Robust Standard Errors - Solutions

Exercise

- 1. Replicate the simulation from the right panel of my plot above:
 - a. Set the seed to 4321 and generate n = 100 uniform draws for \times
 - b. Set y equal to 0.2 + 0.9 * x + error where error is a vector of independent, mean-zero normal errors with standard deviation sqrt(2 * x).
 - c. Replicate my plot and check that yours matches it.
- 2. Using \times and y, replicate my regression and F-test results from above.
- 3. Use the formulas from earlier in this lecture to compute the "classical" and "HC0" standard errors for the regression slope "by hand" based on \times and y. Check that your results match those of $\lim_{x\to 0} 1 = \lim_{x\to 0} 1 =$

Solution

Part 1

```
library(tidyverse)
set.seed(4321)

n <- 100
x <- runif(n)
error <- rnorm(n, mean = 0, sd = sqrt(2 * x))
intercept <- 0.2
slope <- 0.9
y <- intercept + slope * x + error

tibble(x, y) |>
ggplot(aes(x, y)) +
geom_smooth(method = 'lm') +
geom_point()
```

	Classical	Robust
RMSE	1.03	1.03

Part 3

```
reg <- lm(y ~ x)
uhat <- residuals(reg)
x_demeaned <- x - mean(x)
n <- length(uhat)

# Classical
sigma_sq_hat <- sum(uhat^2) / (n - 2) # two estimated parameters
var_classical <- sigma_sq_hat / sum(x_demeaned^2)
SE_classical <- sqrt(var_classical)
c(lm_robust = tidy(reg_classical) |>
filter(term == 'x') |>
pull(std.error),
by_hand = SE_classical)

lm_robust by_hand
0.378596 0.378596
```

```
# HC0
var_HC0 <- sum(uhat^2 * x_demeaned^2) / (sum(x_demeaned^2)^2)
SE_HC0 <- sqrt(var_HC0)

c(lm_robust = tidy(reg_robust) |>
filter(term == 'x') |>
pull(std.error), by_hand = SE_HC0)
```

lm_robust by_hand 0.4027311 0.4027311

Part 2

	Classical	Robust
(Intercept)	0.34	0.34
	(0.22)	(0.17)
x	0.78	0.78
	(0.38)	(0.40)
Num.Obs.	100	100
R2	0.041	0.041