

Democratizing Remote HPC Storage Access at Penn State

Adam Focht

Institute for Computational and Data Sciences

Penn State University

ICDS Resources

- Standard Environment
 - 25,000 cores, 100 GPUs
 - 16PB Shared VAST NFS Filesystems
- Restricted Environment
 - 24,000 cores, TBD GPUs
 - 8PB Shared GPFS Filesystems

Remote HPC Storage Access

- SSH-based
 - SCP, Filezilla, WinSCP, etc.
 - SSHFS
 - Use existing SSH services
 - Not native on Windows
- NFS
 - Firewall/security headache
 - Not native on Windows
- CIFS
 - Windows native
 - Security concerns/firewall headache

Simple HPC Storage Access

- "There's a better way" Amit Amritkar
- Cross-platform
- Familiar Behavior
 - Similar to OneDrive, Dropbox
 - Minimal user interaction
 - File sharing interface
- Role-based Access Control
- Integration with Existing Infrastructure
 - Account data (SSO)
 - Remote shared filesystems

Unifying Storage Access

- HPC Storage
 - NFS, SMB, or SSH-based access
 - Multiple targets/systems
- University Shared Storage
 - Box contract ended
 - OneDrive contract ending
 - SMB mounted local storage

Storage Cloud Implementation

- We used Nextcloud Files
 - Meets requirements above
 - Integrates well with many providers
 - Open source, with paid option
 - Focus on security
 - Running on Kubernetes
 - Deployed via Helm
- Integrated with Penn State central AD services
- Available outside of Penn State (no VPN required)

Web Client

Login with University Credentials

Remote Cluster Home

nextdoud.localdev.me/apps/files/?dir=/ICDS Roar Home&fileid=253

ICDS Roar Home - Files - ICDS F × +

■ All files

③ Recent★ Favorites

□ Login – ICDS Research Data Clo × +

∨ - □ ×

· Pending 7 years ago

Desktop Client

Authentication via Web Browser

Initial Client Setup

Taskbar Status

Client Status Pop-up

Desktop File Explorer Integration

Local Nextcloud Directory

Local Cluster Home Synced Directory

Storage Cloud Lessons Learned

- Large (LDAP/AD) Directories Significantly Affect Performance
- Backing Database Impact on Performance
- Multi-Factor Auth Can Be Incredibly Annoying
 - Opens multiple SSH sessions for multi-threaded interface
 - MFA prompt per session if no MFA caching
 - Internal SSH w/o MFA using Web SSO w/ MFA
- Kubernetes Persistent Storage Multi-access Challenges
- Helm Ease-of-Deployment

Need for Further Testing

- Large File Transfers
 - Timeouts
 - Performance
- General Performance of SSH-based Filesystems
- File Locking Across Access Vectors
- Redis Caching Effect on Performance
- Horizontal Pod Auto-Scaling (Kubernetes)

Enabling HIPAA-Aligned Workflow

- ... or any managed restricted data store ...
- Data Manager Role
 - Transition data through lifecycle
 - Verify access needs
- Restrict Access via (Auto-) Tagging
 - Enable download, view, etc. via well-formed names or attributes
- ... or work with SELinux MLS? ...

