19 November 2020

Case-control study

Exposure	r	n-r
1	a	b
0	c	d

$$\hat{\beta}_0 = \log(\frac{c}{d})$$

$$\hat{\beta}_1 = \log(\frac{ad}{bc})$$

$$Var(\hat{\beta}_0) = \frac{1}{c} + \frac{1}{d}$$

$$Var(\hat{\beta}_1) = \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + \frac{1}{d}$$

$$Cov(\hat{\beta}_0, \hat{\beta}_1) = -\left(\frac{1}{c} + \frac{1}{d}\right)$$

Measure of performance of the logistic model

Pseudo \mathbb{R}^2	Formula
Cox & Snell	$R^2 = 1 - \left(\frac{L_0}{L_M}\right)^{2/n}$
	$R_{\rm max}^2 = 1 - L_0^{2/n}$
Nagelkerke / Cragg & Uhler	$R^2 = \frac{1 - \left(\frac{L_0}{L_M}\right)^{2/n}}{1 - L_0^{2/n}}$

where L_0 : the value of the likelihood function for a model with no predictors and L_M be the likelihood for the model being estimated. R^2 by Cox & Snell can be converted to R^2 in linear regression model.