ARTIFICIAL INTELLIGENCE

CSC304 CPE406 SC430

School of Computer Engineering Nanyang Technological University

Part III – Knowledge and Reasoning

6 Agents that Reason Logically

- Knowledge-based Agents. Representations.
- Propositional Logic. The Wumpus World.

• 7 First-Order Logic

- Syntax and Semantics. Using First-Order Logic.
- Logical Agents. Representing Changes.
- Deducing Properties of the World.
- Goal-based Agents.

8 Building a Knowledge Base

Knowledge Engineering. – General Ontology.

7 – FIRST-ORDER LOGIC

"In which we introduce a logic that is sufficient for building knowledge-based agents."

Representing Knowledge

Knowledge-based agent

- Have representations of the world in which they operate
- Use those representations to infer what actions to take

Ontological commitments

The world as facts (propositional logic)

- The world as objects (first-order logic)

e.g. the blocks world:

Objects: cubes, cylinders, cones, ...
Properties: shape, colour, location, ...

Relations: above, under, next-to, ...

A above B = above (A,B)

Why is FOL Important?

A very powerful KR scheme

- Essential representation of the world
 - Deal with objects, properties, and relations (as Philosophy).
- Simple, generic representation
 - Does <u>not</u> deal with specialised concepts such as categories, time, and events.
- Generalisation
 - Allow the making of universal and existential statements
- Universal language
 - Can express anything that can be programmed.
- Most studied and best understood
 - More powerful proposals still debated.
 - Less powerful schemes too limited.

Types of statements for expressing general information

Facts

Proposition or predicate (relation/properties)

Rules

- Relationships between objects and predicates
- General statements of relationships
- Existential statements of relationships

Variables

Proposition, not predicates

Propositional vs. First-Order Logic

• Aristotle's syllogism

CSC304/CPE406SC430 Artificial Intelligence

new fact

- Socrates is a man. (All men are mortal) Therefore Socrates is mortal.

Statement	Propositional Logic	First-Order Logic
"Socrates is a man."	SocratesMan,	Man(Socrates), P52(S21)
"Plato is a man."	PlatoMan, S157	Man(Plato),
"All men are mortal."	MortalMan S421 Man ⇒ Mortal S9⇒S4	Man(x) \Rightarrow Mortal(x)() P52($\sqrt{1}$) \Rightarrow P66($\sqrt{1}$)
"Socrates is mortal."	MontalSocrates S957 S43 Λ S421 - S957 ?!?	Viortal(Socrates) V1←S21, - P66(S21)
	Unitatyr	natching/binding

Syntax and Semantics of FOL

Sentences

Sentences

Properties/characteristic/relations

- Built from quantifiers, predicate symbols, and terms

Terms

Represent objects

Built from variables, constant and function symbols

Constant symbols

Refer to ("name") particular objects of the world

 The object is specified by the interpretation e.g. "John" is a constant, may refer to "John, king of England from 1199 to 1216 and younger brother of Richard Lionheart", or my uncle, or ...

Predicate and Function Symbols

Predicate symbols

- Refer to particular relations on objects
 - Binary relation specified by the interpretation e.g. Brother(KingJohn, RichardLionheart) -> T or F Man
- A n-ary relation if defined by a set of n-tuples
 - Collection of objects arranged in a fixed order e.g. { (KingJohn, RichardLionheart), (KingJohn, Henry), ... }

Function symbols

Refer to functional relations on objects

• Many-to-one relation specified by the interpretation

• One had e.g. BrotherOf(KingJohn) – a person, e.g. Richard (npt T/F) Defined by a set of *n*+1-tuples

ast element is the function value for the first *n* elemen

Example:

- Leftleg(John) -> function symbol
- John-leftleg -> constant
- Amputated(x) -> a predicate defining the property of x being amputated.
- Amputated(John-leftleg) -> T/F
- Amputated(Leftleg(John)) -> T/F
- What is diabetes?
- Diabetic(x)^Amputated(Leftleg(x)) variable
- Diabetic(John)^Amputated(Leftleg(John)) –
 specific (John) compound sentence

Variables and Terms in FOL

Variables

Refer to any object of the world

riables

Refer to any object of the world

• e.g. x, person, ... as in Brother(KingJohn, person). Variable

- Can be substituted by a constant symbol
 - e.g. person ← Richard, yielding Brother(KingJohn, Richard).

Terms

- Logical expressions referring to objects
 - Include constant symbols ("names") and variables.
 - Make use of function symbols. e.g.(LeftLegOf(KingJohn) to refer to his leg without naming it
- Constant Compositional interpretation
 - e.g. LeftLegOf(), KingJohn -> LeftLegOf(KingJohn).

Sentences in FOL

Atomic sentences

- State facts, using terms and predicate symbols
 - e.g. Brother(Richard, John).
- Can have complex terms as arguments
 - e.g. Married(FatherOf(Richard), MotherOf(John)).
- Have a truth value

both are elace holders Depends on both the interpretation and the world.

Complex sentences

- Combine sentences with connectives
 - e.g. Father(Henry, KingJohn)
 \(\Lambda \) Mother(Mary, KingJohn)
- Connectives identical to propositional logic
 - i.e.: Λ , \vee , \Leftrightarrow , \Rightarrow , \neg

Sentence Equivalence

- There are many ways to write a logical statement in FOL
 - Example

Sentences in Normal Form

- There is only one way to write a logical statement using a Normal Form of FOL
 - Example

$$\neg B \Rightarrow \neg A$$

• $\underline{A \Rightarrow B}$, $A \land B \Rightarrow C$ equivalent to "Implicative Normal Form"

- Rewriting logical sentences allows to determine whether they are equivalent or not
 - Example
 - A Λ B \Rightarrow C and A \Rightarrow (B \Rightarrow C) both have the same CNF:
- Using FOL is the most convenient, but using a Normal Form is the most efficient

Sentence Verification

- Rewriting logical sentences helps to understand their meaning
 - Example
 - Owns(x,y) \Rightarrow (Dog(y) \Rightarrow AnimalLover(x)) A \Rightarrow (B \Rightarrow C) Owns(x,y) \wedge Dog(y) \Rightarrow AnimalLover(x) A \wedge B \Rightarrow C "A dog owner is an animal lover"
- Rewriting logical sentences helps to verify their meaning is as intended
 - Example
 - "Dogs all have the same enemies"
 - $Dog(x) \land Enemy(z, x) \Rightarrow (Dog(y) \Rightarrow Enemy(z, y))$ same as

 $Dog(x) \land Dog(y) \land Enemy(z, x) \Rightarrow Enemy(z, y)$

Universal Quantifier ∀

- Express properties of collections of objects
 - Make a statement about every objects w/out enumerating
 - e.g. "All kings are mortal
 King(Henry) ⇒ Mortal(Henry) Λ
 King(John) ⇒ Mortal(John) Λ
 King(Richard) ⇒ Mortal(Richard) Λ
 King(London) ⇒ Mortal(London) Λ
 ...
 instead: ∀ x, King(x) ⇒ Mortal(x)

 Note: the semantics of the implication says F ⇒ F is TRUE, thus for those individuals that satisfy the premise King(x) the rule asserts the conclusion Mortal(x) but for those individuals that do not satisfy the premise the rule makes no assertion.

Using the Universal Quantifier

- The implication (⇒) is the natural connective to use with the universal quantifier (∀)
 - Example
 - General form: $\forall x \ P \ (x) \Rightarrow Q \ (x)$ e.g. $\forall x \ Dog(x) \Rightarrow Mammal(x)$ "all dogs are mammals"
 - Use conjunction? $\forall x P(x) \land Q(x) e.g. \forall x Dog(x) \land Mammal(x)$

same as $\forall x P(x)$ and $\forall x Q(x)$

e.g. $\forall x \text{ Dog}(x) \text{ and } \forall x \text{ Mammal}(x)$

-> yields a very strong statement (too strong! i.e. incorrect)

All manmals are dozs

Existential Quantifier 3

- Express properties of some particular objects
 - Make a statement about one object without naming it
 - e.g. "King John has a brother who is king" $\exists x$, Brother(x, KingJohn) \land King(x)

instead of

Brother(Henry, KingJohn) ∧ King(Henry) ∨

Brother(KingJohn, KingJohn) \(\Lambda \) King(KingJohn) \(\times \)

Brother(Mary, KingJohn) ∧ King(Mary) ∨

Brother(London, KingJohn) ∧ King(London) ∨

Brother(Richard, KingJohn) ∧ King(Richard) ∨

...

Using the Existential Quantifier

- The conjunction (Λ) is the natural connective to use with the existential quantifier (∃)
 - Example
 - General form: $\exists x \ P(x) \ \Lambda \ Q(x) \ e.g. \ \exists x \ Dog(x) \ \Lambda \ Owns(John, x)$ "John owns a dog"
 - Use Implication? $\exists x \ P(x) \Rightarrow Q(x) \ e.g. \exists x \ Dog(x) \Rightarrow Owns(John, x)$ true for all x such that P(x) is false e.g. $Dog(\underline{Garfield}) \Rightarrow Owns(John, Garfield)$