Conteúdo baseado em (NICOLETTI, 2017)

3ª Lista de Exercícios

1. Considere o alfabeto definido por:

Constantes: a, b, c Variáveis: X, Y, Z

Símbolos funcionais: f/3, g/2, h/1 Simbolos predicados: p/3, q/2

Quantificadores: \forall , \exists Conectivos: \neg , \land , \lor , \rightarrow , \leftrightarrow Simbolos de pontuação: (),

Verifique quais da expressões lógicas a seguir são fórmulas bem-formadas. Justifique sua resposta com base na definição de fórmula bem-formada (fbf ou wff) vista em aula:

Uma fórmula bem-formada é:

- 1. Um símbolo de verdade (V e F);
- **2.** Se p é um símbolo de predicado n-ário e t_1, \ldots, t_n são termos então $p(t_1, \ldots, t_n)$ é uma fórmula atômica;
- **3.** Se α é uma fórmula, então $\neg \alpha$ é uma fórmula;
- **4.** Se α e β são fómulas, então também são fórmulas: $\alpha \wedge \beta$, $\alpha \vee \beta$, $\alpha \rightarrow \beta$ e $\alpha \leftrightarrow \beta$
- 5. Se α for uma fórmula e X for uma variável livre em α , então $\forall X\alpha$ e $\exists X\alpha$ são fómulas
- (a) $\exists X(\forall Xp(X,a,b))$
- (b) $\forall Y(\forall Xp(X,Y,b))$
- (c) $\forall Y(\exists Xp(X,a,b))$
- (d) $\forall X(\exists Y p(X, a, Y) \rightarrow q(f(X), g(Y)))$
- (e) $(p(X, g(a, b), Y) \vee q(h(h(Z)), d) \wedge \neg q(c, d)$
- (f) $p(q(X, a), b, Y) \rightarrow q(c, d)$
- (g) $\forall X(\exists Z(\forall Y(p(a,b,X) \rightarrow q(g(X,Z),f(a,b,Y))))))$
- (h) $\neg h(p(a,b,c)) \lor f(d,d)$
- (i) $(\exists Y((\exists Z(p(Z,Z,Z) \lor \neg q(Y,Y))) \lor (\forall Xq(X,X))))$
- $(j) \ \forall X(\exists Y(p(X,Y,f(a,b,Y)) \to (\exists Zp(Z,Z,d))))$
- (k) $\forall X(\exists Y(p(f(a,b,c),Y,X))) \rightarrow (\exists Y(\forall Xq(h(Y),g(X,Y))))$

- (1) $\forall X(f(X,b,c) \leftrightarrow q(h(X)))$
- (m) $(a \lor b) \leftrightarrow (b \lor c)$
- (n) $\forall X(q(X,Y) \lor \neg p(f(a,b,X),g(Z,Z,X),h(a)))$
- 2. Identifique as variáveis livres e ligadas nas fórmulas a seguir, e quais fórmulas são fechadas.
 - (a) $\forall X(p(X,Y) \to (\exists Z(q(a,Z,M) \leftrightarrow r(Z,T,X))))$
 - (b) $\forall X(\forall Y(\neg p(a) \lor q(X,Y))) \land \forall Xp(X) \land \forall Y(q(a,Y) \lor \neg p(Y))$
 - (c) $\exists Z(p(Z,a) \leftrightarrow q(Z,Z)) \rightarrow \forall Y(\exists X(p(a,X) \lor \neg r(X,Y) \lor \neg q(Y,b)))$
 - (d) $\forall X(\forall Y(\exists Z(r(X,Y) \land \neg r(a,Y))) \rightarrow \forall Zs(Z,b,Z))$
 - (e) $\forall X \forall Y (p(X, Y, Z) \land \neg r(y, X) \lor \neg q(X)) \leftrightarrow \forall Z q(Z)$
- 3. Construa o fechamento universal e o existencial das fórmulas:
 - (a) $\forall X p(X, Y)$
 - (b) $\forall X p(X,Y) \land \exists Y q(Y)$
 - (c) $(\forall X(\exists Y(q(X,Y) \lor p(Z))))$
 - (d) $(\forall X(\forall Z(p(X,Y,Z,T) \leftrightarrow q(Z,M))))$
 - (e) $\exists X(\forall Y(p(a,b,Y) \lor \neg q(X,b)))$
- 4. Mapeie as senteças a seguir, que estão em língua natural, para a Lógica de Predicados.
 - (a) Ganso e Neymar são jogadores.
 - (b) Neymar é jogador e é pai de Davi Lucca.
 - (c) Se Ganso é jogador então ele não é humorista.
 - (d) Qualquer um é humorista.
 - (e) Existe alguém que não é jogador e nem humorista.
 - (f) Se ninguém é jogador então não existem jogadores.
 - (g) Ana é estudiosa.

- (h) Pedro é advogado e Guilherme é estudante.
- (i) Maria vai à festa ou ao teatro.
- (j) Gabriel não é programador.
- (k) Pedro e Guilherme são primos.
- (l) Maria e Ana não são primas, elas são vizinhas.
- (m) Se a função f for diferenciável, ela é contínua.
- (n) A função f é contínua, mas não é diferenciável.
- (o) Antônio faltou à aula, mas Ana não faltou.
- (p) Se Pedro é mais alto que Ana, e Ana é mais alta que André, então Pedro é mais alto que André.
- (q) Maria lê jornal.
- (r) A mãe de Maria gosta de Maria.
- (s) A mãe da mãe de Maria gosta da mãe de Maria e gosta de Maria.
- (t) Todos os homens são mortais.
- (u) Alguns homens são mortais.
- (v) Nenhum homem é mortal.
- (w) Alguns cachorros latem, outros não.
- (x) Existem pessoas bondosas, no entanto nem todas as pessoas são bondosas.
- (y) Se Pedro não é estudioso, nenhum dos rapazes é estudioso.
- (z) Se Guilherme acordar tarde, então Gabriel irá ao mercado e alguém vai gastar dinheiro.
- (aa) Se o abacate e o caqui engordam, então há alimentos que engordam.
- (ab) Alguns alunos estudam, e nem todos os alunos estudam.
- (ac) Todo aluno é mais novo que alguns professores.
- (ad) Nem todas as aves podem voar.

Conteúdo baseado em (NICOLETTI, 2017)

- (ae) Toda criança é mais nova que a mãe da criança.
- (af) Nenhum número natural é negativo.
- (ag) Alguns números primos são pares.
- (ah) Todos os números pares são maiores do que 1.
- (ai) Números pares são primos apenas se forem menores do que 3.
- (aj) Não existe número primo menor do que 3.
- 5. Considere uma linguagem de primeira ordem (linguagem da lógica de predicados) λ cujo alfabeto tem os seguintes símbolos:

Constantes: {a, b, c, d} Variáveis: {X, Y, Z, W}

Símbolos funcionais: $\{f/1, g/1, h/1\}$ Símbolos predicados: $\{p/1, q/2, s/1\}$

Seja I a seguinte interpretação:

Domínio: $\{1,2\}$

Atribuição a constantes:

a	b	с	d
1	2	1	2

Atribuição a variáveis:

X	Y	Z	W	
2	1	1	2	

Atribuição a símbolos funcionais:

f(1)	f(2)	g(1)	g(2)	
2	1	2	1	

Atribuição a símbolos predicados:

p(1)	p(2)	q(1,1)	q(1,2)	q(2,1)	q(2,2)	s(1)	s(2)
V	F	F	V	V	F	F	V

Avalie cada uma das fórmulas a seguir na interpretação I, ou seja, diga qual é o valor-verdade de cada fórmula na interpretação I.

- (a) $\forall X \forall Y (p(X) \lor q(Y,c) \lor \neg q(X,a) \lor s(f(W)))$
- (b) $\exists X \forall Z(p(X) \rightarrow q(Z,c))$

- (c) $\forall W \exists Y \exists Z (p(Y) \lor q(W, W) \lor \neg s(Z))$
- (d) $\forall X \exists Y (q(X,Y) \lor s(X)) \lor \forall W q(a,W)$
- (e) $\exists X \exists Y ((p(X) \lor s(Y)) \to q(X, X)) \leftrightarrow \forall X q(X, W)$
- (f) $\exists W p(g(W)) \lor \forall X \exists Y q(f(X), Y) \lor s(g(Z))$
- (g) $\exists X(p(X) \leftrightarrow q(X,d)) \rightarrow \forall X \exists W q(g(X), f(W))$
- 6. Considere uma linguagem de primeira ordem (linguagem da lógica de predicados) λ cujo alfabeto tem os seguintes símbolos:

Variáveis: {X, Y, Z}

Simbolos predicados: $\{p/2\}$

Seja I a seguinte interpretação:

Domínio: {a,b,c}

Atribuição:

X	Y	Z	p(a,a)	p(a,b)	p(a,c)	p(b,a)	p(b,b)	p(b,c)	p(c,a)	p(c,b)	p(c,c)
a	a	b	V	F	V	F	V	V	F	V	V

Avalie cada uma das fórmulas a seguir na interpretação I.

- (a) $\forall X \exists Y p(X, Y)$
- (b) p(Y,Z)
- (c) $\forall Y p(Y, Y)$
- (d) $\exists X \exists Y p(X, Y)$
- (e) $\forall Y p(Y,Y) \land \exists X \forall Y p(X,Y)$
- 7. Suponha que sejam válidas as seguintes assertivas:

 α_1 : Rex é um terrier.

 α_2 : Se Rex é um terrier, então ele late e morde.

 α_3 : Todos os terrier são cachorros.

 α_4 : Todo cachorro que late é barulhento.

Usando inferência com base em regras, prove que a seguinte conclusão segue logicamente das assertivas:

Existe cachorro barulhento.

- 8. Usando inferência com base em regras, prove a validade dos argumentos a seguir. Vários desses argumentos encontram-se descritos em Hegenberg (1976).
 - (a) Todos os poetas são sensíveis. Há poetas. Logo, há (pessoas) sensíveis. OBS.: Considere o domínio dos seres humanos, ou seja, não precisa especificar o predicado "serhumano" ou "pessoa", por exemplo.
 - (b) Alguns felinos são tigres. Todos os tigres são belos. Logo, alguns felinos são belos. OBS.: Considere o domínio dos animais, ou seja, não precisa especificar o predicado "animal", por exemplo.
 - (c) Nenhuma baleia é peixe. Moby Dick é baleia. Logo, Moby Dick não é peixe. OBS.: Considere o domínio dos animais, ou seja, não precisa especificar o predicado "animal", por exemplo.
 - (d) Nenhum jogador é pobre. Alguns pobres são felizes. Logo, alguns não jogadores são felizes. OBS.: Considere o domínio dos seres humanos, ou seja, não precisa especificar o predicado "serhumano" ou "pessoa", por exemplo.
 - (e) Há uma pessoa em quem ninguém acredita. Logo, há uma pessoa que não acredita em si mesma. OBS.: Considere o domínio dos seres humanos, ou seja, não precisa especificar o predicado "serhumano" ou "pessoa", por exemplo.
 - (f) Somente os répteis são cobras. Algumas cobras são perigosas. Assim, nem todo réptil deixa de ser perigoso.
 - OBS.: Considere o domínio dos animais, ou seja, não precisa especificar o predicado "animal", por exemplo.
 - (g) Ou alguns carros são velozes ou não há carro que não seja bom. Ora, não é verdade que todos os carros são bons. Logo, alguns carros são velozes.
 - OBS.: Considere o universo como o domínio, ou seja, todas as propriedades devem virar predicados.
 - (h) Todos os franceses são amáveis. Só os generosos são amáveis. Para ser generoso é preciso ser honesto. Há empresários desonestos. Logo, nem todo empresário é francês. OBS.: Considere o domínio dos seres humanos, ou seja, não precisa especificar o predicado "serhumano" ou "pessoa", por exemplo.
- 9. Determine, em cada caso, o resultado da aplicação da substituição à fórmula:

	Fórmula	Substituição
a)	gosta(X, pai(Y))	$\theta = \{ m\tilde{a}e(Y)/X, maria/Y \}$
b)	gosta(X, pai(Y))	$\theta = \{m\tilde{a}e(maria)/X, maria/Y\}$
c)	arvore(t(X, t(Y,Y)))	$\theta = \{t(U,U)/X,U/Y\}$
d)	p(X,Y,a)	$\theta = \{Z/X, M/Y, K/T, a/N\}$

- (a) gosta(X,pai(Y))
- (b) gosta(X, pai(Y))
- (c) arvore(t(X, t(Y,Y)))
- (d) p(X,Y,a)

- 10. Verifique se cada um dos conjuntos de expressões a seguir é unificável. Para aqueles unificáveis, escreva se a substituição é a unificadora mais geral.
 - (a) $\{p(X,g(Y),a),p(Z,M,N),p(c,K,T),p(X1,X2,X3)\}$
 - (b) $\{q(a,b),q(M,Z),q(T,A),q(a,N)\}$
 - (c) $\{q(g(M),K,L),q(a,b,c),q(N,b,Z)\}$
 - (d) $\{p(f(f(g(a))),c,g(b)),p(X,Y,Z)\}$
 - (e) $\{r(a,b,f(Z)),r(X,Y,Z),r(b,b,M)\}$
 - (f) $\{s(Z_1,Z_2,f(f(Z_4))),s(g(a),M,N,T),r(g(Z),c,d,K)\}$
- 11. Converta para a Forma Normal Conjuntiva (FNC) as seguintes fórmulas:
 - (a) $\forall X \forall Y (p(X) \lor q(Y,c) \lor \neg q(X,a) \lor s(f(W)))$
 - (b) $\exists X \forall Z(p(X) \to q(Z,c))$
 - (c) $\forall W \exists Y \exists Z (p(Y) \lor q(W, W) \lor \neg s(Z))$
 - (d) $\forall X \exists Y (q(X,Y) \lor s(X)) \lor \forall W q(a,W)$
 - (e) $\exists X \exists Y ((p(X) \lor s(Y)) \to q(X, X)) \leftrightarrow \forall X q(X, W)$
 - (f) $\exists W p(g(W)) \lor \forall X \exists Y q(f(X), Y) \lor s(g(Z))$
 - (g) $\exists X(p(X) \leftrightarrow q(X,d)) \rightarrow \forall X \exists W q(g(X), f(W))$
- 12. Usando inferência por resolução prove que a conclusão do exercício 7 decorre das premissas dadas.
- 13. Usando inferência por resolução prove a validade dos argumentos do exercício 8.
 - (a) Todos os poetas são sensíveis. Há poetas. Logo, há (pessoas) sensíveis. OBS.: Considere o domínio dos seres humanos, ou seja, não precisa especificar o predicado "serhumano" ou "pessoa", por exemplo.
 - (b) Alguns felinos são tigres. Todos os tigres são belos. Logo, alguns felinos são belos. OBS.: Considere o domínio dos animais, ou seja, não precisa especificar o predicado "animal", por exemplo.
 - (c) Nenhuma baleia é peixe. Moby Dick é baleia. Logo, Moby Dick não é peixe. OBS.: Considere o domínio dos animais, ou seja, não precisa especificar o predicado "animal", por exemplo.
 - (d) Nenhum jogador é pobre. Alguns pobres são felizes. Logo, alguns não jogadores são felizes. OBS.: Considere o domínio dos seres humanos, ou seja, não precisa especificar o predicado "serhumano" ou "pessoa", por exemplo.
 - (e) Há uma pessoa em quem ninguém acredita. Logo, há uma pessoa que não acredita em si mesma. OBS.: Considere o domínio dos seres humanos, ou seja, não precisa especificar o predicado "serhumano" ou "pessoa", por exemplo.
 - (f) Somente os répteis são cobras. Algumas cobras são perigosas. Assim, nem todo réptil deixa de ser perigoso.
 - OBS.: Considere o domínio dos animais, ou seja, não precisa especificar o predicado "animal", por exemplo.

- (g) Ou alguns carros são velozes ou não há carro que não seja bom. Ora, não é verdade que todos os carros são bons. Logo, alguns carros são velozes.
 - OBS.: Considere o universo como o domínio, ou seja, todas as propriedades devem virar predicados.
- (h) Todos os franceses são amáveis. Só os generosos são amáveis. Para ser generoso é preciso ser honesto. Há empresários desonestos. Logo, nem todo empresário é francês.
 - OBS.: Considere o domínio dos seres humanos, ou seja, não precisa especificar o predicado "serhumano" ou "pessoa", por exemplo.