Null Space:

The null space of Amon is the set of all vectors \vec{n} such that $A\vec{n} = \vec{0}$ ie, Null (A) or N(A) = $\int \vec{n} \in \mathbb{R}^n | A\vec{n} = \vec{0}$

(Q1: Find null space of A= [1 1 1 1 1 1 1 2 3 4 4 4 3 2 1

Let $\vec{a} := \begin{bmatrix} a_1 \\ b_2 \end{bmatrix}$ such that $A\vec{a} = \vec{b}$.

By matrix multiplication,

74

from R₁, $\alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 = 0$ — (i) from R₂, $\alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 = 0$ — (ii) from R₃, $4\alpha_1 + 3\alpha_2 + 2\alpha_3 + \alpha_4 = 0$ — (iii)

writing in augmented matrix form,

Applying $R_1 + R_1 + 3R_2$ $\sim \begin{bmatrix} 1 & 0 & 512 & 0 \\ 0 & 1 & 312 & 0 \end{bmatrix}$

From R1, $x_1 + 5h x_3$ $\frac{1}{2} x_1 = -512 x_3$ From R2, $x_2 + 3h x_3$ $\frac{1}{2} x_2 = -3h x_3$

So, $\begin{bmatrix}
31, & -512 \\
92 & = -312
\end{bmatrix}$ $\begin{bmatrix}
13 & 1
\end{bmatrix}$

Here, $\vec{z} \in \mathbb{R}^3$ satisfies $A\vec{z} = \vec{0}$ and is linear combination of $\vec{a} = (-5121 - 312)$

Thuc,

Nullspace (A) = N(A) = n3 \(\bar{a} = n3 \) \[-512 \]

-312

or, span \sqrt{a} = spand $\begin{bmatrix} -512 \\ -312 \end{bmatrix}$