С не существует расширений второй степени.

Пусть $K\supset\mathbb{C}$ — расширение второй степени, то есть

 $K=\mathbb{C}(\gamma)$, где $\deg m_{\gamma,\mathbb{C}}=2$. Но над \mathbb{C} не бывает неприводимых многочленов второй степени (поскольку можно найти корни через формулу с дискриминантом и разложить по теореме Виетта на два линейных сомножителя).

Теперь, пусть над \mathbb{C} есть нетривиальное алгебраическое расширение K_1 . Выберем $\gamma \in K_1 \backslash \mathbb{C}$. $\mathbb{C}(\gamma) \supset \mathbb{C} \supset \mathbb{R}$ — башня конечных алгебраических расширеший. Рассмотрим поле разложения $m_{\gamma,\mathbb{R}}$ над \mathbb{C} .

Лемма. Пусть $K\supset L\supset F$ и $L\supset F$ — нормальное, а K является полем разложения $f\in F[x]$ над L. (Соответственно, $K\supset L$ нормально). Тогда $K\supset F$ — нормально.

Пусть α_1,\ldots,α_n — корни f, тогда $K=L(\alpha_1,\ldots,\alpha_n)$. Пусть L является полем разложения g над F, и корнями g являются β_1,\ldots,β_m . Тогда $L=F(\beta_1,\ldots,\beta_m)$. Тогда $K=F(\alpha_1,\ldots,\alpha_n,\beta_1,\ldots,\beta_m)$, и, значит, K является полем разложения fg над F. То есть $K\supset F$ — нормальное.

Продолжим.

Итак, $\mathbb{C} \supset \mathbb{R}$ нормально (как поле разложения x^2+1), и K является полем разложения многочлена с коэффициентами из \mathbb{R} над \mathbb{C} . (Многочлен $-m_{\gamma,\mathbb{R}}$).

То есть K нормально над $\mathbb R$. Пусть $[K:\mathbb C]=t,$ и $t=2^{n-1}\cdot m,$ где (m,2)=1.

Пусть также $G = Aut_{\mathbb{R}}K$. Так как расширение нормально, $|G| = [K:\mathbb{R}] = 2^n \cdot m$. По теореме Силова в |G| есть подгруппа порядка 2^n . Ей соответствует некоторое подполе $L:K\supset L\supset \mathbb{R}$, причем $[L:\mathbb{R}]=m$ (по основной теореме теории Галуа). Но так как m нечетно, то по первому утверждению m=1.

То есть $[K:C]=2^{n-1}$. Это расширение также нормально, пусть H—его группа Галуа. Тогда в ней есть подгруппа порядка 2^{n-2} (если $n\geqslant 2$) [Это факт из ТГ, например, следует из доказательства теоремы Силова, приведенного в Кострикине]. Тогда есть соответствующее ей подполе $L:K\supset L\supset \mathbb{C}$, причем $[L:\mathbb{C}]=2$, чего не бывает. То есть n=1 и $K=\mathbb{C}$, то есть над \mathbb{C} нет нетривиальных алгебраических расширений. Что и требовалось доказать.

9.6 Теорема Ферма при n=3 с использованием чисел Эйзенштейна

Нам нужно доказать, что $x^3+y^3=z^3$ неразрешимо в \mathbb{Z} . (нетривиальным образом).

Пусть разрешимо, тогда можно поделить на (x,y,z) (НОД) и получить взаимно простые в совокупности x,y,z. Заметим, что если простое p|x,p|y $\Rightarrow p|x^3+y^3=z^3\Rightarrow p|z^3$, То есть p|(x,y,z). То есть (x,y)=(y,z)=(x,z)=1. По задаче 6.8 $\lambda|xyz$ в $\mathbb{Z}[\omega]$.

9.7 Сведение разрешимости уравнения в радикалах к разрешимости соответствующей группы Галуа

(Теоремой Куммера можно пользоваться без доказательства)

9.8 Пример уравнения, неразрешимого в радикалах

(Теоремой о разрешимости группы Галуа можно пользоваться без доказательства).

- 9.9 Неприводимость многочлена деления круга $\Psi(x)$ над $\mathbb Q$
- 9.10 Теорема Островского