Workshop BCB: Macro com agentes heterogêneos Aula 2: Computational Aspects of the Aiyagari Model

Tomás R. Martinez

Insper

References

- Heer and Maussner (2009): Ch. 1, 4, and 7.
- Fehr and Kindermann (2019): Ch. 8 and 9.
- There are online notes by some very smart people: Makoto Nakajima, Alisdair McKay, Jesús Fernández-Villaverde, Econ-ark, and many others. A big thanks to all of them.
- I will assume that you know basic Dynamic Programming, Value Function Iteration and Markov chains.
 - ▶ If you need a refresh, check Ljunqvist and Sargent: Ch. 2, 3, and 4.
- An advanced reference: Maliar and Maliar (2014, Numerical Methods for Large-Scale Dynamic Economic Models).

Baseline Aiyagari Model

- Aggregate production function: $Y_t = K_t^{\alpha} N_t^{1-\alpha}$
- Household Problem:

$$\begin{split} V(a,s) &= \max_{a' \geq -\phi} \{ u((1+r)a + w \exp\{s\} - a') + \beta \mathbb{E}[V(a',s')|s] \} \\ s_t &= \rho s_{t-1} + \sigma \varepsilon_t, \quad \text{ where } \varepsilon \sim N(0,1) \end{split}$$

We must solve for the interest rate that clears the asset market:

$$\int_{A \times S} a d\lambda(a, s) = K$$

where λ is the invariant distribution and K is the capital demand from the firm's problem.

Algorithm in a Nutshell

The solution of the problem is characterized by a **fixed point**:

- 1. Guess an interest rate r_0 (or quantity of capital K_0).
- 2. Using r_0 in the solution of the firm's problem, recover capital demand and the implied wage.
- 3. Given w and r_0 , solve for policy functions of the household.
- 4. Given the household policy functions', solve for the invariant distribution.
- 5. Given the invariant distribution, compute the excess demand function:

$$\Phi(r) = \int_{A \times S} a d\lambda(a, s; r) - K(r),$$

if $\Phi(r)=0$, we found equilibrium. Otherwise, update the guess r_0 and go back to step 2.

Discretization

- We have to solve the HH problem using global methods.
- The first step is to discretize the state space!
- Trade-off between speed and accuracy: with more gridpoints, you have a more accurate solution, but it takes more time to solve the problem.
- You must always check that the solution of your model is not affected by the choices you
 make regarding the gridpoints!
 - Sanity check: increase the number of gridpoints and change the boundary of the state space to check if anything is changing.

Discretization: Assets

• Choose the number of gridpoints n_A , the bounds of the state space (a_1, a_{n_A}) and a discretization method so the grid is:

$$g_A = [a_1, a_2, ..., a_{n_A}]'.$$

- Bounds: $a_1 = -\phi$, the upper bound a_{n_A} must be chosen so it never binds.
 - ▶ A simple trick is to use the steady state *k* of the Neoclassical Growth Model and multiply by a constant.

• Gridpoints distance:

- ► Simplest way: equal distance between the gridpoints.
- ▶ Alternative: include more points in the area with more curvature/kinks. In Aiyagari, this is closer to the borrowing constraint.

$$a_i = a_1 + (a_{n_A} - a_1) \frac{(1+\nu)^{i-1} - 1}{(1+\nu)^{n_A-1} - 1}$$
 for $i = 1, 2, ..., n_A$.

where ν is the growth rate between points.

Discretization: Assets

Figure: Discretization: $a_{min} = 0$, $a_{max} = 250$ and $n_A = 10$

Discretization: Assets

- Very often people use the same gridpoints to approximate both the policy functions and the invariant distribution, but it does NOT to be the case!
- The exact number of gridpoints will depend on the method used to solve for the policy function and the invariant distribution.
 - Less accurate methods require more grid points.
 - ▶ If you plan to use interpolation methods, you may also want to be extra careful.
- Another strategy is to use a multigrid method: solve the model with a coarse grid and then use it as a guess to refine the solution.
- Extra advanced references: Maliar and Maliar (2014, Handbook of Computational Econ.); Brumm and Scheidegger (2017, ECTA).

Discretization: Markov Chain

- We must discretize: $s_t = \rho s_{t-1} + \sigma \varepsilon_t$, where $\varepsilon \sim N(0,1)$, in a discrete Markov Chain with n_S points.
- The output will be a grid and a transition matrix:

$$g_S = [s_1, s_2, ..., s_{n_S}]', \qquad \text{and } \Pi = \begin{bmatrix} \pi_{11} & \pi_{12} & \dots \\ \vdots & \ddots & \\ \pi_{n_S1} & & \pi_{n_Sn_S} \end{bmatrix}$$

where the elements of $\Pi_{n_S \times n_S}$ are the probabilities of going from state i to j:

$$\pi_{ij} = Prob(s' = s_j | s = s_i).$$

Two standard methods to discretize the AR(1): Tauchen and Rouwenhorst.

Discretization: Tauchen

- References: Tauchen (1986) and Flodén (2008, Econ. Letters).
- Start by choosing (symmetrical) end points using the unconditional standard deviation:

$$-s_1 = s_{n_S} = m \left(\frac{\sigma^2}{1 - \rho^2} \right)^{\frac{1}{2}},$$

where m > 0 is a constant.

- Tauchen uses m=3, Floden advocates for $m=1.2\ln(n_S)$.
- Choose equidistant points between s_1 and s_{n_S} .
 - ▶ Denote *d* as the distance between points.
 - ▶ Another option is Gaussian nodes (Tauchen and Hussey, 1991).

Discretization: Tauchen

• Compute the transition probabilities between points using the distribution of ε :

$$\pi_{ik} = \begin{cases} \Phi\left(\frac{s_1 - \rho s_i + d/2}{\sigma}\right) & \text{if } k = 1\\ \Phi\left(\frac{s_k - \rho s_i + d/2}{\sigma}\right) - \Phi\left(\frac{s_k - \rho s_i - d/2}{\sigma}\right) & \text{if } 1 < k < n_S\\ 1 - \Phi\left(\frac{s_{n_S} - \rho s_i - d/2}{\sigma}\right) & \text{if } k = n_S \end{cases}$$

where Φ is the CDF of the N(0,1).

- ullet Intuitively, Tauchen approximates the AR(1) by targeting the conditional distribution of s.
- In general, the method is pretty efficient in matching the AR(1) with a low n_S as long the process is not too close to a unit root.

Tauchen: Intuition

Figure: Distribution of moving from Z_i to Z_j

Source: Alisdair McKay notes.

Discretization: Rouwenhorst

- If the AR(1) is too persistent (e.g., $\rho > 0.9$), you should use Rouwenhorst. The reference is Kopecky and Suen (2010, RED).
- The idea is to approximate the process to a Markov Chain that converges to the invariant binomial distribution.
- Grid: equidistant and symmetric, with $-s_1 = s_{n_S} = \psi$.
- Using three parameters of the Markov chain (p, q, ψ) , the method can match exactly:
 - Unconditional mean, variance and first-order correlation of s_t ;
 - ▶ In the particular example we used, it matches the conditional mean and variance as well.
- Rouwenhorst does not use information about the distribution of ε . As long we are mostly interested in the first two moments, the method should work well.

Rowenhorst: Intuition

- Three parameters (p, q, ψ) in a 2-states Markov Chain:
 - States: $q_s = [-\psi, \psi]\prime$
 - ► Transition probability:

$$\Pi = \begin{bmatrix} p & 1-p \\ 1-q & q \end{bmatrix}$$

- If the variance of the process does not depend on the state: p = q.
- Then we have two parameters p and ψ to match two moments, the first-order autocorrelation and the unconditional variance.
- With $n_s>2$ states, we can define the transition probability recursively (see Kopecky and Suen).

Comparison: Tauchen vs Rowenhorst

Figure: Tauchen vs Rowenhorst: $n_S=5$, $\rho=0.9$ and $\sigma=0.1$

```
States:
Rouwenhorst: [-0.45883147 -0.22941573 0.
                                              0.22941573 0.45883147]
Tauchen: [-0.6882472 -0.3441236 0. 0.3441236 0.6882472]
Transition Matrix (third row):
Rouwenhorst: [0.00225625 0.085975 0.8235375 0.085975 0.00225625]
Tauchen: [1.22257976e-07 4.26599599e-02 9.14679836e-01 4.26599599e-02
1.22257976e-07]
Invariant Distribution:
Rouwenhorst: [0.0625 0.25 0.375 0.25 0.0625]
Tauchen: [0.0304637 0.236133 0.46680659 0.236133 0.0304637 ]
```

Discretization: Advanced Issues

- In the case of non-stationary processes (e.g., life-cycle models), you should adapt the methods. See Fella, Gallipoli and Pan (2019, RED).
- For more general processes such as non-normal, asymmetric distributions, and correlated shocks you may have to use simulation methods. See De Nardi, Fella and Paz-Pardo (2020, JEEA).
- Multivariate processes are also described in Tauchen.
- There is also discretization based on Gauss-Hermite quadrature (see Maliar and Maliar).
 - ▶ They are often useful if you plan to pre-compute the expectation of the VF as in Judd, the Maliars, and Tsener (2017, QE).

Household Problem

- Once we have discretized the state space, we can solve the household problem using a variety of global methods:
 - Value Function Iteration;
 - Policy Function Iteration;
 - Projection Methods.
- Here I will focus in the first two. If we have time, I may discuss the last one.
- Strictly speaking, projection is just a way to approximate the value/policy function, but it is useful to separate it in a different method.

• Once we have the asset and labor grid, we define the discretized value function on the same grid points: $V(a_i, s_j) = V_{ij}$, where V is a $n_A \times n_S$ array:

$$V = \begin{bmatrix} V_{11} & V_{12} & \dots & V_{1n_S} \\ \vdots & \ddots & & \\ V_{n_A 1} & & \dots & V_{n_A n_S} \end{bmatrix}$$

• Our goal is to solve the following Dynamic Programming problem:

$$V_{ij} = \max_{a'_k \ge -\phi} \left\{ u((1+r)a_i + w \exp(s_j) - a'_k) + \beta \sum_{m=1}^{n_S} \pi_{jm} V_{km} \right\},\,$$

where the conditional expectation $\mathbb{E}[V(a',s')|s] = \sum_{m=1}^{n_S} \pi_{jm} V_{km}$.

- We know that under certain conditions Banach Fixed Point Theorem applies, and we can use the following iterative procedure:
 - 1. Guess an initial value function V_{ij}^n .
 - 2. Compute the continuation value using the conditional expectation $\mathbb{E}[V^n(a_k',s')|s_j]$.
 - 3. Given the return function and the continuation value, solve the maximization problem to compute the value function V_{ij}^{n+1} for all state space (i, j).
 - 4. Compute the absolute distance: $d = \max_{i,j} |V_{ij}^{n+1} V_{ij}^n|$. If d < tol, we found V. Otherwise, update the guess $V^n = V^{n+1}$ and repeat.
- The slowest part of the procedure is solving the maximization problem.

- Simplest way to solve the maximization problem: brute force using Grid Search.
- Idea: for all (i, j), compute the value function for all next period asset a'_k and select the one that yields the maximum:

$$V_{ij,k}^{n+1} = \begin{cases} u((1+r)a_i + w \exp(s_j) - a_k') + \beta \mathbb{E}[V^n(a_k', s')|s_j], & \text{if } c_{ij,k} > 0 \\ -\infty, & \text{if } c_{ij,k} \le 0 \end{cases}$$
$$V_{ij}^{n+1} = \max_k \{V_{ij,1}^{n+1}, V_{ij,2}^{n+1}, \dots, V_{ij,n_A}^{n+1}\}$$

Issues:

- ightharpoonup Your optimal policy a' will be defined on-grid. You should have a lot of points in the asset grid to have a good approximation.
- ▶ The Curse of dimensionality bites hard. The method is robust but can be very slow.

• Another way to solve the maximization problem is to interpolate the value function and use a one-dimension optimization algorithm to solve the \max .

Interpolation

- First, interpolate $V^n(a', s')$, then take the conditional expectation.
- ▶ This gives a continuous function on a' (conditional on s): $\mathbb{E}[\hat{V}^n(a_k',s')|s_j] = \hat{V}^n(a';s_j)$, where \hat{V} is the interpolated VF.
- ▶ Since u() is continuous on a', we can define the continuous function φ :

$$\varphi(a'; a_i, s_j) = u((1+r)a_i + w \exp(s_j) - a') + \beta \hat{V}^n(a'; s_j).$$

Optimization

- ▶ Then, we can apply standard optimization routines on $\varphi(a')$ to find the optimal a'^* .
- ▶ The value function is $V_{ij}^{n+1} = \varphi(a'^*; a_i, s_j)$.

Issues:

- Many interpolation algorithms:
 - ▶ Linear: fast but not differentiable at the nodes.
 - ▶ Cubic: a bit slower, but differentiable at all points.
 - Chebyshev.
- Many optimization algorithms:
 - ▶ In general, you should use derivative-free methods (Brent's, Golden-search,...).
 - You can try (faster) Newton-style methods. Just recall that since they need derivatives, your interpolation algorithm should give you a differentiable VF.
- In comparison to brute force algorithms, interpolate + optimization is slower but significantly more accurate (for the same n_A).
 - Once you factor that you can get better accuracy with fewer grid points, interpolation can be faster (usually depends on the problem).

Speeding up VFI: Howard's Improvement Algorithm

- ullet Since the maximization step is slowest part, one popular strategy is to "skip" the \max in a couple of iterations.
- Say that you just finish iteration n, and you have computed V_{ij}^n and the policy $a'=g_{ij}^n$.
 - ▶ You can do n_H iterations to update V without solving the \max and keeping $a' = g_{ij}^n$ constant instead:

$$V_{ij}^{n_H+1} = u((1+r)a_i + w \exp(s_j) - g_{ij}^n) + \beta \mathbb{E}[V^{n_H}(g_{ij}^n, s')|s_j]$$

- lacktriangle Once you finish the n_H , you can do one regular iteration where you compute the policy function and check convergence for the VF.
- It should work with all VFI methods, but for me, Howard's tend to perform better with interpolation-types of maximization than with pure brute force.

Speeding up VFI: Exploiting Monotonicity and Concavity

- Under certain conditions, we know that the VF is monotone and/or concave.
- We can use this information to reduce the state space where we look for a solution.
- Example: say your VF is monotone in a
 - ▶ then, for two grids i and j:

$$a_i \ge aj \Rightarrow a_i' = g_a(a_i) \ge g_a(a_j) = a_j'.$$

- lacktriangle Once we solve for a_j , we can reduce the search space for the solution of a_i
- Similarly for concavity (see Heer and Maussner, ch. 4).
- To exploit monotonicity, I like to use the divide-and-conquer algorithm by Gordon and Qiu (2018, QE).

Policy Function Methods

- VFI is robust and works under a wide set of conditions: discrete choices, multiple controls, etc.
- But it tends to be very slow and often not very accurate.
- Policy Function Methods (i.e., iteration on the Euler Equation) are fast and accurate, but not as robust.
- Here I will present the Endogenous Grid Method which is likely the most used method to solve consumption-savings problem nowadays.

Endogenous Grid Method

• Let $c = g_c(a, s)$ be the consumption policy function. We want to solve the following functional equation:

$$c^{-\gamma} = \beta(1+r)\mathbb{E}\left[g_c(a',s')^{-\gamma}|s\right]$$
$$c^{-\gamma} = \beta(1+r)\mathbb{E}\left[g_c\left((1+r)a + w\exp(s) - c, s'\right)^{-\gamma}|s\right]$$

- Using a guess for g_c on the grid, standard methods involve solving for c using interpolation and root-finding method.
 - lacktriangle Then, we check if g_c^n is close enough to c. If it is not, update the guess and keep going.
- As we know, using a non-linear equation solver is costly.
- Carroll (2005) introduces the Endogenous Grid Method, which bypasses the non-linear solver.
 - See Barillas and Fernández-Villaverde (2007) for an extension that combines VFI and EGM.

Endogenous Grid Method

- 1. Guess a consumption policy on an exogenously defined grid: $c = g_c^n(a_i, s_j)$; This is the grid we discretized in the beginning of the algorithm.
- 2. Use the guess to compute the RHS of the EE (note we iterate on $a_i^{\prime}!$):

$$RHS(a'_{i}, s_{j}) = \beta(1+r) \sum_{m=1}^{n_{s}} \pi_{jm} u'(g_{c}^{n}(a'_{i}, s'_{m})).$$

3. Invert the marginal utility to find the consumption decision (in t) associated to the state (\hat{a}_i, s_j) and asset policy $a'_i = g_a^n(\hat{a}_i, s_j)$:

$$\tilde{c} = u'^{-1}(RHS(a_i', s_i)).$$

This is the "next iteration" consumption policy $\tilde{c} = g_c^{n+1}(\hat{a}_i, s_j)$.

▶ But we CANNOT compare $g_c^{n+1}(\hat{a}_i, s_j)$ with $g_c^n(a_i, s_j)$, since they are defined on DIFFERENT asset grid $\hat{a}_i \neq a_i$.

Endogenous Grid Method

4. We must redefine the consumption policy, $g_c^{n+1}(\hat{a}_i, s)$, in the same grid as $g_c^n(a_i, s)$. First, you must find the endogenous grid \hat{a}_i using the budget constraint:

$$\hat{a}_i = \frac{\tilde{c}(a_i', s_j) + a_i' - w \exp(s_j)}{1 + r}$$

- 5. Now use the pair of points (g_c^{n+1}, \hat{a}_i) to interpolate to find $g_c^{n+1}(a_i, s_j)$ defined on the exogenous grid.
- 6. Compute the distance $d = \max_{i,j} |g_c^{n+1}(a_i, s_j) g_c^n(a_i, s_j)|$. If d < tol, we stop. Otherwise update the guess and start over.

Endogenous Grid Method: Borrowing Constraint

- To deal with the borrowing constraint, it is often convenient to interpolate the asset policy instead: $a'_i = g_a(\hat{a}_i, s_j)$.
- Then, after you find the interpolated function $g_a(a_i, s_j)$, you check if the borrowing constraint is binding: $g_a(a_i, s_j) < a_1$.
 - If $g_a(a_i, s_j) < a_1$, set $g_a(a_i, s_j) = a_1$;
 - ▶ If $g_a(a_i, s_j) \ge a_1$, do nothing.
- After this correction, you can recover g_c^{n+1} using the budget constraint:

$$g_c^{n+1}(a_i, s_j) = (1+r)a_i + w \exp(s_j) - g_a(a_i, s_j),$$

and proceed as usual.

Endogenous Grid Method: Policy Functions

Endogenous Grid Method: Policy Functions

Endogenous Grid Method: Extra Issues

- Endogenous Labor Supply: As long the labor supply equation has an analytical solution, $n = g_n(c, s_j)$, we just need to substitute it in step 4.
 - ► You may have to use a non-linear solver for the borrowing constraint, but this is just for a few grids.
- Discrete choices and non-convexities: If there is non-convex choice sets the Euler Equation is not sufficient for the solution.
 - ▶ You must add a step where you check whether the value function is indeed a maximum. See Fella (2014), Iskhakov et al (2017), Druedahl (2020).
- Multiple control variables: See Ludwig and Schön (2018).
- Another fast method but not as popular is the Envelope Condition Method. See Maliar and Maliar (2013).

Euler Equations Errors

- If you want to compare the accuracy of different solution methods, you can compute the Euler Equation errors.
- Define the approximation error, ε , using:

$$u'(c_t(1-\varepsilon)) = \beta(1+r)\mathbb{E}_t[u'(c_{t+1})]$$

$$\iff \varepsilon = 1 - \frac{u'^{-1}(\beta(1+r)\mathbb{E}_t[u'(c_{t+1})])}{c_t}$$

- One can compute ε using a different grid than the one used to solve the model, or simulate the decisions using a long history of shocks.
- See Aruoba, Fernandez-Villaverde and Rubio-Ramirez (2006, JEDC) for an application of the Euler Errors.

- Once we have the policy functions of the HH problem, we can compute the invariant distribution, $\lambda(a,s)$
- A couple of methods:
 - 1. Monte-Carlo simulation;
 - 2. Non-stochastic simulation;
 - 3. Parameterized distributions.
- I will focus on method 2. Method 1 is usually too slow, method 3 is useful with aggregate uncertainty but the implementation is bit cumbersome (see Algan, Allais, and Haan (2008) to learn about it).

- Approximate the density by a histogram over a fixed grid (Young (2010, JEDC)).
- The asset grid has to be sufficiently fine. It does NOT need to be the same as the one
 used for the VF/policy function.
- The distribution will be stored in an array with n_A*n_S entries: $\lambda(a_i,s_j)$: an histogram.
 - ▶ It can be a matrix $n_A \times n_S$ or a vector $n_A * n_S \times 1$.
- Then, we build a transition function that gives the probability an agent move from state (a,s) to state (a',s'):

$$\mathcal{P}(a', s', a, s) = Prob[(a_{t+1} = a', s_{t+1} = s') | a_t = a, s_t = s]$$

= $Prob[a_{t+1} = a' | a_t = a, s_t = s] * Prob[s_{t+1} = s' | s_t = s],$

Recall the Intuition

- Suppose we discretize the distribution in two asset states and two income states.
 - An entry $\lambda_t(a_i, s_j)$ is the fraction of agents in state (a_i, s_j) .
- The matrix \mathcal{P} is the transition matrix that governs the fraction of agents in state $\lambda_t(a_i, s_j)$ that moves to all states of λ_{t+1} :

$$\underbrace{\begin{bmatrix} \lambda_{t+1}(a_1, s_1) \\ \lambda_{t+1}(a_1, s_2) \\ \lambda_{t+1}(a_2, s_1) \\ \lambda_{t+1}(a_2, s_2) \end{bmatrix}}_{\lambda_{t+1}(a', s')} = \underbrace{\begin{bmatrix} \mathcal{P}_{1,1} & \dots & \mathcal{P}_{1,4} \\ \vdots & \ddots & \vdots \\ \vdots & & \ddots & \vdots \\ \mathcal{P}_{4,1} & \dots & & \mathcal{P}_{4,4} \end{bmatrix}}_{\mathcal{P}(a', s', a, s)'} \underbrace{\begin{bmatrix} \lambda_t(a_1, s_1) \\ \lambda_t(a_1, s_2) \\ \lambda_t(a_2, s_1) \\ \lambda_t(a_2, s_2) \end{bmatrix}}_{\lambda_t(a, s)}$$

- Note that the transition function together with the distribution array defines a Markov chain.
- From a distribution $\lambda_t(a,s)$, we can compute the mass at node (a_k,s_m) in the next period:

$$\lambda_{t+1}(a_k, s_m) = \sum_{i=1}^{n_A} \sum_{j=1}^{n_S} \lambda_t(a_i, s_j) \mathcal{P}(a_k, s_m, a_i, s_j)$$

• Computing $\mathcal{P}(a_k, s_m, a_i, s_j)$ requires the transition matrix for s and the policy function $g_a(a, s)$.

$$\mathcal{P}(a_k, s_m, a_i, s_j) = \underbrace{Prob[a_{t+1} = a_k | a_t = a_i, s_t = s_j]}_{\text{Savings Decision}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]}_{\text{Exogenous Income Shocks}} * \underbrace{Prob[s_{t+1} = s_m | s_t = s_j]$$

- To get $Prob[a_{t+1} = a_k | a_t = a_i, s_t = s_j]$, note that the policy function gives $a' = g(a_i, s_j)$.
- The problem is that a' usually lies off-grid. The trick is to allocate some households in the grid below, and some in the grid above in a way to preserve the aggregate mass of assets:

$$a' = pa_{\nu} + (1 - p)a_{\nu+1}$$

where a_{ν} is the grid point just below a'.

• $Prob[a_{t+1} = a_{\nu}] = p$, $Prob[a_{t+1} = a_{\nu+1}] = 1 - p$, and $Prob[a_{t+1} = a_i] = 0$ for all other i.

- Multiplying $Prob[a_{t+1} = a_k | a_t = a_i, s_t = s_j]$ with Π and we have the transition function \mathcal{P} .
- Since this is just a Markov chain, you can find the stationary distribution by solving a linear system using standard methods: $\lambda P = \lambda$.
 - ▶ Note that P is often a sparse matrix!
- Iteration methods tend to be robust:
 - 1. Guess $\lambda_n(a,s)$ (initial guess can be a uniform mass or anything that sums to one).
 - 2. Compute the next period distribution, $\lambda_{n+1}(a,s)$, applying the transition function.
 - 3. Check convergence: $d = \max_{i,j} |\lambda_{n+1}(a_i, s_j) \lambda_n(a_i, s_j)|$. If d < tol finish the iteration; otherwise try again using λ_{n+1} as a guess.

Aggregate Asset Supply

• Once we have the invariant distribution $\lambda(a,s)$, we can compute the aggregate asset supply:

$$\mathbb{E}a = \sum_{i=1}^{n_A} a_i \sum_{j=1}^{n_S} \lambda(a_i, s_i)$$

- Which together with the capital demand K(r) defines the equilibrium condition.
- We are now ready to define an iterative procedure to find the steady state equilibrium.

Finding the Equilibrium: Algorithm

- 1. Guess an interest rate, r_n .
- 2. Use the interest rate to compute the capital demand and wage using the firm's optimality condition:

$$K(r) = \left(\frac{\alpha}{r+\delta}\right)^{\frac{1}{1-\alpha}} N \qquad \text{ and }, \qquad w(r) = (1-\alpha) \left(\frac{K(r)}{N}\right)^{\alpha}.$$

Note that the aggregate labor supply, N, is time invariant and can be computed using the invariant distribution of the labor endowment, μ_j :

$$N = \sum_{j=1}^{n_S} s_j \mu_j$$

Finding the Equilibrium: Algorithm

- 3. Given r_n and $w(r_n)$, solve the household problem. Denote the policy function as $g_a(a,s;r_n)$.
- 4. Using the policy function $g_a(a, s; r_n)$ and the law of motion of the shock s, find the stationary distribution $\lambda(a, s; r_n)$ and the aggregate asset supply:

$$\mathbb{E}a(r_n) = \sum_{i=1}^{n_A} a_i \sum_{j=1}^{n_S} \lambda(a_i, s_i; r_n)$$

5. Compute the excess demand function:

$$\Phi(r) = K(r) - \mathbb{E}a(r),$$

- 6. if $|\Phi(r_n)| < tol$, we found an equilibria. Otherwise, update r and try again.
 - If $\Phi(r) < 0$, capital demand is too low. Decrease r.
 - ▶ If $\Phi(r) > 0$, capital demand is too high. Increase r.

Finding the Equilibrium

- Finding an equilibrium boils down to finding a root of the excess demand function.
 - ▶ Usually bracketing methods work well: bisection, Brent's, etc.
- **Initial guess:** theoretically, good bounds for *r* are:
 - Upper bound: $r_u = 1/\beta 1$.
 - ▶ Lower bound: $r_l = -\delta$.
- Alternatively, we can iterate on K (which defines r and w using the firm's foc).
 - ▶ In this case, we can update the capital guess, K^n , using the following strategy:

$$K^{n+1} = d\mathbb{E}a + (1-d)K^n \tag{1}$$

where $d \in (0,1]$ is a dampening parameter.

Model Stats

```
Model Stats:
Eq. wage and interest rate: 1.2872 0.0377
Aggregate Capital and Asset Supply: 7.4249 7.4245
Labor Supply: 1.027
K/L: 7.232
Agg. Output: 1.972
A/Y: 3.764
Fraction of constrained households:: 0.035
Wealth Distribution:
Avg. a: 7.425
Std. a: 6.805
p25 a: 2.106
p50 a: 5.581
p95 a: 20.659
p99
     a: 29.097
```

Model Stats

Extensions

- Endogenous labor supply: In case of endogenous labor supply, aggregate labor supply, N_t , will change with prices.
 - ▶ Iterate on capital-labor ratio instead: k = K/L.
- Fiscal policy and tax instruments: it involves add an extra condition, the government budget constraint.
 - ▶ In some cases, it is possible to include inside the loop.
 - In more complicated cases, one must include as an extra condition together with the asset market excess demand.
- Other market clearing conditions:
 - ▶ Must be added in the excess demand loop. One can use multivariate optimization/root-finding algorithms (e.g., simplex), or solve one condition at a time.