

Precision and Recall

True Positive Rate (Recall or Sensitivity)
TP rate = TP / (TP + FN)

Positive Predictive Value (Precision)
PP value = TP / (TP + FP)

• The Precision-Recall Curve shows the relationship between precision and recall for every cut-off / Discriminant Probability Threshold.

- The PRC is a graph with:
 - ✓ Recall in the x-axis
 - ✓ Precision in the y-axis

 Every point on the PRC represents a chosen cut-off. Every point provides the precision and the recall for a certain cut-off / threshold.

For the threshold at •:

- Precision = 0.8
- Recall = 0.7

- The area under the PRC provides an aggregate measure of performance across all possible classification thresholds.
- Higher area indicates better model performance

As threshold decreases:

- Precision decreases
 - TP / (TP + FP)
- Recall increases
 - (TP / (TP + FN))

As threshold decreases:

- Precision decreases
 - TP / (TP + FP)
- Recall increases
 - (TP / (TP + FN))
- Threshold = 0
 - Recall = 1
 - Precision ~ balance ratio

As threshold decreases:

- Precision decreases
 - TP / (TP + FP)
- Recall increases
 - (TP / (TP + FN))
- Threshold approx.
 - Recall approx. 0
 - Precision approx. 1

Precision-Recall Curve: Perfect model

Precision-Recall Curve: Random

Random model on perfectly balanced data

For all thresholds:

- Precision = 0.5
 - Half of the positive predictions are wrong
- Recall varies

Precision-Recall Curve: Random

Random model on imbalanced data

Balancing ratio 1:10

For all thresholds:

- Precision = balancing ratio
- Recall varies

PRC vs ROC Curve

• It is harder to discriminate between ROC curves with large areas under the curve.

- PRC are robust to data imbalance
 - Better / more visual indicator to compare model performance

THANK YOU

www.trainindata.com