

Ensayo N°12

Laboratorio de Máquinas: "Ensayo de un ventilador radial"

Felipe Andres Olivares Acevedo Escuela de Ingeniería Mecánica Profesor: Cristóbal Galleguillos Ketterer Pontificia Universidad Católica de Valparaíso

14 de diciembre del 2020

${\rm \acute{I}ndice}$

L.	Introducción	•
	Desarrollo 2.1. Instrumentos 2.2. Formulas 2.3. Valores medidos.	4
	2.4. Valores Calculados	6
3.	Resultados y Gráficas	7
1.	Conclusiones	10

1. Introducción

Este ensayo tiene como objetivo determinar el comportamiento de un ventilador radial. En este documento mostrará los resultados.

2. Desarrollo

2.1. Instrumentos

- -Manómetro de tubo inclinado
- -Wattmetro de candado
- Ta cometro
- $\hbox{-}{\rm Term\'ometro}$
- $\hbox{-} Amper\'imetro$

2.2. Formulas

Caudal.

$$q_{vm} = \alpha * s_5 * (\frac{2*P_{e4}}{\rho_{05}})^{\frac{1}{2}} [\frac{m^3}{s}]$$

	DATOS					
\mathbf{D}_5	D_5/D_4	α				
[mm]	[-]	[-]				
00	00	0.600				
90	0.15	0.6025				
120	0.2	0.604				
180	0.3	0.611				
300	0.5	0.641				

 $P_{\text{e}4}$ en [Pa] en todas las fórmulas.

Diferencia de presión:

$$\Delta P = P_{e4} + 0.263 * \frac{{V_1}^2}{2} * \rho_{medio} [Pa]$$

Velocidad del aire:

$$V_1 = \frac{q_{vm}}{S_1} \left[\frac{m}{s} \right]$$

$$S_1 = 0.070686 [m2]$$

Potencia eléctrica.

$$N_{elec} = W_1 + W_2 [KW]$$

Potencia hidráulica.

$$N_h = q_{vm} * \Delta P [W]$$

Rendimiento global.

$$N_{gl} = \frac{N_h*100}{N_{elec}} \left[\%\right]$$

Corregir los valores respecto a la velocidad

2.3. Valores medidos

VALORES MEDIDOS								
				2	2			
	nx	P _{e4}	ta	td	W ₁	W ₂	P _{atm}	
	[rpm]	[mmca]	[°C]	[°C]	[kW]	[kW]	[mm _{Hg}	
	0			ė	4			
1	1831	5	21	23	0,44	0,82	758,8	
2	1845	30	22	23	0,34	0,7	758,8	
3	1867	45	22	23	0,19	0,56	758,8	
4	1867	48,5	21	23	0,14	0,52	758,8	
5	1871	57	21,5	23	0,11	0,49	758,8	

Figura 1: H, Ne y rendimiento en el punto 3

2.4. Valores Calculados

qvm	Р	V1	ρmed	Ne	Nh	ηgl
[m^3/h]	[Pa]	[m/s]	[kg/m^3]	[kW]	[kW]	[%]
0,34	51,80	4,81	0,91	1,26	0,0176	1,40
0,28	296,06	3,96	0,91	1,04	0,0829	7,97
0,15	441,81	2,12	0,91	0,75	0,0663	8,84
0,08	475,74	1,13	0,91	0,66	0,0381	5,77
0	558,94	0,00	0,91	0,6	0,0000	0,00

Figura 2: H, Ne y rendimiento en el punto 3

3. Resultados y Gráficas

Figura 3: Presion vs Caudal

Es un ventilador de álabes curvados hacia adelante, apto para caudales altos y bajas presiones. No es auto limitante de potencia. Para un mismo caudal y un mismo diámetro de rotor gira a menos vueltas con menor nivel sonoro. La gráfica obtenida en la tabla es la esperada ya que la presión es inversamente proporcional con el caudal.

Potencia electrica v/s caudal

Figura 4: Potencia vs Caudal

Se puede observar que la maxima potencia electrica se alcanza aproximadamente a un caudal de 0.35 [m3/h]. La posible potencia del eje es de 0.6 [kW]

Rendimiento v/s caudal

Figura 5: Rendimiento vs Caudal

El punto óptimo de rendimiento es a un caudal aproximado de 0.2[m3/h], alcanzo un rendimiento del 9 %.

4. Conclusiones

Se concluye que se obtuvieron resultados dentro del rango de lo esperado. Debido a la inestabilidad del fluido, se hizo correcciones de los valores respecto a la velocidad.