On my honor as a KAIST student, I pledge to take this exam honestly.

You should write down all your work for full credits.

Session 1, December 14, 2021, 19:00-20:15, Four problems: 1-4

- 1. (10 pts) Mark True or False for each of the following statements. 2 pts for correct answer, -1 pt for wrong answer, and 0 pt for no response. You do not need to justify your answers.
 - (a) If a series $\sum_{n=0}^{\infty} a_n x^n$ converges on [-1,1], then the series $\sum_{n=1}^{\infty} n a_n x^{n-1}$ converges on (-1,1).
 - (b) If **a**, **b**, **c** are vectors of three dimension, then

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$$
.

- (c) If $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are nonzero vectors of three dimension and $(\mathbf{a} \times \mathbf{b}) \bullet \mathbf{c} = 0$, then $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are in the same plane.
- (d) Assume f is infinitely differentiable at 0 (i.e. $f^{(n)}(0)$ exists for all n = 1, 2, 3, ...). Then there exists $\epsilon > 0$ such that $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ for all $-\epsilon < x < \epsilon$.
- (e) Let $A(x) = \sum_n a_n x^n$ and $B(x) = \sum_n b_n x^n$ be power series with radii of convergences R_1 and R_2 , respectively. Then $A(x) \times B(x)$ is again a power series with a radius of convergence $\min\{R_1, R_2\}$.

2. (15 pts) Determine the radius and interval of convergence of the following series:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n} x^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n!} x^n$$

(c)
$$\sum_{n=0}^{\infty} (-1)^n x^{2^n}$$

3. (15 pts) How many domains are separately enclosed by the following polar equations:

(a)
$$r = 4\cos(2\theta)$$

(b)
$$r = \frac{4}{2-\cos\theta}$$

(c)
$$r = 2(1 + \cos \theta)$$

4. (10 pts) Let $L_1: x = 1 + t, y = 3 - t, z = 2t$ and $L_2: x = 0, y = -2s, z = 5s$. Find the minimum of $|\overrightarrow{P_1P_2}|$ for $P_1 \in L_1$ and $P_2 \in L_2$.