Menger's theorem, Max-flow-min-cut theorem, and the problem in the Mongolian TST 2011 test 3 problem 3

Donghui Kim

Thursday, June 21, 2018

Abstract

This article contains materials cut from the book [?] related to the problem 3, test 3 in Mongolian TST 2011.

A directed graph is said to be **strongly connected** if every vertex is reachable from every other points.

1. Prove that a digraph G is strongly connected iff there is at least one edge leaving each set $X \subseteq V(G)$, $X \neq \emptyset$, $X \neq V(G)$. [?, 47p.]

A directed graph G is said to be k-edge-connected between a and b if we need at least k edges to be removed to separate a and b. k-connected between a and b is defined in the similar manner.

Theorem 1 (Menger's theorem). Let G be a digraph and $a, b \in V(G)$. Then the followings holds.

- There are k edge-disjoint (a, b) paths iff G is k-edge-connected between a and b
- 2. There are k independent (a,b) paths iff G is k-connected between a and b.
- 3. analogous statement hold for undirected graphs.
- *Proof.* 1. We will make use of induction on |E(G)|. If there is an $S \subseteq V(G)$ which defines a k-element (a,b)-cut and $|S| \ge 2$, $|V(G) S| \ge 2$, then apply the induction hypothesis on the graphs obtained by contracting S and V(G) S, respectively.

Suppose that G has k edge-disjoint (a, b)-paths, it is obviously k-edge-connected between a and b. To prove the other part, remove edges till the removal of any further edge will destroy k-edge-connectivity between a and b. Then obviously, there will be no edge with head at a or tail at

b. Assume first there is an edge e_i incident neither to a nor to b. Since $G-e_1$ no longer satisfies the conditions, it has a (k-1)-element (a,b)-cut C'. Then $C=C'\cup\{e_1\}=\{e_1,\ldots,e_k\}$ is a k-element (a,b)-cut by the choice of e_1 , the set S determining C satisfies $|S|\geq 2$, $|V(G)-S|\geq 2$.

Let G_1 , G_2 be the graphs obtained by contracting S and V(G)-S, respectively; let a' and b' be the images of a in G_1 and b in G_2 , respectively. Obviously, G_1 is k-connected between a' and b, and thus by the induction hypothesis, there are k edge-disjoint (a',b)-path P_1 , P_2 , ..., P_k . Since the edges going out from a' are only e_1 , ..., e_k , we may assume that $e_i \in P_i$. Similarly, there are k edge-disjoint (a,b')-paths Q_1 , ..., Q_k in G_2 , $e_i \in Q_i$. Then $P_1 \cup Q_1$, ..., $P_k \cup Q_k$ form k-edge-disjoint (a,b)-paths in G. What is left is the case, when each edge has tail at a or head at b. If there is an (a,b)-edge, we can remove it and proceed by induction on k, thus we may assume that there is no such edge. For any $x \neq a, b$, let k(x) be the minimum of the numbers of (a,x)-edges and (x,b)-edges. Then obviously, there are $\sum_{x \neq a,b} k(x)$ edge-disjoint (a,b)-paths. On the other hand, let S be the set of all points x which are connected to b by k(x) edges. Then, the cut determined by $\{a\} \cup S$ has exactly $\sum_{x \neq a,b} k(x)$ edges. Hence $\sum_{x \neq a,b} k(x) = k$ which proves the assertion.

2. Split each point $x \neq a$, b into two points x_1 , x_2 , where x_1 is joined to x_2 and x_2 is joined to y_1 iff x is joined to y.

Consider a graph G', which has points a, b and two points x_1 , x_2 that each $x \in V(G)$, $x \neq a$, b. Put $a_1 = a_2 = a$ and $b_1 = b_2 = b$. For any edge $e = (x, y) \in E(G)$, G' has the edge $e' = (x_2, y_1)$, moreover, for each $x \in V(G)$, $x \neq a$, b, it has the edge (x_1, x_2) . Now

- (i) G' is k-edge-connected between a and b iff G is k-connected between a and b;
- (ii) G' has k-edge-disjoint (a,b)-paths iff G has k vertex-disjoint (a,b)-paths.

To show (i), consider an (a,b)-cut C in G'. Let A consist of all points x such that $(x_1,x_2) \in C$ and all other edges of C. Then |A| = |C| and A separates a and b in G; for if P is any (a,b)-path in G, then the edges of G' corresponding to edges and inner points of P, form an (a,b)-path P' in G and since P' contains an edge of C, P contains an edge or point of A.

Conversely, if A is a set of edges and points separating a and b in G, then the construction above associates a set C of edges of G' with it, and C will be an (a,b)-cut with |C|=|A|. This proves (i).

Now consider k edge-disjoint (a,b) paths P_1, \ldots, P_k in G'. If $x_i \in P_j$ then, obviously, (x_1, x_2) is an edge of P_j and x_i is also on P_j . Hence P_1, \ldots, P_k are vertex-disjoint (a,b)-paths of G.

Conversely, if there are k vertex-disjoint (a, b)-paths in G, then the (a, b)-paths of G' associated with them in the natural way are vertex-disjoint, and hence edge-disjoint. This proves (ii). Now (i) and (ii) proves the second statement by the first.

3. Replace each edge by two opposite oriented edges.

Let directed graph \vec{G} obtained as in the hint has the same connectivity and edge-connectivity between any two points as G. Moreover, the maximum number of edge-disjoint (vertex-disjoint) (a,b)-paths of G and \vec{G} are the same. For edge(vertex) disjoint (a,b)-paths of \vec{G} , we may assume that they do not use both (x,y) and (y,x); for in this case one can easily find another system of the same number of (a,b)-paths, which contain neither (x,y) nor (y,x) (in the vertex-connectivity case, this difficulty does not even arise). These paths yield edge-disjoint (vertex-disjoint) (a,b)-paths in G.

Let N = (V, E) be a directed graph. Let $s, t \in V$, $s \neq t$ and $c : E \longrightarrow \mathbb{R}^+$, $(u, v) \mapsto c(u, v)$. A (s, t) flow subject to c(u, v) is a mapping $f : E \longrightarrow \mathbb{R}^+$, $(u, v) \mapsto f(u, v)$ with the following properties.

- i. For all $(a,b) \in E$, $f(a,b) \le c(u,v)$.
- ii. For all $v \in V$, $v \neq s, t$,

$$\sum_{\{u:(u,v)\in E\}} f(u,v) = \sum_{\{u:(v,u)\in E\}} f(v,u)$$

Then the value of a flow is defined by

$$|f| = \sum_{v:(s,v)\in E} f(s,v)$$

Note that the value satisfies

$$|f| = \sum_{v:(v,t)\in E} f(v,t)$$

In this case c is called the capacity, s is called a source, and t is called a sink. An (s,t) cut C=(S,T) is a partition of V such that $s \in S$, $t \in T$. The cut set X_C is the edges that connect source part of the cut to the sink part;

$$X_C = (S \times T) \cap E$$

The capacity of an (s, t) cut is the total capacity of its edges;

$$c(S,T) = \sum_{(u,v)\in X_C} c(u,v)$$

Proposition 0.1. Let N = (V, E) be a directed graph with an (s, t) flow f. Let C = (S, T) be an (s, t) cut. Then the value of f is given by

$$|f| = \sum f(X_C) - \sum f(X_C^*)$$

where $C^* = (T, S)$

Proof. Let C = (S, T). Consider

$$\sum_{x \in S} \left(\sum_{e=(x,y)} f(e) - \sum_{e=(y,x)} f(e) \right)$$

Since f is an (s,t) flow, the only non-zero term in the expression is

$$\sum_{e=(s,y)} f(e) - \sum_{e=(y,s)} f(e)$$

which is the value of f. On the other hand, each e spanned by S occurs twice with opposite signs, the edges of C occur with positive sign, the edges of C^* with negative sign. Hence

$$|f| = \sum f(X_C) - \sum f(X_C^*)$$

Theorem 2 (Max-flow-min-cut theorem). Let N = (V, E) be a directed graph with capacity c and $s, t \in V$. The maximum value of an (s, t) flow equals to the minimum capacity over all (s, t) cuts.

Proof. The non-trivial part of the proof is to find an (s,t) flow f and an (s,t) cut C such that

$$|f| = \sum_{e \in C} c(e)$$

We will consider a flow f of maximum value subject to c. For each $e \in E$, we introduce a new edge e' having the same endpoints but converse orientation, and let

$$v_0(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e_1) & \text{if } e = e_1', e_1 \in E \end{cases}$$

We then consider the digraph G_1 determined by those edges e, e' for which $v_0(e) > 0$ and $v_0(e') > 0$; respectively. It will be shown that G_1 does not have (s,t)-path. To do this, suppose that there is (s,t)-path P in G_1 . Let $\epsilon = \min \sum_{e \in P} v_0(e) > 0$. Now set for $e \in E$,

$$f_1(e) = \begin{cases} f(e) + \epsilon & \text{if } e \in E(P) \\ f(e) - \epsilon & \text{if } e' \in E(P) \\ f(e) & \text{otherwise} \end{cases}$$

Then $f_1(e)$ is an (a,b)-flow of value $|f| + \epsilon$, a contradiction. Thus G_1 is not connected between s and t. Hence, by the problem 1, there is an $S \subseteq V$ such that $a \in S$, $b \notin S$ and the cut C of G determined by S satisfies

$$f(e) = c(e) \text{ if } e \in X_C,$$

$$f(e) = 0 \text{ if } e \in X_C^*$$

Hence, by proposition 0.1,

$$|f| = \sum_{e \in X_C} f(e) - \sum_{e \in X_C^*} f(e) = \sum_{e \in X_C} v(e)$$

Thus The value of max flow f is no less than the minimum value of the cut. On the other hand, for every (s,t) flow f subject to c and for any (s,t) cut C,

$$|f| = \sum_{e \in X_C} f(e) - \sum_{e \in X_C^*} f(e) \le \sum_{e \in C} f(e) \le \sum_{e \in C} c(e)$$

which completes the proof.

2. Concerning a digraph, assume that the capacities are integers. Show that there is a maximum value flow with integral entries.

For a graph G and f be a non-negative integer valued function on V(G) such that $f(v) \leq \deg(v)$ for every $v \in G$. An f factor of G is a subgraph of G with degree f(v) for each $v \in V(G)$. When f is a constant function, say d, then the f factor is also called a d factor.

Theorem 3 (Ore-Gale-Ryser theorem). Let G be a bipartite graph with bipartition $\{A, B\}$ and $f(x) \geq 0$ an integer valued function on V(G). Then G has an f factor if and only if

$$i. \sum f(A) = \sum f(B)$$

ii. For all $X \subseteq A$ and $Y \subseteq B$,

$$\sum f(X) \le m(X,Y) + f(B-Y)$$

where m(X,Y) is the number of edges connecting X to Y.

Proof. Suppose that G has an f factor F. Then

$$\sum f(A) = |E(F)| = \sum f(B)$$

which proves i. Let $X \subseteq A$, $X \neq A$, $Y \subseteq B$. Then there are at most m(X,Y) edges of F joining X to Y and at most $\sum_{y \in B-Y} f(y)$ edges of F joining X to B-Y. Since there are exactly f(X) edges of F joining X to B, ii. follows.

Now suppose that i. and ii. are satisfied. Direct all edges from A to B. Take two points a, b and join a to each point of A and each point of B to b by directed edges. Define the capacity c over the resulting digraph G_0 by

$$c(e) = \begin{cases} f(x) & \text{if } e = (a, x) \text{ or } e = (x, b) \\ 1 & \text{if } e = (x, y), \ x \in A, \ y \in B \end{cases}$$

Observe that G_0 has an internal (a, b) flow with value $\sum f(A) = \sum f(B)$, if and only if G has an f factor. So what we have to verify is, by the max-flow-min-cut theorem (theorem 2) and problem 2, that each (a, b)-cut of G_0 has capacity at least $\sum_{x \in A} f(x)$.

Let S determine an (a,b)-cut $(a \in S \subset V(G_0))$. Set $X = S \cap A$ and Y = B - S. Then the capacity of the cut determined by S is

$$\sum_{x \in A - X} f(x) + \sum_{y \in B - Y} f(y) + m(X, Y) \ge \sum_{x \in A - X} f(x) + \sum_{x \in X} f(x) = \sum_{x \in A} f(x)$$

Now we are ready to solve the problem.

3. Let n and d be positive integers satisfying $d < \frac{n}{2}$. There are n boys and n girls in a school. Each boy has at most d girlfriends and each girl has at most d boyfriends. Prove that one can introduce some of them to make each boy have exactly 2d girlfriends and each girl have exactly 2d boyfriends.

Notes

1. Let G be a strongly connected digraph and X be a nonempty proper subset of V(G) Let $a \in X$ and $b \in V(G)$. Then there is a path from a to b. Therefore, there is an edge leaving X.

Conversely, suppose that there is no path from a to b. Let X be a set of vertex reachable from a. Then by the maximality, there is no edge leaving X.

2. Let us substitute v(e) parallel edges for each edge e and let G_1 be the resulting graph. Let C be an (a,b)-cut of G and C_1 the (a,b)-cut of G_1 , determined by the same set. Then

$$|C_1| = \sum_{e \in C} v(e)$$

Thus putting

$$V = \min_{C} \sum_{e \in C} v(e)$$

we get $|C_1| \ge V$ and hence, by Menger's theorem, we find V edge-disjoint (a,b)-path in G_1 . Let f(e) be the number of edges parallel to e used by these paths, then f(e) is an (a,b)-flow of value V and with integral entries. This constructs integer valued flow.

3. This is to prove the following.

Let G be a simple bipartite graph with bipartition $\{A,B\}$ such that |A|=|B|=n, and with maximum degree $d<\frac{n}{2}$. Show that G can be embedded in a simple gegular bipartite graph on the same set V(G) of points with degree 2d.

Considering the bipartite complement \widetilde{G} of the graph G, we should prove that \widetilde{G} has an n-2d factor.

By theorem 3, it suffices to show that for each $X \subseteq A$ and $Y \subseteq B$,

$$(n-2d)(n-|Y|) + m_{\widetilde{C}}(X,Y) \ge (n-2d)|X|$$

or equivalently,

$$(n-2d)(|X|+|Y|-n) \le m_{\widetilde{G}}(X,Y)$$

Because this inequality is symmetric in X and Y, it suffices to consider the case $|X| \ge |Y|$. Noting that

$$m_{\widetilde{G}}(X,Y) = |X| \cdot |Y| - m_G(X,Y)$$

it suffices to show that

$$(n-2d)(|X|+|Y|-n) \le |X|\cdot |Y|-m(X,Y)$$

where $m = m_G$. This would follow from

$$(|X| + d - n)(|Y| + 2d - n) \ge d(2d - n)$$

If $|Y| \le n - 2d$, then $|Y| + 2d - n \le 0$ and so,

$$(|X|+d-n)(|Y|+2d-n) \ge (n+d-n)(|Y|+2d-n) \ge d(2d-n)$$

If
$$n-2d \le |Y| \le |X| \le n-d$$
 and $|X| \ge d$, then $|X|+d-n \le 0$, thus

$$(|X| + d - n)(|Y| + 2d - n) \ge (|X| + d - n)d \ge (2d - n)d$$

Finally, if $|X| \leq d$, we have

$$m_G(X,Y) \le |X||Y|$$

and thus it suffices to show that

$$(n-2d)(|X|+|Y|-n) \le 0$$

which is clear, since $|Y| \leq |X| \leq d < \frac{n}{2}$

References

[Lov93] László Lovász. Combinatorial Problems and Exercises. AMS Chelsea Publishing, second edition, 1993.