Programming Languages: Imperative Program Construction 1. Hoare Logic and Weakest Precondition: Non-Looping Constructs

Shin-Cheng Mu

Autumn Term, 2024

1 Hoare Logic

The Guarded Command Language

In this course we will talk about program construction using Dijkstra's calculus. Most of the materials are from Kaldewaij [Kal90].

• A program computing the greatest common divisor:

$$\begin{array}{l} \mathbf{con}\ A,B: Int\ \{0 < A \land 0 < B\} \\ \mathbf{var}\ x,y: Int \\ x,y:=A,B \\ \mathbf{do}\ y < x \to x:=x-y \\ |\ x < y \to y:=y-x \\ \mathbf{od} \\ \{x=y=gcd\ (A,B)\} \ . \end{array}$$

- Assignments denoted by :=; do denotes loops with guarded bodies.
- · Assertions delimited in curly brackets.

The Hoare Triple

- Given a program statement S and predicates P and Q, the *Hoare triple* $\{P\}$ S $\{Q\}$ is a Boolean value.
- Operationally, $\{P\}$ S $\{Q\}$ is True iff. the statement S, when executed in a state satisfying P, terminates in a state satisfying Q.
- Note: in some flavours of theory, {P} S {Q} need not imply termination. We will stick with the terminating version in our course.

Examples

- $\{x \ge 0 \land y \ge 0\}$ $S\{r = x \times y\}$ is True iff. S is a program that, given non-negative x and y, terminates and stores $x \times y$ in r.
 - Nothing is said about values of x and y upon termination.
 - When $x \ge 0 \land y \ge 0$ does not hold, S may do anything including looping forever.
- $\{z \geqslant 0\}$ $S\{x \times y = z\}$ is True iff. S, given nonnegative z, computes a factorization of z, and terminates
- $\{x>0\}$ S $\{True\}$ is True iff. S is any program that terminates, provided that x>0.

Some Properties

- $\{P\} S \{Q\}$ and $P_0 \Rightarrow P$ implies $\{P_0\} S \{Q\}$.
- $\{P\} S \{Q\}$ and $Q \Rightarrow Q_0$ implies $\{P\} S \{Q_0\}$.
- $\{P\} S \{Q\}$ and $\{P\} S \{R\}$ equivales $\{P\} S \{Q \land R\}$.
- $\{P\} S \{Q\}$ and $\{R\} S \{Q\}$ equivales $\{P \lor R\} S \{Q\}$.
- Note: "A equivales B" is another way to say "A if and only if B", also denoted by $A \equiv B$.

The No-Op Statement

- Perhaps the simplest statement: $\{P\}$ skip $\{Q\}$ iff. $P\Rightarrow Q$.
 - E.g. $\{x > 0 \land y > 0\}$ $skip \{x \ge 0\}$.

- Note that the annotations need not be "exact."
- Operationally, skip is a statement that does nothing.
 - Why do we need a program that does nothing?
 - It is like why we need a number 0 that represents "nothing". It can be very useful sometimes.

2 Assignments

Substitution

- $P[x \setminus E]$: substituting *free* occurrences of x in P for E.
- We do so in mathematics all the time. A formal definition of substitution, however, is rather tedious.
- For this lecture we will only appeal to "common sense":

$$\begin{array}{l} - \text{ E.g. } (x \leqslant 3)[x \backslash x - 1] \equiv x - 1 \leqslant 3 \equiv x \leqslant 4. \\ - \qquad (\langle \exists y : y \in \mathbb{N} : x < y \rangle \wedge y < x)[y \backslash y + 1 \\ \equiv \langle \exists y : y \in \mathbb{N} : x < y \rangle \wedge y + 1 < x. \\ - \qquad \langle \exists y : y \in \mathbb{N} : x < y \rangle[x \backslash y] \\ \equiv \langle \exists z : z \in \mathbb{N} : y < z \rangle. \end{array}$$

- The notation $[x \backslash E]$ hints at "divide by x and multiply by E."
 - We have $x[x \setminus E] = E$. Nice!
- Just in case you may see different notations in other papers...
 - Many papers use the notation [E/x]. Either way, x is the denominator.
 - Kaldewaij actually wrote [x := E], since substitution is closely related to assignments.
 - Some papers write P_E^x for $P[x \setminus E]$.

Substitution and Assignments

- Which is correct:
 - 1. $\{P\} x := E\{P[x \backslash E]\}, \text{ or }$
 - 2. $\{P[x \setminus E]\} x := E \{P\}$?
- · Answer: 2! For example:

$$\{(x \le 3)[x \setminus x + 1]\} x := x + 1 \{x \le 3\}$$

$$\equiv \{x + 1 \le 3\} x := x + 1 \{x \le 3\}$$

$$\equiv \{x \le 2\} x := x + 1 \{x \le 3\}.$$

3 Sequencing

Catenation

- $\{P\}$ S; T $\{Q\}$ equivals that there exists R such that $\{P\}$ S $\{R\}$ and $\{R\}$ T $\{Q\}$.
- Verify:

$$\begin{aligned} & \mathbf{var} \ x, y : Int \\ & \{x = A \land y = B\} \\ & x := x - y \\ & \{y = B \land x + y = A\} \\ & y := x + y \\ & \{y - x = B \land y = A\} \\ & x := y - x \\ & \{x = B \land y = A\} \end{aligned}$$

4 Selection

If-Conditionals

- Selection takes the form if $B_0 \to S_0 \mid ... \mid Bn \to Sn$ fi.
- Each B_i is called a *guard*; $B_i o S_i$ is a *guarded command*.
- If none of the guards $B_0 \dots B_n$ evaluate to true, the program aborts. Otherwise, one of the command with a true guard is chosen *non-deterministically* and executed.

To annotate an if statement:

$$\begin{array}{l} \{P\} \\ \textbf{if } B_0 \to \{P \land B_0\} \, S_0 \, \{Q, \mathsf{Pf}_0\} \\ \mid \, B_1 \to \{P \land B_1\} \, S_1 \, \{Q, \mathsf{Pf}_1\} \\ \textbf{fi} \\ \{Q, \mathsf{Pf}_2\} \end{array} ,$$

where Pf₀, Pf₁, Pf₂ are labels referring to proofs.

- Pf₀ refers to a proof of $\{P \land B_0\} S_0 \{Q\}$;
- Pf₁ refers to a proof of $\{P \land B_1\} S_1 \{Q\}$;
- Pf₂ refers to a proof of $P \Rightarrow B_0 \vee B_1$.
- The proofs and labels are sometimes omitted if they are trivial.

Binary Maximum

- Goal: to assign $x \uparrow y$ to z. By definition, $z = x \uparrow y \equiv (z = x \lor z = y) \land x \leqslant z \land y \leqslant z$.
- Try z := x. We reason:

$$\begin{aligned} &((z=x \ \lor \ z=y) \ \land \ x \leqslant z \ \land \ y \leqslant z)[z \backslash x] \\ &\equiv (x=x \ \lor \ x=y) \ \land \ x \leqslant x \ \land \ y \leqslant x \\ &\equiv y \leqslant x, \end{aligned}$$

which hinted at using a guarded command: $y \leqslant x \rightarrow z := x$.

· Indeed:

$$\begin{array}{l} \{\mathit{True}\} \\ \textbf{if} \ y \leqslant x \rightarrow \{y \leqslant x\} \, z := x \, \{z = x \uparrow y\} \\ \mid \ x \leqslant y \rightarrow \{x \leqslant y\} \, z := y \, \{z = x \uparrow y\} \\ \textbf{fi} \\ \{z = x \uparrow y\} \ . \end{array}$$

On Understanding Programs

There are two ways to understand the program below:

$$\begin{array}{c|cccc} \textbf{if} \ B_{00} \to S_{00} \ | \ B_{01} \to S_{01} \ \textbf{fi} \\ \textbf{if} \ B_{10} \to S_{10} \ | \ B_{11} \to S_{11} \ \textbf{fi} \\ & : \\ \textbf{if} \ B_{n0} \to S_{n0} \ | \ B_{n1} \to S_{n1} \ \textbf{fi}. \end{array}$$

- One takes effort exponential to n; the other is linear.
- Dijkstra: "...if we ever want to be able to compose really large programs reliably, we need a programming discipline such that the intellectual effort needed to understand a program does not grow more rapidly than in proportion to the program length." [Dijnd]

5 Weakest Precondition

State Space and Predicates

More precisely speaking...

- A predicate on A is a function having type $A \rightarrow Bool$.
 - E.g. $even :: Int \rightarrow Bool$ is a predicate on Int.
- The state space of a program is the states of all its variables.

- E.g. state space for the GCD program, which has two variables x and y, is $(Int \times Int)$.
- An expression having free variables can be seen as a function.
 - E.g. $x \leqslant y$ is a predicate (a function) with type $(Int \times Int) \to Bool$ that yields True for, e.g. (x,y)=(3,4) and False for (x,y)=(4,3).

In a Hoare Triple...

- In {P} S {Q}, P and Q shall be seen as predicates on the state space of the program S.
- E.g. In $\{z \ge 0\}$ $S\{x \times y = z\}$, assuming that the program S uses only three variables x, y, and z.
 - The part $z \ge 0$ shall be understood as a predicate that takes x, y, and z, and returns True iff. $z \ge 0$.
 - The part $x \times y = z$ shall be understood as a predicate that takes x, y, and z, and returns True iff. $x \times y = z$.
- *True* in a Hoare triple can be understood as a predicate that returns *True* for any input; similarly with *False*.
- Let S be a program having variables $x,\,y,\,z$. That $\{P\}\,S\,\{Q\}$ being True means that if S starts running in a state such that $P\,(x,y,z)=True$, it terminates and yields a state such that $Q\,(x,y,z)=True$.

Stronger? Weaker?

- Given propositions P and Q, if P ⇒ Q, we say that Q is the weaker one, and P is the stronger one.
- Precisely speaking, P is no weaker than Q and Q is no stronger than P. But let's be a bit sloppy to avoid confusion...

Stronger and Weaker Predicates

- The convention extends to predicates. If P x ⇒
 Q x for every x, Q is the weaker one, while P is the
 stronger one.
- Example: $0 \le x < 4$ is weaker than $0 \le x < 3$, which is in turn weaker than $1 \le x < 3$.

- Intuition: for first-order values, the set of values satisfying a weaker predicate is *larger* than that satisfying a stronger predicate.
- Example: P can be weaker than $P \wedge Q$ (since $(P \wedge Q) \Rightarrow P$); $P \vee Q$ can be weaker than P (since $P \Rightarrow (P \vee Q)$).
- Intuition: a weaker predicate enforces less restriction, is more tolerant, and allows more inputs/states to be *True*.

Predicate-Set Correspondence

- · Functions can be hard to grasp.
- A predicate P is isomorphic to the set of values that satisfy the predicate — at least for first order values.
 Therefore I tend to equate them.
- E.g. think of $x\leqslant 3$ as the set of values satisfying $x\leqslant 3$.
- False is the empty set, True is the set of all values (of the right type).
- $P \Rightarrow Q$ iff. $P \subseteq Q$.
 - A weaker predicate is a bigger set!
- $P \wedge Q$ corresponds to $P \cap Q$; $P \vee Q$ corresponds to $P \cup Q$.

Weakest Precondition

- Recall that the predicates in a Hoare triple need not be exact.
 - $\left\{x\leqslant 2\right\}x:=x+1\left\{x\leqslant 3\right\}$ is a valid triple.
 - So is $\{0 < x \le 2\}$ x := x + 1 $\{x \le 3\}$. Note that $x \le 2$ is weaker than $0 < x \le 2$.
 - $x \le 2$ is in fact the weakest (most tolerating) P such that $\{P\}$ x := x + 1 $\{x \le 3\}$ holds.
- Defining weakest precondition in terms of Hoare triple....
- **Definition**: given a statement S, its weakest precondition with respect to Q, denoted $wp \ S \ Q$, is the weakest predicate such that $\{wp \ S \ Q\} \ S \ \{Q\}$ holds.

Predicate Transformer

wp S is a function from predicates to predicates.

- Also called a predicate transformer.
- I myself find it sometimes easier to think of a predicate transformer as a function from sets to sets.
- E.g. wp S Q gives you the largest set P such that for all x ∈ P, running S starting from initial state x gives you a final state in Q.

Weakest Precondition: Skip and Assignment

- Weakest preconditions for skip and assignment:
- $wp \ skip \ P = P$.
- $wp(x := E) P = P[x \backslash E].$

Hoare Triple, Revisited

- We can do it the other way round: specify wp for each program construct, and define Hoare triple in terms of wp.
- **Definition**: $\{P\} S \{Q\}$ if and only if $P \Rightarrow wp S Q$.

Examples

• $\{x > 0\}$ skip $\{x \ge 0\}$ is valid, because:

• $\{0 < x < 2\} x := x + 1 \{x \le 3\}$ is valid, because

$$\begin{aligned} & wp \; (x := x+1) \; (x \leqslant 3) \\ & \equiv \quad \{ \text{ definition of } wp \; \} \\ & (x \leqslant 3)[x \backslash x+1] \\ & \equiv x+1 \leqslant 3 \\ & \Leftarrow 0 < x < 2 \; . \end{aligned}$$

Sequencing and Branching

- wp (S; T) Q = wp S (wp T Q).
 - Or $wp\ (S;T)=wp\ S\cdot wp\ T,$ where (\cdot) denotes function composition.
- wp (if $B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1$ fi) $Q = (B_0 \Rightarrow wp S_0 Q) \land (B_1 \Rightarrow wp S_1 Q) \land (B_0 \lor B_1)$.

Semantics

What does a program mean?

- **Denotational semantics**: what a program *is*. Mapping programs to mathematical objects.
- **Operational semantics**: what a program *does*. How one program term transforms to another.
- Axiomatic semantics: what a program guarantees.
- Predicate transformer semantics can be seen as a kind of denotational semantics, and axiomatic semantics.
- The meaning of a program is a *predicate transformer*: give it a post condition Q, it tells us what precondition is sufficient to guarantee Q.
- It is a "goal oriented" semantics that is more suitable for reasoning about and constructing imperative programs.

Properties of Predicate Transformers

- wp must satisfy certain conditions.
- Strictness: $wp \ S \ False = False$.
- Monotonicity: $P \Rightarrow Q$ implies $wp S P \Rightarrow wp S Q$.
- Distributivity over Conjunction: $(wp \ S \ Q_0 \land wp \ S \ Q_1) \equiv wp \ S \ (Q_0 \land Q_1).$
- One can prove that $(wp\ S\ Q_0\ \lor\ wp\ S\ Q_1) \Rightarrow wp\ S\ (Q_0\ \lor\ Q_1).$
- $(wp\ S\ Q_0\lor wp\ S\ Q_1)\equiv wp\ S\ (Q_0\lor Q_1)$ holds only for *deterministic* programs.

6 Summary

The weakest-precondition semantics for each of the guarded command language are given below:

- $wp \ skip \ P = P$,
- $wp (x := E) P = P[x \backslash E],$
- wp(S;T)Q = wpS(wpTQ),
- wp (if $B_0 \rightarrow S_0 \mid B_1 \rightarrow S_1$ fi) $Q = (B_0 \Rightarrow wp S_0 Q) \land (B_1 \Rightarrow wp S_1 Q) \land (B_0 \lor B_1)$.

The situation for loops is a bit complicated. Abbreviate $\operatorname{\mathbf{do}} B \to S \operatorname{\mathbf{od}}$ to DO, we have

$$wp\ DO\ Q = (B \lor Q) \land (\neg B \lor wp\ S\ (wp\ DO\ Q))\ .$$

Based on the weakest preconditions, we have the following rules for constructs of the guarded command language.

- $\{P\} skip \{Q\} \equiv P \Rightarrow Q$.
- $\{P\}\,x:=E\,\{Q\}\equiv P\Rightarrow Q[x\backslash E]$ and P implies that E is defined.
- $\{P\} S; T \{Q\} \equiv (\exists R :: \{P\} S \{R\} \land \{R\} T \{Q\}).$
- $\{P\}$ if $B_0 \to S_0 \mid B_1 \to S_1$ fi $\{R\}$ equivals
 - 1. $P \Rightarrow B_0 \vee B_1$ and
 - 2. $\{P \wedge B_0\} S_0 \{Q\}$ and $\{P \wedge B_1\} S_1 \{Q\}$.
- $\{P\}$ do $B_0 \to S_0 \mid B_1 \to S_1$ od $\{Q\}$ follows from
 - 1. $P \wedge \neg B_0 \wedge \neg B_1 \Rightarrow Q$,
 - 2. $\{P \land B_0\} S_0 \{P\}$ and $\{P \land B_1\} S_1 \{P\}$, and
 - 3. there exists an integer function $\ensuremath{\mathit{bnd}}$ on the state space such that
 - (a) $P \wedge (B_0 \vee B_1) \Rightarrow bnd \geqslant 0$,
 - (b) $\{P \land B_0 \land bnd = C\} S_0 \{bnd < C\}$, and
 - (c) $\{P \wedge B_1 \wedge bnd = C\} S_1 \{bnd < C\}.$

Statements of the guarded command language satisfy the following rules:

- $\{P\} S \{false\} \equiv \neg P$,
- $\{P\} S \{Q\} \land (P_0 \Rightarrow P) \Rightarrow \{P_0\} S \{Q\},$
- $\{P\} S \{Q\} \land (Q \Rightarrow Q_0) \Rightarrow \{P\} S \{Q_0\},$
- $\{P\} S \{Q\} \land \{P\} S \{R\} \equiv \{P\} S \{Q \land R\},$
- $\{P\} S \{Q\} \land \{R\} S \{Q\} \equiv \{P \lor R\} S \{Q\}.$

References

- [Dijnd] E. W. Dijkstra. On understanding programs. EWD 264, circulated privately, n.d.
- [Kal90] A. Kaldewaij. *Programming: the Derivation of Algorithms*. Prentice Hall, 1990.