NARULA INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

BTECH/IT/EVEN/SEM4/IT403/2020-2021 PAPER TYPE: REGULAR/SUPPLE(R18) YEAR: 2021

FORMAL LANGUAGE & AUTOMATA THEORY IT403

TIME ALLOTTED: 3 HOURS FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP – A (Multiple Choice Type Questions)

1. Answer any ten from the following, choosing the correct alternative of each question: $10 \times 1 = 10$

SL. NO.	Quest	CO No.	Marks	
(i)	A grammar in CNF may contain p a) $A \rightarrow B$ b) $A \rightarrow C$ c) $A \rightarrow AB$ d) $A \rightarrow C$		4	1
(ii)	A shift register is a) Mealy machine c) Moore machine	b) Turing machine d) all of these.	1,5	1
(iii)	Which of the below accepts conte a) linear bounded automata c) push down automata		4,5	1
(iv)	a*(a + b)* is equivalent to a) a* + b* b) (ab)* c) a*b* d) none of thes	e.	1,4	1
(v) (vi)	Which one is not a prerequisite of grammar? a)Elimination of ε-production production c) Elimination of left recursion Pumping Lemma for CFL is used	b) Elimination of unitd) None of these	1,3,4	1
	a) a given language is Regularb) a given language is Context From the context of a given language is Context Se			
	d) a given language is not Contex			
(vii)	The intersection of CFL & regula		4,1	1
	a) need not be regular	b) need not be CF		
(viii)	c) is always regular The value of $L(\phi^*)$ is	d) none of these.	4,5	1
	a) ∑	b) {ε}		
	c) { }	d) none of these.		
(ix)	The regular expression representi {x, y} ending with xx and beginn		2,4	1
	a) xx (x + y)*y	b) $yy (x+y)*x$		
	c) y(x+y)*xx	d) $y(xy)*xx$.		

NARULA INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT

	(x)	If S is the number of states can have maximum of	s in NFA, then the equivalent DFA	2,3	1
		a) S states	b) $S-1$ states		
		c) 2S states	d) $2S-1$ states.		
	(xi)	Which production rule fro	m the following is/are in CNF?	2,3,4	1
		a) $A \rightarrow B$	b) $A \rightarrow BC$		
		c) A →aB	d) $A \rightarrow aBCD$		
		e) None of these			
	(xii)	The logic of pumping lem	ma is a good example of	2,3,5	1
		a) the pigeon-hole principle	le b)Divide and		
		conquer technique			
		c) recursion	d) iteration.		
		(Shor	GROUP – B* t Answer Type Questions)		
		Answer any	<i>three</i> from the following: 3×5=15		
	SL. NO.			CO	Marks
, i	SL. NO.			No.	Maiks
2.		Chomsky hierarchy of la	s of formal grammars according to nguages with examples. Define each ling automata to accept the generated	2,4	5
3.	(a)	Define CNF.		2,3,4	2
	(b)	Consider the grammar wi	th following production rules. Obtain	4,5	3
		an equivalent grammar in	CNF.		
		$S \rightarrow ASB \mid \varepsilon$			
		$A \rightarrow aAS \mid a$			
		$B \rightarrow SbS A bb$			
4.	(a)	Consider the regular expre	ession defined over the alphabet	4,5	2
		$\sum = \{0, 1\} \text{ as } 01(01)^*$ Fin	nd the language generated by it.		
	(b)	Find the regular expression	n for the languages of all the strings	3,4,5	3
		of odd length over the alph	nabet		
		$\sum = \{a, b\}.$			
5.	(a)	State pumping lemma for	regular language.	2,4	2
	(b)	Show that the following la	anguage is not regular:	2,5	3
	. ,	$L = \{ 0^n I^n n \ge 1 \}$,	
6.		Let G be the grammar with $S \rightarrow aB \mid ba$ $A \rightarrow a \mid aS \mid bAA$ $B \rightarrow b \mid bS \mid aBB$		3,4	5
			a find leftmost derivation, rightmost		

NARULA INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

$\begin{aligned} & \textbf{GROUP} - \textbf{C}^* \\ & \textbf{(Long Answer Type Questions)} \end{aligned}$

Answer any *three* from the following: $3 \times 15 = 45$

3	SL. NO.		CO No.	Marks
7.	(a)	Minimize the following finite automata by the Myhill–Nerode theorem. Where final state is C and initial state is A	4	10

Present	Next State			
state	X=0	X=1		
A	В	F		
В	G	C		
С	A	С		
D	C	G		
E	Н	F		
F	C	G		
G	G	E		
Н	G	C		

	(b)	State and Proof Ardent Theorem	2	5
8.	(a)	Design the sequence detector and output transition table for the sequence 1101, when detected it will produce o/p as 1 and 0 rest	3	10
		of the time. Draw the Digital circuit diagram.		
	(b)	Let G be the grammar	4	5

 $S \rightarrow ASA|BSB|a|b.$

A→ a B→ b

For the string aaabbbaaa,

find,

i> the leftmost derivation.

ii> the rightmost derivation

9. (a) Find the input string applied to state A of the following machine where the final state is B and the output string is **1110000010**.

Present	Next S	State,Z
state	X=0	X=1
A	B,1	С,0
В	D,1	B,1
C	E,1	В,0
D	A,0	E,0
E	F,0	D,1
F	D,0	A,1

(b) Develop a merger graph for the following incompletely specified machine. From there, find the compatible pairs.

Present		Next State,Z				
state	I1	I2	I3	I 4		
A	D,1	С,-	-,-	D,1		
В	-,-	D,-	A,0	-,-		
С	E,1	-,-	B,0	C,1		
D	-,-	D,1	E,0	C,1		
E	-,-	A,0	-,-	-,-		

7

NARULA INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT

10.	(a)	Explain basic structure of PDA.						2	5
	(b)	Design a PDA M to	o accep	t the Lang	uage L={	0^n1^n		3	6
	(c)	Design the FA from	Design the FA from the regular Expression					3	4
11.	(a)	Check the Definit out its order	,	(a+b)*(ba+ab)*c eness of the following m/c, if definite, find					4
			PS	NS	S,Z				
				X=0	X=1				
			A	A,1	C,1				
			В	E,0	B,1				
			С	D,0	A,0				
			D	C,0	В,0				
			Е	B,1	A,0				