《机器学习》课件

3.2隐性马氏模型 (HMM) 及应用

HMM的由来

■ 1870年,俄国有机化学家Vladimir V. Markovnikov第一次提出马尔科夫模型

- ■马尔可夫模型
- ■马尔可夫链
- ■隐马尔可夫模型

×

马尔可夫性

■ 如果一个过程的"将来"仅依赖"现在" 而不依赖"过去",则此过程具有马尔可 夫性,或称此过程为马尔可夫过程

X(t+1) = f(X(t))

马尔科夫链

- **时间**和**状态**都离散的马尔科夫过程称为马尔科 夫链
- 记作{X_n = X(n), n = 0,1,2,...}
 - □ 在时间集T₁ = {0,1,2,...}上对离散状态的过程相继观察的结果
- 链的状态空间记做I = {a₁, a₂,...}, a_i∈R.
- 条件概率 P_{ij} (m, m+n)= $P\{X_{m+n} = a_i | X_m = a_i \}$ 为 马氏链在时刻m处于状态 a_i 条件下,在时刻 m+n转移到状态 a_i 的转移概率。

10

转移概率矩阵

	晴天	阴天	下雨
晴天	0.50	0.25	0.25
阴天	0.375	0.25	0.375
下雨	0.25	0.125	0.625

马尔可夫性质

$$P(s_{i1}, s_{i2}, ..., s_{ik}) = P(s_{ik} | s_{i1}, s_{i2}, ..., s_{ik-1}) P(s_{i1}, s_{i2}, ..., s_{ik-1})$$

$$= P(s_{ik} | s_{ik-1}) P(s_{i1}, s_{i2}, ..., s_{ik-1}) = ...$$

$$= P(s_{ik} | s_{ik-1}) P(s_{ik-1} | s_{ik-2}) ... P(s_{i2} | s_{i1}) P(s_{i1})$$

{'Dry','Dry','Rain',Rain'}.
 P({'Dry','Dry','Rain',Rain'}) =?

v

转移概率矩阵(续)

■由于链在时刻m从任何一个状态a_i出发, 到另一时刻m+n,必然转移到a₁,a₂..., 诸状态中的某一个,所以有

$$\sum_{j=1}^{\infty} P_{ij}(m, m+n) = 1, i = 1, 2, \dots$$

■ 当P_{ij}(m,m+n)与m无关时,称马尔科夫链 为**齐次马尔科夫链**,通常说的马尔科夫 链都是指齐次马尔科夫链。

м.

HMM实例

HMM实例——描述

- 设有N个缸,每个缸中装有很多彩球,球的颜色由一组概率分布描述。实验进行方式如下
 - □ 根据初始概率分布,随机选择N个缸中的一个开始 实验
 - □ 根据缸中球颜色的概率分布,随机选择一个球,记球的颜色为O₁,并把球放回缸中
 - □ 根据描述缸的转移的概率分布,随机选择下一口缸, 重复以上步骤。
- 最后得到一个描述球的颜色的序列O₁,O₂,..., 称为观察值序列O。

HMM实例——约束

在上述实验中,有几个要点需要注意:

- ■不能被直接观察杯子间的转移
- 从缸中所选取的球的颜色和杯子并不 是 一一对应的
- ■每次选取哪个杯子由一组转移概率决 定

HMM概念

- HMM的状态是不确定或不可见的,只有通过 观测序列的随机过程才能表现出来
- 观察到的事件与状态并不是一一对应,而是通过一组概率分布相联系
- HMM是一个双重随机过程,两个组成部分:
 - □ 马尔可夫链: 描述状态的转移, 用转移概率描述。
 - □ 一般随机过程: 描述状态与观察序列间的 关系, 用观察值概率描述。

HMM组成

HMM的组成示意图

马氏过程与马氏链

- 马氏过程: 具有无后效性的随机过程。即tm时刻所处状态的概率只和tm-1时刻的状态有关,而与tm-1时刻之前的状态无关。比如布朗运动,柏松过程。
- 马氏链: 时间离散, 状态离散的马氏过程。

马氏链的参数

■ 转移概率: a_{kl}=P(S_i=I|πS_{i-1}=k)

$$0 \le a_{kl} \le 1$$

$$\sum_{l} a_{kl} = 1$$

■初始概率

7

HMM (Hidden Markov Models)

■ 一个双重随机过程,两个组成部分:

- ●马氏链: 描述状态的转移。 用转移概率 ^a ^{kl} 描述
- 一般随机过程: 描述状态与观察序列间的关系用输出概率 $e_k(b)$ 描述

HMM的基本算法

- Viterbi算法
- ■前向 后向算法
- Baum-Welch算法

Viterbi算法

- 采用动态规划算法。复杂度O(K²L) K和L分别为状态个数和序列长度
- 初始化(i = 0): $v_0(0) = 1, v_k(0) = 0$ k>0 递推(i = 1...L): $v_l(i) = e_l(x_i) \max_k (v_k(i-1)a_{kl})$ $ptr_i(l) = \arg\max_k (v_k(i-1)a_{kl})$

授上:
$$P(x,\pi^*) = \max_{k} (v_k(L)a_{k0})$$
$$\pi_L^* = \arg\max_{k} (v_k(L)a_{k0})$$

回溯 (i = L...1):
$$\pi_{i-1}^* = ptr_i(\pi_i^*)$$

Trellis representation of an HMM

Time=

k

k+1

前向 - 后向算法

前向算法: 动态规划,复杂度同Viterbi 定义前向变量 $f_k(i) = P(x_1...x_i, \pi_i = k)$

初始化(i = 0):
$$f_0(0) = 1, f_k(0) = \mathbb{R} > 0$$

递推(i = 1...L): $f_l(i) = e_l(x_i) \sum_k f_k(i-1) a_{kl}$
终止:
$$P(x) = \sum_k f_k(L) a_{k0}$$

W

后向算法: 动态规划, 复杂度同Viterbi

定义后向变量
$$b_k(i) = P(x_{i+1}...x_L \mid \pi_i = k)$$

$$b_k(i) = \sum_l a_{kl} e_l(x_{i+1}) b_l(i+1)$$

$$P(x) = \sum_{l} a_{0l} e_{l}(x_{1}) b_{l}(1)$$

Learning problem

• If training data has information about sequence of hidden states (as in word recognition example), then use maximum likelihood estimation of parameters:

$$a_{ij} = P(s_i \mid s_j) = \frac{\text{Number of transitions from state } S_j \text{ to state } S_i}{\text{Number of transitions out of state } S_j}$$

$$b_i(v_m) = P(v_m \mid s_i) = \frac{\text{Number of times observation } V_m \text{ occurs in state } S_i}{\text{Number of times in state } S_i}$$

Baum-Welch algorithm

General idea:

$$a_{ij} = P(S_i \mid S_j) = \frac{\text{Expected number of transitions from state } S_j \text{ to state } S_i}{\text{Expected number of transitions out of state } S_j}$$

$$b_i(v_m) = P(v_m \mid s_i) = \frac{\text{Expected number of times observation } V_m \text{ occurs in state } S_i}{\text{Expected number of times in state } S_i}$$

$$\pi_i = P(S_i) =$$
 Expected frequency in state S_i at time $k=1$.

Baum - Welch算法

■ 重估公式:

$$A_{kl} = \sum_{j} \frac{1}{p(x^{j})} \sum_{i} f_{k}^{j}(i) a_{kl} e_{l}(x_{i+1}^{j}) b_{l}^{j}(i+1)$$

$$E_{k}(b) = \sum_{j} \frac{1}{p(x^{j})} \sum_{\{i|x_{i}^{j}=b\}} f_{k}^{j}(i)b_{k}^{j}(i)$$

M

HMM应用

- 主要应用是解码(decoding)。 在生物序列分析中,从序列中的每个值(观察 值) 去推测它可能属于那个状态。
- 两种解码方法:
 - (1) Viterbi算法解码
 - (2) 前向 后向算法 + 贝叶斯后验概率

Viterbi解码

■ 由Viterbi算法所得的是一条最佳路径。根据该路径可直接得出对应于每一观察值的状态序列

.

前向 - 后向算法 + 贝叶斯后验概率

■ 利用贝叶斯后验概率计算序列中的值属于 某一状态的概率即:

$$P(\pi_{i} = k \mid x) = \frac{P(x, \pi_{i})}{P(x)}$$

$$P(x, \pi_{i}) = P(x_{1}...x_{i}, \pi_{i} = k)P(x_{i+1}...x_{L} \mid \pi_{i} = k)$$

$$= f_{k}(i)b_{k}(i)$$

.

实际建模过程

- 根据实际问题确定状态个数及观察序列。
- 用若干已知序列,采用B W算法估计参数 (转移概率 和输出概率 的值(b)
- 输入未知序列用Viterbi算法或贝叶斯概率解码。

假设你有三个好朋友A、B、C,因为学习繁忙,每周只能抽出一天时间陪他们中的一个吃饭或看电影。娱乐活动结束后,你通常会发一条朋友圈表达喜悦,为了保护朋友的隐私,你不会在朋友圈里说明和谁出去玩,只会说今天玩了什么(吃饭/看电影)。

这三个朋友并非完全相同,你对他们的好感度也有所区别。于是你在心中确定了陪伴这三位朋友的概率。

朋友	Α	В	C
概率	0.2	0.4	0.4

如果这一周你陪伴了某一个朋友,你很可能意犹未尽,下一周还想和他一起玩,所以本周和谁玩还影响了下一周的选择。

本周/下周	A	В	С
Α	0.5	0.2	0.3
В	0.3	0.5	0.2
С	0.2	0.3	0.5

这三个朋友爱好有所区别,你在选择这周做什么的时候通常会顾及朋友的想法。因此你心里给出了陪不同朋友时会做什么的概率。

朋友	吃饭	看电影
Α	0.5	0.5
В	0.4	0.6
С	0.7	0.3

建立模型

朋友	A	В	С
概率	0.2	0.4	0.4

矩阵。第三张表是你在某种状态下做某种事的概率,是模型的观测概率矩阵。

朋友	吃饭	看电影
Α	0.5	0.5
В	0.4	0.6
С	0.7	0.3

建立模型

这个例子就可以用隐马尔可夫模型进行表达。

在外界看来(只能看朋友圈),只能看到你这一周做了什么(观测结果),而不清楚你陪了哪位朋友(实际状态)。你的状态是隐藏在后面的,这就是隐马尔可夫模型中"隐"的含义。

预测问题 (Viterbi算法)

你每周发的朋友圈引起了你室友的兴趣。你的室友认识你的三个朋友,也知道你对他们的看法(即知道上面的三张表),但是你并不打算将你陪谁出去玩告诉室友,这引起了他们的好奇心。他们想根据朋友圈的信息和三张表推断出你每周都去陪了谁。

M

预测问题 (Viterbi算法)

假设你的室友从朋友圈得知,你前三周分别去吃饭、看电影、吃饭。用标号0表示陪A朋友,标号1表示陪B朋友,标号2表示陪C朋友。标号0表示观测结果为"吃饭",1表示观测结果为"看电影"。s表示初始状态向量。

第0周(t=0):

$$v_0(0) = s_0 e_0(0) = 0.2 \times 0.5 = 0.1$$

 $v_1(0) = s_1 e_1(0) = 0.4 \times 0.4 = 0.16$
 $v_2(0) = s_2 e_2(0) = 0.4 \times 0.7 = 0.28$

.

预测问题 (Viterbi算法)

开始递推,第一周时(t=0)

$$\begin{split} v_0(1) &= \max_{0 \leq j \leq 2} \left(v_j(0) a_{j0} \right) e_0(1) = \max\{0.025, 0.024, 0.028\} = 0.028 \\ v_1(1) &= \max_{0 \leq j \leq 2} \left(v_j(0) a_{j1} \right) e_1(1) = \max\{0.012, 0.048, 0.0504\} = 0.0504 \\ v_2(1) &= \max_{0 \leq j \leq 2} \left(v_i(0) a_{j2} \right) e_2(1) = \max\{0.009, 0.0096, 0.042\} = 0.042 \end{split}$$

×

预测问题 (Viterbi算法)

第二周时 (t=2)

$$\begin{split} v_0(2) &= \max_{0 \leq j \leq 2} \left(v_j(0) a_{j0} \right) e_0(1) = \max\{0.007, 0.00756, 0.0042\} = 0.00756 \\ v_1(2) &= \max_{0 \leq j \leq 2} \left(v_j(0) a_{j1} \right) e_1(1) \\ &= \max\{0.00224, 0.01008, 0.00504\} = 0.01008 \\ v_2(2) &= \max_{0 \leq j \leq 2} \left(v_j(0) a_{j2} \right) e_2(1) = \max\{0.00588, 0.007056, 0.0147\} = 0.0147 \end{split}$$

预测问题 (Viterbi算法)

- · 向推导最优隐状态序列:
- $\blacksquare \pi_2 = 2$
- $\pi_1 = \underset{0 \le j \le 2}{\operatorname{argmax}} (v_j(1) \, a_{j2}) = 2$
- $\pi_0 = \underset{0 \le j \le 2}{\operatorname{argmax}} (v_j(0) \, a_{j2}) = 2$
- 因此,预测结果为这三周你都在陪朋友C。

Character recognition with HMM example.

• The structure of hidden states is chosen.

Observations are feature vectors extracted from vertical slice

- Probabilistic mapping from hidden state to feature vectors:
 - 1. use mixture of Gaussian models
 - 2. Quantize feature vector space.

Exercise: character recognition with

HMM(1)

• The structure of hidden states:

- Observation = number of islands in the vertical slice.
- HMM for character 'A' :

Transition probabilities:
$$\{a_{ij}\}=\left(\begin{array}{ccc} .8 & .2 & 0\\ 0 & .8 & .2\\ 0 & 0 & 1\end{array}\right)$$

Observation probabilities:
$$\{b_{jk}\}=$$
 $\begin{pmatrix} .9 & .1 & 0 \\ .1 & .8 & .1 \\ .9 & .1 & 0 \end{pmatrix}$

•HMM for character 'B':

Transition probabilities:
$$\{a_{ij}\}=\begin{bmatrix} .8 & .2 & 0 \\ 0 & .8 & .2 \\ 0 & 0 & 1 \end{bmatrix}$$

Observation probabilities:
$$\{b_{jk}\}=\left(\begin{array}{ccc} .9 & .1 & 0\\ 0 & .2 & .8\\ .6 & .4 & 0\end{array}\right)$$

Exercise: character recognition with HMM(2)

• Suppose that after character image segmentation the following sequence of island numbers in 4 slices was observed:

 What HMM is more likely to generate this observation sequence, HMM for 'A' or HMM for 'B'?

Exercise. Character recognition

with HMM(3)

Consider likelihood of generating given observation for each possible sequence of hidden states:

HMM for character 'A':

Hidden state sequence

$$S_1 \rightarrow S_1 \rightarrow S_2 \rightarrow S_3$$

 $S_1 \rightarrow S_2 \rightarrow S_2 \rightarrow S_3$
 $S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_3$

Observation probabilities

• HMM for character 'B':

Hidden state sequence

$$S_1 \rightarrow S_1 \rightarrow S_2 \rightarrow S_3$$

$$S_1 \rightarrow S_2 \rightarrow S_2 \rightarrow S_3$$

$$S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_3$$

Transition probabilities

Observation probabilities

Evaluation Problem.

- •Evaluation problem. Given the HMM $M=(A, B, \pi)$ and the observation sequence $O=O_1 O_2 \dots O_K$, calculate the probability that model M has generated sequence O.
- Trying to find probability of observations $O = O_1 O_2 ... O_K$ by means of considering all hidden state sequences (as was done in example) is impractical:

N^K hidden state sequences - exponential complexity.

- Use **Forward-Backward HMM algorithms** for efficient calculations.
- Define the forward variable $\alpha_k(i)$ as the joint probability of the partial observation sequence $O_1 O_2 \dots O_k$ and that the hidden state at time k is $S_i : \alpha_k(i) = P(O_1 O_2 \dots O_k, Q_k = S_i)$