Cryptographic Engineering

Lecture 3: Advanced Side-channel analysis February 19, 2024

Assist. Prof. Guilherme Perin | Leiden

Last week...

- Introduction to SCA
- Review on RSA and AES
- SCA on RSA (simple power analysis)
- SCA on AES (DPA and CPA)

Agenda

- Why do we need advanced side-channel analysis?
- An overview of leakage models
- Supervised learning in side-channel analysis
 - Machine learning
 - Deep learning

- Take-away messages:
 - Advanced side-channel analysis can defeat strong protections.
 - Advanced side-channel analysis is more difficult to set up (several parameters)
 - The limit to evolve side-channel analysis is the limit of AI field.

Why do we need advanced side-channel analysis?

- Simple Power Analysis (SPA), Differential Power Analysis (DPA) and Correlation Power Analysis (CPA) are side-channel methods that work well against crypto implementations without specific countermeasures.
- Since first SCA methods were published (1996-2000), countermeasures started to be considered for crypto algorithms in hardware and software.
- Questions:
 - How to measure/quantity if a protection is enough?
 - How to estimate the attack capability against specific targets? How to make sure the attack is sufficient to assess the security of an implementation?
- The SCA community started to apply stronger SCA methods to estimate the worst-case security ("what can the strongest attacker achieve?").

Two main side-channel analysis branches

- Direct attacks (a.k.a. non-profiled or unsupervised):
 - Real-world threats (i.e., realistic)
 - Require very few assumptions about the target (basically being able to query encryptions/decryptions is enough)
 - Targets that resists these attacks (SPA, DPA, CPA) are assumed to be DPA-resistant.
- Profiled attacks (a.k.a. supervised):
 - Much less realistic (i.e. real attackers would very unlikely apply this type of method).
 - Require much more assumptions about the target (i.e., being able to set my own key).
 - Targets that resists these attacks are considered secure from the information-theoretical point-of-view.
 - Important techniques for manufacturers to answer the question: "is my implementation secure against the strongest possible adversary?"
- Deep Learning attacks:
 - Can be both: realistic and unrealistic.

Security assessments

1 to 12 months

Metrics

Number of measurements

- Needs to be enough to avoid estimation errors.
- Some certification schemes require at least 2Million measurements.

Leakage model

- Needs to be a correct choice to avoid assumption errors.
- Related to the concept of hypothetical power consumption.

Success rate of the attack

- Given the number of measurements and leakage model, how many key bits can be recovered (at least)?
- Every certification scheme defines a maximum success rate to pass the test.

Side-channel leakages

- Side-channel information refers to physical quantities that can be measured from a device.
- **Leakage**, on the other hand, is part of the information conveyed through side-channels:
 - If only random noise is present: there are no leakages.
 - If any information can be retrieved from the measurement: leakages exist.
- How can we verify if there are leakages?
- Leakage assessments involve a statistical method that answers the question::
 - Are there any exploitable leakages?
 - If the answer is yes, tests are conducted (side-channel attacks DPA, CPA, advanced attacks)
 - If no exploitable leakages are found, the product is considered secure and receives certification without further testing.

Leakage models

- Leakage models describe how side-channel information (e.g., power consumption magnitude) correlates with the internal computations or operations of the cryptographic algorithm being executed.
- A perfect leakage model is impossible in practice because of noise.

Identity (ID) Leakage model

Hamming Weight (HW) Leakage model

(only 1 byte)

CPA (HW vs ID)

Other leakage models

- Bit-level leakage model:
 - Most significant bit
 - Least significant bit
 - or any other bit...
- Hamming Distance:
 - $HW(x \oplus y)$
- How to find the best leakage model?
 - A: try all the possibilities.

Only AES?

• Obviously, not. Any computable function f that depends on a portion of the key k and controllable input data d:

Key ranking

- A side-channel attacks is key guessing-based attack: we need to test all key hypothesis.
- To discriminate the most likely key candidate, we need a distinguisher (difference-of-means, correlation).
- Based on a distinguisher, the key ranking informs that position of the correct key candidate among all possible key candidates.

•
$$c = [\rho_{key=0}, \rho_{key=1}, ..., \rho_{key=224}, ..., \rho_{key=255}] = [0.01, 0.02, ..., 0.42, ..., 0.07]$$

•
$$c = [\rho_{key=224}, \rho_{key=255}, ..., \rho_{key=0}, ..., \rho_{key=1}] = [\textbf{0.42}, 0.07, ..., 0.02, ..., 0.01]$$

Position of the correct key candidate = **key rank**

Guessing entropy

- Average key ranking multiple times.
- It informs about the entropy of the key (how much we still don't know about the key).

Success rate of an attack

 The percentage of successful key recovery (key rank = 1) if the attack process N measurements.

How to compute the success rate?

- 1) Take N measurements
- 2) Compute the attack (CPA or DPA) for A times.
- 3) For all A attacks, get the percentage of times that the correct key is the most likely key candidate.
- 4) Increase N and return to step 1.

Leakage assessment

- Statistical techniques to check whether the side-channel information has any (co-)relation with the intermediate data.
- Usually done with a controlled device (key can be configured).
- We are not interested in recovering the key, but only to see if key is leaking.
- One common method:
 - 1) collect a set of side-channel measurements with key 1
 - 2) collect a set of side-channel measurements with key 2
 - If both sets of measurements have statistical differences, then there are leakages.

Countermeasures

- Hiding: adds noise to the measurements.
- Masking: split the intermediate cryptographic values into several shares.

The idea of hiding

- Add noise to the measurements.
- A side-channel analysis requires increased (sometimes unrealistic) amount of measurements.

Preprocessing: trace alignment (pattern match)

The idea of hiding

- Add noise to the measurements.
- A side-channel analysis requires increased (sometimes unrealistic) amount of measurements.

The idea of hiding

- Add noise to the measurements.
- A side-channel analysis requires increased (sometimes unrealistic) amount of measurements.

Preprocessing: trace filtering + alignment (more complex)

The effect of hiding on the success rate

The idea of masking

- Split the intermediate cryptographic values into several shares.
- Never process intermediate values without masking them.

To mask a variable x:

$$x_{masked} = x \oplus mask$$

To mask a variable x:

To unmask a variable x:

$$x_{masked} = x \oplus mask_1 \oplus mask_2$$

To unmask a variable x:

$$x = x_{masked} \oplus mask$$

.

$$x = x_{masked} \oplus mask_1 \oplus mask_2$$

First-order masking

Second-order masking

The idea of masking

- Split the intermediate cryptographic values into several shares.
- Never process intermediate values without masking them.

To mask a variable x:

$$x_{masked} = x \oplus mask$$

To mask a variable x:

$$x_{masked} = x \oplus mask_1 \oplus mask_2 \oplus mask_2 \oplus \cdots \oplus mask_n$$

To unmask a variable x:

$$x = x_{masked} \oplus mask$$

To unmask a variable x:

$$x = x_{masked} \oplus mask_1 \oplus mask_2 \oplus mask_2 \oplus \cdots \oplus mask_n$$

n-order masking

Side-channel analysis order

n dimensions

First-order Correlation Analysis

Process 1 dimension at a time (single dimension analysis).

Second-order Correlation Analysis

Process 2 dimensions at a time.

k_i	0	1	2	3	4	5	6	7	8	
	36	249	225	41	12	192	253	188	111	
	185	242	181	69	164	200	179	228	29	
	81	175	109	230	242	114	165	127	15	
	85	109	131	209	94	106	118	152	181	
	108	17	21	60	148	130	192	214	135	
	162	99	82	128	20	99	139	249	140	
	2	113	74	123	65	173	205	6	209	
	19	203	201	6	145	62	53	92	19	
	228	200	234	58	42	60	246	84	35	
	156	163	164	52	203	188	162	75	34	

$$\rho(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} Q_i$$

Multi-dimensional Analysis

• Multi-dimensional side-channel analysis: process n dimensions at a time.

	0	1	2	3	4	5	6	7	8	9
Measurement 1	20	19	13	6	-2	-10	-19	-29	-39	-47
Measurement 2	22	20	15	8	-1	-9	-19	-30	-39	-48
Measurement 3	24	22	18	12	3	-6	-15	-24	-34	-43
Measurement 4	24	23	18	11	2	-6	-16	-26	-37	-45
Measurement 5	21	20	16	9	1	-6	-16	-24	-34	-43
Measurement 6	17	18	15	9	1	-6	-14	-23	-32	-40
Measurement 7	24	26	22	16	8	-2	-12	-22	-32	-42
Measurement 8	19	18	14	7	0	-8	-17	-27	-36	-43
Measurement 9	21	21	16	10	2	-6	-15	-25	-35	-44
Measurement 10	21	22	17	12	4	-4	-13	-23	-32	-42
						f (, ,			

k_i	0	1	2	3	4	5	6	7	8
	36	249	225	41	12	192	253	188	111
	185	242	181	69	164	200	179	228	29
	81	175	109	230	242	114	165	127	15
	85	109	131	209	94	106	118	152	181
	108	17	21	60	148	130	192	214	135
	162	99	82	128	20	99	139	249	140
	2	113	74	123	65	173	205	6	209
	19	203	201	6	145	62	53	92	19
	228	200	234	58	42	60	246	84	35
	156	163	164	52	203	188	162	75	34
	y								

Multi-dimensional Analysis

• Multi-dimensional side-channel analysis: process n dimensions at a time.

	0	1	2	3	4	5	6	7	8	9
Measurement 1	20	19	13	6	-2	-10	-19	-29	-39	-47
Measurement 2	22	20	15	8	-1	-9	-19	-30	-39	-48
Measurement 3	24	22	18	12	3	-6	-15	-24	-34	-43
Measurement 4	24	23	18	11	2	-6	-16	-26	-37	-45
Measurement 5	21	20	16	9	1	-6	-16	-24	-34	-43
Measurement 6	17	18	15	9	1	-6	-14	-23	-32	-40
Measurement 7	24	26	22	16	8	-2	-12	-22	-32	-42
Measurement 8	19	18	14	7	0	-8	-17	-27	-36	-43
Measurement 9	21	21	16	10	2	-6	-15	-25	-35	-44
Measurement 10	21	22	17	12	4	-4	-13	-23	-32	-42
									٦	

Summary

XXX

Direct (CPA, DPA) vs Profiling SCA

Profiling SCA

Template attacks

- Two-phase attack (learn and match).
- Theoretically, the strongest attack (no model hypeparameters).

$$x = f(d, k^*) \rightarrow \text{leakage model } (x) \rightarrow \text{check how many possible values} \rightarrow \text{number of templates}$$

(intermediate value)
ex: SubBytes output:

$$s_i = S(p_i \oplus k_i)$$

How s_i is represented by side-channel information.

If leakage model is:

- HW: 9 possible values.
- ID: **256** possible values
- MSb: 2 possible values

For each possible intermediate value (after the leakage model), a template is calculated.

Template attacks

- Feature selection (feature selection requires knowledge about the key and, sometimes, the countermeasures (values of the masks).
- Measurements need to be as synchronized as possible (i.e., aligned).

Learning (or profiling) phase

- Key is known
- Plaintexts are known
- *Masks are known
- Large set of measurements

Matching (or attack) phase

- Key is unknown
- Plaintexts are known
- *Masks are unknown
- Small set of measurements

Identical devices

Template attacks – Learning Phase

Given the array of measurements:

Select a few columns (features) that contain the more information about the intermediate x_i . (key and plaintext are known for this set of measurements)

Points-of-Interest Selection

Template attacks – Learning Phase

Given the array of measurements:

Correlation power analysis with the known key and select the columns with highest correlation values.

Points-of-Interest Selection

Template attacks – Learning/Profiling Phase

Points of interest selection returns only the columns with significant side-channel leakages with respect to the target intermediate variable s_i .

Template attacks – Learning/Profiling Phase

Points of interest selection returns only the columns with significant side-channel leakages with respect to the target intermediate variable s_i .

$$\mu$$
, σ^2 , Σ = template

- Mean μ (vector with 10 values)
- Variance σ^2 (vector with 10 values)
- Co-variance Σ (array with 10 x 10 values)

In Python:

- np.mean(t, axis=0)
- np.var(t, axis=0)
- np.cov(t)

 $\begin{array}{l} \left(\begin{array}{l} \mu_0, \sigma^2_{\ 0}, \Sigma_0 \text{ when } s_i = 0 \\ \\ \mu_1, \sigma^2_{\ 1}, \Sigma_1 \text{ when } s_i = 1 \\ \\ \mu_2, \sigma^2_{\ 2}, \Sigma_2 \text{ when } s_i = 2 \\ \\ \vdots \\ \\ \mu_8, \sigma^2_{\ 8}, \Sigma_8 \text{ when } s_i = 8 \end{array}\right)$

9 templates (for Hamming weight leakage model)

This is the output of the learning phase

Template attacks – Learning/Profiling Phase

What is a template?

The values μ , σ^2 , Σ are statistical properties about the leakages. These values can model the side-channel information with respect to the key.

If μ , σ^2 , Σ are optimal (the best possible values we can get), then these values can be used in a probability distribution function (pdf).

Pdf? A function that returns a probability: $p(x) = f(x, \mu, \sigma^2, \Sigma)$

The value p(x) is the probability that x is drawn from the same distribution defined by μ , σ^2 , Σ .

Template attacks – Matching/Attack Phase

- Collect a new measurement from the target device (the one with unknown key k_i).
- Select the same columns (points-of-interests) obtained with learning phase.

$$p_{0}(x) = f(x, \mu_{0}, \sigma^{2}_{0}, \Sigma_{0}) = 0.05$$

$$p_{1}(x) = f(x, \mu_{1}, \sigma^{2}_{1}, \Sigma_{1}) = \mathbf{0}.87$$

$$\vdots$$

$$p_{255}(x) = f(x, \mu_{255}, \sigma^{2}_{255}, \Sigma_{255}) = 0.01$$

The highest probability indicates what intermediate value s_i is being processed by the measurement x, which can lead to the key k_i :

$$s_i = S(p_i \oplus k_i) \rightarrow k_i = S^{-1}(s_i) \oplus p_i$$

Template attacks – What is the f function?

(d = number of dimensions in x)

$$p(x, \mu_c, \sigma^2_c, \Sigma_c) = \frac{1}{(2\pi)^{\frac{d}{2}}\sqrt{|\Sigma_c|}} \exp(-\frac{1}{2}(x - \mu_c)^T \Sigma_c^{-1}(x - \mu_c))$$

Multi-variate Gaussian Probability Distribution Function

Deep learning-based attacks

- Supervised and unsupervised
- Automate several steps from a profiling (template) attack
- Deep neural networks as classifiers:
 - Discriminative models (to classify the intermediate values such as SubBytes output).
 - Generative models (preprocessing).

Deep learning-based attacks

Does not require feature selection.

Deep learning-based attacks

Does not require feature selection.

Template vs deep learning-based attacks

Template attacks:

- 2-phase process (learning and matching)
- Feature selection (knowledge about the implementation is necessary (countermeasures)
- One template is calculated for each possible intermediate value in the cryptographic algorithm (e.g., each possible value for the SubBytes output operation)
- Function f is calculated from data (which makes the process deterministic).

Deep learning attacks:

- 2-phase process (training and attack)
- Feature selection is not necessary (can work with high-dimensional data)
- One DNN is trained for all possible intermediate value in the cryptographic algorithm (e.g., each possible value for the SubBytes output operation)
- Function f is learned from data (which makes the process stochastic).

Deep learning-based attacks - main challenges

- Hyperparameter tuning (difficult and time-consuming).
- Lack of data: DL requires lot of training data and SCA datasets are usually small.
- Side-channel data is very noisy and DL metrics (loss, accuracy) are not correlated with SCA metrics (key ranking, guessing entropy, success rate).

Some recommended databases/frameworks

- ASCAD: https://github.com/ANSSI-FR/ASCAD
- AISY Framework: https://github.com/AISyLab/AISY Framework

State-of-the-art research papers in SCA

- TCHES: https://tches.iacr.org/index.php/TCHES/issue/archive
- CARDIS: https://sbd-research.nl/cardis-2023/
- COSADE: https://www.cosade.org/cosade24/

Thank you!