International Rectifier

IRL5602S

HEXFET® Power MOSFET

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- P-Channel
- Fast Switching
- Fully Avalanche Rated

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The D²Pak is a surface mount power package capable of accommodating die sizes up to HEX-4. It provides the highest power capability and the lowest possible on-resistance in any existing surface mount package. The D²Pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0W in a typical surface mount application.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	-24	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ -4.5V	-17	Α
I _{DM}	Pulsed Drain Current ①	-96]
P _D @T _C = 25°C	Power Dissipation	75	W
	Linear Derating Factor	0.5	W/°C
V_{GS}	Gate-to-Source Voltage	± 8.0	V
E _{AS}	Single Pulse Avalanche Energy®	290	mJ
I _{AR}	Avalanche Current①	-12	А
E _{AR}	Repetitive Avalanche Energy®	7.5	mJ
dv/dt	Peak Diode Recovery dv/dt ③	-0.81	V/ns
T _J	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	1

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		2.0	°C // //
$R_{\theta JA}$	Junction-to-Ambient (PCB Mounted,steady-state)**		40	°C/W
www.irf.com				1

IRL5602S

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20			V	V _{GS} = 0V, I _D = -250μA
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.013		V/°C	Reference to 25°C, I _D = -1mA ^⑤
				0.042		V _{GS} = -4.5V, I _D = -12A ⊕
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.062	Ω	V _{GS} = -2.7V, I _D = -10A ④
				0.075		$V_{GS} = -2.5V, I_D = -10A$ ④
V _{GS(th)}	Gate Threshold Voltage	-0.7		-1.0	V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$
9fs	Forward Transconductance	12			S	V _{DS} = -15V, I _D = -12A ^⑤
	Desire to Course I colored Course			-25	μA	V _{DS} = -20V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			-250	μΑ	V _{DS} = -16V, V _{GS} = 0V, T _J = 150°C
	Gate-to-Source Forward Leakage			500	nA	V _{GS} = -8.0V
I _{GSS}	Gate-to-Source Reverse Leakage			-500	na l	V _{GS} = 8.0V
Qg	Total Gate Charge			44		I _D = -12A
Q _{gs}	Gate-to-Source Charge			8.7	nC	$V_{DS} = -16V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			19		V _{GS} = -4.5V, See Fig. 6 and 13 ⊕ ⑤
t _{d(on)}	Turn-On Delay Time		9.7			V _{DD} = -10 V
t _r	Rise Time		73		ns	$I_D = -12A$
t _{d(off)}	Turn-Off Delay Time		53		110	$R_G = 6.0\Omega$, $V_{GS} = 4.5V$
t _f	Fall Time		84			$R_D = 0.8\Omega$, See Fig. 10 \oplus \odot
L _S	Internal Source Inductance		7.5		T	Between lead,
LS					nH	and center of die contact
C _{iss}	Input Capacitance		1460			V _{GS} = 0V
Coss	Output Capacitance		790		pF	$V_{DS} = -15V$
C _{rss}	Reverse Transfer Capacitance		370			f = 1.0MHz, See Fig. 5®

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-24		MOSFET symbol
	(Body Diode)		-24	Α Α	showing the	
I _{SM}	Pulsed Source Current			00		integral reverse
	(Body Diode) ①		-96		p-n junction diode.	
V _{SD}	Diode Forward Voltage			-1.4	V	$T_J = 25^{\circ}C$, $I_S = -12A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		58	88	ns	$T_J = 25^{\circ}C, I_F = -12A$
Q _{rr}	Reverse RecoveryCharge		54	81	nC	di/dt = -100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25$ °C, L = 3.0mH $R_G = 25\Omega$, $I_{AS} = -14A$. (See Figure 12)
- $\label{eq:loss_distance} \mbox{ } \mbox{ } \mbox{I}_{SD} \leq \mbox{-12A}, \mbox{ } \mbox{di/dt} \leq \mbox{120A/} \mu s, \mbox{ } \mbox{V}_{DD} \leq \mbox{V}_{(BR)DSS}, \mbox{ }$ $T_J \leq 175^{\circ}C$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

^{**} When mounted on FR-4 board using minimum recommended footprint.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRL5602S International Rectifier

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

* Reverse Polarity of D.U.T for P-Channel

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For P-Channel HEXFETS

IRL5602S

International

TOR Rectifier

TO-263AB Package Details

MINIMUM RECOMMENDED FOOTPRINT

NOTES:

- 1 DIMENSIONS AFTER SOLDER DIP.
- 2 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
- 3 CONTROLLING DIMENSION: INCH.

4 HEATSINK & LEAD DIMENSIONS DO NOT INCLUDE BURRS

Part Marking

LEAD ASSIGNMENTS

1 - GATE 2 - DRAIN

3 - SOURCE

(This is an IRF530S with assembly lot code 9B1M)

International Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331
IR GREAT BRITAIN: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020
IR CANADA: 15 Lincoln Court, Brampton, Ontario L6T3Z2, Tel: (905) 453 2200
IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 1 Kim Seng Promenade, Great World City West Tower, 13-11, Singapore 237994 Tel: ++ 65 838 4630
IR TAIWAN:16 Fl. Suite D. 207, Sec. 2, Tun Haw South Road, Taipei, 10673, Taiwan Tel: 886-2-2377-9936

http://www.irf.com/ Data and specifications subject to change without notice. 5/99