CONSTANTS

Plant Population Loss (pop_loss)

Current
Previous
Change
Constant

$$pop_loss = \frac{1}{3} \left(\sum_{i=1}^{3} pop_i \right)$$

Plant Population Adjustments (pop#)

A model for the loss of potential yeild based on plant population.

E (1,2,3)

Population Adjust. (pop_i)

Population Observ. i (POP_i)

Current
Previous
Change
Constant

$$pop_{i} = if\left(POP_{i} < 90000, -0.0003 \times \left(\frac{POP_{i}}{1000}\right)^{2} + 0.0456 \times \left(\frac{POP_{i}}{1000}\right) - 1.0246\right)$$

Soil Parameter b (b)

Comes from a look-up table

Look-up Table

Soil Parameter qfc (qfc)

$$qfc = \left(\frac{a2 \times a1}{5}\right)^{\frac{1}{b}}$$

Soil Parameter qpwp (qpwp)

This parameter is currently not employed in the code

$$qpwp = \left(\frac{a2 \times a1}{1500}\right)^{\frac{1}{b}}$$

Constants: soil type dependent

	b ≤ 20	b > 20
Карра (к)	0.0027	0.0008
Gamma (y)	0.00014	0.00002701
w_stressA	2	5
w_stressB	0.6	0.8
w_stressC	300	200
RUEZero1	RUEZero	2.1

Constants: Constant

Parameter	Value	Calculation of	Comment
a1	0,4	qfc, qpwp	
a2	0,6	qfc, qpwp	
beta0	0,00935	root_depth	
c1	378,8	rsum	
c2	8	rsum	
CSrad_k	-0,64	na	
CSrad_S	1,27	na	
delta	0,002715	root_depth	
DiseaseModel	0	na	
DiseaseProgress	0	na	
Dsowing	0,02	root_depth	
Extinction	0,7	na	
fZero	0,000015	f	
gamma2	0,00007	na	
Gsc	0,082	na	
kappa2	0,00148	na	
Ку	0,42	na	
LAlmu	1150	na	
LAIsigma1	381	na	
LAIsigma2	700	na	
LAIzero	3200	na	
length0	0,0491	root_depth	
muMin02	-0,00017	na	
muZero	0,06556	na	
nuZero	0,005866	na	
psiCrop	-1500	esoil	
RUEZero	1,95	RUEZero1	
Tbase	3	ΔΤ	
Tzero	90	root_depth, bbch	
Albedo	0,23	na	
Sbconstant	4,90E-09	na	

INITIAL CALCULATIONS (COLUMN-WISE)

Day Of Year (doy) [integer series]

Leap years are basically ignored, i.e. in leap year, 29 Feb = doy 60, in non-leap year 1 March = doy 60.

 $Day \ of \ year \ with \ base \ January \ 1$

Delta (delta) []

Current
Previous
Change
Constant

$$delta = \frac{slopesat}{slopesat + psychroC \times (1 + 0.34 \times xvh)}$$

Evapotranspiration (et) [mm/day ?]

Humidity, Daily Maximum (hhum) [%]

Humidity, Daily Maximum (hhum)

Weather service

Current
Previous
Change
Constant

 $hhum = max(hum_t, fort \in Daily_obs)$

Humidity, Daily Minimum (Ihum) [%]

Humidity, Daily Minimum (lhum)

Weather service

 $\mathit{lhum} \!=\! \mathit{min}(\mathit{hum}_{\scriptscriptstyle{t}}, \mathit{for}\, t \!\in\! \mathtt{Daily_obs})$

Precipitation, Daily Total (precip) [mm]

Precipitation, Daily Total (precip)

Weather Station

Pressure, Saturation, Daily Maximum (satPress_max)

Pressure, Sat. Max (satPress_max)

Temperature, Daily Max. (htemp)

$$satPress_max = 0.6108 \times exp \left(\frac{17.27 \times htemp}{htemp + 237.3} \right)$$

Pressure, Saturation, Daily Minimum (satPress_min)

Pressure, Sat. Min. (satPress_min)

Temperature, Daily Min. (Itemp)

Pressure, Saturation, Slope of Curve (slopesat)

Press., Sat. Slope Curve (slopesat) Temperature, Daily Mean (xtemp)

$$slopesat = \frac{4098 \times 0.6108 \times exp(17.27 \times xtemp \div (xtemp + 237.3))}{(xtemp + 237.3)^2}$$

Pressure, Vapour, Daily Mean (vapourPress)

$$vapourPress = \left(\frac{\text{satPress_max} \times hhum}{100} + \frac{\text{satPress_min} \times lhum}{100}\right) \div 2$$

Pressure, Vapour, Deficit (psi)

Current
Previous
Change
Constant

$$psi = \frac{psychroC}{slopesat + psychroC \times (1 + 0.34 \times xvh)}$$

Psychrometric C (pyschroC)

Psychrometric C (psychroC)

Pressure, Atmos. Base (press)

Radiation, Balance (radiationBalance)

 $radiationBalance = 0.408 \times (netRadiation - longtermRadiation)$

Radiation, Global (globalRadiation)

 $globalRadiation = (0.75 + 2 \times 10^{-5} \, mamsl) \times spaceRadiation$

Radiation, Long-term (longtermRadiation)

$$\begin{aligned} long term Radiation = & 4.903 \times 10^{-9} \times \left(\frac{(ltemp + 273.16)^4 + (htemp + 273.16)^4}{2}\right) \\ & \times (0.34 - 0.14 \times vapour Press^{0.5}) \times \left(\frac{1.35 \times solin}{global Radiation} - 0.35\right) \end{aligned}$$

Radiation, Daily Net (netRadiation) [MJ/m2/day]

Radiation, Daily Net (netRadiation)

Radiation, Solar, Daily Total- (solin)

Radiation, Solar, Daily Total (solin) [MJ/m2/day]

Radiation, Solar, Daily Total (solin)

Weather station

Radiation, Space (spaceRadiation) []

$$spaceRadiation = \frac{24 \times 60 \times invSun}{\pi} \times \left(sunAngle \times sin(\frac{lat \times \pi}{180}) \times sin(sunDecl) + cos(\frac{lat \times \pi}{180}) \times cos(sunDecl) \times sin(sunAngle)\right)$$

Sun, Angle Relative to Equator (Declination) (sunDecl) [degrees]

Sun Declination (sunDecl)

Day Of Year (doy)

[column wise, initial]

$$sunDecl = 0.409 \times \sin\left(\frac{2 \times \pi \times doy}{365} - 1.39\right)$$

Sun, Angle Relative to Orbital Plane (sunAngle) [degrees]

The angle of the sun relative to the equator is the declination (sunDecl)

$$sunAngle = acos(-tan(\frac{lat \times \pi}{180}) \times tan(sunDecl))$$

Sun, Inverse Distance (invSun) []

Sun, Inverse Distance (invSun)

Day Of Year (doy)

$$invSun=1+0.033\times\cos(\frac{2\times\pi\times doy}{365})$$

Temperature, Daily Maximum (htemp)

Temperature, Daily Max. (htemp)

Weather service

 $htemp = max(temp_t, for t \in Daily_obs)$

Temperature, Daily Mean (xtemp)

Temperature, Daily Mean (xtemp)

Weather service

$$xtemp = \frac{1}{n} \left(\sum_{i=1}^{n} temp_i \right)$$

Temperature, Daily Minimum (Itemp)

Temperature, Daily Min. (Itemp)

Weather service

 $ltemp = min(temp_t, for t \in \texttt{Daily_obs})$

Temperature Term (tempt)

$$tempt = \frac{900 \times xvh}{xtemp + 273.15}$$

Wind, Speed, Daily Mean (vxh)

Wind Speed, Daily Mean (xvh)

Weather service

$$xvh = \frac{1}{n} \left(\sum_{i=1}^{n} vh_i \right)$$

Wind, Speed, At Ground Level (wind_ground) [m/s]

wind_ground =
$$\frac{xvh \times 4.87}{\log(67.8 \times \text{wind_height} - 5.42)}$$

MAIN CALCULATIONS (ROW-WISE)

Canopy Cover (f).

A base level plus a sigmoidal growth fraction, dependent on the Stress Adjusted Cumulative Temperature (fTemp)

Canopy Cover (f)

Stress Adjus. Cum. Temp. (fTemp)

$$if(doy \ge sow_doy)$$
:

$$f\!=\!0.0015\!+\!\frac{0.99\!-\!0.0015}{1\!+\!\exp\left(-4\!\times\!\log(\frac{\textit{fTemp}}{1\!-\!\textit{fTemp}})\right)}$$

$$if(doy < sow_doy) f = fZero$$

Evaporation, Soil Surface (SSE)

$$if(doy \ge sow_doy)$$
:
 $SSE_t = SSE_{t-1} + \Delta SSE - precip$

$$if(doy < sow_doy)SSE_t = 0$$

Evaporation, Soil Surface, Change in (Δ SSE)

$$if (doy \ge sow_doy):$$

$$\Delta SSE = \begin{cases} if (f < 1, min(1.5, et) \times (1-f)) \\ if (f = 1, 0) \end{cases}$$

$$if (SSE_{t-1} > 20) \Delta SSE = 0$$

Evapotranspriation, Crop, Actual (ea)


```
if (doy≥sow_doy):
ea=min(eatmos, esoil)
```

Evapotranspiration, Crop, Atmosphere Limited (eatmos).


```
if(doy \ge sow\_doy):

eatmos = 1.2 \times f \times et

if(eatmos \le 0)eatmos = 0.001
```

Evapotranspiration, Crop, Soil Limited (esoil)

$$if(doy \ge sow_doy)$$
:

$$esoil = \frac{\psi_s - \psi_c}{rsum}$$

$$if(qrel == 0)esoil = 0$$

Growth Stage (bbch)

The last conditional equation looks like an insurance policy, but it seems a little off: shouldn't it be if Cd_sow is less than Tzero (bbch = 01 means sown but not emerged).

$$bbch = \begin{cases} if (doy \ge sow_doy, 01) \\ if (doy \ge emerg_doy, 09) \\ if (doy \ge harvest_doy, 99) \\ else(0) \end{cases}$$

 $if (emerg_doy \le sow_doy \land Cd_sow \ge Tzero)bbch = 01$

Pressure, Soil Vapour (ψ_s) []

$$\psi_s = -5 \times qrel^{-b}$$

q, Soil Variable (q)

Soil Moisture Deficit (SMD0) is given as from the previous period as the majority of the time, this is what it will be (see SMD0).

$$if(doy \ge sow_doy)$$
:
 $q = max(qfc - \frac{SMD0}{root_depth}, 0.01)$

q, Relative (qrel)

$$if(doy \ge sow_doy)$$
:

$$qrel = \frac{q}{qfc}$$

$$if(doy < sow_doy)qrel = 1$$

Radiation Use Efficiency (RUE)

How much of the available solar energy can the plant use. Depends on amount biomass per hectare and the estimated rates of evapotranspiration.

$$\begin{split} &if \left(doy \geq \text{sow_doy} \right) : \\ &RUE = 0.6 \times RUEZero \times \exp \left(-\gamma \times biomass_{t-1} \right) + \frac{0.4 \times RUEZero \times ea}{eatmos} \times \exp \left(-\gamma \times biomass_{t-1} \right) \\ &RUE = \left(RUEZero \times \exp \left(-\gamma \times biomass_{t-1} \right) \right) \left(0.6 + \frac{0.4 \times ea}{eatmos} \right) \end{split}$$

Root depth (root_depth)

Basically a function of sowing depth and cumulative temperature post-emergence.

Rooting (rsum)

Qrel^(-2xb+3) is also given as hc_soil, EXCEPT the negative in front of the 2?!?!

if
$$(doy \ge sow_doy)$$
:

$$rsum = C1 + \frac{C2 \times (qrel^{-2 \times b+3} - 1)}{root_depth}$$
if $(qrel == 0)rsum = C1$

Soil Moisture Deficit (SMD)

Estimate of how much more water the soil could hold. Increases with $\Delta SMD > 0$.

$$if(doy \ge sow_doy)$$
:
 $SMD_t = SMD \ 0 + \Delta SMD$

Soil Moisture Deficit, Change in (Δ SMD)

The change in the amount of water in the soil. Positive if there is evaporation or transpiration, negative if there is rain. Taken as 0 if Δ SMD < 0 and SMD = 0 (IS IT????).

Current
Previous
Change
Constant

 $if(doy \ge sow_doy)$: $\Delta SMD = \Delta SSE + ea - precip$

Soil Moisture Deficit, Initial (SMD0)

Soil Moisture Deficit (SMD0) is given as from the previous period as the majority of the time, this is what it will be (see SMD0).

$$if(doy \ge sow_doy)$$
:

$$SMD 0 = \begin{cases} if (doy == sow_doy, 0) \\ if (SMD_{t-1} < 0, 0) \\ else(SMD_{t-1}) \end{cases}$$

$$if(doy < sow_doy) SMD 0 = 20$$

Stress, Water Deficit Induced (w_stress)

NB: In my R code, I had w_stressC written as Wstresc at one point (last instance in calc of w_stress). Is this an error by me or an issue in the OpenModel version?

$$if(doy \ge sow_doy):$$

$$w_stress = \begin{cases} if(qrel < w_stressB \land xtemp > w_stressC, \frac{qrel \times w_stressC}{w_stressB}) \\ else(1) \end{cases}$$

Temperature, Post Emergence, Cumulative (Cd_em)

$$Cd_{em_{t}} = \begin{cases} if(bbch \ge 09, 90 + Cd_{em_{t-1}} + \Delta T) \\ else(0) \end{cases}$$

Temperature, Post Sowing, Cumulative (Cd_sow)

$$Cd_{sow_{t}} = \begin{cases} if(bbch \ge 01, Cd_{sow_{t-1}} + \Delta T) \\ else(0) \end{cases}$$

Temperature, Re-Based, Daily (ΔT)

 $\Delta T = xtemp - Tbase$ if $(\Delta T < 0) \Delta T = 0$

Temperature, Stress Adjusted, Cumulative (Cd_stress)

Stress Adjus. Cum. Temp (Cd_stress)

Stress Adjus. Cum. Temp. (Cd_stress)

Stress Adjust. Daily Temp. (xt_stress)


```
if(doy \ge sow\_doy):
Cd\_stress_t = Cd\_stress_{t-1} + xt\_stress, where xt\_stress \equiv \Delta Cd\_stress
if(Cd\_stress > 950)Cd\_stress = 950
```

$$if(doy < sow_doy)Cd_stress = 0$$

Temperature, Stress Adjusted, Cumulative (fTemp)

A fraction of Stress Adjusted Cumulative Temperature (Cd_stress). This seems unnecessary, except for...

Note that Cd_stress is readjusted after it is used to calculated fTemp, so fTemp can be above 0.950, but only by the amount of the current day's Stress Adjusted Temperature.

Stress Adjus. Cum. Temp. (fTemp)

Stress Adjus. Cum. Temp. (Cd_stress)


```
if (doy \ge sow\_doy):

fTemp = Cd\_stress \times 0.0001

if (fTemp \le 0.00001) fTemp = 0.00001
```

Temperature, Stress Adjusted, Daily (xt_stress)

$$if(doy \ge sow_doy)$$
:
$$xt_stress = \begin{cases} if(xtemp > 3 \land xtemp < 25 \land bbch \ge 09, (xtemp - 3) \times w_stress) \\ else(0) \end{cases}$$

Yield, Biomass (biomass)

Potential biomass = root plus top.

 $if(doy \ge sow_doy)$: $biomass_t = biomass_{t-1} + \Delta biomass$

 $if(doy < sow_doy)biomass_t = 0$

Yield, Biomass, Change in (Δ biomass)

Increase in biomass (root plus top) in any given period.

 $if(doy \ge sow_doy)$: $\Delta biomass = RUE \times f \times solin$

Yield, Root (yield)

Potential root yield

$$if(doy \ge sow_doy):$$

$$yield_t = yield_{t-1} + \frac{\Delta \, biomass \times \kappa \times biomass_t}{1 + \kappa \times biomass_t}$$

$$if(doy < sow_doy) yield_t = 0$$

Yield, Root, Plant Population Adjusted (yield_pop)

Potential root yield adjusted for the observed plant population. Plant populations above 90 000 will result in no adjustment.

[row-wise, main]


```
if (doy≥sow_doy):
yield_pop=pop_loss×yield
```

Yield, Sugar (fsugar)

Potential sugar yield. Given Kappa is a constant, Sugar Yield is in direct relation to the Biomass estimate.

$$if(doy \ge sow_doy)$$
:

$$fsugar = \frac{\kappa \times biomass}{1 + \kappa \times biomass}$$

