Devoir maison 6 - Théorème de Cesaro

Étant donnée une suite $(a_n)_{n\in\mathbb{N}^*}$, on définit la suite $(c_n)_{n\in\mathbb{N}^*}$ par :

$$\forall n \ge 1, \qquad c_n = \frac{1}{n} \sum_{k=1}^n a_k$$

appelée somme de Cesaro.

I Théorème de Cesaro

Montrer que si $(a_n)_{n\in\mathbb{N}^*}$ admet une limite (finie ou infinie), alors $(c_n)_{n\in\mathbb{N}^*}$ admet la même limite.

• Si $\lim_{n \to +\infty} a_n = L \in \mathbb{R} : \forall \varepsilon > 0, \exists n_0 \in \mathbb{N}^*, \forall n \in \mathbb{N}^*, (n \ge n_0 \Rightarrow |a_n - L| < \varepsilon)$

Pour
$$n > n_0$$
, on a :

$$\left| \left(\frac{1}{n} \sum_{k=1}^{n} a_k \right) - L \right| = \left| \frac{1}{n} \sum_{k=1}^{n} (a_k - L) \right| \le \frac{1}{n} \sum_{k=1}^{n} |a_n - L| \le \frac{1}{n} \sum_{k=1}^{n_0} |a_k - L| + \frac{1}{n} \sum_{k=n_0+1}^{n} |a_k - L|$$

$$\mathrm{d}\mathrm{'où}\,|c_n-L| \leq \frac{1}{n}\sum_{k=1}^{n_0}|a_k-L| + \frac{n-n_0}{n}\varepsilon \leq \frac{n_0}{n}\alpha + \frac{n-n_0}{n}\varepsilon \leq \frac{n_0}{n}\alpha + \varepsilon, \, \mathrm{où}\,\alpha = \max\{|a_k-L|, k\in [\![1,n_0]\!]\}$$

$$\lim_{n \to +\infty} \frac{n_0}{n} \alpha = 0 \text{ donc } \exists n_1 \in \mathbb{N}^*, \left(n \ge n_1 \Rightarrow \frac{n}{n_0} \alpha < \varepsilon \right).$$

Ainsi, $\forall n \in \mathbb{N}^*, (n \ge \max(n_0, n_1)) \Rightarrow |c_n - L| < 2\varepsilon).$

On en déduit que (c_n) converge vers L.

• Si $\lim_{n \to +\infty} a_n = +\infty : \forall M \in \mathbb{R}, \exists n_0 \in \mathbb{N}^*, \forall n \in \mathbb{N}^*, (n \ge n_0 \Rightarrow a_n > M).$ Pour $n \ge n_0$, on a :

$$c_n = \frac{1}{n} \sum_{k=1}^n a_k = \frac{1}{n} \sum_{k=1}^{n_0} a_k + \frac{1}{n} \sum_{k=n_0+1}^n a_k > \frac{n_0}{n} \beta + \frac{n-n_0}{n} M, \text{ où } \beta = \min\{a_k, k \in [1, n_0]\}.$$

$$\lim_{n \to +\infty} \left(\frac{n_0}{n} \beta + \frac{n - n_0}{n} M \right) = M \text{ donc} :$$

$$\forall \varepsilon > 0, \exists n_1 \in \mathbb{N}^*, \forall n \in \mathbb{N}^*, \left(n \ge n_1 \Rightarrow \frac{n_0}{n} \beta + \frac{n - n_0}{n} M > M - \varepsilon \right).$$

Ainsi, $\forall n \in \mathbb{N}^*, (n \ge \max(n_0, n_1) \Rightarrow c_n > M - \varepsilon)$.

On en déduit que (c_n) diverge vers $+\infty$.

• Si $\lim_{n\to+\infty} a_n = -\infty$, on considère $(-a_n)$ et on applique le cas précédent.

II Applications

1. Soit $(u_n)_{n\in\mathbb{N}}$ la suite réelle définie par

$$u_0 > 0$$
 et $u_{n+1} = \sqrt{\sum_{k=0}^{n} u_k}$

a. Déterminer la fonction f telle que :

$$\forall n \in \mathbb{N}^*, \quad u_{n+1} = f(u_n)$$

On a:
$$\forall n \in \mathbb{N}^*, u_{n+1}^2 = \sum_{k=0}^n u_k = u_n + \sum_{k=0}^{n-1} u_k = u_n + u_n^2.$$

Par ailleurs, une récurrence immédiate montre que $\forall n \in \mathbb{N}, u_n > 0$ d'où

b. Étudier la convergence de la suite (u_n) .

$$\forall n \in \mathbb{N}^*, \ u_{n+1} - u_n = \sqrt{u_n + u_n^2} - u_n = \frac{u_n + u_n^2 - u_n^2}{\sqrt{u_n + u_n^2} + u_n} = \frac{u_n}{\sqrt{u_n + u_n^2} + u_n} > 0$$

$$\operatorname{car} \forall n \in \mathbb{N}, u_n > 0.$$

On en déduit que la suite (u_n) est croissante.

Si elle convergeait, comme f est continue, sa limite L vérifierait f(L) = L donc L = 0.

Or (u_n) est une suite croissante strictement positive, elle ne peut donc converger vers 0. Ainsi, (u_n) est croissante et n'a pas de limite finie, elle diverge donc vers $+\infty$.

c. En appliquant le théorème de Cesaro à la suite de terme général $a_n = u_{n+1} - u_n$, déterminer la limite de $\frac{u_n}{n}$.

On a:
$$\forall n \in \mathbb{N}^*$$
, $u_{n+1} - u_n = \frac{u_n}{\sqrt{u_n + u_n^2 + u_n}} = \frac{u_n}{u_n \left(1 + \sqrt{\frac{1}{u_n} + 1}\right)} = \frac{1}{1 + \sqrt{\frac{1}{u_n} + 1}}$

donc $\lim_{n \to +\infty} a_n = \frac{1}{2}$ d'après la question précédente.

Par télescopage, on a :
$$\forall n \ge 1$$
, $c_n = \frac{1}{n} \sum_{k=1}^n a_k = \frac{u_{n+1}}{n} - \frac{u_1}{n} = \frac{n+1}{n} \frac{u_{n+1}}{n+1} - \frac{u_1}{n}$;

$$\lim_{n \to +\infty} \frac{n+1}{n} = 1 \text{ et } \lim_{n \to +\infty} -\frac{u_1}{n} = 0 \text{ donc d'après le théorème de Cesaro}, \lim_{n \to +\infty} \frac{u_n}{n} = \frac{1}{2}.$$

2. Soit $(v_n)_{n\in\mathbb{N}}$ la suite réelle définie par :

$$v_0 = 1$$
 et $v_{n+1} = v_n \frac{1 + 2v_n}{1 + 3v_n}$

a. Étudier la convergence de la suite (v_n) .

Une récurrence immédiate donne $\forall n \in \mathbb{N}, v_n > 0$.

On a donc,
$$\forall n \in \mathbb{N}, 0 < 1 + 2v_n < 1 + 3v_n$$
 d'où $\frac{v_{n+1}}{v_n} = \frac{1 + 2v_n}{1 + 3v_n} < 1$.

On en déduit que (v_n) est décroissante, minorée par 0 donc qu'elle converge vers un réel L positif.

La fonction $f: x \mapsto x \frac{1+2x}{1+3x}$ étant continue, on a f(L) = L donc L = 0.

b. Après avoir justifié que la suite (v_n) ne s'annule pas (récurrence immédiate), appliquer le théorème de Cesaro à la suite de terme général $a_n = \frac{1}{v_{n+1}} - \frac{1}{v_n}$ pour déterminer la limite de (nv_n) .

$$\forall n \in \mathbb{N}, a_n = \frac{1}{v_n} \left(\frac{1 + 3v_n}{1 + 2v_n} - 1 \right) = \frac{1}{v_n} \left(\frac{1 + 3v_n - 1 - 2v_n}{1 + 2v_n} \right) = \frac{1}{1 + 2v_n} \text{ donc } \lim_{n \to +\infty} a_n = 1.$$

Par télescopage, on a :
$$\forall n \ge 1, c_n = \frac{1}{n} \sum_{k=1}^n a_k = \frac{1}{nv_{n+1}} - \frac{1}{nv_n} = \frac{n+1}{n} \frac{1}{(n+1)v_{n+1}} - \frac{1}{nv_1}$$
;

 $\lim_{\substack{n \to +\infty}} \frac{n+1}{n} = 1 \text{ et } \lim_{\substack{n \to +\infty}} \frac{1}{nv_1} = 0 \text{ donc d'après le théorème de Cesaro, } \lim_{\substack{n \to +\infty}} \frac{1}{nv_n} = 1 \text{ et par suite } \lim_{\substack{n \to +\infty}} nv_n = 1.$