2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

CANDIDATE-ELIMINATION Learning Algorithm

The CANDIDATE-ELIMINTION algorithm computes the version space containing all hypotheses from H that are consistent with an observed sequence of training examples.

Initialize G to the set of maximally general hypotheses in H Initialize S to the set of maximally specific hypotheses in H For each training example d, do

- If d is a positive example
- Remove from G any hypothesis inconsistent with d
- For each hypothesis s in S that is not consistent with d
 - Remove s from S
 - Add to S all minimal generalizations h of s such that
 - h is consistent with d, and some member of G is more general than h
 - Remove from S any hypothesis that is more general than another hypothesis in S

CANDIDATE- ELIMINTION algorithm using version spaces

Training Examples:

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	Enjoy Sport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Program:

```
import numpy as np
import pandas as pd
data = pd.DataFrame(data=pd.read csv('enjoysport.csv'))
concepts = np.array(data.iloc[:,0:-1])
print(concepts)
target = np.array(data.iloc[:,-1])
print(target)
def learn(concepts, target):
    specific h = concepts[0].copy()
    print ("initialization of specific h and general h")
    print(specific h)
    general h = [["?" for i in range(len(specific h))] for i in
range(len(specific h))]
    print(general h)
    for i, h in enumerate (concepts):
        if target[i] == "yes":
            for x in range(len(specific h)):
                 if h[x]!= specific h[x]:
                     specific h[x] ='?'
                     general h[x][x] = "?"
                 print(specific h)
        print(specific h)
        if target[i] == "no":
            for x in range(len(specific h)):
                 if h[x]!= specific h[x]:
                     general h[x][x] = specific h[x]
                          general h[x][x] = '?'
              print(" steps of Candidate Elimination Algorithm", i+1)
              print(specific h)
              print(general h)
          indices = [i for i, val in enumerate(general h) if val ==
      ['?', '?', '?', '?', '?', '?']]
          for i in indices:
              general h.remove(['?', '?', '?', '?', '?', '?'])
          return specific h, general h
      s final, g final = learn(concepts, target)
      print("Final Specific h:", s final, sep="\n")
      print("Final General h:", g final, sep="\n")
```

Data Set:

Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
sunny	warm	normal	strong	warm	same	Yes
sunny	warm	high	strong	warm	same	Yes
rainy	cold	high	strong	warm	change	No
sunny	warm	high	strong	cool	change	Yes
		_	_		_	

Output:

```
Final Specific_h:
['sunny' 'warm' '?' 'strong' '?' '?']

Final General_h:
[['sunny', '?', '?', '?', '?'],
['?', 'warm', '?', '?', '?', '?']]
```