Tugas 4: - Tugas Praktikum Mandiri ROHMATUL HIDAYAT - 0110224015

Teknik Informatika, STT Terpadu Nurul Fikri, Depok *E-mail: 0110224015@student.nurulfikri.ac.id -

1. Menghubungkan Google Colab ke Google Drive

from google.colab import drive
drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

Kode	Penjelasan
from google.colab import drive	Mengimpor modul khusus Colab untuk akses Drive
drive.mount('/content/drive')	Memasang Google Drive ke path /content/drive di Colab Akan minta izin akses ke akun Google (hanya pertama kali)

2. Load Dataset

Instruction and instruction was to the law state of the state of

Kode	Penjelasan
import pandas as pd	Import library untuk baca data
pd.read csv()	Baca file CSV yang berisi data calon pembeli
df.head()	Menampilkan 5 baris pertama data

3. Menyiapkan Data untuk Model

Menyisgkan Data untuk Model

***Transport Commence (Commence (Comm

Kode	Penjelasan
X	Data input (fitur) yang digunakan untuk prediksi
у	Target yang mau diprediksi (Beli_Mobil: 0 atau 1)

4. Data input (fitur) yang digunakan untuk prediksi

a Bagi data: BOR training, 20% testing
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 print("Outs training: (X_train.shape)")
 print("Outs testing: (X_test.shape)")

Data training: (800, 5)
 Data testing: (200, 5)

Kode	Penjelasan
train_test_split()	Bagi data jadi 2 bagian
Training (80%)	Untuk Belajar
Testing (20%)	Untuk Uji Model

OUTPUT:

800 data untuk latihan, 200 data untuk testing.

5. Buat dan Latih Model

Kode	Penjelasan
LogisticRegression ()	Buat model machine learning
model.fit()	Latih model dengan data training

OUTPUT

Model sudah selesai belajar dari 800 data.

6. Test Model dengan Data Testing

```
# Prediksi dengan data testing
y_pred = model.predict(X_test)

# Hitung akurasi
accuracy = accuracy_score(y_test, y_pred)
print(f"Akurasi model: {accuracy:.2f} ({accuracy*100:.1f}%)")

Akurasi model: 0.93 (93.0%)
```

Kode	Penjelasan
model.predict()	Model menebak hasil untuk data testing
accuracy_score()	Hitung seberapa benar tebakan model

OUTPUT

Model bisa menebak dengan benar 78% dari 200 data testing.

7. Prediksi dengan Data Baru

```
Description of the control of the co
```

Penjelasan

Calon 1: 65.2% kemungkinan beli →Diprediksi BELI

Calon 2: 82.7% kemungkinan beli → Diprediksi BELI

Calon 3: 23.1% kemungkinan beli → Diprediksi TIDAK BELI