

GRADUATION PROJECT

DEVELOPMENT OF A MULTIMODAL 3D OBJECT RECOGNITION AND VISUALIZATION SYSTEM FOR TRAFFIC ENVIRONMENTS USING CAMERA AND LIDAR FUSION

Lê Hoàng Tiến Lê Hồ Minh Khoa Supervisor

21145617 21145019 Trần Vũ Hoàng, PhD.

TABLE OF CONTENT

Conclusion

1. INTRODUCTION

1.1. PROBLEM STATEMENT

1.1. PROBLEM STATEMENT

Low Lighting Scenario

Warning

Some viewers may find the following footage distressing

1. INTRODUCTION

1.2. RESEARCH OBJECTIVES

1. INTRODUCTION

1.2. RESEARCH OBJECTIVES

1.3. SCOPE & LIMITATIONS

DATA:

- nuScenes mini (10 scenes)
- → Restricted to specific conditions

HARDWARE:

- No real LiDAR or GPU.
- → Used cloud VPS not real-time.

TIME:

- Only 5 Months
- → No hardware optimization.

SCOPE:

- Offline 3D detection only.
- → No real-time integration.

1.4. TARGET

1.4. TARGET

Main User Interface of the Application

clouds & calibration

- Integrate images, point

clouds & calibration

2.1. INPUT & SETUP DATA

Autonomous Vehicle Sensor Layout in nuScenes Dataset

6 CAMERAS

- Front
- Front-left
- Front-right
- Rear
- Rear-left
- Rear-right

1 LIDAR

- A 32-channel device

5 RADARS

- Front & 4 Edges

1 IMU

- On the roof

2.2. MODEL INTEGRATION & INFERENCE

The overall architecture of MEFormer

2.2. MODEL INTEGRATION & INFERENCE

MODELS	mAP (%)	mATE (m)	mAOE (rad)
BEVFormer (C)	44.5	0.58	0.38
DETR3D (C)	41	0.64	0.39
BEVFusion (L+C)	71.3	0.25	0.36
MEFormer (L+C)	72	0.27	0.3
Expected Metrics	≥ 53	≤ 0.49	≤ 0.38
Result	74	0.27	0.21

Performance Comparison of 3D Object Detection Models

Scene-0103, Sample 34 with threshold > 0.3

Scene-0916, Sample 8 with threshold > 0.3

Scene-0796, Sample 11 with threshold > 0.3

Average and Median Scores by Distance Group

Distribution of Predictions by Class (%)

THE 3-SECOND RULE

A traffic safety guideline for drivers

~2.5-second reaction distance at 50 km/h (~13.9 m/s)

Recommended Distance = $2.5s \times 13.9m/s = 34.75m$

Our MEFormer model is most reliable under 40 meters

Our MEFormer model meets the 3-Second Rule

DEMO PRODUCT

3. CONCLUSION

Summary

Implemented MeFormer with MMDetection3D on nuScenes.

1

Achieved high mAP & NDS, good for car, bus, pedestrian.

Best performance <40m (aligns with **3-Second Rule**).

3

Struggles with faraway, rare, or diverse objects.

3. CONCLUSION

Summary

Implemented MeFormer with MMDetection3D on nuScenes.

1

Achieved high mAP & NDS, good for car, bus, pedestrian.

Best performance <40m (aligns with **3-Second Rule**).

3

Struggles with faraway, rare, or diverse objects.

Future Development

- A Build LiDAR/camera system for collecting real-world data.
- B REAL-WORLD TEST: Deploy on vehicles/simulators to check performance & latency.
- C Use augmentation/transfer learning for rare/small classes.
- D Tune score thresholds by distance or application.

THANK YOU!

Development of a multimodal 3D object recognition and visualization system for traffic environments using camera and LiDAR fusion

GRADUATION PROJECT