General Topology Math Notes

Leon Lee

September 20, 2024

Contents

1	Intr	o to Topology	
	1.1	Why Topology?	
	1.2	Topological Spaces and Examples	
		1.2.2 Examples of Topological Spaces	
		1.2.5 Examples of Metric Spaces	
		1.2.6 Topologies on Metric spaces	
	1.3	Closed sets, Closure, Interior, and Boundary	
		1.3.2 Examples of open and closed sets	
		1.3.4 Topological proof that there are infinitely many primes (Furstenberg)	
	1.4	Open and closed sets in \mathbb{R} with the usual topology	
	1.5	Hausdorff Spaces	

1 Intro to Topology

1.1 Why Topology?

Topology can appear where we least expect it...

- Algebraic Number Theory Next to Euclidean topology, can define other topologies on \mathbb{Q} (related to how often primes divide a number). Extends to Adeles, Langlands programme, etc
- Arithmetic Progressions in the Integers An arithmetic progression of length k is a set $\{a, a+d, \ldots, a+(k-1)d\}$ Finding subsets of $\mathbb N$ that contain arbitrarily long APs:
 - $-2\mathbb{N} \text{ or } \mathbb{N}$
 - Primes (Green-Tao Theorem, 2007). Green-Tao theorem relies on Szemeredi's Theorem: Any dense enough subset of N contains arbitrarily long APs

Furstenburg's idea: Get from
$$A \subseteq \mathbb{N}$$
 to $(a_i \in \{0,1\}^{\mathbb{N}})$ with $a_i \begin{cases} 1 & i \in A \\ 0 & \text{else} \end{cases}$

Use topological dynamics to study this: A topological dynamical system is a triple of X cpt, $T: X \to X$ continuous, and a probability measure μ preserved by T (what)

1.2 Topological Spaces and Examples

Definition 1.2.1: Topological Space

A **topological space** is a pair (X, \mathcal{T}) , where X is a nonempty set, and \mathcal{T} is a collection of subsets of X which satisfies:

- 1. $\emptyset \in \mathcal{T}$ and $X \in \mathcal{T}$
- 2. if $U_{\lambda} \in \mathcal{T}$ for each $\lambda \in A$ (where A is some indexing set), then $\bigcup_{\lambda \in A} U_{\lambda} \in \mathcal{T}$
- 3. If $U_1, U_2 \in \mathcal{T}$, then $U_1 \cap U_2 \in \mathcal{T}$

1.2.2 Examples of Topological Spaces

- 1. \mathbb{R}^n with the Euclidean Topology induced by the Euclidean Metric
- 2. For any set X, $\mathcal{T} = \mathcal{P}(X)$ (discrete topology)
- 3. For any set X, $\mathcal{T} = \{\emptyset, X\}$ (indiscrete topology)
- 4. $X = \{0, 1, 2\}$ with $\mathcal{T} = \{\emptyset, X, \{0\}, \{0, 1\}, \{0, 2\}\}$
- 5. $X = \mathbb{R}$ and U open (aka, in \mathcal{T}) if $R \setminus U$ is finite or $U = \emptyset$

Proof for 5:

- 1. $\emptyset \in \mathcal{T}$, \emptyset is finite $\implies X \in \mathcal{T}$
- 2. Intersections of finite sets are finite
- 3. Unions of finite sets are finite

Definition 1.2.3: Neighbourhood of a point

A **neighbourhood** of a point $x \in X$ is a subset $N \subseteq X$ s.t. $x \in U \subseteq N$ for some open subset $U \subseteq X$

Definition 1.2.4: Metric Space

A **metric space** (X, d) is a nonempty set X together with a function

$$d: X \times X \to \mathbb{R}$$

with the following properties:

- 1. $d(x,y) \ge 0$ for all $x,y \in X$ and d(x,y) = 0 iff x = y
- 2. d(x,y) = d(y,x) for all $x, y \in X$
- 3. $d(x,z) \le d(x,y) + d(y,z)$ for all $x,y,z \in X$

The function d is called the metric. Point 3 is called the *triangle inequality*

For any $x \in X$ and any positive real number r the **open ball** in X with centre x and radius r is defined by

$$B(x,r) = \{ y \in X | d(x,y) < r \}$$

We declare a subset U of X to be open in the metric topology given by d iff for each $a \in U$ there is an r > 0 such that $B(a, r) \subseteq U$

If (X, \mathcal{T}) is a topological space, and if X admits a metric whose metric topology is precisely \mathcal{T} we say that (X, \mathcal{T}) is **metrisable**. Thus the euclidean spaces with their usual topologies are metrisable

1.2.5 Examples of Metric Spaces

- 1. Any set X with $d(x,y) = \begin{cases} 0, & x = y \\ 1, & \text{else} \end{cases}$
- 2. \mathbb{R}^n with $d(x,y) = |x y| = \sqrt{\sum_{i=1}^n (x_i y_i)^2}$
- 3. C([0,1]) with $d(f,g) = \max_{t \in [0,1]} |f(t) g(t)|$
- 4. C([0,1]) with $d(f,g) = \sqrt{\int_0^n |f(t) g(t)|^2 dt}$

1.2.6 Topologies on Metric spaces

We want to define a topology on (X,d). For this, we want open balls to be open in the topology

Definition 1.2.7: Base

For a set X, a basis \mathcal{B} is a collection of subsets such that

- 1. $\bigcup_{B \in \mathcal{B}} B = X$
- 2. $B_1 \cap B_2 \in \mathcal{B}$ for all $B_1, B_2 \in \mathcal{B}$

The topology generated by \mathcal{B} is

$$\mathcal{T} := \{ \bigcup_{i \in I} B_i, I \text{ index set, } B_i \in \mathcal{B} \}$$

Note: This is a topology because

$$(\cup_{i\in I}B_i)\cap(\cup_{j\in J}B_j)=\bigcup_{i\in I,j\in J}\underbrace{B_i\cap B_j}_{\in\mathcal{B}}\in\sqcup$$

Definition 1.2.8: Metric Topology

Let
$$\mathcal{B} = \{\bigcap_{i=1}^{n} Br_1(x_1), n \in \mathbb{N}, r_i > 0, x_i \in X, \forall i\}$$

The metric topology is the topology generated by this basis

Observation A set U is open in the metric topology $\iff \forall x \in U, \exists r > 0 \text{ s.t. } Br(x) \subseteq U$

- \Leftarrow : For each $x \in U$, let r_x s.t. $B_{r_x}(x) \subseteq U$. Then $U = \bigcup_{x \subseteq U} B_{r_x}(x)$ is open
- \Longrightarrow : Let $x \in U$ be given. Knwo that $x \in B_{r_1}(x_1) \cup \cdots \cup B_{r_n}(x_n)$ for some n, r_1, x_1 . For each i, there is $\delta_i > 0$ s.t. $B_{\delta_i}(x) \leq B_{r_1}(x_1)$.

huh?

Theorem 1.2.9: random ms prop

If X carries metrics d, \tilde{d} such that $ad(x, y) \leq \tilde{d}(x, y) \leq Ad(x, y)$ for some a, A > 0, then the induced topologies agree

Definition 1.2.10: Subspace Topology

Let (X, \mathcal{T}) be a topological space, and let $A \subseteq X$ be any subset. Then the **subspace** topology on A consists of all sets of the form $U \cap A$ where $U \in \mathcal{T}$

Example: $(-1,1) \subseteq \mathbb{R}$ with euclidean topology. The subspace topology is

$$\{(-1,1)\cap U,\,U\subseteq\mathbb{R}\text{ open}\}$$

(-1,1) is closed in the subspace topology

Theorem 1.2.11: Topology Lemmas

- **1.3** If (X, \mathcal{T}) is a topological space and U_1, \ldots, U_n are open sets, then the intersection $\bigcap_{i=1}^n u_i$ is also open
- 1.6 In order to show that a set $U \subseteq X$ is open, it is enough to show that for every $x \in U$ there is an open set V with $x \in V \subseteq U$
- 1.6 A subset U of \mathbb{R}^n is open for the usual topology iff for each $a \in U$ there exists an r > 0 s.t.

$$|x - a| < r \implies x \in U$$

The collection of open sets thus defined is called the **usual topology on** \mathbb{R}^n . Note

that open balls are open sets under this definition

Definition 1.2.12: Topology Small Definitions

•

1.3 Closed sets, Closure, Interior, and Boundary

Definition 1.3.1: Closed Subsets

Let (X, \mathcal{T}) be a topological space. A subset $A \subseteq X$ is **closed** iff its complement $X \setminus A = A^C := \{x \in X \ x \notin A\}$ is open in X

Note: A set being "closed" has no connection with "not being open"

1.3.2 Examples of open and closed sets

- A set that is neither open nor closed: $[0,1) \subseteq \mathbb{R}$ under Euclidean topology
- A set that is both closed and open: \emptyset or X

Theorem 1.3.3

Let (X, \mathcal{T}) be a topological space. Then

- 1. \emptyset and X are closed.
- 2. The union of finitely many closed sets is a closed set
- 3. The intersection of any collection of closed sets is a closed set

 $\bigcup_{i \in I} A_i$ is not necessarily closed.

$$A_n = \left[-2 + \frac{1}{n}, 2 - \frac{1}{n}\right] \text{ in } \mathbb{R}, \bigcup_{i=1}^n A_i = (-2, 2)$$

1.3.4 Topological proof that there are infinitely many primes (Furstenberg)

Proof. Look at \mathbb{Z} with

$$\mathcal{B} := \{ S(a, b), a \neq 0, b \in \mathbb{Z} \} \quad \text{and} \quad S(a, b) = \{ an + b, n \in \mathbb{Z} \}$$

Let the open sets be the one generated by this basis. We can show

- 1. S(a,b) is both open and closed.
- 2. All open sets are infinite.

1.
$$S(a,b) = \mathbb{Z} \setminus \bigcup_{i=1}^{a-1} S(a,b-1)$$

2. Clear

Thus:

$$\underbrace{\mathbb{Z}\backslash\{-1,1\}}_{\text{not closed}} = \bigcup_{p \text{ primes}} \overbrace{S(p,0)}^{\text{closed}}$$

If there were only finitely many primes, right hand side would be closed

Definition 1.3.5: Closure, Interior, Boundary

Let (X, \mathcal{T}) be a topological space.

1. The **closure** of a subset $A \subseteq X$ is

$$\overline{A} := \bigcap_{C \subseteq X \text{closed}; \ A \subseteq C} C$$

2. The **interior** of a subset $A \subseteq X$ is

$$\operatorname{int} A = A^{\circ} := \bigcap_{U \subseteq X \operatorname{open}; \ U \subseteq A} C$$

3. The **boundary** or **frontier** of a subset $A \subseteq X$ is

$$\partial A := \overline{A} \backslash A^{\circ}$$

4. A subset A of X is **dense** in X iff $\overline{A} = X$

Theorem 1.3.6: Closure and Interior of Complement

Let (X, \mathcal{T}) be a topological space and $A \subseteq X$. Then

1. The closure of the complement is the complement of the interior:

$$\overline{X \backslash A} = X \backslash (A^{\circ})$$

2. the interior of the complement is the complement of the closure:

$$(X\backslash A)^{\circ} = X\backslash \overline{A}$$

1.4 Open and closed sets in \mathbb{R} with the usual topology

1.5 Hausdorff Spaces

Definition 1.5.1: Hausdorff Space

A topological space (X, \mathcal{T}) is **Hausdorff** if for each $x, y \in X$ with $x \neq y$ there exist disjoint open sets U and V s.t. $x \in U$ and $y \in V$

If (X, d) is a metric space then it is automatically Hausdorff, so any metrisable space is Hausdorff. The trivial topology on a set with more than one element is not Hausdorff. Not every Hausdorff space is metrisable

Non-Hausdorff spaces are a lot more annoying to work with - for example you can have multiple limits in non-Hausdorff spaces

Definition 1.5.2: Convergence of Hausdorff Spaces

A sequence (x_n) of members of a topological space X converges to $x \in X$ if for every open set U containing x, there exists an N such that $n \geq N \implies x_n \in U$

Theorem 1.5.3: Haussdorf Convergence Uniqueness

Suppose (X, \mathcal{T}) is Hausdorff. Then a sequence (x_n) can converge to at most one limit.

Being Hausdorff is what's called a *topological property*, which means whether or not it is true in a particular case depends only on the open sets of the space in question.

In contrast, the property of *completeness* of a metric space is not a topological property as there exist sets upon which one can put two distinct metrics, one complete and one not, yet for which the metric topologies coincide

Definition 1.5.4: Cauchy Sequences

Let (X, d) be a metric space

- 1. A Cauchy Sequence is a sequence (x_n) with each $x_n \in X$ with the property that for each $\epsilon > 0$, there exists an N s.t. $m, n \geq N \implies d(x_m, x_n) < \epsilon$
- 2. (X,d) is **complete** if every Cauchy Sequence converges