Geometry-Aware Supertagging with Heterogeneous Dynamic Convolutions

Konstantinos Kogkalidis^{1,2} & Michael Moortgat²

 ${\rm 1~Aalto~University}$ 2 Utrecht Institute of Linguistics OTS, Utrecht University

LSD, Sept 12, Göteborg

A composition calculus for vector-based semantic modelling with a localization for Dutch

what are they?

A **family** of syntactic formalisms; each instance consists of:

- ► a lexicon a map assigning *categories* to words: (quasi-)logical formulas (or ADTs)
- ► a small set of **inference rules** ways to combine and reduce *expressions* based on their categories

Many variations: TLG, ACG, CCG, ...(*CG)

common points

- ► Lexicalized words come packed with their combinatorics
- ► Formal proximal to logics, type theory & functional programming
- ► Transparent
 neat syntax-semantics interface

Many variations: TLG, ACG, CCG, ...(*CG)

divergences

different background logics \Longrightarrow

- different linguistic aspects captured
 e.g. surface order, non-local syntax, dependency relations
- ▶ different parsing complexity
- ▶ different computational semantics
- ▶ ..

but! the **parsing pipeline** is always the same given an input sentence:

- 1. Assign a category to each word
- 2. Build the syntactic derivation bottom-up
- 3. ???
- 4. Profit

Supertagging: the task $\,$

For some input sentence $w_1, \ldots w_n$ find the category assignment $c_1, \ldots c_n$ s.t.

$$argmax_{(c_1,\ldots c_n)} p(c_1,\ldots c_n \mid w_1,\ldots w_n)^*$$

Supertagging: the task

For some input sentence $w_1, \ldots w_n$ find the category assignment $c_1, \ldots c_n$ s.t.

$$argmax_{(c_1,\ldots,c_n)} p(c_1,\ldots c_n \mid w_1,\ldots w_n)^*$$

^{*}In practice: build the best statistical model possible given current technology and available data

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=0}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
- $\prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), FFNs (early 10s)
- $\prod_{i=1}^{n} (t_i \mid w_1, \dots w_n)$ sequence encoders (mid 10s)
- $\prod_{i=1}^{n} (t_i \mid t_1, \dots t_{i-1}, w_1, \dots w_n)$ seg2seq (late 10s)

$$* := \diamondsuit^{body} (\diamondsuit^{obj1} np \multimap s_{sub}) \multimap \Box^{mod} (np \multimap np)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=0}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
- $\prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), FFNs (early 10s)
- $\prod_{i=1}^{n} (t_i \mid w_1, \dots w_n)$ sequence encoders (mid 10s)
- $\prod_{i=1}^{n} (t_i \mid t_1, \dots t_{i-1}, w_1, \dots w_n)$ seq2seq (late 10s)

$$* := \diamondsuit^{body} (\diamondsuit^{obj1} np \multimap s_{out}) \multimap \Box^{mod} (np \multimap np)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=0}^{n} (t_i \mid w_i) \\
 co-occurrence-based statistical models (90s)$
- $\prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), FFNs (early 10s)
- $\prod_{i=1}^{n} (t_i \mid t_1, \dots t_{i-1}, w_1, \dots w_n)$ seq2seq (late 10s)

$$\square^{det}(n { \multimap\hspace{-.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}} np \qquad \qquad * \qquad \qquad np \qquad \qquad \diamondsuit^{obj}np { \multimap\hspace{-.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}{0.8em}\rule0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}\rule{0.8em}{0.8em}{0.8em}{0.8em}{0.8em}\rule0.8em}{0.8em}{0.8em}{0.8em}{0.8em$$

 $\mathsf{the} \longleftrightarrow \mathsf{role} \longleftrightarrow \mathsf{that} \longleftrightarrow \mathsf{types} \longleftrightarrow \mathsf{play}$

$$* := \diamondsuit^{body}(\diamondsuit^{obj1}np \multimap s_{out}) \multimap \Box^{mod}(np \multimap np)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=0}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
- $\prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), FFNs (early 10s)
- $\prod_{i=1}^{n} (t_i \mid t_1, \dots t_{i-1}, w_1, \dots w_n)$ seq2seq (late 10s)

$$^*:=\,\diamondsuit^{\mathit{body}}\,(\,\diamondsuit^{\mathit{obj}1}\,np{\longrightarrow}\,s_{\mathrm{sub}}\,){\longrightarrow}\,\Box^{\mathit{mod}}\,(\,np{\longrightarrow}\,np\,)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
- $\prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), FFNs (early 10s)
- $\begin{array}{c}
 \prod_{i=1}^{n} (t_i \mid t_1, \dots t_{i-1}, w_1, \dots w_n) \\
 seq2seq (late 10s)
 \end{array}$

$$^*:=\,\diamondsuit^{body}\,(\,\diamondsuit^{obj1}\,np{\longrightarrow}\,s_{\mathrm{sub}}\,){\longrightarrow}\,\Box^{mod}\,(\,np{\longrightarrow}\,np\,)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=0}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
- $\prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), FFNs (early 10s)
- $\prod_{i=1}^{n} (t_i \mid t_1, \dots t_{i-1}, w_1, \dots w_n)$ seq2seq (late 10s)

$$^*:=\,\diamondsuit^{body}\,(\,\diamondsuit^{obj1}\,np{\longrightarrow}\,s_{\mathrm{sub}}\,){\longrightarrow}\,\Box^{mod}\,(\,np{\longrightarrow}\,np\,)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=0}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
- $\prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), FFNs (early 10s)
- $\prod_{i=1}^{n} (t_i \mid t_1, \dots t_{i-1}, w_1, \dots w_n)$ seq2seq (late 10s)

$$^*:=\,\diamondsuit^{\mathit{body}}\,(\,\diamondsuit^{\mathit{obj}1}\,np{\longrightarrow}\,s_{\mathrm{sub}}\,){\longrightarrow}\,\Box^{\mathit{mod}}\,(\,np{\longrightarrow}\,np\,)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=0}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
- $\prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), FFNs (early 10s)
- $\prod_{i=1}^{n} (t_i \mid t_1, \dots t_{i-1}, w_1, \dots w_n)$ seq2seq (late 10s)

$$^*:=\,\diamondsuit^{\mathit{body}}\,(\,\diamondsuit^{\mathit{obj}1}\,np{\longrightarrow}\,s_{\mathrm{sub}}\,){\longrightarrow}\,\Box^{\mathit{mod}}\,(\,np{\longrightarrow}\,np\,)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=0}^{n} (t_i \mid w_i)$ co-occurrence-based statistical models (90s)
- $\prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), FFNs (early 10s)
- $\prod_{i=1}^{n} (t_i \mid t_1, \dots t_{i-1}, w_1, \dots w_n)$ seq2seq (late 10s)

$$^*:=\,\diamondsuit^{\mathit{body}}\,(\,\diamondsuit^{\mathit{obj}1}\,np{\longrightarrow}\,s_{\mathrm{sub}}\,){\longrightarrow}\,\Box^{\mathit{mod}}\,(\,np{\longrightarrow}\,np\,)$$

$$p(t_1,\ldots t_n\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{n} (t_i \mid w_{i-\kappa} \dots w_{i+\kappa})$ window-based n-gram models (00s), FFNs (early 10s)
- $\prod_{i=1}^{n} (t_i \mid t_1, \dots t_{i-1}, w_1, \dots w_n)$ seq2seq (late 10s)

what have we done?

- more arrows (=more context)
- auto-regression (price: temporal delay)
- what about the co-domain?

Intermezzo: the curse(?) of sparsity

The majority of unique categories in common datasets are rare

the "fix": ignore rare categories

- ► small penalty in accuracy
- less so for coverage..
- ▶ meta: sparse grammars = bad

the fix: decompose categories & build them up during decoding

- 4 unlimited power generalization
- ► meta: sparse grammars = ok

Intermezzo: the curse(?) of sparsity

The majority of unique categories in common datasets are rare

the "fix": ignore rare categories

- ► small penalty in accuracy
- ▶ less so for coverage..
- ► meta: sparse grammars = bad

the fix: decompose categories & build them up during decoding

- 4 unlimited power generalization
- ▶ meta: sparse grammars = ok

Intermezzo: the curse(?) of sparsity

The majority of unique categories in common datasets are rare

the "fix": ignore rare categories

- ► small penalty in accuracy
- ▶ less so for coverage..
- ► meta: sparse grammars = bad

the fix: decompose categories & build them up during decoding

- ↓ unlimited power generalization
- ► meta: sparse grammars = ok

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=0}^{m} (\sigma_{i} \mid \sigma_{1}, \dots \sigma_{i-1}, w_{1}, \dots w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)
- $\prod_{i=1}^{m} (\sigma_{i} \mid \operatorname{anc}(\sigma_{i}), w_{1}, \dots w_{n}) \\
 tree-recursive (Prange et. al 2020)$

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=0}^{m} (\sigma_{i} \mid \sigma_{1}, \dots \sigma_{i-1}, w_{1}, \dots w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)
- $\prod_{i=1}^{m} (\sigma_{i} \mid \operatorname{anc}(\sigma_{i}), w_{1}, \dots w_{n}) \\
 tree-recursive (Prange et. al 2020)$

the \longleftrightarrow role \longleftrightarrow that \longleftrightarrow types \longleftrightarrow play

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=0}^{m} (\sigma_{i} \mid \sigma_{1}, \dots \sigma_{i-1}, w_{1}, \dots w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)
- $\prod_{i=1}^{m} (\sigma_{i} \mid \operatorname{anc}(\sigma_{i}), w_{1}, \dots w_{n})$ tree-recursive (Prange et. al 2020)

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{m} (\sigma_{i} \mid \sigma_{1}, \dots \sigma_{i-1}, w_{1}, \dots w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{m} (\sigma_{i} \mid \sigma_{1}, \dots \sigma_{i-1}, w_{1}, \dots w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)
- $\prod_{i=1}^{m} (\sigma_{i} \mid \operatorname{anc}(\sigma_{i}), w_{1}, \dots w_{n})$ tree-recursive (Prange et. al 2020)

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{m} (\sigma_{i} \mid \sigma_{1}, \dots \sigma_{i-1}, w_{1}, \dots w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{m} (\sigma_{i} \mid \sigma_{1}, \dots \sigma_{i-1}, w_{1}, \dots w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)
- $\prod_{i=1}^{m} (\sigma_{i} \mid \operatorname{anc}(\sigma_{i}), w_{1}, \dots w_{n}) \\
 tree-recursive (Prange et. al 2020)$

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $\prod_{i=1}^{m} (\sigma_{i} \mid \sigma_{1}, \dots \sigma_{i-1}, w_{1}, \dots w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)
- $\prod_{i=1}^{m} (\sigma_{i} \mid \operatorname{anc}(\sigma_{i}), w_{1}, \dots w_{n})$ tree-recursive (Prange et. al 2020)

$$p(\sigma_1,\ldots\sigma_m\mid w_1,\ldots w_n)\approx$$

- $\prod_{i}^{m} (\sigma_{i} \mid \sigma_{1}, \dots \sigma_{i-1}, w_{1}, \dots w_{n})$ sequential constructive (w/ Moortgat & Deoskar, 2019)
- $\begin{array}{l}
 \prod_{i}^{m}(\sigma_{i} \mid \operatorname{anc}(\sigma_{i}), w_{1}, \dots w_{n}) \\
 tree-recursive (Prange et. al 2020)
 \end{array}$

the \longleftrightarrow role \longleftrightarrow that \longleftrightarrow types \longleftrightarrow play

 $\prod_{i=1}^{m} (\sigma_{i} \mid \operatorname{anc}(\sigma_{i}), w_{1}, \dots w_{n})$ tree-recursive (Prange et. al 2020)

 $\begin{array}{ll}
 \prod_{i}^{m}(\sigma_{i} \mid \operatorname{anc}(\sigma_{i}), w_{1}, \dots w_{n}) \\
 tree-recursive (Prange et. al 2020)
\end{array}$

neither sequence nor tree but sequence of trees $p(\sigma_1, \ldots, \sigma_m \mid w_1, \ldots, w_n) \approx \prod_i^m (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \ldots, w_n)$

the \longleftrightarrow role \longleftrightarrow that \longleftrightarrow types \longleftrightarrow play

(encode)

neither sequence nor tree but sequence of trees $p(\sigma_1, \ldots, \sigma_m \mid w_1, \ldots, w_n) \approx \prod_i^m (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \ldots, w_n)$

(predict)

neither sequence nor tree but sequence of trees $p(\sigma_1, \ldots, \sigma_m \mid w_1, \ldots, w_n) \approx \prod_i^m (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \ldots, w_n)$

(feedback)

neither sequence nor tree but sequence of trees $p(\sigma_1, \ldots, \sigma_m \mid w_1, \ldots, w_n) \approx \prod_i^m (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \ldots, w_n)$

(contextualize)

neither sequence nor tree but sequence of trees $p(\sigma_1, \ldots, \sigma_m \mid w_1, \ldots, w_n) \approx \prod_i^m (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \ldots, w_n)$

(predict)

neither sequence nor tree but sequence of trees $p(\sigma_1, \ldots, \sigma_m \mid w_1, \ldots, w_n) \approx \prod_i^m (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \ldots, w_n)$

(feedback)

neither sequence nor tree but sequence of trees $p(\sigma_1, \ldots, \sigma_m \mid w_1, \ldots, w_n) \approx \prod_i^m (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \ldots, w_n)$

(contextualize)

neither sequence nor tree but sequence of trees $p(\sigma_1, \ldots, \sigma_m \mid w_1, \ldots, w_n) \approx \prod_i^m (\sigma_i \mid \sigma_i : \operatorname{depth}(\sigma_i) < \operatorname{depth}(\sigma_i), w_1, \ldots, w_n)$

(predict)

Implementation: dynamic graph convolutions

1 decoding step per tree depth; 3 message-passing rounds per step

- ► contextualize: states → states
 universal transformer encoder w/ relative weights
 (many-to-many, update states with neighborhood context)
- ▶ predict: state → nodes
 token classification w/ dynamic tree embeddings
 (one-to-many, predict fringe nodes from current state)
- ► feedback: nodes → state

 heterogeneous graph attention

 (many-to-one, update state with last predicted nodes)

Table with numbers

$\mathbf{accuracy}\ (\%)$

model	overall	frequent	uncommon	rare	unseen			
CCGbank (Combinatory Categorial Grammar, en)								
Sequential RNN	95.10	95.48	65.76	26.02	0.00			
Tree Recursive	96.09	96.44	68.10	37.40	3.03			
Attentive Convolutions	96.25	96.64	71.04	-	-			
$this\ work$	96.29	96.61	72.06	34.45	4.55			
CCGrebank (ditto, improved version)								
Sequential RNN	94.44	94.93	66.90	27.41	1.23			
Tree Recursive	94.70	95.11	68.86	36.76	4.94			
this work	95.07	95.45	71.40	37.19	3.70			
TLGBank (Lambek calculus & control modalities, fr)								
ELMo LSTM	93.20	95.10	75.19	25.85				
$this\ work$	95.93	96.40	81.48	55.37	7.26			
Æthel (van Benthem calculus & dependency modalities, nl)								
Sequential Transformer	83.67	84.55	64.70	50.58	24.55			
this work	93.67	94.72	73.45	53.83	15.78			

Color coded summary

decoder	seq2seq[t]	$\mathrm{seq}2\mathrm{seq}[\sigma]$	tree	dynamic graph	
codomain context complexity treeness sequencess search?	fixed left # words ignored explicit	open preorder (global) # symbols implicit misaligned	constrained ancestors (local) tree depth explicit ignored ?	constrained levels (global) tree depth explicit explicit ?	

legend

- ightharpoonup green = good
- ▶ yellow = meh
- ightharpoonup red = bad

Take home messages

use hammers for nails only

sparsity.. a friend?

- ightharpoonup more rare cats \implies better acquisition of rare cats
- ightharpoonup cascading effect on performance

thanks!