MI-PB-9

Eliptické křivky – projektivní rovina, eliptické křivky nad reálnými čísly a Galoisovými tělesy, MOV algoritmus.

Eliptická křivka nad ${\mathbb R}$

Množina $E=\{(x,y):y^2=x^3+ax+b\}\cup\{O\}$, kde $a,b\in\mathbb{R}$, O je **bod v nekonečnu** a platí, že $4a^3+27b^2\neq 0$

Sčítání bodů na E: operace \oplus , kde $P \oplus Q, P = (p_1, p_2), Q = (q_1, q_2)$ je definovaná geometricky následovně:

• Pokud $p_1 \neq q_1$: $P \oplus Q$ je bod, který vznikne tak, že spojím přímkou P a Q. Přímka prochází ještě jedním bodem křivky -- výsledný bod $P \oplus Q$ je jeho zrcadlovým obrazem podle osy X

- ullet Pokud $\overline{p_1}=q_1$ a P
 eq Q: $P\oplus Q=O$
- ullet Pokud $p_1=q_1$ a P=Q a $p_1=0$: $P\oplus Q=O$
- ullet Pokud $p_1=q_1$ a P=Q a $p_1
 eq 0$: $P\oplus Q$ je bod, který vznikne tak, že vedu tečnu na křivku v bodě P(=Q). Tečna křivku protne v dalším bodě, jehož zrcadlový obraz podle osy X je výsledkem

1 z 5

Matematická interpretace $P \oplus Q$:

- ullet Pokud P=O: $P\oplus Q=Q$
- ullet Pokud Q=O: $P\oplus Q=P$
- ullet Pokud $P=(p_1,p_2), Q=(q_1,q_2), p_1=q_1, p_2=-q_2$: $P\oplus Q=O$
- ullet Pokud $P=(p_1,p_2), Q=(q_1,q_2):P\oplus Q=(r_1,r_2),$ kde

кае

$$egin{aligned} r_1 &= \lambda^2 - p_1 - q_1 \ r_2 &= \lambda (p_1 - r_1) - p_2 \end{aligned}$$

kde

$$\lambda = egin{cases} rac{q_2-p_2}{q_1-p_1} & P
eq Q \ rac{3p_1^2+a}{2p_2} & P = Q \end{cases}$$

Projektivní rovina

$$\mathbb{P}_2(\mathbb{R}) = \{ \left[x
ight]_{\sim} \left|x \in \mathbb{R}^3 \setminus \{(0,0,0)\}
ight\}$$

- ullet Relace \sim : pro $x,y\in\mathbb{R}^3\setminus\{(0,0,0)\}$ je $x\sim y\Leftrightarrow\exists\lambda\in\mathbb{R}$ t.ž. $\lambda x=y$
- ullet Třída ekvivalence $[x]_\sim = \{\lambda x | \lambda
 eq 0\}$
- ullet Značení: $x=(x_1,x_2,x_3)$, potom se třída ekvivalence značí $[x]_\sim:=(x_1:x_2:x_3)$ a říká se jí projektivní bod

Čísla x_1, x_2, x_3 jsou **homogenní souřadnice** tohoto bodu

2 z 5 19.05.2020 16:37

Projektivní rovina obsahuje jak **afinní souřadnice** $(\in \mathbb{R}^2)$ zapsané jako $(x_1,x_2) o (x_1:x_2:1)$, tak body v nekonečnu: $(x_1,x_2) o (x_1:x_2:0)$

Homogenizace: Převod afinních souřadnic na homogenní:

• $(x_1,x_2) o (x_1:x_2:1)=(\lambda x_1,\lambda x_2,\lambda)$, což odpovídá nějakému (X,Y,Z) a výsledkem homogenizace je $(\frac{X}{Z}:\frac{Y}{Z}:1)$

Křivká má právě jeden bod v nekonečnu

- Bod "mimo rovinu", mohou se v něm např. protnout 2 rovnoběžky
- Např: přímka $p_1: x+y+1=0$ má předpis v homogenních souřadnicích $p_1: \frac{X}{Z}+\frac{Y}{Z}+1=0$, což po vynásobení Z dá $p_1: X+Y+Z=0$. Rovnoběžná přímka $p_2: X+Y+2Z=0$. Po vyřešení soustavy rovnic dostaneme $\{\alpha, -\alpha, 0 | \alpha \in \mathbb{R}\}$, což odpovídá třídě ekvivalence $P=(1:-1:0) \in \mathbb{P}_2(\mathbb{R})$, což je jejich průsečík, ale v "nekonečnu"

Eliptická křivka nad $GF(p^k)$

Eliptická křivka, jejíž body nejsou v \mathbb{R} , ale v $GF(p^n)$

Hledání bodů na $E(GF(p^k))$: zvolím $x\in E(GF(p^k))$, spočítám $t=x^3+ax+b$ a testuji, jestli t je čtverec v $GF(p^k)$

Diskrétní logaritmus na EC: máme $P,Q\in E(GF(p^k))$, hledáme takové n, že nP=Q Nejlepší algoritmus: $O(\sqrt{p^k})$

Řád EC: $\#E(GF(p^k)) \sim p^k + 1$

Hasseho věta: $p+1-2\sqrt{p} \leq \#E(GF(p)) \leq p+1+2\sqrt{p}$

Výpočet řádu E(GF(p)): obdoba Babystep-giantstep

- ullet P náhodný, Q=(2s+1)P, R=(p+1)P, kde $spprox \sqrt[4]{p}$
- ullet řada P,2P,...,sP
- ullet řada $R\pm Q, R\pm 2Q,...,R\pm tQ$, kde $tpprox rac{2\sqrt{p}}{2s+1}$
- najít i, j: R+iQ=jP
- m = p + 1 + i(2s + 1) j
- ullet Pokud m jediné, jde o řád
- Jinak zpět na krok 1

3 z 5 19.05.2020 16:37

MOV algoritmus

Množina m-torzních bodů: G grupa, množina všech prvků, jejichž řád je dělitelný m (značení: G[m]).

V multiplikativní notaci: $G[m] = \{g \in G | g^m = 0\}$.

V aditivní notaci: $G[m] = \{g \in G | mg = 0\}.$

G abelovská $\Rightarrow G[m]$ grupa

Platí: K těleso. E(K)[m] je izomorfní $\mathbb{Z}_m^+ imes \mathbb{Z}_m^+$.

Na E(K)[m] lze hledět jako na dvourozměrný vektorový prostor se skaláry v \mathbb{Z}_m^+ -- existují body P,Q t.ž. libovolný bod lze vyjádřit jako jejich lineární kombinaci $\alpha_1P+\alpha_2Q$

Weilovo párování:

$$P,Q\in E[m]$$
, tj. $mP=mQ=O$

 f_P, f_Q racionární funkce na E .

Weilovo párování P a Q:

$$e_m(P,Q) = rac{rac{f_P(Q \oplus S)}{f_P(S)}}{rac{f_Q(P \oplus S)}{f_Q(\ominus S)}}$$

 $\mathsf{kde}\: S \: \mathsf{je}\: \mathsf{bod}\: E\: (S \notin \{O, P, \ominus Q, P \ominus Q\})$

Weilovo párování definuje zobrazení

$$E(GF(p))[m] imes E(GF(p))[m] o GF(p)^{ imes}$$

Stupeň vnoření E vzhledem k m:

 $E=E(GF(p^l)), m\in \mathbb{N}$ t.ž. $\gcd(m,p)=1$ a m dělí $\#E(GF(p^l)).$

Stupeň vnoření E vzhledem k m je nejmenší k takové, že $E(GF(p^{lk}))[m]$ je izomorfní $\mathbb{Z}_m^+ \times \mathbb{Z}_m^+$ Ekvivalentní s nejmenším k takovým, že $p^{lk} \equiv 1 \pmod m$

MOV algoritmus:

Převede ECDLP v E(GF(p)) na PDL v $GF(p^k)^{\times}$ v polynomiálním čase. Lze rozšířit na převod ECDLP v $E(GF(p^l))$ na PDL v $GF(p^{lk})^{\times}$.

• Předpoklady:

$$E = E(GF(p)), P, Q \in E$$
,

P je prvočíselného řádu $l>\sqrt{p}+1$

Q je násobek P

k je stupeň vnoření E vzhledem k $\,l$

4 z 5 19.05.2020 16:37

Umíme PDL v $GF(p^k)$

- ullet Vypočti $N=\#E(GF(p^k))$ (pokud není k velké, lze polynomiálně)
- ullet Zvolit náhodně $T\in E(GF(p^k))$ tak, že T
 otin E(GF(p))
- ullet Vypočítat $T'=rac{N}{l}T$. Pokud T'=O, zvolit jiné T
- Vypočítat Weilova párování:

$$lpha = e_l(P,T') \in GF(p^k)^ imes \ eta = e_l(Q,T') \in GF(p^k)^ imes \ ext{(Ize efektivně } O(\log p^k))$$

- ullet Vyřešit PDL pro lpha,eta v $GF(p^k)^ imes$: nalézt n splňující $eta=lpha^n$
- ullet $\Rightarrow Q = nP$

Pokud k malé, pak je křivka **kryptograficky slabá** a vyplatí se to (v GF je PDL) efektivnější

ullet Pro bezpečnost chci $k>(\ln p)^2$

5 z 5