MCE4101 Robotic Engineering

Assignment 2

Due: 29 July 2021

Todsayad T 6114215

Narong Aphiratsakun, D.Eng

Assumption University Faculty of Engineering

Q1. The 3 links RPP robot is shown.

a) Obtain the forward kinematic <u>equation</u> T_3^0 with given DH table. Where d_1 is link offset.

b) Given $d_1 = 1$, $\theta_1 = 0^\circ$, $d_2 = 1$ and $d_3 = 2$, obtain transformation matrix T_3^0 .

c) Given $d_1 = 1$, $\theta_1 = 0^\circ$, $d_2 = 1$ and $d_3 = 2$, obtain end point location P_3 .

Link	a _i	α_i	di	ą
1	0	0	d ₁ (offset)	\mathcal{E}_{i}^{ullet}
2	0	-90°	d_2^{\bullet}	0
3	0	0	d_3^{\bullet}	0

*: denote variables

Links
$$\theta$$
 d a c 1 θ d 1 0 0 0 2 0 θ 0

$$\alpha) \perp \beta = \forall \forall \forall \forall \exists$$

$$\theta_1 = 0^{\circ} d_1 = 1 d_2 = 1 d_3 = Q$$

$$C)Pend = T_3^0 P_0$$

$$\begin{bmatrix}
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix}$$

$$P_{\text{end}} = T_3^0 P_0$$

Q2.

- a). Obtain the forward kinematic <u>equation</u> for the 2 links Cartesian manipulator using **DH** convention. Use link variables as d_1 and d_2 .
- b). Find the transformation matrix and P position for $d_1 = 1.5$ and $d_2 = 2$.

$$\begin{array}{c} a)T_{2}^{0} = A_{1}A_{2} \\ = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & d_{2} \\ 0 & -1 & 0 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$d_1 = 1.5 \quad d_2 = 2$$

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & -1 & 0 & 1.5 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix} =
\begin{bmatrix}
0 \\
0 \\
0 \\
1
\end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$$

Q3.

- a). Obtain the forward kinematic <u>equation</u> for the 3 links articulated (RRR) robot using **DH** convention. Where a_2 and a_3 are length of link 2 and 3 respectively. d1 is link offset. Use joint variables as θ_1 , θ_2 and θ_3 .
- b). Find the transformation matrix and P position for θ_1 =90°, θ_2 =0°, θ_3 = 0°, a_2 = 2, a_3 = 1.5 and d_1 = 3.

c). Find the transformation matrix P position for θ_1 =0°, θ_2 =30°, θ_3 = -20°, a_2 = 2, a_3 = 1.5 and d_1 = 3.

Q4.

- a). Obtain the forward kinematic <u>equation</u> for the 3 links articulated (RRR) robot using **DH** convention. Where L_1 , L_2 and L_3 are length of link 1, 2 and 3 respectively. Use joint variables as θ_1 , θ_2 and θ_3 .
- b). Find the transformation matrix and P position for θ_1 =90°, θ_2 =0°, θ_3 = 0°, L_1 = 1, L_2 = 2 and L_3 = 3.
- c). Find the transformation matrix and P position for θ_1 =0°, θ_2 =90°, θ_3 = 0°, L_1 = 1, L_2 = 2 and L_3 = 3.

 $Q_4 \Omega) T_3^0 = A_1 A_2 A_3$

cos(th1)*cos(th2)*cos(th3) - cos(th1)*sin(th2)*sin(th3), - cos(th1)*cos(th2)*sin(th3) - cos(th1)*cos(th3)*sin(th1), L1*cos(th1) + L2*cos(th1)*cos(th2) + L3*cos(th1)*cos(th2)*cos(th3) - L3*cos(th1)*sin(th2)*sin(th3)]

cos(th2)*cos(th3)*sin(th1) - sin(th1)*sin(th2)*sin(th3), - cos(th3)*sin(th1)*sin(th2), -cos(th1), L1*sin(th1) + L2*cos(th2)*sin(th1) + L3*cos(th2)*cos(th3)*sin(th1) - L3*sin(th1)*sin(th2)*sin(th3)]

cos(th2)*sin(th3) + cos(th3)*sin(th2), cos(th2)*sin(th3) - sin(th2)*sin(th3), 0,

L2*sin(th2) + L3*cos(th2)*sin(th3) + L3*cos(th3)*sin(th2)]

0, 0, 1]

