Решение задачи Market Making алгоритма

Егоров Сергей

Условие задачи

События происходят в дискретные моменты времени $t=0,1,\ldots,T$. Известен временной ряд цены актива P_0,P_1,\ldots,P_T — неотрицательные, целые значения.

ММ алгоритм снимает оставшиеся неисполненные заявки с шага t-1 и ставит новое множество заявок на покупку и продажу на шаге t, каждая заявка размера 1, цены в заявках на покупку B_i , цены в заявках на продажу S_i . На шаге t+1 исполняются все заявки на покупку (продажу), для которых $B_i \geq P_{t+1}$ ($S_i \leq P_{t+1}$).

Позиция алгоритма в момент t — суммарное количество в сделках на покупку минус суммарное количество в сделках на продажу за период времени до t.

Временной ряд цен удовлетворяет свойствам:

$$K = \sum_{t=1}^{T} |P_t - P_{t-1}|$$

$$Z = P_T - P_0$$

для любого t и известно алгоритму в момент t, что $|P_{t+1} - P_t| \le D_t$. ММ алгоритм ставит заявки на покупку и продажу с ценами:

 $B_i = P_t - i, \quad i = 1, \dots, D_t$

$$S_i = P_t + i, \quad i = 1, \dots, D_t$$

Вопросы:

- 1. Какая позиция ММ алгоритма в момент Т?
- 2. Какой PnL MM алгоритма в момент T при оценке стоимости позиции по цене P_T ?

Решение

Позиция в момент T

Позиция алгоритма в момент T определяется как разница между количеством исполненных заявок на покупку и количеством исполненных заявок на продажу за весь период времени до момента T.

1. Условие $|P_{t+1}-P_t| \leq D_t$ означает, что на каждом шаге будут выставляться все возможные заявки:

$$B_{\underset{i}{\operatorname{argmin}}B_i} \le P_{t+1},$$

$$S_{\underset{i}{\operatorname{argmax}}S_i} \ge P_{t+1}$$

2. На каждом шаге t от 0 до T-1 количество исполненных заявок на покупку и продажу ограничено величиной $|P_t-P_{t+1}|$:

$$Buy_t = \min(D_t, \max(0, P_t - P_{t+1})) = \max(0, P_t - P_{t+1})$$

$$Sell_t = \min(D_t, \max(0, P_{t+1} - P_t)) = \max(0, P_{t+1} - P_t)$$

так как $|P_{t+1} - P_t| \le D_t$ по условию.

3. Суммарная позиция на момент T:

$$Pos(T) = \sum_{t=0}^{T-1} (Buy_t - Sell_t)$$

$$Pos(T) = \sum_{t=0}^{T-1} (\max(0, P_t - P_{t+1}) - \max(0, P_{t+1} - P_t))$$

4. (Дополнительно) Упрощение формулы Pos(T).

Выражение для Pos(T) можно переписать, учитывая три случая отдельно:

(a) Когда $P_t > P_{t+1}$:

$$\max(0, P_t - P_{t+1}) = P_t - P_{t+1}$$
$$\max(0, P_{t+1} - P_t) = 0$$

(b) Когда $P_{t+1} > P_t$:

$$\max(0, P_t - P_{t+1}) = 0$$

$$\max(0, P_{t+1} - P_t) = P_{t+1} - P_t$$

(c) Когда $P_{t+1} = P_t$:

$$\max(0, P_t - P_{t+1}) = 0$$
$$\max(0, P_{t+1} - P_t) = 0$$

Поэтому выражение становится:

$$Pos(T) = \sum_{t=0}^{T-1} (P_t - P_{t+1})$$

$$Pos(T) = (P_0 - P_1) + (P_1 - P_2) + \dots + (P_{T-1} - P_T)$$

Все промежуточные члены сокращаются, оставляя:

$$Pos(T) = P_0 - P_T$$

Мы знаем, что $Z = P_T - P_0$. Поэтому имеем:

$$Pos(T) = -(P_T - P_0) = -Z \tag{1}$$

Otbet. Pos(T) = -Z

\mathbf{PnL} в момент T

1. Введем понятия валютного баланса

Balance
$$\$(T)$$

и стоимости позиции

$$BalancePos(T) = Pos(T) \cdot P_T \tag{2}$$

Тогда

$$PnL(T) = Balance\$(T) + BalancePos(T)$$
(3)

2. Валютный баланс можно посчитать как выручку с совершенных продаж и покупок:

Balance\$(T) =
$$\sum_{t=0}^{T-1} (\sum_{i=1}^{D_t} I[S_i \le P_{t+1}] \cdot S_i - \sum_{i=1}^{D_t} I[B_i \ge P_{t+1}] \cdot B_i),$$

где I - индикаторная функция, $\sum_{i=1}^{D_t} I[S_i \leq P_{t+1}] \cdot S_i$ - стоимость проданных активов в момент t, $\sum_{i=1}^{D_t} I[B_i \geq P_{t+1}] \cdot B_i$ - стоимость купленных активов в момент t.

3.

$$PnL(T) = \sum_{t=0}^{T-1} (\sum_{i=1}^{D_t} I[S_i \le P_{t+1}] \cdot S_i - \sum_{i=1}^{D_t} I[B_i \ge P_{t+1}] \cdot B_i) +$$

$$+ \sum_{t=0}^{T-1} (\max(0, P_t - P_{t+1}) - \max(0, P_{t+1} - P_t)) \cdot P_T$$

$$(4)$$

4. (Дополнительно) Упрощение формулы PnL(T).

Аналогично упрощению Pos(T):

$$K = \sum_{t=1}^{T} |P_t - P_{t-1}| = |P_T - P_{T-1}| + |P_{T-1} - P_{T-2}| + \dots + |P_1 - P_0|$$

$$Z = P_T - P_0 = (P_T - P_{T-1}) + (P_{T-1} - P_{T-2}) + \dots + (P_1 - P_0)$$

Тогда в разности K-Z будут присутствовать только моменты понижения цены актива, причем в Z такие слагаемые отрицательные, то есть в разности K-Z происходит дублирование. Поэтому:

$$\frac{K-Z}{2} \tag{5}$$

- это количество единичных шагов (тиков) понижения цены актива.

Собственно, Если бы актив только рос, то PnL был бы равен сумме единичных тиков от i=1 до $P_T-P_0-1=Z-1$, взятой с обратным знаком (-1 потому что начальная позиция P_0 не учитывается). В таком случае:

$$PnL_{positive} = -\sum_{i=1}^{Z-1} i = -\frac{(Z-1)+1}{2} \cdot (Z-1) = -\frac{Z}{2} \cdot (Z-1)$$

 $PnL_{negative}$ уже вычислен и равен (5).

Таким образом.

$$PnL(T) = PnL_{positive}(T) + PnL_{negative}(T) = -\frac{Z}{2} \cdot (Z - 1) + \frac{K - Z}{2}$$

Otbet. PnL(T) = $-\frac{Z}{2} \cdot (Z-1) + \frac{K-Z}{2}$

5. Более формально, из (2), (3) и (4) получаем:

$$PnL(T) = Balance\$(T) + BalancePos(T) = Balance\$(T) + Pos(T) \cdot P_{T} =$$

$$= \sum_{t=0}^{T-1} (\sum_{i=1}^{D_{t}} I[S_{i} \leq P_{t+1}] \cdot S_{i} - \sum_{i=1}^{D_{t}} I[B_{i} \geq P_{t+1}] \cdot B_{i}) - Z \cdot P_{T} =$$

$$= \sum_{t=0}^{T-1} \left(\left[I[P_{t+1} > P_{t}] \cdot \sum_{i=1}^{P_{t+1}-P_{t}} (P_{t} + i) \right] - \left[I[P_{t+1} < P_{t}] \cdot \sum_{i=1}^{P_{t}-P_{t+1}} (P_{t} - i) \right] \right) - Z \cdot P_{T} =$$

$$= \sum_{i=1}^{Z} (P_{0} + i) + \frac{K - Z}{2} - Z \cdot P_{T} =$$

$$= \left(P_{0} \cdot Z + \frac{Z + 1}{2} \cdot Z \right) + \frac{K - Z}{2} - Z \cdot P_{T} = [P_{0} = P_{T} - Z] =$$

$$= -Z^{2} + \frac{Z + 1}{2} \cdot Z + \frac{K - Z}{2} = -\frac{Z}{2} \cdot (Z - 1) + \frac{K - Z}{2},$$

$$(7)$$

что и требовалось доказать.

Переход из (6) в (7) можно расписать аккуратнее, но идея та же, что и для (5).

Пример

- Длительность периода: T = 5
- Временной ряд цен актива: P = [100, 102, 101, 103, 105, 104]
- Допустимое изменение цены: $D_t = 3$

Шаг 0

- Цена актива $P_0 = 100$
- Выставляем заявки:
 - Покупка: $B_1 = 99$, $B_2 = 98$, $B_3 = 97$
 - Продажа: $S_1 = 101, S_2 = 102, S_3 = 103$
- Переход к следующему шагу $P_1 = 102$
- Исполненные заявки:
 - Покупка: нет (цены выше 102)
 - Продажа: 2 заявки ($S_1=101$ и $S_2=102$)
- Позиция: $Pos_0 = -2$
- Баланс: Balance₀ = 101 + 102 = 203
- BalancePos₀: BalancePos₀ = Pos₀ · $P_1 = -2 \cdot 102 = -204$
- PnL: $PnL_0 = Balance_0 + BalancePos_0 = 203 204 = -1$

Шаг 1

- Цена актива $P_1 = 102$
- Выставляем заявки:
 - Покупка: $B_1 = 101, B_2 = 100, B_3 = 99$
 - Продажа: $S_1 = 103, S_2 = 104, S_3 = 105$
- Переход к следующему шагу $P_2 = 101$
- Исполненные заявки:
 - Покупка: 1 заявка ($B_1 = 101$)
 - Продажа: нет (цены ниже 101)
- Позиция: $Pos_1 = -1$
- Баланс: $Balance_1 = 203 101 = 102$
- BalancePos₁: BalancePos₁ = Pos₁ · $P_2 = -1 \cdot 101 = -101$
- PnL: PnL₁ = Balance₁ + BalancePos₁ = 102 101 = 1

Шаг 2

- Цена актива $P_2 = 101$
- Выставляем заявки:
 - Покупка: $B_1 = 100, B_2 = 99, B_3 = 98$
 - Продажа: $S_1 = 102$, $S_2 = 103$, $S_3 = 104$
- Переход к следующему шагу $P_3 = 103$
- Исполненные заявки:
 - Покупка: нет (цены выше 103)
 - Продажа: 2 заявки ($S_1=102$ и $S_2=103$)
- Позиция: $Pos_2 = -3$
- Баланс: Balance₂ = 102 + 102 + 103 = 307
- BalancePos₂: BalancePos₂ = Pos₂ · $P_3 = -3 \cdot 103 = -309$
- PnL: PnL₂ = Balance₂ + BalancePos₂ = 307 309 = -2

Шаг 3

- Цена актива $P_3 = 103$
- Выставляем заявки:
 - Покупка: $B_1 = 102$, $B_2 = 101$, $B_3 = 100$
 - Продажа: $S_1 = 104$, $S_2 = 105$, $S_3 = 106$
- Переход к следующему шагу $P_4 = 105$
- Исполненные заявки:

– Покупка: нет (цены выше 105)

— Продажа: 2 заявки ($S_1=104$ и $S_2=105$)

• Позиция: $Pos_3 = -5$

• Баланс: Balance₃ = 307 + 104 + 105 = 516

 • Balance Pos₃: Balance Pos₃ = Pos₃ · $P_4 = -5 \cdot 105 = -525$

• PnL: PnL₃ = Balance₃ + BalancePos₃ = 516 - 525 = -9

Шаг 4

• Цена актива $P_4 = 105$

• Выставляем заявки:

— Покупка: $B_1 = 104, B_2 = 103, B_3 = 102$

– Продажа: $S_1 = 106, S_2 = 107, S_3 = 108$

• Переход к следующему шагу $P_5 = 104$

• Исполненные заявки:

— Покупка: 1 заявка ($B_1 = 104$)

– Продажа: нет (цены ниже 104)

• Позиция: $Pos_4 = -4$

• Баланс: $Balance_4 = 516 - 104 = 412$

• BalancePos₄: BalancePos₄ = Pos₄ · $P_5 = -4 \cdot 104 = -416$

• PnL: PnL₄ = Balance₄ + BalancePos₄ = 412 - 416 = -4

t	P_t	Pos_t	$Balance_t$	${\it BalancePos}_t$	PnL_t	K	Z
0	100	0	0	0	0	0	0
1	102	-2	203	-204	-1	2	2
2	101	-1	102	-101	1	3	1
3	103	-3	307	-309	-2	5	3
4	105	-5	516	-525	-9	7	5
5	104	-4	412	-416	-4	8	4

Таблица 1: Результаты расчета PnL для каждого шага