Deep Learning Optimizers

Edgar F. Roman-Rangel. edgar.roman@itam.mx

Digital Systems Department. Instituto Tecnológico Autónomo de México, ITAM.

January 22nd, 2021.

Last session

- ► GD SGD.
- ► MLP.
- ► Backprop.
- Multiple outputs.
- Activation functions.

Today's outline

- Code revision.
- Paper 1 discussion.
- Paper 2 discussion.
- Optimization functions.
- ▶ New code.

Outline

Contour plots

Optimization functions

Parameter space

Example of different loss functions with 2 parameters. Seen in 3D, and from above.

Colored arrows represent different possible paths to reach the local minimum, as followed by different optimization strategies.

Several local minima

Images from Video: Contour plots - Multivariable calculus - Khan Academy https://www.youtube.com/watch?v=WsZj5Rb6do8

Deep Learning

Example for SGD

- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent

SGD Limitation

$$\omega_i = \omega_i - \nabla_{\omega_i} \mathcal{L}(y, \hat{y}).$$

- Slows down around ravines.
- Oscillates across the slopes of the ravine.
- Limited progress towards the local minimum.
- Might never escape from saddle points.

Qian, 1999. "On the momentum term in gradient descent learning algorithms".

Outline

Contour plots

Optimization functions

Paréntesis

Perándios: W, aprendidos automáticamente
durante entrenamiento

Hyperparámetros: ajustados manualmente
marticate validación.

Ej: tosa aprendizir en
optimizator
función do costo
trapes y neuronas

apocas

activaciones no lineales

tamaño del loto

Notation

In this section, we will use subscripts to index time, e.g., ω_t refers to the value of parameter ω at time t.

Also, we omit the position index (*i*-th element) commonly seen as subscript, i.e, ω_i .

Momentum

$$\omega_t = \omega_{t-1} - v_t,$$

$$v_t = \gamma v_{t-1} + \eta \nabla_{\omega} \mathcal{L}(y, \hat{y}), \qquad v_0 = 0, \quad \gamma = 0.9, \eta \approx 0.001.$$

- Accelerates SGD in the relevant direction.
- Dampens oscillations.
- Includes a fraction of the historic direction.
- Momentum accelerates for gradients pointing in the same direction, and reduces for those in changing direction.

Sutskever et al., 2013. "On the importance of initialization and momentum in deep learning".

Nesterov Accelerated Gradient (NAG)

$$\omega_t = \omega_{t-1} - v_t,$$

$$v_t = \gamma v_{t-1} + \eta \nabla_{(\omega - \gamma v_{t-1})} \mathcal{L}(y, \hat{y}),$$

- $ightharpoonup
 abla_{(\omega \gamma v_{t-1})}$ approximates the next position of ω .
- ► Looks ahead by calculating the gradient w.r.t. future positions.
- Anticipates changes in the direction of the gradient.

Nesterov, 1983. "A method for unconstrained convex minimization problemwith the rate of convergence o(1/k2)".

Adaptive Gradient (AdaGrad)

$$\omega_t = \omega_{t-1} - \eta \frac{1}{\sqrt{G_t + \epsilon}} g_t, \qquad g_t = \nabla_\omega \mathcal{L}(y, \hat{y}),$$
$$G_t = \sum_{k=0}^t g_t^2, \qquad \epsilon \approx 1e^{-8}.$$

- ▶ G_t : sum of gradients² up to time t (heavy memory loads).
- Adapts η at each time step (always decreasing).
- Works well on sparse data and large models.

Duchi et al., 2011. "Adaptive Subgradient Methods for Online Learning and Stochastic Optimization".

Adadelta

$$\omega_t = \omega_{t-1} - \eta \frac{1}{\sqrt{\mathbb{E}[g^2]_t}} g_t, \qquad g_t = \nabla_\omega \mathcal{L}(y, \hat{y}),$$
$$\mathbb{E}[g^2]_t = \gamma \mathbb{E}[g^2]_{t-1} + (1 - \gamma) g_t^2, \qquad \gamma = 0.9.$$

- ▶ Addresses the issue of monotonically decreasing η .
- Restricts the past to a moving window.
- Recursively computes the sum of past gradients using exponential smoothing.

Zeiler, 2012. "ADADELTA: An Adaptive Learning Rate Method". RMSprop: a variant by Hinton (unpublished).

Adaptive Momentum (Adam)

Adadelta + Momentum.

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
, first moment estimate (mean), $v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$, second moment estimate (stddv).

Correcting for bias towards zero:

$$\hat{m}_t = \frac{m_t}{1 - \beta_1^t}; \qquad \hat{v}_t = \frac{v_t}{1 - \beta_2^t}.$$

$$\omega_t = \omega_{t-1} - \eta \frac{1}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t,$$

Kingma & Ba, 2015. "Adam: a Method for Stochastic Optimization".

Other variants: AdaMax, Nadam, AMSGrad.

To know more

Ruder, 2016. "An overview of gradient descent optimization algorithms". https://arxiv.org/abs/1609.04747

Receta: . I ntender con Adem, SGD con momentan Q&A

Thank you!

edgar.roman@itam.mx