Generalising \square_F and dmap_F for non-endofunctors

Fredrik Nordvall Forsberg

December 7, 2010

1 The standard situation

In the ordinary situation, we have an endofunctor $F: \operatorname{Set} \to \operatorname{Set}$ representing an inductive definition, i.e. we have a set μF and a constructor $c: F(\mu F) \to \mu F$. The eliminator has type

$$\operatorname{elim}_F : (P : \mu F \to \operatorname{Set}) \to (g : (x : F(\mu F)) \to \Box_F(\mu F, P, x) \to P(c(x)))$$
$$\to (x : \mu F) \to P(x)$$

and computation rule

$$\operatorname{elim}_F(P, g, c(x)) = g(x, \operatorname{dmap}_F(\mu F, P, \operatorname{elim}_F(P, g), x)).$$

Here,

$$\Box_F: (A: \operatorname{Set}) \to (P: A \to \operatorname{Set}) \to F(A) \to \operatorname{Set}$$

gives the induction hypothesis (it is called 'IH' in the induction-recursion papers) and

$$\operatorname{dmap}_F: (A:\operatorname{Set}) \to (P:A \to \operatorname{Set}) \to ((x:A) \to P(x)) \\ \to (x:F(A)) \to \Box_F(A,P,x)$$

takes care of the recursive calls (in the IR papers, it is called mapIH). Both \Box_F and dmap $_F$ can be explicitly defined:

$$\Box_F(A,P,x) = \{y: F(\Sigma \ A \ P) \mid F(\pi_0)(y) = x\}$$

$$\operatorname{dmap}_F(A,P,g,x) = F(\widehat{g})(x)$$

where $\widehat{g}: A \to \Sigma$ A P is defined by $\widehat{g}(z) = \langle z, g(z) \rangle$. Note that $\pi_0 \circ \widehat{g} = \mathrm{id}$, so that

$$F(\pi_0)(F(\widehat{g})(x)) = F(\pi_0 \circ \widehat{g})(x)) = F(\mathrm{id})(x) = \mathrm{id}(x) = x$$

which shows that indeed dmap_F $(A, P, g, x) : \Box_F(A, P, x)$. One can show that this definition of \Box_F is naturally isomorphic to the definition in the IR papers (see Problem 2 in problems.pdf).

However, we prefer to just use some abstract properties of \square_F and dmap_F , namely

$$F(\Sigma A B) \cong \Sigma F(A) \square_F(A, B) \tag{*}_{\square}$$

and this isomorphism φ satisfies

i.e. $\pi_0 \circ \varphi = F(\pi_0)$. For dmap_F, we have for all $f: (x:A) \to B(x)$

$$F(A) \xrightarrow{F(\widehat{f})} F(\Sigma A B) \tag{*_{dmap}}$$

$$\Sigma F(A) \square_F(A, B)$$

i.e. $\widehat{\mathrm{dmap}_F(f)} = \varphi \circ F(\widehat{f})$.

2 Generalising \square_F and dmap_F for non-endofunctors

Let us now try to generalise things, first by moving away from the category Set to an arbitrary category \mathbb{C} (with some structure, of course), and then by replacing the endofunctor $F:\mathbb{C}\to\mathbb{C}$ with just a functor $F:\mathbb{C}\to\mathbb{D}$.

2.1 The category $\llbracket \operatorname{Fam} \rrbracket(\mathbb{C})$ of interpretations of families in \mathbb{C}

Let us for the moment assume that the category \mathbb{C} is a model of type theory. I want to define a category $[\![Fam]\!](\mathbb{C})$ of "interpretations of families in \mathbb{C} ". It has as objects an interpretation of 'A: Set, $B:A\to \operatorname{Set}$ ' in \mathbb{C} , and a morphism from $[\![A,B]\!]$ to $[\![A',B']\!]$ is an interpretation of ' $f:A\to A',g:(x:A)\to B(x)\to B'(f(x))$ '.

Example 1 ($\mathbb{C} = \operatorname{Set}$). For $\mathbb{C} = \operatorname{Set}$, we recover the usual category Fam(Set) of families of sets, i.e. we have objects pairs (A, B) where $A : \operatorname{Set}$ and $B : A \to \operatorname{Set}$, and a morphism $(A, B) \to (A', B')$ is a pair $f : A \to A'$, $g : (x : A) \to B(x) \to B'(f(x))$.

Example 2 ($\mathbb{C} = \text{Fam}(\text{Set})$). Unless I am mistaken, the objects in $[\![\text{Fam}]\!]$ (Fam(Set)) are tuples $((A_0, A_1), (B_0, B_1))$ where

$$A_0: \operatorname{Set},$$

 $A_1: A_0 \to \operatorname{Set},$
 $B_0: A_0 \to \operatorname{Set},$
 $B_1: (x: A_0) \to A_1(x) \to B_0(x) \to \operatorname{Set}.$

A morphism from $((A_0, A_1), (B_0, B_1))$ to $((A'_0, A'_1), (B'_0, B'_1))$ consists of

$$f_0: A_0 \to A'_0,$$

$$f_1: (x: A_0) \to A_1(x) \to A'_1(f_0(x)),$$

$$g_0: (x: A_0) \to B_0(x) \to B'_0(f_0(x))$$

$$g_1: (x: A_0) \to (y: A_1(x)) \to (z: B_0(x)) \to B_1(x, y, z)$$

$$\to B'_1(f_0(x), f_1(x, y), g_0(x, z)).$$

Question 1. Is there a better way to present $[Fam](\mathbb{C})$?

2.2 Σ as a functor from $[\![Fam]\!](\mathbb{C})$ to \mathbb{C}

Now, I notice that the sigma constructor takes a family (A,B) of sets and gives me a set Σ A B back. It is also functorial, since if I have a morphism (f,g): $(A,B) \to (A',B')$, then I can construct a morphism $[f,g]: \Sigma$ A $B \to \Sigma$ A' B' by defining

$$[f,g]\langle a,b\rangle = \langle f(a),g(a,b)\rangle.$$

In the general case, I would thus like to generalise Σ to a functor

$$\Sigma_{\mathbb{C}}: \llbracket \operatorname{Fam} \rrbracket(\mathbb{C}) \to \mathbb{C}$$

together with some kind of (interpretation of) projection morphisms $\pi_0: \Sigma_{\mathbb{C}}(A, B) \to A, \ \pi_1: (x: \Sigma_{\mathbb{C}}(A, B)) \to B(\pi_0(x)).$

Question 2. I probably would like $\Sigma_{\mathbb{C}}$ to be the interpretation of Σ in \mathbb{C} . For morphisms, this would mean that I want $\Sigma_{\mathbb{C}}(f,g)$ to be the interpretation of [f,g]?

2.3 \square is a functor $\square' : \mathbf{Set}^{\mathbf{Set}} \to \mathbf{Fam}(\mathbf{Set})^{\mathbf{Fam}(\mathbf{Set})}$

Looking at the type

$$\Box_F: (A: \operatorname{Set}) \to (P: A \to \operatorname{Set}) \to F(A) \to \operatorname{Set}$$

of \square_F again, we see that we can write this as

$$\square' : \operatorname{Set}^{\operatorname{Set}} \to \operatorname{Fam}(\operatorname{Set})^{\operatorname{Fam}(\operatorname{Set})}$$

if we define $\Box'(F) = \lambda(A, B)$. $(F(A), \Box_F(A, B))$. For $\Box'(F)$ to be a functor Fam(Set) to Fam(Set), it must also act on morphisms. Suppose $(f, g) : (A, B) \to (A', B')$. We must find a morphism from $\Box'(F)(A, B)$ to $\Box'(F)(A', B')$, i.e. from

$$(F(A), \{y : F(\Sigma A B) \mid F(\pi_0)(y) = x\})$$

to

$$(F(A'), \{y : F(\Sigma A' B') \mid F(\pi_0)(y) = x\}).$$

But $f:A\to A'$, so $m=F(f):F(A)\to F(A')$ can be our first component. Now we need to define

$$n: (x: F(A)) \to \{y: F(\Sigma A B) \mid F(\pi_0)(y) = x\}$$

 $\to \{z: F(\Sigma A' B') \mid F(\pi_0)(z) = F(f)(x)\}$

Let n(x) = F([f,g]). We need to prove that $F(\pi_0)(F([f,g])(y)) = F(f)(x)$ for $y : F(\Sigma A B)$ such that $F(\pi_0)(y) = x$. But $\pi_0 \circ [f,g] = f \circ \pi_0$, so

$$F(\pi_0)(F([f,g])(y)) = F(\pi_0 \circ [f,g])(y) = F(f \circ \pi_0)(y) = F(f)(F(\pi_0)(y)) = F(f)(x).$$

Thus we can take $\Box'(F)(f,g) = (n,m) = (F(f), \lambda x. F([f,g]))$. This shows that $\Box'(F) : \operatorname{Fam}(\operatorname{Set})^{\operatorname{Fam}(\operatorname{Set})}$ if $F : \operatorname{Set} \to \operatorname{Set}$ is a functor.

However, we want more! We want \square' to be a functor \square' : $\operatorname{Set}^{\operatorname{Set}} \to \operatorname{Fam}(\operatorname{Set})^{\operatorname{Fam}(\operatorname{Set})}$. We have defined the object part of \square' , what is the morphism part? Given a natural transformation $\eta: F \to G$, we have to construct a natural transformation $\square'(\eta): \square'(F) \to \square'(G)$. The component of $\square'(\eta)$ at (A,B) consists of a function $f: F(A) \to G(A)$ and a function $g: (x:F(A)) \to \square_F(A,B,x) \to \square_G(A,B,f(x))$. For f, we can choose $f=\eta_A$. Choose $g(x)=\eta_{\Sigma}|_{A}|_{B}$. Certainly $\eta_{\Sigma AB}: F(\Sigma|_{A}|_{B}) \to G(\Sigma|_{A}|_{B})$, but do we have $G(\pi_0)(\eta_{\Sigma AB}(y))=\eta_a(x)$, given that $F(\pi_0)(y)=x$? Yes, because substituting $x=F(\pi_0)(y)$, we end up with the equation $G(\pi_0)(\eta_{\Sigma AB}(y))=\eta_a(F(\pi_0)(y))$, which is exactly the naturality condition!

$$F(\Sigma A B) \xrightarrow{\eta_{\Sigma AB}} G(\Sigma A B)$$

$$F(\pi_0) \downarrow \qquad \qquad \downarrow G(\pi_0)$$

$$F(A) \xrightarrow{\eta_A} G(A)$$

Hence we can define $\Box'(\eta)_{(A,B)} = (\eta_A, \lambda x. \eta_{\Sigma AB})$. The naturality of $\Box'(\eta)$ follows directly from the naturality of η .

2.4 A generalised \square_F for F not an endofunctor

Assume that \mathbb{C} and \mathbb{D} are categories such that $[\![\operatorname{Fam}]\!](\mathbb{C})$ and $[\![\operatorname{Fam}]\!](\mathbb{D})$ make sense. (Then $\Sigma_{\mathbb{C}}$ and $\Sigma_{\mathbb{D}}$ should make sense as well.) We can then generalise \square_F to a functor

$$\square: \mathbb{D}^{\mathbb{C}} \to \llbracket \operatorname{Fam} \rrbracket(\mathbb{C}) \to \llbracket \operatorname{Fam} \rrbracket(\mathbb{C})$$

such that there is a natural isomorphism

$$\eta: F \circ \Sigma \xrightarrow{\cdot} \Sigma \circ \square \tag{*}_{\square}$$

satisfying

```
i.e. \pi_0 \circ \varphi = F(\pi_0). . . .
```

3 Comparision with Fibrational Induction Rules for Initial Algebras