

SÍLABO CONTROL DE CALIDAD

ÁREA CURRICULAR: PRODUCCIÓN E INGENIERÍA INDUSTRIAL

CICLO: VIII SEMESTRE ACADÉMICO: 2017-I

I. CÓDIGO DEL CURSO : 09016408040

II. CRÉDITOS : 04

III.REQUISITOS : 09014007040 Procesos de Manufactura

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso forma parte de la formación especializada; tiene carácter teórico – práctico. Le permite al estudiante desarrollar la capacidad de utilizar técnicas estadísticas para diagnosticar la marcha de los procesos de producción y su incidencia en la salud de la empresa.

El curso se desarrolla mediante las unidades de aprendizaie siguientes:

I. Introducción II. Métodos estadísticos de Control y Mejoramiento de Calidad III. Diagramas de Control. IV. Análisis de Capacidad de Procesos. V. Muestreo de aceptación. VI. Diseño de experimentos.

VI. FUENTES DE CONSULTA:

Bibliográficas

- Montgomery Douglas C.(2011).Control Estadístico de la Calidad. México. Limusa Wiley. Tercera edición
- Mitra A. (2008) Fundamentals of Quality Control and Improvement. Third edition. John Wiley & Sons
- Vasconcellos, A., (2003). Quality Assurance for the food Industry. USA.:Crc Press
- Evans, J. y Lindsay, W. (2008). Administración y Control de Calidad. México.: Thomson.
- Gutierriez, H., De la Vara, R. (2005). Control estadístico de Calidad y seis sigma. México.: Ed. Mc. Graw Hill.
- Indecopi. (2009) NTP ISO 2859. Muestreo de Aceptación por lotes.2009.

Electrónicas

- Gonzales Ch, C., (2013). Separata digital de Control de Calidad. Facultad de Ingeniería y Arquitectura. Universidad de San Martín de Porres, Perú.
- Aula Virtual, www.usmpvirtual.edu.pe/

VII. UNIDADES DE APRENDIZAJE

UNIDAD I: INTRODUCCIÓN

OBJETIVOS DE APRENDIZAJE:

- Utilizar la normativa y terminología de Control de Calidad.
- Identificar las características de la calidad y la productividad.
- Explicar las ventajas de medir adecuadamente el desempeño de una organización.

PRIMERA SEMANA

Primera sesión

Introducción al concepto de calidad.

Segunda sesión

Significado de la calidad y de mejoramiento de calidad.

UNIDAD II: METODOS ESTADÍSTICOS DE CONTROL Y MEJORAMIENTO DE CALIDAD

OBJETIVOS DE APRENDIZAJE:

- Conocer las diversas medidas estadísticas de tendencia central y variabilidad, asi como se interrelacionan.
- Conocer como se interpreta un histograma.
- Explicar la importancia del papel o gráfica de probabilidad para verificar la normalidad de un proceso.
- Describir las características de un diagrama de caja y poder realizar un estudio integral de la capacidad de un proceso.
- Identificar los límites naturales de un proceso, la estimación de sus parámetros.

SEGUNDA SEMANA

Primera sesión

Modelado de la Calidad del proceso. Descripción de la variación.

Segunda sesión

Modelado de la Calidad del proceso .Distribución de frecuencia y el histograma

TERCERA SEMANA

Primera sesión

Modelado de la Calidad del proceso Distribuciones discretas importantes.

Segunda sesión

Modelado de la Calidad del proceso Distribuciones continuas importantes.

CUARTA SEMANA

Primera sesión

Inferencias sobre la Calidad del Proceso. Los estadísticos y las distribuciones de muestreo

Segunda sesión

Herramientas estadísticas para la mejora continúa.

UNIDAD III: DIAGRAMAS DE CONTROL

OBJETIVOS DE APRENDIZAJE:

- Identificar las causas comunes y especiales de variación así como tener un idea general de las gráficas de control.
- Conocer la función de los gráficos de control por variables: promedio-rango, promedio desviación estándar e individuales- rango móvil.
- Conocer la función de los gráficos de control por atributos: P, NP, C y U.
- Explicar la interpretación de los gráficos de control, las causas de la inestabilidad.

QUINTA SEMANA

Primera sesión

Diagramas de control: Fundamentos estadísticos de los diagramas de control. Causas fortuitas y causas atribuibles. Subgrupos racionales. Análisis de patrones.

Segunda sesión

Diagramas de control para variables. Diagramas de Control para medias y rangos. Fundamentos estadísticos de los diagramas de control. La función de operación característica. Práctica calificada.

SEXTA SEMANA

Primera sesión

Diagramas de control para la media y desviación estándar. Interpretación.

Segunda sesión

Idea de la función característica de la operación. diagramas para medias y desviaciones estándares.

SÉPTIMA SEMANA

Primera sesión

Diagrama de control para atributos. Diagrama para la fracción disconforme (defectuosa). Desarrollo y operación del diagrama de control. Tamaño muestral constante y variable. Diagrama de control para el número de disconformes (defectuosos). Función característica de la operación.

Segunda sesión

Diagrama de control para defectos (diagrama c). Diagrama de control para el número de defectos por unidad (diagrama u). Selección entre diagramas de control de atributos y de variables.

UNIDAD IV: ANALISIS DE CAPACIDAD DE PROCESOS

OBJETIVOS DE APRENDIZAJE:

- Identificar los índices de capacidad para variables con una y con doble especificación
- Realizar un estudio amplio de la capacidad de un proceso

OCTAVA SEMANA

Examen parcial

NOVENA SEMANA

Primera sesión

Análisis de capacidad utilizando un histograma o una grafica de probabilidad normal. Índices de capacidad de proceso Cp, Cpk.

Segunda sesión:

Primera Práctica Calificada

UNIDAD V: MUESTREO DE ACEPTACION

OBJETIVOS DE APRENDIZAJE:

- Identificar las ventajas y limitaciones del muestreo de aceptación.
- Hallar e interpretar Curvas Operativas CO.
- Determinar planes de muestreo usando la NTP-ISO 2859 -1.
- Calcular e interpretar los riesgos de muestreo: consumidor y productor.

DÉCIMA SEMANA

Primera sesión

El problema del muestreo de aceptación, ventajas y desventajas. Planes de muestreo. Tipos de planes de muestreo. Formación de los lotes. Lineamientos para usar el muestreo de aceptación.

Segunda sesión

Planes de muestreo simples por atributos. Definición. Curva CO. Riesgos del productor y del consumidor. Limite de calidad aceptable (LCA). Porcentaje defectuoso tolerable por lote (PDTL). Planes de muestreo doble y múltiple.

UNDÉCIMA SEMANA

Primera sesión

Norma Técnica Peruana ISO 2859:2009. Descripción de la norma. Procedimientos y uso de las tablas.

Segunda sesión

Aplicaciones

UNIDAD VI: DISEÑOS DE EXPERIMENTOS

OBJETIVOS DE APRENDIZAJE:

- Entender que es un diseño de experimentos y cómo se utiliza en la industria
- Hallar los efectos y análisis de varianza de un factorial 2^k

DUODÉCIMA SEMANA

Primera sesión

Diseño de experimentos. Necesidad de diseñar los experimentos. Modelos básicos. Tratamiento, unidad experimental, aleatorización, control local.

Segunda sesión

El Diseño Completamente Aleatorizado (DCA). Descripción. Nomenclatura. Análisis de varianza.

DECIMOTERCERA SEMANA

Primera sesión

Tabla de Análisis de varianza. Resultados. Aplicaciones del DCA. Ejemplos y ejercicios

Segunda sesión

Introducción a los experimentos factoriales. Nomenclatura. Experimentos con un solo factor. Niveles. Tabla de Análisis de varianza. Ejemplos y aplicaciones.

DECIMOCUARTA SEMANA

Primera sesión

Segunda Práctica Calificada.

Segunda sesión

Experimentos con dos factores. efectos e interacciones. Análisis de varianza en experimentos con dos factores. El factorial 2^K . Efectos e interacciones.

DECIMOQUINTA SEMANA

Primera sesión

Exposición de Trabajo Experimental

Segunda sesión

Exposición de Trabajo Experimental

DECIMOSEXTA SEMANA

Examen Final

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX.PROCEDIMIENTOS DIDÁCTICOS

- . Método Expositivo Interactivo. Disertación docente, exposición del estudiante.
- . Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- . Método de Demostración Ejecución. El docente ejecuta para demostrar cómo y con que se hace y el estudiante ejecuta, para demostrar que aprendió.

X. MEDIOS Y MATERIALES

Equipos: Una computadora personal para el profesor y una computadora personal para cada estudiante del curso, ecran, proyector de multimedia y una impresora.

Materiales: Manual universitario.

XI. EVALUACIÓN

El promedio final se obtiene del modo siguiente:

PF= (PE+EP+EF)/3

PE = (P1 + P2 + P3)/3

Donde:

PF = Promedio Final

PE =Promedio de Evaluaciones

EP=Examen Parcial (escrito)

EF=Examen Final (escrito)

P# =Práctica calificada.

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Industrial, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

(a)	Habilidad para aplicar conocimientos de matemática, ciencia e ingeniería	К	
(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos		
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas		
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario		
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería		
(f)	Comprensión de lo que es la responsabilidad ética y profesional		
(g)	Habilidad para comunicarse con efectividad		
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global		
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida		
(j)	Conocimiento de los principales temas contemporáneos		
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería		

XIII. HORAS, SESIONES, DURACIÓN

a) Horas de clase:

I	Teoría	Práctica	Laboratorio
	2	1	3

- b) Sesiones por semana: Dos sesiones.
- c) Duración: 6 horas académicas de 45 minutos

XIV. JEFE DE CURSO

Ing. Celso Gonzales Chavesta.

XV. FECHA

La Molina, marzo de 2017.