Dérivées et primitives : exercices

Exercice 1

Déterminer la dérivée des fonctions suivantes :

- 1. $f(x) = \frac{2}{(x+1)^3}$ et indiquer où cette fonction est dérivable.
- 2. $g(x) = \cos(x)^3$.
- 3. $h(x) = (2x^2 3x + 7)^3$

Exercice 2

Déterminer :

- 1. les primitives de $x^2 \frac{3}{2}x + 4$.
- 2. les primitives de $\frac{1}{(3x+5)^3}$.
- 3. les primitives de $3\sin(2x+\frac{\pi}{4})$.
- 4. les primitives de $\sin(x)\cos(x)^3$.
- 5. la primitive de $\frac{1}{(4x+3)^2}$ qui s'annule en 0 ; donner son ensemble de dérivation.
- 6. la primitive de $6x^2+\frac{4}{x^2}$ qui vaut 1 en 1; donner son ensemble de dérivation.

Exercice 3

Dans un circuit, un générateur de force éléctromotrice E=15V et de resistance interne $r=10\Omega$, est branché en série avec une résistance variable R, en ohm.

1. La puissance, en watt, dissipée dans la résistance R est donnée par la relation $P=\frac{225R}{(10+R)^2}$. Calculer P pour R=30 Ohm.

On considère la fonction f définie sur l'intervalle [0;40] par $f(x)=\frac{225x}{(10+x)^2}$.

- 2. Calculer f'(x)
- 3. Montrer que sur l'intervalle [0;40], f'(x) a le signe de 10-x.
- 4. Etablir le tableau de variations de f sur [0;40]
- 5. En utilisant le tableau de variation, indiquer combien de solution possède l'équation f(x)=2. On peut aussi s'aider de la calculatrice.

En s'aidant de ce qu'on vient de faire sur la fonction f, répondre aux question suivantes :

- 6. Indiquer en combien de valeurs de R la puissance P vaut 4 W.
- 7. Indiquer pour quelle valeur de ${\it R}$ la puissance dissipée est maximale.
- 8. Donner la valeur de cette puissance maximale.