

## TD 9-10 : THÉORIE DES LANGAGES ET AUTOMATES

Exercice 1. Trouvez un automate fini qui reconnaît :

a.  $\{0, 11\}$ 



b.  $\{0, 11, 000\}$ 



Exercice 2. Construisez une machine à états finis qui modifie les bits en position d'indice pair, en commençant par le deuxième bit, d'une chaîne d'entrée, et qui ne modifie pas les autres lettres.



**Exercice 3.** Soit  $V = \{S, A, B, a, b\}$  et  $T = \{a, b\}$ . Trouvez le langage produit par la grammaire  $\{V, T, S, P\}$  lorsque l'ensemble P des productions est composé de :

- a.  $S \to AB$ ,  $A \to ab$ ,  $B \to bb$  Réponse :  $L = \{abbb\}$
- b.  $S \to AB$ ,  $S \to aA$ ,  $A \to a$ ,  $B \to ba$  Réponse :  $L = \{aba, aa\}$
- c.  $S \to AB$ ,  $S \to AA$ ,  $A \to aB$ ,  $A \to ab$ ,  $B \to b$  Réponse :  $L = \{abb, abab\}$
- d.  $S \to AA$ ,  $S \to B$ ,  $A \to aaA$ ,  $A \to aa$ ,  $B \to bB$ ,  $B \to b$  Réponse :  $L = \{b^{n+1}, a^{2n+2m+4}\}$
- e.  $S \to AB$ ,  $A \to aAb$ ,  $B \to bBa$ ,  $A \to \lambda$ ,  $B \to \lambda$  Réponse :  $L = \{a^nb^{n+m}a^m\}$

**Exercice 4.** Construisez une grammaire syntagmatique pour l'ensemble de toutes les fractions de la forme a/b, où a est un entier signé en notation décimale et b est un entier positif. Construisez un arbre de dérivation pour +311/17 dans cette grammaire.

Réponse :

S  $\rightarrow$  signe numérateur/dénominateur signe  $\rightarrow$  + | - dénominateur  $\rightarrow$  chiffreNonNul nombre chiffreNonNul  $\rightarrow$  1|2|3|4|5|6|7|8|9 nombre  $\rightarrow$  chiffre nombre nombre  $\rightarrow$  chiffre NonNul | 0

numérateur  $\rightarrow$  chiffre nombre NB : En ajoutant une epsilon-transition, on donne la possibilité à l'automate, de passer d'un état à un autre spontanément sans lire de lettre.

Exercice 5. Pour chacun des automates ci-après, donnez un automate déterministe correspondant.







|                     | f                   |                |  |
|---------------------|---------------------|----------------|--|
| États               | I                   |                |  |
|                     | 0                   | 1              |  |
| $\{S_0\}$           | $\{S_1\}$           | $\{S_1, S_3\}$ |  |
| $\{S_1\}$           | $\{S_0,S_1\}$       | $\{S_1\}$      |  |
| $\{S_1, S_3\}$      | $\{S_0, S_1, S_2\}$ | $\{S_1,S_3\}$  |  |
| $\{S_0, S_1\}$      | $\{S_0,S_1\}$       | $\{S_1, S_3\}$ |  |
| $\{S_0, S_1, S_2\}$ | $\{S_0,S_1\}$       | $\{S_1,S_3\}$  |  |



Exercice 6. Déterminez si 1011 appartient à chacun des ensembles réguliers ci-après.

a.  $10^*1^*$  - Réponse : Oui. b.  $0^*(10 \cup 11)^*$  - Réponse : Oui. c.  $0(01)^*1^*$  - Réponse : Non. d.  $1^*01(0 \cup 1)$  - Réponse : Oui. e.  $(10)^*(11)^*$  - Réponse : Oui. f.  $1(00)^*(11)^*$  - Réponse : Non. g.  $(10)^*1011$  - Réponse : Oui. h.  $(1 \cup 00)(01 \cup 0)1^*$  - Réponse : Oui.

Exercice 7. Trouvez le langage reconnu par chacun des automates finis non déterministes.



## Réponse :

a.  $0*1^+$ 

b.  $\epsilon \cup 0^{+}1^{+}$ 

c.  $(10(0 \cup 1))^* \cup (10(0 \cup 1)1)^*1 = (10(0 \cup 1))^*(\epsilon \cup 1)$ 

## Exercice 8. Minimisez les automates :



 $\textbf{Exercice 9.} \ \ \textbf{Donnez des grammaires syntagmatiques pour produire chacun des ensembles suivants}:$ 

1. 
$$\{01^n\}$$
  
 $S \to 0A$   
 $A \to 1A, \lambda$ 

- 2.  $\{0^n 1^{2n}\}\$  $S \to 0A11, \lambda$ 

  - $A \rightarrow 0A11, \lambda$
- 3.  $\{0^n 1^m 0^n\}$ 
  - $S \rightarrow \lambda$ , 0A0, 1B
  - $A \rightarrow 0A0, 0B0$
  - $B \to 1B, \ \lambda$

#### Exercice 10. Construisez les automates correspondant aux expressions ci-après.



# Exercice 11. Prouvez que le langage $L=\{a^nb^nc^n; n\in\mathbb{N}\}$ n'est pas régulier. Solution

Supposons que le langage L est régulier. Il vérifie donc le lemme de pompage.

Soit p l'entier du lemme de pompage,  $z=a^pb^pc^p$  un mot du langage L. Il existe une décomposition z=uvw, avec  $u=a^k$ ,  $v=a^t$ ,  $w=a^{p-k-t}b^pc^p$ . De plus  $k+t \le p$  (car  $|uv| \le p$ ), t>0 (car  $v \ne \epsilon$ ).

D'après le lemme de pompage,  $\forall i \geq 0, uv^i w \in L$ .

pour i = 0 on a :  $uv^i w = a^k (a^t)^0 a^{p-k-t} b^p c^p = a^k a^{p-k-t} b^p c^p = a^{p-t} b^p c^p$ 

Puis que t > 0, p - t < p. Donc  $uv^i w \notin L$ . Absurde.

#### Exercice 12. Lemme de pompage

Soit L le langage constitué de tous les palindromes. Montrez que L n'est pas régulier.

Supposons L régulier. Soit p l'entier du lemme de pompage.

Quel que soit  $m \in L$  avec  $|m| \ge p$ , il existe une décomposition uvw de m telle que  $|uv| \le p$ ,  $v \ne \lambda$  et  $\forall i \in \mathbb{N}$ ,  $uv^iw \in L$ .

Il suffit donc de prendre un mot dans L (puisque le lemme s'applique quel que soit le mot) et de montrer qu'aucune décomposition de ce mot ne respecte les trois conditions à la fois (puisque le lemme dit qu'il en existe une).

Posons  $m = a^p b a^p$ . m est un palindrome de longueur  $2p + 1 \ge p$ .

Ses décompositions uvw respectant les deux premières conditions sont de la forme :  $u=a^j$ ,  $v=a^k$ ,  $w=a^{p-j-k}ba^p$  avec  $j+k\leq p$ ,  $k\geq 1$ .

Pour 
$$i=2$$
: 
$$uv^2w=a^ja^{2k}a^{p-j-k}ba^p$$
 
$$=a^{p+k}ba^p \text{ qui n'est pas un palindrome puisque } k\neq 0$$

Donc L n'est pas régulier.

## Exercice 13. Donnez la grammaire générées par le langage reconnu par les automates suivants :



**Exercice 14.** Soit les grammaires  $G_1$  et  $G_2$  définies par :

- a.  $G_1 = (V_1, T_1, S_1, P_1)$  où  $V_1 = \{a, b, S_1, A\}, T_1 = \{a, b\}, S_1$  symbole de départ et  $P_1 = \{S_1 \to bS_1, S_1 \to aS_1, A \to aS_1, A \to bA, A \to a, S_1 \to b\}.$ b.  $G_2 = (V_2, T_2, S_2, P_2)$  où  $V_2 = \{0, 1, S_2, A, B\}, T_2 = \{0, 1\}, S_2$  symbole de départ et  $P_2 = \{S_2 \to 1A, S_2 \to 0, S_2 \to \lambda, A \to 0B, B \to 1, B \to 1B\}.$
- 1. Déterminez les types des grammaires  $G_1$  et  $G_2$ . Type 3
- 2. Construisez les automates finis reconnaisant les langages produits par les grammaires  $G_1, G_2$ . 2.a.  $\{(b \cup a)^*b\}$



## 2.b. $\{0, \lambda, 1011^*\}$



Exercice 15. Donnez les automates déterministes correspondant aux automates ci-après.



|                     | f<br>I              |                     |  |  |
|---------------------|---------------------|---------------------|--|--|
| États               |                     |                     |  |  |
|                     | 0                   | 1                   |  |  |
| $\{S_0\}$           | $\{S_1\}$           | $\{S_2\}$           |  |  |
| $\{S_1\}$           | $\{S_1,S_2\}$       | $\{S_1\}$           |  |  |
| $\{S_2\}$           | $\{S_0,S_2\}$       | $\{S_0,S_2\}$       |  |  |
| $\{S_1, S_2\}$      | $\{S_0, S_1, S_2\}$ | $\{S_0, S_1, S_2\}$ |  |  |
| $\{S_0, S_2\}$      | $\{S_0, S_1, S_2\}$ | $\{S_0,S_2\}$       |  |  |
| $\{S_0, S_1, S_2\}$ | $\{S_0, S_1, S_2\}$ | $\{S_0, S_1, S_2\}$ |  |  |

## $Premier\ automate:$



Exercice 16. Soit la table d'états suivante :

| $E_p e_1e_2$ | 00    | 01    | 11    | 10              | S |
|--------------|-------|-------|-------|-----------------|---|
| $E_0$        | $E_0$ | $E_0$ | $E_1$ | $E_2$           | 1 |
| $E_1$        |       | $E_2$ |       | $\mid E_0 \mid$ | 1 |
| $E_2$        | $E_2$ |       | $E_2$ | $\mid E_1 \mid$ | 0 |

- a. S'agit-il d'une machine de Moore ou de Mealy? Moore
- b. Donner son diagramme d'états.



c. Convertir en Moore s'il s'agit d'une machine de Mealy, en Mealy s'il s'agit d'une machine de Moore.



## Exercices supplémentaires (livre de Rosen)

Exercices numéros 11 (page 625); 10, 17 (page 634); 8 (page 655).