Assignment: CS 768 Learning With Graphs

Richeek Das: 190260036

7th November 2021

Contents

1	Implementation of the GNNFactory function	2							
2	Early Stopping								
3	Accuracy and Best Hyperparameters	2							
4	Impact on test accuracy with change in num_layers and hidden_dim hyperpa-								
	rameters								
	4.1 Change in num_layers	4							
	4.2 Change in hidden dim	4							

Department of Computer Science and Engineering Indian Institute of Technology Bombay

2021-2022

1 Implementation of the GNNFactory function

Implementation present in the shared .ipynb file.

Model description:

In the def __init__() function we set a torch seed to ensure reproducibility of the results we report in this work. We find out the torch_geometric.nn convolution layer which fits our model_type. After we are done with this, we stack a layer of convolution layers based on the num_layers parameter in our argument list.

In the def forward() function we apply one convolution layer, followed by a REctified Linear Unit, followed by a Dropout. We continue this till we exhaust all our convolution layers. We return a set of probabilities by performing a log_softmax of the outputs of the final convolution layer using: F.log_softmax(x, dim=1).

2 Early Stopping

Find the code in the shared .ipynb.

We keep a track of the best epoch so far (based on the validation accuracy). We do early stopping if we find: $current_epoch - best_epoch > 50$. We also save the model weights of the best epochs as .pkl files. After training is done (either after total number of epochs or by early-stopping), we load the weights of the best epoch and report the test results.

3 Accuracy and Best Hyperparameters

(a): Hyperparameters for each of these cases to obtain the best performance:

model	dataset	\mid num_layers	batch_size	\mid hidden_dim	dropout	\mid weight_decay	lr
GCN	cora citeseer	3 3	32 32	256 32	0.6 0.6	1e-2 1e-2	0.01 0.01
SAGE	cora citeseer	3 3	32 32	40 32	0.6 0.6	2e-2 2e-2	0.009 0.01
GAT	cora citeseer	3 3	32 32	$\begin{array}{ c c }\hline 256\\ 256\\ \end{array}$	0.6 0.6	1e-2 2e-2	0.009

Table 1: Hyperparameters used for obtaining best performance in each of the 6 cases. Note that batch_size doesn't matter in this problem setting.

(b): Training loss and validation accuracy across epochs in all 6 cases:

Figure 1: GCN. xlabel: epochs

Figure 2: SAGE. xlabel: epochs

Figure 3: GAT. xlabel: epochs

(c): Test accuracies with the above best hyperparameters:

Dataset Model	cora	citeseer
GCN	0.841	0.716
SAGE	0.824	0.684
GAT	0.817	0.697

Table 2: Test accuracies with the above best hyperparameters

4 Impact on test accuracy with change in num_layers and hidden_dim hyperparameters

4.1 Change in num_layers

Figure 4: Impact on test performance of models with change in the num_layers.

4.2 Change in hidden_dim

Figure 5: Impact on test performance of models with change in the hidden_dim.