Program verification

Scaling analyses: 2 case studies

Laure Gonnord and David Monniaux

University of Lyon / LIP

November 17, 2015

Plan

Symbolic range analysis

Motivation and big picture Overview Technical context LLVM Symbolic Range Analysis A bit on the other analyses Experimental results Conclusion

Symbolic pointer analysis

Range Analysis
Pointer Range Analysis
Experimental results

Static Single Information form (SSI)

Inspiration: OOPSLA'14 slides:

VALIDATION OF MEMORY ACCESSES THROUGH SYMBOLIC ANALYSES

Henrique Nazare Izabela Maffra Willer Santos Leonardo Oliveira Fernando Quintão Laure Gonnord

http://homepages.dcc.ufmg.br/~fernando/publications/presentations/00PSLA14.pdf

Goal : Safety

Prove that (some) memory accesses are safe:

```
int main() {
  int v[10];
  v[0] = 0;
  return v[20];
}
```

► Fight against bugs and overflow attacks.

Contributions (OOPSLA'14)

- ► A technique to prove that (some) memory accesses are safe :
 - Less need for additional guards.
 - Based on abstract interpretation.
 - Precision and cost compromise.
- Implemented in LLVM-compiler infrastructure :
 - ► Eliminate 50% of the guards inserted by AddressSanitizer
 - ▶ SPEC CPU 2006 17% faster

Our key insight : Symbolic (parametric) Analyses

```
int main(int argc, char** a) {
   char* p = malloc(argc);
   int i = 0;
   while (i < argc) {
      p[i] = 0;
      i++;
   }
   return 0;
}</pre>
```

▶ $R(i) \subseteq W(p)$ thus p[i] is **safe**.

A bit on sanitizing memory accesses

Different techniques: but all have an overhead.

Ex: Address Sanitizer

- ▶ Shadow every memory allocated : 1 byte \rightarrow 1 bit (allocated or not).
- Guard every array access : check if its shadow bit is valid.
 - ▶ slows down SPEC CPU 2006 by 25%
- ▶ We want to **remove these guards**.

Green Arrays : overview 1/2

```
Any address
    int main(int argc, char** argv) {
                                                 from buf + 0
                                                 to buf + argc
2.
      int size = argc + 1;
                                                    is safe!
      char* buf = malloc(size);
3.
4.
      unsigned index = 0;
5.
      scanf("%u", &index);
                                             Inside the
      if (index < argc) {
6.
                                          branch index is
        buf[index] = 0;
7.
                                          at least 0 and
8.
                                          at most argc-1
      return index;
9.
                                              As long as
10. }
                      We know that
                                               we do not
                      "argc - 1" is
                                               have integer
                      less than argc
                                               overflows!
```


Green Arrays: overview 2/2

A bit on LLVM

- Open source
- Various frontends (C, C++, Fortran)
- ► Various code generators (x86, ...)

Writing optimisations is easier:

- A unique IR (intermediate representation)
- ► C++ iterators (functions, blocks, ...)

LLVM representation : SSA form

LLVM representation: a toy example

Credits G. Radanne

```
void simple_loop_constant() {
  for (unsigned i=0; i<10; i++) {
     // Do nothing
                                        block %0
                                      br label %1
                                        block %1
        block %4
                         \%i.0 = phi i32 [ 0, \%0 ], [ \%5, \%4 ]
 \%5 = add i32 \%i.0, 1
                         %2 = icmp ult i32 %i.0, 10
 br label %1
                         br i1 %2, label %3, label %6
                       block %3
                                            block %6
                    br label %4
                                           ret void
```

Symbolic Ranges (SRA): Goal

SRA on SSA form: a sparse analysis

- ► An abtract interpretation-based technique.
- Very similar to classic range analysis.
- One abstract value (R) per variable: sparsity.
- ► Easy to implement (simple algorithm, simple data structure).

SRA on SSA form: constraint system

$$v=ullet \ \Rightarrow \ R(v)=[v,v]$$
 $v=o \ \Rightarrow \ R(v)=R(o)$ $v=v_1\oplus v_2 \ \Rightarrow \ R(v)=R(v_1)\oplus^I R(v_2)$ $v=\phi(v_1,v_2) \ \Rightarrow \ R(v)=R(v_1)\sqcup R(v_2)$ other instructions $\Rightarrow \ \emptyset$

 \oplus ': abstract effect of the operation \oplus on two intervals. \sqcup : convex hull of two intervals. \blacktriangleright All these operation are performed symbolically thanks to **GiNaC**

SRA on SSA form: an example

- $ightharpoonup R(i_0) = [0, 0]$
- $R(i_1) = [0, +\infty]$
- $R(i_2) = [1, +\infty]$

Improving precision of SRA : live-range splitting 1/2

► e-SSA form.

Improving precision of SRA : live-range splitting 2/2

Rule for live-range splitting:

$$t = a < b$$

$$\text{br } (t, \ell)$$

$$\Rightarrow R(a_t) = [R(a)_{\downarrow}, \min(R(b)_{\uparrow} - 1, R(a)_{\uparrow})]$$

$$R(b_t) = [\max(R(a)_{\downarrow} + 1, R(a)_{\downarrow}), R(b)_{\uparrow}]$$

$$R(a_f) = [\max(R(a)_{\downarrow}, R(a)_{\uparrow}), R(a)_{\uparrow}]$$

$$R(b_t) = [\max(R(a)_{\downarrow}, R(a)_{\uparrow}), R(a)_{\uparrow}]$$

$$R(b_t) = [R(b)_{\downarrow}, \min(R(a)_{\uparrow}, R(b)_{\uparrow})]$$

$$R(b_t) = [R(b)_{\downarrow}, \min(R(a)_{\uparrow}, R(b)_{\uparrow})]$$

► All simplications are done by GiNaC.

SRA + live-range on an example

```
N = randunsigned()
i_0 = 0

i_1 = phi(i_0, i_2)
i_1 < N ?

i_t = sigma(i_1)
i_2 = i_t + 1</pre>
```

$$R(i_0) = [0, 0]$$

$$ightharpoonup R(i_1) = [0, N]$$

 $R(i_t) = [R(i_1) \downarrow, min(N-1, R(i_1) \uparrow)]$

Symbolic regions 1/2: Goal

Compute (an underapproximation of) the range of **valid accesses** from base pointers:

$$v_1 = alloc(n)$$
 v_1 $w_1 = alloc(n)$ $v_2 = v_1 + 1$ v_2 $w_1 = [0, n - 1]$ $w_2 = [-1, n - 2]$ $w_3 = v_1 + n$ $v_2 = [-n, -1]$

Symbolic regions 2/2: An example

Safety: result

If $0 \in W(p)$, then *p is **safe**, else **DK**

Overflows 1/2

```
int main(int argc, char** argv) {
  int index = argc + 1;
  int size = index * index;
  char* buf = malloc(size);
  return buf[index];
}
```

Because we manipulate symbols, "argc + 1 < (argc + 1) * (argc + 1)" only in the absence of integer overflows index * index may wrap around.

Do you know what malloc will return?

Overflows 2/2

 We find every arithmetic operation that may influence memory allocation or memory indexing.

```
int main(int argc, char** argv)/{
  int index = argc + 1;
  int size = index * index;
  char* buf = malloc(size);
  return buf[index];
```

▶ We instrument the code to detect overflows.

Experimental setup

- Implementation: LLVM + AddressSanitizer
- Benchmarks: SPEC CPU 2006 + LLVM test suite
- Machine: Intel(R) Xeon(R) 2.00GHz, with 15,360KB of cache and 16GB or RAM
- Baseline: Pentagons
 - Abstract interpretation that combines "less-than" and "integer ranges".†

```
int i = 0;
unsigned j = read();
if (...)
    i = 9;
if (j < i)
    ...

P(j) = (less than {i}, [0, 8])</pre>
```

^{†:} Pentagons: A weakly relational abstract domain for the efficient validation of array accesses, 2010, Science of Computer Programming

Percentage of bound checks removed

Runtime improvement

The lower the bar, the faster. Time is normalized to AddressSanitizer without bound-check elimination. Average speedup: Pentagons = 9%. GreenArrays = 16%.

In the paper (OOPSLA'14)

A complete formalisation of all the analyses :

- Concrete and abstract semantics.
- Safety is proved.
- Interprocedural analysis.
- ▶ https://code.google.com/p/ecosoc/

Remaining question : improving precision of the symbolic range analysis ?

Plan

Symbolic range analysis

Motivation and big picture Overview Technical context LLVM Symbolic Range Analysis A bit on the other analyses Experimental results

Symbolic pointer analysis

Range Analysis Pointer Range Analysis Experimental results

Static Single Information form (SSI)

Credit: M. Maalej. Accepted to CGO'16.

Goal + Contribution

Goal:

- Optimizing languages with pointers;
- Solving pointer arithmetic, disambiguating pointers;
- Low cost analysis.

Contribution:

- Combine alias analysis with range analysis;
- Speed up;

Motivating example

Motivating example

$$p \xrightarrow{p+3} p+4 p+7$$

$$tmp_0 tmp_1$$

Range Analysis on e-SSA (recall)

Range Analysis on e-SSA (recall)

Pointer Range Analysis

Abstract Analysis

$$\begin{array}{l} p_i \leadsto loc_i + [l_i, u_i] \\ p_j \leadsto loc_j + [l_j, u_j] \end{array} \quad i = j \text{ or } i \neq i \end{array}$$

Property (overapprox):

If $(loc_i = loc_j \text{ and } [l_i, u_i] \sqcap [l_j, u_j] = \emptyset)$ Then p_i and p_i do not alias Else may alias.

Let n be the number of program sites where memory is allocated. We associate pointers with tuples of size n: $(SymbRanges \cup \bot)^n$: $GR(p) = (p_0, ..., p_{n-1})$. Notation

$$\blacktriangleright \mathsf{GR}(\mathsf{p}) = \{loc_i + p_i, loc_j + p_j, ...\}$$

Constraint System:

$$j:p=$$
 malloc (v) \Rightarrow $GR(p)=(\bot,\ldots,[0,0]_j,\ldots)$ $v=v_1$ \Rightarrow $GR(v)=GR(v_1)$ $q=p+c$ with c scalar \Rightarrow $q_i=egin{cases} \bot & \text{if } p_i=\bot\\ p_i+R(c) & \text{else} \end{cases}$ $q=\phi(p^1,p^2)$ \Rightarrow $q=GR(q)=GR(p^1)\sqcup GR(p^2)$

```
↑ ↑ ↑ ↑ ↑ ↑ Po P3 P1,P2 P3
```

```
GR (p_0) = loc_0 + [0, 0]

GR (p_1) = loc_1 + [0, 0]

GR (p_2) = loc_1 + [0, 1]

GR (p_3) = \{loc_0 + [2, 2], loc_1 + [3, 3]\}
```

```
p_1 = malloc(5);

if (...) p_2 = p_1;

else p_2 = p_1 + 1;

if (...) p_3 = p_0 + 2;

else p_3 = p_1 + 3
```

 $p_0 = malloc(3)$;

Example:

Example:

Motivation:

```
\begin{split} & \mathsf{a}_0 = \mathsf{malloc} \; \big( \mathsf{N} \big) \; ; \; \rightsquigarrow \; \mathsf{GR} \; (\mathsf{a}_0) = \{ \mathsf{loc}_0 + [0, \, 0] \} \\ & \mathsf{if} \; (...) \\ & \mathsf{a}_1 = \mathsf{a}_0 + 1 \; ; \; \rightsquigarrow \; \mathsf{GR} \; (\mathsf{a}_1) = \{ \mathsf{loc}_0 + [1, \, 1] \} \\ & \mathsf{a}_2 = \mathsf{a}_1 \; ; \; \rightsquigarrow \; \mathsf{GR} \; (\mathsf{a}_2) = \{ \mathsf{loc}_0 + [1, \, 1] \} \\ & \mathsf{else} \; \mathsf{a}_2 = \mathsf{a}_0 \; ; \; \rightsquigarrow \; \mathsf{GR} \; (\mathsf{a}_2) = \{ \mathsf{loc}_0 + [0, \, 1] \} \\ & \mathsf{a}_3 = \mathsf{a}_2 + 1 \; ; \; \rightsquigarrow \; \mathsf{GR} \; (\mathsf{a}_3) = \{ \mathsf{loc}_0 + [1, \, 2] \} \\ & \mathsf{a}_4 = \mathsf{a}_2 + 2 \; ; \; \rightsquigarrow \; \mathsf{GR} \; (\mathsf{a}_4) = \{ \mathsf{loc}_0 + [2, \, 3] \} \end{split}
```

$$[1, 2] \cup [2, 3] \neq \emptyset$$

Motivation:

```
a_0 = malloc(N); \leftrightarrow GR(a_0) = \{loc_0 + [0, 0]\}
if (...)
  a_1 = a_0 + 1; \rightarrow GR (a_1) = \{loc_0 + [1, 1]\}
  a_2 = a_1 : \rightsquigarrow GR(a_2) = \{loc_0 + [1, 1]\}
else a_2 = a_0; \rightsquigarrow GR (a_2) = \{loc_0 + [0, 1]\} \rightsquigarrow LR (a_2) =
\{loc_1+[0, 0]\}
a_3 = a_2 + 1; \rightarrow GR (a_3) = \{loc_0 + [1, 2]\} \rightarrow LR (a_3) =
\{loc_1+[1, 1]\}
a_4 = a_2 + 2; \rightarrow GR (a_4) = \{loc_0 + [2, 3]\} \rightarrow LR (a_4) =
\{loc_1+[2, 2]\}
```

$$[1, 2] \cup [2, 3] \neq \emptyset$$

Constraint System:

$$\begin{array}{ccc} p = & \mathsf{malloc}\;(v) \\ & \mathsf{with}\; v\; \mathsf{scalar} \end{array} \Rightarrow & \mathsf{LR}(p) = \mathcal{N}\mathit{ewLocs}() + [0,0] \\ \\ j: q = \phi(p_1, p_2) \\ \mathsf{with}\; \mathit{loc}_j = \mathcal{N}\mathit{ewLocs}() \end{array} \Rightarrow & \mathsf{LR}(q) = \mathit{loc}_j + [0,0] \end{array}$$

Experimental setup

- ▶ Implementation : LLVM 3.5
- Benchmarks : LLVM test suite + Micro benchmarks + PtrDist + Prolangs + MallocBench
- ► Machine : Intel i7-4770K, 8GB of memory Ubuntu 14.04.2

Experimental results

	#Queries	scev	basic	rbaa	rbaa + basic
Total %	7,243,418	2.8	17.8	16.9	22.1

▶ #Queries : number of pair of pointers.

scev : scalar evolution based alias-analysis.

basic : -O3 LLVM analysis (global + local pointers).

rbaa : range based alias analysis.

Answering queries: number of pairs that do not alias.

Experimental results

Conclusion

This analysis scales well!

Plan

Symbolic range analysis

Motivation and big picture

Overview

Technical context LLVM

Symbolic Range Analysis

A bit on the other analyses

Experimental results

Conclusion

Symbolic pointer analysis

Range Analysis

Pointer Range Analysis

Experimental results

Static Single Information form (SSI)

Credit: F. Peirera and Fabrice Rastello. (Acaces 2015)

Goal + Contribution

Goal:

- Static Analyses that scale.
- Static but precise.

Contribution:

- ▶ A generic framework.
- ▶ A general way to solve the problem.

Introduction

- Data-flow analysis: discover facts (information) that are true about a program. Bind to *Variables* × *PogramPoints*.
- Static Single Information (SSI) property: IR such that information of a variable invariant along its whole live-range
- φ-functions split live-ranges where reaching definitions collide: SSA fulfills SSI property for constant analysis. Not for class inference (backward from uses).
- Extended SSA: SSI property for forward analysis flowing from definitions and conditional tests.
- SSU: SSI property for backward analysis flowing from uses

Can we generalize?

Non-relational (dense) analysis: bind information to pairs $\textit{Variables} \times \textit{ProgPoints}$

$$\begin{split} i &= 0; \\ s &= 0; \\ \text{while } (i < 100) \\ i &= i+1; \\ s &= s+i; \end{split}$$
 ret

point	$\mid [i]$	[s]
0	Τ	Т
1	[0,0]	T
2	[0,0]	[0, 0]
3	[0, 100]	$[0,+\infty[$
4	[100, 100]	$[0,+\infty[$
5	[0, 99]	$[0,+\infty[$
6	[0, 100]	$[0,+\infty[$
7	[0, 100]	$[0,+\infty[$

Range Analysis: $[v]^p$ intervals of possible values variable v might assume at program point p

$$\begin{split} i &= 0;\\ s &= 0;\\ \text{while } (i < 100)\\ i &= i+1;\\ s &= s+i;\\ \text{ret} \end{split}$$

rog. point	$\mid [i]$	[s]
0	Т	Τ
1	[0,0]	Т
2	[0, 0]	[0, 0]
3	[0, 100]	$[0,+\infty[$
4	[100, 100]	$[0,+\infty[$
5	[0, 99]	$[0,+\infty[$
6	[0, 100]	$[0,+\infty[$
7	[0, 100]	$[0,+\infty[$

Redundancies: e.g. $[i]^1 = [i]^2$; because identity transfer function for [i] from 1 to 2.

$$\begin{split} i &= 0;\\ s &= 0;\\ \text{while } (i < 100)\\ i &= i+1;\\ s &= s+i;\\ \text{ret} \end{split}$$

point	$\mid [i] \mid$	[s]
0	T	T
1	[0, 0]	Т
2	[0, 0]	[0, 0]
3	[0, 100]	$[0,+\infty[$
4	[100, 100]	$[0,+\infty[$
5	[0, 99]	$[0,+\infty[$
6	[0, 100]	$[0,+\infty[$
7	[0, 100]	$[0,+\infty[$

Sparse data-flow analysis: shortcut identity transfer functions by grouping contiguous program points bound to identities into larger regions

$$\begin{split} i &= 0; \\ s &= 0; \\ \text{while } (i < 100) \\ i &= i+1; \\ s &= s+i; \end{split}$$
 ret

point	$\mid [i]$	[s]
0	Т	Т
1	[0,0]	Τ
2	[0,0]	[0, 0]
3	[0, 100]	$[0,+\infty[$
4	[100, 100]	$[0,+\infty[$
5	[0, 99]	$[0,+\infty[$
6	[0, 100]	$[0,+\infty[$
7	[0, 100]	$[0,+\infty[$

Sparse data-flow analysis: replace all $[v]^p$ by [v] ($\forall v, p \in \text{live}(v)$); propagate along def-use chains.

$$\begin{split} i &= 0;\\ s &= 0;\\ \text{while } (i < 100)\\ i &= i+1;\\ s &= s+i;\\ \text{ret} \end{split}$$

og. point	[i]	[s]
0	Т	Т
1	[0, 0]	Τ
2	[0, 0]	[0, 0]
3	[0, 100]	$[0,+\infty[$
4	[100, 100]	$[0,+\infty[$
5	[0, 99]	$[0,+\infty[$
6	[0, 100]	$[0,+\infty[$
7	[0, 100]	$[0,+\infty[$

Partitioned Lattice per Variable Problems

Partitioned Lattice per Variable (PLV) Problem

- **program variables:** v_i ; program points: p; lattice: \mathcal{L}
- **a** abstract state associated to prog. point p: x^p
- transfer function associated with $s \in preds(p)$: $F^{s,p}$
- \blacksquare constraint system: $x^p = x^p \wedge F^{s,p}(x^s)$ (or eq. $x^p \sqsubseteq F^{s,p}(x^s)$)

The corresponding Max. Fixed Point (MFP) problem is a PLV problem iff $\mathcal{L} = \mathcal{L}_{v_1} \times \cdots \times \mathcal{L}_{v_n}$ where each \mathcal{L}_{v_i} is the lattice associated with v_i i.e. $x^s = ([v_1]^s, \dots, [v_n]^s)$. Thus $F^{s,p} = F^{s,p}_{v_1} \times \cdots \times F^{s,p}_{v_n}$ and $[v_i]^p = [v_i]^p \wedge F^{s,p}_{v_i}([v_1]^s, \dots, [v_n]^s)$.

Partitioned Lattice per Variable Data-Flow Problem

Range analysis

$$[i]^0 = [i]^0 \wedge F_i^{r,0}([i]^r, [s]^r)$$

$$[i]^1 = [i]^1 \wedge F_i^{l_1}([i]^0, [s]^0)$$

$$[i]^2 = [i]^2 \wedge F_i^{l_2}([i]^1, [s]^1)$$

$$[i]^3 = [i]^3 \wedge F_i^{2,3}([i]^2, [s]^2)$$

$$[i]^3 = [i]^3 \wedge F_i^{7,3}([i]^7, [s]^7)$$

$$[i]^4 = [i]^4 \wedge F_i^{\overline{l_3}}([i]^3, [s]^3)$$

$$[i]^5 = [i]^5 \wedge F_i^{l_3}([i]^3, [s]^3)$$

$$[i]^6 = [i]^6 \wedge F_i^{l_4}([i]^5, [s]^5)$$

$$[i]^7 = [i]^7 \wedge F_i^{l_5}([i]^6, [s]^6)$$

Partitioned Lattice per Variable Data-Flow Problem

Range analysis

$$[i]^0 = [i]^0 \cup F_i^{r,0}([i]^r, [s]^r)$$

$$[i]^1 = [i]^1 \cup F_i^{l_1}([i]^0, [s]^0)$$

$$[i]^2 = [i]^2 \cup F_i^{l_2}([i]^1, [s]^1)$$

$$[i]^3 = [i]^3 \cup F_i^{2,3}([i]^2, [s]^2)$$

$$[i]^3 = [i]^3 \cup F_i^{7,3}([i]^7, [s]^7)$$

$$\bullet$$
 $[i]^4 = [i]^4 \cup F_i^{\overline{l_3}}([i]^3, [s]^3)$

$$[i]^5 = [i]^5 \cup F_i^{l_3}([i]^3, [s]^3)$$

$$[i]^6 = [i]^6 \cup F_i^{l_4}([i]^5, [s]^5)$$

$$[i]^7 = [i]^7 \cup F_i^{l_5}([i]^6, [s]^6)$$

Partitioned Lattice per Variable Data-Flow Problem

Range analysis

$$[i]^0 = [i]^0$$

$$[i]^1 = [i]^1 \cup [0,0]$$

$$[i]^2 = [i]^2 \cup [i]^1$$

$$[i]^3 = [i]^3 \cup [i]^2$$

$$[i]^3 = [i]^3 \cup [i]^7$$

$$[i]^4 = [i]^4 \cup ([i]^3 \cap [100, +\infty[)]$$

$$[i]^5 = [i]^5 \cup ([i]^3 \cap] - \infty, 99[)$$

$$[i]^6 = [i]^6 \cup ([i]^5 + 1)$$

$$[i]^7 = [i]^7 \cup [i]^6$$

SSIfy (forward)

Modify the code (split live-ranges) without modifying its semantic s.t. fullfils SSI property

SPLIT

if s unique pred. of $p \in \mathrm{live}(v)$ and such that $F_v^{s,p} \neq \lambda x. \top$ is non-trivial, then s should contain a definition of v

SPLIT

if s and t two preds of p such that $F_v^{s,p}(Y) \neq F_v^{t,p}(Y)$ (Y a MFP solution), then there must be a ϕ -function at entry of p

INFO

if $F_v^{s,p} \neq \lambda x. \top$, then $v \in \text{live}(p)$

VERSION

for each variable v, live(v) is a connected component of the CFG.

LINK

if F_v^{inst} depends on some $[u]^s$, then *inst* should contain an use of u live-in at *inst*.

Special instructions used to split live ranges

Interior nodes (unique predecessor, unique successor)

inst
$$\parallel v_1 = v_1' \parallel \ldots \parallel v_m = v_m'$$

$$l_1: v_1 \leftarrow \text{new } OX()$$

$$l_2: (i\%2)?$$

$$(v_2, v_7) \leftarrow \sigma(v_1)$$

$$l_3: [tmp \leftarrow i+1 \qquad l_5: v_3 \leftarrow \text{new } OY()$$

$$l_4: v_2.m_1() \parallel v4 \leftarrow v_2 \qquad l_6: v_3.m_2() \parallel v_5 \leftarrow v_3$$

$$l_7: v_6 \leftarrow \phi(v_4, v_5)$$

$$l_7: v_6.m_3()$$

Special instructions used to split live ranges

joins (multiple predecessors, one successor)

ϕ -functions

$$l_1: v_1 \leftarrow \text{new } OX()$$

$$l_2: (i\%2)?$$

$$(v_2, v_7) \leftarrow \sigma(v_1)$$

$$l_3: \text{tmp} \leftarrow i+1$$

$$l_5: v_3 \leftarrow \text{new } OY()$$

$$l_4: v_2.m_1() \parallel v4 \leftarrow v_2$$

$$l_6: v_3.m_2() \parallel v_5 \leftarrow v_3$$

$$l_7: v_6.m_3()$$

Special instructions used to split live ranges

branch points (one predecessor, mulitple successors)

$$(l^1: v_1^1, \dots, l^q: v_1^q) = \sigma(v_1) \parallel \dots \parallel (l^1: v_m^1, \dots, l^q: v_m^q) = \sigma(v_m)$$

$$l_1 : v_1 \leftarrow \text{new } OX()$$

$$l_2 : (i\%2)?$$

$$(v_2, v_7) \leftarrow \sigma(v_1)$$

$$l_3 : tmp \leftarrow i + 1$$

$$l_4 : v_2 \cdot m_1() \parallel v4 \leftarrow v_2$$

$$l_6 : v_3 \cdot m_2() \parallel v_5 \leftarrow v_3$$

$$l_7 : v_6 \leftarrow \phi(v_4, v_5)$$

$$l_7 : v_6 \cdot m_3()$$

Propagating Information Forwardly and Backwardly

Dense constrained system

$$[v]^p = [v]^p \wedge F_v^{s,p}([v_1]^s, \dots, [v_n]^s)$$

Sparse SSI constrained system

$$[v] = [v] \wedge G_v^i([a], \dots, [z])$$
 where a, \dots, z are used (resp. defined) at i

Proof

- coalesce all $[v]^p$ such that $v \in \text{live}(p)$ into [v]; replace all $[v]^p$ such that $v \notin \text{live}(p)$ by \top
- for each instruction *inst* with uses $a \dots z$, let $G_v^i([a], \dots, [z]) = F_v^i([v_1], \dots, [v_n])$
- remove redundancies

Propagating Information Forwardly and Backwardly

```
Backward propagation engine under SSI
       function back_propagate(transfer_functions \mathcal{G})
             worklist = \emptyset
  2
             foreach v \in \text{vars}: [v] = \top
  3
             foreach i \in insts: worklist += i
            while worklist \neq \emptyset:
  5
                    let i \in worklist: worklist -= i
  6
                   foreach v \in i.uses():
                         [v]_{new} = [v] \wedge G_v^i([i.defs()])
  8
                         if [v] \neq [v]_{new}:
  9
                                worklist += v.defs()
 10
                                [v] = [v]_{new}
 11
```


$$\begin{aligned} [i_1] & \cup = [0,0] \\ [s_1] & \cup = [0,0] \\ [i_2] & \cup = [i_1] \cup [i_4] \\ [s_2] & \cup = [s_1] \cup [s_3] \\ [i_3] & \cup = ([i_2] \cap] -\infty, 99]) \\ [i_4] & \cup = ([i_3] + 1) \\ [s_3] & \cup = ([s_2] + [i_4]) \end{aligned}$$

$$\begin{array}{c|c} [i_1] \cup = [0,0] & & [0,0] \\ [s_1] \cup = [0,0] & \emptyset \\ [i_2] \cup = [i_1] \cup [i_4] & \emptyset \\ [s_2] \cup = [s_1] \cup [s_3] & \emptyset \\ [i_3] \cup = ([i_2] \cap]-\infty, 99]) & \emptyset \\ [i_4] \cup = ([i_3]+1) & \emptyset \\ [s_3] \cup = ([s_2]+[i_4]) & \emptyset \\ \end{array}$$

$$\begin{array}{c|c} [i_1] \cup = [0,0] & & [0,0] \\ \hline [s_1] \cup = [0,0] & \emptyset \\ [i_2] \cup = [i_1] \cup [i_4] & \emptyset \\ [s_2] \cup = [s_1] \cup [s_3] & \emptyset \\ [i_3] \cup = ([i_2] \cap]-\infty, 99]) & \emptyset \\ [i_4] \cup = ([i_3]+1) & \emptyset \\ [s_3] \cup = ([s_2]+[i_4]) & \emptyset \\ \end{array}$$

$$\begin{array}{c|c} [i_1] \cup = [0,0] & & [0,0] \\ [s_1] \cup = [0,0] & [0,0] \\ \hline [i_2] \cup = [i_1] \cup [i_4] & \emptyset \\ [s_2] \cup = [s_1] \cup [s_3] & \emptyset \\ [i_3] \cup = ([i_2] \cap]-\infty, 99]) & \emptyset \\ [i_4] \cup = ([i_3]+1) & \emptyset \\ [s_3] \cup = ([s_2]+[i_4]) & \emptyset \\ \end{array}$$

$$\begin{aligned} [i_1] & \cup = [0,0] \\ [s_1] & \cup = [0,0] \\ [i_2] & \cup = [i_1] \cup [i_4] \\ [s_2] & \cup = [s_1] \cup [s_3] \\ [i_3] & \cup = ([i_2] \cap]-\infty, 99]) \\ [i_4] & \cup = ([i_3]+1) \\ [s_3] & \cup = ([s_2]+[i_4]) \end{aligned}$$

$$\begin{aligned} [i_1] & \cup = [0,0] \\ [s_1] & \cup = [0,0] \\ [i_2] & \cup = [i_1] \cup [i_4] \\ [s_2] & \cup = [s_1] \cup [s_3] \\ [i_3] & \cup = ([i_2] \cap]-\infty, 99]) \\ [i_4] & \cup = ([i_3]+1) \\ [s_3] & \cup = ([s_2]+[i_4]) \end{aligned}$$

$$\begin{aligned} [0,0] \\ [0,100] \\ [0,+\infty[\\ [0,99] \\ [1,100] \\ [1,+\infty[\\] \end{aligned}$$

Class inference (backward from uses)

prog. point	$\mid [v] \mid$
1	$\{m_1, m_3\}$
2	$\begin{cases} \{m_1, m_3\} \\ \{m_1, m_3\} \end{cases}$
3	$\{m_1,m_3\}$
4	$ \{m_3\} $
5	T
6	$\{m_2, m_3\}$
7	$\{m_3\}$

Class inference (backward from uses)

Null pointer (forward from defs & uses)

Null pointer (forward from defs & uses)

Live range splitting strategy $\mathcal{P}_v = I_\uparrow \cup I_\downarrow$

 I_{\downarrow} : set of points i with forward direction I_{\uparrow} : set of points i with backward direction

```
function SSIfy(var v, Splitting_Strategy \mathcal{P}_v)
```

- split (v, \mathcal{P}_v)
- rename(v)
- $_4$ clean(v)

Range analysis:
$$\mathcal{P}_i = \{l_1, \operatorname{Out}(l_3), l_4\}_{\downarrow}$$

Class inference:
$$\mathcal{P}_{v} = \{l_{4}, l_{6}, l_{7}\}_{\uparrow}$$

$$\begin{array}{c} l_{1}: & v \leftarrow \text{new } OX() \\ 1: & l_{2}: & (i\%2)? \\ \\ 2: & 5: & \\ \\ l_{3}: & \text{tmp} \leftarrow i+1 \\ 3: & \\ l_{4}: & v.m_{1}() & \\ \\ l_{6}: & v.m_{2}() \\ \\ \\ l_{7}: & v_{6}.m_{3}() & \\ \end{array}$$

Null pointer:
$$\mathcal{P}_v = \{l_1, l_2, l_3, l_4\}_{\downarrow}$$

$$\begin{array}{c} l_1: v \leftarrow \text{foo}() \\ \\ l_2: v.m() \\ \\ l_3: v.m() \end{array}$$

Client	Splitting strategy ${\cal P}$
Alias analysis, reaching definitions	Defs↓
cond. constant propagation	
Partial Redundancy Elimination	$Defs_{\downarrow} \bigcup LastUses_{\uparrow}$
ABCD, taint analysis,	$Defs_{\downarrow} \bigcup Out(Conds)_{\downarrow}$
range analysis	
Stephenson's bitwidth analysis	$Defs_{\downarrow} \bigcup Out(Conds)_{\downarrow} \bigcup Uses_{\uparrow}$
Mahlke's bitwidth analysis	$\mathit{Defs}_{\downarrow} \bigcup \mathit{Uses}_{\uparrow}$
An's type inference, Class inference	Uses _↑
Hochstadt's type inference	$Uses_{\uparrow} \bigcup Out(Conds)_{\uparrow}$
Null-pointer analysis	Defs, Uses,

Splitting live ranges

- lacksquare Split live range of v at each $p \in \mathcal{P}_v$
- Split live range where the information collide (join set $\mathcal{J}(I_{\downarrow})$ and split set $\mathcal{S}(I_{\uparrow})$)
- Iterated dominance frontier $DF^+(S) = \mathcal{J}(S \cup \{r\})$ can be computed efficiently (as opposed to $\mathcal{J}(S)$)
- Iterated post dominance frontier $pDF^+(S) = \mathcal{J}(S \cup \{r\})$ for the reverse CFG

function split(var v, Splitting_Strategy
$$\mathcal{P}_v = I_{\downarrow} \cup I_{\uparrow})$$

$$\left[I_{\downarrow} \cup \operatorname{In}(\mathrm{DF}^{+}(I_{\downarrow}))\right]$$

Splitting live ranges

- lacksquare Split live range of v at each $p \in \mathcal{P}_v$
- Split live range where the information collide (join set $\mathcal{J}(I_{\downarrow})$ and split set $\mathcal{S}(I_{\uparrow})$)
- Iterated dominance frontier $DF^+(S) = \mathcal{J}(S \cup \{r\})$ can be computed efficiently (as opposed to $\mathcal{J}(S)$)
- Iterated post dominance frontier $pDF^+(S) = \mathcal{J}(S \cup \{r\})$ for the reverse CFG

function split(var
$$\emph{v}$$
, Splitting_Strategy $\mathcal{P}_v = I_{\downarrow} \cup I_{\uparrow}$)

$$[I_{\downarrow} \cup \operatorname{In}(\mathrm{DF}^{+}(I_{\downarrow}))] \cup [I_{\uparrow} \cup \operatorname{Out}(\mathrm{pDF}^{+}(I_{\uparrow}))]$$

Splitting live ranges

- Split live range of v at each $p \in \mathcal{P}_v$
- Split live range where the information collide (join set $\mathcal{J}(I_{\downarrow})$ and split set $\mathcal{S}(I_{\uparrow})$)
- Iterated dominance frontier $DF^+(S) = \mathcal{J}(S \cup \{r\})$ can be computed efficiently (as opposed to $\mathcal{J}(S)$)
- Iterated post dominance frontier $pDF^+(S) = \mathcal{J}(S \cup \{r\})$ for the reverse CFG

function split(var v, Splitting_Strategy
$$\mathcal{P}_v = I_{\downarrow} \cup I_{\uparrow}$$
)

$$\mathcal{P}_v \cup \operatorname{In} \left[\operatorname{DF}^+(I_{\downarrow} \cup \left[I_{\uparrow} \cup \operatorname{Out}(\operatorname{pDF}^+(I_{\uparrow})) \right]) \right]$$

Variable Renaming

function rename(var v)

- traverses the CFG along topological order
- lacktriangle give a unique version to each definition of v
- stack the versions that dominates the current program point
- lacktriangleright rename each use of v with the version of immediately dominating definition

Dead and Undefined Code Elimination

clean(var v)

- actual instructions: instructions originally in the code
- SSA graph: nodes are instructions; edges are def-use chains
- active instructions: instructions connected to an actual instruction
- simple traversal of the SSA graph from actual instructions that mark active ones
- remove non-active instructions (inserted phi and sigma functions)

Implementation Details

