

# BBM406: Fundamentals of Machine Learning

Nearest Neighbor Classifier

### Different Learning Methods

- Eager Learning
  - Explicit description of target function on the whole training set
- Instance-based Learning
  - Learning=storing all training instances
  - Classification=assigning target function to a new instance
  - Referred to as "Lazy" learning

### Different Learning Methods

Eager Learning



# Instance-based Learning



### Instance-based Learning

- Instance-based learning is often termed lazy learning, as there is typically no "transformation" of training instances into more general "statements"
- Instead, the presented training data is simply stored and, when a new query instance is encountered, a set of similar, related instances is retrieved from memory and used to classify the new query instance
- Hence, instance-based learners never form an explicit general hypothesis regarding the target function. They simply compute the classification of each new query instance as needed

#### **Instance-Based Classifiers**



#### **Instance Based Classifiers**

#### • Examples:

- Rote-learner
  - Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly
- Nearest neighbor
  - Uses "closest" points (nearest neighbors) for performing classification

### Nearest Neighbor Classifiers

- Basic idea:
  - If it walks like a duck, quacks like a duck, then it's probably a duck



### k-NN (Nearest Neighbor) Approach

- The simplest, most used instance-based learning algorithm is the k-NN algorithm
- k-NN assumes that all instances are points in some n-dimensional space and defines neighbors in terms of distance (usually Euclidean distance in R-space)
- k is the number of neighbors considered

#### k-NN Basic Idea

- The k-NN classification rule is to assign to a test sample the majority category label of its k nearest training samples
- In practice, k is usually chosen to be odd, so as to avoid ties
- k = 1 rule is generally called the nearest-neighbor classification rule

#### Nearest-Neighbor Classifiers

#### Features

- All instances correspond to points in an n-dimensional Euclidean space
- Classification done by comparing feature vectors of the different points
- Classification is delayed till a new instance arrives
- Target function may be discrete or real-valued

### Example: 3-NN Classification



Ref: <a href="http://www.scholarpedia.org/article/K-nearest\_neighbor">http://www.scholarpedia.org/article/K-nearest\_neighbor</a>

### Graphic Depiction of 1-Nearest Neighbor

- The nearest neighbor algorithm does not explicitly compute decision boundaries.
- However, the decision boundaries form a subset of the Voronoi diagram for the training data.



#### Properties of Voronoi Diagram:

- Each line segment is equidistant between two points
- 2) All possible points within a sample's Voronoi cell are the nearest neighboring points for that sample



### Nearest-Neighbor Classifiers



#### Requires three things

- The set of stored records
- Distance metric to compute distance between records
- The value of k, the number of nearest neighbors to retrieve

#### To classify an unknown record:

- Compute distance to other training records
- Identify k nearest neighbors
- Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

### Distance Computation in k-NN

- An arbitrary instance x is represented by  $(x^{(1)}, x^{(2)}, \dots, x^{(n)})$ 
  - $x^{(i)}$  denotes  $i^{th}$  feature
- Euclidean distance between two instances x, z

$$d(x,z) = \sqrt{\sum_{i=1}^{n} (x^{(i)} - z^{(i)})^2}$$

### Determining the class in k-NN

- Let  $D_z = \{(x_1, y_1), \dots, (x_k, y_k)\}$  be the set of k-nearest neighbors
  - $y_i$  is the label assigned for  $x_i$  in the training set.
- Determine the class from nearest neighbor list
  - take the majority vote of class labels among the k-nearest neighbors

$$y' = argmax_v \sum_{x_i, y_i \in D_z} I(v = y_i)$$

where  $D_z$  is the set of k closest training examples to z.

### The KNN classification algorithm

Let k be the number of nearest neighbors and D be the set of training examples.

- 1. for each test example z do
- 2. Compute d(z, x), the distance between z and every sample  $(x,y) \in D$
- 3. Select  $D_7 \subseteq D$ , the set of k closest training examples to z.
- 4.  $y^z = argmax_v \sum_{x_i, y_i \in D_z} I(v = y_i)$
- 5. output  $y^z$
- 6. end for

### A numerical K-NN Classification Example

| Points | X1(Acid Durability) | X2(Strength) | Y(Classification) |
|--------|---------------------|--------------|-------------------|
| P1     | 7                   | 7            | BAD               |
| P2     | 7                   | 4            | BAD               |
| Р3     | 3                   | 4            | GOOD              |
| P4     | 1                   | 4            | GOOD              |

### A numerical K-NN Classification Example

| Points | X1(Acid Durability) | X2(Strength) | Y(Classification) |
|--------|---------------------|--------------|-------------------|
| P1     | 7                   | 7            | BAD               |
| P2     | 7                   | 4            | BAD               |
| Р3     | 3                   | 4            | GOOD              |
| P4     | 1                   | 4            | GOOD              |
| P5     | 3                   | 7            | ?                 |

#### Scatter Plot of Data

#### Scatter plot



#### **Euclidean Distance From Each Point**

| KNN                             |                                                        |                                                        |                                                     |                                                               |  |
|---------------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------|--|
|                                 | P1                                                     | P2                                                     | Р3                                                  | P4                                                            |  |
| Data points in the training set | (7,7)                                                  | (7,4)                                                  | (3,4)                                               | (1,4)                                                         |  |
| Euclidean Distance of P5(3,7)   | Sqrt((7-3) $^{2}$ + (7-7) $^{2}$ ) $= \sqrt{16}$ $= 4$ | Sqrt((7-3) $^{2}$ + (4-7) $^{2}$ ) $= \sqrt{25}$ $= 5$ | Sqrt((3-3) $^{2}$ + (4-7) $^{2}$ ) = $\sqrt{9}$ = 3 | Sqrt((1-3) $^{2}$ + (4-7) $^{2}$<br>) = $\sqrt{13}$<br>= 3.60 |  |

# 3 Nearest Neighbor

| 3-NN                     |                                                 |                                              |                                                 |                                                 |  |
|--------------------------|-------------------------------------------------|----------------------------------------------|-------------------------------------------------|-------------------------------------------------|--|
| Euclidean<br>Distance of | P1                                              | P2                                           | Р3                                              | P4                                              |  |
|                          | (7,7)                                           | (7,4)                                        | (3,4)                                           | (1,4)                                           |  |
| P5(3,7) from             | Sqrt((7-3) $^2$ + (7-7) $^2$<br>) = $\sqrt{16}$ | Sqrt((7-3) $^2$ + (4-7) $^2$ ) = $\sqrt{25}$ | Sqrt((3-3) $^{2}$ + (4-7) $^{2}$ ) = $\sqrt{9}$ | Sqrt((1-3) $^2$ + (4-7) $^2$<br>) = $\sqrt{13}$ |  |
|                          | = 4                                             | $= \sqrt{25}$ $= 5$                          | = 3                                             | = 3.60                                          |  |
| Class                    | BAD                                             | BAD                                          | GOOD                                            | GOOD                                            |  |

### Result of 3 Nearest Neighbor

| Points | X1(Durability) | X2(Strength) | Y(Classification) |
|--------|----------------|--------------|-------------------|
| P1     | 7              | 7            | BAD               |
| P2     | 7              | 4            | BAD               |
| Р3     | 3              | 4            | GOOD              |
| P4     | 1              | 4            | GOOD              |
| P5     | 3              | 7            | GOOD              |

#### **Decision Boundaries**

- With large number of examples and possible noise in the labels, the decision boundary can become nasty!
  - "Overfitting" problem



# Importance of k parameter in k-NN



### Importance of k parameter in k-NN

- Choosing the value of *k*:
  - If k is too small, sensitive to noise points
  - If k is too large, neighborhood may include points from other classes



#### Decision Boundaries with respect to K

- Larger K produces smoother boundary effect
- When K=N, always predict the majority dass



Figures from Hastie, Tibshirani and Friedman (Elements of Statistical Learning)

#### Discussion

- Which model is better between K=1 and K=15? Why?
- Empirically optimal K?



#### **Distance Functions**

- *k*-NN uses distance functions to calculate distances between features vectors of samples.
- Most commonly used distance function is Euclidean distance.
  - To compute distance between two points x and y:
  - Euclidean distance

$$d(x,y) = \sqrt{\sum_{i} (x^{(i)} - z^{(i)})^2}$$

- Manhattan distance

$$d(x,y) = \sum_{i} |x^{(i)} - z^{(i)}|$$

#### Manhattan vs Euclidean Distances

#### Manhattan Distance

$$|x^{(1)} - y^{(1)}| + |x^{(2)} - y^{(2)}|$$

#### **Euclidean Distance**

$$\sqrt{(x^{(1)}-y^{(1)})^2+(x^{(2)}-y^{(2)})^2}$$



Manhattan



Euclidean

#### **Euclidean Distance**



| point     | X | y |
|-----------|---|---|
| p1        | 0 | 2 |
| <b>p2</b> | 2 | 0 |
| р3        | 3 | 1 |
| p4        | 5 | 1 |

|           | p1    | <b>p2</b> | р3    | <b>p4</b> |
|-----------|-------|-----------|-------|-----------|
| p1        | 0     | 2.828     | 3.162 | 5.099     |
| <b>p2</b> | 2.828 | 0         | 1.414 | 3.162     |
| р3        | 3.162 | 1.414     | 0     | 2         |
| <b>p4</b> | 5.099 | 3.162     | 2     | 0         |

## **Hamming Distance**



### Properties of Distance Metrics

- Dist (x,y) >= 0
- Dist (x,y) = Dist (y,x) are symmetric
- Detours can not shorten distance
   Dist(x,z) <= Dist(x,y) + Dist (y,z)</li>



#### Minkowski distance

 Minkowski Distance is a generalization of Euclidean and Manhattan Distance

$$d(x,y) = ||x - y||_m = \left[\sum_{i=1}^N (x^{(i)} - y^{(i)})^m\right]^{1/m}$$

- m = 1. City block (Manhattan, taxicab,  $\rightarrow$   $d(x,y) = \sum_{i} |x^{(i)} - y^{(i)}|$ L1 norm) distance

$$d(x,y) = \sum_{i} |x^{(i)} - y^{(i)}|$$

- m = 2. Euclidean distance

$$\rightarrow$$
 d(x,y) =  $\sqrt{\sum_{i} (x^{(i)} - y^{(i)})^2}$ 

- m =∞. "supremum" ( $L_{max}$  norm,  $L_{\infty}$  norm) distance.
  - This is the maximum difference between any component of vectors

### A More Expanded List of Distance Metrics

#### Minkowsky:

#### Manhattan / city-block:

$$D(x,y) = \left(\sum_{i=1}^{m} |x_i - y_i|^r\right)^{\frac{1}{r}} \qquad D(x,y) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)^2} \qquad D(x,y) = \sum_{i=1}^{m} |x_i - y_i|$$

$$D(x,y) = \sqrt{\sum_{i=1}^{m} (x_i - y_i)}$$

$$D(x,y) = \sum_{i=1}^{m} |x_i - y_i|$$

Camberra:

$$D(x,y) = \sum_{i=1}^{m} \frac{|x_i - y_i|}{|x_i + y_i|}$$
 Chebychev: 
$$D(x,y) = \max_{i=1}^{m} |x_i - y_i|$$

adratic: 
$$D(x,y) = (x-y)^T Q(x-y) = \sum_{j=1}^m \left(\sum_{i=1}^m (x_i - y_i)q_{ji}\right)(x_j - y_j)$$
  
Q is a problem-specific positive

definite  $m \times m$  weight matrix

#### Mahalanobis:

$$D(x, y) = [\det V]^{1/m} (x - y)^{\mathrm{T}} V^{-1} (x - y)$$

V is the covariance matrix of  $A_1..A_m$ , and  $A_i$  is the vector of values for attribute j occuring in the training set instances 1..n.

Correlation:  $D(x,y) = \frac{\sum_{i=1}^{m} (x_i - \overline{x_i})(y_i - \overline{y_i})}{\sqrt{\sum_{i=1}^{m} (x_i - \overline{x_i})^2 \sum_{i=1}^{m} (y_i - \overline{y_i})^2}}$ 

 $\overline{x_i} = \overline{y_i}$  and is the average value for attribute i occuring in the training set.

Chi-square:  $D(x,y) = \sum_{i=1}^{m} \frac{1}{sum_i} \left( \frac{x_i}{size_x} - \frac{y_i}{size_y} \right)^2$ 

sum; is the sum of all values for attribute i occurring in the training set, and  $size_x$  is the sum of all values in the vector x.

Kendall's Rank Correlation: sign(x)=-1, 0 or 1 if x < 0,x = 0, or x > 0, respectively.

$$D(x,y) = 1 - \frac{2}{n(n-1)} \sum_{i=1}^{m} \sum_{j=1}^{i-1} sign(x_i - x_j) sign(y_i - y_j)$$

#### Importance of range of attributes

- Range issues
  - Example:
    - height of a person may vary from 1.5m to 1.8m
    - weight of a person may vary from 50 KG to 100KG
    - income of a person may vary from \$2000 to \$10000
- If the attributes does not have similar value ranges, large valued attributes
  - have a much greater influence on the distance between samples
  - may bias the performance of the classifier

### Scaling Effects

- Euclidian Distance makes sense when different measurements (attributes) are commensurate; each is variable measured in the same units.
  - If the measurements are different, say length and weight, Euclidian Distance may not be produce meaningful results.
- If the measurements are different, attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes

### Feature scaling

- Standardize the range of independent variables (features of data)
  - A.k.a Normalization or Standardization
- Two feature scaling methods:
  - Min-max scaling
  - Z-score standardization

### Min-Max scaling

Scale the data to a fixed range – between 0 and 1

$$x_{norm}^{(i)} = \frac{x^{(i)} - \min_{D} x^{(i)}}{\max_{D} x^{(i)} - \min_{D} x^{(i)}}$$

#### **Z-score Standardization**

Transform raw feature values into z-scores

$$z^{(i)} = \frac{x^{(i)} - \mu_i}{\sigma_i}$$

- $-x^{(i)}$  is the value for the  $i^{th}$  feature of sample x
- $-\mu_i$  is the average of all samples in D for feature i
- $-\sigma_i$  is the standard deviation of all samples in D for feature i
- Range and scale of z-scores should be similar
  - Rescale the data so that the mean is zero and the standard deviation from the mean (standard scores) is one

### Weighted Nearest Neighbor Classification

- This algorithm considers closeness of nearest neighbors when determining about class type.
  - Closer neighbors have more impact on the decision
- To determine the class in Weighted k-NN, we change the standart k-NN function

$$y' = \underset{v}{\operatorname{argmax}} \sum_{x_i, y_i} \in D_z I(v = y_i)$$

as like below

$$y' = \underset{v}{\operatorname{argmax}} \sum_{x_i, y_i} \in D_z w_i \times I(v = y_i)$$

• weight factor w = 1/d (or can be  $1/d^2$  in some cases)

### Weighted Nearest Neighbor Classification

$$weight = F(distance) = \frac{1}{distance}$$

Give weights inversely proportional to distance

| Neighbour | True<br>Label | Distance | Weight | Sum of Weights |
|-----------|---------------|----------|--------|----------------|
| $X_1$     | Positive      | 0.1      | 10     | 13.3           |
| $X_2$     | Positive      | 0.3      | 3.3    |                |
| $X_3$     | Negative      | 1        | 1      | 1.8            |
| $X_4$     | Negative      | 2        | 0.5    |                |
| $X_5$     | Negative      | 3        | 0.3    |                |

Predict Class labels based on the weighted-sum not on majority vote



### **Predicting Continuous Values with KNN**

 k-NN algorithm can be used for predicting continuous values if we change the target function for Weighted KNN as below.

$$y' = \frac{\sum_{x_i, y_i \in D_Z} w_i \times y_i}{\sum_{x_i, y_i \in D_Z} w_i}$$

• For unweighted k-NN,  $w_i$ =1 for all i, then the target function is

$$y' = \frac{\sum_{x_i, yi \in D_Z} y_i}{k}$$

### The Curse of Dimensionality

- Nearest neighbor breaks down in high-dimensional spaces because the "neighborhood" becomes very large.
- Suppose we have 5000 points uniformly distributed in the unit hypercube and we want to apply the 5--nearest neighbor algorithm.
- Suppose our query point is at the origin.
  - -1D-
    - On a one dimensional line, we must go a distance of 5/5000 = 0.001 on average to capture the 5 nearest neighbors
  - -2D-
    - In two dimensions, we must go sqrt(0.001) to get a square that contains 0.001 of the volume
  - D-
    - In D dimensions, we must go (0.001)<sup>1/D</sup>

### Summary - Nearest neighbor Classification

- k-NN classifiers are lazy learners
  - Its performance is very dependent to K parameter
  - It does not build models explicitly
- When to Consider?
  - Instances can map to points in  $R^n$
  - Less than 20 attributes per instance
  - Lots of training data

### Summary - Nearest neighbor Classification

#### **Advantages**

- Training is very simple and fast O(1)
- Learn complex target functions, flexible decision boundaries
- Do not lose information

#### **Disadvantages**

- Slow at query time O(n)
- Irrelevant or correlated features might have negative impact on results
- k-NN is subject to the curse of dimensionality (i.e., presence of many irrelevant attributes)
- All training data must be in memory. This can be prohibitive for large data sets.