Machine Learning: Coursera (Stanford)

Aprendizado supervisionado (Supervised Learning)

Dizemos sempre qual é a resposta correta para o algoritmo.

Problema de Regressão:

O objetivo é predizer um valor contínuo de output (como o valor de uma casa, a partir de uma foto, descobrir qual é a idade da pessoa, etc). Quer dizer que usaremos funções contínuas para isso.

Problema de Classificação:

O objetivo é predizer um valor discreto de output.

Podemos ilustrar de duas maneiras diferentes:

Podemos ter mais de um atributo (ou feature) para mensurar e classificar (podemos ter infinitas features):

Neste caso, o paciente (em roxo) tem uma maior probabilidade de ter um cancer benigno, visto a área em que se encontra.

Com mais features, pode vir a pergunta: o computador não ficará sem memória ou algo assim? Existe um algoritmo chamado Support Vector Machine (SVM) que faz com que o computador consiga lidar com 'n' features.

Aprendizado sem supervisão (Unsupervised Learning)

Passamos um conjunto de dados, mas não dizemos ou não sabemos qual é a resposta correta. O algoritmo tem que predizer isso.

Clustering

No exemplo, passamos dois cluters (conjuntos) de dados separados (usando um algoritmo de clusterização, ou seja, um algoritmo de aprendizado sem supervisão).

O google News usa esse tipo de algoritmo para agrupar notícias com o mesmo conteúdo.

Outro exemplo é com genes, onde podemos agrupar pessoas ou genes que possuem determinada característica ou não.

Este é um algoritmo sem supervisão pois não dizemos qual é o tipo de pessoa correto para o algortimo, apenas passamos os dados e ele por si só se vira para nos dar um conjunto de agrupamento baseado no padrão de dados.

Esse tipo de clusterização é usado em dados em larga escala como Social networks, segmentação de mercado, análise de dados astronômicos, etc...

Non-clustering

Outro exemplo é o problema "Cocktail party"

Este problema consiste em pessoas falando ao mesmo tempo, logo não conseguimos entender o que cada um está falando.

Dispomos dois microfones com diferentes distâncias de duas pessoas diferentes, logo, cada um gravará um áudio com uma voz audível diferente de cada pessoa.

O algoritmo é capaz de definir uma estrutura e um padrão para conseguir separar esses áudios "com ruídos" e deixar apenas uma pessoa falando em cada output.

Este problema pode ser resolvido em uma linha de código:

$$[W,s,v] = svd((repmat(sum(x.*x,1),size(x,1),1).*x)*x');$$

Usando o Octave ou o Matlab.

Já existem funções como o svd (single value decomposition), da Algebra Linear. Pode-se fazer em Java, C++, Python, porém é muito mais trabalhoso. Por isso, será usado o Octave como a aplicação de protótipos. O que acontece é que muitas empresas usam o Octave para fazer um protótipo e depois migram isso para outra linguagem (Java, C++, etc).

Model and cost Function

Num treinamento **supervisionado** usamos um conjunto de dados de treino (training set) para ser usado em um algoritmo de aprendizado (learning algoithm) e, por sua vez, esse algoritmo nos "cospe" uma função h (hipotese, nomeado por convenção), baseado nos dados de entrada e saída que demos para treino.

Primeiramente começaremos utilizando uma regressão linear com uma varíavel, logo, nossa função h_theta seria da forma:

$$h_{\mathbf{e}}(x) = \Theta_0 + \Theta_1 x$$
Shorthard: $h(x)$

$$+ \Theta_1 x$$

Linear regression with one variable.

Univariate linear regression. +

E, o nome desse modelo é **regressão linear com uma variável ou regressão linear univariável**, no caso, a variável x.

Cost Function

A ideia é escolher valores de theta_1 e theta_0 a fim de que nossa função seja algo próximo dos valores de output y.

Idea: Choose θ_0, θ_1 so that $h_{\theta}(x)$ is close to y for our training examples (x,y)

Para isso, precisamos minimizar a função para que a diferença h(x) - y seja a menor possível, ou seja, mais próxima de 0. No caso, precisamos minimizar o **quadrado dessa diferença**: $(h(x) - y)^2$, porém queremos fazer isso para todos os i-ésimos dados.

$$J(\theta_0, \, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

A divisão por 2m é uma convenção utilizada para computação do **gradient descent**, o termo derivativo da função quadrática irá cancelar com o 1/2.

Recapitulando, minimizaremos a função h, usando esse somatório (que é o quadrado da soma dos erros a partir da predição do conjunto de dados, menos o valor atual das casas). Logo, minimizar o J (Squared error Function ou Squared cost Function).

Intuição da função de custo

Primeiramente, passamos theta_0 = 0 apenas para ficarmos com theta_1 como variável, com isso, conseguimos fazer o cálculo para um dado conjunto de dados de treino

(for fixed θ_1 , this is a function of x)

E a partir disso, conseguimos calcular a função de custo para 'n' valores de theta_1, apenas substituindo os valores na função de custo J.

Conseguimos o seguinte gráfico dos valores de theta_1 em função de J.

Logo, a partir deste gráfico, sabemos que a melhor minimização (otimização) é quando theta_1 = 1 (minimo global). Apenas para simplificar e entender a função de custo, o theta_0 foi adotado como 0.

Cost function - Intuition II

Contour Plots -> Curvas de nível para 'n' Dimensões, com 'n' maior que 2.

Em magenta, para diversos valores de theta_0 e theta_1, o valor de J(theta_0, theta_1) é o mesmo.

Pegando um ponto mais próximo do centro, chegamos perto do mínimo (a soma do quadrado das distâncias entre os exemplos de treinamento e a hipótese (soma do quadrado dos erros)).

Gradient Descent

Método usado para encontrar a função de custo mínima. Usado amplamente em ML, não apenas em regressão linear.

Ele é usado para resolver problemas mais amplos do que apenas uma regressão linear de 2 variáveis, pode-se utilizar para 'n' variáveis, por exemplo.

Funciona da seguinte maneira:

- 1. Primeiramente, definimos estimativas iniciais para theta_0 e theta_1 (uma escolha comum é começar com 0 nos parâmetros);
- Trocamos os valores das variáveis (tetha_0 e tetha_1) a fim de diminuir o valor da função de custo J.

A partir de um ponto inicial, o algoritmo verifica todas as possibilidades da próxima iteração e escolhe a que faz a função de custo ter um resultado menor. Faz isso 'n' vezes até que nenhuma outra possibilidade exista.

(Pergunta: Caso caia em um mínimo local?!) Irá ser abordado posteriormente!

Algoritmo:

:= quer dizer atribuição de uma variável.

= é uma assertiva, a = b, estamos afirmando que o valor de 'a' é igual ao valor de 'b'. Gracient descent algorithm

repeat until convergence {
$$\theta_{j} := \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1}) \quad \text{(for } j = 0 \text{ and } j = 1)$$
}

Correct: Simultaneous update

$$\begin{split} \operatorname{temp0} &:= \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1) \\ \operatorname{temp1} &:= \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1) \\ \theta_0 &:= \operatorname{temp0} \\ \theta_1 &:= \operatorname{temp1} \end{split}$$
 denotar atribuição, este é

O alpha é o 'passo' que daremos ao algoritmo, o quanto ele vai 'andar'. Passos grandes permitem iterações menores, porém, não é tão granular quanto passos pequenos.

Gradient Descent Intuition

* A derivada no mínimo é zero!!! (A inclinação da tangente é zero, é uma constante)

Logo, é por isso que o gradient descent, com um alpha fixo, acaba chegando no minimo local, pois à medida em que a função vai sendo iterada, a derivada vai diminuindo, (posteriormente, se tornará zero), com isso, o valor multiplicado por alpha vai diminuindo e o seu passo, consequentemente, também.

Termos das derivadas parciais resolvidos:

Termo 'batch': quando acaba-se todos os conjuntos de teste (ou seja, quando chega-se ao 'm' do somatório). "Batch Gradient Descent": Quando acabou de rodar todos os conjuntos de treinamento do Gradient Descent. Existem versões do Gradient Descent que não são "batchs", nós não olhamos para o conjunto completo e sim para pequenos subconjuntos de treinamento.

Instalando o Octave

No linux, basta: \$sudo apt install octave;

Normalização média

Para ajudar no Gradient Descent, aplicamos a normalização média dentro de cada feature dos dados de teste.

(Não aplicamos sobre x_0)

E.g.
$$\Rightarrow x_1 = \frac{size - 1000}{2000}$$
 Avera 517a = 100
$$x_2 = \frac{\#bedrooms - 2}{5}$$
 |-5 bedroos
$$-0.5 \le x_1 \le 0.5, -0.5 \le x_2 \le 0.5$$

$$x_1 \leftarrow \frac{x_1 - y_1}{y_2 - y_3}$$
 | $x_2 \leftarrow \frac{x_2 - y_3}{y_3 - y_3}$ | $x_3 \leftarrow \frac{x_2 - y_3}{y_3 - y_3}$ | $x_4 \leftarrow \frac{x_4 - y_3}{y_3 - y_3}$ | $x_5 \leftarrow \frac{x_$

Onde S_j (1 <= j <= n) é o desvio padrão, ou seja (o valor máximo menos o valor mínimo).

Para "debugarmos" o Gradient Descent, devemos ver a função $J(theta) \times número de$ iterações feitas.

Caso esteja fazendo uma assíntota tendendo à zero, está ok! O numero de iterações pode mudar bastante, dependendo do conjunto e do algoritmo. O interessante é dizer uma margem para o algoritmo, onde quando chegar nesse valor (épsilon), declaramos convergid, algo como 10^{-3} .

Podemos usar funções polinomiais (regressão polinomial) para que a função de hipótese se encaixe melhor nos dados propostos. (E.g. temos a largura e a profundidade de um terreno, podemos multiplicar os dois e fazer uma nova feature, onde contemple as duas features antigas, e a partir disso, usar um modelo quadrático, cúbico, etc...);

Duvidas: sum(vetor x vetor - vetor).^2

Primeiramente, o octave faz o que está dentro dos parênteses para depois fazer o somatório! O somatório soma todos os valores do vetor, ou seja, sai um **escalar.**

O J_cost é apenas para ver se o valor de J está diminuindo, para <u>validar</u> o modelo!!! Não é usado no gradient descent.

A normalização das features é usado somente em multiplas features!

LOGISTIC REGRESSION

A regressão linear **não** é utilizada para problemas de classificação, pois um dado a mais já pode acabar com o algoritmo. Ele também não expressa muito bem o modelo, pois h(theta) deveria estar entre 0 e 1. A classificação não é uma função linear.

Logo, para problemas de classificação usaremos a logistic regression.

O <u>decision boudary</u> é definido pelo vetor theta! (Não o training set. O training set é usado para ajustar os parametros theta);

- * Usar uma função sigmoide indica que, teremos uma função custo J(theta) não convexa, isso quer dizer que se usarmos um algoritmo tipo o gradient descent, não podemos garantir que ele convergirá para o mínimo global.
- * Para isso, transformamos a função de custo em uma logarítimica.

Caso o algoritmo (com esse ajuste da função logaritimica) tentar predizer algo que não é verdade (ou seja P(y=1|x;theta) = 0), e o y é realmente 1, penalizaremos com um custo tendendo ao infinito (assintota vertical tendendo a 0).

(Da mesma forma o inverso -> P(y=0|x;theta) = 1 é algo "impossivel" de acontecer logo, penalizaremos com um custo alto, com uma assintota vertical tendendo a 1).

H(theta) = y, logo cost(h(theta,y)) = 0;

Após sintetizar a função cost... Ela deriva de um principio estatistico (<u>Maximum</u> <u>likelihood estimation</u>), que, eficientemente, acha parâmetros (theta) para diferentes modelos de dados e tem uma propriedade de convex.

A função para atualizarmos o valor de theta é a mesma da regressão linear, porém, a função de hipótese (h(theta)) nesse modelo é diferente! **Função:

$$\theta_j := \theta_j - \alpha \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$
(simultaneously update all θ_j)

Para calcularmos e vermos se o algoritmo está funcionando, o valor de J(theta) tem que estar diminuindo, neste caso,

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

Para motivos de comparação:

We can fully write out our entire cost function as follows:
$$J(\theta) = -\frac{1}{m} \sum_{i=1}^m [y^{(i)} \log(h_\theta(x^{(i)})) + (1-y^{(i)}) \log(1-h_\theta(x^{(i)}))]$$
 A vectorized implementation is:
$$h = g(X\theta)$$

$$J(\theta) = \frac{1}{m} \cdot \left(-y^T \log(h) - (1-y)^T \log(1-h)\right)$$

TODO: Passar para a forma vetorizada na mao! (E fazer a derivada) [ok] G = função sigmoide (1/1+e^(thetaT*x));

*VER > Line search algorithm (Conjugate gradient, BFGS, L-BFGS); Funcao <u>fminunc</u> no octave; (para thetas com dimensao >= 2);

A unica coisa que precisamos para estes algoritmos é passar uma função que calcule o J(theta) e o resultado de suas derivadas em um vetor;

```
Example: \theta = \begin{bmatrix} \theta_1 \\ \theta_2 \end{bmatrix} \quad \text{function } [\text{jVal}, \text{gradient}] \\ = \text{costFunction}(\text{theta}) \\ \text{jVal} = (\text{theta}(1) - 5)^2 + \dots \\ (\text{theta}(2) - 5)^2; \\ \text{gradient} = \text{zeros}(2, 1); \\ \text{gradient}(1) = 2*(\text{theta}(1) - 5); \\ \text{gradient}(2) = 2*(\text{theta}(2) - 5); \\ \text{options} = \text{optimset}(\text{'GradObj'}, \text{'on'}, \text{'MaxIter'}, \text{'100'}); \\ \text{initialTheta} = \text{zeros}(2, 1); \\ [\text{optTheta}, \text{functionVal}, \text{exitFlag}] \dots \\ = \text{fminunc}(\text{@costFunction}, \text{initialTheta}, \text{options}); \\ \text{com um Gradiente Descendente "turbinado"}.
```

^{*} O numero de iterações tem que ser Number e não String!!

Regressão logísitca multiclasse

Para problemas com poucas classes (um nº finito e conhecido) devemos deixar uma classe em específico constante e usar as outras como hipótese negativa, com isso, teremos um array de hipoteses (h(theta));

Para predizer um teste, basta pegarmos o valor máximo da função de hipotese apos rodar em todas as classes. (Isso indica a maior probabilidade).

*Overfitting: quer dizer que o modelo selecionado funciona bem para os dados de treinamento, mas para teste, ele nao funciona tao bem, justamente por conta do modelo, que pode encaixar em qualquer situação

Exemplo em regressão linear:

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$, but fail to generalize to new examples (predict prices on new examples).

Exemplo em regressão logísitca:

O **overfitting** também pode acontecer quando temos um conjunto de variáveis **maior** que o conjunto de testes.

^{*} Podemos transformar uma matrix X^TX nao-invertivel em uma invertivel usando o termo de regularização, (lambda * L) onde L é uma matriz apenas com a diagonal com 1 (com o primeiro termo $a_{00}=0$)

Non-linear hypotheses

Problema: Em termos de problemas não-lineares (com termos acima de primeiro grau), teríamos muitas features, pois cada uma seria a combinação das outras (complexidade ~n²/2, caso seja de segundo grau, n³ caso seja de terceira... Ou seja, aumenta muito a complexidade dependendo do grau do polinômio adotado).

Logo, se tivermos um exemplo com 2500 features, isso nos daria algo em torno de 3 milhões de combinações das features.

from 1 to 2500. The formula is
$$C(n,2)=\binom{n}{2}=rac{n(n-1)}{2}$$
 plus n (when i=j) or equivalently $rac{n(n+1)}{2}$. So 2500*2501 / 2 = 3,126,250

Função de ativação = g(z) Peso = theta

$$a_{1}^{(2)} = g(\Theta_{10}^{(1)}x_{0} + \Theta_{11}^{(1)}x_{1} + \Theta_{12}^{(1)}x_{2} + \Theta_{13}^{(1)}x_{3})$$

$$a_{2}^{(2)} = g(\Theta_{20}^{(1)}x_{0} + \Theta_{21}^{(1)}x_{1} + \Theta_{22}^{(1)}x_{2} + \Theta_{23}^{(1)}x_{3})$$

$$a_{3}^{(2)} = g(\Theta_{30}^{(1)}x_{0} + \Theta_{31}^{(1)}x_{1} + \Theta_{32}^{(1)}x_{2} + \Theta_{33}^{(1)}x_{3})$$

$$h_{\Theta}(x) = a_{1}^{(3)} = g(\Theta_{10}^{(2)}a_{0}^{(2)} + \Theta_{11}^{(2)}a_{1}^{(2)} + \Theta_{12}^{(2)}a_{2}^{(2)} + \Theta_{13}^{(2)}a_{3}^{(2)})$$

Esses valores em magenta são combinações dos inputs

If network has s_j units in layer j and s_{j+1} units in layer $\underline{j} + 1$, then $\Theta^{(j)}$ will be of dimension $s_{j+1} \times (s_j + 1)$.

Logo, pegamos a proxima layer, vemos o tamanho dela (numero de linhas) e para o numero de colunas pegamos a layer em que estamos e somamos 1 no seu tamanho.

$\Theta(j)$. = matriz de peso da layer!

Quando a rede neural é do tipo

Chamamos de forward propagation.

Podemos usar redes neurais para fazer circuitos logicos (AND, OR, XOR...)

Apenas colocando os pesos corretos nos Thetas.

X = POSITIVO;

OBS: $\vec{a}^T \vec{b} = \vec{b}^T \vec{a}$

E o valor de 'c' é sempre o número de labels (classificacoes)

A rede neural nao leva em consideração o valor de X, ela julga quais são as features mais importantes para cada layer (Theta(j))

*Redes neurais são mais utilizadas para problemas não-lineares, diferentemente de regressões logísticas (que não "conseguem" resolver tão bem problemas não lineares).