

Prepared By Evan Saju Mathew

Table of Content

Introduction

3

Data Understanding & Cleaning

4-7

Customer Behavior

10

Product & Order Insight

(1

Department & Aisle Insight

12

Basket Recommendation

13-15

Conclusion

16

Introduction

The Instacart Market Basket Analysis is a comprehensive study aimed at uncovering patterns, trends, and insights into customer purchasing behaviors using data from one of the leading online grocery platforms, Instacart. This project leverages transactional data to identify customer preferences, popular products, and opportunities for enhancing user experiences through data-driven strategies. Instacart, a platform enabling customers to order groceries online, provides datasets containing millions of anonymized transactions, product details, and customer ordering habits. Analyzing this data can yield actionable insights that benefit both the business and its customers.

Customer Behavior

- Examine order patterns across days and hours.
- Explore reorder tendencies and customer loyalty to products.

Product & Order Insight

- Identify top-purchased and reordered products.
- Analyze popular aisles, departments, and order frequencies

Basket Analysis & Recommendation

- Uncover frequently co-purchased products.
- Recommend complementary products to increase basket value.

Data Overview

Aisles

- This dataset provides information on the aisles such as aisle ID and aisle names, through which the products were organized.
- Shape: 134 Rows x 2 Columns
- Column Description:

aisle_id	Labels the ID of the aisle
aisle	Mentions the aisle name in the retail stores

Departments

- This dataset provides information on the departments such as department names and department Id.
- Shape: 21 Rows x 2 Columns
- Column Description:

department_id	Labels the ID of the departments
department	Mentions the department name in the retail stores

Orders Product Prior

- This dataset gives information on the orders, products, and reordered products
- Shape: 20526345 Rows x 4 Columns
- Column Description:

order_id	Labels the ID of the order made by customer				
product_id	Labels the ID of the products purchased by customers				
add_to_cart_order	Sequence of the order placed in the cart				
reordered	Denotes whether the products are reordered or not				

Orders Product Train

- This dataset is same as order_products_prior and it is a trained dataset.
- Shape: 1384617 Rows x 4 Columns
- Column Description:

order_id	Labels the ID of the order made by customer
product_id	Labels the ID of the products purchased by customers
add_to_cart_order	Sequence of the order placed in the cart
reordered	Denotes whether the products are reordered or not

Data Overview

Orders

- This dataset has information about the customer orders like order ID, order number, week day of the order, hour of the order, user ID and days since prior order.
- Shape: 3421083 Rows x 7 Columns
- Column Description:

order_id	Labels the ID of the order made by customers					
user_id	Labels the ID of the users who made the purchase					
eval_set	Categorizes the data into prior or test data					
order_number	Denotes the order number made by the customer					
order_dow	Denotes the day of the week, the order made by the customer					
order_hour_of_day	Denotes the hour of the day, the order made by the customer					
days_since_prior_order	Denotes the number of days since last order					

Products

- This dataset gives information on the products such as product name, product ID, aisle and departments, which were sold to the customer
- Shape: 49688 Rows x 4 Columns
- Column Description:

product_id	Labels the ID of the products purchased by customers					
product_name	Denotes the product name purchased by the customer					
aisle_id	Labels the ID of the aisles					
department_id	Labels the ID of the departments					

Data Cleaning


```
missing_values.ipynb

// Loop through each DataFrame to display missing values
file_names = ['aisles', 'departments', 'odpp', 'odtr', 'orders', 'products']
data = [aisles, departments, odpp, odtr, orders, products]

for i in range(len(data)):
    print(f"Missing Values Summary for: {file_names[i]}")
    missing_values = data[i].isna().sum()
    print(missing_values)

# Optionally, show the total number of missing values
    total_missing = missing_values.sum()
    print(f"\nTotal missing values in {file_names[i]}: {total_missing}")
    print("=" * 50)
```

There were no null or empty values for the variables like aisle, departments,
Order_product_prior,
order_product_train and products datasets.

Orders dataset has some null values in days since prior order variable and only 5% of the values were found to be missing and this has been rejected since the count is very low to be a significant issue.

aisles departments

O

odpp

odtr

O

orders

products

206209

O

Data Cleaning

Filling Those NaN Values with '0'

If we replace missing values with the mean (e.g., say the mean is 15 days), we are wrongly assuming that the customer waited 15 days before their first order's which doesn't make sense because they had no prior order at all!

Using '0' makes sense because:

- It correctly represents first-time customers who don't have a previous order.
- It keeps the meaning accurate (saying "0 days since the last order" means there was no previous order).
- It avoids introducing incorrect assumptions into the data.

Merging Data-Frame's

```
handling_missing_values.ipynb

# Merge the DataFrames

merge_orders_products = odpp.merge(products, on='product_id', how='left')

product_details = products.merge(aisles, on='aisle_id', how='left').merge(departments, on='department_id', how='left')

order_details = orders.merge(merge_orders_products, on='order_id', how='left')
```

Data Analysis

Customer Behavior Product Insight Department & Aisle Analysis

Basket Analysis

Statistics Analysis

Statistics Analysis

Days Since Prior Order

count	3421083.00
mean	10.44
std	9.31
min	0.00
25%	4.00
50%	7.00
75%	15.00
max	30.00

- According to mean, Customer reorders every 11 days.
- According to median, 50% of customers reorders every 7 days
- According to 75th percentile, 75% of customers reorders every 15 days
- So only 25% customers reorders with gap greater than 15 days.

Average Orders By Customers

- According to mean, average of times users has ordered 16 times.
- According to median, 50% of Users has kept 10 orders.
- According to 75% percentile, 75% of users has kept 20 orders.
- Maximum orders done by user bounded to 100.
- Box plot and IQR suggests that upper whisker = 41 and all the users who has done orders more than 41 are outliers.

Customer Rush

Rush Hours:

- The busiest hours for customers placing orders are typically between 9 AM and 7 PM.
- The highest activity is usually observed around 10 AM to 3 PM, which suggests that users prefer placing their orders in the late morning and early afternoon

• Rush Day's of Week:

- Sunday and Monday see the highest number of unique customers placing orders.
- This suggests that users prefer restocking groceries and essentials at the beginning of the week.

Number of Unique Users

Top Products

TOP 5 MOST AISLE WHICH HAVE NO. OF UNIQUE PRODUCTS

Aisle Insight

Fresh vs Packaged Products in Aisles

71.1 % 28.9 %

Top Most Aisle	
Fresh Fruits	2305892
Fresh Vegetable	2161455
Packaged Fruits & Veg.	1116489
Yogurt	918997
Packaged Cheese	619974
Milk	564516
Sparkling Water	533002
Chips Pretzels	457470
Soy Lactose-Free	403880

Recommendation Products

Product Recommendation Based on Association Rule Mining

Using **Association Rule Mining**, we can generate product recommendations based on customers purchase patterns. By analyzing frequent item-sets and strong association rules, we can suggest products that are often bought together.

In this analysis, we implemented the **Apriori Algorithm**, which finds frequent item-sets based on support, confidence, and lift:

- Support: The proportion of transactions containing a particular item or item-set.
- **Confidence**: The likelihood that a customer buying item A will also buy item B.
- **Lift**: Measures how much more likely item B is bought when item A is purchased compared to random chance.

Key Findings

High Confidence

High-confidence rules suggest strong product associations, meaning customers frequently buy certain items together.

Lift Metrics

The lift metric confirms the significance of relationship-higher values indicate strong dependencies.

Identifying Product Patterns

Identifying these patterns allows businesses to optimize cross-selling strategies, recommend complementary products, and improve store layout.

Recommendation Strategy

Cross-Selling Opportunities

- If a customer buys Product A, recommend Product B based on high confidence and lift values.
- Example: If a customer buys Organic Bananas, they are likely to purchase Almond Milk as well.

Bundling & Promotions

- Retailers can create product bundles based on frequent item associations to drive sales.
- Example: Whole Wheat Bread + Peanut Butter + Organic Jam as a breakfast combo.

Association Rule Mining (Steps)

Data Preprocessing

Extracted order and product data.

Filtered products with support above the minimum threshold.

Removed orders with less than two items.

Item Frequency & Support Calculation

Computed frequency (freqA, freqB) and support (supportA, supportB) for individual products.

Generating Item Pairs

Created item pairs from transactions using combinations of frequently purchased products.

Computing Pair Frequency & Support

Calculated how often product pairs appeared together (freqAB) and their support (supportAB).

Association Rule Metrics Calculation

Confidence: Measures how likely a customer who buys Item A will also buy Item B (confidenceAtoB, confidenceBtoA).

Lift: Indicates the strength of the association between two products. A lift value > 1 suggests a strong correlation.

Item A	Item B	freqAB	support AB (%)	freqA	support A (%)	freqB	support B (%)	confidence AtoB	confidence BtoA	Lift
Organic Strawberry Chia Lowfat 2% Cottage Cheese	Organic Cottage Cheese Blueberry Acai Chia	306	1.02	1163	3.86	839	2.78	26.31%	36.47%	9.45
Grain Free Chicken Formula Cat Food	Grain Free Turkey Formula Cat Food	318	1.06	1809	6	879	2.92	17.58%	36.18%	6.03
Organic Fruit Yogurt Smoothie Mixed Berry	Apple Blueberry Fruit Yogurt Smoothie	349	1.16	1518	5.04	1249	4.14	22.99%	27.94%	5.55
Nonfat Strawberry With Fruit On The Bottom Greek Yogurt	0% Greek, Blueberry on the Bottom Yogurt	409	1.36	1666	5.53	1391	4.62	24.55%	29.40%	5.32
Organic Grapefruit Ginger Sparkling Yerba Mate	Cranberry Pomegranate Sparkling Yerba Mate	351	1.16	1731	5.74	1149	3.81	20.28%	30.55%	5.32
Baby Food Pouch - Roasted Carrot Spinach & Beans	Baby Food Pouch - Butternut Squash, Carrot & Chickpeas	332	1.1	1503	4.99	1290	4.28	22.09%	25.74%	5.16
Unsweetened Whole Milk Mixed Berry Greek Yogurt	Unsweetened Whole Milk Blueberry Greek Yogurt	438	1.45	1622	5.38	1621	5.38	27.00%	27.02%	5.02
Uncured Cracked Pepper Beef	Chipotle Beef & Pork Realstick	410	1.36	1839	6.1	1370	4.55	22.29%	29.93%	4.9

Products frequently bought together include:

- Organic Strawberry Chia Cottage Cheese + Organic Cottage Cheese Blueberry Acai Chia
 - (Lift: 9.45) -> Strongest association.
- Grain-Free Chicken Formula Cat Food + Grain-Free Turkey Formula Cat Food
 - (Lift: 6.02 -> High correlation among pet owners.
- Organic Fruit Yogurt Smoothie Mixed Berry + Apple Blueberry Fruit Yogurt Smoothie)
 - (Lift: 5.55) -> Yogurt lovers tend to buy both.
- · Unsweetened Whole Milk Mixed Berry Greek Yogurt + Unsweetened Whole Milk Blueberry Greek Yogurt
 - Strong preference for similar yogurt flavors.

Business Implications:

- These rules can enhance recommendation systems, cross-selling strategies, and inventory planning.
- High lift values indicate strong co-purchasing trends, suggesting bundling opportunities in marketing campaigns.

Conclusion

Summary

The Instacart Market Basket Analysis revealed key insights into customer shopping behavior, popular products, and purchase patterns. Peak shopping hours occur between 9 AM and 7 PM, with Sundays and Mondays being the busiest days. Fresh produce and dairy dominate sales, contributing 71.1% of total orders. Association Rule Analysis identified frequently bought-together products, which can enhance personalized recommendations and cross-selling strategies. These insights help optimize inventory management, targeted promotions, and customer experience, driving business growth through data-driven decisions.

Reference

- https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-marketbasket-analysis/
- https://www.lexjansen.com/sesug/2019/SESUG2019_Paper-252_Final_PDF.pdf
- https://www.kaggle.com/code/datatheque/association-rules-mining-market-basket-analysis/notebook
- https://medium.com/towards-data-science/a-gentle-introduction-on-market-basket-analysis-association-rules-fa4b986a40ce