Молниезащита 2014

СПб 27 мая 2014 г

ОРИЕНТИРОВКА МОЛНИИ И МОЛНИЕЗАЩИТА по Г.Н. АЛЕКСАНДРОВУ

Шишигин С.Л. д.т.н., зав. кафедрой электротехники **Мещеряков В.Е**. аспирант

Вологодский государственный университет

Методы молниезащиты

Существующий уровень: Построение зон защиты молниеотводов

Российские стандарты:

- РД 34.21.122-87 основан на мелкомасштабных экспериментах прошлого века
- **CO-153-34.21.122-2003** использование стандарта МЭК-1024 (уже снятого)
- Отраслевые стандарты (Газпром, Транснефть) копирование СО
- **ВСП 22-02-07/МО РФ/** основан на современных экспериментах, но имеет ограничения по высоте объекта

Международные стандарты

• **Метод катящейся сферы** – расчетный метод построения молниезащиты, принятый во многих странах. Противоречие с российскими нормами.

Альтернатива: **Молниезащита по Г.Н. Александрову** Новый расчетный метод молниезащиты на основе электростатической модели ориентировки молнии

Метод Г.Н. Александрова

ИДЕЯ: Вероятность поражения молнией объекта с молниеотводами равна относительному наведенному заряду p = -Q/q, где Q – наведенный заряд, q - заряд лидера. Электростатическая модель ориентировки молнии.

Методика:

1. Строим поверхности равновероятного появления лидера молнии **p=const** при заданной длине стримеров (22-45 м)

Достоинства:

- 1. Учет окружения объекта
- 2. Вероятность прорыва отношение площадей
- 3. Площадь поверхности ориентировки дает оценку площади стягивания

Недостатки:

- 1. Огромная трудоемкость построения поверхности p=const. Расчет трехмерного электрического поля объекта повторяется **сотни тысяч раз** для разных положений лидера молнии.
- 2. Длина стримеров, определяющих поверхность *p*=const, не связана с максимальным током молнии
- 3. Решены только модельные задачи

Развитие метода Г.Н. Александрова

1. Ускорение вычислений

Расчет p – скалярное произведение векторов, где вектор емкостных коэффициентов **С** рассчитывается один раз

$$\mathbf{AQ} + \mathbf{B}q = 0, \quad \mathbf{Q} = \mathbf{A}^{-1}\mathbf{B}q \qquad p = \frac{-\sum_{i=1}^{N} Q_{i}}{q} = \frac{\sum_{i=1}^{N} \mathbf{A}^{-1}(\mathbf{B}q)}{q} = \sum_{i=1}^{N} \mathbf{A}^{-1}\mathbf{B} = \sum_{i=1}^{N} \left(\sum_{j=1}^{N} A_{j,l}^{-1}\right) B_{i} = \sum_{i=1}^{N} C_{i}B_{i} = \mathbf{C} \cdot \mathbf{B}$$

где ${\bf A}$ – матрица потенциальных коэффициентов объекта, ${\bf B}$ – вектор взаимных потенциальных коэффициентов лидера молнии и объекта

2. Связь с методом катящейся сферы

При построении поверхности *p*=const замена длины стримера на

$$d=10I^{0.65}$$

3. Оценка площади стягивания (нижняя) по площадь поверхности p=const

Вывод: Разработана численная реализация метода Г.Н. Александрова, пригодная для расчета молниезащиты сложных объектов.

Сопоставление с существующими методами

3). Метод катящейся сферы не учитывает взаимное влияние молниеотводов, поэтому неадекватен для множественных молниеотводов

Влияние наведенного заряда объекта на зону защиты

Вывод: Наведенный заряд объекта <u>увеличивает зону защиты</u> молниеотводов, <u>уменьшает вероятность прорыва</u>, но (далее) <u>увеличивает площадь стягивания</u>

Площадь стягивания (сбора) молниевых разрядов

Число ударов молнии в объект N_d (МЭК)

$$N_d = N_g A_d C_d \cdot 10^{-6}, A_d = ab + 6h(a+b) + \pi (3h)^2, C_d = 0.25 \div 2$$

НЕДОСТАТКИ:

- 1. Не зависит от тока молнии (30 кА?). Задачи ЭМС 100 кА; прорывы 10 кА
- 2. Сложный расчет $oldsymbol{A_d}$ комбинированных объектов, без учета взаимного влияния:
- 3. Погрешность выбора эмпирических коэффициентов C_d ПРЕДЛАГАЕТСЯ: Расчет площади стягивания $S=A_dC_d=f(Q)$ с учетом

окружения объекта

Учитываются все наведенные заряды

Радиус стягивания R_a одиночного молниеотвода

Сравнение методик

Сильные и слабые молнии

Выводы:

- 1. Относительный радиус стягивания уменьшается с увеличением высоты молниеотвода, что согласуется с РД 153-34.3-35.125-99
- 2. Радиус стягивания увеличивается с увеличением тока молнии, что согласуется с данными Э.М. Базеляна

Влияние окружения объекта на площадь стягивания

Вывод:

- 1. Окружение объекта существенно влияет на его площадь стягивания, включая расстояния *d*>3*h*
- 2. Коэффициенты C_d =const отражают влияние окружения объекта очень приближенно

Молниезащита электрической подстанции

Метод катящейся сферы: p=0.91; 0.97; 0.99

Метод Г.Н. Александрова: p=0.99

Вывод: Применение МКС ведет к необоснованным проблемам с ЭМС на подстанции

Молниезащита ЛПДС «Конда»

Метод катящейся сферы: p=0.99; p=0.91

Метод Г.Н. Александрова: *p*=0.99;

p=0.999

Вывод: Применение МКС для объектов нефтяной промышленности потребует необоснованной масштабной реконструкции систем молниезащиты

ЗАКЛЮЧЕНИЕ

- Метод Г.Н. Александрова исходит из положения, что наведенный заряд объекта является определяющим параметром при расчете молниезащиты.
- Наведенный молнией заряд объекта увеличивает площадь стягивания молнии, но уменьшает вероятность прорыва защиты, т.е. действует разнонаправленно на число прорывов молнии к объекту
- Достоверность метода косвенно подтверждается близостью результатов с нормами МО (ВСП)
- Молниезащита по Г.Н. Александрову приводит к более «жестким» решениям в сравнении с РД, СО, но в целом подтверждает адекватность российских норм.
- Метод катящейся сферы не учитывает взаимное влияние молниеотводов, поэтому его применение для объектов с многократными молниеотводами приводит к избыточным или неадекватным решениям
- Метод Г.Н. Александрова реальная альтернатива методу катящейся сферы

СПАСИБО за внимание