Circuito a ser utilizado para a aula 2

Circuito a ser utilizado para a aula 2 (com o gravador)

Programa a ser utilizado para a aula 2

#INCLUDE <p16f628a.inc> CONFIG H'3F10'</p16f628a.inc>			;ARQUIVO PADRÃO MIC	CROCHIP PARA 16F628A
#DEFINE #DEFINE	BANK0 BANK1 CBLOCK ENDC	BCF STATUS,RP0 BSF STATUS,RP0 0x20 ;ENDEREÇ	;SETA BANK 0 DE MEMO ;SETA BANK 1 DE MAMO O INICIAL DA MEMÓRIA D ;FIM DO BLOCO DE ME	ÓRIA DE USUÁRIO
#DEFINE	ВОТАО	PORTA,2	;PORTA DO BOTÃO	; 0 -> PRESSIONADO
#DEFINE	LED	PORTB,0	;PORTA DO LED	; 1 -> LIBERADO ; 0 -> APAGADO ; 1 -> ACESO
1111010	ORG GOTO	0x00 INICIO	;ENDEREÇO INICIAL DE	PROCESSAMENTO
INICIO	CLRF CLRF BANK1 MOVLW	PORTA PORTB B'00000100'	;LIMPA O PORTA ;LIMPA O PORTB ;ALTERA PARA O BANC	
	MOVWF MOVLW	TRISA B'00000000'	;DEFINE RA1 COMO EN	ITRADA E DEMAIS COMO SAÍDAS
	MOVWF MOVLW	TRISB B'00000000'	;DEFINE TODO O PORT	B COMO SAÍDA
	MOVWF BANK0	INTCON	;TODAS AS INTERRUPÇ ;RETORNA PARA O BAN	•
	MOVLW MOVWF	B'00000111' CMCON	;DEFINE O MODO DO C ; 007 PARA ENTRADAS	OMPARADOR ANALÓGICO DIGITAIS

MAIN

BTFSC BOTAO ;O BOTÃO ESTÁ PRESSIONADO?

GOTO BOTAO_LIB ;NÃO, ENTÃO TRATA BOTÃO LIBERADO

GOTO BOTAO_PRES ;SIM, ENTÃO TRATA BOTÃO PRESSIONADO

BOTAO_LIB

BCF LED ;APAGA O LED

GOTO MAIN ;RETORNA AO LOOP PRINCIPAL

BOTAO PRES

BSF LED ;ACENDE O LED

GOTO MAIN ;RETORNA AO LOOP PRINCIPAL

END ;OBRIGATÓRIO

#DEFINE BANKO BCF STATUS,RPO ;SETA BANK 0 DE MEMÓRIA

#DEFINE BANK1 BSF STATUS,RP0 ;SETA BANK 1 DE MAMÓRIA

#DEFINE BOTAO PORTA,2 ;PORTA DO BOTÃO

; 0 -> PRESSIONADO

; 1 -> LIBERADO

#DEFINE LED PORTB,0 ;PORTA DO LED

; 0 -> APAGADO

; 1 -> ACESO

A diretiva **#DEFINE** apenas irá substituir no programa principal, os termos utilizados pelos padrões do PIC.

Exemplo:

- se no programa digitarmos LED, ele será substituído por PORTB, 0
- se digitarmos **BOTAO**, ele será substituído por **PORTA**, 2

ORG 0x00 ;ENDEREÇO INICIAL DE PROCESSAMENTO

GOTO INICIO

A instrução ORG apenas indica o início do programa.

O GOTO leva a execução para a linha INICIO.

Isso se faz necessário porque quando uma interrupção acontece o programa é desviado para o endereço 0x04.

Assim, nosso programa permite que, posteriormente, possamos inserir algum código para controle de alguma interrupção no endereço 0x04.

ш	NΙ		\sim
ш	IV	ı	IU

CIDE

CLRF	PORTB	;LIMPA O PORTA ;LIMPA O PORTB
BANK1		;ALTERA PARA O BANCO 1
MOVLW MOVWF	B'00000100' TRISA	;DEFINE RA2 COMO ENTRADA E DEMAIS COMO SAÍDAS
MOVLW MOVWF	B'00000000' TRISB	;DEFINE TODO O PORTB COMO SAÍDA
MOVLW MOVWF	B'00000000' INTCON	;TODAS AS INTERRUPÇÕES DESLIGADAS
BANK0		;RETORNA PARA O BANCO 0

·I IMPA O DODTA

MOVLW B'00000111'
MOVWF CMCON

DODTA

;DEFINE O MODO DO COMPARADOR ANALÓGICO

; 007 PARA ENTRADAS DIGITAIS

Essas são instruções para configuração dos pinos. Quais serão utilizados como entradas e quais como saídas.

TRISA(B) está no banco1 e configura cada pino dos portos A(B) como entrada(1) ou saída(0).

INTCON se refere às interrupções, todo em zero significa interrupções desligadas. CMCON configura os pinos de entrada, se em 7(111) as entradas funcionam como entradas digitais (sensíveis a 5 volts ou 0 volts).

MAIN

BTFSC BOTAO ;O BOTÃO ESTÁ PRESSIONADO?

GOTO BOTAO_LIB ;NÃO, ENTÃO TRATA BOTÃO LIBERADO

GOTO BOTAO_PRES ;SIM, ENTÃO TRATA BOTÃO PRESSIONADO

BOTAO LIB

BCF LED ;APAGA O LED

GOTO MAIN ;RETORNA AO LOOP PRINCIPAL

BOTAO_PRES

BSF LED ;ACENDE O LED

GOTO MAIN ;RETORNA AO LOOP PRINCIPAL

END ;OBRIGATÓRIO

Observar que a instrução **BTFSC** significa para testar um determinado bit do argumento e pular a próxima linha se ele for zero.

A instrução BCF "reseta" (leva a 0) um determinado bit indicado pelo argumento. A instrução BSF "seta" (leva a 1) um determinado bit indicado pelo argumento.

Como usar o editor de estímulo e a simulação visual no MPLAB

1) Crie um projeto e inclua o arquivo anterior (botão e led)

2) Selecione a ferramenta de simulação (MPLAB SIM)

3) Selecione a ferramenta WATCH

- 3) Selecione os registradores a serem observados.
- 4) Escolha os registradores e clique no botão ADD SFR.

3) Selecione os formatos (hexa, dec., bin.)

Exemplo de como poderá ficar a sua tela

3) Selecione o editor de estímulo

- 3) De acordo com o programa, escolha qual será o registrador afetado, no nosso caso, estaremos alterando o botão em RA1.
- 4) Escolha a forma de alteração da entrada, no caso, modo toogle.

3

Tela de simulação até o momento

Ajustando a simulação

1) Entre no menu settings do Debugger

2) Passe a frequencia para 4 MHz, menu Osc/Trace

3) Habilite o Enable Realtime wath updates, menu Animation/Realtime Updates

4) Clique em OK

3) Ligue a animação

- 3) Clique em 1 para ligar e desligar a chave em RA1
- 4) Observe em 2 a alteração dos bits nos registradores

Analise o seguinte programa

Ν/	ΙΛ	INI
IV	ıA	ш

	BTFSC GOTO	BOTAO MAIN	;O BOTÃO ESTÁ PRESSIONADO? ;NÃO, ENTÃO ESPERA PRESSIONAR
	GOTO	BOTAO_PRES1	;SIM, ENTÃO TRATA BOTÃO PRESSIONADO
BOTAO_PF	RES1		
	BTFSS GOTO BSF GOTO	BOTAO BOTAO_PRES1 LED TESTA1	;O BOTÃO AINDA ESTÁ PRESSIONADO? ;SIM, ENTÃO ESPERA DESLIGAR ;NÃO, ACENDE O LED ;VAI PARA O PROXIMO TESTE
TESTA1			
TESTAT	BTFSC GOTO GOTO	BOTAO TESTA1 BOTAO_PRES2	;O BOTÃO ESTÁ PRESSIONADO? ;NÃO, ENTÃO ESPERA PRESSIONAR ;SIM, ENTÃO TRATA BOTÃO PRESSIONADO
BOTAO_PF	DEG2		
BOTAO_FT	BTFSS GOTO	BOTAO BOTAO_PRES2	;O BOTÃO AINDA ESTÁ PRESSIONADO? ;SIM, ENTÃO ESPERA DESLIGAR
	BCF GOTO	LED MAIN	;NÃO, ACENDE O LED ;RETORNA AO LOOP PRINCIPAL
	END		;OBRIGATÓRIO

Relatório:

- 1) Crie um programa onde cada vez que pressionarmos a chave, um led ascende e outro apaga. Faça com os dois primeiros leds.
- 2) Repita o exercício anterior usando 3 leds e preservando a sequencia.

Problemas no uso de chaves

Um dos grandes problemas quando lidamos com chves chama-se bouncing.

Como uma chave é um dispositivo mecânico, ocorrem oscilações quando uma chave é ligada ou desligada.

Essas oscilações são muito mais lentas que o tempo de avaliação da chave pelo microcontrolador.

Problemas no uso de chaves

Podemos ter o que ocorre na figura ao lado.

Se o Microcontrolador está verificando a chave em um tempo muito pequeno, ele pode entender que a chave está mudando (de desligado para ligado ou ligado para desligado) quando na verdade não está. É apenas a oscilação que ocorre no momento que a chave é ligada ou desligada.

Uma solução em software é imaginar que essa chave irá demorar, por exemplo, 50 ms para estabilizar (esse valor irá depender da qualidade da chave utilizada.