

Agenda de hoy (30min)

LA ERA DE LA INFORMACIÓN

Un poco de ciencia ficción: Al servicio del avance científico – Julio Verne

Las videoconferencias

Las transmisiones de radio

Isaac Asimov y la La Psicohistoria

"Es una ciencia que permite calcular el comportamiento estadístico de poblaciones extremadamente grandes"

- 1942

Y si miramos el PRESENTE

La explosión de la información digital

Todo, todo deja datos...

2.5 quintillones de bytes por día

Los datos nos hablan, hay que saber escucharlos

Existen datos...

Se ordenan...

3	2	1	1	1	1	5	1	5	1	2	1	2	5	6
0	1	4	3	1	3	1	3	6	5	5	2	5	1	1
5	0	8	2	1	1	2	1	4	0	8	5	3	3	6
7	1	1	1	1	2	7	1	2	2	4	7	8	6	4
3	3	6	5	1	8	6	3	9	7	5	8	7	9	7
1	1	5	1	1	3	4	8	3	5	0	5	2	4	5

Los categorizamos

3	2	1	1	1	1	5	1	5	1	2	1	2	5	6
0	1	4	3	1	3	1	3	6	5	5	2	5	1	1
5	0	8	2	1	1	2	1	4	0	8	5	3	3	6
7	1	1	1	1	2	7	1	2	2	4	7	8	6	4
3	3	6	5	1	8	6	3	9	7	5	8	7	9	7
1	1	5	1	1	3	4	8	3	5	0	5	2	4	5

Extraemos información

91 Números

- 59 Son impares
- o 32 Son pares
- El número 1 es el más repetido
- La suma de pares es 120

2	2	2	6	2	0	4	6	8	4					
0	6	4	4	8	2	4	2	8	6	2				
6	0	8	2	0	2	2	8	6	4	0				
3	5	1	1	1	1	5	1	5	1	5	1	7	5	9
7	1	5	3	1	3	1	3	9	5	5	7	5	1	1
5	1	1	3	1	1	3	1	3	7	5	5	3	3	5
7	1	1	1	1	8	7	1	1	1	5	1	3	3	

La información representa la realidad.

Y la ciencia (no solo la ficción) nos demuestra que entenderla nos permitirá predecir el futuro!

Nace el concepto de data science

- Big Data
- Data Mining
- Data Scrapping
- Machine Learning

- Inteligencia Artificial
- Deep Learning
- Business Intelligence
- Data warehouse

iA la orden para la toma de decisiones!

Conceptos principales de DATA SCIENCE

Machine Learning vs Inteligencia Artificial

Un concepto importante de diferenciar

Inteligencia Artificial

Permite la toma de decisiones de forma autónoma en base a la información que se tiene.

"Lo más probable es que llueva. Llevaré un paragua y tomaré un paracetamol."

Machine Learning

Permite aprender, mejorar y predecir de forma automática desde la información histórica recolectada.

"Está nublado, hace frío, me duele una rodilla... Siempre que ocurre eso llueve... probablemente lloverá."

Tipos de IA/ML

Tipos de Aprendizaje

Supervisado

Es la forma de aprendizaje basada en tener pleno conocimiento de las variables y su efecto, sin embargo no siempre su relación.

Objetivo: dado un input de datos, predecir cual será el output.

No supervisado

Es la forma de aprendizaje basada en tener un conjunto de datos sin aparente relación entre sí, y busca inferir relación entre ellos.

Objetivo: Buscar relaciones entre entidades en un grupo de datos de forma implícita.

Generar un modelo que permita clasificar o predecir información.

Aprendizaje Supervisado (1/2)

Medición	Estado del Cielo	¿Llovió?
28-05-2012	Nublado	Si
29-05-2012	Nublado	Si
30-05-2012	Nublado	Si
31-05-2012	Nublado	Si
01-06-2012	Nublado	Si
02-06-2012	Chubascos	No
03-06-2012	Chubascos	No
04-06-2012	Soleado	No
05-06-2012	Soleado	No
06-06-2012	Chubascos	No
07-06-2012	Chubascos	No
08-06-2012	Nublado	Si
09-06-2012	Nublado	Si
10-06-2012	Chubascos	No
11-06-2012	?????	???

¿Qué podemos concluir que pasará el 11 de Junio?

Aprendizaje Supervisado (2/3)

Medición	Estado del Cielo	Temperatura Mínima	Temperatura Máxima	Presión Atmosférica	Lugar del País	Velocidad Viento (km/h)	Precipitación Acumulada		¿Llueve?
28-05-2012	Nublado	12°	20°		Santiago	3,5		•••	Si
29-05-2012	Nublado	17°	19°		Santiago	9,4		•••	Si
30-05-2012	Nublado	8°	20°		Santiago	5,4			Si
31-05-2012	Nublado	13°	20°		Santiago	5,4			Si
01-06-2012	Nublado	8°	20°		Santiago	9,4			Si
02-06-2012	Chubascos	9°	21°		Santiago	9,4			No
03-06-2012	Chubascos	10°	14°		Santiago	9,4		•••	No
04-06-2012	Soleado	2°	14°		Santiago	5,4			No
05-06-2012	Soleado	1°	16°		Santiago	9,4			No
06-06-2012	Chubascos	-1°	18°		Santiago	5,4		•••	No
07-06-2012	Chubascos	3°	23°		Santiago	5,4		•••	No
08-06-2012	Nublado	6°	23°		Santiago	7,6			Si
09-06-2012	Nublado	4°	8°		Santiago	7,6			Si
10-06-2012	Chubascos	2°	17°		Santiago	3,5			No

Creación de Modelos

Aprendizaje no supervisado

Aprendizaje no supervisado

Aprendizaje no supervisado

Perfil de un Data Analyst

- Expertiz en un dominio en particular.
- Conocimiento avanzado en estadísticas, análisis de información y matemáticas.
- Conocimientos en computación e informática. (hacking skills)

Usos de Machine Learning

Utilizaciones cotidianas de ML

- o Recomendaciones en Spotify, YouTube, Netflix.
- Predicción de la rotación de Clientes en una compañía.
- Asistentes Virtuales (Siri, Alexa, Google Now).
- Reconocimiento de imágenes.
- Detección de Fraude.
- Detección de enfermedades en pacientes.
- Mejoras en sistemas de navegación.
- Campañas publicitarias (*).

Utilizaciones en Ciberseguridad

- Visibilidad de anomalías en la red.
- Detección de usuarios sospechosos en la red.
- Comportamiento anormal dentro de las aplicaciones.
- Comportamiento anómalo dentro de equipos (durante un incidente).
- Clasificación de llamadas Web anormales.
- o Detección temprana de campañas de Phishing.
- Detección de malware dentro de la red.
- Es la base de las hipótesis de Threat Hunting.

Cierre

Consideraciones antes de hacer ML

No es una bala de plata

No es la solución a nuestros problemas, es una herramienta que nos permite ser más eficientes y concentrar esfuerzos en lo esencial.

Declarar el problema a resolver

Es crucial definir preguntas a ser respondidas por nuestros algoritmos, si no sabemos que buscar no encontraremos nada.

Tener analistas capaces de trabajar con la información

Machine Learning es una herramienta de trabajo para los analistas. No un reemplazo.

Conocer la información disponible

Saber que tan estructurada y que tipo de información existe para el problema a resolver

Tener procesos maduros para responder a lo detectado

No solo basta con detectar las anomalías, es necesario saber explicarlas y darles solución en caso de que sean necesarios.

Consultar a un experto para levantar y preparar información

Si bien existen soluciones que aplican algoritmos de machine learning, se necesita un data scientist que apoye a estos procesos. No son automágicos

Palabras finales...

Son un potenciador a las capacidades de nuestros analistas!

Necesitan una estrategia y estar adaptadas al negocio, por lo tanto, es necesario entender como utilizarlas y cuándo.

