Topology Midterm

Benji Altman

January 28, 2018

17.5 In order to show that, for any order topology, $\overline{(a,b)} \subset [a,b]$ we first notice that $[a,b] \supset (a,b)$ and that [a,b] is closed. By definition we know $\overline{(a,b)} = \bigcap$ all closed supersets of (a,b). We now notice that [a,b] is one such closed superset of (a,b), thus $\overline{(a,b)} \subset [a,b]$.

We now will look to see when $\overline{(a,b)} = [a,b]$. We already know that $\overline{(a,b)} \subset [a,b]$, and to have equality we only need $[a,b] \subset \overline{(a,b)}$. Let us start by noticing that [a,b] is the union of disjoint sets (a,b) and $\{a,b\}$. Now if [a,b] is to be a subset of $\overline{(a,b)}$ then that would be the same as saying $(a,b) \cup \{a,b\} \subset \overline{(a,b)}$ thus both (a,b) and $\{a,b\}$ must be subsets of $\overline{(a,b)}$. We know that $(a,b) \subset \overline{(a,b)}$ as $\overline{(a,b)} = (a,b) \cup (a,b)'$, and because we know that $\{a,b\}$ is disjoint from (a,b) we can then say $[a,b] \subset \overline{(a,b)} \implies \{a,b\} \subset (a,b)'$. We also can say

$$\{a,b\} \subset (a,b)' \implies \{a,b\} \subset \overline{(a,b)}$$
$$\implies \{a,b\} \cup (a,b) \subset \overline{(a,b)}$$
$$\implies [a,b] \subset \overline{(a,b)}$$

and thus, iff a and b are limit points for the interval (a,b), then our equality $([a,b] = \overline{(a,b)})$ holds.

17.17 Consider the lower limit topology on \mathbb{R} , and the topology given by the basis \mathfrak{C} of Exercise 8 §13. Determine the closures of the intervals $A = (0, \sqrt{2})$ and $B = (\sqrt{2}, 3)$ in these two topologies.

Basis C of Exercise 8 §13:

$$\mathcal{C} = \{[a,b) \mid a < b \text{ and } a,b \in \mathbb{Q}\}$$

First we will consider our topology to be \mathbb{R}_{ℓ} :

Let C be an interval in the form (a,b), where $a,b \in \mathbb{R}$. By definition we know that \overline{C} is the intersection of all closed sets that contain C. We know that $(-\infty,a) \cup [b,\infty) \in \mathbb{R}_{\ell}$ and thus [a,b) is closed in \mathbb{R}_{ℓ} , thus $\overline{C} \subset [a,b)$.

Now if we can show that $[a,b) \subset \overline{C}$ then we will know that $[a,b) = \overline{C}$.

First we note that by theorem 17.6 $\overline{C} = C \cup C'$, now because we know $C \subset \overline{C}$ then we can say if $[a,b) \setminus C \subset \overline{C} \setminus C$ then $[a,b) = \overline{C}$. We also know that $\overline{C} \setminus C \subset C'$, thus we can say that if $[a,b) \setminus C \subset C'$ then $[a,b) = \overline{C}$. Next we find that $[a,b) \setminus C = \{a\}$ so if $a \in C'$ then $[a,b) = \overline{C}$. We will show $a \in C'$ by contradiction.

Let us assume $a \notin C'$ then there is an interval [x,y), where $x,y \in \mathbb{R}$, that contains a but no elements in C. By definition $[x,y) = \{k \mid x \le k < y\}$, so if $a \in [x,y)$ then $x \le a < y$. Now we can construct an interval $(a,y) \subset [x,y)$ which is not empty as y > a and thus it will contain some elements of C. We now have a contradiction, thus $a \in C'$, thus

$$[a,b) = \overline{C}$$

1

Now if we let a=0 and $b=\sqrt{2}$ then we know $\overline{(0,\sqrt{2})}=\overline{A}=\left[0,\sqrt{2}\right)$.

Now if we let $a = \sqrt{2}$ and b = 3 then we know $\overline{(\sqrt{2},3)} = \overline{B} = [\sqrt{2},3)$.

Now we will to continue on to the topology \mathscr{C} , which is given by basis \mathscr{C} .

Let us first attempt to find $(0, \sqrt{2})$. We will consider the set $[0, \sqrt{2}]$, and attempt to show that it is closed by showing it's compliment is open.

$$\begin{split} \left[0,\sqrt{2}\right]^{\mathsf{c}} &= (-\infty,0) \cup \left(\sqrt{2},\infty\right) \\ &= \left(\bigcup_{a < b < 0 \ and \ a,b \in \mathbb{Q}} [a,b) \cup \bigcup_{\sqrt{2} < a < b \ and \ a,b \in \mathbb{Q}} [a,b)\right) \in \mathscr{C} \end{split}$$

Thus $[0,\sqrt{2}]$ is closed, and thus $(0,\sqrt{2}) \subset [0,\sqrt{2}] = (0,\sqrt{2}) \cup \{0,\sqrt{2}\}$. Now to find $(0,\sqrt{2})$ we simply must determine if 0 is a limit point of $(0,\sqrt{2})$ and if $\sqrt{2}$ is a limit point of $(0,\sqrt{2})$.

Any open interval around 0 must have an upper bound greater then 0, and thus 0 is a limit point for $(0, \sqrt{2})$.

Any open interval around $\sqrt{2}$ must have a lower bound that is a rational number, $\sqrt{2}$ is not rational, thus there must be a rational number less then $\sqrt{2}$ in the interval, and thus $\sqrt{2}$ is a limit point for $(0, \sqrt{2})$.

Thus we have shown

$$\left[0,\sqrt{2}\right] = \overline{\left(0,\sqrt{2}\right)}$$

Next we will find $(\sqrt{2},3)$. We first will check if $\sqrt{2}$ and 3 are limit points of $(\sqrt{2},3)$.

For an open interval in \mathscr{C} to include $\sqrt{2}$ there must a rational number greater then $\sqrt{2}$ as the upper bound, thus there is some value between $\sqrt{2}$ and that upper bound that is in $(\sqrt{2},3)$. Thus $(\sqrt{2},3) \supset [\sqrt{2},3)$.

The interval [3,4) includes 3 and is in \mathbb{C} , thus it is a nood¹ of 3 which contains no values in $(\sqrt{2},3)$. Thus we know $3 \notin (\sqrt{2},3)$.

Now we wish to show that $[\sqrt{2},3)$ is closed, if we can do that then we know that $[\sqrt{2},3) \subset \overline{(\sqrt{2},3)} \subset \overline{(\sqrt{2},3)}$ or $[\sqrt{2},3) = \overline{(\sqrt{2},3)}$.

$$\left[\sqrt{2},3\right)^{\mathsf{c}} = \left(-\infty,\sqrt{2}\right) \cup [3,\infty)$$

$$= \left(\bigcup_{a < b < \sqrt{2} \ and \ a,b \in \mathbb{Q}} [a,b) \cup \bigcup_{3 \le a < b \ and \ a,b \in \mathbb{Q}} [a,b)\right) \in \mathscr{C}$$

Thus we have shown $\lceil \sqrt{2}, 3 \rceil$ is closed, and thus have shown

$$\left[\sqrt{2},3\right) = \overline{\left(\sqrt{2},3\right)}$$

Consider the linear function $f: \mathbb{R} \to \mathbb{R}$ defined as $f(x) = \frac{x-a}{b-a}$. We know all linear functions are continuous, we have the homeomorphisms

$$f((a,b)) = \left(\frac{a-a}{b-a}, \frac{b-a}{b-a}\right)$$
$$= (0,1)$$

$$f([a,b]) = \left[\frac{a-a}{b-a}, \frac{b-a}{b-a}\right]$$
$$= [0,1]$$

thus we have shown homeomorphism between (a, b) and (0, 1), and between [a, b] and [0, 1] for any $a < b \in \mathbb{R}$.

18.8(a) Consider first
$$\{x \in X \mid f(x) \le g(x)\}^{c} = \{x \in X \mid f(x) > g(g)\} = S$$
. Let us now choose $x \in S$.

 $^{^{1}}$ nood = neighborhood

By theorem 17.11 we know that Y is Hausdorff, thus there exists disjoint open sets \mathfrak{A} and \mathfrak{B} such that $f(x) \in \mathfrak{A}$ and $g(x) \in \mathfrak{B}$. Let $A \subset \mathfrak{A}$ be a basis element in Y's order topology such that $f(x) \in A$ and let $B \subset \mathfrak{B}$ be a basis element in Y's order topology such that $g(x) \in B$. Now we have $\forall_{a \in A} \forall_{b \in B} [a > b]$ due to the definition of the order topology.

Next we notice that $g^{-1}(B)$ is open by continuity of g and $f^{-1}(A)$ is open by continuity of f. Finite intersections are open so $g^{-1}(B) \cap f^{-1}(A)$ must be open. Now for any $\hat{x} \in g^{-1}(B) \cap f^{-1}(A)$ we have $g(\hat{x}) \in B$ and $f(\hat{x}) \in A$ thus $g(\hat{x}) < f(\hat{x})$. We now have shown that for every $x \in S$ there exists a nood of x that is completely contained in S. We may now take the union of a nood for each x and we get that S is the union of open sets, thus S is open. We now conclude that $\{x \in X \mid f(x) \leq g(x)\}$ is closed.

- (b) Let $A = \{x \in X \mid f(x) \leq g(x)\}$ and $B = \{x \in X \mid g(x) \leq f(x)\}$, thus $\forall_{a \in A} f(a) = h(a)$ and $\forall_{b \in B} g(b) = h(b)$; additionally $X = A \cup B$. Notice that if $x \in A \cap B$ then $f(x) \leq g(x)$ and $g(x) \leq f(x)$, thus g(x) = f(x). Now the final thing we must show is that A and B are both closed, however we just showed that in part a of this problem, so we may use the pasting lemma and we know that h(x) is continuous.
- 19.7 **Box topology:** Let $x \in \mathbb{R}^{\omega} \setminus \mathbb{R}^{\infty}$, therefore $x = (x_{\alpha})_{\alpha \in J}$ where $x_{\alpha} \neq 0$ for infinitely many $\alpha \in J$. For each $\alpha \in J$ such that $x_{\alpha} \neq 0$ let A_{α} be a nood of x_{α} that does not include 0, for all other $\alpha \in J$ let A_{α} be a nood of 0. We find that $\prod_{\alpha \in J} A_{\alpha}$ is open in \mathbb{R}^{ω} as it is a basis element. We have now shown that for any $x \in \mathbb{R}^{\omega} \setminus \mathbb{R}^{\infty}$ there is an open set A(x) such that $x \in A(x) \subset \mathbb{R}^{\omega} \setminus \mathbb{R}^{\infty}$, thus we may take the union and find $\bigcup_{x \in \mathbb{R}^{\omega} \setminus \mathbb{R}^{\infty}} A(x) = \mathbb{R}^{\omega} \setminus \mathbb{R}^{\infty}$, thus $\mathbb{R}^{\omega} \setminus \mathbb{R}^{\infty}$ is open, and thus \mathbb{R}^{∞} is closed so $\mathbb{R}^{\infty} = \overline{\mathbb{R}^{\infty}}$.

Product topology: Let $x \in \mathbb{R}^{\omega}$ and let N be a nood of x, thus there exists some basis element of \mathbb{R}^{ω} , A such that $x \in A \subset N$. There must then exists $(x_{\alpha})_{\alpha \in J} = x$ and $\prod_{\alpha \in J} A_{\alpha} = A$ with $x_{\alpha} \in \mathbb{R}$ for all $\alpha \in J$ and A_{α} open in \mathbb{R} for all $\alpha \in J$. We also know that for only finitely many $\alpha \in J$, $A_{\alpha} \neq \mathbb{R}$. We will now let $y_{\alpha} = 0$ for all $\alpha \in J$ where $A_{\alpha} = \mathbb{R}$, and let $y_{\alpha} = x_{\alpha}$ for all $\alpha \in J$ where $A_{\alpha} \neq \mathbb{R}$, thus $y = (y_{\alpha})_{\alpha \in J} \in A$. We also notice that there are at most finitely many $\alpha \in J$ such that $y_{\alpha} \neq 0$ thus $y \in \mathbb{R}^{\infty}$. This means that for any $x \in \mathbb{R}^{\omega}$ and any nood of x, there is some point $y \in \mathbb{R}^{\infty}$ such that y is in the chosen nood of x, thus all points in \mathbb{R}^{ω} are limit points of \mathbb{R}^{∞} . Finally we conclude that $\overline{\mathbb{R}^{\infty}} = \mathbb{R}^{\omega}$.

20.4

		box topology	uniform topology	product topology
(a)	\overline{f}	not continuous	not continuous	continuous
	g	not continuous	continuous	continuous
	h	not continuous	continuous	continuous
(b)	\mathbf{w}	does not converge	does not converge	converges
	\mathbf{x}	does not converge	converges	converges
	\mathbf{y}	does not converge	converges	converges
	${f z}$	converges	converges	converges