

HS-NM5300A 模块 数据手册

Ver. 1.0

成都浩然电子有限公司

2008-6

©成都浩然电子版权所有

概述

HS-W5300A 模块集 W5300、RJ45 以及其它电子器件为一体,经过优化设计、精细加工 而成。HS-W5300A 经过跳线配置可以选择多种工作模式,如选择 8/16 位数据总线、内部 PHY/外部 PHY、内部 PHY 的工作模式等等。它为嵌入式网络开发工程师快速接入 Internet 网络提供最方便的方法。

图 1 HS-NM5300A 模块图

特性:

- 支持固件 TCP/IP 协议: TCP, UDP, ICMP, IPv4, ARP, IGMP, PPPoE, Ethernet,
 支持混合网络 TCP/IP 协议栈(软件/硬件 TCP/IP 协议栈)
- 支持8个独立端口同时工作
- 高速网络数据传输,速率可达到 50Mbps
- 支持 ADSL 连接(支持带 PAP/CHAP 认证模式的 PPPoE 协议)
- 内部 128K 字节存储器用于数据通信(内部 TX/RX 存储器),根据端口通信数据吞吐量动态调整内部 TX/RX 存储器的分配,支持存储器对存储器从 DMA 功能(16 位数据总线宽度)
- 内嵌 10BaseT/100BaseTX 的以太网物理层,支持自动握手功能(全双工,半双工), 支持自动 MDI/MDIX(信号线极性交叉)。可使用第3方物理接口(通过跳线选择)
- 通过跳线选择 8/16 位数据总线
- 支持2种主机接口模式(直接总线模式和间接总线模式)
- 3.3V 工作电压, IO 口可承受 5V 电压
- 模块接口采用双排 2*16 排针,排针间距 2.0mm
- 模块结构紧凑,电路板面积50mm*28mm

在使用 HS-NM5300A 模块时,详细的信息请查看 W5300 数据手册。

引脚排列

图 2 HS-NM5300A 排针引线图

JP1 的引脚定义:

引脚号	定义	说明		
1, 3, 5, 7, 9, 11,	D15~D0	数据总线 D15~D0		
13, 15, 17, 19,		如果选择 8 位数据总线, D15~D8 悬空		
21, 23, 25, 27,				
29, 31				
2	GND	电源地		
4	VCC	电源,3.0~3.6V,典型值为3.3V		
6	/INT	中断信号输出,低电平有效		
8	/CS	W5300 片选信号输入,低电平有效		
10	/RD	W5300 读使能信号输入,低电平有效		
12	/WR	W5300 写使能信号输入,低电平有效		
14, 16, 18, 20,	A9~A0	地址总线 A9~A0		
22, 24, 26, 28,				
30, 32				

JP2 的引脚定义

引脚号 定义		说明		
1, 2	VCC	电源,3.0~3.6V,典型值为3.3V		
4, 6, 8, 10, 12,	GND	电源地		
14, 15, 16, 29				
3, 5, 7, 9	RXLED/MII_TXD3	在内部 PHY 模式 ,分别为以太网状态 :RXLED ,COLLED ,FDXLE		
	COLLED/MII_TXD2	和 SPDLED 的输出信号		
	FDXLED/MII_TXD1	在外部 PHY 模式:为半字节输出信号 MII_TXD3~MII_TXD0		
	SPDLED/MII_TXD0			
11	MII_TXC	在外部 PHY 模式为输出同步时钟		
13 TXLED/MII_TXEN		在内部 PHY 模式为 TXLED		
		在外部 PHY 模式为输出允许使能信号		
17, 19, 21, 23 MII_RXD3		在外部 PHY 模式为半字节输入信号		
	MII_RXD2			
	MII_RXD1			
	MII_RXD0			
25 MII_RXDV		在外部 PHY 模式,输入信号有效		
27 MII_RXC		在外部 PHY 模式,接收数据的时钟信号		
18 L_LINK		以太网连接指示输出信号		
20 MII_CRS		载波建立指示输入,外部 PHY 向 W5300 输入		
22 FDX		全双工指示输入,外部 PHY 向 W5300 输入		
24 MII_COL		IP 地址冲突指示输入,外部 PHY 向 W5300 输入		
26, 28, 30, 32 BRDY3, BRDY2		SOCKET 状态监测输出		
	BRDY1, BRDY0			

跳线配置说明

在 HS-NM5300A 的背面有 4 组跳线,如图 3 所示。它们分别是:

- 1. ROM11 和 ROM12
- 2. ROM01 和 ROM02
- 3. RTM01 和 RTM02
- 4. RB1 和 RB2

图 3 HS-NM5300A 背面跳线

这些跳线的定义如下:

1. 数据总线宽度选择:

RB1	RB2	说明		
短路	断开	选择8位数据总线宽度		
断开	短路	选择 16 位数据总线宽度		

2. 以太网 PHY 选择:

RTM01	RTM02	说明		
短路	断开	选择内部以太网 PHY		
断开	短路	选择外部以太网 PHY,使用晶体时钟		

3. 内部以太网 PHY 运行选择:

C. LIMP	//// 1	~11~217 .		
ROM01	ROM02	ROM11	ROM12	说明
短路	断开	短路	断开	选择以太网自动握手模式
断开	短路	短路	断开	选择以太网 100Base-TX 的全双工自动握手模式
短路	断开	断开	短路	选择以太网 10Base-T 的全双工自动握手模式

图 5 排针引脚尺寸图