ModelCAI

KS(Kolmogorov-Smirnov):

ks用于模型风险区分能力进行评估,指标衡量的是好坏样本累计分部之间的差值。

好坏样本累计差异越大,ks指标越大,那么模型的风险区分能力越强。

$$ks = \max(ks_i) = \max(\frac{Cum.B_i}{Bad_{total}} - \frac{Cum.G_i}{Good_{total}})$$

```
In [1]: DATA TA;
SET SASHELP.CARS;
IF CYLINDERS IN (4,6) THEN K = 0;
ELSE K = 1;
KEEP MSRP K;
RUN;
PROC PRINT DATA = TA(OBS = 20);
RUN;
```

SAS Connection established. Subprocess id is 2811

Out[1]:

The SAS System

Obs	MSRP	К
1	\$36,945	0
2	\$23,820	0
3	\$26,990	0
4	\$33,195	0
5	\$43,755	0
6	\$46,100	0
7	\$89,765	0
8	\$25,940	0
9	\$35,940	0
10	\$31,840	0
11	\$33,430	0
12	\$34,480	0
13	\$36,640	0
14	\$39,640	0
15	\$42,490	0
16	\$44,240	0
17	\$42,840	0
18	\$49,690	1
19	\$69,190	1
20	\$48,040	1

```
In [2]: PROC SORT DATA = TA;
        BY MSRP;
        RUN;
Out[2]:
             ods listing close;ods html5 (id=saspy_internal) file=stdout options(bitmap_mode='inline') devi
        ce=svg style=HTMLBlue; ods
        49 ! graphics on / outputfmt=png;
        NOTE: Writing HTML5(SASPY_INTERNAL) Body file: STDOUT
        51
            PROC SORT DATA = TA;
        52 BY MSRP;
        53 RUN;
        NOTE: There were 428 observations read from the data set WORK.TA.
        NOTE: The data set WORK.TA has 428 observations and 2 variables.
        NOTE: PROCEDURE SORT used (Total process time):
              real time
                                  0.01 seconds
                                  0.01 seconds
              cpu time
        54
        55
             ods html5 (id=saspy_internal) close;ods listing;
        56
```

```
In [3]: PROC RANK DATA = TA OUT = TB GROUPS = 5;
VAR MSRP;
RANKS GMSRP;
RUN;
PROC PRINT DATA = TB(OBS = 20);
RUN;
```

Out [3]: The SAS System

Obs	MSRP	К	GMSRP
1	\$10,280	0	0
2	\$10,539	0	0
3	\$10,760	0	0
4	\$10,995	0	0
5	\$11,155	0	0
6	\$11,290	0	0
7	\$11,560	0	0
8	\$11,690	0	0
9	\$11,839	0	0
10	\$11,905	0	0
11	\$11,939	0	0
12	\$12,269	0	0
13	\$12,360	0	0
14	\$12,585	0	0
15	\$12,740	0	0
16	\$12,800	0	0
17	\$12,884	0	0
18	\$12,965	0	0
19	\$13,270	0	0
20	\$13,270	0	0

```
In [4]: PROC FREQ DATA = TB NOPRINT;
TABLE GMSRP * K/OUT = TC;
RUN;

PROC PRINT DATA = TC(OBS = 20);
RUN;
```

Out[4]:

The SAS System

Obs	GMSRP	К	COUNT	PERCENT
1	0	0	84	19.6262
2	0	1	1	0.2336
3	1	0	83	19.3925
4	1	1	3	0.7009
5	2	0	75	17.5234
6	2	1	11	2.5701
7	3	0	60	14.0187
8	3	1	26	6.0748
9	4	0	24	5.6075
10	4	1	61	14.2523

```
In [5]: /* NPAR1WAY KS*/
PROC NPAR1WAY DATA = TC KS NOPRINT;
CLASS K;
VAR GMSRP;
FREQ COUNT;
OUTPUT OUT = TD;
RUN;
PROC PRINT DATA = TD;
RUN;
```

Out[5]:

The SAS System

Obs	_VAR_	_KS_	_KSA_	_D_	P_KSA	_CM_	_CMA_	_K_	_KA_	P_KA
1	GMSRP	0.25362	5.24690	0.59527	0	0.033333	14.2663	0.59527	5.24690	0

```
In [6]: DATA T_KS;
SET TD;
KEEP _D_;
RUN;
PROC PRINT DATA = T_KS;
RUN;
```

Out[6]:

The SAS System

bs _D_	Obs
1 0.59527	1

IV值(Information Value):

在确定模型预测目标后,对于二分类的目标变量,一般用 IV 值(Information Value)以挑选变量。

原理公式如下图:

	Good		Bad	-Good%-	Good%Bad%WOE		IV		
_	-	-	-	(1)	(2)	log(1/2)	(1-2)*WOE		
	$Group_1$	G_1	B_1	G_1/G	B_1/B	$log(\frac{G_1/G}{B_1/B})$	$(G_1/G - B_1/B)$ $\times log(\frac{G_1/G}{B_1/B})$		
	$Group_2$	G_2	B_2	G_2/G	B_2/B	$log(\frac{G_2/G}{B_2/B})$	$(G_2/G - B_2/B)$ $\times log(\frac{G_2/G}{B_2/B})$		
	$Group_N$	G_N	B_N	G_N/G	B_N/B	$log(\frac{G_N/G}{B_N/B})$	$(G_N/G - B_N/B) \times log(\frac{G_N/G}{B_N/B})$		
	Total	$G = \sum G_i$	$B = \sum B_i$	-	-	-	$\sum \left(\frac{G_i}{G} - \frac{B_i}{B}\right) \times log(\frac{G_i/G}{B_i/B})$		

可解释为衡量特征包含预测变量浓度的指标。

示例如下图,该变量各取值 IV 值以及总体 IV 值, 0.197 > 0.1,有一定的预测性。

-	非目标数	目标数	总计	WOE	IV
A61	386	217	603	0.271	0.047
A62	69	34	103	0.140	0.002
A63	52	11	63	-0.707	0.027
A64	42	6	48	-1.099	0.044
A65	151	32	183	-0.704	0.077
Total	700	300	1000	-	0.197

一般认定

IV<0.02 即没有预测性,不可用;

0.02<=IV<0.1 即弱预测性;

0.1<=IV<0.2 即有一定的预测性;

0.2<IV 即高预测性;

In []: