Algebra (EI)

Notas de Teoría

22/10/12

Subespacios ortogonales

Comenzaremos con un resultado general denominado extensión de bases de subespacios.

Proposición 0.1. Si $\mathcal{B} = \{v_1, \dots, v_k\}$ es una base de un subespacio $\mathbb{S} \subset \mathbb{V}$, y la dimensión de \mathbb{V} es finita, entonces existe una base \mathcal{B}_0 de \mathbb{V} tal que

$$\mathcal{B}_0 = \{ m{v}_1, \dots, m{v}_k, m{v}_1', \dots, m{v}_t' \}.$$

Es decir, hay una base de todo el espacio V que "extiende" a la base de S

Demostración. Supongamos que $\{\boldsymbol{w}_1,\ldots,\boldsymbol{w}_n\}$ es una base de \mathbb{V} . Entonces realizamos el siguiente "algoritmo":

- 1. $\mathcal{B}_0 := \mathcal{B}$.
- 2. j = 1.
- 3. Si $\mathcal{B}_0 \cup \{\boldsymbol{w}_j\}$ es linealmente independiente, entonces $\mathcal{B}_0 \cup \{\boldsymbol{w}_j\} \mapsto \mathcal{B}_0$.
- 4. j = j + 1
- 5. Volver al punto 3. hasta j = n.

Afirmamos que el resultado de este 'algoritmo" nos proporciona una base del espacio $\mathbb V$ que cumple con lo que pide la proposición:

- El conjunto \mathbb{B}_0 es linealmente independiente (esto sale esencialmente de 3.
- $\mathcal{B} \subset \mathcal{B}_0$, es consecuencia de los puntos 1. y 3.
- \mathcal{B}_0 genera \mathbb{V} , ya que cada uno de los \boldsymbol{w}_j o bien está en \mathcal{B}_0 o bien es combinación lineal de elementos de \mathcal{B}_0 , asi que entonces se tiene que

$$\mathbb{V} = \langle \boldsymbol{w}_1, \dots, \boldsymbol{w}_n \rangle \subset \langle \mathcal{B}_0 \rangle \subset \mathbb{V}.$$

Y de aquí deducimos entonces que $\langle \mathcal{B}_0 \rangle = \mathbb{V}$, y luego \mathcal{B}_0 es base de \mathbb{V} ya que genera este espacio y es linealmente independiente.

Ejemplo 0.2. Sea \mathbb{S}_1 el subespacio de \mathbb{R}^3 tiene por base $\mathcal{B} = \{(1,0,-1), (2,0,1)\}$. Queremos extender \mathcal{B} a otra base de todo el espacio \mathbb{R}^3 . Para ello comenzamos con una base cualquiera de \mathbb{R}^3 . Elegimos la base canónica $\{(1,0,0), (0,1,0), (0,0,1)\}$, y comenzamos a ejecutar el algoritmo de la demostración de la proposición 0.1:

- 1. $\mathcal{B}_0 := \mathcal{B} = \{(1,0,-1), (2,0,1)\}.$
- 2. El conjunto $\{(1,0,-1), (2,0,1), (1,0,0)\}$ no es linealmente independiente ya que $(1,0,0) = \frac{1}{3}(1,0,-1) + \frac{1}{3}(2,0,1)$, así que en el paso 3. del algoritmo, no modificamos \mathcal{B}_0 .

- 3. El conjunto $\{(1,0,-1), (2,0,1), (0,1,0)\}$ es linealmente independiente, así que redefinimos $\mathcal{B}_0 := \{(1,0,-1), (2,0,1), (0,1,0)\}.$
- 4. El conjunto $\{(1,0,-1), (2,0,1), (0,1,0), (0,0,1)\}$ no es linealmente independiente ya que

$$(0,0,1) = -\frac{2}{3}(1,0,-1) + \frac{1}{3}(2,0,1) + 0 \cdot (0,1,0).$$

Luego, no modificamos \mathcal{B}_0 .

Al final nos queda $\mathcal{B}_0 := \{(1,0,-1), (2,0,1), (0,1,0)\}$, que es -efectivamenteuna base de \mathbb{R}^3 que extiende a \mathcal{B}_0 .

Definición 0.3. Sea $\mathbb S$ un subespacio de $\mathbb R^n$. Definimos el subespacio ortogonal a $\mathbb S$ como

$$\mathbb{S}^{\perp} = \{ \boldsymbol{v} \in \mathbb{R}^n : \boldsymbol{v} \cdot \boldsymbol{w} = 0, \, \forall \boldsymbol{w} \in \mathbb{S} \}.$$

Proposición 0.4.

- 1. \mathbb{S}^{\perp} es un subespacio de \mathbb{R}^n .
- 2. $Si \mathcal{B} = \{v_1, \ldots, v_k\}$ es una base de \mathbb{S} , entonces

(1)
$$\mathbb{S}^{\perp} = \{ \boldsymbol{v} \in \mathbb{R}^n : \boldsymbol{v} \cdot \boldsymbol{v}_1 = 0, \, \boldsymbol{v} \cdot \boldsymbol{v}_2 = 0, \dots, \, \boldsymbol{v} \cdot \boldsymbol{v}_k = 0 \}.$$

- 3. $Si \mathcal{B} = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k \}$ es una base ortogonal de \mathbb{S} y $\mathcal{B}_0 = \{ \boldsymbol{v}_1, \dots, \boldsymbol{v}_k, \boldsymbol{v}_1', \dots, \boldsymbol{v}_t' \}$ es una base ortogonal de \mathbb{R}^n que extiende a \mathcal{B} (que se puede conseguir utilizando el proceso de Gram-Schmidt a la base que produce el algoritmo de la proposición 0.1, entonces $\{ \boldsymbol{v}_1', \dots, \boldsymbol{v}_t' \}$ es una base de \mathbb{S}^{\perp} .
- 4. $\dim(\mathbb{S} \cap \mathbb{S}^{\perp}) = 0$, $y \dim(\mathbb{S}) + \dim(\mathbb{S}^{\perp}) = n$.
- 5. $\left(\mathbb{S}^{\perp}\right)^{\perp} = \mathbb{S}$.

Demostración.

1. Claramente el vector nulo $\mathbf{0}$ es un elemento de \mathbb{S}^{\perp} ya que $\mathbf{0} \cdot \boldsymbol{w} = \mathbf{0}$ para todo $\boldsymbol{w} \in \mathbb{S}$. Por otro lado, si \boldsymbol{v}_1 y \boldsymbol{v}_2 son elementos de \mathbb{S}^{\perp} , entonces $\boldsymbol{v}_1 \cdot \boldsymbol{w} = 0$ y $\boldsymbol{v}_2 \cdot \boldsymbol{w} = 0$ para todo $\boldsymbol{w} \in \mathbb{S}$, y de aquí deducimos que

$$(\boldsymbol{v}_1 + \boldsymbol{v}_2) \cdot \boldsymbol{w} = 0 \ \forall \boldsymbol{w} \in \mathbb{S}.$$

Luego, $\boldsymbol{v}_1 + \boldsymbol{v}_2 \in \mathbb{S}^{\perp}$.

Por otro lado, si $v \in \mathbb{S}^{\perp}$ y $\lambda \in \mathbb{R}$, entonces

$$(\lambda \mathbf{v}) \cdot \mathbf{w} = \lambda (\mathbf{v} \cdot \mathbf{w}) = \lambda \cdot 0 = 0,$$

así que también $\lambda v \in \mathbb{S}^{\perp}$. Estas tres propiedades demuestran que \mathbb{S}^{\perp} es un subespacio.

2. Si $\mathcal{B} = \{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_k\}$ es una base de este subespacio, entonces si $\boldsymbol{v} \in \mathbb{S}^{\perp}$ tendremos $\boldsymbol{v} \cdot \boldsymbol{v}_1 = 0, \ldots, \boldsymbol{v} \cdot \boldsymbol{v}_k = 0$ ya que los vectores $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_k$ son elementos de \mathbb{S} . Por otro lado, cualquier $\boldsymbol{w} \in \mathbb{S}$ se escribe como

$$\boldsymbol{w} = \lambda_1 \boldsymbol{v}_1 + \ldots + \lambda_k \boldsymbol{v}_k$$

ya que los elementos de la base generan al subespacio. Si sabemos que $\mathbf{v} \cdot \mathbf{v}_1 = 0, \dots, \mathbf{v} \cdot \mathbf{v}_k = 0$, entonces también tendremos que

$$\boldsymbol{w} \cdot \boldsymbol{v} = \lambda_1 \boldsymbol{v}_1 \cdot \boldsymbol{v} + \ldots + \lambda_k \boldsymbol{v}_k \cdot \boldsymbol{v} = 0,$$

y esto muestra que \mathbb{S}^{\perp} también se puede representar como (1).

3. Es de inmediata verificación que $\boldsymbol{v}_1' \in \mathbb{S}^{\perp}, \dots, \boldsymbol{v}_t' \in \mathbb{S}^{\perp}$, luego

$$\langle \boldsymbol{v}_1', \dots, \boldsymbol{v}_t' \rangle \subset \mathbb{S}^{\perp}.$$

Supongamos que \mathbb{S}^{\perp} fuera más grande que el subespacio generado por estos vectores. Entonces habría un vector $\mathbf{v} \in \mathbb{S}^{\perp}$ que cuando lo escribimos como combinación lineal de los elementos de la base \mathcal{B}_0 , tendría que ser de la forma

$$\boldsymbol{v} = \lambda_1 \boldsymbol{v}_1 + \ldots + \lambda_k \boldsymbol{v}_k + \lambda_1' \boldsymbol{v}_1' + \ldots + \lambda_t' \boldsymbol{v}_t',$$

con alguno de los primeros $\lambda_1, \lambda_2, \ldots, \lambda_k$ distinto de cero, digamos que es el $\lambda_1 \neq 0$. Pero entonces, tendríamos

$$0 = \boldsymbol{v} \cdot \boldsymbol{v}_1 = (\lambda_1 \boldsymbol{v}_1 + \ldots + \lambda_k \boldsymbol{v}_k + \lambda_1' \boldsymbol{v}_1' + \ldots + \lambda_t' \boldsymbol{v}_t') \cdot \boldsymbol{v}_1 = \lambda_1 \|\boldsymbol{v}_1\|^2,$$

como $v_1 \neq 0$, se deduciría entonces que $\lambda_1 = 0$, lo cual contradice lo que estamos suponiendo. Luego, vale la igualdad en (2), y como el conjunto $\{v'_1, \ldots, v'_t\}$ es linealmente independiente, es entonces una base de \mathbb{S}^{\perp} .

4. Usando la notación del apartado anterior, se ve inmediatamente que

$$\mathbb{S} + \mathbb{S}^{\perp} = \langle \boldsymbol{v}_1, \dots, \boldsymbol{v}_k \rangle + \langle \boldsymbol{v}_1', \dots, \boldsymbol{v}_t' \rangle = \mathbb{R}^n.$$

Por otro lado, por la fórmula de Grassman, tenemos

$$\dim (\mathbb{S} \cap \mathbb{S}^{\perp}) = (k+s) - k - s = 0.$$

5. Supongamos que $\mathcal{B}_0 = \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_k, \boldsymbol{v}_1', \dots, \boldsymbol{v}_t'\}$ es una base ortogonal que extiende a la base ortogonal de \mathbb{S} , entonces por el apartado 3. sabemos que $\{\boldsymbol{v}_1', \dots, \boldsymbol{v}_t'\}$ es una base de \mathbb{S}^{\perp} , y no es difícil ver que

$$\{\boldsymbol{v}_1',\ldots,\boldsymbol{v}_t',\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k\}$$

es una base ortogonal de \mathbb{R}^n que extiende a la base de \mathbb{S}^{\perp} . Entonces, por el mismo apartado 3., tendremos que $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_k\}$ es también una base de $(\mathbb{S}^{\perp})^{\perp}$. Como una base determina al subespacio (ya que el subespacio es el conjunto de elementos generados linealmente por la base), tenemos que $\mathbb{S} = (\mathbb{S}^{\perp})^{\perp}$.

Ejemplo 0.5. Consideremos nuevamente el subespacio \mathbb{S}_1 del ejemplo 0.2, Entonces se tiene

$$\mathbb{S}_{1}^{\perp} = \{(x_{1}, x_{2}, x_{3}) \in \mathbb{R}^{3} : (x_{1}, x_{2}, x_{3}) \cdot (1, 0, -1) = 0, (x_{1}, x_{2}, x_{3}) \cdot (2, 0, 1) = 0\}$$
$$= \{(x_{1}, x_{2}, x_{3}) \in \mathbb{R}^{3} : x_{1} - x_{3} = 0, 2x_{1} + x_{3} = 0\},$$

con lo cual se puede ver que es relativamente fácil pasar de generadores de \mathbb{S}_1 a ecuaciones de \mathbb{S}_1^{\perp} . Por otro lado, si uno quiere calcular una base de \mathbb{S}_1^{\perp} , primero hemos de aplicar el proceso de Gram-Schmidt a la base de \mathbb{R}^3 $\mathcal{B}_0 = \{(1,0,-1), (2,0,1), (0,1,0)\}$, para conseguir una base ortogonal de \mathbb{R}^3 . Se tendrá

$$\mathcal{B}_0'' = \left\{ (1, 0, -1), \left(\frac{3}{2}, 0, \frac{3}{2} \right), (0, 1, 0) \right\},$$

de lo cual deducimos que $\{(0,1,0)\}$ es una base de \mathbb{S}_1^{\perp} .

Ejemplo 0.6. Sea $\mathbb{S}_2 = \langle (1,0,1,0), (1,1,0,0) \rangle$ Consideramos la base $\mathcal{B} = \{(1,0,1,0), (1,1,0,0)\}$ de \mathbb{S}_2 y la extendemos a una base de \mathbb{R}^4 utilizando la base canónica de este espacio:

$$\{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\},\$$

y obtenemos $\mathcal{B}_0 = \{(1,0,1,0), (1,1,0,0), (1,0,0,0), (0,0,0,1)\}$. Luego aplicamos el proceso de Gram-Schmidt a esta base y obtenemos la siguiente base ortogonal de \mathbb{R}^4 :

$$\mathcal{B}_0'' = \{(1,0,1,0), (1,2,-1,0), (1,-1,-1,0), (0,0,0,1)\}.$$

De aquí obtenemos que $\mathbb{S}_2^{\perp} = \langle (0,0,0,1) \rangle$. Notar que de esta manera también podemos calcular ecuaciones para \mathbb{S}_2 , utilizando que

$$\mathbb{S}_2 = \left(\mathbb{S}_2^{\perp}\right)^{\perp} = \langle (0,0,0,1) \rangle^{\perp} = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : x_4 = 0\}.$$

Proposición 0.7. Sea $\mathbb S$ un subespacio de $\mathbb R^n$, y $\mathbf v \in \mathbb R^n$. Entonces $\mathbf v$ se escribe de manera única como $\mathbf v = \mathbf v_1 + \mathbf v_2$ con $\mathbf v_1 \in \mathbb S$ y $\mathbf v_2 \in \mathbb S^\perp$. El vector $\mathbf v_1$ cumple con la propiedad de que es el vector de $\mathbb S$ más próximo a $\mathbf v$; es decir

$$\|\boldsymbol{v} - \boldsymbol{v}_1\| \le \|\boldsymbol{v} - \boldsymbol{w}\| \ \forall \boldsymbol{w} \in \mathbb{S}.$$

Demostración. Del apartado 4 de la proposición 0.4, tenemos que como $\mathbb{S} + \mathbb{S}^{\perp} = \mathbb{R}^n$, entonces todo vector \boldsymbol{v} se puede escribir $\boldsymbol{v} = \boldsymbol{v}_1 + \boldsymbol{v}_2$ con $\boldsymbol{v}_1 \in \mathbb{S}$ y $\boldsymbol{v}_2 \in \mathbb{S}^{\perp}$. Si hubiera otra escritura, digamos $\boldsymbol{v} = \boldsymbol{v}_1' + \boldsymbol{v}_2'$ con $\boldsymbol{v}_1' \in \mathbb{S}$ y $\boldsymbol{v}_2' \in \mathbb{S}^{\perp}$, entonces tendríamos

$$v_1 - v_1' = v_2' - v_2.$$

El miembro izquierdo es un elemento de \mathbb{S} y el izquierdo pertenece a \mathbb{S}^{\perp} . Como la intersección entre estos subespacios es 0 (es lo que dice también el apartado 4 de la proposición 0.4), entonces se tiene

$$m{v}_1 = m{v}_1', \ \ m{v}_2 = m{v}_2',$$

es decir que la escritura es única.

Nos falta todavía demostrar la desigualdad del enunciado. Notar que para cualquier $w_1 \in \mathbb{S}$ y cualquier $w_2 \in \mathbb{S}^{\perp}$, entonces se cumple

(3)
$$\|\boldsymbol{w}_1 + \boldsymbol{w}_2\|^2 = (\boldsymbol{w}_1 + \boldsymbol{w}_2) \cdot (\boldsymbol{w}_1 + \boldsymbol{w}_2) = \|\boldsymbol{w}_1\|^2 + \|\boldsymbol{w}_2\|^2$$

ya que $\boldsymbol{w}_1 \cdot \boldsymbol{w}_2 = 0$.

Con esta información demostraremos la desigualdad. Por un lado, de $\boldsymbol{v} = \boldsymbol{v}_1 + \boldsymbol{v}_2$ tenemos que $\|\boldsymbol{v} - \boldsymbol{v}_1\|^2 = \|\boldsymbol{v}_2\|^2$. Por otro lado, si $\boldsymbol{w} \in \mathbb{S}$, entonces tenemos que $\boldsymbol{v} - \boldsymbol{w} = (\boldsymbol{v}_1 - \boldsymbol{w}) + \boldsymbol{v}_2$, con $\boldsymbol{v}_1 - \boldsymbol{w} \in \mathbb{S}$ y $\boldsymbol{v}_2 \in \mathbb{S}^{\perp}$. Utilizando ahora la identidad (3), tenemos

$$\|oldsymbol{v} - oldsymbol{w}\|^2 = \|oldsymbol{v}_1 - oldsymbol{w}\|^2 + \|oldsymbol{v}_2\|^2 = \|oldsymbol{v}_1 - oldsymbol{w}_1\|^2 + \|oldsymbol{v} - oldsymbol{v}_1\|^2 \geq \|oldsymbol{v} - oldsymbol{v}_1\|^2,$$

y la igualdad vale justamente cuando $\boldsymbol{v}_1 = \boldsymbol{w}.$

Ejemplo 0.8. Calculemos la distancia de $\mathbf{v} = (2, 5, 2)$ al subespacio $\mathbb{S}_3 = \langle (1, 0, 1), (1, 1, 0) \rangle$.

■ Extendemos la base $\mathcal{B} = \{(1,0,1), (1,1,0)\}$ a una base de todo \mathbb{R}^3 utilizando la base canónica de este espacio $\{(1,0,0), (0,1,0), (0,0,1)\}$, y obtenemos

$$\mathcal{B}_0 = \{(1,0,1), (1,1,0), (1,0,0)\}.$$

■ Calculamos una base ortogonal de \mathbb{R}^3 utilizando Gram-Schmidt sobre la base \mathcal{B}_0 , y queda

$$\mathcal{B}_0'' = \{(1,0,1), (1,2,-1), (1,-1,-1)\}.$$

Luego, \mathcal{B}_0'' es una base ortogonal de \mathbb{R}^3 , $\{(1,0,1), (1,2,-1)\}$ es una base (ortogonal) de \mathbb{S}_3 y $\{(1,-1,-1)\}$ es una base de \mathbb{S}_3^{\perp} .

■ Escribimos a \boldsymbol{v} como $\boldsymbol{v}_1 + \boldsymbol{v}_2$, con $\boldsymbol{v}_1 \in \mathbb{S}_3$ y $\boldsymbol{v}_2 \in \mathbb{S}_3^{\perp}$, para ello utilizamos la base \mathcal{B}_0'' :

$$(2,5,2) = 2(1,0,1) + \frac{5}{3}(1,2,-1) - \frac{5}{3}(1,-1,-1).$$

Luego, $\boldsymbol{v}_1=2(1,0,1)+\frac{5}{3}(1,2,-1)=\left(\frac{11}{3},\frac{10}{3},\frac{1}{3}\right)$, y $\boldsymbol{v}_2=\left(-\frac{5}{3},\frac{5}{3},\frac{5}{3}\right)$. La distancia de \boldsymbol{v} a \mathbb{S}_3 viene entonces dada por

$$\|\boldsymbol{v} - \boldsymbol{v}_1\| = \left\| \left(-\frac{5}{3}, \frac{5}{3}, \frac{5}{3} \right) \right\| = \frac{5\sqrt{3}}{3}.$$