Sampling with Halton Points on n-Sphere

Wai-Shing Luk¹

¹School of Microelectronics Fudan University

April 6, 2014

Agenda

Abstract

```
Motivation and Applications
```

```
Review of Low Discrepancy Sequence
Van der Corput sequence on [0, 1]
Halton sequence on [0, 1]
Halton sequence on [0, 1]^n
Unit Circle S^1
Unit Sphere S^2
Sphere S^n and SO(3)
```

Our approach

Numerical Experiments

Conclusions

Agenda

Abstract

Motivation and Applications

```
Review of Low Discrepancy Sequence
Van der Corput sequence on [0, 1]
Halton sequence on [0, 1]
Halton sequence on [0, 1]^n
Unit Circle S^1
Unit Sphere S^2
Sphere S^n and SO(3)
```

Our approach

Numerical Experiments

Conclusions

Abstract

- Sampling on n-sphere (S^n) has a wide range of applications, such as:
 - ▶ Spherical coding in MIMO wireless communication
 - ► Multivariate empirical mode decomposition
 - Filter bank design
- ▶ We propose a simple yet effective method which:
 - ▶ Utilizes low-discrepancy sequence
 - Contains only 10 lines of MATLAB code in our implementation!
 - ▶ Allow incremental generation.
- Numerical results show that the proposed method outperforms the randomly generated sequences and other proposed methods.

Agenda

Abstract

Motivation and Applications

```
Review of Low Discrepancy Sequence
Van der Corput sequence on [0, 1]
Halton sequence on [0, 1]
Halton sequence on [0, 1]^n
Unit Circle S^1
Unit Sphere S^2
Sphere S^n and SO(3)
```

Our approach

Numerical Experiments

Conclusions

Problem Formulation

Desirable properties of samples over S^n

- ▶ Uniform
- Deterministic
- ▶ Incremental
 - ► The uniformity measures are optimized with every new point.
 - ▶ Reason: in some applications, it is unknown how many points are needed to solve the problem in advance

Motivation

- ▶ The topic has been well studied for sphere in 3D, i.e. n = 2
- ▶ Yet it is still unknown how to generate for n > 2.
- ▶ Potential applications (for n > 2):
 - ▶ Robotic Motion Planning (S^3 and SO(3)) [YJLM10]
 - ▶ Spherical coding in MIMO wireless communication [UL06]:
 - Cookbook for Unitary matrices
 - A code word = a point in S^n
 - ▶ Multivariate empirical mode decomposition [RM10]
 - ▶ Filter bank design [M⁺11]

Halton Sequence on S^n

- ▶ Halton sequence on S^2 has been well studied [CF97] by using cylindrical coordinates.
- ▶ Yet it is still little known for S^n where n > 2.
- ► Note: The generalization of cylindrical coordinates does NOT work in higher dimensions.

Agenda

Abstract

Motivation and Applications

Review of Low Discrepancy Sequence

```
Van der Corput sequence on [0, 1]
Halton sequence on [0, 1]^n
Halton sequence on [0, 1]^n
Unit Circle S^1
Unit Sphere S^2
Sphere S^n and SO(3)
```

Our approach

Numerical Experiments

Conclusions

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

- ► Generate a low discrepancy sequence over [0, 1]
- ▶ Denote vd(k, b) as a Van der Corput sequence of k points, where b is the base of a prime number.
- ► MATLAB source code is available at http: //www.mathworks.com/matlabcentral/fileexchange/ 15354-generate-a-van-der-corput-sequence

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x, y] = [\operatorname{vd}(k, 2), \operatorname{vd}(k, 3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x, y] = [\operatorname{vd}(k, 2), \operatorname{vd}(k, 3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Halton sequence: using 2 Van der Corput sequences with different bases.

$$[x,y] = [\operatorname{vd}(k,2),\operatorname{vd}(k,3)]$$

Unit Hypercube $[0,1]^n$

▶ Generally we can generate Halton sequence in a unit hypercube $[0, 1]^n$:

$$[x_1,x_2,\ldots,x_n]=[\operatorname{vd}(k,b_1),\operatorname{vd}(k,b_2),\ldots,\operatorname{vd}(k,b_n)]$$

▶ A wide range of applications on Quasi-Monte Carlo Methods (QMC).

- $\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$
- $[x, y] = [\cos \theta, \sin \theta]$

$$\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$$

$$[x, y] = [\cos \theta, \sin \theta]$$

$$\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$$

$$[x, y] = [\cos \theta, \sin \theta]$$

$$\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$$

$$[x, y] = [\cos \theta, \sin \theta]$$

$$\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$$

$$[x, y] = [\cos \theta, \sin \theta]$$

$$\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$$

$$[x, y] = [\cos \theta, \sin \theta]$$

$$\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$$

$$[x, y] = [\cos \theta, \sin \theta]$$

$$\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$$

$$[x, y] = [\cos \theta, \sin \theta]$$

$$\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$$

$$[x, y] = [\cos \theta, \sin \theta]$$

$$\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$$

$$\blacktriangleright [x, y] = [\cos \theta, \sin \theta]$$

- $\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$
- $[x, y] = [\cos \theta, \sin \theta]$

$$\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$$

$$[x, y] = [\cos \theta, \sin \theta]$$

$$\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$$

$$[x, y] = [\cos \theta, \sin \theta]$$

$$\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$$

$$[x, y] = [\cos \theta, \sin \theta]$$

- $\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$
- $[x, y] = [\cos \theta, \sin \theta]$

$$\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$$

$$[x, y] = [\cos \theta, \sin \theta]$$

$$\bullet \ \theta = 2\pi \cdot \mathrm{vd}(k,b)$$

$$\blacktriangleright [x, y] = [\cos \theta, \sin \theta]$$

Unit Sphere S^2

Has been applied for computer graphic applications [WLH97]

- $\begin{aligned} & \blacktriangleright & [z, x, y] \\ & = [\cos \theta, \sin \theta \cos \varphi, \sin \theta \sin \varphi] \\ & = [z, \sqrt{1 z^2} \cos \varphi, \sqrt{1 z^2} \sin \varphi] \end{aligned}$
- $ho \quad \varphi = 2\pi \cdot \operatorname{vd}(k, b_1) \%$ map to $[0, 2\pi]$
- $z = 2 \cdot \text{vd}(k, b_2) 1 \%$ map to [-1, 1]

Sphere S^3 and SO(3)

- ▶ Deterministic point sets
 - ▶ Optimal grid point sets for S³, SO(3) [Lubotzky, Phillips, Sarnak 86] [Mitchell 07]
- ▶ No Halton sequences so far to the best of our knowledge

Agenda

Abstract

Motivation and Applications

```
Review of Low Discrepancy Sequence
Van der Corput sequence on [0,1]
Halton sequence on [0,1]
Halton sequence on [0,1]^n
Unit Circle S^1
Unit Sphere S^2
Sphere S^n and SO(3)
```

Our approach

Numerical Experiments

Conclusions

SO(3) or S^3 Hopf Coordinates

- ► Hopf coordinates (cf. [YJLM10])
 - $x_1 = \cos(\theta/2)\cos(\psi/2)$

 - $x_4 = \sin(\theta/2)\sin(\varphi + \psi/2)$
- ▶ S^3 is a principal circle bundle over the S^2

Hopf Coordinates for SO(3) or S^3

Similar to the Halton sequence generation on S^2 , we perform the mapping:

- $ightharpoonup \varphi = 2\pi \cdot \operatorname{vd}(k, b_1) \%$ map to $[0, 2\pi]$
- $\psi = 2\pi \cdot \text{vd}(k, b_2)$ % map to $[0, 2\pi]$ for SO(3), or
- $\psi = 4\pi \cdot \operatorname{vd}(k, b_2) \%$ map to $[0, 4\pi]$ for S^3
- ▶ $z = 2 \cdot \text{vd}(k, b_3) 1 \%$ map to [-1, 1]
- $\theta = \cos^{-1} z$

10 Lines of MATLAB Code

3-sphere

Polar coordinates:

- $x_0 = \cos \theta_3$
- $x_1 = \sin \theta_3 \cos \theta_2$
- $x_2 = \sin \theta_3 \sin \theta_2 \cos \theta_1$
- $x_3 = \sin \theta_3 \sin \theta_2 \sin \theta_1$

n-sphere

► Polar coordinates:

- $x_0 = \cos \theta_n$ $x_1 = \sin \theta_n \cos \theta_{n-1}$
- $x_2 = \sin \theta_n \sin \theta_{n-1} \cos \theta_{n-2}$
- **•**
- $x_n = \sin \theta_n \sin \theta_{n-1} \sin \theta_{n-2} \cdots \sin \theta_1$

How to Generate the Point Set

- p₀ = [cos θ₁, sin θ₁] where θ₁ = 2π · vd(k, b₁)
 Let f_j(θ) = ∫ sin^j θdθ, where θ ∈ (0, π). Note: f_j(θ) is a monotonic increasing function in (0, π)
 Map vd(k, b_j) uniformly to f_j(θ): t_i = f_i(0) + (f_i(π) - f_i(0))vd(k, b_i)
- $\blacktriangleright \ \text{Let} \ \theta_j = f_j^{-1}(t_j)$
- ▶ Define p_n recursively as: $p_n = [\cos \theta_n, \sin \theta_n \cdot p_{n-1}]$

S^3 projected on four different spheres

Agenda

Abstract

Motivation and Applications

```
Review of Low Discrepancy Sequence
Van der Corput sequence on [0, 1]
Halton sequence on [0, 1]
Halton sequence on [0, 1]^n
Unit Circle S^1
Unit Sphere S^2
Sphere S^n and SO(3)
```

Our approach

Numerical Experiments

Conclusions

Testing the Correctness

- ▶ Compare the dispersion with the random point-set
 - ▶ Construct the convex hull for each point-set
 - ▶ Dispersion roughly measured by the difference of the maximum distance and the minimum distance between every two neighbour points:

$$\max_{a \in \mathcal{N}(b)} \{D(a,b)\} - \min_{a \in \mathcal{N}(b)} \{D(a,b)\}$$

where
$$D(a, b) = \sqrt{1 - a^{\mathrm{T}}b}$$

Random sequences

- ▶ To generate random points on S^n , spherical symmetry of the multidimensional Gaussian density function can be exploited.
- ▶ Then the normalized vector $(x_i/||x_i||)$ is uniformly distributed over the hypersphere S^n . [Fishman, G. F. (1996)]

Convex Hull with \approx 400 points

Left: our, right: random

Result for S^3

Result for S^4

Agenda

Abstract

Motivation and Applications

```
Review of Low Discrepancy Sequence
Van der Corput sequence on [0, 1]
Halton sequence on [0, 1]
Halton sequence on [0, 1]^n
Unit Circle S^1
Unit Sphere S^2
Sphere S^n and SO(3)
```

Our approach

Numerical Experiments

Conclusions

Conclusions

- Proposed method generates low-discrepancy point-set in nearly linear time
- ► The result outperforms the corresponding random point-set, especially when the number of points is small
- ► The MATLAB source code is available in public (or upon request)

References I

- [CF97] Jianjun Cui and Willi Freeden, Equidistribution on the sphere, SIAM Journal on Scientific Computing 18 (1997), no. 2, 595-609.
- [M+11] DP Mandic et al., Filter bank property of multivariate empirical mode decomposition, Signal Processing, IEEE Transactions on 59 (2011), no. 5, 2421-2426.
- [RM10] Naveed Rehman and Danilo P Mandic, Multivariate empirical mode decomposition, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 466 (2010), no. 2117, 1291–1302.
- [UL06] Zoran Utkovski and Juergen Lindner, On the construction of non-coherent space time codes from high-dimensional spherical codes, Spread Spectrum Techniques and Applications, 2006 IEEE Ninth International Symposium on, IEEE, 2006, pp. 327–331.
- [WLH97] Tien-Tsin Wong, Wai-Shing Luk, and Pheng-Ann Heng, Sampling with hammersley and halton points, Journal of graphics tools 2 (1997), no. 2, 9-24.
- [YJLM10] Anna Yershova, Swati Jain, Steven M LaValle, and Julie C Mitchell,

 Generating uniform incremental grids on so (3) using the hopf
 fibration, The International journal of robotics research 29 (2010),
 no. 7, 801-812.