Diferansiyel Denklemler

PROF.DR. METIN YAMAN

BÖLÜM 4.

YÜKSEK MERTEBEDEN LİNEER DİFERANSİYEL DENKLEMLER

Tanım 4.1

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = Q(x)$$
 (1)

şeklinde yazılabilen denkleme *n.mertebeden homojen olmayan lineer diferansiyel denklem* denir.

Eğer Q(x)=0 ise denkleme homojen lineer denklem, $a_i(x)=a_i$, $(i=\overline{0,n})$ sabit sayı ise denkleme sabit katsayılı lineer denklem denir.

Örnek 4.1 y'' - 2xy' + 2y = 2x + 1 denklemi 2.mertebeden değişken katsayılı homojen olmayan lineer denklemdir.

Örnek 4.2 $x^2y'' + xy' + 4y = 0$ denklemi 2.mertebeden değişken katsayılı homojen lineer denklemdir.

Örnek 4.3 $y''' + 3y'' - 3y' + y = xe^{2x}$ denklemi 3.mertebeden sabit katsayılı homojen olmayan lineer denklemdir.

Örnek 4.4 $y'^v + 4y'' + 4y = 0$ denklemi 4.mertebeden sabit katsayılı homojen lineer denklemdir. Tanım 4.2 y_1, y_2, \dots, y_n fonksiyonları; n-1 .inci mertebeye kadar türevli fonksiyonlar olmak üzere

$$W(y_1, y_2, \dots, y_n) = \det \begin{bmatrix} y_1 & \cdots & y_n \\ \vdots & \ddots & \vdots \\ y_1^{(n-1)} & \cdots & y_n^{(n-1)} \end{bmatrix}$$

determinantına y_1, y_2, \dots, y_n fonksiyonlarının wronskianı veya wronskian determinantı denir.

Örnek 4.5 cosx ve sinx fonksiyonlarının wronskianını hesaplayınız.

$$W(\cos x, \sin x) = \begin{vmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{vmatrix} = \cos^2 x + \sin^2 x = 1.$$

Örnek 4.6 $y_1 = e^{-2x}$, $y_2 = e^x$ ise $W(y_1, y_2)$ hesaplayınız.

$$W(e^{-2x}, e^x) = \begin{vmatrix} e^{-2x} & e^x \\ -2e^{-2x} & e^x \end{vmatrix} = e^{-x} + 2e^{-x} = 3e^{-x}.$$

Örnek 4.7 $y_1 = 1, y_2 = x, y_3 = x^2$ ise $W(y_1, y_2, y_3)$ hesaplayınız.

$$W(1, x, x^2) = \begin{vmatrix} 1 & x & x^2 \\ 0 & 1 & 2x \\ 0 & 0 & 2 \end{vmatrix} = 2.$$

Örnek 4.8 $y_1 = e^{2x}$, $y_2 = 3e^{2x}$ ise $W(y_1, y_2)$ hesaplayınız.

$$W(e^{2x}, 3e^{2x}) = \begin{vmatrix} e^{2x} & 3e^{2x} \\ 2e^{2x} & 6e^{2x} \end{vmatrix} = 6e^{4x} - 6e^{4x} = 0.$$

Örnek 4.9 $y_1 = e^{2x}$, $y_2 = 3xe^{2x}$ ise $W(y_1, y_2)$ hesaplayınız.

$$W(e^{2x}, 3xe^{2x}) = \begin{vmatrix} e^{2x} & 3xe^{2x} \\ 2e^{2x} & (3+6x)e^{2x} \end{vmatrix} = 3e^{4x}.$$

Ornek 4.10 $y_1 = x, y_2 = cosx, y_3 = sinx$ ise $W(y_1, y_2, y_3) = ?$ $W(1, x, x^2) = \begin{vmatrix} x & cosx & sinx \\ 1 & -sinx & cosx \\ 0 & -cosx & -sinx \end{vmatrix} = x.$

Teorem 4.1 I aralığındaki her x için $W(y_1, y_2, ..., y_n) \neq 0$ ise $y_1, y_2, ..., y_n$ fonksiyonlarına I aralığında $lineer\ bağımsızdır$.

Örnek 4.11 $W(\sin x, \cos x) \neq 0$ olduğundan $y_1 = \sin x, y_2 = \cos x$ fonksiyonları lineer bağımsızdır.

Örnek 4.12 $W(e^{2x}, 3e^{2x}) = 0$ olduğu için $y_1 = e^{2x}, y_2 = 3e^{2x}$ fonksiyonları lineer bağımlıdır.

Örnek 4.13 $W(1, x, x^2) \neq 0$ olduğundan $y_1 = 1, y_2 = x, y_3 = x^2$ fonksiyonları lineer bağımsızdır.

Teorem 4.2 Her i için $a_i(x)$ fonksiyonları I aralığında sürekli ve y_1, y_2, \dots, y_n fonksiyonları

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0$$

n. mertebeden homojen diferansiyel denkleminin birer çözümü olsunlar. y_1, y_2, \dots, y_n fonksiyonlarının I aralığında lineer bağımsız olmaları için gerek ve yeter koşul I aralığındaki her x değeri için

$$W(y_1, y_2, \dots, y_n) \neq 0$$

olmasıdır.

Teorem 4.3 y_1, y_2, \dots, y_n fonksiyonları

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0$$

n. mertebeden homojen diferansiyel denkleminin birer çözümü ve lineer bağımsız iseler, c_1, c_2, \ldots, c_n sabit sayılar olmak üzere homojen denklemin genel çözümü

$$y_h(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)$$

şeklindedir.

BÖLÜM 4.1

SABİT KATSAYILI LİNEER DİFERANSİYEL DENKLEMLER

BÖLÜM 4.1.1

SABİT KATSAYILI HOMOJEN LİNEER DİFERANSİYEL DENKLEMLER

(1) denkleminde Q(x)=0 ve $a_i(x)=a_i$ $(i=\overline{0,n})$ alınarak elde edilen

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = 0$$
 (2)

denklemine sabit katsayılı homojen lineer denklem denir.

Bu denklemin çözümlerini $y = e^{kx}$ şeklinde araştıralım.

 $y = e^{kx}$ fonksiyonunu ve $y' = ke^{kx}$, $y'' = k^2e^{kx}$, ..., $y^{(n)} = k^ne^{kx}$ türevlerini (2) denkleminde yerine yazarsak

$$(a_n k^n + a_{n-1} k^{n-1} + \dots + a_1 k + a_0) e^{kx} = 0$$
 veya

$$a_n k^n + a_{n-1} k^{n-1} + \dots + a_1 k + a_0 = 0 \tag{3}$$

denklemini elde ederiz. (3) cebirsel denklemine (2) homojen lineer denklemin *karakteristik denklemi* denir. Köklerine de *karakteristik kök* denir.

Örnek 4.14 y'' - 3y' + 2y = 0 denkleminin karakteristik denklemi $k^2 - 3k + 2 = 0$ olup kökleri k = 1, k = 2 dir.

Örnek 4.15 y'' + 4y = 0 denkleminin karakteristik denklemi $k^2 + 4 = 0$ dir. Reel kökü yoktur fakat k = 0 + 2i, k = 0 - 2i şeklinde kompleks kökleri vardır.

(2) denkleminin çözümlerini $y = e^{kx}$ şeklinde araştırdığımız için her karakteristik kök için yazılan $y_i = e^{k_i x}$ (i=1,2,...,n) fonksiyonları (2) denkleminin birer özel çözümü olacaktır.

Teorem 4.4
$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + ... + a_1 y' + a_0 y = 0$$

n. Mertebeden sabit katsayılı homojen lineer denklemin lineer bağımsız özel çözümleri $y_1 = e^{k_1 x}$, $y_2 = e^{k_2 x}$, ..., $y_n = e^{k_n x}$ ise (2) denkleminin genel çözümü

$$y = c_1 y_1 + c_2 y_2 + \dots + c_n y_n \tag{4}$$

şeklindedir.

Örnek 4.16 y'' - 3y' + 2y = 0 denkleminin genel çözümü $y = c_1 e^x + c_2 e^{2x}$ şeklinde yazılır. (Bkz. Örnek 4.11)

Örnek 4.17 y''' - 4y'' - 5y' = 0 denkleminin genel çözümünü bulalım.

Karakteristik denklem $k^3 - 4k^2 - 5k = 0$ veya k(k - 5)(k + 1) = 0 olup kökleri $k_1 = 0, k_2 = 5, k_3 = -1$ dir.

$$y_1 = e^{0x} = 1$$
, $y_2 = e^{5x}$, $y_3 = e^{-x}$

birer lineer bağımsız özel çözüm olup genel çözüm; (4) ten

 $y = c_1.1 + c_2.e^{5x} + c_3.e^{-x}$ şeklinde yazılır.

Kökler Reel ve Farklı olması durumunda;

Yani $k_1 \neq k_2 \neq \cdots \neq k_n$ dir. Bu durumda genel çözüm

$$y = c_1 e^{k_1 x} + c_2 e^{k_2 x} + \dots + c_n e^{k_n x}$$
 (5)

şeklinde yazılır. (Bkz. Örnek 4.13 ve 4.14)

Örnek 4.18 y'' - 5y' + 4y = 0 denkleminin genel çözümünü bulalım. Karakteristik denklem $k^2-5k+4=0$ olup kökler $k_1=1, k_2=4$ tür. Farklı reel kök oldukları için (5) ten genel çözüm

$$y = c_1 e^x + c_2 e^{4x}$$
 şeklindedir.

Kökler Reel ve m adet katlı kök olması durumunda;

Yani kökler
$$k_1 = k_2 = \cdots = k_m$$
, $k_{m+1} \neq k_{m+2} \neq \cdots \neq k_n$ dir.

Bu durumda ilk m adet köke karşılık gelen çözümler lineer bağımlı olacaktır. Lineer bağımsız hale getirebilmek için $\{1, x, x^2, ...\}$ tabanı kullanılır.

Şöyleki; e^{k_1x} , e^{k_2x} , ..., e^{k_mx} fonksiyonları lineer bağımlı iken,

 e^{k_1x} , xe^{k_2x} , $x^2e^{k_3x}$..., $x^{m-1}e^{k_mx}$ fonksiyonları lineer bağımsız olacaktır.

Örnek 4.19 $\{e^{2x}, 3e^{2x}\}$ çözüm kümesi lineer bağımlı iken bunun lineer bağımsız çözüm kümesi $\{e^{2x}, xe^{2x}\}$ dir.

Örnek 4.20 $\{e^{-x}, e^{-x}, e^{-x}\}$ çözüm kümesi lineer bağımlıdır. Oysa $\{1.e^{-x}, x.e^{-x}, x^2e^{-x}\}$ çözüm kümesi lineer bağımsızdır.

Örnek 4.21 $\{e^{2x}, e^{2x}, e^{5x}\}$ çözüm kümesi lineer bağımlıdır. Fakat $\{1.e^{2x}, x.e^{2x}, e^{5x}\}$ çözüm kümesi lineer bağımsız olur.

Buna göre genel çözüm aşağıdaki şekilde yazılmalıdır.

$$y = (c_1 + c_2 x + \dots + c_m x^{m-1})e^{k_m x} + c_{m+1}e^{k_{m+1} x} + \dots + c_n e^{k_n x}$$
.

Örnek 4.22 y'' - 4y' + 4y = 0 denkleminin genel çözümünü bulalım.

Çözüm. Karakteristik denklem $k^2-4k+4=0$ olup denklemin kökleri $k_1=k_2=2$ dir.

Lineer bağımsız çözümler kümesi $\{e^{2x}, xe^{2x}\}$ olup genel çözüm

$$y = (c_1 + c_2 x)e^{2x}$$

Örnek 4.23 $y^{v} - 3y''' + 2y'' = 0$ denkleminin genel çözümünü bulalım.

Çözüm. Karakteristik denklemi
$$k^5 - 3k^3 + 2k^2 = 0$$
 veya $k^2(k-1)^2(k+2) = 0$ olup kökleri $k_1 = k_2 = 0$, $k_3 = k_4 = 1$, $k_5 = -2$ dir.

Lineer bağımsız çözümler kümesi $\{e^{0x}, xe^{0x}, e^x, xe^x, e^{-2x}\}$ dir. Genel çözüm

$$y = (c_1 + c_2 x)e^{0x} + (c_3 + c_4 x)e^x + c_5 e^{-2x}$$

veya

$$y = (c_1 + c_2 x) + (c_3 + c_4 x)e^x + c_5 e^{-2x}$$

Örnek 4.24 y''' + 3y'' + 3y' + y = 0 denkleminin genel çözümünü bulalım.

Çözüm. Karakteristik denklemi $k^3 + 3k^2 + 3k + 1 = 0$ veya $(k+1)^3 = 0$ olup kökleri $k_1 = k_2 = k_3 = -1$ dir.

Lineer bağımsız çözümler kümesi $\{e^{-x}, xe^{-x}, x^2e^{-x}\}$ olup genel çözüm

$$y = (c_1 + c_2 x + c_3 x^2)e^{-x}$$

Kökler Kompleks olması durumunda;

Diyelim ki kökler kompleks ve $k_{1,2} = \alpha \pm i\beta$ olsun.

$$e^{(\alpha \pm i\beta)x} = e^{\alpha x}(\cos\beta x + i\sin\beta x)$$
özelliği dikkate alınırsa $e^{\alpha x}\cos\beta x$ ve $e^{\alpha x}\sin\beta x$ fonksiyonları kompleks köklere karşı gelen lineer bağımsız çözümlerdir. (4) ten genel çözüm;

$$y = c_1 e^{\alpha x} \cos \beta x + c_2 e^{\alpha x} \sin \beta x$$

veya

$$y = e^{\alpha x} (c_1 \cos \beta x + c_2 \sin \beta x) \tag{7}$$

Örnek 4.25 y'' - 2y' + 10y = 0 denkleminin genel çözümünü bulalım.

Çözüm. Karakteristik denklemi $k^2-2k+10=0$ olup reel kökü yoktur onun yerine kompleks kökleri $k_{1,2}=1\pm 3i$ dir. Genel çözüm; (7) den $y=e^x(c_1\cos 3x+c_2\sin 3x)$ şeklinde yazılır.

Örnek 4.26 y'' + y = 0 denkleminin genel çözümünü bulalım. Çözüm. Karakteristik denklemi $k^2 + 1 = 0$ olup kökleri $k_{1,2} = 0 \pm i$ dir. Genel çözüm; (7) den

$$y = e^{0x}(c_1\cos x + c_2\sin x) = c_1\cos x + c_2\sin x \quad \text{yazılır.}$$

Uyarı.

Katlı Kompleks kök olması durumunda;

Diyelim ki kökler kompleks ve çift katlı $k_{1,2}=\alpha\pm i\beta$, $k_{3,4}=\alpha\pm i\beta$ olsun.

Bu durumda $e^{\alpha x}\cos\beta x$, $xe^{\alpha x}\cos\beta x$, $e^{\alpha x}\sin\beta x$, $xe^{\alpha x}\sin\beta x$ fonksiyonları katlı kompleks köklere karşı gelen lineer bağımsız çözümlerdir. (4) ve (7) den genel çözüm;

 $y = c_1 e^{\alpha x} \cos \beta x + c_2 x e^{\alpha x} \cos \beta x + c_3 e^{\alpha x} \sin \beta x + c_4 x e^{\alpha x} \sin \beta x$ veya

$$y = e^{\alpha x} [(c_1 + c_2 x) \cos \beta x + (c_3 + c_4 x) \sin \beta x)]$$
 (8) şeklinde yazılır.

Örnek 4.27 $y'^{v} + 2y'' + y = 0$ denkleminin genel çözümünü bulalım.

Çözüm. Karakteristik denklem $k^4 + 2k^2 + 1 = 0$ veya $(k^2 + 1)^2 = 0$ olup reel kökü yoktur onun yerine kompleks kökleri vardır. Bunlar 2 katlı olup $k_{1,2} = 0 \pm 1i$ ve $k_{3,4} = 0 \pm 1i$ şeklindedir.

Genel çözüm; (8) den

$$y = e^{0x}[(c_1 + c_2x)\cos 1x + (c_3 + c_4x)\sin 1x)]$$
 veya

$$y = (c_1 + c_2 x)\cos x + (c_3 + c_4 x)\sin x$$

PROBLEMLER

Aşağıdaki diferansiyel denklemlerin genel çözümlerini yazınız.

1.
$$y'' - 10y' + 16y = 0$$
 C: $y = c_1 e^{2x} + c_2 e^{8x}$

2.
$$y'' - 6y' + 9y = 0$$
 C: $y = (c_1 + c_2 x)e^{3x}$

3.
$$y''' - 3y'' + 3y' - y = 0$$
 C: $y = (c_1 + c_2x + c_3x^2) e^{-x}$

4.
$$y'' - 4y' + 5y = 0$$
 C: $y = e^{2x}(c_1 cos x + c_2 sin x)$

5.
$$y'^{v} + 4y''' + 4y'' = 0$$
 C: $y = (c_1 + c_2x) + (c_3 + c_4x)e^{-2x}$

6.
$$y'^{v} + y'' = 0$$
 C: $y = c_1 + c_2 x + c_3 cos x + c_4 sin x$

7.
$$y'' - 4y' + 13y = 0$$
 $C:y = e^{2x}(c_1 cos3x + c_2 sin3x)$

8.
$$y'' + 2y' + 5y = 0$$
 C: $y = e^{-x}(c_1 cos2x + c_2 sin2x)$

9.
$$y^{v} - 8y'' = 0$$
 C: $y = (c_1 + c_2x) + c_3e^{2x} + (c_4\cos\frac{\sqrt{10}}{2}x + c_5\sin\frac{\sqrt{10}}{2}x)$

10.
$$y^{v'''} - 16y'^v = 0$$
 C: $y = c_1 + c_2x + c_3e^{2x} + c_4e^{-2x} + c_5\cos 2x + c_5\sin 2x$