3-giugno-2022

$$\int (x) = \operatorname{arc}(x) - \frac{n+3}{n-1}$$

$$\mathcal{D}\left(\mathcal{J}\right) = \mathbb{R}^{2} \cdot \left\{1\right\}$$

$$f'[n] = \frac{1}{1 + (\frac{n+3}{n-1})^{2}} = \frac{2n^{2} - 2n^{2} - 2n^{2}}{(n-1)^{2}} = \frac{1}{1 + (\frac{n+3}{n-1})^{2}} = \frac{1}{(n-1)^{2} + (\frac{n+3}{n-1})^{2}}$$

$$J(3) = 2ritan \frac{11}{2} = 2ritan 6$$

$$n = 3 \qquad p. \qquad min. \qquad rilativa$$

					- 3	-					-					
					2											
					1					•-						
			_									-				
-5	-4	-3	-2	-1	0			1	2				6	7	→	
				•	-1		_									
					-2											

$$= x + \frac{x^{4}}{4} - x^{3} + \frac{1}{3}x^{4} + o(x^{4})$$

$$= x^{2} - x^{3} + \frac{11}{11}x^{4} + o(x^{4})$$

$$= x^{2} - x^{3} + \frac{11}{11}x^{4} + o(x^{4})$$

$$= x^{2} - x^{3} + \frac{11}{11}x^{4} + o(x^{4})$$

 $= 1 - \frac{1}{2} n + \frac{1}{2} x^{3} - \frac{n}{24} = \frac{1}{12}$

 $2\cos\left(n-\frac{n}{2}\right)=2-x^2+n^2-\frac{x^4}{6}+o\left(n^4\right)$

$$\frac{(\ln (1+x))^{2} + 2\cos (n - \frac{n^{2}}{2}) - 1}{n^{4}} = \frac{2}{11} n^{4} + x - x^{4} + x^{3} - \frac{n^{4}}{6} - x^{4} + o(n^{4})}{n^{4}} = \frac{2}{11} n^{4} + o(n^{4}) = \frac{2}{4} + \frac{o(n^{4})}{n^{4}} - \frac{3}{4}$$