elektrischer Strom				
Stromstärke und Ladung: elektrischer Widerstand: $I = \frac{\Delta Q}{\Delta t} \qquad \qquad R = \frac{U}{I}$		Gesetz von Ohm: Bei konstanter Temperatur sind U und I proportional, d.h. R = const.		
Hintereinanderschaltung von Widerständen: $R_{\text{Ersatz}} = R_1 + R_2 +$	Parallelschaltung von Widerständen: $\frac{1}{R_{Ersatz}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$	$\begin{aligned} &\text{idealer Transformator mit } n_p \text{ Primärund } n_s \text{ Sekundärwindungen} \\ &\frac{U_p}{U_s} = \frac{n_p}{n_s} \end{aligned}$		

Dichte, Kräfte			
Dichte: $\rho = \frac{m}{V}$	Gewichtskraft:	Federkraft (Hooke):	Gleitreibungkraft:
$p - \frac{V}{V}$	$F_G = m \cdot g$	$F = D \cdot s$	$F_R = \mu \cdot F_N$
Hangabtriebs- und Normalkraft an einer		Luftreibungskraft bei turbulenter Strömung:	
schiefen Ebene mit dem Neigungswinkel $lpha$:		$F_R = \frac{1}{2} c_W$	$\cdot \rho_L \cdot A \cdot v^2$
$F_{H} = F_{G} \cdot sin \alpha$ $F_{N} = F_{G} \cdot cos \alpha$		c _W : Luftwiderstandsbeiwert; p L: Luftdichte; A: Querschnittsfläche; v: Geschwindigkeit	

Kraft und Bewegung			
Grundgesetz der Mechanik (Newton II): konstant beschleunigte Bewegung (a = const)			
$\mbox{\bf F} = \mbox{\bf m} \cdot \mbox{\bf a}$ Dabei ist $\mbox{\bf a} = \frac{\Delta \mbox{\bf v}}{\Delta \mbox{\bf t}}$ die Beschleunigung des Körpers.	mit Anfangsgeschwindigkeit v_o $v = v_o + a \cdot t$ $s = v_o \cdot t + \frac{1}{2} a t^2$ $v^2 = v_o^2 + 2 a s$		

Energie				
kinetische Energie:	potentielle (Höhen-)Energie:	Spannenergie:		
$E_{kin} = \frac{1}{2} mv^2$	$E_{pot} = m \cdot g \cdot h$	$E_{sp} = \tfrac{\mathtt{1}}{\mathtt{2}} \; D s^2$		
Änderung der inneren Energie:	mechanische Arbeit:	elektrische Arbeit:		
$\Delta E_{i} = c \cdot m \cdot \Delta \vartheta$	$W = F \cdot s$	$W_{el} = U \cdot I \cdot t$		
Leistung: $P = \frac{W}{t}$ Wirkungsgrad: $\eta = \frac{W_{nutz}}{W_{zu}}$ Einsteins Formel: $E = mc^2$				
Energieerhaltung: Im abgeschlossenen System ist $E_{gesamt} = const.$				

Energieerhaltung: Im abgeschlossenen System ist $E_{gesamt} = const.$

Impuls		
$p=m\cdotv$	$F = \frac{\Delta p}{\Delta t}$	Impulserhaltung: Im abgeschlossenen System ist $p_{gesamt} = const.$

-	Temperatur, Druck, ideales Gas	s	
Kelvin- und Celsius-Temperatur:	Druck: $p = \frac{F}{}$	ideales Gas:	$\frac{p \cdot V}{L} = const$
$T(in K) = \vartheta(in °C) + 273$	PA		Т 331.37

Gravitation, Planetenbewegung				
Gravitationsgesetz: Kepler I: Kepler II: Kepler III:				
$F = G \cdot \frac{m_1 \cdot m_2}{r^2}$	Die Planetenbahnen sind Ellipsen mit dem Zentral- körper in einem Brennpunkt.	Der Fahrstrahl überstreicht in gleichen Zeitabschnitten gleich große Flächenstücke.	$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}$	

harmonische Schwingung			
Auslenkung: y =	$A \cdot sin(\omega t)$ ode	$y = A \cdot \cos(\omega t)$	mit $\omega = 2\pi \cdot f = \frac{2\pi}{T}$
rücktreibende Kraft: $F = -D \cdot y$	Federpendel	$T = 2\pi \cdot \sqrt{\frac{m}{D}}$	Fadenpendel: $T = 2\pi \cdot \sqrt{\frac{L}{g}}$

gleichförmige Kreisbewegung				
Winkelgeschwindigkeit: Umfangsgeschwindigkeit: Zentripetalkraft:				
$\omega = 2\pi \cdot f = \frac{2\pi}{T}$	$\omega = 2\pi \cdot f = \frac{2\pi}{T}$ $v = \omega \cdot r$			

Wellen, Quanten					
Für alle Wellen gilt:		Energie und Wellenlänge eines Photons:			
$c = \lambda \cdot f$	Maxima: $\Delta s = \mathbf{k} \cdot \mathbf{\lambda}$; $k = 0, 1, 2,$ Minima: $\Delta s = (\mathbf{k} - \frac{1}{2}) \cdot \mathbf{\lambda}$; $k = 1, 2, 3,$	$F - h f - h \cdot c - 1,24 \cdot 10^{-6}$ eVm			
	Minima: $\Delta s = (k - \frac{1}{2}) \cdot \lambda$; $k = 1, 2, 3,$	$c_{Ph} - H \cdot I - \frac{\lambda}{\lambda} = \frac{\lambda}{\lambda}$			

	Formelsymbole, Maßeinheiten				
	Beschleunigung	[m/s²]	Q	elektrische Ladung	[C = As]
а	große Halbachse einer Bah	nnellipse [m]	r	Radius, Abstand	[m]
Α	Flächeninhalt	$[m^2]$	R	elektrischer Widerstand	$[\Omega = V/A]$
	Amplitude	[m]	S	Weg, Ort, Federdehnung	[m]
	spezifische Wärmekapazi	tät [J/kg⋅K]	т	Kelvin-Temperatur	[K]
С	Wellenausbreitungsgesch	windigkeit [m/s]	ı	Periodendauer	[s]
D	Federkonstante	[N/m]	J	elektr. Spannung	[V]
Ε	Energie	[J = Nm = VAs]	٧	Geschwindigkeit	[m/s = 3,6 km/h]
F	Kraft	$[N = kg \cdot m/s^2]$	٧	Volumen	[m³]
f	Frequenz	[Hz = 1/s]	W	Arbeit	[J]
h	Höhe	[m]	У	Auslenkung	[m]
Ι	elektrische Stromstärke	[A]	η	Wirkungsgrad	[%]
L	Fadenlänge	[m]	λ	Wellenlänge	[m]
m	Masse	[kg]	μ	Reibungszahl	[-]
Р	Leistung	[W = J/s]	ρ	Dichte	[kg/m³]
	Impuls	[kg·m/s]	θ	Celsius-Temperatur	[°C]
р	Druck	$[pa = N/m^2 = 10^{-5} bar]$	ω	Winkelgeschwindigkeit	[1/s]

Naturkonstanten, astronomische Größen			
Ortsfaktor (Europa): $g = 9.81 \text{N/kg}$	Gravitationskonstante: $G = 6.67 \cdot 10^{-11} \text{ Nm}^2/\text{kg}^2$		
Elementarladung: $e = 1,60 \cdot 10^{-19} As$	atomare Masseneinheit: $u = 1,66 \cdot 10^{-27} \text{ kg}$		
Lichtgeschwindigkeit: $c = 3.00 \cdot 10^8 \text{ m/s}$	Planck-Konstante: $h = 6,63 \cdot 10^{-34} \text{ Js}$		
Astronomische Einheit: $AE = 149,6 \cdot 10^9 \text{ m}$	mittlerer Erdradius: $r_E = 6370 \text{ km}$		

Vorsätze zu Maßeinheiten					
n Nano 10-	μ Mikro 10^{-6}	m Milli 10^{-3}	k Kilo 10 ³	M Mega 10 ⁶	G Giga 10 9