Notes de cours

MATH-105(a) Analyse avancée II

(Section MA)

Boris Buffoni, Fabio Nobile

2020-2021

Dernière mise à jour : 22 février 2021

Table des matières

0	Intégrales Généralisées		5
	0.1	Intégrale généralisée sur un intervalle borné	5
	0.2	Intégrale généralisée absolument convergente	8
	0.3	Intégrale généralisée sur un intervalle non borné	10
	0.4	Intégrales et séries numériques	13

Notations

$$\mathbb{R}_+ = \{x \in \mathbb{R} : x \ge 0\}$$

$$\mathbb{R}_+^* = \{x \in \mathbb{R} : x > 0\}$$

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-+\infty, +\infty\}$$

$$\mathbb{N} = \{0, 1, 2, \dots\}$$

$$\mathbb{N}^* = \{1, 2, \dots\}$$

Chapitre 0

Intégrales Généralisées

Ce chapitre reprend le dernier sujet du cours d'Analyse Avancée I, notamment la construction de l'intégrale définie $\int_a^b f(x)dx$ d'une fonction $f:[a,b]\to\mathbb{R}$ continue où continue par morceaux sur un intervalle borné et fermé. On rappelle qu'une fonction $f:[a,b]\to\mathbb{R}$ avec a< b dans \mathbb{R} est dite continue par morceaux si $\lim_{t\to x^+} f(t)$ existe (sous-entendu, dans \mathbb{R}) pour tout $x\in [a,b[$, $\lim_{t\to x^-} f(t)$ existe pour tout $x\in [a,b]$ et f est continue en x pour tout $x\in [a,b]$ avec au plus un nombre fini d'exceptions. Cette définition se généralise à un intervalle I quelconque avec une infinité de points : une fonction $f:I\to\mathbb{R}$ est dite continue par morceaux (c.p.m.) si f est continue par morceaux sur tout intervalle $[a,b]\subset I$ avec a< b.

On se pose ici la question de comment généraliser la définition de l'intégrale $\int_a^b f(x)dx$ dans le cas où l'intervalle d'intégration est borné mais pas fermé, et la fonction f n'est pas définie en a ou en b, comme dans les exemples suivantes :

$$\int_0^1 \sin\left(\frac{1}{x}\right) dx, \qquad \int_0^1 \ln(x) dx, \qquad \int_0^1 \frac{1}{x} dx,$$

ou encore, comment généraliser la définition de l'intégrale sur un intervalle non borné, par exemple :

$$\int_0^\infty \sin(x)dx, \qquad \int_0^\infty \sin(x^2)dx, \qquad \int_0^\infty e^{-x}dx, \qquad \int_1^\infty \frac{1}{x^2}dx, \qquad \int_{-\infty}^\infty \frac{1}{1+x^2}dx,$$

où on entendra toujours ∞ par $+\infty$, dans ce chapitre.

0.1 Intégrale généralisée sur un intervalle borné

On commence par définir l'intégrale généralisée sur un intervalle borné et "demi-ouvert" (ouvert à droite et fermé à gauche ou bien ouvert à gauche et fermé à droite).

Définition 0.1. Pour a < b dans \mathbb{R} , soit $f : [a,b[\to \mathbb{R} \ c.p.m. \ et \ F(x) = \int_a^x f(t)dt$, $x \in [a,b[$. Si $\lim_{x\to b^-} F(x)$ existe, on dit que $\int_a^b f(x)dx$ existe (ou converge) et on pose

$$\int_{a}^{b} f(x)dx = \lim_{x \to b^{-}} F(x).$$

 $Si \lim_{x\to b^-} F(x)$ n'existe pas, on dit que $\int_a^b f(x)dx$ diverge.

De façon similaire, soit $f: [a,b] \to \mathbb{R}$ c.p.m., et $F(x) = \int_x^b f(t)dt$, $x \in [a,b]$. Si $\lim_{x\to a^+} F(x)$ existe, on dit que $\int_a^b f(x)dx$ existe (ou converge) et on pose

$$\int_{a}^{b} f(x)dx = \lim_{x \to a^{+}} F(x).$$

Autrement on dit que l'intégrale $\int_a^b f(x)dx$ diverge.

Exemple 0.2. On étudie l'existence de l'intégrale généralisée

$$\int_0^1 \frac{1}{x^{\alpha}} dx$$

Pour $\alpha \in \mathbb{R}$.

Soit $F(x) = \int_x^1 \frac{1}{t^{\alpha}} dt$, $x \in [0,1]$ qui est bien définie car la fonction $f(t) = t^{-\alpha}$ est continues sur [x,1] pour tout $x \in [0,1]$. Pour $\alpha \neq 1$ on a

$$F(x) = \frac{t^{-\alpha+1}}{-\alpha+1} \Big|_{x}^{1} = \frac{1}{1-\alpha} - \frac{x^{1-\alpha}}{1-\alpha}$$

tandis que pour $\alpha = 1$ on a

$$F(x) = \ln t \Big|_x^1 = -\ln x.$$

Donc

$$\lim_{x \to 0^+} F(x) = \begin{cases} \frac{1}{1-\alpha} & \alpha < 1 \\ +\infty & \alpha \ge 1 \end{cases}$$

et l'intégrale généralisée $\int_0^1 \frac{1}{x^{\alpha}} dx$ existe pour tout $\alpha < 1$.

On vérifie facilement que si la fonction f admet une extension par continuité sur [a,b] alors l'intégrale généralisé de f existe et coïncide avec l'intégrale sur l'intervalle fermé [a,b] de l'extension par continuité de la fonction. Plus précisément, on a le résultat suivant, dont la preuve est laissée comme exercice.

Lemme 0.3. Pour a < b dans \mathbb{R} , soit $f : [a, b] \to \mathbb{R}$ c.p.m. telle que $\lim_{x \to b^-} f(x)$ existe et définissons la fonction c.p.m. sur [a, b]

$$f_b(x) = \begin{cases} f(x), & x \in [a, b[, \\ \lim_{t \to b^-} f(t), & x = b. \end{cases}$$

Alors, l'intégrale généralisée $\int_a^b f(x)dx$ existe et $\int_a^b f(x)dx = \int_a^b f_b(x)dx$.

On a le même résultat pour une fonction $f: [a,b] \to \mathbb{R}$ c.p.m. telle que $\lim_{x\to a^+} f(x)$ existe.

On considère maintenant le cas d'un intervalle ouvert (à gauche et à droite).

Définition 0.4. Soit $f:]a,b[\to \mathbb{R} \ c.p.m., \ a < b. \ Pour \ c \in]a,b[, \ si \int_a^c f(x) dx \ et \int_c^b f(x) dx$ existent, alors on pose $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$, auquel $cas \int_a^b f(x) dx$ est dite exister ou converger, sinon $\int_a^b f(x) dx$ est dite diverger.

Il est facile de montrer que l'existence (ou non) de $\int_a^b f(x)dx$ ne dépend pas du choix de $c \in]a,b[$. En fait, soit $\tilde{c} \in [a,b[$, $\tilde{c} \neq c$. Alors

$$\int_{a}^{\tilde{c}} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{\tilde{c}} f(x)dx$$

existe ssi $\int_a^c f(x)dx$ existe, car f est c.p.m. sur $[c,\tilde{c}] \cup [\tilde{c},c]$. De même,

$$\int_{\tilde{c}}^{b} f(x)dx = \int_{\tilde{c}}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

existe ssi $\int_{c}^{b} f(x)dx$ existe, et

$$\int_a^{\tilde{c}} f(x)dx + \int_{\tilde{c}}^b f(x)dx = \int_a^c f(x)dx + \int_c^{\tilde{c}} f(x)dx + \int_{\tilde{c}}^c f(x)dx + \int_c^b f(x)dx = \int_a^b f(x)dx.$$

Exemple 0.5. Dire si l'intégrale suivante

$$\int_{-\pi/2}^{\pi/2} \tan(x) dx$$

existe ou non.

On est tenté de calculer

$$\lim_{x \to \pi/2^{-}} \int_{-x}^{x} \tan(t)dt = \lim_{x \to \pi/2^{-}} \int_{-x}^{x} (-\ln(\cos t))'dt = \lim_{x \to \pi/2^{-}} \left(-\ln(\cos x) + \ln(\cos(-x))\right)$$

$$= \lim_{x \to \pi/2^{-}} \ln\left(\frac{\cos(-x)}{\cos x}\right) = \lim_{x \to \pi/2^{-}} \ln(1) = 0$$

mais

$$\lim_{x \to \pi/2^{-}} \int_{0}^{x} \tan(t)dt = \lim_{x \to \pi/2^{-}} \ln\left(\frac{\cos(0)}{\cos x}\right) = +\infty$$

$$et \lim_{x \to \pi/2^{-}} \int_{-x}^{0} \tan(t)dt = -\infty.$$

Donc $\int_{-\pi/2}^{\pi/2} \tan(x) dx$ diverge. En effet, $\lim_{\substack{x_1 \to -\pi/2^+ \\ x_2 \to \pi/2^-}} \int_{x_1}^{x_2} \tan(x) dx$ dépend de comment x_1 et x_2

tendent respectivement vers $-\pi/2$ et $\pi/2$. Prendre par exemple $\lim_{\epsilon \to 0^+} \int_{-\pi/2+\epsilon}^{\pi/2-\epsilon^2} \tan(x) dx = +\infty$ et $\lim_{\epsilon \to 0^+} \int_{-\pi/2+\epsilon^2}^{\pi/2-\epsilon} \tan(x) dx = -\infty$.

L'intégrale généralisée a les propriétés suivantes :

Lemme 0.6 (Propriétés de l'intégrale généralisée). Soit a < b dans \mathbb{R} , I de la forme [a, b[, [a, b] ou [a, b[, et des fonctions c.p.m. $f, g: I \to \mathbb{R}$. Alors

— $\int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$, $\forall \alpha, \beta \in \mathbb{R}$, l'intégrale généralisée à quuche étant convergente si les deux intégrales généralisées à droite convergent.

- $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$, $\forall c \in]a,b[$, l'intégrale généralisée à gauche étant convergente ssi chacune des deux intégrales à droite converge au cas où elle est généralisée.
- $si\ f(x) \leq g(x), \ \forall x \in I \ et \ \int_a^b f(x) dx \ et \ \int_a^b g(x) dx \ existent, \ alors \ \int_a^b f(x) dx \leq \int_a^b g(x) dx.$

Pour établir si une intégrale généralisée existe, le critère de comparaison suivant est souvent très utile.

Lemme 0.7 (Critère de comparaison). Soit $f, g : [a, b] \to \mathbb{R}$ deux fonctions c.p.m. et supposons qu'il existe $c \in [a, b]$ tel que

$$0 \le f(x) \le g(x) \quad \forall x \in [c, b[.$$

- $Si \int_a^b g(x) dx$ existe, alors $\int_a^b f(x) dx$ existe aussi;
- $si \int_a^b f(x) dx$ diverge, alors $\int_a^b g(x) dx$ diverge aussi.

Démonstration. Si $\int_a^b g(x)dx$ existe, alors $\int_c^b g(x)dx$ existe aussi. De plus, pour tout $x \in [c,b[$

$$F(x) = \int_{c}^{x} f(t)dt \le \int_{c}^{x} g(t)dt \le \int_{c}^{b} g(t)dt < +\infty$$

Puisque F est une fonction croissante et bornée supérieurement sur [c,b[on a que $\lim_{x\to b^-} F(x)$ existe. Ainsi $\int_c^b f(t)dt$ converge et

$$\int_a^b f(t)dt = \lim_{x \to b^-} \int_a^x f(t)dt = \int_a^c f(t)dt + \lim_{x \to b^-} \int_c^x f(t)dt$$

existe aussi. La seconde affirmation est la contraposée de la première.

Corollaire 0.8. Soit $f:[a,b[\to\mathbb{R}\ c.p.m.,\ non\ n\'egative\ et\ born\'ee.\ Alors\ \int_a^b f(x)dx\ existe.$

Démonstration. Il suit immédiatement du fait que $0 \le f(x) \le M < +\infty$, $\forall x \in [a, b[$ et $\int_a^b M dx$ converge.

Des versions analogues du Lemme 0.7 et Corollaire 0.8 existent pour $f, g:]a, b] \to \mathbb{R}$ ou bien $f, g:]a, b[\to \mathbb{R}$.

Exemple 0.9. Grâce au Corollaire 0.8, on montre facilement que $\int_0^1 \frac{(\sin \frac{1}{x})^2}{\sqrt{x}} dx$ converge.

En effet,
$$0 \le f(x) = \frac{(\sin \frac{1}{x})^2}{\sqrt{x}} \le \frac{1}{\sqrt{x}}$$
 et $\int_0^1 \frac{1}{\sqrt{x}} dx$ converge.

0.2 Intégrale généralisée absolument convergente

Définition 0.10. Soit I un intervalle de la forme [a,b[,]a,b] ou]a,b[et $f:I\to\mathbb{R}$ c.p.m. On dit que l'intégrale généralisée est absolument convergente si l'intégrale $\int_a^b |f(x)| dx$ existe.

Théorème 0.11. Si l'intégrale $\int_a^b f(x)dx$ est absolument convergente, alors elle existe.

Démonstration. Soit $f_+(x) = \max\{f(x), 0\}$ et $f_-(x) = -\min\{f(x), 0\}$. On a $f(x) = f_+(x) - f_-(x)$, $|f(x)| = f_+(x) + f_-(x)$,

$$0 \le f_+(x) \le |f(x)|, \quad 0 \le f_-(x) \le |f(x)|.$$

Donc, par le critère de comparaison, $\int_a^b f_+(x)dx$ et $\int_a^b f_-(x)dx$ existent, et $\int_a^b f(x)dx = \int_a^b (f_+(x) - f_-(x))dx$ existe aussi.

Corollaire 0.12. Soit $f: I \to \mathbb{R}$ c.p.m. et bornée, où I est un intervalle borné comme ci-dessus. Alors $\int_a^b f(x)dx$ converge absolument et par conséquent, existe.

Démonstration. On a $0 \le |f(x)| \le M < +\infty$, $\forall x \in I$. Comme $\int_a^b M dx$ converge, $\int_a^b |f(x)| dx$ converge aussi et $\int_a^b f(x) dx$ converge absolument.

Exercice 0.13. Montrer que les intégrales généralisées

$$\int_0^1 \sin\left(\frac{1}{x}\right) dx, \qquad \int_0^{2\pi} \frac{\sin x}{x^{3/2}} dx$$

convergent absolument.

Théorème 0.14. Une condition suffisante pour que $\int_a^b f(x)dx$ converge absolument avec $f:[a,b] \to \mathbb{R}$ c.p.m. est qu'il existe $\alpha \in]-\infty,1[$ tel que

$$\lim_{x \to b^{-}} (b - x)^{\alpha} f(x) = l \in \mathbb{R}.$$

 $Si \ \exists \alpha \geq 1 \ tel \ que \ \lim_{x \to b^{-}} (b-x)^{\alpha} f(x) = l \neq 0, \ alors \ \int_{a}^{b} f(x) dx \ diverge.$

Démonstration. Soit $\alpha \in]-\infty, 1[$ tel que $\lim_{x\to b^-}(b-x)^{\alpha}f(x)=l\in\mathbb{R}.$ Alors, pour tout $\epsilon>0$ il existe $\delta_{\epsilon}\in]0, b-a[$ tel que

$$\forall x \in [b - \delta_{\epsilon}, b[, \quad (l - \epsilon)(b - x)^{-\alpha} < f(x) < (l + \epsilon)(b - x)^{-\alpha}.$$

Si $\alpha < 1$, alors $\int_a^b (b-x)^{-\alpha} dx$ converge et, puisque $0 \le |f(x)| < (|l| + \epsilon)(b-x)^{-\alpha}$ pour $x \in [b-\delta_\epsilon, b[$, on en déduit grâce au Lemme 0.7 que $\int_a^b |f(x)| dx$ converge, donc $\int_a^b f(x) dx$ converge absolument.

Si, par contre, $\alpha \geq 1$ et $l \neq 0$, en prenant $\epsilon \in]0, |l|[$ on a que $\int_{b-\delta_{\epsilon}}^{b} (b-x)^{-\alpha} dx$ diverge, f est non nul et de signe constant sur $[b-\delta_{\epsilon}, b[$ et $|f(x)| > (|l|-\epsilon)(b-x)^{-\alpha}, \ \forall x \in [b-\delta_{\epsilon}, b[$. Grâce au Lemme 0.7 on déduit que $\int_{b-\delta_{\epsilon}}^{b} |f(x)| dx$ diverge, et $\int_{b-\delta_{e}psilon}^{b} f(x) dx$ et $\int_{a}^{b} f(x) dx$ divergent aussi.

Remarque 0.15. On a présenté le Théorème 0.14 pour un intervalle I de la forme [a,b[. Il y a deux conditions suffisantes analogues en a pour I de la forme]a,b[. Si I est de la forme]a,b[, on choisit $c \in]a,b[$ et on étudie séparément l'intégrale généralisée sur [c,b[et celle $sur\ [a,c]$.

Exercice 0.16. Étudier, en utilisant le critère de puissance du Théorème 0.14 si l'intégrale généralisée $\int_0^{\pi/2} \frac{1}{\sqrt{\tan x}} dx$ converge ou non.

0.3 Intégrale généralisée sur un intervalle non borné

Soit I de la forme $[a, \infty[,]-\infty, a],]a, \infty[,]-\infty, a[$ ou $]-\infty, \infty[,$ et soit $f:I\to\mathbb{R}$ c.p.m. On définit l'intégrale généralisée de f sur I de façon similaire à ce qu'on a fait pour I borné.

Définition 0.17. Si $I = [a, \infty[$ et $\lim_{x\to\infty} \int_a^x f(t)dt$ existe, on dit que l'intégrale généralisée $\int_a^\infty f(x)dx$ existe et on pose

$$\int_{a}^{\infty} f(t)dt = \lim_{x \to \infty} F(x).$$

On dit que $\int_a^\infty f(x)dx$ est absolument convergente si $\int_a^\infty |f(x)|dx$ existe.

Si $I =]-\infty, a]$ et $\lim_{x \to -\infty} \int_x^a f(t)dt$ existe, on dit que l'intégrale généralisée $\int_{-\infty}^a f(x)dx$ existe et on pose

$$\int_{-\infty}^a f(t)dt = \lim_{x \to -\infty} \int_x^a f(t)dt.$$

On dit que $\int_{-\infty}^{a} f(x)dx$ est absolument convergente si $\int_{\infty}^{a} |f(x)|dx$ existe.

Soit I de la forme $]a, \infty[$, $]-\infty$, a[ou \mathbb{R} , et soit $c \in I$. On dit que l'intégrale généralisée $\int_I f(t)dt$ existe si les intégrales généralisées de f sur $I_1 = I \cap]-\infty$, c] et sur $I_2 = I \cap [c, \infty[$ existent les deux, auquel cas on pose

$$\int_{I} f(t)dt = \int_{I_1} f(t)dt + \int_{I_2} f(t)dt$$

(ceci ne dépend pas du choix de c dans I). On dit que $\int_I f(x)dx$ est absolument convergente si $\int_I |f(x)|dx$ converge.

Si une intégrale généralisée existe, on dit aussi qu'elle converge, sinon on dit qu'elle diverge.

Exemple 0.18. On étudie l'existence de l'intégrale généralisée

$$\int_{1}^{\infty} \frac{1}{x^{\alpha}} dx$$

pour $\alpha \in \mathbb{R}$.

On a

$$F(x) = \int_1^x \frac{1}{t^{\alpha}} dt = \frac{t^{-\alpha+1}}{-\alpha+1} \Big|_1^x = \frac{x^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha}, \qquad \alpha \neq 1$$

$$F(x) = \ln x \qquad \alpha = 1$$

Donc

$$\lim_{x \to \infty} F(x) = \begin{cases} \frac{1}{\alpha - 1} < \infty, & \alpha > 1 \\ +\infty, & \alpha \in]-\infty, 1 \end{cases}$$

et l'intégrale généralisée $\int_1^\infty \frac{1}{x^\alpha} dx$ existe pour tout $\alpha > 1$.

Il est intéressant de comparer ce dernier exemple avec l'exemple 0.2. On voit que l'intégrale généralisée $\int_0^1 \frac{1}{x^{\alpha}} dx$ existe pour tout $\alpha < 1$ alors que l'intégrale généralisée $\int_1^\infty \frac{1}{x^{\alpha}} dx$ existe pour tout $\alpha > 1$.

L'intégrale généralisée sur un intervalle non borné a les mêmes propriétés que celui sur un intervalle borné. En particulier, étant donné un un intervalle I non borné et des fonctions c.p.m. $f, g: I \to \mathbb{R}$.

- linéarité : $\int_I (\alpha f(x) + \beta g(x)) dx = \alpha \int_I f(x) dx + \beta \int_I g(x) dx$, $\forall \alpha, \beta \in \mathbb{R}$, l'intégrale généralisée à gauche étant convergente si les deux intégrales généralisées à droite convergent.
- $\int_I f(x)dx = \int_{I\cap]-\infty,c]} f(x)dx + \int_{I\cap[c,\infty[} f(x)dx$, $\forall c \in I$, l'intégrale généralisée à gauche étant convergente ssi chacune des deux intégrales à droite converge au cas où elle est généralisée.
- relation d'ordre : si $f(x) \leq g(x) \ \forall x \in I$ et $\int_I f(x)dx$ et $\int_I g(x)dx$ existent, alors $\int_I f(x)dx \leq \int_I g(x)dx$.

Les critères de comparaison énoncés au Lemme 0.7 et au Théorème 0.14 se généralisent aussi au cas d'un intervalle non borné.

Lemme 0.19 (Critères de comparaison – intervalles non bornés).

— Soit $f, g: [a, +\infty[\to \mathbb{R} \ c.p.m. \ et \ supposons \ qu'il \ existe \ c \in [a, \infty[\ tel \ que$

$$0 \le f(x) \le g(x), \quad \forall x \in [c, +\infty[.$$

Si $\int_a^\infty g(x)dx$ existe alors $\int_a^\infty f(x)dx$ existe. Si $\int_a^\infty f(x)dx$ diverge alors $\int_a^\infty g(x)dx$ diverge.

— Soit $f: [a, +\infty[\to \mathbb{R} \ c.p.m.]$

$$Si \ \exists \beta > 1 : \lim_{x \to \infty} x^{\beta} f(x) = l \in \mathbb{R} \quad alors \ \int_{a}^{\infty} f(x) dx \ converge \ absolument.$$
 $Si \ \exists \beta \in]-\infty, 1] : \lim_{x \to \infty} x^{\beta} f(x) = l \neq 0 \quad alors \ \int_{a}^{\infty} f(x) dx \ diverge.$

Remarque 0.20. Attention, comparez les conditions sur β avec les conditions du Théorème 0.14 sur α ! Il y a des résultats analogues pour I de la forme $]-\infty,a]$. Si I est de la forme $]a,\infty[,]-\infty,a[$ ou $]-\infty,\infty[,$ on choisit $c\in I$ et on étudie séparément l'intégrale généralisée sur $I\cap[c,+\infty[$ et celle sur $I\cap]-\infty,c]$.

Exercice 0.21. Étudier à l'aide du Lemme 0.19 l'existence des intégrales suivantes

$$\int_{1}^{\infty} x^{\alpha} e^{-x} dx, \ \alpha \in \mathbb{R}, \qquad \int_{1}^{\infty} \frac{1}{\sqrt{x}} \ln \left(1 + \frac{1}{x} \right) dx.$$

On remarque qu'une intégrale généralisée peut être convergente mais pas absolument convergente, comme l'exemple suivant le montre.

Exemple 0.22. On montre dans cet exemple que l'intégrale généralisée $\int_{\pi}^{\infty} \frac{\sin x}{x} dx$ est convergente mais pas absolument convergente.

Soit
$$F(x) = \int_{\pi}^{x} \frac{\sin t}{t} dt$$
. On a

$$F(x) = -\int_{\pi}^{x} \frac{\cos t}{t^2} dt + \frac{-\cos t}{t} \Big|_{\pi}^{x}$$
$$= -\int_{\pi}^{x} \frac{\cos t}{t^2} dt + \frac{\cos \pi}{\pi} - \frac{\cos x}{x}$$

 $Donc \lim_{x \to \infty} F(x) = \lim_{x \to \infty} \underbrace{-\int_{\pi}^{x} \frac{\cos t}{t^{2}} dt}_{absolument \ convergent \ donc \ la \ limite \ existe} - \underbrace{1}_{\pi} - \underbrace{\lim_{x \to \infty} \frac{\cos x}{x}}_{=0} \quad existe.$

En revanche, $\int_{\pi}^{\infty} \frac{\sin x}{x} dx$ ne converge pas absolument. En effet, pour tout $k \in \mathbb{N}$, k > 1

$$F(k\pi) = \int_{\pi}^{k\pi} \frac{|\sin x|}{x} dx$$

$$= \sum_{j=1}^{k-1} \int_{j\pi}^{(j+1)\pi} \frac{|\sin x|}{x} dx$$

$$\geq \sum_{j=1}^{k-1} \frac{1}{(j+1)\pi} \underbrace{\int_{j\pi}^{(j+1)\pi} |\sin x| dx}_{=2}$$

$$= \sum_{j=1}^{k-1} \frac{2}{(j+1)\pi} \xrightarrow{k \to \infty} +\infty.$$

Remarque 0.23. Si $\int_a^\infty f(x)dx$ converge et $\lim_{x\to\infty} f(x)$ existe, alors nécessairement $\lim_{x\to\infty} f(x) = 0$ (cf le critère du Lemme 0.19 avec $\beta = 0$). En revanche le fait que $\int_a^\infty f(x)dx$ converge absolument n'implique pas que f est bornée.

Par exemple, considérons la fonction $\phi(x) = \max\{1 - |x|, 0\}$ et la fonction $f : [0, \infty[\to \mathbb{R}_+ \ définie\ par$

$$f(x) = \sum_{n=1}^{\infty} n\phi \left(n^{3}(x-n)\right)$$

qui est continue mais pas bornée sur $[0, \infty[$. Puisque

$$\int_0^\infty n\phi\left(n^3(x-n)\right)dx = n^{-2} \int_{-n^4}^\infty \phi(y)dy = n^{-2} \int_{-1}^1 \phi(y)dy = n^{-2},$$

on a que pour tout $x \in [0, \infty[$

$$F(x) = \int_0^x |f(t)| dx \le \int_0^{\lceil x \rceil} \le \sum_{n=1}^{\lceil x \rceil} \int_0^\infty n\phi \left(n^3(x-n) \right) dx \le \sum_{n=1}^\infty \frac{1}{n^2} < \infty$$

Donc, F est non décroissante est bornée supérieurement et la limite $\lim_{x\to\infty} F(x)$ existe. Il en suit que l'intégrale généralisée $\int_0^\infty f(x)dx$ converge absolument, même si $\limsup_{x\to\infty} f(x) = +\infty$.

Remarque 0.24. Soit un intervalle I qui n'est pas simultanément borné fermé, et une fonction c.p.m. $f: I \to [0, \infty[$. Comme $f \ge 0$, la limite (ou chacune des deux limites) intervenant dans la définition d'intégrale généralisée tend vers un nombre réel ≥ 0 ou vers $+\infty$. On peut donc dans ce cas écrire $\int_I f(x)dx < \infty$ si l'intégrale généralisée converge et $\int_I f(x)dx = \infty = +\infty$ si elle diverge.

0.4 Intégrales et séries numériques

L'intégrale généralisée peut être utilisé aussi pour étudier la convergence d'une série numériques $\sum_{n=1}^{\infty} a_n$. L'idée est de construit la fonction c.p.m. $f:[1,\infty[\to\mathbb{R}$ telle que $f(x)=a_n$ pour $x\in[n,n+1[$ ou bien la fonction c.p.m. $\tilde{f}:[1,\infty[\to\mathbb{R}]$, telle que $\tilde{f}(x)=a_n$, pour $x\in[n-1,n[$. Alors, pour tout $N\geq 0$,

$$\sum_{n=1}^{N} a_n = \sum_{n=1}^{N} \int_{n}^{n+1} a_n dx = \int_{1}^{N+1} f(x) dx = \int_{0}^{N} \tilde{f}(x) dx$$

et on peut utiliser les critères de comparaison pour les intégrales généralisées afin d'établir la convergence de la série.

Exemple 0.25. On veut étudier la convergence de la série numérique $S = \sum_{n=1}^{\infty} \frac{1}{n^2}$ pour $N \to \infty$.

Soit $f: [1, \infty[\to \mathbb{R} \ c.p.m. \ définie \ par \ f(x) = 1/n^2 \ si \ x \in [n, n+1[, \ n \in \mathbb{N}^* \ de \ telle sorte \ que \ S_N = \sum_{n=1}^N \frac{1}{n^2} = \int_1^{N+1} f(x) dx.$ On vérifie facilement que $0 \le f(x) \le 1/(x-1)^2$ sur $[2, \infty[$ et $\int_2^\infty \frac{1}{(x-1)^2} dx = \int_1^\infty \frac{1}{x^2} dx$ converge, d'où on déduit que $\int_1^\infty f(x) dx$ converge et

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \lim_{N \to \infty} \sum_{n=1}^{N} \frac{1}{n^2} = \lim_{N \to \infty} \int_{1}^{N+1} f(x) dx < +\infty.$$

On peut encore utiliser les propriétés des intégrales généralisées pour donner des bornes par dessous et par dessus à la série S. En effet, on a $\frac{1}{x^2} \leq f(x) \leq \frac{1}{(x-1)^2}$ pour tout $x \in [1, \infty[$

 $du \ coup$

$$S = \sum_{n=1}^{\infty} \frac{1}{n^2} = \int_1^{\infty} f(x)dx \le \int_1^2 f(x)dx + \int_2^{\infty} \frac{1}{(x-1)^2} dx = 2,$$

$$S = \sum_{n=1}^{\infty} \frac{1}{n^2} = \int_1^{\infty} f(x)dx \ge \int_1^{\infty} \frac{1}{x^2} dx = 1,$$

On conclut donc $1 \le \sum_{n=1}^{\infty} \frac{1}{n^2} \le 2$.

Exercice 0.26. Étudier si la série $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ converge ou non.