### PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11279691 A

(43) Date of publication of application: 12.10.99

(51) int. Ci

C22C 38/00

C21D 9/46

C22C 38/06

C23C 2/06

C23C 2/28

(21) Application number: 10081805

(22) Date of filing: 27.03.98

(71) Applicant

NIPPON STEEL CORP

(72) Inventor:

**SAKUMA KOJI** HIWATARI SHUNJI **ITAMI ATSUSHI** NAKAMURA FUMIAKI

## (54) HIGH STRENGTH HOT DIP GALVANNEALED STEEL SHEET GOOD IN WORKABILITY AND ITS **PRODUCTION**

## (57) Abstract:

PROBLEM TO BE SOLVED: To improve the tensile strength and press workability of a steel sheet by specifying the contents of C, Si, Mn, P, S, Al and N in a galvanized steel sheet and specifying the relation between the amounts of C and Si to be added and between the amounts of Cr and Mn to be added.

SOLUTION: The compsn. of a hot dip galvanized steel COPYRIGHT: (C)1999, JPO sheet is composed of, by weight, 0.05 to 0.15% C, 0.3 to

1.5% Si, 1.5 to 2.8% Mn, ≤0.03% P, ≤0.02% S, 0.005 to 0.5% Al, ≤0.0060% N, and the balance Fe with inevitable Furthermore, impurities. (%Mn)/(%C)<sub>≥</sub>15 and (%Si/%C)<sub>≥4</sub> are satisfied. If required, 0.0002 to 0,0020% B is moreover incorporated therein. The slab having this metallic structure is rolled, is annealed in a ferrite-austenite two phase coexistent temp, region of 700 to 850°C, is cooled and is thereafter subjected to hot dip galvanizing and alloying treatment. In this way, marteneite and residual austenite of 3 to 20% by volume ratio are allowed to contain in the metallic structure.

### (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

## (11)特許出願公開番号

# 特開平11-279691

(43)公開日 平成11年(1999)10月12日

| (51) Int.Cl.* | 識別記号               | FI                         |
|---------------|--------------------|----------------------------|
| C22C 38/00    | 301                | C 2 2 C 38/00 3 0 1 T      |
| C 2 1 D 9/46  |                    | C 2 1 D 9/46 T             |
| C 2 2 C 38/06 |                    | C 2 2 C 38/06              |
| C 2 3 C 2/06  |                    | C 2 3 C 2/06               |
| 2/28          |                    | 2/28                       |
|               |                    | 審査請求 未請求 請求項の数4 OL (全 8 頁) |
| (21)出顧番号      | <b>特顧平10-81805</b> | (71)出顧人 000006855          |
|               |                    | 新日本製織株式会社                  |
| (22)出顧日       | 平成10年(1998) 3 月27日 | 東京都千代田区大手町2丁目6番3号          |
|               |                    | (72)発明者 佐久間 康治             |
|               |                    | 千葉県君津市君津1番地 新日本製織株式        |
|               |                    | 会社君津製織所内                   |
|               |                    | (72)発明者 福渡 俊二              |
|               |                    | 千葉県君津市君津1番地 新日本製鐵株式        |
|               |                    | 会社君津製鐵所内                   |
|               |                    | (72)発明者 伊丹 淳               |
|               |                    | 千葉県君津市君津1番地 新日本製鎌株式        |
|               |                    | 会社君津製鐵所内                   |
|               |                    | (74)代理人 弁理士 椎名 彊           |
|               |                    | 最終頁に続く                     |
|               |                    |                            |

(54) 【発明の名称】 加工性の良い高強度合金化溶膜亜鉛めっき鋼板とその製造方法

## (57)【要約】

【課題】 フェライト中にマルテンサイトや残留オーステナイトが混在した金属組織を有し、その複合組織強化により引張強さTSが490~880MPaとなるブレス加工性の良い合金化溶融亜鉛めっき鋼板とその製造方法を提供すること。

【解決手段】 C量に対し添加されるSi、Mn量を一定割合以上に限定した鋼をライン内焼鈍方式の連続溶融 亜鉛めっき設備で合金化溶融亜鉛めっきするにあたり、焼鈍温度からめっき浴に鋼帯を浸潰するまでの平均冷却 速度を650℃以上と650℃以下とでそれぞれ0.5~10℃/秒、1~20℃/秒とし、さらに合金化のための再加熱温度を500~600℃とすることにより、体積率で3~20%のマルテンサイトおよび残留オーステナイトがフェライト中に混在する金属組織とし、その複合組織強化により高強度とブレス加工性の良いことを両立させる。

【特許請求の範囲】

【請求項1】 重量%で、

 $C: 0.05 \sim 0.15\%$ 

 $Si:0.3\sim1.5\%$ 

Mn:1.5~2.8%.

P: 0. 03%以下、

S:0.02%以下、

 $A1:0.005\sim0.5\%$ 

N: 0. 0060%以下を含有し、

残部Fe および不可避的不純物からなり、さらに%C、%Si、%MnをそれぞれC、Si、Mn含有量とした時に(%Mn)/(%C) $\geq 15$ かつ(%Si)/(%C) $\geq 4$ が満たされることを特徴とする加工性の良い高強度合金化溶験亜鉛めっき鋼板。

1

【請求項2】 重量%で、B:0.0002~0.00 20%を含有する請求項1記載の加工性の良い高強度合 金化溶融亜鉛めっき鋼板。

【請求項3】 請求項1または請求項2に記載の化学成分からなり、その金属組織に体積率で3%以上20%以下のマルテンサイトおよび残留オーステナイトが含まれ 20 ることを特徴とする加工性の良い高強度合金化溶融亜鉛めっき鋼板。

【請求項4】 請求項1または請求項2に記載の化学成分からなる組成のスラブをAr,点以上の温度で仕上圧延を行い、50~85%の冷間圧延を施した後、連続溶融亜鉛めっき設備で700℃以上850℃以下のフェライト、オーステナイトの二相共存温度域で焼鈍し、その最高到達温度から650℃までを平均冷却速度0.5~10℃/秒で、引き続いて650℃からめっき浴までを平均冷却速度1~20℃/秒で冷却して溶融亜鉛めっき処理を行った後、500℃以上600℃以下の温度に再加熱してめっき層の合金化処理を行い、その金属組織に体費率で3%以上20%以下のマルテンサイトおよび残留オーステナイトが含まれることを特徴とする加工性の良い高強度合金化溶融亜鉛めっき鋼板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、加工性の良い高強度合金化溶融亜鉛めっき鋼板とその製造方法に関わるものである。本発明が係わる高強度合金化溶融亜鉛めっき鋼板とは、自動車、家庭電気製品、建築などの用途にプレス加工をして使用されるものであり、プレス加工性と防錆の一層の改善のために上層に鉄めっきや金属酸化物皮膜、有機皮膜を表面処理した鋼板を含む。

[0002]

【従来の技術】自動車車体の防錆強化に対応し、プレス加工してフレーム、メンバーやフロア等の車体部品に用いられる鋼板も裸鋼板から亜鉛めっき鋼板に置換されてきた。一般に亜鉛めっき鋼板はその製造方法により電気亜鉛めっき鋼板と溶融亜鉛めっき鋼板に大別されるが、

防錆性を重んじる立場から目付け量を増やそうとすると、電気亜鉛めっき鋼板では製造コストが著しく上昇するため、溶融亜鉛めっき鋼板の使用が一般的である。一方、自動車車体には防錆性以上に衝突時に乗員を保護するような機能の確保がCO。をはじめとした排出ガスの低減を燃費向上により実現するような軽量化とともに要求されており、そのためには鋼板の高強度化が必須である。

【0003】しかしながら、加工性を悪化させずに鋼板を高強度化する強化機構として一般に考えられているような固溶強化や複合組織強化ではSiやMn、Pといった元素を添加する必要があるが、これらの元素の添加は一般に鋼板表面の濡れ性を悪くし、溶融亜鉛めっきを施すことは困難とされてきた。特に複合組織強化では気水混合したミストや噴流水を冷却媒体とし、焼鈍温度から高速冷却を行なうことが裸鋼板では一般に行われているが、溶融亜鉛めっきラインではこのような冷却方式の適用は困難であり、不必要なパーライトやベイナイト変態を避けるためにはSiやMnの添加量を一層増すことが20必要となる。

【0004】このようなSiやMn、Pが多く添加された鋼板の溶験亜鉛めっきにおける密着性を改善する手法としては、溶融亜鉛めっきに先立って鋼板表面に特開昭 57-79160号公報や特開平5-65612号公報にあるように少量のFeや、特許第2526320号公報にあるように少量のNiをブレめっきする方法があり、さらにその添加量が多い場合にはNiブレめっきの前に鋼板表面層を除去する方法が特許第2526322号公報に開示されている。また特許第1924585号の報にあるように内部と比べてC、Si、Mnの含有量が少ない表層を有するスラブから製造された鋼板を溶融亜鉛めっきする方法も開示されているが、製造コストの増加が著しく、工業的な生産には適さない。

【0005】これに対しめっき密着性の悪化が酸化雰囲気で形成されたSiやMn、Pといった元素の酸化物層であることに着目し、形成させた酸化物層を水素を含む雰囲気中で還元し、酸化膜厚を適当な範囲としたうえで溶融亜鉛めっきすることにより、めっき密着性を改善する方法が例えば特開昭55-122865号公報で提案40されており、連続ラインでの操業方案も特許第2513532号公報や特許第2530939号公報、特許第2587724号に開示されている。

【0006】また、カルシウムやマグネシウム、有機酸を含有する溶液や圧延油、洗浄水、過酸化水素や重クロム酸カリウム、過マンガン酸カリウムのような酸化剤を含有する酸性溶液を溶融亜鉛めっきに先立って塗布する方法がそれぞれ特開平8-170160号公報、特開平6-207259号公報、特開平5-239606号公報に開示されている。これらの方法によって製造コスト50の著しい増加を招くことなく、0.3%以上のSiや1

2

%以上のMnが添加されている鋼板に対しても密着性の 良い溶融亜鉛めっきを行なうことができるようになっ た。

【0007】しかし溶融亜鉛めっき鋼板は塗装性や溶接 性に劣るうえ、プレス加工時に軟質なめっき層がプレス 金型との間に凝着し、摩擦抵抗が増大するためブレス破 断を起としやすく、特に厳しいプレス成形が必要とされ る自動車をはじめとした用途に合金化溶融亜鉛めっき鋼 板が開発されたが、フェライト中にマルテンサイトや残 留オーステナイトが混在するととを特徴とする複合組織 10 の要旨とするところは以下のとおりである。 強化された鋼板には適用しづらい。これはめっき層を2 n-Fe合金とする合金化溶融亜鉛めっきではめっき直 後の加熱合金化処理を行なうことが一般的であるが、溶 接性や塗装性が損なわれず、製造コストの上昇も招かな いような範囲での鋼板への合金元素の添加では、その間 にパーライトやベイナイトへの変態が進むため、合金化 温度から室温へ冷却した後の金属組織中に十分な体積率 のマルテンサイトや残留オーステナイトが存在しないこ とに原因する。

【0008】とのため、特にオーステナイトの変態を抑 制するMoやBの添加が特許第1325624号公報や 特開平5-163531号公報で提案されているが、コ スト高であるにもかかわらず、鋼板の降伏強さYPが上 昇する一方、伸びEIが減少し、ブレス加工性は劣化す る傾向にあり、複合組織強化により高強度化された裸鋼 板に匹敵するようなプレス加工性の良い合金化溶融亜鉛 めっき鋼板は見当たらなかった。

#### [0009]

【発明が解決しようとする課題】上述のとおり、フェラ イト中にマルテンサイトや残留オーステナイトが混在し た金属組織を有し、その複合組織強化により引張強さ丁 Sが490~880MPaとなるプレス加工性の良い合 金化溶融亜鉛めっきを施した鋼板を開発することが課題 とされてきた。

#### [0010]

【課題を解決するための手段】本発明者らは、前記の課 題を解決するべく、CとSi、Mnの添加量を制御した 鋼を用いて、連続溶融亜鉛めっき設備において焼鈍温度 からめっき浴に鋼帯を浸漬するまでの冷却条件とめっき 直後に行なう合金化処理の加熱条件が変化した時の金属 40 組織と合金化の進行状況の相関について鋭意検討を加え た結果、C、Mnが一定量以上添加された鋼をフェライ ト、オーステナイトの二相共存温度域から650℃まで を平均冷却速度0.5~10℃/秒という緩冷却し、十 分な体積率のフェライトが存在する状態とした後に、6 50℃からめっき浴までを平均冷却温度1~20℃/秒 で冷却するとめっき浴に鋼帯を浸漬するまではオーステ ナイトはマルテンサイト変態せず、特にC量に対し添加 されるSi、Mn量が一定割合以上である場合には、め

その温度が500~600℃であれば、パーライトおよ びベイナイト変態の進行が著しく遅滞するため、室温ま で冷却後にも体積率で3~20%のマルテンサイトおよ び残留オーステナイトがフェライト中に混在する金属組 織となり、その複合組織強化により高強度とプレス加工 性の良いことを合金化溶融亜鉛めっき鋼板で実現できる ととを見出した。

【0011】本発明は、このような思想と新知見に基づ いて構成された従来にはない全く新しい鋼板であり、そ

(1) 重量%で、C:0.05~0.15%、Si: 0.  $3\sim1$ . 5%, Mn: 1.  $5\sim2$ . 8%, P: 0. 03%以下、S:0.02%以下、A1:0.005~ 0.5%、N:0.0060%以下を含有し、残部Fe および不可避的不純物からなり、さらに%C、%Si、 %MnをそれぞれC、Si、Mn含有量とした時に(%  $Mn) / (%C) \ge 15 \text{ ho} (\%Si) / (\%C) \ge 4$ が満たされることを特徴とする加工性の良い高強度合金 化溶融亜鉛めっき鋼板、

【0012】(2)重量%で、B:0.0002~0. 20 0020%を含有する前記(1)記載の加工性の良い高 強度合金化溶融亜鉛めっき鋼板、(3)前記(1)また は(2)記載の化学成分からなり、その金属組織に体積 率で3%以上20%以下のマルテンサイトおよび残留オ ーステナイトが含まれることを特徴とする加工性の良い 高強度合金化溶融亜鉛めっき鋼板、

【0013】(4)前記(1)または(2)記載の化学 成分からなる組成のスラブをAr,点以上の温度で仕上 圧延を行い、50~85%の冷間圧延を施した後、連続 溶融亜鉛めっき設備で700℃以上850℃以下のフェ ライト、オーステナイトの二相共存温度域で焼鈍し、そ の最高到達温度から650℃までを平均冷却速度0.5 ~10℃/秒で、引き続いて650℃からめっき浴まで を平均冷却速度1~20℃/秒で冷却して溶融亜鉛めっ き処理を行った後、500℃以上600℃以下の温度に 再加熱してめっき層の合金化処理を行い、その金属組織 に体積率で3%以上20%以下のマルテンサイトおよび 残留オーステナイトが含まれることを特徴とする加工性 の良い高強度合金化溶融亜鉛めっき鋼板の製造方法であ

【0014】以下、本発明を詳細に説明する。まず、 C、Si、Mn、P、S、Al、N、Bの数値限定理由 について述べる。Cはマルテンサイトや残留オーステナ イトによる組織強化で鋼板を高強度化しようとする場合 に必須の元素であり、ミストや噴流水を冷却媒体として 焼鈍温度から急速冷却することが困難な溶融亜鉛めっき ラインではCがO. 05%未満ではセメンタイトやパー ライトが生成しやすく、必要とする引張強さの確保が困 難である。一方、CがO. 15%を超えると、スポット っき直後に行なう合金化処理のため再加熱したとしても 50 溶接で健全な溶接部を形成することが困難となると同時

にCの偏析が顕著となるため加工性が劣化する。

【0015】Siは鋼板の加工性、特に伸びを大きく損 なうことなく強度を増す元素として知られており、その 添加は一般に有用と考えられるうえ、めっき直後に行な う合金化処理のための再加熱でパーライトおよびベイナ イト変態の進行を著しく遅滞させ、室温まで冷却後にも 体積率で3~20%のマルテンサイトおよび残留オース テナイトがフェライト中に混在する金属組織とするため に0.3%以上でかつC含有量の4倍以上の重量%を添 加する。しかし、その添加量が1.5%を超えると酸化 10 は耐食性が改善される等好ましい場合もある。 物層を還元し、酸化膜厚を適当な範囲としたり、適当な 薬剤を塗布してから鋼帯をめっき浴に浸漬したとしても めっき密着性の悪化が著しいため、上限を1.5%とす

【0016】MnはCとともにオーステナイトの自由エ ネルギーを下げるため、めっき浴に鋼帯を浸漬するまで の間にオーステナイトがマルテンサイト変態するのを抑 制する目的で1.5%以上添加する。またC含有量の1 5倍以上の重量%を添加することにより、めっき直後に 行なう合金化処理のための再加熱でパーライトおよびベ 20 イナイト変態の進行を著しく遅滞させ、室温まで冷却後 にも体積率で3~20%のマルテンサイトおよび残留オ ーステナイトがフェライト中に混在する金属組織とでき る。しかし添加量が過大になるとスラブに割れが生じや すく、またスポット溶接性も劣化するため、2.8%を 上限とする。

【0017】Pは一般に不可避的不純物として鋼に含ま れるが、その量が0.03%を超えるとスポット溶接性 の劣化が著しいうえ、本発明におけるような引張強さが 490MPaを超すような高強度鋼板では靭性とともに 30 冷間圧延性も著しく劣化する。Sも一般に不可避的不純 物として鋼に含まれるが、その量が0.02%を超える と、圧延方向に伸張したMnSの存在が顕著となり、鋼 板の曲げ性に悪影響をおよぼす。

【0018】A1は鋼の脱酸元素として、またA1Nに よる熱延素材の細粒化、および一連の熱処理工程におけ る結晶粒の粗大化を抑制し材質を改善するために0.0 05%以上添加する必要があるが、0.5%を超えると とはコスト高となるばかりか、表面性状を劣化させ、好 ましくは0.1%以下が望ましい。Nもまた一般に不可 40 避的不純物として鋼に含まれるが、その量が0.060 %を超えると、伸びとともに脆性も劣化するため、これ を上限とする。

【0019】Bは一般に焼き入れ性を増す元素として知 られており、合金化処理のための再加熱に際しパーライ トおよびベイナイト変態を遅滞させることのより、室温 まで冷却後に体積率で3~20%のマルテンサイトがフ ェライト中に混在した金属組織とすることを容易にする ため0.0002%以上添加してもよい。しかしその添 加量が0.0020%を超すと、フェライト、オーステ 50 その後合金化処理のための再加熱でマルテンサイトが焼

ナイトの二相共存温度域から650℃までを緩冷却して も十分な体積率までフェライトが成長せず、650℃か らめっき浴までの冷却途上でオーステナイトがマルテン サイトに変態し、その後合金化処理のための再加熱でマ ルテンサイトが焼き戻されてセメンタイトが析出するた め高強度とプレス加工性の良いことの両立が困難とな る。 これらを主成分とする鋼にNb、Ti、Mo、C u、Sn、Zn、Zr、W、Cr、Niを合計で1%以 下含有しても本発明の効果を損なわず、その量によって

【0020】次に、製造条件の限定理由について述べ る。その目的はマルテンサイトおよび残留オーステナイ トを3~20%含む金属組織とし、高強度とプレス加工 性が良いことが両立させることにある。マルテンサイト および残留オーステナイトの体積率が3%未満の場合に は高強度とならない。一方、マルテンサイトおよび残留 オーステナイトの体積率が20%を超えると、高強度で はあるものの鋼板の加工性が劣化し、本発明の目的が達 成されない。熱間圧延に供するスラブは特に限定するも のではない。すなわち、連続鋳造スラブや薄スラブキャ スター等で製造したものであればよい。また鋳造後直ち に熱間圧延を行う連続鋳造 - 直送圧延(CC-DR)の ようなプロセスにも適合する。

【0021】熱間圧延の仕上温度は鋼板のプレス成形性 を確保するという観点からAェ、点以上とする必要があ る。熱延後の冷却条件や巻取温度は特に限定しないが、 巻取温度はコイル両端部での材質ばらつきが大ききなる ことを避け、またスケール厚の増加による酸洗性の劣化 を避けるためには750℃以下とし、また部分的にベイ ナイトやマルテンサイトが生成すると冷間圧延時に耳割 れを生じやすく、極端な場合には板破断することもある ため550℃以上とすることが望ましい。冷間圧延は通 常の条件でよく、フェライトが加工硬化しやすいように マルテンサイトおよび残留オーステナイトを微細に分散 させ、加工性の向上を最大限に得る目的からその圧延率 は50%以上とする。一方、85%を超す圧延率で冷間 圧延を行うことは多大の冷延負荷が必要となるため現実 的ではない。

【0022】ライン内焼鈍方式の連続溶融亜鉛めっき設 備で焼鈍する際、その焼鈍温度は700℃以上850℃ 以下のフェライト、オーステナイト二相共存域とする。 焼鈍温度が700℃未満では再結晶が不十分であり、鋼 板に必要なプレス加工性を具備できない。850℃を超 すような温度で焼鈍することは鋼帯表面にSiやMnの 酸化物層の成長が著しく、その還元に長時間を要するた め好ましくない。また引き続きめっき浴へ浸漬し、冷却 する過程で、650℃までを緩冷却しても十分な体積率 のフェライトが成長せず、650℃からめっき浴までの 冷却途上でオーステナイトがマルテンサイトに変態し、

き戻されてセメンタイトが析出するため髙強度とブレス 加工性の良いことの両立が困難となる。

【0023】鋼帯は焼鈍後、引き続きめっき浴へ浸漬す る過程で冷却されるが、との場合の冷却速度はその最高 到達温度から650℃までを平均0.5~10℃/秒 で、引き続いて650℃からめっき浴までを平均1~2 0℃/秒とする。650℃までを平均0.5~10℃/ 秒とするのは加工性を改善するためにフェライトの体積 率を増すと同時に、オーステナイトのC濃度を増すこと により、その生成自由エネルギーを下げ、マルテンサイ 10 ト変態の開始する温度をめっき浴温度以下とすることを 目的とする。650℃までの平均冷却速度を0.5℃/ 秒未満とするには焼鈍時の最高到達温度を低下するので なければ、連続溶融亜鉛めっき設備のライン長を長くす る必要があり、コスト高となる。

【0024】また、最高到達温度を下げ、オーステナイ トの体積率が小さい温度で焼鈍することも考えられる が、その場合には実際の操業で許容すべき温度範囲に比 べて適切な温度範囲が狭く、僅かでも焼鈍温度が低いと オーステナイトが形成されず目的を違しない。一方、6 50℃までの平均冷却速度を10℃/秒を超えるように すると、フェライトの体積率の増加が十分でないばかり か、オーステナイト中C濃度の増加も少ないために鋼帯 がめっき浴に浸漬される前にその一部がマルテンサイト 変態し、その後合金化処理のための再加熱でマルテンサ イトが焼き戻されてセメンタイトが析出するため高強度 とプレス加工性の良いことの両立が困難となる。

【0025】650℃からめっき浴までの平均冷却速度 を1~20℃/秒とするのは、その冷却途上でオーステ ナイトがパーライトに変態するのを避けるためであり、 その冷却速度が1°C/秒未満では本発明で規定する温度 で焼鈍し、また650℃まで冷却したとしてもパーライ トの生成を避けられない。一方、650℃からめっき浴 までを平均冷却速度20℃/秒を超えるように鋼帯を冷 却することはドライな雰囲気では困難である。

【0026】本発明では溶融亜鉛めっき後、500℃以 上600℃以下の温度範囲に鋼帯を再加熱し、めっき層 を鉄-亜鉛の合金とするが、その目的は塗装性や溶接性 を改善するとともに、プレス加工時に軟質なめっき層が プレス金型との間に凝着して摩擦抵抗が増大し、プレス 40 評価し、パウダリング性評点は曲げー曲げ戻しした試験 破断するのを避けることにある。再加熱する温度が50 0℃未満では合金化が不完全で塗装性や溶接性、ブレス 加工性に劣る。一方、600℃を超すような温度に再加 熱すると、鋼帯をめっき浴に浸漬した後にも残存してい たオーステナイトがパーライトに変態するため、高強度 とプレス加工性の良いことの両立が困難となる。

【0027】本発明ではその前までの一連の熱処理を経 ることによって、オーステナイトの生成自由エネルギー が低下しているため、合金化処理のための再加熱を行な ってもオーステナイトからパーライトやベイナイトへの 変態が極めて起こりにくいことに特徴があり、むしろフ ェライトが緩慢に成長することにより、鋼板の引張強さ を安定させている。合金化処理の後、鋼帯は200℃以 下に冷却され、必要により調質圧延を施されるが、その 間の冷却方法としてはオーステナイトの一部をベイナイ ト変態させ、残存するオーステナイトにCを濃縮させる ことにより、プレス加工中に効果的に加工誘起変態する よう、450℃から350℃までを2℃/ 秒以下で冷却 することが好ましいが、100°C/秒以上で冷却したと しても本発明の効果に大きな影響を及ぼさない。

【0028】尚、めっき浴の温度は浴組成により異なる が、一般には450~500℃程度であり、また鋼板表 面の外観を損なわないようめっき浴に0.01~0.5 %の濃度のA1を添加することもあるが、本発明の効果 を何ら損なうものではない。この後、必要により、上層 に鉄めっきや金属酸化物皮膜、有機皮膜などの表面処理 を施しても、本発明の特徴とする高強度とプレス加工性 の良いことの両立を阻害せず、プレス加工性や防錆の一 層の改善につながるため本発明の目的を達成する上で好 ましい。

[0029]

【発明の実施の形態】表1に示す組成からなるスラブを 1150℃に加熱し、仕上温度910~930℃で3. 0~6.5mmの熱間圧延鋼帯とし、580~680℃ で巻き取った。酸洗後、65~75%の圧下率の冷間圧 30 延を施して 0.8~2.3 mmの冷間圧延鋼帯とした 後、ライン内焼鈍方式の連続溶融亜鉛めっき設備を用い て表2に示すような条件の熱処理と調質圧延を行い、合 金化溶融亜鉛めっき鋼板を製造した。この鋼帯からJI S5号試験片を切り出し、常温での引張試験を行うこと により、降伏強さ(YP)、引張強さ(TS)、伸び (E1)を求めた。また、めっき密着性は半球状のポン チを落下させることにより形成された円状のくぼみにテ ープを付着した後剥離し、テープに付着しためっきの量 を目視により判断する、いわゆるボールインパクト法で 片の表面をテープ剥離し、テープに付着した脱落皮膜の 量の多少により評価し、合金化の程度を判定した。以上 の結果を表2に示す。

[0030]

【表1】

#

9

|          |              |              |              | <b>*</b> |        | 1      |         |        |     |
|----------|--------------|--------------|--------------|----------|--------|--------|---------|--------|-----|
| 纲        | С            | Si           | Ma           | P        | s      | A3     | N       | В      | 備考  |
| <u>A</u> | 0.02         | 0. 73        | 1.87         | 0.006    | 0.004  | 0.045  | 0.0023  | 無添加    | 比較例 |
| <u>B</u> | 0. 07        | <u>0. 19</u> | 1.76         | 0.007    | 0.003  | 0.034  | 0. 0031 | 無添加    | 比较例 |
| <u>c</u> | 0.07         | 0. 39        | 2. 21        | 0.036    | 0.002  | 0.040  | 0.0032  | 無添加    | 比較例 |
| D        | 0.07         | 0. 43        | 2. 18        | 0. 011   | 0.002  | 0. 035 | 0.0028  | 無添加    | 本発明 |
| E        | 0. 07        | 0. 64        | 1.37         | 0.009    | 0.004  | 0. 029 | 0.0040  | 無添加    | 比較例 |
| F        | 0.07         | 0.66         | 1.55         | 0.008    | 0.003  | 0. 283 | 0.0026  | 無添加    | 本発明 |
| G        | 0.07         | 0. 71        | 2.08         | 0.004    | 0.002  | 0. 031 | 0.0030  | 無添加    | 本発明 |
| Н        | 0.07         | 1. 14        | 1.95         | 0.007    | 0.003  | 0. 037 | 0.0027  | 無添加    | 本発明 |
| I        | 0.08         | 1.65         | 1.80         | 0.008    | 0.003  | 0.027  | 0,0035  | 無添加    | 比較例 |
| J        | 0.09         | 0.71         | 1.73         | 0.010    | 0.002  | 0. 032 | 0.0028  | 0.0009 | 本発明 |
| <u>K</u> | 0.09         | 0. 73        | 1.76         | 0.008    | 0.003  | 0. 034 | 0.0039  | 0.0025 | 比較例 |
| L        | 0.10         | 0. 69        | 2. 32        | 0.009    | 0.004  | 0.044  | 0.0033  | 無添加    | 本発明 |
| М        | 0.12         | 0. 50        | <u>1. 72</u> | 0.013    | 0.005  | 0. 038 | 0.0042  | 無添加    | 比較例 |
| <u>N</u> | 0.13         | <u>0. 36</u> | 2.11         | 0.011    | 0. 003 | 0.026  | 0. 0036 | 無添加    | 比較例 |
| 0        | 0. 14        | 0. 82        | 2. 27        | 0.008    | 0.002  | 0.054  | 0.0034  | 無添加    | 本発明 |
| P        | 0.14         | 0. 60        | 2,90         | 0.016    | 0.005  | 0.028  | 0.0045  | 無添加    | 比較例 |
| ਰ        | <u>0. 18</u> | 0. 94        | 2.77         | 0.018    | 0.004  | 0.037  | 0. 0039 | 無添加    | 比較例 |

(注) アンダーラインは本発明外

[0031]

【表2】

|   | 種料                                      | 子的在      | 上的伊      | 上的在  | 大學用 | H-MO-H | 100       | 100      | 大學師        | HANA | 大學田 | 子の住  | 本教品                                                                        | 189 | が日   | 世紀世  | 比较便 | 11.154 | 本學語     | 工作  | 北京       | 本器型       | 九数型 | 九数定      | 开校里 | 本架明 | 比较倒  | 北較壓 | 比較更  | 比較例  | 比較別   |                |
|---|-----------------------------------------|----------|----------|------|-----|--------|-----------|----------|------------|------|-----|------|----------------------------------------------------------------------------|-----|------|------|-----|--------|---------|-----|----------|-----------|-----|----------|-----|-----|------|-----|------|------|-------|----------------|
|   | この女<br>コング<br>新野                        | Aries/   | ╃~-      | +-   |     |        | 一         | -        | 大震学        | -    | -   | +    | -                                                                          | _   | 1    | 1-   | +   | +-     | +       | ┿   | -        | ┾         | -   | ₩        | ٠.  | ٠   | _    |     | +    | ┼    | 数群が、五 | 2              |
|   | め密算<br>で設点<br>を生                        | 創御なし     | の電なし     | 一般を開 |     | 転離なし   |           | 7        | _          | _    | +-  | 書書がし | 新聞なし                                                                       | 和多個 | 金属なし | 新産なし | ١,  | -      | ,       | Τ,  | 5        | _         | دا  | دا       | 1   | t - | 金襴なし | 1-  | ╁    |      | - 概以能 |                |
|   | マルテンサイト<br>および残留オー<br>ステナイトの体<br>積率 (%) | 0.2      | 1.7      | 8.1  |     |        | 2.8       |          | 9.6        | 1.4  | 9.5 |      | 12.6                                                                       |     | İ    |      |     |        |         | 0.2 |          |           |     |          |     |     |      |     | 0.8  |      | 71.1  |                |
|   | <b>≇</b> ⊅ 8                            | $I^-$    | ਲ        | 83   | æ   | 2      | 81        | প্ত      | 83         | 83   | ಹ   | 8    | ន                                                                          | 17  | ક્ષ  | ਲ    | 14  | 83     | æ       | *   | 22       | 22        | 56  | 56       | 22  | 83  | 18   | 81  | 19   | 12   | 8     |                |
| 8 | <u>引機</u><br>強さ<br>(MPa)                | 423      | 459      | 630  | 282 | 196    | 988       | 23       | 543        | 516  | 200 | ğ    | 711                                                                        | 713 | 009  | 611  | 718 | జ్ఞ    | 785     | 944 | 87.7     | 777       | 170 | 556      | 683 | 828 | 019  | 695 | 645  | - 28 | 1120  |                |
|   | 整さ<br>数さ<br>(MPa)                       | <u>s</u> | 378      | 386  | 365 | 895    | 951       | 48       | 311        | 432  | 358 | 907  | 430                                                                        | 570 | 395  | 998  | 607 | 88     | 283     | 788 | 633      | 471       | 466 | 430      | 480 | 441 | 586  | 288 | 570  |      | 83    |                |
| 松 | 命令代の<br>類の表現<br>関係資度<br>(で)             | 88       | 98<br>88 | 88   | 83  | 250    | 220       | <u>8</u> | <b>8</b> 8 | 620  | 570 | 8    | 55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55<br>55 | 570 | 220  | 240  | 240 | 280    | 210     | 210 | 280      | <u>\$</u> | 88  | SS<br>SS | 25  | 530 | 630  | 530 | 530  | 280  | 26    |                |
|   | 650 でかっちょう かかがまれる 単位を施                  | 15       | 8        | 01   | 7   | 1      | 1         | 15       | 9          | 9    | 3   | 89   | 3                                                                          | 4   | 7    | 4    | 18  | 1      | 4       | 5   | 80       | 2         | 2   | 4        | 10  | 12  | 12   | 15  | 0.5  | 4    | 4     |                |
|   | 表現到議員度<br>から 650でま<br>での早均冷選<br>(で/む)   | 5        | 2        | 4    | 2   | 2      | 2         | 3        | က          | တ    |     | 1    | -                                                                          | 2   | 2    | 1    | 15  | 2      | 2       | 0.3 | 3        | 0.8       | 0.8 | 2        | 2   | 3   | 3    | 0.3 | 5    | 2    | 2     | アンダーラインは本発明外   |
|   | 集制時の<br>最高到達<br>程度<br>(で)               | 770      | ğ        | ğ    | Ę   | 8      | <b>SE</b> | 8        | 280        | 2    | Ę   | 830  | జ్ఞ                                                                        | 曩   | 780  | 828  | 82  | 800    | 280     | 2   | <u>2</u> | 2         | 2   | 710      | 200 | 212 | 2    | 21  | 21.0 | 2    | 2     | ンダーライン         |
|   | 夜尾 3                                    | 1.2      | 1.2      | 7    | 7.5 | _      | 1.2       | -        | 1.6        | 0.8  | 2.1 |      | 23                                                                         | 2.1 | 1.2  | _    |     | 8.0    |         | 23  | -        | 9.        | 9   | 7.7      | 4   | 7   | 7.   | _   | 2    | æ:   | 4-1   |                |
|   | MF ·                                    | ⋖        | 回        | ပ    | ۵   | _      | Δ         | ш        | Œ.         | Œ,   | ত   | ပ    | ပ                                                                          | U   | 三    | Ξ    | Ξ   | ╡      | 5       | -   | <b>4</b> | ٦,        | اد. | SI:      | -+  | ┪   | +    | -+  |      | -    | a     | $\mathfrak{A}$ |
|   | 双交移办                                    | -        | 4        | 떠    | •   | 'n     | œ         | Н        | ∞          | æ    | 9   | =    | 2                                                                          | 9   | 7    | 22   | 9   | 티      | <u></u> | 9   | ন        | 7         | 7   | -        | -   | -   | -    | -   | SI S | -1-  | 1     |                |

【0032】との表から明らかなように、本発明試料で ある試料No4、8、10、12、14、15、18、 21、25はフェライト中に3~20%のマルテンサイ 40 トや残留オーステナイトが混在した組織を有し、高強度 でプレス加工性が良いことに加えて、めっきの密着性も 良好で、加工時にプレス金型との間にめっき層の凝着も 生じない。これに対し、試料No3、17のように本発 明成分からはずれる鋼や、試料No11、22のように 本発明鋼でフェライト中にマルテンサイトおよび残留オ ーステナイトが体積率で3~20%含まれた金属組織を 有しても、めっき層の合金化が不適切であると、高強度 でプレス加工性が良くとも、めっき層の密着性が悪かっ

じる。

【0033】また、フェライト中に混在するマルテンサ イトおよび残留オーステナイトの体積率が3%未満であ るか、20%を超えるような場合には試料No1、2、 7、20、23、24、29、30のように本発明成分 以外の鋼に加えて、試料No5、6、9、13、16、 19、26~28のように本発明成分鋼であっても、高 強度ではあっても加工性が良くないか、加工性が良くと も強度が低い。

[0034]

【発明の効果】以上詳述したように、本発明によれば塗 装性や溶接性に優れ、加工時にめっき層がプレス金型と たり、加工時にプレス金型との間にめっき層の凝着を生 50 の間に凝着することのないような合金化溶融亜鉛めっき

14

が施された鋼板の金属組織をフェライト中に3~20% のマルテンサイトや残留オーステナイトが混在したもの とし、その複合組織強化により引張強さ490~880 MPaの高強度とプレス加工性が良いことを両立でき、\*

\*自動車、家庭電気製品、建築等の分野で防錆強化と軽量 化に寄与することにより産業上極めて大きな効果を有す る。

フロントページの続き

(72)発明者 中村 文彰

千葉県君津市君津 1 番地 新日本製鐵株式 会社君津製鐵所内