02_03_Silver-staining-DNA-in-PAA-gels

FREITAG, 14.5.2021

Goal-Setting

• Post-electrophoresis staining of a PAA gel in a sensitive silver stain

Terms / abbreviations

- PAA = Polyacrylamide
- STP = Sodium thiosulphate pentahydrate
- RT = Room temperature

Risk areas

- Wear acetic gloves when dealing with acids
- Mix solutions under fume hood

Required materials and / or information

- Chemicals:
 - o Acetic acid CH₃COOH, Carl Roth
 - o Formaldehyde CH₂O, Merck
 - o MilliQ water, Sartorius arium pro VF
 - Silver nitrate AgNO₃, Merck in toxic cabinet!
 - o Sodium thiosulphate pentahydrate Na₂S₂O₃, Sigma-Aldrich
 - Sodium Carbonate Na₂CO₃, AppliChem
- Materials:
 - Six 250 mL glass bottles, Labsolute
 - Waste bottles (if needed)
 - Measuring cylinder
 - Spatula
 - o Plastic staining tray

Templates, devices, software

- Analysis balance, Kern ABJ 220-4NM
- Ice bath or fridge
- Platform rocker, Heidolph DUOMAX 1030

Preliminary work

- 02_02_Performing-PAA-gel-electrophoresis
- 01_03_Performing-agarose-gel-electrophoresis

Operation

Preparation of all solutions

- 1. Fixer solution
 - a. Dilute 7.5% glacial acetic acid with deionized water (4.5 mL in 60 mL water)
 - b. Storage at RT
 - c. Caution: Avoid inhaling the vapor
- 2. Formaldehyde solution
 - a. 9 mL formaldehyde is added with 51 mL deionized water to 60 mL
 - b. Solution must be made fresh!
 - c. Formaldehyde is inactivated when cooling, so only use at RT
 - d. Caution: Components of this solution are toxic, handle and dispose of with care
- 3. Silver solution
 - a. Dissolve 0.06 g silver nitrate in 60 mL deionized water
 - b. Solution must be made fresh!
- 4. STP stock solution
 - a. Dissolve 0,312 g STP in 50 mL water
 - b. Solution must be made fresh!
- 5. Developer solution
 - a. Dissolve 1.8 g sodium carbonate in 60 mL deionized water
 - b. Solution must made fresh and used at 8 °C
- 6. Developer stop solution
 - a. Dilute 7.5% glacial acetic acid with deionized water (4.5 mL in 60 mL water)
 - b. Storage at RT
 - c. Caution: Avoid inhaling the vapor

Nucleic acid fixation

- 1. Place the gel into the staining tray
- 2. Add fixer solution and rock on a platform for 5-10 min
 - a. Longer times for thicker gels up to 30 min
 - b. Fixation is important to immobilize the DNA molecules in the acrylamide gel matrix to avoid diffusion and subsequent image blurring.
- 3. Carefully decant the solution, taking care not to damage the gel or touch the gel surface
- 4. To wash the gel, pour MilliQ water to cover the gel, rock the staining tray for 2 min
- 5. Decant solution and wash for two more times (total 3 washes)

Formaldehyde pre-treatment

- 1. Add formaldehyde solution to the gel and rock for 5-10 min
 - a. For thicker gels use up to 30 min
 - b. Formaldehyde pre-treatment is important for stain sensitivity and maximum image contrast
- 2. Decant solution

Silver impregnation

- 1. Add sufficient silver solution to cover the gel in the staining tray to a depth of ~5 mm
- 2. Gently rock the staining tray continuously on a platform rocker for 20 min
 - a. The recommended silver concentration cannot be reduced without affecting sensitivity and contrast. A careful examination of silver impregnation times showed that optimal staining was achieved after ~20 min. However, as little as 10 min is sufficient for high-quality staining without significant loss of sensitivity. Impregnation times can be increased up to ~60 min, butgreater than ~90 min can cause severe image loss.
- 3. Following silver impregnation, carefully decant the solution, taking care not to damage the gel or touch the gel surface

- a. Caution: The silver solution is toxic and should be disposed of with care. Avoid spilling the solution, as it will permanently stain most surfaces.
- 4. Rinse residual silver solution from the surface of the gel by rinsing with ~100 mL of deionized water for 5-10 seconds
 - a. Do not rinse the gel longer than 15 s, as this step removes silver from the gel

Image development

- 1. Add STP stock solution at rate of 50 µL per 100 mL to the developer solution
 - a. Cool this mix by putting it into a 4 °C refrigerator before usage
 - b. Low temperature slows the kinetics of development and avoids overdevelopment
- 2. Add sufficient developer solution to cover the gel in the staining tray and rock for 3 min
- 3. Decant the developer carefully

Stopping the image development

- 1. Add sufficient developer stop solution to cover the gel in the staining tray to a depth of ~5 mm.
 - a. The developer stop solution must be cooled to 4 °C before usage
- 2. Allow the gel to sit in developer stop solution for 5-10 min
- 3. Decant the developer stop solution and rinse the gel with deionized water
- 4. Photograph the gel
- 5. Store the gel (optional)
 - a. Polyacrylamide gels can be hung from a corner using an 'alligator clip' to dry overnight
 - b. Store the dried gel in a commercially available 'zip-lock' plastic bag.

Disposal

- Observe all federal, state and local environmental regulations
- Here: Formaldehyde solution must be disposed in black canister in electrophoresis room
- Here: Silver solution must be disposed in the iAMB

Troubleshooting

- Decreasing Na₂CO₃ concentration below the recommended levels causes higher background staining and poor image contrast. Poor staining can also result from the use of low quality or old (stale) reagents.
- The developer stop solution contains 7.5% CH₃COOH. Higher CH₃COOH concentrations can cause image fading and should be avoided.

Sources

 Jeffery, E. D. (2007). Method for full protein sequence mapping: Lc-ms sample preparation. Protocol Exchange. Advance online publication. https://doi.org/10.1038/nprot.2007.33

Follow-up work

• 04_07_Documentation-with-BioRad-Photographer