Industrial Training Report

Muhammad Farhan bin Mohd Tahir

3 January 2017

Contents

- 1. Company
- 2. Project's Background
- 3. Project's Aim and Objectives
- 4. Term's Definition
- 5. Programming Language and Tools Used
- 6. Program's FLowchart
- 7. Method Implemented
- 8. Achievements
- 9. Demonstration
- 10. Conclusion

Company Background

Novocraft Technologies SDN BHD

► Culmination of over 8 years of experience in software

Company Background

Mision

 To be a globally recognized provider of innovative and accurate bioinformatics tools and services for discovery, primarily in the next-generation genomics (NGS) space.

Vision

- Intelligent software that automates the complex data processing pipelines required to conduct genomics analysis.
- Ensuring better predictive power from NGS data in personalized genomics & therapies.
- Intelligent software that automates the complex data processing pipelines required to conduct genomics analysis.

Company Organization's Chart

Figure 1:

Company's Services and Product

- Services:
 - Bioinformatics Consultancy
 - Pipeline and Software Development Services
 - ► Bioinformatics Contract Research Services
- Products:
 - NovoSort
 - ▶ NovoAlignCS
 - NovoAlign
 - NovoWorx (Latest released tools)

Project's Background

- Problem Statement:
 - Illumina Sequencing technology is a tool that used by the biologist/biological researcher to extract the genome sequence from any biological sample. However, the output from Illumina sequencing may contain sequences that are not originally found in the sample, but chemically synthesized, such as, the Adapter Sequence which is used to link the ends of two other DNA molecules. In order to get a clean genomic sequence, the adapter sequence needs to be identified and removed. A program has previously been developed in Novocraft to overcome this issue, Nevetherless, there are room for improvement in terms of the program's result accuracy and executional speed.
- Project's Assigned:
 - ► To develop a program to find an adapter sequence from two paired-end FASTQ file (input file from user).
- ► Program's Name:
 - ► PEAdapterFinder program (Pair Ends Adapter Finder)
- Proiect's Initiator:

Project's Aim and Objectives

- ▶ Project's Aim:
 - to develop program to find an adapter sequence from two paired-end FASTQ file (input file from user).
- Project's Objective:
 - ► To implement the code that can make the program's result more accurate than before.
 - ► To implement the code that can increase the speed of program's execution time.

FASTQ File

- ► Line 1: Begins with a '@' character and is followed by a sequence identifier and an optional description (like a FASTA title line).
- Line 2: Raw DNA sequence.
- ▶ Line 3: Begins with a '+' character and is optionally followed by the same sequence identifier (and any description) again.
- ▶ Line 4: Encodes the quality values for the sequence in Line 2, and must contain the same number of symbols as letters in the sequence.

FASTQ File

4-Line FASTQ file example

FASTQ File

Multi-line FASTQ file example

Adapter Sequence

 Adapter Sequence is a short, chemically synthesized, double stranded DNA molecule. which is used to link the ends of two other DNA molecules.

Needleman-Wunsch Algorithm (NW)

NW is an algorithm used in bioinformatics to align two DNA sequences.

Consensus Sequence (CS)

► CS is used to find the highest frequency of DNA base(A/T/G/C) that need to be assign at certain place.

Programming Language and Tools Used

- ► Programming Language
 - ► C++ language
- ▶ Tools

10015	
Tools	Description
NetBeans IDE	Provide framework to develop C++ program.
-version 8.1	
GPERFTOOLS (PPROF)	Provide tools that can help which line in the code
-version 2.0	that consume the most time during executional of
	the program.
GNU gdb	Tools that can help in trace if there any error
-version 7.4.1-debian	during executional of program such as
-version 7.4.1-debian	Segmentation Fault

Program's Flowchart

► Flowchart of PEAdapterFinder in finding adapter sequence.

Method Implemented Improved Code

Accuracy

Original Code	Function	Improved code
There is no code to	Convert/Reform multi-line	Code to convert from
convert multi-line FASTQ	FASTQ file into 4-line	multi-line FASTQ file
file into 4-line FASTQ	FASTQ file	into 4-line FASTQ file is
file. So when the input file		developed. So then, when
is multi-line FASTQ file,		the program want to
the output may incorrect.		filtrate only DNA
		sequence from FASTQ
		file, it just choose the
		string from line 2, 6, 10,
		, (Nbefore+4)
Original code compare	Filtration only DNA	Improved code use line
each character in each line	sequence from 4 line	count to filtrate the only
whether the line only had	FASTQ format	DNA sequence line from
bases (A/T/G/C/N) to be		4-line FASTQ file. This
assign as DNA sequence.		may be accurate than
But if in case when the		original code because the
input file is multi-line		program will assign the
FASTQ file, for example,		string at line 2, 6, 10,,
there is two line which		(Nbefore+4) as DNA
represent only ONE DNA		sequence which it is
sequence, the program will		confirmed as DNA
assume it is two different		sequence's line.

Method Implemented Improved Code

Speed

Original Code	Function	Improved Code
Original code comparing	Filtration only DNA	Improved code just choose
each character in each line	sequence from 4-line	only line 2, 6, 10,,
for both file to assign	FASTQ file	(Nbefore +4) as DNA
whether the line is DNA		sequence at both file. (If the
sequence or not. This may		input file is multi-line FASTQ
increase in program's		file, the program will
executional time since the		reformat it into 4-line
program need to do		FASTQ file. Then the
comparison two times for		program use above method
each line (because have 2		in order to filtrate DNA
file input):		sequence from FASTQ file)
First comparison: Each		This may reduce program's
character in each line in file		execution time since the
1.		program do not need to
Second comparison: Each		compare each character for
character in each line in file		each string for both file.

Method Implemented Improved Code

Speed

Original code implementing	Determination of match or	Improved code implementing
matrices and switch	mismatch between two	if-else statement rather than
statement in order to	bases	switch statement. This code
determine the		just store the result of
match/mismatch between 2		match/mismatch in a single
bases from file 1 and file 2		variable rather than use array
respectively. Since matrices		and matrices. This may
need the usage of an array,		reduce program's executional
this may increase the		time.
program's executional time.		
In original code, there is the	Finding maximum score to	In improved code, built-in
function (user-define	be filled in score-matrix	function are implemented
function) that code by the	table	rather than using user-define
developer (Rayan) to find		function to find which score
the maximum score between		is higher between 3 score.
3 score. User-define function		Built-in function:
may increase the program's		Max(max(SCORE1,
executional time.		SCORE2), SCORE3);
		This may reduce program's
		l

Achievements

Result's Accuracy

- ► File Sample
 - Four-line FASTQ file: fourLine1.fastq & fourLine2.fastq
 - ► Multi-line FASTQ file: multiLine1.fastq & multiLine2.fastq

Characteristics	Original Code	Improved Code
4-line FASTQ file	Output:	Output:
	Adapter1:	Adapter1:
Expected Output:	ATTACGAAATAATCGGATTC	ATTACGAAATAATCGGATTC
Adapter 1:	Adapter2:	Adapter2:
ATTACGAAATAATCGGATTC	ATTACGAAATAATCGGATTC	ATTACGAAATAATCGGATTC
Adapter2:		
ATTACGAAATAATCGGATTC	• Percentage of	• Percentage of
	Accuracy: 100 %	Accuracy: 100%
Multi-line FASTQ file	Output:	Output:
	Adapter1:	Adapter1:
Expected output:	AGCCTAATCGGGATCTCATC	ATTACGAAATAATCGGATTC
Adapter Sequence from file	Adapter2:	Adapter2:
1:	<u>CAGTAATCT</u> TA <u>C</u> T <u>GT</u> GAT <u>C</u> C	ATTACGAAATAATCGGATTC
ATTACGAAATAATCGGATTC	*Base with line means the base is	
	different from expected base	

Achievements

Program's Speed

program's executional

► File Sample: sample1.fastq & sample2.fastq

Characteristics	Original Code	Improved Code
Real time of program's	30.315	7.261
executional (s)		
Rate of Real	0.032987	0.1377221
Time of		
program's		
executional		
(s ⁻¹)		
0 1 0 1		

Demonstration

- ► Aim of this project had been achieved
- Objective of this project had been achieved

Figure 2:

Figure 3:

Figure 4: