Count of Range Sum

Problem Description

Given an integer array *nums*, return the number of range sums that lie in *[lower, upper]* inclusive.

• Range sum S(i, j) is defined as the sum of the elements in *nums* between indices i and j ($i \le j$), inclusive.

Example

Input: nums = [-2, 5, -1], *lower* = -2, *upper* = 2,

Output: 3

Explanation: S(0, 0) = -2, S(2, 2) = -1, S(0, 2) = -2 + 5 - 1 = 2

Note

Requirement on Complexity

A naïve algorithm of $O(n^2)$ is trivial. You have to do better than that.

- Just searching over all **S(i, j)** will not pass the tests!
- We will check your code

Try to write an algorithm of $O(n \log n)$

Due

Dec. 4 15:59 CST (Dec. 3 23:59 PST)

Hint

Prefix Sums

To calculate any S(i, j) in O(1) time

$$P[i] = \sum_{k=0}^{i} nums[k]$$

$$S(i,j) = P[j] - P[i-1]$$

O(n) time for generating array P

For the first 5 testing cases, lower and upper are in range [-2147483648, 2147483647].

... while the last 5 testing cases are not. Remember to use long long type if you write C/C++

Hint

Divide and Conquer

How about borrowing the idea of merge sort?

Conquer:

- # of ranges within the left half that meet the condition
- # of ranges within the right half that meet the condition

Combine:

And the ranges that cross the middle line?

Hint

Comb i ne

We want to achieve $T(n) = O(n \log n)$. $T(n) = 2T(\frac{n}{2}) + O(n)$

How to do the combining in O(n) time?

Check every pair of (i, j): unfortunately it is $\left(\frac{n}{2}\right)*\left(\frac{n}{2}\right) = O(n^2) \cdots$

··· if we make no assumption on the array P that you have at this stage.

How about borrowing the idea of merge sort?