

Module: 3D Vision

Lecture 8: 3D reconstruction from multiple views.

Voxel-based methods. Stratified methods.

Projective reconstruction.

Lecturer: Gloria Haro

Outline

- 3D reconstruction from multiple views
- Voxel-based methods
 - Shape from silhouette
 - Voxel coloring
 - Space carving
- Structure from motion.
- Stratified reconstruction.
- Projective reconstruction: Factorization method

3D reconstruction from multiple views

- Calibrated case: Multi-view stereo, Shape from X
- Non-calibrated case: Structure from motion

3D reconstruction from multiple views

- Calibrated case: Multi-view stereo, Shape from X
- Non-calibrated case: Structure from motion

Input data:

Images from different views, video sequence, images from databases, ...

3D reconstruction from multiple views

- Calibrated case: Multi-view stereo, Shape from X
- Non-calibrated case: Structure from motion

Input data:

Images from different views, video sequence, images from databases, ...

Representation of 3D shape:

Depth maps, voxels, meshes, point clouds, ...

Voxel-based methods

Problem statement

GOAL: Determine the occupancy, and eventually color, of voxels in **V**.

Image source: [S. Seitz]

Traditional approach: Visual hull

3D shape as the intersection of the back-projected silhouettes in the 3D space.

VISUAL HULL ALGORITHM

- 1. Iterate through all voxels in the volume
- 2. Project voxel to each image
- 3. If voxel projects inside silhouette in ALL views Mark the voxel as occupied

Traditional approach: Visual hull

Fails in case of incomplete (inconsistent) silhouettes.

Robust methods exist.

OBSERVATION:

Visual hull methods do not recover concavities. Methods based on the photo-consistency of color images do recover them.

Image source: [A. Ladikos]

Image source: [S. Seitz]

ALGORITHM

- 1. Iterate through the layers
- 2. Iterate through voxels in the layer
- 3. Project voxel to each image
- 4. Evaluate voxel photo-consistency
- 5. If photo-consistent
 - ► Color the voxel
 - ► Mark the image pixels (to determine voxel occlusion)

Constraint on the camera setting: if no scene point is contained within the convex hull of the camera centers the camera setting is compatible.

Examples of layered scene traversal

Image source: [S. Seitz]

The 3D shape recovery from a set of images is generally **ill-posed**: there may be multiple shapes that are consistent with the same set of images.

The 3D shape recovery from a set of images is generally **ill-posed**: there may be multiple shapes that are consistent with the same set of images. → Some sort of constraint has to be imposed

The 3D shape recovery from a set of images is generally **ill-posed**: there may be multiple shapes that are consistent with the same set of images. \rightarrow Some sort of constraint has to be imposed In particular:

- The visual hull is defined as the maximal volume consistent with all the silhouettes.
- The voxel coloring uses the ordinal visibility constraint.
- Other multi-view stereo methods look for the shape with smoothest surface
- The space carving looks for the **photo hull**: the union of all photo-consistent shapes

Image source: [S. Lazebnik]

Space Carving Algorithm

- Initialize to a volume V containing the true scene
- Choose a voxel on the current surface
- Project to visible input images
- Carve if not photo-consistent
- Repeat until convergence

Space Carving Algorithm

- Initialize to a volume V containing the true scene
- Choose a voxel on the current surface
- Project to visible input images
- Carve if not photo-consistent
- Repeat until convergence

Needs to keep track of the scene visibility

Image source: [S. Lazebnik]

Multi-view visibility ordering

Multi-view visibility orders do not exist in the general case BUT it is possible to define visibility orders that apply to a subset of the input cameras.

Multi-view visibility ordering

Multi-view visibility orders do not exist in the general case BUT it is possible to define visibility orders that apply to a subset of the input cameras.

 \rightarrow No constraints on the camera setting

Multi-view visibility ordering

Multi-view visibility orders do not exist in the general case BUT it is possible to define visibility orders that apply to a subset of the input cameras.

 \rightarrow No constraints on the camera setting

Multi-sweep space carving algorithm

Performs 6 sweeps through the volume, corresponding to the 6 principle directions (increasing and decreasing X, Y, and Z)

Image source: [Kutulakos and Seitz 2000]

Multi-view stereo methods

Volumetric methods based on an energy minimization.

They use a photo-consistency measure and sometimes combine the silhouettes information.

Multi-view stereo methods

silhouette reconstr.

stereo & silhouettes

Outline

- 3D reconstruction from multiple views
- Voxel-based methods
 - Shape from silhouette
 - Voxel coloring
 - Space carving
- Structure from motion.
- Stratified reconstruction.
- Projective reconstruction: Factorization method

Problem statement

Given a set of uncalibrated images and a set of image correspondences, compute the 3D points and the position, orientation, and calibration of the cameras (P matrices).

Image source: I. Mitsugami

Main stages of a generic SfM pipeline

Different approaches:

- Batch
 - · Direct: all views at once
 - Hierarchical
- Sequential

Hierarchical

Sequential

Images source: A. Bartoli

Outline

- 3D reconstruction from multiple views
- Voxel-based methods
 - Shape from silhouette
 - Voxel coloring
 - Space carving
- Structure from motion.
- Stratified reconstruction.
- Projective reconstruction: Factorization method

Projective ambiguity

Given a set of uncalibrated images and a set of image correspondences, compute the 3D points and the position, orientation, and calibration of the cameras (P matrices).

Image calibration contains an inherent projective ambiguity

$$\mathbf{x} = P\mathbf{X}$$
, but also $\mathbf{x} = PH^{-1}H\mathbf{X} = \widehat{P}\widehat{\mathbf{X}}$

Projective ambiguity

Projective reconstruction

Image source: [Hartley and Zisserman 2004]

Stratified reconstruction

A solution to the projective ambiguity problem is the **stratified** reconstruction.

The main steps are:

- 1. Estimate a projective reconstruction
- 2. Upgrade the previous recons. to an affine reconstruction (OPTIONAL)
- 3. Upgrade the previous recons. to a metric reconstruction

Affine ambiguity

Image source: [Hartley and Zisserman 2004]

Affine reconstruction

Similarity (or metric) ambiguity

Image source: [Hartley and Zisserman 2004]

Metric reconstruction

Image source: [Hartley and Zisserman 2004]

Outline

- 3D reconstruction from multiple views
- Voxel-based methods
 - Shape from silhouette
 - Voxel coloring
 - Space carving
- Stratified reconstruction
- Projective reconstruction: Factorization method

Projective reconstruction

Particular case of 2 views

If we estimate F we can extract two possible camera matrices:

$$P = [I \mid 0]$$
$$P' = [SF \mid e']$$

where S is any skew-symmetric matrix (such that P' has rank 3).

A good choice is: $S = [e']_x$.

The epipole may be computed from $e^{rT}F = 0$

Projective reconstruction method for 2 or more views [P. Sturm and B. Triggs 1996]

Projective equations:

$$\mathbf{x}_{j}^{i} \equiv P^{i}\mathbf{X}_{j} \qquad \longrightarrow \qquad \lambda_{j}^{i}\mathbf{x}_{j}^{i} = P^{i}\mathbf{X}_{j}$$

where j = 1, ...n denote the points, and i = 1, ...m denote the images (views)

Projective reconstruction method for 2 or more views

[P. Sturm and B. Triggs 1996]

Projective equations:

$$\mathbf{x}_{j}^{i} \equiv P^{i}\mathbf{X}_{j} \qquad \longrightarrow \qquad \lambda_{j}^{i}\mathbf{x}_{j}^{i} = P^{i}\mathbf{X}_{j}$$

where j = 1,...n denote the points, and i = 1,...m denote the images (views)

Collect all projective eq's into a matrix equation:

$$\begin{bmatrix} \lambda_{1}^{1}\mathbf{x}_{1}^{1} & \lambda_{2}^{1}\mathbf{x}_{2}^{1} & \dots & \lambda_{n}^{1}\mathbf{x}_{n}^{1} \\ \lambda_{1}^{2}\mathbf{x}_{1}^{2} & \lambda_{2}^{2}\mathbf{x}_{2}^{2} & \dots & \lambda_{n}^{2}\mathbf{x}_{n}^{2} \\ \dots & \dots & \dots & \dots \\ \lambda_{1}^{m}\mathbf{x}_{1}^{m} & \lambda_{2}^{m}\mathbf{x}_{2}^{m} & \dots & \lambda_{n}^{m}\mathbf{x}_{n}^{m} \end{bmatrix} = \begin{bmatrix} P^{1} \\ P^{2} \\ \dots \\ P^{m} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{1} & \mathbf{X}_{2} & \dots & \mathbf{X}_{n} \end{bmatrix}$$

 λ_i^i are unknown scalar factors, called **projective depths**

Projective reconstruction method for 2 or more views

[P. Sturm and B. Triggs 1996]

Projective equations:

$$\mathbf{x}_{j}^{i} \equiv P^{i}\mathbf{X}_{j} \qquad \longrightarrow \qquad \lambda_{j}^{i}\mathbf{x}_{j}^{i} = P^{i}\mathbf{X}_{j}$$

where j = 1,...n denote the points, and i = 1,...m denote the images (views)

Collect all projective eq's into a matrix equation:

$$\begin{bmatrix} \lambda_{1}^{1}\mathbf{x}_{1}^{1} & \lambda_{2}^{1}\mathbf{x}_{2}^{1} & \dots & \lambda_{n}^{1}\mathbf{x}_{n}^{1} \\ \lambda_{1}^{2}\mathbf{x}_{1}^{2} & \lambda_{2}^{2}\mathbf{x}_{2}^{2} & \dots & \lambda_{n}^{2}\mathbf{x}_{n}^{2} \\ \dots & \dots & \dots & \dots \\ \lambda_{1}^{m}\mathbf{x}_{1}^{m} & \lambda_{2}^{m}\mathbf{x}_{2}^{m} & \dots & \lambda_{n}^{m}\mathbf{x}_{n}^{m} \end{bmatrix} = \begin{bmatrix} P^{1} \\ P^{2} \\ \dots \\ P^{m} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{1} & \mathbf{X}_{2} & \dots & \mathbf{X}_{n} \end{bmatrix}$$

 λ_i^i are unknown scalar factors, called **projective depths**

Requires a set of points visible in all views!

We have

$$\underbrace{M}_{3m \times n} = \underbrace{\begin{bmatrix} P^1 \\ P^2 \\ \dots \\ P^m \end{bmatrix}}_{3m \times 4} \underbrace{\begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & \dots & \mathbf{X}_n \end{bmatrix}}_{4 \times n}$$

$$M = \mathcal{P}_M \mathcal{X}_M$$

M is called the **measurement matrix**.

M has at most rank 4 \rightarrow this suggests a factorization algorithm based on the SVD

$$M = \underbrace{U}_{3m \times n} \underbrace{D}_{n \times n} \underbrace{V}^{T}_{n \times n}$$

D should ideally have only four non-zero elements (M rank 4).

$$M = \underbrace{U}_{3m \times n} \underbrace{D}_{n \times n} \underbrace{V}^{T}$$

D should ideally have only four non-zero elements (M rank 4).

We define D_4 as the $n \times 4$ submatrix of D.

$$M = \underbrace{U}_{3m \times n} \underbrace{D}_{n \times n} \underbrace{V}^{T}$$

D should ideally have only four non-zero elements (M rank 4).

We define D_4 as the $n \times 4$ submatrix of D.

We write:

$$M = \underbrace{UD_4}_{3m \times 4} \underbrace{V_4^T}_{4 \times n}$$

where

$$UD_4 = \begin{bmatrix} P^1 \\ P^2 \\ ... \\ P^m \end{bmatrix} \qquad V_4^T = \begin{bmatrix} \mathbf{X}_1 & \mathbf{X}_2 & ... & \mathbf{X}_n \end{bmatrix}$$

Note: the factorization is not unique

Normalization of the data with a similarity transformation so that transformed points have zero mean and average distance from the origin of $\sqrt{2}$.

Apply the following similarity transformation to each image i:

$$H_{s}^{i} = \left(\begin{array}{ccc} s^{i} & 0 & -s^{i}c_{x}^{i} \\ 0 & s^{i} & -s^{i}c_{y}^{i} \\ 0 & 0 & 1 \end{array}\right)$$

where centroid $c^i = (c_x^i, c_y^i)$, and $s^i = \frac{\sqrt{2}}{\text{mean dist to } c^i}$.

Limitation: the 3D points must be visible in all the views.

ALGORITHM

- 1. Determine a subset of scene points and cameras so that the measurement matrix is completely determined.
- 2. Normalize the set of points in each image (similarity transf. H_s).
- 3. Initialize all λ_i^i (= 1 or better initialization).
- 4. Alternate rescaling the rows of the depth matrix Λ (formed by λ'_i) to have unit norm and the columns of Λ to have unit norm until Λ stops changing significantly (usually two loops).
- 5. Build the measurement matrix M.
- 6. Determine the SVD of $M = UDV^T$.
- 7. Let $\mathcal{P}_M = UD_4$ and $\mathcal{X}_M = V_4^T$.
- 8. If $\sum_{i} \sum_{i} d(x_{i}^{i}, P^{i}\mathbf{X}_{i})^{2}$ converges then stop. Otherwise let $\lambda_i^i = (P^i \mathbf{X}_i)_3$ and go to Step 4.
- 9. Unnormalize the camera matrices $(H_s^i)^{-1}P^i$.
- 10. (Triangulate and resection the non-nucleus scene points and cameras).

References

[Hartley and Zisserman 2004] R.I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2004. [Hernández and Furukawa 2013] C. Hernández and Y. Furukawa,

Multi-view stereo: A tutorial. Foundations and Trends ${\Bbb R}$ in Computer Graphics and Vision, 9 (1-2), 2013.

[K. Kutulakos and S. Seitz 2000] K. Kutulakos and S. Seitz, A theory of shape by space carving. Int. Journal of Computer Vision, 38(3) 2000.

[A. Laurentini 1994], The visual hull concept for silhouette-based image understanding, IEEE Trans. Pattern Analysis and Machine Learning, 16(2), 1994.

[S. Seitz and C. Dyer 1999] S. Seitz, and C. Dyer, Photorealistic Scene Reconstruction by Voxel Coloring. Int. Journal of Computer Vision, 35,(2) 1999.

[Snavely et al. 2007] N. Snavely, S. M. Seitz, R. Szeliski. Modeling the World from Internet Photo Collections. Int. Journal of Computer Vision, 2007.

[P. Sturm and B. Triggs 1996] P. Sturm and B. Triggs, A factorization based algorithm for multi-image projective structure and motion, European Conference on Computer Vision, 1996.