CHALCOGENIDES OF ALUMINUM, GALLIUM, AND INDIUM*

Andrew R. Barron

This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0^{\dagger}

The only stable chalcogenides of aluminum are Al_2S_3 (white), Al_2Se_3 (grey), and Al_2Te_3 (dark grey). They are each prepared by the direct reaction of the elements (100 °C) and hydrolyze rapidly in aqueous solution, (1). All the chalcogenides have a hexagonal ZnS structure in which $^2/_3$ of the metal sites are occupied.

$$Al_2E_3 + 6H_2O \rightarrow 2Al(OH)_3 + 3H_2E$$
 (1)

The chalcogenides of gallium and indium are more numerous than those of aluminum, and are listed in Table 1 and Table 2 along with selected physical properties.

Compound	Structural type	Crystallographic system	$egin{array}{c} ext{Cell parameters} \ (ext{Å},\ ^{\circ}) \end{array}$	Band Gap (eV) ^a
GaS		Hexagonal	a = 3.587, c = 15.492	3.05 (dir.), 2.593 (ind.)
GaS	ZnS or NaCl	Cubic	a=5.5	4.0 (opt.)
β-GaSe	GaS	Hexagonal	a = 3.742, c = 15.919	2.103 (dir.), 2.127 (ind.)
γ -GaSe	GaS	Rhombohedral	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
δ-GaSe	GaS	Hexagonal	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
β -GaTe	GaS	Hexagonal	a=4.06,c=16.96	
GaTe	GaS	Monoclinic	$a=17.44,\ b=4.077,\ c=10.456,\ eta=104.4$	1.799 (dir.)
continued on next page				

^{*}Version 1.2: Jan 25, 2010 4:34 pm -0600

[†]http://creativecommons.org/licenses/by/3.0/

α -Ga ₂ S ₃	Wurtzite	Cubic	a = 5.181	
$lpha$ -Ga $_2$ S $_3$	Wurtzite	Monoclinic	$egin{array}{ll} a &= 12.637, \; b = \ 6.41, \; c = 7.03, \; eta = \ 131.08 \end{array}$	3.438 (opt.)
β -Ga $_2$ S $_3$	Defect wurtzite	Hexagonal	a = 3.685, c = 6.028	2.5 - 2.7 (opt.)
α -Ga ₂ Se ₃	Sphalerite	Cubic	a=5.429	2.1 (dir.), 2.04 (ind.)
α -Ga $_2$ Te $_3$	Sphalerite	Cubic	a = 5.886	1.22 (opt.)

 $\textbf{Table 1: Stoichiometries, structures and selected physical properties of the crystalline chalcogenides of gallium. a dir = direct, ind = indirect, opt = optical. }$

Compound	Structural type	Crystallographic system	$egin{array}{c} ext{Cell parameters} \ (ext{Å},\ ^\circ) \end{array}$	Band gap (eV) ^a
β -InS	GaS	Orthorhombic	a = 3.944, b = 4.447, c = 10.648	2.58 (dir.), 2.067 (ind.)
InS ^b	$\mathrm{Hg_{2}Cl_{2}}$	Tetragonal		
InSe	GaS	Rhombohedral	a = 4.00, c = 25.32	1.3525 (dir.), 1.32 (ind.)
β -InSe	GaS	Hexagonal	a=4.05, c=16.93	
InTe	TlSe	Tetragonal	a = 8.437, c = 7.139	Metallic
${\rm InTe^b}$	NaCl	Cubic	a = 6.18	
α -In ₂ S ₃	γ -Al ₂ O ₃	Cubic	a = 5.36	
β -In ₂ S ₃	Spinel	Tetragonal	a = 7.618, c = 32.33	2.03 (dir.), 1.1 (ind.)
α -In ₂ Se ₃	Defect wurtzite	Hexagonal	a = 16.00, c = 19.24	
β -In $_2$ Se $_3$	Defect wurtzite	Rhombohedral	a = 4.025, c = 19.222	1.2 - 1.5 (ind.)
α -In ₂ Te ₃	Sphalerite	Cubic	a = 6.158	0.92 - 1.15 (opt.)
${ m In}_6{ m S}_7$		Monoclinic	$a = 9.090, b = 3.887, c = 17.705, \\ \beta = 108.20$	0.89 (dir.), 0.7 (ind.)
			continued on	next page

In_6Se_7	In_6S_7	Monoclinic	$a = 9.430, b = 4.063, c = 18.378, \beta = 109.34$	
In_4Se_3		Orthorhombic	a = 15.297, b = 12.308, c = 4.081	0.64 (dir.)
In_4Te_3	In_4Se_3	Orthorhombic	a = 15.630, b = 12.756, c = 4.441	0.48 (dir.)

Table 2: Stoichiometries, structures and selected physical properties of the crystalline chalcogenides of indium. ^a dir = direct, ind = indirect, opt = optical. ^b High pressure phase.

The hexagonal β -form of Ga_2S_3 is isostructural with the aluminum analogue; however, while the α -phase was proposed to be hexagonal it was later shown to be monoclinic. A cubic α -phase has been reported. Cubic Sphalerite structures are found for Ga_2Se_3 , Ga_2Te_3 , and In_2Te_3 , in which the structure is based on a cubic close packing of the chalcogenides and the metal atoms occupying $^1/_3$ of the tetrahedral sites. These structures are all formed with rapid crystallization; slow crystallization and/or thermal annealing leads to ordering and the formation of more complex structures. The indium sulfides, and selenides derivatives are spinel (γ -Al₂O₃), and defect Würtzite, respectively.

Figure 1: The "S-Ga-Ga-S" S-Ga-Ga-S" structure of hexagonal GaS. Gallium atoms are shown shaded.

The structures of β -GaSe, and β -InSe are similar to hexagonal GaS. The layered structure of GaTe is similar in that it consists of "TeGaGaTe" layers, but is monoclinic, while InS is found in both a (high pressure) tetragonal phase (Figure 2a) as well as an orthorhombic phase (Figure 2b). By contrast to these M-M bonded layered compounds InTe (Figure 3) has a structure formalized as In(I)[In(III)Te₂]; each In(III) is tetrahedrally coordinated to four Te and these tetrahedra are linked via shared edges; the In(I) centers lying between these chains.

Figure 2: Unit cell of (a) tetragonal InS and (b) orthorhombic InS. Indium atoms are shown shaded, and the solid bonds represent the smallest cyclic structural fragment.

Figure 3: Unit cell of tetragonal InTe. Indium atoms are shown shaded, and the solid bonds represent the $[InTe_2]_{\infty}$ chains.

Further sub-chalcogenides are known for indium, e.g.; In_4Se_3 , which contains $[In(III)_3Se_2]^{5+}$ groups (Figure 4). While the formally In(I) molecule In_2S has been detected in the gas phase, it is actually a mixture of In and InS in the solid state.

Figure 4: Structure of $[In(III)_3Se_2]^{5+}$ groups in In_4Se_3 .

1 Bibliography

- W. J. Duffin and J. H. C. Hogg, Acta Crystallogr., 1966, 20, 566.
- J. Goodyear and G. Steigman, Acta Crystallogr. 1963, 16, 946.
- H. Hahn and G. Frank, Z. Anorg. Allgem. Chem., 1955, 278, 340.
- S. Kabalkina, V. G. Losev, and N. M. Gasanly, Solid State Commun., 1982, 44, 1383.
- A. Keys, S. G. Bott, and A. R. Barron, Chem. Mater., 1999, 11, 3578.
- A. N. MacInnes, M. B. Power, and A. R. Barron, Chem. Mater., 1992, 4, 11.
- A. N. MacInnes, W. M. Cleaver, A. R. Barron, M. B. Power, and A. F. Hepp, Adv. Mater. Optics. Electron., 1992,1, 229.
- K. Schubert, E. Dörre, and E. Günzel, Naturwissenschaften, 1954, 41, 488.