9. TÉMA

ELEKTRONIKA

Műveleti erősítőkkel megvalósított erősítő kapcsolások

Feladatok megoldása

1. Műveleti erősítővel megvalósított **neminvertáló** erősítő kapcsolás látható az ábrán. a) Határozza meg az R_2 visszacsatoló ellenállás értékét!

Adatok:

$$R_1 = 20 \text{ k}\Omega$$
$$A_u = 9$$

$$U_{kimax} = +U_t = + 10 \text{ V}$$

 $U_{kimin} = -U_t = -10 \text{ V}$

$$A_u = 1 + \frac{R_2}{R_1}$$

 $R_2 = (A_u - 1)R_1 = (9 - 1) \cdot 20 \cdot 10^3 = 160 \, k\Omega$

$$R_2 = 160 \text{ k}\Omega$$

b) Rajzolja le a kapcsolás transzfer karakterisztikáját!

 $\boldsymbol{c})$ Rajzolja le az \boldsymbol{u}_{be} bemeneti és az \boldsymbol{u}_{ki} kimeneti feszültség időfüggvényét, ha

$$-u_{be} = 1\sin \omega t [V]$$

 $u_{be} = 1 + 1\sin \omega t$ [V]!

2. Határozza meg az ábrán látható, műveleti erősítővel megvalósított **neminvertáló** erősítő A_u feszültségerősítését!

Adatok:

$$R_1 = 70 \text{ k}\Omega$$

$$R_2 = 210 \text{ k}\Omega$$

$$U_{kimax} = +U_t = + 14 \text{ V}$$

$$U_{kimin} = -U_t = - 14 \text{ V}$$

$$A_u = 1 + \frac{R_2}{R_1} = 1 + \frac{210 \cdot 10^3}{70 \cdot 10^3} = 4$$

$$A_u = 4$$

Rajzolja le az u_{be} bemeneti és az u_{ki} kimeneti feszültség időfüggvényét, ha

a) $u_{be} = 2\sin \omega t$ [V]

b) $u_{be} = 2 + 2\sin \omega t \text{ [V]!}$

c) Rajzolja fel a kapcsolás transzfer karakterisztikáját!

3. Határozza meg az ábrán látható, műveleti erősítővel megvalósított **neminvertáló** erősítő A_u feszültségerősítését!

$$R_{I} = 20 \text{ k}\Omega$$

$$R_{2} = 100 \text{ k}\Omega$$

$$U_{kimax} = +U_{t} = +12 \text{ V}$$

$$U_{kimin} = -U_{t} = -12 \text{ V}$$

$$A_u = 1 + \frac{R_2}{R_1} = 1 + \frac{100 \cdot 10^3}{20 \cdot 10^3} = 5$$

$$A_u = 5$$

a) Rajzolja le az u_{be} bemeneti és az u_{ki} kimeneti feszültség időfüggvényét, ha

$$u_{be} = 2\sin \omega t [V]$$

\boldsymbol{b}) Rajzolja le az \boldsymbol{u}_{be} bemeneti és az \boldsymbol{u}_{ki} kimeneti feszültség időfüggvényét, ha

 $u_{be} = 2 + 2\sin \omega t$ [V]

c) Rajzolja le az **erősítő kapcsolás** transzfer karakterisztikáját! A műveleti erősítő ideálisnak tekinthető.

4. Határozza meg az ábrán látható erősítő kapcsolás feszültségerősítését (a lineáris tartományban)!

Adatok:

$$R_{I} = 1 \text{ k}\Omega$$

$$R_{2} = 10 \text{ k}\Omega$$

$$+U_{t} = +10 \text{ V}$$

$$-U_{t} = -10 \text{ V}$$

Rajzolja meg a kimeneti feszültség léptékhelyes időfüggvényét, ha:

a)
$$u_{be}(t) = 1.5 \sin \omega t [V]$$

b)
$$u_{be}(t) = 0.5 \sin \omega t [V]$$

5. Műveleti erősítővel megvalósított **invertáló** erősítő látható az *4. ábrán*. A műveleti erősítő ideális.

Adatok:

$$R_{I} = 40 \text{ k}\Omega$$

$$R_{2} = 240 \text{ k}\Omega$$

$$^{+}U_{t} = 15 \text{ V}$$

$$^{-}U_{t} = -15 \text{ V}$$

a) Határozza meg a kapcsolás erősítését (a lineáris tartományban)!

$$A_{u} = -\frac{R_{2}}{R_{1}} = -\frac{240 \cdot 10^{3}}{40 \cdot 10^{3}} = -6$$

b) Rajzolja meg az u_{be} bemeneti és az u_{ki} kimeneti feszültség léptékhelyes időfüggvényét, ha:

$$u_{be}(t) = 2 \operatorname{sin}\omega t [V]!$$

c) Hogyan változik meg a kimenet feszültségének időfüggvénye, ha a kapcsolás kiegészül a 2. ábrán látható kimeneti feszültség határoló áramkörrel? Rajzolja meg ebben az esetben az u_{ki} kimeneti feszültség időfüggvényét, ha a bemeneti feszültség azonos a b) pontban megadott függvénnyel!

2. ábra

Adatok:

$$R_{I} = 40 \text{ k}\Omega$$

 $R_{2} = 240 \text{ k}\Omega$
 $U_{Z} = 6.2 \text{ V}$
 $U_{d0} = 0.6 \text{ V}$
 $^{+}U_{t} = 15 \text{ V}$
 $^{-}U_{t} = -15 \text{ V}$

d) Rajzolja meg a kapcsolás transzfer karakterisztikáját

- határoló áramkör nélkül
- határoló áramkör alkalmazásakor!

