

Option of Venetian Blinds reflector for NNbar

For simulations here I used the file of neutron events from MCNPL LD₂ through the LBP provided by Richard Wagner on June 3

Yuri Kamyshkov/ University of Tennessee email: kamyshkov@utk.edu

New LBP May 2022

LBP side view. Picture from meeting May 18, 2022

V-B reflector coverage at z=10 m through LBP

Two V-B reflector modules with m=6 (schematic)

Upper horizontal blades (n=56)

# blad	le, ystart,	center pos,	, angle,	yend	
1	1.319364	1.341147	0.072483	1.362930 ~ 5 cm gap	
2	1.270368	1.291479	0.070257	1.312591 J S CITI gap	
3	1.222878	1.243339	0.068095	1.263799	
4	1.176848	1.196676	0.065998	1.216504	
5	1.132230	1.151445	0.063962	1.170660	
6	1.088981	1.107600	0.061986	1.126220	
7	1.047056	1.065099	0.060068	1.083140	
8	1.006415	1.023897	0.058207	1.041379	
9	0.967018	0.983956	0.056401	1.000895	
10	0.928825	0.945236	0.054649	0.961647	
11	0.891799	0.907698	0.052948	0.923598	
12	0.855904	0.871307	0.051299	0.886710	
13	0.821103	0.836025	0.049698	0.850947	
14	0.787365	0.801820	0.048145	0.816274	
15	0.754655	0.768656	0.046638	0.782658	
16	0.722942	0.736504	0.045176	0.750066	
17	0.692194	0.705330	0.043758	0.718466	
18	0.662383	0.675105	0.042382	0.687827	
19	0.633479	0.645800	0.041048	0.658121	
20	0.605454	0.617386	0.039753	0.629318	
21	0.578282	0.589836	0.038497	0.601391	
22	0.551935	0.563124	0.037279	0.574313	
23	0.526389	0.537223	0.036097	0.548057	
24	0.501620	0.512109	0.034951	0.522599	
25	0.477603	0.487758	0.033839	0.497914	
26	0.454315	0.464147	0.032760	0.473978	
27	0.431734	0.441252	0.031714	0.450769	
28	0.409839	0.419052	0.030700	0.428264	

```
# blade, ystart,
               center pos,
                                      vend
                           angle,
     0.388608
                0.397525
                          0.029716
                                    0.406443
  30
      0.368021
                0.376652
                          0.028761
                                    0.385283
  31
      0.348059
                0.356412
                          0.027835
                                    0.364764
      0.328702
                0.336785
                          0.026937
                                    0.344869
                0.317754
                          0.026066
      0.309933
                                    0.325576
  34
      0.291732
                0.299300
                          0.025222
                                    0.306868
      0.274083
                0.281405
                          0.024402
                                    0.288727
  36
      0.256969
                0.264053
                          0.023608
                                    0.271137
      0.240374
                0.247227
                          0.022837
                                    0.254079
      0.224282
                0.230910
                          0.022090
                                    0.237538
      0.208677
                0.215088
                          0.021365
                                    0.221498
 40
      0.193545
                0.199745
                          0.020662
                                    0.205944
      0.178872
 41
                0.184867
                          0.019980
                                    0.190862
  42
      0.164643
                0.170440
                          0.019319
                                    0.176236
 43
      0.150845
                0.156449
                          0.018678
                                    0.162053
      0.137465
                0.142883
                          0.018056
                                    0.148300
  45
      0.124491
                0.129727
                          0.017453
                                    0.134963
 46
      0.111909
                0.116970
                          0.016868
                                    0.122031
  47
      0.099708
                0.104599
                          0.016301
                                    0.109489
      0.087877
                0.092602
                          0.015751
                                    0.097328
  48
 49
      0.076404
                0.080969
                          0.015217
                                    0.085535
      0.065278
                0.069688
                          0.014700
                                    0.074098
  51
      0.054489
                0.058749
                          0.014198
                                    0.063008
      0.044027
                0.048140
                          0.013711
                                    0.052254
      0.033881
                0.037853
                          0.013239
                                    0.041825
                0.027877
                          0.012782
  54
     0.024043
                                    0.031712
      0.014502
                0.018204
                          0.012338
                                    0.021905
                          0.011908
                                    0.012395
      0.005250
                0.008823
```

~ 1 cm gap

Lower horizontal blades (n=37)

```
# blade, ystart, center pos, angle,
                                    yend
                                                           # blade, ystart, center pos, angle,
                                                                                                  yend
   1 -0.909727 -0.918920 -0.030633 -0.928113
                                                                21 -0.564985 -0.569374 -0.014628 -0.573763
                                              ~ 2.2 cm gap
   2 -0.886993 -0.895869 -0.029579 -0.904746
                                                                22 -0.552701 -0.556918 -0.014057
                                                                                                  -0.561135
               -0.873518 -0.028557 -0.882088
     -0.864949
                                                                23 -0.540788 -0.544839 -0.013503
                                                                                                  -0.548891
   4 -0.843573 -0.851845 -0.027566 -0.860117
                                                                24 -0.529236 -0.533126 -0.012966 -0.537016
     -0.822846 -0.830830 -0.026605
                                   -0.838813
                                                                25 -0.518034 -0.521768 -0.012445
                                                                                                  -0.525502
   6 -0.802748
               -0.810452 -0.025673
                                    -0.818155
                                                                26 -0.507171 -0.510754 -0.011940
                                                                                                  -0.514336
   7 -0.783260 -0.790692 -0.024768 -0.798124
                                                                27 -0.496637 -0.500072 -0.011450 -0.503507
   8 -0.764362 -0.771531 -0.023891 -0.778700
                                                                28 -0.486422 -0.489715 -0.010974
                                                                                                  -0.493007
   9 -0.746037 -0.752951 -0.023041 -0.759864
                                                                29 -0.476516 -0.479670 -0.010514 -0.482824
   10 -0.728268 -0.734934 -0.022216 -0.741600
                                                                30 -0.466910 -0.469930 -0.010067
                                                                                                  -0.472950
   11 -0.711037 -0.717463 -0.021415 -0.723889
                                                                31 -0.457594 -0.460484 -0.009633
                                                                                                  -0.463375
   12 -0.694329 -0.700522 -0.020639
                                    -0.706714
                                                                32 -0.448561 -0.451325 -0.009213
                                                                                                  -0.454089
   13 -0.678127 -0.684094 -0.019887 -0.690060
                                                                33 -0.439801 -0.442442 -0.008805 -0.445084
   14 -0.662416 -0.668163 -0.019157 -0.673911
                                                                34 -0.431306 -0.433829 -0.008410
                                                                                                  -0.436352
   15 -0.647180 -0.652716 -0.018449 -0.658251
                                                                35 -0.423068 -0.425476 -0.008027
                                                                                                  -0.427884
   16 -0.632407 -0.637736 -0.017762 -0.643065
                                                                36 -0.415079 -0.417376 -0.007655
                                                                                                  -0.419673
   17 -0.618080 -0.623210 -0.017097 -0.628339
                                                                37 -0.407333 -0.409521 -0.007295 -0.411709
   18 -0.604188 -0.609124 -0.016451 -0.614060
   19 -0.590717 -0.595464 -0.015825 -0.600212
   20 -0.577653 -0.582219 -0.015217 -0.586784
```

Vertical blades left and right [latter with opposite sign] (n=91) bending in X-direction

#	ystart,	center	pos,	angle,	yend
1	1.618916	1.64001	0.070198	0.601481	1.661105
2	1.570275	1.590743	0.068121	0.601395	1.611211
3	1.52305	1.54291	0.066101	0.601313	1.562769
4	1.477198	1.496466	0.064138	0.601236	1.515734
5	1.432679	1.451372	0.06223	0.601164	1.470065
6	1.389452	1.407586	0.060374	0.601095	1.425721
7	1.347479	1.36507	0.058571	0.601031	1.382662
8	1.306723	1.323786	0.056818	0.60097	1.34085
9	1.267147	1.283698	0.055114	0.600912	1.300249
10	1.228717	1.24477	0.053458	0.600858	1.260823
11	1.191399	1.206968	0.051849	0.600807	1.222536
12	1.15516	1.170258	0.050285	0.600759	1.185356
13	1.119968	1.134609	0.048765	0.600714	1.149251
14	1.085793	1.09999	0.047288	0.600672	1.114187
15	1.052605	1.06637	0.045852	0.600631	1.080136
16	1.020374	1.03372	0.044457	0.600593	1.047066
17	0.989074	1.002012	0.043102	0.600558	1.014951
18	0.958675	0.971218	0.041785	0.600524	0.983761
19	0.929153	0.941311	0.040505	0.600493	0.95347
20	0.900482	0.912266	0.039261	0.600463	0.924051
21	0.872636	0.884058	0.038053	0.600435	0.895479
22	0.845592	0.856661	0.036879	0.600408	0.86773
23	0.819327	0.830053	0.035738	0.600383	0.840779
24	0.793818	0.804211	0.03463	0.60036	0.814604
25	0.769042	0.779112	0.033553	0.600338	0.789182
26	0.744979	0.754735	0.032507	0.600317	0.76449
27	0.721609	0.731059	0.03149	0.600298	0.740509
28	0.69891	0.708063	0.030503	0.600279	0.717217
29	0.676863	0.685729	0.029543	0.600262	0.694594
30	0.65545	0.664036	0.028611	0.600246	0.672622

31	0.634653	0.642966	0.027706	0.60023	0.65128
32	0.614452	0.622502	0.026826	0.600216	0.630552
33	0.594832	0.602626	0.025971	0.600202	0.610419
34	0.575776	0.58332	0.025141	0.60019	0.590864
35	0.557267	0.564568	0.024334	0.600178	0.57187
36	0.539289	0.546355	0.023551	0.600166	0.553422
37	0.521827	0.528665	0.022789	0.600156	0.535503
38	0.504867	0.511483	0.02205	0.600146	0.518099
39	0.488393	0.494793	0.021331	0.600137	0.501194
40	0.472392	0.478583	0.020634	0.600128	0.484774
41	0.45685	0.462838	0.019956	0.600119	0.468825
42	0.441754	0.447544	0.019297	0.600112	0.453334
43	0.427091	0.432689	0.018657	0.600104	0.438287
44	0.412849	0.41826	0.018036	0.600098	0.423672
45	0.399015	0.404245	0.017432	0.600091	0.409476
46	0.385578	0.390633	0.016845	0.600085	0.395687
47	0.372527	0.37741	0.016276	0.600079	0.382293
48	0.35985	0.364567	0.015722	0.600074	0.369284
49	0.347536	0.352092	0.015185	0.600069	0.356648
50	0.335576	0.339975	0.014663	0.600065	0.344374
51	0.323958	0.328205	0.014155	0.60006	0.332452
52	0.312674	0.316773	0.013662	0.600056	0.320872
53	0.301713	0.305668	0.013184	0.600052	0.309623
54	0.291066	0.294882	0.012719	0.600049	0.298698
55	0.280725	0.284405	0.012267	0.600045	0.288085
56	0.27068	0.274228	0.011828	0.600042	0.277777
57	0.260923	0.264343	0.011402	0.600039	0.267764
58	0.251445	0.254742	0.010988	0.600036	0.258038
59	0.24224	0.245416	0.010586	0.600034	0.248591
60	0.233298	0.236357	0.010195	0.600031	0.239415
61	0.224612	0.227557	0.009816	0.600029	0.230502

62	0.216176	0.21901	0.009447	0.600027	0.221844
63	0.207981	0.210708	0.009089	0.600025	0.213435
64	0.200021	0.202644	0.008742	0.600023	0.205266
65	0.19229	0.194811	0.008404	0.600021	0.197332
66	0.184779	0.187202	0.008076	0.60002	0.189625
67	0.177484	0.179812	0.007757	0.600018	0.182139
68	0.170399	0.172633	0.007447	0.600017	0.174867
69	0.163516	0.16566	0.007146	0.600015	0.167804
70	0.15683	0.158887	0.006854	0.600014	0.160943
71	0.150336	0.152308	0.006571	0.600013	0.154279
72	0.144029	0.145917	0.006295	0.600012	0.147806
73	0.137902	0.13971	0.006027	0.600011	0.141518
74	0.13195	0.13368	0.005767	0.60001	0.13541
75	0.126169	0.127824	0.005514	0.600009	0.129478
76	0.120554	0.122135	0.005269	0.600008	0.123715
77	0.1151	0.116609	0.005031	0.600008	0.118118
78	0.109802	0.111241	0.004799	0.600007	0.112681
79	0.104655	0.106028	0.004574	0.600006	0.1074
80	0.099657	0.100963	0.004356	0.600006	0.10227
81	0.094801	0.096044	0.004144	0.600005	0.097287
82	0.090085	0.091266	0.003937	0.600005	0.092447
83	0.085503	0.086625	0.003737	0.600004	0.087746
84	0.081053	0.082116	0.003543	0.600004	0.083179
85	0.076731	0.077737	0.003354	0.600003	0.078743
86	0.072532	0.073483	0.00317	0.600003	0.074435
87	0.068454	0.069352	0.002992	0.600003	0.070249
88	0.064493	0.065338	0.002819	0.600002	0.066184
89	0.060645	0.06144	0.002651	0.600002	0.062235
90	0.056907	0.057653	0.002487	0.600002	0.058399
91	0.053277	0.053975	0.002329	0.600002	0.054674

Velocity components at the source

Blades hits vs blade number is stack, g=9.81 m/s²

Selection of the reflector m

For point-like source and without gravity the beam size on the target is determined by the z-length of the flat blades (60 cm)

	NNbar simu	ulations summar	y for Venetian	-Blinds Ref	lector with	h LBP geo	metry	YK, June 12-2022	
	Detector ef	ficiency 100%	Target dia 2 n	ղ.					
	File	Source	events in LBP	weight	g=	target offset	Reflector m	Nt^2 n-s	ILL units
Point-like source, all reflected, g=0	PLS-0.txt	Point-linke , low LD2 only, LBP	2.635E+06	W	0	0	∞	4.76E+12	2,642
Point-like source, all reflected, g=9.81	PLS-G.txt	Point-linke , low LD2 only, LBP	2.635E+06	W	9.81	-0.8	∞	3.90E+12	2,165
Full LD2 source, all reflected, g=0	FS-0.txt	Full source , low LD2 only, LBP	2.635E+06	W	0	0	∞	6.60E+11	367
Full LD2 source, all reflected, g=9.81	FS-G.txt	Full source , low LD2 only, LBP	2.635E+06	W	9.81	-1.2	∞	5.62E+11	312
Full LD2 source, M=6, g=0	FS-06.txt	Full source , low LD2 only, LBP	2.635E+06	W	0	0	6	4.05E+11	225
Full LD2 source, M=6, g=9.81	FS-G6.txt	Full source , low LD2 only, LBP	2.635E+06	w	9.81	-1.0	6	2.99E+11	166
Upper and lower moderator sources, M=6, g=9.81	ULS-G6.txt	UL full source, both, LBP	3.709E+06	w	9.81	-1.0	6	3.03E+11	168

1 ILL unit is 1.8× 10⁹ n⋅s The detector efficiency is 100%

Moving
Blades
(only
horizontal)

Reflector geometry

only vertical plane, no gravity

For reflection point at (y, z):

ys. zs source

center \rightarrow position

$$\tan \alpha_1 = \frac{z - zs}{y - ys}$$

$$\tan \delta = (y_0 - y)/(L - z)$$

$$\delta = \tan(tan\delta)$$

$$\alpha_2 = 90^\circ + \delta$$

$$\alpha_1 + \beta = \alpha_2 - \beta; \quad \beta = \frac{\alpha_2 - \alpha_1}{2}$$

 \mathcal{Y}

Aiming point

Small motion of horizontal blades of V-B reflector within 72 msec time frame (14 Hz) of ESS dynamic angle that focuses n to the target center at (0,0,200) depending on reflection time.

Since the variation of angle with velocity for each blade (1-56) is the same one can think of the rigid structure of the stack of blades in a single module that will be pivoted around one axis (at the beginning of blade #56)

motion

max 8 mm

Angle – time correction $\beta = \beta(t^* - t_0)$ for distance 10.3 m

Required common angle change is $\sim 0.7^\circ$ or the motion of one side of the 60-cm blade package by 7.3 mm. It can be made with piezo – actuators.

10 m / 200 m/s =50 ms

NNbar simulations summary for Venetian-Blinds Reflector with LBP geometry YK, June 12-2022									
Detector eff	iciency 100%	Target dia 2 n	n.						
File	Source	events in LBP	weight	g=	target offset	Reflector m	Nt^2 n-s	ILL units	
PLS-0.txt	Point-linke , low LD2 only, LBP	2.635E+06	W	0	0	∞	4.76E+12	2,642	
PLS-G.txt	Point-linke , low LD2 only, LBP	2.635E+06	w	9.81	-0.8	∞	3.90E+12	2,165	
FS-0.txt	Full source , low LD2 only, LBP	2.635E+06	w	0	0	∞	6.60E+11	367	
FS-G.txt	Full source , low LD2 only, LBP	2.635E+06	w	9.81	-1.2	∞	5.62E+11	312	
FS-06.txt	Full source , low LD2 only, LBP	2.635E+06	w	0	0	6	4.05E+11	225	
FS-G6.txt	Full source , low LD2 only, LBP	2.635E+06	w	9.81	-1.0	6	2.99E+11	166	
ULS-G6.txt	UL full source, both, LBP	3.709E+06	w	9.81	-1.0	6	3.03E+11	168	
FS-G6M.txt	UL full source, both, LBP	2.635E+06	w	9.81	-1.0	6	3.65E+11	203	

Effect of the moving blades will be larger for colder spectrum of neutrons.

Comparison

At 5 MW

Richard Wagner on April 12, 2022

Using MCNPL from April 2022.

Same optics as with Esben spectra (baseline)

Ratio FOM: 310 / 468

= 0.66

• Ratio Area: (15x15)cm² / (24x40)cm² = 0.23

FOM for LD2_ESS (Esben's model):

290 (@5MW)

- Is Esben's model calculated with LD2 position at -23.7 cm?
- Detector efficiency assumed 50 %
- "ILL unit" is 1.8×10^9 n·s

At 2 MW "Esben's model" FOM=116 24x40 LD2 FOM=187

Taken at 50% of detector efficiency VB reflector shows

This result should be confirmed by independent simulations

current FOM=101

If reflector is at z=10 m the image at z=200 m reproduces the source with magnification of \times 20

X-Y on the target plane weighted by Nt^2

LBP LD2 source, gravity ON, m=6 reflector, target displacement -1.5 m NO moving blades

Target hits select only small area of the source. Not all the area of the source is efficient for creating Nt^2

Neutrons that reached the target plane z = 200 mwere originated in the source plane as \downarrow

Back image of the target with dia 2 m in the source plane through the V-B reflector

Y-motion of point-like source from -100 mm to + 100 mm from the center position at Y=-0.237m, X=0

X-motion of point-like source from -100 mm to + 100 mm (Y=-0.237m)

Elliptical reflector à la NNbar baseline

- For the elliptical reflector the focusing efficiency reduces with the radius.
- With magnification ~ ×20 the target with diameter 2m corresponds to the source area with diameter 10 cm.
- Area of the source integrate the effective radial efficiency function defined by the elliptical reflector

can be obtained with point-like source scan

- For Venetian-blinds reflector every point of the source is almost equally efficient for building image in the target plane at z=200 m. But brighter source might give better Nt²
- V-B reflector should be tried at the back of LD₂ source (15 x 15 cm²)→ its image on the target x 20 will fit into 2-m target diameter
- Optimization of LD₂ source is the function of the reflector type.
 With V-B reflector the concept of neutron optics for NNbar might be changed.

Advantages of the V-B reflector

- 1. Can be optimized for larger Nt^2
- 2. Compatible with large vacuum tube of smaller diameter (\sim 3.5 m)
- 3. Large ballistic path (larger t^2)
- 4. Installation doesn't require assembly inside the big tube
- 5. Blade to blade alignment can be done separately
- 6. Flat super-mirror surfaces (not elliptical)
- 7. Vertical "focus" is re-adjustable to target position
- 8. Vertical source is re-adjustable (can be tuned to UPPER moderator)

Challenges in the V-B reflector

- 1. Keep blades flat (particularly horizontal)
- 2. Keep blades thin (to increase aperture) 2 mm \rightarrow 0.2 mm?
- 3. Needs high accuracy of installation and alignment
- 4. Moving blades need to be in vacuum (14 Hz noise)
- 5. Larger front flange (at least) 3.3×2.3 m

Further V-B reflector design steps

- Optimization of VB reflector scheme:
 - Optimization of LD₂ moderator to higher brightness
 - starting z-position (10 m)
 - length of blades (60 cm)
 - Larger distance to target (200 → 300 m)
 - aperture coverage (angles currently not covered by blades)
 - control of Y-motion of horizontal blades (t_0)
- development of thin metal-substrate flat super mirrors $m \ge 6$ (H. Shimizu?)
- Mechanical construction: stretching super-mirror blades on a heavy frame or using spacers
- Mechanical installation and alignment, blade moving mechanism
- Front vacuum flange design

Optimization of horizontal blade package starting at 10 m

END