Radio Jornal Vendas

```
# Projeto de Previsão de faturamento de Vendas
# Carregamento dos Dados
import pandas as pd
tabela = pd.read_csv('/content/advertising.csv')
display(tabela)
```

	TV	Radio	Jornal	Vendas	
0	230.1	37.8	69.2	22.1	
1	44.5	39.3	45.1	10.4	
2	17.2	45.9	69.3	12.0	
3	151.5	41.3	58.5	16.5	
4	180.8	10.8	58.4	17.9	

195	38.2	3.7	13.8	7.6	
196	94.2	4.9	8.1	14.0	
197	177.0	9.3	6.4	14.8	
198	283.6	4 Disc	co: 24.39 (GB/107.72	GB
199	232.1	0.70	0.7	10.4	

200 rows × 4 columns

#Ajuste de Dados print(tabela.info)

< bour	nd method	d DataFra	ame.info	of	TV
0	230.1	37.8	69.2	22.1	
1	44.5	39.3	45.1	10.4	
2	17.2	45.9	69.3	12.0	
3	151.5	41.3	58.5	16.5	
4	180.8	10.8	58.4	17.9	
195	38.2	3.7	13.8	7.6	
196	94.2	4.9	8.1	14.0	
197	177.0	9.3	6.4	14.8	
198	283.6	42.0	66.2	25.5	
199	232.1	8.6	8.7	18.4	

[200 rows x + 4 = columns]>

#analise exploratoria #veificando correlação

tabela.corr()

	TV	Radio	Jornal	Vendas
TV	1.000000	0.054809	0.056648	0.901208
Radio	0.054809	1.000000	0.354104	0.349631
Jornal	0.056648	0.354104	1.000000	0.157960
Vendas	0.901208	0.349631	0.157960	1.000000

Radio	0.054809	1.000000	0.354104	0.349631
Jornal	0.056648	0.354104	1.000000	0.157960
	0 00 4000	0.010001	0.455000	

#corelação mais roximo de 1 melhor priorizando vendas

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

tabela = pd.read_csv('/content/advertising.csv')

sns.heatmap(tabela.corr(), annot=True, cmap="YlGnBu")
plt.show()
```



```
# criando inteligencia Artificial
#y=quem voce quer prever
y = tabela["Vendas"]
#x= quem vou usar pra prever os valores
x = tabela[["TV", "Radio", "Jornal"]]
#preparando teste e treino
from sklearn.model selection import train test split
x_treino, x_teste, y_treino, y_teste = train_test_split(x, y, test_size=0.30)
# modelo de intelegencia artificial
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score
import matplotlib.pyplot as plt
import seaborn as sns
#criando os modelos de regressão
modelo regressao linear = LinearRegression()
modelo_arvore_decisao = RandomForestRegressor()
#treinando os modelos (regraão linear e arvore de decisão)
modelo_regressao_linear.fit(x_treino, y_treino)
modelo_arvore_decisao.fit(x_treino, y_treino)
                      de 100 e melhor
#calculando R<sup>2</sup> melh
previsao_regressao_ Disco: 24.39 GB/107.72 GB ao_linear.predict(x_teste)
previsao_arvore_decisao = modelo arvore decisao.predict(x_teste)
#mostrando resultado
print(r2_score(y_teste, previsao_regressao_linear))
print(r2_score(y_teste, previsao_arvore_decisao))
     0.9116540796512819
     0.9561408066461553
# Vizualizando grafico de resultados
tabela_auxiliar = pd.DataFrame()
tabela_auxiliar['y_teste'] = y_teste
tabela_auxiliar["previsao regressâo linear"] = previsao_regressao_linear
tabela_auxiliar["previsao arvore decisão"] = previsao_arvore_decisao
plt.figure(figsize=(12, 5))
sns.lineplot(data=tabela auxiliar)
plt.show()
```


Disco: 24.39 GB/107.72 GB