(1) 1. Logical OR

$$\beta = (11111) = 91)^{\mathbb{D}}$$

$$e_{3} 2' = 7:1 \cdot 6 + 5 = (0 + 1 + 1 + 0 + 1) - 0,5 = 2.5$$

$$f(\frac{1}{2}) = 1$$

2. masked logical OR

$$C = (101)$$

$$b = -0.5$$

3. perfect match

$$Z_{in} = (110) \qquad \text{for example} \qquad D_{i} = (111-1)$$

c = (1×10) for example $b = -\frac{2}{5}c_1 + 1$ | Hink this solution activation function f = Rela Shall work as well. 2' = 21-6 + 8 = (1+1+0)-1 = 1 f(1) = 1

X = (a, b) M = 6

first layer f(x) -> go,1)

f(a.5) = {

(0.1000) if a > a, and 5 < 52,

(00100) if a > a, and 5 < 54,

and 5 < 54,

(000100) if a < a2 and 5 > 54,

(000100) if a > a3 and 5 > 52,

and 5 < 53,

M=3 could have

been enough, but it was not asked to have a mulhal M; so this should be correct.

Second layer not necessary. third layer has 3 Nenrons

Given the input vectors asove this Should vorte red minus

- 1. Zondy = masked OR (2:n, 010100)
 - blue plas
- 2. Zont 2 = marked OR (7:,, 001010) 3. 7. 13 = mosked on (2:, 100001) gran circle

other option M=>

7 hearons : one for a ray , one for a ray...

P2 (a.5) = 0 (a-d2) Ps (0.5) = (0 (0 - 03)

Pu (a,5): 0 (5.51)

this would be. (1111100)

/pr (0.5): 0 (6-62) Pr() > () () - by) fr(a.s): (6 (5 , 54)

this would se (0001100)

(perfect match)

Second layer: us many elemon as regions (4.5=20 here)

each henron represents one Region

third layer: 3 mashed on Nourons:

Zont, = modert OR (7: , So. 1)20)

I where region contains red minus with

Zonte = model OR (7: , So, 1)20)

1 where region contains since plus w: 44

Zont, = model OR (7: , 50,1)20)

۵:44

1 where region contains green circle

For more dimensions you need more decision Regions and M gets larger. You always need M Nemons in the first layer mapping Features to distinct M-dimensional vectors. The second layer has as many Nemons as decision Regions and each M-dim vector gets mapped to a specific Nemon representing that region. The last layer has as many Nemons as there are classes. Usind the masked OR all Nemons corresponding to a class are mapped to one Neuron representing that of a class are mapped to one

This gets difficult because there will be a let of decision Regions and a lot of necessary leavens. Also overfitting will be a problem.

$$Z_0 = X$$

$$\tilde{Z}_l = Z_{l-1} \cdot B_l + b_l$$

$$Z_l = \phi_l(\tilde{Z}_l)$$

repeat for all Llayers

= 7. B' + b'

same as one layer