1.
$$A = uv^* \iff \alpha_{ij} = u_i v_j$$
, $||A||_F^2 = \sum_{i=1}^m \sum_{j=1}^n |u_i|^2 |v_j|^2$
 $= \sum_{i=1}^m |u_i|^2 \sum_{j=1}^n |v_j|^2 = (\sum_{j=1}^n |v_j|^2)(\sum_{j=1}^m |u_i|^2) = ||u||_F^2 ||v||_F^2$

$$= \sum_{j=1}^{\infty} |u_{i}|^{2} \sum_{j=1}^{\infty} |v_{j}|^{2} = \left(\sum_{j=1}^{\infty} |v_{j}|^{2}\right) \left(\sum_{j=1}^{\infty} |u_{i}|^{2}\right) = \|u\|_{F}^{2} \|v\|_{F}^{2}$$

2.
$$A*Ax = A*b \Rightarrow A*(Ax-b) = 0$$

Let $r = b-Ax$. $r + Ax = b$
 $x \in C^n$ $0 \in C^n$

3. (a)
$$G = [g_1 g_2 - g_m]$$
, $g_k = \begin{cases} ce_i - se_j & \text{if } k = i \\ ce_j + se_i & \text{if } lc = j \end{cases}$
 $e_k = \begin{cases} ce_i - se_j & \text{if } lc = i \\ ce_j + se_i & \text{if } lc = j \end{cases}$
Suppose $r \notin \{i, j\}$ and $s \notin \{i, j\}$. Then $g_r T g_s = 0$ if $r \not = s$

Suppose
$$r \notin \{i,j\}$$
 and $s \notin \{i,j\}$. Then $g_r T g_s = 0$ if $r \neq s$ and $g_r T g_s = 1$ if $r = s$, simply from zero patterns.

Other cases:
$$g_i + g_i = c_i + c_i$$

(b)
$$\sum_{k=1}^{n} \sum_{j=k+1}^{m} \frac{3}{j} \sim 6 \sum_{k=1}^{n} \frac{3}$$

$$= 6 \sum_{|c=1|}^{n} (m-k)(n-k+1) \sim 6 \sum_{k=1}^{n} (mn-mk-nk+k^2)$$

$$\sim 6 \left(mn^2 - \frac{1}{2}mn^2 - \frac{1}{2}n^3 + \frac{1}{3}n^3\right) = 3mn^2 - n^3$$

4. (a)
$$f(x,y) = x^2 - y^2$$
 $J(x,y) = [2x - 2y]$

) is vank-1, so
$$||J||_2 = 2(x^2+y^2)^{1/2}$$
.

$$K_{2}(x,y) = \frac{2(x^{2}+y^{2})^{1/2} \cdot (x^{2}+y^{2})^{1/2}}{|x^{2}-y^{2}|} = 2\left|\frac{x^{2}+y^{2}}{x^{2}-y^{2}}\right|$$

(b)
$$K_2(1+10^{-6},1) = 2\left(\frac{1+2e-6+10^{-12}+1}{1+240^{-6}+10^{-12}-1}\right) \approx 2\times10^6$$

Lose 6 digits from 16, so 10 should be accurate.

(c)
$$f_1(x,y) = (x^2(1+\epsilon_1) - y^2(1+\epsilon_2))(1+\epsilon_3)$$
 ($|\epsilon_i| \le \epsilon_{mechine}$)
 $f_2(x,y) = ((x+y)(1+\epsilon_1) \cdot (x-y)(1+\epsilon_2))(1+\epsilon_3)$

Note:
$$\left|\frac{f_2(x_iy)}{f(x_iy)}-1\right| = (1+\epsilon_1)(1+\epsilon_2)(1+\epsilon_3)-1 \le 3 \text{ Emachine} + O(\text{Enachine})$$

Try if for
$$f_i$$
: rel. error =
$$\frac{\varepsilon_1 x^2 - \varepsilon_2 y^2 + \varepsilon_3 (x^2 - y^2) + O(\varepsilon_{\text{machine}})}{x^2 - y^2}$$

$$\leq |\varepsilon_1 + \varepsilon_3| + \left| \frac{(\varepsilon_1 - \varepsilon_2) \sqrt{2}}{\chi^2 - \gamma^2} \right| + O(\varepsilon_{\text{machile}}^2)$$

Not small if $|x^2-y^2| \leqslant y^2$ (and $|x^2-y^2| \ll x^2$)

Formula fz is more accurate.

(Both methods are backward stable. But in fz, the B.S. perturbations to x and y are the same, which allows for smaller error than general perturbations of the same size.)