

(6)	(a)		ъ.	1			^	1	1	13		-		13)=	7	1100	0 1	~		01 02 03		+	3						
= }	ds		-	1	0	0	1	}		3	}							F	_		-									
	F,	nd	th	e	n	res	ce		11	1	O	1	O	0			1	1 -1	0	1	0	0	1		1	0	1	107-1	1	Ó
					I				1	0	1	o	1	0	1	>	0	-1	1	-1	1	0	1	-	0	1	-1	7	-1	0
	11	-	_	+	+	-			U	1	1	υ	J	1	_		0	1	1	10	Ö	1	-	-	10	9	2	,	<u> </u>	1
-	110	N.	+	141	. 4	72	1/2	1	3		1	1/2			_				-					-					-	
=>	d	_	1	4	V	12 1	12	1	1	=		1/2 5/2 1/2									1	0	0	1/2	1/2 1/2 1/2	-1/2				_
-	la		+	1/2	2 1/	21	12	1	3		1	1/2									0	1	0	1/2	Vz	1/2			_	_
			1			1				1	1		_				_			_\	0	0	1	- 'h	1/2	72	_		_	-
		+		-	1	+	-				1	+	-	1		1	1	1	ol	3	\ .		11	ho	va	h	h	re	u	0
_		+-	Cear	0	113	20	- 5	æ	ac	16		9	30	101	4		1	1	1	1	1	h	av	e.	12		1+	ere	10	h
-	-	+-	+		-	+	+	+	+	-	\top	+	+			to	O	1	1	3		0	4	EIV	st	f	nd	ing	1	he
-		1	-	_	-	+	+	+	+	1	+	+	1	T	1	-						IN	120	se	m	tr	X	a	2	
-	-	-		-		-	+	+	1	1	1	1	1		T	1		1										eg		

Problem 2 het the matrix form and perform a Gaussian Climination. $\begin{pmatrix} 2 & -2 & \alpha & | & -2 \\ 4 & -4 & | & 12 & | & -4 \\ 2 & \alpha & o & | & 2 \end{pmatrix} \implies \begin{pmatrix} 2 & -2 & \alpha & | & -2 \\ o & o & | & 12 - 2\alpha & | & 0 \\ 2 & \alpha & o & | & 2 \end{pmatrix}$ $2x_1 - 2x_2 + \alpha x_3 = -2$ $(\alpha+2) n_2 - \alpha n_3 = 4$ $(12-2\alpha) n_3 = 0$ for $\alpha = 6$, we have as to be a free variable (any value mill satisfy its equation), so we have infinitely many solutions. $\alpha = -2$ leads to a contradiction between equations, so it has no solutions. Everything else has a unique solution. (I solution)

(3)(b) By way of contradiction, assume A, B are non-singular.

This means that there does not exist a V such that AV = 0 or BV = 0 aside from $V \neq 0$. ABV = 0 => AZO. Since A is non-singular for $\vec{V} \neq 0$, if $\vec{\omega} = \vec{B}^{\dagger}$ and if $\vec{B} = 0$, $\vec{B}\vec{V} = 0$ but $\vec{V} \neq 0$ Hence, contradiction. =) Therefore, either A or B is singular.