System operacyjny

Źródło: https://szkolnictwo.pl/szukaj,System_operacyjny

System operacyjny (ang. *Operating System*, skrót *OS*) – oprogramowanie zarządzające systemem komputerowym, tworzące środowisko do uruchamiania i kontroli zadań użytkownika.

W celu uruchamiania i kontroli zadań użytkownika system operacyjny zajmuje się:

- planowaniem oraz przydziałem czasu procesora poszczególnym zadaniom,
- kontrolą i przydziałem pamięci operacyjnej dla uruchomionych zadań,
- dostarcza mechanizmy do synchronizacji zadań i komunikacji pomiędzy zadaniami,
- **obsługuje sprzęt** oraz zapewnia równolegle wykonywanym zadaniom jednolity, wolny od interferencji dostęp do sprzętu.

Dodatkowe przykładowe zadania, którymi może, ale nie musi zajmować się system operacyjny to:

- ustalanie połączeń sieciowych
- zarządzanie plikami.

Budowa systemu operacyjnego

Źródło: https://szkolnictwo.pl/szukaj,System_operacyjny

Przyjęto podział na trzy główne elementy budowy systemu operacyjnego:

- jądro systemu wykonujące i kontrolujące ww. zadania.
- **powłoka** specjalny program komunikujący użytkownika z systemem operacyjnym,
- **system plików** sposób zapisu struktury danych na nośniku.

Jądro systemu operacyjnego (ang. *kernel*) – podstawowa część systemu_operacyjnego, która jest odpowiedzialna za wszystkie jego zadania.

Z budowy jądra wynikają jego cechy systemu, takie jak:

- **wielozadaniowość** (wieloprocesowość), umożliwiająca mu równoczesne wykonywanie więcej niż jednego procesu.
- wielowątkowość, w ramach jednego procesu może wykonywać kilka wątków lub jednostek wykonawczych.
- **wielobieżność**, cecha jądra systemu operacyjnego, pozwalająca na jednoczesną pracę kilku procesów w trybie jądra.
- **skalowalność**, jako skalowalny można określić system, który stosunkowo łatwo można uprościć lub rozbudować, w zależności od potrzeb.
- wywłaszczalność. technika używana w środowiskach wielozadaniowych, w której algorytm szeregujący (scheduler) może wstrzymać aktualnie wykonywane zadanie (np. proces lub wątek), aby umożliwić działanie innemu. Dzięki temu rozwiązaniu zawieszenie jednego procesu nie powoduje blokady całego systemu operacyjnego.

Jądro składa się z następujących elementów funkcjonalnych:

- planisty czasu procesora, ustalającego które zadanie i jak długo będzie wykonywane,
- przełącznika zadań, odpowiedzialnego za przełączanie pomiędzy uruchomionymi zadaniami,
- Dodatkowo:
 - o modułu zapewniającego synchronizacje i komunikację pomiędzy zadaniami,
 - o modułu obsługi przerwań i zarządzania urządzeniami,
 - o modułu obsługi pamięci, zapewniającego przydział i ochronę pamięci.

Zasoby sprzętowe

Zasoby sprzętowe zarządzane przez system operacyjny:

- procesor przydział czasu procesora,
- pamięć
 - o alokacja przestrzeni adresowej dla procesów,
 - o transformacja adresów,
- urządzenia zewnętrzne
 - o udostępnianie i sterowanie urządzeniami pamięci masowej np. dysk_twardy,
 - o alokacja przestrzeni dyskowej,
 - o udostępnianie i sterowanie drukarkami, skanerami, aparatami itp.,
- informacja (system plików),
 - o organizacja i udostępnianie informacji,
 - o ochrona i autoryzacja dostępu do informacji.

Zarządzanie procesem – proces to program w stanie uruchomionym, każdy proces wymaga przydziału pewnych zasobów, włączając w to czas procesora, pamięć, pliki oraz urządzenia wejścia/wyjścia, aby w pełni wykonać swoje zadanie. System operacyjny jest odpowiedzialny w fazie zarządzania procesami za:

- tworzenie i usuwanie procesu,
- wstrzymywanie i przywracanie procesu,
- zapewnienie mechanizmów pozwalających na synchronizację procesów oraz komunikację między procesami.

Zarządzanie pamięcią operacyjną – pamięć to duża tablica słów lub bajtów, każda z własnym adresem, pamięć jest szybko dostępna i dzielona jest pomiędzy procesor oraz urządzenia wejścia/wyjścia. Pamięć główna jest ulotnym miejscem przechowywania danych, traci swoją zawartość w czasie awarii systemu. System operacyjny jest odpowiedzialny w fazie zarządzania pamięcią za:

- utrzymywanie informacji, która część pamięci jest aktualnie używana i przez kogo,
- decydowania, który proces powinien zostać wczytany do pamięci, jeżeli pamięć jest wolna,
- przydzielanie i zwalnianie pamięci.

Zarządzanie plikami – plik jest zbiorem informacji zdefiniowanym przez twórcę pliku. Zazwyczaj, pliki reprezentują programy (źródła programów lub pliki wykonywalne) oraz dane. System operacyjny jest odpowiedzialny w fazie zarządzania plikami za:

- tworzenie i kasowanie plików,
- tworzenie i kasowanie katalogów,
- wsparcie dla użytkowników końcowych przy operacjach na plikach,
- mapowanie plików na nośniku danych,
- tworzenie kopii plików.

Zarządzanie wejściem/wyjściem – system wejścia/wyjścia składa się z: systemu buforowania, interfejsu urządzeń głównych, sterowników (kontrolerów) dla specyficznych urządzeń.

Zarządzenie nośnikami danych – pamięć główna jest ulotna i często za mała aby obsłużyć wszystkie programy i dane, dlatego stosuje się nośniki danych (najczęściej dysk twardy) do powiększania tej pamięci tak zwanej pamięć drugiego rzędu, na napędach tych mapuje się pamięć główną. System operacyjny jest odpowiedzialny w fazie zarządzania nośnikami danych za:

- zarządzanie wolną pamięcią,
- alokacją zapisu,
- planowaniem dysku.

Linux

Źródło: https://pl.wikipedia.org/wiki/Linux#Linux a GNU/Linux

Linux- rodzina uniksopodobnych systemów operacyjnych opartych o jądro Linux. Linux jest jednym z przykładów wolnego i otwartego oprogramowania, jego kod źródłowy może być dowolnie wykorzystywany, modyfikowany i rozpowszechniany.

Zasady licencjonowania

Projekt GNU – przedsięwzięcie mające na celu stworzenie kompletnego, wolnego, systemu operacyjnego GNU, zapoczątkowane w styczniu 1984 roku przez Richarda Matthew Stallmana GNU General Public License – licencja wolnego i otwartego oprogramowania stworzona w 1989 roku przez Richarda Stallmana i Ebena Moglena na potrzeby Projektu GNU,

Celem licencji GNU GPL jest przekazanie użytkownikom czterech podstawowych wolności

- wolność uruchamiania programu w dowolnym celu (wolność 0)
- wolność analizowania, jak program działa i dostosowywania go do swoich potrzeb (wolność 1)
- wolność rozpowszechniania niezmodyfikowanej kopii programu (wolność 2)
- wolność udoskonalania programu i publicznego rozpowszechniania własnych ulepszeń, dzięki czemu może z nich skorzystać cała społeczność (wolność 3).

Tylko jeżeli program spełnia wszystkie cztery wolności jednocześnie, wówczas, może być uznany za "Wolne Oprogramowanie".

Linux to jadro systemu, a dystrybucja to jądro systemu wraz ze zbiorem aplikacji oraz narzędzi i instalatorem.

Jądro jest istotną częścią systemu operacyjnego, ale samo jest bezużyteczne — może działać tylko w obrębie pełnego systemu operacyjnego.

Dostępne "wolne programy" połączyły się w kompletny system, gdyż Projekt GNU od 1984 roku pracował nad jego stworzeniem..

Pierwsza wersja jądra Linux została udostępniona publicznie 17 września **1991**. Do jądra dołączono narzędzia systemowe i biblioteki z projektu GNU aby otrzymać nadający się do użytku system operacyjny. Z tego powodu powstała też alternatywna nazwa kompletnego systemu: **GNU/Linux**. Obecnie jest on udostępniany w formie licznych dystrybucji Linuksa, które składają się z **jądra** (niekiedy zmodyfikowanego w stosunku do oficjalnej wersji) i **zestawu pakietów oprogramowania** dobranego do różnorodnych wymagań.

System ten jest już nowoczesnym, wielozadaniowym, wieloużytkownikowym systemem operacyjnym podobnym do systemu UNIX. Posiada miedzy innymi:

- 1. prawdziwą wielozadaniowość / wielodostępność linux pozwala wielu użytkownikom wykonywać (różne) programy jednocześnie, wykorzystując w pełni możliwości procesora Intel 80386 i jego następców. ochronę pamięci jeden proces nie może uszkodzić innego procesu ani tym bardziej systemu),
- 2. zaawansowany system plików (długie nazwy, wielkość do 4TB),
- 3. wbudowaną obsługę wielu protokołów sieciowych (TCP/IP)

Pod względem wydajności, szybkości i stabilności śmiało konkuruje z kosztownymi komercyjnymi systemami operacyjnymi. Ponadto, dużą jego zaletą jest pełna dostępność kodu źródłowego. Bazując swoje rozwiązania na Linuxie nie inwestuje się w zamkniętą technologię, uzależnioną od łaski lub niełaski jednej firmy, lecz w otwarty system, do którego wiele firm jest w stanie zapewnić wsparcie i doradztwo.

Przykłady zastosowań

- Linux stosowany jest jako podstawowy system operacyjny serwerów (w tym WWW, FTP, pocztowych, baz danych), zapór sieciowych, routerów,
- Linux wykorzystywany jest przez niektóre banki i instytucje finansowe. Przykładowo, system notowań Wall Street oparty jest na tym systemie operacyjnym, jak i również Londyńska Giełda.
- Linux jest używany w większości superkomputerów z listy TOP500. Znalazł również zastosowanie w przemyśle filmowym zarówno na serwerach jak i stacjach roboczych. Jest najpopularniejszym systemem na komputerach wykorzystywanym do tworzenia animacji i efektów specjalnych. Z jego możliwości korzystają między innymi studia Dreamworks, Pixar czy Industrial Light & Magic.
- Aparatura medyczna, np. tomografy komputerowe korzystają z systemu operacyjnego Linux.

Dystrybucje wyspecjalizowane na serwery lub administrację mogą używać wiersza poleceń jako jedynego interfejsu. Nieobecność interfejsu graficznego (GUI) pozwala na zminimalizowanie wykorzystywanych zasobów systemowych.

Wiersz poleceń jest uniwersalny w świecie Linuksa, gdzie graficzny interfejs na każdej maszynie może być inny.

Dobrze zaprojektowane GUI jest łatwiejsze w użyciu dla większości zadań, lecz bardziej doświadczeni użytkownicy mogą wciąż preferować linię komend; Wiele ważnych programów nie ma GUI.

Graficzny interfejs użytkownika GUI nie jest w Linuksie integralną częścią systemu operacyjnego, lecz dodatkowym zbiorem programów.

Popularne dystrybucje:

- Ubuntu
- Mandrake
- SuSE Jest to dystrybucja komercyjna
- Red Hat Jest to dystrybucja komercyjna
- Slackware
- Debian