CS6890 HW02

Jonathan Arndt

July 16 2017

Transform the following LP into the standard form.

- minimize $z = 2x_1 3x_2 + 5x_3 + x_4$ subject to
 - 1. $-x_1 + 3x_2 x_3 + 2x_4 \le -12$
 - 2. $5x_1 + x_2 + 4x_3 x_4 \ge 10$
 - $3. \ 3x_1 2x_2 + x_3 x_4 = -8$
 - 4. $x_1, x_2, x_3, x_4 \ge 0$

Only \leq inequalitites. Multiply 2. by -1. $-5x_1 - x_2 - 4x_3 + x_4 \leq 10$

To transform a minimization problem to a maximization problem, multiply the objective function by -1. $z = -2x_1 + 3x_2 - 5x_3 - x_4$

Transform = inequality by turning it into two inequalities with 3..

 $3x_1 - 2x_2 + x_3 - x_4 \le -8$ and $-3x_1 + 2x_2 - x_3 + x_4 \le 8$

Becomes:

- maximize $z = -2x_1 + 3x_2 5x_3 x_4$ subject to
 - 1. $-x_1 + 3x_2 x_3 + 2x_4 \le -12$
 - 2. $-5x_1 x_2 4x_3 + x_4 \le 10$
 - 3. $3x_1 2x_2 + x_3 x_4 \le -8$
 - 4. $-3x_1 + 2x_2 x_3 + x_4 \le 8$
 - 5. $x_1, x_2, x_3, x_4 \ge 0$

Nick's Furniture, LLC produces two types of wooden chairs - A and B. The manufacture of chair A requires 2 hours of assembly time and 4 hours of finishing. Chair B requires 3 hours to assemble and 3 hours to finish. The company estimates that next week 72 hours will be available for assembly operations and 108 hours for finishing. The unit profits for chairs A and B are \$10 and \$9, respectively. It is also estimated that the maximum demand for chair B will be 16. Formulate an LP model and solve it graphically to answer the question of what is the optimal product mix for the company next week.

Becomes:

- maximize $z = 10x_1 + 9x_2$ subject to
 - 1. $2x_1 + 3x_2 \le 72$
 - $2. \ 4x_1 + 3x_2 \le 108$
 - 3. $x_1 \ge 0, x_2 \ge 16$

With corner points being: $(0.24)=216,(0.16)=144,(\frac{40}{3},16)=\frac{832}{3}\approx 277$

Thus the maximum solution is: $x_1 = \frac{40}{3}, x_2 = 16$

- minimize $z = 4x_1 + 5x_2$ subject to
 - 1. $3x_1 + 2x_2 \le 24$
 - 2. $x_1 \ge 5$
 - $3. \ 3x_1 x_2 \le 6$
 - 4. $x_1, x_2 \ge 0$

With corner points being: $(5,9)=65, (4,6)=46, (5,\frac{9}{2})=\frac{85}{2}=22.5$

Thus the minimum solution is: $x_1 = 5, x_2 = \frac{9}{2}$

- minimize $z = x_1 4x_2$ subject to
 - 1. $x_1 + x_2 \le 12$
 - $2. -2x_1 + x_2 \le 4$
 - 3. $x_2 \le 8$
 - 4. $x_1 3x_2 \le 4$
 - 5. $x_1, x_2 \ge 0$

With corner points being: (0,0)=0,(4,0)=4,(0,4)=-16,(2,8)=-30,(4,8)=-28,(10,2)=2

Thus the minimum solution is: $x_1 = 2, x_2 = 8$

- maximize $z = 6x_1 + 8x_2$ subject to
 - 1. $x_1 + 4x_2 \le 16$
 - $2. \ 3x_1 + 4x_2 \le 24$
 - $3. \ 3x_1 4x_2 \le 12$
 - 4. $x_1, x_2 \ge 0$

With corner points being: $(0,0)=0, (0,4)=32, (4,0)=24, (4,3)=48, (6,\frac{1}{2})=40$

Thus the maximize solution is: $x_1 = 4, x_2 = 3$

- maximize $z = x_1 + 2x_2$ subject to
 - 1. $-2x_1 + x_2 \le 2$
 - $2. \ 2x_1 + 5x_2 \ge 10$
 - 3. $x_1 4x_2 \le 2$
 - 4. $x_1, x_2 \ge 0$

With corner points being: $(0,2)=4, (\frac{50}{13}, \frac{6}{13})=\frac{62}{13}, (\infty, \infty)=\infty$

Thus the maximize solution is: $x_1 = \infty, x_2 = \infty$

Given the polyhedral set $S = (x1, x2)|x1 + x2 \le 10, -x1 + x2 \le 6, x1 - 4x2 \le 0.$

- Find all extreme points of S.
- Represent the point x = (2, 4) as a convex combination of the extreme points.

$$\begin{pmatrix} 1 & 1 & 10 \\ -1 & 1 & 6 \end{pmatrix} \text{ Then } (x_1, x_2) = (2, 8)$$

$$\begin{pmatrix} 1 & 1 & 10 \\ 1 & 4 & 0 \end{pmatrix} \text{ Then } (x_1, x_2) = (8, 2)$$

$$\begin{pmatrix} -1 & 1 & 6 \\ 1 & 4 & 0 \end{pmatrix} \text{ Then } (x_1, x_2) = (-8, -2)$$

$$(2,4) = x_1(2,8) + x_2(8,2) + x_3(-8,-2)$$

$$\begin{cases}
2x_1 + 8x_2 - 8x_3 = 2 \\
8x_1 + 2x_2 - 2x_3 = 4 \\
x_1 + x_2 + x_3 = 1
\end{cases}$$

Row reducing leads to $(x_1,x_2,x_3)=(\frac{7}{15},\frac{1}{3},\frac{1}{5})$ The point as a convex combination of the exteme points is: $(2,4)=\frac{7}{15}(2,8)+\frac{1}{3}(8,2)+\frac{1}{5}(-8,-2)$

Let S1 and S2 be convex sets. Is S1 \cap S2 convex? Is S1 \cup S2 convex? You can either state your answers as proofs or, if you do not feel comfortable with proofs, justify your answers with a few sentences.

Yes for intersection and no for union.

No for union because imagine 2 circles (which are convex sets) union then there will exist a piece that can't connect on top of each circle.