Лабораторна работа № 3

Шифрование Гаммированием

Покрас Илья Михайлович

Содержание

1	Цель работы	4
2	Задание	5
3	Теоретическое введение	6
4	Выполнение лабораторной работы	7
5	Выводы	9
Сг	исок Литературы	10

Список иллюстраций

4.1	Инициализация переменных и вызов функции							7	7
4.2	Результат выполнения программного кода							8	2

1 Цель работы

Изучить и реализовать алгоритм шифрования гаммированием конечной гаммой.

2 Задание

• Создать алгоритм шифрования гаммированием

3 Теоретическое введение

Шифрование гаммированием — это симметричный метод шифрования, при котором на открытый текст накладывается последовательность, сформированная из случайных чисел.

Процесс шифрования:

- Генерируется ключевой поток гаммы из непредсказуемых и независимых друг от друга случайных чисел.
- Каждый символ сообщения комбинируется с символом ключевого потока гаммы с помощью операции XOR (исключающее ИЛИ).

4 Выполнение лабораторной работы

Я создал функцию шифрования гаммированием, с текстом и ключом шифрования. Далее создается алфавит, содержащий строчные и заглавные буквы английского и русского алфавитов, и создается массив для зашифрованного текста. После идет функция расчета позиций букв в алфавите с использованием XOR и записываются в массив, который будет возвращаться как строковое значение с конвертированными позициями алфавита непосредственно в буквы (рис. ??).

```
function gamma_encrypt(text, key)
    arr - [string(i) for i in 'a':'z']; [push!(arr, string(i)) for i in 'A':'Z']; [push!(arr, string(i)) for i in 'B':'a']; [push!(arr, string(i)) for i in 'A':'Z']; [push!(arr, string(i)) for i in 'B':'a']; [push!(arr, string(i)) for i in 'A':'Z']; [push!(arr, string(i)] for i in 'A'
```

Далее я инициализировал переменные, которые содержат исходный текст и ключ шифрования, после чего использовал эти данные в вызове функции шифрования решеток (рис. 4.1).

```
text = "Hello world"
key = "checkkey"
println(gamma_encrypt(text, key))
```

Рис. 4.1: Инициализация переменных и вызов функции

И получил следующий результат (рис. 4.2):

Gmiodkrvqda

Рис. 4.2: Результат выполнения программного кода

5 Выводы

Я изучил и реализовал алгоритм шифрования гаммированием конечной гаммой.

Список Литературы

- 1. Julia Control Flow
- 2. Julia Mathematical Operations
- 3. Julia Strings
- 4. Julia Arrays
- 5. Julia Collections and Data Structures