COMP30027 Machine Learning Linear Regression

Semester 1, 2019 Afshin Rahimi & Jeremy Nicholson & Tim Baldwin & Karin Verspoor

© 2019 The University of Melbourne

Lecture Outline

- 1 Hyper-Parameter Optimisation
- 2 Regression
- **3** Gradient Descent
- 4 Summary

Machine Learning, revisited I

How to do (supervised) Machine Learning:

- 0. Get hired!
- 1. Pick a feature representation
- 2. Compile data
- 3. Pick a (suitable) model e.g. Naive Bayes or K-nearest Neighbours
- 4. Train the model
- 5. Classify development data, evaluate results
- 6. Probably: *go to (1)*

Machine Learning, revisited II

Our job as Machine Learning experts:

- Choose a model suitable for the problem we are trying to solve.
- Choose attributes suitable for the problem and the chosen model.
- ... But what about the hyper-parameters of the model (e.g. K in nearest neighbour classifier)?

Hyper-parameter Optimisation

- Given an evaluation metric \mathcal{D} (like Accuracy), a dataset \mathcal{T} , a feature representation $\mathcal{F}(\mathcal{T})$, and a learner \mathcal{L} with hyperparameters θ^h :
- Maximise $\mathcal{D}(\mathcal{L}, \theta^h; \mathcal{F}(\mathcal{T}))$
- (More commonly, minimise a "loss" metric, like Error Rate)
- Holding $\mathcal{F}(\mathcal{T})$ and \mathcal{L} , fixed:

$$\hat{\theta^h} = \operatorname{arg\,min}_{\theta^h \in \Theta} \operatorname{Error}(\mathcal{L}, \theta^h; \mathcal{F}(\mathcal{T}))$$

Grid Search

$$\hat{ heta^h} = \operatorname{arg\,min}_{ heta^h \in \Theta} \operatorname{Error}(heta^h; \mathcal{L}, \mathcal{F}(\mathcal{T}))$$

- Analytic solution (i.e., when closed form can be computed exactly):
 - requires solving $\frac{\partial (\mathrm{Error})}{\partial \theta_1} = \ldots = \frac{\partial (\mathrm{Error})}{\partial \theta_D} = 0$
 - derivatives are not calculable (defined?) in this context, so we can't use an analytic solution.

Iterative Grid-search for KNN

```
best_score = 0
best_params = None for k in [1, 2, 3]:
    for metric in ['euclidean', 'cosine']:
        knn = KNeighborsClassifier(k, metric):
        knn.train(X_train, y_train)
        score = knn.score(X_dev, y_dev)
        if score > best_score: best_score=score, best_params =
(k, metric)
```

Train a new model on training data with best_params and evaluate it on test data.

Grid Search or Exhaustive Search

- As we saw in KNN, we exhaustively search the parameter space.
- For each numerical $\theta_k \in \mathbb{R}$:
 - Identify boundaries of range R_-, R_+
 - Divide range $[R_-, R_+]$ into linear or logarithmic steps.

Hyper-parameter Tuning

- Usually used as a final stage, to get higher Accuracy with respect to the development data
- Because we are evaluating lots of models, there is a risk of "over-tuning":
 - the best choice of hyper-parameters for the development data may not the best choice of hyper-parameters on the test data
 - (special case of "over-fitting", more in Evaluation II)
- If you are comparing two different models, you should do the same number of hyper-parameter search iterations for both.
- There are other methods for hyper-parameter tuning other than Grid Search: Random Search, Evolutionary, Gradient-based, and Bayesian optimisation.

Lecture Outline

- 1 Hyper-Parameter Optimisation
- 2 Regression
- 3 Gradient Descent
- 4 Summary

Categorical Features and Classes

- We have studied Naive Bayes and Decision Tree classifiers:
 - The training data consists of input-output pairs.
 - Input: categorical or numeric, Output: categorical (e.g. Yes/No, dog/cat, spam/notspam).
- What if the output/class is continuous?

Regression

- Important type of Machine Learning problem where the output is continuous (e.g. is a real number) with many applications:
 - Predict wind farm energy output from weather data (we need robust energy sources, so we need to be able to predict the output)
 - Predict the number of customers for a shop from date/weather/holidays/ (we need to know how many sales personnel we need in each day rather than rely on intuition)
 - Predict life expectancy of critical patients (to create the best treatment plan for them).
 - Predict the price of a product (e.g. gold/stocks) in future (for economic planning).

Linear Regression

- Continuous attributes → continuous class
- Assuming a linear relationship between the k attribute values a_i and the numeric output c:

$$c = w_0 + \sum_{i=1}^k w_i a_i$$

where w_i is a weight corresponding to a_i

Example: Supervised Learning (Regression)

Can we predict housing prices?

A friend has a house which is 750 square feet. How much can he expect to get?

Linear regression, mathematically

Linear regression captures a relationship between two variables or attributes.

It makes the assumption that there is a *linear* relationship between the two variables.

- An outcome variable (aka response variable, dependent variable, or label)
- A predictor (aka independent variable, explanatory variable, or feature)

At its most basic, the relationship can be expressed as a line:

$$y = f(x)$$

$$y = \beta_0 + \beta_1 x_1 + ... + \beta_D x_D$$

$$y = \beta \cdot x \text{ (given } x_0 = 1\text{)}$$

A simple assumption!

Linear functions are less descriptive than non-linear functions, but permit simpler (mathematical) strategies.

They capture changes in one variable that correlate linearly with changes in another variable.

For some variables, this makes sense. For example: The more umbrellas you sell, the more money you make. How much money you make is directly proportional to how many umbrellas you sell.

Training & Prediction

We derive a linear model by estimating it from training examples.

Given examples $(x_1, y_1), (x_2, y_2), ...(x_N, y_N)$, we determine the optimal $\beta_0, \beta_1, ..., \beta_D$

Learning algorithm β_D $x \longrightarrow \beta$ $\beta \longrightarrow \text{predicted y (predicted price) of house.)}$

Training set

Armed with a linear model $y = \beta \cdot x$, we can straightforwardly predict a continuous valued output for \hat{y} given a value of x.

Fitting the model I

We want to choose the best line.

- Operationally, the line that minimises the *distance* between all points and the line.
 - Recall Euclidean distance: $d(A, B) = \sqrt{\sum_{i=1}^{n} (a_i b_i)^2}$
- Least squares estimation: find the line that minimises the sum of the squares of the vertical distances between approximated/predicted \hat{y}_i s and actual y_i s.
 - Minimise the Residual Sum of Squares (RSS) (aka Sum of Squares Due to Error (SSE)):

$$RSS(\beta) = \sum_{i} (y_i - \hat{y}_i)^2$$
$$= \sum_{i} (y_i - \beta \cdot x_i)^2$$

Fitting the model II

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg \, min} \, \operatorname{Error}(\theta; \mathcal{L}, \mathcal{F}(\mathcal{T}))}$$

$$\hat{\beta} = \operatorname{arg \, min} \, \operatorname{RSS}(\beta; \{X, Y\})$$

- Just a special case of the optimisation problem from before
- All attributes are numerical \rightarrow Grid Search is) :
- Partial derivatives can be (easily!) calculated
- (RSS is convex the local optimum is a global minimum)

Fitting the model III

Derivatives of RSS, with respect to weight vector β , for N instances, and D attributes:

$$\frac{\partial}{\partial \beta_0} = -2 \sum_{i=1}^{N} (y_i - \hat{y}_i)$$

$$\frac{\partial}{\partial \beta_k} = -2 \sum_{i=1}^{N} x_{ik} (y_i - \hat{y}_i)$$

- We could set everything to 0, and then solve D+1 equations with D+1 unknowns
- ... But the matrix problem is subject to numerical errors...

Lecture Outline

- 1 Hyper-Parameter Optimisation
- 2 Regression
- **3** Gradient Descent
- **4** Summary

From earlier...

Iterative approximation to Error optimisation:

- 1 Initialisation: Guess θ^0 , set i = 0
- **2 Evaluate:** Compute $Error(\theta^i; \mathcal{L}, \mathcal{F}(\mathcal{T}))$
- **3 Termination**: Decide whether to stop (break if so)
- **4 Update:** Set θ^{i+1} from θ^i somehow; i = i + 1
- 5 Go to step 2

More now!

Gradient Descent Algorithm I

$$\theta^{i+1} := \theta^{i} - \alpha \nabla \text{Error}(\theta^{i})$$

$$\theta_{k}^{i+1} := \theta_{k}^{i} - \alpha \frac{\partial}{\partial \theta_{k}^{i}} \text{Error}(\theta^{i})$$

$$\beta^{i+1} := \beta^{i} - \alpha \nabla \text{RSS}(\beta^{i}; \boldsymbol{X}, \boldsymbol{Y})$$

Substituting the partial derivatives gives us:

$$\beta_k^{i+1} := \beta_k^i + 2\alpha \sum_{j=1}^N x_{jk} (y_j - \hat{y_j^i})$$

Gradient Descent Algorithm II

- Steps in the Gradient Descent algorithm involve:
 - making a prediction for each (training) instance
 - comparing the prediction with the actual value
 - multiplying by the corresponding attribute value
 - updating the weights after all of the training instances have been processed
- We were going to compare the predictions with the actual values anyway, when we evaluate the model!
- (Note that the evaluation metric is now included in the model...)

Gradient Descent Algorithm III

Logic:

- ∇Error(θ) is a vector of partial derivative terms.
 It measures the slope (= gradient) of the function Error(θ): this is the direction
- The gradient points up-hill; we follow it down-hill. Each update reduces the error slightly.
- α is a parameter of the algorithm, representing the *learning* rate (how big a step you take in updating θ_i).
- If α is too small, the algorithm might be slow. If it is too large, you might miss the minimum.

Gradient Descent pictorially

Gradient Descent pictorially

Linear Regression over Larger Feature Sets

CPU dataset:

$$PRP = -56.1 + 0.049MYCT + 0.015MMIN + 0.006MMAX + 0.630CACH - 0.270CHMIN + 1.460CHMAX$$

MYCT	MMIN	MMAX	CACH	CHMIN	CHMAX	PRP	
125	256	6000	256	16	128	199	
29	8000	32000	32	8	32	253	
29	8000	32000	32	8	32	253	
29	8000	32000	32	8	32	253	
29	8000	16000	32	8	16	132	
26	8000	32000	64	8	32	290	
23	16000	32000	64	16	32	381	

What about Nominal Attributes?

- We can easily map nominal attributes onto numeric attributes through binarisation
- If we treat each resulting binary feature as continuous, we can use linear regression as is

Evaluation of Numeric Prediction

- It clearly doesn't make sense to evaluate numeric prediction tasks in the same manner as classification tasks, as:
 - "direct hits" (true positive matches) are an unreasonable expectation
 - unlike classification, we can make use of the inherent "ordering" and "scale" of the outputs
- There are many, many scoring metrics for regression tasks, all of which are based on the absolute or relative difference between the predicted (\hat{y}_i) and actual (y_i) values of test instances

Evaluation metrics

- In addition to RSS, which is already present in the model:
- Mean squared error (MSE):

$$\frac{1}{N}\sum_{i}(\hat{y}_{i}-y_{i})^{2}$$

• Root mean-squared error (RMSE):

$$\sqrt{\frac{\sum_{i=1}^{N}(\hat{y}_i-y_i)^2}{N}}$$

• Root relative squared error: (relative to baseline) (RRSE)

$$\sqrt{\frac{\sum_{i=1}^{N}(\hat{y}_i - y_i)^2}{\sum_{i=1}^{N}(y_i - \bar{y})^2}}$$
, where $\bar{y} = \frac{\sum_{i} y_i}{N}$

Evaluation metrics (more)

• Correlation coefficient (Pearson's correlation):

$$r=rac{S_{\hat{Y}Y}}{\sqrt{S_{\hat{Y}}S_{Y}}}$$
 where $S_{\hat{Y}Y}=rac{\sum_{i}(\hat{y}_{i}-ar{\hat{y}})(y_{i}-ar{y})}{N-1}$ $S_{\hat{Y}}=rac{\sum_{i}(\hat{y}_{i}-ar{\hat{y}})^{2}}{N-1}$ $S_{Y}=rac{\sum_{i}(y_{i}-ar{y})^{2}}{N-1}$

(statistical correlation between predicted and actual values)

Which Metric to Use?

 The relative ranking of methods each across the different metrics is reasonably stable, such that the actual choice of metric isn't crucial

	Α	В	C	D
Root mean-squared error	67.8	91.7	63.3	57.4
Root relative squared error	42.2	57.2	39.4	35.8
Correlation coefficient	0.88	0.88	0.89	0.91

Beyond Linear Methods

- Linear regression is an intuitive, (relatively) easily implementable method, but can we usually expect a linear relationship between feature values and target variables?
- Features can be mapped to a higher dimension where they are linearly separable: e.g. $(x_1, x_2) => (x_1, x_2, x_1^2, 2x_1x_2, x_2^2)$
- Non-linear methods for numeric prediction include:
 - regression trees
 - neural networks
 - support vector regression

Lecture Outline

- 1 Hyper-Parameter Optimisation
- 2 Regression
- 3 Gradient Descent
- **4** Summary

Summary

- How hyper-parameters are chosen?
- What is linear regression, and how does it operate?
- What is gradient descent, and why is it used for linear regression?
- How can we evaluate regression tasks?