第五章复习题

一. 选择题

1. 若函数 f(x)在 [a,b]上可积,则下列各结论中不正确的是(

(A)
$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(y) dy$$
; (B) $\int_{a}^{a} f(x) dx = 0$; (C)若 $f(x) \ge b - a$,则 $\int_{a}^{b} f(x) dx \ge (b - a)^{2}$;

(D)
$$\frac{d}{dx} \left(\int_a^b f(x) dx \right) = f(b)$$
.

(A)
$$\int_0^1 e^x dx < \int_0^1 e^{x^2} dx$$
; (B) $\int_1^2 e^x dx < \int_1^2 e^{x^2} dx$; (C) $\int_0^1 e^{-x} dx < \int_1^2 e^{-x} dx$;

(D)
$$\int_{-2}^{-1} x^2 dx < \int_{-2}^{-1} x^3 dx$$
.

3. 设 f(x) 具有三阶连续导数,y = f(x) 的图像如图 5. 6. 1 所示,问下列积

分中哪一个为负值?

(A)
$$\int_{-1}^{1} \ln\left(x + \sqrt{1 + x^2}\right) dx$$
; (B) $\int_{-1}^{1} \frac{dx}{\sqrt{1 - x^2}}$; (C) $\int_{-1}^{1} \frac{dx}{x^3}$; (D) $\int_{-1}^{1} \frac{dx}{1 + \sin x}$.

5. 下列反常积分收敛的是(

(A)
$$\int_0^1 \ln(1-x) dx$$
; (B) $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dx}{\sin x}$; (C) $\int_2^{+\infty} \frac{dx}{x \ln x}$; (D) $\int_0^{+\infty} e^{x^2} dx$.

二. 填空题

6.
$$\int_0^{\frac{\pi}{2}} \sin^6 x dx =$$

7. 设
$$0 < a < 1$$
且 $\int_0^a \frac{\cos 2x}{\cos x - \sin x} dx = 1$,则 $a =$ ______.

8. 方程
$$\int_0^y (1+x^2) dx + \int_x^0 e^{y^2} dy = 0$$
 确定 $y \in X$ 的函数,则 $\frac{dy}{dx} =$ ______.

9. 极限
$$\lim_{x\to 0^+} \frac{\int_0^{x^2} \sin\sqrt{t} dt}{x^3} = \underline{\hspace{1cm}}.$$

10. 摆线一拱
$$\begin{cases} x = 3(t - \sin t) \\ y = 3(1 - \cos t) \end{cases}$$
 (0 \le t \le 2\pi) 的全长为 $s =$ ______.

三. 简答题

11. 计算定积分
$$I = \int_0^{\frac{\pi}{2}} \frac{\cos x}{\cos x + \sin x} dx$$
.

12. 计算定积分
$$I = \int_0^{\ln 2} \sqrt{1 - e^{-2x}} dx$$
.

13. 设
$$f(x)$$
 连续,且满足 $f(x) = \ln^2 x - \int_1^e f(x) dx$, 求 $f(x)$.

14. 已知
$$\int_0^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$
 ,求反常积分 $I = \int_0^{+\infty} \frac{\sin^2 x}{x^2} dx$ 的值.

15. 已知两曲线 y = f(x)与 $y = \int_0^{\arctan x} e^{-t^2} dt$ 在点(0,0)处的切线重合(两曲线相切),求极限

$$\lim_{x\to +\infty} xf\left(\frac{2}{x}\right).$$

四. 综合题

16. 求常数
$$a,b$$
,使其满足 $\lim_{x\to 0} \frac{1}{bx-\sin x} \int_0^x \frac{t^2}{\sqrt{a+t}} dt = 1$.

17. 过点 P(1,0) 作拋物线 $y = \sqrt{x-2}$ 的切线,该切线与拋物线及 x 轴围成一平面图形. 试求 (1) 该平面图形的面积; (2) 该平面图形绕 x 轴旋转一周的旋转体的体积.

(1)
$$\vec{x} F(x) = \int_{-\infty}^{x} f(t) dt$$
;

(2) 讨论: 函数 y = F(x) 是否存在极值点? 曲线 y = F(x) 是否存在拐点?

19. 设
$$f(x)$$
, $g(x)$ 在区间 $[-a,a]$ 上连续, $g(x)$ 为偶函数,且 $f(x)$ 满足条件 $f(x)+f(-x)=A$ (A 为常数).

(1) 证明:
$$\int_{-a}^{a} f(x) g(x) dx = A \int_{0}^{a} g(x) dx$$
;

(2) 利用(1)的结论计算定积分
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left| \sin x \right| \arctan e^x dx$$
.