DPENCLASSROOMS

Mission 7 Effectuez une prédiction de revenus

Mentor: Claire Della Vedova

Agenda

Mission 1

- Consolidation des données
- Description des données

Mission 2

- Distribution logarithmique des revenus
- Courbes de Lorenz
- Evolution de l'indice Gini (2004-2013)
- Classement par indice Gini

Mission 3

- Génération de l'échantillon Gaussien
- Distributions conditionnelles
- Clonage de l'échantillon

Mission 4 (Notebook Jupiter)

- ANOVA
- Régressions linéaires (income_c ~ gdp_pc + gini)
- Régression linéaire (income_c ~ gdp_pc +gini + classe_p)
- Choix du modèle
- o Coéficient de régression de Gini

Misson 1

- Consolidation des données
- Description des données

Consolidation des données

- 'data-projet7.csv'
 (OC)
- 2. GDP per capita 2008 (World Bank)
- 3. Population 2008 (World Bank)
- 4. Nomenclature pays (FAO)

Description des données

- Les quantiles sont au nombre de 100, ce sont donc des centiles ou percentiles
- Ils permettent de dépasser les limites de la moyenne qui masque les disparités de distribution par classe de revenus
- Le revenu est exprimé en Purchasing Power Parity (\$PPP)
- L'année d'etude est répartie symétriquement en cloche autour de l'année 2008

• Population de l'étude : **6.15 milliards**

• Pourcentage de la population mondiale (2008): 91.8 %

• Nombre de quantiles uniques : 100

• Nombre de pays uniques : 111

classe_c		income_c	population	gdp_pc	
count	11099.00	11099.00	11099.00	11099.00	
mean	50.50	6148.37	55.42	15788.47	
std	28.87	9466.70	172.37	15220.17	
min	1.00	16.72	0.31	615.07	
25%	25.50	922.41	4.77	3914.61	
50%	51.00	2495.71	14.01	10236.54	
75%	75.50	7622.36	43.27	20837.25	
max	100.00	176928.55	1344.42	86693.90	

	nb_ctry
year_survey	
2004	1
2006	5
2007	15
2008	76
2009	12
2010	6
2011	1

MARIE AND PARTIES AND PARTIES

Misson 2

- Distribution logarithmique des revenus
- Courbes de Lorenz
- Evolution de l'indice Gini (2004-2013)
- Classement par indice Gini

Distribution logarithmique des revenus

Distribution des revenus des pays sélectionnés selon leur classe

- Les courbes de Czechia, puis India et Indonesia sont les plus plates, les revenus sont mieux distribués entre les classes enfants
- Equador, puis Argentina et
 Russian Federation ont les
 pentes les plus marquées, la
 distribution des revenus est plus
 favorable aux classes élevées
- La France se situe au milieu de l'échantillon retenu

Courbes de Lorenz

On représente la distribution ordonnée des revenus par classe et leur proportion pour visualiser les inégalités

- La courbe la plus proche d'une distribution équitable est celle de Czechia.
- Les courbes qui favorisent le plus les revenus élevés sont celle de Equador puis celle de Argentina
- La France est entre les deux, du côté des pays les moins inégalitaires, au même niveau que India

Evolution de l'indice Gini (2004-2013)

- 2 pays flat : Czech Republic , Russian Federation
- 2 pays tendent vers une meilleure répartition : Equador, Argentina
- L'inégalité croît pour Indonesia
- 3 courbes convergent à 40% en 2013 : Argentina, Russian Federation, Indonesia
- Czechia est le pays le plus stable et le plus égalitaire sur la période
- La France est le second pays le plus égalitaire de la liste, avec cependant une détérioration sur 2007-2013 (crise des subprimes)

Classement par indice Gini

- Les 5 pays ayant le plus faible indice Gini en 2008 sont : Azerbaijan, Czech Republic, Slovak Republic, Denmark, Slovenia)
- Les 5 pays ayant le plus fort indice Gini en 2008 sont : Guatemala, Honduras, Colombia, Central African Republic, South Africa

Top 5 : pays les plus égalitaires

	ISO3	country	gini
0	SVN	Slovenia	23.70
1	DNK	Denmark	25.20
2	SVK	Slovak Republic	26.00
3	CZE	Czech Republic	26.30
4	AZE	Azerbaijan	26.60

Bottom 5 : pays les moins égalitaires

	ISO3	country	gini
106	GTM	Guatemala	54.60
107	HND	Honduras	55.50
108	COL	Colombia	55.50
109	CAF	Central African Republic	56.20
110	ZAF	South Africa	63.00

Mission 3

- Génération de l'échantillon Gaussien
- Distributions conditionnelles
- Clonage de l'échantillon

Génération de l'échantillon Gaussien

- Le coefficient d'élasticité est un ratio fourni pour chaque pays
- Il nous permet de générer un échantillon gaussien aléatoire de 1000 individus par centile
- Nous comptons les occurrences uniques pour chaque pays et les tranformons en poourcentage

```
ALB 0.82
```

0.40

ARG

Coefficient d'élasticité basé sur les données par la Banque mondiale complétées par elasticity.txt

```
# querry génération de l'échantillon
Q3 = pd.DataFrame()

for i in range(len(elasticity)):
    nb_quantiles = 100
    n = 1000*nb_quantiles
    pj = elasticity.loc[i]['pj']

    y_child, y_parents = sg.generate_incomes(n, pj)
    e = elasticity.loc[i]['ISO3']

    y_child = pd.Series(y_child)
    y_parents = pd.Series(y_parents)

    cq = sg.compute_quantiles(y_child, y_parents, nb_quantiles)
    cq['ISO3'] = e
    Q3 = Q3.append(cq, ignore_index = True)
```

	ISO3	c_i_child	c_i_parent	count
0	ALB	1	1	208
1	ALB	1	2	107

	ISO3	c_i_child	c_i_parent	percent	
0	ALB	1	1	0.21	
1	ALB	1	2	0.11	

ISO3	1081214			
c_i_child	1081214			
c_i_parent	1081214			
count	1081214			
dtype: int64				

dtype: int6

Distributions conditionnelles

Distributions calculées sur des déciles de 1000 individus

Valeurs caractéristiques du boxplot elasticity

- Plus le coéficient d'élasticité augmente, plus l'inégalité entre les classes augmente
- Pour e=0.11, la probabilité d'avoir des parents dans les 4 premiers déciles est de 50%
- Pour e=1.1, la probabilité d'avoir des parents dans les 4 premiers déciles est de plus de 90%

Clonage de l'échantillon

- On multiplie le pourcentage obtenu avec l'échantillon gaussien par 500 afin de réaliser l'échantillon requis
- Nous obtenons un dataframe final de 5.455.255 individus pour 109 pays

Nouvel échantillon, clonage

```
x = round(df_final['percent']*500,0) |
#clonage du dataset
classes = pd.DataFrame(np.repeat(df_final.values,x,axis=0))
classes.columns = ['ISO3','c_i_child','c_i_parent','percent']
classes.drop(['percent'], axis=1, inplace=True)
classes[['c_i_child','c_i_parent']] = classes[['c_i_child','c_i_parent']].astype(int)
classes.columns=['ISO3','classe_c','classe_p']
print("Nombre d'individus",classes.ISO3.count())
print("Nombre de pays :",classes.ISO3.nunique())
classes.head(1)

Nombre d'individus 5555338
Nombre de pays : 111

ISO3 classe_c classe_p
0 ALB 1 1
```

	ISO3	country	classe_c	income_c	classe_p	income_p	gdp_pc	gini
0	ALB	Albania	1	728.90	1	728.90	8228.37	30.00

Des questions?

Conclusion

Pour aller plus loin

Analyse de Income Child

- Fort skewness à droite (revenus élevés)
- La distribution des revenus par pays montre qu'il existe des disparités de revenu et de dispertion d'un pays à l'autre

Distribution per Country

