

Project 1

For CS 453 Cloud Data Management Washington State University Vancouver, Washington

Tyler Bounds 11258134 tyler.bounds@wsu.edu
Stephen Brown 11466405 stephen.p.brown@wsu.edu
Chris Hight 11483028 chris.hight@wsu.edu

Date: 10/7/2016

Part 1: Data Modeling

Key/Value Model

The key value model uses a key to search for a specific section in a table and returns the rest of the table relating to the key that was initially searched.

- CSV = Freeway_detectors
 - Key = detectorID
 - Values = highwayID, milePost, locationText, detectorClass, laneNumber, stationID
- CSV = Freeway_loopdata
 - Key = detectorid
 - Values = starttime, volume, speed, occupancy, status, dqflags
- CSV = Freeway stations
 - Key = stationid
 - Values = highwayid, milepost, locationtext, upstream, downstream, stationclass, numberlanes, latlon, length
- CSV = Highways
 - Key = highwayID
 - Values = shortDirection, direction, highwayName

Document Model

For all data files, we would use a JSON file to organize the data. Depending on the database used the document setup may have an object ID or a key.

Highways.csv

In the case of Highway.csv, every object's key would be highwayid and values would be shortdirection, direction, and highwayname. Some databases like MongoDB may use a hashvalue as well which was added into the example. Here is an example of what it would look like:

Freeway_stations.csv

In the case of Freeway_stations.csv, every object's key would be stationid and values would be highwayid, milepost, locationtext, upstream, downstream, stationclass, numberlanes, latlon, length.

Freeway loopdata.csv

In the case of Highway.csv, every object's key would be detectorid and values would be starttime, volume, speed, occupancy, status, dqflags.

Freeway_detectors.csv

In the case of Highway.csv, every object's key would be highwayID and values would be shortDirection, direction, highwayName.

Column Data Model

For a basic data model, the database is a collection of key/value pairs, and the key consists of 3 parts: a row key, a column key, and a timestamp. This is a flexible schema which means the set of columns isn't fixed, and may differ row-to-row. The column key consists of two parts: a column family and a qualifier.

- CSV = Freeway detectors
 - o Time = timestamp
 - o RowID = ID number
 - ColumnIDs = detectorid, highwayid, milePost, locationText, detectorClass, laneNumber, stationID
- CSV = Freeway loopdata
 - o Time = timestamp
 - o RowID = ID number
 - o ColumnIDs = detectorid, starttime, volume, speed, occupancy, status, dqflags
- CSV = Freeway_stations
 - o Time = timestamp
 - RowID = ID number
 - ColumnIDs = stationid, highwayid, milepost, locationtext, upstream, downstream, stationclass, numberlanes, latlon, length
- CSV = Highways
 - Time = timestamp
 - RowID = ID number
 - ColumnIDs = highwayid, shortDirection, direction, highwayName

Problem 2

Describe in words or pseudo-code how you could answer the queries below:

- Count high speeds: Find the number of speeds > 100 in the data set.
 - o Key/Value
 - Using freeway_loopdata, use the key "speed" to find all values > 100, and then find number of results for the count.
 - **Document**
 - Same process as key/value model.
 - Column
 - Same process as key/value model.
 - Count all rows where the speed values are > 100 and where columnID = "speed".

- Volume: Find the total volume for the station Foster NB for Sept 21, 2011.
 - Key/Value
 - Using freeway_detectors, find all detectorids where locationtext == "Foster NB".
 - Using the result and freeway_loopdata, find and sum all volumes associated with the previously gathered detectorids and where the starttime is 9/21/2011.

Document

Same process as key/value model.

Column

- Using freeway_detectors, get all detectorids where columnID = "locationtext" and locationtext == "Foster NB"
- Using the result and freeway_loopdata, find and sum all volumes associated with the previously gathered detectorids where the starttime is 9/21/2011
- Single-Day Station Travel Times: Find travel time for station Foster NB for 5-minute intervals for Sept 22, 2011. Report travel time in seconds.
 - Key/Value
 - Using Freeway_stations, find stationID where locationtext == FosterNB
 - Using Freeway_detectors, find detectorIDs where stationID == previous result
 - Using freeway_loopdata, find all results matching detectorID found in previous result.
 - Search the data for the first five minutes based on starttime
 - Find average speed in result delivered.
 - Using length and average speed queried calculate (length/avg speed) * 3600
 - Repeat for 5 minute intervals until 24 hours is completed

Document

Same process as key/value model.

o **Column**

- Using Freeway_stations, find stationID values where columnID == locationtext and locationtext == FosterNB
- Using Freeway_detectors, find detectorID value where columnID == stationID and stationID == previous result
- Using freeway_loopdata, find all results matching detectorID found in previous result.
- Search the data for the first five minutes based on starttime
- Find average speed in result delivered.
- Using length and average speed queried calculate (length/avg speed) * 3600
- Repeat for 5 minute intervals until 24 hours is completed
- Peak Period Travel Times: Find the average travel time for 7-9AM and 4-6PM on September 22, 2011 for station Foster NB. Report travel time in seconds.

o Key/Value

- Using freeway_stations, find length for when locationtext == Foster NB
- Using freeway_detectors, find detectorid for when locationtext == Foster NB
- Using freeway_loopdata and the result from the previous query, find speed for when detectorid == the previously found detectorid and when date == 9/22/11.
- Query for data based on starttime (time >= 7:00 and <= 9:00 and >= 16:00 and <= 18:00)
- Find average speed in results returned by previous query for each time interval.
- Calculate using (length/avg speed) * 3600

Document

Same process as key/value model.

Column

- Using freeway_stations, find length for when columnID == locationtext and locationtext == Foster NB
- Using freeway_detectors, find detectorid values for when columnID == locationtext and locationtext == Foster NB
- Using freeway_loopdata and the result from the previous query, find speed for when columnID == detectorid and detectorid == the previously found detectorid and when columnid == date and date == 9/22/11.
- Query for data based on starttime (time >= 7:00 and <= 9:00 and >= 16:00 and <= 18:00)
- Find average speed in results returned by previous query for each time interval.
- Calculate using (length/avg speed) * 3600

• Peak Period Travel Times: Find the average travel time for 7-9AM and 4-6PM on September 22, 2011 for the I-205 NB freeway. Report travel time in minutes.

Key/Value

- Using highways, find highwayid where direction == NORTH
- Using freeway_stations, find detectorID where highwayid == previous result
- Using freeway_loopdata, find all data based on previous result and on starttime (date is 9/22/11, time >= 7:00 and <= 9:00 and >= 16:00 and <= 18:00)
- Find average speed and for each length in query delivered
- Get the average travel time by using sum((length)/avg(speed)) * 60

Document

Same process as key/value model.

Column

- Using highways, find highwayid where columnid == "direction" and direction == NORTH
- Using freeway_stations, find detectorID where columnid == "highwayid" and highwayid == previous result

Using freeway_loopdata, find all data based on previous result and when columnid = "starttime" and starttime == 9/22/11 between the time intervals >= 7:00 and <= 9:00 and >= 16:00 and <= 18:00)

- Find average speed and for each length in query delivered
- Get the average travel time by using sum((length)/avg(speed)) * 60
- Route Finding: Find a route from Johnson Creek to Columbia Blvd on I-205 NB using the upstream and downstream fields.
 - Key/Value
 - Using Freeway_stations find locationtext == Johnson Cr NB and downstream value.
 - Concatenate locationtext to a string variable.
 - If locationtext != Columbia Blvd 205 NB, concatenate locationtext, and using freeway_stations again based on previous results downstream result.
 - o **Document**
 - Same process as key/value model.
 - Column
 - Using Freeway_stations and columnID == locationtext find locationtext
 == Johnson Cr NB and value where columnID == downstream.
 - Concatenate locationtext to a string variable.
 - If locationtext != Columbia Blvd 205 NB, concatenate locationtext, and using freeway_stations again based on previous results downstream result.

•