5, c)
$$5L(2,C)$$
 operation preserves

(, 7)

 $= det(P(ATA')P^*)$
 $- det(PA'p^*)$
 $- det(PA'p^*)$
 $- det(PA'p^*)$
 $- (det P) det(ATA') det(P^*)$
 $- (det P) det(ATA') det P^*$
 $= det(ATA') - detA'$
 $= det(ATA') - detA'$
 $= (ATA')$

So the operation induces a group homo-morphism $y: SL(2,C) \rightarrow O_{1,3}$.

If
$$p \in bar y$$
 $p : A = A \qquad \forall A \in W$
 $p : A = A \qquad \forall A \in W$
 $p : A = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} p$
 $p : A = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} p$
 $p : A = \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix}$

So
$$P = a[1,]$$

Since $det P = 1$, $a = \pm 1$
 $hur y \subset \{\pm 1\}$.
 $\{\pm 1\} \subset hur y \quad because$
 $(\pm 1) A = A(\pm 1) \quad \forall A \in W$.