Python Workshop Series Session 6: NumPy & Efficient Programming in Python

Nick Featherstone Applied Mathematics

Daniel Trahan
Research Computing

Slides: https://github.com/ResearchComputing/Python_Spring_2019

Recall that:

- Python is an interpreted language
- Separate program (the interpreter) runs Python code.
- Interpreters execute code "naively." (line by line)
- Compilers take holistic approach. Interpreters do not.
- Efficiency losses when compared to compiled code.

Compilation vs. Interpretation

Source Code

$$x = 2*a$$

$$x = x + 2*b$$

$$x = x + 2*c$$

$$x = 2*a$$

$$x = x + 2*b$$

$$x = x + 2^*c$$

3 multiplies; 2 adds

Compiled Program

$$x = 2*(a + b + c)$$

1 multiply; 2 adds

Python with Numpy

NumPy provides benefits of compiled language within Python's interpreted framework.

It offers

- Arrays
 (efficient memory access)
- Array methods
 (vectorized loop operations)

$$A = [7, 2, 18, 3]$$

memory layout: lists

non-contiguous

memory layout: arrays

contiguous

Be Boulder.

Vectorization?

Scalar Operation

a1

b1

c1

- Modern processors can perform arithmetic operations on multiple data concurrently
- Think "data parallelism"
- Compiler-enabled

SIMD: <u>Single-Instruction</u>, <u>Multiple Data</u>

-- single instruction (e.g., add, multiply) executed concurrently, by a single process core on multiple pieces of data (e.g., array elements)

The Big Picture ...if you remember nothing else...

Whenever Possible:

- Use NumPy arrays instead of lists
- Use in-place operations
- Use array syntax instead of explicit loops

Getting started with NumPy

- Open initialization.py
- Must import the NumPy module first

NumPy Documentation:

https://docs.scipy.org/doc/numpy/user/index.html

NumPy Array Initialization

```
import numpy as np
my_array = np.init_type (dims, dtype='data type')
```

my_array : Numy ndarray object (N-dimensional array)

init_type : initialization function

zeros : initialize array with zero values
empty : do not initialize array values

dims: tuple indicating dimensions of the array

e.g., (10), (10,2), (2,8,10)

dtype: string variable describing numeric data type

e.g., 'int16', 'int32', 'float16', 'float32', 'float64', 'complex64'

https://docs.scipy.org/doc/numpy/user/basics.types.html

Initializing Arrays with Values

Initialize using values from list

```
list = [0, 2, 1, 3]
my_array = np.array (list, dtype='int32')
```

Initialize using values in [a,b) with integer spacing n

my_array = np.arange (a, b, n, dtype='float64')

Initialize using n evenly spaced values in [a, b]

my_array = np.linspace (a, b, n, dtype='data type')

Be Boulder.

Quick Exercises

- Create a 1-D NumPy array with three 16-bit integer elements, initialized to 0.
- Create a 1-D NumPy array with four 64-bit floating-point values initialized to [0, 0.1, 0.2, 0.3] using *linspace*
- Create a 1-D NumPy array with four 64-bit floating-point values initialized to [1.0 , 0.1 , 9.5 , 11.0] using array

Simple Timing

- In order to talk "efficiency," we need to time our code.
- Use the time function from the time module

```
import time
t1 = time.time()
Test code
t2 = time.time()
seconds = t2-t1
print('Elapsed time: ', seconds)
```


Advanced Timing

- Use the cProfile module to profile your code
- https://docs.python.org/3/library/profile.html
- Examine:
 - my_code.py
 - time_my_code.py
- Run python time_my_code.py

Use Arrays Instead of Lists

A calculation using NumPy arrays, in conjunction with array syntax, will often complete sooner than one using lists.

Examine:

arrays_vs_lists.py

Avoid Loops When Possible

```
a = np.linspace(...)
b = np.linspace(...)
c = np.zeros(...)
```

Examine:

noloops.py

Be Boulder.

Exercise

Rewrite exercise1.py using

- NumPy arrays instead of lists
- array syntax instead of loops

In-Place Operations

When possible, use in-place operations to avoid unnecessary copies

•
$$a = a + 2$$

$$\rightarrow$$

Examine

•
$$a = a - 2$$

$$\rightarrow$$

inplace.py

•
$$a = a * 2$$

$$\rightarrow$$

•
$$a = a/2$$

$$\rightarrow$$

Array Ordering

- N-D arrays reside in 1-D Memory
- Two different ways of storing arrays

$$A = [a_{00} a_{01} a_{10}]$$

Row-major: stripe row-by-row (C/C++; PYTHON DEFAULT)

Last index is "fastest"

$$\begin{vmatrix} a_{00} & a_{01} & a_{10} & a_{11} \end{vmatrix}$$

Column-major: stripe column-by-column (Fortran; IDL)

First index is "fastest"

Array Ordering

We can control the ordering if desired

Examine:

ordering.py

Row-major: stripe row-by-row (C/C++; PYTHON DEFAULT)

Last index is "fastest"

$$|a_{00}| a_{01} |a_{10}| a_{11}$$

Column-major: stripe column-by-column (Fortran; IDL)

First index is "fastest"

Array Ordering: Why Care?

- Sometimes, you REALLY need a loop.
- The innermost loop should correspond to the fastest array index.

Examine:

access_patterns.py

Row-Major

for j in range(m)

for k in range(n):

a+=b[j][k]

Column-Major

for k in range(n)

for j in range(m):

a+=b[j][k]

I/O with Numpy Arrays

Writing/reading numpy arrays to/from a file is easy...

Examine:

numpy_io.py

- Arrays are ALWAYS written in Row-Major Order
- Not portable (Endianness is machine-specific)
- Intel processors are little-endian
- Better to use standard like HDF5

Recall: Binary

- Base 2 numbering system
- Each digit referred to as a bit
- Your computer does math in binary
- Modern computers work in bytes: groups of 8 bits

Examples:

$$000 = 0x22 + 0x21 + 0x20 = 0$$

$$001 = 0x22 + 0x21 + 1x20 = 1$$

$$110 = 1x22 + 1x21 + 0x20 = 6$$

$$101 = 1x22 + 0x21 + 1x20 = 5$$

Endianness

- Computers store numbers in bytes (8 bits)
- Most computers store their bytes in one of two different ways:
 - Most significant (i.e., largest 2ⁿ's) byte first (Big Endian)
 - Least significant (i.e., smallest 2ⁿ's) byte first (Little Endian)

Example: 16-bit Binary

769 = 0000001100000001

00000011

0000001

Big Endian Ordering

0000001

0000011

Little Endian Ordering

What is your machine? Run endian_check.py.

Command line: xxd -b 769.dat

