Distribución χ -cuadrado

DANIEL LÓPEZ
DAVID CHARTE
Universidad de Granada
5 de enero de 2016

Índice

1.	Ded	ucción de función de densidad	2
2.	Función generatriz de momentos		2
	2.1.	Esperanza	2
	2.2.	Varianza	2
3.	. Estimador máximo verosimil		2
	3.1.	Insesgadez	2
	3.2.	Eficiencia	2
	3.3.	Consistencia	2
	3.4.	Suficiencia	3

1. Deducción de función de densidad

La distribución χ -cuadrado es un caso particular de la distribución Gamma. Recordamos la función de densidad de esta distribución:

Definición 1.1 (Distribución Gamma). Decimos que la variable aleatoria X sigue una distribución Gamma si su función de densidad es:

$$f(x \mid \alpha, \beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-\frac{x}{\beta}}, \quad x \in [0, +\infty[, \alpha, \beta > 0].$$

Ahora, si 2α es un natural, llamamos $p=2\alpha$ y evaluamos en $\beta=2$, nos queda la siguiente expresión:

$$\frac{1}{\Gamma(\frac{p}{2})2^{\frac{p}{2}}}x^{\frac{p}{2}-1}e^{-\frac{x}{2}}.$$

Definición 1.2 (Distribución χ -cuadrado). Decimos que la variable aleatoria X sigue una distribución χ -cuadrado si su función de densidad es:

$$f(x \mid p) = \frac{1}{\Gamma(\frac{p}{2})2^{\frac{p}{2}}} x^{\frac{p}{2}-1} e^{-\frac{x}{2}}, \quad x \in [0, +\infty[, p \in \{1, 2, \dots\}].$$

2. Función generatriz de momentos

- 2.1. Esperanza
- 2.2. Varianza

3. Estimador máximo verosimil

3.1. Insesgadez

Definición 3.1 (Insesgadez). Se denomina sesgo de un estimador a la diferencia entre la esperanza del estimador y el verdadero valor del parámetro a estimar. Un estimador es insesgado si su sesgo es nulo por ser su esperanza igual al parámetro que se desea estimar.

3.2. Eficiencia

Definición 3.2 (Eficiencia). Un estimador $\hat{\theta}_1$ se dice que es más eficiente que otro estimador $\hat{\theta}_2$, si la varianza del primero es menor que la del segundo $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$.

3.3. Consistencia

Teorema 3.1. Una condición suficiente para que $\hat{\theta}$ sea un estimador consistente es que dicho estimador tiene que verificar:

$$E[\hat{\theta}] \to \theta$$

$$Var(\hat{\theta}) \to 0$$

Con $n \to \infty$.

3.4. Suficiencia

Teorema 3.2. Sean $X_1, X_2, ..., X_n$ variables aleatorias independientes con una función distribución de distribución conjunta $f(x_1, x_2, ..., x_n | \theta)$ que depende del parámetro θ .

Entonces se dice que el estadístico $u(x_1,...,x_n)$ es suficiente para θ si y solamente si $f(x_1,x_2,...,x_n|\theta)$ se puede factorizar de la siguiente forma:

$$f(x_1,...,x_n|\theta) = \Phi(u(x_1,...,x_n)|\theta) \cdot h(x_1,...,x_n)$$