Local Path Planning with Moving Obstacle Avoidance based on Adaptive MPC in ATLASCAR2

Tesi di Laurea in Ingegneria dell'Automazione

Relatore: Prof. Angelo Cenedese

Correlatore: Prof. Vitor Santos

15 Aprile 2019

Laureando: Alberto Franco

Progetto ATLAS

Questo lavoro di tesi è stato sviluppato all'interno del progetto ATLAS:

- Creato dal gruppo di Automazione e Robotica dell'Università di Aveiro
- L'obiettivo è sviluppare sistemi per la navigazione autonoma delle automobili
- 2003 2010 Modelli piccola scala
 2010 2019 Automobili
- 3 LIDAR, 1 Telecamera, 1 Sensore inclinometrico, 1 Unità GNSS

Figura 1: ATLASCAR2 Mitsubishi iMiEV elettrica del 2015

Motivazione e Obiettivi della Tesi

Motivazioni:

- Sono stati sviluppati sistemi di navigazione globali
- Sistema di pianificazione locale in ambiente statico

Obiettivi:

- Sistema di anticollisione con ostacoli in movimento
- Sistema di assistenza al mantenimento della corsia
- ⇒ Algoritmi basati su ottimizzazione matematica.

Model Predictive Control

Model Predictive Control:

- tecnica avanzata basata su ottimizzazione matematica
- prevede il comportamento futuro utilizzando un modello dinamico LTI
- predizioni non esatte insensibile agli errori di predizione performance inaccettabili
- ⇒ Tecnica adottata: Adaptive Model Predictive Control
 - adatta il modello di predizione per cambiare le condizioni operative
 - struttura di modello fissa, ma consente ai parametri del modello di evolvere nel tempo

Moving Obstacle Avoidance System

(sistema di anticollisione con ostacoli in movimento)

Formulazione del Problema

Il modello utilizzato è il seguente:

$$\begin{cases} \dot{x} = v \cos(\theta) \\ \dot{y} = v \sin(\theta) \\ \dot{\theta} = \frac{v}{C_L} \tan(\delta) \end{cases} \implies \begin{aligned} \dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, \mathbf{u}) \\ \mathbf{y} = \mathbf{g}(\mathbf{x}, \mathbf{u}) \end{aligned} \quad \text{where} \\ \mathbf{u} = \begin{bmatrix} x & y & \theta & v \end{bmatrix}^\mathsf{T} \\ \mathbf{u} = \begin{bmatrix} T & \delta \end{bmatrix}^\mathsf{T} \end{cases}$$

Figura 2: Bicycle model

Per usare l'MPC, il sistema è stato:

- linearizzato con un'approssimazione del primo ordine
- discretizzato con il metodo di Eulero (tempo campionamento T_s)
- ⇒ Ipotesi: tutti gli stati sono misurabili

Design Adaptive MPC - parte 1

L'ATLASCAR2 deve:

- seguire una velocità di riferimento
- rimanere nel mezzo della corsia centrale

Per definire l'area del sorpasso usiamo i seguenti vincoli di ingresso/uscita:

$$\mathsf{Eu} + \mathsf{Fy} \leq \mathsf{G}$$

dove \mathbf{E}, \mathbf{F} e \mathbf{G} sono aggiornate ogni \mathcal{T}_s

Figura 3: Algoritmo decisionale

Design Adaptive MPC - parte 2

L'area del sorpasso è definita come $\mathbf{E}\mathbf{u} + \mathbf{F}\mathbf{y} \leq \mathbf{G}$ dove: $\Rightarrow \mathbf{E} = \mathbf{0}_{5\times 2}$

Sono stati definiti i seguenti vincoli:

- 1 limite superiore coordinata y
- 2 limite inferiore coordinata y
- linea veicolo-angolo della zona di sicurezza
- limite destro coordinata x
- limite sinistro coordinata x

$$\Rightarrow \mathbf{G} = \begin{bmatrix} W/2 \\ W/2 \\ -cI \\ x_{\text{max}} \\ x_{\text{min}} \end{bmatrix}$$

Risultati Simulativi

Figura 5: Sorpasso a sinistra di un ostacolo in movimento (animazione)

Figura 6: Sorpasso di 6 ostacoli in movimento (animazione)

Figura 7: Frenata e sorpasso di 3 ostacoli in movimento (animazione)

Lane Following System

(sistema di assistenza al mantenimento della corsia)

Formulazione del Problema

Obiettivo: il veicolo deve seguire la linea centrale, con una velocità di riferimento.

Dinamica del veicolo:

- Longitudinale → Funzione di trasferimento del primo ordine.
- Laterale → Bicycle model parametrizzato

Devono essere guidati a zero

Modello complessivo: viene discretizzato secondo Eulero, tiene conto dell' intera dinamica e degli errori.

Design Adaptive MPC

Figura 8: Schema di controllo per il mantenimento della corsia

Adaptive MPC: modello predittivo con 6 stati, 3 output, 2 variabili indipendenti. Abbiamo vincolato l'accelerazione e l'angolo di sterzata per una guida più confortevole.

Risultati Simulativi - parte 1

Figura 9: Traiettoria Sinusoidale

Figura 10: Curvatura

Esempio: Percorso Sinusoidale

$$X_{\text{ref}} = V_x \cdot t, \quad t \in [0, 20]s$$

 $Y_{\text{ref}} = 5\sin(X_{\text{ref}}/20)$

Ipotesi:

- \rightarrow Velocità iniziale 15 m/s
- ightarrow Velocità di crociera 20 m/s

Calcoliamo la Curvatura:

$$\kappa = \frac{x'y'' - x''y'}{(x'^2 + y'^2)^{\frac{3}{2}}}$$

che sarà il riferimento da inseguire

Risultati Simulativi - parte 2

Conclusioni e Sviluppi Futuri

Conclusioni:

- Sistema di anticollisione in ambiente dinamico (ostacoli in movimento)
- Sistema di assistenza al mantenimento della corsia (Lane Keeping Assist)

Sviluppi futuri:

- Combinazione dei due metodi in un unico schema di controllo
- Implementazione in ambiente ROS-Gazebo
- Uso di dati reali collezionati dai sensori dell'ATLASCAR2 per testare gli algoritmi sviluppati

