Image Classification and Sentiment Analysis with Adaboost and SVM

Abstract

This analysis explores the performance of Support Vector Machines (SVM) and Adaboost with decision trees. The goal of the models is to train accurate classifiers for two datasets. The first task is to identify images as containing either bikes, a car, or people. The second task is to classify a text document of movie reviews as either positive or negative in its sentiment. In addition, the necessary preprocessing of the data was conducted including feature extraction, data augmentation, and dimensionality reduction. To evaluate the performance, five-fold cross validation of the resulting models was performed as well as an analysis of the resulting model confusion matrix. Lastly, custom kernels were developed and tested for the SVM model on both image classification and sentiment analysis as a method for improving accuracy.

1. Boosting for Image Classification

The first task involves implementing a boosting algorithm while utilizing a decision tree or decision stump for image classification.

1.1 Image Dataset & Feature Extraction

The goal is to develop a model to accurately identify images as containing either: bikes, cars, or people. The dataset has 154 images split approximately evenly between the three classes. An example image of each class is shown below in Figure 1.

Figure 1. Three example images of each possible class: Person (left), Bike (middle), and Car (right). These examples also illustrate the possible similarity for images between different classes.

To develop an image classification model its first necessary to extract features, so to develop an input to the model. The features can then be mapped to the respective

target class by training on a portion of the image dataset. The performance can then be assessed on another portion of unseen data known as the test set. Histogram of Oriented Gradients (HOG) was extracted using the OpenCV python library. HOG is a feature descriptor that converts the image to several vectors that more concisely describe the contents, or shapes, within the image (Tomasi, 2016). In addition, image augmentation was performed to increase the exemplars of each class. This was used as a method to increase the accuracy of the classifier by providing more variation in example images for the model to learn from. The augmentation was conducted using the Keras library and included variations in image brightness, zoom, shear, rotation, and image mirroring. Lastly, due to the large number of HOG features extracted the curse of dimensionality may cause a drastic decrease in accuracy from the classifier. A feature reduction technique, Principal Component Analysis (PCA), was conducted to reduce 34020 features to 125.

1.2 Adaboost Algorithm Overview

The Adaboost algorithm is meant to be combined with other 'weak learning' algorithms as a method of improving performance. In this case, it is an ensemble method that is combined with short decision trees.

1.2.1 DECISION TREES

The construction of a decision tree is an iterative process that builds a 'tree' of decisions. The tree ultimately ends with a leaf node when the 'impurity' from a new split is zero, or the maximum tree depth has been reached. The impurity is a measure of the predictive ability of each feature on predicting the target class.

1.2.2 BOOSTING METHOD

Boosting, analogous to bagging, is a machine learning technique that converts a weak learner into a strong learner. This can be done by initializing weights to the exemplars in the data. The weights are then adjusted iteratively by further adjusting the weights of observations with higher prediction error (Analytics Vidhya, 2020).

1.3 Model Results & Evaluation

After preprocessing the image dataset with HOG feature extraction, augmentation, and dimensionality reduction the mean score resulting from five-fold cross validation was 0.54. This accuracy is relatively low to be considered reliable by real-world application or industry standards.

CM50265: Machine Learning 2

However, since the problem is triple classification, a theoretically random classifier should achieve an accuracy of about 0.33. This model demonstrates a proof of concept by significantly outperforming a random classifier. A confusion matrix is shown below in Figure 2, further detailing the accuracy of the model on each class.

Figure 2. Confusion matrix of the Adaboost model on the three image classes: Bikes, Cars, and People.

The confusion matrix above shows that the Adaboost model can perform best when identifying bikes and cars, with 68% and 57% accuracy, respectively. However, the model performs poorly when classifying people at only 33%. This becomes more noticeable when analyzing the false positive rate for the model on identifying people, where it's more likely to identify a person as a bike than as a person. This can be seen in more detail by plotting the true positive rate for each class in a triple class Receiver Operating Characteristic (ROC) curve, shown below in Figure 3.

Figure 3. ROC curve for the performance of the Adaboost model on each class.

2. SVM for Image Classification

The next task involves implementing a Support Vector Machine (SVM) classifier using the Sci-Kit Learn python library. In addition, custom kernels are used as input to the SVM to map the data to a new space as an attempt to

improve the model performance. The goal remains the same, to train the model to accurately identify bikes, cars, or people in an image.

2.1 Support Vector Machine Algorithm Overview

The basic premise when implementing an SVM is to create a model to find a hyperplane in the optimization space that maximizes the distance between classes (Ying & Fuyong, 2006). Many variations to the algorithm exist including soft or hard margin hyperplane, as well as the utilization of custom kernels (Namboodiri, Lecture, 2021). SVM's can utilize a provided kernel to map the data to a different (usually non-linear) dimension. This allows a linear SVM to fit a hyperplane to non-linearly separable data.

2.1.1 DEFAULT KERNELS

The following kernels have a default option within the Sci-Kit Learn framework. The first and most simple is the linear kernel shown below:

$$k(x, y) = x^T y + c$$

Another non-linear kernel is a polynomial kernel with a coefficient and exponent parameter show as follows:

$$k(x,y) = (\alpha x^T y + c)^d$$

A variant of one of the most used kernels is the Gaussian (or Radial Basis Function) kernel, which can be seen below:

$$k(x, y) = \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right)$$

2.1.2 CUSTOM KERNELS

The first custom kernel is another variant of a radial basis function known as the exponential kernel:

$$k(x,y) = \exp(-\frac{\|x - y\|}{2\sigma^2})$$

Another kernel used was the hyperbolic tangent, it is sometimes referred to as the Multilayer Perceptron kernel because of its use as an activation function in some neural networks (Souza, 2010).

$$k(x, y) = tanh(\alpha x^T y + c)$$

Next, the rational quadratic kernel is similar to a gaussian kernel, but it generally requires less computational power (Souza, 2010).

$$k(x,y) = 1 - \frac{\|x - y\|^2}{\|x - y\|^2 + c}$$

The log kernel, shown below, is the last custom kernel tested in the SVM.

$$k(x, y) = -\log(||x - y||^d + 1)$$

2.2 Model Results & Evaluation

This task is conducted on the same image dataset; thus, the same preprocessing (HOG extraction, augmentation, & PCA) was conducted to maximize model accuracy. Five-fold cross validation was then performed on the model to produce a mean accuracy of 0.64. The resulting confusion matrix from the SVM model is shown in Figure 4, depicting the performance on each class.

Figure 4. Confusion matrix of the SVM model on the three classes: Bikes, Cars, or People.

The SVM was able to significantly outperform the Adaboost model when identifying the classes of each image. However, a similar pattern emerges when analyzing the performance of the model on each of the three classes. Its apparent the models can more accurately identify the images containing bikes and cars, when compared to the performance of classifying people. Though, this affect appears to less significant in the results of the SVM it is still significant. This is apparent from the resulting false positive rates for images with cars and people, where the classifier is mistaking people for cars and vise versa about 22% of the time. This can be further investigated in the ROC curve in Figure 5.

Figure 5. ROC curve for the performance of the SVM on each class.

Lastly, several custom kernels were tested in conjunction with the default Sci-Kit Learn kernels to maximize the performance of the SVM classifier. A simple bar chart is shown in Figure 6 depicting the average accuracy of each kernel on the image classification task.

Figure 6. Model accuracy for each custom kernel tested in the SVM classifier.

The above chart shows the previously discussed exponential kernel to have the highest average accuracy. The linear, log, and RBF kernels have the next highest accuracies.

3. Boosting for Sentiment Analysis

This task consists of utilizing the previously implemented boosting algorithm (Adaboost) to train a model to accurately classify movie reviews as either positive or negative in its sentiment. Bag of words feature extraction as well as the necessary preprocessing of the data and the final model performance will be discussed.

3.1 Text Dataset & Feature Extraction

The goal of the model is to accurately classify a movie review as either positive or negative. The dataset contains 5000 movie reviews each containing the text of the review along with a label of its sentiment. An example of a positive and negative review is shown in Table 1.

Table 1. Portion of a positive and negative movie review.

Partial Review	Sentiment (Class)
"I cannot believe I enjoyed this as much as I did. The anthology stories were better than par, but the linking story and its surprise ending hooked me"	Positive
"Of all the films I have seen, this one, The Rage, has got to be one of the worst yet. The direction, LOGIC, continuity, changes in plot-script and dialog made me cry out in pain"	Negative

The text of each review is then vectorized and the words are counted with Sci-Kit Learns 'CountVectorizer' function. This function also ignores English stop words that may be irrelevant to the sentiment. In addition, a minimum 5% document frequency is set in the vectorizer to ignore terms that are used very rarely in the reviews. This vector is then transformed using Sci-Kit Learns 'TfidfTransformer' function. This creates a ratio of the term frequency to document frequency which can then be used as input to a classification model (Sklearn n.d.). Once the necessary features are extracted for the 5000 exemplars, PCA is conducted to reduce 4600 features into 50. This will minimize the influence from the curse of dimensionality on the model performance.

3.2 Model Results & Evaluation

After feature extraction and preprocessing the average accuracy from five-fold cross validation with Adaboost is 0.78. A confusion matrix for the results of the model is shown in Figure 7.

Figure 7. Confusion matrix of the Adaboost model on the sentiment of movie reviews.

This shows the model is fairly accurate at identifying negative reviews and positive reviews alike. However, there are more false positives than there are false negatives. The model is therefore more likely to mistakenly predict a review is positive when it is in fact negative. To explore this further the Receiver Operating Characteristic (ROC) curve was plotted for the results. This True vs False positive rate relationship is shown in Figure 8.

Figure 8. Receiver Operating Characteristic curve for true positive rate of the Adaboost results on movie review sentiment.

The area under the ROC curve is 0.91 indicating that the model has approximately a 91% chance of correctly distinguishing between positive and negative sentiment movie reviews.

4. SVM for Sentiment Analysis

The final task involves using the previously implemented SVM classifier to identify the movie reviews as either positive or negative. The custom kernels previously mentioned, as well as NLP specific kernels will be explored. In addition, the model results will be discussed along with an evaluation of its performance.

4.1 NLP Kernel

The intersection kernel, shown below, was designed specifically for use in NLP tasks (Namboodiri, Lecture, 2021). In one experiment in 2017, this kernel performed the best when classifying texts in English, Chinese, and Arabic (Popescu et al, 2017).

$$k(x,y) = \sum_{i=1}^{d} \min\{c_i(x), c_i(y)\}$$

4.2 Model Results & Evaluation

The average accuracy of the resulting SVM model from five-fold cross validation was 0.84. To compare the performance across positive and negative reviews a

confusion matrix was constructed, this is shown below in Figure 9.

Figure 9. Confusion matrix of the SVM model on the sentiment of movie reviews.

One can see the SVM classifier attains similar accuracy on both negative and positive reviews. The relatively strong performance of the SVM can be seen in the ROC curve in Figure 9.

Figure 9. ROC curve depicting the true positive rate and the AUC of the classifier.

Lastly, the performance of each kernel was tested and plotted in Figure 10. The exponential and RBF kernel had marginally higher performance than several close seconds. Surprisingly for this task, the NLP specific intersection kernel did not show improvement in classifying the movie reviews.

Figure 10. Bar chart comparison of the custom kernels used in the SVM for sentiment analysis.

References

Analytics Vidhya. (2020, June 26). Boosting algorithm:
Boosting algorithms in machine learning.
Retrieved March 21, 2021, from
https://www.analyticsvidhya.com/blog/2015/11/qu
ick-introduction-boosting-algorithms-machinelearning/

Popescu, M., Grozea, C., & Tudor Ionescu, R. (2017). HASKER: An efficient algorithm for String kernels. application to POLARITY classification in various languages. *Procedia Computer Science*, 112, 1755-1763. doi:10.1016/j.procs.2017.08.207

Sklearn.feature_extraction.text.TfidfTransformer¶. (n.d.).
Retrieved March 21, 2021, from https://scikit-learn.org/stable/modules/generated/sklearn.feature
_extraction.text.TfidfTransformer.html

Souza , Cesar. (2010, March 17). César Souza. Retrieved March 21, 2021, from http://crsouza.com/2010/03/17/kernel-functions-for-machine-learning-applications/

Tomasi, C. (2016). Histogram of Oriented Gradients. https://www2.cs.duke.edu/courses/fall15/compsci5 27/notes/hog.pdf

Ying, Z., & Fuyong, W. (2006). A algorithm to incremental learning with support vector machine and its application IN Multi-class classification. 2006 Chinese Control Conference. doi:10.1109/chicc.2006.280868

[1]:	<pre>import cv2 as cv import glob import pandas as pd from sklearn.metrics import accuracy_score</pre>
[2]:	<pre>def obtain_dataset(folder_name,</pre>
	<pre># store images to visualize if necessary image_dict = {} class_dict = {'bike' : 1,</pre>
	<pre>if not include_augmented: if 'aug' in file: file = '' # get file location from directory file_location = subdir + "\\" + file try: img = cv.imread(file_location) image_dict.update({file:img}) h = hog.compute(img)</pre>
	<pre>if Hog_features: X.append(h) else: X.append([img]) if 'bike' in file: y.append(class_dict['bike']) elif 'car' in file: y.append(class_dict['car']) elif 'person' in file:</pre>
	<pre>y.append(class_dict['people']) else:</pre>
[3]:	<pre>Decision Tree Class class Decision_Tree: definit(self, x, y,</pre>
	<pre>self.features = np.arange(start_feature, start_feature + num_features) # init data self.x = x #x.iloc[:,self.features].values self.y = y #y.values self.num_rows = x.shape[0] # init hyperparameters self.min_leaf = min_leaf self.max depth = max depth</pre>
	<pre># data charactersitics self.num_features = num_features self.val = np.mean(y) self.score = np.inf self.tree = self.build_tree(self.x, self.y, max_depth) def calculate_entropy(self,y):</pre>
	<pre>prob = pd.Series(y).value_counts(normalize = True) return - np.sum(prob * np.log(prob)) / np.log(2) def find_split(self, x, y): """Given a dataset and its target values, this finds the optimal combination of feature and split point that gives the maximum information gain.""" # Need the starting entropy so we can measure improvement start_entropy = self.calculate_entropy(y) # all possible indices</pre>
	<pre>indices = np.arange(len(x)) # Best thus far, initialised to a dud that will be replaced immediately best = {'infogain' : -np.inf} # Loop every possible split of every dimension for i in range(x.shape[1]): for split in np.unique(x[:,i]): # indices that are greater than or less than split value</pre>
	<pre>left_indices = indices[x[:,i] <= split] right_indices = indices[x[:,i] > split] left_ratio = (len(left_indices) / len(x)) right_ratio = (len(right_indices) / len(x)) infogain = start_entropy - left_ratio \</pre>
	<pre>best = {'feature' : i,</pre>
	<pre>if max_depth == 1 or (y == y[0]).all(): # Generate a leaf node classes, counts = np.unique(y, return_counts=True) return {'leaf' : True, 'class' : classes[np.argmax(counts)]} else: move = self.find_split(x, y) left = self.build_tree(x[move['left_indices'],:], y[move['left_indices']], max_depth - right = self.build_tree(x[move['right_indices'],:], y[move['right_indices']], max_deptl)</pre>
	<pre>return {'leaf' : False,</pre>
	<pre>else: if sample[tree['feature']] <= tree['split']: return self.predict_one(tree['left'], sample) else: return self.predict_one(tree['right'], sample) def predict(self, x_test): """Predicts class for every entry of a data matrix.""" samples = x test #.iloc[:,self.features].values</pre>
	<pre>ret = np.empty(samples.shape[0], dtype=int) ret.fill(-1) indices = np.arange(samples.shape[0]) def tranverse(node, indices): nonlocal samples nonlocal ret if node['leaf']:</pre>
	<pre>ret[indices] = node['class'] else: going_left = samples[indices, node['feature']] <= node['split'] left_indices = indices[going_left] right_indices = indices[np.logical_not(going_left)] if left_indices.shape[0] > 0: tranverse(node['left'], left_indices) if right_indices.shape[0] > 0:</pre>
[4]:	<pre>tranverse(node['right'], right_indices) tranverse(self.tree, indices) return ret Boosting classifier class class BoostingClassifier: definit(self,n_estimators = 10,</pre>
	max_depth = 5, num_features = 1000, start_feature = 200, sklearn = True): self.sklearn = sklearn self.n_est = n_estimators self.depth = max_depth self.trees = [] self.tree_weights = []
	<pre>self.tree_weights = [] self.num_features = num_features self.start = start_feature def update_weights(self, weights, y, y_dt, tree_weights): for i in range(weights.shape[0]): if y[i] != y_dt[i]: weights[i] = weights[i]*np.exp(tree_weights) weights /= np.sum(weights)</pre>
	<pre>return weights def fit(self, X, y): n_class = np.unique(y).shape[0] # init weights, value is aribitrary weights = np.array([1/X.shape[0] for i in range(X.shape[0])]) weights = weights.reshape([-1,1]) start = self.start</pre>
	<pre>start = self.start features = np.arange(start , start + self.num_features) for i in tqdm(range(self.n_est)): if self.sklearn == False: # instantiate DT & fit to data DT = Decision_Tree(X, y,</pre>
	<pre># predict with trees dt_pred = DT.predict(X) # update tree weights error = np.sum(weights[np.where(y != dt_pred)]) self.tree_weights.append(np.log((1 - error) / error) \</pre>
	<pre>weights = self.update_weights(weights,</pre>
	<pre>pred = np.array([tree.predict(X) for tree in self.trees]).T y_pred = [] for i in range(n): current = pred[i,:] class_weights = {prediction : 0 for prediction in np.unique(current)} for j, prediction in enumerate(current): class_weights[prediction] += self.tree_weights[j]</pre>
[5]:	<pre>optimal_weight = max(class_weights, key = class_weights.get) y_pred.append(optimal_weight) return np.array(y_pred) define train test split function & normilization functions def train_test_valid(df, train_ratio = 0.6, valid_ratio = 0.2): train, validation, test = np.split(df.sample(frac = 1,</pre>
	<pre>random_state = np.random.randint(1,1e3)),</pre>
	<pre>a, b = df.std(), df.mean() else: # min max normalization normalized_df = (df - df.min()) / (df.max() - df.min()) a, b = df.min(), df.max() return normalized_df, a, b def unnormalize(df, a, b, mean_method = True): if mean_method: # mean normalization unnormalized_df = df * a + b</pre>
[6]:	<pre>else: # min max normalization unnormalized_df = (df * (b - a)) + a return unnormalized_df Option to download augmented images to image folder from keras.preprocessing.image import ImageDataGenerator,array_to_img, img_to_array, load_img</pre>
	<pre>datagen = ImageDataGenerator(rotation_range = 40, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True, brightness_range = (0.5, 1.5)) def augment_images(image_name, fname, directory): img = load_img(image_name) x = img_to_array(img) x = x.reshape((1,) + x.shape)</pre>
	<pre>i = 0 for batch in datagen.flow(x, batch_size = 1,</pre>
	<pre>if perform_augmentation: folder_name = 'image_dataset' for subdir, dirs, files in os.walk(folder_name): for file in files: # get file location from directory file_location = subdir + "\\" + file if 'bike' in file:</pre>
	<pre>fname = 'car_aug' elif 'person' in file: fname = 'person_aug' else: y.append(np.nan) if 'img' in file: # only augment OG images augment_images(file_location, fname, subdir) Image augmentation and HOG feature extraction function</pre>
[7]:	<pre>from keras.preprocessing.image import ImageDataGenerator, img_to_array, array_to_img def HOG_augment(df, augment = True, n = 2): datagen = ImageDataGenerator(rotation_range = 40, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True, brightness_range = (0.5, 1.5))</pre>
	<pre>hog = cv.HOGDescriptor() x = [] y = [] for image, target in tqdm(df.values): # get hog features for OG images</pre>
	<pre>x.append(hog.compute(image)) y.append(target) x_array = img_to_array(image) x_array = x_array.reshape((1,) + x_array.shape) if augment: i = 0 for batch in datagen.flow(x_array): b = np.asarray(array_to_img(np.squeeze(batch))) h = hog.compute(b)</pre>
	<pre># save hog features and class for augmented images x.append(h) y.append(target) i+=1 if i >= n: break X = np.hstack(x).T</pre>
[8]:	<pre>df_augmented = pd.DataFrame(X) df_augmented['y'] = y return df_augmented principal component analysis for dimensionality reduction from sklearn.preprocessing import LabelEncoder, StandardScaler from sklearn.decomposition import PCA</pre>
	<pre>def reduce_features(df, num_features = 20, solver = 'full'): encoder = LabelEncoder() # split input and target x, y = df.iloc[:,:-1], df.iloc[:,-1] for col in tqdm(x.columns[:]): x[col] = encoder.fit_transform(x[col])</pre>
	<pre># apply scaler to input features scaler = StandardScaler() x = scaler.fit_transform(x) # transform features pca = PCA(svd_solver = solver) pca.fit_transform(x) pca_variance = pca.explained_variance_ plt.plot(np.cumsum(pca.explained_variance_ratio_)) plt.xlabel('number of components') plt.ylabel('cumulative explained_variance');</pre>
	<pre># fit pca2 = PCA(n_components = num_features, whiten = True) pca2.fit(x) pca_x = pca2.transform(x) # recreate dataframe after PCA df_pca = pd.DataFrame(pca_x) df_pca['y'] = y.values return df_pca</pre>
[9]:	<pre>folder_name = 'image_dataset' x, y = obtain_dataset(folder_name,</pre>
10]:	Data Loaded. df_hog = HOG_augment(df, augment = False) df_pca = reduce_features(df_hog, num_features = 125) 100%
	0.8 - 0.6 - 0.6 - 0.4 -
11]:	# random split for test and training set train1, test1, val1 = train_test_valid(df_pca,
	<pre>train_ratio = 0.8,</pre>
14]:	100% 100% 188/188 [00:00<00:00, 2127.48it/s] train = reduce_features(train, num_features = 30, solver = 'auto') test = reduce_features(test, num_features = 30, solver = 'auto') 100% 34020/34020 [13:01<00:00, 43.54it/s] 100% 34020/34020 [03:42<00:00, 153.21it/s]
	0.8 - 0.6 - 0.6 - 0.4 -
15]:	# seperate input X from target variable y
	<pre>x_train, y_train = train1.iloc[:,:-1], train1.iloc[:,-1] x_test, y_test = test1.iloc[:,:-1], test1.iloc[:,-1] # normalize test and train data x_train, x_test = normalize(x_train)[0], normalize(x_test)[0] DT = DecisionTreeClassifier(max_depth = 1000) DT.fit(x_train, y_train) y_pred = DT.predict(x_test) print('accuracy: ', accuracy_score(y_test, y_pred))</pre>
17]:	<pre>accuracy: 0.526595744680851 Train the boosting classifer and evaluate it on the train-test split bc = BoostingClassifier(n_estimators = 100,</pre>
18]:	<pre>y_pred = bc.predict(x_test.values) print('accuracy: ', accuracy_score(y_test, y_pred)) 100% </pre>
	<pre>bc.fit(x_train,y_train) y_pred = bc.predict(x_test.values) print('accuracy: ', accuracy_score(y_test, y_pred)) accuracy: 0.5531914893617021 Define multiclass ROC curve function</pre>
19]:	<pre>from sklearn import metrics def plot_multiclass_roc(clf, X_test, y_test, classes = [], figsize=(14, 8)): y_score = clf.decision_function(X_test) # structures fpr = dict() tpr = dict() roc_auc = dict() n_classes = len(classes)</pre>
	<pre># calculate dummies once y_test_dummies = pd.get_dummies(y_test, drop_first=False).values for i in range(n_classes): fpr[i], tpr[i], _ = metrics.roc_curve(y_test_dummies[:, i], y_score[:, i]) roc_auc[i] = metrics.auc(fpr[i], tpr[i]) # roc for each class fig, ax = plt.subplots(figsize=figsize) ax.plot([0, 1], [0, 1], 'k') ax.set_xlim([0.0, 1.0]) ax.set_ylim([0.0, 1.05])</pre>
	<pre>ax.set_xlabel('False Positive Rate', size = 25) ax.set_ylabel('True Positive Rate', size = 25) plt.tick_params(axis='x', which='major', labelsize=20) plt.tick_params(axis='y', which='major', labelsize=20) for i in range(n_classes): ax.plot(fpr[i], tpr[i], label='AUC = {:0.2f} for {}'.format(roc_auc[i], classes[i])) ax.legend(loc="best", fontsize = 20) ax.grid(alpha=.4) sns.despine() plt.show()</pre>
	plot_multiclass_roc(bc, x_test, y_test, classes = ['bike', 'car', 'people']) 1.0 AUC = 0.78 for bike AUC = 0.73 for car AUC = 0.66 for people
	O.8 AUC = 0.66 for people
	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
21]:	<pre>Define Cross validation function def kfoldCV(df, kfolds = 5, norm = True, model_type = 'boosting',</pre>
	<pre># get K folds folds = np.array_split(df.sample(frac = 1, random_state = np.random.randint(0,1000)), kfolds) scores = [] for i in range(kfolds): clear_output(wait=True) print('Fold: ', i) # set test set to current fold test = folds[i]</pre>
	<pre># train on remaining folds combined train = folds.copy() del train[i] #remove current fold df_train = pd.DataFrame(np.vstack(train)) # seperate input and target variable x_train, y_train = df_train.iloc[:,:-1], df_train.iloc[:,-1] x_test, y_test = test.iloc[:,:-1], test.iloc[:,-1] if norm: # normalize test and train data y_train_v_test = normalize(y_train)[0]_normalize(y_test)[0]</pre>
	<pre>x_train, x_test = normalize(x_train)[0], normalize(x_test)[0] if model_type == 'boosting': model = BoostingClassifier(n_estimators = n_est,</pre>
	<pre># fit model to training data and predict on test data model.fit(x_train.values, y_train.values) y_pred = model.predict(x_test.values) # store accuracy data scores.append(accuracy_score(y_test, y_pred)) return scores</pre>
22]:	Average Score from Cross Validation scores = kfoldCV(df_pca, kfolds = 5,
23]:	Fold: 4 100% 100/100 [00:03<00:00, 30.50it/s] Average score from Cross Validation: 0.47 bc = BoostingClassifier(n_estimators = 100, max_depth = 5, sklearn = True) bc.fit(x_train.values, y_train.values)
24]:	<pre>y_pred = bc.predict(x_test.values) print('accuracy: ', accuracy_score(y_test, y_pred)) 100% 100% 100/100 [00:03<00:00, 31.09it/s] accuracy: 0.43617021276595747 plt.rcParams['figure.figsize'] = [15, 7] res = sns.heatmap(confusion_matrix(y_test,y_pred, normalize = 'true'),</pre>
24]:	<pre>res = sns.heatmap(confusion_matrix(y_test,y_pred, normalize = 'true'),</pre>
	0.57 0 0.43 0.43
	O.23 O.23 O.55 -0.2

Coursework 1

