

Antenna modelling based convolutional neural network

Student: Xukang Liu (2161047) 1st Supervisor: Yu Shao 2nd Supervisor: Qiao Cheng

Abstract

This thesis addresses a limitation in antenna design where traditional electromagnetic simulation software requires excessive computational resources. The proposed ICNN-ECA methodology combines convolutional neural networks with an efficient channel attention mechanism to predict microstrip antenna resonant frequencies. Unlike conventional models, ICNN-ECA adaptively enhances relevant electromagnetic features through a lightweight attention mechanism. Experimental results show a 48.8% improvement in prediction accuracy compared to traditional CNN approaches.

Introduction

Methodology

Image model construction

- ▶ Input Parameters: Acquire four physical parameters of the antenna, $X = [L, W, h, \varepsilon_r]$, as the original.
- Parameter Normalization: Map all parameters to a unified interval to eliminate dimensional differences.
- Binary Encoding: Apply 10-bit binary encoding to provide 1024 discrete values for each parameter.
- ightharpoonup Matrix Arrangement: Arrange the four sets of binary numbers into a 4×10 image matrix.

ICNN-ECA network architecture

Simulation and Optimization

Dataset construction

- > Software tools: CST Microwave Studio 2021 + MATLAB R2023b, as shown in Figure 3.
- > Dataset sample size: 500 sets (400 training/100 validation) + 20 test sets
- Dataset parameters range: As shown in Table 1.

Figure 4:Flowchart of the proposed ICNN-ECA model

Network parameters

		Table 3: ICNN-ECA Model Architecture Parameters				
Table 2: Hyperparameter setting		Layer Name	Input Size	Output Size	Kernel Size/	Activation
Hyperparameter name	Value	Layer Ivanic	Input Size	Output Size	Number of Nodes	Function
batch size	3	Convolution Layer 1	$4 \times 10 \times 1$	$4 \times 8 \times 2$	$(1,3) \times 2$	ReLU
learning_rate num_epochs	0.001	ECA Module 1	$4 \times 8 \times 2$	$4 \times 8 \times 2$	Adaptive	Sigmoid
		Convolution Layer 2	$4 \times 8 \times 2$	$4 \times 6 \times 4$	$(1,3) \times 4$	ReLU
	200	ECA Module 2	$4 \times 6 \times 4$	$4 \times 6 \times 4$	Adaptive	Sigmoid
train_val_split	0.8	Convolution Layer 3	$4 \times 6 \times 4$	$3 \times 5 \times 8$	$(2,2) \times 8$	ReLU
dropout_rate	0.1	ECA Module 3	$3 \times 5 \times 8$	$3 \times 5 \times 8$	Adaptive	Sigmoid
normalization_mean	[0.5]	Flatten Layer	$3 \times 5 \times 8$	120	_	ReLU
normalization std	[0.5]	Full Connected Layer 1	120	100	100	ReLU
Optimizer	SGD	Full Connected Layer 2	100	20	20	ReLU
		Full Connected Layer 3	20	1	1	_

Results and Evaluation

[1] H. Fu, Y. Tian, F. Meng, Q. Li, and X. Ren, "Microstrip antenna modelling based on image-based convolutional neural network," Electronics Letters, vol. 59, no. 16, p. e12910, Aug. 2023. https://doi.org/10.1049/ell2.12910 [2] Z. Zhu, Y. Tian and J. Sun, "Antenna Modeling Based on Image-CNN-LSTM," in IEEE Antennas and Wireless Propagation Letters, vol. 23, no. 9, pp. 2738-2742, Sept. 2024, doi: 10.1109/LAWP.2024.3405996.