COUPLING

THROUGH-BOND COUPLING

• Frequency-domain NMR *signals* are often split into two or more component *peaks* due to the effect of directly bonded nuclei or neighboring nuclei 2 or 3 bonds away

- This is due to *through-bond coupling*, also known as *scalar coupling*, *indirect coupling*, *spin-spin coupling*, or *J coupling*.....
- In the above example, the *signal* from H_A is split into two *peaks* (called a doublet), and the *signal* from H_X is, likewise, split into two *peaks* (a doublet)
- A signal split into two peaks is a *doublet*, a signal split into three peaks is a *triplet*, and so on (*quartet*, *quintet*, *sextet*, *septet*)

THROUGH-BOND COUPLING

• Coupling is mediated by bonding electrons and results in small resonance frequency changes depending on the spin state(s) of neighboring nuclei

- In the example above, if we consider spin A (for instance) in an ensemble of molecules, in some of the molecules spin X will be in the α (m = +1/2) state, and in others spin X will be in the β (m = -1/2) state
- The result is two slightly different resonance frequencies for those A nuclei with X in the α state compared to those A nuclei with X in the β state

for spin X,
$$m = +1/2$$
, which effectively deshields spin A

$$\delta_{A}$$
for spin X, $m = -1/2$, which effectively shields spin A

THROUGH-BOND COUPLING

• The magnitude of the splitting between the component peaks of the signal is called the $coupling\ constant$, or J

- \bullet *J* is usually given a superscript and subscript, the former describing the number of bonds separating the coupled nuclei, the latter designating the two atoms involved
 - -for the example above, ${}^3J_{\rm AX}$ or ${}^3J_{\rm HA,HX}$
- *J* is *always* measured in Hz
- J (in Hz) is *independent* of the magnitude of B_0
- ullet The value of J measured from the splitting of the signal from one of the coupled nuclei is always the same as the value measured at the signal from the other coupled nucleus
- The chemical shift of the nucleus is the center of the multiplet (δ_A and δ_X)

Magnitudes of Through-Bond Coupling Constants

- The magnitude of the coupling constant, J, depends on the number of intervening bonds, as well as other structural factors
- The 1-bond H,H coupling constant is very large
- Typical 2-bond (*geminal*) H,H coupling constants are small (5-10 Hz), but occasionally can be much larger (for CH₂O, $^2J_{\rm H,H} \approx 40$ Hz)
- Typical 3-bond (*vicinal*) H,H coupling tend to be somewhat larger than geminal coupling constants, and have a strong dependence on the torsional (dihedral) angle between the two C-H bonds (*Karplus relationship*)
- Typically, 4-bond couplings are too small to be observed, but, in special cases are large enough to be measured
- Normaly, 5-, 6-, etc.- bond couplings are too small to be observed

H-H
$$^{1}J_{\rm H,H}\approx 275~{\rm Hz}$$

H 1 $^{2}J_{\rm H,H}\approx 5$ -10 Hz typically

H H 1 1 $^{2}J_{\rm H,H}\approx 5$ -20 Hz typically

H H 1 1 $^{2}J_{\rm H,H}\approx 5$ -20 Hz typically

H H 1 1 $^{2}J_{\rm H,H}\approx 5$ -20 Hz typically

H H 1 1 $^{2}J_{\rm H,H}\approx 4$ usually small (unobservable), but can be as large as 7 Hz

H H 1 1 1 $^{2}J_{\rm H,H}\approx 4$ usually too small to be observed

¹³C-¹H THROUGH-BOND COUPLING

• In ¹³C NMR spectra, through-bond coupling between ¹H and ¹³C nuclei also results in splitting of ¹³C NMR signals

- As with the H,H coupling constant, the magnitude of the ¹³C,H coupling constant depends on the number of intervening bonds, and other factors as well
- The 1-bond ${}^{13}\text{C}$,H coupling constant (${}^{1}J_{\text{CH}}$) is very large
- Typical 2-bond ¹³C,H coupling constants range up to ~20 Hz, and often are not observed
- Normally 3-, 4-, 5-, etc.-bond couplings are too small to be observed

$$^{13}\text{C-H}$$
 $^{1}J_{\text{C,H}} \approx 100\text{-}250$ Hz (typical values are 120-150 Hz) $^{13}\text{C-C-H}$ $^{2}J_{\text{C,H}} \approx 1\text{-}20$ Hz typically

MECHANISM OF THROUGH-BOND COUPLING: DIRAC MODEL

• Coupling occurs through bonds, i.e. via interactions with bonding electron spins

energy

• Consider the one-bond coupling $({}^{1}J_{\rm AX})$, for instance ${}^{1}H^{-13}C$

- -Energetically preferred states are normally those where nuclear and electron spins are *antiparallel*
- -Electron spins of bonding pair are antiparallel (*Pauli exclusion principle*)
- -Thus, for low energy states, if nuclear spins are *antiparallel*, then couplings are said to be *positive*
- -In other words, the coupling constant is positive if it stabilizes the state where nuclear spins are antiparallel
- -Normally, for $\gamma > 0$, ¹*J* is positive

spin "A" spin "X" lower energy downfield higher energy transition upfield transition higher energy ground state lower energy ground state $\boldsymbol{\delta}_A$

 $\alpha \rightarrow \beta$ transitions for spin "A"

MECHANISM OF THROUGH-BOND COUPLING: DIRAC MODEL

• Coupling occurs through bonds, i.e. via interactions with bonding electron spins

 $\alpha \rightarrow \beta$ transitions for spin "A"

• Consider the two-bond coupling $(^2J_{AX})$, for instance 1H - $^1^2C$ - 1H (geminal 1H - 1H coupling)

- -Energetically preferred states are normally those where nuclear and electron spins are *antiparallel*
- -Electron spins of bonding pair are antiparallel (*Pauli exclusion principle*)
- -The energetically preferred state for the bonding electrons on the carbon atom is when these are parallel (*Hund's rule*)
- -Thus, for low energy states, if nuclear spins are *parallel*, then couplings are said to be *negative*
- -In other words, the coupling constant is negative if coupling stabilizes the state where nuclear spins are parallel
- -Normally, for $\gamma > 0$, 2J is negative

MECHANISM OF THROUGH-BOND COUPLING

- Fermi contact: interaction of nuclear spins via bonding electrons
 - depends on electron density at the pair of nuclei
 - depends on the "s" electrons, or s character of the bond(s) between the nuclei
 - electron spins must be correlated, i.e. there must be a bond
- Dependence on "s" character
 - -consider one bond ¹³C-¹H couplings:

CH_3 - CH_3	s, sp^3	$1 \times 1/4 = 1/4$	125 Hz
$CH_2 = CH_2$	s, sp^2	$1 \times 1/3 = 1/3$	156 Hz
C_6H_6	s, sp^2	$1 \times 1/3 = 1/3$	158 Hz
HC≡CH	s, sp	$1 \times 1/2 = 1/2$	249 Hz

SPIN-SPIN SPLITTING: N+1 RULE

- Multiplet splitting patterns are determined by the number of nuclei (n) doing the splitting and the spin angular momentum quantum number (I)
- The general rule is M (the multiplicity, or number of peaks in the multiplet signal) is equal to 2nI + 1. For spin $\frac{1}{2}$ (I = 1/2), this reduces to n+1

SPIN-SPIN SPLITTING: N+1 RULE

- In ¹³C NMR spectra, normally only the 1-bond ¹³C-H couplings are observed
- Both ¹H and ¹³C are spin $\frac{1}{2}$ (I = 1/2), so the n+1 rule applies

- ¹³C nuclei are also coupled to directly bonded ¹³C
- However, because ¹³C comprises only about 1% of all C at natural abundance, the chance that a ¹³C nucleus is next to another ¹³C nucleus is very small, so no signal splitting normally results from ¹³C-¹³C coupling
- Signal splitting resulting from ¹³C-¹³C coupling will be observed in compounds synthesized with excess ¹³C

SPIN-SPIN SPLITTING: INTENSITIES AND PASCAL'S TRIANGLE

- For a doublet, we saw that there are two peaks, because the coupled spin can be in either the α or β state
- The *peak heights are equal* because, for the coupled spin, there are essentially equal numbers of spins in α and β states

- For a triplet, there are three peaks, because the two coupled spins can both be in the α state, they can both be in the β state, or one can be α and the other β
- The *relative peak heights are 1:2:1* because there are 2 ways that one spin can be α and the other β , and only one way both can be α and only one way both can be β

SPIN-SPIN SPLITTING: INTENSITIES AND PASCAL'S TRIANGLE

• The relative intensities of the multiplet components in a signal split by spin-spin coupling can be obtained from Pascal's triangle

COMMON SPLITTING PATTERNS

Ш		Ш
Ш	$-CH_2$ $-CH$	ılı
ılı	$X - CH_2 - CH_2 - Y$ $(X \neq Y)$	ılı
ll ll	CH ₃ —CH	ıllı
ىلد	СН3—СН2—	ıllı
JJ	CH ₃ CH—	ullu

• Some commonly observed splitting patterns

MULTIPLE/COMPLEX SPLITTING

- Split signals can be split again by coupling to additional spins
 - in vinyl acetate, for instance, the signal from "c" is split into a doublet by "b", and this doublet is split into a doublet of doublets by "a"
 - likewise, "b" is split by "a" and "c", and "a" is split by "b" and "c"

MULTIPLE/COMPLEX SPLITTING

- The coupling constant between any two spins will be observed in the signal from each of the spins
- Observation of a coupling in more than one signal identifies coupled spins

(a) (c)
$$H$$
 H O CH_3

vinyl acetate

EXTRACTING THE COUPLING CONSTANTS

 Analysis and determination of coupling constants

Doublet of Doublets (dd)

To obtain J_1 measure the difference between lines 1 and 3, or 2 and 4, in Hz.*

*Do not try to find the centers of the doublets!

 J_2 is the spacing between lines 1 and 2, or 3 and 4

Doublet of Triplets (dt)

To obtain J_1 measure the difference between the most intense lines (2 and 5) in Hz

 J_2 is the spacing between lines 1 and 2, or 2 and 3, or those in the other triplet.

SPIN DECOUPLING

- It is often advantageous to reverse or remove the splitting caused by spin-spin coupling
- This is called spin decoupling
- Spin decoupling (or just "decoupling) can be used for several reasons
 - to simplify spectra
 - to assist in identification of coupling between nuclei
 - to improve signal-to-noise
- We'll discuss spin decoupling in the context of "double resonance" experiments