# Tree-structured clustering method

Yinqiao Yan

Institute of Statistics and Big Data Renmin University of China

### Introduction

- Cluster data in a tree-structured subclones.
- Adams et al. (2010) proposed a novel nonparametric Bayesian prior named tree-structured stick-breaking prior (TSSB).
- We propose a truncation version of TSSB, referred to as TSSB-DW (**TSSB** with finite **D**epth and **W**idth).

# **Data Preprocessing**

Simulation study 1: Seven classes normal data.
 Dimension: 700×2



# **Data Preprocessing**

• Simulation study 2: Three classes normal data.

Dimension: 30,000×500



# Data Preprocessing

Real data: MNIST

Dimension:  $60,000 \times 154$  (whole)  $1,000 \times 154$  (mini)



miniData: 100 samples for each digit.

### **Preliminaries**

### Dirichlet process (DP)



(a) Dirichlet process stick breaking

### Tree-structured stick breaking process (TSSB)



(b) Tree-structured stick breaking

#### Our model

Motivated by the work of Ishwaran and James (2001), our model:

- based on a truncation version of TSSB.
- Use factored normal likelihood to avoid the high dimensionality problem.
- Parameters:
  - node parameters  $\theta_{\varepsilon}^{\ell}$  and  $\sigma_{\varepsilon}^{2\ell}$ , for  $\ell=1,...,L$ .
  - data assignment  $c_i$ , for i = 1, ..., n.
  - stick length  $\nu$ -sticks and  $\psi$ -sticks, which derive the random weights  $\pi_{\varepsilon}$ .
  - hyper-parameter drift  $\lambda^{\ell}$ .
  - stick-breaking hyper-parameters  $\alpha_0, \lambda, \gamma$ .
  - Fixed parameters:  $\eta_{\mathcal{N}}$  and  $\eta_{\Theta}$
- Search for new tree structure (Yuan et al.2015).
   The authors added another swap-nodes step to propose a new tree structure.

◆□▶◆問▶◆■▶◆■▶ ■ めぬの

### Our model

The complete model is

$$egin{aligned} (X_i \mid heta, \Sigma, c_i = arepsilon) & \overset{\mathsf{ind}}{\sim} \prod_{\ell=1}^L N\left(X_i^\ell \mid heta_arepsilon^\ell, \eta_\mathcal{N}^{|arepsilon|} \sigma_arepsilon^{2\ell}
ight), \quad i = 1, ..., n \ c_i \mid \pi & \overset{\mathsf{iid}}{\sim} \sum_arepsilon \pi_arepsilon \delta_arepsilon \ & \pi \sim \mathsf{TSSB-DW}(lpha_0, 
ho, \gamma) \ & heta_arphi^\ell \sim N( heta_arphi^\ell \mid \mu_0^\ell, \lambda^\ell), \quad \ell = 1, ..., L \ & heta_arepsilon^\ell \mid heta_{\mathsf{pa}(arepsilon)}, \eta_\Theta & \overset{\mathsf{iid}}{\sim} N( heta_arepsilon^\ell \mid heta_{\mathsf{pa}(arepsilon)}, \eta_\Theta^{|arepsilon|} \lambda^\ell) \ & \sigma_arepsilon^{2\ell} & \overset{\mathsf{iid}}{\sim} \operatorname{InvGamma}(v_{\mathit{sig}}, s_{\mathit{sig}}) \ & \lambda^\ell & \overset{\mathsf{iid}}{\sim} \operatorname{InvGamma}(v_{\mathit{dft}}, s_{\mathit{dft}}) \end{aligned}$$

8/19

### Posterior inference

- Resample data assignments  $c_i$  for i = 1, ..., n. (multinoulli)
- ullet Resample node parameters  $heta_{arepsilon}^{\ell}$  and  $\sigma_{arepsilon}^{2\ell}$  for  $\ell=1,...,L.$  (normal-invGamma)
- Resample stick length  $\nu$ -sticks and  $\psi$ -sticks, in order to update the random weights  $\pi_{\varepsilon}$ . (like in DP)
- ullet Resample hyper-parameter drift  $\lambda^\ell$  for  $\ell=1,...,L$ . (normal-invGamma)
- Resample stick-breaking hyper-parameters  $\alpha_0, \lambda, \gamma$  by slice sampler.

**Study 1.** Seven classes normal data (low dimension).



#### Update Settings:

- $\eta_{\mathcal{N}}=1$  and  $\eta_{\Theta}=0.5$
- set.seed(9)
- Update order: (1) NodeParams (2) Assignments (3) SearchTree
- Iter = 200, burnIn = 0
- priorSigmaScale = mean(diag(cov(t(testData))))
- D = 3, W = 3
- "OnlyTree"
- $\lambda^{\ell} \stackrel{\mathsf{iid}}{\sim} \mathsf{InvGamma}(v_{dft}, s_{dft})$

#### Results



Node 0 contains datalds 401-500, Node 1 contains datalds 1-100 Node 11 contains datalds 501-600, Node 2 contains datalds 301-400 Node 23 contains datalds 201-300, Node 233 contains datalds 101-200 Node 3 contains datalds 601-700.

◆ロ → ◆個 → ◆ 豆 → ◆ 豆 → りへで

12 / 19

Study 2. Three classes normal data (high dimension).



### Update Settings:

- $\eta_{\mathcal{N}}=1$  and  $\eta_{\Theta}=1$
- set.seed(12)
- Update order: (1) NodeParams (2) Assignments (WITHOUT searchTree step)
- Iter = 50, burnIn = 0
- priorSigmaScale = 1e-4
- D = 3, W = 3
- "OnlyTree"
- $\lambda^{\ell} \stackrel{\text{iid}}{\sim} \text{Unif}(0.01, 1)$

#### Results



Node 232 contains datalds 1-10000 Node 33 contains datalds 10001-20000 Node 331 contains datalds 20001-30000

### **MNIST**

MNIST: A famous handwritten digits dataset. It includes a training set with 60,000 images and a test set with 10,000 images. Each image has 28x28 pixels. Each pixel in the image matrix is in [0,255].



### **MNIST**

Results under same settings.



```
Root: 0 (53), 1 (0), 2 (92), 3 (62), 4 (64), 5 (77), 6 (63), 7 (45), 8 (84), 9 (40)
Child One: 0 (46), 1 (100), 2 (6), 3 (36), 4 (36), 5 (17), 6 (36), 7 (55), 8 (12), 9 (57)
Child Two: 0 (1), 1 (0), 2 (2), 3 (2), 4 (0), 5 (6), 6 (1), 7 (0), 8 (4), 9 (3)
```

《中》《圖》《意》《意》

#### Conclusion

- TSSB-DW model works well when the data are separable.
- MCMC approach obtains samples from the joint posterior distribution, so it is possible to derive a tree structure different from the original setting.
- MNIST may not be a good example for tree-structured clustering. Most digital samples overlap and the variances of each class have no obvious difference.

### Future Work

- Try more simulation studies.
- Try to solve the inseparable data clustering problem.
- Find a better way to choose the tree structure from all the samples and interpret the result.