

Engin112 – Lecture 15

Binary Adders

Maciej Ciesielski
Department of Electrical and Computer Engineering
10/09/2012

Recap from Last Lectures

- Design and analysis of Boolean circuits
 - Two-level logic (sum of products, product of sums)
- Truth table for multiple-output functions:
 - One output column per function (output)
 - · Some minterms can be shared among several outputs
 - · One K-map per function
- This lecture:
 - · Binary adders (arithmetic circuit)
 - Overflow condition

10/09/2012

Engin 112 - Intro to ECE

Binary Adders

- Addition is important function in computer system
- What does an adder have to do?
 - Add binary digits
 - · Generate carry if necessary
 - · Consider carry from previous digit
- Binary adders operate bit-wise
 - A 16-bit adder uses 16 one-bit adders
- Binary adders come in two flavors
 - · Half adder : adds two bits and generate result and carry
 - · Full adder: also considers carry input
 - · Two half adders make one full adder

10/09/2012

Engin 112 - Intro to ECE

2

Binary Half Adder

- Specification:
 - · Design a circuit that adds two bits and generates the sum and a carry
- Outputs:
 - Two inputs: x, y
 - Two output: S (sum), C (carry)
- Truth table:

х	у	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

x y

(b) $S = x \oplus y$ C = xy

10/09/2012

Binary Half Adder - Circuit

Circuit implementation:

(a)
$$S = xy' + x'y$$

 $C = xy$

(b)
$$S = x \oplus y$$

 $C = xy$

- Works for single bit, but not for multi-bit numbers
 - Need to consider input carry from prior stage

X	У	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

10/09/2012

Engin 112 - Intro to ECE

Full Adder

- Specification:
 - A circuit that adds three bits and generates the sum and a carry
- Inputs:

• Three inputs: x,y,z

• Two outputs: S, C

Truth table:

X	у	z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

10/09/2012

Full Adder - Minimization

• Minimization of Boolean functions for S and C:

S = x'y'z + x'yz' + xy'z' + xyz

 $S = x \oplus y \oplus z$

 $C = x y + (x \oplus y) z$

= xy + xy'z + x'yz

10/09/2012

Engin 112 - Intro to ECE

Full Adder - Circuit

Circuit:

10/09/2012

Full Adder from Half Adders

- How can two half adders make a full adder?
- Observations:
 - Three inputs x, y, z can be added in two steps
 - > X+y+z = (X+y) + z
 - What about the carry?
 - » Carry can occur when adding x+y and when adding z
- Full adder: $S = x \oplus y \oplus z$, $C = xy + (x \oplus y)z$

10/09/2012

Engin 112 - Intro to ECE

Binary n-bit Adder

- How can we build an n-bit adder from full adders?
 - One adder for each bit (n total)
 - · Connect carry to next adder's input
 - · Output: sequence of sums and a final carry
- 4-bit adder circuit (Ripple Carry Adder):

- Classical example of standard components
 - Would require truth table with 29 entries!

10/09/2012

Engin 112 - Intro to ECE

Ripple-Carry Adder

- How long does it take to complete an addition?
 - Carry needs to propagate through circuit a problem

- Speed of addition is critical
 - · Fundamental arithmetic operation
- How can we speed up addition?
 - · Determine carries ahead of time (carry look-ahead)

10/09/2012

Engin 112 - Intro to ECE

11

Overflow

- n-bit addition can generate (n+1)-bit number
 - · Called "overflow"
 - · Needs to be detected by computer system
- How can we detect overflow in addition?
 - End carry
- Also necessary for signed numbers or subtraction
 - Most significant bit indicates sign
- If carry into sign position and out of sign position differ, then <u>overflow</u>
 - · Result would be correct with extra position
 - · Can be detected by XOR gate
 - · Can be used as input carry for next adder circuit

10/09/2012

Engin 112 - Intro to ECE

Overflow Conditions

- Overflow conditions
 - There is no overflow if signs are different (pos + neg, or neg + pos)
 - · Overflow can happen only when both numbers have same sign, and
 - If carry into sign position and out of sign position differ
 - Example: 2's complement signed numbers wih n = 4 bits

- · Result would be correct with extra position
- Detected by XOR gate (output =1 when inputs differ)
- · Can be used as input carry for next adder circuit

10/09/2012

Engin 112 - Intro to ECE

13

Carry-Lookahead Adder

• Full adder: $S_i = A_i \oplus B_i \oplus C_i$,

$$C_{i+1} = A_i B_i + (A_i \oplus B_i) C_i$$

- Create new signals:
 - $G_i = A_i B_i$ "carry generate" for stage i
 - $P_i = A_i \oplus B_i$ "carry propagate" for stage I
- Full adder equations expressed in terms of G_i and P_i
 - $S_i = P_i \oplus C_i$
 - $C_{i+1} = G_i + P_i C_i$

Х	У	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

10/09/2012

Fig. 4-10 Full Adder with P and G Shown

Carry Lookahead - Equations

- Full adder functionality can be expressed recursively
 - $S_i = P_i \oplus C_i$
 - $C_{i+1} = G_i + P_i C_i$
- Carry of each stage
 - $C_0 = input carry$
 - $C_1 = G_0 + P_0 C_0$
 - $C_2 = G_1 + P_1C_1 = G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$
 - $C_3 = G_2 + P_2C_2 = \dots = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$
 - $C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$

10/09/2012

Engin 112 - Intro to ECE

15

- Circuit:
 - · Sum of products
 - · Only two stages

10/09/2012

- Complete adder:
 - Same number of stages for each bit
- Drawback?
 - Increasing complexity of lookahead logic for more bits

10/09/2012

Engin 112 - Intro to ECE

17

EXAM 1 Coming Up!

- Midterm 1 exam
 - Tuesday, Oct. 16 at 7:00 pm
 - · Location: Hasbrouck Lab Addition, room 20.
 - · Closed books, closed notes
 - » you will be given Table 2.1 with basic axioms and theorems
- Material:
 - Chapter 1
 - » Basics of Boolean algebra
 - » Number systems (signed, 2's complement)
 - · Chapter 2
 - » Boolean theorems, basic proofs
 - » Logic simplification using Boolean theorems
 - » Duality, De Morgan's law
 - Chapter 3 (Sections 3.1 3.8)
 - » K-maps, incompletely specified functions
 - Chapter 4 (Sections 4.1 4.4)
 - » Analysis and design of logic circuits

10/09/2012

Engin 112 - Intro to ECE