Computational Modeling in Python: Distributional **Semantic Models**

Plan for today

- 1. Computational Modelling: what is it, and why should we care?
- Our case study for today: Learning Words from Context
- 3. Representing word meaning from context:

Distributional Semantic Models

4. Practical: let's implement the model!

Raquel G. Alhama
Tilburg University

Andrew Jessop University of Liverpool

Getting set up

1. Install the <u>Anaconda</u> distribution of Python

2. Download the <u>tutorial materials</u> from GitHub

3. Open the Jupyter Notebook called EMLAR2021.ipynb

What is a model?

• A model is a **formal** and **simplified** representation of some aspect of reality

What is a model?

• A model is a **formal** and **simplified** representation of some aspect of reality

Reality

What is a model?

• A model is a **formal** and **simplified** representation of some aspect of reality

Reality

Simplification

What is a computational model?

• A model that can be described in a programming language as a sequence of steps that transform an input *x* into an output *y*.

EMLAR 2021

- Formalization of a theory
 - Eliminate vagueness of verbal descriptions

- Formalization of a theory
 - Eliminate vagueness of verbal descriptions
- Prediction of unseen cases

EMLAR 2021

- Formalization of a theory
 - Eliminate vagueness of verbal descriptions
- Prediction of unseen cases
- Explore causal explanations and build new theories

EMLAR 2021

- Formalization of a theory
 - Eliminate vagueness of verbal descriptions
- Prediction of unseen cases
- Explore causal explanations and build new theories
- Automatization: we can apply (multiple) models to large amounts of data

EMLAR 2021

• 1000s of different architectures available

- 1000s of different architectures available
- Most models are designed to answer specific questions
 - How do children segment words? How do people represent semantics?

- 1000s of different architectures available
- Most models are designed to answer specific questions
 - How do children segment words? How do people represent semantics?
- But some are unified theories of cognition (e.g., Soar, ACT-R)

- 1000s of different architectures available
- Most models are designed to answer specific questions
 - How do children segment words? How do people represent semantics?
- But some are unified theories of cognition (e.g., Soar, ACT-R)
- There are some common ways of classifying cognitive models
 - o Connectionist (Neural, Deep Learning, PDP), Symbolic, Bayesian, Quantum

 Often there are multiple ways to model the same behaviour or cognitive processes

- Often there are multiple ways to model the same behaviour or cognitive processes
- But this is not necessarily a problem

- Often there are multiple ways to model the same behaviour or cognitive processes
- But this is not necessarily a problem
- It is often a good thing! Creates opportunities for comparing different theories

- Models can target different levels of abstraction (Marr, 1982)
 - What is learnable? How is it learned? How does this arise from neural structures?

 Different models might serve different goals, while still being derived from the same theory/hypotheses

Researcher has a **verbal theory** of how the cognitive system works

Researcher has a **verbal theory** of how the cognitive system works

Researcher has a **verbal theory** of how the cognitive system works

They build a **concrete implementation** of the architecture using code

All models are wrong but some are useful

 For language acquisition research, our main goal with modelling is to test causal hypotheses and make predictions

All models are wrong but some are useful

- For language acquisition research, our main goal with modelling is to test causal hypotheses and make predictions
- Your model doesn't have to be an airtight explanation of every aspect of a phenomenon (semantics is very complex!)

All models are wrong but some are useful

- For language acquisition research, our main goal with modelling is to test causal hypotheses and make predictions
- Your model doesn't have to be an airtight explanation of every aspect of a phenomenon (semantics is very complex!)
- If the model provides a way of formally testing your ideas or can make testable predictions, then it is useful

Today: Learning Words From Linguistic Context

words

words

words

words

words

words

words

- Mapping words to meaning is a difficult task
- How do children constrain the hypothesis space?

Word Learning

- Mapping words to meaning is a difficult task
- How do children constrain the hypothesis space?
 - Biases to select referent
 - mutual exclusivity bias, whole-object assumption, ...

Word Learning

- Mapping words to meaning is a difficult task
- How do children constrain the hypothesis space?
 - Biases to select referent
 - mutual exclusivity bias, whole-object assumption, ...
 - Cross-situational learning

But... words occur in continuous speech

words

meaning

But... words occur in continuous speech

words

meaning

Word Learning

- Mapping words to meaning is a difficult task
- How do children constrain the hypothesis space?
 - Biases to select referent
 - mutual exclusivity bias, whole-object assumption, ...
 - Cross-situational learning
 - Distributional information from the linguistic input
 - Context

Word Learning from distributional cues

• Children can track distributional information at a very young age (Saffran et al. 1996, Aslin et al. 1998, ...)

Word Learning from distributional cues

- Children can track distributional information at a very young age (Saffran et al. 1996, Aslin et al. 1998, ...)
- How can distributional information shape meaning representations?

Word Learning from distributional cues

- Children can track distributional information at a very young age (Saffran et al. 1996, Aslin et al. 1998, ...)
- How can distributional information shape meaning representations?
 - Let's look at Distributional Semantic Models

Meaning as use

• "The meaning of a word is its use in the language" (Wittgenstein, 1953)

• "What people know when they say that they know a word is not how to recite its dictionary definition – they know how to use it" (Miller, 1986)

The Distributional Hypothesis

• "Difference of meaning correlates with difference of distribution" (Harris, 1954)

• "You shall know a word by the company it keeps" (Firth, 1957)

• Distributional Semantic Models (DSMs) derive semantic representations of words based on the distributional hypothesis

• These models are also known as Vector Space Models

• The representations have the form of vectors (embeddings)

```
e.g. 249 0 365 446 0 0 90 0 2136
```

- These representations are distributed rather than symbolic
 - similar words should have similar representations!

- The number of words that we consider to be part of the context of another word is a parameter called "window size"
- We will now see an example of how we derive word representations in DSMs, for a model with window size = 2

THE CAR TRAVELLED AT HIGH SPEED

THE CAR TRAVELLED AT HIGH SPEED

	the	car	travelled	at	high	speed	
the	0	0	0	0	0	0	0
car	0	0	0	0	0	0	0
travelled	0	0	0	0	0	0	0
at	0	0	0	0	0	0	0
high	0	0	0	0	0	0	0
speed	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

THE CAR TRAVELLED AT HIGH SPEED

	the	car	travelled	at	high	speed	•••
the	0	1	1	0	0	0	0
car	0	0	0	0	0	0	0
travelled	0	0	0	0	0	0	0
at	0	0	0	0	0	0	0
high	0	0	0	0	0	0	0
speed	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

THE CAR TRAVELLED AT HIGH SPEED

	the	car	travelled	at	high	speed	•••
the	0	1	1	0	0	0	0
car	1	0	1	1	0	0	0
travelled	0	0	0	0	0	0	0
at	0	0	0	0	0	0	0
high	0	0	0	0	0	0	0
speed	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

THE CAR TRAVELLED AT HIGH SPEED

	the	car	travelled	at	high	speed	•••
the	0	1	1	0	0	0	0
car	1	0	1	1	0	0	0
travelled	1	1	0	1	1	0	0
at	0	0	0	0	0	0	0
high	0	0	0	0	0	0	0
speed	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

THE CAR TRAVELLED AT HIGH SPEED

	the	car	travelled	at	high	speed	•••
the	0	1	1	0	0	0	0
car	1	0	1	1	0	0	0
travelled	1	1	0	1	1	0	0
at	0	1	1	0	1	1	0
high	0	0	0	0	0	0	0
speed	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

THE CAR TRAVELLED AT HIGH SPEED

	the	car	travelled	at	high	speed	•••
the	0	1	1	0	0	0	0
car	1	0	1	1	0	0	0
travelled	1	1	0	1	1	0	0
at	0	1	1	0	1	1	0
high	0	0	1	1	0	1	0
speed	0	0	0	0	0	0	0
	0	0	0	0	0	0	0

THE CAR TRAVELLED AT HIGH SPEED

	the	car	travelled	at	high	speed	•••
the	0	1	1	0	0	0	0
car	1	0	1	1	0	0	0
travelled	1	1	0	1	1	0	0
at	0	1	1	0	1	1	0
high	0	0	1	1	0	1	0
speed	0	0	0	1	1	0	0
	0	0	0	0	0	0	0

	the	car	travelled	at	high	speed	•••
the	0	1	1	0	0	0	0
car	1	0	1	1	0	0	0
travelled	1	1	0	1	1	0	0
at	0	1	1	0	1	1	0
high	0	0	1	1	0	1	0
speed	0	0	0	1	1	0	0
	0	0	0	0	0	0	0

THE TRUCK TRAVELLED FAST

	the	car	travelled	at	high	speed	truck	fast
the	0	1	2	0	0	0	1	0
car	1	0	1	1	0	0	0	0
travelled	2	1	0	1	1	0	1	1
at	0	1	1	0	1	1	0	0
high	0	0	1	1	0	1	0	0
speed	0	0	0	1	1	0	0	0
truck	1	0	1	0	0	0	0	1
fast	0	0	1	0	0	0	1	0

	the	car	travelled	at	high	speed	truck	fast
the	0	1	2	0	0	0	1	0
car	1	0	1	1	0	0	0	0
travelled	2	1	0	1	1	0	1	1
at	0	1	1	0	1	1	0	0
high	0	0	1	1	0	1	0	0
speed	0	0	0	1	1	0	0	0
truck	1	0	1	0	0	0	0	1
fast	0	0	1	0	0	0	1	0

- This is a term-term co-occurrence matrix (for a toy example)
- The vectors reflect the use of words in real linguistic productions.
- Similar vectors for semantically related words!

 We can interpret each position in an n-dimensional vector as a coordinate of a point in n-dimensional vector space

(graph reduced to 2 dimensions)

• Thus, these word representations have geometric properties (e.g. distance between words!)

Raquel G. Alhama & Andrew Jessop

 Cosine similarity: cosine of the angle of the vectors

$$\cos(\Theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|}$$

The cosine is between [-1, 1]. A measure of 0 indicates orthogonal vectors (completely unrelated).

Let's implement this!