Assignment-1

Aravind

2024-02-01

#Reference:
#Data is taken from https://opendataphilly.org/dataset/philadelphia-universities-and-colleges/resource/baa34ebf-0352-4c33-a9f6-8ae061a50939
<pre>dataset1 = read.csv("C:/Users/aravi/OneDrive/Documents/Universities List - 1.csv") dataset1</pre>
University_names PARCEL_ID GROSS_AREA ShapeArea Shape Length
1 Temple University 155059 231347 231347.865
2519.9679 ## 2 Temple University 392760 47425 47426.015
1281.7251 ## 3 Temple University Medical 13161 29301 29348.387
707.2776 ## 4 Temple University Medical 324604 34030 33840.215
746.5503 ## 5 Temple University Medical 18474 22500 22697.679
602.6341 ## 6 Temple University Medical 272372 506603 498503.438
3085.6383 ## 7 University of the Arts 208422 13350 13349.988
477.9994 ## 8 University of the Arts 542656 38640 39003.837
931.2586 ## 9 University of the Arts 88046 16648 16634.061
708.5103 ## 10 University of the Arts 139329 13567 13747.561
469.1568 ## 11 University of the Arts 195308 5193 5213.345
340.0758 ## 12 University of the Arts 259264 19294 19378.185
615.5444 ## 13 University of the Arts 288419 4920 5144.847
327.9308 ## 14 University of the Arts 487380 21150 21081.861
581.2803 ## 15
208.3377 ## Code

```
## 1
      Green
## 2 Green
## 3
        Red
## 4
        Red
## 5
        Red
## 6
        Red
## 7 Orange
## 8 Orange
## 9 Orange
## 10 Orange
## 11 Orange
## 12 Orange
## 13 Orange
## 14 Orange
## 15
        Blue
#Quantitative Descriptive Statistics
mean(dataset1$Shape__Area)
## [1] 66539.13
sd(dataset1$Shape__Area)
## [1] 131862.3
#Categorical Variables
table(dataset1$Code)
##
##
    Blue Green Orange
                          Red
##
              2
                     8
                            4
dataset1$Shape__Area = mean(dataset1$Shape__Area) - sd(dataset1$Shape__Area)
dataset1$Shape_Area
## [1] -65323.15 -65323.15 -65323.15 -65323.15 -65323.15 -65323.15
## [8] -65323.15 -65323.15 -65323.15 -65323.15 -65323.15 -65323.15
## [15] -65323.15
#Below is the example for Histogram of Quantitative variables
#Scatter Plot
hist(dataset1$Shape__Length)
```

Histogram of dataset1\$Shape__Length


```
p = dataset1$Shape__Area
q = dataset1$Shape__Length
plot(p,q, main = "Area and Length", xlab = "Area", ylab = "Length")
```

Area and Length

