Capítulo 2 | Estatística descritiva

estatística aplicada

4º edição

Exemplo

Número de clientes aguardando atendimento em *call* center a cada 10 minutos.

4 4 1 2 9 9 9 9 10 7 8 8 11 14 20 23 22 21 24 25 29 29 28 27 13 12 20 16 17 20 20 18 16 15 115

Exemplo

Número de clientes aguardando atendimento em *call center* a cada 10 minutos.

4 4 **1** 2 9 9 9 9 10 7 8 8 11 14 20 23 22 21 24 25 **29 29** 28 27 13 12 20 16 17 20 20 18 16 15 11 5

Máximos, mínimos, Média, moda etc.

Exemplo

Número de clientes aguardando atendimento em *call center* a cada 10 minutos.

4 4 **1** 2 9 9 9 9 10 7 8 8 11 14 20 **2**3 22 21 24 25 **29 29** 28 27 13 12 20 16 17 20 20 18 16 15 11 5

Máximos, mínimos, Média, moda etc.

Descrição do capítulo

- 2.1 Distribuição da frequência e seus gráficos
- 2.2 Mais gráficos e representações
- 2.3 Medidas de tendência central
- 2.4 Medidas de variação
- 2.5 Medidas de posição

estatística aplicada

4º edição

Seção 2.1

Distribuição de frequência e seus gráficos

Distribuição de frequência

Distribuição de frequência

- •Tabela que mostra classes ou intervalos de dados com uma contagem do número de entradas em cada classe
- •A frequência, f, de uma classe é o número de entradas de dados na classe

<-
Tamanho da
classe 6 – 1 =
5

Classe	Frequência, f
1-5	5
6 - 10	8
11 - 15	6
16 - 20	8
21 - 25	5
26 30	4

Limite inferior da classe

Limite superior da classe

4º edição

Construindo uma distribuição de frequência

- 1. Decida o número de classes.
 - Geralmente entre 5 e 20; do contrário, pode ser difícil detectar padrões
- 2. Encontre o tamanho da classe.
 - Determine a variação dos dados
 - Divida a variação pelo número de classes
 - Arredonde para cima para o próximo número conveniente

- 3. Encontre os limites da classe.
 - Você pode usar a entrada de menor valor como o limite inferior da primeira classe
 - Encontre os limites inferiores remanescentes (adicione o tamanho da classe ao limite inferior da classe precedente)
 - Encontre o limite superior da primeira classe.
 Lembre-se de que as classes não podem ter limites iguais
 - Encontre os limites superiores remanescentes

- 4. Faça um registro para cada entrada de dados na fileira da classe apropriada.
- 5. Conte os registros para encontrar a frequência total *f* para cada classe.

LARSONIFARBER

estatística aplicada

4º edição

Exemplo: construindo uma distribuição de frequência

A amostra seguinte lista o número de minutos que 50 usuários da internet passaram conectados durante a sessão mais recente. Construa uma distribuição de frequência para as sete classes.

```
50 40 41 17 11 7 22 44 28 21 19 23 37 51 54 42 86
41 78 56 72 56 17 7 69 30 80 56 29 33 46 31 39 20
18 29 34 59 73 77 36 39 30 62 54 67 39 31 53 44
```

LARSONIFARBER

estatística aplicada

4º edição

Solução: construindo uma distribuição de frequência

- 1. Número de classes = 7 (dados)
- 2. Encontre o tamanho da classe

$$\frac{\text{max-min}}{\text{\#classes}} = \frac{86-7}{7} \approx 11.29$$

Arredondando para cima: 12

3. Use 7 (valor mínimo) como o primeiro limite mínimo. Adicione o tamanho da classe, 12, para definir o limite mínimo da próxima classe.

$$7 + 12 = 19$$

Encontre os limites mínimos restantes.

	Limite mínimo	Limite máximo
Tamanho da	7	
classe = 12	19	
	31	
	43	
	55	
	67	
	79	

4º edição

O limite máximo da primeira classe é 18 (um a menos que o limite mínimo da segunda classe).

Some o tamanho da classe, 12, para definir o limite máximo da próxima classe.

$$18 + 12 = 30$$

Encontre os limites máximos restantes.

Limite mínimo	Limite máximo
7	7 18
19	30
31	42
43	54
55	66
67	78
79	90

Tamanho da classe = 12

4º edição

- 4. Faça um registro para cada entrada de dado na fileira da classe apropriada.
- 5. Conte os registros para encontrar a frequência total *f* para cada classe.

Classe	Registro	Frequência, f
7 – 18	JKI I	6
19 - 30		10
31 - 42		13
43 - 54	JHI III	8
55 – 66	JYII	5
67 – 78	JHI 1	6
79 – 90		2

$$\Sigma f = 50$$

4º edição

Determinando o ponto médio

Ponto médio de uma classe

(Limite mínimo da classe) + (Limite máximo da classe)

2

Classe	Ponto médio	Frequência, f	
7 – 18	$\frac{7+18}{2}$ = 12.5	6 Tomonho	do alaga — 10
19 – 30	$\frac{19+30}{2} = 24.5$	1 amanno 10	da classe = 12
31 – 42	$\frac{31+42}{2} = 36.5$	13	

Determinando a frequência relativa

Frequência relativa de uma classe

 Porção da porcentagem dos dados que se encaixa em um classe em particular

• Frequência relativa =
$$\frac{\text{Frequência da classe}}{\text{Tamanho da amostragem}} = \frac{f}{n}$$

Classe	Frequência, f	Frequência relativa
7 – 18	6	$\frac{6}{50} = 0.12$
19 – 30	10	$\frac{10}{50}$ = 0.20
31 – 42	13	$\frac{13}{50}$ = 0.26

Frequência acumulada de uma classe

A soma das frequências daquela classe e de todas as classes anteriores.

Classe	Frequência, f	Frequência acumulada
7 – 18	6	6
19 – 30	+ 10	>16
31 – 42	+ 13	> 29

Distribuição de frequência expandida

Classe	Frequência, f	Ponto médio	Frequência relativa	Frequência acumulada
7 – 18	6	12.5	0.12	6
19 – 30	10	24.5	0.20	16
31 – 42	13	36.5	0.26	29
43 – 54	8	48.5	0.16	37
55 – 66	5	60.5	0.10	42
67 – 78	6	72.5	0.12	48
79 – 90	2	84.5	0.04	50

$$\Sigma f = 50$$

$$\sum \frac{f}{n} = 1$$

LARSON I FARBEF

estatística aplicada

Gráficos de distribuição de frequência

Histograma de frequência

- Um gráfico de barras que representa a distribuição da frequência
- O eixo horizontal é quantitativo e mede os valores dos dados
- O eixo vertical mede as frequências das classes
- Barras consecutivas precisam se tocar

4º edição

Fronteiras de classes

- Os números que separam as classes sem formar espaços entre elas
- A distância do limite superior da primeira classe para o limite inferior da segunda é 19 – 18 = 1
- A metade dessa distância é 0,5
 - Fronteira inferior da primeira classe = 7 0.5 = 6.5
 - Fronteira superior da primeira classe = 18 + 0.5 = 18.5

Classe	Fronteiras de classes	Frequência,
7 – 18	6.5 - 18.5	6
19 – 30		10
31 – 42		13

40		L		_~	
4	е	а	Ю	Õ	Ю

Classe	Fronteiras de classes	Frequência,
7 - 18	6.5 - 18.5	6
19 - 30	18.5 - 30.5	10
31 - 42	30.5 - 42.5	13
43 - 54	42.5 - 54.5	8
55 – 66	54.5 – 66.5	5
67 - 78	66.5 - 78.5	6
79 – 90	78.5 - 90.5	2

4º edição

Exemplo: histograma de frequência

Construa um histograma de frequência para a distribuição da frequência do uso da internet.

Classe	Fronteiras de classes	Ponto médio	Frequência,
7 – 18	6.5 - 18.5	12.5	6
19 – 30	18.5 - 30.5	24.5	10
31 – 42	30.5 - 42.5	36.5	13
43 – 54	42.5 - 54.5	48.5	8
55 – 66	54.5 – 66.5	60.5	5
67 – 78	66.5 - 78.5	72.5	6
79 – 90	78.5 - 90.5	84.5	2

LARSONIFARBER

Solução: histograma de 4º edição frequência (usando pontos médios)

LARSON I FARBER

estatística aplicada Solução: histograma de 4º edição frequência (usando fronteiras de classes)

É visível que mais da metade dos assinantes passaram entre 19 e 54 minutos na Internet em sua sessão mais recente.

LARSONIFARBER

estatística aplicada

4º edição

Gráficos de distribuições de frequência

Polígono de frequência

Um gráfico em linha que enfatiza a mudança contínua nas frequências.

4º edição

Exemplo: polígono de frequência

Construa um polígono de frequência para a distribuição da frequência do uso de Internet.

Classe	Ponto médio	Frequência, f
7 – 18	12.5	6
19 - 30	24.5	10
31 - 42	36.5	13
43 – 54	48.5	8
55 – 66	60.5	5
67 – 78	72.5	6
79 – 90	84.5	2

4º edicão

Solução: polígono de frequência

O gráfico deve começar e terminar no eixo horizontal, então estenda o lado esquerdo até o tamanho de uma classe antes do ponto médio da primeira classe e estenda o lado direito até o tamanho de uma classe depois do ponto médio da última classe.

Pode-se perceber que a frequência dos assinantes aumenta até 36,5 minutos e então diminui.

LARSONIFARBER

estatística aplicada Gráficos de distribuição 4º edição

de frequência

Histograma de frequência relativa

• Tem o mesmo formato e eixo horizontal que o histograma de frequência correspondente

• O eixo vertical mede as **frequências** relativas e não

as frequências

LARSONIFARBER

estatística aplicada Exemplo: histograma de frequência relativa

Construa um histograma de frequência relativa para a distribuição da frequência do uso de Internet.

Classe	Fronteiras de classes	Frequência, f	Frequência relativa
7 – 18	6.5 - 18.5	6	0.12
19 - 30	18.5 - 30.5	10	0.20
31 - 42	30.5 - 42.5	13	0.26
43 - 54	42.5 - 54.5	8	0.16
55 – 66	54.5 – 66.5	5	0.10
67 - 78	66.5 - 78.5	6	0.12
79 – 90	78.5 – 90.5	2	0.04

Solução: histograma de frequência relativa

Uso de Internet

A partir do gráfico, pode-se perceber que 20% dos assinantes de Internet passaram entre 18,5 minutos e 30,5 minutos conectados.

LARSON I FARBEF

estatística aplicada Gráficos de distribuição 4º edição de frequências

Gráfico de frequências cumulativas, frequência acumulada ou ogiva

- Gráfico de linhas que demonstra a frequência cumulativa de cada classe em sua fronteira superior
- As fronteiras superiores são demarcadas no eixo horizontal
- As frequências cumulativas são demarcadas no eixo vertical

Construindo uma ogiva

- 1. Construa uma distribuição de frequência que inclua frequências cumulativas como uma das colunas.
- 2. Especifique os eixos horizontal e vertical.
 - O eixo horizontal consiste nas fronteiras superiores das classes
 - O eixo vertical mede as frequências cumulativas
- 3. Pontos que representam as fronteiras superiores das classes e suas frequências cumulativas correspondentes.

- 4. Conecte os pontos da esquerda com os da direita.
- 5. O gráfico deve começar na fronteira inferior da primeira classe (frequência cumulativa é zero) e deve terminar na fronteira superior da última classe (frequência cumulativa igual ao tamanho da amostra).

Exemplo: ogiva

Construir uma ogiva para a distribuição de frequência do uso da Internet.

Classe	Fronteiras de classes	Frequência,	Frequência cumulativa
7 – 18	6.5 - 18.5	6	6
19 – 30	18.5 - 30.5	10	16
31 – 42	30.5 - 42.5	13	29
43 – 54	42.5 – 54.5	8	37
55 – 66	54.5 – 66.5	5	42
67 – 78	66.5 - 78.5	6	48
79 – 90	78.5 – 90.5	2	50

estatística aplicada Solução: ogiva 4º edição

A partir da ogiva, pode-se perceber que aproximadamente 40 assinantes passaram 60 minutos ou menos conectados em sua última sessão. O maior aumento no uso ocorre entre 30,5 minutos e 42,5 minutos.

estatística aplicada

4º edição

Fonte: Maciel et al. "Scheduling-strategies for Coordinated Multi-Point Systems". SBRT`09.

estatística aplicada

4º edição

Seção 2.2

Mais gráficos e representações

estatística aplicada

Fazendo gráficos de conjuntos de dados quantitativos (1)

Diagrama de ramos-e-folhas

- Cada número é separado em um ramo e uma folha
- Similar a um histograma
- Ainda contém os valores dos dados originais 26

Dados: 21, 25, 25, **26**, 27, 28, 30, 36, 36, 45

 2
 1
 5
 5
 6
 7
 8

 3
 0
 6
 6

4 5

estatística aplicada Exemplo: construindo um 4º edição diagrama de ramos-e-folhas

Os números seguintes representam a quantidade de mensagens de texto enviadas no mês passado pelos usuários de celulares em um andar do dormitório da faculdade. Mostre os dados em um diagrama de ramos-e-folhas.

```
155 159 144 129 105 145 126 116 130 114 122 112 112 142 126 156 118 108 122 121 109 140 126 119 113 117 118 109 109 119 139 139 122 78 133 126 123 145 121 134 124 119 132 133 124 129 112 126 148 147
```

estatística aplicada

Solução: construindo um diagrama de ramos-e-folhas

```
155 159 144 129 105 145 126 116 130 114 122 112 112 142 126 156 118 108 122 121 109 140 126 119 113 117 118 109 109 119 139 139 122 78 133 126 123 145 121 134 124 119 132 133 124 129 112 126 148 147
```

- As entradas de dados variam do baixo 78 até um alto 159
- Use o dígito mais à direita como a folha
 - Por exemplo,

$$78 = 7 \mid 8$$
 e $159 = 15 \mid 9$

- Liste os ramos, 7 até 15, à esquerda de uma linha vertical
- Para cada entrada de dados, liste uma folha à direita de

estatística aplicada 4º edição

Número de mensagens de texto enviadas Número de mensagens de texto enviadas

7	8 Chave: $5 5 = 155$	7	8 Chave: 15 5 = 155
8		8	Inclui uma chave
9		9	para identificar os valores dos dados.
10	58999	10	5 8 9 9 9
11	6422889378992	11	2223467888999
12	962621626314496	12	112223446666699
13	0993423	13	0233499
14	4520587	14	0245578
15	5 9	15	5 9

Diagrama de ramos-e-folhas não ordenado Diagrama de ramos-e-folhas ordenado

Pode-se concluir pelos dados acima que mais de 50% dos usuários de celular enviaram entre 110 e 130 mensagens de

slide 42 texto.

© 2010 Pearson Prentice Hall. Todos os direitos reservados.

. ARSON | FARBER

estatística aplicada Fazendo gráficos de 4º edição

conjuntos de dados quantitativos (2)

Diagrama de pontos

 Cada entrada de dados é posta usando um ponto acima de um eixo horizontal

Dados: 21, 25, 25, 26, 27, 28, 30, 36, 36, 45

estatística aplicada Exemplo: construindo um 4º edição diagrama de pontos

Use um diagrama de pontos para organizar os dados das mensagens de texto.

```
155 159 144 129 105 145 126 116 130 114 122 112 112 142 126 156 118 108 122 121 109 140 126 119 113 117 118 109 109 119 139 139 122 78 133 126 123 145 121 134 124 119 132 133 124 129 112 126 148 147
```

- Para que cada entrada seja incluída no diagrama de pontos, o eixo horizontal deve incluir números entre 70 e 160
- Para reresentar uma entrada, insira um ponto acima da posição da entrada no eixo
- Se uma entrada for repetida, faça outro ponto acima do

Solução: construindo um 4º edição diagrama de pontos

```
155 159 144 129 105 145 126 116 130 114 122 112 112 142 126 156 118 108 122 121 109 140 126 119 113 117 118 109 109 119 139 139 122 78 133 126 123 145 121 134 124 119 132 133 124 129 112 126 148 147
```

Número de mensagens de texto enviadas

Maioria dos valores se agrupam entre 105 e 148; Valor que mais ocorre é 126; Pode-se notar também que 78 é um valor incomum.

Fazendo gráficos de 4º edição conjunto de dados qualitativos (1)

Gráfico de pizza

- Um círculo é dividido em vários setores, que representam categorias
- A área de cada setor é proporcional à frequência de cada categoria

estatística aplicada Exemplo: construindo um 4º edição gráfico de pizza

O número de ocupantes de veículos motorizados mortos em acidentes em 2005 é exibido na tabela. Use um gráfico de pizza para organizar os dados. (Fonte: U.S. Department of Transportation, National Highway Traffic Safety

Tipo de veículo	Mortes
Carros	18.440
Caminhões	13.778
Motocicletas	4.553
Outros	823

Administration.)

estatística aplicada Solução: construindo um 4º edição gráfico de pizza

Encontre a frequência relativa de cada categoria.

Tipo de Veículo	Frequência,	Frequência relativa
Carros	18.440	$\frac{18440}{37594} \approx 0.49$
Caminhões	13.778	$\frac{13778}{37594} \approx 0.37$
Motocicletas	4.553	$\frac{4553}{37594} \approx 0.12$
Outros	823	$\frac{823}{37594} \approx 0.02$

- Construa o gráfico de pizza usando o ângulo central que corresponda à cada categoria.
 - Para encontrar o ângulo central, multiplique 360° pela frequência relativa da categoria.
 - Por exemplo, o ângulo central para carros é $360(0,49) \approx 176^{\circ}$

Tipo de veículo	Frequência,	Frequência relativa	Ângulo central
Carros	18.440	0,49	360°(0,49)≈176°
Caminhões	13.778	0,37	360°(0,37)≈133°
Motocicletas	4.553	0,12	360°(0,12)≈43°
Outros	823	0,02	360°(0,02)≈7°

Tipo de veículo	Frequência relativa	Ângulo central
Carros	0,49	176°
Caminhões	0,37	133°
Motocicletas	0,12	43°
Outros	0,02	7°

Conclui-se que a maioria dos acidentes fatais em veículos automotivos foram aqueles envolvendo carros.

Fazendo gráficos de de dados qualitativos (2)

Gráfico de Pareto

- Barras verticais com a altura representando uma frequência ou uma frequência relativa
- As barras são posicionadas por ordem decrescente de altura: barra mais alta posicionada à esquerda

LARSON I FARBEF

estatística aplicada

Exemplo: construindo um gráfico de Pareto

Recentemente, a indústria de varejo perdeu US\$ 41 mi com redução nos estoques. A redução de estoque é uma perda de estoque por meio de quebra, roubo de carga, roubo em lojas e assim por diante. As causas da redução de estoque são erro administrativo (7,8 mi), roubo por funcionários (15,6 mi), furto das lojas (14,7 mi) e fraude dos vendedores (2,9 mi). Se você fosse um varejista, para qual causa de redução de estoque você olharia primeiro? (Fonte: National Retail Federation and Center for Retailing Education, University of Florida.)

estatística aplicada Solução: construindo um 4º edição gráfico de Pareto

Causa	US\$ (em milhões)
Erro adm.	7,8
Roubo por funcionários	15,6
Furto das lojas	14,7
Fraude dos vendedores	2,9

Pelo gráfico, é fácil ver que, das causas da diminuição do estoque, o roubo por funcionários deveria ser o primeiro a receber atenção.

LARSON | FARBER

estatística aplicada

Fazendo gráficos de conjunto de dados emparelhados (1)

Conjunto de dados emparelhados

- Cada entrada em um conjunto de dados corresponde à outra entrada em um segundo conjunto de dados
- Gráficos usam um gráfico de dispersão y
 - Os pares ordenados são representados como pontos em um plano coordenado
 - Usado para representar a relação entre duas variáveis quantitativas

estatística aplicada

Exemplo: interpretando um gráfico de dispersão

O conjunto de dados de *Íris de Fisher* descreve várias características físicas para três espécies de íris, como o comprimento de pétalas e a sua largura (em mm).

No gráfico de dispersão mostrado, os comprimentos de pétalas formam o primeiro conjunto de dados e as larguras formam o segundo conjunto de dados.

(Fonte: Fisher, R. A., 1936.)

Conforme o comprimento da pétala aumenta, o que tende a acontecer com a largura?

Cada ponto no esquema disperso representa o comprimento e a largura da pétala de uma flor.

estatística aplicada

4º edição

Solução: interpretando um gráfico de dispersão

Interpretação

Nota-se que conforme o comprimento da pétala aumenta, a largura da pétala também tende a

. ARSON I FARBER

estatística aplicada

4º edição

Fazendo gráficos de conjunto de dados

Série temporal

- Conjuntos de dados são compostos de entradas quantitativas tomadas em intervalos regulares em um período de tempo
 - Por exemplo, a quantidade de precipitações medidas a cada dia por um mês
- Usa um gráfico de períodos de tempo

estatística aplicada Exemplo: construindo um 4º edição gráfico de série temporal

A tabela lista o número de telefones celulares (em milhões) para os anos de 1995 até 2005.

Construa um gráfico de série temporal do número de telefones celulares.

(Fonte: Cellular Telecommunication & Internet Association.)

Ano	Usuários (em milhões)
1995	33.8
1996	44.0
1997	55.3
1998	69.2
1999	86.0
2000	109.5
2001	128.4
2002	140.8
2003	158.7
2004	182.1
2005	207.9

estatística aplicada Solução: construindo um 4º edição gráfico de série temporal

- Faça com que o eixo horizontal represente os anos
- Deixe o eixo vertical representar o número de celulares (milhões)
- Marque os dados emparelhados e conecte-os com os segmentos de linha

Ano	Usuários (em milhões)
1995	33.8
1996	44.0
1997	55.3
1998	69.2
1999	86.0
2000	109.5
2001	128.4
2002	140.8
2003	158.7
2004	182.1
2005	207.9

estatística aplicada 4º edição

Ano	Usuários (em milhões)
1995	33.8
1996	44.0
1997	55.3
1998	69.2
1999	86.0
2000	109.5
2001	128.4
2002	140.8
2003	158.7
2004	182.1
2005	207.9

O gráfico mostra que o número de celulares tem aumentado desde 1995, com aumentos ainda mais significativos recentemente.

estatística aplicada

4º edição

Seção 2.3

Medidas de tendência central

estatística aplicada dência 4º edição

Medidas de tendência central

- Um valor que revela o que é típico ou central para um conjunto de dados
- Medidas de tendência central mais comuns:
 - Média
 - Mediana
 - Moda

estatística aplicada

4º edição

Medidas de tendência central: média

Média

- A soma de todas as entradas de dados divididas pelo número de entradas
- Notação sigma: $\Sigma x =$ adicione todas as entradas (x) no conjunto de dados
- Média populacional: $\mu = \frac{\sum x}{N}$
- Média amostral: $x = \frac{\sum x}{n}$

estatística aplicada Exemplo: encontrando a média da amostra

Os preços (em dólares) para uma amostra de viagens feitas de Chicago, Illinois, para Cancun, México, são listados.

Qual o preço médio dos voos?

872 432 397 427 388 782 397

4º edição

estatística aplicada

4º edição

Solução: encontrando a média da amostra

A soma dos preços dos voos é

$$\Sigma x = 872 + 432 + 397 + 427 + 388 + 782 + 397 = 3.695$$

 Para encontrar o preço médio, divida a soma dos preços pelo número de preços na amostra

$$\frac{-}{x} = \frac{\sum x}{n} = \frac{3695}{7} \approx 527.9$$

O preço médio dos voos é cerca de \$ 527,90.

estatística aplicada

4º edição

Medidas de tendência central: mediana

- O valor que está no meio dos dados quando o conjunto dos dados é ordenado
- Mede o centro de um conjunto de dados ordenado dividindo-o em duas partes iguais
- Se conjunto de dados possui um número de entradas:
 - **ímpar**: mediana é o elemento do meio
 - **par**: mediana é a média dos 2 elementos centrais

Mediana

estatística aplicada

Exemplo: encontrando a mediana

Os preços (em dólares) para uma amostra de viagens feitas de Chicago, Illinois, para Cancun, México, são listados. Encontre a mediana.

872 432 397 427 388 782 397

LARSON I FARBEF

estatística aplicada

4º edição

Solução: encontrando a mediana

872 432 397 427 388 782 397

• Primeiramente, ordene os dados 388 397 397 427 432 782 872

Î.

• Existem sete entradas (um número ímpar), e a mediana é o elemento central, ou o quarto, do conjunto de dados

O preço mediano dos voos é \$ 427.

estatística aplicada

4º edição

Exemplo: encontrando a mediana

O preço dos voos em \$ 432 não está mais disponível. Qual o preço mediano dos voos restantes?

872 397 427 388 782 397

estatística aplicada

4º edição

Solução: encontrando a mediana

872 397 427 388 782 397

Primeiramente, ordene os dados

• Há seis elementos (um número par), a mediana é a média das duas entradas centrais.

Mediano =
$$\frac{397 + 427}{2}$$
 = 412

O preço mediano dos voos é \$ 412.

4º edição

Medidas de tendência central: moda

Moda

- A entrada que ocorre com a maior frequência
- Se não houver entradas repetidas, o conjunto de dados não tem moda
- Se duas entradas ocorrem com a mesma e mais alta frequência, cada entrada é um moda (bimodal)

estatística aplicada

Exemplo: encontrando a moda

Os preços (em dólares) para uma amostra de viagens feitas de Chicago, Illinois, para Cancun, México, são listados. Encontre a moda dos preços dos voos.

872 432 397 427 388 782 397

estatística aplicada

Solução: encontrando a moda

872 432 397 427 388 782 397

- Ordenar os dados ajuda a encontrar a moda 388 397 397 427 432 782 872
- A entrada de 397 ocorre duas vezes, enquanto as outras ocorrem somente uma vez.

A moda dos preços dos voos é \$ 397.

estatística aplicada

4º edição

Exemplo: encontrando a moda

Em um debate político norte-americano uma amostra de membros da audiência foi questionada à respeito de seus partidos políticos. Suas respostas estão na tabela. Qual a moda de suas respostas?

Partido político	Frequência, f
Democrata	34
Republicano	56
Outros	21
Não responderam	9

estatística aplicada

4º edição

Solução: encontrando a moda

Partido político	Frequência, f
Democrata	34
Republicano	56
Outros	21
Não responderam	9

A moda é Republicano (a resposta com maior ocorrência). Nessa amostra havia mais republicanos do que pessoas de qualquer outro partido político.

Comparando a média, a mediana e a moda

- Todas as três medidas descrevem uma entrada típica de um conjunto de dados
- Vantagens de usar a média:
 - A média é uma medida confiável porque leva em conta cada entrada do conjunto de dados
- Desvantagens de usar a média:
 - Muito afetada por valores discrepantes (uma entrada que é muito distante das outras entradas no conjunto de dados)

estatística aplicada

Exemplo: comparando a média, a mediana e a moda

Encontre a média, a mediana e a moda da amostra de idades de uma classe. Qual medida de tendência central descreve melhor uma entrada típica desse conjunto de dados? Existe algum valor discrepante?

Idades em uma classe						
20	20	20	20	20	20	21
21	21	21	22	22	22	23
23	23	23	24	24	65	

Solução: comparando a de delição média, a mediana e a moda

Idades em uma classe						
20	20	20	20	20	20	21
21	21	21	22	22	22	23
23	23	23	24	24	65	

Média:
$$\bar{x} = \frac{\sum x}{n} = \frac{20 + 20 + ... + 24 + 65}{20} \approx 23.8$$
 anos

Mediana:
$$\frac{21+22}{2}$$
 = 21.5 anos

Moda: 20 anos (a entrada que ocorre com a maior frequência)

Média ≈ 23.8 anos Mediana = 21.5 anos Moda = 20 anos

- A média leva todas as entradas em consideração, mas é influenciada pelo valor discrepante 65
- A mediana também leva todas as entradas em consideração, e não é afetada pelo valor discrepante
- Nesse caso a moda existe, mas não parece representar uma entrada típica

Algumas vezes uma comparação gráfica pode ajudar a decidir qual medida de tendência central melhor representa um conjunto de dados.

Nesse caso, parece que a **mediana** é o que melhor descreve o conjunto de dados.

estatística aplicada Média ponderada 4º edição

 A média de um conjunto de dados cujas entradas possuem pesos variantes

•
$$\overline{x} = \frac{\sum (x \times w)}{\sum w}$$
 em que w é o peso de cada entrada x

estatística aplicada

4º edição

Exemplo: encontrando a média ponderada

Você está frequentando uma aula na qual sua nota é determinada com base em 5 fontes: 50% da média de seu exame, 15% do seu exame bimestral, 20% de seu exame final, 10% de seu trabalho no laboratório de informática e 5% de seus deveres de casa.

Suas notas são: 86 (média do exame), 96 (exame bimestral), 82 (exame final), 98 (laboratório) e 100 (dever de casa).

Qual é a média ponderada de suas notas?

Se a média mínima para um A é 90, você obteve uma nota A?

estatística aplicada

Solução: encontrando a média ponderada

Fonte	Notas, x	Peso, w	x·w
Média do exame	86	0,50	86(0,50)= 43,0
Exame bimestral	96	0,15	96(0,15) = 14,4
Exame final	82	0,20	82(0,20) = 16,4
Laboratório	98	0,10	98(0,10) = 9,8
Dever de casa	100	0,05	100(0,05) = 5,0
		$\Sigma w = 1$	$\Sigma(x\cdot w)=88,6$

$$\overline{x} = \frac{\sum (x \times w)}{\sum w} = \frac{88.6}{1} = 88.6$$

Sua média ponderada para essa aula foi 88,6. Você não tirou um A.

4º edição

Média de dados agrupados

Média de uma distribuição de frequência

Aproximada por

$$\overline{x} = \frac{\sum (x \times f)}{n} \qquad n = \sum f$$

em que x e f são, respectivamente, os pontos médios e as frequências de uma classe

estatística aplicada Encontrando a média da distribuição de uma frequência

Em palavras

Em símbolos

- 1. Encontre o ponto médio de cada classe.
- $x = \frac{\text{(Limite inferior)} + \text{(Limite superior)}}{2}$
- 2. Encontre a soma dos produtos dos pontos médios e das frequências.

 $\Sigma(x \times f)$

3. Encontre a soma das frequências.

 $n = \sum f$

4. Encontre a média da distribuição das frequências.

$$\overline{x} = \frac{\sum (x \times f)}{1}$$

n

© 2010 Pearson Prentice Hall. Todos os direitos reservados.

estatística aplicada

4º edição

Exemplo: encontrando a média da distribuição de uma frequência

Use a distribuição de frequência para aproximar a média do número de minutos que uma amostra de internautas passou conectada em sua última sessão.

Classe	Ponto médio	Frequência, f
7 – 18	12,5	6
19 – 30	24,5	10
31 - 42	36,5	13
43 – 54	48,5	8
55 – 66	60,5	5
67 – 78	72,5	6
79 – 90	84,5	2

4º edição

Classe	Ponto médio, x	Frequência,	(x·f)
7 – 18	12,5	6	12,5.6 = 75,0
19 – 30	24,5	10	$24,5\cdot 10 = 245,0$
31 - 42	36,5	13	$36,5 \cdot 13 = 474,5$
43 – 54	48,5	8	48,5.8 = 388,0
55 – 66	60,5	5	$60,5\cdot 5 = 302,5$
67 - 78	72,5	6	72,5.6 = 435,0
79 – 90	84,5	2	$84,5 \cdot 2 = 169,0$
		n = 50	$\Sigma(x\cdot f)=2.089,0$

$$\overline{x} = \frac{\Sigma(x \times f)}{n} = \frac{2089}{50} \approx 41.8 \text{ minutos}$$

estatística aplicada A forma das distribuições 4º edição

Distribuição simétrica

Uma linha vertical pode ser traçada do meio do gráfico de distribuição e as metades resultantes são quase idênticas.

estatística aplicada O formato das 4º edição distribuições

Distribuição uniforme (retangular)

- Todas as entradas têm frequências iguais ou quase iguais
- Simétrica

Distribuição assimétrica à esquerda (assimétrica negativamente)

- A "cauda" do gráfico se alonga mais à esquerda
- •A média fica à esquerda da mediana

4º edição

Distribuição assimétrica à direita (positivamente assimétrica)

- A "cauda" do gráfico se alonga mais à direita
- •A média fica à direita da mediana

estatística aplicada

4º edição

Seção 2.4

Medidas de variação

4º edição

Variância

Variação

- A diferença entre as entradas máxima e mínima em um conjunto de dados
- Os dados precisam ser quantitativos
- Variação = (Entrada máx.) (Entrada mín.)

estatística aplicada

4º edição

Exemplo: encontrando a variação

Uma corporação contratou 10 graduados. Os salários (anuais) iniciais de cada um são demonstrados abaixo. Encontre a variação dos salários iniciais.

Salários iniciais (milhares de dólares)

41 38 39 45 47 41 44 41 37 42

• Ordenar os dados ajuda a encontrar o menor e o maior salário

• Variação = (Entrada máx.) – (Entrada mín.) = 47 - 37 = 10

A variação dos salários iniciais é igual a 10.

4º edição

Desvio, variância e desvio padrão

- A diferença entre a entrada de dados, x, e a média do conjunto de dados
- Conjunto de dados da população:
 - Desvio de $x = x \mu$
- Conjunto de dados da amostra:
 - Desvio de $x = x \overline{x}$

Desvio

4º edição

Exemplo: encontrando o desvio

Uma corporação contratou 10 graduados. Os salários iniciais de cada um são demonstrados abaixo. Encontre a variação dos salários iniciais.

Salários iniciais (milhares de dólares)

Solução:

• Primeiro, determine a média dos salários iniciais.

$$\mu = \frac{\sum x}{N} = \frac{415}{10} = 41.5$$

estatística aplicada Solução: encontrando 4º edição o desvio

Determine o desvio para cada entrada.

Salário (\$ 1.000s), x	Desvio: $x - \mu$
41	41 - 41,5 = -0,5
38	38 - 41,5 = -3,5
39	39 - 41,5 = -2,5
45	45 - 41,5 = 3,5
47	47 - 41,5 = 5,5
41	41 - 41,5 = -0,5
44	44 - 41,5 = 2,5
41	41 - 41,5 = -0,5
37	37 - 41,5 = -4,5
42	42 - 41,5 = 0,5
$\Sigma x = 415$	$\Sigma(x-\mu)=0$

Analisando...

$$\Sigma(x - \mu) = \Sigma x - \Sigma \mu = N\mu - N\mu = 0$$

Ou seja, o desvio médio não captura qualquer informação de variação dos dados.

4º edição

Desvio, variância e desvio padrão

Variância da população

$$\sigma^2 = \frac{\sum (x - \mu)^2}{N}$$

Soma dos quadrados, $\overline{SQ_x}$

Desvio padrão da população

$$\sigma = \sqrt{\sigma^2} = \sqrt{\frac{\sum (x - \mu)^2}{N}}$$

estatística aplicada

Encontrando a variância de edição populacional e o desvio padrão

Em palavras

Em símbolos

1. Encontre a média do conjunto de dados da população.

 $\mu = \frac{\sum x}{N}$

2. Encontre o desvio de cada entrada.

 $x - \mu$

3. Eleve os desvios ao quadrado.

 $(x-\mu)^2$

4. Some para obter a soma dos

$$SS_x = \Sigma(x - \mu)^2$$

Em palavras

- 5. Divida por N para obter a variância populacional.
- 6. Encontre a raiz quadrada para obter o desvio padrão populacional.

Em símbolos

$$\sigma^2 = \frac{\Sigma (x - \mu)^2}{N}$$

$$\sigma = \sqrt{\frac{\sum (x - \mu)^2}{N}}$$

estatística aplicada Exemplo: encontrando o 4º edição desvio padrão da população

Uma corporação contratou 10 graduados. Os salários iniciais de cada um são demonstrados abaixo. Encontre a variação dos salários iniciais.

Salários iniciais (milhares de dólares)

41 38 39 45 47 41 44 41 37 42

Lembrar $\mu = 41,5$.

Solução: encontrando o

4º edição

desvio padrão da população

	$\alpha \alpha$
1)etermine	
Determine	$\mathcal{O}_{\mathcal{X}}$

•
$$N = 10$$

Salário, x	Desvio: $x - \mu$	Quadrados: $(x - \mu)^2$
41	41 - 41,5 = -0,5	$(-0,5)^2 = 0,25$
38	38 - 41,5 = -3,5	$(-3,5)^2 = 12,25$
39	39 - 41,5 = -2,5	$(-2,5)^2 = 6,25$
45	45 - 41,5 = 3,5	$(3,5)^2 = 12,25$
47	47 - 41,5 = 5,5	$(5,5)^2 = 30,25$
41	41 - 41,5 = -0,5	$(-0.5)^2 = 0.25$
44	44 - 41,5 = 2,5	$(2,5)^2 = 6,25$
41	41 - 41,5 = -0,5	$(-0,5)^2 = 0,25$
37	37 – 41,5 = –4,5	$(-4,5)^2 = 20,25$
42	42 - 41,5 = 0,5	$(0,5)^2 = 0,25$

$$\Sigma(x-\mu)=0$$

$$SS_x = 88,5$$

Variância da população

•
$$\sigma^2 = \frac{\sum (x - \mu)^2}{N} = \frac{88.5}{10} \approx 8.9$$

Desvio padrão da população

•
$$\sigma = \sqrt{\sigma^2} = \sqrt{8.85} \approx 3.0$$

O desvio padrão da população é cerca de 3,0 ou \$ 3.000.

4º edição

Desvio, variância e desvio padrão

Variância da amostra

•
$$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$$

Desvio padrão da amostra

•
$$S = \sqrt{S^2} = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

estatística aplicada Encontrando a variância 4º edição e o desvio padrão da amostra

Em palavras

Em símbolos

1. Encontre a média do conjunto de dados da amostra.

 $\overline{x} = \frac{\sum x}{n}$

2. Encontre o desvio de cada entrada.

 $x - \overline{x}$

3. Eleve cada desvio ao quadrado.

 $(x-\overline{x})^2$

4. Some-os para obter a soma dos quadrados.

$$SS_x = \Sigma(x - \overline{x})^2$$

Em palavras

- 5. Divida por n − 1 para obtera variância da amostra.
- 6. Encontre a raiz quadrada para obter o desvio padrão da amostra.

Em símbolos

$$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$$

$$S = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

4º edição

É comum adotar uma representação alternativa para o cálculo da variância.

Observemos o numerador da variância populacional:

$$\Sigma(x - \mu)^{2} = \Sigma(x^{2} - 2x\mu + \mu^{2}) =$$

$$= \Sigma x^{2} - \Sigma 2x\mu + \Sigma \mu^{2} =$$

$$= \Sigma x^{2} - 2\mu \Sigma x + \mu^{2} \Sigma 1 =$$

$$= \Sigma x^{2} - 2\mu N\mu + \mu^{2} N =$$

$$= \Sigma x^{2} - \mu^{2} N$$

estatística aplicada Exemplo: encontre o desvio padrão da amostra

Os salários inicias são para uma filial da empresa em Chicago. A empresa tem várias outras filiais e você planeja usar os salários iniciais de Chicago para estimar os salários iniciais da população maior. Encontre o desvio padrão dos salários iniciais da amostra.

Salários iniciais (milhares de dólares) 41 38 39 45 47 41 44 41 37 42

estatística aplicada

4º edição

Solução: encontrando o desvio padrão da população

- Determine SQ_x
- n = 10

Salário, x	Desvio: $x - \mu$	Quadrados: $(x - \mu)^2$
41	41 - 41,5 = -0,5	$(-0,5)^2 = 0,25$
38	38 - 41,5 = -3,5	$(-3,5)^2 = 12,25$
39	39 - 41,5 = -2,5	$(-2,5)^2 = 6,25$
45	45 - 41,5 = 3,5	$(3,5)^2 = 12,25$
47	47 - 41,5 = 5,5	$(5,5)^2 = 30,25$
41	41 - 41,5 = -0,5	$(-0,5)^2 = 0,25$
44	44 - 41,5 = 2,5	$(2,5)^2 = 6,25$
41	41 - 41,5 = -0,5	$(-0,5)^2 = 0,25$
37	37 - 41,5 = -4,5	$(-4,5)^2 = 20,25$
42	42 - 41,5 = 0,5	$(0,5)^2 = 0,25$
	$\Sigma(x-\mu)=0$	$SS_x = 88,5$

© 2010 Pearson Prentice Hall. Todos os direitos reservados.

Variância da amostra

•
$$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1} = \frac{88.5}{10 - 1} \approx 9.8$$

Desvio padrão da amostra

•
$$s = \sqrt{s^2} = \sqrt{\frac{88.5}{9}} \approx 3.1$$

O desvio padrão da amostra é de aproximadamente 3,1 ou \$ 3.100.

Exemplo: usando tecnologia para encontrar o desvio padrão

A amostra dos aluguéis de escritórios (em dólares por pé quadrado ao ano) no distrito comercial central de Miami é exibida na tabela. Use uma calculadora ou um computador para encontrar a média dos aluguéis e o desvio padrão da amostra (Adaptado de: Cushman & Wakefield Inc.)

Preço dos aluguéis			
35,00	33,50	37,00	
23,75	26,50	31,25	
36,50	40,00	32,00	
39,25	37,50	34,75	
37,75	37,25	36,75	
27,00	35,75	26,00	
37,00	29,00	40,50	
24,50	33,00	38,00	

Interpretando o desvio padrão

- Desvio padrão é a medida do valor típico que uma entrada desvia da média
- Quanto mais as entradas estão espalhadas, maior o desvio padrão

4º edicão

estatística aplicada Interpretando desvio padrão: Regra Empírica (Regra 68 - 95 - 99.7)

Para dados com uma distribuição em formato de sino (simétrico), o desvio padrão tem as seguintes características:

- Cerca de 68% dos dados estão dentro de um desvio padrão da média
- Cerca de 95% dos dados estão dentro de dois desvios padrão da média
- Cerca de 99,7% dos dados estão dentro de três desvios padrão da média

estatística aplicada 4º edição

. ARSON I FARBER

estatística aplicada

4º edição

Exemplo: usando a Regra Empírica

Em uma pesquisa conduzida pelo National Center for Health Statistics, a amostragem média da estatura feminina nos Estados Unidos (20-29 anos) era de 64 polegadas, com um desvio padrão da amostragem de 2,71 polegadas. Estime a porcentagem de mulheres que estão entre 64 e 69,42 polegadas.

estatística aplicada Solução: usando a Regra Empírica

• Porque a distribuição tem formato de sino, você pode usar a Regra Empírica.

34% + 13,5% = 47,5% das mulheres estão entre 64 e 69,42 polegadas.

4º edição

Teorema de Chebychev

• A porção de qualquer conjunto de dados postos dentro de k desvios padrão (k > 1) da média é no mínimo:

$$1 - \frac{1}{k^2}$$

- *k* = 2: Em qualquer conjunto de dados, pelo menos 75% dos dados estão dentro de dois desvios padrão da média.
- k = 3: Em qualquer conjunto de dados, pelo menos 88.9% dos dados estão dentro de três desvios padrão da média.

estatística aplicada

4º edição

Exemplo: usando o Teorema de Chebychev

A distribuição de idades na Flórida é mostrada no histograma. Aplique o Teorema de Chebychev aos dados usando k = 2. O que se pode concluir?

Solução: usando estatística aplicada 4º edição Teorema de Chebychev

$$k = 2$$
: $\mu - 2\sigma = 39,2 - 2(24,8) = -10,4$ (use 0 já que idade não pode ser negativa) $\mu + 2\sigma = 39,2 + 2(24,8) = 88,8$

Pelo menos 75% da população da flórida está entre 0 e 88,8 anos de idade.

estatística aplicada Desvio padrão para 4º edição dados agrupados

Desvio padrão de uma amostra para uma distribuição de frequência

$$s = \sqrt{\frac{\sum (x - \overline{x})^2 f}{n - 1}}$$

 $S = \sqrt{\frac{\sum (x - \overline{x})^2 f}{n - 1}}$ em que $n = \sum f$ (o número de entradas no conjunto de dados)

Quando uma distribuição de frequência tem classes, estime a média da amostra e o desvio padrão usando o ponto médio de cada classe.

4º edição

Exemplo: encontrando o desvio padrão para dados agrupados

Você coleta uma amostragem aleatória do número de crianças por casa em uma região. Encontre a média da amostra e o desvio padrão da amostra do conjunto de dados.

Número de crianças em 50 casas				
1	3	1	1	1
1	2	2	1	0
1	1	0	0	0
1	5	0	3	6
3	0	3	1	1
1	1	6	0	1
3	6	6	1	2
2	3	0	1	1
4	1	1	2	2
0	3	0	2	4

estatística aplicada Solução: encontrando o

desvio padrão para dados agrupados

• Primeiro, construa a distribuição da frequência

• Encontre a média da distribuição da frequê

$\overline{\chi}$ =	$\sum xf$	91	_	1 8
	n	50		1.0

A média da amostra é de cerca de 1,8 criança.

x	f	xf
0.	10	0(10) = 0
ênçia	19	1(19) = 19
2	7	2(7) = 14
3	7	3(7) = 21
4	2	4(2) = 8
5	1	5(1) = 5
6	4	6(4) = 24
	$\Sigma f = 50$	$\Sigma(xf) = 91$

4º edição

Determine a soma dos quadrados.

x	f	$x-\overline{x}$	$(x-\overline{x})^2$	$(x-\overline{x})^2 f$
0	10	0-1,8=-1,8	$(-1,8)^2 = 3,24$	3,24(10) = 32,40
1	19	1 - 1,8 = -0,8	$(-0.8)^2 = 0.64$	0,64(19) = 12,16
2	7	2 - 1.8 = 0.2	$(0,2)^2 = 0,04$	0,04(7) = 0,28
3	7	3 - 1.8 = 1.2	$(1,2)^2 = 1,44$	1,44(7) = 10,08
4	2	4-1,8=2,2	$(2,2)^2 = 4,84$	4,84(2) = 9,68
5	1	5 - 1,8 = 3,2	$(3,2)^2 = 10,24$	10,24(1) = 10,24
6	4	6 - 1,8 = 4,2	$(4,2)^2 = 17,64$	17,64(4) = 70,56

$$\Sigma(x-\overline{x})^2 f = 145.40$$

Encontre o desvio padrão da amostra.

$$(x-\overline{x})^2$$
 $(x-\overline{x})^2$ $(x-\overline{x})^2 f$

$$s = \sqrt{\frac{\sum (x - \overline{x})^2 f}{n - 1}} = \sqrt{\frac{145.40}{50 - 1}} \approx 1.7$$

O desvio padrão é de cerca de 1,7 criança.

estatística aplicada

4º edição

Seção 2.5

Medidas de posição

Quartilhos

- Fractis são números que particionam (dividem) um conjunto de dados ordenados em partes iguais
- Quartis dividem dados ordenados em quatro partes aproximadamente iguais
 - Primeiro quartil, Q_1 : Cerca de um quarto dos dados cai em ou abaixo de Q_1
 - **Segundo quartil, Q_2:** Cerca de metade dos dados caem em ou abaixo de Q_2 (mediana)
 - Terceiro quartil, Q_3 : Cerca de três quartos dos dados caem em ou abaixo de Q_3

estatística aplicada

4º edição

Exemplo: encontrando quartis

As pontuações dos testes de 15 empregados matriculados em um curso de primeiros socorros são listadas. Encontre o primeiro, o segundo e o terceiro quartil das pontuações dos testes.

13 9 18 15 14 21 7 10 11 20 5 18 37 16 17

Solução:

• Q_2 divide o conjunto de dados em duas metades

Metade inferior

Metade superior

5 7 9 10 11 13 14 15 16 17 18 18 20 21 37

estatística aplicada Solução: encontrando 4º edição quartis

• O primeiro e o terceiro quartis são as medianas das metades inferior e superior do conjunto de dados

Cerca de um quarto dos funcionários obteve nota 10 ou menor; cerca de metade deles obteve 15 ou menor; e cerca de três quartos obteve 18 ou menor.

estatística aplicada

4º edição

Amplitude interquartil

Encontrando a amplitude interquartil (VIQ)

- A diferença entre o terceiro e o primeiro quartis
- VIQ = $Q_3 Q_1$

estatística aplicada

4º edição

Exemplo: encontrando a amplitude interquartil

Encontre a amplitude interquartil das notas dos testes.

Lembre-se:
$$Q_1 = 10$$
, $Q_2 = 15$ e $Q_3 = 18$

Solução:

• VIQ =
$$Q_3 - Q_1 = 18 - 10 = 8$$

As notas dos testes na porção do meio do conjunto de dados variam no máximo em 8 pontos.

4º edição

Gráfico de caixa-e-bigodes

- Ferramenta exploratória de análise de dados
- Destaca qualidades importantes do conjunto de dados
- Requer (sumário de cinco números):
 - Entrada mínima
 - Primeiro quartil Q_1
 - Mediana Q_2
 - Terceiro quartil Q_3
 - Entrada máxima

4º edição

Desenhando um gráfico de caixa-e-bigodes

- 1. Encontre o sumário de cinco números do conjunto de dados.
- 2. Construa uma escala horizontal que cubra a variância dos dados.
- 3. Ponha os cinco números acima da escala horizontal.
- 4. Desenhe uma caixa acima da escala horizontal de Q_1 até Q_3 e desenhe uma linha vertical na caixa em Q_2 .
- 5. Desenhe bigodes saindo da caixa para as entradas mínima e máxima.

LARSON I FARBEF

estatística aplicada

Exemplo: desenhando um 400 gráfico de caixa-e-bigodes

Desenhe um gráfico de caixa-e-bigodes que represente as 15 pontuações dos testes.

Lembre-se: Mín. = 5 $Q_1 = 10$ $Q_2 = 15$ $Q_3 = 18$

Máx. = 37

Solução:

Cerca de metade das notas estão entre 10 e 18. Olhando para o comprimento do bigode direito, pode-se concluir que 37 é um possível valor discrepante.

estatística aplicada

4º edição

Percentis e outros fractis

Fractis	Sumário	Símbolos
Quartis	Divide os dados em 4 partes iguais	Q_1, Q_2, Q_3
Decis	Divide os dados em 10 partes iguais	$D_1, D_2, D_3,, D_9$
Percentis	Divide os dados em 100 partes iguais	$P_1, P_2, P_3, \dots, P_{99}$

estatística aplicada

Exemplo: interpretando percentis

A ogiva representa a distribuição de frequência cumulativa para as provas do SAT (vestibular dos EUA) de estudantes em uma ano recente. Qual nota representa o 72º percentil? Como você deve interpretar isso? (Fonte: College Board Online.)

estatística aplicada

4º edição

Solução: interpretando percentis

O 72° percentil corresponde à nota 1.700.

Isso significa que 72% dos alunos obtiveram resultados de 1.700 ou menos.

4º edição

O escore padrão

Escore padrão (escore z)

 Representa o número de desvios padrão que um dado valor x cai da média μ.

•
$$z = \frac{\text{valor - média}}{\text{desvio padrão}} = \frac{x - \mu}{\sigma}$$

estatística aplicada

4º edição

Exemplo: comparando escores z de diferentes conjuntos de dados

Em 2007, o ator Forest Whitaker ganhou o Oscar de melhor ator, aos 45 anos de idade, por sua atuação no filme O Último Rei da Escócia. A atriz Helen Mirren ganhou o prêmio de melhor atriz aos 61 anos por seu papel em A Rainha. A idade média para todos os vencedores do prêmio de melhor ator é 43,7, com desvio padrão de 8,8. A idade média para as vencedoras do prêmio de melhor atriz é 36, com desvio padrão de 11,5. Encontre o escore z que corresponda à idade de cada ator ou atriz. Depois, compare os resultados.

estatística aplicada

4º edição

Solução: comparando escores z de diferentes conjuntos de dados

Forest Whitaker

$$z = \frac{x - \mu}{\sigma} = \frac{45 - 43.7}{8.8} \approx 0.15$$

Desvio padrão 0,15 acima da média

Helen Mirren

$$z = \frac{x - \mu}{\sigma} = \frac{61 - 36}{11.5} \approx 2.17$$

Desvio padrão 2,17 acima da média

4º edicão

Escores muito incomuns

Escores não comuns

Escores comuns

Escore z

O escore z correspondente à idade de Helen Mirren é mais de dois desvios padrão da média, então é considerado incomum. Comparado a outras vencedoras do prêmio de melhor atriz, ela é relativamente mais velha, enquanto a idade de Forest Whitaker é pouco acima da média dos ganhadores do prêmio de melhor ator.

z = 0.15

4º edição

Sumário

- Construímos distribuições de frequência e suas representações gráficas (histogramas, polígonos e ogivas)
- Fizemos gráficos de dados quantitativos usando um diagrama de ramos-e-folhas e diagrama de pontos
- Fizemos gráficos de dados qualitativos usando gráficos de pizza e de Pareto
- Fizemos gráficos de dados emparelhados usando gráficos de dispersão e gráficos de série temporal

4º edição

Sumário

- Determinamos a média, a mediana e a moda de uma população e de uma amostra
- Determinamos a média ponderada de um conjunto de dados e a média de uma distribuição de frequência
- Descrevemos a forma da distribuição como simétrica, uniforme, ou assimétrica e comparamos a média e a mediana de cada um
- Determinamos a variância e o desvio padrão da população e da amostra
- Usamos a Regra Empírica e o Teorema de Chebychev para interpretar o desvio padrão

Sumário

- Determinamos os quartis de um conjunto de dados
- Determinamos a amplitude interquartil de um conjunto de dados
- Criamos gráfico de caixa-e-bigodes
- Interpretamos outros fractis, como percentis
- Determinamos e interpretamos o escore padrão (escore z)