Foundations of Computing Lecture 1

Arkady Yerukhimovich

January 14, 2025

Modeling Computation

Outline

1 Strings, Languages, and Automata

2 Modeling Computation

3 Deterministic Finite Automata (DFA)

- ullet Alphabet Σ : Set of symbols
 - Ex: $\Sigma = \{a, b\}$, $\Sigma = \{0, 1\}$

- Alphabet Σ : Set of symbols
 - Ex: $\Sigma = \{a, b\}, \Sigma = \{0, 1\}$
- \bullet String: sequence of symbols from Σ
 - ex: v = aba, w = abaaa
 - ex: v = 001, w = 11001
 - \bullet λ, ϵ empty string
 - ullet Length of a string: |v|=3 and $|\lambda|=0$

- Alphabet Σ : Set of symbols
 - Ex: $\Sigma = \{a, b\}, \ \Sigma = \{0, 1\}$
- ullet String: sequence of symbols from Σ
 - ex: v = aba, w = abaaa
 - ex: v = 001, w = 11001
 - λ, ϵ empty string
 - Length of a string: |v| = 3 and $|\lambda| = 0$
- Operations on Strings
 - v = aba, w = abaaa
 - Concatenation: vw = abaabaaa
 - Reverse: $w^R = aaaba$
 - Repeat: $v^2 = abaaba$ and $v^0 = \epsilon$

- Alphabet Σ : Set of symbols
 - Ex: $\Sigma = \{a, b\}, \ \Sigma = \{0, 1\}$
- ullet String: sequence of symbols from Σ
 - ex: v = aba, w = abaaa
 - ex: v = 001, w = 11001
 - \bullet λ, ϵ empty string
 - Length of a string: |v|=3 and $|\lambda|=0$
- Operations on Strings
 - v = aba, w = abaaa
 - Concatenation: vw = abaabaaa
 - Reverse: $w^R = aaaba$
 - Repeat: $v^2 = abaaba$ and $v^0 = \epsilon$
- Kleene Closure
 - For an alphabet Σ , Σ^* is the set of all strings formed by concatenating zero or more symbols from Σ
 - Ex: If $\Sigma = \{0,1\}$ then Σ^* is the set of all binary strings, including ϵ

- Language L: Set of strings
 - ullet We say that any $s\in L$ is in the language

- Language L: Set of strings
 - We say that any $s \in L$ is in the language
- Examples:
 - $L_1 = \{ab, aa\}$

- Language L: Set of strings
 - We say that any $s \in L$ is in the language
- Examples:
 - $L_1 = \{ab, aa\}$
 - $L_2 = \{a^n b^n : n \ge 0\}$

- Language L: Set of strings
 - We say that any $s \in L$ is in the language
- Examples:
 - $L_1 = \{ab, aa\}$
 - $L_2 = \{a^n b^n : n \ge 0\}$
 - The language of all English sentences

- Language L: Set of strings
 - We say that any $s \in L$ is in the language
- Examples:
 - $L_1 = \{ab, aa\}$
 - $L_2 = \{a^n b^n : n \ge 0\}$
 - The language of all English sentences
 - For any alphabet Σ , Σ^* is a language

- Language L: Set of strings
 - We say that any $s \in L$ is in the language
- Examples:
 - $L_1 = \{ab, aa\}$
 - $L_2 = \{a^n b^n : n \ge 0\}$
 - The language of all English sentences
 - For any alphabet Σ , Σ^* is a language
- Size or a language:
 - A language L has size |L|

- Language L: Set of strings
 - We say that any $s \in L$ is in the language
- Examples:
 - $L_1 = \{ab, aa\}$
 - $L_2 = \{a^n b^n : n \ge 0\}$
 - The language of all English sentences
 - For any alphabet Σ , Σ^* is a language
- Size or a language:
 - A language L has size |L|
 - |L| can be finite e.g. $|L_1| = 2$

- Language L: Set of strings
 - We say that any $s \in L$ is in the language
- Examples:
 - $L_1 = \{ab, aa\}$
 - $L_2 = \{a^n b^n : n \ge 0\}$
 - The language of all English sentences
 - For any alphabet Σ , Σ^* is a language
- Size or a language:
 - A language L has size |L|
 - |L| can be finite e.g. $|L_1| = 2$
 - |L| can be infinite e.g., $L_2, L_3, L_4 = \infty$

We will often be interested in languages recognized by a particular "computer".

Deciding Languages vs. Computing Functions

- Deciding Languages:
 - We will often want to "decide" a language L.

Deciding Languages vs. Computing Functions

- Deciding Languages:
 - We will often want to "decide" a language L.
 - Given a string x, output whether $x \in L$ or not
- Computing Functions:
 - ullet Given alphabet Σ

Deciding Languages vs. Computing Functions

- Deciding Languages:
 - We will often want to "decide" a language L.
 - Given a string x, output whether $x \in L$ or not
- Computing Functions:
 - ullet Given alphabet Σ
 - Define a function $f_L: \Sigma^* \to \{0,1\}$ s.t. $f_L(x) = 1$ iff $x \in L$

Remember

Deciding the language L is the same as computing F_L

Outline

Strings, Languages, and Automata

Modeling Computation

3 Deterministic Finite Automata (DFA)

Viewing this as a language

```
L_{light} = \{ \text{set of all flip sequences resulting in the light being on} \}

L_{light} = \{ 1 \text{ flip, 3 flips, 5 flips, ...} \}
```

• An automaton is an abstract model of a computing device

- An automaton is an abstract model of a computing device
- An automaton consists of:
 - An input mechanism

- An automaton is an abstract model of a computing device
- An automaton consists of:
 - An input mechanism
 - A control unit

- An automaton is an abstract model of a computing device
- An automaton consists of:
 - An input mechanism
 - A control unit
 - Possibly, a storage mechanism

- An automaton is an abstract model of a computing device
- An automaton consists of:
 - An input mechanism
 - A control unit
 - Possibly, a storage mechanism
 - Possibly, an output mechanism

- An automaton is an abstract model of a computing device
- An automaton consists of:
 - An input mechanism
 - A control unit
 - Possibly, a storage mechanism
 - · Possibly, an output mechanism
- Control unit transitions between internal states, as determined by a next-state or transition function
- There are a finite number of states

- An automaton is an abstract model of a computing device
- An automaton consists of:
 - An input mechanism
 - A control unit
 - Possibly, a storage mechanism
 - · Possibly, an output mechanism
- Control unit transitions between internal states, as determined by a next-state or transition function
- There are a finite number of states

A note on input size

An automaton must be able to accept input of arbitrary length.

- An automaton is an abstract model of a computing device
- An automaton consists of:
 - An input mechanism
 - A control unit
 - Possibly, a storage mechanism
 - · Possibly, an output mechanism
- Control unit transitions between internal states, as determined by a next-state or transition function
- There are a finite number of states

A note on input size

- An automaton must be able to accept input of arbitrary length.
- The input may be much larger than the number of states.

- An automaton is an abstract model of a computing device
- An automaton consists of:
 - An input mechanism
 - A control unit
 - Possibly, a storage mechanism
 - · Possibly, an output mechanism
- Control unit transitions between internal states, as determined by a next-state or transition function
- There are a finite number of states

A note on input size

- An automaton must be able to accept input of arbitrary length.
- The input may be much larger than the number of states.
- Our goal is a single machine that works for all inputs

Automata we will study

- Finite Automata (Deterministic and Non-deterministic)
 - These model Finite State Machines with no external memory

Automata we will study

- Finite Automata (Deterministic and Non-deterministic)
 - These model Finite State Machines with no external memory
- Pushdown automata
 - Add the simplest form of memory to a Finite State Machine

Automata we will study

- Finite Automata (Deterministic and Non-deterministic)
 - These model Finite State Machines with no external memory
- Pushdown automata
 - Add the simplest form of memory to a Finite State Machine
- Turing Machines
 - Add unrestricted memory to a Finite State Machine

Outline

Strings, Languages, and Automata

2 Modeling Computation

3 Deterministic Finite Automata (DFA)

What is an Automaton

Computation on string x = 1101

Computation on string x = 1101

Computation on string x = 1101

- Start in state *q*1
- 2 read 1, follow transition to q^2
- \odot read 1, follow transition to q2
- read 0, follow transition to q3
- read 1, follow transition to q3
- "reject" (output 0) because q3 is not an accept state

Finite Automaton - Formal Definition

Finite Automaton

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where:

- Q is a finite set of states
- ullet Σ is a finite input alphabet
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept states

•
$$Q = \{q1, q2, q3\}$$

- $Q = \{q1, q2, q3\}$
- $\Sigma = \{0, 1\}$

- $Q = \{q1, q2, q3\}$
- $\bullet \ \Sigma = \{0,1\}$

$$\delta = \begin{array}{c|cccc} & 0 & 1 \\ \hline q1 & q1 & q2 \end{array}$$

- $Q = \{q1, q2, q3\}$
- $\bullet \ \Sigma = \{0,1\}$

Defining this formally: $M = (Q, \Sigma, \delta, q1, F)$

- $Q = \{q1, q2, q3\}$
- $\Sigma = \{0, 1\}$

- $Q = \{q1, q2, q3\}$
- $\Sigma = \{0, 1\}$

- q1 is the start state
- $F = \{q2\}$