

VII. Traitement « Point » ■ Exemple : Augmentation du contraste par étalement ou linéarisation ■ Modification de la plage utilisée des niveaux de grix ([n_{min}, n_{max}] pour que toute l'échelle des niveaux de gris soit utilisée : ■ Soient n_{min}, n_{max}, respectivement le niveau de gris minimum, maximum dans l'image d'origine ■ n'= 255*(n-n_{min})/(n_{max}-n_{min}), alors : n'_{max}=255 et n'_{min}=0

VII . Traitement « Point »

VII.2. Histogramme de niveau de gris

- Fonction de comptage
 - h(n) = nbp : nombre de pixels dans l'image possédant le niveau <math>n
 - On a:

 N_T le nombre total de pixels

 $\sum_{i=1}^{255} h(n)$

 $\sum_{n=0}^{\infty} h(n) = N_T$

- Fonction de densité de la probabilité des niveaux de gris
 - $p(n)=h(n)/N_{T}$, N_{T} le nombre total de pixels
 - p(n): estimation de la probabilité du niveau n dans l'image considérée
 - Normalisation :

$$\sum_{n=0}^{255} p(n) = 1$$

GINF41A6 - AGD

VII. Traitement « Point »

- Formalisme statistique du problème posé
 - \bullet Soit n_e une variable <u>continue</u> des niveaux de gris
 - Soit p_e(n_e) l'histogramme normalisé des niveaux de gris sur une image I_e, c'est un estimateur de la fonction de densité des niveaux de gris en entrée. On a alors :

$$\int_{0}^{255} p_e(n_e) dn_e = 1$$

On cherche une transformation, n_s=φ(n_e) pour que l'image I_s en sortie ait comme fonction de densité G(n_s) uniforme :

 $G(n_s)$ =constante = 1/255

$$p_s(n_s) = G(n_s) = 1/255$$

GINF41A6 - AGD

4

VII. Traitement « Point »

• De plus, $p_s(n_s)$ est une densité uniforme, donc :

$$p_e(n_e).dn_e = p_s(n_s).dn_s = dn_s / 255$$

$$n_s = \varphi(n_e) \qquad \text{et} \qquad \frac{dn_s}{dn_e} = \varphi'(n_e)$$

donc
$$\frac{dn_s}{dn_e} = 255.p_e(n_e) = \varphi'(n_e)$$

D'où $\varphi(n_e) = 255 \int_{0}^{n_e} p_e(n).dn$

NB: l'intégrale de la fonction de densité p_e est <u>la fonction de répartition</u>

GINF41A6 - AGD

VII. Traitement « Point »

- Approximation pour des variables discrètes
 - n_e et n_e sont en réalité des variables discrètes de 0 à n_{max} par pas de 1, avec n_{max}, le niveau de gris maximum que l'on veut atteindre en
- · Puisque les variables sont discrètes, la solution ne sera pas exacte
- A partir de l'histogramme normalisé (p_e): φ se calcule en $\varphi(n_e) = n_{\text{max}} \sum p_e(k)$ sommant progressivement:

$$\varphi(n_e) = n_{\text{max}} \sum_{k=0}^{n_e} p_e(k)$$

 A partir de l'histogramme non normalisé (h_e) , idem mais attention à la constante de normalisation (N_⊤ le nombre total de pixels):

$$\varphi(n_e) = \frac{n_{\text{max}}}{N_T} \sum_{k=0}^{n_e} h_e(k)$$

GINF41A6 - AGD

VII. Traitement « Point »

VII.7. Traitement des images en couleur

- A proscrire : Transformation sur les histogrammes R, G, B
 - Génération de fausses couleurs : Pourquoi ?
- Passage dans un espace à luminance séparée
 - > Transformation sur la dimension de luminance
- Cf TP

GINF41A6 - AGD

31

VII. Traitement « Point »

- Pour en savoir plus : Cas général
 - X_e variable aléatoire, x_e ses réalisations (niveaux de gris sur une image I_e), l'histogramme est un estimateur de la fonction de densité f(x_e), F(x_e) est la fonction de répartition.
 - On cherche une transformation, x_s=φ(x_e) pour que l'image Is des niveaux de gris x_s ait une fonction de répartition G(x_s) fixée à l'avance
 - * Réponse : $x_s = \phi(x_e) = G^{-1}[F(x_e)]$

GINF41A6 - AGD