Ecuación en diferencias

M.S. Bruzón

Índice

1.	Ecuación en diferencias	1
	1.1. Ecuaciones en Diferencias de primer orden	2
	1.2. Ecuaciones en Diferencias de segundo orden	2

1. Ecuación en diferencias

Dada una sucesión $\{x_n\}$ cuyos primeros términos son x_0, x_1, x_2, \ldots se denomina ecuación en diferencias a toda ecuación que relaciona términos de esa sucesión.

Ejemplo 1

$$x_{n+2} + 5nx_{n+1} + n^2x_n = 0 (1)$$

$$x_{n+3} + 3x_{n+2} - 5x_{n+1} - 4x_n = 0 (2)$$

Definición 1 Sea el número natural n, tal que el término n-ésimo de una sucesión es función de n, es decir, $x_n = x(n)$, donde los términos siguientes x_{n+1}, x_{n+2}, \ldots existen, entonces llamamos ecuación en diferencias a toda ecuación que relaciona al índice n de la sucesión, a la sucesión incógnita $x_n = x(n)$ y términos siguientes de la sucesión, representados por la forma

$$F(n, x_n, x_{n+1}, x_{n+2}, \ldots) = 0$$

Definición 2 Se define el orden de una ecuación en diferencias como la diferencia entre el argumento n más grande y el más pequeño que aparece en ella.

Ejemplo 2 La ecuación (1) es de orden 2, y la ecuación (2) es de orden 3.

Definición 3 Una ecuación en diferencias se dice lineal de orden k si y sólo si tiene la forma

$$a_k(n)x_{n+k} + \ldots + a_1(n)x_{n+1} + a_0(n)x_n = R(n)$$

donde los coeficientes $a_k(n)$ y $a_0(n)$ son no nulos y R(n) es una función de n. En otro caso, la ecuación se dice no lineal.

Ejemplo 3 Las ecuaciones (1) y (2) son lineales.

Ejemplo 4 Veamos un par de casos:

 $x_{n+2} + \cos(x_n) = 2n$ es una ecuación no lineal de segundo orden.

 $x_{n+1} + x_n^3 = 1/2$ es una ecuación no lineal de primer orden.

Definición 4 Una ecuación en diferencias lineal de orden k se dice homogénea si y sólo si R(n) es nula. En caso contrario se dice no homogénea.

Definición 5 Una solución de la ecuación en diferencias es una sucesión de valores para los cuales se satisface la ecuación.

1.1. Ecuaciones en Diferencias de primer orden

Toda ecuación en diferencias de 1^{er} orden se puede expresar como $x_{n+1} - a(n)x_n = R(n)$ con $a(n) \neq 0$.

La solución general de una ecuación en diferencias lineal de 1^{er} orden homogénea de coeficiente constante $x_{n+1} - ax_n = 0$, $n = 0, 1, 2, \ldots$, está dada por

$$x_n = Ca^n$$

donde a y C son constantes con $a \neq 0$.

Ejemplo 5 La solución general de $x_{n+1} - 5x_n = 0$ es $x_n = C5^n$.

Ejemplo 6 Dada $u_{j,n+1}=(1-\frac{a\,k}{h})u_{j,n}+u_{j-1,n}\frac{a\,k}{h}$ tomamos $u_{j,n}=f_ne^{ikjh}$, de esta forma nos queda

$$f_{n+1}e^{ikjh} = \left(1 - \frac{ak}{h}\right)f_ne^{ikjh} + f_n\frac{ak}{h}e^{ik(j-1)h}$$

$$f_{n+1} = (1 - \frac{a k}{h}) f_n + \frac{a k}{h} f_n e^{-ikh}$$

La solución de la ecuación en diferencias lineal de primer orden homogénea es

$$f_n = C\lambda^n$$

$$\lambda = 1 - \frac{a \, k}{h} + \frac{a \, k}{h} e^{-ikh}$$

1.2. Ecuaciones en Diferencias de segundo orden

Las ecuaciones en diferencias de 2° orden lineales homogéneas de coeficientes constantes pueden expresarse de la forma:

$$x_{n+2} + ax_{n+1} + bx_n = 0 \text{ con } b \neq 0.$$

Para su resolución suponemos que las soluciones tienen forma de potencias n-ésimas de bases no nulas $x_n = \lambda^n$ con $\lambda \neq 0$. Reemplazamos en la ecuación y obtenemos

$$\lambda^{n+2} + a\lambda^{n+1} + b\lambda^n = 0.$$

Dividiendo por λ^n nos queda la ecuación característica

$$\lambda^2 + a\lambda + b = 0.$$

Así pues, la solución general de la ecuación en diferencias de 2º orden vendrá dada por la combinación lineal de las soluciones particulares obtenidas de la ecuación característica.