Notes

The pumping lemma for regular languages

Sigrid Ewert

April 23, 2020

We'll usually use the lemma on Page 78 and not the one on Page 72.

Consider the lemma on Page 78. Consider the following languages:

- 1. $L_1 = \{0^i 1^i \mid i \ge 0\}$ (Page 84)
- 2. $L_2 = \{x \in \{0, 1\}^+ \mid n_0(x) = n_1(x) \ge 1\}$
- 3. $L_3 = \{x \in \{0,1\}^+ \mid n_0(x) \ge n_1(x) \ge 1\}$
- 4. $L_4 = \{x \in \{0,1\}^+ \mid n_0(x) > n_1(x) \ge 1\}$

1 Remember the following points ...

1.1 \dots regarding x

As is stated on Page 81, we have to choose x very carefully. Remember ...

- 1. $x \in L$. For L_1 , choosing $x = 1^n 0^n$ would be pointless. For L_2 , it would be a good choice.
- 2. x must always contain n as a superscript. For L_1 and L_2 , choosing $x=0^{100}1^{100}$ would be pointless.
- 3. $|x| \ge n$. For L_1 , choosing $x = 0^{n/10} 1^{n/10}$ would be pointless, because the sum of the superscripts is less than n. So would $x = 0^{\text{trillion}} 1^{\text{trillion}}$, because we don't know what n is.
- 4. Choose x to be as simple as possible. For L_1 , choosing $x = 0^{2n}1^{2n}$ might work, but is more complicated than necessary. Even $x = 0^{n+1}1^{n+1}$ is more complicated than necessary. Rather use $x = 0^n1^n$. In the case of L_2 , even though you may choose x such that the 0's and 1's are mixed, as in $x = (01)^n$, this will complicate your proof. Rather use $x = 0^n1^n$ or $x = 1^n0^n$.

5. Use as few different variables in x as possible. For example, for L_1 , don't write

$$x = 0^n 1^p$$
, where $p = n$,

or, even worse

$$x = 0^k 1^p$$
, where $k = p$ and $k + p \ge n$.

Write $x = 0^n 1^n$.

6. The superscripts must be as close to each other as possible. For example, for L_3 , choose $x = 0^n 1^n$, even though $x = 0^{n+1} 1^n$ is in L_3 . For L_4 , choose $x = 0^{n+1} 1^n$, even though $x = 0^{n+2} 1^n$ is in L_4 .

1.2 ... regarding m

Remember $m \geq 0$.

In some proofs you can use either m=0 or m>0 to complete the proof. In some proofs, only m>0 would work. In others, only m=0 would work. It all depends on the language and on your choice of x.