Capítulo 5 — Emparelhamentos

1 Introdução

Todos os grafos tratados neste capítulo são simples (ou seja, sem laços e sem arestas múltiplas). Um **emparelhamento** num grafo é um conjunto de arestas duas a duas não-adjacentes. Em outras palavras, um emparelhamento é um conjunto E de arestas tal que todo vértice do grafo é extremo de no máximo um elemento de E. Exemplos:

- Seja G um grafo e $X \subseteq V(G)$. Dizemos que um emparelhamento E cobre (ou satura) X se em cada vértice de X incide uma aresta de E. Neste caso, também dizemos que X é coberto (ou saturado) por E. Se $X = \{v\}$ então dizemos simplesmente que E cobre (ou satura) v.
- Um emparelhamento num grafo G é **perfeito** se cobre V(G).
- Se uma aresta uv pertence a um emparelhamento E então dizemos que u e v são (ou estão) emparelhados por E.
- Se um vértice v não é coberto por um emparelhamento E então dizemos que v é **livre em relação a** E, ou simplesmente, v é **livre** (se E estiver claro pelo contexto).

PROBLEMAS DE INTERESSE:

- 1. Encontrar um emparelhamento máximo em um grafo. [Existe algoritmo eficiente?]
- 2. Dado um grafo e um emparelhamento E, que não é máximo, será que existe algum jeito fácil de convencer alguém de que E não é máximo?
- 3. Dado um grafo (X, Y)-bipartido, é fácil decidir se existe um emparelhamento que cobre X? E se não existe, tem um certificado simples para comprovar isso?
- 4. É mais fácil encontrar um emparelhamento máximo um grafo bipartido do que num grafo arbitrário?
- 5. Quando o grafo é bipartido existe algum outro parâmetro do grafo relacionado com a cardinalidade de um emparelhamento máximo?
- 6. Suponha que um grafo G não tenha um emparelhamento perfeito. Existe um certificado que nos convença disso?
- 7. Existem problemas interessantes cujas soluções (exatas ou aproximadas) dependem de soluções para problemas de emparelhamentos?

Após estudar este capítulo, esperamos que você saiba as respostas a essas perguntas.

Problemas sobre tabuleiro de xadrez $T_{8\times8}$ e dominós

Problema 1. Considere um tabuleiro de xadrez $T_{8\times8}$, cujas casas são quadrados 1×1 . Seja T' o tabuleiro obtido de $T_{8\times8}$ removendo-se duas casas, uma no canto superior esquerdo, e outra no canto inferior direito. É possível cobrir T' com 31 dominós 2×1 ?

Problema 2. E se no problema acima, T' fosse o tabuleiro obtido de $T_{8\times8}$, removendose duas casas contíguas de qualquer lugar de $T_{8\times8}$?

2 Emparelhamentos Máximos

Emparelhamento maximal × Emparelhamento máximo

Um emparelhamento E num grafo é **maximal** se não existe nesse grafo um emparelhamento E' que contém E propriamente. Um emparelhamento E num grafo G é **máximo** se não existe em G nenhum emparelhamento de cardinalidade maior que |E|. OBS: Note que nem todo emparelhamento maximal é máximo. Claramente, todo emparelhamento máximo é maximal.

Ex:

<u>Definição.</u> Seja E um emparelhamento num grafo G. Um **caminho** E-alternante em G é um caminho cujas arestas estão alternadamente em E e em $A(G) \setminus E$. Um tal caminho com ambos os extremos livres (em E) é chamado um **caminho aumentador** (augmenting path).

Teorema 5.1. (Berge, 1957)

Seja G um grafo e E um emparelhamento em G. Temos que E é um emparelhamento máximo se e só se G não tem nenhum caminho E-alternante com ambos os extremos livres.

(Ideias)

Prova. (a) Seja E um emparelhamento máximo em G. Suponha que exista em G um caminho E-alternante com ambos os extremos livres. Seja

$$E' := \left(E \setminus A(P) \right) \cup \left(A(P) \setminus E \right) = E \triangle A(P).$$

Claramente E' é um emparelhamento em G, e além disso, |E'| > |E|. Logo, E não é um emparelhamento máximo, uma contradição.

(b) Vamos agora provar a afirmação recíproca. Para isso, considere um emparelhamento E em G e suponha que não exista em G um caminho E-alternante com ambos os extremos livres. Suponha que E não seja máximo. Tome um emparelhamento máximo E^* em G e considere o grafo

$$H := G[E^* \triangle E].$$

Claramente, $g_H(v) \leq 2$ para todo vértice v em H. Logo, cada componente de H é um circuito ou um caminho com arestas alternadamente em E e em E^* . Como $|E^*| > |E|$, deve existir um componente de H que é um caminho, digamos P, que contém mais arestas de E^* do que de E.

Então, a primeira e a última aresta de P pertencem a E^* , e portanto os seus extremos não são cobertos por E. Logo, P é um caminho E-alternante com ambos os extremos livres (em E). Mas isto é uma contradição. Portanto, podemos concluir que E é um emparelhamento máximo.

3 Emparelhamentos em grafos bipartidos

Todos os resultados abaixo serão provados em aula. Algumas vezes, serão discutidas duas ou mais provas distintas. (Desejável: conhecer pelo menos 2 provas distintas do Teorema de Hall.)

Os dois teoremas desta seção são centrais na teoria de emparelhamentos em grafos.

Teorema 5.2. (Hall, 1935)

Seja G um grafo (X,Y)-bipartido. Então

G tem um emparelhamento que cobre X se e só se $|\mathrm{Adj}(S)| \geq |S|$ para todo $S \subseteq X$.

Prova 1.			

Prova 2. Por indução em $ X $. (Exercício para casa (com dica na aula))							

	1	-	•		1
nr	$\mathbf{\Omega}$	a	rio	h	- ≺
UI.	v	u			. J .

Seja G um grafo (X,Y)-bipartido. Se $|\mathrm{Adj}(S)| \geq |S| - k$ para todo $S \subseteq X$ e algum inteiro fixo k, então G tem um emparelhamento de cardinalidade |X| - k.

Prova.			

	_	•		А
Coro	laı		٦.	.4.

Todo grafo bipartido k-regular com $k \geq 1$ tem um emparelhamento perfeito.

Prova .			

Corolário 5.5.

Todo grafo bipartido k-regular com $k \geq 2$ tem k emparelhamentos perfeitos dois a dois disjuntos.

Prova. (Exercício)

Definição: Seja k um inteiro positivo. Um subgrafo gerador k-regular de um grafo G é chamado k-fator de G. Assim, um 1-fator de G é simplesmente um subgrafo gerado pelas arestas de um emparelhamento perfeito de G; um 2-fator é um subgrafo gerador de G que é uma união de circuitos disjuntos nos vértices.

Corolário 5.6.

Todo grafo bipartido k-regular, $k \ge 1$ tem pelo menos $\binom{k}{2}$ 2-fatores distintos.

Material Extra (curiosidade) - só esta página

O seguinte resultado, para grafos arbitrários, é considerado um dos primeiros resultados na teoria dos grafos.

Teorema do 2-fator (Petersen, 1891): Se G é grafo 2k-regular, $k \geq 1$, então o conjunto das arestas de G pode ser particionado em k 2-fatores arestas-disjuntos. (Também dizemos simplesmente que G admite uma decomposição em k 2-fatores.)

(Ideia da prova: grafo euleriano + "splitting" de vértices.)