Fat-tailed variational inference

Feynman Liang, Liam Hodgkinson, Michael Mahoney

UC Berkeley

May 6, 2021

Motivating example

Linear regression
$$y = X\beta + \epsilon$$
, $\beta \in \mathbb{R}^d$, $\epsilon \sim N(0, \sigma)$
Robust regression $y = X\beta + \epsilon$, $\beta \in \mathbb{R}^d$, $\epsilon \sim StudentT(\sigma)$
Bayesian robust regression $y = X\beta + \epsilon$, $\beta \sim P$, $\epsilon \sim StudentT(\sigma)$

Goal: approximate (observables of) $\mathbb{P}(\beta \mid X, y)$

¹https://jkkweb.sitehost.iu.edu/BMLR/

Motivating example

Goal: approximate (observables of) $\mathbb{P}(\beta \mid X, y)$ **General solutions**:

▶ (MCMC, see LIC talk) sample $\beta_i \sim \mathbb{P}(\beta \mid X, y)$:

$$n^{-1}\sum_{i}^{n}f(\beta_{i})\to\mathbb{E}_{eta|X,y}f(eta) \qquad orall f\in C(\mathbb{R}^{d})$$

► (Today's talk) search for variational approximation $q_{\theta^*} \in \mathcal{Q} = \{q_{\theta} : \theta \in \Theta\}$ "close" to $\mathbb{P}(\beta \mid X, y)$

Variational inference I

Definition

The forward KL Divergence $D_{\mathrm{KL}}\left(P||q_{\theta}\right) = \mathbb{E}_{P}\log\frac{\mathbb{P}(\beta|X,y)}{q_{\theta}(\beta)}$, and the reverse KL Divergence is $D_{\mathrm{KL}}\left(q_{\theta}||P\right)$.

- ► Forward KL is mass-covering/mean-seeking, requires sampling/integrating *P*, density estimation objective
- ► Reverse KL is zero-forcing/mode-seeking, requires sampling/integrating Q, variational inference objective

Variational inference II

Evaluating
$$\mathbb{P}(\beta \mid X, y) = \frac{\mathbb{P}(\beta, X, y)}{\int \mathbb{P}(\beta, X, y) d\beta}$$
 intractable!

Definition

The evidence lower bound $ELBO(\theta) := \mathbb{E}_{q_{\theta}} \log \frac{\mathbb{P}(\beta, X, y)}{q_{\theta}(\beta)}$.

Can show $D_{\mathrm{KL}}\left(q_{\theta}||P\right)=\mathrm{constant}-ELBO(\theta)$, so VI transforms (intractable) inference problem to a (tractable) optimization of an approximation:

$$\mathbb{P}(\beta \mid X, y) \approx \arg\max_{q_{\theta} \in \mathcal{Q}} \textit{ELBO}(\theta)$$

Automatic differentiation variational inference (ADVI) I

Definition (3)

$$\mathcal{Q}_{ADVI} = \{q_{\theta}(\beta) = f_*N(\beta \mid \theta_0, e^{-\theta_1}) : \theta_0, \theta_1 \in \mathbb{R}^d\}$$

f is a deterministic bijection between supports.

Automatic differentiation variational inference (ADVI) II

Problem: Gaussian approximations are too limited!

³Kucukelbir et al. "Automatic differentiation variational inference." JMLR 2017

⁴Zhang, Xin, and Andrew Curtis. "Seismic tomography using variational inference methods." Journal of Geophysical Research: Solid Earth 125.4 (2020)

Normalizing flows I

Normalizing flows: $f = f^W$ is a deterministic learnable bijection represented with neural networks.

Lemma (Change of variable)

If Y = f(X) is an injective pushforward, then

$$p_Y(y) = p_X(f^{-1}(y))|\det Df^{-1}(y)|$$

Desiderata:

- Sampling: fast evaluation of f
- ▶ Density: fast evaluation of f^{-1} and det Df

Normalizing flows II

Example (Neural autoregressive flows) $y_i = \text{DNN}(x_t; W = c(x_{1:t-1}))$ constrained strictly monotonic

Normalizing flows III

Example (Masked autoregressive flows, MAF)

$$y_i = \sigma(x_{1:i-1})x_i + \mu(x_{1:i-1})$$

Beyond sub-Gaussians I

Theorem (Wainwright "High-dimensional statistics" 2019)

Let X be σ -sub-Gaussian and f be L-Lipschitz. Then $f(X) - \mathbb{E}f(X)$ is L-sub-Gaussian.

Observation: Gaussian base distributions are pervasive!

Observation: Many f^W used in practice are Lipschitz!

Model	coefficients	$T_j(z_j;z_1,\ldots,z_{j-1})$
NICE	$\mu_j(z_{< l})$	$z_j + \mu_j \cdot 1_{j \notin [l]}$
IAF	$\sigma_j(z_{< j}), \ \mu_j(z_{< j})$	$\sigma_j z_j + (1 - \sigma_j) \mu_j$
MAF	$\lambda_j(z_{< j}), \ \mu_j(z_{< j})$	$z_j \cdot \exp(\lambda_j) + \mu_j$
Real-NVP	$\lambda_j(z_{< l}), \mu_j(z_{< l})$	$\exp(\lambda_j \cdot 1_{j \notin [l]}) \cdot z_j + \mu_j \cdot 1_{j \notin [l]}$
Glow	$\sigma_j(z_{< l}), \mu_j(z_{< l})$	$\sigma_j \cdot z_j + \mu_j \cdot 1_{j \notin [l]}$

Beyond sub-Gaussians II

Definition (Classification of tails)

- lacktriangle Exponential-type: $X\in\mathcal{E}^p_lpha$ means $\mathbb{P}(X\geq x)=\mathcal{O}(e^{-lpha x^p})$
- ▶ Logarithmic-type: $X \in \mathcal{L}^p_{\alpha}$ means $\mathbb{P}(X \geq x) = \mathcal{O}(e^{-\alpha(\log x)^p})$

Example

- $\triangleright \mathcal{E}_{\alpha}^2$ sub-Gaussians
- $\triangleright \mathcal{E}^1_{\alpha}$ sub-Exponentials
- $ightharpoonup \mathcal{L}^1_{lpha}$ regularly varying (power law)
 - StudentT $(\nu) \in \mathcal{L}^1_{\nu}$
 - ▶ Cauchy $\in \mathcal{L}_1^1$

Beyond sub-Gaussians III

Assumption 1: λ_j and σ_j are bounded and μ_j is Lipschitz,

Theorem (LHM, 2021)

Under Assumption 1, the distribution classes $\cup_{\beta \in \mathbb{R}} \mathcal{E}^{p}_{\beta}$ and \mathcal{L}^{p}_{α} (with $p, \alpha \in \mathbb{R}_{+}$) are closed under every flow transformation in Table 1.

Theorem (LHM, 2021)

There does not exist a polynomial map between $\mathcal L$ and $\mathcal E$.

8https://arxiv.org/pdf/1907.04481.pdf

4□ > 4□ > 4□ > 4□ > 4□ > 900

https://github.com/pyro-

 $ppl/pyro/blob/d7687 a e 0 f 738 b d 81 a 792 d abbb 18 a 53 c 0 f c e 73765/pyro/distributions/transforms/affine_autoregressive.py \#L460 f a fine_autoregressive.py \#L460 f a fine_autoregressive.py$

Tail-adaptive flows (TAFs)

Definition

$$\mathcal{Q}_{\mathit{TAF}} = \left\{ \left(f_*^W \left(\prod_{i=1}^d \mathsf{StudentT}(\nu) \right) \right) : \nu \in \mathbb{R}_+, W \in \mathbb{R}^{\# \ \mathsf{NF} \ \mathsf{params}} \right\}$$

Method	Power	Gas	Hepmass	MiniBoone	BSDS300
MADE	0.40 ± 0.01	8.47 ± 0.02	$ -15.15 \pm 0.02 $	-12.24 ± 0.47	153.71 ± 0.28
MAF affine (5)	0.14 ± 0.01	9.07 ± 0.02	-17.70 ± 0.02	-11.75 ± 0.44	155.69 ± 0.28
MAF affine (10)	0.24 ± 0.01	10.08 ± 0.02	-17.73 ± 0.02	-12.24 ± 0.45	154.93 ± 0.28
MAF MoG (5)	0.30 ± 0.01	9.59 ± 0.02	-17.39 ± 0.02	-11.68 ± 0.44	156.36 ± 0.28
TAN	0.60 ± 0.01	12.06 ± 0.02	-13.78 ± 0.02	-11.01 ± 0.48	159.80 ± 0.07
NAF DDSF (5)	0.62 ± 0.01	11.91 ± 0.13	-15.09 ± 0.40	-8.86 ± 0.15	157.73 ± 0.04
NAF DDSF (10)	0.60 ± 0.02	11.96 ± 0.33	-15.32 ± 0.23	-9.01 ± 0.01	157.43 ± 0.30
SOS (7)	0.60 ± 0.01	11.99 ± 0.41	-15.15 ± 0.10	-8.90 ± 0.11	157.48 ± 0.41
TAF affine (5)	0.28 ± 0.01	9.87 ± 0.23	-17.41 ± 0.20	-11.71 ± 0.09	156.53 ± 0.52
TAF SOS (7)	0.59 ± 0.01	11.99 ± 0.34	-15.11 ± 0.18	-8.94 ± 0.23	157.52 ± 0.22

Multivariate heavy-tails

Prior work (Jaini, 2020): $X \in \mathbb{R}^d$ is heavy-tailed iff ||X|| is, develop theory for elliptical distributions $\underline{X} \stackrel{d}{=} \underline{\mu} + R\underline{\underline{A}}\underline{\underline{U}}^{(d)}$.

Problem 1: TAF's $\prod_{i=1}^{d} StudentT(\nu)$ is not elliptical

Problem 2: Tail parameter ν is the same in every direction!

Direction-dependent tail parameters

Root cause: $\sup_{v \in \mathcal{S}^{d-1}} \langle v, X \rangle = \|X\|_2$, so scalar tail parameter is an upper bound.

Definition

The tail parameter function for a fat-tailed random variable $X \in \mathbb{R}^d$

$$\alpha: \mathcal{S}^{d-1} \to \mathbb{R}_+$$

$$v \mapsto \limsup_{r \to \infty} \frac{\log \mathbb{P}(\|\langle v, X \rangle \| > r)}{\log r}$$

Example

Elliptical distributions are *tail isotropic* i.e. $\alpha(v) \equiv c$ is constant.

Proposition (LHM, 2021)

Let μ be elliptical or \prod_{1}^{d} Student $T(\nu)$ and suppose f^{W} is invertible and satisfies Assumption 1. Then $f_{*}^{W}\mu$ is tail isotropic with $\alpha \equiv \nu$.

Standard basis tail parameters

 $\alpha(\cdot)$ difficult to work with; need finite-dimensional parameterization which still permits tail anisotropy.

Key observation: multivariate distributions oftentimes obtained from concatenation (blocked Metropolis-Hastings, Hamiltonian Monte-Carlo) \implies tails are axis-aligned.

Definition

The standard basis tail parameters are $\{\alpha_i := \alpha(v_i) : i \in [d]\}$

Fat-tailed variational inference (FTVI)

Definition

$$\mathcal{Q}_{\mathit{FTVI}} = \left\{ \left(f_*^W \left(\prod_{i=1}^d \mathsf{StudentT}(\nu_i) \right) \right) : \nu \in \mathbb{R}_+^d, W \in \mathbb{R}^{\# \ \mathsf{NF} \ \mathsf{params}} \right\}$$

Remark

Let $\mu = \prod_1^d Student T(\nu_i)$ and suppose f^W is invertible and satisfies Assumption 1. Then $f_*^W \mu$ can be tail anisotropic.

Results: fat-tailed pancake

Results: gamma scale mixture

```
 \begin{array}{lll} \mbox{scale} &= \mbox{InvGamma} (1/2\,,\ 1/2) \\ \mbox{truth} &= \mbox{scale.sqrt}() \ * \mbox{Normal}(0\,,\ 1) \\ \end{array}
```


1.0

Results: eight-schools

	ELBO	$\log P(y)$	
ADVI	-193.86 ± 33.50	-70.11 ± 0.52	
ADVI-HT	-121.54 ± 19.59	-70.29 ± 0.54	
MAF	-55.06 ± 5.46	-59.14 ± 1.99	
MAF-HT	-59.63 ± 6.74	-57.84 ± 4.97	
MAF-2L	-45.01 ± 11.02	-52.19 ± 2.06	
MAF-2L-HT	-51.67 ± 8.72	-51.53 ± 4.23	

Tail index algebra

- Many of previous proofs rely on a few common lemmas, extract into an easy-to-use algebra
- Enables a priori tail index estimation without samples (quick and dirty upper bounding, initializing ν for VI)
- ► Handles addition, multiplication, division, concatenation, exp/log, Lipschitz functions
- ► Conditioning: conditional asymptotically equivalent to joint