COURSE-WISE SYLLABUS Semester III

Year	2	Course Code: 21BSC3C3ELE1L		Credits	04			
Sem.	3	Course Title: Programming in C and Digital Design using Verilog			Hours	60		
Course Pre-re		quisites, if any	NA					
Formative As		sessment Marks: 40	Summative Assessment Marks: 60	Duratio	Duration of ESA: 2 hrs.			
Course Objectives		After the successful completion of the course, the student twill be able to:						
		The ability to code and simulate any digital function in Verilog HDL.						
		➤ Know the dif	on-synthe	-synthesizable code.				
	Understand library modelling ,behavioural code and the difference					tween		
	simulator algorithms and logic verification using Verilog simula				mulation.			
		➤ Learn good coding techniques required for current industrial practices. Gain the knowledge of programming the system using C programming language						
Course	<u> </u>	At the end of the course the student should be able to:						
Outcomes 1.Reproduce the I-V characteristics of various M				levices,				
		2.Explain the behaviour and characteristics of power devices such as UJT, SCR, Diac,						
		Triac etc.						
	3.Calculate various device parameters' values from their V I characterist				teristics.			
4.Explain various Operational amplifier parameters 5.List various applications of Operational amplifier.								
			a timer with applications					
		_	and simplify Boolean expressions					
		8. Analyse combinatorial and sequential circuits						
Unit No	0.		Course Content					
Unit- I		C Programming : Introduction, Importance of C, Character set, Tokens, keywords, identifier, constants, basic data types, variables: declaration & assigning values. Structure of C program.						
		Arithmetic operators, relational operators, logical operators, assignment operators, increment and decrement operators, conditional operators, bitwise operators, expressions and evaluation of expressions, type cast operator, implicit conversions, precedence of operators.						
		Arrays: Basics of arrays, declaration, accessing elements, storing elements, two-dimensional and multi-dimensional arrays. Input output statement – sprintf(), scanf() and getch(), and library functions (math and string related functions). (15 Hours)						
Unit- II		Decision making, branching, and looping : if, if-else, else-if, switch statement, break, for loop, while loop and do loop.						
	Г	Functions : Defining functions, function arguments and passing, returning values from functions, example programs.						
	l	Pointers : Pointer declaration, assigning values to pointers, pointer arithmetic, a used as pointers, pointers used as arrays, pointers and text strings, pointers parameters.						
		Structures: Structure type declarations, structure declarations, referencing structure						

members, referencing whole structures, initialization of structures, structure bit fields. (15 Hours) Overview of Verilog HDL: Evolution of CAD, emergence of HDLs, typical HDL flow, Trends in HDLs. Hierarchical Modelling Concepts: Top-down and bottom-up design methodology, differences between modules and module instances, parts of a simulation, design block, stimulus block, Lexical conventions. Data types, system tasks, compiler directives. Modules and Ports: Module definition, port declaration, connecting ports, **Unit-III** hierarchical name referencing. Gate-Level Modelling: Modelling using basic Verilog gate primitives, Description of and/or and buf/not type gates, Rise, fall and turn-off delays, min, max, and typical delays. Combinational logic circuit design using Gate level modelling. (15 Dataflow Modelling: Continuous assignments, delay specification, expressions, operators, operands, operator types. Behavioral Modelling: Structured procedures, initial and always, blocking and nonblocking statements. Delay control, generate statement, event control, conditional **Unit-IV** statements, Multiway branching, loops, sequential and parallel blocks. Tasks and functions: Differences between tasks and functions, declaration, invocation, automatic tasks and functions. Combinational and sequential logic circuit design using all three modelling. (15 Hours) **Recommended Leaning Resources** Reference Samir Palnitkar, "Verilog HDL: A Guide to Digital Design and Synthesis," 2nd Edition, Prentice Hall PTR, 2006. **Books** 2 E. Balagurusamy, "Programming in ANSI C", 4th Edition, Tata McGraw-Hill, 2008. Donald E. Thomas, Philip R. Moorby, "The Verilog Hardware Description 3 Language", 5th Edition, Springer, 2002. Michael D. Ciletti, "Advanced Digital Design with the Verilog HDL", 2nd Edition, 4 Pearson Education, 2010. 5 Padmanabhan, Tripura Sundari, "Design through Verilog HDL", Wiley Eastern, Nazeih M. Botors, "HDL Programming VHDL and Verilog", 1st Edition, Dreamtech Publication, New Delhi, 2006. 7 Yashavant P. Kanetkar, "Let us C", 18th Edition, BPB Publications, 2021. T Jeyapoovan, "A First Course in Programming with C," Vikas Publishing Pvt LTD, 8 Kevin Skahill, "VHDL for Programmable Logic," Pearson Education, 2006. 9 10 Cyril P R, "Fundamentals of HDL Design," Pearson, 2010.

Laboratory Experiments:

Year	I	Course Code: 21BSC3C3ELE1P				2		
Sem.	1	Course Title: Pro	gramming in C and Digital Design using Verilog		Hours 4 Hrs/week			
Formati	ive As	sessment Marks: 25	Summative Assessment Marks:25	Duration	Duration of ESA: 4 hrs.			
Note: Minimum of 08 programmes to be written and executed in each section								
Sl. No		Part -A: Programming in C Laboratory						
	Write and execute C Program to 1. Find the area and circumference of a circle 2. Find the biggest and smallest elements in a series							
	2. Find the diggest and smallest elements in a series							

- 3. Find the factorial of a given number
- 4. Check the prime number in a series
- 5. Find the roots of quadratic equation
- 6. Find the gross salary of an employee
- 7. Remove all vowels from a string
- 8. Upper case and lower-case conversion and vice-versa
- 9. Reverse a string using library functions
- 10. Reverse a string without using library
- 11. Check whether the string is palindrome or not
- 12. Arrange the array in ascending and descending order using bubble sort
- 13. To perform arithmetic operations for a matrix.
- 14. Display prime numbers between intervals 0 to 100
- 15. Find GCD of two numbers.

Part – B: Verilog HDL Laboratory

Write and execute Verilog code to realize

- 1. Realization of logic gates.
- 2. Encoder without priority and with priority.
- 3. Multiplexer, De-multiplexer.
- 4. Comparator, Code converters Binary to Gray and vice versa.
- 5. Adder/Subtractor (Half and Full) using different modelling styles.
- 6. 4-bit parallel adder and 4-bit ALU/8-bit ALU.
- 7. SR, D, JK, T-flip-flops.
- 8. To realize counters: Up/Down (BCD and Binary).
- 9. 4-bit Binary counter, BCD counters (Synchronous reset) and any arbitrary sequence counters.
- 10. 4-bit Binary counter, BCD counters (Asynchronous reset) and any arbitrary sequence counters.
- 11. Modelling of Universal shift registers.

5 | Page

OPEN ELECTIVE

Year	2	Course Code: 21BSC3O3ELE3			Credits	03
Sem.	3	Course Title: Application of Electronics-1			Hours	40
Forma	Formative Assessment Marks: 40 Summative Assessment Marks: 60 Duration o				f ESA:.02	hrs.
Unit No.		Course Content			Hour	' S
Unit I		BasicElectronics			(10 hours)	
		Introduction to circuit components- Resistors, capacitors, inductor, transformer, diode and transistor. Symbols, pimples. LED and LCD display, relay, fuse ,switches, wires.AC and DC applications.				
Unit II		Applied Electronics		(10 hou	rs)	
		ECG,EEG,EMG,pHme	DMM,CRO,Biomedicalinstruments- eter,X-ray, sphygmomanometer, ensor-OMR, MICR, Scanner, Barcode	Glucometer, reader.		
	Power Supplies		(10 hours)			
Unit III		DC power supply, Rectifiers-principle, Types Inverter and UPS. Adopter and SMPS. Inverter and UPS. Mobile chargers.				
		Electronic calculators	3		(10 hou	rs)
Unit IV	,	Types, Functions of Basic calculators- block diagram, Scientific calculator Keypad ,use of calculator.				