Nilpotence

Definition

Let R be a ring and $a \in R$. To say that a is *nilpotent* in R means: $\exists n \in \mathbb{Z}^+, a^n = 0$.

Theorem

Let R be a commutative ring and $N=\{a\in R\mid a \text{ is nilpotent in }R\}.$ N is closed under addition.

Proof

Assume
$$a,b \in N$$
 $\exists n \in \mathbb{Z}^+, a^n = 0$ $\exists m \in \mathbb{Z}^+, b^m = 0$ $(a+b)^{n+m} = \sum_{k=0}^{n+m} \binom{n+m}{k} \cdot a^{n+m-k}b^k$ For $0 \le k \le m, a^{n+m-k} = a^n a^r = 0a^r = 0$ For $m \le k \le n+m, b^k = b^m b^s = 0b^s = 0$ $(a+b)^{n+m} = 0$ $a+b \in N$

 $\therefore N$ is closed under addition.

Theorem

Let $\phi: R \to R'$ be a homomorphism of rings:

a nilpotent in $R \implies \phi(a)$ nilpotent in R'

Proof

Assume a is nilpotent in R

$$\exists n \in \mathbb{Z}^+, a^n = 0$$

$$\phi(a^n) = \phi(0) = 0'$$

$$\phi(a^n) = \phi(a)^n$$

$$\phi(a)^n = 0'$$

 $\therefore \phi(a)$ is nilpotent in R'.

Theorem

Let R be a ring:

R has no non-zero nilpotent elements \iff $(x^2 = 0 \iff x = 0)$.

Proof

 \implies Assume R has no non-zero nilpotent elements

$$\implies$$
 Assume $x \neq 0$

 $x^2 \neq 0$, otherwise x would be nilpotent (contradiction)

$$\iff$$
 Assume $x = 0$

$$x^2 = 0^2 = (0)(0) = 0$$

$$\therefore x^2 = 0 \iff x = 0$$

$$\iff$$
 Assume $x^2 = 0 \iff x = 0$

ABC: $x \neq 0$ is nilpotent in R

Let $n \in \mathbb{Z}^+$ be the smallest n such that $x^n = 0$

Case 1: n even

$$\left(x^{\frac{n}{2}}\right)^2 = 0$$

But by minimality of $n, x^{\frac{n}{2}} \neq 0$

Contradiction!

Case 2: n odd

Case A:
$$n = 1$$

$$x = 0$$

Contradiction!

Case B: n > 1

$$\left(x^{\frac{n+1}{2}}\right)^2 = 0$$

But by minimality of $n, x^{\frac{n+1}{2}} \neq 0$

Contradiction!

So x is not nilpotent in R

 $\therefore R$ contains no non-zero nilpotent elements.