Rappel de la dernière fois

 On avait discuté sur l'emplacement réel de l'insertion d'un sommet dans l'ensemble P

```
Algorithm 3 ReduceBranches(G, D, U, D^*), algorithm to
identify a branching set B
Input: A graph G=(V,E), a partial solution D, the set of un-
dominated vertices U and the best solution D^* found so far
Output: A branching set B
 1: Let P=\emptyset, C=\mathbb{S}_1 \cup \mathbb{S}_2, U=\mathbb{S}_1 \cup \mathbb{S}_3 = \{u_1, u_2, \dots, u_{|U|}\};
 2: Let \Pi = \{S_1, S_2, \dots, S_k\} be the set of k ISs of G[P]^2,
    each S_i is initialized to \emptyset at the beginning;
 3: for i = |U| to 1 do
      Let totalScore = 0:
       for each nonempty IS S_i \in \Pi do
          totalScore \leftarrow totalScore + \delta(S_i, u_i);
       end for
       if totalScore \geq 0 then
         P \leftarrow P \cup \{u_i\};
          for each nonempty S_i \in \Pi do
10:
             if \delta(S_i, u_i) > 0 then
11:
                insert u_i into S_i;
13:
             end if
             if \delta(S_i, u_i) < 0 then
14:
15:
                remove |N(u_i) \cap S_i|-1 conf. vertices from S_i
16:
             end if
17:
          end for
          if u_i hasn't been inserted into any nonempty IS then
18:
19:
             insert u_i into the first empty IS S_i;
          end if
20:
21:
       end if
22: end for
23: Let lb = \max\{|S_i| \mid S_i \in \Pi\};
24: if lb < |D^*| - |D| then return C;
```

Comment les IS sont remplis?

```
3: for i = |U| to 1 do

4: Let totalScore = 0;

5: for each nonempty IS S_j \in \Pi do

6: totalScore \leftarrow totalScore + \delta(S_j, u_i);

7: end for

8: if totalScore \geq 0 then

9: P \leftarrow P \cup \{u_i\};

0: for each nonempty S_j \in \Pi do

1: if \delta(S_j, u_i) > 0 then

2: insert u_i into S_j;
```

sommets de U, à savoir les sommets de S1 U S2.

Dans un premier temps, les seuls sommets pouvant intégrer un IS sont des

Condition d'insertion dans l'IS

Comme on travaille pour le moment avec les sommets de U (S1 U S2), seules les lignes encadrées nous intéressent.

(S1 = non branché non dominé)

$$\delta(S_j, u) = \begin{cases} 1 & u \in \mathbb{S}_1 \wedge N_1 = \emptyset \wedge N_2 = \emptyset \\ 0 & u \in \mathbb{S}_1 \wedge N_1 = \emptyset \wedge N_2 \neq \emptyset \\ 1 - |N_1| & u \in \mathbb{S}_1 \cup \mathbb{S}_2 \wedge N_1 \neq \emptyset \\ 0 & u \in \mathbb{S}_2 \wedge N_1 = \emptyset \end{cases}$$
$$0 & u \in \mathbb{S}_3 \wedge N_2 \neq \emptyset$$
$$1 & u \in \mathbb{S}_3 \wedge N_2 = \emptyset$$

$$N_1 = N_G(u) \cap S_j$$

$$N_2 = N_G[u] \cap N_G[S_j] \cap P \cap C$$

N1 est vide si le sommet que l'on insère dans IS n'a pas de voisin dans celui-ci

N2 est vide si u et l'IS dans lequel on veut l'insérer n'ont pas de voisins en commun, qui soit dans P et dans C

Conclusion

La réduction des branches commence à se faire quand on a déjà branché beaucoup de sommets donc vers la fin des branches...

Tentative d'amélioration en cours :

Actuellement

On part d'un graphe G', graphe réduit de G par les règles d'Alber et on applique l'algorithme de branch & bound et de réduction de branche de Hua jusqu'à son terme

Prochainement

Même chose, sauf qu'à chaque fois qu'on branche sur un élément, on réapplique les règles d'Alber pour réduire le graphe à nouveau et avoir un plus petit graphe -> donc moins de branche

Passer du problème de MDS au problème de pcentre

Première approche : Dichotomique

```
Algorithm 1 MDS to solving prenter problem
Require: pcentre; instance; borneInf \leftarrow Plus petite valeur de la matrice de distance
    borneSup \leftarrow Plus grande valeur de la matrice de distance
 1: while borneInf \neq borneSup do
       element \leftarrow (borneSup + borneInf)/2
       if Card(EMOS(G, element)) \leq pcentre then
          borneInf \leftarrow element
       else
 5:
          borneSup \leftarrow element + 1
       end if
 8: end while
 9: return borneInf
```

Distance	1	2	3	4	5	6	7	8	9	10
Taille MDS	9	8	7	7	6	5	4	4	3	2

On cherche la plus petite distance qui donne une taille de MDS = 4 (nombre de centre)

borneinf=1; bornesup=10; pcentre = 4

element = (1+10)/2 = 5

6>4 donc on travaille sur la partie droite de l'indice 5

Distance	1	2	3	4	5	6	7	8	9	10
Taille MDS	9	8	7	7	6	5	4	4	3	2

borneinf=6; bornesup=10; pcentre = 4

element = (6+10)/2 = 8

4=4 donc on travaille sur la partie gauche de l'indice 8, avec 8 inclus.

Distance	1	2	3	4	5	6	7	8	9	10
Taille MDS	9	8	7	7	6	5	4	4	3	2

borneinf=6; bornesup=8; pcentre = 4

element = (6+8)/2 = 7

4=4 donc on travaille sur la partie gauche de l'indice 7, avec 7 inclus.

Distance	1	2	3	4	5	6	7	8	9	10
Taille MDS	9	8	7	7	6	5	4	4	3	2

borneinf=6; bornesup=7; pcentre = 4

element = (6+7)/2 = 6

5>4 donc on travaille sur la partie droite de l'indice 6

Distance	1	2	3	4	5	6	7	8	9	10
Taille MDS	9	8	7	7	6	5	4	4	3	2

borneinf=7; bornesup=7; pcentre = 4

borneinf=bornesup

On a notre plus petite distance qui donne une taille de MDS de 4.