COM-303 - Signal Processing for Communications

Homework #3

Exercise 1. DFT in matrix form

Consider the DFT expressed as a matrix/vector multiplication and call **W** the $N \times N$ DFT matrix. Is **W** Hermitian-symmetric for all values of N?

Exercise 2. DFS and DFT

Given a finite-length discrete signal x[n] of length N ($n = 0, \dots, N-1$) and its DFT X[k]. Derive the DFS $\widetilde{X}[k]$ of x[n]'s periodization $\widetilde{x}[n] = x[n \mod N]$.

Exercise 3. Derivative in frequency

Let $x[n] \longleftrightarrow X(e^{j\omega})$ be a DTFT transform-pair.

- (a) Assume $X(e^{j\omega})$ to be differentiable, compute the inverse DTFT of $j\frac{d}{d\omega}X(e^{j\omega})$.
- (b) Compute the inverse DTFT of $\frac{d}{d\omega} \left(\frac{X(e^{j\omega})}{\pi} \right) 2$. Which property of the DTFT allows you to simplify the calculation?

Hint: use integration by parts.

Exercise 4. DTFT visual inspection

The real and imaginary parts of $X(e^{j\omega})$ are shown in the figure below. By visual inspection of the plots, prove that

- (a) x[n] is 0-mean, i.e., $\sum_{n \in \mathbb{Z}} x[n] = 0$;
- (b) x[n] is real valued.

Exercise 5. DTFT properties

Derive the time-reversal and time-shift properties of the DTFT.

Exercise 6. Placherel-Parseval equaltiy

Let x[n] and y[n] be two complex valued sequences and $X(e^{j\omega})$ and $Y(e^{j\omega})$ their corresponding DTFTs.

(a) Show that

$$\langle x[n], y[n] \rangle = \frac{1}{2\pi} \langle X(e^{j\omega}), Y(e^{j\omega}) \rangle$$

where we use the inner products for $\ell_2(\mathbb{Z})$ and $\mathcal{L}_2([-\pi,\pi])$ respectively.

(b) What is the physical meaning of the above formula when x[n] = y[n]?

Exercise 7. DTFT,DFT, and numerical computations

Consider the following infinite non-periodic discrete time signal, where $M \in \mathbb{N}$:

$$x[n] = \begin{cases} 0 & n < 0, \\ 1 & 0 \le n < M, \\ 0 & n \ge M. \end{cases}$$

The goal is to plot the magnitude of $X(e^{j\omega})$ using a numerical package. Using a numerical package implies that we will only obtain an approximation of the true value.

- (a) Compute $X(e^{j\omega})$ analytically
- (b) Using a numerical package plot $|X(e^{j\omega})|$ over $[-\pi\pi]$ for M=20 using 10,000 points.
- (c) Now generate a finite sequence $\hat{x}[n]$ of length N = 30 such that $\hat{x}[n] = x[n]$ for n = 0, 1, ..., N 1. Compute its DFT using the numerical package's FFT algorithm and plot its magnitude. Compare it with the plot obtained previously.
- (d) Repeat now for different values of N = 50, 100, 1000. What can you conclude?

3