Homework 14

BY 刘家骥 PB20071417 2022年12月19日

3, (1)

解:

由于目标函数要求的是最小值, 因此令

$$\tilde{z} = -z$$

对于无约束的变量 x_4 , 令 $x_4 = x_5 - x_6$

对约束条件的第一个等式两边乘以 - 1, 以使常数项为正.

添加松弛变量x7, x8, 使得

$$x_1 + x_2 - x_3 + 2(x_5 - x_6) + x_7 = 14, \ x_7 \geqslant 0$$

$$-2x_1+3x_2+x_3-(x_5-x_6)-x_8=2, x_8 \ge 0$$

因此化为标准形式就是

$$\max \tilde{z} = x_1 - 2x_2 + 3x_3 - 2(x_5 - x_6) + 0x_7 + 0x_8$$

s.t.
$$\begin{cases}
-4x_1 + x_2 - 2x_3 + (x_5 - x_6) = 2 \\
x_1 + x_2 - x_3 + 2(x_5 - x_6) + x_7 = 14 \\
-2x_1 + 3x_2 + x_3 - (x_5 - x_6) - x_8 = 2 \\
x_1, x_2, x_3, x_5, x_6, x_7, x_8 \geqslant 0
\end{cases}$$

显然,从这里,还不能直接找出一组为单位矩阵的基,因此需要添加人工变量 x_9, x_{10} ,构造出单位矩阵的基(这些人工变量最终都是要取0的):

$$\max \tilde{z} = x_1 - 2x_2 + 3x_3 - 2(x_5 - x_6) + 0x_7 + 0x_8 - M(x_9 + x_{10})$$

$$\text{s.t.} \left\{ \begin{array}{l} -4x_1+x_2-2x_3+(x_5-x_6)+x_9=2 \\ x_1+x_2-x_3+2(x_5-x_6)+x_7=14 \\ -2x_1+3x_2+x_3-(x_5-x_6)-x_8+x_{10}=2 \\ x_1,x_2,x_3,x_5,x_6,x_7,x_8,x_9,x_{10}\geqslant 0 \end{array} \right.$$

由此列出初始单纯形表如下:

	$c_j \rightarrow$		1	-2	3	-2	2	0	0	-M	-M
$ec{c}_B$	\vec{x}_B	$ec{b}$	x_1	x_2	x_3	x_5	x_6	x_7	x_8	x_9	x_{10}
0	x_7	14	1	1	-1	2	-2	1	0	0	0
-M	x_9	2	-4	1	-2	1	-1	0	0	1	0
-M	x_{10}	2	-2	3	1	-1	1	0	-1	0	1
σ_{j}			1-6 <i>M</i>	-2+4M	3- <i>M</i>	-2	2	0	-M	0	0

4, (1)

解:

系数矩阵为

$$A = \left(\begin{array}{cccc} 2 & 3 & -1 & -4 \\ 1 & -2 & 6 & -7 \end{array}\right)$$

理论上至多可以得到 $C_4^2 = 6$ 组基,对应6组基解如下

$$\overrightarrow{x^{(1)}} = (1, 2, 0, 0), \ \overrightarrow{x^{(2)}} = \left(\frac{45}{13}, 0, -\frac{14}{13}, 0\right), \ \overrightarrow{x^{(3)}} = \left(\frac{34}{5}, 0, 0, \frac{7}{5}\right), \ \overrightarrow{x^{(4)}} = \left(0, \frac{45}{16}, \frac{7}{16}, 0\right), \ \overrightarrow{x^{(5)}} = \left(0, -\frac{7}{29}, 0, \frac{260}{87}\right), \ \overrightarrow{x^{(6)}} = \left(0, 0, -\frac{68}{31}, -\frac{45}{31}\right),$$

其中基可行解有:

$$\overrightarrow{x^{(1)}} = (1, 2, 0, 0), \quad \overrightarrow{x^{(3)}} = (\frac{34}{5}, 0, 0, \frac{7}{5}), \quad \overrightarrow{x^{(4)}} = (0, \frac{45}{16}, \frac{7}{16}, 0),$$

分别代入目标函数

$$\min z = 2x_1 - x_2 + 3x_3 + 2x_4$$

可以发现,最优解是

$$\overrightarrow{x^{(4)}} = \left(0, \frac{45}{16}, \frac{7}{16}, 0\right).$$

5, (2)

解:

首先还是写出原问题对应的标准形式如下:

$$\max z = 3x_1 - 2x_2 + 5x_3 + 0x_4 + 0x_5 + 0x_6$$

s.t.
$$\begin{cases} 3x_1 + 2x_3 + x_4 = 13 \\ x_2 + 3x_3 + x_5 = 17 \\ 2x_1 + x_2 + x_3 + x_6 = 13 \\ x_1, x_2, x_3, x_4, x_5, x_6 \geqslant 0 \end{cases}$$

由此列出初始单纯形表如下:

	$c_j \rightarrow$		3	-2	5	0	0	0
\vec{c}_B	$ec{x}_B$	\vec{b}	x_1	x_2	x_3	x_4	x_5	x_6
0	x_4	13	3	0	2	1	0	0
0	x_5	17	0	1	3	0	1	0
0	x_6	13	2	1	1	0	0	1
	σ_{j}			-2	5	0	0	0

由此得到一组基解 $\vec{x^{(0)}} = (0,0,0,13,17,13)$

根据非基指标 σ_j 最大且正者 x_j 人基,比值 $\lambda = \frac{x_l^{(0)}}{a_{lj}}$ 最小且正者 x_l 出基的规则,进行执行:

	$c_j \rightarrow$		3	-2	5	0	0	0
\vec{c}_B	$ec{x}_B$	$ \vec{b} $	x_1	x_2	x_3	x_4	x_5	x_6
0	x_4	$\frac{5}{3}$	3	$-\frac{2}{3}$	0	1	$-\frac{2}{3}$	0
5	x_3	$\frac{17}{3}$	0	$\frac{1}{3}$	1	0	$\frac{1}{3}$	0
0	x_6	$\frac{22}{3}$	2	$\frac{2}{3}$	0	0	$-\frac{1}{3}$	1
	σ_{j}		3	$-\frac{11}{3}$	0	0	$-\frac{5}{3}$	0

$c_j \rightarrow$			3	-2	5	0	0	0
\vec{c}_B	$ec{x}_B$	$ec{b}$	x_1	x_2	x_3	x_4	x_5	x_6
3	x_1	$\frac{5}{9}$	1	$-\frac{2}{9}$	0	$\frac{1}{3}$	$-\frac{2}{9}$	0
5	x_3	$\frac{17}{3}$	0	$\frac{1}{3}$	1	0	$\frac{1}{3}$	0
0	x_6	$\frac{56}{9}$	0	$\frac{10}{9}$	0	$-\frac{2}{3}$	$-\frac{7}{3}$	1
	σ_j		0	-3	0	-1	-1	0

现在非基指标 σ_j 的值都为负了,因此得到最优解:

$$\vec{x} = \left(\frac{5}{9}, 0, \frac{17}{3}, 0, 0, \frac{56}{9}\right)$$

即

$$\begin{cases} x_1 = \frac{5}{9} \\ x_2 = 0 \\ x_3 = \frac{17}{3} \end{cases}$$

从而

$$\max z = 30$$