整体架构

开放・创新・普惠

区块链数据共享核心设计 - 主要功能

区块链数据共享核心设计 – 数据上链

数据上链模式总体如下表所示。西城项目,推荐使用第一种数据上链模式。

数据上链模式	说明 ····································	适用场景
中心从前置数据库拉取数据上链	当数据目录定义其数据为链上管存的情况下,中心使用定时任务的方式,从目录定义的数据访问路径拉取数据,每次拉取后,将数据通过目录归属单位所对应的智能合约进行上链;	1、批量数据初始化; 2、定期数据更新;
局办调用中心接口推送数据上链	数据推送单位使用在中心注册的账号的相关信息访问API接口,上传结构化数据文件(如:EXCEL、CSV),中心将上传的数据文件解析后,通过账号所关联的身份调取对应的智能合约,对数据进行上链;	1、少量数据初始化; 2、少量数据定期更新;
局办使用中心功能界面提交数据上链	数据提交单位通过在中心注册的账号登录,访问相关功能界面,提交结构化数据文件(如:EXCEL、CSV),中心将上传的数据文件解析后,通过账号所关联的身份调取对应的智能合约,对数据进行上链;	1、少量数据初始化; 2、少量数据临时更新;

区块链数据共享核心设计 - 数据上链-从前置库上链

开放・创新・普惠

图例 服务调用 数据同步

区块链数据共享核心设计 - 数据上链-从接口上链

区块链数据共享核心设计 - 数据上链-从功能界面上链

区块链数据共享核心设计 - 获取数据

获取数据模式总体如下表所示。

当缺省的数据查询能力无法满足数据应用需求的情况下,如:历史数据形成清单并批量下载;可通过第 三种模式满足需求。

获取数据模式	说明	适用场景
通过中心接口进行简单数据查询	中心投产的时候会为各局办部署缺省的数据访问智能合约,提供简单的链上数据查询能力,中心系统可以据此提供简单的数据查询接口;数据使用单位使用在中心注册的账号的相关信息访问此API接口;	1、简单的材料验全; 2、简单的数据核验;
通过中心功能界面进行简单数据查询	中心投产的时候会为各局办部署缺省的数据访问智能合约,提供简单的链上数据查询能力,中心系统可以据此提供简单的数据查询界面;数据使用单位通过在中心注册的账号登录,访问相关功能界面,进行简单的数据查询;	1、简单的材料验全; 2、简单的数据核验;
更新智能合约支撑数据需求	在前两种模式的基础上,当缺省的智能合约无法满足数据应用需求的情况下,中心可以以定制开发的形式,为数据需求方更新定制的智能合约,在智能合约的基础上,提供相关的调用接口为数据应用提供服务;部署智能合约时使用需求方的身份,以便后续可以对智能合约进行移交;	特定的数据查询与应用需求;

区块链数据共享核心设计 - 获取数据-从接口获取

区块链数据共享核心设计 - 获取数据-从功能界面获取

总体业务逻辑 - 用户身份与权限控制

总体业务逻辑 - 数据交换与上链

智能合约设计 - 设计原则

总体设计原则,集中部署权限合约,为每个参与方独立部署数据合约

合约类型	设计原则
数据合约	考虑到参与方数据量不确定,区块链平台单个合约的数据量过大会严重影响性能(单个合约总数据量超过4千万条记录性能 急剧下降),为每个参与方独立部署数据合约避免单个合约数量过多;
	参与方有动态接入需求,区块链平台不支持动态Map添加,使用单个合约会照成合约频繁更新部署,影响可用性;
	为每个接入方提供一个单独的数据合约,数据合约主要对接入方进行数据增删改查的操作,同时执行每个接入方对权限等一些特有逻辑。
权限合约	权限功能比较通用,适合集中部署
	相对每个参与方自行维护权限合约,统一的权限合约设计,可以避免权限规则变化时对数据合约的修改;

智能合约设计-数据合约与权限合约

