Vector Calculus and Line Integrals

Reading: Textbook, §16.1-16.4

§1. Vector fields

As an abstraction of real life examples of winds, water currents, electric/magnectic fields etc, we make the following

Def. Let $D \subseteq \mathbb{R}^2$ be a planar region. A vector field on D is a function \overrightarrow{F} that assigns to each point $(x,y) \in D$ a 2-dimensional vector $\overrightarrow{F}(x,y)$. Thus $\overrightarrow{F}(x,y) = P(x,y)\overrightarrow{\iota} + Q(x,y)\overrightarrow{\jmath}$.

The components P(x,y), Q(x,y) are just functions (scalar fields) on D.

Likewise, a 3-dimensional vector field on a region $B \subseteq \mathbb{R}^3$ is a function \vec{F} that assigns to each point $(x,y,z) \in B$ a 3-dimensional vector F(x,y,z). Thus

 $\vec{F}(x,y,z) = P(x,y,z)\vec{i} + Q(x,y,z)\vec{j} + R(x,y,z)\vec{k}$

Eq. Sketch the vector field $\vec{F}(x,y) = \frac{y\overline{c} - x\overline{j}}{\sqrt{x^2 + u^2}}$.

Eq. Given a function f(x,y), the gradient vector field of f is $(\nabla f)(x,y) := f_{\alpha} \vec{c} + f_{y} \vec{j}$

It is orthogonal everywhere to the level curves of f. Find

the gradient vector field of $f(x,y) = 4x^2 + 9y^2$

ne gradient vector Jield of Jix,y) = 4x°+ 4y°.

- Vector fields on D can be thought of as families of vectors that vary according to positions in D. Thus you can IFII: measuring the magnitude of each vector at any
- point in D (scalar field)

 Fig: measuring the dot product of vectors at any
 point in D (scalar field)
- point in D (Scalar field)
 FxG: measuring the cross product of vectors at any point in D (vector field)

Def A vector field $\vec{F}(x,y,z)$ ($\vec{F}(x,y)$) on a domain D is called conservative if the is a function fix, y, z) (fix, y)

 $\vec{F}(\alpha,y,z) = (\vec{\nabla}f)(\alpha,y,z) \quad (\vec{F}(\alpha,y) = (\vec{\nabla}f)(\alpha,y))$

The function f is called a potential for \vec{F} (not unique if

s.t.

it exists)

§ 2 Line integrals

There are two types of line integrals: scalar and vector.

The scalar integral

It is the Riemann sum:

$$\int_C f(x,y)ds := \lim_{n \to \infty} \sum_{i=1}^n f(x_i,y_i) \Delta S_i.$$

Since, infinitesimally,

 $\Delta S = \sqrt{\Delta \chi^2 + \Delta y^2} = \sqrt{\left(\frac{\Delta \chi}{\Delta t}\right)^2 + \left(\frac{\Delta y}{\Delta t}\right)^2} \Delta t$

In the limit, we get, for C parametrized by $t \in [a,b]$

$$\int_{C} f(x,y) ds = \int_{a}^{b} f(x(t), y(t)) \cdot \sqrt{\chi'(t)^{2} + y'(t)^{2}} dt$$

Eg. Evaluate the integral $\int_C y^3 ds$, where C is given by $\vec{\Gamma}(t) = (t^3, t)$, $t \in [0,2]$.

The 3-dim'l case is similar: if C is a curve in \mathbb{R}^3 given by $\widehat{\Gamma}(t) = (\chi(t), \chi(t), \chi(t))$, $t \in [a,b]$, then

by
$$I(t) = (N(t), y(t), z(t)), t \in [a,b], then$$

$$\int_C f(x,y,z) ds = \int_a^b f(x(t),y(t),z(t)) \cdot \sqrt{N(t)^2 + y'(t)^2 + z'(t)^2} dt$$

Eg Find the integral $\int_C x e^{yz} ds$, where C is the line segment from (0,0,0) to (1,2,3).

Next, we investigate vector integrals:

Suppose \vec{F} is a force field (wind) in IR^3 , the work done by moving the particle along C against \vec{F} is

$$\lim_{n\to\infty}\sum_{i=1}^{n}\vec{F}(x_i,y_i,z_i)\cdot\Delta\vec{r}_i =: \int_{C}\vec{F}\cdot d\vec{r}$$

If
$$\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$$
, $d\vec{r} = (dx, dy, dz)$, then
$$\vec{F} \cdot d\vec{r} = Pdx + Qdy + Rdz$$

• How do we calculate $I = \int_C P dx + Q dy + R dz$?

If C is parametrized by
$$\vec{r} = (X(t), y(t), z(t))$$
, $t \in [a, b]$, then $dX(t) = X(t)dt$, $dY(t) = Y(t)dt$, $dZ(t) = Z(t)dt$

and

 $I = \int_{a}^{b} P(x(t), y(t), z(t)) x(t) dt + \int_{a}^{b} Q(x(t), y(t), z(t)) y'(t) dt$ $+ \int_{a}^{b} R(x(t), y(t), z(t)) z'(t) dt.$

Warning: A big difference between scalar and vector line integrals is that, if you reverse the direction/orientation of C,

- the scalar integral remains unchanged
- the vector integral picks up a "-" sign.

Eq. Evaluate $\int_C \chi y e^{yz} dy$, where $C: \vec{r}(t) = (t, t^2, t^3)$ with te [0,1]

Eq. Find the work done for moving a particle against the

force field $\vec{F}(x,y,z) = \sin x \vec{i} + \cos y \vec{j} + xz \vec{k}$ along C.

 $\vec{r}(t) = t^3 \vec{\iota} - t^2 \vec{j} + t \vec{k}$, $t \in [0, 1]$.

§3. The fundamental theorem of line integrals

The theorem states that, if you perform line integral for the total derivative

of
$$= \int_X dX + \int_Y dy + \int_Z dZ$$

of a function along a curve $C: \vec{\Gamma} = \vec{\Gamma}(t)$, $t \in [0,1]$, (\iff)
vector integral of a conservative vector field), then, the
outcome is just the difference between the ending and starting
values of f .

$$\int_C df = \int_C f_x dx + f_y dy + f_z dz = f(\vec{r}(n) - f(\vec{r}(0)))$$

The proof reduces to the fundamental theorem of calculus in one variable, if you follow the definition of vector line integrals.

Eg. If $\vec{F}(x,y) = \chi y^2 \vec{i} + \chi^2 y \vec{j}$, find the integral $\int_C \vec{F} \cdot d\vec{r}$ where $C : \vec{r}(t) = (t \sin \frac{1}{2}\pi t, t + \cos \frac{1}{2}\pi t)$, $t \in [0,1]$.

The theorem implies that, if $\vec{F} = \vec{\nabla} f$ is conservative, then, along any closed (oriented) curve C, $\int_C \vec{F} \cdot d\vec{r} = 0$.

in IR³/ IF

• In turn, if C_1 , C_2 are two curves in \mathbb{R}^3 starting and ending at the same points, and $\overrightarrow{F} = \overrightarrow{\nabla} f$ is conservative, then $\int_{C_1} \overrightarrow{F} \cdot d\overrightarrow{r} = \int_{C_2} \overrightarrow{F} \cdot d\overrightarrow{r}.$

This property is called paths independence.

Eg. Check if the following vector fields on their domains satisfy the path-independence property.

(1) $\vec{F}(x,y) = (x,y^2, x^2y)$ (2) $\vec{F}(x,y) = \frac{(-y,x)}{\sqrt{x^2+y^2}}$

Thm. The integral $\int_{C} \vec{F} \cdot d\vec{r}$ is path-independent on a domain D if and only if $\int_{L} \vec{F} \cdot d\vec{r} = 0$ for any closed curve L in D.

Def. A region D is called connected if any two points in D can be joined by a curve in D. D is called open if for any point in D, there is a small enough disk/ball containing

the point and contained in \mathcal{D} .

Non open , (disconnected

Thm. Suppose \vec{F} is a vector field on an open, connected region \vec{D} If $\int_{\vec{c}} \vec{F} \cdot d\vec{r}$ is path-independent, then \vec{F} is a conservative vector field on \vec{D} .

This thm is a first step towards checking if a vector field \vec{F} is conservative, but is hard to apply using integration along all paths.

Instead, we try to develop a differentiation criterion, at the cost of restricting the types of D.

Suppose now D⊆IR2, Fray) = Prayıt+Qrayıj.

Thm. If \vec{F} is conservative, then $\frac{\partial \vec{P}}{\partial u} = \frac{\partial \vec{Q}}{\partial \alpha}$

Eg. Determine if the vector field $\vec{F}(x,y) = e^x \cos y \vec{i} + e^x \sin y \vec{j}$ is conservative or not.

• Q: Is the converse of the theorem above true?

Def. A region $D \subseteq \mathbb{R}^2$ is called <u>simply-connected</u> if any closed curve in D can continuously shrink to a point within D.

Thm. Let $\vec{F}(x,y) = P(x,y)\vec{i} + Q(x,y)\vec{j}$ be a vector field on a simply-connected domain \mathbb{D} . If $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ holds on \mathbb{D} , then È is conservative.

Eg. Show that the integral $\int_C 2xe^{-y}dx + (2y - x^2e^{-y}) dy$ has path-independence property. Evaluate the integral along a curve from (1,0) to (2,1).

Eg. Show that, if $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$ is conservative on $D \subseteq R^3$, then $P_y = Q_x$, $P_z = R_x$, $Q_z = R_y$.

The converse of this result will be deferred later.

What about $D \subseteq \mathbb{R}^3$, and $\vec{F} = P\vec{t} + Q\vec{j} + R\vec{k}$?

84 Green's Theorem

Green's Theorem relates two important concepts we have learnt so far: vector line integral and double integral. This is a second generalization of the fundamental theorem of calculus.

Thm. If $F(x,y) = P(x,y)\vec{c} + Q(x,y)\vec{j}$ is a vector field on IR^2 , and D is a bounded closed region whose outer boundaries are oriented Counter-clockwise and inner boundaries are oriented clockwise:

Then:

$$\int_{\partial D} \vec{F} \cdot d\vec{r} = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Warning: \vec{F} need only be well-defined in an neighborhood of \mathbb{D} , but can not have singularities in \mathbb{D} !

Eg. Evaluate the integral by two methods, directly and using Green's theorem.

where C is the circle centered at (0,0) of radius 2.

Eg. Use Green's theorem to evaluate the integral: $\oint_C (y + e^{\sqrt{x}}) \, dx + (2x + \cos y^2) \, dy$ where C is the boundary of the region enclosed by the

parabolas $y=x^2$ and $x=y^2$.

Eg. If $\vec{F}(x,y) = \frac{-y\vec{\iota} + x\vec{j}}{x^2 + y^2}$, show that $\oint_{c} \vec{F} d\vec{r} = 2\pi$ for any simple closed curve encircling the origin.

Another example of a region with multiple boundary curves.

§5. Differential forms

Let us give a simple way to help you remember Green's theorem algebraically.

Introduce the oriented infinitesimal symbols dx, dy, dxdy

dx, dy measure the oriented infinitesimal displacement in the x, y directions, while dxdy measures the oriented infinitesimal area on the xy-plane.

We have the Grassman rule for multiplying these symbols:

dxdx = 0, dydy = 0, dxdy = -dydx

Then,
$$d(P(x,y)dx + Q(x,y)dy) = (\frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy)dx + (\frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial y}dy)dy$$

$$= \frac{\partial P}{\partial x}dxdx + \frac{\partial P}{\partial y}dydx + \frac{\partial Q}{\partial x}ckxdy + \frac{\partial Q}{\partial y}dydy$$

 $= (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dxdy$

$$\int_{\partial D} P(x,y)dx + Q(x,y)dy = \iint_{D} d(P(x,y)dx + Q(x,y)dy)$$

Or, if $\omega = P(x,y)dx + Q(x,y)dy$ is a differential 1-form, and D is a 2-dim'l bounded region in IR^2 : $\int_{\partial D} \omega = \int_{D} d\omega.$

Similarly, the fundamental theorem of line integral applies to differential o-forms (functions) and 1-dimensional regions (oriented curves) C in IR^2/IR^3 : $\int_{\partial C} f = \int_C df$ Here the l.h.s. means f(b) - f(a), where a is the starting point of C and b is the end point of C.

§6. Sketch of proof of Green's Theorem If GT holds for triangles:

then it holds for

Thus we reduce GT to triangles by approximating $\mathcal D$ by many small triangles:

Zoom in on each of these triangles, and using the additivity of integrations, we just need to show $\int_{\partial T} P \, dx = - \iint_{T} \frac{\partial P}{\partial y} \, dx dy \, , \qquad \int_{\partial T} Q \, dy = \iint_{T} \frac{\partial Q}{\partial x} \, dx dy \, .$

$$A$$
 (x_i, y_i)
 B
 (x_2, y_1)

Next, parametrize AB, CA by their α -coordinates ($\int P d\alpha$ on BC is 0!):

 $\iint_{T} - \frac{\partial P}{\partial y} dxdy = - \int_{x_{1}}^{x_{2}} dx \int_{y_{1}}^{\frac{y_{2}-y_{1}}{x_{2}-x_{1}}(x-x_{1})+y_{1}} \frac{\partial P}{\partial y} dy$ $= - \int_{x_{1}}^{x_{2}} dx \left(P(x, \frac{y_{2}-y_{1}}{x_{2}-x_{1}}(x-x_{1})+y_{1}) - P(x, y_{1}) \right)$

$$AB: \overrightarrow{\Gamma_1}(\alpha) = (\alpha, y_1), \qquad AC: \overrightarrow{\Gamma_2}(\alpha) = (\alpha, \frac{y_2 - y_1}{\alpha_2 - \alpha_1}(\alpha - \alpha_1) + y_1)$$

with $x \in [x_1, x_2]$, then SOT Pdx = SAB Pdx - SAC Pdx

 $= \int_{\alpha_{1}}^{\alpha_{2}} P(\alpha, y_{1}) d\alpha - \int_{\alpha_{1}}^{\alpha_{2}} P(\alpha, \frac{y_{2} - y_{1}}{\alpha_{3} - \alpha_{4}} (\alpha - \alpha_{1}) + y_{1}) d\alpha$

Comparing both sides gives us GT for T.

We will next move on towards establishing Green's Theorem

for vector fields in IR^3 .