Análisis de Algoritmos I

Alan Reyes-Figueroa Teoría de la Computación

(Aula 18) 03.octubre.2022

Definición
Inputs
Ejemplos
Notación Asintótica

Análisis de Algoritmos

- Estimar los recursos (tiempo y memoria) que un algoritmos requiere para funcionar.
 - Estructura
 - Operaciones
- Algoritmos: argumentos de entrada
- El consumo de recursos del algoritmo se escribe en función del "tamaño" de estos inputs.

Inputs: Ejemplos

- Input: Arreglo a.
- Tamaño: número de elementos del arreglo a.
- Input: Un número entero n.
- □ Tamaño: Número de bits que requiere la representación binaria de n.
- Input: Grafo G.
- □ Tamaño: Número de nodos de G.Número de nodos + aristas.

Tiempo de Ejecución

Buscamos determinar el tiempo de ejecución (*running time*) de un algoritmos, esto es, el número de pasos u operaciones primitivas realizadas.

```
Ejemplo: (Algoritmo para contar coincidencias en un arreglo):

Input: Array a; int b.

n = len(a)

Count = 0

Asignación t = c_1

Asignación t = c_1

Ciclo t = n *

if (a[i] == b):

Comparación t = c_2

Count = count + 1

Asignación t = c_1

Suma t = c_3
```

Tiempo de Ejecución

- No calculamos directamente el tiempo de ejecución (en ns, μs) por varias razones:
 - no se comporta igual en cada máquina
 - variabilidad
 - dificultad en los cálculos.

Es mucho más simple calcular el número de operaciones ejecutadas dentro del algoritmos en función de tamaño del input.

Escenarios

Para un mismo algoritmos (y mismos inputs) podemos tener variaciones en el tiempo de ejecución de un algoritmo.

- Consideramos tres escenarios:
 - worst-case (peor caso),
 - □ average-case (caso promedio),
 - □ best-case (mejor caso).

<u>Ejemplo</u>: (Algoritmo para contar coincidencias en un arreglo):

Input: Array a; int b.

Operación	Tiempo
n = len(a)	Asignación $t = c_1$
count = 0	Asignación $t = c_1$
For i in range(0,n):	Ciclo t = n *
if (a[i] == b):	Comparación $t = c_2$
count = count + 1	Asignación $t = c_1$ Suma $t = c_3$

¿Cuántas operaciones hace el algoritmo?

$$T = c_1 + c_1 + n(c_2 + k(c_1 + c_3))$$

Peor caso: el condicional If es True las n veces

$$T = c_1 + c_1 + n(c_2 + n(c_1 + c_3))$$

= $2c_1 + nc_2 + n^2(c_1 + c_3)$

■ Mejor caso: el condicional If nunca es True

$$T = c_1 + c_1 + n(c_2 + 0(c_1 + c_3))$$

= $2c_1 + nc_2$

□ <u>Caso promedio</u>: el condicional If es True 0,1,2,...n veces

$$T = \frac{1}{n+1} \left(\sum_{k=0}^{n} 2c_1 + \sum_{k=0}^{n} nc_2 + \sum_{k=0}^{n} k(c_1 + c_3) \right)$$
$$= 2c_1 + nc_2 + \frac{n^2}{2}$$

8

- ☐ Si construimos una fórmula para contar las operaciones del algoritmo, a los coeficientes en el mejor caso los podemos resumir en constantes a y b, así como en el peor caso en a, b y c.
- Para el mejor caso tendremos una función lineal como tiempo de ejecución, mientras que para el peor caso tendremos una cuadrática.
- □ Nos interesa: comparar dos algoritmos en cuanto a su tiempo de ejecución (tasa de crecimiento).

Ejercicio

Algoritmo (Insertion sort)Input: array A

```
    For j = 2 to n:
    k = A[j]
    i = j - 1
    While i > 0 and A[i] > k
    A[i+1] = A[i]
    i = i - 1
    A[i+1] = k
```

□ Notación **big-Oh**: O(g(x))Decimos que f es **O-grande** respecto de g, $f(\mathbf{x}) = O(g(\mathbf{x}))$, cuando $\mathbf{x} \to \mathbf{a}$, si existe una constante C > 0 tal que $|f(\mathbf{x})| \le C|g(\mathbf{x})|$, para todo $|\mathbf{x} - \mathbf{a}| \le r$.

□ Equivalentemente, $f(\mathbf{x}) = O(g(\mathbf{x}))$ cuando $\mathbf{x} \to \infty$ si existe C > 0 tal que $\lim_{\mathbf{x} \to a} |f(\mathbf{x})/g(\mathbf{x})| \le C$.

□ Notación **big-Oh**: O(g(x))Decimos que f es **O-grande** respecto de g, $f(\mathbf{x}) = O(g(\mathbf{x}))$, cuando $\mathbf{x} \to \infty$ si existen constantes positivas r y C con $|f(\mathbf{x})| \le C|g(\mathbf{x})|$, para todo $|\mathbf{x}| \ge r$.

□ Equivalentemente, $f(\mathbf{x}) = O(g(\mathbf{x}))$ cuando $\mathbf{x} \to \infty$ si existe C > 0 tal que $\lim_{\mathbf{x} \to \infty} |f(\mathbf{x})/g(\mathbf{x})| \le C$.

f(n) = O(g(n)) quiere decir: asintóticamente (para valores muy grandes de n), g crece mucho rápido que f.

□ Notación **big-Omega**: Ω (g(x)) Decimos que f es Ω -grande respecto de g, f(x) = Ω (g(x)), cuando x $\to \infty$ si existen constantes positivas r y C con |f(x)| \geq C|g(x)|, para todo |x| \geq r.

□ Equivalentemente, $f(\mathbf{x}) = \Omega(g(\mathbf{x}))$ cuando $\mathbf{x} \to \infty$ si existe C > 0 tal que $\lim_{\mathbf{x} \to \infty} |f(\mathbf{x})/g(\mathbf{x})| \ge C$.

 \square f(n) = Ω (g(n)) quiere decir: asintóticamente (para valores muy grandes de n), f crece mucho rápido que g.

□ Notación **big-Theta**: $\Theta(g(x))$ Decimos que f es Θ -grande respecto de g, $f(\mathbf{x}) = \Theta(g(\mathbf{x}))$, cuando $\mathbf{x} \to \infty$ si existen constantes positivas r y c₁, c₂ con

$$c_1|g(\mathbf{x})| \le |f(\mathbf{x})| \le c_2|g(\mathbf{x})|$$
, para $|\mathbf{x}| \ge r$.

□ Equivalentemente, $f(\mathbf{x}) = \Theta(g(\mathbf{x}))$ cuando $\mathbf{x} \to \infty$ si existe C > 0 tal que $c_1 \le \lim_{\mathbf{x} \to \infty} |f(\mathbf{x})/g(\mathbf{x})| \le c_2$.

f(n) = O(g(n)) quiere decir:
 asintóticamente (para valores muy grandes de n), f y g crecen de forma similar.

□ Notación **little-oh**: o(g(x))Decimos que f es **o-pequeña** respecto g, $f(\mathbf{x}) = o(g(\mathbf{x}))$, cuando $\mathbf{x} \to \infty$ si $\lim_{\mathbf{x} \to \infty} |f(\mathbf{x})/g(\mathbf{x})| = 0$.

Típicamente vamos a tener:

$$f(x) = O(g(x)) => g(x) = \Omega(f(x))$$

$$f(x) = \Omega(g(x)) => g(x) = O(f(x))$$

$$f(x) = o(g(x)) => g(x) = \Omega(f(x)) \text{ y}$$

$$\lim_{\mathbf{x} \to \infty} |g(x)/f(x)| = \infty$$

$$f(x) = \Theta(g(x)) <=> g(x) = \Theta(f(x))$$
Si $f(x) = \Theta(g(x)) \text{ y } \lim_{\mathbf{x} \to \infty} |g(x)/f(x)| = 1$, f y g son asintóticamente equivalentes.

☐ Ejemplo 1: Estudiar la relación asintótica entre las funciones $f(n) = n^3 - n + 1$ $g(n) = n^3$

□ Ejemplo 2: ¿Qué es $f(n) = O(\log n)$?

□ Ejemplo 3: ¿Qué significa f(n) = O(1)?

☐ Ejemplo 4: ¿Cuál función es mayor? f(n) = log n g(n) = sqrt(n)

☐ Ejemplo 5: ¿Cuál es mayor? $f(n) = 0.5n^{1.5}$ $g(n) = 25n log_{10} n$

☐ Ejemplo 6: ¿Cuál es mayor? $f(n) = n^3 + 5$ $g(n) = n^3 - 1$

☐ Ejemplo 7: ¿Cuál es mayor? $f(n) = n^{1000}$ $g(n) = 5^n$

☐ Ejemplo 8: ¿Cuál es mayor? $f(n) = 10^n$ $g(n) = n^n$

☐ Ejemplo 9: ¿Qué es mayor? $f(n) = n^n$ g(n) = n!

<u>Ejemplo 10</u>: Hay dos algoritmos A y B, con tiempos de ejecución

$$T_A(n) = 5n \log_{10} n$$
 ms

$$T_B(n) = 25n$$
 ms

☐ ¿Cuál es mejor asintóticamente?

Cuál es mejor para resolver un problema de tamaño n=512?

Growth ratio

 $O(2^n)$ \Box O(log(n)) \square $O(\sqrt{n})$ $O(3^{n})$ \Box O(10ⁿ) □ O(n) \square O(nlog(n)) \Box O(n²) $O(n^n)$ $O(n^3)$ O(n!)

Ejemplos: Growth

O(1)	hacer una operación arit.
(log(n))	búsqueda binaria
O(n)	búsqueda lineal
O(nlog(n))	MergeSort
O(n ²)	suma de matrices, shortest path entre 2 nodos Knapsack problem
O(n ³)	producto de matrices Dijkstra en grafo completo
O(k ⁿ)	optimización finita exhaustiva n-queens
O(n!)	determinante por cofactores traveling salesman problem