אמינות רשתות

פרויקט חלק ב'

בעבודה זו יש לכתוב תוכנה שמאפשרת להעריך אמינות של רשת על ידי שימוש בעבודה זו יש לכתוב הוכנה Destruction Spectrum .

הרשת מוגדרת על ידי תנאים הבאים.

- .1. הרשת לא מכוונת.
- .2 הצלעות לא אמינות, הקודקודים אמינים.
- .Terminal Connectivity הוא UP הקריטריון של 3

התוכנה צריכה לבצע את הסעיפים הבאים.

- עם מספר איטרציות איטרציות, עם מספר איטרציות, לחשב איטרציות, לחשב (1) איטרציות איטרציות איטרציות (1) איטרציות (1) איטרציות (1) איטרציות (1)
- של את האמינות הנ"ל, לחשב הנ"ל, לחשב את בכל אחד מ-Destruction Spectrum הנ"ל, לחשב את בכל על ידי שימוש בכל אחד מ-Destruction Spectrum הבאים: רשת עבור ערכים של p הבאים:
 - .0.99 ,0.95 ,0.9 ,0.8 ,0.7 ,0.6 ,0.5 ,0.4 ,0.3 ,0.2 ,0.1
- .Crude Monte Carlo עבור אותה אמינות לחשב של p, לחשב ערכים של עבור אותה רשת עבור אותם ערכים של (M=1000, 10000, 50000).
- עבות אמינות האמינות Destruction Spectra 10 לקבל אחד מהם, לחשב את עבור עבור Destruction Spectra עבור לקבל אחד מהם, לחשב טעות יחסית של החישובים. p=0.95 עבור
- עבור 2009 את אמינות לחשב את לחשב לרוde Monte Carlo בעזרת עבור 10 אבור (5) עבור עבור אחשב טעות יחסית של החישובים. לחשב טעות יחסית של החישובים.
 - (6) צריך להציג את התוצאות בצורה הבאה:

Table 1
Destruction Spectra

Destruction Spectru					
i	M=1000	M=10000	M=50000		
	f_{i}	f_{i}	f_{i}		
1					
2					
3					
n					

Table 2 *R*(*N*; *p*) (Destruction Spectrum)

p	M=1000	M=10000	M=50000
	R	R	R
0.1			
0.2			
0.9			
0.95			

Table 3 R(N; p) (CMC) (as the Table 2)

Table 4 R(N; p = 0.95)

i	Destruction Spectrum	CMC
	$R_i(N; p = 0.95)$	$R_i(N; p = 0.95)$
1		
2		
9		
10		
	r.e.=	r.e.=

Figure 4.2: The dodecahedron network