# Unlocking the Power of ncRNA: Predicting Pathogenic SNPs for Next-Generation Treatments



Andranik Durgaryan Camille Porter Nasibeh Mohammadi Ryan Shun-Yuen Kwan Zoe Hu



## What is non-coding RNA (ncRNA)?

Does not code for proteins but regulates gene expression.



Why it matters:

ncRNAs help control

processes like gene

regulation, splicing,

and tumor suppression.

ncRNA is a hidden
layer of genetic
regulation that could
unlock new
treatments.

### Why Focus on ncRNA in Cancer?

ncRNA, can uncover new biomarkers and therapeutic targets that are missed by traditional protein-coding gene-based approaches.

ncRNA variants can influence cancer progression in ways that protein-coding mutations cannot fully explain.





### What are SNPs?

SNP (Single Nucleotide Polymorphism) is a change in a single base pair in the DNA sequence. Example:

Original: AAGCCTA

SNP Variant: AAGCTTA

Some SNPs can be pathogenic (disease-causing), while others may have no effect.

### The Challenge: Predicting Pathogenic SNPs in ncRNA



- Cancer treatments are often not personalized, leading to poor outcomes for some people.
- ncRNA mutations are understudied compared to protein-coding mutations.
- Predict which SNPs are pathogenic and personalize cancer treatment.





### Our Solution



- 1: Deep Learning for ncRNA Analysis
  - Using AI to assess how SNPs affect ncRNA structure and function.
  - RNA-FM model: Encodes ncRNA sequences into features that capture both sequence and evolution information.

2: Focus on Pathogenic SNPs



### How It Works: Predicting Pathogenic SNPs

### We used data from:

- ncRNA-eQTL: SNPs linked to gene expression and cancer survival.
- · dbSNP: A large database of known SNPs.
- Rank genes based on how many pathogenic SNPs are present in a patient's ncRNA.
  - Biomarker-based stratification helps personalize treatment decisions for cancer patients.



### Identifying New Drug Targets in ncRNA

- SNPs in ncRNA disrupt its secondary structure, changing the loops and effecting the function.
- · These structural changes are druggable regions, ideal for targeted therapies.
- RNA-FM helps identify these
   vulnerabilities by predicting the RNA structure.





### Mocked Results

### Various RNA secondary structure patterns



- a. hairpin loop
- b. internal loop
- c. bulge loop
- d. multibranched loop
- e. stem
- f. pseudoknot

(http://ludwig-sun2.unil.ch/~bsondere/nussinov/)

|                    | Cancerous SNP | Regular SNP |
|--------------------|---------------|-------------|
| Hairpin Loop       | 10            | 18          |
| Internal Loop      | 15            | 22          |
| Multibranched Loop | 11            | 20          |
| Stem               | 40            | 21          |
| Pseudoknot         | 30            | 19          |

This is what we hope the results will look like: the cancerous SNPs are in structurally significant parts of the RNA. We will examine regular SNPs as a negative control, and hopefully they will be evenly distributed over all RNA structures.



### Conclusion: Transforming Personalized Cancer Treatment

- Our solution predicts pathogenic SNPs in ncRNA to guide personalized cancer treatments.
- Better understanding of ncRNA's role in cancer helps optimize therapy and improve patient outcomes.
- Using ncRNA variants to develop more precise,
   tailored next generation treatments.

