COLÉGIO MILITAR DE BELO HORIZONTE

CONCURSO DE ADMISSÃO 2007 / 2008

PROVA DE MATEMÁTICA

1º ANO DO ENSINO MÉDIO

RESPONDA AS QUESTÕES DE 01 A 20 E TRANSCREVA AS RESPOSTAS CORRETAS PARA O CARTÃO-RESPOSTA

QUESTÃO 01 – Um relógio de ponteiro marca 12h 24 min. O menor ângulo entre os ponteiros, nesse instante, vale:

- **B** 140°
- © 138°
- D 135°
- (E) 132°

QUESTÃO 02 – Seja N o número que se deve somar a 86115² para se obter 86116². A soma dos algarismos que compõem N é igual a:

- A 20
- **B** 18
- © 16
- D 14
- € 13

QUESTÃO 03 – Das afirmativas abaixo, a única falsa é:

- $\bigcirc \left(\frac{2}{\sqrt{2}}\right)^2 \in \mathbb{N}$
- (B) $N \cup Z = Z$
- © $(-10) \cdot (-1) \in Z_{+}$
- $\bigcirc \sqrt{5} \in R Q$
- \bigcirc $\sqrt{100\%} \notin N$

QUESTÃO 04 – Uma loja promoveu dois descontos sucessivos no preço de uma mercadoria. O primeiro desconto foi de 12% e o segundo, de 5%. Esses dois descontos sucessivos equivalem a um desconto único de:

- A 15%
- **B** 16%
- © 16,2%
- D 16,4%
- **E** 17%

QUESTÃO 05 – Dados os números 5¹³⁵, 9⁹⁰ e 3²²⁵, podemos afirmar que:

©
$$9^{90} > 5^{135} > 3^{225}$$

①
$$5^{135} > 3^{225} > 9^{90}$$

$$(E)$$
 $9^{90} > 3^{225} > 5^{135}$

QUESTÃO 06 – Seja $A = \sqrt[4]{27} - B$, onde $B = \frac{1}{\sqrt[4]{3}}$. Então, o valor de A é:

$$\bigcirc -\frac{\sqrt[4]{27}}{3}$$

$$\frac{2\sqrt[4]{27}}{2}$$

QUESTÃO 07 – O número de divisores de 4.200 que não são primos é igual a:

- A 4
- B 6
- © 22
- (D) 44
- (E) 46

QUESTÃO 08 – A soma de todas as raízes da equação $(x^2 + 5x - 1)^2 = 5x^2 + 25x - 5$ é igual a:

- ♠ -5
- ® -6
- © -10
- ① 10
- Ē 5

QUESTÃO 09 – Dado o sistema
$$\begin{cases} \frac{2}{a}x + \frac{2}{b}y = 1\\ \frac{2}{b}x + \frac{2}{a}y = 1 \end{cases}$$
, com $a \neq 0$ e $b \neq 0$, pode-se concluir que:

- (A) x.y = 1, quaisquer que sejam os valores de x e y.
- (B) x e y são simétricos.
- (c) x e y são primos entre si.
- \bigcirc x + y > 1, para todo x e y.
- **(E)** $x \cdot y^{-1} = 1$.

QUESTÃO 10 – O gráfico da função f: R \rightarrow R, definida por f (x) = ax + b, passa pelos pontos (3, 4) e (5, 6). O menor ângulo formado pelo gráfico dessa função com o eixo das abscissas é:

- (A) 45°
- (B) 40°
- (C) 75°
- (D) 60°
- (E) 30°

QUESTÃO 11 – A função f : R \rightarrow R, definida por f (x) = (k – 3) x^2 + (k² – 16) x + 92, intercepta o eixo das abscissas em dois pontos simétricos entre si. Sabe-se que essa função possui um ponto máximo. Então, podemos afirmar que k vale:

- (A) -3
- (B) 5

- (E) -4

QUESTÃO 12 – Seja um triângulo retângulo ABC, reto em A, cuja hipotenusa mede 10 cm. Se o ângulo formado pela altura relativa à hipotenusa e pela bissetriz do ângulo reto é igual a 15°, então a medida do menor cateto desse triângulo é:

- (A) 6 cm
- (B) 8 cm
- © 5 cm
- (E) 6 √3 cm

QUESTÃO 13 – se $y = \frac{x^3 + x^2}{x^4 + 1} - 1$, então o valor de y para $x = -\frac{2}{3}$ é:

- $\triangle -\frac{81}{97}$
- © $-\frac{87}{97}$
- $\bigcirc -\frac{38}{97}$
- \bigcirc $-\frac{3}{97}$

QUESTÃO 14 – Em um triângulo ABC, qualquer, o maior ângulo entre as bissetrizes dos ângulos \hat{A} e \hat{C} vale 105°. Então, o ângulo \hat{B} mede:

- ♠ 75°
- (B) 60°
- © 37° 30'
- D 30°
- E 25° 30'

QUESTÃO 15 - Seja o trapézio ABCD, representado na figura (desenho fora de escala):

A altura desse trapézio vale 2 cm, AB = 7 cm e DC = 4 cm. A medida de BC é, em centímetros igual a:

- \bigcirc $\sqrt{5}$
- B 5√5
- © $2\sqrt{5}$
- D 5
- \bigcirc 5 $\sqrt{2}$

QUESTÃO 16 – Seja $P = \frac{\frac{\sqrt{100\%}}{\sqrt{3} + 1}}{\frac{\sqrt{3}}{1,333...}}$. Então, P^{-1} é igual a:

- © $5-\sqrt{3}$
- ① $5+\sqrt{3}$

QUESTÃO 17 – Considerando que $\left(x + \frac{1}{x}\right)^2 = 5$, x > 0, então o valor de $x^3 + \frac{1}{x^3}$ é:

- (A) 0
- \bigcirc $\sqrt{5}$
- \bigcirc $-\sqrt{5}$
- ① $-2\sqrt{5}$
- ② √5

QUESTÃO 18 – A razão entre a área de um quadrado inscrito em um semi-círculo de raio **r** e a de um outro quadrado inscrito em um círculo de mesmo raio é:

- $\mathbb{B} \frac{1}{4}$
- \bigcirc $\frac{1}{2}$
- $\bigcirc \frac{2}{3}$

PÁGINA: 7

QUESTÃO 19 – A distância entre dois lados opostos de um hexágono regular mede $\sqrt{108}\,$ cm. O perímetro desse hexágono mede:

- (A) 36 cm
- (B) $36 \sqrt{3}$
- © 18 cm
- ① $18 \sqrt{3}$ cm
- \bigcirc 24 $\sqrt{3}$ cm

 $\mathbf{QUEST\tilde{AO}\ 20} - \text{Seja}\ z = \frac{0.3 - 2^{-2} + \frac{9}{5}}{0.05 + \left(\frac{500}{400}\right)^{-1}} \text{. Então, sobre } \mathbf{z} \text{ , pode-se afirmar que é um número:}$

- A natural par
- B irracional
- © primo maior que 3
- (D) racional, maior que 1 e menor que 3
- **E** racional negativo

FIM DA PROVA ω

CONCURSO DE ADMISSÃO AO CMBH 2007/2008

GABARITO DA PROVA DE MATEMÁTICA

1º ANO DO ENSINO MÉDIO

