Bilgisayar Bilimine Giriş

13. Baskı, Global Edition

Bölüm 1

Veri depolama

Bölüm 1: Veri depolama

- 1.1 Bitler ve Depolanmaları
- 1.2 Ana Bellek
- 1.3 Yığın Depolama
- 1.4 Bilginin Bit Desenleri Cinsinden Gösterimi
- 1.5 İkilik Sistem

Bölüm 1: Veri depolama (devamı)

- 1.6 Tam Sayıların Depolanması
- 1.7 Kesirli Sayıların Depolanması
- 1.8 Veri ve Programlama
- 1.9 Veri Sıkıştırma
- 1.10 İletişim Hataları

1.1 Bitler ve Depolanmaları

- Bit: İkilik Rakamlardır(0 veya 1)
- Bit desenleri bilgiyi ifade etmek için kullanılırlar
 - Sayılar
 - Harfler
 - Resimler
 - Ses
 - Ve diğer veriler

Boolean İşlemleri

- Boolean İşlemi: Bir veya daha fazla doğru/yanlış değerini yöneten işlemdir
- Özel işlemler
 - AND (Ve)
 - OR (Veya)
 - XOR (Ayrıcalıklı OR)
 - NOT (Değil

Şekil 1.1 Boolean işlemleri AND, OR ve XOR(Özel OR) 'un olası giriş ve çıkış değerleri

AND(Ve) İşlemi

OR(Veya) İşlemi

XOR(Özel OR)

Kapılar

- Kapı: Boolean işlemini hesaplayan bir aygıttır
 - Genelde transistör denilen küçük elektronik devreler şeklinde kullanılırlar
 - Çeşitli teknolojilerle etkileşimde bulunabilir, inşa edilebilirler
 - Bilgisayarların oluşturulduğu yapı bloklarını sağlamaktadırlar

Şekil 1.2 AND,OR,XOR ve NOT kapılarının giriş ve çıkış değerleriyle beraber gösterimi

Giriş Değerleri	Çıkış Değeri
0 0	0
0 1	0
1 0	0
1 1	1

Çıkış Değeri
0
1
1
0

Giriş Değerleri	Çıkış Değeri
0 0	0
0 1	1
1 0	1
1 1	1

Giriş Değeri	Çıkış Değeri
0	1
1	0

Flip-floplar

- Bilgisayar hafızasının temel birimi olan kapılardan oluşturulmuş devrelerdir
 - Depolanan değeri 1'e dönüştürmek için bir giriş değeri kullanılır
 - Depolanan değeri 0'a dönüştürmek için bir giriş değeri kullanılır
 - İki giriş değeri de 0 ise son depolanan değer korunur

Şekil 1.3 Basit bir flip-flop devresi

Şekil 1.4 Bir flip-flop'un çıkış değerini 1'e ayarlama

a.İlk olarak üstteki giriş değerine 1 atanır.

Şekil 1.4 Bir flip-flop'un çıkış değerini 1'e ayarlama (devamı)

b.Bu, OR kapısının çıkışının 1 olmasına ve buna bağlı olarak AND kapısının da çıkışının 1 olmasına sebep olur

Şekil 1.4 Bir flip-flop'un çıkış değerini 1'e ayarlama (devamı)

c.Son olarak, AND kapısından gelen 1 değeri, OR kapısındaki değer 0'a döndüğünde bile sonucun değişmesini önler.

Şekil 1.5 Bir flip-flop oluşturmanın bir diğer yolu

Onaltılık(Hexadecimal) Sayı Gösterimi

- Onaltılık Sayı Gösterimi: Uzun bit desenlerini göstermenin kısa bir yoludur.
 - Bir deseni, her biri 4 bitten oluşan gruplara böler
 - Her grup bir sembolle ifade edilir
- Örnek: 10110101 => 0xB5 şeklinde

Şekil 1.6 Onaltılık(Hexadecimal) Sayı Kodlama Biçimi

Bit gösterimi	Onaltılık gösterim
0000	0x0
0001	0x1
0010	0x2
0011	0x3
0100	0x4
0101	0x5
0110	0x6
0111	0x7
1000	0x8
1001	0x9
1010	0xA
1011	0xB
1100	0xC
1101	0xD
1110	0xE
1111	0xF

1.2 Ana Bellek

- Hücre: Ana belleğin bir birimidir(Genellikle bir byte'a eşit olan 8 bittir)
 - En anlamlı bit: Sol uçtaki bittir (yüksek sıra ucu)
 - En az anlamlı bit: Sağ uçtaki bittir (düşük sıra ucu)

Şekil 1.7 Bir byte(bayt) boyutundaki bellek hücresinin düzeni

Ana Bellek Adresleri

- Adres: Bilgisayarın ana belleğindeki bir hücreyi eşsiz bir şekilde belirleyen bir 'isim'dir
 - Bu isimler aslında sayılardır.
 - Bu sayılar sıfırdan başlayarak ardışık olarak atanmış sayılardır.
 - Hücreleri sıralama tarzı, bellek hücreleriyle ilişkili bir şekildedir.

Şekil 1.8 Adreslere göre düzenlenmiş bellek hücreleri

Bellek Terimleri

- Rastgele Erişimli Bellek(RAM): Her türlü emirle kolayca erişilebilen, bağımsız hücrelerden oluşan bellektir.
- Dinamik Bellek: Geçici hafızadan oluşan RAM

Bellek Kapasitesini Ölçme

- **Kilobyte:** 2¹⁰ byte = 1024 byte
 - Örnek: 3 KB = 3 tane 1024 byte
- **Megabyte:** 2²⁰ byte = 1,048,576 byte
 - Örnek: 3 MB = 3 tane 1,048,576 byte
- **Gigabyte:** 2^{30} byte = 1,073,741,824 byte
 - Örnek: 3 GB = 3 tane 1,073,741,824 byte

1.3 Yığın Depolama

- Ek aygıtlar:
 - Manyetik diskler
 - CDler
 - DVDler

- Manyetik kasetler
- Flaş sürücü
- Katı hal diskleri
- Ana belleğe sağladığı avantajlar
 - Kalıcılık
 - Daha geniş depolama kapasitesi
 - Düşük maliyet
 - Portatiflik(sök- tak yapılabilir)

Yığın Depolama Performansı

- Bant genişliği: Birim zamanda transfer edilebilen toplam bit miktarı
- Gecikme: Veri transferi isteğinin gönderilmesi ve verinin gelmesi arasında geçen zaman

Şekil 1.9 Bir manyetik diskin depolama sistemi

Şekil 1.10 CD depolama sistemi

Flaş Sürücüler

- Flaş bellek

 Elektronları minik silikon dioksit bölmelere hapseden devrelerdir.
- Tekrar eden silme işlemi zamanla içeriği yıpratır
- Yığın depolama genellikle şu cihazlarda kullanılır:
 - Dijital kameralar
 - Akıllı telefonlar
- SD kartlar depolama hacmini artırır.

1.4 Bilginin Bit Desenleri Cinsinden Gösterimi

- Bilginin bir çok türü bit desenleri şeklinde kodlanabilir
- Bilgiyi kodlama sistemi şunlara göre belirlenir:
 - Metin
 - Sayısal Veri
 - Görüntüler
 - Ses
 - Diğer veriler

Metin Gösterimi

- Her karakter(harf, noktalama işareti, vb.) eşsiz bir bit desenine sahiptir.
 - ASCII: İngiliz alfabesindeki sembol ve ifadelerin gösterimi için 7-bit deseni kullanır.
 - Unicode (UTF-8):Dünya genelinde kullanılan dillerdeki sembol ve ifadelerin gösterimi için 16-bit 21-bit arası desenleri kullanır

Şekil 1.11 ASCII veya UTF-8 kodlama şeklinde 'Hello.' mesajının gösterimi

Sayısal Değerlerin Gösterimi

- İkilik Sayı Sistemi: Sayıları bitler şeklinde göstermek için 2 rakam kullanır
 - Bilgisayardaki bütün sayısal değerler 1ler ve Olar dizisi şeklinde saklanır, depolanır.

Binary	Decimal	Hexadecimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	Α
1011	11	В
1100	12	С
1101	13	D
1110	14	Ë
1111	15	Ē

Görüntülerin Gösterimi

- Bit eşlem teknikleri
 - RGB: Kırmızı(Red), Yeşil(Green) ve Mavi(Blue) bileşenler
 - Piksel: Tek bir nokta gösterimini yapan 'görüntü elemanı'
 - Parlaklık ve renklilik
 - Görüntü çoğaltma sorunları
- Vektör Teknikleri
 - Görüntüleri geometrik şekillerle gösterirler
 - Ölçeklenebilir
 - Truetype ve PostScript fontları birer örnektir

Sesin Gösterimi

- Gerçek ses kaydını örnekleme teknikleri
 - Uzun mesafe telefonlar: 8000 örnek/saniye
 - CD sesi: 44,100 örnek/saniye

Şekil 1.12 0, 1.5, 2.0, 1.5, 2.0, 3.0, 4.0, 3.0, 0 serisi tarafından gösterilen ses dalgası

1.5 İkilik Sistem

Geleneksel ondalık sistem, onun kuvvetleri üzerine kurulmuştur.

İkilik Sistem ise ikinin kuvvetleri baz alınarak oluşmuştur.

Şekil 1.13 Onluk ve ikilik taban sistemleri

a.Onluk taban sistemi

b.İkilik taban sistemi

Şekil 1.14 100101 ikilik gösterimini çözümleme

Şekil 1.15 Pozitif bir tamsayının ikilik gösterimini bulmak için bir algoritma

- Adım 1. Değeri 2'ye böl ve kalan kısmını kaydet.
- Adım 2. Bölüm 0'a ulaşana kadar yeni bölümü 2'ye bölmeye devam et ve kalan kısmını kaydet.
- Adım 3. Bölüm değeri 0'a ulaştığı zaman, başlangıçtaki değerin ikilik gösterimi, kaydettiğimiz kalan değerlerinin sağdan sola doğru sıralanmış şeklidir

Şekil 1.16 Otuz üç değerinin ikilik tabanda gösterimini bulmak için <u>Şekil 1.15'teki</u> algoritmanın uygulanması

Şekil 1.17 İkilik sistemde toplama

$$\begin{array}{cccc}
0 & 1 & 0 & 1 \\
+0 & +0 & +1 & +1 \\
\hline
0 & 1 & 1
\end{array}$$

there are 10 types of people in this world, those who understand binary and those who don't

Şekil 1.18 101.101 ikilik gösteriminin çözümlenmesi

1.6 Tam sayıların depolanması

- İkinin tümleyeni gösterimi: Tam sayıların en popüler gösterimidir.
- Fazlalık (Excess) gösterimi: Tam sayıların diğer bir gösterim şeklidir.

Şekil 1.19 İkinin tümleyeni gösterimi

a.Üç bit uzunluğundaki desenlerde gösterim

Bit deseni	Gösterdiği değer
011 010 001 000 111 110	3 2 1 0 -1 -2 -3 -4
100	-4

b.Dört bit uzunluğundaki desenlerde gösterim

Bit deseni	Gösterdiği değer
0111	7
0110	6
0101	5
0110 0101 0100 0011	4
0011	3
0010	2
0001	1
0000 1111 1110	0
<mark>1</mark> 111	-1
<mark>1</mark> 110	-2
1101	-3
1100	-4
<mark>1</mark> 011	-5
1010	-6
1001	-7
1000	-8

Şekil 1.20 Dört bit kullanarak -6 değerini ikinin tümleyeni gösterimiyle kodlama

Şekil 1.21 İkinin tümleyeniyle ilgili alıştırmalar

On tabanında işlem		İkinin tümleyeninde işlem	10 tabanında sonuç
3 + 2	→	0011 + 0010 0101	→ 5
-3 + -2	→	1101 + 1110 1011	→ –5
7 + -5	→	0111 + 1011 0010	→ 2

Taşma Problemi (Overflow)

- Her sistemin gösterimini yapabileceği değerlerin bir sınırı vardır
- Taşma(Overflow)
 - Bir hesaplama işlemi, makinede gösterilebilecek değerin sınırları dışında bir değer ürettiğinde meydana gelir
 - Eğer sonuç işaret biti yanlışsa, bir taşma gerçekleşir
 - 16 bit sistemler 32 bit sistemlere yükseltilmiştir

Şekil 1.22 Fazlalık sekiz (excess eight) dönüşüm tablosu

Bit deseni	Gösterdiği değer
1111 1110 1101 1100 1011 1010 1001	7 6 5 4 3 2 1 0
1000 0111 0110 0101 0100 0011 0010 0001 0000	-1 -2 -3 -4 -5 -6 -7 -8

Şekil 1.23 Üç bit uzunluğundaki desenleri kullanan «fazlalık sekiz» gösterim sistemi

Bit deseni	Gösterdiği değer
111 110 101 100 011 010 001	3 2 1 0 -1 -2 -3
000	-4

1.7 Kesirleri Depolama

- Kayar nokta (floating point) gösterimi: İşaret biti, üstel alan ve mantis alanından oluşur.
 - Normalize form: En soldaki 1 değerinden başlayarak mantis alanını doldur

Şekil 1.24 Kayan nokta gösterimi elemanları

Kırpma (Yuvarlama) Hataları

- Mantis yeterince büyük olmadığı için depolanan verinin bir kısmının kaybolması durumunda ortaya çıkar
- Sonsuz kesir açılımları
 - Daha çok ikilik sayı gösteriminde görülür
 - Bu değerler genellikle tamsayılara dönüştürülür

1.8 Veri ve Programlama

Bir *programlama dili*, insanların yüksek seviyede soyutlama kullanarak bilgisayarlara algoritmaları tam olarak ifade etmesini sağlamak için oluşturulmuş bilgisayar sistemleridir.

Python ile Çalışmaya Başlama

- Python: Uygulamalar ve bilimsel hesaplama için kullanılan ve öğrenciler için dili tanıtıcı görev üstlenen popüler bir programlama dilidir.
- www.python.org adresinden ücretsiz bir biçimde indirilebilir.
- Python yorumlanabilir bir dildir
 - Yazım:

```
print('Hello, World!')
```

- Çıktı:
 Hello, World!

Değişkenler

- Değişkenler: Sonra kullanmak için veri adlandırma
- Cebirdeki matematik değişkenlerine benzerdir

```
s = 'Hello, World!'
print(s)

my_integer = 5
my_floating_point = 26.2
my_Boolean = True
my_string = 'characters'
my_integer = 0xff
```


Operatörler ve İfadeleri

```
print(3 + 4)
                # 7 Çıktısı verir
print(5 - 6)
                # -1 Çıktısı verir
print(7 * 8)
            # 56 Çıktısı verir
print(45 / 4) # 11.25 Çıktısı verir
print(2 ** 10) # 1024 Çıktısı verir
s = 'hello' + 'world'
s = s * 4
print(s)
```


Para Birimi Dönüştürme

```
# Para birimi dönüştürme için bir program.
USD_to_GBP = 0.66  # Bugünün döviz kuru
GBP_sign = '\u00A3' # f sembolü için unicode
değeri
dollars = 1000
              # Çevrilecek dolar miktarı
# Çevrim hesaplamaları
pounds = dollars * USD to GBP
# Sonucu yazdırma
print('Today, $' + str(dollars))
print('converts to ' + GBP sign + str(pounds))
```


Debugging

Sözdizim (Syntax) hataları

```
print(5 +)
SyntaxError: invalid syntax
pront(5)
NameError: name 'pront' is not defined
```

- Anlamsal Hatalar(Semantic errors)
 - Hatalı ifadeler

```
total_pay = 40 + extra_hours * pay_rate
```

- Çalışma Zamanı Hataları (Runtime errors)
 - Sıfıra bölüm işlemine rastlama

1.9 Veri Sıkıştırma

- Kayıplı ve Kayıpsız
- Kodlama
 - İşlem uzunluğu kodlama
 - Frekans-bağımlı kodlama
 (Huffman kodları)
 - Göreceli kodlama
 - Sözlük kodlama

Görüntüleri Sıkıştırma

- GIF: Çizgi filmler için uygundur
- JPEG: Fotoğraflar içindir
- TIFF: Görüntü arşivleme için idealdir

Ses ve Video Sıkıştırma

- MPEG
 - Yüksek kalte televizyon yayını
 - Video konferans
- MP3
 - Ses
 - Müzik

1.10 İletişim Hataları

- Hedef: Hesaplama aygıtının güvenilirliğini artırıp hatayı en aza indirgemek
- Eşlik (parity) bitleri

Şekil 1.26 Tek eşlik için A ve F kodlarının ayarlanması

