Capstone 2project Health Care (1)

May 16, 2023

```
[]:
[1]: #import the libraries
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     %matplotlib inline
     import warnings
     import seaborn as sns
     warnings.filterwarnings(action = "ignore", category = FutureWarning)
[2]: data= pd.read_csv("health care diabetes.csv")
     data
[2]:
                                                  SkinThickness
          Pregnancies
                        Glucose
                                  BloodPressure
                                                                  Insulin
                                                                             BMI
     0
                     6
                             148
                                              72
                                                              35
                                                                            33.6
                                                                         0
     1
                     1
                              85
                                              66
                                                              29
                                                                            26.6
     2
                     8
                             183
                                              64
                                                               0
                                                                         0
                                                                            23.3
     3
                     1
                              89
                                              66
                                                              23
                                                                        94
                                                                            28.1
     4
                     0
                                                              35
                                                                            43.1
                             137
                                              40
                                                                       168
     763
                    10
                                              76
                                                              48
                                                                       180 32.9
                             101
     764
                     2
                             122
                                              70
                                                              27
                                                                         0 36.8
     765
                     5
                             121
                                              72
                                                              23
                                                                       112 26.2
                                                                         0 30.1
     766
                     1
                             126
                                              60
                                                               0
     767
                     1
                              93
                                              70
                                                              31
                                                                            30.4
          DiabetesPedigreeFunction
                                      Age
                                           Outcome
     0
                               0.627
                                       50
                                                  1
     1
                               0.351
                                       31
                                                  0
     2
                               0.672
                                       32
                                                  1
     3
                               0.167
                                       21
                                                  0
     4
                               2.288
                                       33
                               0.171
                                       63
                                                  0
     763
     764
                               0.340
                                       27
                                                  0
     765
                               0.245
                                                  0
                                       30
```

766	0.349	47	1
767	0.315	23	0

[768 rows x 9 columns]

0.0.1 1. Perform descriptive analysis. It is very important to understand the variables and corresponding values. We need to think through - Can minimum value of below listed columns be zero (0)? On these columns, a value of zero does not make sense and thus indicates missing value. Glucose, BloodPressure, SkinThickness, Insuline, BMI. How will you treat these values?

[3]:	data.describe()								
[3]:		Pregnancies	Glucos	se BloodPres	sure	SkinThick	ness	Insuli	n \
	count	768.000000	768.00000	768.00	0000	768.00	00000 7	68.00000	0
	mean	3.845052	120.89453	69.10	5469	20.53	36458	79.79947	9
	std	3.369578	31.97261	19.35	5807	15.95	52218 1	15.24400	2
	min	0.000000	0.00000	0.00	0000	0.00	0000	0.00000	0
	25%	1.000000	99.00000	00 62.00	0000	0.00	00000	0.00000	0
	50%	3.000000	117.00000	72.00	0000	23.00		30.50000	0
	75%	6.000000	140.25000	00.00	0000	32.00	00000 1	27.25000	0
	max	17.000000	199.00000	00 122.00	0000	99.00	00000 8	46.00000	0
		BMI	DiabetesPe	edigreeFuncti	on	Age	Out	come	
	count	768.000000		768.0000	00 7	68.000000	768.00	0000	
	mean	31.992578		0.4718	76	33.240885	0.34	8958	
	std	7.884160		0.3313	29	11.760232	0.47	6951	
	min	0.000000		0.0780	00	21.000000	0.00	0000	
	25%	27.300000		0.2437		24.000000	0.00		
	50%	32.000000		0.3725		29.000000	0.00		
	75%	36.600000		0.6262		41.000000	1.00		
	max	67.100000		2.4200	00	81.000000	1.00	0000	
[4]:	data.h	lead(15)							
[4]:	Pr	egnancies G	lucose Blo	oodPressure	SkinT	hickness	Insulin	BMI	\
	0	6	148	72		35	0	33.6	
	1	1	85	66		29	0	26.6	
	2	8	183	64		0	0		
	3	1	89	66		23	94		
	4	0	137	40		35	168		
	5	5	116	74		0	0		
	6	3	78	50		32	88		
	7	10	115	0		0	0		
	8	2	197	70		45	543		
	9	8	125	96		0	0	0.0	

10	4	110	92	0	0	37.6
11	10	168	74	0	0	38.0
12	10	139	80	0	0	27.1
13	1	189	60	23	846	30.1
14	5	166	72	19	175	25.8

	DiabetesPedigreeFunction	Age	Outcome
0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1
5	0.201	30	0
6	0.248	26	1
7	0.134	29	0
8	0.158	53	1
9	0.232	54	1
10	0.191	30	0
11	0.537	34	1
12	1.441	57	0
13	0.398	59	1
14	0.587	51	1

0.0.2 we can see there are 0 in the columns of bloodpressure, bmi, insulin etc.. so this value doesnot make any sense. so replacing all the 0 value with median.

[5]:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	\
count	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	121.656250	72.386719	27.334635	94.652344	
std	3.369578	30.438286	12.096642	9.229014	105.547598	
min	0.000000	44.000000	24.000000	7.000000	14.000000	
25%	1.000000	99.750000	64.000000	23.000000	30.500000	
50%	3.000000	117.000000	72.000000	23.000000	31.250000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	

	BMI	${\tt DiabetesPedigreeFunction}$	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000
mean	32.450911	0.471876	33.240885	0.348958
std	6.875366	0.331329	11.760232	0.476951
min	18.200000	0.078000	21.000000	0.000000
25%	27.500000	0.243750	24.000000	0.000000
50%	32.000000	0.372500	29.000000	0.000000
75%	36.600000	0.626250	41.000000	1.000000
max	67.100000	2.420000	81.000000	1.000000

0.0.3 2 Visually explore these variables using histograms. Treat the missing values accordingly.

```
[6]: data.isna().any()
[6]: Pregnancies
                                 False
    Glucose
                                 False
    BloodPressure
                                 False
    SkinThickness
                                 False
    Insulin
                                 False
    BMI
                                 False
    {\tt DiabetesPedigreeFunction}
                                 False
    Age
                                 False
     Outcome
                                 False
     dtype: bool
[7]: plt.hist("BloodPressure", data= data)
                    2., 35., 118., 261., 214., 105., 18., 10.,
[7]: (array([ 3.,
     array([ 24. , 33.8, 43.6, 53.4, 63.2, 73. , 82.8, 92.6, 102.4,
             112.2, 122. ]),
     <BarContainer object of 10 artists>)
```



```
[8]: plt.hist("Glucose", data= data)
```



```
[9]: plt.hist("SkinThickness", data= data)
```

[9]: (array([59., 368., 181., 118., 36., 4., 1., 0., 0., 1.]), array([7., 16.2, 25.4, 34.6, 43.8, 53., 62.2, 71.4, 80.6, 89.8, 99.]), <BarContainer object of 10 artists>)


```
[11]: plt.hist("BMI", data= data)
```



```
[12]: fig, ax= plt.subplots(ncols= 3, figsize=(15,5))

sns.histplot(x= "Pregnancies", data= data, ax=ax[0])
sns.histplot(x= "Glucose", data= data, ax= ax[1])
sns.histplot(x= "BloodPressure", data= data, ax= ax[2])
```

[12]: <AxesSubplot:xlabel='BloodPressure', ylabel='Count'>


```
[13]: fig, ax= plt.subplots(ncols=2 , figsize=(15,5))
sns.histplot(x= "Insulin", data= data, ax= ax[0])
sns.histplot(x= "BMI", data= data, ax= ax[1])
```

[13]: <AxesSubplot:xlabel='BMI', ylabel='Count'>

0.0.4 3. There are integer and float data type variables in this dataset. Create a count (frequency) plot describing the data types and the count of variables.

```
[14]: data.dtypes
[14]: Pregnancies
                                     int64
      Glucose
                                     int64
      BloodPressure
                                     int64
      SkinThickness
                                     int64
      Insulin
                                   float64
      BMI
                                   float64
      DiabetesPedigreeFunction
                                   float64
      Age
                                     int64
      Outcome
                                     int64
      dtype: object
[15]: fig, ax= plt.subplots(ncols=3, figsize= (10,5))
      sns.countplot(x= "Pregnancies", data= data, ax= ax[0])
      sns.countplot(x= "Glucose", data= data, ax= ax[1])
      sns.countplot(x= "BloodPressure", data= data, ax= ax[2])
      plt.tight_layout()
```


0.0.5 4. Check the balance of the data by plotting the count of outcomes by their value. Describe your findings and plan future course of action.

```
[16]: sns.countplot(x= "Outcome", data= data)
```

[16]: <AxesSubplot:xlabel='Outcome', ylabel='count'>


```
[17]: print("value of \n", data["Outcome"].value_counts())

   value of
   0   500
   1   268
   Name: Outcome, dtype: int64

[18]: data["Outcome"].value_counts()/len(data)

[18]: 0   0.651042
   1   0.348958
   Name: Outcome, dtype: float64
```

- 0.0.6 The data set is balanced.
- 0.0.7 5. Create scatter charts between the pair of variables to understand the relationships. Describe your findings.

[19]: sns.pairplot(data)

[19]: <seaborn.axisgrid.PairGrid at 0x2ae616e1550>

0.0.8 with this visualisation. we can see positive correlation between BMI and Skin Thickness; and also between age and pregnancy,

:		Pregnancie		Glucose	${ t BloodPressure}$	SkinThickness	
	Pregnancies	1.0000	00	0.128213	0.208615	0.032568	
	Glucose			1.000000	0.218937	0.172143	
	BloodPressure			0.218937	1.000000	0.147809	
	SkinThickness			0.172143	0.147809	1.000000	
	Insulin		97	0.357573	-0.028721	0.238188	
	BMI		46	0.231400	0.281132	0.546951	
	${\tt DiabetesPedigreeFunction}$	-0.0335	23	0.137327	-0.002378	0.142977	
	Age	0.544341		0.266909	0.324915	0.054514	
	Outcome	0.2218	0.221898		0.165723	0.189065	
		Insulin BMI			iabetesPedigreeF		
	Pregnancies	-0.055697		021546	-0.033523		
	Glucose			231400	0.137327		
	BloodPressure	-0.028721		281132	-0.002378		
	SkinThickness	0.238188).142977	
	Insulin	1.000000		189022		.178029	
	BMI	0.189022		000000		0.153506	
	${\tt DiabetesPedigreeFunction}$		0.	0.153506 0.025744		.000000	
	Age	-0.015413			0	.033561	
	Outcome	0.148457	0.	312249	0	.173844	
		Age		Outcome			
	Pregnancies	0.544341	0.	221898			
	Glucose	0.266909		492782			
	BloodPressure	0.324915	0.	165723			
	SkinThickness	0.054514		189065			
	Insulin	-0.015413	0.	148457			
	BMI	0.025744		312249			
	${\tt DiabetesPedigreeFunction}$		0.	173844			
	Age	1.000000	0.	238356			
	Outcome	0.238356	1.	000000			

[21]: <AxesSubplot:>

1 Project Task: Week 2

1.1 Data Modeling:

1.1.1 1. Devise strategies for model building. It is important to decide the right validation framework. Express your thought process.

Apply an appropriate classification algorithm to build a model.

Compare various models with the results from KNN algorithm.

Create a classification report by analyzing sensitivity, specificity, AUC (ROC curve), etc.

Please be descriptive to explain what values of these parameter you have used.

1.1.2 The logistic regression will suit best as our dependent value is categorical data and independent variable are continuos.

```
[22]: #training and test data
      X= data[["Pregnancies", "Glucose", 'BloodPressure', 'SkinThickness', 'Insulin',
             'BMI', 'DiabetesPedigreeFunction', 'Age']]
      y= data[["Outcome"]]
      #Importing "train_test-split" function to test the model
      from sklearn.model_selection import train_test_split
      X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,_
       →random_state=42)
[23]: print("shape of train data is", X_train.shape)
      print("shape of test data is", X_test.shape)
     shape of train data is (537, 8)
     shape of test data is (231, 8)
[24]: #importing Logistic Regression
      from sklearn.linear_model import LogisticRegression
      lr = LogisticRegression()
      #Fit the model in train and test data
      lr.fit(X_train,y_train).score(X_train,y_train)
     C:\Users\03man\anaconda3\lib\site-packages\sklearn\utils\validation.py:993:
     DataConversionWarning: A column-vector y was passed when a 1d array was
     expected. Please change the shape of y to (n samples, ), for example using
     ravel().
       y = column_or_1d(y, warn=True)
     C:\Users\03man\anaconda3\lib\site-
     packages\sklearn\linear_model\_logistic.py:814: ConvergenceWarning: lbfgs failed
     to converge (status=1):
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear_model.html#logistic-
     regression
       n_iter_i = _check_optimize_result(
[24]: 0.7877094972067039
```

```
[25]: #Now fitting the model in test set
      prediction=lr.predict(X_test)
[26]: #Printing first 5 rows after fitting the model in test set
      print (X test.head())
          Pregnancies Glucose BloodPressure SkinThickness Insulin
                                                                         BMI \
     668
                    6
                            98
                                            58
                                                           33
                                                                 190.0 34.0
                    2
     324
                           112
                                            75
                                                           32
                                                                  30.5 35.7
                    2
                                                                  30.5 30.8
     624
                           108
                                            64
                                                           23
     690
                    8
                           107
                                            80
                                                           23
                                                                  30.5 24.6
                    7
                           136
                                            90
                                                           23
                                                                  30.5 29.9
     473
          DiabetesPedigreeFunction
     668
                             0.430
                                      43
     324
                             0.148
                                      21
                              0.158
     624
                                     21
     690
                              0.856
                                      34
     473
                              0.210
                                     50
[27]: from sklearn import metrics
      cm = metrics.confusion_matrix(y_test, prediction)
      print('\n', "Confusion metrics is ",'\n', cm, '\n')
      accuracy = metrics.accuracy_score(y_test, prediction)
      print( '\n', "Accuracy score of logistic regression is :",accuracy, '\n')
      print ( "classification score is", '\n', metrics.classification_report(y_test,_
       →prediction))
      Confusion metrics is
      [[125 26]
      [ 31 49]]
      Accuracy score of logistic regression is : 0.7532467532467533
     classification score is
                    precision
                                 recall f1-score
                                                     support
                0
                                  0.83
                                             0.81
                        0.80
                                                        151
                1
                        0.65
                                  0.61
                                             0.63
                                                         80
                                             0.75
                                                        231
         accuracy
        macro avg
                        0.73
                                  0.72
                                             0.72
                                                        231
     weighted avg
                        0.75
                                  0.75
                                             0.75
                                                        231
```

1.1.3 Logistic Regression gives 75% acccuracy

```
[28]: from sklearn.metrics import roc_auc_score
      from sklearn.metrics import roc_curve
      lr_roc_auc = roc_auc_score(y_test, lr.predict(X_test))
      fpr, tpr, thresholds = roc_curve(y_test, lr.predict_proba(X_test)[:,1])
      plt.figure()
      plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % lr_roc_auc)
      plt.plot([0, 1], [0, 1], 'r--')
      plt.xlim([0.0, 1.0])
      plt.ylim([0.0, 1.05])
      plt.xlabel('False Positive Rate')
      plt.ylabel('True Positive Rate')
      plt.title('Receiver operating characteristic')
      plt.legend(loc="lower right")
      plt.savefig('Log_ROC')
      print('AUC: %.3f' % lr_roc_auc)
      plt.show()
```

AUC: 0.720

2 SVM Model

```
[29]: from sklearn.model_selection import train_test_split, GridSearchCV
      from sklearn.svm import SVC
      from sklearn.metrics import accuracy_score
[30]: model=SVC()
      model.fit(X_train, y_train)
      \#creating the predictions on the test data i.e. X_{\_}test
      y_pred =model.predict(X_test)
      accuracy= accuracy_score(y_test, y_pred)
      print("Accuracy for the SVM Classifier: \{:.3f\}".format(accuracy)) #.3f is upto_\(\)
       \rightarrow3 places decimal
     Accuracy for the SVM Classifier: 0.740
     C:\Users\03man\anaconda3\lib\site-packages\sklearn\utils\validation.py:993:
     DataConversionWarning: A column-vector y was passed when a 1d array was
     expected. Please change the shape of y to (n_samples, ), for example using
     ravel().
       y = column_or_1d(y, warn=True)
[31]: from sklearn.metrics import roc_auc_score
      from sklearn.metrics import roc curve
      lr_roc_auc = roc_auc_score(y_test, lr.predict(X_test))
      fpr, tpr, thresholds = roc curve(y test, lr.predict proba(X test)[:,1])
      plt.figure()
      plt.plot(fpr, tpr, label='Logistic Regression (area = %0.2f)' % lr_roc_auc)
      plt.plot([0, 1], [0, 1], 'r--')
      plt.xlim([0.0, 1.0])
      plt.ylim([0.0, 1.05])
      plt.xlabel('False Positive Rate')
      plt.ylabel('True Positive Rate')
      plt.title('Receiver operating characteristic')
      plt.legend(loc="lower right")
      plt.savefig('Log_ROC')
      print('AUC: %.3f' % lr_roc_auc)
      plt.show()
```

AUC: 0.720

3 KNN Model

return self._fit(X, y)

```
[32]: #feature Scaling
    from sklearn.preprocessing import StandardScaler
    st_X= StandardScaler()
    X_train= st_X.fit_transform(X_train)
    X_test= st_X.transform(X_test)

[33]: #Fitting K-NN classifier to the training set
    from sklearn.neighbors import KNeighborsClassifier
    classifier= KNeighborsClassifier(n_neighbors=5, metric='minkowski', p=2)
    classifier.fit(X_train, y_train)

C:\Users\03man\anaconda3\lib\site-
```

packages\sklearn\neighbors_classification.py:198: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change the shape

of y to (n_samples,), for example using ravel().

```
[33]: KNeighborsClassifier()
[34]: #Predicting the test set result
      y_pred= classifier.predict(X_test)
[35]: #Creating the Confusion matrix
      from sklearn.metrics import confusion_matrix , classification_report
      cm= confusion_matrix(y_test, y_pred)
      cm
[35]: array([[120, 31],
             [ 34, 46]], dtype=int64)
[36]: print(classification_report(y_test, y_pred))
                   precision
                                recall f1-score
                                                    support
                0
                        0.78
                                   0.79
                                             0.79
                                                        151
                1
                        0.60
                                   0.57
                                             0.59
                                                         80
                                             0.72
                                                        231
         accuracy
                                             0.69
        macro avg
                        0.69
                                   0.68
                                                        231
     weighted avg
                        0.72
                                   0.72
                                             0.72
                                                        231
```

[37]: accuracy= accuracy_score(y_test, y_pred)
print("Accuracy for KNN model is: {:.2f}".format(accuracy)) #.2f is upto 2
→places decimal

Accuracy for KNN model is: 0.72

4 Random Forest

```
# max depth allow is 3, 5,7)
[39]: #fitting the training data
      clf.fit(X_train, y_train)
     C:\Users\03man\AppData\Local\Temp\ipykernel 30556\3181438177.py:2:
     DataConversionWarning: A column-vector y was passed when a 1d array was
     expected. Please change the shape of y to (n_samples,), for example using
     ravel().
       clf.fit(X_train, y_train)
[39]: RandomForestClassifier(max_depth=7, n_estimators=200, random_state=5)
[40]: clf.feature_importances_
[40]: array([0.07197571, 0.32375323, 0.06285006, 0.06634026, 0.06758
             0.16750927, 0.09165808, 0.14833338])
[41]: data.columns
[41]: Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
             'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
            dtype='object')
```

5 Glucose is very important as the value is max

Accuracy of Random Forest is 0.7532467532467533

6 decision Tree

```
[45]: #Fitting a decision tree clasifier
from sklearn.tree import DecisionTreeClassifier
dtree = DecisionTreeClassifier()
dtree.fit(X_train,y_train)
```

[45]: DecisionTreeClassifier()

```
[46]: #test the accuracy of the decision tree
predictions=dtree.predict(X_test)
from sklearn.metrics import classification_report,confusion_matrix
print(classification_report(y_test,predictions))
```

	precision	recall	f1-score	support
0	0.83	0.72	0.77	151
1	0.57	0.72	0.64	80
accuracy			0.72	231
macro avg	0.70	0.72	0.70	231
weighted avg	0.74	0.72	0.72	231

```
[47]: from sklearn.metrics import accuracy_score print("Accuracy of Decision Tree is ", accuracy_score(y_test, predictions))
```

Accuracy of Decision Tree is 0.7186147186147186