Choosing best ARIMA parameters

Testing if our data is stationary or not stationary

Augmented Dickey-Fuller Test, with first and second differencing included

p value: 0.029983770167539794
p value: 1.6134859992644947e-11
p value: 0.00010345091848076797

KPSS Test

```
(np.float64(0.207634429618148),
    np.float64(0.013137088893194504),
    4,
    {'10%': 0.119, '5%': 0.146, '2.5%': 0.176, '1%': 0.216})
```


Now actually using the ARIMA model

Summary of model fit

SARIMAX Results

Dep. Variable:		Wage_rat	io No.	Observations:		39	
Model:	-	ARIMA(2, 1,	1) Log	Likelihood		-66.589	
Date:	Tue	e, 22 Oct 20	24 AIC			141.179	
Time:		22:08:	22 BIC			147.729	
Sample:			0 HQIC			143.509	
•		_	39				
Covariance Type:		C	pg				
	coef	std err	z	P> z	[0.025	0.975]	
ar.L1 0	.6482	0.587	1.103	0.270	-0.503	1.800	
ar.L2 0	.2686	0.233	1.155	0.248	-0.187	0.725	
ma.L1 -0	.8464	0.591	-1.433	0.152	-2.004	0.312	
sigma2 1	.9354	0.411	4.709	0.000	1.130	2.741	
Ljung-Box (L1) (Q):		0.18	Jarque-Bera	======== (JB):	======================================	30.30	
Prob(Q):			0.67	Prob(JB):		0	0.00
Heteroskedasticity (H):			2.04	Skew:		1	.1
Prob(H) (two-sid			0.21	Kurtosis:		5	.70

Calculating MSE, RMSE, and create new dataframe with predicted and actual wage ratios, as well as the corresponding residuals

MSE = 12.6607RMSE = 3.5582Predicted, Actual Wage Ratio, and Residuals for 2000-2019: Year Predicted_Wage_Ratio Actual_Wage_Ratio 2000 73.256089 73.3 0.043911 1 2001 76.3 73.523076 2.776924 2 2002 73.684339 76.6 2.915661 3 2003 73.860579 75.5 1.639421 4 76.6 2004 74.018129 2.581871 5 2005 74.167588 77.0 2.832412 6 76.9 2006 74.306782 2.593218 7 2007 74.437149 77.8 3.362851 8 2008 74.559038 77.1 2.540962 9 2009 74.673060 77.0 2.326940 10 2010 74.779707 77.4 2.620293 74.879459 11 2011 77.0 2.120541 12 2012 74.972761 76.5 1.527239 78.3 3.239969 13 2013 75.060031 14 2014 75.141659 78.6 3.458341 15 2015 79.6 75.218009 4.381991 16 2016 80.5 75.289422 5.210578 17 2017 75.356219 80.5 5.143781 18 2018 75.418696 81.6 6.181304 19 2019 75.477135 82.0 6.522865

Line plot of the residuals of the predicted wage rations from the ARIMA model for 2001-2019

Summary statistics of the residuals

count	20.000000
mean	3.201054
std	1.594064
min	0.043911
25%	2.487456
50%	2.804668
75%	3.689254
max	6.522865

Name: Residuals, dtype: float64

Kernel density plot for residuals

Distribution of Residuals for Predicted Wage Ratios [2000-2019]

Plotting the actual and predicted wage ratios for 2001-2019

Attempting To Model Using Holt's Dampened Trend

Residuals from Holt model

	Year	Actual	Predicted	Residual
0	2001	76.3	74.349485	1.950515
1	2002	76.6	74.708958	1.891042
2	2003	75.5	75.068430	0.431570
3	2004	76.6	75.427902	1.172098
4	2005	77.0	75.787374	1.212626
5	2006	76.9	76.146846	0.753154
6	2007	77.8	76.506318	1.293682
7	2008	77.1	76.865790	0.234210
8	2009	77.0	77.225262	-0.225262
9	2010	77.4	77.584734	-0.184734
10	2011	77.0	77.944206	-0.944206
11	2012	76.5	78.303678	-1.803678
12	2013	78.3	78.663150	-0.363150
13	2014	78.6	79.022622	-0.422622
14	2015	79.6	79.382095	0.217905
15	2016	80.5	79.741567	0.758433
16	2017	80.5	80.101039	0.398961
17	2018	81.6	80.460511	1.139489
18	2019	82.0	80.819983	1.180017

Average Residual: 0.4574

RMSE: 1.0443