

Практика по алгебре

3 семестр, преподаватель Демченко О. В. Записал Костин $\Pi.A.^1$

 $^{^{1}}$ Данный документ неидеальный, прошу сообщать о найденных недочетах вконтакте (можно присылать скрины неточностей с указанием билетов)

Содержание

1	Teo	рия групп	3
	1.1	Жордановы формы, 03.09.2019	3
	1.2	Собственные вектора, 10.09.2019	3
	1.3	Жордановы матрицы, 17.09.2019	3
	1.4	В ожидании кр, 24.09.2019	5
		Комутаторы и комутанты, 01.10.2019	6
		1.5.1 Действие группы на множество	7
	1.6	Комутаторы и комутанты, 15.10.2019	7
		1.6.1 Евклидовы пространства	8
	1.7	, 22.10.2019	9
		, 29.10.2019	10
	1.9	, 05.11.2019	10
	1.10	Квадратичные формы, 12.11.2019	12

1 Теория групп

1.1 Жордановы формы, 03.09.2019

y_{TB}

Пусть
$$A \in M_n(\mathbb{C})$$
, $U \in GL_n(\mathbb{C}) = \{U \in M_n(\mathbb{C}) : |U| \neq 0\}$
Сопряжение матрицы A с помощью U: $A \longmapsto U^-1AU$

Теорема (Жордана, матрич. форма)

$$\forall A\exists U: U^{-1}AU = J$$

Пусть $U^{-1}AU=J,\,V^{-1}AV=I$ - совпадают с точностью до перестановки жардановых блоков

Пример

$$A_1 \in M_n(K), A_2 \in M_m(K)$$

$$\begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix} \begin{pmatrix} A_2 & 0 \\ 0 & A_1 \end{pmatrix}$$

С помощью какой матрицы можно поулчить сопряжением другую

Теорема (Жордана, операт. форма)

Пусть $L \in \mathcal{L}(V)$ (оператор на V), V - конечномерное пр-во над \mathbb{C} . Тогда $\exists \{e_1,...,e_n\}$ (жарданов базис) - базис V. $[L]_e = J$

Единственность: если есть два базиса, то матрицы можно получить перестановкой

—— тут не хватает чего-то

1.2 Собственные вектора, 10.09.2019

———- что-то пропущено

1.3 Жордановы матрицы, 17.09.2019

Пример

$$A \in M_n(\mathbb{C})$$

$$X^2 = A = C^{-1}JC$$

Пример
$$J=inom{\lambda}{0}$$
, $Y^2=J,$ $Y=inom{\sqrt{\lambda}}{0}$, ? - из уравнения

Как найти Ј и С?

1) Находим все ссобственные числа матрицы A Если все с.ч. равны, то J без единичек

Если одно собственное число а) диагонализируема $\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$

б) блоки 2 и 1
$$\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$$
 в) $\begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$

Пример

Найдём, сколько собственных вектор-столбцов

Первая матрица:
$$\begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ \lambda x_2 \\ \lambda x_3 \end{pmatrix} \Rightarrow \begin{cases} \lambda x_1 = \lambda x_1 \\ \lambda x_2 = \lambda x_2 \\ \lambda x_3 = \lambda x_3 \end{cases}$$

 $x_1, x_2, x_3 \in R$ - три л.н. переменные

Для второго решение:
$$\begin{pmatrix} \lambda x_1 \\ 0 \\ \lambda x_3 \end{pmatrix}$$
 - 2 собственных вектор-столбца

Пример

Пусть у нас матрица 4*4, 2 собственных л.н. столбца (два блока)

$\mathbf{y}_{\mathbf{T}\mathbf{B}}$

G,H - изоморфны, G - комм. $\Rightarrow H$ - комм.

Док-во

 $\exists \varphi: G \to H: \varphi$ - биекция и $\varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$, кроме того, $g_1g_2 = g_2g_1$ $\forall g_1, g_2 \in G$, применим φ к последнему выражению $h_1h_2 = \varphi(g_1)\varphi(g_2) = \varphi(g_1g_2) = \varphi(g_2g_1) = \varphi(g_2)\varphi(g_1) = h_2h_1$

$$X^2 = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$

Дз: G,\dot{H} - изоморфны, G - цикл. \Rightarrow H - цикл.

Решение

Грппа G - цикл $\Leftrightarrow \exists g \in G : \forall g' \in G \quad \exists k \in \mathbb{Z}$

$$G$$
 - цикл., $G\cong H\Rightarrow \exists \varphi:G\to H$

$$\forall h' \in H \quad \exists g' \in G : h' = \varphi(g') = \varphi(g^k) = \varphi(\underbrace{g...g}) = \underbrace{\varphi(g)...\varphi(g)}_k = \underbrace{h...h}_k = h^k$$

Чтобы доказать, что две группы не изоморфны, можно доказать что у одной из них свойство выполняется, а у другой нет

Пример

- 1. $\mathbb{Z}/_{6\mathbb{Z}}$, D_3 коммуннитативность
- 2. $\mathbb{Z}/_{4\mathbb{Z}}$, $\mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}}$ цикличность
- $3. \ \mathbb{Z}/_{8\mathbb{Z}}, \ \mathbb{Z}/_{4\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}}$ дз
- 4. $\mathbb{Z}/_{4\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}}, \, \mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}}$ порядки элементов
- 5. \mathbb{Z} , $\mathbb{Z} \times \mathbb{Z}$ цикличность?

1.4 В ожидании кр..., 24.09.2019

Пример

$$A \in M_n(\mathbb{C}), \quad A = C^{-1}JC, \quad C \in_n(\mathbb{C})$$

$$J = \begin{pmatrix} \lambda & 1 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda \end{pmatrix}$$

- 1) находим все с.ч.
- 2) для каждого с.ч. находим л.н. уравнение
- 3) решаем систему линейных уравнений ...ЗДЕСЬ ЧТО-ТО ПРОПУЩЕНО, СМ. ТЕТРАДЬ

Пример

$$D_3 = \{e, l, r, s_1, s_2, s_3\}$$

$$H_1 = \{e, r, l\}$$

$$H_2 = \{e, s_1\}$$

- 1) Разбить по подгруппам, по левым и правым классам. Какая нормальная, какая нет?
- 2) Найти g,G. Чтобы произведение не лежало в H_2

Дз:
$$D_4 = \{...\}$$
, $H_1 = \{e, s_2\}$, $H_2 = \{e, r^2\}$
Дз: $K(D_3)$ - найти коммутант для D_3

1.5 Комутаторы и комутанты, 01.10.2019

Пример

Дз (прошлое):
$$G = D_4$$
 $H = \{e, r^2\}$ $H \triangleleft G$ $G/_H$

Дз (новое):

1. Чему изоморфно $G/_H$? $\mathbb{Z}/_{4\mathbb{Z}}$, $\mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}}$

2.
$$|G| = 4 \Rightarrow \begin{bmatrix} G \cong \mathbb{Z}/_{4\mathbb{Z}} \\ G \cong \mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}} \end{bmatrix}$$

Пример (я не знаю, что это было)

Пример

1.
$$\mathbb{C}^* \to \mathbb{R}^* \quad (z \mapsto |z|)$$

2.
$$\mathbb{C}^* \to \mathbb{C}^* \quad (z \mapsto z^4)$$

Что получается при применении основной теоремы о гомоморфизме? (найти ядро образ, факторизовать, д-ть, что изморфна образу)

Решение

1.
$$\mathbb{C}^*/_{\{Z \in \mathbb{C}: |z|=1\}} \cong \mathbb{R}^*_{>0}$$

2. ДЗ

Пример

ДЗ:
$$\mathrm{GL}_n(\mathbb{R})/_{\{A\in\mathrm{GL}_n(\mathbb{R}):\ \det A=\pm 1\}}\cong$$
?
Как это сделать? Нужно найти $\varphi:\mathrm{GL}_n(\mathbb{R})\to H$ - гомоморфизм: $\ker \varphi=\{A\in_n(\mathbb{R}):\ \det A=\pm 1\}$

Решение

$$\varphi(A) = |\det A|$$

$$\varphi(A) = (\det A)^2$$
 ДЗ: $\operatorname{GL}_n(\mathbb{R})/_{\{A \in \operatorname{GL}_n(\mathbb{R}): \det A = \pm 1, \pm i\}} \cong ?$

1.5.1 Действие группы на множество

Пример

 D_4

Написать разбиение этого множества из 16 эл-ов на орбиты. Сколько орбит?

Решение А

1.6 Комутаторы и комутанты, 15.10.2019

Пример

Грани кубика красят в три цвета, сколькими способами это можно сделать?

Док-во Группа - группа всех самосовмещений куба, сохраняющих ориентацию, она действует на множестве всех раскрасок фиксированного куба. Орбита - множество всех раскрасок фиксированного куба, которые можно получить его поворотом. Элементы G:

- 1. е 1 шт.
- 2. Поворот отн. оси, соединяющей центры противоположных граней на 90 градусов 6 шт.
- 3. ... на 180 3 шт.
- 4. Поворот отн. диагонали на 120 градусов 8 шт.
- 5. Поворот отн. оси, соединяющей центры противоположных рёбер на 180 градусов 6 шт.

$$\Rightarrow |G| = 24$$

Число орбит
$$= \frac{1}{|G|} \sum_{g \in G} |M^g|$$

$$M^g = \{ m \in M : gm = m \}$$

$$=\frac{1}{24}\left(3_{1.}^{6}+\frac{4\text{ одн. цв.}}{6\cdot 3}^{3}+\frac{2\text{ пр. одн. цв.}}{3\cdot 3}^{4}+8\cdot 3^{2}+6\cdot 3^{3}\atop 4.\right)=57$$

ДЗ 1: Аналогично, но красим в два цвета рёбра

ДЗ 2 (а): Есть ожерелье из 8 бусинок. Сколькими способами можно составить ожерелье из рубинов и алмазов

ДЗ 2 (б): если ограничение: должно быть 3 белых шарик и 5 черных

1.6.1 Евклидовы пространства

Пример

 $\mathbb{R}[x]_3$. Является ли это евклидовым пространством?

1.
$$(f,g) = f(0)g(0) + f(1)g(1)$$

2.
$$(f,g) = f(0)g(0) + f(1)g(1) + 2f(2)g(2)$$

3.
$$(f,q) = f(0)q(0) + f(1)q(1) + f(2)q(2) + 3f(3)f(3)$$

4.
$$(f,q) = f(0)q(0) + f(1)q(1) + f(2)q(2) - f(3)f(3)$$

Док-во

1. Не является, потому что для $f = x^2 - x$

$$(f,f)=0$$
 - не работает

- 2. не является
- 3. является
- 4.

Пример

Составить матрицу Грамма для в

Базис:
$$e_11$$
, $e_2 = x$, $e_3 = x^2$, $e_4 = x^3$ $(x^2 - 1, x - 1)$

Док-во

a

1.7 ..., 22.10.2019

ДЗ: ожирелье из 8 бусин: 4б, 4ч

Пример

$$\mathbb{R}[x]_3, \quad (f,g) = \int_0^1 fg dx$$

Провести ортоганализацию Грамма-Шмидта в базисе $1, x, x^2, x^3$

<u>Решен</u>ие

$$e_1=1$$
 - готово
$$e_2=x+\lambda\cdot 1\quad (e_2,\ 1)=0$$
 Значит $\int\limits_0^1(x+\lambda)\cdot 1=\frac{x^2}{2}+\lambda x\Big|_0^1=\frac{1}{2}+\lambda=0\Rightarrow \lambda=-\frac{1}{2}$ Должно быть $(e_2,\ e_2)=1\Rightarrow\int\limits_0^1(x^2-2x\frac{1}{2}+\frac{1}{4})=\frac{1}{3}-2\frac{1}{4}+\frac{1}{4}=\frac{1}{12}$ $\Rightarrow e_2=\frac{x-\frac{1}{2}}{\frac{1}{12}}=12x-6$ $e_3=x^2+\lambda e_1+\mu e_2\quad (e_3,\ e_2)=0\quad (e_3,\ e_1)=0$ Значит $\int\limits_0^1$ ДЗ: Найти $e_3,\ e_4$

Пример

$$\mathbb{R}[x]_3, \quad (f,g) = \int_0^1 fg dx$$

 $\mathrm{B}\ V = <1,\ x>$ найти $\mathrm{pr}_V\,x^3$

Решение

По прошлой задаче
$$e_1=1,\ e_2=12x-6$$
 Значит $\operatorname{pr}_V x^3=(x^3,\ 1)\cdot 1+(x^3,\ 12x-6)\cdot (12x-6)==\int\limits_0^1 x^3+(\int\limits_0^1 12x^4-6x^3)(12x-6)=\frac{1}{4}+(\frac{12}{5}+\frac{3}{2})(12x-6)=$ ДЗ: Проверить, что $u-pr_Vu\bot v$

Пример

$$U = \mathbb{R}[x]_2, \quad (f,g) = \int_0^1 fg dx$$

В
$$V=<1,\ x>,\ Lf=f'$$
 найти L^*

Решение

ДЗ: досчитать

Пример

Был пример
$$V = M_n(\mathbb{R})$$
, там $(A, B) = \operatorname{Tr} AB^T$ Найти в $V = M_n(\mathbb{C})$

Решение

Проверим
$$(A, B) = \operatorname{Tr} A \overline{B}^T$$

$$\operatorname{Tr} \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \begin{pmatrix} \overline{a_2} & \overline{b_2} \\ \overline{c_2} & \overline{d_2} \end{pmatrix} = \operatorname{Tr} \begin{pmatrix} a_2 & b_2 \\ c_2 & d_2 \end{pmatrix} \begin{pmatrix} \overline{a_1} & \overline{b_1} \\ \overline{c_1} & \overline{d_1} \end{pmatrix}$$
$$\operatorname{Tr} \lambda \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \begin{pmatrix} \overline{a_2} & \overline{b_2} \\ \overline{c_2} & \overline{d_2} \end{pmatrix} = \lambda \operatorname{Tr} \begin{pmatrix} a_1 & b_1 \\ c_1 & d_1 \end{pmatrix} \begin{pmatrix} \overline{a_2} & \overline{b_2} \\ \overline{c_2} & \overline{d_2} \end{pmatrix}$$

ДЗ: на дом

1.8 ..., 29.10.2019

ДЗ: Есть 2 оси и два угла. Нужно сделать повороты и найти итоговый поворот и понять, вокруг какой оси. Подсказка: в д-ве мы предъявляем ось, значит мы должны найти собственный вектор с с.ч. 1, т.е. нужно найти матрицу с базисом, например, в качестве осей. А можно выбрать базис для первого, потом для второго. А можно для обоих сразу. Пишем матрицу повортов и должны матрицы привести к одному базису. Когда найдем собственный вектор, берем ортоганальное дополнение. Смотрим, на какой угол поворачивает матрица. И нужно не забыть если это не стандартный базис, вернуть в стандартный базис.

1.9 ..., 05.11.2019

ЧТО-ТО ПРОПУЩЕНО

Задача

$$V = M_2(\mathbb{R})$$
$$(A, B) = \operatorname{Tr} AB^T$$
$$LA = A^T$$

Выяснить, про оператор L:

- 1. Самосопряженный?
- 2. Ортогональный....?

Решение

1. L - самосопр.
$$\Leftrightarrow$$
 < $LA, B > = < A, LB >$

< $LA, B > = \text{Tr}(A^T B^T)$

< $A, LB > = \text{Tr}(AB)$

 $(AB)_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

 $(A^T B^T)_{ij} = \sum_{k=1}^{n} a_{ik}^T b_{kj}^T = \sum_{k=1}^{n} a_{ik} b_{kj}$

 $\text{Tr}(AB) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{in} b_{nj}$

 $\text{Tr}(A^T B^T) = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{ki} b_{ik} = \sum_{k=1}^{n} \sum_{i=1}^{n} a_{ki} b_{ik}$

 $\Rightarrow L$ - самосопр.

2. L - ортогон. т.и. т.т, когда $\|A\| = \|LA\|$

$$||A||^2 = \langle A, A \rangle = \text{Tr}(AA^T) = \text{Tr}(A^TA) = \langle LA, LA \rangle = ||LA||^2$$

Выбрать произвольный ОНБ, считаем матрицу оператора (симм, ортог). Ищем базис из с.в.

ДЗ:

У самосопр. и ортог. оператора, есть базис, состоящий из собственных векторов. В нем матрица будет диагональная. На диагонали вещественные числа, по модулю равные ± 1

Задача

Напишите не диагональную матрицу 2*2, которая положительно определена

Решение

$$(x_1 \quad x_2) \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 2x_1^2 + x_1x_2 + x_1x_2 + 2x_2^2 = x_1^2 + x_2^2 + (x_1 + x_2)^2 \stackrel{\forall x \neq 0}{>} 0$$

Задача

Напишите не диагональную матрицу 2*2, которая положительно полуопределена, не положительно определена. Убедиться в этом по всем критериям

Решение

$$\begin{pmatrix} ? & ? \\ ? & ? \end{pmatrix}$$

ДЗ: Найти ту матрицу Р из док-ва

1.10 Квадратичные формы, 12.11.2019

Задача

Написать положительно определенную матрицу от двух переменных с отрицательными коэффициентами

Решение

$$A(x,y) = \begin{pmatrix} x^2 & -y^2 \\ -y^2 & x^2 \end{pmatrix}$$

Удовлетворяет критерию Сильвестра

Задача

Преобразовать к каноническому виду ортоганальным прелбразованием $2x_1^2 + x_2^2 - 4x_1x_2 - 4x_2x_3$

<u>Напоминание</u>

$$S(x) = \sum_{\substack{a_{ij} \\ b_{ij} = b_{ji}}} a_{ij} x_i x_j$$

$$b_{ij} = \begin{bmatrix} a_{ij}, & i = j \\ \frac{a_{ij}}{2}, & i > j \\ \frac{a_{ji}}{2}, & j > i \end{bmatrix}$$

Решение

$$\begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & -2 \\ 0 & -2 & 0 \end{pmatrix}$$
 - не пол. опр. по критерию Сильвестра

Найдем собственные числа этой матрицы:

$$\begin{vmatrix} 2-\lambda & -2 & 0 \\ -2 & 1-\lambda & -2 \\ 0 & -2 & 0-\lambda \end{vmatrix} \Rightarrow \lambda_1 = 1 \quad \lambda_2 = -2 \quad \lambda_3 = 4$$

Подставим в какноническую форму:

$$Q(x) = x_1^2 - 2x_2^2 + 4x_3^2$$

Чтобы найти соответствующее линейное преобразование, нужно найти собственные вектора:

$$\begin{cases} (2-1)x + -2y = 0 \\ -2x + (1-1)y - 2z = 0 \end{cases} \Rightarrow (x, y, z) = (,,)$$
$$-2y - z = 0$$

$$\begin{cases} (2+2)x + -2y = 0 \\ -2x + (1+2)y - 2z = 0 \end{cases} \Rightarrow (x, y, z) = (,,)$$
$$-2y + 2z = 0$$

$$\begin{cases} (2-4)x + -2y = 0 \\ -2x + (1-4)y - 2z = 0 \end{cases} \Rightarrow (x, y, z) = (,,)$$
$$-2y - 4z = 0$$