Module MA2341 (Frolov), Advanced Mechanics I Homework Sheet 2

Each set of homework questions is worth 100 marks

Problem 1. Consider a particle of mass m moving on the surface

$$z = k\sqrt{x^2 + y^2 + c^2}, \quad k > 0, \ c > 0$$

in a uniform gravitational field $\vec{F} = \{0, 0, -mg\}$.

- (a) What is the surface $z=k\sqrt{x^2+y^2+c^2},\, k>0$? Use Mathematica to plot the surface for k=c=1.
- (b) Find the Lagrangian of the particle by using the polar coordinates r, ϕ .
- (c) Find the equations of motion of the particle.

Problem 2. Consider a particle of mass m moving on the surface

$$x^{2} + y^{2} + \frac{z^{2}}{\kappa^{2}} = a^{2}, \quad a > 0, \ \kappa > 0$$

in a uniform gravitational field $\vec{F} = \{0, 0, -mg\}$.

- (a) What is the surface $x^2+y^2+\frac{z^2}{\kappa^2}=a^2\,,\quad a>0\,,\;\kappa>0$? Use Mathematica to plot the surface for $a=2\,,\,\kappa=1/2.$
- (b) Introduce the spherical coordinates by using the physics conventions (r, θ, φ) (radial, polar, azimuthal), and draw the corresponding picture.
- (c) Introduce coordinates (ρ, θ, φ) similar to the spherical ones so that the equation of the surface $x^2 + y^2 + \frac{z^2}{\kappa^2} = a^2$, a > 0, $\kappa > 0$ in terms of these coordinates becomes $\rho = a$, and derive an expression for the Lagrangian of the particle in term of these coordinates.
- (d) Find the equations of motion of the particle.

Problem 3. Consider a pendulum of mass m_2 , with a mass m_1 at the point of support which can move on a curve in the vertical xz-plane defined parametrically by the equations x = f(q), z = h(q), where q is a parameter of the curve. Assume that the motion takes place only in the vertical xz-plane. The potential energy of the system is

$$U = m_1 g z_1 + m_2 g z_2 \,,$$

where x_1 and x_2 are the coordinates of the particles.

- (a) Find the Lagrangian of the system.
- (b) Assume that q=s where s is an arc length parameter, simplify the Lagrangian and find the eom.
- (c) Let the curve be a hyperbola:

$$-\frac{x^2}{a^2} + \frac{z^2}{b^2} = 1 \,, \quad z > 0 \,.$$

Introduce any parametrisation of the hyperbola, identify f(q) and g(q), and write the Lagrangian.

Use Mathematica to find an arc length parameter of the hyperbola as a function of your parameter.