Pannon Egyetem Villamosmérnöki és Információs Tanszék

Számítógép Architektúrák II. (MIVIB344ZV)

1. előadás: Boole-algebra, logikai függvények (ismétlés)

Előadó: Dr. Vörösházi Zsolt

voroshazi.zsolt@mik.uni-pannon.hu

Kapcsolódó jegyzet, segédanyag:

- Angol nyelvű könyv:
 http://www.virt.uni-pannon.hu → Oktatás → Tantárgyak → Számítógép Architektúrák II.
- (chapter01.pdf)
- Fóliák, óravázlatok .ppt (.pdf)
- Feltöltésük folyamatosan

További ajánlott irodalom

- Dr. Holczinger, Dr. Göllei. Dr. Vörösházi: Digitális Technika I. (TAMOP 4.1.2A - 2012) : Digitalis technika I TAMOP
- Dr. Holczinger, Dr. Göllei. Dr. Vörösházi: Digitális Technika II. (TAMOP 4.1.2A - 2013) : Digitalis technika II TAMOP

Boole-algebra

(1815-1864)

- "Logikai operátorok" algebrája
- George Boole: először mutatott hasonlóságot az általa vizsgált logikai operátorok és a már jól ismert aritmetikai operátorok között.
- HW tervezés alacsonyabb absztrakciós szintjén rendkívül fontos szerepe van (specifikáció + logikai egyszerűsítés = "minimalizálás")

Boole-algebra elemei

- A vizsgált 3 alapművelet: AND, OR, NOT
- Tulajdonságaik (AND, OR esetén):
 - Kommutatív: A+B=B+A, A · B=B · A
 - **Asszociatív**: A+(B+C)=(A+B)+C=A+B+C $A\cdot(B\cdot C)=(A\cdot B)\cdot C=A\cdot B\cdot C$
 - **Disztributív**: $A \cdot (B+C)=A \cdot B+A \cdot C$, $A+(B \cdot C)=(A+B) \cdot (A+C)$
- Operátor precedencia (csökkenő sorrendben):
 - NOT
 - AND
 - OR
 - □ átzárójelezhetőség!

Bizonyítás: Disztributivitás

$$A+(B \cdot C) \stackrel{?}{=} (A+B) \cdot (A+C)$$

Α	В	С	A+B	A+C	(A+B) · (A+C)
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	1	1	1
1	0	0	1	1	1
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

Mivel a mindkét oldal kimeneti kombinációi azonosak, ezért egyenlőség áll fenn!

Boole algebra azonosságai = axiómák

1.)
$$\overline{A} = A$$

NOT

2.)
$$A + 0 = A$$

3.)
$$A+1=1$$

AND

4.)
$$A + A = A$$

5.)
$$A + \overline{A} = 1$$

6.)
$$A \cdot 1 = A$$

7.)
$$A \cdot 0 = 0$$

8.)
$$A \cdot A = A$$

9.)
$$A \cdot \overline{A} = 0$$

$$9.) A \cdot A = 0$$

10.)
$$A + A \cdot B = A$$
 *

11.) $A \cdot (A + B) = A$ *

Elnyelési tul.

12.)
$$A \cdot B + A \cdot \overline{B} = A$$

13.)
$$(A+B)\cdot (A+\overline{B}) = A$$

14.)
$$A + \overline{A} \cdot B = A + B^*$$

15.)
$$A \cdot (A + B) = A \cdot B$$

De-Morgan azonosságok:

16)
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

17.)
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Példa-1: Boole-algebrai azonosság igazolása igazságtáblával

• De-Morgan (17.) NAND: $\overline{A \cdot B} = \overline{A} + \overline{B}$

Α	В	A·B	NOT (A·B)
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Α	В	NOT A	NOT B	NOT(A) + NOT(B)
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

Dualitás elve

 Példa-2: Hasonló módon bizonyítsa be De-Morgan NOR (16.) azonosságot is igazságtábla segítségével!

M

Példa-3: Boole algebrai egyszerűsítések

Igaz-e a következő állítás:

$$\overline{A \cdot (B + C \cdot (B + \overline{A}))} = \overline{A} + \overline{B}$$

■ Megoldás: Belső zárójelek felbontása → egyszerűsítés

$$\overline{A \cdot (B + C \cdot (B + \overline{A}))} \stackrel{diszt}{=} \overline{A \cdot (B + C \cdot B + C \cdot \overline{A}))} =$$

$$A \cdot (B + C \cdot \overline{A})) = A \cdot B + A \cdot \overline{A} \cdot C = \overline{A \cdot B} = \overline{A + B}$$

Logikai hálózatok csoportosítása

Kétféle hálózatot különböztetünk meg:

- (K.H.) Kombinációs logikai hálózatról beszélünk: ha a mindenkori kimeneti kombinációk létrehozásához elég a bemeneti ("elsődleges") kombinációk pillanatnyi értéke.
- (S.H.) Sorrendi (szekvenciális) logikai hálózatról beszélünk: ha a mindenkori kimeneti kombinációt, nemcsak a pillanatnyi bemeneti kombináció, hanem a korábban fennállt állapot kombinációk és azok sorrendje is befolyásolja. (Ezen "másodlagos" kombinációk segítségével az ilyen hálózatok képessé vállnak arra, hogy az ugyanolyan bemeneti kombinációkhoz másmás kimeneti kombinációt szolgáltassanak.)

Kombinációs vs. sorrendi logikai hálózatok felépítése

■ Kombinációs hálózat: ﴿

Sorrendi hálózat:

11

Egyváltozós logikai függvények:

Jelmásoló ("buffer" - jel-erősítő):

be	ki
0	0
1	1

Nemzetközi szabvány

Magyar szabvány

Negálás - Inverter (NOT):

A

be	ki
0	1
1	0

Kétváltozós logikai függvények:

■ ÉS (AND):

 $A \cdot B$

Α	В	ki
0	0	0
0	1	0
1	0	0
1	1	1

VAGY (OR):

$$A + B$$

Α	В	ki
0	0	0
0	1	1
1	0	1
1	1	1

Antivalencia (XOR):

 $A \oplus B$

Α	В	ki
0	0	0
0	1	1
1	0	1
1	1	0

Kétváltozós log.függv. (folyt.):

■ NEM-ÉS (NAND):

$$\overline{A \cdot B}$$

Α	В	ki
0	0	1
0	1	1
1	0	1
1	1	0

Univerzálisan teljes rendszert a NAND illetve NOR függvény alkot!

■ NEM-VAGY (NOR):

$$A + B$$

Α	В	ki
0	0	1
0	1	0
1	0	0
1	1	0

Ekvivalencia (NXOR):

$$A \odot B$$

Α	В	ki
0	0	1
0	1	0
1	0	0
1	1	1

Definíció: Funkcionális teljesség

NOR → AND

NOR → OR

Funkcionálisan teljes / univerzális áramköri elemek:

- Logikai hálózatok esetén a CMOS VLSI technológiában a NAND, illetve NOR kapuk.
- (<u>Aritmetikai</u> egységek esetében ilyen univerzális építőelem az ,összeadó')

Tri-State Buffer:

- buszok esetén használatos: kommunikációs irány változhat
 - Driver: egyirányú kommunikációra
 - □ Transceiver: kétirányú kommunikációra
- 3 állapota lehet:
 - □ magas: '1'
 - □ alacsony: '0' (normál TTL szintek)
 - nagy impedanciás állapot: 'Z' mindkét kimeneti tranzisztor zár

Α	EN	OUT
0	1	0
1	1	1
X	0	Z

High-true enable

Low-true enable

