Plants	(Gymnosperms	and	Angiosperms	;)
	Part	II		

Chapter 27

Gymnosperms

Naked seed plants (Gymnos = naked, sperma = seed)

Major reproductive adaptations:

- Pollen grains produce nonmotile sperm
 - Pollination: Transfer of pollen to female reproductive parts; no water is required!
- Ovule
 - Sporophyte structure produces female gametophyte with egg
 - Connected to sporophyte by protective tissue

Progymnosperm Archaeopteris

Seeds

- Seed structure forms when ovule matures after sperm fertilization through pollination
 - · Seed consists of:
 - · Embryo sporophyte
 - Surrounding, nutritive tissues
 - Protective seed coat
- Seeds are major adaptations for uncertain environments
 - · Long distance transport
 - · Potential dormancy

Modern Gymnosperms

- Modern gymnosperms are all woody species
 - 1. Cycads (Cycadophyta)
 - 2. Ginkgoes (Ginkgophyta)
 - 3. Gnetophytes (Gnetophyta)
 - 4. Conifers (Coniferophyta)

Phylum Cycadophyta

- Cycads
 - Flourished during Mesozoic, now only in tropics and subtropics
 - Some have large, cone-shaped strobili

Phylum Ginkgophyta

• Ginkgoes: One living species, Gingko biloba

Phylum Gnetophyta

- Gnetophytes
 - Three genera (Gnetum, Ephedra, Welwitschia)
 - Gnetum and Ephedra both have two-step fertilization like angiosperms

Phylum Coniferophyta

- Conifers (cone bearers)
 - Pines, spruces, firs, hemlocks, junipers, cypresses, and redwoods
 - · Woody reproductive cones
- Most are evergreen (shed some but not all leaves each year)
 - · Adapted for aridity
 - · Needle leaves
 - Heterosporous (male and female cones)
 - · Many produce resin

Conifer Life Cycle

- Haploid microspores develop in sporangia on male cones (strobili) from spore mother cells (through meiosis)
 - Microspores then undergo mitosis to become winged pollen grain (a male gametophyte)
 - · Males cones are typically small and delicate
- Haploid megaspores develop from spore mother cells in ovule
 - · Only one of four megaspores survives
 - Develops into mature female gametophyte after pollination
- Pollen tube grows after pollination, stimulates egg production and delivers sperm

			_		
		,			
١	ı	'		L	

Angiosperms (Anthophyta)

- Assigned to the Phylum Anthophyta
- Flowering plants with "enclosed seeds"
 - Flowers contain carpels at their center
 - Carpels (specialized leaves) protects ovules (and seeds after fertilization)
 - Fruit structure surrounds and aids in the dispersal of seeds
- No current firm evidence for evolutionary origins

Angiosperm Adaptations

- Efficient transport
 - Vessel elements (more efficient than tracheids)
 - More efficient phloem
- Double fertilization
 - Produces embryo and endosperm
- Ovary protects ovule
 - Ovary develops from carpel and turns into fruit

Coevolution with Animal Pollinators

- Many angiosperms have specific pollinators instead of just air currents
- Pollinators undergo coevolution with angiosperms
 - · Heritable change in one affects other
- Highly specific flowers for pollinators
 - Bats, bees, beetles, moths, birds etc.

