Tool Box

* Databooklet Table 26

Bond	Organic molecules	Wavenumber (cm ⁻¹)	Intensity
C-I	iodoalkanes	490-620	strong
C-Br	bromoalkanes	500-600	strong
C-Cl	chloroalkanes	600-800	strong
C-F	fluoroalkanes	1000-1400	strong
C-O	alcohols, esters, ethers	1050-1410	strong
C=C	alkenes	1620-1680	medium-weak; multiple bands
C=O	aldehydes, ketones, carboxylic acids and esters	1700-1750	strong
C≡C	alkynes	2100-2260	variable
O-H	carboxylic acids (with hydrogen bonding)	2500-3000	strong, very broad
C-H	alkanes, alkenes, arenes	2850-3090	strong
O-H	alcohols and phenols (with hydrogen bonding)	3200-3600	strong, broad
N-H	primary amines	3300-3500	medium, two bands

Figure 1: Infra-red Data

- * $O_2 \rightarrow O \cdot + O \cdot$
- $* \ c = \lambda \cdot f$
- * Fingerprint region: wave number ranges under $1500cm^{-1}\,$
- $^{\ast}\,$ IUPAC Naming of organic molecules...

1 Infra-red Spectroscopy (IR)

Learning Objectives

- Understand that infra-red (IR) spectroscopy can be used to identify functional groups
- Interpret a simple IR spectrum
- Link each of the main peaks in an IR spectrum to their correct functional group
- Distinguish between two compounds based on their infrared spectra

1.1 Background Information

Bonds <u>oscillate</u>, adding energy increases **amplitude** of oscillating.

Figure 2: Stretchings and Bending

- 1. Symmetric stretch
- 2. Asymmetric stretch
- 3. Symmetric bend

1.2 Frequencies of Chemical Bond

1. Bond Strength

Multiple Bonds $\stackrel{.}{\iota}$ Single Bond Hence the frequencies of multiple bonds are **higher** than single bond

2. Relative Atomic Mass

Bigger Atomic Mass \rightarrow Higher Frequencies

1.3 Introduction to Wavenumber

Wavenumber = $\frac{1}{\lambda}$

Unit: cm^{-1}

1.4 Methods to Interpret Wavenumber vs Abundance Graph

A step by step guide (sort of)

- 1. Identify the peaks (and their wavenumber), and refer to data booklet table 26 for the functional groups.
- 2. If there is a **broad peak** at just below 3400 (in 2500 3300) cm^{-1} , then there is presence of hydrogen bonding due to the hydroxyl (OH) group. Combined with a peak in 1700 (C-O), it becomes carboxylic acid.
- 3. Do note that

¹H-NMR Spectroscopy

HNMR: Proton Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) spectroscopy identifies the structure of the molecule.

It reflects the radiowaves part of Electromagnetic Waves.

Learning Objectives

- Understand what is meant by TMS in HNMR spectroscopy
- Interpret a simple HNMR spectroscopy
- Link each of the maximum peaks in an HNMR spectroscopy to their correct hydrogen environment
- Distinguish between two compounds based on their HNMR spectroscopy

2.1 Hydrogen Environment, TMS, and Chemical Shifts

Step by Step Process:

- 1. The hydrogen nuclei in different chemical environments produce different signals in the spectrum.
- 2. Standard signal emitted by TMS, which is called **tetramethylsilane**, having 12 Hydrogen atoms. Its value is 0 ppm.

^{*} For convenience to calculate

Figure 3: Structure of TMS

3. The position of NMR signals relative to the standard signal is the chemical shifts of the proton.

2.2 Interpret a ¹ H-NMR Spectrum

To help with better understanding, an example of HNMR spectrum is used in this guide.

Figure 4: HNMR Spectrum of Ethyl Acetate

2.2.1 Identify the Chemical Environment from the Peaks

Step by Step Process:

- 1. Find how many peaks do the element have on the spectrum. (Usually it's H)
- 2. Then the number of peaks correspond to the number of chemical environments.
- 3. Notice that some hydrogen atoms might have the same chemical environment because it depends on the atoms/groups it could "see" (it directly connected to within the connected carbon)

2.2.2 Interpret Chemical Shifts

Step by Step Process:

- 1. The value of chemical shifts is unique according to different chemical environments.
- 2. Find the value in ppm to match with Data Booklet Table 27
- 3. Find the type of protons (functional group) of that organic compound.

. .

Type of proton	Chemical shift (ppm)	
—C H ₃	0.9–1.0	
—С н ₂ R	1.3–1.4	
—CHR ₂	1.5	
O 	2.0–2.5	
R CH ₂ —	2.2–2.7	
— ←C H ₃	2.5–3.5	
—C≡C− H	1.8–3.1	
—C H ₂ -Hal	3.5–4.4	
R-O-C H ₂ -	3.3–3.7	
O R C O C H ₂ -	3.7–4.8	
0 R ^C \0- H	9.0–13.0	
R-O- H	1.0-6.0	
—CH=C H ₂	4.5-6.0	
——Он	4.0-12.0	

Figure 5: HNMR Chemical Shifts Data

2.2.3 Interpret the Area Under Graph

Step by Step Process:

- 1. Find the ratio of the absorption values of different hydrogen peaks.
- 2. Then the ratio is between the number of protons (hydrogens) of different environments sending the signals.

3. The number of hydrogens is determined.

3 Mass Spectroscopy (MS)

3.1 How Mass Spectroscopy Works?

- 1. Mass spectrometry (MS) identifies the relative atomic mass and molecular mass.
- 2. The scientists use an electron to knock another electron from the compound to make cations.

3.2 How to identify the compound from MS?

simplified mass spectrum of pentane - CH3CH2CH2CH2CH3

Figure 6: Mass Spectrometry of Pentane

- 1. Add Method: To evaluate the number originally appeared. (Such as 29, may corresponding to a $\mathrm{CH_3CH_2}$ group)
- 2. Subtract Method: To subtract the smaller number from the bigger one. (72-57=15, corresponding to a CH_3 group)

4 Index of Hydrogen Deficiency (IHD)

It reflects the degree of Unsaturation. (Multiple bonds \rightarrow unsaturated)

- 1. For a $C \longrightarrow H$ (single bond), IHD = 0
- 2. For a C = H (double bond), IHD = 1
- 3. For a C \equiv H (triple bond), IHD = 2

The general formula is:

$$IHD = \frac{1}{2} \cdot (2 \cdot carbon + 2 - hydrogen + halogen - nitrogen)$$