

NASA Simulation Activities Supporting the Columbia Accident Investigation and Space Shuttle Return to Flight

Dr. Woodrow Whitlow, Jr.

NASA Kennedy Space Center

June 28, 2004

NASA's Vision

To improve life,
To extend life to there,
To find life beyond.

NASA's Mission

To understand and protect our home planet
To explore the Universe and search for life
To inspire the next generation of explorers
... as only NASA can.

A Brief Overview of the Shuttle Launch System

Space Shuttle
Main Engines

Components of the Launch Stack

Solid Rocket Boosters (SRB's)

- each generates ~ 3.3 million lbs of thrust
- 149 feet long and 12 feet in diameter
- primary steering control for initial 120 seconds of ascent

Components of the Launch Stack

Solid Rocket Boosters (SRB)'s

- each generates ~ 3.3 million lbs of thrust
- 149 feet long and 12 feet in diameter
- primary steering control for initial 120 seconds of ascent

External Fuel Tank

- 154 feet long and 28.6 feet in diameter
- 1.6 million lbs of liquid propellants
 - Oxygen Tank: 1,337 gallons
(1,35 million pounds)

Components of the Launch Stack

Solid Rocket Boosters (SRB's)

- each generates ~ 3.3 million lbs of thrust
- 149 feet long and 12 feet in diameter
- primary steering control for initial 120 seconds of ascent

External Fuel Tank

- 154 feet long and 28.6 feet in diameter
- 1.6 million lbs of liquid propellants
 - Oxygen Tank: 143,351 Gallons
(1.38 million pounds)
 - Hydrogen Tank: 385,265 Gallons
(238,000 pounds)

The External Tank is manufactured at NASA's Michoud Assembly Facility

Components of the Launch Stack

Solid Rocket Boosters (SRB)'s

- each generates ~ 3.3 million lbs of thrust
- 149 feet long and 12 feet in diameter
- primary steering control for initial 120 seconds of ascent

External Fuel Tank

- 154 feet long and 28.6 feet in diameter
- 1.6 million lbs of liquid propellants
 - Oxygen Tank: 143,351 Gallons
(1.36 million pounds)
 - Hydrogen Tank: 385,265 Gallons
(238,000 pounds)

Orbiter

- 122 feet long and 57 feet high
- Each of the three main engines generate 375,000 to 470,000 lbs of thrust
- The main engines burn 750 and 280 gallons per second of Hydrogen and Oxygen respectively

SRBs Are Recovered after Splashdown

External Tank on its way to the VAB

Orbiter Discovery

On January 16 2003, Columbia's leading edge was impacted by a piece of foam suspected to have separated from the external tank bipod ramp at 81 seconds into its launch.

Columbia was traveling at Mach 2.46, at an altitude of 65,860 feet. The foam was calculated to have hit the orbiter at 700 – 800 feet per second

Columbia Launch, January 16, 2003

Insulating Foam Separates from Bipod Ramp and Impacts Left Wing of Columbia

Frame 4912

Simulation of Aerodynamic Pressures

18

Launch of Space Shuttle

Impact Environment

Debris Source

Damage Assessment

The Bipod Ramp

The Bipod Ramp

The Orbiter Leading Edges

**Reinforced Carbon-Carbon (RCC) Panels Protect
the Leading Edges of the Orbiter**

22 panels per wing

RCC Panels 6, 8 & 9 of Specific Interest

RCC T-Seals Seal the Gap Between Panels

Ballistic Impact Research Efforts on the Accident Investigation

at NASA Glenn Research Center

- Impact testing to characterize External Tank foam and reinforced carbon-carbon leading edge material
- Develop impact analysis capability to predict such impact events
- Support Full Scale Impact Test in San Antonio TX

BX-250 External Tank Foam Characterization

The NASA Glenn Ballistic Impact Lab Assisted in the Columbia Accident Investigation

1/16 – 16 inch barrels

Ballistic Research Supporting the Accident Investigation

2 Inch Vacuum Gun

- *Built for Foam Tests*
- *BX250 ET foam specimens shot at angles of 10, 15, 23, and 90 degrees on load cells to evaluate foam behavior at 1 psi and atmospheric pressures*
- *Analysis foam model developed from these tests*

Ballistic Research Supporting the Accident Investigation

BX-250 External Tank Foam Characterization

Four Load Cell Targets Built for Program

Ballistic

Research

Support

Ballistic Research Supporting the Accident Investigation

BX-250 External Tank Foam Characterization

90 degree load cell in chamber

Ballistic Research Supporting the Accident Investigation

BX-250 External Tank Foam Characterization

Sabot and foam
projectile in shooting
configuration. O-rings
contain pressure in gun.

Ballistic

Research

Supporting the Accident Investigation

Accident Investigation

Investigation

BX-250 External Tank Foam Characterization

Sabot Stopped before exiting barrel to contain gun pressure

Ballistic Research Supporting the Accident Investigation

BX250 External Tank Foam Characterization

Sabot Stopped before exiting barrel to contain gun pressure

Ballistic Research Supporting the Accident Investigation

BX-250 External Tank Foam Characterization

High Speed Video of 90 Degree Impacts

Fri Mar 21 2003 05:44:24 009874

No Vacuum 708 ft/sec

Fri Mar 21 2003 05:44:24 009874

Vacuum 693 ft/sec

Ballistic Research Supporting the Accident Investigation

BX-250 External Tank Foam Characterization

High Speed Video of 90
Degree Impacts

No Vacuum
708 ft/sec

Vacuum
693 ft/sec

BX-250 External Tank Foam Ballistic Testing

High Speed Video of 23 & 15 Degree Impacts

**Vacuum
23 degrees plate
698 ft/sec**

TESTING IN PROGRESS

**Vacuum
15 degree plate**

Ballistic Research Supporting the Accident Investigation

Dyna - explicit finite element impact analysis

GFM 3.0 W/RATE + FAIL T65
Time = 0

Dyna Predicts 90 Degree
Foam Impact on Load Cell

Dyna is an industry
standard commercial finite
element analysis code
typically used to model
impact events

Ballistic Research Supporting the Accident Investigation

Dyna - explicit finite element impact analysis

140 89, 23 DEG, 800 FPS

Dyna Predicts 23 Degree Foam Impact on Load Cell

Ballistic Research Supporting the Accident Investigation

Dyna - explicit finite element impact analysis

Reinforced Carbon-Carbon Characterization

Ballistic Research Supporting the Accident Investigation

Ballistic Impact Tests on RCC Coupons

Ballistic Research Supporting the Accident Investigation

Ballistic Impact Tests on RCC Coupons

Ballistic Research Supporting the Accident Investigation

Ballistic Impact Tests on RCC Coupons

RCC Coupon Shows No Damage After 397 ft/sec Foam Impact

Ballistic Research Supporting the Accident Investigation

Ballistic Impact Tests on RCC Coupons

Foam Fractures RCC coupon in half at 695 ft/sec

Ballistic Research Supporting the Accident Investigation

Ballistic Impact Tests on RCC Coupons

RCC 3. (7/2), GFM 3., VEL=400F/S

Time = 0
Contours of Maximum Prin Stress
max lpt. value
min=-3.78956e-14, at elem# 2398
max=2.96044e-06, at elem# 5694

Fringe Levels

2.960e-06
2.664e-06
2.368e-06
2.072e-06
1.776e-06
1.480e-06
1.184e-06
8.881e-07
5.921e-07
2.960e-07
-3.790e-14

700 ft/second Impact

RCC 3. (7/2), GFM 3., VEL=700F/S

Time = 0
Contours of Maximum Prin Stress
max lpt. value
min=-3.78956e-14, at elem# 939
max=5.07902e-06, at elem# 5694

Fringe Levels

5.080e-06
4.572e-06
4.064e-06
3.556e-06
3.048e-06
2.540e-06
2.032e-06
1.524e-06
1.016e-06
5.080e-07
-3.790e-14

400 ft/second Impact

Current RCC Model Predicts these tests well

Full Scale Impact Analysis with LS Dyna

Ballistic Research Supporting the Accident Investigation

Dyna - explicit finite element impact analysis

Full Scale Panel Analysis

Ballistic Research Supporting the Accident Investigation

Dyna - explicit finite element impact analysis

43,000 Panel Shell Elements
147,000 Foam Brick Elements

Ballistic Research Supporting the Accident Investigation

Dyna - explicit finite element impact analysis

Ballistic Research Supporting the Accident Investigation

Dyna - explicit finite element impact analysis

RCC 1., GFM 3., VEL=775F/S
Time = 0

Panel 6 Edge Impact Case

Ballistic Research Supporting the Accident Investigation

Dyna - explicit finite element impact analysis

RCC 1., GFM 3., VEL=775F/S

Time = 0.00054992

Contours of Effective Plastic Strain

Inner shell surface

min=0.894737, at elem# 7764

max=1, at elem# 1

Fringe Levels

1.000e+00

9.895e-01

9.789e-01

9.684e-01

9.579e-01

9.474e-01

9.368e-01

9.263e-01

9.158e-01

9.053e-01

8.947e-01

Z
X

Panel 6 Edge Impact Case RCC Damage

Orbiter Leading Edge Full Scale Tests

Tests conducted at Southwest Research Institute

**Foam Shot at 775 ft/sec
1.67 lb projectile
22 degree incidence angle**

Orbiter Technicians Prepare to Install T-Seal

Orbiter Technicians Install T-Seal

Orbiter Technicians Check Steps and Gaps on Leading Edge

Orbiter Leading Edge Full Scale Tests

Orbiter Leading Edge Full Scale Tests

Installation of internal high speed cameras

Orbiter Leading Edge Full Scale Tests

Leading edge panels mounted after camera installation

Orbiter Leading Edge Full Scale Tests

Phantom digital cameras
set up inside of full scale
test article

Orbiter Leading Edge Full Scale Tests

High intensity lights required
both in and outside of test
article

Orbiter Leading Edge Full Scale Tests

Fri May 30 2003 14:19:20.939046 S8

External View of RCC Panel 6 Test

Orbiter Leading Edge Full Scale Tests

09 May 00 2003 14:19:20.939020 S

External View of RCC Panel 6 Test

Pre-Test Simulation Results: Influence of Plastic Failure Strain

LS-DYNA predicted structural deformation and damage at 1.7 ms

Yield = 6000 psi

Failure strain = 0.0015

Failure

Baseline

Yield = 6000 psi

Failure strain = 0.003

Plastic strain

Yield = 6000 psi

Failure strain = 0.006

0.0

RCC Panel #8 Photogrammetric Targets

*Area selected for
comparison*

Comparison of Measured vs Predicted Displacement For SwRI Panel 8 Test at ~ 2.8 ms after Impact

Measured

Predicted

Resultant displacement (in.)
From photogrammetry
(not-to-scale, see white square on right)

LS-Dyna model
(rear inside view)

RCC Model Development: Corner Impact Scenario

$v = 9,300 \text{ in/s}$

Modeling Details:

- Fully constrained at bolt holes
- Foam properties from experiment
- RCC – Bi-linear with failure
- Initial time step = 7×10^{-7} seconds
- ~15 minutes CPU/millisecond
- Coefficient of friction = 0.1

$r = 0.51 \text{ in.}$

$r = 0.31 \text{ in.}$

	RCC	Impactor
Density, lb s ² / in. ⁴	1.47×10^{-3}	3×10^{-6}
Weight, lb.	22.36	1.67
Nominal length, in.	0.3	0.4
Elements	19,073 shells	23,142 solids

Foam Impact Prediction

BOEING/LARC RCC8 MODEL 5MS 10/03

Time = 0

Orbiter Leading Edge Full Scale Tests

External View of RCC Panel 8 Test

Foam Impact Testing

Orbiter Leading Edge Full Scale Tests

Internal View of
RCC Panel 6 Test

Orbiter Leading Edge Full Scale Tests

Internal View of RCC
Panel 6 Test shows
crack form in rib

Orbiter Leading Edge Full Scale Tests

Internal View of
RCC Panel 8 Test

Orbiter Leading Edge Full Scale Tests

Post Impact of Panel 8

Orbiter Leading Edge Full Scale Tests

Post Impact of Panel 8

Analysis Supporting Full Scale Tests

Dyna – explicit finite element impact analysis

**Latest Dyna Predictions
Correlate with Panel 9
Test**

Analysis Supporting Full Scale Tests

Dyna - explicit finite element impact analysis

Latest Dyna Predictions Correlate with Panel 9 Test

Orbiter Leading Edge Full Scale Tests

Barrel View of RCC Panel 8 Test

Comparison of Damage: SwRI Panel 8 Test

Panel 8, post-test

LS-Dyna model at 6 ms
(showing damage progressing)

Comparison of Damage: SwRI Panel 8 Test

Panel 8, post-test

LS-Dyna model at 4 ms
(numbered elements correspond
to locations of strain gages 1 - 5)

Aerothermodynamics

Main
landing gear
(MLG) wheel well
temperature deltas

Aerodynamic
deltas

Motivation
*Address failure
scenarios
involving wing
leading edge and
 acreage thermal
 protection
 system (TPS) tile
 damage*

Left side fuselage
 bondline
 temperature
 deltas

Aerodynamics

Objective:

**Replicate what might
have happened based on
damage scenarios and
aerodynamic data.**

Remembering *Columbia* STS-107

www.nasa.gov

www.nasa.gov/columbia

*"No pessimist ever
discovered the secrets
of the stars..."*

*or sailed to an
unchartered land...*

*or opened a new
heaven to
the human spirit."*

Helen Keller

*"I never see
what has been done..."*

*I only see
what remains to be done."*

Marie Curie

*"Smooth seas do not
make skillful sailors."*

African Proverb

*"I'm not afraid of storms...
for I am learning to sail my ship."*

Louisa May Alcott

*Ships in harbor are safe,
but that's not what ships
are built for.*

