Name: YASH DARJI Roll No.: 19BCE043 Course: Machine Learning Course Code: 2CS501

Practical: 3

Simple Linear Regression using Gradeint Descent method. Here I am trying to predict y from x from Rupal Maam Test samples.

Linear Regression for Test.csv & Train.csv

```
import numpy as np
from sklearn import datasets,metrics
from sklearn.preprocessing import StandardScaler
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

data=pd.read_csv('Test.csv')
X=data.iloc[:,0]
Y=data.iloc[:,1]
plt.scatter(X,Y)
plt.show()
```

print(X.shape)
print(Y.shape)


```
m=0
c=0
t11=[]
t21=[]
c1=[]
L=0.0001
epochs=1000
n=len(X)
```

```
for i in range(epochs):
    Y_prediction =m*X + c
    Derivative_m = (-2 /n)* sum(X*(Y-Y_prediction))
    Derivative_c = (-2 /n)* sum(Y-Y_prediction)
    m = m-L*Derivative_m
    c= c- L*Derivative_c
    t1l.append(m)
    t2l.append(c)
    x=(sum(Y_prediction))**2
    cl.append(x)
```

1.007531061031339 -0.007080500995070587

```
Y_prediction=m*X+c
result = pd.DataFrame({'X': X, 'Y': Y, 'Predicted Y': Y_prediction})
result.head()
```

	X	Υ	Predicted Y
0	77	79.775152	77.572811
1	21	23.177279	21.151072
2	22	25.609262	22.158603
3	20	17.857388	20.143541
4	36	41.849864	36.264038

Y_prediction=m*X+c

```
plt.scatter(X,Y)
plt.plot([min(X),max(X)],[min(Y_prediction),max(Y_prediction)],color='white')
plt.show()
```


plt.plot(t11,c1)

plt.title('THETA1 VS COST FUNCTION')
plt.show()


```
plt.plot(cl,list(range(epochs)))
plt.title('iteration VS COST FUNCTION')
plt.show()
```



```
import numpy as np
from sklearn import datasets,metrics
from sklearn.preprocessing import StandardScaler
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
data=pd.read_csv('Train.csv')
```

```
X=data.iloc[:,0]
Y=data.iloc[:,1]
plt.scatter(X,Y)
plt.show()
```

```
print(X.shape)
print(Y.shape)
```



```
m=0
c=0
L=0.0001
epochs=1000
n=len(X)

for i in range(epochs):
    Y_prediction =m*X + c
    Derivative_m = (-2 /n)* sum(X*(Y-Y_prediction))
    Derivative_c = (-2 /n)* sum(Y-Y_prediction)
    m = m-L*Derivative_m
    c= c- L*Derivative_c

print(m,c)
```

0.9989147221329964 0.008986573985034704

```
Y_prediction=m*X+c
result = pd.DataFrame({'X': X, 'Y': Y, 'Predicted Y': Y_prediction})
result.head()
```

	X	Υ	Predicted Y
0	24	21.549452	23.982940
1	50	47.464463	49.954723

 $Y_prediction=m*X+c$

```
plt.scatter(X,Y)
plt.plot([min(X),max(X)],[min(Y_prediction),max(Y_prediction)],color='blue')
plt.show()
```


✓ 0s completed at 11:32 PM

×