Motivations

Outline

Pierre Dupont

UCL - ICTEAM

Motivations

Identification of Open Reading Frames

Your first assignment

P. Dupont (UCL)

LGBIO2010

1/39

P. Dupont (UCL)

LGBIO2010

Motivations

Practical algorithms and statistical methods

Outline

- Motivations
- Simple genome statistics
 - Change point analysis
 - Finding unexpected *k*-mers
- Identification of Open Reading Frames
 - Brief review of the underlying biology
 - ORF finding algorithm
 - Significance assessment
- Your first assignment

Objectives

- Analyze real biological data to help make sense out of it
- Use appropriate algorithms and statistical methods to go beyond what can be done "manually"
 - ▶ the vast amount of available data can lead to novel insights
 - automating things avoids wasting time on repetitive tasks
 - statistics help you to discover hidden patterns
 - machine learning help you to predict on new data from past observations

P. Dupont (UCL) **LGBIO2010** 2/39 P. Dupont (UCL) **LGBIO2010**

Challenges

Computer scientist/statistician

- avoid to apply/design algorithms blindly without considering the underlying biology
- Molecular biologist
 - avoid to consider algorithms or softwares as black boxes
 - go beyond the "click on the WEB" methodology
- Biomedical engineer
 - reconcile both worlds

P. Dupont (UCL)

LGBIO2010

5/39

P. Dupont (UCL)

Outline

Motivations

Simple genome statistics

Change point analysis

Your first assignment

• Finding unexpected *k*-mers

Identification of Open Reading Frames

LGBIO2010

Simple genome statistics

Abstracting the genome

All models are wrong, some are useful. (G.E.P. Box, British statistician)

TCTCATCAATACAACCCCCGC ACCCAGCACACACACCGCT CCATACCCCGAACCAACCAAA...

Motivations

A win-win partnership

- The final validation must come from understanding the biology and from a proper field assessment (e.g. a clinical trial)
- New algorithms need to be designed to address biological questions
- Further research in machine learning and bio-statistics is required, e.g. for personalized medicine

Example

Identify biomarkers for predicting patient response to an immuno-therapy against melanoma

Simple genome statistics

Change point analysis

Base composition

Haemophilus influenzae (NC_000907)

- First full bacterial genome ever sequenced (in 1995)
- 1,830,138 bp

Α	С	G	T
567623	350723	347436	564241

Well...

 $567623 + 350723 + 347436 + 564241 = 1830023 \neq 1830138$

P. Dupont (UCL)

LGBIO2010

9/39

Simple genome statistics

Change point analysis

Base composition

Haemophilus influenzae (NC₋000907)

- First full bacterial genome ever sequenced (in 1995)
- 1,830,138 bp

Α	C	G	Τ							
567623	350723	347436	564241	14	11	46	10	12	11	11

K = G or T

M = A or C

N = any base

R = A or G

S = G or C

W = A or T

Y = C or T

Relative base frequencies

P. Dupont (UCL) LGBIO2010 11 / 39

Simple genome statistics

Change point analysis

GC-content

Haemophilus influenzae (window=90,000 bp)

P. Dupont (UCL) LGBIO2010 10 / 39 P. Dupont (UCL) LGBIO2010 12 / 39

A closer look at GC-content

This anomaly is attributed to an ancient insertion of viral DNA

P. Dupont (UCL) LGBIO2010 13 / 39

Simple genome statistics

Change point analysis

Bacteriophage lambda GC-content

- Enterobacteria phage lambda: a virus that infects bacteria
- First half is GC-rich, second half is AT-rich
- AT-rich regions denature at lower temperatures
- It is believed that the ability to quickly denature DNA facilitates the insertion in the bacterial cell being infected

Dimer frequencies

Haemophilus influenzae

Α	С	G	Т
31.02%	19.16%	18.98%	30.83%

	*A	*C	*G	*T
	0.1202	0.0505	0.0483	0.0912
C*	0.0665	0.0372	0.0396	0.0484
G*	0.0514	0.0522	0.0363	0.0499
T*	0.0721	0.0518	0.0656	0.1189

- Equally likely dimers would appear $\frac{1}{16} = 0.0625$ of the time
- AA and TT look particularly frequent
- CC, CG and GG look particularly rare

P. Dupont (UCL) LGBIO2010 15 / 39

Simple genome statistics

Finding unexpected k-mers

Are those statistical biases informative?

Α	С	G	T
31.02%	19.16%	18.98%	30.83%

	*A	*C	*G	*T
Α*	0.1202	0.0505	0.0483	0.0912
C*	0.0665	0.0372	0.0396	0.0484
G*	0.0514	0.0522	0.0363	0.0499
T*	0.0721	0.0518	0.0656	0.1189

- AA and TT look particularly frequent but A and T alone are also the most frequent
- what would be the expected frequency of dimers observed by chance?
 - need for a background model to characterize the non-uniform distribution of individual nucleotides

P. Dupont (UCL) LGBIO2010 14 / 39 P. Dupont (UCL) LGBIO2010 16 /

Multinomial background model

- Estimate the probability of each nucleotide independently $\hat{P}(A) = f(A) = \frac{\text{number of A's}}{\text{sequence length}} = 0.3102$
- Use those estimates in a random generative model AAGTTGACATAATTTGCT...
- The expected frequency of a dimer XY:

$$E[f(XY)] = \hat{P}(X)\hat{P}(Y) = f(X)f(Y)$$

P. Dupont (UCL)

LGBIO2010

17 / 39

Simple genome statistics

Finding unexpected k-mers

Odd ratios

Ratio between observed frequency and expected frequency

$$\frac{f(XY)}{E[f(XY)]} = \frac{f(XY)}{f(X)f(Y)}$$

	*A	*C	*G	*T
	1.2490	0.8495	0.8209	0.9533
C*	1.1180	1.0119	1.0892	0.8189
G*	0.8735	1.4348	1.0074	0.8525
T*	0.7540	0.8762	1.1202	1.2504

- The most over-represented dimer is GC (\neq G+C-content !)
- CC, CG and GG are not particularly rare
- The rarity of TA is quite universal
- A statistical test could tell us whether we depart significantly from 1.0

Multinomial model = random permutation

- the expected frequency E[f(XY)] = f(X)f(Y) with a multinomial model can be replaced by the observed frequency $f_{random}(XY)$ in a random sequence generated from this model
- equivalent to a random permutation of the original sequence

Original

TATGGCAATTAAAAT

Permuted

CAAGATTGATAATAT

P. Dupont (UCL)

LGBIO2010

19 / 3

Simple genome statistic

Finding unexpected k-mers

Odd ratios generalized to *k*-mers

Ratio between observed frequency and expected frequency

$$\frac{f(X_1 \dots X_k)}{E[f(X_1 \dots X_k)]} = \frac{f(X_1 \dots X_k)}{\prod_{i=1}^k f(X_i)}$$

- Useful when looking for frequent patterns of k consecutive characters
- Two most frequent 10-mers in Haemophilus influenzae:
 AAAGTGCGGT and ACCGCACTTT occur more than 500 times

 Are those 10-mers informative? Addressing this question requires:
 - ▶ a more sophisticated background model (e.g. permutation respecting codon structure or a set of "reference" sequences)
 - a statistical test to assess significance
 - biological validation

P. Dupont (UCL) LGBIO2010 18 / 39 P. Dupont (UCL) LGBIO2010

Outline

- Motivations
- Simple genome statistics
- Identification of Open Reading Frames
 - Brief review of the underlying biology
 - ORF finding algorithm
 - Significance assessment
- 4 Your first assignment

P. Dupont (UCL) LGBIO2010 21 / 39

Identification of Open Reading Frames

Brief review of the underlying biology

Eukaryotes versus prokaryotes

Open reading frames

Illustration from Molecular Biology of the Cell (© Garland Science 2008)

P. Dupont (UCL) LGBIO2010 23 / 39

Identification of Open Reading Frames

Brief review of the underlying biology

Standard genetic code

RNA alphabet

First position (5' end)	Second position			Third position (3' end)	
	U	С	Α	G	
	Phe	Ser	Tyr	Cys	U
U	Phe	Ser	Tyr	Cys	C
	Leu	Ser	Stop	Stop	A
	Leu	Ser	Stop	Trp	G
	Leu	Pro	His	Arg	U
C	Leu	Pro	His	Arg	C
	Leu	Pro	Gln	Arg	A
	Leu	Pro	Gln	Arg	G
	Ile	Thr	Asn	Ser	U
Α	Ile	Thr	Asn	Ser	C
	Ile	Thr	Lys	Arg	Α
	Met	Thr	Lys	Arg	G
	Val	Ala	Asp	Gly	U
G	Val	Ala	Asp	Gly	C
	Val	Ala	Glu	Gly	Α
	Val	Ala	Glu	Gly	G

Illustrations from Molecular Biology of the Cell (© Garland Science 2008)

Mitochondria

Brief review of the underlying biology

Illustration from Molecular Cell Biology, 5e (@ WHFreeman 2004).

- Mitochondria include their own DNA
- The protein synthesis process is similar to the one of prokaryotes
- Some pecularities in the genetic code (hence not fully standard!)

P. Dupont (UCL) LGBIO2010

Identification of Open Reading Frames

ORF finding algorithm

The basic algorithm

ORF finding

repeat along the sequence

- look for a first START (or the next START after a STOP on the same frame)
- 2 look for the next STOP on the same reading frame
- Consider each reading frame:
 - 3 on the forward strand
 - 3 on its reverse complement (the same problem, not the same solution!)
- After a START, you may find other codons for Met before a STOP
 - those are not true start
 - ► An ORF is a longest strech of DNA between a START and a STOP, without being interrupted by another STOP on the same frame

Is an ORF actually a coding gene?

- The DNA stretch found between a START and a STOP codon might be due to chance
- 2 The ORF might be there but the gene not expressed
 - ▶ a trace of the past (or future) evolution
 - we are ignoring all regulations at the transcription/translation levels
- Some gene sequences do not strictly follow the standard ORF structure
 - we are ignoring some rare exceptions in the genetic code (*e.g.* some fragment of stop codon may play the role of full STOP)
- We address question 1 through a statistical test procedure
- We leave questions 2,3 for a careful biological validation

P. Dupont (UCL) LGBIO2010 27/3

Identification of Open Reading Frames

Significance assessment

A concrete example

- Suppose you want to assess the efficiency of a new pain-killing drug versus the current best alternative
- You consider a representative sample of patients receiving drug 1 (the new drug) and another sample receiving drug 2 (the control)
- You assess how many minutes it takes for each patient suffering from a headache to feel better after taking either drug

Sample 1	Sample 2
2	7
3	8
6	5
5	6
1	7

 You want to know whether there is any significant difference of efficiency between both drugs

P. Dupont (UCL) LGBIO2010 26 / 39 P. Dupont (UCL) LGBIO2010 28 / 39

25/39

Simplifying assumptions

Caution

We deliberately ignored many important related questions

- what is a representative sample, how big should it be and how to collect it?
- can feeling better be accurately casted into a yes/no answer?
- is the number of minutes before relief a relevant criterion and can it be accurately evaluated?
- cost?
- side-effects?
- existing patents?
- competitors?
- regulations?
- . . .

P. Dupont (UCL)

LGBIO2010

29 / 39

Identification of Open Reading Frames

Significance assessment

Reformulate the question

- Compute the sample means m_1 , m_2 and sample variance s_1^2 , s_2^2
- Check whether the difference between both means is significant or else should be attributed to randomness in our respective samples

Sample 1	Sample 2
2	7
3	8
6	5
5	6
1	7
$m_1 = 3.4$	$m_2 = 6.6$
$s_1^2 = 4.3$	$s_2^2 = 1.3$
$n_1 = 5$	$n_2 = 5$

Statistical test

- Null hypothesis: H_0 : $\mu_2 = \mu_1$
- Alternative hypothesis: $H_a: \mu_2 \neq \mu_1$
- Test statistics :

$$T = m_2 - m_1 = \hat{\mu}_2 - \hat{\mu}_1$$

 It is known that T approximately follows a Student t distribution

$$T = \frac{(\hat{\mu}_2 - \hat{\mu}_1) - (\mu_2 - \mu_1)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

• Fix a significance threshold α (e.g. 5%)

$$T = \frac{(6.6-3.4)-(0)}{\sqrt{\frac{4.3}{5}+\frac{1.3}{5}}} = 3.0237 > t_{0.975} = 2.43 \Rightarrow \text{reject } H_0$$

⇒ claim the drugs are not equally effective

P. Dupont (UCL)

LGBIO2010

31 / 39

Identification of Open Reading Frames

Significance assessment

p-value of a test

Instead of fixing *a priori* a significance threshold $\alpha = 5\%$, one can report the p-value of the test

- p-value = the smallest α that would lead to reject the test
- here $T = 3.0237 \Rightarrow \text{p-value} = 0.02229$
 - the true means could still be equal (= the drugs could still be equally effective), but the probability of our conclusion to be wrong is 2.2%
- the lower the more significant the result

- a p-value of max 5% (or 1%) is still often considered for the test to be deemed (highly) significant
- we will revisit this question when discussing multiple testing

P. Dupont (UCL) LGBIO2010 30 / 39 P. Dupont (UCL) LGBIO2010 32 / 39

Assessing the statistical significance of ORFs

Hypothesis

- Significant ORFs in an actual sequence should be longer than ORFs observed by chance
- The NULL model (= control) is typically made of a random permutation of the original sequence

Algorithm

- Find all ORFs in a random permutation of the original sequence
- Report the length distribution of random ORFs
- Accept as significant ORFs, any ORF in the original sequence longer than a prescribed threshold
 - ▶ the maximal ORF length observed at random
 - the 99% percentile of the random ORF length distribution ⇒ permutation test with a p-value = 1%

P. Dupont (UCL) LGBIO2010

33 / 39

Identification of Open Reading Frames

Significance assessment

ORF finding in *H influenzae*

- Maximum random ORF length = $528 \Rightarrow 1252$ actual ORFs are longer 99% percentile = $204 \Rightarrow 2219$ actual ORFs are longer
- 1765 genes are annotated (on NCBI), including some pseudo-genes or hypothetical protein coding

Statistical note

Parametric two-tailed t-test

Non-parametric one-tailed permutation test

P. Dupont (UCL) LGBIO2010 35 / 35

Your first assignment

Outline

- Motivations
- Simple genome statistics
- Identification of Open Reading Frames
- 4 Your first assignment

P. Dupont (UCL) LGBIO2010 34/39 P. Dupont (UCL) LGBIO2010 36/39

Your first assignment

- Register as a group of 2 students on Moodle
 - suggestion: make groups of mixed background and work together
- 2 Download the latest version of the assignment handout and read it today!
- Get your hands on real biological data and real software
 - you might have to program a bit (at least some scripting)
- On not wait the last minute! Submit your report in due time

P. Dupont (UCL) LGBIO2010 37 / 39

Your first assignment

Get help on learning R if needed

Or use any other public software by yourself

- Check Mini-project 1 : Sequence statistics on Moodle
 - watch a short R tutorial video
 - Check a brief introduction to R and go through it step by step
 - ▶ If you do know R, check at least section 4 of this brief introduction
 - ► Attend to a tutorial session in the SIEMENS computer room in the Reaumur building on March 07 at 10:45am
 - Make sure R is installed on your own laptop or use some INGI computer
 - ► Get help from vincent.branders@uclouvain.be
- Check the first assignment handout and submit the result on Moodle in due time

Enjoy team work

P. Dupont (UCL) LGBIO2010 39 /

P. Dupont (UCL) LGBIO2010 38 / 39