

Figure 52.6: The graph of S_c (when c=2).

One can check that

$$S_c(v) = (v - c)_+ - (-v - c)_+,$$

and also

$$S_c(v) = (1 - c/|v|)_+ v, \quad v \neq 0,$$

which shows that S_c is a *shrinkage operator* (it moves a point toward zero).

The operator S_c is extended to vectors in \mathbb{R}^n component wise, that is, if $x = (x_1, \dots, x_n)$, then

$$S_c(x) = (S_c(x_1), \dots, S_c(x_n)).$$

We now consider several ℓ^1 -norm problems.

(1) Least absolute deviation.

This is the problem of minimizing $||Ax - b||_1$, rather than $||Ax - b||_2$. Least absolute deviation is more robust than least squares fit because it deals better with outliers. The problem can be formulated in ADMM form as follows:

minimize
$$||z||_1$$

subject to $Ax - z = b$,

with f = 0 and $g = \| \|_1$. As usual, we assume that A is an $m \times n$ matrix of rank n, so that $A^{\top}A$ is invertible. ADMM (in scaled form) can be expressed as

$$x^{k+1} = (A^{\top}A)^{-1}A^{\top}(b+z^k-u^k)$$

$$z^{k+1} = S_{1/\rho}(Ax^{k+1}-b+u^k)$$

$$u^{k+1} = u^k + Ax^{k+1} - z^{k+1} - b.$$