ruding.lou@ensam.eu

Résolution itérative d'équations

- Veuillez créer un fichier par exercice et respecter le nommage de vos fichiers : NOM_Prenom_TP3_ex1.py
- Veuillez utiliser le chemin suivant pour accéder au jeu de données dans vos programmes :
 //intram.ensam.eu/Cluny/TP/tp-infomath/MENUM/linear systems to solve/

Utiliser les **méthodes itératives** pour résoudre un système linéaire. Imposez la condition d'arrêt $\|x^{(n)} - x^{(n-1)}\|_2 \le \epsilon = 10^{-6}$ et le nombre d'itération maximal 100. Respecter les consignes générales (Annexe. 1).

- 1. Implémenter l'algorithme de <u>Jacobi</u> et tester votre programme en partant du point (15, 10) et avec quelques itérations pour résoudre le système *sysLinDiagDominante_2*. Tracer l'illustration graphique des itérations (Annexe. 2). Tester votre programme avec d'autre points de départ saisis dans la console.
- 2. Implémenter l'algorithme de <u>Gauss-Seidel</u> et tester votre programme en partant du point (15, 10) et avec quelques itérations pour résoudre le système *sysLinDiagDominante_2*. Tracer l'illustration graphique des itérations (Annexe. 3). Tester votre programme avec d'autre points de départ saisis dans la console.
- 3. Implémenter l'algorithme de <u>Relaxation</u> et tester votre programme en prenant le point de départ (15, 10) et ω =1,2 et avec quelques itérations pour résoudre le système *sysLinDiagDominante_2*. Tracer l'illustration graphique des itérations (Annexe. 3). Tester votre programme avec d'autre points de départ.
- 4. Tester vos programmes avec les jeux de données sysLinDiagDominante x (2 < x < 300).
 - Demander à l'utilisateur de choisir la dimension du système
 - Prenez le point de départ (0, ...,0) par défaut.
 - Utiliser les trois méthodes pour la résolution, afficher et vérifier pour chaque méthode :
 - ➤ le nombre d'itérations.
 - ho la justesse de la solution x: $\left\|A \cdot x^{(n)} b\right\|_2$.

Annexe. 1

L'utilisateur lance le programme et se laisse guider dans la console :

- demander à l'utilisateur de saisir la dimension du système linéaire si cela concerne l'exercice ;
- demander à l'utilisateur de saisir un nombre positif c si cela concerne l'exercice ;
- afficher le système initial si cela concerne l'exercice ;
- afficher les valeurs calculées des itérations intermédiaires si cela concerne l'exercice
- afficher le résultat final de calcul et la comparaison avec la solution de référence ;
- afficher l'erreur de la solution calculée, par exemple : $\left\|A\cdot \pmb{x}^{(n)}-\pmb{b}
 ight\|_2$.
- tracer la figure des itérations si cela concerne l'exercice;

Annexe. 2

Annexe. 3

> itération: 0 $||x_i-x_i||=12.8647$

> itération: 1 $||x_i-x_{i-1}||=7.19864$

> itération: 2 | | $|x_{i}-x_{i-1}|$ | -3.24682

> itération: 3 | | x_i-x_{i-1} | | =1.46442

> itération: 4 \mid \mid x_{i} - x_{i} $_{1}$ \mid \mid =0.660502

Annexe. 4

> itération: 0 $||x_i-x_i||=16.462$

> itération: 1 $||x_i-x_{i-1}||=8.45098$

 \rightarrow itération: 2 ||x_i-x_{i-1}||-1.51278

> itération: 3 $\;\;|\;|\;x_{i}-x_{i-1}\;|\;|\;=0.0685833\;$

> itération: 4 \mid \mid \mid x_{i} - x_{i} $_{1}$ \mid \mid =0.0513737