

Thermodynamik 1 Kapitel 8

Kapitel 8: Mischungen

- 8.1 Mischungen: Definitionen und Zusammensetzungsmaße
- 8.2 Mischungen idealer Gase, kinetische Gastheorie
 - 8.2.1 Zustandsgrößen von Mischungen idealer Gase
 - 8.2.2 Mindesttrennarbeit für ideale Gase
- 8.3 Reale Mischungen
 - 8.3.1 Exzessgrößen
 - 8.3.2 Mischungen realer Stoffe
 - 8.3.3 Gibbssche Phasenregel
 - 8.3.4 Phasengleichgewichte von Mischungen
- 8.4 Ideale Gas-Dampf-Mischung: feuchte Luft
 - 8.4.1 Einführung spezifischer Größen 1+x-Konzept
 - 8.4.2 Sättigungspartialdruck
 - 8.4.3 h_{1+x} , x-Diagramm
 - 8.4.4 Prozesse mit feuchter Luft (Zu-, Abfuhr von Wärme, Vermischen von Luftströmen, Zumischung von Wasser, Kompression)
 - 8.4.5 Beispiele: Klimaanlage, Kühlturm

- Thermodynamik der Mischungen ist umfangreich und anspruchsvoll
 - ⇒ In dieser Grundlagenvorlesung nur stark vereinfachte Modelle
- Im Wesentlichen Behandlung von zwei Modellen; die stark vereinfachen, aber wichtige technische Anwendungen abdecken
 - Mischungen idealer Gase
 - Ideale Gas-Dampf-Mischungen (feuchte Luft)
- Daneben einige qualitative Grundlagen zu realen Mischungen

Definitionen

Mischung	Ein System, das aus mehreren Stoffen (Komponenten) besteht
Komponente	Jeder der in der Mischung enthaltenen reinen Stoffe wird als
	Komponente bezeichnet

"Konzentration" Bezeichnet den Anteil einer bestimmten Komponente (bezogen auf

Masse oder Substanzmenge)

- Zwei typische Aufgabenstellungen der Thermodynamik der Mischungen
 - Berechnung von Stoffdaten für homogene (einphasige) Systeme
 (z.B. v, h, u, s hängen von der Zusammensetzung der Mischung ab)
 Anwendungen z.B. in der Energietechnik, dem Transport und der Verteilung von Erdgasen und der Kältetechnik
 - Berechnung von Phasengleichgewichten
 Anwendungen z.B. in der chemischen Industrie, bei der Gewinnung von Erdöl/Erdgas und in der Umwelttechnik
- Die Beschreibung von Phasengleichgewichten ist besonders schwierig, weil die Zusammensetzung beider Phasen i.d.R. unterschiedlich ist

Beispiele

- Wasser / Luft: Bei Normaldruck kaum Luft in der flüssigen Phase
- Öl / Kältemittel: Wenig Öl in der Gasphase
- Alkohol / Wasser: Mehr Alkohol in der Gasphase, aber beide Komponenten in beiden Phasen relevant
- ⇒ Zusammensetzung beider Phasen ist zu ermitteln, ehe andere Stoffdaten berechnet werden können
- Beide Aufgabenstellungen sind Gegenstand aktueller Forschung, aber mit etwas unterschiedlicher Zielrichtung
 - Genauere Beschreibung von Stoffdaten relativ einfacher homogener
 Mischungen z.B. für Erdgasindustrie, Energietechnik und Kältetechnik
 - Eher qualitative Beschreibung komplexer Phasengleichgewichte z.B. für chemische Industrie, Petrochemie (Augenmerk hauptsächlich auf der Bestimmung der Zusammensetzung von Phasen im Gleichgewicht)

Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

Mischungen: Definitionen und Zusammensetzungsmaße 8.1

Beschreibung der Zusammensetzung durch **Zusammensetzungsmaße**

- In einem abgeschlossenen System kann die Zusammensetzung durch extensive Variablen (die ihren Wert bei Teilung des Systems ändern) beschrieben werden
- Durch die Massen m_a , m_b , ... aller beteiligten Komponenten; es gilt $m = \sum_{i} m_{i}$
- Durch die Substanzmengen n_a , n_b , ... aller beteiligten Komponenten; es gilt $n = \sum_{i} n_{i}$
- Sinnvoller ist i.d.R. die Beschreibung durch intensive Variablen
- Massenbruch

⇒ Molenbruch

$$\xi_{k} = \frac{m_{k}}{m} = \frac{m_{k}}{\sum_{i} m_{i}} \qquad \qquad \sum_{i} \xi_{i} = 1 \qquad \qquad \psi_{k} = \frac{n_{k}}{n} = \frac{n_{k}}{\sum_{i} n_{i}} \text{ mit } \sum_{i} \psi_{i} = 1 \text{ (häufig auch } x_{k})$$

Weniger sinnvoll, aber in der Praxis häufig anzutreffen sind folgende Größen:

 Partialdruck = Der Druck, der herrschen würde, wenn die Komponente k das gesamte Volumen alleine einnehmen würde; gilt nur für ideale Gase

$$p_k = \psi_k \cdot p$$
 mit $\sum_i p_i = p$

Partialvolumen / Volumenkonzentration

$$\varpi_{k} = \frac{V_{k}}{V} = \frac{m_{k}/\rho_{k,o}(T,p)}{V}$$

Nur für volumetrisch ideale Mischungen (d.h. Exzessvolumen ist Null) gilt

$$\varpi_{k} = \frac{V_{k}}{\sum_{i} V_{i}} = \frac{m_{k}/\rho_{k,o}(T, p)}{\sum_{i} m_{i}/\rho_{i,o}(T, p)}$$

8.2 Mischungen idealer Gase, kinetische Gastheorie

Ideale Gase werden wie folgt charakterisiert:

- 1. Moleküle bestehen aus Punktmassen ohne räumliche Ausdehnung
- 2. Es bestehen keine Wechselwirkungskräfte zwischen den Molekülen
- 3. Das ideale Gas ist ein Modellgas, das es in der Realität nicht gibt

Aber: Reale Gase verhalten sich bei niedrigen Dichten in guter Näherung wie ideale Gase

Druck und innere Energie des idealen Gases wurden kinetisch hergeleitet

$$p = \frac{1}{3}c^{2}m * \frac{N}{V} = kT\frac{N}{V} = \frac{R_{m}}{N_{A}}T\frac{N}{V} = \frac{R_{m}}{N_{A}}T\frac{\rho_{m}}{V}N_{A}V = R_{m}T\rho_{m}$$

Boltzmann Konstante: $k = 1,380658 \cdot 10^{-23} \text{ J/K}$

Allgemeine Gaskonstante: $R_{\rm m} = k \cdot N_{\rm A} = 8,314472 \text{ J/(mol K)}$

Avogadro Konstante: $N_A = 6,02205 \cdot 10^{23}$ Teilchen/mol

 Es werden keine Wechselwirkungen berücksichtigt, Moleküle unterscheiden sich nur durch ihre Molmasse (bei spezifischer Betrachtung)

⇒Aussagen müssen für Komponenten einer Mischung genauso gelten

8.2 Mischungen idealer Gase, kinetische Gastheorie

Partialdruck A:
$$p_{A} = \frac{1}{3}c_{A}^{2}m_{A}^{*}\frac{N_{A}}{V} = R_{m}T\rho_{m,A} = \psi_{A}R_{m}T\rho_{m}$$

Partialdruck B:
$$p_{\rm B} = \frac{1}{3} c_{\rm B}^2 m_{\rm B}^* \frac{N_{\rm B}}{V} = R_{\rm m} T \rho_{\rm m,B} = \psi_{\rm B} R_{\rm m} T \rho_{\rm m}$$

$$\Rightarrow$$
 Gesamtdruck: $p = \left(\sum_{i} \psi_{i}\right) \cdot R_{m} T \rho_{m} = R_{m} T \rho_{m}$

 Bei spezifischer Betrachtungsweise sind die unterschiedlichen Gaskonstanten zu berücksichtigen

Partialdruck A:
$$p_{A} = R_{m}T\rho_{m,A} = \frac{R_{m}}{M_{A}}T\rho_{m,A}M_{A} = R_{A}T\rho_{A} = \xi_{A}R_{A}T\rho_{A}$$

Partialdruck B:
$$p_{\rm B} = R_{\rm m} T \rho_{\rm m,B} = \frac{R_{\rm m}}{M_{\rm B}} T \rho_{\rm m,B} M_{\rm B} = R_{\rm B} T \rho_{\rm B} = \xi_{\rm B} R_{\rm B} T \rho_{\rm B}$$

$$\Rightarrow$$
 Gesamtdruck: $p = \left(\sum_{i} \xi_{i} R_{i}\right) \cdot T \cdot \rho = R_{\text{Mischung}} \cdot T \cdot \rho$

$$\Rightarrow \text{ Gaskonstante:} \qquad R_{\text{Mischung}} = \sum_{i} \xi_{i} R_{i} = \frac{R_{\text{m}}}{M_{\text{Mischung}}} = \frac{R_{\text{m}}}{\sum_{i} \psi_{i} M_{i}}$$

8.2.1 Zustandsgrößen von Mischungen idealer Gase: kalorische Zustandsgrößen

- Auch für kalorische Zustandsgrößen gilt, dass es ohne Wechselwirkungen keine Beeinflussung zwischen den unterschiedlichen Komponenten gibt
- In einer Mischung idealer Gase setzt sich z.B. die innere Energie eines Systems aus den Beiträgen der einzelnen Komponenten zusammen

$$U = U_{a} + U_{b} + \dots = n_{a} \cdot u_{m,a} + n_{b} \cdot u_{m,b} + \dots$$

$$U_{m} = \frac{U}{\sum_{i} n_{i}} = \frac{n_{a} \cdot u_{m,a}}{\sum_{i} n_{i}} + \frac{n_{b} \cdot u_{m,b}}{\sum_{i} n_{i}} + \dots = \psi_{a} \cdot u_{m,a} + \psi_{b} \cdot u_{m,b} + \dots$$

 Alle kalorischen Größen lassen sich in Mischungen idealer Gase aus den Größen der Komponenten zusammensetzen

$$u_{m} = \sum_{i} \psi_{i} u_{m,i}$$

$$u = \sum_{i} \xi_{i} u_{i}$$

$$h_{m} = \sum_{i} \psi_{i} h_{m,i}$$

$$h = \sum_{i} \xi_{i} h_{i}$$

$$c_{v,m} = \sum_{i} \psi_{i} c_{v,m,i}$$

$$c_{v} = \sum_{i} \xi_{i} c_{v,i}$$

Dies gilt nicht für die Entropie und mit ihr verknüpfte Größen

8.2.1 Mischungen idealer Gase, Entropie

Für die Entropie idealer Gase folgt

$$ds^{\circ}(T,p) = \frac{dh^{\circ}(T) - vdp}{T} = \frac{dh^{\circ}(T)}{T} - \frac{RTdp}{pT}$$

$$\Rightarrow ds^{\circ}(T,p) = \underbrace{\frac{dh^{\circ}(T)}{T}}_{f(T)} - \underbrace{\frac{Rdp}{p}}_{f(p)}$$

- Die Beziehung gilt auch für Mischungen idealer Gase
- Berechnung von s(T,p) durch Integration

$$s^{\circ}(T, p) = s^{\circ}(T_{0}, p_{0}) + \int_{T_{0}}^{T} \frac{dh^{\circ}(T)}{T} + \int_{p_{0}}^{p} -\frac{R}{p} dp$$

$$\Rightarrow s^{\circ}(T, p) = \underbrace{s^{\circ}(T_{0}, p_{0}) + \int_{T_{0}}^{T} \frac{c_{p}^{\circ}(T)}{T} dT - R \ln\left(\frac{p}{p_{0}}\right)}_{s^{\circ}(T, p_{0})}$$

8.2.1 Mischungen idealer Gase, Entropie

- Die Komponenten sind nach wie vor unabhängig
- Die Komponenten "spüren" nur den von ihnen selbst aufgebauten Druck
 - ⇒ Entropie einer Mischung idealer Gase

$$s_{A}^{o}(T, \rho_{A}) = s_{A}^{o}(T, \rho_{0}) - R \ln\left(\frac{\psi_{A} \rho}{\rho_{0}}\right) = \underbrace{s_{A}^{o}(T, \rho_{0}) - R \ln\left(\frac{\rho}{\rho_{0}}\right)}_{s_{A}^{o}(T, \rho_{0})} - R \ln\psi_{A}$$

$$s_{B}^{o}(T, \rho_{B}) = s_{B}^{o}(T, \rho_{0}) - R \ln\left(\frac{\psi_{B} \rho}{\rho_{0}}\right) = \underbrace{s_{B}^{o}(T, \rho_{0}) - R \ln\left(\frac{\rho}{\rho_{0}}\right)}_{s_{A}^{o}(T, \rho_{0})} - R \ln\psi_{B}$$

8.2.1 Mischungen idealer Gase, Entropie

$$\Rightarrow S_{\text{Mischung}}^{\text{o}}(T, p) = \sum_{i} n_{i}(S_{i,o}^{\text{o}}(T, p) - R \ln \psi_{i})$$

$$\Rightarrow s_{\text{Mischung}}^{\text{o}}(T, p) = \sum_{i} \psi_{i} s_{i,o}^{\text{o}}(T, p) - R \sum_{i} \psi_{i} \ln \psi_{i}$$
Mischungsgröße $\neq 0$

Mischungsgrößen der Gibbs Energie g und der Helmholtz Energie f

$$g(T, p) = h - Ts$$
 \Rightarrow $g_{\text{Mischung}}^{\text{o}}(T, p) = \sum_{i} \psi_{i} g_{i,o}^{\text{o}}(T, p) + RT \sum_{i} \psi_{i} \ln \psi_{i}$

$$f(T,v) = u - Ts$$
 \Rightarrow $f_{\text{Mischung}}^{\text{o}}(T,v) = \sum_{i} \psi_{i} f_{i,o}^{\text{o}}(T,v) + RT \sum_{i} \psi_{i} \ln \psi_{i}$

8.2.1 Zustandsgrößen von Mischungen idealer Gase

Allgemeine Schreibweise für die Zustandsgrößen einer Mischung idealer Gase

Molar

$$z^{o}(T, p, \overline{\psi}) = \sum_{i} \psi_{i} z_{i,o}^{o}(T, p) + \begin{cases} -R \sum_{i} \psi_{i} \ln \psi_{i} & \text{für s} \\ RT \sum_{i} \psi_{i} \ln \psi_{i} & \text{für } f, g \\ 0 & \text{für alle anderen} \end{cases}$$

Spezifisch

$$z^{o}(T, p, \overline{\xi}) = \sum_{i} \xi_{i} z_{i,o}^{o}(T, p) + \begin{cases} -(\sum_{i} \xi_{i} R_{i,o}) \sum_{i} \psi_{i} \ln \psi_{i} & \text{für s} \\ T(\sum_{i} \xi_{i} R_{i,o}) \sum_{i} \psi_{i} \ln \psi_{i} & \text{für } f, g \\ 0 & \text{für alle anderen} \end{cases}$$

mit
$$\psi_{i} = \frac{\xi_{i}}{M_{i} \sum_{k} \xi_{k} / M_{k}}$$

• **Achtung:** Die oben angegebenen Beziehungen gelten **nicht** für die Dichte ρ

⁻hermo

8.2.2 Mindesttrennarbeit für ideale Gase

Schematische Zeichnung einer energetisch idealen Anlage zur Zerlegung von Gasmischungen

8.2.2 Mindesttrennarbeit für ideale Gase

Energiebilanz

$$\dot{n} \cdot h^{\circ} (T_{1}, p_{1}, \overline{\psi}) + P_{\min} - \dot{n} \cdot \sum_{i} \psi_{i} h_{i,o}^{\circ} (T_{2}, p_{2}) + \dot{Q}_{\min} = 0$$

$$\Rightarrow P_{\min} = -\dot{Q}_{\min}$$

Entropiebilanz

$$\dot{n} \cdot s^{\circ} (T_{1}, p_{1}, \overline{\psi}) - \dot{n} \cdot \sum_{i} \psi_{i} s^{\circ}_{i,o} (T_{2}, p_{2}) + \underbrace{\dot{Q}_{\min} / T_{u}}_{\text{rev. WÜ bei } T_{u}} = 0$$

$$\Rightarrow P_{\min} = -\dot{Q}_{\min} = -T_{u} \dot{n} R \sum_{i} \psi_{i} \ln \psi_{i}$$

Beispiel Luftzerlegung

$$\psi_{\text{N}_2} \approx 0.79, \ \psi_{\text{O}_2} \approx 0.21$$
 \Rightarrow $w_{\text{t,min}} \approx 1230 \text{ J/mol } \approx 42.5 \text{ kJ/kg}$

Thermo

8.2.1 Zustandsgrößen von Mischungen idealer Gase

Technisch realisiert wird $W_t \approx 200 \text{ kJ/kg}$

Theoretisch besteht erhebliches Verbesserungspotential

8.3 Reale Mischungen

- Gasförmige Mischungen werden in weiten Bereichen des Maschinenbaus als Mischungen idealer Gase betrachtet
- Diese Betrachtungsweise gilt jedoch nur im Grenzfall verschwindender Dichte
- In guter N\u00e4herung k\u00f6nnen reale gasf\u00f6rmige Mischungen bei moderaten Dr\u00fccken als Mischungen idealer Gase betrachtet werden
- Bei hohen Temperaturen (bezogen auf T_c der beteiligten Stoffe) trägt diese Näherung auch bis zu hohen Drücken – die Grenzen lassen sich nicht pauschal angeben, der Übergang ist fließend

8.3 Reale Mischungen

Für ideale Mischungen realer Stoffe gilt

$$z (T, p, \overline{\psi}) = \sum_{i} \psi_{i} z_{i,o}(T, p) + \begin{cases} -R \sum_{i} \psi_{i} \ln \psi_{i} & \text{für } s \\ RT \sum_{i} \psi_{i} \ln \psi_{i} & \text{für } f, g \\ 0 & \text{für alle anderen} \end{cases}$$

$$\Delta^{M} z^{O}, \text{ideale Mischungsgröße}$$

- Bei der Betrachtung realer Mischungen muss berücksichtigt werden
 - reales Verhalten der Komponenten, also $z_{i,o}(T,p)$ statt $z_{i,o}^{o}(T,p)$
 - Realeffekte der Mischung, also $\Delta^{M}z(T, p, \overline{\psi})$ statt $\Delta^{M}z^{O}(T, \overline{\psi})$
- Zustandsgrößen realer Mischungen lassen sich demnach schreiben als

$$z(T, \rho, \overline{\psi}) = \sum_{i} \psi_{i} z_{i,o}(T, \rho) + \Delta^{M} z(T, \rho, \overline{\psi})$$

8.3.1 Exzessgrößen

- In der Mischungsgröße der realen Mischung $\Delta^{M}z(T, p, \overline{\psi})$ sind enthalten
 - die Mischungsgröße idealer Gase
 - die Realeffekte der Mischung (Exzessgrößen z^E)
- Die Exzessgröße z^E hängt ab von
 - dem Druck p (wie beim Realteil reiner Stoffe)
 - der Temperatur T (wie beim Realteil reiner Stoffe)
 - der Zusammensetzung $\overline{\Psi}$

Zustandsgrößen realer Mischungen lassen sich also schreiben als

$$z(T, p, \overline{\psi}) = \sum_{i} \psi_{i} \ z_{i,o}(T, p) + \underbrace{\Delta^{M} z^{o}(T, \overline{\psi})}_{\text{ideale Mischungsgröße}} + \underbrace{z^{E}(T, p, \overline{\psi})}_{\text{Exzeßgröße}}$$

8.3.1 Exzessgrößen

• Grafische Darstellung einer Zustandsgröße mit $\Delta^{M}z^{O}(T,\overline{\psi}) \neq 0$ (s, f und g)

- Für die Berechnung der Zustandsgrößen realer Mischungen sind erforderlich
 - Zustandsgleichungen für die reinen Komponenten
 - Informationen über die Exzessgrößen
- Exzessgrößen lassen sich experimentell ermitteln oder berechnen (g^E-Modelle sind Standard in der Verfahrenstechnik, auch bei komplexen Mischungen)
- Für die Grundvorlesung gehen diese Ansätze jedoch zu weit

8.3.2 Ideale Mischungen realer Stoffe

- "Ideale Mischungen realer Stoffe" sind ein in der Praxis häufig hilfreiches Modell
- Für **ideale Mischungen** realer Stoffe gilt für alle Zustandsgrößen $z^{E}(T, p, \overline{\psi}) = 0$
- Für ideale Mischungen gilt damit

$$Z_{\text{id.M.}}(T, \rho, \overline{\psi}) = \sum_{i} \psi_{i} Z_{i,o}(T, \rho) + \underbrace{\Delta^{M} Z^{o}(T, \overline{\psi})}_{\text{ideale Mischungsgröße }}$$
reale Zustandsgrößen der Komponenten (=0 für $z \neq s, f, g$)

- Mischungen idealer Gase $z_{i,o} = z_{i,o}^o$ sind immer auch ideale Mischungen
- Das Modell "ideale Mischungen realer Stoffe" berücksichtigt zusätzlich das reale Verhalten der reinen Komponenten

8.3.2 Ideale Mischungen realer Stoffe

- Vernachlässigt werden die Effekte unterschiedlicher Wechselwirkungen zwischen den Molekülen der beteiligten Komponenten (die Exzessgrößen z^{E)}
- Mit dem Modell "ideale Mischungen realer Stoffe" muss gearbeitet werden, wenn bei Gas- oder Flüssigkeitsmischungen nicht von idealen Gasen ausgegangen werden kann, aber keine Informationen über das tatsächliche Verhalten des Mischung vorliegen

8.3.2 Ideale Mischungen realer Stoffe

- Gute Ergebnisse, wenn die Moleküle der verschiedenen Komponenten ähnlich sind (z.B. Stickstoff und Sauerstoff als Hauptbestandteile von Luft, beide zweiatomig, quadrupolar)
 - **⇒** Gleiche und ungleiche Wechselwirkung ähnlich
- Schlechtere Ergebnisse bei ungleichen Molekülen (z.B. Öl in Kältemittel), große Unterschiede zwischen gleicher und ungleicher Wechselwirkung
 - hier sind mischungsspezifische Informationen unerlässlich
- Modelle zur genaueren Beschreibung von Mischungen gehen von der Modellierung von Exzessgrößen ab, beschreiben die Mischungen mit Zustands- bzw.
 Fundamentalgleichungen
- Im einfachsten Fall können z.B. kubische Zustandsgleichungen durch geeignete Modifikation der Parameter zur Beschreibung von Mischungen verwendet werden
- Für die Grundvorlesung gehen diese Modelle zu weit

8.3.3 Gibbssche Phasenregel

- Frage: Wie viele Freiheitsgrade hat eine Mischung?
- Im homogenen Zustandsgebiet
- wie bei reinen Stoffen zwei Variablen zur Beschreibung des thermischen und mechanischen Zustands des Systems z.B. *T, p*
- für N Komponenten (N-1) Molenbrüche zur Beschreibung der Zusammensetzung N-ter Molenbruch aus $\sum_i \psi_i = 1$
- ⇒ Im homogenen Zustandsgebiet haben Mischungen mit N Komponenten daher (N+1) Freiheitsgrade
- Neben der Berechnung von Größen im homogenen Zustandsgebiet hat die Berechnung von Phasengleichgewichten für Mischungen eine herausragende Bedeutung
- Die Berechnung von Phasengleichgewichten dominiert im Bereich der Verfahrenstechnik, der Umwelttechnik, aber auch in manchen energietechnischen Anwendungen
- Auch für Mischungen gilt im Phasengleichgewicht T' = T'' und p' = p''

8.3.3 Gibbssche Phasenregel

 Die stoffliche Gleichgewichtsbedingung muss für jede Komponente i=1...N erfüllt sein

Stoffliches Gleichgewicht
$$g'_i = g''_i$$

 \Rightarrow (*N* + 2) Gleichgewichtsbedingungen

Jetzt nicht mehr zwei Phasen, sondern P Phasen

- Im Phasengleichgewicht muss der Zustand von P Phasen beschrieben werden

 ⇒ zunächst P·(N + 1) Variablen
- Die (N + 2) Gleichgewichtsbedingungen lassen sich bei
 P ≥ 2 als Koppelungsbedingung zu den anderen Phasen (P 1) mal schreiben
 (P 1)·(N + 2) Bedingungen
- Für die Zahl der Freiheitgrade FG ergibt sich damit

$$FG = P \cdot (N+1) - (P-1) \cdot (N+2)$$

$$FG = N + 2 - P$$

8.3.4 Phasengleichgewichte von Mischungen

System	Homogen	Gesättigt	Tripel- Zustand	-	
Zahl der Phasen im Gleichgewicht	1	2	3	_	
Reinstoff	2	1	0	Anzahl	
Binäre Mischung	3	2	1	FG	
Ternäre Mischung	4	3	2		

- Reinstoffe haben im Phasengleichgewicht aus zwei Phasen nur einen Freiheitsgrad
- ⇒ Ist der Druck vorgegeben, ergibt sich die Siedetemperatur, ist die Temperatur vorgegeben, ergibt sich der Dampfdruck
- Binäre Mischungen haben im Phasengleichgewicht aus zwei Phasen zwei Freiheitsgrade
- ⇒ Es besteht bei Mischungen keine feste Zuordnung von Dampfdruck und Siedetemperatur

Thermo

8.3.4 Phasengleichgewichte von Mischungen

Verdampfung einer binären Mischung

8.3.4 Phasengleichgewichte von Mischungen

- Darstellung im T, ψ-Diagramm (statt ψ häufig auch x)
- A= schwerer siedende Komponente,
 z.B. Wasser
 B= leichter siedende Komponente, z.B.
 Alkohol
- Die Konzentrationsunterschiede zwischen Flüssigkeits- und Dampfphase werden in der Verfahrenstechnik für Trennprozesse ausgenutzt

⇒ Destillation

Phasengleichgewichte können auch andere, für die Praxis ebenso wichtige Formen annehmen

8.3.4 Phasengleichgewichte von Mischungen

Azeotrop: Bei einer bestimmten
Zusammen-setzung verhält sich die
Mischung beim Sieden wie ein reiner Stoff,
d.h. der Dampf hat dieselbe
Zusammensetzung wie die Flüssigkeit

- Probleme bei der Trennung
- gezielter Einsatz z.B. in der Kältetechnik

Fakultät III – Prozesstechnik

8.4 Ideale Gas-Dampf-Mischungen

Ideale Gas-Dampf-Mischungen lassen sich wie folgt charakterisieren

- Eine oder mehrere Komponenten der Mischung k\u00f6nnen im relevanten Temperaturund Druckbereich als ideale Gase betrachtet werden, deren Kondensation ist ausgeschlossen
- Eine Komponente kann kondensieren
- In der Gasphase kann auch die kondensierende Komponente als ideal betrachtet werden
- Die flüssige Phase enthält nur die kondensierende Komponente

Beispiele:

- Luft + Wasser: feuchte Luft (Klimatechnik, Energietechnik, ...)
- Luft + Brennstoff (Energietechnik)
- Wasserhaltige Verbrennungs- bzw. Abgase (Energietechnik)

Aber nicht:

⇒ SO_{2/3}-haltiges Verbrennungsgas / Wasser: Bildung von H₂SO_{3/4} in der flüssigen Phase führt zu ganz anderem Kondensationsverhalten → Voraussetzungen stets genau prüfen

8.4 Ideale Gas-Dampf-Mischung: feuchte Luft

- Die nicht kondensierbaren Gase k\u00f6nnen i.d.R. als eine Komponente betrachtet werden (z.B. "trockene Luft" statt 78% N2, 21% O2, 1% Ar)
- ⇒ Das System lässt sich auf die Betrachtung zweier Komponenten reduzieren, von denen eine flüssig vorliegen kann

 "Trockene Luft" ist eine Mischung, deren Zusammensetzung sich in den meisten Anwendungen nicht verändert

Zusammensetzung von trockener Luft nach ISO 2533

Komponente	Molenbruch $\psi_{\rm l}$	Molmasse M _i	
Stickstoff	0.781109	28.01348 g/mol	
Sauerstoff	0.209548	31.9988 g/mol	
Argon	0.009343	39.948 g/mol	

(Komponenten mit ψ_i < 0.05% vernachlässigt, zu $\sum_i \psi_i = 1$ ergänzt)

8.4 Ideale Gas-Dampf-Mischung: feuchte Luft

⇒ Molmasse M_I der trockenen Luft: 28.9601 g/mol

⇒ Gaskonstante R_L der trockenen Luft: 287.101 J/(kg K)

Wasser ist ein reiner Stoff

 \Rightarrow Molmasse $M_{\rm H2O}$ des Wassers: 18.01528 g/mol

 \Rightarrow Gaskonstante R_{H2O} des Wassers: 461.523 J/(kg K)

Zusammensetzungsmaße zur Beschreibung des Wassergehalts feuchter Luft:

- Molenbruch $\psi_{\rm H2O}$
- Massenbruch ξ_{H2O}
- Partialdruck p_{H2O} (= ψ_{H2O} •p; **Achtung:** eignet sich nicht zur vollständigen Beschreibung zweiphasiger Systeme)
- Absolute Feuchte $\rho_{H2O} = m_{H2O} / V (= \xi_{H2O} \cdot \rho)$

8.4 Ideale Gas-Dampf-Mischung: feuchte Luft

Wassergehalt

$$x = \frac{m_{\text{H2O}}}{m_{\text{L}}} = \frac{\xi_{\text{H2O}} \cdot m_{\text{ges}}}{(1 - \xi_{\text{H2O}}) \cdot m_{\text{ges}}} = \frac{\xi_{\text{H2O}}}{1 - \xi_{\text{H2O}}}$$

- Massenbruch und Wassergehalt sind austauschbar
- Aber: Bei den meisten technischen Prozessen bleibt der Massenstrom an trockener Luft konstant, während dem System Wasser zugeführt oder entzogen wird (Kondensation, Verdunstung, Trocknung, ...)
- ⇒ Verwendung des Wassergehalts vereinfacht dann die Berechnungen
- Spezifische Größen können vorteilhaft auf die Masse (oder den Massenstrom) trockener Luft bezogen werden, wenn diese Bezugsgröße sich während des Prozesses nicht verändert

Einführung spezifischer Größen – 1+x-Konzept

Spezifisches Volumen:

$$V_{1+x} = \frac{V}{m_L} = \frac{m_L v_L + m_{H2O} v_{H2O}}{m_L} = v_L + x v_{H2O}$$

Achtung: $V_{H2O} = V/m_{H2O} = V/(m_{H2O,g} + m_{H2O,fl} + m_{H2O,fest})$ muss ggf. auch den flüssigen bzw. festen Anteil berücksichtigen

nur Gasphase:
$$V_{1+x} = V_L + XV_{H2O} = \frac{R_L T}{p} + X \frac{R_{H2O} T}{p} = (R_L + XR_{H2O}) \frac{T}{p}$$

Spezifische Enthalpie:
$$h_{1+x} = \frac{H}{m_L} = \frac{m_L h_L + m_{H2O} h_{H2O}}{m_L} = h_L + x h_{H2O}$$

- Die spezifische Enthalpie h_{1+x} ist die Schlüsselgröße zur Auslegung zahlreicher Prozesse mit feuchter Luft → 1. Hauptsatz
- Zur Berechnung von h_{L} und h_{H2O} zunächst **Definition von Nullpunkten**
- h_i wird bei $t = 0^{\circ}$ C zu Null gesetzt und ist unabhängig vom Druck, weil Luft als ideales Gas betrachtet wird $\Rightarrow h_{\perp}(t) = \int_{0}^{t} c_{p,\perp}^{o} dt$

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik und Thermische Verfahrenstechnik Fakultät III – Prozesstechnik

8.4.1 Einführung spezifischer Größen – 1+x-Konzept

 Im Bereich –50° C bis +100° C gilt in guter N\u00e4herung

$$c_{p,L}^{o} = 1.007 \frac{kJ}{kgK} = const.$$

$$h_{L}(t) = 1.007 \frac{\text{kJ}}{\text{kg}} \cdot t$$

Isobare Wärmekapazität von trockener Luft, p = 1 bar

- h_{H2O} wird für **flüssiges Wasser** bei $t = 0^{\circ}$ C zu Null gesetzt und ist in guter Näherung unabhängig vom Druck
- Im Bereich von 0° C bis +75° C gilt in guter N\u00e4herung

$$c_{\text{p,H2O,fl}}^{\text{o}} = 4.18 \frac{\text{kJ}}{\text{kgK}} = \text{const.}$$
 \Rightarrow $h_{\text{H2O,fl}}(t) = 4.18 \frac{\text{kJ}}{\text{kg}} \cdot t$

Einführung spezifischer Größen – 1+x-Konzept

Die Verdampfungsenthalpie dominiert $h_{H2O,q}$ für gasförmiges Wasser; bei 0 °C gilt: $\Lambda h^{\vee} \approx 2500 \text{ kJ/kg}$

Die Annahme c_p^o = const. ist für gasförmiges Wasser nur vertretbar, weil Δh^{\vee} i.d.R. den weitaus größeren Beitrag liefert

$$c_{\rm p,H2O,g}^{\rm o} \approx 1.86 \frac{\rm kJ}{\rm kgK} \approx {\rm const.}$$
 \Rightarrow

$$c_{p,H2O,g}^{o} \approx 1.86 \frac{kJ}{kgK} \approx const.$$
 $\Rightarrow h_{H2O,g}(t) = 2500 \frac{kJ}{kg} + 1.86 \frac{kJ}{kg} \cdot t$ (t in °C)

Isobare Wärmekapazität von flüssigem Wasser, p = 1 bar

Isobare Wärmekapazität von gasförmigem

8.4.1 Einführung spezifischer Größen – 1+x-Konzept

- Rechenvorschriften für h_{1+x}
- Wasser nur gasförmig

$$h_{1+x}(t,x) = h_{L} + xh_{H2O} = 1,007 \frac{kJ}{kg} \cdot t + x \cdot \left(2500 \frac{kJ}{kg} + 1,86 \frac{kJ}{kg} \cdot t\right)$$

Wasser flüssig und gasförmig

$$h_{1+x}(t,x) = h_{L} + xh_{H2O} = 1,007 \frac{kJ}{kg} \cdot t + x_{s} \cdot \left(2500 \frac{kJ}{kg} + 1,86 \frac{kJ}{kg} \cdot t\right) + (x - x_{s}) \cdot 4,18 \frac{kJ}{kg} \cdot t$$

- Wie ist der Sättigungswassergehalt x_s zu berechnen?
- Bei idealen Gas-Dampf-Mischungen enthält die flüssige Phase nur die Komponente "Dampf" – im Folgenden mit dem Index "o" gekennzeichnet ⇒ die stoffliche Gleichgewichtsbedingung muss im Phasengleichgewicht nur für den Dampf erfüllt sein

$$g_{\rm D}''(T, p, \psi_{\rm D,s}) = g_{\rm D,o}'(T, p)^{(1)}$$

8.4.2 Sättigungspartialdruck

Für die reine Komponente "Dampf" gilt

$$g_{\mathsf{D},\mathsf{o}}''(T,p_{\mathsf{D},\mathsf{o},\mathsf{s}}) = g_{\mathsf{D},\mathsf{o}}'(T,p_{\mathsf{D},\mathsf{o},\mathsf{s}})^{(2)}$$
 und $p_{\mathsf{D},\mathsf{o},\mathsf{s}} = p_{\mathsf{s}}(T)$

Die Differenz dieser Gleichungen ergibt

$$\underbrace{g_{\mathsf{D}}''(T, p, \psi_{\mathsf{D}, \mathsf{s}}) - g_{\mathsf{D}, \mathsf{o}}''(T, p_{\mathsf{D}, \mathsf{o}, \mathsf{s}}) = g_{\mathsf{D}, \mathsf{o}}'(T, p) - g_{\mathsf{D}, \mathsf{o}}'(T, p_{\mathsf{D}, \mathsf{o}, \mathsf{s}})}_{=g_{\mathsf{D}}''(T, p_{\mathsf{D}, \mathsf{s}})}$$

Aus der Definition der Gibbsschen Energie g folgt für eine ideale Gasphase

$$g^{\circ}(T,p) = h^{\circ}(T) - T \cdot s^{\circ}(T,p) = h^{\circ}(T) - T \cdot \left(s^{\circ}(T,p_0) - R \cdot \ln(p/p_0)\right)$$

$$\Rightarrow g^{\circ}(T,p) = g^{\circ}(T,p_0) + RT\ln(p/p_0)$$

$$\Rightarrow RT \ln \left(\frac{p_{D,s}}{p_{D,o,s}} \right) = g'_{D,o}(T,p) - g'_{D,o}(T,p_{D,o,s}) = \int_{\rho_{D,o,s}}^{\rho} \left(\frac{\partial g'_{D,o}}{\partial \rho} \right)_{T} d\rho$$

8.4.2 Sättigungspartialdruck

$$\Rightarrow RT \ln \left(\frac{p_{D,s}}{p_{D,o,s}} \right) = V'_{D,o} (p - p_{D,o,s})$$

$$\Rightarrow p_{D,s} \approx p_{D,o,s} \cdot \exp\left(\frac{v_{D,o}'(p - p_{D,o,s})}{RT}\right) \approx p_{D,o,s} = p_{s}(T)$$
Poynting-Korrektur

 In den meisten Fällen kann der Sättigungspartialdruck gleich dem Dampfdruck gesetzt werden

$$p_{\text{D,s}} \approx p_{\text{D,o,s}} = p_{\text{s}}(T)$$

• In der Klima- und Trocknungstechnik gilt in aller Regel $p_{D,s} = p_s(T)$, aber es gibt zahlreiche relevante Ausnahmen

8.4.2 Sättigungspartialdruck

Effekt der "Poynting-Korrektur" für feuchte Luft

Definition der relativen Feuchte

$$\varphi = \frac{p_{\text{H2O}}}{p_{\text{D,s}}(T)} \approx \frac{p_{\text{H2O}}}{p_{\text{s}}(T)}$$

• Die relative Feuchte φ beschreibt nur ungesättigte Systeme (φ < 1) eindeutig; φ = 1 gilt aber für sehr unterschiedliche Werte von x

8.4.2 Beispiel für die Relevanz der Poynting-Korrektur

 Adiabate Luftspeicherkraftwerke als Beispiel für einen technisch relevanten Problemfall

1: ≈ 650 °C auf ≈ 30 °C, Kondensation bei $p \approx 100$ bar

2: ≈ 30 °C auf ≈ 650 °C, Verdampfung bei $p \approx 100$ bar

8.4.3 h_{1+x} , x-Diagramm

- h_{1+x} und x sind die Schlüsselgrößen der meisten technischen Anwendungen mit feuchter Luft
- Das h_{1+x},x-Diagramm ist das am weitesten verbreitete Arbeitsdiagramm in der Klima- und Trocknungstechnik

Aufbau des h_{1+x} , x-Diagramms

- Spezifische Enthalpie und Wassergehalt werden auf den Achsen aufgetragen
- Die 0°C-Isotherme verläuft in diesem schiefwinkligen Diagramm im Gasgebiet horizontal

8.4.3 h_{1+x} , x-Diagramm

- Die Steigung der anderen Isothermen resultiert im homogenen Gebiet aus der Wärmekapazität des Wassers in der Gasphase
- Die Lage der Sättigungslinie ($\varphi = 1$) ist eine Funktion der Temperatur (und des Drucks); die Diagramme gelten i.d.R. für p = 1 bar bzw. 1 atm

$$p_{D,s} \approx p_{D,o,s}$$
 \Rightarrow $\psi_{s} \approx \frac{p_{D,o,s}}{p_{des}} = \frac{p_{s}(I)}{p_{des}}$

Für die Gasphase gilt

$$x = \frac{m_{\text{H2O}}}{m_{\text{L}}} = \frac{V\rho_{\text{H2O}}}{V\rho_{\text{L}}} = \frac{\frac{\rho_{\text{H2O}}}{R_{\text{H2O}}T}}{\frac{\rho_{\text{L}}}{R_{\text{L}}T}} = \frac{R_{\text{L}}}{\frac{\rho_{\text{H2O}}}{R_{\text{H2O}}}} \cdot \frac{\rho_{\text{H2O}}}{\rho_{\text{ges}} - \rho_{\text{H2O}}} \approx \underbrace{0.622}_{\substack{\text{L/H2O} \\ \text{spezifisch}}} \cdot \frac{\rho_{\text{H2O}}}{\rho_{\text{ges}} - \rho_{\text{H2O}}}$$

$$x_{\text{s}} \approx 0.622 \cdot \frac{\rho_{\text{s,H2O}}(T)}{\rho_{\text{ges}} - \rho_{\text{s,H2O}}(T)}$$

$$\Rightarrow$$
 Sättigungswassergehalt hängt von T und p_{qes} ab

Linien gleicher relativer Feuchte lassen sich analog berechnen

$$x_{\varphi} \approx 0.622 \cdot \frac{\varphi \cdot p_{s,H2O}(T)}{p_{ges} - \varphi \cdot p_{s,H2O}(T)} \ \left(\neq \varphi \cdot x_{s} \right)$$

8.4.3 h_{1+x} , x-Diagramm

- Im Nebelgebiet verlaufen die Isothermen fast parallel zu den Isenthalpen;
 kleine Abweichungen ergeben sich aus der Wärmekapazität des flüssigen Wassers
- Bei 0°C können Wasser- und Eisnebel koexistieren
- Unter 0°C ergibt sich die Steigung der Nebelisothermen aus der Enthalpie des festen Wassers (Eis)

Schmelzenthalpie von Wasser: $\Delta h_{\rm Schm} \approx -333 \text{ kJ/kg}$ Wärmekapazität von Eis: $c_{p, \rm H2O, fest} \approx 2.05 \text{ kJ/(kg K)}$

 \Rightarrow Bei Bildung von Eisnebel ($x > x_s$, t < 0°C) gilt:

$$h_{\text{1+x}} = c_{\text{p,L}} \cdot t + x_{\text{s}} (\Delta h^{\text{V}} + c_{\text{p,H2O,g.}} \cdot t) + (x - x_{\text{s}}) \cdot (\Delta h_{\text{Schm}} + c_{\text{p,H2O,fest}} \cdot t)$$

• Sättigungslinie und Linien φ = const. können unter 0°C durchgezogen werden, haben aber bei 0°C einen Knick (Sublimationsdruck statt Dampfdruck)

8.4.3 h_{1+x},x-Diagramm

 Trotz der Verfügbarkeit von geeigneter Software werden maßstabgerechte h_{1+x},x-Diagramme auch heute in der Praxis verwendet

8.4.4 Prozesse mit feuchter Luft

- Feuchte Luft dient wieder als Beispiel für eine ideale Gas / Dampf-Mischung
 ⇒ alle Aussagen lassen sich sinngemäß auf andere Stoffsysteme übertragen
- Die meisten technischen Anwendungen lassen sich auf eine Kombination von Grundoperationen zurückführen

Isobare Zu- oder Abfuhr von Wärme

- Zufuhr von $Q/m_1 > 0$ oder Abfuhr von $Q/m_1 < 0$
- Die Denkweise entspräche q_{1+x} , diese Schreibweise ist für Prozessgrößen aber unüblich

• 1. HS:
$$m_{L}h_{1+x,2} = m_{L}h_{1+x,1} + Q$$
 $h_{1+x,2} = h_{1+x,1} + Q/m_{L}$

• Massenerhaltung: $m_{L,1} = m_{L,2}$, $m_{H2O,1} = m_{H2O,2} \Rightarrow x_1 = x_2$

Aber:
$$t_2 \neq t_1$$
 und $\varphi = \varphi(t, p) \Rightarrow \varphi_2 \neq \varphi_1$

8.4.4 Zu- oder Abfuhr von Wärme

- Isobare Zu- oder Abfuhr von Wärme im h_{1+x} , x-Diagramm
- Beide Zustände homogen

$$h_{1+x,2} = h_{1+x,1} + Q/m_L$$

$$t_2 = t_1 + \frac{Q}{m_L \underbrace{\left(c_{p,L} + x c_{p,H2O,g}\right)}_{c_{p,1+x} \text{ Gasphase}}}$$

Zustand 1 homogen,
 Q/m_L > 0 ⇒ φ₂ < φ₁
 Zustand 2 auch
 homogen, (Fall A → B)

8.4.4 Zu- oder Abfuhr von Wärme

- Zustand 1 homogen, Q/m_L < 0
 ⇒ φ₂ > φ₁ prüfen, ob x < x_s(t₂,p) wenn ja, sind beide Zustände homogen (Fall A → C)
- $x > x_s(t_{2^*}, p) \Rightarrow \text{Zustand 2 im Nebelgebiet (Fall A} \rightarrow D)$ (t_{2^*} sei die mit "Punkt 2 homogen" berechnete falsche Temperatur t_2)

$$t_{2} = \frac{h_{1+x,1} + Q/m_{L} - x_{s}(t_{2}, p)\Delta h^{v}}{c_{p,L} + x_{s}(t_{2}, p)c_{p,H2O,g} + (x - x_{s}(t_{2}, p))c_{p,H2O,fl}}$$

- x ist konstant, aber $x_s = f(t_2, p) \Rightarrow t_2$ nur iterativ bestimmbar
- **Zustand 1 im Nebelgebiet** erfordert eine analoge Berechnung; $h_{1+x,1}$ kann berechnet werden, Q/m_L kann < 0 oder > 0 sein
- Für $Q/m_L > 0$ prüfen, ob $x_s(t_2,p) > x \rightarrow$ wenn ja, ist Zustand 2 homogen (Fall $D \rightarrow A$)

$$\Rightarrow t_2 = \frac{h_{1+x,1} + Q/m_L - x\Delta h_o}{c_{p,L} + x c_{p,H2O,g}}$$

(kann für die Überprüfung verwendet werden)

8.4.4 Zu- oder Abfuhr von Wärme

- Zustand 2 im "Dreiphasengebiet" bei t = 0 °C (Fall A → E)
 (Überprüfung: h_{1+x} für Nebel (h_{1+x,fl}) und Eisnebel (h_{1+x,fest}) bei gegebenem x und 0 °C berechnen; für h_{1+x,fl} > h_{1+x,2} > h_{1+x,fest} liegt der Zustand 2 im Dreiphasengebiet)
- \Rightarrow $t_2 = 0$ °C, $x_{fl.}$ und x_{fest} lassen sich aus $h_{1+x,2}$ berechnen
- Zustand 2 im "Eisnebelgebiet" bei t < 0 °C und $x > x_s(t_2,p)$ (Fall A \rightarrow F)
- ⇒ Bestimmung von t₂ analog zu "Punkt 2 im Nebelgebiet" (iterativ) aber mit Rechenvorschrift für Eisnebel

• In manchen Fällen liefert das h_{1+x} , x-Diagramm schon ausreichend genaue Ergebnisse; in jedem Fall lohnt sich sein Einsatz als Orientierungshilfe

8.4.4 Vermischung von zwei Luftströmen

Isobar adiabate Vermischung von zwei Luftströmen

Berechnung des Mischungspunkts aus Energie- und Massenerhaltungssatz

$$\dot{m}_{L,M} h_{1+x,M} = \dot{m}_{L,A} h_{1+x,A} + \dot{m}_{L,B} h_{1+x,B}$$

Massenerhaltung Luft

$$\dot{m}_{L,M} = \dot{m}_{L,A} + \dot{m}_{L,B}$$

$$\Rightarrow h_{1+x,M} = h_{1+x,A} + \frac{\dot{m}_{L,B}}{\dot{m}_{L,A} + \dot{m}_{L,B}} (h_{1+x,B} - h_{1+x,A})$$

Massenerhaltung Wasser

$$\dot{m}_{\mathsf{L},\mathsf{M}} \, x_{\mathsf{M}} = \dot{m}_{\mathsf{L},\mathsf{A}} \, x_{\mathsf{A}} + \dot{m}_{\mathsf{L},\mathsf{B}} \, x_{\mathsf{B}}$$

$$\Rightarrow x_{M} = x_{A} + \frac{m_{L,B}}{\dot{m}_{L,A} + \dot{m}_{L,B}} (x_{B} - x_{A})$$

- $\Rightarrow h_{1+x}$ und x variieren linear mit dem Massenstromverhältnis
- $t_{\rm M}$ und $\varphi_{\rm M}$ folgen aus $h_{\rm 1+x}$ und x wie zuvor diskutiert

8.4.4 Vermischung von zwei Luftströmen

• Darstellung der Vermischung erfolgt im h_{1+x} , x-Diagramm als Mischungsgerade

8.4.4 Zumischung von Wasser

Zustand A	Zustand B	Mischungszustand M
- einphasig	- einphasig	 einphasig (Fall 1) Nebelgebiet (Fall 3) Dreiphasengebiet
einphasigNebelgebietNebelgebiet	NebelgebietNebelgebietEisnebelgebiet	 Eisnebelgebiet s.o. (Fall 2) Nebelgebiet Nebelgebiet Dreiphasengebiet Eisnebelgebiet

- Sonderfall: Zumischung von reinem Wasser
- Bei reinem Wasser wird $m_1 = 0 \Rightarrow x \rightarrow \infty$
- \Rightarrow Darstellung im h_{1+x} , x-Diagramm nicht ohne weiteres möglich

8.4.4 Zumischung von Wasser

Rechnerische Behandlung

1. HS:
$$\dot{m}_{L} h_{1+x,M} = \dot{m}_{L} h_{1+x,A} + \dot{m}_{H2O,B} h_{H2O,B}$$

$$\Rightarrow h_{1+x,M} = h_{1+x,A} + \frac{\dot{m}_{H2O,B}}{\dot{m}_{LA}} h_{H2O,B}$$

(Nullpunkt der Enthalpie von Wasser entspricht dem der feuchten Luft)

Massenerhaltung Wasser

$$\dot{m}_{L,M} x_M = \dot{m}_{L,A} x_A + \dot{m}_{H2O,B}$$

$$\Rightarrow x_M = x_A + \frac{\dot{m}_{H2O,B}}{\dot{m}_{LA}}$$

- $t_{\rm M}$ und $\varphi_{\rm M}$ folgen aus $h_{\rm 1+x,M}$ und $x_{\rm M}$ wie zuvor diskutiert
- Darstellung im h_{1+x} , x-Diagramm

$$h_{1+x,M} = h_{1+x,A} + \frac{m_{H2O,B}}{\dot{m}_{L,A}} h_{H2O,B} = h_{1+x,A} + \Delta x h_{H2O,B}$$

8.4.4 Zumischung von Wasser

⇒ Für flüssiges Wasser:

$$h_{\text{1+x,M}} = h_{\text{1+x,A}} + \Delta x \underbrace{c_{\text{p,H2O,fl.}} \cdot t_{\text{B}}}_{\substack{\text{Steigung der Nebelisotherme bei } t_{\text{B}}}$$

Zustandsänderung erfolgt parallel zur Nebelisotherme bei der Temperatur t_B des zugemischten Wassers

Fakultät III – Prozesstechnik

8.4.4 Zumischung von Wasser

In einfachen h_{1+x} , x-Diagrammen kann eine Vermischung mit (teilweise) gasförmigem Wasser nicht dargestellt werden

Besonderheit

 h_{1+x} , x-Diagramme mit "Randmaßstab"

- "Pol" in diesem Fall bei x = 0, t = 0 °C
- Zustandsänderung ist parallel zur Verbindungslinie von Pol und Enthalpie des zugeführten Wassers auf dem Randmaßstab

8.4.4 Zumischung von Wasser

Verdunstungskühlung / Kühlgrenztemperatur

- Bei der Aufnahme von flüssigem Wasser (Verdunstung, siehe Skizze) kühlt sich die feuchte Luft ab
- Streicht feuchte Luft ausreichend lange über flüssiges Wasser, nehmen Luft und Wasser eine Gleichgewichtstemperatur an, die der Temperatur der gesättigten feuchten Luft entspricht
- ⇒ Energetisch günstige Möglichkeit zur Klimatisierung in trockenen Regionen
- Berechnung erfordert iterative Lösung (Vermischung mit Wasser der Temperatur $t_{\rm M}$ bis zur Konzentration $x_{\rm s}(t_{\rm M})$)
- Darstellung im h_{1+x},x-Diagramm ist einfach

8.4.4 Kompression feuchter Luft

Kompression feuchter Luft

• h_{1+x} , x-Diagramme gelten jeweils für einen Druck, die Kompression lässt sich nicht wirklich darstellen, die Effekte lassen sich aber verstehen

8.4.4 Kompression feuchter Luft

Isotherme Kompression (zugeführte Arbeit wird als Wärme abgeführt)

- Beide Zustände sind im h_{1+x} , x-Diagramm an der gleichen Stelle
- Sättigungslinie verschiebt sich mit p $\left(x_s \approx 0.622 \cdot \frac{p_{s,H2O}(T)}{p p_{s,H2O}(T)}\right)$
- Kommt es zur Kondensation von Wasser, werden die Zusammenhänge komplizierter; meist gilt t = const. als Näherung besser als $w_{t12} = -q_{12}$

Isentrope Kompression (reversibel adiabater Prozess)

• Für die isentrope Kompression idealer Gase gilt

$$p \cdot V^{\kappa} = \text{const.}$$
 mit $\kappa^{\circ} = \frac{c_{p}^{\circ}}{c_{y}^{\circ}} = \frac{c_{p}^{\circ}}{c_{p}^{\circ} - R}$

Für feuchte Luft gilt analog

gilt analog
$$p \cdot v^{\kappa}_{1+x} = \text{const.} \quad \text{mit} \quad \kappa^{o} = \frac{c_{\text{p,L}}^{o} + x c_{\text{p,H2O}}^{o}}{c_{\text{p,L}}^{o} + x c_{\text{p,H2O}}^{o} - R_{\text{L}} - x R_{\text{H2O}}}$$

Die Erwärmung bei der isentropen Kompression sorgt meist dafür, dass kein Wasser auskondensiert

8.4.5 Beispiel: Klimaanlage

In Klimaanlagen wird Luft mit folgenden Teilprozessen konditioniert:

- Vermischung eines Teils der Abluft mit Umgebungsluft
- Ggf. Trocknung der Luftmischung durch Abkühlung (Kondensation von Wasser am Verdampfer einer Kältemaschine)
- 3. Beheizung der Luftmischung auf Wunschtemperatur
- 4. Vermischung der aufbereiteten Luft mit Raumluft
- Der Gesamtprozess setzt sich aus den zuvor behandelten Grundprozessen zusammen

8.4.5 Beispiel: Kühlturm

Bei der Auslegung eines Kühlturms sind i.d.R. gegeben

- der Zustand des oben zugeführten heißen Wassers
- der Zustand der unten zugeführten Umgebungsluft

- Im Idealfall kann das Wasser bis auf die Kühlgrenztemperatur abgekühlt werden
- Die Luft verlässt den Kühlturm im Idealfall gesättigt und im Gleichgewicht mit dem zugeführten heißen Wasser
- Es handelt sich um ein kombiniertes Wärme- und Stoffübertragungsproblem
- ⇒ Auslegung eines Kühlturms ist allein mit den hier erarbeiteten Grundlagen nicht möglich