Real Analysis Qualifying Exam Notes

D. Zack Garza

Sunday 5^{th} July, 2020

Contents

1	Basics	4
	1.1 Useful Techniques	. 4
	1.2 Definitions	. 4
	1.3 Theorems	. 4
	1.4 Uniform Convergence	. 6
2	Measure Theory	8
	2.1 Useful Techniques	. 8
	2.2 Definitions	. 8
	2.3 Theorems	. 9
3	Integration	12
	3.1 Useful Techniques	. 12
	3.2 Definitions	. 12
	3.3 Theorems	. 13
	3.3.1 Convergence Theorems	. 13
	3.4 L^1 Facts	. 16
	3.5 L^p Spaces	. 18
4	Fourier Transform and Convolution	20
	4.1 The Fourier Transform	. 20
	4.2 Approximate Identities	. 22
5	Functional Analysis	23
	5.1 Definitions	. 23
	5.2 Theorems	. 24
6	Extra Problems	28
7	Practice Exam (November 2014)	31
•	7.1 1: Fubini-Tonelli	_
	7.1.1 a	
	7.1.2 b	
	7.2 2: Convolutions and the Fourier Transform	
	7.2.1	0.1

		7.2.2 b	32 32
	7.9		32
	7.3	1	32
			32
			33
	7.4		33
	7.4	1	э 33
			э 33
			93 34
	7 5		34
	7.5	1	34 34
			34 34
		7.5.3 c)4
8	Inea	ualities and Equalities 3	35
	-	•	38
Li	st o	f Definitions	
	1.0.1	Definition – Uniform Continuity	4
	1.0.2	Definition – Nowhere Dense Sets	4
	1.0.3	Definition – Meager Sets	4
	1.0.4	Definition – F_{σ} and G_{δ}	4
	2.0.1	Definition – Outer Measure	8
	2.0.2	Definition – Limsup and Liminf of Sets	8
	3.0.1	Definition – L^+	12
	3.0.2	Definition – Integrable	12
	3.0.3	Definition – The Infinity Norm	12
	3.0.4	Definition – Essentially Bounded Functions	12
	3.0.5	Definition – L infty	12
	4.0.1		20
	4.0.2	Definition – The Fourier Transform	20
	4.6.1	Definition – Dilation	22
	4.6.2	Definition – Approximation to the Identity	22
	5.0.1	Definition – Orthonormal Sequence	23
	5.0.2	Definition – Basis	23
	5.0.3	Definition – Complete	23
	5.0.4	· · · · · · · · · · · · · · · · · · ·	24
	5.0.5	•	24
	5.0.6		24
	5.0.7	•	24
	5.0.8	<u>.</u>	24
		•	

List of Theorems

1.1	Proposition	4
1.3	Theorem – Heine-Borel	5
1.8	Theorem – Baire	5
1.12	Theorem – Egorov	6
1.13	Proposition	6
1.15	Proposition	7
1.17	Theorem – Heine-Cantor	7
	Proposition	8
	Proposition	8
2.5	Theorem	9
2.7		10
2.8		10
2.10		11
3.1		13
3.2		13
3.3	g .	13
3.5	9	14
3.6		14
3.7		14 14
3.8		14 14
	•	14 15
		16
		17
	· ·	17 18
	1 0 1	
	9 ,	18
	1 1	19
4.4		20
4.5	1 0	21
4.6	Proposition – Properties of the Fourier Transform	
4.7		22
4.8	v	22
5.1	Theorem – Bessel's Inequality	
5.2	Theorem – Riesz Representation for Hilbert Spaces	
5.3	Theorem – Continuous iff Bounded	
5.4	1	27
5.5	•	27
5.6		28
8.1	Proposition – Reverse Triangle Inequality	35
8.2	Proposition – Chebyshev's Inequality	35
8.3	Proposition – Holder's Inequality When Surjective	35
8.4	Proposition – Cauchy-Schwarz Inequality	36
8.5	Proposition – Minkowski's Inequality:	36
8.6		37
8.7		38
8.8	- · ·	38
8.9		38
	- · · · · · · · · · · · · · · · · · · ·	38
	- ·	38
	A U	

1 Basics

1.1 Useful Techniques

- $\lim f_n = \lim \sup f_n = \lim \inf f_n$ iff the limit exists, so $\lim \sup f_n \leq g \leq \lim \inf f_n$ implies that $g = \lim f$.
- A limit does not exist iff $\lim \inf f_n > \lim \sup f_n$.
- If f_n has a global maximum (computed using f'_n and the first derivative test) $M_n \longrightarrow 0$, then $f_n \longrightarrow 0$ uniformly.
- For a fixed x, if $f = \sum f_n$ converges uniformly on some $B_r(x)$ and each f_n is continuous at x, then f is also continuous at x.

1.2 Definitions

Definition 1.0.1 (Uniform Continuity).

f is uniformly continuous iff

$$\forall \varepsilon \quad \exists \delta(\varepsilon) \mid \quad \forall x, y, \quad |x - y| < \delta \implies |f(x) - f(y)| < \varepsilon$$

$$\iff \forall \varepsilon \quad \exists \delta(\varepsilon) \mid \quad \forall x, y, \quad |y| < \delta \implies |f(x - y) - f(y)| < \varepsilon$$

Definition 1.0.2 (Nowhere Dense Sets).

A set S is **nowhere dense** iff the closure of S has empty interior iff every interval contains a subinterval that does not intersect S.

Definition 1.0.3 (Meager Sets).

A set is **meager** if it is a *countable* union of nowhere dense sets.

Definition 1.0.4 (F_{σ} and G_{δ}).

An F_{σ} set is a union of closed sets, and a G_{δ} set is an intersection of opens.

Mnemonic: "F" stands for ferme, which is "closed" in French, and σ corresponds to a "sum", i.e. a union.

1.3 Theorems

Proposition 1.1.

A *finite* union of nowhere dense is again nowhere dense.

Lemma 1.2(Convergent Sums Have Small Tails).

$$\sum a_n < \infty \implies a_n \longrightarrow 0 \text{ and } \sum_{k=N}^{\infty} \stackrel{N \longrightarrow \infty}{\longrightarrow} 0$$

Theorem 1.3 (Heine-Borel).

 $X \subseteq \mathbb{R}^n$ is compact $\iff X$ is closed and bounded.

Lemma 1.4(Geometric Series).

$$\sum_{k=0}^{\infty} x^k = \frac{1}{1-x} \iff |x| < 1.$$

Corollary: $\sum_{k=0}^{\infty} \frac{1}{2^k} = 1.$

Lemma 1.5.

The Cantor set is closed with empty interior.

Proof.

Its complement is a union of open intervals, and can't contain an interval since intervals have positive measure and $m(C_n)$ tends to zero.

Corollary 1.6.

The Cantor set is nowhere dense.

Lemma 1.7.

Singleton sets in \mathbb{R} are closed, and thus \mathbb{Q} is an F_{σ} set.

Theorem 1.8(Baire).

 \mathbb{R} is a **Baire space** (countable intersections of open, dense sets are still dense). Thus \mathbb{R} can not be written as a countable union of nowhere dense sets.

Lemma 1.9.

There is a function discontinuous precisely on \mathbb{Q} .

Proof.

 $f(x) = \frac{1}{n}$ if $x = r_n \in \mathbb{Q}$ is an enumeration of the rationals, and zero otherwise. The limit at every point is 0.

Lemma 1.10.

There do not exist functions that are discontinuous precisely on $\mathbb{R} \setminus \mathbb{Q}$.

Proof.

 D_f is always an F_σ set, which follows by considering the oscillation ω_f . $\omega_f(x) = 0 \iff f$ is continuous at x, and $D_f = \bigcup_{n \neq \infty} A_{\frac{1}{n}}$ where $A_\varepsilon = \{\omega_f \geq \varepsilon\}$ is closed.

Lemma 1.11.

Any nonempty set which is bounded from above (resp. below) has a well-defined supremum (resp. infimum).

1.4 Uniform Convergence

Theorem 1.12(Egorov).

Let $E \subseteq \mathbb{R}^n$ be measurable with m(E) > 0 and $\{f_k : E \longrightarrow \mathbb{R}\}$ be measurable functions such that

$$f(x) \coloneqq \lim_{k \to \infty} f_k(x) < \infty$$

exists almost everywhere.

Then $f_k \longrightarrow f$ almost uniformly, i.e.

 $\forall \varepsilon > 0, \ \exists F \subseteq E \text{ closed such that } m(E \setminus F) < \varepsilon \text{ and } f_k \xrightarrow{u} f \text{ on } F.$

Proposition 1.13.

The space X = C([0,1]), continuous functions $f : [0,1] \longrightarrow \mathbb{R}$, equipped with the norm $||f|| = \sup_{x \in [0,1]} |f(x)|$, is a **complete** metric space.

Proof.

- 1. Let $\{f_k\}$ be Cauchy in X.
- 2. Define a candidate limit using pointwise convergence:

Fix an x; since

$$|f_k(x) - f_j(x)| \le ||f_k - f_k|| \longrightarrow 0$$

the sequence $\{f_k(x)\}\$ is Cauchy in \mathbb{R} . So define $f(x) := \lim_k f_k(x)$.

3. Show that $||f_k - f|| \longrightarrow 0$:

$$|f_k(x) - f_j(x)| < \varepsilon \ \forall x \implies \lim_i |f_k(x) - f_j(x)| < \varepsilon \ \forall x$$

Alternatively, $||f_k - f|| \le ||f_k - f_N|| + ||f_N - f_j||$, where N, j can be chosen large enough to bound each term by $\varepsilon/2$.

4. Show that $f \in X$:

The uniform limit of continuous functions is continuous. (Note: in other cases, you may need to show the limit is bounded, or has bounded derivative, or whatever other conditions define X.)

1.4 Uniform Convergence

Lemma 1.14.

Metric spaces are compact iff they are sequentially compact, (i.e. every sequence has a convergent subsequence).

Proposition 1.15.

The unit ball in C([0,1]) with the sup norm is not compact.

Proof.

Take $f_k(x) = x^n$, which converges to a dirac delta at 1. The limit is not continuous, so no subsequence can converge.

Lemma 1.16.

A uniform limit of continuous functions is continuous.

Theorem 1.17 (Heine-Cantor).

Every continuous function on a compact space is uniformly continuous.

Lemma 1.18 (Testing Uniform Convergence).

 $f_n \longrightarrow f$ uniformly iff there exists an M_n such that $||f_n - f||_{\infty} \leq M_n \longrightarrow 0$.

Negating: find an x which depends on n for which the norm is bounded below.

Lemma 1.19 (Baby Commuting Limits with Integrals).

If $f_n \longrightarrow f$ uniformly, then $\int f_n = \int f$.

Lemma 1.20 (Uniform Convergence and Derivatives).

If $f'_n \longrightarrow g$ uniformly for some g and $f_n \longrightarrow f$ pointwise (or at least at one point), then g = f'.

Lemma 1.21 (Uniform Convergence of Series).

If $f_n(x) \leq M_n$ for a fixed x where $\sum M_n < \infty$, then the series $f(x) = \sum f_n(x)$ converges pointwise.

Lemma 1.22.

If $\sum f_n$ converges then $f_n \longrightarrow 0$ uniformly.

Lemma 1.23 (M-test for Series).

If $|f_n(x)| \leq M_n$ which does not depend on x, then $\sum f_n$ converges uniformly.

Lemma 1.24(p-tests).

1 BASICS

Let n be a fixed dimension and set $B = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}.$

$$\sum_{n} \frac{1}{n^{p}} < \infty \iff p > 1$$

$$\int_{\varepsilon}^{\infty} \frac{1}{x^{p}} < \infty \iff p > 1$$

$$\int_{0}^{1} \frac{1}{x^{p}} < \infty \iff p < 1$$

$$\int_{B} \frac{1}{|x|^{p}} < \infty \iff p < n$$

$$\int_{B^{c}} \frac{1}{|x|^{p}} < \infty \iff p > n$$

Proposition 1.25.

A function $f:(a,b) \longrightarrow \mathbb{R}$ is Lipschitz $\iff f$ is differentiable and f' is bounded. In this case, $|f'(x)| \le C$, the Lipschitz constant.

Proposition 1.26.

There exist smooth compactly supported functions, e.g. take

$$f(x) = e^{-\frac{1}{x^2}} \chi_{(0,\infty)}(x).$$

2 Measure Theory

2.1 Useful Techniques

- $s = \inf \{ x \in X \} \implies$ for every ε there is an $x \in X$ such that $x \le s + \varepsilon$.
- Always consider bounded sets, and if E is unbounded write $E = \bigcup_n B_n(0) \cap E$ and use countable subadditivity or continuity of measure.

2.2 Definitions

Definition 2.0.1 (Outer Measure).

The outer measure of a set is given by

$$m_*(E) = \inf_{\substack{\{Q_i\} \rightrightarrows E \ \text{closed cubes}}} \sum |Q_i|.$$

Definition 2.0.2 (Limsup and Liminf of Sets).

$$\limsup_{n} A_{n} \coloneqq \bigcap_{n} \bigcup_{j \ge n} A_{j} = \left\{ x \mid x \in A_{n} \text{ for inf. many } n \right\}$$
$$\liminf_{n} A_{n} \coloneqq \bigcup_{n} \bigcap_{j \ge n} A_{j} = \left\{ x \mid x \in A_{n} \text{ for all except fin. many } n \right\}$$

2.3 Theorems

Lemma 2.1.

Every open subset of \mathbb{R} (resp \mathbb{R}^n) can be written as a unique countable union of disjoint (resp. almost disjoint) intervals (resp. cubes).

Lemma 2.2(Properties of Outer Measure).

- Montonicity: $E \subseteq F \implies m_*(E) \le m_*(F)$.
- Countable Subadditivity: m_{*}(∪E_i) ≤ ∑m_{*}(E_i).
 Approximation: For all E there exists a G ⊇ E such that m_{*}(G) ≤ m_{*}(E) + ε.
- Disjoint^a Additivity: $m_*(A \coprod B) = m_*(A) + m_*(B)$.

Lemma 2.3 (Subtraction of Measure).

$$m(A) = m(B) + m(C)$$
 and $m(C) < \infty \implies m(A) - m(C) = m(B)$.

Lemma 2.4(Continuity of Measure).

$$E_i \nearrow E \implies m(E_i) \longrightarrow m(E)$$

 $m(E_1) < \infty \text{ and } E_i \setminus E \implies m(E_i) \longrightarrow m(E).$

Proof.

- 1. Break into disjoint annuli $A_2 = E_2 \setminus E_1$, etc then apply countable disjoint additivity to $E = \prod A_i$.
 - 2. Use $E_1 = (\prod E_j \setminus E_{j+1}) \prod (\bigcap E_j)$, taking measures yields a telescoping sum, and use countable disjoint additivity.

Theorem 2.5.

Suppose E is measurable; then for every $\varepsilon > 0$,

1. There exists an open $O \supset E$ with $m(O \setminus E) < \varepsilon$

^aThis holds for outer measure **iff** dist(A, B) > 0.

- 2. There exists a closed $F \subset E$ with $m(E \setminus F) < \varepsilon$
- 3. There exists a compact $K \subset E$ with $m(E \setminus K) < \varepsilon$.

Proof.

- (1): Take $\{Q_i\} \rightrightarrows E$ and set $O = \bigcup Q_i$.
- (2): Since E^c is measurable, produce $O \supset E^c$ with $m(O \setminus E^c) < \varepsilon$.
 - Set $F = O^c$, so F is closed.
 - Then $F \subset E$ by taking complements of $O \supset E^c$
 - $-E \setminus F = O \setminus E^c$ and taking measures yields $m(E \setminus F) < \varepsilon$
- (3): Pick $F \subset E$ with $m(E \setminus F) < \varepsilon/2$.
 - Set $K_n = F \cap \mathbb{D}_n$, a ball of radius n about 0.
 - Then $E \setminus K_n \searrow E \setminus F$
 - Since $m(E) < \infty$, there is an N such that $n \ge N \implies m(E \setminus K_n) < \varepsilon$.

Lemma 2.6.

Lebesgue measure is translation and dilation invariant.

Proof.

Obvious for cubes; if $Q_i \rightrightarrows E$ then $Q_i + k \rightrightarrows E + k$, etc.

Flesh out this

Theorem 2.7 (Non-Measurable Sets).

There is a non-measurable set.

Proof.

- Use AOC to choose one representative from every coset of \mathbb{R}/\mathbb{Q} on [0,1), which is countable, and assemble them into a set N
- Enumerate the rationals in [0,1] as q_j , and define $N_j = N + q_j$. These intersect trivially.
- Define $M := \coprod N_j$, then $[0,1) \subseteq M \subseteq [-1,2)$, so the measure must be between 1 and 3. By translation invariance, $m(N_j) = m(N)$, and disjoint additivity forces m(M) = 0, a contradiction.

Proposition 2.8 (Borel Characterization of Measurable Sets).

If E is Lebesgue measurable, then $E = H \coprod N$ where $H \in F_{\sigma}$ and N is null.

Useful technique: F_{σ} sets are Borel, so establish something for Borel sets and use this to extend it to Lebesgue.

Proof.

For every $\frac{1}{n}$ there exists a closed set $K_n \subset E$ such that $m(E \setminus K_n) \leq \frac{1}{n}$. Take $K = \bigcup K_n$, wlog $K_n \nearrow K$ so $m(K) = \lim m(K_n) = m(E)$. Take $N := E \setminus K$, then m(N) = 0.

Lemma 2.9.

If A_n are all measurable, $\limsup A_n$ and $\liminf A_n$ are measurable.

Proof.

Measurable sets form a sigma algebra, and these are expressed as countable unions/intersections of measurable sets.

Theorem 2.10 (Borel-Cantelli).

Let $\{E_k\}$ be a countable collection of measurable sets. Then

 $\sum m(E_k) < \infty \implies$ almost every $x \in \mathbb{R}$ is in at most finitely many E_k .

Proof.

- If $E = \limsup E_j$ with $\sum m(E_j) < \infty$ then m(E) = 0.
- If E_j are measurable, then $\limsup E_j$ is measurable.
- If $\sum_{j} m(E_{j}) < \infty$, then $\sum_{j=N}^{\infty} m(E_{j}) \stackrel{N \longrightarrow \infty}{\longrightarrow} 0$ as the tail of a convergent sequence. $E = \limsup_{j} E_{j} = \bigcap_{k=1}^{\infty} \bigcup_{j=k}^{\infty} E_{j} \implies E \subseteq \bigcup_{j=k}^{\infty} \text{ for all } k$ $E \subset \bigcup_{j=k}^{\infty} \implies m(E) \le \sum_{j=k}^{\infty} m(E_{j}) \stackrel{k \longrightarrow \infty}{\longrightarrow} 0$.

Lemma 2.11.

- Characteristic functions are measurable
- If f_n are measurable, so are $|f_n|$, $\limsup f_n$, $\liminf f_n$, $\lim f_n$,
- Sums and differences of measurable functions are measurable,
- Cones F(x,y) = f(x) are measurable,
- Compositions $f \circ T$ for T a linear transformation are measurable,
- "Convolution-ish" transformations $(x,y) \mapsto f(x-y)$ are measurable

Proof (Convolution).

Take the cone on f to get F(x,y) = f(x), then compose F with the linear transformation T = [1, -1; 1, 0].

3 Integration

Notation:

- "f vanishes at infinity" means $f(x) \stackrel{|x| \to \infty}{\longrightarrow} 0$.
- "f has small tails" means $\int_{|x|>N} f \stackrel{N\longrightarrow\infty}{\longrightarrow} 0$.

3.1 Useful Techniques

- Break integration domain up into disjoint annuli.
- Break integrals or sums into x < 1 and $x \ge 1$.
- Calculus techniques: Taylor series, IVT, ...
- Approximate by dense subsets of functions
- Useful facts about compactly supported continuous functions:
 - Uniformly continuous
 - Bounded

3.2 Definitions

Definition 3.0.1 (L^{+}) .

 $f \in L^+$ iff f is measurable and non-negative.

Definition 3.0.2 (Integrable).

A measurable function is integrable iff $||f||_1 < \infty$.

Definition 3.0.3 (The Infinity Norm).

$$||f||_{\infty} := \inf_{\alpha \ge 0} \left\{ \alpha \mid m \left\{ |f| \ge \alpha \right\} = 0 \right\}.$$

Definition 3.0.4 (Essentially Bounded Functions).

A function $f: X \longrightarrow \mathbb{C}$ is essentially bounded iff there exists a real number c such that $\mu(\{|f| > x\}) = 0$, i.e. $||f||_{\infty} < \infty$.

If $f \in L^{\infty}(X)$, then f is equal to some bounded function g almost everywhere.

Definition 3.0.5 (L infty).

$$L^{\infty}(X) \coloneqq \left\{ f: X \longrightarrow \mathbb{C} \ \middle| \ f \text{ is essentially bounded} \ \right\} \coloneqq \left\{ f: X \longrightarrow \mathbb{C} \ \middle| \ \|f\|_{\infty} < \infty \right\},$$

Example:

• $f(x) = x\chi_{\mathbb{O}}(x)$ is essentially bounded but not bounded.

3.3 Theorems

Useful facts about C_c functions:

- Bounded almost everywhere
- Uniformly continuous

Theorem 3.1(p-Test for Integrals).

$$\int_{0}^{1} x^{-p} < \infty \iff p < 1$$
$$\int_{1}^{\infty} x^{-p} < \infty \iff p > 1.$$

3.3.1 Convergence Theorems

Theorem $3.2 (Monotone\ Convergence)$.

If $f_n \in L^+$ and $f_n \nearrow f$ a.e., then

$$\lim \int f_n = \int \lim f_n = \int f$$
 i.e. $\int f_n \longrightarrow \int f$.

Needs to be positive and increasing.

Theorem 3.3 (Dominated Convergence).

If $f_n \in L^1$ and $f_n \longrightarrow f$ a.e. with $|f_n| \leq g$ for some $g \in L^1$, then

$$\lim \int f_n = \int \lim f_n = \int f$$
 i.e. $\int f_n \longrightarrow \int f$,

and more generally,

$$\int |f_n - f| \longrightarrow 0.$$

Positivity not needed.

Generalized DCT: can relax $|f_n| < g$ to $|f_n| < g_n \longrightarrow g \in L^1$.

Lemma 3.4.

If $f \in L^1$, then

$$\int |f_n - f| \longrightarrow 0 \iff \int |f_n| \longrightarrow |f|.$$

Proof.

Let $g_n = |f_n| - |f_n - f|$, then $g_n \longrightarrow |f|$ and

$$|g_n| = ||f_n| - |f_n - f|| \le |f_n - (f_n - f)| = |f| \in L^1,$$

so the DCT applies to g_n and

$$||f_n - f||_1 = \int |f_n - f| + |f_n| - |f_n| = \int |f_n| - g_n$$

$$\longrightarrow_{DCT} \lim \int |f_n| - \int |f|.$$

Theorem 3.5 (Fatou's).

If $f_n \in L^+$, then

$$\int \liminf_{n} f_n \le \liminf_{n} \int f_n$$
$$\lim \sup_{n} \int f_n \le \int \limsup_{n} f_n.$$

Note that this has virtually no requirements (doesn't require positivity).

Theorem 3.6 (Tonelli).

For f(x,y) non-negative and measurable, for almost every $x \in \mathbb{R}^n$,

- $f_x(y)$ is a **measurable** function
- $F(x) = \int f(x,y) dy$ is a **measurable** function,
- For E measurable, the slices $E_x := \{y \mid (x,y) \in E\}$ are measurable.
- $\int f = \int \int F$, i.e. any iterated integral is equal to the original.

Theorem 3.7(Fubini).

For f(x, y) integrable, for almost every $x \in \mathbb{R}^n$,

- $f_x(y)$ is an **integrable** function
- $F(x) := \int f(x,y) \ dy$ is an **integrable** function,
- For E measurable, the slices $E_x := \{y \mid (x,y) \in E\}$ are measurable.
- $\int f = \int \int f(x,y)$, i.e. any iterated integral is equal to the original

Theorem 3.8 (Fubini/Tonelli).

If any iterated integral is **absolutely integrable**, i.e. $\int \int |f(x,y)| < \infty$, then f is integrable and $\int f$ equals any iterated integral.

Corollary 3.9 (Measurable Slices).

Let E be a measurable subset of \mathbb{R}^n . Then

- For almost every $x \in \mathbb{R}^{n_1}$, the slice $E_x := \{ y \in \mathbb{R}^{n_2} \mid (x, y) \in E \}$ is measurable in \mathbb{R}^{n_2} .
- The function

$$F: \mathbb{R}^{n_1} \longrightarrow \mathbb{R}$$
$$x \mapsto m(E_x) = \int_{\mathbb{R}^{n_2}} \chi_{E_x} \, dy$$

is measurable and

$$m(E) = \int_{\mathbb{R}^{n_1}} m(E_x) \ dx = \int_{\mathbb{R}^{n_1}} \int_{\mathbb{R}^{n_2}} \chi_{E_x} \ dy \ dx$$

Proof (Measurable Slices).

 \Longrightarrow :

- Let f be measurable on \mathbb{R}^n .
- Then the cylinders F(x,y) = f(x) and G(x,y) = f(y) are both measurable on \mathbb{R}^{n+1} .
- Write $A = \{G \leq F\} \bigcap \{G \geq 0\}$; both are measurable.

- Let A be measurable in \mathbb{R}^{n+1} .
- Define $A_x = \{ y \in \mathbb{R} \mid (x, y) \in \mathcal{A} \}$, then $m(A_x) = f(x)$.
- By the corollary, A_x is measurable set, $x \mapsto A_x$ is a measurable function, and m(A) = $\int f(x) dx$.
- Then explicitly, $f(x) = \chi_A$, which makes f a measurable function.

Proposition 3.10 (Differentiating Under an Integral).

If
$$\left| \frac{\partial}{\partial t} f(x,t) \right| \le g(x) \in L^1$$
, then letting $F(t) = \int f(x,t) dt$,

$$\frac{\partial}{\partial t} F(t) := \lim_{h \to 0} \int \frac{f(x, t+h) - f(x, t)}{h} dx$$

$$\stackrel{\text{DCT}}{=} \int \frac{\partial}{\partial t} f(x, t) dx.$$

To justify passing the limit, let $h_k \longrightarrow 0$ be any sequence and define

$$f_k(x,t) = \frac{f(x,t+h_k) - f(x,t)}{h_k},$$

so
$$f_k \stackrel{\text{pointwise}}{\longrightarrow} \frac{\partial}{\partial t} f$$
.

so $f_k \xrightarrow{\text{pointwise}} \frac{\partial}{\partial t} f$. Apply the MVT to f_k to get $f_k(x,t) = f_k(\xi,t)$ for some $\xi \in [0,h_k]$, and show that $f_k(\xi,t) \in L_1$.

Proposition 3.11 (Swapping Sum and Integral).

If f_n are non-negative and $\sum \int |f|_n < \infty$, then $\sum \int f_n = \int \sum f_n$.

Proof.

MCT. Let $F_N = \sum_{n=1}^{N} f_n$ be a finite partial sum; then there are simple functions $\varphi_n \nearrow f_n$ and so $\sum_{n=1}^{N} \varphi_n \nearrow F_N$, so apply MCT.

Lemma 3.12

If $f_k \in L^1$ and $\sum ||f_k||_1 < \infty$ then $\sum f_k$ converges almost everywhere and in L^1 .

Proof

Define $F_N = \sum_{k=1}^{N} f_k$ and $F = \lim_{k \to \infty} F_k$, then $||F_N||_1 \le \sum_{k=1}^{N} ||f_k|| < \infty$ so $F \in L^1$ and $||F_N - F||_1 \longrightarrow 0$ so the sum converges in L^1 . Almost everywhere convergence: ?

3.4 L^1 Facts

Lemma 3.13 (Translation Invariance).

The Lebesgue integral is translation invariant, i.e. $\int f(x) dx = \int f(x+h) dx$ for any h.

Proof.

- For characteristic functions, $\int_E f(x+h) = \int_{E+h} f(x) = m(E+h) = m(E) = \int_E f$ by translation invariance of measure.
- So this also holds for simple functions by linearity
- For $f \in L^+$, choose $\varphi_n \nearrow f$ so $\int \varphi_n \longrightarrow \int f$.
- Similarly, $\tau_h \varphi_n \nearrow \tau_h f$ so $\int \tau_h f \longrightarrow \int f$
- Finally $\left\{ \int \tau_h \varphi \right\} = \left\{ \int \varphi \right\}$ by step 1, and the suprema are equal by uniqueness of limits.

 ${\bf Lemma~3.14} (Integrals~Distribute~Over~Disjoint~Sets).$

If $X \subseteq A \bigcup B$, then $\int_X f \leq \int_A f + \int_{A^c} f$ with equality iff $X = A \coprod B$.

Lemma 3.15 (Unif Cts L1 Functions Vanish at Infinity).

If $f \in L^1$ and f is uniformly continuous, then $f(x) \stackrel{|x| \to \infty}{\longrightarrow} 0$.

Doesn't hold for general L^1 functions, take any train of triangles with height 1 and summable areas.

Lemma 3.16(L1 Functions Have Small Tails).

If $f \in L^1$, then for every ε there exists a radius R such that if $A = B_R(0)^c$, then $\int_A |f| < \varepsilon$.

Proof.

Approximate with compactly supported functions. Take $g \xrightarrow{L_1} f$ with $g \in C_c$, then choose N large enough so that g = 0 on $E := B_N(0)^c$, then $\int_E |f| \le \int_E |f - g| + \int_E |g|$.

Lemma 3.17 (L^1 Functions Have Absolutely Continuity).

$$m(E) \longrightarrow 0 \implies \int_E f \longrightarrow 0.$$

Proof.

Approximate with compactly supported functions. Take $g \xrightarrow{L_1} f$, then $g \leq M$ so $\int_E f \leq \int_E f - g + \int_E g \longrightarrow 0 + M \cdot m(E) \longrightarrow 0$.

Lemma 3.18(L^1 Functions Are Finite Almost Everywhere). If $f \in L^1$, then $m(\{f(x) = \infty\}) = 0$.

Proof.

Idea: Split up domain Let $A = \{f(x) = \infty\}$, then $\infty > \int f = \int_A f + \int_{A^c} f = \infty \cdot m(A) + \int_{A^c} f \implies m(X) = 0.$

Proposition 3.19 (Continuity in L^1).

$$\|\tau_h f - f\|_1 \stackrel{h \longrightarrow 0}{\longrightarrow} 0$$

Proof.

Approximate with compactly supported functions. Take $g \xrightarrow{L_1} f$ with $g \in C_c$.

$$\int f(x+h) - f(x) \le \int f(x+h) - g(x+h) + \int g(x+h) - g(x) + \int g(x) - f(x)$$

$$\stackrel{? \longrightarrow ?}{\Longrightarrow} 2\varepsilon + \int g(x+h) - g(x)$$

$$= \int_{K} g(x+h) - g(x) + \int_{K^{c}} g(x+h) - g(x)$$

$$\stackrel{??}{\Longrightarrow} 0.$$

which follows because we can enlarge the support of g to K where the integrand is zero on K^c , then apply uniform continuity on K.

Proposition 3.20 (Integration by Parts, Special Case).

$$F(x) := \int_0^x f(y) dy \quad \text{and} \quad G(x) := \int_0^x g(y) dy$$

$$\implies \int_0^1 F(x) g(x) dx = F(1) G(1) - \int_0^1 f(x) G(x) dx.$$

Proof.

Fubini-Tonelli, and sketch region to change integration bounds.

Theorem 3.21 (Lebesgue Density).

$$A_h(f)(x) := \frac{1}{2h} \int_{x-h}^{x+h} f(y) dy \implies ||A_h(f) - f|| \stackrel{h \longrightarrow 0}{\longrightarrow} 0.$$

Proof.

Fubini-Tonelli, and sketch region to change integration bounds, and continuity in L^1 .

3.5 L^p Spaces

Lemma 3.22.

The following are dense subspaces of $L^2([0,1])$:

- Simple functions
- Step functions
- $C_0([0,1])$
- Smoothly differentiable functions $C_0^\infty([0,1])$

• Smooth compactly supported functions C_c^{∞} Theorem :

$$m(X) < \infty \implies \lim_{p \to \infty} ||f||_p = ||f||_{\infty}.$$

Proof.

- $\bullet \ \ \text{Let} \ M = \|f\|_{\infty}.$ $\bullet \ \ \text{For any} \ L < M, \ \text{let} \ S = \{|f| \geq L\}.$
- Then m(S) > 0 and

$$||f||_{p} = \left(\int_{X} |f|^{p}\right)^{\frac{1}{p}}$$

$$\geq \left(\int_{S} |f|^{p}\right)^{\frac{1}{p}}$$

$$\geq L \ m(S)^{\frac{1}{p}} \stackrel{p \longrightarrow \infty}{\longrightarrow} L$$

$$\implies \liminf_{p} ||f||_{p} \geq M.$$

We also have

$$||f||_p = \left(\int_X |f|^p\right)^{\frac{1}{p}}$$

$$\leq \left(\int_X M^p\right)^{\frac{1}{p}}$$

$$= M \ m(X)^{\frac{1}{p}} \xrightarrow{p \to \infty} M$$

$$\implies \limsup_p ||f||_p \leq M \blacksquare.$$

Theorem 3.23 (Dual Lp Spaces).

For $p \neq \infty$, $(L^p)^{\vee} \cong L^q$.

Proof (p=1).

Proof (p=2).

Use Riesz Representation for Hilbert spaces.

Proof (p =).

 $L^1 \subset (L^\infty)^\vee$, since the isometric mapping is always injective, but never surjective. So this containment is always proper (requires Hahn-Banach Theorem).

4 Fourier Transform and Convolution

4.1 The Fourier Transform

Definition 4.0.1 (Convolution).

$$f * g(x) = \int f(x - y)g(y)dy.$$

Definition 4.0.2 (The Fourier Transform).

$$\widehat{f}(\xi) = \int f(x) \ e^{2\pi i x \cdot \xi} \ dx.$$

Lemma 4.1.

If $\widehat{f} = \widehat{g}$ then f = g almost everywhere.

Lemma 4.2 (Riemann-Lebesgue: Fourier transforms have small tails).

$$f \in L^1 \implies \widehat{f}(\xi) \to 0 \text{ as } |\xi| \to \infty.$$

Lemma 4.3.

If $f \in L^1$, then \hat{f} is continuous and bounded.

Proof.

• Boundedness:

$$\left|\widehat{f}(\xi)\right| \leq \int |f| \cdot \left|e^{2\pi i x \cdot \xi}\right| = \|f\|_1.$$

• Continuity:

- Apply DCT to show $\left| \widehat{f}(\xi_n) - \widehat{f}(\xi) \right| \stackrel{n \longrightarrow \infty}{\longrightarrow} 0$.

Theorem 4.4 (Fourier Inversion).

$$f(x) = \int_{\mathbb{R}^n} \widehat{f}(x)e^{2\pi ix\cdot\xi}d\xi.$$

Proof.

Idea: Fubini-Tonelli doesn't work directly, so introduce a convergence factor, take limits, and use uniqueness of limits.

• Take the modified integral:

$$I_{t}(x) = \int \widehat{f}(\xi) e^{2\pi i x \cdot \xi} e^{-\pi t^{2} |\xi|^{2}}$$

$$= \int \widehat{f}(\xi) \varphi(\xi)$$

$$= \int f(\xi) \widehat{\varphi}(\xi)$$

$$= \int f(\xi) \widehat{\widehat{g}}(\xi - x)$$

$$= \int f(\xi) g_{t}(x - \xi) d\xi$$

$$= \int f(y - x) g_{t}(y) dy \quad (\xi = y - x)$$

$$= (f * g_{t})$$

$$\longrightarrow f \text{ in } L^{1} \text{ as } t \longrightarrow 0.$$

• We also have

$$\lim_{t \to 0} I_t(x) = \lim_{t \to 0} \int \widehat{f}(\xi) \ e^{2\pi i x \cdot \xi} \ e^{-\pi t^2 |\xi|^2}$$

$$= \lim_{t \to 0} \int \widehat{f}(\xi) \varphi(\xi)$$

$$=_{DCT} \int \widehat{f}(\xi) \lim_{t \to 0} \varphi(\xi)$$

$$= \int \widehat{f}(\xi) \ e^{2\pi i x \cdot \xi}$$

• So

$$I_t(x) \longrightarrow \int \widehat{f}(\xi) \ e^{2\pi i x \cdot \xi} \ \text{ pointwise and } \|I_t(x) - f(x)\|_1 \longrightarrow 0.$$

- So there is a subsequence I_{t_n} such that $I_{t_n}(x) \longrightarrow f(x)$ almost everywhere
- Thus $f(x) = \int \widehat{f}(\xi) e^{2\pi i x \cdot \xi}$ almost everywhere by uniqueness of limits.

Proposition 4.5 (Eigenfunction of the Fourier Transform).

$$g(x) \coloneqq e^{-\pi |t|^2} \implies \widehat{g}(\xi) = g(\xi) \quad \text{and} \quad \widehat{g}_t(x) = g(tx) = e^{-\pi t^2 |x|^2}.$$

Proposition 4.6 (Properties of the Fourier Transform).

?????

4.2 Approximate Identities

Definition 4.6.1 (Dilation).

$$\varphi_t(x) = t^{-n} \varphi\left(t^{-1}x\right).$$

Definition 4.6.2 (Approximation to the Identity).

For $\varphi \in L^1$, the dilations satisfy $\int \varphi_t = \int \varphi$, and if $\int \varphi = 1$ then φ is an approximate identity. Example: $\varphi(x) = e^{-\pi x^2}$

Theorem 4.7 (Convolution Against Approximate Identities Converge in L^1).

$$||f * \varphi_t - f||_1 \stackrel{t \longrightarrow 0}{\longrightarrow} 0.$$

Proof.

$$\begin{split} \|f-f*\varphi_t\|_1 &= \int f(x) - \int f(x-y)\varphi_t(y) \; dy dx \\ &= \int f(x) \int \varphi_t(y) \; dy - \int f(x-y)\varphi_t(y) \; dy dx \\ &= \int \int \varphi_t(y)[f(x) - f(x-y)] \; dy dx \\ &=_{FT} \int \int \varphi_t(y)[f(x) - f(x-y)] \; dx dy \\ &= \int \varphi_t(y) \int f(x) - f(x-y) \; dx dy \\ &= \int \varphi_t(y) \|f - \tau_y f\|_1 dy \\ &= \int_{y < \delta} \varphi_t(y) \|f - \tau_y f\|_1 dy + \int_{y \ge \delta} \varphi_t(y) \|f - \tau_y f\|_1 dy \\ &\leq \int_{y < \delta} \varphi_t(y) \varepsilon + \int_{y \ge \delta} \varphi_t(y) \left(\|f\|_1 + \|\tau_y f\|_1 \right) dy \quad \text{by continuity in } L^1 \\ &\leq \varepsilon + 2\|f\|_1 \int_{y \ge \delta} \varphi_t(y) dy \\ &\leq \varepsilon + 2\|f\|_1 \cdot \varepsilon \quad \text{since } \varphi_t \text{ has small tails} \\ &\stackrel{\varepsilon \longrightarrow 0}{\longrightarrow} 0. \end{split}$$

Theorem 4.8 (Convolutions Vanish at Infinity).

$$f, g \in L^1$$
 and bounded $\implies \lim_{|x| \to \infty} (f * g)(x) = 0.$

Proof.

• Choose $M \geq f, g$.

• By small tails, choose
$$N$$
 such that $\int_{B_N^c} |f|, \int_{B_n^c} |g| < \varepsilon$

• Note

$$|f * g| \le \int |f(x-y)| |g(y)| dy := I.$$

• Use $|x| \le |x - y| + |y|$, take $|x| \ge 2N$ so either

$$|x-y| \ge N \implies I \le \int_{\{x-y \ge N\}} |f(x-y)| M \ dy \le \varepsilon M \longrightarrow 0$$

then

$$|y| \geq N \implies I \leq \int_{\{y \geq N\}} M|g(y)| \ dy \leq M\varepsilon \longrightarrow 0.$$

Proposition (Young's Inequality?):

$$\frac{1}{r} := \frac{1}{p} + \frac{1}{q} - 1 \implies ||f * g||_r \le ||f||_p ||g||q.$$

Corollary 4.9.

Take q = 1 to obtain

$$||f * g||_p \le ||f||p||g||1.$$

Corollary 4.10.

If $f, g \in L^1$ then $f * g \in L^1$.

5 Functional Analysis

5.1 Definitions

Notation: H denotes a Hilbert space.

Definition 5.0.1 (Orthonormal Sequence).

Definition 5.0.2 (Basis).

A set $\{u_n\}$ is a *basis* for a Hilbert space \mathcal{H} iff it is dense in \mathcal{H} .

Definition 5.0.3 (Complete).

A collection of vectors $\{u_n\} \subset H$ is complete iff $\langle x, u_n \rangle = 0$ for all $n \iff x = 0$ in H.

Definition 5.0.4 (Dual Space).

$$X^{\vee} \coloneqq \left\{ L : X \longrightarrow \mathbb{C} \ \middle| \ L \text{ is continuous } \right\}.$$

Definition 5.0.5.

A map $L: X \longrightarrow \mathbb{C}$ is a linear functional iff

$$L(\alpha \mathbf{x} + \mathbf{y}) = \alpha L(\mathbf{x}) + L(\mathbf{y})..$$

Definition 5.0.6 (Operator Norm).

$$\|L\|_{X^\vee} \coloneqq \sup_{\substack{x \in X \\ \|x\| = 1}} |L(x)|.$$

Definition 5.0.7 (Banach Space).

A complete normed vector space.

Definition 5.0.8 (Hilbert Space).

An inner product space which is a Banach space under the induced norm.

5.2 Theorems

Theorem 5.1 (Bessel's Inequality).

For any orthonormal set $\{u_n\} \subseteq \mathcal{H}$ a Hilbert space (not necessarily a basis),

$$\left\| x - \sum_{n=1}^{N} \langle x, u_n \rangle u_n \right\|^2 = \|x\|^2 - \sum_{n=1}^{N} |\langle x, u_n \rangle|^2$$

and thus

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||^2.$$

Proof.

• Let
$$S_N = \sum_{n=1}^N \langle x, u_n \rangle u_n$$

$$||x - S_N||^2 = \langle x - S_n, x - S_N \rangle$$

$$= ||x||^2 + ||S_N||^2 - 2\Re \langle x, S_N \rangle$$

$$= ||x||^2 + ||S_N||^2 - 2\Re \left\langle x, \sum_{n=1}^N \langle x, u_n \rangle u_n \right\rangle$$

$$= ||x||^2 + ||S_N||^2 - 2\Re \sum_{n=1}^N \langle x, \langle x, u_n \rangle u_n \rangle$$

$$= ||x||^2 + ||S_N||^2 - 2\Re \sum_{n=1}^N \overline{\langle x, u_n \rangle} \langle x, u_n \rangle$$

$$= ||x||^2 + ||\sum_{n=1}^N \langle x, u_n \rangle u_n||^2 - 2\sum_{n=1}^N |\langle x, u_n \rangle|^2$$

$$= ||x||^2 + \sum_{n=1}^N |\langle x, u_n \rangle|^2 - 2\sum_{n=1}^N |\langle x, u_n \rangle|^2$$

$$= ||x||^2 - \sum_{n=1}^N |\langle x, u_n \rangle|^2.$$

• By continuity of the norm and inner product, we have

$$\lim_{N \to \infty} \|x - S_N\|^2 = \lim_{N \to \infty} \|x\|^2 - \sum_{n=1}^N |\langle x, u_n \rangle|^2$$

$$\implies \left\| x - \lim_{N \to \infty} S_N \right\|^2 = \|x\|^2 - \lim_{N \to \infty} \sum_{n=1}^N |\langle x, u_n \rangle|^2$$

$$\implies \left\| x - \sum_{n=1}^\infty \langle x, u_n \rangle u_n \right\|^2 = \|x\|^2 - \sum_{n=1}^\infty |\langle x, u_n \rangle|^2.$$

• Then noting that $0 \le ||x - S_N||^2$,

$$0 \le ||x||^2 - \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2$$

$$\implies \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||^2 \blacksquare.$$

Theorem 5.2 (Riesz Representation for Hilbert Spaces).

If Λ is a continuous linear functional on a Hilbert space H, then there exists a unique $y \in H$ such that

$$\forall x \in H, \quad \Lambda(x) = \langle x, y \rangle...$$

Proof.

- Define $M := \ker \Lambda$.
- Then M is a closed subspace and so $H = M \oplus M^{\perp}$
- There is some $z \in M^{\perp}$ such that ||z|| = 1.
- Set $u := \Lambda(x)z \Lambda(z)x$
- Check

$$\Lambda(u) = \Lambda(\Lambda(x)z - \Lambda(z)x) = \Lambda(x)\Lambda(z) - \Lambda(z)\Lambda(x) = 0 \implies u \in M$$

• Compute

$$\begin{split} 0 &= \langle u, \ z \rangle \\ &= \langle \Lambda(x)z - \Lambda(z)x, \ z \rangle \\ &= \langle \Lambda(x)z, \ z \rangle - \langle \Lambda(z)x, \ z \rangle \\ &= \Lambda(x)\langle z, \ z \rangle - \Lambda(z)\langle x, \ z \rangle \\ &= \Lambda(x)\|z\|^2 - \Lambda(z)\langle x, \ z \rangle \\ &= \Lambda(x) - \Lambda(z)\langle x, \ z \rangle \\ &= \Lambda(x) - \langle x, \ \overline{\Lambda(z)}z \rangle, \end{split}$$

- Choose $y := \overline{\Lambda(z)}z$.
- Check uniqueness:

$$\langle x, y \rangle = \langle x, y' \rangle \quad \forall x$$

$$\implies \langle x, y - y' \rangle = 0 \quad \forall x$$

$$\implies \langle y - y', y - y' \rangle = 0$$

$$\implies ||y - y'|| = 0$$

$$\implies y - y' = \mathbf{0} \implies y = y'.$$

Theorem 5.3 (Continuous iff Bounded).

Let $L: X \longrightarrow \mathbb{C}$ be a linear functional, then the following are equivalent:

- 1. L is continuous
- 2. L is continuous at zero
- 3. L is bounded, i.e. $\exists c \geq 0 \mid |L(x)| \leq c||x||$ for all $x \in H$

Proof.

 $2 \implies 3$: Choose $\delta < 1$ such that

$$||x|| \le \delta \implies |L(x)| < 1.$$

Then

$$|L(x)| = \left| L\left(\frac{\|x\|}{\delta} \frac{\delta}{\|x\|} x\right) \right|$$
$$= \frac{\|x\|}{\delta} \left| L\left(\delta \frac{x}{\|x\|}\right) \right|$$
$$\leq \frac{\|x\|}{\delta} 1,$$

so we can take $c = \frac{1}{\delta}$.

 $3 \implies 1$:

We have $|L(x-y)| \le c||x-y||$, so given $\varepsilon \ge 0$ simply choose $\delta = \frac{\varepsilon}{c}$.

Theorem 5.4(Operator Norm is a Norm).

If H is a Hilbert space, then $(H^{\vee}, \|\cdot\|_{\text{op}})$ is a normed space.

Proof.

The only nontrivial property is the triangle inequality, but

$$||L_1 + L_2||_{\text{op}} = \sup |L_1(x) + L_2(x)| \le \sup |L_1(x)| + |\sup L_2(x)| = ||L_1||_{\text{op}} + ||L_2||_{\text{op}}.$$

Theorem 5.5 (Completeness in Operator Norm).

If X is a normed vector space, then $(X^{\vee}, \|\cdot\|_{\text{op}})$ is a Banach space.

Proof.

- Let $\{L_n\}$ be Cauchy in X^{\vee} .
- Then for all $x \in C$, $\{L_n(x)\}\subset \mathbb{C}$ is Cauchy and converges to something denoted L(x).
- Need to show L is continuous and $||L_n L|| \longrightarrow 0$.
- Since $\{L_n\}$ is Cauchy in X^{\vee} , choose N large enough so that

$$n, m \ge N \implies ||L_n - L_m|| < \varepsilon \implies |L_m(x) - L_n(x)| < \varepsilon \quad \forall x \mid ||x|| = 1.$$

• Take $n \longrightarrow \infty$ to obtain

$$m \ge N \implies |L_m(x) - L(x)| < \varepsilon \quad \forall x \mid ||x|| = 1$$

$$\implies ||L_m - L|| < \varepsilon \longrightarrow 0.$$

• Continuity:

$$|L(x)| = |L(x) - L_n(x) + L_n(x)|$$

$$\leq |L(x) - L_n(x)| + |L_n(x)|$$

$$\leq \varepsilon ||x|| + c||x||$$

$$= (\varepsilon + c)||x|| \blacksquare.$$

Theorem 5.6(Riesz-Fischer).

Let $U = \{u_n\}_{n=1}^{\infty}$ be an orthonormal set (not necessarily a basis), then

1. There is an isometric surjection

$$\mathcal{H} \longrightarrow \ell^2(\mathbb{N})$$

 $\mathbf{x} \mapsto \{\langle \mathbf{x}, \mathbf{u}_n \rangle\}_{n=1}^{\infty}$

i.e. if $\{a_n\} \in \ell^2(\mathbb{N})$, so $\sum |a_n|^2 < \infty$, then there exists a $\mathbf{x} \in \mathcal{H}$ such that

$$a_n = \langle \mathbf{x}, \ \mathbf{u}_n \rangle \quad \forall n.$$

2. \mathbf{x} can be chosen such that

$$\|\mathbf{x}\|^2 = \sum |a_n|^2$$

Note: the choice of **x** is unique \iff { u_n } is **complete**, i.e. $\langle \mathbf{x}, \mathbf{u}_n \rangle = 0$ for all n implies

Proof.

Given {a_n}, define S_N = ∑^N a_n**u**_n.
 S_N is Cauchy in H and so S_N → **x** for some **x** ∈ H.
 ⟨x, u_n⟩ = ⟨x - S_N, u_n⟩ + ⟨S_N, u_n⟩ → a_n
 By construction, ||x - S_N||² = ||x||² - ∑^N |a_n|² → 0, so ||x||² = ∑[∞] |a_n|².

6 Extra Problems

Topology

• Show that every compact set is closed and bounded.

• Show that if a subset of a metric space is complete and totally bounded, then it is compact.

• Show that if K is compact and F is closed with K, F disjoint then dist(K, F) > 0.

Continuity

• Show that a continuous function on a compact set is uniformly continuous.

Differentiation

• Show that if $f \in C^1(\mathbb{R})$ and both $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} f'(x)$ exist, then $\lim_{x \to \infty} f'(x)$ must be

Advanced Limitology

- If f is continuous, is it necessarily the case that f' is continuous?
- If $f_n \longrightarrow f$, is it necessarily the case that f'_n converges to f' (or at all)?
- Is it true that the sum of differentiable functions is differentiable?
- Is it true that the limit of integrals equals the integral of the limit?
- Is it true that a limit of continuous functions is continuous?
- Show that a subset of a metric space is closed iff it is complete.

Uniform Convergence

- Show that a uniform limit of bounded functions is bounded.
- Show that a uniform limit of continuous function is continuous.
- I.e. if $f_n \longrightarrow f$ uniformly with each f_n continuous then f is continuous. • Show that if $f_n \longrightarrow f$ pointwise, $f'_n \longrightarrow g$ uniformly for some f, g, then f is differentiable and
- Prove that uniform convergence implies pointwise convergence implies a.e. convergence, but none of the implications may be reversed.

Measure Theory

- \star : Show that for $E \subseteq \mathbb{R}^n$, TFAE:
 - 1. E is measurable
 - 2. $E = H \bigcup Z$ here H is F_{σ} and Z is null
 - 3. $E = V \setminus Z'$ where $V \in G_{\delta}$ and Z' is null.
- Show that continuity of measure from above/below holds for outer measures.
- *: Show that if $E \subseteq \mathbb{R}^n$ is measurable then $m(E) = \sup \{ m(K) \mid K \subset E \text{ compact} \}$ iff for all $\varepsilon > 0$ there exists a compact $K \subseteq E$ such that $m(K) \ge m(E) \varepsilon$.
- Show that a countable union of null sets is null.

Measurability

- Show that f = 0 a.e. iff $\int_E f = 0$ for every measurable set E.
- \star : Show that cylinder functions are measurable, i.e. if f is measurable on \mathbb{R}^s , then F(x,y) := f(x) is measurable on $\mathbb{R}^s \times \mathbb{R}^t$ for any t.

Integrability

- Show that if f is a measurable function, then f = 0 a.e. iff $\int f = 0$.
- *: Prove that the Lebesgue integral is translation invariant, i.e. if $\tau_h(x) = x + h$ then $\int \tau_h f = \int f$.
- *: Prove that the Lebesgue integral is dilation invariant, i.e. if $f_{\delta}(x) = \frac{f(\frac{x}{\delta})}{\delta^n}$ then $\int f_{\delta} = \int f$.
- \star : Prove continuity in L^1 , i.e.

$$f \in L^1 \Longrightarrow \lim_{h \to 0} \int |f(x+h) - f(x)| = 0.$$

- Show that a bounded function is Lebesgue integrable iff it is measurable.
- Show that simple functions are dense in L^1 .

- Show that step functions are dense in L^1 .
- Show that smooth compactly supported functions are dense in L^1 .

Convergence

- Prove Fatou's lemma using the Monotone Convergence Theorem.
- Show that if $\{f_n\}$ is in L^1 and $\sum \int |f_n| < \infty$ then $\sum f_n$ converges to an L^1 function and

$$\int \sum f_n = \sum \int f_n.$$

Convolution

• *: Show that

$$f, g \in L^1 \implies f * g \in L^1 \text{ and } \|f * g\|_1 \le \|f\|_1 \|g\|_1.$$

- Show that if $f \in L^1$ and g is bounded, then f * g is bounded and uniformly continuous.
- If f, g are compactly supported, is it necessarily the case that f * g is compactly supported?
- Show that under any of the following assumptions, f * g vanishes at infinity:
 - $-f,g\in L^1$ are both bounded.
 - $-f, g \in L^1$ with just g bounded.
 - -f,g smooth and compactly supported (and in fact f*g is smooth)
 - $-f \in L^1$ and g smooth and compactly supported (and in fact f * g is smooth)
- Show that if $f \in L^1$ and g' exists with $\frac{\partial g}{\partial x_i}$ all bounded, then

$$\frac{\partial}{\partial x_i} (f * g) = f * \frac{\partial g}{\partial x_i}$$

Fourier Analysis

- Show that if $f \in L^1$ then \hat{f} is bounded and uniformly continuous.
- Is it the case that $f \in L^1$ implies $\widehat{f} \in L^1$?
- Show that if $f, \hat{f} \in L^1$ then f is bounded, uniformly continuous, and vanishes at infinity.
 - Show that this is not true for arbitrary L^1 functions.
- Show that if $f \in L^1$ and $\hat{f} = 0$ almost everywhere then f = 0 almost everywhere.
 - Prove that $\hat{f} = \hat{g}$ implies that f = g a.e.
- Show that if $f, g \in L^1$ then

$$\int \widehat{f}g = \int f\widehat{g}.$$

- Give an example showing that this fails if g is not bounded.
- Show that if $f \in C^1$ then f is equal to its Fourier series.

Approximate Identities

• Show that if φ is an approximate identity, then

$$||f * \varphi_t - f||_1 \stackrel{t \longrightarrow 0}{\longrightarrow} 0.$$

– Show that if additionally $|\varphi(x)| \le c(1+|x|)^{-n-\varepsilon}$ for some $c, \varepsilon > 0$, then this converges is almost everywhere.

• Show that is f is bounded and uniformly continuous and φ_t is an approximation to the identity, then $f * \varphi_t$ uniformly converges to f.

 L^p Spaces

• Show that if $E \subseteq \mathbb{R}^n$ is measurable with $\mu(E) < \infty$ and $f \in L^p(X)$ then

$$||f||_{L^p(X)} \stackrel{p \longrightarrow \infty}{\longrightarrow} ||f||_{\infty}.$$

- Is it true that the converse to the DCT holds? I.e. if $\int f_n \longrightarrow \int f$, is there a $g \in L^p$ such that $f_n < g$ a.e. for every n?
- Prove continuity in L^p : If f is uniformly continuous then for all p,

$$\|\tau_h f - f\|_p \stackrel{h \longrightarrow 0}{\longrightarrow} 0.$$

• Prove the following inclusions of L^p spaces for $m(X) < \infty$:

$$L^{\infty}(X) \subset L^{2}(X) \subset L^{1}(X)$$
$$\ell^{2}(\mathbb{Z}) \subset \ell^{1}(\mathbb{Z}) \subset \ell^{\infty}(\mathbb{Z}).$$

7 Practice Exam (November 2014)

7.1 1: Fubini-Tonelli

7.1.1 a

Carefully state Tonelli's theorem for a nonnegative function F(x,t) on $\mathbb{R}^n \times \mathbb{R}$.

7.1.2 b

Let $f: \mathbb{R}^n \longrightarrow [0, \infty]$ and define

$$\mathcal{A} := \left\{ (x, t) \in \mathbb{R}^n \times \mathbb{R} \mid 0 \le t \le f(x) \right\}.$$

Prove the validity of the following two statements:

- 1. f is Lebesgue measurable on $\mathbb{R}^n \iff \mathcal{A}$ is a Lebesgue measurable subset of \mathbb{R}^{n+1} .
- 2. If f is Lebesgue measurable on \mathbb{R}^n then

$$m(\mathcal{A}) = \int_{\mathbb{R}^n} f(x) dx = \int_0^\infty m\left(\left\{x \in \mathbb{R}^n \mid f(x) \ge t\right\}\right) dt.$$

7.2 2: Convolutions and the Fourier Transform

7.2.1 a

Let $f, g \in L^1(\mathbb{R}^n)$ and give a definition of f * g.

7.2.2 b

Prove that if f, g are integrable and bounded, then

$$(f*g)(x) \stackrel{|x| \longrightarrow \infty}{\longrightarrow} 0.$$

7.2.3 c

- 1. Define the Fourier transform of an integrable function f on \mathbb{R}^n .
- 2. Give an outline of the proof of the Fourier inversion formula.
- 3. Give an example of a function $f \in L^1(\mathbb{R}^n)$ such that \widehat{f} is not in $L^1(\mathbb{R}^n)$.

7.3 3: Hilbert Spaces

Let $\{u_n\}_{n=1}^{\infty}$ be an orthonormal sequence in a Hilbert space H.

7.3.1 a

Let $x \in H$ and verify that

$$\left\| x - \sum_{n=1}^{N} \langle x, u_n \rangle u_n \right\|_{H}^{2} = \|x\|_{H}^{2} - \sum_{n=1}^{N} |\langle x, u_n \rangle|^{2}.$$

for any $N \in \mathbb{N}$ and deduce that

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||_H^2.$$

7.3.2 b

Let $\{a_n\}_{n\in\mathbb{N}}\in\ell^2(\mathbb{N})$ and prove that there exists an $x\in H$ such that $a_n=\langle x, u_n\rangle$ for all $n\in\mathbb{N}$, and moreover x may be chosen such that

$$||x||_H = \left(\sum_{n \in \mathbb{N}} |a_n|^2\right)^{\frac{1}{2}}.$$

Proof.

- Take $\{a_n\} \in \ell^2$, then note that $\sum |a_n|^2 < \infty \implies$ the tails vanish.
- Define $x := \lim_{N \to \infty} S_N$ where $S_N = \sum_{k=1}^{N} a_k u_k$
- $\{S_N\}$ is Cauchy and H is complete, so $x \in H$.
- By construction,

$$\langle x, u_n \rangle = \left\langle \sum_k a_k u_k, u_n \right\rangle = \sum_k a_k \langle u_k, u_n \rangle = a_n$$

since the u_k are all orthogonal.

• By Pythagoras since the u_k are normal,

$$||x||^2 = \left\| \sum_k a_k u_k \right\|^2 = \sum_k ||a_k u_k||^2 = \sum_k |a_k|^2.$$

7.3.3 c

Prove that if $\{u_n\}$ is *complete*, Bessel's inequality becomes an equality.

Proof

Let x and u_n be arbitrary.

$$\left\langle x - \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k, u_n \right\rangle = \langle x, u_n \rangle - \left\langle \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k, u_n \right\rangle$$

$$= \langle x, u_n \rangle - \sum_{k=1}^{\infty} \langle \langle x, u_k \rangle u_k, u_n \rangle$$

$$= \langle x, u_n \rangle - \sum_{k=1}^{\infty} \langle x, u_k \rangle \langle u_k, u_n \rangle$$

$$= \langle x, u_n \rangle - \langle x, u_n \rangle = 0$$

$$\implies x - \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k = 0 \quad \text{by completeness.}$$

So

$$x = \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k \implies ||x||^2 = \sum_{k=1}^{\infty} |\langle x, u_k \rangle|^2. \blacksquare.$$

7.4 4: L^p Spaces

7.4.1 a

Prove Holder's inequality: let $f \in L^p$, $g \in L^q$ with p, q conjugate, and show that

$$||fg||_p \le ||f||_p \cdot ||g||_q$$
.

7.4.2 b

Prove Minkowski's Inequality:

$$1 \le p < \infty \implies ||f + g||_p \le ||f||_p + ||g||_p.$$

Conclude that if $f, g \in L^p(\mathbb{R}^n)$ then so is f + g.

7.4.3 c

Let $X = [0, 1] \subset \mathbb{R}$.

- 1. Give a definition of the Banach space $L^{\infty}(X)$ of essentially bounded functions of X.
- 2. Let f be non-negative and measurable on X, prove that

$$\int_X f(x)^p dx \stackrel{p \to \infty}{\longrightarrow} \begin{cases} \infty & \text{or} \\ m(\{f^{-1}(1)\}) \end{cases},$$

and characterize the functions of each type

Proof.

$$\int f^{p} = \int_{x<1} f^{p} + \int_{x=1} f^{p} + \int_{x>1} f^{p}$$

$$= \int_{x<1} f^{p} + \int_{x=1} 1 + \int_{x>1} f^{p}$$

$$= \int_{x<1} f^{p} + m(\{f = 1\}) + \int_{x>1} f^{p}$$

$$\stackrel{p \to \infty}{\longrightarrow} 0 + m(\{f = 1\}) + \begin{cases} 0 & m(\{x \ge 1\}) = 0\\ \infty & m(\{x \ge 1\}) > 0. \end{cases}$$

Justify passing

7.5 5: Dual Spaces

Let X be a normed vector space.

7.5.1 a

Give the definition of what it means for a map $L: X \longrightarrow \mathbb{C}$ to be a linear functional.

7.5.2 b

Define what it means for L to be bounded and show L is bounded \iff L is continuous.

7.5.3 c

Prove that $(X^{\vee}, \|\cdot\|_{\text{op}})$ is a Banach space.

8 Inequalities and Equalities

Proposition 8.1 (Reverse Triangle Inequality).

$$|||x|| - ||y||| \le ||x - y||.$$

Proposition 8.2 (Chebyshev's Inequality).

$$\mu(\lbrace x : |f(x)| > \alpha \rbrace) \le \left(\frac{\|f\|_p}{\alpha}\right)^p.$$

Proposition 8.3 (Holder's Inequality When Surjective).

$$\frac{1}{p} + \frac{1}{q} = 1 \implies ||fg||_1 \le ||f||_p ||g||_q.$$

Application: For finite measure spaces,

$$1 \le p < q \le \infty \implies L^q \subset L^p \pmod{\ell^p \subset \ell^q}.$$

Proof (Holder's Inequality). Fix
$$p, q$$
, let $r = \frac{q}{p}$ and $s = \frac{r}{r-1}$ so $r^{-1} + s^{-1} = 1$. Then let $h = |f|^p$:

$$||f||_p^p = ||h \cdot 1||_1 \le ||1||_s ||h||_r = \mu(X)^{\frac{1}{s}} ||f||_q^{\frac{q}{r}} \implies ||f||_p \le \mu(X)^{\frac{1}{p} - \frac{1}{q}} ||f||_q.$$

Note: doesn't work for ℓ_p spaces, but just note that $\sum |x_n| < \infty \implies x_n < 1$ for large enough n, and thus $p < q \implies |x_n|^q \le |x_n|^q$.

Proof (Holder's Inequality).

It suffices to show this when $||f||_p = ||g||_q = 1$, since

$$||fg||_1 \le ||f||_p ||f||_q \Longleftrightarrow \int \frac{|f|}{||f||_p} \frac{|g|}{||g||_q} \le 1.$$

Using $AB \leq \frac{1}{p}A^p + \frac{1}{q}B^q$, we have

$$\int |f||g| \le \int \frac{|f|^p}{p} \frac{|g|^q}{q} = \frac{1}{p} + \frac{1}{q} = 1.$$

Proposition 8.4 (Cauchy-Schwarz Inequality).

$$|\langle f,\;g\rangle| = \|fg\|_1 \leq \|f\|_2 \|g\|_2 \quad \text{with equality} \quad \Longleftrightarrow \; f = \lambda g.$$

Note: Relates inner product to norm, and only happens to relate norms in L^1 .

Proof.

Proposition 8.5 (Minkowski's Inequality:).

$$1 \le p < \infty \implies ||f + g||_p \le ||f||_p + ||g||_p.$$

Note: does not handle $p = \infty$ case. Use to prove L^p is a normed space.

Proof.

• We first note

$$|f+g|^p = |f+g||f+g|^{p-1} \le (|f|+|g|)|f+g|^{p-1}.$$

• Note that if p, q are conjugate exponents then

$$\frac{1}{q} = 1 - \frac{1}{p} = \frac{p-1}{p}$$
$$q = \frac{p}{p-1}.$$

• Then taking integrals yields

$$\begin{split} \|f+g\|_p^p &= \int |f+g|^p \\ &\leq \int (|f|+|g|) |f+g|^{p-1} \\ &= \int |f||f+g|^{p-1} + \int |g||f+g|^{p-1} \\ &= \left\|f(f+g)^{p-1}\right\|_1 + \left\|g(f+g)^{p-1}\right\|_1 \\ &\leq \|f\|_p \left\|(f+g)^{p-1}\right\|_q + \|g\|_p \left\|(f+g)^{p-1}\right\|_q \\ &= \left(\|f\|_p + \|g\|_p\right) \left(\int |f+g|^{p-1}\right) \right\|_q \\ &= \left(\|f\|_p + \|g\|_p\right) \left(\int |f+g|^p\right)^{1-\frac{1}{p}} \\ &= \left(\|f\|_p + \|g\|_p\right) \left(\int |f+g|^p\right)^{1-\frac{1}{p}} \\ &= \left(\|f\|_p + \|g\|_p\right) \frac{\int |f+g|^p}{\left(\int |f+g|^p\right)^{\frac{1}{p}}} \\ &= \left(\|f\|_p + \|g\|_p\right) \frac{\|f+g\|_p^p}{\|f+g\|_p} \end{split}$$

• Cancelling common terms yields

$$1 \le \left(\|f\|_p + \|g\|_p \right) \frac{1}{\|f + g\|_p}$$

$$\implies \|f + g\|_p \le \|f\|_p + \|g\|_p.$$

Proposition 8.6 (Young's Inequality*).

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r} + 1 \implies ||f * g||_r \le ||f||_p ||g||_q.$$

Application: Some useful specific cases:

$$||f * g||_1 \le ||f||_1 ||g||_1$$

$$||f * g||_p \le ||f||_1 ||g||_p$$

$$||f * g||_{\infty} \le ||f||_2 ||g||_2$$

$$||f * g||_{\infty} \le ||f||_p ||g||_q$$

Proposition 8.7 (Bezel's Inequality:).

For $x \in H$ a Hilbert space and $\{e_k\}$ an orthonormal sequence,

$$\sum_{k=1}^{\infty} |\langle x, e_k \rangle|^2 \le ||x||^2.$$

Note: this does not need to be a basis.

Proposition 8.8 (Parseval's Identity:).

Equality in Bessel's inequality, attained when $\{e_k\}$ is a *basis*, i.e. it is complete, i.e. the span of its closure is all of H.

8.1 Less Explicitly Used Inequalities

Proposition 8.9(AM-GM Inequality).

$$\sqrt{ab} \le \frac{a+b}{2}$$
.

Proposition 8.10 (Jensen's Inequality).

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y).$$

Proposition (???):

$$AB \le \frac{A^p}{p} + \frac{B^q}{q}.$$

Proposition 8.11 (? Inequality).

$$(a+b)^p \le 2^p (a^p + b^p).$$

Proposition 8.12 (Bernoulli's Inequality).

$$(1+x)^n \ge 1 + nx$$
 $x \ge -1$, or $n \in 2\mathbb{Z}$ and $\forall x$.