

Adaptive Green Hosting

Nan Deng

Christopher Stewart

Daniel Gmach

Martin Arlitt

Jaimie Kelley

"We are not going to solve the climate problem via efficiency – we must move to cleaner sources of energy."

Bill Weihl, March 2011
Facebook's Manager of
Energy Efficiency and Sustainability

The Carbon Footprint of Computing

- Greenhouse gas (GHG) emissions = climate change
- Carbon footprint measures the emissions of a population, system, or activity

The carbon footprint of IT is large and growing

- In 8 years, the annual carbon footprint of datacenters worldwide will exceed the footprint of entire countries [McKinsey, 2008]
- 9 of 14 large technology companies were graded "C" or below in GHG mitigation by Greenpeace [greenpeace.org,2012]

Web Hosting Centers

- Datacenters are buildings that house servers
- Earn money by leasing servers to Internet services
 - Web hosting centers lease servers primarily to e-commerce and static-content websites
 - (Popular media term, not necessarily technical)

 Compete for customers by providing high performance servers at low prices

Green Hosting Center

- Green hosting centers are a growing subculture
 - Invest in reducing their carbon emissions
 - Use low carbon footprint to attract customers
 - Provide competitive prices and equal performance
 - 83% of people prefer equal-priced green products
 - 71% of system managers say the same [rackspace, 2008]

Most hosts (today) profit *without* investing in clean energy Some hosts profit despite investing in clean energy *Green hosts profit because they invest in clean energy*

Examples of Real Green Hosts

- Green hosts are 8 of the 25 largest low-cost web hosts
 - Based on hosted domain names via DomainTools
 - Details in paper
- AISO.net, founded in 1997, recently saw large increases in customer base [vmware, 2008]
- HostGator is one of the largest web hosts worldwide (over 2 million sites hosted)

Green Hosting Challenges

- Green hosts invest in carbon offsets
- A carbon offset is a unit of clean energy that replaces a unit of dirty energy
 - Come from On-site solar panels or free markets
 - Example: A company spends \$100 on solar panels in the Sahara Desert producing 100 Kwh of carbon offsets.
 - A third party (green host) can invest \$10 in the company to receive 10 Kwh of carbon offsets
 - Clean energy costs more than dirty energy
- Only invest if it is likely to yield profit
 - Investment—not charity

Our Contribution

- How many carbon offsets should a green host buy?
 - Too few offsets does not attract customers
 - Too many wastes money on offsets
- Adaptive Green Hosting
 - Understand how Internet services (i.e., hosting center customers) will respond to carbon offsets
 - Buy only enough carbon offsets to maximize profit
- Goal: Study adaptive green hosting and quantify its potential benefit
 - Basis of ongoing implementation work

Outline

- Modeling Carbon-Aware Internet Services
- Adaptive Green Hosting
- Experiments
- Conclusion

Background: Cloud Service

- Accepts requests from end users
- Routes them to virtual machines across multiple hosts
- Responds quickly

Background: Cloud Service

- Respond quickly --> Use host nearest to VM
- Cost efficiency --> Use host with high throughput per VM
- Scale out by leasing more resources (adding VMs)

Carbon-Aware Services

- Traditional model: Find the policy that maximizes cost efficiency within response time constraints
- Carbon-aware service: Find the policy that maximizes cost efficiency within response time
 AND carbon footprint constraints

Carbon-Aware Services

- Prior work provides frameworks for carbon-aware optimizations
 - Le et al. IGCC 2010 (best paper);
 - Liu et al. Greenmetrics 2011, SIGMETRICS 2011;
 - Zhang et al, Middleware 2011

Outline

- Modeling Carbon-Aware Internet Services
- Adaptive Green Hosting
- Experiments
- Conclusion

Green Hosting Today

- Problem: How many carbon offsets should a green host buy?
 - Too few offsets does not attract customers

Adaptive Green Hosting

Solution: Adapt to user demands

- At every provisioning interval, choose an offset ratio such that
 - 1. Maximum resources are leased
 - 2. Least money is spent on offsets

Carbon-Offset Elasticity

- In economics, elasticity measures the marginal effect of one parameter on a variable
- Carbon-Offset Elasticity measures the effect of offset ratio on the amount of resources leased
 - $\eta(c)$, where c is the offset ratio.
 - It explains who cares about using clean energy? By how much?

Computing the Carbon-Offset Elasticity

Major Contribution

Go from this

To this

• For N discrete settings of c_i, we compute a host's carbon offset elasticity for by solving N integer programming problems.

Interesting Observations

- Given the arrival rate, per-VM processing rate, and the service's footprint goals, we can compute the offset elasticity
 - F(Offset elasticity, price of carbon) = Profit
 - We call this the Oracle Adaptive Approach
- Good news: Average processing rates may be stable
- Good news: Carbon footprint goals (while diverse) likely stable
- Bad news: Request arrival rates and market prices vary

Adaptive Green Hosting

- Oracle adaptive
 - Sets the offset ratio to the value that maximizes profit for the upcoming interval.
 - Not realistic to know arrival rates and prices in advance
- We study a reactive approach
 - Internet services tell each host what their ideal offset ratio was for the previous hour.
 - Considers history of service's ideal offset ratio
 - If ideal ratios over last 2 hours match, we change the offset ratio to the matching value
 - Otherwise, assign ratio to the statistical mode

Intuition: Arrival rates and prices change gradually over time

Outline

- Modeling Carbon-Aware Internet Services
- Adaptive Green Hosting
- Experiments
- Conclusion

Experimental Setup

Front End At each host, there is a front end with target ratio C = 100%.

It routes requests either: 1) locally

- 2) nearest host with ci > 100,
- 3) a host with even more ci

Experimental Details

- Why three hosts per application? Why are they selected this way?
 - See paper for proof.
 - Intuition: 3 constraints (carbon, response time, efficiency) --> Rank of 3 (Fundamental Theory of Linear Programming)
- How do you calculate processing rate?
 - Profile an Apache workload & Estimate latency using geographic distance
- What are the factors in analysis? We compare...
 - 2 real request traces from a global enterprise app (one has heavier tail).
 - Effect of market pricing changes
 - 2 proposed reactive approaches

(see paper for full results and details)

Experimental Results

- Adaptive consistently outperformed static offsetting, increasing profit by at least 68% in each case
- Adaptive increased profit for the west host by more than 50%, compared to its aggressive real-world offsetting of 150%
- These results held even when services bought offsets directly (skipping the hosts). Recall, green hosting provides value without raising prices

24

Is Adaptive Green?

- The average offset ratio increased for 10 of the 11 hosts.
- Adaptive green hosting helps hosts increase their profit by investing in clean energy.
 - For traditional non-green hosts: Adaptive green hosting helps them buy carbon offsets with low risk, allowing them to make bold investments to bring in customers.
 - For green hosts: Adaptive green hosting helps green hosts avoid wasting money on too many offsets.

Conclusion

- Green hosts profit because they invest in carbon offsets
- Adaptive Green Hosting
 - Model carbon-aware applications to get offset-ratio elasticity
 - Use the elasticity to create reactive offsetting approaches
- Our adaptive approach can significantly increase the profit compared to a fixed approach used in practice.
- Improves profit for existing green hosts
- Tends to urge hosts to increase their investments in clean energy.