PEKING UNIVERSITY

Answer Key 12

▼ 袁磊祺

December 26, 2019

P117

- 2 (1) $\{U_{\alpha}\}$ is a open cover of M, $\forall U_{\alpha}$, $\exists f: U_{\alpha} \mapsto V_{\alpha}$, $(x, y, \sqrt{x^2 + y^2}) \mapsto (x, y)$
 - f is a bijection, f is continuous, the inverse function f^{-1} is continuous
 - $\therefore f$ is a homeomorphism
 - ... M is a two-dimensional manifold
 - (2) Assume that the entire cone is a two-dimensional manifold

for open cover $U_{\alpha} \ni (0,0,0)$, \exists homeomorphism $\varphi : U_{\alpha} \mapsto V_{\alpha}$

- : $V_{\alpha} \setminus \{\varphi(0,0,0)\}$ is connected, but $U_{\alpha} \setminus \{(0,0,0)\}$ is not
- \therefore contradict with two homeomorphic spaces share the same topological properties \Box
- 6 Assume that $\{U_{\alpha}\}$ is the open cover of M, for $\forall U_{\alpha}, \ \exists \varphi_{\alpha} : U_{\alpha} \mapsto V_{\alpha}$

$$\varphi_{\alpha}:(x_1,\cdots,x_n)\mapsto(x_1,\cdots,x_{n-k},f(x_1,\cdots,x_n))$$

$$D\varphi_{\alpha} = \begin{bmatrix} E_{(n-k)\times(n-k)} & 0_{(n-k)\times k} \\ Df_{k\times(1\sim(n-k))} & Df_{k\times((n-k+1)\sim n)} \end{bmatrix}$$

- $\because \forall x_0 \in U_\alpha \ \mathrm{rank}(\mathrm{D}f(x_0)) = k, \ \mathrm{assume} \ \mathrm{that} \ \mathrm{rank}(\mathrm{D}f(x_0)_{k \times ((n-k+1) \sim n)}) = k$
- $\therefore \det \mathcal{D}\varphi_{\alpha} \neq 0$

according to implicit function theorem, \exists open set $U \ni x_0$, open set $V \ni \varphi_{\alpha}(x_0)$ s.t. $\varphi_{\alpha}: U \mapsto V$ is a diffeomorphism

$$\varphi_{\alpha}: U \cap M \mapsto V \cap \{(y_1, \cdots, y_n) \in \mathbb{R}^n | y_{n-k+1} = \cdots = y_n = 0\}$$

 $\therefore M$ is a (n-k)-dimensional differential manifold

P128

4 $\omega \wedge \cdot$ is a linear operation which maps 0 to 0

 \therefore Apparently M_{ω} is a linear subspace of V

let the first q vectors of $\{e_1 \cdots e_n\}$ be the complete orthonormal basis of M_{ω}

$$\therefore \text{ for } \omega = \sum_{1 \leqslant i_1 < \dots < i_p \leqslant n} \omega_{i_1 \dots i_p} e_{i_1} \wedge \dots \wedge e_{i_p} \text{ and for } e_k \in \{e_1, \dots, e_q\}, \ \omega \wedge e_k = 0$$

$$\therefore \delta_{i_1\cdots i_p k} = 0 \text{ for } \forall i_1\cdots i_p \in \{i_1, \cdots, i_p | \omega_{i_1\cdots i_p} \neq 0\}$$

 $\therefore k$ must be a common index of all non-zero $\omega_{i_1\cdots i_p}$

$$\therefore q \leqslant p$$

 $(\Rightarrow):$ under the previous setting, let q=p

 \therefore $\{1,2,\cdots,p\}$ are all common indices of all non-zero $\omega_{i_1\cdots i_p}$

$$\therefore$$
 only $\omega_{1\cdots p} \neq 0 \Rightarrow \omega = \omega_{1\cdots p} e_1 \wedge \cdots \wedge e_p$

$$(\Leftarrow)$$
: let $\omega = v_1 \wedge \cdots \wedge v_q$

apparently $\{v_1 \cdots v_p\}$ are linearly independent

$$\therefore \{v_1 \cdots v_p\}$$
 can be the basis of M_{ω}