课程代号: PHY17016

北京理工大学 2012-2013 学年第二学期

大学物理I期末试题A卷

2013年6月19日 14:00-16:00

班级	任课教师			学号		姓名		
填空题	选择题	计算1	计算 2	计算3	计算 4	计算 5	总	分
	常量 R = 8.					1.38×10^{-2} $= 6.37 \times 10^{-2}$		
	题(共 40 分 一质点质量					SI),则质,	占法制的	(4 5 4 3 ≥ →
						517 , 火小灰 /		
	カ <i>Ī</i> =						, ~,	
再转 60 转	后角速度対	$b_1 \omega_2 = 30\pi$	rad /s,则			的角速度为 		
3. (4分) 平轴在竖直 为 <i>m</i> ,长度	直平面内从 夏为 <i>L</i> 。细相	可分布的细 水平位置 3 棒从水平位	棒 OA 绕过 开始自由转 五置开始转	动。细棒的动动的角质	的质量 加速度	0	m, L	A
是; 当细棒转动到竖直位置时, 角速度是。								
4.(4分)	2g 氢气与 2	2g 氦气分别	别装在两个	容积相同	的封闭容器	器内,温度	相同(氢	气分子
视为刚性双原子分子)。那么,氢分子与氦分子的平均平动动能之比为; 氢气与氦气压强之比为。								
氢气与氦气	(压强之比)	为	;	氢气与氦	气内能之	比为	**************************************	°

二、选择题(每题3分,共15分,请将答案写在卷面指定的方括号内):

- 1. 对质点系统有以下几种说法:
 - (1) 质点系统总动量的改变与内力无关。
 - (2) 质点系统总动能的改变与内力无关。
- (3) 质点系统机械能的改变与保守内力无关。 在上述说法中:
 - (A) 只有(1)是正确的。
- (B) (2)、(3)是正确的。
- (C) (1)、(2)是正确的。
- (D) (1)、(3)是正确的。

2. 如图所示,一水平刚性轻杆,质量不计,杆长l=20 cm, 其上穿有两个小球. 初始时, 两小球相对杆中心 O 对称放置, 与O的距离d=5cm,二者之间用细线拉紧,现在让细杆绕 通过中心O的竖直固定轴作匀角速的转动,转速为 ω_0 ,再烧 断细线让两球向杆的两端滑动,不考虑转轴的和空气的摩 擦, 当两球都滑至杆端时, 杆的角速度为

- (A) $2\omega_0$

- (C) $\frac{1}{2}\omega_0$ (D) $\frac{1}{4}\omega_0$

3. 一个质点作简谐振动,振幅为 A,在起始时刻质点的位移为 A/2,且向 x 轴的正方向 运动, 代表此简谐振动的旋转矢量图为

- 4. 当机械波在媒质中传播时,一媒质质元的最大变形量发生在
 - (A) 媒质质元离开其平衡位置最大位移处。
 - (B) 媒质质元离开其平衡位置($\sqrt{2}A/2$) 处(A 是振动振幅)。
 - (C) 媒质质元在其平衡位置处。
 - (D) 媒质质元离开其平衡位置 A/2 处(A 是振动振幅)。

Γ 7

- 5. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是
 - (A) 使屏靠近双缝。
 - (B) 使两缝的间距变小。
 - (C) 把两个缝的宽度稍微调窄。
 - (D) 改用波长较小的单色光源。

ſ

三、计算题(共45分):

1.(10 分)一质量均匀分布的圆盘,质量为 M,半径为 R,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为 μ),圆盘可绕通过其中心 O 的竖直固定光滑轴转动. 开始时,圆盘静止,一质量为 m 的子弹以水平速度 v_0 垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求

- (1) 子弹击中圆盘后,盘所获得的角速度。
- (2) 粗糙水平面对圆盘的摩擦阻力矩(忽略子弹重力造成的摩擦阻力矩)。
- (3) 经过多少时间后,圆盘停止转动。
- 2. (10 分)理想气体热机经历如图所示热循环,其中 bc 和 da 为绝热过程。已知 T_c = 300K, T_b = 400K,求热机的效率。

- 3. $(10 \, \text{分})$ (1) 折射率为 1.50 的两平板玻璃之间形成一个 $\theta = 10^{-1}$ rad 的空气劈尖,若用 $\lambda = 600$ nm 的单色光垂直照射,求第 15 条明纹到劈尖棱边的距离。
- (2) 波长 λ = 589nm 的平行光垂直照射到宽度 a = 0.40mm 的单缝上,缝后放一焦距 f = 1.0m 的凸透镜,在透镜焦平面处的屏上形成衍射条纹。求第一级明纹到中央明纹中心的距离。
- 4. (10 分) 波长 λ = 600nm (1nm = 10^{-9} m) 的单色光垂直入射到一光栅上,测得第 4 级主极大的衍射角为 30°,且第 3 级是缺级。
- (1) 光栅常数(a+b)等于多少?
- (2) 透光缝可能的最小宽度 a 等于多少?
- (3) 在选定了上述(a+b)和 a 之后,在衍射角 $-90^{\circ} < \varphi < 90^{\circ}$ 范围内可能观察到的全部 主极大的级次.
- 5. (5分)图为氢气和氧气在常温下的麦克斯韦速率分布曲线,根据图中数据以及相关的力学、热学原理,分析为什么地球大气主要包含氮气和氧气,而宇宙中最常见的氢气和氦气在地球大气中的含量却很少。

北京理工大学 2012-2013 学年第二学期

大学物理I期末试题A卷答案

一、填空题(共40分):

1.
$$(4分) 4x^2 + 9y = 0$$
 $(1分)$; $\vec{v} = 3\vec{i} - 8t\vec{j}$ $(1分)$, $\vec{L} = -12t^2\vec{k}$ $(2分)$

3. (4分)
$$\frac{3g}{2L}$$
, $\sqrt{\frac{3g}{L}}$ (各2分)

7.
$$(4 分)$$
 $y = A\cos\left[2\pi\left(t - \frac{x}{u}\right) - \frac{\pi}{2}\right]$, $y = A\cos\left[2\pi\left(t + \frac{x}{u}\right) - \frac{\pi}{2}\right]$ (各 2 分)

8. (3 分)
$$\int_0^c Nf(v) dv$$
, $\int_0^c vf(v) dv / \int_0^c f(v) dv$, $\int_0^c f(v) dv$ (各 1 分)

二、选择题(每题3分,共15分):

三、计算题

- 1. (1) $mv_0/(1/2M+m)R$ (2) (2/3) μMgR (3) $3mv_0/(2\mu Mg)$
- 2 25%
- 3. (1) 4.35×10^{-2} m (2) 2.21×10^{-3} m
- 4. (1) 4800nm (2) 1600nm (3) k=0, \pm 1, \pm 2, \pm 4, \pm 5, \pm 7 级明纹