Практическое занятие 15.

Комплексные числа.

Комплексные числа. Действия с комплексными числами в алгебраической, тригонометрической и показательной форме. Операция сопряжения.

Мнимая единица.

Определение. Обозначим буквой i и будем называть мнимой единицей число такое, что $i^2=-1$.

Комплексное число.

Выражение вида x + iy, где $x \in \mathbb{R}, y \in \mathbb{R}$, называется комплексным числом в алгебраической форме. Обозначают комплексное число буквой z.

При этом действительные числа x и y называются соответственно действительной и мнимой частями комплексного числа z и обозначаются x = Rez, y = Imz.

Действия над комплексными числами в алгебраической форме.

Сложение. Пусть $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$.

Сложение комплексных чисел и умножение комплексных чисел:

$$(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2),$$

 $(x_1 + iy_1)(x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1).$

Отсюда видно, что для умножения двух комплексных чисел достаточно раскрыть скобки по обычным правилам и заменить i^2 на -1.

Вычитание комплексных чисел определяется как операция, обратная сложению. **Разностью** z_1-z_2 двух комплексных чисел z_1 и z_2 называется число z, обладающее свойством $z_2+z=z_1$. Если $z_1=x_1+iy_1$, $z_2=x_2+iy_2$, то

$$z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2).$$

Неотрицательное число

$$|z| = \sqrt{x^2 + y^2}$$

называется модулем комплексного числа z. Очевидно,

Re
$$z \le |z|$$
, Im $z \le |z|$.

Операция сопряжения комплексных чисел.

Число $\overline{z} = x - iy$ называется сопряжённым числу z = x + iy. Имеем

$$z \cdot \overline{z} = (x + iy)(x - iy) = x^2 + y^2 = |z|^2$$
.

Значит, произведение двух комплексно-сопряженных чисел есть число действительное и неотрицательное.

Деление на комплексное число, отличное от нуля, определяется как операция, обратная умножению. **Частным** z_1/z_2 двух комплексных чисел z_1 и z_2 , где $z_2 \neq 0$, называют число z, обладающее свойством: $z_2 \cdot z = z_1$.

Для нахождения частного выполняют преобразования:

$$\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}} = \frac{(x_1 + iy_1) \cdot (x_2 - iy_2)}{|z_2|^2} = \frac{x_1 x_2 + y_1 y_2}{|z_2|^2} + i \cdot \frac{x_2 y_1 - x_1 y_2}{|z_2|^2}.$$

Задачи.

1. Выполнить действия над комплексными числами в алгебраической форме.

$$z_1 = -1 + 2i$$
, $z_2 = 3 - 5i$.

Имеем

$$z_1 + z_2 = (-1+2i) + (3-5i) = (-1+3) + i(2-5) = 2-3i;$$

$$z_1 - z_2 = (-1+2i) - (3-5i) = (-1-3) + i(2-(-5)) = -4+7i;$$

$$z_1 \cdot z_2 = (-1+2i) \cdot (3-5i) = -3+5i+6i-10i^2 = (-3+10) + i(5+6) = 7+11i;$$

$$\overline{z_1} = -1-2i; \ \overline{z_2} = 3+5i;$$

$$|z_1| = \sqrt{1+4} = 5; |z_2| = \sqrt{9+25} = \sqrt{34};$$

$$\frac{z_1}{z_2} = \frac{(-1+2i)}{(3-5i)} = \frac{(-1+2i)(3+5i)}{(3-5i)(3+5i)} = \frac{-3-10+i(-5+6)}{34} = -\frac{13}{34} + i\frac{1}{34}.$$

- 2. Найти Rez и Imz, если $z = \frac{2}{1+i} \frac{1-i}{1+i} \cdot \frac{2-2i}{1-2i}$. (ответ $\frac{3}{5}$ и $\frac{1}{5}$).
- 3. Выполнить действия:

a)
$$\frac{2}{-i} + i(1+i);$$

$$6) \frac{1}{1+2i} + \frac{i}{2-i}.$$

(ответы: a) -1 + 3i; б) 0.)

- 4. Показать, что $z + \bar{z} = 2Rez$; $z \bar{z} = i \cdot 2Imz$.
- 5. Доказать тождества: $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$; $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$; $\overline{z^n} = \overline{z}^n$; $\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}$.

Решение. Докажем, например, что $\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$.

$$\overline{z_1}\overline{z_2} = \overline{(x_1 + iy_1)(x_2 + iy_2)} = \overline{(x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)} =
= \underbrace{(x_1x_2 - y_1y_2) - i(x_1y_2 + x_2y_1)}_{= \overline{(x_1 + iy_1)(x_2 + iy_2)}} = \underbrace{(x_1 - iy_1)(x_2 - iy_2)}_{= (x_1x_2 - y_1y_2) - i(x_1y_2 + x_2y_1)},$$

значит, $\overline{z_1}\overline{z_2} = \overline{z_1}\overline{z_2}$.

Тригонометрическая форма комплексного числа.

Так как комплексное число z=x+iy является упорядоченной парой (x,y) действительных чисел, а множество всевозможных пар (x,y) действительных чисел находится во взаимно однозначном соответствии с координатной плоскостью, то каждую точку (x,y) можно принять за изображение комплексного числа z=x+iy. При таком соглашении действительную плоскость называют *комплексной плоскостью* (обозначение: \mathbb{C}) и z=x+iy считают точкой этой плоскости.

Ось Ox называется вещественной осью, а ось Oy называется мнимой осью комплексной плоскости. Их уравнения Im z=0 и Re z=0 соответственно. Отметим, что операция комплексного сопряжения (переход от z к \overline{z}) геометрически сводится к отражению плоскости C относительно вещественной оси.

Положение точки z на плоскости \mathbf{C} однозначно определяется не только парой $x = \operatorname{Re} z$,

y = Im z, но также и парой (r, ϕ) , где r = |z|, ϕ - угол между положительным направлением оси x и направлением из начала координат на z (предполагается, что r > 0).

Угол ϕ называется *аргументом* числа z. Для любого $z \neq 0$ аргумент определен с точностью до слагаемого $2\pi k$, $k \in \mathbb{Z}$. Значение аргумента числа z, удовлетворяющее условию $-\pi < \phi \le \pi$, называется главным значением аргумента и обозначается arg z.

Если x = Re z, y = Im z, r = |z|, $\phi = arg z$, то $x = r \cos \phi$, $y = r \sin \phi$. Отсюда получается тригонометрическая форма записи комплексного числа z:

$$z = r(\cos \phi + i \sin \phi).$$

Аргумент числа z находим из системы

$$\begin{cases} \cos \varphi = \frac{x}{\sqrt{x^2 + y^2}} \\ \sin \varphi = \frac{x}{\sqrt{x^2 + y^2}} \end{cases}$$

Для нахождения аргумента также можно воспользоваться формулами:
$$arg\ z = \begin{cases} arctg\frac{y}{x}, z \in I \text{ или } IV \text{ четверти} \\ arctg\frac{y}{x} + \pi, z \in II \text{ четверти} \end{cases};$$

$$arctg\frac{y}{x} \pm \pi, z \in III \text{ четверти}$$

$$arg\ z = \frac{\pi}{2}$$
, $z \in Oy$ и $y > 0$, $arg\ z = -\frac{\pi}{2}$, $z \in Oy$ и $y < 0$, $arg\ z = \pi$, $z \in Ox$ и $x < 0$, $arg\ z = 0$, $z \in Ox$ и $x > 0$

Операция сложения комплексных чисел z_1 и z_2 может быть выполнена по правилу параллелограмма, то есть по правилу сложения направленных отрезков (векторов), выходящих из начала координат и оканчивающихся в точках z_1 и z_2 . Расстояние между точками z_1 и z_2 совпадает с модулем их разности: $|z_1 - z_2| =$ $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$.

Умножение комплексных чисел в тригонометрической форме.

Запишем числа z_1 и z_2 в тригонометрической форме:

 $z_1 = r_1 \cdot (\cos \phi_1 + i \sin \phi_1), \quad z_2 = r_2(\cos \phi_2 + i \sin \phi_2).$

После преобразований с применением тригонометрической формулы сложения, получим $z_1 z_2 = r_1 r_2 (\cos(\phi_1 + \phi_2) + i \sin(\phi_1 + \phi_2)).$

Таким образом, модуль произведения комплексных чисел равен произведению модулей, а аргумент произведения – сумме аргументов множителей.

Возведение комплексного числа в натуральную степень (формула Муавра): $z^n = r^n(\cos n \, \phi + i \sin n \, \phi), \quad n \in \mathbb{N}.$

Все **корни n-й степени из числа z** находятся по формуле
$$\sqrt[n]{z} = \sqrt[n]{|z|} \left(\cos \frac{argz + 2\pi k}{n} + i \sin \frac{argz + 2\pi k}{n}\right), k = 0, 1, ..., (n-1).$$

Показательная форма комплексного числа.

Если |z|=1, $\varphi=argz$, тогда $z=\cos\varphi+i\sin\varphi$. Комплексное число $\cos\varphi+i\sin\varphi$ обозначается символом $e^{i\varphi}$, то есть функция $e^{i\varphi}$ для любого действительного числа φ определяется формулой Эйлера

 $e^{i\varphi} = \cos\varphi + i\sin\varphi.$

Тогда имеем показательную форму комплексного числа

$$z = |z|e^{i\varphi}$$
.

Умножение и деление комплексных чисел в показательной форме:

$$z_1 z_2 = |z_1| e^{i\varphi_1} |z_2| e^{i\varphi_2} = |z_1| |z_2| e^{i(\varphi_1 + \varphi_2)},$$
$$\frac{z_1}{z_2} = \frac{|z_1| e^{i\varphi_1}}{|z_2| e^{i\varphi_2}} = \frac{|z_1|}{|z_2|} e^{i(\varphi_1 - \varphi_2)}.$$

Формула Муавра: $z^n = (|z|e^{i\varphi})^n = |z|^n e^{in\varphi}$.

Формула корней -ой степени из комплексного числа:

$$\sqrt[n]{z} = \sqrt[n]{|z|} e^{\frac{\varphi+2\pi k}{n}}, k = 0, 1, ..., (n-1).$$

Задачи.

- 1. Определить геометрические места точек на комплексной плоскости, для которых выполняется:
- a) |z| = 1;
- 6) |z-2+i|=3;
- в) Rez = 5;
- Γ) $Rez^2 = a^2$;
- д) $argz = \frac{\pi}{2}$.

Решение.

- а) По определению, |z| расстояние от начала координат до точки z. Для данного множества точек это расстояние должно быть одним и тем же, равным 1, поэтому искомое множество точек является окружностью с центром в начале координат и радиусом 1;
- б) Так как $|z_1 z_2|$ равно расстоянию между точками z_1 и и z_2 , то из равенства |z - (2 - i)| = 3 следует, точки z данного множества удалены от точки 2 - i на расстояние, равное 3, то есть данное множество точек представляет собой окружность с центром в точке 2 - i и радиуса 3.

в) по определению, Rez = x, поэтому уравнение можно переписать в виде x = 5, и это уравнение определяет прямую, параллельную оси OY;

г) так как $z^2=x^2-y^2+i2xy$, то $Rez^2=x^2-y^2$, поэтому условие $Rez^2=a^2$ равносильно уравнению $x^2-y^2=a^2$, которое, как известно, определяет равностороннюю гиперболу.

д) уравнению $argz=\frac{\pi}{3}$ удовлетворяют точки, расположенные на луче, выходящем из начала координат под углом $\frac{\pi}{3}$ к положительному направлению оси OX.

2. Представить в тригонометрической форме числа $z_1 = 1 + i. z_2 = -\sqrt{3} - i$, $z_3 = 2i$, $z_4 = -5$.

Решение. Определим модули данных чисел по формуле
$$|z|=\sqrt{x^2+y^2}$$
.
$$|z_1|=\sqrt{1^2+1^2}=\sqrt{2}\,,\qquad |z_2|=\sqrt{\left(-\sqrt{3}\right)^2+\left(-1\right)^2}=2,$$

$$|z_3|=\sqrt{0^2+2^2}=2,\qquad |z_4|=\sqrt{(-5)^2+0^2}=5.$$

Для того, чтобы найти аргументы, построим точки z_1, z_2, z_3, z_4 на комплексной плоскости.

Заметим, что точка z_1 лежит в первой четверти, а z_2 - в третьей. Точка z_3 лежит на мнимой оси, точка z_4 - на отрицательной вещественной полуоси.

$$argz_1 = \varphi_1 : \begin{cases} \cos \varphi_1 = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \\ \sin \varphi_1 = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \end{cases} \Leftrightarrow \varphi_1 = \frac{\pi}{4};$$

$$argz_{2} = \varphi_{2} : \begin{cases} \cos \varphi_{2} = \frac{-\sqrt{3}}{2} \\ \sin \varphi_{2} = \frac{-1}{2} \end{cases} \Leftrightarrow \varphi_{2} = -\frac{5\pi}{6};$$
$$argz_{3} = \varphi_{3} : \begin{cases} \cos \varphi_{3} = \frac{0}{2} \\ \sin \varphi_{3} = \frac{2}{2} \end{cases} \Leftrightarrow \varphi_{3} = \frac{\pi}{2};$$

$$argz_4 = \varphi_4 : \begin{cases} \cos \varphi_4 = \frac{-5}{5} = -1 \\ \sin \varphi_4 = \frac{0}{5} = 0 \end{cases} \Leftrightarrow \varphi_4 = \pi.$$

Тогда тригонометрические формы данных чисел

$$z_{1} = 1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right);$$

$$z_{2} = -\sqrt{3} - i = 2 \left(\cos \left(-\frac{5\pi}{6} \right) + i \sin \left(-\frac{5\pi}{6} \right) \right);$$

$$z_{3} = 2i = 2 \left(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2} \right);$$

$$z = -5 = 5 \left(\cos(-\pi) + i \sin(-\pi) \right).$$

3. Вычислить $(-\sqrt{3} - i)^5$.

Решение. В предыдущей задаче мы нашли тригонометрическую форму числа $-\sqrt{3}-i$

$$-\sqrt{3} - i = 2\left(\cos\left(-\frac{5\pi}{6}\right) + i\sin\left(-\frac{5\pi}{6}\right)\right).$$

Применим формулу Муавра

$$(-\sqrt{3} - i)^5 = 2^5 \left(\cos \left(-\frac{25\pi}{6} \right) + i \sin \left(-\frac{25\pi}{6} \right) \right) =$$

$$= 32 \left(\cos \left(-\frac{\pi}{6} \right) + i \sin \left(-\frac{\pi}{6} \right) \right) = 32 \left(\frac{\sqrt{3}}{2} - i \frac{1}{2} \right) = 16\sqrt{3} - 16i.$$

4. Найти $\sqrt[3]{1+i}$.

Решение. Тригонометрическая форма $1+i=\sqrt{2}\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$.

Для вычисления кубических корней из данного числа воспользуемся формулой $\sqrt[n]{z} = \sqrt[n]{|z|} \left(\cos\frac{argz+2\pi k}{n} + i\sin\frac{argz+2\pi k}{n}\right)$, $k=1,\ldots,(n-1)$.

В нашем случае n = 3, k = 0,1,2.

Получим три различных значения корня:

$$\sqrt[3]{1+i_k} = \sqrt[3]{\sqrt{2}} \left(\cos \frac{\frac{\pi}{4} + 2\pi k}{3} + i \sin \frac{\frac{\pi}{4} + 2\pi k}{3} \right), k = 0,1,2.$$

$$z_0 = \sqrt[6]{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right),$$

$$z_1 = \sqrt[6]{2} \left(\cos \frac{9\pi}{12} + i \sin \frac{9\pi}{12} \right),$$

$$z_2 = \sqrt[6]{2} \left(\cos \frac{17\pi}{12} + i \sin \frac{17\pi}{12} \right).$$

5. Найти корни уравнения $z^8 - 2\sqrt{3}z^4 + 4 = 0$ и построить их на комплексной плоскости.

Решение. Обозначим $z^4 = t$, тогда данное уравнение превратится в квадратное уравнение относительно t:

$$t^2 - 2\sqrt{3}t + 4 = 0$$
.

Дискриминант этого уравнения отрицательный: D=-4, следовательно корни комплексные $t=\sqrt{3}\pm i$. Тогда корни исходного уравнения : $\sqrt[4]{\sqrt{3}\pm i}$. Числа $\sqrt{3}+i$ и $\sqrt{3}-i$ - комплексно сопряжённые, поэтому модули у них одинаковые, равны 2, а аргументы отличаются знаком:

$$arg(\sqrt{3}+i) = \frac{\pi}{6}, arg(\sqrt{3}-i) = -\frac{\pi}{6}.$$

Используя формулу корней, находим корни четвёртой степени из этих чисел:

$$z_{1,2,3,4} = \sqrt[4]{\sqrt{\sqrt{3}+i}} = \sqrt[4]{2} \left(\cos \frac{\frac{\pi}{6} + 2\pi k}{4} + i \sin \frac{\frac{\pi}{6} + 2\pi k}{4} \right), (k = 0,1,2,3),$$

$$z_{5,6,7,8} = \sqrt[4]{\sqrt{\sqrt{3} - i}} = \sqrt[4]{2} \left(\cos \frac{-\frac{\pi}{6} + 2\pi k}{4} + i \sin \frac{-\frac{\pi}{6} + 2\pi k}{4} \right), (k = 0,1,2,3).$$

Заметим, что все корни z_1, z_2, \dots, z_8 имеют одинаковые модули:

 $|z_k|=\sqrt[4]{2}\ (k=1,2,...,8).$ Отсюда следует, что все они лежат на окружности с центром в начале координат радиуса $\sqrt[4]{2}$. Аргументы этих чисел $\pm\frac{\pi}{24}+\pi k$. Это значит, что аргумент числа z_2 отличается от аргумента z_1 на $\frac{\pi}{2}$, аргумент z_3 отличается от аргумента z_1 на π , аргумент z_4 отличается от аргумента z_1 на $\frac{3\pi}{2}$. Поэтому, построив на плоскости вектор z_1 , получим точки z_2, z_3, z_4 , если повернём вектор z_1 на углы $\frac{\pi}{2}, \pi, \frac{3\pi}{2}$ соответственно. Таким образом, точки z_1, z_2, z_3, z_4 являются вершинами квадрата, вписанного в окружность радиуса $\sqrt[4]{2}$.

Таким же образом строятся точки z_6, z_7, z_8 : строим точку z_5 и вписываем в окружность квадрат с вершинами в этой точке, остальные его вершины дадут точки z_6, z_7, z_8 .

Типовой расчёт, задача 2.14.

Выполнить действия. Ответ представить в алгебраической форме:

$$z = \frac{\left(-32 - 32i\sqrt{3}\right)^{22}}{2^{132}}.$$

Решение. Найдем модуль и аргумент числа $a = -32 - 32i\sqrt{3}$ и представим его в показательной форме.

$$|-1 - i\sqrt{3}| = \sqrt{(-1)^2 + (\sqrt{3})^2} = \sqrt{4} = 2.$$

$$a = 32(-1 - i\sqrt{3}) = 32 \cdot 2\left(-\frac{1}{2} + i\left(-\frac{\sqrt{3}}{2}\right)\right) = 64\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right) = 64e^{i\left(-\frac{2\pi}{3}\right)}.$$

Тогда

$$z = \frac{\left(-32 - 32i\sqrt{3}\right)^{22}}{2^{132}} = \frac{\left(64e^{i\left(-\frac{2\pi}{3}\right)}\right)^{20}}{2^{120}} = \frac{2^{120}e^{i\left(-\frac{40\pi}{3}\right)}}{2^{120}}.$$
 Отбросим полные периоды 2π : $-\frac{40\pi}{3} = -\frac{42\pi}{3} + \frac{2\pi}{3} = -14\pi + \frac{2\pi}{3}.$

Значит главное значение аргумента искомого числа есть = 27

Окончательно имеем

$$z = e^{i\frac{2\pi}{3}} = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$$

Это алгебраическая форма искомого комплексного числа

Задачи для самостоятельного решения.

1. Найти модуль и аргумент комплексных чисел, представить числа в тригонометрической и показательной формах: 3i, $1 + i\sqrt{3}$, -7, $\sqrt{3} - i$, 2 - 2i.

Other:
$$3i = 3\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right) = 3e^{i\frac{\pi}{2}},$$

 $1 + i\sqrt{3} = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right) = 2e^{i\frac{\pi}{3}},$
 $-7 = 7(\cos\pi + i\sin\pi) = 7e^{i\pi},$
 $\sqrt{3} - i = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right) = 2e^{i\left(-\frac{\pi}{6}\right)},$

$$2 - 2i = 2\sqrt{2}\left(\cos\left(-\frac{\pi}{4}\right) + i\sin\left(-\frac{\pi}{4}\right)\right) = 2\sqrt{2}e^{i\left(-\frac{\pi}{4}\right)}.$$

2. Вычислить степени, применяя формулу Муавра: $(\sqrt{3} + i)^3$,

$$\left(\sqrt{3} + i\sqrt{3}\right)^8,$$

$$(-2 + 2i)^6.$$

Ответ: 8*i*; 1296; 512*i*.

3. Решить уравнения:

a)
$$z^2+i=0$$
, b) $z^4-16=0$, c) $z^6-4z^3+8=0$. Other: a) $z_{1,2}=\frac{\sqrt{2}}{2}-i\frac{\sqrt{2}}{2}$; $z_{1,2}=-\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2}$ b) $z_1=2$, $z_2=2i$, $z_3=-2$, $z_4=-2i$; c) $z_{1,...,6}=\sqrt{2}e^{i\left(\pm\frac{\pi}{12}/+\frac{2\pi}{3}k\right)}$, $k=0,1,2$.