Primer parcial de Lógica y Lógica modalidad al Revés

30 de abril 2018

Indicaciones generales

- Apagar los celulares
- La duración del parcial es de **tres** (3) horas.
- En esta prueba **no** se permite consultar material alguno.
- Puntaje: 40 puntos.
- Toda respuesta debe estar fundamentada. Pueden usarse los resultados que aparecen en el texto del curso, en esos casos debe describirse con precisión el enunciado que se utiliza.
- Numerar todas las hojas e incluir en cada una su nombre y cédula de identidad, utilizar las hojas de un solo lado, escribir con lápiz, iniciar cada ejercicio en hoja nueva y poner en la primera hoja la cantidad de hojas entregadas.

Ejercicio 1 (10 puntos)

- a. Defina inductivamente el conjunto $PROP_{\vee,\to,\perp}$ subconjunto de PROP tal que su conjunto de conectivos es $\{\vee,\to,\perp\}$.
- b. Defina siguiendo el ERP una función $f: PROP_{\vee, \to, \perp} \to PROP$ que a cada fórmula φ de $PROP_{\vee, \to, \perp}$ le corresponde la fórmula que se obtiene sustituyendo cada letra proposicional p_i de φ por $(p_i \vee \neg p_i)$ y \bot por $\neg \bot$.

Ejemplo:
$$f((\bot \to (p_1 \lor p_0))) = ((\neg \bot) \to ((p_1 \lor \neg p_1) \lor (p_0 \lor \neg p_0)))$$

c. Demuestre inductivamente que $(\bar{\forall}\varphi \in PROP_{\vee, \to, \perp}) \models f(\varphi)$.

Ejercicio 2 (10 puntos)

Sean las siguientes fórmulas de PROP:

- $\bullet \varphi_2 = p_1 \to p_0$
- $\varphi_3 = p_2 \wedge \neg p_0$

Indique, justificando adecuadamente, si las siguientes afirmaciones son verdaderas o falsas:

- a. $\varphi_1, \varphi_2 \models \varphi_3$
- b. $\varphi_1, \varphi_2 \models \neg \varphi_3$
- c. $Subf(\varphi_1) \models \varphi_3$, donde $Subf(\varphi_1)$ es el conjunto de subfórmulas de φ_1 .
- d. Existe $\alpha \in PROP$, tal que $\not\models \alpha \to \varphi_3$ y $\varphi_1, \varphi_2 \models \alpha \to \varphi_3$.

Ejercicio 3 (10 puntos)

Construya derivaciones que justifiquen los siguientes juicios, donde p,q,r,s,t son letras proposicionales distintas.

a.
$$p \leftrightarrow \neg p \vdash \bot$$

b. $p \lor q, p \to r, q \to s \vdash t \to \neg(\neg r \land \neg s)$

Nota: En ningún caso se aceptan justificaciones semánticas.

Ejercicio 4 (10 puntos)

Sean Δ_1 y Δ_2 subconjuntos de PROP tales que $\Delta_1 \cup \Delta_2$ es inconsistente.

- a) Demuestre que si $\Delta_1 = \emptyset$, entonces existe $\varphi \in PROP$ tal que $\Delta_1 \vdash \varphi \lor \Delta_2 \vdash \neg \varphi$.
- b) Demuestre que si $\Delta_1 = \{\sigma_1, \dots, \sigma_k\}$ para algún $k \geq 1$ y $\varphi \equiv (\sigma_1 \wedge \dots \wedge \sigma_k)$, entonces $\Delta_1 \models \varphi$ y $\Delta_2 \models \neg \varphi$.
- c) Demuestre para Δ_1 infinito que: existe $\varphi \in PROP$ tal que $\Delta_1 \vdash \varphi \lor \Delta_2 \vdash \neg \varphi$.

30 de abril 2018 2