Chapter #9: Finite State Machine Optimization

Contemporary Logic Design

Randy H. Katz University of California, Berkeley

July 1993

Chapter Outline

- Procedures for optimizing implementation of an FSM
 - **State Reduction**
 - **State Assignment**
- Computer Tools for State Assignment: Nova, Mustang, Jedi
- Choice of Flipflops
- FSM Partitioning

Motivation

Basic FSM Design Procedure:

- (1) Understand the problem
- (2) Obtain a formal description
- (3) Minimize number of states
- (4) Encode the states
- (5) Choose FFs to implement state register

(6) Implement the FSM

This Chapter:

Next Chapter

Motivation

State Reduction

Odd Parity Checker: two alternative state diagrams

- Identical output behavior on all input strings
- FSMs are equivalent, but require different implementations
- Design state diagram without concern for # of states, Reduce later

Motivation

State Reduction (continued)

Implement FSM with fewest possible states

- Least number of flipflops
- Boundaries are power of two number of states
- Fewest states usually leads to more opportunities for don't cares
- Reduce the number of gates needed for implementation

Goal

Identify and combine states that have equivalent behavior

Equivalent States: for all input combinations, states transition to the same or equivalent states

Odd Parity Checker: S0, S2 are equivalent states
Both output a 0
Both transition to S1 on a 1 and self-loop on a 0

Algorithmic Approach

- Start with state transition table
- Identify states with same output behavior
- If such states transition to the same next state, they are equivalent
- Combine into a single new renamed state
- Repeat until no new states are combined

Row Matching Method

Example FSM Specification:

Single input X, output Z Taking inputs grouped four at a time, output 1 if last four inputs were the string 1010 or 0110

Example I/O Behavior:

X = 0010 0110 1100 1010 0011 ...

 $Z = 0000\ 0001\ 0000\ 0001\ 0000\ \dots$

Upper bound on FSM complexity:

Fifteen states (1 + 2 + 4 + 8)

Thirty transitions (2 + 4 + 8 + 16)

sufficient to recognize any binary string of length four!

Row Matching Method

State Diagram for Example FSM:

Row Matching Method

Initial State Transition Table:

		Next \$	State	Out	put
Input Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S_0	S_1	S_2	0	0
0	S ₁	S_3	S_4	0	0
1	S_2	S_5	S_6	0	0
00	S_3	S ₇	S ₈	0	0
01	S_4	S_9	S ₁₀	0	0
10	S_5	S ₁₁	S ₁₂	0	0
11	S ₃ S ₄ S ₅ S ₆	S ₁₃	S_{14}	0	0
000	S ₇	S_0	S_0	0	0
001	S ₇ S ₈ S ₉ S ₁₀	S_0	S ₀ S ₀ S ₀	0	0
010	S_9	S_0	S_0	0	0
0 11	S ₁₀	S_0	S_0	1	0
100	S ₁₁	S_0	S_0	0	0
101	S ₁₂	S_0	S_0	1	0
110	S ₁₃	S S S S S S S S S S S S S S S S S S S	S ₀ S ₀ S ₀	0	0
111	S ₁₁ S ₁₂ S ₁₃ S ₁₄	S_0	S_0	0	0

Row Matching Method

Initial State Transition Table:

		Next S	State	Output		
Input Sequence	Present State	X=0	X=1	X=0	X=1	
Reset	S_0	S_1	S_2	0	0	
0	S ₁	S_3	S_4	0	0	
1	S_2	S_5	S_6	0	0	
00	S_3	S_7	S ₈	0	0	
01	S_4	S_9	S ₁₀	0	0	
10	S_5	S ₁₁	S ₁₀ S ₁₂	0	0	
11	S ₃ S ₄ S ₅ S ₆	S ₁₃	S ₁₄	0	0	
000	S ₇ S ₈ S ₉	S_0	S_0	0	0	
001	S_8	S_0	S_0	0	0	
010	S_9	S_0	S_0	0	0	
011	S ₁₀	S_0	S_0	1	0	
100	S ₁₁	S_0	S_0	0	0	
101	S ₁₂	S_0	S_0	1	0	
110	S ₁₃	S_0	S_0	0	0	
111	S ₁₃ S ₁₄	S_0	S_0	0	0	

		Next	State	Output		
Input Sequence	ut Sequence Present State				X=1	
Reset	S_0	S ₁	S_2	0	0	
0	S_1	S_3	S_4	0	0	
1	S_2	S ₃ S ₅	Se	0	0	
00	S_3	S ₇ S ₉	S ₈	0	0	
01	S_4	S ₉	S' ₁₀	0	0	
10	S_5	S ₁₁	S ₁₀	0	0	
11	S_6	S ₁₃	S ₈ S ₁₀ S ₁₀ S ₁₄	0	0	
000	S ₇	S_0	S_0	0	0	
001	S_8	S_0	S_0	0	0	
010	S_9	S_0	S_0	0	0	
011 or 101	S' ₁₀	S ₀	$\mathring{S_0}$	1	0	
100	S ₁₁	S₀̈́	S ₀	0	0	
110	S ₁₃	l s₀	So	0	0	
111	S ¹ S ² S ³ S ⁴ S ⁵ S ⁶ S ⁷ S ⁸ S ⁹ S ¹	SSSSSSSSS	S S S S S S S S S S S S	0	0	

_	1-	_	State	Out	-
Input Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S_0	S ₁	S_2	0	0
0	S ₁	S_3	S_4	0	0
1	S_2	S ₃ S ₅	S ₄ S ₆	0	0
00	S_3	S_7	S_8	0	0
01	S_4	S ₇ S ₉	S' ₁₀	0	0
10	S_5	S_{11}	S ₁₀	0	0
11	S ₃ S ₄ S ₅ S ₆ S ₇ S ₈ S ₉	S ₁₃	S ₈ S' ₁₀ S' ₁₀ S ₁₄	0	0
000	S ₇	S_0	S_0	0	0
001	S ₈	S_0	$\tilde{S_0}$	0	0
010	S_9	S ₀ S ₀ S ₀	S ₀ S ₀ S ₀	0	0
011 or 101	S' ₁₀	S_0	S_0	1	0
100	S ₁₁	S_0	S_0	0	0
110	S ₁₃	S_0	$\tilde{S_0}$	0	0
111	S ₁₁ S ₁₃ S ₁₄	S ₀ S ₀ S ₀	S ₀ S ₀ S ₀	0	0

_			State		
Input Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S_0	S_1	S	0	0
0	S_1	S_3	S_4	0	0
1	S_2	S_5	S	0	0
00	S_3	S ₇	S ₇	0	0
01	S_4	S ₇	S' ₁₀	0	0
10	S_5	S ₇	S' ₁₀ S' ₁₀	0	0
11	S ₃ S ₄ S ₅ S ₆	S ₇	S ₇	0	0
not (011 or 101)	S' ₇	S_0	S	0	0
011 or 101	S' ₁₀	S_0	S_0	1	0

			State		
Input Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S_0	S_1	S_{2}	0	0
0	S_1	S_3	S_4	0	0
1	S_2	S_5	S	0	0
00	S_3	S_7	S' ₇	0	0
01	S_4	S ₇	S' ₁₀	0	0
10	S ₄ S ₅	S_7	S' ₁₀	0	0
11	S_6	S_7	S ₇	0	0
not (011 or 101)	S ₇	S_0	S	0	0
011 or 101	S' ₁₀	S_0	S_0	1	0

Output

Novt State

State Reduction

Row Matching Method

Final Reduced
State Transition Table

		Output			
Input Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S0	S 1	S2	0	0
0	S 1	S3'	S4'	0	0
1	S2	S4'	S3'	0	0
00 or 11	S3'	S7'	S7'	0	0
01 or 10	S4'	S7'	S10'	0	0
not (011 or 101)	S7'	S0	S0	0	0
011 or 101	S10'	S0	S0	1	0

Corresponding State Diagram

Row Matching Method

- Straightforward to understand and easy to implement
- Problem: does not allows yield the most reduced state table:

Example: 3 State Odd Parity Checker

	Next	State	
Present State	X=0	X=1	Output
S_0	S ₀	S ₁	0
S_1	S_1	S_2	1
S_2	S_2	$\overline{S_1}$	0

No way to combine states S0 and S2 based on Next State Criterion:

Implication Chart Method

New example FSM:

Single input X, Single output Z

Output a 1 whenever the serial sequence 010 or 110 has been observed at the inputs

State transition table:

		Next	State	Output		
Input Sequence	Present State	X=0	X=1	X=0	<u>X=1</u>	
Reset	S_0	S ₁	S_2	0	0	
0	S_1	S_3	S_4	0	0	
1	S_2	S_5	S_6	0	0	
00	S_3	S_0	S_0	0	0	
01	S_4	S_0	S_0	1	0	
10	S_5	S_0	S_0	0	0	
11	S_6°	S_0	$\tilde{S_0}$	1	0	

Implication Chart Method

State Reduction

Enumerate all possible combinations of states taken two at a time

Naive Data Structure: Xij will be the same as Xji Also, can eliminate the diagonal

Implication Chart

Implication Chart

Filling in the Implication Chart

Entry Xij — Row is Si, Column is Sj

Si is equivalent to Sj if outputs are the same and next states are equivalent

Xij contains the next states of Si, Sj which must be equivalent if Si and Sj are equivalent

If Si, Sj have different output behavior, then Xij is crossed out

Example:

S0 transitions to S1 on 0, S2 on 1;

S1 transitions to S3 on 0, S4 on 1;

So square X<0,1> contains entries S1-S3 (transition on zero) S2-S4 (transition on one)

S0 S1-S3 S2-S4

Implication Chart Method

Contemporary Logic Design FSM Optimization

State Reduction

Implication Chart Method

Results of First Marking Pass Second Pass Adds No New Information S3 and S5 are equivalent S4 and S6 are equivalent This implies that S1 and S2 are too:

			INEXI C	olale	ωp	ul
	Input Sequence	Present State	X=0	X=1	X=0	X=1
	Reset	S_0	S¦	S' ₁	0	0
Reduced State	0 or 1	S	S_3	S_4	0	0
Transition Table	00 or 10	$S_3^{'}$	S_0	S_0	0	0
	01 or 11	S_4	$I S_0$	S_0	1	0

n R.H. Katz Transparency No. 9-21

Multiple Input State Diagram Example

Present	I	Output			
State	00	01	10	11	·
S ₀ S₁	S_0	S ₁	S_2	S_3	1
S_1	S_0	S_3	S_1	S_5	0
S_2	S_1	S_3	S_2	S_4	1
S ₂ S ₃ S ₄	S_1	S_0	S_4	S_5	0
S_4	S_0	S_1	S_2	S_5	1
S ₅	Is₁	Sı	S	S	0

Symbolic State Diagram

State Diagram

Implication Chart Method

Does the method solve the problem with the odd parity checker?

S0 is equivalent to S2 since nothing contradicts this assertion:

Implication Chart Method

The detailed algorithm:

- 1. Construct implication chart, one square for each combination of states taken two at a time
- 2. Square labeled Si, Sj, if outputs differ than square gets "X". Otherwise write down implied state pairs for all input combinations
- 3. Advance through chart top-to-bottom and left-to-right. If square Si, Sj contains next state pair Sm, Sn and that pair labels a square already labeled "X", then Si, Sj is labeled "X".
- 4. Continue executing Step 3 until no new squares are marked with "X".
- 5. For each remaining unmarked square Si, Sj, then Si and Sj are equivalent.

When FSM implemented with gate logic, number of gates will depend on mapping between symbolic state names and binary encodings

4 states = 4 choices for first state, 3 for second, 2 for third, 1 for last = 24 different encodings (4!)

Example for State Assignment: Traffic Light Controller

HG	HY	FG	FY	Н	3	HY	FG	FY		nput	s	Present State	Next State		Outputs	3
00	01	10	11	1)	00	01	11	C	TL	TS	$Q_1 Q_0$	$P_1 P_0$	ST	H_1 H_0	$F_1 F_0$
00	01	11	10	1)	00	11	01	0	Χ	Χ	HG	HG	0	00	10
00	10	01	11	1)	01	00	11	Χ	0	Χ	HG	HG	0	00	10
00	10	11	01	1)	01	11	00	1	1	Χ	HG	HY	1	00	10
00	11	01	10	1)	11	00	01	Χ	Χ	0	HY	HY	0	01	10
00	11	10	01	1)	11	01	00	Χ	Χ	1	HY	FG	1	01	10
01	00	10	11	1	l	00	01	10	1	0	Χ	FG	FG	0	10	00
01	00	11	10	1	l	00	10	01		X	V	FG	FY	1	10	00
01	10	00	11	1	1	01	00	10	V	Λ 1	^	FG		1		
01	10	11	00	1	1	01	10	00	Λ.	l V	^		FY		10	00
01	11	00	10	1	1	10	00	01	Х	Χ	0	FY	FY	0	10	01
01	11	10	00	1	l	10	01	00	X	Χ	1 l	FY	HG	l 1	10	01

24 state assignments for the traffic light controller

Symbolic State Names: HG, HY, FG, FY

Some Sample Assignments for the Traffic Light Controller

Espresso input format:

```
.i 5
.07
.ilb c tl ts q1 q0
.ob p1 p0 st h1 h0 f1 f0
.p 10
0-- HG HG 00010
-0- HG HG 00010
11- HG HY 10010
--0 HY HY 00110
--1 HY FG 10110
10- FG FG 01000
0-- FG FY 11000
-1- FG FY 11000
--0 HY FY 01001
--1 HY HG 11001
.e
```

Random Assignments Evaluated with Espresso

```
i 5
.o 7
.ilb c tl ts q1 q0
.ob p1 p0 st h1 h0 f1 f0
.p 9
11-00 0110000
10-11 1101000
--101 1010000
--010 1001001
---01 01001001
---0- 0000010
0--11 1011000
-1-11 1011000
.e
```

26 literals
9 unique terms
several 5 and 4
input gates
13 gates total

i 5
.o 7
.ilb c tl ts q1 q0
.ob p1 p0 st h1 h0 f1 f0
.p 8
11-0- 1010000
--010 1000100
0--01 1010000
--110 0110100
--111 0011001
---0 0000010
--011 1101001
.e

21 literals 8 unique terms no 5 input gates, 24 input gates 14 gates total

Pencil & Paper Heuristic Methods

State Maps: similar in concept to K-maps
If state X transitions to state Y, then assign "close" assignments to X and Y

	Ass	ignn	nent
State Name		Q_1	Q_0
S_0	0	0	0
$S_1^{"}$	1	0	1
S_2	1	1	1
S_3	0	1	0
S_4	0	1	1

Assignment

Q_1	Q ₀	01	11	10
0	S ₀		S ₄	S ₃
1		Sı	S ₂	
State Map				

State Name		ignn Q₁	Q_0
S ₀ S ₁	0	0	0
	0	0	1
S ₂ S ₃	0	1	0
S_3^-	0	1	1
S_4	1	1	1

Assignment

Paper and Pencil Methods

Minimum Bit Distance Criterion

	First Assignment	Second Assignment
Transition	Bit Changes	Bit Changes
S0 to S1:	2	1
S0 to S2:	3	1
S1 to S3:	3	1
S2 to S3 :	2	1
S3 to S4:	1	1
S4 to S1 :		
	13	7

Traffic light controller: HG = 00, HY = 01, FG = 11, FY = 10 yields minimum distance encoding but not best assignment:

Paper & Pencil Methods

Alternative heuristics based on input and output behavior as well as transitions:

Highest Priority

Adjacent assignments to:

states that share a common next state (group 1's in next state map)

states that share a common ancestor state (group 1's in next state map)

Medium Priority

Lowest Priority

states that have common output behavior (group 1's in output map)

Pencil and Paper Methods

Example: 3-bit Sequence Detector

Highest Priority: (S3', S4')

Medium Priority: (S3', S4')

Lowest Priority: 0/1, 0/0: (S0, S1', S3') 1/0 1/0: (S0, S1', S3', S4')

Paper and Pencil Methods

Paper & Pencil Methods

Another Example: 4 bit String Recognizer

Highest Priority: (S3', S4'), (S7', S10')

Medium Priority: (S1, S2), 2x(S3', S4'), (S7', S10')

Lowest Priority: 0/0: (S0, S1, S2, S3', S4', S7') 1/0: (S0, S1, S2, S3', S4', S7')

Paper & Pencil Methods

State	Map			
Q 1				
Q2\	00	01	11	10
0	so			
1				

Q 1	Q0			
Q2	00	01	11	10
0	S0		S3'	
1			S4*	

Q1	Q0			
Q2\	00	01	11	10
0	S0		S3'	S7
1			S4'	S10'

Q1 Q2	Q0 00	01	11	10
0	S0	Ġ.	S3'	S7'
1		S2	S4'	S10'
•		(a	1)	

Q1 Q2	Q0 00	01	11	10
0	S 0			
1				

Q1	Q0			
Q2	00	01	11	10
0	S0			
1	\$7			S10'

,Q1	Q0			
Q2\	00	01	11	10
0	S0		ŝ	
1	S7'		S4	S10'

Q1				
Q2	00	01		10
0	S0	S1	S 3'	
1	S7'	S2	S4'	S10'
·		(b)	

00 = Reset = S0

(\$1, \$2), (\$3', \$4'), (\$7', \$10') placed adjacently

Effect of Adjacencies on Next State Map

Current	Next State		
State	X = 0	X = 1	,
$(S_0) 000$	001	101	
(S ₁) 001	011	111	
(S ₂) 101	111	011	
(S ₃) 011	010	010	
(S ₄ ') 111	010	110	
(S_7') 010	000	000	
(S' ₁₀) 110	000	000	
'	-		

$Q_0 X^{Q_2}$	Q ₁	01	11	10
Q ₀ X	0	0	0	X
01	-	0	0	Х
11	1	0	-	0
10	0	0	0	1
'	P ₂			

$Q_2 Q_1$ Q ₂ X 00 01 11 10					
$Q_0 X^{\frac{1}{2}}$	00	01	11	10	
Q ₀ X	0	0	0	Х	
01	0	0	0	X	
11	1	1	<u> </u>	-	
10	1	1	1	1	
	P ₁				

Q_2	Q_1			
$Q_0 \times \sqrt{}$	Q ₁ 00	01	11	10
Q ₀ X	1	0	0	X
01	1	0	0	Х
11	1	0	0	1
10	1	0	0	1
'	P_0			

Current State	Next S X = 0	State X = 1
(S ₀) 000	001	010
(S ₁) 001	011	100
(S ₂) 010	100	0 11
(S ₃ ') 011	101	101
(S ₄)100	101	110
(S ₇) 101	000	000
(S' ₁₀) 110	000	000

Q_{0}	Q_2	Q ₁ 00	01	11	10
0	X 00	0	0	0	0
	01	1	1	0	1
	11	0	0	Х	0
	10	1	0	Х	0
		 P ₁			

Q_2	Q_1			
$Q_0 \times \sqrt{\frac{1}{2}}$	Q ₁ 00	01	11	10
٥o <u> </u>	1	0	0	1
01	0	1	0	0
11	0	1	Х	0
10	1	1	Х	0
P ₀				

First encoding exhibits a better clustering of 1's in the next state map

One Hot Encodings

n states encoded in n flipflops

```
HG = 0001
HY = 0010
FG = 0100
FY = 1000
```

Complex logic for discrete gate implementation

```
.i 7
.0 9
.ilb c tl ts q3 q2 q1 q0
.ob p3 p2 p1 p0 st h1 h0 f1 f0
.p 10
0--0001000100010
-0-0001000100010
11-0001001010010
--0 0010 0010 00110
--10010010010110
10-0100010001000
0--0100100011000
-1-0100100011000
--00010100001001
--10010000111001
.e
```

.i 7

Espresso Inputs

Espresso Outputs

Computer-Based Methods

NOVA: State Assignment for 2-Level Circuit Networks

Input Constraints: states with same i/o mapped to same next state

Output Constraints: states which are successors of same predecessor

NOVA Input File for the Traffic Light Controller inputs current_state next_state outputs

```
0 - -
    HG HG
           00010
-0-
           00010
    HG HG
11-
    HG HY
           10010
--0
    HY HY 00110
--1
    HY FG
           10110
10-
    FG FG 01000
    FG FY 11000
-1-
   FG FY 11000
--0 FY FY 01001
--1 FY HG
           11001
```

nova -e <encoding strategy> -t <nova input file>

Computer-Based Methods

Greedy: satisfy as many input constraints as possible

Hybrid: satisfy input constraints, more sophisticated improvement strategy

I/O Hybrid: satisfy both input and output constraints

Exact: satisfy ALL input conditions

Input Annealing: like hybrid, but uses an even improvement strategy

1-Hot: uses a 1-hot encoding

Random: uses a randomly generated encoding

Computer-Based Methods

Greedy (-e ig):	<u>HG</u> 00	<u>HY</u> 11	<u>FG</u> 01	<u>FY</u>	# of Product Terms 9
Hybrid (-e ih):	00	11	10	01	9
Exact (-e ie):	11	10	01	00	10
IO Hybrid (-e ioh):	00	01	11	10	9
I Annealing (-e ia):	01	10	11	10	9
Random (-e r):	11	00	01	10	9

-z HG on the command line forces NOVA to assign 00 to state HG

Computer Based Methods

More NOVA Examples:

3-bit Recognizer

- S	0 S	10	
0	S1	S30	
1	S1	S4 0	
- S	3 S	0 0	
0	S4	S01	

S0 S	S1' S3'	S4' terms
Greedy: 00 0	1 11 10	4
Hybrid: 00 0'	1 10 11	4
Exact: 00 01	10 11	4
IO Hyb: 00 1	0 01 11	1 4
I Ann: 00 01	I 11 10	4
Random: 00	11 10 0	1 4

Computer Based Methods

More NOVA Examples:

4-bit Recognizer

0	S0	S1	0		
1	S0	S2	0		
0	S1	s3	0		
1	S1	S4	0		
0	S2	S4	0		
1	S2	s3	0		
- S	3 s7	7 0			
0	S4	s7	0		
1	S4	s7	0		
- S7 S0 0					
0	S10	S0	1		
1		S0	_		

Same adjacencies as the heuristic method

S0 S1 S2 S3' S4' S7' S10' terms

Greedy: 100 110 010 011 111 000 001 7
Hybrid: 101 110 111 001 011 000 010 7
Exact: 101 110 111 001 011 000 010 7
IO Hyb: 110 011 001 100 101 000 010 7
I Ann: 100 101 001 111 110 000 010 6
Rand: 011 100 101 110 111 000 001 7

Mustang

Oriented towards multi-level logic implementation

Goal is to reduce literal count, rather than product terms

Input Format:

```
.i 3
                     # inputs
.o 5
                     # outputs
.s 2
                     # of state bits
0--
     HG HG
             00010
-0-
     HG HG
             00010
11-
     HG HY
             10010
--0
     HY HY
             00110
     HY FG
             10110
--1
10-
             01000
     FG FG
0--
     FG FY
             11000
-1-
             11000
     FG FY
--0
             01001
     FY FY
--1
     FY HG
             11001
```

Mustang

Goal: maximum common subexpressions in next state function Encoding Strategies:

Random

Sequential

One-Hot

Fan-in: states with common predecessors given adjacent assignment

Fan-out: state with common next state and outputs given adjacent assignments

Mustang

Traffic Light:

HG HY FG FY # product terms

Random: 01 10 11 00 9

Sequential: 01 10 11 00 9

Fan-in: 00 01 10 11 8

Fan-out: 10 11 00 01 8

3 Bit String Recognizer:

S0 S1 S3' S4' # product terms

Random: 01 10 11 00 5

Sequential: 01 10 11 00 5

Fan-in: 10 11 00 01 4

Fan-out: 10 11 00 01 4

4 Bit String Recognizer:

S0 S1 S2 S3' S4' S7' S10' # product terms

Random: 101 010 011 110 111 001 000 8

Sequential: 001 010 011 100 101 110 111 8

Fan-in: 100 010 011 000 001 101 110 8

Fan-out: 110 010 011 100 101 000 001 6

To obtain multilevel implementations, must run misll

JEDI

of states; encoding bit length

Input Format:

.i 4

.o 4

Kinds of states

Kinds of outputs

enum States 42 HG HY FG FY

enum Colors 32 GREEN RED YELLOW

0--HG HG 0 GREEN RED

-0-HG HG 0 GREEN RED

11-HG HY 1 GREEN RED

-- 0 HY HY 0 YELLOW RED

--1 HY FG 1 YELLOW RED

10-FG FG 0 RED GREEN

0--FG FY 1 RED GREEN

-1-FG FY 1 RED GREEN

-- 0 FY FY 0 RED YELLOW

--1 FY HG 1 RED YELLOW

General encoding problems: best encodings for states and outputs

Encoding Strategies:

Random Straightforward

One Hot

Input Dominant

Output Dominant Modified Output Dominate

I/O Combination

ิ R.H. Katz Transparency No. 9-46

JEDI

```
Traffic Light:
```

HG HY FG FY Grn Yel Red # product terms t: 00 10 11 01 11 01 00 9

Input: 00 10 11 01 11 01 00 9
Output: 00 01 11 10 10 11 01 9
Comb: 00 10 11 01 10 00 01 9
Output': 01 00 10 11 10 00 01 10

3 Bit String Recognizer:

S0 S1 S3' S4' # product terms

Input: 01 10 11 00 4
Output: 01 10 11 00 4
Comb.: 10 11 00 01 4
Output': 10 11 00 01 4

4 Bit String Recognizer:

S0 S1 S2 S3' S4' S7' S10' # product terms

Input: 111 101 100 010 110 011 001 7
Output: 101 110 100 010 000 111 011 7
Comb.: 100 011 111 110 010 000 101 7
Output': 001 100 101 010 011 000 111 8

To obtain multilevel implementations, must run misll

Mustang vs. Jedi

Traffic Light Controller

Q1 = HL0 • TS + FL0 • TS' + FL0' • P1

Q0 = Q1 • C' • P1 + C • TL • P0' + TS' • P0

ST = Q0 • P0' + Q0' • P0

Mustang HL1 = FL0 + P1 • P0'

HL0=P1' • P0

FL1 = P1'

FL0 = HL0' • P0

Q1 = HL1 • C • TL + HL0 + FL1 • C • TL'

Q0 = HL0 • TS + FL1 + FL0 • TS'

ST = Q1 • HL1 + Q1' • FL0 + HL1' • FL1' • TS

HL1 = P1' • P0' Jedi HL0=P1 • P0'

FL1 = HL0' • P1

FL0=HL1' • P1'

Fewer wires

Fewer literals

J-K FFs: reduce gate count, increase # of connections

D FFs: simplify implementation process, decrease # of connections

Procedure:

- 1. Given state assignments, derive the next state maps from the state transition table
- 2. Remap the next state maps given excitation tables for a given FF
- 3. Minimize the remapped next state function

Examples

4 bit Sequence Detector using NOVA derived state assignment

Encoded	S	ta	te	,
Transition	٦ (Га	bl	e

	Next S	Out	put	
Present State	I=0	I=1	l=0	I=1
000 (S ₀)	011 (S ₁)	$010 (S_2)$	0	0
011 (S ₁)	101 (S ₃ ')	111 (S' ₄)	0	0
010 (S ₂)	111 (S' ₄)	101 (S ₃)	0	0
101 (S ₃)	100	100 (S ₇)	0	0
111 (S ₄)	(S' ₇)	110	0	0
100 (S /)	100	(S ₁₀)	0	0
110 (S ₁₀)	(S' ₇)	000	1	0

Encoded Next State Map

	Next State		
Present State	I=0	<u>l=1</u>	
000	011	010	
001	XXX	XXX	
010	111	101	
011	101	111	
100	000	000	
101	100	100	
110	000	000	
111	100	110	

D FF Implementation

$$D_{Q2+} = \overline{Q2 \cdot Q1 + Q0}$$

$$D_{Q1+} = Q1 \cdot Q0 \cdot I + Q2 \cdot Q0 \cdot I + Q2 \cdot Q1$$

$$D_{Q0+} = Q2 \cdot Q1 + Q2 \cdot I$$

6 product terms 15 literals

Contemporary Logic Design FSM Optimization

J-K Implementation

Remap	ned	Next	State
INCHIAP			

				, 10. 10		
	Next	State	J	K	J	K
Present State	I=0	I=1	I=0	I=0	l=1	<u> l=1</u>
000	011	010	011	XXX	010	XXX
001	XXX	XXX	XXX	XXX	XXX	XXX
010	111	101	1 X 1	X0X	1 X 1	X1X
011	101	111	1XX	X10	1XX	X00
100	000	000	X00	1XX	X00	1XX
101	100	100	X0X	0X1	X0X	0X1
110	000	000	XX0	11 X	XX0	11 X
111	100	110	XXX	011	XXX	001

Remapped Next State Table

J-K Implementation (continued)

$$J_{Q2+} = Q1$$

$$K_{Q2+} = \overline{Q0}$$

$$K_{02+} = Q_0$$

$$KQ1+ = Q0 \cdot I + Q0 \cdot I + Q2 \cdot Q0$$

$$JQ0+ = Q2 \cdot Q1 + Q2 \cdot I$$

$$KQ0+=Q2$$

9 unique terms 14 literals

Contemporary Logic Design FSM Optimization

Why Partition?

mapping FSMs onto programmable logic components:

limited number of input/output pins

limited number of product terms or other programmable resources

Example of Input/Output Partitioning.

5 outputs depend on 15 inputs

5 outputs depend on different overlapping set of 15 inputs

Introduction of Idle States

Before Partitioning

Introduction of Idle States

After Partitioning

Rules for Partitioning

Rule #1: Source State Transformation; SA is the Idle State

Rule #2: Destination State Transformation

Rules for Partitioning

Rule #3: Multiple Transitions with Same Source or Destination

Rule #4: Hold Condition for Idle State

Another Example

6 state up/down counter

building block has 2 FFs + combinational logic

6 State Up/Down Counter

Introduction of the two idle state SA, SB

Count sequence S0, S1, S2, S3, S4, S5: S2 goes to SA and holds, leaves after S5 S5 goes to SB and holds, leaves after S2

Down sequence is similar

Chapter Summary

Optimization of FSM

State Reduction Methods: Row Matching, Implication Chart State Assignment Methods: Heuristics and Computer Tools

Implementation Issues

Choice of Flipflops

Finite State Machine Partitioning