Local Similarity Searches with Fasta

- Fasta is a popular tool for comparing biological sequences.
- It was introduced in [Lipman and Pearson, 1985] and is further described in [Pearson, 1990].
- First consider the problem the Fasta-program was designed for: Let w
 be a query sequence (e.g. a novel DNA-sequence or an unknown
 protein).
- Let S be a set of sequences (the database), illustrated as follows:

sequence database S e.g. UniProtKB/TrEMBL Release 2020_06 (2020-12-02) 209 157 139 sequence entries, 71 325 856 333 amino acids

>query sequence w
MPMILGYWNVRGLTHPIRML

- The problem is to find all sequences in S, which have local similarities with w and to display these similarities in form of alignments and their positions within the sequences, see Figure 1 for an example.

Figure 1: Sample output of the program ssearch36 (which implements the Smith-Waterman using SIMD-acceleration), when comparing a single protein sequence mGSTM1 against a database of 13 143 protein sequences.

```
# ../bin/ssearch36 -q -w 80 ../seq/mgstm1.aa proteindatabase.fasta
1>>>mGSTM1 mouse glutathione transferase M1 - 218 aa
Library: PIR1 Annotated (rel. 66) 5121825 residues in 13143 sequences
Algorithm: Smith-Waterman (SSE2, Michael Farrar 2006) (7.2 Nov 2010)
Parameters: BL50 matrix (15:-5), open/ext: -10/-2
The best scores are:
                                                                    s-w bits E(13143)
sp|P14942|GSTA4_RAT Glutathione S-transferase alpha-4; GST 8-8 (222) 179 49.9 6.1e-07
... (alignments deleted) ...
>>sp|P14942|GSTA4_RAT Glutathione S-transferase alpha-4; GST 8-8;
                                                                             (222 aa)
Smith-Waterman score: 179; 25.6% identity (54.5% similar) in 75 aa overlap
                                    30
                                              40
        MPMILGYWNVRGLTHPIRMLLEYTDSSYDEKRYTMGDAPDFDRSOWLNEKF-KLG-LDFPNLPYL-IDGSHKITOSNA
mGSTM
            : :.. :: . :: :: . ..:
                                               .: ... ::. : : : ... . :::
sp|P14 MEVKPKLYYFQGRGRMESIRWLLATAGVEFEE-----EFLETREQYEKLQKDGCLLFGQVPLVEIDG-MLLTQTRA
                                  30
                                                     40
                                                               50
                                                                                    70
... (alignments deleted) ...
218 residues in 1 query sequences
Total Scan time: 3.820 Total Display time: 0.130
```

Local Similarity Searches with Fasta

- Applying the Smith-Waterman Algorithm to w and each sequence from S is too slow.
- The idea is to quickly eliminate many sequences from S, which likely do not contain any interesting local alignments.
- The remaining (hopefully few) sequences can be processed by expensive DP-based methods like the SW-Algorithm.
- Such a filtering approach requires a similarity criterion and thresholds referring to the database sequences and the query sequence.
- The criterion must satisfy at least these three conditions:
- 1 One must be able to quickly determine the database sequences satisfying/not satisfying the criterion.
- 2 The number of sequences satisfying the criterion must be very small compared to the entire sequence database
- 3 The sequences not satisfying the criterion do not have high local similarities to the query sequence.

- Fasta provides such a filtering approach which is described here.
- There is no formally well-defined model of what Fasta computes, but a heuristic stepwise method defined next.
- Consider an arbitrary but fixed $u \in S$.
- Let q be a fixed constant.
- One chooses q = 6 for DNA and q = 2 for Proteins.
- The idea is to count for each diagonal the number of common q-grams in u and w.
- In the context of Fasta these are called "hot-spots", see Figure 2 for an illustration.
- The number of hot spots on each diagonal gives a score, according to the definition following the figure.

Figure 2: Hot spots between the query sequence w and the database sequence u, as considered by the Fasta-Algorithm. Each Hot spot represents a q-gram occurring in u and w.

Definition 1

Let m = |u| and n = |w|. For $d, -m \le d \le n$ let

$$hotsp(u,w,d) = |\{(i,j) \mid \underbrace{1 \leq i \leq m-q+1, 1 \leq j \leq n-q+1}_{\text{startpos in } u}, \underbrace{j \leq n-q+1, j-i=d}_{\text{diag}}, \underbrace{u[i\ldots i+q-1] = w[j\ldots j+q-1]}_{\text{matching } q\text{-grams}} \}|$$

So hotsp(u, w, d) is the number of matching q-grams in u and w whose start position pair (i, j) is on diagonal d. We are interested in the maximum hotsp-value for all diagonals.

Definition 2

The Fasta score is defined by $score_{fasta}(u, w) = \max\{hotsp(u, w, d) \mid -m \le d \le n\}. \square$

Example 1

Let q = 2, u = FREIZEIT and w = ZEITGEIST. In the table on the right, matching characters are represented by diagonal arcs. Diagonals and their numbers are shown in grey. We have

hotsp(u, w, -4) = 3, hotsp(u, w, -1) = 1, hotsp(u, w, 0) = 1, hotsp(u, w, 3) = 1 and hotsp(u, w, d) = 0 for $d \notin \{-4, -1, 0, 3\}$

- Note that only the q-grams on the same diagonal are counted.
- That is, if

$$u[i \dots i + q - 1] = w[j \dots j + q - 1]$$
 and $u[i' \dots i' + q - 1] = w[j' \dots j' + q - 1]$

are on the same diagonal d, we have j-i=d=j'-i' which implies j-i=j'-i' and therefore i'-i=j'-j, i.e. the start positions of the matching q-grams have the same distance in both u and w, see the following illustration:

Finding hot spots

- The fact that the order of the q-grams is relevant is the main difference to the q-gram distance model, where the order of the q-grams is not important.
- A crucial step of the Fasta-Algorithm is to first preprocess the query sequence w.
- This preprocessing step (which is independent of the database sequences) gathers information which allows us to efficiently determine the matching q-grams and thus the hotsp-values.
- Preprocessing makes sense, as we have to process w many times, namely for each database sequence.
- So the additional effort of the preprocessing likely pays off.
- Algorithm 1 provides details on how $score_{fasta}(u, w)$ is computed.

Algorithm 1 (Computing $score_{fasta}(u, w)$)

- 1 Encode each q-gram as an integer c, $0 \le c \le r^q 1$, where $r = |\mathcal{A}|$. The details of this encoding are described in the section on the q-gram distance.
- 2 The query sequence w is preprocessed into a table h_w such that for each c, $0 \le c \le r^q 1$ we have

$$h_w(c) = \{i \mid \underbrace{1 \leq i \leq |w| - q + 1}_{\text{start pos of } q\text{-gram in } w}, c = \underbrace{w[i \dots i + q - 1]}_{\text{code of } q\text{-gram}}\}$$

That is, $h_w(c)$ holds the positions in w where the q-grams with integer code c occurs.

3 In the final phase, the database is processed as follows:

Algorithm 1 (Computing $score_{fasta}(u, w)$)

```
1: n \leftarrow |w|
 2: for all u \in S do
    m \leftarrow |u|
 3:
    for d \leftarrow -m upto n do
 4:
             hotsp(u, w, d) \leftarrow 0
 5:
      end for
 6:
        for j \leftarrow 1 upto m - q + 1 do
 7:
             c \leftarrow u[i \dots i + q - 1]
 8.
             for all i \in h_w(c) do
 9:
                  hotsp(u, w, j - i) \leftarrow hotsp(u, w, j - i) + 1
10:
             end for
11:
        end for
12:
        score_{fasta}(u, w) \leftarrow \max\{hotsp(u, w, d) \mid -m < d < n\}
13:
14: end for
```

- The preprocessing of w into table h_w can be done by scanning w twice: In the first scan, for each c, $0 \le c \le r^q 1$, the size of $h_w(c)$ is determined.
- This is the same as computing the q-gram profile of w and takes $O(n+r^q)$ time, as we have seen in the section on the q-gram distance.
- Then one determines for each c, $0 \le c \le r^q 1$, the partial sums $P(c) = \sum_{c' < c} |h_w(c')|$ in $O(r^q)$ time.
- Let H be an array of size n q + 1.
- In a second scan over w one inserts in H the positions in w where a q-gram starts as follows:
- 1: for $i \leftarrow 1$ upto n q + 1 do

2:
$$c \leftarrow w[i \dots i + q - 1]$$

 $\triangleright O(1)$ time

- 3: $H[P(c)] \leftarrow i$
- 4: $P(c) \leftarrow P(c) + 1$
- 5: end for

- Thus the preprocessing takes $O(n+r^q)$ time.
- H contains the start positions of all q-grams in w lexicographically ordered by the q-grams (i.e. their integer codes).
- For any c, $0 \le c \le r^q 1$, the subarray $H[\ell \dots P(c) 1]$ stores the elements in $h_w(c)$ where $\ell = \text{if } c = 0$ then 0 else P(c 1).
- So all elements in $h_w(c)$ can be enumerated in $O(|h_w(c)|)$ time.

Example 2

Let $\mathcal{A}=\{\mathtt{a},\mathtt{c}\}$, q=2 and w= aaaccacacacaca. So n=|w|=15. In the first step, a scan over w delivers the q-gram profile for w, see the first three columns in the following table.

<i>q</i> -gram	code <i>c</i>	$ h_w(c) $	P(c)
aa	0	3	0
ac	1	5	3
ca	2	5	8
СС	3	1	13

13/37

Example 2

From this the partial sums are computed, see column 4. The array H to insert the start positions of the q-grams into is of length

$$n-q+1 = 15-2+1 = 14 = 13+1 = P(3) + |h_w(3)|$$

= $P(r^q - 1) + |h_w(r^q - 1)|$

We again scan w from left to right. The following illustration shows how table P (left side, indexed by q-grams instead of integer codes) and table H (right side) are updated while w is scanned from left to right.

aa	ac	ca	СС
0	3	8	13

0	1	2	3	4	5	6	7	8	9	10	11	12	13

 a a
 a c c a c a c a c a a c a

 aa
 ac
 ca
 cc
 0
 1
 2
 3

aa	ac	ca	СС
1	3	8	13

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
ĺ	1													

 a a a c a a c a c a a c a a c a

 aa a c a c a

_				
	aa	ac	ca	СС
	2	3	8	13

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
I	1	2												

a a [a c] c a c a c a c a a c a

	_	_	
aa	ac	ca	CC
2	4	8	13

0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	2		3										

a a a c c a c a c a c a c a

aa	ac	ca	СС
2	4	8	14

0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	2		3										4

a a a c c a c a c a c a

aa	ac	ca	СС
2	4	9	14

0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	2		3					5					4

aa	ac	ca	СС
2	5	9	14

0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	2		3	6				5					4

a a a c c a c a c a a c a aa ac ca СС 2 5 14

10

0	1	2	3	4	5	6	7	8	9	10	11	12	13
•	_			•					•		1		
1	2		3	6				5	7				4
_	-	l			l		l			l .			

 a a a c c a c
 a c
 a c a a c a

 aa ac
 ca cc
 0 1 2 3

 2 6 10 14 1 2 3

aa	ac	ca	СС
2	6	10	14

_														
	0	1	2	3	4	5	6	7	8	9	10	11	12	13
	1	2		3	6	8			5	7				4

 a a a c c a c a c a
 c a c a c a

 aa ac ca cc
 0 1 2 3

aa	ac	ca	СС
2	6	11	14

0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	2		3	6	8			5	7	9			4

aa	ac	ca	СС
2	7	11	14

0	1	2	3	4	5	6	7	8	9	10	11	12	13
1	2		3	6	8	10		5	7	9			4

a a a c c a c a c a c a

aa	ac	ca	СС
2	7	12	14

•				_										
	0	1	2	3	4	5	6	7	8	9	10	11	12	13
	1	2		3	6	8	10		5	7	9	11		4

a a a c c a c a c a c a a c a

aa	ac	ca	СС
3	7	12	14

		_									
	1										13
1	2	12	3	6	8	10	5	7	9	11	4

a a a c c a c a c a c a a c

aa	ac	ca	СС		
3	8	12	14		

		_										
	1											13
1	2	12	3	6	8	10	13	5	7	9	11	4

	a a a c c a c a c a a c a																		
	aa	ac	ca	СС		0	1	2	3	4	5	6	7	8	9	10	11	12	13
Ī	3	8	13	14		1	2	12	3	6	8	10	13	5	7	9	11	14	4

From the final values in table P we can, for each integer code c, deduce the range in H where the elements in $h_w(c)$ are stored:

<i>q</i> -gram	code <i>c</i>	$h_w(c)$	subarray of H representing $h_w(c)$
aa	0	{1, 2, 12}	$H[0,\ldots,2]$
ac	1	{3, 6, 8, 10, 13}	$H[3,\ldots,7]$
ca	2	{5,7,9,11,14}	$H[8,\ldots,12]$
сс	3	{13}	$H[13,\ldots,13]$

Finding hot spots

- The total number of start positions in $h_w(c)$ enumerated in line 9 of Algorithm 1, is the same as the number of common q-grams in u and w, which is $\sum_{d=-m}^{n} hotsp(u,w,d)$.
- Thus the running time of Algorithm 1 is clearly

$$O(r^q + m + n + \sum_{d=-m}^{n} hotsp(u, w, d))$$
 for one database sequence u .

- That is, the more common q-grams sequences w and u contain, the more time the algorithm requires.
- So the algorithm does not waste time on database sequences, which are filtered out, as they have a too small fasta-score.

30/37

Combining hot spots to diagonal runs

- If the Fasta-score for some database sequence w is smaller than some minimum threshold, then it is discarded.
- Otherwise, w is processed further by looking for diagonal runs in the Edit-distance-matrix (without computing the matrix, of course).
- Diagonal runs are hot spots appearing on the same diagonal, with small gaps in between, see Figure 3 for an illustration.
- To score diagonal runs, one assigns positive weights to the hot spots and negative penalties to gaps.
- Note that not necessarily all hot spots on the same diagonal are put into a single diagonal run.
- Instead, a diagonal can contain more than one diagonal run.

Figure 3: Diagonal runs in the fasta algorithm

Constructing a directed graph from diagonal runs

- In the next step, a directed graph is constructed.
- The nodes of the graph are the diagonal runs from the previous step with corresponding weights assigned.
- Let us denote a diagonal run r by the upper left corner $(\ell_1(r), \ell_2(r))$ and the lower right corner $(h_1(r), h_2(r))$.
- The nodes for diagonal runs r and r' are connected if $h_1(r) < \ell_1(r')$ and $h_2(r) < \ell_2(r')$, see Figure 4 for an illustration.
- The edges get a negative weight.
- The graph is obviously acyclic and therefore we can efficiently compute a path of maximal total weight.
- In the lecture 'Genome Informatics' we will have a closer look at how these paths are efficiently computed.

Figure 4: Diagonal runs (in the boxes) are connected by edges with negative weight.

Constructing a directed graph from diagonal runs

- Suppose that all paths of maximal weight are computed.
- From each path we pick the first and the last node.
- The upper left corner of the first node and the lower right corner of the last node define a pair of substrings of w and u.
- These are aligned using standard global alignment algorithms, see Figure 5 for illustration.
- If the score of the optimal global alignment achieves some minimum threshold, then it is reported as a local alignment of the sequence pair in which it appears.

Figure 5: Optimal paths consisting of diagonal runs define a pair of substrings of w and u.

Lipman, D. and Pearson, W. (1985).

Rapid and Sensitive Protein Similarity Search.

Science, 227:1435-1441.

Rapid and Sensitive Sequence Comparison with FASTP and FASTA. In Doolittle, R., editor, *Methods in Enzymology*, volume 183, pages 63–98. Academic Press, San Diego, CA.