專書報告

Python資料分析之資料清理與準備

組長:陳鈺昕

組員:賴兆信,黃子晏,宋苡瑄,黃天芸

Python for Data Analysis

本書結構

	內容範疇	說明
基礎技能	Python 語言、IPython、Jupyter、NumPy	建立數據分析需要的 Python 程式能力與計算基礎
資料操作	pandas、文件讀寫、清理、合併、分組、 重塑、時間序列	教你用 pandas 高效進行資料清理、轉換與準備
分析與表達	繪圖、案例分析、展示結果	完整演練數據分析流程,並將結果以圖表、 報表或數據模型呈現

此書的總目標

不是教你統計學,也不是教你機器學習,而是教你如何用 Python 建立乾淨、結構良好且可以 被後續分析的數據表

這是一本教你用 Python 和 pandas,從混亂資料中萃取出清晰、可操作知識的實戰指南

標準流程化 讀取→清理→轉換→分析→可視化這一條龍的標準數據處理流程

章節主題:資料清洗與轉換

處理缺失資料		

書內容項目

延伸資料型別

資料轉換

字串操作

類別資料

資料清洗與轉換

本章強調『清洗與轉換』的核心任務包括:

將原始數據中不一致、不完整、不正確或不適合分析的部分,做處理

這裡面分成兩大動作:

清洗(Cleaning):找出並處理缺失值、重複、錯誤、不合理值。

轉換(Transforming):變更資料型態、結構、語意,讓資料適配後續分析。

缺失處理 (Missing Data)

在真實世界資料中,缺失值普遍且結構化,常見於:問卷、醫療紀錄、交易系統、IoT感測器等。

缺失機制	說明	處理建議
MCAR	完全隨機缺失	可刪除樣本
MAR	條件性缺失	模型插補
MNAR	非隨機缺失	應建模處理, 不可直接補值

缺失處理

pandas 從設計之初,即支援:

.isna() / .notna() 缺失檢測

.dropna() / .fillna() 缺失處理

允許橫向與縱向多種策略

可用 df.isna().astype('int') 產生 缺失指標,加入特徵集合以評估缺失本身的預測力。

保留原始特徵 增加缺失指標欄位 讓模型學習「缺失模式」與預測目標的關聯


```
# 處理
X = df.drop('target', axis=1)
X_miss_ind = X.isna().add_prefix('isna_').astype('int')
X_filled = X.fillna(-999)
X_aug = pd.concat([X_filled, X_miss_ind], axis=1)
```

```
      $\displays \text{feature1}$
      $\displays \text{feature2}$
      $\displays \text{isna_feature1}$
      $\displays \text{isna_feature2}$

      $\displays \text{feature2}$
      $\displays \text{isna_feature2}$
      $\displays \text{1}$

      $\displays \text{feature2}$
      $\displays \text{1}$
      $\displays \text{1}$

      $\displays \text{1}$
      $\displays \text{1}$
      $\displays \text{1}$

      $\displays
```

資料轉換 (Data Transformation)

「轉換」的三種動機

正規化:消除輸入異質性(log、Box-Cox)。

闡釋化:將連續量化為語意分區(cut/qcut)。

去偏強化:處理極端值 (Winsorize)。

常見錯誤:

闡釋化錯誤區間:固定寬度 cut 可能導致資訊斷層;建議用qcut 先看分布再微調。

解法:

建議先用 qcut(),根據資料的實際分布切成「每組人數接近」的區間,接著再微調邊界,就能保留資料的結構,又能有語意清楚的分群。

正規化:讓數值在同一個起跑線上

資料裡有些欄位數字很大(如年收入),有些很小(如利率),如果直接拿來做統計或機器學習,會變得不公平。

所以我們會透過像是「取對數(log)」或「Box-Cox轉換」這種方法,

把不同量級的數值拉到同樣尺度下,這樣資料才有「公平的發聲權」。


```
# 取對數後 log以自然數e為底
df['log_income'] = np.log(df['income'])
```

```
      $ 123 income
      $ 123 log_income
      $

      0
      30000
      10.308953

      1
      50000
      10.819778

      2
      100000
      11.512925

      3
      300000
      12.611538

      4
      1000000
      13.815511
```

闡釋化:把數字變成有意義的分類

闡釋化:把數字變成有意義的分類

不是所有的數值都要當連續數字用。

像年齡 18、29、32,雖然是連續,但在分析中我們

更在意的是:

「他是年輕人?中年?還是高齡?」

所以我們會用 cut() 或 qcut() 把這些連續數據分成有意義的區間,

讓模型或人類都能更容易解釋資料的意涵。


```
# 分箱
df['age_band'] = pd.qcut(df['age'], q=3, labels=['young', 'middle', 'old'])
```

延伸型別 (Extension Dtypes)

為什麼 pandas 要引入延伸型別?用 Int64 替代 float64?

原本是整數 1, 2, 3, 因為 None 存在,被強制轉成 float64 對「年齡、次數、排名」這類資料失去語意準確性 NaN 只能用 float 表示,導致型別升級 + 運算誤差風險

```
s1 = pd.Series([1, 2, 3, None]) # 傳統 float64
s2 = pd.Series([1, 2, 3, None], dtype="Int64") # 延伸型 Int64
```

保持原本的「整數」語意不變

None → <NA>: 統一的缺失值表示(非 NaN)

支援 .isna()、.sum()

\$	123 <unnamed></unnamed>	\$
0		1.0
1		2.0
2		3.0
3		NaN
		Hait

\$	123 <unnamed></unnamed>	\$
0		1
1		2
2		3
3		<na></na>

延伸型別不是多個型別,而是讓「有缺值的整數欄位」變得自然、合理、不

中斷!

字串操作 (String Manipulation)

「向量化字串」的威力

相比逐行 for/regex(字串處理正規化),pandas .str 背後是 Cython (非CPython)+ re2,在百萬級資料可快 30~50×。

關鍵範例:多階段解析 E-mail

利用 命名捕獲組 (?P<name>) 直接生成欄位 user/domain。 對缺失值 <NA> 自動傳播,免去特別判段。

三步驟清洗框架

標準化:大小寫、去空白、unicode normalize。

結構拆解:正則 extract → 多欄。

語意比對: groupby('domain').size() 找出主流與異常值。

```
# email #
# email #
# alice@gmail.com
# bob@yahoo.com
# carol@ntu.edu.tw
```

```
email_pat = r"(?P<user>[^@]+)@(?P<domain>[^\.]+)"
parts = df['email'].str.extract(email_pat, expand=True)
df = pd.concat([df, parts], axis=1)
```

```
# email # user # domain #
## domain #
## alice ## gmail
## gmail
## domain ##
```

類別資料 (Categorical Data)

```
效能與語意雙贏像性別(Male / Female)、地區(North / South)、客戶類型(A / B / C)這種只會在幾個選項中出現的欄位,我們就叫它「類別欄位」。這種groupby分析會變得更快,常常可以快上5到10倍以上!
```

像是寫成 Parquet 或壓縮儲存時, 類別型別會用「編號+對照表」的方式壓縮, 能讓檔案縮小 超過 70%!

```
N = 5_000_000
s_obj = pd.Series(np.random.choice(['foo', 'bar', 'baz'], N)) # object array
s_cat = s_obj.astype('category') # category dtype

print(s_obj.memory_usage(deep=True)/1e6) # Object型記憶體用量
print(s_cat.memory_usage(deep=True)/1e6) # Category型記憶體用量

[1]

260.000132
5.000396
```

one-hot encoding 進階優化

對高基數欄位進行頻次截斷:先 value_counts(),只保留 top N,其餘編為 __OTHER__,減少維度爆炸。

透過 sparse=True 生成稀疏矩陣 → 直接餵 scikit-learn/LightGBM。

感謝聆聽