

Session 2: Energy-efficient Datacenters

Joint Capacity Planning and Operational Management for Sustainable Data Centers and Demand Response

June 22, 2016

Tan N. Le and Zhenhua Liu

Yuan Chen and Cullen Bash

Total global cloud traffic growth

The Billions in Data Center Spending behind Cloud Revenue ADD YOUR COMMENTS

Growth BY YEVGENIY SVERDLIK ON OCTOBER 23, 2015 14

The downside of having a thriving cloud services business is the enormous amount of money a company needs to spend on data center infrastructure to support it. And the faster it

grows, the more money it needs to spend.

Every quarter, cloud giants Amazon, Microsoft, IBM, and Google collectively spend billions of dollars on servers and other hardware for their cloud services and data centers around the world to house all that gear, and the quarter that

http://www.datacenterknowledge.com/ ended September 30 was no different.

Environmental threat from data centers

Emissions in 2013

Carbon footprints of servers can vary by 10x, www.vertatique.com E. Facts. Greenhouse gas emissions from a typical passenger vehicle, 2005.

Goal: Reduce costs and emissions for data centers with renewables

Approach: Joint Optimization of CP and OM

Evaluation

Operational Management (OM)

Traditionally, they are **separate**

This results in significant inefficiencies

electricity bills

Ex: CP is based on peak demand, but peak can be shaped in OM

Proposed Joint Optimization Framework

Joint Optimization Framework

minimize UtilBill + RGEx + NGEx + ITEx

Utility bills (UtilBill)

N/A

Purchase – Sell back

CP cost

OM cost

Renewable Generation Expense (*RGEx*)

Infra. Cost

O&M costs

Non-renewable Generation Expense (*NGEx*)

Infra. Cost

O&M costs

IT expense (*ITEx*)

Infra. cost

O&M costs

The optimization problem is convex

tan.le@stonybrook.edu

How the framework operates?

Workload traces

Electricity prices

Infrastructure costs

O&M costs

Joint Optimization Framework

Capacity Planning (CP)

Operational Management (OM)

Solve optimization problem

Capacities

Renewable generation

non-renewable generation

IT power demand

Operational outputs

non-renewable generation

Grid power usage

Sell-back power

Power allocated to batch jobs

Goal: Reduce costs and emissions for data centers with renewables

Approach: Joint Optimization of CP & OM

Simulation based on 1MW HP EcoPod Data Center

HP EcoPODs 240a

Case study

IT efficiency races forward in eBay Inc.'s data centers with HP EcoPODs

Highly efficient modular data centers are a key part of company's growth strategy

Industry

Online commerce

Objective

Meet ongoing growth in a highly efficient manner.

Approach

Deploy HP EcoPODs and fully loaded server racks.

IT matters

- Cut costs with innovative approaches to power and cooling.
- Streamline the deployment of data center resources.

Business matters

- Fuel business growth with on-demand deployment of data center resources.
- Avoid steep upfront costs for brick-and-mortar data centers.

- Paul Santana, Director of Data Center Operations, eBay Inc.

www.hp.com

Demand Side

Peak-to-Mean ratio: 3

PUE: 1.2

Annual increase rate: 9% a year /

[www.zdnet.com]

CPU power usage trace

Interactive workload: 50%

Utilization of server: 40%

Batch jobs: 50%

Flexibility 24 hours

Maximum utilization is 90%

We do not include capacity planning for IT equipment

Supply Side

General Electric (GE) Natural Gas generation

[Houston traces]

Infra. cost: \$2.15/W a year

Infra. cost: \$1/W a year

Infra. cost: \$0/W a year

12% a year [cleantechnica]

Operational cost: \$0/kWh

Operational cost: \$0.06/kWh

Price: \$0.056/kWh

1% a year / [www.eia.com]

5% a year

[Texas]

Maintenance cost: \$0.005/kWh = Maintenance cost: \$0.005/kWh > Maintenance cost: \$0/kWh

Emission rate: **0.034**g/kWh

Emission rate: **0.443**g/kWh

<

Emission rate: **0.5**g/kWh

Comparisons with baseline methods

Grid Only (GRID) in traditional data centers provisions power only from the <u>electricity grid</u>

Supply-only Optimization (**SUP**)
optimizes power sources based on given demand

Demand-only Optimization (**DEM**)

<u>optimizes power demand</u> based on

given the capacity planning

Proposed framework (PROP)

Joint Capacity Planning & Operational Management

Question: How much can we improve?

tan.le@stonybrook.edu

Cost: PROP = 50 % GRID

Emissions: PROP = 25 % GRID

GRID: Grid only

DEM: Demand-only optimization

SUP: Supply-only optimization

PROP: Proposed framework

Costs and emissions under prediction errors

Expenditures vs. prediction errors

Emissions vs. prediction errors

PROP significantly outperforms GRID under large prediction errors

0.7

0.6

Joint Capacity Planning and Operational Management

Cost saving 50%

Emission reduction 75%

Goal: Reduce data center costs with **Demand Response**

Approach: Joint Optimization of CP & OM

Evaluation

Extending Joint Optimization Framework for DCDR

minimize UtilBill + RGEx + NGEx + ITEx

Utility bills (UtilBill)

Renewable Generation Expense (*RGEx*)

Non-renewable Generation Expense (*NGEx*)

IT expense (ITEx)

CP cost N/A

OM cost

Purchase – Sell back

DR reward + DR penalty

Infra. cost

O&M costs

Infra. Cost

O&M costs

Infra. cost

O&M costs

Operation of Framework in DR programs

Data center additionally provisions PV & GE to adapt to DR programs

\$0.05 (night), \$0.219 (peak), \$0.06 (off) /kWh

Base price: \$0.056/kWh

Question: How DR impacts on data centers?

Costs & capacities vary in different DR programs

Some DR programs result in low emissions

IBR: Inclining Block Rates \$0.2 (>50kW), \$0.5 (>100kW)

CPP: Critical Coincident Peak Pricing
CPP rate: \$11.2/kWh

WS: Wholesale market \$0.05/kWh

Joint Capacity Planning and Operational Management

Cost saving 50%

Emission reduction 75%

Well adapting to

Thank you