diwali-sales-analysis-using-python

July 19, 2024

1 DIWALI SALES ANALYSIS

1.0.1 Import python libraries

```
[1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt # visualizing data
%matplotlib inline
import seaborn as sns
```

1.0.2 Import csv file

```
[2]: df = pd.read_csv('Diwali Sales Data.csv', encoding= 'unicode_escape')

[3]: df.shape
```

[3]: (11251, 15)

```
[4]: df.head()
```

[4]:		User_ID	Cust_name	${\tt Product_ID}$	Gender	Age	Group	Age	Marital_Status	
()	1002903	Sanskriti	P00125942	F		26-35	28	0	
1	1	1000732	Kartik	P00110942	F		26-35	35	1	
2	2	1001990	Bindu	P00118542	F		26-35	35	1	
3	3	1001425	Sudevi	P00237842	М		0-17	16	0	
4	4	1000588	Joni	P00057942	М		26-35	28	1	

	State	Zone	Occupation	Product_Category	Orders	\
0	Maharashtra	Western	Healthcare	Auto	1	
1	Andhra Pradesh	Southern	Govt	Auto	3	
2	Uttar Pradesh	Central	Automobile	Auto	3	
3	Karnataka	Southern	Construction	Auto	2	
4	Gujarat	Western	Food Processing	Auto	2	

```
Amount Status unnamed1
0 23952.0 NaN NaN
1 23934.0 NaN NaN
```

```
2 23924.0 NaN NaN
3 23912.0 NaN NaN
4 23877.0 NaN NaN
```

[5]: df.head(15)

[5]:		User_ID	Cust name	e Product_	ID	Gender	Age	Gro	oup	Age	Marital_	Status	\
	0	1002903	Sanskrit			F	J	26-	-	28	_	0	
	1	1000732	Kartil	x P001109	42	F		26-	-35	35		1	
	2	1001990	Bindı	ı P001185	42	F		26-	-35	35		1	
	3	1001425	Sudev	i P002378	42	М		0-	-17	16		0	
	4	1000588	Jon	i P000579	42	М		26-	-35	28		1	
	5	1000588	Jon	i P000579	42	М		26-	-35	28		1	
	6	1001132	Ball	x P000180	42	F		18-	-25	25		1	
	7	1002092	Shivang	i P002734	42	F			55+	61		0	
	8	1003224	Kusha			М		26-	-35	35		0	
	9	1003650	Ginny	y P000311	42	F		26-	-35	26		1	
	10	1003829	Harshita		42	М		26-	-35	34		0	
	11	1000214	Kargati	s P001191	42	F		18-	-25	20		0	
	12	1004035	Elijal	n P000803	42	F		18-	-25	20		1	
	13	1001680	Vasude			М		26-	-35	26		1	
	14	1003858	Can	P002937	42	М		46-	-50	46		1	
			State	Zone		Οςςι	ıpati	ion	Pro	duct_	Category	Orders	\
	0	Maha	arashtra	Western		Hea]	Lthca	are			Auto	1	
	1	Andhra	Pradesh	Southern			Go	ovt			Auto	3	
	2	Uttar	Pradesh	Central		Auto	omobi	ile			Auto	3	
	3	Ka	arnataka	Southern		Consti	ructi	ion			Auto	2	
	4		Gujarat	Western	Fo	od Prod	cessi	ing			Auto	2	
	5	${\tt Himachal}$	Pradesh	Northern	Fo	od Prod	cessi	ing			Auto	1	
	6	Uttar	Pradesh	Central			Lawy				Auto	4	
	7	Maha	arashtra	Western		IT	Sect	tor			Auto	1	
	8	Uttar	Pradesh	Central			Go	ovt			Auto	2	
	9	Andhra	Pradesh	Southern			Med	dia			Auto	4	
	10		Delhi	Central		I	Banki	ing			Auto	1	
	11		Pradesh				Reta	ail			Auto	2	
	12	Andhra	Pradesh	Southern		IT	Sect	tor			Auto	2	
	13	Andhra	Pradesh	Southern		Auto	omobi	ile			Auto	4	
	14	Madhya	Pradesh	Central		Hospi	itali	ity			Auto	3	
		Amount	Status	unnamed1									
	0	23952.00	NaN	NaN									
	1	23934.00	NaN	NaN									
	2	23924.00	NaN	NaN									
	3	23912.00	NaN	NaN									
	4	23877.00	NaN	NaN									
	5	23877.00	NaN	NaN									

```
6
    23841.00
                   NaN
                               NaN
7
                   NaN
                               NaN
          NaN
8
    23809.00
                   NaN
                               NaN
9
    23799.99
                   NaN
                               NaN
10 23770.00
                   NaN
                               NaN
    23752.00
                   {\tt NaN}
                               NaN
11
12
    23730.00
                   NaN
                               NaN
    23718.00
13
                   NaN
                               NaN
14
                               NaN
          {\tt NaN}
                   {\tt NaN}
```

[6]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 11251 entries, 0 to 11250
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	User_ID	11251 non-null	int64
1	Cust_name	11251 non-null	object
2	Product_ID	11251 non-null	object
3	Gender	11251 non-null	object
4	Age Group	11251 non-null	object
5	Age	11251 non-null	int64
6	Marital_Status	11251 non-null	int64
7	State	11251 non-null	object
8	Zone	11251 non-null	object
9	Occupation	11251 non-null	object
10	Product_Category	11251 non-null	object
11	Orders	11251 non-null	int64
12	Amount	11239 non-null	float64
13	Status	0 non-null	float64
14	unnamed1	0 non-null	float64

dtypes: float64(3), int64(4), object(8)

memory usage: 1.3+ MB

1.0.3 Drop unrelated/blank columns

```
[7]: df.drop(['Status', 'unnamed1'], axis=1, inplace=True)
```

1.0.4 Check for null values

```
[8]: pd.isnull(df).sum()
```

```
Age Group
                           0
                           0
      Age
      Marital_Status
                           0
                           0
      State
      Zone
                           0
      Occupation
                           0
      Product_Category
                           0
      Orders
                           0
      Amount
                          12
      dtype: int64
     1.0.5 Drop null values
 [9]: df.dropna(inplace=True)
     1.0.6 Change data type
[10]: df['Amount'] = df['Amount'].astype('int')
[11]: df['Amount'].dtypes
[11]: dtype('int32')
[12]: df.columns
[12]: Index(['User_ID', 'Cust_name', 'Product_ID', 'Gender', 'Age Group', 'Age',
             'Marital_Status', 'State', 'Zone', 'Occupation', 'Product_Category',
             'Orders', 'Amount'],
            dtype='object')
[13]: # describe() method returns description of the data in the DataFrame (i.e.
       ⇔count, mean, std, etc)
      df.describe()
Γ13]:
                  User_ID
                                     Age Marital_Status
                                                                Orders
                                                                               Amount
      count 1.123900e+04
                           11239.000000
                                            11239.000000 11239.000000
                                                                        11239.000000
     mean
             1.003004e+06
                              35.410357
                                                0.420055
                                                              2.489634
                                                                         9453.610553
      std
             1.716039e+03
                              12.753866
                                                0.493589
                                                              1.114967
                                                                         5222.355168
     min
             1.000001e+06
                              12.000000
                                                0.000000
                                                              1.000000
                                                                           188.000000
                                                0.000000
      25%
             1.001492e+06
                              27.000000
                                                              2.000000
                                                                          5443.000000
      50%
             1.003064e+06
                              33.000000
                                                0.000000
                                                              2.000000
                                                                         8109.000000
      75%
             1.004426e+06
                              43.000000
                                                1.000000
                                                              3.000000
                                                                        12675.000000
             1.006040e+06
                              92.000000
                                                1.000000
                                                              4.000000
                                                                         23952.000000
     max
[14]: # use describe() for specific columns
      df[['Age', 'Orders', 'Amount']].describe()
```

```
[14]:
                      Age
                                 Orders
                                                Amount
      count 11239.000000
                           11239.000000
                                         11239.000000
     mean
                35.410357
                               2.489634
                                           9453.610553
      std
                12.753866
                               1.114967
                                           5222.355168
                12.000000
                               1.000000
                                           188.000000
     min
                27.000000
      25%
                               2.000000
                                           5443.000000
      50%
                33.000000
                               2.000000
                                          8109.000000
      75%
                43.000000
                               3.000000
                                         12675.000000
                92.000000
                               4.000000
                                         23952.000000
     max
```

2 Exploratory Data Analysis

2.0.1 Gender

```
[15]: # plotting a bar chart for Gender and it's count

ax = sns.countplot(x = 'Gender',data = df)

for bars in ax.containers:
    ax.bar_label(bars)
```



```
[16]: # plotting a bar chart for gender vs total amount

sales_gen = df.groupby(['Gender'], as_index=False)['Amount'].sum().

sort_values(by='Amount', ascending=False)

sns.barplot(x = 'Gender',y= 'Amount', data = sales_gen)
```

[16]: <Axes: xlabel='Gender', ylabel='Amount'>

From above graphs we can see that most of the buyers are females and even the purchasing power of females are greater than men

2.0.2 Age

```
[17]: ax = sns.countplot(data = df, x = 'Age Group', hue = 'Gender')

for bars in ax.containers:
    ax.bar_label(bars)
```


[18]: <Axes: xlabel='Age Group', ylabel='Amount'>

From above graphs we can see that most of the buyers are of age group between 26-35 yrs female

2.0.3 State

[19]: <Axes: xlabel='State', ylabel='Orders'>

[20]: <Axes: xlabel='State', ylabel='Amount'>

From above graphs we can see that most of the orders $\mathcal E$ total sales/amount are from Uttar Pradesh, Maharashtra and Karnataka respectively

2.0.4 Marital Status

```
[21]: ax = sns.countplot(data = df, x = 'Marital_Status')
sns.set(rc={'figure.figsize':(7,5)})
```

```
for bars in ax.containers:
    ax.bar_label(bars)
```


[22]: <Axes: xlabel='Marital_Status', ylabel='Amount'>

From above graphs we can see that most of the buyers are married (women) and they have high purchasing power

2.0.5 Occupation

```
[23]: sns.set(rc={'figure.figsize':(20,5)})
ax = sns.countplot(data = df, x = 'Occupation')

for bars in ax.containers:
    ax.bar_label(bars)
```


[24]: <Axes: xlabel='Occupation', ylabel='Amount'>

From above graphs we can see that most of the buyers are working in IT, Healthcare and Aviation sector

2.0.6 Product Category

```
[25]: sns.set(rc={'figure.figsize':(20,5)})
ax = sns.countplot(data = df, x = 'Product_Category')

for bars in ax.containers:
    ax.bar_label(bars)
```



```
sns.set(rc={'figure.figsize':(20,5)})
sns.barplot(data = sales_state, x = 'Product_Category',y= 'Amount')
```

[26]: <Axes: xlabel='Product_Category', ylabel='Amount'>

From above graphs we can see that most of the sold products are from Food, Clothing and Electronics category

[27]: <Axes: xlabel='Product_ID', ylabel='Orders'>


```
[28]: # top 10 most sold products (same thing as above)

fig1, ax1 = plt.subplots(figsize=(12,7))
df.groupby('Product_ID')['Orders'].sum().nlargest(10).

sort_values(ascending=False).plot(kind='bar')
```

[28]: <Axes: xlabel='Product_ID'>

