4. Граници на редици. Аритметични действия със сходящи редици

Галина Люцканова

14 октомври 2013 г.

Какво е числова редица? Нещо просто - това са числа наредени по някакво правило.

<u>Пример 4.1:</u> 1, 2, 3, ... (многоточието означава и така нататък. В някои случаи могат да бъдат изброени всички числа, от които се състои редицата, а понякога това е невъзможно, затова се ползва многоточие)

Пример 4.2: 76, 2, 3

<u>Пример 4.3:</u> 2, 76, 3 (предният пример и този не са един и същ, защото при редиците има значение как са наредени числата)

Пример 4.4: 12, 5, 1, 7, 8

Пример 4.5: $3, 6, 9, 12, \dots$

А сега да видим как всичко това се изразява на математически език:

Определение 4.1: Числова редица е функция от вида:

$$a: B \to \mathbb{R}$$
.

където $B=\{x|x< n, x\in \mathbb{N}, n\in \mathbb{N}\}$ или $B=\mathbb{N},$ а \mathbb{N} е множеството на естествените числа и \mathbb{R} е множеството на реалните числа.

Сега малко разяснения по определението. Числовата редица е функция, която на всяко от първите n естествени числа (или на всяко естествено число) се съпоставя реално число.

Пример 4.6: Да разгледаме редицата:

$$2, 4, 6, 8, 10, 12, \dots$$

На първо място стои числото 2, на второ числото 4, на трето числото 6, По този начин на естественото число 1 сме съпоставили реалното число 2, на 2 - числото 4, на 3 - числото 6 и т.н. .Всъщност тази редица е функция с дефиниционна област множеството на естествените числа и множество от стойности естествените числа, кратни на 2.

Пример 4.7: Надявам се да е ясно, че тази редица не е същата като редицата с разменени 2 и 4:

$$4, 2, 6, 8, 10, 12, \dots$$

Определение 4.2: Безкрайна числова редица е функция от вида:

$$a: \mathbb{N} \to \mathbb{R}$$
.

където \mathbb{N} е множеството на естествените числа и \mathbb{R} е множеството на реалните числа. Тя се бележи обикновено с $\{a_n\}_{n=1}^{\infty}$ или само $\{a_n\}$.

От определението следва, че редиците от **пример 4.1**, **пример 4.5**, **пример 4.6** и **пример 4.7** са безкрайни числови редици.

Определение 4.3: Функция с дефиниционна област множеството на първите n естествени числа се нарича крайна числова редица.

<u>Пример 4.8(за крайна числова редица):</u> Да разгледаме редицата:

Тя е крайна числова редица, също така и останалите от изброените примери по-горе.

Ако функцията a задава числова редица $\{a_n\}_{n=1}^{\infty}$, функционалните стойности a(x) се наричат членове на редицата.

- a(1) първият член на редицата (бележи се още и с a_1),
- a(2) вторият член на редицата (бележи се още и с a_2),

. . . .

a(n) - n-тият член на редицата или още общ член на редицата (бележи се още и с a_n)

....

Например за **пример 4.1** имаме $a_1 = 2, a_2 = 2, a_3 = 3, ..., a_k = k, ...,$ а за **пример 4.8** имаме $a_1 = 1, a_2 = 2, a_3 = 3, ..., a_{10} = 10.$

Начини на задаване на числови редици Една редица може да бъде зададена чрез

- 1. изброяване на част или всички елементи от редицата (изброяване на всички елементи от редицата е възможно само когато редицата е крайна) всички примери, посочени досега.
- 2. общият член (формулата, с която се задават членовете на една редица за произволна стойност на n, се нарича формула за общия член.). В пример 4.1 формулата е $a_n = n$, пример 4.6 $a_n = 2n$. Това са формулите, които са най-близко до ума, но това не значи че няма други формули за общия член примерно за пример 4.1 може и да е формулата $a_n = n + (n-1)(n-2)(n-3)$ примерно. Това идва да ни покаже, че за еднозначност е по-добре да използваме формула за общия член или рекурентни връзки между елементите (това след примера).

<u>Пример 4.9:</u> $a_n = n^2$, който е типичен при записа на редици. Това е редицата:

$$1, 4, 9, 16, \dots, k^2, \dots$$

3. чрез рекурентна връзка между елементите т.е. чрез задаване на първия член (или първите няколко члена) и формула, която изразява всеки следващ член на редицата чрез предходните (един или няколко).

Пример 4.10: $b_n=b_{n-1}+b_{n-2}$, като тук задължително трябва да се посочат началните елементи $b_1=1,b_2=1$. Тогава получаваме, че $b_3=b_1+b_2=1+1=2,\,b_4=b_2+b_3=1+2=3$ и т.н. В явен вид редицата се записва:

Между другото тази редица си има специално наименование, нарича се редица на Фибоначи

4. чрез неявна дефиниция

Изобразяване на редици Тъй като редиците са функции, то от тема 3 трябва да е ясно, че тогава можем да начертаем тяхната графика.

Например графиката на редицата $a_n = n$ е:

A за $a_n = n^2$ графиката е:

Анализът се занимава с безкрайни числови редици, поради това нататък като говоря за редица, ще се подразбира безкрайна числова редица.

Действия с редици Ако са дадени две редици $\{a_n\}_{n=1}^\infty$ и $\{b_n\}_{n=1}^\infty$

- 1. Сбор на двете редици е редицата $c_n = a_n + b_n$;
- 2. Разлика на двете редици е редицата $c_n = a_n b_n$;
- 3. Произведение на двете редици е редицата: $c_n = a_n \cdot b_n$;
- 4. Частно на двете редици (при положение, че $b_n \neq 0$ за всяко $n \in N$) е редицата $c_n = \frac{a_n}{b_n}$.

$$3, 6, 9, \dots,$$

a b_n e

Тогава сборът на двете редици е редица, чиито k-ти член се намира като сбор на к-тите членове на другите 2 редици т.е. в нашия случай c_n е:

$$4, 7, 10, \dots,$$

защото $c_1=a_1+b_1=3+1=4,$ $c_2=a_2+b_2=6+1=7,$ $c_3=a_3+b_3=9+1=10,....,$ $c_n=a_n+b_n=3n+1.$

Разликата на тези 2 редици (т.е. $a_n - b_n$) е редицата със следния вид:

защото $c_1'=a_1-b_1=3-1=2,$ $c_2'=a_2-b_2=6-1=5,$ $c_3'=a_3-b_3=9-1=8,$... , $c_n=a_n-b_n=3n-1.$

Аналогично произведението и частното на двете редици е:

$$3, 6, 9, \dots,$$

защото $d_1=a_1\cdot b_1=3\cdot 1=3,\, d_2=a_2\cdot b_2=6\cdot 1=6,\,...,\, d_n=a_n\cdot b_n=3n\cdot 1=3n$ и аналогично за делението $d_1'=\frac{a_1}{b_1}=\frac{3}{1}=3,\, d_2'=\frac{a_2}{b_2}=\frac{6}{1}=6,\,...,\, d_n'=\frac{a_n}{b_n}=\frac{3n}{1}=3n.$

Определение 4.4: Редицата $\{a_n\}_{n=1}^{\infty}$ е ограничена отгоре, ако съществува число $M \in \mathbb{R}$, такова че за всяко $n \in \mathbb{N}$ е в сила $a_n \leq M$.

или еквивалентно:

Определение 4.5: Редицата $\{a_n\}_{n=1}^{\infty}$ е ограничена отгоре, ако членовете на редицата образуват множество, което е ограничено отгоре.

Определение 4.6: Редицата $\{a_n\}_{n=1}^{\infty}$ е ограничена отдолу, ако съществува число $M \in \mathbb{R}$, такова че за всяко $n \in \mathbb{N}$ е в сила $a_n \geq M$.

Определение 4.7: Редицата $\{a_n\}_{n=1}^{\infty}$ е ограничена, ако е ограничена отгоре и ограничена отдолу.

Определение 4.8: Редицата $\{a_n\}_{n=1}^{\infty}$ е неограничена, ако не е ограничена отдолу или не е ограничена отгоре.

Пример 4.13: Да разгледаме редицата:

$$2, 4, 6, 8, \dots$$

Тя е ограничена отдолу от 2 (очевидно всеки член на редицата $a_n = 2n$ е по-голям или равен на 2) и неограничена отгоре. Да допуснем, че редицата е ограничена отгоре. Тогава съществува число M, такова че $M \geq 2n \quad \forall n \in \mathbb{N}$. Да разгледаме числото $2^{\Gamma}M^{\Gamma}$ ($^{\Gamma}M^{\Gamma}$ означава наймалкото цяло число надминаващо M, примерно $^{\Gamma}1.111^{\Gamma} = 2$, $^{\Gamma}0.0007^{\Gamma} = 1$, $^{\Gamma}0.998^{\Gamma} = 1$). Понеже $2^{\Gamma}M^{\Gamma}$ е член от редицата $\{a_n\}$ и $2^{\Gamma}M^{\Gamma} > M$, то тогава редицата a_n не е ограничена отгоре от M, от където достигнахме до противоречие. Следователно получихме, че редицата е ограничена отдолу, но не е ограничена отгоре.

Пример 4.14: Да разгледаме друг пример:

$$1, \frac{1}{2}, \frac{1}{3}, \dots$$

аналогично на предишния пример се показва, че редицата е ограничена (ограничена отдолу от 0 и ограничена отгоре от 1).

<u>Пример 4.15:</u> Последен пример за ограниченост на редици. Да разгледаме редицата:

Тя е ограничена отгоре от 9 и ограничена отдолу от 1 т.е. е ограничена. Редиците, които са с краен брой членове, винаги са ограничени - отдолу от минималния си елемент, отгоре - от максималния.

Пример 4.16: Какво научихме досега, че ако редицата $\{a_n\}_{n=1}^{\infty}$ е зададена чрез общия си член примерно $a_n=\frac{1}{n}$ можем да си сметнем елементарно съответния член на редицата. В случая $a_1=1,\ a_2=\frac{1}{2},...,$ $a_{521}=\frac{1}{521},...,a_{7654}=\frac{1}{7654},...$ Но на жадните математици за още знание това не им е достатъчно. Добре, а какво става в безкрайността? Можем ли да сметнем a_{∞} (дебело подчертавам, че този запис не е валиден и се използва в случая само за онагледяване на примера)? Така да си помислим по следния начин, нашата редица се състои от членове, те са безкраен брой - какво означава това, че до който и член да сме, то винаги има следващ, и искаме да сметнем "безкрайния член". За да можем да сметнем какво се случва в безкрайността, за да сме сигурни, а не да целим, редицата трябва да се установи около едно число. В нашия пример членовете се доближават все повече и повече до нулата (ако не сте убедени все още, може да сметнете още от членовете на редицата примерно $a_{10000}, a_{100000}, a_{100000000}, \dots$). На интуитивно ниво би трябвало да е станало ясно, че безкрайният член на редицата е 0. Сега да въведем строго понятието "безкраен член", което на математически език се нарича граница на редица:

Определение 4.9: Казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ е сходяща, ако за всяко $\varepsilon > 0$ съществува индекс на член от редицата ν , зависещ от ε , такъв че винаги когато $n > \nu$ да е изпълнено $|a_n - a| < \varepsilon$. Числото a се нарича граница на редица и съществува само ако $\{a_n\}_{n=1}^{\infty}$ е сходяща. Границата на редицата се бележи по следния начин $\lim_{n \to +\infty} a_n = a$ (чете се като границата на редицата a_n при n клонящо към безкрайност е a).

По-кратко определението ще записваме по следния начин:

$$\forall \varepsilon > 0 \exists \nu \in \mathbb{N} \forall n > \nu : |a_n - a| < \varepsilon \iff$$

$$\iff \forall \varepsilon > 0 \exists \nu \in \mathbb{N} \forall n > \nu : -\varepsilon < a_n - a < \varepsilon \iff$$

$$\iff \forall \varepsilon > 0 \exists \nu \in \mathbb{N} \forall n > \nu : a - \varepsilon < a_n < a + \varepsilon \iff$$

$$\iff \forall \varepsilon > 0 \exists \nu \in \mathbb{N} \forall n > \nu : a_n \in (a - \varepsilon, a + \varepsilon).$$

Сега доказахме, че всеки член с номер по-голям от ν ще попадне в произволна ε -околност на a (или другояче в произволно близко до a). Да се върнем отново на определението. От него се вижда, че ако редицата е сходяща, то извън произволна ε -околност на a, може да има членове с номера по-малки от ν , което е фиксирано число. Така получаваме еквивалентно определение за сходимост на редица:

Определение 4.10: Казваме, че редицата $\{a_n\}_{n=1}^{\infty}$ е сходяща и има граница a, ако съществува реално число a такова, че извън всяка ε -околност на a има най-много краен брой членове на редицата.

<u>Пример 4.17:</u> Нека да докажем с определението за сходимост, че границата на редицата $a_n = \frac{1}{n}$ е 0 т.е. за всяко $\varepsilon > 0$ трябва да съществува $\nu \in \mathbb{N}$, такова че при $n > \nu$ е изпълнено $|a_n - a| < \varepsilon$. В нашия случай можем да пресметнем $|a_n - a| = |\frac{1}{n} - 0| = |\frac{1}{n}| = \frac{1}{n}$. Да фиксираме $\varepsilon > 0$, тогава трябва така да изберем ν , че за всяко $n > \nu$ да е изпълнено

$$|a_n - a| = \left| \frac{1}{n} - 0 \right| = \left| \frac{1}{n} \right| = \frac{1}{n} < \varepsilon \tag{1}$$

Понеже $n>\nu$, то $\frac{1}{n}<\frac{1}{\nu}$ т.е. за да е изпълнено неравенството (1) можем да изберем ν да е такова, че да е изпълнено неравенството $\varepsilon>\frac{1}{\nu}$. Най-малкото ν , което изпълнява това неравенство, е $\nu=\lceil\frac{1}{\varepsilon}\rceil$ (не трябва да забравяме, че $\nu\in\mathbb{N}$). Така ако изберем $\nu=\lceil\frac{1}{\varepsilon}\rceil$, ще бъде в сила определението за сходимост - за всяко $\varepsilon>0$ съществува $\nu=\frac{1}{\varepsilon}$ такова, че ако $n>\nu$, то тогава $|a_n-a|=|\frac{1}{n}-0|=|\frac{1}{n}|=\frac{1}{n}<\frac{1}{\nu}=\frac{1}{\frac{1}{\varepsilon}}=\varepsilon$.

Определение 4.11: Ако редицата $\{a_n\}_{n=1}^{\infty}$ не е сходяща, то тя е разходяща;

Пример 4.18: Да разгледаме редицата

$$1, -1, 1, -1, 1, -1...$$

Тази редица не е сходяща. Но защо е така? Първо на интуитивно ниво ние просто в безкрайност не можем да кажем дали ще отидем в 1 или в -1. Сега доказателството. Да допуснем противното т.е. редицата е сходяща и границата и нека е a. Тогава по определението имаме за всяко $\varepsilon>0$ съществува число ν , зависещо от ε , такова че винаги когато $n>\nu$ да е изпълнено $|a_n-a|<\varepsilon$. Нека да изберем $\varepsilon=\frac{1}{2}>0$. Тогава при $n>\nu$ и n=2k+1 имаме $|1-a|<\varepsilon=\frac{1}{2}$, а при при $n>\nu$ и n=2k имаме $|-1-a|<\varepsilon=\frac{1}{2}$ т.е. получаваме:

$$|1-a|<rac{1}{2}, ext{ ako } n=2k+1$$

$$|-1-a|<rac{1}{2},\ {
m axo}\ n=2k$$

След това разкриваме модулите:

$$-\frac{1}{2} < 1 - a < \frac{1}{2}$$
, ако $n = 2k + 1$

$$-\frac{1}{2} < -1 - a < \frac{1}{2}$$
, ако $n = 2k$

събираме числата

$$-\frac{3}{2} < -a < -\frac{1}{2}$$
, ако $n = 2k + 1$

$$\frac{1}{2}<-a<\frac{3}{2},$$
ако $n=2k$

умножаваме по -1 и получаваме:

$$\frac{1}{2} < a < \frac{3}{2}$$
, ако $n = 2k + 1$

$$-\frac{3}{2} < a < -\frac{1}{2}$$
, ако $n = 2k$

Така изкарахме, че $a<-\frac{1}{2}$ и едновременно $a>\frac{1}{2}$, откъдето достигнахме до противоречие, следователно редицата не е сходяща.

<u>Твърдение 4.1:</u> Редицата $\{a_n\}_{n=1}^{\infty}$, където $a_n=a$ за всяко $n\in\mathbb{N},$ има граница а.

Доказателство:

Доказателството следва непосредствено от определението. за всяко $\varepsilon > 0$ съществува число $\nu = 0$, зависещо от ε , такова че винаги когато $n > \nu = 0$ да е изпълнено $|a_n - a| = |a - a| = 0 < \varepsilon$.

Свойства на сходящите редици:

1. Ако към една редица прибавим или премахнем краен брой елементи, то това не влияе на нейната сходимост.

Доказателство:

Ше използваме второто определение за сходимост, а именно - Казваме, че редицата $\{a_n\}_{n=1}^\infty$ е сходяща и има граница a, ако извън всяка ε -околност на a има само краен брой членове на редицата. Ако към нашата редица прибавим краен брой елементи, то дори всички те да са много далече, извън произволна ε -околност на a ще има най-много краен брой елементи (краен брой + краен брой е краен брой). Аналогично и при премахването на краен брой елементи.

2. Нека $a_n \leq b_n \quad \forall n \in \mathbb{N}$. Нека a_n и b_n са сходящи и $\lim_{n \to +\infty} a_n = a$, $\lim_{n \to +\infty} b_n = b$. То тогава $a \leq b$. (По-просто - ако всеки член на редицата a_n е по-малък или равен от всеки член на редицата b_n и редиците са сходящи(и знаем къде отиват в безкрайност редиците), то тогава в безкрайният член на a_n е по-малък или равен от безкрайния член на b_n).

Доказателство:

Да допуснем противното т.е. b < a. Да фиксираме $\varepsilon = \frac{a-b}{2}$. Понеже a_n е сходяща и има граница a, то определението съществува индекс ν_1 , такъв че за $n > \nu_1$ имаме $|a_n - a| < \varepsilon$ т.е. $a - \varepsilon < a_n < a + \varepsilon$. Понеже b_n е сходяща и има граница b, то определението съществува

индекс ν_2 , такъв че за $n>\nu_2$ имаме $|b_n-b|<\varepsilon$ т.е. $b-\varepsilon< b_n< b+\varepsilon$. Нека $\nu=\max(\nu_1,\nu_2)$. Тогава за $n>\nu$ получаваме

$$\frac{a+b}{2} = a - \frac{a-b}{2} = a - \varepsilon < a_n < a + \varepsilon = a + \frac{a-b}{2} = \frac{3a-b}{2}$$

$$\frac{-a+3b}{2} = b - \frac{a-b}{2} = b - \varepsilon < b_n < b + \varepsilon = b + \frac{a-b}{2} = \frac{a+b}{2}$$

т.е. получаваме, че

$$b - \varepsilon < b_n < b + \varepsilon = \frac{a+b}{2} = a - \varepsilon < a_n < a + \varepsilon$$

следователно $b_n < a_n$ за $n > \nu$, което е в противоречие с условието.

Забележки:

- (а) Всъщност не е задължително и неравенството $a_n \leq b_n$ да е изпълнено за $\forall n \in \mathbb{N}$. Оказва се достатъчно $a_n \leq b_n$ да е изпълнено за безброй много стойности на n. (абсолютно аналогично върви доказателството)
- (б) Дали ако в горната теорема е изпълнено $a_n < b_n$ за всяко n, то следва ли, че a < b? Отговорът е не. Ще дам контрапример. Да разгледаме редиците $a_n = \frac{1}{n}$ и $b_n = 0$. То тогава е очевидно, че $a_n = 0 < \frac{1}{n} = b_n$ за всяко n > 0. Но както видяхме в **пример** 4.9 границата на редицата a_n е 0, каквато е и границата на редицата b_n (от твърдението), т.е. $0 = \lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = 0$.
- 3. Ако a_n е сходяща, то тя е ограничена.

Доказателство:

Нека границата на $\{a_n\}_{n=1}^{\infty}$ е A. Избираме $\varepsilon > 0$ произволно, например $\varepsilon = 999$. Тогава съществува $\nu \in \mathbb{N}$, такова че при $n > \nu$ е в сила $|a_n - A| < \varepsilon$, т.е. получаваме, че $A - \varepsilon < a_n < A + \varepsilon$ при $n > \nu$. Знаем, че членовете при $n \leq \nu$ може да са на произволно място по числовата ос. Ако означим с $m_1 = \min\{a_1, a_2, ..., a_{\nu}, A - \varepsilon\}$, а $m_2 = \max\{a_1, a_2, ..., a_{\nu}, A + \varepsilon\}$. От тук получаваме, че $m_1 \leq a_n \leq m_2$ за всяко $n \in \mathbb{N}$.От където следва, че всяка сходяща редица е и ограничена.

4. Нека a_n е сходяща и има граница l и c_n е сходяща и има граница l. Нека $a_n \leq b_n \leq c_n$ за $n > \nu$, където $\nu \in \mathbb{N}$. Тогава b_n е сходяща и има граница l. Това свойство е известно още с името лема за двамата полицаи (лема за двамата милиционери), защото ако си подхванат от двете страни от по един полиций и двамата отиват затвора, то ти отиваш в затвора.

Доказателство:

Избираме $\varepsilon > 0$. Тогава съществува $N_1 \in \mathbb{N}$, такова че при $n > N_1$ е изпълнено $|a_n - l| < \varepsilon$ т.е. $l - \varepsilon < a_n < l + \varepsilon$ (понеже a_n е сходяща и има граница l). Освен това съществува $N_2 \in N$, такова че при $n > N_2$ имаме $|c_n - l| < \varepsilon$, т.е. т.е. $l - \varepsilon < c_n < l + \varepsilon$. От условието имаме, че $a_n \leq b_n \leq c_n$ за $n > \nu$. Тогава за $n > \max\{N_1, N_2, \nu\}$ имаме:

$$l - \varepsilon < a_n \le b_n \le c_n < l + \varepsilon$$

Така получихме, че $l - \varepsilon < b_n < l + \varepsilon$ за $n > \max\{N_1, N_2, \nu\}$, което означава, че b_n е сходяща и има граница l.

<u>Следствие 4.1:</u> Нека $\lim_{n\to +\infty} a_n=0,$ а $\{b_n\}$ е ограничена редица, то тогава $a_n.b_n\to 0.$

Доказателство:

Искаме да докажем, че $\{a_n.b_n\}$ е сходяща и клони към 0 т.е. за всяко $\varepsilon_0>0$ съществува $\nu_0>0$, такова че ако $n>\nu_0$ е в сила $|a_n\cdot b_n-0|=|a_n\cdot b_n|<\varepsilon_0$. За целта фиксираме $\varepsilon_0>0$. Понеже $\{b_n\}$ е ограничена редица, то съществува M, такова че $|b_n|\leq M$. Тъй като a_n е сходяща и има граница 0, то тогава за всяко $\varepsilon>0$ съществува $\nu>0$, такова че ако $n>\nu$ е в сила $|a_n-0|=|a_n|<\varepsilon$. Фиксираме $\varepsilon=\frac{\varepsilon_0}{M}$. Сега остава да намерим ν_0 , такова че да е изпълнено наравенството $|a_n\cdot b_n|<\varepsilon_0$. Неравенството е изпълнено при $\nu_0>\nu>0$:

$$|a_n \cdot b_n| = |a_n| \cdot |b_n| \le \varepsilon \cdot M = \frac{\varepsilon_0}{M} \cdot M = \varepsilon_0.$$

Но какъв е проблемът, ако b_n е неограничена редица? Нали в училище са ни учили че нула, по каквото и да е число е нула. За да видим по ясно къде е проблемът да разгледаме следния пример:

Пример 4.19: Нека да разгледаме 2 редици с общи членове съответно $a_n = \frac{1}{n}$ и $b_n = 2n$. В предишните примери показахме, че $\{a_n\}$ е сходяща и границата и е 0 и че $\{b_n\}$ е неограничена. Какво се случва с произведението на двете редици - $c_n = a_n \cdot b_n = \frac{1}{n} \cdot 2n = 2$. Получихме редица с граница 2.

5. Ако $\{a_n\}$ е сходяща и клони към A, то и $\{|a_n|\}$ е сходяща и клони към |А|.

Доказателство: $\{a_n\}$ е сходяща и клони към A, т.е. за всяко $\varepsilon > 0$ съществува естествено число ν , такова че ако $n>\nu$ е в сила $|a_n-A|<\varepsilon$.

(a) Нека A>0. Тогава ще докажем, че $a_n>0$ при $n>\nu$ и ще получим:

$$||a_n| - |A|| = |a_n - A| < \varepsilon$$

и $\varepsilon=\frac{A}{2}>0$, то тогава съществува $\nu\in\mathbb{N}$, такова че при $n>\nu$ е изпълнено $|a_n-A|<\frac{A}{2}$. Така получаваме, че $-\frac{A}{2}< a_n-A<\frac{A}{2}$ или $a_n>\frac{A}{2}>0$ е в сила при $n>\nu$. Тогава получаваме, че при

- (б) Доказателството върви аналогично, ако A < 0.
- (в) Нека A = 0 и за всяко $\varepsilon > 0$ съществува естествено число ν , такова че ако $n > \nu$, то $||a_n| - 0| = |a_n| = ||a_n - 0| < \varepsilon$.
- 6. Ако $\{a_n\}$ и $\{b_n\}$ са сходящи и с граници съответно А и В, тогава:
 - (a) $\{a_n + b_n\}$ е сходяща и клони към A + B;
 - (б) $\{a_n b_n\}$ е сходяща и клони към A B;
 - (в) $\{a_n \cdot b_n\}$ е сходяща и клони към $A \cdot B$;
 - (г) Ако $B \neq 0$, то редицата $\left\{ \frac{a_n}{b_n} \right\}$ е сходяща и клони към $\frac{A}{B}$;

Доказателство:

(а) Избираме $\varepsilon > 0$ произволно и нека $\varepsilon_1 = \frac{\varepsilon}{2} > 0$. Понеже $\{a_n\}$ и $\{b_n\}$ са сходящи и с граници съответно A и B, то съществуват $N_1, N_2 \in \mathbb{N}$, такива че при $n > N_1$ е изпълнено $|a_n - A| < \varepsilon_1$ и при $n > N_2$ е в сила $|b_n - B| < \varepsilon_1$. В такъв случай при $n > \max\{N_1, N_2\}$ имаме:

$$|(a_n+b_n)-(A+B)| = |a_n-A+b_n-B| < |a_n-A|+|b_n-B| < \varepsilon_1+\varepsilon_1 = \varepsilon_1$$

Така получихме, че $\{a_n + b_n\}$ е сходяща и клони към A + B.

(б) Трябва да докажем, че редицата $a_n - b_n = a_n + (-b_n)$ е сходяща. За целта ще докажем, че ако b_n е сходяща, то и $-b_n$ е сходяща и границата ѝ е -B. То тогава понеже сбор от сходящи редици е сходяща редица, ще следва, че $\{a_n - b_n\}$ е сходяща A - B. Фиксираме $\varepsilon > 0$. Понеже редицата b_n е сходяща, то съществува $\nu \in \mathbb{N}$, такова че при $n > \nu$ е изпълнено $|b_n - B| < \varepsilon$. Тогава $n > \nu$ е изпълнено:

$$|-b_n - (-B)| = |-b_n + B| = |b_n - B| < \varepsilon.$$

(в) Понеже $\{a_n\}$ е сходяща, следователно $\{a_n\}$ е ограничена. Тогава имаме, че

$$0 \le |a_n.b_n - A.B| = |a_n.b_n - a_n.B + a_n.B - A.B| \le$$

$$\le |a_n.b_n - a_n.B| + |a_n.B - A.B| = |a_n.(b_n - B)| +$$

$$+ |(a_n - A).B| \le |a_n|.|b_n - B| + |a_n - A|.|B|$$

Понеже $\{a_n\}$ е ограничена, то и $\{|a_n|\}$ е ограничена. Редицата $c_n=b_n-B$ е сходяща и клони към B-B=0, като разлика на две редици. Редицата $\{|c_n|\}$ е сходяща и клони към |0|, то тогава $|a_n|.|b_n-B|\to 0$ от следствие 1. Аналогично $|a_n-A|.|B|\to 0$. От

$$0 \le |a_n.b_n - A.B| \le |a_n|.|b_n - B| + |a_n - A|.|B|$$

и $|a_n|.|b_n-B|+|a_n-A|.|B|\to 0$ по лемата за двамата полицаи следва, че an.bn е сходяща и клони към A.B;

(г) Ще докажем, че ако $B \neq 0$ и $b_n \to B$, то $\frac{1}{b_n} \to \frac{1}{B}$. То тогава от предишните доказателства ще следва:

$$\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n} \to A \cdot \frac{1}{B} = \frac{A}{B}$$

и с това теоремата ще е доказана. Тъй като $B \neq 0$, следователно |B| > 0.

і. Нека да разгледаме първо случая B>0. Тъй като b_n е сходяща и $\varepsilon=\frac{B}{2}>0$, то тогава съществува $\nu\in\mathbb{N}$, такова че при $n>\nu$ е изпълнено $|b_n-B|<\frac{B}{2}$. Така получаваме, че $-\frac{B}{2}< b_n-B<\frac{B}{2}$ или $b_n>\frac{B}{2}>0$ е в сила при $n>\nu$. От тук излиза, че $\frac{1}{b_n}<\frac{2}{B}$ е изпълнено при $n>\nu$. Тогава получаваме, че при $n>\nu$:

$$0 \le \left| \frac{1}{b_n} - \frac{1}{B} \right| = \left| \frac{B - b_n}{b_n \cdot B} \right| = \frac{|b_n - B|}{b_n \cdot B} < \frac{2}{B^2} |b_n - B|$$

Но знаем, че редицата $|b_n-B|\to 0$, а редицата $c_n=\frac{2}{B^2}$ е ограничена, следователно получаваме, че $\frac{2}{B^2}|b_n-B|\to 0$ по следствие 1 и по лемата за двамата милиционери излезе, че $\frac{1}{b_n}\to \frac{1}{b}$.

іі. Аналогично, ако b < 0. Опитайте се да го докажете сами. И така поличихме, че редицата $\frac{a_n}{b_n}$ е сходяща и клони към $\frac{A}{B}$.

Понякога думата клони се използва и по отношение на редици, които са разходящи. И се оказва удобно да се въведе следната дефиниция:

Определение 4.12: Казваме, че редицата a_n клони към $+\infty$ (бележим с $\lim_{n\to +\infty} a_n = +\infty$), ако за всяко число M съществува ν , такова че при $n>\nu$ е изпълнено, че $a_n>M$.

Или с думи прости - колкото и голямо число M да изберем, то почти всички членове на редицата ще са по-големи от него. Да дадем първо един пример за такава редица, за да не остава човек с чувството, че си измисляме някакви понятия, които никъде не се използват:

Пример 4.20: Да разгледаме редицата $a_n=n$. Тази редица клони към $+\infty$. Да допуснем противното т.е. съществува число M>0, такова че $a_n\leq M$. Да разгледаме числото $\lceil M \rceil$ (което означава най-малкото цяло число по-голямо от M). То $\lceil M \rceil$ е член от $\{a_n\}$ и $\lceil M \rceil \geq M$. Така достигнахме до противоречие.

Определение 4.13: Казваме, че редицата a_n клони към $-\infty$ (бележим с $\lim_{n \to +\infty} a_n = -\infty$), ако за всяко число P съществува ν , такова че при $n > \nu$ е изпълнено, че $a_n < P$.

<u>Пример 4.21:</u> Да разгледаме редицата $a_n = -5n$. Тази редица клони към $-\infty$. Доказателството е аналогично на предния пример.

<u>Теорема 4.1:</u> Нека е дадена редицата a_n , като $a_n > 0$ за всяко n. Да образуваме редицата $b_n = \frac{1}{a_n}$. Тогава ако

1.
$$\lim_{n \to +\infty} a_n = 0$$
, to $\lim_{n \to +\infty} \frac{1}{a_n} = +\infty$

2.
$$\lim_{n\to+\infty} a_n = +\infty$$
, to $\lim_{n\to+\infty} \frac{1}{a_n} = 0$

Доказателство:

- 1. Нека е изпълнено $\lim_{n \to +\infty} a_n = 0$. Да изберем едно произволно положително число A. Ако $\varepsilon = \frac{1}{A}$, то по дефиницията за сходяща редица съществува ν , такова че при $n > \nu$ имаме $|a_n 0| < \varepsilon = \frac{1}{A}$ т.е. получихме $a_n < \frac{1}{A}$ следователно $A < \frac{1}{a_n}$ при $n > \nu$. Това означава, че $\lim_{n \to +\infty} \frac{1}{a_n} = \infty$.
- 2. Нека е изпълнено $\lim_{n \to +\infty} a_n = \infty$. Да изберем едно произволно положително число A. Ако $\varepsilon = \frac{1}{A}$, то по дефиницията за сходяща редица съществува ν , такова че при $n > \nu$ да имаме $a_n > A$ т.е. получихме $a_n > \frac{1}{\varepsilon}$ следователно $\frac{1}{a_n} < \varepsilon$ при $n > \nu$ или $\left| \frac{1}{a_n} 0 \right| < \varepsilon$ при $n > \nu$. Това означава, че $\lim_{n \to +\infty} \frac{1}{a_n} = 0$.

1.
$$\lim_{n\to+\infty} a_n = 0$$
, to $\lim_{n\to+\infty} \frac{1}{a_n} = -\infty$

2.
$$\lim_{n\to+\infty} a_n = -\infty$$
, to $\lim_{n\to+\infty} \frac{1}{a_n} = 0$

Доказателство: Доказателството е аналогично на предишното.