

2. Notion of output at each iteration

1. Recurrence ⇒ Recurrent Neural Networks (we used ConvLSTM)

⇒ connected loss & back propagation per iteration

output

output

output 3

OUTDU I

Feedback requirements:

Feedback requirements:

- 1. Recurrence ⇒ Recurrent Neural Networks (we used ConvLSTM)
- 2. Notion of output at <u>each iteration</u> ⇒ connected loss & back propagation <u>per iteration</u>

How we implement the feedback model

How we implement the feedback model