Lec 12/2

Friday, December 2, 2016 9:08 AM

Definition f is analytic at a if $f(x) = \sum_{n=0}^{\infty} c_n(x-a)^n$ for |x-a| < R for power series.

If f is analytic at a $C_n = \frac{f^{(n)}(a)}{n!}$

If 16-a/2R, then we can form the taylor series for f about b.

$$\int_{1}^{(m)} (x) = \sum_{n=m}^{\infty} \frac{n!}{(n-m)!} c_n (x-a)^n \qquad \text{for all } x \in (n-R, a+R).$$

We can plug in x=b and form the power series That way: $\frac{2^{m}}{m!} \left(\frac{m}{b}\right)^{m} (x-b)^{m}$

Theorem (recentering) if f is analytic at α and taylor series at a has radius R (>0) and |b-a| < R, then f is analytic at b and the Taylor series at b has a radius of convergence $R_b > R-1b-a1$

Remark Rb

R+1a-bl since exchanging a and b would get a nother recentering thronon turny.

Examples of Recentering:

(1) Geom. Series:
$$\frac{1}{1-\chi} = \sum_{h=0}^{\infty} \chi^{h}$$
 $\alpha = 0$.

Let $|b| < 1$ $u = \chi - b$, $\chi = u + b$, $\frac{1}{1-\chi} = \frac{1}{1-b-u} = \frac{1}{1-b} \frac{1}{1-\frac{u}{1-b}}$

Provided $|u| < 1-b$, $|u|$

(2) exponential series:
$$e^x = e^b e^{x-b} = e^b \sum_{n=0}^{\infty} \frac{(x-b)^n}{n!} = \sum_{n=0}^{\infty} \frac{e^b}{n!} (x-b)^n$$

(3) Trigonometriz Series:
$$Cos(x) = cos(b+x-b)$$

$$= cos(b) cos(x-b) - sin(b) sin(x-b)$$

$$= cos(b) cos(cos(x-b) - sin(b) sin(x-b)$$

$$= cos(cos(x-b) - sin(b) sin(x$$

Silmilarly, can do something like this for sin(x).

We needed to know that \(\frac{1}{2} \cappa_{\text{cr}} \continuous \text{was continuous within interval of convergence.}

General Context for proving this: notion of Uniform convergence:

Definition Let $A \subseteq \mathbb{R}$ and suppose that $f_n: A \to \mathbb{R}$ n=0,1,2,... and $f: A \to \mathbb{R}$. We say that $\{f_n\}$ converges uniformly to f and if $\forall g>0$, $\exists N$ s.t. $\forall n>N, x \in A$, $|f(x)-f_n(x)| < q$.

Contrast this with pointwise convergence: we say that f_n converges pointwise to f on A if $\forall x \in A$, $\forall z > 0$, $\exists N$ s.t. $\forall n > N$ $|f(x) - f_n(x)| < 2$.

Example of pointwise convergence which is not unitarm: Let A = [0,1], $f_n(x) = x^n$, $f(x) = \S 0$ for $x \in [0,1]$ $f_n(x) = \lim_{n \to \infty} x^n = f(x)$ $\forall x$.

Proposition: Let \tilde{Z} ($m(x-a)^m$ be a power series w. R > 0.

Then for any closed finite interval [b, c] (a-R, a+R)

The partial sums
$$\left\{S_{n}(x) = \sum_{m=1}^{n} c_{m}(x \cdot a)^{m}\right\}$$
 converge uniformly to $\sum_{m=0}^{\infty} c_{m}(x - a)^{m}$ on $[b, c]$.

Proof: Let I be the furthest from a of b and c.

Proposition is a special case of:

Theorem (Weierstrass m test): If $|f_m(x)| \leq M_m$ for all $x \in A$ and $\sum_{m=0}^{\infty} M_m$ (unverges (absolutely), then $\left\{ \sum_{m=0}^{\infty} f_m(x) \right\}$ converges uniformly to $\sum_{m=0}^{\infty} f_m(x)$.

Proof: $\left|\sum_{m=0}^{\infty} f_m(x) - \sum_{m=0}^{\infty} f_m(x)\right| = \left|\sum_{m=n+1}^{\infty} f_m(x)\right| \leq \sum_{m=n+1}^{\infty} M_m < \varepsilon$ for n large enough. $\left(\sum_{m=0}^{\infty} f_m(x) - \sum_{m=0}^{\infty} f_m(x)\right) = \left|\sum_{m=n+1}^{\infty} f_m(x)\right| \leq \sum_{m=n+1}^{\infty} M_m < \varepsilon$ for n large enough.

theorem If &fn3 converges uniformly to f on A and f s are continuous on A.
tuen f is continuous on A.

Proof: let \$\ 200 be given. Take N st. $|f(x) - f_n(x)| \leq \frac{2}{3}$ for n > N.

Pick $n_0 > N$. Since f_n is continuous at any $a \in A$, can find a \$\ >0 s.t. $|f_{n_0}(x) - f_{n_0}(a)| \leq \frac{2}{3}$ if |x - a| < 8 and $x \in A$.

Then for |x - a| < 8, $x \in A$, we have that $|f(x) - f_{n_0}(a)| \leq |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - f_{n_0}(a)| + |f_{n_0}(a) - f(a)| \leq \frac{2}{3} \times 3 = 2$.