Specification Document

Omkar Girish Kamath

October 8, 2022

Contents

1	Mod	lules in the processor	2
	1.1		2
			2
			2
	1.2		2
			2
			2
	1.3		3
			3
			3
	1.4		4
			4
			4
	1.5		5
			5
			5
	1.6		7
		1.6.1 Theory	7
			7
	1.7		7
			7
			7
		1.7.3 MUXAddress in RAM	7

1 Modules in the processor

1.1 RAM

1.1.1 Theory

1.1.2 Interface

1.2 Program Counter

1.2.1 Theory

Figure 1:

8 bit register used to store the address **current** instruction being executed. It is incremented after every *fetch-decode-execute-increment* cycle .

1.2.2 Interface

```
module pc (
d,
clk,
ce,
clr,
q
);
input [7:0] d;
input clk;
input ce;
input clr;
```

output [7:0]q;

signal name	$_{ m type}$	size
d	input	8 bits
clk	input	1 bit
ce	input	1 bit
clr	input	1 bit
q	output	8 bits

1.3 Instruction Register

1.3.1 Theory

Instruction Register (IR): 16 bit register, updated at the end of the fetch phase with the instruction to be processed (decoded and executed).

1.3.2 Interface

module ir (
d,
clk,
ce,
clr,
q

); input [15:0] d; input clk; input ce; input clr; output [15:0] q;

signal name	$_{\mathrm{type}}$	size
d	input	16 bits
clk	input	1 bit
ce	input	1 bit
clr	input	1 bit
q	output	16 bits

1.4 Decoder

1.4.1 Theory

1.4.2 Interface

$_{ m Name}$	size	function	$_{ m type}$
mux _a	1	ALU A input MUX control	output
mux_b	1	ALU B input MUX control	output
$\mathrm{mux}_{\mathrm{c}}$	1	address MUX control, selecting PC or IR	output
$\mathrm{en}_{\mathrm{da}}$	1	accumulator (ACC) register update control	output
$\mathrm{en}_{\mathrm{pc}}$	1	program counter (PC) register update control	output
$\mathrm{en}_{\mathrm{ir}}$	1	instruction register (IR) update control	output
$\mathrm{ram}_{\mathrm{we}}$	1	memory write enable control	output
$\mathrm{alu_c}$	5	ALU control line	output
ir	8	high byte of instruction register, contains opcode	input
zero	1	connected to ALU output, if 1 indicates result is zero	output
clk	1	system clock	input
ce	1	clock enable, normally set to 1, if set to 0 processor will HALT	input
clr	1	system reset, if pulsed high system will be reset	input

 $\mathrm{MUX}_{\mathrm{A}}: \mathrm{output}, \, \mathrm{ALU} \,\, \mathrm{A} \,\, \mathrm{input} \,\, \mathrm{MUX} \,\, \mathrm{control}$

MUX_B : output, ALU B input MUX control

 $\mathrm{MUX}_{\mathrm{C}}$: output, address MUX control, selecting PC or IR

EN_{DA}: output, accumulator (ACC) register update control

EN_{PC}: output, program counter (PC) register update control

EN_{IR}: output, instruction register (IR) update control

RAM_{WE}: output, memory write enable control

 $\mathrm{ALU}_{\mathrm{S0}}$: output, ALU control line

ALU_{S1}: output, ALU control line

ALU_{S2}: output, ALU control line

ALU_{S3}: output, ALU control line

 ALU_{S4} : output, ALU control line (combining all the ALU control lines we get a 5 bit out alu_c signal)

IR: input bus, 8bits, high byte of instruction register, contains opcode

ZERO : input, driven by 8bit NOR gate connected to ALU output, if 1 indicates result is zero

CARRY: input, driven by carry out (Cout) of ALU

CLK: input, system clock

CE: input, clock enable, normally set to 1, if set to 0 processor will HALT

CLR: input, system reset, if pulsed high system will be reset

1.5 Accumulator

1.5.1 Theory

Accumulator (ACC): 8 bit register, a general purpose data register, providing data (operand) to be processed by the ALU and used to **store** any result produced. Note, we can only store one 8 bit value at a time on the processor, other data values will need to be buffered in external memory.

1.5.2 Interface

```
module pc (d, clk, ce, clr,
```


Figure 2:

```
q
);
input [7:0] d;
input clk;
input ce;
input clr;
output [7:0]q;
```

$_{ m signal\ name}$	$_{ m type}$	size
d	input	8 bits
clk	input	1 bit
ce	input	1 bit
clr	input	1 bit
q	output	8 bits

- 1.6 ALU
- 1.6.1 Theory
- 1.6.2 Interface
- 1.7 MUX
- $1.7.1 \quad MUX_{IR \ to \ ALU}$
- 1.7.2 MUX_{PC to ALU}
- 1.7.3 MUX_{Address in RAM}