Homework

Jon Allen

September 17, 2014

Section 1.3: #12, 20 Section 2.1: # 18, 8

1.3 12. Show that $4 \cdot (n^2 + 1)$ is never divisible by 11.

proof

First we note that gcd(4,11) = 1 and 11 is prime, so then if $11|4 \cdot (n^2+1)$ then by the fundamental theorem of arithmetic, $11|(n^2+1)$. That is to say

$$n^2 + 1 \equiv 0 \mod 11$$

 $n^2 \equiv -1 \mod 11$
 $n^2 \equiv 10 \mod 11$

This means that there exists some $[a]_{11} \in \mathbb{Z}_n$ such that $[a^2]_{11} = [10]_{11}$ So looking at all the elements of \mathbb{Z}_{11} :

$$[0^2] = 0$$
 $[1^2] = 1$ $[2^2] = 4$ $[3^2] = 9$ $[4^2] = 5$ $[5^2] = 3$ $[6^2] = 3$ $[7^2] = 2$ $[8^2] = -2 = 9$ $[9^2] = 4$ $[10^2] = 1$

We see by exhaustion that $[a]_{11} \notin \mathbb{Z}_{11}$ such that $[a^2]_{11} = [10]_{11}$ and so 11 does not devide $4 \cdot (n^2 + 1)$.

20. Solve the following system of congruences.

$$2x \equiv 5 \mod 7 \qquad \qquad 3x \equiv 4 \mod 8$$

Hint: First reduce to the usual form.

$$2x \equiv 5 \mod 7$$
 $3x \equiv 4 \mod 8$ $\gcd(2,7) = 1$ $\gcd(3,8) = 1$

So both congruencies have one solution

$$\begin{array}{lll} c \cdot 2 \equiv 1 \mod 7 & c \cdot 3 \equiv 1 \mod 8 \\ 4 \cdot 2 \equiv 1 \mod 7 & 3 \cdot 3 \equiv 1 \mod 8 \\ x \equiv 5 \cdot 4 \mod 7 & x \equiv 3 \cdot 4 \mod 8 \\ x \equiv 6 \mod 7 & x \equiv 4 \mod 8 \end{array}$$

Now because gcd(7,8) = 1 we can apply the Chinese Remainder Theorem.

$$7a + 8b = 1$$

 $7(-1) + 8(1) = 1$
 $4(7)(-1) + 6(1)(8) = 48 - 28 = 20$ is a specific solution
 $20 + 7 \cdot 8t = 20 + 56t$ is all solutions

- 2.1 8. Which of the following formulas define functions from the set of rational numbers into itself? (Assume in each case the n, m are integers and that n is nonzero.)
 - (a) $f\left(\frac{m}{n}\right) = \frac{m+1}{n+1}$ Not a function from $\mathbb{Q} \to \mathbb{Q}$ because when n=-1 there is no image.
 - (b) $g\left(\frac{m}{n}\right) = \frac{2m}{3n}$ This is a function because rational numbers are closed under multiplication so for any $q \in \mathbb{Q}$ we know that $\frac{2}{3}q \in \mathbb{Q}$
 - (c) $h\left(\frac{m}{n}\right) = \frac{m+n}{n^2}$ This is not a function. Counterexample: $\frac{1}{2} = \frac{2}{4}$. $\frac{1+2}{2^2} = \frac{3}{4} \neq \frac{2+4}{4^2} = \frac{6}{16} = \frac{3}{8}$. $\frac{1}{2}$ has more than one image so the map is not well defined and not a function.
 - (d) $k\left(\frac{m}{n}\right) = \frac{(m-n)^2}{n^2}$ $\frac{(m-n)^2}{n^2} = \frac{m^2 2mn + n^2}{n^2} = \left(\frac{m}{n}\right)^2 2\frac{m}{n} + 1.$ Looks like a good function. It will have the same result independent of representation of the rational number, and has an image for every element of \mathbb{Q} .
 - (e) $p\left(\frac{m}{n}\right) = \frac{4m^2}{7n^2} \frac{m}{n}$ Is a function of rationals. They are closed under multiplication and subtraction. all equivalent elements will have the same image, regardless if their representation in terms of m, n.
 - (f) $q\left(\frac{m}{n}\right) = \frac{m+1}{m}$ Not a function. No representation of zero has an image. For example $\frac{0}{1}$ does not have an image as $\frac{1}{0}$ is undefined.
 - 18. Let A be a nonempty set, and let $f: A \to B$ be a function. Prove that f is one-to-one if and only if there exists a function $g: B \to A$ such that $g \circ f = 1_A$

proof

Lets start by assuming that f is a one to one function. Because f is a function, we know that for every $x \in A$ there exists some $x' \in B$. Furthermore, because f is one to one, we know that x' is unique. Now we simply define $g: x' \to x$. If B has more elements than A then we can define those elements that aren't images of A under f to map to random $a \in A$. Now we see that g(f(x)) = g(x') = x and so we've found a function that satisfies our result.

Now let us assume that the function f is not one to one. Because f is a function, we can't have any elements of A map to more than one element in B. Therefore $|f| \leq |A|$. Now because f is not one to one, we know that there are two elements in A that have the same image in B. This makes our cardinality inequality strict: |f| < |A|. This means that if we have a function $g: B \to A$ and feed it the images created by f it will only be able to spit out at most |A| - 1 images of it's own. So we have $|g \circ f| < |A|$. Because $|g \circ f| \neq |A|$ it is certain that $g \circ f \neq 1_A \square$