Assignment 15, Authomata Theory

Oleg Sivokon

$<\!2016\text{-}01\text{-}01\ Fri\!>$

Contents

1	Pro	Problems															2					
	1.1	Proble	em 1														•	 ,				2
		1.1.1	Answer 2																			2
		1.1.2	Answer 1																	_		3

1 Problems

1.1 Problem 1

Given context-free grammar $V = \{S, M, N, W, X, Y, Z\}$ s.t. $T = \{1, 0\}$

$$\begin{split} S &\to M \mid XN \mid W \mid 0N \mid 1Z1 \\ M &\to 0M0 \mid N \\ N &\to N0 \mid 0 \\ W &\to 0W \mid 00W0 \\ X &\to 0X1 \mid 0 \mid 0Y0 \\ Z &\to W \; . \end{split}$$

- 1. Is V ambiguous?
- 2. Give a normalized grammar equivalent to V.

1.1.1 Answer 2

It is easier to normalize the grammar first and then to look for ambiguities, thus the answers are in reverse order.

- 1. Any derivation containing W cannot terminate, and so does Z.
- 2. Further, we can eliminate the rule $M \to N$.
- 3. Y has no derivation rules, thus we can also remove it.

Thus obtaining:

$$S \rightarrow M \mid XM \mid 0M$$

$$M \rightarrow 0M0 \mid 0 \mid 0M$$

$$X \rightarrow 0X1 \mid 0.$$

1. It is easy to see that M derives number of zeros greater than one, thus $M\to 0M0$ is redundant. Subsequently, $S\to 0M$ is already covered by $S\to M$.

What remains is:

$$\begin{split} S \rightarrow M \mid XM \\ M \rightarrow 0 \mid 0M \\ X \rightarrow 0 \mid 0X1 \; . \end{split}$$

1.1.2 Answer 1

Now it is easy to see that the string 00 can be derived in two different ways:

- $S \to M, M \to 0M, M \to 0.$
- $S \to XM, X \to 0, M \to 0.$

Hence V is ambiguous.