Estadística para Economístas Clase 3 Teoría

Docente

Universidad Privada del Norte

26 de febrero de 2023

Contenido

Introducción

Logro de la Sesion

Probabilidades

Probabilidad
Eventos compuestos
Regla de adicionar
Regla de multiplicacion
Permutaciones y Combinaciones
Asignación de Probabilidades

Introducción

Introducción

Introducción

- Casas de apuestas: En un encuentro de futbol entre el Arsenal y el Fullham, las casas de apuestas ofrecen una probabilidad (odds) de 2/9 en conra de que el Arsenal gane (local)
 - ► El enunciado anterir significa que si tu apuestas un dolar 1 \$ sobre una victoria del Arsena, las casas de apuestas te pagaran 1 \$ mas 0.22 centavos

 Por tanto, las casas de apuestas tienen un odds ratio en contra de que ocurra el evento (victoria de arsenal) definido como:

$$\frac{(1-\rho)}{\rho} = \frac{2}{9}$$

La probabilidad implicita de la victoria del local (Arsenal) que las casas de apuestas usan es:

$$\rho = \frac{9}{11} = 0.818$$

 las casas de apuestas asumen una victoria del Arsenal en 82% de probabilidad

Logro de la Sesion

Analizar y comprender las probabilidades, conteo, combinaciones y permutaciones

Para logar la comprension realizaremos ejemplos númericos y ejercicios aplicados usando python

Probabilidad

- Considere las siguientes preguntas:
 - Cuál es la probabilidad de que aparezcan caras en el lanzamiento de una moneda?
 - Cuál es la probabilidad de que un conductor tenga un accidente en un año de conducción?
- Probabilidad: medida númerica de la posibilidad de que ocurra un evento.

Probabilidad

- Probabilidad: medida númerica de la posibilidad de que ocurra un evento.
- La probabilidad sera:
 - La proporción de obtener caras dado el lanzamiento infinito de una moneda (Pr(C))
- ▶ Podemos definir la probabilidad del evento Cara(C):

$$Pr(C) = \frac{Numero - ocurrencia - C}{Numero - lanzamiento}$$

Probabilidad

- Experimento: proceso que genera resultados.
- Un experimiento puede ser:
 - El lanzamiento de una moneda
 - Lanzamiento de un dado
 - Jugar un partido de futbol
- El espacio muestral (Ω) define como el conjunto de todos los resultados experimentales
 - ▶ El lanzamiento de una moneda

$$\Omega = [C, T]$$

Lanzamiento de un dado

$$\Omega = [1, 2, 3, 4, 5, 6]$$

Jugar un partido de futbol
 Ω = [Ganar, Empatar, Perder]

- ► Figura 1. Obtener una carta de un total de 52 (paquete de cartas)
- El Ω sera 52
- La *probabilidad* y Ω estaran relacionadas:
- La probabilidad de sacar el as de espadas de un mazo de cartas es de uno en 52.

Figura 1

Probabilidad

Propiedades:

 La probabilidad debe encontrarse entre los valores de 0 a 1

$$0 \le Pr(A) \le 1$$

 La suma de probabilidad sera asociado con totos los productos del espacio muestral

$$\sum P_i = 1$$

 El complemento de un evento definido como todo el espacio muestral diferente del evento

$$Pr(not - A) = 1 - Pr(A)$$

Figura 1

Eventos compuestos

experimentos

Figura 2: lanzamiento de dado (Ω)

- El evento compuesto definido como el resultado de dos
 - El lanzamiento de un dado y tener como resultado un straight en el juego de poker

Figura 3: baraja de cartas (espada y reina) (Ω)

	Α	K	Q	J	10	9	8	7	6	5	4	3	2
٨	•	•	•	•	•	•	•	•	•	•	•	•	•
٧	•	•	•	•	•	•	•	•	•	•	•	•	•
٠	•	•	•	•	•	•	•	•	•	•	•	•	•
*	•	•	•	•	•	•	•	•	•	•	•	•	

Eventos compuestos: regla de adicionar

Regla de Adicionar: asociado con la letra o. Cuando se desea la probabilidad de un producto o cualquier otro.

$$Pr(A \circ B) = Pr(A) + Pr(B)$$

▶ ¿Cuál es la probabilidad de obtener 5 o 6 del alnzamiento de un dado:

$$Pr(5 \ o \ 6) = Pr(5) + Pr(6)$$
$$= \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

1	2	3	4	5	6
•	•	•	•	•	•

Eventos compuestos: regla de adicionar

¿Cuál es la probabilidad de obtener reina(queen) o espada(spade) en una baraja de cartas (solo una baraja)?:

$$Pr(Q o S) = Pr(Q) + Pr(S)$$
$$= \frac{4}{52} + \frac{13}{52} = \frac{17}{52}$$

	Α	K	Q	J	10	9	8	7	6	5	4	3	2
٨	•	•	•	•	•	•	•	•	•	•	•	•	•
٧	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•
*	•	•	•	•	•	•	•	•	•	•	•	•	•

- ightharpoonup Sin embargo, el espacio muestral Ω esxamindado , no para ser una respuesta correcta, dado su resultado donde 16/52.
- ightharpoonup El problema es el conteo doble de un punto dentro del Ω , por o cual, se debe diferenciar

$$Pr(Q \circ S) = Pr(Q) + Pr(S) - Pr(Q \land S)$$
$$= \frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{16}{52}$$

Eventos compuestos: regla de adicionar

Regla de Adicionar: asociado con la letra o. Cuando se desea la probabilidad de un producto o cualquier otro. La regla general sera:

$$Pr(A \circ B) = Pr(A) + Pr(B) - Pr(A \wedge B)$$

Eventos compuestos: regla de multiplicacion

Regla de Multiplicacion: asociado con la letra y. Cuando se desea la probabilidad combinada de un producto y cualquier otro evento.

$$Pr(A \wedge B) = Pr(A) \times Pr(B)$$

- Considere una madre con dos nilños: ¿Cuál es la probabilidad de ellos sean ambos niños?:
 - Asumiendo el nacimiento de los niños es igual

$$Pr(Ni\tilde{n}o) = Pr(Ni\tilde{n}a) = 0.5$$

 $Pr(B1) = Pr(B2) = 0.5$

- ▶ Niño: B1 y Niña: B2
- ► Entonces la pregunta sera:

$$Pr(B1 \land B2) = Pr(B1) \times Pr(B2)$$

= $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} = 0.25$

Permutaciones y Combinaciones

- Muchas veces tener un diagrama para todos los posibles eventos puede ser tedioso, por tanto, se necesita una regla que permita considerar mitigar el error.
- ¿Cuantas maneras posibles puede tener una familia de 5 hijos, 3 niñas y 2 niños ?
- ▶ Combinaciones: N cantidad total hijos, n de niñas (orden) por tanto, el simbolo C_n^N denota una combinacion:

$$C_n^N = \frac{N!}{n!(N-n)!}$$

$$C_3^5 = \frac{5!}{3!2!} = 10$$

Permutaciones:

$$P_n^N = \frac{N!}{(N-n)!}$$

$$P_n^N = \frac{5!}{2!} = 60$$

N! es denotado como n factorial

Asignación de Probabilidades

- Existen tres métodos usados para asignar probabilidades:
- ▶ El mètodo mas usado es conocido como Frecuencia relativa
- Indistinta del método se debe tener en cuenta algunos requerimientos básicos:
 - La probabilidad debe estar entre el valor de 1 y 0
 - La suma de probabilidades debe ser igual a 1

Asignación de Probabilidades

Ejemplo 1: considere un estudio sobre los tiempos de espera en el departamento de rayos x de un hospital pequeño.

Durante 20 días sucesivos un empleado registra el número de personas que están esperando el servicio a las $9{:}00$ a.m. los resultados son

N personas	N de dias
que esperan	resultados
0	2
1	5
2	6
3	4
4	3
Total	20

En estos datos aparece que 2 de los 20 días, había cero pacientes esperando el servicio, 5 días había un paciente en espera y así sucesivamente.

Asignación de Probabilidades

Solucion: el método de frecuencia se resolvera de la siguiente manera en la tercera columna.

N personas	N de dias	Frecuencia
que esperan	resultados	
0	2	$\frac{2}{20} = 0.10$
1	5	$\frac{5}{20} = 0.25$
2	6	$\frac{6}{20} = 0.30$
3	4	$\frac{4}{20} = 0.20$
4	3	$\frac{3}{20} = 0.15$
Total	20	1

- ▶ En el primer caso, la probabilidad que se le asignará al resultado experimental de cero pacientes que esperan el servicio, sera 0.10
- ▶ En el primer caso, la probabilidad que se le asignará al resultado experimental de un paciente que esperan el servicio, sera 0.25