Ensaios em Vazio e de Curto-Circuito de Autotransformadores

João Francisco Ferreira Lucindo, 71324; Hugo Henrique Rodrigues de Oliveira, 71327 ELT 341 - Máquinas Elétricas I Departamento de Engenharia Elétrica, Universidade Federal de Viçosa, Viçosa – MG

I. INTRODUÇÃO

O Autotransformador é um transformador cujos enrolamentos primário e secundário estão conectados em série, como pode-se obervar na Figura 1.

Figura 1 – Autotransformador.

Algumas vantagens dos autotransformadores em relação ao transformador normal são: corrente de excitação menor, melhor regulação de tensão, menor custo, maior rendimento e dimensões menores. As desvantagens são: apresentam correntes de curto-circuito mais elevadas e a existência de uma conexão elétrica entre os enrolamentos de maior e menor tensão. Os ensaios realizados no autotransformador são os mesmos executados nos transformadores normais.

1.1 Circuito Equivalente do Autotransformador

O circuito equivalente do autotransformador é obtido de forma semelhante ao transformador convencional. Os parâmetros deste circuito são determinados pelos ensaios a vazio e em curto.

Com o ensaio em vazio determinam-se as perdas no ferro e por histerese, podendo determinar R_P e Xm. A representação do autotransformador a vazio é indicada na Figura 2, com o ensaio realizado no lado da baixa tensão.

Figura 2 - Circuito Equivalente do Autotransformador a Vazio.

Para se obter a impedância de dispersão, realiza-se o ensaio em curto-circuito. Como o caso do convencional, o autotransformador introduz uma impedância série no circuito ao qual está ligado.

O circuito equivalente nesta situação é indicado na Figura 3, pelo fato de existirem as bobinas série e comum, duas impedâncias fazem-se necessárias.

Figura 1 - Circuito Equivalente para o Autotransformador em Curto-Circuito

Na Figura 3 as impedâncias de dispersão dos circuitos série e comum são conectadas em série com as respectivas bobinas ideais e assim, as bobinas representadas na figura serão responsáveis pela relação de transformação.

Referindo a impedância do secundário para o primário:

$$V_2 = Z_c I_c \ e \ I_c + I_{1cc} = I_{2cc}$$

$$V_2 = Z_c (I_{2cc} - I_{1cc}) = Z_c (N1 + N2/N2 - 1)I_{1cc}$$

= $(Z_c N1/N2)I_{1cc}$

$$V_{1cc} = V'1 + Z_s I_{1cc}$$

= $N1/N2(Z_c N1/N2)I_{1cc} + Z_s I_{1cc}$

$$V_{1cc} = (Z_s + (N1/N2)2 Z_c)I_{1cc}$$

$$V_{1cc}/I_{1cc} = Z_{12} = Z_s + (N1/N2)2 Z_c$$

O circuito equivalente completo do autotransformador é mostrado na Figura 4.

Figura 4 - Circuito Equivalente Completo do Autotransformador

1..2 Ensaio em Vazio de autotransformadores

O teste em vazio é feito aplicando tensão nominal em um dos enrolamentos primário ou secundário e deixando o outro lado em aberto. Em qualquer um dos casos o resultado é o mesmo, pois, o fluxo máximo, do qual depende as perdas no núcleo, é o mesmo de ambos os lados.

Este ensaio é realizado conforme a Figura 5.

Figura 5 - Circuito para determinação das perdas no ferro.

No teste em vazio, a corrente que circula pelo enrolamento da baixa tensão é pequena. Dessa forma a queda de tensão na impedância do enrolamento é considerada desprezível e a tensão aplicada é própria tensão sobre o circuito magnético. Por outro lado, como a corrente é baixa, as perdas Joule na resistência do enrolamento é desprezada e a potência medida pelo wattímetro corresponde às perdas no núcleo.

As leituras dos instrumentos de medidas são:

Leitura do wattímetro = P_{o} ; leitura do voltímetro = V_{o} ; leitura do amperímetro = I_{o} .

A partir desses dados calcula os parâmetros do circuito magnético, ou seja, a resistência e a reatância de magnetização, respectivamente, devidas às perdas no núcleo e o fluxo magnético como a seguir:

$$\begin{split} \theta_o &= arccos(P_o/V_oI_o) \\ I_\phi &= I_{o.} \, sen(\theta_o) \\ I_P &= I_{o.} \, cos(\theta_o) \\ R_P &= P_o/\left(I_p\right)^2 \\ Xm &= V_o/\leftI_\phi \right. \end{split}$$

onde,

 I_{ϕ} - corrente no ramo de Xm;

 I_P – corrente no ramo de R_P :

R_P – resistência devida às perdas no ferro;

Xm - reatância devida ao fluxo de magnetização;

Para referir-se ao primário e ao secundário procede da mesma forma ao caso do transformador monofásico:

1.3 Ensaio em Curto Circuito de Autotransformadores

O ensaio de Curto Circuito é feito aplicando-se gradativamente, através de um varivolt, uma tensão no enrolamento primário do transformador até circular a sua corrente nominal, deixando o enrolamento secundário em curto-circuito (lado da carga).

Dado o curto-circuito no secundário e a baixa tensão de alimentação, as perdas no núcleo (ferro) e a corrente de magnetização são consideradas desprezíveis. Neste caso, o circuito fica resumido apenas em relação à impedância representativa das bobinas agregadas. As perdas no ferro são proporcionais ao quadrado da densidade de fluxo (B), que é proporcional à tensão aplicada.

No ensaio de curto circuito a tensão aplicada, suficiente para circular a corrente nominal no enrolamento da alta tensão, é em torno de 5% da tensão nominal do transformador, podendo dessa forma desprezar as perdas no ferro. O ensaio é realizado conforme a Figura 6.

Figura 6 - Circuito para determinação das perdas Joule (perdas no cobre)

As leituras dos instrumentos de medidas são:

 $\label{eq:leitura} \begin{array}{l} \text{Leitura do wattímetro} = P_{cc};\\ \text{leitura do voltímetro} = V_{cc};\\ \text{leitura do amperímetro} = I_{cc}. \end{array}$

A partir desses dados são calculados os parâmetros devidos aos fluxos de dispersão dos lados primário e secundário; reatância X_{L1} e X_{L2} , respectivamente., como a seguir.

$$R_{e1} = P_{cc}/(I_{cc})^2$$
;

$$Z_{e1} = V_{cc}/I_{cc}$$
;

$$X_{e1} = \sqrt{Z_{e1}^2 - R_{e1}^2}$$

Onde

R_{e1} – resistência equivalente do lado da alta tensão;

X_{e1} – reatância equivalente do lado da alta tensão;

Z_{e1} – impedância equivalente do lado da alta tensão;

1.4 Autotransformadores Trifásicos

Os autotransformadores trifásicos são geralmente conectados em estrela – estrela, porém existem outros tipos de conexão. Por vezes, o autotransformador pode apresentar um enrolamento terciário com uma potência da ordem de 35% da maior das potências entre a dos enrolamentos série e comum. O enrolamento terciário é inoperante sob condições equilibradas e serve para reduzir o nível de harmônicos produzidos pelo autotransformador. Os ensaios são os mesmos feitos para o autotransformador monofásico, sendo que os valores medidos devem ser relacionados aos valores de fase.

Figura 7 - Autotransformador Estrela — Estrela

Figura 8 - Autotransformador Triângulo - Triângulo

Figura **9 -** Autotransformador Estrela-Estrela com Terciário em Triângulo

II. OBJETIVO

O objetivo desta prática é determinar os parâmetros internos de um autotransformador.

III. MATERIAIS E METODOS

- 1 autotransformador trifásico 220/260 V, 7 A;
- 1 autotransformador trifásico 220/260 V, 20 A;
- 2 transformadores monofásicos, 1 KVA, 110/110 V;
- 1 varivolt;
- 1 wattimetros:
- 2 Multímetros;
- Fios de Ligação;

IV. RESULTADOS E DISCUSSÃO

Leu-se na placa do transformador a potência nominal de 1KVA com a relação de tensão de 110V/110V. Foram utilizados dois transformadores semelhantes ligados como elevador, fazendo com que a relação seja de 110/220V.

As Tabelas 1 e 2 indicam os resultados a vazio e a curto circuito do auto transformador monofásico.

Tabela 1 - Valores medidos do autotransformador monofásico a Vazio

Po	0,487 W
Vo	110 V
Io	17,7 mA

Tabela 2 - Valores medidos do autotransformador monofásico em Curto Circuito

P_{cc}	80 W
V_{cc}	87 V
I _{cc}	6,01 A

Com estes valores foi possível calcular os parâmetros internos, o fator de potência e as correntes de magnetização do autotransformador monofásico, como indicado na Tabela 3.

Tabela 1 - Valores calculados a partir dos ensaios em laboratório

75,51
0,25
0,090909
1,497243
1210
73,46839
0,46682
0,467999
0,661017

Os mesmos ensaios foram repetidos para o autotransformador trifásico, de 220/260 V, 7 A. Os resultados estão presentes na Tabela 4 e 5.

Com estes valores foi possível calcular os parâmetros internos, o fator de potência e as correntes de magnetização do autotransformador monofásico, como indicado na Tabela 6.

Tabela 4 - Valores medidos do autotransformador Trifásico a

Po	8 W
V_{FN}	127 V
V_{FF}	269 V
Io	0,4 A

Tabela 5 - Valores medidos do autotransformador Trifásico em Curto Circuito

P _{cc}	6520 W
V_{FN}	168 V
V_{FF}	0 V
I _{cc}	6,01 A

Tabela 6 - Valores calculados a partir dos ensaios em laboratório

Ф(°)	80,93
FP	0,16
Ip(A)	0
Ιφ(Α)	0,002
Rp	0
Xm	59500

Rel	1,081314879
Xel	0,627102968
Zel	1,25

Além disso, calculou-se o rendimento do transformador como se estivesse funcionando com a carga nominal, mas com fatores de potência iguais a 1, 0.8 e 0.6. Tais valores estão representados naTabela 7.

Tabela 7 – Rendimento para diferentes Fator de Potência

Fator de	
Potência	Rendimento
1	0,75188
0,8	0,707965
0,6	0,645161

O fator de potência do transformador trifásico é aproximadamente 0, pois a vazio ele se comporta apenas como um indutor.

V. CONCLUSÃO

Através dos ensaios realizados na prática foi possível observar que o transformador trifásico comporta-se melhor quando ligado como autotransformador do que ao transformador monofásico. Isso se deve pelo fato de ter perdas reduzidas em seu núcleo.

Foi possível concluir que o transformador trifásico

Se comporta como indutor, pois este apresenta fator de potência próximo de 0, logo possui poucas perdas em seu ramo magnetizante, diferentemente do transformador monofásico.

O autotransformador entrega uma potencia maior que o transformador normal, por isso é possível observar que as perdas no autotransformador são menores que as perdas no transformador de dois enrolamentos.

Além disso, foi possível observar que a potência consumida pela carga em uma ligação em autotransformador elevador é maior que a potência entregue em um autotransformador abaixador.

VI. REFERÊNCIAS BIBLIOGRÁFICAS

[1] FITZGERALD, A. E.; KINGSLEY, C. J.; UMANS, S. D. Máquinas Elétricas. 6^a. ed. [S.l.]: [s.n.], v. I.