LATEX 简介

朱沛俊 zpj@mail.ustc.edu.cn

中国科学技术大学

2013年12月6日

下载本文档:

黑体http://home.ustc.edu.cn/~zpj/TeX/intro/intro.pdf

宋体http://home.ustc.edu.cn/~zpj/TeX/intro/intro2.pdf

代码http://home.ustc.edu.cn/~zpj/TeX/intro/intro.7z

提要

- ① 什么是 T_EX
- 2 基本的排版
- ③ 数学公式
- 4 自动化手段
- 5 图与表的排版
- 6 尾声

历史起源

TEX

Donald Knuth 为了编写 The Art of Computer Programming 而编制的一个排版引擎

Plain TEX

Knuth 提供了 Plain TeX 格式对 TeX 进行了封装

EX

Lamport 为了准备他的著作 The Great American Concurrency Book 编写的一组基于 TFX 的宏

TEX 的特点

TFX 的底层性

非所见即所得,需要记忆命令,自由度高

优点

高质量,结构化,高效率,自由软件,稳定,跨平台

缺点

宏包鱼龙混杂,水准参差不齐,可能会有命令冲突等

对比 Word

$T_{E}X$

所想即所得

- 对新手不太友好——代码太多记不住
- 入门之后效率迅速提升
- LyX, T_FXMACS

Word

所见即所得

- 谁都能用,即使是完全的新手
- 但是不是谁都能用好——按钮太多难找到
- 排版出理想的效果比较困难,难以深入学习

TEX 和 Word 的学习曲线

TEX 家族的层次

引擎

TEX, pdfTEX, XaTEX, LuaTEX

格式

plain TEX, ConTEXt, LATEX

宏包

ctex, amsmath, hyperref, etc...

输出与驱动

pdf(不同格式之间用驱动相互转化)

具体过程

- X∃M+X∃TEX=X∃TAEX
- example.pdf = X = X + example.tex

选择 TFX 的发行版

Windows

- CT_FX(提供拷贝),安装按照默认选项进行即可
- 如果自己下载最好下完整版

Linux

T_EXLive

apt-get install texlive-full

Mac OS(没用过)

MacTEX? TEXLive?

TEX 的前端编辑器

Windows

- CTEX 套装自带 WinEdt, TEXWorks。
- 自行安装 TEXMaker, TEXstudio, TEXnic Center 等

Linux

Kile, TEXMaker, TEXWorks etc.

Mac OS(没用过)

TEXShop

纯文本

T_EX 的源文件是纯文本文件, 所以你可以选择任何你喜欢的文本 编辑器:

记事本, Notepad++, Editplus, GEdit, VIM, EMacs...

即便如此

TEX 编辑器至少要满足以下几个功能

- 语法高亮
- 命令补全
- ..

编辑器图例

T_EXMaker

用命令编译

~\$ xelatex hello.tex

编辑器图例

GEdit

编辑器图例

Kile

提要

- ① 什么是 T_EX
- ② 基本的排版
- ③ 数学公式
- 4 自动化手段
- 5 图与表的排版
- 6 尾声

预备知识

\documentclass{}

声明文档类

写文章用 article,写书用 book,写幻灯片用 beamer

\usepackage{}

使用宏包

利用宏包完成高级功能

\LaTeX\TeX\today...

转义序列

所有命令都以 \ 开头。包括环境等

\begin{}...\end{}

环境

环境是一种特殊的命令

久违的 Hello, world!

Input:

```
\documentclass{article}
\usepackage{ctex}
\begin{document}

Hello, world!
\TeX 排版
\end{document}
```

Output:

Hello, world! TFX 排版

结构分析

Input:

\documentclass{article} %article文档类

\usepackage{ctex} %使用ctex包

\begin{document} %开始document环境

Hello, world! %以%开头的都是注释

\TeX 排版 %\TeX 输出tex的标志

\end{document} %结束document环境

Output:

Hello, world! TEX 排版

Hello, World! 实战

特殊符号如%如何输入?

Input

```
\# \$ \^{} \& \_ \{ \} \~ \textbackslash \%
```

Output: # \$ ^ & _ { } ~ \%

看不见的字符

空格、分段和换行

空格

- 单个换行看作空格, 行首空格无效
- 多个空格都看作一个, 汉字边的空格无效
- 各种高级空格,如:~\□\;\,\!\hspace{}等

分段

使用空一行(双换行)或者 \par 分段。段首可以设置缩进

换行

// 普通环境下面较少用,表格、公式环境中应用广泛

区别换行与分段!

TEX 中的长度

绝对单位

- o cm, mm, in
- pt, bp, pc

相对单位

em, ex, mu

排版 TEX 的图标

Input:

\Huge

 $\label{lem:total conditions} $$T\hspace{-0.165em}\raisebox{-0.5ex}{E}\hspace{-0.12em}X$$

\TeX

Output: TEX TEX

盒子

LATEX 排版时把每个对象都视为一个矩形盒子

初级盒子

\mbox

- 把多个盒子放进同一个盒子, 长宽由子盒子决定
- 由于盒子作为一个整体不可分割,必然影响断行

\fbox

- 同 \mbox 但多了 边框
- 可以用 \fbox{} 生成证毕符号□

中级盒子

语法: [宽度][对齐方式]{内容}

- 对齐方式有 c(center)、l(left)、r(right)、s(spread)
- \mbox 的升级版——\makebox
- \fbox 的升级版——\framebox

Input:

```
\makebox[100pt][c]{仪仗队}
\framebox[100pt][s]{亻义 亻丈 阝人}
```

Output: 仪仗队 1 义 1 丈 阝 人

高级盒子

语法: [外部对齐][高度][内部对齐]{宽度}{内容}

\parbox 和 minipage 环境是两种高级盒子 Input:

\fbox{\parbox[c][45pt][t]{10em}{鹅,鹅,曲项向天歌。白 毛浮绿水,红掌拨清波。}}\hfill \fbox{\begin{minipage}[c][35pt][b]{12em} 鹅, 鹅, 鹅, 曲项向天歌。白毛浮绿水, 红掌拨清波。 \end{minipage}}

鹅. 鹅. 鹅. 曲项向天 Output: 歌。白毛浮绿水,红掌 拨清波。

鹅,鹅,鹅,曲项向天歌。 白毛浮绿水,红掌拨清波。

各种图形(盒子)变换

Input:

```
\raisebox{0.5em}{\TeX}
\hspace{1em}\TeX
\reflectbox{\TeX}
\rotatebox{30}{\TeX}
\resizebox{2cm}{2cm}{\TeX}
\scalebox{2}{\TeX}
```

Output: TEX TEXXET OF TEXTEX

中文编码的设置

Windows 用户注意使用 UTF-8 编码

文档保存时选择 UTF8 编码

Linux

无需特殊设置

Mac OS

同上

中文字体的设置

假设你已经安装好了各种字体

查看中文字体: \$ fc-list :lang=zh

Windows

使用 ctex 宏包时加上 [winfonts] 选项:

\usepackage[winfonts]{ctex}

Linux

- \$ locate ctex-xecjk-winfonts.def
- 参照UnixFonts编辑上述文件中相关条目

Mac OS

据说 Mac OS 的字体比较好看...

中文字体的切换

宋体\songti

黑体\heiti

仿宋\fangsong

楷书 \kaishu

一个字体切换的例子

Input:

{\kaishu_哈密顿力学}能让我们品味分析力学的精髓

Output:

哈密顿力学能让我们品味分析力学的精髓

字号

- \tiny\scriptsize\footnotesize\small\normalsize \large\Large\LARGE\huge\Huge...
- \zihao{x}, $\{x \mid -6 \le x \le 8, x \in \mathbb{Z}\}$

Input:

勒{\footnotesize 让德}, {\zihao{-3}拉}格朗日, \Large 拉普拉斯

Output:

勒让德, 拉格朗日, 拉普拉斯

这个幻灯片是怎么做出来的?

\documentclass{beamer}

幻灯片 ≠MS Power Point

Beamer 文档类可以用来制作幻灯片

TFX 排版特殊形状

\usepackage{shapepar}

Output:

如何排版这种效果?

TEX 排版特殊形状

\usepackage{shapepar}

Output:

如何排版这种效果? 你以为,光敲空格就可以了吗? 作为一个 T_EXpert,其实连空格也不用敲

TFX 排版特殊形状

\usepackage{shapepar}

Output:

如何排版这种效果? 你以为,光敲空格就可以了吗? 作为一个 T_EXpert,其实连空格也不用敲

Input: \heartpar{你是个好人...}% 此处省略 n 多字

提要

- ① 什么是 TeX
- 2 基本的排版
- ③ 数学公式
- 4 自动化手段
- 5 图与表的排版
- 6 尾声

柯西积分公式 TeX 中数学公式的输入

如何输出柯西积分公式?

$$f^{(n)}(z) = \frac{1}{2\pi i} \int_C \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$$

如何输出柯西积分公式

Input:

```
\[
f^{(n)}(z)=
\frac{1}{2\pi\mathrm{i}}
\int_C
\frac{f(\xi)}{(\xi-z)^{n+1}}
\mathrm{d}\xi
\]
```

$$f^{(n)}(z) = \frac{1}{2\pi i} \int_C \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$$

数学环境

Input:

行内公式\$f(x)=x\$ 行间公式\[f(x)=x\] 编号公式\begin{equation} f(x)=x\label{fubi} \end{equation}

Output:

行内公式 f(x) = x 行间公式

$$f(x) = x$$

编号公式

$$f(x) = x$$

上标与下标

Input:

$$a^{m+n} = a^m a^n \quad x_{ij} = x_i + x_j$$

分数

Input:

```
$\dfrac{1}{2}$
```

$$\[\frac{1}{2} \]$$

Output:
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

 $\frac{1}{2}$

数学中的字体

数学公式中默认是使用斜体。 常量,算符等使用正体

Input:

\$

Output: $\sin x \quad a + bi \quad d(x^2) = 2x dx$

特殊符号

Input:

$$\int_{C} f(x) dx$$

$$\alpha \beta \gamma \xi \theta \pi \nabla \Delta \delta$$

根号

Input:

 $\[\x \in [n] {y} \]$

$$\sqrt{x}$$
 $\sqrt[n]{x}$

巨型算符

Input:

```
\[
\sum_{i=0}^\infty\quad
\prod_{i=0}^\infty\quad
\lim_{n\rightarrow\infty}
\]
```

$$\sum_{i=0}^{\infty} \quad \prod_{i=0}^{\infty} \quad \lim_{n \to \infty}$$

提要

- ① 什么是 TeX
- ② 基本的排版
- ③ 数学公式
- 4 自动化手段
- 5 图与表的排版
- 6 尾声

减少重复, 方便修改

怎么输出这个:

我来自中国科大,我是中国科大一 名优秀学生,中国科大是我家,我 在我家就爱穿拖鞋。

减少重复,方便修改

怎么输出这个:

我来自中国科大,我是中国科大一 名优秀学生,中国科大是我家,我 在我家就爱穿拖鞋。

复制粘贴中国科大?

减少重复,方便修改

怎么输出这个:

我来自中国科大,我是中国科大一 名优秀学生,中国科大是我家,我 在我家就爱穿拖鞋。

复制粘贴中国科大?

等等,我突然想改变中国科大的格式怎么办?

减少重复,方便修改

怎么输出这个:

我来自中国科大,我是中国科大一 名优秀学生,中国科大是我家,我 在我家就爱穿拖鞋。

复制粘贴中国科大? 等等,我突然想改变中国科大的格式怎么办? 硬着头皮继续复制粘贴...?

只需要这样:

\newcommand{\ustc}{{\color{red} 中国科大}} 我来自\ustc,我是\ustc一名优秀学生,\ustc是我家, 我在我家就爱穿拖鞋。

只需要这样:

\newcommand{\ustc}{{\color{red} 中国科大}} 我来自\ustc,我是\ustc一名优秀学生,\ustc是我家, 我在我家就爱穿拖鞋。

当然,你也可以:

\newcommand{\ustc}{裤子大}
\newcommand{\ustc}{南七技校}
\newcommand{\ustc}{University of %
Singles and Tragedies of China}
\newcommand{\ustc}{Ultimate Shaolin Temple of China}

回顾

是否觉得输入数学公式时 \mathrm 输入正体 d、e、i 太麻烦? 只需要这样定义:

```
\newcommand{\dd}{\mathrm{d}}
\newcommand{\pp}{\partial}
\newcommand{\ee}{\mathrm{e}}
\newcommand{\ii}{\mathrm{i}}
```

柯西积分公式

格式与内容分离

对于可能需要做格式改动的东西

格式一

Hologram 全息图

格式二

Hologram

全息图

格式三

全息图

Hologram

假如我有一堆小标题要改变格式怎么办?

一个一个替换?

格式与内容分离

命令的使用——内容

\mitem{Hologram}{全息图}

- 通过使用自己定义的 \mitem 命令来完成小标题 \mitem{Hologram}{全息图}
- 这句话并不含有怎么排版的格式信息。格式信息在命令定义中
- 需要做格式改动时,只需稍微调整命令的定义即可

格式与内容分离

命令的定义——格式

```
\newcommand{\mitem}[2]{#1~#2}%格式一
\newcommand{\mitem}[2]{#1\hfill#2}%格式二
\newcommand{\mitem}[2]{#2\hfill#1}%格式三
```

输出格式

Hologram 全息图

Hologram

全息图

全息图

Hologram

自动化的实现

系统定义的格式

- \today 生成日期
- \maketitle 生成文章标题
- \tableofcontents 生成文章目录
- \label{here} 与 \ref{here} 等交叉引用
- equation 等环境可以自动编号
- thebibliography 环境生成参考文献,\cite 引用
- 你自己定义的高级命令?

```
Input:
...
\author{犀利哥}
\title{一如既往地犀利}
\begin{document}
\maketitle
...
```

将会自动生成大标题、作者和日期:

一如既往的犀利

犀利哥

2013年12月6日

纲举而目张

节标题与目录的生成

文档结构化的命令

- \section{}
- \subsection{}
- \subsubsection{}

\tableofcontents

- 如果文档做到了结构化,就可以用这个命令生成一个目录
- 类似的有图目录 \tableoffigure, 表目录, 索引等
- 若不想让某章节标题出现在目录里, 用带 * 的命令, 如: \section*{}

使用 \tableofcontents, 你就会看到:

- ① 什么是 T_EX
- ② 基本的排版
- ③ 数学公式
- 4 自动化手段
- ⑤ 图与表的排版
- 6 尾声

电子文档中的超链接

\usepackage{hyperref}

内部链接

自动为公式引用等生成文档的内部链接

外部链接

Input:

\href{mailto:zpj@mail.ustc.edu.cn}{朱沛俊}

\url{http://www.ustc.edu.cn}

Output:

朱沛俊

http://www.ustc.edu.cn

公式标号、引用与内部链接

```
$c$与$v$之比为折射率$n$
\newcommand{\mref}[1]{(\ref{#1})}
\begin{equation}
 v=\frac{c}{n}\label{b}
\end{equation}
  对一般介质$\mu=\mu_0$
\begin{equation}\label{a}
 n=\sqrt{\frac{\varepsilon}
 {\varepsilon 0}}
\end{equation}
由\mref{a}\mref{b}得
$v\propto 1/\varepsilon^2$
。由于\mref{fubi}的存在
```

所以从\mref{b}开始编号

c 与 v 之比.为折射率 n

$$v = \frac{c}{n} \tag{2}$$

对一般介质 $\mu = \mu_0$

$$n = \sqrt{\frac{\varepsilon}{\varepsilon_0}} \qquad (3)$$

由 (3)(2) 得 $v \propto 1/\varepsilon^2$ 。 由于 (1) 的存在所以从 (2) 开始编号

Input:

```
\begin{itemize}
  \item C
  \item Java
  \item Python
  \end{itemize}
```

- C
- Java
- Python

Input:

```
\begin{enumerate}
  \item C
  \item Java
  \item Python
  \end{enumerate}
```

- C
- 2 Java
- Opening Python

列表环境 description

Input:

```
\begin{description}
\item[C] 编程语言
\item[Java] 编程语言
\item[Python] 编程语言
\end{description}
```

Output:

C 编程语言 Java 编程语言 Python 编程语言

- LATEX 的各种宏包提供的功能已经够强大了,应付小文章足 矣
- 你可以用变量、判断结构,循环结构等自定义高级功能(显然我还不会)

提要

- ① 什么是 TeX
- ② 基本的排版
- ③ 数学公式
- 4 自动化手段
- ⑤ 图与表的排版
- 6 尾声

两种浮动体

图表浮动体

float

- 图表通常要占据大块空间,用户经常需要调整插图的位置
- 自动调整位置的环境称作浮动环境
- 可以加相应的 htbp 参数指定图表的理想位置
- 用 \caption{} 指定标题

figure 环境

\begin{figure}...\end{figure}

用于插入图片的浮动环境

table 环境

\begin{table}...\end{table}

用于插入表格的浮动环境

插入图片

一个最简单的栗子

```
\begin{figure}[htbp]
\includegraphics{horse.jpg}
\caption{一匹马}
\end{figure}
```


图:一匹马

tabular 表格

一个最简单的栗子

Input

```
\begin{table}
 \begin{tabular}{c|cc}
   &1&2&3\\
   \hline
  1&1&2&3\\
  2&2&4&6
 \end{tabular}
\end{table}
```

Output:

	1	2	3
1	1	2	3
2	2	4	6

tabular 表格

也可以调用 excel 类软件的宏自动生成

使用 TEX 画图

怎么做出这幅图?

Source Code

```
\usepackage{tikz}
. . .
\begin{figure}[htbp]
\centering
\begin{tikzpicture}
\draw[->, thick](0,0)node[left]{$0$}--(9,0)node[below]{时
间}:
\draw[->, thick](0,0)--(0,6)node[right]{效率};
\frac{1+\sqrt{50}}{n}
\displaystyle \frac{\text{domain}=0:6.5}{\text{plot}(x,{x*x*x/50}) \text{node}[right]{TeX};}
\end{tikzpicture}
\end{figure}
```

tikz 画图

优点

- 与 TFX 完全兼容, 可以利用 TFX 排版的优势
- •精确,美观
- 比较强大的函数作图功能

缺点

- 语法有 TEX 的包袱
- 画图没有 Mathematica 等外部程序方便

其他与 TEX 兼容的画图程序

PSTricks

类似于 tikz, 利用 PostScript 强大的计算与图形能力。也是 T_EX 下面的一个宏包

METAPOST

独立的绘图语言,可以嵌入于 LATEX

Asymptote

独立的绘图语言,语法近似于 C/C++,可以调用 T_EX ,也可以嵌入于 L^AT_EX

提要

- ① 什么是 T_EX
- 2 基本的排版
- ③ 数学公式
- 4 自动化手段
- 5 图与表的排版
- 6 尾声

如何学习 LATEX?

学习资源

- 一些资料http://home.ustc.edu.cn/~zpj/TeX
- CT_EX 论坛
- CTAN(Comprehensive T_EX Archive Network)

寻找宏包的帮助文件

texdoc

要找 CTEX 的帮助文件, 只需要 \$ texdoc ctex(演示)

```
🔊 🗐 🗊 zpj@zpj-Aspire: ~
zpj@zpj-Aspire:~$ texdoc ctex
zpj@zpj-Aspire:~$
(evince:2547): EvinceDocument-CRITICAL **: ev document get n pages: assertion 'E
/ IS DOCUMENT (document)' failed
zpj@zpj-Aspire:~$
```

一些中文资料

http://home.ustc.edu.cn/~zpj/TeX

LATEX Notes

推荐入门 Lnotes

LATEX 排版学习笔记

短小精悍

MTFX 入门

可以购买纸质书,电子书只有一二两章供试读,难度略高。

不满足于中文资料的可以阅读英文资料

熟能生巧

无他, 唯手熟尔。

——卖油翁

内容高于形式

你的文章排版的再漂亮, 你也难以因此成为 Knuth 一样的大牛 而 Knuth 的大作即使是手写的,也依然是大作

The End ^{谢谢}

THANK YOU!