Accumulation test demo - simulated data

Ang Li and Rina Foygel Barber May 27, 2015

Introduction

This demo reproduces the ordered hypothesis testing simulation in the paper:

 Ang Li and Rina Foygel Barber, "Accumulation tests for FDR control in ordered hypothesis testing" (2015). Available from http://arxiv.org/abs/1505.07352 (http://arxiv.org/abs/1505.07352)

The demo was run using R version 3.2.0.

The demo considers an ordered hypothesis testing problem with n hypotheses, of which n_1 contain true signals. We produce an ordered list of p-values as follows:

- First, generate $Z_i^{\text{prior}} \sim N(\mu_i, 1)$ where $\mu_i = 0$ for index i corresponding to a null hypothesis, and $\mu_i = \mu_{\text{intermix}}$ for a nonnull (true signal) index i. This z-score represents prior information, e.g. data from a prior experiment.
- Then, reorder the hypotheses according to their z-scores, with the largest z-scores (in absolute value) first. If μ_{intermix} is large, then this yields good separation: the n_1 true signals will mostly be placed early in the list. If μ_{intermix} is small, however, then this yields poor separation: many true signals will be mixed in with the nulls throughout the list.
- Next, for each hypothesis, generate a new z-score $Z_i \sim N(\mu_i, 1)$ where now $\mu_i = 0$ or $\mu_i = \mu_{\text{signal}}$, for either a strong signal strength (μ_{signal} large) or a weak signal strength (μ_{signal} small). Produce p-values p_i with a two-sided z-test. See paper for details.

We then run accumulation tests, specifically, we text the HingeExp method (with parameter C=2), the SeqStep and SeqStep+ (Barber and Candès 2014) (each with parameters C=2), and the ForwardStop method (G'Sell et al 2013).

Setup

We first define some functions for running the simulation and for plotting the results. (Code for this setup hidden in the output, but is visible in .Rmd file)

```
Setup_simulation_functions()
## [1] "Simulation functions defined."
```

```
Setup_simulation_plotting_functions()
```

```
## [1] "Simulation plotting functions defined."
```

```
source('accumulation_test_functions.R')
```

Parameters for the simulations:

```
hfuns=c(create_SeqStep_function(C=2),create_SeqStep_function(C=2),create_HingeEx
p_function(C=2),create_ForwardStop_function())
numerator_pluses=c(2,0,0,0)
denominator_pluses=c(1,0,0,0)
names=c('SeqStep+ (C=2)','SeqStep (C=2)','HingeExp (C=2)','ForwardStop')
mu_low=2;mu_high=3;
n=1000; ntrials=100;
pr_list=c(0.2,0.1) # proportion of true signals
alphaseq=(2:10)/40
seeds=1:ntrials
```

Simulations part 1

Settings: n = 1000 hypotheses, $k^* = 200$ true signals

First, we run each method with target FDR level α (ranging in $\alpha = \{0.05, 0.075, 0.1, \dots, 0.25\}$). For each method and each α , we record the actual FDR attained, and the power to detect signals, averaged over 100 trials.

```
pr=pr_list[1]
#pdf(paste0('FDR_vs_power_plot_n_',n,'_kstar_',n*pr,'.pdf'),14,14)
par(mfrow=c(2,2))
for(i in 1:2){for(j in 1:2){
    mul=c(mu_low,mu_high)[i];mu2=c(mu_low,mu_high)[j]
    temp=CompEffectFunc(n,pr,mu1,mu2,hfuns,numerator_pluses,denominator_pluses,seed
s, alphaseq)
FDR_and_power_plot(temp[[2]],temp[[1]],names,cols=c('black','blue','purple','re
d'),pchs=15:18,alpha=alphaseq, alpha_display_div=2, title=get_titles(mu_low,mu_hig
h)[i,j],show_legend=(i==1 && j==1))
};#dev.off()
```


Now we look at how each method estimates the FDP, along the sequence of p-values. At each k, we compare the true FDP among the first k p-values, with the estimated FDP at k for each method. (All results averaged over 100 trials).

```
#pdf(paste0('FDP_vs_k_plot_n_',n,'_kstar_',n*pr,'.pdf'),14,14)
 par(mfrow=c(2,2))
  for(i in 1:2){for(j in 1:2){
    mu1=c(mu_low,mu_high)[i];mu2=c(mu_low,mu_high)[j]
       temp=FDPSeqFunc(n,pr,mu1,mu2,hfuns,numerator pluses,denominator pluses,seeds)
       FDP_vs_k_plot(temp[[1]],temp[[2]],names,cols=c('black','blue','purple','re
  d'),pchs=15:18,title=get_titles(mu_low,mu_high)[i,j],kmax=300,show_legend=(i==1 &&
  }};#dev.off()
         Poor separation & weak signal (\mu_1 = 2, \mu_2 = 2)
                                                                  Poor separation & strong signal (\mu_1 = 2, \mu_2 = 3)
  1.0
                                                            1.0
                SeqStep+ (C=2)
                 SeqStep (C=2)
                 HingeExp (C=2)
                 ForwardStop
Estimated FDP(k)
                                                         Estimated FDP(k)
                                                            0.4
                                                            0.2
  0.0
              50
                     100
                             150
                                     200
                                            250
                                                    300
                                                                        50
                                                                               100
                                                                                       150
                                                                                              200
                                                                                                      250
                                                                                                              300
        Good separation & weak signal (\mu_1 = 3, \mu_2 = 2)
                                                                  Good separation & strong signal (\mu_1 = 3, \mu_2 = 3)
  1.0
  0.8
Estimated FDP(k)
                                                          Estimated FDP(k)
                                                            0.4
  0.2
```

100

150

k

200

250

300

Simulations part 2

100

150

200

250

300

50

Settings: n = 1000 hypotheses, $k^* = 100$ true signals

First, we run each method with target FDR level α (ranging in $\alpha = \{0.05, 0.075, 0.1, \dots, 0.25\}$). For each method and each α , we record the actual FDR attained, and the power to detect signals, averaged over 100 trials.

```
pr=pr_list[2]
#pdf(paste0('FDR_vs_power_plot_n_',n,'_kstar_',n*pr,'.pdf'),14,14)
par(mfrow=c(2,2))
for(i in 1:2){for(j in 1:2){
    mu1=c(mu_low,mu_high)[i];mu2=c(mu_low,mu_high)[j]
    temp=CompEffectFunc(n,pr,mu1,mu2,hfuns,numerator_pluses,denominator_pluses,seed
s, alphaseq)
FDR_and_power_plot(temp[[2]],temp[[1]],names,cols=c('black','blue','purple','re
d'),pchs=15:18,alpha=alphaseq, alpha_display_div=2, title=get_titles(mu_low,mu_hig
h)[i,j],show_legend=(i==1 && j==1))
}};#dev.off()
```


Now we look at how each method estimates the FDP, along the sequence of p-values. At each k, we compare the true FDP among the first k p-values, with the estimated FDP at k for each method. (All results averaged over 100 trials).

```
#pdf(paste0('FDP_vs_k_plot_n_',n,'_kstar_',n*pr,'.pdf'),14,14)
par(mfrow=c(2,2))
for(i in 1:2){for(j in 1:2){
    mu1=c(mu_low,mu_high)[i];mu2=c(mu_low,mu_high)[j]
    temp=FDPSeqFunc(n,pr,mu1,mu2,hfuns,numerator_pluses,denominator_pluses,seeds)
    FDP_vs_k_plot(temp[[1]],temp[[2]],names,cols=c('black','blue','purple','re
d'),pchs=15:18,title=get_titles(mu_low,mu_high)[i,j],kmax=300,show_legend=(i==1 &&
j==1))
}};#dev.off()
```


Barber, Rina Foygel, and Emmanuel Candès. 2014. "Controlling the False Discovery Rate via Knockoffs." ArXiv Preprint ArXiv:1404.5609.

G'Sell, Max Grazier, Stefan Wager, Alexandra Chouldechova, and Robert Tibshirani. 2013. "False Discovery Rate Control for Sequential Selection Procedures, with Application to the Lasso." ArXiv Preprint ArXiv:1309.5352.