Relatório de Análise de Algoritmos

Daniel Marques, Jefferson Oliveira, Vinicius Gonzaga ${\rm August}\ 2,\,2017$

Contents

1	Pro	gramação Dinâmica 3
	1.1	Análise
	1.2	Corte Haste
		1.2.1 Análise
	1.3	Corte Haste Memoizado
		1.3.1 Análise
		1.3.2 Resultados
	1.4	Corte Haste Bottom Up
		1.4.1 Análise
		1.4.2 Resultados
	1.5	Parentização Bottom Up
		1.5.1 Análise
		1.5.2 Resultados
	1.6	Subsequencia Comum Maxima
		1.6.1 Análise
		1.6.2 Resultados
2		oritmos Gulosos 8
	2.1	Análise
	2.2	Seletor de Atividades Iterativo
		2.2.1 Análise
	0.0	2.2.2 Resultados
	2.3	Seletor de Atividades Recursivo
		2.3.1 Análise
		2.3.2 Resultados
	2.4	Mochila Booleana
		2.4.1 Análise
		2.4.2 Resultados
	2.5	Mochila Fracionária
		2.5.1 Análise
		2.5.2 Resultados
3	Gra	$_{13}$
3	3.1	Análise
	$\frac{3.1}{3.2}$	Busca em largura
	3.4	
		3.2.1 Análise
	3.3	Busca em profundidade
	ა.ა	3.3.1 Análise
		3.3.2 Resultados 15
		- 11.11.4 11.50HH:(MIV)

1 Programação Dinâmica

1.1 Análise

Com o objetivo de evitar a computação repetida dos mesmos subproblemas, temos a solução resolvendo problemas pela combinação das soluções dos subproblemas. O exemplo estudado em sala visava obter o maior lucro vendendo uma haste, de modo que cada tamanho é vendido por um preço diferente. Foram calculados os tempos para o corte de hastes, de maneira top down, bottom up e bottom up extendido, com os resultados sendo mostrados abaixo.

1.2 Corte Haste

1.2.1 Análise

```
int corteHaste(int p[], int n){
    if(n<=0) return 0;
    int i;
    int q = INT_MIN;

for(i=0;i<n;i++){
        q = max(q, p[i]+corteHaste(p, n-i-1));
    }
    return q;
}</pre>
```

Listing 1: Código Corte Haste

1.3 Corte Haste Memoizado

1.3.1 Análise

```
int corteHasteMemoizado(int p[], int n){
1
2
        int i, r[n];
        for(i=0;i<n;i++){</pre>
3
            r[i] = INT_MIN;
5
        return corteHasteMemoizadoAux(p,n,r);
6
   }
7
8
   int corteHasteMemoizadoAux(int *p, int n, int *r){
9
        if(r[n-1]>=0) return r[n-1];
10
11
        int i;
        int q = INT_MIN;
12
        for (i=0;i<n;i++) {</pre>
13
            q = max(q, p[i]+corteHaste(p, n-i-1));
14
15
            r[n] = q;
16
17
        return q;
   }
18
```

Listing 2: Código Corte Haste Memoizado

1.3.2 Resultados

Figure 1: corte Haste Memoizado

1.4 Corte Haste Bottom Up

1.4.1 Análise

```
int corteBottomUp(int p[], int n){
1
2
       int r[n], i, j, q;
       r[0] = 0;
3
       for(j=1; j<=n; j++){
           q = INT_MIN;
5
            for(i=1;i<=j;i++)
6
                q = max(q, p[i-1]+r[j-i-1]);
           r[j-1]=q;
9
       return r[n-1];
10
11
   }
```

Listing 3: Código Corte Haste Bottom Up

1.4.2 Resultados

Figure 2: Corte Haste Bottom Up

1.5 Parentização Bottom Up

1.5.1 Análise

```
int MatrixChainOrder(int p[], int n){
1
2
        int **m, i, j, k, L, q;;
        m = (int *) malloc(n*sizeof(int));
3
        for (i=0;i<n;i++) {</pre>
            m[i] = (int *) malloc(n*sizeof(int));
5
6
        for (i=1; i<n; i++)</pre>
8
            m[i][i] = 0;
9
10
        for (L=2; L<n; L++){</pre>
11
             for (i=1; i<n-L+1; i++){
                 j = i+L-1;
13
14
                 m[i][j] = INT_MAX;
15
                 for (k=i; k \le j-1; k++) {
                      q = m[i][k] + m[k+1][j] + p[i-1]*p[k]*p[j];
16
                      if (q < m[i][j])</pre>
17
                          m[i][j] = q;
18
                 }
19
             }
20
21
22
        return m[1][n-1];
```

Listing 4: Código Parentização Bottom Up

1.5.2 Resultados

Figure 3: Parentizacao Bottom Up

1.6 Subsequencia Comum Maxima

1.6.1 Análise

```
int scm( int *X, int *Y, int m, int n )
{
    if (m == 0 || n == 0)
        return 0;

    if (X[m-1] == Y[n-1])
        return 1 + scm(X, Y, m-1, n-1);

    else
        return max(scm(X, Y, m, n-1), scm(X, Y, m-1, n));
}
```

Listing 5: Código Subsequencia Comum Maxima

1.6.2 Resultados

Todas as comparações com a função $T(x) = a*x^2 + b*x + c$

Figure 4: Subsequencia Comum Maxima

Subsequência Comum Máxima

T(n) = 12.23n**2 + 1107n + -3.152e+041.4×10⁷ medições + T(n) 1.2×10⁷ 1×10⁷ 8×10 ⁶ Tempo (ns) 6×10 ⁶ 4×10 6 2×10 ⁶ 0 -2×10⁶ 200 400 600 800 1000 1200 n (tamanho do vetor)

2 Algoritmos Gulosos

2.1 Análise

Assim como os algoritmos de programação dinâmica, é utilizado para resolver problemas de otimização, com a diferença que ela faz a escolha que parecer melhor no momento. Isso implica que esse método não conseguirá sempre alcançar a escolha ótima, sendo papel do usuário determinar qual algoritmo utilizar para resolver o seu problema.

2.2 Seletor de Atividades Iterativo

2.2.1 Análise

```
void seltorIterativo(int s[], int f[], int n){
     int i, j;
2
     //printf ("Selected Activities are:\n");
3
     i = 1;
4
     //printf("A%d ", i);
5
     for (j = 1; j < n; j++){
6
       if (s[j] >= f[i]){
         //printf ("A%d ", j+1);
10
     }
11
   }
12
```

Listing 6: Código Seletor de Atividades Iterativo

2.2.2 Resultados

Todas as comparações com a função T(x) = a*n*log(a) + b

Figure 5: seletor Atividades Iterativo

Seletor de atividades Iterativo T(n) = 0.4969n*log(0.4969) + 1.015

2.3 Seletor de Atividades Recursivo

2.3.1 Análise

```
void seletorRecursivo(int s[], int f[], int i, int j, int a[]){
2
         int m = i + 1;
        while (m < j \&\& s[m] < f[i]){
3
               m = m + 1;
        }
5
        if (m < j){</pre>
6
               a[m] = 1;
               seletorRecursivo(s,f,m,j,a);
        }
9
   }
10
```

Listing 7: Código Seletor de Atividades Recursivo

2.3.2 Resultados

Todas as comparações com a função T(x) = a*n*log(a) + b

Figure 6: seletor Atividades Recursivo

Seletor de atividades Recursivo T(n) = 0.4958n*log(0.4958) + 1.011

2.4 Mochila Booleana

2.4.1 Análise

```
int *mochilaBooleana (item *items, int n, int w) {
1
2
       int i, j, a, b, *mm, **m, *s;
       mm = calloc((n + 1) * (w + 1), size of (int));
3
       m = malloc((n + 1) * sizeof (int *));
       m[0] = mm;
5
       for (i = 1; i <= n; i++) {
6
           m[i] = &mm[i * (w + 1)];
7
           for (j = 0; j \le w; j++) {
8
                if (items[i - 1].weight > j)
9
                    m[i][j] = m[i - 1][j];
10
11
                else {
12
                    a = m[i - 1][j];
13
14
                    b = m[i - 1][j - items[i - 1].weight] + items[i - 1].value;
15
                    m[i][j] = a > b ? a : b;
                }
16
           }
17
       }
18
       s = calloc(n, sizeof (int));
19
       for (i = n, j = w; i > 0; i--) {
20
            if (m[i][j] > m[i - 1][j]) {
21
                s[i - 1] = 1;
22
                j -= items[i - 1].weight;
23
           }
       }
       free(mm);
26
       free(m);
27
       return s;
28
   }
29
```

Listing 8: Código Corte Haste

2.4.2 Resultados

Figure 7: Mochila Booleana

2.5 Mochila Fracionária

2.5.1 Análise

Listing 9: Código Mochila Fracionaria

2.5.2 Resultados

Todas as comparações com a função T(x) = a*n*lg(a) + b

Figure 8: Mochila Fracionaria

3 Grafos

3.1 Análise

Utilizado para formulação de diversos problemas computacionais, além de armazenar e organizar dados de maneira eficiente, facilitando sua busca e modificação. Levando-se em consideração as maneiras possíveis de se realizar busca eficiente em um grafo, algumas delas foram selecionadas e suas performances calculadas. O resultado pode ser visto a seguir:

3.2 Busca em largura

3.2.1 Análise

A busca em largura é o tipo de busca que consiste em visitar todos os nós ao redor do vertice em questão, dito vértice raiz, ao terminar a busca ao redor ele busca ao redor dos outros vizinhos. Cada nó tem o valor da distância dele até o vértice inicial. A busca em largura gera uma árvore de busca em largura cuja raiz é o nó inicial a distância dessa raiz a qualquer nó da árvore corresponde a menor distância no grafo original. A complexidade de tempo de busca em largura é O(|V|+|E|).

```
void busca_largura(grafo* g, int ini){
       int* visitados = (int *) malloc(g->qtd_vertice*sizeof(int));
2
3
       int i, vert, NV, cont=1, *fila, IF = 0, FF = 0;
5
       for(i=0;i<g->qtd_vertice;i++)
            visitados[i] = 0;
6
       NV = g->qtd_vertice;
7
       fila = (int *) malloc(NV*sizeof(int));
8
       FF++;
9
       fila[FF] = ini;
10
       visitados[ini] = cont;
11
       while(IF!=FF){
12
            IF = (IF+1)%NV;
13
            vert = fila[IF];
            for(i=0;i<g->grau[vert];i++){
15
                if(!visitados[g->aresta[vert][i]]){
16
                    FF = (FF+1)\%NV;
17
                    fila[FF] = g->aresta[vert][i];
18
                    visitados[g->aresta[vert][i]] = cont;
19
                }
20
            }
21
            cont++;
22
       }
24
       free(fila);
25
   }
26
```

Listing 10: Busca em largura

3.2.2 Resultados

Figure 9: busca Em Largura

3.3 Busca em profundidade

3.3.1 Análise

```
void busca_profundidade(grafo* g, int V, int *visitado)
1
2
3
       int i;
       no* aux = g->aresta[V];
       visitado[V]=1;
5
       mostra_adjacentes(g,V);
6
       while (aux!=NULL) {
            if (visitado[aux->vertice]==0)
                busca_profundidade(g,aux->vertice, visitado);
9
            aux=aux->prox;
10
       }
11
   }
12
13
14
   void DFS(grafo* g, int V){
       visitado = (int *) malloc(g->qtde_vertices*sizeof(int));
15
       memset(visitado,(int)0, sizeof(int)*g->qtde_vertices);
16
       busca_profundidade(g,V,visitado);
17
   }
18
```

Listing 11: Código busca Em Profundidade

3.3.2 Resultados

Todas as comparações com a função T(x) = a*n + b

Figure 10: busca Em Profundidade

Busca em profundidade T(n) = 3.189e-05n + 0.0101

