

Laboratório de Eletricidade Aplicada

Relatório

Experimento (02)

Professor: Rudi Henri Van Els

Turma A

João Guimarães - 12/0122405

SÚMARIO

1.Introdução	. 3
2.Objetivos	3
3.Parte Experimentais:	
3.1. Materiais Utilizados	4
3.2. Procedimentos Experimentais	.5
4.Resultados Experimentais	6
5 Conclusões	6

1.INTRODUÇÃO

O ociloscópio é o equipamente usado para avaliar como sinais se comportam ao longo do tempo. O mesmo no seu modo de operação mais básico mostra o sinal de tensão em função do tempo, onde é possível variar a escala de tensão e do tempo para pode observar o sinal com o menor erro possível. Modelos mais avançados realizam automaticamente medidas como valores de tensão, frequência, slew-rate e alguns podem até amostrar sinais na frequência usando FFT (Fast Fourier Transform).

2.OBJETIVOS

Esse experimento teve como objetivo promover a familiarização dos alunos com o osciloscópio: sua utilidade, suas funções e como operá-lo com precisão.

3.PARTE EXPERIMENTAL

3.1.MATERIAIS

- 1 Resistor de 100Ω 10W
- 1 Osciloscópio
- 1 Fonte AC-DC

Cabos (diversos)

3.2.PROCEDIMENTOS EXPERIMENTAL

3.2.1. ETAPA 1

Foi ligado o osciloscópio a saída de $9V_{RMS}$ da fonte, e a entrada da fonte nas fases R e S da bancada como na figura abaixo. Após todas as ligações feitas a bancada foi energizada e foi medida a tensão dessa saída de $9V_{RMS}$. A partir de uma análise gráfica do sinal, tensão em funcão do tempo, na tela do osciloscópio, foi possível realizar o cálculo da tensão efetiva ou tensão "Root Mean Square" usando a fórmula seguinte: $V_{PICO} = V_{RMS} \cdot \sqrt{2}$

3.2.2. ETAPA 2

A segunda etapa consistiu de usando o mesmo circuito da etapa anterior porém com a adição de um resistor em paralelo com a saída de $9V_{RMS}$ da fonte. Antes disso porém foi necessário realizar o cálculo para avaliar se o resistor se suportaria dissipar toda a potência gerada pela fonte de tensão.. Usando a fórmula: $P = \frac{V^2}{R}$ encontrou-se a potência de de 820mW, levando em conta que o resistor pode dissipar até 10W de potência, a potência dissipada não será um problema.

4.RESULTADOS EXPERIMENTAIS

$$V_{PICO} = V_{RMS} \cdot \sqrt{2}$$
 $V_{PICO} = 9 \cdot \sqrt{2} \ V_{PICO} = 12.73V$ $V_{PICO} = V_{RMS} \cdot \sqrt{2}$ $13V = V_{RMS} \cdot \sqrt{2}$ $V_{RMS} = 9.19V$

Tensão de Pico:			Tensão RMS:		
Teoria:	Prática:	Erro	Teoria:	Prática:	Erro:
12.73V	13 ± 0.5V	2.14%	9V	9.19V ± 0.35V	2.14%

5.CONCLUSÕES

O experimento foi um sucesso, foi possível se familiarizar com o osciloscópio e aprender a configurar suas escalas de amplitude e do tempo.