Solved Examples (Diffraction)

Ex. 1 Calculate the angle at which the first dark band and the next bright band are formed in the Fraunhofer diffraction pattern of a slit of width 0.2 mm. Given $\lambda = 5890 \text{ A}^{\circ}$

Soln:

Given data :
$$a = 0.2 \text{ mm}$$

 $\lambda = 5890 \text{ A}^{\circ}$

Formulae:

A sin
$$\Theta = n\lambda$$
 and A sin $\Theta' = i$)

For first dark band $n = 1$

Sin $\Theta = i$

θ=

Or $\Theta = 10.12'$

ii) For next bright band,

A sin $\Theta' =$ Or, sin $\Theta' =$ = $\Theta' =$ Or $\Theta' =$

Ex. 2 How many lines per centimeter are there in a plane transmission grating which gives 1st order of light of wavelength 6000 A° at angle of diffraction 30°?

Soln:

Given data :
$$\Theta = 30^{\circ}$$
, m = 1, $\lambda = 6000 \times 10^{-8}$ cm

Formulae:

$$(a + b) \sin \theta = m\lambda$$
, or $(a + b) =$

Grating element (a + b) =

Or
$$(a + b) = 12 \times 10^{-5}$$
 cm

So, the number of lines per cm

N =

N = 8333 lines/cm

- **Ex. 3** Monochromatic light of wavelength 6500 A^o falls normally on a grating 2 cm wide. The first order spectrum is produced at an angle 15^o from the normal. What is the total numbers of lines on the grating?
- Soln:

Given data : m = 1,
$$\lambda$$
 = 6500 × 10 $^{\circ}$ cm, width of grating = 2 cm

Formulae:

$$(a + b) \sin \theta = m\lambda$$

So, grating element (a + b) =

Or,
$$(a + b) = 2.5115 \times 10^{-4}$$

Hence, Number of lines per cm

Total number of lines on grating is 3981 × 2

$$N = 7968$$

Ex. 4 What is the longest wavelength that can be observed in the fourth order for a transmission grating having 5000 lines per cm?

Soln:

Given : m = 4, (a + b) = 1/5000 cm.

To find (λ) max = ?

Formula : $(a + b)\sin \Theta = m\lambda$

For the longest wavelength, $\sin \Theta = 1$

Hence,

Hence, The longest wavelength = 5000 Ao

Ex. 5 A slit of width 'a' is illuminated by white light. For what value of 'a' will the first minimum for red light fall at an angle 30°? Wavelength of red light is 6500 A°.

Soln:

Given : $\Theta = 30^{\circ}$, m = 1, $\lambda = 6500 \times 10^{-8}$ cm

To find : a = ?

Formula: For minima in single slit diffraction pattern.

A $\sin \Theta = m\lambda$

For first minimum, m = 1

Hence, a =

Hence, $a = 1.3 \times 10^4 \times 10^{-8} \text{ cm} = 1.3 \times 10^{-4} \text{ cm}$.

Ex. 6 The wavelength of visible spectrum are approximately 4000 A° to 7000 A° find the angular breadth of the first order visible spectrum produced by a plane grating having 6000 lines per cm, when light is incident normally on the grating.

Soln:

Given: $\lambda_1 = 4000 \text{ A}^0 = 4000 \times 10^{-10} \text{ m}$, $\lambda_2 = 7000 \text{ A}^0 = 7000 \times 10^{-10} \text{ m}$,

A + b =

Formula: $(a + b) \sin \theta = m\lambda$

Hence, for λ , we have

sinΘ₁ =

Hence, Θ_1 =

for $\lambda 2$, we have $\sin \Theta_2 =$

Hence, Θ_2 =

Angular breadth of the first order visible spectrum

=
$$\Theta$$
2 - Θ 1 =

Ex. 7 A plane transmission grating has 5000 lines/cm. Find out the highest order of spectrum observed if incident light has $\lambda = 6000 \text{ A}^{\circ}$

Soln:

Given: (a + b) =

Formula: $(a + b) \sin\theta = m\lambda$, $\lambda = 6000 \text{ A}^0 = 6000 \times 10^{-10} \text{ m}$

Maximum value of $sin\theta = 1$

Hence (m)_{max}

Hence, Third order is the highest order visible.

Ex. 8 Find the half angular width of the central maximum in the Fraunhofer diffraction pattern of a slit of width 12×10^{-5} cm, when illuminated by light of wavelength 6000 A°.

Soln:

Given : $a = 12 \times 10^{-5}$ cm, $\lambda = 6000$ A^o = 6000×10^{-8} cm

Formula : Half angular width of the first maxima is the angle made by the first minima with the normal to the slit.

Hence, $a \sin \Theta = m\lambda$ m = 1 $\sin \Theta =$

θ

Ex. 9 A single slit is illuminated by light composed of two wavelength λ_1 & λ_2 . One observes that due to Fraunhofer diffraction the first minima obtained for λ_1 coincides with the second diffraction minima of λ_2 . What is the relation between λ_1 and λ_2 .

Soln:

We have the angular position of minima is,

a
$$sin\Theta = n\lambda$$

For λ_1 , we can write,

$$a \sin \Theta_1 = 1 \times \lambda_1 \qquad \dots (1)$$

For λ_2 ,

$$a \sin \Theta_2 = 2 \times \lambda_2$$
(2)

Given that, $\Theta_1 = \Theta_2$

By comparing, Equation (1) and (2), we can write,

 $\lambda_1 = 2 \lambda_2$ This is the required relation