User's Manual

TEMPERATURE CONTROLLER SYSTEM

Model: TCS-02 (Rev: 01/04/2011)

Manufactured by:

Techno Instruments

261/16, Civil Lines Roorkee-247 667 UK

Ph.: 01332-272852, Fax: 274831 Email: info@sestechno.com sestechno.india@gmail.com Website: www.sestechno.com

CONTENTS

Section		Page
	Copyright, Warranty, and Equipment Return	1
1.	Objective	2
2.	System Description	2
3.	Background Summary	2
	3.1 The Plant (Oven)	2
	3.2 Controller	4
	3.3 Temperature Measurement	5
4.	Experimental Work	5
	4.1 Identification of Oven Parameters	6
	4.2 ON-OFF Controller	6
	4.3 Proportional Controller	6
	4.4 Proportional-Integral Controller	7
	4.5 Proportional-Integrla-Derivative Controller	7
	4.6 Further Experimentation	8
5.	Typical Result	8
6.	Limitations of the System	9
7.	References	9
8.	Packing List	10
9.	Technical support	11
10.	List of Experiment	12

COPYRIGHT AND WARRANTY

Please – Feel free to duplicate this manual subject to the copyright restriction given below.

COPYRIGHT NOTICE

The Techno Instruments Model TCS-02 Temperature Controller System manual is copyrighted and all rights reserved. However, permission is granted to non-profit educational institutions for reproduction of any part of this manual provided the reproduction is used only for their laboratories and is not sold for profit. Reproduction under any other circumstances, without the written consent of Techno Instruments is prohibited.

LIMITED WARRANTY

Techno Instruments warrants this product to be free from defects in materials and workmanship for a period of one year from the date of shipment to the customer. Techno Instruments will repair or replace, at its option, any part of the product which is deemed to be defective in material or workmanship. This warranty does not cover damage to the product caused by abuse or improper use. Determination of whether a product failure is the result of manufacturing defect or improper use by the customer shall be made solely by Techno Instruments. Responsibility for the return of equipment for warranty repair belongs to the customer. Equipment must be properly packed to prevent damage and shipped postage or freight prepaid. (Damage caused by improper packaging of the equipment for return shipment will not be covered by the warranty). Shipping costs for returning the equipment, after repair, will be paid by Techno Instruments.

EQUIPMENT RETURN

Should this product have to be returned to Techno Instruments, for whatever reason, notify Techno Instruments BEFORE returning the product. Upon notification, the return authorization and shipping instructions will be promptly issued.

Note: No equipment will be accepted for return without an authorization.

When returning equipment for repair, the units must be packed properly. Carriers will not accept responsibility for damage by improper packing. To be certain the unit will not be damaged in shipment, observe the following rules:

- 1. The carton must be strong enough for the item shipped.
- 2. Make certain there is at least two inches of packing material between any point on the apparatus and the inside walls of the carton.
- 3. Make certain that the packing material can not displace in the box, or get compressed, thus letting the instrument come in contact with the edge of the box.

Tcs-02 Page 1

Panel Drawing Temperature Controller System, Model TCS-02

1. OBJECTIVE

To study the performance of various types of controllers used to control the temperature of an oven.

2. SYSTEM DESCRIPTION

Temperature control is one of the most common industrial control systems that are in operation. This equipment is designed to expose the students to the intricacies of such a system in the 'friendly' environment of a laboratory, free from disturbances and uncertainties of plant prevalent in an actual process. The 'plant' to be controlled is a specially designed oven having a short heating as well as cooling time. The temperature time data may be obtained manually, thus avoiding expensive equipment like an X-Y recorder or a pen recorder. A solid state temperature sensor converts the absolute temperature information to a proportional electric signal. The reference and actual temperatures are indicated in degree Celsius on a switch selectable digital display.

The controller unit compares the reference and the measured signals to generate the error. Controller options available to the user consist of ON-OFF or relay with two hysteresis settings and combination of proportional, derivative and integral blocks having independent coefficient settings. A block diagram of the complete system is shown in Fig. 1.

3. BACKGROUND SUMMARY

The first step in the analysis of any control system is to derive its mathematical model. The various blocks shown in Fig. 1 are now studied in detail and their mathematical descriptions are developed. This would help in understanding the working of the complete system and also to implement control strategies.

3.1 The Plant (Oven)

Plant to be controlled is an electric oven, the temperature of which must adjust itself in accordance with the reference or command. This is a thermal system which basically involves transfer of heat from one section to another. In the present case we are interested in the transfer of heat from the heater coil to the oven and the leakage of heat from the oven to the atmosphere. Such systems may be conveniently analysed in terms of thermal resistance and capacitance as explained below. However, this analysis is not very accurate, since the transfer of heat essentially takes place from every part of the oven - thermal resistance and capacitance are obviously distributed. The lumped parameter model described here is therefore only an approximation. For a precise analysis, a distributed parameter model must be used. Another difficulty associated with temperature control systems is that whereas the temperature rise is produced by energy input, which is controllable, the temperature fall is due to heat loss which is uncontrollable and unpredictable. This implies that the oven will have different time constants while heating and cooling. Again, these will depend on the ambient temperature and the set point chosen. Such a system is therefore rather difficult to control.

There are three modes of heat transfer viz. conduction, convection and radiation. Heat transfer through radiation maybe neglected in the present case since the temperatures involved are quite small. For conductive and convective heat transfer

Fig.1. Block Diagram of the Temperature

Fig. 2 Electrical Analog

$$\Theta = \alpha \Delta T$$

where, Θ = rate of heat flow in Joule/sec.

 ΔT = temperature difference in °C

 α = Constant

t = time in seconds

Under assumptions of linearity, the thermal resistance is defined as, R = Temperature-difference/rate of heat flow = $\Delta T/\Theta = 1/\alpha$. This is analogous to electrical resistance defined by I = V/R. In a similar manner thermal capacitance of the mass is defined by

$$\Theta = Cd(\Delta T)/dt$$

which is analogous to the V-I relationship of a capacitor, namely $I = C \, dV/dt$. In the case of heat.

C = Rate of heat flow/Rate of temperature change

The equation of an oven may now be written by combining the above two equations, implying that a part of the heat input is used in increasing the temperature of the oven and the rest goes out as loss. Thus

$$\Theta = C dT/dt + (1/R)xT$$
,

with the initial condition $T(t=0) = T_{amb}$. Now, taking Laplace transform with zero initial condition

$$\frac{T(s)}{\Theta(s)} = \frac{R}{1 + sCR} \tag{1}$$

An analogous electrical network and block diagram may be drawn as in Fig.2 defined by the equation

$$I = C dV/dt + V/R$$

- Eq.(1) is an extremely simplified representation of the thermal system under consideration and it gives rise to a transfer function of the first order and type zero. Such a system should be easily controlled in the closed loop. Difficulties are however faced in the system due to the following reasons:
- (a) The temperature rise in response to the heat input is not instantaneous. A certain amount of time is needed to transfer the heat by convection and conduction inside the oven. This requires a delay or transportation lag term, $\exp(-sT_1)$, to be included in the transfer function, where T_1 is the time lag in seconds.
- (b) Unlike the equivalent electrical circuit of Fig. 2, the heat input in the thermal system cannot have a negative sign. This means that although the rate of temperature rise would depend on the heat input, the rate of temperature fall would depend on thermal resistance R. The conventional analysis methods then become inapplicable.
- (c) Referring to the closed loop oven control system of Fig. 3, it may be seen that in the steady state the error e_{ss} is given as

$$e_{ss} = \lim_{t \to \infty} (T_{ref} - T) = T_{ref} / (1 + AR)$$

In this system, A cannot be increased excessively in an attempt to reduce error, since a large gain is likely to lead to instability due to transportation lag. Also, every time $(T_{\text{ref}} - T)$ becomes negative, the heat input is cut off and the oven must cool down slowly. The temperature T therefore oscillates around the nominal value.

Fig. 3 Closed Loop Temperature Control System

Fig. 4 ON-OFF Controller

Fig. 5 Response of ON-OFF Control System

3.2 Controller

Basic control actions commonly used in temperature control systems are

- ON-OFF or relay
- Proportional
- Proportional-Integral
- Proportional-Integral-Derivative

These are described below in some detail.

(a) ON-OFF or Relay type controllers, also referred to as two position controllers, consist of a simple and inexpensive switch/relay and are, therefore, used very commonly in both industrial and domestic control systems. Typical applications include air-conditioner and refrigerators, ovens, heaters with thermostat. Solenoid operated two position valves are commonly used in hydraulic and pneumatic systems. The basic input-output behaviour of this controller is shown in Fig. 4. The two positions of the controller are M₁ and M₂, and H is the hysteresis or differential gap.

The hysteresis is necessary, as it enables the controller output to remain at its present value till the input or error has increased a little beyond zero. Hysteresis helps in avoiding too frequent switching of the controller, although a large value results in greater errors. The response of a system with ON-OFF controller is shown in Fig. 5. Describing function technique is a standard method for the analysis of non-linear systems, for instance, one with an ON-OFF controller.

- (b) Proportional controller is simply an amplifier of gain K_p which amplifies the error signal and passes it to the actuator. The noise, drift and bias currents of this amplifier set the lower limit of the input signal which may be handled reliably and therefore decide the minimum possible value of the error between the input signal and output. Also the saturation characteristics of this amplifier sets the linear and non-linear regions of its operation. A typical proportional controller may have an input-output characteristics as in Fig. 6. Such controller gives non-zero steady state error to step input for a type-0 system as indicated earlier. The proportional (P) block in the system consists of a variable gain amplifier having a maximum value, $K_{p \text{ max}}$ of 20.
- (c) Proportional-Integral (PI) controller: Mathematical equation of such a controller is given by

$$m(t) = K_P e(t) + K_I \int_0^t e(t) dt = K_P e(t) + 1/T_I \int_0^t e(t) dt$$

and a block diagram representation is shown in Fig. 7. It may be easily seen that this controller introduces a pole at the origin, i.e. increases the system type number by unity. The steady state error of the system is therefore reduced or eliminated. Qualitatively, any small error signal e(t), present in the system, would get continuously integrated and generate actuator signal m(t) forcing the plant output to exactly correspond to the reference input so that the error is zero. In practical systems, the error may not be exactly zero due to imperfections in an electronic integrator caused by bias current needed, noise and drift present and leakage of the integrator capacitor.

The integral (I) block in the present system is realised with a circuit shown in Fig.8 and has a transfer function

$$G_r(s) = 1/(28s) = K_T/s$$
 (2)

Fig. 6 Proportional Controller with Saturation

Fig. 7 P-I Controller

Fig.8 Circuit for Integrator

The integral gain is therefore adjustable in the range 0 to 0.036 (approx.). Due to the tolerance of large capacitance's, the value of K_I is approximate.

(d) Proportional-Integral-Derivative (PID) controller: Mathematical equations governing the operation of this controller is as

$$m(t) = K_{P}e(t) + K_{I} \int_{0}^{t} e(t) dt + K_{D}de(t) / dt$$
$$= K_{P}e(t) + 1 / T_{I} \int_{0}^{t} e(t) dt + T_{D}de(t) / dt$$

so that in the Laplace transform domain,

$$M(s)/E(s) = (K_p + T_D s + 1/T_I s)$$

A simple analysis would show that the derivative block essentially increases the damping ratio of the system and therefore improves the dynamic performance by reducing overshoot. The PID controller therefore helps in reducing the steady state error with an improvement in the transient response.

The derivative (D) block in this system is realised with the circuit of Fig. 9. This has a transfer function

$$G_D(s) = 19.97 \text{ s (approx.)}$$
 (3)

The derivative gain is therefore adjustable in the range 0 to 20 approximately. Again, the approximation is justified due to the higher tolerance in the values of large electrolytic capacitance's.

PID controller is one of the most widely used controller because of its simplicity. By adjusting its coefficients K_P , K_D (or T_D) and K_I (or T_I) the controller can be used with a variety of systems. The process of setting the controller coefficients to suit a given plant is known as tuning. There are many methods of 'tuning' a PID controller. In the present experiment, the method of Ziegler-Nichol has been introduced which is suitable for the oven control system, although better methods are available and may be attempted.

3.3 Temperature Measurement

The oven temperature can be sensed by a variety of transducers like thermistor, thermocouple, RTD and IC temperature sensors. In the present setup, the maximum oven temperature is around 90°C which is well within the operating range of IC temperature sensor like AD590. Further, these sensors are linear and have a good sensitivity, viz. $1\mu A/K$. Associated electronic circuits convert this output to $10mV/^{\circ}C$ which may be easily measured by a DVM. The time constant of the sensor has however been neglected in the analysis since it is insignificant compared with the oven time constant.

4. EXPERIMENTAL WORK

A variety of experiments may be conducted with the help of this unit. The principal advantage of the unit is that all power sources and metering are built-in and one needs only a watch to be able to note down the temperature readings at precise time instants. After each run the oven has to be cooled to nearly the room temperature, which may take about 20-25 minutes with forced cooling provided. This would limit the number of runs to about four in an usual laboratory class. The experiments suggested could be completed in about 6-8 hours.

Fig. 9 Circuit for Differentiator

Fig. 10 Open Loop Response of the Oven

4.1 Identification of Oven Parameters

Plant identification is the first step before an attempt can be made to control it. In the present case, the oven equations are obtained experimentally from its step response as outlined below. The procedure is as per Ziegler-Nichol reaction curve method.

In the open-loop testing, the oven is driven through the P-amplifier set to a gain of 10. The input to this amplifier is adjusted through reference potentiometer (the one next to switch S_2). This input can be seen on digital display, so that when you set 5.0° C, the input to Proportional amplifier is 50 mV (@ $10\text{mV}/^{\circ}$ C) and its output (which acts as input to driver circuit) is 0.5V ($50\text{mV}\times10$).

- ♦ Keep switch S₁ to 'WAIT', S₂ to 'SET' and open 'FEEDBACK' terminals. (refer panel drawing)
- Connect P output to the driver input and switch ON the unit.
- ♦ Set P potentiometer to 0.5 which gives K_p=10. Adjust reference potentiometer to read 5.0 on the DVM. This provides an input of 0.5 V to the driver.
- \bullet Put switch S₂ to the 'MEASURE' position and note down the room temperature.
- ♦ Put switch S₁ to the 'RUN' position and note temperature readings every 10 sec., till the temperature becomes almost constant. Use the timer on the panel to monitor timer.
- Plot temperature-time curve on a graph paper. Referring to Fig. 10, calculate T_1 and T_2 and hence write the transfer function of the oven including its driver as

$$G(s) = K \exp(-sT_2)/(1+sT_1)$$
, with T in °C.

4.2 ON-OFF Controller

- ♦ Keep switch S₁ to 'WAIT' position and allow the oven to cool to room temperature. Short 'FEEDBACK' terminals.
- ♦ Keep switch S₂ to the 'SET' position and adjust reference potentiometer to the desired output temperature, say 60.0°C, by seeing on the digital display.
- Connect R output to the driver input. Outputs of P, D and I must be disconnected from driver input. Select 'HI' or 'LO' value of hysteresis. (First keep the hysteresis switch to 'LO').
- ♦ Switch S₂ to 'MEASURE' and S₁ to 'RUN' position. Read and record oven temperature every 10 sec., for about 20 minutes.
- Plot a graph between temperature and time and observe the oscillations (Fig. 15) in the steady state. Note down the magnitude of oscillations.
- Repeat above steps with the 'HI' setting for hysteresis and observe the rise time, steady-state error and percent overshoot.

4.3 Proportional Controller

Ziegler and Nichols suggest the value of K_P for P-Controller as

$$K_P = \left(\frac{1}{K}\right) \times \frac{T_1}{T_2}$$

♦ Starting with a cool oven, keep switch S₁ to 'WAIT' position and connect P output to the driver input. Keep R, D and I outputs disconnected. Short 'FEEDBACK' terminals.

- ♦ Set P potentiometer to the above calculated value of K_p, keeping in mind that the maximum gain is 20. The measurement and interpretation of K_p and P-control potentiometer setting needs some explanation here. The formula for K_p above is for an unity feedback system and has the dimension of Volts/°C. In the present unit a temperature sensor having sensitivity of 10mV/°C (0.01V/°C) is used between oven output and controller input. Thus, the K_p calculated above will need to be divided by 0.01 to obtain the P-control potentiometer setting. K_D and K_I have dimensions of sec. and sec⁻¹ respectively hence do not require any further consideration. These values may be set directly on the respective potentiometers.
- Select and set the desired temperature to say 60.0°C.
- \bullet Keep switch S₁ to 'RUN' position and record temperature readings as before.
- ◆ Plot the observations on a linear graph paper and observe the rise time, steady-state error and percent overshoot.

4.4 Proportional-Integral Controller

Ziegler and Nichols suggested the value of K_P and K_I for P-I controller as

$$K_P = \left(\frac{0.9}{K}\right) \times \frac{T_1}{T_2}$$
; $T_I = \frac{1}{K_1} = 3.3 \text{ T}_2$, giving $K_I = \frac{1}{3.3 \text{ T}_2}$

- ♦ Starting with a cool oven, keep switch S₁ to 'WAIT', connect P and I outputs to driver input and disconnect R and D outputs. Short feedback terminals.
- ♦ Set P and I potentiometers to the above values of K_P, and K_I respectively, keeping in mind that the maximum value of K_P is 20 and that of K_I is 0.036.
- Select and set the desired temperature to say 60.0°C.
- \bullet Keep switch S₁ to 'RUN' position and record temperature readings as before.
- Plot the response on a graph paper and observe the steady state error and percent overshoot.

4.5 Proportional-Integral-Derivative Controller

Ziegler and Nichols suggest the values of K_P, K_D and K_I for this controller as

$$K_P = \left(\frac{1.2}{K}\right) \times \frac{T_1}{T_2}$$
; $T_I = \frac{1}{K_1} = 2T_2$, giving $K_I = \frac{1}{2T_2}$

$$K_D = T_D = 0.5T_2$$

- ◆ Starting with a cool oven, keep switch S₁ to 'WAIT' position and connect P, D and I outputs to driver input. Keep R output disconnected. Short feedback terminals.
- ◆ Set P, I and D potentiometers according to the above calculated values of K_P, K_I and K_D keeping in mind that the maximum values for these are 20, 0.036 and 23.5 respectively.
- ♦ Select and set the desired temperature, say 60.0°C.
- ♦ Switch S₁ to 'RUN', and record temperature-time readings.
- ◆ Plot the response on a linear graph paper and observe the rise time, steady state error and percent overshoot.(See Fig. 14)

• Compare the results of the various controller options.

Fig. 11 Open Loop Response of the Oven

4.6 Further Experimentation

The controller settings suggested by Ziegler and Nichols are not optimum. It is therefore possible to experiment with other methods available in the literature or to attempt trial and error settings. Students at the master's level may attempt to calculate theoretically the optimum values of K_P , K_D and K_I based on some performance criterion and then verify them results on the setup. It may be convenient to use a pen recorder or X-Y recorder for such experiments. A terminal has been provided at the back of the unit for this purpose with a sensitivity of $10 \text{mV}/^{\circ}\text{C}$.

Additional laboratory work may involve modification of the oven parameters and then repeating the basic experiments. This may be done simply by putting thermal load into the oven, thus increasing its thermal capacitance or by providing insulation to the oven thus increasing its thermal resistance. These may also act as disturbance inputs to the oven while it is operating under steady-state conditions, and their effect may be studied.

5. TYPICAL RESULTS

(a) Open - loop measurement : The constant K for oven plus driver controller is given by

$$K = \frac{\text{Final temperature Oven - Ambient temp.}}{\text{Input (Volts)}} = \frac{92.0 - 34.0}{0.5} = \frac{58.0}{0.5} = 116.0$$

From the graph between temperature and time Fig.11, the final oven temperature for a input of 0.5 volt is 92°C. Hence, K=58.0/0.5=116.0°C/V. With reference to Fig.10, T_1 and T_2 , as measured from the open-loop graph are: $T_1 = 255$ sec.; $T_2 = 15$ sec. (Note that these values may differ from unit to unit).

(b) Calculation for K_P , K_I , K_D : The coefficient settings according to Ziegler and Nichols are different types of control. The calculations for them are illustrated below.

(i) **P Control**:
$$K_P = \left(\frac{1}{K}\right) \cdot \frac{T_1}{T_2} = \left(\frac{1}{116.0}\right) \times \frac{255}{15} = 0.1466 \text{ V/°C}$$

With temperature-sensor sensitivity of 10 mV/ $^{\circ}$ C and maximum gain of P-amplifier as 20, actual K_{p max.}=0.1V/ $^{\circ}$ C. Hence P-setting required for proportional control is 73%. The Temperature vs Time plot is shown in Fig.12.

(ii) *P-I Control*:
$$K_P = \left(\frac{0.9}{K}\right) \cdot \frac{T_1}{T_2} = \left(\frac{0.9}{116.0}\right) x \cdot \frac{255}{15} = 0.1319$$

hence, P-setting required = 66%.

$$T_1 = 3.3T_2 = 3.3 \times 15 = 49.5 \text{ sec};$$

$$K_I = 1/T_I = 1/49.5 = 0.020/\text{sec}$$
.

$$K_{I \text{ max.}} = 1/28 = 0.036$$
, {see Eq. 2}

I-setting = $(0.020/0.036) \times 100 = 0.555 \times 100 = 55.5\% \approx 56\%$

The Temperature vs Time plot is shown in Fig.13.

Tcs-02 Page 8

(iii) *P-I-D Control*:
$$K_P = \left(\frac{1.2}{K}\right) \cdot \frac{T_1}{T_2} = \left(\frac{1.2}{116.0}\right) \times \frac{255}{15} = 0.1758$$

This gives a P-coefficient setting of 88%

 $T_1 = 2.0 T_2 = 2.0 \times 15 = 30 sec;$

 $K_I = 1/12 = 1/30 = 0.033 \text{ sec}$

I-setting = (0.033/0.036)x100 = 0.916 x 100 = $91.6\% \approx 92\%$

 $K_D = T_D = 0.5 T_2 = 0.5 \times 15 = 7.5 sec.$

 $K_{D \text{ max.}} = 23.5 \text{ sec.}, \{\text{see Eq. 3}\}$

D-setting = $(7.5/23.5) \times 100 = 0.319 \times 100 = 32\%$

The Temperature vs Time plot is shown in Fig.14.

(c) Results: Fig. 12-15 show the graph of temperature vs. time using P, PI, PID controller with above coefficient settings, for a set temperature of 60.0°C and also the realy control. A comparison of the graphs with that obtained using P control only should reveal the effectiveness of I and D controls in reducing steady-state error and percentage overshoot.

Since our intereset in mainly in the transient part of the resposes as well as the final steady state value of the temperature, the graph may be drawn with the break along the time axis, as shown in Fig. 11-14. This would give an expanded view of the initial part of the response for better clarity.

6. LIMITATIONS OF THE SYSTEM

It must be appreciated that this is a purely experimental model designed for studying the different control strategies available for controlling temperature. No effort has therefore been made to optimise a particular method for the circuits involved, which would be possible and desirable in an actual industrial controller. Nevertheless the salient features of the techniques have been brought out clearly for an easy understanding.

The performance of the system is naturally limited by the imperfections of the components used. These include the offset and drift in the operational amplifiers, leakage of the integrator and differentiating capacitors, and temperature dependence of a number of components. As a consequence, the steady-state error is not exactly zero inspite of Integral control in operation, contrary to what would be expected from theoretical analysis. Also, the accuracy of the temperature displayed on the panel may not be better than \pm 5%.

7. REFERENCES

- [1] 'Modern Control Engineering', K. Ogata, Prentice Hall India.
- [2] 'Applied Control Theory', J.R. Leigh, Peter Pergamon Ltd.

TCS-02 Page 9

PACKING LIST

(1). Tempertaure Controller System : One

(2). Patch Cords: 6 nos

a) Red (12"): Three

b) Black (12"): Three

(3). Tempertaure Controller Oven: One

TECHNICAL SUPPORT

Feed Back

If you have any comments or suggestions about this product or this manual please let us know. **Techno Instruments** appreciates any customer feedback. Your input helps us evaluate and improve our product.

To reach Techno Instruments

* Phone: +91-1332-272852, 277118

* Fax: +91-1332 - 277118

* e-mail: info@sestechno.com; sestechno.india@gmail.com

Contacting for Technical Support

Before you call the Techno Instruments Technical Support staff it would be helpful to prepare the following information:

- If your problem is with the Techno Instruments apparatus, note:
 - o Model number and S. No (usually listed on the label at the backside of instrument).
 - o Approximate age of the apparatus.
 - o A detailed description of the problem/ sequences of events may please be sent by email or Fax.
- If your problem relates to the instruction manual, note;

Model number and Revision (listed by month and year on the front cover).

Have the manual at hand to discuss your questions.

List of Control Laboratory Experiments manufactured by us

Digital Control System

Study of microprocessor control of a simulated linear system

• A.C. / D.C. Servomotor study

Study of characteristics of a 2-phase a.c. motor/ d.c motor. It allows the determination of torque-speed characteristics, inertia and friction parameters of an a.c. motor. Transfer function can also be evaluated in this system. A digital display is available for time constant measurement.

• A.C. / D.C. Position Control

Study of an a.c. / d.c servomotor angular position control system.

D.C. Speed Control

Study of a d.c. motor speed control system

• Temperature Controller System

To study a typical temperature control system (Compact Oven)

PID Controller

Performance evaluation and design of PID Controller

• Study of Synchro Devices

Study of synchro transmitter-receiver pair with calibrated dials. Receiver can be used as control transformer. Built-in balanced demodulator circuit. Digital display of ac/dc voltages.

• Linear Variable Differential Transformer

Study of the performance characteristics of a LVDT.

Magnetic Levitation System

Analysis and design of feedback control system to keep an object suspended in air.

• Stepper Motor Study

To study the operation and characteristics of a stepper motor with an 8085 based μ P-Kit and user software EPROM.

Relay Control System

To analyze a simulated relay control systems.

Compensation Design

To design a suitable cascade compensator for the given system and verify the resulting improvement.

Study of Second Order Networks

Study of synchro transmitter-receiver pair with calibrated dials. Receiver can be used as control transformer. Built-in balanced demodulator circuit. Digital display of ac/dc voltages.

• Linear System Simulator

To study the performance of First, Second and Third order Systems.

Potentiometric Error Detector

To study the performance of a potentiometer type d.c. position error detector.

Light Intensity Control

P and PI control of light intensity with provision for disturbance and transient studies

• Microprocessor Device Controller

Study of 8085 μ P based switching control of LED, Relay sequence, 7-Segment display. Besides it also allow the study of switch state input through 8255 port and SID/SOD operation of a microprocessor.

• Study of Temperature Transducers

Study of input-output characteristics of some common transducers like, thermistors (PTC and NTC), thermocouple, semiconductor sensors

Stroboscope

For measurement of shaft speed using stroboscope principle in harsh laboratory environment.

Function Generator

10Hz-2MHz; Square/Sine/ Triangular; Amplitude 0-3V (p-p); 4 digit digital counter

Study of Digital to Analog Convertor

Detailed study of D/A schemes – 4 bit weighted resistance, R-2R discrete network and 10-bit IC based circuits with 8085 based µP-kit and interface for CRO included.