Data Science for Physicians (DS4P)

Peter Higgins 2018-06-05

Contents

1	Prerequisites	5
2	Introduction	7
3	Starting Out with R and RStudio	13
4	Importing Your Data	15
5	Data Collection	17
6	Checking, Validating, And Exploring your Data	19
7	Data Types	2 1
8	Data Wrangling with Tidyr and Dplyr	23
9	Graphic Summaries for a Single Variable with ggplot	25
10	Graphic Summaries for a Single Variable with ggplot	27
11	Graphic Summaries for Two or More Variables – ggplot2	29
12	Descriptive Data for Two or More Variables	31
13	Presenting your Results in a report with RMarkdown	33
14	Reproducibility in Your Research	35
15	Statistical inference	37
16	Study Design	39
17	Sample Size and Power	41
18	Sources of Bias	43

4	CONTENTS
---	----------

19 Study Designs	45
20 One variable, single group	47
21 One variable, two groups	49
22 One variable, Multiple groups	51
23 Linear Regression	53
24 Sharing Models with Shiny	55
25 Logistic Regression	57
26 Meta-Analysis	59

Prerequisites

Thank you for giving this e-book a try. This is designed for physicians or others analyzing health data who are interested in pursuing this field using the R language. We will assume that:

- you have access to a computer
- that you have access to the internet
- that you can download the current version of R, and
- that you have downloaded a current version of Rstudio.

1.0.1 To Install R:

- Open an internet browser and go to https://www.r-project.org.
- Click the "download R" link in the middle of the page under "Getting Started."
- Select a CRAN location (a mirror site) and click the corresponding link.
- Click on the "Download R for Windows" link at the top of the page.
- Click on the "install R for the first time" link at the top of the page.
- Click "Download R for Windows" and save the executable file somewhere on your computer. Run the .exe file and follow the installation instructions.
- Now that R is installed, you need to download and install RStudio.

1.0.2 To Install RStudio:

- Go to http://www.rstudio.com and click on the "Download RStudio" button.
- Click on "Download RStudio Desktop."
- Click on the version recommended for your system (Windows, Mac, Linux), and save the downloaded file. Run the file and follow the installation instructions.

This is a book written in **RMarkdown**.

Each Rmd file contains one and only one chapter, and a chapter is defined by the first-level heading #.

To compile this example to PDF, you need XeLaTeX. It is recommended that you install the TinyTeX package (which includes XeLaTeX): https://yihui.name/tinytex/.

Introduction

There are many books about Data Science. Why does the world need another one, particularly one targeting physicians?

- There is a lot of health care data
- There are a lot of interesting questions in health care
- There are particular and challenging issues in doing data analysis with PHI (Protected Health Information)

Syllabus: Data Science for Physicians (DS4P)

- Instructor: Peter Higgins, MD, PhD, MSc (CRDSA), Professor of Internal Medicine
- Office Hours: MSRB One 6510
- In-person class time
 - MSRB One 6510, Thursday evenings 6:30-8:30 PM

2.0.1 Course Description and Objectives

2.0.1.1 Description

A practical introduction to data collection and security, data cleaning, statistical methods and computational tools needed to make sense of data, and methods for reporting and sharing your findings. This course is not a traditional introductory statistics courses in that computing plays a more central role than mathematics and a higher emphasis is placed on "thinking with data." Topics include

- secure HIPPA-compliant data collection
- data cleaning and validation
- data visualization
- data wrangling
- confidence intervals
- hypothesis testing, and
- regression The course has no mathematics or computer science prerequisites.

2.0.1.2 Objectives

- 1. Have students engage in the data/science research pipeline in as faithful a manner as possible while maintaining a level suitable for novices.
- 2. Foster a conceptual understanding of statistical topics and methods using real clinical data whenever possible, and simulation/resampling to support teaching concepts of inference.
- 3. Use a flipped classroom model by incorporating online learning for new concepts, with limited face-to-face time for real-time problem-solving
- 4. Introduce best practices for reproducible research and collaboration.
- 5. Develop statistical literacy by, among other ways, tying in the curriculum to actual clinical data, demonstrating the importance statistics and computing plays in advancing medicine

2.0.1.3 Topics

Roughly speaking we will cover the following topics (a more detailed outline is found below:

- 1. Introduction and Tools (R, RStudio, and R Markdown)
- 2. Data Import, and Handling
- 3. Data Collection
- 4. Checking, Validating, And Exploring your Data
- 5. Data Types
- 6. Data Wrangling with Tidyr and Dplyr
- 7. Graphic Summaries for a Single Variable ggplot package
- 8. Descriptive Data for a Single Variable
- 9. Graphic Summaries for Two or More Variables ggplot2
- 10. Descriptive Data for Two or More Variables
- 11. Presenting your Results in a report with RMarkdown
- 12. Statistical inference
- 13. Study Design
- 14. Sample Size and Power
- 15. Sources of Bias
- 16. Study Types
- 17. One variable, single group
- 18. One variable, two groups
- 19. Multiple groups
- 20. Linear Regression
- 21. Reporting results interactively with Shiny
- 22. Logistic Regression
- 23. Meta-Analysis

2.0.1.4 Learning Resources

- E-Textbooks: Open Intro Statistics, at www.openintro.org
- E-Books on R These are at different levels:

Level: Absolute Beginner Textbook: R Basics

Goal: Set up R and RStudio on a laptop, introduce the concept of an IDE

Link:

Level: New to R & Statistics

Textbook: Modern Dive Goal: Learn basics of Data Management and visualization, introduction to hypothesis testing and statistical modeling

Link:

Level: Comfortable with R

Textbook: Hands-On R Programming

Goal: Link:

Level: Ready to Understand More Textbook: R for Data Science

Link:

• Software:

- Local laptop/desktop free open-source version of R and RStudio
- Cloud-based RStudio Server, which you can access in your browser via: Note if you are off-campus you must first log into the UM VPN.

• Online:

- DataCamp. A brower based interactive tool for learning R through short, focused courses, each 3-4 hours long.
- RStudio. Website with many resources for learning about the RStudio IDE and the tidyverse.
- r-cookbook an often useful website with concrete examples of how to use R packages
- Stack Overflow and Google. Remarkably helpful to search for explanations of error messages, or explanations of problems that someone else has probably also experienced. For using Google, search for any topic or your error message and add "in R"
- package vignettes variable quality, but when well done, can be extremely helpful examples of how to use the functions in each package
- R twitter follow Rbloggers, #rstats

2.0.1.5 Evaluation

This course is entirely voluntary. I hope that you will learn valuable skills that will advance your research career. I would like you to progress to using these skills on your own data as quickly as possible, as this will greatly help you reinforce your new skills. There are no grades and no formal evaluations. You can, however, earn certificates on DataCamp for completing courses.

2.0.1.6 Task Goals

- 1. Learn concepts through Data Camp
- a. Multiple short courses to correspond with each unit
- 2. Test yourself with assignments in ModernDive
- a. Chapters corresponding to each unit
- 3. Three Challenges
- a. Clean data and perform descriptive data analysis on the biofire dataset
- b. Clean data and model outcomes in the health satisfaction dataset, producing a final report

- c. Use logistic regression to model dichotomous outcomes and produce a Shiny app to allow users to make predictions for future patients
- 4. Final Project There will be a final capstone project. This is an opportunity for you to use your statistics and data science skills developed during the challenges and perform your own start-to-finish data analysis project. The project will involving you addressing a scientific question by choosing a data set (or preferably, using one of your own), performing an analysis using the concepts and tools we have covered in this course, and writing a report. This can be done solo or with a partner.

2.0.1.7 Learning Goals

- 1. Recognize the importance of data collection, identify limitations in data collection methods, and determine how they affect the generalizability of your findings
- 2. Use statistical software (R) to summarize data numerically and visually, and to perform data analysis.
- 3. Have a conceptual understanding of statistical inference.
- 4. Apply estimation and testing methods to analyze single variables or the relationship between two variables in order to understand data relationships and make data-based conclusions.
- 5. Model numerical response variables and dichotomous response variables using a single explanatory variable or multiple explanatory variables in order to investigate relationships between variables.
- 6. Interpret results correctly, effectively, and in context without relying on statistical jargon.
- 7. Critique data-based claims and evaluate data-based decisions.

2.0.1.8 Tips for success

- 1. Read materials for each unit
- 2. Do Data Camp courses for each unit usually around 1 chapter (1 hour) per day.
- 3. Do Data Camp daily practice on any day that you don't have time to do a full chapter
- 4. At end of each course, review material, take notes, copy/reproduce/save code on your laptop
- 5. Try new skills on your own data, or on one of the open data sets
- 6. Use RStudio and DataCamp Cheat sheets
- 7. Annotate your code to help 'future you' understand it.
- 8. Save and reuse your code for future projects

2.0.1.9 Expected work load

This course is entirely voluntary. It is expected that you have lots of clinical and/or research work to keep up with, along with the occasional call or night rotation. This is an investment in future skills to help your career. I recommend that you try to do up to one hour a day on most days, and on days when that is not realistic, to just do the 10 minutes of daily practice on DataCamp to keep the information fresh in your mind.

Other learning resources:

You can label chapter and section titles using {#label} after them, e.g., we can reference Chapter 2. If you do not manually label them, there will be automatic labels anyway, e.g., Chapter ??.

Figures and tables with captions will be placed in figure and table environments, respectively.

```
par(mar = c(4, 4, .1, .1))
plot(pressure, type = 'b', pch = 19)
```

Reference a figure by its code chunk label with the fig: prefix, e.g., see Figure 2.1. Similarly, you can reference tables generated from knitr::kable(), e.g., see Table 2.1.

Figure 2.1: Here is a nice figure!

```
knitr::kable(
  head(iris, 20), caption = 'Here is a nice table!',
  booktabs = TRUE
)
```

You can write citations, too. For example, we are using the **bookdown** package (Xie, 2018) in this sample book, which was built on top of R Markdown and **knitr** (Xie, 2015).

Table 2.1: Here is a nice table!

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa
5.4	3.7	1.5	0.2	setosa
4.8	3.4	1.6	0.2	setosa
4.8	3.0	1.4	0.1	setosa
4.3	3.0	1.1	0.1	setosa
5.8	4.0	1.2	0.2	setosa
5.7	4.4	1.5	0.4	setosa
5.4	3.9	1.3	0.4	setosa
5.1	3.5	1.4	0.3	setosa
5.7	3.8	1.7	0.3	setosa
5.1	3.8	1.5	0.3	setosa

Starting Out with R and RStudio

```
3.0.0.1 Introduction and Tools (R, RStudio, and R Markdown)
3.0.0.2 Install R on your computer
3.0.0.3 Install RStudio
3.0.0.4 Access DataCamp online
3.0.0.5 DataCamp for RStudio IDE (Part 1)
3.0.0.6 DataCamp for RStudio IDE (Part 2)
3.0.0.7 Access RStudio cloud
```

3.0.0.8 R basics E-book

Use the e-book Rbasics by Chester Ismay https://ismayc.github.io/rbasics-book/

3.0.0.9 RStudio tips document

Importing Your Data

4.0.0.1 Lots of options – learn rio
4.0.0.2 Install rio
4.0.0.3 Practice loading data from multiple file types
4.0.0.4 Practice saving as csv, rds, xls, xlsx
4.0.0.5 DataCamp Courses on Import (Part 1)
4.0.0.6 Data Camp Course on Import (Part 2)
4.0.0.7 Modern Dive Chapter 1
4.0.0.8 Modern Dive Chapter 2
4.0.0.9 Chapter Challenges

Data Collection

Some *significant* applications are demonstrated in this chapter.

5.0.0.1 Best practices for data in spreadsheets

https://peerj.com/preprints/3183/

- 5.0.0.2 Google Forms and GoogleSheets
- 5.0.0.3 SurveyMonkey data
- 5.0.0.4 PHI data REDCap and redcapr package
- 5.0.0.5 Issues with PHI laptops, memory sticks, cloud, github
- 5.0.0.6 PHI solutions private github, M+Box, deidentifying PHI with charlatan package in R, link to PHI that is secure
- 5.0.0.7 Other sources of data
- 5.0.0.7.1 Surveys REDCap and SurveyMonkey
- 5.0.0.7.2 Data Direct
- 5.0.0.7.3 Data Warehouse

Checking, Validating, And Exploring your Data

- 6.0.0.1 Cleaning names with janitor package to snake_case
- 6.0.0.1.1 A few words about tidyverse style
- 6.0.0.2 Finding Missing data naniar and visdat packages
- 6.0.0.3 Validating data validate package
- 6.0.0.4 Evaluating str, glimpse
- 6.0.0.5 Exploring- skimr package
- 6.0.0.6 Histograms
- 6.0.0.7 Correlations ggally extension of ggplot2, and corrr package

Data Types

- 7.0.0.1 Numeric Integer, double
- 7.0.0.2 Strings with the stringr package
- 7.0.0.2.1 Rebus package and regex
- $7.0.0.2.2 \quad {\bf Data Camp \ strings \ course}$
- 7.0.0.3 Factors with the forcats package
- 7.0.0.3.1 https://peerj.com/preprints/3163/
- 7.0.0.4 Dates with the lubridate package
- 7.0.0.4.1 DataCamp dates and times course

Data Wrangling with Tidyr and Dplyr

- 8.0.0.1 What is Tidy Data?
- 8.0.0.2 DataCamp Tidyr course
- 8.0.0.2.1 Try Tidying New Data Challenges
- 8.0.0.3 What is Data Wrangling?
- 8.0.0.4 DataCamp Dplyr wrangling course
- 8.0.0.4.1 Try Wrangling New Data Challenges
- 8.0.0.4.2 General Principles of Tidying And Wrangling

https://peerj.com/preprints/3180/

- 8.0.0.5 DataCamp Dplyr joins course
- 8.0.0.5.1 Try Joining New Data Challenges

Graphic Summaries for a Single Variable with ggplot

9.0.0.1 DataCamp ggplot 1 course

9.0.0.2 Histograms

9.0.0.2.1 Histogram Challenges

9.0.0.3 Boxplot

9.0.0.3.1 Boxplot Challenges

9.0.0.4 Violin plot

9.0.0.4.1 Violin Plot Challenges

Graphic Summaries for a Single Variable with ggplot

10.0.0.1 DataCamp ggplot 1 course

10.0.0.2 Histograms

10.0.0.2.1 Histogram Challenges

10.0.0.3 Boxplot

10.0.0.3.1 Boxplot Challenges

10.0.0.4 Violin plot

10.0.0.4.1 Violin Plot Challenges

Graphic Summaries for Two or More Variables – ggplot2

```
11.0.0.1 Data Camp ggplot course 2
```

11.0.0.2 Scatter plots

11.0.0.3 Mosaic plots

11.0.0.4 Corrr package

11.0.0.5 Correlation matrix

Descriptive Data for Two or More Variables

12.0.0.1 Table

12.0.0.2 Janitor crosstab tabyl

Presenting your Results in a report with RMarkdown

13.0.0.1 DataCamp Rmarkdown Course
13.0.0.2 Practice with data from Chapter 8 - HTML
13.0.0.3 Practice with data from Chapter 9 - Word
13.0.0.4 Practice with data from Chapter 10 - PPT

Reproducibility in Your Research

14.0.0.1 Collaborating with Past You and Future You
14.0.0.1.1 General references
14.0.0.1.1.1 https://peerj.com/preprints/3192/
14.0.0.1.1.2 https://peerj.com/preprints/3139/
14.0.0.2 DataCamp GitHub Course
14.0.0.3 The problem of versions and updated packages
14.0.0.3.1 Solutions
14.0.0.3.1.1 Packrat
14.0.0.3.1.2 Microsoft R checkpoinT
14.0.0.3.1.3 Rocker (docker) containers
14.0.0.4 R Projects
14.0.0.5 RStudio on Projects
14.0.0.5.1 Multiple scripts and organization of projects
14.0.0.5.2 Version control
14.0.0.5.2.1 https://peerj.com/preprints/3159/
14.0.0.6 Linear and branching projects, and use of the drake package

Statistical inference

15.0.0.1	Concepts
15.0.0.2	DataCamp Stats courses
15.0.0.3	ModernDive chapters
15.0.0.4	Infer package and practice

Study Design

16.0.0.1	Hypotheses – null and alternative
16.0.0.2	Specific and testable
16.0.0.3	Inclusion and exclusion
16.0.0.4	How many eligible patients – DataDirect query
16005	Re conservative – most won't enroll

Sample Size and Power

17.0.0.1	Estimating measures in each group
17.0.0.2	Estimating effect size
17.0.0.3	Estimating range and SD
17.0.0.4	Power calc for continuous
17005	Power calc for proportion

Sources of Bias

18.0.0.1	Generalizability of studies
18.0.0.2	Bias in design
18.0.0.3	Recall Bias
18.0.0.4	Time bias
18.0.0.5	Ascertainment bias
18.0.0.6	Assuming linearity on a scale

Study Designs

19.0.0.1	Cross sectional
19.0.0.2	Cohort
19.0.0.3	Retrospective
19.0.0.4	Rarely prospective – registries, case series more likely
19.0.0.5	All Associations
19.0.0.6	Causal Inference requires randomization

One variable, single group

20.0.0.1 Continuous value – t test
20.0.0.2 Challenges for single continuous outcome
20.0.0.3 Estimate single Proportion
20.0.0.4 Challenges for single proportion

One variable, two groups

- 21.0.0.1 Variable 1 is greater in group A vs group B
- 21.0.0.1.1 Test for skew if not, T test
- ${\bf 21.0.0.1.1.1} \quad {\bf Challenges}$
- 21.0.0.1.2 If yes, Wilcoxon, non parametric
- 21.0.0.1.2.1 Challenges
- 21.0.0.2 Variable 2 proportion is greater in group A vs group B
- 21.0.0.2.1 If no rare cells, chi square
- ${\bf 21.0.0.2.1.1} \quad {\bf Challenges}$
- 21.0.0.2.2 If rare cells, Fischer exact test
- 21.0.0.2.2.1 Challenges

One variable, Multiple groups

22.0.0.1 DataCamp

22.0.0.2 Fun with ANOVA

 ${\bf 22.0.0.2.1} \quad {\bf Challenges}$

22.0.0.3 Consider Regression if complicated

 ${\bf 23.0.1.6.1} \quad {\bf Challenges}$

Linear Regression

23.0.1 DataCamp Course
23.0.1.1 Single outcome, multiple possible predictors
23.0.1.1.1 Challenges
23.0.1.2 One predictor at a time – multiple univariate models – modelr and broom package
23.0.1.2.1 Challenges
23.0.1.3 Choosing predictors for multivariate modeling – testing, dealing with collinearity
23.0.1.3.1 Challenges
23.0.1.4 Multivariate modeling
23.0.1.4.1 Challenges
23.0.1.5 Model fit checking
23.0.1.5.1 Challenges
23.0.1.6 presenting model results with RMarkdown

Sharing Models with Shiny

24.0.0.1 DataCamp Courses on Shiny

24.0.0.2 Practice with model from 20

Logistic Regression

25.0.0.1	Concepts and OR
25.0.0.2	Modeling
25.0.0.3	Estimating GOF
25.0.0.4	AuROC
25.0.0.5	Sens Spec PPV NPV
25.0.0.6	Confusion Matrix
25.0.0.7	Present results with broom, RMarkdown
25.0.0.8	Make user-friendly model predictions with Shin

Meta-Analysis

26.0.0.1	Data search
26.0.0.2	Data collection
26.0.0.3	Data Exclusion
26.0.0.4	Data extraction and checking
26.0.0.5	Using Metafor package
26.0.0.6	Making Figures
26.0.0.7	Writing up results in R.Markdowi

Bibliography

Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. ISBN 978-1498716963.

Xie, Y. (2018). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.7.