INTEGRALI DEFINITI

TEST

Sia y = f(x) una funzione continua e positiva nell'intervallo [a;b] e sia S l'area del trapezoide delimitato dall'asse x, dalle rette di equazione x = a e x = b e dal grafico della funzione. Dopo aver suddiviso l'intervallo [a;b] in n parti uguali indichiamo con s_n ed S_n le somme delle aree dei rettangoli aventi per base un segmento di suddivisione e per altezza rispettivamente il segmento associato al minimo e al massimo che la funzione assume in tale intervallo. Quale delle seguenti relazioni è errata?

A
$$S_n \leq S \leq S_n$$
.

$$\mathbf{B} \quad \lim_{n \to +\infty} s_n < \lim_{n \to +\infty} S_n \,.$$

c
$$S = \lim_{n \to +\infty} s_n = \int_a^b f(x) dx$$
.

$$\mathbf{D} \quad S = \lim_{n \to +\infty} S_n = \int_a^b f(x) dx.$$

$$\mathbf{E} \quad S = \int_a^b f(x) dx \, .$$

Quale delle seguenti uguaglianze è *errata*? (a < b < c)

$$\mathbf{B} \int_{a}^{b} [f(x) + g(x)] dx =$$

$$= \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx.$$

$$c \int_a^c f(x)dx = \int_a^b f(x)dx + \int_b^c f(x)dx .$$

D
$$\int_{a}^{b} [f(x) - g(x)] dx = \int_{b}^{a} [g(x) - f(x)] dx$$
.

1

- Quanto vale il valor medio della funzione $f(x) = 5x^4$ nell'intervallo [-1;1]?
 - **A** 2.
 - **B** 1.
 - C 5.
 - **D** 2,5.
 - **E** ().

Sia $F(x) = \int_0^x f(t)dt$. Quanto vale F(2)?

- $\mathbf{A} \ \frac{\pi}{2}.$
- **B** 4.
- \mathbf{c} 4π .
- D 2π .
- **E** 2.
- La funzione $F(x) = \ln(1+e^x)$ è una primitiva della funzione $f(x) = \frac{e^x}{1+e^x}$.

Quanto vale $\int_0^1 f(x) dx$?

- $\ln (e+1) \ln 2$.
- **B** $\ln(e+1) + \ln 2$.
- **c** $\frac{e}{1+e} \frac{1}{2}$.
- **D** $\frac{1}{2} \frac{e}{1+e}$.
- **E** 0.

La funzione $F(x) = \ln(1 + \sin x)$ è una primitiva della funzione $f(x) = \frac{\cos x}{1 + \sin x}$.

Quanto vale $\int_0^{\frac{\pi}{2}} f(x) dx$?

- A ln 2.
- $B \ln 2$.
- **c** 0.
- $D = \frac{1}{2}$
- $\operatorname{E} \ln \frac{1}{2}$.
- Il limite $\lim_{x\to 0^+} \frac{\int_0^{x^2} e^{t^2} dt}{x^6}$ vale:
 - **A** 1.
 - **B** $\frac{1}{3}$.
 - **C** +∞.
 - **D** *e*.
 - **E** 0.
- Quanto vale $\int_0^1 \frac{2x}{1+x^2} dx?$
 - **A** ln1.
 - $B \ln 2$.
 - **c** 1.
 - **D** 2.
 - **E** 0.