

Introduzione

Obiettivo

Sviluppare un modello di machine learning per la classificazione di condizioni di salute di un feto:

Analisi cardiotocografie

Descrizione: Dati provenienti da UCI repository, con circa 20 features rilevanti misurati. Classificazione a 3 classi: N=normal; S=suspect; • P=pathologic Jupyter

Step Analisi

Data Quality:

Assessment stato di pulizia dei dati

Analisi Esplorativa:

Prima analisi e visualizzazione

Preprocessing:

Preparazione dati per fase di modellazione

Modellazione:

Confronto modelli di classificazione (baseline)

Ottimizzazione:

Incremento performance del modello migliore

Data Quality & Esplorazione

Checks

No Missing Values & identificati i corretti datatypes

No typos o record errati

No evidenti outlier (i.e. valori min o max fuori scala)

Class:

 Notato sbilanciamento di classe (N~78%; S~14%; P~8%)

Correlazione:

 Notate features ad elevata correlazione (rischio collinearità) e features nulle

Distribuzione:

- Differenza tra distribuzioni condizionate alla classe non particolarmente informative.
 Notata forte similarità tra S e P
- Boxplot suggeriscono la presenza di potenziali outlier, tuttavia sono stati ignorati a causa della poca domain expertise

Preprocessing

Mitigazione class imbalance e maggiore rilevanza alla funzione di supporto all'utilizzatore del modello

Tralasciate altre variabili ad elevata correlazione per valutazione successiva

Standardizzazione per ridurre impatto della differenza di scala tra le diverse variabili

Modellazione (baseline)

Models Input Approccio 1: Dati non standardizzati Approccio 2: Dati standardizzati Approccio 3: Dati standardizzati Classificazione multiclass

Risultati:

- Elevati livelli di accuracy in entrambi i casi, leggermente migliori con dati standardizzati (overall >90%)
- Knn e SVC hanno restituito performance più basse sia in termini di Accuracy che di Recall
- Il miglior modello baseline risulta essere il RFC
- Riduzione delle performance nella previsione multi-class

Confusion Matrix RFC:

- Dati standardized
- Accuracy: 96.8 %
- Recall: 96.1 %

Ottimizzazione

Conclusioni

Evaluation

Dei modelli utilizzati, il Random Forest Classifier è quello che ha performato meglio «overall»

Dei tre modelli RFC (baseline, ottimizzato, weighted) quello ottimizzato è risultato il migliore F1 measure: 93%

In funzione delle necessità di utilizzo tuttavia, la scelta del modello migliore potrebbe cambiare in funzione dei tradeoff

Ottenere più dati

Testare altri modelli

Continuare con il fine-tuning degli iperparametri

Backup

