Lycée Jean Moulin NSI 1^{re}

Draguignan
Année

Analyse des algorithmes

R	echerche	111	maximum	dans	1111	tahleau
1/		ии	πιαλιπιαπι	uuiis	ин	iubieuu

Voici un algorithme qui prend en entrée un tableau de n valeurs et qui retourne le maximum

Ι	Données : T un tableau de <i>n</i> valeurs	
n n F	Résultat: max le maximum du tableau nax← T[0] n← taille du tableau Pour i allant de 1 à n-1 faire Si T[i]>max alors max←T[i] etourner S	
	Question 1: Que pouvez vous dire sur la terminaison de cet algo	
		té
	QUESTION 3: Montrer que la complexité de cet algorithme est liné	

Recherche dans un tableau

Voici un algorithme de recherche de valeur dans un tableau

Données : T un tableau de <i>n</i> valeurs <i>x</i> un élément (pas forcément dans T)	
Résultat : -1 si $x \notin T$, l'indice de la première occurrence de x dans T	
$i \leftarrow 0$ $n \leftarrow taille(T)$ Tant que $i < n$ et $T[i] \neq x$ faire	
Si i=n alors ∟ i←-1 retourner i	
? Question 4: Que pouvez vous dire sur la terminaison de cet algorithme?	
QUESTION 5: Examiner la correction de cet algorithme en considérant l'invariant de boucle : x n paraît pas dans la partie du tableau traité	ı'ap-
2 Overanov 6	• • • •
QUESTION 6: Montrer que la complexité de cet algorithme est linéaire $(\Theta(n))$	