Search and Rediscovery

Martino Banchio

Google Research

Joint work with **Suraj Malladi**

June 22nd, 2024

Research vs homework

Both unfamiliar environments for searchers

Both involve trial-and-error to find more promising approaches

But question is open at the time of research

What does the process of re-discovery look like?

Trade secrets

Leader develops innovation

Keeps method as trade secret

Competitors learns such an innovation is feasible

How does this affect their R&D?

Behavioral theory of the firm

Problemistic search (Cyert and March 1963; Simon 1962) "Search within the firm is problem-oriented...innovation by a competitor"

Rugged landscapes (Levinthal 1997; Bellinger et al. 2012)

Mapping from choices to performance is complex and unpredictable

This paper

Model of "problemistic search on rugged landscapes"

Characterize the optimal search process

Outline

- 1. Model
- 2. Simple search policies
- 3. Proof ideas
- 4. Discussion

States

 $S \equiv [0, 1]$ is the search space

 $Q \subset \mathbb{R}^{S}_{+}$ is the state space

An element $q \in Q$ is a quality index

Actions

 x_t : searcher's time t action

 $x_t \in S$: learns $q(x_t)$ in state $q \in Q$

 $x_t = \emptyset$: search ends, payoff realized

 $h_t = ((x_i, z_i))_{i=0}^{t-1}$ is a time t history, with $z_i = q(x_i)$

$$h_t = ((x_i, z_i))_{i=0}^{t-1}$$
 is a time t history, with $z_i = q(x_i)$

 $Q_h \subset Q$ is set of quality indices **consistent** with h

$$Q_h \equiv \{q \in Q | q(x) = z, \forall (x, z) \in h\}$$

 $h_t = ((x_i, z_i))_{i=0}^{t-1}$ is a time t history, with $z_i = q(x_i)$

 $Q_h \subset Q$ is set of quality indices **consistent** with h

$$Q_h \equiv \{q \in Q | q(x) = z, \forall (x, z) \in h\}$$

 $h_t = ((x_i, z_i))_{i=0}^{t-1}$ is a time t history, with $z_i = q(x_i)$

 $Q_h \subset Q$ is set of quality indices **consistent** with h

$$Q_h \equiv \{q \in Q | q(x) = z, \forall (x, z) \in h\}$$

$$h_t = ((x_i, z_i))_{i=0}^{t-1}$$
 is a time t history, with $z_i = q(x_i)$

 $Q_h \subset Q$ is set of quality indices **consistent** with h

$$Q_h \equiv \{q \in Q | q(x) = z, \forall (x, z) \in h\}$$

H is set of all histories h where Q_h nonempty

Rugged landscapes and rediscovery

Let $L \in \mathbb{R}_+$ (ruggedness) and $k \in \mathbb{R}_+$ (target)

Assumption:

 $Q = \{q \in \mathbb{R}^{S}_{+} \mid q \text{ is } L\text{-Lipschitz continuous and } \exists x \in S \text{ s.t. } q(x) = k\}$

This talk: L=1 and k=1

Rugged landscapes and rediscovery

Payoffs

Payoff to ending search at empty history h_0 is 0

Payoff to ending search at any other $h_t \in H$:

$$p(h_t) = \max_{i \in \{0, \dots, t-1\}} z_i - c \cdot t$$

Search strategies

A **strategy** is a map $\sigma: H \to S \cup \{\emptyset\}$

 $h \in H$ is a **terminal history** for strategy σ if $\sigma(h) = \emptyset$

 σ terminates if it reaches a terminal history h_q^{σ} from any $h \in H$, $q \in Q_h$

Σ is set of all strategies that terminate

Solution

 σ^* is (ex-ante) **optimal** if at the empty history $h = h_0$:

$$\sigma^* \in \operatorname*{argmax} \min_{\sigma \in \Sigma} p(h_q^{\sigma})$$

Outline

- 1. Model
- 2. Simple search policies
- 3. Proof ideas
- 4. Discussion

Search window

$$S_h \equiv \{x \in S | \exists q \in Q_h \text{ s.t. } q(x) = 1\}$$

Search window

$$S_h \equiv \{x \in S \mid \exists q \in Q_h \text{ s.t. } q(x) = 1\}$$

 $\lambda(h)$: Lebesgue measure of search window at h

Policies

For any $\sigma \in \Sigma$, the **reachable histories** are:

 $H^{\sigma} \equiv \{h \in H \mid h \text{ is on path for } \sigma \text{ from } h_0 \text{ for some } q \in Q\}$

A **policy** is a restriction of $\sigma \in \Sigma$ to H^{σ}

A policy is **optimal** if it can be extended to an optimal strategy

An example search policy, σ

At every history $h \in H^{\sigma}$

$$\rightarrow \operatorname{stop} \inf \max_{i \in \{0, \dots, t-1\}} z_i \ge 1 - \frac{1}{3} \lambda(h_t)$$

$$\rightarrow$$
 search at $1 - \frac{2}{3}\lambda(h_t)$

Example search policy

Example search policy

Search policy σ

explores incrementally

depends only on search window length

stops only if quality exceeds some threshold

does not invoke recall

Classes of policies

 σ is an **incremental policy** if for every $h \in H^{\sigma}$,

- 1. either $\sigma(h) = \emptyset$
- 2. or $\sigma(h) > x$ for all x explored in h

Classes of policies

 σ is an **index policy** if there exists $\hat{\sigma}$: $\mathbb{R}_+ \to [0,1] \cup \{\emptyset\}$ such that $\sigma(h) = \hat{\sigma}(\lambda(h))$ for every non-terminal history $h \in H^{\sigma}$.

Classes of policies

 σ is a **threshold policy** if for every non-terminal $h_t \in H^{\sigma}$, there exists τ_{h_t} such that for every $h_{t+1} \in H^{\sigma}$ that follows it, $\sigma(h_{t+1}) = \emptyset$ if and only if $z_{h_{t+1}}^* \geq \tau_{h_t}$

Classes of policies

 σ does not invoke recall if the searcher always takes the last item discovered

Solution concept revisited

 σ^* is a **dynamically consistent policy** if at all histories $h \in H^{\sigma^*}$:

$$\sigma^* \in \operatorname*{argmax} \min_{\sigma \in \Sigma} p(h_q^{\sigma})$$

Main result

Theorem: There exists an optimal policy that is incremental, threshold, index, does not invoke recall, and is dynamically consistent.

Rediscovery is a simple process

- 1. Searcher can explore the space freely Suffices to **search in order**
- 2. Searcher can use complex stopping rules

 Threshold rules suffice
- 3. Searcher has perfect recall Recall is never invoked
- 4. Histories are complex
 Search window length is **only state variable**

Outline

- 1. Model
- 2. Simple search policies
- 3. Proof ideas
- 4. Discussion

Warm-up: two period case

Assumption: suppose search must end in two periods

Searcher's optimal strategy hedges against two 'risks'

Continuation region

Optimal search policy

Theorem

Search intensity: $N: [0, 1]^2 \rightarrow \mathbb{N}$

$$N(c,l) = \begin{cases} 0, & c \in (1-\frac{l}{2},1] \\ 1, & c \in (\frac{l}{2},1-\frac{l}{2}] \\ n, & c \in (\frac{l}{n(n+1)},\frac{l}{n(n-1)}] \end{cases}$$
 If $S_h = [a,1]$ and $N(c,\lambda(h)) > 0$:
$$\sigma^*(h) = 2 - \lambda(h) - \tau(c,\lambda(h))$$

Threshold: $\tau: [0,1]^2 \to \mathbb{R}$

$$\tau(c,l) = 1 - \frac{l}{2N(c,l)} - \frac{N(c,l) - 1}{2}c$$

Optimal policy:

If
$$S_h = [a, 1]$$
 and $N(c, \lambda(h)) > 0$:

$$\sigma^*(h) = 2 - \lambda(h) - \tau(c, \lambda(h))$$

If
$$S_h = [a, b] \sqcup [c, 1]$$
 or $N(c, \lambda(h)) = 0$:

$$\sigma^*(h) = \emptyset$$

Outline

- 1. Model
- 2. Simple search policies
- 3. Proof ideas
- 4. Discussion

Features of optimal search

1. Process of elimination:

Bad discovery→ remove similar choices from consideration

2. Satisficing

"[so] long as the problem is not solved, search will continue." (Cyert and March 1963)

3. Increasing thresholds

Emboldened by failure because objective is attainable.

Roger Bannister and the 4min mile

4 min mile seriously attempted since 1880s
Physical or psychological barrier?
Roger Bannister—iconoclast, lone-wolf, no coaches, own system
Bannister breaks 4min time first in 1954 in bad conditions
Many others soon follow, and now is not so rare a feat

"...what goes for runners goes for leaders running organizations... Whether it's an executive, an entrepreneur, or a technologist, some innovator changes the game, and that which was thought to be unreachable becomes a benchmark, something for others to shoot for. That's Roger Bannister's true legacy..."

- Bill Taylor, Harvard Business Review

Summary

Knowing something is discoverable affects how you search for it

Optimal search is a process of elimination

Foundation for behavioral theories of firm search and R&D

Literature

Search: Weitzman (1979), Rothschild (1978), Callander (2011), Malladi (2022)...

Multi-arm bandits and optimization: Slivkins (2019), Hansen et al (1992), Radner (1975), Francetich and Kreps (2015)...

Problemistic Search and Rugged Landscapes: Cyert and March (1963), Levinthal (1997), Bellinger et al. (2012), Garfagnini and Strulovici (2016), Callander, Lambert and Matouschek (2022)...

Dynamics and ambiguity: Klibanoff and Hanany (2009),...

Thank you!

Proof steps

Step 0: guess worst-case $q \in Q_h$ for σ^* when $S_h = [a, 1]$

Step 0: discover au at $\sigma^*(h_t)$ in worst-case

Proof steps

Step 0: guess worst-case $q \in Q_h$ for σ^* when $S_h = [a, 1]$

Step 1: verify this guess, i.e., for any $q' \in Q_h$, $p(h_q^{\sigma^*}) \leq p(h_{q'}^{\sigma^*})$

Step 1a: define σ_{NR}^*

Proof steps

Step 0: guess worst-case $q \in Q_h$ for σ^* when $S_h = [a, 1]$

Step 1: verify this guess, i.e., for any $q' \in Q_h$, $p(h_q^{\sigma^*}) \leq p(h_{q'}^{\sigma^*})$

Step 2: for any $\sigma \in \Sigma$, there is a $q' \in Q_h$ with $p(h_{q'}^{\sigma}) \leq p(h_q^{\sigma^*})$

Step 2: searcher could get $\leq \tau - c$ with σ

Step 2: searcher could get $\leq \tau - c$ with σ

Step 2: searcher could get $\leq \tau - c$ with σ

With additional searches, payoff:

$$\leq 1 - 4c < \tau - c$$

Proof steps

Step 0: guess worst-case $q \in Q_h$ for σ^* when $S_h = [a, 1]$

Step 1: verify this guess, i.e., for any $q' \in Q_h$, $p(h_q^{\sigma^*}) \leq p(h_{q'}^{\sigma^*})$

Step 2: for any $\sigma \in \Sigma$, there is a $q' \in Q_h$ with $p(h_{q'}^{\sigma}) \leq p(h_q^{\sigma^*})$

Step 3: if $S_h = [a, b] \sqcup [c, 1]$, stopping is optimal