In the first case, the point $(\theta, 0, \theta, 2 - \theta)$ is a feasible solution iff $0 \le \theta \le 2$, and the value of the objective function is 0, and in the second case the point $(0, \theta, -\theta, 2)$ is a feasible solution iff $\theta = 0$, and the value of the objective function is θ . However, since we must have $\theta = 0$ in the second case, there is no way to increase the objective function either.

It turns out that in order to make the cases considered by the simplex algorithm as mutually exclusive as possible, since in the second case the coefficient of θ in the value of the objective function is nonzero, namely 1, we should choose the second case. We must pick $\theta = 0$, but we can swap the vectors A^3 and A^2 (because A^2 is coming in and A^3 has the coefficient $-\theta$, which is the reason why θ must be zero), and we obtain the basic feasible solution $u_1 = (0, 0, 0, 2)$ with the new basis (A^2, A^4) . Note that this basic feasible solution corresponds to the same vertex (0, 0, 0, 2) as before, but the basis has changed. The vectors A^1 and A^3 can be expressed in terms of the basis (A^2, A^4) as

$$A^1 = -A^2 + A^4$$
$$A^3 = A^2.$$

We now repeat the procedure with $u_1 = (0, 0, 0, 2)$ and the basis (A^2, A^4) , and we get

$$b = 2A^{4} - \theta A^{1} + \theta A^{1}$$

= $2A^{4} - \theta (-A^{2} + A^{4}) + \theta A^{1}$
= $\theta A^{1} + \theta A^{2} + (2 - \theta)A^{4}$,

and

$$b = 2A^{4} - \theta A^{3} + \theta A^{3}$$
$$= 2A^{4} - \theta A^{2} + \theta A^{3}$$
$$= -\theta A^{2} + \theta A^{3} + 2A^{4}.$$

In the first case, the point $(\theta, \theta, 0, 2-\theta)$ is a feasible solution iff $0 \le \theta \le 2$ and the value of the objective function is θ , and in the second case the point $(0, -\theta, \theta, 2)$ is a feasible solution iff $\theta = 0$ and the value of the objective function is θ . In order to increase the objective function we must choose the first case and pick $\theta = 2$. We obtain the feasible solution $u_2 = (2, 2, 0, 0)$ whose corresponding basis is (A^1, A^2) and the value of the objective function is 2.

The vectors A^3 and A^4 are expressed in terms of the basis (A^1,A^2) as

$$A^3 = A^2$$
$$A^4 = A^1 + A^3,$$

and we repeat the procedure with $u_2 = (2, 2, 0, 0)$ and the basis (A^1, A^2) . We get

$$b = 2A^{1} + 2A^{2} - \theta A^{3} + \theta A^{3}$$
$$= 2A^{1} + 2A^{2} - \theta A^{2} + \theta A^{3}$$
$$= 2A^{1} + (2 - \theta)A^{2} + \theta A^{3},$$