

Александр Калиниченко

ИНТЕЛЛЕКТУАЛЬНЫЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В МЕДИЦИНЕ

Модуль 2. Методы искусственного интеллекта

Лекция 12. Сверточные нейронные сети

БАЗА ДАННЫХ "MNIST"

База данных MNIST—набор образцов рукописного написания цифр.

База данных является стандартом, предложенным Национальным институтом стандартов и технологий США («Modified National Institute of Standards and Technology») с целью сопоставления методов распознавания изображений с помощью методов машинного обучения

База данных MNIST содержит:

- 60000 изображений для обучения
- 10000 изображений для тестирования

MNIST. ПРЕДСТАВЛЕНИЕ СИМВОЛОВ

Образцы символов были нормализированы, прошли сглаживание и приведены к серому полутоновому изображению размером 28x28 пикселей

MNIST. РЕЗУЛЬТАТЫ ТЕСТИРОВАНИЯ АЛГОРИТМОВ МАШИННОГО ОБУЧЕНИЯ

Тип	Структура	Ошибка (%)
Линейный классификатор	Одноуровневый перцептрон	12
Линейный классификатор	Попарный линейный классификатор	7.6
Нелинейный классификатор	40 РСА + квадратичный классификатор	3.3
Gradient boosting	Обработка остатков на базе признаков Хаара	0.87
Нейронная сеть	2-уровневая сеть	0.7
Метод опорных векторов	Виртуальная система опорных векторов	0.56
Метод k ближайших соседей	K-NN с нелинейной деформацией	0.52
Глубокая нейронная сеть	6-уровневая сеть	0.35
Свёрточная нейронная сеть	6-уровневая сеть	0.27
Свёрточная нейронная сеть	Ансамбль из 35 CNN-сетей	0.23
Свёрточная нейронная сеть	Ансамбль из 5 CNN-сетей, 6-уровней	0.21
Случайное мультимодельное глубокое обучение (RMDL)	30 моделей случайного глубокого обучения (10 CNN, 10 RNN и 10 DNN)	0.18

Средняя ошибка визуального распознавания символов людьми составляет около 2,5 %

СВЕРТОЧНЫЕ НЕЙРОННЫЕ СЕТИ

Свёрточная нейронная сеть — специальная архитектура искусственных нейронных сетей, предложенная Яном Лекуном в 1988 году и нацеленная на эффективное распознавание образов

ЛОКАЛЬНЫЕ ШАБЛОНЫ

Изображение можно разбить на локальные шаблоны, соответствующие некоторым типовым элементам

РАЗЛОЖЕНИЕ ИЗОБРАЖЕНИЯ

- Изображение может быть разложено на элементарные модули, из которых формируются характерные локальные объекты (глаза, уши и т.д.)
- Набор полученных локальных объектов служит основой для принятия решения о принадлежности изображения к определенному классу

ОПЕРАЦИЯ ДВУМЕРНОЙ СВЕРТКИ В ИНС

ШАБЛОН ДЛЯ ВЫДЕЛЕНИЯ ДУГИ

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Visualization of a curve detector filter

СОВПАДЕНИЕ ФРАГМЕНТА С ШАБЛОНОМ

Original image

Visualization of the filter on the image

*

Visualization of the receptive field

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

Pixel representation of the receptive field

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(50*30)+(50*30)=6600 (A large number!)

НЕСООТВЕТСТВИЕ ФРАГМЕНТА И ШАБЛОНА

0	0	0	0	0	0	0
0	40	0	0	0	0	0
40	0	40	0	0	0	0
40	20	0	0	0	0	0
0	50	0	0	0	0	0
0	0	50	0	0	0	0
25	25	0	50	0	0	0

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Visualization of the filter on the image

Pixel representation of receptive field

Pixel representation of filter

Multiplication and Summation = 0

ФИЛЬТР И КАРТА ОТВЕТОВ

Оригинальный вход

Карта ответов, выражает в количественной форме присутствие шаблона фильтра в разных участках

ПРИНЦИП ДЕЙСТВИЯ СВЕРТКИ

• Размер шаблонов, извлекаемых из входных данных,—обычно 3×3 или 5×5

• Глубина выходной карты признаков — количество фильтров, вычисляемых сверткой

ТРЕХКАНАЛЬНАЯ СВЕРТОЧНАЯ ИНС

ЭФФЕКТ ГРАНИЦ И ДОПОЛНЕНИЕ

При использовании шаблона 3x3 размер выходной карты сокращается по сравнению с входным изображением на 2 в каждом из измерений

Сохранения размера изображения можно достичь дополнением исходного изображения одним рядом с каждой стороны

СУБДИСКРЕТИЗАЦИЯ 2×2 (MAX POOLING)

Исходный образец

Субдискретизация с шагом 1

Субдискретизация с шагом 2

БАЗОВАЯ АРХИТЕКТУРА СВЕРТОЧНОЙ СЕТИ

ОДНОМЕРНАЯ СВЕРТКА

Одномерная свертка используется для анализа сигналов и последовательностей (например, текстов)

ПРЕДСТАВЛЕНИЯ ИЗОБРАЖЕНИЯ В СВЕРТОЧНОЙ СЕТИ

Исходное изображение

Четвертый канал первого слоя

Седьмой канал первого слоя

ПЕРВЫЕ СЛОИ СВЕРТКИ

Первые слои действуют как коллекция детекторов контуров. На этом этапе сохраняется почти вся информация, имеющаяся в исходном изображении

ПРОМЕЖУТОЧНЫЕ СЛОИ СВЕРТКИ

По мере продвижения по слоям, представления становятся все более абстрактными, а их визуальная интерпретация все более сложной. Высокоуровневые представления несут все меньше информации об исходном изображении и все больше — о классе

КОНЕЧНЫЕ СЛОИ СВЕРТКИ

Разреженность активаций увеличивается с глубиной слоя: в первом слое все фильтры активируются исходным изображением, но в последующих слоях все больше и больше остается пустых фильтров. Это означает, что шаблон, соответствующий фильтру, не обнаруживается в

ШАБЛОНЫ ФИЛЬТРОВ ИЗ ПЕРВЫХ СЛОЕВ

Фильтры из первых слоев в модели кодируют простые направленные контуры и

цвета

Фильтры промежуточных слоев кодируют простые текстуры, состоящие из комбинаций контуров

и цветов

ШАБЛОНЫ ФИЛЬТРОВ ИЗ ПОСЛЕДНИХ СЛОЕВ

Фильтры в более поздних слоях начинают напоминать текстуры, встречающиеся в естественных изображениях, — перья, глаза, листья

и т. д.

БАЗА ДАННЫХ "IMAGENET"

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - o 1.2 M train
 - 100k test.

База данных **ImageNet** — проект по созданию и сопровождению массивной базы данных аннотированных изображений, предназначенная для отработки и тестирования методов распознавания образов и машинного зрения.

ПРОГРЕССАЛГОРИТМОВ НА "IMAGENET"

