TD4

évaluation algorithmique

Mathieu BONNEAU Antoine FEUILLETTE Tom MAFILLE Paul MATHÉ

1. Formalisation

- 1. On définit les variables comme suit :
 - x_n le nombre de camions de capacité C_n choisis, avec $n \in \mathbb{N} = \{1, 2, 3\}$.
- 2. L'objectif est d'optimiser deux critères :
 - Minimiser le nombre de camions utilisés : On cherche à minimiser le nombre total de camions utilisés chaque jour, c'est-à-dire $\sum_{n\in N} x_n$.
 - Minimiser le coût total en carburant : On cherche également à minimiser le coût en carburant, c'est-à-dire $\sum_{n\in\mathbb{N}} P_n \cdot x_n$. Les contraintes sont les suivantes :
 - Contraintes de capacité des camions : Le nombre total de palettes à livrer doit être réparti entre les camions, en tenant compte de leurs capacités respectives. Si N_1 , N_2 , et N_3 sont les nombres de palettes des types T_1 , T_2 et T_3 , on a :

$$\sum_{n \in N} C_n \cdot x_n \ge \sum_{i=1}^3 N_i \cdot T_i$$

• Contraintes sur le nombre de camions :

$$x_n \ge 0 \quad \forall n \in N$$

Et le nombre total de camions utilisés ne doit pas dépasser le nombre de camions disponibles :

1

$$\sum_{n \in N} x_n \le M$$

• Contraintes sur la capacité d'un camion seul :

$$\forall i, C_i \geq \sum_{j=1}^3 t_{i,j} \cdot T_j$$

Avec $t_{i,j}$ le nombre de palettes T_j dans le conteneur C_i .

On cherche donc à minimiser le coût total en carburant et le nombre de camions, soit :

•
$$\min\left(\sum_{n\in N} P_n \cdot x_n\right)$$
 (1)

et

•
$$\min\left(\sum_{n\in N} x_n\right)$$
 (2)

La formalisation présente quelques problèmes :

• On cherche à optimiser le nombre de palettes, mais pas le volume occupé. En effet, si on a beaucoup de petites palettes, de telle sorte qu'une palette de taille T_1 équivaut à 1000 palettes de taille T_3 , on préferera charger au total 500 palettes T_3 plutôt qu'une palette T_1 , ce qui n'est pas l'objectif. Pour résoudre le problème, on prend le parti de considérer pour la suite CAP_T qui représentera la capacité en terme de palettes : par exemple, pour 1 palette T1 qui "vaut" 2 palettes T2 et 1 palette T2, on aura $CAP_T = 1 \cdot 2 + 1 = 3$.

2. Méthode de résolution

1. On identifie un problème du sac à dos pour le remplissage d'un camion d'une capacité fixée : on aurait donc n problèmes du sac à dos différents. C'est ce n qu'on cherche à minimiser. Le problème peut donc être décomposé en sous-problèmes indépendants, qui consiste à déterminer comment répartir les palettes entre les camions de capacité C_1, C_2, C_3 . Les solutions optimales des sous-problèmes (répartition pour une capacité donnée) contribuent à la solution optimale globale.

On utilisera pour répondre au problème une méthode de programmation dynamique.

Les avantages de cette méthode sont multiples:

- Comparé aux algorithmes gloutons, la programmation dynamique garantit une solution optimale.
- Moins complexe à mettre en œuvre qu'un algorithme de branch-and-bound.
- 2. Voici un jeu de données arbitraires :

1. Nombre de palettes (N) et leur répartition par type :

- T_1 (petites palettes) : $N_1 = 30$
- T_2 (moyennes palettes) : $N_2 = 20$
- T_3 (grandes palettes) : $N_3 = 10$

La capacité de palettes à livrer est donné par :

$$CAP_T = N_1 \cdot T_1 + N_2 \cdot T_2 + N_3 \cdot T_3$$

Si
$$T_1 = 1$$
, $T_2 = 2$, et $T_3 = 3$, alors :

$$CAP_T = 30 \cdot 1 + 20 \cdot 2 + 10 \cdot 3 = 100$$

2. Caractéristiques des camions disponibles (M): Nous avons trois types de camions:

- C_1 : capacité de 10 palettes, coût $P_1 = 100 \in$.
- C_2 : capacité de 20 palettes, coût $P_2 = 180$ €.
- C_3 : capacité de 30 palettes, coût $P_3=250$ €.

Nombre total de camions disponibles (M):

M = 10 (répartis selon les types ci-dessous).

Répartition des camions :

- 4 camions de type C_1 ,
- 3 camions de type C_2 ,

• 3 camions de type C_3 .

3. Résumé des données :

Type de palettes	Nombre (N_i)	Taille (T_i)	
T_1 (petites)	30 palette	1	
T_2 (moyennes)	20 palettes	2	
T_3 (grandes)	10 palettes	3	

Type de camion	Capacité (C_i)	Coût (P_i)	Nombre disponible
$\overline{C_1}$	10 palettes	100 €	4
C_2	20 palettes	180 €	3
C_3	30 palettes	250 €	3

Rappel des contraintes :

• La capacité totale des camions utilisés doit être supérieure ou égale au nombre total de palettes :

$$C_1 \cdot x_1 + C_2 \cdot x_2 + C_3 \cdot x_3 \ge 100$$

• Le nombre de camions utilisés ne doit pas dépasser le nombre disponible pour chaque type :

$$x_1 \le 4, \ x_2 \le 3, \ x_3 \le 3$$

• Toutes les variables doivent être positives :

$$x_1, x_2, x_3 \ge 0$$

3. Résultat final par résolution intuitive :

• Principe du parcours en arrière (Backtracking) utilisé :

L'idée est de partir du volume total et de "remonter" les décisions prises lors de la mise à jour du tableau .

- 1. Initialisation : On initialise à . On garde un compteur pour chaque type de camion (par exemple, , ,) pour compter le nombre de camions utilisés.
- 2. Parcours en arrière : À chaque étape, on vérifie quel camion a permis d'atteindre le coût optimal pour le volume actuel. Si le tableau a été mis à jour par un camion de capacité avec un coût , cela signifie que ce camion a été utilisé pour atteindre ce volume.
- 3. Mise à jour des compteurs : On incrémente le compteur correspondant au camion . On réduit de (la capacité du camion utilisé).
- 4. Répétition : On répète ce processus jusqu'à ce que (volume nul signifie que tout le volume a été attribué aux camions).

La solution optimale pour transporter $CAP_T=100$ palettes avec les coûts minimaux est :

- $x_1 = 1$,
- $x_2 = 0$,

```
• x_3 = 3.
```

D'où le coût total minimal : 850 €.

3. Implémentation:

0. Explication du code :

• Étape 1 : Calcul du volume total à transporter

Le volume total est donné par :

$$V_{\text{total}} = N_1 \cdot T_1 + N_2 \cdot T_2 + N_3 \cdot T_3$$

En remplaçant les valeurs :

```
V_{\text{total}} = 30 \cdot 1 + 20 \cdot 2 + 10 \cdot 3 = 30 + 40 + 30 = 100 unités de volume.
```

• Étape 2: Programmation dynamique

On utilise un tableau où représente le coût minimal pour atteindre un volume .

Initialisation:

(aucun coût pour un volume de 0).

pour (volume non encore atteint).

• Transition : Pour chaque camion (capacité , coût), on met à jour pour chaque volume en sens inverse (pour éviter d'utiliser plusieurs fois le même camion) :

```
dp[v] = \min(dp[v], dp[v - C_i] + P_i)
```

1. Pseudo code:

```
#DONNEES
 Camions = \{\{10, 100\}, \{10, 100\}, \{10, 100\}, \{10, 100\}, \{20, 180\}, \{20, 180\}, \{20, 180\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}
Fonction Minimiser_Cout_Camions(V_total, Camions, nb_camions)
               Entrée :
                             V total : Volume total à transporter
                             Camions : Tableau contenant {capacité, coût} pour chaque camion
                             nb_camions : Nombre total de camions disponibles
               Sortie :
                             Coût minimal pour transporter V_{total}, ou -1 si impossible
               // Étape 1 : Initialisation
               Créer un tableau dp de taille V_total + 1
               Pour v allant de 0 à V_total :
                             dp[v] ← INF // INF représente un coût infini
               dp[0] ← 0 // Coût pour un volume nul est 0
               // Étape 2 : Mise à jour avec les camions disponibles
               Pour chaque camion i allant de 0 à nb_camions - 1 :
                              capacite ← Camions[i][0] // Capacité du camion
                             cout ← Camions[i][1]
                                                                                                                           // Coût du camion
                             Pour v allant de V_total à capacite (en décrémentant) :
                                            Si dp[v - capacite] != INF Alors
```

```
dp[v] + Min(dp[v], dp[v - capacite] + cout)
                 // Étape 3 : Résultat final
                 Si dp[V_total] = INF Alors
                            Retourner -1 // Impossible de transporter le volume total
                            Retourner dp[V_total] // Coût minimal pour atteindre V_total
2. En langage C:
       #include <stdio.h>
       #include <limits.h>
       #define MAX_VOLUME 101 // Volume total à transporter + 1 pour les indices
       #define INF INT MAX
                                                                    // Représentation d'une valeur infinie
       // DONNEES
        \text{Camions} = \{\{10, 100\}, \{10, 100\}, \{10, 100\}, \{10, 100\}, \{20, 180\}, \{20, 180\}, \{20, 180\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 250\}, \{30, 
       int min(int a, int b) {
                 return (a < b) ? a : b;
       int minimiser_cout_camions(int V_total, int camions[][2], int nb_camions) {
                 int dp[MAX_VOLUME];
                 // Initialisation : tous les coûts à l'infini sauf dp[0] = 0
                 for (int i = 0; i <= V_total; i++) {</pre>
                            dp[i] = INF;
                 dp[0] = 0;
                 // Programmation dynamique
                 for (int i = 0; i < nb_camions; i++) {</pre>
                            int capacite = camions[i][0];
                            int cout = camions[i][1];
                            // Mise à jour du tableau dp pour chaque camion
                            for (int v = V_total; v >= capacite; v--) {
                                       if (dp[v - capacite] != INF) {
                                                  dp[v] = min(dp[v], dp[v - capacite] + cout);
                            }
                 }
                 // Le résultat minimal pour atteindre le volume total
                 return dp[V_total] == INF ? -1 : dp[V_total];
       int main() {
                 // Données du problème
                 int V_total = 100; // Volume total à transporter
                 // Tableau des camions : {capacité, coût}
                 int camions[][2] = {
                            {10, 100}, // Camion 1 : capacité 10, coût 100
```

```
{20, 180}, // Camion 2 : capacité 20, coût 180
{30, 250} // Camion 3 : capacité 30, coût 250
};
int nb_camions = sizeof(camions) / sizeof(camions[0]);

// Appel de la fonction pour minimiser le coût
int resultat = minimiser_cout_camions(V_total, camions, nb_camions);

// Affichage du résultat
if (resultat != -1) {
    printf("Le coût minimal pour transporter les palettes est : %d\n", resultat);
} else {
    printf("Impossible de transporter le volume demandé avec les camions disponibles.\n");
}

return 0;
}
```