HOMEWORK SESSION 3-4

Nguyen Tien Duc ITITIU18029

October 6th 2019

1.2 Propositional Equivalences

4. Use truth tables to verify the associative laws

a)
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

p	q	r	$p \lor q$	$(p \lor q) \lor r$	$q \vee r$	$p \lor (q \lor r)$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
0	1	1	1	1	1	1
1	0	0	1	1	0	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

The 2 expressions have the same truth values. Therefore, they are equipvalent.

b)
$$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$$

p	q	r	$p \wedge q$	$(p \wedge q) \wedge r$	$q \wedge r$	$p \wedge (q \wedge r)$
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	1	0
1	0	0	0	0	0	0
1	0	1	0	0	0	0
1	1	0	1	0	0	0
1	1	1	1	1	1	1

The 2 expressions have the same truth values. Therefore, they are equipvalent.

8. Use De Morgan's laws to find the negation for statements

- a) Kwame will not take a job in industry and Kwame will not go to graduate school.
- b) Yoshiko does not know java or Yoshiko does not know calculus.
- c) James is not young or James is not strong.

d) Rita will not move to Oregon and Rita will not move to Washington.

14. Determine whether $(\neg p \land (p \rightarrow q)) \rightarrow \neg q$ is a tautology

p	q	$p \rightarrow q$	$\neg p$	$\neg p \land (p \to q)$	$\neg q$	$(\neg p \land (p \to q)) \to \neg q$
0	0	1	1	1	1	1
0	1	1	1	1	0	0
1	0	0	0	0	1	1
1	1	1	0	0	0	1

There is a false value when p is false and q is true. Therefore, it is not a tautology.

16. Show $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$

p	q	$p \longleftrightarrow q$	$p \wedge q$	$\neg p$	$\neg q$	$\neg p \land \neg q$	$(p \land q) \lor (\neg p \land \neg q)$
0	0	1	0	1	1	1	1
0	1	0	0	1	0	0	0
1	0	0	0	0	1	0	0
1	1	1	1	0	0	0	1

The 2 expressions have the same truth values. Therefore, they are equipvalent.

18.	\mathbf{S}	ho	w p –	$\rightarrow q$	≡ -	$\neg q \to \neg p$
	p	q	$p \rightarrow q$	$\neg p$	$\neg q$	$\neg q \rightarrow \neg p$
	0	0	1	1	1	1
	0	1	1	1	0	1
	1	0	0	0	1	0
	1	1	1	0	0	1

The 2 expressions have the same truth values. Therefore, they are equipvalent.

24. Show that $(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$

p	q	r	$p \rightarrow q$	$p \rightarrow r$	$(p \to q) \lor (p \to r)$	$q \vee r$	$p \to (q \lor r)$
0	0	0	1	1	1	0	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	1
1	0	0	0	0	0	0	0
1	0	1	0	1	1	1	1
1	1	0	1	0	1	1	1
1	1	1	1	1	1	1	1

The 2 expressions have the same truth values. Therefore, they are equipvalent.

26. Show that $\neg p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r)$

p	q	r	$\neg p$	$q \rightarrow r$	$\neg p \to (q \to r)$	$p \vee r$	$q \to (p \lor r)$
0	0	0	1	1	1	0	1
0	0	1	1	1	1	1	1
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	0	1	1	1
1	1	1	0	1	1	1	1

The 2 expressions have the same truth values. Therefore, they are equipvalent.

32. Show that $(p \land q) \rightarrow r$ is not equipvalent to $(p \rightarrow r) \land (q \rightarrow r)$

p	q	r	$p \wedge q$	$(p \land q) \to r$	$p \rightarrow r$	$q \rightarrow r$	$(p \to r) \land (q \to r)$
0	0	0	0	1	1	1	1
0	0	1	0	1	1	1	1
0	1	0	0	1	1	0	0
0	1	1	0	1	1	1	1
1	0	0	0	1	0	1	0
1	0	1	0	1	1	1	1
1	1	0	1	0	0	0	0
1	1	1	1	1	1	1	1

The 2 expressions have different truth values. Therefore, they are not equipvalent.

1.3 Predicates and quantifiers

6.

- a) $\exists x N(x)$: Some students in my school have visited North Dakota.
- b) $\forall x N(x)$: All students in my school have visited North Dakota.
- c) $\neg \exists x N(x)$: No student in my school has visited North Dakota.
- d) $\exists x \neg N(x)$: There exists a student in my school who has not visited North Dakota.
- e) $\neg \forall x N(x)$:Not all students in my school have visited North Dakota.
- f) $\forall x \neg N(x)$: All students in my school have not visited North Dakota.

- a) $\forall x(R(x) \to H(x))$: If an animal is a rabbit, then it hops.
- b) $\forall x (R(x) \land H(x))$: All animals are rabbits and hop.
- c) $\exists x(R(x) \to H(x))$: There exists an animal that hops if it is a rabbit.

d) $\exists x (R(x) \land H(x))$: There exists an animal that is a rabbit and hops.

16.

- a) $\exists x(x^2=2)$: True $(x=\pm\sqrt{2})$
- b) $\exists x(x^2 = -1)$: False $(i = \sqrt{-1})$ is the imaginary number
- c) $\forall x(x^2 + 2 \ge 1)$: True (For all real number, the left side is always at least 2)
- d) $\forall x(x^2 \neq x)$: False (x = 1)

22.

- a) Everyone speaks Hindi.
 - True: all people in Hindi-speaking regions of India.
 - False: all Vietnamese people.
- b) There is someone older than 21 years.
 - True: all Vietnamese people.
 - False: all secondary students.
- c) Every two people have the same first name.
 - True: { Nguyen Tien Duc, Nguyen Van Duc, Tran Minh Duc, Le Hoang Duc }.
 - False: all Vietnamese people.
- d) Someone knows more than two other people.
 - True: all Vietnamese people.
 - False: newborn babies.

- M(x): x is a student in my class
- C(x): x has a cellular phone
- S(x): x can swim
- Q(x): x can solve quadratic equation
- R(x): x want to be rich

Domain	Students in my class	All people
a)	$\forall x C(x)$	$\forall x (M(x) \to C(x))$
b)	$\exists x F(x)$	$\exists x (M(x) \land F(x))$
c)	$\exists x \neg S(x)$	$\exists x (M(x) \land \neg S(x))$
d)	$\forall x Q(x)$	$\exists x (M(x) \to Q(x))$
e)	$\exists x \neg R(x)$	$\exists x (M(x) \land \neg R(x))$

- a) Someone in your school has visited Uzbekistan.
 - S(x): x is in my school.
 - U(x): x has visited Uzbekistan.
 - V(x,y): x has visited country y.
 - 1. Domain is all people in my school: $\exists x U(x)$
 - 2. Domain is all people: $\exists x(S(x) \land U(x))$
 - 3. Domain is all people: $\exists x(S(x) \land V(x, Uzbekistan))$
- b) Everyone in your class has studied calculus and C++
 - C(x): x is in my class.
 - M(x): x has studied calculus.
 - P(x): x has studied C++.
 - S(x,y): x has studied y.
 - 1. Domain is all peole in my class: $\forall x (M(x) \land P(x))$
 - 2. Domain is all people: $\forall x (C(x) \to (M(x) \land P(x)))$
 - 3. Domain is all people: $\forall x(C(x) \rightarrow (S(x,Calculus) \land S(x,C++)))$
- c) No one in your school owns both a bicycle and a motorcycle.
 - S(x): x are people in my school.
 - B(x): x owns a bicycle.
 - M(x): x owns a motorcycle.
 - S(x,y): x owns y.
 - 1. Domain is all people in my school: $\forall x \neg (B(x) \land M(x))$
 - 2. Domain is all people: $\forall x(S(x) \rightarrow \neg(B(x) \land M(x)))$
 - 3. Domain is all people: $\forall x(S(x) \rightarrow \neg(S(x,bicycle) \land S(x,motorcycle)))$
- d) There is a person in your school who is not happy.
 - S(x): x is a person in my school.

- H(x): x is happy.
- F(x,y): x feels y.
- 1. Domain is all people in my school: $\exists x \neg H(x)$
- 2. Domain is all people: $\exists x (S(x) \land \neg H(x))$
- 3. Domain is all people: $\exists x(S(x) \land \neg F(x, happy))$
- e) Everyone in your school was born in the twentieth century.
 - S(x): x is all people in my school.
 - T(x): x was born in the twentieth century
 - B(x,y): x was born in century y^{th} .
 - 1. Domain is all people in my school: $\forall x T(x)$
 - 2. Domain is all people: $\forall x(S(x) \to T(x))$
 - 3. Domain is all people: $\forall x(S(x) \to B(x,20))$

- a) Some thing is not in the correct place.
 - C(x): x is in the correct place.
 - Domain is everything.
 - $\Longrightarrow \exists x \neg C(x)$
- b) All tools are in the correct place and are in excellent condition.
 - T(x): x is a tool.
 - C(x): x is in the correct place.
 - E(x): x is in excellent condition.
 - Domain is everything
 - $\Longrightarrow \forall x (T(x) \to (C(x) \land E(x)))$
- c) Everything is in the correct place and in excellent conditions.
 - C(x): x is in the correct place.
 - E(x): x is in excellent condition.
 - Domain is everything
 - $\Longrightarrow \forall x (C(x) \land E(x))$
- d) Nothing is in the correct place and is in excellent condittion.
 - C(x): x is in the correct place.
 - E(x): x is in excellent condition.
 - $\bullet\,$ Domain is everything

$$\Longrightarrow \forall x \neg (C(x) \land E(x))$$

- e) One of your tools is not in the correct place, but it is in excellent condition.
 - T(x): x is a tool.
 - C(x): x is in the correct place.
 - E(x): x is in excellent condition.
 - Domain is everything
 - $\implies \exists x (T(x) \land \neg C(x) \land E(x))$

1.4 Nested Quantifiers

10.

- a) $\forall x F(x, Fred)$
- b) $\forall x F(Evelyn, x)$
- c) $\forall x \exists y F(x, y)$
- d) $\neg \exists x \forall y F(x, y)$
- e) $\exists x \forall y F(x,y)$
- f) $\neg \exists x (F(x, Fred) \land F(x, Jerry))$
- g) $\exists x_1 \exists x_2 (\forall x (F(Nancy, x) \rightarrow (x = x_1 \lor x = x_2)) \land F(Nancy, x_1) \land F(Nancy, x_2) \land (x_1 \neq x_2))$
- h) $\exists y (\forall x F(x, y) \land \forall z (\forall x F(x, z) \rightarrow z = y))$
- i) $\neg \exists x F(x, x)$
- j) $\exists x \exists y (x \neq y \land F(x, y) \land \forall z ((F(x, z) \land z \neq x) \rightarrow z = y))$

- a) $\neg I(Jerry)$
- b) $\neg C(Rachel, Jerry)$
- c) $\neg C(Rachel, Jerry)$
- d) $\neg \exists x C(x, Bob)$
- e) $\forall x((x \neq Joseph) \leftrightarrow C(x, Sanjay))$
- f) $\exists x \neg I(x)$
- g) $\neg \forall x I(x)$
- h) $\exists x (I(x) \land \forall y (I(y) \rightarrow y = x))$
- i) $\forall x \exists y (x \neq y \leftrightarrow I(x))$
- j) $\forall x(I(x) \to \exists y(C(x,y) \land y \neq x))$

```
k) \exists x (I(x) \land \forall y (y \neq x \rightarrow \neg C(x, y)))
```

$$1) \exists x_1 \exists x_2 (x_1 \neq x_2 \land \neg C(x_1 x_2))$$

m)
$$\exists x \forall y C(x, y)$$

n)
$$\exists x_1 \exists x_2 (\forall y \neg (C(x_1, y) \land C(x_2, y)) \land x_1 \neq x_2)$$

o)
$$\exists x_1 \exists x_2 (\forall y (C(x_1, y) \lor C(x_2, y)) \land x_1 \neq x_2)$$

- T(s, m, y): student s majors in m and is in year y.
- Abbreviations:
 - MA: mathematics
 - CS: computer science
- Domain:
 - -s: all students in the class.
 - -m: all possible majors (in this case only include MA and CS).
 - -y: one in 4 years: freshman, sophomore, junior, senior.
- a) $\exists s \exists mT(s, m, junior)$: True
- b) $\forall s \forall y T(s, CS, y)$: False because there are also mathematics students.
- c) $\exists s \exists m \exists y ((m \neq MA) \land (y \neq junior) \land T(s, m, y))$: True because there are many CS sophomores.
- d) $\forall s(\exists mT(s, m, sophomore) \lor \exists yT(s, CS, y))$: False because there is a MA freshman.
- e) $\exists m \forall y \exists s T(s, m, y)$: False because there is no MA senior and there is no CS freshman.

22.

- Domain is all numbers.
- I(x): x is an integer.

$$\Longrightarrow \exists x (I(x) \wedge (x>0) \wedge \forall a \forall b \forall c (x \neq (a^2+b^2+c^2))$$

1.5 Rules of Inference

- a) h: I play hockey; w: I use the whirlpool; s: I am sore
 - 1. $h \rightarrow s$
 - $2. s \rightarrow w$

- $3. \neg w$
- Modus tollens using (2) and (3) => I am not sore (4)
- Modus tollens using (4) and (1) => I did not play hockey.
- b) W(d): I work on day d; S(d): It is sunny or partly sunny on day d
 - 1. $\forall d(W(d) \rightarrow S(d))$
 - 2. $W(Monday) \vee W(Friday)$
 - 3. $\neg S(Tuesday)$
 - 4. $\neg S(Friday)$
 - Modus tollens using (1) and (3) => I did not work on Tuesday.
 - Modus tollens using (1) and (4) => I did not work on Friday. (5)
 - Disjunctive syllogism using (2) and (5) => I worked on Monday.
- c) S(x): x has six legs; I(x): x is an insect
 - 1. $\forall x(I(x) \to S(x))$
 - 2. I(dragonflies)
 - 3. $\neg S(spiders)$
 - Modus ponens using (1) and (2) => Dragon flies have 6 legs.
 - Modus tollens using (1) and (3) => Spiders are not insects.
 - We could say using existential generalization that, for example, there exists a non-six-legged creature that eats a six-legged creature, and that there exists a non-insect that eats an insect.
- d) A(x): x has an Internet account; S(x): x is a student
 - 1. $\forall x (S(x) \to A(x))$
 - 2. $\neg A(Homer)$
 - $3. \ A(Maggie)$
 - ullet Universal instantiation using (1) => If Homer/Maggie is a student, then she has an Internet account.
 - Modus tollens using (1) and (2) => Homer is not a student.
- e) H(x): x is healthy; T(x): x tastes good; E(x): You eat x
 - 1. $\forall x (H(x) \to \neg T(x))$
 - 2. H(Tofu)
 - 3. $\forall x (T(x) \leftrightarrow E(x))$
 - 4. $\neg H(cheeseburgers)$
 - Universal instantiation and modus ponens using (1) and (2) => Tofu does not taste good. (5)
 - Universal instantiation and modus tollens using (3) and (5) => You will not eat tofu.
 - Universal instantiation using (1) and (4) => Cheeseburgers taste good. (6)

- Universal instantiation and modus ponens using (3) and (6) => You will eat cheeseburgers.
- f) D: I am dreaming; H: I am hallucinating; E: I see elephants running down the road.
 - 1. $D \lor H$
 - $2. \neg D$
 - 3. $H \rightarrow E$
 - Disjunctive syllogism using (1) and (2) => I am hallucinating. (4)
 - Modus ponens using (4) and (3) => I am seeing elephants running down the road.

a) R(x): x owns a red convertible; T(x): x has gotten a speeding ticket; C(x): x is in this class

b) R(x): x is one of the five roommates listed; D(x): x has taken a course in discrete math; A(x): x can take a course in algorithms

$$\forall x (R(x) \to D(x)) \\ \forall x (D(x) \to A(x)) \\ \hline \therefore \forall x (R(x) \to A(x)) \\ \hline \therefore \forall x (R(x) \to A(x)) \\ \hline \end{bmatrix} \Longrightarrow \begin{cases} \textbf{Step} & \textbf{Reason} \\ 1. \forall x (R(x) \to D(x)) & \textbf{Hypothesis} \\ 2. R(y) \to D(y) & \textbf{Universal instantiation using (1)} \\ 3. \forall x (D(x) \to A(x)) & \textbf{Hypothesis} \\ 4. D(y) \to A(y) & \textbf{Universal instantiation using (3)} \\ 5. R(y) \to A(y) & \textbf{Hypothetical syllogism using (2) and (4)} \\ 6. \forall x (R(x) \to A(x)) & \textbf{Universal generalization using (5)} \end{cases}$$

c) S(x): x is a movie produced by Sayles; C(x): x is a movie about coal miners; W(x): x is a wonderful movie

$$\forall x(S(x) \to W(x)) \\ \exists x(S(x) \land C(x)) \\ \vdots \exists x(C(x) \land W(x))$$
 ⇒
$$\begin{vmatrix} Step & Reason \\ 1. \exists x(S(x) \land C(x)) & Hypothesis \\ 2. S(y) \land C(y) & Simplification using (1) \\ 3. S(y) & Simplification using (2) \\ 4. \forall x(S(x) \to W(x)) & Hypothesis \\ 5. S(y) \to W(y) & Universal instantiation using (4) \\ 6. W(y) & Modus ponens using (3) and (5) \\ 7. C(y) & Simplification using (2) \\ 8. W(y) \land C(y) & Conjunction using (6) and (7) \\ 9. \exists x(C(x) \land W(x)) & Existential generalization using (8)$$

d) C(x): x is in this class; F(x): x has been to France; L(x): x has visited the Louvre

There exists a person s so that s is shorter than Max is valid. However, it does not follow that s can also be Max because a person cannot compare his height with himself. The argument is invalid from this step.