

LTK8002E

■ 概述

LTK8002E 是一款高耐压4.2W、单声道AB类音频功率放大芯片。工作电压2.5V-6V,以BTL桥连接的方式,在6V电源电压下,可以给4Ω负载提供THD小于10%、平均为4.2W的输出功率。在关闭模式下,电流典型值小于0.5uA。

LTK8002E是为提供大功率、高保真音频输出而专门设计的,它仅仅需要少量的外围元器件,并且能工作在宽电压条件下(2.5V-6V)。LTK8002E不需要耦合电容,自举电容或者缓冲网络,所以非常适用于小音量的低功耗系统。

■ 特点

- 电源供电: 2.5V-6V
- 内置开关 POPO 声抑制电路
- 10% THD+N, VDD=6V, 4Ω 负载下,提供 高达 4.2W 的输出功率
- 10% THD+N, VDD=5V, 4Ω 负载下,提供 高达 3W 的输出功率
- 关断电流 < 0.5uA
- 封装模式: SOP-8
- 短路保护

■ 应用

- 插卡式音箱、蓝牙音箱
- 便携式设备、游戏机
- 锂电扩音器、FM播放器
- USB线控音箱

■ 芯片管脚图

封装信息

产品	封装形式	封装尺寸	脚间距
		(mm)	(mm)
LTK8002E	SOP-8		

■ 管脚信息

序号	符号	描述
1	SD	关断控制。高关断,低打开
2	BYPASS	内部共模参考电压
3	IN-	模拟正向输入端
4	IN-	模拟反向输入端
5	V01	BTL 正向输出端。
6	VDD	电源正端
7	GND	电源负端
8	V02	BTL 反向输出端

■ 典型应用图_单端输入

■ 典型应用图_差分输入

LTK8002E 高耐压、AB类音频功放

2018 V1.0

■ 最大额定值 (T_A=25°C)

参数名称	符号	数值	单位
工作电压	$V_{ extsf{DD}}$	6.0 (MAX)	V
存储温度	$T_{ m stg}$	-65°C-150°C	$^{\circ}$
功率消耗	P_{D}	见附注1	W
结温度		160℃	$^{\circ}$

附注: 为保证芯片安全和寿命,在实际应用中不能超过以上极限参数,否则,可能会损坏芯片。

■ 推荐工作条件

参数	符号	最小值	典型值	最大值	单位
电源电压	Vdd	2.5V	2.5V to 5.5V	6V	V
工作环境温度	Ta	-40℃	15℃ to 40℃	85℃	$^{\circ}$
扬声器阻抗	RL		VDD=6V, RL $\geq 4 \Omega$		Ω

附注: 为保证芯片安全和寿命,在实际应用中请严格按照推荐工作条件使用,否则,可能会损坏芯片。

■ 管脚说明

No.	管脚名称	10	功能	
1	SHUTDOWN	I	关断/开启控制口。高电平关断、低电平打开。	
2	BYPASS	Ι	电压为VDD/2,外接电容下地。	
3	IN+	Ι	IN+ 是正向输入端。	
4	IN-	Ι	IN- 是负向输入端,用于音频输入。	
5	OV1	Ι	OV1 是 BTL 正向输出端。	
6	VDD	-	电源正端	
7	GND	-	电源负端	
8	OV2	0	OV2 是 BTL 负向输出端。	

■ 电气参数

V_{DD}=5V, T_A=25℃的条件下

信号	参数	测试条件	最小值	典型值	最大值	单位
VDD	电源电压		2.5	5	6	V
IDD	静态电源电流	VDD=2.5V-6V,IO=0A	2	2	6	mA
Vn	静态底噪	VDD=5V,AV=20DB,Awting		56		uV
ISHDN	关断电流	VDD=2.5V -6V		0.5		uA

LTK8002E 高耐压、AB类音频功放

2018 V1.0

	LINC		为 从	2019 VI
		VDD=6V, THD+N=10%, $f=1kHz$, $RL=4\Omega$;	4. 2	
		VDD=5V THD+N=10%, $f=1kHz$, $RL=4\Omega$;	3	
		VDD=4.2V THD+N=10%, f=1kHz , RL=4Ω;	2. 1	
		VDD=6V THD+N=1%, f=1kHz , RL=4 Ω ;	3. 3	
Po	输出功率	VDD=5V THD+N=1%, f=1kHz , RL=4 Ω ;	2. 2	W
		VDD=4.2V THD+N=1%, f=1kHz , RL=4 Ω ;	1.6	
		VDD=5V THD+N=10%, f=1kHz , RL=3 Ω ;	4. 2	
		VDD=5V THD+N=10%, f=1kHz , RL=8 Ω ;	1.7	
		VDD=4.2V THD+N=1%, f=1kHz , RL=8 Ω ;	1.2	
	总谐波失真加噪声	VDD=5V Po=0.6W, RL=8Ω	0.1	%
THD+N	心怕似人具加噪户	VDD=5V Po=1.6W, RL=4Ω	0.15	
OTP	过温保护		165	$^{\circ}$ C
PSRR	电源电压抑制比	VDD=5V, VRIPPLE=200mVRMS, RL=8 Ω, CB=2. 2μF	80	dB
		VDD=6V	<1.7	
CD		VDD=5V	<1.5	
SDopen	SD脚开启电压	VDD=4V	<1.3	
		VDD=3V	<1.1	V
SDsd SD店		VDD=6V	>1.9	V
	SD脚关闭电压	VDD=5V	>1.7	
	30個人的电压	VDD=4V	>1.5	
		VDD=3V	>1.3	
VDDopen	VDD开启电压	SD=0	>2.5	V
VDDsd	VDD关闭电压	SD=0	<0.8	V
Topen	开启时间	VDD =5V, BYPASS=1uf,	260	Ms

■ 性能特性曲线

● 特性曲线测试条件(T_A=25℃)

描述	测试条件	编号	
Input Voltage Amplitude VS. Output Amplitude	VDD=5V,RL=4Ω	1	
Input Voltage VS. Maximum Output Power	RL=4Ω,THD=10%	2	
Output Dower VC THD (N	VDD=5V, RL=4 Ω ,A $_{V}$ =20DB	3	
Output Power VS.THD+N	VDD=4.2V, RL=4Ω,A _V =20DB		
Input Voltage VS.Power Crrent	VDD=3.0V-5V, RL=4Ω,	5	
Frequency VS.THD+N	VDD=5V,RL=4 Ω ,A $_V$ =20DB,PO=0.2W	6	
Frequency Response	VDD=5V,RL=4Ω	7	

● 特性曲线图

■ 应用信息

● 增益配置

LTK8002E接受模拟差分、单端音频信号输入。单端、差分方式输入具有相同的放大倍数。其增益均可通过Ri、Rf调节,计算公式为:

$$A_{V} = 2 \times (\frac{Rf}{Ri})$$

Av为增益,通常用DB表示,上述计算结果单位为倍数、20Log倍数=DB。

Rf电阻为外部可调反馈电阻,单位为 $K\Omega$, Ri为外部串联电阻 (R_s) , Ri和Rf由用户根据实际供电电压输入幅度、和失真度定义。如Rf=56K时,Ri=10K。 A_v =2*56/10、 A_v =11.2倍、 A_v =21DB

输入电容(Ci)和输入电阻(Ri)组成高通滤波器,其截止频率为:

$$f_C = \frac{1}{2\pi \times Ri \times C_{IN}}$$

Cin电容选取较小值时,可以滤除从输入端耦合进入的低频噪声,同时有助于减小开启时的POPO声

● ShutDown管脚控制

ShutDown管脚为功放芯片使能管脚,控制芯片打开、关闭。ShutDown脚为低电平时,芯片打开,功放处于正常工作状态。ShutDown脚为高电平时,功放处于关断状态,此时芯片电流<1ua。

SD 状态	芯片状态
高电平	关闭
低电平	打开

LTK8002E 高耐压、AB类音频功放

2018 V1.0

● 电源去耦

LTK8002E是高性能CMOS音频放大器,需要足够的电源退耦以保证输出THD和PSRR尽可能小。电源的退耦需要两个不同类型的电容来实现。为了更高的频率响应和减小噪声,一个适当等效串联电阻(ESR)的陶瓷电容,典型值1.0 μF,放置在尽可能靠近器件VDD端口可以得到最好的工作性能。为了虑除低频噪声信号和提升功放性能,推荐另外放置一个更大的电容在电源。

■ BYPASS电容

LTK8002E包含有使开启或关断的瞬态值或"滴答声和爆裂声"减到最小的电路。讨论中开启指的是电源电压的加载或撤消关断模式。当电源电压逐渐升至最终值时,LTK8002E的内部放大器就好比配置成整体增益的缓冲器一样,内部电流源加载一个受线性方式约束的电压到BYPASS管脚。理论上输入和输出的电压高低将随加到BYPASS管脚的电压而改变。直到加载至BYPASS管脚的电压升到VDD/2,内部放大器的增益保持整体稳定。加载到BYPASS管脚上的电压一稳定,整个器件就处于完全工作状态。LTK8002E的输出达到静态直流电压的时间越长,初始的瞬态响应就越小。因此,该电容越大,开启时间越短,但"滴答声和爆裂声"也会越小。该电容尽量靠近BYPASS管脚放置。正常选用1uF电容,如果选用2. 2uF电容,会有更好的效果。

● PCB设计注意事项

- ➤ 芯片供电VDD脚位,建议使用一个贴片电容,电容值为1uf。为了提升芯片工作性能,可在VDD处多使用一个插件电容220uf-470uf。
- ▶ 功放芯片电源走线要粗,最好使用敷铜方式连接。电源供电脚(VDD)走线网络中如有过孔必须使用多孔连接,并加大过孔内径,不可使用单个过孔直接连接。
- ▶ BYPASSD电容尽量靠近芯片管脚放置。
- ▶ 输入电容(Ci)、输入电阻(Ri)尽量靠近功放芯片管脚放置,走线最好使用差分走线,可以有效的抑制其他信号耦合的噪声。
- ▶ LTK8002E 输出连接到喇叭的管脚走线管脚尽可能的短,并且走线宽度不能过小。

2018 V1.0

■ 芯片封装

	Dimensions In Millimeters			Dimensions In Inches		
字符	Min	Nom	Max	Min	Nom	Max
b	0. 33	0. 42	0. 51	0. 013	0. 017	0. 020
С	3.8	3. 90	4.00	0.150	0. 154	0. 157
C1	5.8	6.00	6. 2	0. 228	0. 235	0. 244
C2	1.35	1.45	1.55	0.053	0.058	0.061
C3	0.05	0. 12	0. 15	0.004	0.007	0.010
D	4.70	5. 00	5. 1	0. 185	0. 190	0. 200
D1	1. 35	1.60	1.75	0.053	0.06	0.069
е	1. 270 (BSC)			0. 050 (BSC)		
L	0.400	0.83	1. 27	0.016	0. 035	0.050

SOP-8

声明:深圳联辉科电子技术有限公司保留在任何时间、不另行通知的情况下对规格书的更改权。

深圳联辉科电子技术有限公司提醒:请务必严格应用建议和按推荐工作条件使用。如超出推荐工作条件以及不按应用建议使用,本公司不保证产品后续的任何售后问题。