

SEQUENCE LISTING

<110> CropDesign N.V.

<120> Plants having modified growth characteristics and method for making the same

<130> 1187-30

<150> PCT/EP2004/053594

<151> 2004-12-17

<150> EP 03104764.0

<151> 2003-12-17

<150> US 60/531,866

<151> 2003-12-22

<160> 7

<170> PatentIn version 3.3

<210> 1

<211> 1380

<212> DNA

<213> Nicotiana tabacum

<400> 1

atgggtgaca tgaaggataa agtcaaaggg ttcatgaaaa aagtcacatc ttcttcttca 60

ggtaagttt aaggccaagg tagggtttg ggtggttcat cttcttcagg accctcaa 120

catgtcaata attttcatc acatccccta aatacaaggc aagatcaaca acttcatat 180

acaaaaactt cgccctaaaa accaagtaat tctgatcaaa gaattgagaa tatatgtgaa 240

attcagttca acaaaagtga atcaaaggat ggtttgatc catttggtga attagtcact 300

tctggaaaga gaaacccaaa aggttattca cttactaatg tggttgaatg ccctgtctgt 360

ggtagtggtt ttgtttctga agaagaggtg tcaactcata ttgatagctg tttaagttct 420

gaagtgtctt ctaatttggg agttgaaagt aaagttgaag ttaaaagtga attggaaaca 480

tgtgttagtg catatgttcc aggaaagccc tcagaagggt cagttgaagt ggtcattaag 540

ttgttaaaga atattgtgaa ggaaccagag aatgccaagt ttaggaaaat aaggatgggg 600

aatccaaaaa taaaagggtgc tataagggtat gttgttaggag gagtggagct attggat 660

gttggatttg agttgaaaga agaagggtggg gaaatttggg ctgtgatgga tgttccttct 720

gaagaacaac ttgttatgct taagaatgta gtttcactct tggaaccgaa gaagggtgaa 780

gagttggcgt ccttatccca agttaaggcg agtgaaccag ttgagccgaa gaagattgat 840

agacagattc gagtgttctt ttctgttccc gagagcgtag cagcaaaaat tgagctac 900

gattccttct ttaacctctc acgtgaggaa ttgagaagag aagcagagat gaggaagaag 960
aaattagaag attccaaatt attgattcct aaatcttatac gggaaaagca ggcaaaagct 1020
gcaagaaaga agtacacaaa atccattatac cgtgtacagt ttccagatgg agcattgctt 1080
caaggtgtct ttctacccttc ggagccaact agtgctctt atgagttgt gagcgcagcg 1140
ttaaaggaac caagcttaga gttcgaattt ttacatccgg tgcttgtttaa aaagcgggtg 1200
attccccatt ttccagctgc tggggagagg gctgtaacag ttgaagagga ggatttggtt 1260
cctgcagctc tactcaaatt taaacctatac gaaacagatt ctgttgttt tactggtctt 1320
tgtaatgagc ttcttggaaat tagcgagccc ctcgagaccg gatcagttgc ttccctcgtaa 1380

<210> 2
<211> 459
<212> PRT
<213> Nicotiana tabacum

<400> 2

Met Gly Asp Met Lys Asp Lys Val Lys Gly Phe Met Lys Lys Val Thr
1 5 10 15

Ser Ser Ser Ser Gly Lys Phe Lys Gly Gln Gly Arg Val Leu Gly Gly
20 25 30

Ser Ser Ser Ser Gly Pro Ser Asn His Val Asn Asn Phe Ser Ser His
35 40 45

Pro Leu Asn Thr Arg Gln Asp Gln Gln Pro Ser Tyr Thr Lys Thr Ser
50 55 60

Pro Gln Lys Pro Ser Asn Ser Asp Gln Arg Ile Glu Asn Ile Cys Glu
65 70 75 80

Ile Gln Phe Asn Lys Ser Glu Ser Lys Asp Gly Phe Asp Pro Phe Gly
85 90 95

Glu Leu Val Thr Ser Gly Lys Arg Asn Pro Lys Gly Tyr Ser Leu Thr
100 105 110

Asn Val Phe Glu Cys Pro Val Cys Gly Ser Gly Phe Val Ser Glu Glu
115 120 125

Glu Val Ser Thr His Ile Asp Ser Cys Leu Ser Ser Glu Val Ser Ser
130 135 140

Asn Leu Gly Val Glu Ser Lys Val Glu Val Lys Ser Glu Leu Glu Thr
145 150 155 160

Cys Val Ser Ala Tyr Val Ser Gly Lys Pro Ser Glu Gly Ser Val Glu
165 170 175

Val Val Ile Lys Leu Leu Lys Asn Ile Val Lys Glu Pro Glu Asn Ala
180 185 190

Lys Phe Arg Lys Ile Arg Met Gly Asn Pro Lys Ile Lys Gly Ala Ile
195 200 205

Gly Asp Val Val Gly Gly Val Glu Leu Leu Glu Phe Val Gly Phe Glu
210 215 220

Leu Lys Glu Glu Gly Glu Ile Trp Ala Val Met Asp Val Pro Ser
225 230 235 240

Glu Glu Gln Leu Val Met Leu Lys Asn Val Val Ser Leu Leu Glu Pro
245 250 255

Lys Lys Val Glu Glu Leu Ala Ser Leu Ser Gln Val Lys Ala Ser Glu
260 265 270

Pro Val Glu Pro Lys Lys Ile Asp Arg Gln Ile Arg Val Phe Phe Ser
275 280 285

Val Pro Glu Ser Val Ala Ala Lys Ile Glu Leu Pro Asp Ser Phe Phe
290 295 300

Asn Leu Ser Arg Glu Glu Leu Arg Arg Glu Ala Glu Met Arg Lys Lys
305 310 315 320

Lys Leu Glu Asp Ser Lys Leu Leu Ile Pro Lys Ser Tyr Arg Glu Lys
325 330 335

Gln Ala Lys Ala Ala Arg Lys Tyr Thr Lys Ser Ile Ile Arg Val
340 345 350

Gln Phe Pro Asp Gly Ala Leu Leu Gln Gly Val Phe Leu Pro Ser Glu

355

360

365

Pro Thr Ser Ala Leu Tyr Glu Phe Val Ser Ala Ala Leu Lys Glu Pro
370 375 380

Ser Leu Glu Phe Glu Leu Leu His Pro Val Leu Val Lys Lys Arg Val
385 390 395 400

Ile Pro His Phe Pro Ala Ala Gly Glu Arg Ala Val Thr Val Glu Glu
405 410 415

Glu Asp Leu Val Pro Ala Ala Leu Leu Lys Phe Lys Pro Ile Glu Thr
420 425 430

Asp Ser Val Val Phe Thr Gly Leu Cys Asn Glu Leu Leu Glu Ile Ser
435 440 445

Glu Pro Leu Glu Thr Gly Ser Val Ala Ser Ser
450 455

<210> 3
<211> 1311
<212> DNA
<213> Saccharum officinarum

<220>
<221> misc_feature
<222> (277)..(279)
<223> n can be any nucleotide

<400> 3
atgatgaagg acaagatgaa ggagttcatg aagaaggta cctcctccgg gtccgggacc 60
ccctcctcct tcaagggcac ctcccacgtc ctggctccg gcccctcccc ctcttcctcc 120
caccccgctg cccgctcctc aaacccttagc ccaaacctca ggcccgctcc taagcggacc 180
tcgcccaccta ccccgccccac tttaaccacc gatttgacct ctttacgccc ctcgtctgc 240
tactcctccc gccgccccga cgcaacggc accgcgnng ccgtcgccac cgtcgctgc 300
cccagctgcg gagacgcgtt tccgtccgag ctgcgcgtct ccgagcatct cgacggctgc 360
ctcgcgtcgg cggggggcgc cgcgcgcgc gcccgcgt acctcgccgc cgaccgcct 420
ccgccccggg cctccgtaga ggtggtaaaa cgcctgctgg gcaacctgct ccgggagccc 480
ggcaacgata agttcaggcg ggtgagattg ggtaacccgc ggatcaagga ggccctggca 540

gacaggatg gcgggttgg	600
gctcctggag gccgtcggt	
tcacagttgg ggatgagggc	
ggggagccct tcgcccgtat	660
ggacgaagtg cctagcgacc	
ctaggctcaa cgggatcagg	
agggccgtcc tcctgctcga	720
gggggcacac ccctctgcgc	
ctccagtgaa ggcggaggct	
gaggccaagg agagctgcag	780
caatgtgtct gacgtgcagg	
agggtgctaa gactattgtat	
cggcagattc gggtatttgt	840
ctctgttccct gggagttcta	
tggcacaaaa tgatgtacca	
gattttttt acaagcttag	900
tggtgaggag ataaggaatg	
aagcaaagat gaggaggaa	
aggttagaac aatctcgatt	960
gctgatacca aagtcttaca	
aggagaaaca ggcattggct	
gctcgacaga agtataaaca	1020
agcagtcatt cgagttcagt	
ttccagatag aatgattctt	
cagggcatat tcctaccagg	1080
agaggccact agttcactgt	
atgagttcgt cacatctgct	
ctgaagcaat caggttttgg	1140
attcgaactt atctctccag	
ccatacctaa gccacgtgt	
gtgccccatt ttccaaaccc	1200
gggagagcgg gcacgcacct	
tgcaagagga ggagctggc	
ccatctgcgc tcctcaagtt	1260
cattccaaag gagactgatt	
ccatggttt caccggtttgc	
cttgatgagc ttctcatggc	1311
cagtgagccg cttcctgctg catcacaatg a	

<210> 4
 <211> 436
 <212> PRT
 <213> *Saccharum officinarum*

<220>
 <221> MISC_FEATURE
 <222> (93)..(93)
 <223> Xaa can be any amino acid

<400> 4

Met	Met	Lys	Asp	Lys	Met	Lys	Glu	Phe	Met	Lys	Lys	Val	Thr	Ser	Ser
1					5				10				15		

Gly	Ser	Gly	Thr	Pro	Ser	Ser	Phe	Lys	Gly	Thr	Ser	His	Val	Leu	Gly
				20				25				30			

Ser	Gly	Pro	Ser	Pro	Ser	Ser	Ser	His	Pro	Ala	Ala	Arg	Ser	Ser	Asn
					35			40				45			

Pro	Ser	Pro	Asn	Leu	Arg	Pro	Ala	Pro	Lys	Arg	Thr	Ser	Pro	Pro	Thr
				50				55			60				

Pro Pro Thr Leu Thr Asp Leu Thr Ser Phe Thr Pro Leu Val Cys

65

70

75

80

Tyr Ser Ser Arg Arg Pro Asp Ala Asn Gly Thr Ala Xaa Ala Val Ala
85 90 95

Thr Val Ala Cys Pro Ser Cys Gly Asp Ala Phe Pro Ser Glu Leu Ala
100 105 110

Val Ser Glu His Leu Asp Gly Cys Leu Ala Ser Ala Gly Gly Ala Arg
115 120 125

Ala Arg Ala Ala Ala Tyr Leu Ala Ala Asp Pro Pro Pro Pro Ala Ala
130 135 140

Ser Val Glu Val Val Lys Arg Leu Leu Gly Asn Leu Leu Arg Glu Pro
145 150 155 160

Gly Asn Asp Lys Phe Arg Arg Val Arg Leu Gly Asn Pro Arg Ile Lys
165 170 175

Glu Ala Leu Ala Asp Arg Asp Gly Gly Val Glu Leu Leu Glu Ala Val
180 185 190

Gly Phe Thr Val Gly Asp Glu Gly Gly Glu Pro Phe Ala Val Met Asp
195 200 205

Glu Val Pro Ser Asp Pro Arg Leu Asn Gly Ile Arg Arg Ala Val Leu
210 215 220

Leu Leu Glu Gly Ala His Pro Ser Ala Pro Pro Val Lys Ala Glu Ala
225 230 235 240

Glu Ala Lys Glu Ser Cys Ser Asn Val Ser Asp Val Gln Glu Gly Ala
245 250 255

Lys Thr Ile Asp Arg Gln Ile Arg Val Phe Val Ser Val Pro Gly Ser
260 265 270

Ser Met Ala Gln Asn Asp Val Pro Asp Ser Phe Tyr Lys Leu Ser Gly
275 280 285

Glu Glu Ile Arg Asn Glu Ala Lys Met Arg Arg Glu Arg Leu Glu Gln
290 295 300

Ser Arg Leu Leu Ile Pro Lys Ser Tyr Lys Glu Lys Gln Ala Leu Ala
305 310 315 320

Ala Arg Gln Lys Tyr Lys Gln Ala Val Ile Arg Val Gln Phe Pro Asp
325 330 335

Arg Met Ile Leu Gln Gly Ile Phe Leu Pro Gly Glu Ala Thr Ser Ser
340 345 350

Leu Tyr Glu Phe Val Thr Ser Ala Leu Lys Gln Ser Gly Leu Glu Phe
355 360 365

Glu Leu Ile Ser Pro Ala Ile Pro Lys Pro Arg Val Val Pro His Phe
370 375 380

Pro Asn Pro Gly Glu Arg Ala Arg Thr Leu Gln Glu Glu Glu Leu Val
385 390 395 400

Pro Ser Ala Leu Leu Lys Phe Ile Pro Lys Glu Thr Asp Ser Met Val
405 410 415

Phe Thr Gly Leu Leu Asp Glu Leu Leu Met Ala Ser Glu Pro Leu Pro
420 425 430

Ala Ala Ser Gln
435

<210> 5
<211> 3048
<212> DNA
<213> Artificial sequence

<220>
<223> expression cassette comprising GRUBX (1011-2390) operably linked
to the prolamine promoter (1-654) and the T-Zein + T-Rubisco
deltaG terminator (2615-2808 and 2852-3048)

<400> 5
cttctacatc ggcttaggtg tagcaacacg actttattat tattattattt attattatta 60
ttatTTTaca aaaatataaa atagatcagt ccctcaccac aagtagagca agttggtgag 120
ttatTTTaaa gttctacaaa gctaattaa aagttattgc attaacttat ttcatattac 180
aaacaagagt gtcaatggaa caatgaaaac catatgacat actataattt tgTTTTattt 240

attgaaatataaattcaa agagaataaaa tccacatagc cgtaaagttc tacatgtggt 300
gcattaccaa aatatataata gcttacaaaa catgacaagc tttagttgaa aaattgcaat 360
ccttatacaca ttgacacata aagtgagtga tgagtataa tattatttc tttgctaccc 420
atcatgtata tatgatagcc acaaagttac tttgatgatg atatcaaaga acatttttag 480
gtgcaccta cagaatatcc aaataatatg actcaacttag atcataatag agcatcaagt 540
aaaactaaca ctctaaagca accgatggga aagcatctat aaatagacaa gcacaatgaa 600
aatcctcatac atccttcacc acaattcaaa tattatagtt gaagcatagt agtaatttaa 660
atcaactagg gatatcacaa gtttgtacaa aaaagcaggc tggtaccggc ccggaattcc 720
cgggatatcg tcgaccacg cgtccgccaa tatcagattt ctttcatgaa ctccacttcc 780
aatttctcat tgcttcttct tcccatttcc acctccaaag ccattttcc agaaaacctt 840
gttccttaca ttcttagcc ccaaaaaaga ttcccatctc aattccacaa aaaaacacaa 900
ggagatctaa ggaaattccc cgcctctata tatagagagg tggattgtt cctgaatttg 960
gtttgaattt attgattgac agatttttgtt gagagggtgt tattgaaaaa atgggtgaca 1020
tgaaggataa agtcaaaggg ttcatgaaaa aagtcacatc ttcttcttca ggtaagttt 1080
aaggccaagg tagggttttgggttcat cttttcagg accctcaaattt catgtcaata 1140
attttcatc acatcccata aatacaaggc aagatcaaca accttcataat acaaaaaactt 1200
cgcctcaaaa accaagtaat tctgatcaaa gaattgagaa tataatgtgaa attcagttca 1260
acaaaaagtga atcaaaggat ggtttgtatc catttgggtga attagtcact tctggaaaga 1320
gaaacccaaa aggttattca cttactaatg tggttgaatg ccctgtctgt ggtgtggtt 1380
ttgtttctga agaagaggtg tcaactcata ttgatagctg ttaagttct gaagtgtctt 1440
ctaatttggg agttgaaagt aaagttgaag taaaagtga attggaaaca tgtgttagtg 1500
catatgttc agggaaagccc tcagaagggt cagttgaagt ggtcattaag ttgttaaaga 1560
atattgtgaa ggaaccagag aatgccaagt ttagaaaaat aaggatgggg aatccaaaaa 1620
taaaaggtgc tataatgtat gttgttaggag gagtgaggtt attggaattt gttggatttg 1680
agttgaaaga agaaggtggg gaaatttggg ctgtgatgga tttttttctt gaagaacaac 1740
ttgttatgct taagaatgtat gtttcactct tggAACGAA gaaggttgaa gagttggcgt 1800
ccttataccca agttaaggcg agtgaaccag ttgagccgaa gaagattgat agacagattc 1860
gagtgttctt ttctgttccc gagagcgttag cagcaaaaat tgagctacct gattccttct 1920
ttaacctctc acgtgaggaa ttgagaagag aagcagagat gaggaagaag aaattagaag 1980

attccaaatt	attgattcct	aatcttatac	gggaaaagca	ggcaaaaagct	gcaagaaaaga	2040
agtacacaaa	atccattatac	cgtgtacagt	ttccagatgg	agcattgctt	caaggtgtct	2100
ttctaccttc	ggagccaaact	agtgtcttt	atgagttgt	gagcgcagcg	ttaaaggaac	2160
caagcttaga	gttcgaattt	ttacatccgg	tgctttaaa	aaagcgggtg	attccccatt	2220
ttccagctgc	tggggagagg	gctgtaacag	ttgaagagga	ggatttgggtt	cctgcagctc	2280
tactcaaatt	taaacctatac	gaaacagatt	ctgttgttt	tactggtctt	tgtaatgagc	2340
ttcttgaat	tagcgagccc	ctcgagaccg	gatcagttgc	ttcctcgtaa	gctctaaatt	2400
acatcagact	ttgaattctt	ctgagtgttg	gaaaccttat	aaaactctct	gcgcgggaa	2460
tgctgcggcc	gctctagagt	atccctcgag	gggcccagc	ttacgcgtac	ccagctttct	2520
tgtacaaagt	ggtgatatac	caagccccgg	cggtcttcta	gggataacag	ggtaattata	2580
tccctctaga	tcacaagccc	ggcggtctt	ctacgatgtat	tgagtaataa	tgtgtcacgc	2640
atcaccatgg	gtggcagtgt	cagtgtgagc	aatgacactga	atgaacaatt	gaaatgaaaa	2700
aaaaaaaagt	actccatctg	ttccaaatta	aaattcattt	taaccttttta	ataggtttat	2760
acaataattt	atatatgttt	tctgtatatg	tctaatttgt	tatcatccgg	gcggctttct	2820
agggataaca	gggtaattat	atccctctag	acaacacaca	acaataaga	aaaaaaacaa	2880
ataatattaa	tttgagaatg	aacaaaagga	ccatatcatt	cattaactct	tctccatcca	2940
tttccatttc	acagttcgat	agcgaaaacc	gaataaaaaaa	cacagtaaat	tacaagcaca	3000
acaaatggta	caagaaaaac	agtttccca	atgccataat	actcgaac		3048

<210> 6
 <211> 1302
 <212> DNA
 <213> Oryza sativa

<400> 6	atgatgaagg	aaaagatgaa	ggatctcatg	aggaaggtca	cctcctcctc	ctcctccctcc	60
	tcgtcgtcct	cctccttcaa	gggcaccgcc	cacgtcctcg	gctccggccc	cgaccctcc	120
	tcccgccccct	ccaaacctac	ccctagtcgc	cccgctgccc	cccggcgaga	ggccggcgcc	180
	tcccgcgaggc	cgccttcctc	cggcttcgccc	ccctactccc	cgctcatctc	cacccctcc	240
	cgcgcgaccg	acccacccgc	gggggcgggg	gcgggggagg	acgacgcccgt	cgcgtcccc	300
	agctgcgcgcg	agccgttccc	ctccgagctg	gcgggtgtcg	accacctcga	cggctgcctc	360
	gcggcgccgg	ggggagcccg	cccccgccgcg	gccgcctacc	tggccggcga	cccccccgcg	420

tccggcggtgg	aggtgtgaa	gaggctgctc	gggaacctgc	tctccgaccc	ccggaacgac	480
aagtacagga	aggtcaggct	cggaaacccg	aggatcaagg	aggccctggc	ggacagggag	540
ggcgggggtgg	atctcctcga	ggccgtgggg	ttcagggtcg	ccgacgaggg	cggggagctc	600
ttcgcctca	tggacgaggt	gcccgggac	gcgaggctcg	gcggcatcag	gcaggccgtg	660
ctcctgctcg	agagggccccg	gccatcgacg	ccgcccaga	cacaggcaga	tgc当地aaagag	720
acttgcccga	atggagttag	cgaagagcag	gggattaaga	agccgggttga	tcgtcagatt	780
cgggtgttct	tctctgttgc	tgcaagttct	gttgcagaaa	atgatctacc	agattcttc	840
tatagccta	gtaatgagga	gatcaggaat	gaggcaaaga	tgaggaggga	gaggctagaa	900
caatctcggt	tgttgattcc	aaagtcatat	aaggagaagc	aggcactggc	tgcccacag	960
aagtataaac	aagctctgat	tcgaattcag	tttccggatg	gagtaattct	gcagggtgtg	1020
ttccttcccg	cggagcccat	tagttacta	tatgagtttgc	tcgc当地tcc	tttgaagcag	1080
ccaagtttgg	aattcgatct	tatctgtcca	gcgggtccta	ggacacgcgt	catacctcct	1140
tttccaaaac	caggggaaca	ggcacgcaca	ctgcgggatg	aagacctagt	cccttctgct	1200
cggctcacct	tcaagccaa	agagactgat	tcggtgtgt	tcactggct	gttggacgag	1260
cttcttgaga	ccagtgagcc	gttcacatct	gc当地ctcat	ga		1302

<210> 7
 <211> 433
 <212> PRT
 <213> Oryza sativa

<400> 7

Met	Met	Lys	Glu	Lys	Met	Lys	Asp	Leu	Met	Arg	Lys	Val	Thr	Ser	Ser
1					5				10				15		

Ser	Phe	Lys	Gly	Thr	Ala	His	Val							
								20	25		30			

Leu	Gly	Ser	Gly	Pro	Asp	Pro	Ser	Ser	Arg	Pro	Ser	Asn	Pro	Thr	Pro
								35	40		45				

Ser	Arg	Pro	Ala	Ala	Pro	Arg	Arg	Glu	Ala	Ala	Ala	Ser	Ala	Arg	Pro
								50	55		60				

Pro	Ser	Ser	Gly	Phe	Ala	Pro	Tyr	Ser	Pro	Leu	Ile	Ser	Thr	Ser	Ser
					65			70		75		80			

Arg Arg Thr Asp Pro Pro Ala Gly Ala Gly Ala Gly Glu Asp Asp Ala
85 90 95

Val Ala Cys Pro Ser Cys Ala Glu Pro Phe Pro Ser Glu Leu Ala Val
100 105 110

Ser Asp His Leu Asp Gly Cys Leu Ala Ala Ala Gly Gly Ala Arg Pro
115 120 125

Arg Ala Ala Ala Tyr Leu Ala Gly Asp Pro Pro Ala Ser Ala Val Glu
130 135 140

Val Val Lys Arg Leu Leu Gly Asn Leu Leu Ser Asp Pro Arg Asn Asp
145 150 155 160

Lys Tyr Arg Lys Val Arg Leu Gly Asn Pro Arg Ile Lys Glu Ala Leu
165 170 175

Ala Asp Arg Glu Gly Gly Val Asp Leu Leu Glu Ala Val Gly Phe Arg
180 185 190

Val Ala Asp Glu Gly Gly Glu Leu Phe Ala Leu Met Asp Glu Val Pro
195 200 205

Gly Asp Ala Arg Leu Gly Gly Ile Arg Gln Ala Val Leu Leu Leu Glu
210 215 220

Arg Ala Arg Pro Ser Thr Pro Pro Gln Thr Gln Ala Asp Ala Lys Glu
225 230 235 240

Thr Cys Pro Asn Gly Val Ser Glu Glu Gln Gly Ile Lys Lys Pro Val
245 250 255

Asp Arg Gln Ile Arg Val Phe Phe Ser Val Ala Ala Ser Ser Val Ala
260 265 270

Glu Asn Asp Leu Pro Asp Ser Phe Tyr Ser Leu Ser Asn Glu Glu Ile
275 280 285

Arg Asn Glu Ala Lys Met Arg Arg Glu Arg Leu Glu Gln Ser Arg Leu
290 295 300

Leu Ile Pro Lys Ser Tyr Lys Glu Lys Gln Ala Leu Ala Ala Arg Gln
305 310 315 320

Lys Tyr Lys Gln Ala Leu Ile Arg Ile Gln Phe Pro Asp Gly Val Ile
325 330 335

Leu Gln Gly Val Phe Leu Pro Ala Glu Pro Ile Ser Ser Leu Tyr Glu
340 345 350

Phe Val Ala Ser Ser Leu Lys Gln Pro Ser Leu Glu Phe Asp Leu Ile
355 360 365

Cys Pro Ala Gly Pro Arg Thr Arg Val Ile Pro Pro Phe Pro Lys Pro
370 375 380

Gly Glu Gln Ala Arg Thr Leu Arg Asp Glu Asp Leu Val Pro Ser Ala
385 390 395 400

Arg Leu Thr Phe Lys Pro Lys Glu Thr Asp Ser Val Val Phe Thr Gly
405 410 415

Leu Leu Asp Glu Leu Leu Glu Thr Ser Glu Pro Phe Thr Ser Ala Ser
420 425 430

Ser