HMMT February 2022

February 19, 2022

Geometry Round

- 1. Let ABC be a triangle with $\angle A = 60^{\circ}$. Line ℓ intersects segments AB and AC and splits triangle ABC into an equilateral triangle and a quadrilateral. Let X and Y be on ℓ such that lines BX and CY are perpendicular to ℓ . Given that AB = 20 and AC = 22, compute XY.
- 2. Rectangle R_0 has sides of lengths 3 and 4. Rectangles R_1 , R_2 , and R_3 are formed such that:
 - \bullet all four rectangles share a common vertex P,
 - for each n = 1, 2, 3, one side of R_n is a diagonal of R_{n-1} ,
 - for each n = 1, 2, 3, the opposite side of R_n passes through a vertex of R_{n-1} such that the center of R_n is located counterclockwise of the center of R_{n-1} with respect to P.

Compute the total area covered by the union of the four rectangles.

- 3. Let ABCD and AEFG be unit squares such that the area of their intersection is $\frac{20}{21}$. Given that $\angle BAE < 45^{\circ}$, $\tan \angle BAE$ can be expressed as $\frac{a}{b}$ for relatively prime positive integers a and b. Compute 100a + b.
- 4. Parallel lines $\ell_1, \ell_2, \ell_3, \ell_4$ are evenly spaced in the plane, in that order. Square ABCD has the property that A lies on ℓ_1 and C lies on ℓ_4 . Let P be a uniformly random point in the interior of ABCD and let Q be a uniformly random point on the perimeter of ABCD. Given that the probability that P lies between ℓ_2 and ℓ_3 is $\frac{53}{100}$, the probability that Q lies between ℓ_2 and ℓ_3 can be expressed as $\frac{a}{b}$, where a and b are relatively prime positive integers. Compute 100a + b.
- 5. Let triangle ABC be such that AB = AC = 22 and BC = 11. Point D is chosen in the interior of the triangle such that AD = 19 and $\angle ABD + \angle ACD = 90^{\circ}$. The value of $BD^2 + CD^2$ can be expressed as $\frac{a}{b}$, where a and b are relatively prime positive integers. Compute 100a + b.
- 6. Let ABCD be a rectangle inscribed in circle Γ , and let P be a point on minor arc AB of Γ . Suppose that $PA \cdot PB = 2$, $PC \cdot PD = 18$, and $PB \cdot PC = 9$. The area of rectangle ABCD can be expressed as $\frac{a\sqrt{b}}{c}$, where a and c are relatively prime positive integers and b is a squarefree positive integer. Compute 100a + 10b + c.
- 7. Point P is located inside a square ABCD of side length 10. Let O_1 , O_2 , O_3 , O_4 be the circumcenters of PAB, PBC, PCD, and PDA, respectively. Given that $PA + PB + PC + PD = 23\sqrt{2}$ and the area of $O_1O_2O_3O_4$ is 50, the second largest of the lengths O_1O_2 , O_2O_3 , O_3O_4 , O_4O_1 can be written as $\sqrt{\frac{a}{b}}$, where a and b are relatively prime positive integers. Compute 100a + b.
- 8. Let \mathcal{E} be an ellipse with foci A and B. Suppose there exists a parabola \mathcal{P} such that
 - \mathcal{P} passes through A and B,
 - the focus F of \mathcal{P} lies on \mathcal{E} ,
 - the orthocenter H of $\triangle FAB$ lies on the directrix of \mathcal{P} .

If the major and minor axes of \mathcal{E} have lengths 50 and 14, respectively, compute $AH^2 + BH^2$.

- 9. Let $A_1B_1C_1$, $A_2B_2C_2$, and $A_3B_3C_3$ be three triangles in the plane. For $1 \le i \le 3$, let D_i , E_i , and F_i be the midpoints of B_iC_i , A_iC_i , and A_iB_i , respectively. Furthermore, for $1 \le i \le 3$ let G_i be the centroid of $A_iB_iC_i$.
 - Suppose that the areas of the triangles $A_1A_2A_3$, $B_1B_2B_3$, $C_1C_2C_3$, $D_1D_2D_3$, $E_1E_2E_3$, and $F_1F_2F_3$ are 2, 3, 4, 20, 21, and 2020, respectively. Compute the largest possible area of $G_1G_2G_3$.
- 10. Suppose ω is a circle centered at O with radius 8. Let AC and BD be perpendicular chords of ω . Let P be a point inside quadrilateral ABCD such that the circumcircles of triangles ABP and CDP are tangent, and the circumcircles of triangles ADP and BCP are tangent. If $AC = 2\sqrt{61}$ and $BD = 6\sqrt{7}$, then OP can be expressed as $\sqrt{a} \sqrt{b}$ for positive integers a and b. Compute 100a + b.