Brian Holliday

Professor Yuce

Computational Science

22 May 2020

Logistic Regression

Logistic Regression is binary. This means that it is usually used to answer a question that only has two outcomes. This could be yes/no, pass/fail, etc. A logistic regression equation predicts the natural log of the odds of being in one category or another. The logistic function is given by:

$$Y = L/(1 + e^{(a+b*x)})$$

In this equation a, b, and L are constants. Logistic regression produces an s shaped curve. The variety of this S shaped curve depends on the constants. We can get the linear transformation with:

$$ln((L-y)/y) = a + b*x$$

From this when can y as a piecewise function where y is equation to 1 where A occurs and 0 when B occurs. In this example we will be trying to answer a question related to heart attack risk data. We want to check for the risk factors of heart attacks. Some of these factors age, gender and cholesterol levels.

From the logistic regression we found that men are more likely to have heart attacks than men by about a factor of 2. Age is a risk in having a heart attack as the older you get the highest the chance of having a heart attack. An increase in cholesterol levels is also associated with heart attacks.

Figures:

Figure 1: Frequency Chi Squared

Figure 2: Relative Risk

Figure 3: Log Reg Gender

Figure 4: Log Reg Chol

Figure 5: Heart Attack Probability Graph

Figure 6: Low to High

Figure 7: Age Group Model

Figure 1: Frequency Chi-Squared

requency	Table of Ge	Table of Gender by Heart_Attack							
Percent Row Pct		Heart_Attack(Heart_Attack)							
Col Pct	Gender(Gender)	0		1	Tota				
,	F	46. 93. 52.	20	17 3.40 5.80 9.31	250 50.00				
	83.60 1		41 3.20 5.40 0.69	250 50.00					
	Total	442 5 88.40 11.6		58 1.60	00.000.00				
				CONTROL I					
Statistic Chi-Squa		DF	y Heart_ Valu 11.234	е	k Prob				
Statistic Chi-Squa		DF	Valu	e 2 0.	Prob				
Statistic Chi-Squa Likelihoo	are	DF 1	Valu 11.234	e 2 0.	Prob .0008				
Statistic Chi-Squa Likelihoo Continui	are od Ratio Chi-Square	DF 1	Valu 11.234 11.539	e 2 0.7 0.5 0.	Prob 0008 0007				
Statistic Chi-Squa Likelihoo Continui	are od Ratio Chi-Square ty Adj. Chi-Square laenszel Chi-Square	DF 1 1 1 1	Valu 11.234 11.539 10.317	e 2 0.7 0.5 0.7 0.7	Prob 0008 0007 0013				
Statistic Chi-Squa Likelihoo Continui Mantel-H Phi Coef	are od Ratio Chi-Square ty Adj. Chi-Square laenszel Chi-Square	DF 1 1 1 1	Valu 11.234 11.539 10.317 11.211	e 2 0.7 0.5 0.7 0.9	Prob 0008 0007 0013				

When we look at our data, we see that the study we have 250 men and 250 women. Men have a high rate of heart attacks with 8.20 percent having had a heart attack. From our chi-squared test we have a p-value of 0.0008, which means we reject the null hypothesis. In this case the null hypothesis is gender is independent of heart attacks. We reject that, so gender is a factor.

Figure 2: Relative Risk

Statistic	Value	95% Confidence Limits		
Odds Ratio	2.6887	1.4824	4.8768	
Relative Risk (Column 1)	2.4118	1.4089	4.1284	
Relative Risk (Column 2)	0.8970	0.8411	0.9566	

We can see from the relative risk chart men are 2.68 times as likely to have a heart attack as a woman.

Figure 3: Log Reg Gender

Analysis of Maximum Likelihood Estimates								
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq		
Intercept		1	-2.6178	0.2512	108.5792	<.0001		
Gender	M	1	0.9890	0.3038	10.5994	0.0011		

When we run the regression for heart attack equals to gender, we get that the difference in logodds is $e^{(0.9880)} = 2.689$, meaning that that men are 2.689 times more likely to have a heart attack than men.

Figure 4: Log Reg Chol

	Analy	sis of Maxir	num Likelih	ood Estimates	,	
Parameter	DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq	
Intercept	1	-5.9979	1.0494	32.6651	<.0001	
Chol	1	0.0192	0.00488	15.4836	<.0001	

In this log regression, since $e^{(0.0192)} = 1.019$, we can say that an increase in 1 point of cholesterol will increase the odds of having a heart attack by 1.019 unit.

Figure 5: Heart Attack Probability Graph

The trend in the graph shows that an increase in cholesterol will increase the likelihood of having a heart attack. At about 200 the chances of having a heart attack increases significantly.

Figure 6: Low to High

Analysis of Maximum Likelihood Estimates						
Parameter		DF	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSo
Intercept		1	-2.8032	0.2752	103.7386	<.0001
Chol	High	1	1.2356	0.3213	14.7908	0.0001

We can see when we format the data make a cholesterol high after 200 there is a model. We can say that ($e^{(1.2356)} = 3.44$), people with high cholesterol has 3.44 times more likely to have a heart attack.

Figure 7: Age Group Model

Para	meter		Estimate	Sta	ndard Error	Wald Chi-Square	Pr > ChiS		
Inter	Intercept 1		-7.9956	1	.2091	43.7300	<.000		
Gender M 1		1	1.0028	0	.3177	9.9632	0.0016		
Age_Group 2:60-70		1	1.4050	0.5148		7.4487	0.0063		
Age	Age_Group 3:71+		1	1.9676	0.5092		14.9286	0.0001	
Associa Percent Percent Percent Pairs			1	0.0193	0.0	00505	14.5832	0.0001	
		nt Tied		25	0.1 Tau- 5636 c		16	0.114 0.776	
	Odds I	Ratio Estin	nates a	nd Profile-	Likeli	hood C	Confidence Int	ervals	
Effect			Unit	Estimate		95% Confid	ence Limits		
Ger	ider M vs	s F		1.0000		2.726	1.486	5.198	
Age	_Group	2:60-70 vs	1:< 60	1.0000		4.076	1.601	12.547	
Age	_Group	3:71+ vs 1	< 60	1.0000		7.154	2.858	21.877	
Age_Group 3:71+ vs 1:< 60			10 0000		1 213	1.101	1 343		

From our model we can see that all the classifications are significant. As for our odds ratios, we can say that men are 2.726 more likely to have a heart attack. The group with the highest risk is the 71+ group that is 7.154 times more likely to have a heart attack than people age lower than 60.

For the ROC curve we can see