ANALISIS PERENCENAAN JARINGAN LTE-A DENGAN METODE INTER BAND CARRIER AGGREGATION FDD-TDD DI WILAYAH CIBITUNG PADA SMALL CELLS

PRA PROPOSAL PROYEK TINGKAT

Diajukan sebagai syarat untuk mengikuti Sidang Komite Proyek tingkat

oleh:

Riskafian Medika Imzhagi 6705180109

D3 TEKNOLOGI TELEKOMUNIKASI
FAKULTAS ILMU TERAPAN
UNIVERSITAS TELKOM
2020

Latar Belakang

Pertumbuhan pengguna seluler di Indonesia setiap tahun meningkat secara signifikan selama periode 2011—2017 hingga tahun 2019 mencapai 341,27 juta pengguna [1]. Tentunya membuat tren kebutuhan pengguna berubah menjadi jaringan seluler saat ini menjadi internet berkecepatan tinggi. Untuk memenuhi permintaan tersebut membutuhkan kecepatan *upload* dan *download* yang konstan [2]. Hal itu membuat operator penyedia layanan komunikasi seluler lebih banyak menggunakan teknik *Frequency Division Duplexing* (FDD) karena nilai troughputnya yang lebih besar dari teknik *Time Division Duplexing* (TDD) dan penyebaran pada band FDD secara umum dapat memberikan pembagian simetris kepada pengguna skala besar, sistem FDD menjadi lebih banyak diterapkan di seluruh dunia [3][4].

Namun seiring pesatnya perkembangan layanan *Mobile Broad Band* (MBB) terjadi ketidak seimbangan antara beban lalu lintas *downlink* dan *uplink*. Penggunaan FDD menjadi tidak efisien dalam penggunaan spektrum frekuensi. FDD membutuhkan dua kanal frekuensi terpisah untuk *uplink* dan *downlink*. Dibanding FDD, mode TDD dapat menguntungkan sistem dalam penggunaan spektrum frekuensi yang lebih efisien, Karena TDD hanya membutuhkan satu kanal frekuensi untuk *uplink* dan *downlink* dengan alokasi waktu yang berbeda. Saat ini beberapa pita frekuensi dialokasikan untuk mode TDD di berbagai negara atau wilayah [4].

Pada penelitian [5] menunjukan perbandingan beban kerja pada kanal downlink lebih besar dari data yang ditransmisikan pada kanal uplink. Rasio perbandingannya pada macro cell mencapai 4:1 DL:UL karena sebagian besar layanan MBB membutuhkan lebih banyak pengunduhan data video, layanan streaming video, browsing internet, dll. Tentunya hal ini berdampak negatif karena membuat penggunaan spektrum frekuensi pada uplink menjadi tidak seimbang karena beban traffic data pada sisi downlink lebih tinggi. Dalam laporan [6] [7]. sebagian besar kebutuhan jaringan saat ini lebih banyak menggunakan kanal downlink dari pada kanal uplink. Untuk memanfaatkan penggunaan spektrum frekuensi lebih baik dapat menggunakan mode duplex TDD. Keuntungan dari mode TDD salah satunya alokasi resource uplink dan downlink yang dapat dikonfigurasi

sesuai domain waktu. Sehingga penggunaan mode TDD dapat disesuaikan dengan kebutuhan *traffic*. Hal ini yang menjadi keunggulan utama dari mode TDD dibanding FDD [7] [8].

Namun penggunaan TDD memiliki kekurangan dalam hal *coverage*, mode TDD membutuhkan *base station* yang lebih banyak dari mode FDD dengan frekuensi yang sama. Hal ini berdampak pada biaya pembangunan *e-nodeB* [9]. Selain itu mode TDD memiliki kekurangan dalam hal *upload* data hal ini karena sistem pada TDD tidak berkelanjutan karena kanal frekuensinya yang berpasangan dengan *downlink* [10].

Oleh karena itu solusi alternatif yang dapat dilakukan oleh operator adalah menggunakan teknik carrier aggregation menggunakan FDD-TDD. Pada *release* 12, 3rd Generation Partnership Project (3GPP) memperkenalkan salah satu fitur carrier aggregation (CA) memungkinkan operator menggunakan spektrum band frekuensi FDD dan TDD secara bersama-sama. Hal itu dapat meningkatkan throughput khususnya dalam kanal *downlink*, selain itu dapat menjadi solusi dalam membagi beban *traffic* data pada FDD. Singkatnya, CA FDD-TDD memperluas CA agar dapat diterapkan pada operator yang memiliki alokasi spektrum pada pita FDD dan TDD [8] [11]. Selain itu penggunaan dapat memberikan cakupan *coverage* yang luas [12].

Umumnya operator menggunakan pita FDD band frekuensi yang lebih rendah sehingga lebih mungkin digunakan sebagai *primary cell* (PCell) dan TDD menggunakan band frekuensi yang lebih tinggi menjadi *secondary cell* (SCell). Sebelumnya dalam *carrier agregasi* pada *release* 10, kedua band harus menjadi band FDD atau band TDD [13]. Dengan menggunakan prinsip *dual connectivity*, Teknik *carrier aggregation* FDD-TDD dapat dilakukan. Diadopsi dalam *release* 12 [11]. Prinsip ini dapat digunakan sebagai koneksi *macro eNodeB* dan *small cell eNodeB* secara bersamaan. Sehingga dapat mengoptimalkan kecepatan transfer data dari *macro cell* dan *small cell* lebih efisien. *Small cells* biasanya menggunakan frequency yang lebih tinggi dengan area cakupan yang lebih kecil [13].

Penelitian [14] jaringan selular LTE menggunakan *carrier aggregation inter band* untuk meningkatkan kinerja throughput jaringan, dengan non-CA dan CA FDD-TDD. Skenario pertama non-CA pada sistem FDD menggunakan frekuensi 2100 MHz, skenario kedua pada sistem TDD menggunakan frekuensi 2300MHz,

skenario ketiga menggunakan *carrier aggregation* FDD-TDD dimana pada FDD menggunakan frekuensi 2100 MHz dan TDD pada frekuensi 2300 MHz. Simulasi *carrier aggregation* FDD-TDD untuk mendapatkan nilai throughput tertinggi dibanding FDD non-CA dan TDD non-CA. Pada penelitan [11] hasil konfigurasi TDD yang disarankan untuk *carrier aggregation* FDD-TDD menggunakan *3GPP TDD frame formats* tipe 5 dimana untuk mendapatkan throughput yang tinggi. Selain itu CA FDD-TDD memungkinkan untuk membagi beban lalu lintas di antara operator FDD dan TDD dengan menggunakan prinsip *dual connectivity*. Hal ini diperkuat pada penelitian [15] *carrier aggregation* LTE FDD dan LTE TDD sistem akan meningkatkan fleksibilitas spektrum bagi operator yang memiliki spektrum FDD dan TDD.

Pada proyek akhir ini akan dilakukan Analisis Perencanaan Jaringan LTE-A Dengan Teknik *Interband Carrier Aggregation* FDD-TDD Di Wilayah Cibitung Pada *Small Cells* untuk meningkatkan throughput pada kanal *downlink* dengan efisien dan meningkatkan kapasitas *user*. Pemilihan wilayah Cibitung berdasarkan hasil *Drive test* didapat rata-rata nilai RSRP -85 dBm, rata-rata nilai SNR 2 dB, rata-rata nilai throughput (*download*) 3 Mbps dan nilai throughput (*upload*) 11 Mbps. Kemudian hasil dari identifikasi data OSS operator x selama 10 hari menunjukan terdapat satu site yang memiliki PRB (*Physical Resource Block*) yang tinggi mencapai 68% dengan PRB salah satu sektornya dalam keadaan *critical* mencapai 94% pada kanal *downlink*. Selain itu penelitian ini bertujuan untuk mengetahui perbandingan kinerja CA FDD-TDD pada *release 12* dengan CA FDD-FDD *release* 10.

Proyek akhir ini menggunakan layanan operator x dengan 3 skenario, yaitu skenario 1 kondisi site existing pada wilayah Cibitung. Skenario 2 dengan kondisi menggunakan konfigurasi CA mode FDD (1800MHz) dan mode FDD (2100MHz) pada *small cells* dan skenario 3 menggunakan konfigurasi CA mode FDD (1800MHz) dan mode TDD (2100MHz) pada *small cells* untuk mengurangi polutan terhadap site sekitar. Simulasi perencanaan ini dilakukan dengan menggunakan *software* Atoll 3.3 dengan pendekatan perencanaan *coverage planning* dan *capacity planning*. CA FDD-TDD akan menggunakan konfigurasi *3GPP TDD frame formats* tipe 5 untuk meningkatkan kecepatan *download* pada wilayah Cibitung. Parameter yang diukur pada proyek akhir ini akan memperhatikan nilai throughput

(downlink dan uplink), RSRP, SINR dan user connected pada masing-masing skenario. Hasil yang diharapkan pada proyek akhir ini dapat menjadi pilihan operator x menggunakan konfigurasi CA FDD-TDD untuk mengoptimalkan penggunaan spektrum frekuensi yang dimiliki dan hasil perencanaan pada wilayah cibitung dapat memperoleh nilai parameter throughput, RSRP, SNR dan user connected sesuai standar KPI operator x.

Studi Literatur Penelitian Terkait

Tabel 1 Merupakan hasil studi literature terhadap penelitian yang terkait dengan judul yang diangkat.

Tabel 1 Hasil Studi Literatur

No	Judul Penelitian /Karya Ilmiah	Tahun	Keterangan
1.	Statistik telekomunikasi Indonesia	2019	Dalam penelitian berisi data statistika penduduk di Indonesia yang
	2019 [1]		menggunakan internet pada tahun 2019 oleh Badan Pusat Statistika.
2.	LTE FDD vs LTE TDD from a Qos	2015	Dalam penelitian ini penulis membandingkan kinerja LTE FDD dengan
	Perspective [2]		LTE TDD pada software atoll. Frekuensi yang digunakan pada masing-
			masing mode adalah 1800 MHz dengan bandwidth 10 MHz. Parameter
			yang dianalisis yaitu throughput (download dan upload), SNR.
3.	Load Sharing Technique for	2019	Dalam penelitian ini meneliti tentang pembagian beban kinerja pada FDD
	Coexistence LTE-FDD and LTE-TDD		dan TDD untuk mengoptimalkan kapasitas jaringan LTE menggunakan
	[3]		teknik <i>load sharing technique</i> . Frekuensi yang digunakan pada
			penelitian ini adalah 2300 MHz dengan pembagian beban <i>user</i>
			TDD:FDD adalah 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2 and 9:1.
4.	Evolving LTE with Flexible Duplex	2013	Dalam penelitian ini penulis membahas flexible duplexing FDD-TDD
	[4]		dengan case HetNet (Heterogeneous Network) dimana pada macrocell dan
			picocell menggunakan band frekuensi yang sama.

5.	Efficient Use of Paired Spectrum	2017	Dalam penelitian ini penulis mengusulkan konsep flexible duplexing
	Bands through TDD Small Cell		dimana mode TDD sebagai SeNB (Secondary e-Node B) pada spektrum
	DeploymentsPerspective [5]		frekuensi uplink yang tidak terpakai. Frekuensi yang digunakan pada
			penelitian ini adalah 2500 MHz.
6.	Understanding 3GPP Release 12	2015	Dalam laporan 4G America menjelaskan setiap fitur yang terdapat pada
	Standards for HSPA+ and LTE-		release 12 pada teknologi HSPA dan LTE yang sudah distandar kan oleh
	Advanced Enhancements [6]		3GPP. Salah satu fitur baru yang diperkenalkan pda release ini adalah
			Carrier Aggregation FDD-TDD.
7.	Analysis of the Impact of TD-LTE on	2013	Dalam penelitian ini penulis menganalisa penggunaan LTE TDD untuk
	Mobile Broadband [7]		mobile broadband. Dengan memperhatikan cost analysis, network
			performance, deployment strategies, services, dan ecosystem.
8.	Performance Comparison of LTE	2012	Dalam penelitian ini penulis membandingkan kinerja FDD dan TDD uplink
	FDD and TDD Based Smart Grid		mode TDD LTE FDD dan LTE dalam hal latensi dan pemanfaatan saluran
	Communications Networks for Uplink		menggunakan model simulasi OPNET. Frekuensi yang digunakan untuk
	Biased Traffic [8]		mode FDD uplink/downlink 1920MHz/2110MHz dan mode TDD
			2010MHz dengan konfigurasi <i>frame</i> tipe 0,1 dan 6.
9.	FDD/TDD Comparison Key Messages	2013	Dalam laporan Qualcomm menjelaskan kelebihan dan kekurangan mode
	[9]		LTE FDD dengan LTE TDD dari aspek QOS dan aspek Cost-nya.
10.	LTE-FDD and LTE-TDD for Cellular	2012	Dalam penelitian ini penulis membandingkan fitur dari LTE FDD dengan
	Communications [10]		LTE TDD. Pada penelitian ini dilakukan dengan studi literatur.
11.	A Cross-Layer-Aware FDD/TDD	2018	Dalam penelitian ini penulis mempelajari carrier aggregation FDD-TDD
			dengan pemilihan TDD frame format yang sesuai untuk meningkatkan

	Carrier Aggregation Framework for		throughput user. Pada penelitian ini parameter yang diukur yaitu SNR dan
	LTE-A Networks [11]		throughput dengan konfigurasi frame TDD. Implementasi Carrier
			aggregation pada penelitian ini membandingkan setiap konfigurasi frame
			TDD.
12.	LTE-Advanced Carrier Aggregation	2015	Dalam laporan ini nokia menjelaskan carrier aggregation pada release 12
	Optimization [12]		dimana fitur yang ditawarkan yaitu CA FDD-TDD, CA di HetNets, CA
			dengan unlicensed rekuensi dan supplemental downlink.
13.	LTE Small Cell Optimization 3gpp	2016	Dalam buku ini membahas perkembangan fitur-fitur LTE dari release 8
	Evolution To Release 13 [13]		sampai release 13. Dimana fitur carrier aggregation mulai diperkenalkan
			dalam release 10. Kemudian fitur carrier aggregation FDD-TDD, small
			cells dan dual connectivity baru diperkenalkan pada release 12.
14.	Simulation of LTE-Network for	2020	Dalam penelitian ini penulis mensimulasikan FDD dan TDD menggunakan
	Throughput Improving Using FDD and		carrier aggregation kemudian membandingkannya dengan FDD non
	TDD Carrier Aggregation [14]		CA dan TDD <i>non</i> CA pada <i>software</i> ns-3. Frekuensi yang digunakan
			adalah 2100 MHz untuk Pcell FDD dan 2300 MHz untuk Scell TDD.
15.	Control Channel Design for Carrier	2012	Dalam penelitian ini penulis mengusulkan carrier aggregation FDD-TDD
	Aggregation Between LTE FDD and		untuk memanfaatkan spektrum frekuensi yang efisien dengan
	LTE TDD Systems [15]		membandingkan spesifikasi control channel FDD-TDD. Pada
			penelitian ini semua subframe pada FDD DL dapat digabungkan
			dengan subframe TDD DL hal ini juga berlaku pada subframe UL.

Rancangan Sistem

Pada blok diagram dijelaskan tentang tahapan dalam proses pengerjaan proyek ahir ini. Dimulai dengan identifikasi wilayah yang padat penduduk dan menganilisis wilayah tersebut melalui data OSS operator x. Kemudian dilakukan intial drive test untuk mengukur jaringan dengan menelusuri wilayah yang diidentifikasi memiliki kualitas transfer data yang buruk dan menganalisa hasil drive test apakah sudah sesuai parameter KPI operator x. ketika parameter tidak sesuai maka akan dilakukan perencanaan pada wilayah tersebut dengan membangun small cells untuk menghindari polutan pada wilayah tersebut, Setelah dilakukan simulasi perancangan Carrier Aggregation FDD-TDD maka dibandingkan parameter parameter pengujian seperti RSRP, SINR, Througput download dan throughput upload dengan Carrier Aggregation FDD-FDD. Kemudian dianalisa apakah Carrier Aggregation FDD-TDD dapat mengatasi kualitas di wilayah Cibitung atau tidak dan apakah kinerja CA FDD-TDD lebih baik dari CA FDD-FDD.

Referensi

- [1] Sub Direktorat Statistik Komunikasi dan Teknologi Informas, "STATISTIK TELEKOMUNIKASI INDONESIA 2019," Badan Pusat Statistik, Jakarta, 2020.
- [2] E. D. A. Omer and D. A. B. A. Mustafa, "LTE FDD vs LTE TDD from a Qos Perspective," *IOSR Journal of Electronics and Communication Engineering*, vol. 10, no. 2, pp. 96-100, 2015.
- [3] A. Thongrak, N. A-mapat and P. Moungnoul, "Load Sharing Technique for Coexistence LTE-FDD and LTE-TDD," in *5th International Conference on Engineering, Applied Sciences and Technology (ICEAST)*, Luang Prabang, Laos, 2019.
- [4] L. Wan, M. Zhou and R. Wen, "Evolving LTE with Flexible Duplex," in *IEEE Globecom Workshops (GC Wkshps)*, Atlanta, GA, USA, 2013.
- [5] A. Agustín, S. Lagen, J. Vidal, O. Muñoz, A. Pascual-Iserte, Z. Guo and R. Wen, "Efficient Use of Paired Spectrum Bands through TDD Small Cell Deployments," *IEEE Communications Magazine*, vol. 55, no. 9, pp. 210 - 211, 2017.
- [6] 4G Americas, "Understanding 3GPP Release 12 Standards for HSPA+ and LTE-Advanced Enhancements," 3GPP Release 12 Executive Summary, 2015.
- [7] X. CHEN, "Analysis of the Impact of TD-LTE on Mobile Broadband," KTH School of Information and Communication Technology, Stockholm, Sweden, 2013.
- [8] J. Brown and J. Y. Khan, "Performance comparison of LTE FDD and TDD based Smart Grid communications networks for uplink biased traffic," in *IEEE Third International Conference on Smart Grid Communications (SmartGridComm)*, Tainan, Taiwan, 2012.
- [9] Qualcomm, "qualcomm," 2013. [Online]. Available: https://www.qualcomm.com/media/documents/files/fdd-tdd-comparison.pdf. [Accessed 9 Desember 2020].
- [10] A. Z. Yonis, M. F. L. Abdullah and M. F. Ghanim, "LTE-FDD and LTE-TDD for Cellular Communications," in *PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM*, PIERS HANGZHOU, 2012.
- [11] A. Xenakis and F. Foukalas, "A Cross-Layer-Aware FDD/TDD Carrier Aggregation Framework for LTE-A Networks," *Wireless Personal Communications*, p. 1015–1033, 2018.

- [12] Nokia, "asset: nokia corporation," 2015. [Online]. Available: https://onestore.nokia.com/asset/200040. [Accessed 9 Desember 2020].
- [13] H. Holma, A. Toskala and J. Reunanen, LTE SMALL CELL OPTIMIZATION, New Delhi, India: John Wiley & Sons Ltd, 2016.
- [14] P. Pantham and S. Pattaramalai, "Simulation of LTE-Network for Throughput Improving Using FDD and TDD Carrier Aggregation," in 8th International Electrical Engineering Congress (iEECON), Chiang Mai, Thailand, 2020.
- [15] Y. Li, Q. Mu, L. Liu, L. Chen, M. Peng and W. Wang, "Control Channel Design for Carrier Aggregation Between LTE FDD and LTE TDD Systems," in *IEEE 75th Vehicular Technology Conference (VTC Spring)*, Yokohama, Japan, 2012.

PROYEK AKHIR SEMESTER GANJIL|GENAP* TA 20___/20__

Tanggal: 10 Desember	2020	
Kami yang bertanda tan	ıgan dibawah ini:	
CALON PEMBIMBING 1		
Kode : <u>HPT</u> _		
Nama : Hasanah Putri,	S.T.,M.T.	-
CALON PEMBIMBING 2		
Kode :		
Nama :		_
Menyatakan bersedia m	nenjadi dosen pem	nbimbing Proyek Akhir bagi mahasiswa berikut,
NIM	: 6705180109	
Nama	: Riskafian Medika	Imzhagi
Prodi / Peminatan	:TT/ Transmisi Te	elekomunikasi (contoh: MI / SDV)
Calon Judul PA	: Analisis Perence	enaan Jaringan LTE-A Dengan Metode Inter Band Carrier
	Aggregation FDI	D-TDD Di Wilayah Cibitung Pada Small Cells
Dengan ini akan memer Proyek Akhir yang berla		an kewajiban sebagai dosen pembimbing sesuai dengan Aturan
Calon Po	embimbing 1	Calon Pembimbing 2
(Hasanah Pi	utri, S.T.,M.T.	_) ()

CATATAN:

- 1. Aturan Proyek Akhir versi terbaru dapat diunduh dari Portal Dosen » menu "File Repositori" » file "PA TEL-U FIT Pedoman & Template Desember 2013.rar"
- 2. Keputusan akhir penentuan pembimbing berada di tangan Ketua Kelompok Keahlian dengan memperhatikan aturan yang berlaku.
- 3. Pengajuan pembimbing boleh untuk kedua pembimbing sekaligus atau untuk salah satu pembimbing saja

Telkom University Jl.Telekomunikasi No.1, Terusan Buah Batu Bandung 40257 Indonesia

Daftar Nilai Hasil Studi Mahasiswa

NIM (Nomor Induk Hahasiswa)

Dosen Wali : TAR / TENGKU AHMAD RIZA Program Studi : D3 Teknologi Telekomunikasi

Nama : RISKAFIAN MEDIKA IMZHAGI

2018/2019 - GANJIL

· · · · · · · · · · · · · · · · · · ·					
Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1A2	K3 DAN LINGKUNGAN HIDUP	K3 AND ENVIRONMENT	2	АВ	
DTH1B3	MATEMATIKA TELEKOMUNIKASI I	MATHEMATICS TELECOMMUNICATIONS I	3	А	
DTH1C3	DASAR TEKNIK KOMPUTER DAN PEMROGRAMAN	BASIC COMPUTER ENGINEERING AND PROGRAMMING	3	АВ	
DTH1D3	RANGKAIAN LISTRIK	ELECTRICAL CIRCUITS	3	AB	
DTH1E2	BENGKEL MEKANIKAL DAN ELEKTRIKAL	MECHANICAL AND ELECTRICAL WORKSHOP	2	AB	
DTH1F3	DASAR SISTEM TELEKOMUNIKASI	BASIC TELECOMMUNICATIONS SYSTEM	3	А	
DUH1A2	LITERASI TIK	ICT LITERACY	2	AB	
HUH1B2	PENDIDIKAN AGAMA KRISTEN DAN ETIKA	CHRISTIAN RELIGION AND ETHICS	2	А	
	Jumlah SKS	20			
	IPS	3.7			

2018/2019 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1A2	OLAH RAGA	SPORT	2	А	
DTH1G3	MATEMATIKA TELEKOMUNIKASI II	MATHEMATICS TELECOMMUNICATIONS II	3	АВ	

Jumlah SKS	21	
IPS	3.4	

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DTH1H3	TEKNIK DIGITAL	DIGITAL TECHNIQUES	3	AB	
DTH1I3	ELEKTRONIKA ANALOG	ANALOG ELECTRONIC	3	В	
DTH1J2	BENGKEL ELEKTRONIKA	ELECTRONICS WORKSHOP	2	АВ	
DTH1K3	ELEKTROMAGNETIKA	ELECTROMAGNETIC	3	ВС	
HUH1G3	PANCASILA DAN KEWARGANEGARAAN	PANCASILA AND CITIZENSHIP	3	А	
LUH1B2	BAHASA INGGRIS I	ENGLISH I	2	AB	
	Jumlah SKS	21			
	IPS	3.4			

2018/2019 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

2019/2020 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Mata Kuliah Nama Mata Kuliah B. Inggris		Nilai	Status
DTH2A2	BAHASA INGGRIS TEKNIK I	ENGLISH TECHNIQUE I	2	А	
DTH2B3	KOMUNIKASI DATA BROADBAND	BROADBAND DATA COMMUNICATIONS	3	А	
DTH2C2	BENGKEL INTERNET OF THINGS	INTERNET OF THINGS WORKSHOP	2	А	
DTH2D3	APLIKASI MIKROKONTROLER DAN ANTARMUKA	MICROCONTROLLER APPLICATIONS AND INTERFACES	3	А	
DTH2E3	SISTEM KOMUNIKASI	COMMUNICATIONS SYSTEMS	3	АВ	
DTH2F3	TEKNIK TRANSMISI RADIO	RADIO TRANSMISSION TECHNIQUES	3	ВС	
DTH2G3	SISTEM KOMUNIKASI OPTIK	OPTICAL COMMUNICATION SYSTEMS	3	ВС	
DUH2A2	KEWIRAUSAHAAN	ENTREPRENEURSHIP	2	В	
	Jumlah SKS	21			
	IPS		3.4		

2019/2020 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
DMH1B2	PENGEMBANGAN PROFESIONALISME	PROFESSIONAL DEVELOPMENT	2	А	
DMH2A2	KERJA PRAKTEK	INTERSHIP	2	А	
DTH2H3	JARINGAN DATA BROADBAND	BROADBAND DATA NETWORK	3	АВ	
DTH2I3	DASAR KOMUNIKASI MULTIMEDIA	BASIC COMMUNICATION MULTIMEDIA	3	АВ	
DTH2J2	TEKNIK TRAFIK	TRAFFIC ENGINEERING	2	А	
DTH2K3	ELEKTRONIKA TELEKOMUNIKASI	ELECTRONICS TELECOMMUNICATIONS	3	А	
DTH2L3	TEKNIK ANTENNA DAN PROPAGASI	ANTENNA TECHNIQUES AND PROPAGATION	3	АВ	
DTH2M3	SISTEM KOMUNIKASI SELULER	CELLULAR COMMUNICATION SYSTEMS	3	А	
	21				
	IPS		3.79		

2019/2020 - ANTARA

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
	Jumlah SKS				
IPS			0		

2020/2021 - GANJIL

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
UKI2C2	BAHASA INDONESIA	INDONESIAN LANGUAGE	2		
UWI3E1	HEI	HEI	1		
VTI2G3	PENGOLAHAN SINYAL INFORMASI	INFORMATION SIGNAL PROCESSING	3		
VTI2H2	BAHASA INGGRIS TEKNIK II	ENGLISH TECHNIQUES II	2		
VTI2K3	JARINGAN TELEKOMUNIKASI BROADBAND	BROADBAND DATA NETWORKS	3		
VTI3D3	KEAMANAN JARINGAN	NETWORK SECURITY	3		
VTI3E2	CLOUD COMPUTING	CLOUD COMPUTING	2		
Jumlah SKS			16		
IPS			0		

2020/2021 - GENAP

Kode Mata Kuliah	Mata Kuliah	Nama Mata Kuliah B. Inggris	SKS	Nilai	Status
Jumlah SKS			0		
IPS			0		

Jumlah SKS	: 83 SKS		IPK: 3.57
Tingkat III	: 83 SKS	Belum Lulus	IPK : 3.57
Tingkat II	: 81 SKS	Belum Lulus	IPK: 3.59
Tingkat I	: 41 SKS	Belum Lulus	IPK: 3.55

Total SKS dan IPK dihitung dari mata kuliah lulus dan mata kuliah belum lulus. Nilai kosong dan T tidak diikutkan dalam perhitungan IPK.

Pencetakan daftar nilai pada tanggal 11 Desember 2020 02:18:27 oleh RISKAFIAN MEDIKA IMZHAGI