Observaciones sobre Práctica Conjuntos:

- 1. Consideramos los conjuntos $A = \{\{\emptyset\}, \{1\}, y, 3, a, \{a, b\}, \{x | x \text{ es divisible por 3}\}\},$ $B = \{x | x \text{ es divisible por 3}\}.$
 - $a) \emptyset \in A \text{ es } F$
 - 1) Opción correcta de justificación: Como el conjunto A está definido por extensión, $\emptyset \notin A$. Por ello la relación es F.
 - b) $\{\emptyset\} \subset A \text{ es } F$
 - 1) Opción correcta de justificación: $\emptyset \in \{\emptyset\}$ pero $\emptyset \notin A$. Por ello la relación es F.
 - c) $\{a,b\} \subset A$ es F
 - 1) Opción correcta de justificación: $b \in \{a,b\}$ pero $b \notin A$. Por ello la relación es F.
 - $d) \{\{1\}, 3\} \subset A \text{ es V}.$
 - 1) Opción correcta de justificación: Todos los elementos del conjunto $\{\{1\},3\}$ son elementos del conjunto A.
 - e) $\{6\} \in B \text{ es F.}$
 - 1) Opción correcta de justificación: {6} no es un número por ello no es divisible por 3.
 - f) $6 \in B$ es V.
 - 1) Opción correcta de justificación: 3 divide a 6, por ello la relación es V.
 - g) En las siguientes opciones incorrectas indique el o los errores:
 - 1) $y \subset A$.
 - 2) $3 \in A \cup 3 \in B$.
- 2. Veamos como demostrar la siguiente afirmación con el método directo: Si un número entero es múltiplo de 4 entonces es par
 - a) Supongamos que a es un número entero múltiplo de 4. Debemos probar que a es par.

Por ser a múltiplo de 4, es claro que existe $k \in \mathbb{Z}$ tal que a = 4.k. Como $4 = 2 \cdot 2$ resulta $a = (2 \cdot 2).k = 2.(2.k)$ y dado que el producto de enteros es entero 2.k es un número entero, digamos q. Luego a = 2.q y por ello es par.

3. Veamos como demostrar la siguiente afirmación con el método indirecto (o contrarrecíproco):

Si el cubo de un número entero es par entonces el número es par.

- a) Supongamos que a es un número entero que no es par. Debemos probar que a^3 no es un número par.
 - Como a no es par, existe $k \in \mathbb{Z}$ tal que a=2.k+1. Luego $a^3=(2k+1)^3=8k^3+12k^2+6k+1=2(4k^3+6k^2+3k)+1$ y debido a que la suma y producto de enteros es un entero, $4k^3+6k^2+3k$ es entero, digamos l. Luego $a^3=2.l+1$ no es un número par.
- 4. Veamos como demostrar la siguiente afirmación con el método del absurdo: Si el cubo de un número entero es par entonces el número es par.
 - a) Supongamos que a^3 es un número entero par y que a no es un número entero par. Debemos llegar a una contradicción.
 - Como a no es par, existe $k \in \mathbb{Z}$ tal que a=2.k+1. Luego $a^3=(2k+1)^3=8k^3+12k^2+6k+1=2(4k^3+6k^2+3k)+1$ y como la suma y producto de enteros es un entero, $4k^3+6k^2+3k$ es entero, digamos l. Luego $a^3=2.l+1$ no es un número par, lo cual lleva a una contradicción pues supusimos que a^3 es un número entero par.