Проверка гипотез о законе распределения

Грауэр Л.В.

Проверка гипотезы о законе распределения

Этапы

выдвижение гипотезы о виде закона распределения оценка параметров распределения проверка гипотезы

Критерии согласия для простых гипотез для сложных гипотез

Критерии согласия для простых гипотез

$$\xi$$
, $X_{[n]}$

$$H_0: F_{\xi}(x) = F_0(x)$$

$$H_1: F_{\xi}(x) \neq F_0(x)$$

Критерии согласия, основанные на сравнении теоретической плотности распределения и гистограммы теоретической и эмпирической функций распределения

Критерий χ^2 для простой гипотезы

Разобьем множество значений ξ на

$$\Delta_1, \Delta_2, \ldots \Delta_r$$
: $\Delta_i = (a_{i-1}, a_i], i = 1, \ldots, r$

$$p_i = P\{\xi \in \Delta_i | H_0\}$$

$$n_i = num\{X_i \in \Delta_i\}$$

Статистика критерия

$$\chi^2(X_{[n]}) = \sum_{i=1}^r \frac{n}{p_i} \left(\frac{n_i}{n} - p_i\right)^2$$

Теорема К.Пирсона

Если H_0 верна, тогда

$$\chi^2(X_{[n]}) \xrightarrow[n \to \infty]{\mathsf{d}} \zeta \sim \chi^2(r-1)$$

Критическая область и p-value

$$\alpha \in (0,1)$$

$$V_k = \{\chi^2(X_{[n]}) > \chi^2_{1-\alpha}(r-1)\}$$

$$p - value = 1 - F_{\chi^2}(\chi^2(X_{[n]}))$$

Пример

$$\xi \sim Pois(1)$$
 ?

$$n = 200$$

$$p_0 = 0.368$$
, $p_1 = 0.368$, $p_2 = 0.184$, $p_3 = 0.061$, $p_4 = 0.015$, $p_5 = 0.003$, $p_{>6} = 0.001$

i	0	1	2	≥ 3
n _i	70	78	34	18
p_i	0.368	0.368	0.184	0.080
np _i	73.6	73.6	36.8	16
$\frac{(n_i - np_i)^2}{np_i}$	0.18	0.26	0.21	0.25

Критерий Колмогорова для простой гипотезы

Пусть $F_0(x)$ непрерывна на \mathbb{R} .

Статистика Колмогорова:

$$D_n(X_{[n]}) = \sup_{x \in R} |F_n^*(x) - F_0(x)|.$$

Если верна H_0 , то

$$D_n(X_{[n]}) \xrightarrow[n \to \infty]{\mathsf{n.H.}} 0$$

Если верна H_1 , то

$$D_n(X_{[n]}) \xrightarrow[n \to \infty]{\text{n.H.}} \sup_{x \in \mathcal{B}} |G(x) - F_0(x)| > 0.$$

Теорема Колмогорова

Теорема А.Н. Колмогорова

Если гипотеза H_0 верна, и $F_0(x)$ — непрерывная функция на \mathbb{R} , тогда имеет место сходимость:

$$P\{\sqrt{n}D_n(X_{[n]}) < z\} \xrightarrow[n \to \infty]{} K(z) = 1 + 2\sum_{m=1}^{\infty} (-1)^m e^{-2m^2z^2}.$$

$$V_k = \{\sqrt{n}D_n(X_{[n]}) > d_{1-\alpha}\}$$

Пример

 $X_{[n]}$: 0.25, 1.48, 0.32, 0.17, 1.66, 0.29, 0.02, 1.31, 0.12, 3.09

$$\xi \sim E(1)$$
 ?

$X_{(i)}$	0.02	0.12	0.17	0.25	0.29	0.32	1.31	1.48	1.66	3.09
$F_0(x_{(i)})$										
$F^*(x_{(i)})$	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9

$$D_{10} = \sqrt{10}D_{10} =$$
 $\alpha = 0.05, \quad d_{1-\alpha} = 1.36$

Критерии согласия для сложных гипотез

$$\xi$$
, $X_{[n]}$
$$H_0: F_{\xi} \in \{F(\cdot/\theta): \theta \in \Theta \subset \mathbb{R}^I\}$$

$$H_1: F_{\xi} \notin \{F(\cdot/\theta): \theta \in \Theta \subset \mathbb{R}^I\}$$

Критерий χ^2 для сложных гипотез

Разобьем множество значений ξ на

$$\Delta_1, \Delta_2, \ldots \Delta_k$$
: $\Delta_i = (a_{i-1}, a_i], i = 1, \ldots, k$

$$p_i(\theta) = P\{\xi \in \Delta_i | H_0\}$$

$$n_i = num\{X_j \in \Delta_i\}$$

Теорема Фишера

Пусть Θ – открытое множество в \mathbb{R}^I . Пусть выполнены условия:

- **1**. Для любого $\theta \in \Theta$: $\sum_{i=1}^{k} p_i(\theta) = 1$.
- **2**. Для любого $\theta \in \Theta$: $p_i(\theta) > c > 0$ для любого $i = \overline{1, k}$.
- **3.** Для любого $\theta \in \Theta$ существуют и непрерывны производные: $\partial p_i(\theta)/\partial \theta_j$, $\partial^2 p_i(\theta)/(\partial \theta_u \partial \theta_v)$ для любого $i=1,\ldots,k$, $u,v,j=1,\ldots,l$.
- **4**. Для любого $\theta \in \Theta$ матрица $\left(\frac{\partial p_i(\theta)}{\partial \theta_j}\right)_{i,j=\overline{1,k}}$ имеет ранг I.

Пусть $\hat{ heta} = \arg\max_{ heta \in \Theta} L(\{n_i\}, heta)$, где

$$L(\lbrace n_i \rbrace, \theta) = \frac{n!}{n_1! \cdot \ldots \cdot n_k!} \prod_{i=1}^k p_i^{n_i}(\theta),$$

или $\hat{ heta}$ — оценка по методу минимума хи-квадрат:

$$\hat{ heta} = \arg\min_{ heta \in \Theta} \sum_{i=1}^k \frac{(n_i - np_i(heta))^2}{np_i(heta)}.$$

Тогда, если гипотеза H_0 верна, то

$$\chi^{2}(\hat{\theta}) = \sum_{i=1}^{k} \frac{(n_{i} - np_{i}(\hat{\theta}))^{2}}{np_{i}(\hat{\theta})} \xrightarrow[n \to \infty]{d} \zeta \sim \chi^{2}_{k-l-1}.$$

Критическая область и p-value

$$\chi^2(\hat{\theta}) = \sum_{i=1}^k \frac{(n_i - np_i(\hat{\theta}))^2}{np_i(\hat{\theta})}$$

$$\alpha \in (0,1)$$

$$V_k = \{\chi^2(\hat{\theta}) > \chi^2_{1-\alpha}(k-l-1)\}$$

$$p-value = 1 - F_{\chi^2}(\chi^2(\hat{ heta}))$$

Критерий Колмогорова для сложных гипотез?

Оценки вероятности ошибки 1го рода

Гипотеза	E(0.5)	N(5, 2)	U(1, 5)
Простая	0.048	0.044	0.048
Сложная	0.004	0.000	0.045

Оценки мощности

Гипотеза	0.75E + 0.25U	0.75N + 0.25U	0.75U + 0.25N
Простая	0.596	0.083	0.521
Сложная	0.028	0.001	0.492

Возможный вариант:

разбить выборку на 2 части:

построить оценки по 1й части проверить гипотезу по 2й части