

Norges teknisk–naturvitenskapelige universitet Institutt for matematiske fag Eksamen TMA4140 – Diskret matematikk 18. desember 2009

Løsningsforslag

 $\boxed{1}$ Vi ser at $n^2-7n+12\geq 0$ når n=3. Anta $n^2-7n+12\geq 0$ (induksjonsantagelsen).

$$(n+1)^2 - 7(n+1) + 12 = (n^2 - 7n + 12) + 2n - 6$$

 $\geq 2n - 6 \geq 0.$

Her har vi brukt induksjonsantagelsen og at $2n-6 \ge 0$ når $n \ge 3$.

- 2 a) Ved den Euklidske algoritmen finner man at $52 \cdot 19 \equiv 1 \pmod{141}$. Da er $(-7)52 \cdot 19 \equiv -7 \pmod{141}$, og altså $(-364) \cdot 19 \equiv -7 \pmod{141}$. Den generelle løsningen av $19x \equiv -7 \pmod{141}$ er $-364 + 141 \cdot \mathbb{Z}$. Setter man inn $4 \in \mathbb{Z}$, så får man det søkte svaret, nemlig x = 200.
 - b) Siden 29 er et primtall, så er ifølge Fermat's teorem $7^{28} \equiv 1 \pmod{29}$. Da får vi:

$$7^{115} = 7^{28 \cdot 4 + 3} = (7^{28})^4 \cdot 7^3 \equiv 7^3 \pmod{29}.$$

Nå er $7^3 \equiv 24 \pmod{29}$, og altså $7^{115} \equiv 24 \pmod{29}$.

a) En grammatikk G = (V, T, S, P) er regulær dersom produksjonene P er alle av formen: $A \to iB$, $A \to i$, der A og B er ikke-terminaler og i er en terminal. I tillegg tillates $S \to \lambda$. Et språk er regulært dersom det genereres av en regulær grammatikk. Et språk er regulært hvis og bare hvis det gjenkjennes av en endelig tilstandsautomat (deterministisk eller ikke-deterministisk).

b)

- c) $\lambda \cup 01^* \cup 00^*11^*$
- **d)** $\{0,1\}(01)(01)^*$, eller $(0 \cup 1)(01)(01)^*$.
- 4 abdeijmnocfghklp (pre-ordning) dimnojebfgkplhca (post-ordning)

- a) Grafen har ingen Euler krets siden nodene j og k har odde grad, men den har en Euler sti siden de øvrige nodene har like grad. Dersom man fjerner en kant som ikke er tilstøtende til nodene j og k, så vil grafen ikke ha noen Euler sti, siden man da får flere enn to noder som har odde grad. Fjerner man kanten $\{j,k\}$, så får grafen en Euler krets, siden alle nodene får like grad. Dersom man fjerner en av kantene $\{j,i\}$, $\{j,h\}$, $\{k,g\}$, $\{k,h\}$, så vil den resulterende grafen ha en Euler sti (men ingen Euler krets) siden den vil ha nøyaktig to noder av odde grad.
 - **b)** Grafene G og H har begge 8 noder og 10 kanter. De har begge 4 noder av grad to og 4 noder av grad tre. De er allikevel ikke isomorfe. Grunnen er at node a i G (som er av grad to) er nabo til to noder av grad tre, mens hver av nodene i H av grad to (dvs. t, u, x, y) ikke er nabo til to noder av grad tre.

	Alt 1	Alt 2	Alt 3	Alt 4
Deloppgave 1		X		
Deloppgave 2			X	
Deloppgave 3	X			X
Deloppgave 4	X	X		
Deloppgave 5			X	
Deloppgave 6				X
Deloppgave 7				X
Deloppgave 8			X	

6