CLAIMS

What is claimed is:

- 1 1. A method of controlling a DC feed from a subscriber loop interface
- 2 circuit (SLIC), comprising the steps of:
- 3 switching from a normal mode DC feed following a first characteristic
- 4 curve to a modified mode DC feed following a second characteristic curve
- 5 when $V_M \le V_{THRESH1}$, wherein V_M is a subscriber loop voltage; and
- 6 switching from the modified mode to the normal mode when
- 7 $V_{M} \ge V_{THRESH2}$, wherein $V_{THRESH1} < V_{THRESH2}$.
- 1 2. The method of claim 1 wherein the first characteristic curve is linear,
- 2 wherein the first characteristic curve is defined by an open circuit voltage,
- 3 V_{OC} , and a slope corresponding to a pre-determined impedance.
- 1 3. The method of claim 1 wherein the first characteristic curve is linear,
- 2 wherein the second characteristic curve is defined by a target open circuit
- 3 voltage, $V_{\text{OC_TARGET}}$, and a slope corresponding to a pre-determined impedance.
- 1 4. The method of claim 1 wherein the first and second characteristic
- 2 curves are linear, wherein the first characteristic curve is defined by an open
- 3 circuit voltage, V_{OC} , and a pre-determined slope, wherein the second
- 4 characteristic curve is defined by a target open circuit voltage, $V_{OC\ TARGET}$, and
- 5 the same pre-determined slope corresponding to a pre-determined
- 6 impedance.

- 1 5. The method of claim 4 wherein the pre-determined impedance is
- 2 approximately 320Ω .
- 1 6. A subscriber loop interface circuit apparatus comprising:
- 2 control circuitry for controlling a subscriber loop DC feed; and
- a plurality of programmable registers storing values defining a first
- 4 characteristic curve and a second characteristic curve, wherein the control
- 5 circuitry switches from a normal mode DC feed following a first characteristic
- 6 curve to a modified mode DC feed following a second characteristic curve
- 7 when $V_{M} \leq V_{THRESHI}$, wherein V_{M} is a subscriber loop voltage, wherein the
- 8 control circuitry switches from the modified mode to the normal mode when
- 9 $V_{M} \ge V_{THRESH2}$, wherein $V_{THRESH1} < V_{THRESH2}$.
- 1 7. The apparatus of claim 6 further comprising a digital signal processor.
- 1 8. The apparatus of claim 6, wherein one of the plurality of
- 2 programmable registers stores an open circuit voltage value, wherein the
- 3 open circuit voltage value in conjunction with a pre-determined slope
- 4 defines a linear first characteristic curve.
- 1 9. The apparatus of claim 6, wherein one of the plurality of
- 2 programmable registers stores a value enabling computation of a target open
- 3 circuit voltage value, wherein the target open circuit voltage value in

- 4 conjunction with a pre-determined slope defined a linear second
- 5 characteristic curve.
- 1 10. The apparatus of claim 9 wherein the plurality of registers store an
- 2 open circuit voltage value (V_{OC}) , a first relative threshold (V_{THL}) , a second
- 3 relative threshold (V_{THH}) , and a relative target open circuit voltage (V_{OC_DELTA}) ,
- 4 wherein $V_{THRESH1} = V_{OC} + V_{THL}$, $V_{THRESH2} = V_{OC} + V_{THH}$, and the target open circuit
- 5 voltage = $V_{OC} + V_{OC_DELTA}$.
- 1 11. The apparatus of claim 6 wherein the first and second characteristic
- 2 curves are linear, wherein the first characteristic curve is defined by an open
- 3 circuit voltage, V_{OC} , and a pre-determined slope, wherein the second
- 4 characteristic curve is defined by a target open circuit voltage, $V_{\text{OC_TARGET}}$, and
- 5 the same pre-determined slope corresponding to a pre-determined
- 6 impedance.
- 1 12. The apparatus of claim 11 wherein the pre-determined impedance is
- 2 approximately 320Ω .