Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Mikroprocesorová technika

ZÁVĚREČNÝ PROJEKT MIT

Obsah

SCHÉMA ZAPOJENÍ	2
SLOVNÍ POPIS ZAPOJENÍ	2
BLOKOVÉ SCHÉMA ZAPOJENÍ	2
SLOVNÍ POPIS FUNKCE PROGRAMU	3
VÝVOJOVÝ DIAGRAM PROGRAMU	4
ZÁVĚR	5
UKÁZKA PROGRAMU	6

Poř. č. Příjmení a jméno PŘIKRYL Jan		Třída 4B	Skupina 1	Školní rok 2021/22		
9. 4. 2		Datum odevzdání 12. 4. 2022	Počet listů	Textová část	Klasifik Obhajoba	kace Funkčnost
P	rotokol o m	ěření obsahuje:	teoretický úv schéma použité příst postup měře	roje	tabulky příklad vý _l grafy závěr	počtu

SCHÉMA ZAPOJENÍ

Schéma č.1: Zapojení klávesnice a displeje na STM8

SLOVNÍ POPIS ZAPOJENÍ

Maticová klávesnice je připojena přes tyto piny k STM8: PG0, PC2, PC3 – jako sloupce tlačítek. Řádky jsou připojeny přes tyto piny: PC1, PE0, PD5, PD6.

Jako výstup je mimo komunikaci s PC (UART) zapojen sedmi segmentový displej max7219. Ten je připojen přes piny PG2, PG3 a PE3.

Displej je napájen pěti volty (pin VCC), uzemněn GND.

BLOKOVÉ SCHÉMA ZAPOJENÍ

Jméno: Jan PŘIKRYL	Třída: 4B	List: 2/8
	1110000	

SLOVNÍ POPIS FUNKCE PROGRAMU

Nejprve se importují všechny potřebné knihovny (to jsou milis.h, stdio.h, stm8s.h, assert.h, keypad.h, delay.h). Následuje založení maker pro piny, porty a stavy displeje a všechny potřebné funkce (makra a funkce pro fungování klávesnice jsou v knihovně keypad.h).

Poté se vytvoří funkce pro UART komunikaci, inicializaci (taktování procesoru na 16 MHz, rozběhnutí časovače milis, povolení komunikace s počítačem a nastavení displeje).

Ve funkci main (hlavní funkce každého programu v jazyce C) jsou založeny proměnné pro minulé a aktuální zmáčknuté tlačítko a pozici.

Poté se zavolá inicializační funkce a vypíše se uvítací hláška.

Poté následuje funkce while (1), což způsobí nekonečný cyklus opakování.

Opakovat se bude následující: Každých 55 ms se uloží aktuální čas milis.

Zkontroluje se stisknuté tlačítko. Nerovná se minulému stisknutému tlačítko, bylo tedy stisknuto, vypíše se do PC stisknutá klávesa.

Byla-li stisknuta klávesa * (netisknutelný znak), na displej se vypíše prázdné místo.

Byla-li stisknuta klávesa # (opět netisknutelný znak), všechny pozice na displeji se nastaví na prázdné místo a pozice se nastaví na 8 (první místo displeje).

Byla-li stisknuta jakákoliv jiná klávesa, vypíše se na pozici na místě pozice.

Poté se do proměnné pozice přičte 1. Je-li toto číslo 0, nastaví se opět na 8.

Nakonec se minule stisknutá klávesa bude rovnat aktuálně stisknuté klávese.

|--|

VÝVOJOVÝ DIAGRAM PROGRAMU

ZÁVĚR

Shrnutí a zhodnocení

- Vytvořil jsem program na zaznamenávání čísel (poznámkový blok) s STM8. Čísla jsou zadávána na maticové klávesnici. Čísla jsou zobrazována na displeji max7219 a pro přehlednost i v počítači, což se hodí v případě absence či poškození displeje).
- Program jsem psal v prostředí ST Visual Develop.

Výhody

- Výstup je zobrazen na dvou místech.
- Displej se dá celý vymazat.

Nevýhody

• Nelze vkládat a zobrazovat písmena.

Co jsem se naučil a v čem to pro mě mělo přínos?

• Naučil jsem se používat maticovou klávesnici.

Jméno: Jan PŘIKRYL	Třída: 4B	List: 5/8
***************************************	1110000	2150. 67 6

UKÁZKA PROGRAMU

```
#include "stm8s.h"
#include <stdio.h>
#include "assert.h"
#include "milis.h"
#include "keypad.h"
#include "delay.h"
//Max7219
#define CLK PORT GPIOG
#define CLK PIN GPIO PIN 2
#define CS PORT GPIOG
#define CS PIN GPIO PIN 3
#define DIN PORT GPIOE
#define DIN PIN GPIO PIN 3
#define SET(BAGR) GPIO WriteHigh(BAGR## PORT, BAGR## PIN)
#define CLR(BAGR) GPIO WriteLow(BAGR## PORT, BAGR## PIN)
#define NOOP
                             0
#define DIGITO
                             1
#define DIGIT1
                             2
#define DIGIT2
#define DIGIT3
#define DIGIT4
#define DIGIT5
#define DIGIT6
                            7
#define DIGIT7
#define DECODE MODE
#define INTENSITY
                            10
#define SCAN LIMIT
                            11
#define SHUTDOWN
                            12
#define DISPLAY TEST
// argumenty pro SHUTDOWN
#define DISPLAY_ON 1
#define DISPLAY_OFF 0
                                  // zapne displej
                                   // vypne displej
// argumenty pro DISPLAY TEST
#define DISPLAY_TEST_ON 1
#define DISPLAY_TEST_OFF 0
                                   // zapne test displeje
                                    // vypne test displeje
// argumenty pro DECODE MOD
#define DECODE_ALL
                           0b11111111
#define DECODE NONE
//UART komunikace
char putchar (char c)
  /* Write a character to the UART1 */
 UART1 SendData8(c);
  /* Loop until the end of transmission */
  while (UART1 GetFlagStatus(UART1 FLAG TXE) == RESET);
  return (c);
}
```

```
char getchar (void) //funkce čte vstup z UART
  int c = 0;
  while (UART1 GetFlagStatus(UART1 FLAG RXNE) == RESET);
       c = UART1 ReceiveData8();
  return (c);
//Povoleni UART1
void init uart1(void)
{
    UART1 DeInit();
                              // smazat starou konfiguraci
               UART1 Init((uint32 t)115200, //Nova konfigurace
               UART1 WORDLENGTH 8D,
               UART1 STOPBITS 1,
               UART1 PARITY NO,
               UART1 SYNCMODE CLOCK DISABLE,
               UART1 MODE TXRX ENABLE);
}
void max7219(uint8 t address, uint8 t data)
               uint16 t mask;
               CLR(CS);
               mask = 1 << 7;
               while (mask) {
                      CLR (CLK);
                      if (address & mask) {
                              SET (DIN);
                       } else {
                              CLR (DIN);
                      }
                      SET (CLK);
                      mask >>=1;
                      CLR (CLK);
               mask = 1 << 7;
               while (mask) {
                      CLR (CLK);
                      if (data & mask) {
                              SET (DIN);
                      } else {
                              CLR (DIN);
                      SET (CLK);
                      mask >>=1;
                      CLR (CLK);
               SET (CS);
void nic (void) { // Vypsání prázdných míst
       \max 7219(1, 15);
       \max 7219(2, 15);
       \max 7219(3, 15);
       \max 7219(4, 15);
       \max 7219(5, 15);
       max7219(6, 15);
       \max 7219(7, 15);
       \max 7219(8, 15);
```

```
void setup(void)
       CLK HSIPrescalerConfig(CLK PRESCALER HSIDIV1); // taktovat MCU na 16MHz
       init milis(); //Initializace milis
       init uart1(); //Povoleni komunikace s PC
       init keypad(); //Initializace klávesnice
       //max7219
       GPIO Init (CLK PORT, CLK PIN, GPIO MODE OUT PP LOW SLOW);
       GPIO Init (CS PORT, CS PIN, GPIO MODE OUT PP LOW SLOW);
       GPIO Init(DIN PORT, DIN PIN, GPIO MODE OUT PP LOW SLOW);
       max7219(DECODE MODE, DECODE ALL);
       max7219(SCAN LIMIT, 7);
       max7219(INTENSITY, 3);
       max7219(DISPLAY TEST, DISPLAY TEST OFF);
       max7219(SHUTDOWN, DISPLAY ON); // zapneme displej
int main(void)
       uint32 t mtime led = 0;
       uint8 t key now = 0xFF;
       uint8 t key last = 0xFF;
       uint32 t mtime key = 0;
       uint8 t pozice = 8;
       setup();
       printf("Dobry den, \n\r");
       printf("vitejte v programu poznamkovy blok.\n\r");
       printf("Tlacitky klavesnice muzete vypisovat postupne na jednotlive
               segmenty cisla.\n\r");
       printf("Tlacitkem * napisete prazdne misto, tlacitkem # napisete vsude
               prazdna mista a kurzor posunete na zacatek.\r\n");
    while (1) {
        if (milis() - mtime key > 55) {// detekce stisknuté klávesy
           mtime key = milis();
           key now = check keypad();
           if (key last == 0xFF && key now != 0xFF) {
              char x[2];
              sprintf(x, "%x", key now);
              printf("Klavesa: %c\n\r", x[0]);
              if (x[0] == 'a') {
                     max7219 (pozice, 15);
              else if (x[0] == 'b') {
                     nic();
                     pozice = 9;
              }else {
                     max7219 (pozice, x[0]);
                     pozice = pozice - 1;
              if (pozice == 0) {
                     pozice = 8;
              }
            key last = key now;
        }
    }
```