from tensorflow.keras import layers from tensorflow.keras import models from IPython import display seed = 42 tf.random.set_seed(seed) np.random.seed(seed) In [59]: # Download Data DATASET_PATH = 'voice_data/mini_speech_commands' data_dir = pathlib.path(DATASET_PATH) if not_data_dir_exists():
<pre>if not data_dir.exists(): tf.keras.utils.get_file('mini_speech_commands.zip', origin="http://storage.googleapis.com/download.tensorflow.org/data/mini_speech_commands.zip", extract=True, extract=True, cache_dir='.', cache_subdir='voice_data') In [60]: commands = np.array(tf.io.gfile.listdir(str(data_dir))) commands = commands[(commands != 'README.md') & (commands != '.DS_store')] In [61]: # Load Data train_ds, val_ds = tf.keras.utils.audio_dataset_from_directory(directory=data_dir,</pre>
<pre>batch_size=64, validation_split=0.2, secd=0, output_sequence_length=16000, subset='both') label_names = np.array(train_ds.class_names) print() print("label_names:", label_names) Found 8000 files belonging to 8 classes. Using 6400 files for training. Using 1600 files for validation.</pre>
label names: ['down' 'go' 'left' 'no' 'right' 'stop' 'up' 'yes'] In [62]: # Reduce audio channels to one def squeeze(audio, labels): audio = tf.squeeze(audio, axis=-1) return audio, labels train_ds = train_ds.map(squeeze, tf.data.AUTOTUNE) val_ds = val_ds.map(squeeze, tf.data.AUTOTUNE) In [63]: # Split val data set into test and val set test_ds = val_ds.shard(num_shards=2, index=0) val_ds = val_ds.shard(num_shards=2, index=0) val_ds = val_ds.shard(num_shards=2, index=0) val_ds = val_ds.shard(num_shards=2, index=0)
<pre>In [64]: # Plot a few audio waveforms for example_audio, example_labels in train_ds.take(1): print(example_audio.shape) print(example_labels.shape) label_names[[1,1,3,6]] plt.figure(figsize=(16, 10)) rows = 3 cols = 3 n = rows * cols for i in range(n): plt.subplot(rows, cols, i+1)</pre>
audio_signal = example_audio[i] plt.plc(audio_signal) plt.title(label_names[example_labels[i]]) plt.yticks(np.arange(-1.2, 1.2, 0.2)) plt.ylim([-1.1, 1.1]) (64, 16000) (64,) go no left 1.0 0.8 0.8 0.0 0.8 0.8 0.8 0.8 0.8 0.8 0
0.4 0.2 0.0 -0.2 -0.4 -0.6 -0.8 -1.0 0 2500 5000 7500 10000 12500 15000 0 2500 5000 7500 10000 12500 15000 0 2500 5000 7500 10000 12500 15000 0 2500 5000 7500 10000 12500 15000 0 2500 5000 7500 10000 12500 15000 0 1000 12500 15000 0 1000 12500 15000
08 06 04 02 00 -02 -04 -06 -08 -10
0 2500 5000 7500 10000 12500 15000
-1.0 -1.0
<pre># shape ('batch_size', 'height', 'width', 'channels'). spectrogram = spectrogram[, tf.newaxis] return spectrogram for i in range(3): label = label_names[example_labels[i]] waveform = example_audio[i] spectrogram = get_spectrogram(waveform) print('tabel'; ' label) print('waveform shape:', waveform.shape) print('Spectrogram shape:', spectrogram.shape) print('Spectrogram shape:', spectrogram.shape) print('Audio playback') display.display(display.Audio(waveform, rate=16000))</pre>
Label: go Waveform shape: (16000,) Spectrogram shape: (124, 129, 1) Audio playback • 0:00/0:01 •• •• •• •• Label: no Waveform shape: (16000,) Spectrogram shape: (124, 129, 1) Audio playback
Label: left Waveform shape: (16000,) Spectrogram shape: (124, 129, 1) Audio playback • 0:00/0:01 •• •• •• • In [66]: # Function to plot Spectrogram ax):
<pre>if len(spectrogram.shape) > 2: assert len(spectrogram.shape) == 3 spectrogram = np.squeeze(spectrogram, axis=-1) # Convert the frequencies to log scale and transpose, so that the time is # represented on the x-axis (columns). # Add an epsilon to avoid taking a log of zero. log_spec = np.log(spectrogram.T + np.finfo(float).eps) height = log_spec.shape[0] width = log_spec.shape[1] X = np.linspace(0, np.size(spectrogram), num=width, dtype=int) Y = range(height) ax.pcolormesh(X, Y, log_spec)</pre>
<pre>In [67]: fig, axes = plt.subplots(2, figsize=(12, 8)) timescale = np.arange(waveform.shape[0]) axes[0].plot(timescale, waveform.numpy()) axes[0].set_title('Waveform') axes[0].set_xlim([0, ideow]) plot_spectrogram(spectrogram.numpy(), axes[1]) axes[1].set_title('Spectrogram') plt.supritle(label.title()) plt.show() Left</pre>
0.3 0.2 0.1 0.0 -0.1 -0.2
-0.3 -0.4 -0.5 0 2000 4000 6000 8000 10000 12000 14000 16000 Spectrogram
80 60 20 0 2000 4000 6000 8000 10000 12000 14000 16000
In [68]: # Convert all Waveform dataset to Spectrogram def make_spec_ds(ds): return ds.map(
<pre>break rows = 3 cols = 3 n = rows*cols fig, axes = plt.subplots(rows, cols, figsize=(16, 9)) for i in range(n): r = i // cols c = i % cols ax = axes[r][c] plot_spectrogram(example_spectrograms[i].numpy(), ax) ax.set_title(label_names[example_spect_labels[i].numpy()])</pre>
plt.show() no up yes 120 120 120 120 120 120 120 120 120 120
0 2500 5000 7500 10000 12500 15000 0 0 2500 5000 7500 10000 12500 15000 0 0 2500 5000 7500 10000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500 15000 12500
20
20
<pre>num_labels = len(label_names) # Instantiate the `tf.keras.layers.Normalization` layer. norm_layer = layers.Normalization() # Fit the state of the layer to the spectrograms # with `Normalization.adapt`. norm_layer.adapt(data=train_spectrogram_ds.map(map_func=lambda spec, label: spec)) model = models.Sequential([layers.Input(shape=input_shape), # Downsample the input. layers.Resizing(32, 32), # Normalize. norm_layer,</pre>
<pre># We have an image so we can use convolution layers.Conv2D(32, 3, activation='relu'), layers.Conv2D(64, 3, activation='relu'), layers.MaxPooling2D(), layers.Dropout(0.25), layers.Flatten(), layers.Dense(128, activation='relu'), layers.Dense(128, activation='relu'), layers.Dense(num_labels),]) model.summary()</pre> Input shape: (124, 129, 1)
Model: "sequential_2" Layer (type)
g2D) dropout_4 (Dropout) (None, 14, 14, 64) 0 flatten_2 (Flatten) (None, 12544) 0 dense_4 (Dense) (None, 128) 1605760 dropout_5 (Dropout) (None, 128) 0 dense_5 (Dense) (None, 8) 1032 Total params: 1625611 (6.20 MB)
Trainable params: 1625608 (6.26 MB) Non-trainable params: 3 (16.00 Byte) In [71]: # Compile and train model model.compile(optimizer=tf.keras.optimizers.Adam(), loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'],) EPOCHS = 10 history = model.fit(train_spectrogram_ds,
validation_data=val_spectrogram_ds,
100/100 [===================================
<pre>plt.figure(figsize=(16,6)) plt.subplot(1,2,1) plt.plot(history.epoch, metrics['loss'], metrics['val_loss']) plt.legend(['loss', 'val_loss']) plt.vlim([0, max(plt.ylim())]) plt.xlabel('Epoch') plt.ylabel('Loss [CrossEntropy]') plt.subplot(1,2,2) plt.plot(history.epoch, 100*np.array(metrics['accuracy']), 100*np.array(metrics['val_accuracy'])) plt.legend(['accuracy', 'val_accuracy']) plt.ylim([0, 100]) plt.xlabel('Epoch') plt.ylim([0, 100]) plt.xlabel('Accuracy [%]')</pre>
Dut[72]: Text(0, 0.5, 'Accuracy [%]') 1.6
10 Formoof [36]
02 00 0 2 4 6 8 Epoch In [73]: # Evaluate Model model.evaluate(test_spectrogram_ds, return_dict=True) 13/13 [====================================
<pre>In [74]: # Create Confusion Matrix y_pred = model.predict(test_spectrogram_ds) y_pred = tf.argmax(y_pred, axis=1) y_true = tf.concat(list(test_spectrogram_ds.map(lambda s,lab: lab)), axis=0) confusion_mtx = tf.math.confusion_matrix(y_true, y_pred) plt.figure(figsize=(10, 8)) sns.heatmap(confusion_mtx,</pre>
Q 4 7 3 89 1 0 1 0 Image: Control of the control of
6 0 3 3 1 2 93 9 0 9 0 2 2 0 1 4 94 0 0 0 7 6 3 1 1 93 down go left no right stop up yes
down go left no right stop up yes Prediction In [86]: # Let's see how model labels a new instance x = data_dir/'no/01bb6a2a_nohash_e.wav' x = tf.io.read_file(str(x)) x, sample_rate = tf.audio.decode_wav(x, desired_channels=1, desired_samples=16000,) x = tf.squeeze(x, axis=-1) waveform = x x = get_spectrogram(x) x = x[tf.newaxis,] prediction = model(x) x.labels = label_names
06 05 04 03
0.1 0.0 down go left no right stop up yes 0.00/0.01
<pre>definit(self, model): self.model = model # # Accept either a string-filename or a batch of waveforms. # # YOu could add additional signatures for a single wave, or a ragged-batch. # selfcallget_concrete_function(</pre>
<pre># # If they pass a string, load the file and decode it. # If x.dtype == tf. string: # x = tf.io.read_file(x) # x = tf.io.dto.decode_wav(x, desired_channels=1, desired_samples=16000,) # x = tf.squeeze(x, axis=-1) # x = x[tf.nowaxis, :] # # x = get_spectrogram(x) # result = self.model(x, training=False) # # Class_ids = tf.argmax(result, axis=-1) # class_names = tf.gather(label_names, class_ids) # return {'predictions':result, # 'class_lds: class_ids, # 'class_names}</pre>
<pre># export = ExportModel(model) # export(tf.constant(str(data_dir/'no/01bb6a2a_nohash_0.wav'))) # tf.saved_model.save(export, "saved") # imported = tf.saved_model.load("saved") # imported(waveform[tf.newaxis, :]) # model.save('saved_model') # INFO:tensorflow:Assets written to: saved_model\assets INFO:tensorflow:Assets written to: saved_model\assets</pre>
<pre>def zip_directory(directory_path, output_path): with zipfile.ZipFile(output_path, 'w', zipfile.ZIP_DEFLATED) as zipf: for root, _, files in os.walk(directory_path): for file in files:</pre>
<pre>content [81]: loaded_model = models.load_model("saved_model") prediction = loaded_model(x) x_labels = ['no', 'yes', 'down', 'go', 'left', 'up', 'right', 'stop'] plt.bar(x_labels, tf.nn.softmax(prediction[0])) plt.title('No') plt.show() display.ddisplay(display.Audio(waveform, rate=16000)) No 0.8</pre>
0.7 0.6 0.5 0.4 0.3
0.1 0.0 0.00 / 0.01 0.00 / 0.01 No. 1821; sample file = data dir/'no/91bb6a2a nohash 9.way'
<pre>in [82]: sample_file = data_dir/'no/0ibb6a2a_nohash_0.wav' obj = wave.open(str(sample_file), 'rb') n_samples = obj.getnframes() signal_wave = obj.redframes(m_samples) signal_array = np.frombuffer(signal_wave, dtype=np.int16) obj.close() print(signal_array.shape) (16000,) In [83]: waveform = signal_array / 32768 waveform = tf.convert_to_tensor(waveform, dtype=tf.float32) spec = get_spectrogram(waveform)</pre>
spec = get_spectrogram(waveform) spec = tf.expand_dims(spec, 0) prediction = loaded_model(spec) print(prediction) label_pred = np.argmax(prediction, axis=1) print(commands[label_pred[0]]) plt.tar(x_labels, tf.nn.softmax(prediction[0])) plt.title("No") plt.show() tf.Tensor([[-0.05990982 2.2682161 -1.2018216 3.627874 -3.2565203 -2.4670265 -2.0012596 -1.9084055]], shape=(1, 8), dtype=float32)
-2.0012596 -1.9084055]], shape=(1, 8), dtype=float32) no

In [58]: # *Imports*

import os

import pathlib
import zipfile
import wave

import numpy as np
import seaborn as sns
import tensorflow as tf

import matplotlib.pyplot as plt

