Math 321 Lecture 32

Yuchong Pan

March 27, 2019

1 Implicit Function Theorem

Examples:

- $x^2 + y^2 + 1 = 0$: no solution $(x, y) \in \mathbb{R}^2$.
- $x^2 + y^2 = 0$: exactly one solution (0,0); no solution of the form $y = g(x), x \in \text{interval}$.
- $x^2 + y^2 1 = 0$. Then,

$$2x + 2y \frac{dy}{dx} = 0,$$

$$\frac{dy}{dx} = -\frac{x}{y}.$$
(*)

Case 1 (Good): $(a,b) = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$. Then we can solve (*): $y = \sqrt{1-x^2}$.

$$(a,b) = \left(-\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$
: $y = -\sqrt{1-x^2}$.

 $\frac{dy}{dx}$ well-defined.

Case 2 (Bad): (a,b) = (1,0) or (-1,0). Solutions to $x^2 + y^2 = 1$ are not unique in any neighbourhood of these points; $y = \pm \sqrt{1-x^2}$ are both possible.

 $\frac{dy}{dx}$ is not meaningful.

Math 321 Lecture 32 Yuchong Pan

Theorem 1 (Implicit function theorem). Let $E \stackrel{\text{open}}{\subseteq} \mathbb{R}^{n+m}, n, m \ge 1$ and $\mathbf{f} : E \to \mathbb{R}^n, \mathbf{f} \in C^1(E)$. Suppose $(\underbrace{\mathbf{a}}_{\in \mathbb{R}^n}, \underbrace{\mathbf{b}}_{\in \mathbb{R}^m}) \in E$ such that $\mathbf{f}(\mathbf{a}, \mathbf{b}) = \mathbf{0}$.

Set $\mathbf{A} = \mathbf{f}'(\mathbf{a}, \mathbf{b})_{n \times (n+m)}$. Write $\mathbf{A} = \left[\begin{array}{c|c} \mathbf{A}_x \\ \hline \\ n \times n \end{array} \middle| \begin{array}{c} \mathbf{A}_y \\ \hline \\ n \times m \end{array} \right]_{n \times (n+m)}$. Assume \mathbf{A}_x is invertible.

Conclusion: There exist open sets $U \subseteq E \subseteq \mathbb{R}^{n+m}$ and $W \subseteq \mathbb{R}^m$, $(\mathbf{a}, \mathbf{b}) \in U$ such that

- 1. For every $\mathbf{y} \in W$, there exists a unique $(\mathbf{x}, \mathbf{y}) \in U$ which satisfies the equation $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{0}$. Define this \mathbf{x} as $\mathbf{g}(\mathbf{y})$.
- 2. $\mathbf{g}: \underbrace{W}_{\subseteq \mathbb{R}^m} \to \mathbb{R}^n$ with $\mathbf{y} \mapsto \mathbf{x}$. Then $\mathbf{g} \in C^1$, with

$$\mathbf{g}'(\mathbf{b}) = \underbrace{-(\mathbf{A}_x)^{-1} \mathbf{A}_y}_{n \times m \text{ matrix}}.$$

Proof. Strategy: Define an auxiliary function $\mathbf{F}: E \subseteq \mathbb{R}^{n+m} \to \mathbb{R}^{n+m}$ on which the inverse function theorem can be applied:

$$\mathbf{F}(\mathbf{x}, \mathbf{y}) = (\underbrace{\mathbf{f}(\mathbf{x}, \mathbf{y})}_{\in \mathbb{R}^m}, \underbrace{\mathbf{y}}_{\in \mathbb{R}^m}), \quad \mathbf{x} \in \mathbb{R}^n, \quad \mathbf{y} \in \mathbb{R}^m, \quad (\mathbf{x}, \mathbf{y}) \in E \subseteq \mathbb{R}^{n+m}.$$

Need to verify the hypothesis of the inverse function theorem, namely:

- $\mathbf{F}_{=(\mathbf{f}(\mathbf{x},\mathbf{y}),\mathbf{y})} \in C^1(E)$ because each entry is C^1 ;
- $\mathbf{F}'(\mathbf{a}, \mathbf{b})$ is invertible:

$$\mathbf{F}'(\mathbf{a},\mathbf{b}) = \left[egin{array}{c|c} \mathbf{A} = \mathbf{f}'(\mathbf{a},\mathbf{b})_{n imes (n+m)} \ \hline \mathbf{0}_{m imes n} & \mathbf{I}_{m imes m} \end{array}
ight] = \underbrace{\left[egin{array}{c|c} (\mathbf{A}_x)_{n imes n} & (\mathbf{A}_y)_{n imes m} \ \hline \mathbf{0}_{m imes n} & \mathbf{I}_{m imes m} \end{array}
ight]}_{(n+m) imes (n+m)} = \mathbf{X}.$$

Note that

$$\label{eq:continuous} \mathbf{X} \begin{pmatrix} \mathbf{u} \\ \mathbf{v} \end{pmatrix} = \mathbf{0} \quad \Leftrightarrow \quad \begin{array}{ccc} \mathbf{u} & = & \mathbf{0} \\ & \mathbf{v} & = & \mathbf{0} \end{array},$$

because

$$\mathbf{A}_x \mathbf{u} + \mathbf{A}_y \mathbf{v} = \mathbf{0}$$
 \Rightarrow $\mathbf{A}_x \mathbf{u} = \mathbf{0}$ \Rightarrow $\mathbf{A}_x^{-1} \mathbf{A}_x \mathbf{u} = \mathbf{0}$ i.e. $\mathbf{u} = \mathbf{0}$, $\mathbf{0} \mathbf{u} + \mathbf{I} \mathbf{v} = \mathbf{0}$ i.e. $\mathbf{v} = \mathbf{0}$.

(Proof unfinished.)