# Automatic construction and description of nonparametric models







James Robert Lloyd, David Duvenaud, Roger Grosse, Joshua Tenenbaum, Zoubin Ghahramani

December 9, 2013

#### TYPICAL STATISTICAL MODELLING

▶ models typically built by hand, or chosen from a fixed set



- ▶ Building by hand requires considerable expertise
- ▶ Just being nonparametric isn't good enough
  - ▶ Nonparametric does not mean assumption-free!
- Can silently fail
  - If none of the models tried fit the data well, how can you tell?

#### CAN WE DO BETTER?

- ▶ Andrew Gelman asks: How can an AI do statistics?
- ► An artificial statistician would need:
  - a language that could describe arbitrarily complicated models
  - a method of searching over those models
  - a procedure to check model fit
- ➤ This talk: We construct such a language over regression models, a procedure to search over it, and a method to describe in natural language the properties of the resulting models
  - Working on automatic model-checking...

#### **EXAMPLE: AN AUTOMATIC ANALYSIS**





A very smooth, monotonically increasing function



An approximately periodic function with a period of 1.0 years and with approximately linearly increasing amplitude



An exactly periodic function with a period of 4.3 years but with linearly increasing amplitude

#### A LANGUAGE OF REGRESSION MODELS

- ► We define a language of Gaussian process (GP) regression models by defining a language over kernel functions
- ► We start with a small set of base kernels and create a language with a generative grammar
  - ightharpoonup K 
    ightarrow K + K
  - $K \to K \times K$
  - ightharpoonup K o CP(K,K)
  - $K \rightarrow \{SE, Lin, Per\}$
- ► The language is open-ended, but its structure makes natural-language description simple

### KERNELS DETERMINE STRUCTURE OF GPS

- ► Kernel determines almost all the properties of a GP prior
- ► Many different kinds, with very different properties:







#### KERNELS CAN BE COMPOSED

▶ Two main operations: addition, multiplication



Lin + Per



SE + PER



with noise

### SPECIAL CASES IN OUR LANGUAGE

| Regression motif      | Example kernel            |
|-----------------------|---------------------------|
| Linear regression     | LIN                       |
| Quadratric regression | Lin × Lin                 |
| Fourier analysis      | $\sum \cos$               |
| Spectral kernels      | $\sum$ SE $\times$ cos    |
| Changepoints          | e.g. CP(PER, SE)          |
| Heteroscedasticity    | e.g. $SE + LIN \times SE$ |









#### DISTRIBUTIVITY HELPS INTERPRETABILITY

We can write all kernels as sums of products of base kernels:

$$SE \times (RQ + LIN) = (SE \times RQ) + (SE \times LIN).$$

Sums of kernels are equivalent to sums of functions.

If  $f_1, f_2$  are independent, and  $f_1 \sim \mathcal{GP}(\mu_1, k_1), f_2 \sim \mathcal{GP}(\mu_2, k_2)$  then

$$(f_1 + f_2) \sim \mathcal{GP}(\mu_1 + \mu_2, k_1 + k_2)$$

#### **EXAMPLE DECOMPOSITION: AIRLINE**



### **DESCRIBING KERNELS**

Products of same type of kernel collapse.

| Product of Kernels                                                                           | Becomes                                                          |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| $SE \times SE \times SE \dots$ $LIN \times LIN \times LIN \dots$ $PER \times PER \times PER$ | SE A polynomial Same covariance as product of periodic functions |

#### **DESCRIBING KERNELS**

Each kernel acts as a modifier in a standard way: an "adjective".

| Kernel         | Becomes                              |
|----------------|--------------------------------------|
| $K \times SE$  | 'locally' or 'approximately'         |
| $K \times LIN$ | 'with linearly growing amplitude'    |
| $K \times PER$ | 'periodic'                           |
| CP(K1, K2)     | $\ldots$ changing at $x$ to $\ldots$ |

- Special cases for when they're on their own
- ► Extra adjectives depending on hyperparameters

### **EXAMPLE KERNEL DESCRIPTIONS**

| Product of Kernels                                                                                                               | Description                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{aligned} & \text{PER} \\ & \text{PER} \times \text{SE} \\ & \text{PER} \times \text{SE} \times \text{LIN} \end{aligned}$ | An exactly periodic function An approximately periodic function An approximately periodic function with linearly varying amplitude |



Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified four additive components in the data:

- A very smooth monotonically increasing function.
- An approximately periodic function with a period of 1.0 years and with approximately linearly increasing amplitude.
- An exactly periodic function with a period of 4.3 years but with linearly increasing amplitude.
- Uncorrelated noise with linearly increasing standard deviation.



#### 2.2 Component 2

This component is approximately periodic with a period of 1.0 years and varying amplitude. Across periods the shape of this function varies very smoothly. The amplitude of the function increases approximately linearly. The shape of this function within each period has a typical lengthscale of 6.0 weeks.





#### 2.3 Component 3

This component is exactly periodic with a period of 4.3 years but with varying amplitude. The amplitude of the function increases linearly. The shape of this function within each period has a typical lengthscale of 7.4 months.





#### **SUMMARY**

- Constructed a language of regression models through kernel composition
- Searched over this language greedily
- ► Kernels modify prior in predictable ways, allowing automatic natural-language description of models
- ▶ Open questions:
  - Interpretability versus flexibility
  - Automatic Model-checking

#### **SUMMARY**

- Constructed a language of regression models through kernel composition
- Searched over this language greedily
- ► Kernels modify prior in predictable ways, allowing automatic natural-language description of models
- ▶ Open questions:
  - Interpretability versus flexibility
  - Automatic Model-checking

Thanks!