http://localhost/latex/ 1/11

 $\forall_{x_{0:k} \in s_{2}'} \left\{ \{n\} \right\} \cup \left\{ *x_{0:k} \right\} \in \left\{ \left\{ *x_{0:k+1} \right\} \middle| x_{0:k+1} \in s_{1}' \right\}$

Eq[12]

$$\forall_{x_{0:k+} \in s_1'} \forall_{0 \le i \le k} |x_i| > 0 \land \sum_{i=0}^k |x_i| = n+1 \land \bigcup_{i=0}^k x_i = [0; n] \quad \text{Eq.s1_quote_definition}$$

$$\forall_{x_{0:k} \in s_{2}'} \forall_{0 \le i < k} |x_{i}| > 0 \land \sum_{i=0}^{k-1} |x_{i}| = n \land \bigcup_{i=0}^{k-1} x_{i} = [0; n)$$
 Eq[13]

$$\forall_{x_{0:k+} \in s_3'} \forall_{0 \le i \le k} |x_i| > 0 \land \sum_{i=0}^k |x_i| = n \land \bigcup_{i=0}^k x_i = [0; n)$$
 Eq[14]

$$\forall \underset{x_0: k \in s_2'}{0 \le i < k} |x_i| > 0$$
 Eq[15]

$$\forall_{x_{0:k} \in s_2'} \sum_{i=0}^{k-1} |x_i| = n$$
 Eq[16]

$$\forall_{x_{0:k} \in s_2'} \bigcup_{i=0}^{k-1} x_i = [0; n)$$
 Eq[17]

$$\exists_{x_k} x_k = \{n\}$$
 Eq[18]

$$\exists_{x_k} \forall_{x_{0:k} \in s_2'} \bigcup_{i=0}^k x_i = [0; n]$$
 Eq[19]

$$\exists_{x_k} \{x_k\} = \{\{n\}\}$$
 Eq[20]

$$\exists_{x_k} \{ *x_{0:k+1} \} = \{ \{n\} \} \cup \{ *x_{0:k} \}$$
 Eq[21]

$$\exists_{x_k} \forall_{x_{0:k+1}} \{ *x_{0:k+1} \} \in \{ \{ *x_{0:k+1} \} | x_{0:k+1} \in s_1' \}$$
 Eq[22]

$$\exists_{x_k} \forall_{x_{0:k} \in s_2'} \forall_{0 \le i \le k} |x_i| > 0 \land \sum_{i=0}^k |x_i| = n + 1 \land \bigcup_{i=0}^k x_i = [0; n]$$
 Eq[23]

$$\exists_{x_k} |x_k| = 1$$
 Eq[24]

$$\exists_{x_k} |x_k| > 0$$
 Eq[25]

$$\exists_{x_k} \forall_{x_0: k \in s_2'} \sum_{i=0}^k |x_i| = n+1$$
 Eq[26]

$$\exists_{x_k} \forall_{\substack{0 \le i \le k \\ x_0 : k \in s_2'}} |x_i| > 0$$
 Eq[27]

$$\exists_{x_k} \forall_{x_{0:k} \in s_2'} \forall_{0 \le i \le k} |x_i| > 0 \land \sum_{i=0}^k |x_i| = n + 1 \land \bigcup_{i=0}^k x_i = [0; n]$$
 Eq[23]

$$\forall \underset{x_{0:k+} \in s_3'}{0 \le i \le k} |x_i| > 0$$
 Eq.x_abs_positive_s3

$$\forall_{x_{0:k+} \in s_3'} \sum_{i=0}^{k} |x_i| = n$$
 Eq.x_abs_sum_s3

$$\forall_{x_{0:k+} \in s_3'} \bigcup_{i=0}^k x_i = [0; n)$$
 Eq.x_union_s3

$$x'_{i} = \begin{cases} \{n\} \cup x_{i} & \text{if } i = j \\ x_{i} & \text{else} \end{cases}$$
 Eq.x_quote_definition

$$\left\{\left\{*x'\right\}\middle| x_{0:k+1} \in s_3'\right\} \subset s_1$$
 Eq.x_quote_set_in_s1

$$\forall_{x_{0:k+} \in s_3'} \left\{ *x' \right\} \in s_1$$
 Eq[28]

$$\forall_{x_{0:k+} \in s_3'} \{*x'\} \in \{\{*x_{0:k+1}\} | x_{0:k+1} \in s_1'\}$$
 Eq[29]

$$\forall_{x_{0:k+} \in s_3'} \forall_{0 \le i \le k} |x_i'| > 0 \land \sum_{i=0}^k |x_i'| = n + 1 \land \bigcup_{i=0}^k x_i' = [0; n]$$
 Eq[30]

$$\bigcup_{i=0}^{k} x'_{i} = \{n\} \cup \bigcup_{i=0}^{k} x_{i}$$
 Eq[31]

$$\forall_{x_{0:k+} \in s_3'} \bigcup_{i=0}^k x_i' = [0; n]$$
 Eq[32]

$$\left|x'_{i}\right| = \begin{cases} \left|\{n\} \cup x_{i}\right| & \text{if } i = j\\ \left|x_{i}\right| & \text{else} \end{cases}$$
 Eq[33]

$$\sum_{i=0}^{k} |x'_i| = -|x_j| + |\{n\} \cup x_j| + \sum_{i=0}^{k} |x_i|$$
 Eq[34]

$$\left| \{ n \} \cup x_j \right| \le \left| x_j \right| + 1$$
 Eq[35]

$$\sum_{i=0}^{k} |x'_{i}| \le \sum_{i=0}^{k} |x_{i}| + 1$$
 Eq[36]

$$\forall_{x_{0:k+} \in s_3'} \sum_{i=0}^{k} |x'_i| \le n+1$$
 Eq[37]

$$\forall_{x_{0:k+} \in s_3'} \left| \bigcup_{i=0}^k x'_i \right| = n+1$$
 Eq[38]

$$\left| \bigcup_{i=0}^{k} x'_i \right| \le \sum_{i=0}^{k} \left| x'_i \right|$$
 Eq[39]

$$\forall_{x_{0:k+} \in s_3'} \sum_{i=0}^{k} |x'_i| \ge n+1$$
 Eq[40]

$$\forall_{x_{0:k+} \in s_3'} \sum_{i=0}^{k} |x'_i| = n+1$$
 Eq[41]

$$|x'_j| = |\{n\} \cup x_j|$$
 Eq[42]

$$\forall_{i|i\neq j} |x'_i| = |x_i|$$
 Eq[43]

$$|\{n\} \cup x_j| \ge |x_j|$$
 Eq[44]

$$\forall_{x_0, k_+ \in S_2'} |\{n\} \cup x_j| > 0$$
 Eq[45]

$$\forall_{x_{0:k+} \in s_3'} \left| x'_j \right| > 0$$
 Eq[46]

$$\forall_{\substack{i \in [0;k] \setminus \{j\} \\ x_{0:k+} \in s_3'}} |x'_i| > 0$$
 Eq[47]

$$\forall \underset{x_{0:k+} \in s_3'}{0 \le i \le k} \left| x_i' \right| > 0$$
 Eq[48]

$$\forall x_{00,k_1} \in \mathcal{S}_k^l \forall 0 \leq l \leq k} \mid X_l^l \mid > 0 \land \sum_{i=0}^k |x_l^l| = n + 1 \land \bigcup_{i=0}^k x_l^l = [0; n]$$
 Eq[30]
$$x' = |I| \left\{ \begin{cases} \{n\} \cup x_l & \text{if } i = j \\ x_l & \text{else} \end{cases} \right\}$$
 Eq.x_quote_definition
$$A_j = \left\{ \{*x^k\} \mid x_{0,k_1} \in s_1^k \right\}$$
 Eq.A_definition
$$A_j = \left\{ \{*x^k\} \mid x_{0,k_1} \in s_1^k \right\}$$
 Eq.A_definition
$$A_j = \left\{ \{*x^k\} \mid x_{0,k_1} \in s_1^k \right\}$$
 Eq.B_definition
$$B = \{e \cup \{\{n\}\} \mid e \in s_2\}$$
 Eq.B_definition
$$B \in s_1$$
 Eq.[50]
$$B = \{e \cup \{\{n\}\} \mid e \in s_2\}$$
 Eq.B_definition
$$B \in s_1$$
 Eq.[51]
$$B \cup A_j \subset s_1$$
 Eq.[52]
$$s_1 = \{e \in s_1 \mid \{n\} \in e\} \cup \{e \in s_1 \mid \{n\} \notin e\}$$
 Eq.subset_B
$$\{e \in s_1 \mid \{n\} \in e\} \cup \{e \in s_1 \mid \{n\} \notin e\} \}$$
 Eq.subset_B
$$\{e \in s_1 \mid \{n\} \notin e\} \supset A_j$$
 Eq.subset_A
$$\{e \in s_1 \mid \{n\} \notin e\} \supset A_j$$
 Eq.subset_A
$$\{e \in s_1 \mid \{n\} \notin e\} \supset \{*x^k\} \mid \{n\} \notin e\} \}$$
 Eq.subset_A
$$\{e \in s_1 \mid \{n\} \notin e\} \supset \{*x^k\} \mid \{n\} \notin e\} \}$$
 Eq.subset_A
$$\{e \in s_1 \mid \{n\} \notin e\} \supset \{*x^k\} \mid \{n\} \notin e\} \}$$
 Eq.[54]
$$\{e \in s_1 \mid \{n\} \notin e\} \supset \{*x^k\} \mid \{x^k\} \}$$
 Eq.[55]
$$\{e \in s_1 \mid \{n\} \notin e\} \supset \{*x^k\} \mid \{x^k\} \}$$
 Eq.[56]
$$\{e \in s_1 \mid \{n\} \notin e\} \supset \{*x^k\} \mid \{x^k\} \}$$
 Eq.[57]
$$\{e \in s_1 \mid \{n\} \notin e\} \supset \{*x^k\} \mid \{x^k\} \}$$
 Eq.[58]
$$\{e \in s_1 \mid \{n\} \notin e\} \supset \{x^k\} \mid \{x^k\} \}$$
 Eq.[58]
$$\{e \in s_1 \mid \{n\} \notin e\} \supset \{x^k\} \mid \{x^k\} \mid \{x^k\} \}$$
 Eq.[59]
$$\{e \in s_1 \mid \{n\} \notin e\} \supset \{x^k\} \mid \{x^k\} \mid \{x^k\} \mid \{x^k\} \}$$
 Eq.[60]
$$\{e \in s_1 \mid \{n\} \notin e\} \supset \{x^k\} \mid \{$$

$$\left| \bigcup_{i \in [0;k] \setminus \{i,j\}} x'_i \right| \le \sum_{i \in [0;k] \setminus \{i,j\}} \left| x'_i \right|$$
Eq[65]

$$\exists \underset{x_{0:k+} \in s_{3}'}{0 \le i \le k} |x'_{i} \cup x'_{j}| + \left| \bigcup_{i=0}^{k} x'_{i} \right| < |x'_{i}| + |x'_{j}| + \left| x'_{j} \cup \bigcup_{i \in [0;k] \cap \{i\}} x'_{i} \right| + \sum_{i \in [0;k] \setminus \{i,j\}} |x'_{i}|$$
Eq[66]

$$\exists_{x_{0:k+} \in s_3'} \left| \bigcup_{i=0}^k x_i' \right| < \sum_{i=0}^k |x_i'|$$
 Eq[67]

$$\exists_{x_{0:k+} \in s_3'} n + 1 < \sum_{i=0}^{k} |x'_i|$$
 Eq[68]

False

$$\forall_{x_{0:k+n} \in S_3'} \left\{ *x' \right\} \in S_1 \land \left\{ n \right\} \notin \left\{ *x' \right\}$$
 Eq[55]

$$\{e \in s_1 \mid \{n\} \in e\} \supset \{e \cup \{\{n\}\}\} \mid e \in s_2\}$$
 Eq[69]

$$\forall_{e \in s_2} \ e \cup \{\{n\}\} \in s_1$$
 Eq[10]

$$\{e \in s_1 \mid \{n\} \in e\} \subset \{e \cup \{\{n\}\}\} \mid e \in s_2\}$$
 Eq[70]

$$\forall_{o \in \{e \in s_1 | \{n\} \in e\}} \ \exists_{e \in s_2} \ o = e \cup \{\{n\}\}\}$$
 Eq[71]

$$\forall_{o \in \{e \in s_1 \mid \{n\} \in e\}} \exists_{e \in s_2} o \setminus \{\{n\}\} = e \setminus \{\{n\}\}$$
 Eq.subset_B_definition

$$\forall_{e \in s_2} \{n\} \notin e$$
 Eq.plausible_notcontains

$$\forall_{x_{0:k} \in s_2'} \{n\} \notin \{*x_{0:k}\}$$
 Eq[72]

$$\exists_{x_{0:k} \in s_2'} \{n\} \in \{*x_{0:k}\}$$
 Eq[73]

$$\exists \underset{x_0: k \in s_2'}{0 \le i < k} \{n\} = x_i$$
 Eq[74]

$$\exists_{x_{0:k} \in s_2'} \bigcup_{i=0}^{k-1} x_i = [0; n]$$
 Eq[75]

False

$$\forall_{e \in s_7} \ e \cap \{\{n\}\} = \emptyset$$
 Eq[76]

$$\forall_{e \in s_2} e \setminus \{\{n\}\} = e$$
 Eq.s2_complement_n

$$\forall_{o \in \{e \in s_1 \mid \{n\} \in e\}} \ o \setminus \{\{n\}\} \in s_2$$
 Eq[77]

$$s_{1,n} = \{e \in s_1 \mid \{n\} \in e\}$$
 Eq.s1_n_definition

$$\forall_{e \in s_{1,n}} e \in s_1 \land \{n\} \in e$$
 Eq[78]

$$\forall_{e \in s_{1,n}} e \in s_1$$
 Eq[79]

$$\forall_{e \in s_{1,n}} \{n\} \in e$$
 Eq[80]

$$\forall_{e \in s_{1,n}} e \in \{\{*x_{0:k+1}\} | x_{0:k+1} \in s_1'\}$$
 Eq[81]

$$\forall_{e \in s_{1,n}} \exists_{x_{0:k+} \in s'_{1}} e = \{*x_{0:k+1}\}$$
 Eq.s1_n_assertion

$$\exists_{x_{0:k+} \in s_1'} \{n\} \in \{*x_{0:k+1}\}$$
 Eq[82]

$$\exists \underset{x_{0:k+} \in s_1'}{0 \le i \le k} \{n\} = x_i$$
 Eq[83]

2019/9/29

 $\forall_{\substack{0 \le i < k \\ x_0: k + \in s_1'}} |\tilde{x}_i| > 0$ $\exists \int_{x_{0:k+} \in s_1'} \forall_{0 \le i < k} \, |\tilde{x}_i| > 0 \wedge \sum_{i=0}^{k-1} |\tilde{x}_i| = n \wedge \bigcup_{i=0}^{k-1} \tilde{x}_i = [0;n)$ Eq[95]

http://localhost/latex/

Eq[94]

$$\exists \int_{x_0: k+ \in s_1'} \tilde{x} \in s_2'$$
 Eq[96]

$$\exists \int_{x_{0:k+} \in s_1'} \forall_{0 \le i < k} |\tilde{x}_i| > 0 \land \sum_{i=0}^{k-1} |\tilde{x}_i| = n \land \bigcup_{i=0}^{k-1} \tilde{x}_i = [0; n)$$
 Eq[95]

$$\exists \underset{x_0: k+ \in s_1'}{j} \{*\tilde{x}\} \in s_2$$

Eq.x_tilde_set_in_s2

$$\exists \int_{x_{0:k+} \in s'_1} \{*\tilde{x}\} \in \{\{*x_{0:k}\} | x_{0:k} \in s'_2\}$$
 Eq[97]

$$\exists \int_{x_{0:k+} \in s_1'} \tilde{x} \in s_2'$$
 Eq[96]

$$\{*\tilde{x}\} = \{*x_{0:k+1}\} \setminus \{x_j\}$$
 Eq[98]

$$\exists \int_{x_{0:k+} \in s_1'} \{*\tilde{x}\} = \{*x_{0:k+1}\} \setminus \{\{n\}\}$$
 Eq[99]

$$\exists_{j} \forall_{e \in s_{1,n}} \exists_{x_{0:k+} \in s'_{1}} \{ *\tilde{x} \} = e \setminus \{ \{n\} \}$$
 Eq[100]

$$\forall_{e \in s_{1,n}} e \setminus \{\{n\}\} \in s_2$$
 Eq[101]

$$\forall_{e \in \{e \in s_1 \mid \{n\} \in e\}} \ e \setminus \{\{n\}\} \in s_2$$
 Eq[77]

$$\{e \in s_1 \mid \{n\} \notin e\} \subset \bigcup_j \{\{*x'\} \mid x_{0:k+1} \in s_3'\}$$
 Eq[102]

$$\forall_{l \in \{e \in s_1 | \{n\} \notin e\}} \ \exists_{x_{0:k+} \in s_3'} \ l = \{*x'\}$$
 Eq[103]

$$\hat{s}_{1,n} = \{ e \in s_1 \mid \{n\} \notin e \}$$
 Eq[104]

$$\forall_{\substack{l \in \hat{s}_{1,n}}} \exists_{\substack{x_{0:k+} \in s_3'}} l = \{*x'\}$$
 Eq.s1_hat_n_assertion

$$\hat{s}_{1,n} = \left\{ \left\{ *x_{0:k+1} \right\} \middle| \forall_{0 \le i \le k} |x_i| > 0 \land \{n\} \notin \left\{ *x_{0:k+1} \right\} \land \sum_{i=0}^k |x_i| = n+1 \land \bigcup_{i=0}^k x_i = [0;n] \right\} \quad \text{Eq[105]}$$

$$s'_{1,n} = \left\{ x_{0:k+1} \mid \forall_{0 \le i \le k} \mid x_i \mid > 0 \land \{n\} \notin \{*x_{0:k+1}\} \land \sum_{i=0}^k \mid x_i \mid = n+1 \land \bigcup_{i=0}^k x_i = [0;n] \right\} \quad \text{Eq[106]}$$

$$\hat{s}_{1,n} = \left\{ \{ *x_{0:k+1} \} | \ x_{0:k+1} \in s'_{1,n} \right\}$$
 Eq[107]

$$\forall_{\substack{a \in s'_{1,n}}} \exists_{\substack{x_{0:k+} \in s'_{3}}} \{*a\} = \{*x'\}$$
 Eq.s1_hat_n_hypothesis

$$\forall_{x_{0:k+} \in s'_{1,n}} \forall_{0 \le i \le k} |x_i| > 0 \land \{n\} \notin \{*x_{0:k+1}\} \land \sum_{i=0}^k |x_i| = n+1 \land \bigcup_{i=0}^k x_i = [0;n]$$
 Eq[108]

$$\forall \underset{x_0:k+\in s_{1,n}'}{0 \le i \le k} |x_i| > 0$$

$$\forall_{x_{0:k+} \in S'_{1,n}} \{n\} \notin \{*x_{0:k+1}\}$$
 Eq.n_not_in_x

$$\forall_{x_{0:k+} \in s'_{1,n}} \sum_{i=0}^{k} |x_i| = n+1$$
 Eq.x_abs_sum_s1_n

$$\forall_{x_{0:k+} \in s'_{1,n}} \bigcup_{i=0}^{k} x_i = [0; n]$$
 Eq.x_union_s1_n

2019/9/29 latex p

 $\forall_{x_{0:k+} \in s'_{1,n}} \exists_j \bigcup_{i=0}^k \hat{x}_i = [0; n)$

http://localhost/latex/

Eq.x_hat_union

$$\forall_{x_{0:k+} \in s'_{1,n}} \sum_{i=0}^{k} |\hat{x}_i| = n + |x_j \setminus \{n\}| - |x_j| + 1$$
 Eq[123]

$$\forall_{x_{0:k+} \in S'_{1:n}} \, \exists_j | x_j \setminus \{n\} | = |x_j| - 1$$
 Eq[124]

$$\forall_{x_{0:k+} \in s'_{1,n}} \,\exists_{j} \sum_{i=0}^{k} |\hat{x}_{i}| = n$$
 Eq[125]

$$\forall_{x_{0:k+\in S'_{1,n}}} \exists_{j} \forall_{0 \le i \le k} |\hat{x}_{i}| > 0 \land \sum_{i=0}^{k} |\hat{x}_{i}| = n \land \bigcup_{i=0}^{k} \hat{x}_{i} = [0; n)$$
 Eq[126]

$$\forall_{x_{0:k+} \in s'_{1,n}} \exists_j \hat{x}_{0:k+1} \in s'_3$$
 Eq.x_hat_in_s3

$$\forall_{x_{0:k+} \in s'_{1,n}} \,\exists_j \forall_{0 \le i \le k} \,|\hat{x}_i| > 0 \land \sum_{i=0}^k \,|\hat{x}_i| = n \land \bigcup_{i=0}^k \hat{x}_i = [0;n)$$
 Eq[126]

$$\hat{x}_j = x_j \setminus \{n\}$$
 Eq[127]

$$\forall_{i|i\neq j} \, \hat{x}_i = x_i$$
 Eq[128]

$$\forall_{x_{0:k+} \in S'_{1:n}} \exists_j \forall_{i \in [0:k] \setminus \{j\}} \hat{x}_i = x_i \setminus \{n\}$$
 Eq[129]

$$\forall_{x_{0:k+\in S'_{1,n}}} \exists_j \forall_{0 \le i \le k} \hat{x}_i = x_i \setminus \{n\}$$
 Eq[130]

$$\forall_{x_{0:k+} \in s'_{1:n}} \exists_j \hat{x} = [i:k+1]x_i \setminus \{n\}$$
 Eq[131]

$$\forall_{x_{0:k+} \in s'_{1,n}} [i:k+1] x_i \setminus \{n\} \in s'_3$$
 Eq[132]

$$\forall_{\substack{a \in s'_{1,n} \\ j}} \exists_{\substack{x_{0:k+} \in s'_{3} \\ j}} \forall_{\substack{0 \le i \le k \\ j}} a_{i} = x'_{i}$$
 Eq[133]

$$\forall_{\substack{a \in s'_{1,n}}} \exists_{\substack{x_{0:k+} \in s'_{3} \\ j}} \forall_{\substack{0 \le i \le k \\ j}} a_{i} = \begin{cases} \{n\} \cup x_{i} & \text{if } i = j \\ x_{i} & \text{else} \end{cases}$$
Eq[134]

$$\forall_{a \in s'_{1,n}} \exists_{x_{0:k+n} \in s'_{3}} \forall_{0 \le i \le k} a_{i} \setminus \{n\} = x_{i} \setminus \{n\}$$
 Eq. equation

$$\forall_{x_{0:k+} \in s_3'} \{n\} \cap \bigcup_{i=0}^k x_i = \emptyset$$
 Eq[135]

$$\forall \underset{x_{0:k+} \in s_3'}{0 \le i \le k} \{n\} \cap x_i = \emptyset$$
 Eq.nonoverlapping_s3_quote

$$\forall \underset{x_{0:k+} \in s_3'}{0 \le i \le k} x_i \setminus \{n\} = x_i$$
 Eq[136]

$$\forall_{a \in s'_{1,n}} \exists_{x_{0:k+} \in s'_{3}} \forall_{0 \le i \le k} a_{i} \setminus \{n\} = x_{i}$$
 Eq[137]

$$\forall_{x_{0:k+} \in s'_{1,n}} \exists_{a \in s'_{3}} \forall_{0 \le i \le k} x_{i} \setminus \{n\} = a_{i}$$
 Eq[137]

$$\forall_{x_{0:k+} \in s'_{1:n}} [i:k+1] x_i \setminus \{n\} \in s'_3$$
 Eq[132]

$$|s_1| = (k+1)|s_3| + |s_2|$$
 Eq.s1_abs_plausible

$$\{e \in s_1 \mid \{n\} \notin e\} \supset \bigcup_j A_j$$
 Eq.supset_A

$$\{e \in s_1 \mid \{n\} \notin e\} = \bigcup_j A_j$$
 Eq[138]

$$\{e \in s_1 \mid \{n\} \in e\} = B$$
 Eq[139]

2019/9/29

latex printing	
$ s_1 = B + \left \bigcup_j A_j \right $	Eq.s1_abs
$\forall_{a \in B} \exists_{e \in s_2} e \cup \{\{n\}\} = a$	Eq.B_assertion
$\forall_{a \in B} \exists_{e \in s_2} e \setminus \{\{n\}\} = a \setminus \{\{n\}\}\}$	Eq[140]
$\forall_{e \in B} \ e \setminus \{\{n\}\} \in s_2$	Eq[141]
$s_2\supset \{e\setminus \{\{n\}\} \ e\in B\}$	Eq.s2_supset
$\forall_{e \in B} e \setminus \{\{n\}\} \in s_2$	Eq[141]
$s_2 \subset \{e \setminus \{\{n\}\} e \in B\}$	Eq.s2_subset
$\forall_{a \in s_2} \exists_{e \in B} a = e \setminus \{\{n\}\}\$	Eq[142]
$\forall_{a \in s_2} \exists_{e \in B} \ a \cup \{\{n\}\} = e \cup \{\{n\}\}\}$	Eq[143]
$\forall_{e \in s_2} e \cup \{\{n\}\} \in B$	Eq[144]
$\forall_{e \in B} \{ \{n\} \} = e \cap \{ \{n\} \}$	Eq[145]
$\forall_{e \in B} e \cup \{\{n\}\} = e$	Eq[146]
$\forall_{a \in s_2} \ a \cup \{\{n\}\} \in B$	Eq[144]
$\forall_{a \in s_2} \exists_{e \in B} \ a \setminus \{\{n\}\} = e \setminus \{\{n\}\}\$	Eq[147]
$\forall_{a \in s_2} \ a \setminus \{\{n\}\} = a$	Eq.s2_complement_n
$\forall_{a \in s_2} \exists_{e \in B} a = e \setminus \{\{n\}\}\$	Eq[142]
$s_2 = \{e \setminus \{\{n\}\} e \in B\}$	Eq[148]
$ \{e \setminus \{\{n\}\} e \in B\} \le B $	Eq[149]
$ s_2 \leq B $	Eq[150]
$ \{e \cup \{\{n\}\} \ e \in s_2\} \le s_2 $	Eq[151]
$ B \leq s_2 $	Eq[152]
$ s_2 = B $	Eq[153]
$ s_1 = s_2 + \left \bigcup_j A_j \right $	Eq[154]
$\left \bigcup_{j} A_{j}\right = (k+1)\left s_{3}\right $	Eq.A_union_abs
$A' = [j] \left\{ \left\{ *x' \right\} \right\}$	Eq.A_quote_definition
$A_j = \bigcup_{x_{0:k+} \in s_3'} A'_j$	Eq.A_definition_simplified
$\forall_{\substack{j' \in [0:k] \setminus \{j\} \\ x_{0:k+} \in s_3'}} A'_{j'} \cap A'_{j} = \emptyset$	Eq.nonoverlapping
$\exists_{\substack{j' \in [0;k] \setminus \{j\} \\ x_{0:k+} \in s_3'}} A'_{j'} \cap A'_{j} \neq \emptyset$	Eq[155]

$$\exists \underset{\substack{k \in A'_j \\ j' \in [0;k] \setminus \{j\} \\ x_{0:k} + \in s_3'}}{\ker k \in A'_{j'}}$$
Eq[156]

$$\exists_{\substack{j' \in [0;k] \setminus \{j\} \\ x_0:k+ \in s_3'}} \left\{ *x' \right\} \in A'_{j'}$$
 Eq[157]

$$\exists_{\substack{j' \in [0;k] \setminus \{j\} \\ x_0: k+ \in S_3'}} \left\{ *x' \right\} = \bigcup_{i=0}^{k} \left\{ \left\{ \begin{cases} \{n\} \cup x_i & \text{if } i = j' \\ x_i & \text{else} \end{cases} \right\} \right.$$
 Eq[158]

$$\exists_{\substack{j' \in [0;k] \setminus \{j\} \\ x_0:k+\in s_3'}} \forall_{0 \le i \le k} \begin{cases} \{n\} \cup x_i & \text{if } i=j' \\ x_i & \text{else} \end{cases} \in \{*x'\}$$
 Eq[159]

$$\exists \underset{j' \in [0;k] \setminus \{j\}}{x_{0:k+ \in s_3'}} \{n\} \cup x_{j'} \in \{*x'\}$$
 Eq[160]

$$\exists \sum_{\substack{0 \le i \le k \\ x_0: k_1 \ne s_3' \\ j' \in [0;k] \setminus \{j\}}} \{n\} \cup x_{j'} = x'_i$$
 Eq[161]

$$\exists \underset{\substack{0 \le i \le k \\ x_0: k_1 \in s_3' \\ j' \in [0; k] \setminus \{j\}}}{0 \le i \le k} \{n\} \cup x_{j'} = \begin{cases} \{n\} \cup x_i & \text{if } i = j \\ x_i & \text{else} \end{cases}$$
 Eq[162]

$$\exists \underset{j' \in [0;k] \setminus \{j\}}{x_{0:k+ \in s_3'}} \{n\} \cup x_{j'} = \{n\} \cup x_j$$
 Eq[163]

$$\exists \max_{\substack{x_{0:k+\in s_3'} \\ j' \in [0;k] \setminus \{j\}}} \forall i | i \neq j} \{n\} \cup x_{j'} = x_i$$
 Eq[164]

$$\exists_{x_{0:k+} \in s_3'} \forall_{i|i \neq j} \{n\} = \{n\} \cap x_i$$
 Eq[165]

False

$$\forall_{j' \in [0;k] \setminus \{j\}} \bigcup_{x_{0:k+} \in s'_3} A'_{j'} \cap A'_j = \emptyset$$
 Eq[166]

$$\forall_{j' \in [0;k] \setminus \{j\}} \bigcup_{x_{0:k+} \in s'_3} A'_{j'} \cap \bigcup_{x_{0:k+} \in s'_3} A'_{j} = \emptyset$$
 Eq[167]

$$A_{j'} = \bigcup_{x_{0:k+} \in s'_{3}} A'_{j'}$$
 Eq[168]

$$\forall_{j' \in [0;k] \setminus \{j\}} A_{j'} \cap A_j = \emptyset$$
 Eq[169]

$$\left| \bigcup_{j} A_{j} \right| = \sum_{j} |A_{j}|$$
 Eq[170]

$$\forall_{B \in [0;k] \setminus \{j\}} A_B \cap A_j = \emptyset$$
 Eq[169]

$$\sum_{i} |A_{i}| = (k+1)|s_{3}|$$
 Eq[171]

$$\hat{A}_{j} = \bigcup_{B \in A_{j}} \left\{ [i : |B|][*B]_{a_{i}} | \{*a\} = [0; |B|) \right\}$$
 Eq[172]