Strom-/Spannungs/-Widerstandsmessung; periodische Vorgänge

$$H = \frac{Vs}{A} = \Omega s$$

DC

Strommessung: Berechnung tatsächlicher Strom: $I = I' \cdot \left(1 + \frac{R_m}{R}\right)$

 $(R_m = Innenwiderst.)$

Spannungsmessung: rel. Abweichung: $\frac{\Delta U}{U} = \frac{-\frac{R_L}{R_m}}{1 + \frac{R_L}{R} + \frac{R_L}{R}}$

$$\frac{\Delta U}{U} = \frac{-\frac{R_i}{R_m}}{1 + \frac{R_i}{R_m} + \frac{R_i}{R_v}}$$

 $(R_i: Innenwid. Quelle, R_v: Verbr.)$

<u>Erweiterter Strommessbereich</u>: Shunt: $R_p = R_m \cdot \frac{1}{\frac{T}{L-1}}$

Eingangswiderst.:
$$R_e = R_m || R_p$$

Stromzange: Übertragerprinzip (nur AC) od. Hall-Sensor (AC und DC); Vorteil: Stromkreis nicht auftrennen bei Verzehnfachung der Frequenz verzehnfacht sich auch Signal, wegen $u_{ind} \sim \omega \cdot \sin(\omega t)$

Dreheiseninstrument: pol.unabhängiger Zeigerausschlag, robust (da unbewegliche Spule); nicht-linear Drehspulinstrument: polaritätsabhängiger Zeigerausschlag, empfindlicher Aufbau

Widerstandsmessung

Stromrichtig (kleiner R_i , für **große** Wid.): $R_x = \frac{U}{I} - R_i$ (R_x = tatsächlicher Widerstand)

Spannungsri. (großer R_i (10x R_x), für kleine Wid.): $R_x = \frac{U}{I - \frac{U}{2}} = \frac{R'}{I - \frac{U}{2}}$ (R_x = tatsächl. W., R' = gemess. W.)

<u>Zweileitermessung:</u> führt zu Abweichung wegen Leitungs-/Klemmenwiderstand: $2 \cdot R_k$

Vierleitermessung: ideal für kleine Widerstände im $m\Omega$ -Bereich \rightarrow Spannungsabfall an R_{kl} durch höhere

Ausgangsspannung von I_a kompensiert $\rightarrow R_i$ von Voltmeter ist so hochohmig, dass in innerem

Stromkreis kein Strom fließt, deshalb fällt an R_{kU} keine Spannung ab!

periodische Vorgänge = Summe aus Gleich- und Wechselvorgang: $x = x_{-} + x_{-}$ (x = Mischgröße)

Schwingungsbreite = Differenz zw. Minimal- u. Maximalwert

Wechselvorgang = periodischer Vorgang ohne Gleichanteil (linearer Mittelwert = 0)

Mischvorgang = periodischer Vorgang mit Gleichanteil (linearer Mittelwert \neq 0)

Rauschvorgang = zufälliger Vorgang, nicht mathematisch beschreibbar (linearer Mittelwert \rightarrow 0)

<u>Spitzewerte:</u> Kondensator lädt sich bei positiver Halbwelle auf $U_{max} - \Delta U_{Diode}$ hochohmiges Spannungsmessen: $\tau = R_M \cdot C \gg \frac{1}{\pi}$

(Einweggleichrichter mit Stützkondensator)

→ mit Drehspul- und Dreheiseninstrument möglich

Spitze-Spitze-Werte: $U_M = U_{C1} - U_{C2} = \widehat{U}_+ - \widehat{U}_- = U_{SS}$

(linearer/arithmetischer) Mittelwert / Gleichwert (≜ Gleichanteil)

$$\bar{x} = \frac{1}{T} \cdot \int_{t=0}^{T} x(t) dt$$

Sinus = 0, Dreieck = 0, PWM = $\hat{x} \cdot \frac{T_1}{T}$

→ Drehspulinstrument auf DC

→ Tiefpass + Dreheiseninstrument

Gleichrichtwert (Mittelwert v. gleichgericht, periodischen Vorgang)

$$\overline{|x|} = \frac{1}{T} \cdot \int_{t=0}^{T} |x(t)| dt$$

 $|\overline{x}| = \frac{1}{T} \cdot \int_{t=0}^{T} |x(t)| dt$ Zweiweg/Brücken: Sinus = $\frac{2}{T} \cdot \hat{x}$, Dreieck = $\frac{\hat{x}}{2}$

Einweg: Sinus = $\frac{1}{x} \cdot \hat{x}$

Bei kleinen Spannungen: jeweils zweite Diode durch Widerstand ersetzen, um Verzerrung durch Schwellenspannung von Diode auszugleichen (Nachteil: verringerter Innenwiderstand)

Oszilloskop

<u>Phasendifferenzmessung:</u> $\frac{\Delta t}{T} = \frac{\Delta \varphi}{360^{\circ}} \rightarrow \Delta \varphi = \frac{\Delta t}{T} \cdot 360^{\circ}$ (von Ausgang zu Eingang!)

Bedingung (Spannungswert + Slope) darf innerhalb T nur einmal vorkommen NORMAL: zeichnet Signal nur dann, wenn Bedingung erfüllt, sonst schwarzer Screen

SINGLE SHOT: Nur 1 einzige Datenaufnahme, wenn Bedingung erfüllt

Kopplung: AC nur bei hohem DC-Offset (Hochpass wird vorgeschalten)

Tastkopf

frequenzabhängiger Spannungsteiler; zum Abgleich von Kompensation: Rechteckimpuls (Grundfrequenz

- + unendlich Oberwell.) → da Tastkopf frequ.abhängig unterschiedl. Gewichtung der Fourier-Komponenten
- → entweder hohe (ansteigend, Tiefpass, rosa) oder tiefe (fallend, Hochpass, blau) Frequenzbeiträge zu sehr gedämpft Teilerverhältnis:

Output i

C cable ≈

90-110pF

C_{scope} ≈ 10-20pF

$$V = \frac{U_{in}}{U_{Out}} = 1 + \frac{R_{Tip}}{R_{Scope}} \cdot \frac{1 + j\omega R_{Scope} C_{Scp+Cable}}{1 + j\omega R_{Tip} C_{Tip}}$$

→ frequenzunabhängig durch kürzen:

$$R_{Scope} \cdot C_{Scp+Cable} = R_{Tip} \cdot C_{Tip}$$

$$\Rightarrow \text{ daraus: } V = 1 + \frac{R_{Tip}}{R_{scope}} = 1 + \frac{C_{Scp+Cable}}{C_{Tip}}$$

$$R_{in} = R_T + R_{Scp} = R_{Scp} \cdot V; C_{in} = \frac{C_{Scp}}{V}$$

Bandbreite: Grenzfrequenz Oszi, ab da Messungen ungenauer (Tiefpass-Verhalten) (Praxis: Oszi mit Bandbreite 3x (analog) bzw. 5x (digital) höher als höchste zu messende Frequenz wählen) Abtastrate: Schnelligkeit Datenaufnahme, Frequenz des ADC (Praxis: 3x Bandbreite) Speichertiefe: Speichergröße für Abtastwerte, maximale Dauer einer Wellenform

Fehlerfortpflanzung: $\Delta y = \sum_{i=1}^{n} \left| \frac{\partial f(x_i)}{\partial x_i} \right| \cdot \Delta x_i$

Größtfehler: maximal möglicher Fehler

mittlerer Fehler: $\Delta y = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial f(x_i)}{\partial x_i}\right)}$

Addition od. Subtraktion der Messgrößen

(Winkel in Bogenmaß!)

Compensation

5-30pF

 \rightarrow Stdrd-Abw.: $\sigma = \sum_{i=1}^{n} \left(\frac{\partial f(x_i)}{\partial x_i}\right)$

- → Addition absoluter Fehler
- → Addition relativer Fehler

Multiplikation od. Division der Messgrößen Mult. potenzierter Messgrößen → Mult. der relativen Fehler mit Exponenten, anschl. Addition

Rundung: 1. Messunsicherheit auf 2 geltende Ziffern runden, 2. Messergebnis auf gleiche Dezimalstelle runden; Beispiel: $\bar{u}=7,9858~V$, $\sigma=0,0794~V \rightarrow \sigma=0,079~V$, $\bar{u}=7,986~V$

Beispiel: $\overline{R} = 13.584,542 \Omega$, $\sigma = 117,36 \Omega \rightarrow \sigma = 120 \Omega$, $\overline{R} = 13.580 \Omega$

Effektivwert (quadratischer Mittelwert): $X = \int_{t-0}^{1} x^2(t) dt$

Sinus =
$$\frac{\hat{x}}{\sqrt{2}}$$
, Dreieck = $\frac{\hat{x}}{\sqrt{3}}$, Rechteck = $\sqrt{X_0^2 + \hat{x}^2}$, PWM = $\hat{x} \cdot \sqrt{\frac{T_1}{T}}$

Effektive Leistung = Wirkleistung: $P_{eff} = \frac{1}{x} \cdot \int_{t=0}^{T} p(t) dt$

- → Dreheiseninstrument (ungenau); früher: Drehspulinstrument (nur Sinus, da über F)
- → heute: DMM; für Hochfrequenzen: Thermoumformer (Aufheizen Widerstanddraht)

Formfaktor (Effektivwert/Gleichrichtwert): $F = \frac{X_{eff}}{|x|}$ Sinus = $\frac{\pi}{2\sqrt{2}}$ Dreieck = $\frac{2}{\sqrt{3}}$

Crest-/Scheitelfaktor (Scheitelwert/Eff.): $S = \frac{\hat{x}}{X_{off}}$ Sin = $\sqrt{2}$, Dreieck = $\sqrt{3}$, PWM = $\sqrt{\frac{T}{T_{off}}}$

Nicht-sinusförmige periodische Vorgänge

Fourier-Reihe: $x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cdot \cos(\omega kt) + b_k \cdot \sin(\omega kt))$

k = 1: Grundschwingung / erste Harmonische; k = 2: Erste Oberschwingung / zweite Harmon. (bei senkrechter Kante in Signal $\rightarrow \infty$ Oberwellen)

wenn x(t) gerade (achsensymm.): nur cos-Anteile (da cos(-x) = cos(x))

wenn x(t) ungerade (punktsymm.): nur sin-Anteile (da sin(-x) = -sin(x))

einzelne Amplitude berechnen: $\hat{x}_k = \sqrt{a_k^2 + b_k^2}$; Phase berechnen: $\varphi_k = \arctan\left(\frac{b_k}{a_k}\right)$

Effektivwert Gesamtspannung: $U_{eff} = \sqrt{u_o^2 + U_{0_eff}^2 + U_{1_eff}^2 + U_{2_eff}^2 + \cdots}$

Klirrfaktor (Effektivwerte Oberwellen zu Eff. Gesamtsignal): $k = \frac{\sqrt{U_{1,eff}^2 + U_{2,eff}^2 + \cdots}}{\sqrt{U_{0,eff}^2 + U_{1,eff}^2 + U_{2,eff}^2 + \cdots}}$

Dynamisches Verhalten von Systemen

Charakterisierung eines Systems durch Testfunktion: Sprungfunktion, Sinusfunktion Sprungantwort

63% des Endwerts nach Zeitkonstante τ (zB RC-Glied: $\tau = RC$)

95% des Endwerts nach 3τ , 99,5% nach 5τ

Anstiegszeit T_A : Abstand zw. 10% und 90% des Endwerts $\rightarrow T_A = 2.2 \cdot \tau$

Sinusantwort

Sinus am Eingang mit variierter Frequenz \rightarrow Bode-Diagramm; Grenzfrequenz f_c bei -3dB

Zusammenhang: $f_G = \frac{0.35}{T_A}$

Messabweichungen

Multimeter mit $3\frac{1}{2}$ Stellen: maximaler Wert = 19.99 V \rightarrow ein digit hat den Wert 0.01 V

<u>Güteklasse</u>: mögliche Abweichung von <u>Skalenendwert</u> $\Rightarrow \frac{\Delta U}{U} = \frac{Gütekl.in \% \cdot Skalenendwert}{Messwert} [\%]$

Kalibrierung: keine Änderung am Messgerät, lediglich Dokumentation der Abweichung Justierung: Einstellen Messgerät, um Abweichung zu vermeiden (zB Waage geradestellen) Eichen: Überprüfung der korrekten Kalibration

→ Absolutgenauigkeit DMM durch Qualität der Kalibration bestimmt

Beschreibung stochastischer Messabweichungen

<u>Mittelwert</u>: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ mittelt stochastischen (zufällig.) Fehler aus, nicht systematischen!

Standardabweichung/mittlerer Fehler Einzelmessung: $\sigma = \sqrt{\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2}{n-1}}$

<u>relative Standardabweichung/Variationskoeffizient</u>: $VarK = \frac{standardabweichung}{\frac{Mittelwert}{mittelwert}} = \frac{\sigma}{\bar{x}}$

Standardabweichung des Mittelwerts: $\Delta x = \frac{\sigma}{\sqrt{n}} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}}$

Gauß-/Normalverteilung: $p(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot e^{-\frac{1(x-\bar{x})^2}{2} \frac{1}{\sigma^2}}$ (Wahrscheinlichk., Wert x zu messen)

Median: mittlere Zahl bei Größensortier. (bei gerader Anzahl: Mittelwert beider mittleren)

Messverstärker

Absolute Pegel

Leistungspegel: $L_P = 10 \cdot \log \frac{P}{P_{Bezua}} dB$ (dBW od. dBm)

Spannungspegel: $L_U = 20 \cdot \log \frac{U}{U_{Bezug}} dB$ (dBV od. dB μ) (dBm immer Leistung, dB μ Spannung!)

Umrechnung: $42 \ dbV = 1V \cdot 10^{\left(\frac{42}{20}\right)}$ wenn zB. Verstärk. = 50 geg.: $\Delta L = 20 \cdot \log(50) dB$

Pegeldifferenz u. Dämpfungsmaß

Verhältnis Ausgangsgröße zu Eingangsgröße

Spannungen: $\Delta L_U = 20 \cdot \log \frac{(U_{out})}{(U_{in})} dB$ Leistungen: $\Delta L_P = \mathbf{10} \cdot \log \frac{(P_{out})}{(P_{in})} dB$

 \rightarrow Pegeldifferenz auch durch Subtraktion von 2 **absoluten** Pegeln: $\Delta L_P = L_{P2} - L_{P1}$

→ negative Pegeldiff. = Dämpfung → positive Pegeldiff. = Verstärkung

Filtersteilheit Tief-/Hochpass: Filter n. Ordnung: $n \cdot 20dB/Dekade$

für Hifi-Audiosignale min 80 – 100 dB Dämpfung nötig

dB-Rechnung

30 dB + 20 dB = 50 dB \rightarrow OK! 30 dB - 20 dB = 10 dB \rightarrow OK! $30 \text{ dBV} + 20 \text{ dB} = 50 \text{ dBV} \rightarrow \text{OK}!$ $30 \text{ dBV} - 20 \text{ dB} = 10 \text{ dBV} \rightarrow \text{OK}!$ $30 \text{ dBV} - 20 \text{ dBV} = 10 \text{ dB} \rightarrow \text{OK}!$ 30 dBV + 20 dBV → NICHT OK!

Anforderungen an Messverstärker

hohes Auflösungsvermögen; geringe Rückwirkungen auf Messgröße (Eingangswid. $R_e = \infty$ bzw. = 0 (Spannung/Strom); geringes Eigenrauschen (hohe SNR); definiertes Übertragungsverhalten / hohe Linearität; möglichst geringer Offset; gutes dynam. Verhalten (Anstiegszeit, Grenzfrequenz); belastungsunabhängiges Ausgangssignal; mit Eingangsschutz (Überlastschutz)

Operationsverstärker

erhältlich für Anwendung mit $f < 150 \, MHz$ und $U < 150 \, V$ (jeder OpV Tiefpass-Eigensch.)

Spannungsversorgung typischerweise zw. $\pm 5 V$ und $\pm 15 V$

Ausgangsspannung (ideal): $u_A = V_0 \cdot (u_P - u_N)$ (V_0 = Verstärkungsfaktor), da $r_e \to \infty$: $i_N = i_P = 0$ Leerlaufverstärkung üblicherweise 10⁴ bis 10⁷

Offset-Spannung: Spannung u_4 die anliegt, obwohl $u_D = 0 V$ (da Rs u. Transist. nicht symm.)

Schaltung OpV mit Gegenkopplung

 $V=rac{u_A}{u_E}=rac{-rac{\kappa_2}{R_1}}{1+rac{1}{V_0}\left(1+rac{R_2}{R_1}
ight)}$ für idealen OpV $(V_0
ightarrow\infty)$ folgt:

 $\lim_{V_0 \to \infty} V = -\frac{R_2}{R_1} \quad \text{und: } \lim_{V_0 \to \infty} u_D = 0 V$

→ virtueller Kurzschluss, da kein Spannungsunterschied

→ wenn pos. Eingang auf Masse: virtuelle Masse an neg. Eingang

Verstärkungs-Bandbreite-Produkt

(bei realen OpVs zw. $10^6 Hz$ und $10^{10} Hz$) $V_0 \cdot f_{G0} = V \cdot f_G \rightarrow \text{konstant!}$

Regeln zur Schaltungsanalyse

- 1. Annehmen, dass mit Gegenkopplung u_D verschwindet (= 0)
- 2. Eingangsströme verschwinden ($i_N = i_P = 0$)
- 3. Unter Berücksichtigung von 1. und 2. Maschen- und Knotengleichungen lösen

4. (Wenn ein Eingang auf Masse lieg	, liegt auch der andere auf Masse (virtu	elle Masse))
Invertierend U/U	2 R ₂	$U_a = -\frac{R_2}{R_1} \cdot U_e$
	, K ₁	$R_e = \frac{U_e}{I_1} = R_1$
	i U _a	
Nicht-invertierend U/U (Elektrometer-Verstärker)	R ₂	$U_a = \left(1 + \frac{R_2}{R_1}\right) \cdot U_e$
(Elektrometer Verstarker)	R ₁	$R_e \to \infty$
	U _e v V _a	.
Nicht-invertierend U/U		\rightarrow Konstantspannungsqu. $U_a = U_e$
(Spannungsfolger,		- u - c
Impedanzwandler)	U _e Y V _a	
Nicht-invertierend U/I	- 4	$I_A = \frac{U_E}{R_1}$
	RL	$R_E \to \infty$
	R ₁	I_A unabhängig von R_L ! \rightarrow Konstantstromquelle
Invertierend I/U	g R _g	$U_a = -R_g \cdot I_e$
(Transimpedanzverstärker)	U _g	$R_e \to 0$
	U _e U _a	
Komparator	-	keine Gegenkopplung!
	U_1 U_2 U_A	$\Rightarrow U_A$ in Sättigung wenn $U_2 > U_1$: $U_A = +u_V$
	_ i i	$wenn U_1 > U_2: U_A = -u_V$
Präzisionseinweg- gleichrichter	$ \begin{array}{c c} R & R & A D_1 \end{array} $	
Sicientifica	U _e U _a	
Schmitt-Trigger	R ₂	Unterschied zu
(Erzeugen binärer Signale,	R ₁	Invertierend U/U:
Schwellspannungen zueinander versetzt)	U ₀ U _a	Mitkopplung (⊖ auf GND) Schwellspannungen:
	i i i	$U_{\pm} = \pm \frac{R_1}{R_2} U_B $

Analog-Digital-Umsetzer / Digitalmesstechnik

Gray-Code: um Glitches zu vermeiden (Zeitpunkte, an denen Wert falsch ist, weil Bits nicht zeitgleich wechseln); Umrechnung binär – Gray: G = B XOR (B >> 1)

Quantisierungsschritt/absolute Auflösung: kleinste Schrittw. u_0 (entsp. LSB) $\rightarrow u_0 = \frac{u_{max}}{2N}$

Digitales Signal: $u_a(t) = Z \cdot \frac{u_{max}}{2N-1} = Z \cdot u_Q$ (Z = Zählerwert = Binärcode)

Achtung bipolare ADCs: Codierung des negativsten Werts mit 0 u. dann schrittw. nach oben; außerdem verdoppelter Quantisierungsschritt

→ nach Anwendung Formel oben anschließend noch negativsten Wert abziehen

<u>Quantisierungsfehler</u>: maximal halber Quantisierungsschritt: $F_0 = \pm \frac{1}{2} \cdot u_0$

relativer Fehler: $\frac{F_Q}{u_{max}}$ \rightarrow jeder ADC hat einen Quantisierungsfehler

Abtastfrequenz: $f_S = \frac{1}{Sample-Rate}$ maximale Signalfrequenz: $f_{max} = \frac{1}{2} \cdot f_S$

Signal-Rausch-Verhältnis (SNR): $\frac{s}{R}[dB] = 10 \cdot \log\left(\frac{P_S}{P_R}\right) = 20 \cdot \log\left(\frac{U_S}{U_R}\right)$ (unabhängig von f_S)

→ SNR eines ADCs: SNR[dB] = 6N + 1.76 → SNR sollte möglichst **hoch** sein

Dynamik: Quotient Maximum u. Minimum: $D[dB] = 20 \cdot \log \left(\frac{2^N \cdot U_Q}{1 \cdot U_Q}\right) \approx N \cdot 6,02$ (unipolar)

Fehlergrößen ADCs: Offsetfehler, Verstärkungsfehler, Linearitätsfehler, Monotoniefehler

Aliasing

Signal erscheint mit zu niedriger Frequenz, wenn nicht schnell genug abgetastet wird <u>Nyquist-Frequenz</u>: $\frac{f_N}{f_N} = \frac{f_S}{f_N}$ (max. Frequenz, die bei abgetasteten Signalen beobachtet werden kann)

Basisband: Bereich zwischen pos. und neg. Nyquist-Frequenz, problemlose Zuordnung der Frequenzen möglich

Ermittlung wahrgenommene Frequenz f_{beob} aus Originalfrequenz f_{in} :

- $(f_S = Abtastfrequenz)$ 1. $f_{beob} = f_{in} \% f_{s}$
- 2. Wenn $f_{beob} > f_N$, dann $f_{beob} = -(f_{beob} f_S)$ ($f_N = Nyquist-Frequenz$)

<u>Abtasttheorem</u>: zur Vermeidung von Aliasing: $f_s > 2 \cdot f_{max}$ ($f_{max} = \text{max}$. Frequ. im Signal)

- ightarrow Vermeiden von Aliasing: f_{max} bandbegrenzen durch Tiefpass (Anti-Aliasing-Filter)
- \rightarrow Filter-Cut-Off-Frequenz muss deutlich unter $\frac{f_S}{2}$ liegen: $RC = \frac{1}{2\pi(\frac{1}{2}f_S)}$

oder Oversampling (+Filter): viel schneller abtasten als nötig für breites Basisband Anti-Aliasing-Filter unverzichtbar wegen: Oberwellen, Rauschen

Frequenzmessung

 $N_{Anzeige} = T_m \cdot f_x$ (f_x = max. Eingangsfrequ., $N_{Anzeige}$ = 10^x mit x = Stellen)

aktive Stellen für Anzeige: $\log_{10} \left(\frac{f_x}{f_{Auflösung}} \right)$ (Bsp: 100 MHz mit Auflösung 10Hz \rightarrow 7 St.)

Torzeit:
$$T_m = \frac{N_{Anzeige}}{f_x}$$
 (Bsp: $T_m = \frac{10^7}{100MHz} = 0.1 \ sec$)

Analog-Digital-Converter

Flash ADC / Parallelumsetzer / Direct conversion ADC

an jedem Eingang ein Komparator → kürzeste Conversion Rate (Umwandlungszeit) (1 Schritt)

n-Bit-Flash-ADC kann 2^n versch. Werte ausgeben $\rightarrow 2^n - 1$ Eingänge $\rightarrow 2^n - 1$ Komparatoren

 U_{in} von jedem Komparator mit U_{ref} verglichen (U_{ref} über Spannungsteiler immer kleiner) \rightarrow Speicherung im

Thermometer-Code ("Strichliste") → Umsetzung Thermometer-Code in Binärcode

⊕: sehr schnell ⊝: hoher Leistungsbedarf, viele Bauteile (teuer), max 8-10 bit

Counter ADC / Inkrementalwandler (heute nicht mehr verwendet)

Vergleich U_{in} durch Komparator mit DAC-Output, der durch internen Zähler angesteuert wird \rightarrow Zähler

solange inkrementiert, bis U_{in} erreicht $\frac{n\text{-Bit-ADC benötigt }2^n\text{ Taktzyklen}}{z^n}$ $\frac{f_S}{z} = \frac{f_T}{z}$ $(Z = \frac{U_{in}}{U} + 2^n)$

⊕: sehr hohe Auflösung, Genauigkeit u. Linearität, einfach ⊝: langsam

Tracking ADC / Delta-encoded ADC / Nachlauf. Inkrementalw. (heute nicht mehr verwendet)

feste (analoge) Eingangsspannung $U_{in} \rightarrow$ Vergleich durch Komparator mit DAC-Output, der durch internen **Vorwärts-Rückwärts-**Zähler angesteuert wird \rightarrow Zähler solange inkrementiert, bis U_{in} erreicht; 8 – 16 bit ⊕: sehr hohe Auflösung, Genauigkeit u. Linearität ⊝: nicht-determinist. Geschwindig., Output nicht konstant Successive Approximation ADC / Wägeverfahren

Vergleich U_{in} durch Komparator mit DAC-Output, bis minimale Annäherung erreicht (Binärsuche)

typisch 8 – 16 bit bei $0.1 - 25 \mu s$; n-Bit-ADC $\rightarrow n$ Taktzyklen $u_{in} = \frac{Dualzahl}{2^n-1} \cdot u_{ref}$ $f_s = \frac{f_T}{n}$ $u_Q = \frac{u_{ref}}{2^N-1}$

⊕: gute Auflösung, großer Messbereich ⊝: komplexe Steuerlogik

Single-Slope ADC / Sägezahnwandler

Eingangsspannung $U_x \rightarrow$ Vergleich durch Komparator mit Sägezahnspannung, diese wird so lange linear erhöht, bis U_x erreicht \rightarrow Zeit bis Sägezahn-U = U_x gemessen und umgerechnet $f_S = \frac{u_{ref}}{RC_{AH}}$ $f_T = f_S$

 ⊕: Genauigkeit stark abhängig von RC-Glied für Sägezahn-U → praktisch nicht brauchbar Sigma-Delta-ADC

birgt viele Probleme; besteht aus zwei Teilen: Sigma-Delta-Modulator u. digitaler Tiefpass Sigma-Delta-Modulator erzeugt aus Eingangssignal 1 Bit, Amplitudeninformation in Frequenz, nicht in Bit! hohe Auflösung: 16 – 24 Bit, gutes SNR, sehr gute Linearität, Wandelzeit 2 μs – 200 ms, hohe Integrierbarkeit, geringe Kosten, Anwendung v.a. bei Audiosignalen

Dual-Slope-ADC / Integrating ADC / Zweirampenwandler

- 1. Ladephase/Aufintegrieren (T_1): Integration von U_{in} über fest definierte Zeit $T_1 \rightarrow$ Zählen Taktzyklen N_1
- 2. Entladephase/Abintegrieren (T_2): Integration von U_{ref} (entgegengesetzte Polarität zu U_{in}) bis $U_A=0~V$

⇒ Zählen Taktzyklen
$$N_2$$
 ⇒ $U_{in} = -U_{ref} \cdot \frac{N_2}{N_1} = -U_{ref} \cdot \frac{Dualzahl}{2^n - 1}$

16 – 24 bit typ. Genauigkeit

- : unabhängig von RC-Glied; Rauschen/Netzbrumm kann eliminiert werden mit $\tau = 20 \, ms$ (50Hz) oder $100 \, ms$

Charge Balancing ADC / Ladungsbilanzumsetzer / Spann.-Frequ.-Ums. (heute nicht mehr verwendet)

 U_r lädt Kondensator auf, gleichzeitig aber Entladung durch Abgabe von Ladungspaketen: Übersteigt die Aufladung den Wert eines Ladungspakets, nur dann gibt er es durch Entladung wieder ab → Pulszug entsteht

→ Spannung durch Zählen der Pulse bestimmt (Rauschen herausgemittelt durch Integration am Eingang)

$$f = \frac{1}{T_x} = \frac{\overline{\iota}_x}{i_0} \cdot \frac{1}{T_m} = \frac{1}{R} \cdot \frac{1}{i_0} \cdot \frac{1}{T_m} \cdot u_x$$

Zusammenfassung

Anwendung in Praxis: Flash, Pipeline (Variante Flash), Successive Approx., Dual Slope, Sigma-Delta Tabelle 7.1: Übersicht und Vergleich der wichtigsten ADC-Typen

			71	
	Flash	SAR	Dual Slope	Sigma Delta
Prinzip:	2^N-1 Komparatoren erzeugen einen Thermometer- Code	Sukzessive Approximation mit Binärsuche- Algorithmus	Integration von u_X für konstante Zeit entspricht Rückintegration einer Referenzspannung	Überabgetastete Modulation, digitaler Tiefpass
Auflösung:	8 – 12 bit	8 – 18 bit	16 – 20 bit	16 – 32 bit
Max. Sample Rate:	10 GHz, unabhängig von der Auflösung	10 MHz, steigt linear mit der Auflösung	100 Hz, steigt exponentiell mit der Auflösung	10 GHz, steigt mit dem SNR
Chip-Aufwand:	steigt exponentiell mit Auflösung	steigt linear mit Auflösung	unabhängig von der Auflösung	unabhängig von der Auflösung
Vorteile:	Extrem schnell	Guter Kompromiss Speed vs. Bittiefe	Genau	Kein Aliasing, hohe Dynamik
Nachteile:	teuer, groß, hoher Strombedarf	guter DAC nötig	langsam, externe Präzisionsbauteile	Rauschen bei hohen Abtastraten
Anwendung:	DSO	DAQ	DVM	Audio, DAQ

Digital-Analog-Converter

DAC mit Stromsummation

Schalter offen = 0, geschlossen = 1

je größer Widerstand, desto niederwertiger Bit

$$U_A = -U_{Ref} \frac{R_G}{R} \left(1S_3 + \frac{1}{2}S_2 + \frac{1}{4}S_1 + \frac{1}{8}S_0 \right)$$

Kettenleiter / R/2R-Netzwerk:

Schalter offen = 1, geschlossen = 0; je größer Widerstand, desto höherwertiger das Bit

Analog-Multiplexer

wählt Eingangssignale aus → Verwendung eines ADC für mehrere Analog-Eingangskanäle → günstiger, da nur ein ADC nötig → effektive Abtastzeit erhöht sich (entspr Anzahl der Kanäle) Kenndaten:

- Settling Time: Zeit bis Ausgangssignal stabil steht
- Crosstalk: nicht ausgewählte Kanäle können trotzdem am Ausgang nachgewiesen werden (mit Dämpfung > 80 dB)
- Path resistance: typ. 1 $k\Omega$ pro Pfad, sollte in jedem Pfad gleich sein
- Power-Off Tristate: Wenn Mux aus, sollten Eingänge nicht kurzgeschlossen sein
- für differentielle Messungen gibt es Mux, die gleichzeitig zwei od. vier Kanäle umschalten

Sample & Hold / Abtast-Halte-Glied

Aufgabe: zeitlich veränderliches Eingangssignal für eine Weile konstant halten

→ Vorstufe zum ADC (zum Aufbereiten des Signals)

Prinzip: analoge Spannung wird während offenem Schalter in C gespeichert

S&H muss zum ADC passen (conversion rate und LSB)

→ typ. zusammen auf DAQ-Board verkauft

DAQ-Board (Karte/Gerät zur Datenaufname)

mehrere sowohl analoge als auch digitale Ausgänge; integrierte Lösung mit Filter, S&H, ADC (ADCs oft nach sukzessive Approximation); Prinzip: Signalerfassung → Filter → Abtastung → ADC Angabe der Abtastrate in kS/s (kilo Samples per second); Anschluss an Rechner mit zB USB zwei Varianten bei analogen Eingängen: single-ended (Messung gg GND) + differential Input

- 1. OpAmp: Impedanzwandler, um Eingangssignal nicht zu belasten; liefert hohen Ausgangsstrom, um Kondensator schnell umzuladen; Vermeiden von Tiefpasswirkung bei evtl. hohem Quellenwiderstand
- 2. OpAmp: Spannungsfolger mit hohem Eingangswiderstand, um Kondensator nicht zu entladen

Messverfahren

Systematik

Ausschlagmethode (Bsp Drehspulinstrument, Federwaage)

Eingangsgröße wird direkt in Ausgangsgröße überführt

Nachteil: systematischer Fehler, da Energie für Ausschlag von Messobjekt generiert werden muss

Kompensationsmethode (Bsp Abgleich-Messbrücke, Apotheker-Waage)

Gegenüberstellung von Vergleichsgröße, Differenz zw. Messgröße und Vergleichsgröße muss gegen 0 streben

Vorteile: Messobiekt wird keine Energie entzogen: Empfindlichkeit → ∞: Störungen verfälschen Ergebnis

nicht, da Auswirkung auf beide Größen

Differenzmethode (Bsp Ausschlags-Messbrücke, Neigungswaage)

unvollständige Kompensation, Mittelstellung zw ersten beiden Methoden; Differenz wird ausgewertet

Nachteil: Störungen haben großen Einfluss

Messwandler (Transformator, Übertrager)

Übersetzungsverhältnis idealer Übertrager: $\frac{w_1}{w_2} = \frac{U_1}{U_2} = \frac{I_2}{I_1}$ (mit w = Windungszahl)

Spannungswandler: Spannung an Sekundärwicklung wird gemessen

Stromwandler: Strom in Sekundärwicklung wird gemessen (Bsp Stromzange)

Spannungsteiler

Einsatz für: Verkleinerung großer Spannungen; Erzeugen eines bestimmten Potentials

Bsp Oszilloskop: (Ziel: C_{Comp} so einstellen, dass Spannungsteiler frequenzunabhängig)

Filter

frequenzabhängiges Übertragungsverhalten (Tief-, Hochpass, etc.)

Bandsperre: Übertragen des Bereichs außerhalb zweier Grenzfrequenzen

Passiver Filter: Kombination aus L und C; Übertragungscharakteristik belastungsabhängig

Aktiver Filter: Kombination mit OpV

Digitaler Filter: Ein- und Ausgangssignal als digitales Signal; Algorithmus modifiziert Daten

Bandpass (Wien-Spannungsteiler)

Bandsperre

Grenzfrequenz: $\omega_q = \frac{1}{RC}$

Leistungsmessung DC: Messung von U und I $\rightarrow P = U \cdot I$

<u>AC</u>: Messung von U_{eff} und $I_{eff} \rightarrow S = U_{eff} \cdot I_{eff}$ (keine Berücksichtigung von Phase)

→ elektrodynamisches Messwerk/Dynamometer: wie Drehspulinstrument, nur mit Elektromag. +fester Spule

spannungsrichtig: $P_{angezeigt} = P_V + \frac{U_V^2}{P_{vv}}$; stromrichtig: $P_{angezeigt} = P_V + I_V^2 \cdot R_I$ Wirkleistung $P = \overline{p(t)} = \overline{u \cdot \iota}$ (mit Drehspulinstrument messbar!)

Messbrücken

Dehnungsmessstreifen (DMS): mäanderförmiger Draht der Ausdehnung als ΔR detektiert

Wheatstone-Brücke: Brückenspannung $U_D = U_q \cdot \frac{R_2R_3 - R_4R_1}{(R_1 + R_2)(R_2 + R_4)}$ (evtl. Minus, je nach Zählpfeil U_D !)

<u>Abgleichbrücke:</u> Einstellung Poti bis: $\frac{R_1}{R_2} = \frac{R_3}{R_4}$ oder $\frac{R_1}{R_3} = \frac{R_2}{R_4}$ oder $\frac{R_1R_4}{R_3} = \frac{R_2}{R_4}$

Ausschlag-Messbrücke: Messung der verbleibenden Brückenspannung U_D

Näherungsformel: $\frac{\Delta U_D}{U_0} = -\frac{1}{4} \frac{\Delta R_1}{R_1}$ (gilt nur für $R_1 = R_2$ und $\Delta R_1 \ll R_1$)

Steigerung der Empfindlichkeit:

Messgröße ↑	Brücke	U_0 -Sp.	I ₀ -Sp.
R ₂ ↑	Viertel-Brücke	$U_D \approx \frac{U_0}{4} \frac{\Delta R}{R_0}$	$U_D \approx \frac{I_0}{4} \Delta R$
$R_2 \uparrow, R_3 \uparrow$	Zweiviertel-Brücke	$U_D \approx \frac{U_0}{2} \frac{\Delta R}{R_0}$	$U_D = \frac{I_0}{2} \Delta R$
$R_2 \uparrow, R_1 \downarrow$	Halb-Brücke	$U_D = \frac{U_0}{2} \frac{\Delta R}{R_0}$	$U_D = \frac{I_0}{2} \Delta R$
$R_2 \uparrow, R_3 \uparrow, R_1 \downarrow, R_4 \downarrow$	Voll-Brücke	$U_D = U_0 \frac{\Delta R}{R_0}$	$U_D = I_0 \Delta R$

wenn kein "≈"

→ linear (Vorteil!)

Störgrößen:

<u>Viertel-Brücke</u> → Temp.-Einfluss auf R_1 → rel. Fehler: $f_r = \frac{\Delta R_S}{\Delta R_N} (S = \text{St\"or}, N = \text{Nutz})$ (auch bei $\frac{2}{4}$ -Brücke)

ightarrow Lösung: R_2 als Mess-DMS, baugleicher DMS als R_1 zur Kompensation des Temp.-Effekts

$$\Rightarrow \frac{\Delta U_0}{U_0} = \frac{\Delta R_N}{4R_1 + 4\Delta R_S + 2\Delta R_N} \Rightarrow \text{rel. Fehler } f_r \approx -\frac{\Delta R_S}{R}$$
 Temp.-Abh.: $\Delta R = R_0 \alpha \Delta \vartheta$

Halb-Brücke \rightarrow DMS als R_2 , R_1 baugleich aber entgegengesetzte Änderung zu R_2

 \rightarrow Kompensation des Temp.-Effekts $\rightarrow U_D = U_0 \frac{\Delta R_N}{2(R + \Delta R_0)} \rightarrow f_r \approx -\frac{\Delta R_S}{R}$

AC-Messbrücken

Wechselstrom-Abgleich-Brücke

aus $Z_1Z_4 = Z_2Z_3$ folgen: $Z_1Z_4 = Z_2Z_3$ und $\phi_2 + \phi_3 = \phi_1 + \phi_4$ oder: $R_2R_3 - X_2X_3 = R_1R_4 - X_1X_4$ und $X_2R_3 - R_2X_3 = X_1R_4 + R_1X_4$

Maxwell-Brücke:

(Messung verlustbehafteter Induktivität)

$$R_2 = \frac{R_4}{R_3} R_1 \text{ und } L_2 = L_1 R_4 \frac{1}{R_3}$$

Wien-Brücke (Messung verlustbehafteter Kapazitäten, Frequenzen, Notch-Filter):

- L₁: bekannte Vergleichsinduktivi
- R₁, R₃: bekannt und einstellbar

Schering-Brücke (Messung verlustbeh. Kapazität. bei $\phi = 90^{\circ}$, Hochspannung)

AC-Ausschlag-Brücke / Differential-Tauchanker

beweglicher Eisenkern führt zu Δs , daraus folgt doppelte Differenzvergrößerung zw L_1 und L_2

$$\underline{U}_D = -\frac{\underline{U}_0}{2} \frac{\Delta s}{s_0}$$
; Halbbrücke + Wegsensor: $\frac{\Delta L}{L_0} = \frac{\Delta U}{U} \cdot 2 \cdot \sqrt{\frac{R^2}{\omega^2 L_0^2} + 1}$ ($\frac{\Delta U}{U}$ = Empfindlichkeit b. Nennweg)

Vorteile: Linearisierung der Kennlinie, Kompensation homogener Störungen