Linear Algebra for MLDS - Homework 2

Linear Systems, Matrix Inverse

Make sure to read and follow the "Homework Submission Instructions" file

Submit by: April 7, 2022 at 23:59

Exercise 1: Solve the following Linear Systems:

$$\begin{array}{rcl} x_1 + 3x_3 & = & 7 \\ 1. & 2x_2 - 4x_3 & = & -8 \\ 3x_1 + 2x_2 + 10x_3 & = & 23 \end{array}$$

$$\begin{array}{rcl}
x_2 + 3x_3 & = & 0 \\
2. & 6x_1 - 3x_3 & = & 4 \\
-2x_1 + 2x_2 & = & 1
\end{array}$$

$$\begin{array}{rcl}
-4x_1 + 6x_2 & = & -12 \\
x_1 - x_2 & = & 1 \\
2x_1 + x_2 & = & 17 \\
6x_1 - 8x_2 & = & 0
\end{array}$$

Exercise 2: Let A be a 3×5 matrix such that the solution set of its homogeneous system $A\bar{x} = \bar{0}$ has two free variables, show that for any $\bar{b} \in \mathbb{R}^3$, the system $A\bar{x} = \bar{b}$ has a solution.

Exercise 3: Let A be an $m \times n$ matrix, $\bar{b} \in \mathbb{R}^n$. Prove or disprove the following claims regarding: $A\bar{x} = \bar{b}$

- 1. If m > n then $A\bar{x} = \bar{b}$ has no solutions.
- 2. If m < n then $A\bar{x} = \bar{b}$ has infinite solutions.
- 3. If m < n and $\bar{b} = \bar{0}$ then $A\bar{x} = \bar{b}$ has infinite solutions.
- 4. If m > n and $\bar{b} = \bar{0}$ then $A\bar{x} = \bar{b}$ has a unique solution.

Exercise 4: Check whether the following matrices are invertible, and if so, find their inverse.

$$1. \ \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$2. \ \begin{pmatrix} 1 & 1 & 1 \\ 2 & 0 & 2 \\ 2 & 1 & 2 \end{pmatrix}$$

Exercise 5: Let A be an $n \times n$ matrix

- 1. Show that if $A^2 = 0$ then A is singular
- 2. Show that if $A^2 2A + I = 0$ then A is non-singular, find A^{-1}

continues on the next page \rightarrow

Exercise 6: Let A, B be non-singular matrices with: $A^{-1} = \begin{pmatrix} 1 & 2 & -1 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix}$ $B^{-1} = \begin{pmatrix} 0 & 3 & 1 \\ 3 & 1 & 3 \\ 1 & 3 & 0 \end{pmatrix}$, without explicitly calculating the matrices A, B, do the following:

1. Calculate $(BA^2)^{-1}$

- 3. Prove/Disprove: A, B are row equivalent.
- 2. Find a vector \bar{x} such that $A\bar{x} = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$
- 4. Find the number of solutions to $A^2\bar{x} = \begin{pmatrix} 3\\1\\1 \end{pmatrix}$

Exercise 7:

- 1. Find the parametric representation of the line passing through the point (-1,2,3), parallel to the vector $\begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$
- 2. Does this line pass through the points (2, 2, 1), (-10, 2, 0)?
- 3. Find the intersection of this line with the xy plane.