CORRIGÉ DU CONTRÔLE CONTINU 2 DU 28 NOVEMBRE 2022, 15H15-16H15

Exercice 1.

- 1. Comme 13 est un nombre premier, $\mathbb{Z}/13\mathbb{Z}$ est un corps, c'est-à-dire que tous ses éléments sont inversibles sauf $\overline{0}$. Par conséquent $(\mathbb{Z}/13\mathbb{Z})^* = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}, \overline{8}, \overline{9}, \overline{10}, \overline{11}, \overline{12}\}.$
- 2. $\overline{1}^{-1} = \overline{1}$, 2*7 = 14 = 13 + 1 donc $\overline{2}^{-1} = \overline{7}$ (d'où $\overline{7}^{-1} = \overline{2}$), 3*9 = 27 = 2*13 + 1 donc $\overline{3}^{-1} = \overline{9}$ (d'où $\overline{9}^{-1} = \overline{3}$), 4*10 = 40 = 3*13 + 1 donc $\overline{4}^{-1} = \overline{10}$ (d'où $\overline{10}^{-1} = \overline{4}$), 5*8 = 40 donc $\overline{5}^{-1} = \overline{8}$ (d'où $\overline{8}^{-1} = \overline{5}$), 6*11 = 66 = 5*13 + 1 donc $\overline{6}^{-1} = \overline{11}$ (d'où $\overline{11}^{-1} = \overline{6}$). Enfin, $\overline{12}^{-1} = \overline{-1}^{-1} = \overline{-1} = \overline{12}$, comme toujours pour $\overline{n-1}$ dans $(\mathbb{Z}/n\mathbb{Z})^*$.
- 3. $12!+1=2*3*4*5*6*7*8*9*10*11*12+1=(2*7)*(3*9)*(4*10)*(5*8)*(6*11)*12+1 \equiv 12+1 \equiv 0$ [13]. On a utilisé les inverses calculés à la question précédente pour simplifier les produits.
- 4. Comme 13 est premier et pgcd(2,13)=1, on a $2^{12}\equiv 1$ [13] par le petit théorème de Fermat. Par conséquent $2^{37}\equiv (2^{12})^3*2\equiv 2$ [13].

5.
$$\sum_{i=1}^{52} i = \frac{52*53}{2} = 26*53 \equiv 0$$
 [53].

(Solution alternative si on ne connaît pas la formule $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$:

$$\sum_{i=1}^{52} i = 1 + 2 + \dots + 52 = (1+52) + (2+51) + \dots + (26+27) \equiv 0 \ [53].$$

6.
$$\sum_{i=0}^{51} 1^i = \sum_{i=0}^{51} 1 = 52 \equiv 52 [53].$$
$$\sum_{i=0}^{51} 52^i \equiv \sum_{i=0}^{51} (-1)^i \equiv 1 - 1 + \dots + 1 - 1 \equiv 0 [53].$$

7.
$$\sum_{i=0}^{51} 2^i = \frac{2^{52}-1}{2-1} \equiv 1 - 1 \equiv 0$$
 [53].

On a utilisé le fait que, comme 53 est premier et pgcd(2,53) = 1, alors $2^{52} \equiv 1$ [53] par le petit théorème de Fermat.

(Solution alternative si on ne connaît pas la formule $\sum_{i=0}^{n} a^{i} = \frac{a^{n+1}-1}{a-1}$:

Avant de calculer, on détermine l'ordre de $\overline{2}$ dans $(\mathbb{Z}/53\mathbb{Z})^*$. On sait que l'ordre de tout élément de $(\mathbb{Z}/53\mathbb{Z})^*$ doit diviser $|(\mathbb{Z}/53\mathbb{Z})^*| = 52$ et est donc égal à 1, 2, 4, 13, 26 ou 52

doit diviser $|(\mathbb{Z}/53\mathbb{Z})^*| = 52$, et est donc égal à 1, 2, 4, 13, 26 ou 52. $2^1 \not\equiv 1$ [53], $2^2 = 4 \not\equiv 1$ [53], $2^4 = 16 \not\equiv 1$ [53], $2^{13} = 2^8 * 2^4 * 2 \equiv (-9) * 16 * 2 \equiv (-144) * 2 \equiv 15 * 2 \equiv 30 \not\equiv 1$ [53], $2^{26} \equiv 30^2 \equiv 900 \equiv -1 \not\equiv 1$ [53]. Ainsi $\overline{2}$ est nécessairement d'ordre 52.

Comme $52 = |(\mathbb{Z}/53\mathbb{Z})^*|$, cela signifie que $\overline{2}$ est générateur du groupe $(\mathbb{Z}/53\mathbb{Z})^*$, c'est-à-dire que tout $\overline{a} \in (\mathbb{Z}/53\mathbb{Z})^*$ s'écrit sous la forme $\overline{a} = \overline{2}^i$. Dans la somme $\sum_{i=1}^{51} \overline{2}^i$, chaque élément de $(\mathbb{Z}/53\mathbb{Z})^*$ apparaît

donc une et une seule fois. Ainsi $\sum_{i=0}^{51} 2^i \equiv 1+2+\cdots+52 \equiv \sum_{i=1}^{52} i \equiv 0$ [53] d'après la question 5.)

Exercice 2.

- 1. $\mathbb{Z}/N\mathbb{Z}$ est un corps si et seulement si N est premier. Par conséquent, c'est un corps pour N=2 et N=13, mais ce n'en est pas un pour N=9 et N=42. Dans $\mathbb{Z}/9\mathbb{Z}, \, \overline{3}*\overline{3}=\overline{0}$ donc $\overline{3}$ est un diviseur de 0. Dans $\mathbb{Z}/42\mathbb{Z}, \, \overline{2}*\overline{21}=\overline{0}$ donc $\overline{2}$ est un diviseur de 0.
- 2. Un élément $\overline{a} \in \mathbb{Z}/12\mathbb{Z}$ est inversible si et seulement si $\operatorname{pgcd}(a,12) = 1$, donc $(\mathbb{Z}/12\mathbb{Z})^* = \{\overline{1},\overline{5},\overline{7},\overline{11}\}$.

l	*	1	5	7	11
	1	1	$\overline{5}$	$\overline{7}$	11
	5	5	1	11	7
	$\overline{7}$	7	11	1	5
	11	11	$\overline{7}$	$\overline{5}$	1

3. L'ordre de chaque élément se déduit immédiatement de la table ci-dessus : Ordre($\overline{1}$) = 1, Ordre($\overline{5}$) = 2 (car $\overline{5}^2 = \overline{1}$), Ordre($\overline{7}$) = 2 (car $\overline{7}^2 = \overline{1}$), Ordre($\overline{11}$) = 2 (car $\overline{11}^2 = \overline{1}$).

4. D'après la question 3, aucun élément n'est d'ordre $|(\mathbb{Z}/12\mathbb{Z})^*| = 4$, donc aucun élément n'est générateur. Par définition, cela signifie que le groupe $(\mathbb{Z}/12\mathbb{Z})^*$ n'est pas cyclique.

Exercice 3.

- 1. D'après le petit théorème de Fermat, comme pgcd(2, 1381) = 1, on a $2^{1380} \equiv 1[1381]$.
- 2. Si 1363 était un nombre premier, alors on pourrait appliquer le petit théorème de Fermat qui donnerait $2^{1362} \equiv 1[1363]$. Or ici $2^{1362} \equiv 361 \not\equiv 1[1363]$, donc 1363 n'est pas premier.
- 3. On ne peut rien dire avec certitude ! On peut avoir un entier n non premier tel qu'il existe tout de même un (ou des) entier(s) a satisfaisant $a^{n-1} \equiv 1[n]$: un tel a est alors appelé un "menteur de Fermat" de n.
- 4. Soit $n \ge 3$ un entier. On tire au hasard un entier 1 < a < n, et on calcule a^{n-1} modulo n.
 - Si $a^{n-1} \equiv 1[n]$ alors n est **probablement** premier;
 - sinon, on sait avec certitude que n n'est pas premier.
