

TI0116 Sinais e Sistemas

Módulo 4 – Transformada de Fourier (discreto)

Exercícios

Prof. Igor Guerreiro / DETI

- **5.23** Seja $X(e^{j\omega})$ a transformada de Fourier do sinal x[n] representado na Figura P5.23. Faça os seguintes cálculos sem obter $X(e^{j\omega})$ explicitamente:
 - (a) Obtenha $X(e^{j0})$.
 - **(b)** Encontre $\angle X(e^{j\omega})$.
 - (c) Obtenha $\int_{-\pi}^{\pi} X(e^{j\omega}) d\omega$.
 - (d) Encontre $X(e^{j\pi})$.
 - (f) Avalie:

(i)
$$\int_{-\pi}^{\pi} \left| X(e^{j\omega}) \right|^2 d\omega$$

(i)
$$\int_{-\pi}^{\pi} \left| X(e^{j\omega}) \right|^2 d\omega$$
(ii)
$$\int_{-\pi}^{\pi} \left| \frac{dX(e^{j\omega})}{d\omega} \right|^2 d\omega$$

5.26 Seja $x_1[n]$ o sinal de tempo discreto cuja transformada de Fourier $X_1(e^{j\omega})$ está representada na Figura P5.26(a).

(a)

(c) Seja

$$\alpha = \frac{\sum_{n=-\infty}^{\infty} n x_1[n]}{\sum_{n=-\infty}^{\infty} x_1[n]}.$$

Essa quantidade, que é o centro de gravidade do sinal $x_1[n]$, é chamada, em geral, de *tempo de atraso* de $x_1[n]$. Encontre α . (Pode-se fazê-lo sem determinar primeiro $x_1[n]$ explicitamente.)

(d) Considere o sinal $x_4[n] = x_1[n] * h[n]$, sendo

$$h[n] = \frac{\operatorname{sen}(\pi n/6)}{\pi n}.$$

Esboce $X_4(e^{j\omega})$.

5.28 Os sinais x[n] e g[n] têm transformadas de Fourier $X(e^{j\omega})$ e $G(e^{j\omega})$, respectivamente. Além disso, $X(e^{j\omega})$ e $G(e^{j\omega})$ são relacionados da seguinte forma:

$$\frac{1}{2\pi} \int_{-\pi}^{+\pi} X(e^{j\theta}) G(e^{j(\omega-\theta)}) d\theta = 1 + e^{-j\omega}$$
 (P5.28-1)

- (a) Se $x[n] = (-1)^n$, determine uma sequência g[n] tal que sua transformada de Fourier $G(e^{j\omega})$ satisfaça a Equação P5.28-1. Existem outras soluções possíveis para g[n]?
- **(b)** Repita o item (a) para $x[n] = (\frac{1}{2})^n u[n]$.

5.33 Considere um sistema LIT causal descrito pela equação de diferenças

$$y[n] + \frac{1}{2}y[n-1] = x[n].$$

- (a) Determine a resposta em frequência $H(e^{j\omega})$ desse sistema.
- **(b)** Qual é a resposta desse sistema às seguintes entradas?
 - (i) $x[n] = (\frac{1}{2})^n u[n]$