Computer Science and Engineering

Course work portal powered by Moodle v2x

Principles of

Home > My courses > Spring Semester (2021-22) > Principles of Programming Languages > Final Exam > Test ST-2

Question 2

Not yet answered

Marked out of 10.00

Flag question

A program in the language is a sequence of commands. Stores belong to the domain Store and serve as arguments to the valuation function:

$$C: Command \rightarrow Store_{\perp} \rightarrow Store_{\perp}$$

Example Language with Assignment:

Abstract Syntax:

· Consider the entities as:

 $P \in Program$

 $C \in Command$

 $E \in Expression$

 $B \in Boolean_expr$

 $I \in Identifier$

 $N \in Numeral$

P ::= C.

 $C := C_1$; $C_2 \mid \text{if } B \text{ then } C \mid \text{if } B \text{ then } C_1 \text{ else } C_2 \mid$

 $I := E \mid \mathbf{diverge}$

 $E := E_1 + E_2 \mid I \mid N$

 $B ::= E_1 = E_2 \mid \neg B$

diverge is a non-terminating command

Semantic Algebras:

• Truth values

Domain: $t \in Tr = B$

Operations: true, false: Tr

 $not: Tr \rightarrow Tr$

Identifiers

Domain: $i \in Id = Identifier$

• Natural Numbers

Domain: $n \in Nat = \mathcal{N}$

Operations:

zero, one, ... : Nat

 $\begin{array}{l} plus: Nat \times Nat \rightarrow Nat \\ equals: Nat \times Nat \rightarrow Tr \end{array}$

• Store

Domain: $s \in Store = Id \rightarrow Nat$

Operations:

newstore: Store $newstore = \lambda i.zero$

 $access: Id \rightarrow Store \rightarrow Nat$

 $access = \lambda i.\lambda s.s(i)$

 $update: Id \rightarrow Nat \rightarrow Store \rightarrow Store$

 $update = \lambda i.\lambda n.\lambda s.[i \mapsto n]s$

Valuation Functions:

• $P: Program \rightarrow Nat \rightarrow Nat_{\perp}$

 $P[[C.]] = \lambda n.let \ s = (update \ [[A]] \ n \ newstore) \ in$

let $s' = \mathbb{C}[[C]]s$ in (access [[Z]] s')

where the input number n is associated with identifier [A] in a new store. As the program body is evaluated, and the answer is extracted from the store at [A]

• C:
$$Command \rightarrow Store_{\perp} \rightarrow Store_{\perp}$$

C[[C₁; C₂]] = $\underline{\lambda}s$.C[[C₂]](C[[C₁]]s)
C[[if B then C]] = $\underline{\lambda}s$.B[[B]] $s \rightarrow$ C[[C]]s [] s
C[[if B then C_1 else C_2]] =
 $\underline{\lambda}s$.B[[B]] $s \rightarrow$ C[[C_1]]s [] C[[C_2]]s
C[[$I := E$]] = $\underline{\lambda}s$.update[[I]] (E[[E]]s) s
C[[diverge]] = $\underline{\lambda}s$. \bot

•
$$\mathbf{E} : Expression \rightarrow Store \rightarrow Nat$$

 $\mathbf{E}[[E_1 + E_2]] = \lambda s. \mathbf{E}[[E_1]] s \ plus \ \mathbf{E}[[E_2]] s$
 $\mathbf{E}[[I]] = \lambda s. access \ [[I]] \ s$
 $\mathbf{E}[[N]] = \lambda s. N[[N]]$

• **B**: Boolean_expr
$$\rightarrow$$
 Store \rightarrow Tr
B[[E₁ = E₂]] = λ s.**E**[[E₁]]s equals **E**[[E₂]]s
B[[\neg B]] = λ s.not(**B**[[B]]s)

- $N: Numeral \rightarrow Nat \ (omitted)$
- i. What is a Valuation Function?
- ii. Based on the above definition solve the following:

$$P[[X := 5; Y := X + 1; if (A = 5) then diverge; Z := Y + X.]](one)$$

[2]

[8]

Next

QUIZ NAVIGATION

1 2 3

Finish attempt ...

You are logged in as SUNANDA MANDAL → Log out