Outline of the lecture

- Gradient Boosting
 - review
 - L₂ boosting with linear learner
- Likelihood-based Boosting
 - introduction
- Tree-based boosting

STK-IN4300 Statistical Learning Methods in Data Science

Riccardo De Bin

debin@math.uio.no

STK-IN4300: lecture 11 1/42

STK-IN4300 - Statistical Learning Methods in Data Science

Gradient Boosting: from the last lecture

In the last lecture:

- boosting as implementation of "wisdom of the crowds";
- repeatedly apply a weak learner to modification of the data;
- from AdaBoost to gradient boosting;
- forward stagewise additive modelling;
- importance of shrinkage.

UiO: University of Oslo

STK-IN4300: lecture 11

STK-IN4300 - Statistical Learning Methods in Data Science

2/42

Gradient Boosting: general gradient boosting

The general algorithm for the gradient boosting:

- 1. initialize the estimate, e.g., $f_0(x) = 0$;
- 2. for $m = 1, ..., m_{stop}$,
 - 2.1 compute the negative gradient vector,

$$u_m = -\left. \frac{\partial L(y, f(x))}{\partial f(x)} \right|_{f(x) = \hat{f}_{m-1}(x)};$$

- 2.2 fit the base learner to the negative gradient vector, $h_m(u_m, x)$;
- 2.3 update the estimate, $f_m(x) = f_{m-1}(x) + \nu h_m(u_m, x)$.
- 3. final estimate, $\hat{f}_{m_{\text{stop}}}(x) = \sum_{m=1}^{m_{\text{stop}}} \nu h_m(u_m, x)$

Gradient Boosting: L₂ boosting with linear learner

The L_2 Boost algorithm (linear learner, L_2 loss):

- 1. initialize the estimate, e.g., $\hat{\beta}_0 = 0$;
- 2. for $m = 1, ..., m_{stop}$,
 - 2.1 compute the negative gradient vector, $u_m = \left. \frac{\partial L(y, f(X, \beta))}{\partial f(X, \beta)} \right|_{\beta = \hat{\beta}_{max}};$
 - 2.2 fit the base learner to the negative gradient vector, $b_m(u_m, X) = \nu(X^T X)^{-1} X^T u_m$;
 - 2.3 update the estimate, $\hat{\beta}_m = \hat{\beta}_{m-1} + b_m(u_m, x)$
- 3. final estimate, $\hat{f}_{m_{\text{stop}}}(x) = X^T \hat{\beta}_m$.

STK-IN4300: lecture 11 5/ 42

STK-IN4300 - Statistical Learning Methods in Data Science

L₂ boosting with linear learner: properties

Consider a linear learner \mathcal{S} (e.g., least square). Then

Proposition 1 (Bühlmann & Yu, 2003): The eigenvalues of the L_2 Boost operator \mathcal{B}_m are

$$\{1-(1-\lambda_k)^{m_{\sf stop}+1}, k=1,\ldots,N\}$$
.

If $S = S^T$ (i.e., symmetric), then \mathcal{B}_m can be diagonalized with an orthonormal transformation,

$$\mathcal{B}_m = U D_m U^T, \qquad D_m = \operatorname{diag}(1 - (1 - \lambda_k)^{m_{\mathsf{stop}} + 1})$$

where $UU^T = U^TU = I$.

L₂ boosting with linear learner: boosting operator

Consider the regression model $y_i = f(x_i) + \epsilon_i$, i = 1, ..., N,

- ϵ_i i.i.d. with $E[\epsilon_i] = 0$, $Var[\epsilon_i] = \sigma^2$.
- linear learner $S: \mathbb{R}^N \to \mathbb{R}^N$ ($Sy = \hat{y}$);

Note that:

- $\hat{f}_m(x) = \hat{f}_{m-1}(x) + \mathcal{S}u_m;$
- $u_m = y \hat{f}_{m-1}(x) = u_{m-1} \mathcal{S}u_{m-1} = (I \mathcal{S})u_{m-1}$;
- iterating, $u_m = (I S)^m$, $m = 1, ..., m_{\text{stop}}$.

Because $\hat{f}_m(x) = \mathcal{S}y$, then $\hat{f}_{m_{\text{stop}}}(x) = \sum_{m=0}^{m_{\text{stop}}} \mathcal{S}(I - \mathcal{S})^m y$, i.e.,

$$\hat{f}_{m_{\mathsf{stop}}}(x) = \underbrace{(I - (I - \mathcal{S})^{m+1})}_{\mathsf{boosting operator } \mathcal{B}_m} y.$$

STK-IN4300: lecture 11 6/ 42

STK-IN4300 - Statistical Learning Methods in Data Science

L₂ boosting with linear learner: properties

We can now compute:

- $\operatorname{bias}^2(m, \mathcal{S}; f) = N^{-1} \sum_{i=1}^N (E[\hat{f}_m(x_i)] f)^2$ = $N^{-1} f^T U \operatorname{diag}((1 - \lambda_k)^{2m+2}) U^T f;$
- $Var(m, S; \sigma^2) = N^{-1} \sum_{i=1}^{N} (Var[\hat{f}_m(x_i)])$ = $\sigma^2 N^{-1} \sum_{i=1}^{N} (1 - (1 - \lambda_k)^{m+1})^2$;

and

• $MSE(m, S; f, \sigma^2) = bias^2(m, S; f) + Var(m, S; \sigma^2)$

STK-IN4300: lecture 11 7/ 42 STK-IN4300: lecture 11 8/ 42

L₂ boosting with linear learner: properties

Assuming $0 < \lambda_k \le 1$, k = 1, ..., N, note that:

- bias $^2(m, S; f)$ decays exponentially fast for m increasing;
- $Var(m, S; \sigma^2)$ increases exponentially slow for m increasing;
- $\lim_{m\to\infty} \mathsf{MSE}(m,\mathcal{S};f,\sigma^2) = \sigma^2;$
- if $\exists k : \lambda_k < 1$ (i.e., $S \neq I$), then $\exists m : \mathsf{MSE}(m, S; f, \sigma^2) < \sigma^2$;
- if $\forall k: \lambda_k < 1, \frac{\mu_k}{\sigma^2} > \frac{1}{(1-\lambda_k)^2} 1$, then $MSE_{\mathcal{B}_m} < MSE_{\mathcal{S}}$, where $\mu = U^T f$ (μ represents f in the coordinate system of the eigenvectors of \mathcal{S}).

(for the proof, see Bühlmann & Yu, 2003, Theorem 1)

STK-IN4300: lecture 11 9/ 42

STK-IN4300 - Statistical Learning Methods in Data Science

L₂ boosting with linear learner: properties

About $\frac{\mu_k}{\sigma^2} > \frac{1}{(1-\lambda_k)^2} - 1$:

- a large left side means that f is relatively complex compared with the noise level σ^2 ;
- a small right side means that λ_k is small, i.e. the learner shrinks strongly in the direction of the k-th eigenvector;
- therefore, to have boosting bringing improvements:
 - there must be a large signal to noise ratio;
 - the value of λ_k must be sufficiently small;

use a weak learner!!!

L₂ boosting with linear learner: properties

STK-IN4300 - Statistical Learning Methods in Data Science

10/42

L₂ boosting with linear learner: properties

There is a further intersting theorem in Bühlmann & Yu (2003),

Theorem 2: Under the assumption seen till here and $0 < \lambda_k \le 1$, k = 1, ..., N, and assuming that $E[|\epsilon_1|^p] < \infty$ for $p \in \mathbb{N}$,

$$N^{-1} \sum_{i=1}^{N} E[(\hat{f}_m(x_i) - f(x_i))^p] = E[\epsilon_1^p] + O(e^{-Cm}), \quad m \to \infty$$

where C > 0 does not depend on m (but on N and p).

This theorem can be used to argue that boosting for classification is resistant to overfitting (for $m \to \infty$, exponentially small overfitting).

STK-IN4300: lecture 11 11/42 STK-IN4300: lecture 11 12/42

Gradient Boosting: boosting in high-dimensions

The boosting algorithm is working in high-dimension frameworks:

- forward stagewise additive modelling;
- at each step, only one dimension (component) of X is updated at each iteration:
- in a parametric setting, only one $\hat{\beta}_i$ is updated;
- an additional step in which it is decided which component to update must be computed at each iteration.

STK-IN4300: lecture 11 13/42

STK-IN4300 - Statistical Learning Methods in Data Science

Boosting: minimization of the loss function

Gradient Boosting: component-wise L₂Boost with linear learner

Component-wise L_2 Boost algorithm:

- 1. initialize the estimate, e.g., $\hat{\beta} = (0, \dots, 0)$;
- 2. for $m = 1, ..., m_{stop}$,
 - compute the negative gradient vector, $u=-\left.\frac{\partial L(y,f(x,\beta))}{\partial f(x,\beta)}\right|_{\beta=\hat{\beta}}$ for the j-th component only;
 - fit the base learner to the negative gradient vector, $\hat{h}(u, x_j)$;
 - select the best update j^* (usually that minimizes the loss);
 - include the shrinkage factor, $\hat{b}_j = \nu \hat{h}(u, x_j)$;
 - update the estimate, $\hat{\beta}_{j*} = \hat{\beta}_{j*} + \hat{b}_{j*}$.
- 3. final estimate, $\hat{f}_{m_{\text{stop}}}(x) = X^T \hat{\beta}^{[m_{\text{stop}}]}$ (for linear regression).

STK-IN4300: lecture 11 14/ 42

STK-IN4300 - Statistical Learning Methods in Data Science

Boosting: parameter estimation

STK-IN4300: lecture 11 15/42 STK-IN4300: lecture 11 16/42

Boosting: parameter estimation

STK-IN4300: lecture 11 17/42

UiO : University of Oslo

STK-IN4300 - Statistical Learning Methods in Data Science

Boosting: parameter estimation

Boosting: parameter estimation

STK-IN4300: lecture 11 18/42

STK-IN4300 - Statistical Learning Methods in Data Science

Boosting: parameter estimation

STK-IN4300: lecture 11 19/42 STK-IN4300: lecture 11 20/42

Boosting: parameter estimation

STK-IN4300: lecture 11 21/ 42

STK-IN4300 - Statistical Learning Methods in Data Science

Boosting: parameter estimation

Boosting: parameter estimation

STK-IN4300: lecture 11 22/ 42

STK-IN4300 - Statistical Learning Methods in Data Science

Boosting: parameter estimation

STK-IN4300: lecture 11 23/ 42 STK-IN4300: lecture 11 24/ 42

Boosting: parameter estimation

STK-IN4300: lecture 11 25/ 42

STK-IN4300 - Statistical Learning Methods in Data Science

Likelihood-based Boosting: introduction

A different version of boosting is the so-called **likelihood-based boosting** (Tutz & Binder, 2006):

- based on the concept of GAM as well;
- loss function as a negative log-likelihood;
- uses standard statistical tools (Fisher scoring, basically a Newton-Raphson algorithm) to minimize the loss function;
- likelihood-based boosting and gradient boosting are equal only in Gaussian regression (De Bin, 2016).

Boosting: tuning parameters

- The update step is regulated by the shrinkage parameter ν ;
- as long as its magnitude is reasonable, the choice of the penalty parameter does not influence the procedure;
- the choice of the number of iterations m_{stop} is highly relevant;
- m_{stop} (complexity parameter) influences variable selection properties and model sparsity;
- m_{stop} controls the amount of shrinkage;
 - m_{stop} too small results in a model which is not able to describe the data variability;
 - ightharpoonup an excessively large m_{stop} causes overfitting and causes the selection of irrelevant variables.
- there is no standard approach → repeated cross-validation (Seibold et al., 2016).

STK-IN4300: lecture 11 26/ 42

STK-IN4300 - Statistical Learning Methods in Data Science

Likelihood-based Boosting: algorithm

The simplest implementation of the likelihood-based boosting is BoostR, based on the ridge estimator:

Algorithm: BoostR

Step 1: Initialization. $\hat{\beta}_{(0)} = (X^TX + \lambda I_p)^{-1}X^Ty$, $\hat{\mu}_{(0)} = X\hat{\beta}_{(0)}$. Step 2: Iteration. For m = 1, 2, ... apply ridge regression to the model for residuals $y - \hat{\mu}_{(m-1)} = X\beta^R + \varepsilon$, yielding solutions $\hat{\beta}_{(m)}^R = (X^TX + \lambda I_p)^{-1}X^T(y - \hat{\mu}_{(m-1)})$, $\hat{\mu}_{(m)}^R = X\hat{\beta}_{(m)}^R$.

The new estimate is obtained by $\hat{\mu}_{(m)} = \hat{\mu}_{(m-1)} + \hat{\mu}_{(m)}^R$.

see also Tutz & Binder (2007).

In the rest of the lecture we will give the general idea and see its implementation as a special case of gradient boosting.

STK-IN4300: lecture 11 27/42 STK-IN4300: lecture 11 28/42

Likelihood-based Boosting: introduction

Following the statistical interpretation of boosting:

maximize the log-likelihood $\ell(\beta)$ (equivalently, $-\ell(\beta)$ is the loss function to minimize);

prediction \rightarrow shrinkage aim at $\hat{\beta}_{shrink}$, not $\hat{\beta}_{MLE}$;

best solution is "between" 0 and $\hat{\beta}_{MLE}$.

STK-IN4300: lecture 11 29/ 42

STK-IN4300 - Statistical Learning Methods in Data Science

Likelihood-based Boosting: Newton-Raphson

General Newton-Raphson step:

$$\hat{\beta}^{[m]} = \hat{\beta}^{[m-1]} + \left(-\ell_{\beta\beta}(\beta)|_{\beta = \hat{\beta}^{[m-1]}} \right)^{-1} \ell_{\beta}(\beta)|_{\beta = \hat{\beta}^{[m-1]}},$$

where:

- $\ell_{\beta}(\beta) = \frac{\partial \ell(\beta)}{\partial \beta};$
- $\ell_{\beta\beta}(\beta) = \frac{\partial^2 \ell(\beta)}{\partial \beta^T \partial \beta}$.

For convenience, let us rewrite the general step as

$$\underbrace{\hat{\beta}^{[m]} - \hat{\beta}^{[m-1]}}_{\text{improvement at step } m} = 0 + \left(-\ell_{\beta\beta}(\beta|\hat{\beta}^{[m-1]}) \Big|_{\beta=0} \right)^{-1} \left. \ell_{\beta}(\beta|\hat{\beta}^{[m-1]}) \right|_{\beta=0}.$$

UiO: University of Oslo

Likelihood-based Boosting: introduction

starting point...
maximize a log-likelihood...

Newton-Raphson method (or Fisher scoring).

Basic idea:

- apply Newton-Raphson;
- stop early enough to end in $\hat{\beta}_{shrink}$ and not in $\hat{\beta}_{MLE}$.

STK-IN4300: lecture 11 30/ 42

STK-IN4300 - Statistical Learning Methods in Data Science

Likelihood-based Boosting: Newton-Raphson

Control the Newton-Raphson algorithm:

- we need to force the estimates to be between 0 and $\hat{\beta}_{MLE}$;
- we need to be able to stop at $\hat{\beta}_{shrink}$.
- ⇒ we need smaller "controlled" improvements.

Solution: penalize the log-likelihood!

- $p\ell(\beta) \leftarrow \ell(\beta) \frac{1}{2}\lambda||\beta||_2^2$;
- $p\ell_{\beta}(\beta) \leftarrow \ell_{\beta}(\beta) \lambda ||\beta||_1$;
- $p\ell_{\beta\beta}(\beta) \leftarrow \ell_{\beta\beta}(\beta) \lambda$;

Now the general step is:

$$\underline{\hat{\beta}^{[m]} - \hat{\beta}^{[m-1]}}_{\text{improvement at step } m} = \left(-\ell_{\beta\beta}(\beta|\hat{\beta}^{[m-1]}) \Big|_{\beta=0} + \lambda \right)^{-1} \left. \ell_{\beta}(\beta|\hat{\beta}^{[m-1]}) \right|_{\beta=0}$$

STK-IN4300: lecture 11 31/42 STK-IN4300: lecture 11 32/42

Likelihood-based Boosting: visualization

As long as λ is 'big enough', the boosting learning path is going to hit $\hat{\beta}_{shrink}$.

We must stop at that point: the number of boosting iterations (m_{stom}) is crucial!

STK-IN4300: lecture 11 33/ 42

STK-IN4300 - Statistical Learning Methods in Data Science

Likelihood-based Boosting: likelihood-based vs gradient

Substituting

$$\nu = \left(X^T X + \lambda\right)^{-1} X^T X$$

one obtains the expression of the $L_2 Boost$ for (generalized) linear models seen before,

$$\hat{\beta}^{[m]} - \hat{\beta}^{[m-1]} = \nu \left(X^T X \right)^{-1} X^T \left. \frac{\partial \ell(\eta(\beta, X))}{\partial \eta(\beta, X)} \right|_{\hat{\beta}^{[m-1]}}$$

- gradient boosting is a much more general algorithm;
- likelihood-based boosting and gradient boosting are equal in Gaussian regression because the log-likelihood is a parabola;
- both have a componentwise version.

Likelihood-based Boosting: likelihood-based vs gradient

In the likelihood-based boosting we:

- repeatedly implement the first step of Newton-Raphson;
- update at each step estimates and likelihood.

Small improvements:

- parabolic approximation;
- fit the negative gradient on the data by a base-learner (e.g., least-square estimator)

$$\hat{\beta}^{[m]} - \hat{\beta}^{[m-1]} = \left(X^T X + \lambda\right)^{-1} X^T \underbrace{\frac{\partial \ell(\eta(\beta, X))}{\partial \eta(\beta, X)}}_{\text{negative gradient}} \Big|_{\hat{\beta}^{[m-1]}}$$

STK-IN4300: lecture 11 34/ 42

STK-IN4300 - Statistical Learning Methods in Data Science

Likelihood-based Boosting: likelihood-based vs gradient

Alternatively (more correctly) we can see the likelihood-based boosting as a special case of the gradient boosting (De Bin, 2016):

- 1. initialize $\hat{\beta} = (0, \dots, 0)$;
- 2. for $m = 1, \ldots, m_{\text{stop}}$
 - compute the negative gradient vector, $u=\left.\frac{\partial \ell(f(x,\beta))}{\partial f(x,\beta)}\right|_{\beta=\hat{\beta}}$
 - compute the update,

$$\hat{b}^{LB} = \left(\frac{\partial f(x,\beta)}{\partial \beta} \Big|_{\beta=0}^{\mathsf{T}} u \right) / \left(- \left. \frac{\partial \frac{\partial f(x,\beta)}{\partial \beta}}{\partial \beta} \right|_{\beta=0}^{\mathsf{T}} u + \lambda \right);$$

- update the estimate, $\hat{\beta}^{[m]} = \hat{\beta}^{[m-1]} + \hat{b}^{LB}$.
- 3. compute the final prediction, e.g., for lin. regr. $\hat{y} = X^T \hat{\beta}^{[m_{\text{stop}}]}$

STK-IN4300: lecture 11 35/42 STK-IN4300: lecture 11 36/42

Tree-based boosting: introduction

The base (weak) learner in a boosting algorithm can be a tree:

- largely used in practice;
- very powerful and fast algorithm;
- R package XGBoost;
- we lose part of the statistical interpretation.

STK-IN4300: lecture 11 37/ 42

STK-IN4300 - Statistical Learning Methods in Data Science

Tree-based boosting: importance of "weakness"

Tree-based boosting: algorithm

Algorithm 10.3 Gradient Tree Boosting Algorithm.

- 1. Initialize $f_0(x) = \arg\min_{\gamma} \sum_{i=1}^{N} L(y_i, \gamma)$.
- 2. For m = 1 to M:
 - (a) For $i = 1, 2, \ldots, N$ compute

$$r_{im} = -\left[\frac{\partial L(y_i, f(x_i))}{\partial f(x_i)}\right]_{f=f_{m-1}}.$$

- (b) Fit a regression tree to the targets r_{im} giving terminal regions $R_{jm},\ j=1,2,\ldots,J_m.$
- (c) For $j = 1, 2, \ldots, J_m$ compute

$$\gamma_{jm} = \arg\min_{\gamma} \sum_{x_i \in R_{jm}} L(y_i, f_{m-1}(x_i) + \gamma).$$

- (d) Update $f_m(x) = f_{m-1}(x) + \sum_{j=1}^{J_m} \gamma_{jm} I(x \in R_{jm})$.
- 3. Output $\hat{f}(x) = f_M(x)$.

STK-IN4300: lecture 11 38/ 42

STK-IN4300 - Statistical Learning Methods in Data Science

Tree-based boosting: importance of "shrinkage"

STK-IN4300: lecture 11 40/42 STK-IN4300: lecture 11 40/42

Tree-based boosting: comparison

STK-IN4300: lecture 11 41/42 STK-IN4300: lecture 11 42/42

References I

BÜHLMANN, P. & Yu, B. (2003). Boosting with the L₂ loss: regression and classification. *Journal of the American Statistical Association* **98**, 324–339.

DE BIN, R. (2016). Boosting in Cox regression: a comparison between the likelihood-based and the model-based approaches with focus on the R-packages CoxBoost and mboost. *Computational Statistics* **31**, 513–531.

Seibold, H., Bernau, C., Boulesteix, A.-L. & De Bin, R. (2016). On the choice and influence of the number of boosting steps. Tech. Rep. 188, University of Munich.

Tutz, G. & Binder, H. (2006). Generalized additive modeling with implicit variable selection by likelihood-based boosting. *Biometrics* **62**, 961–971.

Tutz, G. & Binder, H. (2007). Boosting ridge regression. *Computational Statistics & Data Analysis* **51**, 6044–6059.