## Sequence Similarity

## Protein Sequence Comparison and Protein Evolution

(What BLAST does/Why BLAST works)

#### William R. Pearson

www.people.virginia.edu/~wrp
wrp@virginia.edu

1

## Sequence Similarity - Conclusions

- · Always compare Protein Sequences
- Sequence Homology can be reliably inferred from statistically significant similarity (non-homology cannot from non-similarity)
- Homologous proteins share common structures, but not necessarily common functions
- Sequence statistical significance estimates are accurate (verify this yourself)10<sup>-6</sup> < E() < 10<sup>-3</sup> is statistically significant
- Scoring matrices set evolutionary look back horizons not every discovery is distant
- Structural and profile significance estimates are considerably less accurate that sequence comparison statistics

## Protein Evolution and Sequence Similarity

- · What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- DNA vs protein comparison
- When are we certain that an alignment is significant similarity score statistics?
- When to trust similarity statistics?
- BLAST and FASTA which program when?
- · Sequence, Profile, and Structure Comparison





## Homology => structural similarity ? sequence similarity





Bovine trypsin (5ptp) Structure: E()< 10<sup>-23</sup>; RMSD 0.0 A

Sequence: E()< 10<sup>-84</sup> 100% 223/223

S. griseus trypsin (1sgt)

E()< 10<sup>-14</sup> RMSD 1.6 A E()< 10<sup>-19</sup> 36%; 226/223 S. griseus protease A (2sga) E()< 10<sup>-4</sup>; RMSD 2.6 A E()< 2.6 25%; 199/181

5

#### Bovine trypsin (5ptp) Structure: E()<10<sup>-23</sup>

 $\begin{array}{c} \text{RMSD 0.0 A} \\ \text{Sequence:} \quad \text{E()<10}^{-84} \end{array}$ 

100% 223/223

## Non-homologous proteins have different structures





#### Subtilisin (1sbt)

E() >100

E()<280; 25% 159/275

#### Cytochrome c4 (1etp)

E() > 100

E()<5.5; 23% 171/190



## What BLAST does:

Similarity ? Homology

## Why BLAST works:

Statistical ? Biological Significance <=> Significance

Divergence ? Convergence

#### Some important dates in history

| Origin of the universe             | -12a ±2        |
|------------------------------------|----------------|
| Formation of the solar system      | $-4.6 \pm 0.4$ |
| First self-replicating system      | $-3.5 \pm 0.5$ |
| Prokaryotic-eukaryotic divergence  | $-2.5 \pm 0.3$ |
| Plant-animal divergence            | -1.0           |
| Invertebrate-vertebrate divergence | -0.5           |
| Mammalian radiation beginning      | -0.1           |
|                                    |                |

<sup>&</sup>lt;sup>a</sup>Billions of years ago

#### PAMsa/100 res.

| Protein family         | /108 years | Protein          | Protein Lookback timeb |  |  |  |
|------------------------|------------|------------------|------------------------|--|--|--|
| Pseudogenes            | 400        | 45°              | Primates,Rodents       |  |  |  |
| Fibrinopeptides        | 90         | 200              | Mammalian Radiation    |  |  |  |
| Lactalbumins           | 27         | 670              | Vertebrates            |  |  |  |
| Ribonucleases          | 21         | 850              | Animals                |  |  |  |
| Hemoglobins            | 12         | 1.5 <sup>d</sup> | Plants/Animals         |  |  |  |
| Acid Proteases         | 8          | 2.3              | Prokayrotic/Eukarotic  |  |  |  |
| Triosphosphate isomera | ise 3      | 6                | Archaen                |  |  |  |
| Glutamate dehydrogena  | ise 1      | 18               | ?                      |  |  |  |

<sup>&</sup>lt;sup>a</sup>PAMs, point accepted mutations. <sup>b</sup>Useful lookback time, 360 PAMs, 15% identity. <sup>c</sup>Millions of years. <sup>d</sup>Billions of years.

9

## E. coli proteins vs Human – Ancient Protein Domains

| +        | +    |      |                           | +                         | +          |
|----------|------|------|---------------------------|---------------------------|------------|
| expect   | %_id | alen | E coli descr              | Human descr               | sp_name    |
| 2.7e-206 | 53.8 | 944  | glycine decarboxylase, P  | Glycine dehydrogenase [de | GCSP_HUMAN |
| 1.2e-176 | 59.5 | 706  | methylmalonyl-CoA mutase  | Methylmalonyl-CoA mutase, | MUTA HUMAN |
| 3.8e-176 | 50.6 | 803  | glycogen phosphorylase [E | Glycogen phosphorylase, 1 | PHS1_HUMAN |
| 9.9e-173 | 55.6 | 1222 | B12-dependent homocystein | 5-methyltetrahydrofolate- | METH_HUMAN |
| 1.8e-165 | 41.8 | 1031 | carbamoyl-phosphate synth | Carbamoyl-phosphate synth | CPSM_HUMAN |
| 5.6e-159 | 65.7 | 542  | glucosephosphate isomeras | Glucose-6-phosphate isome | G6PI_HUMAN |
| 8.1e-143 | 53.7 | 855  | aconitate hydrase 1 [Esch | Iron-responsive element b | IRE1_HUMAN |
| 2.5e-134 | 73.0 | 459  | membrane-bound ATP syntha | ATP synthase beta chain,  | ATPB_HUMAN |
| 3.3e-121 | 55.8 | 550  | succinate dehydrogenase,  | Succinate dehydrogenase [ | DHSA_HUMAN |
| 1.5e-113 | 60.6 | 401  | putative aminotransferase | Cysteine desulfurase, mit | NFS1_HUMAN |
| 4.4e-111 | 60.9 | 460  | fumarase C= fumarate hydr | Fumarate hydratase, mitoc | FUMH_HUMAN |
| 1.5e-109 | 56.1 | 474  | succinate-semialdehyde de | Succinate semialdehyde de | SSDH_HUMAN |
| 3.6e-106 | 44.7 | 789  | maltodextrin phosphorylas | Glycogen phosphorylase, m | PHS2_HUMAN |
| 1.4e-102 | 53.1 | 484  | NAD+-dependent betaine al | Aldehyde dehydrogenase, E | DHAG_HUMAN |
| 3.8e-98  | 53.0 | 449  | pyridine nucleotide trans | NAD(P) transhydrogenase,  | NNTM_HUMAN |
| 5.8e-96  | 49.9 | 489  | glycerol kinase [Escheric | Glycerol kinase, testis s | GKP2_HUMAN |
| 2.1e-95  | 66.8 | 328  | glyceraldehyde-3-phosphat | Glyceraldehyde 3-phosphat | G3P2_HUMAN |
| 5.0e-91  | 62.5 | 368  | alcohol dehydrogenase cla | Alcohol dehydrogenase cla | ADHX_HUMAN |
| 6.7e-91  | 56.5 | 393  | protein chain elongation  | Elongation factor Tu, mit | EFTU_HUMAN |
| 9.5e-91  | 56.6 | 392  | protein chain elongation  | Elongation factor Tu, mit | EFTU_HUMAN |
| 2.2e-89  | 59.1 | 369  | methionine adenosyltransf | S-adenosylmethionine synt | METK_HUMAN |
| 6.5e-88  | 53.3 | 422  | enolase [Escherichia coli | Alpha enolase (2-phospho- | ENOA_HUMAN |
| 9.2e-88  | 43.3 | 536  | NAD-linked malate dehydro | NADP-dependent malic enzy | MAOX_HUMAN |
| 7.3e-86  | 55.5 | 389  | 2-amino-3-ketobutyrate Co | 2-amino-3-ketobutyrate co | KBL_HUMAN  |
| 5.2e-83  | 44.4 | 543  | degrades sigma32, integra | AFG3-like protein 2 (Para | AF32_HUMAN |
| +        | +    |      | ·                         | +                         | +          |



## Protein Evolution and Sequence Similarity

- · What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- DNA vs protein comparison
- When are we certain that an alignment is significant similarity score statistics?
- · When to trust similarity statistics?
- BLAST and FASTA which program when?
- · Sequence, Profile, and Structure Comparison



# Inferring Homology from Statistical Significance

- Real <u>UNRELATED</u> sequences have similarity scores that are indistinguishable from <u>RANDOM</u> sequences
- If a similarity is NOT RANDOM, then it must be NOT UNRELATED
- Therefore, NOT RANDOM (statistically significant) similarity must reflect RELATED sequences

```
s-w bits E(14548) % id alen
The best scores are:
PWHU6 H+-trans. ATP syn. - human mito.
                                          400 326.7 3.3e-90 1.000 226
PWB06 H+-trans. ATP syn. - cow mito.
                                          157 271.3 1.6e-73 0.779
                                                                     226
                                          118 262.4 7.6e-71 0.757
PWMS6 H+-trans. ATP syn. - mouse mito.
                                                                     226
PWXL6 H+-trans. ATP syn. - frog mito.
                                          745 177.3 3.1e-45
PWFF6 H+-trans. ATP syn. - D. melanog.
                                          471 114.8 2.0e-26
                                                             0.378
                                                                     222
PWBY3 H+-trans. ATP syn. - yeast mito.
                                          438 107.3 4.4e-24
                                                             0.362
                                                                     232
PWAS6N H+-trans. ATP syn. - E. nidulans
                                          365 90.6 4.4e-19
                                                              0.304
                                                                     230
PWKQ6 H+-trans. ATP syn. - H. maydis
                                          353 87.9 3.0e-18
                                                             0.313
                                                                     214
PWWT6 H+-trans. ATP syn. - wheat mito.
                                          309
                                               77.8 4.9e-15 0.292
                                                                     233
PWNT6M H+-trans. ATP syn. - tobacco
PWZM6M H+-trans. ATP syn. - corn mito.
                                          309
                                               77.8 5.0e-15
                                                             0.283
                                                                     233
                                               71.9 2.2e-13
                                          283
LWEC6 H+-trans. ATP syn. - E. coli
LWRZ6 H+-trans. ATP syn. - rice chloro.
                                          178
                                               48.0 3.3e-06
                                                              0.237
                                          144
                                               40.2 0.00063 0.242
                                                                     231
PWPMA6 H+-trans. ATP syn. - pea chloro.
                                          143
                                               40.0 0.00074
                                                              0.250
                                                                     232
PWYBAA H+-trans. ATP syn. - Cyano. syn.
                                          142
                                               39.7 0.00099
                                                             0.265
PWSPA6 H+-trans. ATP syn. - spinach
                                          138
                                              38.9 0.0016
                                                             0.238
                                                                     231
PWYCA6 H+-trans. ATP syn. - Synecho.
                                          127
                                               36.3 0.0099
                                                             0.263
                                                                     167
LWNT6 H+-trans. ATP syn. - tobacco
LWLV6 H+-trans. ATP syn. - liverwort
                                          126 36.1
                                                      0.011 0.221
                                          126
                                              36.1
                                                      0.011
                                                             0.244
PWEGAC H+-trans. ATP syn. - euglena
                                         123 35.4
                                                      0.018 0.257
                                                                     214
JQ0026 ATP/ADP translocase tlc1 - Ricket 122 35.1
S17420 ubiquinol--cytochrome-c reductase 113 33.1
                                                       0.14 0.228
                                                                    158
QXBO2M NADH dehydrogenase (ubiquinone) 107 31.7
                                                       0.32 0.261 211
S17415 ubiquinol--cytochrome-c reductase 105
                                                              0.277
                                                       0.49
                                               31.3
                                                                     137
S17417 ubiquinol--cytochrome-c reductase 104
                                               31.0
                                                        0.57 0.277
                                                                     137
DNHUN2 NADH dehydrogenase (ubiquinone) 103 30.8
                                                       0.61 0.201
                                                                     149
CBHU ubiquinol--cytochrome-c reductase 102
                                               30.6
                                                       0.79
                                                             0.268
                                                                     205
QRECAA aromatic amino acid trans. prot. 103
                                               30.8
                                                       0.82
                                                             0.234
S17419 ubiquinol--cytochrome-c reductase 101 30.3
                                                       0.92 0.234 158
                                                                                     15
```

```
>>LWEC6 H+-transporting ATP synthase (EC 3.6.1.34) protein 6 - Escherichia coli
s-w opt: 178 Z-score: 218.7 bits: 48.0 E(): 3.3e-06
Smith-Waterman score: 178; 23.729% identity (28.141% ungapped) in 236 aa overlap (8-222:45-264)
PWHU6
        {\tt MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQWLIKLTSKQMMTMHNTKGRTWSLMLVSLIIFIA}
50
                     60 70
                                      80
                                            90 100
                           100
                                 110
                                        120
PWHU6 TTNLLGLLP-----HSF-----TPTTQLSMNLAMAIPLWAGTVIMGFRSKIKNALAHFLPQGTPTPL----IPMLVIIE
    LWEC6
         130
                                160
      120
                140 150
                                         170
                                                180
            160
                  170
                         180
                                190
                                       210
{\tt PWHU6-TISLLIQPMALAVRLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILILTILEIAVALIQAYVFTLLVSLYLHDNT}
     LWEC6
    GVSLLSKPVSLGLRLFGNMYAGELIFILIAGLLPWWSQWILNVPWAIFHILIIT-----LQAFIFMVLTIVYLSMASEEH
                              240
                                      250
     200
           210
                 220 230
                                                   260
                                                                16
```

#### The PAM250 matrix



17

#### Where do scoring matrices come from?

| Pam40           |                 | Pam250              |              |
|-----------------|-----------------|---------------------|--------------|
| A R             | N D E           | I L A R N D         | E I L        |
| A 8             |                 | A 2                 |              |
| R <b>-</b> 9 12 |                 | R -2 6              |              |
| N - 4 - 7       | 11              | N 0 0 2             |              |
| D -4 -13        | 3 11            | D 0 -1 2 4          |              |
| E -3 -11        | <b>-</b> 2 4 11 | E 0 -1 1 3          | 4            |
| I -6 -7         | -7 -10 -7       | 12 I -1 -2 -2 -2    | <b>-</b> 2 5 |
| L -8 -11        | -9 -16 -12      | -1 10 L -2 -3 -3 -4 | -3 2 6       |

```
q_{ii}: replacement frequency at PAM40, 250
                                               p_R = 0.051
\dot{q_{R:N\,(~40)}} = 0.000435
```

 $q_{R:N(250)} = 0.002193$  $p_N = 0.043$ 

 $\lambda_2 S_{ij} = \lg_2 (q_{ij}/p_i p_j)$   $\lambda_e S_{ij} = \ln(q_{ij}/p_i p_j)$   $p_B p_N = 0.002193$ 

 $\lambda_2 \, S_{R:N(~40)} = \lg_2 (0.000435/0.00219) = -2.333$ 

 $\lambda_2 = 1/3; \; S_{R:N(~40)} = -2.333/\lambda_2 = -7$ 

 $\lambda S_{R:N(250)} = Ig2 (0.002193/0.002193) = 0$ 

Scoring matrices can can be designed for distances (less=shallow; more=deep)

· Deep matrices allow more substitution

```
>PWEGAC H+-transporting ATP synthase (EC 3.6.1.34) chain a - Euglena gracilis chloroplast (252 aa)
s-w opt: 123 Z-score: 151.6 bits: 35.4 E(): 0.018
Smith-Waterman score: 123; 25.701% identity (30.220% ungapped) in 214 aa overlap (21-222:50-243)
                                20
                                          30
                                                   40
                                                             50
PWHU6
               MNENLFASFIAPTILGLPAAVLIILFPPLLIPTSKYLINNRLITTQQWLIKLTSKQMMTMHNTK-GRT----WSLM
30
                       40
                                 50
                                            60
                                                        70
                                                                 80
                                    100
                                             110
                                                       120
{\tt PWHU6-LVSLIIFIATTNLLG-LLPHSFT--PTTQL---SMNLAMAIPLWAGTVIMGFRSKI-KNALAHFLPQGTPTPLIPMLVIIETISLL}
PWEGAC IGTMFLFIFVSNWSGALIPWKIIELPNGELGAPTNDINTTAGLAILTSLAYFYAGLNKKGLTYFKKYVQPTPILLPINILEDFT--
                           130
                                      140
                                               150
                             180
                     170
                                        190
                                                  200
            160
                                                           210
PWHU6 IQPMALAVRLTANITAGHLLMHLIGSATLAMSTINLPSTLIIFTILILLTILEIAVALIQAYVFTLLVSLYLHDNT
PWEGAC -KPLSLSFRLFGNILADELVVAVLVSL---------VP--LIVPVPLIFLGLF---TSGIQALIFATLSGSYIGEAMEGHH
190 200 210 220 230 240 250
                                                                                            19
```



## Protein Evolution and Sequence Similarity

- · What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- · DNA vs protein comparison
- When are we certain that an alignment is significant similarity score statistics?
- · When to trust similarity statistics?
- BLAST and FASTA which program when?
- · Sequence, Profile, and Structure Comparison

21

22

### DNA vs protein sequence comparison

| The best scores | are:                           | DNA<br>E(188,018) | tfastx3<br>E(187,524) | prot.<br>E(331,956) |
|-----------------|--------------------------------|-------------------|-----------------------|---------------------|
| DMGST           | D.melanogaster GST1-1          | 1.3e-164          | 4.1e-109              | 1.0e-109            |
| MDGST1          | M.domestica GST-1 gene         | 2e-77             | 3.0e-95               | 1.9e-76             |
| LUCGLTR         | Lucilia cuprina GST            | 1.5e-72           | 5.2e-91               | 3.3e-73             |
| MDGST2A         | M.domesticus GST-2 mRNA        | 9.3e-53           | 1.4e-77               | 1.6e-62             |
| MDNF1           | M.domestica nf1 gene. 10       | 4.6e-51           | 2.8e-77               | 2.2e-62             |
| MDNF6           | M.domestica nf6 gene. 10       | 2.8e-51           | 4.2e-77               | 3.1e-62             |
| MDNF7           | M.domestica nf7 gene. 10       | 6.1e-47           | 9.2e-77               | 6.7e-62             |
| AGGST15         | A.gambiae GST mRNA             | 3.1e-58           | 4.2e-76               | 4.3e-61             |
| CVU87958        | Culicoides GST                 | 1.8e-41           | 4.0e-73               | 3.6e-58             |
| AGG3GST11       | A.gambiae GST1-1 mRNA          | 1.5e-46           | 2.8e-55               | 1.1e-43             |
| BMO6502         | Bombyx mori GST mRNA           | 1.1e-23           | 8.8e-50               | 5.7e-40             |
| AGSUGST12       | A.gambiae GST1-1 gene          | 2.3e-16           | 4.5e-46               | 5.1e-37             |
| MOTGLUSTRA      | Manduca sexta GST              | 5.7e-07           | 2.5e-30               | 8.0e-25             |
| RLGSTARGN       | R.legominosarum gstA           | 0.0029            | 3.2e-13               | 1.4e-10             |
| HUMGSTT2A       | H. sapiens GSTT2               | 0.32              | 3.3e-10               | 2.0e-09             |
| HSGSTT1         | H.sapiens GSTT1 mRNA           | 7.2               | 8.4e-13               | 3.6e-10             |
| ECAE000319      | E. coli hypothet. prot.        | _                 | 4.7e-10               | 1.1e-09             |
| MYMDCMA         | Methyl. dichlorometh. DH       | _                 | 1.1e-09               | 6.9e-07             |
| BCU19883        | Burkholderia maleylacetate red | .—                | 1.2e-09               | 1.1e-08             |
| NFU43126        | Naegleria fowleri GST          | _                 | 3.2e-07               | 0.0056              |
| SP505GST        | Sphingomonas paucim            | _                 | 1.8e-06               | 0.0002              |
| EN1838          | H. sapiens maleylaceto. iso.   | _                 | 2.1e-06               | 5.9e-06             |
| HSU86529        | Human GSTZ1                    | _                 | 3.0e-06               | 8.0e-06             |
| SYCCPNC         | Synechocystis GST              | _                 | 1.2e-05               | 9.5e-06             |
| HSEF1GMR        | H.sapiens EF1g mRNA            | _                 | 9.0e-05               | 0.00065             |

Table 3: DNA and translated DNA similarity searches

| Taxonomic Group                   | blastx | blastn | blastn |                |
|-----------------------------------|--------|--------|--------|----------------|
|                                   |        | +3/-3  | +1/-3  |                |
| Bacteria eubacteria               |        |        |        |                |
| . Proteobacteria proteobacteria   |        |        |        |                |
| Gammaproteobacteria g-proteo.     |        |        |        |                |
| Enterobacteriaceae entero.        |        |        |        |                |
| Shigella enterobacteria           |        |        |        |                |
| Shigella flexneri2a               | 979    | 2165   | 2595   | enterobacteria |
| Escherichia coli CFT073           | 976    | 2130   | 2508   | enterobacteria |
| Escherichia coli 0157:H7          | 959    | 2184   | 2642   | enterobacteria |
| Escherichia coli                  | 758    | 2253   | 2817   | enterobacteria |
| Edwardsiella tarda                | 784    | 1102   | 180    | enterobacteria |
| Brucella melitensis 16M           | 496    | 854    | 113    | a-proteobacter |
| Mesorhizobium loti                | 60     |        |        | a-proteobacter |
| Bordetella bronchiseptica RB      | 330    | 217    |        | b-proteobacter |
| Geobacter metallireducens         | 53     |        |        | d-proteobacter |
| Geobacter sulfurreducens PCA      | 53     |        |        | d-proteobacter |
| . Prochlorococcus marinus MIT     | 517    | 458    |        | cyanobacteria  |
| . Synechocystis sp. PCC 6803      | 466    | 284    |        | cyanobacteria  |
| . Clostridium perfringens str. 13 | 427    |        |        | eubacteria     |
| . Streptomyces coelicolor A3(2).  | 417    |        |        | high GC Gram+  |
| . Mycobacterium tuberculosis      | 414    | 311    |        | high GC Gram+  |
| . Listeria innocua                | 414    | 257    |        | eubacteria     |
| . Listeria monocytogenes          | 414    | 234    |        | eubacteria     |
| . Enterococcus faecium            | 411    |        |        | eubacteria     |
| . Streptomyces avermitilis MA4680 | 409    |        |        | high GC Gram+  |
| . Lactococcus lactis              | 405    | 183    |        | eubacteria     |
| . Lactobacillus plantarum WCFS1.  | 390    | 231    |        | eubacteria     |
| . Bacteroides thetaiotaomicronVPI | 387    | 233    |        | CFB group bact |
| . Chloroflexus aurantiacus        | 72     |        |        | GNS bacteria   |
| . Gloeobacter violaceus PCC 7421  | 48     |        |        | cyanobacteria  |
| . Streptomyces viridifaciens      | 45     |        |        | high GC Gram+  |
| . Clostridium tetani E88          | 45     |        |        | eubacteria     |

Bit scores from a blastx and blastn searches presented using the BLAST taxonomy summary option. The DNA sequence (M84025) encoding  $E.\ coli$  glutamate decarboxylase used to search the bacterial division of Genbank or Genpept. Species that contain a homolog with a bit score  $\geq 45$  (E()  $< 10^{-3}$  for blastx) are shown. The numbers under the blastx and blastn columns indicate the highest bit-score obtained for that taxonomic group.

23

Table 6: Identification of anonymous DNA sequences at different evolutionary distances

| "unknown"          | excluded   | query length | E()        | f''n  | Length | Coverage |
|--------------------|------------|--------------|------------|-------|--------|----------|
| DNA                | sequences  | query length | thresh.    | found |        | (X)      |
|                    |            | 10,000       | 10-6       | 1.00  | 0.785  | 632      |
| A. fulgidis        | euryarch.  | 10,000       | 10-12      | 1.00  | 0.781  | 344      |
| A. Iuigiuis        | euryaren.  | 1,000        | 10-6       | 0.64  | 0.811  | 30       |
|                    |            | 1,000        | $10^{-12}$ | 0.64  | 0.748  | 21       |
|                    |            | 10,000       | 10-6       | 1.00  | 0.657  | 260      |
| A. fulgidis        | euryarch.  | 10,000       | $10^{-12}$ | 1.00  | 0.648  | 148      |
| 5% mut.            | euryaren.  | 1,000        | 10-6       | 0.64  | 0.811  | 30       |
|                    |            | 1,000        | $10^{-12}$ | 0.64  | 0.748  | 21       |
|                    |            | 10.000       | 10-6       | 1.00  | 0.725  | 607      |
|                    |            | 10,000       | $10^{-12}$ | 1.00  | 0.781  | 344      |
| A. fulgidis        | archaea    | 1.000        | 10-6       | 0.57  | 0.746  | 33       |
|                    |            | 1,000        | $10^{-12}$ | 0.52  | 0.733  | 21       |
|                    |            | 10.000       | 10-6       | 1.00  | 0.553  | 240      |
| A. fulgidis        |            | 10,000       | $10^{-12}$ | 1.00  | 0.781  | 344      |
| 5% mut.            | archaea    | 1,000        | 10-6       | 0.57  | 0.746  | 33       |
|                    |            |              | $10^{-12}$ | 0.52  | 0.733  | 21       |
|                    |            | 10,000       | 10-6       | 1.00  | 0.430  | 102      |
| E. coli            | bacteria   |              | $10^{-12}$ | 0.90  | 0.392  | 109      |
| E. COII            | bacteria   | 1,000        | 10-6       | 0.44  | 0.665  | 17       |
|                    |            |              | $10^{-12}$ | 0.36  | 0.682  | 11       |
|                    |            | 10.000       | 10-6       | 0.90  | 0.375  | 92       |
| E. coli            |            | 10,000       | $10^{-12}$ | 0.70  | 0.396  | 61       |
| 5% mut.            | bacteria   | 1.000        | 10-6       | 0.44  | 0.665  | 17       |
|                    |            | 1,000        | 10-12      | 0.36  | 0.682  | 11       |
|                    |            | 10.000       | 10-6       | 1.00  | 0.723  | 570      |
| S. pyogenes        | firmicutes | 10,000       | $10^{-12}$ | 1.00  | 0.695  | 377      |
| S. pyogenes        |            | 10.000       | 10-6       | 0.90  | 0.628  | 332      |
| 5% mut. firmicutes |            | 10,000       | $10^{-12}$ | 0.90  | 0.524  | 195      |
|                    |            | 10.000       | 10-6       | 1.00  | 0.480  | 150      |
| S. pyogenes        | bacteria   | 10,000       | $10^{-12}$ | 0.90  | 0.475  | 89       |
| S. pyogenes        |            | 10.000       | 10-6       | 0.90  | 0.433  | 72       |
| 5% mut.            | bacteria   | 10,000       | 10-12      | 0.80  | 0.433  | 43       |

### Smith-Waterman

25

### Smith-Waterman



Outcome: one continuous, optimal gapped alignment

#### **FASTA**



- 1. Identify identical matches (length = ktup)
- 2. Extend along diagonal (local maximum)
- 3. Join diagonal segments (DP) (maintain linearity) (optimal sum score)
- 4. Banded Smith-Waterman NLPYL-I ..: . : **QVPLVEI**

Outcome: one continuous, near-optimal gapped alignment

## **BLAST**



- 1. neighborhood word hits (word length)
- 2. extend from diagonal ends (X-drop threshold)
- 3. report HSP linkages (maintain linearity) (probability)

LINLP NL.: .: QVP ΕI PL

Outcome: multiple HSPs, multiple linkages; only partially aligned

#### More about scoring matrices ...

#### PAM series:

- Evolutionary model extrapolated from PAM1
- PAM20: 20% change (mammals)
- PAM250: 250% change (<20% identity)</li>
- Gap penalties should vary
- shallow matrices (PAM10-40) for short sequences and short distances

#### **BLOSUM** series

- Empirically determined, no extrapolation (no model)
- BLOSUM45-50 distant (1/3 bits)
- BLOSUM80 -very highly conserved (not small change), high info/position
- BLOSUM62 1/2 bits

29

#### **Changing Scoring Parameters**

#### A. Search with MJ0050

|                               | BLO | SUMBU | -10/-2 |      | BLC | 25 U M 62 | -//-1 |      | BLC | 25 U 10102 | -11/-1 |      |
|-------------------------------|-----|-------|--------|------|-----|-----------|-------|------|-----|------------|--------|------|
| The best scores are:          | s-w | E()   | %_id   | alen | s-w | E()       | %_id  | alen | s-w | E()        | %_id   | alen |
| NP_416010 glutamate decarb.   | 250 | e-11  | 24.9   | 401  | 216 | e-7       | 25.3  | 415  | 137 | e-8        | 22.9   | 332  |
| NP_417379 glycine decarb.     | 169 | e-05  | 22.1   | 420  | 163 | 0.001     | 23.3  | 430  | 88  | 0.004      | 22.1   | 331  |
| NP_417025 aminotransferase    | 122 | 0.02  | 23.6   | 254  | 119 | 0.12      | 24.5  | 257  | 76  | 0.04       | 23.7   | 118  |
| NP_414772 aminoacyl-his.      | 110 | 0.15  | 23.4   | 188  | 108 | 0.74      | 23.2  | 311  | 57  | 6.9        | 23.4   | 188  |
| NP_415139 alkyl hydroperoxide | 99  | 1.1   | 26.9   | 156  | 104 | 1.5       | 24.5  | 233  | 62  | 2.0        | 28.9   | 97   |
| B. Search with MJ1633         | BLO | SUM50 | -10/-2 |      | BLC | SUM62     | -7/-1 |      | BLC | SUM62      | -11/-1 |      |
| The best scores are:          | s-w | E()   | % id   | alen | s-w | E()       | % id  | alen | s-w | E()        | % id   | alen |
| NP_417809 KefB                | 196 | e-06  | 28.2   | 177  | 162 | 0.02      | 27.3  | 176  | 143 | e-8        | 34.4   | 96   |
| NP_414589 K+ antiporter       | 175 | e-04  | 25.4   | 142  | 141 | 0.2       | 24.7  | 166  | 131 | e-7        | 25.4   | 142  |
| NP_415011 transport protein   | 133 | 0.03  | 23.2   | 142  | 113 | 4.4       | 23.2  | 142  | 89  | 0.005      | 23.2   | 142  |
| NP_417748 TrkA                | 100 | 0.04  | 23.7   | 135  | 114 | 2.9       | 22.2  | 176  | 99  | e-3        | 21.8   |      |
|                               | 128 | 0.04  | 23.1   | 133  | 114 | 2.9       | 22.2  | 170  | 22  | 6-3        | 21.0   | 133  |

#### Where do scoring matrices come from?

| Pam40           |            | Pam250           |           |
|-----------------|------------|------------------|-----------|
| A R             | N D E      | I L A R N        | D E I L   |
| A 8             |            | A 2              |           |
| R <b>-</b> 9 12 |            | R -2 6           |           |
| N - 4 - 7       | 11         | N 0 0 2          |           |
| D -4 -13        | 3 11       | D 0 -1 2         | 4         |
| E -3 -11        | -2 4 11    | E 0 -1 1         | 3 4       |
| I -6 -7         | -7 -10 -7  | 12 I -1 -2 -2    | -2 -2 5   |
| L -8 -11        | -9 -16 -12 | -1 10 L -2 -3 -3 | -4 -3 2 6 |

 $q_{ij}$ : replacement frequency at PAM40, 250

 $p_R = 0.051$ 

 $q_{R:N(40)} = 0.000435$  $q_{R:N(250)} = 0.002193$ 

 $p_N = 0.043$ 

 $\lambda_2 S_{ij} = \lg_2 (q_{ij}/p_ip_j) \quad \lambda_e S_{ij} = \ln(q_{ij}/p_ip_j) \quad p_B p_N = 0.002193$ 

 $\lambda_2 S_{R:N(40)} = \lg_2 (0.000435/0.00219) = -2.333$ 

 $\lambda_2 = 1/3$ ;  $S_{R:N(40)} = -2.333/\lambda_2 = -7$ 

 $\lambda S_{R:N(250)} = Ig2 (0.002193/0.002193) = 0$ 

31

## PAM matrices and alignment length







## Scoring Matrices - Summary

- PAM and BLOSUM matrices greatly improve the sensitivity of protein sequence comparison – low identity with significant similarity
- PAM matrices have an evolutionary model lower number, less divergence – lower=closer; higher=more distant
- BLOSUM matrices are sampled from conserved regions at different average identity – higher=more conservation
- Short alignments require shallow matrices
- · Shallow matrices set maximum look-back time

35

## Protein Evolution and Sequence Similarity

- What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- DNA vs protein comparison
- When are we certain that an alignment is significant similarity score statistics?
- When to trust similarity statistics?
- BLAST and FASTA which program when?
- Sequence, Profile, and Structure comparison

# Inferring Homology from Statistical Significance

- Real <u>UNRELATED</u> sequences have similarity scores that are indistinguishable from <u>RANDOM</u> sequences
- If a similarity is NOT RANDOM, then it must be NOT UNRELATED
- Therefore, NOT RANDOM (statistically significant) similarity must reflect RELATED sequences

37

#### Extreme value distribution



$$S' = \lambda S_{raw}$$
 - In K m n  
 $S_{bit} = (\lambda S_{raw} - \ln K)/\ln(2)$   
 $P(S'>x) = 1 - \exp(-e^{-x})$   
 $P(S_{bit} > x) = 1 - \exp(-mn2^{-x})$   
 $E(S'>x ID) = P D$ 

P(B bits) = m n  $2^{-B}$   $z^{(\sigma)}$  P(40 bits)= 1.5x10<sup>-7</sup>  $t_{10}$   $t_{1$ 



#### Smith-Waterman (ssearch) The best scores are: s-w bits E(115640) % id alen GTM1\_MOUSE Glutathione S-trans ( 218) 1497 363.5 2e-100 1.000 GTM2 CHICK Glutathione S-trans ( 220) 958 234.9 1.1e-61 0.619 218 GTP\_HUMAN Glutathione S-trans (210) 91.2 1.8e-18 356 0.308 211 PGD2\_MOUSE Glutathione-req. ( 199) 262 68.8 9.7e-12 0.319 204 GTA1\_MOUSE Glutathione S-trans ( 223) 229 60.9 2.6e-09 0.284 225 SC1\_OCTDO S-crystallin 1 OL1 ( 215) 228 60.7 3.0e-09 0.269 219 GTS\_MUSDO Glutathione S-trans ( 241) 228 60.6 3.4e-09 GTS1 CAEEL Prob. Glut. S-trans (210) 220 58.8 1.1e-08 0.284 225 GTS OMMSL Glutathione S-trans ( 53.0 5.5e-07 203) 196 0.258 209 GTH3\_ARATH Glutathione S-trans ( 215) 142 40.1 0.0045 0.310 126 GTT2\_HUMAN Glutathione S-trans ( 244) 132 37.7 0.027 0.257 167 GT24\_DROME Glutathione S-trans ( 216) 131 37.5 0.028 0.255 153 YFCG\_ECOLI Hypothetical GST (215) 112 33.0 0.64 0.235 YJY1\_YEAST hypothetical 30.5 261) 110 32.4 \*1.1\* 0.248 149 DCMA\_METS1 dichloromethane DM ( 267) 103 30.8 0.214 210 3.7 YA42\_HAEIN Hypothetical prot. 617) 108 31.7 \*4.6\* 0.283 120 GTO1 RAT Glutathione trans 241) 100 30.1 5.4 0.234 158 DP41\_BACHD DNA polymerase I 413) 104 30.8 \*5.4\* 0.234 184 GTH1 WHEAT Glutathione S-trans ( 229) 29.6 7.0 0.246 171 LGUL\_SOYBN Lactoylglutathione (219) 7.8 0.200 29.4 190 VP2\_AHSV3 outer capsid prot (1057) 108 31.5 \*8.9\* 0.205 200 GTH5\_ARATH Glutathione S-trans ( 218) 96 29.2 9.2 0.258 66 DCMA\_METSP dichloromethane DM ( 288) 98 29.5 9.3 0.195 200 GTXA\_ARATH Glutathione S-trans ( 224) 96 29.1 9.5 0.248 125 SLT HAEIN Putative soluble 1 (593) 103 30.5 \*9.9\* 0.227 40

#### Low gap penalties reduce sensitivity

```
s-w bits E(115640) %_id alen
The best scores are:
GTM1 MOUSE Glutathione S-tran ( 218) 1497 164.0 2.3e-40 1.000 218
GTM2_CHICK Glutathione S-tran ( 220) 958 107.5 2.4e-23
                                                       0.619
GTP HUMAN Glutathione S-tran (210) 378 46.8 4.2e-05
                                                        0.308
                                                               211
PGD2 MOUSE Glutathione-req.
                             (199) 311 39.9 0.0048
                                                       0.319
GTA1 MOUSE Glutathione S-tran ( 223) 296 38.1
                                                0.019
                                                       0.313
                                                               233
SC1_OCTDO S-crystallin 1 OL1 ( 215) 286 37.2
                                                 0.035
                                                       0.272
                                                               224
GTS_MUSDO Glutathione S-tran (241) 279 36.2
                                                 0.077
                                                       0.274
GTS_OMMSL Glutathione S-tran (203) 241
                                          32.6
                                                  0.81
                                                       0.261
GTH3 ARATH Glutathione S-tran (215) 190 27.1
                                                       0.293
GTT2_HUMAN Glutathione S-tran ( 244) 189 26.7
                                                    55
                                                       0.271
                                                               210
GTT1_MUSDO Glutathione S-tran ( 208) 183 26.4
                                                    58 0.276
                                                               199
MAAI_VIBCH Probable maleylace ( 215) 184 26.5
                                                    58
                                                       0.235
                                                               247
YFCG_ECOLI Hypothetical GST- (215) 184 26.5
GTXA_TOBAC prob. Glutathione (220) 184 26.4
                                                    58
                                                       0.246
                                                  62 0.250
GTH1 WHEAT Glutathione S-tran (229) 185 26.4
                                                    63
                                                       0.246
                                                               236
GTH7 ARATH Glutathione S-tran (214) 180 26.1
                                                   77 0.254 228
                                                   *85* 0.255
T1MH_METJA Putative type I r (558) 210 27.3
                                                               275
DP41 BACHD DNA polymerase I
                              (413)
                                     200 26.8
                                                   *86* 0.244
                                                               234
GTH2_WHEAT Glutathione S-tran (291) 188 26.3
                                                   90 0.247 251
```

41

### FASTA search - low complexity regions

```
Search\ with\ complete\ grou\_drome:
```

```
The best scores are:
                                                        opt bits E(14548)
RGHUB1 GTP-binding regulatory protein beta-1 chai (341)
                                                                   3.5e-05
                                                        237 46.6
RGBOB1 GTP-binding regulatory protein beta-1 chai ( 341) 237 46.6 3.5e-05
RGHUB3 GTP-binding regulatory protein beta-3 chai ( 341) 233 46.0 5.2e-05
RGMSB4 GTP-binding regulatory protein beta-4 chai ( 341) 232 45.8 5.7e-05
PIHUPF salivary proline-rich glycoprotein precurs ( 252)
                                                        224 44.5 *0.00010*
RGFFB GTP-binding regulatory protein beta chain ( 347) 223 44.5 0.00014
PIRT3 acidic proline-rich protein precursor - rat ( 207) 199 40.8 *0.0011*
PIHUB6 salivary proline-rich protein precursor PR ( 393)
                                                        203 41.6 *0.0012*
CGBO2S collagen alpha 2(I) chain - bovine (fragme
                                                 (403)
                                                        195 40.5 *0.0027*
WMBEW6 capsid protein - human herpesvirus 1 (stra (636) 192 40.2 *0.0051*
W4WLB5 E4 protein - human papillomavirus type 5b (246)
                                                        170
                                                             36.6 *0.024*
OZZQMY circumsporozoite protein precursor - Plasm ( 368) 172 37.1 *0.026*
FOMVME gag polyprotein - murine leukemia virus (s ( 537) 161 35.6 *0.10*
```

## Search with seg-ed grou\_drome: (low complexity regions removed) The best scores are:

```
opt bits E(14548)
RGHUB3 GTP-binding regulatory protein beta-3 chai (341) 233 56.5 3.6e-08
RGMSB4 GTP-binding regulatory protein beta-4 chai (341)
                                                        232
                                                             56.3 4.1e-08
RGHUB2 GTP-binding regulatory protein beta-2 chai ( 341) 228 55.5 7.2e-08
                                                        225
RGBOB1 GTP-binding regulatory protein beta-1 chai ( 341)
                                                             54.9 1.1e-07
                                                 (347)
RGFFB GTP-binding regulatory protein beta chain
                                                        223
                                                             54.5 1.5e-07
BVBYMS MSI1 protein - yeast (Saccharomyces cerevi
                                                 (423) 135
                                                             37.0 *0.033*
ERHUAH coatomer complex alpha chain homolog - hum (1225)
                                                        134
                                                             37.1 *0.088*
A28468 chromogranin A precursor - human
                                                 (458) 122
                                                             34.4 *0.21*
RGOOBE GTP-binding regulatory protein beta chain
                                                 ( 342) 120 33.9 0.22
```

#### pseg removes low-complexity regions

>gi|17380405|sp|P16371|GROU\_DROME Groucho protein (Enhancer of split M9/10)

MYPSPVRH paaggpppqgp 9-19

20-131 TKFTTADTLERTKEEFNFLOAOYHSTKLEC

EKLSNEKTEMORHYVMYYEMSYGLNVEMHK QTEIAKRLNTLINQLLPFLQADHQQQVLQA VERAKQVTMQELNLIIGQQIHA

132-143 qqvpggppqpmg 144-281

ALNPFGALGATMGLPHGPQGLLNKPPEHHR PDIKPTGLEGPAAAEERLRNSVSPADREKY RTRSPLDIENDSKRRKDEKLQEDEGEKSDQ DLVVDVANEMESHSPRPNGEHVSMEVRDRE

SLNGERLEKPSSSGIKQE

rppsrsgssssrstps 282-297 298-310

311-330

LKTKDMEKPGTPG

akartptpnaaapapgvnpk  ${\tt qmmpqgpppagypgapyqrpa}$ 352-719

DPYQRPPSDPAYGRPPPMPYDPHAHVRTNG IPHPSALTGGKPAYSFHMNGEGSLQPVPFP PDALVGVGIPRHARQINTLSHGEVVCAVTI  ${\tt SNPTKYVYTGGKGCVKVWDISQPGNKNPVS}$ QLDCLQRDNYIRSVKLLPDGRTLIVGGEAS NLSIWDLASPTPRIKAELTSAAPACYALAI SPDSKVCFSCCSDGNIAVWDLHNEILVRQF QGHTDGASCIDISPDGSRLWTGGLDNTVRS WDLREGRQLQOHDFSSQIFSLGYCPTGDWL AVGMENSHVEVLHASKPDKYQLHLHESCVL  ${\tt SLRFAACGKWFVSTGKDNLLNAWRTPYGAS}$ IFQSKETSSVLSCDISTDDKYIVTGSGDKK ATVYEVIY



#### Statistical estimates from random shuffles

- BLAST estimates statistical significance from simulations of "normal" (average composition) proteins
- FASTA estimates statistical significance from the distribution of similarity scores obtained during the database search (selects 60,000 unrelated sequence scores from the database of *real* proteins)
- What if the sequences are different from most proteins, but similar to each other, e.g. membrane proteins?
- PRSS estimates statistical significance by producing hundreds of shuffled (random) sequences with the same length and composition, and then estimates  $\lambda$  and K from comparisons against those proteins

45

#### prss - uniform and window shuffle

```
>LWEC6 H+-transporting ATP synthase (EC 3.6.1.34) protein 6 - Escherichia coli
 MASENMTPOD YIGHHLNNLQ LDLRTFSLVD PONPPATFWT INIDSMFFSV VLGLLFLVLF
RSVAKKATSG VPGKFQTAIE LVIGFVNGSV KDMYHGKSKL IAPLALTIFV WVFLMNLMDL
 LPIDILPYFA EHVLGLPALR VVPSADVNVT LSMALGVFIL ILFYSIKMKG IGGFTKELTL
 QPFNHWAFIP VNLLLEGVSL LSKPVSLGLR LFGNMYAGEL IFILIAGLLP WWSQWILNVP
 WAIFHILIT LOAFIEMVLT IVYLSMASEE H
  >lwec6 0 shuffled
 GMPISVLLFK PPEVLLVFLL SVMGTNFPAW GGFIMKGFKI VSFVGWVRFV AVAGHLALYK
 ITRDVNIVKS AVFGSALLHP LLLQLSEINL VFVNLLNIKI RTAYVHGMTL LSHIPLFPAS
GEGVFSDMLM IITWNSASVL SGLDMFANIA LLGNPLLMTN IVIILQRKFI ATTKFSLADI
 HLHKQYSWDG MMSHTLIIFS ALELWVQNGD IFIPLNEYIL PFTLYVPNWL ITQALVVALV
 ELPGOQIDAE PLFLLPIPFS EKTWYGDIMF L
PRSS34 - 1000 shuffles; uniform shuffle
 unshuffled s-w score: 178; bits(s=178 | n_1=271): 34.8 p(178) < 2.005e-06
For 10000 sequences, a score >= 178 is expected 0.02005 times
  >lwec6 0 shuffled window: 10
EDSMANTMPO HONILGYHLN DLRTSDFVLL FTOAPWPTPN SMNIDIVFSF VLLVLLFFGL
  SRGAVKATKS EQVTGIKFAP VVSGVILGFN HDKGMSLYKK VLPIIFLAAT DWLMNFVLLM
  IIDLYLLAPP ERVGHPLLAL APNVVVSVDT MLFLIGSALV IFSLMKGIKY TTIFGLEKGL
 OAWNFFPHIP NLSVEVGLLI GLPVRSSLKL MFLELAGNGY PFGILILILA SLINVWPWOW
 TATTWTTFHI, VOMTFFLATI, VSESELMIYA H
PRSS34 - 1000 shuffles; window shuffle, window size: 20
 unshuffled s-w score: 178; bits(s=178 \mid n_1=271): 34.5 p(178) < 2.601e-06
For 10000 sequences, a score >= 178 is expected 0.02602 times
                                                                                          46
```



#### Statistical estimates from random shuffles

| algorithm                                             | closely<br>related<br>dopamine D2 <sup>a</sup> | related thromboxane A2 <sup>b</sup> | distantly<br>related<br>cAMP-1° | unrelated cytochrome oxidased |
|-------------------------------------------------------|------------------------------------------------|-------------------------------------|---------------------------------|-------------------------------|
| Smith-<br>Waterman                                    | 3x10 <sup>-9</sup>                             | 2x10 <sup>-4</sup>                  | 0.01                            | 0.57                          |
| PRSS <sup>e</sup><br>PRSS<br>(window=20) <sup>e</sup> | 8x10 <sup>-10</sup><br>8x10 <sup>-8</sup>      | 10 <sup>-4</sup><br>0.001           | 0.007<br>0.23                   | 0.45<br>3.0                   |

<sup>a</sup>D2DR\_HUMAN, <sup>b</sup>TA2R\_MOUSE, <sup>c</sup>CAR1\_DICDI, <sup>d</sup>APPC\_ECOLI <sup>e</sup>after 1000 shuffles

#### Local alignments - calmodulin

```
46.1% identity in 76 aa overlap (1-76:77-149); score: 222 E(10000): 2.7e-10
10 20 30 40 50 60
achu MADQLTEEQIAEFKEAFSLFDKDGDGTITTKELGTVMRSLGQNPTEAELQDMINEVDADG
mchu
      KDTDs_
80
70
mchu
mchu
      NGTIDFPEFLTMMARK
      mchu
 34.3% identity in 105 aa overlap (11-111:47-147); score: 187 E(10000): 6.7e-08 20 30 40 50 60 chu AEFKEAFSLFDKDGDGTITTKELGTVM-RSLGQNPTEAELQDMINEVDADGNGTIDFPEF
      mchu
        50 60 70
70 80 90
                               80 90
100 110
      mchu
                           130
 34.2% identity in 38 aa overlap (1-37:113-146); score: 68 E(10000): 10 20 30
chu MADQLTEEQIAEF-KEAFSLFDKDGDGTITTKELGTVM
mchu
      120
                        130
                                                                               49
```

## Repeated domains with local alignments



## Protein Evolution and Sequence Similarity

- · What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- DNA vs protein comparison
- When are we certain that an alignment is significant similarity score statistics?
- · When to trust similarity statistics?
- · BLAST and FASTA which program when?
- Sequence, Profile, and Structure Comparison

51

# BLAST and FASTA Which program when?

Blast for proteins
Blast for speed
FASTA for DNA
FASTA for frameshifts
FASTA for accurate statistics
(protein and coding DNA)
SSEARCH for optimal
(be careful with PSI-BLAST)

#### Comparison programs in the FASTA3 package

#### fasta

Compare a protein sequence to a protein sequence database or a DNA sequence to a DNA sequence database using the FASTA algorithm. Search speed and selectivity are controlled with the ktup (wordsize) parameter. For protein comparisons, ktup = 2 by default; ktup = 1 is more sensitive but slower. For DNA comparisons, ktup = 6 by default; ktup=3 or ktup=4 provides higher sensitivity; ktup=1 should be used for oligonucleotides (DNA query lengths <= 20).

ssearch Compare a protein sequence to a protein sequence database or a DNA sequence to a DNA sequence database using the Smith-Waterman algorithm. ssearch3 is about 10times slower than FASTA3, but is more sensitive for full-length protein sequence

#### fastx/ fasty

Compare a DNA sequence to a protein sequence database, by comparing the translated DNA sequence in three frames and allowing gaps and frameshifts.  ${\tt fastx3}$  uses a simpler, faster algorithm for alignments that allows frameshifts only between codons; fasty3 is slower but produces better alignments with poor quality sequences because frameshifts are allowed within codons.

53

#### Which program when?

| Problem      | Program     | Explanation                                        | Alternate |
|--------------|-------------|----------------------------------------------------|-----------|
| Identify     | (1) fasta 3 | General protein comparison. Use ktup=2 (the        | blastp/   |
| unknown      |             | unknown default) for speed; ktup=1 for a more      |           |
| protein      |             | sensitive search. Search first against the         |           |
|              |             | smallest library likely to contain a homolog       |           |
|              |             | (i.e. SwissProt rather than Genpept).              |           |
|              | (2)ssearch3 | 10-50-fold slower than fasta3 faster on            | fasta3/   |
|              |             | Macs, but provides maximum sensitivity. No         | blastp    |
|              |             | advantage for DNA comparisons.                     |           |
|              | (3)tfastx3/ | If a homolog cannot be found in the protein        | tblastn/  |
|              | tfasty3     | databases, check the DNA databases with            | tfastaª   |
|              |             | tfastx3 or tfasty3. tfasty3 provides               |           |
|              |             | more accurate alignments, but is about 33%         |           |
|              |             | slower.                                            |           |
| Identify     | fasta3      | If the DNA sequence encodes a protein, use         | blastn    |
| structural   |             | protein sequence comparison first, then try        |           |
| DNA          |             | translated protein sequence comparison             |           |
| sequence     |             | (fastx3/fasty3). For repeated DNA                  |           |
|              |             | sequences or structural RNAs, search first with    |           |
|              |             | ktup=6 (the default), then ktup=3. Search with     |           |
|              |             | ktup< 3 only for very short sequences (PCR         |           |
|              |             | primers).                                          |           |
| Identify     | fastx3/     | Protein sequence comparison is far more            | fasta3/   |
| EST          | fasty3      | sensitive than DNA comparison, so check first      | blastx/   |
| sequence     |             | to see if the EST encodes a product                | tblastx   |
|              |             | homologous to a known protein. Current             |           |
|              |             | version searches forward strand only, so use       |           |
|              |             | fastx3 -i as well.                                 |           |
| Confirm      | prss3       | Use 500-2000 shuffles, and remember to             |           |
| statistical  |             | normalize the statistical significance to the size |           |
| significance |             | of the database originally searched (typically     |           |
|              |             | 10,000 - 100,000 sequences).                       |           |

<sup>a</sup>No longer recommended.

## Comparison of BLAST2 and FASTA3 Programs

| Program |                     |                                                                                                                                                                                                                                                                                                                                                                               |
|---------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| BLAST   | FASTA               | Functio n                                                                                                                                                                                                                                                                                                                                                                     |
| blastp  | fasta 3             | General protein sequence similarity searches. <b>blastp</b> is faster and can show alignments between several domains in the same sequence. <b>fasta3</b> displays a Smith-Waterman final alignment and produces more accurate statistical estimates in some cases.                                                                                                           |
| blastn  | fasta3              | DNA sequence comparison. <b>blastn</b> is highly optimized for speed; it uses a fixed word size (11 nucleotides) and scoring matrix that are inappropriate for some problems (e.g. searching for PCR primer matches).                                                                                                                                                         |
| blastx  | fastx3/             | Compare a translated DNA to a protein sequence database. While                                                                                                                                                                                                                                                                                                                |
|         | fasty3              | blastx does six independent searches (one for each of the six frames), fastx3 and fasty3 effectively does a single forward (or backward) search, which allows frameshifts in computing the similarity score and alignments. As a result, fastx3 and fasty3 are more sensitive and can produce much better alignments than blastx when the DNA sequence has frameshift errors. |
| tblastn | tfastx3/<br>tfasty3 | Compare a protein sequence to a DNA sequence database, translating in the three forward and reverse frames. Again, tfastx3 and tfasty3 provide more accurate alignments than tblastn when the DNA sequences have frameshift errors.                                                                                                                                           |
|         | tblastx             | Compare a DNA query sequence to a DNA library, translating both sequences in all six frames and scoring using a protein substitution matrix (BLOSUM62). fasta3 with ktup=6 (the default) provides a similar function, but does not use a protein scoring matrix.                                                                                                              |

55

## Scoring Matrices and Gap-penalties - BLAST vs FASTA

#### **BLAST**

- default scoring matrix: BLOSUM62 (1/2 bit)
- default gap penalty:
   -11 (open)/-1(extend)
   (lowest -9/-1, -8/-2)

#### **FASTA**

- default matrix: BLOSUM50 (1/3 bit)
- default gap penalty:
   old: -12 (first residue)/-2
   = new: -10 (open)/-2(ext)
- BLOSUM62 -7/-1
- PAM120 -16/-4
- PAM20 -24/-4

## Protein Evolution and Sequence Similarity

- · What is Homology and how do we recognize it?
- How do we measure sequence similarity alignments and scoring matrices?
- DNA vs protein comparison
- When are we certain that an alignment is significant similarity score statistics?
- When to trust similarity statistics?
- BLAST and FASTA which program when?
- Sequence, Profile, and Structure Comparison



|           |           |                                                 | Senile r                      | Proteases                |                       |                        |               |
|-----------|-----------|-------------------------------------------------|-------------------------------|--------------------------|-----------------------|------------------------|---------------|
|           |           | CATH Homology                                   |                               |                          | Topology              | Convergent             |               |
|           |           | Bovine<br>Trypsin                               | S. griseus<br>Trypsin         | S. griseus<br>Protease A | Viral<br>Protease     | Subtilisin             |               |
|           |           | 5PTP vs.:                                       | 1SGT                          | 2SGA                     | 1BEF                  | 1SBT                   | l             |
|           | Dali      | Z<br>E(2775)                                    | 32.7<br>10 <sup>-14</sup>     | 13.7<br>10 <sup>-4</sup> | 8.8<br>0.02           | <2<br>>100             |               |
| Structure |           | N <sub>align</sub> (%id)<br>RMSD (Å)            | 209 (34)<br>1.4               | 147 (19)<br>2.8          | 131 (10)<br>2.9       | N/A<br>N/A             |               |
| 랿         | VAST      | E(2775)                                         | 10 <sup>-21</sup>             | 0.017 a                  | 1.94                  | N/A                    | Ì             |
| Sequence  |           | N <sub>align</sub> (%id)<br>RMSD (Å)            | 208 (34)<br>1.5               | 130 (22)<br>2.3          | 122 (14)<br>2.8       | N/A<br>N/A             | /e            |
|           | COMPASS   | E(10000)                                        | 10-114                        | 10 <sup>-13</sup>        | 0.056                 | 13                     | +<br>Profile/ |
|           | PSI-BLAST | E(2775)                                         | 10 <sup>-48</sup> 231         | 2.5<br>40                | >10                   | >10                    | Ā             |
|           | SSEARCH   | $\frac{N_{align}}{E(10000)}$ $N_{align} (\%id)$ | 10 <sup>-19</sup><br>223 (36) | 2.6<br>181 (25)          | N/A<br>>10<br>68 (33) | N/A<br>>10<br>159 (25) | Sequence/     |



## Inferring Homology from Statistical Significance

- Real <u>UNRELATED</u> sequences have similarity scores that are indistinguishable from <u>RANDOM</u> sequences
- If a similarity is NOT RANDOM, then it must be NOT UNRELATED
- Therefore, NOT RANDOM (statistically significant) similarity must reflect RELATED sequences
  - 1. Should Unrelated Structures have  $E() \ge 1$ ?
  - 2. Are there "chance" Structural Similarities?



#### Structure Comparison Statistics

- Most structure comparison methods report very significant structural similarity for non-homologous proteins (unrelated ≠ random)
- These significance estimates are used to infer ancient domain homologies, which are preferred to multiple independent origins
- Dali produces relatively accurate estimates, and is one of the most sensitive search methods – thus, unrelated structures may be random
- If structural similarity can be random, there may be many more possible structures than existing ones

63

## Sequence Similarity - Conclusions

- · Always compare Protein sequences
- Sequence Homology can be reliably inferred from statistically significant similarity (non-homology cannot from non-similarity)
- Homologous proteins share common structures, but not necessarily common functions
- <u>Protein</u> sequence statistical significance estimates are accurate (verify this yourself)10<sup>-6</sup> < E() < 10<sup>-3</sup> is statistically significant
- Scoring matrices set evolutionary look back horizons
   not every discovery is distant
- Searching smaller libraries improves sensitivity
- Structural and profile significance estimates are considerably less accurate that sequence comparison statistics

#### Discussion (exam) questions

- 1. What is the difference between similarity and homology? When does high identity not imply homology? What conclusions can be drawn from homology?
- 2. What is the range of an expectation value (E()-value)? If you compare a sequence to 50,000 random(unrelated) sequences, what should the expectation value for the highest of the 50,000 similarity scores be (on average)?
- 3. In a sequence similarity database search, you identify a statistically significant similarity (E()<0.005), but the alignment is relatively short (50 aa). How might you determine whether the alignment reflects a genuine homology, or a random sequence match?
- 4. What scoring matrix should be used to identify protein orthologs that have diverged over the past 100 My (e.g. human/mouse)?
- 5. When the *M. janaschii* genome was first sequenced, Venter and his colleagues stated that almost 60% of the open reading frames (proteins or genes) were novel to this organism. (For eubacterial like *E. coli* or *H. influenzae*, a similar number would be 20 40%.) On what would they base such a statement? Is it likely to be correct?