GENERAL DESCRIPTION

The TDA1540 is a monolithic integrated 14-bit digital to analogue converter (DAC). It incorporates a 14-bit input shift register with output latches, binary weighted current sources with switches and a reference source.

The IC features an improved switch circuitry which eliminates the need for a deglitcher circuit at the output. This results in a signal-to-noise ratio of typical 85 dB in the audio band.

QUICK REFERENCE DATA

Supply voltages				
pin 4	v_{P1}	typ.	5	V
pin 7	v_{N1}	typ.	-5	V
pin 11	v_{N2}	typ.	-17	V
Signal-to-noise ratio (full scale sine-wave) at analogue output (pin 22)	S/N	typ.	85	dB
Non-linearity at $T_{amb} = -20$ to $+70$ °C		typ.	½ LSB	
Current settling time	t _{cs}	typ.	0.5	μs
Maximum input bit rate at data input (pin 1)	BR _{max}	min.	12	Mbit/s
Maximum clock frequency at clock input (pin 28)	f _{cl max}	min.	12	MHz
Full scale temperature coefficient at analogue output (pin 22)	TC _{FS}	typ.	± 30 · 10 ⁻⁶	K ⁻¹
Operating ambient temperature range	T_{amb}	-20 to + 70		оС
Total power dissipation	P _{tot}	typ.	350	mW

PACKAGE OUTLINES

TDA1540D: 28-lead DIL; ceramic (cerdip) (SOT-135A).

TDA1540P: 28-lead DIL; plastic (SOT-117BE).

FUNCTIONAL DESCRIPTION

The binary weighted current sources are obtained by a combination of a passive divider and a time division concept. Figure 1a gives the diagram of one divider stage. The total emitter current 4 I of the passive divider is divided into four more or less equal output currents.

The output currents of the passive divider are now interchanged during equal time intervals generated by means of a shift register. The average output currents are exactly equal as a result of this operation. A ripple on the output current, caused by a mismatch of the passive divider, is filtered by an a.c. low-pass filter, requiring an external filter capacitor.

The outputs of the dividers are combined to obtain the output currents $I(\bar{l}_1)$, $I(\bar{l}_2)$ and $2I(\bar{l}_3)$ (see Fig. 1b). The current of the most significant bit is generated by an on-chip reference source. A binary weighted current network is formed by cascading the current division stages (see Fig. 2).

The interchanging pulses are generated by an on-chip oscillator and a 4-bit shift register. The binary currents are switched to the current output (pin 22) via diode-transistor switching stages; therefore, the voltage on the output pin must be 0 V \pm 10 mV. The output current can be converted into a voltage by means of a summing amplifier.

Figure 3 represents the data input format, and an application circuit is given in Fig. 4.

Fig. 1a Circuit diagram of one divider stage.

Fig. 1b Waveforms showing output currents I_1 , I_2 and I_3 of Fig. 1a.

Fig. 2 Functional diagram showing cascading of current division stages.

Fig. 3 Format of input signals.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltages

with respect to GND (pin 6)				
at pin 4	V _{P1}	max.	12	V
at pin 7	v_{N1}	max.	-12	V
at pin 11	v_{N2}	max.	-20	V
at pin 4 with respect to pin 11	$V_{P1}-V_{N2}$	max.	32	V
at pin 7 with respect to pin 11	$v_{N1}-v_{N2}$	−1 t	o + 20	V
Total power dissipation	P _{tot}	max.	600	mW
Storage temperature range	T_{stg}	–5 5 to	+ 125	oC
Operating ambient temperature range	T _{amb}	− 25 t	o + 80	оC

CHARACTERISTICS (see application circuit Fig. 4)

T_{amb} = 25 °C; at typical supply voltages; unless otherwise specified

parameter	symbol	min.	typ.	max.	unit
Supply voltages with respect to GND (pin 6)					
at pin 4	V _{P1}	3	5	7	V
at pin 7	V _{N1}	-4.7	- 5	-7	V
at pin 11	V _{N2}	-16.5	-17	-18	V
Supply currents					
at pin 4*	I _{P1}	_	12	14	mA
at pin 7	I _{N1}	_	–20	-24	mA
at pin 11	I _{N2}	-	-11	_13	mA
Power dissipation					
Total power dissipation	P _{tot}	-	350	410	mW
Temperature					
Operating ambient temperature range	Tamb	-20	_	+ 70	°C

^{*} When the output current is ½IFS (½ full scale output current).

14-BIT DAC... SERIAL OUTPUT

parameter	symbol	min.	typ.	max.	unit
Data input DATA (pin 1)					
Input voltage HIGH	VIH	2.0	4	7.0	V
Input voltage LOW	VIL	0	_	0.8	V
Input current HIGH at VIH	1 _{IH}	_	_	50	μА
Input current LOW at VIL	-111	_	-	0.2	mA
Maximum input bit rate	BR _{max}	12	_	-	Mbits/s
Latch enable input LE (pin 2)					
Clock input CP (pin 28)					
Input voltage HIGH	VIH	2.0	-	7.0	V
Input voltage LOW	VIL	0	_	0.8	V
Input current HIGH at VIH	Чн	_	_	50	μΑ
Input current LOW at VIL	-116	-	-	0.2	mA
Maximum clock frequency	fCPmax	12	_	-	MHz
Oscillator (pins 8 and 9)					
Oscillator frequency					
at $C_{8-9} = 820 \text{ pF}$	fosc	100	160	200	kHz
Analogue output Iout (pin 22)					
Output voltage compliance	Voc	-10	=	+ 10	mV
Full scale current	IFS	3.8	4.0	4.2	mA
Zero scale current	± IZS	_	-	100	nA
Full scale temperature coefficient T _{amb} = -20 to + 70 °C	TCFS	_	± 30 × 10 ⁻⁶	_	K-1
Settling time to ± ½LSB					
all bits on or off	t _{cs}	-	0.5	-	μs
Signal-to-noise ratio*	S/N	80	85	-	dB

^{*} Signal-to-noise ratio within 20 Hz and 20 kHz of a 1 kHz full scale sinewave, generated at a sample rate of 44 kHz.

14-BIT DAC... SERIAL OUTPUT

Fig. 4 Application circuit.

PINNING 28 CP DATA data input DATA 2 LE latch enable input 27 i.c. LE 2 3 voltage reference V_{ref1} 4 V_{P1} positive supply Vref1 3 26 i.c. 5 frequency compensation i.c.* VP1 4 25 C10 on-chip operational amplifier 6 GND around 24 C9 i.c. 5 7 negative supply V_{N1} GND 6 23 C8 8 OSC₁ oscillator capacitor 9 OSC2 22 lout VN1 7 voltage reference 10 V_{ref2} TDA1540 OSC1 8 21 C7 negative supply 11 V_{N2} C1 decoupling binary 12 OSC2 9 20 C6 weighted current 13 C2 19 C5 Vref2 10 sources 14 **C3** 15 lref1 VN 2 11 18 C4 current reference sources 16 I_{ref2} C1 12 17 Iref3 17 I_{ref3} 18 C4 C2 13 16 ref2 decoupling binary weighted 19 C5 15 Iref1 C6 current sources C3 14 20 21 **C7** 7Z86851.A 22 analogue output lout 23 decoupling binary **C8** Fig. 5 Pinning diagram. 24 C9 weighted current 25 C10 sources 26 i.c.* voltage reference 27 i.c.* voltage reference CP 28 clock pulse input

^{*} i.c.: internally connected.