6. Inferência Estatística TH

Comparação de 2 Al

Teste de Aleatorização

Aleatorização

Comparação de du Médias

Amostras Independentes (AI)

A --- ---

Emparelhadas (AE

Significância

Estatística

1.11. 02 1.0

Causalidade

Testes Unilaterai

l estes t

Aplicabilidade

Métodos Estatísticos – L.EIC

Semana 11

Aula 9

30 de maio de 2022

6. Inferência Estatística TH

Comparação de 2 AI

Aleatorização

Amostras Gran

Médias

Independentes (Al

Amostras Emparelhadas (Al

Significancia

Estatística

T.H. & I.C

Causalidade

Testes Unilaterai

C-------

Utilização do F

Métodos Estatísticos – L.EIC

Aula 9

Inferência Estatística – Testes de Hipóteses
Comparação de 2 Amostras Independentes
Testes de Aleatorização
Amostras Grandes
Amostras Independentes e Emparelhadas
Testes de Hipóteses e Intervalos de Confiança
Testes Unilaterais

6. Inferência Estatística TH

Comparação de 2 Al

Teste de

Aleatorização

Comparação de dua Médias

Amostras

Amostras

Emparelhadas (A

Significância

TH 8.10

Associação

Tector Unilatoral

Condições de

Itilização do R

6 INFERÊNCIA ESTATÍSTICA Testes de Hipóteses

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorização

Comparação de dua

Amostras

Independentes (A

Amostras Emparelhadas (A

Significância

Estatistica

1.11. 02 1.0

Caucalidada

Testes Unilatera

Testes t

Anlicabilid

Utilização do R

Comparação de 2 Amostras Independentes Testes de Aleatorização

6. Inferência Estatística TH

Comparação de 2 AI

Teste de Aleatorização Amostras Grandes

Comparação de dua Médias

Amostras Independentes (A

Amostras

Emparelhadas (

Significância Fetatística

Estatistica

T.H. & I.C.

Associação

Tostos Unilator

Tector t

Condições

Aplicabilidade Utilização do

Inferência Estatística Testes de Hipóteses (TH)

Comparação de 2 Amostras Independentes

Quão diferentes devem ser duas amostras para que possamos inferir que as populações que as geraram são realmente diferentes?

Uma maneira de abordar esta questão é determinar as **médias** das duas amostras e comparar a sua diferença (por exemplo) com aquela que seria expectável devido ao acaso.

Os designados **testes de aleatorização** permitem avaliar a **variabilidade na diferença de duas médias** amostrais.

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorização

Comparação de du

Amostras

Amostras

Emparelhadas

Significância

Estatística

T.H. & I.C.

Associação

Condições

Utilização do

Inferência Estatística TH – Teste de Aleatorização

Comparação de 2 Amostras Independentes – **Exemplo**

Um investigador estudou a flexibilidade de cada uma de 7 mulheres, 4 das quais frequentavam aula de aeróbica e 3 delas aula de dança.

Uma medida observada, e registada, neste grupo foi a "flexão do tronco".

Aerobics	Dance
38	48
45	59
58	61
64	
média 51.25	56.00

6. Inferência Estatística TH

Comparação de 2 Al

Teste de Aleatorização

Comparação de dua

Amostras

Amostras

Significância

Estatística

T.H. & I.

Causalidade

Testes Unilater

Testes t

Condições de

Heilização do

Inferência Estatística TH – Teste de Aleatorização

Comparação de 2 Amostras Independentes – **Exemplo**

Será que os dados evidenciam que a flexibilidade está associada ao facto de se ser um dançarino(a)?

Se ser um dançarino **não tem nenhum efeito na flexibilidade**, então pode aceitar-se que as 7 observações (dados do estudo), **pertencem à mesma população**.

Isto é, algumas mulheres têm maior "flexão do tronco" do que outras, mas esse facto é independente de ser um dançarino.

→ Formulação de uma **hipótese**

6. Inferência Estatística TH

Comparação de 2 Al

Teste de Aleatorização

Amostras Grande Comparação de d

Amostras

4 .

Emparelhadas

Significância

Estatística

1.H. & I.C

Causalidade

Toetos Unilatora

Tostos t

Condições

Heilianeño do

Inferência Estatística TH – Teste de Aleatorização

Comparação de 2 Amostras Independentes – **Exemplo**

Hipótese: As sete medições de flexão do tronco vieram de uma única população.

A flexibilidade de cada indivíduo (medida pela flexão do tronco), não está relacionada com a modalidade praticada (aeróbica ou dança).

Aerobics	Dance
38	48
45	59
58	61
64	
média 51.25	56.00

6. Inferência Estatística TH

Comparação de 2 AI Teste de

Aleatorização

Comparação de dua Médias

Amostras (Al

Emparelhadas (A

Significância Estatística

T.H. & I.C

Causalidade

Testes Unilatera

Testes t

Aplicabilidad

Inferência Estatística TH – Teste de Aleatorização

Comparação de 2 Amostras Independentes - Exemplo

Hipótese: As sete medições de flexão do tronco vieram de uma única população.

A flexibilidade de cada indivíduo (medida pela flexão do tronco), não está relacionada com a modalidade praticada (aeróbica ou dança).

Se a **hipótese for verdadeira** então qualquer reagrupamento dos 7 valores em dois grupos (4 "aeróbica" + 3 "dança") é tão provável como qualquer outro.

6. Inferência EstatísticaTH

Comparação de 2 Al Teste de

Aleatorização

Comparação de dua Médias

Amostras

Emparelhadas (A

Significância Estatística

T.H. & I.C

Causalidade

Testes Unilateral

Testes t

Aplicabilidade

Inferência Estatística TH – Teste de Aleatorização

Comparação de 2 Amostras Independentes - Exemplo

Hipótese: As sete medições de flexão do tronco vieram de uma única população.

A flexibilidade de cada indivíduo (medida pela flexão do tronco), não está relacionada com a modalidade praticada (aeróbica ou dança).

Vamos supor que **escrevemos as sete observações em sete cartas**, baralhamos, e depois selecionamos 4 ao acaso para o grupo "aeróbica", ficando as restantes 3 para o grupo "dança".

6. Inferência Estatística TH

Comparação de 2 Al

Teste de Aleatorização

Comparação de du Médias

Independentes (A

Emparelhadas (A

Estatística

T.H. & I.

Associação Causalidade

Testes Unilatera

Testes t

Aplicabilidad

Inferência Estatística TH – Teste de Aleatorização

Comparação de 2 Amostras Independentes – **Exemplo**

De quantas maneiras se podem dividir as 7 observações em dois grupos com dimensões 4 e 3? (No R: choose(7,4) [1] 35)

Consideram-se esses 35 agrupamentos e para cada um é calculada a diferença das médias:

Sample 1 ("aerobics")	Sample 2 ("dance")	Mean of sample 1	Mean of sample 2	Difference in means
38 45 58 64	48 59 61	51.25	56.00	(-4.75)
38 45 58 48	64 59 61	47.25	61.33	-14.08
38 45 58 59	64 48 61	50.00	57.67	−7.67
38 45 58 61	64 48 59	50.50	57.00	-6.50
38 45 64 48	58 59 61	48.75	59.33	-10.58
38 45 64 59	58 48 61	51.50	55.67	-4.17
• • •	• • •	• • •	• • •	•••

Comparação de 2 Al

Tosto do Aleatorização

Inferência Estatística TH - Teste de Aleatorização

Comparação de 2 Amostras Independentes – **Exemplo**

Diferença entre as médias de cada uma das amostras para os 35 agrupamentos possíveis

Aerobics	Dance
38	48
45	59
58	61
64	
51.25	56.00

(-4.75)	-14.08	-7.67	-6.50	-10.58	-4.17	-3.00
-13.50	-12.33	-5.92	-3.00	3.42	4.58	-5.92
-4.75	1.67	-2.42	-1.25	5.17	-4.17	1.08
7.50	-1.83	-0.67	5.75	1.67	2.83	9.25
10.42	16.83	7.50	11.00	8.67	-0.08	9.25

Diferença observada para as médias:

51.25 - 56.00 = -4.75

Inferência
 Estatística
 TH

Teste de

Teste de Aleatorização

mostras Grandes

Médias

Independentes (A

Amostras

Emparelhadas (A

Significância

Estatística

T.H. & I.C.

Associação

Torse Heller

T----

C--di-E--d-

Utilização do

Inferência Estatística TH – Teste de Aleatorização

Comparação de 2 Amostras Independentes - Exemplo

Todas as diferenças de médias amostrais possíveis (ordenadas):

-14,08	-13.50	-12.33	-10.58	-7,67	-6,50	-5,92
-5.92	-4.75	-4.75	-4.17	-4.17	-3,00	-3,00
-2,42	-1,83	-1,25	-0,67	-0,08	1,08	1,67
1.67	2,83	3,42	4,58	5,17	5,75	7,50
7.50	8.67	9,25	9,25	10,42	11,00	16,83

Entre as 35 diferenças, 20 são de valor absoluto igual ou superior a 4.75 (que é a diferença observada).

ALILA

6. Inferência Estatística TH

Comparação de 2 Al

Teste de Aleatorização

Amostras Grandes

Amostras

Independentes (

Emparelhadas (Al

Significância Estatística

THE S. L.C.

Associação

Causalidade

restes Unitaten

Testes t

Htilização do

Inferência Estatística TH – Teste de Aleatorização

Comparação de 2 Amostras Independentes - Exemplo

Todas as diferenças de médias amostrais possíveis (ordenadas):

-14,08	-13.50	-12.33	-10.58	-7,67	-6,50	-5,92
-5.92	-4.75	-4.75	-4.17	-4.17	-3,00	-3,00
		-1,25				
1.67	2,83	3,42	4,58	5,17	5,75	7,50
7.50	8.67	9,25	9,25	10,42	11,00	16,83

Assim, se a hipótese formulada é verdadeira, existem 20 possibilidades em 35 de obter uma diferença igual ou superior à diferença observada (aqui, valor-p = 20/35).

6. Inferência Estatística TH

Comparação de 2 Al

Teste de Aleatorização

Amostras Grande

Amostras

Amostras

Significância

Estatística

TH & IC

Associação

Causanuaue

restes Utiliater

Testes t

Aplicabilidade

Inferência Estatística TH – Teste de Aleatorização

Comparação de 2 Amostras Independentes – **Exemplo**

Hipótese: As sete medições de flexão do tronco vieram de uma única população; a flexibilidade de cada indivíduo não está relacionada com a modalidade praticada.

Existem 20 possibilidades em 35 de obter uma diferença igual ou superior à diferença observada ($20/35 \simeq 0.57$).

Este valor é bastante elevado, sugerindo que os dados são consistentes com a hipótese formulada.

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorização Amostras Grand

Comparação de di

Amostras

Amostras

Emparelhadas

Significância Estatística

THE S. L.C.

Associação

Causanuaue

restes Unitater

Testes t

Condições Anlicabilid

Utilização do

Inferência Estatística TH – Teste de Aleatorização

Comparação de 2 Amostras Independentes - Exemplo

Hipótese: As sete medições de flexão do tronco vieram de uma única população; a flexibilidade de cada indivíduo não está relacionada com a modalidade praticada.

Supondo a hipótese verdadeira, espera-se observar uma diferença de magnitude das médias amostrais igual ou superior à observada (4.75) devida unicamente a flutuações aleatórias em mais de metade dos casos

Inferência
 Estatística
 TH

Comparação de 2 Al Teste de Aleatorização

Amostras Grandes

Medias

Independentes (

Emparelhadas (A

Significância Estatística

T.H. & I.C.

Associação Causalidade

Tector Unilatora

Tostos t

Condições o

Heilização do

Inferência Estatística Testes de Hipóteses

Teste de Aleatorização

O exemplo do procedimento que acabámos de ver, é, como dissemos, designado por Teste de Aleatorização.

Observação:

Os testes t, assunto que abordámos anteriormente, podem ser considerados uma boa aproximação ao Teste de Aleatorização, no caso em que todas as possibilidades são consideradas.

O valor $20/35 \simeq 0.57$, do exemplo anterior, corresponde aproximadamente ao valor-p do **teste t**.

6. Inferência Estatística TH

Comparação de 2 Al Teste de

Amostras Grandes

Médias

Independentes (A

Amostras Emparelhadas (AE

Significância

T.H. & I.C.

Associação

Testes Unilatera

Testes t

Aplicabilidad

Inferência Estatística Testes de Hipóteses

Teste de Aleatorização – **Amostras Grandes – Exemplo**

Um botânico investigou o efeito do stress mecânico no crescimento de plantas de soja.

As plantas foram plantadas individualmente em vasos, e divididas em **dois grupos** de 9 plantas cada um:

- as plantas do primeiro grupo foram abanadas durante 20 minutos duas vezes ao dia; as do segundo grupo (grupo de controlo), não;
- após 16 dias de crescimento, as plantas foram colhidas e foi registada a área foliar total (em cm2) de cada planta.

6. Inferência Estatística TH

Comparação de 2 AI Teste de

Amostras Grandes

Comparação de du

Amostras

Independentes (A

Emparelhadas (A

Estatística

T.H. & I.C.

Associação

restes Unitatera

l estes t

Apiicabiiidade

Inferência Estatística Testes de Hipóteses

Teste de Aleatorização – **Amostras Grandes – Exemplo**

Control	Stressed
314	283
320	312
310	291
340	259
299	216
268	201
345	267
271	326
285	241
mean 305.8	266.2

Notar que a média amostral para o grupo de controlo é superior

ΔΙΙΙ Δ Ο

6. Inferência Estatística TH

Comparação de 2 AI Teste de

Amostras Grandes

Comparação de du Médias

Amostras

Amostras

Emparelhadas (A

Estatística

T.H. & I.C

Accociacão

Testes Unilatera

Testes t

Condições Anlicabilid

tilização do l

Inferência Estatística Testes de Hipóteses

Teste de Aleatorização – **Amostras Grandes – Exemplo**

Control	Stressed
314	283
320	312
310	291
340	259
299	216
268	201
345	267
271	326
285	241
mean 305.8	266.2

Hipótese: a área foliar para cada planta de soja não está relacionada com o stress mecânico provocado.

6. Inferência Estatística TH

Comparação de 2 Al

Teste de

Amostras Grandes

Amostras

Independentes (A

Amostras Emparelhadas (A

Significância

Estatística

1.H. & I.C

Causalidade

Testes Unilatera

Condições

Htilização do l

Inferência Estatística Testes de Hipóteses

Teste de Aleatorização – **Amostras Grandes – Exemplo**

Número possível de amostras: 48620

No R:

choose(18,9)

[1] 48620

Atendendo ao número elevado de agrupamentos possíveis, não é razoável considerar todos agrupamentos, e para cada um calcular a diferença das médias.

6. Inferência Estatística TH

Comparação de 2 Al Teste de

Amostras Grandes

Médias

Independentes (A

Amostras

Emparelhadas (A Significância

Estatística

T.H. & I.C

Causalidade

Testes Unilatera

Testes t

Aplicabilidad

Inferência Estatística Testes de Hipóteses

Teste de Aleatorização – **Amostras Grandes – Exemplo**

Número possível de amostras no exemplo: 48620

Poderá selecionar-se um grupo de amostras, e, utilizando ferramentas informáticas, calcular a proporção de valores iguais ou superiores (em valor absoluto) à diferença de médias observada.

A veracidade da hipótese será avaliada com base nesta proporção (valor-p aproximado).

6. Inferência Estatística TH

Comparação de 2 Al Teste de

Aleatorização Amostras Grand

Comparação de duas Médias

Amostras Independentes (Al

Amostras

Empareinadas (Ai

Estatística

T.H. & I.C

Associação

Testes Unilators

Anlicabilida

Jtilização do R

Comparação de duas Médias

Amostras Independentes (AI)

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorização

omparação de duas

Amostras Independentes (AI)

Amostras Emparelhadas (

Significância

Estatística

T.H. & I.C

Accociacão

Causandade

Testes Unilatera

Testes t

Aplicabilidad

Inferência Estatística Testes de Hipóteses

Comparação de 2 Médias Desconhecidas (AI)

Este procedimento aplica-se quando pretendemos comparar as médias de uma variável quantitativa em dois grupos diferentes de indivíduos, e se desconhecem as respetivas variâncias.

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 - \mu_2 \neq 0$$

ALILA

6. Inferência Estatística TH

Teste de Aleatorização

Comparação de di Médias

Amostras Independentes (AI)

Amostras Emparelhadas (AE

Significância Estatística

T.H. & I.C.

Associação

Torres Helleron

Testes t

Condições

Aplicabilidade

Inferência Estatística Testes de Hipóteses

Comparação de 2 Médias Desconhecidas (AI)

	População X ₁	População X ₂
tamanho da amostra	n_1	n_2
média da amostra	<u>x</u> 1	<u>X</u> 2
desvio padrão da amostra	s_1	s_2

Valor da estatística do teste:
$$t_S=rac{\overline{x}_1-\overline{x}_2}{se}$$
, $\left(se=\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}
ight)$

 t_5 é o valor (correspondente às amostras de que dispomos) de uma variável aleatória T, que no caso de **populações normais** e sendo a hipótese H_0 **verdadeira**, segue **aproximadamente** uma distribuição **t de Student** com $n_1 + n_2 - 2$ **graus de liberdade**.

Sem a hipótese de normalidade, mas $n_i > 30$, a conclusão é a mesma!

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorizaç

Comparação de du

Amostras Independentes (AI)

Amostras

Emparelhadas (*F* Significância

Estatística

1.H. & I.C.

Causalidade

Testes Unilater

Testes t

Aplicabilidade

Inferência Estatística Testes de Hipóteses

Comparação de 2 Médias Desconhecidas (AI)

Tal como dito anteriormente, por vezes é usado o **erro padrão ponderado**.

No caso das duas amostras terem o mesmo tamanho, ou se as suas variâncias forem iguais, os dois erros padrão coincidem.

O número de graus de liberdade $(n_1 + n_2 - 2)$, da distribuição t de Student é também aproximado de modo a facilitar os cálculos.

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorização

Comparação de dua Médias

Amostras Independentes (AI)

Amostras Emparelhadas (A

Significância Estatística

TH & I (

Г.Н. & І.С

Causalidade

Testes Unilatera

Testes t

Aplicabilidade

Inferência Estatística Testes de Hipóteses

Comparação de 2 Médias Desconhecidas (AI)

Tal como já foi dito, o **valor-p** é a probabilidade de se obter uma estatística de teste igual ou mais extrema que a observada, sob a condição da hipótese nula H_0 ser verdadeira.

Valor-p $< \alpha$: evidência de H_1 a um nível de significância α .

Ou: μ_1 é significativamente diferente de μ_2 ao nível de α .

6. Inferência Estatística TH

Comparação de 2 A Teste de

Amostras Grande

Comparação de du Médias

Amostras Independentes (AI)

Amostras Emparelhadas (AE

Significância

Estatística

Associação

Causalidade

Testes Unilatera

Testes t

Condições Aplicabilid

tilização do

Inferência Estatística Testes de Hipóteses

Comparação de 2 Médias Desconhecidas (AI) - Exemplo

Foi realizada um estudo para avaliar se há diferenças significativas nas dores sentidas após a cirurgia às amígdalas por dois métodos distintos.

Registaram-se as classificações (escala de 0-10) das dores sentidas 4 dias após a cirurgia em 2 grupos de crianças:

Nível de Dor			
Cirg.	Convencional	Inovadora	
\bar{x}	4,3	1,9	
S	2,8	1,8	
n	49	52	

6. Inferência Estatística TH

Comparação de 2 AI

Aleatorização

Amostras Grande

Comparação de duas Médias

Amostras Independentes (AI)

Amostras Emparelhadas (Al

Significância

Estatística

T.H. & I.C.

Causalidade

Testes Unilatera

Condições

Htilização do F

Inferência Estatística Testes de Hipóteses

Comparação de 2 Médias Desconhecidas (AI) – Exemplo

Uma vez que são amostras grandes, poderá ser feito um **teste t** para avaliar se as médias são diferentes.

Nível de Dor			
Cirg.	Convencional	Inovadora	
\bar{x}	4,3	1,9	
S	2,8	1,8	
n	49	52	

$$t_S = \frac{\overline{x}_{co} - \overline{x}_{in}}{se} \approx 5.1 \quad \left(\text{se } = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \approx 0.47 \right)$$

6. Inferência Estatística TH

Comparação de 2 AI

Teste de Aleatorização

Amostras Grandes Comparação de duas

Amostras Independentes (AI)

Amostras Emparelhadas (Al

Significância

Estatística

T.H. & I.C.

Causalidade

Testes Unilater

Testes t

Aplicabilidad

Inferência Estatística Testes de Hipóteses

Comparação de 2 Médias Desconhecidas (AI) - Exemplo

Nível de Dor			
Cirg.	Convencional	Inovadora	
\bar{x}	4,3	1,9	
S	2,8	1,8	
n	49	52	

Há portanto diferença significativa nas dores sentidas após a cirurgia às amígdalas pelos dois métodos.

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorização

Comparação de duas

Amostras Independentes (AI)

Amostras

Emparelhadas (AE

Estatística

T.H. & I.C

Associação €

Testes Unilatera

T . . .

Anlicabilida

Jtilização do R

Comparação de duas Médias Amostras Emparelhadas (AE)

6. Inferência Estatística TH

Comparação de 2 Al

Teste de Aleatorizaçã

Comparação de du Médias

Amostras Independentes (A

Amostras Emparelhadas (AE)

Significância

THE REC

A . . .

Causalidad

Testes Unilatera

Testes t

Aplicabili

Utilização do F

Inferência Estatística Testes de Hipóteses

Comparação de 2 Médias Desconhecidas (AE)

O procedimento que veremos a seguir, aplica-se quando pretendemos comparar as médias em dois grupos de alguma forma correlacionados (por exemplo, antes e depois de um tratamento).

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_1: \mu_1 - \mu_2 \neq 0$$

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorização

Comparação de dua

Amostras Independentes (A

Amostras Emparelhadas (AE)

Significância

Estatística

T.I. A.I.C

1.m. & I.C.

Causalidade

Testes Unilatera

Tostos t

Condiçõe

tilização do F

Inferência Estatística Testes de Hipóteses

Comparação de 2 Médias Desconhecidas (AE)

Neste caso, e de forma inteiramente análoga à determinação de um intervalo de confiança, consideramos a amostra constituída pelas diferenças, e aplicamos o teste-t para uma só amostra.

Amostra Emparelhada

$$(x_1, y_1)(x_2, y_2)(x_3, y_3) \cdots (x_n, y_n)$$

 6. Inferência Estatística TH

Comparação de 2 Al

Aleatorização

Comparação de du

Amostras Independentes (A

Amostras Emparelhadas (AE)

Emparelhadas (Al

Estatística

T.H. & I.0

Associacão

Torse Heller

restes Utiliate

Condições

Aplicabilid

Utilização do

Inferência Estatística Testes de Hipóteses

Comparação de 2 Médias Desconhecidas (AE)

$$D = X_1 - X_2$$

A média de D é $\mu = \mu_1 - \mu_2$

 $H_0: \mu_1 - \mu_2 = 0$

 $H_1: \mu_1 - \mu_2 \neq 0$

Amostra emparelhada: $(x_1, y_1)(x_2, y_2)(x_3, y_3) \cdots (x_n, y_n)$

Amostra simples: $d_1 = x_1 - y_1$, $d_2 = x_2 - y_2$, ... $d_n = x_n - y_n$

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorização

Comparação de du

Amostras Independentes (A

Amostras Emparelhadas (AE)

Emparelhadas (AE) Significância

Estatística

1.H. & I.C

Causalidade

Testes Unilatera

Testes t

Htilização do I

Inferência Estatística Testes de Hipóteses

Comparação de 2 Médias Desconhecidas (AE)

 $H_0: \mu_1 - \mu_2 = 0$

 $H_1: \mu_1 - \mu_2 \neq 0$

Testam-se agora estas hipóteses a partir de uma única amostra

$$(d_1, d_2, \ldots, d_n)$$

Assim, reduzimos este caso ao primeiro que tratámos anteriormente:

Comparação de uma média desconhecida com um valor específico (que neste caso é 0), a partir de **uma** amostra.

ALILA

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorização

Comparação de du

Amostras

Independentes (AI)

Amostras Emparelhadas (AE)

Significância

Estatística

T.H. & I.C.

Associação

T . . .

Condições

tilização do l

Inferência Estatística Testes de Hipóteses

Comparação de 2 Médias Desconhecidas (AE) – **Exemplo**

Para investigar se a ingestão de cafeína afeta a circulação sanguínea, fez-se um estudo com 8 indivíduos saudáveis. O fluxo sanguíneo miocárdico (FSM) em ml/(min gr) foi registado antes e depois da toma de um comprimido contendo 200 mg de cafeína.

indivíduo	antes (x)	depois (y)
1	6.37	4.52
2	5.69	5.44
3	5.58	4.70
4	5.27	3.81
5	5.11	4.06
6	4.89	3.22
7	4.70	2.96
8	3.53	3.20

ΔΙΙΙ Δ Ο

6. Inferência Estatística

Comparação de 2 Al

Aleatorização

Amostras Grandes

Médias

Independentes (A

Amostras Emparelhadas (AE)

Emparelhadas (AE

Estatística

T.H. & I.C.

Associação (

Causalidade

_

Testes t

Aplicabilida

Inferência Estatística Testes de Hipóteses

Comparação de 2 Médias Desconhecidas (AE) - Exemplo

indivíduo	antes (x)	depois (y)	d = x - y
1	6.37	4.52	1.85
2	5.69	5.44	0.25
3	5.58	4.70	0.88
4	5.27	3.81	1.46
5	5.11	4.06	1.05
6	4.89	3.22	1.67
7	4.70	2.96	1.74
8	3.53	3.20	0.33

Como a amostra é pequena, assumimos que a diferença do FSM, antes e depois da toma de cafeína, tem distribuição normal.

Sendo μ_a e μ_d as médias do FSM antes e depois da toma de cafeína, pretende-se testar as hipóteses a seguir indicadas.

6. Inferência Estatística TH

Comparação de 2 AI

Aleatorização

Amostras Grande

Amostras

Amostras

Emparelhadas (AE)

Significância

Estatistica

1.H. & 1.0

Causalidad

Testes Unilatera

Tostos t

Anlicabilio

Utilização do l

Inferência Estatística Testes de Hipóteses

Comparação de 2 Médias Desconhecidas (AE) - Exemplo

$$H_0: \mu_a - \mu_d = 0$$

$$H_1: \mu_a - \mu_d \neq 0$$

Que é equivalente a testar:

$$H_0: \mu = 0$$

$$H_1: \mu \neq 0$$

onde μ é a média da diferença entre o FSM antes e depois da ingestão de cafeína.

ALILA

6. Inferência Estatística TH

Comparação de 2 A

Teste de Aleatorização

Amostras Grand

Amostras

Independentes (A

Amostras Emparelhadas (AE)

Empareinadas (A

Estatística

T.H. & I.

Associacã

Cuusunuuc

restes Unitater

Testes t

Aplicabili

Utilização do I

Inferência Estatística Testes de Hipóteses

Comparação de 2 Médias Desconhecidas (AE) - Exemplo

$$\bar{d} = 1.15$$

 $s = 0.63$ $\implies t_s = \frac{1.15}{se} \approx 5.227$
 $se = \frac{0.63}{\sqrt{8}} = 0.22$

E temos

$$T \sim t(7) \quad \Rightarrow \quad P(|T| > 5.227) \approx 0.0012$$

Para $\alpha=1\%$ os dados evidenciam que as médias do FSM são diferentes antes e depois da ingestão de cafeína.

Comparação de 2 Al

Significância

Estatística

Inferência Estatística Testes de Hipóteses

Significância Estatística

A significância estatística permite verificar a discrepância de uma hipótese estatística em relação aos dados observados, utilizando uma medida de evidência (valor-p).

Em testes de hipóteses, diz-se que há significância estatística ou que o resultado é estatisticamente significativo quando o valor-p observado é menor que o nível de significância α .

O nível de significância é geralmente fixado pelo investigador antes da recolha de dados, e usualmente fixado em 0.05 ou menos, dependendo da área de estudo.

6. Inferência Estatística TH

Comparação de 2 Al Teste de Aleatorização

Comparação de du Médias

Amostras Independentes (Al

Amostras Emparelhadas (AE

Significância Estatística

Estatística TH&IC

T.H. & I.C.

Causalidade

Testes Unilatera

Testes t

Condições de

Aplicabilidade Utilização do

Inferência Estatística Testes de Hipóteses

Testes de Hipóteses & Intervalos de Confiança

Existe uma relação estreita entre os intervalos de confiança e os testes de hipóteses que estudámos.

Quando é construído um I.C. =]a, b[, com confiança $1 - \alpha$, todos os valores no intervalo são plausíveis para o parâmetro a estimar; valores fora do intervalo são considerados implausíveis.

Se o valor do parâmetro especificado por H_0 **pertencer** ao intervalo de confiança]a, b[, então H_0 não pode ser rejeitada a um nível α ; **caso contrário**, rejeita-se H_0 ao nível de α .

6. Inferência Estatística TH

Comparação de 2 Al

Teste de Aleatorização

Comparação de d

Amostras

Independentes (A

Emparelhadas (Significância

Estatística

T.H. & I.C.

Associação

Torres Helleron

Testes t

Condições de

Utilização do

Inferência Estatística Testes de Hipóteses

T.H. & I.C. – Exemplo

Foram recolhidas amostras de lagostins de uma certa espécie em dois rios distintos, e medido o comprimento (mm) de cada lagostim capturado.

Os dados estão resumidos na tabela seguinte, acompanhada pelos diagramas caixa-de-bigodes:

	rio A	rio B
n	25	20
\bar{x}	22.91	21.97
S	3.78	2.90

Pretende-se saber se o comprimento dos lagostins difere significativamente nos dois rios.

AIII A

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorização

Comparação de du

Amostras

Independentes (A

Emparelhadas

Significância

Estatistica

T.H. & I.C.

Associação

Cuusunauac

T-----

Condições

Halling and

Inferência Estatística Testes de Hipóteses

T.H. & I.C. – Exemplo

Como as amostras têm tamanho inferior a 30, assumimos que o comprimento X_A dos lagostins no rio A, e o comprimento X_B dos lagostins no rio B, têm distribuições normais com médias μ_A e μ_B respetivamente.

As hipóteses a testar são:

 $H_0: \mu_A - \mu_B = 0$

 $H_1: \mu_A - \mu_B \neq 0$

Iremos tirar a conclusão através das duas abordagens: testes de hipóteses (T.H.) e intervalos de confiança (I.C.).

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorização

Comparação de dua Médias

Amostras Independentes (Al

Amostras Emparelhadas (AE

Significância

Estatística

T.H. & I.C.

Associação

Cuusunuuc

_

Condições

Halling and

Inferência Estatística Testes de Hipóteses

T.H. & I.C. – Exemplo: T.H. (com base no valor-p)

$$valor-p = 0.350 > 0.05$$

A um **nível de significância** 0.05, os dados não fornecem prova suficiente (valor-p = 0.350), de que o comprimento médio dos lagostins é diferente nos dois rios.

6. Inferência Estatística TH

Comparação de 2 Al

Teste de Aleatorização

Comparação de du Médias

Amostras Independentes (A

Amostras

Emparelhadas (/

Estatística

TH & IC

Associação

Causaildade

restes Unitater

Condiçõe

Aplicabili

Testes de Hipóteses

T.H. & I.C. – Exemplo: Intervalo de Confiança

$$se = \sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}} = \sqrt{\frac{3.78^2}{25} + \frac{2.90^2}{20}} \approx 0.996$$

Inferência Estatística

Grau de confiança: 95% \rightarrow $t_{0.025,43} = 2.0167 \approx 2.02$

Intervalo de Confiança: $\overline{x}_A - \overline{x}_B \pm t_{0.025,43} se$, i.e.: 0.94 ± 2.02

O intervalo de confiança é portanto (-1.08, 2.96).

O intervalo contém 0 e portanto não se pode rejeitar H_0 (igualdade das médias), a um nível de significância de 0.05.

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorizaç

Comparação de du

Amostras

independences (A

Emparelhadas

Significância

Estatística

Associação e

Causalidade

Testes Unilatera

Testes t

Condições Anlicabilid

Utilização do I

Inferência Estatística Testes de Hipóteses

Associação e Causalidade

Na comparação de duas populações, muitas vezes o interesse recai na relação entre duas variáveis:

- uma variável de resposta Y, que representa a característica de interesse
- uma variável explicativa X, usada para 'explicar', ou prever a resposta

6. InferênciaEstatísticaTH

Comparação de 2 AI Teste de

Aleatorização Amostras Grandes

Comparação de du Médias

Amostras

A .

Emparelhadas

Estatística

TH & IC

Associação e

Testes Unilatera

T-----

Condições

Heilização do

Inferência Estatística Testes de Hipóteses

Associação e Causalidade

Num **estudo experimental** podemos avaliar se existem evidências de que possíveis diferenças em X 'causem' diferenças em Y.

Num **estudo observacional** as conclusões são mais limitadas, pois não é possível estabelecer relações de causalidade.

Neste caso apenas podemos avaliar se existe evidência de que diferenças em X estejam associadas a diferenças em Y.

ΔΙΙΙ Δ

6. Inferência Estatística TH

Comparação de 2 AI

Aleatorização Amostras Grandes

Comparação de dua Médias

Amostras Independentes (Al

Amostras Emparelhadas (A

Significância

Estatística

Associação e

Causalidade

Testes Unitatera

Condições o

Utilização do I

Inferência Estatística Testes de Hipóteses

Associação e Causalidade - Exemplo 1

Selecionaram-se duas amostras aleatórias de jovens de 17 anos (35 rapazes e 40 raparigas), e medidos os níveis de hematócrito (concentração de glóbulos vermelhos no sangue). Obteve-se:

Hematócrito (%)					
	35 rapazes 40 rapario				
média	45.8	41.6			
desvio padrão	3.1	3.2			

Trata-se de um estudo observacional, e a questão é:

Existe evidência estatística de que o nível de hematócrito esteja associado ao género?

ALILA

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorização

Amostras Grande

Amostras

Independentes (A

Emparelhadas (/

Significância

Estatística

TH & IC

Associação e Causalidade

Testes Unilater

Tostos t

Anlicabilid

Utilização do I

Inferência Estatística Testes de Hipóteses

Associação e Causalidade - Exemplo 1

Para responder à questão foi feito um **teste t** comparando duas médias desconhecidas a partir de duas amostras independentes.

$$H_0: \mu_m - \mu_f = 0; \qquad H_1: \mu_m - \mu_f \neq 0$$

$$se = \sqrt{\frac{s_m^2}{35} + \frac{s_f^2}{40}}; \quad t_s = \frac{\overline{x}_m - \overline{x}_f}{se} = \frac{45.8 - 41.6}{se} \approx 5.76$$

valor-p
$$< 10^{-6}$$

Há forte evidência estatística de diferença de médias, e portanto de que o nível de hematócrito está associado ao género.

AIII A

6. Inferência Estatística TH

Comparação de 2 Al Teste de

Aleatorização Amostras Grandes

Médias

Independentes (A

Emparelhadas

Significância Estatística

THE RELCT

Associação e

Torse Heller

Condições

Htilizacão do l

Inferência Estatística Testes de Hipóteses

Associação e Causalidade - Exemplo 2

Para perceber o efeito de um fertilizante no crescimento de uma certa espécie de planta, foram selecionadas aleatoriamente 32 sementes para serem semeadas em solo fertilizado, e 35 sementes para fazerem parte do grupo de controlo. Todas as outras condições foram mantidas iguais nos dois grupos.

Duas semanas após a germinação foram medidas as alturas dos caules:

altura (em cm)					
	com fertilizador	controlo			
média	2.04	2.58			
desvio padrão	0.72	0.65			

6. Inferência Estatística TH

Comparação de 2 Al Teste de

Aleatorização Amostras Grande

Comparação de du Médias

Amostras

Amostras

Emparelhadas (Al

Estatística

TH & LC

Associação e

Causalidade

Testes Unilatera

T-----

l estes t

Heilização do

Inferência Estatística Testes de Hipóteses

Associação e Causalidade - Exemplo 2

altura (em cm)					
	com fertilizador	controlo			
média	2.04	2.58			
desvio padrão	0.72	0.65			

Trata-se agora de um estudo experimental.

Questão: Existe evidência estatística de que o fertilizante tenha efeito no crescimento dessa espécie?

Para responder à questão fez-se um **teste t** comparando duas médias desconhecidas a partir de duas amostras independentes.

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorização Amostras Grandes

Comparação de dua Médias

Amostras

Independentes (A

Amostras Emparelhadas (

Significância

Estatística

T.H. & I.C.

Associação e Causalidade

Testes Unilatera

Tostos t

Anlicabilid

Utilização do F

Inferência Estatística Testes de Hipóteses

Associação e Causalidade - Exemplo 2

Para responder à questão foi feito um **teste t** comparando duas médias desconhecidas a partir de duas amostras independentes.

$$H_0: \mu_f - \mu_c = 0; \qquad H_1: \mu_f - \mu_c \neq 0$$

$$se = \sqrt{\frac{s_f^2}{32} + \frac{s_c^2}{35}}; \quad t_s = \frac{\overline{x}_f - \overline{x}_c}{se} = \frac{2.04 - 2.58}{se} \approx -3.21$$

 \therefore valor-p ≈ 0.002

A um nível de significância de 1%, existe evidência estatística de que as médias são diferentes (valor-p $< \alpha$), e portanto o fertilizante tem efeito no crescimento dessa espécie.

6. Inferência Estatística TH

Comparação de 2 Al Teste de

Aleatorização

Comparação de dua Médias

Amostras Independentes (A

Amostras Emparelhadas (4

Significância

Estatística

A----

Causalidade

Testes Unilaterais

Condiçõe

Halling J.

Inferência Estatística Testes de Hipóteses

Testes de Hipóteses Unilaterais

Os testes t que estudámos são testes **bilaterais**, uma vez que a hipótese nula é rejeitada se o valor da estatística do teste t_s cair numa de duas caudas da distribuição t de Student.

Recorde-se que o valor-p é a área de duas regiões simétricas.

Os testes bilaterais aplicam-se quando a hipótese alternativa é da forma $\mu \neq VE$ ou $\mu_1 - \mu_2 \neq 0$

6. Inferência Estatística TH

Comparação de 2 Al Teste de

Aleatorização Amostras Grande

Comparação de du Médias

Amostras Independentes (A

Amostras

Significância

Estatística

Associacão

Causalidad

Testes Unilaterais

Condições

tilização do l

Inferência Estatística Testes de Hipóteses

Testes de Hipóteses Unilaterais

Mas poderemos estar interessados em hipóteses H_1 da forma $\mu>V\!E$ ou $\mu_1-\mu_2<0$, por exemplo.

Nesse caso a região de rejeição deverá ser unilateral.

Nota: o valor-p é, em qualquer dos casos, a área da região azul

Inferência Estatística TH

Comparação de 2 Al Teste de Aleatorização

Amostras Grande

Amostras

Amostras Emparelhadas (A

Significância Estatística

Estatística

Associação (

Testes Unilaterais

Testes Unilatera

Condições Aplicabilida

Utilização do I

Inferência Estatística Testes de Hipóteses

Testes de Hipóteses Unilaterais - Exemplo

O tempo médio, por operário, gasto na execução de uma tarefa, é de 100 minutos.

Foi introduzida uma modificação de modo a diminuir este tempo, e após certo período, selecionou-se uma amostra aleatória de 35 operários, e mediu-se o tempo de execução gasto por cada um.

O tempo médio da amostra foi 92 minutos, com desvio padrão de 12 minutos.

Inferência
 Estatística
 TH

Comparação de 2 Al

Aleatorizaç

Comparação de du

Amostras

Independentes (A

Emparelhadas (AE)

Significância

Estatistica

Associação

Testes Unilaterais

restes Offilatera

Condições Anlicabilid

Utilização do R

Inferência Estatística Testes de Hipóteses

Testes de Hipóteses Unilaterais - Exemplo

A um nível de significância de 1%, este resultado evidencia uma melhoria no tempo gasto para realizar a tarefa?

Hipóteses a testar:

 $H_0: \mu = 100$

 $H_1: \mu < 100$

6. Inferência Estatística TH

Comparação de 2 Al

Aleatorização

Amostras Grandes Comparação de du

Amostras

Amostras

Emparelhadas (A

Significância

Estatistica

1.H. & I.C

Associação

Testes Unilaterais

_

Condições

Itilização do F

Inferência Estatística Testes de Hipóteses

Testes de Hipóteses Unilaterais – **Exemplo**

 $H_0: \mu = 100$

 $H_1: \mu < 100$

$$\overline{x} = 92$$
; se $= \frac{12}{\sqrt{35}}$; $t_s = \frac{\overline{x} - 100}{se} \approx -3.944$

$$\therefore$$
 valor $-p \approx 0.0002$

A um nível de 1% há evidência estatística de que a modificação introduzida diminui o tempo médio de execução da tarefa.

6. Inferência
 Estatística
 TH

Comparação de 2 Al Teste de

Comparação de du

Amostras

Amostras Emparelhadas (AE

Significância Estatística

Associação (

Causalidade

Testes Unilateral
Testes t
Condições de

Aplicabilidade

Inferência Estatística Testes de Hipóteses

Condições de Aplicabilidade

Os **testes t** (e os I.C.) que acabámos de descrever são apropriados se forem satisfeitas as condições seguintes:

- Os dados devem ser obtidos aleatoriamente das respetivas populações e as observações em cada amostra devem ser independentes.
- 2 As distribuições das médias amostrais devem ser (aproximadamente) normais.

Isto pode ser alcançado se as populações tiverem distribuição normal, ou então, no caso de populações não normais, tendo amostras grandes e usando o teorema do limite central.

Comparação de 2 Al

Utilização do R

Inferência Estatística Testes de Hipóteses

Testes de Hipóteses no


```
(t.test)
v < -c(1.2, 1.5, ..., 3.4) #amostra
t.test(v.mu=2.alternative="less") # testa H0:mu=2 contra H1:
mu<2 a partir da amostra y
v1<-c(1.2,1.5,...,3.4) #amostra 1
v2<-c(2.4.1.4.....2.4) #amostra 2
t.test(y1,y2)
                      # teste t para duas amostras independentes
v1 < -c(1, 2, 1, 5, ..., 3, 4)
                         #amostra 1
v^{2}<-c(2.4,1.4,...,2.4) #amostra 2
t.test(v1.v2.paired=T) # teste t para amostras emparelhadas
```

Comparação de 2 Al

Utilização do R

Inferência Estatística Testes de Hipóteses

Testes de Hipóteses no


```
(t.test)
y < -c(1.2, 1.5, ..., 3.4) #amostra
t.test(y,mu=2,alternative="less") # testa H0:mu=2 contra H1:
mu<2 a partir da amostra y
v1 < -c(1.2.1.5....3.4) #amostra 1
y2 < -c(2.4, 1.4, ..., 2.4) #amostra 2
t.test(y1,y2, alternative="greater")
                                                # teste t para
duas amostras independentes com H1:diferenca de médias >0
```