Aprendizado Profundo 1

Funções de Ativação e Funções de Custo

Professor: Lucas Silveira Kupssinskü

Agenda

- Funções de Ativação
 - Características Desejadas
 - Derivadas
 - Potenciais problemas
- Funções de Custo
 - Derivação a partir de máxima verossimilhança
 - Função de Custo vs Tarefa
 - Função de Custo vs Camada de Saída
- Métricas de Avaliação

Perceptron Multicamadas

- As funções de ativação são colocadas em cada unidade e exercem função diferente dependendo da camada na qual estão posicionadas
- A função de custo é computada (usualmente) na última camada e guia o processo de otimização
- Usualmente a tarefa que vamos resolver restringe nossas escolhas de Loss e de ativação na última camada da rede
- As pré-ativações da última camada são chamadas de logits (principalmente em problemas de classificação)

Hidden Layer

Output Layer

Funções de Ativação

- São aplicadas na pré-ativação
- Nas camadas ocultas são responsáveis por adicionar "não linearidades"
- Na camada de saída, usualmente são escolhidas conforme a tarefa
- Idealmente devem ser:
 - contínuas
 - diferenciáveis

Funções de Ativação

- Podem atuar individualmente em unidades
- Podem atuar em todas as unidades da camada

Função Sigmoid

•
$$\varphi(z) = \sigma(z) = \frac{1}{1 + e^{-z}}$$

• $\sigma'(z) = \sigma(z) (1 - \sigma(z))$

•
$$\sigma'(z) = \sigma(z)(1 - \sigma(z))$$

Função tanh

•
$$\varphi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}} = 2\sigma(2z) - 1$$

• $\varphi'(z) = 1 - (\sigma(z))^2$

$$\bullet \ \varphi'(z) = 1 - \big(\sigma(z)\big)^2$$

Problemas

 Você consegue pensar em um problema que essas derivadas podem trazer na descida de gradiente?

Problemas

- Os gradientes tendem a diminuir drasticamente conforme a entrada se afasta de 0.
- Dissipação de Gradiente

ReLU

Rectified Linear Unit

•
$$\varphi(x) = \max(0, x)$$

$$\bullet \ \varphi'(x) = \begin{cases} 0, x \le 0 \\ 1, x > 0 \end{cases}$$

- Vantagens:
 - Não satura
 - Gradientes não dissipam
- Problemas:
 - Relu pode "morrer"

SoftPlus

•
$$\varphi(x) = \begin{cases} \frac{1}{\beta} \ln(1 + e^{\beta x}), x \le k \\ x, x > k \end{cases}$$

- $\varphi'(x) = \sigma(x)$
 - Para $\beta = 1$
- k é um threshold, tipicamente 20

• ReLU porém mais "suave"

Leaky ReLU (Parametric ReLU)

Leaky Rectified Linear Unit

•
$$\varphi(x) = \max(\alpha x, x)$$

•
$$\varphi'(x) = \begin{cases} \alpha, x \le 0 \\ 1, x > 0 \end{cases}$$

- Tipicamente $\alpha = 0.01$
- Vantagens:
 - Não satura
 - Gradientes não dissipam
 - Não "morre" como a ReLU
- Problemas:
 - O aprendizado para pré-ativações negativas tende a ser ruim
 - O gradiente pequeno α pode tornar o processo de aprendizado demorado

ELU

• Exponential Linear Unit

•
$$\varphi(x) = \begin{cases} \alpha(e^x - 1), x < 0 \\ x, x \ge 0 \end{cases}$$

$$\bullet \varphi'(x) = \begin{cases} \alpha(e^x - 1) + \alpha, x \le 0\\ 1, x > 0 \end{cases}$$

SELU

Scaled Exponential Linear Unit

•
$$\varphi(x) = \begin{cases} \lambda \alpha (e^x - 1), x < 0 \\ \lambda x, x \ge 0 \end{cases}$$

Swish

- $\varphi(x) = x\sigma(\beta x)$
- $\varphi'(x) = \beta x \sigma(\beta x) + (\sigma(\beta x)(1 \beta \sigma(\beta x)))$
- Função com limite inferior mas sem limite superior
- Permite que valores negativos pequenos sejam uteis no aprendizado
- Zera valores negativos com grande magnitude (pode gerar representação esparsa)
- Criada por pesquisadores da google, aparentemente gera resultados melhores do que as demais

Linear ©

- $\varphi(x) = x$
- $\varphi'(x) = 1$
- Não adiciona não-linearidades
- Não é limitada abaixo e acima

Funções de Ativação

- Podem atuar individualmente em unidades
- Podem atuar em todas as unidades da camada

Softmax

•
$$\varphi(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}}$$

• Essa função de ativação age em toda a camada simultaneamente, transformando as pré-ativações em números positivos cujo somatório é igual a 1 (termo normalizador no denominador)

- São usadas para avaliar o quão próximas as saídas da rede estão do ground truth
- Para definir funções de custo vamos mudar nossa forma de compreender a saída do nosso modelo
 - Ao invés de considerarmos um modelo $f[x, \theta]$, que computa uma saída \hat{y} a partir da entrada x, vamos pensar que o modelo trabalha com uma probabilidade condicional
 - $\Pr(y|x)$ sobre todas as saídas possíveis y, condicionado pelo vetor de atributos x
- Vejamos exemplos do que essa mudança de paradigma implica

- Tarefa de regressão: $y \in \mathbb{R}$
- A Loss deve tentar maximizar a probabilidade da distribuição condicional $\Pr(y|x)$ a partir dos x correspondentes

- Tarefa de classificação : $y \in \{1,2,3,4\}$
- Usamos uma distribuição discreta (Bernouli ou Multinouli) Pr(y|x) e nosso modelo tenta fazer uma predição do "histograma sobre as classes"

• Outras tarefas podem demander parametrização de outras distribuições

• Como fazer um modelo (rede neural) do tipo $f[x, \theta]$ computar uma distribuição de probabilidades?

- Como fazer um modelo (rede neural) do tipo $f[x, \theta]$ computar uma distribuição de probabilidades?
 - Escolhemos uma distribuição paramétrica que está definida no mesmo domínio de y e usamos a rede para computar os parâmetros dessa distribuição
 - Por exemplo: em um problema de regressão nós podemos definir uma gaussiana univariada, usar a rede para estimar μ e considerar a variância como um termo desconhecido

- Com nossa mudança na forma de ver o modelo, nossa saída são os parâmetros de uma distribuição de probabilidade sobre os dados de entrada
- Vamos tentar maximizar a verossimilhança

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \left[\prod_{i=1}^{N} \Pr[y^{(i)}, f(x^{(i)}, \theta)] \right]$$

Vamos tentar maximizar a verossimilhança

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \left[\prod_{i=1}^{N} \Pr[y^{(i)}, f(x^{(i)}, \theta)] \right]$$

- Essa formulação traz duas assunções de forma implícita
 - Assumimos que $(x^{(i)}, y^{(i)})$ são igualmente distribuídos
 - Assumimos que cada atributo x_j é independente
- Em outras palavras: i.i.d. ©

Mas maximizar a verossimilhança é igual a maximizar a log verossimilhança

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \left[\prod_{i=1}^{N} \Pr[y^{(i)}, f(x^{(i)}, \theta)] \right]$$

$$= \underset{\theta}{\operatorname{argmax}} \left[\log \left[\prod_{i=1}^{N} \Pr[y^{(i)}, f(x^{(i)}, \theta)] \right] \right]$$

$$= \underset{\theta}{\operatorname{argmax}} \left[\sum_{i=1}^{N} \log \left[\Pr[y^{(i)}, f(x^{(i)}, \theta)] \right] \right]$$

Por que?

• Log é uma função monotônica crescente

• Por convenção, queremos minimizar uma função de custo e não maximizar
$$\hat{\theta} = \operatorname*{argmax}_{\theta} \left[\sum_{i=1}^{N} \log [\Pr[y^{(i)}, f(x^{(i)}, \theta)]] \right]$$

$$= \underset{\theta}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left[\Pr[y^{(i)}, f(x^{(i)}, \theta)] \right] \right]$$

$$= \underset{\theta}{\operatorname{argmin}} [L[\theta]]$$

- Escolha uma distribuição de probabilidade sobre o domínio da variável alvo y que seja parametrizada por ϕ .
- Faça sua rede neural $f[x, \theta]$ estimar um ou mais desses parâmetros ϕ
 - De modo que $\phi = f[x, \theta]$ e $\Pr(y|\phi) = \Pr(y|f[x, \theta])$
- Treinar o modelo significa encontrar os parâmetros da rede $\hat{\theta}$ que minimizam a log verossimilhança negativa sobre os dados de treinamento $\{x^{(i)}, y^{(i)}\}$:

$$\widehat{\theta} = \underset{\theta}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left[\Pr[y^{(i)}, f(x^{(i)}, \theta)] \right] \right] = \underset{\theta}{\operatorname{argmin}} [L[\theta]]$$

• Para fazer uma predição, retorne o valor máximo ou a distribuição toda para uma nova instância \boldsymbol{x}

Exemplo 1 – Regressão

Exemplo 1 – Regressão

Passo 1: Escolher a distribuição

Exemplo 1 – Regressão

Passo 1: Escolher a distribuição

$$\Pr(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right]$$

Exemplo 1 – Regressão

Passo 2: Rede neural vai estimar a média da gaussiana

$$\Pr(y|\mathbf{f}[\mathbf{x},\boldsymbol{\theta}],\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(y-\mathbf{f}[\mathbf{x},\boldsymbol{\theta}])^2}{2\sigma^2}\right]$$

Exemplo 1 – Regressão

Passo 3: Essa é a Loss, temos que treinar o modelo

• Mas podemos deixar ela mais bonita ©

$$\hat{\theta} = \operatorname{argmin}_{\theta} \left[-\sum_{i=1}^{N} \log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{(y - f[x, \theta])^2}{2\sigma^2} \right] \right] \right]$$

Exemplo 1 – Regressão

Passo 3: Essa é a Loss, temos que treinar o modelo

- Mas podemos deixar ela mais bonita 😊
 - Aplicamos uma identidade de logaritmos

$$\hat{\theta} = \operatorname{argmin}_{\theta} \left[-\sum_{i=1}^{N} \left[\log \left[\frac{1}{\sqrt{2\pi\sigma^2}} \right] - \frac{(y - f[x, \theta])^2}{2\sigma^2} \right] \right]$$

Exemplo 1 – Regressão

Passo 3: Essa é a Loss, temos que treinar o modelo

- Mas podemos deixar ela mais bonita 😊
 - Removemos um termo que não tem relação aos parâmetros

$$\hat{\theta} = \operatorname{argmin}_{\theta} \left[-\sum_{i=1}^{N} \left[-\frac{(y - f[x, \theta])^2}{2\sigma^2} \right] \right]$$

Exemplo 1 – Regressão

Passo 3: Essa é a Loss, temos que treinar o modelo

- Mas podemos deixar ela mais bonita 😊
 - Multiplicação por -1 pode sair do somatório
 - A divisão pela variância pode ser considerada uma constante e removida da expressão pois ela não influencia nos pontos de mínimo e máximo

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \left[\sum_{i=1}^{N} (y - f[x, \theta])^{2} \right]$$

Exemplo 1 – Regressão

- Essa é a Loss dos mínimos quadrados (L2_loss)
 - segue naturalmente das assunções que as instâncias são independentes e amostradas de uma gaussiana univariada

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \left[\sum_{i=1}^{N} (y - f[x, \theta])^{2} \right]$$

Exemplo 1 – Regressão

essão
$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \left[\sum_{i=1}^{N} (y - f[x, \theta])^2 \right]$$

$$\sum_{i} (y_i - f[x_i, \phi])^2 = 0.19$$

Exemplo 1 – Classificação Binária

Passo 1: Escolher a distribuição

Exemplo 1 – Classificação Binária

Passo 1: Escolher a distribuição

Bernoulli

$$\Pr(y|\lambda) = \begin{cases} 1 - \lambda, \ y = 0 \\ \lambda, \ y = 1 \end{cases} = (1 - \lambda)^{1 - y} \lambda^y$$

Exemplo 1 – Classificação Binária

Passo 2: A rede vai estimar o λ

$$Pr(y|\lambda) = (1 - f[x, \theta])^{1-y} f[x, \theta]^{y}$$

Exemplo 1 – Classificação Binária

Passo 2: A rede vai estimar o λ

• $\lambda \in [0,1]$, para garantir isso vamos passar a saída da rede em uma sigmoid

$$Pr(y|\lambda) = (1 - \sigma(f[x, \theta]))^{1-y} \sigma(f[x, \theta])^{y}$$

Exemplo 1 – Classificação Binária

Passo 3: Essa é a Loss, temos que treinar o modelo

• Mas podemos deixar ela mais bonita 😊

$$\hat{\theta} = \operatorname{argmin}_{\theta} \left[\sum_{i=1}^{N} -\log \left[\left(1 - \sigma(f[x, \theta]) \right)^{1 - y^{(i)}} \sigma(f[x, \theta])^{y^{(i)}} \right] \right]$$

Exemplo 1 – Classificação Binária

Passo 3: Essa é a Loss, temos que treinar o modelo

• Mas podemos deixar ela mais bonita 😊

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \left[\sum_{i=1}^{N} -\log \left[\left(1 - \sigma(f[x, \theta]) \right)^{1 - y^{(i)}} \sigma(f[x, \theta])^{y^{(i)}} \right] \right]$$

$$= \underset{\theta}{\operatorname{argmin}} \left[\sum_{i=1}^{N} \left[-\left(1 - y^{(i)} \right) \log \left(1 - \sigma(f[x, \theta]) \right) - \left(y^{(i)} \right) \log \left(\sigma(f[x, \theta]) \right) \right] \right]$$

Exemplo 1 – Classificação Binária

Passo 3: Essa é a Entropia Binária Cruzada (BCE Loss)

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \left[\sum_{i=1}^{N} \left[-\left(1 - y^{(i)}\right) \log\left(1 - \sigma(f[x, \theta])\right) - \left(y^{(i)}\right) \log\left(\sigma(f[x, \theta])\right) \right] \right]$$

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \left[\sum_{i=1}^{N} \left[-\left(1 - y^{(i)}\right) \log\left(1 - \sigma(f[x, \theta])\right) - \left(y^{(i)}\right) \log\left(\sigma(f[x, \theta])\right) \right] \right]$$

- Repare que a pré-ativação da última camada é uma função piecewise linear
- Depois da ativação as saídas estão transformadas para a faixa de 0 a 1

Loss vs Função de Ativação

 Ao utilizar um framework como PyTorch devemos ter atenção em como as funções de custo estão implementadas

BCEWITHLOGITSLOSS

CLASS torch.nn.BCEWithLogitsLoss(weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None) [SOURCE]

This loss combines a *Sigmoid* layer and the *BCELoss* in one single class. This version is more numerically stable than using a plain *Sigmoid* followed by a *BCELoss* as, by combining the operations into one layer, we take advantage of the log-sum-exp trick for numerical stability.

The unreduced (i.e. with reduction set to 'none') loss can be described as:

```
L_c = \{l_{1,c}, \dots, l_{N,c}\}^\top, \quad l_{n,c} = -w_{n,c} \left[p_c y_{n,c} \cdot \log \sigma(x_{n,c}) + (1-y_{n,c}) \cdot \log(1-\sigma(x_{n,c}))\right]
>>> target = torch.ones([10, 64], dtype=torch.float32) # 64 classes, batch size = 10
>>> output = torch.full([10, 64], 1.5) # A prediction (logit)
>>> pos_weight = torch.ones([64]) # All weights are equal to 1
>>> criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
>>> criterion(output, target) # -log(sigmoid(1.5))
tensor(0.20...)
```

BCELOSS &

CLASS torch.nn.BCELoss(weight=None, size_average=None, reduce=None, reduction='mean') [SOURCE]

Creates a criterion that measures the Binary Cross Entropy between the target and the input probabilities:

The unreduced (i.e. with reduction set to 'none') loss can be described as:

$$L = \{l_1, \dots, l_N\}^{\top}, \quad l_n = -w_n \left[y_n \cdot \log x_n + (1 - y_n) \cdot \log (1 - x_n) \right]$$

```
>>> m = nn.Sigmoid()
>>> loss = nn.BCELoss()
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> output = loss(m(input), target)
>>> output.backward()
```

Loss vs Função de Ativação

BCEWITHLOGITSLOSS

CLASS torch.nn.BCEWithLogitsLoss(weight=None, size_average=None, reduce=None, reduction='mean', pos_weight=None) [SOURCE]

This loss combines a *Sigmoid* layer and the *BCELoss* in one single class. This version is more numerically stable than using a plain *Sigmoid* followed by a *BCELoss* as, by combining the operations into one layer, we take advantage of the log-sum-exp trick for numerical stability.

The unreduced (i.e. with reduction set to 'none') loss can be described as:

```
L_c = \{l_{1,c}, \dots, l_{N,c}\}^\top, \quad l_{n,c} = -w_{n,c} \left[p_c y_{n,c} \cdot \log \sigma(x_{n,c}) + (1-y_{n,c}) \cdot \log(1-\sigma(x_{n,c}))\right]
>>> target = torch.ones([10, 64], dtype=torch.float32) # 64 classes, batch size = 10 >>> output = torch.full([10, 64], 1.5) # A prediction (logit) >>> pos_weight = torch.ones([64]) # All weights are equal to 1 >>> criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight) >>> criterion(output, target) # -log(sigmoid(1.5)) tensor(0.20...)
```

- Trabalha nos logits não normalizados
- Possui um parâmetro para peso da classe positiva

BCELOSS &

```
CLASS torch.nn.BCELoss(weight=None, size_average=None, reduce=None, reduction='mean') [SOURCE]
```

Creates a criterion that measures the Binary Cross Entropy between the target and the input probabilities:

The unreduced (i.e. with reduction set to 'none') loss can be described as:

$$L = \{l_1, \dots, l_N\}^\top, \quad l_n = -w_n \left[y_n \cdot \log x_n + (1 - y_n) \cdot \log(1 - x_n) \right]$$
>>> m = nn.Sigmoid()
>>> loss = nn.BCELoss()
>>> input = torch.randn(3, requires_grad=True)
>>> target = torch.empty(3).random_(2)
>>> output = loss(m(input), target)
>>> output.backward()

- Trabalha na saída de uma sigmoid
- Não possui um parâmetro para peso da classe positiva

Loss vs Tarefa vs Ativação

- Multiclass
 - Existem mais de duas classes e elas são mutuamente exclusivas
- Multilabel
 - Existem mais de um rótulo e eles não são mutuamente exclusivos

1. Dog

2. Cat

3. Mouse

4. Human

1. Dog

2. Cat

3. Mouse

4. Human

Métricas de Avaliação

- Regressão
 - MSE
 - MAE
 - R²
- Classificação
 - Acurácia
 - Recall
 - Precision
 - $f\beta$ _score

Métricas de Avaliação - Regressão

•
$$MSE = \frac{\sum_{i=1}^{N} (\hat{y}^{(i)} - y^{(i)})^2}{N}$$

•
$$MAE = \frac{\sum_{i=1}^{N} |\hat{y}^{(i)} - y^{(i)}|}{N}$$

•
$$R^2 = \frac{\sum_{i=1}^{N} (y^{(i)} - \hat{y}^{(i)})^2}{\sum_{i=1}^{N} (y^{(i)} - \bar{y}^{(i)})^2}$$

Métricas de Avaliação - Classificação

•
$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

•
$$Recall = \frac{TP}{TP + FN}$$

•	Precision =		TP
		_	$\overline{TP+FP}$

• f. score -	$=(1+\beta^2)*$	Precision*Recall
β_{β} score –		$\overline{\beta^2*Precision+Recall}$

		Valor Predito		
		Sim	Não	
	Sim	Verdadeiro Positivo	Falso Negativo	
[a]		(TP)	(FN)	
Real	Não	Falso Positivo	Verdadeiro Negativo	
		(FP)	(TN)	

TLDR

Para Camada de Saída

- Regressão
 - Uma unidade Linear
- Classificação
 - Binária
 - Uma unidade Sigmoid
 - Multilabel
 - Uma unidade por label Sigmoid
 - Multiclass
 - Uma unidade por classe Softmax

Referências:

- Sugere-se **FORTEMENTE** a leitura de:
 - Capítulo 5: Understanding Deep Learning
 - https://udlbook.github.io/udlbook/