

A Switched Extremum Seeking Approach to Maximum Power Point Tracking in Photovoltaic Systems

Scott J. Moura Grid Integration of Alternative Energy Sources - Professor Ian Hiskens

Motivation

- Increase energy conversion efficiency
- Mathematically guarantee asymptotic convergence, eliminate limit cycles
- Use control theoretic techniques and models developed in class

New Contributions

- Examine extremum seeking (ES) methods for MPPT
- Apply a switching scheme that enables asymptotic convergence

Photovoltaic System Model

Switched Extremum Seeking

Lyapunov-Based Switching Scheme

- Use stability proof by Krstic and Wang, Automatica, 2000.
 - Compute the average system: $x_a = 1/T \int_T x(\tau) d\tau$
 - Linearize the averaged system about the extremum point: $A = [df_a/dx_a]_{ea}$
 - Show the Jacobian A is Hurwitz: Re[eig(A)] < 0
- Develop a Lyapunov function to track proximity to the extremum point
 - Use the Jacobian A to solve the following Lyapunov equation: $PA + A^TP = -Q$, Q > 0
- Pose a quadratic Lyapunov function: $V(x_a) = 1/2 \cdot x_a^T P x_a$
- Switched duty ratio controller for DC/DC converter

· Perturbation amplitude decays exponentially

 $\hat{d} + a_0 \sin(\omega t)$ $\hat{d} + a \sin(\omega t)$

Impact of Varying Environmental Conditions

Simulate switched extremum seeking controller for 1000 W/m² to 500 W/m² step change

Conclusions

- Extremum seeking provably converges to the maximum power point
- Switched Lyapunov scheme allows asymptotic convergence
 - Uses averaging and Lyapunov stability theory
 - Independent of specific PV array
 - Does not require periodic tuning
 - Requires only the existing voltage and current sensors

Future Work

- Investigate impact of shading effects
- Prove stability of switched system
- Investigate alternative perturbation signals (e.g. square, triangle, stochastic)
- Implement and analyze proposed algorithm on an experimental setup