	Sistemi Operativi – Appello 20	giugno 2018 – Ver. A
Matric	ماه٠	Posto:

Università degli Studi di Padova - Corso di Laurea in Informatica

Regole dell'esame

Il presente esame scritto deve essere svolto in forma individuale in un tempo massimo di 25 min dalla sua presentazione. Non è consentita la consultazione di libri o appunti in forma cartacea o elettronica, né l'uso di palmari e telefoni cellulari. Il candidato riporti generalità e matricola negli spazi indicati in alto e inserisca le proprie risposte interamente su questi fogli.

Quesito 1: 2 punti per risposta giusta, diminuzione di 1 punto per ogni sbaglio, 0 punti per risposta vuota

DOMANDA	
Una system call da sempre luogo ad un mode switch tra modalità utente e modalità kernel	
Un process switch tra processi utente avviene sempre contestualmente a 2 mode switch (utente->kernel, kernel->utente)	
Un interrupt viene gestito in modalità kernel	
Ogni interrupt è associato ad un processo che ha richiesto una operazione di I/O	
L'inversione di priorità è una tecnica utilizzata per evitare la starvation dei processi a bassa priorità	
Un processo per lanciare un nuovo processo deve fare una system call	

Quesito 2: Dato un processo inizialmente attivo che esegue il seguente codice

fork();

Cognome e nome:

fork();

fork();

InstrX;

si determini quanti processi (compreso quello iniziale) eseguiranno l'istruzione InstrX. Si motivi brevemente la risposta.

Quesito 3:

Si determini, utilizzando il grafo di allocazione delle risorse, se il sistema sia in stallo (deadlock) e, in caso affermativo, quali siano i processi e le risorse coinvolti.

Sistemi Operativi – Appello 20 giugno 2018 – V	er. A
--	-------

			-	 	
Cognome e nome:	<u> </u>	Matricola:		 Posto:	

Quesito 4:

Un sistema ha 4 processi (A, B, C, D) e 5 risorse (R1, R2, R3, R4, R5) da ripartire. L'attuale allocazione e i bisogni massimi sono i seguenti:

Processo	Allocate	Massimo
A	10211	3 1 2 1 3
B	20111	3 3 4 2 1
C	1 1 0 1 0	2 1 4 1 0
D	11110	11321

Considerando il vettore delle risorse disponibili uguale a [0 1 3 1 2], e utilizzando l'Algoritmo del Banchiere, <u>si discuta</u> se il sistema sia in uno <u>stato sicuro</u>.

Cognome e nome: _____ Matricola: _____ Posto: ____

Soluzione

Soluzione al Quesito 1

DOMANDA	
Una system call dà sempre luogo ad un mode switch tra modalità utente e modalità kernel	
Un process switch tra processi utente avviene sempre contestualmente a 2 mode switch	V
(utente->kernel, kernel->utente)	
Un interrupt viene gestito in modalità kernel	
Ogni interrupt è associato ad un processo che ha richiesto una operazione di I/O	
L'inversione di priorità è una tecnica utilizzata per evitare la starvation dei processi a bassa priorità	
Un processo per lanciare un nuovo processo deve fare una system call	

Soluzione al Ouesito 2

L'istruzione sarà eseguita da 8 processi. Ogni fork aggiunge un processo per ciascuno degli esistenti e quindi raddoppia i processi esistenti.

(Quindi il primo fork crea un secondo processo. Il secondo fork, eseguito da entrambi, crea altri 2 processi. Il terzo fork viene eseguito dai 4 processi esistenti e ne crea altri 4. Ovvero 8 in totale)

Soluzione al Quesito 3

Sì, c'è uno stallo e il ciclo che lo determina è quello in giallo: P1=>R1=>P2=>R4=>P7=>R9=>P9=>R6=>P6=>R3=>P1

Si noti che P6=>R8=>P9=>R6=>P6 (ciclo in rosso) non vale come ciclo per la molteplicità di R8 e la risorsa R8=>P3 che potrebbe essere liberata da P3.

Soluzione al Ouesito 4

La matrice delle necessità (massimo numero di risorse richieste dal processo - risorse allocate al processo) è la seguente:

 $2\ 1\ 0\ 0\ 2$

13310

10400

 $0\ 0\ 2\ 1\ 1$

Il proc. D potrebbe essere eseguito fino alla fine. Quando ha finito, il vettore delle risorse disponibili è [1 2 4 2 2].

Il proc. C potrebbe dunque essere eseguito e al suo completamento, il vettore delle risorse disponibili diverrebbe [2 3 4 3 2]. Questo permetterebbe di eseguire e terminare il processo A ottenendo [3 3 6 4 3] come vettore delle risorse disponibili.

Questo permetterebbe di eseguire anche il processo B.

Il sistema è quindi in uno stato sicuro.