Aufgaben-Blatt: Berechnung des Weges mit den wenigsten Zwischen-Stops

Gegeben sei eine binäre Relation R. Ist eine Paar $\langle x, y \rangle$ ein Element in R, so interpretieren wir dies als eine direkte Verbindung von x nach y. Eine Weg-Relation W definieren wir als eine Menge von Paaren der Form $\langle \langle x, y \rangle, p \rangle$ so dass gilt:

- 1. $\langle x, y \rangle$ ist ein Paar von Punkten.
- 2. p ist eine Liste von Punkten. Der erste Punkt der Liste ist x, der letzte Punkt ist y, in SETL2-Notation gilt also:

$$x = p(1)$$
 und $y = p(\#p)$.

Die Liste p wird interpretiert als ein Pfad, der von x nach y führt.

Aufgabe 1: Definieren sie die Komposition einer Relation R mit einer Weg-Relation W so, dass $W \circ R$ wieder eine Weg-Relation ist. Dabei soll gelten: Ist $\langle \langle x, y \rangle, p \rangle \in W$ und ist $\langle y, z \rangle \in R$, so soll die Komposition $W \circ R$ das Element $\langle \langle x, z \rangle, p + [z] \rangle \in W$ enthalten.

Aufgabe 2: Implementieren Sie eine Prozedur compose, so dass der Aufruf compose(W, R) für eine Weg-Relation W und eine Relation R die Komposition $W \circ R$ berechnet.

Aufgabe 3: Implementieren sie eine Funktion closure, so dass der Aufruf closure(R)

zu einer gegebenen binären Relation R eine Weg-Relation erzeugt, die alle zyklen-freien möglichen Verbindungen zwischen zwei Punkten enthält.

Aufgabe 4: Entwickeln Sie eine Prozedur minimize, so dass der Aufruf minimize(W) aus einer gegebenen Weg-Relation W alle die Paare $\langle \langle x, y \rangle, p \rangle$ entfernt, für die die Anzahl #p nicht minimal ist.