4. Übungsblatt zu Linearer Algebra 1 (WS 20/21)

Name(n): Joshua Detrois, Leo Knapp, Juan Provencio

Gruppe: F

Punkte: ___/__/__ Σ ___

4.1 Aufgabe 1: Komplexe Zahlen - Peer Feedback

Siehe Rückseite

4.2 Aufgabe 2: Polynome bilden Vektorraum

Geg.:

- Sei K ein Körper
- $\sum_{i=0}^{n} a_i X^i$ mit $n \in \mathbb{N}$ und $a_0, ..., a_n \in K$ sei ein Polynom mit Koeffizienten in K
- $\bullet~{\rm K}[{\rm X}]$ sei die Menge aller Polynome mit Koeffizienten in K
- a) z.z.: K[X] mit der Addition und der Skalarmultiplikation sei ein Vektorraum über K:

(K[X], +) muss eine abelsche Gruppe sein und folgende 3 Axiome muss ein Vektorraum erfüllen:

• V1 Kommutativität: $\forall k, l \in K, \ v \in K[X]$:

$$k(lv) = (kl)v$$

- V2 Neutrales Element 1: $1v = v \ \forall v \in K[X]$
- V3 Distributivität: $\forall k, l \in K, \ v, w \in K[X]$:

$$(k+l)v = kv + kv$$

$$k(v+w) = kv + kw$$

Lsg.:

(a) $(K[X], +_K)$ ist abelsch

Sei
$$a = \sum_{i=0}^{n} a_i X^i$$
 und $b = \sum_{i=0}^{m} b_i X^i$

$$a +_{K} b = \sum_{i=0}^{n} a_{i} X^{i} +_{K} \sum_{i=0}^{m} b_{i} X^{i}$$

$$= \sum_{i=0}^{max\{n,m\}} (a_{i} + b_{i}) X^{i}$$

$$= \sum_{i=0}^{max\{n,m\}} (b_{i} + a_{i}) X^{i}$$

$$= \sum_{i=0}^{n} b_{i} X^{i} +_{K} \sum_{i=0}^{m} a_{i} X^{i}$$

$$= b +_{K} a$$

(b) V1

Sei
$$a = \sum_{i=0}^{n} a_i X^i$$
 und $k, l \in K$

$$k \cdot_K (l \cdot_K a) = k \cdot_K (l \cdot_K \sum_{i=0}^n a_i X^i)$$

$$= k \cdot_K (\sum_{i=0}^n (l \cdot a_i) X^i)$$

$$= \sum_{i=0}^n (k \cdot (l \cdot a_i)) X^i$$

$$= \sum_{i=0}^n ((k \cdot l) \cdot a_i) X^i$$

$$= (k \cdot l) \cdot_K \sum_{i=0}^n a_i X^i$$

$$= (k \cdot l) \cdot_K a$$

(c) V2

Sei
$$a = \sum_{i=0}^{n} a_i X^i$$
 und $1 \in K$

$$1 \cdot_K a = 1 \cdot_K \sum_{i=0}^n a_i X^i$$
$$= \sum_{i=0}^n (1 \cdot a_i) X^i$$
$$= \sum_{i=0}^n a_i X^i$$
$$= a$$

(d) V3

Sei
$$a = \sum_{i=0}^{n} a_i X^i$$
 und $k, l \in K$

$$(k+l) \cdot_{K} a = (k+l) \cdot_{K} \sum_{i=0}^{n} a_{i} X^{i}$$

$$= \sum_{i=0}^{n} ((k+l) \cdot a_{i}) X^{i}$$

$$= \sum_{i=0}^{n} ((k \cdot a_{i}) + (l \cdot a_{i})) X^{i}$$

$$= \sum_{i=0}^{n} ((k \cdot a_{i}) X^{i} +_{K} \sum_{i=0}^{n} ((l \cdot a_{i}) X^{i})$$

$$= (k \cdot_{K} \sum_{i=0}^{n} a_{i} X^{i}) +_{K} (l \cdot_{K} \sum_{i=0}^{n} \cdot a_{i} X^{i})$$

$$= (k \cdot_{K} a) +_{K} (l \cdot_{K} a)$$

b) Ein mögliches Erzeugendensystem von K[X] ist $E = \{X^0, X^1, ..., X^n | n \to \infty\}$

4.3 Aufgabe 3: Vektorraumstruktur vererben

Geg.:

- $K := \mathbb{Z}_{p\mathbb{Z}}$
- p ist eine Primzahl
- V sei ein K-Vektorraum
- U sei eine Untergruppe von (v, +)

Z.z.: U sei ein K-Vektorraum bezüglich der auf U eingeschränkten Addition und skalaren Multiplikation von V. Folgende drei Axiome müssen dafür erfüllt werden:

- $1 U \neq \emptyset$
- 2 U soll bezüglich der Addition abgeschlossen sein
- 3 U soll bezüglich der skalaren Multiplikation abgeschlossen sein

Lsg.:

- a) Eine Untergruppe $U\subset (V,+)$ ist per Definition eine nichtleere Teilmenge, also gilt $U\neq\varnothing$
- b) Eine Untergruppe $U \subset (V, +)$ abgeschlossen bezüglich der Addition.
- c) $k \in K, u \in U \implies ku \in U$

4.4 Aufgabe 4: Beispiele von Untervektorräumen

a) $zz : A \neq \emptyset$ Beweis durch Beispiel: $0 \in A$ $zz: a, b \in A \Rightarrow a+b \in A$ Direkter Beweis:

$$\forall x,y \in Z: x+y \in Z \Rightarrow \forall a,b \in A: a+b \in A$$

$$zz: z \in Z, a \in A \Rightarrow z \cdot a \in A$$

$$\forall a_i,z \in Z: z \cdot a_i \in Z \Rightarrow \forall z \in Z, a \in A: z \cdot a \in A$$

b) $zz : B \neq \emptyset$ Beweis durch Beispiel: $0 \in B$ $zz : a, b \in B \Rightarrow a + b \in B$ Beweis:

Seien
$$a, b, c, d \in R, a + c = e, b + d = f$$

Seien $(a, b, a, b, ...), (c, d, c, d, ...) \in B$
 $\Rightarrow (a, b, a, b, ...) + (c, d, c, d, ...) = (e, f, e, f, ...)$
 $\Rightarrow (a, b, a, b, ...) + (c, d, c, d, ...) \in B$

 $zz:b\in B, x\in R\Rightarrow a\cdot x\in B$ Beweis:

Seien
$$a, b, x \in R, a \cdot x = c, b \cdot x = d$$

Sei $(a, b, a, b, ...) \in B$
 $\Rightarrow (a, b, a, b, ...) \cdot x = (c, d, c, d, ...)$
 $\Rightarrow (a, b, a, b, ...) \cdot x \in B$

c) $zz : C \neq \emptyset$ Beweis durch Beispiel: $0 \in C$ $zz : a, b \in C \Rightarrow a + b \in C$ Direkter Beweis:

Seien
$$a, b \in C$$

$$\Rightarrow \sum_{i=1}^{n} a_i = 0 = \sum_{i=1}^{n} b_i$$

$$\Rightarrow \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i = 0 + 0 = 0$$

$$\Rightarrow \sum_{i=1}^{n} (a_i + b_i) = 0$$

$$\Rightarrow a + b \in C$$

 $zz: x \in R, c \in C \Rightarrow x \cdot c \in C$ Direkter Beweis:

Seien
$$x \in R, c \in C$$

$$\Rightarrow \sum_{i=1}^{n} c_i = 0 = x \cdot 0 = x \cdot \sum_{i=1}^{n} c_i$$

$$\Rightarrow x \cdot c \in C$$

d) zz: D ist kein Unterraum von \mathbb{R}^n Beweis:

Seien
$$d \in D, x \in R \setminus 1$$

$$\Rightarrow \sum_{i=1}^{n} d_i = 1 \neq x \cdot 1 = x \cdot \sum_{i=1}^{n} d_i$$

$$\Rightarrow x \cdot d \notin D$$