

Reaalarvu absoluutväärtus

Reaalarvu x **absoluutväärtuseks** (ehk *mooduliks*, tähistatakse |x|) nimetatakse mittenegatiivset reaalarvu, mis rahuldab tingimusi

$$|x| = x$$
, kui $x \ge 0$,
 $|x| = -x$, kui $x < 0$.

Geomeetriliselt tõlgendades tähendab arvu absoluutväärtus seda arvu arvteljel kujutava punkti kaugust nullpunktist.

Reaalarvu absoluutväärtus

Absoluutväärtuse omadusi

$$|x| \ge 0$$

$$|x \cdot y| = |x| \cdot |y|$$

$$|x \cdot y| = |x| \cdot |y| \qquad |x + y| \le |x| + |y|$$

$$|-x| = |x|$$

$$\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$$

$$|x - y| \ge |x| - |y|$$

Absoluutväärtuse definitsioonist järeldub, et

$$|x| = a \Leftrightarrow x = a \ v\tilde{o}i \ x = -a$$

$$|x| < a \Leftrightarrow -a < x < a$$

$$|x| < a \Leftrightarrow -a < x < a$$

 $|x| > a \Leftrightarrow x > a \ v\tilde{o}i \ x < -a$

h

Reaalarvude piirkonnad

- \triangleright vahemik (a; b)]a; b[a < x < b
- \triangleright lõik [a; b] $a \le x \le b$
- ightharpoonup poollõik [a; b) [a; b[$a \le x < b$
- \triangleright poollõik $(a; b]]a; b] <math>a < x \le b$

a

 \boldsymbol{a}

 \boldsymbol{a}

Sümbol "∞" ei ole arv, vaid matemaatiline sümbol märkimaks, et suurus ei ole tõkestatud ülaltpoolt.

Funktsiooni definitsioon

Olgu X mingi reaalarvude hulk. Kui muutuja x igale väärtusele hulgas X vastab muutuja y <u>üks kindel väärtus</u>, siis öeldakse, et y on muutuja x **funktsioon**.

Asjaolu, et üks muutuja on teise funktsioon, tähistatakse

$$y = f(x)$$
, $y = y(x)$, $y = \phi(x)$ jne.

Muutujat *x* nimetatakse seejuures **sõltumatuks muutujaks** e. **argumendiks**.

Muutujat *y*, mille väärtused leitakse vastavalt sõltumatu muutuja väärtustele, nimetatakse **sõltuvaks muutujaks**.

Argumendi x väärtuste hulka, mille puhul saab määrata funktsiooni y väärtusi vastavalt eeskirjale f(x), nimetatakse **funktsiooni määramispiirkonnaks**.

Määramispiirkonnale vastavat funktsiooni väärtuste hulka nim. funktsiooni **muutumispiirkonnaks**. 5

Funktsiooni analüütiline esitusviis

Ilmutatud kujul y = f(x),

Näide: $y = \ln(x^2 + 1)$.

Ilmutamata kujul f(x, y) = 0

Näide: $x^2 + \sin y = 0$.

Parameetrilisel kujul

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}, \quad t \in T \subseteq R$$

Näide:

$$\begin{cases} x = 5 \cdot \cos(t) \\ y = 5 \cdot \sin(t) \end{cases} \quad t \in [0; 2\pi]$$

Paaris- ja paaritud funktsioonid

Funktsiooni y = f(x) nimetatakse paarisfunktsiooniks, kui f(-x) = f(x) ja paarituks funktsiooniks, kui f(-x) = -f(x) iga x korral määramispiirkonnast X.

Paarisfunktsiooni graafik on sümmeetriline *y*-telje suhtes

Paaritu funktsiooni graafik on sümmeetriline 0-punkti suhtes.

Pöördfunktsioon

Olgu funktsiooni y = f(x) määramispiirkond X ja muutumispiirkond Y.

Kui iga $y \in Y$ korral <u>leidub täpselt üks</u> $x \in X$, nii et y = f(x), siis öeldakse, et funktsioonil y = f(x) on olemas *pöördfunktsioon* määramispiirkonnaga Y ja muutumispiirkonnaga X.

Näide

$$y = \sin x$$
, $X = \mathbf{R}$

pöördfunktsioon puudub, kuna igale muutuja y väärtusele funktsiooni muutumispiirkonnast vastab lõpmata palju argumendi x väärtusi.

Pöördfunktsiooni saab leida juhul, kui ahendame määramispiirkonna lõiguks

$$X = \left[-\pi / 2; \pi / 2 \right]$$

Näide 1

Kui $X=[-\pi/2; \pi/2]$ on siinusfunktsiooni pöördfunktsiooniks vastav arkusfunktsioon: $x = \arcsin y, Y \in [-1; 1]$

NB! Esialgse funktsiooni muutumispiirkonnast saab pöördfunktsiooni määramispiirkond ja vastupidi.

$$y = \sin x$$
 $X = [-\pi/2; \pi/2]$ $Y = [-1;1]$
 $x = \arcsin y$ $Y = [-1;1]$ $X = [-\pi/2; \pi/2]$

Elementaarsed põhifunktsioonid

Elementaarseteks põhifunktsioonideks nimetatakse järgmisi analüütiliselt antud funktsioone:

- \triangleright Konstantne funktsioon: y = c
- Astmefunktsioon: $y = x^{\alpha}$, kus α on reaalarv.
- Eksponentfunktsioon: $y = a^x$, kus a on ühest erinev positiivne arv.
- Logaritmfunktsioon: $y = \log_a x$, kus logaritmide alus a on ühest erinev positiivne arv.
- > Trigonomeetrilised funktsioonid:

$$y = \sin x$$
, $y = \tan x$,
 $y = \cos x$, $y = \cot x$.

Arkusfunktsioonid: $y = \arcsin x$, $y = \arccos x$, $y = \arctan x$, $y = \operatorname{arccot} x$.

Eksponentfunktsioon $y = a^x$

määramispiirkond: $X = (-\infty; \infty)$

 \boldsymbol{x}

Logaritmfunktsioon

määramispiirkond: $X = (0; \infty)$

Trig. funktsioonid siinus ja koosinus

- 1) tõkestatud: $-1 \le y \le 1$
- 2) perioodilised, $\omega = 2\pi$
- 3) siinus on paaritu, koosinus paarisfunktsioon
- 4) määramispiirkond: $X = (-\infty; \infty)$

Trig. funktsioonid: tangens

- 1. periood $\omega = \pi$
- 2. määramispiirkond: $X = (-\infty; \infty) \setminus \{(2k+1)\pi/2\}$
- 3. paaritu

Trig. funktsioonid: kootangens

- 1. periood $\omega = \pi$
- 2. määramispiirkond: $X = (-\infty; \infty) \setminus \{k\pi\}$ (kõik reaalarvud, mis ei ole arvu π täisarvkordsed)
- 3. paaritu

18

Arkusfunktsioonid trigonomeetriliste funktsioonide pöördfunktsioonid

$$X = (-\infty; \infty)$$
 $Y = (0; \pi)$

Elementaarfunktsioon

Elementaarfunktsiooniks nimetatakse funktsiooni, mis saadakse põhielementaarfunktsioonidest lõpliku arvu aritmeetiliste tehete ja liitfunktsioonide moodustamise tulemusena.

Näited

$$\left(\frac{x-1}{x+1}\right)^2$$
 $\sqrt[3]{1-\cos x}$

$$\ln(x+\sqrt{1-x^2})$$

 $e^{\arctan x}$

$$f(x) = \frac{x^2 - 4}{x - 2}$$
$$X = (-\infty; 2) \cup (2; \infty)$$

					2,001			
 f(x)	3,5	3,9	3,99	3,999	4,001	4,01	4,1	4,5

Näeme, et argumendi x lähenemisel arvule 2 funktsiooni väärtused lähenevad arvule 4. Sel juhul öeldakse, et vaadeldava funktsiooni piirväärtus protsessis $x \rightarrow 2$ (ehk kohal x = 2) on võrdne arvuga 4 ja kirjutatakse

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4$$

$$f(x) = \frac{x^2 - 4}{x - 2}$$
$$X = (-\infty; 2) \cup (2; \infty)$$

 X	-0,5	-0,1	-0,01	-0,001	0,001	0,01	0,1	0,5
 f(x)	1,5	1,9	1,99	1,999	2,001	2,01	2,1	2,5

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{x^2 - 4}{x - 2} = 2 \qquad f(0) = 2$$

Kui punkt a on funktsiooni f määramispiirkonna punkt ja funktsioon f on elementaarfunktsioon, siis

$$\lim_{x \to a} f(x) = f(a)$$

Kui argumendi väärtused tõkestamatult kasvavad, siis lähenevad funktsiooni väärtused tõkestamatult nullile.

Tähistame argumendi väärtuste tõkestamatut kasvamist sümboliga ∞.

$$\lim_{x\to\infty}a^x=0$$

Kui argumendi väärtused tõkestamatult kahanevad, siis lähenevad funktsiooni väärtused tõkestamatult nullile.

Tähistame argumendi väärtuste tõkestamatut kahanemist sümboliga -∞.

$$\lim_{x \to -\infty} a^x = 0$$

Kui punkt *a* on funktsiooni *f* määramispiirkonna punkt ja funktsioon *f* on elementaarfunktsioon, siis

$$\lim_{x \to a} f(x) = f(a)$$

Kui punkt *a* ei ole funktsiooni määramispiirkonna punkt, siis võivad tekkida määramatused:

$$\frac{0}{0}$$
, $\frac{\infty}{\infty}$, $\infty - \infty$, $0 \cdot \infty$ 0^{0} , 1^{∞} , ∞^{0}

Määramatuse kõrvaldamise võtted:

- > Teguriteks lahutamine
- > Irratsionaalsuse üleviimine lugejast nimetajasse ja vastupidi
- Tuntud piirväärtuste ärakasutamine
- Muutuja vahetus

Funktsiooni piirväärtuse arvutamine

Funktsiooni piirväärtuse arvutamisel kasutatakse funktsiooni piirväärtuse omadusi ning teatud praktilisi võtteid.

$$\lim_{x \to a} c = c, \quad c = const$$

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

$$\lim_{x \to a} [c \cdot f(x)] = c \cdot \lim_{x \to a} f(x), \quad c = const$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \quad \lim_{x \to a} g(x) \neq 0$$

Kehtivad ka siis, kui $x \to \infty$ või $x \to -\infty$