Instruction Register - 16 Bits Format

Instruction Format

Types of addressing formats

Zero-Address Instructions

$$X = (A + B) * (C + D)$$

ASSEMBLY LANGUAGE	REGISTER OPERATION
PUSH A	[TOS ← A]

PUSH D ADD

PUSH B

PUSH C

ADD

MUL

POP X

 $[TOS \leftarrow (C + D) * (A + B)]$ $[M [X] \leftarrow TOS]$

 $[TOS \leftarrow B]$

 $[TOS \leftarrow C]$

[TOS ← D]

 $[TOS \leftarrow (A + B)]$

 $[TOS \leftarrow (C + D)]$

One-Address Instructions: accumulator (AC) register for data manipulation.

$$X = (A + B) * (C + D)$$

ASSEMBLY LANGUAGE INSTRUCTION REGISTER OPERATION INSTRUCTION

LOAD A $[AC \leftarrow M [A]]$

ADD B $[AC \leftarrow A [C] + M [B]]$

STORE T $[M [T] \leftarrow AC]$

 $\mathsf{LOAD}\;\mathsf{C}\qquad \qquad [\mathsf{AC}\leftarrow\mathsf{M}\;[\mathsf{C}]]$

ADD D $[AC \leftarrow AC + M [D]]$

 $\mathsf{MULT} \qquad \qquad [\mathsf{AC} \leftarrow \mathsf{AC} * \mathsf{M} \ [\mathsf{T}]]$

STORE X $[M[X] \leftarrow AC]$

Two-Address Instructions

X = (A + B) * (C + D)

ASSEMBLY LANGUAGE INSTRUCTION REGISTER OPERATION INSTRUCTION

MOV R1, A $[R1 \leftarrow M [A]]$

ADD R1, B $[R1 \leftarrow R1 + M [B]]$

 $\mathsf{MOV}\ \mathsf{R2},\ \mathsf{C} \\ \mathsf{[R2} \leftarrow \mathsf{M}\ \mathsf{[C]]}$

ADD R2, D $[R2 \leftarrow R2 + M [D]]$

MUL R1, R2 $[R1 \leftarrow R1*R2]$

MOV X, R1 $[M[X] \leftarrow R1]$

Three-Address Instructions

$$X = (A + B) * (C + D)$$

ASSEMBLY LANGUAGE REGISTER OPERATION

ADD R1, A, B $[R1 \leftarrow M [A] + M [B]]$

ADD R2, C, D $[R2 \leftarrow M [C] + M [D]]$

 $MUL X, R1, R2 \qquad \qquad [M [X] \leftarrow R1 *R2]$

Instruction Codes

- A set of instructions that specify the operations, operands, and the sequence by which processing has to occur.
- An instruction code is a group of bits that tells the computer to perform a specific operation part.

Addressing Modes

- 1. Implied Mode
- 2. Immediate Mode
- 3. Register Mode
- 4. Register Indirect Mode
- 5. Auto increment or Auto decrement Mode
- 6. Direct Address Mode
- 7. Indirect Address Mode
- 8. Relative Address Mode
- 9. Indexed Addressing Mode
- 10. Base Register Addressing Mode

Con

Register	Number_	Register	Register
symbol	nbol of bits	name	Function
DR	16	Data register	Holds memory operands
AR	12	Address register	Holds address for memory
AC	16	Accumulator	Processor register
IR	16	Instruction register	Holds instruction code
PC	12	Program counter	Holds address of instruction
TR	16	Temporary register	Holds temporary data
INPR	8	Input register	Holds input character
OUTR		Output register	Holds output character

Instruction Register - 16 Bits Format

Instruction Format

Types of addressing formats

Zero-Address Instructions

$$X = (A + B) * (C + D)$$

ASSEMBLY LANGUAGE	REGISTER OPERATION
PUSH A	[TOS ← A]

FUSHA PUSH B

PUSH C

PUSH D ADD

ADD

MUL

POP X

 $[TOS \leftarrow (C + D)]$

 $[TOS \leftarrow (C + D) * (A + B)]$ $[M [X] \leftarrow TOS]$

 $[TOS \leftarrow B]$

 $[TOS \leftarrow C]$

[TOS ← D]

 $[TOS \leftarrow (A + B)]$

One-Address Instructions: accumulator (AC) register for data manipulation.

$$X = (A + B) * (C + D)$$

ASSEMBLY LANGUAGE INSTRUCTION REGISTER OPERATION INSTRUCTION

LOAD A $[AC \leftarrow M [A]]$

ADD B $[AC \leftarrow A [C] + M [B]]$

STORE T $[M [T] \leftarrow AC]$

 $\mathsf{LOAD}\;\mathsf{C}\qquad \qquad [\mathsf{AC}\leftarrow\mathsf{M}\;[\mathsf{C}]]$

ADD D $[AC \leftarrow AC + M [D]]$

 $\mathsf{MULT} \qquad \qquad [\mathsf{AC} \leftarrow \mathsf{AC} * \mathsf{M} \ [\mathsf{T}]]$

STORE X $[M[X] \leftarrow AC]$

Two-Address Instructions

X = (A + B) * (C + D)

ASSEMBLY LANGUAGE INSTRUCTION REGISTER OPERATION INSTRUCTION

MOV R1, A $[R1 \leftarrow M [A]]$

ADD R1, B $[R1 \leftarrow R1 + M [B]]$

 $\mathsf{MOV}\ \mathsf{R2},\ \mathsf{C} \\ \mathsf{[R2} \leftarrow \mathsf{M}\ \mathsf{[C]]}$

ADD R2, D $[R2 \leftarrow R2 + M [D]]$

MUL R1, R2 $[R1 \leftarrow R1*R2]$

MOV X, R1 $[M[X] \leftarrow R1]$

Three-Address Instructions

$$X = (A + B) * (C + D)$$

ASSEMBLY LANGUAGE REGISTER OPERATION

ADD R1, A, B $[R1 \leftarrow M [A] + M [B]]$

ADD R2, C, D $[R2 \leftarrow M [C] + M [D]]$

 $MUL X, R1, R2 \qquad \qquad [M [X] \leftarrow R1 *R2]$

Instruction Codes

- A set of instructions that specify the operations, operands, and the sequence by which processing has to occur.
- An instruction code is a group of bits that tells the computer to perform a specific operation part.

Addressing Modes

- 1. Implied Mode
- 2. Immediate Mode
- 3. Register Mode
- 4. Register Indirect Mode
- 5. Auto increment or Auto decrement Mode
- 6. Direct Address Mode
- 7. Indirect Address Mode
- 8. Relative Address Mode
- 9. Indexed Addressing Mode
- 10. Base Register Addressing Mode

Con

Register	Number_	Register	Register
symbol	of bits	name	Function
DR	16	Data register	Holds memory operands
AR	12	Address register	Holds address for memory
AC	16	Accumulator	Processor register
IR	16	Instruction register	Holds instruction code
PC	12	Program counter	Holds address of instruction
TR	16	Temporary register	Holds temporary data
INPR	8	Input register	Holds input character
OUTR	8	Output register	Holds output character

Three-Address Instructions

$$X = (A + B) * (C + D)$$

ASSEMBLY LANGUAGE REGISTER OPERATION

ADD R1, A, B $[R1 \leftarrow M [A] + M [B]]$

ADD R2, C, D $[R2 \leftarrow M [C] + M [D]]$

 $MUL X, R1, R2 \qquad \qquad [M [X] \leftarrow R1 *R2]$

Instruction Codes

- A set of instructions that specify the operations, operands, and the sequence by which processing has to occur.
- An instruction code is a group of bits that tells the computer to perform a specific operation part.

Addressing Modes

- 1. Implied Mode
- 2. Immediate Mode
- 3. Register Mode
- 4. Register Indirect Mode
- 5. Auto increment or Auto decrement Mode
- 6. Direct Address Mode
- 7. Indirect Address Mode
- 8. Relative Address Mode
- 9. Indexed Addressing Mode
- 10. Base Register Addressing Mode

Con

Register	Number_	Register	Register
symbol	of bits	name	Function
DR	16	Data register	Holds memory operands
AR	12	Address register	Holds address for memory
AC	16	Accumulator	Processor register
IR	16	Instruction register	Holds instruction code
PC	12	Program counter	Holds address of instruction
TR	16	Temporary register	Holds temporary data
INPR	8	Input register	Holds input character
OUTR	8	Output register	Holds output character

Basic Computer Organization and Design

Computer Instructions

- Memory Reference
- Register Reference
- Input/Output

Micro Programmed Control

- Control Memory
- Address Sequencing

Micro-programmed Control

Computer Instructions

- Memory Reference
- Register Reference
- Input/Output

Timing and Control, Instruction cycle.

- 1. Fetch instruction
- 2. Decode
- 3. Fetch operand
- 4. Execute

Micro Programmed Control

- Control Memory
- Address Sequencing

Design of Control Unit

Micro-programmed Control

