Berechenbarkeit und formale Sprachen

Felix Leitl

26. März 2024

Inhaltsverzeichnis

Turingmaschine
1-Band TM
Deltatabelle
Konfiguration
Begriffe
Programmiertechniken
Endlicher Speicher
Unterprogramme
Spurtechnik
Gödelnummer
Universelle TM
Halteproblem
Allgemeines Halteproblem
Initiales Halteproblem
Reduktion
$L_1 \leq L_2$
$Z_1 \subseteq Z_2$
Nichtdeterministische Turingmaschine
Begriffe
P-NP
Sprachprobleme
Clique
Independent-Set
Coloring
Traveling-Salesman
Vertex-Cover
Binary-Programming
Verifizierer

Turingmaschine

1-Band TM

Turingmaschine $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$:

- ullet Q: endliche Zustandsmenge
- Σ : endliches Eingabealphabet
- Γ : endliches Bandalphabet $\Sigma \subsetneq \Gamma$
- $B: Blank, B \in \Gamma, B \notin \Sigma$
- $q_0: q_0 \in Q$ Startzustand
- F: akzeptierende Endzustände, $F \subseteq Q$
- das Programm $\delta: Q \times \Gamma \to Q \times \Gamma \times \{R, L, N\}$ eine partielle Funktion, wobei es für Endzustände keine Übergänge geben soll
- Zu Beginn steht der Lese-/Schreibkopf auf dem ersten Zeichen der Eingabe
- Eingabe: $w = w_1 w_2 \dots w_n \in \Sigma^*$
- ϵ : leeres Wort
- $L \subseteq \Sigma^*$ ist Sprache über dem Alphabet Σ

Deltatabelle

$$Q = \{q_0, q_1\}, \Sigma = \{0, 1\}, \Gamma\{0, 1, B\}, F = \{q_1\}$$

δ	0	1	$\mid B \mid$
q_0	$(q_0, 0, R)$	$(q_1,1,R)$	-
q_1	-	-	-

Konfiguration

TM M ist in Konfiguration $K = \alpha q \beta$ ($\Gamma^* \times Q \times \Gamma^*$), wobei der Schreib-/Lesekopf auf dem ersten Zeichen von β steht.

Eine direkte Nachfolgekonfiguration von $\alpha q\beta$ ist: $\alpha q\beta \vdash \alpha' q'\beta'$

i—te Nachfolgekonfiguration $\alpha q\beta \vdash K_1 \vdash \cdots \vdash K_{i-1} \vdash \alpha' q'\beta' = \alpha q\beta \vdash^i \alpha q\beta$

Nachfolgekonfiguration: $\alpha q \beta \vdash^* \alpha' q' \beta'$

Begriffe

- akzeptieren: Falls es $\alpha, \beta \in \Gamma^*$ und $q \in F$ gibt mit $q_0x \vdash^* \alpha q\beta$
- L(M): Menge aller von Makzeptierter Eingaben $x \in \Sigma^*$
- entscheidet: M hält mit Eingabe $x \in \Sigma^*$ nach endlich vielen Schritten
- rekursiv aufzählbar:

- $-L\subseteq\Sigma^*$ ist rekursiv aufzählbar, wenn es eine TM M gibt mit L(M)=L
- es gibt eine surjektive Funktion $g:0,1^*\to L$
- entscheidbar/rekursiv:
 - -wenn es eine deterministische 1-Band-TM M gibt, die L entscheidet
 - L und \overline{L} sind rekursiv aufzählbar

Programmiertechniken

Endlicher Speicher

Man merkt sich die Zeichen im Zustand $\Gamma = \Sigma \cup \{B\}, Q = (\{q_0\} \times \Sigma) \cup \{q_0, q_1\}, \text{ Startzustand } q_0, F = \{q_1\}$

Unterprogramme

Wenn man eine TM "programmiert", kann man sagen: Man benutzt ein Unterprogramm um eine bestimmte Aufgabe zu lösen

Spurtechnik

	U	Ν	1		
•	Е	R	L		
•	N	В	G		
	$\begin{pmatrix} U \\ E \\ N \end{pmatrix}$				

Gödelnummer

 $\langle M \rangle$ ist die Gödelnummer (Bauplan von M). Sie ist die Repräsentation der TM Mals natürliche Zahl

Universelle TM

Eine TM \tilde{M} hießt universell, wenn sie sich mit der Eingabe $\langle M \rangle x, x \in \{0,1\}^*$ so verhält, wie M gestartet mit x

Halteproblem

Allgemeines Halteproblem

 $H = \{\langle M \rangle | M \text{ ist deterministische 1-Band-TM, die, gestartet mit Eingabe } w, \text{ hält} \}$

Initiales Halteproblem

 $H_{\epsilon} = \{\langle M \rangle | M$ ist deterministische 1-Band-TM, die, gestartet mit Eingabe $\epsilon, \text{hält} \}$

Reduktion

- Eine Funktion ist berechenbar, wenn es eine TM M_f gibt, für die mit $x \in \{0,1\}^*$ gilt:
 - Ist f(x) definiert, so hält M_f mit der Eingabe x und f(x) steht auf dem Band
 - Ist f(x) undefiniert, so hält M_f gestartet mit x nicht
- Eine Funktion ist total, wenn alle $x \in \{0,1\}^*$ definiert und berechenbar sind

Eine Reduktion ist eine total berechenbare Funktion $f:\{0,1\}^* \to \{0,1^*\}$, für die gilt:

$$x \in L_1 \Leftrightarrow f(x) \in L_2$$

Wir schreiben " $L_1 \leq L_2$ " und sagen " L_1 wird auf L_2 reduziert,

$L_1 \leq L_2$

- L_2 entscheidbar $\Rightarrow L_1$ entscheidbar
- L_2 rekursiv aufzählbar $\Rightarrow L_1$ rekursiv aufzählbar
- L_1 unentscheidbar $\Rightarrow L_2$ unentscheidbar
- L_1 nicht rekursiv aufzählbar $\Rightarrow L_2$ nicht rekursiv aufzählbar

Nichtdeterministische Turingmaschine

Nichtdeterministische TM $M = \{Q, \Sigma, \Gamma, \delta, q_0, F\}$, wobei nur δ anderes ist, als bei einer deterministischen TM. $\delta: Q \times \Gamma \to P(Q \times, \Gamma \times \{R, N, L\})$

Begriffe

• akzeptieren: wenn es eine Rechnung $q_0x \vdash^* \alpha q\beta$ gibt

P-NP

- DTIME $(t(n)) := \{L | \text{ Es gibt eine deterministische } \mathcal{O}(t(n)) \text{-zeitbeschränkte TM, die } L \text{ entscheidet} \}$
- NTIME $(t(n)) := \{L | \text{ Es gibt eine nichtdeterministische } \mathcal{O}(t(n))\text{-zeitbeschränkte TM, die } L \text{ akzeptiert} \}$

Sprachprobleme

Clique

CLIQUE := $\{\langle G, k \rangle | k \in \mathbb{N}, G \text{ ist ein ungerichteter Graph}$ der einen vollständigen Teilgraphen der Größe k enthält $\}$

Independent-Set

IS :=
$$\{\langle G, k \rangle | k \in \mathbb{N}, G = (V, E) \text{ ist ungerichteter Graph,}$$

$$\exists U \subseteq V, |U| = k : \forall u, v \in U : \{u, v\} \notin E\}$$

Coloring

$$\begin{aligned} & \text{COL} := \{ \langle G, k \rangle | G \text{ ist ein ungerichteter Graph und } G \text{ ist } k\text{-färbbar} \} \\ & 3 \text{COL} := \{ \langle G \rangle | G \text{ ist ein ungerichteter Graph und } G \text{ ist } 3\text{-färbbar} \} \end{aligned}$$

Traveling-Salesman

$$\text{TSP} := \{ \langle G, c, k \rangle | \text{ der Graph } G \text{ mit Kantengewicht } c : E \to \mathbb{R}$$
enthält eine Rundreise mit Gewicht $\leq k \}$

Vertex-Cover

$$\mbox{VC} := \{ \langle G, k \rangle | k \in \mathbb{N}, G \mbox{ ist ein ungerichteter Graph} \\ \mbox{und hat eine Knotenüberdeckung der Größe } k \}$$

Binary-Programming

 $\mathrm{BP} := \{\langle A, \vec{b} \rangle | A \text{ ist eine } m \times n\text{-Matrix mit ganzzahligen Einträgen, } \vec{b} \text{ ist ein Vektor mit } m$ ganzzahligen Einträgen und es gibt einen 0-1-Vektor $\vec{x} \in \{0,1\}^n$ mit $A \cdot \vec{x} \leq \vec{b}\}$

Verifizierer

Eine deterministische Turingmaschine V_L heißt t(n)-beschränkter Verifizierer für L, wenn gilt:

- 1. Die Eingaben von V_L sind von der Form $x \# w, w, x \in \{0,1\}^*$
- 2. Die Laufzeit ist in $\mathcal{O}(t(|x|))$
- 3. Für alle $x \in \{0, 1\}^*$:

$$x \in L \Leftrightarrow \exists w : |w| \leq t(|x|)$$
 und V_L akzeptiert $x \# w$

Dieses heißt Zertifikat von w