Teoria Axiomática dos Conjuntos

Beatriz de Faria, 11201810015

Maio, 2021

1 Exercício 2.27

1.1 (i)

Queremos mostrar que $\forall x \in a(x \in \wp(\bigcup a))$. Para tanto, fixe um $x \in a$ qualquer. Note que:

$$x \in \wp(\bigcup a) \Leftrightarrow x \subseteq \bigcup a$$

Isto é:

$$\forall z \in x (z \in \bigcup a)$$

Seja $z \in x$ um elemento qualquer. Pela definição de $\bigcup a$:

$$z \in \bigcup a \Leftrightarrow \exists w (w \in a \land z \in w)$$

De fato, o conjunto x satisfaz as condições para ser tal w:

$$x \in a \land z \in x$$

$$\therefore z \in \bigcup a$$

q.e.d

2 Exercício 3.17

$2.1 \quad (\Rightarrow)$

Por hipótese $n \in \omega \land n \neq \emptyset$, queremos mostrar que $\exists k : s(k) = n$. Suponha, por absurdo que não existe tal k. Teremos que $s(n) \in \omega$, pois ω é um conjunto indutivo. Vamos usar o principio da indução finita para mostrar que $\omega \setminus n$ é um conjunto indutivo, o que será um absurdo, pois $\omega \setminus n = \omega$.

1.
$$\emptyset \in \omega \setminus n$$

Como $\emptyset \in \omega \land \emptyset \neq n$, temos que $\emptyset \in \omega \setminus n$.

2. $\forall x \in \omega \setminus n(s(x) \in \omega \setminus n)$

Seja $x \in \omega \setminus n$ um elemento qualquer, como $x \in \omega$ e ω é um conjunto indutivo, então $s(x) \in \omega$. Pela nossa hipótese sobre $n, s(x) \neq n$, logo $s(x) \in \omega \setminus n$. Ou seja, este conjunto é indutivo.

$2.2 \quad (\Leftarrow)$

Por hipótese temos que: $\exists k \in \omega : s(k) = n$, queremos mostrar que $n \neq \emptyset$. Se ocorre $\emptyset = s(x)$, então $x \in \emptyset$, o que é um absurdo.

q.e.d

3 Exercício 4.17

3.1 (i)

Queremos mostrar que $\forall x \in s \forall y \in s (x \leq y \Leftrightarrow f \upharpoonright_s (x) \leq f \upharpoonright_s (y)).$

Para tanto, fixe $x, y \in s$ quaisquer.

 (\Rightarrow)

$$f \upharpoonright_s (x) = \{(x, y) \in f : x \in s\}$$

Como $\forall n \in s (n \in a)$, pois $s \subseteq a$. Temos que a afirmação:

$$\forall m \in a \forall n \in a (m \le n \Leftrightarrow f(m) \le f(n))$$

E como $x,y\in a$, temos que essa afirmação é válida para o caso particular em que m=x e n=y.

$$\therefore f(x) \leq f(y) \Rightarrow f \upharpoonright_s (x) \leq f \upharpoonright_s (y)$$

 (\Leftarrow)

Nossa hipótese nos dá que:

$$f \upharpoonright_s (x) \preceq f \upharpoonright_s (y)$$

Sendo:

$$f \upharpoonright_s (x) = \{(x, y) \in f : x \in s\}$$

Como $x \in s$ e $s \subseteq a$, então, $x \in a$. Portanto:

$$f(x) \leq f(y)$$

E, pela nossa hipótese, temos que $x \leq y$.

3.2 (ii)

Queremos provar que:

$$\forall x \in f[s] \forall y \in b(y \le x \Rightarrow y \in x)$$

Para tanto, dado um $x \in f[s]$ qualquer, temos que:

$$\exists n \in s(f(n) = x)$$

Como s é um segmento inicial de a:

$$\forall n \in s \forall m \in a (m \le n \Rightarrow n \in s)$$

Note que $m \in a$, portanto:

$$m \le n \Leftrightarrow f(m) \le f(n)$$

Seja note que $f(m) \in b$, seja y := f(m), temos que:

$$y \le x \Rightarrow y \le x$$

E, como (b, \preceq) é uma boa ordem:

$$y \in x$$

q.e.d