Statistical Data Analysis

Jana de Wiljes

wiljes@uni-potsdam.de
www.dewiljes-lab.com

22. November 2022

Universität Potsdam

Data reduction

Task: given a set of samples $\{x_1, \ldots, x_n\}$ estimate a parameter θ of an associate density $f(x; \theta)$

Example: given n iid samples $x_i \sim \mathcal{N}(\theta, 1)$, estimate θ

Idea: extract key features that summarizes the information contained in a sample, e.g., in the form of a statistic \mathcal{T} (function defined on set of samples)

Example: $T(x_1, ..., x_n) = x_1 + \cdots + x_n$

Note: T should capture all relevant information to infer unknown parameter, i.e, sample sets x_1, \ldots, x_n and y_1, \ldots, y_n with $T(x_1, \ldots, x_n) = T(y_1, \ldots, y_n)$ should lead to the same estimated parameter $\hat{\theta}$

Sufficiency

Def: A statistic T(X) is a sufficient statistic for θ if the conditional distribution of the sample x_1, \ldots, x_n given the value $T(x_1, \ldots, x_n)$ does not depend on θ .

Example: Let X_1, \ldots, X_n be iid Bernoulli random variables with parameter θ , $0 < \theta < 1$. Then $T(X_1, \ldots, X_n) = X_1 + \cdots + X_n$ is a sufficient statistic for θ . As $T(X_1, \ldots, X_n) \sim \text{binomial}(n, \theta)$ the ratio of the pmfs is

$$\frac{p(x_1, \dots, x_n | \theta)}{q(T(x_1, \dots, x_n) | \theta)} = \frac{\prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{1 - x_i}}{\binom{n}{i} \theta^t (1 - \theta)^{n - t}} \quad (\text{define } t = \sum_{i=1}^{n} x_i) \qquad (1)$$

$$= \frac{\theta^{\sum_{i=1}^{n} x_i} (1 - \theta)^{\sum_{i=1}^{n} x_i}}{\binom{n}{i} \theta^t (1 - \theta)^{n - t}} \qquad (2)$$

$$=\frac{\theta^t(1-\theta)^{(n-t)}}{\binom{n}{t}\theta^t(1-\theta)^{n-t}}=\frac{1}{\binom{n}{t}}=\frac{1}{\binom{n}{\sum x_i}}$$
(3)

Sufficient statistic

Theorem: If $p(x_1,...,x_n|\theta)$ is the joint pdf or pmf of $X_1,...,X_n$, and $q(t\theta)$ is the pdf or pmf of $T(X_1,...,X_n)$, then $T(X_1,...,X_n)$ is a sufficient statistic for θ if, and only if, for every $x_1,...,x_n$ in the sample space the ratio $p(x_1,...,x_n|\theta)/q(T(x_1,...,x_n)|\theta)$ is constant as a function of θ .

Proof: Must verify that for any fixed values of x_1, \ldots, x_n and t, the conditional probability $\mathbb{P}(X_1, \ldots, X_n = x_1, \ldots, x_n | T(X_1, \ldots, X_n) = t)$ is the same for all values of θ . This probability is zero for all values of θ if $T(x_1, \ldots, x_n) \neq t$. So the case that remains to be checked is

$$\begin{split} \mathbb{P}_{\theta}(X_{1},\ldots,X_{n} = x_{1},\ldots,x_{n} | T(X_{1},\ldots,X_{n}) &= T(x_{1},\ldots,x_{n})) \\ &= \frac{\mathbb{P}_{\theta}(X_{1},\ldots,X_{n} = x_{1},\ldots,x_{n} \text{ and } T(X_{1},\ldots,X_{n}) = T(x_{1},\ldots,x_{n}))}{P_{\theta}(T(X_{1},\ldots,X_{n}) &= T(x_{1},\ldots,x_{n}))} \\ &= \frac{\mathbb{P}_{\theta}(X_{1},\ldots,X_{n} = x_{1},\ldots,x_{n})}{P_{\theta}(T(X_{1},\ldots,X_{n}) &= T(x_{1},\ldots,x_{n}))} &= \frac{p(x_{1},\ldots,x_{n}|\theta)}{q(T(x_{1},\ldots,x_{n})|\theta)} \end{split}$$

Factorization Theorem

Theorem: Let $f(x_1, \ldots, x_n)$ denote the joint pdf of the associated random variables X_1, \ldots, X_n . A statistic $T(X_1, \ldots, X_n)$ is a sufficient statistic for θ if and only if there exist functions $g(t|\theta)$ and $h(x_1, \ldots, x_n)$ such that, for all sample points x_1, \ldots, x_n and all parameter points θ

$$f(x_1,\ldots,x_n)|\theta)=g(T(x_1,\ldots,x_n))h(x_1,\ldots,x_n)$$
 (4)

Proof (only for discrete distibutions): Suppose $T(X_1, \ldots, X_n)$ is a sufficient statistic. Choose $g(T(x_1, \ldots, x_n)) = \mathbb{P}_{\theta}(T(X_1, \ldots, X_n) = t)$ and $h(x_1, \ldots, x_n) = \mathbb{P}_{\theta}(X_1, \ldots, X_n = x_1, \ldots, x_n | T(X_1, \ldots, X_n) = T(x_1, \ldots, x_n))$. Then

$$f(x_1, \dots, x_n)|\theta) = \mathbb{P}_{\theta}(X_1, \dots, X_n = x_1, \dots, x_n)$$

$$= \mathbb{P}_{\theta}(X_1, \dots, X_n = x_1, \dots, x_n \text{ and } T(X_1, \dots, X_n) = T(x_1, \dots, x_n))$$

$$= \mathbb{P}_{\theta}(T(X_1, \dots, X_n) = T(x_1, \dots, x_n))$$

$$\times \mathbb{P}(X_1, \dots, X_n = x_1, \dots, x_n | T(X_1, \dots, X_n) = T(x_1, \dots, x_n)) \text{ (sufficiency)}$$

$$= g(T(x_1, \dots, x_n))h(x_1, \dots, x_n)$$

Example

For the normal model where θ is the mean and $T(x_1, \ldots, x_n) = \bar{x}$

$$f(x_1,\ldots,x_n) = (2\pi)^{-n/2} \exp(-\sum_{i=1}^n (x_i - \theta)^2/(2\sigma^2))$$
 (5)

and

$$h(x_1,\ldots,x_n)=(2\pi)^{-n/2}\exp(-\sum_{i=1}^n(x_i-\bar{x})^2/(2\sigma^2))$$
 (6)

So we have

$$g(t|\theta) = \exp(-n(t-\theta)^2/(2\sigma^2)) \tag{7}$$

Hypothesis Testing

Def: A hypothesis is a statement about a population parameter θ .

Example: A statement about the range of the unknown mean θ of a considered distribution (for instance a Gaussian distribution $\mathcal{N}(\theta, 1)$)

Def: The complementary hypotheses in a hypothesis testing problem is called the *null hypothesis* and the *alternative hypothesis*. They are denotes by H_0 and H_1 .

Hypothesis Testing

Def: A hypothesis testing procedure or hypothesis test is a rule that specifies:

- 1. For which sample value the decision is made to accept H_0 as true.
- 2. For which sample values H_0 is rejected and H_1 is accepted as true.

The subset of the sample space for which H_0 will be rejected is called the rejection region or critical region.

Various testing ideas

Likelihood Ratio Tests

Reminder: For a given set of iid samples x_1, \ldots, x_n from random variables X_i distributed according to density $f(x|\theta)$ the likelihood with respect to parameter θ is

$$L(\theta|x_1,\ldots,x_n) = \prod_{i=1}^n f(x_i|\theta)$$
 (8)

Def: The likelihood ratio test (LRT) statistic for testing $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$ is

$$\lambda(x_1,\ldots,x_n) = \frac{\sup_{\Theta_0} L(\theta|x_1,\ldots,x_n)}{\sup_{\Theta} L(\theta|x_1,\ldots,x_n)}.$$
 (9)

A likelihood ratio test (LRT) is any test that has a rejection region of the form $\{x : \lambda(x) \le c\}$, where c is any number satisfying $0 \le c \le 1$.

Example: Normal LRT

Example: For a given set of iid samples $x_1, \ldots, x_n \sim \mathcal{N}(\theta, 1)$

$$\lambda(x_1, \dots, x_n) = \frac{(2\pi)^{-n/2} \exp(-\sum_{i=1}^n (x_i - \theta_0)^2 / 2)}{(2\pi)^{-n/2} \exp(-\sum_{i=1}^n (x_i - \bar{x})^2 / 2)}$$

$$= \exp\left[\left(-\sum_{i=1}^n (x_i - \theta_0)^2 + \sum_{i=1}^n (x_i - \bar{x})^2\right) / 2\right]$$
(10)

$$\sum_{i=1}^{n} (x_i - \theta_0)^2 = \sum_{i=1}^{n} (x_i - \bar{x} + \bar{x} - \theta_0)^2$$

$$= \sum_{i=1}^{n} (x_i - \bar{x})^2 + 2(\bar{x} - \theta_0) \sum_{i=1}^{n} (x_i - \bar{x}) + \sum_{i=1}^{n} (\bar{x} - \theta_0)^2$$

$$= \sum_{i=1}^{n} (x_i - \bar{x})^2 + 2(\bar{x} - \theta_0) \underbrace{\left(\sum_{i=1}^{n} (x_i) - n\bar{x}\right)}_{=0} + \sum_{i=1}^{n} (\bar{x} - \theta_0)^2$$

$$= \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \theta_0)^2$$

Example: Normal LRT

Inserting

$$\sum_{i=1}^{n} (x_i - \theta_0)^2 = \sum_{i=1}^{n} (x_i - \bar{x})^2 + n(\bar{x} - \theta_0)^2$$

in

$$\lambda(x_1, \dots, x_n) = \exp\left[\left(-\sum_{i=1}^n (x_i - \theta_0)^2 + \sum_{i=1}^n (x_i - \bar{x})^2\right)/2\right]$$
$$= \exp\left[\left(-n(\bar{x} - \theta_0)^2\right)/2\right]$$

Ansatz: An LRT test rejects H_0 for small values of $\lambda(x_1, \ldots, x_n)$. Using the rejection region

$$\{x_1,\ldots,x_n:\lambda(x)\geq c\}=\{x_1,\ldots,x_n:|\bar{x}-\theta_0|\geq \sqrt{-2(\log c)/n}\}$$
 (12)

Sufficient statistic

Theorem: If $T(X_1,\ldots,X_n)$ is a sufficient statistic for θ and $\lambda^*(t)$ and $\lambda(x_1,\ldots,x_n)$ are the LRT statistics based on T and X_1,\ldots,X_n , respectively, then $\lambda^*(T(x_1,\ldots,x_n))=\lambda(x_1,\ldots,x_n)$ for every x_1,\ldots,x_n in the sample space.

Proof: From the Factorization theorem, we know we can write the pdf or pmf of X_1, \ldots, X_n as $f(x_1, \ldots, x_n | \theta) = g(T(x_1, \ldots, x_n))h(x_1, \ldots, x_n)$ where $g(T(x_1, \ldots, x_n))$ is the pdf or pmf of T and $h(x_1, \ldots, x_n)$ does not depend on θ . Thus

$$\begin{split} \lambda(x_{1},\ldots,x_{n}) &= \frac{\sup_{\Theta_{0}} L(\theta|x_{1},\ldots,x_{n})}{\sup_{\Theta} L(\theta|x_{1},\ldots,x_{n})} = \frac{\sup_{\Theta_{0}} f(x_{1},\ldots,x_{n}|\theta)}{\sup_{\Theta} f(x_{1},\ldots,x_{n}|\theta)} \\ &= \frac{\sup_{\Theta_{0}} g(T(x_{1},\ldots,x_{n}))h(x_{1},\ldots,x_{n})}{\sup_{\Theta} g(T(x_{1},\ldots,x_{n}))h(x_{1},\ldots,x_{n})} = \frac{\sup_{\Theta_{0}} g(T(x_{1},\ldots,x_{n}))}{\sup_{\Theta} g(T(x_{1},\ldots,x_{n}))} \\ &= \frac{\sup_{\Theta_{0}} L(\theta|T(x_{1},\ldots,x_{n}))}{\sup_{\Theta} L(\theta|T(x_{1},\ldots,x_{n}))} = \lambda^{*}(T(x_{1},\ldots,x_{n})) \end{split}$$

Test function

Def: A test function $\phi(x_1,\ldots,x_n)$ for a hypothesis testing procedure is a function on the sample space whose value is one if a sample set x_1,\ldots,x_n is in the rejection area and zero if x_1,\ldots,x_n is in the acceptance region. In other words $\phi(x_1,\ldots,x_n)$ is an indicator function of the rejection region.

Def: A invariant test with respect to a function $g(x_1, \ldots, x_n)$ is any test whose test function satisfies $\phi(x_1, \ldots, x_n) = \phi(g(x_1, \ldots, x_n))$ for any x_1, \ldots, x_n in the sample space.

Invariant hypothesis testing

Assuming: the following models

- the joint family of densities of $X_1, ..., X_n$ is $\{f(x_1, ..., x_n | \theta) : \theta \in \Theta\}$
- the joint family of densities for $(Y_1, \ldots, Y_n) = g(X_1, \ldots, X_n)$ are $\{h(y_1, \ldots, y_n | \theta) : \theta \in \Theta\}$

Def: A hypothesis testing problem $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$ is invariant under the transformation $y_1, \ldots, y_n = g(x_1, \ldots, x_n)$ if

$$f(x_1,\ldots,x_n|\theta):\theta\in\Theta_0\}=\{h(y_1,\ldots,y_n|\theta):\theta\in\Theta_0\}$$

Bayesian tests

Idea: Use Bayesian model, i.e, the posterior $\pi(\theta|x_1,\ldots,x_n)$ to define test:

- $P(\theta \in \Theta_0|x_1,\ldots,x_n) = P(H_0 \text{ is true}|x_1,\ldots,x_n)$
- $P(\theta \in \Theta_0^c | x_1, \dots, x_n) = P(H_1 \text{ is true} | x_1, \dots, x_n)$
- need: hypothesis test that is binary (i.e., either true or false)

Def: One hypothesis tests inspired by a Bayesian model is given by setting H_0 as true if $P(\theta \in \Theta_0 | X_1, \dots, X_n) \ge P(\theta \in \Theta_0^c | X_1, \dots, X_n)$.