"if p, then q"

"if p, q"

"if p, q"

"p is sufficient for q"

"q if p"

"a when p"

"q when p"

"a necessary condition for p is q"

"q unless $\neg p$ "

"p implies q"
"p only if q"
"a sufficient condition for q is p"

"q whenever p"
"q is necessary for p"

"q follows from p"

"p is necessary and sufficient for q"

"if p then q, and conversely"

"p iff q."

Inverter

OR gate AND gate

TABLE 1 Quantifiers.				
Statement	When True?	When False?		
$\forall x P(x)$ $\exists x P(x)$	P(x) is true for every x . There is an x for which $P(x)$ is true.	There is an x for which $P(x)$ is false. P(x) is false for every x .		

TABLE 2 De Morgan's Laws for Quantifiers.					TABLE 8 Precedence of Logical Operators.	
Negation	Equivalent Statement	When Is Negation True?	When False?	Operator	Precedence	
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.	^	1 2 3	
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .	$\overset{\rightarrow}{\leftrightarrow}$	4 5	

TABLE 1 Quantifications of Two Variables.

Statement	When True?	When False?
$\forall x \forall y P(x, y)$ $\forall y \forall x P(x, y)$	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.
$\forall x \exists y P(x, y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y .
$\exists x \forall y P(x, y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.
$\exists x \exists y P(x, y)$ $\exists y \exists x P(x, y)$	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .

TABLE 2 Rules of Inference for Quantified Statements.

Rule of Inference	Name
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation
$\therefore \frac{P(c) \text{ for an arbitrary } c}{\forall x P(x)}$	Universal generalization
$\therefore \frac{\exists x P(x)}{P(c) \text{ for some element } c}$	Existential instantiation
$\therefore \frac{P(c) \text{ for some element } c}{\exists x P(x)}$	Existential generalization

Suppose that $f: A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

TABLE 1 Useful Properties of the Floor and Ceiling Functions.

(n is an integer, x is a real number)

- (1a) $\lfloor x \rfloor = n$ if and only if $n \le x < n + 1$
- (1b) $\lceil x \rceil = n$ if and only if $n 1 < x \le n$
- (1c) $\lfloor x \rfloor = n$ if and only if $x 1 < n \le x$
- (1d) $\lceil x \rceil = n$ if and only if $x \le n < x + 1$
- (2) $x 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$
- (3a) $\lfloor -x \rfloor = -\lceil x \rceil$
- (3b) $\lceil -x \rceil = -\lfloor x \rfloor$
- (4a) $\lfloor x + n \rfloor = \lfloor x \rfloor + n$
- (4b) $\lceil x + n \rceil = \lceil x \rceil + n$

Let m be a positive integer and let a and b be integers. Then

$$(a+b) \bmod m = ((a \bmod m) + (b \bmod m)) \bmod m$$

and

 $ab \operatorname{mod} m = ((a \operatorname{mod} m)(b \operatorname{mod} m)) \operatorname{mod} m.$

$$a +_m b = (a + b) \operatorname{mod} m$$
, $a \cdot_m b = (a \cdot b) \operatorname{mod} m$, $ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$.

Find the greatest common divisor of 414 and 662 using the Euclidean algorithm.

Solution: Successive uses of the division algorithm give:

$$662 = 414 \cdot 1 + 248$$

$$414 = 248 \cdot 1 + 166$$

$$248 = 166 \cdot 1 + 82$$

$$166 = 82 \cdot 2 + 2$$

$$82 = 2 \cdot 41$$
.