aboba

Содержание

	Введе	ение	
1	Постро	рение математической модели	4
	1.1	Постановка задачи	4
	1.2	Формализация	4
	1.3	Построение молели	

Введение

Одним из ключевых процессов в природе являются течения в жидких средах. Эти течения играют важную роль в переносе веществ и энергии из одной точки в другую. Примером могут служить течения в реках, морях и океанах, которые способствуют не только транспортировке питательных веществ, но и формированию экосистем.

Кроме того, аналогичные процессы происходят и в газообразной среде. В атмосфере воздух также движется, создавая ветры, которые переносят влагу, пыль и другие частицы. Эти воздушные течения влияют на климатические условия, распределение тепла и осадков, а также на миграцию животных и распространение семян растений.

Рассмотрим подобный перенос в трехмерном пространстве-время.

1 Построение математической модели

1.1 Постановка задачи

Цель работы:

- Сформулировать модель двуиерного переноса.
- Выбрать схемы решения.
- Провести численные эксперименты с различными методами аппроксимайции, для понимания их влияния на решение.
 - Провести анализ решений.

Дано:

- -(x,y) координаты пространства,
- -t время,
- -u(x,y,t) функция, задающая концентрацию вещества в любой момент времени (удельная масса или энергия (отнесенная к единице объема).
 - -u(x,y,0) поле переноса
 - $-\vec{v}=(v_x,v_y)$ скорость переноса (const),
 - -f(x,y,t) описывает источники и стоки,

1.2 Формализация

Будем рассматривать задачу для линейного уравнения переноса. Для аппроксимации будем использовать два метода: неявная схема и метод Лагранжевых частиц.

1.3 Построение модели

Рассмотрим газовую или жидкую сплошную среду. Примем: все точки среды находятся в неравновесном состоянии. Это приводит к возникновению полей концентраций, температур, давлений, а наличие градиентов этих параметров вызывает перенос массы и энергии.

Выделим элемент объема движущейся жидкости в неоднородном поле некоторого потенциала переноса. Под потенциалом переноса u понимают удельную массу или энергию (отнесенную к единице объема). u(x,y,z,t) - скалярная величина.

Известно, что скалярная функция u называется потенциалом вектороной функции \vec{q} , если между ними существует связь вида [?]:

$$\vec{q} = -\nabla u.$$

Далее будем рассматривать связь, как пропорциональность.

Таким образом, поток переносимой субстанции (массы или энергии) является векторной величиной \vec{q} . В случае переноса массы под потенциалом переноса u обычно понимают концентрацию компонента в смеси.

В рассматриваемой среде могут существовать, так называемые, объемные (непрерывно распределенные по объему) источники или стоки массы и энергии. В химической технологии под ними подразумеваются химические превращения.

Известно, что процессы тепло- и массообмена осуществляются двумя основными механизмами: молекулярным и конвективным. Молекулярный перенос (диффузия, теплопроводность) возникает в результате стремления системы к термодинамическому равновесию, а конвективный вызывается наличием поля скоростей в жидком или газовом объеме V.

Следует отметить, что в случае переноса энергии в форме теплоты существует ещѐ и радиантный перенос (тепловое излучение), вклад которого учитывают при достаточно высоких температурах.

Процессы молекулярного переноса массы и энергии описываются соответствующими феноменологическими уравнениями, являющимися, как правило, линейными градиентными законами.

Опуская доказательство, изложенное в [?], можно сделать вывод: в случае молекулярного и конвективного переноса общая плотность потока массы или энергии складывается из двух векторных величин:

$$\vec{q} = \vec{q}_M + \vec{q}_K,$$

где \vec{q}_M - векторная величина молекулярного переноса, \vec{q}_K - векторная величина конвективного переноса.

В газовой или жидкой среде, находящейся в движении, выделим произвольный объем V, ограниченный поверхностью A. На поверхности

Рисунок 1.1 — Объём серды, ограниченный поверхностью A

A выделим элемент поверхности d и представим его в векторной форме, умножив на единичный вектор \vec{n} , нормальный к этому элементу и направленный из объема, $\vec{n}dA = d\vec{A}$.

Составим балансовое уравнение:

Накопление внутри объёма = вход + образование.

Примем, что в произвольном объеме нет источников субстанции или стоков, т.е. образование равно нулю.

Плотность потока субстанции через площадку $d\vec{A}$ будет $-\vec{q}d\vec{A}$. Знак минут интвертирует потоки (входные становятся положительными, а выходящие - отрицательными).

Результирующий поток будет равен:

$$-\iint_{A} \vec{q} d\vec{A}. \tag{1.1}$$

Физически этот интеграл представляет разницу между входящими и выходящими потоками субстанции через всю поверхность A.

Если в объёме V происходит накопление субстанции, то это вызовет изменение потенциала переноса во времени $\frac{du}{dt}$, которое для элементарного объёма dV можно представить как $\frac{du}{dt}dV$, а для всего объема V как интеграл:

$$M = \iiint_{V} \frac{du}{dt} dV. \tag{1.2}$$

Приравняв выражения (1.1) и (1.2), получим:

$$-\iint_{A} \vec{q} d\vec{A} = \iiint_{V} \frac{du}{dt} dV. \tag{1.3}$$

Согласно теореме Остроградского-Гаусса [?], дающей преобразование интеграла, взятого по объёму V, ограниченному поверхностью A, в интеграл, взятый по этой поверхности, будем иметь:

$$\iint_{A} \vec{q} d\vec{A} = \iiint_{V} \operatorname{div} \vec{q} dV. \tag{1.4}$$

С учётом (1.3), соотношение (1.4) примет вид:

$$\iiint_V \left(\frac{\partial \phi}{\partial t} + \operatorname{div} \vec{q}\right) dV.$$

Интеграл, взятый по произвольному объему, может быть равен нулю только в случае равенства нулю подынтегральной функции:

$$\frac{\partial \phi}{\partial t} + \operatorname{div} \vec{q} = 0.$$

Полученное выражение есть основное дифференциальное уравнение переноса субстанции – массы или энергии.

Перепишем его для двумерной задачи:

$$\frac{\partial u}{\partial t} + v_x \frac{\partial u}{\partial x} + v_y \frac{\partial u}{\partial y} = f(x, y, t). \tag{1.5}$$

Также установим начальные и граничные условия:

$$u(0,0,t) = \psi(t), \ u(x,y,0) = \phi(x)$$
 (1.6)

Таким образом, из (1.5) и (1.6) получаем систему:

$$\begin{cases} \frac{\partial u}{\partial t} + v \frac{\partial u}{\partial x} = f(x,t) \\ u(x,y,0) = \phi(x,y) \\ u(0,0,t) = \psi(t) \end{cases}$$
 (1.7)