Quasikohärente Modulgarben

Ingo Blechschmidt

28. Mai 2015

1 Grundlagen

Motto 1.1. Nur die quasikohärenten Modulgarben auf einem Schema haben geometrische Bedeutung. Die anderen sind Artefakt der Kodierung über lokal geringte Räume.

Definition 1.2. Sei X ein Schema und \mathcal{E} eine \mathcal{O}_X -Modulgarbe. Genau dann heißt \mathcal{E} quasikohärent, wenn es lokal exakte Sequenzen der Form

$$\mathcal{O}_X^{\oplus I} \longrightarrow \mathcal{O}_X^{\oplus J} \longrightarrow \mathcal{E} \longrightarrow 0$$

gibt. Dabei können I und J beliebige Mengen sein.

Proposition 1.3. Sei X ein Schema und \mathcal{E} eine \mathcal{O}_X -Modulgarbe. Dann sind äquivalent:

- 1. Die Modulgarbe \mathcal{E} ist quasikohärent.
- 2. Es gibt eine Überdeckung von X durch offene affine Teilmengen U sodass für jede Überdeckungsmenge $U = \operatorname{Spec} A$ die Einschränkung $\mathcal{E}|_U$ isomorph zu einer Modulgarbe der Form M^{\sim} für einen A-Modul M ist.
- 3. Für alle offenen affinen Teilmengen $U = \operatorname{Spec} A$ ist $\mathcal{E}|_U$ isomorph zu einer Modulgarbe der Form M^{\sim} für einen A-Modul M.
- 4. Für alle offenen affinen Teilmengen $U = \operatorname{Spec} A$ und Funktionen $f \in A$ ist die kanonische Abbildung $\mathcal{E}(U)[f^{-1}] \to \mathcal{E}(D(f))$ ein Isomorphismus von $A[f^{-1}]$ -Moduln.

Bemerkung 1.4. Eine Modulgarbe $\mathcal E$ auf einem Schema X ist genau dann quasikohärent, wenn aus Sicht der internen Sprache des Topos $\operatorname{Sh}(X)$ für alle $f:\mathcal O_X$ der lokalisierte Modul $\mathcal E[f^{-1}]$ eine Garbe bezüglich der Modalität \square mit $\square \varphi :\equiv (f \text{ inv.} \Rightarrow \varphi)$ ist.

Beispiel 1.5. Die Kategorie der quasikohärenten Modulgarben auf einem affinen Schema $\operatorname{Spec} A$ ist äquivalent zur Kategorie der A-Moduln. Die Äquivalenz wird vermittelt durch den Funktor $\mathcal{E} \mapsto \mathcal{E}(\operatorname{Spec} A)$ mit Pseudoinversem $M \mapsto M^{\sim}$.

Beispiel 1.6. Die Kategorie der quasikohärenten Modulgarben auf einem projektiven Schema $\operatorname{Proj} A$ ist äquivalent zum Quotient der Kategorie der \mathbb{Z} -graduierten A-Moduln modulo der Serreschen Unterkategorie derjenigen graduierten Moduln, welche ab einem gewissen Grad verschwinden. Die Äquivalenz wird durch eine projektive Variante der Tilde-Konstruktion vermittelt.

Beispiel 1.7. Der Rückzug quasikohärenter Modulgarben ist stets wieder quasikohärent. Der Pushforward einer quasikohärenten Modulgarbe längs einem quasikompakten und quasiseparierten Morphismus ist wieder quasikohärent.

Proposition 1.8. Sei $f: \operatorname{Spec} A \to \operatorname{Spec} B$ ein Morphismus affiner Schemata. Betrachte A vermöge f^{\sharp} als B-Algebra.

- 1. Sei M ein A-Modul. Dann gilt $f_*(M^{\sim}) \cong (M_B)^{\sim}$.
- 2. Sei N ein B-Modul. Dann gilt $f^*(N^{\sim}) \cong (N \otimes_B A)^{\sim}$.

Bemerkung 1.9. Aus der Kategorie der quasikohärenten Modulgarben auf einem Schema X zusammen mit ihrer abelschen Struktur kann man das Schema rekonstruieren; das besagt der Rekonstruktionssatz von Gabriel-Rosenberg. Für affine Schemata folgt das aus der für Ringe A gültigen Isomorphiekette

$$A \cong \operatorname{End}(\operatorname{Id}_{\operatorname{Mod}(A)}) \cong \operatorname{End}(\operatorname{Id}_{\operatorname{QCoh}(\operatorname{Spec} A)}).$$

Allgemein heißt für eine abelsche Kategorie \mathcal{C} die Menge der Endomorphismen des Identitätsfunktors auf \mathcal{C} auch Zentrum von \mathcal{C} . Mit der Addition und Verkettung von natürlichen Transformationen wird diese zu einem kommutativen Ring.

Bemerkung 1.10. Die Kategorie $\operatorname{QCoh}(X)$ der quasikohärenten Modulgarben ist eine koreflektive Unterkategorie der Kategorie $\operatorname{Mod}(\mathcal{O}_X)$ aller Modulgarben, das heißt die Inklusion $\operatorname{QCoh}(X) \hookrightarrow \operatorname{Mod}(\mathcal{O}_X)$ besitzt einen Rechtsadjungierten, den so genannten Kohärator. Als Konsequenz kann man zeigen, dass $\operatorname{QCoh}(X)$ wie auch $\operatorname{Mod}(\mathcal{O}_X)$ eine Grothendieck-Kategorie ist. Kolimiten berechnet man in $\operatorname{QCoh}(X)$ genau wie in $\operatorname{Mod}(\mathcal{O}_X)$. Limiten in $\operatorname{QCoh}(X)$ berechnet man, indem man sie zunächst in $\operatorname{Mod}(\mathcal{O}_X)$ bestimmt und dann den Kohärator anwendet. Für endliche Limiten kann man auf den Kohärator verzichten.

2 Tiefere kategorielle Interpretation

Sei $\mathcal E$ eine quasikohärente Modulgarbe auf einem Schema X. Dann erhalten wir für jeden Morphismus $f:\operatorname{Spec} A\to X$ durch Betrachtung des Rückzugs $f^*\mathcal E$ einen A-Modul, den wir " $\underline{\mathcal E}(A)$ " bezeichnen möchten. In der Notation unterdrücken wir also den Morphismus f und notieren nur seine Quelle. Ist $p:\operatorname{Spec} B\to\operatorname{Spec} A$ ein weiterer Morphismus, so gibt es eine

 $^{^1}$ Seien M_i Modul
n über A. Das Produkt der M_i^\sim in der Kategorie aller Modulgarben auf Spe
cAist dann eine Garbe mit $D(f)\mapsto \prod_i M_i[f^{-1}].$ Dagegen ist das Produkt der
 M_i^\sim in der Kategorie der quasikohärenten Modulgarben eine Garbe mit
 $D(f)\mapsto (\prod_i M_i)[f^{-1}].$ Es gibt zwar einen kanonischen Morphismus
 $(\prod_i M_i)[f^{-1}]\to \prod_i M_i[f^{-1}];$ im Allgemeinen ist dieser jedoch weder injektiv noch surjektiv.

kanonische Abbildung $\underline{\mathcal{E}}(A) \to \underline{\mathcal{E}}(B)$. Insgesamt definiert daher die Zuordnung (Spec $A \to X$) $\mapsto \underline{\mathcal{E}}(A)$ eine *Prägarbe* auf der Kategorie Aff/X der affinen Schemata über X.

Die Familie dieser Moduln $\mathcal{E}(A)$ hat drei Besonderheiten:

0. Die Prägarbe $\underline{\mathcal{E}}$ ist ein Modulobjekt über dem Ringobjekt \mathcal{O}_X , das ist die Prägarbe

$$\begin{array}{ccc} (\mathrm{Aff}/X)^{\mathrm{op}} & \longrightarrow & \mathrm{Set} \\ (\mathrm{Spec}\, A \to X) & \longmapsto & A. \end{array}$$

1. Seien Morphismen $f:\operatorname{Spec} A\to X$ und $p:\operatorname{Spec} B\to\operatorname{Spec} A$ gegeben. Dann gibt es einen kanonischen Isomorphismus

$$\underline{\mathcal{E}}(A) \otimes_A B \stackrel{\cong}{\longrightarrow} \underline{\mathcal{E}}(B),$$

denn $p^*f^*\mathcal{E}$ ist kanonisch isomorph zu $(f \circ p)^*\mathcal{E}$. Diese Isomorphismen erfüllen ihrerseits eine Kohärenzbedingung.

2. Sei $f:\operatorname{Spec} A\to X$ ein Morphismus und sei $\operatorname{Spec} A$ überdeckt durch offene affine Unterschemata $\operatorname{Spec} A[f_i^{-1}]$. Dann ist das Diagramm

$$\underline{\mathcal{E}}(A) \to \prod_{i} \underline{\mathcal{E}}(A[f_i^{-1}]) \Longrightarrow \prod_{i,j} \underline{\mathcal{E}}(A[f_i^{-1}, f_j^{-1}])$$

ein Differenzkerndiagramm. Man sagt auch, die Zuordnung (Spec $A \to X$) $\mapsto \underline{\mathcal{E}}(A)$ sei eine Zariski-Garbe.

Man kann sich überlegen, dass für eine Prägarbe $\mathcal F$ auf Aff/X Eigenschaft 2 schon aus den Eigenschaften 0 und 1 folgt. Denn das fragliche Diagramm ist dann isomorph zu

$$\mathcal{F}(A) \to \prod_i \mathcal{F}(A)[f_i^{-1}] \Longrightarrow \prod_{i,j} \mathcal{F}(A)[f_i^{-1}, f_j^{-1}],$$

und es ist eine elementare Beobachtung aus der linearen Algebra über Ringen, dass dieses ein Differenzkerndiagramm ist.

Als Zwischenfazit halten wir fest: Eine quasikohärente Modulgarbe $\mathcal E$ definiert ein kohärentes System von Moduln $(\underline{\mathcal E}(A))_{\operatorname{Spec} A \to X}$, also ein System, das Eigenschaft 1 hat. Umgekehrt kann man sich überlegen, dass jedes solche System auch eine quasikohärente Modulgarbe festlegt.

Die Kategorie der quasikohärenten Modulgarben auf X ist also äquivalent zur Kategorie der kohärenten Aff/X -indizierten Systeme von Moduln. Das kann einen an die Konstruktion von Limiten in der Kategorie der Mengen erhalten! Tatsächlich gilt

$$QCoh(X) = \lim_{Spec A \to X} Mod(A).$$

Der Limes auf der rechten Seite muss in einem 2-kategoriellen Sinn verstanden werden; ein Objekt dieser Kategorie besteht aus

- 1. einer Familie von Moduln: für jeden Morphismus $\operatorname{Spec} A \to X$ einen A-Modul M_A , und
- 2. Isomorphismen: für jeden Morphismus $\operatorname{Spec} A \to X$ und jeden Morphismus $\operatorname{Spec} B \to \operatorname{Spec} A$ einen Isomorphismus $M_A \otimes_A B \to M_B$,

sodass diese bezüglich weiterer Morphismen $\operatorname{Spec} C \to \operatorname{Spec} B$ ein Kohärenzaxiom erfüllen. Die rechte Seite kann man als Instanz der *Limesformel für Rechts-Kan-Erweiterungen* erkennen. Damit können wir also auch schreiben:

$$QCoh = Ran_{inkl}(Mod).$$

Der Funktor QCoh, der einem Schema seine Kategorie quasikohärenter Modulgarben zuordnet, ist also die Rechts-Kan-Erweiterung des Funktors $\mathrm{Mod}:\mathrm{Ring}\to\mathrm{Cat}$ (welcher einem Ring A die Kategorie der A-Moduln zuordnet) längs der Inklusion inkl: $\mathrm{Aff^{op}}\to\mathrm{Sch^{op}};$ bedenke $\mathrm{Aff^{op}}=\mathrm{Ring}.$

Beide der Ausdrücke für $\operatorname{QCoh}(X)$ lassen sich auf Objekte X verallgemeinern, die nicht Schemata im engeren Sinn sind: zum Beispiel Garben auf $\operatorname{Ring}^{\operatorname{op}}$, welche nicht unbedingt lokal affin sind, oder sogar Prägarben auf $\operatorname{Ring}^{\operatorname{op}}$. Die Limesformel ist auch eine zentrale Idee zur Definition der Kategorie der quasikohärenten Modulgarben auf einem Stack.

Wer mag, kann die Formel auch noch zu

$$\operatorname{QCoh}(X) = \int_A \operatorname{Hom}(\operatorname{Spec} A, X) \cdot \operatorname{Mod}(A) = \int_A [\underline{X}(A), \operatorname{Mod}(A)]$$

umschreiben. Damit endet dieser Ausflug in die 2-kategorielle Interpretation quasikohärenter Modulgarben.