Time Solution of Differential Algebraic Equations (DAE) by Implicit Integration

Soumyabrata Talukder

October 3, 2020

1 Semi-explicit Index-1 DAE

To formulate the implicit integration scheme, we consider the semi-explicit index-1 DAE of the form:

$$\dot{x} = f(x, y),
\vec{0} = g(x, y),$$
(1)

where $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$ are the vectors of the state and algebraic variables respectively, and $f : \mathbb{R}^{m+n} \to \mathbb{R}^n$, $g : \mathbb{R}^{m+n} \to \mathbb{R}^m$ are (possibly) non-linear C^1 maps defining the vector-field and the algebraic constraints of a system respectively.

Eq. (1) is called semi-explicit since x and y are coupled in the maps f and g. The explicit form would be the special case of (1), where the following decompositions of f and g are feasible:

$$f(x,y) = f_1(x) + f_2(y),$$

$$g(x,y) = g_1(x) + g_2(y).$$
(2)

On the other hand, the implicit form of DAE, the most general form, is given by:

$$f'(\dot{x}, x) = \vec{0},\tag{3}$$

where $f': \mathbb{R}^{2n} \to \mathbb{R}^n$ is a (possibly) nonlinear map. The term *index* corresponds to the *differentiation index*. Index-1 of (1) refers to the fact that

 \dot{y} can be determined using the first-order differentials of g as following:

$$\dot{y} = -g_y^{-1} g_x \dot{x},\tag{4}$$

if g_y is non-singular. Here g_x and g_y are the jacobians of g w.r.t x and y respectively.

2 Existence of Unique Time Solution

The *uniqueness* and *existence* theorems together help to affirm the existence of time-solution of (1). According to the uniqueness theorem, nonsingularity of g_y at a point (\bar{x}, \bar{y}) implies that a unique map y = h(x) $(h: \mathbb{R}^n \to \mathbb{R}^m)$ exists over an infinitesimally small neighborhood of (\bar{x}, \bar{y}) . If such unique map exists, then a unique time solution of (1) exists in the same neighborhood, as per the existence theorem. Hence, a necessary condition of existence of a unique time solution of (1) is the nonsingularity of g_y along the solution trajectory.

3 Formulation

The goal is to compute the time solution of (1) numerically, by computing the sequence of pairs (x_i,y_i) for the discrete time instants i > 0, given the value of (x_0,y_0) .

For a given time-step $\Delta t > 0$, the state vector at the i^{th} and the $(i+1)^{th}$ discrete time instants are related by the following approximation:

$$x_{i+1} = x_i + \Delta t \tilde{f}(x_i, y_i, \Delta x, \Delta y), \tag{5}$$

where $\tilde{f}(x_i, y_i, \Delta x, \Delta y)$ denotes an estimate of $f(x_i, y_i)$ constant over the time-step Δt , and $\Delta x \in \mathbb{R}^n$, $\Delta y \in \mathbb{R}^m$ denotes the change in x, y through this time step. Given the values of x_i, y_i , one can define a function $F_i : \mathbb{R}^{m+n} \to \mathbb{R}^n$ as follows:

$$F_i(\Delta x, \Delta y) := \Delta x - \Delta t \tilde{f}(x_i, y_i, \Delta x, \Delta y), \tag{6}$$

which is simply the estimation error in (5) observed at the i^{th} discrete instant for the next time-step. For an ideal estimate \tilde{f} , we must have:

$$F_i(\Delta x, \Delta y) = \overrightarrow{0}. \tag{7}$$

Also, Δx , Δy must be such that the algebraic constraints in (1) are satisfied at every time step, i.e. for all $i \geq 0$ we must have:

$$g(x_i + \Delta x, y_i + \Delta y) = \overrightarrow{0}. \tag{8}$$

which for the given the values of x_i , y_i , can be written more compactly as:

$$G_i(\Delta x, \Delta y) = \overrightarrow{0}, \tag{9}$$

that absorbs the constants x_i, y_i .

Finally, the problem is to find Δx , Δy successively for every discrete time instant $i \geq 0$ and for the given quantities x_i , y_i and Δt , such that (7),(9) are satisfied up to a given accuracy, say $\epsilon > 0$. An efficient way to numerically compute the m + n variables in Δx , Δy , solving the m + n nonlinear equations in (7),(9), is to employ the popular Newton-Rhapson (NR) method.

4 Numerical Solution

Using NR method, we can solve (7),(9) for Δx , Δy by solving the following iteratively:

$$\begin{bmatrix} \Delta x^{j+1} \\ \Delta y^{j+1} \end{bmatrix} = \begin{bmatrix} \Delta x^j \\ \Delta y^j \end{bmatrix} - \begin{bmatrix} F_{i\Delta x}^j & F_{i\Delta y}^j \\ G_{i\Delta x}^j & G_{i\Delta y}^j \end{bmatrix}^{-1} \begin{bmatrix} F_i^j \\ G_i^j \end{bmatrix}, \tag{10}$$

where $j \geq 0$ denotes the iteration number; $F_{i\Delta x}^j, F_{i\Delta y}^j$ (resp. $G_{i\Delta x}^j, G_{i\Delta y}^j$) denotes the jacobians of F_i (resp. G_i) w.r.t Δx , Δy respectively, evaluated at $\Delta x = \Delta x^j$, $\Delta y = \Delta y^j$; and F_i^j, G_i^j respectively, denotes the evaluations of functions F_i , G_i at $\Delta x = \Delta x^j$, $\Delta y = \Delta y^j$.

The convergence of the NR method is sensitive to the distance of the initial guess (i.e. Δx^0 , Δy^0 in our case) from the true solution. If the choice of Δt is small, the corresponding true values of Δx , Δy are also expected to be small. Hence, the initialization $\Delta x^0 = \vec{0}$, $\Delta y^0 = \vec{0}$ is usually a good choice in case (1) is dynamically stable. For each discrete instant $i \geq 0$, the iterative method defined in (10) is continued until the norm $\left\| \begin{bmatrix} F_i^j \\ G_i^j \end{bmatrix} \right\|$ is lower than ϵ .

The jacobians $G^j_{i\Delta x}$, $G^j_{i\Delta y}$ are simply given by:

$$G_{i\Delta x}^{j} = g_{x}(x_{i} + \Delta x^{j}, y_{i} + \Delta y^{j})$$

$$G_{i\Delta y}^{j} = g_{y}(x_{i} + \Delta x^{j}, y_{i} + \Delta y^{j}).$$
(11)

Note that the jacobians $F^j_{i\Delta x}$, $F^j_{i\Delta y}$ depend on the choice of the vector-field estimate \tilde{f} . Next we derive these jacobians for the two popular implicit methods: (i) Trapezoidal and (ii) Backward Euler.

4.1 Trapezoidal Method

In trapezoidal method, \tilde{f} is estimated as follows:

$$\tilde{f}(x_i, y_i, \Delta x, \Delta y) = 0.5(f(x_i, y_i) + f(x_i + \Delta x, y_i + \Delta y)), \tag{12}$$

and accordingly, (6) can be rewritten as:

$$F_i(\Delta x, \Delta y) = \Delta x - 0.5\Delta t (f(x_i, y_i) + f(x_i + \Delta x, y_i + \Delta y)). \tag{13}$$

So, one can compute the jacobians $F_{i\Delta x}^{j}$ and $F_{i\Delta y}^{j}$ from (17) as following:

$$F_{i\Delta x}^{j} = \mathbb{I}_{n} - 0.5.\Delta t. f_{x}(x_{i} + \Delta x^{j}, y_{i} + \Delta y^{j}),$$

$$F_{i\Delta y}^{j} = -0.5.\Delta t. f_{y}(x_{i} + \Delta x^{j}, y_{i} + \Delta y^{j}),$$
(14)

where \mathbb{I}_n denotes the $n \times n$ identity matrix.

4.2 Backward Euler Method

In backward Euler method, \tilde{f} is estimated as follows:

$$\tilde{f}(x_i, y_i, \Delta x, \Delta y) = f(x_i + \Delta x, y_i + \Delta y), \tag{15}$$

and accordingly, (6) can be rewritten as:

$$F_i(\Delta x, \Delta y) = \Delta x - \Delta t. f(x_i + \Delta x, y_i + \Delta y). \tag{16}$$

So, one can compute the jacobians $F_{i\Delta x}^j$ and $F_{i\Delta y}^j$ from (17) as following:

$$F_{i\Delta x}^{j} = \mathbb{I}_{n} - \Delta t. f_{x}(x_{i} + \Delta x^{j}, y_{i} + \Delta y^{j}),$$

$$F_{i\Delta y}^{j} = -\Delta t. f_{y}(x_{i} + \Delta x^{j}, y_{i} + \Delta y^{j}).$$
(17)