Mathématiques pour l'informatique

Gwendal Le Bouffant

ENSSAT

L'anneau $(\mathbb{Z}, +, \times)$

Théorème 1

L'ensemble $\mathbb Z$ des entiers relatifs est un anneau commutatif unitaire intègre totalement ordonné.

- \underline{anneau} : $\mathbb Z$ est un groupe commmutatif pour +. \times est interne, associative et la multiplication est distributive par rapport à l'addition.
- Cet anneau est commutatif car × l'est.
- Cet anneau est <u>unitaire</u> car 1 est neutre pour \times .
- Cet anneau est <u>intègre</u> : si ab=0 et $a\neq 0$ alors b=0. <u>conséquence</u> : on peut faire des simplications : ab=ac et $a\neq 0 \Rightarrow b=c$
- \mathbb{Z} est <u>totalement ordonné</u> : \leq munit \mathbb{Z} d'une relation d'ordre et cet ordre est compatible avec + et \times .

L'anneau $(\mathbb{Z}, +, \times)$

Théorème 2

Cet anneau est <u>euclidien</u>, c'est à dire muni d'une <u>division euclidienne</u> : Si $a,b\in\mathbb{Z}$, $b\geq 0$ alors il existe q et $r\in\mathbb{Z}$, <u>uniques</u>, tels que : a=bq+r et $0\leq r< b$.

remarques : q est le quotient et r le reste.

Dans le cas où r=0 on dit que b divise a et on note b|a.

Exemple

Déterminer q et r pour a = 17, b = 9.

$\mathsf{Id}\mathsf{\acute{e}\mathsf{a}\mathsf{u}\mathsf{x}}\;\mathsf{de}\;\mathbb{Z}$

Definition 1

On appelle <u>idéal</u> d'un anneau A tout sous-groupe additif qui est stable pour la multiplication par les éléments de A.

Exemple

Soit $n \in \mathbb{Z}$. L'ensemble $n\mathbb{Z}$ des multiples de n est un idéal de \mathbb{Z} . Cet idéal est engendré par le seul élément n: on dit qu'il est principal.

Proposition 1

Soit a_1,\ldots,a_k des éléments d'un anneau A. L'ensemble des $\{u_1a_1+\cdots y_ka_k|u_1\in A,\ldots,u_k\in A\}$ est un idéal de A engendré par a_1,\ldots,a_k et noté (a_1,\cdots,a_k) .

Ainsi $n\mathbb{Z}$ est noté (n).

$\mathsf{Id}\mathsf{\acute{e}}\mathsf{a}\mathsf{u}\mathsf{x}\;\mathsf{de}\;\mathbb{Z}$

Exercice

Montrer que si b|a alors $(a) \subset (b)$.

Remarque : Dans \mathbb{Z} , (2,4,6) est principal car (2,4,6)=(2).

Plus généralement :

Proposition 2

Tous les idéaux de \mathbb{Z} sont du type $n\mathbb{Z}$.

Definition 2

Tous les idéaux de $\mathbb Z$ étant principaux, on dit que $\mathbb Z$ est un anneau principal.

Remarque : On démontre de la même façon que plus généralement tout anneau unitaire est principal.

pgcd, ppcm

Definition 3

Soient deux entier n et m.

- leur pgcd, noté (n,m) est le générateur positif de l'idéal $(n,m)=n\mathbb{Z}+m\mathbb{Z}.$
- leur ppcm est le générateur positif de $n\mathbb{Z} \cap m\mathbb{Z}$.

Remarque : Deux entiers sont dit premiers entre-eux si leur pgcd vaut $1.\,$

Propriété 1

- On a commutativité du pgcd : (a,b) = (b,a).
- Et l'associativité : (a, b, c) = (a, (b, c)).
- pgcd(m,n) est le plus grand élément de l'ensemble des diviseurs communs à n et m.

Algorithme d'Euclide

Proposition 3

Soient a et b deux entiers naturels non nuls tels que b < a. On note r le reste dans la division euclidienne de a par b, alors l'ensemble des diviseurs communs à a et b et le même que l'ensemble des diviseurs communs à b et c.

Conséquences:

- Lorsque b ne divise pas a, on peut appliquer la propriété jusqu'à l'obtention d'un reste nul. On obtient alors le pgcd de a et b comme étant le dernier reste non nul. Ce procédé est appelé l'Algorithme d'Euclide : détermination du pgcd(7260,3025), puis pgcd(390,525).
- En supposant qu'il existe une fonction mod qui calcule le quotient et le reste de la division euclidienne de deux nombres. Écrire l'algorithme d'Euclide donnant le pgcd de a et b.

théorème de Bézout

Théorème 3

Soient n et m deux entiers.

- If existe $u, v \in \mathbb{Z}$ tels que un + vm = (n, m).
- n et m sont premier entre-eux si, et seulement s'il existe u et v tels que un + vm = 1.

Exemple

Déterminer u et v pour a=17, b=9.

Attention

Il n'y a pas unicité de u et v.

Applications

Pour calculer des identités de Bezout on peut utiliser les différentes équations obtenues dans l'algorithme d'Euclide :

Exemple

Déterminer les coefficients de Bezout pour a=48 et b=27.

Corollaire 1 (Lemme de Gauss)

Si un entier a divise un produit bc de deux entiers et si a est premier avec b alors a divise c.

Équations Diophantiennes

Definition 4

Soient a, b et c trois entiers relatifs fixés avec $(a, b) \neq (0, 0)$.

On appelle équation diophantienne l'équation à deux inconnues :

$$ax + by = c, (x, y) \in \mathbb{Z}^2$$

Proposition 4

L'équation ax + by = c admet des solutions dans $\mathbb Z$ si,pgcd(a,b) divise c.

Exemples caractéristiques :

Résoudre dans \mathbb{Z}^2 les équations suivantes :

- **1** 15x 6y = 9.
- 2 5x 18u = 4.
- 6x + 15y = 28.

Nombres premiers

Definition 5

- On dit que $p \in \mathbb{N}^*$ est un nombre premier si et seulement s'il admet exactement deux diviseurs dans $\mathbb{N}: 1$ et lui-même.
- Un nombre qui n'est pas premier est dit composé.

Proposition 5

Soit $n \geq 2$ un entier. Si n n'est pas premier, il existe un nombre premier $p \leq \sqrt{n}$ qui divise n.

Proposition 6

Soit $n \geq 2$ un entier. Alors n est premier ou n peut s'écrire comme produit de nombres premiers.

Théorème de décomposition en facteurs premiers

On a vu que tout entier admet un diviseur premier. Nous allons voir qu'il y a, à l'ordre près, une unique façon d'écrire tout nombre entier comme produit de nombres premiers.

Théorème 4 (Théorème de décomposition en facteurs premiers)

Tout entier $n \geq 2$ s'écrit de façon unique sous la forme :

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_r^{\alpha_r}$$

où $p_1, p_2 \ldots, p_r$ sont des nombres premiers tels que $p_1 \leq p_2 \leq \ldots \leq p_r$ et $\alpha_1, \alpha_2, \ldots, \alpha_r$.

Cette écriture est la décomposition de n en produit de facteurs premiers.

Pour démontrer l'unicité on utilise le lemme d'Euclide :

Théorème 5 (Lemme d'Euclide)

Soit p un nombre premier, si p|ab et p ne divise pas a alors p|b.

Applications

Exercices

Déterminer la décomposition en facteurs premiers puis la liste des diviseurs de $2014,\ 2904$ et 4116.

Cette écriture nous fournit ainsi une méthode simple de déterminer le pgcd et le ppcm de deux nombres :

Exemple

- pgcd(48, 27).
- ppcm(48, 27).

Détermination des nombres premiers

La méthode la plus simple pour déterminer les entiers jusqu'à une certaine borne qui sont des nombres premiers, reste celle du *crible d'Ératosthène*.

Exemple

Détermination de tous les nombres premiers inférieurs à 30.

Cependant ce procédé n'est pas très efficace, on faudra donc chercher d'autres caractérisations des nombres premiers, pour tester la primalité d'un nombre.

Combien y a-t-il de nombres premiers?

Théorème 6

L'ensemble \mathcal{P} des nombres premiers est infini.

Exercice

Soit X l'ensemble des nombres premiers de la forme 4k+3 avec $k \in \mathbb{N}$.

- lacksquare Montrer que X est non vide.
- ② Montrer que le produit de nombres de la forme 4k+1 est encore de cette forme.
- **3** On suppose que X est fini et on l'écrit alors $X = \{p_1, \ldots, p_n\}$. Soit $a = 4p_1p_2 \ldots p_n 1$. Montrer par l'absurde que a admet un diviseur premier de la forme 4k + 3.
- lacktriangle Montrer que ceci est impossible et donc que X est infini.

Congruences

Definition 6

Soit n un entier naturel non nul, a et b deux entiers relatifs quelconques. On dit que a est congru à b modulo n et on note

$$a \equiv b \mod n$$

si a et b ont même reste dans la division euclidienne par n.

On dit aussi que a et b sont congrus modulo n.

On comme conséquences de la définition, les propriétés suivantes :

Proposition 7

- **1** $a \equiv b \mod n \Leftrightarrow (a-b)$ est divisible par n.
- $a \equiv 0 \mod n \iff a \text{ est divisible par } n.$
- 3 $a \equiv b \mod n$ et $b \equiv c \mod n$ alors $a \equiv c \mod n$.

Congruences

Exemples

- **1** $31 \equiv 10 \mod 7$ car 31 10 = 21 est divisible par 7.
- 2 $8 \equiv -7 \mod 3$ car 8+7=15 est divisible par 3.

Remarque

Si le reste de la division euclidienne de a par n est égal à 1, alors $a \equiv r \mod n$.

La réciproque est fausse : $31 \equiv 10 \mod 7$ mais 10 n'est pas le reste de la division euclidienne de 31 par 7.

Calcul modulo n

Proposition 8

Soient quatre entiers $a, b, c, d \in \mathbb{Z}$ et $n \in \mathbb{N}$.

Si $a \equiv b \mod n$ et $c \equiv d \mod n$ alors

 $a + c \equiv b + d \mod n$ et $ac \equiv bd \mod n$.

Ce qui a pour conséquence :

Proposition 9

Attention

Les réciproques sont fausses :

 $6 \times 5 \equiv 6 \times 2 \mod 2$ mais 5 et 2 ne sont pas congrus modulo 2. $5^2 \equiv 2^2 \mod 7$ mais 5 et 2 ne sont pas congrus modulo 7.

Applications

Exercices

- Quel est le reste de la division euclidienne de 1000 par 37?
 - **2** En déduire que pour tout entier naturel n, le reste de la division euclidienne de 10^{3n} par 37 est égal à 1.
 - **9** Quel est le reste de la division euclidienne du nombre $N=10^{10}+10^{20}+10^{30}$ par 37?
- ② Soient a et b deux entiers tels que $a \equiv 3 \mod 7$ et $b \equiv 1 \mod 7$. Démontrer que $2a + b^2$ est un multiple de 7.
- 3 Soient a et b deux entiers tels que $a \equiv 2 \mod 5$ et $b \equiv 3 \mod 5$. Déterminer le reste de la division euclidienne de $a^2 + 2b^2$ par 5.

Petit théorème de Fermat

Dans le cas de grandes puissances, la recherche de congruences égales à 1 simplifie grandement les calculs. À l'aide du résultat suivant on peut démontrer le petit théorème de Fermat utile pour trouver ces congruences. Si k est un entier tel que $1 \leq k \leq p-1$,

$$C_k^k = \frac{p!}{k!(p-k)!}$$

est un entier.

Théorème 7 (Petit théorème de Fermat)

Pour tout entier $n \in \mathbb{Z}$, on a $n^p \equiv n \mod p$. Si de plus n n'est pas un multiple de p, on a $n^{p-1} \equiv 1 \mod p$.

Application

À l'aide du théorème, démontrer que $153^{100} \equiv 23[29].$

Équations aux congruences

Résoudre une équation aux congruences de la forme $ax\equiv b[n]$ consiste à trouver tous les $x\in\mathbb{Z}$ tels que la congruence soit vraie.

Exemple

Résoudre $x \equiv 7[8]$.

Si maintenant on cherche à résoudre l'équation : $7x \equiv 11[31]$, la difficulté vient de ce qu'on n'a a priori pas la droit de faire des divisions (on est dans \mathbb{Z}). En effet on a $6 \equiv 4[2]$ mais $3 \not\equiv 2[2]$.

Équations aux congruences

Proposition 10

Soit n un entier ≥ 2 , pour tout entier a, il existe b tel que $ab \equiv 1[n]$, si et seulement si a et n sont premiers entre eux.s

Exemples

Résoudre les congruences suivantes :

- $5x \equiv 14[17].$
- **2** $3x \equiv 2[13].$
- $12x \equiv 8[6].$
- $9x \equiv 6[12].$

Théorème Chinois

On trouve dans un traité chinois (III-Ve siècle ap. J.-C.) l'énoncé suivant : Nous avons des choses dont nous ne connaissons pas le nombre;

- si nous les comptons par paquets de trois, le reste est 2;
- si nous les comptons par paquets de cinq, le reste est 3;
- si nous les comptons par paquets de sept, le reste est 2.

Combien y a-t-il de choses? Réponse : 23.

Exercice

Si x est le nombre de paquets, interpréter les conditions sous forme d'équations aux congruences.

Théorème Chinois

Théorème 8

Soit m et n deux entiers premiers entre eux. Soit a et b deux entiers. Il existe un unique entier c tel que $0 \le c < mn$ et qui vérifie $c \equiv a \mod m$ et $c \equiv b \mod n$.

Soit x un entier relatif tel que $x \equiv a \mod m$ et $x \equiv b \mod n$; alors $x \equiv c \mod mn$.

Application

Résoudre le système :

$$\begin{cases} x \equiv 2 \mod 10 \\ x \equiv 5 \mod 13 \end{cases}$$

Décomposition en base mixte

Pour résoudre un système de plusieurs équations congruentes, on a souvent recours à la technique dite de décomposition en base mixte. Si l'on revient au système issu de l'exemple du début, pour déterminer la solution x, on l'écrit en base mixte, sous la forme a+3b+15c+105d, avec $0 \le a < 3, 0 \le b < 5$ et $0 \le c < 7$. Puis on traduit les conditions du système pour déterminer a,b,c et d.

Application

Quel est le plus petit entier plus grand que 10000 qui divisé par 5,12 et 17 ait pour reste 3?

la fonction d'Euler

Definition 7 (la fonction d'Euler)

on définit la fonction :

$$\Phi : \mathbb{N}^* \longrightarrow \mathbb{N}^*
n \longmapsto \Phi(n)$$

telle que $\Phi(1) = 1$ et

 $\Phi(n) = \text{le nombre d'entiers premiers avec } n \text{ compris entre } 1 \text{ et } n-1.$

Exemples

- $\Phi(7) = 6$ car 7 est premier
- $\Phi(10) = 4$ car 10 est premier avec 1, 3, 7, 9
- $\Phi(12) = 4$ car 12 est premier avec 1, 5, 7, 11

calcul de Φ

Proposition 11 (calcul de Φ)

- si p est premier alors $\Phi(p) = p 1$
- si p est premier et $\alpha \geq 1$ alors $\Phi(p^{\alpha}) = p^{\alpha} p^{\alpha-1} = p^{\alpha}(1 \frac{1}{p})$
- $\operatorname{si}\left(a,b\right)=1$ alors $\Phi(ab)=\Phi(a)\Phi(b).$
- ullet si $n=p_1^{\eta_1}p_2^{\eta_2}\dots p_k^{\eta_k}$ alors

$$\Phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_k}\right)$$

Exemples de calculs de Φ

- $\Phi(7) =$
- $\Phi(10) =$
- $\Phi(12) =$
- $\Phi(60) =$

Application

Théorème 9

Pour tout entier a qui est premier à n, on a la congruence $a^{\phi(n)} \equiv 1 \mod n$.

À la fin des années 1970, Rivest, Shamir et Adleman ont utilisé ce résultat pour élaborer un système de cryptographie à clef publique : système depuis appelé RSA, du nom de ses auteurs.

Il repose sur le fait qu'il existe des applications bijectives $f:A\to B$ d'un ensemble fini A dans un ensemble B pour lesquelles il est facile de calculer f(a), si $a\in A$, alors que personne ne sait calculer efficacement $f^{-1}(b)$, si $b\in B$.

Description du protocole.

On suppose qu'Alice veut envoyer un message secret m=12 à Bob.

- **1** Bob choisit deux nombres premiers, par exemple $p_1 = 7$ et $p_2 = 5$.
 - **2** Bob calcule $n = p_1 p_2$ et $\phi(n)$ (avec quelle formule?).
 - **3** Bob choisit un nombre e premier avec $\phi(n)$.
 - \bullet Bob calcule un nombre d tel que $ed \equiv 1 \mod \phi(n)$ (quel algorithme utilise-t-il ?).
- **2** Bob envoie e et n à Alice (c'est la clé publique).
- ① Pour envoyer son message m=12 (qui est un nombre entier modulo n) à Bob, Alice calcule le message crypté $c\equiv m^e \mod n$ et envoie c à Bob.
- **9** Bob reçoit c et calcule $m \equiv c^d \mod n$.