

Statistics

what we have discussed so far > least squares > BLUP

The world of statistics is divided into Frequentists

- Frequentists and
- **Bayesians**

Divergence in

Ratio between successful outcomes and total number of outcomes.

Bayesian: Degree of belief or degree of information

- understanding of probability
- differentiation between components of a model and the data
- techniques to estimate parameters

F vs B

Topic	Frequentists	Bayesians	
Probability	Ratio between cardi-	Measure of uncer-	
	nalities of sets	tainty	
Model and	Parameter are un-	Differentiation be-	
Data	known, data are	tween knowns and	
	known /	unknowns	
Parameter	ML or REML are used	MCMC techniques to	
Estimation	for parameter estima-	approximate posterior	
	tion	distributions	

Data: y
Model: y = Xb + e
Parameter (unknown): b

Knowns: observable data Unknows: parameter of the model, missing data

Linear Model

Example: Regression Data-Analysis where beta_0: intercept; beta_1: regression slope x_1: breast circumference

y: body weight $y = \beta_0 + \beta_1 y + \epsilon_2$

$$y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i$$

Table 1: Separation Into Knowns And Unknowns

Term	Known	Unknown		
Уi	Х			
<i>x</i> ₁	Х			
β_0		Χ		
β_1		Χ		
σ^2	X			

Assumption: known error variance

Example Dataset

Table 2: Dataset for Regression of Body Weight on Breast Circumference for ten Animals

Animal	Breast Circumference	Body Weight
1	176	471
2	177	463
3	178	481
4	179	470
5	179	496
6	180	491
7	181	518
8	182	511
9	183	510
10	184	541

Estimation Of Unknowns

Bayesians do not differentiate between fixed effects and random effects but all knowns and unknowns are random variables with a certain distribution (or density). For distribution, we use f()

- $Estimates of unknowns \ \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$
- Using Bayes Theorem:

Estimates of unknows (beta) are based on the posterior distribution of the unknowns given the knowns

"proportional to"
$$f(\beta|y) = \frac{f(\beta,y)}{f(y)}$$

$$= \frac{f(y|\beta)f(\beta)}{f(y)}$$

$$\propto \frac{f(y|\beta)f(\beta)}{f(\beta)}$$

where $f(\beta)$: prior distribution and $f(y|\beta)$: likelihood

Prior and Posterior Any information about

Any information about unknows beta that originates prior to the event of data observation is encoded in the prior distribution f(beta) of the unknown beta

Any information about the unknowns after having observed the data is encoded in the conditional posterior distribution f(beta I y) of the unknowns given the data

Prior

Posterior

Data

Posterior Distribution

➤ **Solution**: accumulation of samples from full conditional posterior distributions leads to samples from posterior distribution

Implied in the solution: Approximation of distributions (densities) by random samples. This was only possible because efficient random number generators are available on the computer. Example: In R use the command rnorm(1000) gives you 1000 random numbers which are from a normal distribution with mean = 0 and sd = 1

Prior and Likelihood

- What are the distributional assumptions (for regression example and in general)
- ▶ Prior: $f(\beta)$ usually assumed to be uniform
- Likelihood: $f(y|\beta)$ assumed to be multivariate normal

Regression

Solution to get to f(beta I y) is obtained by specifying the full conditional distributions

- Full conditional distributions
 - ▶ intercept: $f(\beta_0|\beta_1, y)$ is a normal distribution
 - ▶ slope: $f(\beta_1|\beta_0, y)$ is normal distribution
- Draw random numbers from full conditional distributions in turn
- ▶ Result will be samples from posterior distribution

Estimates from Samples

- Given Samples from posterior distribution $f(\beta|y)$
- Estimates are computed as empirical means and standard deviation based on the samples

$$\beta_{Bayes} = \frac{1}{N} \sum_{t=1}^{N} \beta^{(t)}$$

with N samples drawn from full conditional distributions

Gibbs Sampler

- Implementation using full conditional distributions
- ▶ Use Gibbs Sampler for regression example
- ▶ Step 1: Start with initial values $\beta_0 = \beta_1 = 0$
- Step 2: Compute mean and standard deviation for full conditional distribution of β_0
- ▶ Step 3: Draw random sample for β_0
- ▶ Step 4 and 5: same for β_1
- ► Step 6: Repeat 2-5 N times
- ▶ Step 7: Compute mean from samples