config

RA0 input ADC from volage and current and resistance blocks

Output	O	u	t	p	u	t
--------	---	---	---	---	---	---

RC0-> D4 for lcd

RC1 -> D5 for lcd

RC2 -> D6 for lcd

RC3-> D7 for lcd

Output

RD0-> E for lcd

RD1-> RS

Note: RW = 0 (connected to ground)

Input

RB5 - dc volt 5

RB4- dc volt 50

RB3- dc volt 200

RB2- ac volt 5

RB1- ac volt 50

RB0-> ac volt 200

RD7->Dc current

RD6->Ac current

RD5->R 10K value

RD4->R 1M value

Selection for mux

Output

RA4, RA3
to choose the input of ADC0 between
00 dc volt
01 dc current
10 ac volt
11 resistance
RA4 the most sig bit
RA2 ,RA1 to chose the ring of volt ac and dc
00 50-> 200
01 5-> 50
10 0->5
11 xx
RA6 to choose the input of Ac to DC converter
0 Vac
1 lac
RA5
Note: it has 3 functions but the three functions don't work at the same time
first: choose where the output from first stage in voltage block will go either
second stage -1 in case of dc
or second stage Ac to Dc converter
0 dc
1 Ac

--

Second: the same for the current

0 dc

1 Ac

third: chose the range of resistance

0 big value of resistance

1 small value of resistance

Equations and selection

Assume the value x has the input value from ADC

Where x=(ADC register *5) / 1023

here I assume the resistance of mux is 350 ohm but we can change the equation if it's not 350 ohm in real world testing

dc volt ranges equ : just 1 Mux so one 350 ohm

```
If(RB5==1)
```

RA4=0

RA3=0

RA2 =1

RA1=0

RA5=0

Delay

Calculate x

Y=x * (10051 / 51) * (450 / 20000)

LCD_Display(y)

```
If(RB4==1)
RA4=0
RA3=0
RA2 =0
RA1=1
RA5=0
Delay
Calculate x
Y=x * (10051 / 51) * (1350 / 20000)
LCD_Display(y)
If(RB3==1)
RA4=0
RA3=0
RA2 =0
RA1=0
RA5=0
Delay
Calculate x
Y=x * (10051 / 51) * (5050 / 20000)
LCD_Display(y)
 Ac volt ranges equ: just 2 Mux so two 350 ohm
If(RB2==1)
```

```
RA4=1
RA3=0
RA2 =1
RA1=0
RA5=1
RA6=0
Delay
Calculate x
Y=x * (10051 / 51) * (450 / 20000) *(22700/22000)
LCD_Display(y)
_____
If(RB1==1)
RA4=1
RA3=0
RA2 =0
RA1=1
RA5=1
RA6=0
Delay
Calculate x
Y=x * (10051 / 51) * (1350 / 20000) * (22700/22000)
LCD_Display(y)
-----
If(RB0==1)
RA4=1
RA3=0
```

```
RA2 =0
RA1=0
RA5=1
RA6=0
Delay
Calculate x
Y=x * (10051 / 51) * (5050 / 20000) * (22700/22000)
LCD_Display(y)
current equ:
If(RD7==1) just 1 Mux so one 350 ohm
RA4=0
RA3=1
RA5=0
RA5=0
Delay
Calculate x
Y= x* 2* (1/10) *( 100350/100000)
LCD_Display(y)
If(RD6==1) just 2 Mux so two 350 ohm
RA4=1
RA3=0
RA5=1
RA6=1
RA5=1
```

```
Delay
Calculate x
Y= x* 2* (1/10) *( 22700/22000 )
LCD_Display(y)
Resistance equ:
If(RD5==1) just 1 Mux so one 350 ohm
RA4=1
RA3=1
RA5=1
Delay
Calculate x
Y = (1350 * x) / (5-x)
LCD_Display(y)
If(RD4==1) just 1 Mux so one 350 ohm
RA4=1
RA3=1
RA5=0
```

Delay

Calculate x

Y = (1500350 * x) / (5-x)

LCD_Display(y)