MCA/MX

5253

7

System Simulation Paper: MCA-203

Paper: MCA-203	
Time: Three Hours] [Maximum Marks	s: 80
Note:- Attempt FIVE questions in all. Question No.1 is compulsor	y.
Attempt remaining FOUR questions by selecting only	ONE
question from each Unit.	
1. (a) What do you understand by system? Explain the system as	nd its
components with the help of a suitable example.	3
(b) Explain the difference between Physical and Mathem	atical
models.	3
(c) Explain the need of Simulation in Business.	3
(d) Differentiate System and State variables through examples.	3
(e) List out the disadvantages of Analog Simulation.	3
(f) Explain the use of queuing systems in Call-Centres.	3
(g) What do you understand by Stochastic Convergence?	3
(h) How would you eliminate the effect of transients in Dyn	
Stochastic Simulation experiments?	3
UNIT-I	
2. (a) (i) Define the term 'Model' and describe various types of Mo	dels.
(ii) Give disadvantages of Analog Simulation.	7
· · (b) Define Simulation. List out the steps involved in solving the probl	em by
Computer Modeling and Simulation process.	7
3. (a) Differentiate:	
(i) Fixed Time Step Simulation vs. Event-to-Event Simulation	
(ii) Magnitude scaling and Time scaling in Analog Simulation	n. 7
(b) Write short notes on:	
(i) 'Different Views of the system'.	
(ii) Entities, Attributes and Activities of a 'Computer System	n'. 7
UNIT-II	
4. (a) Discuss:	
(i) Uniformity, and (ii) Independence Test, for testing a seque	ence
of pseudo-random numbers.	7

(b) Write an algorithm to generate a sequence of N pseudo-random

numbers which follows Normal Distribution.

5.	.Simulate any two of the following systems:	
	(i) Water Reservoir System	
	(ii) Telephone System	
	(iii) Simulation of a Pure-Pursuit Problem.	7x2
	UNIT-III	
6.	Write a program in any high level language to simulate a Two-squeuing system with common queue characterized by FIFO disc. Choose appropriate arrival and service patterns. Also explain how simulator can be further extended for M-Server queuing system?	ipline.
7.	(a) Simulate an Inventory System mathematically to derive expression for EOQ of a system in which we run out of S for a certain fraction of time, by choosing appropriate sy boundaries.	Stock
	(b) How would you generate the Poisson variates for any specific	ed
	value of A?	4
	(c) Write a short note on 'Forecasting through simulation'.	3
	UNIT-IV	
8.	Define Central Limit theorem. Derive an expression to find the Length of Dynamic Stochastic Simulation experiments for confidence level.	
9.	(a) Describe the following variance reduction tools:	
	(i) Antithetic Sampling(ii) Importance Sampling.	7
	(b) Discuss good and bad features of any Discrete System Simul Language.	ation 7