Overfitting and Model Generalization

Data Intelligence and Learning (<u>DIAL</u>) Lab

Prof. Jongwuk Lee

Math Formulation of Supervised Learning Models

Machine Learning 1-2-3

Feature vector: $\mathbf{x}^{(i)}$

- > Collecting data and extract features
- \succ Building model: choose hypothesis class ${\mathcal H}$ and loss function ${\mathcal L}$
- > Optimization: minimize the empirical loss.
- > Q: How to extract the feature vector x?
- > A: Still, it is difficult, e.g., image.

Formulation in Supervised Learning

> Training data

$$\{(\mathbf{x}^{(i)}, y^{(i)}): 1 \le i \le n\}$$

> Features

$$\mathbf{x}^{(i)} \in \mathbb{R}^{d \times 1}$$

> Target labels (ground-truth labels)

$$y^{(i)}\in\{0,\ldots,K-1\}$$

 $y^{(i)} \in \mathbb{R}$

Classification

Regression

Formulation in Supervised Learning

- \triangleright Given training data $\{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}): 1 \leq i \leq n\}$,
- \triangleright Find y = h(x) using training data,
- > such that h is correct on test data.

Training Data vs. Test Data

- ➤ Given training data $\{(\mathbf{x}^{(i)}, y^{(i)}): 1 \le i \le n\}$,
- \triangleright Find $y = h(\mathbf{x})$ using training data,
- \triangleright such that h is correct on test data.

What is the connection between training data and test data?

Training Data vs. Test Data

- For Given training data $\{(\mathbf{x}^{(i)}, y^{(i)}): 1 \leq i \leq n\}$ i.i.d. from distribution D,
- \triangleright Find y = h(x) using training data,
- \triangleright such that h is correct on test data i.i.d. from distribution D.

What is the connection between training data and test data?

- > Assume that training and test data are sampled from the unknown but same distribution.
 - i.i.d.: Independent and Identically Distributed

Training Data vs. Test Data

> Training data and test data are sampled from the same true data distribution.

 \triangleright Assume that the unknown distribution is $\sin x$.

Hypothesis Function

- ► Given training data $\{(\mathbf{x}^{(i)}, y^{(i)}): 1 \leq i \leq n\}$ i.i.d. from distribution D,
- \triangleright Find y = h(x) using training data,
- \succ such that h is correct on test data i.i.d. from distribution D.

What kind of functions are defined?

Hypothesis Function

> Assume that there is some ideal function such that

$$y = h^*(\mathbf{x})$$

- \triangleright Now, the goal is to learn h^* from the data.
 - A hypothesis is a **certain function** that we believe is similar to the true function, i.e., the **target function** that we want to model.
 - Machine learning algorithms try to guess the **hypothesis function** that **approximates the unknown** $h^*(\mathbf{x})$.

$$h(\mathbf{x}) \approx h^*(\mathbf{x})$$
 for all $\mathbf{x}^{(i)} \in \mathbb{R}^{d \times 1}$

Hypothesis Function

- > Given training data $\{(\mathbf{x}^{(i)}, y^{(i)}): 1 \le i \le n\}$ i.i.d. from distribution D,
- \triangleright Find y = h(x) using training data,
 - $h \in \mathcal{H}$: hypothesis class (or set)
- \triangleright such that h is correct on test data i.i.d. from distribution D.

What kind of functions are defined?

 $h(\mathbf{x}) \approx h^*(\mathbf{x})$ for all $\mathbf{x}^{(i)} \in \mathbb{R}^{d \times 1}$

Possible Hypothesis Classes

How to Search Parameters?

> We hope finding h such that

$$h(\mathbf{x}) \approx h^*(\mathbf{x}) \text{ for all } \mathbf{x}^{(i)} \in \mathbb{R}^{d \times 1}$$

- \triangleright There can be infinitely many h's to search!
 - ullet Typically, we assume a hypothesis set ${\mathcal H}$ and search among them.
 - ullet Searching ${\mathcal H}$ is an important decision.

- For Given training data $\{(\mathbf{x}^{(i)}, y^{(i)}): 1 \leq i \leq n\}$ i.i.d. from distribution D,
- \triangleright Find $y = h(\mathbf{x})$ using training data,
- \succ such that h is correct on test data i.i.d. from distribution D.

What kind of performance is measured?

- ► Given training data $\{(\mathbf{x}^{(i)}, y^{(i)}): 1 \leq i \leq n\}$ i.i.d. from distribution D,
- \triangleright Find $y = h(\mathbf{x})$ using training data,
- \triangleright such that h minimizes the expected loss.

What kind of performance is measured?

$$\mathcal{L}(h(\mathbf{x}), y) = \mathcal{L}(h(\mathbf{x}), h^*(\mathbf{x}))$$

- \triangleright How to search $h \in \mathcal{H}$?
 - Use a **loss function** to measure the difference between h^* and h.

$$\mathcal{L}(h(\mathbf{x}), y) = \mathcal{L}(h(\mathbf{x}), h^*(\mathbf{x}))$$

> Examples

$$\mathcal{L}(h(\mathbf{x}), y) = (y - h(\mathbf{x}))^{2}$$

$$\mathcal{L}(h(\mathbf{x}), y) = \begin{cases} 0, & \text{if } y = h(\mathbf{x}) \\ 1, & \text{otherwise} \end{cases}$$

- ► Given training data $\{(\mathbf{x}^{(i)}, y^{(i)}): 1 \leq i \leq n\}$ i.i.d. from distribution D,
- \triangleright Find $y = h(\mathbf{x})$ that minimizes empirical loss,
- \triangleright such that h minimizes the expected loss.

How to minimize the expected loss using training data?

$$\underset{h \in \mathcal{H}}{\operatorname{argmin}} \, \mathbb{E}_{(\mathbf{x}, y) \sim D} [\mathcal{L}(h(\mathbf{x}), y)] \approx \underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{n} \mathcal{L}(h(\mathbf{x}^{(i)}), y^{(i)})$$

Expected loss

Empirical loss

Expected Loss vs. Empirical Loss

- ➤ The expected loss can utilize almost infinite training data sampled from the true distribution.
 - However, it is impossible to know the true distribution.
- > Instead, the empirical loss can utilize a given training data.
 - Although it is feasible, it may incur a potential problem.

Empirical Loss Function

- > The exact expectation is impossible to compute.
 - We replace with an empirical loss.

Expected loss

Empirical loss

$$\underset{h \in \mathcal{H}}{\operatorname{argmin}} \, \mathbb{E}_{(\mathbf{x}, y) \sim D} [\mathcal{L}(h(\mathbf{x}), y)] \approx \underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{n} \mathcal{L}(h(\mathbf{x}^{(i)}), y^{(i)})$$

How to minimize? (optimization problem)

$$\underset{h \in \mathcal{H}}{\operatorname{argmin}} \sum_{i=1}^{n} \mathcal{L}(h(\mathbf{x}^{(i)}), y^{(i)})$$

How to choose a hypothesis function?

how to choose L?
on? (regression/classification)

Inference

 \triangleright Given a new sample \mathbf{x}_{test} , the prediction becomes

$$\hat{y} = h(\mathbf{x}_{test})$$

> We want to minimize

$$\mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathbf{D}}[\mathcal{L}(h(\mathbf{x}_{test}),y)] = \mathbb{E}_{(\mathbf{x},\mathbf{y})\sim\mathbf{D}}[\mathcal{L}(\hat{y},y)]$$

> The overfitting problem may happen.

Overfitting Problem

Recap: Generalized Linear Regression

Linear regression

• Find w so that f(x) best fits a given data

$$f(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d = w_0 + \sum_{j=1}^d w_j x_j$$

> Generalized linear regression

• Instead of using variables, use a basis function $\phi_i(\mathbf{x})$ of \mathbf{x} .

$$f(\mathbf{x}) = w_0 + w_1 \phi_1(\mathbf{x}) + w_2 \phi_2(\mathbf{x}) + \dots + w_d \phi_d(\mathbf{x}) = w_0 + \sum_{j=1}^d w_j \phi_j(\mathbf{x})$$

Polynomial Curve Fitting

> Which order polynomial does best fit for the data?

$$f(\mathbf{x}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{i=0}^{M} w_i^T x^i$$

Polynomial Curve Fitting

- \succ Considering a training data consisting of 1-dimensional observation with a corresponding label y
 - The polynomial function is a **non-linear function** of x, but it is a **linear function** of the coefficients **w**.

$$f(\mathbf{x}) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M = \sum_{i=0}^{M} w_i^T x^i$$

What *M* should we choose? Model selection

Given *M*, what *w*'s should we choose? Parameter selection

Ground truth: sinx

Error Function of Polynomial Curve

> We want to minimize the sum-of-squared error function.

$$E(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} \left(y^{(i)} - f(x^{(i)}) \right)^{2}$$

Example: Model Comparison

> Which model is better?

> The right model is better because it has less error.

Example: Model Comparison

> Which model is better?

> The right model is better. Do you agree?

Model Complexity vs. Accuracy

- > As the order (M) increases,
 - The complexity of model increases.
- > As the complexity of model increases,
 - The model can more exactly learn the given data.
 - The prediction accuracy does not necessarily increase.

Overfitting vs. Generalization

> What is the purpose of machine learning?

Learning the given data as exactly as possible

VS.

Predict the unknown data as exactly as possible based on the given data

Overfitting Problem

- \triangleright For M=9, the training error is zero.
 - The polynomial contains 10 degrees of freedom corresponding to 10 parameters, so we can be fixed exactly to the 10 data points.
- > However, the test error has become very large. Why?

Overfitting Problem

- > As *M* increases, the magnitude of coefficients gets larger.
 - For M=9, the coefficients have become finely tuned to the data.
 - Between data points, the function exhibits large oscillations.

	M=0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^\star			-25.43	-5321.83
w_3^\star			17.37	48568.31
w_4^{\star}				-231639.30
w_5^\star				640042.26
w_6^{\star}				-1061800.52
w_7^\star				1042400.18
w_8^\star				-557682.99
w_9^\star				125201.43

What is Generalization?

> Expect the model to generalize if it explains the data well given the complexity of the model.

Occam's Razor Principle

- > How to control model complexity to optimize generalization?
- > Among competing hypotheses, select the one that makes the fewest assumptions and is thus most open to being tested.

When faced with two equally good hypotheses, always choose the <u>simpler</u>.

How to Achieve Generalization?

- ➤ The goal is to achieve good generalization by making accurate predictions for test data.
 - Choosing the values of parameters that minimize the loss function on the training data may not be the best option.
- > We would like to model the true regularities in the data and ignore the noise in the data.
 - Adding more information to overcome the overfitting problem
- > Examples
 - Data augmentation
 - Weight decay: L^p regularization
 - Early stopping with a validation set

Increasing the Size of Data

- > For a given model complexity, the overfitting problem becomes less severe as the data size increases.
- > The number of parameters is not necessarily the most appropriate measure of the model complexity.

> Collecting more data is an easy task?

Example: Fitting Polynomial Curve

> They are both 9th order polynomials with different data size.

Penalizing the Model Complexity

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}), y^{(i)}) + \lambda \Omega(\theta)$$

Fit the data

Penalize complex models

- \succ How should we define $\Omega(\theta)$?
- \triangleright How should we define λ ?

Regularization parameter

Common Regularization Functions

Lasso regression (L1-Reg)

$$\Omega_{\mathrm{Lasso}}(\theta) = \sum_{i=1}^{d} |\theta_i|$$

- Encourage sparsity by setting weight = 0.
 - Used to select the most informative features.
- Does not have an analytic solution → numerical methods.

> Ridge regression (L2-Reg)

$$\Omega_{\text{Ridge}}(\theta) = \sum_{i=1}^{d} \theta_i^2$$

- Does not encourage sparsity
 → small but non-zero weights.
- Distributes weight across related features (robust).
- Analytic solution (easy to compute)

Example: Fitting a Polynomial Curve

- One technique for controlling overfitting problem is regularization, which amounts to adding a penalty term to the error function.
 - Shrinking to zero: penalize coefficients based on their size.
 - For a penalty function which is the sum of the squares of the parameters, this is known as "weight decay", or "ridge regression".

$$\mathcal{L}(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)^2$$

$$\mathcal{L}(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^{n} \left(y^{(i)} - f(\mathbf{x}^{(i)}) \right)^2 + \lambda ||\mathbf{w}||^2$$

Example: Fitting a Polynomial Curve

- \succ Training and test errors vs. regularization for the M=9 polynomial
- \triangleright Small λ vs. Large λ

Regularization and Norm Balls

This parameter minimizes the error function.

Without **regularization**, we aim to find **an optimal parameter**.

In terms of **generalization**, the optimal value can **incur large errors**.

Regularization and Norm Balls

- > Regularization makes a constraint for finding the parameter.
- > The error increases but the model is less complicated, which can be better for generalization error.

Early Stopping with a Validation Set

- > It is difficult to stop learning before converging too much.
- > Usually, it is determined by a validation set.
 - The validation set is randomly chosen from the training set.
 - The validation set is **NOT used** for model training.

Bias-Variance Trade-off

True vs. Empirical Risk

- > True risk: Target performance measure
 - Minimize the performance on all samples from true distribution
 - Classification: the number of misclassified samples
 - Regression: mean squared error

$$\mathbb{E}[(\mathcal{L}(h(\mathbf{x}),y))] = \int (\mathcal{L}(h(\mathbf{x}),y)) dP(x,y)$$

- > Empirical risk: performance on training data
 - Classification: a proportion of misclassified samples
 - Regression: average squared error

$$\frac{1}{n}\sum_{i=1}^{n}\mathcal{L}(h(\mathbf{x}),y)$$

Overfitting Problem

- > What is the empirical risk? (performance on training data)
- > zero!
- \triangleright What is the true risk for $f^*(x)$?

>> zero

- > f(x) will predict very poorly on a new random test sample.
- > Incur a large generalization error!

Example: Overfitting in Regression

> For very complicated predictors, we can overfit training data.

Example: Overfitting in Classification

> For very complicated predictors, we can overfit training data.

Effect of Model Complexity

> For fixed # of training data, empirical risk is no longer a good indicator of true risk.

Fundamental Challenges

Model generalization

• After learning from the training data, we can effectively predict the unobserved data without the **overfitting problem**.

> Bias

The expected deviation between predicted value and the true value

> Variance

- Observation variance: the variability of the random noise in the process we are trying to the model.
- Estimated model variance: the variability in the predicted value across different training datasets.

Bias

- > The expected deviation between predicted value and the true value
 - Depends on the choice of f or learning procedure.

> Underfitting

Estimated Model Variance

- > Variability in the predicted value across different training datasets
 - Sensitivity to the variation in the training data
 - Poor generalization

> Overfitting

Observation Variance

- > The variability of the random noise in the process we are trying to the model
 - Measurement variability
 - Stochasticity
 - Missing information
- > Usually, it is beyond our control.

Visualization: Bias and Variance

Example: Bias-Variance Trade-Off

> Large bias, small variance - poor approximation but stable

> Small bias, large variance - good approximation but instable

Bias-Variance Trade-Off

- Bias: the model does not fit the training data effectively.
 - **Solution**: use a more complicated model.
- ➤ Variance: the models can fit the training data but does not fit the test data.
 - Solution: use a less complicated model.

Bias

Bias-Variance Trade-Off

How to Control Model Complexity?

Regularization

Parametrically Controlling the

Model Complexity

- > Tradeoff:
 - Increase bias
 - Decrease variance

How to Control λ ?

$$\hat{\theta} = \underset{\theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(f(x^{(i)}), y^{(i)}) + \lambda \Omega(\theta)$$

- \triangleright The value of λ determines the bias-variance trade-off.
 - Large value → more bias → less variance → more generalization

Q&A

Behavior of True Risk

> The regression model has true function and noise.

$$y = f^*(x) + \varepsilon$$
, where $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

$$\mathbb{E}[\varepsilon] = \mathbf{0}$$
$$\mathbb{E}[\varepsilon^2] = \boldsymbol{\sigma}^2$$

> True risk error expectation function

Dataset and noise

$$\mathbb{E}_{\boldsymbol{D},\boldsymbol{\varepsilon}}\big[(\boldsymbol{f}^*(\boldsymbol{x})+\boldsymbol{\varepsilon}-\boldsymbol{h}(\boldsymbol{x}))^2\big]$$

True function + noise

Learned from data

Lemma for Expectation

- \triangleright Let X be a random variable with a probability P(X)
- ightharpoonup Let $\overline{X}=E[X]$ be the average value of \overline{X}

$$\begin{split} \mathbb{E}[(X - \bar{X})^2] &= \mathbb{E}[(X^2 - 2X\bar{X} + \bar{X}^2)] \\ &= \mathbb{E}[X^2] - 2\mathbb{E}[X]\mathbb{E}[\bar{X}] + \mathbb{E}[\bar{X}^2] \\ &= \mathbb{E}[X^2] - 2\bar{X}\mathbb{E}[\bar{X}] + \mathbb{E}[\bar{X}^2] \\ &= \mathbb{E}[X^2] - 2\bar{X}^2 + \mathbb{E}[\bar{X}^2] \\ &= \mathbb{E}[X^2] - 2\bar{X}^2 + \bar{X}^2 = \mathbb{E}[X^2] - \bar{X}^2 \end{split}$$

> Corollary:
$$\mathbb{E}[X^2] = \mathbb{E}[(X - \bar{X})^2] + \bar{X}^2$$

= $\mathbb{E}[(X - \mathbb{E}(X))^2] + (\mathbb{E}(X))^2$

Bias-Variance-Noise Decomposition

$$\mathbb{E}_{D,\varepsilon} \big[(y-h)^2 \big] = \mathbb{E}_{D,\varepsilon} \big[(h-y)^2 \big] \qquad \qquad y = f^*(x) + \varepsilon \\ h = h(x) \\ \mathbb{E}[X^2] = \mathbb{E}[X^2] = \mathbb{E}[X - \mathbb{E}[X])^2 + (\mathbb{E}[X])^2$$

$$= \mathbb{E}[h^2] - 2\mathbb{E}[h]\mathbb{E}[y] + \mathbb{E}[y^2]$$

$$= \mathbb{E}[(h-\mathbb{E}[h])^2] + (\mathbb{E}[h])^2 \\ -2\mathbb{E}[h]\mathbb{E}[y] + \mathbb{E}[(y-\mathbb{E}[y])^2] + (\mathbb{E}[y])^2$$

$$= \mathbb{E}[(h-\mathbb{E}[h])^2] + (\mathbb{E}[h])^2 \\ -2\mathbb{E}[h]f^*(x) + \mathbb{E}[(y-f^*(x))^2] + (f^*(x))^2$$

$$= \mathbb{E}[(h-\mathbb{E}[h])^2] + (\mathbb{E}[h] - f^*(x))^2 + \mathbb{E}[(y-f^*(x))^2]$$
Variance (Bias)² Noise

Bias-Variance-Noise Decomposition

$$\mathbb{E}_{D,\varepsilon} \big[(h-y)^2 \big] \qquad \qquad y = f^*(x) + \varepsilon \\ h = h(x) \\ \mathbb{E}[X^2] = \mathbb{E}[(X - \mathbb{E}[X])^2] + (\mathbb{E}[X])^2 \\ + (\mathbb{E}[h] - f^*(x))^2 + \mathbb{E}[(y - f^*(x))^2] \\ = var[h] + (\mathbb{E}[h] - f^*(x))^2 + \mathbb{E}[(y - f^*(x))^2] \\ = var[h] + bias(h)^2 + \mathbb{E}[(y - f^*(x))^2] \\ = var[h] + bias(h)^2 + \mathbb{E}[\varepsilon^2] \\ = var[h] + bias(h)^2 + \sigma^2 \\ \text{Variance} \qquad \text{(Bias)}^2 \qquad \text{Noise}$$

Bias-Variance-Noise Decomposition

> Expected prediction error = Variance + Bias² + Noise

- \succ Variance: $\mathbb{E}\big[(h(x) \mathbb{E}[h(x)])^2\big]$
 - Describes how much varies from one training set to another
- \triangleright Bias: $\mathbb{E}[h(x)] f^*(x)$
 - Describes the average error of h(x)
- \triangleright Noise: $\mathbb{E}\big[(y-f^*(x))^2\big]=\mathbb{E}\big[\varepsilon^2\big]=\sigma^2$
 - Describes how much y varies from $f^*(x)$

Quiz: Bias-Variance Trade-Off

> Match each of the following:

$$\succ \mathbb{E}[y]$$

$$\succ \mathbb{E}[\varepsilon^2]$$

$$\triangleright \mathbb{E}[(\mathbb{E}[h(x)] - \mathbb{E}[y])^2]$$

$$> \mathbb{E}\big[\varepsilon(h(x)-y)^2\big]$$

E.
$$f^*(x)$$

F.
$$f^*(x) + \varepsilon$$

Quiz: Bias-Variance Trade-Off

> Match each of the following:

- $\succ \mathbb{E}[y]$
- $\triangleright \mathbb{E}[\varepsilon^2]$
- $\triangleright \mathbb{E}[(\mathbb{E}[h(x)] \mathbb{E}[y])^2]$
- $> \mathbb{E} \left[\varepsilon (h(x) y)^2 \right]$

- A. C
- B. Bias²
- C. Model variance
- D. Observation variance
- *E.* $f^*(x)$
- F. $f^*(x) + \varepsilon$