Cours de Fonctions et Variations I Lionel Pournin - EFREI TD n°4 : **Dérivation**

Exercice 1 : Montrer que la fonction $x \mapsto x$ est dérivable sur \mathbb{R} et donner sa dérivée.

Exercice 2: En utilisant l'exercice 1, montrer que les fonctions $x \mapsto x^2$ et $x \mapsto x^3$ sont dérivables et donner leurs dérivées. Montrer ensuite par récurrence que $x \mapsto x^n$ est dérivable et donner sa dérivée pour tout $n \in \mathbb{N}$.

<u>Exercice 3</u>: Dériver les fonctions suivantes :

i.
$$f(x) = -4x^3 + 2x^2 - 3x + 1$$
,
ii. $f(x) = (3x^2 - 4x)/2$,
iii. $f(x) = (\sqrt{x} + 1)(x^2 - 2)$,
iv. $f(x) = (2x - \sqrt{x})(x + 4)$,
v. $f(x) = 1/(1 - 4x)$,
vi. $f(x) = -3/(2x - 1)$,
vii. $f(x) = (2x - 1)/(3x + 2)$,
viii. $f(x) = (3x^2 - 4x + 1)/(2x - 3)$,
vii. $f(x) = (-5x^2 + 1)^2$.

Exercice 4 : La fonction f définie sur $\mathbb R$ par :

$$f(x) = \frac{x}{1+|x|},$$

est-elle dérivable en 0?

Exercice 5 L'objectif de cet exercice est de trouver la dérivée des fonctions $x \mapsto \cos(x)$ et $x \mapsto \sin(x)$.

- 1) En utilisant les nombres complexes, exprimer $\cos(c+d)$ et $\cos(c-d)$ en fonction de $\cos(c)$, $\cos(d)$, $\sin(c)$ et $\sin(d)$ pour deux réels c et d quelconques,
- 2) En déduire l'expression de $\cos(c-d) \cos(c+d)$ en fonction de $\sin(c)$ et $\sin(d)$ pour deux réels c et d quelconques,
- 3) En faisant un changement de variables dans l'expression trouvée en 2), calculer $\cos(x) \cos(a)$ en fonction de $\sin((a+x)/2)$ et de $\sin((a-x)/2)$,
- 4) En déduire que, pour tout $a \in \mathbb{R}$, la fonction suivante admet une limite en a et préciser cette limite :

$$\tau_a(x) = \frac{\cos(x) - \cos(a)}{x - a},$$

- 5) Montrer que la fonction $x \mapsto \cos(x)$ est dérivable sur \mathbb{R} et donner sa dérivée,
- 6) Montrer que la fonction $x \mapsto \sin(x)$ est dérivable sur \mathbb{R} et donner sa dérivée.

Exercice 6 : Calculer les dérivées des fonctions $f: \mathbb{R} \to \mathbb{R}$ suivantes :

$$\begin{array}{lll} \text{i.} & f(x) = \sin(2x+1), & \text{vii.} & f(x) = \sin^2(x), \\ \text{ii.} & f(x) = 4e^{5x+1}, & \text{viii.} & f(x) = \frac{1}{1+\tan(x)}, \\ \text{iii.} & f(x) = \sqrt{x^2+1}, & \text{ix.} & f(x) = \left(\frac{1+2x}{1-x}\right)^2, \\ \text{v.} & f(x) = \sqrt{\frac{x+1}{x+2}}, & \text{x.} & f(x) = \tan(2x+3), \\ \text{vi.} & f(x) = \sin(x^2), & \text{xi.} & f(x) = \ln(3x^2-1). \end{array}$$

Exercice 7 : Calculer les dérivées des fonctions $f: \mathbb{R} \to \mathbb{R}$ suivantes, et leurs dérivées secondes (c'est-à-dire les dérivées de leurs dérivées) :

i. $f(x) = \cos(2x)$, ii. $f(x) = \tan(x^2)$, iii. $f(x) = \ln(2x+1)$, iv. $f(x) = e^{x^2-3}$, v. $f(x) = \sqrt{x^2-6x+5}$, vi. $f(x) = \frac{2x+1}{3x-2}$, vii. $f(x) = \sin(ax+b)$ où a et b sont des réels quelconques.

Exercice 8 : Calculer l'expression de la dérivée de $x \mapsto \tan(x)$ en utilisant uniquement les dérivées de cos et sin.

Exercice 9: Soit $f: \mathbb{R} \to \mathbb{R}$ la fonction définie par $f(x) = 2\ln(x) - x + 1$. Étudier les variations de f et calculer $\lim_{x\to 0} f(x)$.

Exercice 10: Soit $f:]0, +\infty[\to \mathbb{R}$ la fonction définie par $f(x) = x^5 - 5x + 1$. Étudier les variations de f et en déduire que l'équation $x^5 - 5x + 1$ admet trois solutions réelles.

<u>Exercice 11</u> : Montrer les inégalités suivantes :

i. $3x < 2\sin(x) + \tan(x)$ pour tout $x \in]0, \pi/2[$, ii. $x/(x+1) \le \ln(1+x) \le x$ pour tout $x \in]-1, +\infty[$. iii. $\sin^2(x) \le \frac{4}{\pi^2}x(\pi-x)$ pour tout $x \in [0,\pi]$,

Exercice 12 : On considère un entier $n \geq 2$ et la fonction $f_n : \mathbb{R} \to \mathbb{R}$ définie par $f_n(x) = x - \cos(x/n)$. Montrer que f_n est strictement croissante sur \mathbb{R} .

Exercice 13: Montrer que la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^3$ est une bijection continue et strictement croissante.

Exercice 14 : Montrer que la fonction $f: \mathbb{R} \to]-\pi/2, \pi/2[$ définie par $f(x)=\arctan(x)$ est une bijection continue et strictement croissante.

Exercice 15 : Montrer que la fonction $f: \mathbb{R} \to]-1,1[$ définie par :

$$f(x) = \frac{x}{1 + |x|},$$

est une bijection continue et strictement croissante.