$\it Note$: 'Page numbers followed by " $\it f$ " indicate figures and " $\it t$ " indicate tables.'

A	Bayes method, 40, 44, 232–233, 237–239,
Adjacency-based measurement, 306	276–277
AICc. See Corrected Akaike information	Bayesian methods, 42–44, 232–239,
criterion (AICc)	273–277, 347–348. See also
Akaike information criterion (AIC),	Geostatistical methods
46-47, 320	Bayes method, 237–239, 276–277
Alternate hypothesis (H_1) , 152, 160, 171	EB method, 233–237, 273–276
Analysis of variance (ANOVA), 160	Bayesian networks (BN), 400, 412–413
Annual average daily traffic (AADT),	Bayesian neural networks (BNN), 93-94,
27-28, 69b-71b, 335-336	422-423
Area under ROC curve, 294	Before–after studies, 219
Arithmetic mean, 136–137	adjusting for site selection bias, 239–242
Artificial intelligence (AI), 399	Bayesian methods, 232–239
Artificial neural network (ANN),	with comparison groups, 229-232
416, 418	critical issues with, 220–223
Association	RTM, 220–221
measures of, 144-148	site selection bias, 222–223
rules, 400–402	example, 231b–232b
Asymmetrical distribution, 141	PSM method, 242–244
Autocorrelation, 180–181, 280, 319,	sample size calculations, 246–255
442-444	simple before—after study, 223—225
Automatic machine learning algorithm	using survival analysis, 244–246
(AutoML), 422	Bernoulli trial, 20–21, 63
Autonomous vehicles (AVs), 10, 395	Bidirectional elimination, 202–204
Autoregressive integrated moving	Binary logistic regression model, 349–351
average model (ARIMA model),	Binary logit models, 354
181-182	Binomial distribution, 21, 64, 86–87, 406
Autoregressive model (AR model), 181	Bins, 145–146, 162–164
Average annual daily traffic (AADT), 173,	Blackspots. See Hazardous sites
184	Block maxima or minima (BM), 388–389,
Average daily rail traffic (ADRT),	391-394
73b-74b	Blood alcohol concentration (BAC), 163
Average nearest neighbor (ANN),	Box plot. See Box-and-whisker plot
279—280	Box-and-whisker plot, 161–162
n.	Bubble chart, 171–172
B	C
Backward elimination rule, 202,	
202b-204b	Calibration factor, 209–211
Balanced panel dataset, 185	Capacity, 335
Bar graphs, 165–166	drop, 355–357, 359
Basic safety messages (BSMs), 396	Car-following model, 337–338, 337f
Basic spatial unit (BSU), 312b–314b	100-car naturalistic study, 34
Bayes factors, 48	Case-control studies, 212–213
Bayes information criterion (BIC), 47,	Causal relationships, 62–63
201-202	Cell transmission model (CTM), 355–357

Cell transmission model (CTM) (Continuea)	computing codes, 4/2
simulation algorithm, 359-360	Corrected Akaike information criterion
Central limit theorem (CLT), 387–388	(AICc), 330–332
Central tendency measures, 136-137, 141	Courant-Friedrichs-Lewy condition
Centroid update, 342–346	(CFL condition), 359
Chi-square test for independence,	Crash modification factors (CMFs), 195,
145-146	244
CIs. See Confidence intervals (CIs) Classification and regression trees	Crash prediction models (CPMs), 37, 268, 335–336
methodology (CART	Crash-frequency models/modeling, 7, 268,
methodology), 405–409	442–444, 446t
037	
GBT, 410–411	applications of, 60–63
RF, 409–410	causal relationships, 62–63
Cluster(s), 403	prediction, 62
analysis, 341, 404–405	screening variables, 61
assignment step, 342–346	sensitivity of variables, 61–62
Clustering analysis (CA), 172–173, 261,	understanding relationships, 61
278-281, 399, 403-405	confidence intervals, 205-207
KC, 403	count models, 65–71
LCC, 403-405	crash variance, 205–207
Coefficient of determination R^2_{α} , 50	finite mixture models, 75-76
Coefficient of variation (CV), 140, 194,	functional form, 194-201
282-283	generalized count models, 71-75
Cohort studies, 211–212	model selection, 94–96
Collision course, 374–376	model transferability, 209–211
Complete spatial randomness (CSR), 278,	multi-distribution models, 77–82
309–310	multivariate models, 76–77
Composite safety score, 267–268	nomenclature for, 60
Conditional autoregressive function (CAR	outlier analysis, 208–209
function), 324, 433–434	sample size determination, 207
	<u> </u>
Conditional expectation, 220–221	semi-and nonparametric models, 85–94
Conditional logistic regression models,	sources of dispersion, 63–65
351–354	unobserved heterogeneity, 82–85
Conditional probability tables (CPTs), 412	variable selection, 201–204
Confidence coefficient, 148–149	Crash-injury severities, 451t–452t
Confidence intervals (CIs), 50–51, 148–151, 205–207	Crash-severity models/modeling, 7, 103, 444–447
Confounders, 190–191	characteristics of crash injury severity
Confounding variables, 190-191, 349	data, 104-105
Contiguity weights, 306	confidence intervals, 205-207
Contiguity-based measurement. See	crash variance, 205-207
Adjacency-based measurement	functional form, 194–201
Continuous distribution. See Gamma	model interpretation, 130-131
model	model transferability, 209–211
Continuous risk profile method (CRP	as ordered discrete outcome, 119–130
method), 283–285	outlier analysis, 208–209
Contour plot, 173	random utility model, 105–107
*	
Convolutional poural networks (CNNs)	sample size determination, 207
Convolutional neural networks (CNNs),	as unordered discrete outcome, 107–119
419–420	variable selection, 201–204
Conway—Maxwell—Poisson model	Crash(s), 1–2, 17
(COM-Poisson model), 72-74	concentration location methods, 282-285

CRP method, 283–285 peak searching method, 282–283	mining, 9, 399–400 CA, 403–405
sliding window method, 282	decision tree model, 405-411
counts, 7, 41, 59, 76, 85, 103, 182, 444	and modeling issues, 188-193
data, 6, 23-24, 25t-26t, 319	endogenous variables, 191
frequency method, 261-262	omitted variables bias, 190-191
hazard, 244–245	overdispersion, 188-189
hot spots, 312b-314b	sample mean and size, 189
injury severity data, 104–105	underdispersion, 188–189
modeling, 360–361, 441–442, 449	underreporting, 189–190
occurrence, 268, 285	unobserved heterogeneity, 192-193
predicting imminent crash likelihood,	models, 300
346-348	panel, 184–187
prediction, 361–363	sources of data and procedures, 22-36
process, 18–22	data issues, 36
rate method, 262-263	disruptive technological and
variance, 205-207	crowdsourcing data, 35
Critical value, 153-155, 163	naturalistic driving data, 31–35
Cross-classified random effects modeling	traditional data, 23-31
(CCREM), 82–83	time-series, 180–183
Cross-K function, 317–318	types, 180–187
Cross-sectional data, 183-184	Data integration. See Data assembly
Cross-sectional study	Deceleration rate to avoid collision
crash-frequency and crash-severity	(DRAC), 381–382
models, 194–211	Decision errors, 152–153
data	Decision tree model, 405-411
aggregation, 193-194	CART methodology, 405-409
and modeling issues, 188–193	Degrees of freedom (df), 145–146
types, 180–187	Dependent samples, 155
Cross-traffic conflict, 373	Deterministic integration, 36–37
Cross-validation, 312	Deviance, 48
Crowdsourcing, 35	Deviance information criterion (DIC), 47,
data, 35	327-328
Cumulative logit model. See Ordinal logistic model	Directed acyclic graph (DAG), 412 Directional test, 153–154
Cumulative residuals (CURE), 50–51, 196–197	Dirichlet process models (DP models), 88–93
	Dispersion
D	parameter, 66
Data	sources of, 63–65
4-stage modeling framework, 37-44	Disruptive technology, 35
aggregation, 193–194	Distance decay models, 306–308
assembling data, 36–37	Distance-band weights, 306
assembly, 36–37	Distribution-free, 85
collection, 17	Double Poisson model, 74
crash process, 18–22	Driving while intoxicated (DWI), 20
cross-sectional, 183–184	ziiving wine intomented (2 vvi) 20
evaluating model performance, 44–51	E
error-based methods, 48–51	Elasticity, 131
likelihood-based methods, 45–48	Empirical Bayes method (EB method), 40,
heuristic methods for model selection,	200–201, 220, 233–237, 273–276
51–54	Endogenous variables, 191
	•

Equi-dispersion, 63	Gaussian quadrature, 88
Equivalent property damage only method (EPDO method), 264–265	General flow-only models. See Flow-only models
Error bars, 167	General Motors model (GM model),
Error-based methods, 48–51	336–337
Euclidean distance, 279–280, 315, 403	General Motors Research Laboratory
Evolutionary Monte Carlo training	(GMR), 372
algorithm (EMC training	Generalized additive models (GAMs), 86
algorithm), 423	Generalized count models, 71–75
Expectation-maximization algorithm (EM	COM-Poisson model, 72-74
algorithm), 403	Generalized estimating equations
Exploratory data analyses, 135	(GEE), 42
graphical techniques, 161-176	Generalized event count, 75
quantitative techniques, 136-161	Generalized exponential distribution (GE
External factors, 229	distribution), 81
Extreme value distributions, 107–108	Generalized extreme value model (GEV
Extreme value models (EVM), 383–387	model), 111-112, 387-388
Extreme value theory (EVT), 383–387	block maxima using, 388–389
T.	Generalized linear autoregressive and
F	moving average (GLARMA), 182
False identification test, 292–294	Generalized linear latent and mixed
False negative errors. See Type II error	models (GLLAMs), 85
False negative rate (FNR), 293	Generalized linear mixed model (GLMM),
False positive errors. See Type I error	323–324
False positive rate (FPR), 293	Generalized linear model (GLM), 72–73, 323–328
Fatal injury, 23–24 Fatality Analysis Reporting System	
(FARS), 163	Generalized ordered logistic model (gologit), 124
Federal Highway Administration	Generalized Pareto distribution (GP
(FHWA), 4, 371–372	distribution), 387–388
Feed-forward neural network	POT using, 389–391
(FNN), 416	Geographic information system (GIS),
Field survey of traffic conflicts, 373–374	36–37, 299
Finite Mixture Negative Binomial	Geographically weighted negative
(FMNB), 75	binomial regression model
First-order process, 309–310	(GWNBR model), 329
Flow-only models, 198–199	Geographically weighted Poisson
with CMFs, 199–200	regression (GWPR), 329 Geographically weighted regression
Focus crash types, 287 Focus facility types, 287	(GWR), 307
Full Bayes model (FB model), 40, 220,	Geostatistical methods, 278–281
273–276	clustering methods, 278–281
Full information maximum likelihood	KDE, 281
(FIML), 113–115	Getis-Ord General G* (G* (d]), 301-302
Fundamental diagram (FD), 338	Getis-Ord Gi* statistics (G*(d) statistics),
calibration, 357–359	281
	Gibbs sampling method, 436–437
G	Gini impurity, 405–406
Gamma model, 74	Goodness-of-fit (GOF), 44, 201-202
Gamma-count model, 74	Goodness-of-logic (GOL), 44, 94-95, 197
Gaussian function, 330	Gradient boosting trees (GBT), 409-411

Gramian Difference Angular Field (GDAP), 420 Graphical techniques, 161–176. See also	Interquartile range (IQR), 138 Irrelevant and independent alternatives (IIA), 103–104, 119
Quantitative techniques	(,,
bar graphs, 165–166	K
box-and-whisker plot, 161-162	K-means
bubble chart, 171–172	algorithm, 343b
contour plot, 173	cluster analysis, 341-342
error bars, 167	K-means clustering (KC), 278–279, 403
heatmap, 172–173	k-nearest neighbors approach (k-NN
histogram, 162–164	approach), 361–362, 362b–363b
pie charts, 168	Kernel density, 164, 311–312
population pyramid, 174—176 radar/web plot, 172	Kernel density estimation (KDE), 281, 307,
scatterplots, 168–169	310–314 Kurtosis, 143–144
Gross domestic product (GDP), 2–3	Kurtosis, 143–144
Gross domestic product (GB1), 2	L
Н	Lag, 180–181
Haddon Matrix, 19, 20t	Lagged response model. See Spatial
Hausman test, 192	autoregressive model (SAR model)
Hazardous sites, 259	Latent class clustering (LCC), 403-405
Bayesian methods, 273-277	Leptokurtic distribution, 143-144
combined criteria, 277–278	Level of service (LOS), 335
crash concentration location methods, 282–285	Level of service of safety method (LOSS method), 271–272, 339
evaluating site selection methods, 288–295	Likelihood function, 245–246, 429
geostatistical methods, 278–281	Likelihood-based methods, 40–42, 45–48
observed crash methods, 261–268	AIC, 46–47
predicted crash methods, 268–272 proactive methods, 285–288	Bayes factors, 48 BIC, 47
Heatmap, 172–173	deviance, 48–51
Heuristic methods for model selection,	DIC, 47
51-54	likelihood ratio index, 46
Hierarchical Bayesian model (HBM),	likelihood ratio test, 45-46
323-328	MLE method, 45
Hierarchical NB model (HNB model), 43	WAIC, 47
Highway capacity manual (HCM), 335	Line of Best Fit, 169
Highway safety, 4–5	Local G* (d), 303–304
analyses, 7–9	Local indicators of spatial association
initiatives, 4	(LISA), 303
research, 213	Local Moran's I _i , 304–305
Highway Safety Manual (HSM), 4–5, 37, 195, 260, 369	Log-likelihood (LL), 41, 432 statistic, 412
Hill climbing (HC), 412	Log-likelihood ratio (LR), 201–202
Histogram, 162–164, 310	Long short-term memory (LSTM),
Hotspots. See Hazardous sites	420–422
Hyper-Poisson (hP), 75	Longitudinal data. See Panel data
Hypothesis testing, 152–161	ŭ
	M
I	Machine learning, 9, 399–400
Integer-valued autoregressive (INAR), 182	Manual on Uniform Traffic Control Device
Interpolation algorithm, 360b	(MUTCD), 222—223

Margin of error, 149	Multilayer perceptron (MLP), 93-94, 416
Marginal effect, 130	neural network, 416–419
Markov Chain Monte Carlo methods	Multilevel model. See Random-effects
(MCMC methods), 40, 69b-71b,	models (RE models)
233, 434	Multinomial logit model (MNL model),
estimation, 435	103, 108–111
Poisson-gamma model, 435–437	computing codes, 473
Poisson-gamma-CAR model, 438–439	Multiple regression model, 200–201
Matched pairs, 155	Multivariate models, 76–77
Matched samples. See Dependent samples	Multivariate normal, 433
Mathematical expectation. See Mean	
Maximum available deceleration rate	N
(MADR), 381–382	Naïve method, 252–253
Maximum likelihood estimation method	National Academy of Sciences (NAS), 34
(MLE method), 39, 45, 69b–71b, 434–435	National Highway Transportation Safety Agency (NHTSA), 4, 18
Maximum-likelihood (ML), 403	Naturalistic driving data, 31–35
Maximum-posterior (MAP), 403	Naturalistic driving study (NDS), 396
McFadden R ² index, 46	Nearest neighborhood clustering,
Mean. See Arithmetic mean	279-280
Mean absolute deviance (MAD), 49	Negative binomial (NB)
Mean prediction bias (MPB), 49	computing codes, 467-468
Mean response, 206–207	random effects, 469-470
Mean squared error (MSE), 49	random parameters, 470-471
Mean squared prediction error (MSPE), 49 Median, 137	with varying dispersion parameter, 468–469
Mesokurtic distribution, 143–144	distribution, 233
Method consistency test (MCT), 291	model, 9–10, 65–66, 193–194
Metropolis-Hastings algorithm (MH	Poisson-gamma model, 429–433
algorithm), 437	estimation methods, 434–439
Miss Rate. See False negative rate (FNR)	with spatial interaction, 433-434
Mixed effect model, 325–326	probability density and likelihood
Mixed function, 116	functions, 429
Mixed logit model (ML model), 107-108,	regression models, 429
116-119	Negative Binomial Integer-valued
Mixing distribution, 116	Generalized Autoregressive
Mobility, 335	Conditional Heteroscedastic model
Mode, 137	(NBINGARCH model), 182
Model transferability, 209–211	Negative binomial-Crack model (NB-CR
Modeling space between vehicles,	model), 81–82
336-338	Negative binomial-generalized estimate/
"Moderated" causal relationship, 195	exponential model (NB-GE model),
Modified time to collision (MTTC), 377–378	81, 192–193 Negative Binomial–Lindley model (NB-L
Monte Carlo simulation (MC simulation), 85, 316	model), 53–54, 78–81, 192–193 computing codes, 472
Moran's I index, 280–281, 302–303	Nested logit model (NL model), 107–108,
Mosaic plot, 166	111–115
Moving average model (MA model), 181	computing codes, 473–474
Multi-distribution models, 77–82	Network cross-K function, 317
NB-L model, 78–81	Network screening, 259–260
Multidimensional data. See Panel data	Neural network, 416–423

BNN, 422-423	Pie charts, 168
CNNs, 419-420	Planar K-function, 316
LSTM, 420-422	Point data analysis, 309-318
MLP neural network, 416-419	crash hot spots, 312b-314b
RNN, 420-422	cross-K function, 317-318
Nondirectional test. See Two-tailed test	first-and second-order process,
Nonparametric models, 93-94, 145	309-310
Null hypothesis (H_0), 152	KDE, 310-314
Null value, 153–154	Ripley's K-function, 314-316
	Point patterns, 309-310
0	Poisson mean, 206–207
Observed crash methods, 261–268. See also	Poisson mean differences (PMD), 294–295
Predicted crash methods	Poisson model, 65
composite safety score, 267-268	Poisson trials, 21–22, 63
crash frequency method, 261-262	Poisson-gamma model, 429-433
crash rate method, 262-263	NB-1 model, 432–433
EPDO method, 264–265	NB-2 model, 430-432
RQC method, 263-264	with spatial interaction, 433-434
SI, 266–267	Poisson-Inverse Gamma, 71
strengths and limitations of, 269t-270t	Poisson-Inverse Gaussian (PIG), 71
Odds ratio, 108, 147–148, 350–351	Poisson-lognormal model (PLN model),
Omitted variables bias, 190-191	53-54, 66-71
One-tailed hypothesis test, 153–154	computing codes, 471-472
One-tailed test, 153-154	Poisson-mixture models, 71
Opposing left-turn conflict, 373	Poisson-Dirichlet Process (P-DP), 91
Ordered probit model (OP model), 426	Poisson—Tweedie distribution models, 71
Ordinal logistic model, 121	Poisson-Weibull distrisbution model, 71
Ordinal logit/probit model, 120-124	Pooling, 419–420
Outlier analysis, 208–209	Population pyramid, 174-176
Over-dispersion parameter, 66	Post encroachment time (PET), 371
Overdispersion, 63-64, 188-189. See also	Potential for improvement (PI), 268–271
dispersion	Predicted crash methods, 268–272. See also
_	Observed crash methods
P	LOSS method, 271–272
Paired samples. See Dependent samples	PI, 268–271
Paired <i>t</i> -test, 156	strengths and limitations of, 273t
Panel data, 184–187	Prediction, 62
Panel study	Prediction intervals (PIs), 206–207
crash-frequency and crash-severity	Presence of commercial area (PCA),
models, 194–211	73b—74b
data	Presence of guide (PG), 73b–74b
aggregation, 193–194	Presence of speed hump (PSH), 73b–74b
and modeling issues, 188–193 types, 180–187	Presence of track circuit controller (PTCC), 73b–74b
Partial proportional odds model (PPO),	Proactive methods, 285–288
124–125	focus crash types, 287
Peak over threshold (POT), 388–394	focus facility types, 287
Peak searching method, 282–283	risk factors development, 287
Pearson Chi-square, 50	screen and prioritize candidate locations,
Pearson's correlation coefficient, 144–145	288
Pedestrian conflict, 373	Probability density function (PDF), 86–87,
Percentile, 138	310, 348, 429
	,,

Probability mass function (PMF), 66,	Real-time traffic, characterizing crashes
430–431	by, 340–346
Probability of false alarm. See False	Receiver operating characteristic curve
positive rate (FPR)	(ROC curve), 294
Propensity score matching method (PSM	Rectified linear unit (ReLU), 416
method), 242–244	Recurrent neural networks (RNN),
Propensity score method (PS method), 220	420-422
Property damage only (PDO), 108	Regression, 400
Proportion of stopping distance (PSD), 381	tree, 405
Prospective cohort study, 212	Regression-to-the-mean (RTM), 200–201, 220–221
Q	Rejection regions, 153
Quantile regression (QR), 442-444	Relative risk, 147–148
Quantitative techniques, 136–161. See also	Relative Severity Index (RSI), 267–268
Graphical techniques	Relative standard deviation. See
confidence intervals, 148-151	Coefficient of variation (CV)
hypothesis testing, 152–161	Resampling, 418–419
measures of	Retrospective cohort study, 212
association, 144-148	Right-turn-on-red conflict (RTOR conflict)
central tendency, 136-137	373
variability, 137–144	Ripley's K-function, 279, 314-316
Quartiles range, 138	Risk, 294
	of collision at signalized intersections,
R	390f
R 3.5.0 package, 422	factors development, 287
Radar/web plot, 172	Risk ratio. See Relative risk
Radial basis function (RBF), 425	Road Safety Manual (RSM), 4-5, 260
Random forest (RF), 409–410	Roadway data, 26, 26t
Random parameters logit model. See	Run-off-the-road events (ROR events), 167
Mixed logit model (ML model)	() () () () () () () () () ()
Random utility model, 105–107	S
Random-effects models (RE models),	Safety, 335
82–83	as function of traffic flow, 338–340
Random-parameters models (RP models),	pyramid, 383
83–85, 192	safety-related data, 30–31
Random-parameters NB-L model	Safety performance functions (SPFs), 37,
(RPNB-L model), 80	183, 195, 268, 339
Randomized control trial (RCT), 213	Safety Pilot Model Deployment program
Range, 137–138	(SPMD program), 396
Rate quality control method (RQC	Same-direction conflict, 373
method), 263–264	Sample mean, 64, 136–137, 189
Real-time crash prediction models	Sample size, 189
(RTCPM), 8–9, 336	calculations, 246–255
Real-time predictive analysis of crashes,	factor influencing, 247–249
348–354	9
	using known crash counts, 249–252
binary logistic regression model,	on variance and ratio, 252–255
349—351	determination, 207
binary logit models, 354	Sampling distribution, 41, 139–140, 154
conditional logistic regression model,	Scatterplots, 168–169
351–353	Schwarz Information Criterion. See Bayes
conditional logistic regression	information criterion (BIC)
models, 354	Screening variables, 61

Seasonal ARIMA model (SARIMA	Spatial interaction, 433–434
model), 181–182	Poisson-gamma model with, 433–434
Seasonality, 181	Spatial lag model. See Spatial
Second-order process, 309–310	autoregressive model (SAR model)
Secondary conflict, 373	Spatial random effect, 433
Selectivity. See Specificity (SPEC)	Spatial regression analysis, 318–332
Seminonparametric Poisson model (SNP	generalized linear model, 323–328
Poisson model), 86–88	modeling local relationships, 328–332
Semiparametric models, 86–88	spatial econometrics methods,
Sensitivity (SENS), 293, 336–337	319–323
analysis, 426	Spatial weights, 306–308
of variables, 61–62	Spearman rank-order correlation
Sequential logistic/probit regression	coefficient, 145
model, 128–130	Specificity (SPEC), 294
Severity index (SI), 266–267	Stacked bar graphs, 166
Severity of conflict, 389	Standard deviation (SD), 138–140, 247
Sichel model (SI model), 71	Standard error (SE), 138–140, 149, 247
Significance level, 248	4-stage modeling framework, 37–44
Simultaneous Autoregressive function	computational techniques and tools,
(SAR function), 433–434	40-44
Site consistency test (SCT), 290–291	developing models, 39
Site selection	inferential goals determination, 39
adjusting for, 239–242	modeling objective matrix, 37–38
bias, 222–223	Stationarity, 181
methods, 288–295	Stationary process, 310
Skewed distributions. See Asymmetrical	Statistical modeling, 130
distribution	Subcritical zone, 339–340
Skewness, 141	Sum of squared error (SSE), 405
Sliding window method, 282	Supercritical zone, 339–340
Spatial Analysis on NETwork (SANET),	Supplemental data, 28–30
316	Support vector machine (SVM), 93–94,
Spatial association	423–426
global statistics for, 301–303	Support vectors, 423, 425
local indicators of, 303–305	Surrogate Safety Assessment Model
measurement of, 300–305	(SSAM), 394–395
spatial patterns of weather-related	Surrogate safety measures
crashes, 305b	comparison of indicators, 384t–386t
Spatial autoregressive model (SAR	field survey of traffic conflicts,
model), 319–320	373–374
Spatial correlation, 6	PET, 371
generalized linear model with, 323–328	proximal, 374–383
positive, 278	safety risk pyramid, 387f
Spatial data	TCT, 371–372
and data models, 300	theoretical development of, 383–394
measurement of spatial association,	traffic conflicts, 370–371
300-305	from traffic microsimulation models,
point data analysis, 309–318	394-395
spatial regression analysis, 318–332	from video and emerging data sources,
spatial weights and distance decay	395–396
models, 306–308	Survival analysis, 244–246
Spatial econometrics methods, 319–323	Swedish Conflicts Technique, 383
Spatial error model (SEM), 319–323	Symmetrical distribution, 141

Synthetic Minority Over-sampling	True negative rate. See Specificity (SPEC)
Technique algorithm (SMOTE	True Poisson means (TPMs), 294–295
algorithm), 418–419	True positive rate (TPR). See Sensitivity (SENS)
T	Two-tailed hypothesis test, 153
Time advantage (TAdv), 381	Two-tailed test, 153
Time exposed time to collision (TET),	Type I error, 248
376–377	Type II error, 248
Time integrated time to collision (TIT),	-y F • ••-, =
376–377	U
Time measured to collision (TMTC), 376	Unbalanced panel dataset, 185
Time to accident (TA), 376	Underdispersion, 63–65, 188–189
Time to collision (TTC), 371, 376–380	generalized count models for, 71–75
Time-and distance-based proximal	observed, 188–189
surrogate safety measures, 376–383	Underreporting, 189–190
encroachment time family, 380–381	Unobserved heterogeneity, 82–85, 105,
other indicators, 381–383	188, 192–193
PSD, 381	RE models, 82–83
time to collision family, 376-380	RP models, 83–85
Time-series data, 180–183	Utility function, 105-106
Total rank difference test (TRDT), 291–292	Utility maximization, 106
Total score test (TST), 292	,
Traffic analysis zones (TAZ), 309	V
Traffic conflicts, 370, 373, 396	Variability, measures of, 137-144
Traffic conflicts technique (TCT), 370	Variable selection, 201–204
Traffic crashes, 22, 137, 369, 418	Variance, 138-140
Traffic density, 337, 339-340	reduction, 406
Traffic flow data, 26–28	variance-inflation-factors, 62
Traffic microsimulation models, 394-395	Vector data, 300
Traffic simulation to predicting crashes,	Vehicle-miles traveled (VMT), 169, 287
354-363	
crash modeling, 360–361	W
crash prediction, 361-363	Weight factor, 205, 234-235
CTM, 355–357	Widely applicable information criterion
CTM simulation algorithm, 359-360	(WAIC), 47
FD calibration, 357–359	_
interpolation algorithm, 360b	Z
Train detector distance (mile) (TDD),	z statistic, 154
73b-74b	Zero-centered models, 77-78
Transitional zone, 339–340	Zero-inflated models (ZI models), 76,
Trend Line, 169	94-95