Universitatea Babeș-Bolyai, Facultatea de Matematică și Informatică Secția: Informatică engleză, Curs: Dynamical Systems, Semestru: Primăvara 2020

Seminar 1

1. Show that the function $\varphi : \mathbb{R} \to \mathbb{R}$, given by the expression $\varphi(t) = 2e^{3t}$ for all $t \in \mathbb{R}$, is a solution of the Initial Value Problem x' = 3x, x(0) = 2. Represent the corresponding integral curve* and describe its long term behavior**.

- *A graphical representation of a solution of some differential equation is called an integral curve or a solution curve of this equation.
- ** To describe the long term behavior of some function means to decide whether it is: periodic, oscillatory around some fixed value η^* (i.e. the values of the function changes many many times from values below η^* to values above η^*), bounded, increasing, and to describe how it behaves at $\pm \infty$.
- 2. Let $\eta \in \mathbb{R}^*$ be fixed. Show that the function $\varphi : \mathbb{R} \to \mathbb{R}$, $\varphi(t) = \eta \sin t$ for all $t \in \mathbb{R}$, is a solution of the Initial Value Problem x'' + x = 0, x(0) = 0, $x'(0) = \eta$. Represent the corresponding integral curve and describe its long term behavior. For each $\eta \in \left\{\frac{\pi}{18}, -\frac{\pi}{18}, \frac{\pi}{2}, \frac{\pi}{3}, 1, 2\right\}$ describe the movement of a pendulum if $\varphi(t) = \eta \sin t$ is the angle (measured in radians in the trigonometric sense) between the rod and the vertical. We consider a simple gravity pendulum (idealized) that moves along a vertical circle whose radius is equal to the length of the rod. The movement initiates at the moment t = 0.
- 3. Show that the function $\varphi(t) = e^{-2t}\cos t$ for all $t \in \mathbb{R}$, is a solution of the Initial Value Problem x'' + 4x' + 5x = 0, x(0) = 1, x'(0) = -2. Represent this integral curve and describe its long term behavior. Describe the movement of a pendulum if $\varphi(t) = e^{-2t}\cos t$ is the angle (measured in radians in the trigonometric sense) between the rod and the vertical. We consider a gravity pendulum (idealized) that moves along a vertical circle whose radius is equal to the length of the rod, which is subject to friction. The movement initiates at the moment t = 0.
- 4. Decide whether $\varphi : \mathbb{R} \to \mathbb{R}$, $\varphi(t) = \cos t$ for all $t \in \mathbb{R}$, is a solution of the differential equations x' + x = 0 or x'' x = 0 or x''' + x' = 0 or $x^{(4)} + x'' = 0$.

- 5. Find all constant solutions of the differential equations: a) $x' = x x^3$; b) $x' = \sin x$; c) $x' = \frac{x+1}{2x^2+5}$; d) $x' = x^2+x+1$; e) $x' = x+4x^3$; f) $x' = -1+x+4x^3$.
- 6. i) Let the functions $x_1, x_2, x_3 : \mathbb{R} \to \mathbb{R}$ be defined by $x_1(1) = 1$, $x_2(t) = t$ and $x_3(t) = t^2$ for all $t \in \mathbb{R}$. Prove that they are linearly independent in the linear space $C(\mathbb{R})$ (over the filed \mathbb{R} and with the usual operations).
- (ii) Find all $a, b, c \in \mathbb{R}$ such that $x(t) = at^2 + bt + c$ is a solution of $x' 5x = 2t^2 + 3$ or x'' = 0 or x''' = 0. Write the solutions (of the differential equation) that you found.
- 7. (i) Let the functions $x_1, x_2, x_3 : \mathbb{R} \to \mathbb{R}$ be such that $x_1(1) = \cos t$, $x_2(t) = \sin t$ and $x_3(t) = e^t$ for all $t \in \mathbb{R}$. Prove that they are linearly independent in the linear space $C(\mathbb{R})$.
- (ii) Find all $a, b, c \in \mathbb{R}$ such that $x(t) = a \sin t + b \cos t + c e^t$ is a solution of $x' + x = -3 \sin t + 2 e^t$ or $x'' + 4x = -3 \sin t$ or $x'' + x = -3 \sin t$ or x'' + x = 0 or x''' x'' + x' x = 0. Write the solutions you found.
- 8. Find $r \in \mathbb{R}$ such that $x(t) = e^{rt}$ is a solution of x'' 5x' + 6x = 0 or x''' 5x'' + 6x' = 0 or $x^{(4)} 5x''' + 6x'' = 0$ or x'' + 9x = 0 or x'' + x' + x = 0.
- 9. Find $r \in \mathbb{R}$ such that $x(t) = t^r$ is a solution on the interval $(0, \infty)$ of $t^2x'' 4tx' + 6x = 0$ or $t^2x'' + tx' x = 0$ or $t^2x'' x = 0$ or $t^2x'' + x = 0$ or $t^2x'' tx' + x = 0$.
- 10. Find as many functions $x \in C^1(\mathbb{R})$ as you can such that: a) x' = x; b) x' = 2x; c) x' = -x; d) x' = ax, with $a \neq 0$ a real parameter.

Integrate the following differential equations.

- a) x' = 0; b) x' = 2t; c) $x' = \sin t$; d) $x' = 2t + \sin t$; e) $x' = e^{2t} \cos t$;
- f) $x' = (t^2 5t + 7)\sin t$; g) $x' = e^{t^2}$; h) x'' = -3; i) x''' = 0.
- j) tx' + x = 0; k) tx' + x = 1; l) 2xx' = -2t; m) $x'e^t + xe^t = 0$; n) $x'e^{2t} + 2xe^{2t} = 0$ We say that $\mu(t) = e^t$ is an integrating factor of x' + x = 0.
- o) x' + x = 0; p) x' + x = 1 + t; q) $x' + 2x = \sin t$; r) x' 2x = 0;
- s) tx' + 2x = 1; t) $tx' + 3x = \frac{1}{t^2}$.