(1) a)
$$A = \frac{d}{2e_0}$$

$$A = \int_{1}^{2} E dx = \int_{2e_0}^{2} dx = \frac{d dx}{2e_0}$$

$$A = \int_{1}^{2} E dx = \int_{2e_0}^{2} dx = \frac{d dx}{2e_0}$$

$$A = \int_{1}^{2} E dx = \int_{1}^{2} \frac{dx}{2e_0}$$

$$A = \int$$

(2) a)
$$\psi = \alpha(x^2 - y^2)$$
 $E = -grad \psi = 0$

=> $E = -\frac{\partial \psi}{\partial x} - \frac{\partial \psi}{\partial y} - \frac{\partial \psi}{\partial z} = -(2\alpha x_1^2 + 2\alpha y_1^2 + 0) = -2\alpha(x_1^2 + y_1^2)$

5) $\psi = \alpha x_1 = 0$
 $E = -\frac{\partial \psi}{\partial x} - \frac{\partial \psi}{\partial y} - \frac{\partial \psi}{\partial y} = -\alpha y_1^2 - \alpha x_2^2 = -\alpha y_1^2 + \frac{\partial \psi}{\partial y} = 0$

M= $\begin{cases} 1, 1, -3 \end{cases}$
 $E = -\frac{\partial \psi}{\partial x} - \frac{\partial \psi}{\partial x} - \frac{\partial \psi}{\partial y} = -\alpha y_1^2 - \frac{\partial \psi}{\partial y} = 0$

En = $\begin{cases} -\frac{\partial \psi}{\partial x} - \frac{\partial \psi}{\partial x} - \frac{\partial \psi}{\partial y} = -\frac{\partial \psi}{\partial x} - \frac{\partial \psi}{\partial y} = 0$

En = $\begin{cases} -\frac{\partial \psi}{\partial x} - \frac{\partial \psi}{\partial x} - \frac{\partial \psi}{\partial y} - \frac{\partial \psi}{\partial y} = -\frac{\partial \psi}{\partial y} - \frac{\partial \psi}{\partial y} = 0$

En = $\begin{cases} -\frac{\partial \psi}{\partial x} - \frac{\partial \psi}{\partial x} - \frac{\partial \psi}{\partial x} - \frac{\partial \psi}{\partial y} = -\frac{\partial \psi}{\partial y} \psi}{\partial y} = -\frac$

