```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df=pd.read_csv('/content/car[1].csv')
df
```

	Buying_Price	Maintenance_Price	No_of_Doors	Person_Capacity	Size_of_Luggage	Safety	Car_Acceptability	10-	ılı
0	vhigh	vhigh	2	2	small	low	unacc		
1	vhigh	vhigh	2	2	small	med	unacc		
2	vhigh	vhigh	2	2	small	high	unacc		
3	vhigh	vhigh	2	2	med	low	unacc		
4	vhigh	vhigh	2	2	med	med	unacc		
1723	low	low	5more	more	med	med	good		
1724	low	low	5more	more	med	high	vgood		
1725	low	low	5more	more	big	low	unacc		
1726	low	low	5more	more	big	med	good		
1727	low	low	5more	more	big	high	vgood		

1728 rows × 7 columns

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1728 entries, 0 to 1727
Data columns (total 7 columns):

-IVI			
#	Column	Non-Null Count	Dtype
0	Buying_Price	1728 non-null	object
1	Maintenance_Price	1728 non-null	object
2	No_of_Doors	1728 non-null	object
3	Person_Capacity	1728 non-null	object
4	Size_of_Luggage	1728 non-null	object
5	Safety	1728 non-null	object
6	Car_Acceptability	1728 non-null	object
dtyp	es: object(7)		
memo	ry usage: 94.6+ KB		
ape			

df.shape

(1728, 7)

df.isna().sum()

Buying_Price	0
Maintenance_Price	0
No_of_Doors	0
Person_Capacity	0
Size_of_Luggage	0
Safety	0
Car_Acceptability	0
dtype: int64	

sns.heatmap(df.isna())


```
ıl.
        Buying_Price Maintenance_Price No_of_Doors Person_Capacity Size_of_Luggage Safety Car_Acceptability
      0
                vhigh
                                   vhigh
                                                   2
                                                                    2
                                                                                  small
                                                                                           low
                                                                                                            unacc
df['Buying_Price'].value_counts()
     vhigh
              432
     high
              432
              432
     med
              432
     low
     Name: Buying_Price, dtype: int64
      5
                vhigh
                                   vhigh
                                                   2
                                                                    2
                                                                                          nıgn
                                                                                  med
                                                                                                            unacc
df['Person Capacity'].value counts()
             576
     2
             576
             576
     more
     Name: Person_Capacity, dtype: int64
df['Safety'].value_counts()
     low
             576
             576
     med
             576
     high
     Name: Safety, dtype: int64
df['No_of_Doors'].value_counts()
     2
              432
              432
              432
              432
     5more
     Name: No_of_Doors, dtype: int64
df['Maintenance_Price'].value_counts()
              432
     vhigh
              432
     high
```

```
432
    med
    low
             432
    Name: Maintenance Price, dtype: int64
column=df.columns
column
    Index(['Buying Price', 'Maintenance Price', 'No of Doors', 'Person Capacity',
            'Size of Luggage', 'Safety', 'Car Acceptability'],
          dtype='object')
for column in (df.columns):
   print ("Unique columns of", column, "\n", df[column].unique())
   print ("----")
    Unique columns of Buying Price
     ['vhigh' 'high' 'med' 'low']
     -----
    Unique columns of Maintenance_Price
     ['vhigh' 'high' 'med' 'low']
    Unique columns of No of Doors
     ['2' '3' '4' '5more']
     _____
    Unique columns of Person Capacity
     ['2' '4' 'more']
    Unique columns of Size_of_Luggage
     ['small' 'med' 'big']
     -----
    Unique columns of Safety
      ['low' 'med' 'high']
     _____
    Unique columns of Car Acceptability
     ['unacc' 'acc' 'vgood' 'good']
     -----
df['Buying_Price'].replace({'low': 0, 'med': 1, 'high': 2, 'vhigh': 3}, inplace = True)
df['Maintenance Price'].replace({'low': 0, 'med': 1, 'high': 2, 'vhigh': 3}, inplace = True)
```

```
df['No_of_Doors'].replace({'5more': 5}, inplace = True)
df['Person_Capacity'].replace({'more': 5}, inplace = True)
df['Size_of_Luggage'].replace({'small': 0, 'med': 1, 'big': 2}, inplace = True)
df['Safety'].replace({'low': 0, 'med': 1, 'high': 2}, inplace = True)
df['Car_Acceptability'].replace({'unacc': 0, 'acc': 1, 'good': 2, 'vgood': 3}, inplace = True)

df['Buying_Price']=df['Buying_Price'].astype(int)
df['No_of_Doors'] = df['No_of_Doors'].astype(int)
df['Size_of_Luggage']= df['Size_of_Luggage'].astype(int)
df['Safety']=df['Safety'].astype(int)
df['Person_Capacity']=df['Person_Capacity'].astype(int)
df['Car_Acceptability'] = df['Car_Acceptability'].astype(int)
df['Maintenance_Price']= df['Maintenance_Price'].astype(int)
```

df.dtypes

Buying_Price	int64
Maintenance_Price	int64
No_of_Doors	int64
Person_Capacity	int64
Size_of_Luggage	int64
Safety	int64
Car_Acceptability	int64
dtype: object	

df.head(5)

	Buying_Price	Maintenance_Price	No_of_Doors	Person_Capacity	Size_of_Luggage	Safety	Car_Acceptat
0	3	3	2	2	0	0	
1	3	3	2	2	0	1	
2	3	3	2	2	0	2	
3	3	3	2	2	1	0	
4	3	3	2	2	1	1	

corr=df.corr()
corr

	Buying_Price	Maintenance_Price	No_of_Doors	Person_Capacity	Size_of_Luggage	
Buying_Price	1.000000e+00	-1.356939e-15	4.191709e-15	7.886258e-16	-1.045866e-16	-4
Maintenance_Price	-1.356939e-15	1.000000e+00	7.812681e-16	1.822741e-16	8.544286e-17	-7
No_of_Doors	4.191709e-15	7.812681e-16	1.000000e+00	-9.989138e-17	-1.632846e-17	2.8
Person_Capacity	7.886258e-16	1.822741e-16	-9.989138e- 17	1.000000e+00	-1.438481e-17	7.5
Size_of_Luggage	-1.045866e-16	8.544286e-17	-1.632846e- 17	-1.438481e-17	1.000000e+00	1.92

```
plt.figure(figsize=(10,5))
sns.heatmap(corr, cmap='plasma', annot=True, linewidth=0.5)
plt.title('Correlation of car acceptability')
plt.show()
```

Correlation of car acceptability

								_	- 1.0
Buying_Price -	1	-1.4e-15	4.2e-15	7.9e-16	-1e-16	-4.1e-16	-0.28		
Maintenance_Price -	-1.4e-15	1	7.8e-16	1.8e-16	8.5e-17	-7.8e-17	-0.23		- 0.8
No_of_Doors -	4.2e-15	7.8e-16	1	-1e-16	-1.6e-17	2.8e-17	0.066		- 0.6
Person_Capacity -	7.9e-16	1.8e-16	-1e-16	1	-1.4e-17	7.6e-18	0.37		- 0.4
Size_of_Luggage -	-1e-16	8.5e-17	-1.6e-17	-1.4e-17	1	1.9e-18	0.16		- 0.2
Safety -	-4.1e-16	-7.8e-17	2.8e-17	7.6e-18	1.9e-18	1	0.44		- 0.0

sns.countplot(x='Buying_Price',data=df)

<Axes: xlabel='Buying_Price', ylabel='count'>

fig,ax=plt.subplots(1,3,sharey=True)
sns.countplot(x='Buying_Price',hue='Car_Acceptability',data=df,ax=ax[0])
sns.countplot(x='Maintenance_Price',hue='Car_Acceptability',data=df,ax=ax[1])
sns.countplot(x='Person_Capacity',hue='Car_Acceptability',data=df,ax=ax[2])

<Axes: xlabel='Person_Capacity', ylabel='count'>

fig,ax=plt.subplots(1,3,sharey=True)
sns.countplot(x='No of Doors',hue='Car Acceptability',data=df,ax=ax[0])

sns.countplot(x='Size_of_Luggage',hue='Car_Acceptability',data=df,ax=ax[1])
sns.countplot(x='Safety',hue='Car_Acceptability',data=df,ax=ax[2])

<Axes: xlabel='Safety', ylabel='count'>


```
plt.figure(figsize=(11, 8))
plt.title('Car Acceptability')
plt.pie(df['Car_Acceptability'].value_counts(), explode = (0.1, 0.05, 0.05, 0.2), labels=['Unacceptable', 'Acceptable', 'Good', 'Very Good'], shadow=True, autopc
plt.legend(title='Car Acceptability', loc='lower left')
```

<matplotlib.legend.Legend at 0x7b8da96ea4a0>

Car Acceptability

df

400 -200 -

Car_Acceptability

	Buying_Price	Maintenance_Price	No_of_Doors	Person_Capacity	Size_of_Luggage	Safety	Car_Accer
0	3	3	2	2	0	0	
1	3	3	2	2	0	1	
2	3	3	2	2	0	2	
3	3	3	2	2	1	0	
4	3	3	2	2	1	1	
1723	0	0	5	5	1	1	
1724	0	0	5	5	1	2	
1725	0	0	5	5	2	0	

x=df.iloc[:,:6]

Х

```
Buying_Price Maintenance_Price No_of_Doors Person_Capacity Size_of_Luggage Safety
                                                      2
       0
                       3
                                         3
                                                                       2
                                                                                        0
                                                                                                0
y=df['Car_Acceptability']
     1723
     1724
     1725
     1726
     1727
     Name: Car_Acceptability, Length: 1728, dtype: int64
      1727
                      \cap
                                                                       F
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=42)
x_train.shape
     (1382, 6)
x_test.shape
     (346, 6)
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
x_train=sc.fit_transform(x_train)
x_test=sc.fit_transform(x_test)
```

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from xgboost import XGBClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, AdaBoostClassifier
from sklearn.naive bayes import GaussianNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score, classification report, ConfusionMatrixDisplay
classifiers = [
    ('KNeighborsClassifier', KNeighborsClassifier()),
    ('DecisionTreeClassifier', DecisionTreeClassifier()),
    ('RandomForestClassifier', RandomForestClassifier()),
    ('GradientBoostingClassifier', GradientBoostingClassifier()),
    ('AdaBoostClassifier', AdaBoostClassifier()),
    ('SVC', SVC()),
    ('GaussianNB', GaussianNB())
result=pd.DataFrame(columns=['Classifier', 'Accuracy'])
for clf name, clf in classifiers:
   clf.fit(x train, y train)
   y pred = clf.predict(x test)
   accuracy=accuracy score(y test, y pred)
   report=classification report(y test,y pred)
   cmatrix=ConfusionMatrixDisplay.from predictions(y test,y pred)
   print("Accuracy is:",accuracy)
   print("Classification report is:",report)
   print("Confusion matrix is:",cmatrix)
   result=result.append({'Classifier': clf name, 'Accuracy': accuracy}, ignore index=True)
```

Accuracy is: 0.9 Classification r		47399	precisio	n recall	f1-score	support	
0	0.99	0.98	0.99	235			
1	0.92	0.95	0.93	83			
2	0.77	0.91	0.83	11			
3	1.00	0.76	0.87	17			
accuracy			0.96	346			
macro avg	0.92	0.90	0.90	346			
weighted avg	0.96	0.96	0.96	346			
Confusion matrix Accuracy is: 0.9			splot.conf	usion_matri>	c.Confusion	MatrixDisplay object at 0x7b8da6	
Classification r	eport is:		precisio	n recall	f1-score	support	
0	0.99	1.00	1.00	235			
1	0.97	0.90	0.94	83			
2	0.62	0.91	0.74	11			
3	1.00	0.94	0.97	17			
accuracy			0.97	346			
macro avg	0.90	0.94	0.91	346			
weighted avg	0.98	0.97	0.97	346			
<pre><ipython-input-3 <ipython-input-3<="" pre="" result="result."></ipython-input-3></pre>	Confusion matrix is: <sklearn.metricsplot.confusion_matrix.confusionmatrixdisplay 0x7b8da6!="" <ipython-input-38-db3d13d0e22f="" at="" object="">:10: FutureWarning: The frame.append method is deprecated and will be re result=result.append({'Classifier': clf_name, 'Accuracy': accuracy}, ignore_index=True) <ipython-input-38-db3d13d0e22f>:10: FutureWarning: The frame.append method is deprecated and will be re result=result.append({'Classifier': clf_name, 'Accuracy': accuracy}, ignore_index=True)</ipython-input-38-db3d13d0e22f></sklearn.metricsplot.confusion_matrix.confusionmatrixdisplay>						
Classification r	eport is:		precisio	n recall	f1-score	support	
0	1.00	1.00	1.00	235			
1	0.99	0.89	0.94	83			
2	0.59	0.91	0.71	11			
3	0.89	0.94	0.91	17			
accuracy			0.97	346			
macro avg	0.86	0.94	0.89	346			
weighted avg	0.98	0.97	0.97	346			

Confusion matrix is: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay object at 0x7b8da61 <ipython-input-38-db3d13d0e22f>:10: FutureWarning: The frame.append method is deprecated and will be reresult=result.append({'Classifier': clf_name, 'Accuracy': accuracy}, ignore_index=True)

Accuracy is: 0.9682080924855492

Classification report is:			precision	recall	f1-score	support	
	0	1.00	1.00	1.00 2	35		
	1	0.99	0.90	0.94	83		
	2	0.55	1.00	0.71	11		
	3	0.93	0.82	0.87	17		
accur	racy			0.97 3	46		
macro	avg	0.87	0.93	0.88	46		
weighted	avg	0.98	0.97	0.97	46		

Confusion matrix is: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay object at 0x7b8d959
Accuracy is: 0.8670520231213873

Classification	n report is:		precisi	ion recall	f1-score	support
0	0.90	1.00	0.95	235		
1	0.90	0.52	0.66	83		
2	0.39	0.64	0.48	11		
3	0.79	0.88	0.83	17		
accuracy			0.87	346		
macro avg	0.74	0.76	0.73	346		
weighted avg	0.88	0.87	0.86	346		

Confusion matrix is: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay object at 0x7b8d95&
<ipython-input-38-db3d13d0e22f>:10: FutureWarning: The frame.append method is deprecated and will be re
result=result.append({'Classifier': clf_name, 'Accuracy': accuracy}, ignore_index=True)
<ipython-input-38-db3d13d0e22f>:10: FutureWarning: The frame.append method is deprecated and will be re

result=result.append({'Classifier': clf_name, 'Accuracy': accuracy}, ignore_index=True)

Accuracy is: 0.9595375722543352

Classification report is:			precisio	n recall	f1-score	support
0	0.97	1.00	0.98	235		
1	0.97	0.87	0.92	83		
2	0.73	1.00	0.85	11		
3	1.00	0.82	0.90	17		
accuracy			0.96	346		
macro avg	0.92	0.92	0.91	346		

weighted avg 0.96 0.96 0.96 346

Confusion matrix is: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay object at 0x7b8d958 Accuracy is: 0.7832369942196532

Classification report is:			precision		recall	f1-score	support
0	0.88	0.93	0.90	23	5		
1	0.55	0.58	0.56	8	3		
2	0.42	0.45	0.43	1	1		
3	0.00	0.00	0.00	1	7		
accuracy			0.78	34	6		
macro avg	0.46	0.49	0.48	34	6		
weighted avg	0.75	0.78	0.76	34	6		

Confusion matrix is: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay object at 0x7b8d958 <ipython-input-38-db3d13d0e22f>:10: FutureWarning: The frame.append method is deprecated and will be reresult=result.append({'Classifier': clf_name, 'Accuracy': accuracy}, ignore_index=True)

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning _warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarninage _warn_prf(average, modifier, msg_start, len(result))

/usr/local/lib/python3.10/dist-packages/sklearn/metrics/_classification.py:1344: UndefinedMetricWarning warn prf(average, modifier, msg start, len(result))

<ipython-input-38-db3d13d0e22f>:10: FutureWarning: The frame.append method is deprecated and will be re
result=result.append({'Classifier': clf name, 'Accuracy': accuracy}, ignore index=True)

print(result)

	Classifier	Accuracy
0	KNeighborsClassifier	0.962428
1	DecisionTreeClassifier	0.971098
2	RandomForestClassifier	0.968208
3	GradientBoostingClassifier	0.968208
4	AdaBoostClassifier	0.867052
5	SVC	0.959538
6	GaussianNB	0.783237

Hence, we obtained high accuracy while using Decision Tree Classifier: 0.968208

```
model dt=DecisionTreeClassifier().fit(x train,y train)
y pred dt=model dt.predict(x test)
y_pred_dt
    array([0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 3, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1,
           1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 0, 1, 1,
           2, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 3,
           0, 1, 1, 0, 0, 0, 0, 0, 2, 3, 0, 0, 0, 0, 3, 0, 0, 1, 3, 1, 0, 1,
           3, 1, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 2, 2, 1, 0, 0, 1,
           0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 1, 0, 1, 1, 0, 2, 0, 0, 0, 0, 0,
           1, 0, 0, 1, 0, 3, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 3, 0, 0,
           0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 3, 1, 0, 1, 0, 1,
           0, 0, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,
           0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 2,
           3, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 3, 0, 0, 1, 2, 0, 1, 0, 1, 1, 0, 0,
           1, 2, 3, 1, 1, 0, 0, 0, 0, 3, 1, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 1,
           0, 0, 3, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
           0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
test check=pd.DataFrame()
test check['Actual']=y test
test check['Predicted']=y pred dt
test check.sort index()
```

	Actual	Predicted	10-	ılı
15	0	0		
23	0	0		
29	0	0		
30	0	0		
32	0	0		
1694	2	2		

High accuracy is while using Decision Tree Classifier ie, Accuracy=0.968208

....

cmatrix_dt=ConfusionMatrixDisplay.from_predictions(y_test,y_pred_dt)
cmatrix_dt

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7b8da95dfb20>

feature_names=df.columns[0: 6]
target_names=df['Car_Acceptability'].unique().tolist()

from sklearn.tree import plot_tree # tree diagram

```
plt.figure(figsize=(25, 20))
plot_tree(model_dt, feature_names = feature_names, class_names = ['Acceptable', 'Good', 'Un-acceptable', 'Very Good'], filled = True, rounded = False)
```

```
[Text(0.5982142857142857, 0.9615384615384616, 'Safety <= -0.599\ngini = 0.452\nsamples = 1382\nvalue = [975, 301, 58, 48]\nclass = Acceptable'),</pre>
 Text(0.5823412698412699, 0.8846153846153846, 'gini = 0.0\nsamples = 469\nvalue = [469, 0, 0, 0]\nclass = Acceptable'),
 Text(0.6140873015873016, 0.8846153846153846, 'Person Capacity <= -0.55\ngini = 0.577\nsamples = 913\nvalue = [506, 301, 58, 48]\nclass = Acceptable'),
 Text(0.5982142857142857, 0.8076923076923077, 'gini = 0.0\nsamples = 298\nvalue = [298, 0, 0, 0]\nclass = Acceptable'),
 Text(0.6299603174603174, 0.8076923076923077, 'Buying Price <= 0.016 \cdot 1 = 0.631 \cdot 1 
 Text(0.3869047619047619, 0.7307692307692307, 'Maintenance Price <= -0.007\ngini = 0.658\nsamples = 302\nvalue = [42, 154, 58, 48]\nclass = Good'),
 Text(0.20634920634, 0.6538461538461539, 'Safety <= 0.624\ngini = 0.688\nsamples = 147\nvalue = [8, 44, 58, 37]\nclass = Un-acceptable'),
 Text(0.0873015873015873, 0.5769230769230769, 'Size of Luggage <= -0.61\ngini = 0.544\nsamples = 77\nvalue = [4, 40, 33, 0]\nclass = Good'),
 Text(0.047619047619047616, 0.5, 'No of Doors <= -0.89 \setminus 1 = 0.26 \setminus 1 = 26 \setminus 1 
 Text(0.031746031746031744, 0.4230769230769231, 'Person Capacity <= 0.662\ngini = 0.49\nsamples = 7\nvalue = [4, 3, 0, 0]\nclass = Acceptable'),
 Text(0.015873015873015872, 0.34615384615384615, 'gini = 0.0\nsamples = 3\nvalue = [0, 3, 0, 0]\nclass = Good'),
 Text(0.047619047619047616, 0.34615384615384615, 'gini = 0.0\nsamples = 4\nvalue = [4, 0, 0, 0]\nclass = Acceptable'),
 Text(0.06349206349, 0.4230769230769231, 'gini = 0.0 \nsamples = 19 \nvalue = [0, 19, 0, 0] \nclass = Good'),
 Text(0.12698412698, 0.5, 'Maintenance Price <= -0.91\ngini = 0.457\nsamples = 51\nvalue = [0, 18, 33, 0]\nclass = Un-acceptable'),
 Text(0.09523809523, 0.4230769230769231, 'No of Doors <= -0.89 \ngini = 0.08 \nsamples = 24 \nvalue = [0, 1, 23, 0] \nclass = Un-acceptable'),
 Text(0.07936507936507936, 0.34615384615384615, 'Size of Luggage <= 0.613\ngini = 0.32\nsamples = 5\nvalue = [0, 1, 4, 0]\nclass = Un-acceptable'),
 Text(0.06349206349, 0.2692307692307692, 'gini = 0.0 \nsamples = 1 \nvalue = [0, 1, 0, 0] \nclass = Good'),
 Text(0.09523809523809523, 0.2692307692307692, 'gini = 0.0\nsamples = 4\nvalue = [0, 0, 4, 0]\nclass = Un-acceptable'),
 Text(0.15873015873015872, 0.4230769230769231, 'Buying Price <= -0.881 \cdot 10^{-1} and -0.466 \cdot 10^{-1} and 
 Text(0.14285714285, 0.34615384615384615, 'Size of Luggage <= 0.613\ngini = 0.165\nsamples = 11\nvalue = [0, 1, 10, 0]\nclass = Un-acceptable'),
 Text(0.12698412698, 0.2692307692307692, 'No of Doors <= 0.003\ngini = 0.32\nsamples = 5\nvalue = [0, 1, 4, 0]\nclass = Un-acceptable'),
 Text(0.11111111111111, 0.19230769230769232, 'Person Capacity <= 0.662\ngini = 0.5\nsamples = 2\nvalue = [0, 1, 1, 0]\nclass = Good'),
 Text(0.09523809523, 0.11538461538461539, 'gini = 0.0\nsamples = 1\nvalue = [0, 1, 0, 0]\nclass = Good'),
 Text(0.12698412698, 0.11538461538461539, 'gini = 0.0\nsamples = 1\nvalue = [0, 0, 1, 0]\nclass = Un-acceptable'),
 Text(0.14285714285, 0.19230769230769232, 'gini = 0.0\nsamples = 3\nvalue = [0, 0, 3, 0]\nclass = Un-acceptable'),
 Text(0.15873015873015872, 0.2692307692307692, 'gini = 0.0\nsamples = 6\nvalue = [0, 0, 6, 0]\nclass = Un-acceptable'),
 Text(0.1746031746031746, 0.34615384615384615, 'gini = 0.0 \nsamples = 16 \nvalue = [0, 16, 0, 0] \nclass = Good'),
 Text(0.3253968253968254, 0.5769230769230769, 'Size of Luggage <= -0.61 \cdot 1 = 0.587 \cdot
 Text(0.25396825395, 0.5, 'No of Doors <= -0.89 \cdot i = 0.442 \cdot i = 25 \cdot i = 14, 3, 18, 0\nclass = Un-acceptable'),
 Text(0.22222222222222, 0.4230769230769231, 'Person Capacity <= 0.662\ngini = 0.49\nsamples = 7\nvalue = [4, 0, 3, 0]\nclass = Acceptable'),
 Text(0.20634920634, 0.34615384615384615, 'gini = 0.0\nsamples = 3\nvalue = [0, 0, 3, 0]\nclass = Un-acceptable'),
 Text(0.23809523808, 0.34615384615384615, 'gini = 0.0 \nsamples = 4 \nvalue = [4, 0, 0, 0] \nclass = Acceptable'),
 Text(0.2857142857, 0.4230769230769231, 'Buying Price <= -0.881\ngini = 0.278\nsamples = 18\nvalue = [0, 3, 15, 0]\nclass = Un-acceptable'),
 Text(0.2698412698412698, 0.34615384615384615, 'gini = 0.0 \nsamples = 10 \nvalue = [0, 0, 10, 0] \nclass = Un-acceptable'),
 Text(0.30158730158730157, 0.34615384615384615, 'Maintenance Price <= -0.91\ngini = 0.469\nsamples = 8\nvalue = [0, 3, 5, 0]\nclass = Un-acceptable'),
 Text(0.2857142857, 0.2692307692307692, 'gini = 0.0\nsamples = 5\nvalue = [0, 0, 5, 0]\nclass = Un-acceptable'),
 Text(0.31746031746031744, 0.2692307692307692, 'gini = 0.0\nsamples = 3\nvalue = [0, 3, 0, 0]\nclass = Good'),
 Text(0.3968253968253968, 0.5, 'Size of Luggage <= 0.613\ngini = 0.299\nsamples = 45\nvalue = [0, 1, 7, 37]\nclass = Very Good'),
 Text(0.38095238095238093, 0.4230769230769231, 'No of Doors <= 0.003 \cdot 1 = 0.515 \cdot 1 = 20 \cdot 1 = 10, Text(0.38095238093, 0.4230769230769231, 'No of Doors <= 0.003 \cdot 1 = 0.515 \cdot 1 = 10
 Text(0.36507936507936506, 0.34615384615384615, 'No of Doors <= -0.89\ngini = 0.46\nsamples = 10\nvalue = [0, 1, 7, 2]\nclass = Un-acceptable'),
 Text(0.3492063492063492, 0.2692307692307692, 'gini = 0.0\nsamples = 5\nvalue = [0, 0, 5, 0]\nclass = Un-acceptable'),
```

```
Text(0.38095238093, 0.2692307692307692, 'Person_Capacity <= 0.662\ngini = 0.64\nsamples = 5\nvalue = [0, 1, 2, 2]\nclass = Un-acceptable'),
Text(0.36507936507936506, 0.19230769230769232, 'Buying Price <= -0.881\ngini = 0.444\nsamples = 3\nvalue = [0, 1, 2, 0]\nclass = Un-acceptable'),
Text(0.3492063492, 0.11538461538461539, 'gini = 0.0 \nsamples = 2 \nvalue = [0, 0, 2, 0] \nclass = Un-acceptable'),
Text(0.38095238095, 0.11538461538461539, 'gini = 0.0\nsamples = 1\nvalue = [0, 1, 0, 0]\nclass = Good'),
Text(0.3968253968253968, 0.19230769230769232, 'gini = 0.0 \times 10^{-2} = 0.0 \times 
Text(0.3968253968253968, 0.34615384615384615, 'gini = 0.0\nsamples = 10\nvalue = [0, 0, 0, 10]\nclass = Very Good'),
Text(0.4126984126984127, 0.4230769230769231, 'gini = 0.0 \nsamples = 25 \nvalue = [0, 0, 0, 25] \nclass = Very Good'),
Text(0.5674603174603174, 0.6538461538461539, 'Size of Luggage <= -0.61\ngini = 0.443\nsamples = 155\nvalue = [34, 110, 0, 11]\nclass = Good'),
Text(0.49206349206, 0.5769230769230769, 'Safety <= 0.624\ngini = 0.497\nsamples = 54\nvalue = [25, 29, 0, 0]\nclass = Good'),
Text(0.4603174603, 0.5, 'Maintenance Price <= 0.897\ngini = 0.269\nsamples = 25\nvalue = [21, 4, 0, 0]\nclass = Acceptable'),
Text(0.42857142857142855, 0.34615384615384615, 'No of Doors <= -0.89 \setminus i = 0.32 \setminus 
Text(0.4126984126984127, 0.2692307692307692, 'gini = 0.0 \times 10^{-2} | Text(0.4126984126984127) | Text(0.4126984126984127, 0.2692307692307692, 'gini = 0.0 \times 10^{-2}
Text(0.4444444444444444, 0.2692307692307692, 'gini = 0.0\nsamples = 4\nvalue = [0, 4, 0, 0]\nclass = Good'),
Text(0.4603174603174603, 0.34615384615384615, 'gini = 0.0\nsamples = 6\nvalue = [6, 0, 0, 0]\nclass = Acceptable'),
Text(0.47619047619047616, 0.4230769230769231, 'gini = 0.0\nsamples = 14\nvalue = [14, 0, 0, 0]\nclass = Acceptable'),
Text(0.5238095238095238, 0.5, 'No of Doors <= -0.89 \cdot 1 = 0.238 \cdot 1 = 29 \cdot 1 = 4, 25, 0, 0 \nclass = Good'),
Text(0.5079365079365079, 0.4230769230769231, 'Person Capacity <= 0.662\ngini = 0.49\nsamples = 7\nvalue = [4, 3, 0, 0]\nclass = Acceptable'),
Text(0.49206349206, 0.34615384615384615, 'gini = 0.0\nsamples = 3\nvalue = [0, 3, 0, 0]\nclass = Good'),
Text(0.5238095238, 0.34615384615384615, 'gini = 0.0 \nsamples = 4 \nvalue = [4, 0, 0, 0] \nclass = Acceptable'),
Text(0.5396825396825397, 0.4230769230769231, 'gini = 0.0\nsamples = 22\nvalue = [0, 22, 0, 0]\nclass = Good'),
Text(0.6428571428571429, 0.5769230769230769, 'Safety <= 0.624\ngini = 0.337\nsamples = 101\nvalue = [9, 81, 0, 11]\nclass = Good'),
Text(0.5873015873015873, 0.5, 'Size of Luggage <= 0.613\ngini = 0.3\nsamples = 49\nvalue = [9, 40, 0, 0]\nclass = Good'),
Text(0.5714285714285714, 0.4230769230769231, 'No of Doors <= 0.003\ngini = 0.453\nsamples = 26\nvalue = [9, 17, 0, 0]\nclass = Good'),
Text(0.55555555555556, 0.34615384615, 'Maintenance Price <= 0.897\ngini = 0.459\nsamples = 14\nvalue = [9, 5, 0, 0]\nclass = Acceptable'),
Text(0.5238095238, 0.2692307692307692, 'Buying Price <= -0.881 \ngini = 0.49 \nsamples = 7 \nvalue = [3, 4, 0, 0] \nclass = Good'),
Text(0.5079365079365079, 0.19230769230769232, 'gini = 0.0\nsamples = 3\nvalue = [0, 3, 0, 0]\nclass = Good'),
Text(0.5396825396825397, 0.19230769230769232, 'Person Capacity <= 0.662 \neq 0.375 = 0.375 = 4 \neq 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.375 = 0.
Text(0.5238095238, 0.11538461538461539, 'gini = <math>0.0 \times 10^{-2}), 'gini = 0.0 \times 10^{-2}
Text(0.555555555555556, 0.11538461538461539, 'No of Doors <= -0.89 \cdot 1 = 0.5 \cdot 1
Text(0.5396825396825397, 0.038461538461538464, 'gini = 0.0\nsamples = 1\nvalue = [1, 0, 0, 0]\nclass = Acceptable'),
Text(0.5714285714285714, 0.038461538461538464, 'gini = 0.0\nsamples = 1\nvalue = [0, 1, 0, 0]\nclass = Good'),
Text(0.5873015873015873, 0.2692307692307692, 'No of Doors <= -0.89 \cdot 1 = 0.245 \cdot 1 =
Text(0.5714285714285714, 0.19230769230769232, 'gini = 0.0\nsamples = 4\nvalue = [4, 0, 0, 0]\nclass = Acceptable'),
Text(0.6031746031746031, 0.19230769230769232, 'Person Capacity <= 0.662 \neq 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 = 0.444 
Text(0.5873015873015873, 0.11538461538461539, 'gini = 0.0 \times 10^{-2} = 0.0 \times 
Text(0.6190476190476191, 0.11538461538461539, 'gini = 0.0\nsamples = 1\nvalue = [0, 1, 0, 0]\nclass = Good'),
Text(0.5873015873015873, 0.34615384615384615, 'gini = 0.0\nsamples = 12\nvalue = [0, 12, 0, 0]\nclass = Good'),
Text(0.6031746031, 0.4230769230769231, 'gini = 0.0\nsamples = 23\nvalue = [0, 23, 0, 0]\nclass = Good'),
Text(0.6984126984, 0.5, 'Maintenance Price <= 0.897\ngini = 0.334\nsamples = 52\nvalue = [0, 41, 0, 11]\nclass = Good'),
Text(0.6825396825396826, 0.4230769230769231, 'Buying_Price <= -0.881 \setminus instance = 0.488 \setminus instance = 26 \setminus instance = [0, 15, 0, 11] \setminus inclass = Good'),
Text(0.6666666666666666, 0.34615384615, 'Size of Luggage <= 0.613\ngini = 0.337\nsamples = 14\nvalue = [0, 3, 0, 11]\nclass = Very Good'),
Text(0.6507936507936508, 0.2692307692307692, 'No of Doors <= 0.003\ngini = 0.5\nsamples = 6\nvalue = [0, 3, 0, 3]\nclass = Good'),
```

```
Text(0.6349206349206349, 0.19230769230769232, 'gini = 0.0\nsamples = 3\nvalue = [0, 3, 0, 0]\nclass = Good'),
Text(0.666666666666666, 0.19230769230769232, 'gini = 0.0\nsamples = 3\nvalue = [0, 0, 0, 3]\nclass = Very Good'),
Text(0.6825396825396826, 0.2692307692307692, 'gini = 0.0\nsamples = 8\nvalue = [0, 0, 0, 8]\nclass = Very Good'),
Text(0.6984126984126984, 0.34615384615384615, 'gini = 0.0\nsamples = 12\nvalue = [0, 12, 0, 0]\nclass = Good'),
Text(0.7142857142857143, 0.4230769230769231, 'gini = 0.0\nsamples = 26\nvalue = [0, 26, 0, 0]\nclass = Good'),
Text(0.873015873015873, 0.7307692307692307, 'Maintenance Price <= -0.007\ngini = 0.498\nsamples = 313\nvalue = [166, 147, 0, 0]\nclass = Acceptable'),
Text(0.7936507936507936, 0.6538461538461539, 'Safety \leq 0.624\ngini = 0.384\nsamples = 162\nvalue = [42, 120, 0, 0]\nclass = Good'),
Text(0.746031746031746, 0.5769230769230769, 'Size of Luggage <= -0.61\ngini = 0.499\nsamples = 81\nvalue = [39, 42, 0, 0]\nclass = Good'),
Text(0.7301587301587301, 0.5, 'gini = 0.0\nsamples = 27\nvalue = [27, 0, 0, 0]\nclass = Acceptable'),
Text(0.7619047619047619, 0.5, 'No of Doors <= 0.003 \cdot 10^{-2} (0.346 \cdot 10^{-2}), Text(0.7619047619047619, 0.5, 'No of Doors <= 0.003 \cdot 10^{-2}),
Text(0.746031746031746, 0.4230769230769231, 'Size of Luggage <= 0.613\ngini = 0.494\nsamples = 27\nvalue = [12, 15, 0, 0]\nclass = Good'),
Text(0.7301587301, 0.34615384615384615, 'Person Capacity <= 0.662\ngini = 0.32\nsamples = 15\nvalue = [12, 3, 0, 0]\nclass = Acceptable'),
Text(0.7142857142857143, 0.2692307692307692, 'gini = 0.0\nsamples = 8\nvalue = [8, 0, 0, 0]\nclass = Acceptable'),
Text(0.746031746031746, 0.2692307692307692, 'No of Doors <= -0.89 \cdot i = 0.49 \cdot i =
Text(0.7301587301587301, 0.19230769230769232, 'gini = 0.0\nsamples = 4\nvalue = [4, 0, 0, 0]\nclass = Acceptable'),
Text(0.7619047619047619, 0.19230769230769232, 'gini = 0.0 \nsamples = 3 \nvalue = [0, 3, 0, 0] \nclass = Good'),
Text(0.7619047619047619, 0.34615384615384615, 'gini = 0.0\nsamples = 12\nvalue = [0, 12, 0, 0]\nclass = Good'),
Text(0.7777777777778, 0.4230769230769231, 'gini = 0.0\nsamples = 27\nvalue = [0, 27, 0, 0]\nclass = Good'),
Text(0.8412698412698413, 0.5769230769230769, 'No of Doors <= -0.89\ngini = 0.071\nsamples = 81\nvalue = [3, 78, 0, 0]\nclass = Good'),
Text(0.8253968254, 0.5, 'Size of Luggage <= -0.61\ngini = 0.255\nsamples = 20\nvalue = [3, 17, 0, 0]\nclass = Good'),
Text(0.8095238095, 0.4230769230769231, 'Person Capacity <= 0.662\ngini = 0.49\nsamples = 7\nvalue = [3, 4, 0, 0]\nclass = Good'),
Text(0.7936507936507936, 0.34615384615384615, 'gini = 0.0 \nsamples = 4 \nvalue = [0, 4, 0, 0] \nclass = Good'),
Text(0.8253968253968254, 0.34615384615384615, 'gini = 0.0\nsamples = 3\nvalue = [3, 0, 0, 0]\nclass = Acceptable'),
Text(0.8412698412698413, 0.4230769230769231, 'gini = 0.0\nsamples = 13\nvalue = [0, 13, 0, 0]\nclass = Good'),
Text(0.8571428571428571, 0.5, 'gini = 0.0\nsamples = 61\nvalue = [0, 61, 0, 0]\nclass = Good'),
Text(0.9523809523809523, 0.6538461538461539, 'Buying Price <= 0.912\ngini = 0.294\nsamples = 151\nvalue = [124, 27, 0, 0]\nclass = Acceptable'),
Text(0.9365079365079365, 0.5769230769230769, 'Maintenance Price <= 0.897\ngini = 0.461\nsamples = 75\nvalue = [48, 27, 0, 0]\nclass = Acceptable'),
Text(0.9206349206349206, 0.5, 'Safety <= 0.624\ngini = 0.426\nsamples = 39\nvalue = [12, 27, 0, 0]\nclass = Good'),
Text(0.873015873015873, 0.4230769230769231, 'Size of Luggage <= -0.61\ngini = 0.499\nsamples = 21\nvalue = [11, 10, 0, 0]\nclass = Acceptable'),
Text(0.8571428571428571, 0.34615384615384615, 'gini = 0.0\nsamples = 8\nvalue = [8, 0, 0, 0]\nclass = Acceptable'),
Text(0.888888888888, 0.34615384615384615, 'Size of Luggage <= 0.613\ngini = 0.355\nsamples = 13\nvalue = [3, 10, 0, 0]\nclass = Good'),
Text(0.873015873015873, 0.2692307692307692, 'No of Doors <= -0.89 \cdot 1 = 0.5 \cdot 1 
Text(0.8571428571428571, 0.19230769230769232, 'gini = 0.0\nsamples = 2\nvalue = [2, 0, 0, 0]\nclass = Acceptable'),
Text(0.888888888888, 0.19230769230769232, 'Person Capacity <= 0.662\ngini = 0.375\nsamples = 4\nvalue = [1, 3, 0, 0]\nclass = Good'),
Text(0.873015873015873, 0.11538461538461539, 'No of Doors <= 0.449\ngini = 0.5\nsamples = 2\nvalue = [1, 1, 0, 0]\nclass = Acceptable'),
Text(0.8571428571, 0.038461538461538464, 'gini = 0.0\nsamples = 1\nvalue = [1, 0, 0, 0]\nclass = Acceptable'),
Text(0.88888888888888, 0.038461538461538464, 'gini = 0.0\nsamples = 1\nvalue = [0, 1, 0, 0]\nclass = Good'),
Text(0.9047619047619048, 0.11538461538461539, 'gini = 0.0\nsamples = 2\nvalue = [0, 2, 0, 0]\nclass = Good'),
Text(0.9047619047619048, 0.2692307692307692, 'gini = 0.0\nsamples = 7\nvalue = [0, 7, 0, 0]\nclass = Good'),
Text(0.9682539682539683, 0.4230769230769231, 'No of Doors <= -0.89\ngini = 0.105\nsamples = 18\nvalue = [1, 17, 0, 0]\nclass = Good'),
Text(0.9523809523809523, 0.34615384615384615, 'Size of Luggage <= -0.61\ngini = 0.444\nsamples = 3\nvalue = [1, 2, 0, 0]\nclass = Good'),
Text(0.9365079365079365, 0.2692307692307692, 'gini = 0.0\nsamples = 1\nvalue = [1, 0, 0, 0]\nclass = Acceptable'),
Toy+(A 0607520607520602 A 2607207607207602 | dini = A A\neamples = 2\nyalua = [A 2 A Al\nelass = Cood!\
```

```
Text(0.9841269841269841, 0.34615384615384615, 'gini = 0.0\nsamples = 2\nvalue = [0, 2, 0, 0]\nclass = Good'),

Text(0.9523809523809523, 0.5, 'gini = 0.0\nsamples = 36\nvalue = [36, 0, 0, 0]\nclass = Acceptable'),

Text(0.9682539682539683, 0.5769230769230769, 'gini = 0.0\nsamples = 76\nvalue = [76, 0, 0, 0]\nclass = Acceptable')]
```


✓ 6s completed at 4:40 PM