

粗糙集简介作者 黄正华

目录 什么是粗糙 应用举例 参考文献

粗糙集简介

作者 黄正华

武汉大学 数学与统计学院

2024年10月3日

目录

粗糙集简介作者 黄正华

3 录 十么是粗糙 並用举例 参考文献

- 1 什么是粗糙集
 - 2 粗糙集应用举例
 - ③ 参考文献

粗糙集简介

目录 **什么是粗糙** 应用举例

• 几个符号:

U 有限论域, $U = \{x_1, x_2, \ldots, x_n\}$.

R 等价关系 (满足自反、对称和传递性).

 $[x]_R$ 等价类, $[x]_R = \{ y \in U \mid (x, y) \in R \}.$

U/R 等价关系 R 划分论域 U, 所得等价类的集合.

粗糙集简介 作者 黄正华

目录 **什么是粗糙**∮ 应用举例

• 几个符号:

U 有限论域, $U = \{x_1, x_2, \dots, x_n\}$.

R 等价关系 (满足自反、对称和传递性).

 $[x]_R$ 等价类, $[x]_R = \{ y \in U \mid (x, y) \in R \}$.

U/R 等价关系 R 划分论域 U, 所得等价类的集合.

• 问题:

Question

给定 $X \subseteq U$, 如何用等价类

$$[x_{i_1}]_R$$
, $[x_{i_2}]_R$, \cdots , $[x_{i_k}]_R$

描述表达 X?

粗糙集简介

日求 什么是粗精

应用举例

• 给定论域 U;

- 用一个等价关系将 U 进行划分;
- 给定目标集合 X;
- X 的下近似 $\underline{R}X = \{x \in U \mid [x]_R \subseteq X\}.$
- X 的边界域.

粗糙集简介

目录

什么是粗

- 给定论域 U;
- 用一个等价关系将 U 进行划分;
- 给定目标集合 X;
- X 的下近似 $\underline{R}X = \{x \in U \mid [x]_R \subseteq X\}.$
- X 的边界域.

粗糙集简介

什么是粗料 应用举例

应用举例 参老文献

- 给定论域 U;
- 用一个等价关系将 U 进行划分;
- 给定目标集合 X;
- X 的下近似 $\underline{R}X = \{x \in U \mid [x]_R \subseteq X\}.$
- X 的边界域.

粗糙集简介

日求 什么是粗粉

应用举例

● 给定论域 *U*;

- 用一个等价关系将 U 进行划分;
- 给定目标集合 X;
- X 的下近似 $\underline{R}X = \{x \in U \mid [x]_R \subseteq X\}.$
- X 的边界域.

粗糙集简介

- 给定论域 U;
- 用一个等价关系将 *U* 进行划分;
- 给定目标集合 X;
- X 的下近似 $\underline{R}X = \{x \in U \mid [x]_R \subseteq X\}.$
- X 的边界域.

粗糙集的定义

粗糙集简介 作老 带正化

目录 什么是粗糙复 京田光/図

应用举例 参考文献

给定 $X \subseteq U$, 要用 U/R 中的元素来描述、表达 X, 不一定能精确地进行. 但常常可以用关于 X 的一对下近似、上近似来界定 X, 这导致粗糙集概念的产生.

粗糙集的定义

粗糙集简介作者 黄正华

目录 什么是粗糙;

什么是粗糙; 应用举例 给定 $X \subseteq U$, 要用 U/R 中的元素来描述、表达 X, 不一定能精确地进行. 但常常可以用关于 X 的一对下近似、上近似来界定 X, 这导致粗糙集概念的产生.

定义 (PAWLAK(1982)^[2])

设 R 是论域 U 上的等价关系, 对集合 $X\subseteq U$, 偶 对 $\left(\underline{R}X,\overline{R}X\right)$ 称为 X 在近似空间 (U,R) 上的一个粗糙近似, 其中

RX、 $\overline{R}X$ 分别称为 X 的 R 下近似和 R 上近似.

一个决策表的例子

粗糙集简介

作者 黄正华

目录 什么是粗糙集 **应用举例**

(a) 医疗信息决策表

(a) 2/1 H.B. (c) (c)					
论域	条件属性			决策属性	
病人	头痛	肌肉痛	体温	流感	
e_1	是	是	正常	否	
e_2	是	是	高	是	
e_3	是	是	很高	是	
e_4	否	是	正常	否	
e_5	否	否	高	否	
e_6	否	是	很高	是	
e_7	否	否	高	是	
e_8	否	是	很高	否	

一个决策表的例子

(a) 医疗信息决策表

(-) = 1 1 5 5 5 5						
论域		条件属性	决策属性			
病人	头痛	肌肉痛	体温	流感		
e_1	是	是	正常	否		
e_2	是	是	高	是		
e_3	是	是	很高	是		
e_4	否	是	正常	否		
e_5	否	否	高	否		
e_6	否	是	很高	是		
e_7	否	否	高	是		
e_8	否	是	很高	否		

(b) 数字化表达的决策表

` '				
U		C		D
	a	b	c	d
1	1	1	1	0
2 3	1	1	2	1
3	1	1	3	1
4	0	1	1	0
5	0	0	2	0
6	0	1	3	1
7	0	0	2	1
8	0	1	3	0

决策表条件属性的区分矩阵

粗糙集简介 作者 黄正华

日录 什么是粗糙。 **应用举例** 决策表的区分矩阵如下表所示 (由于对称性只给出了其下三角部分).

	1	2	3	4	5	6	7	8
1								
2	c							
3	c	c						
4	a	a, c	a					
5	a, b, c	a, b	a, b, c	b, c				
6	a, c	a, c	a, c	c	b, c			
7	a, b, c	a, b	a, b, c	b, c		b, c		
8	a, c	a, c	a, c	c	b, c		b, c	

容易得到条件属性约简为 $\{a, c\}$.

条件属性的约简

粗糙集简介 作者 黄正华

目录 什么是粗糙射 **並用举例** 通过属性约简, 决策表简化为如下的形式:

表: 约简的决策表

\overline{U}	(D	
•	a	c	d
1	1	1	0
2	1	2	1
3	1	3	1
4	0	1	0
5	0	2	0
6	0	3	1
7	0	2	1
8	0	3	0

由表知, $D/\{d\} = \{\{1,4,5,8\}, \{2,3,6,7\}\};$ $U/\{a,c\} = \{\{1\}, \{2\}, \{3\}, \{4\}, \{5,7\}, \{6,8\}\}.$

决策规则

粗糙集简介作者 黄正华

日录 什么是粗糙复

应用举例

记 $D_0 = \{1, 4, 5, 8\}, D_1 = \{2, 3, 6, 7\}, 则 <u>R</u><math>D_0 = \{1, 4\},$ <u>R</u> $D_1 = \{2, 3\}.$ 进而得到确定的决策规则:

$$r_1:(a, 1) \wedge (c, 1) \longmapsto (d, 0);$$
 (2)

$$r_2: (a, 0) \land (c, 1) \longmapsto (d, 0); \tag{3}$$

$$r_3:(a,1)\wedge(c,3)\longmapsto(d,1);$$
 (4)

$$r_4:(a, 1) \wedge (c, 2) \longmapsto (d, 1).$$
 (5)

决策规则

粗糙集简介作者 黄正华

口水 什么是粗糙组

应用举例 参考文献 记 $D_0 = \{1, 4, 5, 8\}, D_1 = \{2, 3, 6, 7\}, 则 <u>R</u><math>D_0 = \{1, 4\},$ <u>R</u> $D_1 = \{2, 3\}.$ 进而得到确定的决策规则:

$$r_1:(a, 1) \wedge (c, 1) \longmapsto (d, 0); \tag{2}$$

$$r_2:(a, 0) \land (c, 1) \longmapsto (d, 0);$$
 (3)

$$r_3:(a, 1) \wedge (c, 3) \longmapsto (d, 1);$$
 (4)

$$r_4:(a, 1) \wedge (c, 2) \longmapsto (d, 1).$$
 (5)

这样就从无序庞杂的信息中得到为人们提供参考的决策规则:

$$(头痛, 是)$$
且 (体温, 正常) \longmapsto (流感, 否); (6)

$$(头痛, 否)$$
 且 (体温, 正常) \longmapsto (流感, 否); (7)

$$(头痛, 是)$$
 且 $(体温, 很高) \mapsto (流感, 是);$ (8)

$$(头痛, 是)$$
且 (体温, 高) \longmapsto (流感, 是). (9)

考文献

粗糙集简介

作者 黄正华

张文修, 吴伟志, 梁吉业, 李德玉.

粗糙集理论与方法.

科学出版社, 北京, 2001.

Z. Pawlak.

Rough sets.

International Journal of Computer Information Science, 5:341–356, 1982.

W. Ziarko.

Variable precision rough set model.

Journal of Computer and System Sciences, 46:39–59, 1993.

J. D. Katzberg and W. Ziarko.

Variable precision extension of rough sets.

Fundamenta Informaticae, 27:155–168, 1996.

Thank you!

AUTHOR: HUANG Zheng-hua

Address: School of Mathematics & Statistics

Wuhan University

Wuhan, 430072, China

EMAIL: huangzh@whu.edu.cn

