

Universidad Simón Bolívar CI-5651 - Diseño de Algoritmos I Prof. Ricardo Monascal

Tarea 10: Algoritmos Cuánticos

1. Se desea que ejecute una simulación del algoritmo de Shor para N=21. Para calcular las amplitudes que obtendría la QFT, puede usar la DFT (Transformada Discreta de Fourier clásica).

Siga iterando hasta que se cumpla alguna de estas condiciones:

- (a) Se encontró algún factor no trivial para N.
- (b) Se han probado ya 10 valores de x, sin éxito.

<u>Nota 1</u>: En todo momento, simule las operaciones sobre registros cuánticos de manera clásica (tratando tales superposiciones como una lista de valores y usando algún generador de números aleatorios cuando requiera colapsar alguna de estas).

Nota 2: Puede usar un generador de números aleatorios online o alguno que venga con un lenguaje de su elección.

• Escogemos un valor aleatorio para x entre 1 y N-1.

$$x = 8$$

• Definimos n una potencia de 2 mayor o igual a 21:

$$n = 32$$

- Los registros simulados son:
 - r1 = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].
 - ► r2 = [1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8, 1, 8] $(x^{r_1} \mod n)$.
- Repetimos $s = 2 \lg(32) = 10$ veces:

 - ► FFT(r1) = [160, 20, 160, 2000000000000014, 160, 20, 160, 200000000000014, 160, 20, 160, 20, 160, 2000000000000014, 160, 20, 160, 200000000000014, 160, 20] el muestreo cuántico colapsa a 16.
 - ▶ FFT(r1) = [1800, 2.71e-15, 21.49, 3.74e-15, 4.82e-14, 0, 4.82e-14, 3.74e-15, 21.49, 2.71e-15, 1400, 2.71e-15, 21.49, 3.74e-15, 4.82e-14, 0, 4.82e-14, 3.74e-15, 21.49, 2.71e-15] el muestreo cuántico colapsa a $\bf 0$.
 - ► FFT(r1) = [3200, 400, 3200, 400, 3200, 400, 3200, 400, 3200, 400, 3200, 400, 3200, 400, 3200, 400, 3200, 400] el muestreo cuántico colapsa a **6**.
 - FFT(r1) = [36000, 0, 46, 2.88e-13, 0, 0, 0, 2.49e-13, 3.31e-13, 0, 28000, 0, 3.31e-13, 2.49e-13, 0, 0, 0, 2.88e-13, 46, 0] el muestreo cuántico colapsa a $\bf 0$.
 - FFT(r1) = [64000, 7999.99, 64000, 8000, 64000, 8000, 64000, 8000, 64000, 7999.99, 64000, 7999.99, 64000, 8000, 64000, 8000, 64000, 7999.99] el muestreo cuántico colapsa a 12.
 - FFT(r1) = [720000, 2.41e-12, 1.19e-11, 8.67e-13, 5.76e-12, 0, 5.76e-12, 8.67e-13, 1.19e-11, 2.41e-12, 560000, 2.41e-12, 1.19e-11, 8.67e-13, 5.76e-12, 0, 5.76e-12, 8.67e-13, 1.19e-11, 2.41e-12] el muestreo cuántico colapsa a $\bf 10$.

- FFT(r1) = [1280000, 160000, 1280000, 160000, 1280000, 160000, 1280000, 160000, 1280000, 160000, 1280000, 160000, 1280000, 160000, 1280000, 160000, 1280000, 160000, 1280000, 160000] el muestreo cuántico colapsa a $\bf 6$.
- ► FFT(r1) = [14400000, 0, 0, 0, 0, 0, 0, 0, 0, 11200000, 0, 0, 0, 0, 0, 0, 0, 0] el muestreo cuántico colapsa a $\mathbf{0}$.
- Así, g = mcd(0, 16, 0, 6, 0, 12, 10, 6, 0, 6) = 2.
- $\frac{21}{2} = 10$ es par, devolvemos entonces $mcd(8^5 + 1, 21) = mcd(32769, 21) = 7$.
- Se halló en 1 intento un factor no trivial de 21: 7, y podemos hallar el otro haciendo $\frac{21}{7} = 3$. Hemos hallado así los factores primos de 21: 3 y 7.

2. Cree algún buen meme que tenga que ver con alguna parte del curso.

Puede ser, por ejemplo, sobre alguno de los temas que vimos o sobre la experiencia en general de la materia. Lo que sea que los inspire y les parezca cómico.

Nota: Diga si puedo compartirlo anónimamente en el grupo de Telegram y/o redes sociales.

Sí se puede compartir.