UNTERNEHMEN TAIFUN

by

Sebastian Gregorius Winther-Larsen

THESIS

for the degree of

MASTER OF SCIENCE

Faculty of Mathematics and Natural Sciences University of Oslo

April 11, 2019

Contents

Ι	Theory	1
1	Quantum Mechanics	3
	1.1 The Dirac-von Neumann Postulates .	 3

iv CONTENTS

Part I

Theory

Chapter 1

Quantum Mechanics

Hierzu ist es notwendig, die Energy nicht als eine stetige unbeschränkt teilbare, sondern als eine discrete, ause einer ganzen Zahl von endlichen gleichen Teilen zusammengesetzte Grösse aufzufassen.

— Max Planck

1.1 The Dirac-von Neumann Postulates

This is the TL;DR version of Quantum Mechanics.

Hilbert Space A quantum state of an isolated physical system is described by a vector with unit norm in a Hilbert space, a complex vector space quipped with a scalar product.

Observables Each physical observable of a system is accociated with a *hermitian* operator acting on the Hilbert space. The eigenstates of each such operator define a *complete*, *orthonormal* set of vectors.

With \hat{O} an operator, hermiticity means,

$$\langle \phi | \hat{O}\psi \rangle = \langle \hat{O}\phi | \psi \rangle \equiv \langle \phi | \hat{O} | \psi \rangle. \tag{1.1}$$

Completness means,

$$\sum_{i} |i\rangle \langle i| = 1. \tag{1.2}$$

Orthonormal means,

$$\langle i|j\rangle = \delta_{ij}. \tag{1.3}$$

Time Evolution The time evolution of the state vector, $|\psi\rangle = |\psi(t)\rangle$, is given by the Schrödinger equation¹.

$$i\hbar \frac{d}{dt} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle.$$
 (1.4)

 $^{^1{\}rm In}$ the Schrödinger picture.

Measurments Physically measurable values, associated with an observable \hat{O} are defined by the eigenvalues o_n of the observable,

$$\hat{O}|n\rangle = o_n|n\rangle. \tag{1.5}$$

The probability for finding a particular eigenvalue in the measurement is

$$p_n = |\langle n|\psi\rangle|^2,\tag{1.6}$$

with the system in state $|\psi\rangle$ before the measurement, and $|n\rangle$ as the eigenstate corresponding to the eigenvalue o_n .