Sur l'éventail normal d'un polytope

YE Xiaowei

September 13, 2024

Abstract

Dans cette note, on va finir la démonsration pour la correspondence décroissante entre les faces d'un polytope et celles de son éventail normal. Ce qui vérifie que l'éventail normal est bien un éventail.

1 Définitions

Définition 1.1 (Polytope). Un polytope de \mathbb{R}^n est un sous-ensemble de \mathbb{R}^n qui s'écrit comme l'enveloppe convexe d'un sous-ensemble fini de \mathbb{R}^n .

Définition 1.2 (Faces d'un polytope). Un sous-ensemble F d'un polytope $P \subset \mathbb{R}^n$ est appelé une face de P s'il existe une forme linéaire $l : \mathbb{R}^n \to \mathbb{R}$ telle que

$$F = l^{-1}(\min_{P} l) \cap P.$$

Définition 1.3. Un polycône de \mathbb{R}^n est l'enveloppe convexe d'un nombre fini de rayons dans \mathbb{R}^n qui ont pour l'extêmité l'origine.

Un sous-ensemble τ d'un polycône σ est appelé une face de σ s'il existe une forme linéaire $l:\mathbb{R}^n\to\mathbb{R}$ telle que $l\geq 0$ sur σ et

$$F = l^{-1}(0) \cap \sigma.$$

Définition 1.4. Un éventail dans \mathbb{R}^n est une collection Σ de polycônes qui vérifie les propriétés suivantes:

- $\forall \sigma, \tau \in \Sigma, \sigma \cap \tau$ est une face commune de σ et τ .
- Soit $\sigma \in \Sigma$ et τ une face de σ , alors $\tau \in \Sigma$.

Dans la suite de cette note, on fixe un polytope $P \subset \mathbb{R}^n$. Pour une face $F \subset P$, on définit

$$\sigma_F;=\{l;\mathbb{R}^n\to\mathbb{R} \text{ lin\'eaire}: F\subset \operatorname{Face}(l):=l^{-1}(\min_{_{\!\!P}}l)\cap P\}.$$

Et on note Σ_P la collection $\{\sigma_F : F \subset P \text{ une face}\}$. Le but de cette note est de démontrer que Σ_P est un éventail, appelé **l'éventail normal** de P.

2 Propriété à succéder

Dans cette section on va montrer le résultat suivant:

Théorème 2.1. *Soit* $F \subset P$ *une face et* $\sigma \subset \sigma_F$ *une face. Notons*

$$\tilde{F} := \{ p \in P : l(p) \le l(x), \forall l \in \sigma, \forall x \in P \},$$

alors $\sigma = \sigma_{\tilde{F}}$.

Preuve: Comme toutes les formes linéaires dans σ prends son minimum sur \tilde{F} , on a bien $\sigma \subset \sigma_{\tilde{F}}$. Pour montrer l'inclusion inverse, on a besoin d'une observation géomérique.

Observation 2.2. Il existe un point $f \in F$ tel que toute forme linéaire prenant son minimum en f prend son minimum sur F.

En effet, si F est de dimension 0, le f est juste le seul point dans F; sinon tout point à l'intérieur de F satisfait cette condition. Sans perte de généralité(quitte à appliquer une transformation), on peut supposer que f=0.

Par définition, prenons $v \in \mathbb{R}^n$ tel que

$$\forall l \in \sigma_F, l(v) > 0$$

et que

$$\sigma = \{l \in \sigma_F : l(v) = 0\}.$$

On rappelle la structure de P: Il existe un nombre fini de formes affines l_1, l_2, \cdots, l_N tels que

$$P = \bigcap_{i=1}^{N} \{l_i \ge 0\}.$$

Lemme 2.3. Il existe $\epsilon > 0$ tel que $\epsilon v \in P$.

Preuve: Si $l_i(0) \neq 0$, alors on a $l_i(0) > 0$, donc $l_i(\epsilon v) > 0$ pour ϵ assez petit. Si $l_i(0) = 0$, alors $l_i = 0$ sur F, donc $l \in \sigma_F$, ce qui implique $l(v) \geq 0$, donc $l(\epsilon v) \geq 0$.

On a alors $\epsilon v \in \tilde{F}$. Alors pour tout $l \in \sigma(\tilde{F}) \subset \sigma(F)$, on a $l(\epsilon v) = 0$ et donc l(v) = 0, ce qui donne $l \in \sigma$, ainsi $\sigma_{\tilde{F}} \subset \sigma$.

3 Correspondence décroissante

Proposition 3.1. Si $F \subset P$ est une face de P et $G \subset F$ est une face de F, alors $\sigma_F \subset \sigma_G$ est une face.

Preuve: L'inclusion est gratuite. Il reste à montrer que σ_F est une face de σ_G .

Notons $g \in G$ le point donné par Observation 2.2, on peut supposer sans perte de généralité que g = 0. Et on prend un point v à l'intérieur de F.

Alors l'évaluation en v s'annule sur σ_F mais reste strictement positive sur $\sigma_G \subset \sigma_F$.

Combiné avec Théorème 2.1, on trouve que

Théorème 3.2. L'application Φ : {faces de P} $\to \Sigma_P$ associant une face F de P à σ_F est une bijection décroissante.

4 Quelle est l'Intersection?

Théorème 4.1. Soit $F_1, F_2 \subset P$ deux faces. Notons F la face minimale qui contient F_1 et F_2 . Alors

$$\sigma_{F_1} \cap \sigma_{F_2} = \sigma_F$$
.

Preuve: Comme $F_i \subset F$, on a $\sigma_F \subset \sigma_{F_i}$, i = 1, 2.

De plus, pour tout $l \in \sigma_{F_1} \cap \sigma_{F_2}$, on a $F_i \subset \operatorname{Face}(l)$, donc $F \subset \operatorname{Face}(l)$. On a ainsi

$$l \in \sigma_{\operatorname{Face}(l)} \subset \sigma_F$$
,

d'où le résultat. □

Corollaire 4.2. L'éventail normal d'un polytope est bien un éventail.