Alt-HW1 Solution, CS430, Spring 2016

Instructor: Professor Edward M. Reingold TA: Jing Zhao, Junze Han & Taeho Jung

January 22, 2016

1

Base Case Proof

 $T(3) = 9 = 3^2$. Therefore, when n = 3, $T(n) = n^2$.

Inductive Hypothesis

If $a = 3^b$ for b > 1, we assume $T(a) = T(3^b) = a^2 = 9^b$.

Inductive Step

The next inductive step to be proved is: if the above hypothesis holds, the following is true

If
$$a = 3^{b+1}$$
 for $b > 1$, $T(a) = T(3^{b+1}) = a^2 = 9^{b+1}$,

Proof

$$T(3^{b+1}) = 6T(3^b) + \frac{1}{3} \cdot (3^{b+1})^2 \quad \text{recurrence relation}$$
$$= 6 \cdot 9^b + \frac{1}{3} \cdot (3^{b+1})^2 \quad \text{inductive hypothesis}$$
$$= 6 \cdot 9^b + 3 \cdot 9^b = 9^{b+1} \quad \text{simple manipulation}$$

Conclusion

Combining the base case, hypothesis and the inductive step, we are able to conclude $T(n) = n^2$ (where T(n) is recursively defined as above) when $n = 3^k$ for k > 1.

2

Let T(n) be the running time needed to perform the binary search in a sorted array $A[1 \cdots n]$. Then, we have:

$$T(n) = \begin{cases} O(1) & n = 1\\ T(\frac{n}{2}) + O(1) & n > 1 \end{cases}$$

because we always discard a half of the given array at each recurrence.

1 Initialize an output matrix $A'_{m \times o}$ to all zeroes;

$$\begin{array}{c|c} \mathbf{2} \ \mathbf{for} \ i = 1 \to m \ \mathbf{do} \\ \mathbf{3} & \mathbf{for} \ j = 1 \to o \ \mathbf{do} \\ \mathbf{4} & \mathbf{for} \ k = 1 \to o \ \mathbf{do} \\ \mathbf{5} & \mathbf{A}'_{m \times o}[i][j] = A'_{m \times o}[i][j] + A_{m \times n}[i][k] \cdot A_{n \times o}[k][j]; \\ \mathbf{6} & \mathbf{end} \\ \mathbf{7} & \mathbf{end} \\ \mathbf{8} \ \mathbf{end} \\ \end{array}$$

Algorithm 1: Multiplication $A_{m \times n} \times A_{n \times o}$

If we assume the time complexities of an addition and a multiplication are both O(1), we can conclude the time complexity is $\Theta(nmo)$ due to the three for-loops.

4

The functions sorted according to their growth rates (non-increasing order):

$$n^n$$
 $(n+1)!$ $\sqrt{n}(n/e)^n$ $2^{\lg n}$ $\sqrt{2}^{\lg n}$ $\lg n^2$

Justifications are shown below.

• n^n is $\omega((n+1)!)$ because

$$\lim_{n \to +\infty} \frac{n^n}{(n+1)!} = \lim_{n \to +\infty} \frac{n^n}{\sqrt{2\pi(n+1)}(\frac{n+1}{n})^{n+1}} = \lim_{n \to +\infty} \frac{e^{n+1}}{\sqrt{2\pi(n+1)}(n+1)(1+\frac{1}{n})^n} = +\infty$$

Therefore, $n^n = \Omega((n+1)!)$

• $(n+1)! = \omega(\sqrt{n}(n/e)^n)$ because

$$(n+1)! \approx \sqrt{2\pi(n+1)} \left(\frac{n+1}{e}\right)^{n+1} = \Theta\left(\sqrt{n+1}(n+1)\left(\frac{n+1}{e}\right)^n\right) = \omega(\sqrt{n}(n/e)^n)$$

Therefore, $(n+1)! = \Omega(\sqrt{n}(n/e)^n)$ as well.

- $\bullet \ 2^{\lg n} = n^{\lg 2} = n^2 \Rightarrow \sqrt{n}(n/e)^n = \Theta(n!) = \omega(2^{\lg n}) \Rightarrow \sqrt{n}(n/e)^n = \Omega(2^{\lg n})$
- For the rest, it is obvious to see the ranks because $\sqrt{2}^{\lg n} = n^{\lg \sqrt{2}} = n^{0.5}$ and $\lg n^2 = 2 \lg n$.

5

Using Master Theorem

$$a = 2, b = 2, f(n) = n \Rightarrow \frac{af(n/b)}{f(n)} = \frac{2(n/2)}{n} = 1$$

Therefore, $T(n) = \Theta(f(n) \log_b n) = \Theta(n \log n)$

Using secondary recurrence

Let $n_i = n$ and $n_{i-1} = n/2$. Further, we assume T(1) is the base case and $n_0 = 1$. This does not affect the final result since we are solving for the Θ notation of the function. Then,

$$n_i = 2n_{i-1} \Rightarrow n_i = \alpha 2^i$$
 (corresponds to $(E-2)$)

Since $n_0 = 1$, $\alpha = 1$ and $n_i = 2^i$. Further, define $F(i) = T(n_i)$. Then, the original recurrence:

$$T(n) = T(n_i) = 2T(n/2) + n = 2T(n_{i-1}) + n$$

becomes

$$F(i) = 2F(i-1) + n$$

We have supposed $n = n_i$, and we derived that $n_i = 2^i$. Therefore, the final recurrence to solve is:

$$F(i) = 2F(i-1) + 2^{i}$$

which is annihilated by $(E-2)^2$. The corresponding closed formula is $(\alpha_1 i + \alpha_2) 2^i$, which is $\Theta(i2^i)$. Recall that $n=2^i$. We can achieve the final Θ notation by undoing the substitution as follows:

$$T(n) = F(i) = \Theta(i2^{i}) = \Theta(\log_2 n \cdot 2^{\log_2 n}) = \Theta(n \log n)$$