

Chapter 1: Optimization for Data Science Convex Sets

TANN Chantara

Department of Applied Mathematics and Statistics Institute of Technology of Cambodia

October 5, 2022

Table of Contents

- Affine and Convex sets
- Some important examples
- Operations that preserve convexity
- Geralized inequalities
- 5 Separating and Supporting hyperplanes
- Oual cone and Generalized inequalities

Affine Sets

line through x_1 , x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2 \qquad (\theta \in \mathbf{R})$$

affine set: contains the line through any two distinct points in the set

example: solution set of linear equations $\{x \mid Ax = b\}$

(conversely, every affine set can be expressed as solution set of system of linear equations)

Convex Sets

line segment between x_1 and x_2 : all points

$$x = \theta x_1 + (1 - \theta)x_2$$

with $0 < \theta < 1$

convex set: contains line segment between any two points in the set

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

examples (one convex, two nonconvex sets)

Convex combination and convex hull

Convex combination and convex hull

convex combination of x_1, \ldots, x_k : any point x of the form

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

with
$$\theta_1 + \cdots + \theta_k = 1$$
, $\theta_i \geq 0$

convex hull conv S: set of all convex combinations of points in S

Convex cone

Convex cone

conic (nonnegative) combination of x_1 and x_2 : any point of the form

$$x = \theta_1 x_1 + \theta_2 x_2$$

with $\theta_1 \ge 0$, $\theta_2 \ge 0$

Hyperplanes and halfspaces

Hyperplanes and halfspaces

hyperplane: set of the form $\{x \mid a^T x = b\} \ (a \neq 0)$

halfspace: set of the form $\{x \mid a^T x \leq b\}$ $(a \neq 0)$

- a is the normal vector
- hyperplanes are affine and convex; halfspaces are convex

Euclidean balls and ellisoids

Euclidean balls and ellipsoids

(Euclidean) ball with center x_c and radius r:

$$B(x_c, r) = \{x \mid ||x - x_c||_2 \le r\} = \{x_c + ru \mid ||u||_2 \le 1\}$$

ellipsoid: set of the form

$$\{x \mid (x - x_c)^T P^{-1} (x - x_c) \le 1\}$$

with $P \in \mathbf{S}_{++}^n$ (i.e., P symmetric positive definite)

other representation: $\{x_c + Au \mid \|u\|_2 \le 1\}$ with A square and nonsingular

Norm balls and norm cones

Norm balls and norm cones

norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- $\bullet \ \|tx\| = |t| \, \|x\| \ \text{for} \ t \in \mathbf{R}$
- $||x + y|| \le ||x|| + ||y||$

notation: $\|\cdot\|$ is general (unspecified) norm; $\|\cdot\|_{\text{symb}}$ is particular norm

norm ball with center x_c and radius r: $\{x \mid ||x - x_c|| \le r\}$

norm cone:
$$\{(x,t) \mid ||x|| \le t\}$$

Euclidean norm cone is called secondorder cone

norm balls and cones are convex

- 4日 > 4日 > 4目 > 4目 > 1目 - 990

Polyhedra

Polyhedra

solution set of finitely many linear inequalities and equalities

$$Ax \leq b, \qquad Cx = d$$

 $(A \in \mathbf{R}^{m \times n}, C \in \mathbf{R}^{p \times n}, \preceq \text{ is componentwise inequality})$

polyhedron is intersection of finite number of halfspaces and hyperplanes

Positive semidefinite cone

Positive semidefinite cone

notation:

- S^n is set of symmetric $n \times n$ matrices
- $\mathbf{S}_{+}^{n} = \{X \in \mathbf{S}^{n} \mid X \succeq 0\}$: positive semidefinite $n \times n$ matrices

$$X \in \mathbf{S}^n_+ \iff z^T X z \ge 0 \text{ for all } z$$

 \mathbf{S}^n_+ is a convex cone

• $\mathbf{S}_{++}^n = \{X \in \mathbf{S}^n \mid X \succ 0\}$: positive definite $n \times n$ matrices

example:
$$\begin{bmatrix} x & y \\ y & z \end{bmatrix} \in \mathbf{S}_+^2$$

Some Operations

Operations that preserve convexity

practical methods for establishing convexity of a set C

1. apply definition

$$x_1, x_2 \in C, \quad 0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$$

- 2. show that C is obtained from simple convex sets (hyperplanes, halfspaces, norm balls, . . .) by operations that preserve convexity
 - intersection
 - affine functions
 - perspective function
 - · linear-fractional functions

Intersection

Intersection

the intersection of (any number of) convex sets is convex

example:

$$S = \{ x \in \mathbf{R}^m \mid |p(t)| \le 1 \text{ for } |t| \le \pi/3 \}$$

where $p(t) = x_1 \cos t + x_2 \cos 2t + \dots + x_m \cos mt$

for m=2:

Affine function

Affine function

suppose $f: \mathbf{R}^n \to \mathbf{R}^m$ is affine $(f(x) = Ax + b \text{ with } A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^m)$

ullet the image of a convex set under f is convex

$$S \subseteq \mathbf{R}^n \text{ convex} \implies f(S) = \{f(x) \mid x \in S\} \text{ convex}$$

ullet the inverse image $f^{-1}(C)$ of a convex set under f is convex

$$C \subseteq \mathbf{R}^m \text{ convex} \implies f^{-1}(C) = \{x \in \mathbf{R}^n \mid f(x) \in C\} \text{ convex}$$

examples

- scaling, translation, projection
- solution set of linear matrix inequality $\{x \mid x_1A_1+\cdots+x_mA_m \preceq B\}$ (with $A_i, B \in \mathbf{S}^p$)
- hyperbolic cone $\{x \mid x^T P x \leq (c^T x)^2, \ c^T x \geq 0\}$ (with $P \in \mathbf{S}^n_+$)

13 / 23

Perspective and linear-fractional function

Perspective and linear-fractional function

perspective function $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$:

$$P(x,t) = x/t,$$
 dom $P = \{(x,t) \mid t > 0\}$

images and inverse images of convex sets under perspective are convex

linear-fractional function $f: \mathbb{R}^n \to \mathbb{R}^m$:

$$f(x) = \frac{Ax + b}{c^T x + d},$$
 dom $f = \{x \mid c^T x + d > 0\}$

images and inverse images of convex sets under linear-fractional functions are convex

Example

example of a linear-fractional function

$$f(x) = \frac{1}{x_1 + x_2 + 1}x$$

Generalized inequalities

Generalized inequalities

a convex cone $K \subseteq \mathbf{R}^n$ is a **proper cone** if

- K is closed (contains its boundary)
- *K* is solid (has nonempty interior)
- *K* is pointed (contains no line)

examples

- nonnegative orthant $K = \mathbf{R}^n_+ = \{x \in \mathbf{R}^n \mid x_i \geq 0, \ i=1,\dots,n\}$
- positive semidefinite cone $K = \mathbf{S}^n_+$
- nonnegative polynomials on [0,1]:

$$K = \{x \in \mathbf{R}^n \mid x_1 + x_2t + x_3t^2 + \dots + x_nt^{n-1} \ge 0 \text{ for } t \in [0, 1]\}$$

Generalized inequalities

generalized inequality defined by a proper cone K:

$$x \leq_K y \iff y - x \in K, \qquad x \prec_K y \iff y - x \in \mathbf{int} K$$

examples

• componentwise inequality $(K = \mathbf{R}_+^n)$

$$x \preceq_{\mathbf{R}^n_+} y \iff x_i \leq y_i, \quad i = 1, \dots, n$$

• matrix inequality $(K = \mathbf{S}_{+}^{n})$

$$X \preceq_{\mathbf{S}^n_+} Y \quad \Longleftrightarrow \quad Y - X \text{ positive semidefinite}$$

these two types are so common that we drop the subscript in \leq_K

properties: many properties of \leq_K are similar to \leq on **R**, e.g.,

$$x \leq_K y$$
, $u \leq_K v \implies x + u \leq_K y + v$

Minimum and minimal elements

Minimum and minimal elements

 \preceq_K is not in general a *linear ordering*: we can have $x \npreceq_K y$ and $y \npreceq_K x$ $x \in S$ is **the minimum element** of S with respect to \preceq_K if

$$y \in S \implies x \leq_K y$$

 $x \in S$ is a minimal element of S with respect to \leq_K if

$$y \in S$$
, $y \leq_K x \implies y = x$

example
$$(K = \mathbf{R}_+^2)$$

 x_1 is the minimum element of S_1 x_2 is a minimal element of S_2

Separating hyperplane theorem

Separating hyperplane theorem

if C and D are nonempty disjoint convex sets, there exist $a \neq 0$, b s.t.

$$a^Tx \leq b \text{ for } x \in C, \qquad a^Tx \geq b \text{ for } x \in D$$

the hyperplane $\{x \mid a^T x = b\}$ separates C and D

strict separation requires additional assumptions ($e.g.,\ C$ is closed, D is a singleton)

Supporting hyperplane theorem

Supporting hyperplane theorem

supporting hyperplane to set C at boundary point x_0 :

$$\{x \mid a^T x = a^T x_0\}$$

where $a \neq 0$ and $a^T x \leq a^T x_0$ for all $x \in C$

supporting hyperplane theorem: if C is convex, then there exists a supporting hyperplane at every boundary point of C

Definition and Examples

Dual cones and generalized inequalities

dual cone of a cone K:

$$K^* = \{y \mid y^T x \ge 0 \text{ for all } x \in K\}$$

examples

- $K = \mathbf{R}_{+}^{n}$: $K^{*} = \mathbf{R}_{+}^{n}$
- $K = \mathbf{S}_{+}^{n}$: $K^{*} = \mathbf{S}_{+}^{n}$
- $K = \{(x,t) \mid ||x||_2 \le t\}$: $K^* = \{(x,t) \mid ||x||_2 \le t\}$
- $K = \{(x,t) \mid ||x||_1 \le t\}$: $K^* = \{(x,t) \mid ||x||_\infty \le t\}$

first three examples are self-dual cones

dual cones of proper cones are proper, hence define generalized inequalities:

$$y \succeq_{K^*} 0 \iff y^T x \ge 0 \text{ for all } x \succeq_K 0$$

Minimum and minimal elements via dual inequalities

Minimum and minimal elements via dual inequalities

minimum element w.r.t. \prec_K

x is minimum element of S iff for all $\lambda \succ_{K^*} 0, \ x$ is the unique minimizer of $\lambda^T z$ over S

minimal element w.r.t. \leq_K

• if x minimizes $\lambda^T z$ over S for some $\lambda \succ_{K^*} 0$, then x is minimal

• if x is a minimal element of a *convex* set S, then there exists a nonzero $\lambda \succeq_{K^*} 0$ such that x minimizes $\lambda^T z$ over S

22 / 23

Optimal production frontier

optimal production frontier

- different production methods use different amounts of resources $x \in \mathbf{R}^n$
- production set P: resource vectors x for all possible production methods
- efficient (Pareto optimal) methods correspond to resource vectors x that are minimal w.r.t. Rⁿ₊

example (n=2)

 x_1 , x_2 , x_3 are efficient; x_4 , x_5 are not

