Hyp	er k	boli		on	sei	~va	t ic	n	/a	W S	-											
An	hyp	oerb	0/10	c C	on	ser	~va	tic	n	10	ew	j's	a	. 5	'ys	ter	n	o f	/	D E	S	
on t	9														\sim							
(PL) E)					U _ź	7	(f	(u)) _x	2	0										
u = f:	Σω, Re	', → //R	, α _l								s cti			VC	zri:	abi	'e					
Ēχα	mp	/e s	,																			
Bur	-ge	r s	eg	ua	tic	n	,		(L _t	+	ž	lu	²) _×	=	0						
Shai	110 w	·w	ate	, حر	9 <i>q</i>				[N q	-] 	+	[1/2 n	μ². φ	+ φ] _×	2	0				
(PO)	E) (can	be	: <i>v</i>	V []	'£ £	en	ir	,	а	s e	mi	lin	ea	r	Fol	m	,				
		$\mathcal{U}_{\underline{t}}$	t	A ((u)	u_{x}	-	. ()													
witi	h.	A(u) =	£u	(u),	£	hс	J	aco	bi	an	O	£	f.							
So and	(PL	(تير	is	ho	po	erk	0/	ic	,	F	A	ho	ی ا	а	fui	<i>))</i> ,	sc t	60	e .	ige.	nvc	cto?
Con.	ser	vat	ive	,								_						ν ι !	ږ(×)		
The														_					- ∂ ×			
of caa	nd		is	gi	ve.	n i	bц			r								b				
and						0	in	£1	ne.	to	ta	/	an	no b	un	t	is					
	dt	Su	(x,	t)	L X	=	S	$\frac{d}{dt}$	U;	.x, Ł	·) a	lχ	s ·	- <u> </u>	F.(u),) × (lΧ	<u>-</u> }	; (c	ι) -	f. (

The change of the total amount of ui depends only on the flux fi in and out of the domain. In what follows, we discuss the scalar cons. law, hoping that the extension to systems are clear. Conservative schemes! Let xm+, = xm+h, tn+, = tn+k, Um = (e(xm, tn). A one-step numerical scheme is conservative if there is a numerical flux function F such that $U_{m}^{n+1} = U_{m}^{n} - p \left[F(U_{m}^{n}, U_{m+1}^{n}) - F(U_{m}^{n}, U_{m-1}^{n}) \right], p = \frac{1}{n}$ Let $T(U^n) = h \cdot \left[\dot{z} \cdot U^n + \dot{z} \cdot U^n + \dot{z} \cdot U^n \right] \approx \int u(x, t_n) dx$. The discrete version of $\frac{d}{dt} \int u dx = f(a) - f(b)$ is $(*) = \frac{1}{K} \left(T(U^{n+1}) - T(U^{n}) \right) = \frac{h}{2K} \left(U_{0}^{n+1} - U_{0}^{n} + U_{M}^{n+1} - U_{M}^{n} \right)$ $+ \frac{1}{n} \left[F(V_0, V_1) - F(V_{N-1}, V_N) \right]$ So again, the change in the total amount only depend on what happens at the boundaries. Partial proof of (x); Let = = F(Um, Um+,) $T(U^{n+1}) = h \left[\frac{1}{2} U_0^{n+1} + \frac{1}{2} U_n^{n+1} + \sum_{m=1}^{\infty} U_m^{n+1} \right] \quad and$ $\sum_{m=1}^{M-1} U_m^{n+1} = \sum_{m=1}^{M-1} U_m^{n} - P \sum_{m=1}^{M-1} (F_m^{n} - F_{m-1}^{n}) = \sum_{m=1}^{M-1} U_m^{n} + P (F_0^{n} - F_{m-1}^{n})$ $= \frac{1}{2} U_0^n + \frac{1}{2} U_m^n + \frac{1}{2} U_n^n - \frac{1}{2} U_0^n + \frac{1}{2} U_m^n + p(F_0^n - F_{n-1}^n)$ $=\frac{1}{n}\mathcal{T}(\mathcal{U}^n)-\frac{1}{2}\mathcal{U}_0^n+\frac{1}{2}\mathcal{U}_m^n+\rho(\mathcal{F}_0^n-\mathcal{F}_{m-1}^n).$

	e e	× 477.	1016	3 (.0723		v a c	,,,,	_	50	72 C	///(-					1
Lax-	Fri	edri	chs	,																
(PO.	<u>z</u>)	<i>:</i> (ct t	£(0	u) _×	=	0													
(LF)) :	Um n	<i>+</i> /	$\frac{1}{z}$	(Um	z + ,† (Um.	_,)	_	2	(}	:(ر	j m t	,)	_	f (U _m	_,))	
Thi.	s is	001	rser	vati	ive	w	ith													
F(Um	, U _m	,,)	2	<u></u> ½	- <u>;</u> p (V_m	-, -	Un	"),	L	(-	f ((J _m	,)	-	f(Um	((I	
Lax	- w	end	rof:	f :																
For						′		n	C	ı,	+ 0	ιu _x	=	0						
lax -											, ,		2		,					
	Um	= (m -	- 2 a	- (Un	7 , -	U,	n n-,) 4	2	, ρ	a'.	S _x	Um						
For	the	PD.	E																	
	u_{t}	+ }	(w)	x = C)	=	=>	u_t	+	A (u) (Lx	5	0	,		Αl	u) =	: f _u	
the i	ratu	ra/	gen	eral	iza	tior	2 <i>i</i> .	s												
	Um.	#/ =	U _m	- 2 - 2	(f	l Um	.,)	- f	10	n m-	,))								
		t 2	2 p 2	Am	:	f (Un	.)	- f	:(c	/m))								
				n Am	- 2			·						7						-
		, ,					'									n	١			1
Whe														n t	U_n	n±1)			
) r		A	żν,	,	\vec{z} (.	ALC	m) +	AC	U,	n±1	,))							

Th	isi	s c c	nso	: ~ v	ativ	٠ و	wi	th											
	FI	$\mathcal{L}_{m_{\lambda}}^{n}$	Um+	,)	= ;	i (;	Flu	n m +1) -	£ (Um n))							
		•												n)				
					- 2	ρА	m + 1	/ ₂ (+ (Umt	,)	- <i>f</i>	(0	m) /				
1,								,							,				
					d c						re	9 U.	ire	Z	ne				
eve	aluo	2010	n	, ,	in	eac.	7	3110	k poi	116,									
Ric	chtn	rye	/- -	La.	x - L	x/er	z cl	رر	ff:										
		8																	
Thi	S /S	a c	om	bino	26101	n c	f						-		_			. n t,	
1.					icur	ichs	ar	2 ol											+
1/2 8	tep	o.F	Lea	pfr	og :				_		-	-		-	-				
														,				- n	
										m-1			n	7			m+,	•	
	n + 1/2			,	2														
U_n	7+1/2	=	z (Um.	z +, +	U,	n n-,) -	2	(f	Un	2) ~	£ ((m	"			
	n		n		ρſ		m	+ 1/2	1		,	2+1/	2)	,					
U_n	7+/	= (m	-	2[+ ((m+	1/2	ا -	+(Um	-1/2)_1						
1122			,,				,	<i>C</i> .	,	,		2							
Wh	eat	15	the	n	um	eric	a/	ナノ	ux	no	erc	•							
																			+