An Intelligent Modeling Approach to Global Ecological Footprint for Sustainability Analysis

Anagha D Ananth (2021sp93053)

01

02

Introduction

Importance and concept of Ecological Footprint and Biocapacity

01

02

Sustainability

- Wise use of resources
- It can be in terms of the environment, social responsibility, economic development etc.

01

02

Measures of Sustainability

Ecological Footprint

- The area of land that is required to regenerate the resources that have been consumed by the population in a country/region.
- Each country will have its own EF and a unique need to cater to, for increased sustainability

Biocapacity

- The ecosystems' capacity to produce biological materials used by people and to absorb waste material generated by humans, under current management schemes & extraction technologies.
- Current biocapacity of the Earth is
 1.5 global hectares per person

01

02

Problem Statement

The scale of the environmental/social challenge is enormous. We need to fundamentally change the ways things are done to achieve sustainable development. This will need to go beyond resource efficiency to changing the way things are used and made, including cradle-to-cradle processes.

01

02

Proposed Solution

- An end-to-end Machine Learning project
- To enable users learn more about the ecological footprint patterns through the following
 - Interactive Dashboard for Visualization
 - Predictive System for Future

01

ງ2

Work Completed

An update on the work that has been completed so far

01

02

1 Data Preparation

1 Retrieve the Data

01

2 Pre-process the Data

)2

3 Structure the Data

1 Retrieve the Data


```
Dissertation / 1 Country + 1 Year - get all record type values
 GET
                  https://api.footprintnetwork.org/v1/data/1/2014/all
         Authorization •
                         Headers (7)
                                                Pre-request Script
Body
      Cookies Headers (13) Test Results
  Pretty
                               Visualize
                "year": 2014,
                "shortName": "Armenia",
                "countryCode": 1,
                "countryName": "Armenia",
                "isoa2": "AM",
                "record": "AreaPerCap",
                "cropLand": 0.173327249677703,
   10
                "grazingLand": 0.403754978003192,
                "forestLand": 0.113214832372682,
   12
                "fishingGround": 0.0436064990274729,
   13
                "builtupLand": 0.0293198436261315,
   14
                "carbon": 0.0.
   15
                "score": "3A",
                "value": 0.763223402707182
   16
   17
   18
   19
                "year": 2014,
   20
                "shortName": "Armenia",
   21
                "countryCode": 1,
   22
                "countryName": "Armenia",
   23
                "isoa2": "AM",
                "record": "AreaTotHA",
   25
                "cropLand": 504800.0,
   26
                "grazingLand": 1175900.0,
```

2 Pre-process the Data

Task	Implementation
Missing values	Either removed or imputed
Duplicate data	Removed
Unnecessary features	Removed
Renaming and rearranging	Uniformly renamed and arranged

- Encoding was done to convert categoric data into numeric
- Scaling was performed on the final dataset for data normalization

Both datasets were then combined resulting in a final shape of (68810, 14)

3 Structure the Data

```
# Defining the EQF for each resource type
crop_eqf = 2.51
graze_eqf = 0.46
forest_eqf = 1.26
fishing_eqf = 0.37
carbon_eqf = 1.26
builtup_eqf = 2.51
```

Country	ISO alpha- 3 code	UN Region	UN Sub Region	Year	Record	Crop Land	 Total	GDP	Population
Cuba	011	Latin America & the Caribbean	Caribbean	2011	BioCap TotGHA	3.341	 80.821	61822.7	11398201
Cuba	011	Latin America & the Caribbean	Caribbean	2011	EcoCons TotGHA	7.193	 92.134	61822.7	11398201
Cuba	011	Latin America & the Caribbean	Caribbean	2011	EcoProd TotGHA	12.74	 72.495	61822.7	11398201
Cuba	011	Latin America & the Caribbean	Caribbean	2011	Ecolmport TotGHA	30.741	 93.10	61822.7	11398201
Cuba	011	Latin America & the Caribbean	Caribbean	2011	EcoExport TotGHA	51.482	 38.21	61822.7	11398201
Cuba	011	Latin America & the Caribbean	Caribbean	2011	BioCap PerCap	83.10	 61.39	61822.7	11398201

	country	year	record	bioTotal	ecoTotal	countryCode	bioFootprint	ecoFootprint
0	Afghanistan	1961-01-01	cropLand	4.990785e+06	1.010593e+07	002	1.252687e+07	2.536589e+07
1	Afghanistan	1961-01-01	fishingGround	0.000000e+00	9.706928e+02	002	0.000000e+00	3.591563e+02
2	Afghanistan	1961-01-01	grazingLand	6.212850e+06	1.064433e+07	002	2.857911e+06	4.896393e+06
3	Afghanistan	1961-01-01	builtupLand	2.722616e+05	5.445231e+05	002	6.833765e+05	1.366753e+06
4	Afghanistan	1961-01-01	carbon	0.000000e+00	5.596314e+05	002	0.000000e+00	7.051356e+05

Sum of all records for EcoTotGHA under each record type

Data Visualization

- Grouped by UN Region in the dataset
- Different chart typed for different scenario analysis

Forecast Modelling

EVALUATION PLOT

,	,		à	2.00				
Perferies		/	•		,			
	36"	pr.	1	pr.	70	-	*	

ML MODEL	MSE VALUE
Decision Tree	0.4423
Histogram based GBR	0.1436
Linear Boosting Regressor	0.1399
Tabular Regression	0.0061

Forecast Modelling

Tabular Regression

0.0061

- EPOCHS = 150
- BATCH_SIZE = 64
- LEARNING_RATE = 0.001
- NUM_FEATURES = len(X.columns)

train_loader = DataLoader(dataset=train_dataset, batch_size=BATCH_SIZE, shuffle=True)

Neural Network Structure

3 layer feedforward neural network with ReLU as the activation at all layers.

01

02

Web Application

Powered by

Web Application

4 Web Application

Thank You!