0.1. Introducción

Los números irracionales fueron descubiertos por la escuela de Pitágoras siglos antes de Cristo, y hasta el siglo XIX no tuvieron una teoría rigurosa.

Surgieron entonces dos equivalentes: la teoría de las cortaduras de Dirichlet, y la de las sucesiones nulas de Weierstrass, que no expondremos. Sí daremos el rasgo más importante de estos números, y que debe conocer el informático para saber operar con ellos: Su expresión decimal es *infinita y no periódica*.

0.2. Números irracionales

0.2.1. $\sqrt{2}$ es irracional.

Vamos a empezar demostrando lo que los griegos de la escuela pitagórica hicieron: probar que el número $\sqrt{2}$ no es racional.

Nuestra demostración es ligeramente diferente de la usual; necesita un poco más de esfuerzo de comprensión, pero este esfuerzo se ve recompensado por obtener fácilmente una generalización útil. Usaremos el método de demostración al absurdo: supondremos que es racional, y llegaremos a un absurdo.

Demostración: Supongamos que $\sqrt{2}$ es racional: habrá una fracción a/b tal que, al elevarla al cuadrado, se obtiene $\sqrt{2}$:

$$(a/b)^2 = 2.$$

O sea: $\frac{a^2}{b^2} = 2$. Por tanto, debe ser:

$$a^2 = 2b^2$$
.

Vamos a probar que esta iqualdad es imposible.

Descompongamos b en factores primos, escribiendo sólo el factor primo 2 e ignorando todos los demás:

$$b=2^{\alpha}\dots$$

A esta igualdad se puede objetar que puede ocurrir que b carezca del factor primo 2; pero entonces α vale cero: así, si b=5 tenemos:

$$5 = 2^0 \cdot 5^1$$
.

Elevando al cuadrado la igualdad: $b=2^{\alpha}\ldots$, resulta: $b^2=2^{2\alpha}\ldots$ Multiplicando por 2, tenemos:

$$2b^2 = 2^{2\alpha+1} \dots$$

Al ser $2\alpha + 1$ un número impar, independientemente del valor de α , el segundo miembro de la igualdad tiene el factor primo 2 elevado a un exponente impar.

Descompongamos ahora a en factores primos, ignorando los factores que no sean 2:

$$a=2^{\beta}\dots$$

Elevando al cuadrado, tenemos:

$$a^2=2^{2\beta}\dots$$

El número 2β es par siempre: luego el primer miembro de la igualdad $a^2 = 2b^2$ tiene el factor primo 2 elevado a un exponente par.

Un teorema de Aritmética afirma que la descomposición de un número en factores primos es única. Pero entonces la igualdad $a^2 = 2b^2$ es imposible, porque el primer miembro tiene el factor 2 elevado a un exponente par, mientras que el segundo a impar.

Consecuencia: si p es un número primo mayor que 1, entonces \sqrt{p} es un número irracional.

Pues en la anterior demostración podemos sustituir el primo 2 por cualquier otro primo p distinto de 1.

A la demostracion anterior podemos darle un mayor alcance en el siguiente teorema:

0.2.2. Resultado general

Tenemos el siguiente teorema:

Teorema 1 Si un número no es cuadrado perfecto, su raíz cuadrada es irracional.

Demostración: Sea m un número que no es cuadrado perfecto; entonces m tiene algún factor primo elevado a un exponente impar, pues si todos los exponentes son pares el número es cuadrado perfecto. Por ejemplo, sea $m = 2^{14} \cdot 3^{20} \cdot 5^8 \cdot 7^{18}$; entonces: $\sqrt{m} = 2^7 \cdot 3^{10} \cdot 5^4 \cdot 7^9$, y es cuadrado perfecto.

Entonces tendremos:

$$m=p_1^{2\alpha+1}\dots$$

siendo p_1 uno de los factores primos cuyo exponente es impar: $2\alpha + 1$. Supongamos que \sqrt{m} es racional e igual a a/b; llegamos entonces a la igualdad:

$$a^2 = mb^2 = b^2 \cdot p_1^{2\alpha+1} \dots$$

Razonando igual que antes, respecto de los exponentes del factor primo p_1 en ambos miembros, se llega a conclusión análoga: el primer miembro tendría p_1 elevado a exponente par, mientras que el segundo lo tendría a exponente impar: haga el alumno el razonamiento completo como ejercicio. c.q.d.

Este teorema se puede usar para resolver problemas como estos:

Probar que el número $\sqrt{2} + \sqrt{3}$ es irracional.

Procedamos por reducción al absurdo: supongamos que existe un racional r = a/b igual a $\sqrt{2} + \sqrt{3}$:

$$r = \sqrt{2} + \sqrt{3}.$$

Elevando al cuadrado ambos miembros resulta: $r^2 = 5 + 2\sqrt{6}$. Despejando $\sqrt{6}$ tenemos:

$$\sqrt{6} = \frac{r^2 - 5}{2}.$$

El teorema anterior nos dice que $\sqrt{6}$ es irracional, mientras que el segundo miembro es racional: hemos llegado a una contradicción que prueba lo afirmado sobre $\sqrt{2} + \sqrt{3}$.

Probar que $\sqrt{2} + \sqrt[3]{3}$ es irracional.

Supongamos que existe un racional r=a/b igual a $\sqrt{2}+\sqrt[3]{3}$. Sería, pues:

$$r = \sqrt{2} + \sqrt[3]{3}.$$

Despejando el radical cúbico, tenemos:

$$\sqrt[3]{3} = r - \sqrt{2}$$
.

Elevando al cubo los dos miembros, por la igualdad $(A - B)^3 = A^3 - 3A^2B + 3AB^2 - B^3$, se tiene:

$$3 = r^3 - 3r^2\sqrt{2} + 6r - 2\sqrt{2}$$

Despejando $\sqrt{2}$ resulta:

$$\sqrt{2} = \frac{r^3 + 6r - 3}{3r^2 + 2}.$$

Esta igualdad es imposible como vamos a ver: el miembro izquierdo es irracional como hemos visto, mientras que el de la derecha es racional pues todos los números allí lo son.

§ 2. GENERATRICES DE LOS NÚMEROS PERIÓDICOS

0.3. Progresiones geométricas

Definición 2 Se llama progresión geométrica a toda sucesión de números en la cual cada término es igual al anterior multiplicado por una cantidad constante,r, la cual recibe el nombre de razón de la progresión: $a_n = a_{n-1}r$.

Ejemplos:

- 1) Las potencias del número $2:1,2,4,8,16,\ldots$ La razón es 2.
- 2) 2, 14, 98, . . . En este caso la razón es r = 7.

0.3.1. Término general

Consideremos una progresión geométrica cuyo primer término sea a_1 y r la razón: el segundo será: a_1r ; el tercero,

 a_1r^2 ; el cuarto, a_1r^3 , ... Estos valores nos llevan al término general:

$$a_n = a_1 r^{n-1} \tag{1}$$

0.3.2. Suma de los n primeros términos

Vamos a calcular la suma de los n primeros términos de la progresión:

$$S_n = a_1 + a_2 + \dots + a_{n-1} + a_n$$
.

Multiplicando por r los dos términos de esta igualdad tenemos:

$$rS_n = ra_1 + ra_2 + \dots + ra_{n-1} + ra_n = a_2 + a_3 + \dots + a_n + a_n r.$$

El último sumando de la anterior suma se podría escribir como a_{n+1} , pero para no meter más términos que los n primeros ponemos ra_n . Los términos comunes entre la segunda suma y la primera son: $a_2, a_3, \ldots a_n$: restando miembro a miembro estas igualdades, se reducen:

$$rS_n - S_n = (r-1)S_n = a_n r - a_1.$$

Despejando S_n tenemos:

$$S_n = \frac{a_n r - a_1}{r - 1}.$$

Ejemplo: En el ejemplo anterior de las potencias de 2, es:

$$a_1 = 1, r = 2, a_n = 1 \times 2^{n-1} = 2^{n-1},$$

$$S_n = 1 + 2 + 4 + \dots + 2^{n-1} = \frac{2^{n-1} \times 2 - 1}{2 - 1} = 2^n - 1.$$

0.3.3. Suma de los infinitos términos de una progresión geométrica de razón menor que uno

Es sabido que la sucesión $\{a^n\}$ de las potencias de un número real a tiene un límite que depende sólo del valor absoluto de a: si $|a| < 1, a^n \to 0$. Este caso es el más importante, y es el que se usará en el cálculo siguiente.

Consideremos la progresión geométrica siguiente:

$$a_1, a_1r, a_1r^2, a_1r^3, \dots a_1r^{n-1}, \dots$$

en la cual |r| < 1.

Con ayuda de la fórmula ya obtenida, calculemos la suma de los n primeros términos de la progresión:

$$S_n = a_1 + a_1 r + a_1 r^2 + a_1 r^3 + \dots + a_1 r^{n-1} = \frac{a_1 r^{n-1} \times r - a_1}{r - 1} = \frac{a_1 r^{n-1} \times r - a_1}{r - 1}$$

$$=\frac{a_1r^n-a_1}{r-1}.$$

Si $|r| < 1, r^n \to 0$ y resulta:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a_1 r^n - a_1}{r - 1} = \frac{a_1 \times 0 - a_1}{r - 1} = a_1 / 1 - r.$$

A este valor $a_1/1 - r$ lo llamaremos la suma de los infinitos términos de la progresión geométrica y lo indicaremos como S_{∞} :

$$S_{\infty} = \frac{a_1}{1 - r}.$$

Cuando estudiemos las series, veremos el significado de este resultado que consideramos la suma de los infinitos términos de la progresión geométrica.

0.3.4. Generatriz de un número periódico

A) Números periódicos puros

Sea, por ejemplo, el número $2,\overline{34}=2,34343434...$, cuya parte entera es 2 y cuyas cifras decimales 34 se repiten infinitas veces, y son, por tanto, el periodo.

Podemos escribir:

$$2, \widehat{34} = 2, 34343434\dots = 2 + \frac{34}{10^2} + \frac{34}{10^4} + \frac{34}{10^6} + \frac{34}{10^8} + \cdots$$

Prescindiendo de la parte entera, las fraccciones sumandos del segundo miembro son partes de la progresión geométrica cuyo primer término es $\frac{34}{10^2}$, y cuya razón es $\frac{1}{10^2}$.

La suma de todas estas fracciones es, pues:

$$S_{\infty} = \frac{\frac{34}{10^2}}{1 - \frac{1}{10^2}} = \frac{34}{10^2 - 1}.$$

Sumando dos unidades a este último resultado, tenemos:

$$2,\widehat{34} = 2 + \frac{34}{10^2 - 1} = \frac{2 \times 10^2 + 34 - 2}{10^2 - 1} = \frac{234 - 2}{10^2 - 1} = \frac{234 - 2}{99}.$$

Hemos obtenido así un caso particular del siguiente teorema ya conocido por el alumno y cuya demostración es esencialmente el cálculo que hemos hecho:

Teorema 3 La fracción generatriz de un número periódico puro tiene como numerador la diferencia entre la parte entera y el periodo, y la parte entera; el denominador es el número formado por tantos nueves como cifras tiene el periodo.

B) Números periódicos mixtos

Sea, por ejemplo, el número $2,1\overline{34}=2,1343434...$, cuya parte entera es 2, la cifra 1 situada después de la coma no se repite más, y es llamada anteperiodo; y las cifras 34 que se repiten indefinidamente, y forman el periodo.

Igual que en el caso anterior, tenemos:

$$2,1\widehat{34} = 2 + \frac{1}{10^1} + \frac{34}{10^3} + \frac{34}{10^5} + \frac{34}{10^7} + \cdots$$

Prescindiendo de los dos primeros sumandos, los demás forman una progresión geométrica cuyo primer término es $\frac{34}{10^3}$ y cuya razón es $\frac{1}{10^2}$.

La suma de todas estas fracciones es:

$$S_{\infty} = \frac{\frac{34}{10^3}}{1 - \frac{1}{10^2}} = \frac{34}{10^3 - 10}.$$

Añadiendo a este resultado los dos primeros sumandos, tenemos:

$$2,1\widehat{34} = 2 + \frac{1}{10^1} + \frac{34}{10^3 - 10} = \frac{2134 - 21}{10^3 - 10} = \frac{2113}{990}.$$

Hemos obtenido así un caso particular del siguiente teorema:

Teorema 4 La generatriz de un número periódico mixto es una fracción cuyo numerador es la diferencia entre el número formado por la parte entera, el anteperiodo y el periodo, y el que componen la parte entera y el anteperiodo; el denominador es el número formado por tantos nueves como cifras tiene el periodo, y tantos ceros como cifras posee el anteperiodo.

Como consecuencia de los teoremas anteriores obtenemos el siguiente corolario:

Corolario 5 Toda expresion decimal periódica procede de un número racional.

0.4. Expresión decimal de un número irracional

Vamos a deducir la expresión decimal de un irracional; si fuera finita, el número sería racional. Así, si $\sqrt{2} = 1,4142$ (como erróneamente se escribe frecuentemente), tendríamos:

$$\sqrt{2} = 1,4142 = \frac{14142}{10,000}.$$

Por tanto, debe ser infinita; pero no puede ser infinita periódica, porque, como hemos visto, entonces sería racional. Luego su expresión es infinita y no periódica:

La expresión decimal de un número irracional es infinita y no periódica.

0.5. Expresión decimal de una fracción

¿Es posible conocer la clase de expresión decimal de una fracción sin hacer la división? La respuesta es afirmativa, y viene dada por el siguiente teorema cuya demostración omitimos: **Teorema 6** Si el denominador de la forma irreducible de una fracción sólo tiene los factores primos 2 y 5, su expresión decimal es decimal exacta.

Si tiene sólo factores primos que no son 2 ni 5, la expresión decimal es periódica pura.

Si tiene los factores 2 y 5 y otros, la expresión decimal es periódica mixta.

Ejemplos: Las fracciones 17/20, 17/25, 17/64 dan expresiones decimales exactas, pues es:

$$20 = 2^2 \cdot 5$$
, $25 = 5^2$, $64 = 2^6$.

Las fracciones 22/7, 355/113, 8/23 dan periódicas puras, pues los denominadores son primos los tres, distintos de 2 y 5.

Las fracciones 1/6, 9/35, 1/170 dan periódicas mixtas, pues es:

$$6 = 2 \cdot 3, \ 35 = 5 \cdot 7, \ 170 = 2 \cdot 5 \cdot 17.$$