

CS4277 / CS5477 3D Computer Vision

Lecture 8: Three-View Geometry from Points and/or Lines

Asst. Prof. Lee Gim Hee
AY 2019/20
Semester 2

Course Schedule

Week	Date	Торіс	Assignments
1	15 Jan	2D and 1D projective geometry	
2	22 Jan	Circular points and 3D projective geometry	
3	29 Jan	No Lecture	
4	05 Feb	Absolute conic and robust homography estimation	Assignment 1: Panoramic stitching (15%)
5	12 Feb	Camera models and calibration	
6	19 Feb	Single view metrology	Due: Assignment 1 Assignment 2: Camera calibration (15%)
-	26 Feb	Semester Break	No lecture
7	04 Mar	The fundamental and essential matrices	Due: Assignment 2
8	11 Mar	Absolute pose estimation from points or lines	Assignment 3: Relative and absolute pose estimation (20%)
9	18 Mar	Three-view geometry from points and/or lines	
10	25 Mar	Structure-from-Motion (SfM) and Visual Simultaneous Localization and Mapping (vSLAM)	Due: Assignment 3
11	01 Apr	Two-view and multi-view stereo	Assignment 4: Dense 3D model from multi-view stereo (20%)
12	08 Apr	Generalized cameras	
13	15 Apr	Factorization and non-rigid structure-from-motion	Due: Assignment 4

Learning Outcomes

- Students should be able to:
- 1. Derive the trifocal tensor constraint from point and/or line image correspondences of 3 views.
- Describe the homography relations between 3 views.
- Extract the 3-view epipoles and epipolar lines from the trifocal tensor.
- 4. Decompose the trifocal tensor into the camera and fundamental matrices of 3 views.
- Compute the trifocal tensor from point and/line image correspondences of 3 views.

Acknowledgements

- A lot of slides and content of this lecture are adopted from:
- 1. R. Hartley, and A. Zisserman: "Multiple view geometry in computer vision", Chapter 15 and 16.
- 2. Y. Ma, S. Soatto, J. Kosecka, S. S. Sastry, "An invitation to 3-D vision", Chapter 8.

Three-View Geomtery

- The trifocal tensor plays an analogous role in three views to that played by the fundamental matrix in two.
- It encapsulates all the (projective) geometric relations between three views that are independent of scene structure.

- We use the incidence relationship of three corresponding lines to derive the trifocal tensor.
- Planes back-projected from the lines in each view must all meet in a single 3D line, i.e. the line that projects to the matched lines in the three images.

- In general three arbitrary planes in space do not meet in a single line.
- Hence, this geometric incidence condition provides a genuine constraint on sets of corresponding lines.
- We denote a set of corresponding lines as $\mathbf{l}_i \leftrightarrow \mathbf{l}_i''$.

- Let the camera matrices for the three views be $P = [I \mid \mathbf{0}]$, as usual, and $P' = [A \mid \mathbf{a}_4]$, $P'' = [B \mid \mathbf{b}_4]$.
- A and B are 3×3 matrices, and the vectors \mathbf{a}_i and \mathbf{b}_i are the i-th columns of the respective camera matrices for i = 1, ..., 4.
- a_4 and b_4 are the epipoles in views two and three respectively, arising from the first camera.
- These epipoles are denoted by e' and e'', with e' = P'C, e'' = P''C, where C is the first camera centre.

• Each image line back-projects to a plane, i.e.

$$\boldsymbol{\pi} = \mathbf{P}^\mathsf{T} \mathbf{l} = \begin{pmatrix} \mathbf{l} \\ 0 \end{pmatrix} \quad \boldsymbol{\pi}' = \mathbf{P}'^\mathsf{T} \mathbf{l}' = \begin{pmatrix} \mathbf{A}^\mathsf{T} \mathbf{l}' \\ \mathbf{a}_4^\mathsf{T} \mathbf{l}' \end{pmatrix} \quad \boldsymbol{\pi}'' = \mathbf{P}''^\mathsf{T} \mathbf{l}'' = \begin{pmatrix} \mathbf{B}^\mathsf{T} \mathbf{l}'' \\ \mathbf{b}_4^\mathsf{T} \mathbf{l}'' \end{pmatrix}.$$

- These three planes are not independent and must meet in a common line in 3-space.
- The intersection constraint can be expressed algebraically by the requirement that the 4×3 matrix $M = [\pi, \pi', \pi'']$ has rank 2.

- Points on the line of intersection: $\mathbf{X} = \alpha \mathbf{X}_1 + \beta \mathbf{X}_2$.
- Such points lie on all three planes and so:

$$\boldsymbol{\pi}^\mathsf{T} \mathbf{X} = \boldsymbol{\pi}'^\mathsf{T} \mathbf{X} = \boldsymbol{\pi}''^\mathsf{T} \mathbf{X} = 0 \implies \mathbf{M}^\mathsf{T} \mathbf{X} = \mathbf{0}.$$

• Consequently M has a 2-dimensional null-space since $M^T X_1 = 0$ and $M^T X_2 = 0$.

- This intersection constraint induces a relation amongst the image lines $\mathbf{l}, \mathbf{l}', \mathbf{l}''$.
- Since the rank of M is 2, there is a linear dependence between its columns \mathbf{m}_i , i.e.

$$\mathbf{m}_1 = \alpha \mathbf{m}_2 + \beta \mathbf{m}_3$$
 , where

$$\mathbf{M} = [\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3] = \begin{bmatrix} \mathbf{l} & \mathbf{A}^\mathsf{T} \mathbf{l}' & \mathbf{B}^\mathsf{T} \mathbf{l}'' \\ 0 & \mathbf{a}_4^\mathsf{T} \mathbf{l}' & \mathbf{b}_4^\mathsf{T} \mathbf{l}'' \end{bmatrix}.$$

- Noting that the bottom left element of M is zero, it follows that $\alpha = k(\mathbf{b}_4^\mathsf{T}\mathbf{l}'')$ and $\beta = -k(\mathbf{a}_4^\mathsf{T}\mathbf{l}')$ for some scalar k.
- Applying this to the top 3-vectors of each column shows that (up to a homogeneous scale factor):

$$\mathbf{l} = (\mathbf{b}_4^\mathsf{T} \mathbf{l}'') \mathbf{A}^\mathsf{T} \mathbf{l}' - (\mathbf{a}_4^\mathsf{T} \mathbf{l}') \mathbf{B}^\mathsf{T} \mathbf{l}''$$
$$= (\mathbf{l}''^\mathsf{T} \mathbf{b}_4) \mathbf{A}^\mathsf{T} \mathbf{l}' - (\mathbf{l}'^\mathsf{T} \mathbf{a}_4) \mathbf{B}^\mathsf{T} \mathbf{l}''.$$

• The i-th coordinate l_i of \mathbf{l} may therefore be written as:

$$l_i = \mathbf{l}''^\mathsf{T}(\mathbf{b}_4 \mathbf{a}_i^\mathsf{T}) \mathbf{l}' - \mathbf{l}'^\mathsf{T}(\mathbf{a}_4 \mathbf{b}_i^\mathsf{T}) \mathbf{l}'' = \mathbf{l}'^\mathsf{T}(\mathbf{a}_i \mathbf{b}_4^\mathsf{T}) \mathbf{l}'' - \mathbf{l}'^\mathsf{T}(\mathbf{a}_4 \mathbf{b}_i^\mathsf{T}) \mathbf{l}''$$

And introducing the notation:

$$\mathtt{T}_i = \mathbf{a}_i \mathbf{b}_4^\mathsf{T} - \mathbf{a}_4 \mathbf{b}_i^\mathsf{T}$$

The incidence relation can be written:

$$l_i = \mathbf{l}'^{\mathsf{T}} \mathbf{T}_i \mathbf{l}''$$
, $i = 1,2,3$.

- The set of three matrices $\{T_1, T_2, T_3\}$ constitute the *trifocal tensor* in matrix notation.
- We can now write the incidence relation as:

$$\mathbf{l^T} = \mathbf{l'^T}[\mathtt{T}_1, \mathtt{T}_2, \mathtt{T}_3]\mathbf{l''}$$
 represent the vector
$$\mathbf{l'^T}\mathtt{T}_1\mathbf{l''}, \mathbf{l'^T}\mathtt{T}_2\mathbf{l''}, \mathbf{l'^T}\mathtt{T}_3\mathbf{l''})$$

Note that there exists similar relations:

$$\mathbf{l}'^\mathsf{T} = \mathbf{l}^\mathsf{T}[\mathtt{T}_i']\mathbf{l}''$$
 and $\mathbf{l}''^\mathsf{T} = \mathbf{l}^\mathsf{T}[\mathtt{T}_i'']\mathbf{l}'$.

- The three tensors $[T_i]$, $[T_i']$ and $[T_i'']$ exist, but are distinct.
- Although all three tensors may be computed from any one of them, there is no very simple relationship between them.
- Hence, we will just consider only one of them.

Degrees of freedom:

- The trifocal tensor has only 18 independent degrees of freedom defined up to a common scale.
- Each of 3 camera matrices has 11 degrees of freedom, which makes 33 in total.
- However, 15 degrees of freedom must be subtracted to account for the projective world frame.
- Thus leaving 33 15 = 18 degrees of freedom.

- A fundamental geometric property encoded in the trifocal tensor is the homography between the first view and the third induced by a line in the second image.
- A line in the second view defines (by backprojection) a plane in 3-space, and this plane induces a homography between the first and third views.

• The homography from the first to the third image induced by a line \mathbf{l}' in the second image is given by $\mathbf{x}'' = H_{13}(\mathbf{l}') \mathbf{x}$, where

$$\mathtt{H}_{13}(\mathbf{l}') = [\mathtt{T}_1^\mathsf{T}, \mathtt{T}_2^\mathsf{T}, \mathtt{T}_3^\mathsf{T}]\mathbf{l}'.$$

Image Source: R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision"

• Similarly, a line \mathbf{l}'' in the third image defines a homography $\mathbf{x}' = H_{12}(\mathbf{l}'') \mathbf{x}$ from the first to the second views, given by

$$H_{12}(\mathbf{l''}) = [T_1, T_2, T_3]\mathbf{l''}.$$

Proof:

- The homography map between the first and third images may be written as $\mathbf{x}'' = H\mathbf{x}$ and $\mathbf{l} = H^T\mathbf{l}''$, respectively.
- We saw earlier that the line incidence relationship is given by $l_i = \mathbf{l}'^T \mathbf{T}_i \mathbf{l}''$.

Proof (cont.):

• Comparison of $l_i = \mathbf{l}'^T \mathbf{T}_i \mathbf{l}''$ and $\mathbf{l} = \mathbf{H}^T \mathbf{l}''$ shows that

$$H_{13}(\mathbf{l'}) = [\mathbf{h}_1, \mathbf{h}_2, \mathbf{h}_3] \text{ with } \mathbf{h}_i = \mathbf{T}_i^\mathsf{T} \mathbf{l'}.$$

Proof (cont.):

• We can also rewrite the homography as between the first and second view $\mathbf{l}^T = \mathbf{l}'^T H$, where

$$H_{12}(\mathbf{l''}) = [h_1, h_2, h_3] \text{ with } h_i = T_i \mathbf{l''}$$

Image Source: R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision"

Line-Line Correspondences:

• Taking the cross product of the incidence relation $\mathbf{l}^\mathsf{T} = \mathbf{l}'^\mathsf{T}[\mathtt{T}_1,\mathtt{T}_2,\mathtt{T}_3]\mathbf{l}'' \text{to eliminate the unknown scale,}$ we get:

$$(\mathbf{l'}^{\mathsf{T}}[\mathsf{T}_1,\mathsf{T}_2,\mathsf{T}_3]\mathbf{l''})[\mathbf{l}]_{\times} = \mathbf{0}^{\mathsf{T}},$$

- or more briefly $(\mathbf{l'}^T[\mathbf{T}_i]\mathbf{l''})[\mathbf{l}]_{\times} = \mathbf{0}^T$.
- The symmetry between \mathbf{l}' and \mathbf{l}'' means the following is true too:

$$(\mathbf{l}''^{\mathsf{T}}[\mathsf{T}_i^{\mathsf{T}}]\mathbf{l}')[\mathbf{l}]_{\times} = \mathbf{0}^{\mathsf{T}}.$$

Point-Line Correspondences:

• Now, a point \mathbf{x} on the line \mathbf{l} must satisfy $\mathbf{x}^T \mathbf{l} = \sum_i x^i l_i = 0$; since $l_i = \mathbf{l}'^T \mathbf{T}_i \mathbf{l}''$, this may be written as:

$$\mathbf{l}'^{\mathsf{T}}(\sum_{i} x^{i} \mathbf{T}_{i}) \mathbf{l}'' = 0$$

• Note that $\sum_i x^i T_i$ is simply a 3 × 3 matrix.

Point-Line-Point Correspondences:

Consider a point-line-point correspondence so that

$$\mathbf{x}'' = \mathbf{H}_{13}(\mathbf{l}')\,\mathbf{x} = [\mathbf{T}_1^\mathsf{T}\mathbf{l}', \mathbf{T}_2^\mathsf{T}\mathbf{l}', \mathbf{T}_3^\mathsf{T}\mathbf{l}']\,\mathbf{x} = (\sum_i x^i \mathbf{T}_i^\mathsf{T})\mathbf{l}'$$

• Which is valid for any line \mathbf{l}' passing through \mathbf{x}' in the second image.

Point-Line-Point Correspondences:

• The homogeneous scale factor may be eliminated by (post-)multiplying the transpose of both sides by $[x]_{\times}$ to give

$$\mathbf{x}''^{\mathsf{T}}[\mathbf{x}'']_{\times} = \mathbf{l}'^{\mathsf{T}}(\sum_{i} x^{i} \mathbf{T}_{i})[\mathbf{x}'']_{\times} = \mathbf{0}^{\mathsf{T}},$$

 A similar analysis may be undertaken with the roles of the second and third images, i.e. point—point—line correspondence:

$$[\mathbf{x}']_{\times}(\sum_{i}x^{i}\mathbf{T}_{i})\mathbf{l}''=\mathbf{0}.$$

Point-Point Correspondences:

For a 3-point correspondence as shown in figure, there is a relation:

$$[\mathbf{x}']_{\times}(\sum_{i}x^{i}\mathsf{T}_{i})[\mathbf{x}'']_{\times}=\mathsf{O}_{3\times3}.$$

Proof:

• The line \mathbf{l}' in $\mathbf{l}'^T \sum_i x^i \mathbf{T}_i [\mathbf{x}'']_{\times} = \mathbf{0}^T$ passes through \mathbf{x} and so may be written as $\mathbf{l}' = \mathbf{x}' \times \mathbf{y}' = [\mathbf{x}']_{\times} \mathbf{y}'$ for some point \mathbf{y}' on \mathbf{l}' .

Consequently,

$$\mathbf{l}'^{\mathsf{T}}(\sum_{i} x^{i} \mathbf{T}_{i})[\mathbf{x}'']_{\times} = \mathbf{y}'^{\mathsf{T}}[\mathbf{x}']_{\times}(\sum_{i} x^{i} \mathbf{T}_{i})[\mathbf{x}'']_{\times} = \mathbf{0}^{\mathsf{T}}$$

• Since $\mathbf{l'}^T \sum_i x^i \mathbf{T}_i [\mathbf{x''}]_{\times} = \mathbf{0}^T$ is true for all lines $\mathbf{l'}$ through $\mathbf{x'}$, and so independent of $\mathbf{y'}$; this implies the following is true:

$$[\mathbf{x}']_{\times}(\sum_{i} x^{i} \mathbf{T}_{i})[\mathbf{x}'']_{\times} = \mathbf{0}_{3\times 3}.$$

(i) Line-line-line correspondence

$$\mathbf{l}'^\mathsf{T}[T_1,T_2,T_3]\mathbf{l}'' = \mathbf{l}^\mathsf{T} \quad \text{or} \quad \left(\mathbf{l}'^\mathsf{T}[T_1,T_2,T_3]\mathbf{l}''\right)[\mathbf{l}]_\times = \mathbf{0}^\mathsf{T}$$

(ii) Point-line-line correspondence

$$\mathbf{l'}^{\mathsf{T}}(\sum_{i} x^{i} \mathbf{T}_{i}) \mathbf{l''} = 0 \text{ for a correspondence } \mathbf{x} \leftrightarrow \mathbf{l'} \leftrightarrow \mathbf{l''}$$

(iii) Point-line-point correspondence

$$\mathbf{l'}^\mathsf{T}(\sum_i x^i \mathbf{T}_i)[\mathbf{x''}]_{\times} = \mathbf{0}^\mathsf{T} \ \ \text{for a correspondence } \mathbf{x} \leftrightarrow \mathbf{l'} \leftrightarrow \mathbf{x''}$$

(iv) Point-point-line correspondence

$$[\mathbf{x}']_{\times}(\sum_{i}x^{i}\mathsf{T}_{i})\mathbf{l}''=\mathbf{0} \ \text{ for a correspondence } \mathbf{x}\leftrightarrow\mathbf{x}'\leftrightarrow\mathbf{l}''$$

(v) Point-point-point correspondence

$$[\mathbf{x}']_{\times}(\sum_{i}x^{i}\mathsf{T}_{i})[\mathbf{x}'']_{\times}=\mathsf{O}_{3\times3}$$

• If x is a point and \mathbf{l}' or \mathbf{l}'' are the corresponding epipolar lines in the second and third images, then

$$\mathbf{l}'^{\mathsf{T}}(\sum_{i} x^{i} \mathbf{T}_{i}) = \mathbf{0}^{\mathsf{T}} \text{ and } (\sum_{i} x^{i} \mathbf{T}_{i}) \mathbf{l}'' = \mathbf{0}.$$

• Consequently, the epipolar lines \mathbf{l}' and \mathbf{l}'' corresponding to \mathbf{x} may be computed as the left and right null-vectors of the matrix $\sum_i x^i T_i$.

Proof:

- A special case of a point-line-line correspondence occurs when the plane π' backprojected from \mathbf{l}' is an epipolar plane with respect to the first two cameras.
- And hence passes through the camera centre **C** of the first camera.

Proof (cont.):

- Suppose X is a point on the plane π' ; then the ray defined by X and C lies in this plane.
- And \mathbf{l}' is the epipolar line corresponding to the point \mathbf{x} , the image of \mathbf{X} .

Proof (cont.):

- The plane π'' back-projected from a line \mathbf{l}'' in the third image will intersect the plane π' in a line \mathbf{L} .
- Further, since the ray corresponding to x lies entirely in the plane π' it must intersect the line L.

Proof (cont.):

- This gives a 3-way intersection between the ray and planes back-projected from point \mathbf{x} and lines \mathbf{l}' and \mathbf{l}'' .
- So they constitute a point-line-line correspondence, satisfying $\mathbf{l'}^T \sum_i x^i \mathbf{T}_i \mathbf{l''} = 0$.
- The important point now is that this is true for *any* line \mathbf{l}'' , and it follows that $\mathbf{l'}^T \sum_i x^i T_i = 0$.
- The same argument holds with the roles of \mathbf{l}' and \mathbf{l}'' reversed $\Rightarrow \sum_i x^i T_i \mathbf{l}'' = 0$, where \mathbf{l}'' is the epipolar line and \mathbf{l}' is any line in the second view.

Epipole

- As the point x varies, the corresponding epipolar lines vary, but all epipolar lines in one image pass through the epipole.
- Thus, this epipole can be computed as the intersection of the epipolar lines for varying values of x.
- Three convenient choices of **x** are the points represented by homogeneous coordinates $(1,0,0)^T$, $(0,1,0)^T$ and $(0,0,1)^T$.
- Hence, $\sum_i x^i T_i$ equal to T_1 , T_2 and T_3 respectively for these three choices of \mathbf{x} .

- The epipole e' in the second image is the **common** intersection of the epipolar lines represented by the left null-vectors of the matrices T_i , i = 1, ..., 3.
- Similarly the epipole e'' is the **common intersection** of lines represented by the right null-vectors of the T_i .

Algebraic Properties of the T_i Matrices

- Each matrix T_i has rank 2; this is evident from since $T_i = \mathbf{a}_i \mathbf{e}''^T \mathbf{e}' \mathbf{b}_i^T$ is the sum of two outer products.
- The right null-vector of T_i is $I_i'' = e'' \times b_i$, and is the epipolar line in the third view for the point $\mathbf{x} = (1, 0, 0)^T$, $(0, 1, 0)^T$ or $(0, 0, 1)^T$, as i = 1, 2 or 3, respectively.

Proof:

The epipolar line is given by $\mathbf{l}'' = (P''C) \times (P''P^+x)$

$$= \mathbf{e}'' \times [\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3, \mathbf{b}_4] \begin{bmatrix} \mathbf{I}_{3 \times 3} \\ \mathbf{0}_{1 \times 3} \end{bmatrix} \mathbf{x} = \mathbf{e}'' \times [\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3] \mathbf{x}$$

$$\Rightarrow \mathbf{l}_{i}^{\prime\prime} = \mathbf{e}^{\prime\prime} \times \mathbf{b}_{i}.$$

Algebraic Properties of the T_i Matrices

- The epipole e'' is the common intersection of the epipolar lines \mathbf{l}_i'' for i=1,2,3.
- The left null-vector of T_i is $I'_i = e' \times a_i$, and is the epipolar line in the second view for the point $\mathbf{x} = (1, 0, 0)^T$, $(0, 1, 0)^T$ or $(0, 0, 1)^T$, as i = 1, 2 or 3 respectively.
- The epipole e' is the common intersection of the epipolar lines \mathbf{l}'_i for i=1,2,3, i.e. the null-vectors of:

$$e'^{T}[\mathbf{l}'_{1}, \mathbf{l}'_{2}, \mathbf{l}'_{3}] = \mathbf{0} \text{ and } e''^{T}[\mathbf{l}''_{1}, \mathbf{l}''_{2}, \mathbf{l}''_{3}] = \mathbf{0}.$$

Algebraic Properties of the T_i Matrices

- The sum of the matrices $M(\mathbf{x}) = \sum_i x^i T_i$ also has rank 2.
- The right null-vector of M(x) is the epipolar line $\mathbf{l''}$ of \mathbf{x} in the third view, and its left null-vector is the epipolar line $\mathbf{l'}$ of \mathbf{x} in the second view.

Extracting the Fundamental Matrices

- We know earlier that a line \mathbf{l}'' in the third view induces a homography from the first to the second view given by $\mathbf{x}' = ([T_1, T_2, T_3]\mathbf{l}'') \mathbf{x}$.
- The epipolar line corresponding to \mathbf{x} is then found by joining \mathbf{x}' to the epipole \mathbf{e}' .
- This gives $\mathbf{l}' = [\mathbf{e}']_{\times} ([T_1, T_2, T_3]\mathbf{l}'') \mathbf{x}$, which can be written as $\mathbf{l}' = F_{21}\mathbf{x}$, i.e. the fundamental matrix is:

$$F_{21} = [\mathbf{e}']_{\times}[T_1, T_2, T_3]\mathbf{l}''.$$

Extracting the Fundamental Matrices

- This formula holds for any vector \mathbf{l}'' , but it is important to choose \mathbf{l}'' to avoid the degenerate condition where \mathbf{l}'' lies in the null-space of any of the T_i .
- A good choice is e'' since it is perpendicular to the right null-space of each T_i .

Remarks:

Assuming \mathbf{l}'' is the epipolar line, it has to lie on the right-null space of each T_i since $\sum_i x^i T_i \mathbf{l}'' = 0$.

e'' is perpendicular to the right-null space \mathbf{l}'' since it lies on \mathbf{l}'' , i.e. $e''^T \mathbf{l}'' = 0$.

Extracting the Fundamental Matrices

This gives the formula

$$F_{21} = [\mathbf{e}']_{\times}[T_1, T_2, T_3]\mathbf{e}''.$$

A similar formula holds for

$$F_{31} = [e'']_{\times}[T_1^T, T_2^T, T_3^T]e'.$$

- Since the trifocal tensor expresses a relationship between image entities only, is independent of 3D projective transformations.
- Conversely, this implies that the camera matrices may be computed from the trifocal tensor only up to a projective ambiguity.

- Due to the projective ambiguity, the first camera may be chosen as $P = [I \mid \mathbf{0}]$.
- Since F_{21} is known, we can make use of:

The fundamental matrix corresponding to a pair of camera matrices $P = [I \mid \mathbf{0}]$ and $P' = [A \mid \mathbf{a}]$ is equal to $[\mathbf{a}]_{\times}A$.

to derive the form of the second camera as

$$P' = [[T_1, T_2, T_3]\mathbf{e}'' \mid \mathbf{e}']$$

and the camera pair $\{P, P'\}$ then has the fundamental matrix F_{21} .

A Fallacy:

- It might be thought that the third camera could be chosen in a similar manner as $P'' = [[T_1^\mathsf{T}, T_2^\mathsf{T}, T_3^\mathsf{T}]e' \mid e'']$, but this is incorrect.
- To see this, suppose the camera pair $\{P, P'\}$ is chosen and points \mathbf{X}_i reconstructed from their image correspondences $\mathbf{x}_i \leftrightarrow \mathbf{x}_i'$.

A Fallacy:

- Then X_i are specified in the projective world frame defined by by $\{P, P'\}$, and a consistent camera P'' may be computed from $X_i \leftrightarrow x_i$.
- Clearly, P'' depends on the frame defined by $\{P, P'\}$.
- However, it is not necessary to explicitly reconstruct 3D structure, a consistent camera triplet can be recovered from the trifocal tensor directly.

• We learned in Lecture 6 that a fundamental matrix can be decomposed into (P, P') and (\tilde{P}, \tilde{P}') , where

$$P = [I \mid \mathbf{0}] \text{ and } P' = [A \mid \mathbf{a}], \text{ and}$$

 $\tilde{P} = [I \mid \mathbf{0}] \text{ and } \tilde{P}' = [A + \mathbf{a}\mathbf{v}^T \mid \lambda \mathbf{a}]$

for some vector \mathbf{v} and scalar λ .

• This implies the more general form of P' is:

$$P' = [[T_1, T_2, T_3]\mathbf{e}'' + \mathbf{e}'\mathbf{v}^\mathsf{T}|\lambda\mathbf{e}']$$

- Because of the projective ambiguity, we are free to choose $P' = [[T_1, T_2, T_3]e'' \mid e']$, thus $\mathbf{a}_i = T_i e''$.
- This choice fixes the projective world frame so that P'' is now defined uniquely (up to scale).
- Substituting into $T_i = \mathbf{a}_i \mathbf{e}''^T \mathbf{e}' \mathbf{b}_i^T$, we get

$$\mathtt{T}_i = \mathtt{T}_i \mathbf{e}'' \mathbf{e}''^\mathsf{T} - \mathbf{e}' \mathbf{b}_i^\mathsf{T}$$

from which it follows that

$$\mathbf{e}'\mathbf{b}_i^\mathsf{T} = \mathsf{T}_i(\mathbf{e}''\mathbf{e}''^\mathsf{T} - \mathsf{I}).$$

Since the scale may be chosen such that

$$\|\mathbf{e}'\| = \mathbf{e}'^\mathsf{T}\mathbf{e}' = 1,$$

we may multiply on the left by $m{e}'^T$ and transpose to get

$$\mathbf{b}_i = (\mathbf{e}''\mathbf{e}''^\mathsf{T} - \mathsf{I})\mathsf{T}_i^\mathsf{T}\mathbf{e}'$$

SO

$$P'' = [(\mathbf{e}''\mathbf{e}''^{\mathsf{T}} - I)[T_1^{\mathsf{T}}, T_2^{\mathsf{T}}, T_3^{\mathsf{T}}]\mathbf{e}'|\mathbf{e}''].$$

Summary of F and P Retrieval from the Trifocal Tensor

Given the trifocal tensor written in matrix notation as $[T_1, T_2, T_3]$.

(i) Retrieve the epipoles e', e''

Let \mathbf{u}_i and \mathbf{v}_i be the left and right null-vectors respectively of \mathbf{T}_i , i.e. $\mathbf{u}_i^{\mathsf{T}} \mathbf{T}_i = \mathbf{0}^{\mathsf{T}}$, $\mathbf{T}_i \mathbf{v}_i = \mathbf{0}$. Then the epipoles are obtained as the null-vectors to the following 3×3 matrices:

$$\mathbf{e}'^{\mathsf{T}}[\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3] = \mathbf{0}$$
 and $\mathbf{e}''^{\mathsf{T}}[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = \mathbf{0}$.

(ii) Retrieve the fundamental matrices F_{21} , F_{31}

$$F_{21} = [\mathbf{e}']_{\times}[T_1, T_2, T_3]\mathbf{e}''$$
 and $F_{31} = [\mathbf{e}'']_{\times}[T_1^{\mathsf{T}}, T_2^{\mathsf{T}}, T_3^{\mathsf{T}}]\mathbf{e}'$.

(iii) Retrieve the camera matrices P', P'' (with $P = [I \mid 0]$) Normalize the epipoles to unit norm. Then

$$P' = [[T_1, T_2, T_3]\mathbf{e''} \mid \mathbf{e'}] \text{ and } P'' = [(\mathbf{e''}\mathbf{e''}^\mathsf{T} - \mathbf{I})[T_1^\mathsf{T}, T_2^\mathsf{T}, T_3^\mathsf{T}]\mathbf{e'} \mid \mathbf{e''}].$$

- We use the tensor notation to denote the cumbersome three indices in a tensor.
- Image point: homogeneous column $\mathbf{x} = (x^1, x^2, x^3)^T$.
- Image line: homogeneous row $\mathbf{l}=(l_1,l_2,l_3)$.
- The ij-th entry of a matrix A is denoted by a_j^l , index i being the contravariant (row) index and j being the covariant (column) index.

• The indices repeated in the contravariant and covariant positions imply summation over the range (1, ..., 3) of the index.

Example:

The equation $\mathbf{x}' = A\mathbf{x}$ is equivalent to

$$x^{\prime i} = \sum_{j} a_{j}^{i} x^{j},$$

which may be written as

$$x'^i = a^i_j x^j$$
.

The trifocal tensor can now be written as:

$$\mathbf{T}_i = \mathbf{a}_i \mathbf{b}_4^\mathsf{T} - \mathbf{a}_4 \mathbf{b}_i^\mathsf{T} \quad \Leftrightarrow \quad \mathcal{T}_i^{jk} = a_i^j b_4^k - a_4^j b_i^k.$$

• In tensor notation, the basic incidence relation becomes:

$$\mathbf{l}^{\mathsf{T}} = \mathbf{l}'^{\mathsf{T}}[\mathtt{T}_1, \mathtt{T}_2, \mathtt{T}_3]\mathbf{l}''$$

$$l_i = l'_j l''_k \mathcal{T}_i^{jk} = \sum_{j,k} l'_j l''_k \mathcal{T}_i^{jk} = \sum_{j,k} l'_j \mathcal{T}_i^{jk} l''_k = l'_j \mathcal{T}_i^{jk} l''_k$$

The homography maps becomes:

$$l_i = \mathbf{l'}^T \mathbf{T}_i \mathbf{l''}$$

$$\updownarrow$$

$$l_i = l'_j l''_k \mathcal{T}_i^{jk} = l''_k (l'_j \mathcal{T}_i^{jk}) = l''_k h^k_i \text{ where } h^k_i = l'_j \mathcal{T}_i^{jk} \text{ ,}$$

 h_i^k are the elements of the homography matrix H.

 This homography maps points between the first and third view as:

$$x''^k = h_i^k x^i.$$

Definition. The trifocal tensor \mathcal{T} is a valency 3 tensor \mathcal{T}_i^{jk} with two contravariant and one covariant indices. It is represented by a homogeneous $3 \times 3 \times 3$ array (i.e. 27 elements). It has 18 degrees of freedom.

Computation from camera matrices. If the canonical 3×4 camera matrices are

$$P = [I \mid 0], P' = [a_j^i], P'' = [b_j^i]$$

then

$$\mathcal{T}_i^{jk} = a_i^j b_4^k - a_4^j b_i^k.$$

See (17.12–*p*415) for computation from three general camera matrices.

Line transfer from corresponding lines in the second and third views to the first.

$$l_i = l_j' l_k'' \mathcal{T}_i^{jk}$$

Transfer by a homography.

(i) Point transfer from first to third view via a plane in the second The contraction $l'_j \mathcal{T}_i^{jk}$ is a homography mapping between the first and third views induced by a plane defined by the back-projection of the line l' in the second view.

$$x''^k = h_i^k x^i$$
 where $h_i^k = l_j' \mathcal{T}_i^{jk}$

(ii) Point transfer from first to second view via a plane in the third

The contraction $l_k'' T_i^{jk}$ is a homography mapping between the first and second views induced by a plane defined by the back-projection of the line l'' in the third view.

$$x'^{j} = h_{i}^{j} x^{i}$$
 where $h_{i}^{j} = l_{k}^{"} \mathcal{T}_{i}^{jk}$

Table Source: Page 377, R. Hartley and A. Zisserman, "Multiple View Geometry in Computer Vision"

The Tensor ϵ_{rst} and ϵ^{rst}

• The tensor ϵ_{rst} is defined for r, s, t = 1, ..., 3 as follows:

$$\epsilon_{rst} = \begin{cases} 0 \text{ unless } r, s \text{ and } t \text{ are distinct} \\ +1 \text{ if } rst \text{ is an even permutation of } 123 \\ -1 \text{ if } rst \text{ is an odd permutation of } 123 \end{cases}$$

• The tensor ϵ_{rst} and ϵ^{rst} are connected with the cross product of two vectors:

$$c_i = (\mathbf{a} \times \mathbf{b})_i = \epsilon_{ijk} a^j b^k$$
 and $([\mathbf{a}]_{\times})_{ik} = \epsilon_{ijk} a^j$.

Similarly,
$$([\mathbf{v}]_{\times})^{ik} = \epsilon^{ijk} v_j$$
.

The Tensor ϵ_{rst} and ϵ^{rst}

• The trifocal tensor incidence relations in ϵ_{rst} and ϵ^{rst} .

(i) Line-line-line correspondence

$$(l_r \epsilon^{ris}) l_j' l_k'' \mathcal{T}_i^{jk} = 0^s$$

(ii) Point-line-line correspondence

$$x^i l_j' l_k'' \mathcal{T}_i^{jk} = 0$$

(iii) Point-line-point correspondence

$$x^i l_j'(x''^k \epsilon_{kqs}) \mathcal{T}_i^{jq} = 0_s$$

(iv) Point-point-line correspondence

$$x^i(x'^j\epsilon_{ipr})l_k''\mathcal{T}_i^{pk} = 0_r$$

(v) Point-point-point correspondence

$$x^{i}(x^{\prime j} \, \epsilon_{jpr})(x^{\prime\prime\prime k} \, \epsilon_{kqs}) \mathcal{T}_{i}^{pq} = 0_{rs}$$

Point Transfer using Fundamental Matrices

- Given: The three fundamental matrices F_{21} , F_{31} and F_{32} relating the three views, and the point correspondence \mathbf{x} and \mathbf{x}' in the first two views.
- Find: The corresponding point \mathbf{x}'' in the third image.
- Solution: The image of X in the third view may be computed by intersecting the epipolar lines $F_{31}x$ and $F_{32}x$.

Point Transfer using Fundamental Matrices

The intersection of the epipolar lines gives

$$\mathbf{x}'' = (F_{31}\mathbf{x}) \times (F_{32}\mathbf{x}') .$$

 This method of point transfer using the fundamental matrices will be called epipolar transfer.

Degeneracy of Epipolar Transfer

• \mathbf{x}'' cannot be uniquely determined if it lies on the line that contains both epipoles \mathbf{e}_{31} and \mathbf{e}_{32} .

Point Transfer using the Trifocal Tensor

- The degeneracy of epipolar transfer is avoided by use of the trifocal tensor.
- It is clear from the point-line-point incidence relation that $x''^k=x^il_j'\mathcal{T}_i^{jk}$ is not degenerate.

Point Transfer using the Trifocal Tensor

• However, if $\mathbf{l'}$ is the epipolar line corresponding to \mathbf{x} , then $x^i l'_j \mathcal{T}_i^{jk} = 0^k$, so the point \mathbf{x} is undefined.

Point Transfer using the Trifocal Tensor

Solution:

- Avoid the epipolar line by computing the line \mathbf{l}' through \mathbf{x}' and perpendicular to $\mathbf{l}'_e = \mathbf{F}_{21}\mathbf{x}$.
- If $\mathbf{l}'_e = (l_1, l_2, l_3)^T$ and $\mathbf{x}' = (x_1, x_2, 1)^T$, then $\mathbf{l}' = (l_2, -l_1, -x_1 l_2 + x_2 l_1)^T$.
- The transferred point is $x''^k = x^i l_j' \mathcal{T}_i^{jk}$.

Computation of the Trifocal Tensor: Linear Method

- Given several point or line correspondences between three images, the complete set of equations generated is of the form $A\mathbf{t} = \mathbf{0}$.
- t is the 27-vector made up of the entries of the trifocal tensor.
- With more than 26 equations, a least-squares solution is computed by:

$$\min_{\mathbf{t}} ||A\mathbf{t}||$$
 s.t. $||\mathbf{t}|| = 1$.

We can solve this minimization using SVD.

Trilinear Relations between Point and Lines

• We use these equations that are linear in the entries of the trifocal tensor to form $A\mathbf{t} = \mathbf{0}$.

Correspondence	Relation	Number of equations
three points	$x^i x'^j x''^k \epsilon_{jqs} \epsilon_{krt} \mathcal{T}_i^{qr} = 0_{st}$	4
two points, one line	$x^i x'^j l_r'' \epsilon_{jqs} \mathcal{T}_i^{qr} = 0_s$	2
one point, two lines	$x^i l_q' l_r'' \mathcal{T}_i^{qr} = 0$	1
three lines	$l_p l_q' l_r'' \epsilon^{piw} \mathcal{T}_i^{qr} = 0^w$	2

Note: s, t, w = 1, 2.

Trilinear Relations between Point and Lines

Correspondence	Relation	Number of equations
three points	$x^i x'^j x''^k \epsilon_{jqs} \epsilon_{krt} \mathcal{T}_i^{qr} = 0_{st}$	4

- The first line in the table corresponds to a set of 9 equations, one for each choice of s, t = 1, 2, 3.
- However, among this set of 9 equations, only 4 are linearly independent, hence, only s,t=1,2 are considered.
- This is due to rank 2 constraint of the trifocal tensors, we will skip the complete proof.

Normalization

- The recommended normalization is much the same as that given for the computation of the fundamental matrix:
- A translation is applied to each image such that the centroid of the points is at the origin.
- 2. And then a scaling is applied so that the average (RMS) distance of the points from the origin is $\sqrt{2}$.
- In the case of lines, the transformation should be defined by considering each line's two endpoints.

The Normalized Linear Algorithm for Computation of $\mathcal T$

Objective

Given $n \ge 7$ image point correspondences across 3 images, or at least 13 line correspondences, or a mixture of point and line correspondences, compute the trifocal tensor.

Algorithm

- (i) Find transformation matrices H, H' and H'' to apply to the three images.
- (ii) Transform points according to $x^i \mapsto \hat{x}^i = H^i_j x^j$, and lines according to $l_i \mapsto \hat{l}_i = (H^{-1})^j_i l_j$. Points and lines in the second and third image transform in the same way.
- (iii) Compute the trifocal tensor \hat{T} linearly in terms of the transformed points and lines using the equations in table 16.1 by solving a set of equation of the form At = 0, using algorithm A5.4(p593).
- (iv) Compute the trifocal tensor corresponding to the original data according to $\mathcal{T}_i^{jk} = H_i^r (H'^{-1})_s^j (H''^{-1})_t^k \hat{\mathcal{T}}_r^{st}$.

The Algebraic Minimization Algorithm

- The linear algorithm will give a tensor not necessarily corresponding to any geometric configuration.
- The next task is to correct the tensor to satisfy all required constraints.
- Just as with the fundamental matrix, we need to enforce the epipole constraints.

Retrieving the Epipoles

• Recall that the epipolar lines $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ in the third view that correspond to 3 points $(1,0,0)^T$, $(0,1,0)^T$ and $(0,0,1)^T$ in the first view is the right null-space of T_1, T_2, T_3 :

$$T_i \mathbf{v}_i = \mathbf{0}.$$

• And the epipole is obtained a the intersection of these three lines, i.e. the null-vectors of the 3×3 matrix formed by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$:

$$\mathbf{e}''^{\mathsf{T}}[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = \mathbf{0}$$

Retrieving the Epipoles

- However, in the presence of noise, it is better to compute the epipoles as follows:
- 1. For each $i=1,\ldots,3$ find the unit vector \mathbf{v}_i that minimizes $\|\mathbf{T}_i\mathbf{v}_i\|$, where $\mathbf{T}_i=\mathcal{T}_i$. Form the matrix \mathbf{V} , the i-th row of which is \mathbf{v}_i^T .
- 2. Compute the epipole e'' as the unit vector that minimizes $\|\nabla e''\|$.
- The epipole e' is computed similarly, using \mathbf{T}_i^T instead of \mathbf{T}_i .

Algebraic Minimization

- Now the epipoles $e'^{j} = a_4^{j}$ and $e''^{k} = b_4^{k}$ of the camera matrices P' and P'' are known.
- The trifocal tensor may be written linearly as t = Ea.
- **a** is the vector of the remaining entries a_i^j and b_i^k , and E is the linear relationship expressed by:

$$\mathcal{T}_i^{jk} = a_i^j b_4^k - a_4^j b_i^k.$$

Algebraic Minimization

We wish to minimize the algebraic error:

$$\|\mathtt{At}\| = \|\mathtt{AEa}\|$$

over all choices of a constrained such that

$$\|\mathbf{t}\| = 1$$
, that is $\|\mathbf{Ea}\| = 1$.

• The solution $\mathbf{t} = \mathbf{E}\mathbf{a}$ represents a trifocal tensor satisfying all constraints, and minimizing the algebraic error, s.t. the given choice of epipoles.

Geometric Distance

Objective

Given $n \ge 7$ image point correspondences $\{\mathbf{x}_i \leftrightarrow \mathbf{x}_i' \leftrightarrow \mathbf{x}_i''\}$, determine the Maximum Likelihood Estimate of the trifocal tensor.

The MLE involves also solving for a set of subsidiary point correspondences $\{\hat{\mathbf{x}}_i \leftrightarrow \hat{\mathbf{x}}_i' \leftrightarrow \hat{\mathbf{x}}_i''\}$, which exactly satisfy the trilinear relations of the estimated tensor and which minimize

$$\sum_{i} d(\mathbf{x}_{i}, \hat{\mathbf{x}}_{i})^{2} + d(\mathbf{x}'_{i}, \hat{\mathbf{x}}'_{i})^{2} + d(\mathbf{x}''_{i}, \hat{\mathbf{x}}''_{i})^{2}$$

Algorithm

- (i) Compute an initial geometrically valid estimate of T using a linear algorithm such as algorithm 16.2.
- (ii) Compute an initial estimate of the subsidiary variables $\{\hat{\mathbf{x}}_i, \hat{\mathbf{x}}_i', \hat{\mathbf{x}}_i''\}$ as follows:
 - (a) Retrieve the camera matrices P' and P'' from T.
 - (b) From the correspondence $\mathbf{x}_i \leftrightarrow \mathbf{x}_i' \leftrightarrow \mathbf{x}_i''$ and $P = [I \mid 0], P', P''$ determine an estimate of $\widehat{\mathbf{X}}_i$ using the triangulation method of chapter 12.
 - (c) The correspondence consistent with \mathcal{T} is obtained as $\hat{\mathbf{x}}_i = P\widehat{\mathbf{X}}_i, \ \hat{\mathbf{x}}_i' = P'\widehat{\mathbf{X}}_i, \ \hat{\mathbf{x}}_i'' = P''\widehat{\mathbf{X}}_i.$
- (iii) Minimize the cost

$$\sum_{i} d(\mathbf{x}_i, \hat{\mathbf{x}}_i)^2 + d(\mathbf{x}_i', \hat{\mathbf{x}}_i')^2 + d(\mathbf{x}_i'', \hat{\mathbf{x}}_i'')^2$$

over T and $\widehat{\mathbf{X}}_i$, $i=1,\ldots,n$. The cost is minimized using the Levenberg-Marquardt algorithm over 3n+24 variables: 3n for the n 3D points $\widehat{\mathbf{X}}_i$, and 24 for the elements of the camera matrices P', P''.

Summary

- We have looked at how to:
- 1. Derive the trifocal tensor constraint from point and/or line image correspondences of 3 views.
- 2. Describe the homography relations between 3 views.
- 3. Extract the 3-view epipoles and epipolar lines from the trifocal tensor.
- 4. Decompose the trifocal tensor into the camera and fundamental matrices of 3 views.
- 5. Compute the trifocal tensor from point and/line image correspondences of 3 views.

