

Moltiplicare numeri in complemento a 2

Bisogna usare la rappresentazione in complemento a due per i prodotti parziali:

1001 (9)	1001 (-7)
<u>×0011</u> (3)	<u>×0011</u> (3)
00001001 1001 × 2°	$11111001 (-7) \times 2^{0} = (-7)$
<u>00010010</u> 1001 × 2 ¹	$11110010 (-7) \times 2^{1} = (-14)$
00011011 (27)	11101011 (-21)

- (a) Unsigned integers
- (b) Twos complement integers
- Problemi anche se moltiplicatore negativo
- Una possibile soluzione:
 - 1. convertire I fattori negativi in numeri positivi
 - 2. effettuare la moltiplicazione
 - 3. se necessario (-+ o +-), cambiare di segno il risultato
- Soluzione utilizzata: algoritmo di Booth (più veloce)

Divisione

- Più complessa della moltiplicazione
- Basata sugli stessi principi generali
- Utilizza traslazioni, somme e sottrazioni ripetute

Numeri reali

- Numeri con frazioni
- Posso essere rappresentati anche in binario
 - Es.: $1001.1010 = 2^4 + 2^0 + 2^{-1} + 2^{-3} = 9.625$
- Quante cifre dopo la virgola?
- Se numero fisso, molto limitato
- Se mobile, dobbiamo saper specificare dove si trova la virgola

Notazione scientifica (decimale)

- 976.000.000.000.000 viene rappresentato come 9,76 x 10¹⁴
- 0,0000000000000976 viene rappresentato come 9,76 x 10⁻¹⁴
- Vantaggio: numeri molto grandi e molto piccoli con poche cifre
- Lo stesso per numeri binari: +/- S x B+/-E
 - S = significando o mantissa (come 976)
 - Si assume la virgola dopo una cifra della mantissa
 - B = base

Floating Point

egno	F
3it di se	Esponente Polarizzato

Significando o Mantissa

- Numero rappresentato:
 - +/- 1.mantissa x 2^{esponente}
- Esponente polarizzato: una valore fisso viene sottratto per ottenere il vero esponente k bit per esponente polarizzato → 2^{k-1} -1

$$e = ep - (2^{k-1} - 1)$$

Es.: 8 bit → valori tra 0 e 255 → 2⁷-1=127 → esponente da -127 a +128

Normalizzazione

- I numeri in virgola mobile di solito sono normalizzati
- L'esponente è aggiustato in modo che il bit più significativo della mantissa sia 1
- Dato che è sempre 1 non c'è bisogno di specificarlo
- Numero: +/- 1.mantissa x 2^{esponente}
- L'1 non viene rappresentato nei bit a disposizione
 → se 23 bit per la mantissa, posso rappresentare numeri in [1,2)
- Se non normalizzato, aggiusto l'esponente
 - Es.: $0.1 \times 2^0 = 1.0 \times 2^{-1}$

Numeri rappresentabili (32 bit)

- Complemento a due: da -2³¹ a + 2³¹ -1
- Virgola mobile (con 8 bit per esponente):

Esponente: da -127 (tutti 0) a 128 (tutti 1)

Mantissa: 1.0 (tutti 0) a 2-2-23 (tutti 1, cioè 1.

1...1, cioè 1 + 2^{-1} + 2^{-2} + ... + 2^{-23} = $2-2^{-23}$)

Negativi: Da -2¹²⁸ x (2-2⁻²³) a -2⁻¹²⁷

Positivi: da 2⁻¹²⁷ a 2¹²⁸ x (2-2⁻²³)

Numeri non rappresentabili (32 bit)

- Negativi minori di -2¹²⁸ x (2-2⁻²³) [overflow negativo]
- Negativi maggiori di -2-127 [underflow negativo]
- Positivi minori di 2-127 [underflow positivo]
- Positivi maggiori di 2¹²⁸ x (2-2⁻²³) [overflow positivo]
- Non c'è una rappresentazione per lo 0
- I numeri positivi e negativi molto piccoli (valore assoluto minore di 2⁻¹²⁷) possono essere approssimati con lo 0
- Non rappresentiamo più numeri di 2³², ma li abbiamo divisi in modo diverso tra positivi e negativi
- I numeri rappresentati non sono equidistanti tra loro: più densi vicino allo 0 (errori di arrotondamento)

Densità dei numeri in virgola mobile

Precisione e densità

- Nell'esempio, 8 bit per esponente e 23 bit per mantissa
- Se più bit per l'esponente (e meno per la mantissa), espandiamo l'intervallo rappresentabile, ma i numeri sono più distanti tra loro → minore precisione
- La precisione aumenta solo aumentando il numero dei bit
- Di solito, precisione singola (32 bit) o doppia (64 bit)

Densità

- Numero (positivo) = 1,m x 2^e
- Fissato e, i numeri rappresentabili sono tra 2^e (mantissa tutta a 0) e 2^e x (2-2⁻²³)
 - Quanti numeri? 2²³
- Consideriamo adesso e+1 → i numeri rappresentabili sono tra 2x2e e 2x2e x (2-2-23)
 - Intervallo grande il doppio
 - Quanti numeri? Sempre 2²³

Esempio con 4 bit (+ segno)

fe (due bit per esponente), ab (due bit per mantissa)

Numero= $2^{fx2+e-1}x(1+ax2^{-1}+bx2^{-2})$

f	е	а	b	numero	
0	0	0	0	0.5	
0	0	0	1	0.625	
0	0	1	0	0.75	
0	0	1	1	0.875	
0	1	0	0	1	
0	1	0	1	1.25	
0	1	1	0	1.5	
0	1	1	1	1.75	
1	0	0	0	2	
1	0	0	1	2.5	
1	0	1	0	3	
1	0	0	1	3.5	
1	1	0	0	4	
1	1	0	1	5	
1	1	1	0	6	
1	1	1	1	7	

Standard IEEE 754

- Standard per numeri in virgola mobile
- Formato singolo a 32 bit e doppio a 64 bit
- Esponente con 8 e 11 bit
- 1 implicito a sinistra della virgola
- Formati estesi (più bit per mantissa ed esponente) per risultati intermedi
 - Più precisi → minore possibilità di risultato finale con eccessivo arrotondamento

Numeri rappresentati (formato singolo)

- Alcune combinazioni (es.: valori estremi dell'esponente) sono interpretate in modo speciale
- Esponente polarizzato da 1 a 254 (cioè esponente da -126 a +127): numeri normalizzati non nulli in virgola mobile → +/- 2e-127 x 1.f
- Esponente 0, mantissa (frazione) 0: rappresenta 0 positivo e negativo
- Esponente con tutti 1, mantissa 0: infinito positivo e negativo
 - Overflow può essere errore o dare il valore infinito come risultato
- Esponente 0, mantissa non nulla: numero denormalizzato
 - Bit a sinistra della virgola: 0, vero esponente: -126
 - Positivo o negativo
 - numero: 2⁻¹²⁶ x 0.f
- Esponente tutti 1, mantissa non nulla: errore (Not A Number)

Aritmetica in virgola mobile

- Allineare gli operandi aggiustando gli esponenti (per somma e sottrazione)
- Possibili eccezioni del risultato:
 - Overflow dell'esponente: esponente positivo che è più grande del massimo
 - Underflow dell'esponente: esponente negativo minore del minimo valore (numero troppo piccolo)
 - Underflow della mantissa: mantissa 0 (allineando, gli 1 sono usciti fuori)
 - Overflow della mantissa: riporto del bit più significativo

Somma e sottrazione

- Quattro fasi:
 - Controllo dello zero
 - Se uno dei due è 0, il risultato è l'altro numero
 - Allineamento delle mantisse
 - Rendere uguali gli esponenti
 - Somma o sottrazione delle mantisse
 - Normalizzazione del risultato
 - Traslare a sinistra finché la cifra più significativa è diversa da 0

Allineamento delle mantisse

- Esempio (in base 10):
- (123 x 10°) + (456 x 10⁻²)
- 123 x 4,56 → Non possiamo semplicemente sommare 123 a 456: il 4 deve essere allineato sotto il 3
- Nuova rappresentazione: (123 x 10°) + (4,56 x 10°)
- Adesso posso sommare le mantisse (123 + 4,56 = 127,56)
- Risultato: 127,56 x 10⁰

Moltiplicazione e divisione

- Controllo dello zero
- Somma degli esponenti
- Sottrazione polarizzazione
- Moltiplicazione/divisione operandi
- Normalizzazione
- Arrotondamento

Precisione del risultato: bit di guardia

- Di solito operandi nei registri della ALU, che hanno più bit di quelli necessari per la mantissa +1 → i bit più a destra sono messi a 0 e permettono di non perdere bit se i numeri vengono shiftati a destra
- Es.: X-Y, con Y=1,11...11 x 2⁰ e X=1,00...00 x 2¹
- Y va shiftato a destra di un bit, cioè diventa
 0,111...11 x 2¹ → un 1 viene perso senza i bit di guardia
- Risultato:
 - Senza bit di guardia: (1,0...0 0,1...1) x 2 = 0,0...01 x 2 = 1,0...0 x 2⁻²²
 - Con bit di guardia: $(1,0...0 0,1...1 \ 1) \ x \ 2 = 0,0...0 \ 1 \ x \ 2 = 1,0...0 \ x \ 2^{-23}$

Precisione del risultato: arrotondamento

- Se il risultato è in un registro più lungo, quando lo si riporta nel formato in virgola mobile, bisogna arrotondarlo
- Quattro approcci:
 - Arrotondamento al più vicino (default)
 - Bit aggiuntivi che iniziano con 1 → sommo 1
 - Bit aggiuntivi 10...0 → sommo 1 se l'ultimo bit è 1, altrimenti 0
 - Bit aggiuntivi che iniziano con 0 → elimino
 - Arrotondamento (per eccesso) a +∞ e arrotondamento (per difetto) a -∞
 - Usati nell'aritmetica degli intervalli
 - Arrotondamento a 0 (cioè troncamento dei bit in più)