

시계열 분석 기법과 응용

Week 1. 시계열 평활기법 1-2. 지수평활법

전치혁 교수 (포항공과대학교 산업경영공학과)

지수평활법

지수평활법 (Exponential Smoothing)

- 평활치를 구하는데 전체 데이터를 사용하며 시간에 따라 다른 가중치를 줌
- 과거로 갈수록 지수적으로 감소하는 가중치 사용

단순 지수평활(Simple Exponential Smoothing)

• 시계열 데이터 $\{X_1, X_2, ...\}$ 가 수평적 패턴인 경우 사용

이중 지수평활(Double Exponential Smoothing)

시계열 데이터 {X₁,X₂,...}가 추세 패턴을 따르는 경우 사용
 홀트 모형 (Holt's Model)

• 시계열 데이터 $\{X_1, X_2, ...\}$ 가 추세 패턴을 따르는 경우 사용

단순 지수평활법

- 시계열 데이터 {*X*₁, *X*₂, ... }가 수평적 패턴인 경우 사용
- 시점 t에서의 지수평활치:

$$S_t = \alpha X_t + \alpha (1 - \alpha) X_{t-1} + \alpha (1 - \alpha)^2 X_{t-2} + \cdots$$

- 시점 t+1에서의 지수평활치:

$$S_{t+1} = \alpha X_{t+1} + (1 - \alpha) S_t$$

- 평활상수 $\alpha(0\langle\alpha\langle1)$ 가 작을수록 평활효과가 큼
- 시점 t에서의 시점 t+1의 값 예측(한 단계이후 예측): $f_{t,1} = S_t$
- 최근 추세를 반영하여 예측코자 하면 큰 α 를 사용하고 전체 평균으로 예측코자 하면 작은 α 값 을 사용

시간	시계열	지수평활
t-N+1	X_{t-N+1}	
t-N+2	X_{t-N+2}	
t−1	X_{t-1}	S_{t-1}
t	X_t	S_t
t+1	X_{t+1}	S_{t+1}

단순 지수평활법

- 예 (청년 실업률) 다음은 우리나라 분기별 (2000-2017) 청년(15-29세) 실업률(%)을 나타낸 것이다.
- $\alpha = 0.1$ 과 $\alpha = 0.3$ 일 때 단순 지수평활치를 구하여 보자

단순 지수평활법

Single Exponential Smoothing Plot for 실업률

- 시계열 데이터 $\{X_1, X_2, ...\}$ 가 추세 패턴을 따르는 경우 사용 $X_t = c + bt + a_t$
- 단순 지수평활치의 기대치와 시계열 기대치간에는 격차가 존재 $E[S_t] = c + bt \frac{1-\alpha}{\alpha}b \implies E[S_t] + \frac{1-\alpha}{\alpha}b = c + bt$ 이를 보정하기위해 이중 지수평활을 활용
- (Brown) 이중 지수평활

$$S_{t} = \alpha X_{t} + (1 - \alpha) S_{t-1}$$

$$S_{t}^{(2)} = \alpha S_{t} + (1 - \alpha) S_{t-1}^{(2)}$$

$$E[S_{t}^{(2)}] = E[S_{t}] - \frac{1 - \alpha}{\alpha} b$$

$$E[S_{t}] - E[S_{t}^{(2)}] = \frac{1 - \alpha}{\alpha} b$$

예측

시점 T에서 다음 시점의 예측치 (한단계 이후 예측)

$$f_{T,1} = E[X_{T+1}|X_T, X_{T-1}, \dots] = c + b(T+1)$$

$$\hat{f}_{T,1} = \hat{c} + \hat{b}(T+1) = 2S_T - S_T^{(2)} + \hat{b}$$

$$\hat{b} = \frac{\alpha}{1-\alpha} (S_T - S_T^{(2)})$$

■ k-단계 이후 예측치

$$f_{T,k} = E[X_{T+k}|X_T, X_{T-1}, \dots] = c + b(T+k), \ k = 1, 2, \dots$$
$$\hat{f}_{T,k} = \hat{c} + \hat{b}(T+k) = 2S_T - S_T^{(2)} + k\hat{b}$$

- 예 (특허건수) 아래는 우리나라 연도별 (1993-2016) 특허건수 (천건)를 나타낸 것이다.
- 이중지수평활을 적용하여 시간에 따라 한단계이후를 예측해 보자. $(\alpha=0.2 \text{ 사용})$

년도	건수	S_t	$S_t^{(2)}$	\hat{b}	예측치
1999	56.0	47.27	35.75	2.88	
2000	72.8	52.38	39.07	3.33	61.68
2001	73.7	56.64	42.59	3.51	69.01
2002	76.6	60.64	46.20	3.61	74.21
2015	167.3	144.00	120.22	5.95	168.07
2016	163.4	147.88	125.75	5.53	173.74

#2

[이중 지수평활]

- 예 (특허건수) (계속)
 - 한단계 예측치 비교 (2000-2016)

	단순지수 평활 사용	이중지수 평활 사 용
MSE	938.83	102.27
RMSE	30.64	10.11
MAD	29.59	8.19
MAPE	24.99	7.24

#2

홀트 모형

Holt의 이중 지수평활 모형

- 시계열 데이터 $\{X_1, X_2, ...\}$ 가 추세 패턴이 있는 경우 사용
- 수평 수준과 추세를 각각 갱신하는 모형
 - 수평수준: $L_t = \alpha X_t + (1 \alpha)(L_{t-1} + b_{t-1})$, $(0\langle \alpha \langle 1 \rangle)$
 - 추세: $b_t = \beta(L_t L_{t-1}) + (1 \beta)b_{t-1}$, $(0\langle \beta \langle 1) \rangle$
- 시점 T에서 시점 T+k의 값 예측(k-단계 예측):

$$f_{T,k} = L_T + kb_T, \qquad k = 1,2,...$$

홀트 모형

- 예 (특허건수) 아래는 우리나라 연도별 (1993-2016) 특허건수 (천건)를 나타낸 것이다.
- 홀트모형을 적용하여 시간에 따라 한단계이후를 예측하라. $(\alpha = \beta = 0.2 \text{ 사용})$

년도	건수	L_t	b_t	예측치
1999	56.0	71.68	7.46	
2000	72.8	77.87	7.20	79.14
2001	73.7	82.80	6.75	85.08
2002	76.6	86.96	6.23	89.55
2015	167.3	168.83	5.80	169.21
2016	163.4	172.38	5.35	174.63

MSE=77.7 RMS=8.82 MAD=7.63 MAPE=6.89

[홀트모형]

#2

Reference

```
#1. KOSIS 국가통계포털 <u>http://kosis.kr/</u> 2019.12
```

#2. KOSIS 국가통계포털 <u>http://kosis.kr/</u> 2019.12