

JY61 姿态角度传感器说明书

产品规格书:SPECIFICATION

型 号: JY61

描 述: 六轴姿态角度传感器

生产执行标准参考

企业质量体系标准: ISO9001:2016 标准

倾角仪生产标准: GB/T191SJ 20873-2016

产品试验检测标准: GB/T191SJ 20873-2016

修 订 日 期: 2019.11.25

www.wit-motion.com

版本号	版本更新内容	更改人	日期
V1.0	发布	章小宝	20181219
V1. 1	更新上位机	方立基	20190114
V1. 2	更新角速度	方立基	20190422
V1. 3	更新上位机图片	胡名林	20191125

目录

1	产品	概述 4	4 -
2	性能	参数	- 5 -
3	引脚	说明 @	3 -
4	轴向	说明 6	3 -
5	硬件	连接方法 6	3 -
	5.1	串口 (TTL) 连接 e	ŝ -
	5.2	连单片机 8	3 –
6	上位	机使用方法	3 -
	6.1	使用方法 9	9 –
	6.2	模块校准 11	1 -
		6.2.1 Z 轴归 0 11	1 -
		6.2.2 加计校准	2 -
	6.3	设置通信波特率 14	4 -
	6.4	记录数据 14	4 -
	6.5	安装方向 17	7 –
	6.6	休眠及解休眠 18	3 –
	6.7	静止阀值及测量带宽 18	3 -
	6.8	设置 IIC 模式	19 -
7	通信	协议 20) –
	7.1	上位机至模块 21	1 -
	7.2	模块至上位机:	1 -
		7.2.1 加速度输出:	1 -
		7.2.2 角速度输出:	2 -
		7.2.3 角度输出:	2 –
	7.3	数据解析示例代码:	4 -
	7.4	嵌入式环境下解析数据实例 24	4 -
8	应用	领域	3 -

1 产品概述

- ◆ 此六轴模块采用高精度的陀螺加速度计 MPU6050,通过处理器读取 MPU6050 的测量数据 然后通过串口输出,免去了用户自己去开发 MPU6050 复杂的 IIC 协议,同时精心的 PCB 布局和工艺保证了 MPU6050 收到外接的干扰最小,测量的精度最高。
- ◆ 模块内部自带电压稳定电路,可以兼容 3.3V/5V 的嵌入式系统,连接方便。
- ◆ 采用先进的数字滤波技术,能有效降低测量噪声,提高测量精度。
- ◆ 模块保留了 MPU6050 的 IIC 接口,以满足用户访问底层测量数据(加速度、角速度)的需求。
- ◆ 模块内部集成了姿态解算器,配合动态卡尔曼滤波算法,能够在动态环境下准确输出模块的当前姿态,姿态测量精度 0.05 度,稳定性极高,性能甚至优于某些专业的倾角仪!
- ◆ 采用邮票孔镀金工艺,品质保证,可嵌入用户的 PCB 板中。

注:本模块不含磁场计,没有磁场的观测量对偏航角进行滤波,所以偏航角度是通过 纯积分计算出来的,不可避免地会有漂移现象,只能实现短时间内的旋转角度测量。而 X, Y 轴角度可以通过重力场进行滤波修正,不会出现漂移现象。

尺寸	15.24mmX15.24mm X 2mm
重量	0.6g

- 4 -

电话: 0755-33185882 邮箱: wit@wit-motion.com 网站: www.wit-motion.com

2 性能参数

- 1、电压: 3.3V~5V
- 2、电流: <10mA
- 3、体积: 15.24mm X 15.24mm X 2mm
- 4、焊盘间距:上下100mi1(2.54mm),左右600mi1(15.24mm)
- 5、测量维度:加速度:3维,角速度:3维,角度:3维
- 6、量程:加速度: ±16g,角速度: ±2000deg/s,角度 X Z 轴 ±180° Y 轴 ±90°。
- 7、分辨率: 加速度: 0.0005g, 角速度: 0.61°/s。
- 8、测量精度: 静态 0.05°, 动态 0.1°。
- 9、数据输出内容:加速度、角速度、角度。
- 10、数据输出频率: 100HZ(波特率 115200)/20HZ(波特率 9600)。
- 11、波特率: 9600kps、115200kps (默认)。
- 12、数据接口: 串口(TTL 电平), IIC(直连 MPU6050 芯片, 无姿态角度输出)
- 注: 模块的数据输出频率只有两种: 100HZ(波特率 115200)和 20HZ(波特率 9600)。

3 引脚说明

名称	功能	
VCC	模块电源, 3.3V 或 5V 输入	
RX	串行数据输入,TTL 电平	
TX	串行数据输出,TTL 电平	
GND	地线	
SCL	IIC 时钟线	
SDA	IIC 信号线	

4 轴向说明

如上图所示,模块的轴向在上图右上方标示出来,向右为X轴,向上位Y轴,垂直与模块向外为Z轴。旋转的方向按右手法则定义,即右手大拇指指向轴向,四指弯曲的方向即为绕该轴旋转的方向。X轴角度即为绕X轴旋转方向的角度,Y轴角度即为绕Y轴旋转方向的角度,Z轴角度即为绕X4

5 硬件连接方法

5.1 串口(TTL)连接

与计算机连接,需要 USB 转 TTL 电平的串口模块。推荐以下两款 USB 转串口模块:

三合一购买链接:

https://item.taobao.com/item.htm?id=574767679001&spm=2014.21600712.0.0 六合一购买链接:

https://item.taobao.com/item.htm?id=553416023259&spm=2014.21600712.0.0

1.USB-TTL 串口模块: 把模块和 USB-TTL 连接好,在插到电脑上。模块和 USB-TTL 连接方法是:模块的 VCC TX RX GND 分别于 USB 串口模块的+5V/3V3 RX TX GND 对应相接,注意 TX 和 RX 需要交叉,即 TX 接 RX,RX 接 TX。

2.六合一模块:模块拨码开关 1 拨至 ON,拨码开关 2 拨至 2, 开关 S1 拨至 other (丝印)。模块的 VCC TX RX GND 分别于六合一模块的+5V/3V3 RX TX GND 对应相接,**注意 TX** 和 RX 需要交叉,即 TX 接 RX,RX 接 TX。六合一 USB-TTL 模式拨码如下:

5.2 连单片机

6 上位机使用方法

6.1 使用方法

注意,上位机无法运行的用户请下载安装.net framework4.0:

http://www.microsoft.com/zh-cn/download/details.aspx?id=17718

通过 USB-TTL 模块连接上电脑打开上位机,安装好串口模块对应的驱动 CP210X 或者 CH340 以后,可以再设备管理器中查询到对应的端口号, 下图安装的是 CH340 驱动设备管理器显示如下:

三合一驱动程序为 CH340, 如下:

https://pan.baidu.com/s/1LWxOTc6XmGvoxi7f9ltfhA#list/path=%2F

六合一驱动为 CP2102 如下:

http://pan.baidu.com/s/106Rleae?frm=fujian

在【资料包/上位机】中,打开 Mini IMU. exe 软件,点击串口选择菜单,选择刚才设备管理器里面看到的 COM 号。

在上位机软件上点击波特率菜单选择波特率 115200,选择完成后,点击"打开"选项卡,上位机左下角显示 COM10 open success,baud 115200,表示串口已打开,上位机软件上即可出现数据。

点击三维按钮,可以调出三维显示界面,显示模块的三维姿态。

6.2 模块校准

注意:必须在上位机上能正常接收到数据才能进行设置。

模块使用前,需要对模块进行校准。模块的校准包括 Z 轴归 0、加计校准。

6.2.1 Z轴归0

Z 轴归 0 是使模块 Z 轴角度初始状态为相对 0 度角,模块使用前和 Z 轴漂移较大的情况下可以进行 Z 轴归 0 校准,模块上电时 Z 轴会自动归 0。

上位机 Z 轴归 0 方法如下: 首先模块静止放置,点击配置打开配置栏,在配置栏里面的"Z 轴归零"选项,模块数据栏里面可以看到 Z 轴角度回到 0°。

6.2.2 加计校准

加计校准用于去除加速度计的零偏。传感器在出厂时都会有不同程度的零偏误差,需要手动进行校准后,测量才会准确。

加计校准方法如下: 首先使模块保持水平静止,点击加计校准, $1\sim2$ 秒后模块加速度 三个轴向的值会在 0 0 1 左右,X 和 Y 轴角度在 0° 左右。校准后 X Y 轴角度就更精确了。

注意: Z轴水平静止的时候是有1个G的重力加速度的。

6.3 设置通信波特率

模块支持多种波特率,默认波特率为 115200。设置模块的波特率需要在软件与模块正确连接的基础上,在配置栏的通信速率下拉框中选择需要更改的波特率。波特率 115200 时模块回传速率为 100HZ,波特率为 9600 时模块回传速率为 20HZ。

注意: 更改以后,模块在原来的波特率下已经不输出数据了,要重新在上位机上选择已经更改过的波特率,才会输出数据。

6.4 记录数据

传感器模块内部不带存储芯片,数据可以通过上位机来记录保存。 使用方法:点记录---开始按钮可以将数据保存为文件

点击停止按钮, 出现如图所示的弹窗:

点击确定,即打开保存的文件,如下图所示:

Data191	121190029.txt - 记	事本				_		×
文件(<u>F</u>) 编辑	髯(E) 格式(<u>O</u>) 查	看(<u>V)</u> 帮助(<u>H</u>)						
StartTime	: 2019-11-21 1	7:57:58.142						^
address	Time(s) ax((g) ay(g)	az(g)	wx(deg/	s) wy(deg/s	s) wz(deg/s)	AngleX	
(deg)	AngleY(deg)	Angle	Z(deg)	T(°)				
0x50	19:00:29.236	0.021	5 -0.2905	0.9297	0.0000	0.0000	0.0000	
-17.4078	-1.3074 17.	5342 33.17	99					
0x50	19:00:29.246	0.021	5 -0.2900	0.9297	0.0000	0.0000	0.0000	
-17.4078	-1.3074 17.	5342 33.17	40					
0x50	19:00:29.256	0.022	5 -0.2910	0.9287	0.0000	0.0000	0.0000	
-17.4078	-1.3074 17.	5342 33.17	99					
0x50	19:00:29.266	0.023	9 -0.2910	0.9282	0.0000	0.0000	0.0000	
-17.4078	-1.3129 17.	5342 33.18	87					
0x50	19:00:29.298	0.022	5 -0.2905	0.9253	0.0000	0.0000	0.0000	
-17.4078	-1.3129 17.	5342 33.17	40					
0x50	19:00:29.298	0.022	9 -0.2925	0.9282	0.0000	0.0000	0.0000	
-17.4078	-1.3129 17.	5342 33.18	58					
0x50	19:00:29.298	0.022	9 -0.2910	0.9263	0.0000	0.0000	0.0000	
-17.4078	-1.3129 17.	5342 33.18	28					
0x50	19:00:29.306	0.022	9 -0.2944	0.9282	0.0000	0.0000	0.0000	
-17.4078	-1.3129 17.	5342 33.17	69					
0x50	19:00:29.316	0.022	0 -0.2910	0.9292	0.0000	0.0000	0.0000	
-17.4078	-1.3129 17.	5342 33.17	69					
ስvፍስ	10.00.30 336	U U 3 3		U 0328	0.000	0.0000	0.0000	~
			第1行,第	1 9 1 10	00% Window	vs (CRLF) U	TF-8	

保存的文件在上位机程序的目录下 Data1911211190029.txt:

文件开头有标明数据对应的值,Time 代表时间,ax ay az 分别表示 x y z 三个轴 向上的加速度, wx wy wz 分别表示 x y z 三个轴向上的角速度, Anglex Angley Anglez 分别表示 x y z 三个轴向的角度, T 代表时间。

数据可以导入到 Excel 或者 Matlab 中进行分析。在 Matlab 环境下运行上位机根目录下 的"Matlab 绘图.m"文件,可以绘制数据曲线图。

- 16 电话: 0755-33185882

6.5 安装方向

模块默认安装方向为水平安装,当模块需要垂直放置时,可以用垂直安装设置。 垂直安装方法:垂直安装时,把模块绕 X 轴旋转 90°垂直放置,在上位机配置栏里面 "安装方向"选项中选择"垂直"。设置完成后要进行校准才能使用。

6.6 休眠及解休眠

休眠:模块暂停工作,进入待机状态。休眠后可以降低功耗。

解休眠:模块从待机状态进入工作状态。

使用方法:模块默认为工作状态,在上位机配置栏里面点击"休眠"选项,进入休眠状态,再点击"休眠"选项,模块解除休眠。

注:休眠后再解除休眠模块的 Z 轴或归 0,相当于重新上电了,所以 Z 轴会归 0。

6.7 静止阀值及测量带宽

静止阀值:模块静止时,陀螺仪芯片测量的角速度是有微小变化的。静止阀值的作用 是当角速度小于阀值时,模块输出角速度为 0。(注意角速度在匀速转速的情况下,输出有 问题,推荐在匀速转动下用 61P)

使用方法:在上位机配置栏里面点击"静止阀值"选项,即可设置阀值。模块默认为 0.122°/s。

测量带宽:模块只输出测量带宽以内的数据,大于带宽的数据会自动滤除。

使用方法:在上位机配置栏里面点击"测量带宽"选项,即可设置。默认为10HZ。

注: 静止阀值和测量带宽一般为默认的就可以了,不需要去设置。

6.8 设置 IIC 模式

JY61 模块支持 IIC 模式,IIC 总线是直接连接 MPU6050 芯片的,所以 IIC 只输出陀螺 仪芯片的原始数据,即三轴加速度和三轴角速度,不能输出姿态角度。

在上位机配置栏里面把模式转换成为 IIC 模式,模块将释放 MPU6050 的 IIC 总线,用户可以通过 IIC 访问 MPU6050 芯片。如果收到 0x55 0x50 开头的数据包,说明模块已经进入到了 IIC 模式。

说明: IIC 访问方式参考 MPU6050 数据手册,硬件连接方面需要接 4.7K 的上拉电阻。

数据编号	数据内容	含义
0	0x55	包头
1	0x50	标识模块进入 IIC 模式
2	0x00	
3	0x01	
4	0x00	
5	0x02	
6	0x00	
7	0x03	
8	0x00	
9	0x04	
10	Sum	校验和

7 通信协议

电平: TTL 电平(非 RS232 电平,若将模块错接到 RS232 电平可能造成模块损坏) 波特率: 115200/9600,停止位 1,校验位 0。

7.1 上位机至模块

指令内容	功能	备注
0xFF 0xAA 0x52	角度初始化	使Z轴角度归零
0xFF 0xAA 0x67	加速度计校准	校准加速度零偏
0xFF 0xAA 0x60	休眠及解休眠	待机模式和工作模式
0xFF 0xAA 0x61	使用串口,禁用 IIC	设置为串口输出
0xFF 0xAA 0x62	禁用串口,使用 IIC 接口	设置为 IIC 接口输出
0xFF 0xAA 0x63	波特率 115200, 回传速率 100HZ	设置波特率为 115200
0xFF 0xAA 0x64	波特率 9600, 回传速率 20HZ	设置波特率为 9600
0xFF 0xAA 0x65	水平安装	模块水平放置
0xFF 0xAA 0x66	垂直安装	模块垂直放置

说明:

1.模块上电以后需先保持静止,模块内部的MCU会在模块静止的时候进行自动校准(消除陀螺零漂),校准以后 Z 轴的角度会重新初始化为 0,Z 轴角度输出为 0 时,可视为自动校准完成的信号。

2.出厂默认设置使用串口时,波特率 115200,帧率 100Hz (100HZ 指的是 1 秒回传 100个加速度、角速度、角度数据包)。配置可通过上位机软件配置,因为所有配置都是掉电保存的,所以只需配置一次就行。

7.2 模块至上位机:

模块发送至上位机每帧数据分为 3 个数据包,分别为加速度包,角速度包和角度包,3 个数据包顺序输出。波特率 115200 时每隔 10ms 输出 1 帧数据。

7.2.1 加速度输出:

数据编号	数据内容	含义
0	0x55	包头
1	0x51	标识这个包是加速度包
2	AxL	X 轴加速度低字节
3	AxH	X 轴加速度高字节
4	AyL	Y轴加速度低字节
5	АуН	Y轴加速度高字节
6	AzL	Z轴加速度低字节
7	AzH	Z轴加速度高字节
8	TL	温度低字节
9	TH	温度高字节
10	Sum	校验和

加速度计算公式:

a_x=((AxH<<8)|AxL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

a_y=((AyH<<8)|AyL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

a_z=((AzH<<8)|AzL)/32768*16g(g 为重力加速度,可取 9.8m/s²)

温度计算公式:

T=((TH<<8)|TL)/340+36.53 °C

校验和:

Sum=0x55+0x51+AxH+AxL+AyH+AyL+AzH+AzL+TH+TL 说明:

- 1、 数据是按照 16 进制方式发送的,不是 ASCII 码。
- 2、每个数据分低字节和高字节依次传送,二者组合成一个有符号的 short 类型的数据。例如 X 轴加速度数据 Ax, 其中 AxL 为低字节, AxH 为高字节。转换方法如下: 假设 Data 为实际的数据, DataH 为其高字节部分, DataL 为其低字节部分, 那么:

Data=((short)DataH<<8)|DataL。这里一定要注意 DataH 需要先强制转换为一个有符号的 short 类型的数据以后再移位,并且 Data 的数据类型也是有符号的 short 类型,这样才能表示出负数。

详细解算示例:

 $\underline{\text{http://www.openedv.com/forum.php?mod=viewthread\&tid=79352\&page=1\&extra=\#pid450195}$

7.2.2 角速度输出:

数据编号	数据内容	含义
0	0x55	包头
1	0x52	标识这个包是角速度包
2	wxL	X轴角速度低字节
3	wxH	X轴加速度高字节
4	wyL	Y轴加速度低字节
5	wyH	Y轴加速度高字节
6	wzL	Z轴加速度低字节
7	wzH	Z轴加速度高字节
8	TL	温度低字节
9	TH	温度高字节
10	Sum	校验和

角速度计算公式:

 $w_x = ((wxH << 8)|wxL)/32768*2000(^{\circ}/s)$

 $w_y = ((wyH << 8)|wyL)/32768*2000(^{\circ}/s)$

 $w_z = ((wzH << 8)|wzL)/32768*2000(^{\circ}/s)$

温度计算公式:

T=((TH<<8)|TL)/340+36.53 °C

校验和:

Sum=0x55+0x52+wxH+wxL+wyH+wyL+wzH+wzL+TH+TL

7.2.3 角度输出:

数据编号	数据内容	含义
0	0x55	包头

1	0x53	标识这个包是角度包
2	RollL	X轴角度低字节
3	RollH	X轴角度高字节
4	PitchL	Y轴角度低字节
5	PitchH	Y轴角度高字节
6	YawL	Z轴角度低字节
7	YawH	Z轴角度高字节
8	TL	温度低字节
9	TH	温度高字节
10	Sum	校验和

角速度计算公式:

滚转角(x轴)Roll=((RollH<<8)|RollL)/32768*180(°)

俯仰角 (y轴) Pitch=((PitchH<<8)|PitchL)/32768*180(°)

偏航角(z轴)Yaw=((YawH<<8)|YawL)/32768*180(°)

温度计算公式:

T=((TH<<8)|TL)/340+36.53 °C

校验和:

Sum=0x55+0x53+RollH+RollL+PitchH+PitchL+YawH+YawL+TH+TL

注:

- 1. 姿态角解算时所使用的坐标系为东北天坐标系,正方向放置模块,如下图所示向右为 X 轴,向上为 Y 轴,垂直模块向外为 Z 轴。欧拉角表示姿态时的坐标系旋转顺序定义为 Z-Y-X,即先绕 Z 轴转,再绕 Y 轴转,再绕 X 轴转。
- 2. 滚转角的范围虽然是±180度,但实际上由于坐标旋转顺序是 Z-Y-X,在表示姿态的时候,俯仰角(Y轴)的范围只有±90度,超过90度后会变换到小于90度,同时让 X轴的角度大于180度。详细原理请自行百度欧拉角及姿态表示的相关信息。
- 3. 由于三轴是耦合的,只有在小角度的时候会表现出独立变化,在大角度的时候姿态 角度会耦合变化,比如当 Y 轴接近 90 度时,即使姿态只绕 Y 轴转动, X 轴的角度 也会跟着发生较大变化,这是欧拉角表示姿态的固有问题。

7.3 数据解析示例代码:

```
double a[3],w[3],Angle[3],T;
void DecodeIMUData(unsigned char chrTemp[])
       switch(chrTemp[1])
       case 0x51:
              a[0] = \frac{\text{short}(\text{chrTemp}[3] << 8|\text{chrTemp}[2])}{32768.0*16};
              a[1] = \frac{(\text{short}(\text{chrTemp}[5] << 8|\text{chrTemp}[4]))}{32768.0*16};
              a[2] = \frac{\text{short}(\text{chrTemp}[7] << 8|\text{chrTemp}[6])}{32768.0*16};
              T = \frac{(\text{short}(\text{chrTemp}[9] << 8|\text{chrTemp}[8]))}{340.0 + 36.25};
              break;
       case 0x53:
              Angle[0] = \frac{(\text{short}(\text{chrTemp}[3] << 8|\text{chrTemp}[2]))}{32768.0*180};
              Angle[1] = \frac{(\text{short}(\text{chrTemp}[5] << 8|\text{chrTemp}[4]))}{32768.0*180};
              T = \frac{(\text{short}(\text{chrTemp}[9] << 8|\text{chrTemp}[8]))}{340.0 + 36.25};
              printf("a = \%4.3f\t\%4.3f\t\%4.3f\t\n",a[0],a[1],a[2]);
              printf("Angle = \%4.2f\t\%4.2f\tT=\%4.2f\r\n",Angle[0],Angle[1],T);
              break;
}
```

7.4 嵌入式环境下解析数据实例

分成两个部分,一个是中断接收,找到数据的头,然后把数据包放入数组中。另一个 是数据解析,放在主程序中。

中断部分(一下为 AVR 单片机代码,不同单片机读取寄存器略有差异,需根据实际情况调整):

```
unsigned char Re_buf[11],counter=0;
unsigned char sign;
interrupt [USART_RXC] void usart_rx_isr(void) //USART 串行接收中断
{
    Re_buf[counter]=UDR;//不同单片机略有差异
    if(counter==0&&Re_buf[0]!=0x55) return; //第 0 号数据不是帧头,跳过
    counter++;
    if(counter==11) //接收到 11 个数据
    {
        counter=0; //重新赋值,准备下一帧数据的接收
```



```
sign=1;
 主程序部分:
float a[3],w[3],angle[3],T;
extern unsigned char Re_buf[11],counter;
extern unsigned char sign;
while(1)
    if(sign)
    {
        sign=0;
       if(Re_buf[0]==0x55)
                                      //检查帧头
             switch(Re_buf [1])
             case 0x51:
                   a[0] = (\text{short}(\text{Re\_buf}[3] << 8| \text{Re\_buf}[2]))/32768.0*16;
                   a[1] = (short(Re\_buf [5] << 8| Re\_buf [4]))/32768.0*16;
                   a[2] = (\text{short}(\text{Re\_buf}[7] << 8| \text{Re\_buf}[6]))/32768.0*16;
                   T = (short(Re\_buf [9] << 8| Re\_buf [8]))/340.0+36.25;
                   break;
             case 0x52:
                   w[0] = (\text{short}(\text{Re\_buf}[3] << 8| \text{Re\_buf}[2]))/32768.0*2000;
                   w[1] = (short(Re_buf [5] << 8| Re_buf [4]))/32768.0*2000;
                   w[2] = (\text{short}(\text{Re\_buf}[7] << 8| \text{Re\_buf}[6]))/32768.0*2000;
                   T = (\text{short}(\text{Re\_buf } [9] << 8| \text{Re\_buf } [8]))/340.0+36.25;
                   break;
             case 0x53:
                   angle[0] = (short(Re_buf [3]<<8| Re_buf [2]))/32768.0*180;
                   angle[1] = (short(Re_buf [5]<<8| Re_buf [4]))/32768.0*180;
                   angle[2] = (short(Re_buf [7] << 8| Re_buf [6]))/32768.0*180;
                   T = (short(Re\_buf [9] << 8| Re\_buf [8]))/340.0+36.25;
                   break;
             }
 具体程序代码可以参考资料里的示例代码。
```


8 应用领域

农业机械

太阳能

医疗器械

地质监测

物联网

电力监控

工程机械

深圳维特智能科技有限公司

WitMotion ShenZhen Co., Ltd

JY61 姿态角度传感器

电话: 0755-33185882

邮箱: wit@wit-motion.com 网站: www.wit-motion.com

店铺: https://robotcontrol.taobao.com

地址: 广东省深圳市宝安区松岗镇星际家园宏海大厦