Elementary definitions in Graph Theory

Pramesh Kumar

IIT Delhi

December 31, 2023

Outline

Introduction

Examples

Definitions

Network representation

Introduction 2

Introduction

Definition (Network). A network is interconnection among set of items.

Introduction 3

Outline

Introduction

Examples

Definitions

Network representation

Examples 4

Internet network

Figure: Source: https://www.discovery.org/a/25/

Social network

Figure: Source: Medium

Highway network

Figure: Twin cities highway network (Source:CEGE5214)

Examples 7

Transit network

Figure: South Minneapolis transit network

Airline network

Figure: Source: Sarah Randolph on ResearchGate

Examples

Outline

Introduction

Examples

Definitions

Network representation

Undirected graph

Definition (Undirected graph/network). An undirected graph G is a pair (N,A), where N is the set of nodes and A is the set of links whose elements are unordered pair of distinct nodes.

Example(s).
$$N = \{1, 2, 3, 4, 5\},\$$
 $A = \{(1, 2), (1, 3), (1, 5), (5, 4), (5, 3), (5, 2), (2, 4), (3, 4)\}$

Remark. Let |N| = n. Then, $|E| = m \le \frac{n(n-1)}{2}$.

Directed graph

Definition (Directed network/graph). A directed graph is pair (N,A), where N denotes the set of nodes/vertices and $A\subseteq N\times N$ denotes the set of links/edges/arcs whose elements are ordered pair of distinct nodes.

Example(s).
$$N = \{1, 2, 3, 4, 5, 6, 7\}$$

 $A = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 4), (3, 6), (4, 5), (4, 6), (5, 7), (6, 5), (6, 7)\}$

Definition (). If $e = (i, j) \in A$, then

- 1. i and j are endpoints of e.
- 2. i is the tail node and j is the head node of e.
- 3. (i, j) emanates from i and terminates at node j.
- 4. (i, j) is incident to nodes i and j.

Definition (Degree). The number of incoming and outgoing links of a node $i \in N$ are called indegree and outdegree respectively. The sum of indegree and outegree is called degree.

Definition (Multilinks). Two or more links with same head and tail nodes.

Definition (Loop). A link whose tail and head nodes are the same.

Note: In this course, we assume that graphs contain no loops or multiarcs.

Definition (Subgraph). A graph $G^{'}(N^{'},A^{'})$ is a subgraph of G(N,A) if $N^{'}\subseteq N$ and $A^{'}\subseteq A$. A subgraph $G^{'}(N^{'},A^{'})$ of G(N,A) is said to be induced by $N^{'}$ if $A^{'}$ contains links with their end points in $N^{'}$.

Definition (Walk). A collection of links $W = \{(u_1, v_1), \cdots, (u_q, v_q)\}$ is an s-t walk if

- 1. $u_1 = s$
- 2. $v_i = u_{i+1}, \forall i = 1, ..., q-1$
- 3. $v_q = t$

Example(s).


```
\begin{split} W_1 &= \{(1,2),(2,5),(5,7)\},\\ W_2 &= \{(1,2),(2,3),(3,4),(4,2),(2,5),(5,7)\},\\ W_3 &= \{(1,3),(3,6),(6,5),(5,4),(4,6),(6,7)\}\\ \text{are all exmples of } 1-7 \text{ walks}. \end{split}
```

Definition (Path). An s-t path is an s-t walk without any repeated nodes.

In above example, W_1 is a 1-7 path while W_2 and W_3 are not.

Definition (Cycle). A cycle is a path with same first and last nodes.

Definition (Tour). A tour is a cycle including all nodes of the graph.

Definition (Acyclic graph). A graph without any cycles is acyclic.

Definition ().

- 1. Nodes $i \in N$ and $j \in N$ are said to be connected if there exists at least one path between i and j.
- 2. A graph is said to be connected graph if every pair of its nodes are connected. Otherwise, the graph is called disconnected.

Definition (Cut). A cut is a partition of nodes into two subsets S and $\bar{S} = N \backslash S$.

- ▶ Each cut defines a set of links with one endpoint in S and another in \bar{S} . This set of links is denoted by (S, \bar{S}) .
- ▶ An s-t cut is a cut (S,\bar{S}) with $s \in S$ and $t \in \bar{S}$.

Example(s).

$$S=\{1,2,3,4\}, \bar{S}=\{5,6,7\}, \text{ and } (S,\bar{S})=\{(2,5),(5,4),(4,6),(3,6)\}$$
 Defines a $1-7$ cut.

Definition (Tree). A tree is a connected graph that contains no cycles.

Proposition

- 1. A tree on n nodes contains exactly n-1 links.
- 2. A tree has at least 2 leaf nodes (i.e., nodes with degree 1).
- 3. Every pair of nodes are connected by a unique path.

Proof.

- 1. (Proof by induction) Let P(n) be the statement that a tree on n nodes contains exactly n-1 links. P(1)=0 since there is only one node and a link requires at least two nodes. Let us assume that P(k) is true, i.e., a tree on k nodes contains exactly k-1 links. Then, we can add another node to this graph with one link and that would still be a tree with k links, which means that P(k+1) is true.
- 2. Assuming $n<\infty$, we prove this by contradiction. Assume that a tree on n nodes has only one leaf u. Then, find the longest path from u in the tree. The longest path cannot end at u because that is not a path but cycle. Let us assume that it ends at v. If v has degree 1 then we are done. If it has degree 2, then it is not a longest path.
- 3. Proof by induction. Not possible to add another node without creating a cycle.

Definition (Forest). A graph that contains no cycles is a forest or a forest is a collection of trees.

Definition (Subtree). A connected subgraph of a tree is called a subtree.

Definition (Spanning tree). A spanning tree of a graph is a subgraph which is a tree connecting all the nodes.

Definition (Fundamental cycle). Adding a nontree link to the spanning tree creates a cycle. Such cycle is known as fundamental cycle. There are m+n-1 fundamental cycles in the graph.

Definition (Fundamental cut). Any non-empty partition of a spanning tree nodes into two subset is a fundamental cut. There are n-1 fundamental cuts.

Bipartite graphs

Definition (Bipartite graph). A graph G(N,A) is bipartite if we can partition N into two subsets N_1 and N_2 such that for every link $(i,j)\in A$, we have either $i\in N_1$ and $j\in N_2$ or $j\in N_1$ and $i\in N_2$.

Proposition

A graph G is bipartite if and only if every cycle in G contains an even number of links.

Proof.

 (\Rightarrow) Assume that G is bipartite. Then, every step of a walk will take you either from N_1 to N_2 or N_2 to N_1 . To form a cycle, you need to come back where you started requires even number of steps.

 (\Leftarrow) Assume that every cycle in G is even. Then, starting from one node $u \in C_1$ along a path/cycle, put nodes at odd distance in C_2 and nodes at even distance in C_1 . Do this for every connected components of G. We cannot have link between two nodes within C_1 or C_2 , otherwise cycle will be odd.

Outline

Introduction

Examples

Definitions

Network representation

Network representation

- ► The performance of a network algorithm depends not only on the algorithm but also on which data structure we use to store the network.
- We need to store how nodes are connected as well as capacities or costs associated to links.

Data structures

- 1. Node-link incidence matrix
- 2. Node-node adjacency matrix
- 3. Adjacency list
- 4. Forward (Backward) Star

Node-link incidence matrix

- ▶ Nodes on the rows and links on the columns.
- For every $(i, j) \in A$, we have +1 in row i and -1 in row j of column (i, j).
- lackbox Only 2 non-zero entries in every column and 2m non-zero entries in total.
- ► Not space efficient data structure

$$\mathcal{N} = \begin{pmatrix} (1,2) & (1,3) & (2,3) & (3,4) & (4,2) \\ 1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & -1 \\ 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$
 esentation 4

Node-node adjacency matrix

- ightharpoonup |N| imes |N| matrix \mathcal{H} .
- ▶ $H_{ij} = 1$ if $(i, j) \in A$, 0, otherwise.
- We can store capacities and cost of edges using similar matrix.
- m non-zero elements.

$$\mathcal{H} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 1 & 0 \\ 2 & 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 0 & 1 \\ 4 & 0 & 1 & 0 & 0 \end{pmatrix}$$

Adjacency lists

- ▶ The node adjacency list of a node $i \in N$ is $A(i) = \{j \in N \mid (i,j) \in A\}$ (set of emanating nodes)
- ► Stored as a linked list for every node
- ▶ Need a linked list with |A(i)| cells for every node $i \in N$
- We can also store costs and capacities associated to the links in these cells

Forward and reverse star

- Forward star stores node adjacency lists in a large array.
- ► Assigns a unique sequence number to each link in a specific order: first those emanating from node 1, then node 2, and so on.
- ► Store information about *tail*, *head*, *cost*, and *capacity* in separate arrays.
- ▶ If the sequence number of arc (i,j) is 10,then one can call tail[10], head[10], cost[10], and <math>capacity[10] to get the information about (i,j).
- ▶ Also maintains a pointer for each node *i*, i.e., point(i) that indicates the smallest numbered link in the list of links for that node.
- FS will store the outgoing links of node i at positions point(i) and point(i+1)-1.
- ▶ Reverse star stores the incoming links in the similar fashion. The sequence starts with node 1 and stores all its incoming links, and so on.
- ► This is more space efficient than adjacency list.

Network representations	Storage space	Features
Node-arc incidence matrix	nm	Space inefficient Too expensive to manipulate Important because it represents the constraint matrix of the minimum cost flow problem
Node-node adjacency matrix	kn² for some constant k	Suited for dense networks Easy to implement
Adjacency list	$k_1n + k_2m$ for some constants k_1 and k_2	Space efficient Efficient to manipulate Suited for dense as well as sparse networks
Forward and reverse star	k ₃ n + k ₄ m for some constants k ₃ and k ₄	Space efficient Efficient to manipulate Suited for dense as well as sparse networks

Figure 2.25 Comparison of various network representations.

Figure: Source: AMO

Thank you!