

a ∈ Ou (a) Ta, Q ∈ Z[X] 1. Zeigen oder widerlegen Sie, dass $(\sqrt[4]{19} + e^{\frac{i\pi}{48}} + 17)(\frac{14\sqrt{17}}{2})$ eine ganzalgebraische (dl. ox guna) Sei K := Q(√7) und α = 1 + √7 − √7². Berochnen Sie Norm und Spur von α. 3. Sei K ein algebraischer Zahlkärper und $\alpha \in \mathcal{O}_K$. Zeigen Sie, dass α genau dann eine Einheit in O_K ist, wenn $N_{KN_0}(\alpha) = \pm 1$ ist. 4x2-4x+ 1 = 17 $4x^2 - 4x - 16 = 0$ [:4 T_{u,Q} = x²-x-4 = Z[X] =) x=Ou

 Sei K ein algebraischer Zahlkorper und a₁,...,a_n ∈ O_E eine Basis von K/Q, deren Eiemente alle gam sind Zeigen Sei Falkodie Obadrainsaute d(a₁,...,a_n) ∈ Z quadrathei ist, sa ist a₁,...,a_n, doe Genzheitsbasis von K/Q. 2. Sei $K=\mathbb{Q}(\alpha)$, wohei $\alpha^3-\alpha-1=0$ gelte. Bestimmen Sie eine Ganzheitsbasis von \mathcal{O}_K über $\mathbb{Z}.$

$$\alpha^2 \cdot \alpha^2 = \alpha^4 = \alpha^3 \cdot \alpha$$

$$= (\alpha + 1) \cdot \alpha$$

$$= \alpha^2 + \alpha$$

 $(1, \alpha, \alpha^2)$ int. Bons $\sim m$ $\mathbb{Q}(\alpha)$ $\mathbb{I}_{\alpha, \alpha} = X^3 (X - 1)$

 $d(1, \alpha, \alpha^2) = \begin{cases} Tr(1/\alpha) Tr(1/\alpha) & Tr(1/\alpha^2) \\ T & Tr(1/\alpha) & Tr(1/\alpha^2) \\ Tr(1/\alpha^2) & Tr(1/\alpha^2) & Tr(1/\alpha^2) \end{cases}$

 $= (12 + 0 + 0) - (8 + 27 + 0) = \alpha + 1 + \alpha^{2}$ $= -23 \text{ it qualifies!} \qquad \alpha.6$

 $= \frac{1}{x^2 + \alpha^2}$ $= \frac{$

 Sei K = Q(α), wobei α³ − α − 1 = 0 gelte. Bestimmen Sie eine Ganzheitsbasis von $\mathcal{O}_{\mathbb{X}}$ über \mathbb{Z} .

 Bestimmen Sie die Primiéealfaktorisierungen der von den Primzahlen 2 Dsowie 23 erzeugten Ideale in \mathcal{O}_N (inkl. der Erreuger der Ideale).

3.) OK = Z[A]

PROPOSITION 6.18. Setted $\alpha \in \mathbb{Z}$, $A = \mathbb{Z}[\alpha]$, p on normine primare at $P = \prod_{\alpha \in \mathbb{Z}} \in [\mathbb{Z}/2\mathbb{Z}][X]$ is relative, marked p du polymère, minimal de α and \mathbb{Q} .

(ii) if $Q \in (\mathbb{Z}/q\mathbb{Z})[X]$ of an distant d: P, of $x : \widetilde{Q} \in \mathbb{Z}[X]$ of an polynomial our Q mod p=Q, when $\mathbb{E}(Q):=pA+Q(n)A$ cut we shill ste A continued p on an algorithm she show that

(a) L'application Q → N(Q) est une équetion cuber factours arotheres de P et hôteux de A confessoit p, elle subspirit Q(Q' ⇔ N(Q') ⊆ N(Q').

Air A'esseon A/HQS of seweeple 5 (Z/pZ)(X)/IQS. To perticular, on a $(A/10Q)(-p^{A_{1}(Q)})$

 $(5, \alpha^{2} + 2\alpha + 3)^{-32}$ $(7, \alpha^{2} + 3)^{-32}$ (7,

 $\frac{-(3\chi^2-9\chi)}{8\chi-1}$

 $\frac{-(8 \times ^{-2+})}{23=0} \qquad 46=0$ $\Rightarrow \qquad (23), (23, \alpha - 3) \quad \text{cd} \quad (23, \alpha^2 + 3\alpha + 8)$

h(x) = 50 = 0 h(x) = 54 + 45 + 4 $h(x) = (-4)^{2} + (-4) + 4 = -440$

" E" IN MH

Q(0) \$ 0 Q(1) = Q(2) \$ 0

O(3) \$0

(23) = J1. J2 (23) = 32

Blatt 4 13,00 X + 5 = X2 / E ZZ Alle Ideals, shertening Ox = ZIO. Wir winer, dam Ox sides his 2 enthalts

Aufgabe 3 (10 Punkte)

Sei $K=\mathbb{Q}(\sqrt{-5})$ mit Ganzheitering $\mathcal{O}_K=\mathbb{Z}[\sqrt{-3}]$. Wir wissen, dam \mathcal{O}_K nicht faktoriell ist, da zum Beispiel 6 = 2 - 3 = (1 + $\sqrt{-3}(1-\sqrt{-5})$ zeigt, dass wir zwei vorschiedene nicht äquisakente Zerlegungen von 6 sis Prochöt irreduzibler Elemente

Zeigen Sie, dass $(2) = \mathbf{p}_2^2$, $(3) = \mathbf{p}_2\mathbf{p}_3$, $(1 + \sqrt{-5}) = \mathbf{p}_1\mathbf{p}_2$, $(1 - \sqrt{-5}) = \mathbf{p}_1\mathbf{p}_3$ mit den Idenken $\mathbf{p}_1 = (2, 1 + \sqrt{-5})$, $\mathbf{p}_2 = (3, 1 + \sqrt{-5})$, $\mathbf{p}_3 = (3, 1 - \sqrt{-5})$ gift.