Model Documentation of the Two Mass Floating Bodies

This document was automatically generated based on the ACKREP project system model with AJ0PV. The Automatic Control Knowledge Repository, short ACKREP, aims to facilitate knowledge transfer of control theory and control engineering.

1 Nomenclature

1.1 Nomenclature for Model Equations

 m_1 mass of the iron ball

 m_2 mass of the brass ball

 k_1 geometry constant

 k_2 air gap of magnet

 k_f spring constant

g acceleration of gravity

I current

 s_1 position of the iron ball in x-direction

 s_2 position of the brass ball in x-direction

 v_1 velocity of the iron ball in x-direction

 v_2 velocity of the brass ball in x-direction

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (x_1 \ x_2 \ x_3 \ x_4)^T = (s_1 \ s_2 \ v_1 \ v_2)^T$$

 $\underline{u} = u_1 = I$

System Equations:

$$\dot{x}_1 = x_3 \tag{1a}$$

$$\dot{x}_2 = x_4 \tag{1b}$$

$$\dot{x}_3 = g - \frac{k_f}{m_1}(x_1 - x_2) - k_1 \frac{I}{m_1(x_1 + k_2)^2}$$
(1c)

$$\dot{x}_4 = g + \frac{k_f}{m_2}(x_1 - x_2) \tag{1d}$$

(1e)

Parameters: $m_1 m_2 k_1 k_2 k_f g$

Outputs: s_2

2.1 Assumptions

1. Mass of the iron ball is a pointmass

2. Mass of the brass ball is a pointmass

2.2 Exemplary parameter values

3 Derivation and Explanation

Not available

References

[1] Xinyu Wang: Erstellung eines Katalogs regelungstechnischer Problemstellungen mit ausführbaren Beispiellösungen