AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

1. (Currently amended): A method for the treatment of a host having a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering to a host in need thereof an effective amount of a compound of formula [I-a], [I-b], [I-c], [II-a], [II-b], or [II-c]:

or its β-L enantiomer or a pharmaceutically acceptable salt thereof, wherein:

each D is hydrogen, alkyl, acyl, monophosphate, diphosphate, triphosphate, monophosphate ester, diphosphate ester, triphosphate ester, phospholipid or amino acid;

each W¹ and W² is independently CH or N;

each X¹ and X² is independently hydrogen, F, Cl, Br, I, NH₂, NHR⁴, NR⁴R⁴, NHOR⁴, NR⁴NR⁴R⁴, OH, OR⁴, SH or SR⁴;

each Y¹ is O, S or Se;

each Z is CH2 or NH;

each R¹ and R^{1'} is independently hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, alkylaryl, F, Cl, Br, I, NH₂, NHR⁵, NR⁵R^{5'}, NHOR⁵, NR⁵NHR^{5'}, NR⁵NR^{5'}R^{5''}, OH, OR⁵, SH, SR⁵, NO₂, NO, CH₂OH, CH₂OR⁵, CO₂H, CO₂R⁵, CONH₂, CONHR⁵, CONR⁵R^{5'} or CN;

each R² and R^{2'} independently is hydrogen, F, Cl, Br, I, OH, SH, OCH₃, SCH₃, NH₂, NHCH₃, CH=CH₂, CN, CH₂NH₂, CH₂OH or CO₂H;

each R³ and R^{3'} independently is hydrogen, F, Cl, Br, I, OH, SH, OCH₃, SCH₃, NH₂, NHCH₃, CH₃, C₂H₅, CH=CH₂, CN, CH₂NH₂, CH₂OH or CO₂H; and

each R⁴, R⁴, R⁵, R⁵ and R⁵ independently is hydrogen, lower alkyl, lower alkenyl, aryl or arylalkyl;

such that for the nucleoside of formula [I-a], [I-b] or [I-c] at least one of R² and R² is hydrogen and at least one of R³ and R³ is hydrogen;

provided that for the nucleoside of formula [I-a], when D, R³, R² and R^{1'} are hydrogen, R^{3'} and R^{2'} are OH, Y¹ is O, and X¹ is NH₂, then R¹ is not F for the treatment of a host having abnormal cellular proliferation;

provided that for the nucleoside of formula [I-a], when D, R³, R², R¹ and R¹ are hydrogen, Y¹ is O, and X¹ is NH₂, then R² is not OH for the treatment of a host having abnormal cellular proliferation;

provided that for the nucleoside of formula [I-a], when D, R³, R², R^{2'}, [[R¹]] and R^{1'} are hydrogen, R¹ is hydrogen or methyl, Y¹ is O, and X¹ is NH₂, then R^{3'} is not OH for the treatment of a host having abnormal cellular proliferation; [[and]]

provided that for a nucleoside of formula [I-a], when D, R³, R² and R^{1'} are hydrogen, R^{3'} and R^{2'} are OH, Y¹ is O, and X¹ is OH, then R¹ is not OH for the treatment of a host having abnormal cellular proliferation;

provided that for a nucleoside of formula [I-a], when Y¹ is O, X¹ is NH₂ or NHOH, and D, R¹, and R¹′ are hydrogen, R²′ and R³′ are not simultaneously OH;

provided that for a nucleoside of formula [I-a], when Y¹ is O, X¹ is NH₂, D is hydrogen or acyl, R² is OH, R¹ and R^{1'} are hydrogen, R³ and R^{3'} are not simultaneously hydrogen;

provided that for a nucleoside of formula [I-a], when Y¹ is O, D and R^{1'} are hydrogen, R^{3'} and R² are simultaneously OH, and R¹ is hydrogen or F, X¹ is not NH₂, NHCH₃, or NHOH;

provided that for a nucleoside of formula [I-a], when Y¹ is O, X¹ is NHOH, R^{3'} is OH, R¹ is hydrogen, methyl, or F, and D and R^{1'} are hydrogen, R² and R^{2'} are not simultaneously hydrogen; and

provided that for a nucleoside of formula [I-a], when Y^1 is O, X^1 is OH, $R^{3'}$ is OH, R^1 is F, and D and $R^{1'}$ are hydrogen, R^2 and R^2 are not simultaneously hydrogen.

2. (Previously presented): The method of claim 1, wherein the β -D nucleoside of formula (I-a) is selected from one of the following:

X	Υ1	R	. R¹′.	R ²	R²	R ³	* R ³ * ,
NH ₂	O	H	H	ОН	Н	H	ОН
NH ₂	0	Н	Н	ОН	Н	Н	1
NH ₂	0	Н	Н	ОН	Н	Н	CI
NH ₂	0	Н	Н	ОН	Н	Н	Br
NH ₂	0	Н	Н	Н	CI	Н	ОН
NH ₂	0	Н	Н	Н	Br	Н	ОН
NH ₂	0	Н	Η -	Н	ОН	Br	Н
NH ₂	0	Н	Н	Н	ОН	Н	Н
NH ₂	0	Н	Н	CI	Н	Н	ОН
NH ₂	0	F	Н	ОН	Н	Н	ОН
NH ₂	0	F	Н	Н	ОН	Н	ОН
NH ₂	0	F	Н	Н	ОН	Н	Н
NH ₂	0	F	Н	Н	, OH	CI	Н
NH ₂	0	F	Н	Н	ОН	Br	Н
NH ₂	0	F	Н	Н	Cl	Н	ОН
NH ₂	0	Br	H	Н	ОН	Cl	Н
NH ₂	0	Br	Н	Н	ОН	Н	ОН
NH ₂	0	Br	Н	ОН	Н	Н	ОН
NH ₂	0	1	Н	Н	ОН	Br	Н
				***		3.00	

X 1	γ1	R!	R ¹	R ²	R ²	R³	R ³
NH ₂	0		Н	Н	CI	Н	OH
NH ₂	0	1	Н	Br	Н	Н	ОН
NH ₂	0	ОН	Н	ОН	Н	Н	ОН
NH ₂	0	NH ₂	Н	Н	ОН	Н	ОН
NH ₂	0	CH ₃	Н	Н	ОН	CI	Н
NH ₂	NH	Н	Н	ОН	Н	Н	ОН
NH-(2-Ph-	0	Н	Н	ОН	Н	Н	ОН
Et)							
NH-NH ₂	0	Н	Н	ОН	Н	Н -	ОН
NH-NH ₂	0	F	Н	ОН	Н	Н	ОН
NH-NH ₂	0	CH ₃	Н	Н	ОН	Н	ОН
NH-OH	0	Н	Н	Н	ОН	Н	ОН
NH-OH	0	F	Н	Н	ОН	Н	ОН
NH-OH	0	Br	Н	Н	ОН	Н	ОН
NH-OH	0		Н	Н	ОН	Н	ОН
NH-OH	0	Н	Н	ОН	Н	Н	ОН
ОН	0	ОН	Н	ОН	Н	Н	ОН
ОН	0	NH ₂	Н	Н	ОН	Н	ОН
ОН	0	F	Н	ОН	Н	Н	ОН
ОН	0	F	Н	Н	ОН	Н	ОН
ОН	0	F	Н	Н	Н	Н	ОН

X ¹	Y ¹	R ¹	R¹		R ²	R ³	R ³
S-CH ₃	0	Н	Н	Н	F	Н	ОН
SH	0	Н	Н	Н	ОН	Н	ОН
SH	0	F	Н	Н	ОН	Н	ОН
NH-(2-Ph-	0	Н	Н	Н	ОН	Н	ОН
Et)							
ОН	0	ОН	Н	Н	ОН	Н	ОН
ОН	0	Н	Н	Н	ОН	Н	Н

or its β -L-enantiomer or a pharmaceutically acceptable salt thereof.

3. (Previously presented): The method of claim 1, wherein the β -D nucleoside of formula (I-b) is selected from one of the following:

X ¹	X ²	W	R ²	R ²	R ³	R ³
ОН	NH ₂	N	Н	ОН	Н	ОН
ОН	NH ₂	СН	F	Н	Н	ОН
NH ₂	Н	СН	Н	OH	Н	F
NH ₂	Н	CH	Н	Н	H	Н
NH ₂	NH ₂	N	Н	ОН	Н	ОН
NH ₂	NH ₂	CH	Н	ОН	Н	ОН
CI	Н	СН	F	Н	Н	Н
CI	Н	СН	Н	ОН	Н	ОН
NH ₂	Н	СН	Н	ОН	Н	Н

\mathbf{X}^{1}	X ²	W ¹	R ²	R ²	\mathbb{R}^3	R ³
					·	
Cl	Н	СН	Н	ОН	Н	Н

or its β -L-enantiomer or a pharmaceutically acceptable salt thereof.

4. (Previously presented): The method of claim 1, wherein the β -D nucleoside of formula (II-a) is selected from one of the following:

X ¹	Υ1	R ¹	R ¹	R ²	R ³
NH-Bz-(m-NO ₂)	0	F	Н	Н	Н
NH-Bz-(o-NO ₂)	0	F	Н	Н	Н
- NH ₂	0	F	Н	F	- H

or its β-L-enantiomer or a pharmaceutically acceptable salt thereof.

5. (Previously presented): The method of claim 1, wherein the β -D nucleoside of formula (II-b) is selected from one of the following:

X	· X ²	• W¹	R ²	R ³
CI	Н	СН	F	Н
ОН	Н	СН	Н	Н
NH ₂	F	СН	Н	Н
NH ₂	F	СН	F	Н
NH ₂	Н	СН	Н	Н
ОН	NH ₂	СН	Н	Н
ОН	Н	СН	Н	Н

or its β-L-enantiomer or a pharmaceutically acceptable salt thereof.

6-34. Canceled.

35. (Currently amended): A method for the treatment of a host having a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering to a host in need thereof an effective amount of a compound of formula (XXII):

or its β-D enantiomer or a pharmaceutically acceptable salt thereof, wherein:

- each D is hydrogen, alkyl, acyl, monophosphate, diphosphate, triphosphate, monophosphate ester, diphosphate ester, triphosphate ester, phospholipid or amino acid;
- each P¹ is hydrogen, lower alkyl, lower alkenyl, aryl, arylalkyl, OH, OR⁴, NH₂, NHR⁴ or NR⁴R⁴;
- each R¹ is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, alkylaryl, F, Cl, Br, I, NH₂, NHR⁵, NR⁵R⁵, NHOR⁵, NR⁵NHR⁵, NR⁵NR⁵R⁵, OH, OR⁵, SH, SR⁵, NO₂, NO, CH₂OH, CH₂OR⁵, CO₂H, CO₂R⁵, CONH₂, CONHR⁵, CONR⁵R⁵ or CN; and each R⁴, R⁴, R⁵, R⁵ and R⁵ independently is hydrogen, lower alkyl, lower alkenyl, aryl or arylalkyl;

provided that when the host has an HCV infection and D and P¹ are hydrogen, R¹ is not hydrogen.

36. (Previously presented): A method for the treatment of a host having a *Flaviviridae, Orthomyxoviridae* or *Paramyxoviridae* viral infection or abnormal cellular proliferation comprising administering to a host in need thereof an effective amount of a compound of formula:

or its β-D enantiomer or a pharmaceutically acceptable salt thereof, wherein: each D is hydrogen, alkyl, acyl, monophosphate, diphosphate, triphosphate, monophosphate ester, diphosphate ester, triphosphate ester, phospholipid or amino acid.

37-38. Canceled.

39. (Currently amended): A method for the treatment of a host having a *Flaviviridae*, *Orthornyxoviridae* or *Paramyxoviridae* viral infection comprising administering to a host in need thereof an effective amount of a compound of formula:

or a pharmaceutically acceptable salt thereof.

40. (Currently amended): A method for the treatment of a host having a Flaviviridae, Orthomyxoviridae or Paramyxoviridae viral infection or abnormal cellular proliferation comprising administering to a host in need thereof an effective amount of a compound of formula:

or a pharmaceutically acceptable salt thereof.

41. (Currently amended): A method for the treatment of a host having a *Flaviviridae*, *Orthomyxoviridae* or *Paramyxoviridae* viral infection comprising administering to a host in need thereof an effective amount of a compound of formula:

or a pharmaceutically acceptable salt thereof.

42. (Currently amended): A method for the treatment of a host having a Flaviviridae, Orthomyxoviridae or Paramyxoviridae viral infection or abnormal cellular

proliferation comprising administering to a host in need thereof an effective amount of a compound of formula:

or a pharmaceutically acceptable salt thereof.

- 43. Canceled.
- 44. (Currently amended): A method for the treatment of a hepatitis C virus infection in a host comprising administering to a host in need thereof an effective amount of a compound according to any one of claims [[1-5]] 60-62, 64, and 65.

45-49. Canceled.

50. (Currently amended): A method for the treatment of a hepatitis C virus infection in a host comprising administering to a host in need thereof an effective amount of a β -L nucleoside of formula (XXII):

or its β-D enantiomer or a pharmaceutically acceptable salt thereof, wherein:

each D is hydrogen, alkyl, acyl, monophosphate, diphosphate, triphosphate, monophosphate ester, diphosphate ester, triphosphate ester, phospholipid or amino acid;

each P¹ is hydrogen, lower alkyl, lower alkenyl, aryl, arylalkyl, OH, OR⁴, NH₂, NHR⁴ or NR⁴R⁴;

each R¹ is hydrogen, lower alkyl, lower alkenyl, lower alkynyl, aryl, alkylaryl, F, Cl, Br, I, NH₂, NHR⁵, NR⁵R⁵, NHOR⁵, NR⁵NHR⁵, NR⁵NR⁵R⁵, OH, OR⁵, SH, SR⁵, NO₂, NO, CH₂OH, CH₂OR⁵, CO₂H, CO₂R⁵, CONH₂, CONHR⁵, CONR⁵R⁵ or CN; and each R⁴, R⁴, R⁵, R⁵ and R⁵ independently is hydrogen, lower alkyl, lower alkenyl, aryl or arylalkyl;

optionally in a pharmaceutically acceptable carrier;

provided that when D and P¹ are hydrogen, R¹ is not hydrogen.

51. (Previously presented): A method for the treatment of a hepatitis C virus infection in a host comprising administering to a host in need thereof an effective amount of a β -L nucleoside of formula:

or its β-D enantiomer or a pharmaceutically acceptable salt thereof, wherein:
each D is hydrogen, alkyl, acyl, monophosphate, diphosphate, triphosphate,
monophosphate ester, diphosphate ester, triphosphate ester, phospholipid or
amino acid;

Application No. 10/045,292

Attorney Docket No.: 09797.0004-00

optionally in a pharmaceutically acceptable carrier.

52-54. Canceled.

55. (Previously presented): A method for the treatment of a hepatitis C virus infection in a host comprising administering to a host in need thereof an effective amount of a nucleoside of formula:

or a pharmaceutically acceptable salt thereof; optionally in a pharmaceutically acceptable carrier.

56-58. Canceled

- 59. (Previously presented): The method according to claims 1, 35, or 50, wherein each R^4 , $R^{4''}$, $R^{5''}$ and $R^{5''}$ independently is unsubstituted or substituted phenyl or benzyl.
- 60. (New): A method for the treatment of a host having a *Flaviviridae* viral infection comprising administering to a host in need thereof an effective amount of a compound of formula [I-a]:

HO
$$\begin{array}{c|c}
X^{1} \\
R^{1} \\
R^{3} \\
R^{2}
\end{array}$$
[I-a]

wherein the β-D nucleoside of formula (I-a) is selected from one of the following:

X ¹	Υ!	R ¹	R ¹ **	* R ²	R ²	R ³	R ³ ' · · · ·
NH ₂	O	Н	Н	ОН	Н	H	1
NH ₂	0	Н	Н	ОН	Н	Н	Cl
NH ₂	0	Н	Н	ОН	Н	Н	Br
NH ₂	Ο	Н	Н	Н	ОН	Br	Н
NH ₂	0	Н	Н	Н	ОН	Н	Н
NH ₂	0	F	Н	Н	ОН	Н	Н
NH ₂	Ο	F	Н	Н	ОН	CI	Н
NH ₂	0	F	Н	Н	ОН	Br	Н
NH ₂	0	Br	Н	Н	ОН	CI	Н
NH ₂	0	1	Н	Н	ОН	Br	Н
NH ₂	0	CH ₃	Н	Н	ОН	CI	Н
NH-(2-Ph-Et)	0	Н	Н	ОН	Н	Н	ОН
NH-NH ₂	0	Н	Н	ОН	Н	Н	ОН
NH-NH ₂	0	F	Н	ОН	Н	Н	ОН

X ¹	Υ	R ¹	R ¹	R ²	R ²	R ³	R ³
NH-NH ₂	0	CH ₃	Н	Н	ОН	Н	ОН
NH-OH	0	Н	Н	Н	ОН	Н	ОН
NH-OH	0	F	Н	Н	ОН	Н	ОН
NH-OH	0	Br	Н	Н	ОН	Н	ОН
NH-OH	0	1	Н	Н	ОН	Н	ОН
NH-OH	0	Н	Н	ОН	Н	Н	ОН
S-CH ₃	0	Н	Н	Н	F	Н	ОН
NH-(2-Ph-Et)	0	Н	Н	Н	ОН	Н	ОН
ОН	0	Н	Н	Н	ОН	Н	Н

or its β -L-enantiomer or a pharmaceutically acceptable salt thereof.

61. (New): A method for the treatment of a host having a *Flaviviridae* viral infection comprising administering to a host in need thereof an effective amount of a compound of formula [I-b]:

HO
$$\begin{array}{c|c}
R^3 & R^2 \\
\hline
R^3 & R^2
\end{array}$$
[I-b]

wherein the β -D nucleoside of formula (I-b) is selected from one of the following:

1

X	X ²	W ¹	R ²	R ²	R ³	R ³
ОН	NH ₂	N	Н	ОН	Н	ОН
NH ₂	Н	СН	Н	ОН	Н	F
NH ₂	Н	СН	Н	Н	Н	Н
NH ₂	NH ₂	N	Н	ОН	Н	ОН
CI	Н	СН	F	Н	Н	Н
NH ₂	Н	СН	Н	ОН	Н	Н
CI	Н	СН	Н	ОН	Н	Н

or its β -L-enantiomer or a pharmaceutically acceptable salt thereof.

62. (New): A method for the treatment of a host having a *Flaviviridae* viral infection comprising administering to a host in need thereof an effective amount of a compound of formula [I-c] or [II-c]:

or its β-L enantiomer or a pharmaceutically acceptable salt thereof, wherein:

each D is hydrogen, alkyl, acyl, monophosphate, diphosphate, triphosphate, monophosphate ester, diphosphate ester, triphosphate ester, phospholipid or amino acid;

each W¹ and W² is independently CH or N;

each X¹ is hydrogen, F, CI, Br, I, NH₂, NHR⁴, NR⁴R⁴, NHOR⁴, NR⁴NR⁴R⁴, OH, OR⁴, SH or SR⁴;

each Y¹ is O, S or Se;

each Z is CH₂ or NH;

each R² and R^{2'} independently is hydrogen, F, Cl, Br, I, OH, SH, OCH₃, SCH₃, NH₂, NHCH₃, CH=CH₂, CN, CH₂NH₂, CH₂OH or CO₂H;

each R³ and R^{3'} independently is hydrogen, F, Cl, Br, I, OH, SH, OCH₃, SCH₃, NH₂, NHCH₃, CH₃, C₂H₅, CH=CH₂, CN, CH₂NH₂, CH₂OH or CO₂H; and

each R⁴, R⁴, and R⁴ independently is hydrogen, lower alkyl, lower alkenyl, aryl or arylalkyl;

such that for the nucleoside of formula [I-c] at least one of R^2 and R^2 is hydrogen and at least one of R^3 and R^3 is hydrogen.

- 63. (New): The method according to claim 62, wherein each R⁴, R⁴, and R⁴ independently is unsubstituted or substituted phenyl or benzyl.
- 64. (New): A method for the treatment of a host having a *Flaviviridae* viral infection comprising administering to a host in need thereof an effective amount of a compound of formula [II-a]:

HO
$$Y^{I}$$
 R^{1} R^{1} R^{3} R^{2} [II-a]

wherein the β -D nucleoside of formula (II-a) is selected from one of the following:

X ¹	Y ¹	R ¹	R ¹	\mathbb{R}^2	R ³
NH-Bz-(m-NO ₂)	O	F	Н	Н	H
NH-Bz-(o-NO ₂)	O	F	Н	Н	Н
NH_2	0	F	Н	F	Н

or its β -L-enantiomer or a pharmaceutically acceptable salt thereof.

65. (New): A method for the treatment of a host having a *Flaviviridae* viral infection comprising administering to a host in need thereof an effective amount of a compound of formula [II-b]:

wherein the β -D nucleoside of formula (II-b) is selected from one of the following:

X	X ²	W ¹	R ²	R ³
CI	Н	СН	F	H
ОН	Н	СН	Н	Н
NH ₂	F	СН	Н	Н
NH ₂	F	СН	F	Н
NH ₂	Н	СН	Н	Н
ОН	NH ₂	СН	Н	Н
ОН	Н	СН	Н	Н
		· · · · · · · · · · · · · · · · · · ·		

or its β -L-enantiomer or a pharmaceutically acceptable salt thereof.

66. (New): A method for the treatment or prophylaxis of a host exhibiting a Flaviviridae, Orthomyxoviridae or Paramyxoviridae viral infection comprising administering to a host in need thereof an effective amount of a compound of the formula:

or its β -L enantiomer or a pharmaceutically acceptable salt thereof.

67. (New): The method of claim 1, wherein the β -D nucleoside of formula (I-a) is selected from one of the following:

D	X 1	· γ' γ' γ	R¹	R ¹	R ²	R ²	R ³	R ³
Н	NH ₂	0	Н	Н	ОН	Н	Н	OH
Н	NH ₂	0	Н	Н	ОН	Н	Н	<u> </u>
Н	NH ₂	0	Н	Н	ОН	Н	Н	CI
Н	NH ₂	0	Н	Н	ОН	Н	Н	Br
Н	NH ₂	0	Н	Н	Н	CI	Н	ОН
Н	NH ₂	0	Н	Н	Н	Br	Н	ОН
Н	NH ₂	0	Н	Н	Н	ОН	Br	Н
Н	NH ₂	0	Н	Н	Н	ОН	Н	Н
Н	NH ₂	0 -	Н	Н	CI	Н	Н	ОН
Н	NH ₂	0	F	Н	ОН	Н	Н	ОН
Н	NH ₂	0	F	Н	Н	ОН	Н	ОН
Н	NH ₂	0	F	Н	Н	ОН	Н	Н
Н	NH ₂	0	F	Н	Н	ОН	CI	Н
Н	NH ₂	0	F	Н	Н	OH	Br	Н
Н	NH ₂	0	F	Н	Н	CI	Н	ОН
Н	NH ₂	0	Br	Н	Н	ОН	CI	Н
Н	NH ₂	0	Br	Н	Н	ОН	Н	ОН
Н	NH ₂	0	Br	Н	ОН	Н	Н	ОН
Н	NH ₂	0	1	Н	Н	ОН	Br	Н
Н	NH ₂	0	1	Н	Н	CI	Н	ОН
Н	NH ₂	0	į	Н	Br	Н	Н	ОН
						, <u></u>		

D	X 1	Υ1	R	R ¹	R ²	R ²	R ³	R ³
Н	NH ₂	0	ОН	Н	ОН	Н	Н	ОН
Н	NH ₂	0	NH ₂	Н	Н	ОН	Н	ОН
Н	NH ₂	0	CH ₃	Н	Н	ОН	CI	Н
Н	NH ₂	NH	Н	Н	ОН	Н	Н	ОН
Н	NH-(2-Ph-	0	Н	Н	ОН	Н	Н	ОН
	Et)							
Н	NH-NH ₂	0	Н	Н	ОН	Н	Н	ОН
Н	NH-NH ₂	0	F	Н	ОН	Н	Н	ОН
- H	NH-NH ₂	0	CH ₃	Н	Н -	ОН	Н	ОН
Н	NH-OH	0	Н	Н	Н	ОН	Н	ОН
Н	NH-OH	0	F	Н	Н	ОН	Н	ОН
Н	NH-OH	0	Br	Н	Н	ОН	Н	ОН
Н	NH-OH	0	l	Н	Н	ОН	Н	ОН
Н	NH-OH	0	Н	Н	ОН	Н	Н	ОН
Н	OH	0	ОН	Н	ОН	Н	Н	ОН
Н	ОН	0	NH ₂	Н	Н	ОН	Н	OH
Н	ОН	0	F	Н	OH	Н	Н	ОН
Н	ОН	0	F	Н	Н	ОН	Н	ОН
Н	ОН	0	F	Н	Н	Н	Н	ОН
Н	S-CH ₃	0	Н	Н	Н	F	Н	ОН
Н	SH	0	Н	Н	Н	ОН	Н	ОН
		<u> </u>						

D	X ¹	Y ¹	R ¹	R ¹	\mathbb{R}^2	R ²	R^3	R ³
Н	SH	0	F	Н	Н	ОН	Н	ОН
Н	NH-(2-Ph-	0	Н	Н	Н	ОН	Н	ОН
	Et)							
Н	ОН	0	ОН	Н	Н	ОН	Н	ОН
Н	ОН	0	Н	Н	Н	ОН	Н	Н

or its β -L-enantiomer or a pharmaceutically acceptable salt thereof.

68. (New): The method of claim 1, wherein the β -D nucleoside of formula (I-b) is selected from one of the following:

D	W ²	X ¹	X ²	W ¹	R ²	R ²	R ³	R ^{3'}
Н	N	ОН	NH ₂	N	Н	ОН	Н	ОН
Н	N	ОН	NH ₂	СН	F	Н	Н	ОН
Н	N	NH ₂	Н	СН	Н	ОН	Н	F
Н	N	NH ₂	Н	CH	Н	Н	Н	Н
Н	N	NH ₂	NH ₂	N	Н	ОН	H	ОН
Н	N	NH ₂	NH ₂	СН	Н	ОН	Н	OH
Н	N	Cl	Н	СН	F	Н	Н	Н
Н	N	Cl	Н	СН	Н	ОН	Н	ОН
Н	N	NH ₂	Н	СН	Н	ОН	Н	Н
Н	N	Cl	Н	СН	Н	ОН	Н	Н

or its β -L-enantiomer or a pharmaceutically acceptable salt thereof.

69. (New): The method of claim 1, wherein the β -D nucleoside of formula (II-a) is selected from one of the following:

D	X ¹	γ',	R ¹	R'	R²	R ³
Н	NH-Bz-(m-NO ₂)	0	F	Н	Н	Н
Н	NH-Bz-(o-NO ₂)	0	F	Н	H	Н
Н	NH ₂	0	F	Н	F	Н

or its β -L-enantiomer or a pharmaceutically acceptable salt thereof.

70. (New): The method of claim 1, wherein the β-D nucleoside of formula (II-b) is selected from one of the following:

, D	W ²	X ¹	X ²		R ²	R ³
Н	N	CI	Н	СН	F	Н
Н	N	OH	Н	СН	Н	Н
Н	N	NH ₂	F	CH	Н	Н
Н	N	NH ₂	F	СН	F	Н
Н	N	NH ₂	Н	СН	Н	Н
Н	N	ОН	NH ₂	СН	Н	Н
Н	N	ОН	Н	СН	Н	Н

or its β-L-enantiomer or a pharmaceutically acceptable salt thereof.