XL2400P 使用说明 XL2400P User Manual

V1.0 2023.01

深圳市芯岭技术有限公司

www.xinlinggo.com

XL2400P 使用说明 v1.0

版本

Version	Date	Write	Appove	Description
V1.0	2023/1/4			首次发行

咨询电话:0755-32866130 **2 / 33**

目录

1	概述	4
2	主要特性	4
3	主要电特性	5
4	极限最大额定值	7
5	系统结构方框图	
6	引脚定义	
7	芯片工作状态	
	7.1 休眠模式	
	7.2	
	7.3 待机模式-III(STB3)	
	7.4	
	7.6 发射模式	
	数据通信模式	
8		
	3.1 普通模式	
	3.2 增强模式	
	3.3 增强发送模式	
	3.4 增强接收模式 3.5 增强模式下的数据包识别	
	3.6 增强模式下的绥佑也以为 3.6 增强模式下的接收端一对多通信	
	3.7 中断引脚	
9	SPI 控制接口	
10	控制寄存器	16
11	数据包格式描述	27
12	典型应用电路(参考)	28
13	印制天线设计(参考)	29
1	3.1 印制板天线 layout 设计	29
1	3.2 Dongle 端的 PIFA 天线设计	
1	3.3 遥控器控制板的中尺寸 PIFA 天线设计	30
1	3.4 无线鼠标板及遥控器的单极天线设计	31
14	芯片封装信息	31
15	注意事项	32
16	防护注意事项	33

1 概述

XL2400P 系列芯片是工作在 2.400~2.483GHz 世界通用 ISM 频段的单片无线收发芯片。该芯片集成射频收发机、频率收生器、晶体振荡器、调制解调器等功能模块,并且支持一对多组网和带 ACK 的通信模式。发射输出功率、工作频道以及通信数据率均可配置。芯片已将多颗外围贴片阻容感器件集成到芯片内部。容易过 FCC 等认证。

典型应用领域:

- > 无线鼠标键盘
- ▶ 电视和机顶盒遥控器
- ▶ 无线游戏手柄
- ▶ 遥控玩具
- ▶ 有源无线标签
- ▶ 智能家居及安防系统

2 主要特性

▶ 功耗较低

发射模式(0dBm)工作电流 13.7mA;接收模式工作电流 12.3mA;休眠电流 2uA。

▶ 节省外围器件

支持外围 4 个元器件,包括 1 颗晶振和 3 个贴片电容;

支持双层或单层印制板设计,可以使用印制板微带天线;

芯片自带部分链路层的通信协议; 配置少量的参数寄存器, 使用方便。

▶ 性能优异

125K / 250K / 1M / 2M bps 模式的接收灵敏度为-96.5 / -95 / -92 / -90dBm;

发射输 功率最大可达 8dBm;

抗干扰性好,接收滤波器的邻道抑制度高,接收机选择性好。容易过 FCC 等认证。

- ▶ 三/四线 SPI 接口通信/I2C 接口通信
- ➤ SPI 接口速率最高支持 4Mbps
- ▶ 支持最大数据长度为 128 字节 (4 级 FIFO)
- ➤ SOP8 封装
- ▶ 1M / 2Mbps 模式,需要晶振精度 ±40ppm&C_L=12pF 125K/250kbps 模式,需要晶振精度 ±20ppm&C_L=12pF BLE 广播包模式,需要晶振精度 ±10ppm&C_L=12pF
- ▶ 工作电压支持 1.7~3.6V;
- ▶ 工作温度支持-40~+125℃
- ➤ GFSK 通信方式
- ▶ 支持自动应答及自动重传

咨询电话: 0755-32866130 **4 / 33**

3 主要电特性

特性	测试条件(VCC = 3V±5%,		参数值		单位
	TA=25℃)	最小	典型	最大	
	休眠模式		1		uA
	待机模式 1		24.2		uA
	待机模式 2		1.18		mA
	发射模式 (-24dBm)		9		mA
	发射模式 (-18dBm)		9.5		mA
ICC	发射模式 (OdBm)		13.7		mA
	发射模式 (2dBm)		17		mA
	发射模式 (8dBm)		25		mA
	接收模式 (250Kbps)		12.3		mA
	接收模式 (1Mbps)		12.3		mA
	接收模式 (2 M bps)		12.3		mA
系统指标					
f_{OP}	工作频率	2400		2483	MHz
PLL_{res}	锁相环频率步径		1		MHz
f_{XTAL}	晶振频率,负载电容 12pF		16		MHz
DR	码率	0.125		2	Mbps
$\Delta \mathrm{f}_{ ext{250K}}$	调制频偏@250Kbps		160	250	KHz
Δf_{1M}	调制频偏@1Mbps		160	250	KHz
Δf_{2M}	调制频偏@2Mbps		320		KHz
FCH _{250K}	频道间隔@250Kbps		1		MHz
FCH _{1M}	频道间隔@1Mbps		1		MHz
FCH _{2M}	频道间隔@2Mbps		2		MHz
发射模式指					1
PRF	典型输 功率		0		dBm
PRFC	输 功率范围	-24		8	dBm
PBW1	发射带数据调制的 20dB 带宽 (250Kbps)		1		MHz
PBW2	发射带数据调制的 20dB 带宽 (1Mbps)		1		MHz
PBW3	发射带数据调制的 20dB 带宽 (2Mbps)		2		MHz
接收模式指	i	l	1		I
RX_{max}	误码率<0.1%时的最大接收幅度		0		dBm
RXSENS1	接收灵敏度 (0.1%BER)		-96.5		dBm

咨询电话: 0755-32866130 **5 / 33**

XL2400P 使用说明 v1.0

	@125 Kbps				
DACDAGO	接收灵敏度 (0.1%BER)		0.5		ID
RXSENS2	@250 Kbps		-95		dBm
DVCENCO	接收灵敏度 (0.1%BER)		00		JD
RXSENS3	@1Mbps		-92		dBm
RXSENS4	接收灵敏度 (0.1%BER)		-90		dBm
KASENS4	@2Mbps		90		adili
接收模式邻	3道选择性				
C/I _{co}	同频的通道选择性@250kbps		2		dBc
C/I _{1ST}	第 1 相邻道选择性@250kbps		-8		dBc
C/I _{2ND}	第 2 相邻道选择性@250kbps		-18		dBc
C/I _{3RD}	第 3 相邻道选择性@250kbps		-24		dBc
C/I _{4TH}	第 4 相邻道选择性@250kbps		-28		dBc
C/I _{5TH}	第 5 相邻道选择性@250kbps		-32		dBc
C/I _{6TH}	第 6 相邻道选择性@250kbps		-35		dBc
C/I _{co}	同频的通道选择性@1Mbps		10		dBc
C/I_{1ST}	第 1 相邻道选择性@1 M bps		1		dBc
C/I _{2ND}	第 2 相邻道选择性@1 M bps		-18		dBc
C/I _{3RD}	第 3 相邻道选择性@1 M bps		-23		dBc
C/I_{4TH}	第 4 相邻道选择性@1Mbps		-28		dBc
C/I _{5TH}	第 5 相邻道选择性@1 M bps		-32		dBc
C/I_{6TH}	第 6 相邻道选择性@1Mbps		-35		dBc
C/I _{co}	同频的通道选择性@2Mbps		10		dBc
C/I_{1ST}	第 1 相邻道选择性@2 M bps		-6		dBc
C/I _{2ND}	第 2 相邻道选择性@2 M bps		-10		dBc
C/I _{3RD}	第 3 相邻道选择性@2Mbps		-22		dBc
C/I_{4TH}	第 4 相邻道选择性@2 M bps		-28		dBc
C/I_{5TH}	第 5 相邻道选择性@2 M bps		-34		dBc
操作条件				. "	
VDD	供电电压	1.7	3	3.6	V
VSS	芯片地		0		V
V_{OH}	高电平输 电压	VDD-0.3		VDD	V
V_{OL}	低电平输 电压	VSS		VSS+0.3	V
V_{IH}	高电平输入电压	VDD-0.3		VDD	V
$V_{\scriptscriptstyle \mathrm{IL}}$	低电平输入电压	VSS		VSS+0.3	V

^{*}注 1: 在晶振 16MHz 的整数倍(如 2416、2432MHz 等)的频道及相邻正负 1MHz 的 频道的接收灵敏度退化 2dB; 发射信号调制精度(EVM)退化 10%。请使用我们建议信道。

咨询电话: 0755-32866130 6 / 33

4 极限最大额定值

特性	条件		单位		
1312	71311	最小	典型	最大	
		最大额定值			
$V_{\scriptscriptstyle DD}$	供电电压	-0.3		3. 6	V
V _I	输入电压	-0.3		3. 6	V
Vo	输 电压	VSS		VDD	
P _d	总功耗(TA=-40℃~85℃)			300	mW
Тор	工作温度	-40		125	$^{\circ}$
T_{STG}	存储温度	-40		125	$^{\circ}$

- 注:1、使用中强行超过一项或多项极限最大额定值会导致器件永久性损坏。
 - 2、静电敏感器件,操作时遵守防护规则。

5 系统结构方框图

咨询电话:0755-32866130 **7 / 33**

6 引脚定义

引口端 序号	符号	功能	引口端 序号	符号	功能
1	CSN	SPI 片选信号	5	XC1	晶振输入
2	SCK	SPI 时钟信号	6	XC2	晶振输
3	DATA	SPI 数据输入输 信号	7	VSS	地 (GND)
4	VDD	电源输入	8	ANT	射频信号输入输

7 芯片工作状态

本章描述 XL2400P 系列芯片的各种工作模式,以及用于控制芯片进入各工作模式的方法。XL2400P 芯片自带状态机受控于芯片内部寄存器的配置值和外部引脚信号。

咨询电话: 0755-32866130 **8 / 33**

如上是 XL2400P 工作状态图,表示 5 种工作模式之间的跳变。XL2400P 在 VDD 大于 1.7V 才开始正常工作。即使进入休眠模式,MCU 还是可以通过 SPI 发送配置命令及 CE 管脚使芯片进入其它 5 种状态。

咨询电话: 0755-32866130 **9 / 33**

如上所示,系统包括 5 个主要状态,分别如下:

- 1 POWER DOWN。数字系统断电状态。
- 2 STANDBY。系统上电后自动进入该状态。
- STANDBY ONE。当配置为 PTX 器件,且CE=1 持续时间大约 10us,且 TXFIFO 中没有数据,系统进入该状态,等待发送数据。
- 4. TX ON。当配置为 PTX 器件,且 CE=1 持续时间大约 10us,且 TXFIFO 中有数据,系统进入该状态。在该状态下完成数据的发送处理,系统会启动发送控制状态机进行工作,直到数据发送完成。若配置自动 ACK 接收,则系统会进入RX ON 状态开始接收 ACK。
- 5. RX ON。当配置为 PRX 器件,且CE=1 时,系统进入该状态。在该状态下完成数据的接收处理,系统会启动接收控制状态机进行工作,直到接收到一个帧。当配置自动 ACK 发送,则系统会就进入 TX ON 状态发送 ACK。若 PTX 器件有效,且自动 ACK 接收使能,则还会启动发送重传。

7.1 休眠模式

在休眠模式下, XL2400P 所有功能关闭,保持电流消耗最小。进入休眠模式后,XL2400P 停止工作,但寄存器内容保持不变。休眠模式由寄存器中 PWR UP 位控制。

7.2 待机模式-I (STB1)

在待机模式-I下,芯片维持晶振振荡但不输 **独**它模块,其余功能模块均关闭,消耗电流较小。在休眠模式下,通过配置寄存器 PWR_UP 的值为 1,芯片即可进入待机模式-I。而处于发射或接收模式时,可以通过配置 CE 和 EN PM 控制信号为 0,芯片返回到待机模式-I。

7.3 待机模式-III (STB3)

在待机模式-I 时,配置 EN_PM 控制信号为 1, 芯片进入到待机模式-III。待机模式-III 主要目的是使得芯片的电源管理模块启动和输 16M 高速时钟。

7.4 待机模式-II (STB2)

收送端 TX FIFO 寄存器为空并且 CE 引脚置 1,进入入待机模式-II (待机模式-II 通常可以理解为预备发射模式)。此时,晶振有较强的输出驱动能力且芯片的电源管理模块开启。待机模式-II 下,如果有数据包送入 TX FIFO,此时芯片内部锁相环立刻启动工作并且经过一段锁相环的锁定时间后,发射机将数据包发出去。

咨询电话: 0755-32866130 **10 / 33**

7.5 接收模式

当 PWR UP、 PRIM-RX、 EN PM、 CE 置 1 时, 进入接收模式。

在RX模式下,射频部分接收从天线来的信号,将其放大、下变频、滤波和解调,根据地址、校验码、数据长度等,判断是否收包有效,有效收包上传RXFIFO,上报中断。如果RXFIFO是满的,接收的数据包就会被丢弃。

7.6 发射模式

当 PWR_UP、EN_PM 置 1, PRIM-RX 置 0, CE 置 1, 且 TX FIFO 中存在有效数据,进入发射模式。 XL2400P 在数据包发送完之前都会保持在发送模式。发送完成后,返回到待机模式。XL2400P 支持连续 发包和发长包模式。

8 数据通信模式

XL2400P 芯片搭配 MCU 来共同完成通信功能。链路层,如数据组帧、校验、地址判断、数据白化的扰码、数据重传和 ACK 响应等处理是由芯片内部完成的,无需 MCU 参与。

XL2400P 芯片可配置为四个不同的 RX FIFO 寄存器 (32 字节) 或者一个 RX FIFO 寄存器 (128 字节) (6 个接收通道共享)、四个不同的 TX FIFO 寄存器 (32 字节) 或者一个 TX FIFO 寄存器 (128 字节)。在休眠模式和待机模式下,MCU 可以访问 FIFO 寄存器。

XL2400P 芯片主要有二种数据通信模式:

- 不带自动重传不带ACK 的通信模式(后简称为普通模式),发射端可以使用命令有W TX PAYLOAD, REUSE TX PL 等;
- 带自动重传带ACK 的通信模式(后简称为增强模式),发射端可以使用命令有 W_TX_PAYLOAD, W_TX_PAYLOAD_NOACK, REUSE_TX_PL 等,接收端可以使用命令有W_ACK_PAYLOAD 等;

普通模式

通信名称	普通模式		
通信方	PTX	PRX	
特点	单向发送	单向接收	
收送数据的组帧方式	I	无	
开启REUSE_TX_PL 命令	重复发送前一包数据	无	

增强模式

通信名称	增强模式		
通信方	PTX	PRX	
特点	发送数据后,等待接收 ACK	接收数据后,回収送 ACK	

咨询电话:0755-32866130 **11 / 33**

XL2400P 使用说明 v1.0

发送数据的组帧方式	发送数据组帧方式 II	回发送 ACK 组帧方式III
PTX 使用REUSE_TX_PL 命令	重复发送前一包数据	每收到一包,回发送 ACK
PTX 使用W_TX_PAYLOAD 命令	发送数据后,等待接收 ACK	接收数据后,回发送 ACK
PRX 使用 W_ACK_PAYLOAD 命令	PAYLOAD	PAYLOAD,组帧方式 II
PTX 使用W_TX_PAYLOAD_NO	发送一次数据,不等 ACK,组	接收数据,不回 ACK
ACK 命令	帧方式 II	按收效功,个四 ACK

8.1 普通模式

普通模式下,发送端从TX FIFO 寄存器中取 **拨**并且发送,发送完成后上报中断(中断需要清除),同时TX FIFO 寄存器清除该数据(TX FIFO 需要清空);接收端接收到有效的地址和数据时上报中断通知 **M**CU,随后 **M**CU 可将该数据从RX FIFO 寄存器中读 TX FIFO 和 RX FIFO 需要清空,中断需要清除)。

普通模式,(0X01)EN_AA 寄存器置 0X00,(0X04)SETUP_RETR 寄存器置 0X00,(0X1C)DYNPD 寄存器置 0X00,(0X1D)FEATURE 寄存器的低 3 bit 置 000。

8.2 增强模式

增强模式下,把主动发起通信的一方称为 PTX(主发端),把接收数据并响应的一方称为 PRX(主收端)。PTX 发 数据后等待应答信号,PRX 接收到有效数据后回应答信号。PTX 规定时间内未收到应答信号,自动重新发送数据。自动重传和自动应答功能为XL2400P 芯片自带,无需MCU 参与。

PTX 在发送数据后自动转到接收模式等待应答信号。如果没有在规定时间内收到正确的应答信号,PTX 将重发相同的数据包,直到收到应答信号,或传输次数超过 ARC 的值(SETUP_RETR 寄存器)产生 MAX_RT中断。PTX 收到应答信号,即认为数据已经发送成功(PRX 收到有效数据),清除 TX FIFO 中的数据并产生 TX_DS 中断(TX FIFO 和 RX FIFO 需要清空,中断需要清除)。

PRX 每次收到一包有效数据都会回 ACK 应答信号,该数据如果为新数据(PID 值与上一包数据不同)保存到 RX FIF0,否则就丢弃。

增强模式,需要保证PTX的TX地址(TX_ADDR)、通道0的RX地址(如RX_ADDR_P0),以及PRX的RX地址(如RX_ADDR_P5)三者相同。例:在图 5中,PTX5对应PRX的数据通道 5,地址设置如下:

PTX5: TX ADDR=0xC2C3C4C5C1

PTX5: RX ADDR P0=0xC2C3C4C5C1

RX: RX_ADDR_P5=0xC2C3C4C5C1

增强模式有如下特征:

- 减少 MCU 的控制, 简化软件操作;
- 抗干扰能力强,减少无线传输中因瞬间同频干扰造成的丢包,更易开发跳频算法;
- 重传过程中,减少MCU 通过 SPI 接口的每次写入待发送数据的操作时间。

8.3 增强发送模式

- 1、CE 置 0, CONFIG 寄存器的PRIM RX 位先置 0。
- 2、当发送数据时,发送地址(TX ADDR) 和有效数据(TX PLD)通过 SPI 接口按字节写入地址寄存器

 咨询电话: 0755-32866130
 12 / 33

和 TX FIFO。CSN 引脚为低时,数据写入,CSN 引脚再次为高,数据完成写入。

- 3、CE 从 0 置 1, 启动发射(CE 至少持续置 1 在 30us 以上, 该操作生效)。
- 4、自动应答模式下(SETUP_RETR 寄存器置不为 0, ENAA_P0=1), PTX 发送完数据后立即自动将通道 0 切换到接收模式等待应答信号。如果在有效应答时间范围内收到 ACK 应答信号,则认为数据发送成功,状态寄存器的 TX_DS 位置 1 并自动清除 TX FIFO 中的数据。如果在设定时间范围内没有接收到应答信号,则自动重传数据。
- 5、如果自动传输计数器(ARC_CNT)溢 (超过了设定值),则状态寄存器的 MAX_RT 位置 1,不清除 TX FIFO 中的数据。当 MAX_RT 或 TX_DS 为 1 时,IRQ 引脚产生低电平中断(需要使能相应中断)。中断可以通过写状态寄存器来复位。
- 6、数据包丢失计数器(PLOS_CNT)在每次产生 MAX_RT 中断后加一。自动传输计数器 ARC_CNT 统计重发数据包的次数;数据包丢失计数器 PLOS_CNT 统计在达到最大允许传输次数时仍没有发送成功的数据包个数。
 - 7、产生 MAX RT 或TX DS 中断后,系统进入待机模式。

8.4 增强接收模式

- 1、CE 置 0,CONFIG 寄存器的 PRIM_RX 位先置 1。准备接收数据的通道必须被使能(EN_RXADDR 寄存器),所有工作在增强型通信模式下的数据通道的自动应答功能是由 EN_AA 寄存器来使能的,有效数据宽度是由 RX PW PX 寄存器来设置的。
 - 2、接收模式由设置CE 为1 启动。
 - 3、预设的等待时间后, PRX 开始检测无线信号。
- 4、接收到有效的数据包后,数据存储在 RX_FIFO 中,同时 RX_DR 位置 1,产生中断。状态寄存器中 RX P NO 位显示数据是由哪个通道接收到的。
 - 5、自动収送ACK 应答信号。
 - 6、如果CE 保持为 1,继续迚入接收模式;如果CE 置为 0,则进入待机模式-III;
 - 7、MCU 以合适的速率通过 SPI 口将数据读。

8.5 增强模式下的数据包识别

咨询电话:0755-32866130 **13 / 33**

PID 生成和检测

每一包数据都包括两位的 PID (数据包标志位),来帮助接收端识别该数据是新数据包还是重发的数据包,防止多次存入相同的数据包,PID 的生成和检测如图所示。发送端从 MCU 取得一包新数据后 PID 值加一。

8.6 增强模式下的接收端一对多通信

XL2400P 芯片作为发射端,对于一对多通信,可以采用不同的地址不多个接收端进行通信。 XL2400P 芯片作为接收端,可以接收 6 路不同地址、相同频率的发送端数据。每个数据通道拥有自己的地址

使能哪些数据通道是通过寄存器 EN_RXADDR 来设置的。每个数据通道的地址是通过寄存器 RX_ADDR_PX 来配置的。通常情况下丌允许丌同的数据通道设置完全相同的地址。如下表给了一例多接收通道地址配置的示例。

	Byte 4	Byte 3	Byte 2	Byte 1	Byte O
Data pipe 0(RX_ADDR_P0)	0xF1	0xD2	0xE6	0xA2	0x33
Data pipe 1(RX_ADDR_P1)	0xD3	0xD3	0xD3	0xD3	0xD3
	1		1	↓	
Data pipe 2(RX_ADDR_P2)	0xD3	0xD3	0xD3	0xD3	0xD4
	1	1	↓ ·	↓	
Data pipe 3(RX_ADDR_P3)	0xD3	0xD3	0xD3	0xD3	0xD5
	1	↓	↓ ·	↓	
Data pipe 4(RX_ADDR_P4)	0xD3	0xD3	0xD3	0xD3	0xD6
	1		↓	1	
Data pipe 5(RX_ADDR_P5)	0xD3	0xD3	0xD3	0xD3	0xD7

从表中可以看 数据通道 0 的 5byte 总共 40 位的地址都是可配的;数据通道 1^{\sim} 5 的地址配置为 32 位共用地址(不数据通道 1 共用)+8 位各自的地址(最低字节)。

XL2400P 芯片在接收模式下可以不最多 6 路不同通道通信,如图所示。每一个数据通道使用不同的地址,共用相同的频道。所有的发射端和接收端设置为增强模式。

PRX 在接收到有效数据后记录 PTX 的 TX 地址,并以此地址为目标地址发送应答信号。PTX 数据通道 0 被用做接收应答信号时,数据通道 0 的 RX 地址要与 TX 地址相等以确保接收到正确的应答信号。下图给了 PTX 和 PRX 地址如何配置的例子。

咨询电话:0755-32866130 **14 / 33**

XL2400P 包含发 TX_FIFO, RX_FIFO。通过 SPI 命令可读写 FIFO。在发送模式下通过 W_TX_PAYLOAD 和 W_TX_PAYLOAD_NO_ACK 指令来写 TX_FIFO。如果产生 MAX_RT 中断,在 TX_FIFO 中的数据不会被清除。在接收模式下通过 R_RX_PAYLOAD 指令读取 RX_FIFO 中的 payload,R_RX_PL_WID 指令读取 payload 的长度。FIFO STATUS 寄存器指示 FIFO 的状态。

咨询电话: 0755-32866130 **15 / 33**

8.7 中断引脚

对于 SOP8 封装,中断状态靠查询 STATUS 寄存器方式来获取。

对于非 SOP8 封装,XL2400P 芯片的中断引脚(IRQ)为低电平触发,IRQ 引脚初始状态为高电平,当状态寄存器中 TX_DS、RX_DR 或 MAX_RT 为 1,以及相应的中断上报使能位为 0 时,IRQ 引脚的中断触发。MCU 给相应中断源写'1'时,清除中断。IRQ 引脚的中断触发可以被屏蔽或者使能,通过设置中断上报使能位为 1,禁止 IRQ 引脚的中断触发。

9 SPI 控制接口

如有读的命令操作(包括 R_REGISTER、R_RX_PAYLOAD、R_RX_PL_WID 三条命令),DATA 引脚先为输入状态,在 SCK 信号的第八个时钟下降沿自动切换为输 状态,并且在后续时钟上升沿输 信号;要求 MCU 的对应 DATA 引脚的 GPIO,在 SCK 信号的第八个时钟上升沿的保持时间后,从输 状态转为输入状态。

需要 CE_SEL 设为 1, 启动命令方式控制; CE_L_sel 设为 1, 将 CE 的 GPIO 弱下拉电阻使能; 使用 CE FSPI ON/CE FSPI OFF 命令方式控制 CE 状态。

中断状态靠查询 STATUS 寄存器方式来获取。

在发送过程中,采用先在 STB1 或 STB3 状态下修改必要的寄存器,并写入 PAYLOAD; CE high 30us 后 CE low,使得进入发射模式,等待发送完成后(约 1ms)再进行 SPI 读写操作。如在发送过程中,进行 SPI 读写操作会引起电源纹波,影响发射信号的质量。

10 控制寄存器

可以通过 SPI 读写操作表中的寄存器,来配置和控制 XL2400P。

Addres (hex)	Name	Bit	Reset value	Туре	Description
00	CFG_TOP				Top-level configuration
	EN_PM	19	0	R/W	pmu enable:1 work 0 powerdown

咨询电话:0755-32866130 **16 / 33**

XL2400P 使用说明 v1.0

		~''' J		XL2400P 使用说明 v1.0
				Hardware RC Calibration
HW_RC_CL_EN	18	0	R/W	0: disable Hardware RC Calibration
				1: enable Hardware RC Calibration
				Adjust frequency on ack
AJ_FREQ_ACK	17	1	R/W	0: disable adjust frequency on ack
				1: enable adjust frequency on ack
				CE PAD Pull-Down Enable
CE PD	16	1	R/W	1: Pull–Down Enable
_				0: Pull–Down Disable
				Hardware/Software CE selection
CE_SEL	15	0	R/W	0: Hardware CE
_				1: Software CE
CE SOFT	14	0	R/W	Software CE
		<u> </u>		TX IQ output option;
DAC_COMP_OUT	13	0	R/W	1: TX output IQ using complement form
	10	Ŭ	10, "	0: TX output IQ using true form
				Whiten option;
WHITEN OPT	12	0	R/W	1: PN9 (CC2500)
WINIEN_OIT	12	O	10/ 11	0: 34B (ssv7241)
				Address Send option;
				1: MSB(msb)>MSB(lsb), .,LSB(msb)-
ADDR_TX_OPT	11	0	R/W	>LSB(lsb)
NDDR_IX_OI I	11		IC/ W	0: LSB(msb)>LSB(lsb), .,MSB(msb)-
				->MSB(lsb)
				IF Frequency select;
IF_2M_SEL	10	0	R/W	1: 2MHz IF
II _ZWI_SEE	10	0	10/ 11	0: 1MHz IF
				Bypass reset during idle state;
				1: during idle state, just close clock and
BPS_IDLE_RST	9	1	R/W	don't assert reset;
DI S_IDEE_RS1		1	10/ 11	0: during idle state, both close clock and
				assert reset
				Bypass clock gate function;
BPS_GATED_CLK	8	0	R/W	1: during idle state, don't close clock
DI 5_ONTED_CER		O	10/ 11	0: during idle state, close clock
				LoopBack Enable;
LOOPBACK_EN	7	0	R/W	1: Tx output loopback into ADC input;
LOOI BACK_EN	'	O	IX/ W	0. normal mode
				Mask interrupt caused by RX_DR;
MASK_RX_DR	6	0	R/W	0: interrupt not reflected on IRQ pin; 1:
				reflect RX_DR as active low
				interrupt on IRQ pin
MACK TV DC	_	0	D /m	Mask interrupt caused by TX_DS;
MASK_TX_DS	5	0	R/W	0: interrupt not reflected on IRQ pin;

咨询电话:0755-32866130 17 / 33

XL2400P 使用说明 v1.0

	15K-3111 B.O.		~ ''''		XL2400P 使用说明 v1.0
					1: reflect TX_DS as active lowinterrupt on
					IRQ pin
					Mask interrupt caused by MAX_RT;
	MACK MAY DT	4	0	D/W	0: interrupt not reflected on IRQ pin;
	MASK_MAX_RT	4	0	R/W	1: reflect MAX_RT as active low interrupt
					on IRQ pin
	EN CDC	3	1	R/W	Enable CRC. Forced high if any of
	EN_CRC	J	1	IX/ W	the bits in EN_AA is high
	CRCC	2	0	R/W	CRC scheme
	CRCC		0	IX/ W	0: 1 byte, 1: 2 bytes
	PWR_ON	1	0	R/W	1: power-up, 0, power-down
	RX_ON	0	0	R/W	1: PRX, 0: PTX
01	EN_AA				Auto-acknowledgement settings
	Reserved	7:6	0	R/W	Unused
	ENAA_P5	5	1	R/W	Enable AA on data pipe 5
	ENAA_P4	4	1	R/W	Enable AA on data pipe 4
	ENAA_P3	3	1	R/W	Enable AA on data pipe 3
	ENAA_P2	2	1	R/W	Enable AA on data pipe 2
	ENAA_P1	1	1	R/W	Enable AA on data pipe 1
	ENAA_PO	0	1	R/W	Enable AA on data pipe 0
02	EN_RXADDR				Enable RX addresses
	Reserved	7:6	0	R/W	Unused
	ENRX_P5	5	0	R/W	Enable data pipe 5
	ENRX_P4	4	0	R/W	Enable data pipe 4
	ENRX_P3	3	0	R/W	Enable data pipe 3
	ENRX_P2	2	0	R/W	Enable data pipe 2
	ENRX_P1	1	1	R/W	Enable data pipe 1
	ENRX_PO	0	1	R/W	Enable data pipe 0
03	SETUP_AW				Address width & timing stup
					PLL Locking Time;
					0: 20us;
	PLLON_LOCK_TIME	7:4	A	R/W	1: 27.5us;
					F: 132.5us
					Address width for PTX;
	TV AW	3:2	1.1	R/W	1: 3Byte;
	TX_AW	3.2	11	K/W	2: 4Byte;
					other: 5Byte
					Address width for PRX;
	DIDEV AW	1,0	1 1	D /W	1: 3Byte;
	PIPEX_AW	1:0	11	R/W	2: 4Byte;
					other: 5Byte
04	SETUP_RETR				Automatic retransmission setup

咨询电话:0755-32866130 18 / 33

XL2400P 使用说明 v1.0

	4 · 1 · 4 · 1 · C		~ '''	~—	XL2400P 使用说明 v1.0
					GPIO Configuration
					0x0: Input
	GPIO_CONFIG	29:28	0x0	R/W	0x1: Output tx_mod_bit
					0x2: Output rx_dem_bit
					0x3: Output '0'
	GPIO_I_INV	27	0x0	R/W	GPIO input invert phase
	RXDE M OD_BYPASS	26	0x0	R/W	Rx Demodulate function bypass enable
	TXFRAME_BYPASS	24	0x0	R/W	Tx Frame function bypass enable
	DIAG_TEST_OE	24	0x0	R/W	Test Mux Output enable
	DIAG_SEL	23:16	0x0	R/W	Test Mux config.
	TV TIMES DELAY	15.10	0.0	D/W	Delay between PLL openloop timing
	TX_TIME3_DELAY	15:12	0x0	R/W	and Send Data. Unit is 10us
	THE THEO DELAY	11.0	0.0	D /W	Delay between PLL lock timing and PLL
	TX_TIME2_DELAY	11:8	0x0	R/W	openloop timing. Unit is 25us
					Automatic retransmission delay
					0000: wait 250uS
	ABD[0.0]	7.4	0011	D /W	0001: wait 500uS
	ARD[3:0]	7:4	0011	R/W	
					1111: wait 4000uS
					Delay defined as "
					Auto retransmit count
					0000: disabled
	ADC[0.0]	0.0	0011	D /W	0001: up to 1 re-transmit on fail of AA
	ARC[3:0]	3:0	0011	R/W	
					1111: up to 15 re-transmits on fail
					of AA
05	RF_CH				of AA RF channel
05	RF_CH RF_PWR	21:16	0x2C	R/W	
05		21:16 15:14	0x2C 0	R/W R/W	RF channel
05	RF_PWR Reserved	15:14	0	R/W	RF channel Set RF output power in TX mode, 010000
05	RF_PWR				RF channel Set RF output power in TX mode, 010000 Unused
05	RF_PWR Reserved	15:14	0	R/W	RF channel Set RF output power in TX mode, 010000 Unused Set frequency channel in 1 MHz
	RF_PWR Reserved RF_CH[6:0]	15:14	0	R/W	RF channel Set RF output power in TX mode, 010000 Unused Set frequency channel in 1 MHz increment, 0x962 is 2402MHz
	RF_PWR Reserved RF_CH[6:0] SETUP_RF TX_PATTERN	15:14 13:0 15:8	0 0x95B 0	R/W R/W	RF channel Set RF output power in TX mode, 010000 Unused Set frequency channel in 1 MHz increment, 0x962 is 2402MHz RF settings
	RF_PWR Reserved RF_CH[6:0] SETUP_RF	15:14 13:0	0 0x95B	R/W R/W	RF channel Set RF output power in TX mode, 010000 Unused Set frequency channel in 1 MHz increment, 0x962 is 2402MHz RF settings Cyclix Pattern
	RF_PWR Reserved RF_CH[6:0] SETUP_RF TX_PATTERN	15:14 13:0 15:8	0 0x95B 0	R/W R/W	RF channel Set RF output power in TX mode, 010000 Unused Set frequency channel in 1 MHz increment, 0x962 is 2402MHz RF settings Cyclix Pattern Enable continuous carrier when set high
	RF_PWR Reserved RF_CH[6:0] SETUP_RF TX_PATTERN EN_CW	15:14 13:0 15:8 7	0 0x95B 0	R/W R/W R/W	RF channel Set RF output power in TX mode, 010000 Unused Set frequency channel in 1 MHz increment, 0x962 is 2402MHz RF settings Cyclix Pattern Enable continuous carrier when set high Confirm during chip verification
	RF_PWR Reserved RF_CH[6:0] SETUP_RF TX_PATTERN EN_CW BER_EN RF_DR_LOW	15:14 13:0 15:8 7 6 5	0 0x95B 0 0 0	R/W R/W R/W R/W R/W	RF channel Set RF output power in TX mode, 010000 Unused Set frequency channel in 1 MHz increment, 0x962 is 2402MHz RF settings Cyclix Pattern Enable continuous carrier when set high Confirm during chip verification Enable PN9 bit stream when set high; See RF_DR_HIGH
	RF_PWR Reserved RF_CH[6:0] SETUP_RF TX_PATTERN EN_CW BER_EN	15:14 13:0 15:8 7 6	0 0x95B 0 0	R/W R/W R/W R/W	RF channel Set RF output power in TX mode, 010000 Unused Set frequency channel in 1 MHz increment, 0x962 is 2402MHz RF settings Cyclix Pattern Enable continuous carrier when set high Confirm during chip verification Enable PN9 bit stream when set high;
	RF_PWR Reserved RF_CH[6:0] SETUP_RF TX_PATTERN EN_CW BER_EN RF_DR_LOW	15:14 13:0 15:8 7 6 5	0 0x95B 0 0 0	R/W R/W R/W R/W R/W	RF channel Set RF output power in TX mode, 010000 Unused Set frequency channel in 1 MHz increment, 0x962 is 2402MHz RF settings Cyclix Pattern Enable continuous carrier when set high Confirm during chip verification Enable PN9 bit stream when set high; See RF_DR_HIGH TX low-power modeConfirm actual
	RF_PWR Reserved RF_CH[6:0] SETUP_RF TX_PATTERN EN_CW BER_EN RF_DR_LOW	15:14 13:0 15:8 7 6 5	0 0x95B 0 0 0	R/W R/W R/W R/W R/W	RF channel Set RF output power in TX mode, 010000 Unused Set frequency channel in 1 MHz increment, 0x962 is 2402MHz RF settings Cyclix Pattern Enable continuous carrier when set high Confirm during chip verification Enable PN9 bit stream when set high; See RF_DR_HIGH TX low-power modeConfirm actual attenuation level
	RF_PWR Reserved RF_CH[6:0] SETUP_RF TX_PATTERN EN_CW BER_EN RF_DR_LOW TX_ATTN	15:14 13:0 15:8 7 6 5	0 0x95B 0 0 0	R/W R/W R/W R/W R/W R/W	RF channel Set RF output power in TX mode, 010000 Unused Set frequency channel in 1 MHz increment, 0x962 is 2402MHz RF settings Cyclix Pattern Enable continuous carrier when set high Confirm during chip verification Enable PN9 bit stream when set high; See RF_DR_HIGH TX low-power modeConfirm actual attenuation level [RF_DR_LOW, RF_DR_HIGH]
	RF_PWR Reserved RF_CH[6:0] SETUP_RF TX_PATTERN EN_CW BER_EN RF_DR_LOW	15:14 13:0 15:8 7 6 5 4	0 0x95B 0 0 0 1	R/W R/W R/W R/W R/W	RF channel Set RF output power in TX mode, 010000 Unused Set frequency channel in 1 MHz increment, 0x962 is 2402MHz RF settings Cyclix Pattern Enable continuous carrier when set high Confirm during chip verification Enable PN9 bit stream when set high; See RF_DR_HIGH TX low-power modeConfirm actual attenuation level [RF_DR_LOW, RF_DR_HIGH] 00: 1Mbps 01: 2Mbps
	RF_PWR Reserved RF_CH[6:0] SETUP_RF TX_PATTERN EN_CW BER_EN RF_DR_LOW TX_ATTN	15:14 13:0 15:8 7 6 5 4	0 0x95B 0 0 0 1	R/W R/W R/W R/W R/W R/W	RF channel Set RF output power in TX mode, 010000 Unused Set frequency channel in 1 MHz increment, 0x962 is 2402MHz RF settings Cyclix Pattern Enable continuous carrier when set high Confirm during chip verification Enable PN9 bit stream when set high; See RF_DR_HIGH TX low-power modeConfirm actual attenuation level [RF_DR_LOW, RF_DR_HIGH] 00: 1Mbps

咨询电话:0755-32866130 19 / 33

XL2400P 使用说明 v1.0

	15K-311 12.0	3.	~'I'IJ!	N	XL2400P 使用说明 v1.0
	CYC_PATT_TXEN	0	0	R/W	Cyclix Pattern Tx Enable
					Status (read-out from SDO pin
07	STATUS				during SPI command word input);
					SDO output may be adjusted
	Reserved	7	0	R/W	Unused
					Data ready RX FIFO interrupt.
	RX_DR	6	0	R/W	Asserted when new data arrives at
					RX FIFO. Write 1 to clear bit
					Data sent TX FIFO interrupt.
					Asserted when packet transmitted.
	TX_DS	5	0	R/W	If auto-ACK is activated, this bit is
					set high only when ACK is
					received. Write 1 to clear bit
					Maximum number of TX retransmit
	MAY DT	4	0	D/W	interrupt. Write 1 to clear bit. If
	MAX_RT	4	0	R/W	MAX_RT is asserted it must be
					cleared to enable further operation
					Data pipe number for the payload
	DV D NO[0.0]	2.1	111	D	available for reading from
	RX_P_NO[2:0]	3:1	111	R	RX_FIFO
					$000^{\sim}101$: data pipe number $(0^{\sim}5)$
	TV EIII I	0	0	R	0: TX FIFO available
	TX_FULL	U	0	K	1: TX FIFO full
08	OBSERVE_TX				Transmission observation
	FREQ OFFSET	31:24	0	R	Frequency offset.
	TREW_OFFSET	31.24	0	K	$Freq_offset(Hz) = 7812.5*FREQ_OFFSET$
	DC_OOFSET_Q	23:16	0	R	DC offset for I path
	DC_OOFSET_I	15:8	0	R	DC offset for Q path
					Count lost packets. Overflow
	PLOS_CNT[3:0]	7:4	0000	R	protected to 15, and stops at
	TEOS_CIVI[5.0]	1.1	0000	IX.	maximum value until reset. Counter
					reset by writing to RF_CH
					Count retransmitted packets.
	ARC_CNT[3:0]	3:0	0000	R	Counter resets when transmission
	V				of a new packet starts
09	RSSI				TSSI and RSSI indicator/control
	RSSIDB_OFFSET	13:8	0	R/W	RSSI(dBm) offst for RSSI calculate
	Reserved	7	0	R/W	Must be 0 for normal operation
	Reserved	6	0	R/W	Must be 0 for normal operation
	Reserved	5	0	R/W	Must be 0 for normal operation
	EN_RSSI	4	0	R/W	Enable RSSI
	Reserved	3	0	R	Reserved register readout
	Reserved	2	0	R	Reserved register readout
	RSS12	1	0	R	RSSI indicator at threshold 2

咨询电话: 0755-32866130 20 / 33

XL2400P 使用说明 v1.0

	· - ·				AL2400P 使用说明 V1.0
OA	RX_ADDR_P0	39:0	0xE7E7E7E7E 7	R/W	RX address data pipe 0. 5 bytes maximum. LSB byte written first. Number of bytes used set by SETUP_AW.
OB	RX_ADDR_P1	39:0	0xC2C2C2C2 C2	R/W	RX address data pipe 1. 5 bytes maximum. LSB byte written first. Number of bytes used set by SETUP_AW.
OC	RX_ADDR_P2T0P5				Only LSB are set, MSB bytes use RX_ADDR_P1[39:8]
	RX_ADDR_P5	31:24	0xc6	R/W	RX address data pipe 5.
	RX_ADDR_P4	23:16	0xc5	R/W	RX address data pipe 4.
	RX_ADDR_P3	15:8	0xc4	R/W	RX address data pipe 3.
	RX_ADDR_P2	7:0	0xc3	R/W	RX address data pipe 2.
OD	BER_RESULT				BER(PN9) test result
	ERR_CNT	63:32	0x00	R/W	Receive error Bit Counter
	RECV_CNT	31:0	0x00	R/W	Receive total Bit Counter
0E	AGC_SETTING				AGC setting
	AGC_THRD_MAX	31:26	OxA	R/W	AGC maxium threshold
	AGC_THRD_MIN	25:20	0x3f	R/W	AGC minium threshold
	AGC_GAIN_DELAY	19:18	0x0	R/W	Wait time after gain change; 0: 0.5us; 1: 1.0us; 2 1.5us; 3: 2.0us
	ADC_RSSI_MEAN	17:16	0x0	R/W	ADC RSSI calculate period; 0: 0.5us; 1: 1.0us; 2 1.5us; 3: 2.0us
	AGC_MANU_SET	10:4	0x7b	R/W	AGC manual setting
	AGC_ADJ_NUM	3:1	0x4	R/W	AGC Gain adjust maxium number
	AGC_MANU_EN	0	0	R/W	AGC manual enable
0F	PGA_SETTING				PGA setting
	AGC_GAIN_5TH	38:32	0x30	R/W	AGC 5th gain set
	AGC_GAIN_4TH	30:24	0x36	R/W	AGC 4th gain set
	AGC_GAIN_3TH	22:16	0x3c	R/W	AGC 3th gain set
	AGC_GAIN_2TH	14:8	0x42	R/W	AGC 2th gain set
	AGC_GAIN_1TH	6:0	0x48	R/W	AGC 1th gain set
10	TX_ADDR	39:0	0xE7E7E7E7E 7	R/W	TX address. Used for PTX only. Set RX_ADDR_P0 equal to this address to handle auto acknowledgement
11	RX_PW_PX				
	Reserved	47:46	0	R	Unused
	RX_P W _P5	45:40	0x20	R/W	Number of bytes in RX payload in data pipe 5 (1 to 32). 0: pipe not used
	Reserved	39:38		R	Unused

咨询电话:0755-32866130 21 / 33

XL2400P 使用说明 v1.0

	****	- 4 50			XL2400P 使用说明 v1.0	
	RX_PW_P4	37:32	0x20	R/W	Number of bytes in RX payload in data pipe 4 (1 to 32). 0: pipe not used	
	Reserved	31:30		R	Unused	
	RX_P W _P3	29:24	0x20	R/W	Number of bytes in RX payload in data pipe 3 (1 to 32). 0: pipe not used	
	Reserved	23:22		R	Unused	
	RX_PW_P2	21:16	0x20	R/W	Number of bytes in RX payload in data pipe 2 (1 to 32). 0: pipe not used	
	Reserved	15:14		R	Unused	
	RX_PW_P1	13:8	0x20	R/W	Number of bytes in RX payload in data pipe 1 (1 to 32). 0: pipe not used	
	Reserved	7:6		R	Unused	
	Reserved	7.0		IX	Number of bytes in RX payload in	
	RX_PW_P0	5:0	0x20	R/W	data pipe 0 (1 to 32). 0: pipe not used	
12	ANALOG CFGO	127:0	01000111_11 111011_1110	R/W	Analog register 0	
13	ANALOG CFG1	127:0	10110000_00 101100_0000 0101_ 10100000_11 110111_0001 1101_ 10011000_01 000000_0000 00000_ 00000_ 000000_0001 00000_0000 00000_0000 00000000	R/W	Analog register 1	

咨询电话:0755-32866130 22 / 33

XL2400P 使用说明 v1.0

11000000 0000000_00 000000_0000 1101_ 10010000_00 00000_0000 00000_	
000000_0000 1101_ 10010000_00 000000_0000	
000000_0000 1101_ 10010000_00 000000_0000	
14 ANALOG CFG2 127:0 01000110_10 101010_0010	
15 ANALOG CFG3 127:0 0011000_000	
17 STATUS_FIFO FIFO status	
Ananlog 3 register bit [7:3]	from
BB_ANA3REG_7T3 19:15 0 R baseband register 1: calibration done	
HW_RC_CL_DONE 14 0 R Hardware RC Calibration d 1: calibration done	one status
AD_RCCAL_FINISH 13 0 R RF status	
TID_ITOTID_TITTION TO THE IN STATUS	

咨询电话:0755-32866130 23 / 33

深圳市芯岭技术有限公司 XL2400P 使用说明 v1.0

	טיכויווראו	- < 3.	~ ' '	XL2400P 使用说明 v1.0	
	PEND_RXFRM_NU	7	0	R	See PEND RXFRM NUM L
	M_H	'	U	K	See FEND_KAFKM_NUM_L
	TX_REUSE	6	0	R	Used for a PTX device Pulse the rfce high for at least 10µs to Reuse last transmitted payload. TX payload reuse is active until W_TX_PAYLOAD or FLUSH TX is executed. TX_REUSE is set by the SPI command REUSE_TX_PL, and is reset by the SPI commands W_TX_PAYLOAD or FLUSH TX *rewrite
	TX_FULL	5	0	R	1: TX FIFO full 0: available slots in TX FIFO
	TX E M PTY	4	1	R	1: TX FIFO empty 0: data in TX FIFO
	_				Total Rx frame number is pending in PRX
	PEND_RXFRM_NU M_L	3:2	0	R	RXFIFO. [PEND_RXFRM_NUM_H,
					PEND_RXFRM_NUM_L]
	RX_FULL	1	0	R	1: RX FIFO full 0: available slots in RX FIFO
	RX_E M PTY	0	1	R	1: RX FIFO empty 0: RX FIFO full
18	RSSIREC				RSSI recorder feature
	Reserved	31:30	0x0	R	Unused
	RSSI_DBM	29:22	0x0	R	RSSI(dBm) Calculate result
	RSS12_VREF_ SEL[2:0]	21:19	000	W	RX RSSI VREF2 setting 000: -59 dBm, +4dB/step 111: out of range
	RSSI1X_VREF_ SEL[2:0]	18:16	000	W	RX RSSI VREF1 setting 000:-69 dBm, +4dB/step
	RSSIREC2 [7:0]	15:8	01110010	R	RSSI2 recorder, MSB is most recent recording, any write command on this register will flush RSSI setting; when RX_ON=0, PWR_ON=0 & CE=0, register will read chip ID
	RSSIREC1 [7:0]	7:0	01000001	R	RSSI1 recorder, MSB is most recent recording, any write command on this register will flush RSSI setting; when RX_ON=0, PWR_ON=0 & CE=0, register will read chip ID

咨询电话:0755-32866130 24 / 33

XL2400P 使用说明 v1.0

		3,	~ ' '		XL2400P 使用说明 v1.0
19	TXPROC_CFG				TX Process configuration
	TXACK_WAIT_TIME	28:25	0x4	R/W	Tx ACK wait time after Rx Payload data for PRX 0: 0us 1: 7.5us 2. 15us F: 112.5us
	MOD2DAC_CLKIN V	24	0x0	R/W	Mod2Dac clock output invert
	MOD2DAC_DLY	23:21	0x0	R/W	Mod2Dac data delay cycle
	KMOD_BPS	20	0x0	R/W	Bypass KMOD coefficence
	KMOD_SET	19:11	0x0	R/W	KMOD coeffience Setting
	GASFLT_BPS	10	0x0	R/W	Bypass Gauss Filter
	GASFLT_BT_SEL	9	0x0	R/W	Gauss Filter BT Select 0: BT=0.5; 1: BT=1.0
	FREQ_DEV	8:0	0xcd	R/W	Tx Deviation Frequecy
1A	RXPROC_CFG				RX Process configuration
	RX_DEM_START_CF G	39	0x1	R/W	0: Disable RX Start Delay 1: Enable RX Start Delay
	RX_DEM_START_DL Y	38:32	0x20	R/W	RX Start Delay counter at 16MHz
	PRE_DC_SET	31:24	0x0	R/W	Freq offset manual set
	MAX_FREQ	23:16	0x43	R/W	Max Freq set for IPLS
	PRE_DC_WIND	15:14	0x1	R/W	Freq offset calculate windows 0: final 2 preamble bit 1: final 4 preamble bit 2: final 6 preamble bit 3: final 8 preamble bit
	SYNC_WIND_CFG	13:8	0x24	R/W	Syncword search windows
	CHAN_FLT_BPS	7	0x0	R/W	Bypass channel filter
	IPLS_BPS	6	0x1	R/W	Bypass IPLS
	PRE_DC_MANU	5	0x0	R/W	Freq offset manual setting enable
	BER_HOLD	4	0x0	R/W	Ber hold
	Reserved	3	0x0	R/W	Unused
	DCFLT_BPS	2	0x0	R/W	Bypass DC offset calculate
	ADC_SMP_PHA	1	0x1	R/W	IF ADC data sample edge select; 1: inv
	RX_IQ_SWAP	0	0x0	R/W	IF ADC data IQ swap
1C	DYNPD				Dynamic payload length
			00	R/W	Unused
	Reserved	7:6	00	IX/ W	Ullused

咨询电话:0755-32866130 25 / 33

XL2400P 使用说明 v1.0

		- \ 5	~ * * -		XL2400P 使用说明 v1.0
					Set 1 to enable dynamic payload
	DPL_P4	4	0	R/W	length data pipe 4 (requires
					EN_DPL & ENAA_P4)
					Set 1 to enable dynamic payload
	DPL_P3	3	0	R/W	length data pipe 3 (requires
					EN_DPL & ENAA_P3)
					Set 1 to enable dynamic payload
	DPL_P2	2	0	R/W	length data pipe 2 (requires
					EN_DPL & ENAA_P2)
					Set 1 to enable dynamic payload
	DPL_P1	1	0	R/W	length data pipe 1 (requires
					EN_DPL & ENAA_P1)
					Set 1 to enable dynamic payload
	DPL_P0	0	0	R/W	length data pipe 0 (requires
					EN_DPL & ENAA_PO)
1D	FEATURE				Features
					Adjust the output of SDO during
					command input
					00: default, SDO output is STATUS
					01: RX readout mode, the SDO
	STAT SETUP	7:6		- (output MAX_RT and TX_FULL bit is
	[1:0]		00	R/W	replaced by RSSI1 and RSSI2
	[1.0]				readout
					10: FIF0 readout mode, SDO
					output is STATUS FIFO
					11: unused, same as 00
	DN LONG DLD			D /W	Set 1 enables long payload feature
	EN_LONG_PLD	5	0	R/W	max length is 128Byte
	EN_FEC	4	1	R/W	Set 1 enable FEC&Interleave feature
	EN_WHITEN	3	1	R/W	Set 1 enable whithen feature
	DIV DDI		_	D /W	Set 1 enables dynamic payload
	EN_DPL	2	1	R/W	length
	EN_ACK_PAY	1	0	R/W	Set 1 enables payload on ACK
					Set 1 enables the
	EN DYN ACK	0	0	R/W	W_TX_PAYLOAD_NOACK
				11,	command
1E	RAMP_CFG				PA Ramp Configuration
	RAMP_14TH	87:82	0x3b	R/W	PA 14th ra m p value
	RAMP_13TH	81:76	0x37	R/W	PA 13th ramp value
	RAMP_12TH	75:70	0x33	R/W	PA 12th ramp value
	RAMP_11TH	69:64	0x2e	R/W	PA 11th ramp value
	RAMP_10TH	63:58	0x2a	R/W	PA 10th ramp value
	RAMP_9TH	57:52	0x26	R/W	PA 9th ramp value
	RAMP_8TH	51:46	0x22	R/W	PA 8th ramp value
	RAMP_7TH	45:40	0x1d	R/W	PA 7th ramp value
<u> </u>		23,10	Onid	/ "	/ VAR A STATE / STATE /

咨询电话:0755-32866130 26 / 33

XL2400P 使用说明 v1.0

RAMP_6TH	39:34	0x19	R/W	PA 6th ramp value
RAMP_5TH	33:28	0x15	R/W	PA 5th ramp value
RAMP_4TH	27:22	0x11	R/W	PA 4th ramp value
RAMP_3TH	21:16	0xc	R/W	PA 3th ramp value
RAMP_2TH	15:10	0x8	R/W	PA 3th ramp value
RAMP_1TH	9:4	0x4	R/W	PA 1th ramp value
				Ramp time;
				0: 7.5us
RAMP_TIME	2:0	0x0	R/W	1: 15us
				···.
				7: 52.5us

11 数据包格式描述

如上图所示, 系统支持 3 种包格式:

- 1. 静态长度包。固定长度包,包长度由收发双方协商确定。
- 2. 动态长度包(短包)格式,支持最大包长度为 32byte,该模式下系统可以最多缓存 4 个包。需使能 FEATURE 寄存器中的 EN_DPL。
- 3. 动态长度包(长包)格式,支持最大包长度为 128byte。使用长包模式需要使能 FEATURE 寄存器中的 EN DPL 和 EN LONG PLD,且该模式下系统只能缓存 1 个包

注: BLE 广播包配置会有点区别,我们会提供驱动软件包。

咨询电话: 0755-32866130 **27 / 33**

12 典型应用电路(参考)

*注1: 芯片的 NC 引脚可以悬空;

*注2: 外围元器件备注;

物料编号	备注
C3	10nF
C4	1uF
C2	推荐 2.2pF,可选择范围在 1.5~3pF
Y1	16MHz & C _L =12pF 10ppm

*注3: 过安规无需额外的匹配和滤波;

*注 4: VDD 供电电压严格控制在 3.6V 以下;

咨询电话: 0755-32866130 **28 / 33**

13 印制天线设计(参考)

13.1 印制板天线layout 设计

2.4G 的印制版天线主要有两种结构,PIFA 天线和单级天线。PIFA 天线的天线馈电点和地点是连接到一起的,天线和地之间形成一个电容效应,就是信号通过天线(等效为电感)升压到等效电容上,通过电容再把能量辐射 去。单级天线是采用 1/4 波长原理,其中一个馈点是螺旋或者单杆,另外一极是地。两种天线的场结构简单,可以简单等效为一个 LC 谐振回路,其中 C 特别小,一个一个的谐振回路耦合上去,最后电磁场释放到外部。

PIFA 天线的电容相对于单级天线来说大很多,也就是说能量在谐振腔中更多,外界不容易干扰,也很难改变 PIFA 天线的阻抗,所以稳定性比单级天线强;但也因为他的电容太大,导致外界的相同的能量进入,在 PIFA 天线上产生的电压变化,远远不如单级天线打。所以效率和灵敏度低于单级天线。

13.2 Dongle 端的PIFA 天线设计

Nano Dongle 天线采用超小型的 PIFA 天线,由于 PCB 面积受限,该天线的增益会比其他天线小,对通信距离会有影响,一般通信距离可以达到 15-20 米左右。天线具体尺寸如下图所示。 天线的增益最大增益为-0.5dB。

咨询电话:0755-32866130 **29 / 33**

13.3 遥控器控制板的中尺寸 PIFA 天线设计

遥控器控制板的中尺寸PIFA 天线尺寸下图所示,天线的最大增益为 0.9dB。

咨询电话: 0755-32866130 **30 / 33**

13.4 无线鼠标板及遥控器的单极天线设计

无线鼠标板的单极天线,增益较大,走线灵活,在有足够的 PCB 空间的情况下可以使用。在设计天线位置时,天线放置在无线鼠标板的前部或者左前部,减少右手握住鼠标的情况下手对辐射功率的吸收和衰减,该天线也可以应用到遥控器上;并且根据产品外形可以稍微更改天线的走线形状。参考尺寸如下图所示,天线的最大增益为 3.7dB。

14 芯片封装信息

本芯片采用 SOP8 封装方式, 具体封装尺寸信息如下: SOP-8 封装尺寸如下:

咨询电话: 0755-32866130 **31 / 33**

SYMBOL	MIN	NOM	MAX
A	1.35	1.55	1.75
A1	0.10	0.15	0.25
A2	1.25	1.40	1.65
A3	0.50	0.60	0.70
b	0.38	-	0.51
b1	0.37	0.42	0.47
С	0.17		0.25
c1	0.17	0.20	0.23
D	4.80	4.90	5.00
Е	5.80	6.00	6.20
E1	3.80	3.90	4.00
е	1.27BSC		
L	0.45	0.60	0.80
L1	1.04REF		
L2	0.25BSC		
R	0.07	-	
R1	0.07	-	-
h	0.30	0.40	0.50
θ	0°	-	8°
θ 1	15°	17°	19°
θ 2	11'	13°	15°
θ 3	15°	17°	19°
θ 4	11'	13°	15°

15 注意事项

- ▶ 接地:金属底板采用尽量多的通孔接地,减小寄生电感。
- ▶ 电源旁路: 为了器件能很好工作,电源引线处建议用 0.1 µF 电容滤波,电容需靠近器件。
- ▶ 防静电损伤:器件为静电敏感器件,传输、装配、测试过程中应采取充分的防静电措施。
- ▶ 用户在使用前应进行外观检查,电路底部、侧面、四周光亮方可进行焊接。如 现氧化可采用去氧化 手段对电路进行处理,处理完成电路必须在 4 小时内完成焊接。
- ▶ 包装袋被打开后,元器件将被回流焊制程或其他的高温制程所采用时必须符合:
 - a) 在 12 小时内且工厂环境为温度<30℃,湿度≤60%RH 完成;
 - b) 使用前需进行去湿处理(建议 125℃, 4 小时烘烤)。
- ▶ 生产贴片的最高炉温为 245℃。
- ▶ 产品说明书以发布日期为准,适时修改不另行说明。

咨询电话: 0755-32866130 **32 / 33**

16 防护注意事项

- 产品必须进行密封真空包装,并建议放置在干燥柜中储存,在温度小于 30℃且湿度小于 60%时,可达 12 个月。
- ▶ 打开包装后,如未使用完,则剩余产品需进行抽真空并放置在干燥柜中保管。超期产品使用前必须进行去湿和去氧化处理。

咨询电话:0755-32866130 **33 / 33**