Fronteira de Decisão e Função Custo para Regressão Logística

Onde estamos e para onde vamos

Na aula anterior, revisamos o que são problemas de classificação e fizemos uma introdução sobre o método de Regressão Logística

Nesta aula continuaremos nossos estudos falando sobre **Fronteira de Decisão**, um conceito importante de ser bem compreendido no âmbito dos algoritmos de classificação.

Também vamos definir a Função Custo que utilizaremos para fins de Regressão Logística

Relembrando a Regressão Logística

Passo 1:

Definimos z como um modelo linear do tipo

$$z = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

Passo 2:

Passamos este z pela função sigmoide

$$g(z) = \frac{1}{1 + e^{-z}}$$

Resultado

O resultado desse passo-a-passo é o modelo de Regressão Logística

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = g(\overrightarrow{w} \cdot \overrightarrow{x} + b) = \frac{1}{1 + e^{-(\overrightarrow{w} \cdot \overrightarrow{x} + b)}} \qquad \text{onde } 0 < f_{\overrightarrow{w},b}(\overrightarrow{x}) < 1$$

Gerando as previsões $\hat{y} = 0$ e $\hat{y} = 1$

Como $0 < f_{\overrightarrow{w},b}(\overrightarrow{x}) < 1$, podemos considerar que $f_{\overrightarrow{w},b}(\overrightarrow{x})$ é a probabilidade de que y seja 1.

Ou seja,
$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = P(y=1|\overrightarrow{x};\overrightarrow{w},b)$$

Sendo assim, podemos considerar que

$$\hat{y} = \left\{ \begin{array}{cc} 1 & \text{ se } f_{\overrightarrow{w},b}(\overrightarrow{x}) \geq 0.5 \\ 0 & \text{ se } f_{\overrightarrow{w},b}(\overrightarrow{x}) < 0.5 \end{array} \right.$$

Gerando as previsões $\hat{y} = 0$ e $\hat{y} = 1$

Pergunta:

Quando $f_{\overrightarrow{w},b}(\overrightarrow{x}) \geq 0.5$?

Resposta:

Quando $g(z) \ge 0.5$.

Ou, equivalentemente, quando $z \geq 0$

Ou, equivalentemente, quando $\overrightarrow{w}\cdot\overrightarrow{x}+b\geq0$

Conclusão:

Nosso modelo fará a previsão $\hat{y}=1$ quando $\overrightarrow{w}\cdot\overrightarrow{x}+b\geq0$

Gerando as previsões $\hat{y} = 0$ e $\hat{y} = 1$

Analogamente, nosso modelo fará a previsão $\hat{y}=0$ quando $\overrightarrow{w}\cdot\overrightarrow{x}+b<0$

. Definição:

Também podemos definir a fronteira de decisão, que consiste no valor de \overrightarrow{x} que faz com que $z = \overrightarrow{w} \cdot \overrightarrow{x} + b = 0$.

Note que esse é o valor que faz com que $f_{\overrightarrow{w},b}(\overrightarrow{x})=0.5$

Definindo a Fronteira de Decisão

Seja o problema de classificação abaixo, que contém 2 variáveis.

Como são 2 variáveis, o modelo para esse caso é

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = g(w_1x_1 + w_2x_2 + b)$$

Supondo $w_1=w_2=1$ e b=-3, temos a seguinte fronteira de decisão:

$$z = \overrightarrow{w} \cdot \overrightarrow{x} + b = 0$$
 \rightarrow $x_1 + x_2 - 3 = 0$ \rightarrow $x_1 + x_2 = 3$

Definindo a Fronteira de Decisão

llustrando a fronteira de decisão $x_1 + x_2 = 3$ na figura, temos

Podemos ter também Fronteiras de Decisão mais complexas (não lineares):

Usando Engenharia de Características, podemos estabelecer o seguinte modelo para esse caso:

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = g(w_1x_1^2 + w_2x_2^2 + b)$$

Supondo $w_1=w_2=1$ e b=-1, temos a seguinte fronteira de decisão:

$$z = \vec{w} \cdot \vec{x} + b = 0$$
 \rightarrow $x_1^2 + x_2^2 - 1 = 0$ \rightarrow $x_1^2 + x_2^2 = 1$

Podemos ter também Fronteiras de Decisão mais complexas (não lineares):

Ilustrando a fronteira de decisão $x_1^2+x_2^2=1$ na figura, temos

Podemos ter também Fronteiras de Decisão mais complexas (não lineares):

Observação

- Usando polinômios de maior ordem, podemos ter fronteiras de decisão com formas ainda mais complexas.
- Ou seja, assim como na Regressão Linear nós não estávamos limitados a estimar retar para os dados, aqui na Regressão Logística também não estamos limitados a estimar Fronteiras de Decisão lineares.
- Apesar disso, continua valendo a relação linear

$$z = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

Quiz

Let's say you are creating a tumor detection algorithm. Your algorithm will be used to flag potential tumors for future inspection by a specialist. What value should you use for a threshold?

- High, say a threshold of 0.9?
- Low, say a threshold of 0.2?

Fonte: Machine Learning Specialization, deeplearning.ai, Stanford Online, Coursera.org.

Na Regressão linear, tínhamos a seguinte função custo:

$$J(\overrightarrow{w}, b) = \frac{1}{2m} \sum_{i=1}^{m} \left(f_{\overrightarrow{w}, b} \left(\overrightarrow{x}^{(i)} \right) - y^{(i)} \right)^{2}$$

onde

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \overrightarrow{w} \cdot \overrightarrow{x} + b$$

Vimos que, com essas definições, a função quadrática J é convexa, ou seja, ela não possui outros mínimos locais além do próprio mínimo global:

Agora, na Regressão Logística, temos:

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \frac{1}{1 + e^{-(\overrightarrow{w} \cdot \overrightarrow{x} + b)}}$$

 $\textbf{Pergunta:} \quad \text{Agora para esse novo } f_{\overrightarrow{w},b}(\overrightarrow{x}), \text{ \'e uma boa ideia usarmos a mesma definição para } J(\overrightarrow{w},b)?$

Resposta: Não, afinal, é possível provar que, se fizermos isso, $J(\overrightarrow{w},b)$ não será **convexa**, e terá diversos mínimos locais, aos quais podemos ficar presos.

Conclusão:

Precisaremos modificar um pouco nossa função custo $J(\overrightarrow{w},b)$ para que ela se torne convexa agora com

$$f_{\overrightarrow{w},b}(\overrightarrow{x}) = \frac{1}{1 + e^{-(\overrightarrow{w} \cdot \overrightarrow{x} + b)}}$$

A função custo quadrática da Regressão Linear pode ser reescrita conforme segue:

$$J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right), y^{(i)}\right)$$

onde $L(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}
ight),y^{(i)})$ é chamada de "função de perda" e é dada por

$$L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right),y^{(i)}\right) = \frac{1}{2}\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right) - y^{(i)}\right)^{2}$$

Na Regressão Logística, também usamos a função custo:

$$J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right), y^{(i)}\right)$$

Porém, na Regressão Logística, a "função de perda" é dada por

$$L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right),y^{(i)}\right) = \begin{cases} &-\log\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) & \text{, se } y^{(i)} = 1\\ &-\log\left(1-f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) & \text{, se } y^{(i)} = 0 \end{cases}$$

OBS: Tal função é também chamada de "função de entropia cruzada binária".

Observação adicional: Estamos usando a notação $\log = \ln$ (logaritmo neperiano)

Na Regressão Logística, a função de perda é dada por

$$L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right),y^{(i)}\right) = \left\{ \begin{array}{c} -\log\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) & \text{, se } y^{(i)} = 1 \\ -\log\left(1-f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) & \text{, se } y^{(i)} = 0 \end{array} \right.$$

Observações:

- lacktriangle a função de perda $L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}
 ight),y^{(i)}
 ight)$ opera com base em uma única amostra i
- lacktriangle Para obter a função custo, é necessário somar a perda para todas as amostras e depois dividir por m

Na Regressão Logística, a função de perda é dada por

$$L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right),y^{(i)}\right) = \left\{ \begin{array}{c} -\log\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) & \text{, se } y^{(i)} = 1 \\ -\log\left(1-f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) & \text{, se } y^{(i)} = 0 \end{array} \right.$$

Observações:

Como nossa $f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)$ estará sempre entre 0 e 1, então a única parte relevante da função $-\log\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right)$ para nós é:

• Quando $y^{(i)}=1$, a **perda** $\to 0$ conforme $f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right) \to 1$. Ou seja, à medida com que a previsão torna-se correta! Por outro lado, **perda** $\to \infty$ conforme $f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right) \to 0$.

Na Regressão Logística, a função de perda é dada por

$$L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right),y^{(i)}\right) = \left\{ \begin{array}{c} -\log\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) & \text{, se } y^{(i)} = 1 \\ -\log\left(1-f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) & \text{, se } y^{(i)} = 0 \end{array} \right.$$

Observações:

Como nossa $f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)$ estará sempre entre 0 e 1, então a única parte relevante da função $-\log\left(1-f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right)$ para nós é:

• Quando $y^{(i)}=0$, a **perda** o 0 conforme $f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right) o 0$. Ou seja, à medida com que a previsão torna-se correta! Por outro lado, **perda** $o \infty$ conforme $f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right) o 1$.

Na Regressão Logística, a função de perda é dada por

$$L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right),y^{(i)}\right) = \left\{ \begin{array}{c} -\log\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) & \text{, se } y^{(i)} = 1 \\ -\log\left(1-f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)\right) & \text{, se } y^{(i)} = 0 \end{array} \right.$$

- Definindo a função perda dessa forma, o modelo sofre uma penalidade zero (nula) quando sua previsão $f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)$ para uma determinada amostra $y^{(i)}$ está correta.
- A penalidade sofrida pelo modelo aumenta conforme sua previsão $f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)$ se afasta do valor alvo $u^{(i)}$
- Ao errar completamente a previsão, por exemplo, $y^{(i)}=1$ e $f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)=0$, o modelo é drasticamente penalizado (perda $\to \infty$)
- A função custo é a soma das perdas para todas as m amostras, divididos por m:

$$J(\overrightarrow{w},b) = \frac{1}{m} \sum_{i=1}^{m} L\left(f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right), y^{(i)}\right)$$

lacktriangle O objetivo é encontrar os valores de \overrightarrow{w},b que minimizam essa perda média, $J(\overrightarrow{w},b)$.

De olho no código!

Vamos agora explorar o conceito de Fronteira de Decisão e Função Custo para Regressão Logística.

Nome do arquivo que trabalharemos agora:

codigo - Fronteira de Decisão.ipynb

Atividade de aula

Parte 1

Rode todo o "codigo - Fronteira de Decisão.ipynb" sem fazer qualquer tipo de alteração. Certifique-se de que você o compreendeu.

Parte 2

- Explique, com as suas próprias palavras, o conceito de Fronteira de Decisão no contexto da Regressão Logística.
- ② Considerando $w_0 = w_1 = 1$ e b = -3, calcule o valor do modelo $f_{\overrightarrow{w},b}\left(\overrightarrow{x}^{(i)}\right)$ para cada amostra de dados $\overrightarrow{x}^{(i)}$ presente no código. O que esses valores representam? Os resultados estão coerentes com aquilo que é observado graficamente no código?
- 3 Calcule o valor da função perda para cada amostra i.
- \bigcirc Calcule o custo $J(\overrightarrow{w}, b)$.