Chapter 2: The Logic of Compound Statements

Section 2.1: Logical Form and Logical Equivalence

Example A: Logical Form

Argument 1: If it is raining, then I am carrying an umbrella. It is raining. Therefore, I am carrying an umbrella.

Argument 2: If x is an integer, then x is rational. x is an integer. Therefore, x is rational. Form: If p, then q. p. Therefore, q.

Definition: A **statement** (or **proposition**) is a sentence that is true or false, but not both.

Example B: p = "It is raining." q = "I am carrying an umbrella."

Definition: A **tautology** is a statement form that is always true. A **contradiction** is a statement form that is always false.

Theorem 2.1.1: Logical Equivalences. Given any statement variables p, q, and r, a tautology \mathbf{t} and a contradiction \mathbf{c} , the following logical equivalences hold.

1.	Commutative laws:	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
2.	Associative laws:	$(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
3.	Distributive laws:	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$	
4.	Identity laws:	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
5.	Negation laws:	$p \lor \sim p \equiv \mathbf{t}$	$p \wedge \sim p \equiv \mathbf{c}$
6.	Double negative law:	$\sim (\sim p) \equiv p$	
7.	Idempotent laws:	$p \wedge p \equiv p$	$p \vee p \equiv p$
8.	Universal bound laws:	$p \lor \mathbf{t} \equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
9.	De Morgan's laws:	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$
10.	Absorption laws:	$p \lor (p \land q) \equiv p$	$p \land (p \lor q) \equiv p$
11.	Negations of \mathbf{t} and \mathbf{c} :	$\sim\!{f t}\equiv{f c}$	$\sim\!{f c}\equiv{f t}$