Problem 1

- a) 化简
- b) 析取三段式
- c) 假言三段论
- d) 附加
- e) 假言三段论

Problem 2

$$\begin{aligned} p &\leftrightarrow q \\ \underline{q &\leftrightarrow r} \\ \therefore p &\leftrightarrow r \end{aligned}$$

Problem 3

$$egin{aligned} (p
ightarrow q)
ightarrow r \ \equiv &
abla (
eg p ee q) ee r \ \equiv &
abla (p \wedge
eg q) ee r \end{aligned}$$

$$egin{aligned} p &
ightarrow (q
ightarrow r) \ &\equiv \neg p ee (\neg q ee r) \ &\equiv (\neg p ee \neg q) ee r \end{aligned}$$

因为

р	q	$p \wedge eg q$	eg p ee eg q
F	F	F	Т
F	Т	F	Т
Т	F	Т	Т
Т	Т	F	F

$$p \land \neg q \not\equiv \neg p \lor \neg q$$

所以

$$(p
ightarrow q)
ightarrow r
ot\equiv p
ightarrow (q
ightarrow r)$$

Problem 4

$$egin{aligned} (p
ightarrow q)
ightarrow (r
ightarrow s) \ &\equiv \neg (\neg p ee q) ee (\neg r ee s) \ &\equiv (p \wedge \neg q) ee \neg r ee s \ &\equiv (p ee \neg r) \wedge (\neg q ee \neg r) ee s \end{aligned}$$

$$egin{aligned} (p
ightarrow r)
ightarrow (q
ightarrow s) \ &\equiv \neg (\neg p ee r) ee (\neg q ee s) \ &\equiv (p \wedge \neg r) ee \neg q ee s \ &\equiv (p ee \neg q) \wedge (\neg q ee \neg r) ee s \end{aligned}$$

因为

$$r
ot\equiv q$$

所以

$$(p
ightarrow q)
ightarrow (r
ightarrow s)
ot\equiv (p
ightarrow r)
ightarrow (q
ightarrow s)$$

Problem 5

a)

р	q	$(p \vee \neg q) \wedge (\neg p \vee q) \wedge (\neg p \vee \neg q)$
F	F	Т
F	Т	F
Т	F	F

р	q	$(p \vee \neg q) \wedge (\neg p \vee q) \wedge (\neg p \vee \neg q)$
Т	Т	F

所以该式是可满足的.

b)

当p = F, q = F, r = F时, 该式为T, 说明该式是可满足的.

c)

该式包含了p,q,s三个命题所组成的所有八个析取式,

且这八个析取式不同时为T,

所以这八个析取式组成的合取范式不可能为T,

所以该式是不可满足的.

Problem 6

即判断 $((p \to r) \land (q \to r) \land (p \lor q)) \to \neg r$ 是否为重言式.

р	q	r	$((p \to r) \land (q \to r) \land (p \lor q)) \to \neg r$
F	F	F	Т
F	F	Т	Т
F	Т	F	Т
F	Т	Т	F
Т	F	F	Т
Т	F	Т	F
Т	Т	F	Т
Т	Т	Т	F

因为该式不是重言式, 所以原论证无效.

Problem 7

定义办: 天下雨.

定义q: 天起雾.

定义r: 帆船比赛举行.

定义8: 救生表演进行.

定义t: 比赛颁发奖杯.

则原题转换为证明:

$$eg t \\
r o t \\
\underline{\neg p \lor \neg q o r \land s}$$
 $\therefore p$

证明:

- (1) ¬t (前提)
- (2) r
 ightarrow t (前提)
- (3) ¬r (拒取式,由(1)(2))
- (4) $\neg p \lor \neg q \to r \land s$ (前提)
- (5) $\neg p \lor \neg q \to r$ (化简, 自(1))
- (6) $p \wedge q$ (拒取式,由(3)(5))
- (7) p (化简,由(6))