Advanced Problem Solving and Search

Henrik Tscherny

14. Juli 2022

Inhaltsverzeichnis

1 1	al-Search	1
1.1	Hill-climbing	2
1.2	1	
		2
1.4	Tabu-Search	3
Ans		3
2.1	Normal Logic Program	3
Con	straint Satisfaction Problem	5
3.1	Example	6
3.2	Search strategies	6
Evo	lutionary Algorithms	7
Tree	es	7
5.1	Tree Decompositions	8
L	ocal-Search	
ocal-S	earch has basicly 4 steps:	
1. pi	ck solution from the search space	
2. ev	valuate that solution	
3. pi	ck a better solution in the neighbourhood if possible	
	1.4 Ans 2.1 Con 3.1 3.2 Evo Tree 5.1 L	Answer-Set Programming 2.1 Normal Logic Program Constraint Satisfaction Problem 3.1 Example

1.1 Hill-climbing

- start from any initial point, =a
- choose a point in the neighbourhood of a, =b
- check if value of a is better then value of b
 - if so a=b
 - else choose different point b
- if search space (N(a)) is exhausted return

iterated hill-climbing:

basic hill-climbing but you terminate after n steps, good if function is unbounded and has no min/max

1.2 Examples

GSAT

- 1. randomly assign *True* or *False* to each Variable
- 2. flip one variable assignment
 - if SAT: return
 - else: continue with 2 till MAX-FLIPS is reached
- 3. continue with 1 till MAX-TRIES is reached

1.3 Simulated Annealing/Stochastic Hill-Climbing

Improvement to Local-Search to skip over local min/max through new parameter **temperature**

- points in the neighbourhood are selected probabilisticly
- probability depends on the value difference of the current and the neighbouring point as well as the temperature
- higher temperature means less impact of the value difference \rightarrow search is more random
- formula for probability: $\frac{1}{1+e^{\frac{eval(v_c)-eval(v_n)}{T}}}$

- newly selected points can be worse then previous points (so that we can skip local optima)
- for **stochastic hill-climbing** the temperature remains constant
- for **simulated annealing** the temperature decreases over time making it more probable that new points are accepted over time
- also for **simulated annealing** new better valued points are always chosen

1.4 Tabu-Search

- Using a Memory to search new locations in the search space
- recently examined locations are ignored for a certain time period (e.g. five iterations)
- if some solution is much better then the solution before, the tabu can be overridden (aspiration criteria)
- long-term memory like frequency based memory can be used to chose steps when every next solution is worse then the solution before
 → 20 out of 40 times we went right, so let's move right again
- tabu-search moves to worse locations only if stuck in a local min/max

2 Answer-Set Programming

- declarative problem solving approach
- modeling language
- allows solving problems in NP and NP^{NP}

2.1 Normal Logic Program

```
    a<sub>0</sub> ← a<sub>1</sub>, ..., a<sub>m</sub>, not a<sub>m+1</sub>, ..., not a<sub>n</sub>
    head
    body<sup>+</sup>
    body<sup>-</sup>
    body = body<sup>+</sup> ∪ body<sup>-</sup>
```

- if $body^- = \emptyset$ its called a *positive program*
- a set of Atoms A is closed under a positive program P iff the Head and body⁺ only contains elements of A
 - \rightarrow X corresponds to a model of P
- the *smallest* set of Atoms closed under a positive program P is called $Cn(P) \rightarrow Cn(P)$ also corresponds to the smallest model of P
- Cn(P) is a stable model of P
- definitive clauses/positive rules: $a_0 \lor \land a_1 ... \lor \land a_m$ (exactly one positive atom in DNF)
- Horn clauses: clauses with at most one positive atom
 → every definite clause is a horn clause

Gelfond-Lifschitz-Reduct PX

- $P^X = \{head(r) \rightarrow body^+ \mid r \in P \text{ and } body^- \cap X = \emptyset\}$ $\rightarrow body^-$ does not contains elements of X
- a set **X** of Atoms is a *stable model* of **P**, if $Cn(P^X) = X$
 - delete each rule having *not a* in its body with $a \in X$
 - delete negative atoms *not a* from the remaining rules

Variables in Logic Programs

- let P be a logic program with rules r
- T: set of variable-free terms (Herbrand universe)
- A: set of atoms constructable from T (Herbrand base)
- $ground(r) = \{r\theta \mid \theta : var(r) \to \mathcal{T}, var(r\theta = \emptyset)\}$
- $ground(P) = \bigcup_{r \in P} ground(r) \Rightarrow ground instantiation$

Ground(P) is the Set of the facts and all the rules of P with each variable replaced by an element of \mathcal{T} , for all possible choices of elements from \mathcal{T}

Syntax

-	true	false	if	and	or	iff	default negation	classical negation
source code			:-	,			not	-
logic program			\leftarrow	,	;		not	\neg
formula	T	\perp	\rightarrow	\wedge	\vee	\leftrightarrow	\sim	\neg

default negation vs. classical negation

Complexity:

	X is a stable model of P	a is in the stable model of P
positive normal logic program	P-complete	P-complete
normal logic program	P-complete	NP-complete
normal lp w/ optimization statements	co-NP-complete	Δ_2^P -complete
positive disjunctive lp	co-NP-complete	NP^{NP} -complete
disjunctive lp	co-NP-complete	NP^{NP} -complete
disjunctive lp w/ optimization statements	co-NP ^{NP} -complete	Δ_3^P -complete
propositional theory	co-NP-complete	NP^{NP} -complete

3 Constraint Satisfaction Problem

 $\mathcal{C} = \langle X, D, C \rangle$, with:

- X... Variables
- D... Domains for each Variable a domain contains a set of allowed values for each Variable (can be finite or infinite, can be discrete or continuous)
- C... Constraints for Variable values
 a tuple \(\scope, rel \)
 scope is a tuple of constraint variables
 rel defines the possible values (can be a list or an expression etc.)
- other then in regular search in CSP its possible to cut large portions from search space at once using constraint → constraint propagation this can be done in combination with a search or as a pre-processing step
 - Each variable becomes a node
 - Each binary constraint becomes an arc
 - enforcing local consistency:

- * Node consistency: all values in the domain of a Variable satisfy the unary constraints of that Variable you can remove elements from the domain that do not satisfy the constrain
- * Arc consistency: all values from a domain for a variable satisfy the variables binary constraints. Two Variables are arc consistent if there there is a value in each Variables respective domain s.d. the binary relation is satisfied. If this hold for all variables the CSP is arc consistent
- * Path consistent:

3.1 Example

Coloring of a Map s.d. no two adjacent countries are the same color

- $X = \{Germany, Netherlands, Belgium, Luxembourg, France, Switzerland, Lichtenstein, Austria, CzechRepublic, Poland, Denmark\}$
- $D = \{Red, Green, Blue, Yellow\}$
- C = adjacent countries have different colors (may be expressed in an formal language)
- a Solution would be a color assignment for each country s.d. all constraints are satisfied

3.2 Search strategies

- Standard search formulation (incremental)
 - initial state: ∅
 - states are defined by the values assigned so far
 - step: assign a value to an unassigned variable, (as well as checking for conflicts)
 - goal: current assignment is complete
 - \Rightarrow every solution is at depth *n* with *n* Variables
 - \Rightarrow branching factor b = (n l)d at depth $l \rightarrow n!d^n$ leaves
- · Backtracking search

- variable assignments are commutative \rightarrow it doesnt matter if we assign X before Y or Y before X
- branching factor b = d with d^n leaves
- DFS for CSPs with single-variable assignment

4 Evolutionary Algorithms

- instead of modifying a existing solution we now use random variation to search for better solutions in parallel.
- based on natural selection
- each of the individuals within a population can be evaluated by a fitness function
 - → fitter individual win over less fit competitors
- surviving individuals act as seed for the next population
 → genes are passed on
- recombination and mutation allows for new and potentially fitter individuals
- after a certain time the increase in fitness stagnates

5 Trees

- Many CSPs can be solved in P-Time if the problems treewidth is small
- Solving a bounded width problem includes two steps
 - 1. generate a (hyper)tree decomposition with small width
 - 2. solve the problem based on the decomposition with dynamic programming
- *Idea*: decompose main problem into sub-problems of smaller size
- if the constraint Graph to a corresponding CSP has no loops the CSP can be solved in O(nd²) time (which is much smaller then the usual O(d²)
- constraint graph: Nodes... Variables, Arcs...Constraints

5.1 Tree Decompositions

- G = (V, E)
- tree decomposition (T, χ)

- Tree:
$$T=(I,F)$$
, I...Nodes, F...Edges
- $\chi=\{\chi_i:i\in I\}$ with:
$$*\bigcup_{i\in I}\chi_i=V$$

$$*\ \forall (v,w)\in E\exists i\in I:v\in\chi_i \text{ and }w\in\chi_i$$

$$*\ \forall i,j,k\in I:\text{ if }j\text{ is on the path from }i\text{ to }k\text{ in }T,$$
then $\chi_i\cap\chi_k\subseteq\chi_j$

- width of a tree decomposition: $\max_{i \in I} |\chi_i| 1$
- treewidth of a graph G is denoted by $\mathbf{tw}(\mathbf{G})$, its the minimum width over all possible tree decompositions of G
- finding tw(G) is **NP-hard**