

THE CONTRACT STATES OF THE PROPERTY OF THE PRO

MICROCOPY RESOLUTION TEST CHART

AD____

Synthesis of Amino Derivatives of Dithio Acids as Potential Radiation Protective Agents

Final Report

William O. Foye, Ph.D.

March 1985

Supported by

U.S. ARMY MEDICAL RESEARCH AND DEVELOPMENT COMMAND Fort Detrick, Frederick, Maryland 21701-5012

Contract No. DAMD17-83-C-3108

Massachusetts College of Pharmacy and Allied Health Sciences 179 Longwood Avenue Boston, Massachusetts 02115

DOD DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents

TIC FILE COP

REPORT DOCUMENTATION PAGE						
1a. REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE MARKINGS				
Unclassified						
2a. SECURITY CLASSIFICATION AUTHORITY	3. DISTRIBUTION	AVAILABILITY OF	REPORT			
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE			or public re on unlimited		:	
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)		ORGANIZATION RI		R(S)	
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL	7a. NAME OF MO	ONITORING ORGA	NIZATION		
Massachusetts College of Pharm	acy (If applicable)	ł				
and Allied Health Science						
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Cit	y, State, and ZIP (Code)		
179 Longwood Avenue						
Boston, Massachusetts 02115						
8a. NAME OF FUNDING SPONSORING	8b. OFFICE SYMBOL	9. PROCUREMENT	INSTRUMENT ID	NTIFICATION	NUMBER	
ORGANIZATION U.S. Army Medical Research & Development Command		DAMD17-8	3-C-3108		j	
8c. ADDRESS (City, State, and ZIP Code)	<u></u>	10. SOURCE OF F	UNDING NUMBER	\$		
Fort Detrick		PROGRAM	PROJECT	TASK	WORK UNIT	
Frederick, Maryland 21701-5012		ELEMENT NO.	NO. 3M1-	NO.	ACCESSION NO.	
11. TITLE (Include Security Classification)		62734A	62734A875	AK	094	
Synthesis of Amino Derivatives 12. PERSONAL AUTHOR(S) William O. Foye, Ph.D. 13a. TYPE OF REPORT Final Report 16. SUPPLEMENTARY NOTATION		s as Potenti 14. DATE OF REPO 1985 Ma	RT (Year, Month, I		ive Agents GE COUNT	
	.					
17. COSATI CODES	18. SUBJECT TERMS (C					
FIELD GROUP SUB-GROUP 07 03	Radiation-prot	ective compo	ounds, dithi	o acid de	erivatives,	
07 03 05	aminopropenedi (methylthio) c	thio acid es	ters, coppe	r complex	of bis-	
19. ABSTRACT (Continue on reverse if necessary						
	• •		c			
Good radiation-protective in a series of N-methylquinolin	properties (>50	% survival (or irradiate	d mice) t	were found	
dosage levels (2-10 mg/kg). The	rium-2-dithioace	cic acia dei	rivatives at	exception	onally low	
vinyl]- and [2-methylthio amino						
not active as H atom transfer a						
taining hydroxy, alkoxy, or add	itional amino o	roups did no	t improve a	ctivity	Similar	
activities were found in a seri	es of N-methvln	vridinium-2-	-dithioaceti	c acid de	erivatives	
the most active being the 2-met	hvlthio pinerid	ino compound	l. Further	modificat	ion of both	
the methylthio and amino functi						
activity. No activity was foun						
moderate protective activity wa	s found in a se	ries of 3-am	ino-2-aryld	ithiopror	enoates. No	
activity was found in the 4-ary	l-dithiole-3-th	ione precurs	ors, known	to raise	glutathione	
levels in cells. Reduction to						
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT			CURITY CLASSIFIC		 -{	
□UNCLASSIFIED/UNLIMITED □ SAME AS F	RPT. DTIC USERS		sified			
224. NAME OF RESPONSIBLE INDIVIDUAL			include Area Code	22c. OFFICE	SYMBOL	
Mrs. Virginia Miller		301/663-7	7325	SGRD-	-RMS	
DD FORM 1473, 84 MAR 83 AP	Redition may be used un	til exhausted.	CECLIBITY	CI ACCICICATIO	N OF THIS PAGE	

All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE 19.

gave an inactive compound in the one example tested. Preparation of a copper complex of bull-2-bis(2-methylthio) vinylquinolinium iodide gave a compound having only a context of the little less activity than the uncomplexed compound, indicating that the bis(methylthio) and methylthio amino derivatives of the quinolinium and pyridinium dithioacetic acids may be acting as copper complexes.

SECONDARY SECONDARY ACCOUNTS ASSESSED SECONDARY SECONDARY

Summary

Based on the premise that dithio acids should act more effectively as hydrogen atom transfer agents than the aminoalkanethiols, to repair oxidized lesions of DNA or other cellular substances, the synthesis of amino-containing dithio acids was attempted. Both aromatic and aliphatic amino dithio acids and esters have been prepared. Compounds that were obtained include the following:

- 1-Methylquinolinium-2-dithioacetic acids
- 1-Methyl-2-bis(2-methylthio)vinylquinolinium iodides
- 1-Methyl-2-(2-amino-2-methylthio)vinylquinolinium iodides
- 1-Methyl-2-bis(2-methylthio)vinylpyridinium iodides
- 1-Methyl-2-(2-amino-2-methylthio)vinylpyridinium iodides
- Copper complexes of 1-methyl-2-bis(2-methylthio)vinyl
 - quinolinium iodides and 1-methyl-2-(2-amino-2-
 - methylthio)vinylquinolinium iodides

Aminocyclopentenedithio acids

- 3-Amino-2-phenyldithiopropenoate esters
- 3-Amino-2-phenyl-bis(methylthio)-1-propenes
- 3-Heterocyclicamino-2-phenyldithiopropenoate esters

Good radiation-protective properties (>50% survival of irradiated mice vs. 1000 rads) were found in both the quinolinium and pyridinium dithioacetic acid derivatives. The most effective compound in each series was the 2-methylthio-2-piperidino derivative. These compounds were active at much lower dosage levels (2-10 mg/kg) than either the dithioacid zwitterions or the aminoalkane-thiols. Only fair activity (25-50%) was found for the aliphatic amino dithio acids. The copper complex of 1-methyl-2-bis(2-methylthio)vinylquinolinium

iodide gave only a little less protection than the uncomplexed compound, suggesting that the bis(methylthio) and methylthio amino derivatives may be acting as copper complexes and not by H atom transfer.

Accesio	on For						
DTIC	ounced						
By Distrib							
A	vailability	Codes					
Dist	Avail at						
A1							

Tat	ole	of	Con	ter	its

Docume	ntati	on Page	Page i
Summar	у		ii
Quinol	inium	-2-dithioacetic Acid Derivatives	1
Table	I.	1-Methylquinolinium-2-dithioacetic Acid Derivatives	2
Pyridi	nium-	2-dithioacetic Acid Derivatives	3
Aminoc	yclop	entenedithio Acids	4
Table	II.	1-Methylpyridinium-2-dithioacetic Acid Derivatives	5
3-Amin	o-2-a	ryldithiopropenoates	6
Table	III.	Aminocyclopentenedithio Acids	7
Copper	Comp	lexes of the N-Methylquinolinium-2-	9
d	ithio	acetic Acid Derivatives	
Table	IV.	1,2-Dithiole-4-phenyl-3-thiones	10
Table	٧.	3-Amino-2-phenyldithiopropenoates	11
Discus	sion		12
Table	VI.	Copper Complexes of 1-Methylquinolinium-	13
		2-dithioacetic Acid Derivatives	
Table	VII.	Radioprotector Screening Data	15
Experi	menta	1	21
Refere	nces		29

Quinolinium-2-dithioacetic Acid Derivatives

Appreciable radioprotective properties were found with several N-methyl-quinolinium-2-dithioacetic acid derivatives (I-III), previously prepared (1-4). Modifications of the dithio acid function were accordingly made both in the heterocyclic ring and in the nature of the amine moiety in III. The quinolinium ring was substituted in the 6-position by a methoxy group, and a sizeable number of derivatives of the N-methylpyridine dithioacetic acid analog were also prepared. Modification of the amine function in both the quinoline and pyridine series included the introduction of both cyclic and open chain amines and the incorporation of additional amino, hydroxy and alkoxy groups. The methylthio function was also converted to the ethylthio group to check the possibility that a methylation reaction may be involved in radiation protection. The compounds synthesized are listed in Table I. The method of preparation is shown in the following scheme.

Table I. 1-Methylquinolinium-2-dithioacetic

Acid Derivatives^a

R ₁	R ₂	M.p.	Formula	Code No.	BN	Ref.
CH3	CH ₂ CS ₂	196 - 197 ⁰	C ₁₃ H ₁₃ NS ₂	RWJ-I-7	BK63818	4
Н	CH=C(SCH ₃) ₂	198-201 ⁰	$C_{14}H_{16}INS_2$	JK-B-62	BK63836	1
сн3	CH=C SCH ₃	200-201 ⁰	C ₁₈ H ₂₃ IN ₂ OS	JK-D-8-3	BK63827	2
н	CH=C SCH3	195-196 ⁰	C ₁₈ H ₂₃ IN ₂ S	YHK-I-3	BK63845	3
н	CH=C_NHCH2CH2OCH3	143-145 ⁰	C ₁₆ H ₂₀ INOS	BA-202	BK75256	12
Н	CH=C[NHCH2CH2N(CH3)2]2	148-150 ⁰	C ₂₀ H ₃₂ IN ₅	BA-201	BK84308	12
Н	CH=C NHCH ₂ CH ₂ CH ₂ OH	135-138 ⁰	C ₁₆ H ₂₁ IN ₂ OS	BA-203	BK84282	12
CH30	CH=C(SCH ₃) ₂	212-214 ⁰	$C_{15}H_{18}INOS_2$	RWJ-II-46	BK94500	12
н	CH=C NHCH ₂ CH(OCH ₃) ₂	142-143 ⁰	C ₁₇ H ₂₃ IN ₂ O ₂ S	BA-206	BK98455	13
н	СН=С N (СН ₂)3ОН	173-174 ⁰	C ₂₀ H ₂₈ IN ₃ OS	RWJ-IV-6	BL05688	13
н	CH=C N N-CH ₃	125-126 ⁰	C ₁₈ H ₂₄ IN ₃ S	RWJ-III-54		3
	2-Methylisoquinolinium-	l-dithioace	tic Acid Derivat	tive		
Н	CH=C(SCH ₃) ₂	204-205 ⁰	$C_{14}H_{16}INS_2$	PG-28	BK95990	13

a. Elemental analyses are within 0.5% of theoretical values.

Pyridinium-2-dithioacetic Acid Derivatives

The same procedure that was successful for the preparation of the N-methylquinolinium-2-dithioacetic acid derivatives did not work for the corresponding pyridine derivatives. Aqueous alkali resulted in the replacement of the 2-methyl function to give the pyrdinium 2-dithiocarboxylic acid (IV)(4). One example of this type of compound was previously found to provide no radiation protection. With the use of butyl lithium as base, however, the bis(methylthio) derivative of the dithioacetic acid (V) was obtained. Further conversion of the bis(methylthio) derivatives to the methylthio amino derivatives (VI) took place as usual, however. Use of t-butoxide as base for the condensation of carbon disulfide with N-methylpicolinium iodide did give a dithioacetic acid derivative (VII), which was converted to the bis(methylthio) derivative (V) with methyl iodide. These reactions are shown in the following scheme.

●見てジャットの金属性のおんなのを開てなけないでは間かららなるのの数がついていています。

Further modification of these derivatives was made to increase the lipophilicity of both the bis(methylthio) and methylthio amino derivatives. The thiomethyl functions were replaced by thioethyl, thiobutyl, and thiohexyl groups, and the amine functions included both cyclic and open chain amines, with the inclusion of additional amino and alkoxy functions.

One derivative having two of the bis(methylthio) functions (VIII) was prepared (4), since lutidine has two active methyls. Methyl groups in the 4-position of both N-methylquinolinium iodide and N-methylpyridinium iodide were not found sufficiently active for condensation with carbon disulfide using the available bases. The use of a two step procedure, using t-butoxide as base, provided a more complete conversion to the bis(methylthio) compound VIII.

The pyridinium dithioacetic acid derivatives prepared are listed in Table II.

Aminocyclopentenedithio Acids

A convenient method for obtaining compounds having a dithio acid function located two carbons from an amino function was found in the condensation of carbon disulfide and ammonia with cyclopentanone (5). The resulting ammonium salt (IX) was obtained in poor yield and attempts at recrystallization resulted in decomposition. Conversion to the zwitterion (X) and the morpholinium salt (XI) gave more stable products, which were submitted for screening. Testing data for XI revealed no protection to mice vs. 1000 rad. The method of synthesis is shown in the following scheme.

Table II. 1-Methylpyridinium-2-dithioacetic

Acid Derivatives^a

R ₁	R ₂	R ₃	M.p.	Formula	Code No.	BN	Ref.
Н	SCH ₃	SCH ₃	134-135 ⁰	C ₁₀ H ₁₄ INS ₂	PG- 7	BK95954	13
СН3	SCH ₃	SCH ₃	165-166 ⁰	$C_{11}H_{16}INS_2$	PG-14	BK95972	13
Н	SC_2H_5	SC ₂ H ₅	143-145 ⁰	$C_{12}H_{18}INS_2$	PG-21	BK95981	13
Н	SCH3	$N \longrightarrow$	143-144 ⁰	C ₁₄ H ₂₁ IN ₂ S	BA-401	BK96004	13
Н	scH ₃	NO	154-157 ⁰	C ₁₃ H ₁₉ IN ₂ OS	BA-402	ВК96013	13
Н	SC ₄ H ₉	SC ₄ H ₉	105-106 ⁰	C ₁₆ H ₂₆ INS ₂	PG-23	BK98482	13
Н	sc ₆ H ₁₃	SC_6H_{13}	86-88 ⁰	$C_{20}H_{34}INS_2$	PG-25	BK98473	13
Н	SCH3	N_N-CH3	173-174 ⁰	C ₁₄ H ₂₂ IN ₃ S	BA-403	BK98464	13
Н	SCH ₃	N>-C ₆ H ₅	189-190 ⁰	C ₂₀ H ₂₅ IN ₂ S	BA-11-65	BL01475	13

1-Methylpyridinium-2,6-bis(dithioacetic acid) Derivatives

R ₁	R ₂	Cł	₹31¯		
-S ₂ CCH ₂ (CH ₃ S) ₂ C=CH	CH ₂ CS ₂ Na + CH=C(SCH ₃) ₂	C ₁₀ H ₁₀ NNaS ₄ C ₁₄ H ₂₀ INS ₄		BK71847 BK95963	

a. Elemental analyses are within 0.5% of theoretical values.

$$\begin{array}{c} \text{NH}_2 \\ + \text{NH}_3 + \text{CS}_2 \end{array} \rightarrow \begin{array}{c} \text{NH}_2^+ \\ -\text{CS}_2^- \text{NH}_4^+ \\ \text{IX} \end{array} \rightarrow \begin{array}{c} \text{NH}_2^+ \\ + \text{NOAC} \end{array} \rightarrow \begin{array}{c} \text{NH}_2^+ \\ \text{NH}_2 \end{array} \rightarrow \begin{array}{c} \text{NH}$$

Compound XI showed a strong peak for SH absorption in the infrared spectrum at $2500 \, \mathrm{cm}^{-1}$, so it is believed to exist mainly as the free acid hydrogen-bonded to morpholine. The imino dithio acid X, however, gave no peak for SH absorption, so is considered to exist mainly as the zwitterionic immonium dithio acid. The compounds prepared in this series are listed in Table III.

3-Amino-2-aryldithiopropenoates

The preparation of several 3-dialkylamino-2-aryldithiopropenoates (XIV) from 1,2-dithiole-3-thiones has been reported (6). This reaction has been utilized to prepare both primary and secondary amine derivatives of the 2-aryldithiopropenoate ester resulting from ring opening of the 1,2-dithiole-4-phenyl-3-thione on reaction with amines.

Table III. Aminocyclopentenedithio $\operatorname{Acids}^{\operatorname{a}}$

Compound	M.p.	Formula	Code No.	BN	Ref.
NH ₂ cs ₂	98-99 ⁰	C ₆ H ₉ NS ₂	RWJ- I-39	BK70466	12
$cs_{\overline{2}}^{\dagger} + 0$	154-155 ⁰	c ₁₀ H ₁₈ N ₂ OS ₂	RWJ-I-66	BK73074	12

a. Elemental analyses are within 0.5% of theoretical values.

The amine adduct from ammonia (R=H) was too unstable for testing, but primary amino derivatives where R=CH₃ and cyclohexyl have been isolated. Secondary amine adducts gave stable products, and a product was also isolated using N-aminomorpholine. The use of guanidine and alkyl-substituted guanidines did not produce characterizable compounds.

Precursors XII and XIII were submitted for screening, along with several of the amino derivatives XIV, since aryl dithiole-3-thiones have been found to raise glutathione levels in animal cells (5). Increased glutathione levels have been shown to provide protection in mice against hepatotoxic agents, and have been postulated to be of value in radiation protection (7). It is possible that the dithiole-3-thiones may act in vivo as the amine adducts, since they form under mild conditions.

A method of reducing the 3-amino-2-phenyldithiopropenoate esters was found in the use of $Li(t-Bu0)_3\Lambda IH$. The reduction is carried out on the bis-(methylthio) derivative of the propenedithio acid and gives the 3-amino-2-phenylpropanedithio acid as the bis(methylthio) derivative XV, along with an aldehyde derivative (XVI).

Repeated chromatography on silica has given an analytically pure sample of XV

where R_2N = morpholine.

Antiradiation testing of one of the 3-amino-2-phenyldithiopropenoate esters, the methylamino derivative, gave 40% survival of mice vs. 1000 rad.

The 1,2-dithiole-4-phenyl-3-thiones synthesized in this series are listed in Table IV, and the 3-amino-2-phenyldithiopropenoate esters are listed in Table V.

Copper Complexes of the N-Methylquinolinium -2dithioacetic Acid Derivatives

Dithio acids and derivatives are potentially strong complexing agents for copper ion, and as copper complexes, they may have the ability to act as mimics of supero.ide dismutase, a copper-containing enzyme. A relatively simple copper complex, of 3,5-diisopropylsalicylic acid, has been shown to catalyze the disproportionation of superoxide (8), and was later found to have some radiation-protective activity (9). To test this possibility, several copper (II) complexes of the N-methylquinolinium dithioacetic acid derivatives were prepared and characterized. One of them was submitted for screening. The following structure XVII was proposed, based on infrared and elemental analysis.

One of the methylthio amino derivatives gave essentially the same copper complex. A log Ks value of 13.66 for the formation constant of XVII indicates

Table IV. 1,2-Dithiole-4-phenyl-3-thiones

Compound	M.p.	Formula	Code No.	BN	Ref.
S—S C6H ₅	121-123 ⁰	CgH6S3	RWJ- I-47	ВК75247	11
S—S ⁺ I ⁻	177-178 ⁰	C ₁₀ H ₉ IS ₃	RWJ- I-55	BK75238	12

a. Elemental analyses are within 0.5% of theoretical values.

Table V. 3-Amino-2-phenyldithiopropenoates^a

$$R_2N-CH=C-C-SCH_3 \\ C_6H_5$$

R ₂ N	M.p.	Formula	Code No.	BN	Ref.			
CH3NH-	134-136 ⁰	C ₁₁ H ₁₃ NS ₂	RWJ-I-57	BK73065	12			
(CH ₃) ₂ N ⁻	149-151 ⁰	$C_{12}H_{15}NS_2$	RWJ-11-13	BK85556	6			
0N-	120-126 ⁰	C ₁₄ H ₁₇ NOS ₂	RWJ-II-6	BK75229	12			
ON-NH-	135-136.5 ⁰	C ₁₄ H ₁₈ N ₂ OS ₂	RWJ-111-36	BL01466	13			
14-	145-149 ⁰	C ₁₄ H ₁₇ NS ₂	PG-9	BL09088	13			
IN NH-	134-139 ⁰	C ₁₄ H ₁₃ N ₃ S ₂	PG-10	BL09079	13			
NH-	170-175 ⁰	$C_{15}H_{14}N_{2}S_{2}$	PG-11	BL09097	13			
C ₆ H ₅	152-154 ⁰	C ₁₂ H ₈ N ₂ S ₂	PG-12	BL09104	13			
R ₂ N-CH ₂ -Ç=C(SCH ₃) ₂ C ₆ H ₅								
0_N-	oil	c ₁₅ H ₂₁ NOS ₂	RWJ-III-70	BL05697	13			
N-	oil	C ₁₅ H ₂₁ NS ₂	PG-13	BL09113	13			
NH-NH-	98-100 ⁰	C ₁₄ H ₁₅ N ₃ S ₂	PG-15	BL 09122	13			

a. Elemental analyses are within 0.5% of theoretical values.

that this complex is capable of existence under cellular conditions (10). The copper complexes prepared are listed in Table VI.

Discussion

With the assumption that dithio acids should theoretically perform more effectively as H atom transfer agents, to repair oxidized lesions of macromolecules resulting from ionizing radiation, than the aminoalkanethiols, the synthesis of amino-containing dithio acids was attempted. Compounds of this type that were obtained include the following:

N-Methylquinolinium-2-dithioacetic acids

2-Bis-(2-methylthio)vinyl-1-methylquinolinium iodides

2-(2-Amino-2-methylthio)vinyl-1-methylquinolinium iodides

2-Bis-(2-methylthio)vinyl-1-methylpyridinium iodides

2-(2-Amino-2-methylthio)vinyl-1-methylpyridinium iodides

Copper complexes of 2-bis-(2-methylthio)vinyl-1-methylquinolinium iodides

Copper complex of a 2-(2-amino-2-methylthio)vinyl-1-methylquinolinium

iodide

Aminocyclopentenedithio acids

3-Amino-2-phenyldithiopropenoate esters

3-Amino-2-phenyl-bis (methylthio)-1-propenes

3-Heterocyclicamino-2-phenyldithiopropenoate esters

Radiation-protective activities have been received for only a few of the compounds submitted. In the series of N-methylquinolinium dithioacetic acids and derivatives, the bis(methylthio) and methylthio amino derivatives proved to be more protective vs. 1000 rad. in mice than the dithio acids. These two derivatives were also protective at exceptionally low dosage levels, e.g., less

Table VI. Copper Complexes of 1-Methylquinolinium-2-dithioacetic Acid Derivatives^a

R	L ₁	L ₂	М	S	Formula	Code No.	BN	Ref.
Н	SCH ₃	SCH3	CuC1 ₂	¹₂C2H50H	C ₁₄ H ₁₆ INS ₂ •Cu ₂ Cl ₄ • ½C ₂ H ₅ OH	SSR-CII2C	BK85565	13
СНЗ	SCH3	SCH3	CuC1 ₂	¹ ₂C2H50H	C ₁₅ H ₁₈ INS ₂ •Cu ₃ Cl ₆ • ½C ₂ H ₅ OH	SSRCIII2C		13
CH3	SCH3	N O	CuC1 ₂	С ₂ Н ₅ ОН	С ₁₈ H ₂₃ INS ₂ -Си ₃ С1 ₆ - С ₂ H ₅ ОН	SSRCIV2C		13

a. Elemental analyses are within 0.5% of theoretical values.

than 10 mg/kg. One of the aminocyclopentenedithio acids was found to give no protection, but one of the 3-amino-2-phenylpropenoate esters gave up to 40% protection. The only pyridinium compound for which testing results have been received, the compound having two bis(methylthio) functions, was inactive.

From the very limited amount of testing data received, it is apparent that the bis(methylthio) and methylthio amino derivatives are more active than the dithio acid salts. This suggests that these compounds may be acting either as superoxide dismutase mimics, by complexing copper ion, or by causing increased levels of glutathione in the cells. Radioprotector screening data received are tabulated in Table VII.

Table VII. Radioprotector Screening Data

Code Number 0942

Compound	Route	Dose, mg/kg	LD ₅₀ /10d	Toxic deaths	Per cent survival ^a	
CH ₃ CH ₂ CS ₂ CH ₃	IP	150 75 37.5	∿ 225	0/10 0/10 0/10	10 20 10	
ong	PO	1200 600 300		0/10 0/10 0/10	0 0 0	
CH=C SCH3	IP	150 75 37.5	∿ 300	0/10 0/10 0/10	60 0 0	
сн31	PO	300 150 75		1/10 2/10 0/10	0 10 10	
CH3 CH=C SC	H ₃	9.38 4.69 2.34	∿ 15	0/10 0/10 0/10	60 0 0	
ĊН _З І¯ '`\	PO	75 37.5 18.75 9.38	∿ 75	0/ 5 0/ 5 0/ 5 0/ 5	0 0 0 0	
CH=C SCH ₃	IP	4.69 2.34 1.17	∿ 5	8/10 0/10 0/10	10 70 30	
ĊĤ ₃ I¯ ``\ _́′	PO	18.75 9.37 4.69 2.34		0/10 0/10 0/10 0/10	0 0 0	
CS2H•HM 0	IP	300 150 75	∿ 450	0/10 0/10 0/10	0 0 0	
CH ₃ NHCH=C-C-SCH ₃ C ₆ H ₅	IP	600 300 150	> 600	0/10 0/10 0/10	10 40 20	

できない。 1911年の1912年の191

THIO ACIDS

	% SURVIVAL	80 20 30 0	40 (3 tox) 10 (5 tox) 20 0	0000	0000	0000
	DOSE (mg/kg)	9.4	37.5 18.8 9.4 0	18.8 9.4 4.7 0	18.8 9.4 4.7	9.4 4.7 2.3 0
	ROUTE	1P (30 min)	1P (30 min)	1P (30 min)	1P (30 min)	IP (30 min)
	LD5Rg)	25	~ 25	> \$0	09~	>10
THIO ACIOS		$\begin{array}{c} SCH_3 \\ \downarrow \\ CH_2 \\ CH_3 \end{array}$	SCH3 .I- CH=C-SCH3 .I- CH3 . 2 CL CL2. 1/2 CH50H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SCH ₃ -CH=C -N N-CH ₃ · I- CH ₃	$\begin{array}{c c} SCH_3 & SCH_2 \\ \hline \\ N+ & 1+ \\ CH_3 & CH_3 \\ \end{array}$
	WR.	252231 (FOYE)	252485 (FOYE)	252579 (FOYE)	253751 (FOYE)	254404 (FOYE)

というできますのとなる。これはないないでは、これできないのでは、これできないのでは、これできないのでは、これできないのでは、これできないのできないのできない。これできないできない。これできないできない

THIO ACIDS

SCH ₃ -C-SCH ₃ -1 ⁻ 3 · 1 ⁻ 1 · 1 ⁻ 2 · 1 ⁻ 3 · 1 ⁻ 4 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 · 1 ·	LD5Q ROUTE (mg/kg) X SURVIVAL	25 IP 9.4 30 (30 min) 4.7 10 2.3 10 0	~50 IP 18.8 40 (1 tox) 9.4 0 4.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~ 20 IP 9.4 20 (30 min) 4.7 0 0 0	>1200 IP 1200 0 (3 tox) (30 min) 600 20 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~30 IP 9.4 0 (30 min) 4.7 0 2.3 0
	רו (שֹנ	SCH ₃ -СH=C-SCH ₃ · I ⁻	-I. E		(CH ₃) ₂ N-CH=C-C-SCH ₃	ScH ₃ . I . LH2c-S=H3

THIO ACIDS

W.		LD 5Rg)	ROUTE	DOSE (mg/kg)	% SURVIVAL
253748 (FOYE)	$\begin{array}{c} S(C_6H_{13}) \\ \downarrow \\ $	\$	1P (30 min)	4.7 2.3 1.2 0	0 (8 tox) 0 (4 tox) 0
253749 (F0YE)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	~ 30	IP (30 min)	18.8 9.4 4.7 0	0000
253750 (FOYE)	$\begin{array}{c} S(C_4H_9) \\ \downarrow \\ CH=C-S(C_4H_9) \end{array} .1^{-}$ $CH=\frac{1}{C} - \frac{1}{C} - $	e }	IP (30 min)	2.3 1.2 0.6	30 (3 tox) 10 (1 tox) 0
254403 (FOYE)	SCH ₃ CH ₂ -C=C-SCH ₃	>1200	IP (30 min)	1200 600 300 0	0000

Table VII continued

Compound	Route	Dose, mg/kg	LD ₅₀ /10d	Toxic deaths	Per cent survival ^a	
-S2CCH2 N-CH2CS2Na+	IP	1200 600 300	> 600	2/10 0/10 0/10	0 0 0	
ċĤ ₃	PO	1200 600 300	>1200	0/ 5 0/ 5 0/ 5	0 0 0	

a. A radiation dose of 1000 rads was used 30 minutes after dosing. Animals were observed for 30 days to determine survival.

Experimental

1-Methylquinolinium-2-dithioacetic acid derivatives. Procedures for preparation of these compounds are found in refs. 1-4 and the Annual Progress Report dated August 1984. Several derivatives made since that Report follow.

1-Methyl-2-[2-methylthio-2-(2-{bis(methoxy)ethyl}amino)vinyl]-quinolinium iodide. Compound II (4.0g, 0.01 mol) and 1.05g (0.01 mol) of aminoacetaldehyde dimethyl acetal were added to 40 mL of DMSO. The solution was stirred at room temperature for 4 days and mixed with 300 mL of ether, and the ethereal layer was decanted. After the solvent was evaporated, 50 mL of 2-propanol was added and mixed. A solid was filtered and recrystallized from 2-propanol, yielding 2.48 g (58%); mp 142-143°.

IR(KBr); v 3200 (NH),1610 (C=C).

ACCESSES CONSISSES PROPERTY

Anal. Calcd. for C₁₇H₂₃IN₂O₂S: C, 45.74; H, 5.19: N, 6.25.

Found: C, 45.32; H, 4.97; N, 5.92.

1-Methyl-2-[2-methylthio-2-(4-{3-hydroxypropyl}-1-piperazinyl)vinyl]-quinolinium iodide. A mixture of 0.5g (1.28 mmol) of II, 0.19g (1.32 mmol) of 1-piperazinepropanol, and 5 mL of DMF was stirred at room temperature for 3 days. After the solvent was evaporated, 5 mL of ethyl acetate was added to the residue, followed by small portions of DMF until the product solidified. This was filtered and washed with ethyl acetate to give 0.40g of green solid; mp 175-178°. Recrystallization from 5 mL of water with charcoal, and then from 5 mL of n-propanol afforded 0.2g (31.2%) of orange powder; mp 175-176.5°.

IR(KBr): \vee 3360 (OH), 1610 (C=C).

Calcd. for $C_{20}H_{28}IN_{3}OS \cdot \frac{1}{2}H_{2}O$: C, 48.58; H, 5.91; N, 8.50.

Found: C, 48.35; H, 5.67; N, 8.39.

2-Methyl-1-bis(2-methylthio)vinylisoquinolinium iodide. To a suspension of 1,2-dimethylisoquinolinium iodide (2.5g, 8.8 mmol) in toluene (50 mL) was added 1g of K tertiary butoxide and 5-10 drops of 95% ethyl alcohol. The mixture was stirred 20 min, and the clear supernate was decanted. To the residue was added toluene (35 mL), K tertiary butoxide (0.5g), and 95% ethyl alcohol (5-10 drops). The mixture was stirred 20 min, and the clear supernate was decanted. This process was repeated once more. To the combined toluene solutions was added carbon disulfide (3 mL), and the solution was stirred at room temperature 30 min. Methyl iodide (3 mL) was then added, and the mixture was stirred overnight. Toluene was removed in a rotavap at 50-60°, and the residue was crystallized from water, giving 2.4 (70%) of yellow needles, mp 204-205°.

IR(KBr): v 1630 (C=C), 1155 (CH₂S), 815 (C=C).

¹HNMR (CDC1₃): δ 2.37 (3H, s, SCH₃), 2.80 (3H, s, SCH₃), 4.63 (3H, s,

 NCH_3), 7.03 (1H, s, CH=C), 7.80-9.10 (6H, m, arom H).

Anal. Calcd. for C₁₄H₁₆INS₂: C, 43.19; H, 4.14; N, 3.59.

Found: C, 43.11; H, 4.15; N, 3.57.

1-Methylpyridinium-2-dithioacetic acid derivatives. Compound VII and 1-methylpyridinium-2,6-bis(dithioacetate) sodium salt are found in the Annual Progress Report dated August, 1984. Preparations for examples of compounds V, VI, and VIII follow.

1-Methyl-2-bis(2-methylthio)vinylpyridinium iodide (V). To a stirring solution of picoline (0.97g, 0.01 mol) in dry THF (20 mL) under N_2 at -5^0 to -10^0 C was added n-BuLi (4.4 mL, 2.5 M) in hexane dropwise. To the resulting red solution carbon disulfide (1.2 mL, 0.02 mol) in THF (5 mL) was added

dropwise at -5° to -10° . After the mixture was stirred for 30 min at this temperature, an excess of methyl iodide (4 mL, 0.064 mol) was added. The solution was stirred overnight at room temperature, and filtered. The residue was washed with methylene chloride, and the combined filtrates were concentrated in a rotavap. The residue was taken up in methylene chloride (40 mL) and washed repeatedly with water until the water layer was colorless. The combined washings were concentrated to 10-15 mL in a rotavap at 50-60°. The solution was stored at 0°, and the resulting crystals were filtered and recrystallized from water, giving 1.8g (53%); mp 134-135°.

IR(KBr): v 1630 (C=C), 1175 (CH₂S), 800 (C=C).

¹HNMR (CDC1₃): δ 2.57 (3H, s, SCH₃), 2.67 (3H, s, SCH₃), 4.57 (3H, s,

NCH₃), 6.53 (1H, s, CH=C), 7.63-9.0 (4H, m, arom H).

Anal. Calcd. for C10H14INS2: C, 35.40; H, 4.16; N, 4.12.

Found: C, 35.26; H, 4.11; N, 4.19.

1,6-Dimethyl-2-bis(2-methylthio)vinylpyridinium iodide. To a suspension of 2,6-dimethylpyridinium methiodide (7.5g, 0.03 mol) in toluene (50 mL) was added K t-butoxide (3.5g) in one portion. The mixture was stirred at room temperature and 95% ethyl alcohol (10-15 drops) was added. The yellow solution was stirred 20 min, and the supernatant solution was decanted. To the residue was added toluene (50 mL), followed by K t-butoxide (1g) and 95% ethyl alcohol (10-15 drops). The mixture was stirred 20 min, and the clear supernate was decanted. This process was repeated three more times using the same amounts of reagents. To the combined toluene solutions was added an excess of carbon disulfide (7.2 mL, 0.12 mol), and the mixture was stirred 30 min. A red solid was filtered, suspended in methylene chloride (100 mL), and methyl iodide

(7.4 mL, 0.12 mol) was added. The mixture was stirred overnight at room temperature, and was filtered. The residue was washed with methylene chloride, and the combined organic layers were evaporated to dryness. The yellow solid was recrystallized from water to give 7.3g (68%) of yellow needles; mp 165-166°.

IR(KBr): v 1620 (C=C), 1190 (CH₂S), 830 (C=C).

¹HNMR (CDC1₃): δ 2.53 (3H, s, SCH₃), 2.67 (3H, s, SCH₃), 3.00 (3H, s, CH₃),

4.35 (3H, s, NCH₃), 6.63 (1H, s, CH=C), 7.67-8.41 (3H, m, arom H).

Anal. Calcd. for C₁₁H₁₆INS₂: C, 37.40; H, 4.57; N, 3.96.

Found: C, 37.28; H, 4.57; N, 3.89.

1-Methyl-2,6-bis[2-bis-(2-methylthio)vinyl]pyridinium iodide (VIII). The same procedure was repeated on the previous compound, and an 82% yield of yellow crystals was obtained; mp 205-206°.

IR(KBr): v 1605 (C=C), 1190 (CH₂S), 820 (C=C).

¹HNMR (CDC1₃): δ 2.53 (6H, s, SCH₃), 2.68 (6H, s, SCH₃), 4.33 (3H, s,

NCH₃), 6.55 (2H, brs, CH=C), 7.73-8.33 (3H, m, arom H).

Anal. Calcd. for $C_{14} \times 20 INS_4$: C, 36.75; H, 4.37; N, 3.06.

Found: C, 36.77; H, 4.42; N, 3.00.

1-Methyl-2-bis(2-ethylthio)vinylpyridinium iodide. To a stirred suspension of picolinium methiodide (3.5g, 0.015 mol) in toluene (100 mL) was added K t-butoxide (2g) followed by 95% ethyl alcohol (10-15 drops). The mixture was stirred 20 min, and the clear supernate was decanted. This process was repeated five times using 50 mL of toluene, 0.5g of K t-butoxide, and 5-10 drops of 95% ethyl alcohol. To the combined toluene solutions was added carbon disulfide (5 mL, 0.083 mol), and the mixture was stirred 30 min at room temperature. It was filtered, and the residue was taken up in DMF (20 mL). An excess of

ethyl iodide (6 mL, 0.075 mol) was added, and the mixture was stirred overnight. The solvent was removed in vacuo at $60-70^{\circ}$, and the residue was recrystallized from water, giving 4.2g (77%) of yellow needles; mp $143-145^{\circ}$.

IR(KBr): v 1620 (C=C), 1165-75 (CH₂S), 800 (C=C).

¹HNMR (CDC1₃): δ 1.10-1.60 (6H, m, C₂H₅), 2.77-3.43 (4H, m, C₂H₅),

4.50 (3H, s, NCH₃), 6.67 (1H, s, CH=C), 7.63-9.07 (4H, m, arom H).

Anal. Calcd. for C12H18INS2: C, 39.24; H, 4.94; N, 3.81.

Found: C, 39.10; H, 4.87; N, 3.72.

1-Methyl-2-[2-methylthio-2-(N-piperidino)vinyl]pyridinium iodide (VI).

2-Bis (2-methylthio)vinyl-1-methylpyridinium iodide (3.0, 0.009 mol) and 1.53g
(0.018 mol) of piperidine were added to DMF (20 mL) and heated at 70° for 2 hr and 50° for 4 days with stirring. After being cooled, the solution was added to 150 mL of ether, and the ethereal layer was decanted. Ethyl acetate (150 mL) was added to the remaining syrup, and after chilling, yellow crystals appeared which were filtered and recrystallized from 1:1 ethanol/2-propanol. The product weighed 2.19g (66%); mp 143-144°.

IR(KBr): v 1630 (C=C), 1160-70 (CH₂S), 780 (C=C).

¹HNMR (CDCl₃): δ 1:40-1.70 (6H, m, piperidine), 2.40 (3H, s, SCH₃), 320-3.60 (4H, d, CH₂N), 4.0 (3H, s, NCH₃), 5.2 (1H, s, CH=C), 7.2-8.6 (4H, m, arom H).

Anal. Calcd. for $C_{14}H_{21}IN_2S$: C, 44.92; H, 5.65; N, 7.48.

Found: C, 44.60; H, 5.59; N, 7.32.

1-Aminocyclopentene-2-dithio acids. Procedures for the preparation of these compounds are found in the Annual Progress Report dated August 1984.

Methyl 3-Amino-2-aryldithiopropenoates. Procedures for the preparation of these compounds are found in the Annual Progress Report dated Aug. 1984. The 1,2-dithiole-4-phenyl-3-thione and its methiodide were prepared by E.K. Fields (11). A reduced 1-bis(methylthio)-3-amino-2-phenyl-propene and examples of recently prepared derivatives follow.

SHOOTS SHOOTS SHOOTS SEEDED SEEDES

Methyl 3-pyrrolidino-2-phenyl-2-propenedithiocarboxylate. To a stirred suspension of XIII (5.0g, 0.14 mol) in benzene (150 mL) was added pyrrolidine (2.0g, 0.28 mol) dropwise during 5 min. The red solution was stirred for 0.5 hr at room temperature, and the solid was filtered and washed with benzene. The benzene layer was washed with water (3 x 50 mL), dried, and concentrated. The yellow solid was recrystallized from ethyl acetate-heptane, giving 4.06g; mp $148-149.5^{\circ}$.

¹HNMR (CDCl₃): δ 1.53-1.97 (4H, m, pyrrolidine), 2.57 (3H, s, SCH₃), 2.76-3.40 (4H, br m, pyrrolidine), 7.33 (5H, s, C₆H₅), 8.73 (1H, s, CH=C). Anal. Calcd. for C₁₄H₁₇NS₂: C, 63.83; H, 6.51; N, 5.32. Found: C, 64.14; H, 6.57; N, 5.34.

Methyl 3-(N-morpholinylamino)-2-phenyl-2-propenedithiocarboxylate. To a suspension of 1.00g (2.84 mmol) of XIII in 20 mL of benzene was added 0.40 mL (2.87 mmol) of Et₃N and 0.30g (2.94 mmol) of N-aminomorpholine. The mixture was stirred 45 min at room temperature and filtered; the residue was washed with benzene. Evaporation of the combined filtrates gave 1.02g of an orange solid which was chromatographed on silica and recrystallized from benzene-hexane, giving 0.37g (44%) of brown crystals, mp 132-135°.

IR (KBr): \vee 1605 (C=C), 955 (C=S). ¹HNMR (CDCl₃): δ 2.47 (3H, s, SCH₃), 2.77-3.00 (4H, m, N(CH₂)₂), 3.53-3.80 (4H, m, O(CH₂)₂), 7.03-7.33 (6H, m, C₆H₅ + CH=C), 13.05 (1H, NH, J=11 Hz). Anal. Calcd. for $C_{14}H_{18}N_{2}OS_{2}$: C, 57.11; H, 6.16; N, 9.51.

Found: C, 57.23; H, 6.19; N, 9.41.

1-Bis(methylthio)-3-(1-morpholinyl)-2-phenylpropene (XV). To a stirred solution of 1.00g (2.37 mmol) of 1,1-bis(methylthio)-3-(1-morpholinylidene)-2-phenyl-1-propene in 20 mL of methylene chloride was added a solution of 0.61g (2.40 mmol) of Li(t-BuO)₃AlH in 24 mL of dry THF over 20 min. Evaporation of the solvents after 18 hrs of stirring at room temperature gave an orange paste. This was taken up in 50 mL of 1N HCl and extracted with three 20-mL portions of ethyl acetate (discarded). The aqueous phase was made alkaline with 50% KOH solution and extracted with two 20-mL portions of ethyl acetate. Drying (Na₂SO₄), filtering, and evaporating the combined extracts provided 0.44gof a clear yellow oil. Chromatography on silica afforded 0.08g of aldehyde XVI and 0.34g (48.6%) of XV, as a yellow oil.

IR (neat): v 1590 (C=C), 1110 (CH₂O).

¹HNMR (CDCl₃): δ 2.18 (3H, s, SCH₃), 2.22-2.53 (7H, m, SCH₃ + N (CH₂)₂),

3.40-3.67 (6H, m, $0(CH_2)_2 + NCH_2$), 7.25 (5H, s, C_6H_5).

Anal. Calcd. for $C_{15}H_{21}NOS_2$: C, 60.98; H, 7.16; N, 4.74.

Found: C, 60.76; H, 7.12; N, 4.73.

Copper complex of 2-bis(2-methylthio)vinyl-1-methylquinolinium iodide (XVII). A mixture of 3.5g (8.99 mmol) of II in 150 ml of 95% ethyl alcohol was warmed gently with stirring until the solid dissolved, and the solution was allowed to stand at 30° . Anhydrous CuCl₂ (2.41g, 18 mmol) in 95% ethyl alcohol was slowly added dropwise with continuous stirring. A brown precipitate formed at once, and the mixture was stirred overnight. The precipitate was filtered and washed with small amounts of absolute ethanol, water, and ether. It was dried in a desiccator to give 2.66g (43.5%) of brown solid; mp >300°.

IR (KBr): v 575,500 (Cu-S), 405 (Cu-Cl).

¹HNMR (DMSO-d₆): δ 2.50 (3H, s, SCH₃), 2.70 (3H, s, SCH₃), 4.40 (3H, s,

 NCH_3), 6.75 (1H, s, CH=C), 8.0-8.6 (6H, m, arom H).

Anal. Calcd. for $C_{14}H_{16}INS_2 \cdot 2 CuCl_2 \cdot \frac{1}{2}C_2H_5OH$: C, 26.45; H, 2.81; N, 2.06; S, 9.41.

Found: C, 26.53; H, 2.55; N, 2.15; S, 9.13.

References

- W.O. Foye and J.M. Kauffman, J. Pharm. Sci., 68, 336 (1979).
- 2. W.O. Foye and J.M. Kauffman, ibid., <u>69</u>, 477 (1980).
- 3. W.O. Foye, Y.H. Kim, and J.M. Kauffman, ibid., <u>72</u>, 1356 (1983).
- 4. W.O. Foye, Y.J. Lee, K.A. Shah, and J.M. Kauffman, ibid., <u>67</u>, 962 (1978).
- T. Takeshima, M. Yokoyama, T. Imamato, M. Akano, and H. Asaba, J. Org. Chem., 34, 730 (1969).
- 6. G. LeCoustemer and Y. Mollier, Bull. Soc. Chim. France, 2958 (1971).
- 7. S.S. Ansher, P. Dolan, and E. Bueding, Hepatology, 3, 932 (1983).
- 8. U. Weser, C. Richter, A. Wendel, and M. Younes, Bioinorg. Chem., 8, 201 (1978).
- 9. J.R.J. Sorenson, J. Med. Chem., <u>27</u>, 1747 (1984).
- 10. S. Patarapanich, M.S. thesis, Massachusetts College of Pharmacy and Allied Health Sciences, 1984.
- 11. E.K. Fields, J. Amer. Chem. Soc., 77, 4255 (1955).
- 12. W.O. Foye, Annual Progress Report, Aug. 1984.
- 13. W.O. Foye, Final Report, March, 1985.

であることととは「自己をなるなが、例如自己としてものでは、自己というない。 | 1000年のこととは、自己をなるなが、例如自己としてものでは、自己というない。 1000年の日本のでは、1000年ので

DISTRIBUTION LIST

12 copies

お言うであっている。自己ではているとは言うなかっている。自己などのないに言うない

Director

Walter Reed Army Institute of Research

Walter Reed Army Medical Center

ATTN: SGRD-UWZ-C

Washington, DC 20307-5100

4 copies

Commander

US Army Medical Research and Development Command

ATTN: SGRD-RMS

Fort Detrick, Frederick, Maryland 21701-5012

12 copies

Defense Technical Information Center (DTIC)

ATTN: DTIC-DDAC Cameron Station

Alexandria, VA 22304-6145

1 copy

Dean

School of Medicine

Uniformed Services University of the

Health Sciences

4301 Jones Bridge Road Bethesda, MD 20814-4799

1 copy

Commandant

Academy of Health Sciences, US Army

ATTN: AHS-CDM

Fort Sam Houston, TX 78234-6100

F1LMED 4-86