Teste de hipótese da Teoria de Resposta ao Item Mirela Mei

mirelameic@usp.br

Introdução

A Teoria de Resposta ao Item (TRI) é um modelo estatístico desenvolvido na década de 1960 com o objetivo de analisar o nível de habilidade de um aluno quantitativamente e qualitativamente, ou seja, avalia o aluno não só pela quantidade de questões acertadas em uma avaliação, mas também pela dificuldade dessa questão (Araujo, Andrade e Bortolotti, 2009). Esse modelo foi proposto para substituir a Teoria Clássica dos Testes (TCT), que avalia o aluno de modo apenas quantitativo, ou seja, quanto mais questões acertadas, maior é o domínio sobre o que está sendo avaliado.

Há três parâmetros de qualificação para uma questão de acordo com a TRI: o grau de dificuldade, possibilidade de acerto ao acaso e a discriminação entre os alunos que têm a habilidade necessária ou não. Essas combinações de fatores na prova garantem que o aluno seja avaliado de forma mais completa, evitando, assim, acertos por acaso.

Por conta do método TRI ser mais atualizado e completo por considerar outros aspectos além do número de acertos, foi realizado um teste de hipótese para entender mais a fundo como essa classificação funciona. Essa teoria é utilizada na prova do Exame Nacional do Ensino Médio (ENEM) e provoca diversas dúvidas nos alunos que a realizam. Com essa pesquisa, o objetivo é compreender como funciona a aplicação da TRI em uma determinada avaliação aplicada para uma classe de alunos do ensino médio.

Problema

Considere uma avaliação da disciplina de Matemática, composta por um total de 45 questões de múltipla escolha, a respeito de todo o conteúdo programático dos três anos do Ensino Médio brasileiro. Essa avaliação tem como objetivo avaliar o nível de conhecimento dos alunos do terceiro ano do Ensino Médio, de maneira quantitativa e qualitativa, a fim de identificar defasagens e potências a respeito da disciplina e, com isso, prepará-los para o Exame Nacional do Ensino Médio.

Cada questão dessa avaliação é representada pela variável q e descrita pelo Modelo Logístico de três parâmetros (ML3), representada pela tupla a_q , b_q , c_q , sendo elas:

a: parâmetro de discriminação (inclinação da curva CCI), ou seja, a diferença entre as médias do item;

b: parâmetro de dificuldade;

c: indica o acerto casual do aluno (o aluno não necessariamente sabe a resolução real da questão dada), ou seja, acerto em que pode indicar que o aluno tem um nível baixo de habilidade.

Ao sortear um aluno aleatoriamente e aplicar a avaliação de Matemática com 45 questões, cada aluno é representado por sua habilidade θ (traço latente) e com isso, é possível calcular a probabilidade que o aluno tem de acertar ou errar uma questão. Com isso, temos a variável aleatória $R_q \in \{0, 1\}$ onde o valor 0 indica que a questão (q) está incorreta e o valor 1 indica que a questão está certa, ou seja, $R_q = 1$ indica acerto e $R_q = 0$ indica erro.

Para o cálculo da probabilidade de um aluno acertar um item da questão tem-se a seguinte representação:

$$Pr(R_q = 1) = c_q + (1 - c_q) \frac{e^{a_q(\theta - b_q)}}{1 + e^{a_q(\theta - b_q)}}$$

A partir deste cálculo conseguimos fazer a estimação dos parâmetros propostos e dos traços latentes a partir do Método Bayesiano, o qual representa as relações da distribuição de probabilidade conjunta. Neste caso temos uma probabilidade condicional, uma vez que os três parâmetros são interdependentes em uma distribuição bivariada, visto que a variável aleatória pode ser 0 ou 1.

Desenvolvimento

Ao sortear um aluno aleatoriamente para realizar esta avaliação, ele é representado pela habilidade θ e produz um padrão de resposta a partir dos itens respondidos, composto dos acertos $R_{\scriptscriptstyle q}=1$ e erros $R_{\scriptscriptstyle q}=0$. Nesse caso, o cálculo de sua habilidade é baseado na análise dos eventos $R_{\scriptscriptstyle l}$ a $R_{\scriptscriptstyle 4s.}$

É possível fazer o cálculo da probabilidade de um aluno acertar uma determinada questão q=15, que tem como sua representação a tupla a_{q} , b_{q} e c_{q} , assumindo que a_{q} = 1, b_{q} = 0,6 e c_{q} = 0,4 e um aluno com θ = 1 nessa avaliação. Ou seja, substituindo na fórmula dada:

$$\Pr(\mathbf{R}_{15} = 1) = 0.4 + (1 - 0.4) \frac{e^{1(1 - 0.6)}}{1 + e^{1(1 - 0.6)}}$$

E a partir de seus cálculos, é possível afirmar que a probabilidade do aluno acertar a questão 15 é de 0.75921 = 75,9%.

É possível realizar a representação gráfica da probabilidade de um aluno acertar determinado item da avaliação proposta, o método se chama Curva de Característica do Item (CCI), e é a base de construção do TRI, com ela, é possível visualizar a probabilidade a partir do nível de dificuldade e pelo poder de discriminação de determinado item, cada curva se diferencia da outra a partir da relação desses dois elementos.

Referências

Couto, Gleiber; Primi, Ricardo. (2011). Teoria de resposta ao item (TRI): Conceitos elementares dos modelos para itens dicotômicos. Boletim de Psicologia, 61(134), 1-15

Araújo, Eutalia A. C., Andrade, Dalton F. e Bortolotti, Silvana L. V.. Teoria da Resposta ao Item. Revista da Escola de Enfermagem da USP [online]. 2009, v. 43, n. spe, pp. 1000-1008. doi.org/10.1590/S0080-62342009000500003

Primi, Ricardo. Teoria de Resposta ao Item: Estimação dos Parâmetros dos Itens e dos Sujeitos. Programa de Mestrado e Doutorado em Avaliação Psicológica Universidade São Francisco.

Russi, Alexandra W., Ferreira Junior, Setembrino S.. Introdução à Ferramenta Teoria de Resposta ao Item – TRI. Instituto de Matemática e Estatística UNICAMP.

Bortolotti, Silvana et al. Teoria da resposta ao item - Medida de satisfação por meio do modelo logístico de dois parâmetros. Instituto de Matemática e Estatística UNICAMP.