§ 7 Quicksort — the fastest known sorting algorithm in practice

1. The Algorithm

```
void Quicksort ( ElementType A[ ], int N )
   if (N < 2) return;
? pivot = pick any element in A[];
 ? Partition S = { A[ ] \ pivot } into two disjoint sets:
         A1={ a \in S \mid a \le pivot } and A2={ a \in S \mid a \ge pivot };
   A = Quicksort (A1, N1) \cup { pivot } \cup Quicksort (A2, N2);
 The best case T(N) = O(N \log N)
                                 13
     13 81
                                The pivot is placed at
  92
       43
                                 the right place once
   31 57 26
     75
                                       and for all.
                                     0 13 26 31 43 57 65 75 81 92
```

2. Picking the Pivot

- A Wrong Way: Pivot = A[0]
 - The worst case: A[] is presorted quicksort will take
 - $O(N^2)$ time to do nothing \odot
- A Safe Maneuver: Pivot = random select from A[]
 - **8** random number generation is expensive
- **Median-of-Three Partitioning:**

Pivot = median (left, center, right)

Eliminates the bad case for sorted input and actually reduces the running time by about 5%.

3. Partitioning Strategy

Then $T(N) = O(N^2)$. So we'd better stop both i and j and take some extra swaps.

4. Small Arrays

Problem: Quicksort is slower than insertion sort for small N (≤ 20).

Solution: Cutoff when N gets small (e.g. N = 10) and use other efficient algorithms (such as insertion sort).

5. Implementation

```
/* Return median of Left, Center, and Right */
/* Order these and hide the pivot */
ElementType Median3( ElementType A[ ], int Left, int Right )
  int Center = (Left + Right) / 2;
  if ( A[ Left ] > A[ Center ] )
     Swap( &A[ Left ], &A[ Center ] );
  if ( A[ Left ] > A[ Right ] )
     Swap( &A[ Left ], &A[ Right ] );
  if ( A[ Center ] > A[ Right ] )
     Swap( &A[ Center ], &A[ Right ] );
  /* Invariant: A[ Left ] <= A[ Center ] <= A[ Right ] */
  Swap( &A[ Center ], &A[ Right - 1 ] ); /* Hide pivot */
  /* only need to sort A[ Left + 1 ] ... A[ Right – 2 ] */
  return A[ Right - 1 ]; /* Return pivot */
```

```
void Qsort( ElementType A[ ], int Left, int Right )
{ int i, j;
  ElementType Pivot;
  if ( Left + Cutoff <= Right ) { /* if the sequence is not too short */</pre>
     Pivot = Median3( A, Left, Right ); /* select pivot */
     i = Left; j = Right - 1; /* why not set Left+1 and Right-2? */
     for(;;) {
         while (A[++i] < Pivot) {} /* scan from left */
         while (A[--i] > Pivot)  /* scan from right */
         if(i < j)
           Swap( &A[ i ], &A[ j ] ); /* adjust partition */
         else break; /* partition done */
     Swap( &A[ i ], &A[ Right - 1 ] ); /* restore pivot */
     Qsort( A, Left, i - 1 ); /* recursively sort left part */
     Qsort(A, i + 1, Right); /* recursively sort right part */
  } /* end if - the sequence is long */
  else /* do an insertion sort on the short subarray */
     InsertionSort( A + Left, Right - Left + 1 );
```

6. Analysis

$$T(N) = T(i) + T(N-i-1) + cN$$

The Worst Case:

$$T(N) = T(N-1) + cN$$
 $T(N) = O(N^2)$

The Best Case: [......] • [......]

$$T(N) = 2T(N/2) + cN$$

The Average Case:

Assume the average value

Read Figure 6.16 on p.214 for the 5th algorithm on solving this problem.

$$T(N) = \frac{2}{N} \left[\sum_{j=0}^{N-1} T(j) \right] + O(N \log N)$$

Example Given a st of N elements and an integer k. Find the kth largest element.

§ 8 Sorting Large Structures

Problem: Swapping large structures can be very much expensive.

Solution: Add a pointer field to the structure and swap pointers instead – indirect sorting. Physically rearrange the structures at last if it is really necessary.

[Example] Table Sort

 list
 [0]
 [1]
 [2]
 [3]
 [4]
 [5]

 key
 d
 b
 f
 c
 a
 e

 table
 4
 1
 3
 0
 5
 2

The sorted list is

Note: Every permutation is made up of disjoint cycles.

list	[0]	[1]	[2]	[3]	[4]	[5]
key	a	b	C	d	e	f
table	0	1	2	3	4	5

In the worst case there are $\lfloor N/2 \rfloor$ cycles and requires $\lfloor 3N/2 \rfloor$ record moves.

T = O(m N) where m is the size of a structure.

§ 9 A General Lower Bound for Sorting

Theorem Any algorithm that sorts by comparisons only must have a worst case computing time of $\Omega(N \log N)$.

Decision tree for insertion sort on R₀, R₁, and R₂

When sorting N distinct elements, there are N! different possible results.

Thus any decision tree must have at least N! leaves.

If the height of the tree is k, then $N! \leq 2^{k-1}$ (# of leaves in a complete binary tree)

$$\Rightarrow k \ge \log(N!) + 1$$

Since $N! \ge (N/2)^{N/2}$ and $\log_2 N! \ge (N/2)\log_2(N/2) = \Theta(N \log_2 N)$

Therefore
$$T(N) = k \ge c \cdot N \log_2 N$$
.

§ 10 Bucket Sort and Radix Sort

Bucket Sort

Example Suppose that we have N students, each has a grade record in the range 0 to 100 (thus there are M = 101 possible distinct grades). How to sort them according to their grades in linear time?


```
Algorithm
{
    initialize count[];
    while (read in a student's record)
        insert to list count[stdnt.grade];
    for (i=0; i<M; i++) {
        if (count[i])
            output list count[i];
    }
}

T(N, M) = O(M+N)
```

What if we sort

according to the Most

Significant Digit first?

Example Given N = 10 integers in the range 0 to 999 (M = 1000) Is it possible to sort them in linear time?

Radix Sort

Input: 64, 8, 216, 512, 27, 729, 0, 1, 343, 125

Sort according to the Least Significant Digit first.

Bucket	0	1	2	3	4	5	6	7	8	9
Pass 1	0	1	512	343	64	125	216	27	8	729
	0	512	125		343		64			
Pass 2	1	216	27							
	8		729							
	0	125	2 16	343		512		729		
	1									
Pass 3	8									
	27									
	64									

T=O(P(N+B))
where P is the
number of
passes, N is the
number of
elements to sort,
and B is the
number of
buckets.

Output: 0, 1, 8, 27, 64, 125, 216, 343, 512, 729

Suppose that the record R_i has r keys.

- $K_i^j ::= \text{the } j\text{-th key of record } R_i$
- $M_i^0 ::=$ the most significant key of record R_i
- $M_i^{r-1} ::=$ the least significant key of record R_i
- A list of records $R_0, ..., R_{n-1}$ is lexically sorted with respect to the keys $K^0, K^1, ..., K^{r-1}$ iff

$$(K_i^0, K_i^1, \dots, K_i^{r-1}) \le (K_{i+1}^0, K_{i+1}^1, \dots, K_{i+1}^{r-1}), \ 0 \le i < n-1.$$

That is, $K_i^0 = K_{i+1}^0$, ..., $K_i^l = K_{i+1}^l$, $K_i^{l+1} < K_{i+1}^{l+1}$ for some l < r - 1.

Example A deck of cards sorted on 2 keys

$$K^1$$
 [Face value] $2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < 10 < J < Q < K < A$

Sorting result: 2♣ ... **A**♣ 2♦ ... **A**♦ 2♥ ... **A**♥ 2♠ ... **A**♠

- MSD (Most Significant Digit) Sort
- ① Sort on K^0 : for example, create 4 buckets for the suits

② Sort each bucket independently (using any sorting technique)

- LSD (Least Significant Digit) Sort
- ① Sort on K^1 : for example, create 13 buckets for the face values

- 2 Reform them into a single pile
- 3 Create 4 buckets and resort

Question:

Is LSD always faster than MSD?

Replacement Selection

(2 points)

Due: Monday, June 17th, 2024 at 10:00pm

The problem can be found and submitted at https://pintia.cn/