[ML Fall'22] Project Outline

The objective of the project is to prepare the student to apply different machine learning algorithms to real-world tasks. This will help the student to increase their knowledge about the workflow of the machine learning tasks. Students will learn how to clean data, apply pre-processing, feature engineering, regression, and classification techniques. The project will consist of **two competitions** that will be delivered in milestones.

- > The best three teams will be honoured.
- ➤ Registration ends: Friday 4/11/2022 11:59 PM.
- ➤ Delivering Milestone 1: To Be Announced.
- ➤ Delivering Milestone 2: Practical Exam.
- > Minimum number of members is 3 and the maximum is 5.
- ➤ You must deliver a presentation for each milestone containing all your work for the **top 2 submissions** (feature analysis, algorithms used in each module and the achieved accuracy for each one)

Note: Each presentation will be graded

In the first milestone, you will apply the following:-

Preprocessing: Before building your models, you need to make sure that the dataset is clean and ready-to-use.

Regression: Apply different regression techniques (at least two) to find the model that fits your data with minimum error.

MSE

Milestone 1:

> Preprocessing, Regression.

Milestone 1 Presentation Must Include:

- ❖ You must explain in detail the **preprocessing techniques** you needed to apply to your dataset and how you implemented them.
- ❖ Perform **analysis** on the dataset as studied and explain how the features affect and relate to each other.
- ❖ You must explain what **regression techniques** you used (at least two).
- ❖ Mention the **differences** between each model and the acquired **results** (accuracy/error and so on).
- ❖ You must clearly mention **what features** you used or discarded to create your regression models.
- **Explain** what the **sizes** of your training, testing and validation sets are(if exist).
- ❖ Mention any further techniques that were used to **improve** the results (if exist).
- ❖ You should include **screenshots** of the resultant(s) regression line plots if possible or any data visualization.
- ❖ Finally, write a **conclusion** about this phase of the project and what intuition you had about your problem and how it was proved/disproved.

Milestone 2 Deliverables will be announced later.

Rules:

- 1) Don't share code outside of the team (you will get 0 in the milestone)
- 2) Don't use external data
- 3) Each team will have 5 submissions per day, all members should merge in the leaderboard with team name titled by (Team [ID])
- 4) Don't use Advanced Architectures of neural networks (out of scope).
- 5) Save the implementation of the top 2 submissions you will get that reproduce the same score.
- 6) You should define a seed for each model (fixed).
- 7) #Hint 1: Use random state parameter in train test split function
- 8) #Hint 2: check this link for definition of random seed here

Project: Car Market Prediction

What factors affect a car's price? Given this dataset, we would like to understand and predict the price of a car based on the provided data.

Dataset Snapshot:

car_id car-info	condition	mileage(kilometers)	fuel_type	volume(cm3)	color	transmission	drive_unit	segment	price(USD)
0 [(90),(audi),(1986)]	with mileage	319999	PETROL	2200	gray	mechanics	front-wheel drive	D	450
1 [(rapid),(skoda),(2016)]	with mileage	53000	petrol	1600	blue	mechanics	front-wheel drive	С	9600
2 [(primera),(nissan),(1992)]	with mileage	350000	PETROL	2000	blue	mechanics	front-wheel drive	D	1700
3 [(combo),(opel),(1997)]	with mileage	299709	petrol	1400	white	mechanics	front-wheel drive	M	205
4 [(zafira),(opel),(2007)]	with mileage	110000	PETROL	1800	silver	mechanics	front-wheel drive	M	5300
5 [(s-klass),(mercedes-benz),(2011)]	with mileage	182000	PETROL	4700	brown	auto	all-wheel drive	S	20500
6 [(vectra),(opel),(1998)]	with mileage	300000	petrol	1800	burgundy	mechanics	front-wheel drive	D	2800
7 [(5-seriya),(bmw),(1998)]	with mileage	273000	petrol	2500	gray	mechanics	rear drive	E	4100
8 [(605),(peugeot),(1996)]	with mileage	320000	PETROL	2000	burgundy	mechanics	front-wheel drive	E	950
9 [(323),(mazda),(1998)]	with mileage	306500	petrol	1500	green	mechanics	front-wheel drive	С	1550
10 [(partner),(peugeot),(2003)]	with mileage	233248	diesel	1900	white	mechanics	front-wheel drive	M	3800
11 [(juke),(nissan),(2013)]	with mileage	93000	petrol	1600	burgundy	auto	front-wheel drive	J	12400
12 [(a6),(audi),(1996)]	with mileage	282200	PETROL	2600	blue	mechanics	front-wheel drive	E	3680
13 [(a6-allroad),(audi),(2009)]	with mileage	200	diesel	2700	black	auto	front-wheel drive	E	19000
14 [(golf),(volkswagen),(1992)]	with mileage	0	diesel	1900	black	mechanics	front-wheel drive	С	704
15 [(transporter),(volkswagen),(2002)]	with mileage	355000	diesel	2500	blue	mechanics	front-wheel drive	M	7600
16 [(406),(peugeot),(2001)]	with mileage	350000	diesel	2000	silver	mechanics	front-wheel drive	D	4400
17 [(accent),(hyundai),(2013)]	with mileage	94700	PETROL	1600	silver	auto	front-wheel drive	В	8050
18 [(passat),(volkswagen),(1993)]	with mileage	410200	petrol	2000	white	mechanics	front-wheel drive	D	1770
19 [(ascona),(opel),(1988)]	with mileage	9999	petrol	1300	silver	mechanics	front-wheel drive	D	200
20 [(santa-fe),(hyundai),(2011)]	with mileage	135000	PETROL	2400	brown	auto	part-time four-wheel drive	J	13750
21 [(laguna),(renault),(2011)]	with mileage	252000	DIESEL	1500	gray	mechanics	front-wheel drive	D	8100

Milestone 1 tasks:

Apply pre-processing on the provided dataset. (You must preprocess all the features even if you won't use them later after feature selection)

- 2. Apply Feature Selection and Experiment with regression techniques to reduce the error on the prediction of the "price" (Deliver at least two regression models with a significant difference).
- 3. Finish Milestone 1 Presentation.

Note: You must preprocess all features, but the model and feature selection can be done after that (i.e You can drop a feature only after preprocessing and with a valid reason)

Milestone 1 Presentation Agenda:

- Preprocessing
 - ➤ Techniques/Analysis
 - > Categorical Encoding
 - Data Imputation
- ❖ Feature Selection
- Regression Models
- Results (Top 2 Submissions)

These are the main points you should cover, but you can have more detailed sections as you see fit.