

Estatística Aplicada Seg 2025-1

Grupo do WhatsApp

Aula 01 Estatística Aplicada

Prof. Me. Max Gabriel Steiner

SEQUÊNCIA DIDÁTICA- 1a.AULA

- Planejamento semestral;
- Retomada de conceitos pré-requisitos;

PLANEJAMENTO DA DISCIPLINA

EMENTA

Teorema do Produto; Independência Estatística; Teorema de Bayes; Modelos de Distribuições Discretas e Contínuas; Intervalos de confiança; Medidas de Tendência Central e Variabilidade; Estimativa: pontual e intervalar.

OBJETIVOS DA DISCIPLINA

 Proporcionar ao acadêmico a construção de conhecimento acerca das ferramentas estatísticas aplicadas no contexto da Engenharia de Computação/Software para os objetos de conhecimento presentes na ementa.

RESULTADO ESPERADO

- Dominar as técnicas estatísticas e aplicações de probabilidades para resolver situações problema;
- Aplicar as técnicas na análise e interpretação de resultados experimentais;
- Desenvolver experimentos para aplicar de forma prática os conceitos da Estatística.

CONTEÚDO PROGRAMÁTICO

VER PLANEJAMENTO E PLANO DE ENSINO POR COMPLETO.

- TÉCNICO: Eletromecânica (2011-2012).

- GRADUAÇÃO: Engenharia Elétrica (2013-2017).

- MESTRADO: Mestre em Engenharia (2018-2020).

- PÓS-GRADUAÇÃO: Engenharia de Software (2023-2024).

- PÓS-GRADUAÇÃO: MBA em Finanças Corporativas e Mercado Financeiro (2024-2025).

E-mail: max.steiner@satc.edu.br

Instagram: @maxgsteiner

Ocupação Atual:

- Coordenador Cursos Técnicos
 SATC Eletrotécnica, Informática e
 Mecatrônica
- Professor UniSatc
- Analista de Estudos e Projetos
 Cobusiness e NSEM CT-SATC.
- Consultor Financeiro.

VAMOS NOS CONHECER MELHOR:

Conte um pouco sobre você:

- Seu nome:
- Sua idade:
- Onde mora:
- Hobby:
- Futuro:
- Trabalhando? Na área do curso?

Introdução à Estatística Aplicada

Prof. Me. Max Gabriel Steiner

A CIÊNCIA ESTATÍSTICA

Foco científico, melhor trabalhado, o que deu origem à palavra **ESTATÍSTICA**, formalizada por *Gottfried Achenwall*, ficando conhecido na história como pai da **estatística** (CRESPO, 2009).

Por que estudar Estatística?

Onde pode ser aplicada?

CONCEITO

"Estatística é a arte de torturar os dados até que eles digam a verdade".

Autor desconhecido

CONCEITO

"...é um conjunto de técnicas e métodos de pesquisa e análise de dados que entre outros tópicos envolve o planejamento do experimento a ser realizado, a coleta qualificada dos dados, a inferência, o processamento, a análise e a disseminação das informações". Fonte: IBGE, 2023.

CONCEITO

A estatística associa dados aos problemas, gerando informações relevantes para o estabelecimento de conclusões capazes de viabilizar a tomada de decisões em ambientes de incertezas e variações.

CONCEITO DE ESTATÍSTICA APLICADA

Ramificação da Estatística que trata da coleta, análise e interpretação de dados nos mais diversos setores.

DESENVOLVAM...

Qual é a principal contribuição da Estatística Aplicada?

Sabendo que a Engenharia de Computação/Software lida com uma enorme quantidade de dados, gerados a partir de diferentes fontes, como registros de logs, métricas de desempenho, dados de teste e avaliação de usuários, de que maneira a estatística aplicada contribui na tomada de decisões?

EXEMPLOS DE APLICAÇÕES

- Análise de desempenho de Software;
- Estimativa de tempo e esforço de projeto;
- Testes de usabilidade;
- Análise de dados de Logs;
- Previsão de demanda e escalonamento de recursos.

ESTATÍSTICA DESCRITIVA E INFERENCIAL

POPULAÇÃO E AMOSTRA

 População é o conjunto completo de elementos ou indivíduos que compartilham uma ou mais características comuns e são de interesse para a pesquisa ou estudo.

 Amostra é um subconjunto representativo selecionado da população.

Vantagens

- Custo Reduzido;
- Eficiência;
- Praticidade;
- Menos Invasivo.

Desvantagens

- Margem de Erro;
- Representatividade;
- Generalização Limitada.

TÉCNICAS DE AMOSTRAGEM EM ENGENHARIA DE COMPUTAÇÃO/SOFTWARE

Amostragem Aleatória Simples;

- Amostragem Sistemática;
- Amostragem por Conglomerados.
- Amostragem Estratificada.

DADOS ABSOLUTOS E RELATIVOS

Dados Absolutos

Dados obtidos diretamente da fonte, sem outra manipulação senão a contagem ou medida (CRESPO, 2009).

Dados Relativos

Dados provenientes dos resultado de comparações entre os dados absolutos e tem por finalidade realçar ou facilitar as comparações, a obtenção de informações a partir dos dados.

(CRESPO, 2009).

Podem ser: Porcentagens, Índices, Coeficientes, Taxas.

Exemplo – Dados Absolutos

Suponha que em um projeto de desenvolvimento de software, foram registrados os seguintes tempos de resposta de uma funcionalidade específica:

5 ms, 7 ms, 10 ms, 8 ms, 12 ms, 6 ms, 9 ms, 11 ms, 7 ms, 6 ms

Neste caso, os dados absolutos são os tempos de resposta em milissegundos.

Exemplo – Dados Relativos

Considere um estudo sobre o uso de diferentes linguagens de programação em um conjunto de projetos de software. Suponha que dos 100 projetos analisados:

- 30 projetos utilizam Java
- 25 projetos utilizam Python
- 15 projetos utilizam C++
- 20 projetos utilizam JavaScript
- 10 projetos utilizam Ruby

Neste caso, os dados relativos seriam as porcentagens de uso de cada linguagem em relação ao total de projetos (100).

DISTRIBUIÇÃO DE FREQUÊNCIA

A distribuição de frequência é uma forma organizada de apresentar dados, mostrando o número de ocorrências (frequência) de cada valor ou intervalo de valores em um conjunto de dados.

CONSTRUÇÃO DE UMA TABELA DE FREQUÊNCIA

A construção de uma tabela de frequência é um processo que envolve agrupar os dados em categorias ou intervalos, contabilizando quantas vezes cada valor ou intervalo ocorre no conjunto de dados. A tabela de frequência apresenta o número absoluto (frequência absoluta) de ocorrências de cada valor ou intervalo, bem como a proporção relativa (frequência relativa) de cada valor em relação ao total de observações.

O Exame Nacional de Desempenho dos Estudantes é uma prova escrita, aplicada anualmente, usada para avaliação dos cursos de ensino superior brasileiros. A aplicação da prova é de responsabilidade do INEP, uma entidade federal vinculada ao Ministério da Educação.

Exemplo 1 – Construção da tabela de frequência

Ao realizar uma pesquisa acerca dos alunos que participaram do **ENADE**, o diretor da instituição solicitou os dados referente a pontuação de 50 alunos, conforme apresentados na tabela a seguir:

68	85	33	52	65	77	84	65	74	57
71	35	81	50	35	64	74	47	54	68
80	61	41	91	55	73	59	53	77	45
41	55	78	48	69	85	67	39	60	76
94	98	66	66	73	42	65	94	88	89

- a) Construa uma tabela de frequências iniciando com a pontuação 30 e aplicando o intervalo de classe de amplitude igual a 10.
- b) Mostre suas frequências acumuladas e as frequências relativas.

Resolução

Tabela - Distribuição de frequências

Notas	Frequência Absoluta (f _i)	Frequência Relativa (fr _i) em %	Frequência Acumulada (FAc _i)	Frequência Acumulada Relativa (FAc _i %)
30 1 40	4	8	4	8
40 1 50	6	12	10	20
50 1 60	8	16	18	36
60 1 70	12	24	30	60
70 1 80	9	18	39	78
80 1 90	7	14	46	92
90 I— 100	4	8	50	100
	∑ = 50	∑=100 %		

Fonte: Diretor da Instituição

O intervalo de classe (i) é:

AT (Amplitude total) = 100-30 = 70 K = número de classes

Intervalo de classes (i) = AT/k70/7 = 10 **Exemplo 2** – De acordo com a distribuição de frequência abaixo construa um histograma no excel .

Tabela - Distribuição de Frequência

Classe	f _i			
2 ⊢ 6	2			
6	4			
10 14	9			
14 1 18	18			
18 1—22	9			
22	5			
26 1—30	3			
Fonte: Bruni (2008, p. 35)				

O histograma é uma excelente ferramenta para identificar padrões nos dados e obter uma visão geral da distribuição das observações.

Histograma

Ogiva.

Classes	Fi	Freq. Acumulada
2 - 6	2	2
6 - 10	4	6
10 - 14	9	15
14 - 18	18	33
18 - 22	9	42
22 - 26	5	47
26 - 30	3	50

Exemplo 3 – Em um hospital foram coletados os salários (em salários mínimos) de 36 funcionários. Os resultados estão dispostos na tabela abaixo. Construa a distribuição de frequências em intervalos de classe e organize uma tabela com frequência absoluta, frequência acumulada e dados percentuais.

Salários de 36 funcionários (x salário mínimo)							
4,00	6,86	8,74	10,53	13,23	16,22		
4,56	7,39	8,95	10,76	13,60	16,61		
5,25	7,59	9,13	11,06	13,85	17,26		
5,73	7,44	9,35	11,59	14,69	18,75		
6,26	8,12	9,77	12,00	14,71	19,40		
6,66	8,46	9,80	12,79	15,99	24,00		

O intervalo de classe (i) é:

$$(i) = AT/k$$

(i)= Intervalo de classes

AT= Amplitude total

K = número de classes

K= número de classes n=número de elementos

Substituindo:

$$AT = 24 - 4 = 20$$

$$k = 1 + 3,33 \times log(36)$$

$$k = 1 + 3,33 \times 1,55$$

$$k = 1 + 5,16 = 6,16 = 6$$
 classes

$$(i) = AT/k$$

$$(i) = 20/6 = 3,33 = 4$$

Classe	N°de salários mínimos	F(i)	f(i)	F (acumulada)	f (acumulada)	%
1	4 8	10	0,28	10	0,28	28%
2	8 - 12	12	0,33	22	0,61	33%
3	12 - 16	8	0,22	30	0,83	22%
4	16 - 20	5	0,14	35	0,97	14%
5	20 -24	0	0	35	0	0%
6	24 - 28	1	0,03	36	1,00	3%
Total		36	1			100%

MEDIDAS DE POSIÇÃO E DISPERSÃO

Medidas de posição: Média, Mediana e Moda

• Medidas de dispersão: Desvio Padrão, Variância e Amplitude

Exemplos: Avaliação do tempo médio de resposta de um sistema em diferentes cenários

• Definição de distribuição estatística

 Função densidade de probabilidade e função de distribuição acumulada

Exemplo: Dados de tempo de resposta de um sistema de software.

PROBABILIDADE E TEOREMA DO PRODUTO

 Conceitos fundamentais de probabilidade (evento, espaço amostral, probabilidade de um evento).

• Teorema do Produto e probabilidade conjunta de eventos independentes.

Exemplo: Probabilidade de um erro de software ocorrer em diferentes fases do projeto.

INDEPENDÊNCIA ESTATÍSTICA E TEOREMA DE BAYES

• Definição de eventos independentes e eventos dependentes.

 Teorema de Bayes e sua aplicação para atualizar probabilidades.

Exemplo: Probabilidade de um bug ser crítico ou não, dado o seu tipo.

INDEPENDÊNCIA ESTATÍSTICA E TEOREMA DE BAYES

AF447 – Como a Estatística ajudou a encontrar os destroços

Editor : 2 de junho de 2014 : Aviação

AF447 - Como a Estatística ajudou a encontrar os destroços - DefesaNet

TESTE DE HIPÓTESES E INTERVALOS DE CONFIANÇA

• Conceito de teste de hipóteses.

• Etapas de um teste de hipóteses na Engenharia de Software.

Exemplo: Teste de hipóteses para comparar o desempenho de dois algoritmos de busca.

CORRELAÇÃO E REGRESSÃO ESTATÍSTICA

 Correlação entre variáveis e sua interpretação em Engenharia de Software.

 Conceito de regressão linear e como aplicá-la para fazer previsões.

Exemplo: Correlação entre o tamanho do código e a quantidade de defeitos em um software.

PROPOSTA DE METODOLOGIA ATIVA ESTUDO DE CASO

