EE511-F18 (Silvester)

Project #1: Due Thursday Sept 13

- (1) Let $X \sim U(0,1)$, evaluate the mean, μ and variance, σ_X^2 .
- (2) Generate a sequence of N = 100 random numbers between [0,1] and compute the sample

mean
$$m=\frac{1}{N}\sum_{i=1}^{N}X_i$$
 and sample variance $s^2=\frac{\sum_{i=1}^{N}(X_i-m)^2}{N-1}$ and compare to μ and σ^2 . Also estimate the (sample) variance of the sample mean (based on the Central Limit Theorem). Repeat for $N=10,000$.

(3) The Central Limit Theorem says that $m=\frac{\sum_{i=1}^n X_i}{n} \to N(\mu,\sigma^2/n)$. Repeat the experiment in (2 with N=100) 50 times to generate a set of sample means $\{m_j,j=1..50\}$. Do they appear to be approximately normally distributed values with mean μ and variance σ^2/n ? (4) We want to check whether there is any dependency between X_i and X_{i+1} Generate a sequence of N+1 random numbers that are $\sim U(0,1)$ for N=1,000 Compute

$$Z = \left\lceil \frac{\sum\limits_{i=1}^{N} X_i X_{i+1}}{N} \right\rceil - \left\lceil \frac{\sum\limits_{i=1}^{N} X_i}{N} \right\rceil \left\lceil \frac{\sum\limits_{j=2}^{N+1} X_j}{N} \right\rceil$$

Comment on what you expect and what you find.

(5) Extra Credit for 2 bonus points. Generate 1000 samples between [0,1]. Consider that the interval [0,1] is split into 10 segments of length 0.1 and count the number of samples that fall into each interval. The resulting observations of the number in each interval should be a uniformly distributed discrete RV. Use the χ^2 Goodness of Fit test to determine whether the observations are within expectations or not.