TD 2 : Cinétique chimique

1 Décomposition de l'azométhane en phase gazeuse

Dans un récipient de volume fixé, on introduit à 600 K de l'azométhane. Celui-ci se décompose en éthane et en diazote suivant l'équation-bilan :

$$CH_3N_2CH_3(g) = CH_3CH_3(g) + N_2(g)$$
.

L'évolution de la réaction est suivie par manométrie, et une série de mesures a donné la pression partielle p_A en azométhane :

$t (10^3 \mathrm{s})$	0	1,00	2,00	3,00	4,00
$p_A (10^{-2} \text{mmHg})$	$p_0 = 8,21$	5,74	4,00	2,80	1,96

Vérifier que la réaction est d'ordre 1 par rapport au réactif, et calculer sa constante de vitesse. On supposera que tous les gaz ou mélanges de gaz sont parfaits.

2 Temps de demi-réaction et énergie d'activation

La réaction de décomposition totale du pentaoxy de de diazote N_2O_5 a lieu en phase gazeuse. Son équation-bilan s'écrit :

$$N_2O_5(g) = 2 NO_2(g) + \frac{1}{2}O_2(g)$$
.

L'expérience est menée dans un récipient de volume V constant, initialement vide, en amenant du pentaoxyde de diazote de manière à ce que la pression initiale soit p_0 . Tous les gaz seront considérés parfaits, et constituent un mélange parfait de gaz parfaits. La constante des gaz parfaits vaut numériquement $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$.

- 1. On mesure la pression p(t) au cours du temps. On veut évaluer la constante cinétique en mesurant le temps de demi-réaction : quelle doit être la lecture de p sur le manomètre pour ce temps?
- **2.** Le tracé de la courbe $\ln p(N_2O_5)$ en fonction du temps est une droite. En déduire l'ordre de la réaction, puis tracer l'allure de la courbe p = f(t).
- 3. Une première mesure réalisée à $\theta=150\,^{\circ}\mathrm{C}$ permet de mesurer un temps de demi-réaction $t_{1/2}=7.5\,\mathrm{s}$. Une seconde mesure réalisée à $\theta'=100\,^{\circ}\mathrm{C}$ permet de mesurer un temps de demi-réaction $t'_{1/2}=7.0\,\mathrm{min}$. Calculer la constante de vitesse pour ces deux températures.
- 4. Calculer l'énergie d'activation de la réaction, supposée indépendante de la température.

3 Dismutation des ions hypochlorite (ESTP)

En solution aqueuse, les ions hypochlorite ClO peuvent se dismuter selon la réaction totale :

$$ClO^{-}(aq) = \frac{1}{3}ClO_{3}^{-}(aq) + \frac{2}{3}Cl^{-}(aq)$$
.

La vitesse de la réaction r, définie comme la vitesse de disparition des ions hypochlorite ClO $^-$ suit une loi cinétique de second ordre, dont la constante de vitesse est notée k.

- 1. Donner l'équation horaire de la concentration en ions hypochlorite.
- **2.** On provoque cette réaction dans une solution contenant initialement des ions hypochlorite à la concentration $c_0 = 0.10 \,\mathrm{mol} \cdot \mathrm{L}^{-1}$. À $T = 343 \,\mathrm{K}$, la constante de vitesse de la solution est : $k = 3.1 \cdot 10^{-3} \,\mathrm{mol}^{-1} \cdot \mathrm{dm}^3 \cdot \mathrm{s}^{-1}$. Au bout de combien de temps, noté t_{30} , aura-t-on obtenu la disparition de 30% des ions hypochlorite à cette température?
- **3.** L'énergie d'activation de cette réaction au voisinage des températures considérées ici est $E_a = 47 \,\mathrm{kJ} \cdot \mathrm{mol}^{-1}$. Quel serait, à $T' = 363 \,\mathrm{K}$ le temps t'_{30} nécessaire pour obtenir le même taux d'avancement de 30 % à partir de la même solution initiale?

Donnée : constante des gaz parfaits $R = 8.31 \,\mathrm{J\cdot K^{-1}\cdot mol^{-1}}$.