Mechanics R.G. Schaefer

Simulation of particle motion

1. Projectile Motion with Air Resistance (Euler Methods)

Simulate a projectile (m = 1 kg) launched from (0,0) with initial velocity $\mathbf{v}_0 = (10 \, m/s, 10 \, m/s)$ under gravitational force $\mathbf{F}_g = -mg\hat{\mathbf{y}}$ (g = 9.81) and velocity-dependent drag $\mathbf{F}_d = -k\mathbf{v}$.

- (a) Implement motion using Explicit Euler in Unity ($\Delta t = 0.01$).
- (b) Compare trajectories for k = 0, k = 0.1, and k = 0.5.

2. Harmonic Oscillator with RK4

A particle of mass m=1 kg moves under the force $\mathbf{F}(x)=-kx\hat{\mathbf{x}}$ in 2D, with k=4 N/m and initial conditions s(0)=(2,0) m and v(0)=(0,0)m/s. Implement RK4 ($\Delta t=0.001$ s) and visualize for $t\in[0,5\pi]$

3. Simulate Earth's orbit around a fixed Sun using Newtonian gravity $\mathbf{F} = -\frac{GMm}{r^3}\mathbf{r}$. Use the same values in the material's course

4. Mass-Spring System

A spring exerts force $\mathbf{F} = -k(\mathbf{x} - \mathbf{x}_0) - b\mathbf{v}$ (Hooke's Law), where k is stiffness, b damping, and \mathbf{x}_0 rest position.

- (a) Create a 1D system $(m = 1 kg, k = 20 N/m, x_0 = 0 m)$ with initial displacement x(0) = 0.5 m, v(0) = 0 m/s.
- (b) Implement motion using Verlet integration in Unity. b = 0 kg/s
- (c) Add damping $b = 0.5 \,\mathrm{kg/s}$

5. Charged Particle in Magnetic Field (RK4)

A particle with charge q moves under $\mathbf{F} = q\mathbf{v} \times \mathbf{B}$ where $\mathbf{B} = B_0 \hat{\mathbf{z}}$.

- (a) Derive the equations of motion and implement RK4 in Unity (3D).
- (b) Visualize helical motion for initial velocity $\mathbf{v}_0 = (v_0, 0, v_0), q = 1, v_0 = 5, B_0 = 2T$ and $\Delta t = 0.01$.

6. Pendulum Dynamics (Euler vs Verlet)

Simple pendulum ($l=2\,\mathrm{m},\ m=1\,\mathrm{kg}$) with $\theta(0)=45^\circ,\ \dot{\theta}(0)=0$ (Read and take the equation from https://en.wikipedia.org/wiki/Pendulum_(mechanics).

- (a) Implement both methods ($\Delta t = 0.01 \,\mathrm{s}$ and $\Delta t = 0.1 \,\mathrm{s}$)
- (b) Add air resistance $b = 0.1 \text{ kg} \cdot \text{m}^2/\text{s}$ and plot energy decay