p8105_hw1_rh3195

Ruijie He

2023-09-23

Problem 1

```
library ("moderndive")
data("early january weather")
#variables in dataset
variables <- colnames(early_january_weather)</pre>
variables
   [1] "origin"
                       "year"
                                     "month"
                                                   "day"
                                                                  "hour"
## [6] "temp"
                       "dewp"
                                     "humid"
                                                   "wind dir"
                                                                  "wind_speed"
## [11] "wind_gust"
                                     "pressure"
                                                   "visib"
                       "precip"
                                                                  "time hour"
#Size of dataset
num_rows <- nrow(early_january_weather)</pre>
num_cols <- ncol(early_january_weather)</pre>
num_rows
## [1] 358
num_cols
## [1] 15
mean_temp <- mean (early_january_weather$temp)</pre>
mean_temp
```

[1] 39.58212

• There are 15 variables in this dataset. Some important variables including year, month, day, and time_hour that tells the time. The wind direction, wind speed, and wind-gust that is related to the wind. Also the "temp" tells temperature and "humid" tells the humidity. It has 358 rows and 15 columns. The mean temperature is 39.58 degree. # Making scatterplot of temp (y) vs. time_hour (x)

```
library (ggplot2)

ggplot(early_january_weather, aes(x = time_hour, y = temp, color = humid)) +
  geom_point() +
  labs(x = "Time_hour", y = "Temp", color = "Humid") +
  ggtitle("Scatterplot of time_hour vs. Temperature") +
  theme_minimal()
```

Scatterplot of time_hour vs. Temperature

##Describe pattern of scatterplot##

• The scatterplot shows that the two variables time_hour and tempeartue are having a positive association. Because as the temperature increases as the time_hour do. And the data points on this plot are assembled closely nearly to a linear line, which illustrating a linear relationship.

```
ggsave("scatterplot_of_time_vs_temperature.pdf", width = 6, height =4)
```

Problem 2

```
library (tidyverse)

## -- Attaching core tidyverse packages ------- tidyverse 2.0.0 --

## v dplyr 1.1.3 v readr 2.1.4

## v forcats 1.0.0 v stringr 1.5.0

## v lubridate 1.9.2 v tibble 3.2.1
```

```
## v purrr
           1.0.2 v tidyr 1.3.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
my df =
 tibble(
   vec numeric = rnorm (10),
  vec_logical = vec_numeric > 0,
  vec_char = c("A", "B", "C", "D", "E", "F", "G", "H", "I", "J"),
  vec_factor = factor(
    sample(c("L0", "L1", "L2"), 10, rep = TRUE)
  )
  )
print (my_df)
## # A tibble: 10 x 4
##
     vec_numeric vec_logical vec_char vec_factor
##
           <dbl> <lgl> <chr>
                                    <fct>
## 1
          0.811 TRUE
                                    L1
                            Α
         0.352 TRUE
## 2
                          В
                                    L1
## 3
         0.726 TRUE
                           C
                                    L2
## 4
       -0.825 FALSE
                          D
                                    L1
## 5
        0.535 TRUE
                          Ε
                                   L2
       -1.28 FALSE
                          F
## 6
                                    L1
                          G
## 7
       -2.00 FALSE
                                    LO
## 8
                          Н
                                    L2
       -0.784 FALSE
         -0.710 FALSE
## 9
                            Ι
                                    L2
         0.0976 TRUE
                                    LO
## 10
                            J
mean_numeric = mean(pull(my_df, vec_numeric))
mean_logical = mean(pull(my_df, vec_logical))
mean_char = mean(pull(my_df, vec_char))
## Warning in mean.default(pull(my_df, vec_char)): argument is not numeric or
## logical: returning NA
mean_factor = mean(pull(my_df, vec_factor))
## Warning in mean.default(pull(my_df, vec_factor)): argument is not numeric or
## logical: returning NA
print (mean_numeric)
## [1] -0.3079283
print (mean_logical)
## [1] 0.5
```

```
print (mean_char)

## [1] NA

print (mean_factor)
```

[1] NA

• The variable of vec_numeric and vec_logical have mean. Character variable and factor variable do not generates mean because they are not numeric number or logical.

```
as.numeric(pull(my_df, vec_logical))
as.numeric(pull(my_df, vec_char))
as.numeric(pull(my_df, vec_factor))
```

• The vec_logical is converted to binary datapoints where 0 is false and 1 is true. The vec_factor also get translated to 3 categories based on given lavels. The only variable that is unable to convert to numeric is the vec_char. This helps me to understand what happens when trying to take the mean. It tells that mean should be numeric numbers.