PATENT ABSTRACTS OF JAPAN

(11)Publication number:

04-279637

(43) Date of publication of application: 05.10.1992

(51)Int.Cl.

C08J 3/12 B01J 13/02 C08F291/00

(21)Application number: 03-152167

(71)Applicant: JAPAN SYNTHETIC RUBBER CO

LTD

(22)Date of filing:

29.05.1991

(72)Inventor: SAKURAI FUJIO

KASAI KIYOSHI KONDOU MINORI

(30)Priority

Priority number: 02323079

Priority date: 28.11.1990

Priority country: JP

(54) FINE HOLLOY POLYMER PARTICLE AND ITS PRODUCTION

(57)Abstract:

PURPOSE: To obtain fine hollow polymer particles, good in polymerization stability and excellent in shielding properties, gloss, adhesion and film strength by polymerizing a specific monomer component in the presence of specified fine polymer particles in an aqueous medium using a water-soluble polymerization initiator.

CONSTITUTION: The objective fine particles are obtained by polymerizing (B) 100 pts.wt. monomer component composed of (iv) 0.1–35wt.% ionic monomer, (v) 65–99.9wt.% nonionic monomer capable of reducing the solubility parameter with a change from the monomer into a polymer during polymerization and (vi) 0–35wt.% nonionic monomer other than the aforementioned component (v) in the presence of (A) 10–300 pts.wt. fine polymer particles prepared by polymerizing monomers composed of (i) 0–35wt.% ionic monomer, (ii) 65–100wt.% nonionic monomer increasing or unchanging the solubility parameter with a change from the monomer into a polymer during the polymerization and (iii) 0–35wt.% nonionic monomer other than the above–mentioned component (ii) in an aqueous medium using a water–soluble polymerization initiator.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-279637

(43)公開日 平成4年(1992)10月5日

(E1)7-4 C1 5	識別記号	庁内整理番号	ГŦ	技術表示简所
(51)Int.Cl. ⁵ C 0 8 J 3/12	Z	7918-4F	• •	
- · · ·	L	1310-41		
B 0 1 J 13/02	MD 7	7142-4 J		
C 0 8 F 291/00	MPZ	7142-45 8317-4G	B01J	12 /02
		8317-4G	0011	13/ 02
			ą	審査請求 未請求 請求項の数3(全12頁)
(21)出願番号	特顯平3-152167		(71) 出願人	000004178
				日本合成ゴム株式会社
(22)出願日	平成3年(1991)5	月29日	A	東京都中央区築地2丁目11番24号
			(72)発明者	桜井 富士夫
(31)優先権主張番号	特曆平2-323079			東京都中央区築地二丁目11番24号 日本合
(32)優先日	平 2 (1990)11月28	∃		成ゴム株式会社内
(33)優先権主張国	日本(JP)		(72)発明者	
				東京都中央区築地二丁目11番24号 日本合
				成ゴム株式会社内
			(72)発明者	
				東京都中央区築地二丁目11番24号 日本合
			-4.	成ゴム株式会社内
			(74)代理人	弁理士 白井 重隆

(54) 【発明の名称】 中空ポリマー微粒子およびその製造方法

(57)【要約】 (修正有)

【目的】 製造時の重合安定性がよく、さらに隠蔽性、 光沢、密着性、強膜強度、耐水性、耐アルカリ性に優れ た中空ポリマー微粒子。

【構成】 下記の重合体徴粒子(A)10~300重量 部の存在下に、下記モノマー成分(B)100重量部を 水性媒体中で重合する。

(A) ; a) イオン性モノマー $0\sim35$ 重量%、b) 重合時に溶解度が変化しないか、増加する非イオン性モノマー $65\sim100$ 重量%、c) 前配b) 成分以外の非イオン性モノマー $0\sim35$ 重量%からなるモノマーを重合して得られる重合体機粒子。

(B); a) イオン性モノマー0.1~35 重量%、b) 重合時に溶解度が減少する非イオン性モノマー65~99、9重量%、及びc) 前記b) 成分以外の非イオン性モノマー0~35 重量%からなるモノマー成分。

【特許請求の範囲】

【請求項1】 下記の条件を満たす重合体検粒子(A) 10~300重量部の存在下に、下記の条件を満たすモ ノマー成分(B)100重量部を水性媒体中で水溶性重 合開始剤を用いて重合して得られる単一の内孔を有する 中空ポリマー微粒子。

(A) ;

(A-a) イオン性モノマー0~35重量%、

(A-b) 重合時にモノマーからポリマーへの変化にと 加する非イオン性モノマー65~100重量%、および (A-c) 前記 (A-b) 成分以外の非イオン性モノマ 一0~35重量%からなるモノマーを重合して得られる 重合体微粒子。

(B);

(B-a) イオン性モノマー0、1~35重量%、

(B-b) 重合時にモノマーからポリマーへの変化にと もない、溶解度パラメーターが減少する非イオン性モノ マー65~99.9重量%、および

(B-c) 前記 (B-b) 成分以外の非イオン性モノマ 20 一0~35重量%からなるモノマー成分。

【請求項2】 重合体微粒子(A)とモノマー成分 (B) の組み合わせのうち、(A-b) 成分からなるポ リマーの溶解度パラメーター〔δ(A-b), p〕と (B-b) 成分のモノマーの溶解度パラメーター〔∂ (B-b), m) の差の絶対値が1. 0以下である酵求 項1記載の中空ポリマー微粒子。

【請求項3】 請求項1記載の重合体微粒子(A)10 ~300重量部の存在下に、請求項1記載のモノマー成 分(B) 100重量部を、下記の条件を満たす重合温度 30 で乳化重合することを特徴とする中空ポリマー微粒子の 製造方法。

-25<Tg(A)-T、かつ

-25 < Tg (B) - T

〔式中、Tg(A)は重合体微粒子(A)のガラス転移 温度 (℃)、 Tg (B) はモノマー成分 (B) のみを重 合して得られる重合体のガラス転移温度(℃)、Tは乳 化重合温度 (℃) を示す。〕

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、中空ポリマー微粒子に 関し、さらに詳細には紙、繊維、皮革、金属などのコー ティング剤、あるいは各種の塗料などに使用しうる光散 乱用あるいは光散乱助剤またはマイクロカプセルとして 有用である単一の内孔を有する中空ポリマー微粒子に関 する。

[0002]

【従来の技術】粒子内部に内孔を有するポリマー粒子 は、その内孔に各種の物質を含有させることにより、マ イクロカプセル粒子として、あるいはその内孔を中空に 50

することで、例えば光散乱用として利用される中空ポリ マー粒子などの有機素材として、利用されている。従 来、内孔を有するポリマー粒子の製造方法としては、下 記の方法が知られている。①ポリマー粒子中に発泡剤を 含有させ、その後この発泡剤を発泡させる方法。②ポリ マーにプタンなどの揮発性物質を封入し、その後この揮 発性物質をガス化膨潤させる方法。③ポリマーを溶融さ せ、これに空気などの気体ジエットを吹きつけ、気泡を 封入する方法。のポリマー粒子の内部にアルカリ膨潤性 もない、溶解度パラメーターが変化しないか、または増 10 の物質を浸透させて、アルカリ膨潤性の物質を膨潤させ る方法。⑤w/o/w型モノマーエマルジョンを作製 し、重合を行う方法。⑥不飽和ポリエステル溶液中に顧 料を懸濁させた懸濁液中で、モノマーを重合する方法。 ⑦架橋ポリマー粒子をシードとして、相溶性の異なるポ リマーをそのシード上に重合、架橋する2段階架橋方 法。⑧ポリマーの重合収縮により製造する方法。

[0003]

【発明が解決しようとする課題】前記①~③、⑤および 6の製造方法では、製造条件のコントロール、あるいは 所望の内孔を有するポリマー粒子を安定に製造すること が難しかった。前記④の製造方法では、耐熱性、耐水 性、乾燥性などが劣るものとなり、⑦の製造方法では、 光散乱剤あるいはマイクロカプセルとして機能させるの に充分な内孔を形成し得ない。前記®の製造方法による 粒子は、耐熱性、光散乱性などに優れるが、光沢などに 劣る。本発明は、前配従来技術の課題を背景になされた もので、重合安定性がよく、隠蔽性、光沢、密着性、墜 膜強度、耐水性、耐アルカリ性が飛躍的に向上した中空 ポリマー微粒子を提供することを目的とする。

[0004]

【課題を解決するための手段】本発明は、下記の条件を 満たす重合体微粒子(A) 10~300重量部の存在下 に、下記の条件を満たすモノマー成分(B) 100重量 部を水性媒体中で水溶性重合開始剤を用いて重合して得 られる単一の内孔を有する中空ポリマー微粒子を提供す るものである。

(A);

(A-a) イオン性モノマー0~35重量%、

(A-b) 重合時にモノマーからポリマーへの変化にと もない、溶解度パラメーターが変化しないか、または増 加する非イオン性モノマー65~100重量%、および (A-c) 前記 (A-b) 成分以外の非イオン性モノマ 一0~35重量%からなるモノマーを重合して得られる 重合体微粒子。

(B);

(B-a) イオン性モノマー0. 1~35重量%、

(B-b) 重合時にモノマーからポリマーへの変化にと もない、溶解度パラメーターが減少する非イオン性モノ マー65~99.9重量%、および

(B-c) 前記 (B-b) 成分以外の非イオン性モノマ

 $-0 \sim 35$ 重量%からなるモノマー成分。

【0005】また、本発明は、前記ポリマー微粒子 (A) 10~300重量部の存在下に、前記モノマー成 分(B) 100 重量部を、下記の条件を満たす重合温度 で乳化重合することを特徴とする中空ポリマー微粒子の 製造方法を提供するものである。

-25<Tg (A) -T、かつ

-25 < Tg(B) - T

〔式中、Tg(A)はポリマー積粒子(A)のガラス転 移温度 (${f C}$)、 ${f Tg}$ (${f B}$) はモノマー成分 (${f B}$) のみを ${f 10}$ リル酸アルキルエステルの一部などが挙げられる。 重合して得られる重合体のガラス転移温度 (℃)、Tは 乳化重合温度(℃)を示す。〕

【0006】重合体微粒子(A)

重合体徴粒子(A)は、(A-a)イオン性モノマー0 ~35重量%、(A-b) 重合時にモノマーからポリマ 一への変化にともない、溶解度パラメーターが変化しな いか、または増加する非イオン性モノマー65~100 重量%、および(A-c)前記(A-b)成分以外の非 イオン性モノマー0~35重量%からなるモノマーを重 合して得られる。イオン性モノマー(A-a)として は、アクリル酸、メタクリル酸、イタコン酸、フマル 酸、マレイン酸などの重合性不飽和カルポン酸が挙げら れる。(A-a)成分の使用量は、0~35重量%、好 ましくは0.1~25重量%、さらに好ましくは0.5 ~25重量%、特に好ましくは1~15重量%である。 (A-a) 成分が35重量%を超えると、得られる中空 ポリマー傲粒子の耐水性、耐アルカリ性などが劣るもの である。モノマーからポリマーへの変化にともない、溶 解度パラメーターが変化しないか、または増加する性質 を有する非イオン性モノマー (A-b) としては、アク 30 リロニトリル、メタクリロニトリルなどのビニルシアン 化合物、アクリル酸メチル、アクリル酸エチルなどのア クリル酸アルキルエステル、メタクリル酸メチル、メタ クリル酸nープチルなどのメタクリル酸アルキルエステ ル、1,3-プタジエン、2-メチル-1,3-プタジ エンなどの脂肪族共役ジエン、酢酸ビニル、プロビオン 酸ビニルなどの有機酸ビニル化合物、ヒドロキシエチル メタクリレートなどのヒドロキシル基合有モノマー、ジ メチルアミノエチルメタクリレートなどのアミノ基合有 モノマー、アクリルアミドなどのアミド系モノマーなど 40 のほか、αーオレフィン類、ビニルエーテル類、ハロゲ ン化ピニリデン類などを挙げることができる。

【0007】これらのうち、ピニルシアン化合物、(メ タ) アクリル酸アルキルエステル、有機酸ピニル化合 物、ヒドロキシル基含有モノマーなどが好ましく、さら に好ましくはピニルシアン化合物、(メタ)アクリル酸 アルキルエステル、特に好ましくは重合体のガラス転移 温度が50℃以上の(メタ)アクリル酸アルキルエステ ルである。 (A-b) 成分の使用量は、65~100重

くは80~99. 5重量%、特に好ましくは85~99 重量%であり、65重量%未満では内孔の形成が不確実 になる。

【0008】前記(A-b)成分以外の非イオン性モノ マー(A – c)としては、スチレン、α-メチルスチレ ン、p-メチルスチレン、エチルスチレン、ピニルナフ タレンなどの芳香族ピニル化合物、クロルスチレン、プ ロムスチレンなどのハロゲン化芳香族ピニル化合物、ア クリル酸1-プチル、アクリル酸n-プチルなどのアク

【0009】また、この(A-c)成分には、ジピニル ベンゼン、エチレングリコールジメタクリレートなどの ジピニルもしくはトリピニル系モノマー、グリシジルメ タクリレートなどのグリシジル基含有モノマー、N-メ チロールアクリルアミドなどのN-メチロール化合物、 ピニルトリエトキシシランなどのシラン基含有モノマー などの架橋性モノマーを必要に応じて使用することもで きる。(A-c)成分の使用量は、0~35重量%、好 ましくは0~25重量%、さらに好ましくは0~20重 **20 量%、特に好ましくは0~15重量%であり、その使用** 量が過大の場合には、得られる中空ポリマー領粒子の内 孔の形成が不確実となる傾向を示すので好ましくない。

【0010】重合体微粒子(A)の重合に際しては、ア ニオン型、ノニオン型、カチオン型、両性型などの乳化 剤、および/または分散剤(懸濁保護剤)を使用する。 これらは、1種または2種以上を併用することができ る。乳化剤としては、例えばロジン酸カリウム、ロジン 酸ナトリウムなどのロジン酸塩;オレイン酸カリウム、 ラウリン酸カリウム、ラウリン酸ナトリウム、ステアリ ン酸酸ナトリウム、ステアリン酸カリウムなどの脂肪酸 のナトリウムもしくはカリウム塩およびラウリル硫酸ナ トリウムなどの脂肪族アルコールの硫酸エステル塩;ド デシルベンゼンスルホン酸ナトリウムなどのアルキルア リルスルホン酸塩、ジアルキルスルホコハク酸ナトリウ ム、ナフタレンスルホン酸のホルマリン縮合物塩などの アニオン型乳化剤;ポリエチレングリコールのアルキル エステル型、アルキルエーテル型、アルキルフェニルエ ーテル型などの非イオン型乳化剤が好ましい。なかで も、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホ ン酸ナトリウム、ジオクチルスルホコハク酸ナトリウ ム、ナフタレンスルホン酸のホルマリン縮合物塩、ポリ エチレングリコールのアルキルフェニルエーテル型が好 ましい。

【0011】カチオン型乳化剤としては、第4級アンモ ニウム塩型などがあるが、水性分散体をカチオン型とす る場合に、単独またはノニオン型と併用して使用され る。また、分散剤としては、例えばポリアクリル酸、ポ リメタクリル酸、ポリビニルスルホン酸、ポリビニルア ルコール、ポリピニルピロリドン、ポリエチレングリコ 量%、好ましくは75~99.9重量%、さらに好まし 50 ールなどの親水性合成高分子物質;ゼラチン、水溶液性 デンプンなどの天然親水性高分子物質; カルボキシメチ ルセルロースなどの親水性半合成高分子物質などを挙げ ることができる。乳化剤および/または分散剤の使用量 は、前記 (A-a) ~ (A-c) 成分の合計量100重 量部に対し、5重量部以下、好ましくは2重量部以下、 さらに好ましくは1重量部以下である。5重量部を超え ると、重合中の新粒子の発生により、粒子径の分布が著 しく不均一となり、また得られる中空ポリマー微粒子の 内孔が不確実となるので好ましくない。

ロパーオキサイド、ジイソプロピルペンゼンハイドロパ ーオキサイド、パラメンタンハイドロパーオキサイドな どで代表される有機ハイドロバーオキサイド類と含糖ビ ロリン酸処方、スルホキシレート処方、含糖ピロリン酸 処方/スルホキシレート処方の混合系処方などで代表さ れる遠元剤との組み合わせによるレドックス系の開始 剤;さらに過硫酸カリウム、過硫酸アンモニウムなどの 過硫酸塩;アゾピスイソプチロニトリル、ペンゾイルパ ーオキサイド、ラウロイルパーオキサイドなどを使用す ることができる。

【0013】 重合開始剤としては、好ましくは過硫酸力 リウム、過硫酸アンモニウムなどの過硫酸塩、アゾビス イソプチロニトリル、ペンゾイルパーオキサイドに、必 要に応じて還元剤を組み合わせたものである。特に好ま しくは、過硫酸カリウム、過硫酸アンモニウムなどの過 硫酸塩である。重合開始剤は、(A-a)~(A-c) 成分の合計量100重量部に対し、0.02~2重量 部、好ましくは0.05~0.8重量部である。重合温 度としては、通常、5~95℃が良好であり、特に50 ~90℃が好ましい。なお、各種のモノマーは、これを 30 一括してまたは分割して、あるいは連続的に滴下して系 に加えることができる。

【0014】連鎖移動剤としては、例えばtードデシル メルカプタン、オクチルメルカプタン、n-テトラデシ ルメルカプタン、オクチルメルカプタン、 t ーヘキシル メルカプタンなどのメルカプタン類、四塩化炭素、臭化 エチレンなどのハロゲン系化合物を挙げることができ る。連鎖移動剤の使用量は、(A-a)~(A-c)成 分の合計量100重量部に対し、10重量部以下、好ま しくは5重量部以下である。かくて得られる重合体微粒 40 子(A)の重量平均分子量は、1万以上、好ましくは5 万以上、さらに好ましくは10万以上、特に好ましくは 20~70万にすると、得られる中空ポリマー微粒子の 内孔の形成を確実にすることができる。1万未満では、 内孔の形成が不確実または非中空となりやく好ましくな い。重合体微粒子(A)の重量平均分子量の調整は、モ ノマー成分 (B) を重合する際の重合安定性の向上など に効果的である。

【0015】なお、重合体微粒子(A)の製造は、2段 階以上のシード乳化重合(多段階重合)で行ってもよ 50 マーを($\mathrm{B-c}$)成分として適宜使用することができ

く、得られる重合体徴粒子(A)の最終的な組成が、前 記した(A-a)~(A-c)の各組成の範囲にあれば よい。この多段階重合によって重合体微粒子(A)を製 造することは、得られる中空ポリマー後粒子の粒子径の コントロールおよび均一化を図るうえで好ましい。な お、重合体微粒子(A)の平均粒子径は、0.05~1 5μ mが好ましく、さらに好ましくは $0.1 \sim 10 \mu$ m、特に好ましくは0. $15~5~\mu m$ である。この重合 体微粒子(A)の平均粒子径が過大であると、該微粒子 【0012】重合開始剤としては、例えばクメンハイド 10 の製造が困難であり、また得られる中空ポリマー粒子の 隠蔽性、光沢などが劣り、一方平均粒子径が過少である と、得られる中空ポリマー微粒子の内孔の形成が不確実 になる。以上の重合体微粒子(A)を用いて、中空ポリ マー微粒子を製造することにより、耐水性、耐アルカリ 性、耐熱性などに優れ、充分な内孔を有する中空ポリマ 一微粒子を得ることができる。

【0016】モノマー成分(B)

モノマー成分 (B) は、(B-a) イオン性モノマー 0. 1~35重量%、(B-b) 重合時にモノマーから 20 ポリマーへの変化にともない、溶解度パラメーターが減 少する非イオン性モノマー65~99、9重量%、およ び(B-c)前記(B-b)成分以外の非イオン性モノ マー0~35重量%からなる。イオン性モノマー(Ba) としては、前記 (A-a) 成分と同様のものを挙げ ることができる。 (B-a) 成分の使用量は、0.1~ 35重量%、好ましくは0.5~25重量%、さらに好 ましくは $1\sim15$ 重量%である。(B-a)成分が0. 1重量%未満では、内孔の形成が困難であり、一方35 重量%を超えると、得られる中空ポリマー機粒子の耐水 性、耐アルカリ性が劣る。

【0017】モノマーからポリマーへの変化にともな い、溶解度パラメーターが減少する性質を有する非イオ ン性モノマー(B-b)としては、架橋性モノマー以外 の前記(A-c)成分と同様のものを挙げることができ る。これらのうち、得られる重合体のガラス転移温度が 50℃以上のものが好ましく、特に好ましくはスチレ ン、p-メチルスチレン、エチルスチレン、α-メチル スチレンである。 (B-b) 成分の使用量は、65~9 9. 9重量%、好ましくは75~99. 9重量%、さら に好ましくは80~99. 5重量%、特に好ましくは8 5~99重量%の範囲であり、この範囲で得られる中空 ポリマー微粒子の内孔の確実な形成を行うことができ る。 (B-b) 成分の使用量が65重量%未満では、内 孔の形成が不充分で不確実になる。

[0018] 前記 (B-b) 成分以外の非イオン性モノ マー (B - c) としては、前記(A - b) 成分で例示し たと同様のモノマーを挙げることができる。 得られる中空ポリマー微粒子に耐熱性や耐溶剤性が要求 される場合には、(A-c)成分で例示した架橋性モノ

る。 (B-c) 成分の使用量は、0~35重量%、好ま しくは0~25重量%、さらに好ましくは0~20重量 %、特に好ましくは0~15重量%である。(B-c) 成分の使用量が過大であると、得られる中空ポリマー微 粒子の内孔の形成が不確実となり好ましくない。

【0019】なお、前記ポリマー微粒子(A)とモノマ ー混合物(B)の組み合わせのうち、(A-b)成分か らなるポリマーの溶解度パラメーター〔δ(A-b), p] と (B-b) 成分のモノマーの溶解度パラメーター (δ (B-b), m) の差は、その絶対値が1.0以 10 下、特に0.6以下であることが、中空ポリマー策粒子 の内孔の確実かつ対称的な形成の上で好ましい。この溶 解度パラメーター (& (A-b), p)と溶解度パラメ ーター (δ (B−b), m) の差の絶対値が1.0を超 える組み合わせでは、非中空の微粒子が発生し、また内 孔の形成も不確実で非対称的なものとなりやすい。ま た、(A-b) 成分からなるポリマーの溶解度パラメー ター (δ (A-b), p) と (B-b) 成分からなるポ リマーの溶解度パラメーター〔δ(B-b),p〕の差 は、好ましくは $+0.5\sim-1.0$ 、さらに好ましくは 20 +0.3~-0.5の範囲であり、このような範囲とな すことによって、得られる中空ポリマー微粒子の内孔の 割合を高めるうえで好ましい。

【0020】ここで、溶解度パラメーターは、各種モノ マーについては、J. Brandrup, E. H. Im mergut編、Polymer Handbook, P. IV-337, Interscience (197 5) で示す値を採用し、またポリマーについては、Sm all. P. S., J. Appl. Chem., 3, 7 5 (1973) に示される。δ=d·ΣGi/M (式 30 中、δは溶解度パラメーター、dは比重、G1は1構造 のアトラクションコンスタント(Attraction Constant)、Mは分子量を示す〕で算出され るものを採用して求めた値である。

【0021】本発明の中空ポリマー微粒子

本発明の中空ポリマー微粒子は、前記重合体微粒子 (A) 10~300重量部、好ましくは30~250重 量部、さらに好ましくは50~200重量部の存在下 に、前記モノマー成分 (B) 100重量部を、好ましく は5重量部以下の乳化剤および/または分散剤、5重量 40 部以下の水溶性重合開始剤を用いて、水性媒体中で重合 して得られる。重合体微粒子(A)の量が、モノマー成 分(B) 100重量部に対して、10重量部未満では、 中空ポリマー微粒子の内孔が著しく小さくなり、一方3 00重量部を超えると、内孔が生成しなくなる。

【0022】モノマー成分(B)の重合に際して用いら れる乳化剤および/または分散剤は、重合体微粒子 (A) の重合に用いられるものと同様のものでよい。乳 化剤および/または分散剤の使用量は、モノマー成分 抑制し、重合体微粒子(A)とモノマー成分(B)から 生成する重合体の複合化された粒子である中空ポリマー 微粒子の生成を促進させるために、モノマー成分 (B) 100重量部に対して、好ましくは2重量部以下、さら に好ましくは1重量部以下である。乳化剤および/また は分散剤の使用量が、(B)成分100重量部に対し て、5重量部を超えると、重合中の(B) 成分のみの新 粒子の発生により目的の中空ポリマー微粒子を効率よく 得ることができない。重合開始剤としては、水溶性重合 開始剤が好ましく、特に過硫酸カリウム、過硫酸アンモ ニウムなどの水溶性過硫酸塩が好ましく、必要に応じて 還元剤を組み合わせることができる。重合開始剤の使用 量は、モノマー成分(B)100重量部に対して、好ま しくは0.05~2重量部、さらに好ましくは0.05 ~0.8重量部である。

8

【0023】重合温度は、通常、5~95℃が良好であ り、特に50~90℃が好ましい。特に、本発明の中空 ポリマー微粒子は、下記条件を満たす重合温度で乳化重 合することが好ましい。

-25<Tg(A)-T、かつ

-25 < Tg (B) - T

[式中、Tg(A)は重合体微粒子(A)のガラス転移 温度 (℃)、Tg (B) はモノマー成分 (B) のみを重 合して得られる重合体のガラス転移温度(℃)、Tは乳 化重合温度 (℃) を示す。〕乳化重合温度Tが、Tg (A) +25℃以上、またはTg(B)+25℃以上で は、ポリマー徴粒子が中空とならないか、充分な内孔を 形成することが困難となる。

[0024] なお、モノマー成分 (B) の重合系への添 加法は、これを一括してもしくは分割して、または連続 的に積下して系に加えることができる。中空ポリマー微 粒子を効率よく得るためには、分割または連続的に滴下 することが好ましく、さらに好ましくは連続的に滴下す る方法である。重合系には、そのほか必要に応じて連鎖 移動剤を併用することができる。連鎖移動剤としては、 重合体微粒子(A)の重合で記述したものから適宜選択 することができる。連鎖移動剤の使用量は、モノマー成 分(B) 100重量部に対して、10重量部以下が好ま しく、さらに好ましくは5重量部以下である。このよう にして得られる中空ポリマー微粒子の重量平均分子量 は、好ましくは5万以上、さらに好ましくは10万以 上、特に好ましくは20~70万であり、このような重 量平均分子量とすることによって、該中空ポリマー微粒 子の内孔の形成を確実にすることができる。中空ポリマ 一般粒子の重量平均分子量が1万未満では、内孔の形成 が不充分または非中空となりやすい。

【0025】なお、中空ポリマー微粒子を製造する際の 重合において、重合系である水性媒体のpHにより、重 合安定性および得られる中空ポリマー微粒子の粒子径分 (B) のみからなる重合体粒子が多量に生成することを 50 布、内孔の生成が少なからず左右される。pHが7以下

の場合は、前記項目について良好であり、目的とする中 空ポリマー微粒子が得られる。pHが7を超える場合、 重合安定性が低下し、粒子径分布が著しく不均一とな り、また内孔の形成が不確実となるため好ましくない。 pHが7を超える水性媒体を使用する場合には、炭酸水 素ナトリウムのような緩衝剤あるいは酸を添加し、あら かじめ重合系のpHを7以下に下げておくことが好まし ₹2.

【0026】このようにして得られる本発明の中空ポリ マー徴粒子は、その平均粒子径が好ましくは0.1~2 0 μm、 さらに好ましくは0. 15~18 μm、特に好 ましくは $0.15\sim15\mu m$ 、特に好ましくは $0.2\sim$ 10 μmである。中空ポリマー微粒子の平均粒子径が、 0. 1 μ m未満では光散乱助剤として用いたときの隠蔽 性が劣り、一方20 µmを超えるものは、重合安定性が 悪く、また重合中に新粒子が発生し、目的とする隠蔽性 と光沢をはじめとする各種の物性のパランスがとれな い。また、中空ポリマー微粒子は、単一の内孔を有し、 その平均内孔径は、平均粒子径の0.25~0.8倍が 好ましく、さらに好ましくは0.3~0.75倍、特に 20 好ましくは0.35~0.7倍である。平均内孔径が平 均粒子径の0.25倍未満では、隠蔽性がかなり劣り好 ましくなく、一方0.8倍を超えるものは隠蔽性と光 沢、強度のパランスおよび重合安定性が劣り好ましくな 41

【0027】本発明の中空ポリマー微粒子は、製造時に は水性分散体として得られ、その固形分濃度は好ましく は10~65重量%、さらに好ましくは20~60重量 %であることが、製造上、または実用上の各種配合など に使用するうえで好ましい。また、前記中空ポリマー微 30 透過型電子顕微鏡〔日本電子工業(株)製、m JEM-1粒子の水性分散体は、その重合終了時においては、系の pHが7以下であり、その時点で既に粒子内部に孔を有 する中空ポリマー微粒子であるが、粒子の沈降の抑制や 塗料配合時などのショックによる粒子凝集を抑制する目 的のために、重合終了後に水酸化ナトリウム、水酸化力 リウムなどの恒久塩基あるいはアンモニア、アミンなど の揮発性塩基を添加することによって、水性分散体のp Hを7を超える範囲まで高めることが可能である。この ようなpHの上昇あるいはこれに続く90℃以上の加熱 処理などによる中空ポリマー微粒子の平均粒子径および 40 平均内孔径の変化は、-10~+10%であることが好 ましく、さらに好ましくは-5~+5%である。

【0028】なお、水性分散体として得られる中空ポリ マー微粒子が、内孔を有するか否かは、簡単に確認でき る。すなわち、透過型電子顕微鏡で一般的には確認でき るし、さらに比重を測定することによっても確認でき る。また、中空ポリマー微粒子は、このようにして得ら れる水性分散体を乾燥することによって粉末化すること ができる。粉末化は、一般に行われている水性分散体の 粉末化法で粉末化でき、例えば130~160℃におけ 50 ××;非常に不安定(凝固物の発生多量、または重合系

る噴霧乾燥、熱風乾燥雰囲気中で、例えば50~70℃ でのトレイ乾燥などである。このようにして得られる中 空ポリマー微粒子の粉末は、このものが有機溶媒に不溶 である場合には、有機溶媒系塗料にも使用することがで

10

【0029】以上のような本発明の中空ポリマー微粒子 を含有する水性分散体、あるいは中空ポリマー微粒子 は、隠蔽性と、光沢、接着性、耐水性、耐溶媒性、耐熱 性などの諸物性とのバランスに優れたプラスチックピグ 10 メント (有機性樹脂顔料) に有用であり、塗料、紙用被 覆剤、インキ、接着剤、粘着剤、プライマー剤、皮革処 理剤、金属コーティング剤などに応用できる。また、本 発明の中空ポリマー微粒子は、その内包性を利用し、該 ポリマー微粒子の内孔に香料、医薬、農薬、染料、洗 剤、油脂、食品、酵素、液晶、防錆剤、触媒、難燃剤、 老化防止剤、接着剤などを、用途に応じてその有効成分 を浸渍処理、減圧もしくは加圧浸渍処理などの手段によ り封入でき、内部に含まれる有効成分に応じて各種用途 に利用することができる。さらに、本発明の中空ポリマ 一微粒子は、軽量充填剤、保温・遮音材としても有用で

[0030]

【実施例】以下、実施例を挙げて本発明をさらに具体的 に説明するが、本発明はこれらの実施例に限定されるも のではない。なお、実施例において、%および部は、重 量基準である。また、実施例中のおける新粒子の発生の 有無、粒子の平均粒子径および平均内孔径、ガラス転移 温度、重合安定性は、次のようにして評価した。

平均粒子径および平均内孔径の測定

00SX)を用いた電子顕微鏡写真により測定した。 ガラス転移温度の測定

示差走査型熱量計(デュポンインスツルメンツ社製)を 用いて測定した。なお、重合体微粒子(A)について は、後述する重合体微粒子A-1~A'-4を乾燥して 試料とし、モノマー成分(B)のポリマーについては、 後述する表3および表4に示すモノマー成分(B)10 0部を水900部にラウリル硫酸ナトリウム0.5部お よび過硫酸カリウム 0.3部を溶解した水溶液に添加 し、攪拌しながら70℃で5時間重合して得られた重合 体粒子を乾燥して試料とした。

【0031】新粒子の発生の有無

透過型電子顕微鏡による観察により、目視で判定した。

- ◎;非常に良好(凝固物の発生ほとんどなし)
- 〇:良好(凝固物の発生微量)
- ○△:やや良好(凝固物の発生ややあり)
- △:やや不安定(凝固物の発生やや多い)
- ×;不安定(凝固物の発生多い)

がゲル化)

【0032】参考例〔重合体微粒子(A)の製造、Aは 本発明の製造例を示し、A'は比較製造例を示す。〕 A-1の製造

メチルメタクリレート (MMA) 95部、メタクリル酸 (MAA) 5部を、水500部にラウリル硫酸ナトリウ ム0.05部および過硫酸カリウム0.3部を溶解した 水溶液に入れ、攪拌しながら70℃で5時間重合して、 重合体微粒子A-1を得た。この重合体微粒子A-1 は、平均粒子径が0.3 μmであり、その水性分散体の 10 であり、その水性分散体の固形分濃度は15.3%、p 固形分濃度は16.5%、pHは2.5であった。

A-2~A-3、A'-1、A'-4の製造

A-1の製造におけるモノマー組成を、表1~2に示す ように変更し、それ以外はA-1と同様に重合を行い、 **重合体微粒子A-2~A-3、A'-1、A'-4を得** た。得られた重合体微粒子の水性分散体の物性を表1~ 2に示す。

【0033】A~4の製造

①メチルメタクリレート (MMA) 95部、メタクリル 酸(MAA)5部を、水500部にドデシルベンゼンス 20 A′-3を同様して得た。それぞれの物性を表1~2に ルホン酸ナトリウム2部および過硫酸ナトリウム0.7 部を溶解した水溶液に入れ、機拌しながら85℃で3時 間重合して重合体徴粒子(S)を得た。この重合体微粒 子(S)の平均粒子径は0.04μm、その水性分散体

12

の固形分濃度は17%、pHは2.5であった(第1段 目重合)。②水500gに過硫酸ナトリウム0.4部を 溶解し、前記重合体微粒子(S)を固形分換算で0.3 部加え、重合系の温度を80℃に保ち、MMA99.5 部、MAAO、5部、ドデシルベンゼンスルホン酸ナト リウム 0. 1部、水 5 0部を混合乳化したモノマーエマ ルジョンを、5時間かけて重合系に連続的に滴下し、反 応させて重合体微粒子A-4を得た(第2段目重合)。 この重合体微粒子A-4は、平均粒子径が0.29 μm Hは2.8であった。

【0034】A-5、A'-2~A'-3の製造

A-4の製造における第2段目重合のモノマー組成を、 MMA/エチルメタクリレート/MAA/ジピニルペン ゼン=47.9部/35.1部/15部/2部に変更し た以外は、同様にして重合体微粒子A-5を得た。ま た、MMA/MAA=59.9部/40.1部として A'-2を、さらにMMA/エチルアクリレート/アク リロニトリル=29.9部/20.1部/10部として 示す。

[0035] 【表1】

	A-1	A – 2	A – 3	A-4	A-5
モノマー組成(部)					
<u>(A-a) 成分</u> メチルメタクリレート	95	20	29. 5	99.6	48
エチルメタクリレート	-	20	40	-	3 5
メチルアクリレート	-	_	15	-	-
エチルアクリレート	-	20	-	-	-
アクリロニトリル	-	38	-	-	-
_(A-b) 成分					
メタクリル酸	5	-	-	0.5	15
アクリル酸	-	2	0.5	-	-
スチレン	-	-	15	-	-
p-メチルスチレン	-	-	-	-	-
ジビニルベンゼン	_	-	-	_	2

10					
δ (A-b), p	9.25	10. 51	9. 28	9. 25	9. 25
粒子物性 平均粒子径 (μm)	0. 3	0. 33	0. 25	0. 29	0. 28
粒子径分布	ややシ	ややシ	ややシ	シャー	ややシ
	ヤーブ	ヤーブ	ャープ	プ	ャープ
重合安定性	0	0	0	0	0
рH	2. 5	2. 5	2.7	2.8	2.2
Tg (C)	109	61	70	105	107

[0036]

【表2】

	A' -1	A' -2	A' -3	Å′ -4
モノマー組成(部)				
(A−a) 成分; メタクリル酸	_	40	20	-
アクリル酸	2	-	-	2
(A-b) 成分				
メチルメタクリレート	-	60	30	18
エチルメタクリレート	25	-	-	50
メチルアクリレート	10	-	-	-
エチルアクリレート	10	-	20	30
アクリロニトリル	10	-	10	-
(A-c) 成分				
スチレン	20	-	20	-
pーメチルスチレン	20	-	-	-
エチレングリコールジメタクリレート	3	- 1	-	-
ジピニルペンゼン	-	-	-	-
8 (A-b), p	9. 93	9. 25	9. 92	9.15
粒子物性;平均粒子径(μm)	0. 23	0. 25	0. 29	0.28
粒子径分布	ややシ	ややブ	シャー	シャー
	ャープ	1 ーロ	プ	プ
重合安定性	0	Δ	0	0
pH	2. 5	1.8	2. 2	2. 5
Tg (℃)	67	140	85	39
	l	1		

【0037】実施例1

水300部に重合開始剤として過硫酸アンモニウム0.8部および還元剤として亜硫酸水素ナトリウム0.3部を溶解させ、重合体徴粒子A-1を固形分換算で100部添加し、その系の温度を60℃に保ちながら、スチレン98部、アクリル酸2部、ドデシルペンゼンスルホン酸ナトリウム0.1部、水40部を混合乳化したモノマーエマルジョンを、8時間かけて前配系に連続的に滴下し、滴下熱了後、系の温度を80℃に昇温し3時間反応を行わせ、ポリマー微粒子P-1を得た。得られたポリスー発数子のませい数はの関係の温度は222

40 2.0であった。得られたポリマー微粒子を、透過型電子顕微鏡で観察した結果、平均粒子径0.40μm、平均内孔径0.25μmの中空ポリマー微粒子であった。この水性分散体を、アンモニアでpH9.0に調整し、90℃で2時間加熱処理したのちも、平均粒子径、平均内孔径ともに変化はみられなかった。

【0038】実施例2~5、比較例1~3

ーエマルジョンを、8時間かけて前記系に連続的に滴下 し、滴下終了後、系の温度を80℃に昇温し3時間反応 を行わせ、ポリマー微粒子P-1を得た。得られたポリ マー微粒子の水性分散体の固形分濃度は37%、pHは 50 得た。それぞれのポリマー微粒子の水性分散体の物性

は、表3に示すとおりである。

【0039】実施例6

水500部に、過硫酸ナトリウム0.5部を溶解させ、 型合体徴粒子A-1を固形分換算で30部添加し、その 系の温度を80℃に保ちながら、スチレン60部、α-メチルスチレン15部、アクリロニトリル7部、エチレ ングリコールジメタクリレート3部、メタクリル酸15 部、乳化剤であるハイテノールN-08〔第一工業製薬 (株) 製、アニオン・ノニオン型乳化剤) 0.5部、水 30部を混合乳化したモノマーエマルジョンを3時間か 10 けて、前配系に連続的に滴下し、滴下終了後、さらに2 時間重合させてポリマー像粒子P-6を得た。得られた ポリマー微粒子の水性分散体の固形分濃度は19.5 %、pHは1.8であった。得られたポリマー微粒子 を、透過型電子顕微鏡で観察した結果、平均粒子径0. 48 μm、平均内孔径 0.09 μmの中空ポリマー微粒 子であった。

【0040】 実施例7~9、比較例4~7

実施例6におけるシードとなる重合体微粒子の種類およ び量と、モノマーの種類および量を表3~4にように変 20 更した以外は、実施例1と同様に重合を行い、ポリマー 徴粒子P-7~P-9、Q-4~Q-7を得た。それぞ れのポリマー微粒子の水性分散体の物性を、表3~4に 示す。

実施例10

水400部に過硫酸ナトリウム0.3部およびハイテノ ールN-08 (第一工業製薬(株) 製、アニオン・ノニ オン型乳化剤] 0. 3部を溶解させ、重合体微粒子A-5を固形分で80部添加し、さらにp-メチルスチレン 75部、α-メチルスチレン24.5部、メタクリル酸 30 ○; ふくれ無し、もしくは微小 0. 5部を添加し、混合機拌しながら系の温度を80℃ に保ち、10時間かけて重合させてポリマー微粒子P-10を得た。 得られたポリマー微粒子の水性分散体の 固形分濃度は31.0%、pHは2.8であった。得ら れたポリマー微粒子を、透過型電子顕微鏡で観察した結 果、平均粒子径0. 40μm、平均内孔径0. 22μm の中空ポリマー微粒子であった。

【0041】比較例8~9、比較例10~11

実施例10におけるモノマー種類および量を表4のよう に変更した以外は、実施例10と同様に重合を行い、ポ 40 Δ;50~90/100密着 リマー微粒子Q-8~9、Q10~Q11を得た。得ら れたポリマー微粒子の水性分散体の物性は、表4に示す とおりである。

【0042】応用例

実施例1~10、比較例1~10で得られた各水性分散 体を、アンモニアを用いてpH9.0に調整したのち、 これを固形分換算で3.75部、ルチル型二酸化チタン の63.5%水性分散体 (大日精化工業 (株) 製、EP 677 White) を固形分換算で60部、パインダ ーとしてアクリル系共重合エマルジョン (日本合成ゴム 50 中空のポリマー徴粒子が得られず、この微粒子を墜膜に

16

(株) 製、JSR AE312]を固形分換算で74 部、2,2,4ートリメチルー1,3-ペンタジオール モノイソプチレート〔チッソ(株)製、テキサノールC S-12)を2部、ヒドロキシエチルセルロース0.7 5部、水75部からなる配合物を配合し、粘度が一定に なるまで攪拌した。また、比較として、同一配合で中空 ポリマー 微粒子を使用せずに、酸化チタンのみを75部 使用したもの(ペース)、50部使用したもの(プラン ク) も、同様にして調製した。

【0043】前配各種塗料を、モレスト隠蔽力チャート 上およびガラス板上に塗布し、同一の厚さの塗膜とな し、3日間風乾した。表5に、これらの塗膜の物理的性 質を示す。なお、試験条件は、以下のとおりである。

試験条件

①隠蔽率

隠蔽率試験紙〔日本テストパネル工業(株)製〕に、6 ミルアプリケーターにて塗布し、20℃、60%RH中 にて5日間乾燥後、村上式光沢計にて45°/0°の光 沢を試験紙の黒白部について測定し、それらの比率より 下式を用いて算出した。(JIS K5400)

隠蔽率= (黒地上の強膜の45°/0°拡散反射率)/ (白地上の塗膜の45°/0°拡散反射率)

【0044】②光沢(ガラス板)

作製した塗料を1日放置後、ガラス板に3ミルアプリケ ーターにて塗布し、20℃、60%RH中にて5日間乾 燥後、村上式光沢計にて測定した。

③耐水性

前記②にて作製したガラス板塗膜を1日乾燥後、室温で 水に14日間浸渍し、目視で判定した。

△: ややふくれあり

×: ふくれ大

××;ふくれが著しく、または剥離

②付着性(密着性)

作製した塗料を、フレキシブル板へ剛毛にて2階塗り (200g/m²) を行い、5日間乾燥後、カミソリで 2㎜角のゴバン目を作り、セロハンテープで剥離テスト を行った。(JIS A6910)

〇:90/100以上密着

×;10~50/100密着

××;0~10/100密着

⑤フィルム強度

5日間乾燥した0.5mmの塗膜を、ダンベル2号で打抜 き、オートグラフで評価した(20℃、60%RH)。 【0045】実施例は、いずれも優れた隠蔽性、光沢、 密着性、強度を示す。これに対し、比較例1は、重合体 後粒子(A)の(A-c)成分が35%を超えて使用さ れたものであり、モノマー成分(B)の重合終了後に、

用いた場合、隠蔵率の著しく劣るものとなった。比較例 2 も、重合体微粒子(A)の(A-c)成分が35%を 超えて使用されてなるものであり、モノマー成分(B) の重合終了後、中空のポリマー微粒子が得られず、また (B) 成分の重合時の重合安定性が著しく低下し、微小 な新粒子が多量に発生した。この微粒子を塗膜に用いる と、隠蔽性が著しく劣るのみならず、その他の物性も大 きく低下した。

【0046】比較例3は、重合体徴粒子(A)の(Ab) 成分が65%未満のものであり、モノマー成分 (B) の重合終了後の粒子内孔が微小であり、該微粒子 を塗膜に用いた場合、隠蔽率の劣るものとなった。比較 例4は、重合体微粒子(A)の使用量がモノマー成分 (B) 100部に対し、10部未満のものである。 得ら れた微粒子の内孔は微小であり、該粒子を塗膜に用いる と、隠蔽性の劣るものとなった。比較例5は、重合体微 粒子(A)の使用量がモノマー成分(B)100部に対 し、300部を超えるものである。得られた粒子は、金 べい糖状の異形粒子となった。該粒子を塗膜に用いる と、隠蔽性に劣る。

【0047】比較例6は、モノマー成分(B)の(Ba) 成分が使用されないものであり、重合終了後の微粒 子に内孔のないものや内孔が非対称的に偏ったものが多 く、全体としての中空の割合が低かった。この微粒子を **塗膜に用いた場合、隠蔵率の劣るものとなった。また、** 塗料配合時の安定性にも劣るため、塗料中の凝固物の発 生も多くみられた。比較例7は、モノマー成分(B)中 の (B-a) 成分の使用量が35%を超える場合であ る。得られる徴粒子は、中空とならず、重合安定性に劣 り、新粒子の多いものとなった。該粒子を強膜に用いる と、隠蔽性に劣り、耐水性、付着性などが著しく劣る。 【0048】比較例8は、モノマー成分(B)中の(B

18

-c)成分が35%を超えるものである。得られた微粒 子は、非中空であった。これらの微粒子を塗膜に用いる と、隠蔽性の劣るものとなった。比較例9は、モノマー 成分 (B) 中の (B-b) 成分が65%未満のものであ る。得られた微粒子は、非中空であった。この微粒子を 塗膜に用いると、隠蔽性の劣るものとなった。比較例 1 0は、Tg (A) - Tが25℃より小さい場合、比較例 11は、Tg (B) -Tが25℃より小さい場合である が、どちらも得られる微粒子が中空にならず、重合安定 20 性も良好ではなかった。

[0049] 【表3】

				妻3						
	THE 1	東海州2	英雄例3	医施 例 4	32061 45	班级制 1	11.00F4 2	H46943	≆36 (416	承施州 :
サンブルNo.	P. j	P-2	P-3	P-4	P-5	0.1	0.2	9.3	₽.6	ν ?
重合体制的子(A) サンプル他 平均数子径(μm) 6(A-b), p 使用量(医部分損害、部)	A-1 0.30 9.25 100	0.33 10.51 100	A-3 0.25 9.28 100	4·4 0.29 9.25 100	A 5 0.28 9.19 100	A'-1 0.23 9.53 100	#`-2 0.25 9.25 100	4' 3 6.29 9.92	4·1 0.30 9.25 30	a · (0.39 9.25 200
<u>モノマー成分(日)(</u> 部) (日-a)成分 アクリル種	; ;		Z	2	. 2	2	2	2		2
メタクリル値 イタコン値 (B − b)皮分	:		:			:	÷	:)5 ·	i
ステレン αーメチルスチレン ρーメチルスチレン	98	98	98	98 :	98	98 :	98 - -	98 :	60 L5 ·	37 40
(日ーc) 成分 メチルメタクリレート エチルアクリレート アクリロニトリル		:	<u>:</u>	-	-	:	:		7	10
エチレングリコールジメタクリレート ジピニルベンゼン				:		:	•	:	3	
8 (B-b), m 4 (B-b), p	9.3 9.1	9.9 9.1	9.3 9.1	9.3 9.1	9.J 9. I	9.3 9.1	9.3 9.1	9.3 9.1	9.14 8.94	9.20 9.05
弘化制 ドデンルペンゼンスルホン酸Na ハイテノールN-08 重合開始制	0. I	0. I	0.1	0.1	0.1	0.1	0.1	0.1	0.5	0.5
通信を 使ナトリウム ベンゾイルパーオキサイド	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.5	0.5
(B-b)、m-5 (A-b)、p	0.3 0.05	. 0.3 . 1.21	0.3 D.02	0.3 0.05	0.3 	0.3 -0.63	0.3	0.3 -0.62	· 0.11	-0.05
δ (B-b), ρ-δ (A-b), ρ	0.15	-1.41	-0.18	-0. 1S	0.09	-0.83	-0. 15	-0.82	-0.31	.0.20
モノマー底分(B) の重合体のT _よ (で) 重合過度T (で) T _ま (A) - T (で) T ₈ (B) - T (で)	100 60 49 40	100 60 1 40	100 60 10 40	160 66 45 48	100 80 47 40	100 60 7 40	100 60 80 40	100 60 25 40	120 80 29 40	86 80 29 6
重合性では 平均算子性/平均内孔後(μm) 平均内孔径/平均柱子径(此) p H 即は子発生の有無 第合字形性	0.40/0.25 0.62 2.0 71 L	0.45/0.12 0.27 2.0 ややあり	0.35/0.[6] 0.46 2.0	0.6270.25 0.60 2.0 なし OΔ	0.43/0.28 0.53 2.0	0.29/ · 2.0 \$-\$-\$-\$-\$	0.28/ ·	0.37/0.03 0.08 2.0 ややあり	0.48/0.12 0.25 1.8 かやあり	0.37/0.22 0.50 2.0

[0050] 【表4】

19

				¥4	-				į		
	HANN!	HANNIS	706018	ENGINE S	ILECON 6	HASM1	FORM 10	H-95.80 B	114:343	15.00 LO	1192941
サンプルが6.	3	5-0	P-8	6-4	9-0	6.1	9-10 01-1	8.5	6.9	6.10	0.11
<u>自合性報告子(A)</u> サンプル格 サンプル格 サンプル格 サンプルタ カ (A - b), p (E開登 (国格分解の、第)	្និង្គស្លួ	18.88	1 8 8 8 8 8 8 8	1888	1888	- 28 Ki Ki	9.19 9.19	2.5 82.0 81.0 89.19	4. 50 € 25. 50 € 25. 50 €	9, 15 9, 15	14.0.0 25.55.08 :
マノマー成分(形) (日-3) 最分(日) フラリル語 ララリル語 リタラリル語	· · · · · · ·		, G	· '8'	, , .	. 8	\$.	0.5		α	84
スサンソ スサンソ ス・ブナルオサンソ フ・ブチルオテン	. 838	8 8	8.5 2.5	e · ·	<u>8</u>	8	75.55 75.55	83.53	යි ·	85.	ß
(B-c) B3 1#47091	£ · · · 8	8 · æ. ·	21 · · · ·	2				88 ' ' '	% · 72 ·		¤ · · · ·
α (B-b), m δ (B-b), p	. 25.92	5.2	9.6 0.1	9.6 1.6	e e e	. S. S.	2,22	8.9	9.3	. 6. 6.	9.3
型化型 ドルントインセンスルキン酸Na トル・ソールN-08 新心の形が 運動を開発する。 スンプイルバーはキサイド (亜硫酸水酸・ドッカル)	5.0	0.5	6.5	0.5	0.5	9.5	e e	e e	0.3	0.5	0.5
6 (B-b), m-6 (A-b), p 6 (B-b), p-6 (A-b), p モノマー保外(1) の原合体のT ₆ (T) 製合選択(T) T ₆ (A) · T (T) T ₆ (A) · T (T)	2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	6.0 6.2 7.8 8.4 7.8 8.4	6.65 20.65 2	8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	0.05 0.15 0.15 0.05 0.05 0.05 0.05 0.05	8.6 2.6 4888	200 200 200 200 200 200 200 200 200 200	6.01 5.00 5.00 5.00 5.00 5.00	0.05 0.15 33 33 33 33	0.15 0.15 100 100 100 100 100 100 100 100 100 1	0.05 0.15 80 80 80 80 80 80 80 80 80 80 80 80 80
重合性では 平均は7社/平均37代と(μm) 平均3代は/平均37代(比) μ H 新物子発生の制置 重合交应性	0.85/6.04 0.05 2.0 5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-0 5-	0.20 2.0 45.L	8.57.8 9.82 7.2 #1.0	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	0.430 08 0.18 2.3 #L	0.0 2.7 7. 7. 7. 7. X.	0.400.22 0.56 2.0 7.1 0	0.37. 0.50 0.50	0.367 · 0.367	9.4 04.5 05.4	2.0 V

[0051]

40 【表5】

				表 5				
サンプルNo.	塗 ‡	의 配 合()	器)				異 物 性	<u> </u>
9 7 7 7 NO.	二酸化チタン	中空粒子	パインダー	园藏率(2)	光沢(3)	耐水性	忠著性	フィルム強度(kg/cm²)
ベース	75	•	74	72.3	78	Δ	Δ	23
ブランク	60	-	77.75	63.5	83	0	0	31
P-1	60	3.75	74	72.5	90	0	0	33
P – 2	60	3.75	74	70.8	84	Δ	Δ	26
P-3	60	3.75	74	71.8	89	0	0	32
P - 4	60	3.75	74	72.1	90	0	0	32
P-5	60	3.75	74	72.7	88	0	0	34
P-6	60	3.75	74	69.2	86	0	0	35
P-7	60	3.75	74	72.0	85	0	0	37
P-8	60	3.75	74	72.3	90	0	0	34
P-9	60	3.75	74	71.9	88	0	0	3 5
P-10	60	3.75	74	72.1	90	0	0	32
Q-1	60	3.75	74	63.3	83	0	0	31
Q-2	60	3.75	74	63.7	72	хx	××	18
Q-3	60	3.75	74	65.2	84	0	0	30
Q-4	60	3.75	74	62.8	82	0	Δ	28
Q-5	60	3.75	74	63.8	79	Δ	Δ	25
Q-6	60	3. 75	74	67.3	84	0	Δ	27
Q-7	60	3.75	74	61.6	65	××	××	15
Q-8	60	3.75	74	62.5	77	Δ	0	30
Q -9	60	3.75	74	62.3	75	Δ	0	79
Q-10	60	3.75	74	62.7	72	Δ	Δ	25
Q-11	60	3.75	74	61.3	78	Δ	0	30

[0052]

【発明の効果】本発明によれば、中空ポリマー微粒子を て、重合後の後処理の必要がなく安定性よく、かつ工業 的に製造でき、今まで不可能であった隠蔽性、光沢、密 着性、塗膜強度、耐水性、耐アルカリ性を飛躍的に向上 させる中空ポリマー微粒子を提供することができる。本 発明の中空ポリマー微粒子は、前記した特異な光学性能 を有し、隠蔽性、光沢、密着性、強膜強度、耐水性、耐

アルカリ性が優れていることにより、主として高隠蔽 性、軽量などを利用して、ピグメントなどとして用いら 水性媒体中において重合を行う簡易なプロセスによっ 30 れる。例えば、蟄科、紙蟄工用、インキ、カーペット 用、紙用内添剤などに広く利用でき、通常の中空粒子で は発現し得なかった前記の特徴によって、有用なもので ある。また、カブセル機能の特徴を生かして、内部に溶 剤、可塑剤、香料、インク、農薬、医薬などの物質を含 有させることができる。さらに、保湿性、遠音性材料と しても有用である。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
П отнев.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.