THE DEVELOPMENT OF A DRUM IDENTIFIER AND TRANSCRIBER

Louis Larsen
Dr. Adam Finkelstein

AUTOMATIC DRUM TRANSCRIPTION

Figure 1. An Audio Waveform Turned into Drum Sheet Music

Audio File to Symbolic Representation

Sheet Music or MIDI File

Differentiate Noise-Based Instruments

PARTS OF A DRUM SET

Figure 2. Most Important Parts of a Drum Kit. Adapted from "A Review of Automatic Drum Transcription" by Wu et al, 2018, IEEE

RELATED WORK

- Onset & Frames
 (Callender et al., 2020)
- DT Ensemble (Vogl et al., 2018)

Figure 3. Spectrograms for drum sounds. Adapted from "Deep Learning Methods for Drum Transcription" by R. Vogl, 2018, Nov, Computational Perception.

RELATED WORK

- Seq2Seq (Hawthorne et al., 2021)
- hFT-Transformer
 (Toyama et al., 2023)
- MT3 (Gardener et al., 2022)

Figure 4. Generic Encoder-Decoder Architecture. Adapted from "Sequence to Sequence Piano Transcription with Transformers" by Hawthorne et al., 2021, ISMIR.

TO WHAT EXTENT CAN A TRANSFORMER-BASED MODEL ASSIST IN THE TRANSCRIPTION OF DRUM SET AUDIO?

DATASET - E-GMD

444 45,537

22

Hours of Drum Set Audio

Total Sequences Instrument Mappings

DATASET - IMST

2

104

3

Hours of Drum Set Audio Total Sequences Instrument Mappings

MODEL STRUCTURE

Figure 5. Flowchart for the structure of the model.

SPECTROGRAM INPUT

Figure 6. Example of Spectrogram Input. Left is unmodified. Right is square-rooted for visualization.

MODEL STRUCTURE

Figure 7. More Detailed Flowchart of the Model Architecture. Adapted from "Automatic Piano Transcription with Hierarchical Frequency-Time Transformer" by Toyoma et al., 2023, ISMIR

CHALLENGES

Figure 8. A GPU Server Room

Overfitting Tests

Training ProcessingPower

Multi-GPU Training

RESULTS - LOSS

Figure 9. Shows Training and Validation Loss per Epoch Number

Figure 10. Shows Classification Scores per Epoch Number

Figure 11. Shows Onset Scores per Epoch Number

Figure 12. Shows Onset with Offset Scores per Epoch Number

Figure 13. Shows Onset with Offset and Velocity Scores per Epoch Number

RESULTS - EVALUATION ON E-GMD

83.28 86.02 83.67 80.86

Class F1 Score (%) F1 Score (%)

Onset

Onset w/ Offset F1 Score (%)

Onset w/ Offset & Velocity F1 Score (%)

RESULTS - COMPARISON ON E-GMD

MODEL	ONSET F1 (%)	VELOCITY F1 (%)
My Model	86.02	83.11
Onset & Frames	83.40	61.70
DT Ensemble	64.98	_

RESULTS - COMPARISON WITH E-GMD

Figure 14. Shows F1 Onset Score per Drum Hit. Blue is My Model. Orange is Onset & Frames. Green is DT Ensemble.

LIMITATIONS

- Reliance on Isolated Drum Set Audio
- Comparison with IMST

MODEL	ONSET F1 (%)
My Model	77.90
Onset & Frames	85.72
DT Ensemble	91.49

CONCLUSION

Figure 15. A Drum Set Midi File

Model shows promise

Highest F1 Scores
 Achieved on E-GMD

Creative Applications

FUTURE WORK

Increase F1 Scores on IMST

• Real-Time Application

Figure 15. A Person Playing a Drum Set

ACKNOWLEDGEMENTS

Dr. Adam Finkelstein

Mentor David Braun

Tensordock

Professors at Princeton