Содержание

1	Термодинамическая система. Микроскопические и макроскопические параметры. Уравнение состояния (термическое и калорическое). Равновесные и неравновесные состоя-	_
		5
	1.1 Термодинамическая система	5
	1.3 Уравнение состояния (термическое и калорическое)	5
	1.4 Равновесные и неравновесные состояния и процессы	5
2	Идеальный газ. Уравнение состояния идеального газа. Идеально-газовое определение	J
4	температуры. Связь давления и температуры идеального газа с кинетической энергией	
	его молекул	5
	2.1 Идеальный газ	5
	2.2 Уравнение состояния идеального газа	5
	2.3 Идеально-газовое определение температуры	5
	2.4 Связь давления и температуры идеального газа с кинетической энергией его молекул	5
3	Работа, внутренняя энергия, теплота. Первое начало термодинамики. Внутренняя энергия идеального газа	6
	3.1 Работа, внутренняя энергия, теплота	6
	3.2 Первое начало термодинамики	6
	3.3 Внутренняя энергия идеального газа	6
4	Теплоёмкость. Теплоёмкости при постоянном объёме и давлении. Связь между c_V и c_P	c
	для идеального газа (соотношение Майера) 4.1 Теплоёмкость	6
	4.2 Теплоёмкости при постоянном объёме и давлении	6
	4.3 Связь между c_V и c_P для идеального газа (соотношение Майера)	6
5	Политропический и адиабатический процессы. Уравнение адиабаты и политропы иде-	
	ального газа. Скорость звука в газах	6
	5.1 Политропический и адиабатический процессы	6
	5.2 Уравнение адиабаты и политропы идеального газа	7
		'
6	Тепловые машины. Цикл Карно. КПД машины Карно. Теоремы Карно. Холодильная машина и тепловой насос. Коэффициенты эффективности идеальной холодильной ма-	
	шины и идеального теплового насоса	7
	6.1 Тепловые машины	7
	6.2 Цикл Карно	7
	6.3 КПД машины Карно	7
	6.4 Теоремы Карно	7
	6.5 Холодильная машина и тепловой насос	8
	6.6 Коэффициенты эффективности идеальной холодильной машины и идеального теплового насоса	8
7	Второе начало термодинамики. Энтропия (термодинамическое определение). Неравен-	
	· · · · · · · · · · · · · · · · · · ·	8
	7.1 Второе начало термодинамики	8
	7.2 Энтропия (термодинамическое определение)	8
	7.3 Неравенство Клаузиуса	8
	7.4 Энтропия идеального газа	8
8	Обратимые и необратимые процессы. Закон возрастания энтропии. Неравновесное рас-	
		9
	8.1 Обратимые и необратимые процессы	9
	8.2 Закон возрастания энтропии	9
	оо произоновение расширение газа в Пустоту	IJ

9	Термодинамические потенциалы: внутренняя энергия, энтальпия, свободная энергия, термодинамический потенциал Гиббса. Метод получения соотношений Максвелла (со-	
	отношений взаимности)	9
	9.1 Термодинамические потенциалы: внутренняя энергия, энтальпия, свободная энергия, тер-	
	модинамический потенциал Гиббса	9
	9.2 Метод получения соотношений Максвелла (соотношений взаимности)	9
10	Фазовые переходы первого рода. Уравнение Клапейрона—Клаузиуса. Фазовое равно-	
	весие «жидкость—пар», зависимость давления насыщенного пара от температуры	9
	10.1 Фазовые переходы первого рода	9
	10.2 Уравнение Клапейрона—Клаузиуса	10
	10.3 Фазовое равновесие «жидкость – пар», зависимость давления насыщенного пара от темпе-	10
	ратуры	10
11	Фазовые диаграммы «твёрдое тело—жидкость—пар». Тройная точка, критическая точка	10
	11.1 Фазовые диаграммы «твёрдое тело—жидкость—пар»	10
	11.2 Тройная точка, критическая точка	10
f 12	Поверхностное натяжение. Коэффициент поверхностного натяжения, краевой угол.	
	Смачивание и несмачивание. Формула Лапласа. Свободная энергия и внутренняя энер-	
	гия поверхности	10
	12.1 Поверхностное натяжение	10
	12.2 Коэффициент поверхностного натяжения, краевой угол	10
	12.3 Смачивание и несмачивание	11
	12.4 Формула Лапласа	11
	12.5 Свободная энергия и внутренняя энергия поверхности	11
13	Зависимость давления насыщенного пара от кривизны поверхности жидкости. Роль	
	зародышей в образовании фазы. Кипение	11
	13.1 Зависимость давления насыщенного пара от кривизны поверхности жидкости	11
		11
	13.3 Кипение	14
14	Уравнение Ван-дер-Ваальса как модель неидеального газа. Изотермы газа Ван-дер-	
	Ваальса. Критические параметры. Приведённое уравнение Ван-дер-Ваальса, закон соответственных состояний	
		12 12
	14.1 Уравнение Ван-дер-Ваальса как модель неидеального газа	$\frac{12}{12}$
	14.3 Критические параметры	
	14.4 Приведённое уравнение Ван-дер-Ваальса, закон соответственных состояний	
1 -		
19	Метастабильные состояния: переохлаждённый пар, перегретая жидкость (на примере модели Ван-дер-Ваальса). Изотермы реального газа, правило Максвелла и правило	
	рычага	13
	15.1 Метастабильные состояния: переохлаждённый пар, перегретая жидкость (на примере моде-	
	ли Ван-дер-Ваальса)	13
	15.2 Изотермы реального газа, правило Максвелла и правило рычага	13
16	Внутренняя энергия и энтропия газа Ван-дер-Ваальса. Равновесное и неравновесное	:
	расширение газа Ван-дер-Ваальса в теплоизолированном сосуде	13
	16.1 Внутренняя энергия и энтропия газа Ван-дер-Ваальса	13
	16.2 Равновесное и неравновесное расширение газа Ван-дер-Ваальса в теплоизолированном сосуде	13
17	Течение идеальной жидкости. Уравнение Бернулли сжимаемой и несжимаемой жид-	
	кости. Изоэнтропическое истечение газа из отверстия	14
	17.1 Течение идеальной жидкости	14
	17.2 Уравнение Бернулли сжимаемой и несжимаемой жидкости	14
	17.3 Изоэнтропическое истечение газа из отверстия	14

18	Эффект Джоуля-Томсона. Дифференциальный эффект Джоуля-Томсона для газа	
	Ван-дер-Ваальса, температура инверсии	14
	18.1 Эффект Джоуля—Томсона	14
	версии	14
19	Распределение частиц идеального газа по проекциям и модулю скорости (распределение Максвелла). Наиболее вероятная, средняя и среднеквадратичная скорости. Рас-	
	пределение Максвеллапо энергиям 19.1 Распределение частиц идеального газа по проекциям и модулю скорости (распределение	15
	Максвелла)	15 15
	19.3 Распределение Максвелла по энергиям	15
20	Среднее число молекул, сталкивающихся в единицу времени с единичной площадкой.	
	Средняя энергия молекул, вылетающих в вакуум через малое отверстие	15
	20.1 Среднее число молекул, сталкивающихся в единицу времени с единичной площадкой 20.2 Средняя энергия молекул, вылетающих в вакуум через малое отверстией	15 15
21	Распределение Больцмана в поле внешних сил. Барометрическая формула	15
	21.1 Распределение Больцмана в поле внешних сил	15
	21.2 Барометрическая формула	16
22	Статистика классических идеальных систем. Микро- и макросостояния. Статистиче-	
	ский вес. Распределение Гиббса для идеального газа (без вывода)	16
	22.1 Статистика классических идеальных систем	16 16
	22.2 Микро- и макросостояния	16
	22.4 Распределение Гиббса для идеального газа (без вывода)	16
23	Статистические определения энтропии и температуры. Аддитивность энтропии. Закон	
	возрастания энтропии. Третье начало термодинамики	16
	23.1 Статистические определения энтропии и температуры	16
	23.2 Аддитивность энтропии	17 17
	23.4 Третье начало термодинамики	17
24	Изменение энтропии при смешении газов, парадокс Гиббса	17
25	Классическая теория теплоёмкостей. Закон равномерного распределения энергии теплового движения по степеням свободы. Теплоёмкость кристаллов (закон Дюлонга—Пти	
	25.1 Классическая теория теплоёмкостей	17
	25.2 Закон равномерного распределения энергии теплового движения по степеням свободы	18
	25.3 Теплоёмкость кристаллов (закон Дюлонга — Пти)	18
26	Зависимость теплоёмкости c_V газов от температуры. Возбуждение и замораживание	
	степеней свободы, характеристические температуры	18
	26.1 Зависимость теплоёмкости c_V газов от температуры	18
	26.2 Возбуждение и замораживание степеней свободы, характеристические температуры	18
27	Флуктуации в термодинамических системах. Влияние флуктуаций на чувствитель-	
	ность измерительных приборов (на примере пружинных весов)	18
	27.1 Флуктуации в термодинамических системах	18
	ных весов)	18
28	Зависимость флуктуаций от числа частиц, составляющих систему. Флуктуация числа	
	частиц в выделенном объёме	19
	28.1 Зависимость флуктуаций от числа частиц, составляющих систему	19
	28.2 Флуктуация числа частиц в выделенном объёме	19

29	Связь вероятности флуктуации и энтропии системы. Флуктуации температуры в за-	
	данном объёме. Флуктуация объёма в изотермическом и адиабатическом процессах	
	29.1 Связь вероятности флуктуации и энтропии системы	19
	29.2 Флуктуации температуры в заданном объёме	19
	29.3 Флуктуация объёма в изотермическом и адиабатическом процессах	
30	Столкновения. Эффективное газокинетическое сечение. Длина свободного пробега.	
	Частота столкновений молекул между собой	20
	30.1 Столкновения. Эффективное газокинетическое сечение	20
	30.2 Длина свободного пробега	
	30.3 Частота столкновений молекул между собой	
31	Диффузия: закон Фика, коэффициент диффузии. Дифференциальное уравнение од-	
	номерной диффузии. Коэффициент диффузии в газах	20
	31.1 Диффузия: закон Фика, коэффициент диффузии. Дифференциальное уравнение одномер-	
	ной диффузии	20
	31.2 Коэффициент диффузии в газах	
32	Теплопроводность: закон Фурье, коэффициент теплопроводности. Дифференциальное	
	уравнение одномерной теплопроводности. Коэффициент теплопроводности в газах	20
	32.1 Теплопроводность: закон Фурье, коэффициент теплопроводности	20
	32.2 Коэффициент теплопроводности в газах	

1 Термодинамическая система. Микроскопические и макроскопические параметры. Уравнение состояния (термическое и калорическое). Равновесные и неравновесные состояния и процессы

1.1 Термодинамическая система

Опр *Система, термодинамическая система* Совокупность рассматриваемых тел ...

Опр Изолированная, закытая и открытая термодинамическая система Обмен ...

1.2 Микроскопические и макроскопические параметры

Утв Существуют микроскопические и макроскопические состояния + их другие имена

Опр Микроскопическое и макроскопическое состояния Состояние системы,

Опр Микроскопические параметры Величины, характризующий макросостояние

1.3 Уравнение состояния (термическое и калорическое)

Опр Уравнение состояния Состояние, отражающее для конкретного класса величин ...

Опр Термодинамическое, калорическое уравнение состояния f(P, V, T) = 0, j(...)

1.4 Равновесные и неравновесные состояния и процессы

Опр Термодинамическое равновесие Все макроскопические процессы прекращаются, ...

Закон Основное (общее) начало термодинамики

Предоставленная самой себе ...

Закон -І начало ТД

Три условия на любую изолированную систему

Опр Неравновесное состояние Предоставленная самой себе ...

Опр Релаксация, время релаксации Переход из состояния, в котором система ...

Опр Траектория процесса Состояния системы и переходы между ними

Опр Равновесный (квазистатический) процесс По ходу процесса система ...

Опр *Неравновесное состояние* На траектории процесса встречаются ...

2 Идеальный газ. Уравнение состояния идеального газа. Идеальногазовое определение температуры. Связь давления и температуры идеального газа с кинетической энергией его молекул

2.1 Идеальный газ

Опр Идеальный газ Газ, у которого взаимодействием молекул между собой можно ...

2.2 Уравнение состояния идеального газа

Закон Бойля - Мариотта

PV = const, const однозначно определяется количеством газа и степенью его "нагретости

Опр *Газовая постоянная* Определяется из тройной точки воды. Измеряется в ...

Опр Постоянная Больцмана $k \frac{R}{N_A} = 6{,}022 \cdot 10^{23} \frac{1}{moles}$

Закон Уравнение состояния идеального газа Менделеева – Клапейрона

 $PV = \mu RT = NkT = \frac{m}{\mu}RT$

2.3 Идеально-газовое определение температуры

Отсюда можно определить температуру по идеально-газовой шкале $T=\frac{PV}{\mu R}$

2.4 Связь давления и температуры идеального газа с кинетической энергией его молекул

В результате перехода от микрорассмотрения к макро, получим $P=\frac{1}{3}nvp=\cdots\Rightarrow U=N\frac{3}{2}kT$ Из полной кинетической энергии газа в воздухе $E=N\overline{\varepsilon}$ можно получить $\overline{\varepsilon}=\frac{3}{2}kT\Rightarrow P=nkT$

3 Работа, внутренняя энергия, теплота. Первое начало термодинамики. Внутренняя энергия идеального газа

3.1 Работа, внутренняя энергия, теплота

Опр Функция состояния Величина, принимающая определённое значение в каждом ...

 ${f O}$ пр ${\it Paboma}, {\it coвершённая} {\it cucmemoй} {\it u}$ над ней ${\it PdV}, {\it P} \in \{P_{in}, P_{out}\}$

Для квазистатического процесса $\delta A_{in} = -\delta A_{out}$.

Заметим, что работа не является функцией состояния

Опр Адиабатическая оболочка При любых изменениях температуры окружающих ...

Если система заключена в адиабатическую оболочку, то работа внешних сил не зависит от траектории процесса, а определяется только начальным и конечным состояниями системы: $A_{12} = U_2 - U_1, U -$ внутренняя энергия, функция состояния

Опр Количество теплоты Если система заключена в жёсткую ...

$$Q_{in} = U_2 - U_1 = -Q_{out}$$

Первое начало термодинамики

3.2 Первое начало термодинамики

Закон Первое начало термодинамики

3С9, записываемый как $\delta Q_{in} = dU + A_{in} \Rightarrow dU = \delta Q - PdV$

3.3 Внутренняя энергия идеального газа

Опр Внутренняя эпергия $U\Gamma$ Функция только температуры, так как определяется ...

$$dU = c_V dT, U = \int c_V dT = \nu N_A \overline{\varepsilon} = \frac{i}{2} \nu RT$$

4 Теплоёмкость. Теплоёмкости при постоянном объёме и давлении. Связь между c_V и c_P для идеального газа (соотношение Майера)

4.1 Теплоёмкость

Опр Tennoём $\kappa ocmb$ $c=rac{\delta Q_{in}}{dT}$

4.2 Теплоёмкости при постоянном объёме и давлении

Для получения указанных формул, достаточно записать I начало ТД и после преобразований записать определение теплоёмксти, не забыв, что H=U+PV есть энтальпия

4.3 Связь между c_V и c_P для идеального газа (соотношение Майера)

$$c_P dT = dU = d(U + PV) = (c_V + \nu R)dT \Rightarrow c_P = c_V + \nu R$$

5 Политропический и адиабатический процессы. Уравнение адиабаты и политропы идеального газа. Скорость звука в газах

5.1 Политропический и адиабатический процессы

Опр *Политропический процесс* Процесс, в котором теплоёмкость остаётся ...

Опр $A \partial u a \delta a m u v e c \kappa u \ddot{u}$ n p o u e c c Процесс, происходящий в теплоизолированной ...

5.2 Уравнение адиабаты и политропы идеального газа

Опр Показатель адиабаты, политропы $\gamma = \frac{c_P}{c_H}, n = \dots$

Из уравнения состояния ИГ можно вывести уравнение адиабатического и политропического процессов Существует четыре основных политропических процесса: адиабата, изохора, -бара, -терма. У каждого из них свои теплоёмкости, показатели политропы n и уравнения

5.3 Скорость звука в газах

Опр Скорость звука Фазовая скорость продольных волн в бесконечной ...

Скорость звука можно запросто вывести из соответствующего уравнения механики

Опр Адиабатическая скорость звука За время прохождения звука на ...

Адиабатическую скорость звука выражается через ту же конечную формулу, с использованием уравнения адиабаты и $\rho = \frac{P\mu}{BT}$

6 Тепловые машины. Цикл Карно. КПД машины Карно. Теоремы Карно. Холодильная машина и тепловой насос. Коэффициенты эффективности идеальной холодильной машины и идеального теплового насоса

6.1 Тепловые машины

Опр *Тепловая машина* Устройство, которое преобразует теплоту в работу или ...

6.2 Цикл Карно

Опр Машина Карно Тепловая машина, работающая по циклу Карно

Опр Цикл Карно Обратимый цикл из двух изотерм и адиабат

6.3 КПД машины Карно

Опр *КПД тепловой машины* Отношение работы, произведённой машиной за один цикл ...

6.4 Теоремы Карно

Тh Первая теорема Карно

КПД любой тепловой машины, работающей между между двумя заданными термостатами, не может превышать КПД машины Карно, работающей между теми же резервуарами

- 1. от противного: пусть у необратимой машины КПД больше. Рассмотрим работу этих двух машин в разных направлениях на одних и тех же резервуарах
- 2. Подберём $Q_{+1}, Q_{+2}: Q_{+1} = Q_{+2}$. Тогда рассмотрим суммарные теплоты и работы за цикл (ведь две тепловые машины всё равно что одна многофункциональная)
- 3. Итого, получилось что единственным результатом цикла большой машины есть производство работы за счёт охлаждение холодильника, w со II началом TД

Тһ Вторая теорема Карно

КПД любых идеальных машин, работающих по циклу Карно между двумя заданными термостатами, равны и не зависят от устройства машин и рабочего тела

- 1. Это следствие первой теоремы: надо применить её к двум конкретным машинам Карно и поменять их местами.
- 2. Система двух неравенств эквивалентна равенству. Независимость от параметров достигнута за счёт рассмотрения общего случая
- 3. Чтобы найти точное значение КПД машины Карно, работающей с телами с $\underline{\text{температурами}}\ T_1, T_2,$ надо рассмотреть идеальный газ как рабочее тело
- 4. Затем достаточно вспомнить определение цикла Карно, модифицированное уравнение адиабаты и работу на изотерме

6.5 Холодильная машина и тепловой насос

Опр Холодильный цикл Имеет в результате потребление работы через отбирание ...

Опр Холодильная машина Машина, работающая по холодильному циклу

Опр *Тепловой насос* Машина для передачи тепла к более нагретому телу от ...

6.6 Коэффициенты эффективности идеальной холодильной машины и идеального теплового насоса

Опр Эффективность холодильной машины Отношение тепла холодильника к работе ...

Чтобы найти эффективность идеальной холодильной машины, надо воспользоваться теоремами Карно. Аналогично для идеального теплового насоса

7 Второе начало термодинамики. Энтропия (термодинамическое определение). Неравенство Клаузиуса. Энтропия идеального газа

7.1 Второе начало термодинамики

Опр Машина Клаузиуса Машина, работающая по круговому циклу, в результате ...

Закон Второе начало термодинамики в формулировке Клаузиуса

Машина Клаузиуса невозможна

Опр Машина Томсона Машина, работающая по круговому циклу, в результате ...

Закон Второе начало термодинамики в формулировке Томсона (лорда Кельвина)

Машина Томсона невозможна

Тһ Формулировки Клаузиуса и Томсона эквивалентны

⇐: производимую мТ работу можно целиком передать нагревателю, создав мК

⇒: рассмотрим две машины между заданными термостатами: обыкновенную и мК. Результат одновременной работы этих двух машин есть мТ

7.2 Энтропия (термодинамическое определение)

Опр Термодинамическая энтропия

- 1. Рассматривается произвольный обратимый круговой процесс, проходящий через фиксированные точки, интеграл по циклу $\frac{\delta Q}{T}$
- 2. Путём преобразований (и, возможно, неравенства Клаузиуса) доказывается, что его величина не зависит от пути между точками
- 3. Тогда перед нами функция состояния по определению. Назовём её энтропией и будем обозначать как S

7.3 Неравенство Клаузиуса

Утв Неравенство Клаузиуса

 $\oint \frac{\delta Q_i}{T_i} \le 0$

Иногда данное неравенство записывают в дискретной форме.

- 1. По второму началу термодинамики получим, что данный интеграл в обратимых процессах эквивалентен $-\delta S=0$ в силу того, что обратимыми являются лишь машины, работающие по циклу Карно, а для них данное равенство выполнено из выражения для КПД цикла Карно
- 2. В случае неравновесного процесса, запишем его КПД и сравним с КПД цикла Карно
- 3. Тогда получим, что интеграл Клаузиуса процесса будет меньше, чем интеграл Клаузиуса цикла Карно, то есть ≤ 0

7.4 Энтропия идеального газа

Из I начала ТД и определения энтропии, получаем её выражение для ИГ

8 Обратимые и необратимые процессы. Закон возрастания энтропии. Неравновесное расширение газа в пустоту

8.1 Обратимые и необратимые процессы

Опр (Не)обратимые процессы Процесс (не)мб проведён в обратном направлении ...

8.2 Закон возрастания энтропии

Закон Неубывания энтропии

Для его доказательство достаточно рассмотреть круговой процесс с обратимой и нет частью, воспользоваться определением энтропии и неравенством Клаузиуса

Утв Постулат Гиббса

Энтропия максимальна в состоянии равновесия

8.3 Неравновесное расширение газа в пустоту

 $\Delta Q=0$ в силу теплоизолированности, а A=0, потому что не над чем совершать работу, поэтому и $\Delta T=0$ по I началу ТД. Из выражения энтропии для ИГ $\Delta S=\nu R\ln\left(\frac{V_2}{V_1}\right)>0$. По-другому, возрастание энтропии можно объяснить необратимостью процесса в замкнутой системе

- 9 Термодинамические потенциалы: внутренняя энергия, энтальпия, свободная энергия, термодинамический потенциал Гиббса. Метод получения соотношений Максвелла (соотношений взаимности)
- 9.1 Термодинамические потенциалы: внутренняя энергия, энтальпия, свободная энергия, термодинамический потенциал Гиббса

Опр Термодинамические потенциалы Функции определённых наборов ТД параметров, ...

Всего есть четыре основных ТД потенциала: внутренняя энергия, энтальпия (+PV), свободная энергия (-TS) и потенциал Гиббса (совокупность двух предыдущих). У каждого есть свой набор параметров, полный дифференциал, а также, конкретные частные производные. При желании, для их вычисления в случае ИГ можно указать явные формулы через его энтропию

9.2 Метод получения соотношений Максвелла (соотношений взаимности)

В силу того, что все ТД функции непрерывны, верна теорема Шварца о равенстве смешанных частных производных. Это позволяет получить четыре новых равенства, называемых соотношениями взаимности Максвелла

10 Фазовые переходы первого рода. Уравнение Клапейрона—Клаузиуса. Фазовое равновесие «жидкость—пар», зависимость давления насыщенного пара от температуры

10.1 Фазовые переходы первого рода

Опр Фаза Физически однородная часть системы, отличающаяся своими физическими ...

Опр *Химический потенциал* Величина, определяющая изменение энергии системы ...

Химический потенциал можно приписать каждому из известных до этого ТД потенциалов

Опр Экстенсивные и интенсивные параметры Величины, пропорциональные и не-...

Утв Условия равновесия фаз

В состоянии равновесия во всём веществе выполнены условия

- Механического равновесия (P = const)
- Теплового равновесия (T = const)
- Равновесия по отношению перехода частиц между различными фазами ($\mu = const$)

Притом можно показать, что из выполнения первых двух условий следует третье

В случае отсутствия равновесия частицы переходят в фазу с меньшим химическим потенциалом

10.2 Уравнение Клапейрона—Клаузиуса

Фазы могут существовать, если только давление и температура лежать на кривой фазового равновесия Опр Φ азовая диаграмма Координаты (P,T), на которой нанесены различные ...

Из равенства химических потенциалов следует равенство их дифференциалов из потенциала Гиббса. Преобразуя равенство и введя теплоту фазового перехода в расчёте на одну частицу (энергозатраты на осуществление перехода), получим уравнение Клапейрона — Клаузиуса

Также можно показать, что введённая теплота смены фазы есть разница энтальпий

10.3 Фазовое равновесие «жидкость – пар», зависимость давления насыщенного пара от температуры

Уравнение кривой равновесия «жидкость – пар» может быть получено с помощью уравнения ИГ, факта, что $v_2 \gg v_1$ и в предположении q=const. В таком случае зависимость выражается в экспоненциальной форме в двух случаях задания q (удельно или молярно)

Опр Насыщенный пар Пар, находящийся в равновесии с собственной жидкостью

11 Фазовые диаграммы «твёрдое тело—жидкость—пар». Тройная точка, критическая точка

11.1 Фазовые диаграммы «твёрдое тело-жидкость-пар»

Запишем уравнения кривых плавления, испарения и возгонки (сублимации). Данные уравнения есть равенства соответствующих химический потенциалов, притом только два уравнения независимых. То есть точка пересечения двух кривых принадлежит третьей.

11.2 Тройная точка, критическая точка

Опр Тройная точка (Изолированная) точка пересечения трёх кривых, в которой ...

Опр Критическая точка

Кривая фазового равновесия может оборваться при высоких температурах, где исчезает различие между фазами. Точка данного события и есть критическая, притом она обязательно существует на кривой «жидкость – пар»

Для воды $T_{cr} = 647,3K, T_3 = 273,16K$

Каждая кривая равновесия характеризуется своим значением теплоты фазового перехода. Если рассмотреть бесконечно малый цикл вблизи тройной точки, то из равенства Клаузиуса получим $q_{sb} = q_m + q_v$

12 Поверхностное натяжение. Коэффициент поверхностного натяжения, краевой угол. Смачивание и несмачивание. Формула Лапласа. Свободная энергия и внутренняя энергия поверхности

12.1 Поверхностное натяжение

Все молекулы жидкости испытывают притяжение со стороны других молекул. Вблизи поверхности жидкости у молекулы в сфере молекулярного действия находится меньше молекул, к которым она притягивается, поэтому возникает сила, стремящаяся втянуть её с её поверхности внутрь жидкости

Опр *Поверхностное натяжение* Работа, необходимая для увеличения поверхности ...

12.2 Коэффициент поверхностного натяжения, краевой угол

- 1. Заметим, что в изотермическом процессе работа идёт на изменение свободной энергии: $F = F_V + F_s$, где первое слагаемое пропорционально объёму плёнки, а второе площади её поверхности
- 2. Тогда коэффициент поверхностного натяжения $\sigma = \frac{F_s}{\Pi}$

3. Другое выражение для σ даётся через механическую работу силы 2f (двойка, потому как у плёнки есть две поверхности — внешняя и внутренняя)

4. Получим, что σ есть сила приходящаяся на единицу длины границы поверхности

Опр Краевой угол смачивания Угол между касаталеьной, проведённой к ...

Если рассмотреть участок на границе трёх сред (газа, плёнки и поверхности), то из равенства сил на этот участок получим выражение из определения коэффициента поверхностного натяжения получим выражение для краевого угла смачивания

12.3 Смачивание и несмачивание

Проанализируем выражение для данного угла $\frac{\sigma_{sg}-\sigma_{sl}}{\sigma_{ql}}$:

- > 1: жидкость растекается по поверхности ТТ полное смачивание
- < -1: жидкость принимает элипсообразную форму капли полное несмачивание
- $0 < \theta < \frac{\pi}{2}$: частичное смачивание
- $\frac{\pi}{2} < \theta < \pi$: частичное несмачивание

12.4 Формула Лапласа

Если рассмотреть небольшую часть сферической поверхности жидкости и использую определения коэффициента поверхностного натяжения, радиуса кривизны, площади и воспользоваться малостью угла, то можно получить формулу Лапласа, дающей численное выражение разности давления жидкости и газа над поверхностью

12.5 Свободная энергия и внутренняя энергия поверхности

Запишем выражение для свободной энергии поверхности, воспользовавшись смыслом частных производных и коэффициента поверхностного натяжения. Получим выражение для поверхностной внутренней энергии

13 Зависимость давления насыщенного пара от кривизны поверхности жидкости. Роль зародышей в образовании фазы. Кипение

13.1 Зависимость давления насыщенного пара от кривизны поверхности жидкости

- 1. Рассмотрим хитрый сосуд с плоской частью и капилляром
- 2. Используя формулы Торичелли, удельного объёма, Лапласа и барометрическую, получим выражение для логарифма отношения давлений через давление.
- 3. Данная формула неявная, поэтому чтобы получить аналитичность в случае малой разности, разложим логарифм в ряд и получим более простую формулу $P = P_0 + \frac{\nu_l}{\nu_s \nu_l} \sigma K$
- 1. Пусть в толще жидкости образовался пузырёк. Тогда запишем его давление через новую формулу и через формулу Лапласа (условие равновесия). Равенство достигается в случае критического радиуса пузырька
- 2. Если радиус пузыря меньше, то он схлопнется, а если больше продолжит расти

13.2 Роль зародышей в образовании фазы

- 1. Аналогично выражению для радиуса пузырька, можно получить критический радиус капли в процессе конденсации. Он будет в $\frac{\nu_l}{\nu_s}$ больше
- 2. И вновь, если радиус капли меньше критического, то она схлопнется, а если больше то начнётся её рост
- 3. Подобные пузырьки и капли могут образовываться около песчинок, взвеси, трещинок и других неровностей поверхностей и среды.

13.3 Кипение

Если такие неровности достаточно большие, то начнётся кипение Опр *Кипение* Фазовый переход «жидкость — пар», происходящий с образованием ...

14 Уравнение Ван-дер-Ваальса как модель неидеального газа. Изотермы газа Ван-дер-Ваальса. Критические параметры. Приведённое уравнение Ван-дер-Ваальса, закон соответственных состояний

14.1 Уравнение Ван-дер-Ваальса как модель неидеального газа

Модель Ван-дер-Ваальса учитывает две особенности реального газа: это наличие объёма у молекул и их взаимное притяжение друг к другу. Отсюда следует необходимость введения двух новых параметровконстант a и b

- 1. Учтём запрещённый объём для каждой молекулы введя $b:V^{'}=V-\nu b$
- 2. Чтобы учесть притяжение между ними, рассмотрим нейтральную молекулу газа
- 3. При сближении с другой нейтральной, они начинают ориентироваться разнонаправленно; между ними возникает сила BдB
- 4. Выразим давление из промежуточного уравнения ВдВ. Конечное давление на стенки сосуда будет меньше давления в случае ИГ, потому как часть частиц притягивается и сталкивается между собой
- 5. Оценим эту разница через череду пропорциональностей: $\Delta P \sim F \sim n \cdot n \sim n^2 \sim \frac{1}{V^2}$
- 6. Чтобы записать равенство, введём $a:\Delta P=\frac{a\nu^2}{V^2}$
- 7. Приведя промежуточное равенство с учётом поправок к нормальному виду, получим уравнение ВдВ

14.2 Изотермы газа Ван-дер-Ваальса

- 1. Начнём изображать изотермы Ван-дер-Ваальса в координатах P--V: они имеют вид кубического трёхчлена
- 2. Найти координаты точек экстремумов можно из уравнения $(\frac{\partial P}{\partial V})_T=0$, а если приравнять эту производную к давлению, то можно получить уравнение кривой, соединяющей все такие точки спинодаль
- 3. При увеличении температуры минимум и максимум сольются в одну точку перегиба, а после данной точки будут походить на изотермы ИГ (гипербола)

14.3 Критические параметры

Чтобы найти эту критическую точку и её параметры (P, V, T) мы имеем три уравнения:

- 1. первая производная равна нулю (минимум и максимум экстремум слились в ней)
- 2. вторая производная равна нулю (точка перегиба)
- 3. уравнение Ва-дер-Ваальса

Другой способ получения параметров – записать куб разности через формулу сокращённого умножения

14.4 Приведённое уравнение Ван-дер-Ваальса, закон соответственных состояний

Если ввести новые переменные — отношения текущих параметров к критическим и подставить их в уравнение BдB, а затем подставить выражения для критических параметров и выполнить преобразования, то получим приведённое уравнение BдB. Из него следует

Закон Соответственных состояний

Для различных веществ одинаковым хначениям φ и π соотвествует лишь одно (и то же) значение au

15 Метастабильные состояния: переохлаждённый пар, перегретая жидкость (на примере модели Ван-дер-Ваальса). Изотермы реального газа, правило Максвелла и правило рычага

15.1 Метастабильные состояния: переохлаждённый пар, перегретая жидкость (на примере модели Ван-дер-Ваальса)

- 1. Из уравнения ВдВ и вида изотерм такого газа можно сделать вывод, что одному значению давления могут соответствовать разные значения объёма
- 2. То есть существуют термодинамически неустойчивые состояния (действительно, мы расширяем газ, а он греется)
- 3. Таким образом, на изотермах BдB можно различить четыре вида состояний: стабильные, метастабильные, термодинамически неустойчивые, а также, устойчивую смесь жидкой и парообразной фазы

15.2 Изотермы реального газа, правило Максвелла и правило рычага

Изотермы реального газа имею две фазы на участке бинодали и одну выше критической точки Утв Правило Максвелла

Кривая термодинамически нейстойчивого участка пересекает прямую устойчивой смеси так, чтобы полученные площади были равны

- 1. Рассмотрим квазистатический цикл через эти точки. Из равенства Клаузиуса следует, что $\delta Q=0$
- 2. Из возврата в ту же точку следует, что $dU = 0 \Rightarrow A = 0$.
- 3. Так как в данном цикле мы проходим два круговых участка, притом один по часовой (работа положительна), а второй против (отрицательна), то суммарная работа есть ноль только в случае равенства площадей (работа есть ориентированная площадь под графиком)

Найдём соотношение между количество жидкости и газа для их устойчивой смеси. Для этого запишем объём жидкой и газообразной части через значения плотности на концах участках и воспользуемся ЗСМ. Получим, что массы жидкости и пара соотносятся по правилу рычага

16 Внутренняя энергия и энтропия газа Ван-дер-Ваальса. Равновесное и неравновесное расширение газа Ван-дер-Ваальса в теплоизолированном сосуде

16.1 Внутренняя энергия и энтропия газа Ван-дер-Ваальса

Для начала рассмотрим внутреннюю энергию как U(T,V). Запишем её полный дифференциал и воспользуемся соотношением Максвелла. В итоге получим термическое уравнение состояния

Теперь получим выражение для внутренней энергии газа ВдВ как U(T,V) через её полный дифференциал. Воспользуемся определениями c_V , только термическим уравнением состояния, выражением для $(\frac{\partial P}{\partial T})_V$, уравнением ВдВ. Подставляя все выкладки, получим требуемое выражение. Заметим, что внутренняя энергия газа ВдВ определена с точностью до константы

Найдём энтропию газа ВдВ как S(T,V) вновь через её полный дифференциал. Распишем каждый частичный дифференциал (частную производную), использую выкладки для внутренней энергии и I начало TД. Вновь получим функцию, определённую с точностью до константы

16.2 Равновесное и неравновесное расширение газа Ван-дер-Ваальса в теплоизолированном сосуде

- 1. Рассмотрим свободное расширение газа в вакуум в неравновесном процессе и найдём изменение температуры такого газа.
- 2. $\Delta Q=0$ в силу теплоизолированности, а A=0, потому что не над чем совершать работу, поэтому и $\Delta U=0$ по I началу ТД
- 3. $\Rightarrow U_i = c_V T_i \frac{a}{V_i}$. Выразим из $U_1 = U_2$ разность температур и получим её отрицательность, то есть газ охладился.

Теперь рассмотрим равновесное адиабатическое расширение газа BдB, записав изменение его энтропии. Получим псевдо ЭДТ

17 Течение идеальной жидкости. Уравнение Бернулли сжимаемой и несжимаемой жидкости. Изоэнтропическое истечение газа из отверстия

17.1 Течение идеальной жидкости

Идеальная жидкость течёт без трения и теплопередач

17.2 Уравнение Бернулли сжимаемой и несжимаемой жидкости

- 1. Для каждого сечения $\rho vS = const$ в силу ЗСМ
- 2. Записав работу по смещению как разность энергий, получим константную сумму (энтальпия)
- 3. Перейдя к удельным величинам и раскрыв состав удельной энергии, получим уравнение Бернулли:

$$\frac{P}{\rho} + gh + \frac{v^2}{2} + u = const$$

4. Уравнение для несжимаемой жидкости не будет иметь слагаемого с плотностью (она не изменяется)

17.3 Изоэнтропическое истечение газа из отверстия

- 1. Найдём скорость истечения газа из отверстия в условиях малого перепада высот $\iota_i + \frac{v^2}{2} = const$
- 2. Считая скорость внутри сосуда пренебрежимой, получим выражение через удельную энтальпию
- 3. Вспомнив определение энтропии и формулу Майера, получим более конкретную формулу; при желании из-под корня можно вынести скорость звука
- 4. При адиабатическом истечении ИГ можно переписать отношение температур как отношение давлений и получить немного другую запись. Из неё видно, что скорость газа максимальна при расширении в вакуум $P_2=0$, притом $v>c_{sound}$

18 Эффект Джоуля—Томсона. Дифференциальный эффект Джоуля—Томсона для газа Ван-дер-Ваальса, температура инверсии

18.1 Эффект Джоуля—Томсона

Опр Дроссель Местное препятствие газовому потоку ...

Опр Дросселирование Медленное протекание газа под действием постоянного ...

Опр ЭДТ Изменение температуры газа при адиабатическом дросселировании

Существует положительный и отрицательный ЭДТ (напомним, разность давлений всегда отрицательна). Данный процесс называют изоэнтальпическим (его можно описать с помощью уравнения Бернулли) из-за его медленности. Для ИГ он не наблюдается, потому как из постоянства энтальпии следует постоянство температуры. Таким образом, ЭДТ позволяет определить степень неидеальности газа

18.2 Дифференциальный эффект Джоуля—Томсона для газа Ван-дер-Ваальса, температура инверсии

Опр $\mathcal{J}u\phi\phi$ еренциальный $\mathcal{J}\mathcal{J}T$ ЭДТ при малых перепадах давления (т.е. ещё и изобарный)

- 1. Представим энтальпию как I(T,P) и выразим её $(\frac{\partial T}{\partial P})_I$ через формулу 3=-1
- 2. Числитель выразим через стандартное определение энтальпии и с помощью соотношений Максвелла, а знаменатель по определению
- 3. Далее выразим $(\frac{\partial V}{\partial T})_P$ через формулу 3=-1 и получим общий вид ЭДТ

- 4. В случае газа ВдВ, подставим значения соответствующих частных производных
- 5. Найдём температуру инверсии, приравняв $(\frac{\partial T}{\partial P})_I$ к нулю. При меньших температурах имеем охлаждение, а при больших нагрев газа при дросселировании

19 Распределение частиц идеального газа по проекциям и модулю скорости (распределение Максвелла). Наиболее вероятная, средняя и среднеквадратичная скорости. Распределение Максвеллапо энергиям

19.1 Распределение частиц идеального газа по проекциям и модулю скорости (распределение Максвелла)

Число молекул в ИГ со средней плотностью n, обладающими скоростями в интервале [v, v+dv], определяется распределением Максвелла

Интегрированием по направлениям скорости сводится к замене третьего дифференциала, что приводит к распределению по абсолютной величине скорости

19.2 Наиболее вероятная, средняя и среднеквадратичная скорости

Найдём максимум формулы распределения путём дифференцирования и приравнивания к нулю. Получим наиболее вероятную скорость частицы

Вопрос о среднем значении случайной знаковой величины бессмысленен — это ноль. Если рассматривать лишь положительные значения, то благодаря специальной формуле, получим среднюю скорость. Аналогичным образом получается среднеквадратичная скорость

19.3 Распределение Максвелла по энергиям

Для получения распределения по энергиям, достаточно заменить переменную в распределении Максвелла по скоростям

20 Среднее число молекул, сталкивающихся в единицу времени с единичной площадкой. Средняя энергия молекул, вылетающих в вакуум через малое отверстие

20.1 Среднее число молекул, сталкивающихся в единицу времени с единичной площадкой

- 1. Рассмотрим столкновения газа с неподвижной стенкой и выделим группу молекул со скоростью v плотностью dn(v)
- 2. В соответствующий телесный угол летит лишь доля молекул $\frac{d\Omega}{4\pi}$, а за время dt до поверхности долетят лишь молекулы в объёме $v_{x}Sdt=v\cos(\theta)Sdt$
- 3. Последовательно суммируем по всем углам и по все скоростям, деля промежуточный результат на Sdt, чтобы получить поток частиц (число в единицу времени и единицу площади)

20.2 Средняя энергия молекул, вылетающих в вакуум через малое отверстией

Чтобы найти эту величину, надо посчитать полную уносимую энергию и разделить её на полный поток (отношение интегралов)

21 Распределение Больцмана в поле внешних сил. Барометрическая формула

21.1 Распределение Больцмана в поле внешних сил

Поместим газ в потенциальное поле сил n=n(z). Если мы захотим посчитать среднее число частиц dN в объёме dV со скоростями в d^3v , то получим распределение Максвелла – Больцмана, где нормировочная

константа определяется из условия $\int dN = N$, с $n_0 = n(v = 0)$

21.2 Барометрическая формула

- 1. Рассмотрим цилиндрик газа в поле тяжести и запишем для него второй закон Ньютона
- 2. Вспомним основную формулу МКТ, разделим переменные и проинтегрируем
- 3. В конце перейдём от n к P и получим барометрическую формулу в произвольном потенциальном поле

22 Статистика классических идеальных систем. Микро- и макросостояния. Статистический вес. Распределение Гиббса для идеального газа (без вывода)

22.1 Статистика классических идеальных систем

Существует два постулата статистического описания больших систем:

- 1. Все разрешённые микросостояния равновероятны
- 2. Термодинамически равновесным является то микросостояние, которое реализуется наибольшим числом микросостояний, то есть является наиболее вероятным состоянием

22.2 Микро- и макросостояния

Опр *Микросостояние* Состояние системы, определяемое одновременным заданием ...

Опр Макросостояние Состояние системы, характеризуемое небольшим числом ...

Одно макросостояние мб реализовано большим числом микросостояний за счёт перестановки частиц не меняющей наблюдаемого состояния

22.3 Статистический вес

Опр Φ азовое пространство Пространство частиц, координат и импульсов системы

Если разбить всё фазовое пространство на ячейки такого объёма, что на каждую будет приходиться лишь одно микросостояние, то число состояний в объёме окажется равным $dG = \frac{d\Gamma}{\Gamma_0}$. Различные ячейки отвечают разным микросостояниям, но могут отвечать одному макросостоянию

Опр Cmamucmuueckuŭ sec Число микросостояний, реализующих данное макросостояние $G = \frac{N!}{N_1! \dots N_m!}$

22.4 Распределение Гиббса для идеального газа (без вывода)

Чтобы найти термодинамическое равновесное состояние, нужно найти условия максимума G. В этом нам поможет распределение Γ иббса

Опр Явление вырождения Случай обладания системой одной и той же энергией в ...

Опр Кратность вырождения Число состояний, обладающих одним и тем же ...

Выше предполагалось, что энергия частицы (подсистемы) пробегает дискретный набор значений, но результат можно обобщить и на непрерывный ряд значений. Для этого достаточно приписать частице значение энергии ячейке в фазовом пространстве с объёмом $d\Gamma = drdp$. В этих условиях распределение Гиббса немного изменится

23 Статистические определения энтропии и температуры. Аддитивность энтропии. Закон возрастания энтропии. Третье начало термодинамики

23.1 Статистические определения энтропии и температуры

Утв Энтропия определяется формулой Больцмана S=klnG

Пусть подсистема с энергией E находится в состоянии, близком к равновесному (энтропия максимальна со значениеS). Имеет место связь S=S(E) (если энергия меняется, то меняется и энтропия)

Опр $\mathit{Cmanucmuчec}$ cas $\mathit{memnepamypa}$ $\frac{1}{T} = \frac{dS}{dE}$ в предположении ... Отсюда можно выразить энтропию через сумму, а также, дифференциал энтропии

23.2 Аддитивность энтропии

- 1. Разобьём систему на две подсистемы. Новые микросостояния будут меняться независимо
- 2. Статвес системы равен произведению чисел способов, которым могут быть осуществлены состояния каждой новой подсистемы: $G = G_1G_2$
- 3. По свойствам логарифма, отсюда следует аддитивность энтропии, то есть энтропия системы есть сумма энтропий её подсистем

23.3 Закон возрастания энтропии

Тh Закон возрастания энтропии

Среди всех направлений эволюции системы предпочтительным является то, при котором вероятность конечного состояния оказывается наибольшей

Следствие 1 С наибольшей вероятностью энтропия замкнутой системы растёт (не убывает)

Следствие 2 В состоянии термодинамического равновесия энтропия максимальна

23.4 Третье начало термодинамики

Закон III начало ТД

- 1. При приближении к абсолютному нулю, энтропия стремится к конечному значению S_0
- 2. Все процессы при абсолютном нуле, переводящие систему из одного равновесного состояния в другое, происходят без изменения энтропии

Энтропию в нуле можно положить нулевой и использовать как предел. Третье начало (по-другому – теорема Нернста) есть экспериментальный факт, верный для всех чистых кристаллических веществ, квантовых жидкостей и газов

24 Изменение энтропии при смешении газов, парадокс Гиббса

- 1. Рассмотрим два разных смешения $\Pi\Gamma$, для чего можно использовать привычную формулу для энтропии
- 2. Запишем изменение энтропии в случае разных молекул (необратимый процесс смешения). Можно даже явно посчитать энтропию и показать её положительность
- 3. В случае одинаковых газов ничего как будто и не произошло: $\Delta S = 0$
- 4. А если газы будут совсем немного отличаться, то энтропия смешения будет ноль или не ноль? Парадокс

Парадокс разрешим. В реальности данный предельный переход не выполним: либо газы различны, либо нет, поэтому и энтропия либо > 0, либо равна 0

25 Классическая теория теплоёмкостей. Закон равномерного распределения энергии теплового движения по степеням свободы. Теплоёмкость кристаллов (закон Дюлонга—Пти)

25.1 Классическая теория теплоёмкостей

Как было выяснено с помощью распределения Максвелла, средняя энергия поступательного движения молекул есть $\frac{3}{2}kT$. В таком случае в силу наличия трёх поступательных СС получим энергию в $\frac{kT}{2}$ и теплоёмкость $\frac{k}{2}$ на одну СС. Молярная теплоёмкость будет равна $\frac{3}{2}R$

Теперь рассмотрим молекулу как ТТ с тремя главными моментами инерции и запишем её полную энергию вращательного движения. Из распределения Гиббса следует, что $\overline{w_i^2} = \frac{kT}{I_i}$, откуда полная вращательная энергия есть $\frac{3}{2}kT$. В случае линейной молекулы $(I_3=0)$ получим полную энергию kT

В случае колебательной СС из механики мы знаем, что средняя кинетическая энергия при колебаниях равна средней потенциальной. Поэтому на каждую такую СС приходится энергия $\frac{kT}{2} + \frac{kT}{2} = kT$

Итого, молекула из N атомов имеет 3N CC, из которых по три поступательные и вращательные и 3N-6 колебательных (в случае линейное молекулы 3N-5 из-за уменьшения количества колебательных CC)

25.2 Закон равномерного распределения энергии теплового движения по степеням свободы

Закон РРЭСС

Если макроскопическая система подчиняется законам классической механики, то на каждое слагаемое в энергии, квадратично зависящее от координат / скоростей молекул, приходится энергия $\frac{kT}{2}$ и теплоёмкость $\frac{k}{2}$

25.3 Теплоёмкость кристаллов (закон Дюлонга — Π ти)

Закон Дюлонга – Пти

ТТ (кристалл) представляет собой совокупность атомов, находящихся в окрестности своего п.р. В нём эти атомы могут совершать колебания в трёх направлениях, так что каждый обладает средней энергией в 3kT. Отсюда молярная теплоёмкость кристаллов $c_V=3R$

26 Зависимость теплоёмкости c_V газов от температуры. Возбуждение и замораживание степеней свободы, характеристические температуры

26.1 Зависимость теплоёмкости c_V газов от температуры

График зависимости выглядит плавно-ступенчато, с разрывами ближе к нулю и последней ступенькой в $(10^3K; \frac{7}{2}R)$

26.2 Возбуждение и замораживание степеней свободы, характеристические температуры

Поступательные СС появляются T=0K (при всех положительных температурах). Вращательные СС появляются при $T\sim 100K$. Колебательные СС появляются при $T\sim 1000K$

Характеристические температуры берутся из квантовой механики и связаны с энергией молекулы, жёсткостью связи и приведённой массой

27 Флуктуации в термодинамических системах. Влияние флуктуаций на чувствительность измерительных приборов (на примере пружинных весов)

27.1 Флуктуации в термодинамических системах

- Опр Флуктуация Случайное отклонение физической величины от её среднего значения
- Опр Среднеквадратичная флуктуация Среднее квадрата флуктуации
- Опр Дисперсия Корень среднеквадратичного отклонения
- Опр Относительная среднеквадратичная флуктуация Отношение дисперсии к среднему

Во многих случаях флуктуации физической величины имеют гауссово распределение

27.2 Влияние флуктуаций на чувствительность измерительных приборов (на примере пружинных весов)

Рассмотрим потенциальную энергию пружинных весов. С одной стороны, она обусловлена энергией пружинки, с другой — TPPЭCC, что позволяет нам оценить флуктуацию их показаний и минимальную массу для измерения

28 Зависимость флуктуаций от числа частиц, составляющих систему. Флуктуация числа частиц в выделенном объёме

28.1 Зависимость флуктуаций от числа частиц, составляющих систему

- 1. Рассмотрим (экстенсивную) термодинамическую величину. Чтобы найти её флуктуацию, распишем среднее её квадрата для каждой подсистемы, используя статистическую независимость
- 2. Получим знакомый результат: квадрат среднего минус среднее в квадрате, то есть среднеквадратичное отклонение
- 3. Умножим в конце на число элементарных подсистем N и получим искомую флуктуацию
- 4. В случае интенсивной величины рассуждения будут похожи, однако среднее (равно как и переход от частей к целому) будет считаться по другому. Также нам предстоит сразу считать среднеквадратичное отклонение

28.2 Флуктуация числа частиц в выделенном объёме

- 1. Рассмотрим участок сосуда малого объёма ν , содержащего n частиц и посчитаем энтропию такой системы
- 2. Запишем условие равновесия такой системы (концентрация внутри участка и вне его одинакова)
- 3. Тогда можно приближённо вычислить изменение энтропии, разложив её по формуле Тейлора
- 4. Отсюда следует, что искомая флуктуации числа частиц есть \sqrt{n}

29 Связь вероятности флуктуации и энтропии системы. Флуктуации температуры в заданном объёме. Флуктуация объёма в изотермическом и адиабатическом процессах

29.1 Связь вероятности флуктуации и энтропии системы

Вероятность пропорциональна $\exp\left(\frac{\Delta P\Delta V - \Delta T\Delta S}{2kT}\right)$

29.2 Флуктуации температуры в заданном объёме

- 1. Пусть система отделена от внешней среды жёсткой (V=const) теплопроводящей оболочкой. Запишем среднеквадратичное отклонение энергии системы (результат выводится через статсуммы)
- 2. Пусть в результате флуктуаций в подсистему поступило количество теплоты δQ . Тогда $\delta T = \frac{\delta Q}{c_V}$, откуда, с учётом определения c_V , найдём и среднеквадратичное отклонение температуры

29.3 Флуктуация объёма в изотермическом и адиабатическом процессах

- 1. Введём силу, действующую на газ под поршнем в изотермическом процессе с одной стороны как ΔPS (с использованием частной производной), а с другой подобно пружинке, чью жёсткость выразим через равенство потенциальной и температурной энергий
- 2. Выразим среднеквадратичное отклонение объёма как S^2x^2
- 3. Воспользуемся постоянством температуры, выразим нужную частную производную
- 4. Подставляем и находим нужную среднеквадратичную флуктуацию
- 5. В адиабатическом процессе отличие будет лишь в виде частной производной (вместо PV=const теперь $PV^{\gamma}=const$)

30 Столкновения. Эффективное газокинетическое сечение. Длина свободного пробега. Частота столкновений молекул между собой

30.1 Столкновения. Эффективное газокинетическое сечение

Опр Эффективное газокинетическое сечение молекулы Площадь поперечного ...

Молекулы провзаимодействуют, если центр какой-либо молекулы попадёт в этот цилиндр. Формулы немного отличается для случая, когда молекула движется в среде из молекулы другого размера

30.2 Длина свободного пробега

В цилиндре, закреплённом за каждой молекулой, находится по $\sigma \lambda n$ частиц. Хотя бы одно столкновение произойдёт, если эта величина станет равна единице При желании можно найти время свободного пробега (поделить длину на скорость) и относительно уточнить данную формулу

30.3 Частота столкновений молекул между собой

Найдём частоту столкновений f_i одной молекулы с другими. Если в единице объёма находится n молекул, то всего будет произведено $\frac{1}{2}nf$ столкновений. Данное число можно выразить как через микро-, так и через макропараметры

31 Диффузия: закон Фика, коэффициент диффузии. Дифференциальное уравнение одномерной диффузии. Коэффициент диффузии в газах

31.1 Диффузия: закон Фика, коэффициент диффузии. Дифференциальное уравнение одномерной диффузии

Опр Cped ияя скорость течения газа $\overline{u} = \frac{1}{N} \sum_i v_i$

Суммирование производится по всем молекулам в единице объёма

Опр Плотность потока $\overline{j} = n\overline{u}$

Опр Диффузия Неравновесный процесс пространственного перераспределения ...

Опр Относительная концентрация компонентов $c_i = \frac{n_i}{n}, n = \sum_i n_i$

Закон Фика

В обычном случае применяется коэффициент диффузии, но если n=const, то имеем взаимную диффузию и соответствующий коэффициент. Также существуют поправки в случае ненулевой скорости течения газов: $j_1 + j_2 = n\overline{u}$. В трёхмерном случае вводится градиент концентрации

Вышесказанное позволяет записать дифференциальное уравнение (одномерной диффузии)

Опр *Самодиффузия* Диффузия частиц в среде из частиц того же сорта ...

Этот процесс можно изучать только если часть частиц как-то помечена

31.2 Коэффициент диффузии в газах

Теперь найдём значение коэффициента диффузии через рассмотрение переноса молекул вдоль оси. Сравнивая полученное выражение с законом Фика, получим $D=\frac{1}{3}\overline{v}\lambda$; при желании, его можно расписать по-подробнее

32 Теплопроводность: закон Фурье, коэффициент теплопроводности. Дифференциальное уравнение одномерной теплопроводности. Коэффициент теплопроводности в газах

32.1 Теплопроводность: закон Фурье, коэффициент теплопроводности

Опр $\mathit{Теплопроводность}$ Неравновесный процесс, вид передачи тепла от более ...

Опр Плотность потока тепла q Количество тепловой энергии, пересекающей ...

Поток тепла направлен в сторону убывания температуры (это обуславливает знак минус)

Закон Фурье

В обычном случае применяется коэффициент теплопроводности. В трёхмерном случае вводится градиент температуры

Вышесказанное позволяет записать дифференциальное уравнение (одномерной теплопроводности)

Иногда использую коэффициент температуропроводности $a=\frac{\varkappa}{c_V}$, где c_V – теплоёмкость вещества на единицу объёма

32.2 Коэффициент теплопроводности в газах

Теперь найдём значение коэффициента теплопроводности через рассмотрение переноса тепла вдоль оси в условии перемещения газа как целого $(N_{up}=N_{down})$. Для этого надо записать энергию одной молекулы в фиксированной точке (используя c_V^1). Получим непонятное выражение для потока и перейдём к градиенту температур. Сравнивая полученное выражение с законом Фурье, получим $\varkappa=\frac{1}{3}n\overline{v}\lambda c_V=nc_V^mD$; при желании, его можно расписать по-подробнее