

MINISTERIO DE MINAS Y ENERGIA

RESOLUCIÓN NÚMERO No 18 1331.

(AGO 06 2009)

Por la cual se expide el Reglamento Técnico de Iluminación y Alumbrado Público – RETILAP y se dictan otras disposiciones.

EL MINISTRO DE MINAS Y ENERGIA

En ejercicio de sus facultades legales, en especial las que le confiere, La Ley 697 de 2001, el Decreto 070 de 2001, El Decreto 2424 de 2006 y el Decreto 2501 del 2007.

CONSIDERANDO

Que la Ley 697 de 2001 "Mediante la cual se fomenta el uso racional y eficiente de la energía, se promueve la utilización de energías alternativas y se dictan otras disposiciones", declaró el Uso Racional y Eficiente de la Energía (URE) como un asunto de interés social, público y de conveniencia nacional, fundamental para asegurar el abastecimiento energético pleno y oportuno, la competitividad de la economía colombiana y la protección al consumidor.

Que el Artículo 4o. de la Ley 143 de 1994, establece que el Estado en relación con el servicio de electricidad tiene entre otros objetivos, el de abastecer la demanda de electricidad de la comunidad bajo criterios económicos y de viabilidad financiera, asegurando su cubrimiento en un marco de uso racional y eficiente de los diferentes recursos energéticos del país, así como mantener y operar sus instalaciones preservando la integridad de las personas, de los bienes y del medio ambiente.

Que la iluminación y el alumbrado público provienen de fuentes que utilizan la energía eléctrica.

Que el abastecimiento energético pleno y oportuno es un tema de Seguridad Nacional.

Que el uso racional y eficiente de energía además de contribuir al abastecimiento energético pleno, ayuda a la protección del medio ambiente.

Que el artículo 4º del Decreto 2501 de 2007 establece "El Ministerio de Minas y Energía expedirá el reglamento técnico correspondiente al uso racional y eficiente de energía eléctrica en iluminación y alumbrado público".

Que según el artículo 13º del Decreto 2424 de 2006 le corresponde al Ministerio de Minas y Energía expedir los reglamentos técnicos que fijen los requisitos mínimos que deben cumplir los diseños, los soportes, las luminarias y demás equipos que se utilicen en la prestación del servicio de alumbrado público. Así como, expedir la reglamentación correspondiente al ejercicio de la interventoría en los contratos de prestación del servicio de alumbrado público.

"Por la cual se expide el Reglamento Técnico de Iluminación y Alumbrado público RETILAP y se dictan otras disposiciones".

Que mediante la Ley 170 de 1994, se aprobó la adhesión de Colombia al Acuerdo de la Organización Mundial del Comercio.

Que Colombia aprobó mediante la Ley 172 de 1994, el tratado de Libre Comercio con los Gobiernos de Estados Unidos Mexicanos y con la República de Venezuela.

Que estos tratados, entre otros aspectos, contemplan el Acuerdo sobre Obstáculos al Comercio que exige la eliminación de cualquier norma o reglamento técnico de carácter obligatorio, que sin defender intereses legítimos de País se pueda constituir en obstáculo al libre comercio y establece un plazo para la eliminación de la obligatoriedad de las normas técnicas.

Que los reglamentos técnicos se establecen para garantizar la seguridad nacional, la protección de la salud o seguridad humana, de la vida o la salud animal o vegetal, o del medio ambiente y la prevención de prácticas que puedan inducir a error a los consumidores.

Que es necesario asegurar la calidad de las instalaciones de iluminación y alumbrado público y los productos que se utilizan en estas instalaciones para la correcta operación de los sistemas de iluminación y operación y prestación del servicio de alumbrado público, ya sean de origen nacional o provenientes de otro país.

Que mediante el Artículo 3 del Decreto 2522 de 2000, se instruyó a la Superintendencia de Industria y Comercio para que con base en el Decreto 1112 de 1996, señalara los criterios y las condiciones formales y materiales que deben cumplirse para la expedición de los reglamentos técnicos, por parte de las entidades competentes.

Que la Superintendencia de Industria y Comercio, en cumplimiento del Decreto 2522 de diciembre 4 de 2000, el 2 de febrero de 2001 expidió la Resolución 03742, señalando los criterios y condiciones que deben cumplirse para la expedición de un reglamento técnico de carácter obligatorio, cuyo propósito sea el de establecer las características de un producto, servicio o los procesos y métodos de producción.

Que el Artículo 7 del Decreto 2269 de 1993, dispone que los productos o servicios sometidos al cumplimiento de una Norma Técnica Colombiana Obligatoria o un reglamento técnico, deben cumplir con estos independientemente que se produzcan en Colombia o se importen. Los productos importados, para ser comercializados en Colombia, deben cumplir adicionalmente con las normas técnicas o reglamentos obligatorios del país de origen.

Que la Decisión 562 de la Comunidad Andina de Naciones, estableció directrices para la elaboración, adopción y aplicación de reglamentos técnicos en los Países miembros de la Comunidad Andina y a nivel comunitario.

Que de acuerdo con lo previsto en el Artículo 78 de la Constitución Política de Colombia: "... Serán responsables, de acuerdo con la ley, quienes en la producción y en la comercialización de bienes y servicios, atenten contra la salud, la seguridad y el adecuado aprovisionamiento a consumidores y usuarios....".

Que la normalización constituye herramienta esencial para el desarrollo de la economía, dado que propicia la mejora progresiva de la calidad de los bienes y servicios que se intercambian en el comercio internacional.

Que con el propósito de prevenir riesgos para la seguridad nacional, riesgos para la vida y la salud humana y animal, propiciar el uso racional y eficiente de energía y eliminar prácticas que puedan inducir a error a los consumidores, el Ministerio de Minas y Energía inició el proceso de elaboración del Reglamento Técnico de Iluminación y Alumbrado público – RETILAP-, con la participación de las partes interesadas.

"Por la cual se expide el Reglamento Técnico de Iluminación y Alumbrado público RETILAP y se dictan otras disposiciones".

Que una vez surtidos los trámites de notificación del presente Reglamento Técnico conforme con lo dispuesto en el Decreto 1112 de 1996, en la Decisión 419 de la Comunidad Andina y en las Leyes 170 y 172 de 1994; ante la Organización Mundial del Comercio, ante la Comunidad Andina y ante el Tratado de Libre Comercio entre los Gobiernos de los Estados Unidos Mexicanos, la República de Venezuela y la República de Colombia, respectivamente; no se produjeron observaciones a su contenido y alcance.

Por lo anterior,

RESUELVE

ARTÍCULO PRIMERO - Expedir el Reglamento Técnico de Iluminación y Alumbrado Público –RETILAP-, el cual está constituido por la presente resolución y su anexo técnico que consta de 243 páginas.

ARTÍCULO SEGUNDO. REVISIONES, MODIFICACIONES Y ACTUALIZACIONES: El Ministerio de Minas y Energía durante la vigencia del presente reglamento, podrá revisarlo para modificarlo o actualizarlo. Estas modificaciones atenderán los desarrollos tecnológicos vigentes en materia de iluminación y alumbrado público.

ARTÍCULO TERCERO - VIGENCIA. La presente resolución tendrá una vigencia de cinco (5) años contados a partir de los 6 meses siguientes a su publicación en el Diario Oficial. Si en la revisión a que hace referencia al artículo 2º se determina que resulta innecesaria la modificación, la vigencia del reglamento se entenderá renovada automáticamente.

ARTÍCULO CUARTO – APOYO EDUCATIVO. Dado que el conocimiento técnico en iluminación y alumbrado público es muy escaso y no existen programas especializados en el país, es necesario que en la página Web del Ministerio se mantenga un anexo técnico informativo actualizado que ayude a la capacitación de los diseñadores y constructores de sistemas de iluminación y alumbrado público.

ARTÍCULO QUINTO - DEROGATORIAS La presente resolución deroga las normas que le sean contrarias.

PUBLÍQUESE Y CÚMPLASE

Dada en Bogotá, D. C. AGO 06 2009

HERNAN MARTINEZ TORRES. MINISTRO DE MINAS Y ENERGÍA

MINISTERIO DE MINAS Y ENERGÍA

ANEXO GENERAL

REGLAMENTO TÉCNICO DE ILUMINACIÓN Y ALUMBRADO PÚBLICO. RETILAP

Agosto 2009

SECCIÓN 100 OBJETO		9
SECCIÓN 110 ALCANCE		10
110.1.1 Instalaciones de iluminación nuevas.		10
110.1.2 Ampliación de instalaciones de iluminación.		10
110.1.3 Remodelación de instalaciones de iluminación y alumbrado públic	0	10
110.2 CERTIFICACIÓN DE CONFORMIDAD CON EL PRESENTE REGLAME		4.4
110.3 PERSONAS 110.4 PRODUCTOS		
110.5 EXCEPCIONES.		11 14
SECCIÓN 120 DEFINICIONES Y ABREVIATURAS		
120.1 DEFINICIONES		15
120.2 ABREVIATURAS 120.3 ACRÓNIMOS Y SIGLAS		
		24
SECCIÓN 200 REQUISITOS GENERALES DE UN SISTEMA	DE IL	UMINACIÓN.
		26
200.1 RECONOCIMIENTO DEL SITIO Y OBJETOS A ILUMINAR:		
200.2 REQUERIMIENTOS DE ILUMINACIÓN:		26
200.3 CRITERIOS DE SELECCIÓN DE FUENTES LUMINOSAS Y LUMINARIA		
200.3.1 Documentos fotométricos:		26
200.3.2 Planos y ángulos de medición fotométrica y sistema de coordenad	as	2/
203.3 DURACIÓN O VIDA ÚTIL DE LA FUENTE LUMÍNICA 203.3.1 Curvas de Depreciación Luminosa de las Fuentes 203.3.2 Curva de Mortalidad ó de Vida Promedio de las fuentes luminosas 203.3.3 Fluio luminoso para diseño		29
203.3.2 Curva de Mortalidad ó de Vida Promedio de las fuentes luminosas	 	29
203.3.3 Flujo luminoso para diseño		30
203.3.4 Vida Económica de las fuentes y Análisis Económico de luminaria:	s	30
203.4 CARACTERÍSTICAS DE REPRODUCCIÓN CROMÁTICA Y DE TEMPE	RATURA D	E COLOR 30
SECCIÓN 210 GENERALIDADES DEL DISEÑO DE ILUMINACIÓN.		32
210.1 ILUMINACIÓN EFICIENTE.		32
210.2 EL PROCESO DE DISEÑO DE ILUMINACIÓN.		33
210.2.1 Análisis del proyecto.		33
210.2.2 Planificación básica.		
210.2.3 Diseño detallado.		34
210.2.4 Uso de soware para diseño de sistemas de iluminación.		35
210.3 USO RACIONAL DE ENERGÍA EN ILUMINACIÓN		36
210.3.1Sector residencial210.3.2 Sector comercial e industrial		
210.3.3 Alumbrado exterior y público	<u> </u>	37
SECCIÓN 220 LA ILUMINACIÓN EN EL ANÁLISIS DE RIESGOS		37
SECCIÓN 230 INSTRUMENTOS DE MEDICIÓN DE ILUMINACIÓN. 230.1 MEDIDOR DEL FLUJO LUMINOSO		00
230.2 MEDIDOR DEL FLUJO LUMINOSO 230.2 MEDIDOR DE ILUMINANCIA		
		38 39
230.4 PRUEBAS DE VERIFICACIÓN DE LOS EQUIPOS DE MEDICIÓN		39
230.3 MEDIDOR DE LUMINANCIA 230.4 PRUEBAS DE VERIFICACIÓN DE LOS EQUIPOS DE MEDICIÓN SECCIÓN 300 PEOUISITOS GENERALES DE LOS PRODUCTOS	DE	
SECCION 300 REGUISITOS GENERALES DE LOS PRODUCTOS	DE IEUN	MINACION O
ALUMBRADO PÚBLICO		
300.1 DISPOSICIÓN DE INFORMACIÓN DE PRODUCTOS. 300.2 INFORMACIÓN SOBRE CONDICIONES AMBIENTALES DE SERVICIO		40
300.2 IN CINMACION SOURCE CONDICIONES AMBIENTALES DE SERVICIO	·	40

390.2 Postes y brazos metálicos. 390.3 Postes de madera inmunizada.	
SECCIÓN 395. PRODUCTOS DEL ALCANCE DEL PRESENTE REGLAMENTO TIENEN DEFINÍDOS LOS REQUISITOS ESPECÍFICOS.	QUE NO
395.1 REQUISITOS	
SECCIÓN 410 REQUISITOS PARA LA ILUMINACIÓN INTERIOR	
410.1 APROVECHAMIENTO DE LA LUZ NATURAL.	8
410.1.1 COEFICIENTE DE LUZ DIURNA (cld)	82
410.1.2 Cálculo del cld	84
410.1.3 Dispositivos para controlar el ingreso de la luz natural	8
SECCIÓN 420 DISEÑO DE ALUMBRADO INTERIOR.	86
420.1 REQUISITOS GENERALES DEL DISEÑO	80
420.1.1 Control del deslumbramiento.	80
420.1.2 Uniformidad.	88
420. 1.3 Control del parpadeo y efectos estroboscopicos.	8
420.1.4 control del calor producido por las fuentes luminosas420.2 ALUMBRADO EN LOCALES DE TRABAJO INTERIOR.	8!
	o:
420.2.1 Alumbrado de oficinas	0.
420.2.3 Alumbrado industrial.	9
420.2.4 Alumbrado de establecimientos comerciales.	9:
SECCIÓN 430. CÁLCULOS PARA ILUMINACIÓN INTERIOR	9:
430.1 METODO DEL COEFICIENTE DE UTILIZACION DE LA INSTALACION (CU)	9
430.2 METODO DE CAVIDADES ZONALES	9
430.2.1 Índices de las cavidades430.2.2 Reflectancias efectivas de las cavidades zonales	9
430.2.2.1 La reflectancia	
430.2.3 Uso de tablas fotometricas de cu	9
430.2.4 Las curvas iso k.	9
430.2.4 Las curvas iso k	9
430.4 ESPECIFICACIONES TÉCNICAS DE BALASTOS, LUMINARIAS Y FUENTES.	9
430.5 MANTENIMIENTO EN INSTALACIONES DE ILUMINACIÓN INTERIOR.	9
330.5.1 El factor de mantenimiento	10
330.5.2 Depreciación producida por la suciedad acumulada en la luminaria (FE) 330.5.3 Depreciación por disminución del flujo luminoso de la bombilla (DLB)	10
SECCIÓN 440 ESPECIFICACIONES DE ILUMINACIÓN EN EL ALUMBRADO INTE	
440.1 NIVELES DE ILUMINANCIA Y DESLUMBRAMIENTO	10
440.2 UNIFORMIDAD 440.3 EFICIENCIA ENERGÉTICA EN LAS INSTALACIONES DE ILUMINACIÓN	10
440.3.1 Datos previos a tener en cuenta ene I diseño de iluminación	10
440.3.2 Método de cálculo	10
SECCIÓN 450 CONTROL DEL ALUMBRADO INTERIOR450.1 CONTROL DE ENCENDIDO/APAGADO MANUAL:	10 10
450.2 ATENUACIÓN DEL FLUJO LUMINOSO DE LAS BOMBILLAS O DIMERIZACIÓN MA	
450.4 PASOS ESCALONADOS CON CONTROL AUTOMÁTICO	10
450.3 CONTROL DE ENCENDIDO / APAGADO AUTOMÁTICO 450.4 PASOS ESCALONADOS CON CONTROL AUTOMÁTICO 450.5 SISTEMAS DE CONTROL AUTOMÁTICOS DE ILUMINACIÓN:	10
SECCIÓN 460 LA DOMÓTICA Y LA INMÓTICA EN LA ILUMINACIÓN	
SECCIÓN 470 ALUMBRADO DE EMERGENCIA.	11′

70.2 REQUISITOS DEL ALUMBRADO DE EMERGENCIA	
70.2.1 Alumbrado de emergencia permanente, alimentado por un siste	
utomantenido	······································
70.2.2 Alumbrado de emergencia no permanente con encendido autor	
70.2.3 Luces de emergencia.	
70.2.4 Localización de las luminarias de emergencia.	· · · · · · · · · · · · · · · · · · ·
70.2.5 Características de la instalación del alumbrado de emergencia. 70.3 SEÑALIZACIÓN E ILUMINACIÓN DE LOS MEDIOS DE EVACUACI	
70.3 SENACIZACIÓN E ILOMINACIÓN DE LOS MEDIOS DE EVACUACIÓN.	
ECCIÓN 480 ILUMINACIÓN DE AMBIENTES ESPECIALES.	
80.1 LUGARES CLASE I DIVISIÓN 1.	
80.2 LUGARES CLASE I DIVISIÓN 2	
	
80.4 LUGARES CLASE II DIVISIÓN 2.	
80.5 EQUIPOS DE ALUMBRADO EN LUGARES CLASE III DIVISIO	ONES 1 Y 2.
ECCIÓN 490 PROCEDIMIENTOS PARA LAS MEDICIONE	S FOTOMÉTRICAS
90.1 MEDICIÓN DE ILUMINANCIA GENERAL DE UN SALÓN	<u> </u>
90.1.1 Razones que hacen necesaria las mediciones de iluminancia g	eneral
90.2 MEDICIÓN DE ILUMINANCIA EN PUESTOS DE TRABAJO:	
90.3 RESULTADOS DELAS MEDICIONES	
ECCIÓN 540 DISEÑO DE ALUMDRADO DÚBLICO	
ECCIÓN 510 DISEÑO DE ALUMBRADO PÚBLICO.	
10.1 REQUISITOS PARA EL DISEÑO DE ALUMBRADO PÚBLICO.	
10.1.1 Requerimientos de visibilidad.	
10.1.2 Evaluación económica y financiera 10.1.3 Los requerimientos estéticos contemplados en las normas de r	
10.1.4 Las condiciones ambientales y de contaminación y facilidades	· · · · · · · · · · · · · · · · · · ·
10.2 Características de cantidad y calidad de la luz para alumbrado pú	
10.2.1 Confiabilidad de la percepción.	
10.2.2 Comodidad visual	
10.2.3 Relación de alrededores (SR)	
10.3 CLASES DE ILUMINACIÓN SEGÚN LAS CARACTERISTICAS DE I	_AS VÍAS
10.3.1 Vías vehiculares:	
10.3.2 Vías para tráfico peatonal y ciclistas:	
10.4 NIVELES EXIGIDOS DE LUMINANCIA E ILUMINANCIA EN ALUME	RADO PÚBLICO
10.4.1 Clases de iluminación para vías vehiculares.	
10.4.2 Tipos de iluminación para vías peatonales y de ciclistas	
10.4.3 Tipos de iluminación para areas críticas 10.5 USO RACIONAL Y EFICIENTE DE ENERGÍA EN EL DIS	
LUMBRADO PÚBLICO	
10.5.1 Máxima densidad de potencia eléctrica para alumbrado de vías	
10.5.2 Guías de visibilidad en vias de velocidades elevadas	
10.6 LOCALIZACIÓN DE LUMINARIAS	lu a a l f u
10.6.1 principales configuraciones de localización de puntos de ilum	inacion
10.6.2 Casos especiales de disposición de luminarias 10.7 COEXISTENCIA DE LAS LUMINARIAS DE ALUMBRADO PÚBLICO	
10.7 COEXISTENCIA DE LAS LUMINARIAS DE ALUMBRADO PUBLICO AS VÍAS.	
ECCIÓN 520 DISEÑOS FOTOMETRICOS	
20.1 CRITERIOS DE DISEÑO 20.2 USO DE SOFTWARE EN EL DISEÑO FOTOMETRICO DE ALUMBI	
20.2 USO DE SOFTWARE EN EL DISENO FOTOMETRICO DE ALUMB!	KADO PUBLICO

Continuación Anexo General Reglamento Técnico de Iluminación y Alum	brado Público - RETILA
530.1 CÁLCULOS DE ILUMINANCIA.	14
530.1.1 Cálculo de la iluminancia en un punto.	14
530.1.2 Cálculo de la iluminancia promedio de una vía	14
530.1.3 Cálculos computarizados de iluminancia	1!
530.2 CÁLCULO UNIFORMIDAD GENERAL DE ILUMINANCIA EN ALUMBI	RADO PÚBLICO 1
530.2.1 Calculo del coeficiente de uniformidad general de iluminancia.	
530.3 CÁLCULO DEL VALOR DE RELACIÓN DE ALREDEDORES-SR	
530.4 DETERMINACIÓN DEL ESQUEMA DE MANTENIMIENTO D	
ALUMBRADO PÚBLICO.	
530.5 CÁLCULOS DE LUMINANCIA	
530.5.1 Cálculo de la luminancia en un punto.	
530.5.2 Cálculo de la luminancia promedio sobre la vía.	
530.5.3 Cálculo de las características de calidad de la luminancia.	
530.6. CALCULO DE DESLUMBRAMIENTO.	
	1(
530.6.1 Cálculo de la luminancia de velo (Lv) o deslumbramiento incapac	IUVO 10
530.5.2 Deslumbramiento de incomodidad	16
530.6 CÁLCULO DEL INCREMENTO DEL UMBRAL (TI) EN UNA INSTAI PÚBLICO	ACION DE ALUMBRAI
SECCIÓN 540. MEDICIONES FOTOMÉTRICAS DE ALUMBRADO	
540.1 EVALUACIÓN DEL VANO SELECCIONADO PARA LA MEDICIÓN	
540.2 PROCEDIMIENTO DE MEDICIÓN	1
540.3 MARCACIÓN DE LA VÍA	1
540.4 Malla de medición	1
540.4.1 Medición De Iluminancia	'
540.4.2 Medición de la luminancia	1
540.5 MEDICIONES POR TIPOS DE VÍAS	1
540.5.1 Evaluación de luminancia	1
	1
540.5.4 Selección de los medios de medición.	
540.5.5 Casos en los cuales no es factible la medición	
540.5.6 Competencia de personal responsable de las mediciones	1
540.5.7 Informe de la medición 540. 6 REDES DE ALIMENTACIÓN DEL SISTEMA DE ALUMBRADO PÚBL	ICO 1
540. 6 REDES DE ALIMENTACION DEL SISTEMA DE ALUMBRADO PUBL	.ico 1 1
540.6.1 Topología de la red eléctrica:	
540.6.2 Regulación de tensión:	
540.6 3 Protecciones: 540.7 CALCULO DE COSTOS DE INSTALACIÓN Y MANTENIMIENTO DEI	
540.7 CALCULO DE COSTOS DE INSTALACION Y MANTENIMIENTO DEI	- ALUMBRADO PUBLIC 181
SECCIÓN 550 ILUMINACIÓN DE OTRAS ÁREAS DEL ESPACIO PÚ	BLICO 18
550.1 ILUMINACIÓN DE GRANDES ÁREAS DEL ESPACIO PÚBLICO	1
550.2 Iluminación de fachadas de Edificios y Monumentos Públicos	12
550.3 ILUMINACIÓN DE ESCENARIOS DEPORTIVOS O RECREATIVOS	18
550.3.1 Criterios generales.	
550.3.2 Control Del Efecto Estroboscópico	
550.3.3 Disposición de postes que soportan los equipos de alumbrado de	
· · · · · · · · · · · · · · · · · · ·	
550.3.4 Canchas múltiples550.3.5 Canchas de fútbol	
SECCIÓN 560 ILUMINACIÓN DE TÚNELES.	
560.1 PARÁMETROS DE DISEÑO PARA ILUMINACIÓN DE TÚNELES	1
560.2 CLASIFICACIÓN DE LOS TÚNELES	
560.3 REQUISITOS PARA LA ILUMINACIÓN DE TÚNELES DURANTE EL D	
560.4 REQUISITOS PARA LA ILUMINACIÓN DE TÚNELES DURANTE LA M	NOCHE 19
560.5 VISIBILIDAD DENTRO DE UN TÚNEL ILUMINADO.	19

730.1 MANTENIMIENTO PREVENTIVO

_____224

Continuación Anexo General Reglamento Técnico de Iluminación y Alumbrado Público -	RETILAP
730.1.1 REEMPLAZOS MASIVOS DE BOMBILLAS.	225
730.1.2 OPERACIONES DE LIMPIEZA DE LUMINARIAS Y SOPORTES	225
730.2 MANTENIMIENTO CORRECTIVO	
SECCIÓN 740 INTERVENTORÍA DEL SERVICIO DE ALUMBRADO PÚBLICO	226
SECCIÓN 810 ENTIDADES DE VIGILANCIA.	230
810.1 SISTEMAS DE ALUMBRADO PÚBLICO	230
810.2 PRODUCTOS DE ILUMINACIÓN Y SISTEMAS DE ILUMINACIÓN DISTINTOS AL ALU	
PÚBLICO.	230
810.3 ORGANISMOS ACREDITADOS	231
810.4 PERSONAS NATURALES QUE ACTUAN EN LAS INSTALCIONES DE ILUMINA ALUMBRADO PÚBLICO.	
SECCIÓN 820 EVALUACIÓN DE LA CONFORMIDAD	231
820.1 ACREDITACIÓN.	
820.2 LABORATORIOS DE PRUEBAS Y ENSAYOS.	231
820.3 CERTIFICACION DE PRODUCTOS.	232
820.3.1 Certificación de productos de uso directo y exclusivo del importador	
820.3.2 Principales regulaciones para trámites de certificación y acreditación	
820.4 ROTULADO DE PRODUCTOS. 820.5 CERTIFICACIÓN DE CONFORMIDAD DE INSTALACIONES DE ILUMINACIÓN Y ALL	234
PÚBLICO.	234
810.5.1 Declaración de cumplimiento	
820.5.2 Inspección con fines de certificación del sistema de iluminación	235
820.5.3 Componentes del dictamen del organismo de inspección.	
820.5.4 Formatos para el dictamen de inspección	
820.5.5 Excepciones del dictamen de inspección.	240
SECCIÓN 830 REGIMEN SANCIONATORIO.	240
SECCIÓN 900 MECANISMOS DE DEMOSTRACIÓN DE LA CONFORMIDAD:	241
900.1 CERTIFICADOS DE CONFORMIDAD DE PRODUCTOS	241
900.1 INSPECCIÓN DE INSTALACIONES DE ILUMINACIÓN O ALUMBRADO PÚBLICO C DE CERTIFICACIÓN.	ON FINES 241
SECCIÓN 1010 INTERPRETACIÓN	242
SECCIÓN 1020 REVISIÓN Y ACTUALIZACIÓN	242
SECCIÓN 1030 VIGENCIA	243
	=

CAPÍTULO 1 INTRODUCCIÓN

SECCIÓN 100 OBJETO

El presente Reglamento Técnico tiene por objeto fundamental establecer los requisitos y medidas que deben cumplir los sistemas de iluminación y alumbrado público, tendientes a garantizar: los niveles y calidades de la energía lumínica requerida en la actividad visual, la seguridad en el abastecimiento energético, la protección del consumidor y la preservación del medio ambiente; previniendo, minimizando o eliminando los riesgos originados por la instalación y uso de sistemas de iluminación.

El Reglamento establece las reglas generales que se deben tener en cuenta en los sistemas de iluminación interior y exterior y dentro de estos últimos los de alumbrado público, en el territorio colombiano, inculcando el uso racional y eficiente de energía (URE) en iluminación. En tal sentido señala las exigencias y especificaciones mínimas para que las instalaciones de iluminación garanticen la seguridad y confort con base en su buen diseño y desempeño operativo, así como los requisitos de los productos empleados en las mismas.

El reglamento igualmente es un instrumento técnico-legal para Colombia, que sin crear obstáculos innecesarios al comercio o al ejercicio de la libre empresa, permite garantizar que las instalaciones, equipos y productos usados en los sistemas de iluminación interior y exterior, cumplan con los siguientes objetivos legítimos:

- La seguridad nacional en términos de garantizar el abastecimiento energético mediante uso de sistemas y productos que apliquen el Uso Racional de Energía
- La protección de la vida y la salud humana.
- La protección de la vida animal y vegetal.
- La prevención de prácticas que puedan inducir a error al usuario.
- La protección del Medio Ambiente

Para cumplir estos objetivos legítimos, el presente Reglamento Técnico se basó en los siguientes objetivos específicos:

- a) Fijar las condiciones para evitar accidentes por deficiencia en los niveles de iluminación, luminancia y uniformidad en vías, vivienda, sitios de trabajo, establecimientos que presten algún servicio al público, lugares donde se concentren personas bien sea por motivos, comerciales, culturales o deportivos, viviendas.
- b) Establecer las condiciones para prevenir accidentes o lesiones en la salud visual causados por sistemas de iluminación deficientes.
- c) Fijar las condiciones para evitar el desperdicio de iluminación en dirección de la bóveda celeste causada por mal diseño de instalaciones o ejecuciones defectuosas.
- d) Establecer las condiciones para evitar alteraciones en los ciclos naturales de animales causada por desperdicio en iluminación intrusiva continua en su hábitat.
- e) Establecer las condiciones para evitar daños o realización de riesgos laborales debidos a deslumbramiento causado por exceso o carencia de luz.
- f) Establecer las eficacias mínimas, los valores de pérdidas y las eficiencias para algunas fuentes luminosas, balastos y luminarias.
- g) Unificar parámetros y minimizar las deficiencias en los diseños de iluminación interior y exterior.
- h) Establecer claramente las responsabilidades que deben cumplir los diseñadores, constructores, interventores, operadores, inspectores, propietarios y usuarios de instalaciones de iluminación, además de los fabricantes, distribuidores o importadores de materiales o equipos y las personas

jurídicas relacionadas con la gestión, operación y prestación del servicio de alumbrado público.

DE

- i) Prevenir los actos que puedan inducir a error a los usuarios, tales como la utilización o difusión de indicaciones incorrectas o falsas o la omisión de datos verdaderos que no cumplen las exigencias del presente Reglamento.
- j) Fijar los requisitos de algunos productos destinados a iluminación, orientados a lograr su confiabilidad y compatibilidad.
- k) Exigir requisitos para contribuir con el uso racional y eficiente de la energía y con esto a la protección del medio ambiente y el aseguramiento del suministro eléctrico.
- I) Fijar los requerimientos y procedimientos para demostrar la conformidad con el presente reglamento.

SECCIÓN 110 ALCANCE

El presente reglamento aplica a las instalaciones de iluminación, tanto interior como exterior y en esta el alumbrado público, a los productos utilizados en ellas y a las personas que las intervienen, en los siguientes términos:

110.1 INSTALACIONES

Para efectos de este Reglamento, se consideran como instalaciones de iluminación los circuitos eléctricos de alimentación, las fuentes luminosas, las luminarias y los dispositivos de control, soporte y fijación que se utilicen exclusivamente para la iluminación interior y exterior de bienes de uso público y privado, dentro de los límites y definiciones establecidos en el presente Reglamento.

Los requisitos y prescripciones técnicas de este Reglamento serán de obligatorio cumplimiento en Colombia, en todas las instalaciones nuevas, remodelaciones o ampliaciones, públicas o privadas.

Las prescripciones técnicas del presente Reglamento serán exigibles en condiciones de operación normal de las instalaciones. No serán exigibles en los casos de fuerza mayor o de orden público que las alteren; en estos casos, el propietario de la instalación procurará reestablecer las condiciones exigidas por el presente reglamento en el menor tiempo posible.

Todas las instalaciones objeto del presente reglamento deben demostrar su cumplimiento mediante certificado de conformidad, para ello en toda instalación de iluminación construida, ampliada o remodelada depuse de la entrada en vigencia del presente reglamento, la persona calificada responsable de su construcción, deberá suscribir una declaración de cumplimiento del reglamento en los formatos definidos en el presente Anexo General. Adicionalmente, algunas instalaciones de iluminación y alumbrado público deberán contar con un dictamen de inspección que valide la declaración de cumplimiento suscrita por el responsable de la construcción.

La declaración de conformidad y el dictamen del organismo de inspección con el presente Reglamento serán complementarios de los expedidos para demostrar la conformidad con el RETIE de las instalaciones de alimentación del sistema de iluminación o alumbrado público.

El presente Reglamento Técnico se aplica a toda instalación de iluminación o alumbrado público construida, ampliada o remodelada a partir de su entrada en vigencia, de conformidad con lo siguiente:

110.1.1 INSTALACIONES DE ILUMINACIÓN NUEVAS.

Se considera **instalación de iluminación nueva** aquella que se construya con posterioridad a la fecha de entrada en vigencia del presente Reglamento Técnico de Iluminación y Alumbrado Público - RETILAP.

110.1.2 AMPLIACIÓN DE INSTALACIONES DE ILUMINACIÓN.

Se entenderá como **ampliación de una instalación de iluminación** la que implique aumento de área con requerimiento de iluminación, instalación de nuevas fuentes de iluminación, modificación de las potencias de las fuentes montaje adicional de dispositivos, equipos y luminarias.

110.1.3 REMODELACIÓN DE INSTALACIONES DE ILUMINACIÓN Y ALUMBRADO PÚBLICO.

Se entenderá como **remodelación de una instalación de iluminación** la sustitución de dispositivos, equipos, controles, luminarias y demás componentes de la instalación de iluminación. La parte remodelada deberá demostrar la conformidad con el presente reglamento.

110.2 CERTIFICACIÓN DE CONFORMIDAD CON EL PRESENTE REGLAMENTO.

Toda instalación de iluminación construida, remodela o ampliada durante la vigencia del RETILAP requiere de la declaración de conformidad con este reglamento, suscrita por la persona calificada responsable de la construcción del sistema de iluminación.

Las instalaciones que en este reglamento se determina, como mecanismo de demostración de la conformidad, adicional a la declaración del responsable de la construcción requieren de un dictamen de inspección. Las instalaciones de iluminación y alumbrado público que se les exija este requisito según en los requisitos específicos para cada tipo de iluminación:

110.3 PERSONAS

Este Reglamento deberá ser observado y cumplido por todas las personas naturales o jurídicas que diseñen, construyan, mantengan y ejecuten actividades relacionadas con las instalaciones de iluminación y Alumbrado Público. Así como por los productores, importadores y comercializadores de los productos objeto del presente reglamento.

El responsable del diseño deberá entregar un documento suscrito y firmado por él donde se manifieste que el diseño cumple los requisitos aplicables del RETILAP; y responderá por los efectos de esa iluminación.

110.4 PRODUCTOS

Arrancadores para bombillas de sodio alta presión

Son objeto del presente reglamento los productos usados en sistemas de iluminación contemplados en la Tabla 110-3.1, los cuales son de mayor utilización en iluminación y alumbrado público y están directamente relacionados con el objeto y campo de aplicación de este Reglamento, tales productos deben demostrar su conformidad con el RETILAP, mediante un certificado de producto.

Arrancadores para lámparas fluorescentes
Atenuador automático de luminosidad
Atenuador manual de luminosidad (Dimmer)
Balasto electromagnético autorregulado o tipo CWA
Balasto para lámparas o bombillas fluorescentes de arranque instantáneo (Slim Line)
Balasto para lámparas o bombillas fluorescentes de arranque rápido (Rapid Start)
Balasto para lámparas ó bombillas fluorescentes de precalentamiento (Preheat)
Balasto electromagnético tipo autotransformador
Balasto electromagnético tipo reactor o serie
Balastos electrónicos
Balastos doble potencia
Bases para fotocontrol
Bombillas incandescentes de potencia mayor a 25 W y menor de 200 W.
Bombillas Incandescente halógena
Bombillas de descarga en gas a alta presión
Bombillas de descarga en gas a baja presión
Bombillas de halogenuros metálicos
Bombillas de mercurio de alta presión
Bombillas de sodio a baja presión
Bombillas de vapor de sodio alta presión
Bombillas fluorescentes compactas integradas y no integradas
Lámparas incandescentes para alumbrado de emergencia
Lámparas tipo tubo fluorescente de encendido instantáneo (Slim line)
Lámparas tipo tubo fluorescente de encendido rápido (Rapid start)
Lámparas tipo tubo fluorescente de precalentamiento (Preheat)

RESOLUCION No. 18 1331

Continuación Anexo General Reglamento Técnico de Iluminación y Alumbrado Público - RETILAP

Condensadores tipo seco y cubierta plástica para luminarias de descarga en gas
Contactores para sistemas de iluminación exterior
Dimmers o atenuadores de intensidad
Equipos para control automático de iluminación
Fotocontroles
Fotocontroles con contactos normalmente abiertos
Fotocontroles de contactos normalmente cerrados
Fotocontroles temporizados
Fusible para luminaria de alumbrado público
Luminarias para alumbrado interior. Directas e indirectas o combinadas, provistas o no con
difusor, rejilla o refractor
Luminarias para alumbrado ornamental. Directas e indirectas o combinadas, provistas o no con
difusor, rejilla o refractor
Luminarias para alumbrado público. Directas e indirectas o combinadas, provistas o no con
difusor, rejilla o refractor
Luminarias para túneles
Lumiductos o ductos de luz
Portabombillas
Portabombilla para bombillas de sodio
Portalámparas para tubos fluorescentes
Portafusibles para luminarias de alumbrado público
Postes de concreto exclusivos para alumbrado público
Postes metálicos exclusivos para alumbrado público
Proyectores
Proyectores sumergibles para fuentes ornamentales de agua o piscinas
Rieles eléctricos para instalación de luminarias tipo spot
Sensor fotoeléctrico
Sensor ocupacional infrarrojo
Sensor ocupacional ultrasónico
Soportes o brazos metálicos para luminarias de alumbrado público

Tabla 110.4 A Productos objeto del RETILAP.

Nota: El presente Reglamento aplica a los productos con los nombres comerciales definidos en la Tabla 110.4 A y no a las partidas arancelarias en las que se pueda clasificar, ya que en esta se pueden clasificar productos que no son objeto del RETILAP.

Para efectos del control y vigilancia de los productos objeto del RETILAP, la Tabla 110-3.2 muestra algunas partidas arancelarias y las notas marginales que precisan las condiciones en las cuales un producto, que siendo objeto del RETILAP se puede excluir de su cumplimiento, por ser destinado a aplicaciones por fuera del alcance del Reglamento y por tal razón no requieren demostrar conformidad con el RETILAP. Cuando se haga uso de exclusiones, estas se probarán ante la entidad de control, con los mecanismos previstos en la normatividad vigente.

Partida arancelaria	Descripción según arancel	Nota marginal para aplicar o excluir un producto del cumplimiento del RETILAP
8504.10.00.00	Balastos (reactancias) para lámparas o tubos de descarga	No aplica cuando se fabriquen o importen para incorporarlos como parte integral de automotores, navíos, aeronaves, electrodomésticos, equipos de electromedicina y demás aparatos, máquinas y herramientas siempre que tales máquinas o herramientas no estén consideradas como instalaciones eléctricas especiales en el RETIE o la NTC 2050 Primera Actualización
85.33.39.10.00	Reóstatos para una tensión inferior o igual a 260 V e intensidad inferior o igual a 30 A	Aplica únicamente para dimmers y atenuadores de intensidad luminosa.
85.36.50.19.00	Arrancadores para bombillas de descarga en gas	No aplica cuando se fabriquen o importen para incorporarlos como parte integral de automotores, navíos, aeronaves, electrodomésticos, equipos de electromedicina y demás aparatos, máquinas y herramientas siempre que tales máquinas o herramientas no estén consideradas como instalaciones eléctricas especiales en el RETIE o la NTC 2050 Primera Actualización

8536.61.00.00	Portalámparas	No aplica cuando se fabriquen o importen para incorporarlos como parte
	·	integral de automotores, navíos, aeronaves, electrodomésticos, equipos de electromedicina y demás aparatos, máquinas y herramientas siempre que tales máquinas o herramientas no estén consideradas como instalaciones eléctricas especiales en el RETIE.
8539229000	Las demás lámparas y tubos eléctricos de incandescencia, de potencia inferior o igual a 200 W, para una tensión superior a 100 V.	Aplica únicamente a bombillas o lámparas de incandescencia de 25 W a 200 W, de 100 V a 250 V
8532.25.00.00	Condensadores fijos con dieléctrico de papel o plástico.	Aplica únicamente a condensadores destinados para conjunto eléctrico de bombillas de descarga en gas
8532.29.00.00	Condensadores fijos.	Aplica únicamente a condensadores destinados a conjunto eléctrico de bombillas de descarga en gas.
8539.21.00.00	Lámparas o Tubos de Incandescencia Halógenos de volframio (tungsteno)	No aplica cuando se fabriquen o importen para incorporarlos como parte integral de automotores, navíos, aeronaves, electrodomésticos, equipos de electromedicina y demás aparatos, máquinas y herramientas siempre que tales máquinas o herramientas no estén consideradas como instalaciones eléctricas especiales en el RETIE o la NTC 2050 Primera Actualización
8539.22.10.00	Lámparas o Tubos de Incandescencia de potencia inferior o igual a 200 W para una tensión superior a 100 V.	Aplica únicamente a bombillas o lámparas de incandescencia de 25 W a 200 W, de 100 V a 250 V
8539.29.20.00	Lámparas o Tubos de Incandescencia.	Aplica únicamente a bombillas o lámparas de incandescencia de 25 W a 200 W, de 100 V a 250 V
8539.29.90.00	Lámparas o Tubos de Incandescencia.	Aplica únicamente a bombillas o lámparas de incandescencia de 25 W a 200 W, de 100 V a 250 V
8539.31.10.00	Lámparas o Tubos de Descarga, excepto los de rayos ultravioleta. Fluorescentes, de Cátodo caliente. Tubulares Rectos.	No aplica cuando se fabriquen o importen para incorporarlos como parti integral de automotores, navíos, aeronaves, electrodomésticos, equipo de electromedicina y demás aparatos, máquinas y herramientas siemprique tales máquinas o herramientas no estén consideradas comi instalaciones eléctricas especiales en el RETIE.
8539.31.20.00	Lámparas o Tubos de Descarga, excepto los de rayos ultravioleta. Fluorescentes, de Cátodo caliente. Tubulares Circulares	No aplica cuando se fabriquen o importen para incorporarlos como parte integral de automotores, navíos, aeronaves, electrodomésticos, equipo de electromedicina y demás aparatos, máquinas y herramientas siempro que tales máquinas o herramientas no estén consideradas como instalaciones eléctricas especiales en el RETIE
8539.31.30.00	Lámparas o Tubos de Descarga, excepto los de rayos ultravioleta. Fluorescentes, de Cátodo caliente. Compactos integrados y no integrados	No aplica cuando se fabriquen o importen para incorporarlos como parte integral de automotores, navíos, aeronaves, electrodomésticos, equipos de electromedicina y demás aparatos, máquinas y herramientas siempro que tales máquinas o herramientas no estén consideradas como instalaciones eléctricas especiales en el RETIE.
8539.31.90.00	Lámparas o Tubos de Descarga, excepto los de rayos ultravioleta. Fluorescentes, de Cátodo caliente.	No aplica cuando se fabriquen o importen para incorporarlos como parti integral de automotores, navíos, aeronaves, electrodomésticos, equipo de electromedicina y demás aparatos, máquinas y herramientas siemproque tales máquinas o herramientas no estén consideradas como instalaciones eléctricas especiales en el RETIE.
8539313010	Lámpara fluorescente integrada	Aplica a todas la lámparas fluorescentes compactas de potencia máyo de 4 W. No aplica cuando se fabriquen o importen para incorporarlos como parte integral de automotores, navíos, aeronaves electrodomésticos, equipos de electromedicina y demás aparatos máquinas y herramientas
8539.32.00.00	Lámparas o Tubos de Descarga, excepto los de rayos ultravioleta. Lámparas de vapor de mercurio o sodio, lámparas de halogenuro metálico	No aplica cuando se fabriquen o importen para incorporarlos como parte integral de automotores, navíos, aeronaves, electrodomésticos, equipos de electromedicina y demás aparatos, máquinas y herramientas siempro que tales máquinas o herramientas no estén consideradas como instalaciones eléctricas especiales en el RETIE.
8539.39.90.00	Lámparas o Tubos de Descarga, excepto los de rayos ultravioleta.	No aplica cuando se fabriquen o importen para incorporarlos como parte integral de automotores, navíos, aeronaves, electrodomésticos, equipos de electromedicina y demás aparatos, máquinas y herramientas siempro que tales máquinas o herramientas no estén consideradas como instalaciones eléctricas especiales en el RETIE.
8539.90.10.00	Lámparas y tubos eléctricos de incandescencia o de descarga, incluidos los faros o unidades «sellados» y las lámparas y tubos	No aplica cuando se fabriquen o importen para incorporarlos como parte integral de automotores, navíos, aeronaves, electrodomésticos, equipos de electromedicina y demás aparatos, máquinas y herramientas siempro que tales máquinas o herramientas no estén consideradas como

DE

	de rayos ultravioletas o infrarrojos;	instalaciones eléctricas especiales en el RETIE.
		iliotalaciones electricas especiales en el NETIE.
	lámparas de arco. Partes.	
	Casquillos de Rosca.	
8539.90.90.00	Lámparas y tubos eléctricos de	No aplica cuando se fabriquen o importen para incorporarlos como parte
	incandescencia o de descarga,	integral de automotores, navíos, aeronaves, electrodomésticos, equipos
	incluidos los faros o unidades	de electromedicina y demás aparatos, máquinas y herramientas siempre
	«sellados» y las lámparas y tubos	que tales máquinas o herramientas no estén consideradas como
	de rayos ultravioletas o infrarrojos;	instalaciones eléctricas especiales en el RETIE.
	lámparas de arco. Partes.	· ·
9032.90.90.00	Equipos para control automático de	Aplica única y exclusivamente para fotocontroles de alumbrado.
	iluminación	
9405.20.00.00	Lámparas eléctricas de cabecera,	No aplica cuando se fabriquen o importen para incorporarlos como parte
	mesa, oficina o de pie	integral de automotores, navíos, aeronaves, electrodomésticos, equipos
		de electromedicina y demás aparatos, máquinas y herramientas siempre
		que tales máquinas o herramientas no estén consideradas como
		instalaciones eléctricas especiales en el RETIE.
9405.40.10.00	Los demás aparatos eléctricos de	Aplica únicamente a luminarias y proyectores usados en alumbrado
	alumbrado. Para alumbrado	público, Balastos, condensadores, fotocontroles, contactores de uso
	público.	exclusivo en alumbrado
9405.40.20.00	Los demás aparatos eléctricos de	Aplica únicamente a proyectores para fuentes de descarga en gas
	alumbrado. Proyectores de luz	
9405.40.90.00	Los demás aparatos eléctricos de	Aplica únicamente para aparatos eléctricos de alumbrado o luminarias,
	alumbrado. Los demás	Balastos, condensadores, fotocontroles, contactores de uso exclusivo en
		alumbrado
9405.99.00.00	Aparatos de alumbrado (incluidos	Aplica únicamente para partes de aparatos de alumbrado
	los proyectores) y sus partes partes	
9406.00.00.00	Construcciones prefabricadas	Aplica únicamente a partes prefabricadas de utilización en alumbrado

Tabla 110.4.b Algunas partida arancelaria y descripción de los productos según arancel.

Para permitir el uso de productos en las instalaciones de alumbrado interior o exterior que les aplique el presente reglamento, se debe demostrar el cumplimiento de los requisitos exigidos, mediante un certificado de producto, expedido por un organismo de certificación acreditado por el Organismo Nacioanal de Acreditación de Colombia –ONAC-, o los mecanismos legalmente aceptados para demostrar la conformidad con reglamentos técnicos, establecidos por autoridad competente.

El cumplimiento de los requisitos se deberá demostrar mediante los ensayos pertinentes en laboratorios acreditados o reconocidos según la normatividad vigente.

Los requisitos de producto que se deben probar son:

- a. Los establecidos en este Anexo General y particularmente los del capitulo 3.
- b. Los requisitos de producto contemplados en norma técnica internacional, de reconocimiento internacional o NTC, referidas en el presente anexo, para productos de las instalaciones de iluminación para aplicaciones especiales o de aquellos productos de iluminación que no tengan definidos los requisitos en el presente reglamento
- c. Los de producto establecido en norma técnica para aquellos productos que en el presente Anexo General les exige el cumplimiento de una norma técnica.

110.5 EXCEPCIONES.

Se exceptúan del cumplimiento del presente reglamento y por lo tanto de la demostración de la conformidad, las siguientes instalaciones y productos:

110.4.1 En instalaciones:

- a) Instalaciones de iluminación propias de vehículos (automotores, trenes, barcos, navíos, aeronaves).
- b) Instalaciones de iluminación propias de equipos,
- c) Instalaciones propias de electrodomésticos, máquinas y herramientas, siempre que el equipo, máquina o sistema no se clasifique como instalación especial, tal como ascensores, escaleras eléctricas, puentes gruas.

110.4.2 En productos: Que aún estando clasificados en la Tabla 110-3.1 estén destinados

DE

exclusivamente a las siguientes aplicaciones:

- a) Material publicitario o muestras para ensayos de laboratorio, pruebas o estudios de mercados o que ingresen al país de manera ocasional para participar en ferias exposiciones, o que tengan intención por objeto promocionar mercancías, siempre que su cantidad no refleje intención alguna de carácter comercial, su presentación lo descalifique para su venta, y equipos de uso personal autorizado por la SIC o su valor FOB no supere el monto establecido por la Dirección de Impuestos y Aduanas Nacionales – DIAN. La importación de material bajo estas condiciones sólo podrá efectuarse por cada importador en la periodicidad determinada por la normatividad vigente.
- b) Donaciones, según lo establecido sobre este particular por la DIAN.
- c) Efectos personales o equipaje de viajeros, según lo establecido sobre este particular por la DIAN.
- d) Envíos de correspondencia, los paquetes postales y los envíos urgentes, según lo establecido sobre este particular por la DIAN.
- e) Productos para ensamble o maquila que se importen en desarrollo de los Sistemas Especiales de Importación Exportación.
- f) Equipos nacionales o importados que fueron facturados y despachados por el productor al importador o al primer distribuidor en Colombia antes de la entrada en vigencia de esta Resolución.
- g) Productos para las Instalaciones contempladas en los literales a., b. y c del numeral 114.1.
- Materias primas o componentes para la fabricación o repuestos de máquinas, aparatos, equipos u otros productos distintos a las instalaciones de iluminación y alumbrado objeto de este reglamento, a menos que otro reglamento les exija el cumplimiento de RETILAP o la máquina o equipo sea una instalación clasificada como especial,
- i) Fuentes luminosas anti-insectos, aplicaciones medicinales, de investigación, fuentes de Luz de radiación ultravioleta o infrarrojo y en general aquellos productos asociados a iluminación pero destinados exclusivamente a aplicaciones distintas a la iluminación con propositos visuales del ser humano.

En consecuencia estos productos que se importen o fabriquen en el país con destino exclusivo a estas instalaciones de iluminación no requieren demostrar la conformidad con el RETILAP. La persona que haga uso de la exclusión deberá demostrarla ante las autoridades de control y vigilancia con los medios de prueba legalmente aceptados.

El fabricante o importador deberá conservar y presentar los documentos probatorios que demuestren las condiciones de la exclusión, cuando sean requeridos por la autoridad de control competente,

SECCIÓN 120 DEFINICIONES Y ABREVIATURAS

Para los efectos de aplicación del presente Reglamento se deben aplicar las siguientes definiciones y abreviaturas.

120.1 DEFINICIONES

Para la aplicación e interpretación de este reglamento, se tendrán en cuenta las siguientes definiciones

120.1.1 Relativas al alumbrado público¹

Absorción: Término general para referirse al proceso mediante el cual un flujo incidente se convierte en otra forma de energía, general y fundamentalmente en calor.

Acomodación: Proceso mediante el cual el ojo cambia su distancia focal al mirar objetos colocados a diferentes distancias.

Adaptación: Proceso mediante el cual el sistema visual se adapta a mayor o menor cantidad de luz o a la luz de un color, diferente al que estaba expuesto durante el periodo inmediatamente anterior. La adaptación resulta en un cambio en la sensibilidad del ojo a la luz.

Alcance: Característica de una luminaria que indica la extensión que alcanza la luz en la dirección longitudinal del camino. Las luminarias se clasifican en: de alcance corto, medio o largo.

¹ TOMADO DE NTC 900: REGLAS GENERALES Y ESPECIFICACIONES PARA EL ALUMBRADO PÚBLICO (Tercera actualización) NORMA TÉCNICA COLOMBIANA

Altura de montaje (en una vía): Distancia vertical entre la superficie de la vía por iluminar y el centro óptico de la fuente de luz de la luminaria.

DE

Ángulo de apantallamiento de una luminaria: Ángulo vertical medido desde el nadir, entre el eje vertical y la primera línea de visión para el cual la fuente de la luz desnuda no es visible.

Arrancador: Dispositivo que por sí solo o en asocio con otros componentes, genera pulsos para encender bombillas de descarga sin precalentamiento.

Balasto: Unidad insertada en la red y una o más bombillas de descarga, la cual, por medio de inductancia o capacitancia o la combinación de inductancias y capacitancias, sirve para limitar la corriente de la(s) bombilla(s) hasta el valor requerido. El balasto puede constar de uno o más componentes.

Puede incluir, también medios para transformar la tensión de alimentación y arreglos que ayuden a proveer la tensión de arranque, prevenir el arranque en frío, reducir el efecto estroboscópico, corregir el factor de potencia y/o suprimir la radiointerferencia.

Bombilla o lámpara: Término genérico para denominar una fuente de luz fabricada por el hombre. Por extensión, el término también es usado para denotar fuentes que emiten radiación en regiones del espectro adyacentes a la zona visible. Puede asimilarse a la definición de lámpara.

Campo visual: Lugar geométrico de todos los objetos o puntos en el espacio que pueden ser percibidos cuando la cabeza y los ojos de un observador se mantienen fijos. El campo puede ser monocular o binocular.

Candela (cd): Unidad del Sistema Internacional (SI) de intensidad luminosa. Una candela es igual a un lúmen por estereorradián. Una candela se define como la intensidad luminosa, en una dirección dada, de una fuente que emite una radiación monocromática de una frecuencia de 540 x 10¹² Hz y en la cual la intensidad radiante en esa dirección es 1/683 W por estereorradián.

Candela por metro cuadrado (cd/m²): Unidad de luminancia.

Capacidad Visual: Es la propiedad fisiológica del ojo humano para enfocar a los objetos a diferentes distancias, variando el espesor y por tanto la longitud focal del cristalino, por medio del músculo ciliar. **Centro óptico de la bombilla:** Centro de una pequeña esfera que podría contener completamente el elemento emisor de la bombilla.

Coeficiente de transmisión luminosa (T): Porcentaje de luz natural en su espectro visible que deja pasar una superficie traslucida o transparente. Se expresa en %

Coeficiente de Utilización (CU ó K): Relación entre el flujo luminoso que llega a la superficie a iluminar (flujo útil) y el flujo total emitido por una luminaria. Usualmente, se aplica este término cuando se refiere a luminarias de alumbrado público. También se conoce como factor de utilización de la luminaria.

Conjunto eléctrico para una bombilla de descarga: Todos los componentes necesarios para el funcionamiento adecuado de una bombilla de descarga (balasto, condensador y/o arrancador, portabombilla, borneras de conexión, cables, fusible y portafusibles).

Conjunto óptico: Elementos necesarios para controlar y dirigir la luz producida por una o varias bombillas (refractor y/o reflector).

Contaminación lumínica se define como la propagación de luz artificial hacia el cielo nocturno

Contraste de luminancia: Relación entre la luminancia de un objeto y su fondo inmediato, igual a $(L_o-L_f)/L_f$, ó $\Delta L/L_f$, donde L_f y L_o son las luminancias del fondo y el objeto, respectivamente. Se debe especificar la forma de la ecuación. La relación $\Delta L/L_f$ se conoce como la fracción de Weber.

Cromaticidad de un color: Longitud de onda dominante o complementaria y de los aspectos de pureza de un color tomados como un conjunto.

Cuerpo negro: Radiador de temperatura uniforme, cuya exitancia radiante en todas las partes del espectro es el máximo obtenible de cualquier radiador a la misma temperatura. A este radiador se le llama cuerpo negro por que absorberá toda la energía radiante que caiga sobre él.

Curva Isolux: Línea que une todos los puntos que tengan la misma iluminancia en el plano horizontal, para una altura de montaje de 1 m o 10 m y un flujo luminoso de 1.000 lm.

Densidad de flujo luminoso: Cociente del flujo luminoso por el área de la superficie cuando ésta última está iluminada de manera uniforme.

Densidad de flujo radiante en una superficie: Relación entre el flujo radiante de un elemento de

DE

Continuación Anexo General Reglamento Técnico de Iluminación y Alumbrado Público - RETILAP

superficie y el área del elemento (W/m²).

Depreciación lumínica: Disminución gradual de emisión luminosa durante el transcurso de la vida útil de una fuente luminosa.

Deslumbramiento: Sensación producida por la luminancia dentro del campo visual que es suficientemente mayor que la luminancia a la cual los ojos están adaptados y que es causa de molestias e incomodidad o pérdida de la capacidad visual y de la visibilidad. Existe deslumbramiento cegador, directo, indirecto, incómodo e incapacitivo.

Nota. La magnitud de la sensación del deslumbramiento depende de factores como el tamaño, la posición y la luminancia de la fuente, el número de fuentes y la luminancia a la que los ojos están adaptados.

Diagrama polar: Gráfica que representa en coordenadas polares la distribución de las intensidades luminosas en planos definidos. Generalmente se representan los planos C = 0° -180°, C = 90° -270° y plano de intensidad máxima.

Difusor: Elemento que sirve para dirigir o esparcir la luz de una fuente, principalmente por el proceso de transmisión difusa.

Dispersión: Separación ordenada de la luz incidente en su espectro de las longitudes de onda que la componen, cuando pasa a través de un medio.

Efecto estroboscópico: Ilusión óptica que ocasiona que un objeto iluminado por una bombilla de descarga sea visible a intervalos, dando la impresión de aparente inmovilidad. Este efecto ocurre cuando la velocidad a al que se mueve el objeto es múltiplo de los destellos periódicos de las bombillas.

Eficacia luminosa de una fuente: Relación entre el flujo luminoso total emitido por una fuente luminosa (bombilla) y la potencia de la misma. La eficacia de una fuente se expresa en lúmenes/vatio (**Im/W**).

Nota. El término eficiencia luminosa se usó ampliamente en el pasado para denominar este concepto. **Eficiencia de una luminaria:** Relación de flujo luminoso, en lúmenes, emitido por una luminaria y el emitido por la bombilla o bombillas usadas en su interior.

Energía radiante (Q): Energía que se propaga en forma de ondas electromagnéticas. Se mide en unidades de energía tales como joules, ergios o kW-h.

Espectro electromagnético visible: Franja del espectro electromagnético comprendida entre longitudes de onda de aproximadamente 380 nm a 770 nm. Las longitudes de onda inferiores a 380 nm corresponden a los ultravioleta, y las superiores a los 770 nm, a los infrarrojos.

Exitancia radiante (M): Densidad de flujo radiante emitido por una superficie. Se expresa en vatios por unidad de área de la superficie.

Factor de absorción: Relación entre el flujo luminoso absorbido por un medio y el flujo incidente.

Factor de Balasto: balasto se define como la relación entre el flujo luminoso de la bombilla funcionando con el balasto de producción y el flujo luminoso de la misma bombilla funcionando con el balasto de referencia.

Factor de mantenimiento (F_M): Factor usado en el cálculo de la luminancia e iluminancia después de un período dado y en circunstancias establecidas. Tiene en cuenta la hermeticidad de la luminaria, la depreciación del flujo luminoso de la bombilla, la clasificación de los niveles de contaminación del sitio y el período de operación (limpieza) de la luminaria.

Factor de uniformidad de iluminancia: Medida de la variación de la iluminancia sobre un plano dado, expresada mediante alguno de los siguientes valores

- a) Relación entre la iluminancia mínima y la máxima.
- b) Relación entre la iluminancia mínima y la promedio

Factor de uniformidad general de la luminancia (*Uo*): Relación entre la luminancia mínima y la luminancia promedio sobre la superficie de una calzada.

 $U_o = L_{min}/L_{pro}$ en [%]. Es una medida del comportamiento visual que no puede ser inferior a 40% para L comprendido entre el rango de 1 cd/m² a 3 cd/m², con el fin de que un objeto sea perceptible el 75% de los casos en un tiempo no mayor a 0,1 s.

Factor de uniformidad longitudinal de luminancia (U_L): La menor medida de la relación Lmin/Lmax sobre un eje longitudinal paralelo al eje de la vía que pasa por la posición del observador y situado en el centro de cada uno de los carriles de circulación.

DE

Factor de utilización de la luminaria (k): Relación entre el flujo luminoso que llega a la calzada (flujo útil) y el flujo total emitido por la luminarla. Usualmente se aplica este término cuando se refiere a luminarias de alumbrado público. También se conoce como Coeficiente de Utilización (CU).

Fotocontrol: Dispositivo utilizado, normalmente, para conectar y desconectar en forma automática luminarias de alumbrado público en función de la variación del nivel luminoso. Los fotocontroles usados comúnmente son del tipo electromagnético y/o electrónico.

Fusible: Dispositivo utilizado para la protección de conductores y componentes de redes contra sobrecorrientes producidas tanto por sobrecarga como por cortocircuito.

Flujo Hemisférico Superior (FHS) se define como el flujo luminoso emitido por el equipo de iluminación (luminaria y bombilla) por encima del plano horizontal. Dicho plano corresponde al ángulo $\gamma = 90^{\circ}$ en el sistema de representación (C, γ). El flujo hemisférico se expresa como un porcentaje del flujo total emitido por la luminaria.

Flujo luminoso (Φ): Cantidad de luz emitida por una fuente luminosa en todas las direcciones por unidad de tiempo. Su unidad es el lúmen (Im).

Flujo luminoso nominal: Flujo luminoso medido a las 100 h de funcionamiento de la bombilla, en condiciones de utilización normales. Se aplica solo a bombillas de alta intensidad de descarga.

Flujo útil: Flujo luminoso recibido sobre la superficie bajo consideración.

Fotómetro: Instrumento para medir las cantidades fotométricas: tales como luminancia, intensidad luminosa, flujo luminoso e iluminancia.

Fotometría: Medición de cantidades asociadas con la luz.

Nota: La fotometría puede ser visual cuando se usa el ojo para hacer una comparación, o física, cuando las mediciones se hacen mediante receptores físicos.

Fuente luminosa: Dispositivo que emite energía radiante capaz de excitar la retina y producir una sensación visual

Iluminancia (E): Densidad del flujo luminoso que incide sobre una superficie. La unidad de iluminancia es el lux (lx).

Iluminancia inicial (E_{inicial}): Iluminancia promedio cuando la instalación es nueva.

Iluminancia promedio horizontal mantenida (Eprom): Valor por debajo del cual no debe descender la iluminancia promedio en el área especificada. Es la iluminancia promedio en el período en el que debe ser realizado el mantenimiento. También se le conoce como Iluminancia media mantenida

Iluminación: Acción o efecto de iluminar.

Nota: Este término no debe ser utilizado para referirse a la densidad de flujo luminoso en una superficie.

Índice de deslumbramiento unificado (UGR): Es el índice de deslumbramiento molesto procedente directamente de las luminarias de una instalación de iluminación interior, definido en la publicación CIE (Comisión Internacional de Iluminación) Nº 117.

Índice de reproducción cromática (IRC): Las propiedades de una fuente de luz, a los efectos de la reproducción de los colores, se valorizan mediante el *"Índice de Reproducción Cromática" (IRC) ó CRI ("Color Rendering Index")*. Este factor se determina comparando el aspecto cromático que presentan los objetos iluminados por una fuente dada con el que presentan iluminados por una *"luz de referencia"*. Los espectros de las bombillas incandescentes ó de la luz del día contienen todas las radiaciones del espectro visible y se los considera óptimos en cuanto a la reproducción cromática; se dice que tienen un IRC= 100.

Índice de rendimiento de color (Ra): Efecto de una fuente de luz sobre el aspecto cromático de los objetos que ilumina por comparación con su aspecto bajo una fuente de luz de referencia. La forma en que la luz de una bombilla reproduce los colores de los objetos iluminados se denomina índice de rendimiento de color (Ra). El color que presenta un objeto depende de la distribución de la energía espectral de la luz con que está iluminado y de las características reflexivas selectivas de dicho objeto.

Intensidad luminosa de una fuente puntal de luz en una dirección dada (I): Cantidad de flujo luminoso en cada unidad de ángulo sólido en la dirección en cuestión. Por lo tanto, es el flujo luminoso sobre una pequeña superficie centrada y normal en esa dirección, dividido por el ángulo sólido (en estereorradianes) el cual es subtendido por la superficie en la fuente I. La intensidad

luminosa puede ser expresada en candelas (cd) o en lúmenes por estereorradián (lm/sr).

DE

Longitud de onda (\lambda): Distancia entre dos puntos sucesivos de una onda periódica en la dirección de propagación, en la cual la oscilación tiene la misma fase. La unidad usada comúnmente es el nanómetro (nm) (1 nm= $1x10^{-9}$ m).

Lúmen (*Im*): Unidad de medida del flujo luminoso en el Sistema Internacional (SI). Radiométricamente, se determina de la potencia radiante; fotométricamente, es el flujo luminoso emitido dentro de una unidad de ángulo sólido (un estereorradián) por una fuente puntual que tiene una intensidad luminosa uniforme de una candela.

Luminancia (L): En un punto de una superficie, en una dirección, se interpreta como la relación entre la intensidad luminosa en la dirección dada producida por un elemento de la superficie que rodea el punto, con el área de la proyección ortogonal del elemento de superficie sobre un plano perpendicular en la dirección dada. La unidad de luminancia es candela por metro cuadrado. (Cd/m2). Bajo el concepto de intensidad luminosa, la luminancia puede expresarse como:

$$L = (dI/dA)*(1/\cos\Phi)$$

Luminaria: Aparato de iluminación que distribuye, filtra o transforma la luz emitida por una o más bombillas o fuentes luminosas y que incluye todas las partes necesarias para soporte, fijación y protección de las bombillas, pero no las bombillas mismas y, donde sea necesario, los circuitos auxiliares con los medios para conectarlos a la fuente de alimentación.

Lux (Ix): Unidad de medida de iluminancia en el Sistema Internacional (SI). Un lux es igual a un lúmen por metro cuadrado (1 $Ix = 1 \text{ Im/m}^2$)

Mantenimiento: <Del flujo luminoso> Efecto de mantener o mantenerse, cuidar su permanencia. <Correctivo, preventivo> Conjunto de operaciones y cuidados necesarios para que las instalaciones puedan seguir funcionando adecuadamente.

Matriz de Intensidades: Tabla que, en función de los ángulos C y el ángulo γ , define los valores de intensidad luminosa que suministra la luminaria en cualquier punto a su alrededor. Los datos de intensidad luminosa se pueden dar en candelas por 1.000 lm.

Nadir: Punto de la esfera celeste diametralmente opuesto a la intersección de la vertical de un lugar con la esfera celeste, por encima de la cabeza del observador. Es el punto exactamente opuesto al cenit.

Niveles Mínimos de iluminación mantenidos: Son los niveles de iluminación adecuado a la tarea que se realiza en un local o en una vía. Los ciclos de mantenimiento y limpieza se deben realizar para mantener los valores de iluminación mantenido y tendrán que sustituirse las bombillas justo antes de alcanzar este nivel mínimo, de este modo se asegura que la tarea se pueda desarrollar según las necesidades visuales. No son niveles de diseño, cuando se realiza el proyecto de iluminación normalmente se establecen niveles de iluminación superiores, según los ciclos de mantenimiento del local o de la vía, que dependerá de la fuente de luz elegida, de las luminarias, así como de la posibilidad de ensuciamiento. Con el tiempo el valor de iluminación inicial va decayendo debido a la pérdida de flujo de la propia fuente de luz, así como de la suciedad acumulada en luminarias, paredes, techos y suelo.

Plano de trabajo: Es la superficie horizontal, vertical u oblicua, en la cual el trabajo es usualmente realizado, y cuyos niveles de iluminación deben ser especificados y medidos.

Potencia nominal de una fuente luminosa: Potencia requerida por la fuente luminosa, según indicación del fabricante, para producir el flujo luminoso nominal. Se expresa en vatios (W)

Protector: Parte traslúcida de una luminaria cerrada, destinada a proteger las bombillas y los reflectores de los agentes externos. Los protectores pueden ser a su vez, difusores o refractores.

Proyector: Aparato de iluminación que concentra la luz en un ángulo sólido limitado, con el fin reobtener un valor de intensidad luminosa elevado.

Radiación: Emisión o transferencia de energía en forma de ondas electromagnéticas o partículas **Radiación electromagnética**: Radiación de energía asociada a un campo eléctrico y a un campo magnético variables periódicamente y que se desplazan a la velocidad de la luz.

Radiación monocromática: Radiación caracterizada por una sola frecuencia o longitud de onda.

Radiación visible: Cualquier radiación electromagnética de longitud de onda adecuada capaz de causar sensaciones visuales

Rendimiento visual: Es el término usado para describir la velocidad con la que funciona el ojo, así

como la precisión con la cual se puede llevar a cabo una tarea visual.

DE

El valor del rendimiento visual para la percepción de un objeto se incrementa hasta cierto nivel al incrementar la iluminancia o la luminancia del local. Otros factores que influyen sobre el rendimiento visual son el tamaño de la tarea visual y su distancia al observador, así como los contrastes de color y luminancia.

Reflectancia de una superficie: Relación entre el flujo radiante o luminoso reflejado y el flujo incidente sobre una superficie. Se expresa en %. $\rho = \frac{\phi r}{\phi i}$

Reflector: Dispositivo usado para redirigir el flujo luminoso de una fuente mediante el proceso de reflexión.

Reflexión: Término general para el proceso mediante el cual el flujo incidente deja una superficie o medio desde el lado incidente sin cambios en la frecuencia.

Reflexión difusa: Proceso por el cual el flujo incidente es redirigido sobre un rango de ángulos.

Reflexión especular (regular): Proceso mediante el cual el rayo incidente es redirigido con el ángulo especular. El rayo incidente, el rayo reflejado y la normal están en el mismo plano.

Nota: El ángulo especular es el ángulo entre la perpendicular a la superficie y el rayo reflejado. Es numéricamente igual al ángulo de incidencia que se localiza en el mismo plano del rayo incidente y de la perpendicular, pero que se ubica en el lado opuesto de la perpendicular a la superficie.

Refracción: Proceso mediante el cual la dirección de un rayo de luz cambia conforme pasa oblicuamente de un medio a otro en el que su velocidad es diferente.

Refractor: Dispositivo utilizado para redirigir el flujo luminoso de una fuente, primordialmente por el proceso de refracción.

Sensibilidad al contraste: La más pequeña diferencia de luminancia que se puede percibir. También llamado umbral diferencial de luminancia.

Sistema de iluminación:

Tarea visual: Actividad que debe desarrollarse con determinado nivel de iluminación

Tensión nominal: Valor de la tensión de alimentación especificado por el fabricante y según el cual se determinan las condiciones de aislamiento y de funcionamiento de un equipo. Se expresa en voltios (V).

Transmisión (de la luz): Término genérico usado para referirse al proceso mediante el cual el flujo incidente abandona una superficie o un medio por un lado diferente al del lado incidente, sin experimentar cambio de frecuencia.

Transmisión regular: Proceso por el cual el flujo incidente pasa a través de una superficie o medio, sin dispersarse

Transmisión difusa: Proceso por el cual el flujo incidente que pasa a través de una superficie o medio se dispersa.

Temperatura de color (de una fuente luminosa): Temperatura absoluta de un cuerpo negro radiador que tiene una cromaticidad igual a la de la fuente de luz. Se mide en Kelvin (**K**).

Umbral de contraste: Mínimo contraste perceptible para un estado dado de adaptación del ojo. También se define como el contraste de luminancia detectable, durante alguna fracción específica de tiempo, que se presenta a un observador.

Valor de eficiencia energética de la instalación VEII. Valor que mide la eficiencia energética de una instalación de iluminación de una zona de actividad diferenciada, cuya unidad de medida es (W/m²) por cada 100 luxes.

Vida promedio (de un lote de fuentes luminosas): Promedio de tiempo transcurrido, expresado en horas, de funcionamiento de un lote de fuentes luminosas, antes de que haya dejado de funcionar la mitad de dicho lote.

Vida física (de una fuente luminosa): Promedio de tiempo transcurrido, expresado en horas, antes de que la fuente luminosa deje de funcionar completa y definitivamente, por haberse dañado cualquiera de sus componentes, sin que hayan interferido influencias externas.

Vida económica (de una fuente luminosa): Período de tiempo transcurrido, expresado en horas, hasta cuando la relación entre el costo de reposición de la fuente luminosa y el costo de los lúmen – hora que sigue produciendo ya no es económicamente favorable- La vida económica depende, por consiguiente, del costo de las fuentes luminosas de reemplazo, del costo de su instalación en el

portabombilla (mano de obra) y del costo de la energía eléctrica.

DE

Vida útil (de una fuente luminosa): Período de servicio efectivo de una fuente que trabaja bajo condiciones y ciclos de trabajo nominales hasta que su flujo luminoso sea el 70 % del flujo luminoso total.

Vida normal (de una bombilla de descarga): Periodo de funcionamiento a tensión nominal, expresado en horas, en ciclos de diez horas, en la posición recomendada por el fabricante.

Visibilidad: Cualidad o estado de ser perceptible por el ojo. En muchas aplicaciones en exteriores, la visibilidad se define en términos de distancia a la cual un objeto puede ser percibido escasamente por el ojo. En aplicaciones en interiores, usualmente se define en términos de contraste o del tamaño de un objeto estándar de prueba, observado en condiciones normalizadas de visión, con el mismo umbral que el objeto dado.

120.1.2 Relativas al servicio público²

Servicio de Alumbrado Público: Es el servicio público no domiciliario que se presta con el objeto de proporcionar exclusivamente la iluminación de los bienes de uso público y demás espacios de libre circulación con tránsito vehicular o peatonal, dentro del perímetro urbano y rural de un Municipio o Distrito. El servicio de alumbrado público comprende las actividades de suministro de energía al sistema de alumbrado público, la administración, la operación, el mantenimiento, la modernización, la reposición y la expansión del sistema de alumbrado público.

Parágrafo: La iluminación de las zonas comunes en las unidades inmobiliarias cerradas o en los edificios o conjuntos residenciales, comerciales o mixtos, sometidos al régimen de propiedad respectivo, no hace parte del servicio de alumbrado público y estará a cargo de la copropiedad o propiedad horizontal. También se excluyen del servicio de alumbrado público la iluminación de carreteras que no estén a cargo del Municipio o Distrito.

Sistema de Alumbrado Público: Comprende el conjunto de luminarias, redes eléctricas, transformadores de uso exclusivo y en general, todos los equipos necesarios para la prestación del servicio de alumbrado público, que no formen parte de las redes de uso general del sistema de distribución de energía eléctrica.

120.1.3 Relativas a tránsito³

Accesibilidad: Condición esencial de los servicios públicos que permite en cualquier espacio o ambiente exterior o interior el fácil disfrute de dicho servicio por parte de toda la población.

Acera o andén: Franja longitudinal de la vía urbana, destinada exclusivamente a la circulación de peatones, ubicada a los costados de ésta

Alameda: Es una franja de circulación peatonal arborizada y dotada del respectivo mobiliario urbano. Dentro de su sección podrá contener cicloruta. Las alamedas podrán constituirse como zonas de control ambiental.

Autopista: Vía de calzadas separadas, cada una con dos (2) o más carriles, control total de acceso y salida, con intersecciones en desnivel o mediante entradas y salidas directas a otras carreteras y con control de velocidades mínimas y máximas por carril

Bahía de estacionamiento: Parte complementaria de la estructura de la vía utilizada como zona de transición entre la calzada y el andén, destinada al estacionamiento de vehículos

Berma: Parte de la estructura de la vía, destinada al soporte lateral de la calzada para el tránsito de peatones, semovientes y ocasionalmente al estacionamiento de vehículos y tránsito de vehículos de emergencia

Bocacalle: Embocadura de una calle en una intersección

² Decreto 2424 julio 18 de 2006. Por el cual se regula la prestación del servicio de alumbrado público.

³ Ley 769 del 6 de agosto de 2002. Código de Tránsito de Colombia.

Carreteable: Vía sin pavimentar destinada a la circulación de vehículos

Carretera: Vía cuya finalidad es permitir la circulación de vehículos, con niveles adecuados de seguridad y comodidad

Carril: Parte de la calzada destinada al tránsito de una sola fila de vehículos Cruce e intersección: Punto en el cual dos (2) o más vías se encuentran

DE

Glorieta: Intersección donde no hay cruces directos sino maniobras de entrecruzamientos y movimientos alrededor de una isleta o plazoleta central

Paso a nivel: Intersección a un mismo nivel de una calle o carretera con una vía férrea

Paso peatonal a desnivel: Puente o túnel diseñado especialmente para que los peatones atraviesen una vía

Paso peatonal a nivel: Zona de la calzada delimitada por dispositivos y marcas especiales con destino al cruce de peatones

Parqueadero: Lugar público o privado destinado al estacionamiento de vehículos

Parques: Corresponde a aquellos espacios verdes de uso colectivo que actúan como reguladores del equilibrio ambiental, son elementos representativos del patrimonio natural y garantizan el espacio libre destinado a la recreación, contemplación y ocio para todos los habitantes del municipio, e involucran funcionalmente los principales elementos de la estructura ecológica principal para mejorar las condiciones ambientales en todo el territorio urbano.

Peatón: Persona que transita a pie o por una vía

Plaza: Es un espacio abierto tratado como zona dura, destinada al ejercicio de actividades de convivencia ciudadana.

Sardinel: Elemento de concreto u otros materiales para delimitar la calzada de una vía

Semáforo: Dispositivo electromagnético o electrónico para regular el tránsito de vehículos, peatones mediante el uso de señales luminosas

Señal de tránsito: Dispositivo físico o marca especial. Preventiva y reglamentaria e informativa, que indica la forma correcta como deben transitar los usuarios de las vías

Señales luminosas de peligro: Señales visibles en la noche que emiten su propia luz, en colores visibles como el rojo, amarillo o blanco

Separador: Espacio estrecho y saliente que independiza dos calzadas de una vía. Por razones de seguridad no se deben instalar postes para el alumbrado público en separadores que tengan un ancho inferior a 1,5 m.

Vehículo: Todo aparato montado sobre ruedas que permite el transporte de personas, animales o cosas de un punto a otro por vía terrestre pública o privada abierta al público

Vía: Zona de uso público o privado, abierta al público, destinada al tránsito de vehículos, personas y animales

Nota: Para determinar su prelación se clasifican así:

Dentro del perímetro urbano: Vía de metro o metrovía; Vía troncal; Férreas; Autopistas; Arterias; Principales; Secundarias; Colectoras; Ordinarias; Locales; Privadas; Alamedas, Ciclorutas y Peatonales.

En las zonas rurales: Férreas; Autopistas; Carreteras Principales; Carreteras Secundarias; Carreteables; Privadas y Peatonales.

Las autoridades competentes están facultadas para señalar las categorías correspondientes a las vías urbanas y la prelación en las vías en zonas rurales.

Vía arteria o avenida: Vía de un sistema vial urbano con prelación de circulación de tránsito sobre las demás vías, con excepción de la vía férrea y la autopista

Vía de metro o metrovía: Es aquella de exclusiva destinación para las líneas de metro, independientemente de su configuración y que hacen parte integral de su infraestructura de operación Vía férrea: Diseñada para el tránsito de vehículos sobre rieles, con prelación sobre las demás vías,

excepto para las ciudades donde existe metro, en cuyos casos será éste el que tenga la prelación

Vía peatonal: Zonas destinadas para el tránsito exclusivo de peatones

Vía principal: Vía de un sistema con prelación de tránsito sobre las vías ordinarias

Vía ordinaria o local: La que tiene tránsito subordinado a las vías principales

Vía troncal: Vía de dos (2) calzadas con ocho o más carriles y con destinación exclusiva de las calzadas interiores para el tránsito de servicio público masivo

Zona escolar: Parte de la vía situada frente a un establecimiento de enseñanza y que se extiende cincuenta (50) metros al frente y a los lados del límite del establecimiento

120.1.4 Relativas al espacio público⁴ y planes de ordenamiento⁵

Espacios Peatonales: Son los espacios peatonales constituidos por los bienes de uso público destinados al desplazamiento, uso y goce de los peatones, y por los elementos arquitectónicos y naturales de los inmuebles de propiedad privada que se integran visualmente para conformar el espacio urbano. Tienen como soporte la red de andenes, cuya función principal es la conexión peatonal de los elementos simbólicos y representativos de la estructura urbana.

Los espacios peatonales estructurantes son: Las plazas y plazoletas; la red de andenes; las vías peatonales; las zonas de control ambiental, los separadores, los retrocesos y otros tipos de franjas de terreno entre las edificaciones y las vías; los paseos y alamedas; los puentes y túneles peatonales.

Los elementos complementarios de los espacios peatonales estructurantes son:

DE

- 1. El mobiliario urbano.
- 2. La cobertura vegetal urbana, bosques, jardines, arbolado y prados.
- 3. Los monumentos conmemorativos y los objetos artísticos.
- 4. Otros elementos pertenecientes a bienes de propiedad privada, tales como los cerramientos, antejardines, pórticos, fachadas y cubiertas.

Espacio público: Es el conjunto de inmuebles públicos y los elementos arquitectónicos y naturales de los inmuebles privados, destinados por su naturaleza, por su uso o afectación a la satisfacción de necesidades urbanas colectivas que trascienden, por tanto, los límites de los intereses individuales de los habitantes.

Así, constituyen el espacio público de la ciudad las áreas requeridas para la circulación, tanto peatonal como vehicular, las áreas para la recreación pública, activa o pasiva, para la seguridad y tranquilidad ciudadana, las franjas de retiro de las edificaciones sobre las vías, fuentes de agua, parques, plazas, zonas verdes y similares, las necesarias para la instalación y mantenimiento de los servicios públicos básicos, para la instalación y uso de los elementos constitutivos del amoblamiento urbano en todas sus expresiones, para la preservación de las obras de interés público y de los elementos históricos, culturales, religiosos, recreativos y artísticos, para la conservación y preservación del paisaje y los elementos naturales del entorno de la ciudad, los necesarios para la preservación y conservación de las playas marinas y fluviales, los terrenos de bajamar, así como de sus elementos vegetativos, arenas y corales y, en general, por todas las zonas existentes o debidamente proyectadas en las que el interés colectivo sea manifiesto y conveniente y que constituyen, por consiguiente, zonas para el uso o el disfrute colectivo

Intersecciones: Son soluciones viales, tanto a nivel como a desnivel, que buscan racionalizar y articular correctamente los flujos vehiculares del Sistema Vial, con el fin de incrementar la capacidad vehicular, disminuir los tiempos de viaje y reducir la accidentalidad, la congestión vehicular y el costo de operación de los vehículos

Malla vial arterial principal: Es la red de vías de mayor jerarquía. Actúa como soporte de la movilidad y accesibilidad urbana, regional y de conexión con el resto del país

Malla arterial complementaria: Es la red de vías que articula operacionalmente los subsistemas de la malla arterial principal, facilita la movilidad de mediana y larga distancia como elemento articulador a escala urbana

Malla vial intermedia : Está constituida por una serie de tramos viales que permean la retícula que conforma la malla arterial principal y complementaria, sirviendo como alternativa de circulación a éstas. Permite el acceso y la fluidez de la ciudad a escala zonal

Malla vial local: Está conformada por los tramos viales cuya principal función es la de permitir la accesibilidad a las unidades de vivienda

Sección vial: Es la representación gráfica de una vía que esquematiza, en el sentido transversal al eje, sus componentes estructurales y de amoblamiento típicos.

LEY 9 de 1989 REFORMA URBANA, Artículo 5.
 DECRETO 1504 de 1998 Reglamentario de la Ley 388 de 1997

DE

Sistema de Espacio Público: El espacio público, de propiedad pública o privada, se estructura mediante la articulación espacial de las vías peatonales y andenes que hacen parte de las vías vehiculares, los controles ambientales de las vías arterias, el subsuelo, los parques, las plazas, las fachadas y cubiertas de los edificios, las alamedas, los antejardines y demás elementos naturales y construidos definidos en la legislación nacional y sus reglamentos

Sistema vial: Red jerarquizada de vías de un municipio o distrito dispuesta para su movilidad y que permite su conexión con la red vial regional y nacional

Zonas de reserva vial: Son las franjas de terreno necesarias para la construcción o la ampliación de las vías públicas, que deben ser tenidas en cuenta al realizar procesos de afectación predial o de adquisición de los inmuebles y en la construcción de redes de servicios públicos domiciliarios

120.2 ABREVIATURAS

U_{\circ}	=	Factor de uniformidad general	$Q_o =$	Coeficiente promedio de de luminancia
L	=	Luminancia	M1M5 =	Clases de lluminación para vías vehiculares
L_{min}	=	Luminancia mínima	v =	Velocidad de circulación
L_{prom}	=	Luminancia promedio	T =	Transito de vehículos
L_f	=	Luminancia del fondo	K =	Índice del local
L_o	=	Luminancia del objeto	CU =	Coeficiente ó factor de utilización de las luminarias
Q	=	Energía radiante	S ₁ =	Factor especular 1
М	=	Exitancia radiante	S ₂ =	Factor especular 2
Ε	=	Iluminancia	K_{ρ} =	Factor especular
lx	=	Lux	q_{ρ} =	Factor de luminancia para incidencia vertical
η	=	Eficacia lumínica	R1R4 =	Clases de superficie
ρ	=	Reflectancia de una superficie	T.I. =	Incremento de umbral
$oldsymbol{\phi}_{R}$	=	Flujo luminoso reflejado	L_{v} =	Luminancia de velo equivalente
Φ_i	=	Flujo luminosos incidente	U_L =	Factor de uniformidad longitudinal de luminancia
C,	=	Contraste	Im =	Lúmen
	=	Coeficiente de luminancia	λ =	Longitud de onda
q _			CRI ó Ra =	Índice de reproducción cromática
E _h	=	Iluminancia horizontal en el punto p.	F _M =	Factor de mantenimiento
r	=	Coeficiente reducido de luminancia		ice de reproducción cromática

120.3 ACRÓNIMOS Y SIGLAS

Para efectos del presente Reglamento y una mayor información, se presenta un listado de los acrónimos y siglas comúnmente utilizadas en iluminación; unas corresponden a los principales organismos de normalización, otras son de instituciones o asociaciones.

AMBITO	ORGAI	NORMA			
	SIGLA	NOMBRE			
	ACRÓNIMO				
INTERNACIONAL	CIE	Commission Internacionale de	CIE		
		l'Eclairage			
E.E.U.U.	IESNA	Illuminating Engineering Society of	IESNA ó IES		
		North America			
ESPAÑA	AENOR	Asociación Española de	UNE		
		Normalización y Certificación			
E.E. U.U.	ANSI	American National Standards	ANSI		
		Institute			
EUROPA	CENELEC	Comitè Europèen de Normatization	EN		
		Electro- technique			
E.E.U.U.	ASTM	American Standar for Testing and	ASTM		
		Materials			
E.E.U.U.	NEMA	National Electrical Manufacturers	NEMA		
		Association			
COLOMBIA	ICONTEC	Instituto Colombiano de Normas	NTC		
		Técnicas y Certificación			

INTERNACIONAL	IEC	International Electrotechnical		IEC	
		Comisión			
E.E.U.U.	IEEE	Institute of	Electrical	and	IEEE STD
		Electronics Eng			
ARGENTINA	IRAM	Instituto	Argentino	de	IRAM
		Normalización	Normalización y Certificación		
ARGENTINA	AADL	Asociación	Argentina	de	IRAM- AADL
		Luminotecnia			
INTERNACIONAL	ISO	International	Organization	for	ISO
		Standardization	n		
ALEMANIA	DIN	Deutsches Institut fur Normung			VDE
MEXICO		Dirección General de Normas			NOM
MEXICO	ANCE	Asociación de	e Normalizacio	ón y	NMX
		Certificación			
ESPAÑA	AENOR	Asociación	Española	de	UNE
		Normalización			
BRASIL	ABNT	Asociación Br	asilera de No	ormas	NBR
		Técnicas			

CAPÍTULO 2.

REQUISITOS GENERALES PARA UN SISTEMA DE ILUMINACIÓN.

SECCIÓN 200 REQUISITOS GENERALES DE UN SISTEMA DE ILUMINACIÓN.

200.1 RECONOCIMIENTO DEL SITIO Y OBJETOS A ILUMINAR:

Antes de proceder con un proyecto de iluminación se deben conocer las condiciones físicas y arquitectónicas del sitio o espacio a iluminar, sus condiciones ambientales y su entorno, dependiendo de tales condiciones se deben tomar decisiones que conduzcan a tener resultados acordes con los requerimientos del presente reglamento. Son determinantes en una buena iluminación conocer aspectos como el color de los objetos a iluminar, el contraste con el fondo cercano y circundante y el entorno, el tamaño y brillo del objeto.

200.2 REQUERIMIENTOS DE ILUMINACIÓN:

En un proyecto de iluminación se deben conocer los requerimientos de luz para los usos que se pretendan, para lo cual se debe tener en cuenta los niveles óptimos de iluminación requeridos en la tarea a desarrollar, las condiciones visuales de quien las desarrolla, el tiempo de permanencia y los fines específicos que se pretendan con la iluminación. Igualmente, el proyecto debe considerar los aportes de luz de otras fuentes distintas a las que se pretenden instalar y el menor uso de energía sin deteriorar los requerimientos de iluminación Otros aspectos a tener en cuenta para satisfacer los requerimientos de iluminación están relacionados con el tipo de luz.

En todo proyecto de iluminación o alumbrado público se debe estructurar un plan de mantenimiento del sistema que garantice atender los requerimientos de iluminación durante la vida útil del proyecto, garantizando los flujos luminosos dentro de los niveles permitidos (flujo luminoso mantenido).

200.3 CRITERIOS DE SELECCIÓN DE FUENTES LUMINOSAS Y LUMINARIAS.

En todos los proyectos de iluminación, se deben elegir las fuentes luminosas teniendo en cuenta, la eficacia lumínica, flujo luminoso, características fotométricas, reproducción cromática, temperatura del color, duración y vida útil de la fuente, en función de las actividades y objetivos de uso de los espacios a iluminar; así como de consideraciones arquitectónicas y económicas.

Para cumplir estos criterios los fabricantes y/o comercializadores de fuentes luminosas, luminarias y en general los productos usados en iluminación deben suministrar la información exigida en los requisitos de productos de la sección 300, tal información debe ser utilizada por los diseñadores y referenciada en las memorias de cálculo:

200.3.1 DOCUMENTOS FOTOMÉTRICOS:

Para identificar, clasificar y seleccionar las fuentes y luminarias es necesario conocer sus parámetros mediante los documentos fotométricos que deben suministrar los fabricantes y distribuidores.

MATRIZ DE INTENSIDADES: Es el principal documento fotométrico de cualquier fuente de luz o de cualquier luminaria y muestra la información de distribución de la intensidad lumínica de la fuente.

DIAGRAMA ISOLUX, Es una representación a escala de los niveles lumínicos que se alcanzarían sobre algún plano horizontal de trabajo en relación con la altura de montaje. Permite realizar cálculos gráficos

DE

manuales bastante precisos punto a punto en instalaciones de alumbrado público, instalaciones industriales o en canchas deportivas.

El diagrama Isolux debe cubrir un área comprendida sobre el plano de trabajo horizontal normal de la luminaria en sentido transversal entre -2.5 y +5.0 veces la altura de montaje. En el sentido longitudinal cubre desde 0.0 hasta +7.0 veces la altura de montaje. Lo anterior, asumiendo que la luminaria se encuentra en el punto (0, 0).

El diagrama isolux debe expresar con claridad dos referentes, con el fin de establecer los respectivos factores de corrección: a) La altura de montaje a la que está referido, (permite establecer la escala) y el flujo luminoso de la fuente de luz con la que se realizó.

Para facilitar el cálculo de estos factores de conversión, se debe presentar el diagrama isolux como si la luminaria estuviera a una altura de montaje de 1,0 m y tuviera una bombilla de 1.000 lúmenes. Las diferentes curvas del diagrama se deben expresar en luxes.

La curva de mínimo valor isolux en el diagrama, debe permitir el cálculo de niveles de iluminancia hasta de 1 lux, cuando la luminaria esté ubicada en la altura de montaje recomendada por el fabricante y tenga la bombilla igualmente recomendada para su uso.

El factor de corrección por la altura de montaje se establece en términos de $(h_0/h_m)^2$ donde h_m corresponde a la altura de montaje del proyecto en tanto que h_o corresponde a la altura a la cual se obtuvo la curva isolux presente.

El factor de corrección por los lúmenes de la bombilla, es directamente proporcional y se expresa como (ϕ_1/ϕ_0) , donde ϕ_1 son los lúmenes del proyecto actual y ϕ_0 los lúmenes con los cuales se representa la curva isolux.

DIAGRAMA POLAR DE INTENSIDAD LUMINOSA: Corresponde a uno o varios planos C específicos en un diagrama isocandela. En el modelo CIE, los planos utilizados para conformar diagramas polares son: el que queda justo al frente y atrás de la luminaria (planos $C=90^\circ$ y 270° respectivamente) y el que contiene el valor de la máxima intensidad.

Su principal utilización debe ser para establecer la clasificación de las luminarias con relación al control que tengan sobre las componentes de la luminaria que contribuyen a efectos deslumbrantes sobre los usuarios.

200.3.2 PLANOS Y ÁNGULOS DE MEDICIÓN FOTOMÉTRICA Y SISTEMA DE COORDENADAS.

Como en los sistemas de iluminación se usan varios sistemas de coordenadas, se debe tiene precisión con cual de ellos se trabaja. Considerando que los más aplicados son los adoptados por la COMMISSION INTERNATIONALE DE L'ECLAIRAGE -CIE- y por la ILLUMINATING ENGINEERING

DE

SOCIETY OF NORTH AMERICA – IESNA-, se hacen algunas precisiones sobre estos dos sistemas de coordenadas, en especial sus posiciones de referencia.

En la versión $\it CIE$, denominadas coordenadas esféricas del tipo ($\it C$ - $\it \gamma$ $\it CIE$), el ángulo $\it C$ inicia en el sentido longitudinal de la vía (ángulo $\it C$ =0°), desde la derecha (visto en planta y desde arriba) y avanza en sentido contrario al uso horario. Así, la porción simétrica de una luminaria para alumbrado público cubre los ángulos desde $\it C$ = -90° hasta $\it C$ = +90°. Cada uno de estos ángulos distingue un PLANO. Así que en adelante, no se hará referencia al ángulo $\it C$ sino al Plano $\it C$.

En cada plano ${\it C}$ se pueden distinguir los ángulos verticales denominados ${\it \gamma}$ (Gamma). La denominación de estos ángulos comienzan en 0° el cual se halla ubicado en la vertical en dirección hacia abajo (${\it \gamma}$ =0° ó Nadir) y avanzan en forma ascendente hasta la horizontal (${\it \gamma}$ =90°). En algunas ocasiones puede incluir ángulos verticales hasta 180° (en dirección vertical hacia arriba ó Cenit), para algunas luminarias decorativas.

En el modelo de coordenadas definido por la **IESNA**, el ángulo horizontal del diagrama isocandela inicia justo al frente de la luminaria (ángulo $C=0^\circ$) y avanza en sentido al uso horario, visto en planta, desde arriba. Igual que en el modelo anterior, cada ángulo C define un PLANO. Así que en adelante, no se hará referencia al ángulo C sino al Plano C.

Con respecto al ángulo vertical, denominado γ (Gamma), avanza desde la vertical en dirección hacia abajo (γ =0° ó Nadir) hasta la horizontal (γ =90°), aunque en algunas ocasiones puede incluir ángulos verticales hasta 180°, es decir en dirección vertical hacia arriba (ó Cenit), para algunas luminarias decorativas. El ángulo γ (Gamma) se comporta de manera similar en ambos sistemas de coordenadas. Este tipo de coordenadas esféricas se denomina Coordenadas (C - γ IESNA), y es el sistema de coordenadas que se utiliza generalmente para definir la fotometría las luminarias de alumbrado público Para hacer una transformación de coordenadas entre sistemas, se utiliza una fórmula que da la relación entre planos C_{CIE} y planos C_{IES} . Esta fórmula es:

DE

Para los documentos relacionados con proyectores, se debe utilizar el sistema de coordenadas rectangulares, provenientes del sistema internacional de medidas y patrones.

203.3 DURACIÓN O VIDA ÚTIL DE LA FUENTE LUMÍNICA

Uno de los factores a tener en cuenta en todo proyecto de iluminación es la vida útil de la fuente, por lo que el fabricante debe suministrar la información sobre el particular.

203.3.1 CURVAS DE DEPRECIACIÓN LUMINOSA DE LAS FUENTES

El flujo luminoso de las fuentes luminosas decrece en función del tiempo de operación por desgaste de sus componentes. La curva característica de depreciación bajo condiciones de operación nominales varia dependiendo de la sensibilidad de la misma al número de ciclos de encendido y apagado.

La depreciación de las fuentes luminosas también se ve afectada por las variaciones en los parámetros de alimentación de la red y/o de las características de los equipos auxiliares tales como arrancadores y balastos.

Los fabricantes y/o comercializadores de fuentes luminosas deberán disponer en catálogo o en otro medio de fácil acceso y consulta la información correspondiente a las curvas de depreciación de las fuentes y la norma técnica aplicada para su ensayo. En el mismo sentido deben informarse las condiciones de alimentación y encendido para la operación normal de la bombilla, tales como el rango de tensión de operación nominal de la bombilla.

Para bombillas de sodio de alta presión los fabricantes y/o comercializadores deben informar la característica de tiempo de encendido por arranque y el rango de tensión para operación nominal de la bombilla, factores que son determinantes en su vida útil.

Para bombillas de halogenuros metálicos, los fabricantes y/o comercializadores deben definir e informar la posición óptima de operación, en razón a que para tal posición se tiene mayor mantenimiento luminoso durante toda la vida.

La certificación de la bombilla debe hacerse con el procedimiento de una Norma Internacional tal como la IEC 60662 "High – pressure sodium vapour lamps" para sodio de alta presión, IEC 60081 "Double - capped fluorescent lamps – Performance specifications" para en bombillas fluorescentes de doble casquillo, o una norma de reconocimiento internacional o NTC equivalente.

Cuando el valor de la vida útil de las bombillas, suministrada en los catálogos, empaques o disponible en la WEB, no esté certificada por un organismo de certificación o laboratorio independiente, debidamente acreditado o reconocido, el fabricante podrá declarar la vida útil, siempre que cumpla los requisitos de la norma ISO IEC 17050 para declaración del proveedor y disponga de la información soporte de las pruebas o ensayos realizados.

203.3.2 CURVA DE MORTALIDAD Ó DE VIDA PROMEDIO DE LAS FUENTES LUMINOSAS

El fabricante deberá informar sobre la duración de cada tipo de fuente luminosa, publicando la curva de mortalidad correspondiente, o indicando el índice de bombillas sobrevivientes.

En este tipo de curva debe determinarse el porcentaje de fuentes que siguen en operación después de un periodo o número de horas de servicio. Con base en esta curva se puede calcular la probabilidad de falla en cada uno de los periodos (años, meses) de funcionamiento de una instalación de alumbrado y hacer los estimativos de reposición de bombillas por mantenimiento.

Las bombillas incandescentes se consideran con vida hasta cuando éstas dejan de encender.

En el caso de las bombillas de descarga en gas, la vida útil de la bombilla se considera hasta cuando su flujo luminoso llega al 70% del flujo inicial.

El flujo inicial es el flujo medido en la bombilla a las 100 horas de encendida, operando con un balasto de referencia.

203.3.3 FLUJO LUMINOSO PARA DISEÑO

Para el diseño de iluminación y alumbrado público los cálculos no se deben hacer tomando el valor de flujo luminoso inicial de las fuentes, el valor que se debe usar es el resultante del análisis de la curva de depreciación lumínica y de la curva de vida útil o de mortalidad. Tal análisis también será la base para que en el diseño del esquema de mantenimiento de la instalación se determinen los periodos de reposición de las bombillas.

203.3.4 VIDA ECONÓMICA DE LAS FUENTES Y ANÁLISIS ECONÓMICO DE LUMINARIAS.

La vida económica de una fuente luminosa, es el período expresado en horas después del cual la relación entre el costo de reposición y el costo de los lúmenes-hora que sigue produciendo, no es económicamente favorable. La vida económica depende por consiguiente de la curva característica de depreciación, del costo de las bombillas de reemplazo, del costo de la mano de obra para el cambio y del costo de la energía consumida.

Para efectos del presente reglamento se precisa que las fuentes luminosas son usadas como parte de una luminaria y por lo tanto en el análisis económico se debe considerar el punto luminoso en su totalidad. Es decir, se debe incluir por una parte el efecto del conjunto óptico (fotometría) y por otra el efecto del conjunto eléctrico (eficiencia energética).

Los análisis económicos con fines comparativos o de evaluación deberán tener como referencia los niveles de iluminación mantenidos durante el periodo de análisis, debiendo ser tales niveles iguales o superiores a los valores mínimos establecidos en el presente reglamento.

Cada instalación en particular tendrá una vida económica, dependiendo de los resultados de las variables incluidas en el análisis económico.

203.4 CARACTERÍSTICAS DE REPRODUCCIÓN CROMÁTICA Y DE TEMPERATURA DE COLOR

Para la clasificación de las bombillas en función de su Índice de Reproducción Cromática (Ra o CRI), se adoptan las siguiente Tablas adaptadas de la publicación CIE 29.2 de 1986 "Guía de iluminación interior. Segunda edición".

Clase	Índice de reproducción de color (CRI ó Ra) %
1A	>90
1B	80 a 89
2A	70 a 79
2B	60 a 69
3	40 a 59
4	< 20

Tabla 203.4A Clasificación de las fuentes luminosas de acuerdo con su Índice de reproducción del Color

Los desarrollos tecnológicos actuales y los estándares en fuentes de iluminación permiten determinar fácilmente las características de reproducción cromática y temperatura de color, la tabla siguiente da una orientación al respecto.

DE

Índice de reproducción cromática (Ra) o (CRI) %	Clase	Cálido < 3.300 K	Neutro 3.300 – 5.000K	Frío >5.000 K	Criterio de aplicación
≥ 90	1 A	Halógenas Fluorescente lineal y	Fluorescente lineal y compacta Halogenuros	Fluorescente lineal y compacta	Principalmente donde la apreciación del color sea un parámetro crítico
		Compacta Halogenuros metálicos y cerámicos	metálicos y cerámicos		
80 - 89	1 B	Fluorescente lineal y compacta	Fluorescente lineal y compacta	Fluorescente lineal y	En áreas donde la apreciación correcta del color
		Halogenuros metálicos y cerámicos Sodio Blanco	Halogenuros metálicos y cerámicos	compacta	no es una consideración primaria pero donde es esencial una buena reproducción de colores
70 - 79	2 A	Halogenuros metálicos	Halogenuros metálicos	Halogenuros metálicos	En áreas donde la calidad de apreciación correcta del color
< 70	2 B, 3 y 4	Mercurio Sodio	Mercurio		es de poca importancia

Tabla 203.4 B Tipos de fuentes luminosas en función de sus características de temperatura de color e índice de reproducción cromática

Para iluminar zonas en la que haya permanencia de personas el índice de reproducción cromática -Ra debe ser mayor de 80, donde haya permanencia o paso ocasional de personas tales como corredores o pasillos el Ra debe ser menor de 80.

Para alumbrado público un Ra de 60 es el apropiado.

Tiene que ver con condiciones psicológicas y estéticas, depende del nivel de iluminación, la presencia o ausencia de luz natural, el clima exterior y de la preferencia personal.

Estudios realizados con base en experiencias con trabajadores de Bodmann H.W 6 se establecen relaciones entre el nivel de iluminación y la temperatura de color preferida, cuyos resultados han sido los mostrados en la Tabla siguiente los cuales deberán ser usados por los diseñadores como referencia.

	Temperatura de color				
	Cálida	Neutra	Fría		
Iluminancia	< 3.300 K	3.300 - 5.000K	>5.000 K		
(luxes)					
≤ 500	Agradable	Neutra	Fría		
500 a 1.000	\$	\$	\$		
1.000 a 2.000	Estimulante	Agradable	Neutra		
2.000 a 3.000	\$	\$	\$		
≥ 3.000	No apropiado para la permanencia de personas	Estimulante	Agradable		

Relaciones entre el nivel de iluminación y la temperatura de color preferida

De la tabla anterior se observa la preferencia de fuentes luminosas con una temperatura de color elevada (Luz Fría) cuando los niveles de iluminación son elevados.

En climas cálidos, se debe utilizar fuentes de mayores temperaturas de color (> 5.000 K), mientras que en climas fríos se recomienda el uso de fuentes con temperaturas de color más cálidos (< 3.300 K).

⁶ Bodmann H.W. Illumination Levels and Visual Performance. International Lighting Review 1962, Vol. 13

En la escogencia de la fuente en cuanto al índice de reproducción de color (Ra). Se recomienda tener en cuenta la norma europea UNE EN 12464-1 de 2003 "Iluminación. Iluminación de los Lugares de Trabajo. Parte 1: Lugares de Trabajo en Interiores", la Tabla 5.1 indica el Índice de Reproducción Cromática (Ra), admisible para cada tipo de tarea o actividad.

SECCIÓN 210 GENERALIDADES DEL DISEÑO DE ILUMINACIÓN.

La luz es un componente esencial en cualquier medio ambiente, hace posible la visión del entorno y además, al interactuar con los objetos y el sistema visual de los usuarios, puede modificar la apariencia del espacio, influir sobre su estética y ambientación y afectar el rendimiento visual, el estado de ánimo y la motivación de las personas.

El diseño de iluminación debe comprender la naturaleza física, fisiológica y psicológica de esas interacciones y además, conocer y manejar los métodos y la tecnología para producirlas, pero fundamentalmente demanda, competencia, creatividad e intuición para utilizarlas.

El diseño de iluminación debe definirse como la búsqueda de soluciones que permitan optimizar la relación visual entre el usuario y su medio ambiente. Esto implica tener en cuenta diversas disciplinas y áreas del conocimiento.

La solución a una demanda específica de iluminación debe ser resuelta en un marco interdisciplinario, atendiendo los diversos aspectos interrelacionados y la integración de enfoques, metodologías, técnicas y resultados. La iluminación puede ser proporcionada mediante luz natural, luz artificial, en lo posible se debe buscar una combinación de ellas que conlleven al uso racional y eficiente de la energía.

210.1 ILUMINACIÓN EFICIENTE.

En los proyectos de iluminación se deben aprovechar los desarrollos tecnológicos de las fuentes luminosas, las luminarias, los dispositivos ópticos y los sistemas de control, de tal forma que se tenga el mejor resultado lumínico con los menores requerimientos de energía posibles.

Un sistema de iluminación eficiente es aquel que, además de satisfacer necesidades visuales y crear ambientes saludables, seguros y confortables, posibilita a los usuarios disfrutar de atmósferas agradables, empleando apropiadamente los recursos tecnológicos y evaluando todos los costos razonables que se incurren en la instalación, operación y mantenimiento del proyecto de iluminación.

Los sistemas de iluminación objeto del presente reglamento, deben ser eficientes y por tanto deben contemplar el uso racional y eficiente de energía, entre otros requisitos deben observarse los siguientes:

- a) En todo diseño se deben buscar obtener las mejores condiciones de iluminación usando fuentes luminosas de la mayor eficacia disponible, conjuntos eléctricos de alta eficiencia y luminarias con la fotometría más favorable en términos de factor de utilización.
- b) En los proyectos nuevos o remodelaciones de sistemas de iluminación de avenidas, grandes áreas o parques deportivos, donde se tienen altos consumos de energía, se debe considerar la posibilidad de reducir los consumos en las horas de baja circulación de personas o vehículos, mediante la instalación de tecnologías o prácticas apropiadas de control.
- c) En zonas donde se instale alumbrado con bombillas que no permitan cambios de tensión como método de reducción de potencia, tales como las de halogenuros metálicos, se deben prever los circuitos eléctricos necesarios o los fotocontroles temporizados, para controlar el encendido de las bombillas.

Continuación Anexo General Reglamento Técnico de Iluminación y Alumbrado Público - RETILAP 210.2 EL PROCESO DE DISEÑO DE ILUMINACIÓN.

El procedimiento que debe seguirse en un diseño de iluminación es el siguiente:

210.2.1 ANÁLISIS DEL PROYECTO.

El diseño de un proyecto de iluminación debe partir de un análisis donde se recopile la información que permita determinar las demandas visuales en función de los alcances y limitaciones del trabajo o tareas a realizar, las demandas emocionales y estéticas en función de la sensación de bienestar y contribución a la productividad (confort visual), las demandas de seguridad y las condiciones del espacio. La identificación clara y precisa de estas variables es fundamental para el éxito de cualquier proyecto.

Las **demandas visuales** son una consecuencia de la realización de actividades y para determinarlas se debe evaluar la dificultad de las tareas en función de sus características y condiciones de realización incluso en condiciones difíciles y tiempos prolongados.

Las **demandas emocionales**, surgen por la influencia que la luz ejerce sobre el estado de ánimo, motivación, sensación de bienestar y seguridad de las personas.

Las demandas estéticas por su parte, se refieren a la posibilidad de crear ambientación visual, destacar la arquitectura, ornamentación, obras de arte, etc. Para esto hay que considerar las características físicas y arquitectónicas del ambiente así como del mobiliario y del entorno, la importancia y significado del espacio, etc.

Las **demandas de seguridad** se determinaran por una parte, en función de los dispositivos de iluminación para circulación de las personas en condiciones normales y de emergencia; y por otra como las características de las fuentes luminosas.

Las **condiciones del espacio**, están relacionadas con las características físicas tanto de las áreas a iluminar como su entorno.

Restricciones a tener en cuenta, en el diseño se deben tener en cuenta las restricciones normativas o reglamentarias, por razones de seguridad, disposición de la infraestructura y ocupación del espacio, aspectos tales como la existencia de elementos estructurales, arquitectónicos, mobiliario, canalizaciones o equipos de otros servicios son restricciones que se deben tener en cuenta en el sistema de iluminación. Igualmente, se deben considerar variables económicas y energéticas, el análisis debe, no solo tener en cuenta los costos de instalación inicial sino también los de funcionamiento durante la vida útil del proyecto.

La mayoría de los datos necesarios para el análisis del proyecto se obtiene de la documentación técnica pero, en proyectos que lo ameriten se debe realizar un levantamiento visual y eventualmente fotométrico, eléctrico y fotográfico en la obra, para verificar y completar datos técnicos e identificar detalles difíciles de especificar en planos.

Por último, conocer los intereses de los posibles usuarios y diseñadores de interiores o mobiliario brindará la oportunidad de conocer e integrar sus opiniones, necesidades y preferencias respecto de las condiciones de iluminación.

210.2.2 PLANIFICACIÓN BÁSICA.

A partir del análisis de la información reunida en la etapa anterior, es posible establecer un perfil de las características que debe tener la instalación para satisfacer las distintas demandas del lugar. Lo que se busca aquí es desarrollar las ideas básicas del diseño sin llegar a precisar todavía ningún aspecto específico como seria la selección de las luminarias, por ejemplo. En este punto se define el sistema de alumbrado, las características de las fuentes luminosas, la factibilidad para el uso de alumbrado natural y la estrategia para su integración con la iluminación artificial, y sobre todo su espíritu creativo, los elementos que permiten plasmar el concepto inicial de diseño.

210.2.3 DISEÑO DETALLADO.

El diseño detalladlo es obligatorio para, alumbrado público, iluminación industrial, iluminación comercial con espacios de mayores a 500 m² y en general en los lugares donde se tengan más de 10 puestos de trabajo, o lugares con alta concentración de personas (100 o mas). En función del perfil definido en la fase de planificación básica, se deben resolver los aspectos específicos del proyecto, tales como:

- a) La selección de las luminarias
- b) El diseño geométrico y sistemas de montaje
- c) Los sistemas de alimentación, comando y control eléctricos
- d) La instalación del alumbrado de emergencia y seguridad, cuando se requiera.
- e) Análisis económico y presupuesto del proyecto

En esta etapa el diseñador debe presentar mínimo la siguiente documentación técnica:

- Planos de montaje y distribución de luminarias
- Memorias descriptivas y de cálculos fotométricos
- Cálculos eléctricos
- Una propuesta de esquema funcional de la instalación para propiciar el uso racional de la energía
- El esquema y programa de mantenimiento.
- Las especificaciones de los equipos recomendados.

En lo posible se deben considerar varias alternativas de iluminación.

La selección de las luminarias y del tipo de bombilla es uno de los aspectos más importante de un proyecto de iluminación. El tipo más conveniente se debe determinar sobre la base de consideraciones técnicas, estéticas y por supuesto, económicas. Aunque siempre deben considerarse los tres factores, hay que establecer prioridades en función de los requerimientos del diseño.

Si la ambientación visual es la pauta predominante, en la selección de las fuentes se buscará la armonía entre los artefactos y el estilo arquitectónico, el carácter y la ornamentación del local. Si se necesita crear condiciones de trabajo visual adecuadas y alta eficiencia energética, van a prevalecer los criterios técnicos tales como el rendimiento de las luminarias, las características fotométricas, el control de deslumbramiento, el color de la fuente luminosa, su eficacia y su vida útil.

El diseñador debe tener en cuenta que las luminarias se diseñan para funcionar con determinados tipos de bombillas, existentes en el mercado; esto implica que una vez definido el tipo de fuente, el universo de luminarias disponibles se reduce. Lo mismo ocurre con las bombillas si primero se define el tipo de luminaria. De manera que la elección debe hacerse en forma que siempre se use la bombilla con una luminaria diseñada para ella o viceversa.

Los criterios que se deben usar para identificar los tipos de luminarias son:

• Su fotometría

DE

- Su uso
- El tipo de fuente de luz o bombilla
- Las dimensiones y forma de la luminaria
- El tipo de montaje o instalación requerido
- Su cerramiento o índice de protección IP
- El tipo de superficie reflectora de su conjunto óptico

En la escogencia de la luminaria se debe tener en cuenta las características físicas, constructivas, mecánicas, eléctricas, térmicas, de seguridad, estéticas y económicas.

En instalaciones de alumbrado, y con el propósito de ahorrar energía sin deterioro de la calidad de la iluminación, no se debe recurrir al reemplazo de bombillas por otras de tecnologías más eficientes sin previamente verificar las implicaciones en la fotometría de la luminaria y por ende en la iluminación.

Los reemplazos de bombillas con diferentes tecnologías o formas puede implicar una modificación sustancial de la fotometría de la luminaria, por cuanto cambian el tamaño, la forma y a veces, hasta el tipo de recubrimiento (claro o transparente), por lo que se debe hacer un análisis fotométrico y colorimetrito con las nuevas fuentes a fin de verificar que la distribución espacial de la luz y la reproducción de colores no se modifiquen y afecten las condiciones de iluminación y visión.

210.2.4 USO DE SOWARE PARA DISEÑO DE SISTEMAS DE ILUMINACIÓN.

El software empleado en el cálculo y diseño de sistemas de iluminación debe cumplir con los siguientes requisitos:

- El software debe permitir ingresar la información fotométrica de las fuentes en las coordenadas establecidas en el presente reglamento.
- Deberá disponer de rutinas de ingreso para la información del diseño geométrico. De la misma forma deberá permitir ingresar la información relacionada con la identificación del objeto de diseño y del diseñador.
- Las unidades de medida para los datos a ingresar al software y las de los resultados deben ser claramente identificables, seleccionables y visibles.
- Las rutinas de entrada de datos deben permitir la identificación y/o selección de los parámetros a los cuales corresponde la información en cada instante ingresada, tales como: tipo de coordenadas de la fonometría empleada, altura de montaje e inclinación de la luminaria, distancias entre luminarias, posiciones relativas de las luminarias respecto del local, vía o espacio a iluminar, posiciones de las mallas de cálculo y del observador, condiciones ambientales, tipos de superficies e índices de reflexión asociados.
- El software debe permitir efectuar la partición de fuentes lineales y extensas, así como de las superficies con el objeto de disponer de cálculos más exactos y precisos que los realizados considerando únicamente fuentes puntuales y despreciando los efectos de reflexiones y formas de las superficies.
- El software debe permitir identificar las normas internacionales o de reconocimiento internacional usadas en sus algoritmos de cálculo, tales como (CIE, IESNA., NTC, ANSI, etc).
- En el caso de software para el diseño de alumbrado público debe validarse ante organismo o laboratorio acreditado respecto del cumplimiento de los requisitos de mallas de cálculo y posiciones del observador dadas en el presente reglamento, así como sobre la asociación del factor de mantenimiento con las condiciones ambientales y el grado de protección de la luminaria presentes o usadas en la instalación.

DE

• El software de diseño interior deberá efectuar los cálculos de iluminancia, uniformidad, deslumbramiento, eficiencia energética. Se podrá usar un software independiente para calcular el Coeficiente de contribución de Luz Día - CLD a la instalación.

Los diseños de iluminación basados en software deben ser consistentes con los realizados con software reconocido o certificado por laboratorios de iluminación acreditados y el error entre los resultados del diseño hecho con uno y otro no puede ser mayor de 5%.

Los datos resultantes del diseño no pueden diferir en más del 5% para el caso de **iluminancia** y del 10% para el caso de **luminancia**, respecto de los valores medidos del sistema de iluminación en funcionamiento.

210.3 USO RACIONAL DE ENERGÍA EN ILUMINACIÓN

Todos los proyectos de iluminación y alumbrado público deben incorporar y aplicar conceptos de uso racional y eficiente de energía. A continuación se da una serie de buenas prácticas para conseguir una iluminación eficiente, haciendo uso racional de la energía:

210.3.1 SECTOR RESIDENCIAL

- a. Aprovechar al máximo la luz natural.
- b. Usar Colores claros en paredes y techos permite aprovechar al máximo la luz natural y reducir el nivel de iluminación artificial.
- c. No dejar encendidas fuentes luminosas que no se estén utilizando.
- d. Limpiar periódicamente las bombillas y luminarias permite aumentar la luminosidad sin aumentar la potencia.
- e. Adaptar la iluminación a las necesidades, prefiriendo la iluminación localizada, además de ahorrar energía permite conseguir ambientes más confortables.
- f. Colocar reguladores de intensidad luminosa de tipo electrónico.
- g. Colocar detectores de presencia o interruptores temporizados en zonas comunes (vestíbulos, garajes, etc.), de forma que las fuentes luminosas se apaguen y enciendan automáticamente.

210.3.2 SECTOR COMERCIAL E INDUSTRIAL

- a. Aprovechar al máximo la luz natural mediante la instalación de foto sensores que regulen la iluminación artificial en función de la cantidad de luz natural, o independizando los circuitos de las lámparas próximas a las ventanas o claraboyas.
- b. Establecer circuitos independientes de iluminación para zonificar la instalación en función de sus usos y diferentes horarios.
- c. Usar sistemas de control centralizado en grandes instalaciones permiten ahorrar energía mediante la adecuada gestión de la energía demandada y consumida, además de efectuar un registro y control sobre los eventos que afectan la calidad del servicio.
- d. Instalar detectores de presencia temporizados en los lugares menos frecuentados (pasillos, servicios, almacenes, etc.).
- e. Instalar controles de iluminación automáticos que apaguen o enciendan las luces en determinados horarios, son una fuente de ahorro importante.
- f. Elegir siempre las fuentes de luz con mayor eficacia energética en función de las necesidades de iluminación.
- g. Emplear balastos electrónicos, ahorran energía, alargan la vida de las bombillas y consiguen una iluminación más agradable y confortable.
- h. Realizar un mantenimiento programado de la instalación, limpiando fuentes de luz y luminarias y reemplazando las bombillas en función de la vida útil indicada por los fabricantes.

210.3.3 ALUMBRADO EXTERIOR Y PÚBLICO

- a. Utilice luminarias para alumbrado público con fotometrías que le permitan hacer diseños con la mayor interdistancia y menor altura de montaje.
- b. Instale luminarias con el más bajo flujo hemisférico superior (FHS) posible.
- c. Elija conjuntos ópticos con el mejor factor de utilización y la mejor oficia de bombilla.

- d. Use equipos para el conjunto eléctrico con bajas pérdidas, dimerizables o que permitan la reducción de potencia.
- e. Elija correctamente los ángulos de apertura para los proyectores
- f. Siga las recomendaciones sobre posiciones de instalación de proyectores
- g. Use controles temporizados para proyectores

210.3.4 OTRAS MEDIDAS QUE SE DEBEN TENER EN CUENTA PARA APLICACIÓN URE

- Utilice materiales traslúcidos, difusos que dejen pasar poco calor radiante y aplíquelo en áreas grandes para Incrementar la contribución de luz natural.
- Uso de iluminación localizada en puestos de trabajo, mayor que la general.
- El diseño de la distribución de la iluminación debe ser flexible, de tal manera que pueda permitir una reacomodación en la organización del trabajo.
- Escoja fuentes de luz más eficaz y satisfagan los requerimientos de rendimiento de color.
- Use la luminaria más eficiente, que satisfaga el requerimiento de confort en términos de apantallamiento.
- Incremente las reflectancias de la superficie del salón, evitando reflectancias por encima del rango recomendado, podrían introducir disconfort y distracción.
- Control horario de apagado y encendido de sistemas de iluminación, sin comprometer aspectos de seguridad.

SECCIÓN 220 LA ILUMINACIÓN EN EL ANÁLISIS DE RIESGOS

Todo proyecto de iluminación debe estar acompañado de un análisis de riesgos que en materia de iluminación se pueden minimizar o eliminar. La iluminación de los espacios públicos, puestos de trabajo en edificaciones de industria y comercio y de edificaciones residenciales debe considerar el análisis de los posibles riesgos que se mitigan con un adecuado proyecto. En el análisis se deben considerar todos los aspectos de la iluminación relacionados con la salud y seguridad de las personas, el medio ambiente y la vida animal y vegetal, en este sentido debe considerase los requerimientos de iluminación de emergencia, en caso de falla en las instalaciones de alumbrado normal o del I suministro de energía.

Una iluminación inadecuada, por exceso o defecto, puede llevar a patologías asociadas como dolores de cabeza, irritación de los ojos, trastornos músculo-esquelético, debido a posiciones constantes y generalmente inadecuadas, asociadas a la utilización rápida y repetitiva de ciertos grupos musculares, que se traducen en cansancio muscular que lleva a malas posturas con alteraciones dolorosas de columna vertebral, principalmente en la región cervical y lumbar.

El cansancio visual por variaciones en la acomodación del ojo puede llevar a la presentación de mareos, originados por el efecto cebra y el efecto parpadeo.

El efecto cebra se produce por la aparición sucesiva de zonas claras y oscuras ante el conductor que puede llegar a sentir una sensación de molestia e incluso mareo debido a una baja uniformidad de las luminancias.

El efecto de parpadeo o flicker se produce por cambios periódicos de los niveles de luminancia en el campo de visión, según unas frecuencias críticas, entre 2,5 y 15 ciclos/segundo, que provocan incomodidad y mareos.

Utilizar fuentes de iluminación con un color de luz no apropiado para la actividad que se desarrolla en sitios con iluminación artificial, puede producir Discromatopsias, que son alteraciones que implican trastornos en la discriminación de colores.

La inadecuada disposición física de los equipos de iluminación puede llevar a que se presenten deslumbramientos perturbadores o molestos, debido a la luz que emiten directamente las fuentes

DE

luminosas o reflejadas; por ello el deslumbramiento es un factor importante a considerar en el análisis de riesgos.

Por tales razones la evaluación de las condiciones bajo las cuales se desplazan los peatones y los vehículos en los espacios públicos y las condiciones de los puestos de trabajo, donde se llevan a cabo labores industriales, comerciales, educativas o se realizan actividades recreativas o del hogar, deben considerar los siguientes aspectos, para minimizar el riesgo de inseguridad, accidentalidad y deterioro de la salud visual:

- a) Niveles adecuados de iluminación, dependiendo del lugar, actividad y edad de las personas que van a utilizar dicho alumbrado.
- b) Uniformidad de los niveles de iluminación.
- a) Control del deslumbramiento,
- b) Temperatura de color de las fuentes luminosas y su índice de reproducción del color, dependiendo de la actividad que se desarrolla en el sitio iluminado.
- c) Temperatura asociada a la operación de las luminarias y sitios de montaje.
- d) Condiciones de localización para la operación y el mantenimiento.

En el análisis de riesgos se debe considerar el rendimiento visual, que es el término usado para describir la velocidad con la que funciona el ojo, así como la precisión con la cual se puede llevar a cabo una tarea visual. El valor del rendimiento visual para la percepción de un objeto se incrementa hasta cierto nivel al incrementar la iluminancia o la luminancia del local. Otros factores que influyen sobre el rendimiento visual son el tamaño de la tarea visual y su distancia al observador, así como los contrastes de color y luminancia.

El análisis de riesgo en iluminación de interiores debe ser anexado al diseño y debe contemplar recomendaciones que debe conocer y atender el usuario.

SECCIÓN 230 INSTRUMENTOS DE MEDICIÓN DE ILUMINACIÓN.

Los proyectos de iluminación, las fuentes y luminarias se deben medir con los instrumentos adecuados, con las calibraciones y certificaciones acordes con las normas de petrología establecidas en el país.

230.1 MEDIDOR DEL FLUJO LUMINOSO

Las medidas de flujo luminoso se deben realizan en laboratorios acreditados o reconocidos por medio de un foto elemento ajustado según la curva de sensibilidad fotópica de ojo a las radiaciones monocromáticas, incorporado a un casco esférico conocido con el nombre de Esfera de Ulbricht, y en cuyo interior se coloca la fuente luminosa a medir.

230.2 MEDIDOR DE ILUMINANCIA

Las cantidades fotométricas que se necesitan medir en trabajos de campo son la iluminancia y la luminancia, las cuales se miden con el luxómetro y el luminancímetro.

Un medidor de iluminancia (luxómetro) tiene tres características importantes: sensibilidad, corrección de color y corrección coseno.

La **sensibilidad** se refiere al rango de iluminancia que cubre, dependiendo si será usado para medir luz natural, iluminación interior o exterior nocturna. Para una adecuada medición de iluminancia se requiere que el luxómetro tenga certificado de calibración vigente y las siguientes especificaciones técnicas: respuesta espectral ≤ al 4% de la curva CIE Standard, error de Coseno ≤ al 3% a 30°, pantalla de 3,5 dígitos, precisión de +/- 5% de lectura +/- un dígito y rango de lectura entre 0.1 y 19.990 luxes.

La **corrección de color** se refiere a que el instrumento tiene un filtro de corrección, para que el instrumento tenga una sensibilidad espectral igual a la del Observador Standard Fotópico de la CIE.

La **corrección coseno** significa que la respuesta del medidor de iluminancia a la luz que incide sobre él desde direcciones diferentes a la normal sigue la ley de coseno.

230.3 MEDIDOR DE LUMINANCIA

El luminancímetro mide la luminancia media sobre un área específica. Posee un sistema óptico que enfoca la imagen sobre un detector. Mirando a través del sistema óptico el operador puede identificar el área sobre la que está midiendo la luminancia, y usualmente muestra la luminancia promedio sobre esta área.

Las características y requisitos más importantes que debe tener los luminancímetros son su respuesta espectral acorde con la curva de sensibilidad espectral del observador estándar de la CIE, su sensibilidad y la calidad de su sistema óptico; ángulo de aceptación 1/3°, sistema óptico con lentes de 85 mm, sistema SLR factor de destello inferior a 1,5%, receptor de fotocelda de silicio, respuesta espectral de acuerdo con la curva fotópica de la CIE (iluminante A; valor integrado de 400 a 760 nm), unidad de medida cd/m2, exactitud de: 0,01 a 9,99 cd/m2: ±2% ± 2 dígitos del valor visualizado; 10,00 cd/m2 o más: ±2% ± 1 del valor mostrado (iluminante A medido a temperatura ambiente de 20 a 30° C. Factor de corrección con un ajuste de entrada numérico, rango: 0,001 a 9.999, pantalla externa: de 4 dígitos LCD con indicaciones adicionales, visor: 4 dígitos LCD con retroalimentación LED y certificado de calibración vigente

230.4 PRUEBAS DE VERIFICACIÓN DE LOS EQUIPOS DE MEDICIÓN

Para la calibración o verificación de los equipos de medición de iluminación, debe hacerse en una unidad de verificación o laboratorio de prueba debidamente acreditado o reconocido por la autoridad competente.

La unidad de verificación o laboratorio de prueba debe entregar el certificado de calibración o verificación contra un equipo patrón de acuerdo con la lista de chequeo exigida por la autoridad de metrología competente.

La vigencia de los dictámenes emitidos por las unidades de verificación y los reportes de los laboratorios de prueba será las que determine la autoridad de metrología competente.

DE

CAPÍTULO 3

REQUISITOS DE LOS PRODUCTOS DE ILUMINACIÓN Y ALUMBRADO PÚBLICO.

Este capítulo contiene información sobre los requisitos y las características que deben cumplir los equipos de iluminación y alumbrado público, en términos de las especificaciones técnicas que garantizan las características de desempeño, durabilidad y calidad para satisfacer las condiciones del servicio y de uso racional de energía.

SECCIÓN 300 REQUISITOS GENERALES DE LOS PRODUCTOS DE ILUMINACIÓN O ALUMBRADO PÚBLICO

300.1 DISPOSICIÓN DE INFORMACIÓN DE PRODUCTOS.

Toda información relativa al producto que haya sido establecida como requisito en el presente Reglamento, incluyendo la relacionada con marcaciones, rotulados, debe ser verificada dentro del proceso de certificación del producto y los parámetros técnicos allí establecidos deberán ser verificados mediante pruebas o ensayos realizados en laboratorios acreditados o reconocidos según la normatividad vigente.

Adicional a la información exigida en el marcado y etiquetado de los productos, el fabricante, comercializador o importador deberá disponer para consulta del usuario la información de los parámetros del producto que se tratan en el presente reglamento.

La información adicional, información de catálogos e instructivos de instalación, deberá ser veraz, verificable técnicamente y no inducir al error al usuario, las desviaciones a este requisito se sancionarán con las disposiciones legales o reglamentarias sobre protección al consumidor.

300.2 INFORMACIÓN SOBRE CONDICIONES AMBIENTALES DE SERVICIO.

Los elementos que conforman un sistema de iluminación en especial los de alumbrado público para un área de influencia determinada deberán estar especificados de acuerdo con las características ambientales del lugar donde se instalen. Los parámetros que el diseñador, operador o encargado del mantenimiento deben tener en cuenta para especificar los productos dentro de la realización de sus actividades, en la gestión de un sistema de iluminación, son:

- Ambiente: Tropical, salino, corrosivo, otros.
- Humedad relativa : mayor del %
- Temperaturas: Máxima, promedio Mínima. (grados centígrados)
- Tipo de instalación: A la intemperie, aérea, ambiente peligroso, otros)

SECCIÓN 310 FUENTES LUMINOSAS ELÉCTRICAS.

Las fuentes luminosas (lámparas o bombillas) requieren para demostrar la conformidad con el presente reglamento un certificado de conformidad de producto, expedido por un organismo acreditado, que esté soportado de los protocolos de los siguientes ensayos, realizados en un laboratorio acreditado o reconocido de acuerdo con las normas vigentes.

- a. Ensayo de encendido de la bombilla, en el caso de las bombillas de descarga en gas que requieren arrancador
- b. Tiempo de estabilización.
- c. Envejecimiento.
- d. Características eléctricas de la bombilla.
- e. Medición de flujo luminoso.
- f. Ensayo de tensión de extinción, en el caso de las bombillas de descarga en gas.
- g. Ensayos de torsión

310.1 BOMBILLAS INCANDESCENTES PARA USO DE ILUMINACIÓN DOMÉSTICA.

Las bombillas incandescente con bulbo de vidrio en cualquiera de sus formas y acabados (blanco, claro y esmerilado) con potencia nominal entre 25 W y 200 W y tensión nominal entre 100 V y 250 V, con casquillo de rosca Edison tipo E27, para aplicaciones domiciliarias o similares deben cumplir los requisitos establecidos en el presente Reglamento.

Su utilización en alumbrado residencial interior, es cada vez menor, en cumplimiento del Decreto 2331 de Junio 22 de 2.007, sustitución de bombillas incandescentes y de la Ley 627 de 2.001, de Uso Racional y Eficiente de la Energía – URE.

310.1.1 REQUISITOS DE PRODUCTO

Para los efectos del presente Reglamento Técnico, las bombillas incandescentes y sus casquillos deben cumplir los siguientes requisitos, adoptados de las normas IEC-60064, NTC 189, de la IEC- 60432-1, comprobados a partir del examen comparativo del producto contra los requisitos específicos establecidos:

a. El casquillo de la bombilla o lámpara para instalaciones domésticas o similares fijas deben ser del tipo E 27 y tener las dimensiones con las tolerancias indicadas establecidas en la Norma IEC 60061-1, tal como aparece en la Figura 310-1.1.

FIGURA 310-1.1 DIMENSIONES DEL CASQUILLO DE UNA BOMBILLA EN MILÍMETROS.

Donde:

En el casquillo no ensamblado se deben comprobar las siguientes dimensiones:

- H debe estar entre 4,8 y 11,5 mm y,
- r debe ser 1,025 mm.

Para la bombilla terminada se deben comprobar en el casquillo las siguientes dimensiones:

- d no debe ser menor que 26,05 ni mayor que 26,45 mm
- T1 debe ser mínimo de 22 mm y,
- S1 debe estar entre 7,0 y 8,5 mm.

Las bombillas para usos distintos a la iluminación domiciliaria o similar podrán utilizar casquillos diferentes al E27, siempre que dicho casquillo no se induzca al error al usuario a conectar la bombilla en un portabombillas para E27.

Para bombillas incandescentes o fluorescentes compactas de aplicaciones especiales con casquillo diferente al E27, o no roscables, deberán cumplir los demás requisitos que les apliguen.

- b. El casquillo y el contacto central de la bombilla y las demás partes conductoras de corriente, deben ser de un material no ferroso o de material conductor resistente a la corrosión.
- c. El casquillo no debe desprenderse del bulbo al aplicar un momento de torsión menor o igual a 3 N.m.

DE

Lo anterior se debe cumplir al inicio y al final del ensayo de su vida nominal. Se efectúa colocando la bombilla en un adaptador sujeto a una máquina o dispositivo medidor de torsión, de tal manera, que se pueda sujetar el bulbo para hacerlo girar lentamente hasta alcanzar como mínimo el valor de 3 N.m para el casquillo E27.

d. Flujo luminoso y eficacia lumínica de bombillas incandescentes: Cada bombilla incandescente, según su potencia y tensión debe certificar el flujo luminoso mínimo garantizado en su vida media

Cada bombilla, según su potencia y tensión debe certificar un flujo luminoso mínimo, garantizar un flujo luminoso nominal alto establecido en la Tabla 310-1.1. Adaptado de la Norma NTC 5103, donde se establece el flujo luminoso inicial mínimo aceptable para las bombillas incandescentes

El uso de bombillas incandescentes en los sistemas de iluminación estará condicionado al cumplimiento del Decreto 3450 de 2008 y la Resolución que reglamente los niveles mínimos de eficacia lumínica permitidos. Antes de la vigencia del citado decreto, el flujo luminoso inicial de lámparas incandescentes no podrá ser menor a las de la tabla 310.1.1

Potencia/	25 W	40 W	60 W	75 W	100 W	150 W	200 W
Tensión							
120 V	246	460	772	1.000	1.451	2.251	3.153
127 V	242	456	762	977	1.442	2.232	3.106
150 V	233	437	725	921	1.395	2.139	3.013
208 V	214	391	670	846	1.265	2.027	2.920
220 V	214	386	665	828	1.256	2.027	2.874
240 V	209	381	651	809	1.237	1.990	2.781

Tabla 310.1.1 Flujo luminoso inicial mínimo (Lúmenes) aceptable para las bombillas incandescentes

Parágrafo: Los requisitos para el casquillo establecidos en el numeral 310-1, también son aplicables al casquillo de las lámparas fluorescentes compactas autobalastadas.

- e. Marcación: Sobre el bulbo de la bombilla deben aparecer marcadas, indelebles y perfectamente legibles, como mínimo las siguientes indicaciones:
 - Marca registrada o razón social del fabricante.
 - Tensión nominal en voltios (V).
 - Potencia nominal en vatios (W).
- f. Empaque: En el empaque debe informarse, además de lo anterior:
 - El valor del flujo luminoso en lúmenes.
 - La vida útil nominal en horas.

Normas usadas para ensayo. Para la verificación de los requisitos establecidos se podrán utilizar normas internacionales, de reconocimiento internacional o NTC tales como:

NORMAS UTILIZADAS PARA LOS ENSAYOS DE BOMBILLAS INCANDESCENTES.

IEC.	60064	Lámparas de filamento de tungsteno para uso general.		
IEC.	60432	Prescripciones de seguridad para las lámparas de filamento de tungsteno, para uso doméstico e iluminación general.		
NTC.	1470	Casquillos y porta lámparas roscados E-27 y Mogul (E39).		
NTC.	189	Electrotecnia. Bombillas eléctricas de filamento de tungsteno para uso doméstico y usos similares de iluminación en general.		
NTC	5109	Medición del flujo luminoso		

310.2 BOMBILLAS INCANDESCENTES HALÓGENAS

El uso de estas fuentes estará limitado al cumplimiento del Decreto 3450 de 2008 y a las resoluciones que determinen la eficacia lumínica mínima aceptada para ese tipo de fuentes. Deberán cumplir con los siguientes requisitos:

310.2.1 REQUISITOS DE PRODUCTO:

- a. La vida promedio de estas bombillas no debe ser menor de 2.000 horas de operación.
- b. La eficacia no debe ser menor a la establecida para bombillas incandescentes.

DE

- c. Marcación: Sobre el bulbo de la bombilla o en la base, en el caso de la bombilla halógena dicroica, deben aparecer marcadas, indelebles y perfectamente legibles, como mínimo las siguientes indicaciones:
 - ⇒ Marca registrada o razón social del fabricante.
 - ⇒ Tensión nominal en voltios (V).
 - ⇒ Potencia nominal en vatios (W).
- d. Empaque: Además de lo señalado en la marcación el empaque debe informarse sobre:
 - ⇒ El valor del flujo luminoso en lúmenes.
 - ⇒ La vida útil nominal en horas.
- e. En el caso de las bombillas con reflector incorporado (tipo dicroica), en lugar del flujo luminoso en lúmenes se debe especificar la intensidad luminosa en candelas e indicar el ángulo de apertura del haz de luz.

310.2.2 RESTRICCIONES DE USO

Las bombillas ó lámparas halógenas Dicroicas, son lámparas incandescentes por lo tanto su uso debe estar restringido a:

- a. Únicamente deberán ser utilizadas para resaltar disposiciones arquitectónicas mediante la iluminación de las mismas.
- b. No podrán ser usadas como fuentes luminosas para la iluminación general de áreas. En caso de reemplazo el diseñador o encargado del mantenimiento deberá usar otras fuentes tales como bombillas ó lámparas de descarga de halogenuros metálicos de mayor eficacia lumínica, lámparas fluorescentes compactas de alta eficacia lumínica, diodos emisores de luz u otras fuentes de eficacia superior a las que esté sustituyendo.
- c. En alumbrado de sitios públicos, lugares de alta concentración de personas y de campos deportivos, solo podrán ser utilizadas como alumbrado de sistemas de seguridad o de emergencia.

Normas usadas para ensayos: Para la verificación de los requisitos establecidos se podrán utilizar, normas internacionales como la IEC 60357 (Lámparas de tungsteno halógeno (exceptuados los vehículos). de reconocimiento internacional o NTC.

310.3 LÁMPARAS DE MERCURIO BAJA PRESIÓN (FLUORESCENTES CON BALASTO INDEPENDIENTE).

Los requisitos del presente numeral aplican a:

- Lámparas tipo tubo fluorescente de precalentamiento (Preheat)
- Lámparas tipo tubo fluorescente de encendido instantáneo (Slim line)
- Lámparas tipo tubo fluorescente de encendido rápido (Rapid start)

310.3.1 REQUISITOS DE PRODUCTO.

DE

a. Eficacia lumínica. De acuerdo con las políticas URE los tubos fluorescentes comercializados para su uso en el país deben tener eficacias iguales o superiores a las establecidas en la siguiente Tabla 310.3.1.a).

Tipo.	Potencia	Eficacia	Tipo.	Potencia	Eficacia
	(W).	luminosa		(W).	luminosa
		(lm/W) (*).			(lm/W) (*).
Т8	14 a 25	68	T5	14 a 25	80
(26 mm de	26 a 30	72	(16 mm de	26 a 30	83
diámetro).	31 a 40	78	diámetro).	31 a 40	85
	41 a 50	79] [41 a 50	87
	> de 50	85		> de 50	90

Tabla 310.3. A Valores mínimos de eficacia lumínica en tubos fluorescentes.

Nota (*) Temperatura ambiente a 25° C

En la aplicación del uso racional de energía (URE), las lámparas tipo tubo fluorescente T12 están siendo descontinuadas y reemplazadas por lámparas tipo tubo fluorescente T8 y T5 que cuentan con tecnologías más eficaces y usan menor cantidad de mercurio, las lámpara T12 que se utilicen no podrán tener eficacias inferiores a las mostradas en la tabla 310.3.1 C

Tipo.	Potencia	Eficacia luminosa
T12	14 a 20	55
(38 mm de	39 a 40	70

Tabla 310.3.1 c. Eficacia mínima de lámparas fluorescentes T12

Es importante aclarar que la eficacia final de un sistema de iluminación realizado con bombillas tubulares fluorescentes está determinada no sólo por la eficacia de la bombilla, sino por la operación en conjunto con el balasto utilizado dadas las pérdidas que ellos tienen.

b. El Índice de Reproducción Cromática (**Ra**) para las bombillas tubulares fluorescentes deberán cumplir como mínimo con los valores establecidos en la Tabla 310-3.1.b).

Tipo de lámpara	Potencia nominal de la lámpara	Ra mínimo en %
Tubo doble contacto, longitud 1,2 m	>35 W	69
	≤ 35 W	45
Tubo en U,	>35 W	69
longitud 0,6 m	≤ 35 W	45
Tubo encendido instantáneo, longitud 2,4	65 W	69
m	≤ 65 W	45
Tubo de alta salida lumínica, longitud 2,4	100 W	69
m	≤ 100 W	45

Tabla 310.3 B Valores mínimos de Índice de Reproducción Cromática (CRI ó Ra)

- c. La vida útil para bombillas o tubos fluorescentes no debe ser menor a **10.000 horas**. Los fabricantes deberán especificar las condiciones de ciclos de encendido y tipo de balasto a usar bajo las cuales garantizan la vida útil de su producto.
- d. **Marcación**. Sobre el bulbo de la bombilla deben aparecer marcadas, indelebles y perfectamente legibles, como mínimo las siguientes indicaciones:
 - Marca registrada, logotipo o razón social del fabricante.

DE

- Apariencia o Temperatura del color.
- Índice de Rendimiento del Color (IRC)
- Potencia nominal en vatios (W).
- Flujo luminoso (lm)
- e. **Empaque**. Las bombillas fluorescentes deben informar en su empaque los siguientes parámetros, los cuales deben haber sido verificados en el proceso de certificación.

Potencia nominal

(**W**),

- Especificación del casquillo.
- Diámetro del bulbo.
- Correlación de la temperatura del color (K).
- Índice del rendimiento del color. (Ra)
- Flujo luminoso (Im).
- Vida útil (horas).

Normas usadas para ensayo: Para la verificación de los requisitos establecidos se podrán utilizar, normas internacionales, de reconocimiento internacional o NTC, tales como:

	NORMAS UTILIZADAS PARA LOS ENSAYOS DE BOMBILLAS FLUORESCENTES.			
IEC.	60081	Lámparas tubulares de fluorescencia para alumbrado general.		
IEC.	60901	Lámparas de fluorescencia de casquillo único – Prescripciones de seguridad y prestaciones.		
IEC.	60882	Prescripciones de precalentamiento para las lámparas tubulares de fluorescencia sin cebador.		
NTC.	1133	Balastos de reactancia para tubos fluorescente.		
NTC.	318	Tubos fluorescentes para alumbrado general.		
NTC.	5109	Medición del flujo luminoso.		

310.4 BOMBILLAS FLUORESCENTES COMPACTAS CON BALASTO INDEPENDIENTE

310.4.1 REQUISITOS DE PRODUCTO:

Las lámparas fluorescentes compactas no autobalastadas deben cumplir los requisitos de la fluorescente compacta con balasto incorporado, que le apliquen y tener eficacias lumínicas no menores a las establecidas en la Tabla 310.3.2.

Potencia en W	Eficacia mínima en lm/W
≤8	50
>8 y ≤15	57
>15 y ≤25	66
> 25 y ≤ 45	69
> 45	74

Tabla 31.3.2 Eficacia mínima Bombillas Fluorescentes Compactas con Balasto independiente

310.5 BOMBILLAS FLUORESCENTES COMPACTAS CON BALASTO INCORPORADO

310.5.1 REQUISITOS DE PRODUCTO:

- a. Las bombillas fluorescentes compactas con balasto incorporado de base roscada tipo Edison deberán cumplir lo especificado en el numeral 310.1.1.
- b. La base de la bombilla fluorescente compacta, por ser de material no metálico debe ser auto extinguible y probado de la siguiente manera:

DE

Las partes externas de material aislante que proveen protección contra choque eléctrico deben ser sometidas durante un período de 30 s. al ensayo de filamento incandescente de acuerdo con la norma IEC 695-2-1, La temperatura de la punta del filamento incandescente será de 650 °C.

Cualquier llama o incandescencia del espécimen se extinguirá dentro de los 30 s después de retirar la punta del filamento y cualquier llama que caiga no encenderá una pieza de 5 capas de papel de seda especificado en el numeral 6.8.6 de la norma ISO 4046, extendido horizontalmente, $200 \text{ mm} \pm 5 \text{ mm}$ debajo del prototipo bajo ensayo.

Las partes de material aislante que mantienen en posición las partes vivas deben someterse al ensayo del quemador de aguja según la norma IEC 695-2-1. Si es necesario retirar ciertas partes de la base para realizar el ensayo, se debe vigilar que las condiciones de ensayo no se alejen de manera significativa de aquellas que existen en uso normal.

La llama de ensayo se aplica en el centro de la superficie sometida a ensayo. La duración de aplicación es 10 segundos. Cualquier llama auto sostenida debe extinguirse durante los 30 segundos siguientes a la retirada de la llama de ensayo y ninguna gota debe inflamar un trozo de papel de seda especificado en el numeral 6.86 de la norma ISO 4046 e instalado horizontalmente a 200 mm por debajo del espécimen bajo ensayo.

c. A partir de la entrada en vigencia del presente reglamento, se prohíbe la comercialización y uso bombillas fluorescentes compactas con eficacia lumínica, factor de potencia y vida útil menor y distorsión armónica mayor a las contempladas en la Tabla 310.3.3.

Potencia en W de la bombilla ó lámpara LFCI.	Eficacia media mínima [Lúmenes por W].		Mínimo Factor de potencia.	Máxima distorsión total de	Mínima Vida útil en horas.
	Sin cubierta envolvente	Con cubierta		armónicos.	
	envoivente	envolvente. (*).			
≤8	43	40	0,5	150%	3.000
>8 y ≤15	50	40	0,5	150%	3.000
>15 y ≤25	55	44	0,5	150%	6.000
> 25 y ≤ 45	57	45	0,5	150%	6.000
> 45	65	55	0,8	120%	8.000

Tabla 310.3.3 Especificaciones de bombillas ó lámparas fluorescentes compactas con balasto incorporado.

- (*) La cubierta puede ser transparente o traslucida.
- d. Temperatura máxima de operación, el fabricante especificará la máxima temperatura de operación sin que se afecte la vida útil de la fuente y hará las recomendaciones sobre instalación en este tipo de luminarias.
- e. Empaque: Las bombillas fluorescentes compactas deben informar en su empaque los siguientes parámetros, los cuales deben haber sido verificados en el proceso de certificación.
 - 1 Potencia nominal (**W**). 2 Tipo de casquillo

- Correlación de la temperatura del color (K).
- 4 Índice del rendimiento del color

DE

- 5 Flujo luminoso (Im).
- 6 Vida promedio (horas).
- a. Marcación: Sobre la base que soporta el bulbo de la bombilla deben aparecer marcadas, indelebles y perfectamente legibles, como mínimo las siguientes indicaciones:
 - Marca registrada, logotipo o razón social del fabricante.
 - Tensión nominal en voltios (V).
 - Temperatura del color.(K)
 - Flujo luminoso (lm)
 - Potencia nominal en vatios (W).

310.5.2 REQUISITOS DE INSTALACIÓN

En la instalación de bombillas fluorescentes compactas se debe tener en cuenta los siguientes requisitos:

- a. En la sustitución de bombillas incandescentes por bombillas fluorescentes compactas, antes de adelantar cambios masivos de fuentes luminosas en instalaciones de alumbrado interior con luminarias tipo bala, empotradas en el techo de las edificaciones, se debe prevenir la falla prematura de las lámparas, verificando que el espacio es suficiente y permite la manipulación directa de la bombilla o haciendo mediciones previas de temperatura en funcionamiento con las nuevas fuentes. Cuando los valores de temperatura dentro del nicho de la bala superen los valores de temperatura recomendados por el fabricante de la bombilla, se debe proceder a cambiar la bala por una apropiada para bombillas fluorescentes compactas, acorde con las recomendaciones del fabricante.
- b. Las bombillas fluorescentes compactas se deben sujetar de su base para enroscarla en el portabombilla, para ello se requiere, en el caso de las instalaciones de alumbrado interior tipo bala empotradas en el techo, que el diámetro de la bala sea lo suficientemente ancho, de lo contrario se debe cambiar dicha bala por una de diámetro apropiado.
- c. Cuando al cambiar una bombilla incandescente por una bombilla fluorescente compacta, en instalaciones de alumbrado interior con luminarias tipo bala empotradas en el techo, parte de la fuente luminosa quede por fuera de la bala produciendo deslumbramiento, se debe instalar una pantalla de base cónica, incrustada o sobrepuesta a la bala, para lograr mejorar el confort de la iluminación; aunque en estos casos lo más recomendable es reemplazar la bala por una que sea compatible con la bombilla que se va a utilizar.

Normas usadas para ensayos: Para la verificación de los requisitos establecidos se podrán utilizar, normas internacionales, de reconocimiento internacional o NTC, tales como:

	NORMAS UTILIZA	DAS PARA LOS ENSAYOS DE LAS BOMBILLAS FLUORESCENTES COMPACTAS.	
IEC.	60968	Lámparas de balasto integrado para el alumbrado general- Prescripciones de seguridad.	
IEC.	60969	Lámparas de balasto integrado para el alumbrado general- Prescripciones de prestaciones.	
NTC.	5109	Medición del flujo luminoso.	
ANSI	C78.5-2003	or Electric Lamps Specifications for Performance of Self- ballasted Compact Fluorescent Lamps	
NOM-	017- ENER-2008	Eficiencia energética de lámparas fluorescentes compactas. Límites y métodos de prueba	
NOM-	017- ENER/SCFI- 2008	Eficiencia energética y requisitos de seguridad de lámparas fluorescentes compactas autobalastadas. Límites y métodos de prueba.	
UL	1993	Self-Ballasted Lamps and Lamp Adapters	

NBR	NBR 14538	Tubos fluorescentes reactor integrado con la base para la iluminación general - Requisitos de
NDIX	14556	seguridad
NDD	NBR 14539	Tubos fluorescentes reactor integrado con la base para la iluminación general - requisitos de
INDIX	14559	desempeño

310.5.3 PROTECCIÓN TÉRMICA DE LÁMPARAS FLUORESCENTES COMPACTAS CON BALASTO INCORPORADO

Con base en una adaptación de la Norma Oficial Mexicana NOM -017-ENER/SCFI-2008. "Eficiencia energética y requisitos de seguridad de lámparas fluorescentes compactas autobalastadas. Límites y métodos de prueba" se establece que:

Las LFCI, deben contar con un protector térmico tal que abra el circuito de alimentación en el tiempo establecido en la tabla 310.3.3.1. Cuando se presenten temperaturas del envolvente del balasto o de otro elemento electrónico que afecten la vida útil de la lámpara. El protector también debe actuar en la realización de la prueba descrita en 310-3.3.2, cuando se excedan las temperaturas límite establecidas a continuación, según el tipo de balasto:

Requisitos del protector térmico.

- a) Puede ser del tipo reconexión automática y debe diseñarse para las condiciones de tensión y corriente a las que va a operar.
- b) Debe localizarse al interior de la lámpara, de tal manera que se encuentre protegido contra golpes y que sea de difícil acceso para evitar que se inutilice voluntariamente.
- c) Durante la prueba de protección térmica, no debe haber emisión de compuesto de encapsulado, ignición del mismo, o emisión de flama o metal fundido del interior ni tampoco reblandecimiento o ignición de cubiertas plásticas.

Temperatura máxima del elemento a mayor temperatura versus tiempo de operación del protector térmico			
Mayor que (°C)	Hasta (°C)	Tiempo máximo (minutos)	
145	150	5,3	
140	145	7,1	
135	140	10	
130	135	14	
125	130	20	
120	125	31	
115	120	53	
110	115	120	

Tabla 310.3.3.1. Relación de temperatura de la envolvente versus tiempo de operación del protector térmico

Prueba de la Protección térmica.

Esta prueba es adaptada del numeral 8.3.9 de la Norma Oficial Mexicana NOM-017-ENER/SCFI-2008, dentro del proceso de certificación podrá usarse otra norma internacional equivalente, o de reconocimiento internacional o NTC equivalente.

El objetivo de esta prueba es verificar que las LFCI, cumplen con la protección térmica que se especificada en 310-3.3.1. Aplica a todo tipo de LFCI.

Instrumentos y equipos para la prueba de la protección térmica.

- a) Termopares tipo J o K.
- b) Termómetro digital.
- c) Cronómetro.
- d) Cámara de prueba de temperatura.

Acondicionamiento del espécimen de prueba

Para ejecutar las pruebas de "Condiciones de falla" el espécimen bajo prueba debe contar con:

- a) terminales accesibles para conectar en cortocircuito los devanados y componentes;
- b) 5 termopares en la cubierta del elemento de mayor temperatura.

DE

Procedimiento de prueba

Condiciones de falla

El termoprotector del espécimen de prueba debe abrir el circuito de alimentación antes de 110 °C o dentro de los límites que se indican en 310-3.3.1.

Energizar el espécimen de prueba a las condiciones nominales de operación (tensión y frecuencia, dentro de la cámara de prueba de temperatura y con las condiciones descritas en el inciso 310-3.3.1., hasta su equilibrio térmico bajo condiciones normales; posteriormente, someter a cada una de las condiciones de falla que se describen a continuación, una por una, considerándose cada condición una prueba completa.

- Conectar en cortocircuito las dos últimas capas de una bobina con aislamiento entre capas (o el 20% de las vueltas de una bobina con otro tipo de devanado) de la bobina primaria.
- b) Conectar en cortocircuito, las dos últimas capas de una bobina con aislamiento entre capas (o el 20% de las vueltas de una bobina con otro tipo de devanado) de la bobina secundaria.
- Operar en condición anormal. Esta prueba no requiere efectuarse cuando en la prueba de incremento de temperatura anormal no se exceda de 110 °C.
- d) Conectar en cortocircuito o circuito abierto cualquier capacitor del tipo electrolítico o elemento semiconductor del circuito capaz de suministrar 50 W o más a una resistencia externa por 1 min.
- Conectar en cortocircuito el capacitor de corrección del factor de potencia, siempre y cuando esto no conduzca a una condición de cortocircuito del devanado primario del balastro.

Durante esta prueba, conectar un fusible de 20 A de acción retardada de tal manera que el fusible no abra antes de 12 s cuando conduce 40 A.

El tiempo a partir del momento en que la temperatura de la superficie del cuerpo de la lámpara que aloja al balastro o elemento de mayor temperatura excede 110 °C hasta que el termoprotector opera o se alcance la temperatura máxima, debe cumplir con lo que se indica en 310-3.3.1.

En la prueba debe cumplirse con lo que se especifica en la tabla 310.3.3.1.

310.6 BOMBILLAS DE DESCARGA DE VAPOR DE MERCURIO DE ALTA PRESIÓN.

Las bombillas de mercurio de alta presión deben cumplir los siguientes requisitos:

- a. La vida promedio de las bombillas de vapor de mercurio no podrá ser menor a 24.000 horas.
- b. En aplicaciones de iluminación, distintas del servicio de alumbrado público, se podrán utilizar bombillas de vapor de mercurio, siempre que tengan como mínimo las eficacias contempladas en la Tabla 310-4.1
- c. El uso de bombillas de mercurio en los nuevos sistemas de alumbrado público queda prohibido

Potencia de la bombilla. W	Eficacia. lm/W
50 a 79	36
80 a 124	47
125 a 249	50
250 a 399	52
400 a 699	55
700 a 999	57
Mayores o iguales a1.000	57

Tabla 310.4.1 Eficacia mínima para bombillas de mercurio a alta presión

d. Empaque. Las bombillas de mercurio a alta presión deben informar en su empaque los siguientes parámetros, los cuales deben haber sido

DE

 \Rightarrow Potencia nominal (W).

⇒ Tipo de casquillo

⇒ Vida promedio (horas).⇒ Flujo luminoso (Im)

- **Marcación** Sobre el bulbo de la bombilla deben aparecer marcadas, indelebles y perfectamente legibles, como mínimo las siguientes indicaciones:
 - ⇒ Marca registrada o razón social del fabricante.
 - ⇒ Potencia nominal en vatios (W).
 - ⇒ Flujo luminoso Im
- La disposición final La disposición final de las bombillas desechadas se hará de acuerdo con la normatividad ambiental vigente.

Normas utilizadas para los ensayos. Para la verificación de los requisitos establecidos se podrán utilizar normas NTC, normas internacionales o de reconocimiento internacional, tales como:

NORMAS UTILIZADAS PARA LOS ENSAYOS DE LAS BOMBILLAS DE MERCURIO.			
IEC.	60188	Lámparas de descarga de vapor de mercurio a alta presión.	
IEC.	67004-21	Características de bases o casquillos para bombillas	
NTC.	3281	Bombillas de vapor de mercurio. Métodos para medir sus Características.	
NTC.	2119	Bombillas de vapor de mercurio a alta presión.	
NTC.	147()	Electrotecnia. Casquillos y portalámparas roscados E27 y E40 <i>o Mogul (E39)</i> . Dimensiones y galgas de verificación.	

310.7 BOMBILLAS DE HALOGENUROS METÁLICOS.

- a. La vida promedio para bombillas de halogenuros metálicos no podrá ser menor a 12.000 horas
- b. La eficacia de bombillas de halogenuros metálicos no podrá menor de 72 lm/W
- c. **Empaque.** En el empaque deberá aparecer la información de los siguientes parámetros, los cuales deben haber sido verificados en el proceso de certificación.

Potencia nominal (W).

- Tipo del casquillo .
- Forma del bulbo
- Correlación de la temperatura del color (K).
- Índice del rendimiento del color.
- Acabado del bulbo
- Flujo luminoso, posición hacia arriba (base down (Im)
- Flujo luminoso, posición hacia abajo (base up) (lm).
- Vida promedio (horas).
- c. **Marcación** Sobre el bulbo de la bombilla deben aparecer marcadas, indelebles y perfectamente legibles, como mínimo las siguientes indicaciones:
 - Marca registrada, logotipo o razón social del fabricante.
 - Potencia nominal en vatios (W).
 - Referencia de fabricación.

DE

- Temperatura del color.
- Flujo luminoso (lm)

Normas utilizadas para los ensayos. Para la verificación de los requisitos establecidos se podrán utilizar normas NTC, normas internacionales o de reconocimiento internacional, tales como:

Continuación Anexo General Reglamento Técnico de Iluminación y Alumbrado Público - RETILAP

NORMA	NORMAS UTILIZADAS PARA LOS ENSAYOS DE LAS BOMBILLAS DE HALOGENUROS METÁLICOS.			
IEC.	61167	Lámparas de vapor de mercurio y halogenuros.		
NTC.	2393	Bombillas eléctricas de halogenuros metálicos de 400 W.		
NTC.	2394	Bombillas eléctricas de halogenuros metálicos de 1.000 W.		

310.7 BOMBILLAS DE VAPOR DE SODIO ALTA PRESIÓN.

310.7.1 REQUISITOS DE PRODUCTO:

- a. La vida promedio para bombillas de sodio de alta presión no podrá ser menor a 24.000 horas
- b. Las bombillas de sodio alta presión deben cumplir con el trapezoide de funcionamiento de la bombilla definido en la norma técnica bajo la cual estén certificadas. Tales normas deberán ser internacionales como la IEC 60662, normas técnicas de reconocimiento internacional equivalentes, o la NTC 2243.
- c. Las eficacias de bombillas de sodio de alta presión no podrán ser menores a las establecidas en la Tabla 310-4.3.

Potencia de bombilla	Eficacia inicial (lm/W).		
(W).	Tubular.	Ovoide clara.	Ovoide fosforada.
50	82	82	80
70	82	85	82
100	107	88	85
150	90	93	90
250	104	108	100
400	118	120	117
600	150	150	146
1.000	125	150	150

Tabla 310.4.3 Eficacia mínima para las bombillas de sodio a alta presión.

d. **Empaque** Las bombillas de sodio de alta presión deben informar en su empaque los siguientes parámetros los cuales deben haber sido verificados en el proceso de certificación.

Adicional a la información en el empaque, el fabricante o comercializador dispondrá en catálogo impreso o en medio magnético, para consulta e información de los compradores o diseñadores, de las curvas de depreciación del flujo luminoso y de mortalidad de las bombillas.

⇒ Potencia Nominal W
 ⇒ Flujo luminoso Im
 ⇒ Vida útil horas

⇒ Tipo de casquillo⇒ Forma de bulbo

- ⇒ Acabado del bulbo
- e. **Marcación** Sobre el bulbo de la bombilla deben aparecer marcadas, indelebles y perfectamente legibles, como mínimo las siguientes indicaciones:
 - ⇒ Marca registrada, logotipo o razón social del fabricante.
 - ⇒ Potencia nominal en vatios (W).
 - ⇒ Flujo luminoso (lm)
 - ⇒ Símbolo que indique el método de arranque (bombilla europea)

310.7.2 REQUISITOS DE INSTALACIÓN.

No se podrá utilizar este tipo de bombillas donde la resolución o reproducción del color sea un factor determinante para la actividad realizada en el área iluminada, o para las características de objeto de la iluminación (fachadas y monumentos), en razón a que pueden distorsionar el color.

Normas utilizadas para los ensayos. Para la verificación de los requisitos establecidos se podrán utilizar normas NTC, normas internacionales o de reconocimiento internacional, tales como:

NORMAS UTILIZADAS PARA LOS ENSAYOS DE LAS BOMBILLAS DE SODIO.		
IEC.	60662	High pressure sodium vapour lamps.
NTC	2243	Bombillas de vapor de sodio a alta presión.

SECCIÓN 320 LUMINARIAS Y PROYECTORES.

320.1 LUMINARIAS.

Todas las luminarias para uso en alumbrado público e iluminación en general deberán cumplir con los siguientes requisitos y demostrarlos mediante certificado de conformidad de producto.

320.1.1 REQUISITOS DE PRODUCTO

- a. Las carcasas de luminarias en materiales no metálicos, deben durante el proceso de inyección incorporar los colorantes y químicos que garanticen el color requerido, así como la estabilidad al efecto de la temperatura, agentes contaminantes y los rayos ultravioleta.
- b. Ninguno de los elementos o partes de la luminaria deben presentar rebabas, puntos o bordes cortantes
- c. En luminarias diseñadas para bombillas de vapor de sodio, el diseño del conjunto óptico debe limitar el aumento de tensión durante la operación normal de acuerdo con la Tabla 320.

Luminarias de Sodio (W).	Máximo aumento de tensión de la bombilla [V.].
50	5
70	5
100	7
150	7
250	10
400	12
600	20

DE

Luminarias de Sodio (W).	Máximo aumento de tensión de la bombilla [V.].	
1.000	25	

Tabla 320 Máximo aumento de tensión de la bombilla de sodio dentro de la luminaria.

- Requisitos fotométricos: Toda luminaria debe acompañarse de los siguientes documentos fotométricos: la curva polar de intensidad luminosa y la matriz de intensidades referida a un tipo de coordenadas de acuerdo con el organismo internacional seleccionado, bien sea CIE o IESNA. En el laboratorio se harán los ensayos a la luminaria que permitan determinar y certificar los documentos anteriores y se deberá entregar también el diagrama polar para el plano de la curva de intensidad luminosa máxima
- El ángulo de inclinación del conjunto óptico de la luminaria para la elaboración de la matriz de intensidades debe ser 0°. En caso de existir reglaje del portabombilla se debe indicar la posición del portabombilla dentro del conjunto óptico de la luminaria al cual corresponde cada fotometría. Estos documentos debe ser los mismos que se usen para la certificación de producto.
- Los fabricantes y comercializadores de luminarias deberán entregar adicionalmente para las de alumbrado público la curva de coeficiente de utilización y para las de alumbrado interior la tabla de coeficiente de utilización.
- En el caso de las luminarias de uso exterior se debe indicar el valor de Flujo Hemisférico Superior (FHS), que se define como el porcentaje (%) de flujo luminoso emitido por el equipo de iluminación por encima del plano horizontal, e indica el nivel de contaminación lumínica que produce el equipo con un ángulo de inclinación de 0°.
- Cuando se requiera probar la información fotométrica de una luminaria establecida en los documentos fotométricos, se debe determinar la forma de la distribución lumínica y la medida de las intensidades luminosas en cada punto alrededor de la fuente bajo prueba, utilizando el fotogoniómetro de un laboratorio acreditado o reconocido según las normas vigentes.
- Eficiencia luminosa: Las luminarias y proyectores de alumbrado público deben tener un conjunto i. óptico con una eficiencia de por lo menos el 60% del flujo luminoso emitido por la fuente luminosa.
- Las luminarias alumbrado público, además de los anteriores, deben cumplir los siguientes j. requisitos:
 - 1. El tamaño de la carcasa debe garantizar que las temperaturas no lleguen a los valores críticos en las partes importantes de la bombilla, tales como el punto de unión entre el bulbo y el casquillo y no sobrepasen las temperaturas máximas de funcionamiento de los elementos que conforman la luminaria. Adicionalmente debe garantizar que no sobrepase el incremento de tensión en bornes de bombilla para sodio, según lo establecido por la norma IEC 60662 y que pueda afectar seriamente la vida útil de la misma.
 - 2. Los reflectores deben presentar un coeficiente de reflexión superior al 90 %, no deben ser pintados o esmaltados, ni planos.
 - 3. Los refractores deben presentar una superficie lisa externa, en ningún caso deben ser prismáticos exteriores, puesto que el factor de mantenimiento se eleva al favorecer la acumulación de sedimentos y partículas.
 - 4. El refractor debe presentar las mejores características ópticas y ser adecuado para intemperie, resistente a cambios bruscos de temperatura, a altas temperaturas durante períodos prolongados (cristalización, rompimiento y amarillamiento).

DE

- 5. Los refractores podrán ser en vidrio templado de seguridad o en policarbonato de alto impacto y con protección UV, tipo prismático y en vidrio liso templado de seguridad. En sistemas de alumbrado público no podrán usarse refractores o difusores ni protectores en acrílico.
- 6. El fabricante de las luminarias de alumbrado público debe efectuar la fotometría de la luminaria, de acuerdo con las diferentes posiciones de la bombilla dentro del conjunto óptico cuando exista reglaje. Las luminarias deberán tener un soporte del portabombilla para permitir el fácil y seguro ajuste, así como, en los casos aplicables, deberán contar con un mecanismo para la graduación de la bombilla dentro del conjunto óptico, –bien sea en sentido vertical, horizontal ó en ambos-, que satisfaga la fotometría de la luminaria.
- 7. Las luminarias para alumbrado público con potencias superiores a 100 W requieren que el portabombillas esté ensamblado dentro de un dispositivo de reglaje, con posiciones bien definidas, que permita graduar la colocación de la bombilla dentro del conjunto óptico. El elemento que se utilice para establecer las posiciones del reglaje debe estar claramente identificado señalando los puntos específicos en el sentido que corresponda, al igual que asegurando su maniobrabilidad y fijación una vez se determina la posición de interés.
- k. Requisitos eléctricos y mecánicos de las luminarias y reflectores.
 - El conjunto eléctrico de la luminaria constituido por balasto, condensador, arrancador, bornera de conexiones y, en los casos aplicables, fusibles, debe acoplarse en el interior del cuerpo de la luminaria y diseñarse para fácil montaje, inspección, limpieza, mantenimiento y reemplazo de sus elementos; para ello, todas las conexiones internas deben estar claramente identificadas con marcadores permanentes para cable.
 - 2. El conjunto eléctrico debe cumplir con los requisitos de desempeño de las bombillas para la cual está diseñada la luminaria.
 - 3. Las conexiones eléctricas en las borneras y/o tornillos que se encuentren directamente en contacto con una conexión eléctrica (punto vivo) deben ser del tipo no ferroso o tener una protección contra la corrosión sin reducir la conductividad eléctrica.
 - 4. Las luminarias para bombillas de sodio alta presión con potencias superiores o iguales a 150 W, deben protegerse mediante la utilización de fusibles certificados. De éste requisito se exceptúan las luminarias que en el conjunto eléctrico usen balastos electrónicos que tengan incorporada protección de cortocircuito.
 - 5. En las luminarias y proyectores para alumbrado público la protección contra tensión de contacto debe ser Clase I de acuerdo con clasificación dada en la Norma NTC 2230.
 - Para las luminarias y proyectores usados en alumbrado de piscinas y fuentes de agua, la protección contra tensión de contacto debe ser Clase III de acuerdo con clasificación dada en norma NTC 2230 o normas equivalentes.
 - 7. Las luminarias usadas en alumbrado público, deben garantizar los índices mínimos señalados a continuación para el grado de hermeticidad y protección contra el impacto, el diseñador de acuerdo con las exigencias de desempeño y factores de mantenimiento especificará las necesidades para cada instalación en particular:
 - 8. En luminarias para alumbrado público, el conjunto óptico deben tener un grado de hermeticidad (IP) no inferior a:
 - IP 54 o su equivalente NEMA para niveles de contaminación de categorías 1 ó 2, establecidos en la Tabla 720-2.2.1.3.b) del Capítulo 7, o para municipios hasta de cien mil habitantes en el casco urbano
 - IP 65 para municipios de más de cien mil habitantes y/o municipios con alto grado de contaminación.
 - 9. En luminarias de alumbrado público el grado de hermeticidad para el conjunto eléctrico debe ser $IP \ge 43$ o su equivalente NEMA.

DE

- 10. En las luminarias de alumbrado público el grado de protección contra el impacto, debe ser $IK \ge 0.8$.
- 11. Para túneles, las luminarias como mínimo deben cumplir con el grado de hermeticidad de IP \geq 65 y el grado de protección contra el impacto de IK \geq 0,8 para la luminaria.
- 12. Para proyectos ubicados en zonas de alta exposición al vandalismo, se podrán diseñar y proponer sistemas resistentes al vandalismo, tales como: tornillos, soldaduras, cinta bandit, candados, entre otros.
- 13. Las luminarias de alumbrado público deben se compatibles con las disposiciones de mobiliario urbano y armonizar con el ambiente del sitio de instalación en cada municipio, sin desmejorar la eficiencia de las instalaciones de alumbrado público.
- 14. En iluminación interior las luminarias embutidas o tipo bala deben tener en cuenta el factor confinamiento de su instalación y sus consecuencias: caída de la eficacia luminosa, vida de bombilla y disminución de las propiedades de disipación térmica. Sus componentes balasto, bombillas, portabombillas, cables y encerramiento, deben ser adecuados para disipar el calor y soportar las temperaturas la cual nunca deben superar los 90°C.
- 15. El fabricante debe especificar la mayor potencia de las bombillas a usarse con la luminaria,
- 16. Los componentes de todo tipo de luminaria deben cumplir con la resistencia al quemado mediante el ensayo del hilo incandescente a 650° C tal como lo establece la norma IEC 695-2-1, la Sección 13 de la norma NTC 2230 u otra norma equivalente. Las partes no metálicas de la luminaria que mantienen en posición partes eléctricas vivas susceptibles de incendio por cortocircuitos o sobre corrientes debe además cumplir con la resistencia a la llama mediante el ensayo de aplicación de la llama cónica, contemplado en las Normas IEC 695-29-2, UL 94, NTC 2230 u otra norma equivalente.
- 17. Las luminarias y proyectores, incluidas las de alumbrado público, con requisito protección contra tensión de contacto Clase I, deben estar provistos, en su interior, de un terminal adecuado en contacto con el cuerpo de la luminaria para permitir su conexión a tierra, en forma tal que las partes conductoras accesibles no se vuelvan peligrosas en caso de falla del aislamiento básico.
- 18. En todos los aparatos de alumbrado de construcción no completamente metálica o material no combustible, los compartimientos de los cables deben estar revestidos de metal. Se exceptúan cuando se utilicen cables blindados o recubiertos de plomo con accesorios adecuados.
- 19. Las carcasas de los aparatos de alumbrado, incluidas las luminarias portátiles, deben tener un espacio amplio para empalmes y conexiones y para la instalación de dispositivos, si los hay. Los compartimientos de los empalmes deben ser de material no absorbente ni combustible.
- 20. El conjunto eléctrico de las bombillas de descarga deben ir encerrados en cajas o cofres accesibles, no combustibles y se deben considerar como fuentes de calor.
- 21. Los aparatos de alumbrado, portabombillas y bombillas no deben tener partes energizadas expuestas normalmente al contacto. Los terminales expuestos accesibles de los portabombillas no se deben instalar en aparatos con protector metálico ni en las bases abiertas de bombillas portátiles de mesa o de piso. Se exceptúan los portabombillas de tipo pinza que se instalen como mínimo a 2,40 m sobre el piso, que tengan sus terminales expuestos.
- I. Marcación: Las luminarias deberán ir marcadas en forma directa sobre el cuerpo o en una placa metálica exterior de fácil visualización. La marcación debe ser en impreso indeleble o marcación láser e incluir la siguiente información, de acuerdo con lo señalado en la norma NTC 2230 o normas internacionales o de reconocimiento internacional equivalentes

Marca de fábrica. Mes y año de fabricación.

Potencia. Conjunto óptico. IP = Modelo y referencia Conjunto eléctrico. IP = Tensiones de conexión. Refractor ó cubierta. IK = Tipo de bombilla. Otras partes. IK =

DE

En las luminarias para alumbrado público, el municipio o el operador del servicio podrá solicitar que le graben en la carcasa en alto o bajo relieve, con letra imprenta de por lo menos 11 mm, la leyenda que indique el nombre del municipio, distrito u operador donde se instalarán los equipos. Productos marcados con el nombre del municipio, distrito u operador del servicio, no podrá ser comercializada para usuarios distintos, al menos que tenga el permiso de quien aparezca en la marcación, quien tenga conocimiento del hecho deberá informar a quien aparezca en la marcación, quien deben informar del hecho a las autoridades competentes para el control y vigilancia del presente reglamento.

La información técnica que debe ir grabada en cada uno de los elementos que conforman el conjunto eléctrico, se relacionan en las especificaciones de cada componente.

La luminaria debe incluir un diagrama de conexiones eléctricas internas, legible y que se conserve durante la vida útil de la misma.

320.1.2 REQUISITOS DE INSTALACIÓN:

- a. Los aparatos de alumbrado montados a nivel de la superficie o empotrados deben ser instalados de modo que materiales combustibles adyacentes no estén expuestos a temperaturas superiores a 90°C.
- b. El calentamiento excesivo en luminarias embutidas o tipo bala son la causa de muchos incendios en edificaciones, por ello no solo es importante determinar su temperatura de funcionamiento desde el punto de vista útil de sus componentes, sino desde el punto de seguridad previniendo posibles incendios.
- c. Cuando las luminarias fluorescentes estén instaladas en interiores, los balastos deben llevar protección térmica integral. Se exceptúan las luminarias fluorescentes que utilicen bombillas tubulares lineales con balastos de reactancia sencilla, los balastos para uso en luminarias indicadoras de salida e identificadas para ello, y las luces indicadoras de salida que se encienden únicamente en caso de emergencia.
- d. Las luminarias de bombillas de descarga de alta intensidad que se instalen empotradas, deben estar protegidas térmicamente y estar así identificadas. Cuando estas luminarias están operadas por un balasto a distancia, tanto si están empotrados como si no lo están, el balasto también debe estar térmicamente protegido. Se exceptúan las luminarias de bombillas de descarga de alta intensidad empotradas, identificadas para ese uso e instaladas en concreto vertido. La protección térmica que se exige en el Artículo 410-73 se puede lograr por medios distintos a protectores térmicos.
- e. Los aparatos de alumbrado montados a nivel de la superficie o empotrados las cubiertas metálicas deben estar protegidas contra la corrosión y ser de un espesor no menor a 0,759 mm (22 MSG). Se permite que la cubierta del compartimiento del alambrado sea de material más delgado, siempre y cuando esté instalada dentro de la cubierta de 0,759 mm (22 MSG) y no sirva de soporte a componentes portadores de corriente de la instalación.
- f. Los aparatos de alumbrado deben estar instalados de tal manera que los casquillos roscados de los portabombillas estén conectados al mismo conductor del circuito o terminal del aparato. Cuando esté conectado al casquillo de un portabombilla, el conductor de puesta a tierra se debe conectar a la parte roscada del casquillo.
- g. La luminaria o proyector debe tener la siguiente protección de los conductores y los aislamientos del alambrado de las luminarias:

- Los conductores deben estar bien sujetos de modo que no se produzcan cortaduras ni abrasión del aislamiento.
- Cuando los conductores pasen a través de metales se debe proteger su aislamiento contra la abrasión.
- En los brazos o mangos de los aparatos de alumbrado no debe haber empalmes o conexiones.
- Los conductores se deben instalar de modo que el peso del aparato de alumbrado o sus partes móviles no los someta a tensión mecánica.

320.1.3 PRUEBAS DE LAS LUMINARIAS.

Las luminarias deben ser sometidas a los siguientes ensayos, para lo cual se utilizarán las normas técnicas referidas o su equivalente en normas internacionales o de reconocimiento internacional aplicables a este tipo de productos.

- a. Fotometría.
- b. Revestimiento anodizado de los reflectores de aluminio, para luminarias de uso exterior. (Espesor mínimo de 5 micras en las superficies lisas y planas y la prueba de continuidad con bombilla incandescente)
- c. Hermeticidad según IP que aplique.
- d. Resistencia mecánica (energía de impacto y compresión), bajo norma NTC 2230 (Luminarias. Requisitos generales) o normas equivalentes.
- e. Ensayo de temperatura (Calentamiento), cuando aplique.
- f. Protección Ultravioleta. (será exigible en la medida que se tengan laboratorios para su realización)
- g. Resistencia de aislamiento y rigidez dieléctrica.
- h. Incremento de tensión en bornes de la bombilla en luminarias con bombillas de sodio.
- i. Resistencia al fuego.
- j. Vibración y adherencia de la pintura.

Normas utilizadas para los ensayos. Para la verificación de los requisitos establecidos se podrán utilizar normas NTC, normas internacionales o de reconocimiento internacional, tales como:

	NORMAS PARA ENSAYO DE LUMINARIAS.		
NTC.	900	Código de alumbrado público.	
NTC.	1156	Productos metálicos y recubrimientos. Ensayos cámara salina.	
NTC.	2230	Electrotecnia Luminarias.	
NTC.	2243	Bombillas de vapor de sodio a alta presión.	
NTC.	3279	Grados de protección dado por encerramiento de equipo eléctrico [Grados IP].	
IEC.	60529	Degree of protection by enclosures [IP Code].	
IEC.	60598 1-2-3	Luminaries for road and street lighting. Particular requirements.	
EN.	50102	Grados de protección proporcionados por las envolventes de materiales eléctricos contra los impactos mecánicos externos (código IK).	

Inspección visual de luminarias: Se debe verificar el contenido de la placa de características para la luminaria y cada uno de los accesorios eléctricos (balasto, condensador, arrancador y tipo de conductores), accesorios mecánicos (soportes, tornillos, arandelas), material de refractor, reflector, carcasa, plato de montaje, portabombilla, alambrado, acoples, borneras y terminales, uniformidad del abrillantado, sistema de fijación y montaje, sistema de cierre y otras observaciones que se pueden hacer acerca de las características de la luminaria.

320.1.3.1 Ensayos al conjunto eléctrico de luminarias para alumbrado público.

DE

- a. Los ensayos de los balastos, se deben realizar en laboratorio acreditado o reconocido según las normas vigentes y de acuerdo con los parámetros establecidos en la norma NTC 2243, normas internacionales o de reconocimiento internacional equivalentes.
- b. Los ensayos para verificación del grado de hermeticidad IP y el grado de protección contra el impacto IK se deben realizar en laboratorio acreditado o reconocido según las normas vigentes.

320.2 PROYECTORES.

- a. Para los documentos fotométricos de proyectores, se utilizará el sistema de coordenadas rectangulares.
- b. Al igual que en las luminarias, para los proyectores se debe cumplir cada uno de los apartes contemplados en la sección 320 del presente Reglamento, tales como: el contenido de la placa de características para proyector, pruebas fotométricas y las pruebas de cada uno de los accesorios eléctricos (balasto, condensador, arrancador y tipo de conductores), accesorios mecánicos (soportes, tornillos, arandelas), material de refractor, reflector, carcasa, plato de montaje, portabombilla, alambrado, acoples, borneras y terminales, uniformidad del anodizado y abrillantado, sistema de fijación y montaje, sistema de cierre y otras observaciones que se pueden hacer acerca de las características de la luminaria.
- c. El sistema de fijación de los proyectores debe contar con elementos de graduación vertical y horizontal, que permiten una orientación y fijación adecuada a las condiciones del espacio y a los requerimientos fotométricos de la aplicación específica.
- d. Adicionalmente, se debe explicar el manejo del reglaje en las diferentes posiciones, en relación con el comportamiento fotométrico, para satisfacer los requerimientos establecidos en el diseño.

SECCIÓN 330 BALASTOS.

Los balastos deben cumplir los siguientes requisitos y demostrarlo mediante certificado de producto.

- a. Los balastos pueden ser electromagnéticos o electrónicos.
- b. El Factor de cresta⁷ debe medirse, analizando la corriente de la bombilla y su valor deberá ser inferior o igual a los definidos en la Tabla 330.

Tipo de bombilla.	Factor de cresta máximo.
Fluorescentes.	1,7
Fluorescente Slim line	1,85
Vapor de mercurio alta presión.	1,8
Vapor de sodio baja presión.	1,6
Vapor de halogenuros metálicos.	1,8
Vapor de sodio alta presión.	1,8

Tabla 330 Máximo factor de cresta admitido para un balasto, según los tipos de bombilla.

⁷ Es la relación que existe entre el valor pico y el valor eficaz (rms) de la onda de corriente de la bombilla. Es la característica del balasto más estrechamente relacionada con la duración de bombilla. El factor de cresta de una onda sinusoidal perfecta es 1,4; a medida que este factor aumenta en la onda de corriente de la bombilla, la calidad del balasto es menor

DE

Para evaluar la capacidad de regulación⁸ del balasto, se deben medir las potencias de la bombilla a la tensión mínima, a la tensión nominal y a la máxima permisible según su diseño. Después se relacionan de la siguiente forma:

- Regulación. = (1- Potencia de la bombilla (a tensión de línea mínima).

 Potencia de la bombilla (a tensión de línea nominal).

 Potencia de la bombilla (a tensión de línea máxima).

 Potencia de la bombilla (a tensión de línea máxima).

 Potencia de la bombilla (a tensión de línea nominal).

 -1) *100 [%]
- c. Factor de potencia: Es la relación entre la potencia de entrada a la luminaria (potencia suministrada a la bombilla más la potencia consumida por el propio conjunto eléctrico) y el producto de la tensión por la corriente de entrada. A partir de la entrada en vigencia del presente reglamento, no se permitirá la comercialización y uso de conjunto eléctrico de luminarias con factor de potencia inferior a 0,9.
- d. Sostenimiento del arco en las bombillas HID con disminución de la tensión de la red: El balasto debe mantener la bombilla en operación, con disminuciones repentinas de la tensión de la red, con duración inferior a 4 segundos.
- e. Ruido: Generado por vibración que se produce en las láminas del núcleo, por el campo magnético y sus variaciones. El nivel de ruido, en principio, dependerá de la forma de construcción y de la calidad del balasto, sin embargo, también influirá el sistema de fijación de éste a la luminaria. En un plazo no mayor de 2 años se deberá establecer la normatividad técnica aplicable al caso.
- f. Aislamiento Eléctrico: Desde el punto de vista de aislamiento, las bobinas de los balastos deben presentar una resistencia de aislamiento de 2 megohmios entre el devanado y el núcleo o la cubierta metálica exterior y deben poder soportar una tensión de ensayo de dos veces la tensión de trabajo más alta para la cual está diseñado, más 1.000 V (2 Vn + 1.000), a frecuencia industrial durante un minuto, Requisito adaptado de la Norma NTC 2117.
- g. Temperatura máxima de operación (**tw**): Las características térmicas de los balastos están especificadas por la máxima temperatura de operación del bobinado y debe ser establecida por el fabricante. Esta temperatura no debe ser sobrepasada para asegurar el cumplimiento de la vida útil del balasto.
- h. Todos los balastos deben tener rotulado el valor de **tw** es decir, la temperatura de operación nominal máxima del bobinado o temperatura máxima hasta la cual se garantiza el funcionamiento nominal del balasto.
- i. La vida útil de los balastos debe ser de mínimo igual a 10 años en trabajo continuo. El fabricante especificará las condiciones de garantía. Para evaluar este requisito se podrán aplicar los métodos de ensayo de las Normas NTC-2069, NTC 2117 y NTC 2230, normas internacionales o de reconocimiento internacional equivalentes.
- j. Para balastos electromagnéticos de lámparas fluorescentes el tw mínimo debe ser de 120 °C y en balastos electromagnéticos para bombillas de descarga de alta intensidad (HID) el tw mínimo debe ser de 130 °C.
- k. Cuando las luminarias fluorescentes estén instaladas en interiores, los balastos deben llevar protección térmica integral, conforme al literal "e" de la parte "P" del Artículo 410-73 de la NTC 2050.

⁸ Regulación de potencia: Es la habilidad que tiene el balasto para controlar la potencia de la bombilla, con los cambios de tensión que se presentan en la línea de alimentación

DE

Continuación Anexo General Reglamento Técnico de Iluminación y Alumbrado Público - RETILAP

 Se establece como mínimo factor de balasto⁹ para lámparas fluorescentes el indicado en la tabla 330-1.1 A.

Factor de balasto.				
Balasto	A la entrada en vigencia del reglamento.	En 36 meses.	En 48 meses.	
Electrónico	0,75	0,85	0,95	
Electromagnético	0,75	0,8	0,9	

Tabla 330.1.1.a) Mínimo factor de balasto exigido, para balastos de lámparas fluorescentes.

En balastos electromagnéticos el alambre esmaltado de cobre de la bobina debe poder soportar la temperatura máxima de trabajo para la cual ha sido diseñado el balasto, de acuerdo con la clasificación establecida en las normas NTC 2117, NTC 2118, IEC 61347-2-9 u otras internacionales o de reconocimiento internacional equivalentes

- m. Se establecen los siguientes valores mínimos para el Factor de Eficacia de Balasto¹⁰ para lámparas fluorescentes:
 - Balastos electromagnéticos deben tener un factor de balasto mínimo de 0,75¹¹.
 - Balastos electrónicos deben tener un factor de balasto mínimo de 0,85¹².
- n. A partir de la entrada en vigencia del presente reglamento, los conjuntos eléctricos de las luminarias para lámparas o bombillas fluorescentes que se comercialicen o se usen en Colombia no podrán tener una eficiencia menor a la establecida en la Tabla 330-1.1.b). La eficiencia del balasto se deberá medir como el cociente de la potencia de salida del balasto sobre la potencia de entrada, expresada en porcentaje.

Tipo de conjunto eléctrico de la luminaria	Niveles de eficiencia mínima permitida.		
Tipo de conjunto eléctrico de la luminaria.	A la entrada en vigencia del RETILAP	En 18 meses.	En 36 meses.
Electromagnético menor de 40 W.	75%	80%	85%
Electromagnético mayor o igual a 40 W.	78%	82%	85%
Electrónico.	85%	90%	95%

Tabla 330 .1.1.b) Niveles de eficiencia mínima permitida en conjuntos eléctricos de luminarias para lámparas fluorescentes.

330. 1 BALASTOS ELECTROMAGNÉTICOS.

330.1.1 BALASTOS PARA BOMBILLAS FLUORESCENTES.

La tendencia mundial es la de eliminar el uso de balastos electromagnéticos, por lo tanto el país haciendo uso de la defensa de intereses legítimos podrá prohibir su uso, en los mismos tiempos y condiciones que se den para la Comunidad Europea o Norteamérica.

⁹ El factor de balasto se define como la relación entre el flujo luminoso de la bombilla funcionando con el balasto de producción y el flujo luminoso de la misma bombilla funcionando con el balasto de referencia.

El factor de eficacia de balasto se define como la relación entre el factor de balasto dado en % y la potencia de entrada medida en vatios que opera las mismas bombillas de referencia.

¹¹ Valor tomado de la NTC 5107.

¹² Valor tomado de la NTC 5108.

Continuación Anexo General Reglamento Técnico de Iluminación y Alumbrado Público - RETILAP 330.1.2 BALASTOS PARA BOMBILLAS DE DESCARGA DE ALTA INTENSIDAD (HID).

DE

- a. Los balastos para las bombillas de sodio deben cumplir con los siguientes rangos de regulación de potencia:
 - Los balastos tipo reactor deben garantizar que variaciones de tensión de entrada (tensión de red) entre \pm 5%, generen como máximo una variación del \pm 12% en la potencia nominal suministrada a la bombilla.
 - Los balastos tipo CWA deben garantizar que variaciones de tensión de entrada (tensión de red) entre \pm 10% generen como máximo una variación del \pm 5% en la potencia nominal suministrada a la bombilla.
- b. Curvas trapezoides: Los balastos para las bombillas de sodio alta presión deben indicar para qué trapezoides de funcionamiento de la bombilla, definidos en norma técnica, cumplen. Tales normas deberán ser internacionales como la IEC 60662, de reconocimiento internacional o NTC como la NTC 2243. Para el efecto se deberán determinar tres curvas características del balasto que indican la variación de la potencia de la bombilla, las cuales se deben construir para la tensión nominal de línea y para los dos valores extremos de tensión aceptados como variación, dependiendo del tipo de balasto. Es decir ± 5% Vn para el balasto tipo reactor y ± 10% Vn para el balasto tipo CWA.
- c. Durante la vida de la bombilla, la curva de la característica típica del balasto debe estar dentro de los límites especificados por el trapezoide, para la tensión y potencia de la bombilla. Por lo tanto, el fabricante o comercializador del balasto debe poner a disposición del usuario, las curvas del comportamiento del balasto dentro del trapecio definido para la potencia de bombilla. No aplica para la potencia reducida de los balastos doble potencia.
- d. Los balastos tipo CWA (Constant Wattage Autotransformer) para bombillas de sodio sólo se podrán usar cuando las variaciones de tensiones de la red de alimentación superen los valores de operación para el balasto tipo reactor (±5% tensión nominal).
- e. Las tensiones de bombilla de sodio de alta presión que se podrán comercializar en el país y las máximas perdidas permitidas en los balastos son las establecidas en la Tabla 330-1.2.

Bombilla de sodio.	Tensión [V] de bombilla.	Pérdidas Máximas [W] balastos reactor	Pérdidas Máximas [W] balastos CWA
50 W	90	10	
70 W	90	11	
100 W	90	15	
150 W	100	19	40
250 W		29	45
400 W		40	70
600 W		60	100
1.000 W	250	100	119

Tabla 330.1.2 Pérdidas máximas aceptadas en los balastos para bombillas de sodio

f. Marcación: Los balastos deben tener un rotulado legible y durable de identificación, con la siguiente información:

Potencia nominal. W	Diagrama de conexiones.
Tensiones de conexión. V	Temperatura nominal máxima del bobinado [tw]°C.
Corriente de entrada. A	Marca de fábrica.
Tipo de balasto.	Modelo y referencia.
Tensión de bombilla. V	Mes y año de fabricación.

DE

Identificación de terminales.

Normas para los ensayos. Para la verificación de los requisitos establecidos se podrán utilizar normas NTC, normas internacionales o de reconocimiento internacional, tales como:

NORMAS UTILIZADAS PARA LOS ENSAYOS DE BALASTOS ELECTROMAGNÉTICOS.		
ANSI.	C 82.4	Ballasts for high intensity discharge and low pressure sodium lamps.
ANSI.	C 82.6	Reference ballasts for high intensity discharge lamps methods of measurenment.
IEC.	60922	Ballasts for discharge lamps (excluding tubular fluorescent lamps). General and safety requirements
IEC.	60923	Ballasts for discharge lamps (excluding tubular fluorescent lamps). Performance requirements
NTC.	2117	Balastos para bombillas de descarga de alta intensidad. Especificaciones.
NTC.	2118	Balastos para bombillas de descarga de alta intensidad. Ensayos.
NTC.	3657	Pérdidas máximas en balastos, para bombillas de descarga de alta intensidad.
NTC.	4545	Métodos de ensayo para la medición de pérdidas de potencia en balastos.

330.2 BALASTOS ELECTRÓNICOS.

Los balastos electrónicos en comparación con los electromagnéticos presentan ventajas como: menores pérdidas, pueden aumentar la vida útil de la lámpara; poseen encendido instantáneo, alto factor de potencia y filtros de entrada que limitan y mantienen el nivel de armónicos.

Los balastos electrónicos deben cumplir con los siguientes requisitos:

- a. El factor de cresta no debe ser mayor al estipulado en la Tabla 330
- b. El factor de balasto debe ser mayor o igual al estipulado en la Tabla 330-1.1.a)
- c. La contaminación por distorsión armónica total de corriente no debe ser mayor al 32% (THD ≤ 32%), según norma NMX –J- 513, medidas a tensión de línea nominal.
- d. Los balastos electrónicos que no dispongan de filtros para reducir la radiointerferencia, deben ser ensamblados o capsulados dentro de una caja metálica.
- e. Los balastos electrónicos para fuentes fluorescentes lineales T5 deben cumplir con protección de fin de vida de la bombilla de conformidad con normas tales como EN 60598/DIN VDE 0710, DIN VDE 0711 y protección contra trasciendes ANSI 62.41, VDE 0160 o EN 61000-4-5 u otras equivalentes.
- f. Marcación. Los balastos deben tener un rotulado legible y durable de identificación, con la siguiente información:

Potencia nominal. W	Marca de fábrica.
Tensiones de conexión. V	Modelo y referencia.
Corriente de entrada. A	Mes y año de fabricación.
Tipo de bombilla.	
Diagrama de conexiones.	

Normas para los ensayos. Para la verificación de los requisitos establecidos se podrán utilizar normas NTC, normas internacionales o de reconocimiento internacional, tales como:

NORMAS UTILIZADAS PARA LOS ENSAYOS DE BALASTOS ELECTRÓNICOS.			
IEC.	61347	Requerimientos para balastos electrónicos de lámparas fluorescentes	
UL	935	Balastos para tubos fluorescentes	

SECCIÓN 340 ARRANCADORES PARA LÁMAPARAS DE DESCARGA EN GAS.

Los arrancadores para lámparas de descarga en gas deben cumplir los siguientes requisitos.

DE

- a. El arrancador debe ser encapsulado, cumplir con normas internacionales tales como IEC 60926 e IEC 60927, o normas de reconocimiento internacional o las NTC 3200-1, NTC 3200-2 y debe ser apto para instalarse después del balasto. Se debe tener en cuenta los requisitos principales de estas normas.
- b. Las características técnicas que deben cumplir los Arrancadores para Bombillas de Sodio, son:
 - Ser del tipo encapsulado, los no metálicos se deben fabricar en un material auto extinguible probado de acuerdo con la norma IEC695-2-1 o la NTC 3200-1 numeral 20, que establece lo siguiente:
 - Las partes externas de material aislante que proveen protección contra choque eléctrico deben ser sometidas durante un período de 30 s. al ensayo de filamento incandescente de acuerdo con la norma IEC 695 - 2- 1, La temperatura de la punta del filamento incandescente será de 650 °C.
 - 3. Cualquier llama o incandescencia del espécimen se extinguirá dentro de los 30 s después de retirar la punta del filamento y cualquier llama que caiga no encenderá una pieza de 5 capas de papel de seda especificado en el numeral 6.8.6. de la norma ISO 4046, extendido horizontalmente, 200 mm ± 5 mm debajo del prototipo bajo ensayo.
 - 4. Las partes de material aislante que mantienen en posición las partes vivas deben someterse al ensayo del quemador de aguja según la norma IEC 695-2-1, teniendo en cuenta que el elemento de prueba es un arrancador completo. Si es necesario retirar ciertas partes del arrancador para realizar el ensayo, se debe vigilar que las condiciones de ensayo no se alejen de manera significativa de aquellas que existen en uso normal.
 - 5. La llama de ensayo se aplica en el centro de la superficie sometida a ensayo. La duración de aplicación es 10 s.
 - 6. Cualquier llama auto sostenida debe extinguirse durante los 30 s siguientes a la retirada de la llama de ensayo y ninguna gota debe inflamar un trozo de papel de seda especificado en el numeral 6.86 de la norma ISO 4046 e instalado horizontalmente a 200 mm por debajo del espécimen bajo ensayo.
- c. Se podrán utilizar arrancadores tipo superposición o serie, paralelo, impulsador o semiparalelo; y se recomienda el uso de arrancadores que, en condición de daño de la bombilla (fin de la vida útil, ausencia de ella por vandalismo, bulbo roto o desconexión temporal, no proveen pulsos de alta tensión hacia el balasto y poseen un sistema de parada automática del tren de pulsos.
- d. No deben tener restricción alguna con respecto a su posición de operación.
- e. Deben estar diseñados para soportar temperaturas desde -10°C hasta +90°C sin que se afecte su normal funcionamiento.
- f. Los terminales deben ser del tipo cable de 20 cm de largo con los extremos estañados, con aislamiento mínimo de 105°C y 600 V. Deben ser diseñados de forma que se garantice una buena conexión eléctrica y que además sean mecánicamente seguros. Se aceptan terminales tipo bornera, siempre que las conexiones sean seguras.
- g. El arrancador debe tener claramente identificados y de manera permanente sus terminales de conexión.
- h. Deben presentar una resistencia de aislamiento no menor de 2 M Ω .
- i. Deben soportar una tensión de 2 Vn + 1.000 V, entre terminales durante un (1) minuto.
- j. El pulso generado por el arrancador, debe tener la energía necesaria (altura, ancho, posición y repetición) para garantizar:

- 1. Un arranque rápido y confiable de la bombilla.
- 2. Un correcto encendido de las bombillas en el encendido en frío y reencendido en caliente.
- 3. Para garantizar el arranque cuando se utilizan bombillas halogenuros metálicos, se deben identificar las características particulares de la bombilla, puesto que para la línea europea, éstas varían de un fabricante a otro para la misma referencia de potencia. Para la práctica americana, en algunas bombillas de halogenuro metálico de nueva tecnología se requiere de arrancador.
- k. En todos los casos, los arrancadores deben garantizar el encendido de bombillas del tipo súper o plus de sodio o identificadas como bombillas nueva generación. El pulso de tensión producido por el arrancador debe cumplir con las características señaladas en la Tabla 340.

Bombillas de sodio alta	Pulso [kV].		Tasa de repetición	Tiempo de duración del
presión.			del pulso.	pulso
	Mínimo.	Máximo.	Por ciclo	Microsegundos
50 W	1,8	2,5	2	2
70 W	1,8	2,5	2	2
100 W	2,8 / 2,5	5,0 / 4,0	2	1
150 W	2,8 / 2,5	5,0 / 4,0	2	1
250 W	2,8 / 2,5	5,0 / 4,0	2	1
400 W	2,8 / 2,5	5,0 / 4,0	2	1
600 W	3,0	5,0	2	1
1.000 W	3,0	5,0	1	1

Tabla 340 Características de los arrancadores para bombillas de sodio de alta presión.

I. **Marcación** Los arrancadores deben tener un rotulado legible y durable de identificación, con la siguiente información:

Potencia.	Marca de fábrica.
Tensiones de bombilla.	Modelo y referencia.
Frecuencia.	Mes y año de fabricación.
Identificación de terminales.	Corriente máxima (arrancadores de superposición)
Diagrama de conexiones.	Capacitancia de carga(define la distancia máxima entre el arrancador y la bombilla en picofaradios)
Temperatura máxima de operación.	

Normas utilizadas para los ensayos. Para la verificación de los requisitos establecidos se podrán utilizar normas NTC, normas internacionales o de reconocimiento internacional, tales como:

NORMAS UTILIZADAS PARA ENSAYOS EN ARRANCADORES			
IEC.	60926	Starting devices (other than glow starters). General and safety requirements.	
IEC.	60927	Starting devices (other than glow starters). Performance requirements.	
NTC.	3200-1 3200-2	Arrancadores para bombillas de sodio alta presión.	

SECCIÓN 350 CONDENSADORES PARA CONJUNTO ELECTRICO DE BOMBILLAS DE DESCARGA EN GAS.

350.1 REQUISITOS DE PRODUCTO:

DE

- El condensador debe mantener una alta estabilidad de su capacitancia ante la ocurrencia de sobretensiones, debe soportar picos de sobretensión hasta 2,15 (no auto-regenerados) ó 2,0 (autoregenerados) veces su tensión nominal aplicada entre terminales durante 60 segundos, sin sufrir daños.
- Igualmente, el condensador debe soportar durante 60 segundos, entre terminales unidos y carcasa, una tensión de 2.000 V (eficaces) para condensadores con tensión nominal hasta 250 V y 2.500 V (eficaces) para condensadores de tensión nominal mayor a 250 V.
- El condensador utilizado en alumbrado público debe ser del tipo seco o aislado en aceite (no PCB) y debe tener una tolerancia en el valor de su capacitancia, de \pm 3% para balastos CWA y hasta \pm 5% para balastos tipo reactor
- El cambio del valor de capacitancia con variaciones de temperatura entre 23oC y 0 oC, debe estar dentro del rango de + 2% a -5% y para un cambio de temperatura de 23 oC a 90 oC debe estar dentro de un rango de +2% a -7%.
- El factor de disipación no debe exceder el 0,1%, con su tensión nominal y a cualquier temperatura entre los 23 oC y 90 oC. (Ver Figura 350).
- Los condensadores deben ser aptos para trabajar durante períodos prolongados a una tensión que f. no exceda el 110% de su tensión nominal, dentro de las temperaturas admisibles.
- Los condensadores deben tener internamente una resistencia de descarga entre terminales, que garanticen una tensión en bornes del condensador de 50 voltios o menos, después de un (1) minuto de haber desconectado la fuente de alimentación.
- Los condensadores que poseen terminales para su conexión, deben soportar un torque de 0,34 N-m y una fuerza de compresión axial y tensión de halado de 20 N, sin sufrir daño.
- Marcación. Los condensadores deben tener un rotulado legible y durable de identificación, con la siguiente información:

Capacitancia.	Temperatura mínima de operación
Tolerancia.	Marca de fábrica.
Tensión.	Modelo y referencia.
Frecuencia.	Mes y año de fabricación.
Temperatura máxima de operación.	

Adicionalmente, la marcación de los condensadores debe contener los símbolos que se explican a continuación:

Cuando sea instalada una resistencia de descarga, el símbolo

Cuando sea instalado un fusible, el símbolo

Si el condensador es auto-regenerable, el símbolo

Si un condensador no auto-regenerable se destina exclusivamente para funcionar en serie, el j. símbolo ------

DE

Normas utilizadas para los ensayos. Para la verificación de los requisitos establecidos se podrán utilizar normas internacionales, de reconocimiento internacional o normas NTC, tales como:

	NORMAS UTILIZADAS PARA ENSAYOS EN CONDENSADORES.					
IEC.	61048	Capacitors for use in tubular fluorescent and other discharge lamp circuits. Performance requirements".				
IEC.	61049	Capacitors for use in tubular fluorescent and other discharge lamp circuits. General and safety				
NTC.	2134-1	34-1 Condensadores fijos para aplicación de corriente alterna. Requisitos de funcionamiento				
NTC.	2134-2	Condensadores fijos para aplicación de corriente alterna. Requisitos generales y de seguridad				

SECCIÓN 360 PORTABOMBILLAS.

360.1 PORTABOMBILLAS PARA LÁMPARA INCANDESCENTE O FLUORESCENTE COMPACTA, CON BALASTO INTEGRADO.

- a. El portabombillas para lámparas incandescentes o fluorescentes compactas con balasto integrado de uso en iluminación doméstica o similar debe ser del tipo E 27 y cumplir las dimensiones y tolerancias de la norma IEC60061.
- b. Los portabombillas deben tener una resistencia mecánica para soportar una torsión de por lo menos 2,26 N, debida a la inserción de la bombilla y el material no conductor debe ser autoextinguible demostrado mediante la prueba de hilo incandescente a 650 °C durante 30 segundos, sin que se mantenga la llama, cuando se retire el hilo caliente.
- c. El casquillo y el contacto central del portabombilla y las demás partes conductoras de corriente, deben ser de un material no ferroso y resistente a la corrosión.

Figura 360-1. Posición de la camisa roscada del portabombilla [mm

- d. Las partes externas de material aislante no cerámico que proveen protección contra choque eléctrico deben ser sometidas durante un período de 30 s. al ensayo de filamento incandescente de acuerdo con la norma IEC 695 2- 1, La temperatura de la punta del filamento incandescente será de 650 °C.
- e. Cualquier llama o incandescencia del espécimen se extinguirá dentro de los 30 s después de retirar la punta del filamento y cualquier llama que caiga no encenderá una pieza de 5 capas de papel de seda especificado en el numeral 6.8.6. de la norma ISO 4046, extendido horizontalmente, 200 mm \pm 5 mm debajo del prototipo bajo ensayo.
- f. Las partes de material aislante que mantienen en posición las partes vivas deben someterse al ensayo del quemador de aguja según la norma IEC 695-2-1. Si es necesario retirar ciertas partes del portalámparas para realizar el ensayo, se debe vigilar que las condiciones de ensayo no se alejen de manera significativa de aquellas que existen en uso normal.

360.2 PORTABOMBILLAS PARA LÁMPARAS FLUORESCENTES (SOCKET)

DE

- a. El material aislante, no cerámico, de los portalámparas de tubos fluorescentes debe cumplir con la prueba de resistencia al quemado, con el ensayo del hilo incandescente a 650° C tal como lo establece la norma IEC 695-2-1 u otra equivalente.
- b. Las partes no metálicas de los portalámparas de tubos fluorescentes que mantienen en posición partes eléctricas vivas susceptibles de incendio por cortocircuitos o sobre corrientes debe además cumplir con la resistencia a la llama mediante el ensayo de aplicación de la llama cónica, contemplado en la Norma IEC 695-29-2 o UL 94, así:

Las partes por ensayar se someten al ensayo de la llama cónica de la norma IEC 695-29-2, aplicando la llama de ensayo a la muestra durante 10 s, en el punto en donde las temperaturas más elevadas sean susceptibles de aparecer.

La duración de la combustión no debe exceder de 30 s después del retiro de la llama de ensayo y ninguna gota inflamada que caiga de la muestra debe inflamar las partes situadas por debajo ni el papel de seda, especificado en el numeral 6.86 de la norma ISO 4046 extendido horizontalmente a $200 \text{ mm}, \pm 5 \text{ mm}$ por debajo de la muestra.

c. Las partes externas de material aislante que proveen protección contra choque eléctrico deben ser sometidas durante un período de 30 s. al ensayo de filamento incandescente de acuerdo con la norma IEC 695 - 2-1. La temperatura de la punta del filamento incandescente será de 650 °C.

360.3 PORTABOMBILLAS PARA ALUMBRADO PÚBLICO

- a. Los portabombillas para HID utilizados deberán contar con rosca tipo Edison iridizada o niquelada, según Norma ASTM B-88. Deberá ser apropiado para roscar un casquillo tipo E27 para bombillas menores a 150 W y tipo Mogul (E39) para bombillas de mayores o iguales potencias. El portabombillas Mogul ó E39 permite roscar tanto las bombillas americanas de casquillo Mogul (E39), como las bombillas europeas de casquillo E40.
- b. El material utilizado para su producción y recubrimiento puede ser de níquel bicromatizado. No se aceptan portabombillas cadmiados.
- c. En las luminarias de sodio de 150 W a 1.000 W sodio, la fijación del portabombilla debe permitir ajuste y graduación –bien sea en sentido vertical, horizontal ó en ambos-, sin que la bombilla quede sometida a vibración, al menos para tres posiciones (reglaje). En las luminarias de sodio 100 W el reglaje del portabombilla es opcional. En cualquier caso, la posición de la bombilla con respecto al reflector, de acuerdo con el reglaje, debe estar determinada y ajustada por el Fabricante en cumplimiento de los parámetros del diseño particular.
- d. Este soporte debe poseer un sistema de marcación que permita conocer la posición de la bombilla y reproducir a voluntad la distribución garantizada. Adicionalmente, se debe explicar el manejo del reglaje en las diferentes posiciones, en relación con el comportamiento fotométrico de la luminaria, para satisfacer los requerimientos establecidos en el diseño. Igualmente, el elemento de soporte del portabombilla debe ser suficientemente seguro para impedir desajuste o descalibración de la posición de la bombilla debido a los movimientos y vibración a que está sometida durante el transporte, montaje y operación.
- e. Los bornes para sujeción del cable deben permitir la fijación de cables siliconados aislados hasta 14 AWG, 200 °C y 600 V. El contacto central del portabombilla debe estar conectado al conductor que suministra el pulso de tensión del arrancador y debe estar sometido a presión.
- f. El portabombilla debe estar diseñado, para que cumpla con los ensayos de calentamiento y nivel de aislamiento especificados en la norma NTC 2230 y los requisitos de la NTC 1470 o normas internacionales equivalentes. Así mismo, deberá cumplir con los requisitos de seguridad respecto a la tensión de encendido, junto con las distancias mínimas de partes activas, por aire y por la superficie (Norma IEC 60598, equivalente a la EN 60598-1)

- g. La base que contiene los elementos metálicos de contacto deberá ser fabricada en porcelana eléctrica, de superficie homogénea, libre de porosidades y agrietamiento, aislada para una tensión nominal de 600 V y que evite el contacto con el casquillo de la bombilla.
- h. Toda la tornillería y elementos metálicos complementarios deberán ser protegidos mediante un proceso de baño electrolítico.
- i. La especificación del pulso de prueba que soporta el portabombillas para bombillas de vapor de sodio alta presión (según UL- Listed E 13 402), debe indicarse mediante marcación indeleble en parte exterior de su cerámica. Los valores del pulso deben ser 2,5 kV para E27 y 5kV para MOGUL o E39.
- j. El portabombillas deberá soportar pulsos provenientes del arrancador sin ningún desperfecto.

SECCIÓN 370 FOTOCONTROLES Y BASES PARA FOTOCONTROL.

370.1 REQUISITOS DE PRODUCTO Y DE INSTALACIÓN

Los fotocontroles deben cumplir los siguientes requisitos:

- a. La base tripolar para montar el fotocontrol deberá cumplir con las especificaciones señaladas a continuación adaptadas de la normas ANSI C136-10, NTC 2470 "Dispositivos de fotocontrol intercambiables para iluminación pública. Especificaciones y ensayos", o normas internacionales equivalentes.
 - Los fotocontroles de las luminarias deberán ser de contactos normalmente cerrados [NC] y los utilizados para contactores de control múltiple deberán ser de contactos normalmente abiertos [NA].
 - Los fotocontroles de contactos normalmente cerrados, para control individual de alumbrado público, deben ser de condición de operación "fail on". Fotocontrol diseñado para que la carga permanezca encendida cuando ocurra la falla.
 - 3. La vida útil del fotocontrol bajo condiciones normales de funcionamiento debe sobrepasar las 3.600 operaciones, siendo cada operación el ciclo completo conexión-desconexión en condiciones nominales de funcionamiento.
 - 4. Los fotocontroles y bases deben, ser resistente a los impactos, rayos del sol, agua, salinidad y deshechos de animales y cumplir las siguientes pruebas.
 - ⇒ Operación: de 2 a 5 operaciones de conexión y desconexión, conexión entre 5 a 22 Luxes, desconexión con 65 0 más luxes
 - ⇒ Temperatura de operación, mínima -10° c y Max 65° c.
 - \Rightarrow La duración de los contactos no debe ser menor a la que soporte un cortocircuito con la carga de un condensador en las siguientes condiciones, 40 μF cargado a la tensión de 120 V AC, 20 μF cargado a la tensión de 240 V AC o 10 μF cargado a la tensión de 480 V AC
 - ⇒ Rango de Tensión de Operación: control múltiple 105 a 130 V, control individual 185 a 305 V o 105 a 305 V.
 - \Rightarrow El número de operaciones no debe ser menor a 3650 con una bombilla incandescente de 1000W a 120 V.
 - ⇒ El Grado de protección IP o su equivalente NEMA debe ser no menor a 53 y el IK no menor a 08.

DE

- ⇒ El fotocontrol debe contar con protección de sobretensiones DPS para una energía no menor a 160Jules.
- ⇒ Los contados de la base del fotocontrol debe ser de material como latón o su equivalente con recubrimiento de plata o estaño y soportar una corriente no menor de 15 A.
- \Rightarrow El aislamiento de las parte conductoras no debe ser menor a 5 M Ω y debe soportar durante un minuto un tensión de 2500V a 60 Ers., o 500V DC
- ⇒ Las puntas de conexión deben ser de 60 Cm para bases externa y 30 Cm para pases internas, con conductores flexibles 14 AWG aislados a 600 V, clase térmica 105° C,
- 5. El receptáculo de conexión o base debe ser de resina fenólica tipo "baquelita" o de otro material equivalente. Debe cumplir con los requisitos establecidos en la norma NTC 2470 o una norma internacional equivalente.
- 6. Si la base se instala dentro de la luminaria, ésta se fijará al cuerpo de la luminaria en la parte superior, mediante tornillos de cabeza cónica o pisador con tornillo central que no sobresalgan a ella y puedan llegar a deteriorar la empaquetadura del fotocontrol. El sistema de fijación deberá estar diseñado de tal forma que al quedar instalada la base en la luminaria, ella pueda girarse sobre su eje vertical entre 0° y ± 180° para permitir la orientación del dispositivo de fotocontrol sin necesidad de utilizar alguna herramienta especial.
- 7. Los contactos de conexión del receptáculo deberán estar fabricados en material resortado. Deben ser del tipo trinquete y estar configurados y alineados de tal forma que coincidan y ajusten de la mejor manera posible, con los contactos del dispositivo de fotocontrol, garantizando una excelente conexión eléctrica y mecánica.
- 8. Para todos los casos (bases internas y externas), las puntas de conexión se identificarán por colores así: Negro fase, blanco fase común con la carga para el neutro y rojo para la carga.
- 9. Marcación: Se requiere que los fotocontroles y las bases para los mismos tengan grabada, en forma durable la siguiente información:
 - ⇒ En la tapa superior: Identificación del Norte, sentido de remoción del control y marca de fábrica.
 - ⇒ En la base inferior: marca indeleble de calendario de control de instalación, identificación de los contactos. Con autoadhesivo el tipo de contacto (NA/NC), condición de operación en caso de falla: "fail on" o "fail off" (este tipo no se utiliza en alumbrado público), protección, modelo y referencia, potencia activa y aparente de la carga

Potencia activa / aparente de la carga.	Marca de fábrica.
Rango de tensiones de operación.	Modelo y referencia.
Identificación del Norte.	Mes y año de fabricación.
Identificación de los contactos.	

⇒ El receptáculo o base para fotocontroles debe llevar una marca de forma permanente y legible, mínimo con la siguiente información:

Corriente máxima de operación.	Marca de fábrica.
Identificación de los contactos.	Modelo y referencia.

- b. Los fotocontroles serán instalados cuando el diseñador encuentre que este sistema resulta operativo.
- c. En alumbrado público se usará en luminarias de sodio y halogenuros metálicos como control individual y/o en conjunto con contactores para control múltiple.
- d. Dentro del propósito de uso racional de energía, se deben utilizar fotocontroles temporizados en las grandes avenidas, para disminuir, después de ciertas horas de la noche o de la madrugada, la potencia suministrada a las luminarias, cuando se haya reducido sustancialmente el número de vehículos y peatones. Los tiempos serán determinados por el operador de acuerdo con las necesidades y restricciones impuestas por las autoridades competentes. Para esto se requiere las luminarias dispongan de conjunto eléctrico de balasto doble potencia.
- e. Por razones ecológicas y medioambientales, no se acepta la utilización de fotocontroles con fotocelda con resistencia de sulfuro de Cadmio (CdS), en su reemplazo deben usarse fototransistores de silicio.

Normas utilizadas para los ensayos. Para la verificación de los requisitos establecidos se podrán utilizar normas internacionales, de reconocimiento internacional o NTC, tales como:

	NORMAS UTILIZADAS PARA ENSAYOS DE FOTOCONTROLES.							
ANSI.	C 136-10	For physical and electrical interchangeability of photocontrol devices, plugs, and mating receptacles used in roadway lighting equipment.						
ANSI.	IEEE STD 428	E STD 428 Thyristor AC power controllers, definitions and requirements.						
NBR.	5123	Relé fotoeléctrico y bases para Iluminación Pública. Especificación y métodos de ensayo.						
NTC.	2470	Dispositivos de fotocontrol intercambiables para A.P.						

SECCIÓN 380 CONTACTORES PARA CONTROL EN GRUPO DE SISTEMAS DE ILUMINACIÓN

370.1 REQUISITOS DE PRODUCTO

Los contactores para control de sistemas de iluminación o alumbrado público deben cumplir con los siguientes requisitos adaptados de las Normas NTC 2466 "Electrotecnia – Equipo de control a baja tensión. Contactores", NTC 3547" Electrotecnia. Controles para sistemas de iluminación exterior", la Norma ANSI-Standard 28:

- a. El contactor debe cumplir con los requisitos eléctricos y de seguridad del numeral 17.19 del RETIE, Resolución 181294 de agosto 6 de 2008.
- Normalmente debe estar en un cofre de aluminio o cualquier otro material que garantice adecuada resistencia mecánica, protección contra corrosión y como mínimo con un grado de hermeticidad IP 54 y protección contra el impacto IK 08.
- c. El cofre del contactor debe disponer de elementos de sujeción a los lados y en la parte inferior y superior, para permitir su instalación en postes o en cualquier otro tipo de estructuras. Para los casos en los cuales el cofre sea metálico este debe tener la respectiva conexión de puesta a tierra.
- d. La cubierta frontal de cofre debe ser de una sola pieza y contar con un elemento de cierre, que garantice su funcionalidad y evite apertura accidental.
- e. Los orificios para salida de cables, deben ser protegidos por un empaque adecuado al calibre de éstos y a la capacidad del control y que garantice el IP requerido para el cofre.

DE

- f. Las conexiones eléctricas (borneras y tornillería) a puntos vivos deben ser del tipo no ferroso y protegidos contra la corrosión. Las conexiones libres o suspendidas deben llevar conectores de resorte, hembra macho aislados para el exterior o cualquier sistema equivalente.
- g. Las bobinas para accionamiento de los contactos, serán conectadas fase y neutro o entre fases. En general se deben utilizar bipolares, de polos independientes y capacidad mayor o igual a 30 A. Las bobinas deben ser encapsuladas o embebidas, con aislamiento tipo H.
- h. El control debe estar provisto de dispositivos para protección contra sobretensiones entre 1.000 V y 2.500 V (eficaz) con una onda de 1,2/50 μs, de acuerdo con la norma NTC 2466. Igualmente, debe contar con fusibles, diseñados para soportar la corriente nominal del control y la corriente de arranque del grupo de luminarias a controlar. Los soportes para instalación de los fusibles deben ser de lámina de cobre, estañados, con refuerzos que garanticen la presión y firmeza del contacto eléctrico.
- i. Para alumbrado público Los contactos deben ser normalmente cerrados, para servir a dos circuitos de iluminación de forma independiente, deben ser del tipo de acción deslizante – operación firme - y actuar por medio de bobinas electromagnéticas.
- j. Marcación. Se requiere que los contactores y los componentes para los mismos tengan grabada, en forma durable la siguiente información:

Tipo de contactos (Normalmente Cerrados). Capacidad de operación (A). Tensión (es) de operación de la bobina (V). Tensión (es) de los contacto de la carga (V) Tensión nominal de aislamiento.

Marca de fábrica. Modelo y referencia. Mes y año de fabricación. Diagrama de conexiones.

370.2 REQUISITOS DE INSTALACIÓN

El contactor para control en grupo de sistemas de alumbrado exterior se debe utilizar solo donde no es posible o se dificulte el control individual de cada luminaria.

Normas utilizadas para los ensayos. Para la verificación de los requisitos establecidos se podrán utilizar normas NTC, normas internacionales o de reconocimiento internacional, tales como:

PRUEBAS DE ENSAYO PARA CONTACTORES.						
NTC.	NTC. 2466 Equipo de control a baja tensión contactores .					
NTC. 3547 Electrotecnia. Controles para sistemas de iluminación exterior.						

SECCIÓN 390 POSTES EXCLUSIVOS PARA ALUMBRADO PÚBLICO.

Los postes exclusivos para alumbrado público pueden ser de concreto, hierro galvanizado, aluminio, madera inmunizada, fibras poliméricas reforzadas u otros materiales.

390.1 POSTES DE CONCRETO.

390.1.1 REQUISITOS DE PRODUCTO

- a. Los postes de concreto al utilizarse como soportes estructurales para redes exclusivas de alumbrado público no deben tener una tensión de ruptura menor a 200 Kf, si son compartidas con líneas aéreas de distribución de media y baja tensión, deben cumplir con las características y dimensiones requeridas en el numeral 17.15 del RETIE y contar con certificado de producto bajo RETIE.
- b. Los postes exclusivos de alumbrado público deben especificarse para permitir el montaje doble y sencillo de las luminarias, o pueden ser especialmente diseñados para alumbrado público vehicular, peatonal y parques.
- c. La conicidad debe ser de 1,5 a 2,0 cm/m de longitud, para todos los tipos de postes de concreto. La conicidad es la relación entre la diferencia de los diámetros de cima y base y la longitud del poste.
- d. El poste, bajo la acción de una carga aplicada a 20 cm de la cima, con una intensidad igual al 40% de la carga mínima de rotura, no debe producir una flecha superior al 3% de la longitud libre del poste y al cesar la acción de esa carga, la deformación permanente no debe ser superior al 5% de la deflexión máxima especificada para el tipo de poste correspondiente.
- e. El acero de refuerzo utilizado en la fabricación de los postes, debe cumplir con normas NTC, normas internacionales o de reconocimiento internacional, tales como: NTC 116, 161 ó 248. Para los postes pretensados el refuerzo debe cumplir con normas NTC, normas internacionales o de reconocimiento internacional, tales como: NTC 2010 ó 159. Las varillas de acero estructural deben tener esfuerzo nominal de fluencia mínimo de 420 MPa (60915 psi).
- f. Según el ambiente en que serán utilizados los postes el hiero de soporte debe tener un recubrimiento no menos de 20mm para ambientes moderados y 25 mm para ambientes Severos o con alto grado de corrosión,
- (*) Ambientes moderados. Se refiere a ambientes con estructuras expuestas a ciclos de humedecimiento y secado, estructuras en contacto con agua dulce en movimiento, ambientes rurales lluviosos, ambientes urbanos sin alta condensación de gases agresivos y estructuras en contacto con suelos no agresivos al concreto.
- (**) Ambientes severos. Se refiere ambientes marinos, salinos o con microclima industrial, ambientes urbanos con alta condensación de gases agresivos y estructuras en contacto con suelos también agresivos.
- g. Para postes pretensados se debe realizar un recubrimiento en la base y en la cima del poste con el fin de lograr la protección de los cables, alambres o elementos metálicos de pretensado. El recubrimiento utilizado, cualquiera que sea incluyendo la pintura epóxica debe garantizar como mínimo la vida útil esperada.
- h. Para permitir el paso de conductor de puesta a tierra por el interior del poste y facilitar su conexión éste debe tener dos perforaciones con diámetros no menores a 2 cm y con una inclinación aproximada de 45° respecto al plano horizontal, una de ellas localizada en el tercio superior del poste y la otra entre 20 cm y 50 cm por debajo de la línea de empotramiento.
- i. Ninguna de las partes de la armadura de refuerzo del poste, debe ser visible por esas perforaciones.

j. La longitud de empotramiento de los postes se debe calcular aplicando la siguiente fórmula:

DE

$$H_1 = 0.1 H + 0.60 (m)$$

En donde:

 H_1 = longitud de empotramiento (m). H = longitud total del poste (m).

Este valor puede modificarse de acuerdo a las condiciones del terreno o a requisitos especiales del usuario, previa revisión estructural del poste y la cimentación de éste.

- k. Señalización: Todos los postes deben llevar señalizados las siguientes secciones:
 - Centro de gravedad. Debe llevar una franja, pintada de color rojo, de 30 mm de ancho y que cubra el semiperímetro de la sección, en el sitio que corresponde al centro de gravedad.
 - Profundidad de empotramiento. Todos los postes deben llevar pintada, una franja de color verde, de 30 mm de ancho y que cubra el semiperímetro de la sección e indique hasta dónde se debe enterrar el poste
- I. En cuanto a la calidad del concreto, se deben seguir los procedimientos establecidos en normas NTC, normas internacionales o de reconocimiento internacional, tales como la norma NTC 1329 "Prefabricados en concreto. Postes de concreto armado para líneas aéreas de energía y telecomunicaciones".

390.1.2 REQUISITOS DE INSTALACIÓN:

Los postes instalados en lugares aledaños a vías vehicular, cualquiera que sea su material y técnica constructiva son susceptibles de ser impactados por los vehículos por ello no deben instalarse a una distancia menor de 0.6 m de la orilla del sardinel.

En vías de alta velocidad el responsable del proyecto debe utilizar los postes con la técnica constructiva que menor riesgo presente para pasajeros en el evento de un impacto del vehiculo con el poste.

Normas utilizadas para los ensayos. Para la verificación de los requisitos establecidos se podrán utilizar normas NTC, normas internacionales o de reconocimiento internacional, tales como:

Normas	utilizadas p	ara ensayos de postes de concreto.			
NTC	1329	Prefabricados en concreto. Postes de concreto armado para líneas aéreas de energía y			
		telecomunicaciones.			
NTC	2	Ensayo de tracción para productos de acero.			
NTC	30	Cemento Pórtland. Clasificación.			
NTC	116	Alambre duro de acero para refuerzo de concreto.			
NTC	121	Cemento Pórtland. Especificaciones físicas y mecánicas.			
NTC	159	Alambres de acero sin recubrimiento liberados de esfuerzo para concreto preesforzado.			
NTC	161	Barras lisas de acero al carbono para hormigón armado.			
NTC	174	Especificaciones de los agregados para concreto.			
NTC	248	Barras y rollos corrugados de acero al carbono para hormigón armado.			
NTC	321	Cemento Portland. Especificaciones químicas.			
NTC	673	Ensayo de resistencia a la compresión, de cilindros normales de hormigón.			
NTC	1097	Control estadístico de calidad. Inspección por atributos. Planes de muestra única, doble y múltiple con rechazo.			
NTC	1299	Aditivos químicos para hormigón.			

Normas utilizadas para ensayos de postes de concreto.					
NTC	TC 2010 Cordones de acero de siete alambres sin recubrimiento para concreto preesforzado.				
Normas Colombianas de diseño y Construcción Sismo Resistentes NSR 98. Ley 400 de 1.997, Decreto 33 de 1998					
	A.W.S.D 12.1(A.C.I 318) - Prácticas recomendables para soldar acero de refuerzo, insertos metálicos y conexiones, en construcciones de concreto reforzado.				

390.2 POSTES Y BRAZOS METÁLICOS.

- a. Los postes de metálicos y brazos de montaje cumplirán con el diseño arquitectónico descrito en la normas urbanísticas de cada municipalidad. El responsable del servicio público debe al concertar con las cartillas de mobiliario urbano, hacer primar las condiciones de seguridad y los principios de eficiencia económica y técnica.
- b. Los postes deberán permitir el montaje de luminarias doble y sencillo, y ser de doble propósito, especialmente diseñados para alumbrado público peatonal, plazoletas y parques.
- c. Los postes metálicos para alumbrado público serán totalmente galvanizados por inmersión en caliente, teniendo en cuenta que el galvanizado debe estar libre de burbujas, con un completo revestimiento, sin depósitos de escoria, sin manchas negras o cualquier otro tipo de inclusiones o imperfecciones.
- d. Las láminas, platinas y elementos roscados se deben galvanizar en caliente, deben cumplir con normas NTC, normas internacionales o de reconocimiento internacional, siendo clase B-2 para láminas y platinas, y clase C para elementos roscados según Norma NTC 2076. Ver Tabla 390-2. a).

ELEMENTO	PROMEDIO		MÍNIMO	
	gr/m²	μ mm	gr/m²	μmm
Platinas y láminas	458	65,4	381	54,4
Elementos Roscados	397	56,6	336	48

390.2.a) Requisitos de galvanizado para láminas, platinas y elementos roscados

e. Las láminas, tubos y platinas utilizadas para la fabricación de los postes metálicos deberán poseer como mínimo las características mecánicas de la Tabla 390-2.b):

ITEM	VALOR
Presión del viento	60 km/m ²
Carga de rotura	150 kg
Límite mínimo de fluencia del acero	18,4 kg/mm² (180 MN/m²)
Resistencia a la tracción	34,7 kg/mm2 (340 MN/m²)
Elongación	30% en 50 mm (2 pulgadas)

Tabla 390.2.b) Características mecánicas mínimas para láminas, tubos y platinas de acero

- f. Los espesores mínimos de la lámina metálica deben ser de 3 mm para postes hasta de14 m de largo y de 4 mm para postes hasta de 16 m.
- g. las láminas para la fabricación de los postes metálicos deberán cumplir con las características de la Tabla 390-2. C:

DE

ELEMENTO	SAE 1010	SAE 1020		
% Carbono	0,08 a 0,13	0,18 a 0,22		
% Fósforo, máx.	0,05	0,05		
% Azufre, máx.	0,05	0,05		
% Manganeso	0,3 a 0,6	0,3 a 0,6		
% Silicio, máx.	0,05 0,05			
Nota: Se pueden usar aceros equivalentes como ASTM A36 y otros				

Tabla 390-2.c Características químicas para láminas y platinas de acero

- h. Las láminas y los tubos deben ser de una sola pieza, libres de soldaduras intermedias, libres de deformaciones, fisura, aristas cortantes, y defectos de laminación. No se permiten dobleces ni rebabas en las zonas de corte, perforadas o punzadas.
- i. La tubería utilizada para la fabricación de los soportes o brazos, deberá ser del tipo estructural ASTM A 500 grado A ó B, cumpliendo con los requisitos de la Tabla 390-2.d):

ELEMENTO	COMPOSICIÓN MÁXIMA
Carbono	0,270%
Manganeso	1,400%
Fósforo	0,045%
Azufre	0,045%

Tabla 390-2.d) Características químicas para soportes o brazos metálicos

- j. En las uniones (tramos tronco cónicos, la base, etc.) deben realizarse pases de soldadura E-6010 con suficiente corriente eléctrica para obtener máxima penetración entre las piezas; también se deben realizar pases sucesivos de soldadura E-7018 para alcanzar una altura mínima de refuerzo de 1/4".
- k. Todas las soldaduras deben ser libres de defectos tales como escorias, inclusiones, poros, etc., y de la misma forma deben cumplir el código ASME capitulo IX.
- I. El espesor de recubrimiento (galvanizado) debe ser como mínimo de 75 micras con acabado liso y uniforme. La prueba de espesor de galvanizado puede realizarse con un ecómetro debidamente calibrado. Se deberán tener en cuenta las siguientes características del zinc.

Plomo	Hierro	Cadmio	Zinc
Máximo	Máximo	máximo	Mínimo
0,03	0,02	0,02	99,90
	Máximo	Máximo Máximo	Máximo Máximo máximo

- m. El acabado exterior del cuerpo del poste debe garantizar la adherencia de la pintura y estabilidad del color contra rayos ultravioleta o el color que determine las normas de planeación del municipio donde se vaya a instalar.
- n. Las tolerancias aceptadas para la conformación del poste se relacionan en la Tabla 390-2.f)

Longitud total del poste

Longitud total del poste

Desviación longitudinal (deformación permanente al eje longitudinal)

Sección transversal

Entre +3 mm y -1 mm

Espesores

Entre +1 mm y -0 mm

Tabla 390-2.f) Tolerancias aceptadas en la fabricación de postes metálicos

DE

- o. Por razones de seguridad todos los postes metálicos deben tener un sistema de puesta a tierra según Artículo 15 del RETIE. Este sistema de puesta a tierra puede ser una varilla de puesta a tierra que debe tener una longitud mínimo 2,4 m.
- p. De acuerdo con la Sección 410-15 (b)(2) de la norma NTC 2050. Los postes metálicos deben tener un terminal para puesta a tierra. Se permite prescindir del terminal de tierra requerido en (b)(2), cuando los conductores de suministro continúen sin empalmes ni conexiones hasta un aparato montado en un poste metálico de 2,40 m de altura o menos sobre el piso y cuando el interior del poste, la columna y cualquier empalme sean accesibles desmontando el artefacto.
- q. Para garantizar la permanencia de la varilla y la conexión de puesta a tierra del poste, se recomienda que la varilla se coloque dentro de la base de anclaje del poste antes de fundir el concreto de la misma.
- r. El diseño estructural del poste metálico debe incluir el diseño estructural y las dimensiones de la base de anclaje de concreto y los tornillos de anclaje, a no ser que dichas bases de anclaje de concreto se encuentren estandarizadas, para los diferentes tipos de poste a utilizar, dentro de las normas de construcción del operador del servicio de alumbrado público.
- s. Marcación: La marcación del poste debe ir en una placa metálica remachada en cuatro partes, en alto o bajo relieve incluyendo la siguiente información:

Marca de fabrica Mes y año de fabricación Resistencia mecánica de ruptura Kgf Longitud del poste m. Peso del poste Kg

t. Empaque: Los postes deben ser embalados adecuadamente en forma individual, para resistir las condiciones de humedad e impacto que pueden presentarse durante el transporte desde fábrica hasta las bodegas y durante su almacenamiento. Para ello los postes metálicos deben contar con un recubrimiento total, elaborado de cartón resistente y plástico.

Normas para ensayos Para la verificación de los requisitos establecidos se podrán utilizar normas NTC, normas internacionales o de reconocimiento internacional, tales como:

	Normas utilizadas para ensayos de postes y brazos metálicos.					
NO	RMA.	DESCRIPCIÓN.				
NTC.	1097	Control estadístico de calidad, inspección por atributo, planeo de muestra única, doble y múltiple.				
NTC.	1645	Pernos y tuercas NTC - 1920 Metalurgia. Acero estructural.				
NTC.	1920	Metalurgia. Acero estructural.				
NTC.	2076	Electricidad. Galvanizado por inmersión en caliente para herrajes y perfiles estructurales de hierro y				
NTC.	3320	Ŝiderurgia. Recubrimiento de zinc (galzado) por inmersión en caliente en productos de hierro y Acero.				
NTC.	2120	Electrotecnia. Guía para inspección de soldadura por medio de ensayos no destructivos.				
NTC.	2618	Herrajes y accesorios para líneas y redes de distribución de energía eléctrica. Tornillos y tuercas de Acero galvanizados.				
ASTM.	A-370	Methods and definitions for mechanicals testing of steel products.				
AWS.	D.1.1	Structural welding code.				
AWS.	D 10.9	Standard for qualification of welding procedures and welders for piping and tubing.				
ASTM.	A53	Standard Specification for Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless.				
ASTM.	A385	Standard practice for providing high quality zinc coatings (hot dip)				
ASTM.	A500	Standard Specification for Cold-Formed Welded and Seamless Carbon Steel Structural Tubing in Rounds and Shapes				
ASTM.	A563	Standard Specification for carbon and alloy steel nuts.				

Continuación Anexo General Reglamento Técnico de Iluminación y Alumbrado Público - RETILAP 390.3 Postes de Madera Inmunizada.

- a. Los postes de madera inmunizada se podrán ser utilizados para zonas apartadas y sitios de difícil acceso.
- b. Los postes de madera se deben inmunizar debido a que estarán sometidos a la intemperie y a todo tipo de contaminación ambiental, tanto a la polución de los cascos urbanos como la alta contaminación fitosanitaria de las zonas rurales.
- c. Los postes de madera antes del proceso de inmunización deben someterse a un proceso de secado.
- d. La inmunización de los postes de madera debe efectuarse mediante la utilización de preservativos en forma de óxidos hidrosolubles como los de CCA tipo C (Cromo- Cobre - Arsénico), formulación de óxidos, en pasta o concentrado líquido. No se permite la utilización de CCA tipo C con formulación de sales individuales y volátiles o en cualquier otra forma diferente a pasta o concentrado líquido.

La composición nominal de los ingredientes activos y los límites de su variación, sea en pasta, concentrado líquido, son las siguientes:

Descripción	Mínimo %	Nominal %	Máximo %
Trióxido de Cromo, CrO ₃	44,5	47,5	50,5
Óxido Cúprico, CuO	17,0	18,5	21,0
Pentóxido de Arsénico, As ₂ O ₅	30,0	34,0	38,0

Los compuestos químicos para formular la pasta o concentrado líquido será cada uno en exceso de 95% puros en base anhídrica y el preservativo comercial será rotulado para indicar el contenido total de los ingredientes activos. Los preservativos CCA se formulan con óxidos que forman compuestos químicos en la madera que no se ionizan. Las formulaciones de CCA con sales son más corrosivas a los métales que las formulaciones con óxidos y pueden causar depósitos superficiales. Se podrán aceptar inmunizados con otros productos, siempre que los resultados sean similares o mejores a los obtenidos con los productos señalados.

- e. Los postes de madera inmunizada se clasificarán en tipo liviano, pesado y extrapesado. La determinación del tipo de poste se dará por la comprobación de las siguientes dimensiones:

 La dimensión de la circunferencia a 2 000 mm de la base. Esta dimensión determinará el tipo de poste siempre y cuando su cima sea de tamaño suficiente. La dimensión de la circunferencia en la cima del poste no exceda por más de 80 mm la circunferencia a 2.000 mm de la base. Tolerancia en la Longitud Se acepta una tolerancia en la longitud de los postes de menos (–) 50 mm ó más (+) 150 mm . Tolerancia en la Longitud circunferencia Se acepta una tolerancia en la circunferencia de los postes de menos (–) 10 mm ó más (+) 80 mm .
- f. Los postes de madera inmunizada para el servicio de alumbrado público podrán ser del tipo liviano de 8 o 10 metros de largo, y por consiguiente a 2 m de la base deben tener una circunferencia entre 565 mm y 920 mm y una circunferencia mínima de 420 mm en la cima.
- g. Para efectos de confrontar la sección de empotramiento durante la hincada del poste, estos deben tener una marca a fuego localizada sobre la altura de empotramiento.
- h. La longitud de empotramiento para los postes de 8 metros es de 1,4 metros y para los postes de 10 metros es de 1,6 metros.
- i. No se podrán usar poste de madera inmunizada que tengan:
 - Agujeros, abiertos o taponados, excepto los especificados para fijar soportes de luminarias y herrajes y los de muestreo de análisis de la inmunización, la penetración y retención del preservativo, los cuales deben quedar taponados.
 - 2. Bases o cimas con huecos.
 - 3. Clavos, puntillas u otro metal que no ha sido expresamente autorizado por el comprador.
 - 4. Fracturas transversales.
 - 5. Franjas muertas.
 - 6. Pudrición

DE

j. Se podrán aceptar postes de madera con los siguientes de defectos, siempre que cumplan las siguientes condiciones.

1 Acebolladuras:

- En la superficie de la base que no estén a menos de 50 mm de la base de la superficie lateral y cuando no se extienden hasta la sección de empotramiento.
- Cuando son una combinación de acebolladuras conectadas a menos de 50 mm de la superficie lateral pero que no se extienden más de 600 mm de la superficie de la base y no tienen abertura mayor a 3 mm.
- En la superficie de la cima cuando el diámetro de la acebolladura no es mayor a la mitad del diámetro del poste en la cima.

2 Base Defectuosa:

Se permite una cavidad en la base del poste causado por el astillamiento al ser cortado el árbol, siempre y cuando el diámetro de la cavidad sea menor del 10% del área de la base.

3 Corteza Inclusa:

Las depresiones que contiene corteza inclusa no serán de más de 50 mm de profundidad medida desde la superficie del poste.

4 Curvaturas:

No se permiten postes con curvaturas cortas,

Se podrán aceptar poste con curvatura sujeto a las siguientes limitantes:

- Curvatura en un solo plano y una sola dirección:
- Donde hay una contracurva, curvatura en dos planos o en dos direcciones en el mismo plano, un recto entre el eje en la sección de empotramiento y el eje en la cima del poste, no podrá cruzar la superficie del poste en algún punto intermedio.

5 Grano Espiralado:

Cuando los postes presente el fenómeno de grano espiralado este no podrá exceder en giro máximo de 90° por metro de longitud, en cualquier parte del poste, y un número no mayor del 10% de los postes de cada lote.

6 Grieta y Rajadura en la Cima:

Una rajadura o una combinación de dos grietas sencillas (cada una terminando en la medula y separado por no menos de 1/6 de la circunferencia) con una o ambas perforaciones localizadas en un plano vertical dentro de 30° del agujero para tornillo superior, no podrán extenderse hacía abajo por el poste más de 150 mm. Toda otra combinación de grietas o una rajadura no podrán extenderse por el poste más de 300 mm.

7 Grieta y Rajadura en la Base

Una rajadura o combinación de dos grietas sencillas, como se indica arriba, no podrán extenderse hacía arriba por el poste más de 600 mm .

De todas maneras ninguna grieta en cualquier parte del poste podrá sobrepasar una de las siguientes condiciones: ancho máximo 2,0 cm, profundidad máxima 2,0 cm, longitud hasta 1,5 m, o cualquier longitud si presenta efectos sobre la resistencia mecánica.

8 Herida Cicatrizada:

Ningún poste podrá tener heridas cicatrizadas dentro de 600 mm del punto de empotramiento.

Se permiten heridas cicatrizadas en otras partes de la superficie del poste cuando han sido desvanecidas y no interfieren con la colocación de crucetas y herrajes y la profundidad de la cicatriz desvanecida no debe ser mayor a 50 mm si el diámetro es de 250 mm ó menos, o 1/5 del diámetro del poste en el punto de la cicatriz si el diámetro es mayor a 250 mm.

9 Nudos:

DE

Cualquier hueco proveniente de un nudo no podrá tener una profundidad mayor del 10% del diámetro del poste en el sitio donde se encuentre y el diámetro máximo para cualquier nudo particular no podrá ser mayor de 50 mm .

Se admitirán hasta tres nudos aislados o hasta cinco nudos agrupados en una longitud de un metro, cuando la suma del promedio de sus diámetros no exceda 150 mm.

Deben ser rechazados los postes que presenten nudos con podredumbre (blanda) que se extiende dentro del tronco más de 20 mm.

Normas para ensayos. Para la verificación de los requisitos establecidos se podrán utilizar, normas internacionales, de reconocimiento internacional o NTC tales como:

NORMA	DESCRIPCIÓN
NTC 172	Madera rolliza y aserrada-glosario
NTC 776	Maderas. Postes de madera para líneas aéreas de energía. Definiciones, clasificación y métodos de ensayo
NTC 794	Postes de madera. Evaluación de ensayos de preservativos
NTC 824	Maderas. Glosario de defectos
NTC 1056	Postes de eucalipto para líneas aéreas de energía y telecomunicaciones
NTC 1093	Maderas. Determinación de penetración de preservativos
NTC 1128	Maderas. Evaluación de preservativos por métodos de laboratorio
NTC 1149	Maderas. Preservación. terminología general
NTC 1157	Maderas. Determinación de retención de preservativos
NTC 1164	Maderas. Preservativos para madera del tipo CCA
NTC 1822	Madera. Madera preservada. Toma de muestras
NTC 2083	Madera. Madera preservada. Clasificación y requisitos
NTC 2222	Maderas. Postes de pino para líneas aéreas de energía y telecomunicaciones
SC-M-016	Manual de control de calidad para plantas de inmunización de madera
SC-M-017	Manual de aceptación e inspección de insumos de madera
AWPA A9-86	Método estándar para el análisis de madera inmunizada y soluciones de inmunizantes por espectroscopia de emisión de rayos-X
ANSI 05.1	Norma de los Estados Unidos para postes de madera, especificaciones y mediciones
ANSI DT-5C	Especificación de la administración de electrificación rural para postes, pies de amigo y anclajes de madera
REA DT-19	Especificación de la administración de electrificación rural para control de calidad e inspección de productos de madera
SC-E-022	Especificaciones técnicas de postes de madera
AWPA	Libro de normas de la Asociación Norteamericana de Preservadores de Madera

Marcación: Los postes deben llevar, a partir de 4 m de la base del poste, la siguiente inscripción colocada al fuego:

Logotipo ó razón social del inmunizador.

Año de Inmunización.

N° de lote de inmunización.

Longitud, tipo de poste.

Tipo de madera

Proceso de inmunización.

Continuación Anexo General Reglamento Técnico de Iluminación y Alumbrado Público - RETILAP SECCIÓN 395. PRODUCTOS DEL ALCANCE DEL PRESENTE REGLAMENTO QUE NO TIENEN DEFINÍDOS LOS REQUISITOS ESPECÍFICOS.
395.1 REQUISITOS Los productos incluidos en el alcance del presente reglamento (tabla No 110.4 A) que no tengan definidos los requisitos en el presente reglamento, deberán cumplir los requisitos aplicables de una norma técnica de producto y demostrarlo mediante certificado de producto.

CAPÍTULO 4

DISEÑOS Y CÁLCULOS DE ILUMINACIÓN INTERIOR.

SECCIÓN 410 REQUISITOS PARA LA ILUMINACIÓN INTERIOR

Todo proyecto de iluminación de espacios interiores debe cumplir los siguientes requisitos:

410.1 APROVECHAMIENTO DE LA LUZ NATURAL.

Así como las bombillas de distinto tipo constituyen las fuentes de luz en la iluminación eléctrica, el sol y el cielo son las fuentes de las que se dispone para la iluminación natural. La iluminación natural es proporcionada por la energía radiante del sol, en forma directa o a través de la bóveda celeste. La luz natural llega al interior de un local directa o indirectamente, dispersada por la atmósfera y reflejada por las superficies del ambiente natural o artificial.

De la radiación total que llega a la superficie de la tierra después de atravesar la atmósfera, sólo la radiación visible – con una longitud de onda entre 380 y 780 nm- es relevante desde el punto de vista de la iluminación natural.

Si bien la fuente primaria de luz natural es el sol, desde el punto de vista de la iluminación diurna de edificios, la fuente de luz considerada para el cálculo es la bóveda celeste, excluyendo siempre la luz directa del sol sobre los planos de trabajo, por su gran intensidad lumínica, que genera contrastes excesivos y causa deslumbramiento.

- a. Se debe evitar el ingreso de luz directa del sol, se debe aprovechar la luz natural mediante la difusión y reflexión de los rayos solares hacia los interiores, pues de lo contrario los ocupantes de los edificios tienden a eliminar totalmente el ingreso de luz solar y a reemplazarla por iluminación artificial, cambiando las condiciones ambientales interiores y perdiendo la oportunidad de ahorrar energía eléctrica durante las horas de sol.
- b. El empleo de la luz natural en la iluminación interior es una excelente alternativa para disminuir el consumo de energías comerciales para alumbrado en edificaciones. Aún cuando la disponibilidad de luz natural no sea suficiente para la realización de las tareas, hay un alto porcentaje de personas que prefieren trabajar con luz natural o al menos, tener en su hábitat la apariencia de la iluminación diurna.
- c. Disponer de ventanales y claraboyas brinda una serie de ventajas adicionales en relación con los objetivos de un diseño, posibilita el acondicionamiento ambiental y la ventilación del local, permite el contacto visual y físico con el exterior lo cuál contribuye al bienestar y satisfacción de los usuarios.
- d. Los aspectos que se deben abordar en un proyecto de iluminación, en relación con el alumbrado natural, comprenden:
 - ⇒ La determinación del potencial de luz natural,
 - \Rightarrow La coordinación entre el alumbrado natural y artificial y,
 - ⇒ La selección del equipamiento para el control de la iluminación artificial y natural.
- e.El diseño de ventanas y aberturas como claraboyas, debe ser tenido en cuenta por los arquitectos, ingenieros y en general los constructores desde la etapa del diseño de la edificación y no dejar para que sea resuelta exclusivamente por los diseñadores de iluminación.
- f.El aprovechamiento de la luz natural en un diseño de iluminación, debe partir del conocimiento de la disponibilidad de luz exterior, tanto en sus niveles como en sus periodos de duración, de acuerdo a las horas de los días con cielos despejados, parcialmente despejados y cielos nublados.
- g.Los diseñadores deben consultar las bases de datos con los registros de luz natural en forma regular de las diferentes regiones del país que tienen diferentes entidades y deben determinar los parámetros de disponibilidad de luz natural para la zona donde se construirá la edificación y la selección de los

datos apropiados de luz natural que se usarán, para los diferentes esquemas, como base para la propuesta de diseño, para poder predecir la contribución de iluminación natural al interior de diferentes los locales de la edificación.

- h.En el desarrollo preliminar del diseño de la edificación se debe procurar optimizar la orientación de las plantas de la edificación para permitir dentro de las posibilidades del terreno, el acceso de la luz natural a la mayoría de los locales, así como el diseño de los elementos que han de captar, dirigir y distribuir la luz natural. Para el mejor aprovechamiento de la luz natural en los diseños de la iluminación de interiores, las ventanas deben cumplir los siguientes objetivos:
 - 1. Maximizar la transmisión de luz por unidad de área de vidrio en la ventana.

DE

- 2. Controlar la penetración de luz directa del sol sobre le plano de trabajo.
- 3. Controlar el contraste de claridad dentro del campo visual de los ocupantes, especialmente entre las ventanas y las paredes del local.
- 4. Minimizar el efecto de reducción del ingreso de la intensidad luminosa debido al ángulo de incidencia de la luz (efecto de reducción por coseno). Esto significa que ventanales ubicados en la parte alta de los muros producen más iluminancia que unos ventanales más bajos, aunque sean de la misma área.
- 5. Minimizar el deslumbramiento de velo sobre los planos de trabajo, resultante de la visión directa de la fuente de luz en los ventanales superiores.
- 6. Minimizar el calor diurno durante los días soleados, usando aleros o parasoles.

410.1.1 COEFICIENTE DE LUZ DIURNA (CLD)

La disponibilidad de luz natural en interiores y su potencial de ahorro de energía debe estimarse mediante el coeficiente de luz diurna promedio (CLD).

El CLD en un punto interior expresa la relación, en porcentaje, entre la **iluminancia promedio interior** (Eint) producida por la luz natural en el plano de trabajo y la **iluminancia promedio en el exterior** (Eext) determinada en el mismo instante en un cielo uniformemente nublado y sin obstrucciones (Figura 410.1.a). Es el parámetro más usado en la caracterización y la cuantificación de las condiciones de la iluminación natural en los edificios.

Figura 410.1 a) El coeficiente de luz diurna

Hay tres formas en la que intensidad luminosa producida por la luz día puede alcanzar un punto en un plano horizontal dentro de un espacio interior. (Ver Figura 410.1.b))

- La componente del cielo (CC) es debido a la luz del día recibida directamente en el punto desde el cielo.
- La componente reflejada externamente (CRE) es debido a la luz día recibida directamente en el punto de superficies reflectivas externas.
- La componente reflejada internamente (CRI) debido a la luz día que alcanza el punto después de una

DE

o más interreflexiones de superficies interiores.

Figura 410.1b) Componentes de la de luz diurna, que producen intensidad luminosa dentro de un espacio interior

La intensidad luminosa dentro de un espacio interior, producida por la de luz diurna, es la suma de las tres componentes, lint = CC+CRE+CRI

En la Figura 410.1.c) se muestran la geometría y las dimensiones de una edificación vista de perfil. El local tiene una ventana de un ancho w y una altura h por encima del plano de trabajo. El punto de interés, P, está en el plano de trabajo.

Se descarta la parte de la ventana que se encuentren bajo el plano de trabajo.

Un edificio exterior tiene una altura por encima del plano de trabajo H y está a una distancia D del plano de la ventana.

Figura 410.1.c) Determinación del Coeficiente de Luz diurna

El coeficiente de luz diurna (CLD) cuantifica todos los efectos del exterior y del interior en la iluminancia de un punto interior considerado. Si se analiza el CLD en distintos puntos del ambiente interior (planos de trabajo), para un valor dado de iluminancia exterior (Eext) existente en el mismo instante de tiempo, el valor del CLD cambia de un punto a otro de la misma forma que lo hace la iluminancia interior (Eint), luego tendrá una forma similar a una curva.

Dentro del diseño de una instalación de iluminación se deben seguir los siguientes requisitos para hacer aprovechamiento de la luz natural:

- a. En el desarrollo preliminar del diseño de una edificación, se deben conocer y definir los requerimientos básicos de iluminación, el recurso solar disponible en el sitio, los criterios de la visual interior y los elementos para captar, dirigir y distribuir la luz natural.
- b. En la Tabla 410.1.a) se establecen los valores mínimos del CLD para la realización de tareas en función de su dificultad visual en locales de trabajo. Valores que deberán ser observados por los Diseñadores de iluminación y Arquitectos para la definición del alumbrado artificial y las dimensiones de ventanas y similares.

Clasificación de la tarea según su dificultad	CLD promedio %	Ejemplos típicos de aplicación
Reducida	1	Circulación, depósitos de materiales toscos, etc.
Mediana	2	Inspección general, trabajo común de oficina.
Alta	5	Trabajos de costura, dibujo, etc.
Muy alta	10	Montaje e inspección de mecanismos delicados.

Tabla 410.1.a) Valores del coeficiente de luz diurna promedio según la dificultad de la tarea

NOTA: Valores adaptados de la Norma Argentina IRAM-AADL j20-02 "Iluminación Natural en Edificios: Condiciones Generales y Requisitos Especiales".

La Tabla 410.1.b) indica cómo se debe caracterizar la impresión de claridad y ambientación en un espacio iluminado con luz natural a través de los valores de ese coeficiente.

DE

% CLD sobre un plano horizontal	< 1 Muy bajo	1 - 2 Bajo	2 - 4 Moderado	7 - 12 Alto	> 12 Muy alto			
Sector del local	Zonas alejadas de las ventanas, d ventanas	listantes 3 a	4 veces la a	ltura de las	Zonas pr ventana clarabo			
Impresión de claridad	De oscura a poco clara	De poco cla	ara a clara		De clara a r	nuy clara		
Ambientación	Ambientación El local parece separado del exterior (dormitorios) El local (área							

Tabla 410.1.b) Correspondencia entre la impresión visual de claridad y ambientación con el coeficiente de luz diurna CLD medio.

- c. |El diseño de una edificación debe optimizar la orientación del edificio de tal forma que permita, dentro de las posibilidades del terreno, tener acceso de la luz natural a la mayoría de los locales.
- d. En locales donde el valor del CLD sea superior a 5% y la geometría de ventanas asegure una distribución uniforme del alumbrado, es posible prescindir de la iluminación artificial durante el día; aunque debe disponerse de ella con el nivel adecuado para el uso nocturno del local o cuando no sea suficiente la luz natural.
- e. Se debe cuidar el balance de luminancias de las superficies internas, en especial en la proximidad de ventanas, a fin de prevenir molestias visuales debido a elevados contrastes de claridades con los ventanales o claraboyas.
- f. Se debe estudiar cuidadosamente y recomendar la ubicación de los puestos de trabajo para no causar deslumbramiento directo o por reflexión de los ventanales. Se debe evitar ubicarlos enfrentados o de espalda a las ventanas, en especial, cuando se tienen Pantallas de Visualización de Datos (monitores de computador).
- g. Dentro de la concepción de las instalaciones de iluminación se debe planificar un aprovechamiento de luz natural de forma tal que se disponga de un coeficiente de luz diurna promedio mínimo en las edificaciones nuevas o remodeladas; dentro del propósito nacional del uso racional de energía se establecen valores mínimos para edificaciones residenciales y no residenciales en la Tabla 415-1.c).

Edificaciones no residenciales	CLD %
Fábricas	5
Oficinas	2
Salones de Clase	2
Hospitales	1
Edificaciones Residenciales	
Alcobas	0,5 (a 3/4 del ancho del recinto)
Cocina	2 (en la mitad del ancho del recinto)
Sala	1 (en la mitad del ancho del recinto)

Tabla 415-1.c) Valores mínimos de Coeficiente de Luz Diurna (CLD) que deben cumplir las edificaciones

h. Los Curadores Urbanos, en ejercicio de sus funciones, para el otorgamiento de las licencias de urbanización y construcción, deberán, de conformidad con el Artículo 101 de la Ley 388 de 1997, exigir el cumplimiento de las normas contenidas en este Reglamento Técnico, en lo que tiene que ver con el aprovechamiento de la luz natural.

410.1.2 CÁLCULO DEL CLD

Los métodos que dan una iluminancia promedio para condiciones típicas de cielo, son útiles en el proceso preliminar de diseño, cuando se están evaluando alternativas. La simplicidad relativa de estos métodos puede ayudar no solamente a aclarar como será la luz natural en el espacio, sino también a revelar cambios que proporcionan mejoras al diseño.

Debido a la complejidad del sistema de iluminación natural y la etapa en el proceso de diseño donde se

llevan a cabo los cálculos, se recomienda hacer utilización de software especializado.

DE

El software especializado deberá utilizarse para comparar sistemas alternos de entrega de luz día o considerar los límites de la utilización luz día para varias edificaciones y sistemas bajo una gran variedad de condiciones de iluminación natural. El software especializado presenta alternativas útiles cuando el clima o las condiciones de cielo no permiten modelo a escala de mediciones y evaluaciones apropiadas o comparables.

Dada la velocidad con que pueden ser exploradas las alternativas de diseño y la complejidad que puede ser evaluada, los cálculos de luz día basados en software especializado son herramientas importantes de diseño. Las capacidades para visualización de escenas interiores con combinación de fuentes eléctricas y luz natural están incluidas con muchos software especializados.

Los cálculos de iluminancia en un punto son hechos generalmente con software especializado dado la capacidad para modelar iluminación eléctrica y calcular ahorros de energía de iluminación, lo que puede ser dispendioso con modelos a escala y otros métodos manuales. Hay básicamente dos enfoques en el software especializados:

- Transferencia radiactiva y
- Trazado de rayos de intensidad luminosa.

La utilidad de la técnica computacional es usualmente dictada por la naturaleza de la información requerida.

Si el único requerimiento es la iluminancia en un punto, un procedimiento de transferencia radiactiva es usualmente suficiente.

Si se requiere una visualización exacta y realista del espacio, la mejor técnica puede ser la de trazado de rayos de intensidad luminosa.

La ventaja de la transferencia radiactiva es que el software permite visualizar todas las vistas de la local sin cálculos adicionales, facilitando una simulación de caminar a través del espacio. Varios programas disponibles en el mercado utilizan esta técnica. La ventaja del trazado de rayos de intensidad luminosa es que más exacta y fácilmente calculados en superficies no difusas y de mayor complejidad geométrica. Los paquetes de software más exitosos en resolver problemas del mundo real usualmente emplean un híbrido de estos métodos.

410.1.3 DISPOSITIVOS PARA CONTROLAR EL INGRESO DE LA LUZ NATURAL

En la localización de las claraboyas o ventanales en edificaciones, se deberán tener en cuenta que los requerimientos de ventilación y comunicación con el exterior condicionan la cantidad de luz admitida, estos requerimientos son variables con el clima, las horas del día, además del gusto y necesidad de los ocupantes.

Las ventanas deberán contar con dispositivos apropiados (intermedios) para controlar la entrada de luz directa, la ventilación, la sombra, etc, (Figura 415-5). Esto significa que para lograr un buen confort dentro de las edificaciones se requiere poder controlar el ingreso de la luz natural y por consiguiente un ventanal de grandes dimensiones no conduce necesariamente a un gran aprovechamiento de la luz natural.

Los dispositivos intermedios son determinantes de la cantidad de luz admitida en los interiores y, por ende, en el aprovechamiento energético.

Figura 415-5 Dispositivos intermedios para controlar el ingreso de la luz natural.

Para satisfacer las necesidades de los ocupantes, las ventanas deben contar con dispositivos apropiados. Los requerimientos son variados, siendo los más importantes los relacionados al confort visual, aunque deben considerarse los estéticos, de seguridad y funcionales:

DE

- Control solar: El ingreso de luz solar directa debe evitarse cuando ésta provoca pérdida de confort.
 Los dispositivos deben bloquear la luz solar directa para cualquiera de los posibles ángulos de incidencia, sin limitar el eventual ingreso de otras componentes de la luz natural.
- Control del deslumbramiento: Altas luminancias provenientes del cielo o superficies muy claras vistas desde el interior pueden causar molestias, para ello se deben utilizar dispositivos de control solar como persianas o cortinas.
- Control de iluminación: En determinados locales, puede presentarse la necesidad de atenuar la iluminación o producir un oscurecimiento, para lo cual las ventanas deben disponer elementos de control de la admisión de luz, tales como cerramientos opacos.

Los dispositivos intermedios deben tener la flexibilidad suficiente para adaptarse a las condiciones cambiantes y deben ser fáciles de maniobrar por parte de los usuarios.

SECCIÓN 420 DISEÑO DE ALUMBRADO INTERIOR.

420.1 REQUISITOS GENERALES DEL DISEÑO

El diseño de la iluminación debe estar íntimamente ligado con el área que va a ser iluminada. Los factores a tener en cuenta son la forma y tamaño de los espacios, los colores y las reflectancias de las superficies del salón, la actividad a ser desarrollada, la disponibilidad de la iluminación natural y también los requerimientos estéticos requeridos por el cliente. Debe existir una colaboración estrecha entre el diseñador de la iluminación y el arquitecto.

Los ítems más importantes que el diseñador necesita investigar antes iniciar un diseño de alumbrado interior son los siguientes:

- a) Conocer con detalles las actividades asociadas con cada espacio.
- b) Las exigencias visuales de cada puesto de trabajo y su localización.
- c) Las condiciones de reflexión de las superficies
- d) Las necesidades para el espacio, modelación y rendimiento del color.
- e) La disponibilidad de la iluminación natural
- f) La apariencia del color de la fuente de luz y su unión con la iluminación natural.
- g) El control de luz directa e indirecta que ingresa por las ventanas.
- h) Localización de las luminarias y su acceso a ellas.
- i) Los requerimientos especiales en la calidad de las luminarias, tales como ambientes peligrosos, dificultad para encontrar acceso a ellas o para cumplir requerimientos de mantenimiento.

Todo diseño de iluminación interior debe tener en cuenta los siguientes aspectos:

- a) El índice de reproducción del color, lo natural que aparecen los objetos bajo la luz.
- b) La temperatura del color, la apariencia de calidez o frialdad de la luz.
- c) El tamaño y forma de la fuente luminosa y de la luminaria.
- d) Los niveles de iluminancia y coeficiente de uniformidad; estos valores se deben diseñar y medir sobre las zonas de trabajo del recinto.
- e) El deslumbramiento.

420.1.1 CONTROL DEL DESLUMBRAMIENTO.

El deslumbramiento es la sensación producida por áreas brillantes dentro del campo de visión y puede ser experimentado como deslumbramiento molesto o perturbador.

El deslumbramiento se puede producir cuando existen fuentes de luz cuya luminancia es excesiva en relación con la luminancia general existente en el interior del local (deslumbramiento directo), o bien, cuando las fuentes de luz se reflejan sobre superficies pulidas (deslumbramiento por reflejos).

En los lugares de trabajo el deslumbramiento perturbador, su principal efecto es reducir la visibilidad de la tarea, perturba la visión y dar lugar a errores y accidentes. El deslumbramiento molesto no reduce la visibilidad pero produce fatiga visual, puede producirse directamente a partir de luminarias brillantes o ventanas.

DE

Para evitar el deslumbramiento perturbador, los puestos y áreas de trabajo se deben diseñar de manera que no existan fuentes luminosas o ventanas situadas frente a los ojos del trabajador. Esto se puede lograr orientando adecuadamente los puestos o bien apantallando las fuentes de luz brillantes.

Para evitar el deslumbramiento molesto es necesario controlar todas las fuentes luminosas existentes dentro del campo visual. Esto conlleva la utilización de persianas o cortinas en las ventanas, así como el empleo de luminarias con difusores o pantallas que impidan la visión del cuerpo brillante de las bombillas o lámparas.

El apantallamiento debería efectuarse en todas aquellas bombillas o lámparas que puedan ser vistas, desde cualquier zona de trabajo, bajo un ángulo menor de 45º respecto a la línea de visión horizontal.

El grado de deslumbramiento directo psicológico proveniente de luminarias puede ser valorado mediante el método de tabulación del Índice de Deslumbramiento unificado de la Comisión Internacional de la Iluminación (CIE), "Unified Glare Rating" (UGR), Publicación CIE 117 "Discomfort glare in interior lighting- 1995", en el cual se tiene en cuenta la contribución de cada una de las luminarias que forman parte de un determinado sistema de iluminación. El método está basado en la fórmula:

$$UGR = 8\log_{10}\left(\frac{0.25}{L_{\rm b}}\sum \frac{L^2\omega}{p^2}\right)$$

- L_b es la iluminancia de fondo en cd/m², calculada como E_{ind} x $π^{-1}$, en la que E_{ind} es la iluminancia indirecta vertical en el ojo del observador;
- L es la iluminancia de las partes luminosas de cada luminaria en la dirección del ojo del observador en cd/m²;
- ω es el ángulo sólido (estéreorradianes) de las partes luminosas de cada luminaria en el ojo del observador:
- *p* es el índice de posición de Guth para cada luminaria individual que se refiere a su desplazamiento de la línea de visión.

Todas las suposiciones hechas en la determinación del UGR deben ser establecidas en la documentación del proyecto. El valor de UGR de la instalación no debe exceder del valor dado en la Tabla 440.1 los valores de UGR son tomados de las tablas del capítulo 5 de la norma UNE EN 12464-1 de 2003.

Este índice es una manera de determinar el tipo de luminaria que debe usarse en cada una de las aplicaciones teniendo en cuenta el posible deslumbramiento que puede provocar debido a la óptica y posición de las bombillas

En la figura de la siguiente columna se muestra un ejemplo de los valores del Índice de Deslumbramiento Unificado (UGR_L) presentado para una luminaria específica en catálogo

Ejemplo de datos	Valoración de deslumbramiento según UGR												
	ρTecho	70	70	50	50	30	70	70	50	50	30		
Luminaria	ρ Paredes	50	30	50	30	30	50	30	50	30	30		
mod. XX	ρSuelo	20	20	20	20	20	20	20	20	20	20		
mod. XX	Tamaño del local X Y	Mi		n perp de lán		iar	Mir	ado lo al eje	ngitudi de lár	inalme npara	nte		
	2H 2H	15.5	16.5	15.8	16.7	17.0	15.6	16.6	15.8	16.8	17.0		
Diagrama fatamátrica	3H	15.4	16.3	15.7	16.5	16.8	15.4	16.4	15.7	16.6	16.8		
Diagrama fotométrico	4H	15.3	16.1	15.6	16.4	16.7	15.4	16.2	15.7	16.5	16.8		
	6H	15.2	16.0	15.5	16.3	16.6	15.3	16.1	15.6	16.4	16.7		
	8H 12H	15.2 15.1	15.9 15.9	15.5 15.5	16.2 16.2	16.5 16.5	15.2 15.2	16.0 15.9	15.6 15.6	16.3 16.2	16.6 16.6		
		15.1	10.8	15.5	10.2	16.5	15.2	15.9	10.0	10.2	10.0		
X American X	4H 2H	15.3	16.2	15.7	16.5	16.7	15.4	16.2	15.7	16.5	16.8		
	3H	15.2	15.9	15.6	16.2	16.6	15.2	16.0	15.6	16.3	16.6		
1 X m	4H	15.1	15.8	15.5	16.1	16.5	15.2	15.8	15.5	16.1	16.5		
	6H 8H	15.0	15.6 15.5	15.4 15.4	16.0 15.9	16.4 16.3	15.1 15.0	15.6 15.6	15.5 15.5	16.0 15.9	16.4 16.4		
	12H	15.0	15.5	15.4	15.8	16.3	15.0	15.5	15.4	15.9	16.3		
		10.0						10.0					
# cities 1 - 70 S F	8H 4H	15.0	15.5	15.4	15.9	16.3	15.0	15.6	15.5	15.9	16.4		
17 7 17	6H	14.9	15.3	15.4	15.8	16.2 16.2	15.0	15.4 15.3	15.4	15.8	16.3		
	8H 12H	14.9	15.2	15.3	15.7	16.2	14.9	15.3	15.4	15.7	16.2		

Para controlar el deslumbramiento se deben tomar las siguientes medidas:

a) Apantallamiento contra el deslumbramiento: Las fuentes luminosas pueden causar deslumbramiento en proporción a su brillo y con ello producir alteraciones en la visión de objetos. Para evitar el deslumbramiento se deben tomar acciones como el oscurecimiento de ventanas mediante

DE

cortinas o el apantallamiento de las fuentes luminosas. Para las fuentes luminosas deben aplicarse los ángulos de apantallamiento mínimos indicados en la tabla 420.1.2:

Luminancia de lámpara kcd/m2	Anglo de apantallamiento mínimo
20 a menos de 50	15°
50 a menos de 500	20°
Igual o superior a 500	30°

Tabla 420.1.2. Ángulos mínimos de apantallamiento para luminancias de fuentes especificadas.

- **b)** Control de los reflejos. En lo que concierne al control del deslumbramiento provocado por los reflejos, se pueden utilizar los siguientes procedimientos:
- C) Uso de acabados de aspecto mate en las superficies de trabajo y del entorno: Situar las luminarias respecto al puesto de trabajo de manera que la luz llegue al trabajador lateralmente. En general, es recomendable que la iluminación le llegue al trabajador por ambos lados con el fin de evitar también las sombras molestas cuando se trabaja con ambas manos.

Emplear luminarias con difusores, así como techos y paredes de tonos claros, especialmente cuando la tarea requiera la visualización de objetos pulidos.

d) Direccionalidad de la luz: Para percibir la forma, el relieve y la textura de los objetos es importante que exista un equilibrio de luz difusa y direccional. Una iluminación demasiado difusa reduce los contrastes de luces y sombras, empeorando la percepción de los objetos en sus tres dimensiones, mientras que la iluminación excesivamente direccional produce sombras duras que dificultan la percepción.

Algunos efectos de la luz dirigida también pueden facilitar la percepción de los detalles de una tarea; por ejemplo, una luz dirigida sobre una superficie bajo un ángulo adecuado puede poner de manifiesto su textura. Esto puede ser importante en algunas tareas de control visual de defectos.

420.1.2 UNIFORMIDAD.

El área donde se desarrolla la tarea debe ser iluminada de la manera más uniforme posible, así como las áreas circundantes deben ser iluminadas en proporción al nivel dado para el área de la tarea. Los valores a cumplir se consignan en la Tabla 440.2

420.1.3 CONTROL DEL PARPADEO Y EFECTOS ESTROBOSCÓPICOS.

El flujo de luz emitido por todas las bombillas alimentadas con corriente alterna presenta una fluctuación periódica; esta fluctuación es más notoria en las lámparas fluorescentes y de descarga que en las bombillas incandescentes, debido a la inercia térmica que presenta el filamento de estas últimas.

El flujo de luz de todas las bombillas alimentadas con corriente alterna de 60 Hz presenta una fluctuación de 120 Hz; esta fluctuación es demasiado rápida para ser detectada por el ojo y rara vez se perciben parpadeos por esta causa.

El parpadeo distrae y provoca desórdenes fisiológicos, como dolor de cabeza. No obstante, en las lámparas fluorescentes depreciadas se pueden producir parpadeos muy acentuados, lo que exigiría su rápida sustitución.

Los efectos estroboscópicos pueden producir situaciones peligrosas porque la maquinaria que tenga parte girando da la impresión de que las partes rotativas, giran a poca velocidad, están paradas o giran en sentido contrario. Igualmente, el efecto estroboscópico puede resultar molesto cuando aparece en tareas que requieren una atención sostenida.

Los sistemas de iluminación deben diseñarse de forma que se eviten efectos estroboscópicos y de parpadeo. Estos efectos pueden ser eliminados iluminando los elementos giratorios de las máquinas mediante un sistema auxiliar que utilice bombillas incandescentes; también se puede reducir el efecto repartiendo la conexión de las lámparas de descarga (fluorescentes o HID) de cada luminaria a las tres fases de la red. Actualmente la solución más eficaz consiste en alimentar dichas lámparas con balastos

electrónicos de alta frecuencia.

420.1.4 CONTROL DEL CALOR PRODUCIDO POR LAS FUENTES LUMINOSAS.

La energía térmica producida por las fuentes lumínicas debe ser tenida en cuenta en los proyectos de iluminación, requiriendo especial cuidad en recintos cerrados, en lugares con presencia de materiales que se descompongan, entren en combustión o exploten debido al aumento de temperatura ocasionado por las fuentes de iluminación.

Los sistemas de iluminación de áreas clasificadas como peligrosas deben atender los lineamientos dados en el RETIE para este tipo de instalaciones especiales.

Las balas o encerramientos donde se instalen lámparas deben tener las dimensiones y formas garanticen la renovación y enfriamiento del aire que circunda la lámpara, en el caso que la bala o el encerramiento no garantice esta condición deberá colocarse lámpara con la menor emisión de calor posibles de tal manera que no se comprometa la seguridad por incendio o explosión o la vida útil de la lámpara.

420.2 ALUMBRADO EN LOCALES DE TRABAJO INTERIOR.

Al diseñar el alumbrado para un local destinado a realizar algún tipo de trabajo, la meta más importante es la de obtener buenas condiciones visuales en el plano de trabajo. Una meta secundaria sería la creación de un medio ambiente visual que ejerza una influencia positiva sobre el rendimiento y el bienestar de sus usuarios.

Cuando se realiza un proyecto de iluminación normalmente se establece un nivel de iluminación superior, según el factor de mantenimiento, que dependerá de la fuente de luz elegida, de las luminarias, así como de la posibilidad de ensuciamiento del local. Con el tiempo el valor de iluminación inicial va decayendo debido a la pérdida de flujo de la propia fuente de luz, así como de la suciedad acumulada en las luminarias, paredes, techos y suelo.

Los ciclos de mantenimiento y limpieza se deben realizar para mantener un nivel de iluminación adecuado a la tarea que se realiza en el local, esto es lo que se llama nivel de iluminación mínimo mantenido, y se tendrán que sustituir las bombillas justo antes de alcanzar este nivel mínimo, de este modo se asegura que las tareas se puedan desarrollar según las necesidades visuales.

420.2.1 ALUMBRADO DE OFICINAS.

En estos locales las luminarias se disponen normalmente en el techo siguiendo un modelo regular en líneas rectas. Si al realizar el proyecto de iluminación de un edificio completo el emplazamiento de las luminarias debe coincidir con el módulo de las ventanas, se debe hacer el diseño de alumbrado de forma que proporcione el nivel luminoso adecuado a las salas de mayores dimensiones. La misma distribución de luminarias se podrá aplicar al resto de las salas, cualquiera que sean sus dimensiones, siempre y cuando cumplan con los requisitos de nivel de iluminación, uniformidad, deslumbramiento y los de uso racional de energía.

El alumbrado de oficinas puede diseñarse de un modo más esquemático que el de otras instalaciones de alumbrado, porque:

- El número de tareas visuales es limitado y bien definido (leer, escribir, dibujar, en monitores de computador, etc.).
- El plano horizontal de trabajo tiene una altura entre 0,75 y 0,85 por encima del nivel del piso.
- La altura de techos está entre 2,8 y 3 m.

Los requisitos visuales para el alumbrado de oficinas son los siguientes:

- Luminarias de baja luminancia.
- Ausencia de reflexiones en la superficie de las mesas de trabajo y paneles brillantes.
- Aspecto cromático y rendimiento de color agradables.

Para satisfacer estos requisitos las oficinas podrán usar luminarias empotradas en el techo o adosadas a él, equipadas con lámparas fluorescentes. Las luminarias respecto al control de deslumbramiento

podrán estar provistas de rejillas, difusores opales, cubiertas prismáticas o elementos especulares para que la instalación cumpla con los valores de UGR_L establecidos en el presente reglamento.

En las oficinas se podrá hacer uso de alumbrado localizado adicional para conseguir ahorro de energía. ya sea concentrando las luminarias sobre los puestos de trabajo y zonas adyacentes. En tal caso la instalación debe diseñarse para lograr la iluminancia requerida de acuerdo con la Tabla 440.a), sobre los puestos de trabajo, con menores valores sobre las zonas de circulación y de descanso, siempre respetando los valores de uniformidad mínima y deslumbramiento máximo.

420.2.2 ALUMBRADO EN INSTITUCIONES EDUCATIVAS, SALAS DE LECTURA Y AUDITORIOS.

DE

La iluminación de aulas de clase, salas de lectura, requiere especial cuidado responsabilidad por parte de diseñadores y constructores de sistemas de iluminación, una iluminación en estos lugares puede generar serias afectaciones visuales especialmente a niños y adolescentes, con graves consecuencias en algunos casos por las limitaciones visuales.

a) Iluminación de aulas de clase: El alumbrado de un aula de enseñanza debe ser apropiado para actividades tales como escritura, lectura de libros y del tablero. Como estas actividades son parecidas a las de las oficinas, los requisitos generales de alumbrado de éstas pueden aplicarse al de escuelas (Figura 420.2.2 a)).

Es requisito que el diseño verifique la necesidad de proveer iluminación adicional en el tablero (Figura 420-2.2 b)).

Figura 420.2.2 a) Las aulas están sujetas a la misma Figura 420.2.2 b) Alumbrado adicional sobre el tablero. necesidad de alumbrado que las oficinas

- b) Iluminación de salas de lectura y auditorios. En las salas de lectura y auditorios normalmente no hay luz diurna y sólo existe la artificial. En estos locales se debe tener en cuenta los siguientes requisitos:
- Niveles de iluminación requeridos para lectura y escritura según Tabla 440.b).
- Se debe tener especial cuidado en prevenir el deslumbramiento. Ver Figura 420-2.2.2.
- Se debe disponer de un equipo especial de regulación de flujo luminoso para la proyección de películas y dispositivas.
- Se debe instalar un alumbrado localizado sobre la pizarra de la pared con una iluminancia vertical de 750 luxes.
- Se debe contar con un panel de control que permita encender y apagar los distintos grupos de luminarias, manejar el equipo de regulación de alumbrado y eventualmente controlar el sistema automático de provección.
- En estos recintos se debe contar con instalación de un alumbrado de emergencia y de señalización de las salidas.

DE

Figura 420.2.2.2 Sala de conferencias iluminada exclusivamente con luz artificial

420.2.3 ALUMBRADO INDUSTRIAL.

El trabajo realizado en la industria cubre una gama de actividades mucho más variada que el de las oficinas y escuelas. Las tareas visuales pueden ser extremadamente pequeñas o muy grandes, oscuras o claras, y abarca formas planas o contorneadas.

Desde el punto de vista de percepción visual, tales tareas se clasifican según su grado de finura. Entre menos crítica sea una tarea, menor serán las exigencias de nivel y calidad del alumbrado. A la inversa, cuanto más fino sea el trabajo, mayor debe ser el nivel de iluminancia y la ausencia de deslumbramiento.

El sistema de alumbrado industrial está determinado principalmente por la naturaleza del trabajo a realizar, la forma del espacio que se ilumina y el tipo de estructura del techo.

La mayoría de las aplicaciones industriales utilizan luminarias destinadas a proporcionar una distribución de luz de forma directa o semi-directa.

Las luminarias industriales fluorescentes y HID existen diseños con componentes de iluminación indirecta.

Al diseñar un sistema de iluminación industrial se deben considerar los siguientes factores:

- Cuando el alumbrado general no sea suficiente para cumplir los requisitos especiales de una determinada tarea visual, se debe complementar de alguna forma con un alumbrado localizado.
- Se deben utilizar luminarias con un componente indirecto de luz, normalmente entre el 10 y el 30%, para proporcionan un buen componente de luz en el techo o estructura superior, reduciendo las luminancias entre los campos de acción de las luminarias y el fondo.
- La luz hacia arriba (hacia techos) reduce la percepción del deslumbramiento de la luminaria, mitiga el efecto "caverna", efecto de iluminación directa, y crea un ambiente más cómodo y confortable.
- La calidad y cantidad de iluminación debe ser la adecuada para los procesos de fabricación implicados, así como los requisitos de seguridad necesarios.
- Se deben usar equipos de iluminación que satisfagan los requisitos de diseño, considerando las características fotométricas, así como los requerimientos mecánicos para cumplir las condiciones de montaje y funcionamiento.
- Se debe utilizar equipo seguro, fácil y práctico de mantener. Algunas lámparas como las de halogenuros metálicos pueden ser propensas a los posibles finales de vida con explosión o rotura y sólo deberían utilizarse en luminarias adecuadamente protegidas.
- El consumo de energía debe ser el menor posible, por lo que se requiere las fuentes y luminarias de la mayor eficiencia y eficacia posible, haciendo el análisis económico acorde con los requerimientos y características de funcionamiento del sistema de iluminación seleccionadas.
- La calidad y cantidad de la iluminación como la seguridad, deben ser debidamente ponderados y abordados en el diseño de la aplicación.

DE

• Adecuada localización de las luminarias, las líneas de luminarias se deben instalar perpendiculares a las filas de bancos de trabajo o máquinas (Figura 420-2.3). Esto evita la formación de sombras en la tarea visual y al mismo tiempo reduce la posibilidad de luz reflejada en los ojos de los trabajadores. La disposición alternada de luminarias con difusor y paralelas a las filas de bancos de trabajo dan una mejor impresión de conjunto y produce una mayor sensación de confort. Sin embargo, no siempre se pueden obtener los beneficios de ambas disposiciones al mismo tiempo. Normalmente, las buenas condiciones en el plano de trabajo son más importantes que una impresión de conjunto confortable.

Iluminación de bodegas industriales, las naves industriales de una planta, si son muy grandes, se recomienda utilizar techo en forma de lucernario o en diente de sierra, con el fin de admitir en su interior más luz procedente del exterior. Cualquiera que sea el tipo de trabajo, es necesario añadir luz artificial a la natural ya existente.

Iluminación de naves de una planta de gran altura. En plantas con más de 7 metros de altura, las fuentes de luz deben colocarse también a gran altura, con el fin de mantener las fuentes de luz fuera del campo de acción de las grúas o maquinaria similar. Para esta aplicación se debe usar luminarias con fotometrías optimizadas para grandes alturas o tipo high bay.

Casos especiales de iluminación industrial. En ciertos procesos de fabricación y en la inspección de algunos artículos la instalación de alumbrado general no satisface las exigencias requeridas. En estos casos se han de encontrar soluciones especiales, de las cuales se dan algunos ejemplos en la Figura 420-2.3.3, las cuales se aplican a las siguientes situaciones:

Figura 420-2.3.3 Ejemplos para colocación de luminarias suplementarias:

- a. Para evitar reflexiones que originan luminancia de velo; la dirección de la luz reflejada no debe coincidir con el ángulo de visión.
- La observación de detalles especulares contra un fondo difuso se facilita si la dirección de la luz reflejada coincide con el ángulo de visión.
- c. La iluminación rasante hace resaltar irregularidades de la superficie que se examina.
- d. La luz reflejada desde una fuente de luz de gran superficie facilita la inspección de manchas en una superficie pulimentada.
- e. La luz difusa de una fuente de gran superficie facilita la composición tipográfica.
- f. Las irregularidades de un material transparente se descubren mediante la luz difusa que lo atraviesa.
- g. La iluminación por silueta es muy efectiva en el control de contornos.
- h. La iluminación direccional es necesaria para poner de relieve la forma y la textura de un objeto.

A continuación se dan algunos ejemplos en los que se debe emplear alumbrado adicional localizado:

DE

- Inspección de objetos pequeños o ensamble de partes mecánicas diminutas o de componentes electrónicos. Muchas veces estas tareas pueden simplificarse mediante el uso de un lente de aumento iluminado.
- Verificación de dimensiones. Esto suele hacerse proyectando una imagen muy ampliada del objeto en una pantalla.
- Inspección de partes de una máquina en movimiento. Una bombilla estroboscopia ofrece una solución muy satisfactoria: La frecuencia del destello estroboscópico puede ajustarse de forma que el objeto iluminado parezca estacionario. Esta condición requiere de entrenamiento especial en el puesto de trabajo de forma tal que el operario tenga consciencia del movimiento de la maquina.
- Inspección de ciertos materiales. Objetos fabricados de materiales tales como el vidrio pueden inspeccionarse mejor con luz monocromática. Las bombillas de sodio de baja presión proporcionan este tipo de luz.

420.2.4 ALUMBRADO DE ESTABLECIMIENTOS COMERCIALES.

En los locales destinados a la exposición de objetos (tiendas, almacenes y salas de exposición), la meta principal del alumbrado es la de obtener una presentación atractiva, que concentre la atención en sus mejores ventajas, lo que se puede lograr con altos niveles de luminancia. Como alternativa, pueden utilizarse, para obtener el mismo efecto, bombillas con haz de luz concentrada (spots), con luz de tonalidad blanca o de colores, una iluminación especial con movimiento programado y otros dispositivos semejantes.

Aunque básicamente existe una disposición fija de alumbrado general, éste debe ser complementado con un alumbrado direccional utilizable para cualquier disposición de los objetos expuestos.

El alumbrado direccional se debe utilizar únicamente para dirigir la atención hacia las "ofertas especiales" y similares; con este fin se utiliza la instalación de aparatos de proyección o bombillas con haz de luz concentrada (spots) en rieles electrificados.

La direccionalidad de la luz se describe mediante el concepto de "Modelado". **El modelado** es la capacidad de la luz para revelar la forma tridimensional de un objeto, y se consigue mediante un equilibrio entre la luz difusa y la luz direccional.

Hay que evitar que la iluminación sea excesivamente direccional por que producirá fuertes sombras, ni excesivamente difusa por que se perderá el efecto modelado, dando lugar a un ambiente muy apagado o monótono.

Las normas no especifican medida cuantitativa de modelado, actualmente el modelado solo se puede evaluar en términos cualitativos.

El alumbrado general se realiza con bombillas fluorescentes o bombillas de descarga de alta intensidad de halogenuros metálicos, montadas en posición fija.

Para el alumbrado de tipo direccional, se utilizan bombillas de descarga de alta intensidad de halogenuros metálicos, bombillas fluorescentes compactas, diodos emisores de luz, que además de acentuar los artículos cuya venta se promueve, contribuyen al efecto decorativo del interior, el uso de bombillas incandescentes o incandescente halógena debe limitarse atendiendo los requerimientos del Decreto sobre sustitución de fuentes de baja eficacia lumínica.

SECCIÓN 430. CÁLCULOS PARA ILUMINACIÓN INTERIOR

En los cálculos de iluminación interior se deben tener en cuenta los requisitos de **Iluminancia**, la uniformidad y el índice de deslumbramiento.

El nivel de iluminancia de un local se debe expresar en función de la iluminancia promedio en el plano

DE

de trabajo. Para la aplicación del presente reglamento se deben cumplir los valores de la Tabla 440.1.

Si no se especifica la altura del plano de trabajo (hm), se deberá tomar un plano imaginario a 0,75 m, sobre el nivel del suelo para trabajar sentados y de 0,85 m para trabajos de pie.

La iluminancia promedio se calcula mediante la fórmula:

Eprom =
$$\frac{\Phi_{tot} *CU* FM}{A}$$

Donde:

 Φ_{tot} = Flujo luminoso total de las bombillas.

A = Área del plano de trabajo en m²

CU = Coeficiente o Factor de utilización para el plano de trabajo.

FM = Factor de mantenimiento.

430.1 METODO DEL COEFICIENTE DE UTILIZACIÓN DE LA INSTALACIÓN (CU).

El coeficiente de utilización de la instalación también se conoce como factor reducido de utilización y es la relación entre el flujo luminoso que cae en el plano de trabajo y el flujo luminoso suministrado por la luminaria. Este coeficiente representa la cantidad de flujo luminoso efectivamente aprovechado en el plano de trabajo después de interactuar con las luminarias y las superficies dentro de un local.

El valor del coeficiente de utilización depende de la distribución fotométrica de la luminaria y de las dimensiones y características de reflectancia del local.

En función de las características de diseño para una luminaria con distancia de montaje h_m se tendrá que parte del flujo luminoso emitido por la bombilla es absorbido por la misma luminaria y no contribuye al nivel de la iluminación del local. El resto del flujo de la bombilla es dirigido hacia arriba y hacia abajo, es decir, por encima y por debajo de un plano horizontal que pasa por el centro de la bombilla (Figura 430.1A))

- 1. Radiación directa hacia el plano de trabajo (Wp)
- 2. Dirigido hacia las paredes por debajo de la luminaria.
- 3. Dirigido hacia las paredes por encima de la luminaria.
- 4. Dirigido hacia el techo.

Figura 430.1 A) Distribución del flujo luminoso emitido por las bombilla

La parte del flujo radiado directamente sobre el plano de trabajo es la que contribuye en mayor cuantía al nivel de iluminancia. Solamente una parte del flujo dirigido hacia el techo y las paredes se convierte en flujo útil en el plano de trabajo, algunas veces después de varias reflexiones.

El coeficiente o factor de utilización (CU) también se puede calcular como el producto de la eficiencia del local (η_R) por la eficiencia de la luminaria (η_L), CU = η_R η_L

Normalmente los catálogos de luminarias indican directamente su coeficiente de utilización (CU) y por consiguiente ya está considerada su eficiencia es decir las pérdidas en emisión del flujo luminoso.

DE

Figura 430 .1 B) Efecto del diseño de la luminaria en del Coeficiente de utilización (CU) para un local dado.

Con el método del factor de utilización se puede determinar la iluminancia media en el plano de trabajo. Para su aplicación se requiere contar con la información del coeficiente de utilización de las luminarias a usar, información que debe ser suministrada por el fabricante.

También se requiere conocer las dimensiones geométricas del local a iluminar y las correspondientes al montaje de las luminarias.

El método del factor de utilización puede aplicarse bajo los siguientes supuestos que deben cumplirse, razonablemente, para obtener resultados confiables:

- Distribución uniforme de las luminarias
- Las superficies del local deben ser difusoras y espectralmente neutras
- El flujo incidente sobre cada superficie debe distribuirse uniformemente
- El local debe estar libre de obstrucciones de tamaño considerable.

Una versión de este método corresponde con el *Método de las Cavidades Zonales*, el cual se explica en el siguiente aparte.

430.2 METODO DE CAVIDADES ZONALES

Para un local dado se consideran tres cavidades, las cuales tienen como límites intermedios planos imaginarios situados uno a la altura del plano de trabajo, y otro a la altura de montaje de las luminarias. Las cavidades así delimitadas reciben las denominaciones de cavidad de techo, cavidad del local y cavidad del piso.

El método tiene cuatro pasos básicos:

- Determinar los índices de las cavidades zonales
- Determinar las reflectancias efectivas de las cavidades
- Seleccionar el coeficiente de utilización
- Calcular el nivel promedio de iluminación.

La iluminancia promedio horizontal se calculará entonces para la cavidad del local mediante la siguiente fórmula, aunque por lo general se usa para estimar el número de luminarias a instalar de acuerdo con un nivel de iluminancia requerido:

Eprom =
$$\frac{N*n*\Phi_{\underline{L}}*CU*FM}{I*a}$$

Donde:

N = Número de luminarias en el local.

n = Número de bombillas por luminaria

Φ_L = Flujo luminoso de una Bombilla de la luminaria.

CU = Coeficiente o Factor de utilización para el plano de trabajo.

FM = Factor de mantenimiento de la instalación.

I = Longitud del local en metros

a = ancho del local en metros

DE

Los requisitos sobre las reflectancias (p) y el factor de mantenimiento (FM) se dan en los numerales 430.2.2 y 430.4, respectivamente.

Figura 430.1. a) Distancias y cavidades para aplicación del método del Coeficiente de local

Las reflexiones de las cavidades de techo y piso son tenidas en cuenta mediante factores de corrección en la aplicación del método.

En este método la uniformidad se asocia con el *criterio de espaciamiento* propio de cada luminaria, el cual se determina en laboratorio junto con la información fotométrica. Tal criterio corresponde con la distancia máxima a respetar en un arreglo cuadrado de luminarias, determinada con base en el comportamiento fotométrico a lo largo de los ejes normales de la luminaria y su diagonal para mantener el nivel de uniformidad. Si este criterio no es suministrado se deberá evaluar la uniformidad mediante el cálculo puntual de niveles de iluminación mediante las curvas isocandela.

430.2.1 ÍNDICES DE LAS CAVIDADES

Para un espacio rectangular se define los siguientes índices para cada una de las cavidades en función de sus dimensiones y la altura de montaje de las luminarias:

Índice de la cavidad de local= $\mathbf{k} = \frac{5 \text{ h}_{\text{m}} (1 + a)}{* (1 * a)}$

Donde:

h_c = Altura de la cavidad del techo

h_m = Altura de la cavidad del local

h_f = Altura de la cavidad del piso

I = Longitud del local

a = Ancho de local

430.2.2 REFLECTANCIAS EFECTIVAS DE LAS CAVIDADES ZONALES.

Conocidas las reflectancias de techo, piso y paredes en la tabla siguiente se determinan las reflectancias efectivas para las cavidades de techo (ρ_{cc}) y piso (ρ_{fc}) Mediante el uso de los índices de cavidad de techo y de cavidad de piso. Nótese que si la luminaria está montada en el techo o el plano de trabajo corresponde con el piso, el índice de cavidad será 0, y por lo tanto la reflectancia corresponderá con la del techo o el piso, respectivamente.

DE

% Reflectancia de techo o piso		90	,			8	0			70				50			30			10	
% Reflectancia de paredes	90	70	50	30	80	70	50	30	70	50	30	70	50	30	70	50	30	10	50	30	10
Indice de cavidad																					
0.2	89	88	86	85	78	78	77	76	68	67	66	49	48	47	30	29	29	28	10	10	09
0.4	88	86	84	81	77	76	74	72	67	65	63	48	47	45	30	29	28	26	11	10	09
0.6	87	84	80	77	76	75	71	68	65	63	59	47	45	43	30	28	26	25	11	10	80
0.8	87	82	77	73	75	73	69	65	64	60	56	47	44	40	30	28	25	23	11	10	80
1.0	86	80	75	69	74	72	67	62	62	58	53	46	43	38	30	27	24	22	12	10	80
1.2	85	78	72	66	73	70	64	58	61	57	50	45	41	36	30	27	23	21	12	10	07
1.4	85	77	69	62	72	68	62	55	60	55	47	45	40	35	30	26	22	19	12	10	07
1.6	84	75	67	59	71	67	60	53	59	53	45	44	39	33	29	25	22	18	12	09	07
1.8	83	73	64	56	70	66	58	50	58	51	42	43	38	31	29	25	21	17	13	09	06
2.0	83	72	62	53	69	64	56	48	56	49	40	43	37	30	29	24	20	16	13	09	06
2.2	82	70	59	50	68	63	54	45	55	48	38	42	36	29	29	24	19	15	13	09	06
2.4	82	69	58	48	67	61	52	43	54	46	37	42	35	27	29	24	19	14	13	09	06
2.6	81	67	56	46	66	60	50	41	54	45	35	41	34	26	29	23	18	14	13	09	06
2.8	81	66	54	44	65	59	48	39	53	43	33	41	33	25	29	23	17	13	13	09	05
3.0	80	64	52	42	65	58	47	37	52	42	32	40	32	24	29	22	17	12	13	09	05
3.2	79	63	50	40	65	57	45	35	51	40	31	39	31	23	29	22	16	12	13	09	05
3.4	79 79	62	48	38	64	56	44	34	50	39	29	39	30	22	29	22	16	11	13	09	05
3.6	78	61	47	36	63	54	43	32	49	38	28	39	29	21	29	21	15	10	13	09	04
3.8	78	60	45	35	62	53	41	31	49	37	27	38	29	21	28	21	15	10	14	09	04
4.0	77	58	44	33	61	53	40	30	48	36	26	38	28	20	28	21	14	09	14	09	04
4.0			42	22			20	20	47	25	D.F.		20	20	20	20		00			
4.2	77 76	57	43	32 31	60	52 51	39 38	29 28	47 46	35 34	25 24	37	28 27	20 19	28 28	20 20	14 14	09 09	14	09 08	04 04
4.4		56	42		60							37							14		
4.6 4.8	76 75	55 54	40 39	30 28	59 58	50 49	37 36	27 26	45 45	33 32	24 23	36 36	26 26	18 18	28 28	20 20	13 13	08 08	14 14	08 08	04 04
5.0	75 75	53	38	28	58	49	35	25	45	31	22		25	17	28	19	13	08	14	08	04
5.0	/5	33	38	20	38	46	30	23	44	51	22	35	20	17	28	19	13	Uď	14	US	04

Tabla 430.2.2. Reflectancia efectiva de cavidad de techo y piso para varias combinaciones de reflectancias.

430.2.2.1 LA REFLECTANCIA (ρ)

La reflectancia de una superficie se define como la razón entre el flujo luminoso reflejado por la superficie y el flujo que incide sobre ella. Generalmente para las tablas de coeficiente de utilización se utiliza una reflexión de piso del 20% y se parametrizan los correspondientes a techo y paredes.

En la Tabla 430.1.4. se dan valores de reflectancias para algunos colores y texturas.

TONO	COLOR	R	SUPERFICIES	ACABADOS DE CONSTRUCCIÓN
Muy claro	Blanco nuevo Blanco viejo Azul verde Crema Azul Miel Gris Azul verde	88 76 76 81 65 76 83 72	Maple 43 Nogal 16 Caoba 12 Pino 48 Madera clara 30-50 Madera oscura 10-25	Cantera clara 18 Cemento 27 Concreto 40 Mármol blanco 45 Vegetación 25 Asfalto limpio 7 Adoquín de roca 17 Grava 13
Claro	Crema Azul Miel Gris Azul verde Amarillo Miel	79 55 70 73 54 65 63	ACABADOS METÁLICOS Blanco polarizado 70-85 Aluminio pulido 75 Aluminio mate 75 Aluminio claro 59-79	Ladrillo claro 30-50 Ladrillo oscuro 15-25
Oscuro	Gris Azul Amarillo Café Gris Verde Negro	8 50 10 25 7 3		

Tabla 430.1.4 Valores de Reflectancia (aproximada) en %, para colores y texturas

Para maximizar la efectividad de la luz suministrada es conveniente pintar la superficie de las paredes con colores claros, de esta forma se logra una buena reflectancia.

DE

Colores claros y brillantes pueden reflejar hasta un 80% de la luz incidente, mientras que colores oscuros pueden llegar a reflejar menos de un 10% de la luz incidente.

En un local se tienen tres tipos de reflectancias: del techo, de paredes y del plano de trabajo. Una cuarta refletancia se da cuando las paredes tienen friso; es por ello que las reflectancias se definen en las tablas por un código de tres o cuatro dígitos, a manera de ejemplo: valores de la forma 7751 representa la reflectancia combinada de techo (0,7), friso (0,7), paredes (0,5) y plano de trabajo (0,1); 751 representa la reflectancia combinada de techo (0,7), paredes (0,5) y plano de trabajo (0,1).

430.2.3 USO DE TABLAS FOTOMETRICAS DE CU.

El coeficiente de utilización se determina con base en las tablas suministradas por los fabricantes relacionadas con la información fotométrica de cada tipo de luminaria. Las tablas de CU están parametrizadas en función del índice de local (\mathbf{k}^{13}) y de los índices de reflectancias efectivas para las cavidades de techo (ρ_{cc}) y piso (ρ_{fc}), así como de la reflectancia de las paredes $\rho_{w.}$

Luego, una vez determinado el índice de local k y las reflectancias efectivas para las cavidades del techo (ρ_{cc}) y del piso (ρ_{cf}) , el factor de utilización o coeficiente de utilización (CU) se obtiene, por extrapolación, de los datos de la tabla de CU correspondiente a cada luminaria.

Normalmente como las tablas de coeficiente de utilización se construyen para una reflectancia efectiva del piso del 20% se deberá efectuar una corrección si el valor es distinto. Para el efecto se aplicará la tabla 430.2.3. Un ejemplo de una tabla de factor de utilización se observa en la Figura 430.2.3.

			R	eflectan	cia de piso [%] = 20									
Reflectancia techo		8	30			•	70			50				
Reflectancia paredes [%]	70	50	30	10	70	50	30	10	70	50	30	10		
Índice de local				•	Coefic	cientes	de Utili	zación	•					
1	0.90	0.86	0.83	0.80	0.88	0.85	0.8]	0.78	0.8]	0.78	0.75	0.77		
2	0.82	0.75	0.69	0.64	0.80	0.73	0.68	0.64	0.70	0.66	0.62	0.67		
3	0.74	0.66	0.57	0.52	0.72	0.64	0.58	0.52	0.6]	0.56	0.52	0.59		
4	0.68	0.58	0.50	0.45	0.66	0.56	0.50	0.44	0.54	0.48	0.43	0.52		
5	0.62	0.50	0.42	0.37	0.59	0.49	0.42	0.37	0.48	0.41	0.36	0.46		
6	0.57	0.44	0.38	0.32	0.55	0.44	0.37	0.31	0.42	0.36	0.31	0.41		
7	0.52	0.40	0.33	0.27	0.50	0.39	0.32	0.27	0.38	0.31	0.26	0.36		
8	0.48	0.36	0.28	0.23	0.46	0.35	0.28	0.23	0.34	0.28	0.23	0.33		
9	0.44	0.32	0.25	0.20	0.42	0.31	0.25	0.20	0.30	0.24	0.20	0.29		
	0.29	0.22	0.18	0.39	0.28	0.22	0.18	0.28	0.2]	0.]7	0.26	0.21		

Figura 430.2.3 Ejemplo de una Tabla de Factores de Utilización, suministrada por el fabricante de la luminaria

Reflectancia efectiva cavidad del techo ρ _{cc} (%)		80			7	70			50			30			10			
Reflectancia paredes ρ _w (%)	70	50	30	10	70	50	30	10	50	30	10	50	30	10	50	30	10	
	Р	ara 1	0% de	refle	ectan	cia ef	ectiva	a de la	a cavi	idad d	del pi	so (20	0% : 1	(00,				
Índice del local																		
1	1.092	1.082	1.075	1.068	1.077	1.070	1.064	1.059	1.049	1.044	1.040	1.028	1.026	1.023	1.012	1.010	1.008	
2	1.079	1.066	1.055	1.047	1.068	1.057	1.048	1.039	1.041	1.033	1.027	1.026	1.021	1.017	1.013	1.010	1.006	
3	1.070	1.054	1.042	1.033	1.061	1.048	1.037	1.028	1.034	1.027	1.020	1.024	1.017	1.012	1.014	1.009	1.005	
4	1.062	1.045	1.033	1.024	1.055	1.040	1.029	1.021	1.030	1.022	1.015	1.022	1.015	1.010	1.014	1.009	1.004	
5	1.056	1.038	1.026	1.018	1.050	1.034	1.024	1.015	1.027	1.018	1.012	1.020	1.013	1.008	1.014	1.009	1.004	
6	1.052	1.033	1.021	1.014	1.047	1.030	1.020	1.012	1.024	1.015	1.009	1.019	1.012	1.006	1.014	1.008	1.003	
7	1.047	1.029	1.018	1.011	1.043	1.026	1.017	1.009	1.022	1.013	1.007	1.018	1.010	1.005	1.014	1.008	1.003	
8	1.044	1.026	1.015	1.009	1.040	1.024	1.015	1.007	1.020	1.012	1.006	1.017	1.009	1.004	1.013	1.007	1.003	
9	1.040	1.024	1.014	1.007	1.037	1.022	1.014	1.006	1.019	1.011	1.005	1.016	1.009	1.004	1.013	1.007	1.002	
10	1.037	1.022	1.012	1.006	1.034	1.020	1.012	1.005	1.017	1.010	1.004	1.015	1.009	1.003	1.013	1.007	1.002	
	Р	ara 3	0% de	refle	ctan	cia ef	ectiva	a de la	a cavi	idad d	del pi	so (20	0% : 1	,00)				
Índice del local																		

También conocido como RCR (Room Cavity Ratio) en el Método de Cavidad Zonal de la IESNA.

DE

1	0.923	0.929	0.935	0.940	0.933	0.939	0.943	0.948	0.956	0.960	0.963	0.973	0.976	0.979	0.989	0.991	0.993
2	0.931	0.942	0.950	0.958	0.940	0.949	0.957	0.963	0.962	0.968	0.974	0.976	0.980	0.985	0.988	0.991	0.995
3	0.939	0.951	0.961	0.969	0.945	0.957	0.966	0.973	0.967	0.975	0.981	0.978	0.983	0.988	0.988	0.992	0.996
4	0.944	0.958	0.969	0.978	0.950	0.963	0.973	0.980	0.972	0.980	0.986	0.980	0.986	0.991	0.987	0.992	0.996
5	0.949	0.964	0.976	0.983	0.954	0.968	0.978	0.985	0.975	0.983	0.989	0.981	0.988	0.993	0.987	0.992	0.997
6	0.953	0.969	0.980	0.986	0.958	0.972	0.982	0.989	0.977	0.985	0.992	0.982	0.989	0.995	0.987	0.993	0.997
7	0.957	0.973	0.983	0.991	0.961	0.975	0.985	0.991	0.979	0.987	0.994	0.983	0.990	0.996	0.987	0.993	0.998
8	0.960	0.976	0.986	0.993	0.963	0.977	0.987	0.993	0.981	0.988	0.995	0.984	0.991	0.997	0.987	0.994	0.998
9	0.963	0.978	0.987	0.994	0.965	0.979	0.989	0.994	0.983	0.990	0.996	0.985	0.992	0.998	0.988	0.994	0.999
10	0.965	0.980	0.965	0.980	0.967	0.981	0.990	0.995	0.984	0.991	0.997	0.986	0.993	0.998	0.988	0.994	0.999

Tabla 430.1.2. Factores de Corrección cuando la Reflectancia efectiva de Piso difiere del 20%

430.2.4 LAS CURVAS ISO K.

Otra forma para obtener el coeficiente de utilización (CU) es utilizando las curvas ISO K (isocoeficiente de utilización) de la luminaria seleccionada.

El procedimiento para utilizar la curva ISO K es similar al descrito para el uso de las curvas Se dibuja el área del local que se desea iluminar a la escala en que está la curva ISO K dividido por la altura de montaje respecto al plano de trabajo, para el caso de la curva ISO K de la Figura 430-1.1.d), la escala es 1 m = 40 mm/hm

Figura 430.1.d) Curva ISO K de una luminaria simétrica para

Las curvas ISO K deben ser obtenidas en un laboratorio fotométrico, utilizando paredes y techos completamente negros, es decir con factores de reflexión de cero %.

430.3 NÚMERO DE LUMINARIAS NECESARIAS PARA PRODUCIR UNA ILUMINANCIA REQUERIDA

El flujo luminoso total necesario para producir una iluminancia promedio requerida se calcula así:

$$\Phi_{tot} = (E_{prom}xA) / (CUxF_M)$$

Donde:

Flujo luminoso total.

Iluminancia promedio requerida. $\mathsf{E}_{\mathsf{prom}}$

Área en m2

Coeficiente de utilización. CU Factor de mantenimiento.

El número de luminarias (N) necesario es por consiguiente:

$$N = (\underline{\Phi_{tot}}) / (nx\Phi_{l})$$

Donde:

Φ_I flujo luminoso de una bombilla. n número de bombillas por luminaria.

430.4 ESPECIFICACIONES TÉCNICAS DE BALASTOS, LUMINARIAS Y FUENTES.

El diseñador del alumbrado interior debe tener en cuenta todos los parámetros técnicos de las fuentes, luminarias y balastos usados en su diseño. Para los balastos de bombillas o lámparas se debe tomar los factores de balasto (Fb) suministrados por el fabricante dentro de la información de certificación del producto el cual no podrá ser inferior a los valores establecidos en el presente reglamento.

430.5 MANTENIMIENTO EN INSTALACIONES DE ILUMINACIÓN INTERIOR.

Para garantizar en el transcurso del tiempo el mantenimiento de los parámetros luminotécnicos adecuados y la eficiencia energética de la instalación, se deberá elaborar en el proyecto un plan de mantenimiento de las instalaciones de iluminación que contemplará, entre otras acciones:

a. Las operaciones de reposición de lámparas con la frecuencia de reemplazo

DE

b. La limpieza de luminarias con la metodología prevista y la limpieza de la zona iluminada, incluyendo en ambas la periodicidad necesaria.

Dicho plan también deberá tener en cuenta los sistemas de regulación y control utilizados en las diferentes zonas.

En la Figura 430.1.6 se muestra un esquema de mantenimiento para una instalación de de alumbrado interior

La curva A indica la reducción de la iluminancia si solo actuara la depreciación de la bombilla (DLB).

La curva C la variación real de los niveles de iluminancia como resultado del mantenimiento

Cuando se efectúa limpieza de luminarias únicamente (por ejemplo al final de los años 1 y 2) no se restablece el nivel de iluminancia hasta el nivel dado por la curva A, ya que actúa también la depreciación del local (curva B)

Hay que resaltar, como se puede ver en la Figura 430.4 que con el mantenimiento nunca se restablecen las condiciones iniciales, por cuanto hay factores que son no controlables

Aspectos como la depreciación de la luminaria debido al envejecimiento y a la degradación de sus materiales, que producen un aumento de la opacidad y/o reducción de reflectividad en los materiales del conjunto óptico de la luminaria como consecuencia de la radiación ultravioleta de las fuentes luminosas, no permiten volver a las condiciones iniciales.

Figura 430.4 Esquema de mantenimiento de una instalación de alumbrado interior

330.5.1 EL FACTOR DE MANTENIMIENTO:

Es la relación de la iluminancia promedio en el plano de trabajo después de un periodo determinado de uso de una instalación, y la iluminancia promedio obtenida al empezar a funcionar la misma como nueva.

Todo diseño de un sistema de iluminación debe considerar el factor de mantenimiento.

El Factor de Mantenimiento (F_M) desde el punto de vista de diseño de iluminación de la instalación, se puede considerar como el sobre dimensionamiento que se debe considerar en los valores iniciales de iluminancia horizontal de la edificación, para poder cumplir con los valores de iluminancia promedio horizontal mínimo mantenidos durante su funcionamiento.

El factor de mantenimiento está dado por la formula:

$FM = FE \times DLB \times Fb$

En donde:

F_M Factor de mantenimiento de la instalación

F_E Depreciación de la luminaria por ensuciamiento

DLB Depreciación por disminución del flujo luminoso de la bombilla

Fb Factor de balasto

330.5.2 DEPRECIACIÓN PRODUCIDA POR LA SUCIEDAD ACUMULADA EN LA LUMINARIA (FE).

Con el paso del tiempo, la suciedad que se va depositando sobre las ventanas, luminarias y superficies del local, unido a la disminución de flujo luminoso que experimentan las bombillas a lo largo del tiempo, hace que el nivel inicial de iluminación que se disfrutaba en ellas, descienda sensiblemente.

La acumulación de polvo sobre las luminarias y bombillas, está afectada por el grado de ventilación, el ángulo de inclinación, el acabado de las superficies que forman las luminarias y el grado de contaminación del ambiente que las rodea.

La mayor pérdida de iluminación en una instalación proviene de la suciedad, que se deposita sobre las bombillas y las luminarias, reduciendo la disminución de luz de las mismas no solo por la disminución de la emitida directamente por las propias bombillas, sino también por reflexión y refracción en las superficies empleadas para tal fin.

Con el fin de garantizar una iluminación adecuada, se deben aplicar los siguientes criterios de mantenimiento.

- a. En locales con alto grado de contaminación se debe utilizar luminarias herméticas.
- b. Los cristales de las ventanas y las superficies que forman techos y paredes deben ser limpiados periódicamente para mantener la transmisión de luz natural y la reflectancia de las mismas.
- c. La limpieza o repintado de las paredes y techos tendrá gran importancia en el caso de salas pequeñas y de alumbrados indirectos.
- d. Las luminarias deben ser limpiadas regularmente, sobre todo las superficies reflectoras y difusoras. Si incorporan difusores de plástico, bien sea liso o prismático, y están envejecidos por el uso, deberán ser sustituidos.
- e. La realización de una limpieza programada a intervalos regulares, permite mantener de una forma más constante los niveles de iluminación de un local. Para obtener una máxima ventaja económica, el intervalo de limpieza deberá mantener una relación con el intervalo de reposición de las bombillas.

330.5.3 DEPRECIACIÓN POR DISMINUCIÓN DEL FLUJO LUMINOSO DE LA BOMBILLA (DLB).

En el diseño, operación y mantenimiento de los sistemas de iluminación, se debe utilizar la información que el fabricante suministre sobre las características de las posibles bombillas a utilizar y las condiciones inherentes al comportamiento descrito por las mismas.

SECCIÓN 440 ESPECIFICACIONES DE ILUMINACIÓN EN EL ALUMBRADO INTERIOR.

Para garantizar que la iluminación, sea factor de seguridad, productividad, rendimiento en el trabajo, mejora del confort visual y hacer más la vida; debe garantizar el cumplimiento de los valores mínimos promedio mantenidos de iluminancia, requeridos para iluminación de acuerdo con el uso y el área o espacio a iluminar que tenga la edificación objeto de la instalación y demás parámetros exigidos en el presente reglamento.

440.1 NIVELES DE ILUMINANCIA Y DESLUMBRAMIENTO.

En lugares de trabajo se debe asegurar el cumplimiento de los niveles de iluminancia de la Tabla 440.1, adaptados de la norma ISO 8995 "Principles of visual ergonomics -- The lighting of indoor work systems".

El valor medio de iluminancia, relacionado en la citada tabla, debe considerarse como el objetivo de diseño.

En cualquier momento durante la vida útil del proyecto la medición de iluminancia promedio no podrá ser superior al valor máximo, ni inferior al valor mínimo establecido en la Tabla 440.1. En la misma tabla se encuentran los valores máximos permitidos para el deslumbramiento (UGR).

	UGR _L .	NIVEL E	S DE ILUMINAN	ICIA (Iv)
TIPO DE RECINTO Y ACTIVIDAD	UGKL.	Mínimo.	Medio	Máximo
Áreas generales en las edificaciones				
Áreas de circulación, corredores	28	50	100	150
Escaleras, escaleras mecánicas	25	100	150	200
Vestidores, baños.	25	100	150	200
Almacenes, bodegas.	25	100	150	200
Talleres de ensamble				
Trabajo pesado, montaje de maquinaria pesada	25	200	300	500
Trabajo intermedio, ensamble de motores, ensamble de carrocerías	22	300	500	750
de automotores	19	500	750	1000
Trabajo fino, ensamble de maquinaria electrónica y de oficina Trabajo muy fino, ensamble de instrumentos	16	1000	1500	2000
Procesos químicos				
Procesos automáticos		50	100	150
Plantas de producción que requieren intervención ocasional	28	100	150	200
Áreas generales en el interior de las fábricas	25	200	300	500
Cuartos de control, laboratorios.	19	300	500	750
Industria farmacéutica	22	300	500	750
Inspección	19	500	750	1000
Balanceo de colores	16	750	1000	1500
Fabricación de llantas de caucho	22	300	500	750
Fábricas de confecciones Costura	22	500	750	1000
Inspección	16	750	750 1000	1500
Prensado	22	750 300	1000 500	7500 750
Industria eléctrica				
Fabricación de cables	25	200	300	500
Ensamble de aparatos telefónicos	19	300	500 500	750
Ensamble de devanados	19	500	750	1000
Ensamble de aparatos receptores de radio y TV	19	750	1000	1500
Ensamble de elementos de ultra precisión componentes	16	1000	1500	2000
electrónicos	10	1000	1000	2000
Industria alimenticia				
Áreas generales de trabajo	25	200	300	500
Procesos automáticos		150	200	300
Decoración manual, inspección	16	300	500	750
Fundición				
Pozos de fundición	25	150	200	300
Moldeado basto, elaboración basta de machos	25	200	300	500
Moldeo fino, elaboración de machos, inspección	22	300	500	750
Trabajo en vidrio y cerámica	25	400	450	200
Zona de hornos Recintos de mezcla, moldeo, conformado y estufas	25 25	100 200	150 300	200 500
	19	300	500 500	750
Terminado, esmaltado, envidriado Pintura y decoración	16	500 500	750	1000
Afilado, lentes y cristalería, trabajo fino	19	750	1000	1500
Trabajo en hierro y acero			1000	
Plantas de producción que no requieren intervención manual	-	50	100	150
Plantas de producción que requieren intervención ocasional	28	100	150	250
Puestos de trabajo permanentes en plantas de producción	25	200	300	500
Plataformas de control e inspección	22	300	500	750
Industria del cuero		222	222	
Áreas generales de trabajo Prensado, corte, costura y producción de calzado	25 22	200	300 750	500 1000
Clasificación, adaptación y control de calidad			/50	1000
olaomoaolom, adaptaolom y control de calidad		500 750		1500
Taller de mecánica y de ajusto	19	500 750	1000	1500
Taller de mecánica y de ajuste Trabaio ocasional	19	750	1000	
Trabajo ocasional	19 25	750 150	1000	300
Trabajo ocasional Trabajo basto en banca y maquinado, soldadura	19	750	1000	
Trabajo ocasional Trabajo basto en banca y maquinado, soldadura Maquinado y trabajo de media precisión en banco, máquinas generalmente automáticas	19 25 22 22	750 150 200 300	1000 200 300 500	300 500 750
Trabajo ocasional Trabajo basto en banca y maquinado, soldadura Maquinado y trabajo de media precisión en banco, máquinas generalmente automáticas Maquinado y trabajo fino en banco, máquinas automáticas finas,	19 25 22 22 19	750 150 200 300 500	1000 200 300 500 750	300 500 750 1000
Trabajo ocasional Trabajo basto en banca y maquinado, soldadura Maquinado y trabajo de media precisión en banco, máquinas generalmente automáticas Maquinado y trabajo fino en banco, máquinas automáticas finas, inspección y ensayos	19 25 22 22	750 150 200 300	1000 200 300 500	300 500 750
Trabajo ocasional Trabajo basto en banca y maquinado, soldadura Maquinado y trabajo de media precisión en banco, máquinas generalmente automáticas Maquinado y trabajo fino en banco, máquinas automáticas finas, inspección y ensayos Trabajo muy fino, calibración e inspección de partes pequeñas muy	19 25 22 22 19	750 150 200 300 500	1000 200 300 500 750	300 500 750
Trabajo ocasional Trabajo basto en banca y maquinado, soldadura Maquinado y trabajo de media precisión en banco, máquinas generalmente automáticas Maquinado y trabajo fino en banco, máquinas automáticas finas, inspección y ensayos Trabajo muy fino, calibración e inspección de partes pequeñas muy complejas	19 25 22 22 19	750 150 200 300 500	1000 200 300 500 750	300 500 750
Trabajo ocasional Trabajo basto en banca y maquinado, soldadura Maquinado y trabajo de media precisión en banco, máquinas generalmente automáticas Maquinado y trabajo fino en banco, máquinas automáticas finas, inspección y ensayos Trabajo muy fino, calibración e inspección de partes pequeñas muy complejas Talleres de pintura y casetas de rociado	19 25 22 22 19	750 150 200 300 500	1000 200 300 500 750	300 500 750 1000
Trabajo ocasional Trabajo basto en banca y maquinado, soldadura Maquinado y trabajo de media precisión en banco, máquinas generalmente automáticas Maquinado y trabajo fino en banco, máquinas automáticas finas, inspección y ensayos Trabajo muy fino, calibración e inspección de partes pequeñas muy complejas Talleres de pintura y casetas de rociado Inmersión, rociado basto	19 25 22 22 22 19 19	750 150 200 300 500 1000	200 300 500 750 1500	300 500 750 1000 2000
Trabajo ocasional Trabajo basto en banca y maquinado, soldadura Maquinado y trabajo de media precisión en banco, máquinas generalmente automáticas Maquinado y trabajo fino en banco, máquinas automáticas finas, inspección y ensayos Trabajo muy fino, calibración e inspección de partes pequeñas muy complejas Talleres de pintura y casetas de rociado	19 25 22 22 22 19 19	750 150 200 300 500 1000	1000 200 300 500 750 1500	300 500 750 1000 2000
Trabajo ocasional Trabajo basto en banca y maquinado, soldadura Maquinado y trabajo de media precisión en banco, máquinas generalmente automáticas Maquinado y trabajo fino en banco, máquinas automáticas finas, inspección y ensayos Trabajo muy fino, calibración e inspección de partes pequeñas muy complejas Talleres de pintura y casetas de rociado Inmersión, rociado basto Pintura ordinaria, rociado y terminado Pintura fina, rociado y terminado Retoque y balanceo de colores	19 25 22 22 22 19 19 25 22	750 150 200 300 500 1000	750 1500	300 500 750 1000 2000
Trabajo ocasional Trabajo basto en banca y maquinado, soldadura Maquinado y trabajo de media precisión en banco, máquinas generalmente automáticas Maquinado y trabajo fino en banco, máquinas automáticas finas, inspección y ensayos Trabajo muy fino, calibración e inspección de partes pequeñas muy complejas Talleres de pintura y casetas de rociado Inmersión, rociado basto Pintura ordinaria, rociado y terminado Pintura fina, rociado y terminado Retoque y balanceo de colores Fábricas de papel	19 25 22 22 19 19 25 22 19 16	750 150 200 300 500 1000 200 300 500 750	1000 200 300 500 750 1500	300 500 750 1000 2000 500 750 1000 1500
Trabajo ocasional Trabajo basto en banca y maquinado, soldadura Maquinado y trabajo de media precisión en banco, máquinas generalmente automáticas Maquinado y trabajo fino en banco, máquinas automáticas finas, inspección y ensayos Trabajo muy fino, calibración e inspección de partes pequeñas muy complejas Talleres de pintura y casetas de rociado Inmersión, rociado basto Pintura ordinaria, rociado y terminado Pintura fina, rociado y terminado Retoque y balanceo de colores	19 25 22 22 22 19 19 25 22 19	750 150 200 300 500 1000	1000 200 300 500 750 1500	300 500 750 1000 2000 500 750 1000

Inspección y clasificación	22	300	500	750
Trabajos de impresión y encuadernación de libros				
Recintos con máquinas de impresión	19	300	500	750
Cuartos de composición y lecturas de prueba	19	500	750	1000
Pruebas de precisión, retoque y grabado	16	750	1000	1500
Reproducción del color e impresión	19	1000	1500	2000
Grabado con acero y cobre	16	1500	2000	3000
Encuadernación	22	300	500	750
Decoración y estampado	19	500	750	1000
Industria textil				
Rompimiento de la paca, cardado, hilado	25	200	300	500
Giro, embobinado, enrollamiento peinado, tintura	22	300	500	750
Balanceo, rotación (conteos finos) entretejido, tejido	22	500	750	1000
Costura, desmote o inspección	19	750	1000	1500
Talleres de madera y fábricas de muebles				1000
Aserraderos	25	150	200	300
Trabajo en banco y montaje	25	200	300	500
Maguinado de madera	19	300	500	750
Terminado e inspección final	19	500	750	1000
Oficinas				1000
Oficinas de tipo general, mecanografía y computación	19	300	500	750
Oficinas abiertas	19	500	750	1000
Oficinas de dibujo	16	500	750 750	1000
Salas de conferencia	19	300	500	750
Centros de atención médica	13	550	550	7 30
Salas				
Iluminación general	22	50	100	150
Examen	19	200	300	500
Lectura	16	150	200	300
Circulación nocturna	22	3	5	10
Salas de examen	22	3	3	10
Iluminación general	19	300	500	750
Inspección local	19	750	1000	1500
Terapia intensiva	19	7 30	1000	1300
Cabecera de la cama	19	30	50	100
Observación	19	200	300	500
Estación de enfermería	19	200	300	500
Salas de operación	13	200	300	300
Iluminación general	19	500	750	1000
Iluminación local	19	10000	30000	10000
Salas de autopsia	19	10000	30000	100000
Iluminación general	19	500	750	1000
Iluminación local		5000	10000	15000
Consultorios		0000	10000	10000
Iluminación general	19	300	500	750
Iluminación local	19	500	750	1000
Farmacia y laboratorios		000	700	1000
Iluminación general	19	300	400	750
Iluminación local	19	500	750	1000
Almacenes				
Iluminación general:				
En grandes centros comerciales	19	500	750	1000
Ubicados en cualquier parte	22	300	500	750
Supermercados	19	500	750	1000
•				
Colegios y centros educativos.				
Salones de clase				
Iluminación general	19	300	500	750
Tableros para emplear con tizas	19	300	500	750
Elaboración de planos	16	500	750	1000
Salas de conferencias				
Iluminación general	22	300	500	750
Tableros	19	500	750	1000
Bancos de demostración	19	500	750	1000
Laboratorios	19	300	500	750
Salas de arte	19	300	500	750
Talleres	19	300	500	750
Salas de asamblea	22	150	200	300

Tabla 440.1 Índice UGR máximo y Niveles de iluminancia exigibles para diferentes áreas y actividades

440.2 UNIFORMIDAD

Con el fin de evitar las molestias debidas a los cambios bruscos de luminancia la tarea debe ser

DE

iluminada de la forma más uniforme posible. La relación entre el valor del nivel de iluminación existente en el área del puesto donde se realiza la tarea y el alumbrado general no debe ser inferior al establecidos en la Tabla 440.2. En áreas adyacentes, aunque tengan necesidades de iluminación distintas, debe cumplirse con las relaciones de la citada tabla.

En los casos en que se ilumine en forma localizada en uno o varios puestos de trabajo, para complementar la iluminación general, esta última no podrá tener una intensidad menor que la indicada en la Tabla 440.2

Iluminancia de tarea (lx)	lluminancia de áreas circundantes imediatas (lx)			
Mayor o igual a 750	500			
500	300			
300	200			
Menor o igual a 200	E _{tarea}			
Uniformidad				
Mayor o igual a 0,7	Mayor o igual a 0,5			

Tabla 440.2 Uniformidades y relación entre iluminancias de áreas circundantes inmediatas al área de tarea

Fuente: Norma EN 12464:2002 Tabla 1

La distribución de luminancias en el campo visual puede afectar la visibilidad de la tarea e influir en la fatiga del trabajador.

La agudeza visual es máxima cuando la luminosidad de la tarea es similar a la existente en el campo visual del trabajador. Sin embargo, cuando la luminosidad de la tarea es muy diferente a la del entorno se puede producir una reducción de la eficiencia visual y la aparición de fatiga, como consecuencia de la repetida adaptación de los ojos.

El equilibrio de luminancias se puede lograr controlando la reflectancia de las superficies del entorno y los niveles de iluminación; es decir, eligiendo colores más o menos claros para las paredes y otras superficies del entorno y empleando una iluminación general adecuada, de manera que la luminosidad del entorno no sea muy diferente a la existente en el puesto de trabajo.

440.3 EFICIENCIA ENERGÉTICA EN LAS INSTALACIONES DE ILUMINACIÓN.

La eficiencia energética de una instalación de iluminación de una zona, se evaluará mediante el indicador denominado Valor de Eficiencia Energética de la instalación VEEI expresado en (W/m²) por cada 100 luxes, mediante la siguiente expresión:

$$VEEI = \underbrace{P \times 100}_{S \times Eprom}$$

Donde:

P Potencia total instalada en las bombillas más los equipos auxiliares, incluyendo sus pérdidas [W]

S Superficie iluminada [m²]

E_{prom} Iluminancia promedio horizontal mantenida [lux]

En la Tabla 440.3, se indican los Valores Límite de Eficiencia Energética de la Instalación (VEEI) que deben cumplir los recintos interiores de las edificaciones; criterio adaptado de la norma UNE 12464-1 de 2003. Estos valores incluyen la iluminación general y el alumbrado direccional, pero no las instalaciones de iluminación de vitrinas y zonas de exposición.

DE

Los valores de VEEI se establecen en dos grupos de zonas en función de la importancia que tiene la iluminación, estas son:

Grupo 1: Zonas de baja importancia lumínica. Corresponde a espacios donde el criterio de diseño, la imagen o el estado anímico que se quiere transmitir al usuario con la iluminación, queda relegado a un segundo plano frente a otros criterios como el nivel de iluminancia, el confort visual, la seguridad y la eficiencia energética.

Grupo 2: Zonas de alta importancia lumínica o espacios donde el criterio de diseño, la imagen o el estado anímico que se quiere transmitir al usuario con la iluminación, son relevantes frente a los criterios de eficiencia energética.

Grupo	Actividades de la zona	Límites de VEEI	
	Administrativa en general	3,5	
	Andenes de estaciones de transporte	3,5	
	Salas de diagnóstico (4)	3,5	
	Pabellones de exposición o ferias	3,5	
1 Zonas de baja	Aulas y laboratorios (2)	4,0	
	Habitaciones de hospital (3)	4,5	
importancia Iumínica	Otros recintos interiores asimilables a grupo 1 no descritos en la lista anterior	4,5	
	Zonas comunes (1)	4,5	
	Almacenes, archivos, salas técnicas y cocinas	5	
	Parqueaderos	5	
	Zonas deportivas (5)	5	
	Administrativa en general	6	
	Estaciones de transporte (6)	6	
	Supermercados, hipermercados y grandes almacenes	6	
	Bibliotecas, museos y galerías de arte	6	
	Zonas comunes en edificios residenciales	7,5	
2 Centros comerciales (excluidas tiendas) (9) Zonas Hostelería y restauración (8)		8	
		10	
De alta importancia lumínica	Otros recintos interiores asimilables a grupo 2 no descritos en la lista anterior	10	
	Centros de culto religioso en general	10	
	Salones de reuniones, auditorios y salas de usos múltiples y convenciones, salas de ocio o espectáculo, y salas de conferencias (7)	10	
	Tiendas y pequeño comercio	10	
	Zonas comunes (1)	10	
	Habitaciones de hoteles, etc.	12	

Tabla 440.3 Valores límite de eficiencia energética de la instalación (VEEI)

NOTAS:

- (1) Espacios utilizados por cualquier persona o usuario, como recepción, vestíbulos, pasillos, escaleras, espacios de tránsito de personas, aseos públicos, etc.
- (2) Incluye la instalación de iluminación de aulas y las pizarras de las aulas de enseñanza, aulas con monitores de computador, música, laboratorios de idiomas, aulas de dibujo técnico, aulas de prácticas y laboratorios, manualidades, talleres de enseñanza y aulas de arte, aulas de preparación y talleres, aulas comunes de estudio y aulas de reunión, aulas clases nocturnas y educación de adultos, salas de lectura, guarderías, salas de juegos de guarderías y sala de manualidades.
- (3) Incluye la instalación de iluminación interior de la habitación y baño, formada por iluminación general, iluminación de lectura e iluminación para exámenes simples.
- (4) Incluye la instalación de iluminación general de salas como salas de examen general, salas de emergencia, salas de escáner y radiología, salas de examen ocular y auditivo y salas de tratamiento. Sin embargo quedan excluidos locales como las salas de operación, quirófanos, unidades de cuidados intensivos, dentista, salas de descontaminación, salas de autopsias y mortuorios y otras salas que por su actividad puedan considerarse como salas especiales.

- (5) Incluye las instalaciones de iluminación del terreno de juego y graderías de espacios deportivos, tanto para actividades de entrenamiento y competición, pero no se incluye las instalaciones de iluminación necesarias para las transmisiones de televisión. Las graderías son asimilables a zonas comunes del grupo 1
- (6) Espacios destinados al tránsito de viajeros como recepción de terminales, salas de llegadas y salidas de pasajeros, salas de recogida de equipajes, áreas de conexión, de ascensores, áreas de ventanillas de taquillas, facturación e información, áreas de espera, salas de consigna, etc.
- (7) Incluye la instalación de iluminación general y direccionada. En el caso de cines, teatros, salas de conciertos, etc. se excluye la iluminación con fines de espectáculo, incluyendo la representación y el escenario.
- (8) Incluye los espacios destinados a las actividades propias del servicio al público como mostrador, recepción, restaurante, bar, comedor, auto-servicio o buffet, pasillos, escaleras, vestuarios, servicios, aseos, etc.
- (9) Incluye la instalación de iluminación general y localizada de mostrador, recepción, pasillos, escaleras, vestuarios y aseos de los centros comerciales.

440.3.1 DATOS PREVIOS A TENER EN CUENTA ENE L DISEÑO DE ILUMINACIÓN

Para determinar el cálculo y las soluciones de iluminación interior, se deben tener en cuenta parámetros tales como:

- a) El uso de la zona a iluminar
- b) El tipo de tarea visual a realizar
- c) Las necesidades de luz y del usuario del local
- d) El índice K del local o dimensiones del espacio (longitud, anchura y altura útil)
- e) Las reflectancias de las paredes, techo y suelo de la sala
- f) Las características y tipo de techo
- g) Las condiciones de la luz natural
- h) El tipo de acabado, decoración y mobiliario previsto.

A efectos del cumplimiento de las exigencias de esta Sección, se deben considerar los valores de iluminancia promedio mínima mantenida establecidos en la Sección 440.

440.3.2 MÉTODO DE CÁLCULO

El método de cálculo utilizado, que quedará establecido en la memoria del proyecto, será el adecuado para el cumplimiento de las exigencias de esta sección y utilizará como datos y parámetros de partida, al menos, los consignados en el Numeral 450-3, así como los derivados de los materiales adoptados en las soluciones propuestas, tales como lámparas, equipos auxiliares y luminarias.

El método de cálculo podrá ser manual o a través de un software especializado, que ejecutará los cálculos referenciados obteniendo como mínimo los resultados siguientes.

- a) El valor de eficiencia energética de la instalación VEEI
- b) La iluminancia promedio horizontal mantenida E_{prom} en el plano de trabajo
- c) El índice de deslumbramiento unificado UGR para el observador.

Asimismo, se incluirán los valores del índice de rendimiento de color (Ra) y las potencias de los conjuntos lámpara más equipo auxiliar utilizados en el cálculo.

Aunque el software especializado no requiere de un certificado de conformidad de producto, si se requiere que tenga un certificado de validación de sus resultados por laboratorio independiente, acreditado por ONAC o la entidad que haga sus veces o reconocido por el organismo de certificación acreditado.

Se podrán excluir del cumplimiento de los requisitos de eficiencia energética los siguientes tipos de instalaciones:

- a) En edificaciones y monumentos con valor histórico o arquitectónico reconocido, cuando el cumplimiento de las exigencias de esta Sección pudiese alterar de manera sustancial su carácter o aspecto.
- b) En construcciones provisionales con un plazo previsto de utilización igual o inferior a 1 año.

- c) En instalaciones industriales, talleres y edificaciones agrícolas no residenciales, cuando los valores de eficiencia energética comprometa la seguridad de las personas, no obstante, esto no les exime de utilizar las fuentes de la mayor eficacia lumínica posible.
- d) En aplicaciones donde la energía radiante emitida por fuente luminosas tenga otros fines distintos a la sola iluminación.
- e) En interiores de viviendas.
- f) Alumbrados de emergencia

En el caso de aplicar alguna de las exclusiones el responsable del proyecto de iluminación deberá aplicar otros criterios de uso racional y eficiente de la energía.

SECCIÓN 450 CONTROL DEL ALUMBRADO INTERIOR

Las nuevas edificaciones industriales, comerciales o de uso oficial con más de 500 m² de construcción deben disponer de sistemas de control automático de iluminación, Este requisito es adaptado de la norma ASHRAE/IES 90.1-1999 (aprobada por la versión 2001 de la Organización Internacional del Código de Conservación de la Energía (CPI));

Las edificaciones de vivienda deberán atender los lineamientos que sobre el uso racional y eficiente de energía dicten el Ministerio de Ambiente, Vivienda y Desarrollo Territorial y el Ministerio de Minas y Energía.

Entre otras posibles, se podrá usar por lo menos una de las siguientes formas para controlar el nivel de iluminación artificial en un recinto interior:

- Encendido/apagado manual,
- Atenuación del flujo luminoso de las bombillas o dimerización manual,
- Encendido/apagado automático;
- Pasos inteligentes con control automático y
- Atenuación del flujo luminoso de las bombillas o dimerización automática.

450.1 CONTROL DE ENCENDIDO/APAGADO MANUAL:

Cuando la iluminancia interior de luz día \mathbf{E}_i excede la iluminancia de diseño \mathbf{E}_d , el usuario de la edificación interior puede apagar la luz artificial. Sin embargo, la experiencia ha demostrado que en las zonas de trabajo los ocupantes encienden la iluminación artificial si \mathbf{E}_i es menor de aproximadamente el 60% de \mathbf{E}_d , y que solo lo apagan cuando desocupan el área y no cuando \mathbf{E}_i sobrepasa el valor de \mathbf{E}_d .

Cada lámpara o grupo de lámparas de una misma luminaria o luminarias que iluminen áreas no mayores a $100~\text{M}^2$ localizadas en mismo salón, debe contar con un sistema de apagado o encendido independiente.

Toda edificación destinada al funcionamiento de entidades publicas de cualquier orden, deben tener por lo menos un sistema de interrupción manual por piso o sector del sistema de iluminación y las luces deben ser apagadas en los horarios que no se desarrollen actividades propias de la función de la entidad.

450.2 ATENUACIÓN DEL FLUJO LUMINOSO DE LAS BOMBILLAS O DIMERIZACIÓN MANUAL:

Con atenuación del flujo luminoso de las bombillas o dimerización manual de la iluminación artificial se evitan los cambios bruscos de iluminación inherente a un interruptor encendido/apagado, pero existe la necesidad de ajustar continuamente el nivel de iluminación y por esta razón la dimerización manual está limitada en la práctica a su uso en interiores domésticos.

Las lámparas fluorescentes compactas, son susceptibles de intentos de encendidos por pequeñas tensiones residuales que generan parpadeos y comprometer su vida útil, por lo que se debe ten especial atención en el uso de dimers con estas lámparas.

450.3 CONTROL DE ENCENDIDO / APAGADO AUTOMÁTICO

Se pueden utilizar elementos fotoeléctricos para apagar la iluminación artificial cuando la iluminancia interior de luz día (Ei) exceda la iluminancia de diseño (Ed). Es recomendable que el sistema pueda trabajar de manera que la iluminación artificial sea automáticamente apagada cuando Ei sobrepasara en un 50 o 100% el valor de Ed.

450.4 PASOS ESCALONADOS CON CONTROL AUTOMÁTICO

Los abruptos cambios indeseados de la iluminación de encendido/apagado de control automático pueden hacerse menos severos, si no se encienden o apagan todas las luminarias a la vez, sino de una manera gradual o escalonada. Para este tipo de control se requieren luminarias con balastos multitensión y/o sistemas de cableado adecuados.

Dichas instalaciones requieren de un diseño calificado del sistema de control con el objetivo de cumplir los requerimientos técnicos y mantener el confort de los usuarios

450.5 SISTEMAS DE CONTROL AUTOMÁTICOS DE ILUMINACIÓN:

El mejor sistema de control será el que de una manera continua mantenga un equilibrio entre la cantidad de luz natural y el nivel de iluminación artificial, de tal forma que la iluminancia de diseño se mantenga constante. Un Sistema Automático de Control de Iluminación (SACI) puede ser definido como un dispositivo de control del alumbrado artificial, que tiene la finalidad de funciones de encendido, apagado y/o atenuación (control del flujo luminoso), de acuerdo con un patrón preestablecido, orientado al ahorro energético y en función de una o más de las siguientes variables:

- Nivel de iluminancia por la luz artificial o natural
- Ocupación de los locales
- Horario de ocupación de los locales

Un sistema de control automático de iluminación puede estar conformado por los siguientes dispositivos:

a) Salida a atenuadores del flujo luminoso de las bombillas o Dimmers. Es un sistema donde la señal de control determina la proporción de atenuación del flujo luminoso de las bombillas, disminuvéndoles su potencia.

Los dispositivos atenuadores de buena calidad generalmente no producen distorsiones en la forma de corriente de alimentación de la bombilla y pueden aumentar su eficacia. Los equipos de mala calidad no sólo empeoran la eficacia luminosa con la atenuación, sino que pueden afectar la vida de las bombillas.

No todas las bombillas son aptas para la regulación de su flujo luminoso sin que experimenten algún tipo de inconvenientes. Existe en el mercado una gran cantidad de lámparas que no soportan atenuación y son afectadas en su vida útil por cambios de tensión de alimentación y hacen intentos de encendidos con pequeñas tensiones residuales, produciendo un parpadeo molesto y una acelerada perdida de vida útil, por lo que se debe tener especial atención cuando se usen Dimers con ese tipo de lámparas.

Desarrollos electrónicos recientes permiten hacer funcionar tubos fluorescentes en regímenes de baja potencia, a valores tan bajos como del 1 %, sin parpadeos. La regulación del flujo luminoso de las bombillas permite el máximo aprovechamiento de las continuas variaciones de la luz natural sin causar molestias para el usuario, quien no percibe ningún cambio en la iluminación. Además, permite ahorrar la energía del exceso de iluminación que puede estar originado, por ejemplo, por sobredimensionado inicial de la instalación para lograr un buen factor de mantenimiento.

b) Salida a Sensores: La finalidad de un sensor de un sistema de control es evaluar las condiciones de los ambientes (cantidad de luz natural, presencia o ausencia de ocupantes, etc.) para generar la señal de control. Los tipos más conocidos son: Sensor ocupacional, sensor fotoeléctrico y sensor de tiempo (reloj).

DE

Sensor Ocupacional o detectores de presencia: El sensor ocupacional es un dispositivo que detecta la presencia de personas en los locales para realizar el control. Son apropiados para este fin los dispositivos similares a los utilizados en sistemas de seguridad (alarmas antirrobo), los que están basados principalmente en dos tipos de tecnología: de infrarroja y de ultrasonido.

Los sensores infrarrojos pasivos (PIR, passive infrared) consisten en resistencia ópticas que son modificadas a través de una lente de Fresnel. Estos sensores detectan la ocupación del espacio por diferencias de temperatura entre los cuerpos en movimientos y el ambiente. Las lentes de Fresnel les otorgan una gran cobertura espacial. La principal ventaja es que son económicos y el área de control está perfectamente delimitada.

La tecnología infrarroja requiere línea visual entre el movimiento de la persona que ocupa el espacio y el dispositivo.

Los sensores por tecnología ultrasónica, actúan por efecto Doppler producido por el movimiento de la fuente emisora. La señal ultrasónica de un emisor de cristal de cuarzo, reflejada por los objetos del local, es recibida por uno o más receptores, permitiendo la detección de movimiento por cambios en el tiempo de retorno de la señal. Debido a que el sonido se propaga en todas direcciones, se denominan también detectores volumétricos, característica que deberá considerarse cuando se realiza el diseño de una instalación con este tipo de sensores, debido a que la existencia de fuentes de perturbación pueden ocasionar falsos disparos.

Sensor fotoeléctrico, es un dispositivo de control electrónico que permite variar el flujo luminoso de un sistema de iluminación en función de la iluminancia detectada. El control con sensor fotoeléctrico es casi infalible en la evaluación de la cantidad de luz. Los sensores no son otra cosa que foto resistencias que son modificadas a través de una por una lente enfocada sobre el área de interés, como en el caso de sensores PIR. Cuando se pretende integrar señales de un área importante del local son apropiadas las lentes de Fresnel, o bien lentes comunes orientadas sobre un área más reducida, ya sea un escritorio o una porción de pared.

La ubicación y el enfoque del sensor fotoeléctrico, pueden ser los puntos críticos para la efectividad de estos dispositivos, que frecuentemente se ve perjudicada por falsos disparos.

El control de la lluminación (encender, apagar y regular la iluminación) en la vivienda se realiza tradicionalmente a través de interruptores y reguladores de iluminación de pared. Con el control de la iluminación integrado en un sistema de domótica se puede conseguir un importante ahorro energético y gran aumento del confort.

En las Unidades Inmobiliarias Cerradas se debe disponer de sistemas de sensores ocupacionales para el encendido del alumbrado de las escaleras, corredores y pasillos de áreas comunes.

SECCIÓN 460 LA DOMÓTICA Y LA INMÓTICA EN LA ILUMINACIÓN

La domótica se define como la incorporación al equipamiento de edificios la tecnología que permite gestionar de forma energéticamente eficiente, segura, remota y confortable para el usuario los distintos tipos de aparatos e instalaciones domésticas tradicionales como iluminación, electrodomésticos, aire acondicionado, seguridad, etc. Domótica es un término que se utiliza para denominar la parte de la tecnología que integra el control y la supervisión de los elementos existentes en un espacio habitable, posibilitando una comunicación entre todos ellos.

El término **domótica** se aplica a servicios en vivienda y el término **inmótica** se aplica a edificaciones comerciales, corporativas, hoteleras, empresariales y similares.

La domótica en el campo de la gestión de energía se encarga de hacer un uso más efectivo de la energía eléctrica mediante dispositivos temporizadores, sensores y elementos programables que permiten el uso racional de energía y en la parte de iluminación, conecta o desconecta el servicio zonificado con detectores de presencia o en función de la luz natural.

La domótica no solo es automatización, ya que se necesita integrar los sistemas de control, las comunicaciones y la gestión integral del recinto o edificio dentro de un mismo grupo para que pueda ser

llamado recinto domótico.

Figura 460.a) Esquema de control automático de iluminación

Integrar el control de la iluminación (encender, apagar y regular la iluminación) con un sistema de domótica aumenta el confort y ahorra energía en una edificación, ya sea esta una vivienda o un edificio de oficinas.

Forman parte de la domótica una serie de equipos, capaces de controlar parámetros de corrientes y tensiones típicas que pueden ser enviadas a una interfase de administración de la edificación, tales como Controladores Lógicos Programables (PLC). La finalidad de estos sistemas es el control de todos los subsistemas, incluidos los de iluminación, luz de emergencia, señalización de vías de escape, alarmas de seguridad, etc.

Los sensores de luminosidad, son dispositivos electrónicos capaces de determinar el nivel de iluminación de un recinto, permitiendo un control automático de tareas dentro de un ambiente domótico. Proporcionan una salida análoga que permite ajustar los niveles de iluminación en función de la iluminación existente. Son llamados también atenuadores o dimmers automáticos para luminosidad. Cuando la variable física de detección corresponde a la luz del día o la luz solar se denominan sensores crepusculares.

El cambio del estado de una iluminación cuando existe participación de la luz natural, normalmente muy rápida, requiere de un control frecuente y para ello son aptos los conceptos domótica e inmótica. Los principales métodos para cambiar el estado de la iluminación mediante la domótica son:

- Control por Presencia El control de presencia (mediante detectores de presencia) puede encender o apagar la iluminación, de una persona en una habitación, enciende la iluminación, y cuando no la detecta, la apaga.
- Medir la Luz Medir la luz en la estancia (incluyendo la luz natural aportado por el exterior y la luz que llega de otras estancias) puede regular la iluminación para garantizar una cantidad de luz establecido con el sistema de domótica.
- La Actividad/Escenas Según la actividad de los usuarios la iluminación se puede adaptar de forma automática (activándose una Escena). La iluminación que forma parte de de una Escena puede por ejemplo estar programada en la siguientes maneras:
- Con la escena "Cenar" la luz encima de la mesa del comedor se enciende a 100% y la iluminación del ambiente a 50%.
- Con la escena "Cine en Casa" se apaga toda la iluminación del salón excepto una lámpara de pie que se mantiene 20%.
- Con la escena "Cocinar" se enciende toda la luz de la cocina a 100% excepto la luz encima de la mesa de comer.
- Programación Horaria Con la programación horaria se puede programar el control del apagado, encendido y regulación de la iluminación con la domótica según la hora del día, y el día de la semana. Por ejemplo la luz del pasillo puede estar apagada durante el día, pero encenderse automáticamente a 25% por la noche (variándose el horario según la época del año) y la luz del baño se programa para que solo se enciende al 50% al encenderse por la noche. Otra función puede ser

que la luz del dormitorio se enciende de forma graduada por la mañana, los días laborables, para despertar lentamente al usuario.

- Simulación de Presencia La simulación de presencia tiene como objetivo hace parecer que la casa esta habitada aunque esté vacía. La iluminación puede se utilizada (con o sin otros elementos integrados en el control del sistema de domótica) para la simulación de presencia en la vivienda, encendiendo y apagando la iluminación ciertas horas del día, de forma programada, aleatoria, o de unas rutinas aprendidas por el sistema de domótica.
- Otros Eventos Otros eventos en la casa, detectadas por el sistema de domótica, pueden activar la iluminación. Por ejemplo, sí el alarma de seguridad detecta intrusión en el jardín por la noche, automáticamente se puede encender toda la iluminación del exterior y la iluminación de los pasillos de la casa.

SECCIÓN 470 ALUMBRADO DE EMERGENCIA.

El alumbrado de emergencia es una instalación diseñada para entrar en funcionamiento si falta el alumbrado normal.

Los edificios de más de 5 pisos o edificios que en cualquier hora de la noche concentren más de 100 personas deben disponer de por lo menos un sistema de alumbrado de emergencia, que en caso de falla del alumbrado normal suministre la iluminación necesaria para facilitar la visibilidad a los usuarios de manera que puedan abandonar el edificio, evite las situaciones de pánico y permita la visión de las señales indicativas de las salidas y la situación de los equipos y medios de protección existentes.

Deben contar con alumbrado de emergencia las zonas y los elementos siguientes:

- a) Todo recinto cuya ocupación sea mayor que 100 personas.
- b) Los recorridos de las rutas de evacuación, desde los orígenes de evacuación hasta el espacio exterior seguro.
- c) Los parqueaderos cerrados o cubiertos cuya superficie construida exceda de 100 m², incluidos los pasillos y las escaleras que conduzcan hasta el exterior o hasta las zonas generales del edificio.
- Las zonas de baños en edificios de uso público.
- e) Los lugares en los que se ubican cuadros de distribución o de accionamiento de la instalación de alumbrado.
- Las señales de seguridad.

470.1 CLASES DE ALUMBRADO DE EMERGENCIA:

Alumbrado de escape: alumbrado suficiente para poder evacuar un edificio, con rapidez y seguridad, durante una emergencia. La iluminancia proporcionada por el alumbrado en cualquier punto del piso de una salida de emergencia no debe ser menor de 1,0 lux. Este alumbrado se debe instalar en la intersección de corredores, en los cambios de dirección y nivel de las escaleras, en puertas y salidas

Alumbrado de seguridad: Es el alumbrado que se requiere para asegurar a las personas que desarrollan actividades potencialmente peligrosas (ejemplo operación de una sierra circular) no deberá ser menor del 5% de los valores normales de iluminación.

Alumbrado de respaldo: Es el alumbrado que se requiere para poder continuar las actividades de importancia vital durante una emergencia, por ejemplo en salas de cirugía.

470.2 REQUISITOS DEL ALUMBRADO DE EMERGENCIA

470.2.1 ALUMBRADO DE EMERGENCIA PERMANENTE, ALIMENTADO POR UN SISTEMA DE ENERGÍA SEPARADO Y **AUTOMANTENIDO:**

El suministro de energía en este tipo de alumbrado es completamente independiente de la red eléctrica (excepto cuando se cargan las baterías) y está formado por baterías recargables por la red principal y de funcionamiento seguro. Cada luminaria tiene su propia batería que, en situación normal, está conectada de una manera "flotante" con la red eléctrica. En caso de una falla en la red eléctrica, las baterías entran automáticamente en acción. Si se restablece el servicio normal, las baterías vuelven a recargarse. Este

sistema es el más fiable: cada bombilla sigue funcionando incluso durante un incendio o aunque se desintegren los cables de distribución.

470.2.2 ALUMBRADO DE EMERGENCIA NO PERMANENTE CON ENCENDIDO AUTOMÁTICO:

Este tipo de alumbrado opera con una planta generadora para emergencia o un centro de baterías que automáticamente entran en acción durante una falla de suministro normal de energía. La desventaja del sistema provisto de planta de emergencia es que necesita mantenimiento periódico. Otro inconveniente es que depende de la red de alumbrado existente para la distribución de energía de emergencia y, por consiguiente, ésta puede ser fácilmente interrumpida en caso de incendio, daño en la infraestructura del edificio, etc.

470.2.3 LUCES DE EMERGENCIA.

El sistema de iluminación de emergencia debe alimentarse con dos fuentes independientes de suministro; una tomada de la acometida del edificio y derivada antes del control general de la edificación, pero después del medidor de energía, con circuitos e interruptores independientes en forma tal que al desconectar la corriente de los demás circuitos de la edificación ésta quede energizada, la otra tomada de una fuente auxiliar que garantice el funcionamiento del sistema en caso de un corte en la energía eléctrica

Cuando el suministro de iluminación dependa de una transferencia de una fuente de energía a otra, no debe haber una interrupción apreciable de la iluminación durante el cambio. Cuando la iluminación de emergencia la proporcione un generador operado por un motor primario, de gasolina o diesel (nunca eléctrico), no debe permitirse un retardo mayor a diez segundos.

470.2.4 LOCALIZACIÓN DE LAS LUMINARIAS DE EMERGENCIA.

Con el fin de proporcionar una iluminación adecuada las luminarias deben cumplir las siguientes condiciones:

- a) Se deben situar por lo menos a 2 metros por encima del nivel del suelo
- b) Se debe disponer de una en cada puerta de salida y en posiciones en las que sea necesario destacar un peligro potencial o el emplazamiento de un equipo de seguridad. Como mínimo se dispondrán en los siguientes puntos:
 - •En las puertas existentes en los recorridos de evacuación;
 - •En las escaleras, de modo que cada tramo de escaleras reciba iluminación directa;
 - •En cualquier otro cambio de nivel;
 - •En los cambios de dirección y en las intersecciones de pasillos;

470.2.5 CARACTERÍSTICAS DE LA INSTALACIÓN DEL ALUMBRADO DE EMERGENCIA.

La instalación del alumbrado de emergencia deben cumplir los siguientes requisitos:

- a. Ser fija y estar provista de fuente propia de energía
- b. Debe entrar automáticamente en funcionamiento al producirse una falla de la alimentación en la instalación de alumbrado normal en las zonas cubiertas por el alumbrado de emergencia. Se considera como falla de alimentación el descenso de la tensión de alimentación por debajo del 70% de su valor nominal.
- c. El alumbrado de emergencia de las vías de evacuación no debe demorar más de 10 segundos en estar disponibles.
- d. La instalación cumplirá las condiciones de servicio continuo durante 1,5 horas, como mínimo, a partir del instante en que tenga lugar la falla:
- e. En las vías de evacuación cuyo ancho no exceda de 2 m, la iluminancia horizontal en el suelo debe ser, como mínimo, 1 lux a lo largo del eje central y 0,5 lux en la banda central que comprende al menos la mitad de la anchura de la vía. Las vías de evacuación con anchura superior a 2 m pueden

ser tratadas como varias bandas de 2 m de anchura, como máximo.

DE

- f. En los puntos en los que estén situados los equipos de seguridad, las instalaciones de protección contra incendios de utilización manual y los cuadros de distribución del alumbrado, la iluminancia horizontal será de 5 luxes, como mínimo.
- g. Los niveles de iluminación establecidos deben obtenerse considerando nulo el factor de reflexión sobre paredes y techos y contemplando un factor de mantenimiento que contemple, tanto la reducción del rendimiento luminoso debido a la suciedad de las luminarias, como al envejecimiento de las bombillas.
- h. Con el fin de identificar los colores de seguridad de las señales, el valor mínimo del índice de rendimiento cromático Ra de las bombillas debe ser 40.
- i. A los circuitos de alumbrado de emergencia no deben conectarse otros artefactos ni bombillas que no sean los específicos del sistema de emergencia. Sección 700-15 de la Norma NTC 2050.
- j. Los sistemas de alumbrado de emergencia deben estar diseñados e instalados de modo que la falla de un elemento de los mismos, como una bombilla fundida, no deje a oscuras los espacios que requieran alumbrado de emergencia.
- k. Cuando el alumbrado normal artificial consista únicamente en bombillas de descarga de alta intensidad, como vapor de mercurio o sodio de alta presión o de halogenuros metálicos, el sistema de alumbrado de emergencia debe estar destinado para que funcione hasta que se restablezca totalmente el alumbrado artificial normal.
- I. Las baterías que se utilicen como fuentes de alimentación para sistemas de emergencia deben tener una capacidad nominal de corriente adecuada para alimentar y mantener durante 1,5 horas como mínimo la carga total conectada, sin que la tensión aplicada a la carga caiga por debajo del 87,5% de la tensión nominal. La instalación debe contar con un medio de carga automática de las baterías. No se deben utilizar baterías tipo automotriz.

470.3 SEÑALIZACIÓN E ILUMINACIÓN DE LOS MEDIOS DE EVACUACIÓN.

Los medios de evacuación deben cumplir con los requisitos siguientes en cuanto a señalización e iluminación se refiere:

- a) Toda salida o vía de escape debe ser claramente visible y estar completamente señalizada de tal manera que todos los ocupantes de la edificación, puedan encontrar sin problema la dirección de salida y en tal forma que la vía conduzca, de manera inequívoca a sitio seguro.
- b) Cualquier salida o pasadizo que no sea parte de una vía de escape. pero que por su carácter pueda tomarse como tal, debe estar dispuesta y señalizada de tal manera que se minimicen los riesgos de confusión y el peligro resultante para las personas que busquen escapar del fuego o de otra emergencia, así como para evitar que se llegue a espacios ciegos.
- c) Todos los medios de evacuación deben estar provistos de iluminación artificial y de emergencia

470.3.1 ILUMINACIÓN DE LOS MDIOS DE EACUACIÓN.

La iluminación de los medios de evacuación debe cumplir todas las disposiciones generales siguientes:

- a) La iluminación de los medios de evacuación debe ser continua durante todo el tiempo en que por las condiciones de ocupación, se requiera que las vías de escape estén disponibles para ser utilizadas.
- b) Los medios de evacuación deben iluminarse en todos los puntos, incluyendo ángulos e intersecciones de corredores y pasillos, escaleras, descansos y puertas de salida, con una iluminancia no menor de 10 luxes, medidos en el piso.
- c) En auditorios, teatros y salas de conciertos, la iluminación puede reducirse a 2 luxes durante la función.

- d) Toda lluminación debe disponerse en forma tal que si se presenta una falla en alguna unidad de iluminación, esta no deje en oscuridad el área servida.
- e) La iluminación tiene que suministrarse por medio de una fuente que asegure razonable confiabilidad, tal como se exige, para el servicio eléctrico público.

SECCIÓN 480 ILUMINACIÓN DE AMBIENTES ESPECIALES.

Los equipos de alumbrado en áreas o ambientes especiales deben cumplir las siguientes condiciones, de acuerdo con la clasificación de su lugar de instalación, adaptadas de las Secciones 500 a 505 del Código Eléctrico Colombiano, Norma NTC 2050 que hace parte integral del Reglamento Técnico de Instalaciones Eléctricas – RETIE-, tratan los requisitos del alambrado y equipos eléctricos y electrónicos a cualquier tensión, instalados en lugares Clase I, Divisiones 1 y 2, Clase II, Divisiones 1 y 2 en donde puede existir riesgo de explosión debido a la presencia de gases o vapores inflamables, líquidos inflamables, polvos combustibles o fibras o partículas combustibles.

Cuando se refiere a equipos aprobados para ese uso, se entenderá como equipos certificados bajo norma técnica que especifique como uso permitido, la aplicación del ambiente o condición especial.

480.1 LUGARES CLASE I DIVISIÓN 1.

Los equipos de alumbrado en los lugares Clase I División 1 deben cumplir las condiciones siguientes:

- a) Cada equipo debe estar aprobado como un conjunto completo para lugares Clase I División 1 y debe llevar claramente rotulada la máxima potencia en vatios de la bombilla, para la cual está aprobado el equipo. Los equipos portátiles deben estar aprobados específicamente como un conjunto completo para ese uso.
- Cada equipo se debe proteger contra daños físicos bien sea por su ubicación o mediante la utilización de rejillas protectoras.
- c) Los equipos colgantes deben estar suspendidos y alimentados a través de tramos de tubo conduit metálico rígido roscado o tubo conduit intermedio de acero roscado y las juntas roscadas deben llevar tuercas de seguridad u otro medio eficaz para evitar que se aflojen. Los tramos de más de 0,30 m de largo se deben apuntalar eficaz y permanente, para evitar su desplazamiento lateral, a no más de 0,30 m sobre el extremo inferior del tramo, o hacerlo flexible mediante un accesorio o conector aprobado para lugares Clase I División 1 ubicado a no más de 0,30 m del punto de unión de la caja de soporte o accesorio al que esté sujeto.
- d) Las cajas, conjuntos de cajas o accesorios utilizados como soporte de los equipos de alumbrado, deben estar aprobadas para su uso en lugares Clase I.

480.2 LUGARES CLASE I DIVISIÓN 2.

Los equipos de alumbrado instalados en lugares Clase I División 2 deben cumplir los siguientes requisitos:

- a) Los equipos portátiles de alumbrado deben cumplir el anterior requisito (a)(1).
 - Excepción: Se permiten equipos de alumbrado portátiles montados, en cualquier posición, sobre bases móviles y conectados con cables flexibles, como establece el Artículo 501-11, siempre que cumplan con el siguiente apartado 501-9(b)(2):
- b) Cada equipo fijos de alumbrado se debe proteger contra daños físicos bien sea por su ubicación o por la utilización de rejillas protectoras. Cuando exista peligro de que las chispas o el metal caliente de las bombillas o equipos de alumbrado puedan dar ignición a vapores o gases inflamables, se deben instalar encerramientos adecuados u otro medio de protección eficaz. Cuando las bombillas sean de un tamaño o tipo que, en condiciones normales de funcionamiento, les haga alcanzar temperaturas superficiales superiores al 80% de la temperatura de ignición en °C de los gases o vapores presentes, los equipos de alumbrado deben cumplir con el anterior apartado (a) (1) o ser de un tipo que haya sido ensayado para esa aplicación.
- c) Los equipos colgantes deben estar suspendidos mediante tramos de tubo conduit metálico rígido roscado o tubo conduit intermedio de acero roscado u otros medios aprobados. Los tramos de más de 0,30 m de largo se deben apuntalar eficaz y permanente, para evitar su desplazamiento lateral, a no

más de 0,30 m sobre el extremo inferior del tramo, o hacerlo flexible mediante un accesorio o conector aprobado ubicado a no más de 0,30 m del punto de unión de la caja de soporte o accesorio.

- d) Los interruptores que formen parte de un conjunto ensamblado o de un portabombillas individual deben cumplir lo establecido en el Artículo 501-6(b) (1).
- e) Los elementos de encendido y de control de las bombillas eléctricas de descarga (balastos, condensadores y arrancadores) deben cumplir lo establecido en el Artículo 501-7(b).

Excepción: Una protección térmica que haga parte del balasto de una lámpara fluorescente, siempre y cuando el conjunto esté aprobada para lugares de esa clase y división.

480.3 LUGARES CLASE II DIVISIÓN 1.

Los equipos de alumbrado, en los lugares Clase II División 1, deben cumplir las siguientes condiciones:

- a) Cada equipo debe estar aprobado para lugares Clase II División 1 y debe llevar claramente rotulada la potencia máxima de la bombilla, en vatios, para la cual está aprobado. En lugares donde pueda haber polvos de magnesio, aluminio y broncealuminio u otros metales peligrosos de características similares, todos los equipos fijos o portátiles de alumbrado y sus equipos auxiliares deben estar aprobados para esos lugares específicos.
- b) Cada equipo se debe proteger contra daños físicos bien sea por su ubicación o mediante la utilización de rejillas protectoras.
- c) Los equipos colgantes deben estar suspendidos de tramos de tubo conduit metálico rígido (tipo Rigid) roscado NPT, de tramos de tubo conduit intermedio de acero (tipo IMC) roscado NPT, de cadenas con accesorios aprobados o por cualquier otro medio aprobado. Los tramos rígidos de más de 0,30 m de largo se deben apuntalar eficaz y permanente para evitar su desplazamiento lateral, a no más de 0,30 m sobre el extremo inferior del tramo o tener cierta flexibilidad en forma de un accesorio o conector flexible aprobado para ese lugar, instalado a no más de 0,30 m del punto de unión a la caja o accesorio de soporte. Las uniones roscadas deben llevar tornillos de ajuste u otros medios eficaces para impedir que se aflojen. Cuando el alambrado ubicado entre la caja de salida o accesorio y el equipo colgante no esté encerrado en un tubo conduit, se debe utilizar un cordón flexible aprobado para uso pesado e instalar sellos adecuados en el lugar por donde el cable entre en el equipo y en la caja de salida o accesorio. El cable o cordón flexible no se debe utilizar como medio de soporte del equipo.
- d) Las cajas, conjuntos de cajas o accesorios utilizados como soporte de los equipos de alumbrado, deben estar aprobados para su uso en lugares Clase II.

480.4 LUGARES CLASE II DIVISIÓN 2.

Los equipos de alumbrado instalados en lugares Clase II División 2 deben cumplir los siguientes requisitos:

- a) Los equipos portátiles de alumbrado deben estar aprobados para usarlos en lugares Clase II y estar claramente rotulados con la potencia máxima, en vatios, de las bombillas para las cuales están aprobados.
- b) Los equipos fijos de alumbrado, cuando no son de un tipo aprobado para lugares Clase II, deben proporcionar encerramientos para bombillas y portabombillas que deben estar diseñados para reducir al mínimo el depósito de polvo sobre las bombillas y para evitar que escapen chispas, material ardiendo o metal caliente. Cada equipo debe estar claramente rotulado con la potencia máxima, en vatios, de la bombilla que se permite sin superar una determinada temperatura en sus superficies expuestas bajo condiciones normales de uso, de acuerdo con el Artículo 500-5(f).
- c) Los equipos de alumbrado fijos deben estar protegidos contra daños físicos bien sea por su ubicación o por medio de protectores adecuados.
- d) Los equipos colgantes deben estar suspendidos de tramos de tubo conduit de metal rígido (tipo Rigid) roscado NPT, de tramos de tubo intermedio de acero (tipo IMC) roscado NPT, de cadenas con accesorios aprobados o por cualquier otro medio aprobado. Los tramos rígidos de más de 0,30 m de largo se deben apuntalar eficaz y permanente para evitar su desplazamiento lateral, a no más de 0,30 m sobre el extremo inferior del tramo o debe tener cierta flexibilidad en forma de accesorio aprobado o

un conector flexible para ese lugar, instalado a no más de 0,30 m del punto de unión a la caja o accesorio de soporte. Cuando el alambrado ubicado entre la caja de salida o accesorio y el artefacto colgante no esté encerrado en tubo conduit, se debe utilizar un cordón flexible aprobado para uso pesado. El cable o cordón flexible no se debe utilizar como medio de soporte para un artefacto.

e) Los equipos de encendido y control de las bombillas de descarga deben cumplir con el Artículo 502-7(b), establece que en lugares Clase II División 2 los transformadores y resistencias deben cumplir las siguientes condiciones:

480.5 EQUIPOS DE ALUMBRADO EN LUGARES CLASE III DIVISIONES 1 Y 2.

- a) Los equipos fijos de alumbrado deben tener encerramientos para las bombillas y portabombillas, diseñados para evitar la entrada de fibras y pelusas y la salida de chispas, material ardiendo o metal caliente. Cada equipo debe estar claramente rotulado con la potencia máxima, en vatios, permitida de la bombilla y de esta manera evitar que la temperatura de las superficies expuestas exceda el límite de 165°C, bajo condiciones normales de uso.
- b) Cada equipo se debe proteger contra daños físicos bien sea por su ubicación o mediante la utilización de rejillas protectoras.
- c) Los equipos colgantes deben estar suspendidos por tramos de tubo conduit metálico rígido roscado (tipo Rigid), tubo conduit metálico intermedio roscado (tipo IMC), tubería metálica roscada de espesor equivalente o cadenas con accesorios aprobados. Los tramos de más de 0,30 m de largo se deben apuntalar eficaz y permanente para evitar su desplazamiento lateral, a no más de 0,30 m sobre el extremo inferior de la barra o tener cierta flexibilidad en forma de un accesorio o conector flexible aprobados para ese lugar, instalado a no más de 0,30 m del punto de unión a la caja de o accesorio de soporte.
- d) Los equipos portátiles de alumbrado deben estar equipados con agarraderas y resguardados con protectores fuertes. Los portabombillas deben ser del tipo sin interruptor y sin tomacorriente incorporado. No deben tener partes metálicas expuestas energizadas y todas las partes metálicas no portadoras de corriente se deben conectar a tierra. En todos los demás aspectos, el equipo portátil de alumbrado debe cumplir la anterior condición (a).

SECCIÓN 490 PROCEDIMIENTOS PARA LAS MEDICIONES FOTOMÉTRICAS EN ILUMINACIÓN INTERIOR

490.1 MEDICIÓN DE ILUMINANCIA GENERAL DE UN SALÓN

Para mediciones de precisión el área debe ser dividida en cuadrados y la iluminancia se mide en el centro de cada cuadrado y a la altura del plano de trabajo. Para la verificación de diseños se deberán usar las mismas mallas de cálculo empleadas.

La iluminancia promedio del área total se puede obtener al promediar todas las mediciones.

Para tomar las lecturas el sensor del luxómetro se debe colocar en el plano de trabajo, si no se especifica este parámetro, se considera un plano imaginario de trabajo de 0,75 m, sobre el nivel del suelo para trabajar sentados y de 0,85 m para trabajos de pie. Esto se puede lograr por medio de un soporte portátil sobre el cual se coloca el sensor.

La luz día se puede excluir de las lecturas, ya sea tomándolas en la noche o mediante persianas, superficies opacas que no permiten la penetración de la luz día.

El área se debe dividir en pequeños cuadrados, tomando lecturas en cada cuadrado y calculando la media aritmética. Una cuadrícula de 0,6 metros es apropiada para muchos espacios.

Para locales irregulares o una iluminación no uniforme, como corredores bajo iluminaciones de emergencia, se recomienda consultar el Capítulo 9 del Handbook IESNA.

DE

a) Medición de iluminancia promedio, en áreas regulares con luminarias espaciadas simétricamente en dos o más filas. Ver Figura 40.1.a).

Figura 490.1 a) Puntos de medición de iluminancia en la cuadricula de un local con luminarias espaciadas simétricamente en dos o más filas

$$E_{prom} = R(N-1)(M-1) + Q(N-1) + T(M-1) + P / NM$$

Donde:

E_{prom} Iluminancia promedio

Número de luminarias por fila.

M Número de filas.

- 1. Se toman lecturas en los puntos r-1, r-2, r-3 y r-4 para una cuadricula típica interior. Se repite a los puntos r-5, r-6, r-7 y r-8 para una cuadrícula típica central, promedie las 8 lecturas. Este es el valor R de la ecuación de la iluminancia promedio.
- 2. Se toman lecturas en los puntos q-1, q-2, q-3, y q-4, en dos cuadrículas típicas de cada lado del salón. El promedio de estas cuatro lecturas es el valor Q de la ecuación de la iluminancia promedio.
- 3. Se toman lecturas en los puntos t-1, t-2, t-3, y t-4 en dos cuadrículas típicas de cada final del salón, se promedian las cuatro lecturas. Este es el valor T de la ecuación de la iluminancia promedio.
- 4. Se toman lecturas en los puntos p-1, p-2, en dos cuadrículas típicas de las esquinas, se promedian las dos lecturas. Este es el valor P de la ecuación de la iluminancia promedio.
- 5. Se determina la iluminancia promedio en el área utilizando la ecuación de E_{prom}.
- b) Áreas regulares luminaria simple con localización simétrica. Ver figura 490.1.b).

Figura 480.1 b) Puntos de medición de iluminancia de una luminaria en la cuadricula de un local con una sola luminaria

Se toman lecturas en los puntos p-1, p-2, p-3, y p-4, en todas las cuatro cuadrículas, se promedian las cuatro lecturas. Este es el valor P de la ecuación de la iluminancia promedio del área en la Figura 490-1.c).

c) Áreas regulares con luminarias individuales en una sola fila. Ver Figura 490-1.c).

DE

Figura 480.1 c) Puntos de medición de iluminancia en la cuadricula de un local con luminarias individuales en una sola fila

$$E_{prom} = Q(N-1) + P / N$$

Donde:

E_{prom} Iluminancia promedioNúmero de luminarias.

- Se toman lecturas en los puntos q-1, hasta q-8, en cuatro cuadrículas típicas, localizadas dos en cada lado del área. Se promedian las 8 lecturas. Este es el valor de Q de la ecuación de la iluminancia promedio.
- 2. Se toman lecturas en los puntos p-1, y p-2, para dos cuadrículas típicas de las esquinas. Se promedian las 2 lecturas. Este es el valor P de la ecuación de la iluminancia promedio.
- 3. Se determina la iluminancia promedio en el área utilizando la ecuación de E_{prom}.
- d) Áreas regulares con luminarias de dos o más filas. Ver Figura 490-1.d)

Figura 490.1 d) Puntos de medición de iluminancia en la cuadricula de un local con dos o más filas de luminarias

$$E_{prom} = RN(M-1)(M-1) + QN + T(M-1) + P / M(N+1)$$

Donde:

E_{prom} Iluminancia promedio

Número de luminarias por fila.

M Número de filas.

 Se toman lecturas en los puntos r-1, r-2, r-3 y r-4 localizados en el centro del área y se promedian las 4 lecturas. Este es el valor R de la ecuación de la iluminancia promedio.

- 2. Se toman lecturas en los puntos q-1, y q-2, localizadas en la mitad de cada lado del salón y entre la fila de luminarias más externa y la pared. El promedio de estas dos lecturas es el valor Q de la ecuación de la iluminancia promedio.
- 3. Se toman lecturas en los puntos t-1, t-2, t-3, y t-4 en cada final del salón. Se promedian las cuatro lecturas. Este es el valor T de la ecuación de la iluminancia promedio.
- 4. Se toman lecturas en los puntos p-1, p-2, en dos cuadrículas típicas de las esquinas. Se promedian las dos lecturas. Este es el valor P de la ecuación de la iluminancia promedio.
- Se determina la iluminancia promedio en el área utilizando la ecuación de Eprom.

DE

e) Áreas regulares con fila continua de luminarias individuales. Ver Figura 490.1 e)

Figura 490.1 e) Puntos de medición de iluminancia en la cuadricula de un local con una fila continua de luminarias

Eprom = QN + P / N + 1

Donde

E_{prom} Iluminancia promedioNúmero de luminarias.

- 1. Se toman lecturas en los puntos q-1, hasta q-6. Se promedian las 6 lecturas. Este es el valor Q de la ecuación de la iluminancia promedio.
- 2. Se toman lecturas en los puntos p-1, y p-2, para dos cuadrículas típicas de las esquinas. Se promedian las 2 lecturas. Este es el valor P de la ecuación de la iluminancia promedio.
- 3. Se determina la iluminancia promedio en el área utilizando la ecuación de E_{prom}.
- f) Áreas regulares con cielorraso luminoso con luminarias con rejillas. Ver Figura 490.1 f.

Figura 490.1 f) Puntos de medición de iluminancia en la cuadricula de un local con cielorraso luminoso con luminarias con rejillas

Eprom = R(L-8)(W-8) + 8 Q(L-8) + 8T(W-8) + 64P / WL

Donde:

DE

E_{prom} Iluminancia promedio

W Número de luminarias por fila.

L Número de filas.

- 1. Se toman lecturas en los puntos r-1, r-2, r-3 y r-4 localizados aleatoriamente en el centro del área. Se promedian las 4 lecturas. Este es el valor R de la ecuación de la iluminancia promedio.
- Se toman lecturas en los puntos q-1, y q-2, localizados a 0,6 m de las paredes más largas, a una longitud aleatoria del salón. Se promedian estas dos lecturas. Es el valor Q de la ecuación de la iluminancia promedio.
- 3. Se toman lecturas en los puntos t-1, t-2, t-3, y t-4 localizados a 0,6 m de las paredes cortas. Se promedian las dos lecturas. Este es el valor T de la ecuación de la iluminancia promedio.
- 4. Se toman lecturas en los puntos p-1, p-2, localizados diagonalmente en esquinas opuestas. Se promedian las dos lecturas. Este es el P de la ecuación de la iluminancia promedio.
- 5. Se determina la iluminancia promedio en el área utilizando la ecuación de E_{prom}.

490.1.1 RAZONES QUE HACEN NECESARIA LAS MEDICIONES DE ILUMINANCIA GENERAL

La medición de iluminancia general (promedio) de un salón puede ser necesaria por cualquiera de las siguientes razones:

- a) Para verificar el valor calculado de una instalación nueva.
- b) Para determinar si hay acuerdo con una especificación o práctica recomendada.
- c) Para revelar la necesidad de mantenimiento, modificación o reemplazo.
- d) Para verificar las condiciones de contrate de brillo en un puesto de trabajo
- e) Por comparación con el objeto de lograr una solución que sea recomendable desde los puntos de vista de calidad de luz y economía.

A menos que se especifique de otra forma, las mediciones sobre el plano horizontal deben realizarse a una altura de 0,85 m. sobre el piso.

Es muy importante registrar una descripción detallada del área de la medición, junto con todos los otros factores que pueden afectar los resultados, tales como:

- a. Tipo de bombilla y su tiempo de utilización;
- b. Tipo de luminaria y balasto;
- c. Medida de la tensión de alimentación
- d. Reflectancias de la superficie interior;
- e. Estado de mantenimiento, último día de limpieza;
- f. Instrumento de medición usado en la medición

Antes de tomar las lecturas, la fotocelda del luxómetro debe ser previamente expuesta hasta que las lecturas se estabilicen – que usualmente requiere de 5 a 15 minutos. Se debe tener cuidado de que ninguna sombra se ubique sobre la fotocelda cuando se realizan las lecturas. Una vez estabilizado el equipo, la lectura a tomar para el análisis es el valor promedio indicado en la pantalla. Normalmente los equipos actuales suministran los valores Máximo – Mínimo y Promedio siendo este valor promedio el que se utiliza para establecer las condiciones de trabajo.

La medición de iluminancia de un sistema de iluminación artificial se debe realizar en la noche o con ausencia de luz día.

Antes de realizar las mediciones, las bombillas se deben encender y permitir que la cantidad de luz que emiten se estabilice. Si se utilizan bombillas de descarga, se debe permitir al menos que transcurran 20 minutos antes de tomar las lecturas. Cuando el montaje es de lámparas fluorescentes totalmente encerradas, el proceso de estabilización puede tomar mayor tiempo.

Si se encuentran instalaciones con lámparas fluorescentes o de descarga nuevas, se debe esperar al menos 100 horas de operación antes de tomar las mediciones. Si el área contiene maquinaria alta o estantes altos, generalmente se obtiene un promedio de iluminancia de baja calidad o de resultados sospechoso. Por consiguiente la iluminancia debe medirse sólo en las zonas o lugares donde es necesario para la actividad que se quiere realizar.

Durante la medición, los valores de incidencia de la luz no deben ser influenciados por la persona que lleva a cabo la medición ni por los objetos que se encuentren en la posición que les corresponde (debido a que generan sombras o reflexiones).

Por lo general, la medición de la iluminancia promedio horizontal se realiza en recintos vacíos o en recintos o zonas libres de muebles cuya altura total sea superior a la del plano de medición.

490.2 MEDICIÓN DE ILUMINANCIA EN PUESTOS DE TRABAJO:

Se deben medir tantos puestos de trabajo como puestos existan, debido a que el nivel de iluminación depende de la posición de cada puesto de trabajo respecto a las luminarias tanto naturales como artificiales así como de los posibles obstáculos que pueden generar sombras sobre ellos.

Cuando se complementa el alumbrado general con iluminación localizada, el punto de trabajo debe medirse con el trabajador en su posición de trabajo normal. El instrumento de medición debe estar localizado en la superficie o plano de trabajo o en la porción del área de trabajo donde se realiza la tarea visual crítica (horizontal, vertical, inclinada).

Las lecturas deben ser registradas y mostradas de acuerdo con la Tabla 490-2.a)

Puesto de	Descripción del puesto de trabajo	Altura sobre el piso (m)	Plano (horizontal,	lluminan	cia (luxes)
trabajo			vertical o Inclinado)	Total (General + suplementaria)	General únicamente
1					
2					
3					
n					

Tabla 490.2 a) Formato de planilla para los datos de iluminancia medidos en puestos de trabajo

Cuando los niveles de iluminancia en los puestos de trabajo, se encuentren por debajo de los rangos recomendados y las condiciones de uniformidad son apropiadas, la situación inicialmente se puede solucionar mejorando la reflexión de luz por las superficies del salón (es más económico el cambio de color de superficies por unas más reflectivas), o en su defecto es necesario determinar las condiciones de mantenimiento, tanto de luminarias como de paredes, techos, pisos y superficies traslucidas, incrementar la iluminación natural y por último, mejorar el nivel de iluminancia, incrementando la emisión de flujo luminoso de las luminarias, cambiando el tipo de bombilla existente por otras que emitan mayor flujo luminoso, para ello es necesario usar los criterios de diseño.

Finalmente los datos obtenidos en las evaluaciones se deben registrar en los siguientes formatos:

- Inspección general del área o puesto de trabajo. Los datos obtenidos en esta evaluación se registran en el Formato 1
- Medición de la iluminancia promedio general de un salón.Los datos obtenidos en esta evaluación se registran en el Formato 2
- Medición de la iluminancia en el puesto de trabajo. Los datos obtenidos en esta evaluación se registran en el Formato 3

490.3 RESULTADOS DELAS MEDICIONES

Se debe elaborar y mantener un reporte que contenga la información obtenida en el reconocimiento, los documentos que lo complementen, los datos obtenidos durante la evaluación y al menos la siguiente información:

DE

- a. Informe descriptivo de las condiciones normales de operación, en las cuales se realizó la evaluación, incluyendo las descripciones del proceso, instalaciones, puestos de trabajo y el número de trabajadores expuestos por área y puesto de trabajo.
- b. Plano de distribución del área evaluada, en el que se indique la ubicación de los puntos de medición.
- c. Resultados de la medición de los niveles de iluminación.
- d. Comparación e interpretación de los resultados obtenidos, contra lo establecido en las tablas del Sección 440 del Capitulo 4 del presente Reglamento Técnico.
- e. Hora en que se efectuaron las mediciones.
- f. Programa de mantenimiento.
- g. Copia del documento que avaló la calibración o verificación del Luxómetro, expedido por un laboratorio acreditado y aprobado conforme a los criterios Nacionales ó Internacionales sobre Metrología y Normalización;
- h. Conclusión técnica del estudio.
- i. Las medidas de control a desarrollar y el programa de implantación.
- j. Nombre y firma del responsable del estudio;

	INSPECCIÓN		RMATO 1 LÁREA O PUESTO	DE TRAB	AJO	
EMPRESA:				J DE TRAD	400	
EMPRESA: FECHA:	DIA:	NOCHE:				
1. CONDICIONES DEL	ÁREA:					
DESCRIPCIÓN DEL ÁF	REA:					
DIMENSIONES:						
LONGITUD:	_ANCHO:	ALTURA:				
PLANO DEL ÁREA CO	N DISTRIBUCIÓN	DE LUMINARIAS:				
2 DESCRIPCIÓN	DE PAREDES PIS	OS Y TECHOS				
	DE PAREDES, PIS					
2. DESCRIPCIÓN DESCRIPCIÓN	DE PAREDES, PIS		NDICIÓN DE LA SUPE	ERFICIE		
	DE PAREDES, PIS		NDICIÓN DE LA SUPE TEXTURA	ERFICIE	MEDIA	SUCIA
DESCRIPCIÓN		co			MEDIA	SUCIA
DESCRIPCIÓN Paredes		co			MEDIA	SUCIA
		co			MEDIA	SUCIA
DESCRIPCIÓN Paredes Techo		co			MEDIA	SUCIA
DESCRIPCIÓN Paredes Fecho Piso Superficie de trabajo		co			MEDIA	SUCIA
DESCRIPCIÓN Paredes Fecho Piso Superficie de trabajo Equipo o Máquina 3. CONDICIONES	MATERIAL GENERALES:	co			MEDIA	SUCIA
DESCRIPCIÓN Paredes Techo Piso Equipo o Máquina 3. CONDICIONES Clasificación del equip	MATERIAL GENERALES:	co			MEDIA	SUCIA
DESCRIPCIÓN Paredes Techo Superficie de trabajo Equipo o Máquina 3. CONDICIONES Clasificación del equipuminarias, tipo Especificación de las l	MATERIAL GENERALES: DO bombillas	co			MEDIA	SUCIA
DESCRIPCIÓN Paredes Techo Superficie de trabajo Equipo o Máquina 3. CONDICIONES Clasificación del equipularias, tipo Especificación de las lombillas por luminarias	MATERIAL GENERALES: DO bombillas	co			MEDIA	SUCIA
DESCRIPCIÓN Paredes Techo Piso Equipo o Máquina 3. CONDICIONES Clasificación del equipuminarias, tipo Especificación de las lombillas por luminarial dúmero de luminarias	MATERIAL GENERALES: DO bombillas	co			MEDIA	SUCIA
DESCRIPCIÓN Paredes Techo Superficie de trabajo Equipo o Máquina 3. CONDICIONES Clasificación del equipuminarias, tipo Especificación de las lombillas por luminarias dúmero de luminarias dúmero de filas luminarias por fila	MATERIAL GENERALES: DO bombillas	co			MEDIA	SUCIA
DESCRIPCIÓN Paredes Techo Piso Superficie de trabajo Equipo o Máquina 3. CONDICIONES Clasificación del equipuminarias, tipo Especificación de las loombillas por luminarias Número de luminarias Número de filas Luminarias por fila Altura del montaje	MATERIAL GENERALES: 00 bombillas ia	co			MEDIA	SUCIA
DESCRIPCIÓN Paredes Fecho Piso Superficie de trabajo Equipo o Máquina	MATERIAL GENERALES: Do bombillas ia	co	TEXTURA		MEDIA	SUCIA

ETILAP

Continuación Anexo General Reglamento Técnico de Iluminación y Alumbrado Público - RETILAP							
FORMATO 2							
MEDIDAS DE	EILUMINANC	IA GENERA	AL				
EMPRESA: _							
Dimensiones	del Salón: L	.argo:		Ancho: _	Altura:		
Disposición (La identifica 490-1 del Ca EQUIPO DE I	ación de los pítulo 4 del R	puntos de i ETILAP y fá	medición órmulas pa	depende del ara el cálculo	local y la distribución de las l de Eprom)	luminarias. Consultar el Numeral	
Tabla de date	os						
Identificaci ón de los	DÍA			NOCHE	OBSERVACIONES		
Puntos	Mañana (AM)	Medio Día (M)	Tarde (PM)				
r-1							
r-2							
r-3 r-4							
1-4							
r-5							
r-6							
r-7 r-8							
				1			
q-1							
q-2 q-3				+			
q- 3 q- 4				+			
q-5							
q-6 q-7							
q-8							
t-1							
t-2 t-3				+			
t-4							
			1				
p-1							
p-2				1			
p-3 p-4			1	1			
γ - Τ			I	1			
Eprom							
% UNIFORM	IDAD:						

	ME	PAGIO	DE II III		FORMATO	OS PUESTOS DE	TRARA	ın
EMPRESA:							- IIVADAU	
						CIÓN:		
Tabla de da	tos							
Lectura puesto de	Altura sobre el		DE ILL	JMINAN	_	únicamente	General	+ suplementaria
trabajo	piso							
		Vertic al	Horiz ontal	Inclin ado	Prom.	Rango recomendado	Prom.	Rango recomendado
Responsab	le		Mat	rícula p	rofesiona	nl N°	_	
•				_	ORMAT		_	
ESPECIFICA EMPRESA:						ADO		
Área:								
OBJETIVOS								
Nivel de ilu	minancia d de uniforn	le diseñ	o:		_ Lux			

Coeficiente mínimo promedio exigido de luz diurna: (Para los valores mínimos del Coeficiente de Luz Diurna CLD que deben cumplir las edificaciones ver el Tabla 415-1.c) del Capítulo 4 del RETILAP) TIPO INSTALACIÓN ILUMINACIÓN NATURAL: Instalación luz día Techo_____ ventanas _____ ambas _____ **ILUMINACIÓN ARTIFICIAL:** Número de luminarias: Área de trabajo: Largo: _____ Ancho _ Altura del plano de trabajo sobre el nivel del piso: Altura de las luminarias sobre el plano de trabajo: Altura de suspensión de las luminarias desde el techo: Distancia entre centro de luminarias a lo Largo:____ Distancia entre centro de luminarias a lo Ancho:

Continuación Anexo General Reglamento Técnico de Iluminación y Alumbrado Público - RETILAP
BOMBILLAS o LÁMPARAS: Fabricante y referencia: Tipo de bombilla: Potencia de la bombilla: W Lúmenes iniciales (100 h): Im
Lúmenes iniciales (100 h): lm Período de reemplazo de las bombillas: horas Factor de depreciación de lúmenes de las bombillas:
LUMINARIA: Fabricante y referencia Bombillas por luminaria: Potencia total por luminariaW
CONTROLES: Tipo manual (Suiches): Tipo control automático:
ESQUEMA Cálculo inicial de iluminancia promedio: lux Factor de mantenimiento estimado: lux Cálculo de iluminancia promedio mínima mantenida: lux Carga eléctrica instalada en alumbrado: kW.
Carga electrica instalada en alumbrado: kW. Factor de potencia: Eficiencia energética de la instalación, W/m2 por cada 100 luxes (VEEI)
MANTENIMIENTO: Período limpieza de ventanas: meses Período de limpieza de techos: meses Período limpieza de luminarias: meses Período de reemplazo de las bombillas: meses Período de limpieza de manteniendo de techo, paredes y pisos: Diseñador del sistema: Fecha:
Responsable Matrícula profesional Nº

CAPITULO 5 DISEÑOS Y CÁLCULOS DE ALUMBRADO PÚBLICO

SECCIÓN 510 DISEÑO DE ALUMBRADO PÚBLICO.

Adicional a los requerimientos específicos, el alumbrado público debe cumplir los principios generales de iluminación que el apliquen, establecidos en el capitulo II del presente reglamento.

510.1 REQUISITOS PARA EL DISEÑO DE ALUMBRADO PÚBLICO.

El objeto del alumbrado público es proporcionar la visibilidad adecuada para el desarrollo normal de las actividades tanto vehiculares como peatonales en espacios de libre circulación con tránsito vehicular y peatonal. Un diseño de alumbrado público además de cumplir los requisitos técnicos de iluminación, los cuales se podrán consultar en el Anexo A-3 del presente Reglamento, la Fotometría de las fuentes luminosas y luminarias y los requisitos de los productos de alumbrado establecidos en el Capítulo 3, debe considerar los siguientes aspectos:

510.1.1 REQUERIMIENTOS DE VISIBILIDAD.

La iluminación de un sistema de alumbrado público debe ser adecuada para el desarrollo normal de las actividades tanto vehiculares como peatonales. Para lo cual se debe tener en cuenta la confiabilidad de la percepción y la comodidad visual, aplicando la cantidad y calidad de la luz sobre el área observada y de acuerdo con el trabajo visual requerido. Así, para cumplir esos requerimientos de luz se debe hacer una cuidadosa selección de la fuente y la luminaria apropiada teniendo en cuenta su desempeño fotométrico, de tal forma que se logre los requerimientos de iluminación con las mejores interdistancias, las menores alturas de montaje y la menor potencia eléctrica de la fuente posible.

510.1.2 EVALUACIÓN ECONÓMICA Y FINANCIERA.

Todos los proyectos de alumbrado público deberán hacer una evolución económica y financiera donde se incluyan no solo los costos de inversión, sino los costos de operación y mantenimiento durante la vida útil del proyecto de alumbrado público. Se debe considerar tanto el costo inicial como los de operación y mantenimiento asociados, así como el valor de reposición al final de la vida útil del proyecto. Los costos energéticos, son relevantes al definir cargas operativas, toda vez que la energía consumida será costeada por el ciudadano a través de la contribución o impuesto de alumbrado público.

510.1.3 LOS REQUERIMIENTOS ESTÉTICOS CONTEMPLADOS EN LAS NORMAS DE MOBILIARIO URBANO.

El aspecto estético es otro factor a considerar en los proyectos de iluminación en razón al impacto visual causado durante el día por la infraestructura visible del proyecto (postes, luminarias, transformadores, redes eléctricas y contactores). Igualmente, durante la noche el impacto estético causado por la distribución luminosa de las fuentes de luz, por lo que se debe considerar el estilo arquitectónico predominante en el sector. En Plazas públicas, fachadas, vías con destinación histórica o turística definidas, es necesario mantener el estilo, el color y la distribución concordantes. Así mismo, es importante el uso típico de la vía, peatonal, ciclo-ruta o para vehículos automotores. Para cada caso hay distribuciones y equipos que mejoran el impacto visual de la instalación.

510.1.4 LAS CONDICIONES AMBIENTALES Y DE CONTAMINACIÓN Y FACILIDADES DE MANTENIMIENTO.

Un proyecto de iluminación exterior o de alumbrado público debe ser adecuado a las condiciones ambientales de la localidad, así como las condiciones particulares del medio especialmente la presencia de agentes corrosivos, las condiciones ambientales y las facilidades de mantenimiento deben determinar las características de hermeticidad y protección contra corrosión o ensuciamiento que necesitarán las luminarias, en particular su conjunto óptico, aspectos que se deben reflejar el diseño.

Adicionalmente, la selección de la luminaria debe considerar un adecuado manejo mecánico que garantice la estabilidad del conjunto en brazos y estructuras de soporte, así como la funcionalidad

del cierre del conjunto óptico y del conjunto eléctrico, la permanencia del índice de protección IP con las sucesivas operaciones de mantenimiento, el índice IK de la carcasa así como las medidas antivandálicas que ofrezca.

510.2 CARACTERÍSTICAS DE CANTIDAD Y CALIDAD DE LA LUZ PARA ALUMBRADO PÚBLICO

DE

Se ha establecido como el objetivo del alumbrado público permitir a los usuarios de la calzada y del andén, circular sobre ellos en las horas de la noche, de manera segura, cómoda y a velocidades preestablecidas.

La seguridad se logra si el alumbrado permite a los usuarios que circulan a velocidad normal evitar un obstáculo cualquiera. La iluminación debe permitir, en particular, ver a tiempo los bordes, las aceras, separadores, encrucijadas, señalización visual y en general toda la geometría de la vía. Para este efecto, está establecido que el criterio de seguridad consiste en la visibilidad de un obstáculo fijo o móvil constituido por una superficie de 0,20 m x 0,20 m, con un factor de reflexión de 0,15. Considerando que:

- La seguridad de un peatón se logra si se puede distinguir este obstáculo a una distancia hasta de 10
- La seguridad de un automovilista depende esencialmente de su velocidad. A velocidad media de 60 km/h, él debe percibir este obstáculo a una distancia hasta 100 m. Para velocidades superiores, esta distancia oscila entre 100 y 200 m.

La noción de seguridad resultante del alumbrado público no es la misma en carretera que en los cascos urbanos. En el primer caso, el alumbrado interesa sobretodo al automovilista que circula a una velocidad relativamente alta sobre una carretera donde los obstáculos fijos o móviles no son muy frecuentes y la iluminación se concentra más en proveer la dirección de circulación a manera de una perfecta guía visual. El conductor verá los obstáculos como siluetas, pues generalmente el contraste resulta negativo.

Por el contrario, en los cascos urbanos, la circulación es más densa y los obstáculos son generalmente más frecuentes, pero la velocidad de circulación es generalmente menor. De lo anterior, se deduce, que según el objeto que se persiga, la elección del sistema de alumbrado se verá influenciada por la densidad, naturaleza y velocidad de circulación.

Es necesario que el sistema de alumbrado permita ver esos obstáculos y otros vehículos sin riesgo de error o deslumbramiento. Igual hipótesis se plantea para los peatones, aunque su velocidad menor hace que sean menos exigentes las condiciones para ver. La iluminación calculada, debe comportarse como una guía de visibilidad en la que están comprometidas de una manera conjunta la confiabilidad de la percepción y la comodidad visual.

510.2.1 CONFIABILIDAD DE LA PERCEPCIÓN.

Los objetos sólo pueden percibirse cuando se tiene un contraste superior al mínimo requerido por el ojo. Este valor depende del ángulo con el que se vea (afecta la cantidad de superficie aparente en la fórmula de luminancia) y de la distribución de la luminancia en el campo visual del observador (fondo para el contraste). Además, este valor define el tiempo de adaptación del ojo en dicha situación.

La iluminación deberá perseguir dos elementos: el primero es proporcionar un elevado nivel de luminancia en el fondo, interpretado como la necesidad de proveer una Luminancia promedio L_{prom} elevada (Téngase en cuenta que en todo el presente reglamento la luminancia promedio se refiere al promedio mantenido).

El segundo elemento es un bajo nivel de luminancia para el obstáculo, que generalmente tiene un bajo coeficiente de reflexión, pero que está fuera del control del diseñador.

Un tercer elemento es mantener un limitado deslumbramiento desde las fuentes de luz o luminancia de

velo. (Se interpreta como proveer una L_{velo} baja).

Es necesario definir y entender claramente el concepto del cálculo de la luminancia promedio mantenida. Además, no basta aplicar la simple fórmula matemática para obtener el promedio que pudiera resultar elevado debido a unos pocos puntos de gran valor y otros muy bajos, sino que es necesario que los puntos calculados, para obtener el promedio, mantengan una dispersión baja de modo que los puntos de la calzada con mínima luminancia no afecten la percepción por disminución de la luminancia de fondo. Esto se logra controlando el valor de la uniformidad general de luminancia U_0 .

La confiabilidad de la percepción se ve comprometida igualmente y de manera directa, con mayores niveles de deslumbramiento fisiológico. Por consiguiente, para restringir el efecto molesto del deslumbramiento, hay que especificar un límite máximo al valor para el incremento del umbral TI.

510.2.2 COMODIDAD VISUAL

El ambiente visual de un conductor está constituido principalmente por la visión de la calzada al frente del volante y en menor grado por el resto de su campo visual, que puede llegar a tener información para el conductor, como las señales de tránsito. La comodidad visual es una importante característica que redunda en la seguridad del tráfico vehicular. La falta de comodidad se traducirá en una falta de concentración por parte de los conductores que reducirá la velocidad de reacción debido al cansancio que se producirá en sus ojos.

El grado de comodidad visual proporcionado por una instalación de alumbrado público será mejor si el ojo del conductor tiene mejores niveles de adaptación. Ello implica elevar la Luminancia promedio L_{prom} sobre la vía, así como controlar la dispersión de los valores que componen dicho promedio. Para asegurar el control en la dispersión de los datos, se utiliza el concepto de Uniformidad longitudinal de luminancia U_L. Un bajo nivel de uniformidad longitudinal se traducirá en la aparición del efecto cebra sobre la vía, causante de la fatiga visual del conductor. El efecto cebra toma su nombre en la apariencia que toma la vía cuando tiene un bajo valor de uniformidad longitudinal: como aparecen sectores transversales a la vía bien iluminados seguidos de otros con poca iluminación, la vía toma la apariencia de la piel de una cebra.

En la comodidad visual del conductor se encuentra comprometida la luminancia ofrecida por la instalación de alumbrado público, su uniformidad, su nivel de iluminancia, el grado de deslumbramiento, así como la disposición y naturaleza de las fuentes luminosas utilizadas. Una instalación urbana necesita mayores niveles de comodidad visual a fin de reducir la tensión nerviosa de los conductores y con ello sus efectos sobre el comportamiento en la vía. Por ello, la instalación de alumbrado debe considerar la iluminación de aceras y fachadas y de esa manera crear un ambiente más agradable. Todo esto, sin generar deslumbramiento y manteniendo la estética de la instalación, que al fin de cuentas, la hace mas agradable.

Una instalación de iluminación en carreteras, debe asegurar una continuidad óptica sobre el carril de circulación y sobre la geometría de la vía, a fin de elevar la seguridad por la velocidad de circulación. Se deben tener en cuenta tres variables al considerar la selección o diseño de una instalación de alumbrado público: la velocidad de circulación, la frecuencia y naturaleza de los obstáculos a ver y el tipo de usuarios de la vía.

En principio, vías que responden de la misma manera a los criterios anteriores, se iluminan de la misma manera. Por consiguiente se pueden agrupar las vías en varios conjuntos que respondan a un tipo de iluminación en función de los fines de la vía. Esta agrupación permite generar instructivos sobre la forma típica de iluminar, de modo que se contemplen todos los problemas que resulten al menos desde el punto de vista lumínico.

510.2.3 RELACIÓN DE ALREDEDORES (SR)

DE

Una de las metas principales en iluminación de vías es crear una superficie clara sobre la vía contra la cual pueden verse los objetos. Ahora, cuando los objetos son elevados y están sobre la vía, su parte superior se ve contra los alrededores. Igual sucede si los objetos están justo en el borde de la vía y en las secciones curvas del camino.

En estos casos el contraste podría llegar a ser insuficiente para una percepción segura en el tiempo requerido por el conductor, si no se controla la *iluminancia* promedio de los alrededores. (Véase la recomendación CIE 136 y 140 de 2.000).

En consecuencia, controlar la iluminancia de los alrededores ayuda al conductor a percibir más fácilmente el entorno y le ayuda a efectuar, de manera segura, las maniobras que necesite. Controlar la relación *SR* permite entonces, mantener las condiciones adecuadas de contraste de objetos al borde de la vía. Por otra parte, esta iluminación beneficia a los peatones, cuando existan a los lados de la vía andenes transitables por éstos.

En vías donde los alrededores tienen su propia iluminación, no es necesario considerar el factor *SR*. Su cálculo se explica en la sección 520 del presente reglamento.

510.3 CLASES DE ILUMINACIÓN SEGÚN LAS CARACTERISTICAS DE LAS VÍAS

510.3.1 VÍAS VEHICULARES:

Los criterios que se deben tener en cuenta para asignar una clasificación de iluminación están asociados a las características de las vías, siendo las principales: la velocidad de circulación y el número de vehículos. Toda vía caracterizada con estas dos variables se les asignará un tipo de iluminación conforme a la Tabla 510.3A).

Clase de Iluminación	Descripción vía		idad de ión (km/h)	Tránsito de vehículos T (Veh/h)		
M1	Autopistas y carreteras	Extra alta	V>80	Muy importante	T>1000	
M2	Vías de acceso controlado y vías rápidas.	Alta	60 <v<80< td=""><td>Importante</td><td>500<t<1000< td=""></t<1000<></td></v<80<>	Importante	500 <t<1000< td=""></t<1000<>	
М3	Vías principales y ejes viales.	Media	30 <v<60< td=""><td>Media</td><td>250<t<500< td=""></t<500<></td></v<60<>	Media	250 <t<500< td=""></t<500<>	
M4	Vías primarias o colectoras	Reducida	V<30	Reducida	100 <t<250< td=""></t<250<>	
М5	Vías secundarias	Muy reducida	Al paso	Muy reducida	T<100	

Tabla 510.3.1 a) Clases de iluminación para vías vehiculares.

Otros factores a tener en cuenta son la complejidad de la circulación, controles del trafico tipos de usuarios de las vías y existencia de separadores. En tal sentido y por criterios de uso racional y eficiente de energía, una vía podrá disponer, en ciertas horas, de un alumbrado con clasificación inferior a la resultante de la aplicación de la tabla 510.3.1 A, utilizando la Tabla 510.3.1 B). Por ejemplo, en la madrugada, las vías podrán contar con una iluminación que responda con todos los criterios y valores establecidos para una clase inferior, soportada en diseño fotométrico y operativo, el cual debe contar con la aprobación de la autoridad responsable del alumbrado.

En el mismo sentido, de acuerdo con las condiciones de control de tráfico y de existencia de separación de diferentes usuarios en la vía, también podrá usarse una clase de iluminación diferente.

Las condiciones para disponer de dos clases de iluminación en una vía o su cambio como criterio inicial

de diseño se establecen en la Tabla 510.3.1 B), adaptada de la tabla 1 de la NTC 900.

DE

Descripción de la vía	Tipo de iluminación
Vías de extra alta velocidad, con calzadas separadas exentas de cruce controlados (Autopistas expresas). Con densidad de tráfico y complejidad de	•
Alta	M1
Media	M2
Baja	М3
Vías de extra alta velocidad, vías con doble sentido de circulación. Con contrusuarios de la vía:	rol de tráfico (2) y separación (3) de diferentes
Escaso	M1
Suficiente	M2
Vías más importantes de tráfico urbano, vías circunvalares y distribuidora diferentes usuarios de la vía:	as. Con control de tráfico y separación de
	M2
diferentes usuarios de la vía:	
diferentes usuarios de la vía: Escaso	M2 M3 acceso a zonas residenciales,
Escaso Bueno Conectores de vías de poca importancia, vías distribuidoras locales, vías de Vías de acceso a propiedades individuales y a otras vías conectoras más imp	M2 M3 acceso a zonas residenciales,

Tabla 510. 3.1 B) variación en las Clases de iluminación por tipo de vía, complejidad de circulación y control del trafico

Fuente: NTC 900

Notas:

- 1) La **complejidad** de la vía se refiere a su infraestructura, movimiento de tráfico y alrededores visuales. Se deben considerar los siguientes factores: número de carriles, inclinación, letreros, señales, entradas y salidas de rampas. Se debe tener en cuenta que las intersecciones viales y otros sitios de tráfico complejo se analizan separadamente.
- 2) Control de tráfico se refiere a la presencia de avisos y señales así como a la existencia de regulaciones. Los métodos de control son semaforización, reglas y regulaciones de prioridad, señales, avisos y demarcaciones de la vía. La presencia o no de estos controles es lo que determina que sean escasos o suficientes.
- 3) La separación puede ser por medio de carriles específicos o por normas que regulan la restricción para uno o varios de los tipos de tráfico. El menor grado se recomienda cuando existe esta separación.

Los diferentes tipos de usuarios de la vía, son: automovilistas (en vehículos veloces o lentos), motoristas de vehículos pesados y lentos (camiones), vehículos grandes y lentos (buses) ciclistas, motociclistas y peatones.

Además, se debe tener en cuenta la geometría de la vía (rectilínea, curva, número de carriles de circulación, reglas de tránsito, superficie de la vía, guías visuales), así como los puntos particulares que se pueden encontrar sobre ella (cruces, puentes, túneles etc.).

En principio, todas las vías que respondan de similar manera a los criterios definidos anteriormente, pueden ser iluminadas de manera idéntica. En consecuencia, las vías se pueden agrupar en varios conjuntos que respondan a un mismo tipo de iluminación en función de los fines perseguidos, diferentes para cada uno de ellos pero bien caracterizados para un mismo conjunto.

510.3.2 VÍAS PARA TRÁFICO PEATONAL Y CICLISTAS:

DE

La iluminación de estas áreas debe garantizar que los peatones y ciclistas puedan distinguir la textura y diseño del pavimento, la configuración de bordillos, escalones marcas y señales; adicionalmente debe ayudar a evitar agresiones al transitar por estas vías. En la Tabla 510-4.2.a) se presentan las siete clases de iluminación para diferentes tipos de vías en áreas peatonales.

DESCRIPCIÓN DE LA CALZADA	CLASE	DE
	ILUMINACIÓN	
Vías de muy elevado prestigio urbano	P1	
Utilización nocturna intensa por peatones y ciclistas	P2	
Utilización nocturna moderada por peatones y ciclistas	P3	
Utilización nocturna baja por peatones y ciclistas, únicamente asociada a las propiedades adyacentes	P4	
Utilización nocturna baja por peatones y ciclistas, únicamente asociada a las propiedades adyacentes. <i>Importante preservar el carácter arquitectónico del ambiente.</i>	P5	
Utilización nocturna muy baja por peatones y ciclistas, únicamente asociada a las propiedades adyacentes. Importante preservar el carácter arquitectónico del ambiente	P6	
Vías en donde únicamente se requiere una guía visual suministrada por la luz directa de las luminarias	P7	

Tabla 510.3.2.a) Clases de iluminación para diferentes tipos de vías en áreas peatonales y de ciclistas

Fuente: NTC 900

NOTA El prestigio se relaciona con la necesidad de producir un ambiente atractivo. Para las demás clases de iluminación, P2 a P7, la graduación se relaciona con el uso por parte de los peatones. Las clases P5 a P7 sólo deben usarse donde sea baja la probabilidad de realización de delitos en ausencia de luz.

Las clases de alumbrado establecidas en la Tabla 510.3.2.A), consideran las necesidades asociadas a toda la superficie utilizada, es decir, la superficie de la acera y de la calzada, en caso que exista.

Cuando se haya establecido que en determinadas zonas se ha incrementado o se pueda incrementar la criminalidad o resulte necesaria la identificación de las personas, objetos u obstáculos, la clase de iluminación podrá ser uno o dos grados superior a la resultante de aplicar la tabla.

510.4 NIVELES EXIGIDOS DE LUMINANCIA E ILUMINANCIA EN ALUMBRADO PÚBLICO

En concordancia con el concepto de crear espacios de convivencia ciudadana garantizando la seguridad, los niveles recomendados por las normas nacionales e internacionales han sido ajustados a valores, que satisfacen los requerimientos particulares del país.

Igualmente estos valores se presentan para cada tipo de vías y áreas asociadas en rangos coherentes a los criterios de diseño, que ofrecen flexibilidad en el diseño y aplicación para cada caso específico, a la vez que armonizan en el contexto urbanístico.

Para la adecuada identificación de cada espacio en la vía, es necesario atender los perfiles típicos de vías que tiene aprobado en el POT cada municipio.

En los sistemas de alumbrado público existentes que hagan uso de la infraestructura de red eléctrica de uso general, sobre los cuales se requiera realizar ajustes para cumplir con los niveles de iluminación y

DE

Continuación Anexo General Reglamento Técnico de Iluminación y Alumbrado Público - RETILAP

coeficiente de uniformidad exigidos en el presente reglamento, se deberán modificar la luminaria y/o la potencia de la fuente, así como la forma y longitud del brazo. Cuando el Operador de red o propietario de esta la infraestructura de la red de uso general realice la remodelación, se deberá realizar el diseño y adecuación de dichas redes considerando el cumplimiento de las exigencias del servicio de alumbrado público de conformidad con el presente reglamento.

510.4.1 CLASES DE ILUMINACIÓN PARA VÍAS VEHICULARES.

Conocidas las características de las vías y sus requerimientos visuales, se deberá asignar la clase de iluminación necesaria. A cada clase de iluminación se le establecen los requisitos fotométricos mínimos mantenidos a través del tiempo, los cuales se condensan en la Tabla 510-4.1.A), para luminancia, cuando este es el criterio.

Los valores se aplican para piso seco.

Clase de			Zona de aplic	cación	
iluminación		Todas las vías		Vías sin o con pocas intersecciones	Vías con calzadas peatonales no iluminadas
	Luminancia promedio L _{prom} (cd/m²) Mínimo mantenido	Factor de uniformidad U _o Mínimo	Incremento de umbral TI % Máximo inicial	Factor de uniformidad Iongitudinal de Iuminancia U _I Mínimo	Relación de alrededores SR Mínimo
M1	2.0	0,4	10	0,5	0,5
M2	1,5	0,4	10	0,5	0,5
M3	1,2	0,4	10	0,5	0,5
M4	0,8	0,4	15	N.R	N.R
M5	0,6	0,4	15	N.R	N.R

Tabla 510.4.1.a) Requisitos fotométricos mantenidos por clase de iluminación para trafico motorizado con base en la luminancia de la calzada

NR: No requerido

Fuente: Adaptada de la NTC 900 Tabla 12.

Cuando se aplica el criterio de iluminancia se deberá considerar la tabla 510.4.1 B).

Clase de iluminación	ilumina	nínimo mant ancia según cie de la vía	Uniformidad de la Iluminancia	
	R1	R2 y R3	R4	E _{min} /E _{prom} (%)
M1	21	26	22	40%
M2	15	20	18	40%
M3	12	17	15	34%
M4	8	12	10	25%
M5	6	9	8	18%

Tabla 510. 4.1B) valores mínimos mantenidos de iluminancias promedio (Ix) en vías motorizadas

Fuente: Adaptación Tabla 930-6 (c) Norma Nom -001-SEDE-1999.

NOTA La NTC-900 no contempla el índice G como elemento determinante del deslumbramiento de incomodidad argumentando incertidumbre en su cálculo y deficiencias en su aplicación práctica. La publicación CIE-115 tampoco contempla su uso y la publicación IES RP-8 sólo contempla el uso de Lvelo

DE

Es necesario resaltar que los valores anteriores se calculan para condiciones estables de funcionamiento a través del tiempo de vigencia del proyecto, con excepción del TI que solamente se calcula y verifica para la condición inicial del proyecto.

Es por tanto necesario considerar en el diseño de iluminación los factores de depreciación luminosa incidentes en los parámetros anteriores, los cuales se condensan en un solo resultado final conocido como el Factor de Mantenimiento (F_M).

510.4.2 TIPOS DE ILUMINACIÓN PARA VÍAS PEATONALES Y DE CICLISTAS.

En la Tabla 510.4.2 A) se asocian, a las clases de iluminación los valores de iluminancia que se deben satisfacer en los distintos tipos de vías peatonales.

Clase	de	Iluminancia Horizontal (luxes)			
iluminación		Valor promedio	Valor mínimo		
P1		20,0	7,5		
P2		10,0	3,0		
P3		7,5	1,5		
P4		5,0	1,0		
P5		3,0	0,6		
P6		1,5	0,2		
P7		No aplica	No aplica		

Tabla 510.4.2.) Requisitos mínimos de iluminación para tráfico peatonal

Fuente: NTC 900 Tabla 4

De acuerdo con los tipos de vías de cada municipio, los sistemas de alumbrado público se deben diseñar y construir con los valores fotométricos de la siguiente tabla. El diseño de iluminación deben considerar no solamente las calzadas vehiculares, sino las ciclo - rutas y los andenes adyacentes, como componente del espacio público

Tipo de vía	Calzadas vehiculares		Ciclo-rutas		Relación de alrededores				
					adyacentes		En andenes		Alrededor sin
	L _{prom}	U _o	Uı	TI	E _{prom}	U。	E _{prom}	U _o	ŚR
CLASE DE ILUMINACIÓN	cd/m²	≥ %	≥ %	≤ %	luxes	≥ %	luxes	≥ %	%
М1	2,0	40	50	10	20	40	13	33	50
M2	1,5	40	50	10	20	40	10	33	50
М3	1,2	40	50	10	15	40	9	33	50
M4	0,8	40	N.R.	15	10	40	6	33	N.R.
M5	0,6	40	N.R	15	7.5	40	5	33	N.R.

Tabla 510.4.2. B) Requisitos mínimos de iluminación para vías con ciclorutas y andenes adyacentes

Adaptado de norma CIE 115 y NOM 001 SEDE

 L_{prom} : Luminancia promedio mínima mantenida.

Lo : Uniformidad general U_I : Uniformidad longitudinal

TI : Restricción del deslumbramiento

DE

 $\mathsf{E}_{\mathsf{prom}}$: Iluminancia promedio

N.R.: No requerido N.A: No aplica

* Corresponde a vías de uso residencial exclusivamente. Para uso mixto y comercial, pasar a la categoría V_6

510.4.3 TIPOS DE ILUMINACIÓN PARA AREAS CRÍTICAS.

A continuación se definen, en la Tabla 510.4.3.1, los requisitos fotométricos para las denominadas áreas críticas, valores adoptados de la Norma CIE 115.

Clase de	Iluminancia Mínima Mantenida	Uniformidad general
iluminación	(luxes)	U₀≥ (%)
	(Sobre toda la superficie)	
C0	50	40
C1	30	40
C2	20	40
C3	15	40
C4	10	40
C5	7.5	40

Tabla 510.4.3.A) Clase de iluminación para áreas críticas

Fuente: Norma CIE 115-1995 Tabla 8.1. Lighting requirement for conflict areas.

Para áreas criticas ubicadas en zonas distintas a vías vehiculares, se deberá atender a lo dispuesto en la tabla siguiente:

Clasificación	Clase de	Iluminancia	Uniformidad
	iluminación	promedio	general
		(luxes)	U。≥ %
Canchas múltiples recreativas	C0	50	40
Plazas y plazoletas	C1	30	33
Pasos peatonales subterráneos	C1	30	33
Puentes peatonales	C2	20	33
Zonas peatonales bajas y aledañas a puentes peatonales y vehiculares	C2	20	33
Andenes, senderos, paseos y alamedas peatonales en parques	C3	15	33
Ciclo-rutas en parques	C2	20	40
Ciclo-rutas, senderos, paseos, alamedas y demás áreas peatonales adyacentes a rondas de ríos, quebradas, humedales, canales y demás áreas distantes de vías vehiculares iluminadas u otro tipo de áreas iluminadas	C4	10	40

Tabla 510.4.3. B) Fotometría MÍNIMA en áreas críticas distintas a vías vehiculares.

Fuente Adaptación Tabla 14 NTC 900.

En áreas críticas que pertenezcan a vías vehiculares se deberán aplicar los criterios y clases de iluminación según la tabla siguiente:

DE

Área crítica		Clase de iluminación del área crítica(C) según clase de la vía a la que pertenece (M)
Pasos subterráneos		C(N) = M(N)
Intersecciones, cruces, rampas, puentes divergencias o convergencias, áreas con and restringidos		C(N) si M(N)
Cruces ferroviarios	Simples Complejo	C(N) si M(N) C(N-1) si M(N)
Glorietas sin señalización	Grandes Medianas Pequeñas	C1 C2
Área vehicular en fila de espera (p.ej. terminales de transporte, entre otros)		C1 C3 C5
TÚNELES		SEGUIR RECOMENDACIONES DE LA NORMA CIE 88

Tabla 510. 4. 3 C) Clases de iluminación en áreas críticas de vías vehiculares.

Nota En esta tabla la letra entre paréntesis es el número de clase, así, C(N) = M(N-1) significa que la clase de iluminación del área crítica es C2 si la vía mas importante que llega al área crítica es M3 Adaptada de NTC 900 y CIE 115.

Es necesario resaltar que los valores anteriores se calculan para condiciones estables de funcionamiento a través del tiempo de vigencia del proyecto. Es por tanto necesario considerar en el diseño de iluminación los factores de depreciación luminosa incidentes en los parámetros anteriores, los cuales se condensan en un solo resultado final conocido como el **Factor de Mantenimiento**.

510.5 USO RACIONAL Y EFICIENTE DE ENERGÍA EN EL DISEÑO FOTOMETRICO DEL ALUMBRADO PÚBLICO

Un proyecto de alumbrado público debe aplicar los siguientes requisitos relacionados con el URE: Los sistemas de alumbrado público diseñados deben cumplir simultáneamente con los requisitos fotométricos y no deben exceder los valores máximos de densidad de Potencia Eléctrica (DPEA) establecidos en el presente reglamento.

510.5.1 MÁXIMA DENSIDAD DE POTENCIA ELÉCTRICA PARA ALUMBRADO DE VÍAS

Las vías a las cuales aplican las tablas 510.4.1A), 510.4.1B), 510.4.2 B) y 510.4.3C), con excepción de túneles, no deben exceder los valores máximos de Densidad de Potencia para Alumbrado de vías (DPEA) establecidos en la tabla 510.5, determinado con base en el valor de iluminancia promedio mantenida y el ancho de calzada correspondiente. Los valores no se deben exceder en el diseño ni posteriormente en la operación del sistema de alumbrado público.

Métodos de cálculo. La determinación de la DPEA se calcula a partir de la carga total conectada para alumbrado y del área total por iluminar, de acuerdo a la metodología indicada a continuación:

DPEA = (Carga total conectada para alumbrado) / (Area total Iluminada)

Donde la **DPEA** está expresada en W/m2, la carga total conectada para alumbrado está expresada en vatios y el área total iluminada está expresada en metros cuadrados.

DE

En el cálculo no se deben incluir las áreas destinadas a aceras o similares si en diseño no los contempla como área objeto de iluminación.

Los valores para cálculo serán tomados de la información suministrada por el fabricante bien sea de protocolos de prueba o de ficha técnica. Tal información deberá corresponder con los equipos especificados por el diseñador para ser instalados en el proyecto particular, así como de los planos de distribución de luminarias. La verificación real se realizará con base en los equipos, distribución de luminarias y áreas iluminadas.

En el cálculo se deberá incluir las pérdidas asociadas al conjunto eléctrico de la luminaria, si esta lo requiere para su normal funcionamiento.

La vigilancia del cumplimiento de los valores permitidos de DPEA corresponderá a las interventorías y en el caso que aplique será verificado por el Organismo de Inspección.

Nivel de iluminancia promedio mantenido	ANCHO DE LA CALZADA					
lux (lx)	< 6 m	De 6 a 8 m	De 8.1 a 10 m	De 10.1 a 12m	De 12,1 a 14 m	
3	0,29	0,26	0,23	0,19	0,17	
4	0,35	0,32	0,28	0,26	0,23	
5	0,37	0,35	0,33	0,30	0,28	
6	0,44	0,41	0,38	0,35	0,31	
7	0,53	0,49	0,45	0,42	0,37	
8	0,60	0,56	0,52	0,48	0,44	
9	0,69	0,64	0,59	0,54	0,50	
10	0,76	0,71	0,66	0,61	0,56	
11	0,84	0,79	0,74	0,67	0,62	
12	0,91	0,86	0,81	0,74	0,69	
13	1,01	0,94	0,87	0,80	0,75	
14	1,08	1,01	0,94	0,86	0,81	
15	1,12	1,06	1,00	0,93	0,87	
16	1,17	1,10	1,07	0,99	0,93	
17	1,23	1,17	1,12	1,03	0,97	
18	1,33	1,26	1,20	1,10	1,04	
19	1,40	1,33	1,26	1,17	1,10	
20	1,47	1,39	1,33	1,23	1,16	
21	1,55	1,46	1,39	1,29	1,22	
22	1,62	1,53	1,46	1,35	1,27	
23	1,69	1,60	1,53	1,41	1,33	
24	1,76	1,67	1,59	1,47	1,39	
25	1,83	1,73	1,66	1,53	1,45	
26	1,90	1,80	1,73	1,60	1,51	

Tabla 510. 5) valores máximos de densidad de potencia eléctrica para alumbrado (DPEA) para vías vehiculares (W/m²)

Adaptación de la Norma Oficial Mexicana NOM-13-ENER-2004 (Reglamento Técnico)

En los sistemas de iluminación para vías a las cuales se les asignen las clases de iluminación P1 a P6, así como las clases C0 a C5, la eficacia mínima de las bombillas (fuentes luminosas) usadas no podrá ser inferior a 70 lm/W.

510.5.2 Guías de visibilidad en vias de velocidades elevadas

En las carreteras, donde se circula a velocidades elevadas, generalmente superiores a los 60 km/h la

DE

iluminación a plantear se concentra más en proveer la dirección del camino a manera de *guía visual*, que en proporcionar una gran cantidad de luz sobre la calzada. Debe resolver de manera secundaria el problema de ver obstáculos fijos o móviles que aparecen eventualmente. El conductor verá los obstáculos como siluetas, pues generalmente el contraste resulta negativo (el obstáculo se ve más oscuro que el fondo).

Al utilizar adecuadas guías visuales en la vía se pueden reducir sus niveles de iluminación, sin disminuir la seguridad, lográndose con ello un uso racional de la energía. Las guías de visibilidad resultan muy útiles en el delineamiento de la vía para seguridad del conductor en particular cuando se trata de vías periféricas, vías en zonas de alta contaminación atmosférica o con presencia permanente de neblina. El diseñador del alumbrado público puede contar en la actualidad con modelos de distribución en perspectiva (modelos 3D estandarizados) para garantizar que el observador no confundirá la vía aún en trayectos donde las curvas de nivel del terreno propicien tal confusión.

Las guías de visibilidad realizadas con el diseño de iluminación son una parte de las guías visuales totales. Para ello, la vía debe contener señales continuas, generalmente en pintura directa sobre la vía, que definen el límite entre la vía y la berma del camino, otras líneas para diferenciar los carriles, igualmente una doble línea para separar las calzadas en dirección contraria. Estas guías se tornan continuas en los tramos curvos y cambia de color (por ejemplo de blanco a amarillo) en los tramos donde la vía ofrece algún riesgo adicional.

Hay en la actualidad muchos otros elementos constitutivos de las guías de visibilidad de las carreteras o vías donde los alrededores no están iluminados y se encuentran referenciados en el Manual de Señalización Vial de INVIAS. Muchas de ellas son en pinturas claras o reflectivas, en alto relieve o en colores de alto contraste (amarillo y negro). El Manual de Señalización Vial de INVIAS establece señalización vertical, señalización horizontal y señales de guía, delineadores de piso, especificación técnica de construcción de señales, capta faros (ojos de gato).

510.6 LOCALIZACIÓN DE LUMINARIAS

Al iniciar un diseño de iluminación es necesario conocer las disposiciones que tiene el municipio que para los diferentes operadores de servicios públicos, en cuanto a la localización de los postes y redes de energía así como la red de alumbrado público, respecto al costado donde deben colocarse en la malla vial local, y si existe alguna restricción para la colocación de los postes exclusivos de alumbrado público en la malla arterial tanto principal como complementaria.

La localización de las luminarias en la vía está relacionada con su patrón de distribución, con los requerimientos lumínicos de la vía, con la altura de montaje de las luminarias, con el perfil de la vía, la proximidad a redes de AT, MT (en donde se deberán cumplir las normas de distancias mínimas de seguridad establecidas en el RETIE y zonas de servidumbres), líneas férreas, mobiliario urbano, etc.

Aparte de estas consideraciones, la altura de montaje se relaciona con las facilidades para el mantenimiento y el costo de los apoyos, la interdistancia de ubicación de los postes será la que resulte del estudio fotométrico de iluminación de la vía y primara sobre la interdistancia de ubicación de los elementos del mobiliario urbano (árboles, sillas, canecas para basura, bolardos, cicloparqueos, etc.).

Las interdistancias de localización de los postes de alumbrado público solo se deben disminuir debido a obstáculos insalvables, como por ejemplo sumideros de alcantarillas, rampas de acceso a garajes existentes, interferencia con redes de servicios públicos existentes y que su modificación resulte demasiada onerosa comparada con el sobre costo que representa el incremento del servicio de alumbrado público, etc.

Se debe buscar obtener interdistancias más elevadas mediante la utilización secuencial de las siguientes alternativas:

- a. Escoger la luminaria más apropiada.
- b. calibrar el reglaje de la luminaria para aumentar su dispersión
- c. Aumentar la inclinación de la luminaria (pasando de 0º hasta 20º);
- d. Utilizar brazos con mayor longitud y por tanto de mayor alcance.
- e. Aumentar la longitud del brazo para que el avance de la luminaria sobre la calzada sea mayor;

510.6.1 PRINCIPALES CONFIGURACIONES DE LOCALIZACIÓN DE PUNTOS DE ILUMINACIÓN

Conocidas las características de las vías y las propiedades fotométricas de las luminarias, el diseñador deberá aplicar la configuración que mejor resuelva los requerimientos de iluminación. A manera de ejemplo podrá tener en cuenta la recomendación de la siguiente tabla tomada de la NTC 900

Clase de	Altura	Relación	Disposición de las luminarias		
Iluminación	(m)	S/H	Criterio	Disposición	
M1	12 - 14	3,5 - 4	Dos carriles de circulación	Unilateral	
M2	10 - 12	3,5 - 4	Dos carriles de circulación	Unilateral	
M3	8,5 - 10	3,5 - 4	Ancho de la calzada menor	Unilateral	
M4	7 - 9	3,5 - 4	Unilateral		
M5	6	3,5 - 4	A criterio del diseñador		

abla 510.6 Recomendación para disposición de luminarias.

a) Postes exclusivos de alumbrado público de doble propósito

Debido a la disposición multipropósito de algunos proyectos en los que se contemplan vías especiales para el tráfico de vehículos, así como las vías peatonales y las ciclo-rutas, es necesario minimizar el uso de postes y apoyos para el alumbrado público. Por un lado sirve para iluminar la calzada vehicular y por otro lado, a igual o menor altura, sirven para colocar las luminarias del andén peatonal o la ciclo-ruta.

Disposición unilateral

Es una disposición donde todas las luminarias se instalan a un solo lado de la vía. El diseñador debe utilizar la luminaria más apropiada que cumpla con los requisitos fotométricos exigidos para las alturas de montaje, interdistancia y menor potencia eléctrica requerida.

Figura 510.6 b) Disposición Unilateral

Diseños por encima de 20º de elevación no son recomendables porque pueden terminar iluminando las fachadas del frente y generando polución luminosa).

b) Central doble:

Donde los carriles de circulación en una dirección y otra se encuentran separados por un pequeño separador que no debe ser menor de 1,5 m de ancho. Se logra una buena economía en el proyecto si los postes comparten en el separador central a manera de dos disposiciones unilaterales. Esta manera de agrupar las luminarias se denomina central sencilla.

Figura 510.65c) Disposición Central doble (para1,5 m ≥ b ≤ 4 m)

Bilateral alternada. c)

Cuando la vía presenta un ancho \boldsymbol{W} superior a la altura de montaje \boldsymbol{h}_m de las luminarias (1.0 < $(\boldsymbol{W}/\boldsymbol{h}_m)$ < 1,50), se recomienda utilizar luminarias clasificadas como Tipo II de la IESNA ó de dispersión media en el modelo de la CIE. Es claro que la anterior frase no obliga al diseñador a utilizar luminarias Tipo II de manera exclusiva, pues la presente norma es del tipo de resultados y no de materiales a utilizar en un diseño.

También es conveniente utilizar la disposición bilateral alternada en zonas comerciales o de alta afluencia de personas en la noche, para iluminar las aceras y las fachadas de las edificaciones frente a la calzada y crear de esta manera, un ambiente luminoso agradable.

Figura 510.6d) Disposición Bilateral alternada

d) Bilateral opuesta

Figura 510.6.g) Disposición Bilateral opuesta

DE

Figura 510. 6h) Disposición Bilateral opuesta con separador (para cualquier valor de b)

Cuando la vía presenta un ancho W muy superior a la altura de montaje h_m de las luminarias (1,25 < (W/h_m) < 1,75), se recomienda utilizar luminarias clasificadas como Tipo III de la IESNA ó de dispersión ancha en el modelo de la CIE en disposición bilateral opuesta, aunque se puede utilizar cualquier tipo de clasificación siempre y cuando se cumpla con los requisitos fotométricos exigidos y el diseño sea el más económico.

En este caso, la iluminación consta de dos filas de luminarias: una a cada lado de la vía y cada luminaria se encuentra enfrentada con su correspondiente del lado contrario.

Por otra parte, el solo uso de la disposición no garantiza el resultado. El diseño completo contempla una solución integral a la iluminación de la vía propuesta incluidos los alrededores inmediatos.

Esta disposición sobre vías principales, es comúnmente usada si se requiere solamente para iluminación doble propósito: la vehicular y la peatonal.

F) Otras combinaciones:

Figura 510.5 f) Disposición Doble central doble

En vías compuestas de cuatro (4) o mas calzadas de circulación y que incluye separadores, generalmente 2 ó 3, se utilizan combinaciones de distribución de luminarias. Las mas comunes son: **Doble central doble**, en la cual cada dos calzadas se iluminan con disposición central sencilla, como aparece en la Figura 510.5 F).

Cada calzada se trata separadamente desde el punto de vista del requerimiento lumínico. Así, las calzadas en seguida de los andenes (carril de baja velocidad) pueden ser del tipo M3 en tanto que las calzadas centrales (calzadas principales) pueden ser del tipo M2.

Otra forma muy eficiente para vías de cuatro calzadas es utilizar una distribución central sencilla para las calzadas centrales y una distribución bilateral alternada en conjunto con las centrales, para los carriles externos.

510.6.2 CASOS ESPECIALES DE DISPOSICIÓN DE LUMINARIAS

En sitios críticos como bifurcaciones, curvas, cruces a nivel etc. Se debe reforzar la iluminación y cumplir con las especificaciones fotométricas exigidas para cada sitio. El diseñador debe tener en cuenta las condiciones del tránsito automotor, la importancia relativa de las vías, la localización de monumentos, los obstáculos existentes, las señales de tránsito etc.

Las recomendaciones que se dan a continuación no constituyen una solución definitiva para cada caso particular.

a) Disposición en curvas:

El trabajo visual del conductor en las curvas se aumenta, por lo que en curvas leves (entre 0° y 30°) se reducir la interdistancia básica a 0,90\$ en el trayecto de entrada o salida de la curva (normalmente comprende 100 a 200 m para velocidades de circulación de 60 ó 75 km/h respectivamente) y a 0,75\$ en el trayecto mismo de la curva (donde se ha trazado la vía con un radio dado).

Figura 510.6.2 A) Disposición de luminarias en trayectos curvos

Se considera que un tramo es realmente curvo, cuando el radio de curvatura del trazado de la carretera sobre su eje es mayor a 300 m.

Cuando se trata de curvas más pronunciadas (entre 30° y 90° y radio inferior a 300 m) la interdistancia se reduce hasta 0,70\$, cuando las luminarias se encuentran instaladas en la acera exterior de la curva. Si se encuentran en la acera inferior, esta reducción va hasta 0,55\$.

La disposición de las luminarias debe ser preferencialmente en el andén exterior de las curvas, con el fin de mantener una quía visual más estable, se deben usar distribuciones de luminarias del tipo unilateral ó bilateral opuesta. Así mismo, se debe evitar el uso de la distribución bilateral alternada, porque puede causar confusión respecto a la forma del camino.

En este caso, la iluminación debe prestar una eficiente labor de señalización vial.

Otra distribución que debe evitarse es cambiar el sentido de la distribución unilateral al entrar a una curva y dejar luminarias justo al frente de la prolongación de la vía. Esto retarda la percepción de la curva por parte del conductor y aumenta la posibilidad de un accidente.

b) Disposición en calzadas con pendiente

DE

Cuando las luminarias están localizadas en calzadas en pendiente, se recomienda orientarlas de tal manera que el rayo de luz en el nadir sea perpendicular a la vía. El ángulo de giro formado entre el brazo y la luminaria, se denomina \mathbf{Spin} y debe ser igual al ángulo de inclinación de la vía θ . Esto asegura máxima uniformidad en la distribución de la luz y reduce el deslumbramiento de una manera eficaz.

Igual que en las curvas, el trabajo visual del conductor en una calzada en pendiente se aumenta. Se considera que una calzada está en pendiente, como para variar las condiciones de iluminación, cuando ésta excede los 3° por debajo de este valor, se considera la iluminación como un trayecto plano.

Al igual que en los trayectos curvos, los primeros 100 ó 200 m (dependiendo de la velocidad de circulación) al entrar a una sección de la calzada en pendiente, el diseñador debe reducir la interdistancia a 0,90**S**. En la cima, unos 100 ó 200 m antes y después, dependiendo de la velocidad de circulación, la interdistancia se reduce paulatinamente hasta llegar a 0,70 **S**. Ver la Figura 510.6.2 b))).

Figura 510.6. 2 B) Disposición de luminarias en calzada con pendiente

Los postes, en estos trayectos en pendiente, deberán permanecer verticales e independientes de la inclinación de la calzada. Si un trayecto de la calzada es inclinado y además es curvo, los postes o apoyos de las luminarias deben ubicarse detrás de las barreras protectoras o naturales que existan, con el fin de evitar accidentes de tránsito y reducir sus complicaciones, cuando se produzcan.

510.7 COEXISTENCIA DE LAS LUMINARIAS DE ALUMBRADO PÚBLICO CON LOS ÁRBOLES EN LAS VÍAS.

La arborización en el casco urbano de un municipio debe estar sometida, como todo lo público, a unas normas regulatorias que faciliten la coexistencia tanto con la red eléctrica aérea o subterránea, los andenes, la iluminación y demás elementos del mobiliario urbano.

Se deben evitar especies como el ficus, los cauchos y ceibas, mientras se recomienda plantar árboles de follaje liviano, lo cual se hace separando el punto de siembra al menos 1,5 m de la proyección que da la red aérea sobre el piso.

Para lograr una coordinación entre la arborización y la iluminación pública es necesario, en algunos casos, efectuar desviaciones a los parámetros generales del diseño del alumbrado público para la vía, tales como la altura de montaje, interdistancia, disposición de las luminarias o su brazo de montaje. Cada caso debe tratarse separadamente, dependiendo de la vegetación considerada.

En todos los casos, es mejor planear desde el momento de iniciar el diseño de la calzada los sitos para las redes de servicios públicos, tanto aéreos como subterráneos. Si una luminaria debe cambiar su interdistancia en un 10%, esto no afectará la calidad de la iluminación de manera apreciable. Incluso si

DE

se trata de una sola luminaria, es aceptable hasta un 20% de desviación. El parámetro principal a cambiar, por efectos de la arborización, es el avance de la luminaria sobre la calzada, el cual depende del brazo. De esta manera, se garantiza la efectividad y apariencia de la instalación de alumbrado.

El casco urbano de un municipio entendido como ecosistema, conjuga en sí lo natural, lo funcional y lo humano.

El sistema verde del casco urbano de un municipio ha de concebirse como su nexo con el territorio natural que la sustenta y circunda ó como la penetración de la naturaleza, desde el entorno natural al ambiente urbano; se debe conceder a la arborización la importancia que merece como integrante del contexto urbano, en tal condición debe formar parte integral de los proyectos de diseño de alumbrado y se deben coordinar y jerarquizan las prioridades en la localización de los distintos componentes urbanos, dando valores racionales a cada uno de los objetivos de cada uno de estos componentes.

Es necesario coordinar entre los diferentes entes municipales, para la selección de las especies que mejor se adapten y no riñan con el principal objetivo del alumbrado público que está orientado a la seguridad de las personas ya sean peatones o que se movilicen en vehículos.

Figura 510.7 Separación mínima entre los árboles y los postes con las luminarias de alumbrado público, para evitar sombras sobre la vía.

Debe tenerse en cuenta que no es necesario podar los árboles mas allá de las ramas que interfieran con el haz luminoso útil (Véase la figura 510.7. ya que el follaje restante permite mejorar el apantallamiento de la instalación y por ende, mejora la visibilidad de obstáculos por efecto silueta.

SECCIÓN 520 DISEÑOS FOTOMETRICOS

520.1 CRITERIOS DE DISEÑO

En los diseños fotométricos de los proyectos de alumbrado público, se deben tener en cuenta los siguientes lineamientos y conceptos generales, según se aplique:

a) Se debe realizar el levantamiento de la infraestructura de alumbrado público existente (postes, luminarias, canalizaciones, transformadores, etc.), con el fin de determinar su continuidad, su retiro parcial o total, su reubicación o modificación, así como de integrarla con el nuevo proyecto para

DE

evitar la duplicidad de infraestructura de alumbrado público. Al efecto, se deberá evaluar la influencia de la iluminación existente que permanezca y la infraestructura aprovechable. En los casos de retiro, se deben relacionar las cantidades en las memorias del proyecto y en los planos definitivos, la identificación (rótulo) de cada luminaria que se eliminará o se reubicará. Esta información se debe consignar también en las actas de entrega de obra.

- b) En los casos en que se considere necesario alterar o restringir los parámetros para el diseño fotométrico (potencias de luminarias, niveles de iluminancia/luminancia, alturas de montaje de luminarias, condiciones especiales en el espacio público y su amoblamiento, modulación arquitectónica, accidentes geográficos, restricciones por la interferencia con líneas eléctricas de alta tensión, canales, ductos de servicio público, edificaciones, puentes, entradas vehiculares a supermercados, parqueaderos, estaciones de servicio, etc.), el diseñador debe registrar en el proyecto de tales situaciones.
- c) El diseño fotométrico debe concatenarse con los diseños de espacio público, de urbanismo y paisajismo, haciendo claridad en que la calidad y la cantidad de la iluminación deben prevalecer pero manteniendo armonía con la modulación del espacio público y la ubicación del mobiliario urbano.
- d) En lo posible y dependiendo de la magnitud de la obra, se debe disponer como mínimo de tres alternativas de diseños fotométricos emitidos por diferentes diseñadores, en cuyo diseño especifiquen luminarias que cuenten con certificado de conformidad de producto. Los planos de los diseños fotométricos deben entregarse debidamente identificados y avalados por el responsable de su elaboración.

No se deberá aceptar la presentación de los proyectos fotométricos en tramos o perfiles típicos, sino que se deben desarrollar en su totalidad, con el propósito de garantizar el manejo de intersecciones y transiciones en los cambios de perfil, permitiendo reflejar las cantidades de obra del proyecto. En caso de presentarse modificaciones posteriores, se deberá indicar la versión y la fecha de actualización

- e) Como resultado del diseño fotométrico, se debe especificar en forma escrita en las memorias de cálculo y gráficamente sobre los planos de diseño fotométrico los siguiente: la altura de montaje, perfil de la vía (ancho de andenes, calzadas, ciclo rutas, etc.), interdistancias, inclinación, posición de bombilla y avance de la luminaria. Se debe dar claridad en lo que respecta al ángulo de inclinación del conjunto brazo-luminaria (conjunto óptico) y su avance total. Así mismo, anexar la matriz de intensidades certificada con la cual se realizan los cálculos, se debe indicar la posición (reglaje) de la bombilla a la cual corresponden. La información antes descrita de los estudios y diseños fotométricos de la alternativa seleccionada debe consignarse también en los planos eléctricos. Toda la anterior documentación se deberá usar en las labores de construcción, interventoría e inspección por parte de los organismos acreditados.
- f) Es importante destacar que las zonas peatonales deben iluminarse en lo posible con las mismas luminarias que iluminan las vías. La utilización del sistema doble propósito o doble luminaria para la iluminación de calzadas y de manera simultánea ciclo rutas, andenes y demás áreas peatonales, se debe aplicar solo cuando los niveles calculados obtenidos por la influencia de las luminarias dispuestas para la calzada no sea suficiente, lo cual deberá demostrarse y soportarse con cálculos fotométricos o con mediciones de campo. Así mismo, no se deberán proyectar luminarias hacia los andenes en sistema doble o doble propósito, cuando éstos sean de ancho igual o inferior a 3 m o se presente interferencia con edificaciones, árboles, etc.
- g) Cuando exista o se proyecten vías con separadores con un ancho mayor o igual a 1,5 metros, deberá darse prioridad al diseño con disposición central doble, sin detrimento de la cantidad y la calidad de la iluminación de las áreas peatonales, ciclo rutas y demás áreas en los andenes, garantizando el cumplimiento de las distancias mínimas de seguridad de los postes al sardinel, que debe ser de 0,6 m.

En los separadores se deberán utilizar postes con doble luminaria a menos que el ancho del separador sea mayor de 4 m u otros factores debidamente justificados obliguen a la instalación de doble fila de postes con luminarias sencillas.

- h) En lo referente a la proyección de arborización o coexistencia con árboles, deben considerarse distancias mínimas a los postes de alumbrado público, dependiendo del porte de los árboles proyectados o existentes, con el fin de evitar la interferencia futura del follaje con la distribución del flujo luminoso.
- i) En las intersecciones viales grandes y complejas como glorietas y puentes vehiculares a diferentes niveles, o en plazas y otras áreas de gran extensión, se deberá considerar la conveniencia de instalar luminarias o proyectores para fuentes de sodio de alta presión y potencias grandes, en postes de 16 m a 27 m para lograr una iluminación general, y comparar con alternativas que usen postes de menor altura y fuentes de menor potencia con instalación localizada o puntual. Para estos efectos, es importante verificar todos los aspectos: técnicos, arquitectos, sociales y económicos (costos iniciales, de operación: mantenimiento y consumo de energía y de reposición), sin desconocer aspectos prácticos como las facilidades de acceso al mantenimiento periódico (sustitución de componentes, limpieza del compartimiento óptico, pintura, etc.) y la confiabilidad del sistema seleccionado.
- j) El diseñador debe realizar la evaluación y comparación técnico-económica para una vida útil de 25 años, comparando al menos tres alternativas de los equipos de iluminación (exceptuando proyectos Tipo A y Tipo B, para los cuales se puede presentar solo una alternativa). El diseñador debe incluir las cantidades definitivas totales de obra civil (cajas de inspección, canalizaciones, etc.) y eléctrica (postes, bombillas, luminarias, conductores, empalmes, etc.) asociadas exclusivamente al proyecto de alumbrado público, tomando precios del mercado o los precios unitarios que tenga vigentes a la fecha el operador de servicio de alumbrado público del municipio.

El valor de las luminarias deberá corresponder con el precio ofertado y las consideraciones sobre ajuste si existen para el periodo de evaluación, y estará soportado con el compromiso de suministro por parte del comercializador o fabricante.

Además de los costos iniciales de materiales, equipos y mano de obra, deberá efectuarse la evaluación de los costos anuales de operación (mantenimiento y consumo de energía eléctrica, incluyendo las pérdidas) y el valor de salvamento de la infraestructura en el horizonte analizado.

Para efectos de trazabilidad del proyecto se deberá dejar memoria, sobre las reuniones de carácter interinstitucional realizadas para definir criterios y lineamientos específicos para los estudios y diseños fotométricos.

520.2 USO DE SOFTWARE EN EL DISEÑO FOTOMETRICO DE ALUMBRADO PÚBLICO.

Para efectos de hacer la evaluación técnica y financiera necesaria y la comparación con otras alternativas, los diseñadores y fabricantes de luminarias o sistemas de iluminación que presenten propuestas con diseño fotométrico usando software especializado, deberán suministrar la información necesaria que le permita al evaluador o a quien tome determinaciones sobre el proyecto comparar y recomendar la propuesta que presente los mejores resultados técnicos y económicos para el municipio, de acuerdo con lo establecido en el capítulo 6 del presente Reglamento Técnico.

Aunque el software especializado de iluminación no requiere de un certificado de conformidad de producto, si debe cumplir con los siguientes requisitos para que pueda ser tenido en cuenta en la presentación de resultados de diseños fotométricos:

- Debe tener un reporte de validación de pruebas de sus resultados, expedido por un laboratorio de iluminación acreditado o reconocido.
- El software debe ser manejado por un profesional competente para su alimentación con datos y la interpretación de los resultados que arroje, quien deberá responsabilizarse de los resultados suscribiéndolos y firmándolos. Es importante señalar que en una metodología para el diseño de iluminación mediante software especializado, además de los resultados que arroja el programa de computador, se requiere la de la interpretación de los mismos por parte de un especialista en diseño de iluminación.

- El software para el diseño de alumbrado público debe utilizar en sus rutinas de cálculo la metodología de la norma CIE 140 o de las planteadas en el presente reglamento.
- El software debe permitir el ingreso de todos los parámetros y variables necesarios para realizar el diseño tales como: matrices de información fotométrica certificada en coordenadas CIE o IESNA, factor de mantenimiento, altura de montaje, ángulo de inclinación de la luminaria, reglaje de luminarias, interdistancia de luminarias, avance, ancho de la vía, entre otros..
- El software deberá obtener los resultados en forma numérica de: Luminancia media, Uniformidad, iluminancia mínima y media, Tl, Uniformidad longitudinal. Igualmente podrá contar con módulo gráfico y de simulaciones para las condiciones de día y con el proyecto de iluminación en la noche.
- El software debe permitir la identificación y medidas de las mallas de cálculo.

SECCIÓN 530 CÁLCULOS PARA ALUMBRADO PÚBLICO.

Para iniciar un cálculo lumínico destinado a alumbrado público, se deberán tener en cuenta tanto la función del espacio público como los detalles y características del sitio de instalación y de los puntos de luz. La exigencia del alumbrado público está en relación directa con la intensidad del tráfico y la velocidad media de los vehículos que la transitan. Los cálculos de diseño de alumbrado público se deben hacer con base en luminancia o iluminancia según requerimientos particulares.

A continuación se definirá la forma de realizar cada uno de los cálculos lumínicos necesarios en los proyectos de iluminación:

530.1 CÁLCULOS DE ILUMINANCIA.

Si se requiere un análisis detallado del diseño, se hace esencial la utilización del computador para confiabilidad y agilidad de los cálculos, los cuales se realizan con base en los datos fotométricos certificados de la luminaria suministrados por los fabricantes o comercializadores.

530.1.1 CÁLCULO DE LA ILUMINANCIA EN UN PUNTO.

La metodología parte de la fórmula dada para la Ley del coseno que aplicada a la geometría del sistema dada en la Figura 520-1.a), permite obtener un valor para la lluminancia horizontal en el punto. Donde hm es la altura de montaje de la luminaria, γ es el ángulo de incidencia del haz de luz o candelas representado por la en la dirección al punto P. El diseñador deberá obtener el valor de la a partir de la matriz de intensidades y la geometría del sistema.

Es necesario tener en cuenta que si hay mas de una fuente aportando luz al punto de cálculo P, es necesario considerar cada aporte por separado y luego sumarlos.

La iluminancia en un punto, también se puede obtener utilizando el diagrama con las curvas Isolux de la luminaria.

En los diagramas Isolux aparecen las iluminancias en valores reales o en porcentaje de la iluminancia máxima y generalmente se dan para una altura de montaje de la luminaria de 1,0 metro y flujo luminosos de la bombilla de 1.000 lúmenes. La curva Isolux puede tener cualquier escala horizontal en mm/m.

DE

Figura 530.1.a) Parámetros para calcular la iluminancia en el punto P.

$$E_p = \sum_{n=1}^{\infty} \frac{I_{\gamma,c}}{h_m^2} \cos^3 \gamma$$

Donde:

 $I_{y,C}$ Intensidad luminosa en dirección del punto P, determinada por los ángulos γ y C.

γ:Ángulo vertical sobre el plano C considerado

h_{m:} Altura de montaje de la luminaria.

n:Número de luminarias.

Para obtener la iluminación producida por una luminaria en un punto, se toma el diagrama Isolux hecho en papel transparente, se coloca su centro sobre la proyección de la luminaria sobre el plano de la calzada, el cual se debe elaborar a un tamaño proporcional a la escala del diagrama Isolux dividido por la altura de montaje de la luminaria. El valor de la iluminancia en el punto, se puede leer directamente del diagrama o si está en porcentaje de la iluminancia máxima, se puede obtener multiplicando el valor de la curva Isolux por:

$$E_{máx} = \underline{\emptyset} = (Flujo de la bombilla utilizada) / (hm2)$$

Donde h_m = (Altura de montaje)

Cuando se tiene más de una luminaria en la calzada, que es el caso más real y se necesita conocer la iluminancia total en el punto P, con el aporte de cada una de las luminarias que tienen influencia en dicho punto, se utiliza el siguiente método:

Se dibuja el plano de la calzada en escala igual a la del diagrama Isolux de las luminarias, dividido entre la altura de montaje. En este plano se localizan las luminarias y el punto P.

El diagrama Isolux, hecho en papel transparente, se hace girar 180° con respecto a las luminarias y se coloca en el punto central sobre el punto P.

Sin mover el diagrama se lee la contribución de todas las luminarias que tienen influencia sobre este punto.

Se suman las contribuciones de cada una de las luminarias, obteniendo el valor de la iluminancia total sobre el punto P o el porcentaje de la $E_{m\acute{a}x}$, en este último caso se multiplica por nØ / h_m^2 , para obtener la iluminancia total sobre el punto en cuestión.

530.1.2 CÁLCULO DE LA ILUMINANCIA PROMEDIO DE UNA VÍA.

Para los cálculos de lluminancia promedio de una vía se debe aplicar cualquiera de los siguientes métodos:

Método Europeo de los 9 puntos: De acuerdo con el *método europeo* de los 9 puntos, que se usa para calcular la *lluminancia promedio sobre la vía* en una instalación de *alumbrado público*, es necesario ubicar cada uno de estos puntos de cálculo sobre la porción típica de la vía considerada. De este modo, se divide en cuatro partes, dos longitudinales y dos transversales, de modo que los puntos a considerar

DE

son cada uno de los vértices de los rectángulos generados. Así se obtienen los 9 puntos considerados en el método. (Véase la Figura 520-1.b)).

Figura 530.1.b) Cálculo de la iluminancia promedio método europeo de los 9 puntos.

La iluminancia promedio sobre la vía se calcula teniendo en cuenta el grado de multiplicidad de cada punto. Así, los puntos extremos tienen un grado de multiplicidad de 0,25; los puntos intermedios tienen un grado de multiplicidad de 0,5 y el punto central tiene un grado de multiplicidad de 1.0

Los anteriores grados de multiplicidad se deducen del siguiente razonamiento: En la figura 530-1.b), la iluminación E_1 leída en el punto P_1 corresponde al área $\square Vd$., pero tan sólo la cuarta parte de esa área corresponde a un área sobre la vía considerada (área sombreada). Igual sucede con la iluminación de los puntos P_3 , P_7 y P_9 . Por tanto la contribución de esos puntos debe ser ponderada al 25%

Por idéntico razonamiento, los puntos P_2 , P_4 , P_6 y P_8 representan la iluminación de áreas que tan solo tienen el 50% sobre la vía.

El punto P_5 , a diferencia de los demás, representa un área totalmente contenida en la vía por lo que su contribución al promedio es completa.

A partir de la lectura de la iluminación en los 9 puntos, la iluminación promedio sobre la vía se calcula con la fórmula siguiente:

$$E_{prom} = \frac{1}{16} [(E_1 + E_3 + E_7 + E_9) + 2 \times (E_2 + E_4 + E_6 + E_8) + 4 \times E_5]$$

Siendo $E_1,\,E_2...\,E_9$ las iluminancias en los puntos $P_1,\,P_2...\,P_9\,$ respectivamente.

Figura 530.1.c) Selección de los 9 puntos según disposición de las luminarias.

La Figura 520.1.C) ayuda a ubicar los nueve puntos, para diferentes sistemas de alumbrado, de acuerdo con la distribución de los postes y la forma de la vía.

Método del Coeficiente de utilización .En el diseño de alumbrado público, uno de los documentos fotométricos que identifica una luminaria, es la curva del coeficiente de utilización K, el cual sirve para calcular, a partir del conocimiento de la geometría de la vía considerada y la disposición de las luminarias, la iluminancia media sobre la calzada.

En el proceso de diseño y a partir de una iluminancia media dada, puede usarse para calcular la interdistancia. Otra forma de aplicar esta curva, es calcular el flujo luminoso necesario para obtener una iluminancia dada, a partir de una interdistancia fija.

La fórmula general del cálculo es:

Donde:

DE

 $\boldsymbol{E_{prom}}$ = Iluminancia promedio sobre la calzada (\boldsymbol{Ix}).

 K_t = Coeficiente de utilización del sistema total calculado (%).

 F_{M} = Factor de mantenimiento.

S = Interdistancia de luminarias (*m*) Véase la Figura 530-1 b).

W = Ancho de vía (en m) Véase la Figura 530-1 b).

Las curvas de coeficiente de utilización k^{14} expresan el porcentaje del flujo luminoso emitido por la luminaria y que cae sobre la superficie de la calzada, en función del ancho de la misma. Como punto de referencia, se toma la vertical de la luminaria. Véase la Figura 520-1.d).

Una luminaria de alumbrado público tiene dos curvas k. La primera, denominada k_1 , representa el flujo luminoso hacia en frente, hacia adelante, hacia la calzada. La segunda, denominada k_2 , representa el flujo luminoso hacia atrás, hacia las casas, hacia el andén. Véase la Figura 520-1.e).

Figura 530.1.e) Curvas de coeficiente de Utilización

En la ordenada de la figura 530.1.E) se indica el valor del k en porcentaje y en la abscisa se indica el ancho de la calzada expresada en función de la altura de montaje H. Con el fin de facilitar su uso en diferentes esquemas de montaje.

Para calcular k_1 se calcula la relación W_1/H se ubica el valor en la abscisa de la figura 530-1.E) y se sigue verticalmente hasta cortar la curva k_1 . En este punto, horizontalmente se lee el valor k_1 .

¹⁴ Las curvas vienen dadas para una luminaria específica equipada con una bombilla determinada.

Igual procedimiento se sigue para el cálculo de k2 pero utilizando el valor W2 y la curva k2.

DE

Dependiendo de la disposición de las luminarias, se obtiene el coeficiente de utilización total de la luminaria K_T de acuerdo con las Figuras 530.1.F), 530.1.G) 530.1.H) 530.1.J) que se muestran a continuación:

Localización Unilateral. La vertical de la luminaria coincide con el borde de la calzada.

Figura 530-1.f) Localización unilateral de luminaria.

La luminaria avanza w2 sobre la calzada. La luminaria está sobre la acera a w2 de la calzada

Figura 530-1.g) Luminaria sobre la calzada

La luminaria está sobre la acera, a w2 de la calzada.

Figura 530-1.h) Luminaria sobre la acera

La luminaria ilumina la calzada con el flujo de atrás y está localizada a w2' de la calzada.

DE

Figura 530-1.i) Luminaria ubicada tras la calzada y la acera.

Localización bilateral alternada (tres bolillos). El cálculo es idéntico al cálculo de K en la localización unilateral. Suponiendo todas las luminarias localizadas del mismo lado, si los avances o retrocesos de las luminarias son diferentes de un lado con relación al otro, se deben efectuar dos cálculos y el coeficiente K, será la suma de los valores encontrados.

Figura 520-1.j) Localización bilateral alternada (zig-zag ó tres bolillos)

Localización bilateral opuesta. El cálculo es idéntico al cálculo del coeficiente K en localización unilateral, para cada uno de los lados, con la misma observación hecha para el caso de la localización bilateral alternada, con relación a los avances y retrocesos de las luminarias.

Es evidente sin embargo, que el número de luminarias que se toma en consideración, es el doble con relación a la localización unilateral.

Localización central doble. En la figura 520-1.k), se calcula separadamente el coeficiente de utilización de cada luminaria siguiendo el procedimiento analizado en los casos mencionados anteriormente.

Figura 530-1.k) Localización central doble

DE

530.1.3 CÁLCULOS COMPUTARIZADOS DE ILUMINANCIA.

Con el advenimiento de las computadoras y el software para cálculo de iluminación, la dificultad para obtener los valores de manera manual, prácticamente desapareció y hoy en día, todos los cálculos comerciales se realizan a través de software especializado. Así mismo, se puede incrementar el número de puntos considerados, pues los 9 del método europeo son un límite de aproximación.

La iluminancia horizontal en un punto se calcula a partir de la siguiente fórmula u otra matemáticamente equivalente:

$$E_h = \frac{\sum I(c, \gamma) \cdot \cos^3 \gamma \cdot \varphi \cdot FM}{H^2}$$

En donde

E_h = luminancia horizontal mantenida en el punto, en luxes. Indica la sumatoria de la contribución de todas las luminarias.

I (c, γ) = intensidad en cd/klm emitida por la luminaria en la dirección del punto; ángulo de incidencia de la luz en el punto.

H = altura de montaje en m de la luminaria.

φ = Flujo luminoso inicial en klm de la bombilla o bombillas de la luminaria.

FM = Factor de mantenimiento.

Campo de cálculo. El campo de cálculo deberá ser típico del área de la calzada que le interesa al conductor y al peatón; puede incluir las aceras, los carriles de ciclo rutas y las zonas peatonales.

Como se muestra en la figura 530.1.I), el área se limita por los bordes de las calzadas (incluidas ciclorrutas y zonas peatonales, si es aplicable) y por las líneas transversales a través de dos luminarias consecutivas.

Para las instalaciones alternadas, las luminarias consecutivas estarán en los lados opuestos de la carretera. Véase la figura 530-1.I)

Figura 530.1.I) Puntos de cálculo para la iluminancia

Posición de los puntos de cálculo. Los puntos de cálculo se deben espaciar uniformemente en el campo de cálculo (véase la figura 530.1.l)) y su número se debe escoger como sigue:

En la dirección longitudinal, El espaciado en la dirección longitudinal debe determinarse a partir de la ecuación D = S/N, en donde

D = Es el espaciado entre puntos en la dirección longitudinal (m).

S = Es el espaciado entre luminarias (m), y

N = Es el número de puntos de cálculo en la dirección longitudinal con los siguientes valores:

DE

Continuación Anexo General Reglamento Técnico de Iluminación y Alumbrado Público - RETILAP

Para S menor o igual a 30 m, N = 10

Para S mayor de 30 m, el entero más pequeño para que se obtenga D menor o igual a 3 m.

La primera fila transversal de puntos de cálculo se espacia a una distancia d/2 más allá de la primera luminaria (m).

En la dirección transversal. El espaciado (d) en la dirección transversal se determina a partir de la ecuación d = Wr/3. En donde:

d = Es el espaciado entre puntos en la dirección transversal (m)

Wr = Es el ancho de la calzada o del área aplicable (m).

El espaciado de los puntos de los bordes del área aplicable es D/2 en la dirección longitudinal y d/2 en la dirección transversal como se indica en la figura 530.1.l).

Número de luminarias incluidas en el cálculo. Para el diseño se deben considerar las luminarias que estén dentro de un valor igual a cinco veces la altura de montaje desde el punto de cálculo.

Aceras y carriles para ciclorrutas. Los puntos de cálculo se deben espaciar uniformemente en el campo de cálculo, y su número se deberá escoger de la siguiente forma:

Dirección longitudinal. Si las aceras o los carriles de ciclo rutas son de la misma clase de iluminación que la calzada, pueden considerarse conjuntamente con la calzada para determinar el espaciado de los puntos de calculo en la dirección longitudinal, en caso contrario se aplica nuevo campo de cálculo según la figura 530-1.l).

Dirección transversal. Se debe aplicar la siguiente formula: df = Wf/n. En donde:

df = Es el espaciado entre puntos de la dirección transversal en metros.

Wf = Es el ancho de la acera o del carril de la ciclorruta en metros.

n = Es el número de puntos en la dirección transversal con los siguientes valores:

Para Wf menor o igual a 1,0 m, n = 1, para Wf mayor que 1,0; n es el número más pequeño para que se obtenga df menor o igual a 1,0 m.

Los puntos adyacentes al borde de la calzada deben espaciarse desde el borde de la calzada a la mitad de la distancia entre puntos.

Para el número de luminarias incluidas en el cálculo, se aplica el mismo criterio de las calzadas.

Áreas de forma irregular. Estas pueden incluir zonas residenciales y áreas donde predomina la actividad peatonal.

Los puntos de cálculo deben incluir áreas aplicables y estar sobre una malla con un espaciado entre puntos no mayor de 5 m. Para áreas de un interés o una importancia particular se debe considerar un espaciado de alrededor de 1.0 m.

El número de luminarias incluidas en el cálculo debe ser el mismo número utilizado para los cálculos de la calzada.

530.2 CÁLCULO DE LA UNIFORMIDAD GENERAL DE ILUMINANCIA EN ALUMBRADO PÚBLICO.

El valor del coeficiente de uniformidad general de lluminancia se calcula de acuerdo con los dos criterios siguientes:

a) Como $U_o = E_{min}/E_{prom}$ Tomando como base los puntos evaluados en el campo típico de la vía, bien sean los 9 puntos del método europeo o los 20, 30 ó 60 puntos del método computacional, donde:

E_{min} corresponde al punto de menor iluminancia entre todos los puntos calculados.

DE

 E_{prom} Corresponde al valor promedio calculado entre todos los n puntos considerados, desde el primero E_1 hasta el final E_n .

La fórmula aplicable es:

$$E_{prom} = \frac{\sum_{i=1}^{i=n} E_i}{n}$$

b) Como $U_g = E_{min}/E_{max}$. Tomando como base los puntos evaluados en el campo típico de la vía, bien sean los 9 puntos del método europeo o los 20, 30 ó 60 puntos del método computacional. Donde:

E_{min} corresponde al punto de menor iluminancia entre todos los puntos calculados.

E_{max} Corresponde al punto de mayor iluminancia calculado entre todos los puntos considerados.

530.2.1 CALCULO DEL COEFICIENTE DE UNIFORMIDAD GENERAL DE ILUMINANCIA.

El valor de la uniformidad general de lluminancia se calcula de acuerdo con los criterios siguientes:

$$U_0 = E_{min} / E_{prom}$$

Tomando como base los puntos evaluados en el campo típico de la vía, bien sean los 9 puntos del método europeo o los puntos requeridos por el método computacional;

E_{min} Corresponde al punto de menor iluminancia entre todos los puntos calculados.

 E_{prom} Corresponde al valor promedio calculado entre todos los n puntos considerados, desde el primero E_1 hasta el final E_n .

$$E_{prom} = \frac{\sum_{i=1}^{i=n} E_i}{n}$$

La fórmula aplicable para el cálculo de la luminancia promedio es: Donde:

E_i Valor de la iluminancia en cada punto.

n Número de puntos o áreas consideradas en el cálculo.

E_{prom} Iluminancia promedio de la vía o zona considerada.

530.3 CÁLCULO DEL VALOR DE RELACIÓN DE ALREDEDORES-SR-.

La relación de alrededores es la iluminancia horizontal promedio en dos franjas longitudinales, cada una adyacente a los dos bordes de la calzada pero que están situadas fuera de la calzada, dividida por la iluminancia horizontal promedio en dos franjas longitudinales cada una adyacente a los dos bordes de la calzada pero que están situadas sobre esta misma.

DE

El ancho de las cuatro franjas debe ser igual a 5,0 m o a la mitad del ancho de la calzada, o el ancho de la zona sin obstáculos que caiga fuera de la calzada, cualquiera que sea la menor de ellas. Para calzadas dobles, ambas calzadas se deben tratar conjuntamente como si fueran una única, a menos que estén separadas por más de 10 m.

La iluminancia promedio en las franjas sobre y adyacente a la calzada deberán calcularse por el mismo procedimiento o por un procedimiento matemáticamente equivalente al utilizado para calcular la iluminancia promedio en los pasos peatonales. Esta luminancia promedio deberá mantenerse en toda la extensión del andén.

530.4 DETERMINACIÓN DEL ESQUEMA DE MANTENIMIENTO DE INSTALACIONES DE ALUMBRADO PÚBLICO.

Todas las instalaciones de alumbrado público deben contar con un plan de mantenimiento que garantice el mantenimiento de los niveles de eficiencia energética y los parámetros de iluminación. Este plan de mantenimiento debe incluir entre otras informaciones, el periodo de limpieza del conjunto óptico de las luminarias y de cambio de las bombillas. (ver la figura 530.2).

Figura 530.4) Esquema de mantenimiento de una instalación de alumbrado público

En la figura 530.4:

- La curva B corresponde a la curva de depreciación del flujo luminoso de la bombilla (DLB).
- La curva C corresponde a la curva del factor de ensuciamiento (F_E).

El diseñador de un proyecto de alumbrado público debe presentar el esquema de mantenimiento de la instalación de alumbrado, con base en los datos que utilizó para el cálculo de factor de mantenimiento (F_M) establecido en el presente reglamento.

La periodicidad de la limpieza del conjunto óptico de la luminaria y del cambio de las bombillas debe ser tal que garanticen que la instalación de alumbrado público no va a estar funcionando con valores de iluminancia promedio por debajo de los mínimos mantenidos.

Hay que resaltar, como se puede ver en la figura 530.2), que con el mantenimiento nunca se restablecen las condiciones iniciales, por cuanto hay factores que son no controlables, como la depreciación de la luminaria debido al envejecimiento y a la degradación de sus materiales, que producen un aumento de la opacidad y/o reducción de reflectividad en los materiales del conjunto óptico de la luminaria.

A medida que pasa el tiempo, el valor de iluminancia promedio de la instalación se va alejando del valor inicial de iluminancia promedio (100%), hasta llegar al final de la vida útil de las luminarias. Un caso extremo sería cuando las luminarias con bombillas nuevas, escasamente produzcan el valor de iluminancia mínimo mantenido.

El operador del servicio de alumbrado público debe tener en cuenta, para el programa de mantenimiento de las instalaciones de alumbrado público, el esquema de mantenimiento establecido en el diseño del proyecto; aunque con base en los resultados de los trabajos de mantenimiento, el operador deberá ir haciendo ajustes a la curva del programa de mantenimiento suministrada por el diseñador del proyecto, con todas las actividades necesarias para garantizar los niveles de iluminación diseñados y establecidos al recibo inicial del proyecto. La interventoría debe verificar el cumplimiento del esquema de mantenimiento.

530.5 CÁLCULOS DE LUMINANCIA

530.5.1 CÁLCULO DE LA LUMINANCIA EN UN PUNTO.

El presente modelo de cálculo debe ser aplicado a calzadas secas y rectas. Fue desarrollado por la CIE y se encuentra documentado en la publicación CIE 30-2 1982. y CIE 140-2000.

Es claro el hecho que la visión cómoda y segura depende del contraste y acomodación del ojo y que a su vez estos factores dependen de la luminancia tanto sobre la vía como sobre los objetos a ver. Así, la iluminancia es un factor que depende de la cantidad de luz que incida sobre la vía, en tanto que la luminancia depende de la cantidad de luz reflejada que llega al observador.

En consecuencia, la luminancia en alumbrado público depende de:

- La cantidad de luz que llega a la calzada.
- La posición del observador.
- Las características reflectivas propias de la calzada.

Coeficiente de luminancia: Para poder calcular la luminancia de una superficie es necesario conocer sus propiedades de reflexión. Para tales efectos, se puede definir un coeficiente de reflexión q, como la relación entre la luminancia y la iluminancia de un punto de la superficie de tal modo que:

Donde:

q = Coeficiente de luminancia en el punto P.

L = Luminancia en el punto P

 E_h : = Iluminancia horizontal en el punto P.

$q = f(calzada, \alpha, \beta, \gamma, \delta)$

El coeficiente de luminancia para una calzada dada es función de la dirección de incidencia de la intensidad luminosa, de la dirección de observación y, de manera general de los cuatro ángulos (α , β , γ , δ), representados en la figura 520-2.a)).

Para el área de la calzada considerada por un conductor comprendida entre 60 m y 160 m delante de él, α sólo varía entre 0,5° y 1,5°. Dado que la dependencia de q con respecto a α permanece prácticamente constante, es usual que los coeficientes de luminancia sean determinados con α mantenida constante a 1°. en relación con el ángulo δ, que varía entre 0° y 20°, no incide en el cálculo y en la práctica se desprecia. Este es el estándar de la CIE.

En consecuencia, el coeficiente de luminancia, para una calzada específica, depende de la posición del

DE

observador y de la posición de la fuente de luz con respecto al punto considerado (ver figura 530.3.2.) de modo que pueda establecerse una función.

$$q = f(\beta, \gamma)$$

Así, pues, el coeficiente q puede tabularse en función de las dos variables independientes descritas β y γ en diferentes tabulaciones de acuerdo con otros factores que diferencian las características reflectivas de las calzadas.

Se pueden introducir otros factores en la tabulación con el fin de simplificar el cálculo, obteniendo entonces una tabulación más fácil de manejar porque los términos I (Intensidad luminosa), H (Altura de montaje de la fuente) están disponibles más fácilmente en el sistema

Figura 530.3.2 Parámetros a considerar en el cálculo de luminancia

En conclusión la luminancia puede definirse de la siguiente manera:

$$L = q \cdot E$$

$$E = \frac{I}{H^2} \cos^3 \gamma$$

$$L = \frac{I}{H^2} (q \cdot \cos^3 \gamma)$$

El término entre paréntesis ($q\cos^3\gamma$) se conoce como coeficiente reducido de luminancia -**r**-, en consecuencia:

$$L = \frac{1}{H^2} I \cdot r$$

Coeficiente reducido de ilum

inancia r-. Las tablas que caracterizan las propiedades reflectivas de una superficie no se dan en términos del coeficiente de luminancia q sino del coeficiente de reducción de luminancia r. Estas tabulaciones características se denominan Tablas R.

A partir de las Tablas R es muy fácil calcular la luminancia en cada punto, pues basta determinar los ángulos β y γ del punto considerado para tener el factor \mathbf{r} . La intensidad luminosa y la altura de montaje se calculan con la matriz de intensidades de la luminaria y con la geometría del sistema respectivamente.

Ahora bien, se estudiará el modelo de Tabla R para diferentes tipos de superficies:

Clasificación de las superficies de las calzadas (estado seco): Para los cálculos de luminancia, las propiedades de reflexión de la superficie de una vía se deben definir con tres parámetros característicos que son:

El factor especular S_1 definido como la relación $\mathbf{r}(0,2)/\mathbf{r}(0,0)$.

El factor especular S_2 definido como la relación $\mathbf{Q_0} / \mathbf{r}(0.0)$.

El coeficiente promedio de luminancia Qo conocido también como grado de claridad de la superficie.

Nota: $\mathbf{r}_{(0,2)}$ significa el coeficiente reducido de luminancia evaluado para $\beta = 0^{\circ}$ y tan $\gamma = 2$ $\mathbf{r}_{(0,0)}$ significa el coeficiente reducido de luminancia evaluado para $\beta = 0^{\circ}$ y tan $\gamma = 0$

DE

$$Q_{o} = \frac{\int_{\omega} qd \ \omega}{\int_{\omega} d \ \omega}$$

Donde:

q = Coeficiente de luminancia (depende de los ángulos β y γ).

 ω = Ángulo sólido que contiene todas aquellas direcciones de incidencia de luz sobre un punto en la vía y que se toman en cuenta en el proceso de medida (β varía entre 0° y 180° y γ varía entre 0° y 90°).

Si las tres características van a ser utilizadas como base para verificar en terreno los cálculos de luminancia, ellas deben ser determinadas mediante mediciones con un instrumento denominado Reflectómetro de superficies de calzadas, sobre una muestra real de la calzada lo cual permite definir la matriz del revestimiento de la calzada.

Cuando no se puedan hacer las medidas reales de la superficie de la calzada se estiman unas características normalizadas, para ello las calzadas se han clasificado de acuerdo con los tres factores definidos anteriormente y se tienen cuatro calzadas tipo, siendo el coeficiente \mathbf{S}_1 el que define la forma básica del cuerpo \mathbf{R} por su altura, aunque el brillo sea el mismo, una superficie reflejará diferente cantidad de luz según varíe este coeficiente y en consecuencia será más reflectante.

Esto hace que la primera clasificación de superficies se base en el comportamiento del factor S_1 Ver Tabla 530.4.a).

Clase	Variación S₁	S ₁	S ₂	Q _o .	Reflexión
R1	S ₁ < 0,42	0,25	1,53	0,10	Casi difusa
R2	$0,42 \le S_1 < 0.85$	0,58	1,80	0,07	Difuso especular
R3	$0.85 \le S_1 < 1.35$	1,11	2,38	0,07	Ligeramente especular
R4	S ₁ ≥1,35	1,55	3,03	0,08	Especular

Tabla 530..4a) Clasificación de superficies según el factor S1.

Cada tipo de superficie de calzada de la misma clase se caracterizará por un solo cuerpo o Tabla R típico de esa clase. Esto hace que las tablas R funcionen como patrón mediante la cual pueden llevarse a cabo los cálculos de luminancia. Las características resumidas de las cuatro (4) *Tablas R*, de acuerdo con el patrón definido por la CIE, se dan a continuación.

Cuando el valor Q_0 de una superficie sea diferente al valor para el cual se hizo la tabla patrón, los valores R de la tabla patrón deberán multiplicarse por la relación entre el valor Q_0 real de la superficie y el valor Q_0 de la tabla patrón.

En los casos donde las características de reflexión S_1 y Q_0 no se puedan medir ni determinar, partiendo del conocimiento o la experiencia previos, puede conseguirse una orientación aproximada escogiendo un tipo de tabla R de acuerdo con el tipo de acabado de la calzada y de los materiales utilizados en su

La luminancia en un punto se determina aplicando la siguiente fórmula o una fórmula matemáticamente equivalente:

$$L = \sum I(C, \gamma) r. \phi F_{H} \cdot 10^{-4} / H^{2}$$

En donde:

L Es la luminancia mantenida en cd/m²

Representa la sumatoria de las contribuciones de todas las luminarias.

DE

r Es el coeficiente de luminancia reducido, para un rayo de luz que inicia con unas coordenadas angulares (β,γ) .

I(C,\gamma) Es la intensidad luminosa en la dirección (C, γ), cd/klm.

 ϕ Es el flujo luminoso inicial en klm de las fuentes de cada luminaria.

F_M Factor de mantenimiento. Ver Capitulo 7 Numeral 720-3 Metodología para el cálculo del factor de mantenimiento.

H Es la altura de montaje en m de la luminaria por encima de la superficie de la calzada.

Salvo que se especifique lo contrario para el revestimiento de la calzada, se debe utilizar la matriz R3 de la CIE con $\mathbf{Q}_0 = \mathbf{0}, \mathbf{07}$, que corresponde al tipo de pavimento que se considera más usado en Colombia.

Tablas R. La CIE define los acabados de las cuatro clases de superficies cuyas características se resumen en la Tabla 530.4.b)

Clase	Descripción.
R1	⇒Superficies de asfalto con un mínimo del 15 % de materiales abrillantadores o materiales artificiales claros o al menos un 30 % de anortositas muy brillantes.
	⇒Superficies que contienen gravas que cubres más del 80% de la superficie de la calzada, y las gravas constan de gran cantidad de material claro, o de abrilladores o están compuestas al 100% de anortositas muy brillantes.
	⇒Superficies de calzada de hormigón de concreto.
R2	 ⇒Superficies con textura rugosa que contienen agregados normales ⇒Superficies asfálticas (pavimentos bituminosos que contienen el 10% al 15% de abrilladores artificiales. ⇒Hormigón bituminoso grueso y rugoso rico en gravas (más del 60%) de tamaños iguales o mayores a 10 mm ⇒Asfalto mástico después de ser tratado. Se conoce también como asfalto mástico en estado nuevo.
R3	 ⇒Revestimiento en Hormigón bituminoso (asfalto frío, asfalto cemento) con tamaño de grava superior a 10 mm con textura rugosa ⇒Superficies tratadas con textura rugosa ero pulimentada.
R4	⇒Asfalto mástico después de varios meses de uso ⇒Superficies con textura bastante suave o pulimentada.

Tabla 530..4.b) Designación aproximada de superficies en las clases típicas.

Fuente: norma NTC 900 numeral 7.3.5.

				Q	0= (0.10			S1=	0.2	5		S2	= 1.	53					
β Tan γ	0°	2°	5°	10°	15°	20°	25 <i>°</i>	30°	35 <i>°</i>	40°	45°	60°	75°	90°	105	120	135	150	165	180
0.00	655	655	655	655	655	655	655	655	655	655	655	655	655	655	655	655	655	655	655	655
0.25	619	619	619	619	610	610	610	610	610	610	610	610	610	601	601	601	601	601	601	601
0.50	539	539	539	539	539	539	521	521	521	521	521	503	503	503	503	503	503	503	503	503
0.75	431	431	431	431	431	431	431	431	431	431	395	386	371	371	371	371	371	386	395	395
1.00	341	341	341	341	323	323	305	296	387	387	278	269	269	269	269	269	269	278	278	278
1.25	269	269	269	260	251	242	224	207	198	189	189	180	180	180	180	180	189	198	207	224
1.50	224	224	224	215	198	180	171	162	153	148	144	144	139	139	139	144	148	153	162	180
1.75	189	189	189	171	153	139	130	121	117	112	108	103	99	99	103	108	112	121	130	139
2.00	162	162	157	135	117	108	99	94	90	85	85	83	84	84	86	90	94	99	103	111
2.50	121	121	117	95	79	66	60	57	54	52	51	50	51	52	54	58	61	65	69	75
3.00	94	94	86	66	49	41	387	36	34	33	32	31	31	33	35	38	40	43	47	51
3.50	81	80	66	46	33	28	25	23	22	22	21	21	22	22	24	27	29	31	34	38
4.00	71	69	55	32	23	20	18	16	15	14	14	14	15	17	19	20	22	23	25	27
4.50	63	59	43	24	17	14	13	12	12	11	11	11	12	13	14	14	16	17	19	21
5.00	57	52	36	19	14	12	10	9.0	9.0	8.8	8.7	8.7	9.0	10	11	13	14	15	16	16
5.50	51	47	31	15	11	9.0	8.1	7.8	7.7	7.7										
6.00	47	42	25	12	8.5	7.2	6.5	6.3	6.2											
6.50	43	38	22	10	6.7	5.8	5.2	5.0												
7.00	40	34	18	8.1	5.6	4.8	4.4	4.2												
7.50	37	31	15	6.9	4.7	4.0	3.8													
8.00	35	28	14	5.7	4.0	3.6	3.2													
8.50	33	25	12	4.8	3.6	3.1	2.9													
9.00	31	23	10	4.1	3.2	2.8														
9.50	30	22	9.0	3.7	2.8	2.5														
10.00	29	20	8.2	3.2	2.4	2.2														
10.50	28	18	7.3	3.0	2.2	1.9														
11.00	27	16	6.6	2.7	1.9	1.7														
11.50	26	15	6.1	2.4	1.7															
12.00	25	14	5.6	2.2	1.6															

Tabla 530..4 c) Tabla r para superficie estándar R1

Se aplica a:

Superficies de asfalto con un mínimo del 15 % de materiales abrillantadores o materiales artificiales claros o al menos un 30 % de anortositas muy brillantes.

Superficies que contienen gravas que cubres más del 80% de la superficie de la calzada, y las gravas constan de gran cantidad de material claro, o de abrilladores o están compuestas al 100% de anortositas muy brillantes.

Superficies de calzada de hormigón de concreto.

					Q	o= 0	.07	;	S1=	0.5	8	S2	<u>:= 1</u> .	.80						
β	0°	2°	5°	10°	15°	20°	25°	30°	35°	40°	45°	60°	75°	90°	105	120	135	150	165	180
р	Ū	_	3	10	13	20	25	30	33	40	45	00	13	30	100	120	100	100	100	100
Tan γ																				
0.00	390	390	390	390	390	390	390	390	390	390	390	390	390	390	390	390	390	390	390	390
0.25	411	411	411	411	411	411	411	411	411	411	379	368	357	357	346	346	346	335	335	355
0.50	411	411	411	411	403	403	384	379	370	346	325	303	281	281	271	271	271	260	260	260
0.75	379	379	379	369	357	346	325	303	281	260	238	216	206	206	206	206	206	206	206	206
1.00	335	335	335	325	292	291	260	238	216	195	173	152	152	152	152	152	141	141	141	141
1.25	303	303	292	271	238	206	184	152	130	119	108	100	103	106	108	108	114	114	119	119
1.50	271	271	260	227	179	152	141	119	108	93	80	76	76	80	84	87	89	91	93	95
1.75	249	238	227	195	152	124	106	91	78	67	61	52	54	58	63	67	69	71	73	74
2.00	227	216	195	152	117	95	80	67	61	52	45	40	41	45	49	52	54	56	57	58
2.50	195	190	146	110	74	58	48	40	35	30	27	24	26	28	30	33	35	38	40	41
3.00	160	155	115	67	43	33	26	21	18	17	16	16	17	17	18	21	22	24	26	27
3.50	146	131	87	41	25	18	15	13	12	11	11	11	11	11	12	14	15	17	18	21
4.00	132	113	67	27	15	12	10	9.4	8.7	8.2	7.9	7.6	7.9	8.7	9.6	11	121	13	15	17
4.50	118	95	50	20	12	8.9	7.4	6.6	6.3	6.1	5.7	5.6	5.8	6.3	7.1	8.4	10	12	13	14
5.00	106	81	38	14	8.2	6.3	5.4	5.0	4.8	4.7	4.5	4.4	4.8	5.2	6.2	7.4	8.5	9.5	10	11
5.50	96	69	29	11	6.3	5.1	4.4	4.1	3.9	3.8										
6.00	87	58	22	8.0	5.0	3.9	3.5	3.4	3.2											
6.50	78	50	17	6.1	3.8	3.1	2.8	2.7												
7.00	71	43	14	4.9	3.1	2.5	2.3	2.2												
7.50	67	38	12	4.1	2.6	2.1	1.9													
8.00	63	33	10	3.4	2.2	1.8	1.7													
8.50	58	28	8.7	2.9	1.9	1.6	1.5													
9.00	55	25	7.4	2.5	1.7	1.4														
9.50	52	23	6.5	2.2	1.5	1.3														
10.00	49	21	5.6	1.9	1.4	1.2														
10.50	47	18	5.0	1.7	1.3	1.2														
11.00	44	16	4.4	1.6	1.2	1.1														
12.00	41	13	3.6	1.4	1.1															

Tabla 530..4 c) Tabla r para superficie estándar R2

Se aplica a:

Superficies con textura rugosa que contienen agregados normales

Superficies asfálticas (pavimentos bituminosos que contienen el 10% al 15% de abrilladores artificiales.

Hormigón bituminoso grueso y rugoso rico en gravas (más del 60%) de tamaños iguales o mayores a 10

Asfalto mástico después de ser tratado. Se conoce también como asfalto mástico en estado nuevo

						Q	o= 0	.07	S1=	1.11	l S	2= 2	.38							
β	0°	2°	5°	10°	15°	20°	050	200	35°	40°	45°	60°	750	90°	105	120	135	150	165	180
	U°	2°	5°	10°	15°	20°	25°	30°	35°	40°	45°	60°	75°	90°	105	120	135	150	100	100
Tan γ 0.00	294	294	294	294	294	294	294	294	294	294	294	294	294	294	294	294	294	294	294	294
0.25	326	326	321	321	317	312	308	308	303	298	294	280	271	262	158	253	249	244	240	240
0.50	344	344	339	339	326	317	308	298	289	276	262	235	217	204	199	199	199	199	194	194
0.75	357	353	353	339	321	303	285	267	244	222	204	176	158	149	149	149	145	136	136	140
1.00	362	362	352	326	276	249	226	204	181	158	140	118	104	100	100	100	100	100	100	100
1.25	357	357	248	298	244	208	176	154	136	118	104	83	73	70	71	74	77	77	77	78
1.50	353	348	326	267	217	176	145	117	100	86	78	72	60	57	58	60	60	60	61	62
1.75	359	335	303	231	172	127	104	89	79	70	62	51	45	44	45	46	45	45	46	47
2.00	326	321	280	190	136	100	82	71	62	54	48	39	34	34	34	35	36	36	37	38
2.50	289	280	222	127	86	65	54	44	38	34	25	23	22	23	24	24	24	24	24	25
3.00	253	235	163	85	53	38	31	25	23	20	18	15	15	14	15	15	16	16	17	17
3.50	217	194	122	60	35	25	22	19	16	15	13	9.9	9.0	9.0	9.9	11	11	12	12	13
4.00	190	163	90	43	26	20	16	14	12	9.9	9.0	7.4	7.0	7.1	7.5	8.3	8.7	9.0	9.0	9.9
4.50	163	136	73	31	20	15	12	9.9	9.0	8.3	7.7	5.4	4.8	4.9	5.4	6.1	7.0	7.7	8.3	8.5
5.00	145	109	60	24	16	12	9.0	8.2	7.7	6.8	6.1	4.3	3.2	3.3	3.7	4.3	5.2	6.5	6.9	7.1
5.50	127	94	47	18	14	9.9	7.7	6.9	6.1	5.7										
6.00	113	77	36	15	11	9.0	8.0	6.5	5.1											
6.50	104	68	30	11	8.3	6.4	5.1	4.3												
7.00	95	60	24	6.5	6.5	5.2	4.3	3.4												
7.50	87	53	21	7.1	5.3	4.4	3.6													
8.00	83	47	17	6.1	4.4	3.6	3.1													
8.50	78	42	15	5.2	3.7	3.1	2.6													
9.00	73	38	12	4.3	3.2	2.4														
9.50	69	34	9.9	3.8	3.5	2.2														
10.00	65	32	9.0	3.3	2.4	2.0														
10.50	62	29	8.0	3.0	2.1	1.9														
11.00	59	26	7.1	2.6	1.9	1.8														
11.50	56	24	6.3	2.4	1.8															
12.00	53	22	5.6	2.1	1.8															

Tabla 530.4.d) tabla r para superficie estándar r3

						Q	o= 0	.08	S1=	1.5	5 S	2= 3	.04							
0																				
β	0°	2°	5°	10°	15°	20°	25°	30°	35°	40°	45°	60°	75°	90°	105	120	135	150	165	180
Tan 1/ 0.00	264	264	264	264	264	264	264	264	264	264	264	264	264	264	264	264	264	264	264	264
0.25	297	317	317	317	317	310	304	290	284	277	271	244	231	224	224	218	218	211	211	211
0.50	330	343	343	343	330	310	297	284	277	264	251	218	198	185	178	172	172	165	165	165
0.75	376	383	370	350	330	304	277	251	231	211	198	165	139	132	132	125	125	125	119	119
1.00	396	396	396	330	290	251	218	198	185	165	145	112	86	86	86	86	86	87	87	87
1.25	403	409	370	310	251	211	278	152	132	115	103	77	66	65	65	63	65	66	67	68
1.50	409	396	356	284	218	172	139	115	100	88	79	61	50	50	50	50	52	55	55	55
1.75	409	396	343	351	178	139	108	88	75	66	59	44	37	37	37	38	40	41	42	45
2.00	409	383	317	224	145	106	86	71	59	53	45	33	29	29	29	30	32	33	34	37
2.50	396	356	364	152	100	73	55	45	37	32	28	21	20	20	20	21	22	24	25	26
3.00	370	304	211	95	63	44	30	25	21	17	16	13	12	12	13	13	15	16	17	19
3.50	343	271	165	63	40	26	19	15	13	12	11	9.8	9.1	8.8	8.8	9.4	11	12	13	15
4.00	317	238	132	45	24	16	13	11	9.6	9.0	8.4	7.5	7.4	7.4	7.5	7.9	8.6	9.4	11	12
4.50	297	211	106	33	17	11	9.2	7.9	7.3	6.6	6.3	6.1	6.1	6.2	6.5	6.7	7.1	7.7	8.7	9.6
5.00	277	185	79	24	13	8.3	7.0	6.3	5.7	5.1	5.0	5.0	5.1	5.4	5.5	5.8	6.1	6.3	6.9	7.7
5.50	257	161	59	19	9.9	7.1	5.7	5.0	4.6	4.2										
6.00	244	140	46	13	7.7	5.7	4.8	4.1	3.8											
6.50	231	122	37	11	5.9	5.6	3.7	3.2												
7.00	218	106	32	9.0	5.0	3.8	3.2	2.6												
7.50	205	94	26	7.5	4.4	3.3	2.8													
8.00	193	82	22	6.3	3.7	2.9	2.4													
8.50	194	74	19	5.3	3.2	2.5	2.1													
9.00	174	66	16	4.6	2.8	2.1														
9.50	169	59	13	4.1	2.5	2.0														
10.00	164	53	12	3.7	2.2	1.7														
10.50	158	49	11	3.3	2.1	1.7														
11.00	153	45	9.5	3.0	2.0	1.7														
11.50	149	41	8.4	2.6	1.7															
12.00	145	37	7.7	2.5	1.7															

Tabla 530..4.f) Tabla r para superficie estándar R4

530.5.2 CÁLCULO DE LA LUMINANCIA PROMEDIO SOBRE LA VÍA.

El campo de cálculo debe ser típico del área de la vía que le interesa al usuario.

En la dirección longitudinal de una vía recta, el campo de cálculo debe quedar entre dos luminarias de la misma fila. La primera luminaria debe estar situada a 60 m delante del observador.

En la dirección transversal, se debe considerar el ancho de la calzada en vías sin separador central y el ancho de una calzada en vías con separador central.

Sin embargo, todo está limitado por la aplicabilidad de la Tabla-r. Esta tabla está definida para un observador que ve la vía con un ángulo de observación de 1º, para una altura de ojo del observador de 1,5 m; esto da como resultado que el punto de observador debe situarse a 86 m delante del observador.

DE

Se ha demostrado que la Tabla-r se aplica por encima de un rango de ángulos de visión situados entre 0,5° y 1,5°, lo cual resulta en que dicha tabla es aplicable a puntos que quedan entre 57 y 172 m, aproximadamente (convencionalmente, se toma entre 60 y 160 m), delante del observador.

Figura 530.3.6 a) Campo de cálculo de la luminancia de la calzada

Posición de los puntos de cálculo,

Figura 530.3.6 b) Posición de los puntos de cálculo en un carril.

En la dirección longitudinal. El espaciado (D) en la dirección longitudinal se determina a partir de la ecuación D = S/N, en donde:

- D Es el espaciado entre puntos en la dirección longitudinal (m).
- S Es el espaciado entre luminarias en la misma fila (m).
- N Es el número de punto de cálculo en la dirección longitudinal, escogidos de manera que:

Para S menor o igual a 30 m, N = 10;

Para S mayor de 30 m, N es el entero más pequeño para que se obtenga D menor o igual a 3 m.

La primera fila transversal de puntos de cálculo se esparcía a una distancia d/2 a partir de la primera luminaria (alejada del observador).

En la dirección transversal. El espaciado (d) en la dirección transversal se determina a partir de la ecuación: d = wc/3, en donde:

DE

d Es el espaciado entre puntos en la dirección transversal (m) y wc es el ancho de cada carril de circulación. Los puntos de cálculo más alejados se espacian d/2 desde los bordes del carril.

Posición del observador. El ángulo de observación desde la horizontal se fija en 1°, tal como se indica en la Figura 530.3.6 B).

En la dirección transversal el observador se sitúa en el centro de cada carril de circulación y longitudinalmente a 60 m a partir del primer punto. La Luminancia promedio (L_{prom}) y la uniformidad global de la luminancia (Uo) se calculan para la totalidad de la calzada, para cada posición del observador.

La uniformidad longitudinal de la luminancia (U_L) se calcula para cada línea central de cada carril de circulación. Los valores de L_{Prom} , U_o y U_L son los más bajos en cada caso.

Para los cálculos de la luminancia y para los cálculos de la iluminación de túneles, la dirección de observación estará en una línea paralela al sentido de marcha de la carretera. Esto significa que el observador tiene que alinearse con cada línea longitudinal de los puntos del cálculo. El resultado de estos cálculos deberá etiquetarse como "observador móvil para los métodos de cálculo de la luminancia".

Número de luminarias incluidas en el cálculo. Para cada punto de cálculo, todas las luminarias que contribuyen significativamente a la luminancia deben incluirse en el cálculo. Estas luminarias quedan dentro del área del plano de la Tabla-r, que se aproxima a un rectángulo de dimensiones de 5H por 17H, y por su simetría puede utilizarse para cubrir un área de 10H por 17H (véase la figura 530.3.5 d).

Como consecuencia, sólo es necesario considerar luminarias que se sitúen a una altura comprendida dentro de 5 veces la altura de montaje desde el punto de cálculo hacia el observador, 12 veces la altura de montaje desde el punto de calculo hacia fuera del observador, y cinco veces la altura de montaje desde el punto de calculo a cada lado de dicho punto

Figura 530.3.6 c) Ejemplos de las posiciones de los puntos de observación con relación al campo de cálculo

Figura 530.3.6 d) Luminarias que pueden contribuir a la luminancia en el punto de cálculo.

530.5.3 CÁLCULO DE LAS CARACTERÍSTICAS DE CALIDAD DE LA LUMINANCIA.

Las características de calidad relacionadas con la luminancia deben obtenerse a partir de las mallas calculadas de luminancia sin interpolación adicional.

Uniformidad general de luminancia en alumbrado público: Los puntos de cálculo son los mismos que se usan para calcular la luminancia promedio sobre la calzada. Así, la uniformidad general de luminancia se calcula a partir de la fórmula $U_o = L_{min} / L_{prom.}$ donde:

L_{min} Corresponde al punto de menor luminancia entre todos los puntos calculados.

L_{prom} Corresponde a la luminancia promedio sobre la calzada.

Uniformidad longitudinal de luminancia: Se calcula como el cociente entre la luminancia más baja y la más alta $U_L = L_{min} / L_{máx}$ en la dirección longitudinal a lo largo de la línea central de cada carril de circulación, incluyendo el borde de carretera en el caso de autopistas. El número de puntos en la dirección longitudinal y el espaciado entre ellos deben ser los mismos que los utilizados para el cálculo de la luminancia promedio.

El observador debe estar a 60 m del primer punto y debe estar alineado con la fila de puntos.

530.6. CALCULO DE DESLUMBRAMIENTO.

530.6.1 CÁLCULO DE LA LUMINANCIA DE VELO (LV) O DESLUMBRAMIENTO INCAPACITIVO

La luminancia de velo L_{ν} corresponde a una de las medidas del deslumbramiento incapacitivo o inhabilitador. Su cálculo se basa en los estudios de Holladay y en las confirmaciones realizadas, para pequeños niveles de luminancia, por Adrián en 1.961, Fisher en 1.967 y Hartmann en 1.963 y 1.968. La luminancia de velo, de acuerdo con la CIE, puede calcularse mediante la siguiente fórmula empírica:

$$L_{v} = K \sum_{i=1}^{i=n} \left(\frac{Eg_{i}}{\theta_{i}^{2}} \right) \qquad en \quad Cd/m^{2}$$

Donde:

- K =Factor que depende de la edad del observador (se asume un observador de 30 años). K=10 si el ángulo θ esta en grados y $K=10^{-3}$ si el ángulo θ esta en radianes
- Eg_i = Componente de iluminancia (es decir, en un plano perpendicular a la línea de visión del ojo) que proviene de la fuente *i-ésima* lumínica generadora de deslumbramiento. También puede entenderse como la iluminancia en el ojo del observador producida por la fuente deslumbrante en el plano perpendicular a la línea de visión, expresada en luxes). El subíndice *i* varía entre 1 y n
- θ_i = Ángulo (en grados) formado por una línea entre la fuente luminosa y el observador y la línea entre el observador y un punto de visión. En la figura 530.4.1).

Restricciones y alcance en la aplicación de las fórmulas anteriores: El ángulo θ_i está comprendido entre 1,5° y 60° (en la práctica se limita a 20°)

- El observador está mirando a un punto de la vía a 90 m delante de él y colocado a la misma distancia que él, del lado de la carretera, de la primera luminaria que se incluye en el cálculo.
- El punto de visión del observador se encuentra a ¼ del ancho de la calzada (de derecha a izquierda) justo al frente de la primera luminaria y el ángulo de visión comprende hasta 20° por encima de la

visual, debido a la forma del vehículo.

- Se involucran el cálculo 12 luminarias (o 24 para disposición bilateral) sin embargo, solo las cuatro primeras tienen un aporte significativo.
- Las luminarias deben estar colocadas de modo que su reparto sea longitudinal al eje de la vía

DE

Figura 530.4.1) Cálculo de Luminancia de Velo

De acuerdo con la IESNA, la luminancia de velo se calcula con una fórmula parecida a la de CIE, que igualmente es empírica. Se calcula la contribución de cada luminaria y se suman para obtener el valor final de la luminancia de velo. La fórmula es:

$$L_{v} = \sum_{i=1}^{n} \frac{10E_{vi}}{\theta^2 + 1.5\theta}$$

Donde

 L_v = Luminancia de Velo.

 E_v = Iluminancia vertical en el plano de la pupila del observador, en luxes.

 ϕ = Ángulo entre la línea de circulación y la luminaria, en grados. La línea de circulación es una línea paralela a la vía localizada a ¼ del ancho de la vía a la altura del ojo del observador, a 1,45 m.

n= Número de luminarias del proyecto que se ven directamente desde el punto de evaluación de la luminancia de velo. Debe ser desde el mismo punto y las mismas luminarias a las utilizadas para evaluar la luminancia de la calzada.

530.5.2 DESLUMBRAMIENTO DE INCOMODIDAD

Hasta el presente no se ha desarrollado ningún método satisfactorio para cuantificar este tipo de deslumbramiento en vías, anteriormente se utilizó el índice G ó marca de control del deslumbramiento, de acuerdo con la publicación CIE 31 (TC-4.6) 1976, pero se presentaron anomalías o incertidumbres en su aplicación. Las evidencias en el campo sugieren que las instalaciones diseñadas de acuerdo con las especificaciones del *TI* de la Tabla 12 de la norma NTC 900 son adecuadas respecto al deslumbramiento de incomodidad.

Entornos brillantes, tales como edificios iluminados tienden a mitigar el deslumbramiento de incomodidad

DE

pero como la iluminación de edificios es variable y puede ser apagada durante la noche, no es recomendable incluirla en el diseño de la iluminación de vías.

530.6 CÁLCULO DEL INCREMENTO DEL UMBRAL (TI) EN UNA INSTALACIÓN DE ALUMBRADO PÚBLICO

Es una medida de la perdida de visibilidad causada por un deslumbramiento enceguecedor originado por la luminaria. Por tanto, es una medida del deslumbramiento fisiológico. La fórmula para calcular este valor se basa en calcular porcentualmente la diferencia de luminancia necesaria para volver a ver el objeto en presencia de un nivel de deslumbramiento dado, respecto a la diferencia de luminancia necesaria para ver el objeto pero en ausencia del deslumbramiento.

El incremento de umbral TI se calcula para el estado inicial de la instalación, es decir, con la luminaria nueva y con el flujo inicial de la bombilla, mediante la siguiente fórmula,

$$TI = K \times E_g / (L_{prom})^{0.8} \times \theta^2 \qquad (\%)$$

De acuerdo con la anterior ecuación, la pérdida de visibilidad causada por un deslumbramiento enceguecedor causado por la luminaria, se puede disminuir aumentando la altura de montaje de la luminaria (esto equivale a aumentar el ángulo θ) o aumentando la luminancia promedio (L_{prom}).

K es una constante que varía con la edad del observador.

Generalmente se considera un observador de 23 años de edad, en cuyo caso K es igual a 650 porque:

$$L_v = 10 \times E_q / \theta^2$$
 y TI = 65 $L_v / (L_{prom})^{0.8}$

$$TI = 650 E_{o}/\theta^{2} \times (L_{prom})^{0.8}$$

Para edades del observador diferente a 23 años, el valor de la constante K se calcula a partir de la siguiente fórmula $K = 641[1 + (A/66,4)^4]$, En donde:

A edad del observador en años

E_g es la iluminancia total inicial producidas por las luminarias, en su estado nuevo, sobre un plano normal a la línea de visión y a la altura del ojo del observador.

El observador está ubicado a una altura de 1.50 m sobre el nivel de la calzada y con relación a ésta colocado de la siguiente manera: transversalmente a de ancho total de la calzada y longitudinalmente a una distancia, frente al inicio del campo de cálculo de 2,75 (H-1,5). Donde H es la altura libre de montaje de la luminaria, en metros. (Se asume que el ángulo de apantallamiento del techo del vehículo es de 20°)

L_{prom} Es la luminancia media inicial de la superficie de la calzada

θ Es el ángulo en grados entre línea de visión y el centro de cada luminaria.

El cálculo de TI se inicia con el observador situado en la posición inicial, definida anteriormente, y luego se repite moviendo el observador hacia delante con incrementos que son los mismos en número y distancia que los utilizados para el cálculo de la luminancias promedio de la calzada.

El TI de la calzada es el correspondiente al valor máximo encontrado en los cálculos.

Esta ecuación es válida para 0,05<L_{prom}<5 cd/ m² y 1,5°<θ<60°

 E_{g} se añade para la primera luminaria en la dirección de observación y luminarias más alejadas, hasta una distancia de 500 m.

SECCIÓN 540. MEDICIONES FOTOMÉTRICAS DE ALUMBRADO PÚBLICO

Una vez construido el proyecto de alumbrado público y después de 100 horas de funcionamiento de las bombillas nuevas, se debe verificar el diseño de proyecto de alumbrado público mediante la medición de iluminancia y su comparación con los valores ofrecidos en el diseño fotométrico del proyecto.

La medición de luminancia se debe hacer con miras a confrontar los datos teóricos obtenidos con la clase de superficie de calzada normalizada adoptada en el diseño fotométrico. Los valores reales medidos para las vías permitirán crear una base datos, donde con el tiempo se puedan hacer ajustes a las matrices normalizadas del factor R que se aproximen de mejor forma a las superficie de las calzadas de las vías existentes en el país. Para lo cual se debe seleccionar un vano adecuado de medición.

- 1.-Cuando el vano seleccionado es factible de ser medido los requisitos que debe reunir el vano a medir, la forma del marcado de la malla o grilla, la ejecución de las mediciones y el cálculo de los parámetros de calidad .se definen a partir de los datos obtenidos en las mediciones. El procedimiento incluye la evaluación de los casos especiales y de las vías peatonales, en ellas determina la forma de marcación del vano y los parámetros de calidad a ser evaluados.
- 2.-Cuando la medición no sea técnicamente apropiada ó involucra mucho riesgo. la evaluación se define a partir de cálculos de cada uno de los parámetros de calidad por medios informáticos y de la verificación en campo de la operatividad de las unidades de alumbrado en el vano y de la configuración de la instalación.

540.1 EVALUACIÓN DEL VANO SELECCIONADO PARA LA MEDICIÓN

Los vanos a ser medidos deberán cumplir los siguientes requisitos:

- 1. No debe presentar obstáculos que obstruyan la distribución luminosa de las luminarias (árboles, automóviles estacionados, etc.).
- 2. El recubrimiento de las calzadas no debe presentar ondulaciones (presencia de baches pronunciados) que impidan la visualización de los puntos de medición ó la horizontalidad del medidor de iluminancia.
- 3. No estar ubicados en las zonas calificadas como altamente peligrosas desde el punto de vista delincuencial.
- 4. Estado de la calzada. Deberá estar seca para la medición.
- 5. Estar libres de influencia de iluminación diferente al sistema a evaluar (vehicular o comercial).

540.2 PROCEDIMIENTO DE MEDICIÓN

Todas las fuentes de luz que pertenezcan a la instalación de alumbrado que se va a medir deben ser visibles y estar encendidas, mientras que aquellas fuentes que no lo sean deben estar apagadas.

Para estar seguros de la confiabilidad de las mediciones se debe tener en cuenta lo siguiente:

- Todos los instrumentos de medición deben estar calibrados.
- Se debe tener en cuenta los parámetros de diseño de la instalación y la correcta geometría de la misma: altura de montaje, avance, ángulo de inclinación de la luminaria, interdistancia, ancho de la vía, posición de la bombilla.
- Por medio de inspección visual se debe verificar que los accesorios eléctricos y la bombilla sean los adecuados para la luminaria.
- Verificar la tensión de alimentación en los bornes de la luminaria.
- Las luminarias deben estar en régimen normal de funcionamiento.
- Las bombillas deben estar nuevas con un envejecimiento mínimo de 100 horas.

DE

- El conjunto óptico de la luminaria debe estar limpio.
- En lo posible, se debe eliminar el efecto de las fuentes luminosas ajenas al sistema analizado que puedan causar errores en la medición, tales como avisos luminosos, faros de automóviles, etc.
- Evitar las mediciones cuando el piso está mojado, porque pueden presentarse reflexiones que introducen errores.
- El personal que interviene en las mediciones no debe producir sombras en el campo de medición, ni bloquear la luz hacia el aparato de medición.

540.3 MARCACIÓN DE LA VÍA

La marcación de los puntos de medición en los tramos o vanos seleccionados dependerá del tipo de calzada para lograr una buena visualización durante las mediciones.

Calzadas claras y oscuras

- El marcado de los puntos a medir en este tipo de calzada, se sugiere que se realice con tiza blanca. Calzadas de adoquín
- El marcado de los puntos a medir en este tipo de calzada se sugiere que se realice con tiza blanca.

La marcación de los puntos generalmente se hace sobre tramos rectos de vía; aunque pueden existir casos especiales en la marcación de los puntos para las mediciones de: intersecciones, rampas, pendientes, secciones de intercambio, plazas, cruces y puentes peatonales, óvalos, glorietas, y vías curvas. En estos casos, la marcación de los puntos para medición de la iluminancia, debe estar de acuerdo con los puntos utilizados en el diseño FOTOMÉTRICO.

540.4 MALLA DE MEDICIÓN

540.4.1 MEDICIÓN DE ILUMINANCIA

Para las vías Tipo M1 y M2 se debe utilizar el sistema recomendado en las normas CIE 140- 2000 o el indicado en el presente reglamento adaptado de la NTC 900, que consiste en tomar los siguientes puntos de acuerdo con la Figura 530-4.1.

Figura 530-4.1 Malla de medición para lluminancia

Los puntos de cálculo se deben espaciar uniformemente en el campo de cálculo, y la cantidad debe seleccionarse de la siguiente manera:

En dirección longitudinal el espaciamiento se determina a partir de la siguiente ecuación D = S / N. Donde:

- D es el espaciamiento entre los puntos en la dirección longitudinal (m.)
- S es el espaciamiento entre luminarias (m.)
- N es el número de puntos de cálculo en dirección longitudinal, con los siguientes valores:

Para S ≤ 30 m. N= 10

Para S≥30 m. el entero que resulte de la relación N= S/3

Debe tenerse en cuenta que la primera fila de puntos se localiza a una distancia igual a D/2 mas allá de primera luminaria.

En dirección transversal se toman tres puntos considerando el ancho total de la calzada, d = Wr / 3. Donde:

d es el espaciamiento entre los puntos en la dirección transversal (m.)

DE

Wr es el ancho de la calzada del área aplicable (m).

Para las vías de la malla vial Intermedia y de la malla vial Local se recomienda utilizar el sistema de los 9 PUNTOS, descrito en el Numeral 520-1.b), con el formato de medición de la Tabla 530-10.

540.4.2 MEDICIÓN DE LA LUMINANCIA

De acuerdo con las normas CIE 140-2000 o NTC-900, los puntos de medición se deben espaciar uniformemente en el campo de medición y situarse como se indica en la Figura 530.4.2.

En dirección longitudinal el espaciado entre los puntos de medición D se calcula a partir de la siguiente ecuación,

D = S / N.

Donde:

- **D** Espaciado entre puntos en la dirección longitudinal (m.)
- S Interdistancia entre luminarias en la misma fila (m.)
- N Número de puntos de cálculo en la dirección longitudinal, con los siguientes valores:

Figura 530.4.2 Malla de medición para Luminancia

Para S menor o igual a 30 metros N debe ser igual a 10 y,

Para S mayor a 30 metros, N debe ser el entero más pequeño de tal manera que D sea menor o igual a 3 metros.

La primera fila transversal de puntos de cálculo se localiza a una distancia d/2 más allá de la primera fila de luminarias (alejada del observador)

En dirección transversal se toman tres puntos por cada carril de circulación, el espaciado entre puntos está dado por la fórmula, $\mathbf{d} = \mathbf{W}_1 / \mathbf{3}$. Donde:

d Es el espaciado entre puntos en dirección transversal (m.), y

DE

W_I Es el ancho del carril de circulación (m.)

Los puntos de cálculo más alejados se espacian d/2 a partir de cada borde del carril correspondiente

Posición del observador:

En sentido longitudinal el observador se coloca a 60 metros frente a la primera línea de puntos.

En sentido transversal el observador se desplaza transversalmente y se coloca frente al centro de cada carril de circulación.

540.5 MEDICIONES POR TIPOS DE VÍAS

Las mediciones a aplicarse por cada tipo de vía se pueden apreciar en la Tabla 540.5.

VIAS	MEDICIONES
Rectas	Iluminancias E _{prom} , U _o ó Luminancias L _{prom} , U _o , U _L cuando
Recias	los tramos ininterrumpidos son mayores o iguales a 100 m
Aceras en vías rectas	Iluminancia
Curvas con radios menores a 200 m	Iluminancia y relación SR
Curvas con radios mayores a 200 m	Iluminancia
Aceras en vías	Iluminancia
Intersecciones	Iluminancia
Cruces peatonales	Iluminancia
Pendientes mayores al 6%	Iluminancia
Pendientes menores al 6%	Iluminancias E_{prom} , U_o ó Luminancias L_{prom} , U_o , U_L cuando
Pendientes menores ar 0%	los tramos ininterrumpidos son mayores o iguales a 100 m
Aceras en pendientes	Iluminancia
Rampas	Iluminancia
Plazas-óvalos	Iluminancia

Tabla 540.5 Mediciones por tipos de vías

Notas.- En el caso que no pueda ser posible realizar la medición de las luminancias porque la vía no tiene el largo necesario para la ubicación del observador (60 m), se medirá iluminancia.

Para el caso de medición de luminancias el vano o tramo a evaluar debe tener como mínimo tres vanos antes y tres vanos después del área a evaluar.

ALTERNATIVA: Como alternativa para la medición de lluminancia, se aplica el método de los 9 puntos descrito en el presente Reglamento.

540.5.1 EVALUACIÓN DE LUMINANCIA

- 1) Área de evaluación: El área de evaluación de las mediciones será el tramo o vano seleccionado de la vía, teniendo en cuenta lo especificado en el presente Reglamento Técnico.
- 2) Ubicación del censo: El luminancímetro será colocado en un trípode a una altura de un metro y cincuenta centímetros (1,50 m) con respeto del punto medio del lente visor hasta el suelo o calzada.
- **3) Ubicación del punto de observación.** En la ubicación del punto del observador se deben tener en cuenta lo siguiente:

DE

a. Luminancia Promedio y Uniformidad general. en dirección transversal, el observador se coloca en el centro de cada carril de circulación y longitudinalmente a 60 metros a partir de la primera columna de puntos. La luminancia promedio y la uniformidad general se calculan para la totalidad de la calzada, para cada posición del observador. Las cifras reales del sistema de iluminación medido, corresponden a los valores más bajos medidos en las diferentes posiciones transversales del observador. La representación gráfica puede apreciarse en la figura 540-5.1.

Figura 540.5.1 Posiciones del observador con relación al campo de medición

- b. **Uniformidad longitudinal de la vía.** El punto de observación será ubicado en el eje del carril a evaluar y a una distancia de sesenta metros (60 m) de la primera línea de puntos marcados en el tramo o vano a medir se efectuarán mediciones en el eje de cada carril. La representación gráfica puede apreciarse en la figura 540-5.1.
- **4) Forma de señalización de los puntos**: Para señalizar y marcar los puntos se debe tener en cuenta lo siguiente:
- Deben ser marcados de tal forma que no haya luces que distorsionen la medición.
- La persona encargada de marcar cada uno de los puntos así como la persona encargada de realizar las lecturas en el luminancímetro deben contar con radios de comunicación para estar en continuo contacto durante las mediciones.
- La persona que realiza la medición debe estar acompañada de una persona que haga las anotaciones de las mediciones obtenidas en el campo.
- La persona encargada del marcado de cada uno de los puntos durante la medición, deberá señalar el punto a medir.
- Una vez enfocado este punto por la persona que realiza la medición le indicará que apague la linterna, se retire del punto a medir y procederá a realizar la lectura del punto en el luminancímetro.
- El asistente anotará el resultado de la lectura dado por la persona que realiza la medición en el luminancímetro.

5) Cuidados en la medición

 Antes de empezar a realizar las mediciones la persona encargada de realizar las lecturas en el luminancímetro, debe de calibrar este medio de medición de acuerdo con su manual de funcionamiento. Igualmente debe verificar el estado de la luminaria, la tensión de red, inclinación de

DE

la luminaria y el brazo, fijación de la luminaria al brazo, posición de la bombilla y avance de la luminaria sobre la calzada.

- Durante la medición la persona encargada de marcar el punto debe de retirarse lo necesario para no crear sombra alguna sobre el punto a medir ya que esto distorsionaría la lectura obtenida en el luminancímetro.
- Durante la medición la persona encargada de manejar el luminancímetro debe de focalizar el punto lo más exactamente posible para minimizar los errores en las lecturas.

540.5.2 EVALUACIÓN DE LA ILUMINANCIA

1 Área de evaluación: El área de evaluación de las mediciones será el tramo o vano seleccionado de la vía, teniendo en cuenta lo especificado en esta guía.

2 Ubicación del sensor: El sensor o fotocelda del fotómetro o luxómetro será colocado a una altura máxima de quince centímetros (0,15 m), en posición horizontal.

Ubicación del punto a medir: El dispositivo con el sensor es colocado por el operario sobre el punto inicial marcado sobre el vano o tramo a medir.

La persona encargada de realizar la medición: registrará la lectura obtenida en el luxómetro. Cada punto marcado en el vano será medido de igual forma.

3 Cuidados en la Medición: Antes de iniciarse la medición la persona encargada, debe calibrar el luxómetro de acuerdo con su manual de funcionamiento y verificar que esté funcionando correctamente. Igualmente debe verificar el estado de la luminaria, la tensión de red, inclinación de la luminaria y el brazo, fijación de la luminaria al brazo, posición de la bombilla y avance de la luminaria sobre el área considerada.

La persona encargada de colocar el dispositivo con el sensor sobre el punto a medir, debe asegurarse de retirarse a una distancia prudencial para no crear sombras sobre el sensor y obstruir la distribución luminosa.

La persona encargada de la medición antes de realizar la lectura, debe esperar que ésta se estabilice en el display del luxómetro.

540.5.3 Cálculos fotométricos utilizando los datos de las mediciones

Luminancia promedio (L_{prom})

Es el promedio aritmético de todos los valores de luminancia medidos en un tramo o vano.

$$L_{prom} : \frac{\sum_{i=1}^{i=n} L_i}{n}$$

Donde:

L Luminancia en un punto de mediciónN Número de puntos de medición

Uniformidad general (Uo)

Es el cociente entre de luminancia mínima del tramo de evaluación y la luminancia promedio de los valores obtenidos en los puntos ubicados en la superficie a evaluar.

DE

$$oldsymbol{U_0} = rac{oldsymbol{L_{MIN}}}{oldsymbol{L_{prom}}}$$

Donde:

L Min. Luminancia mínima en el tramo medido

L Prom. Luminancia promedio del vano

Uniformidad longitudinal (UL)

Es el cociente entre la luminancia mínima y la luminancia máxima de los valores obtenidos en los puntos ubicados en el eje del carril. La U_L de la calzada será la menor de las uniformidades longitudinales calculadas:

$$U_{L} < U_{L_{i}}$$
 V $U_{L_{i}} = \frac{L_{MIN_{i}}}{L_{MAX_{i}}}$

U L Uniformidad longitudinal de la calzada
U L I Uniformidad longitudinal del iésimo carril
L MIN Luminancia mínima del i-ésimo carril
L MAX Luminancia máxima del i-ésimo carril

Iluminancia promedio (E_{prom})

$$E_{prom} = \frac{\sum_{i=1}^{i=n} E_i}{n}$$

Es el promedio aritmético de todos los valores medidos en un tramo o vano.

E_i Iluminancia en un punto de medición

N Número de puntos de medición

Nota: la iluminancia promedio en la calzada se calcula con todos los valores medidos sobre ésta, de forma análoga se calcula la iluminancia sobre los andenes.

Relación de alrededores (SR)

Es el cociente entre la iluminancia promedio en los andenes ($^{E_{Vi}}$) y la iluminancia promedio de la mitad del carril advacente ($^{E_{Ci}}$).

Incremento umbral (TI)

El incremento umbral se obtiene a través de cálculos por computador, de acuerdo con los términos indicados en el Numeral correspondiente a "Cálculo del incremento del umbral (TI) en una instalación de alumbrado público".

540.5.4 SELECCIÓN DE LOS MEDIOS DE MEDICIÓN.

Medidores fotométricos de luminancia: Los siguientes requisitos se adoptan de la norma NTC 900, Sección 9.2.2.1, Instrumentos debidamente calibrados.

a. Repetibilidad de las mediciones en cualquier punto de la escala utilizada.

- **b.** Las medidas deberán ser realizadas con un luminancímetro, con un ángulo de medición no mayor de 2 minutos vertical y entre 2 y 20 minutos horizontalmente.
- C. El instrumento deberá ser sensible a mediciones de luminancia de cerca de 0,1 cd/m² con un error no mayor de ±2%.

Medidores fotométricos de Iluminancia: Los siguientes requisitos se adoptan de la norma NTC 900, Sección 9.1.2.1, Instrumentos debidamente calibrados.

a. Repetibilidad de las mediciones en cualquier punto de la escala utilizada.

DE

- b. Deberán tener una alta sensibilidad
- c. Deberá tener una precisión no menor del ± 5,0%.
- d. Deberán tener una corrección efectiva del coseno hasta un ángulo de 85°.
- e. Deberán tener corrección de color según la curva de eficiencia espectral de la CIE $V(\lambda)$.
- El coeficiente de sensibilidad con la temperatura deberá ser despreciable dentro del rango normal de temperaturas.
- g. Deberá tener una suspensión que permita ajustar automáticamente la horizontalidad.
- h. Deberá de ser capaz de medir niveles de lluminancia horizontal, o ubicarse en otros planos de medición requeridos.
- i. El fotómetro deberá ser ubicado tal que el observador no produzca sombras, cubierto de la luz extraña que no serán medidas. (Utilización de un cable de extensión).

540.5.5 CASOS EN LOS CUALES NO ES FACTIBLE LA MEDICIÓN

Cuando la configuración de la vía no reúne los requisitos dispuestos en el presente reglamento, la evaluación de la vía se efectuará según el siguiente procedimiento:

- a) Presentación de cálculos por medios informáticos que muestren los parámetros de calidad de la vía.
- b) Verificación en campo

1.Los cálculos deberán ser realizados de la siguiente forma:

- Considerar no menos de 3 vanos a cada lado del evaluado, dichos vanos deberán indicar los espaciamientos reales encontrados en el campo.
- La configuración real de la vía (alturas de montaje, avance del andén, ancho de calzada, bermas, etc.).
- Factor de mantenimiento real de la instalación.

2.En el campo se verificará:

- La operatividad de las luminarias en el vano seleccionado.
- Las características de la instalación y su correspondencia con las especificadas en los cálculos (el tipo de luminaria, separación entre postes, altura de montaje, altura del andén)
- El estado de mantenimiento de la instalación.

540.5.6 COMPETENCIA DE PERSONAL RESPONSABLE DE LAS MEDICIONES.

El personal que tiene a su cargo la toma de mediciones deberá estar capacitado en este tipo de actividades y debe evitar que las medidas se alteren por:

DE

- a) Luces o sombras introducidas por el operador: Deberá evitarse introducir luz adicional por reflexión sobre ropa blanca o colores fosforescentes. Igualmente, deberá evitar producir sombras o bloquear la luz que llega al instrumento receptor de luz.
- b) Introducción de errores de medición por deficiencias en la calibración de los medios de medición a usar al momento de la medición.
- c) Introducción de errores por deficiencias en las lecturas. Como variación de las alturas de medición, posición inadecuada del sensor y señalización incorrecta de los puntos de medición
- d) El personal seleccionado para efectuar las mediciones no debe introducir errores por repetibilidad y reproducibilidad mayor al 1%.

Nota 1: Se entiende por errores de repetibilidad la diferencia que existe entre lecturas efectuadas por un mismo operador, en un mismo vano en tiempos muy cercanos utilizando el mismo medio de medición.

Nota 2: Los errores por reproducibilidad son las diferencias introducidas por diferentes operadores en un mismo vano en tiempos muy cercanos utilizando el mismo instrumento.

540.5.7 INFORME DE LA MEDICIÓN

En el informe se deben incluir los siguientes datos:

- a. Localización del sitio de la medición
- b. Fecha y hora de la medición
- c. Descripción detallada del sistema de iluminación en el que se incluye: tipo de luminaria, altura del montaje, interdistancia entre postes, avance, inclinación de la luminaria, disposición y condiciones de los alrededores.
- d. Gráfico de la vía en planta y corte con las características de la instalación
- e. Condiciones eléctricas de operación.
- f. Condiciones de operación de las luminarias
- g. Condiciones atmosféricas.
- h. Tabla de datos medidos en el sitio
- i. Descripción de los instrumentos utilizados
- j. Nombre de los participantes en la medición.

					DE ILUMINAN				
RESPONSABLE:					FECHA		HORA IN	VICIO	
DIRECCIÓN DEL S	SITIO DE	MEDICIÓ	N						
TRAMO DE VIA Q	UE TIENE	COND	CIONES UNIF	ORMES AL					
SITIO DE MEDIDA	SITIO DE MEDIDA								
LUXÓMETRO (Ma	LUXÓMETRO (Marca -referencia – Nº serie)								
CONDICIONES AT	MOSFÉR	ICAS DE	E LA NOCHE						
LUMINARIA					BOMBI	LLA			
(Tipo-referencia-r	narca)				(Potenc	ia- fuente)			
TIPO DE APOYO (Poste-				AVANCE DE LA LUMINARIA SOBRE LA			A		
longitud)			CALZA	DA – A2 (m)					
ANCHO DE CALZADA – W (m)			ALTUR	A DE MO	ONTAJE	DE L	A		
SEPARADOR	SI	NO	Nº SEPARAI	OORES	LUMINA	ARIA –H (m)			

DE

LUMINARIAS INTERDISTANCIA ENTRE LUMINARIAS DISTANCIA DEL POSTE AL BORDE DE LA CONSECUTIVAS –S (m) ÁNGULO DE INCLINACIÓN DE LA LUMINARIAS ¿EL CONJUNTO ÓPTICO DE LAS LUMINARIAS ESTÁ SUCIO POR LA POLUCIÓN? PUNTOS 1 4 7 OBSERVACIONES 1 2 3	DISPOSICIÓ	N DE LAS				TENSIÓN NOMINAL DE	LA LUMINARIA	
CONSECUTIVAS –S (m) ANGULO DE INCLINACIÓN DE LA LUMINARIA ¿EL CONJUNTO ÓPTICO DE LAS LUMINARIAS ESTÁ SUCIO POR LA POLUCIÓN? PUNTOS 1 4 7 OBSERVACIONES 1 2	LUMINARIAS	3						
ÁNGULO DE INCLÍNACIÓN DE LA LUMINARIA ¿EL CONJUNTO ÓPTICO DE LAS LUMINARIAS ESTÁ SUCIO POR LA POLUCIÓN? PUNTOS 1 4 7 OBSERVACIONES 1 2	INTERDISTA	NCIA ENTRE	LUMINA	RIAS	DIST	ANCIA DEL POSTE AL	BORDE DE LA	
LUMINARIA ¿EL CONJUNTO ÓPTICO DE LAS LUMINARIAS ESTÁ SUCIO POR LA POLUCIÓN? PUNTOS 1 4 7 OBSERVACIONES 1 2	CONSECUTI	VAS –S (m)			CAL	ZADA –A1 (m)		
¿EL CONJUNTO ÓPTICO DE LAS LUMINARIAS ESTÁ SUCIO POR LA POLUCIÓN? PUNTOS 1 4 7 OBSERVACIONES 1 2	ÁNGULO I	DE INCLINACI	ÓN DE	LA	TENS	SIÓN MEDIDA EN LA RED		
PUNTOS 1 4 7 OBSERVACIONES 1 2	LUMINARIA							
1 2	¿EL CONJUI	NTO ÓPTICO DE	LAS LUM	INARIAS E	STÁ SUCIO POR	LA POLUCIÓN?		
1 2								
-	PUNTOS	1	4	7	OBSERVACIO	DNES		
-	1							
-								
3	2							
	3							

Tabla 540.10 Formato de planilla para los datos de iluminancia medidos en alumbrado público

© (Poste de localización de la luminaria)

Una vez obtenidos los valores de los niveles de iluminancia en los 9 puntos, se procede a calcular la iluminancia promedio Eprom y el coeficiente de uniformidad general Uo de acuerdo con la metodología presentada en el presente Reglamento.

540. 6 REDES DE ALIMENTACIÓN DEL SISTEMA DE ALUMBRADO PÚBLICO

En un proyecto de alumbrado público, después de realizado el análisis fotométrico y alcanzadas las mejores opciones de iluminación, se procede con el diseño de la red o instalación eléctrica que servirá para alimentar el sistema de alumbrado.

Las instalaciones eléctricas de los circuitos de alumbrado público deben cumplir con las disposiciones de seguridad contempladas en el Reglamento Técnico de Instalaciones Eléctricas - RETIE, y sus materiales y equipos deben tener certificado de conformidad de acuerdo con dicho Reglamento Técnico.

Los circuitos de baja tensión alimentados desde transformadores exclusivos de alumbrado público deberán tener una tensión que no facilite la conexión de servicios domiciliarios. Para sistemas de redes trifásicas de media tensión, los circuitos de baja tensión deben ser trifásicos tetrafilares, con una tensión fase – fase de 380 V. Las luminarias se conectarán entre fase y neutro a 220 V;

Para sistemas de redes monofásicas deben tener salida secundaria del tipo monofásicos trifilar 480/240 V y las luminarias se conectarán entre fase y neutro a 240 V.

El neutro debe estar sólidamente aterrizado.

La regulación de tensión de baja tensión que debe garantizar el operador de red; en el caso del alumbrado domiciliario debe ser igual a la tensión del servicio domiciliario y por tanto no debe exceder el rango de variación de +5% -10% la tensión nominal (Norma NTC 1340). En el caso del servicio de alumbrado público el nivel de tensión debe estar dentro del rango de funcionamiento normal de los equipos, es así que si el conjunto eléctrico de las luminarias tienen balastos electromagnético tipo reactor, la variación de tensión de alimentación no podrá tener una variación de tensión mayor de ± 5% la tensión nominal de los balastos que tengan las luminarias de alumbrado público.

540.6.1 TOPOLOGÍA DE LA RED ELÉCTRICA:

Los circuitos de baja tensión dedicados exclusivamente al alumbrado público, como en avenidas, parques y grandes áreas, deben cumplir los siguientes requisitos:

DE

- a. Alimentarse con transformadores exclusivos.
- b. Los transformadores alimentados de redes trifásicas deben tener salida secundaria del tipo trifásico tetrafilar de 380/220 V,
- c. Para sistemas de redes primarias monofásicas deben tener salida secundaria del tipo monofásicos trifilar 480/240 V.
- d. Deben ser potencias estandarizadas de transformadores que faciliten su adquisición y cada transformador de uso exclusivo de alumbrado público no debe ser mayor a 75 KVA,
- e. Transformadores de potencias mayores a 5 KVA deben llevar asociado un equipo de medida, que permita tener control real de la energía consumida en el alumbrado público.

En sectores residenciales y pequeños comercios, la red eléctrica de distribución en baja tensión podrá ser compartida con las instalaciones de alumbrado público y la tensión de alimentación será la tensión fase nominal de la red (usualmente 208 V).

En los circuitos de iluminación compartidos con redes de uso general, se puede usar la tensión propia de la red 208/120 ó 220/127 Voltios, o monofásico 240-120 voltios.

En estos casos los Operadores de Red deben considerar, en sus normas de construcción condiciones especiales de las estructuras de soporte de la red, como la separación, características mecánicas para soporte de cables, brazos, luminarias y demás herrajes, distancias de seguridad. En las interdistancias (vanos de los cables de las redes eléctricas, se debe dar cumplimiento a los parámetros de iluminación de la vía, con los niveles de iluminancia mínimos promedio mantenidos y coeficientes de uniformidad exigidos en el presente reglamento.

Los Operadores de Red en sus normas de construcción de redes en vías intermedias y locales, con clases de iluminación M3, M4 y M5, deben contemplar la localización de estructuras con base en estudios fotométricos, usando la información de luminarias certificadas con bombillas de las potencias usualmente utilizadas y eficacias lumínicas no menores a las establecidas en el presente reglamento. El estudio debe comparar la información certificada de por lo menos tres tipos de luminarias. La separación de estructuras seleccionada debe ser la de la alternativa más económica en la vida útil del proyecto, teniendo en cuenta los criterios definidos en el presente reglamento. La ubicación definitiva de la estructura no debe estar por fuera de la interdistancia óptima en más o menos el 15%.

Las autoridades municipales, como responsables del servicio de alumbrado público, manejo del espacio público y responsables primarios de la prestación del servicio público de energía deben exigir el cumplimiento de esta normatividad de separación máxima de los postes en la construcción de las nuevas redes eléctricas de uso general, en los cascos urbanos y podrán exigir la modificación de las mismas en el caso de incumplimiento.

La característica de diseño como circuito aéreo o subterráneo dependerá básicamente de las disposiciones de ordenamiento municipal, las cuales deben ser atendidas por quienes desarrollen los proyectos de alumbrado público.

540.6.2 REGULACIÓN DE TENSIÓN:

En los sistemas de alumbrado público con redes exclusivas para este propósito la regulación de tensión no deberá exceder el 3% desde bornes del transformador. Para garantizar este valor, es necesario considerar las siguientes variables:

El diseñador deberá demostrar el cumplimiento de la regulación de tensión y el cálculo deberá hacer parte de las memorias. Para el efecto, el diseñador entregará una tabla con los cálculos de regulación

en cada luminaria medida desde los bornes del transformador. La tabla debe contener al menos la siguiente información:

- Tensión de distribución
- Conductores: material, aislamiento, número de conductores y calibre
- Potencia de las luminarias, incluyendo las pérdidas del balasto
- Separación entre luminarias

En los circuitos de alumbrado público en redes de uso general, se debe acordar con el operador de red cual es la máxima regulación aceptada para la operación adecuada de las lámparas.

540.6 3 PROTECCIONES:

Las redes eléctricas para el montaje de sistemas de alumbrado público deben cumplir con las protecciones de sobretensiones y sobrecorrientes exigidas en el RETIE.

540.7 CALCULO DE COSTOS DE INSTALACIÓN Y MANTENIMIENTO DEL ALUMBRADO PÚBLICO.

Se requiere evaluar y prever los costos de instalación compuestos por los proyectores o luminarias, bombillas, ductos y cables, accesorios de montaje, postes y apoyos, medidas de seguridad frente al vandalismo (cuando aplique), elementos de control para encendido y apagado automático o manual y la instalación de la carga eléctrica necesaria en el proyecto (acometida o transformación).

Para la evaluación de costos de proyectos de iluminación, se debe consultar el Capítulo 6 Proyectos de Alumbrado Público, del presente Reglamento Técnico.

Los costos de mantenimiento igualmente deben preverse a partir de la vida útil de bombillas y equipos, así como de los costos asociados a su recambio. Ver Capítulo 7 Criterios y Requerimientos para el Mantenimiento de Sistemas de Alumbrado Público, del presente Reglamento Técnico.

SECCIÓN 550 ILUMINACIÓN DE OTRAS ÁREAS DEL ESPACIO PÚBLICO

El Decreto 1504 de 1998 de manejo del Espacio público en los planes de ordenamiento territorial, contempla otros elementos constitutivos del espacio público tales como: Áreas para la conservación y preservación de las obras de interés público y los elementos urbanísticos, arquitectónicos, históricos, culturales, recreativos, artísticos y arqueológicos, las cuales pueden ser monumentos nacionales, murales, esculturas, fuentes ornamentales, escenarios deportivos, escenarios culturales y de espectáculos al aire libre, túneles, etc.

No todos los espacios públicos, definidos en el Decreto 1504 de 1998 reglamentario de la Ley 388 de 1997, están contemplados para ser iluminados con cargo al servicio de alumbrado público; pero esto no implica que no necesitan ser iluminados. El servicio de alumbrado público esta reglamentado y definido en las Resoluciones CREG 043 de 1995 y 070 de 1998 y en el Artículo Segundo del Decreto 2424 de julio 18 de 2006 del Ministerio de Minas y Energía.

550.1 ILUMINACIÓN DE GRANDES ÁREAS DEL ESPACIO PÚBLICO

Cuando el área a iluminar es de grandes dimensiones, superiores a 5.000 m² y la relación largo / ancho tiene un valor máximo de 10, es conveniente considerar la iluminación con postes de gran altura o mástiles y no simplemente con postes y luminarias convencionales.

Entre las ventajas del uso de mástiles de gran altura (27 m) se tiene: Mejora sustancial el impacto ambiental visual de la instalación, así como el rendimiento luminoso de la instalación, al favorecer la visión general de cualquier objeto en el área, además de disminuir los costos de operación,

mantenimiento y reposición de la instalación de alumbrado (Ver figura 550-1.A)

En este tipo de iluminaciones se calcula la iluminancia (horizontal) promedio E_{prom} , así como los valores de E_{max} y E_{min} sobre el área y los valores de uniformidad definidos como las relaciones entre E_{min}/E_{prom} .

Los puntos de cálculo se ubican en el centro de los cuadrados que componen una red que cubre toda el área a iluminar. Las aristas de cada cuadrado en la red de cálculo no deben exceder de 5 m. Deben contemplarse puntos de cálculo en las cruces viales a desnivel considerando completamente su geometría (cambios de altura e inclinación) y para cada uno de ellos se calcula la iluminación horizontal E_h respectiva, a partir del aporte de todos y cada uno de los proyectores de la instalación.

Los mástiles se colocan de tal manera que no interfieran con el trabajo del área: bien sean bodegas al aire libre, patios de maniobras, intersecciones viales con cruces a desnivel, glorietas, zonas aledañas a hitos y escenarios deportivos, parqueadero.

Cada mástil cubre aproximadamente un área equivalente a un cuadrado cuyo lado mide cuatro (4) veces su altura. Por ello, los mástiles se fabrican de 20 ó 27 metros. El problema radica en que la altura del mástil eleva su costo de manera exponencial.

Mástiles de 27 m se justifican sólo donde el ahorro de espacio sea más importante que el costo del mástil. De modo que una instalación mínima contempla al menos 2 mástiles. Esta disposición permite instalar una iluminación con una iluminancia general que oscila entre 6 y 100 luxes, dependiendo del trabajo visual requerido en el área y con un mínimo de sombras.

Si dentro del área hay zonas con requerimientos lumínicos mayores, es preferible utilizar iluminación adicional, bien sea con luminarias sobre postes, fachadas o decorativas.

Los mástiles se ubican en el centro del área a iluminar siempre que sea posible. Ver Figura 540-1.B).

Otra posible distribución de los mástiles se basa en colocarlos en los bordes del área a iluminar. Aunque la relación área iluminada / costo es menor que la distribución directa en el área de trabajo, en ocasiones se justifica para dejar el área totalmente libre de cualquier obstáculo, como pudiera llegar a ser el mástil. Ver Figura 540-1.B).

Figura 550.1 a) Ubicación de mástiles en el centro del área

La tecnología de iluminación con base en mástiles está muy difundida y debe promoverse siempre que sea posible su utilización debido a la mejora sustancial de la visión. La sensación de amplitud, limpieza del diseño y menores costos totales en inversión inicial compensan con creces los mayores cuidados requeridos para llegar a un buen diseño. Finalmente, los costos de mantenimiento bajan debido a que con un solo desplazamiento se accede a 4 ó 6 proyectores a la vez, siendo éste el mayor valor en importancia, después de la bombilla, para la evaluación de los costos de mantenimiento.

DE

Figura 540-1.b) Ubicación de mástiles laterales al área

Desde el punto de vista de la resistencia mecánica de la estructura del mástil, de las plataformas de soporte de los equipos de alumbrado, y de facilitar las labores de mantenimiento, es conveniente utilizar proyectores que tengan el conjunto óptico separado del conjunto eléctrico (proyector o conjunto óptico y cofre con accesorios eléctricos); en ese caso es necesario verificar las características del arrancador que se va a utilizar y la distancia máxima que éste permite entre la bombilla (ubicada en el proyector) y el conjunto balasto-arrancador (ubicados en el cofre); pues la pérdida de energía del pulso de arranque por amortiguamiento capacitivo del cable de conexión, pueden ocasionar anomalías en el encendido de las bombillas.

550.2 ILUMINACIÓN DE FACHADAS DE EDIFICIOS Y MONUMENTOS PÚBLICOS

Aparte de las vías convencionales, la iluminación de fachadas, iglesias, conventos y monumentos es de gran interés para mantener la estética del paisaje urbano, mejorando de esta manera la comodidad visual y por ende la calidad de vida de los habitantes del municipio.

Iluminar las fachadas y los exteriores de los edificios constituye una de las realizaciones más exitosas y de la luminotecnia. Sus fines pueden ser puramente estéticos o pueden incluir objetivos prácticos, como en el caso de la *iluminación de seguridad*. La iluminación exterior de un edificio reporta además beneficios como seguridad, prestigio y *publicidad económica* en la medida que se convierta en referente de la ciudad.

Al elaborar un proyecto de iluminación exterior de fachadas de edificios y monumentos públicos se deben considerar los siguientes factores

- a. Dirección principal de la visión de los observadores.
- b. Nivel de iluminancia vertical requerida.
- c. Selección de las fuentes luminosas a utilizar
- d. Selección de los proyectores y equipos a utilizar
- e. Localización de los proyectores
- f. Análisis del contorno y forma del edificio
- g. Composición de las fachadas
- h. Color predominante de la fachada o monumento
- i. Requerimientos eléctricos
- j. Diseño eléctrico
- k. Costos de instalación y mantenimiento

DE

La iluminación de fachadas, de acuerdo con la regulación vigente a la fecha, no está contemplada como parte del servicio de alumbrado público en los municipios, por lo tanto su diseño, construcción y mantenimiento no se puede cargar a la cuenta de este servicio.

Dirección principal de la visión de los observadores: Es necesario determinar desde dónde será contemplado el edificio o fachada por la mayoría de los observadores. Esta dirección será considerada como el origen de la visual principal. El referente es que ningún brillo o reflejo directo superior a 10 veces el brillo promedio del monumento debe quedar en esta dirección, porque causará deslumbramiento a los observadores y esa molestia disminuye la calidad de la iluminación diseñada.

Nivel de iluminancia vertical requerido: Sobre las fachadas, el diseñador debe prever una iluminancia vertical que depende de la ubicación del observador, la reflectancia de la fachada y la iluminación circundante en los alrededores del edificio considerado, se recomiendan tener en cuenta los valores de la Tabla 550.2.

Observador	Reflectancia de fachada	Alrededores (luxes)		
		Poco Iluminados	Medianamente Iluminados	Muy Iluminados
Fachadas para ser vistas desde adyacencias	Alta reflectancia entre 0,70 a 0,85 (claras)	50	100	150
cercanas	Reflectancia media entre 0,45 a 0,70 (grises)	100	150	200
	Reflectancia baja entre 0,20 a 0,45 ⁽¹⁾ (gris oscuro, negro)	150	200	300
Fachadas para ser vistas a distancia	Todas las fachadas	150	200	300

Tabla 550.2. Niveles de iluminancia vertical recomendado para fachadas

Fuente: IESNA Lighting Handbook. 8ª edición año 2.000.

Generalmente si las fachadas tienen reflectancia por debajo de 0,2 resultan muy costosas de iluminar mediante el sistema de proyectores. Es preferible utilizar otros métodos de iluminación como los LED, la fibra óptica u otras tecnologías apropiadas para delinear el contorno de algunas partes del edificio.

Análisis del contorno y forma del edificio: Muchos alrededores de edificios tienen figuras que se deben resaltar para romper la monotonía de una fachada. Es el caso de las rejas, árboles en solitario, estatuas, monumentos. La idea es poderlas resaltar como siluetas oscuras sobre la fachada iluminada de la edificación, lo cual se logra ubicando los componentes del proyecto en la secuencia edificio, proyectores, figura a resaltar y observador.

Un diseño más elaborado puede contemplar este resalte no solo por silueta sino por iluminación de diferente color o contraste.

Selección de las fuentes luminosas a utilizar: La fuente de luz se selecciona de acuerdo con el color y estilo del edificio. Edificaciones modernas tienden a iluminarse con más colorido que edificaciones clásicas o rústicas.

Las fuentes de luz para edificaciones modernas incluyen bombillas de halogenuros metálicos de colores como el blanco, para edificios sobrios, el verde, el violeta, el rojo o una combinación de ellos, para edificaciones coloridas. Una alternativa mas económica aunque menos espectacular son las bombillas de vapor de sodio. Otra alternativa en iluminación de edificios modernos se provee con fuentes de luz distribuidas en *fibra óptica*, tubos *de neón y LEDs*.

Para los edificios clásicos de acabados rústicos, en general se utilizan bombillas de sodio alta presión. Edificios clásicos con fachadas claras tienden a iluminarse con halogenuros metálicos.

DE

Selección de los proyectores y equipos a utilizar: Se debe tener en cuenta el color y la cantidad de luz necesitada para proveer el nivel lumínico recomendado sobre la fachada, otro aspecto a tener en cuenta es la localización posible de los proyectores, la distancia a la base del edificio y altura a iluminar.

De acuerdo con las características de los elementos a iluminar y de los parámetros analizados anteriormente, el diseñador debe definir las características físicas, mecánicas y fotométricas del equipo de iluminación más adecuado para diseñar el proyecto de iluminación, teniendo en cuenta la distancia de proyección y el área cubierta a tal distancia, con el fin de obtener el mayor rendimiento del haz sobre la superficie a iluminar.

Para la selección de los proyectores se necesita conocer su clasificación, de acuerdo con los siguientes criterios:

- La simetría de su fotometría,
- El ancho en grados del haz de proyección según la CIE,
- La clasificación **NEMA** según la apertura del haz
- La construcción mecánica.

Localización de los proyectores. Basados en la dirección de la visual principal la orientación de la luz dependerá de la forma del edificio: en particular de la forma de su planta o de la sección horizontal predominante en la altura de la visual, buscando que los proyectores entreguen la mayor cantidad de intensidad luminosa en dirección a la normal que establezca el plano de la fachada. El propósito de esta ubicación es permitir a su vez que la iluminancia vertical sobre la superficie dominante de la fachada sea la máxima, que implica la reducción de costos de operación y un mayor resalte de la fachada.

A partir de la reducción a figuras geométricas simples, pueden sugerirse la mejor ubicación de los proyectores. Así, un edificio rectangular largo y bajo se ilumina por su contorno; en tanto que un edificio circular y alto, se ilumina desde dos laterales a la visual. Esto resaltará el volumen y profundidad de la edificación.

Como un principio general de iluminación, los proyectores, fuentes e instalaciones **deben ser tan discretos** como sea posible frente al edificio o espacio iluminado, sin dejar a un lado las adecuaciones para protegerlos del vandalismo.

Cuando esto no sea del todo práctico, es necesario evaluar el impacto visual de las instalaciones. En ese caso, se verá comprometida también la selección de los proyectores y equipos.

Composición de las fachadas. En las fachadas lisas, si se iluminan de manera muy uniforme, pueden llegar a ser monótono. En ese caso, la introducción de diferentes colores y niveles de iluminación a lo largo de su superficie resulta útil para romper la monotonía. Es el éxito de la desigualdad de la distribución luminosa.

Si en la fachada predominan líneas verticales formadas por columnas, pilares o vidrios, éstas se resaltan mediante proyectores de haz mediano ubicados a izquierda y derecha de la línea de *visual principal*.

Si en la fachada resalta una o varias líneas horizontales, como alfajías, vigas o voladizos continuos, se colocan proyectores pequeños a lo largo de esa línea (sin que se vean) para crear en dicha zona un área con mayor iluminación que divida al edificio en una base iluminada mas tenue y la zona superior mas iluminada a partir de la línea horizontal seleccionada. Este efecto permite crear la sensación de edificios flotantes.

Fachadas con balcones salientes se iluminan con proyectores retirados, para integrar estos salientes a la arquitectura predominante. Fachadas con entrantes, por el contrario se iluminan con proyectores más cercanos para generar sombras. Los entrantes pueden utilizarse para colocar proyectores de diferente potencia (bien sea mayor o menor) o color con el fin de reforzar la sensación de volumen o profundidad

de la edificación.

Color predominante de la fachada o monumento. El color predominante de la fachada compromete los elementos del diseño de iluminación por que el color de la fachada incide en la selección del color de la fuente luminosa. Se recomienda utilizar fuentes que resalten el color predominante del edificio y utilizar colores de alto contraste, para evidenciar efectos especiales de sombras, zonas más brillantes o resaltar entrantes y salientes de las edificaciones.

550.3 ILUMINACIÓN DE ESCENARIOS DEPORTIVOS O RECREATIVOS

DE

550.3.1 CRITERIOS GENERALES.

El trabajo visual en las canchas está orientado a proveer una visión clara del área de juego a los deportistas, incluyendo los objetos que intervienen. Bajo dos criterios fundamentales: Contraste elevado entre el jugador y el fondo y ausencia o minimización del deslumbramiento, para conseguir una buena visibilidad y una práctica más continua y menos fatigante.

En los campos deportivos se encuentran una gran variedad de superficies reflectantes como el balón, los uniformes de los jugadores, la superficie de la cancha, de las graderías y los espectadores. Cada una de estas superficies no son uniformes ni continuas, sobre todo tratándose de campos deportivos comunales orientados al deporte recreativo o de entrenamientos, esto hace que las reflectancias no sean uniformes y dificultan un estudio basado en luminancia.

Por lo anterior, los diseños y los cálculos se deben basar en la cantidad de luz incidente o lluminancia, tanto horizontal como vertical:

a) Iluminancia horizontal: La iluminancia horizontal es prácticamente la que determina el nivel de luz en el terreno de juego y como éste sirve de fondo visual para los jugadores y la pelota, es relevante tener una iluminancia horizontal suficiente para crear las condiciones de contraste correcto con el fondo. Por otra parte, como la iluminancia horizontal es responsable por la mayor parte de la luminancia del campo, entonces determina el estado de adaptación del ojo puesto que el área iluminada forma una parte considerable del terreno de visión. La iluminancia horizontal necesaria para un campo deportivo determinado depende de:

El nivel de competencia previsto para la cancha (recreativa, entrenamiento, torneos o profesional)

El tipo de juego, que a su vez determina la velocidad y tamaño de la pelota, el movimiento de los deportistas y la distancia entre éstos y la pelota durante el juego.

La Tabla 550-3.1 ilustra los niveles de iluminancia horizontal en luxes y la uniformidad, recomendados de acuerdo con los criterios anteriores:

Deporte		Nivel de juego)	Uniformidad (E _{min} /E _{max})	
	Recreativo	Entrenamiento	Competencia	Entrenamiento	Competencia
Fútbol	50(100)	60(150)	>600	1:3	2:3
Voleibol	60	100	300 a 600	1:3	2:3
Baloncesto	60	100	300 a 600	1:3	2:3
Tenis	150	250	400 a 700	1:2	2:3
Béisbol	150	250	400 a 700	1:2	2:3

Tabla 550.3.1 Niveles de iluminancia horizontal por tipo de juego y nivel de competencia

Fuente: IESNA Lighting handbook

DE

El criterio para aplicar el rango por su mínimo o su máximo, depende de la calidad del escenario, el costo del proyecto, el uso real en torneos, competencias o entrenamientos.

b) Iluminancia vertical: La iluminancia vertical, en un campo de juego, es importante para reconocer los objetos y se calcula para escenarios que realizan torneos y juegos profesionales especialmente en donde hay afluencia de público y requerimientos de transmisiones de televisión.

Para los jugadores, la iluminancia vertical es importante y debe venir de todas direcciones a fin de evitar las sombras que podrían comprometer la visibilidad de la pelota de juego. Igual sucede con los espectadores y con las cámaras de televisión. No obstante, si éstos ocupan una posición fija, la iluminancia horizontal deberá comprobarse en la dirección principal de observación.

En campos deportivos donde se necesite calcular la iluminancia vertical, una buena práctica es instalar el mismo nivel lumínico que el establecido para la iluminancia horizontal. Claro está, la iluminancia horizontal se calcula a ras de piso en la cancha, en tanto que la iluminancia vertical se calcula a 1,80 m. del nivel de cancha y en las direcciones desde donde el público tiene visión sobre el juego.

550.3.2 CONTROL DEL EFECTO ESTROBOSCÓPICO

El efecto estroboscópico consiste en el engaño que experimenta el ojo humano debido a la persistencia de las imágenes en el cerebro por una fracción de segundo después que son vistas. Si una pelota en movimiento se ilumina con una fuente intermitente con un tiempo de intermitencia entre 20 y 80 veces por segundo, se observará que la bola aparece varias veces, como una estela de imágenes.

Esta estela puede confundir al observador respecto de la posición real de la bola. Las bombillas de descarga de alta intensidad (HID), alimentadas con corriente alterna a 60 Hz pueden producir efectos estroboscópicos, que terminan por ocasionar dificultades visuales a los deportistas, en especial cuando se trata de deportes de pelota rápida o de juego aéreo. Este molesto efecto se puede eliminar en un alto porcentaje conectando los proyectores en cada torre de iluminación a las tres fases de la línea de alimentación de manera alternada. Así, la instalación eléctrica debe llevar distribución trifásica a cada torre de iluminación, independiente de la potencia que vaya a manejar.

Cuando se usan proyectores de haz estrecho, esto puede resultar muy crítico, porque algunas partes del campo deportivo pueden quedar alimentadas por una sola de las fases, por eso los proyectores con haces estrechos se deben enfocar en grupos de tres, alimentado cada uno por una fase diferente, pero actualmente la solución más eficaz consiste en alimentar las bombillas de los proyectores con balastos electrónicos de alta frecuencia.

550.3.3 DISPOSICIÓN DE POSTES QUE SOPORTAN LOS EQUIPOS DE ALUMBRADO DE CAMPOS DEPORTIVOS

De acuerdo con el escenario a iluminar, hay algunas disposiciones típicas que han sido probadas con muy buenos resultados.

Los postes o apoyos para la iluminación de campos deportivos exteriores de uso público, se ubican en disposición lateral al campo de juego o en los vértices del campo. La distancia mínima de separación entre la cancha y el pie de los postes depende en general de la calidad del escenario.

Por ejemplo: una cancha múltiple para un barrio, con disposición de juego recreativo en donde se pueda jugar básquetbol, voleibol, microfútbol y se usa como pista de patinaje, la separación mínima es de 1 m. Este mismo escenario, con gradería para torneos locales, debe colocar los postes detrás de la gradería, a unos 10 m de la cancha.

Pero la ubicación de los postes incide de manera importante en su altura libre para el montaje de los proyectores. La figura 550.3.2 ilustra esta relación: para calcular la altura de montaje h_m se proyecta en el diseño el haz de luz desde la cima del poste y se dirige en un ángulo de 30° bajo la horizontal, justo al

frente. El haz debe llegar al plano de la cancha de juego a 1/3 de su ancho

DE

Figura 550. 3.2 Relación entre la separación del campo y la altura de los postes

Otra forma es calcular la altura de montaje mediante la siguiente ecuación:

$$h_m = \left\lceil \frac{w}{3} + Sep \right\rceil * Tan(30^\circ)$$

Donde:

h_m = Altura de montaje mínima de los proyectores

W = Ancho del campo deportivo

Sep .= Separación entre el campo deportivo y la base de los postes

Esto garantiza un bajo nivel de deslumbramiento a los jugadores.

550.3.4 CANCHAS MÚLTIPLES

El esquema de iluminación mas frecuente en estas canchas, cuando están solas, es usar cuatro (4) postes dispuestos dos a cada lado del campo tal y como lo sugiere la Figura 550.3.4.A).

Figura 550.3.4 a) Cancha múltiple sencilla

Para dos canchas múltiples seguidas, se pueden utilizar cuatro (4) postes distribuidos en los costados laterales ó con dos (2) postes ubicados en el sector central de las canchas cada uno con doble luminaria o proyector hacia las canchas. Véase la Figura 550-3.5.b).

Figura 550.3.4.b) Cancha múltiple doble

El número de luminarias o proyectores y su potencia, se establece de acuerdo con el nivel lumínico recomendado en este reglamento.

550.3.5 CANCHAS DE FÚTBOL

Hay dos esquemas para su iluminación: cuatro postes de 18 a 20 m de altura libre en cada arista del campo. La ventaja principal de esta distribución es que esa ubicación no molesta la visión desde las graderías en los laterales del campo. El otro esquema es usar postes de 16 m de altura libre, dos a cada lado del campo, distribuidos simétricamente. La ventaja de este esquema es que resulta más económico que el anterior,—pero tiene el inconveniente que puede ocasionar deslumbramiento a los jugadores, especialmente al portero, debido a la orientación de los proyectores para obtener buenas uniformidades.

SECCIÓN 560 ILUMINACIÓN DE TÚNELES.

El diseño de alumbrado de túneles, debe cumplir con los requerimientos de iluminación para una percepción segura, oportuna y una seguridad en los niveles de movilidad de los conductores.

Para la iluminación de túneles se debe aplicar una norma como la CIE 88- 2004 u otra equivalente.

El objetivo de la iluminación de túneles es suministrar una apropiada visibilidad a los conductores tanto en el día como en la noche. Los factores que contribuyen a disminuir la visibilidad deben ser determinados para cada túnel.

Los factores comprenden:

- Características de la vía de acceso y sus proximidades
- Características de la vía en el túnel, paredes y techos
- Características del portal del túnel
- Condiciones ambientales y atmosféricas
- Características del tráfico vehicular
- Orientación del túnel con respecto al sol

En la Figura 560 se muestran las zonas que se deben tener en cuenta en el diseño de iluminación de túneles.

Figura 550 Zonas lumínicas de un túnel

Zona de acercamiento

Portal

= Vía externa al túnel.

El plano de entrada al túnel.

Zona de Adaptación

= Primera parte del túnel, durante el día se requiere suministrar un alto nivel de alumbrado-La longitud del umbral (zona interior adyacente al portal) y de la zona de transición o adaptación depende de la velocidad de diseño del túnel.

Zona de transición=Área donde se hace la transición del alto nivel de alumbrado requerido en el umbral, al bajo nivel de la zona interior.

Zona interior =Es la parte más interna del túnel que requiere el suministro de un bajo nivel de alumbrado.

NOTA: La longitud de cada zona varía con los parámetros de diseño en cada túnel.

560.1 PARÁMETROS DE DISEÑO PARA ILUMINACIÓN DE TÚNELES

El diseño, cálculo e instalación de alumbrado de túneles se realizará de forma tal que se eviten los efectos de agujero negro, adaptación, cebra y parpadeo o efecto flicker, considerando los siguientes parámetros:

- Cantidad y velocidad del tráfico.
- Clasificación del túnel.
- Condiciones de luminancia externa tanto en el día como en la noche
- Equipo eléctrico.

560-2 CLASIFICACIÓN DE LOS TÚNELES

Los túneles se clasifican según su longitud y para fines de alumbrado, en *túneles cortos* y *túneles largos*. Se define como túnel corto aquel que sin tráfico, las salidas y sus alrededores, son claramente visibles desde un punto situado fuera de la entrada a él. Un túnel puede tener hasta 50 metros de largo sin que se necesite alumbrado durante las horas del día. Sí un túnel corto no es recto o si el tráfico es muy intenso, el efecto de silueta es menos marcado y puede ser necesaria una iluminación artificial. Los túneles que no se ajusten a la definición anterior, son considerados túneles largos.

Los túneles largos deberán estar dotados de iluminación, debiéndose contemplar los alumbrados diurno, crepuscular y nocturno. En los accesos a este tipo de túneles se implantará alumbrado público, como mínimo, 300 metros antes y después de la entrada y salida.

Para el alumbrado diurno y crepuscular, en túneles con tráfico en las dos direcciones, deberán preverse tres escalones o niveles de iluminación a la entrada, el tramo central y otros tres escalones, idénticos a los de la entrada, para la salida del túnel, siendo el alumbrado nocturno constante para todo el túnel.

Cada escalón contemplará un tramo de túnel de 50 metros de longitud, como mínimo, pudiendo alcanzarse hasta 200 metros, dependiendo de la limitación en la velocidad de los vehículos. El tramo central tendrá medidas concretas que dependerán de la longitud real del túnel.

Es necesario aclarar que el diseño de la iluminación del túnel se realiza de manera independiente en cada entrada; si el túnel es de una sola dirección de circulación, solamente se considerará una zona de umbral y transición en la boca de entrada, siendo también constante para todo el túnel el alumbrado nocturno. Si el túnel tiene dos direcciones de circulación, se deben considerar, tanto a la entrada como a la salida, zonas de umbral y sus correspondientes transiciones.

Por razones de seguridad se debe tener alumbrado de emergencia en el caso de túneles de longitudes superiores a 100 metros, o en aquellos en los que exista algún punto en su interior desde el que no se pueda ver ninguna de las bocas del túnel.

560.3 REQUISITOS PARA LA ILUMINACIÓN DE TÚNELES DURANTE EL DÍA

a) Zona de adaptación o zona de umbral. El conductor que se acerca a la entrada de un túnel durante el día, ha de adaptar sus ojos para pasar de un alto nivel de luminancia que prevalece en el exterior, a la luminancia del interior. Por con siguiente, si el túnel es largo y el nivel de luminancia dentro de él es mucho más bajo que el de fuera, el túnel se presenta como un "hueco negro" Por lo que no será visible ningún detalle de su interior. Esto se conoce como deslumbramiento por ausencia de luz y su duración fisiológica es mayor que cuando se hace la transición contraria.

Para hacer visibles los obstáculos dentro del túnel hay que aumentar el nivel de luminancia de su entrada, esto es, en la zona de adaptación (L_{th}). El nivel de luminancia requerido en esta zona depende del nivel exterior (L_o) , que en un día soleado puede alcanzar unas 8.000 cd/m² (Esta luminancia es equivalente a una iluminancia horizontal del orden de 100.000 luxes). Figura

La longitud de la zona de adaptación o zona de umbral depende principalmente de la distancia a la cual pueda ser visible un objeto crítico (objeto crítico es aquel que tiene 0,2 X 0,2 m y contraste de 20%) en el 75% de los casos y a una distancia que depende de la velocidad permitida dentro del túnel. Además, el tiempo de visión debe ser al menos 0,1 segundos.

Una forma para reducir el nivel de luminancia de la zona de adaptación, es disminuir el nivel de iluminación en la zona de acceso (fuera del túnel). Esto puede lograrse oscureciendo los alrededores de la entrada, utilizando colores oscuros en la superficie y muros laterales de la calzada y sembrando árboles y arbustos en los alrededores de la entrada.

La longitud total de la zona de umbral debe ser al menos igual a la distancia de parada. Durante la primera mitad de la distancia, el nivel de luminancia debe ser igual a Lth (valor de la luminancia de umbral a la entrada del túnel). Se recomienda que a partir de la mitad de la distancia de parada hacia delante, el nivel de luminancia se reduzca gradualmente, hasta un valor, al final de la zona de umbral, igual a 0,40 L_{th} (Ver figura 560.3.b)). La reducción gradual, puede hacerse en escalones. Sin embargo, los niveles de luminancia no deben caer por debajo de los valores correspondientes a la disminución gradual recomendada y dibujada en la figura 550, según la norma CIE 88 de 2004.

DE

Figura 560.3b) Gradiente de luminancia en el túnel (figura 6.6 de la norma CIE 88 de 2004)

Para el cálculo de la luminancia de umbral L_{th} , se debe consultar el numeral 6.2 (método del contraste percibido) y el Anexo A.1 (método L20) de la Norma CIE 88: 2004

b)Zona de transición: El conductor que entra en un túnel, necesita cierto tiempo para que sus ojos se adapten a un nivel inferior de luminancia. Por consiguiente, es preciso que la transición al nivel más bajo reinante en el túnel se haga gradualmente.

La reducción de la luminancia de la calzada en la zona de transición sigue, en principio, la curva mostrada en la Figura 560-3.b) .La zona de transición comienza al final de la zona de umbral (t = 0).

Esta curva puede ser sustituida por una curva escalonada con niveles que nunca deben caer por debajo de la curva continua. La relación de luminancia máxima permitida al pasar de un escalón a otro es de 3. El último escalón no debe ser mayor de dos veces la luminancia de la zona interior.

Como el campo de visión del conductor está formado por el interior del túnel, puede ser aconsejable una zona de transición mayor a fin de contrarrestar un segundo efecto de agujero negro.

Para un confort de conducción adicional, en el caso de la curva escalonada, la longitud de la zona de transición puede, a su término, extenderse 1 a 2 segundos sobre la longitud que sigue a partir de la curva CIE.

c) Zona interior: La luminancia media de la calzada en la zona interior del túnel está dada a continuación en función de la distancia de parada y del caudal de tráfico. La zona interior de un túnel muy largo consiste en dos subzonas diferentes. La primera subzona corresponde a la longitud que es cubierta en 30 segundos y debe ser iluminada con los niveles de "túneles largos". La segunda subzona corresponde a la longitud restante y debe ser iluminada con los niveles de "túneles muy largos".

DE

Continuación Anexo General Reglamento Técnico de Iluminación y Alumbrado Público - RETILAP

Los valores recomendados de luminancia en cd/m2, se dan en las siguientes tablas.

Distancia de parada	TÚNELES LARGOS Caudal de tráfico		
	Bajo	Elevado	
160 m	6	10	
60 m	3 6		

Tabla 560.3 a) Valores de luminancia en la zona interior (túneles largos)

Fuente CIE 88: 2004 tabla 6.7.1

Distancia de parada		S MUY LARGOS dal de tráfico
	Bajo	Elevado
160 m	2,5	4,5
60 m	1	2

Tabla 560.3 b) valores de luminancia en la segunda parte de la zona interior (túneles muy largos)

Fuente CIE 88:2004 tabla 6.7.2

Para distancias de parada que se encuentren entre las cifras establecidas y caudales de tráfico intermedios (entre bajo y elevado) puede usarse una interpolación lineal.

El caudal de tráfico usado en las tablas anteriores puede definirse como sigue:

Caudal de tráfico	Tráfico unidireccional	Tráfico bidireccional
(vehículos/hora/carril)		
Elevado	>1.500	>400
Bajo	<500	<100

Tabla 550.3 c) Clasificación del caudal de tráfico

Fuente CIE 88:2004 tabla 6.7.3

Caudal de tráfico: El número de vehículos que pasan por un punto específico en un instante establecido en dirección o direcciones establecidas. En el diseño del túnel, se usarán el tráfico en horas punta, vehículos por carril y por hora.

d) Zona de salida. Durante el día, para un conductor que se encuentra dentro del túnel, la salida se presenta como si fuera a entrar a un agujero brillante, contra el cual los obstáculos son claramente visibles como siluetas.

Puesto que la adaptación de un nivel bajo de luminancia a otro mayor se efectúa rápidamente, las exigencias de iluminación de la zona de salida son mucho menos severas que las de la zona de entrada. En el caso de túneles unidireccionales y con la finalidad de asegurar una iluminación adecuada para los pequeños vehículos y una visión hacia atrás suficiente mediante los espejos retrovisores, la zona de salida debe ser iluminada del mismo modo que la zona interior del túnel. En situaciones en las que se esperan peligros adicionales cerca de la salida del túnel y en túneles en los que la zona interior es larga, se recomienda que la luminancia durante el día en la zona de salida aumente linealmente sobre una longitud igual a la distancia de parada (antes del portal de salida), desde el nivel de la zona interior a un nivel 5 veces al de la zona interior a una distancia de 20 m del portal de salida.

En el caso de túneles bidireccionales o de dos sentidos de circulación, la salida debe iluminarse de manera idéntica a la entrada.

560.4 REQUISITOS PARA LA ILUMINACIÓN DE TÚNELES DURANTE LA NOCHE.

DE

En cuanto a los requerimientos del alumbrado durante las horas de la noche, la situación es inversa a la de las horas del día. El nivel de luminancia fuera del túnel es entonces menor que el de adentro y el problema de adaptación al agujero negro puede aparecer es en la salida del túnel. No habrá dificultades, mientras la relación entre la luminancia dentro del túnel y fuera de él sea menor de 3:1.

Esta condición no se logra si la iluminación del túnel sigue funcionando con la misma intensidad durante la noche. El alumbrado adicional instalado en las distintas zonas para cubrir las exigencias de la luz diurna, debe apagarse. Si el túnel se encuentra en un tramo de carretera iluminado, la calidad del alumbrado dentro del túnel debe ser al menos igual al nivel, uniformidades y deslumbramiento de la carretera de acceso. La uniformidad durante la noche en los túneles satisfará los mismos requisitos que el alumbrado diurno.

Si el túnel es parte de un tramo de carretera que no está iluminado, la luminancia media de la superficie de la calzada interior no debe ser menor de 1 cd/m^2 , la uniformidad global al menos del 40% y la uniformidad longitudinal al menos el 60%.

Las vías de salida con poca iluminación deben equiparse con una instalación de alumbrado aceptable, en una longitud de unos 200 metros desde la salida del túnel, hacia afuera, para ayudar a la adaptación de los ojos del conductor.

560.5 VISIBILIDAD DENTRO DE UN TÚNEL ILUMINADO.

La altura de montaje de las fuentes luminosas en los túneles, es inferior a la empleada en la iluminación de vías. Hay, por consiguiente, mayor posibilidad que una luminaria no apantallada produzca deslumbramiento.

Un apantallamiento adecuado es lo más importante en la zona central, por ser relativamente oscura. En la zona de umbral, con su alto nivel de luminancia, el apantallamiento no es tan exigente y la luminancia de las fuentes puede ser más alta. Esto contribuirá también a que el conductor se dé cuenta que está entrando en un túnel. Una diferencia de colores entre la luz de día y el color de la fuente luminosa a la de la entrada del túnel sirve al mismo propósito.

560.5.1 RESTRICCIÓN DEL EFECTO DE PARPADEO O "FLICKER"

Se han experimentado sensaciones de parpadeo o flicker, cuando se conduce a través de cambios periódicos espaciales de luminancia. El parpadeo es el resultado de las propias luminarias que aparecen y desaparecen en la periferia del campo de visión del automovilista. En condiciones específicas el flicker puede causar incomodidad que a veces puede ser severa.

El grado de falta de confort visual experimentado debido al efecto flicker depende de:

- a) El número de cambios de luminancia por segundo (frecuencia de parpadeo o flicker)
- b) La duración total de la experiencia
- c) La relación de la luminancia de pico(luz) a valle (oscuridad), dentro de cada periodo (profundidad de modulación de luminancia), y la pendiente del incremento (tiempo de subida)

Los tres factores mencionados dependen de la velocidad del vehículo y de la separación entre luminarias, (c) depende también de las características ópticas y de la separación entre luminarias. En el alumbrado casi en línea continua, cuando la distancia entre el final de una luminaria y el inicio de la

siguiente luminaria es menor que la longitud de las luminarias, el efecto de falta de confort por el flicker es independiente de la frecuencia.

La frecuencia de flicker se calcula dividiendo la velocidad en m/s. por la separación entre luminarias (centro a centro, en m). Por ejemplo, para una velocidad de 60 km/h (16,6 m/s) y una separación de 4 m, la frecuencia será de 16,6/4 = 4,2 Hz.

En general, el efecto flicker es despreciable a frecuencias inferiores a 2,5 Hz y superiores a 13 Hz. Cuando la frecuencia está entre 4 Hz y 11Hz, y tiene una duración de más de 20 s, puede aparecer falta de confort si no se toman ciertas medidas. Se recomienda que, en instalaciones en las que la duración es de más de 20 s, se evite el intervalo de frecuencias entre 4 Hz y 11 Hz, particularmente cuando se utilizan pequeñas fuentes luminosas con elevada luminancia. Luminarias de gran tamaño con bajos gradientes en la distribución de la luz (como por ejemplo luminarias con tubos fluorescentes montadas longitudinalmente) usualmente conducirán a una menor falta de confort.

560.5.2 GUÍA VISUAL DENTRO DE UN TÚNEL.

Es fácil conseguir una guía visual a lo largo del túnel. Esto se consigue colocando las fuentes luminosas según una disposición lógica. Es aconsejable instalar por lo menos una línea continua de fuentes luminosas en cada sentido del flujo del tráfico, haciendo coincidir los ejes longitudinales de las luminarias con cada uno de los ejes de circulación dentro del túnel, Adicionalmente se consigue una mayor visual.

Para una buena guía visual, es deseable que haya una pequeña diferencia de luminancia o color entre la calzada y las paredes. Deben evitarse superficies con reflexión especular. Para paredes se recomienda un tinte pastel suave por ejemplo, un verde claro. El acabado de las paredes debe ser de material fácil de lavar.

El techo de los túneles se ennegrece fácilmente básicamente por la contaminación con los gases residuales de la combustión en los motores de los vehículos, en tanto que limpiarlo resulta difícil. Esto sin embargo, no es una desventaja, al contrario, es conveniente, porque el techo ocupa solamente una pequeña parte del campo de visión y un techo oscuro da al túnel la impresión de mayor altura. Recuérdese que el efecto silueta se da principalmente entre las paredes del túnel y los objetos (obstáculos) dentro de él.

560.6 SISTEMAS DE ILUMINACIÓN DE TÚNELES

En el alumbrado de túneles se pueden usar luminarias con diferentes tipos de distribución luminosa. Hay tipos que son los más representativos cuyas explicaciones son:

560.6.1 DISTRIBUCIÓN TRANSVERSAL

Las intensidades luminosas se irradian principalmente en ángulo recto con el eje longitudinal del túnel. El ejemplo más familiar de este alumbrado es la hilera continua de tubos fluorescentes. El sistema óptico que se utiliza en este caso, es muy adecuado para el empleo con fuentes lineales de luz.

Las ventajas de dicho sistema son: buena orientación visual, deslumbramiento mínimo, penetración luminosa entre vehículos, y disposición de conmutación sencilla. Sus desventajas son: eficiencia moderada por el corto espaciamiento de las luminarias y posible efecto de parpadeo, que se produce en el caso de no planificarse debidamente la conmutación de las luminarias.

Figura 560.6. Tipos de luminarias para túneles, según su distribución luminosa

560.6.2 DISTRIBUCIÓN LONGITUDINAL

Las intensidades luminosas se irradian más o menos en paralelo al eje longitudinal del túnel y el sistema óptico que se usa debe ser adecuado para el empleo de las fuentes puntuales de luz, como son las bombillas de sodio alta presión tubulares.

Las ventajas de este sistema son: un mayor rendimiento de la distribución lumínica para obtener los niveles de luminancia adecuados y el gran espaciamiento entre luminarias. Sus desventajas son: la posible creación de sombras, la irregular luminancia de las paredes y el hecho de que la conmutación nocturna exige luminarias de doble bombilla o accesorios de reducción de intensidad.

560.6.3 DISTRIBUCIÓN A CONTRALUZ

Esta distribución a contraluz consiste en colocar luminarias con una distribución de la intensidad luminosa dirigida en contra de la dirección del flujo de tráfico. Se caracteriza por producir un alto contraste negativo de los objetos situados en la vía debido a que la luminancia de los planos que mira el conductor es muy baja. Garantiza una muy buena percepción de contrastes, una eficiencia en luminancia mayor a los sistemas anteriores lo que conduce a una disminución en la potencia eléctrica instalada, un adecuado nivel de deslumbramiento.

Para tener las ventajas descritas, se deben cumplir con los siguientes requisitos:

- La parte de las paredes con alta luminancia debe limitarse a una altura de 1 m para reducir la iluminancia vertical (Ev) de los obstáculos.
- La intensidad luminosa emitida por la luminaria en la dirección del tráfico debe limitarse al máximo.
- La distribución fotométrica debe ser tal que el ángulo vertical del haz sea alto pero en lo posible, inferior a 60° y las intensidades entre 70° y 90° debe mantenerse tan baja como sea posible, con el fin de evitar el deslumbramiento.

Esta distribución se utiliza preferencialmente para iluminar la zona de umbral y las zonas de transición de los túneles unidireccionales. En el caso de túneles bidireccionales se restringe a los túneles largos provistos con zona interior entre las dos bocas de entrada.

560. 7 EQUIPOS PARA ILUMINACIÓN DE TÚNELES.

La localización y tipo de bombilla a utilizar en la iluminación de túneles depende del diseño específico del túnel. Las bombillas para la iluminación de túneles deben tener alta eficacia y larga vida

Las luminarias deben cumplir los siguientes requisitos:

- Robustas, con un riesgo mínimo de daño, tanto por el tráfico como por la limpieza. El grado de protección debe ser mínimo de IP 65 de tal manera que permita lavarlas con agua a presión
- De fácil acceso y mantenimiento
- Propias para el control adecuado de la luminancia de la fuente luminosa.
- Provistas de prensaestopas para salida y entrada de cables, así como de los elementos de protección contra corto circuitos.
- Respecto de la distribución luminosa, debe ser tal que permita cumplir con los parámetros de iluminación exigidos para iluminar las diferentes zonas del túnel.
- Las luminarias deben tener una protección contra los impactos mínimo de IK 8

560.8 CONTROL AUTOMÁTICO DEL ALUMBRADO DE TÚNELES.

El alumbrado de un túnel, debe ser diseñado para que sea compatible con un nivel máximo de iluminancia exterior (alrededor de 100.000 lux), se necesita asegurar tanto desde el punto de vista económico, como del confort visual, que los niveles de iluminación dentro del túnel, se ajusten automáticamente a las variaciones de la iluminación exterior.

El sistema de mando de los alumbrados, debe poseer la flexibilidad funcional deseada para reaccionar a las modificaciones más súbitas en la luminosidad ambiente. Ejemplo: es típico que el tiempo de ascenso en régimen máximo de eficacia luminosa de la bombilla de descarga, sea mayor de 3 minutos para las bombillas de sodio baja presión. Sin embargo, cambios bruscos pueden intervenir en la claridad del cielo, como consecuencia de los movimientos del sol al interponerse obstáculos como una montaña, una edificación, pero no se tendrán en cuenta modificaciones rápidas y efímeras de L_{20°}, como las debidas a nubes. Por el contrario, será preciso reaccionar con un retardo razonable a cualquier cambio rápido de L_{20°}, provocado por la salida del sol o la puesta de sol detrás de los edificios sobre las montañas.

Para obtener mejor control de la luminancia en la zona de adaptación, y con vistas a tener en cuenta variaciones debidas al estado de bueno o malo del sistema de mantenimiento del túnel, se instala un segundo luminancímetro. Mide el nivel de luminancia en las zonas de adaptación y transmite estos valores al sistema de gestión de las luminarias, a fin de adaptar el régimen (soleado, nubloso, oscuro) a la relación L_{th} / L_{20°} elegido.

Para la zona interior, en el caso de alumbrado por tubos fluorescentes alimentados por balastos electrónicos de alta frecuencia, que permiten la variación continuada del flujo luminoso, la luminancia inferior es medida por medio de un tercer luminancímetro, a fin de tener en cuenta variaciones de luminancia resultante del estado de mantenimiento (bueno o malo). Este luminancímetro mide el nivel de luminancia en la zona interior del túnel., envía la información al microprocesador central, que conserva en memoria el nivel de luminancia a mantener en la zona interior, y el microprocesador da la orden al variador de adaptar el nivel de luminancia al nivel previamente programado, cualquiera que sea el estado de mantenimiento de la instalación de alumbrado (ensuciamiento de las luminarias y paredes del túnel, envejecimiento de las fuentes luminosas).

560.9 RECOMENDACIONES ADICIONALES EN LA ILUMINACIÓN DE TUNELES.

Los modernos diseños de iluminación de túneles contemplan la iluminación desde los extremos superiores de la pared. Esto mejora las condiciones de mantenimiento de las luminarias, pues en el túnel, es evidente que el espacio más contaminado por el humo de los vehículos, es precisamente el techo. Las paredes ofrecen una facilidad mayor para el mantenimiento durante el período mismo de utilización del túnel, en tanto que el mantenimiento de luminaria al centro, requieren en la mayoría de los casos, del cierre temporal del túnel.

DE

En ciertos diseños, especialmente cuando se utilizan luminarias fluorescentes, los equipos pueden colocarse en el techo del túnel, lo cual contribuye a mejorar la guía visual.

La localización de los equipos y el tipo de fuente y luminaria depende de las características del túnel y de los requerimientos fotométricos exigidos.

La iluminación normal se proporcionará de modo que asegure a los conductores una visibilidad adecuada de día y de noche en la entrada del túnel, en las zonas de transición y en la parte central.

La iluminación de seguridad se proporcionará de modo que permita una visibilidad mínima para que los usuarios del túnel puedan evacuarlo en sus vehículos en caso de avería del suministro de energía eléctrica.

La iluminación de emergencia, estará a una altura no superior a 1,5 metros y deberá proyectarse de modo que permita guiar a los usuarios del túnel para evacuarlo a pie con un mínimo de 10 luxes y 0,2 cd/m².

Los *túneles peatonales*, independiente de la longitud, deben suministrar un adecuado alumbrado de seguridad para los usuarios. De acuerdo con la localización del túnel, el diseñador debe establecer el nivel de iluminancia y el tipo de fuente a utilizar de acuerdo con La Tabla 560.9.

Uso (peatones /día en ambas	Iluminancia	Fuente sugerida
direcciones)	Luxes	
Bajo (hasta 5.000)	20 a 50	Fluorescente
Medio (entre 5.000 y 15.000)	50 a 100	Fluorescente
Alto (más de 15.000)	100 a 150	Fluorescente o HPS

Tabla 560.9 Iluminación de túneles peatonales

Fuente: Adaptado de IESNA RP.

SECCIÓN 570 CONTAMINACIÓN LUMÍNICA

La contaminación lumínica se define como la propagación de luz artificial hacia el cielo nocturno. Igualmente se tiene contaminación luminosa al iluminar espacios que no se requieren iluminar. La contaminación lumínica es producto de un diseño o montaje inadecuado; por lo que la solución se debe dar desde la etapa de diseño de los proyectos.

La contaminación lumínica puede presentar el riesgo de cambios fisiológicos que alteran las condiciones de visión, debido a la necesidad de adaptación del ojo a la iluminación artificial. Este riesgo es mayor para las futuras generaciones en razón a la mayor exposición e incorporación de la luz artificial a la vida cotidiana, por lo que se deben tomar medidas tendientes a su mitigación.

Debe distinguirse el brillo natural, atribuible a la radiación de las fuentes u objetos celestes y a la luminiscencia de las capas altas de la atmósfera, del resplandor luminoso debido a las fuentes de luz artificial. En este último caso, tienen que considerarse las emisiones directas hacia arriba de diversas fuentes de luz artificial, así como la radiación reflejada por las superficies iluminadas por dichas fuentes de luz.

DE

El resplandor luminoso nocturno o contaminación lumínica, da lugar a que se incremente el brillo del fondo natural del cielo, dificultando las observaciones astronómicas de los objetos celestes. La limitación del resplandor luminoso nocturno significa reducción de la emisión de luz hacia arriba, que no resulta útil en el alumbrado de vías, lo que implica mayor eficiencia energética en la instalación.

570.1 ORÍGENES DE LA CONTAMINACIÓN LUMÍNICA.

La contaminación lumínica puede originarse por:

- a) La utilización de luminarias con globos sin reflector ó proyectores y luminarias que no controlan el flujo luminoso por encima de la horizontal..
- b) La inadecuada distribución del flujo luminoso de las luminarias en especial las ornamentales y proyectores.
- c) La falta de control sobre la iluminación decorativa en edificios, (anuncios publicitarios mal diseñados e instalados e inadecuados diseños de luminarias ornamentales.)
- d) La reflexión de las vías y de los elementos que hacen parte del mobiliario urbano.

570.2 FORMAS DE CONTAMINACIÓN LUMÍNICA.

La contaminación lumínica puede manifestarse de diversas formas que pueden clasificarse dentro de cuatro categorías:

- a) Intrusión Lumínica: Se produce cuando la luz artificial procedente de las luminarias entra por las ventanas invadiendo el interior de las viviendas, modificando el entorno doméstico y provocando trastornos de las actividades humanas.
- b) Difusión de Luz hacia el Cielo: Se produce por la difusión de la luz por parte de las moléculas del aire y del polvo en suspensión. Esto produce que parte del haz sea desviado de su dirección original y acabe siendo dispersado en todas las direcciones, en particular hacia el cielo.
- c) Deslumbramiento: Se produce cuando las personas que transitan por la vía pública, pierden la percepción visual; y es ocasionada por exceso o carencia de luz. Este efecto es especialmente peligroso para el tráfico vehicular, dado que puede producir accidentes.
- e) Contraste: La visibilidad de un objeto situado sobre un fondo, depende de la diferencia de las luminancias entre el objeto y el fondo.

Un objeto claro sobre fondo oscuro, traerá un contraste positivo (valor entre 0 e infinito),

Si $L_0 > L_f$ C > 0 contraste positivo (objeto mas claro que el fondo)

En cambio un objeto más oscuro que su fondo, traerá un contraste negativo (variando entre 0 y -1).

Si $L_0 < L_f$ C < 0 contraste negativo (objeto mas oscuro que el fondo).

El resplandor luminoso nocturno en el cielo produce un velo en el campo de observación que tiene su propia luminancia L_{ν} que se añade a la luminancia del objeto y del fondo, de forma que el nuevo contraste C' es el siguiente:

$$C' = \frac{(L_o - L_v) - (L_f + L_v)}{L_f + L_v}$$

DE

$$C' = \frac{L_o - L_v}{L_f + L_v}$$

Siempre se verifica que C' < C, dado que el numerador es el mismo y el denominador es siempre mayor.

Cuando la luminancia de velo L_v aumenta el objeto observado puede desaparecer del campo visual, particularmente en el caso de observaciones astronómicas cuando se trata de una estrella u objeto celeste con una luminancia L_o muy débil.

570.3 CÁLCULO DE LA CONTAMINACIÓN LUMÍNICA

Como los estudios de contaminación lumínica han sido promovidos por las ciudades que poseen observatorios astronómicos, la Comisión Internacional de Iluminación CIE en la norma 126-1997 GUIDELINES FOR MINIMIZING SKY GLOW, define los siguientes conceptos:

Para calcular el grado de contaminación lumínica enviado sobre la horizontal de una instalación de alumbrado, debe tenerse en cuenta:

φ Total = ULOR + UWLR + Kr1 + Kr2, donde:

Donde:

Kr1 Reflexión de la vía

Kr2 Reflexión de alrededores

ULOR Upward Light Output Ratio, es el porcentaje del flujo luminoso de la bombilla de una luminaria enviado sobre la horizontal.

UWLR Upward Waster Light Ratio, es el porcentaje del flujo luminoso de una luminaria enviado sobre la horizontal.

Otros conceptos que se deben tener en cuenta en el control de contaminación lumínica son:

EFECTO DESLUMBRANTE (DIRECT GLARE): Pérdida de percepción visual ocasionada por exceso ó carencia de luz.

LUZ DESAPROVECHADA O DESPERDICIADA (SPILL LIGHT) : Flujo luminoso emitido por un equipo de iluminación, que cae por fuera de los límites de diseño de la instalación.

LUZ ASCENDENTE (UPWARD LIGHT): Flujo luminoso emitido por un equipo de iluminación (luminaria y bombilla), que se envía por encima de la horizontal.

LUZ REFLEJADA ASCENDENTE (UPWARD REFLECTED LIGHT): Flujo luminoso reflejado por la vía (pavimento y obstáculos del mobiliario urbano) enviada por encima de la horizontal.

DE

LUZ o FLUJO ÚTIL (USEFUL LIGHT): Flujo luminoso emitido por un equipo de iluminación (luminaria y bombilla), que se envía al área a iluminar (calzada, fachada, monumento, etc).

570.4 SISTEMA DE ZONIFICACIÓN

Las exigencias fotométricas para las vías teniendo en cuenta la actividad humana nocturna, la seguridad en la circulación de vehículos y peatones, la calidad de vida, la integridad del entorno, las propiedades, los bienes, etc. en relación con la contaminación lumínica, hace que se deban buscar soluciones que hagan posibles las observaciones astronómicas en la noche. Para limitar esas interferencias, se definió introducir, según la norma CIE 126 Guidelines for minimizing sky glow, un sistema de zonificación que tiene los siguientes propósitos:

- (a) Establecer los requisitos de iluminación en una zona donde exista un observatorio astronómico.
- (b) Fijar las exigencias de las zonas adyacentes a un observatorio.

Lo que permitió definir las siguientes zonas:

ZONA	TIPO	DESCRIPCIÓN
E1	Áreas con entornos oscuros	Observatorios astronómicos de
	Areas con entornos oscuros	categoría internacional
E2	Áreas de bajo brillo	Áreas rurales
E3	Áreas de brillo medio	Áreas urbanas residenciales
E4	Áreas de brillo alto	Centros urbanos con elevada actividad nocturna

Tabla 560-5 Definición de zonas para la contaminación lumínica

Fuente Norma NTC 900 Tabla B.1.D

570.5 FLUJO HEMISFÉRICO SUPERIOR (FHS)

El Flujo Hemisférico Superior (FHS) se define como el flujo luminoso emitido por el equipo de iluminación (luminaria y bombilla) por encima del plano horizontal. Dicho plano corresponde al ángulo γ = 90° en el sistema de representación (C, γ). El flujo hemisférico se expresa como un porcentaje del flujo total emitido por la luminaria.

Dadas las anteriores disposiciones, se hacen las siguientes precisiones:

- a) En vías importantes de la malla vial, con clases de iluminación M1 a M3, se deben instalar luminarias con FHS ≤ 3%. En el resto de vías de trafico vehicular con clases de iluminación M4 a M5, se deberá utilizar un FHS ≤ 5%.
- b) En el caso de alumbrados peatonales, clases P1 a P7, así como artísticos con faroles, aparatos históricos etc., el flujo hemisférico superior instalado FHS debe ser ≤ 25%.

Cuando las instalaciones de alumbrado existentes lleguen al final de su vida útil, o por cualquier causa se proceda a su renovación, se deben reemplazar por luminarias con las limitaciones de flujo hemisférico superior a las aquí señaladas.

570.6 EFECTOS DE LA CONTAMINACIÓN LUMÍNICA.

a) Despilfarro de energía eléctrica, que ocasiona mayores costos y afectación al ambiente por mayores emisiones de gases. No se debe confundir con dejar las vías con una iluminación deficiente; al

DE

contrario, las acciones llevadas a cabo para reducir la contaminación lumínica debe llevar asociadas una mejora de la calidad de la iluminación en los ambientes requeridos

- Inseguridad vial y molestias visuales, producto del deslumbramiento, cuando los artefactos están mal orientados.
- c) Efectos medioambientales en el ecosistema urbano: La vida de los animales, huyen de las ciudades para encontrar oscuridad. La fotosíntesis y el crecimiento de las plantas se desequilibra pudiendo producir envejecimiento prematuro de algunas especies.
 - Para mitigar estos efectos en el caso de alamedas en rondas de ríos o en humedales, quebradas y canales distantes de vías vehiculares iluminadas, deben utilizar fotocontroles temporizados para interrumpir el servicio de tal forma que las luminarias se enciendan durante un período de tiempo que satisfaga las necesidades de los usuarios y luego se apaguen -para preservación de las especies.
- d) Efectos sobre el ritmo biológico de las personas: Los ritmos carcadianos (de vigilia y de sueño) son los más afectados por la exposición a la luz, trastornos de la personalidad, insomnio, depresión y estrés se incrementan por un uso inadecuado de iluminación.
- e) Intromisión en la vida privada de las personas o sea la invasión de luz proveniente del exterior en los espacios privados, que penetra a través de las ventanas y provoca molestias, por iluminación dirigida a fachadas y ventanas y no hacia el piso.
- f) Pérdida de percepción de estrellas y astros. Impedimento para las observaciones astronómicas.

570.7 CÓMO MINIMIZAR EL IMPACTO DE LA CONTAMINACIÓN LUMÍNICA

Para minimizar el impacto de la contaminación lumínica se hacen las siguientes recomendaciones:

- a) El conjunto óptico de las luminarias de alumbrado público no podrán tener un ángulo de inclinación mayor de 20° con respecto a la horizontal. Por ello antes de determinar la inclinación del soporte de la luminaria se debe conocer la inclinación del conjunto óptico, cuando la luminaria se encuentra en posición horizontal.
- b) Al emplear en alumbrados peatonales, los faroles artísticos, aparatos históricos, etc., estos deben estar provistos de bloque óptico, de forma que al tiempo que se controla la emisión de luz en el hemisferio superior, se aumente el factor de utilización en el hemisferio inferior.
- c) Utilizar luminarias y proyectores que dirijan el flujo lumínico hacia el área a iluminar y para ello la distribución de su flujo luminoso deberá ser la adecuada para obtener la máxima eficiencia energética de la instalación.
- d) Controlar la iluminación en el alumbrado de monumentos, parques deportivos y edificios administrativos, oficiales y gubernamentales. En el caso de proyectores, además de cuidar con esmero su apuntamiento, se debe prever la instalación de rejillas paralúmenes y otros dispositivos que controlen la dirección del flujo luminoso emitido, reduciendo el deslumbramiento y la contaminación luminosa.

Figura 570.7.a) Control del flujo luminoso de proyectores

e) Utilizar luminarias o soportes de luminarias que controlen el flujo luminoso enviado por encima de la horizontal, de tal manera que el conjunto óptico no quede con un ángulo de inclinación mayor de 20° con respecto ala horizontal.

Figura 570.7.b) Ángulos de inclinación de las luminarias

- En los proyectores empotrados en el piso, utilizar rejillas antideslumbrantes y reflectores capaces de controlar con precisión la emisión lumínica.
- Dirigiendo la luz en sentido descendente y no ascendente, siempre que sea posible, especialmente en iluminación de fachadas y monumentos.

Figura 570.7.c) ángulos de inclinación de proyectores para iluminar una superficie vertical

h) Eliminando las luminarias en forma de globo que no tengan reflector

Figura 570.7.d) Control del flujo luminoso de luminarias esféricas o globos

Utilizando los criterios de deslumbramiento indicados en la Norma CIE-115; es decir dirigiendo hacia abajo el haz de los rayos, manteniéndolos por debajo de 70°.

Si se eleva la altura de montaje, debería disminuirse el ángulo de haz luminoso.

Figura 570.7.e) ángulos de inclinación de proyectores

Utilizar pavimentos con un coeficiente de luminancia medio o grado de luminosidad Qo lo más j) elevado posible y cuyo factor especular S1 sea bajo. La luminosidad del pavimento de una calzada esta estrechamente relacionada con las propiedades fotométricas del mismo y en concreto, con el

DE

coeficiente de luminancia medio Qo del pavimento, de forma que cuanto más elevado es dicho coeficiente, a idéntica iluminancia, mayor es la luminancia de la calzada y menor resulta el deslumbramiento perturbador TI.

El factor especular S1 determina en que medida las características del pavimento, respecto a la reflexión de la luz incidente, se separan de las de la superficie que asegure una reflexión difusa perfecta de forma que, a igualdad de iluminancia cuanto mas bajo es el factor especular S1, mayores son las uniformidades de luminancia.

k) Variaciones temporales de los niveles de iluminación: En las vías de tráfico, zonas peatonales, carriles bicicletas pueden reducirse los niveles luminosos a ciertas horas de la noche, siempre que quede garantizada la seguridad lumínica de los usuarios. En ningún caso la reducción descenderá por debajo del nivel de iluminación aconsejable para la seguridad de tráfico y para el movimiento peatonal.

La reducción de los niveles luminosos mediante apagado de puntos de luz no es recomendable, y en el supuesto de utilizar dicho procedimiento, deben mantenerse las uniformidades mínimas establecidas en las normas respectivas.

La reducción con sistemas de regulación se estima que es el procedimiento más adecuado ya que evita zonas de sombra y muros de luz que dificultan la visión manteniendo las uniformidades.

- I) Otras Posibles soluciones para reducir contaminación lumínica : Las posibles soluciones que permiten reducir contaminación lumínica nocturna son entre otras las siguientes:
- Apagar las iluminaciones publicitarias y ornamentales a partir de una hora determinada.
- Dirigir la luz en sentido descendente y no ascendente, sobre todo en iluminación de edificios y monumentos.
- Si no existiera posibilidad de cambiar el sentido de iluminación hacia abajo, y no hacia arriba, emplear pantallas y para lúmenes para evitar la dispersión del haz luminoso.
- No usar luz en exceso, cumplir las normas que determinan los niveles recomendables para iluminar casi todas las tareas.
- Utilizar en el alumbrado público luminarias con valores mínimos de emisión de luz por encima de la horizontal.
- La iluminación de edificios, fachadas o monumentos e instalaciones de alumbrado de zonas deportivas que se realizan con proyectores estos deben estar ocultos a la visión directa.
- En alumbrado público, debe evitarse el uso de postes de gran altura, salvo cuando otras exigencias así lo aconsejen.
- En alumbrado público, no deben emplearse luminarias que emitan un FHS superior al establecido en el presente Reglamento.
- Para que el deslumbramiento sea mínimo, dirigir hacia abajo el haz de los rayos luminosos manteniéndolo por debajo de 70°. Si se eleva la altura de montaje debería disminuirse el ángulo del haz de los rayos luminosos.
- Dado que en lugares con niveles de luz ambiental baja el deslumbramiento puede ser muy molesto, se deberá cuidar con esmero el posicionamiento y el apuntamiento u orientación de los aparatos de iluminación.
- Cuando resulte posible, implantar luminarias o proyectores con reflector asimétrico que permitan mantener su cierre frontal paralelo a la superficie horizontal que se quiere iluminar.

570.8 LÍMITES MÁXIMOS PERMITIDOS DE EMISIÓN LUMÍNICA HACIA LOS CIELOS NOCTURNOS

DE

La cantidad máxima permitida de emisión lumínica hacia los cielos nocturnos, medida en el efluente de la fuente emisora, será la siguiente:

Flujo luminoso de la fuente	Límite de FHS
Flujo luminoso > 15.000 lúmenes	FHS ≤ 0,8 % del flujo luminoso nominal
9.000 lúmenes < Flujo luminoso ≤ 15.000 lúmenes	FHS ≤ 1,8 % del flujo luminoso nominal
Flujo luminoso ≤ 9.000 lúmenes	FHS ≤ 5,0 % del flujo luminoso nominal

FHS= Flujo hemisférico superior

(Adaptado de la Norma Chilena de emisión para la regulación de la contaminación lumínica D.S 686 de 1998)

El alumbrado de instalaciones deportivas o recreativas, letreros y avisos comerciales, no se someterá a lo establecido en el cuadro anterior en las horas de la noche hasta las 01 pero si en las siguientes horas de la madrugada.

En los programas de modernización de alumbrado público se debe contemplar el reemplazo de aquellas instalaciones que producen contaminación lumínica.

Se excluyen del ámbito de aplicación del presente numeral los siguientes sistemas de iluminación:

- a. Puertos y aeropuertos e instalaciones vinculadas a vías férreas.
- b. Instalaciones y dispositivos de señalización de las costas marítimas
- c. Instalaciones de las Fuerzas Armadas y de cuerpos de seguridad.
- d. Vehículos motorizados
- e. En general, aquellas infraestructuras que comprometa la seguridad de los ciudadanos, el diseñador deberá documentar la justificación para apartarse del cumplimiento de estos requisitos.

570.9 MANEJO AMBIENTAL EN LOS SISTEMAS DE ALUMBRADO PÚBLICO.

Los proyectos de alumbrado público deberán tener en cuenta las reglamentaciones ambientales vigentes, en especial el Decreto 4741 de 1995 y demás disposiciones emitidas por la autoridad ambiental.

Merece especial atención la disposición final de fuentes luminosas con contenidos de sustancias contaminantes. Las cuales deben atender los lineamientos de la autoridad ambiental.

DE

CAPÍTULO 6

PROYECTOS DE ALUMBRADO PÚBLICO

De conformidad con lo dispuesto en el Art. 5 del Decreto 2424 de julio de 2.006 en concordancia con lo estblecido en el Artículo 12 de la Ley 143 de 1.994, los municipios y distritos deben elaborar un plan anual del servicio de alumbrado público que contemple entre otros la expansión del mismo, a nivel de factibilidad e ingeniería de detalle, armonizado con el plan de ordenamiento territorial y con los planes de expansión de otros servicios públicos, cumpliendo con las normas técnicas y de uso eficiente de energía que para tal efecto expida el Ministerio de Minas y Energía

Así las cosas, es importante en la etapa de consultoría de los proyectos, concertar los lineamientos técnicos y de requerirse, los arquitectónicos, con el fin de optimizar los diseños fotométricos y con estos el uso eficiente y racional de la energía.

SECCIÓN 610 PROCEDIMIENTO PARA REALIZAR UN PROYECTO DE ALUMBRADO PÚBLICO

Los Proyectos de alumbrado público, como aquellos relacionados con la iluminación de vías, plazoletas, alamedas, puentes peatonales, pasos subterráneos en cruce a desnivel, parques, ciclo rutas, andenes, senderos en zonas duras y en general la iluminación de espacios de libre circulación, son proyectos de inversión que buscan aumentar la seguridad, productividad y mejoramiento de la calidad de vida de la población.

Figura 610 Trámite de un proyecto de alumbrado

610.1 IDENTIFICACIÓN DEL PROYECTO.

En esta etapa se busca identificar los proyectos que parecen convenientes, desde el punto de vista técnico, financiero e institucional, para que satisfagan las necesidades detectadas y que sean armoniosos con el Plan de Ordenamiento Territorial (POT) municipal. Se especifican los planes de inversión y montaje del proyecto, incluyendo necesidades de insumos, estimativos de costos, identificación de posibles obstáculos.

En el proceso de identificación se requiere conseguir información sobre insumos, recursos humanos, alternativas de tecnología, experiencias anteriores.

Se debe examinar el proyecto desde el punto de vista local, describiendo los procesos de generación de mecanismos de participación y comunicación efectiva, entre la municipalidad y los ciudadanos, canalizados a través de las Juntas de Acción Comunal u organizaciones locales. El proyecto de

alumbrado público debe mostrarse atractivo desde el punto de vista social, ya que esto genera sentido de pertenencia y garantiza el cuidado del mismo.

610.2 CATEGORIZACIÓN DE LOS PROYECTOS DE ALUMBRADO PÚBLICO.

DE

Los proyectos de alumbrado público deben ser categorizados conforme a los siguientes criterios:

- Clase de iluminación asignada a la vía o espacio público. El nivel del proyecto será mayor, en la medida en que se ejecute sobre la malla vial principal y arterial complementaria y será menor sobre otras áreas como alamedas, ciclo rutas, etc.
- Magnitud del proyecto. La categoría del proyecto, resulta de los parámetros "cantidad de puntos luminosos (cantidad)" o "longitud de excavación (m)".

Para efectos del presente reglamento, los proyectos de alumbrado público se categorizarán conforme a la Tabla 610.2 acorde con los tipo de vías o áreas de espacios públicos tales como: alamedas, ciclo rutas, parques, paseos, plazas, plazoletas, peatonales, puentes y túneles peatonales, etc.

PROYECTOS NUEVOS O REMODELACIÓN		Nivel A	Nivel B	Nivel C
KEIVI	KLINODELACION		Medio	Alto
		Impacto	Impacto	Impactos
SISTEMA VIAL	Clase de iluminación de la	P ≤ 25	25 <p 75<="" td="" ≤=""><td>P >75</td></p>	P >75
	vía o Tipo de área	ó L = 0	ó	ó L >1.000
	M1 – M2	L = U	L ≤ 1.000	L >1.000
	M3 – M4	P ≤ 25	25 <p 100<="" td="" ≤=""><td>P >100</td></p>	P >100
		ó L ≤.1000	ó 1.000 <l ≤<br="">2.000</l>	ó L > 2.000
	M5	10 <p 25<="" td="" ≤=""><td>2.000 25 <p td="" ≤100<=""><td>P >100</td></p></td></p>	2.000 25 <p td="" ≤100<=""><td>P >100</td></p>	P >100
		ó L ≤1.000	ó 1.000 <l 2.000<="" td="" ≤=""><td>ó L >2.000</td></l>	ó L >2.000
OTRAS ÁREAS	Alamedas, ciclo rutas, parques, paseos, plazas,	10 <p 25<br="" ≤="">ó</p>	25 <p 50<br="" ≤="">ó</p>	P >50 ó
	plazoletas, vías	L < 1.000	1.000 <l <<="" td=""><td>L >2.000</td></l>	L >2.000
	peatonales, puentes y túneles peatonales.		2.000	
ESPECIALES [2*]	Zonas históricas de conservación, y otros que por sus características revista de un especial interés para el municipio.	P ≤ 25	25 <p 50<="" td="" ≤=""><td>P >50</td></p>	P >50

Tabla 610-2 Categorización de los proyectos de Alumbrado Público

Notas:

P: Cantidad de luminarias [*u*].

L: Longitud de excavación ductería, red subterránea de alumbrado público[m].

Las clases de iluminación para el sistema vial se describen en el Capítulo 5.

Los proyectos menores de veinticinco (25) luminarias de complementación, remodelación o expansión, sobre vías con clase de iluminación M5 u otras áreas no están sujetos a trámite de evaluación de proyectos.

[2*] Para Proyectos Especiales, el municipio definirá el número de alternativas a presentar y las condiciones de entrega de las propuestas.

DE

Los proyectos de alumbrado público de alto impacto (NIVEL C) deben cumplir completamente con el procedimiento establecido en el presente Capítulo de este Reglamento. La dependencia municipal responsable del servicio de alumbrado público podrá definir que otras categorías de proyectos de alumbrado público, deben seguir el procedimiento establecido en el presente Capítulo.

610.3 DISEÑO Y EVALUACIÓN DEL PROYECTO

En esta etapa se debe proveer la información que sea relevante y útil para el proceso de toma de decisiones, se describe la factibilidad del proyecto a la luz de unos criterios particulares y se plantean las recomendaciones correspondientes.

Las evaluaciones que se deben tener en cuenta son:

610.3.1 EVALUACIÓN TÉCNICA DEL DISEÑO FOTOMÉTRICO

Con los parámetros fotométricos definidos para el proyecto de alumbrado público, en concordancia con lo establecido en el presente reglamento, se procede a solicitar las propuestas de diseño fotométrico. A cada alternativa se le deberá anexar la propuesta o compromiso de suministro por parte del fabricante o comercializador de luminarias.

Los proyectos de alumbrado clasificados como de Nivel C, de acuerdo con la Tabla 610-2, deben evaluarse con por lo menos tres propuestas fotométricas de las que se tenga una declaración de compromiso de cumplimiento y suministro en el evento que sea escogida.

En caso de que alguno de los proveedores consultados, no se comprometa con la propuesta solicitada, no se deberá considerar en el análisis y se dejara constancia soportada de la convocatoria o invitación realizada. Tal invitación o convocatoria deberá hacerse con una antelación superior a 15 días hábiles a la fecha límite para la recepción de propuestas.

El diseñador o quien presente la propuesta fotométrica, deberá hacerlo tanto en forma numérica como gráfica, indicando las grillas de cálculo correspondientes, debe anexar una declaración de cumplimiento de los parámetros fotométricos en su diseño, dentro del formato establecido en el Numeral "Declaración de Cumplimiento del Reglamento Técnico de Instalaciones de Iluminación y Alumbrado Público". Esta declaración se considera un documento público que es emitida bajo la gravedad de juramento, y quien la expida asume toda la responsabilidad que esto implica.

610.3.2 EVALUACIÓN TÉCNICA DE LA RED ELÉCTRICA QUE ALIMENTARÁ EL PROYECTO.

Con base en la alternativa seleccionada por la evaluación financiera, que cumpla con los requisitos fotométricos se efectúa el diseño eléctrico del proyecto de alumbrado público, dando cumplimiento al RETIE.

610.3.3EVALUACIÓN FINANCIERA

Con las propuestas que cumplen con los requisitos de diseño fotométrico, requerimientos eléctricos, demás requisitos del presente reglamento, disposiciones ambientales y disposiciones urbanísticas que le apliquen, el diseñador del proyecto de alumbrado público debe hacer la evaluación financiera del proyecto comparando las alternativas y recomendando la que presente el menor costo total en toda la vida útil del proyecto.

Para la evaluación financiera del proyecto se deberán utilizar los métodos de "Valor Presente Neto" y de "Costo Anual Equivalente".

La evaluación debe cumplir con los siguientes requisitos:

Realizarse a precios constantes de la fecha de análisis, en pesos colombianos.

En cada alternativa, los costos del proyecto deben cubrirse.

Debe determinarse la alternativa de mínimo costo.

610.4 DESCRIPCIÓN DEL PROYECTO

El proyecto debe especificar claramente los siguientes aspectos:

- Objeto y alcance
- Descripción del área a iluminar: Vías, plazoletas, alamedas, puentes peatonales, pasos subterráneos en cruce a desnivel, ciclo rutas, parques, etc.
- Clases de iluminación asignada a vías o áreas
- Parámetros fotométricos y eléctricos a cumplir
- Requisitos adicionales para los sistemas de iluminación y especificaciones del equipo a utilizar.
- Tipo de postería y de red eléctrica.

610.5 MEMORIAS DE CÁLCULO.

La memoria de cálculo del proyecto debe contemplar:

a) Parámetros fotométricos de diseño

- Para vías: Luminancia promedio, iluminancia promedio, uniformidad general, uniformidad longitudinal, índice de deslumbramiento, relación de alrededores. Para otras áreas (ciclo rutas, andenes, pasos elevados vehiculares, plazoletas, alamedas, puentes peatonales, pasos subterráneos en cruce a desnivel, parques y senderos peatonales de zona dura) se deben especificar niveles y coeficientes de uniformidad de iluminancia, de acuerdo con este Reglamento.
- Documentación fotométrica de los equipos de alumbrado: Matriz de intensidades de las luminarias o proyectores utilizados, elaboradas por los fabricantes y certificadas por laboratorios acreditados o reconocidos.
- Los resultados de los cálculos y diseños geométricos, deben presentarse en forma numérica y
 gráfica, indicando las grillas de cálculo correspondientes. Aunque la especificaciones de diseño se
 hagan en términos de luminancia, el diseño fotométrico debe entregar también los resultados del
 proyecto en términos de iluminancia con el fin, de una vez ejecutado el proyecto, poder verificar
 mediante mediciones en terreno los resultados fotométricos.
- Como resultado del diseño se deben especificar las dimensiones geométricas del diseño y la luminaria o luminarias usadas en el diseño. Puntualmente los resultados deben indicar la altura de montaje, interdistancia, inclinación, avance de la luminaria y posición de la bombilla, así como la referencia de la luminaria, y demás especificaciones de la bombilla, conjunto óptico y conjunto eléctrico.
- Dentro de los resultados se debe presentar el valor resultante de la DPEA para el proyecto.

b) Parámetros eléctricos y obras civiles asociadas

Se deberá atender a lo dispuesto en el Reglamento Técnico de Instalaciones y particularmente:

- Diseño de la red eléctrica, incluyendo los diagramas unifilares de media y baja tensión, los cálculos de carga, cálculos de regulación, de cortocircuito, y las obras civiles asociadas, dimensionamiento de conductores y ductos cuando se requiera, coordinación de protecciones.
- Cantidad de obras de la red eléctrica.

610.6 PLANOS Y DIBUJOS

Todos los planos se deben realizar en software gráfico que incluya la georreferenciación del proyecto y deben contener:

a) Convenciones y formatos utilizados, según las disposiciones municipales o del operador de red.

DE

- b) Plano resumen: Debe ser georreferenciado e incluir el perfil de la vía de acuerdo con lo definido en el POT vigente, y una planta típica del proyecto, así como el diagrama unifilar y las cantidades de obra.
 La misma información debe incluirse para otras aéreas como puentes peatonales, pasos subterráneos, parques, alamedas y plazoletas.
- c) Plano de localización de los postes, luminarias, cajas de inspección y ducterías, tanto de las redes nuevas como las existentes en media y baja tensión, indicando calibre de los conductores, tipo de luminaria, fuente luminosa, postes y si la iluminación existente se reutiliza, se reubica, se sustituye o se retira e incluyéndolas, según el caso, en el diseño fotométrico.
- d) Los criterios usados para adelantar los diseños fotométricos de acuerdo con el Capítulo 5 del presente Reglamento.

Cuando existan líneas de media tensión o de alta tensión, se debe realizar el levantamiento e incluirla en los planos, con el fin de determinar con el Operador de Red (OR) las afectaciones. En el caso de redes subterráneas, se debe señalar la cantidad y diámetros de los ductos. Igualmente se deben levantar los datos de arborización, mobiliario urbano, edificaciones, etc.

610.7 EVALUACIÓN DE COSTOS

La evaluación del proyecto, en sus diferentes propuestas, se debe hacer no solamente sobre la inversión inicial, sino también sobre los costos de operación y mantenimiento, a precios constantes de la fecha de presentación del proyecto. Para el efecto, se deben diligenciar los formatos de análisis para la evaluación económica de proyectos de alumbrado público consignados en las Tablas: 610-3.1.4.b), 610-3.1.4.c), y 610-3.1.4.d), a los cuales deben adaptarse las características propias de cada proyecto.

El valor de los diferentes componentes del proyecto, se toma de la cartilla de costos, acordada entre el municipio y el operador del servicio de alumbrado público, la cual deberá ser actualizada periódicamente. En el evento que los precios promedio del mercado de tales productos sean menores a los acordados con el operador, se deberá tomar los de mercado y se dejará constancia de esto.

El análisis de costos deberá considerar los siguientes costos:

610.7.1 COSTOS DE INVERSIÓN

Los costos iniciales de la infraestructura deben incluir los correspondientes a: las luminarias especificadas a utilizar en el proyecto, los postes y de las obras civiles asociadas, las obras eléctricas, incluyendo los costos de materiales, los costos de mano de obra, transporte y demás en que se incurra.

Las cantidades de obra para el proyecto deben ser totales. Deben incluir las actividades necesarias para el retiro o aprovechamiento de la infraestructura de alumbrado existente.

610.7.2 COSTOS DE OPERACIÓN Y MANTENIMIENTO

En la definición de la energía en kWh consumida por luminaria, se deben incluir las pérdidas del balasto.

En la estimación de costos anuales se deben tener en cuenta los costos de cambio de bombillas con su mano de obra asociada y de la limpieza del conjunto óptico de las luminarias. Estos costos deben ser consistentes con el esquema de mantenimiento y la curva de factor de mantenimiento definida para el proyecto de acuerdo con el Capítulo 7 del presente Reglamento.

610.7.3 COSTO ANUAL UNIFORME EQUIVALENTE

Para obtener el costo anual equivalente de cada propuesta, se debe tener en cuenta lo siguiente:

DE

 Se debe considerar un período de evaluación de 25 años teniendo en cuenta la vida útil de los diferentes componentes del proyecto y un valor de salvamento de cero pesos. Para el efecto se establecen como valores mínimos de vida útil los de la Tabla 610-3.1.4.a), así:

EQUIPOS	VIDA	UTIL	EQUIPOS	VIDA UTIL
	(años)			(años)
Transformadores	15		Postes de concreto	25
Conductores	25		Postes metálicos	15
Bombillas de sodio	3		Luminarias de sodio.	12,5
Cajas de inspección, ducterías y	25			
demás obras civiles asociadas				

Tabla 610-3.1.4.a) Vidas útiles mínimas de los componentes de la infraestructura de alumbrado público para la evaluación de costos

- Costos Iniciales (CI.) de infraestructura (luminarias o proyectores, transformadores, conductores, postes, materiales, etc.), transporte y mano de obra. Estos costos son presentes.
- Costos Anuales de Operación (CAO), los cuales están compuestos por el mantenimiento de la infraestructura y el consumo de energía eléctrica del sistema de alumbrado. Estos costos son anualizados y deben traer a valor presente, con la siguiente fórmula:

$$VP(CAO) = CAO * \left(\frac{(1+i)^n - 1}{i(1+i)^n} \right)$$

- En la fórmula anterior, i corresponde a la tasa de descuento (TD), la cual se establece en el 16,06% (o la que aplique la CREG para la red domiciliaria)
- n corresponde al número de año de análisis, que en este caso es de 25 años

El valor presente total del proyecto (P_T) se obtiene aplicando la siguiente fórmula:

$$VPN = P_T = CI + VP(CAO) - VP(VS)$$

VS es el valor de Salvamento al final de la vida, es decir, el valor de la vida útil remanente del sistema de iluminación. En el caso de la evaluación de proyectos de alumbrado y con el fin de simplificar el procedimiento sin afectar el resultado, se considera nulo el valor de salvamento; luego

$$P_T = CI + VP(CAO)$$

El Valor Total (P_T) se multiplica por el factor de anualidad para obtener el Costo Anual Uniforme Equivalente (CAUE) del proyecto.

Costo Anual Uniforme Equivalente (CAUE) del proyecto = valor presente total del proyecto (P_T) por el factor de anualidad.

Nombre del I	Proyecto:
Fecha:	
Propuesta N	
	COSTOS INICIALES DE CADA PROPUESTA

Doscrinció	caracterí	OSTOS									
Descripció		COSTOS DE INVERSIÓN ANUALIZADOS Cantidad Costo Cost Vida Año Año Año SUM ST									
n	sticas	Cantidad	unitari		útil	Ano 1	Ano 2				
				O Total		1	-	-	25	ACT (**)	
Bombillas	50 W		0	Total	(años)						
Dombinas	70 W			1							
	100 W										
	150 W 250W										
	400W										
0 4 - 1	600W	0	4 - 4 - 1								
Costo bo		Sub	totai								
Luminarias	50 W										
(incluye	70 W										
fotocontrol	100 W										
y brazo)	150 W										
	250W										
	400W										
	600W										
Costo luminarias		Sub	total								
Postes	9 m										
(metálicos	10 m										
o de	12 m										
concreto)	14 m										
	16 m										
Costo po	stería	Sub	total								
Cables de	Nº 2										
aluminio	AWG										
THW	Nº 4 AWG										
Costo cabl		Sub	total								
Canalización	1Ф3"										
	zona										
	verde										
	1Ф3"										
	zona										
	dura										
	2Ф3"										
	cruce de										
	calzada										
	Cajas de										
	inspecció										
	n										
Costo can		Sub	total								
Transforma	15 kVA										
dor	30 kVA										
	45 kVA										
	75 kVA										
Т	otal costos l	niciales					•	•		•	
Sumatoria	de los costos	s anualizad	los de inv	ersión							

Tabla 610-3.1.4 .b) Análisis de Costos iniciales de cada propuesta

DE

Descripción	caracter ísticas	Costo unitario	IPP proye ctado	Año 1	Año 2		Año 25	Sumatoria subtotales anualizados
Cambio de	70 W							
Bombillas	150 W							
	250W							
	400W							
	600W							
Subtotal cambio b								
Limpieza	70 W							
conjunto óptico								
de la Luminarias	250W							
	400W							
	600W							
Subtotal limp	ieza							
Cambio de	70 W							
conjunto	150 W							
eléctrico	250W							
	400W							
	600W							
Subtotal carr	bio		•			•		
Reposición de	10 m							
postes	12 m							
	14 m							
	16 m							
Subtotal cambio	postes							
Costo consumo	70 W							
anual de energía	150 W							
	250W							
	400W							
	600W							
Subtotal	consumo d	e energía	1		L			

Tabla 610-3.1.4.c) Análisis de costos anuales de operación y mantenimiento

IPP = Índice de precios al productor

OFERENTES	Costos iniciales (ci)	Costos anuales de operación y mantenimiento totales (cao)	VPN de los costos anuales de operación y mantenimiento totales (cao) (c)	Valor presente total del proyecto (p _t) (a+c)	Costo anual equivalente en el. periodo de 25 años
Propuesta 1					
Propuesta 2					
Propuesta 3					

Tabla 610-3.1.4.d) Resumen del análisis para la evaluación económica

Criterios de evaluación

El proyecto recomendado será el que presente el menor valor presente neto.

Notas:

- 1. El valor de las luminarias es el fijado por los oferentes en su respectiva cotización
- 2. El precio de los postes, cajas de inspección, empalmes, bombillas, transformadores y conductores son.
- 3. El valor de salvamento se tomará como cero (0).
- 4. Se toma como tasa de retorno 16,06 (o la que aplique la CREG para la red domiciliaria) para efectos de analizar el costo de inversión.
- El costo de kWh de energía será suministrado por el operador del servicio de alumbrado público o el operador de red.
- 6. Los periodos de reposición, limpieza y mantenimiento serán los mismos para los oferentes, siempre y cuando el conjunto óptico de todas las luminarias ofrecidas tengan igual índice de protección IP. No obstante se deberán considerar, si son relevantes, las diferencias que presenten los esquemas de mantenimiento que presenten los proponentes dentro del diseño.
- 7. Se considera el costo de canalización y excavación para los circuitos subterráneos exclusivos de alumbrado público.
- 8. El periodo de evaluación económica es de 25 años.
- 9. El costo de operación y mantenimiento se anualiza con el índice de Precios al Productor proyectado el año **n** a partir del IPP del año inmediatamente anterior al proyecto entre 1 y 25.
- 10. Las canalizaciones compartidas con las redes de energía de uso general no se tendrán en cuenta para este análisis. Para estos casos se costeará únicamente los conductores de alumbrado público.

610.4 EVALUACIÓN AMBIENTAL

En caso de que aplique el impacto ambiental de la iluminación, deberán hacerse los estudios requeridos por la autoridad Ambiental.

Se debe analizar la coexistencia de las luminarias con los árboles que se van a plantar en las vías, definir la separación mínima entre el poste y el árbol.

CAPÍTULO 7

OTROS REQUERIMIENTOS PARA LOS SISTEMAS DE ALUMBRADO PÚBLICO, SISTEMAS DE INFORMACIÓN, MANTENIMIENTO E INTERVENTORIA

Para facilitar el la operación y el mantenimiento del alumbrado público se debe disponer de un sistema de información sobre las principales variables del alumbrado público.

SECCIÓN 710 SISTEMA DE INFORMACIÓN DE ALUMBRADO PÚBLICO

Todo municipio debe establecer un sistema de información del alumbrado público bajo su responsabilidad.

El sistema de información de alumbrado público debe estar dividido en los siguientes componentes:

- a. El sistema de información del registro de atención de quejas, reclamos y solicitudes de alumbrado público.
- b. El concerniente al inventario de equipos de la infraestructura del servicio de alumbrado público estructurado como base de datos georreferenciada.
- c. Consumos, facturación y pagos de energía.
- d. Recaudos del servicio de alumbrado público.
- e. Recursos recibidos para financiamiento de expansión o modernización de la infraestructura de servicio de alumbrado público, identificando su fuente.

El sistema de información de alumbrado público tendrá por objeto facilitar la administración, operación y mantenimiento eficaz y eficiente del servicio de Alumbrado Público.

Los municipios que tengan registrados en su base de datos de infraestructura del Servicio de Alumbrado Público más de cinco mil (5.000) puntos luminosos, deberán disponer de un sistema de consulta a través de la WEB con la información de Alumbrado Público, en las áreas operativa y de atención al Cliente

Esta herramienta deberá permitir la sistematización de la información de manera ordenada y funcional, garantizar la conservación de la base estadística, respondiendo a las necesidades de información, tanto de las entidades municipales como de terceros autorizados, derivada de la ejecución de actividades del operador y de la interventoría.

710.1 OBJETIVOS DEL SISTEMA DE INFORMACIÓN DEL SERVICIO DE ALUMBRADO PÚBLICO

El Sistema de información del servicio de alumbrado público debe cumplir con los siguientes objetivos:

- a. Ser el centro de acopio de la información de los reportes de quejas y reclamos del servicio, así como de las repuestas y seguimiento a las mismas.
- b. Disponer de información actualizada, gráfica y de base de datos, conforme a las labores de modernización, expansión y mantenimiento de la infraestructura de alumbrado público; así como de las quejas y reclamos del servicio de alumbrado público.
- c. Facilitar la supervisión de la actualización del inventario de la infraestructura para la prestación del servicio de alumbrado público y el seguimiento de la atención de las quejas y reclamos del servicio.
- d. Evaluar los índices de calidad del servicio y soportar las penalizaciones en función de los criterios previamente establecidos entre el municipio y el operador del servicio de alumbrado público.

e. Las demás que establezca el municipio o el responsable de la prestación del servicio.

DE

Los resultados de las inspecciones realizadas por la interventoría a la infraestructura de alumbrado, así como las diferentes quejas y reclamos presentadas por los usuarios, deben ser almacenados en una Base de Datos, la cual servirá de base para definir los programas tanto puntuales como periódicos de mantenimiento a realizar por el operador.

Se deben registrar las fechas y eventos relacionados con fallas y diagnóstico, acciones correctivas y/o preventivas y demás aspectos que agreguen valor al Sistema de Información de Alumbrado Público.

La base de datos que se utilice para el registro de quejas y reclamos deberá contener como mínimo los siguientes registros planteados en la Tabla 710-1:

FUENTE	CAMPOS
USUARIO:	Tipo de queja o solicitud –descripción-
Quejas y reclamos	Ubicación
	Fecha, hora
	Acción tomada por el Operador
INTERVENTORÍA	Tipo de informe
Del servicio de alumbrado público	Fecha
Informes	Período del informe
	Aspectos evaluados
	Cumplimiento de los Índices objetivo establecidos
	Costos de operación del período evaluado
	Recomendaciones
	Compromisos para el siguiente período

Tabla 710-1 Registro de quejas, reclamos y solicitudes

La Interventoría en relación con el mantenimiento del sistema de alumbrado público deberá verificar la realización de los programas de mantenimiento correctivo y preventivo.

710.2 INFORMACIÓN DE LA INFRAESTRUCTURA DE ALUMBRADO PÚBLICO

La información de la infraestructura de alumbrado público debe cumplir con los siguientes objetivos:

- a. Permitir el control del inventario de la infraestructura del servicio de alumbrado público del municipio. La información será la correspondiente a la infraestructura existente incluida la relacionada con todos los componentes del sistema de alumbrado público. En terreno cada luminaria debe estar marcada e identificada con un número único de rótulo registrado en la base de datos de la infraestructura del sistema de alumbrado público.
- b. Facilitar el seguimiento a las labores de expansión, operación y mantenimiento, de forma tal que permita determinar índices de calidad.
- c. Facilitar la gestión del Operador del sistema de alumbrado público en sus labores de administrar, operar y realizar el mantenimiento técnico. En el mismo sentido debe permitir el control por parte de la interventoría.
- d. Informar sobre la ubicación geográfica de cada punto luminoso a través de un sistema georreferenciado. La información incluida debe ser tal que permita realizar las acciones de mantenimiento y control.
- e. Apoyar la toma de decisiones en el área de la iluminación pública del municipio.

En este sistema se deben identificar los siguientes componentes de la infraestructura:

a. Luminarias: tipo de fuente lumínica, potencia y tipo de luminaria, tipo de balasto y su valor de pérdidas, control de encendido (múltiple o individual), tipo de espacio iluminado (parque, tipo de vía,

senderos peatonales, zonas verdes, campos deportivos, ciclovía, etc.), identificación del transformador de distribución al cual están conectadas

- b. Estructuras de soporte o poste: De uso exclusivo o compartido con red de uso general. Tipo de material, longitud.
- Red de alimentación: De uso exclusivo o compartido con red de uso general. Tipo de material, calibre de conductores, tipo de instalación (aérea o subterránea).
- Canalizaciones: De uso exclusivo o compartido con red de uso general, cajas de inspección y ducterías, Tipo de zona (dura, verde o cruce de calzada)
- e. Transformadores: De uso exclusivo o compartido con red de uso general, tipo aéreo, local, pedestal o subterráneo.

El sistema de información debe permitir para cada luminaria, con sus números de rótulo, la identificación del transformador de distribución al cual están conectadas. En el mismo sentido cada transformador debe permitir identificar el circuito de media tensión que los alimente, con el fin de poder analizar valores de los índices de calidad del servicio de energía, DES y FES que el Operador de Red le entrega a la Superintendencia de Servicios Públicos. Tal información deberá usarse para establecer el monto de la energía a descontar o compensar por calidad del servicio; así como la energía que se descuenta por no haber sido suministrada por interrupciones en los circuitos de media tensión, en el caso de fallas o de las salidas programadas o por causas imputables al Operador de Red.

SECCIÓN 720 MANTENIMIENTO Y DEPRECIACIÓN DE LAS INSTALACIONES DE ALUMBRADO PÚBLICO

Todo proyecto de alumbrado público, debe considerar dentro de su diseño el factor de mantenimiento, teniendo en cuenta las condiciones ambientales y viales del municipio. Este factor de mantenimiento debe ser calculado con base en la metodología establecida en el presente reglamento.

La administración municipal, deberá establecer las políticas para que en la operación y el mantenimiento del sistema de Alumbrado Público se cumpla con la materialización de las acciones y condiciones controlables que sirvieron de base para calcular el factor de mantenimiento (esquema de mantenimiento). En el mismo sentido deberá exigir el cumplimiento de los niveles de iluminación mínimos mantenidos contemplados en el presente reglamento.

720.1. MANTENIMIENTO

Frente al reporte de una falla, con base en los procedimientos establecidos y aprobados por el municipio, el operador del servicio debe definir su grado de criticidad, y proceder a tomar las acciones correctivas de acuerdo con su escala de prioridades.

Las bombillas de descarga de alta intensidad, como la bombilla de vapor de sodio alta presión, utilizadas en Alumbrado Público deberán cambiarse cuando la emisión del flujo luminoso haya descendido al setenta por ciento (70%) de su valor inicial.

Mediante el control y seguimiento del comportamiento de los diferentes componentes del alumbrado público, se deben identificar, registrar y clasificar los tipos de daños frecuentes y esporádicos que se presentan, así como las causas que los generan -de tipo técnico inherentes a la red, de calidad de los equipos y materiales instalados o de operación, entre otras.

El operador debe identificar y clasificar los daños, y establecer la planeación y programación del mantenimiento.

En las instalaciones de alumbrado público se deben examinar y analizar las diferentes causas de deterioro y depreciación de las obras de iluminación pública para extraer conclusiones relativas a:

⇒ Las características que se deben exigir a los nuevos materiales empleados

DE

⇒ Los métodos de mantenimiento más convenientes para las diferentes categorías de instalaciones.

720.2 CÁLCULO DEL FACTOR DE MANTENIMIENTO

Las condiciones de conservación y mantenimiento de la instalación de iluminación configuran un parámetro de gran incidencia en el resultado final de un proyecto de alumbrado público, denominado factor de mantenimiento de la instalación F_M y debe calcularse con la metodología adoptada de la IESNA (Illuminating Engineering Society of North America) que considera la valoración de ocho efectos, cuyo producto dará como resultado el factor de mantenimiento de la instalación de la instalación de alumbrado público (F_M).

El análisis de cada uno de estos efectos dará como resultado un valor que puede ser uno (1), si las condiciones son óptimas y menor que 1, en la medida que no lo sean. Los efectos pueden ser controlables o no controlables, como se aprecia en la Tabla 720.2 A:

EFECTOS NO CONTROLABLES	1	Efectos ambientales, como condiciones atmosféricas (temperatura, humedad)
	2	Variaciones abruptas de tensión
EN LA	3	Depreciación de la luminaria debido al envejecimiento y a la degradación de sus
OPERACIÓN	4	Variación de las características de reflexión de la calzada (F _R)
	5	Depreciación del flujo luminoso de la bombilla (DLB)
	6	Factor de balasto
	7	Reemplazo de las bombillas (R)
EFECTOS	8	Depreciación de la luminaria por ensuciamiento dentro y fuera del conjunto óptico (F _E)
CONTROLABLES		Ke: Factor de depreciación debido a la acumulación de suciedad por fuera de la luminaria.
		Ki: Factor de depreciación interno debido a la acumulación de suciedad dentro de la luminaria.
		Kp: Factor de depreciación permanente debido al envejecimiento y a la degradación del material en el conjunto óptico

Tabla 720.2 A Aspectos a considerar en el cálculo del factor de mantenimiento F_M del A.P.

El factor de mantenimiento está dado por:

 $F_M = Enc \times F_E \times DLB \times Rx Fb$

En donde:

F_M Factor de mantenimiento de la instalación

Enc Efectos no controlables

F_E Depreciación de la luminaria por ensuciamiento

DLB Depreciación por descendimiento del flujo luminoso de la bombilla

R Reemplazo de la bombilla

Fb Factor de balasto

 Sin embargo, algunos elementos de Factores por efectos no controlables (Enc) y Factores de reemplazo de las bombillas (R) se encuentran en estudio, por lo que no serán considerados en el presente Reglamento para la definición del factor de mantenimiento.

En consecuencia el factor de mantenimiento será el resultante de la fórmula $F_M = F_E \times DLB \times Fb$. Para calcular los parámetros se debe tener en cuenta los siguientes aspectos:

720.2.1 EFECTOS AMBIENTALES:

DE

Las variaciones de la temperatura dentro de una luminaria dependen de los cambios climáticos tanto estacionales como diarios, así como del encendido y apagado de la bombilla. Estas diferencias de la temperatura interior pueden alcanzar cifras muy altas. Las máximas se presentan en luminarias cerradas e instaladas en zonas cálidas. Para reducir este efecto ambiental se debe tener en cuenta en cuenta lo siguiente.

- a. En zonas cálidas, utilizar luminarias herméticas.
- En zonas cálidas utilizar luminarias, , equipo auxiliar, conductores eléctricos, fusibles, aisladores, etc., fabricados con materiales completamente tropicalizados, es decir resistentes al calor excesivo, humedad y moho.
- c. Para fuentes de alta potencia, y en general para todas las fuentes que liberen una gran cantidad de energía térmica, utilizar luminarias que tengan el volumen interior del conjunto óptico y del conjunto eléctrico, de tal manera que se cumplan los requisitos de producto establecidos en el presente reglamento, respecto a los límites de variación de tensión de la bombilla dentro y fuera del conjunto óptico, debido a la temperatura de funcionamiento de la bombilla de sodio de alta presión.
- d. Para cada categoría de fuente luminosa, utilizar únicamente los modelos de luminarias diseñados específicamente para esa categoría y potencia.
- Para luminarias cerradas no herméticas se debe disponer de un sistema de evacuación del aqua de condensación.

720.2.2 VARIACIONES ABRUPTAS DE LA TENSIÓN:

Una tensión en los terminales de las bombillas, no conforme con la prevista, ocasiona una variación apreciable en el flujo luminoso emitido. La variación de tensión en los terminales de la bombilla depende de la variación de tensión de la fuente de alimentación y de la capacidad de regulación de la tensión que tenga el tipo de balasto utilizado en la luminaria.

El diseñador debe consultar con el operador de la red el comportamiento de las variaciones de tensión en los circuitos alimentadores de media tensión cuando se considera la instalación de transformadores exclusivos para alumbrado público, o las variaciones en la red de baja tensión cuando se usan las redes de uso general en baja tensión.

En todo caso el diseñador deberá dejar constancia del análisis realizado y de las especificaciones dadas en consideración con las variaciones posibles de tensión que se presenten en los circuitos de alimentación.

Cuando un proyecto o sistema se encuentre en operación, el operador del sistema de alumbrado público en conjunto con el operador de la red deberán evaluar el comportamiento de las variaciones de tensión de alimentación y definir las acciones y correcciones a realizar con el fin de obtener un comportamiento cercano a las condiciones de operación de diseño de tensión de las bombillas.

720.2.3 DEPRECIACIÓN DE LA LUMINARIA POR ENVEJECIMIENTO Y DEGRADACIÓN DE SUS MATERIALES:

La rapidez y severidad de la acumulación de polvo en las fuentes luminosas y luminarias varía considerablemente con el tipo y construcción de la luminaria (abierta o cerrada), la altura de montaje y sobre todo con el grado de humedad y polución de la atmósfera del ambiente, el cual depende a su vez, de otros factores (volumen y naturaleza del flujo de tráfico, clima, trayectoria del viento, ubicación de la instalación, etc.,) que producen un envejecimiento y degradación de todos los materiales que conforman los sistemas de iluminación pública.

720.2.4 VARIACIÓN DE LAS CARACTERÍSTICAS DE REFLEXIÓN DE LA CALZADA (FR):

Las propiedades de reflexión de las superficies de la calzada cambian paulatinamente con su utilización. Este cambio que no es constante a lo largo de toda la superficie, es significativo en los inicios de la utilización de la calzada y después decae. El cambio de las propiedades de reflexión se produce por:

- a. Acumulación de suciedad y polvo atmosférico
- b. Diferencia de carga y peso de los vehículos

- c. Mayor o menor utilización de los carriles de circulación
- d. Flujo vehicular
- e. Calidad de los materiales utilizados en la construcción de la calzada

DE

f. Condiciones atmosféricas: temperatura, humedad, frecuencia de las Iluvias, características de polución del ambiente.

Este factor debe considerarse únicamente cuando se tenga un buen conocimiento de las superficies de las calzadas lo cual se logrará a través de una serie de mediciones que se efectúen sobre las calzadas de las vías.

720.2.5 DEPRECIACIÓN DEL FLUJO LUMINOSO DE LA BOMBILLA (DLB)

La influencia de la depreciación en la frecuencia de sustitución de las bombillas debe considerarse para mantener ciertas condiciones mínimas de iluminación durante la vida útil de la instalación.

Los fabricantes de bombillas deben suministrar la información de la reducción del flujo luminoso de los distintos tipos de bombillas y las diferentes potencias obtenidos bajo condiciones de funcionamiento controladas. El diseñador deberá tener en cuenta tales condiciones para especificar el tipo de conjunto eléctrico necesario para cada tipo de fuente luminosa propuesta y plantear el esquema de mantenimiento.

En la práctica, las condiciones reales de operación pueden desviarse de las utilizadas en los ensayos, alterando las características de funcionamiento. En tal sentido, los operadores del servicio de alumbrado público deberán crear y alimentar las bases de datos que les permitan determinar la depreciación y vida útil real de las bombillas por marcas, tecnología, potencia y condiciones del sitio de instalación.

En lo posible los operadores deberán, mediante muestras, hacer pruebas para verificar condiciones iniciales y durante la operación de las fuentes luminosas, tales como tensión de bombilla y flujo luminoso.

La interventoría verificará la existencia, seguridad y funcionalidad de la base de datos así como la veracidad de la información registrada.

Al finalizar periodos de 4 años a partir de la entrada en vigencia del presente reglamento, los operadores del servicio de alumbrado público evaluarán los datos del comportamiento real de las bombillas |y presentarán a la industria por intermedio del comité técnico de normalización de iluminación las sugerencias para que se realicen los ajustes pertinentes y a este Ministerio para que se hagan los ajustes al reglamento.

720.2.6 FACTOR DE BALASTO (FB)

Para los balastos de bombillas o lámparas fluorescentes el factor de balasto se define como la relación entre el flujo luminoso de la bombilla funcionando con el balasto de producción y el flujo luminoso de la misma bombilla funcionando con el balasto de referencia

Fb = (Flujo de la bombilla con balasto de producción) / (Flujo de la bombilla con balasto de referencia)

El diseñador debe tomar los factores de balasto suministrados por el fabricante dentro de la información de certificación del producto.

Para las bombillas de descarga de alta intensidad (HID) este factor de balasto, todavía no se encuentra normalizado. No obstante, bajo la consideración que el balasto debe garantizar las condiciones nominales de funcionamiento de la bombilla se podrá aproximar tal factor a 1; en caso de controversia el diseñador deberá usar la información garantizada por el fabricante del balasto para el equipo especificado o valerse de ensayos de laboratorio para determinar el factor de balasto aplicable.

DE

720.2.7 FACTOR REEMPLAZO DE BOMBILLAS (R)

En alumbrado público el factor de reemplazo de la bombilla estará determinado por la vida útil (70% del flujo luminoso nominal). Por diversas circunstancias, algunas bombillas terminan su vida antes de lo esperado, y dado que existen necesidades de optimizar el mantenimiento de las instalaciones de alumbrado público, se deben considerar las características de depreciación y mortalidad de la bombilla, para establecer un cronograma de reemplazo.

En alumbrado industrial y comercial el factor de reemplazo de la bombilla podrá ser establecido con base en un estudio de vida económica. La vida económica de una bombilla es el periodo de tiempo, expresado en horas, que transcurre hasta cuando la relación entre el costo de reposición y el costo de lúmenes-hora que sigue produciendo la fuente no es económicamente favorable. La vida económica depende, por consiguiente, del costo de las fuentes luminosas, del costo de la mano de obra para el cambio y del costo de la energía eléctrica.

El factor de cambio de bombilla (R) se determinará a partir de los registros de información alimentados por el operador del alumbrado público y por lo tanto deberá verificar su continuidad y pertinencia. Todo programa de modernización de alumbrado público, entendido como cambio de luminarias de vapor de mercurio por vapor de sodio, deberá tener implementado en el sistema de información de alumbrado público su base de datos, en la cual se deben registrar, como mínimo, los siguientes datos:

Marca; Tecnología; Potencia; Fecha de instalación; Sitio de instalación (georeferencia); Tipo de área iluminada (vía tipo, peatonal, zona verde, parque campo deportivo, cicloruta, etc.). ;Intervenciones de mantenimiento del punto instalado desde la fecha de la modernización.

720.2.8 DEPRECIACIÓN POR ENSUCIAMIENTO (FACTOR DE ENSUCIAMIENTO - FE_):

La acumulación de suciedad en el conjunto óptico de las luminarias afecta el rendimiento y, por lo tanto, disminuye los niveles de iluminación de una instalación de alumbrado público. La rapidez y severidad de la acumulación de suciedad varía de acuerdo con las condiciones existentes en el sitio de la instalación y las propiedades de hermeticidad de la luminaria. El diseñador de acuerdo con las características del sitio de la instalación deberá en conjunto con el responsable del alumbrado público determinar la categoría de contaminación aplicable al proyecto de alumbrado, y clasificarla de acuerdo con la Tabla 720.2.8 A Con esa información y conocido el índice de hermeticidad (IP) o su equivalente NEMA de la luminaria propuesta en el diseño se deberá determinar el F_E

	Categoría	Nivel de partículas	Observaciones			
I	Ambientes poco polucionados	Bajo Menor 80 μg/m³	No existen actividades generadoras de polvo o hum en la cercanía, tráfico ligero, generalmente limitado áreas residenciales o rurales			
II	Ambientes medianamente polucionados	Medio 80 – 150 μg/m³	Existen actividades generadoras de polvo o humos en la cercanía, tráfico pesado, generalmente limitado a áreas residenciales e industriales ligeras.			
III	Ambientes muy polucionados y zonas industriales	Alto 150 – 400 μg/m³	Existen actividades generadoras de nubes de polvo o humos en la cercanía, que pueden envolver ocasionalmente las instalaciones. Áreas altamente industriales			
IV	Ambientes excesivamente polucionados	Excesivo Superior a 400μm³	Como la categoría anterior pero las instalaciones están envueltas en humo y polvo			

Tabla 720.2 8 A Clasificación de los niveles de contaminación

Fuente: Norma NTC 900

Las luminarias deben cumplir con un grado de hermeticidad específico, para el conjunto eléctrico y otro para el conjunto óptico, definidos de acuerdo con la clasificación usada por el "Código IP":

El Índice Ip y el Índice IK se escogen de acuerdo con las condiciones ambientales. La tabla 720.2 8 B muestra los diferentes grados de protección IP e IK

	ÍND		ÍNDICE IK		
	Primera cifra		Segunda cifra		
IP	Protección contra cuerpos sólidos	IP	Protección contra Líquidos	IK	Protección contra el impacto Energía de Impacto (JOULES)
0	Sin protección	0	Sin protección	00	No protegido
1	Φ ≥ 50 mm (Contactos involuntarios)	1	Caída vertical de gotas de agua	01	0,15
2	Φ ≥ 12 mm (Contactos involuntarios)	2	Caída de agua hasta 15° de la vertical	02	0,20
3	Φ ≥ 2,5 mm (Herramientas cables)	3	Agua lluvia hasta 60° de la vertical	03	0,35
4	Φ ≥ 1 mm (herramientas finas - cables)	4	Proyección de agua en todas las direcciones	04	0,50
5	Protegido contra polvo	5	Lanzamiento de agua en todas las direcciones	05	0,70
6	Totalmente protegido contra polvo	6	Lanzamiento de agua similar a los golpes de mar	06	1,00
'		7	Inmersión	07	2,00
		8	Efectos prolongados de inmersión bajo presión	0	5,00
		L		0	10,00
				1 0	20,00

Tabla 720.2 8 b Grados de hermeticidad y protección contra el impacto

Fuente: Norma UNE-EN 50102 de 1996

Clasificación con relación a su protección contra entrada de cuerpos sólidos, agua (grado de hermeticidad IP o su equivalente nema): En las especificaciones de las luminarias se debe tener en cuenta el tipo de protección y el grado de hermeticidad requerido de acuerdo con las condiciones ambientales del sitio de instalación.

Las luminarias están clasificadas, por medio de los Códigos *IP* (*International Protection Code*) o su equivalente NEMA, que es un sistema de códigos para indicar los grados de protección provistos por un encerramiento, contra la entrada de polvo y de agua.

Los códigos *IP* se identifican con dos dígitos que indican los grados de protección:

El primer dígito, indica la protección del equipo contra la entrada de cuerpos extraños sólidos. Corresponde al primer número y comprende siete grados, desde el *grado 0* –sin protección- hasta el grado 6 –totalmente protegido contra polvo-.

El segundo dígito, indica la protección del equipo dentro de la cubierta contra entrada de agua. Corresponde al segundo número y comprende nueve grados, desde el grado 0 –sin protección- hasta el grado 8 –protegido contra los efectos prolongados de inmersión bajo presión-. Las luminarias clasificadas como "a prueba de agua", no necesariamente son aptas para operación bajo agua. En tales casos, debe usarse las luminarias clasificadas "a prueba de agua bajo presión."

DE

Clasificación con relación a la protección mecánica contra choques de cuerpos sólidos (índice ik): Las luminarias se clasifican por medio de Códigos *IK*, cuyo objetivo es indicar el grado de protección provisto por un encerramiento o envolvente de materiales eléctricos contra el impacto o choque mecánico externo, como se presenta en la Tabla 720.2. 8 B .El IK se identifica con un número que comprende once grados que van desde el grado 00 –sin protección- hasta el grado 10 -Energía de choque 20,0 J. (5 kg, en caída libre a una distancia de 40 cm)-

Para mayor información en la clasificación de las luminarias, consultar las normas IEC 60529 y 60598 para IP y EN-50102 para el grado IK.

Relación entre el factor de ensuciamiento y el índice de hermeticidad: La cantidad de suciedad acumulada depende del grado de hermeticidad del conjunto óptico y del ambiente en el cual se instala la luminaria. El diseñador para calcular el factor de mantenimiento y establecer la curva del esquema de mantenimiento de la instalación del proyecto de alumbrado público debe considerar los periodos máximos de limpieza del conjunto óptico de la luminaria establecidos en la Tabla 720.2.8 C, periodos que en la etapa de operación deberán aplicarse por parte del operador del sistema.

	Categoría	Nivel de partículas	Periodo de limpieza (meses)
ı	Ambientes poco polucionados	< 80 μg/m³	36 o cambio de bombilla
II	Ambientes medianamente polucionados	80 – 150 μg/m³	24
III	Ambientes muy polucionados y zonas	150 – 300 μg/m³	12
	industriales	300 – 400 μg/m³	6
IV	Ambientes excesivamente polucionados	400 – 600 μg/m³	6
		> 600 μg/m³	3

Tabla 720.2.5 C Periodos máximos para realizar limpieza del conjunto óptico de luminarias

Fuente: Adaptación norma NTC 900 Tabla 18

En la Tabla 720.2.8 D.) se presentan los valores del factor de ensuciamiento según el índice de protección IP del conjunto óptico de la luminaria y de la categoría de contaminación.

Tipo de vía o clase de iluminación	Nivel de contaminación	Índice de hermeticidad (IP) de la luminaria	Periodo, en meses, de limpieza del conjunto óptico de la luminaria	Factor de Ensuciamiento F _E
Avenidas en el	IV	6X (a)	6	0,91
centro de algunas ciudades (*)		6X (b)	6	0,93
M2 y M3	III	6X (a)	12	0,91
		6X (b)	12	0,93
M4 y P1 a P3	II	6X (a)	24	0,89
		6X (b)	24	0,91
M5, P4 a P7 y	I	6X (a)	36 o cambio de la bombilla	0,90
parques		6X (b)	1	0,95

Tabla 720.2.5 D) Factores de ensuciamiento de las Luminarias, según el nivel de polución, índice de hermeticidad y el período de limpieza utilizado

Notas: (a) - Cierre del conjunto óptico mediante ganchos u otros elementos que cumplan esa función

(b) - Conjunto óptico completamente sellado.

(*) Para avenidas del centro de algunas ciudades con categorías de contaminación I o II el factor de ensuciamiento es el mismo pero con un periodo de limpieza cada 12 meses.

De acuerdo con lo anterior, cuanto mayor sea el valor del IP, más protegido está el conjunto óptico y, en consecuencia, se verá menos afectado por las condiciones ambientales.

Si para una clasificación ambiental dada, el diseñador con base en información del fabricante de luminarias puede soportar un mejor factor de ensuciamiento podrá usar tal valor en su diseño.

SECCIÓN 730 MANTENIMIENTO DE LA INFRAESTRUCTURA DE ALUMBRADO PÚBLICO

730.1 MANTENIMIENTO PREVENTIVO

El mantenimiento preventivo debe determinar las acciones para evitar o eliminar las causas las fallas potenciales del sistema y prevenir su ocurrencia, mediante la utilización de técnicas de diagnóstico y administrativas que permitan su identificación.

Dentro de las técnicas de diagnóstico se deben considerar:

- a. Las mediciones eléctricas en diferentes puntos de la red de los perfiles de tensión, niveles de armónicos
- b. La medición de los parámetros eléctricos de operación de las luminarias y sus componentes
- c. Las mediciones fotométricas deben permitir obtener parámetros como Uniformidad general de niveles de luminancia/Iluminancia de la calzada (U_o), Uniformidad longitudinal sobre la calzada (U_L), que permitan medir la calidad de la iluminación.

Estas rutinas de inspección se deben ejecutar a través de grupos de Inspección con equipos y elementos adecuados.

Para programar los trabajos de mantenimiento en una vía se deben comparar los valores de iluminación medidos en la vía con los valores de iluminación promedio mantenida requeridos de acuerdo a la clase de iluminación asignada a la vía.

Con la aplicación del esquema de mantenimiento de diseño de la instalación de alumbrado público, el operador debe proceder a efectuar los trabajos de mantenimiento preventivo de limpieza del conjunto óptico de la luminaria o hacer un reemplazo en grupo de todas las bombillas que tengan el mismo tiempo de instalación, es decir cuando lleguen al final de su vida útil (70% flujo luminoso nominal).

El operador del servicio de alumbrado público en cumplimiento del programa de mantenimiento preventivo debe hacer seguimiento a cada uno de los componentes del sistema de alumbrado público. Para el efecto realizará mediciones en terreno para determinar niveles de iluminancia mínima mantenida y en banco de pruebas de flujo luminoso de bombillas retirando muestras estadísticamente representativas de la población como referencia (lote), para determinar la muestra podrá utilizar la norma NTC ISO 2859 parte 1 Planes de muestreo determinado por el nivel aceptable de calidad (NAC o AQL) para inspección lote a lote.

Un banco de pruebas del flujo luminoso de bombillas puede consistir en una caja negra dotada de una fotocelda a la cual se le mide la corriente. La resistencia del circuito eléctrico con la fotocelda es inversamente proporcional a la iluminancia dentro de la caja negra, este efecto permite estimar el valor del flujo luminoso de la bombilla mediante un miliamperímetro, para un valor de tensión de alimentación preestablecido. Para cada potencia de bombilla debe existir una caja negra, las cuales deben ser calibradas cada año en un laboratorio de iluminación acreditado.

Cuando se ha realizado el cambio masivo, algunas de las bombillas retiradas de terreno dispondrán de vida útil y podrán ser usadas en los trabajos de mantenimiento correctivo, y para ello la clasificación de las bombillas se podrá hacer mediante la caja negra.

La periodicidad con la cual se adelanten las labores de muestreo será determinada por la interventoría para obtener una mejor trazabilidad de cada uno de los componentes de la infraestructura del sistema de alumbrado público y su incidencia en el plan de mantenimiento preventivo.

Todos estos elementos deben ser analizados y tenidos en cuenta en la elaboración de un programa de mantenimiento preventivo, incluyendo la evaluación económica. El programa debe ser elaborado por el operador del servicio de alumbrado y aprobado por la interventoría, teniendo en cuenta:

730.1.1 REEMPLAZOS MASIVOS DE BOMBILLAS.

La reposición programada de bombillas tiene por objeto mantener las instalaciones de alumbrado dentro del nivel proyectado. Las bombillas que se retiren deben ser entregadas al responsable técnico de la instalación, quien debe elegir aquellas que desee estudiar con el fin de determinar si existen causas anormales que provoquen su rápido envejecimiento. Si el flujo emitido por un número significativo de las bombillas retiradas, en la reposición en grupo, fuese inferior al previsto, se debe evaluar la continuidad de uso del tipo de bombilla por la marca, lote o la referencia.

No obstante lo anterior, no se debe descartar el mantenimiento correctivo puntual, debido a que hay bombillas defectuosas que no cumplen su vida útil, siendo necesario reemplazarlas. Para garantizar la confiabilidad y calidad del servicio de alumbrado público, en este caso se podrán utilizar las bombillas retiradas en cambios masivos y seleccionadas por disponer aún de vida útil.

730.1.2 OPERACIONES DE LIMPIEZA DE LUMINARIAS Y SOPORTES

Se debe efectuar de forma programada en concordancia con el esquema de mantenimiento previamente establecido, teniendo en cuenta el grado de hermeticidad de la luminaria y el nivel de contaminación de su sitio de instalación. La limpieza de luminarias se debe realizar tanto interior como exteriormente, con una metodología que permita que tras ésta se alcance un rendimiento mínimo del 80 % inicial. Este rendimiento se comprobará midiendo la iluminancia, tras la ejecución de la correspondiente limpieza. Al mismo tiempo que se hace limpieza, se debe efectuar una inspección visual del sistema óptico y del estado de todos los componentes de la luminaria.

El reemplazo de bombillas en grupo, se debe realizar de día y, de esta manera, minimizar la exposición del personal ya que no es necesario trabajar con el servicio de alumbrado operando y los peligros que implica el tráfico nocturno. De otra parte se evita la incomodidad al vecindario con el ruido de máquinas, tringuetes de las escaleras, etc.

Se deben aprovechar los trabajos de reemplazos en grupo, para realizar todo el mantenimiento de las funciones de la bombilla y la luminaria, es decir:

- a. Enfoque correcto de la bombilla
- b. Limpieza de la luminaria, y particularmente del sistema óptico
- c. Revisión del equipo auxiliar
- d. Revisión de las partes mecánicas de la luminaria.

730. 2 MANTENIMIENTO CORRECTIVO

Consiste en localizar, reparar y adecuar las instalaciones para que funcionen el máximo número de horas posible, con el desempeño para el que fueron diseñadas. Las actividades que componen el mantenimiento correctivo son:

- Localización detección de averías
- Adecuación de instalaciones

DE

Cuando se detecten deficiencias en los rangos de variación de tensión en el servicio de energía eléctrica, se debe contemplar la medición puntual de la tensión mediante la instalación de registradores de tensión, en las cabeceras y finales de circuito de alumbrado, para verificar los rangos de variación de los valores de tensión en las diferentes horas de funcionamiento del servicio de alumbrado y su comparación con las condiciones normales de funcionamiento de las bombillas.

Para la ejecución del mantenimiento correctivo es importante tener en consideración los siguientes aspectos, principalmente en lo que tiene que ver con bombillas y luminarias:

- a. Reemplazar las bombillas y, en donde sea necesario, los equipos auxiliares y cerciorarse que el casquillo de la bombilla esté perfectamente adaptado al portabombilla (por ejemplo, evitando la confusión entre los portabombilla E39 (Mogul) y E40).
- b. Revisar el encendido y apagado y el correcto funcionamiento del dispositivo de encendido para alumbrado público, detectar fallas eléctricas y daño accidental.
- c. Limpiar las bombillas, el conjunto óptico de las luminarias
- d. Realizar el mantenimiento mecánico y eléctrico (accesorios de alumbrado y sistema de distribución).
- e. Coordinar con las entidades municipales competentes la poda de los árboles circundantes a los equipos de iluminación, para despejar el cono de intensidad máxima de cada luminaria

SECCIÓN 740 INTERVENTORÍA DEL SERVICIO DE ALUMBRADO PÚBLICO

Todo municipio deberá contratar una interventoría para el servicio de alumbrado público con alcance técnico, operativo y administrativo, siguiendo las disposiciones del presente Reglamento Técnico y las de ley para su selección.

Con el fin de optimizar los recursos municipales, se podrá realizar un contrato de interventoría para atender varios municipios de una misma región, y sus costos deberán ser distribuidos proporcionalmente a la cantidad de puntos luminosos que tenga la infraestructura de alumbrado público de cada municipio asociado.

El objeto contractual deberá ejecutarse de conformidad con las finalidades y los principios de economía, transparencia y responsabilidad, consagrados en la Ley de Contratación Pública y los postulados de la función administrativa consagrados en el Artículo 209 de la Constitución Política,

El contrato de interventoría del servicio de alumbrado público debe contemplar indicadores de gestión, incluyendo indicadores de seguimiento sobre el cumplimiento de los indicadores de gestión y calidad establecidos para el Operador del servicio de alumbrado público

Sin perjuicio de las disposiciones aplicadas a los contratos de interventoría y las que el municipio estime necesarias para el cumplimiento del objeto del contrato de interventoría; las obligaciones de la interventoría del servicio de alumbrado público, en cumplimiento del presente reglamento serán las siguientes:

- 1. Supervisar la actualización del Sistema de Información Georeferenciado de la infraestructura del servicio de alumbrado público del municipio. Esta obligación implica el acopio de información en las dependencias del Operador del servicio de alumbrado público, para determinar las modificaciones que se realicen en la infraestructura de alumbrado público tales como:
- a. Adición de puntos luminosos por expansiones.
- Sustitución de luminarias por efecto de la modernización o cambio de luminarias de tecnología de mercurio a sodio.
- c. Disminución o retiro de luminarias por intervenciones del espacio público.
- d. Sustitución de materiales y/o equipos sin afectar cantidad de infraestructura.
- e. Aumento o disminución de potencia de los puntos luminosos.

La interventoría debe verificar en terreno la anterior información y contrastarla con los registros de la base de datos, así como la infraestructura asociada, las quejas y reclamos presentados por los usuarios.

DE

Esto con el fin de verificar el alcance y efectividad los programas tanto puntuales como periódicos de mantenimiento propuestos por el operador

- 2. Auditar la calidad de la información incluida en la base de datos, de acuerdo con la norma NTC ISO 2859 parte 1, "Planes de muestreo determinado por el nivel aceptable de calidad (NAC o AQL) para inspección lote a lote", y verificar que se realice la correspondiente actualización de la base de datos. Para todos los procesos de modernización, expansión, cambio de infraestructura, retiro o cambio de luminarias, inclusión de infraestructura nueva, reubicación de luminarias o de infraestructura y en general de todo proceso que afecte el inventario georeferenciado,
- 3. Monitorear el estado de la infraestructura de alumbrado mediante inspecciones en jornadas diurnas y nocturnas, garantizando el cubrimiento del 100% del área municipio mensualmente.
- 4. Reportar al Operador las deficiencias encontradas (luminaria con bombilla apagada, agotada, intermitente y problemas generales en la construcción o instalación de la infraestructura tales como cajas de inspección destapadas y/o destruidas, postes desplomados o en mal estado, redes eléctricas instaladas inadecuadamente, puestas a tierra faltantes, deterioro o vandalismo en luminarias, requerimientos de reinstalación de luminarias por hurto, falta de mantenimiento o seguridad de transformadores de alumbrado público y de su infraestructura asociada, poda de los árboles que interfieran en la prestación del servicio de alumbrado público, etc.) así como la ubicación de las mismas, detectadas durante cada revisión, para que operador proceda a su arreglo.

Dentro de la supervisión del estado general de la red de alumbrado público se incluye el verificar la realización de programas de mantenimiento que incluyan la limpieza del conjunto óptico de las luminarias, y efectuar los requerimientos pertinentes.

- 5. Revisar los reportes de quejas y reclamos por alumbrado público, y verificar el cumplimiento de los trabajos solicitados. Las subactividades a desarrollar para esta obligación son:
 - a) Revisar la disponibilidad de la base de datos y su actualización.
 - b) Recibir los reportes que se encuentren registrados en las bases de datos de las quejas y reclamos generadas por la comunidad y los informes del Operador sobre las acciones adelantadas, con el fin de verificarlas. Para los efectos se realizará con un plan de muestreo simple normal con un nivel II de inspección, conforme a lo establecido en la Norma NTC ISO 2859 parte 1 "Planes de muestreo determinado por el nivel aceptable de calidad (NAC o AQL) para inspección lote a lote".
 - c) Verificación en terreno de las causas de los reclamos no atendidos, con el fin de establecer si éstas son imputables al Operador del sistema de alumbrado público, o no.
 - d) Elaborar los análisis y las estadísticas correspondientes a tiempos de respuesta, índices e indicadores del servicio, porcentajes de cumplimiento, tipos de solicitudes, etc.
 - e) Avalar, previa revisión, los informes preparados por el operador, en el que se indique el número de reclamos recibidos, así como las estadísticas correspondientes al cumplimiento de la atención a tales reclamos, lo que se hará para todo el Municipio.
- 6. Hacer seguimiento a la correspondencia que surja entre la comunidad, las entidades municipales, los organismos de control, el Operador del servicio de alumbrado público, relacionadas con quejas, reclamos y solicitudes de expansión con el objeto de apoyar el municipio en la atención de la preparación de las respuestas. Para ello, realizará visitas a terreno y efectuará la compilación de la información que sea necesaria.

A su vez, suministrará al responsable del servicio de alumbrado público en el Municipio la información requerida para que ésta dé repuesta directamente. Esta actividad debe ser llevada a cabo mediante la implementación de aplicativos de software u otros de control administrativo que permitan hacer el seguimiento de la correspondencia y demás documentos relacionados con la interventoría.

7. Apoyar al alcalde o a quien él delegue, en la evaluación de los requerimientos de expansiones del alumbrado público, en la revisión de los diseños de alumbrado público de tales expansiones. En tal sentido deberá llevar las estadísticas de las expansiones programadas, de las ejecutadas, de materiales y equipos utilizados y supervisar la actualización de la base de datos del inventario.

DE

- 8. Inspeccionar las obras de expansión, repotenciación y remodelación de puntos del sistema de alumbrado público, y verificar su total sujeción al diseño aprobado, al cumplimiento de los requisitos establecidos en el presente Reglamento Técnico, así como a las normas constructivas y de urbanismo adoptadas por el Municipio. Debe comprobarse en estas inspecciones, entre otros requisitos, la altura de montaje, reglaje e inclinación de luminarias, longitud de soporte (brazo), avance de las luminarias, interdistancias, requisitos fotométricos iniciales y mantenidos durante la operación de la instalación; así como las especificaciones técnicas a cumplir en la obra civil y red eléctrica asociadas a la infraestructura de alumbrado público.
- 9. Llevar el control sobre las expansiones programadas en cuanto a ejecución y su relación con los materiales y equipos utilizados. En el mismo sentido deberá supervisar la actualización de la base de datos del inventario.
- 10. Verificar la aplicación del Reglamento Técnico de Iluminación y Alumbrado Público –RETILAP, en las etapas de asignación de requisitos fotométricos a vías y demás espacios públicos, aprobación de diseños, especificación de equipos, construcción y mantenimiento de los proyectos de alumbrado público, así como de las disposiciones contempladas en el Reglamento Técnico de Instalaciones Eléctricas (RETIE).
- 11. Identificar los sectores que presenten deficiencias en el alumbrado público, mediante la realización de la medición de iluminancia o luminancia, según se aplique o sea conveniente. Para la verificación de los niveles de iluminación (iluminancia) o luminancia de proyectos nuevos y del alumbrado existente, usando equipos de medida con certificado de calibración o verificación vigente. Como resultado de las mediciones la interventoría debe informar, al responsable del servicio de alumbrado publico del Municipio, sobre los posibles motivos que originan la deficiencia encontrada y someterá a su consideración la solución a ella soportando técnicamente su recomendación.
- 12. Apoyar al responsable del servicio de alumbrado público en el Municipio en el trabajo conjunto de revisión de diseños de alumbrado público, lo que hará de acuerdo con lo establecido en el presente Reglamento.
- 13. Verificar el correcto funcionamiento del sistema de consulta en la Web cuando aplique y la actualización permanente de su información. Será responsabilidad de la Interventoría adecuar sus sistemas de transferencias de datos, información, indicadores y en general, de informes de acuerdo con los formatos y la periodicidad que el Municipio defina para tal efecto.
- 14. Analizar el informe de indicadores de calidad del servicio de energía, DES y FES, que el Operador de Red entregue a la Superintendencia de Servicios Públicos, con el fin de establecer el monto de la energía a descontar o compensar por calidad del servicio; así como la energía descontable por no haber sido suministrada a causa de interrupciones programadas o no programadas en los circuitos que no cuentan con contadores o equipos de medida, imputables al Operador de Red.
- 15. Verificar para el caso de parques y conjuntos o unidades inmobiliarias con cerramiento, el tipo de cesión que tienen tales áreas con el fin de definir si la infraestructura instalada corresponde al servicio de alumbrado público. Para el caso, verificará la información recibida del operador del servicio de alumbrado público sobre tales áreas, así como de las autoridades de planeación municipal. Una vez depurada la información, la interventoría debe notificar a las autoridades municipales acerca de los resultados obtenidos. En la realización de esta función la interventoría deberá consultar entre otros, licencias de construcción, planos de urbanismo, inventarios levantados por el operador del sistema de alumbrado público y por el operador de la red, así como inspección a los sitios en definición.
- 16. Verificar el cumplimiento de la normatividad municipal, regional y nacional vigente en materia ambiental; respecto del manejo y disposición de equipos y materiales retirados del sistema de alumbrado público por parte del operador.
- 17. Verificar el cumplimiento de los requisitos del Código Nacional de Tránsito y de las disposiciones de tránsito municipal vigentes, así como el cumplimiento de las normas de seguridad industrial y salud ocupacional por parte de los grupos de trabajo del operador de alumbrado público, en especial sobre la adecuada señalización vial de los sitios de trabajo, identificación de vehículos y protección del personal.

DE

- 18. Apoyar en el análisis, revisión, evaluación y valoración del costo del servicio de alumbrado público con base en la facturación que emita el Operador del servicio de alumbrado público por concepto del servicio le presta al Municipio.
- 19. Cumplir con los indicadores de gestión y seguimiento que se le establezcan contractualmente, e incluirlos en informes mensuales y en el informe final.
- 20. Elaborar y presentar los informes mensuales sobre la ejecución de las obligaciones. En los informes, someterá a consideración sus observaciones, conclusiones, recomendaciones, correctivos y demás información que considere pertinente para el buen desempeño en la prestación del servicio, las que deberán estar debidamente soportadas. Los informes deben estar complementados con gráficas, cuadros, estadísticas, fotografías, tablas, etc., que permitan su correcta comprensión.
- 21. Para legalizar la terminación del contrato de Interventoría, se debe a entregar al Municipio los datos, archivos recopilados durante la ejecución del mismo, debidamente foliados y almacenados, conforme a las disposiciones de manejo de archivos del municipio, así como los programas fuente que se hayan desarrollado o implementado para cumplir con sus obligaciones. Debe entregar manuales de Usuario y Técnicos relacionados con el software y mantenimiento que se le debe dar a dichos aplicativos. Dos meses antes de terminar el contrato, debe suministrar al municipio las especificaciones del software y hardware utilizado, diseños de bases de datos, y toda la información relacionada.

Página 230 de 243

DE

Continuación Anexo General Reglamento Técnico de Iluminación y Alumbrado Público - RETILAP

CAPÍTULO 8

VIGILANCIA, CONTROL, DEMOSTRACIÓN DE LA CONFORMIDAD Y REGIMENES SANCIONATORIOS.

SECCIÓN 810 ENTIDADES DE VIGILANCIA.

810.1 SISTEMAS DE ALUMBRADO PÚBLICO

De conformidad con el artículo 12 del Decreto 2424 de 2006, para efectos de la prestación del servicio de alumbrado público se ejercerán las funciones de control, inspección y vigilancia, teniendo en cuenta las siguientes instancias:

- 1. Control Fiscal. La Contraloría General de la República, de conformidad con la normatividad constitucional y legal vigente, ejercerá control fiscal permanente sobre los municipios o distritos, en cuanto a la relación contractual con los prestadores del servicio y con los interventores.
- 2. Control a las Empresas de Servicios Públicos Domiciliarios. La Superintendencia de Servicios Públicos Domiciliarios (SSPD), ejercerá el control y vigilancia sobre las personas prestadoras de Servicios Públicos en los términos establecidos en el artículo 79 de la Ley 142 de 1994. 1
- 3. Control Técnico. Las interventorías de los contratos de prestación de servicio de alumbrado público además de las obligaciones contenidas en el Estatuto General de Contratación de la Administración Pública, ejercerán un control técnico con sujeción a la normatividad que expida para esos fines el Ministerio de Minas y Energía.
- 4. Control Social. Para efectos de ejercer el control social establecido en el artículo 62 de la Ley 142 de 1994 los contribuyentes y usuarios del servicio de alumbrado público podrán solicitar información a los prestadores del mismo, a la Contraloría General de la República y a la interventoría. Los municipios o distritos definirán la instancia de control ante la cual se interpongan y tramiten las peticiones, quejas y reclamos de los contribuyentes y usuarios por la prestación del servicio de alumbrado público.

810.2 PRODUCTOS DE ILUMINACIÓN Y SISTEMAS DE ILUMINACIÓN DISTINTOS AL **ALUMBRADO PÚBLICO.**

De conformidad con lo dispuesto en los Decretos 2153 de 1992 y 2269 de 1993, 3144 de 2008 y demás normas aplicables, a la Superintendencia de Industria y Comercio -SIC- le corresponde entre otras funciones, velar por el cumplimiento de las disposiciones sobre protección al consumidor, realizar las actividades de verificación de cumplimiento de Reglamentos Técnicos sometidos a su control.

Los sistemas de iluminación distintas al alumbrado público, los productos utilizados en sus instalaciones tienen directa relación con el consumidor por lo cual corresponderá a la SIC controlar y vigilar el cumplimiento del presente reglamento excepto lo referente al servicio de alumbrado público.

Los fabricantes, importadores o comercializadores de los productos objeto del presente reglamento, deberán cumplir las disposiciones sobre protección al consumidor y en especial lo establecido en el Decreto 3144 de 2008, sobre cumplimiento de reglamentos técnicos.

Los fabricantes e importadores de bienes y servicios sujetos al cumplimiento de reglamentos técnicos cuyo control corresponde a la Superintendencia de Industria y Comercio, deben estar inscritos en el registro obligatorio de dicha entidad, a que hace referencia el capítulo primero del título cuarto de la Circular Única de la SIC.

¹⁵ Aplica solo a las empresas que siendo prestadoras de servicios públicos , el municipio haya contratado con ellas la prestación del serviciod e alumbrado público y tal control debe entenderse referido al servicio público de energía eléctrica o de las actividades complementarias del mismo, mas no a la prestación del servicio de alumbrado público.

810.3 ORGANISMOS ACREDITADOS.

Según el Decreto 4738 de 2008 Corresponde al Organismo Nacional de Acreditación de Colombia – ONAC-, acreditar y supervisar a los organismos de certificación, inspección, laboratorios de pruebas y ensayos y calibración de equipos, igualmente es el ente encargado de vigilar el cumplimiento de las disposiciones de la acreditación, sin perjuicio de las competencias de vigilancia y control que corresponden a la SIC en la vigilancia y control del reglamento.

Los organismos que aspiren a desarrollar actividades de inspección con fines de certificación instalaciones, productos, laboratorios de pruebas y laboratorios de calibración de equipos, iluminación y/o alumbrado público de que trata el presente Reglamento deben acreditarse ante el ONAC.

810.4 PERSONAS NATURALES QUE ACTUAN EN LAS INSTALCIONES DE ILUMINACIÓN Y/O ALUMBRADO PÚBLICO.

La vigilancia del ejercicio profesional de las personas naturales que intervienen en las instalaciones de iluminación y/o alumbrado público, en cualquiera de sus etapas(diseño, construcción, supervisión, interventoría e inspección, operación y mantenimiento) corresponde a los consejos Profesionales correspondientes, de conformidad con las leyes que reglamenten el ejercicio de las profesiones que tengan la competencia tanto legal como técnica para ejecutar tales actividades en proyectos de iluminación o de alumbrado público.

SECCIÓN 820. EVALUACIÓN DE LA CONFORMIDAD

El esquema de demostración de la conformidad tanto para productos como para las instalaciones de iluminación y alumbrado público, estará basado en el Sistema Nacional de Normalización, Certificación y Metrología.

820.1 ACREDITACIÓN.

Los organismos de certificación, inspección, los laboratorios de pruebas y ensayos y la calibración de equipos de medida para productos e instalaciones de iluminación y alumbrado público de que trata el presente Reglamento, deben atender los lineamientos del Decreto 4738 de 2008 y cumplir las normas que sobre la materia haya expedido o expida el Organismo Nacional de Acreditación de Colombia ONAC y demás autoridades o entidades competentes legalmente reconocidas para estos propósitos y demás normatividad aplicable sobre la materia.

Los organismos acreditados sólo podrán hacer referencia a esta condición para las certificaciones, inspecciones, ensayos o mediciones para las cuales hayan sido acreditados, de conformidad con el acto administrativo que les concede tal condición.

La certificación de conformidad de las instalaciones de iluminación y/o alumbrado público con este Reglamento que requieran certificación plena deberán tener un dictamen de inspección expedido por un organismo acreditado por ONAC, que valide la declaración de conformidad suscrita por el responsable de la construcción del sistema de iluminación o alumbrado público.

Los Organismos de inspección acreditados para instalaciones de iluminación y/o alumbrado público, deberán ser Tipo A.

820.2 LABORATORIOS DE PRUEBAS Y ENSAYOS.

Atendiendo a lo dispuesto en la Resolución 6050 de 1.999 de la SIC y demás normas que la aclaren, complementen o modifiquen, cuando los ensayos requeridos para la expedición de los certificados de DE

conformidad se efectúen en Colombia, deben ser realizados en laboratorios acreditados por la entidad legalmente autorizada.

En caso de no existir laboratorio acreditado para la realización de estos ensayos, las pruebas se podrán efectuar en laboratorios evaluados previamente por los organismos de certificación; siempre que estos garanticen el cumplimiento de principios de neutralidad independencia e imparcialidad. Dicho laboratorio deberá iniciar su proceso de acreditación dentro del año siguiente a la prestación del primer servicio bajo ésta condición. Si vencido el plazo de dos años contados a partir del primer servicio prestado en este supuesto, este laboratorio no ha gestionado su acreditación respectiva, el Organismo de Certificación no podrá seguir utilizando sus servicios.

En cumplimiento de las Resoluciones 15657 y 6050de 1.999 expedidas por la SIC, o las normas que las sustituyan, modifiquen o complemente, cuando no exista en Colombia laboratorio de pruebas acreditado para la realización de un ensayo específico, serán válidos los certificados de conformidad emitidos por organismos de certificación acreditados por entidades respecto de los cuales se haya demostrado previamente ante esta Superintendencia, que son parte de acuerdos multilaterales de reconocimiento mutuo de la acreditación

820.3 CERTIFICACIÓN DE PRODUCTOS.

Previamente a su comercialización, los fabricantes, importadores o comercializadores de los productos sometidos a este Reglamento Técnico, deben demostrar su cumplimiento a través de un Certificado de Conformidad de acuerdo con los procedimientos establecidos en los Decretos 2269 de 1993 Decreto 3144 de agosto 22 de 2008 y demás normas que lo modifiquen o sustituyan, establecidos o que establezca la autoridad competente para la conformidad de productos incluidos en el alcance de Reglamentos Técnicos.

Los productos objeto del presente reglamento, deberán demostrar la conformidad mediante un certificado de producto expedido por un organismo de certificación acreditado por el ONAC o el organismo reconocido por la autoridad competente, o por los sistemas, métodos y procedimientos establecidos o que establezca la autoridad competente para probar la conformidad de productos con los reglamentos técnicos.

Los productos de que trata el presente Reglamento deben cumplir los requisitos aquí establecidos y demostrarlo a través del certificado de conformidad de que trata esta sección.

Los productos que por su condición particular, en el presente Reglamento se les exige certificado de conformidad con una norma técnica internacional, de reconocimiento internacional o NTC que le aplique, la conformidad con el RETILAP se dará con el certificado bajo esa norma.

El certificador de productos para determinar la conformidad tendrá en cuenta el tipo de aplicación del producto, para no inducir a error al usuario señalará en el certificado el uso permitido o los usos no permitidos.

A la entrada en vigencia del presente reglamento las lámparas y portalámparas objeto de RETIE y RETILAP solo requieren certificar el cumplimiento del RETILAP. Hasta la fecha de vencimiento de los certificados de estos productos expedidos bajo RETIE, serán validos para demostrar la conformidad con RETILAP.

La certificación de conformidad con el RETILAP debe ser expedida por organismos de certificación de productos acreditados por ONAC o la entidad que haga sus veces.

El organismo certificador deberá en su proceso de certificación aplicar los lineamientos establecidos en la norma ISO IEC 17021.

DE

Sólo requieren de certificación de la conformidad con el RETILAP, aquellos productos con requisitos establecidos en el presente Reglamento que estén destinados a las instalaciones de iluminación y alumbrado público. Productos que aún teniendo la misma partida arancelaria pero que no sean objeto del RETILAP, o se importen o fabriquen con destino exclusivo a instalaciones excluidas de este reglamento, no requieren de certificación de conformidad con el RETILAP. Para hacer uso de esa exclusión, el importador o fabricante deberá hacer explicito la destinación del producto, aspecto que podrán verificar en cualquier momento los organismos de vigilancia y control.

Para aquellos productos que se les permita la declaración de proveedor como mecanismo para demostrar la Conformidad con RETILAP, el proveedor deberá cumplir lo establecido en la norma NTC ISO IEC 17050 partes 1 y 2. La citada declaración debe manifestar el cumplimiento de una norma internacional, de reconocimiento internacional o NTC aplicable al producto para el uso que se le pretende dar y en general atender todos los lineamientos que sobre declaración del proveedor o certificación de primera parte establezca la autoridad competente.

De conformidad con los tratados sobre obstáculos técnicos al Comercio se podrá aceptar equivalencia de normas técnicas o reglamentos técnicos de otros países, sólo cuando existan tratados comerciales que permitan el reconocimiento mutuo de certificados.

Las equivalencias de reglamentos o normas técnicas con el RETILAP serán otorgadas únicamente por el Ministerio de Minas y Energía. Para tal efecto, el interesado deberá suministrar una matriz que contenga cada uno de los requisitos de producto establecidos en el RETILAP, comparándolos con el aparte correspondiente de la norma o reglamento técnico con el que se pretenda establecer la equivalencia. Adicionalmente, el interesado deberá suministrar copia de la totalidad de la norma o reglamento, para verificar la veracidad de los requisitos y su contexto de aplicación.

El concepto de equivalencia no es un certificado de producto, el certificado de producto expedido en el país de origen debe identificar plenamente la vigencia, referencia del producto objeto del certificado y para su validez en el país debe ser validado por la SIC o por la entidad o mecanismo que la autoridad competente establezca.

Los certificados así expedidos serán validos siempre y cuando se encuentren vigentes y hayan sido homologados por la Superintendencia de Industria y Comercio de conformidad con lo establecido en la Circular Única. En estas condiciones el certificado de conformidad de producto deberá estar acompañado del concepto de equivalencia de la norma con el RETILAP, expedido por el Ministerio de Minas y Energía. El responsable de la importación o comercialización de estos productos, verificará que el producto importado corresponda al producto efectivamente certificado, en todo caso la SIC o la entidad que haga sus veces podrá verificar el cumplimiento de los requisitos certificados y sancionar a aquellos que presenten desviaciones.

No se podrá prohibir, limitar, ni obstaculizar la comercialización, ni la puesta en funcionamiento de los productos que cumplan con las disposiciones del presente Reglamento Técnico.

820.3.1 CERTIFICACIÓN DE PRODUCTOS DE USO DIRECTO Y EXCLUSIVO DEL IMPORTADOR.

Los certificados de productos para uso directo y exclusivo del importador contemplados en el alcance del presente reglamento, se emiten de acuerdo con la Resolución 6050 de 1999 y sus modificaciones descritas en la Circular Única de la Superintendencia de Industria y Comercio. El usuario solicita por escrito la certificación dando los datos exactos sobre el bien que importa y cuyo control esta a cargo de la Superintendencia de Industria y Comercio. La entidad evalúa, verifica y emite el certificado correspondiente.

820.3.2 PRINCIPALES REGULACIONES PARA TRÁMITES DE CERTIFICACIÓN Y ACREDITACIÓN.

DE

Para efectos del presente Reglamento, se deben cumplir, entre otras, las siguientes disposiciones legales, emitidas por las autoridades Colombianas, en lo que se relaciona con el certificado de conformidad de productos y la acreditación de organismos de inspección, organismos de certificación de productos, laboratorios de pruebas y ensayos, o calibración de equipos:

- a) Circular Única de la Superintendencia de Industria y Comercio, publicada en el diario oficial 44511 del 06 de agosto de 2.001, que es un solo cuerpo normativo de la SIC.
- b) Decreto 2269 de 1.993, por el cual se organiza el Sistema Nacional de Normalización, Certificación y Metrología y las normas que lo adicione o modifiquen.
- c) Decreto 300 de 1.995, por el cual se establece el procedimiento para verificar el cumplimiento de las normas técnicas colombianas oficiales obligatorias y los reglamentos técnicos en los productos importados.
- d) Decisión 506 de 2.001, de la Comunidad Andina de Naciones, sobre certificados de conformidad de producto.
- e) Decisión 562 de 2.003, de la Comunidad Andina de Naciones.
- f) Decreto 4738 de 2008, sobre el sistema de acreditación.
- g) Decreto 3144 de 2008 sobre certificación.

820.4 ROTULADO DE PRODUCTOS.

Los equipos y elementos objeto de este Reglamento, utilizados en las instalaciones de iluminación y alumbrado público, deben estar rotulados con la información establecida en los requisitos de producto del presente Reglamento. Dicha información deberá ser demostrada en el proceso de certificación.

Las instalaciones de iluminación y alumbrado público que requieran demostrar la conformidad con el presente Reglamento, mediante la certificación plena deberán contar con el dictamen de inspección expedido por un organismo de inspección acreditado por el ONAC o el organismo de acreditación legalmente reconocido.

820.5 CERTIFICACIÓN DE CONFORMIDAD DE INSTALACIONES DE ILUMINACIÓN Y ALUMBRADO PÚBLICO.

Toda instalación de iluminación o alumbrado público nueva, ampliada o remodelada según lo dispuesto en la Sección 110 "ALCANCE", debe tener su "Certificado de Conformidad" con el presente Reglamento, el cual según la Decisión 506 de 2.001 de la Comunidad Andina de Naciones, será la declaración del fabricante. Para el caso del presente reglamento el "fabricante" se asimilará a la persona calificada responsable de la construcción de la instalación de iluminación o alumbrado público.

El certificado de conformidad con el presente reglamento será complementario del certificado de conformidad con el Reglamento Técnico de Instalaciones Eléctricas RETIE.

Para los sistemas de iluminación que requieran certificación plena, la declaración del constructor deberá estar avalada por una tercera parte, que garantice la idoneidad, la independencia y la imparcialidad y será mediante un dictamen de inspección expedido por un organismo de inspección acreditado por el Organismo Nacional d e Acreditación ONAC o el organismo legalmente reconocido para este fin. En estas condiciones la certificación plena se dará cuando la instalación cuente con la declaración de la persona calificada responsable de la construcción y el dictamen de conformidad expedido por el organismo de inspección que valide la declaración.

Como complemento a la certificación con RETIE, la certificación con el presente reglamento es un requisito individual para cada sistema de iluminación o de alumbrado público.

810.5.1 DECLARACIÓN DE CUMPLIMIENTO.

Para efectos de la certificación de conformidad con el presente reglamento de instalaciones de iluminación o alumbrado público, la persona calificada responsable de la construcción del sistema de iluminación deberá declarar el cumplimiento del RETILAP, diligenciando el formato "Declaración de Cumplimiento del Reglamento Técnico de Instalaciones de Iluminación y Alumbrado Público". Esta declaración se considera un documento público que es emitida bajo la gravedad de juramento que se constituye en documento fundamental del proceso de certificación y quien la suscribe asume la responsabilidad de los efectos de la instalación de iluminación.

MINISTERIO DE MINAS Y ENERGÍA. DECLARACIÓN DE CUMPLIMIENTO DEL REGLAMENTO TÉCNICO DE ILUMINACIÓN Y ALUMBRADO PÚBLICO.						
Yo						
Dirección domicilio Teléfono						
Observaciones: (Incluir justificación técnica de desviaciones de requisitos, de norma o del diseño, siempre que la desviación no comprometa la seguridad y/o la salud visual).						
Relación de documentos anexos:						
Formato 1. Declaración del constructor.						

820.5.2 INSPECCIÓN CON FINES DE CERTIFICACIÓN DEL SISTEMA DE ILUMINACIÓN.

Complementario a la Declaración de conformidad que trata el anterior Numeral, los siguientes sistemas de iluminación requieren de un dictamen de inspección expedido por un organismo de inspección acreditado por el ONAC, como mecanismo de tercera parte que valide la declaración del proveedor en el proceso de certificación, en esta condición la certificación será plena:

Requieren certificación plena las siguientes instalaciones de iluminación o alumbrado público:

- a. Instalaciones de alumbrado público categorizadas en los niveles B y C de conformidad con la tabla 610.2 del presente reglamento.
- b. Instalaciones de iluminación donde en una misma área se concentren simultáneamente más de 30 personas, tales como almacenes, centros comerciales, sitios de recreación, espectáculos públicos, salones de clase y centros de enseñanza. Los sitios de esparcimiento tales como bares, discotecas, casinos deben certificar plenamente los sistemas de alumbrado de emergencia.

- c. Edificaciones objeto de una misma licencia o permiso de construcción donde se puedan concentrar más de 100 personas.
- d. Viviendas individuales y comercios de áreas construidas mayores a 500 m²

DE

- e. Sistemas de iluminación de fachadas y monumentos y demás sitios de interés público.
- f. Industria y oficinas con más de 30 puestos de trabajo o 500 m² de área iluminada.
- g. Edificaciones y construcciones donde se tengan instalaciones clasificadas como peligrosas, definidas en los capítulos 5, 6 y 7 de la NTC 2050 primera Actualización o las adicionales que determine el RETIE, tales como las instalaciones en minas.

Los inspectores para instalaciones de iluminación y alumbrado público, deberán demostrar experiencia específica en iluminación certificada, certificado de competencia laboral o un mínimo de 120 horas de capacitación y actualización en iluminación y/o alumbrado público realizadas y certificadas por universidades o centros de formación superior legalmente acreditados o reconocidos.

La experiencia para inspectores de alumbrado público será de por lo menos de cinco años en diseño o construcción de estos tipos de instalaciones y para las demás instalaciones de iluminación la experiencia se podrá reducir a tres años y la certificación de la competencia laboral en esos campos.

En la inspección con fines de certificación se tendrán en cuenta los siguientes aspectos:

- a) Se buscará la trazabilidad de las diferentes etapas de la instalación de iluminación y alumbrado público, para lo cual se debe tener en cuenta lo actuado y documentado por las personas calificadas que participaron en el diseño, construcción e interventoría si la hay; en todos los casos se dejará consignado en el formato de inspección, la identidad y matrícula profesional del responsable de cada etapa.
- b) Se verificarán las certificaciones de la conformidad de los productos utilizados en la instalación de iluminación y alumbrado público, que según el RETILAP requieran cumplir tal requisito, con relación a los productos instalados.
- c) Para garantizar que la instalación de iluminación y alumbrado público sea segura y apta para el uso previsto, se deberá realizar la inspección visual y ejecutar las pruebas y medidas pertinentes conforme a formatos preestablecidos y los procedimientos dados en la ISO 17020. De las medidas que se tomen, se dejarán los registros respectivos.
- d) En todos los casos se consignará en los formatos de dictamen y declaración el tipo de instalación de iluminación y alumbrado público, la identidad del propietario, la localización de la instalación, los nombres y matrículas profesionales de las personas calificadas que actuaron en las diferentes etapas de la instalación (diseñador si se requiere, director de la construcción e interventor cuando exista).
- e) Igualmente se consignará en el formato el nombre y matrícula profesional del inspector y el nombre, dirección y teléfono del organismo acreditado responsable de la inspección.
- f) El inspector deberá dejar constancia del alcance y estado real de la instalación de iluminación o alumbrado público al momento de la inspección, con mecanismos tales como registros fotográficos, registros de medidas y planos o esquemas.
- g) El dictamen de resultado de la inspección y pruebas de la instalación de iluminación o alumbrado público, deberá determinar el cumplimiento de los requisitos que apliquen, relacionándolos en el formato correspondiente de los establecidos en el presente reglamento.

820.5.3 COMPONENTES DEL DICTAMEN DEL ORGANISMO DE INSPECCIÓN.

El dictamen del organismo de inspección debe tener básicamente los siguientes componentes:

DE

- a) La identificación plena de la instalación y las personas que intervinieron.
- b) Los aspectos a evaluar con sus resultados y observaciones.
- c) El resultado final de la conformidad,
- d) Identificación plena del organismo de inspección y del inspector o inspectores que actuaron en la inspección y el dictamen, así como los documentos que determinan el alcance de la inspección.

El dictamen de inspección debe ser firmado tanto por el director técnico o su equivalente que sea calificado y experimentado en la operación del organismo de inspección y tenga la responsabilidad general del dictamen, como por el inspector responsable de la inspección.

El propietario o administrador de una instalación de iluminación de una edificación de uso comercial, industrial, oficial o residencial multifamiliar deberá mantener disponible una copia del dictamen de Inspección del proyecto de iluminación, a fin de facilitar su consulta cuando lo requiera el responsable de la prestación del servicio de energía eléctrica o autoridad administrativa, judicial, de policía o de control o vigilancia.

En el caso de los proyectos de alumbrado público la dependencia municipal responsable o a quien ella delegue la prestación del servicio de alumbrado público, será la responsable de mantener disponible una copia del dictamen de Inspección de los proyectos de alumbrado público, a fin de facilitar su consulta cuando lo requiera el responsable de la prestación del servicio de energía eléctrica o autoridad administrativa, judicial, de policía o de control o vigilancia.

820.5.4 FORMATOS PARA EL DICTAMEN DE INSPECCIÓN

El dictamen de inspección de las instalaciones objeto de este reglamento deberá registrarse en los formatos establecidos en el presente Anexo General, formato 2 para iluminación interior y formato 3 para alumbrado exterior y público, los cuales tendrán el carácter de documentos de uso oficial.

Cada organismo de inspección debe asignarle numeración continua a los formularios de forma tal que facilite su control y cuidará que el documento tenga los elementos de seguridad apropiados para evitar su adulteración o deterioro.

Los valores de los parámetros que requieran medición deben plasmarse en el documento del dictamen y podrán ser verificados por la entidad de control y vigilancia, cuando esta lo considere pertinente.

RES	OLUCION No. 18 1331	DE AGOSTO 06 de 2009	Pág	gina 238	de 243
Contir	nuación Anexo General	Reglamento Técnico de Iluminación y	Alumbrado	Público	- RETILAP
DIC	CTAMEN DE INSPECCIÓ	MINISTERIO DE MINAS Y Energía ON Y VERIFICACIÓN DE ILUMINACIÓN	INTERIOR	SEGÚN R	ETILAP
Lugar y f	echa	Organismo de inspección		Dictamen N	No.
Nombre instalació	o razón social del propietario ón	de la			
Nombre o	del proyecto				
Dirección	n de la instalación:				
Tipo de il	luminación	Residencial Industrial	Comerc	ial	
	Se	rvicio público Servicio privado Servicio Servici Servicio Servicio Servicio Servicio Servicio Servici Servicio Servicio Servicio			
Ubicació	n de la instalación: F	tural Urbana Urbana	Aislada del S	IN	
Capacida	ad instalada (kVA):	Tensiones (V)	Año Termina	ción construcc	ión
Diseño:	oría (si la hay)	alación:	Mat. F Mat. F Mat. F	Prof.	
ITEM	-	ASPECTO A EVALUAR	APLICA	CUMPLE	NO CUMPLE
1	Memorias de cálculo		AFLICA	COWIFEE	NO COMPLE
3		Contribución de Luz Diurna (CLD) s (IRC, vida útil) y compatibilidad con luminarias			
4		uminarias utilizadas certificada (Matriz de intensidades,			
5	Validación de software de diseño	,			
6 7	Calculo manual (alcance, parámetros o	etros incluidos y supuestos realizados) de diseño establecidos en el RETILAP			
8	Iluminancia horizontal promedio (+	
9	Coeficiente de uniformidad de ilur	ninancias resultado de diseño			
10	Índice de deslumbramiento unifica	ndo (UGR) resultado de diseño			
11	Factor de mantenimiento de la ins				
12	Esquema de mantenimiento dispo				
13 14	Accesibilidad a todos los dispositi Mediciones fotométricas del		1	 	
14	sistema de iluminación general	Coeficiente de uniformidad de iluminancias Iluminancia horizontal promedio (luxes)		 	
15	Mediciones fotométricas en los	Coeficiente de uniformidad de iluminancias	+	+	
10	puestos de trabajo	Iluminancia promedio (luxes)		+	
16	Cumplimiento de los valores ofrec	,	1	+	
17	Cumplimiento de Valores de eficie	encia energética de la instalación (VEEI)			
18	Sistema de alumbrado de emerge				
19 20	Puesta a tierra de carcasas de lui	ninarias rmidad de productos de iluminación	1	 	.
21	Certificación de instalaciones eléc			+	
		os comercios, los ítems a verificar son:1,2,3,4,5,6,7,8,9,10,	11,12,13,14,16,1	7,19,20.	1
	OBSERVACIONES, MODIF	ICACIONES Y ADVERTENCIAS ESPECIALES (si las hay) e Identificació	ón de anexos	
	,	to the second se	,		

RESULTADO:	Aprobada	No Aprobada	
	Responsables dictamen:		
Nombre y firma Responsable Organismo de Inspección		Resolución de acreditación	
Dirección Domicilio		Teléfono	
Nombre y firma Inspector		Mat. Prof.	

Formato 2. Dictamen de inspección y verificación para instalaciones de iluminación interior

RES	SOLUCION No. 18	1331	DE	AGOSTO	06 de 2009) Pá	igina 23	9 de 243	
Continuación Anexo General Reglamento Técnico de lluminación y Alumbrado Público - RETILAP									
MINISTERIO DE MINAS Y ENERGÍA DICTAMEN DE INSPECCIÓN Y VERIFICACIÓN DE ALUMBRADO EXTERIOR O PÚBLICO SEGÚN RETILAP									
Lugar y	fecha	Organism	o de inspe	ección			Dictamen N	lo.	
Nombre	e o razón social del pr sión	ropietario de la							
Nombre	e del proyecto								
Direcci	ón de la instalación:								
Tipo de	e Instalación	Públ	ica	F	Privada	Total de lumir	narias		
Red de	alimentación	Circuito Exclus	ivo	Uso G	General	Con sistema de n	nedida de Ene	rgía ISil Nol	
Objeto	de la instalación:	Parque		Vías	Longitud	d total (m)	Área to	otal (m)	
Capaci	dad instalada (kVA):		Т	Tensiones (V)		Año Termina	ción construcc	ión	
Diseño	ntoría (si la hay)	de la instalación:				Mat.	Prof. Prof. Prof.		
ITEM		ASPECTO	Δ FVΔI II	ΔR		APLICA	CUMPLE	NO CUMPLE	
1	Memorias de cálculo		A E TALO	AIN		AI LIOA	COMIT EL	NO COMIT EL	
3	Determinación de clases de Selección de las fuentes lu de instalación (IP, IK, FHS)	minosas (IRC, vida	útil) y com	npatibilidad con lu	minarias y ambie	nte			
4	Información fotométrica de o Coeficientes de Utilización	las luminarias utiliz	adas certif	ficada (Matriz de i	ntensidades, Curv	/as			
5	Validación de software de o	diseño							
6 7	Cálculo manual (alcance, p Cumplimiento de los parám								
8	Cumplimiento de los param	Factor de uniforn							
Ŭ		Relación de alre							
				ma mantenida (lux	(es)				
	Resultados del diseño:			l de iluminancias					
	resultados del diserio.	Iluminancia horiz		` '					
		Factor de unifor		,					
		Incremento de u							
11	Determinación del factor de		<u> </u>	·	1				
12	Esquema de mantenimiento								
	Planos del proyecto de alur alumbrado	·		·	ación del servicio	de			
13 14	Accesibilidad a todos los di Mediciones fotométricas sis			iarias ciente de uniformi	dad da iluminanai	20			
14	Alumbrado (a las 100 horas			ancia promedio (I					
	funcionamiento)			ancia promedio (1	uneo)				
15	Control de iluminación de e	. ,			_				
16	Cumplimiento de los valore			installative (DDE	A \				
17 18	Cumplimiento de Valores de Sistema de control automát								
19	Puesta a tierra de carcasas		ue aiuiiible	auo Fubilco (Elisa	iyos iuriciuriales)				
20	Revisión de certificados de		roductos de	e iluminación					
20	Certificación de instalacione	es eléctricas con R	ETIE						
	odos los proyectos de alumb							el Capítulo 6 del	
KETILA	AP, sin perjuicio del alcance o OBSERVACIONES,								
	COULTAGIONES,		ADVE	LITOIAU LUFL	-:,o (31 103 11	agy o identificat	40 4116703		

RESULTADO:	Aprobada	No Aprobada	
Responsables dictamen:			
Nombre y firma Organismo de Inspección		Resolución de acreditación	
Dirección Domicilio		Teléfor	no
Nombre y firma Inspector		Mat. Pro	of
	·	 	·

Formato 3. Dictamen de inspección y verificación para instalaciones de Alumbrado Público

820.5.5 EXCEPCIONES DEL DICTAMEN DE INSPECCIÓN.

Se exceptúan de la exigencia del dictamen del organismo de inspección las siguientes instalaciones, en todo caso estas instalaciones deberán tener la declaración de la persona calificada responsable de la construcción.

- a) Instalaciones de guarniciones militares o de policía y en general aquellas que demanden reserva por aspectos de Seguridad Nacional; sin embargo, se exigirá una declaración suscrita por el comandante o director de la guarnición o por la persona calificada responsable de la interventoría o supervisión de la construcción de la instalación de iluminación o alumbrado exterior, en la cual conste que se cumplió con el RETILAP.
- b) Las Instalaciones no contempladas en el presente reglamento y las no contempladas en el numeral anterior.

SECCIÓN 830 REGIMEN SANCIONATORIO.

Sin perjuicio de la responsabilidad civil o penal a que haya lugar, el incumplimiento de los requisitos establecidos en el presente Reglamento Técnico se sancionará según lo establecido en la Legislación Colombiana vigente, así:

- a) Las Empresas de Servicios Públicos por el Régimen establecido en la Ley 142 de 1994, demás normas que la modifiquen, aclaren, o sustituyan y demás disposiciones legales aplicables.
- b) Las personas naturales responsables de los diseños, construcción, interventoría, inspección, de sistemas de iluminación o alumbrado público, por las leyes que reglamentan el ejercicio de las profesiones relacionadas con iluminación y demás disposiciones legales aplicables.
- c) Los productores, comercializadores, proveedores e importadores, por el Decreto 3466 de 1982, Ley 446 de 1998 y demás disposiciones legales aplicables 3144 de 2008. Los constructores de sistemas de iluminación o alumbrado público se entenderán como productores, para los efectos del presente reglamento y en tales condiciones podrán ser sujetos a las sanciones establecidas en el Decreto 3144 de 2008 cuando incumplan el reglamento técnico.
- d) Los prestadores del servicio público de alumbrado y los interventores de tales contratos por el régimen de contratación pública y régimen disciplinario a los servidores públicos que presten actividades en cumplimiento de funciones relacionadas con el servicio de alumbrado público.
- e) Los Organismos Acreditados por lo dispuesto en los Decretos 2152 de 1992 y 2269 de 1993, 4738 de 2008 y demás disposiciones legales aplicables y las normas que los modifiquen, adicionen o sustituyan

CAPITULO 9 DISPOSICIONES TRANSITORIAS.

SECCIÓN 900 MECANISMOS DE DEMOSTRACIÓN DE LA CONFORMIDAD:

DE

900.1 CERTIFICADOS DE CONFORMIDAD DE PRODUCTOS:

Para demostrar la conformidad dentro de la vigencia del presente reglamento serán exigibles los certificados de producto, después de los tres meses siguientes a la fecha de acreditación por la ONAC del primer organismo de certificación de productos bajo RETILAP. Durante el periodo de transición, el certificado de producto de tercera parte podrá reemplazarse por la Declaración del Proveedor siempre que este cumpla con los lineamientos de la ISO-IEC –NTC 17050 parte 1 y parte 2 (certificación de primera parte).

Igualmente, en el evento que en el país no se cuente con organismos de certificación acreditado bajo RETILAP para un producto determinado, se le aceptará como mecanismo de demostración de la conformidad con RETILAP, la declaración del Proveedor, con los requisitos expuestos en el párrafo anterior.

En el evento que no se cuenten con laboratorios de pruebas acreditados en el País Los organismos de certificación podrán utilizar laboratorios de otros países, de universidades, o de empresas relacionadas con la industria de iluminación, siempre que garanticen la idoneidad para realizar las pruebas, independencia en los resultados, neutralidad e imparcialidad.

900.1 INSPECCIÓN DE INSTALACIONES DE ILUMINACIÓN O ALUMBRADO PÚBLICO CON FINES DE CERTIFICACIÓN.

Para las instalaciones de iluminación y/o alumbrado público que requieran certificación plena el dictamen de inspección será exigible a partir de la acreditación del tercer organismo de inspección por parte del ONAC para inspección bajo RETILAP.

CAPITULO 10 INTERPRETACIÓN, REVISIÓN, ACTUALIZACIÓN Y VIGENCIA DEL REGLAMENTO.

SECCIÓN 1010 INTERPRETACIÓN

El contenido del presente Reglamento Técnico, expedido por el Ministerio de Minas y Energía siguió los procedimientos y metodologías aceptados por el acuerdo sobre Obstáculos Técnicos al Comercio. El órgano competente, para su interpretación y modificación será el Ministerio de Minas y Energía, lo podrá hacer de oficio o por solicitud de terceros.

El Ministerio de Minas y Energía podrá apoyarse en grupos técnicos de trabajo con participación de las distintas partes interesadas en el Reglamento, para analizar situaciones especiales de la aplicación e interpretación del reglamento.

En aquellos casos relacionados con procedimientos de certificación, donde se trate de productos utilizados en iluminación y alumbrado público, la Superintendencia de Industria y Comercio o el ONAC podrá convocar Comités Técnicos constituidos por autoridades públicas y expertos, para analizar, interpretar y revisar asuntos relacionados con el presente Reglamento, de acuerdo con la Resolución 8728 de 2001 de la Superintendencia de Industria y Comercio o las normas que la modifiquen o sustituyan.

Es entendido que los diseñadores y constructores de las instalaciones de iluminación y alumbrado público, así como los fabricantes, distribuidores o importadores de productos; se deben regir por lo establecido en el presente Reglamento, sin perjuicio de lo establecido por otras autoridades colombianas y deberán ajustar su normatividad técnica para el cabal cumplimiento del presente Reglamento.

SECCIÓN 1020 REVISIÓN Y ACTUALIZACIÓN

La revisión y actualización del Reglamento se efectuará por el Ministerio de Minas y Energía. En atención al desarrollo técnico y en casos excepcionales o situaciones objetivas suficientemente justificadas, el Ministerio de Minas y Energía, autorizará requisitos técnicos diferentes de los incluidos en el Reglamento Técnico de Instalaciones de iluminación y alumbrado público. Por su carácter menos permanente y de evolución constante, el Ministerio de Minas y Energía podrá revisarlas discrecionalmente a fin de que los citados requisitos estén perfectamente adaptados al nivel de desarrollo tecnológico, en cada circunstancia.

Aplicación de nuevas técnicas. Cuando el diseñador de una instalación prevea la utilización o aplicación de nuevas técnicas o se planteen circunstancias no previstas en el presente Reglamento, podrá justificar la introducción de innovaciones técnicas señalando los objetivos, así como las normas internacionales y prescripciones que aplica. El Ministerio de Minas y Energía podrá aceptar o rechazar el proyecto en razón a que resulten o no justificadas las innovaciones que contenga, de acuerdo con los objetivos legítimos.

Las empresas del sector de iluminación o alumbrado público, dentro de la racionalidad técnica y económica podrán proponer preceptos complementarios, señalando las condiciones técnicas de carácter concreto que sean esenciales para conseguir mayor desempeño en las instalaciones de iluminación y/o alumbrado público. Estas normas deben ajustarse a los preceptos de este Reglamento y serán planteadas ante la Dirección de Energía del Ministerio de Minas y Energía.

SECCIÓN 1030 VIGENCIA

El presente reglamento tendrá una vigencia de 5 años y podrá modificarse en cualquier momento de su vigencia. La vigencia se renovará por periodos iguales con las modificaciones o cuando trascurran los 5 años y no se encuentren meritos para hacer las modificaciones.

El presente reglamento entrará en vigencia después de 6 meses contados a partir de su publicación en el Diario Oficial.

PUBLÍQUESE Y CÚMPLASE Dado en Bogotá D.C.

HERNÁN MARTÍNEZ TORRES MINISTRO DE MINAS Y ENERGÍA