Functional Dependencies

1.) Blood Bank (Bank ID, Name, Pincode)

Candidate Key: Bank ID

Closure of Bank ID = {Name, Pincode} therefore it is a candidate key.

Bank ID -> Name
Bank ID -> Pincode

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: Bank ID is the super-key for every functional dependency therefore this relation is BCNF.

2.) Donor(Donor_aadharid, Name, Gender, Blood_group, Pincode, Contact, Mother_aadhar_id, Father_aadhar_id, DOB)

Candidate Key: Donor aadhar id

Closure of Donor_aadhar_id = {Name, Gender, Blood_group, Pincode, Contact, Mother_aadhar_id, Father_aadhar_id, DOB} therefore it is a candidate key.

Donor aadhar id -> Name

Donor_aadhar_id -> Gender

Donor_aadhar_id -> Blood_group

Donor aadhar id -> Pincode

Donor aadhar id -> Contact

Donor_aadhar_id -> Mother_aadhar_id

Donor aadhar id -> Father aadhar id

Donor aadhar id -> DOB

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: Donor_aadhar_id is the super-key for every functional dependency therefore this relation is BCNF.

3.) Receiver (Receiver_aadar_id, Name, Gender, Blood_group, Pincode, Contact, Mother aadhar id, Father aadhar id, DOB)

Candidate Key: Receiver_aadhar_id

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

Receiver_aadhar_id -> Name
Receiver_aadhar_id -> Gender
Receiver_aadhar_id -> Blood_group
Receiver_aadhar_id -> Pincode
Receiver_aadhar_id -> Contact
Receiver_aadhar_id -> Mother_aadhar_id
Receiver_aadhar_id -> Father_aadhar_id
Receiver_aadhar_id -> DOB

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD $X \rightarrow Y$; X is the super-key which is satisfied.

BCNF: Receiver_aadhar_id is the super-key for every functional dependency therefore this relation is BCNF.

4.) Blood_Bank_Staff (Staff_aadhar_id, Name, Contact, DOB)

Candidate Key: Staff_aadhar_id

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

Staff_aadhar_id -> Name Staff_aadhar_id -> Contact Staff_aadhar_id -> DOB

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: Staff_aadhar_id is the super-key for every functional dependency therefore this relation is BCNF.

5.) Staff_worked_on (Date_of_joining, Staff_aadhar_id, Bank_id, Date_of_leaving, salary, Type_of_work)

Candidate Key: {Date_of_joining, Staff_aadhar_id}

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

```
{Date_of_joining, Staff_aadhar_id} -> Bank_id
{Date_of_joining, Staff_aadhar_id} -> Date_of_leaving
{Date_of_joining, Staff_aadhar_id} -> Salary
{Date_of_joining, Staff_aadhar_id} -> Type_of_work
```

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: {Date_of_joining, Staff_aadhar_id} is the super-key for every functional dependency therefore this relation is BCNF.

6.) Hospital (Hospital id, Name, Contact, Pincode)

Candidate Key: Hospital_id

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

Hospital_id -> Name Hospital_id -> Contact Hospital_id -> Pincode

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: Hospital_id is the super-key for every functional dependency therefore this relation is BCNF.

7.) Organization (Organization_id, Name, Contact, Pincode)

Candidate Key: Organization_id

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

Organization_id -> Name Organization_id -> Contact Organization_id -> Pincode

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: Organization_id is the super-key for every functional dependency therefore this relation is BCNF.

8.) Hospital_request_to (Hospital_id, Data_requested, Bank_id, Blood_Group, Quantity_ml, accepted)

Candidate Key: {Hospital_id, Data_requested, Bank_id, Blood_Group, Quantity_ml}

Closure of candidate key above includes all attributes of Inventory, therefore it is key

{Hospital_id, Data_requested, Bank_id, Blood_Group, Quantity_ml} -> accepted

.1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: {Hospital_id, Data_requested, Bank_id, Blood_Group, Quantity_ml} is the super-key for every functional dependency therefore this relation is BCNF.

9.) Receiver_request_to (Receiver_aadhar_id, Date_requested, Bank_id, Quantity, Status)

Candidate Key: {Receiver_aadhar_id, Date_requested}

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

```
{Receiver_aadhar_id, Date_requested} -> Bank_id
{Receiver_aadhar_id, Date_requested} -> Quantity
{Receiver_aadhar_id, Date_requested} -> Status
```

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: {Receiver_aadhar_id, Date_requested} is the super-key for every functional dependency therefore this relation is BCNF.

10.) Drive (Drive_ID,Organised_at, Date_Organised, Managed_by)

Candidate Key: {drive_id}

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

```
drive_id -> organised_at
drive_id -> date_organised_at
drive_id -> managed_by
```

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: { drive_id } is the super-key for every functional dependency therefore this relation is BCNF.

11.) Blood (Sample_id, Bank_id, Taken_out_by, Date_taken_out, Donated_by, Quantity_ml)

Candidate Key: Sample_id

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

Sample id -> Bank id

Sample_id -> Taken_out_by

Sample_id -> Date_taken_out

Sample id -> Donated by

Sample id -> Quantity ml

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: Sample_id is the super-key for every functional dependency therefore this relation is BCNF.

12.) Drive Staff (Drive_id, Staff_id)

Candidate Key: {Drive_id, Staff_id}

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: {Drive_id, Staff_id} is the super-key for every functional dependency therefore this relation is BCNF.

13.) Volunteer (Volunteer aadhar id, Name, Contact)

Candidate Key: Volunteer_aadhar_id

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

Volunteer_aadhar_id -> Name Volunteer aadhar id -> Contact

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD $X \rightarrow Y$; X is the super-key which is satisfied.

BCNF: Volunteer_aadhar_id is the super-key for every functional dependency therefore this relation is BCNF.

14.) Volunteered_in (Volunteered_in, Drive_id)

Candidate Key: {Volunteered in, Drive id}

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: {Volunteered_in, Drive_id} is the super-key for every functional dependency therefore this relation is BCNF.

15.) Test (Donor_aadhar_id, Date_of_test, Pulse_bpm, Haemoglobin, Any_previous_donations, Are_you_clean, Any_diabetic_problems, Are_you_ill)

Candidate Key: {Donor_aadhar_id, Date_of_test}

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

{Donor_aadhar_id, Date_of_test} -> Pulse_bpm

{Donor aadhar id, Date of test} -> Haemoglobin

{Donor aadhar id, Date of test} -> Any previous donations

{Donor_aadhar_id, Date_of_test} -> Are_you_clean

{Donor aadhar id, Date of test} -> Any diabetic problems

{Donor_aadhar_id, Date_of_test} -> Are_you_ill

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: {Donor_aadhar_id, Date_of_test} is the super-key for every functional dependency therefore this relation is BCNF.

16.) Booked a slot (Donor_aadhar_id, Date_booked, Bank_id, Organisation_id)

Candidate Key: {Donor_aadhar_id, Date_booked}

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

```
{Donor_aadhar_id, Date_booked} -> Bank_id 
{Donor_aadhar_id, Date_booked} -> Organisation_id
```

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD $X \rightarrow Y$; X is the super-key which is satisfied.

BCNF: {Donor_aadhar_id, Date_booked} is the super-key for every functional dependency therefore this relation is BCNF.

17.) Further Test (Sample id, HIV, Hepatitis, RBC, WBC, Platelet)

Candidate Key: Sample id

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

Sample id -> HIV

Sample_id -> Hepatitis

Sample_id -> RBC

Sample id -> WBC

Sample id -> Platelet

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: Sample_id is the super-key for every functional dependency therefore this relation is BCNF.

18.) Donated_to_hospital (Sample_id, Hospital_id, Date_given)

Candidate Key: Sample_id

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

Sample_id -> Hospital_id Sample_id -> Date_given

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD $X \rightarrow Y$; X is the super-key which is satisfied.

BCNF: Sample_id is the super-key for every functional dependency therefore this relation is BCNF.

19.) Donated_to_receiver (Sample_id, Receiver_aadhar_id, Date_given)

Candidate Key: Sample_id

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

Sample_id -> Receiver_id Sample_id -> Date_given

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: Sample_id is the super-key for every functional dependency therefore this relation is BCNF.

20.) Inventory (Item Code, Bank_id, Item_name)

Candidate Key: Item Code

Closure of candidate key above includes all attributes of Inventory, therefore it is key.

Item Code -> Bank_id
Item Code -> Type
Item Code -> Item_name

1st NF: No multiple or composite attributes therefore 1st NF is satisfied.

2nd NF: There is no partial dependency so 2nd NF is satisfied.

3rd NF: There is no transitive dependency for non-prime attributes. In non-trivial FD X -> Y; X is the super-key which is satisfied.

BCNF: Item Code is the super-key for every functional dependency therefore this relation is BCNF.