Lista 4

Arruti, Sergio, Jesús

- **Ej 1.** Sean $M \in Mod(R)$ y $X \subseteq M$. Considere el morfismo de R-módulos $\overline{\varepsilon}_{X,M}: F(X) \longrightarrow M$, dado por $\overline{\varepsilon}_{X,M}\left(\left\{t_x\right\}_{x \in X}\right) = \Sigma_{x \in X}t_xx$. Note que la composición $X \xrightarrow{\varepsilon_x} F(X) \xrightarrow{\overline{\varepsilon}_{X,M}} M$ coincide con la inclusión $X \subseteq M$. Pruebe que:
 - a) $im(\overline{\varepsilon}_{X,M}) = \langle x \rangle_R$
 - b) $M = \langle x \rangle_R \Leftrightarrow \overline{\varepsilon}_{X,M}$ es un epimorfismo.
 - c) X es R-linealmente independiente $\Leftrightarrow \overline{\varepsilon}_{X,M}$ es un monomorfismo.
 - d) X es una R-base $\Leftrightarrow \overline{\varepsilon}_{X,M}$ es un isomorfismo.

Demostración. a Primero, como $\langle x \rangle_R$ es un submódulo de M, se tiene que $im(\overline{\varepsilon}_{X,M}) \subseteq \langle x \rangle_R$. Por otro lado, sea $m \in \langle x \rangle_R$. Entonces m tiene una descomposición $m = \Sigma_{x \in X} t_x x$, donde $t_x \in F(X)$. En consecuencia, $\overline{\varepsilon}_{X,M} (\{t_x\}_{x \in X}) = \Sigma_{x \in X} t_x x = m$. $\therefore im(\overline{\varepsilon}_{X,M}) = \langle x \rangle_R$

- (b) Este inciso se deduce del anteior. $M=\langle x\rangle_R \Leftrightarrow M=im\left(\overline{\varepsilon}_{X,M}\right) \Leftrightarrow \overline{\varepsilon}_{X,M}$ es un epimorfismo.
- (c) \Rightarrow Suponga que $\{t_x\}_{x\in X}\in Ker(\overline{\varepsilon}_{X,M})$. De modo que $\Sigma_{x\in X}t_xx=\overline{\varepsilon}_{X,M}\left(\{t_x\}_{x\in X}\right)=0$. Dado que X es R-linealmente independiente, para cada $x\in X, t_x=0$. Por tanto, $Ker(\overline{\varepsilon}_{X,M})=0$. $\therefore \overline{\varepsilon}_{X,M}$ es monomorfismo.
- \leftarrow Sean $x_1,...,x_n \in X$ y $r_{x_1},...r_{x_n} \in R$ tales que $\sum_{k=1}^n r_{x_k} x_k = 0$. Completamos a un elemento de F(X) como $r_x = 0$, con $x \notin \{x_1,...,x_n\}$. Con lo cual tenemos que:

$$\overline{\varepsilon}_{X,M} \left(\{ r_x \}_{x \in X} \right) = \sum_{x \in X} r_x x$$

$$= \sum_{k=1}^n r_{x_k} x_k$$

$$= 0$$

Entonces $\{r\}$ $xX \in Ker(\overline{\varepsilon}_{X,M}) = 0$. Por tanto, $r_{x_1} = ... = r_{x_n} = 0$. $\therefore X$ es R-linealmente independiente.

(d) Este resultado se concluye de los anteriores. En efecto,

 $\overline{\varepsilon}_{X,M}$ es un isomorfismo $\Leftrightarrow \overline{\varepsilon}_{X,M}$ es un epimorfismo y monomorfismo $\Leftrightarrow M = im(\overline{\varepsilon}_{X,M})$ y X es R - l.i. $\Leftrightarrow X$ es una R - base.

Ej 2. Sean $\psi: B' \longrightarrow B$ un isomorfismo y $f: B \longrightarrow C$ es Mod(R). Pruebe que: Si f es minimal a derecha, entonces $f \circ \psi: B' \longrightarrow C$ es minimal a derecha.

Demostración. Sea $g: f \circ \psi \longrightarrow f \circ \psi$ un morfismo en Mod(R)/C. Entonces, por el **ejercicio 50.**, $g: B' \longrightarrow B'$ es un homomorfismo en Mod(R). Más aún, $\psi \circ g: B' \longrightarrow B$ también es un homomorfismo. Dado que f es minimal a derecha, se tiene que $\psi \circ g$ es un isomorfismo en Mod(R). En virtud de que ψ es un isomorfismo, $g: B' \longrightarrow B'$ es un isomorfismo en Mod(R). Aplicando el **ejercicio 50.**, se tiene que $g: f \circ \psi \longrightarrow f \circ \psi$ es un isomorfismo. $\therefore f \circ \psi$ es minimal a derecha.

- **Ej 3.** Sea $\eta: 0 \longrightarrow M_1 \xrightarrow{f_1} M \xrightarrow{g_2} M_2 \longrightarrow 0$ una sucesión en Mod(R). Pruebe que las siguientes condiciones son equivalentes
 - a) η es una sucesión que se parte.
 - b) Existe una sucesión $0 \longrightarrow M_2 \xrightarrow{f_2} M \xrightarrow{g_1} M_1 \longrightarrow 0$ en Mod(R) tal que $g_1f_1 = 1_{M_1}, g_2f_2 = 1_{M_2}, g_2f_1 = g_1f_2 = 0$ y $g_1f_1 + g_2f_2 = 1_M$.
 - c) Existe un isomorfismo $h:M_1\times M_2\longrightarrow M$ tal que el siguiente diagrama conmuta

$$0 \longrightarrow M_1 \xrightarrow{i_1} M_1 \times M_2 \xrightarrow{\pi_2} M_2 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow h \qquad \qquad \downarrow$$

$$0 \longrightarrow M_1 \xrightarrow{f_1} M \xrightarrow{g_2} M_2 \longrightarrow 0$$

Demostraci'on. a) \Rightarrow c) Dado que η es una sucesi\'on que se parte, existe un morfismo de R-m\'odulos, $f_2: M_2 \longrightarrow M$, tal que $g_2f_2 = 1_{M_2}$. Luego, g_2, f_2 inducen un isomorfismo $h: M_1 \times M_2 \longrightarrow M$. En efecto, definimos h como el morfismo $h(m_1, m_2) = f_1(m_1) + f_2(m_2)$.

En primer lugar, veremos que h es un monomorfismo. En este sentido, sea $(m_1, m_2) \in Ker(h)$, entonces $0 = h(m_1, m_2) = f_1(m_1) + f_2(m_2)$. En consecuencia, $f_2(m_2) = -f_1(m_1) \in Im(f_1) = Ker(g_2)$. Así,

$$m_2 = g_2 f_2 (m_2) = 0$$

Por consiguiente, $f_1(m_1) = h(m_1, m_2) = 0$. Dado que f_1 es mono, $m_1 = 0$. Por lo que h es mono.

Ahora, h es epi. Sea $m \in M$. Entonces

$$g_2(m - f_2g_2(m)) = g_2(m) - g_2(m) = 0$$

De esta forma, $m - f_2g_2(m) \in Im(f_1)$. Ésto aunado a la exactitud de η garantiza la existencia de un elemento $x \in M_1$ tal que $f_1(x) = m - f_2g_2(m)$, con lo cual,

$$h(x, g_2(m)) = f_1(x) + f_2(g_2(m))$$

= m

Una vez demostrado que h es un isomorfismo, podemos proceder a mostrar que el diagrama presentado anteriormente conmuta bajo este isomorfismo. Primero, note que para $m \in M_1$ se tiene que

$$hi_1(m) = h(m, 0)$$

= $f_1(m)$
= $f_11_{M_1}(m)$

Por el otro lado, dado $(m_1, m_2) \in M_1 \times M_2$, se satisface que

$$\begin{split} g_2 h\left(m_1, m_2\right) &= g_2 \left(f_1 \left(m_1\right) + f_2 \left(m_2\right)\right) \\ &= g_2 f_1 \left(m_1\right) + g_2 f_2 \left(m_2\right) \\ &= 0 + m_2 \\ &= m_2 \\ &= 1_{M_2} \pi_2 \left(m_1, m_2\right) \end{split}$$

Luego, se satisfacen las siguientes igualdades

$$\begin{split} g_1f_1 &= g_1hi_1 = \pi_1h^{-1}hi_1 = \pi_1i_1 = 1_{M_1} \\ g_2f_2 &= g_2hi_2 = \pi_2i_2 = 1_{M_2} \\ g_1f_2 &= g_1hi_2 = \pi_1h^{-1}hi_2 = \pi_1i_2 = 0 \\ g_2f_1 &= g_2hi_1 = \pi_2h^{-1}hi_1 = \pi_2i_1 = 0 \\ g_1f_1 + g_2f_2 &= 1_{M_1} + 1_{M_2} = 1_{M_1 \times M_2} = 1_M \end{split}$$

 $b) \Rightarrow a$ Por hipótesis, existe un morfismo de R-módulos $f_2: M_2 \longrightarrow M$ tal que $g_2f_2 = 1_{M_2}$. Por tanto, η es una sucesión que se parte.

Ej 4. Sean $\varphi_i: A_i \longrightarrow B_i$, con i = 1, 2, minimales a derecha en Mod(R). Pruebe que $\varphi_1 \coprod \varphi_2 : A_1 \coprod A_2 \longrightarrow B_1 \coprod B_2$ es minimal a derecha.

Demostración. Sea $\psi: \varphi_1 \coprod \varphi_2 \longrightarrow \varphi_1 \coprod \varphi_2$. Entonces ψ es de la forma $\psi = \psi_1 \coprod \psi_2$, con $\psi_i : A_i \longrightarrow B_i$, i = 1, 2. En efecto, si denotamos por $\eta_i: A_1 \coprod A_2 \longrightarrow B_i, i = 1, 2$, a la proyección canónica, entonces $\psi = \eta_1 \psi \prod \eta_2 \psi.$

Suponga, así, que $\psi = \psi_1 \coprod \psi_2$. Luego, $\psi_i \in Hom(\varphi_i, \varphi_i)$, con i = 1, 2. Por la minimalidad a derecha de cada φ_1 , se satisface que ψ_1 y ψ_2 son isomorfismos. Por lo que ψ es un isomorfismo.

 $\therefore \varphi_1 \coprod \varphi_2$ es minimal a derecha.

- **Ej 5.** Sea $X \in {}_{R}Mod_{S}$. Pruebe que:
 - a) $Hom_{R}(-,X):Mod\left(R\right)\longrightarrow Mod\left(S^{op}\right)$ es un funtor contravariante
 - b) Para $\{M_i\}_{i=1}^n$ en Mod(R) se tiene que

$$Hom_R\left(\prod_{i=1}^n M_i, {_RX_S}\right) = \prod_{i=1}^n Hom_R\left({_RM_i, {_RX_S}}\right)$$

en $Mod(S^{op})$

Demostración. (a) Primeramente, ya sabemos que $Hom_R(-,X)$ es un funtor contravariante. Entonces bastará probar que éste es aditivo.

Sean $M, N \in Mod(R)$. Veremos que $\varphi = Hom_R(-, X)$, con

$$\varphi: Hom_R(M, N) \longrightarrow Hom_{S^{op}}(Hom_R(N, X), Hom_R(M, X)),$$

es un isomorfismo.

Sea $f \in Hom_R(M, N)$. Entonces $\varphi(f) Hom_{S^{op}}(Hom_R(N, X), Hom_R(M, X))$ es el morfismo $\varphi(f)(g) = g \circ f$. De esta manera, φ es un morfismo. En efecto, sean $f, g \in Hom_R(M, N), r \in R$ y $h \in Hom_R(N, X)$, entonces

$$\varphi(f+rg)(h) = (f+rg) \circ h$$

$$= f \circ h + (rg) \circ h$$

$$= f \circ h + r(g \circ h)$$

$$= \varphi(f)(h) + r\varphi(g)(h)$$

$$= (\varphi(f) + r\varphi(g))(h)$$

Por tanto, φ es morfismo. $\therefore Hom_R(-, X)$ es aditivo.

[b] Definimos
$$\rho: Hom_R\left(\coprod_{i=1}^n M_i, {}_RX_S\right) \longrightarrow \coprod_{i=1}^n Hom_R\left({}_RM_i, {}_RX_S\right)$$
 como $\rho\left(\varphi\right) = \left(\varphi\iota_i\right)_{i=1}^n$.

Veamos que ρ es un morfismo en $Mod(S^{op})$. Para dicho fin, considere $\varphi, \psi \in Hom_R\left(\coprod_{i=1}^n M_i, {}_RX_S\right)$ y $s \in S$.

$$\begin{split} \rho\left(\varphi + \psi s\right) &= \left(\left(\varphi + \psi s\right)\iota_{i}\right)_{i=1}^{n} \\ &= \left(\varphi\iota_{i}\right)_{i=1}^{n} + \left(\left(\psi s\right)\iota_{i}\right)_{i=1}^{n} \\ &= \left(\varphi\iota_{i}\right)_{i=1}^{n} + \left(\psi\iota_{i}\right)_{i=1}^{n} s \\ &= \rho\left(\varphi\right) + \rho\left(\psi\right) s \end{split}$$

Por otro lado, ρ es un inyectivo. En efecto, si $\rho\left(\varphi\right)=0$, entonces se tiene que $\left(\varphi\iota_{i}\right)_{i=1}^{n}=0$. Luego, $\varphi=0$. Por tanto $Ker\left(\rho\right)=0$.

Ahora, sea $(\varphi_i)_{i=1}^n \in \coprod_{i=1}^n Hom_R(_RM_i,_RX_S)$. Entonces cada φ_i es un morfismo $\varphi_i: M_i \longrightarrow X$. Así, por la propiedad universal del coproducto, existe $\varphi: \coprod_{i=1}^n M_i \longrightarrow X$ tal que $\varphi\iota_i = \varphi_i$. De esta manera, $\rho(\varphi) = (\varphi_i)_{i=1}^n$. Por tanto, ρ es un isomorfismo.

$$\therefore Hom_R\left(\prod_{i=1}^n M_i, {_RX_S}\right) = \prod_{i=1}^n Hom_R\left({_RM_i, {_RX_S}}\right) \qquad \Box$$

Ej 6. Sea $M \in Mod(R)$. Pruebe que:

M es proyectivo y f.g. \Leftrightarrow existe $n\in\mathbb{N}$ tal que M es isomorfo a un sumando directo de $_RR^n.$

Demostración. \Longrightarrow) Puesto que M es f.g., existe $n \in \mathbb{N}$ tal que la siguiente sucesión en Mod(R) $0 \longrightarrow Ker(f) \longrightarrow R^n \stackrel{f}{\longrightarrow} M \longrightarrow 0$ es exacta. Ésta a su vez se parte, toda vez que M es proyectivo. $\therefore M$ es sumando directo de R^n .

Ej 7. Sea R un anillo no trivial. Pruebe que:

R es semisimple y conmutativo $\Leftrightarrow R \simeq \bigvee_{i=1}^{t} K_i$ como anillos, donde K_i es un campo $\forall i \in [1, t]$

Demostración. \subseteq Dado que cada K_i es un campo y $R \simeq \underset{i=1}{\overset{t}{\swarrow}} K_i$, se satisface que R es semisimple y conmutativo.

 \Longrightarrow) En virtud del teorema de **Wedderburn-Artin**, R es isomorfo a \bowtie $Mat_{n_i \times n_i}(D_i)$, con $n_i \in \mathbb{N}$ y D_i un anillo con división. Ahora, por la conmutatividad de R, la única posibilidad es que $n_i = 1$ y D_i sea conmutativo, para $i \in [1, t]$.

$$\therefore R \simeq \bigvee_{i=1}^{t} K_i, \text{ con } K_i \text{ un campo}, \forall i \in [1, t]$$