Assignment 8

Exercises

```
P1 Let f: [-1,1] \to \mathbb{R} and f(x) = x^2 + 3x + 2
    If x, y \in \mathbb{R} x < y then f(x) < f(y)
    We can prove it by contradiction, assuming that f(x) \geq f(y).
    Since y > x we can write y = x + \epsilon for some \epsilon \in \mathbb{R}, \epsilon > 0.
```

$$f(x) = x^2 + 3x + 2 \ge (x + \epsilon)^2 + 3(x + \epsilon) + 2 = f(y)$$

$$x^{2} + 3x + 2 \ge x^{2} + 2x\epsilon + \epsilon^{2} + 3x + 3\epsilon + 2$$

$$0 \ge 2x\epsilon + \epsilon^2 + 3\epsilon$$

$$0 \ge \epsilon^2 + \epsilon(2x+3)$$

Since
$$\epsilon > 0$$
 and $-1 \le x \le 1$

$$0 \ge \epsilon^2 + \epsilon(2x+3) > 0$$
 therefore $0 > 0$.

Which is a contradiction therefore if x < y then f(x) < f(y) (Strictly increasing).

P2 Lets consider $f: [-2,1] \to \mathbb{R}$ with $f(x) = x^2$

Then f(-2) = 4 and f(1) = 1 therefore $f^{-1} : [4,1] \to \mathbb{R}$ but it means that $4 \le 1$ which is clearly incorrect. Since is not strictly increasing we cannot say that a < x < b then f(a) < f(x) < f(b).

When we consider $f:[a,b]\to\mathbb{R}$ is strictly increasing but not continuous then f^{-1} will not be necessarily increasing and continuous. We cannot apply the intermediate theorem, and therefore we cannot say if there exists always a $c \in (a,b)$ with f(c) = y and therefore cannot take $f^{-1}(y) = c$.

P3 We want to show that $\forall \epsilon > 0, \exists \delta > 0, \forall x, y \in D \text{ if } |x - y| < \delta \text{ then } |f(x) - f(y)| < \epsilon.$ Let $\epsilon > 0$, we need to find $\delta > 0$ such that $|x - y| < \delta$.

Consider $\delta = \epsilon^2$. Since $\sqrt{x}, \sqrt{y} \ge 0$ then $|\sqrt{x} - \sqrt{y}| \le |\sqrt{x} + \sqrt{y}|$ and since |xy| = |x||y| then $|x - y||x + y| = |(x - y)(x + y)| = |x^2 - y^2|$.

Hence, $|\sqrt{x} - \sqrt{y}|^2 = |\sqrt{x} - \sqrt{y}||\sqrt{x} - \sqrt{y}| \le |\sqrt{x} - \sqrt{y}||\sqrt{x} + \sqrt{y}| = |x - y| < \delta = \epsilon^2$

Then $|\sqrt{x} - \sqrt{y}| < \epsilon$, therefore we have proved the definition of uniform continuity.

P4 Let
$$a > 0$$
, $x_1 = \sqrt{a}$, $x_{n+1} = \sqrt{x_n}$ and $y_n = 2^n(x_n - 1)$

We can prove by induction that $x_n = a^{\frac{1}{2^n}}$

Base case:
$$x_1 = a^{\frac{1}{2}}, x_2 = \sqrt{a^{\frac{1}{2}}} = a^{\frac{1}{2^2}}$$

Let $n \in \mathbb{N}$ be arbitrary and $x_n = a^{\frac{1}{2^n}}$.

$$x_{n+1} = x_n^{\frac{1}{2}} = \text{I.H} = \sqrt{a^{\frac{1}{2^n}}} = a^{\frac{1}{2^{n+1}}}$$

Let $n \in \mathbb{N}$ be arbitrary and $a_n - a_n$. $x_{n+1} = x_n^{\frac{1}{2}} = \text{I.H} = \sqrt{a^{\frac{1}{2^n}}} = a^{\frac{1}{2^{n+1}}}$ Therefore $x_n = a^{\frac{1}{2^n}} \ \forall n \in \mathbb{N}$. We can rewrite $y_n = 2^n(a^{\frac{1}{2^n}} - 1) = \frac{a^{\frac{1}{2^n}} - 1}{\frac{1}{2^n}}$. Hence $\lim_{n \to \infty} y_n = \lim_{n \to \infty} \frac{a^{\frac{1}{2^n}} - 1}{\frac{1}{2^n}}$ which

$$a^x - 1 - u$$
 then $a^x - u + 1 \rightarrow x - \log(u + 1)$ and since

can be written as
$$\lim_{x\to 0} \frac{a^x-1}{x}$$
 with $\frac{1}{2^n}=x$.

To solve $\lim_{x\to 0} \frac{a^x-1}{x}$ we can proceed by substitution $a^x-1=y$ then $a^x=y+1\Rightarrow x=\log_a(y+1)$ and since $\lim_{x\to 0} \frac{y+1-1}{\log_a(y+1)}=\lim_{x\to 0} \frac{1}{\frac{\log_a(y+1)}{y}}=\lim_{x\to 0} \frac{1}{\frac{1}{y}\log_a(y+1)}=\lim_{x\to 0} \frac{1}{\log_a(y+1)^{\frac{1}{y}}}$

and since $\lim_{z\to 0} (z+1)^{\frac{1}{z}} = e$ because with $z=\frac{1}{x}$ it is $\lim_{x\to\infty} (\frac{1}{x}+1)^x = e$ then $=\frac{1}{\log_a e}=\frac{\log_e e}{\log_a e}=\log_e a$.