```
In [1]: import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

In [2]: import os current_directory = os.getcwd() print("Current Working Directory:", current_directory)

Current Working Directory: C:\Users\karan

In [3]: data=pd.read_csv("C:\\Users\karan\\Cars.csv") data

Out[3]: car_name reviews_count fuel_type engine_displacement no_cylinder seating_capacity

0 Maruti Alto K10 51 Petrol 998 3 5.0

1 Maruti Brezza 86 Petrol 1462 4 5.0

2 Mahindra 242 Diesel 2184 4 4.0

3 Mahindra 313 Diesel 2184 4 4.0
```

0	Maruti A l to K10	51	Petrol	998	3	5.(
1	Maruti Brezza	86	Petrol	1462	4	5.0
2	Mahindra Thar	242	Diesel	2184	4	4.(
3	Mahindra XUV700	313	Diesel	2198	4	7.0
4	Mahindra Scorpio-N	107	Diesel	2198	4	7.(
198	Mercedes- Benz AMG A 45 S	35	Petrol	1991	4	5.(
199	BMW 3 Series Gran Limousine	3	Petrol	1998	4	5.(
200	MG Hector Plus	2	Diesel	1956	4	7.(
201	Audi RS Q8	9	Petrol	3998	8	5.(
202	Maruti Alto 800 tour	4	Petrol	796	3	5.0
203 r	ows × 16 co	lumns				

In [4]: temp=data[0:20]

```
In [5]: plt.bar(temp.car_name,temp.max_torque_rpm)
    plt.xlabel('Car Name')
    plt.ylabel('Torque in RPM')
    plt.xticks(rotation='vertical')
    plt.show()
```



```
In [6]: count=data.no_cylinder.value_counts()
    count
```

```
Out[6]:
         no_cylinder
                96
          8
                29
          3
                26
          6
                25
          0
                16
          12
                  8
          5
                  1
          1
                  1
          10
                  1
         Name: count, dtype: int64
```

```
In [7]: plt.pie(count,labels=count.index.tolist())
   plt.show()
```


In [8]: plt.hist(data.ending_price/10**6,bins=7,color='red',edgecolor='white',orien
plt.xlabel('Price in Lakhs')
plt.title('Price Distribution')
plt.show()


```
In [9]: plt.scatter(data.max_torque_rpm,data.ending_price/10**6)
    plt.title('Scatter plot of Maximum Torque and Price')
    plt.xlabel('Maximum Torque in RPM')
    plt.ylabel('Price in Lakhs')
    plt.show()
```

Scatter plot of Maximum Torque and Price


```
In [18]: plt.plot(temp.ending_price/10**5,temp.fuel_tank_capacity)
    plt.xticks(rotation='vertical')
    plt.xlabel('Price in Lakhs')
    plt.ylabel('Fuel Tank Capacity')
    plt.show()
```



```
In [ ]:
```