Introduction to Number Theory: Arithmetic Functions

Saroja Erabelli

September 17, 2014

1 Introduction

Number theory is the study of integers. Arithmetic functions describe interesting properties about integers.

2 Arithmetic functions

The following functions describe basic questions we might ask about an integer n.

2.1 Number of divisors of n

We call $\tau(n)$ the number of divisors of an integer n.

Example 2.1.1 Evaluate $\tau(7000000)$.

Solution. First, we prime factorize $7000000 = 2^6 * 5^6 * 7$. We know that all the divisors of 7000000 can only have prime factors of 2, 5, and 7, so each divisor d can be expressed as $d = 2^{f_1} * 5^{f_2} * 7^{f_3}$ for some integers f_1, f_2 , and f_3 . But in order for d to divide 7000000, we must have $0 \le f_1 \le 6$, $0 \le f_2 \le 6$, and $0 \le f_3 \le 1$. Therefore we have 7 choices for f_1 , 7 choices for f_2 , and 2 choices for f_3 , so the total number of divisors of 7000000 is $\tau(7000000) = 7 * 7 * 2 = \boxed{98}$.

In general, if we prime factorize $n=p_1^{e_1}*p_2^{e_2}*\dots*p_k^{e_k}$, then each divisor d can be expressed as $d=p_1^{f_1}*p_2^{f_2}*\dots*p_k^{f_k}$, where $0\leq f_1\leq e_1,\ 0\leq f_2\leq e_2,\ \dots,\ 0\leq f_k\leq e_k$. Therefore we have e_1+1 choices for $f_1,\ e_2+1$ choices for $f_2,\ \dots,\ e_k+1$ choices for f_k . Thus,

$$\tau(n) = (e_1 + 1)(e_2 + 1)\dots(e_k + 1)$$

This formula helps us compute $\tau(n)$, but this method also helps us solve similar problems.

Example 2.1.2 How many square divisors does 7000000 have?

Solution. Again, we prime factorize $7000000 = 2^6 * 5^6 * 7$. Each divisor d can be expressed as $d = 2^{f_1} * 5^{f_2} * 7^{f_3}$, where $0 \le f_1 \le 6$, $0 \le f_2 \le 6$, and $0 \le f_3 \le 1$. If d is square, then f_1 , f_2 , and f_3 must be even. So we have 4 choices for f_1 (0, 2, 4, or 6), 4 choices for f_2 (0, 2, 4, or 6), and 1 choice for f_3 (0). Thus, the number of square divisors is $4 * 4 * 1 = \boxed{16}$.

2.2 Sum of divisors of n

We call $\sigma(n)$ the sum of the divisors of n.

Example 2.2.1 Compute $\sigma(1152)$.

Solution. First, we prime factorize $1152 = 2^7 * 3^2$. We see that

$$\sigma(1152) = 2^{0} * 3^{0} + 2^{1} * 3^{0} + 2^{2} * 3^{0} + \dots + 2^{7} * 3^{0}$$

$$+2^{0} * 3^{1} + 2^{1} * 3^{1} + 2^{2} * 3^{1} + \dots + 2^{7} * 3^{1}$$

$$+2^{0} * 3^{2} + 2^{1} * 3^{2} + 2^{2} * 3^{2} + \dots + 2^{7} * 3^{2}$$

$$= (2^{0} + 2^{1} + 2^{2} + \dots + 2^{7}) * 3^{0}$$

$$+ (2^{0} + 2^{1} + 2^{2} + \dots + 2^{7}) * 3^{1}$$

$$+ (2^{0} + 2^{1} + 2^{2} + \dots + 2^{7}) * 3^{2}$$

$$= (2^{0} + 2^{1} + 2^{2} + \dots + 2^{7}) * (3^{0} + 3^{1} + 3^{2}) = 255 * 13 = \boxed{3315}.$$

In general, if we prime factorize $n = p_1^{e_1} * p_2^{e_2} * \dots * p_k^{e_k}$, then

$$\sigma(n) = (p_1^0 + p_1^1 + \dots + p_1^{e_1})(p_2^0 + p_2^1 + \dots + p_2^{e_2}) \dots (p_k^0 + p_k^1 + \dots + p_k^{e_k})$$

2.3 Number of coprime integers less than or equal to n

We call two integers a and b coprime if the greatest common divisor of a and b is 1. We call the Euler's Totient function, $\phi(n)$ the number of coprime integers less than or equal to n. For example, $\phi(1) = 1$, $\phi(2) = 1$, $\phi(3) = 2$, and $\phi(4) = 2$.

Example 2.3.1 Compute $\phi(43)$.

Solution. Since 43 is prime, each integer from 1 to 42 is coprime to 43, so $\phi(43) = \boxed{42}$

In general, if p is prime, then $\phi(p) = p - 1$.

Example 2.3.2 Compute $\phi(49)$.

Solution. First, we prime factorize $49 = 7^2$. Thus, Euler's Totient function counts all integers less than or equal to 49, which are not multiples of 7. There are seven multiples of 7 less than or equal to 49, so $\phi(49) = 49 - 7 = \boxed{42}$.

In general, if p is prime, then $\phi(p^2) = p^2 - p$.

Example 2.3.3 Compute $\phi(n)$ where $n = p^k$ for a prime p and some positive integer k.

Solution. We count all integers less than or equal to n, which are not multiples of p. There are $\frac{n}{p}$ multiples of p less than or equal to n, so $\phi(n) = n - \frac{n}{p} = \boxed{n(1 - \frac{1}{p})}$.

Example 2.3.4 Compute $\phi(n)$ where $n = p_1^{e_1} * p_2^{e_2}$ for primes p_1, p_2 and some positive integers e_1, e_2 .

Solution. We count all integers less than or equal to n, which are not multiples of p_1 or p_2 . There are $\frac{n}{p_1}$ multiples of p_1 less than or equal to n and $\frac{n}{p_2}$ multiples of p_2 less than or equal to n. However, some of these overlap and are multiples of both p_1 and p_2 . There are $\frac{n}{p_1p_2}$ multiples of p_1p_2 less than or equal to n. So the total number of integers which are multiples of p_1 or p_2 is $\frac{n}{p_1} + \frac{n}{p_2} - \frac{n}{p_1p_2}$ by the Principle of Inclusion-Exclusion. Thus, $\phi(n) = n - (\frac{n}{p_1} + \frac{n}{p_2} - \frac{n}{p_1p_2}) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})$.

In general, if we prime factorize $n = p_1^{e_1} * p_2^{e_2} * \dots * p_k^{e_k}$, then we can use the Principle of Inclusion-Exclusion in a similar manner to show that

$$\phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})\dots(1 - \frac{1}{p_k}).$$

3 Summary

If we prime factorize $n = p_1^{e_1} * p_2^{e_2} * \dots * p_k^{e_k}$, then

- $\tau(n) = (e_1 + 1)(e_2 + 1) \dots (e_k + 1)$
- $\sigma(n) = (p_1^0 + p_1^1 + \ldots + p_1^{e_1})(p_2^0 + p_2^1 + \ldots + p_2^{e_2}) \ldots (p_k^0 + p_k^1 + \ldots + p_k^{e_k})$
- $\phi(n) = n(1 \frac{1}{p_1})(1 \frac{1}{p_2})\dots(1 \frac{1}{p_k})$

So now what do we do these formulas? These three formulas all come up frequently in problems. The third formula for ϕ is most useful when applying another theorem:

Euler's Totient Theorem. If a and m are relatively prime, then $a^{\phi(m)} \equiv 1 \pmod{m}$.

If you don't know what this theorem means, don't worry about it! You'll learn about it some other time, but just remember that the formulas for τ , σ , and ϕ are all important. So now, let's do some problems!

4 Problems

- 1. How many positive even divisors does 7000000 have?
- 2. Find the number of rational numbers r, 0 < r < 1, such that when r is written as a fraction in lowest terms, the numerator and the denominator have a sum of 1000. (AIME I, 2014)
- 3. Maya lists all the positive divisors of 2010². She then randomly selects two distinct divisors from this list. What is the probability that exactly one of the selected divisors is a perfect square? (AIME I, 2010)
- 4. Compute the sum of all perfect square divisors of 1152.
- 5. How many positive integers have exactly three proper divisors (positive integral divisors excluding itself), each of which is less than 50? (AIME I, 2005)
- 6. How many positive perfect squares less than 10⁶ are multiples of 24? (AIME I, 2007)
- 7. Find the number of positive integers that are divisors of at least one of 10¹⁰, 15⁷, 18¹¹. (AIME II, 2005)
- 8. Compute the smallest positive integer n such that 214n and 2014n have the same number of divisors. (ARML 2014)

- 9. How many positive integer divisors of 2004^{2004} are divisible by exactly 2004 positive integers? (AIME II, 2004)
- 10. Find the number of ordered triples (a, b, c) where a, b, and c are positive integers, a is a factor of b, a is a factor of c, and a + b + c = 100. (AIME II, 2007)