

Lógica para Programação

Solução do Primeiro Teste

12 de Abril de 2012

18:30-20:00

	Para cada uma das seguintes questões, indique se é verdadeira ou falsa. Cada osta certa vale 0.5 valores e <i>cada resposta errada desconta 0.2 valores</i> .
(a)	A regra de inferência derivada conhecida por modus tollens afirma que numa prova que contém $\neg \alpha$ e $\alpha \to \beta$ se pode derivar $\neg \beta$. Resposta:
	Falsa
(b)	Uma fórmula na forma clausal corresponde a uma disjunção de conjunções de literais.
	Resposta:
	Falsa
(c)	Num BDD não ordenado podem existir caminhos com ordenações incom patíveis.
	Resposta:
	Verdadeira
(d)	As ordenações para BDDs $[P,Q,S]$ e $[R,P,S,T,Q]$ são compatíveis.
	Resposta:
	Falsa

_____ Número: ____

2. Considere a linguagem da lógica proposicional, \mathcal{L}_{LP} e a semântica da lógica proposicional, como definidas nas aulas. Suponha que o sistema dedutivo desta lógica utilizava a abordagem da dedução natural e apenas continha duas regras de inferência, a regra da premissa e a seguinte regra de inferência (Liberalização, abreviada por "Lib"): em qualquer ponto de uma prova, podemos introduzir qualquer fbf por liberalização. Diga, justificando se esta lógica é:

(a) (1.0) Sólida.

Resposta:

A lógica não é sólida pois qualquer argumento é demonstrável. Considermos o argumento inválido $(\{\alpha,\alpha\to\beta\},\neg\beta)$. A seguinte prova corresponde a uma demonstração deste argumento:

$$\begin{array}{ccc} 1 & \alpha & & \text{Prem} \\ 2 & \alpha \rightarrow \beta & & \text{Prem} \\ 3 & \neg \beta & & \text{Lib} \end{array}$$

(b) (1.0) Completa.

Resposta:

A lógica é completa pois como qualquer argumento é demonstrável, todos os argumentos válidos também são demonstráveis.

Número: _____ Pág. 2 de 8

3. (a) (0.5) Dê um exemplo de um argumento válido em que as premissas são todas falsas e a conclusão também é falsa.

Resposta:

todas as plantas são humanas todos os humanos são minerais ∴ todas as plantas são minerais

(b) (0.5) Mostre que o seu argumento é válido. Resposta:

4. (1.0) Prove o seguinte argumento usando o sistema de dedução natural da lógica proposicional. Deve usar apenas as regras de inferência básicas do sistema de dedução natural (Prem, Rep, Hip, Rei, I∧, E∧, I→, E→, I¬, E¬, I∨, E∨):

$$(\{P \to Q, P \to \neg Q\}, \neg P)$$

Resposta:

$$\begin{array}{ccccc} 1 & P \rightarrow Q & & \text{Prem} \\ 2 & P \rightarrow \neg Q & & \text{Prem} \\ 3 & & P & & \text{Hyp} \\ 4 & & P \rightarrow Q & & \text{Rei, 1} \\ 5 & & Q & & \rightarrow \text{E, (3, 4)} \\ 6 & & P \rightarrow \neg Q & & \text{Rei, 2} \\ 7 & & \neg Q & & \rightarrow \text{E, (3, 6)} \\ 8 & \neg P & & \neg \text{I, (3, (5, 7))} \end{array}$$

Número: _____ Pág. 3 de 8

5. **(1.5)** Prove o seguinte teorema usando o sistema de dedução natural da lógica proposicional. Deve usar apenas as regras de inferência básicas do sistema de dedução natural (Prem, Rep, Hip, Rei, I∧, E∧, I→, E¬, I¬, E¬, I∨, E∨):

$$\neg (P \land Q) \rightarrow (\neg P \lor \neg Q)$$

Resposta:

1
$$\neg(P \land Q)$$
 Hyp
2 $\neg(P \lor \neg Q)$ Hyp
3 $\neg(P \lor \neg Q)$ Hyp
4 $\neg(P \lor \neg Q)$ Hyp
4 $\neg(P \lor \neg Q)$ Rei, 2
6 $\neg(P \lor \neg Q)$ Rei, 2
6 $\neg(P \lor \neg Q)$ Rei, 2
7 $\neg(P \lor \neg Q)$ Rei, 2
10 $\neg(P \lor \neg Q)$ Rei, 2
11 $\neg(P \lor \neg Q)$ $\neg(P \lor \neg Q)$ $\neg(P \lor \neg Q)$ Rep, 1
13 $\neg(P \lor \neg Q)$ $\neg($

6. (0.5) Considere o conjunto $\{\alpha, \neg \beta, \alpha \rightarrow \beta\}$. Indique, caso existam, os modelos desse conjunto. Justifique a sua resposta.

Resposta:

Não existe nenhum modelo para este conjunto, dado que não existe nenhuma interpretação que torne simultaneamente α , $\neg \beta$ e $\alpha \to \beta$ verdadeiras.

- 7. Considere o conjunto de *fbf* s: $\Delta = \{\neg S \lor Q, \neg Q, P, \neg (P \lor S)\}$.
 - (a) (1.0) Mostre, recorrendo a uma tabela de verdade, que Δ não é satisfazível.

Resposta:

 Δ será satisfazível se tiver um modelo, isto é, uma interpretação que satisfaça todas as suas fórmulas. A seguinte tabela de verdade, mostra que tal nunca acontece (não há nenhuma linha em que as quatro fórmulas sejam verdadeiras):

P	Q	$\mid S \mid$	$\neg S \vee Q$	$\neg Q$	$\neg (P \lor S)$
\overline{V}	V	V	V	F	\overline{F}
V	V	F	V	F	F
V	F	V	F	V	F
V	F	F	V	V	F
F	V	V	V	F	F
F	V	F	V	F	V
F	F	V	F	V	F
F	F	F	V	V	V

(b) (1.0) Com base na tabela de verdade da alínea (a), explique porque é que se pode concluir que $P \vee S$ é consequência lógica de $\{\neg S \vee Q, \neg Q, P\}$. Justifique a sua resposta.

Resposta:

Como se pode ver pela tabela, não há nenhum modelo de $\{\neg S \lor Q, \neg Q, P\}$ que torne $P \lor S$ falsa, pois o único modelo de $\{\neg S \lor Q, \neg Q, P\}$ é a interpretação correspondente à quarta linha da tabela e, de acordo com essa interpretação, $\neg(P \lor S)$ é falso (ou seja, $P \lor S$ é verdadeiro). Outra resposta possível seria dizer que existe um teorema que diz que se α é consequência lógica de Γ sse $\Gamma \cup \neg \alpha$ não é satisfazível, pelo que fazendo $\Gamma = \{\neg S \lor Q, \neg Q, P\}$ e $\alpha = \{P \lor S\}$, estaria provado pela alínea anterior, pois provou-se que $\Delta = \Gamma \cup \neg \alpha$ não é satisfazível.

(c) (0.5) Será que $P \land \neg P$ é consequência lógica de Δ ? E $P \lor \neg P$? Justifique a sua resposta.

Resposta:

Uma fbf α é consequência lógica de um conjunto de fórmulas, se todos os modelos do conjunto de fórmulas são modelos de α . Ora dado que não há nenhum modelo para Δ , não há nenhum modelo que torne as fórmulas de Δ verdadeiras e α falso, logo ambas as fórmulas são consequência lógica de Δ (no caso de $P \vee \neg P$, seria consequência lógica de qualquer conjunto, dado tratar-se de um teorema).

8. Considere as seguintes fbfs:

$$\alpha = (P \to \neg Q) \land (P \to R) \land (P \to S) \land \neg P$$
$$\beta = \{ \{\neg P, \neg Q\}, \{\neg P, R\} \{\neg P, S\}, \{\neg P\} \}$$
$$\gamma = \{ \{\neg P\} \}$$

(a) (0.5) Será que α pode ser representada na forma clausal por β ? Justifique a sua resposta.

Resposta:

Sim, a conversão de α na forma clausal dá origem a β :

 $\begin{array}{ll} \textit{Fbf} \ \text{original} & (P \rightarrow \neg Q) \land (P \rightarrow R) \land (P \rightarrow S) \land \neg P \\ \text{Eliminação do símbolo} \rightarrow : & (\neg P \lor \neg Q) \land (\neg P \lor R) \land (\neg P \lor S) \land \neg P \\ \text{Eliminação do símbolo} \land : & \{\neg P \lor \neg Q, \neg P \lor R, \neg P \lor S, \neg P\} \\ \text{Eliminação do símbolo} \lor : & \{\{\neg P, \neg Q\}, \{\neg P, R\}, \{\neg P, S\}, \{\neg P\}\} \\ \end{array}$

(b) (0.5) Será que α pode ser representada na forma clausal por γ ?

Resposta:

Sim. Na verdade γ é uma versão simplificada de β , resultado da eliminação das cláusulas não mínimas.

9. (1.5) Usando resolução, prove por refutação que

$$\{\{P\}, \{\neg P, Q\}\} \vdash \{\{P\}, \{Q\}\}\}$$

Número: _____ Pág. 5 de 8

Resposta:

Para fazer uma prova por refutação é necessário juntar a negação da conclusão, $\{\{P\}, \{Q\}\}$, ao conjunto de premissas, $\{\{P\}, \{\neg P, Q\}\}$, e chegar à cláusula vazia.

Negação da conclusão: $\{\{P\},\{Q\}\}$ é a forma clausal da fbf $P \land Q$, cuja negação em forma clausal é $\{\{\neg P,\neg Q\}\}$.

Assim, teremos de provar a cláusula vazia a partir do conjunto $\{\{P\}, \{\neg P, Q\}, \{\neg P, \neg Q\}\}$:

1	$\{P\}$	Prem
2	$\{\neg P, Q\}$	Prem
3	$\{\neg P, \neg Q\}$	Prem
4	$\{Q\}$	Res, (1,2)
5	$\{\neg Q\}$	Res, (1,3)
6	{}	Res, (4,5)

10. Considere o seguinte DAG:

(a) **(0.5)** Qual a *fbf* que é directamente mapeada nesse DAG? **Resposta:**

$$\neg\neg(A \land B) \land \neg((A \land B) \land B)$$

(b) **(1.0)** Usando o algoritmo de propagação de marcas, mostre (indicando na figura) que essa *fbf* não é satisfazível. Justifique a sua resposta.

Resposta:

Encontrou-se uma contradição (passo 6) pelo que a fórmula não é satisfazível.

Número: _____ Pág. 6 de 8

(c) **(1.0)** Negue a fórmula anterior. **Sem fazer mais cálculos**, indique o que poderá concluir em relação à sua satisfazibilidade. Justifique a sua resposta.

Resposta:

Se a fórmula original era contraditória, então a fórmula negada será uma tautologia (logo satisfazível).

11. **(1.0)** Considerando a seguinte ordem entre os símbolos de proposição $A \prec C \prec B$, aplique o algoritmo DP à seguinte fórmula na forma clausal $\{\{A, \neg B\}, \{B, \neg C\}, \{\neg A\}, \{C\}\}$. Caso a fórmula seja satisfazível, encontre uma testemunha.

Resposta:

$$b_A \colon \{A, \neg B\}, \{\neg A\}$$

$$b_C \colon \{\neg C, B\}, \{C\}$$

$$b_B \colon \{\neg B\}, \{B\}$$

Dado que aplicando resolução a $\{\neg B\}$ (obtido aplicando resolução ao balde b_A) e $\{B\}$ (obtido aplicando resolução ao balde b_C) chegamos ao conjunto vazio (contradição), a fórmula não é satisfazível, pelo que não existe nenhuma testemunha.

12. Considere a árvore binária que se segue, associada à *fbf* α :

(a) (0.5) Indique na figura quais os rótulos de cada nó da árvore resultantes da aplicação do algoritmo *rotula*.

Resposta:

(b) **(0.5)** De acordo com os rótulos calculados na alínea anterior, apresente o OBDD resultante da aplicação do algoritmo *compacta*.

Resposta:

(c) (1.5) Considere agora o seguinte OBDD, correspondente à $\mathit{fbf}\ \beta$. Calcule, usando o algoritmo aplica , o OBDD correspondente à $\mathit{fbf}\ \alpha \to \beta$. indique os cálculos efectuados.

Resposta:

O OBDD resultante é:

Justificação:

(d) (1.0) Sem fazer novos cálculos indique qual seria o OBDD associado à $fbf \ \neg \beta$. Justifique a sua resposta.

Resposta:

Bastaria trocar os valores lógicos das folhas do OBDD β .

