Fundamental limits of symmetric low-rank matrix estimation

Marc Lelarge & Léo Miolane*

Abstract

We consider the high-dimensional inference problem where the signal is a low-rank symmetric matrix which is corrupted by an additive Gaussian noise. Given a probabilistic model for the low-rank matrix, we compute the limit in the large dimension setting for the mutual information between the signal and the observations, as well as the matrix minimum mean square error, while the rank of the signal remains constant. We also show that our model extends beyond the particular case of additive Gaussian noise and we prove an universality result connecting the community detection problem to our Gaussian framework. We unify and generalize a number of recent works on PCA, sparse PCA, submatrix localization or community detection by computing the information-theoretic limits for these problems in the high noise regime. In addition, we show that the posterior distribution of the signal given the observations is characterized by a parameter of the same dimension as the square of the rank of the signal (i.e. scalar in the case of rank one). Finally, we connect our work with the hard but detectable conjecture in statistical physics.

1 Introduction

The estimation of a low-rank matrix observed through a noisy channel is a fundamental problem in statistical inference with applications in machine learning, signal processing or information theory. We shall consider the high dimensional setting where the low-rank matrix to estimate is symmetric and where the noise is additive and Gaussian: $\mathbf{Y} = \sqrt{\lambda/n}\mathbf{X}\mathbf{X}^T + \mathbf{Z}$, where n is the dimension and λ captures the strength of the signal. Our framework can encompass a wide range of low-rank signal \mathbf{X} where the components of the vector are i.i.d. with a given prior distribution P_0 . Moreover, thanks to the universality property first introduced in [19] and proved in [18], our results with additive Gaussian noise have direct implications for a wide range of channels. In the context of community detection, we will prove another universality result showing the equivalence between Bernoulli channel and Gaussian channel that will allow us to transfer our results about rank-one matrix estimation to the community detection problem in the limit of large degrees.

As we explain below, particular instances of our result (corresponding to various choices for the prior distribution P_0) have been studied recently. Bounds based on second moment computations have been derived (see the recent works [4, 27] and the references therein) but they are not expected to be tight in the regime considered in this paper. Random matrix theory also provides some bounds [2, 13, 6] and we will comment their tightness in the sequel. Another proof technique relies on the careful analysis of an approximate message passing (AMP) algorithm [12, 24, 11, 9] and recently with the addition of spatial coupling techniques [5]. Our proof technique is new and provides a unified approach that extends previous results. It builds on the mathematical approach developed by Talagrand [30] and Panchenko [26] to study the Sherrington-Kirkpatrick (SK) model. More precisely, we study the posterior distribution of X given the observations Y which allows us to compute both the mutual information I(X,Y) and the matrix minimum mean square error. More importantly, we are able to show that a sample \mathbf{x} drawn from the posterior distribution has an asymptotic deterministic overlap with the signal \mathbf{X} : $\left(\frac{1}{n}\sum_i x_i X_i\right)^2 \to q^*(\lambda)^2$ in L^2 . Suppose for simplicity that $\mathbb{E}_{P_0}X = 0$, then we show that as soon as $q^*(\lambda) > 0$, it is possible to strictly improve over dummy estimators, i.e. estimators that do not depend on the observed data Y. Hence our result gives an explicit formula to compute the minimal value of the signal strength λ in order to do strictly better than the dummy estimator for a wide range of low-rank matrix estimation problem. Moreover, it gives the best possible performance as a function of λ and the prior P_0 , achievable by any algorithm (with no computational constraint). Finally, our work leads to an extension of the hard but detectable conjecture from statistical physics that we present in Section 2.6.

 $^{{\}rm ^*M.L.\ and\ L.M.\ are\ with\ INRIA-ENS,\ Paris\ France,\ emails:\ marc.lelarge@ens.fr\ and\ leo.miolane@ens.fr}$

Our main results are presented in the next section where some applications are also described. In Section 3, we make the connection with the statistical physics approach, Section 4 contains the proof of our main first result and Section 5 contains the proof of the concentration for the overlap. The generalization to finite rank and continuous alphabet is done in Section 6. Finally, the connection with the community detection problem is done in Section 7.

2 Main results

2.1 Rank-one matrix estimation

Let P_0 be a probability distribution on a finite support $S \subset \mathbb{R}$. Consider the following Gaussian additive channel for $\lambda > 0$,

$$Y_{i,j} = \sqrt{\frac{\lambda}{n}} X_i X_j + Z_{i,j}, \quad \text{for } 1 \le i < j \le n,$$

$$\tag{1}$$

where $X_i \sim_{i.i.d.} P_0$ and $Z_{i,j} \sim_{i.i.d.} \mathcal{N}(0,1)$. We denote the input vector by $\mathbf{X} = (X_1, \dots, X_n)$, the output matrix by $\mathbf{Y} = (Y_{i,j})_{1 \leq i < j \leq n}$ and the noise matrix by $\mathbf{Z} = (Z_{i,j})_{1 \leq i < j \leq n}$. We denote by \mathbb{E} the expectation with respect to the randomness of $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$. Notice that we suppose here to observe only the coefficients of $\sqrt{\lambda/n}\mathbf{X}\mathbf{X}^T + \mathbf{Z}$ that are above the diagonal. The case where all the coefficients are observed can be directly deduced from this case.

Our first main result is an exact computation of the limit when n tends to infinity of the mutual information $\frac{1}{n}I(\mathbf{X},\mathbf{Y})$ for this Gaussian channel as well as the matrix minimum mean square error defined by:

$$\begin{aligned} \text{MMSE}_n(\lambda) &= \min_{\hat{\theta}} \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} \mathbb{E}\left[\left(X_i X_j - \hat{\theta}_{i,j}(\mathbf{Y}) \right)^2 \right] \\ &= \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} \mathbb{E}\left[\left(X_i X_j - \mathbb{E}\left[X_i X_j | \mathbf{Y} \right] \right)^2 \right], \end{aligned}$$

where the minimum is taken over all estimators $\hat{\theta}$ (i.e. measurable functions of the observations **Y** that could also depend on auxiliary randomness). We define the following function

$$\mathcal{F}: (\lambda, q) \in \mathbb{R}^2_+ \mapsto -\frac{\lambda}{4}q^2 + \mathbb{E}\log\left[\sum_{x \in S} P_0(x) \exp\left(\sqrt{\lambda q} Zx + \lambda q x X - \frac{\lambda}{2} q x^2\right)\right],\tag{2}$$

where $Z \sim \mathcal{N}(0,1)$ and $X \sim P_0$ are independent random variables.

Theorem 1

For $\lambda > 0$, we have

$$\lim_{n \to \infty} \frac{1}{n} I(\mathbf{X}, \mathbf{Y}) = \frac{\lambda \mathbb{E}_{P_0}[X^2]^2}{4} - \sup_{q > 0} \mathcal{F}(\lambda, q),$$

which is a concave function of λ . Let $D \subset (0, +\infty)$ be the set of points where this function is differentiable. By concavity, D is equal to $(0, +\infty)$ minus a countable set. Then, for all $\lambda \in D$, the maximizer $q^*(\lambda)$ of $q \geq 0 \mapsto \mathcal{F}(\lambda, q)$ is unique and is such that

$$\lim_{n \to \infty} \text{MMSE}_n(\lambda) = \mathbb{E}_{P_0}[X^2]^2 - q^*(\lambda)^2.$$

To the best of our knowledge, the rigorous result closest to ours is provided by [5] where a restrictive assumption is made on P_0 , namely the function $q \mapsto \mathcal{F}(\lambda, q)$ is required to have at most three stationary points. Our most general result will generalize Theorem 1 to any probability distribution P_0 over \mathbb{R}^k with bounded support and with k fixed (see Section 2.8). For the sake of clarity, we first concentrate on this simpler result, provide a detailed proof and then generalize it to the general case.

In order to get an upper bound on the matrix minimum mean square error, we will consider the "dummy estimators", i.e. estimators $\hat{\theta}$ that do not depend on **Y** (and that are thus independent of **X**). If $\hat{\theta}$ is a dummy estimator, its mean square error is equal to

$$MSE(\hat{\theta}) = \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} \mathbb{E}\left[\left(X_i X_j - \mathbb{E}\hat{\theta}_{i,j}\right)^2\right] + Var(\hat{\theta}_{i,j})$$

because **X** and $\hat{\theta}$ are independent. Therefore, the "best" dummy estimator (in term of mean square error) is $\hat{\theta}_{i,j} = \mathbb{E}_{P_0}[X]^2$ for all i < j which gives a "dummy" matrix mean square error of:

DMSE =
$$\mathbb{E}_{P_0}[X^2]^2 - \mathbb{E}_{P_0}[X]^4 \ge 0.$$

As we will see later in Proposition 20, the optimizer $q^*(\lambda)$ defined in Theorem 1 is such that: $q^*(\lambda) \xrightarrow[\lambda \to 0]{} \mathbb{E}_{P_0}[X]^2$ and $q^*(\lambda) \xrightarrow[\lambda \to \infty]{} \mathbb{E}_{P_0}[X^2]$. Consequently, Theorem 1 gives the limits of the MMSE for the low (i.e. $\lambda \to 0$) and high (i.e. $\lambda \to \infty$) signal regimes:

$$\lim_{\lambda \to 0} \lim_{n \to \infty} \text{MMSE}_n(\lambda) = \text{DMSE}$$

$$\lim_{\lambda \to \infty} \lim_{n \to \infty} \text{MMSE}_n(\lambda) = 0$$

It is important to note that the regime considered in this paper with $\lambda \in (0, \infty)$ corresponds to a high noise regime: the MMSE will be positive for any finite value of λ in our model (1). In particular, exact reconstruction of the signal is typically not possible.

Theorem 1 indicates that the value of $q^*(\lambda)$ determines the best achievable performance for the estimation problem. We will now see that $q^*(\lambda)$ encodes the geometry of the posterior distribution of **X** given **Y**. The posterior distribution of **X** given **Y** is given by

$$\forall \mathbf{x} \in S^n, \quad P(\mathbf{x}|\mathbf{Y}) = \frac{1}{Z_n(\lambda)} \Big(\prod_{i=1}^n P_0(x_i) \Big) \exp\Big(\sum_{i < j} x_i x_j \sqrt{\frac{\lambda}{n}} Y_{i,j} - \frac{\lambda}{2n} x_i^2 x_j^2 \Big), \tag{3}$$

where $Z_n(\lambda)$ is the normalization function. We will adopt a standard notation in statistical physics and denote by $\langle \cdot \rangle$ the average with respect to this random (because depending on **Y**) distribution. We also denote by **x** a random vector with distribution given by (3). This means that for any function f on S^n , we have by definition:

$$\langle f(\mathbf{x}) \rangle = \frac{1}{Z_n(\lambda)} \sum_{\mathbf{x} \in S_n} \Big(\prod_{i=1}^n P_0(x_i) \Big) f(\mathbf{x}) \exp\Big(\sum_{i \leq j} x_i x_j \sqrt{\frac{\lambda}{n}} Y_{i,j} - \frac{\lambda}{2n} x_i^2 x_j^2 \Big).$$

Note that this last quantity is random and we will see it as a function of the random vectors X and Z:

$$\langle f(\mathbf{x}) \rangle = \frac{1}{Z_n(\lambda)} \sum_{\mathbf{x} \in S^n} \Big(\prod_{i=1}^n P_0(x_i) \Big) f(\mathbf{x}) \exp\Big(\sum_{i < j} x_i x_j \sqrt{\frac{\lambda}{n}} (Z_{i,j} + \sqrt{\frac{\lambda}{n}} X_i X_j) - \frac{\lambda}{2n} x_i^2 x_j^2 \Big),$$

and $\mathbb{E}\langle f(\mathbf{x})\rangle$ is then its mean.

For $\mathbf{u}, \mathbf{v} \in S^n$ we define the overlap between the configurations \mathbf{u} and \mathbf{v} as: $\mathbf{u}.\mathbf{v} = \frac{1}{n} \sum_{i=1}^n u_i v_i$. Let $m \in \mathbb{N}^*$. The geometry of the Gibbs distribution $\langle \cdot \rangle$ can be characterized by the matrix $(\mathbf{x}^{(i)}.\mathbf{x}^{(j)})_{1 \leq i,j \leq m}$ of the overlaps between m i.i.d. samples $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}$ from $\langle \cdot \rangle$. Indeed, one can easily verify (using Proposition 16) that the rescaled norm of each sample $\sqrt{\mathbf{x}^{(i)}.\mathbf{x}^{(i)}}$ concentrates around $\sqrt{\mathbb{E}_{P_0}[X^2]}$, so that the matrix of the overlaps encodes the distances between m samples from $\langle \cdot \rangle$.

The Nishimori identity (Proposition 16) gives that $\mathbf{x}^{(i)}.\mathbf{x}^{(j)}$ is equal to $\mathbf{x}.\mathbf{X}$ in law. The behavior of this quantity is simple: the next result shows that $(\mathbf{x}.\mathbf{X})^2$ concentrates asymptotically around $q^*(\lambda)^2$. In words, we see that if \mathbf{Y} is obtained from \mathbf{X} thanks to (1) and if \mathbf{x} is a random vector distributed according to the posterior distribution (3) given \mathbf{Y} , then the square of its overlap with the initial vector \mathbf{X} , i.e. $(\mathbf{x}.\mathbf{X})^2$ converges to the deterministic value $q^*(\lambda)^2$ as n tends to infinity. Thus, $q^*(\lambda)$ encodes the geometry of the Gibbs distribution $\langle \cdot \rangle$.

Theorem 2

For all $\lambda \in D$, we have for $\mathbf{x} \in S^n$ with distribution given by (3),

$$\mathbb{E}\Big\langle \big((\mathbf{x}.\mathbf{X})^2 - q^*(\lambda)^2 \big)^2 \Big\rangle \xrightarrow[n \to \infty]{} 0.$$

To the best of our knowledge, the convergence in L^2 stated in Theorem 2 is a new contribution of our work.

2.2 Effective Gaussian scalar channel

We now study more carefully the quantity $q^*(\lambda)$ which characterizes the limit for the square of the overlap of two vectors drawn from the posterior distribution. We will relate it to the following scalar Gaussian channel:

$$Y_0 = \sqrt{\gamma} X_0 + Z_0,\tag{4}$$

where $X_0 \sim P_0$ and $Z_0 \sim \mathcal{N}(0,1)$ are independent random variables. Note that the posterior distribution of X_0 knowing Y_0 is then given by $\mathbb{P}(X_0 = x|Y_0) = \frac{1}{Z(Y_0)}P_0(x)e^{Y_0\sqrt{\gamma}x-\frac{\gamma x^2}{2}}$, where the random variable $Z(Y_0)$ is the normalizing constant:

$$Z(Y_0) = \sum_{x \in S} P_0(x) e^{Y_0 \sqrt{\gamma} x - \frac{\gamma x^2}{2}} = \sum_{x \in S} P_0(x) e^{\gamma x X_0 + \sqrt{\gamma} x Z_0 - \frac{\gamma x^2}{2}}.$$

We can then relate this quantity to the mutual information $i(\gamma) = I(X_0, Y_0)$ of the scalar Gaussian channel

$$i(\gamma) = \frac{\gamma \mathbb{E}[X_0^2]}{2} - \mathbb{E}[\log Z(Y_0)]$$

$$= \frac{\gamma \mathbb{E}[X_0^2]}{2} - \mathbb{E}\log\left[\sum_{x \in S} P_0(x) \exp(\sqrt{\gamma}Z_0x + \gamma x X_0 - \frac{\gamma}{2}x^2)\right]. \tag{5}$$

Hence, playing with the equations, we can rewrite the first statement of Theorem 1 as follows:

$$\lim_{n \to \infty} \frac{1}{n} I(\mathbf{X}, \mathbf{Y}) = \frac{\lambda \mathbb{E}[X_0^2]^2}{4} - \sup_{q > 0} \left(\frac{\lambda q}{2} \left(\mathbb{E}[X_0^2] - \frac{q}{2} \right) - i(\lambda q) \right). \tag{6}$$

The minimum mean square error for the scalar Gaussian channel is defined as

$$\operatorname{mmse}(\gamma) = \mathbb{E}\left[(X_0 - \mathbb{E}[X_0|Y_0])^2 \right]$$

$$= \mathbb{E}\left[X_0^2 \right] - \mathbb{E}\left[\mathbb{E}[X_0|Y_0]^2 \right],$$
(7)

where we used the identity $\mathbb{E}\left[\mathbb{E}[X_0|Y_0]^2\right] = \mathbb{E}\left[X_0\mathbb{E}[X_0|Y_0]\right]$. The minimum mean square error is related to the mutual information by the following equation (from [15]): $\frac{d\mathbf{i}}{d\gamma}(\gamma) = \frac{1}{2}\text{mmse}(\gamma)$. Now, we see thanks to this relation that the value $q^*(\lambda)$ attaining the supremum in the right-hand term of (6) should satisfy the following equation (see Proposition 20):

$$q^* = \mathbb{E}[X_0^2] - \text{mmse}(\lambda q^*). \tag{8}$$

This equation already appeared a number of times in settings similar to ours, in the context of community detection [24] and [11], or sparse PCA [12]. We will discuss the application to the community detection problem in Sections 2.4 and 2.5. We now discuss the sparse PCA problem as introduced in [12]. With our notation, this setting corresponds to $P_0 \sim \text{Ber}(\epsilon)$ being a Bernoulli distribution with parameter $\epsilon > 0$. It is proved in [12], that there exists ϵ_* such that for $\epsilon > \epsilon_*$, the fixed point equation (8) has only one solution in $[0, \infty)$ and in this case Theorem 2 in [12] gives the asymptotic MMSE and shows that it is achieved by AMP algorithm. Our Theorem 1 allows us to compute the asymptotic MMSE for all values of ϵ , indeed we have:

Proposition 3

For $P_0 \sim Ber(\epsilon)$, we have

$$\lim_{n\to\infty}\frac{1}{n}I(\mathbf{X},\mathbf{Y}) = \frac{\lambda\epsilon^2}{4} - \sup_{q\geq 0}\left\{-\frac{\lambda q^2}{4} + \mathbb{E}\left[\log\left(1-\epsilon + \epsilon e^{\sqrt{\lambda q}Z + \lambda qX_0 - \lambda q/2}\right)\right]\right\},$$

where $X_0 \sim Ber(\epsilon)$ and $Z \sim \mathcal{N}(0,1)$. For almost all $\lambda > 0$, the maximizer $q^*(\lambda)$ of the right hand term is unique and is such that

$$\lim_{n \to \infty} \text{MMSE}_n(\lambda) = \epsilon^2 - q^*(\lambda)^2.$$

As shown in Section 2.5 below, this sparse PCA model is connected to the problem of finding one community in a random graph: we will show that as the average degree tends to infinity, the Bernoulli channel can be approximated by an additive Gaussian channel. Another related problem is the submatrix localization as studied in [16] which corresponds to a case where P_0 is a mixture of two Gaussian distributions with different means. Note that this case is not covered by our Theorem 1 as Gaussian distributions do not have a finite support. However, we will deal with the case of bounded support in the sequel and we can obtain the formulas in this case by approximating the normal distribution by truncating its support.

2.3 Phase transition in the case $\mathbb{E}_{P_0}[X] = 0$

In this section, we concentrate on the particular case where $\mathbb{E}_{P_0}[X]=0$. Without loss of generality, we can also assume that $\mathbb{E}_{P_0}[X^2]=1$. We first start with the particular case $P_0=\mathcal{N}(0,1)$ where explicit formulas are available. Note (as above) that to be rigorous, we need to use our Theorem 12 below dealing with continuous alphabet for P_0 and approximate the normal distribution by truncating its support in order to get the formulas given below. The input-output mutual information for the Gaussian scalar channel (4) is then the well-known channel capacity under input power constraint: $\mathrm{i}(\gamma)=\frac{1}{2}\log(1+\gamma)$ and then $\mathrm{mmse}(\gamma)=\frac{1}{1+\gamma}$. This is a case where (8) can be solved explicitly, namely, if $\lambda\leq 1$, then $q^*(\lambda)=0$ and if $\lambda>1$, then two values are possible: $q^*(\lambda)\in\{0,1-\frac{1}{\lambda}\}$ but only $1-\frac{1}{\lambda}$ achieves the supremum in (6). Hence we have $q^*(\lambda)=\mathrm{max}\left(0,1-\frac{1}{\lambda}\right)$ so that in the case $P_0=\mathcal{N}(0,1)$, we have:

$$\mathrm{MMSE}_n(\lambda) \to \begin{cases} 1 & \text{if } \lambda \le 1, \\ \frac{1}{\lambda} \left(2 - \frac{1}{\lambda} \right) & \text{otherwise.} \end{cases}$$
 (9)

In particular, we see that as long as $\lambda \leq 1$, the dummy estimator $\hat{\theta}_{i,j} = 0$ is optimal in term of matrix mean square error. Only when $\lambda > 1$, the MMSE starts to decrease below 1.

Our probabilistic model (1) has been the focus of much recent work in random matrix theory [2, 13, 6]. The focus in this literature is the analysis of the extreme eigenvalues of the symmetric matrix \mathbf{Y}/\sqrt{n} and its associated eigenvector leading to performance guarantee for principal component analysis (PCA). The main result of interest to us is the following: for any distribution P_0 such that $\mathbb{E}_{P_0}[X^2] = 1$, we have

- if $\lambda \leq 1$, the top eigenvalue of \mathbf{Y}/\sqrt{n} converges a.s. to 2 as $n \to \infty$, and the top eigenvector \mathbf{v} (with norm $\|\mathbf{v}\|^2 = n$) has trivial correlation with \mathbf{X} : $\mathbf{v}.\mathbf{X} \to 0$ a.s.
- if $\lambda > 1$, the top eigenvalue of \mathbf{Y}/\sqrt{n} converges a.s. to $\sqrt{\lambda} + 1/\sqrt{\lambda} > 2$ and the top eigenvector \mathbf{v} (with norm $\|\mathbf{v}\|^2 = n$) has nontrivial correlation with \mathbf{X} : $(\mathbf{v}.\mathbf{X})^2 \to 1 1/\lambda$ a.s.

Note that this result has been proved under considerably fewer assumptions than we make in the present paper. We refer the interested reader to [13, 6] and the references therein for further details. In our context, we can compare the performance of PCA with the information-theoretic bounds. If we take an estimator proportional to v_iv_j , i.e. $\hat{\theta}_{i,j} = \delta v_iv_j$ for $\delta \geq 0$, we can compute explicitly the MSE obtained as a function of δ and minimize it. The optimal value for δ depends on λ , more precisely if $\lambda < 1$, then $\delta = 0$ resulting in a limit for MSE of one while for $\lambda \geq 1$, the optimal of value for δ is $1 - 1/\lambda$ resulting in the following MSE for PCA:

$$MSE_n^{PCA}(\lambda) \to \begin{cases} 1 & \text{if } \lambda \le 1, \\ \frac{1}{\lambda} \left(2 - \frac{1}{\lambda}\right) & \text{otherwise.} \end{cases}$$
 (10)

Figure 1: Performance of PCA for the $\mathbb{Z}/2$ synchronization problem: the blue curve is the limit of the MMSE (with the prior $P_0(+1) = P_0(-1) = \frac{1}{2}$) and the green curve is the limit of the MSE achieved by PCA (10), seen as functions of λ .

Comparing to (9), we see that in the particular case of $P_0 = \mathcal{N}(0,1)$, PCA is optimal: it is able to get a matrix mean square error strictly less than 1 as soon as it is information theoretically possible and its mean square error is optimal.

We now discuss the $\mathbb{Z}/2$ synchronization problem studied in [3] which corresponds to the prior $P_0(+1) = P_0(-1) = \frac{1}{2}$. It turns out that exactly this model has been studied in [11] and the connection with the community detection problem will be made clear in the next section. We now compute the MMSE for this problem. The mmse for the effective Gaussian scalar channel (4) can be computed explicitly. An easy computation gives

$$\mathbb{E}[X_0|Y_0] = \tanh\left(\sqrt{\gamma}Y_0\right),\,$$

so that we have thanks to (7):

mmse(
$$\gamma$$
) = $1 - \mathbb{E} \left[\tanh \left(\sqrt{\gamma} Z_0 + \gamma X_0 \right)^2 \right]$
 = $1 - \mathbb{E} \left[\tanh \left(\sqrt{\gamma} Z_0 + \gamma \right)^2 \right]$.

In particular, the fixed point equation (8) reduces now to $q^* = \mathbb{E}\left[\tanh\left(\sqrt{\lambda q^*}Z_0 + \lambda q^*\right)^2\right]$ which has one solution for $\lambda \leq 1$ equals to zero and an additional solution $q^*(\lambda) > 0$ for $\lambda > 1$ which is the one achieving the supremum in (6). Hence extending $q^*(\lambda)$ to zero for $\lambda \leq 1$, we have in this case, $\mathrm{MMSE}_n(\lambda) \to 1 - q^*(\lambda)^2$ for all values of $\lambda > 0$. It turns out that for $\lambda > 1$, we have $1 - q^*(\lambda)^2 < \frac{1}{\lambda}\left(2 - \frac{1}{\lambda}\right)$ as shown on Figure 1. This is a case where PCA is able to beat the dummy estimator as soon as it is information theoretically possible but still achieves a sub-optimal MMSE.

We now present a more general result. As we will see later in Proposition 20, $\lambda \in D \mapsto q^*(\lambda)$ is non-decreasing and, in the case of a centered distribution P_0 , we have $\lim_{\lambda \to 0} q^*(\lambda) = 0$. We then define

$$\lambda_c = \sup\{\lambda > 0 \mid q^*(\lambda) = 0\}. \tag{11}$$

A direct application of Theorem 1 gives

Proposition 4

We assume that P_0 is such that $\mathbb{E}_{P_0}[X] = 0$ and $\mathbb{E}_{P_0}[X^2] = 1$. For all $\lambda < \lambda_c$, we have

$$\lim_{n\to\infty}\frac{1}{n}I(\mathbf{X},\mathbf{Y})=\frac{\lambda}{4} \ and, \ \lim_{n\to\infty}\mathrm{MMSE}_n(\lambda)=1.$$

For almost all $\lambda > \lambda_c$, we have

$$\lim_{n\to\infty} \frac{1}{n} I(\mathbf{X}, \mathbf{Y}) = \frac{\lambda}{4} - \mathcal{F}(\lambda, q^*(\lambda)) \text{ and, } \lim_{n\to\infty} \mathrm{MMSE}_n(\lambda) = 1 - q^*(\lambda)^2 < 1,$$

where $q^*(\lambda)$ is the unique maximum of $q \mapsto \mathcal{F}(\lambda, q)$ defined in (2).

We call λ_c the threshold for nontrivial estimation as the MMSE is strictly less than the dummy mean square error DMSE only for $\lambda > \lambda_c$. We clearly have $\lambda_c \leq 1$ and the case $\lambda_c = 1$ corresponds to cases where PCA is optimal in the sense that it achieves a nontrivial estimation as soon as it is information theoretically possible. Note however that even if $\lambda_c = 1$, the MSE achieved by PCA can be larger than the MMSE as it is the case for the $\mathbb{Z}/2$ synchronization problem described above. Indeed, the performance of PCA does not depend on the prior P_0 , so that it is not surprising to be sub-optimal in some cases.

There are even cases where $\lambda_c < 1$, so that in the range $\lambda \in (\lambda_c, 1)$ PCA has the same performance as the dummy estimator with $\mathrm{MSE}_n^{\mathrm{PCA}}(\lambda) \to 1$ while the MMSE is strictly lower than one. Of course achieving this MMSE might be computationally hard and we comment more on this in Section 2.6. We now shortly describe an example where $\lambda_c < 1$ which corresponds to the sparse Rademacher prior that has been recently studied in [4, 27]. This is another example of sparse PCA but now with a centered prior, namely for $\rho \in [0,1]$, we take $P_0(0) = 1 - \rho$ and $P_0(1/\sqrt{\rho}) = P_0(-1/\sqrt{\rho}) = \frac{\rho}{2}$. We then denote by $\lambda_c(\rho)$ the threshold for nontrivial estimation at sparsity level ρ . It is easy to see that $\lambda_c(1) = 1$ but there exists a critical value ρ^* such that $\lambda_c(\rho) = 1$ for $\rho \geq \rho^*$ and $\lambda_c(\rho) < 1$ for $\rho < \rho^*$. [4] provides bounds for $\lambda_c(\rho)$ and bounds for the value of ρ^* are also given in [27]. The same exact characterization as the one given here for ρ^* was proved in [18, 5]. By a numerical evaluation, we obtain $\rho^* \approx 0.09$ and we refer to [18, 5] for more details

Another case where PCA is not optimal will be presented with more details in the next Section 2.4 corresponding to the case $P_0\left(\sqrt{\frac{1-p}{p}}\right) = p$ and $P_0\left(-\sqrt{\frac{p}{1-p}}\right) = 1-p$. We will obtain the existence of p^* such that $\lambda_c(p) < 1$ for $p < p^*$.

2.4 Optimal detection in the asymmetric stochastic block model

In this section, we show how our results for matrix factorization apply to the problem of community detection on a random graph model. We start by defining the random graph model that we are going to study.

Definition 5 (Stochastic block model (SBM))

Let M be a 2×2 symmetric matrix whose entries are in [0,1]. Let $n \in \mathbb{N}^*$ and $p \in [0,1]$. We define the stochastic block model with parameters (M, n, p) as the random graph \mathbf{G} defined by:

- 1. The vertices of **G** are the integers in $\{1, \ldots, n\}$.
- 2. For each vertex $i \in \{1, ..., n\}$ one draws independently $X_i \in \{1, 2\}$ according to $\mathbb{P}(X_i = 1) = p$. X_i will be called the label (or the class, or the community) of the vertex i.
- 3. For each pair of vertices $\{i, j\}$ the unoriented edge $G_{i,j}$ is then drawn conditionally on X_i and X_j according to a Bernoulli distribution with mean M_{X_i,X_j} , independently of everything else. $i \sim j$ in \mathbf{G} is and only if $G_{i,j} = 1$.

The graph G is therefore generated according to the underlying partition of the vertices in two classes. Our main focus will be on the community detection problem: given the graph G, is it possible to retrieve the labels X better than a random guess?

We investigate this question in the asymptotic of large sparse graphs, where $n \to +\infty$ while the average degree remains fixed. We will then let the average degree tend to infinity. We note that the models studied in [19], [18] or [5] showing that the Gaussian additive model approximates well the graph model, deal with dense graphs where the average degree tends to infinity with n. [11] dealing with the symmetric stochastic block model (i.e. p=1/2) is more closely related to our model as the average degree tends to infinity at an arbitrary slow rate. We define the connectivity matrix M as follows:

$$M = \frac{d}{n} \begin{pmatrix} a & b \\ b & c \end{pmatrix},\tag{12}$$

where a, b, c, d remain fixed as $n \to +\infty$. We will say that community detection is solvable if and only if there is some algorithm that recovers the communities more accurately than a random guess would. A simple argument (see [9]) shows that if $pa + (1-p)b \neq pb + (1-p)c$ then non-trivial information on the community of a vertex can be gained just by looking at its degree and the community detection is then solvable. In this section, we concentrate on the case:

$$pa + (1-p)b = pb + (1-p)c = 1.$$
 (13)

The average degree of a vertex is then equal to d, independently of its class. As mentioned above, we are first going to let n tend to infinity, while the other parameters remain constant, and then let d tend to infinity. We need now to define the signal strength parameter λ for this model and to relate it to our main model (1). We define $\epsilon = 1 - b$ so that equation (13) allows us to express all parameters in terms of ϵ and p:

$$a = 1 + \frac{1-p}{p}\epsilon, \quad b = 1-\epsilon, \quad c = 1 + \frac{p}{1-p}\epsilon.$$
 (14)

We now define $\tilde{\mathbf{X}}$ by $\tilde{X}_i = \phi_p(X_i)$, where $\phi_p(1) = \sqrt{\frac{1-p}{p}}$ and $\phi_p(2) = -\sqrt{\frac{p}{1-p}}$. The signal is contained in $\tilde{\mathbf{X}}$ and the observations are the edges of the graph which are independent Bernoulli random variables with means given by (14), so that:

$$G_{i,j} = \operatorname{Ber}\left(\frac{d}{n} + \frac{d\epsilon}{n}\tilde{X}_i\tilde{X}_j\right).$$
 (15)

In a setting where $\epsilon \to 0$, we see that the variance of $G_{i,j}$ does not depend (at the first order) on the signal and we have: $\operatorname{Var}(G_{i,j}) \sim \frac{d}{n}$. Hence, if we try to approximate (15) by a Gaussian additive model by matching the first and second moments, we would have:

$$\tilde{G}_{i,j} = \frac{d}{n} + \frac{d\epsilon}{n} \tilde{X}_i \tilde{X}_j + \sqrt{\frac{d}{n}} Z_{i,j},$$

so that by defining $Y_{i,j} = \sqrt{\frac{n}{d}} \left(\tilde{G}_{i,j} - \frac{d}{n} \right)$, we obtain:

$$Y_{i,j} = \sqrt{\frac{d\epsilon^2}{n}} \tilde{X}_i \tilde{X}_j + Z_{i,j}, \tag{16}$$

which corresponds exactly to our model (1) with $\lambda = d\epsilon^2 = d(1-b)^2$ and $P_0\left(\sqrt{\frac{1-p}{p}}\right) = p = 1 - P_0\left(-\sqrt{\frac{p}{1-p}}\right)$. This heuristic argument will be made rigorous in the sequel and we will show that the limit for the mutual information $\frac{1}{n}I(\mathbf{X},\mathbf{G})$ is the same as the mutual information $\frac{1}{n}I(\mathbf{X},\mathbf{Y})$ of the channel (16). Note that in the case p = 1/2 studied in [11], we end up with exactly the $\mathbb{Z}/2$ synchronization problem studied in previous section (see Figure 1). For a general value of p, we are now in the framework of Proposition 4, so that we can define $\lambda_c(p)$ by (11) for each p. We will show in the sequel that the matrix mean square error for the matrix factorization problem (16) corresponds to the "community overlap", a popular performance measure for community detection (see for instance [25]) defined below. We are then able to characterize the solvability of the community detection problem (closing a gap left in [9]). We start with the definition of an estimator of the graph's labels.

Definition 6 (Estimator)

An estimator of the labels \mathbf{X} is a function $\mathbf{x} : \mathbf{G} \mapsto \{1,2\}^n$ that could depend on auxiliary randomness (random variables independent of \mathbf{X}).

For a labeling $\mathbf{x} \in \{1,2\}^n$ and $i \in \{1,2\}$ we define $S_i(\mathbf{x}) = \{k \in \{1,\ldots,n\} | x_k = i\}$, i.e. the indices of the nodes that have the label i according to \mathbf{x} . We now recall a popular performance measure for estimators.

Definition 7 (Community Overlap)

For $\mathbf{x}, \mathbf{y} \in \{1, 2\}^n$ we define the community overlap of the configuration \mathbf{x} and \mathbf{y} as

$$\operatorname{overlap}(\mathbf{x}, \mathbf{y}) = \frac{1}{n} \max_{\sigma} \sum_{i=1,2} \left(\#S_i(\mathbf{x}) \cap S_{\sigma(i)}(\mathbf{y}) - \frac{1}{n} \#S_i(\mathbf{x}) \#S_{\sigma(i)}(\mathbf{y}) \right)$$

where the maximum is taken over the permutations of $\{1, 2\}$.

Two configurations have thus a positive community overlap if they are correlated, up to a permutation of the classes. We will then say that the community detection problem is solvable, if there exists an estimator (i.e. an algorithm) that achieves a positive overlap with positive probability.

Definition 8 (Solvability)

We say that the community detection problem is solvable (in the limit of large degrees) if there exists an estimator $\mathbf{x}(\mathbf{G})$ such that

$$\liminf_{d\to\infty} \liminf_{n\to\infty} \mathbb{E}(\operatorname{overlap}(\mathbf{x}(\mathbf{G}), \mathbf{X})) > 0.$$

For a fixed p, we have seen that $\lambda_c(p)$ defined by (11) with prior $P_0\left(\sqrt{\frac{1-p}{p}}\right) = p = 1 - P_0\left(-\sqrt{\frac{p}{1-p}}\right)$, is the threshold for nontrivial matrix estimation and the following theorem shows that in the case of the stochastic block model, it is also the threshold for solvability.

Theorem 9

- If $\lambda > \lambda_c(p)$, then the community detection problem is solvable.
- If $\lambda < \lambda_c(p)$, then the community detection problem is not solvable.

Figure 2: Phase diagram for the asymmetric community detection problem. The easy phase follows from [7], the impossible phase below the spinodal curve $\lambda_{sp}(p)$ (red curve) was proved in [9] and the hard phase is a conjecture. The dotted curve corresponding to $\lambda_c(p)$ is the curve for solvability of the community detection problem and is proved by our Theorem 9.

The function $p \mapsto \lambda_c(p)$ is plotted on Figure 2. We see that the situation is similar to the sparse Rademacher prior described in previous section, where now the parameter p controlling the asymmetry between the two communities play a role similar to the sparsity ρ in the sparse PCA case. More precisely, for $p^* = \frac{1}{2} - \frac{1}{2\sqrt{3}}$ (computed in [5] for the model (16) or [9]), we have: if $p \ge p^*$, then $\lambda_c(p) = 1$ which is known in this setting as the Kesten-Stigum bound and if $p < p^*$, then $\lambda_c(p) < 1$. The regime where $p < p^*$ and $\lambda \in (\lambda_c(p), 1)$ is conjectured to be "hard but detectable", see Section 2.6.

We have no doubt that our analysis will extend to other models like the censored block model [28] or the labeled stochastic block model [29] in the large degree regime.

2.5 Finding one community

As explained above, the solvability problem is trivial if the degrees are not homogeneous in the graph. However, the case where the condition (13) is not satisfied is still interesting. The particular case of a single community where c=b and d=1 (i.e. $M=\frac{1}{n}\begin{pmatrix} a & b \\ b & b \end{pmatrix}$) with our previous notations has been studied in [24]. We can conduct the same heuristic argument as above: let $\tilde{X}_i=2-X_i\in\{0,1\}$, so that

we have

$$G_{i,j} = \operatorname{Ber}\left(\frac{b}{n} + \frac{a-b}{n}\tilde{X}_i\tilde{X}_j\right).$$

Hence, in a setting where $a, b \to \infty$ with a - b = o(b), we see that $Var(G_{i,j}) \sim \frac{b}{n}$ so that the associated Gaussian additive model is given by:

$$\tilde{G}_{i,j} = \frac{b}{n} + \frac{a-b}{n} \tilde{X}_i \tilde{X}_j + \sqrt{\frac{b}{n}} Z_{i,j},$$

and then with $Y_{i,j} = \sqrt{\frac{n}{b}} \left(G_{i,j} - \frac{b}{n} \right)$, we get

$$Y_{i,j} = \sqrt{\frac{(a-b)^2}{nb}}\tilde{X}_i\tilde{X}_j + Z_{i,j},$$

which corresponds exactly to our model (1) with $\lambda = \frac{(a-b)^2}{b}$ and P_0 (1) = $p=1-P_0$ (0). More precisely, the single community problem, with parameters $a,b\to\infty$ such that $\frac{(a-b)^2}{b}\to\lambda$ falls into our framework. Note that this case is exactly the sparse PCA setting studied in Proposition 3 which is consistent with the non-rigorous results stated in [24] (formula (41) for the free energy in [24] is exactly the right-hand term in Proposition 3). In particular, the non-rigorous results of section 3.2 in [24] (i.e. in the large-degree asymptotics) are made rigorous by our work.

2.6 An extension of the hard but detectable conjecture

We can now formalize and extend a conjecture emerging in statistical physics [20], [18] for sparse PCA. The hard but detectable conjecture deals with the case where $\mathbb{E}_{P_0}[X] = 0$ and can be stated as follows:

Conjecture 10

For the model (1) with $\mathbb{E}_{P_0}[X] = 0$ and $\mathbb{E}_{P_0}[X^2] = 1$, we define λ_c by (11). If $\lambda_c < 1$ then achieving a better MSE than the dummy estimator (i.e. beating DMSE) is hard for $\lambda \in (\lambda_c, 1)$.

Clearly, Proposition 4 only shows that in the regime $\lambda \in (\lambda_c, 1)$ achieving a better MSE than DMSE is possible. For $\lambda > 1$, we have seen that PCA beats DMSE. Note also, that there are various natural notions of performance for our model (detection, reconstruction) and the conjecture should hold for all of them, see [4]. A similar conjecture for the problem of community detection in the symmetric stochastic block model emerged in [10] and for the non-symmetric case in [9] (see Figure 2).

Thanks to our Theorem 1, we know that as soon as $q^*(\lambda) > \mathbb{E}_{P_0}[X]^2$, then it is possible to beat the dummy estimator, i.e. achieve a MSE strictly better than DMSE. There are now two questions:

- is it easy to beat DMSE?
- is it easy to achieve MMSE?

Conjecture 10 is related to the first question and we now give a general conjecture which deals with both questions by giving the best MSE achievable efficiently. For $\eta > 0$, consider the following sequence $(q_{\eta}^t)_{t \in \mathbb{N}}$ defined by:

$$q_{\eta}^{0} = \eta$$
, and for $t \ge 0$, $q_{\eta}^{t+1} = \mathbb{E}_{P_0}[X^2] - \text{mmse}(\lambda q_{\eta}^t)$. (17)

Let $\tilde{q} = \lim_{\eta \to 0} \lim_{t \to \infty} q_{\eta}^t$ (which is always well defined, see below), then we make the following conjecture:

Conjecture 11

For the model (1), the best mean square error that can be achieved efficiently is $\mathbb{E}_{P_0}[X^2]^2 - \tilde{q}^2$.

Consequently,

- (i) if $\tilde{q} = q^*(\lambda)$, i.e. \tilde{q} is the maximizer of $q \geq 0 \mapsto \mathcal{F}(\lambda, q)$, then the matrix minimum mean square error can be achieved efficiently (with a polynomial-time algorithm).
- (ii) if $\tilde{q} \neq q^*(\lambda)$, i.e \tilde{q} is not the maximizer of $q \geq 0 \mapsto \mathcal{F}(\lambda, q)$, then the best mean square error cannot be achieved efficiently.

Let $\langle \cdot \rangle_{\gamma}$ denote the posterior distribution of X_0 given Y_0 in the scalar channel (4): for every continuous bounded function f, $\langle f(x) \rangle_{\gamma} = \mathbb{E}[f(X_0)|Y_0]$. Define $G(\gamma) = \mathbb{E}\langle xX_0 \rangle_{\gamma}$, where x is a sample from the posterior distribution $\langle \cdot \rangle_{\gamma}$, independently of everything else. This means $G(\gamma) = \mathbb{E}[X_0\mathbb{E}[X_0|Y_0]]$. The recursion (17) can then be rewritten $\lambda q_{\eta}^{t+1} = \lambda G(\lambda q_{\eta}^t)$. A computation shows that

$$G'(\gamma) = \mathbb{E}\left[\left(\langle x^2 \rangle_{\gamma} - \langle x \rangle_{\gamma}^2\right)^2\right] \ge 0.$$

G is thus non-decreasing and bounded, the limit $\tilde{q} = \lim_{\eta \to 0} \lim_{t \to \infty} q_{\eta}^{t}$ is well defined (and finite) and is a solution of (8). For $\gamma = 0$, the posterior distribution $\langle \cdot \rangle_{\gamma}$ of the scalar channel (4) is equal to P_0 . Therefore $G'(0) = \operatorname{Var}(X_0)^2$.

If $\mathbb{E}_{P_0}[X] = 0$, then 0 is a fixed point of the recursion (17). In order to investigate its stability, one has thus to compare the quantity $\lambda G'(0) = \lambda \operatorname{Var}_{P_0}(X^2) = \lambda (\mathbb{E}_{P_0}[X^2])^2$ to 1. As a consequence of Conjecture 11, we obtain:

- if $\lambda > (\mathbb{E}_{P_0}[X^2])^{-2}$, then a polynomial-time algorithm can beat DMSE (i.e. do better than a dummy estimator). Indeed, in this case, PCA beats DMSE but does not necessary achieves MMSE (see Section 2.3).
- if $\lambda < (\mathbb{E}_{P_0}[X^2])^{-2}$, then no efficient algorithm can beat DMSE (i.e. do better than a dummy estimator).

In particular we see that Conjecture 11 would imply Conjecture 10.

If $\mathbb{E}_{P_0}[X] \neq 0$, then 0 is not a fixed point of the recursion (17) and Conjecture 11 implies that it is always possible to beat DMSE with an efficient algorithm.

In the sparse PCA case where $P_0 \sim \mathrm{Ber}(\epsilon)$, (i) has been proved in [12] for $\epsilon > \epsilon^*$ where AMP is shown to be optimal. Indeed in this case, (8) has only one solution which is $q^*(\lambda)$ so that $\tilde{q} = q^*(\lambda)$. But more generally, AMP is a candidate algorithm for achieving the best possible MSE for all values of the parameter λ (as conjectured in [20]). For example, in the sparse PCA case, the analysis done in [12] and [24] shows that the performance of AMP gives a MSE = $\epsilon^2 - \tilde{q}^2 < \mathrm{DMSE}$. So that it is always easy to beat DMSE with a polynomial-time algorithm but we conjecture that the performance of AMP is the best possible achievable by an efficient algorithm. So that as shown in [24], for $\epsilon < \epsilon^*$, there is a set for the parameters λ and ϵ for which we have $\tilde{q} < q^*(\lambda)$ and we believe that achieving the MMSE is hard in this case.

2.7 Proof techniques

We now present the main general ideas for the proof of Theorems 1 and 2. As a first step (Section 4.1), we recall a lower bound on the mutual information that was proved in [18] and follows from an application of Guerra's interpolation technique (see Proposition 22).

Showing that this lower bound is tight requires some work. Two main ingredients will be particularly useful. The first one is called the Nishimori identity and is true in a very general setting. It express the fact that the planted configuration \mathbf{X} behaves like a sample \mathbf{x} from the posterior distribution $\mathbb{P}(\mathbf{X} = .|\mathbf{Y})$, see Proposition 16. The second one will consist in perturbing the original model by revealing a small fraction of the entries of the vector \mathbf{X} . It is known that thanks to this perturbation, the correlations decay so that the overlap will concentrate (see Proposition 25). This is again a very general result [23]. We then need to show that this perturbation is negligible in the computation of the mutual information (see Section 4.2). It remains then to do a "cavity computation" following the Aizenman-Sims-Starr scheme which is standard in the context of the SK model [1] and needs to be adapted to our setting. Theorem 1 then follows.

In order to obtain Theorem 2, we need to prove that the overlap concentrates without the perturbation induced by the revealed entries. To do so, we follow an approach closely related to the proof of the Ghirlanda-Guerra identities in the SK model from [26] and this is done in Section 5.

As explained just after Theorem 1, [5] proves Theorem 1 under some additional conditions on the prior P_0 . The proof technique in [5] is completely different from ours and relies on a careful analysis of the AMP algorithm. As explained above, if $\tilde{q} = q^*(\lambda)$, then AMP is expected to be optimal and to achieve the MMSE providing a proof for the tightness of the bound obtained by Guerra's interpolation technique. In order to deal with the case where $\tilde{q} \neq q^*(\lambda)$, [5] introduces an auxiliary spatially coupled system and proves that this system has the same mutual information as the original one while $\tilde{q} = q^*(\lambda)$ on this new

system. As opposed to [5], our proof does not rely on the analysis of AMP and is fully contained in this paper (see Section 4).

2.8 Finite-rank matrix estimation

We now generalize our results to any probability distributions P_0 over \mathbb{R}^k ($k \in \mathbb{N}^*$ is fixed) with bounded support. Let P_0 be a probability distribution with support $S \subset [-K_0, K_0]^k$ for some $K_0 > 0$. Consider the following Gaussian observation channel

$$Y_{i,j} = \sqrt{\frac{\lambda}{n}} \mathbf{X}_i^T \mathbf{X}_j + Z_{i,j} \text{ for } 1 \le i < j \le n$$

where $\mathbf{X}_i \sim_{i.i.d.} P_0$ and $Z_{i,j} \sim_{i.i.d.} \mathcal{N}(0,1)$. Analogously to the unidimensional case, we define

$$\begin{aligned} \text{MMSE}_n(\lambda) &= \min_{\hat{\theta}} \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} \mathbb{E}\left[\left(\mathbf{X}_i^T \mathbf{X}_j - \hat{\theta}_{i,j}(\mathbf{Y})\right)^2\right] \\ &= \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} \mathbb{E}\left[\left(\mathbf{X}_i^T \mathbf{X}_j - \mathbb{E}\left[\mathbf{X}_i^T \mathbf{X}_j | \mathbf{Y}\right]\right)^2\right], \end{aligned}$$

where the minimum is taken over all estimators $\hat{\theta}$ (i.e. measurable functions of the observations Y). We now define

$$\mathcal{F}: (\lambda, \mathbf{q}) \in \mathbb{R} \times S_k^+ \mapsto -\frac{\lambda}{4} \|\mathbf{q}\|^2 + \mathbb{E} \log \left[\int_{\mathbf{x} \in S} dP_0(\mathbf{x}) \exp \left(\sqrt{\lambda} (\mathbf{Z}^T \mathbf{q}^{1/2} \mathbf{x}) + \lambda \mathbf{x}^T \mathbf{q} \mathbf{X} - \frac{\lambda}{2} \mathbf{x}^T \mathbf{q} \mathbf{x} \right) \right]$$

where S_k^+ denote the set of $k \times k$ symmetric positive-semidefinite matrices and $\mathbf{Z} \sim \mathcal{N}(0, I_k)$ and $\mathbf{X} \sim P_0$ are independent random variables.

Theorem 12

For $\lambda > 0$, we have

$$\lim_{n \to +\infty} \frac{1}{n} I(\mathbf{X}, \mathbf{Y}) = \frac{\lambda \|\mathbb{E}_{P_0}(\mathbf{X}\mathbf{X}^T)\|^2}{4} - \sup_{\mathbf{q} \in S_k^+} \mathcal{F}(\lambda, \mathbf{q}),$$

For almost all $\lambda > 0$, all the maximizers \mathbf{q} of $\mathbf{q} \in S_k^+ \mapsto \mathcal{F}(\lambda, \mathbf{q})$ have the same norm $\|\mathbf{q}\|^2 = q^*(\lambda)^2$ and

$$\mathrm{MMSE}_n(\lambda) \xrightarrow[n \to \infty]{} \|\mathbb{E}_{P_0} \mathbf{X} \mathbf{X}^T\|^2 - q^*(\lambda)^2$$

Theorem 12 is proved in Section 6. We refer to [20] where statistical physics arguments have been used to derive the same expression and explicit computations have been made for the sparse PCA problem of rank k.

3 The Replica-Symmetric formula

In this section, we connect our problem to a statistical physics model which will be closely related to the SK model.

3.1 Main results

Let P_0 be a probability distribution with finite support $S \subset [-K_0, K_0]$ for some $K_0 > 0$. Consider the following observation channel

$$Y_{i,j} = \sqrt{\frac{\lambda}{n}} X_i X_j + Z_{i,j}, \text{ for } 1 \le i < j \le n$$

where $X_i \sim_{i.i.d.} P_0$ and $Z_{i,j} \sim_{i.i.d.} \mathcal{N}(0,1)$ are independent random variables. In the following, \mathbb{E} will denote the expectation with respect to the **X** and **Z** random variables. We are going to write, for $\sigma \in S$ and $\mathbf{x} \in S^n$,

$$\begin{cases} P_0(\sigma) = \mathbb{P}(X = \sigma) & \text{where } X \sim P_0 \\ P_0(\mathbf{x}) = \prod_{i=1}^n P_0(x_i) \end{cases}$$

The mutual information for this Gaussian channel is (see Lemma 47)

$$I(\mathbf{X}, \mathbf{Y}) = -\mathbb{E}\left[\log\left(\sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) \exp\left(\sum_{i < j} x_i x_j \sqrt{\frac{\lambda}{n}} Z_{i,j} - \frac{\lambda}{2n} (x_i x_j - X_i X_j)^2\right)\right)\right]$$

We are interested in computing the limit of $\frac{1}{n}I(\mathbf{X},\mathbf{Y})$. To do so, it will be more convenient to consider the free energy. Let us define the random Hamiltonian $H_n(\mathbf{x}) = \sum_{i < j} x_i x_j \sqrt{\frac{\lambda}{n}} (Z_{i,j} + \sqrt{\frac{\lambda}{n}} X_i X_j) - \frac{\lambda}{2n} x_i^2 x_j^2$. The posterior distribution of \mathbf{X} given \mathbf{Y} is then

$$P(\mathbf{x}|\mathbf{Y}) = \frac{1}{Z_n(\lambda)} P_0(\mathbf{x}) e^{\sum_{i < j} x_i x_j \sqrt{\frac{\lambda}{n}} Y_{i,j} - \frac{\lambda}{2n} x_i^2 x_j^2} = \frac{1}{Z_n} P_0(\mathbf{x}) e^{H_n(\mathbf{x})}$$
(18)

We define the free energy as

$$F_n(\lambda) = \frac{1}{n} \mathbb{E} \Big[\log(\sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) \ e^{H_n(\mathbf{x})}) \Big] = \frac{1}{n} \mathbb{E} \log Z_n(\lambda)$$

We will express the limit of F_n using the following function

$$\mathcal{F}: (\lambda, q) \mapsto -\frac{\lambda}{4}q^2 + \mathbb{E}\log\left[\sum_{x \in S} P_0(x) \exp\left(\sqrt{\lambda q}Zx + \lambda qxX - \frac{\lambda}{2}qx^2\right)\right]$$

where $Z \sim \mathcal{N}(0,1)$ and $X \sim P_0$ are independent random variables.

Theorem 13 (Replica-Symmetric formula)

$$\lim_{n \to +\infty} F_n(\lambda) = \sup_{q \ge 0} \mathcal{F}(\lambda, q)$$

The Replica-Symmetric formula allows us to compute the limit of the mutual information.

Corollary 14

$$\lim_{n \to +\infty} \frac{1}{n} I(\mathbf{X}, \mathbf{Y}) = \frac{\lambda \mathbb{E}_{P_0}(X^2)^2}{4} - \sup_{q \ge 0} \mathcal{F}(\lambda, q)$$

Proof.

$$\frac{1}{n}I(\mathbf{X}, \mathbf{Y}) = -F_n - \frac{1}{n}\mathbb{E}\left[\log \exp(-\frac{\lambda}{2n}\sum_{i < j}X_i^2 X_j^2)\right] = \frac{\lambda}{2n^2}\sum_{i < j}\mathbb{E}[X_i^2 X_j^2] - F_n$$
$$= \frac{\lambda(n-1)}{4n}\mathbb{E}_{P_0}[X^2]^2 - F_n$$

and Theorem 13 gives the result.

3.2 Consequences of the RS formula

We define $\phi: \lambda \mapsto \sup_{q \geq 0} \mathcal{F}(\lambda, q)$. ϕ is the limit of $\lambda \mapsto F_n(\lambda)$, which is convex. ϕ is therefore convex and is thus differentiable everywhere except on a countable set of points. Let $D \subset (0, +\infty)$ be the set of points where ϕ is differentiable.

Proposition 15

For all $\lambda \in D$, the maximizer $q^*(\lambda)$ of $q \geq 0 \mapsto \mathcal{F}(\lambda, q)$ is unique and

$$\phi'(\lambda) = \frac{q^*(\lambda)^2}{4}$$

Proof. One can rewrite ϕ , using the change of variables $q' = \lambda q$:

$$\forall \lambda > 0, \ \phi(\lambda) = \sup_{q' \ge 0} -\frac{q'^2}{4\lambda} + \mathbb{E}_{X,Z} \log \left[\sum_{x \in S} P_0(x) \exp(\sqrt{q'}Zx + q'xX - \frac{q'}{2}x^2) \right]$$
$$= \sup_{q' \ge 0} \psi(\lambda, q')$$

where $\psi(\lambda, q') = \mathcal{F}(\lambda, \frac{q'}{\lambda})$. Let $\lambda \in D$. ϕ is differentiable at λ , the envelope theorem from [22] gives us that for all $q' \in \operatorname{argmax}_{q' \geq 0} \psi(\lambda, q')$

$$\phi'(\lambda) = \frac{\partial \psi}{\partial \lambda}(q') = \frac{q'^2}{4\lambda^2}.$$

Thus, the maximizer of $q' \geq 0 \mapsto \psi(\lambda, q')$ is unique. Using the change of variables $q' = \lambda q$, one has that the maximizer $q^*(\lambda)$ of $q \geq 0 \mapsto \mathcal{F}(\lambda, q)$ is also unique and verifies $\phi'(\lambda) = \frac{q^*(\lambda)^2}{4}$.

Let $\langle \cdot \rangle$ denote the Gibbs measure corresponding to the Hamiltonian $\log P_0 + H_n$. This means that for any function f on S^n we have

$$\langle f(\mathbf{x}) \rangle = \frac{1}{Z_n(\lambda)} \sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) f(\mathbf{x}) e^{H_n(\mathbf{x})}.$$

We recall that \mathbf{x} is a random sample with distribution $\langle \cdot \rangle$ defined in (18). We also recall the notations: for $\mathbf{u}, \mathbf{v} \in S^n$ we write

$$\mathbf{u}.\mathbf{v} = \frac{1}{n} \sum_{i=1}^{n} u_i v_i$$
 and $\|\mathbf{u}\| = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (u_i)^2}$

We call $\mathbf{u}.\mathbf{v}$ the overlap between the configurations \mathbf{u} and \mathbf{v} . Proposition 17 shows that $q^*(\lambda)$ can be interpreted as the overlap between a random sample (such samples are called replicas) \mathbf{x} from $\langle \cdot \rangle$ and the planted configuration \mathbf{X} . In order to prove Proposition 17, we would need to use the Nishimori identity.

The Nishimori property is a fundamental identity that will be used repeatedly and is true in a general setting. It express the fact that the planted configuration \mathbf{X} behaves like a replica \mathbf{x} sampled from the posterior distribution $\mathbb{P}(\mathbf{X} = .|\mathbf{Y})$.

Proposition 16 (Nishimori identity)

Let (\mathbf{X}, \mathbf{Y}) be a couple of random variables on a polish space. Let $k \geq 1$ and let $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k)}$ be k i.i.d. samples (given \mathbf{Y}) from the distribution $\mathbb{P}(\mathbf{X} = .|\mathbf{Y})$, independently of every other random variables. Let us denote $\langle \cdot \rangle$ the expectation with respect to $\mathbb{P}(\mathbf{X} = .|\mathbf{Y})$ and \mathbb{E} the expectation with respect to (\mathbf{X}, \mathbf{Y}) . Then, for all continuous bounded function f

$$\mathbb{E}\langle f(\mathbf{Y},\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(k)})\rangle = \mathbb{E}\langle f(\mathbf{Y},\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(k-1)},\mathbf{X})\rangle$$

Proof. It is equivalent to sample the couple (\mathbf{X}, \mathbf{Y}) according to its joint distribution or to sample first \mathbf{Y} according to its marginal distribution and then to sample \mathbf{X} conditionally to \mathbf{Y} from its conditional distribution $\mathbb{P}(\mathbf{X} = .|\mathbf{Y})$. Thus the (k+1)-tuple $(\mathbf{Y}, \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k)})$ is equal in law to $(\mathbf{Y}, \mathbf{x}^{(1)}, \dots, \mathbf{x}^{(k-1)}, \mathbf{X})$.

Proposition 17

For all $\lambda \in D$, $\mathbb{E}\langle (\mathbf{x}.\mathbf{X})^2 \rangle \xrightarrow[n \to \infty]{} q^*(\lambda)^2$

Proof. $\lambda \mapsto F_n(\lambda)$ is convex and differentiable with derivative

$$F'_n(\lambda) = \frac{1}{n} \mathbb{E} \Big\langle \sum_{i < j} \frac{1}{2\sqrt{\lambda n}} Z_{i,j} x_i x_j + \frac{x_i x_j X_i X_j}{n} - \frac{(x_i x_j)^2}{2n} \Big\rangle$$
$$= \frac{1}{2n^2} \mathbb{E} \Big\langle \sum_{i < j} x_i x_j X_i X_j \Big\rangle = \frac{1}{4} \mathbb{E} \langle (\mathbf{x}.\mathbf{X})^2 \rangle + O(\frac{1}{n})$$

where we used Gaussian integration by parts and the Nishimori identity (Proposition 16). We conclude using Proposition 15 and the following lemma proved below. \Box

Lemma 18

Let $I \subset \mathbb{R}$ and f_n a sequence of convex, differentiable functions over I. Suppose that for all $x \in I$, $f_n(x) \xrightarrow[n \to \infty]{} f(x)$. Let $D_f = \{x \in I | f \text{ is differentiable in } x\}$. Then

$$\forall x \in D_f, \ f'_n(x) \xrightarrow[n \to \infty]{} f'(x)$$

Proof. Let $x_0 \in D_f$ and $\epsilon > 0$. We can find $\delta > 0$ such that

$$\forall t \in \{-\delta, \delta\}, \ \frac{f(x_0 + t) - f(x_0)}{t} \in [f'(x_0) - \epsilon, f'(x_0) + \epsilon]$$

 $f_n \to f$ so we can find $n_0 \in \mathbb{N}$ such that for all $n \geq n_0$,

$$|\frac{f_n(x_0 + \delta) - f_n(x_0)}{\delta} - \frac{f(x_0 + \delta) - f(x_0)}{\delta}| \le \epsilon \text{ and } |\frac{f_n(x_0) - f_n(x_0 - \delta)}{\delta} - \frac{f(x_0) - f(x_0 - \delta)}{\delta}| \le \epsilon$$

 f_n is convex and differentiable, thus

$$\frac{f_n(x_0) - f_n(x_0 - \delta)}{\delta} \le f'_n(x_0) \le \frac{f_n(x_0 + \delta) - f_n(x_0)}{\delta}$$

Therefore, for all $n \ge n_0$, $|f'_n(x_0) - f'(x_0)| \le 2\epsilon$, hence the result.

We obtain an important corollary for the estimation of XX^T from the observations Y.

Corollary 19

For all $\lambda \in D$, $\mathrm{MMSE}_n(\lambda) \xrightarrow[n \to \infty]{} (\mathbb{E}_{P_0} X^2)^2 - q^*(\lambda)^2$

Proof. It follows from Proposition 17. Let $\lambda \in D$. Let us compute

$$\begin{aligned} \text{MMSE}_{n}(\lambda) &= \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} \mathbb{E} \Big[(X_{i}X_{j} - \mathbb{E}[X_{i}X_{j}|\mathbf{Y}])^{2} \Big] \\ &= (\mathbb{E}_{P_{0}}X^{2})^{2} + \frac{2}{n(n-1)} \sum_{i < j} \mathbb{E} \Big[\langle x_{i}x_{j} \rangle^{2} - 2\langle x_{i}x_{j}X_{i}X_{j} \rangle \Big] \\ &= (\mathbb{E}_{P_{0}}X^{2})^{2} - \frac{2}{n(n-1)} \sum_{i < j} \mathbb{E}\langle x_{i}x_{j}X_{i}X_{j} \rangle \\ &= (\mathbb{E}_{P_{0}}X^{2})^{2} - \mathbb{E}\langle (\mathbf{x}.\mathbf{X})^{2} \rangle + o(1) \\ &\xrightarrow[n \to \infty]{} (\mathbb{E}_{P_{0}}X^{2})^{2} - q^{*}(\lambda) \end{aligned}$$

where we used successively the Nishimori property (Proposition 16) and Proposition 17.

The study of $\lambda \in D \mapsto q^*(\lambda)$ is therefore of crucial importance. The next proposition states its main properties. We recall the scalar channel defined in equation (4):

$$Y_0 = \sqrt{\gamma} X_0 + Z_0. \tag{19}$$

We recall also that the minimum mean square error $mmse(\gamma)$ for this channel is defined in equation (7).

Proposition 20 (Properties of $q^*(\lambda)$)

- (i) The function $\lambda \in D \mapsto q^*(\lambda)$ is non-decreasing.
- (ii) For all $\lambda \in D$, $q^*(\lambda) = \mathbb{E}_{P_0}(X^2) \text{mmse}(\lambda q^*(\lambda))$.
- (iii) $q^*(\lambda) \xrightarrow[\lambda \to 0]{\lambda \in D} \mathbb{E}_{P_0}(X)^2$.
- (iv) $q^*(\lambda) \xrightarrow[\lambda \to +\infty]{\lambda \in D} \mathbb{E}_{P_0}(X^2).$

Proof. The function ϕ is convex, so (i) is simply a consequence of Proposition 15. To prove (ii), we remark that equation (5) implies that $\mathcal{F}(\lambda, q) = \frac{\lambda q}{2} \left(\mathbb{E}[X_0^2] - \frac{q}{2} \right) - \mathrm{i}(\lambda q)$. [15] gives us $\mathrm{i}'(\gamma) = \frac{1}{2} \mathrm{mmse}(\gamma)$ so that

$$\frac{\partial}{\partial q} \mathcal{F}(\lambda, q) = \frac{\lambda}{2} \Big(\mathbb{E}[X_0^2] - q - \text{mmse}(\lambda q) \Big)$$

Thus, if $q^*(\lambda) > 0$, then $\frac{\partial}{\partial q} \mathcal{F}(\lambda, q^*(\lambda)) = 0$ and (ii) is verified. Suppose now that $q^*(\lambda) = 0$. $q \mapsto \mathcal{F}(\lambda, q)$ achieves therefore its maximum in 0: $\frac{\partial}{\partial q} \mathcal{F}(\lambda, 0) \leq 0$. We have obviously $\mathrm{mmse}(0) = \mathbb{E}[X_0^2] - \mathbb{E}[X_0]^2$, so that $\frac{\partial}{\partial q} \mathcal{F}(\lambda, 0) = \frac{\lambda}{2} \mathbb{E}[X_0]^2 \geq 0$. Consequently $\frac{\partial}{\partial q} \mathcal{F}(\lambda, q^*(\lambda)) = 0$ and (ii) is verified.

It remains to prove (iii) and (iv). We first notice that Proposition 17 implies that $q^*(\lambda) \in [0, K_0^2]$. One can verify easily that $\operatorname{mmse}(\gamma) \xrightarrow[\gamma \to +\infty]{} \mathbb{E}[X_0^2] - \mathbb{E}[X_0]^2$. Using (ii), this implies (iii). Similarly, one have $\operatorname{mmse}(\gamma) \xrightarrow[\gamma \to +\infty]{} 0$. Thus, we only have to show that $q^*(\lambda) > 0$ for λ large enough to obtain (iv). If this is not verified, then (i) implies that $q^*(\lambda) = 0$ for all $\lambda \in D$. This implies also that $\mathbb{E}[X_0] = 0$ because of (iii). Therefore, for all $q' \geq 0$ and all $\lambda \in D$, one would have

$$\frac{\gamma}{2}(\mathbb{E}[X_0^2] - \frac{\gamma}{2\lambda}) - \mathrm{i}(\gamma) \le 0$$

By letting $\lambda \to \infty$, one would obtain that $\mathrm{i}(\gamma) \geq \frac{\gamma}{2}\mathbb{E}[X_0^2]$. However, we have $\mathrm{i}(\gamma) \leq \frac{\gamma}{2}\mathbb{E}[X_0^2]$ because $\mathrm{i}'(\gamma) = \frac{1}{2}\mathrm{mmse}(\gamma)$ and $\mathrm{mmse}(\gamma) \leq \mathbb{E}[X_0^2]$ and $\mathrm{i}(0) = 0$. Therefore one would have that for all $\gamma \geq 0$, $\mathrm{i}(\gamma) = \frac{\gamma}{2}\mathbb{E}[X_0^2]$ and thus $\mathrm{mmse}(\gamma) = \mathbb{E}[X_0^2]$. This is incompatible with $\mathrm{mmse}(\gamma) \xrightarrow[\gamma \to +\infty]{} 0$. This concludes the proof.

We will refine the result of Proposition 17 and show that the square of the overlap between two replicas (or equivalently the overlap between a replica and the planted configuration, because of Proposition 16) concentrates around $q^*(\lambda)^2$.

Theorem 21

For all
$$\lambda \in D$$
,
$$\mathbb{E}\left\langle \left((\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^2 - q^*(\lambda)^2 \right)^2 \right\rangle \xrightarrow[n \to \infty]{} 0$$

The proof of this result is closely related to the proof of the Ghirlanda-Guerra identities in the SK model from [26] and is done in Section 5.

4 Proof of the Replica-Symmetric formula (Theorem 13)

4.1 The lower bound: Guerra's interpolation method

The following result comes from [18]. This is an application of Guerra's interpolation technique (see [14]). We reproduce the proof for the sake of completeness.

Proposition 22

$$\liminf_{n \to \infty} F_n \ge \sup_{q \ge 0} \mathcal{F}(\lambda, q) \tag{20}$$

Proof. Let $q \geq 0$. For $t \in [0,1]$ we define

$$H_n(\mathbf{x}, t) = \sum_{i < j} \sqrt{\frac{\lambda t}{n}} Z_{i,j} x_i x_j + \frac{\lambda t}{n} x_i x_j X_i X_j - \frac{\lambda t}{2n} x_i^2 x_j^2 + \sum_{i=1}^n \sqrt{(1-t)\lambda q} Z_i' x_i + (1-t)\lambda q x_i X_i - \frac{(1-t)\lambda q}{2} x_i^2 X_i + \sum_{i=1}^n \sqrt{(1-t)\lambda q} Z_i' x_i + (1-t)\lambda q x_i X_i - \frac{(1-t)\lambda q}{2} x_i^2 X_i + \sum_{i=1}^n \sqrt{(1-t)\lambda q} Z_i' x_i + (1-t)\lambda q x_i X_i - \frac{(1-t)\lambda q}{2} x_i^2 X_i + \sum_{i=1}^n \sqrt{(1-t)\lambda q} Z_i' x_i + (1-t)\lambda q x_i X_i - \frac{(1-t)\lambda q}{2} x_i^2 X_i + \sum_{i=1}^n \sqrt{(1-t)\lambda q} Z_i' x_i + (1-t)\lambda q x_i X_i - \frac{(1-t)\lambda q}{2} x_i^2 X_i + \sum_{i=1}^n \sqrt{(1-t)\lambda q} Z_i' x_i + (1-t)\lambda q x_i X_i - \frac{(1-t)\lambda q}{2} x_i^2 X_i + \sum_{i=1}^n \sqrt{(1-t)\lambda q} Z_i' x_i + (1-t)\lambda q x_i X_i - \frac{(1-t)\lambda q}{2} x_i^2 X_i + \sum_{i=1}^n \sqrt{(1-t)\lambda q} Z_i' x_i + (1-t)\lambda q x_i X_i - \frac{(1-t)\lambda q}{2} x_i^2 X_i + \sum_{i=1}^n \sqrt{(1-t)\lambda q} Z_i' x_i + (1-t)\lambda q x_i X_i - \frac{(1-t)\lambda q}{2} x_i^2 X_i + \sum_{i=1}^n \sqrt{(1-t)\lambda q} Z_i' x_i + \sum_{$$

 $\langle \cdot \rangle_t$ will denote the Gibbs measure associated with the Hamiltonian log $P_0(\mathbf{x}) + H_n(\mathbf{x}, t)$. Remark that $\langle \cdot \rangle_t$ correspond to the posterior distribution of **X** conditionally to **Y** and **Y**' in the following inference channel:

$$\begin{cases} Y_{i,j} = \sqrt{\frac{\lambda t}{n}} X_i X_j + Z_{i,j} & \text{for } 1 \le i < j \le n \\ Y_i' = \sqrt{(1-t)\lambda q} X_i + Z_i' & \text{for } 1 \le i \le n \end{cases}$$

where $X_i \sim_{i.i.d.} P_0$ and $Z_{i,j}$, $Z_i' \sim_{i.i.d.} \mathcal{N}(0,1)$ are independent random variables. We will therefore be able to apply the Nishimori property (property 16) with the Gibbs measure $\langle \cdot \rangle_t$. Let us define

$$\psi : t \in [0, 1] \mapsto \frac{1}{n} \mathbb{E} \log \sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) e^{H_n(\mathbf{x}, t)}$$

We have $\psi(1) = F_n$ and

$$\psi(0) = \frac{1}{n} \mathbb{E} \log \sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) \exp \left(\sum_{i=1}^n \sqrt{\lambda q} Z_i' x_i + \lambda q x_i X_i - \frac{\lambda q}{2} x_i^2 \right)$$

$$= \frac{1}{n} \mathbb{E} \log \prod_{i=1}^n \left(\sum_{x_i \in S} P_0(x_i) \exp \left(\sqrt{\lambda q} Z_i' x_i + \lambda q x_i X_i - \frac{\lambda q}{2} x_i^2 \right) \right)$$

$$= \mathcal{F}(\lambda, q) + \frac{\lambda q^2}{4}$$

 ψ is continuous, differentiable on (0,1). For 0 < t < 1,

$$\psi'(t) = \frac{1}{n} \mathbb{E} \left\langle \sum_{i < j} \frac{\sqrt{\lambda}}{2\sqrt{nt}} Z_{i,j} x_i x_j + \frac{\lambda}{n} x_i x_j X_i X_j - \frac{\lambda}{2n} x_i^2 x_j^2 - \sum_{i=1}^n \frac{\sqrt{\lambda q}}{2\sqrt{1-t}} Z_i' x_i + \lambda q x_i X_i - \frac{\lambda q}{2} x_i^2 \right\rangle_{\mathbf{I}}$$
(21)

For $1 \le i < j \le n$ we have, by Gaussian integration by parts and by the Nishimori property

$$\begin{split} \mathbb{E} Z_{i,j} \Big\langle \frac{\sqrt{\lambda}}{2\sqrt{nt}} x_i x_j \Big\rangle_t &= \frac{\lambda}{2n} \Big(\mathbb{E} \langle x_i^2 x_j^2 \rangle_t - \mathbb{E} \langle x_i x_j \rangle_t^2 \Big) = \frac{\lambda}{2n} \Big(\mathbb{E} \langle x_i^2 x_j^2 \rangle_t - \mathbb{E} \langle x_i^{(1)} x_j^{(1)} x_i^{(2)} x_j^{(2)} \rangle_t \Big) \\ &= \frac{\lambda}{2n} \Big(\mathbb{E} \langle x_i^2 x_j^2 \rangle_t - \mathbb{E} \langle x_i x_j X_i X_j \rangle_t \Big) \end{split}$$

Similarly, we have for $1 \le i \le n$

$$\mathbb{E}\left\langle \frac{\sqrt{\lambda q}}{2\sqrt{1-t}}Z_i'x_i\right\rangle_t = \frac{\lambda q}{2}\left(\mathbb{E}\langle x_i^2\rangle_t - \mathbb{E}\langle x_iX_i\rangle_t\right)$$

Therefore equation (21) simplifies

$$\psi'(t) = \frac{1}{n} \mathbb{E} \left\langle \sum_{i < j} \frac{\lambda}{2n} x_i x_j X_i X_j - \sum_{i=1}^n \frac{\lambda q}{2} x_i X_i \right\rangle_t = \frac{\lambda}{4} \mathbb{E} \left\langle (\mathbf{x}.\mathbf{X})^2 - 2q\mathbf{x}.\mathbf{X} \right\rangle_t + o(1)$$
$$= \frac{\lambda}{4} \mathbb{E} \left\langle (\mathbf{x}.\mathbf{X} - q)^2 \right\rangle_t - \frac{\lambda q^2}{4} + o(1) \ge -\frac{\lambda q^2}{4} + o(1)$$

where o(1) denotes a quantity that goes to 0 uniformly in $t \in (0,1)$. Then

$$F_n - \mathcal{F}(\lambda, q) - \frac{\lambda}{4}q^2 = \psi(1) - \psi(0) = \int_0^1 \psi'(t)dt \ge -\frac{\lambda}{4}q^2 + o(1)$$

Thus $\liminf_{n\to\infty} F_n \geq \mathcal{F}(\lambda, q)$, for all $q \geq 0$.

4.2 Adding a small perturbation

It remains therefore to prove the converse bound of (20). As in the case of the SK model (see [26] and [31]), it will be convenient to add a small perturbation to our Hamiltonian H_n . This is particularly useful to obtain identities involving the distribution of the overlaps under the Gibbs measure. As we will see later in Section 4.4, this perturbation will force the overlaps to concentrate around their expectations. In our context of Bayesian estimation, adding additional observations will induce a perturbation in our Hamiltonian.

Let us fix $\epsilon \in [0,1]$, and suppose we have access to the additional information, for $1 \le i \le n$

$$Y_i' = \begin{cases} X_i & \text{if } L_i = 1\\ * & \text{if } L_i = 0 \end{cases}$$

where $L_i \sim_{i.i.d.} \text{Ber}(\epsilon)$ and * is a value that does not belong to S. The posterior distribution of **X** is now

$$\mathbb{P}(\mathbf{X} = \mathbf{x} | \mathbf{Y}, \mathbf{Y}') = \frac{1}{Z_{n,\epsilon}} \left(\prod_{i | Y_i' \neq *} 1(x_i = Y_i') \right) \left(\prod_{i | Y_i' = *} P_0(x_i) \right) e^{H_n(\mathbf{x})}$$

where $Z_{n,\epsilon}$ is the appropriate normalization constant. For $\mathbf{x} \in S^n$ we define the following (very convenient) notation

$$\bar{\mathbf{x}} = (\bar{x}_1, \dots, \bar{x}_n) = (L_1 X_1 + (1 - L_1) x_1, \dots, L_n X_n + (1 - L_n) x_n) \tag{22}$$

 $\bar{\mathbf{x}}$ is thus obtained by replacing the coordinates of \mathbf{x} that are revealed by \mathbf{Y}' by their revealed values. The notation $\bar{\mathbf{x}}$ will allow us to obtain a very convenient expression for the free energy of the perturbed model which is defined as

$$F_{n,\epsilon} = \frac{1}{n} \mathbb{E} \log Z_{n,\epsilon} = \frac{1}{n} \mathbb{E} \Big[\log \Big(\sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) \exp(H_n(\bar{\mathbf{x}})) \Big) \Big]$$

Proposition 23

For all $n \geq 1$ and all $\epsilon, \epsilon' \in [0, 1]$, we have

$$|F_{n,\epsilon} - F_{n,\epsilon'}| \le \lambda K_0^4 |\epsilon - \epsilon'|.$$

Proof. We are going to bound the derivative of $f: \epsilon \mapsto F_{n,\epsilon}$. To do so, we are going to consider a slightly more general model where the probability of revealing X_i depends on i: for $1 \le i \le n$, $L_i \sim \text{Ber}(\epsilon_i)$. We will show that $|\frac{\partial F_{n,\epsilon}}{\partial \epsilon_i}| \le \lambda K_0^4$ for $i \in \{1,\ldots,n\}$. By symmetry between the variables, it suffices to control $\frac{\partial F_{n,\epsilon}}{\partial \epsilon_1}$. Notice that

$$F_{n,\epsilon} = \epsilon_1 \mathbb{E}\left[\frac{1}{n}\log(\sum_{\mathbf{x}\in S^n} P_0(\mathbf{x})\exp(H_n(\bar{\mathbf{x}})))\Big|L_1 = 1\right] + (1 - \epsilon_1)\mathbb{E}\left[\frac{1}{n}\log(\sum_{\mathbf{x}\in S^n} P_0(\mathbf{x})\exp(H_n(\bar{\mathbf{x}})))\Big|L_1 = 0\right]$$

$$= \epsilon_1 \mathbb{E}\left[\frac{1}{n}\log(\sum_{\mathbf{x}\in S^n} P_0(\mathbf{x})\exp(H_n(X_1, \bar{x}_2, \dots, \bar{x}_n)))\right] + (1 - \epsilon_1)\mathbb{E}\left[\frac{1}{n}\log(\sum_{\mathbf{x}\in S^n} P_0(\mathbf{x})\exp(H_n(x_1, \bar{x}_2, \dots, \bar{x}_n)))\right]$$

Consequently

$$\frac{\partial F_{n,\epsilon}}{\partial \epsilon_1} = \mathbb{E}\left[\frac{1}{n}\log(\sum_{\mathbf{x}\in S^n} P_0(\mathbf{x})\exp(H_n(X_1,\bar{x}_2,\ldots,\bar{x}_n)))\right] - \mathbb{E}\left[\frac{1}{n}\log(\sum_{\mathbf{x}\in S^n} P_0(\mathbf{x})\exp(H_n(x_1,\bar{x}_2,\ldots,\bar{x}_n)))\right]$$

Define the Hamiltonian $\tilde{H}_n(\mathbf{x}) = \sum_{2 \leq i < j} \sqrt{\frac{\lambda}{n}} Z_{i,j} \bar{x}_i \bar{x}_j + \frac{\lambda}{n} \bar{x}_i \bar{x}_j X_i X_j - \frac{\lambda}{2n} \bar{x}_i^2 \bar{x}_j^2$. Let $\langle \cdot \rangle$ denote the Gibbs measure (on S^{n-1}) corresponding to the Hamiltonian $\log P_0 + \tilde{H}_n$. We can rewrite

$$\begin{split} \frac{\partial F_{n,\epsilon}}{\partial \epsilon_1} &= \frac{1}{n} \mathbb{E} \log \left\langle \exp(\sum_{2 \leq j \leq n} \sqrt{\frac{\lambda}{n}} Z_{1,j} X_1 \bar{x}_j + \frac{\lambda}{n} X_1^2 \bar{x}_j X_j - \frac{\lambda}{2n} X_1^2 \bar{x}_j^2) \right\rangle \\ &- \frac{1}{n} \mathbb{E} \log \left\langle \sum_{x_1 \in S} P_0(x_1) \exp(\sum_{2 \leq j \leq n} \sqrt{\frac{\lambda}{n}} Z_{1,j} x_1 \bar{x}_j + \frac{\lambda}{n} x_1 X_1 \bar{x}_j X_j - \frac{\lambda}{2n} x_1^2 \bar{x}_j^2) \right\rangle \end{split}$$

where $(x_i)_{2 \leq i \leq n}$ is sampled from $\langle \cdot \rangle$, independently of everything else. Let \mathbb{E}_1 denote the expectation with respect to the variables $(Z_{1,j})_{2 \leq j \leq n}$ only. By Jensen's inequality

$$\frac{\partial F_{n,\epsilon}}{\partial \epsilon_1} \le \frac{1}{n} \mathbb{E} \log \left\langle \mathbb{E}_1 \exp(\sum_{2 \le j \le n} \sqrt{\frac{\lambda}{n}} Z_{1,j} X_1 \bar{x}_j + \frac{\lambda}{n} X_1^2 \bar{x}_j X_j - \frac{\lambda}{2n} X_1^2 \bar{x}_j^2) \right\rangle$$

$$\le \frac{1}{n} \mathbb{E} \log \left\langle \exp(\sum_{2 \le j \le n} \frac{\lambda}{n} X_1^2 \bar{x}_j X_j) \right\rangle \le \frac{\lambda K_0^4}{n}$$

Analogously one have $\frac{\partial F_{n,\epsilon}}{\partial \epsilon_1} \geq -\frac{\lambda K_0^4}{n}$. Consequently, for all $i \in \{1,\ldots,n\}$, $\left|\frac{\partial F_{n,\epsilon}}{\partial \epsilon_i}\right| \leq \frac{\lambda K_0^4}{n}$. This implies that $|f'| \leq \lambda K_0^4$ and proves the lemma.

We define now ϵ as a uniform random variable over [0,1], independently of every other random variable. We will note \mathbb{E}_{ϵ} the expectation with respect to ϵ . For $n \geq 1$, we define also $\epsilon_n = n^{-1/2} \epsilon \sim \mathcal{U}[0, n^{-1/2}]$. Proposition 23 implies that

$$|F_n - \mathbb{E}_{\epsilon}[F_{n,\epsilon_n}]| \xrightarrow[n \to \infty]{} 0.$$

It remains therefore to compute the limit of the free energy averaged over small perturbations.

4.3 Aizenman-Sims-Starr scheme

The Aizenman-Sims-Starr scheme was introduced in [1] in the context of the SK model. This is what physicists call a "cavity computation": one compare the system with n+1 variables to the system with n variables and see what happen to the $(n+1)^{\text{th}}$ variable we add.

With the convention $F_{0,\epsilon_0} = 0$, we have

$$F_{n,\epsilon_n} = \frac{1}{n} \sum_{k=0}^{n-1} (k+1) F_{k+1,\epsilon_{k+1}} - k F_{k,\epsilon_k}$$

which ensures that

$$\limsup_{n \to \infty} \mathbb{E}_{\epsilon}[F_{n,\epsilon_n}] \le \limsup_{n \to \infty} \mathbb{E}_{\epsilon}\Big[(n+1)F_{n+1,\epsilon_{n+1}} - nF_{n,\epsilon_n}\Big] = \limsup_{n \to \infty} \mathbb{E}_{\epsilon}\Big[(n+1)F_{n+1,\epsilon_n} - nF_{n,\epsilon_n}\Big]$$

because, by Proposition 23, $|F_{n+1,\epsilon_{n+1}} - F_{n+1,\epsilon_n}| \le \lambda K_0^4 |\epsilon_{n+1} - \epsilon_n| = O(n^{-3/2})$. Define

$$A_n^{(0)} = (n+1)F_{n+1,\epsilon_n} - nF_{n,\epsilon_n} = \mathbb{E}[\log(Z_{n+1,\epsilon_n})] - \mathbb{E}[\log(Z_{n,\epsilon_n})]$$

where we recall that $Z_{n,\epsilon_n} = \sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) e^{H_n(\bar{\mathbf{x}})}$ where the notation $\bar{\mathbf{x}}$ is defined by equation (22).

$$\limsup_{n \to \infty} F_n = \limsup_{n \to \infty} \mathbb{E}_{\epsilon}[F_{n,\epsilon_n}] \le \limsup_{n \to \infty} \mathbb{E}_{\epsilon}[A_n^{(0)}]$$
(23)

Now we are going to compare H_{n+1} with H_n . Let $\mathbf{x} \in S^n$ and $\sigma \in S$. σ plays the role of the $(n+1)^{\text{th}}$ variable. We decompose

$$H_{n+1}(\mathbf{x}, \sigma) = H'_n(\mathbf{x}) + \sigma z_0(\mathbf{x}) + \sigma^2 s_0(\mathbf{x})$$

where

$$H'_{n}(\mathbf{x}) = \sum_{1 \le i < j \le n} \sqrt{\frac{\lambda}{n+1}} Z_{i,j} x_{i} x_{j} + \frac{\lambda}{n+1} X_{i} X_{j} x_{i} x_{j} - \frac{\lambda}{2(n+1)} x_{i}^{2} x_{j}^{2}$$

$$z_{0}(\mathbf{x}) = \sum_{i=1}^{n} \sqrt{\frac{\lambda}{n+1}} Z_{i,n+1} x_{i} + \frac{\lambda}{n+1} X_{i} X_{n+1} x_{i}$$

$$s_{0}(\mathbf{x}) = -\frac{\lambda}{2(n+1)} \sum_{i=1}^{n} x_{i}^{2}$$

Let $(\tilde{Z}_{i,j})_{1 \leq i < j \leq n}$ be independent, standard Gaussian random variables, independent of all other random variables. We have then

$$H_n(\mathbf{x}) = H'_n(\mathbf{x}) + y_0(\mathbf{x})$$

in law, where

$$y_0(\mathbf{x}) = \sum_{1 \le i \le j \le n} \frac{\sqrt{\lambda}}{\sqrt{n(n+1)}} \tilde{Z}_{i,j} x_i x_j + \frac{\lambda}{n(n+1)} X_i X_j x_i x_j - \frac{\lambda}{2(n+1)n} x_i^2 x_j^2$$

We recall that the notation $\bar{\mathbf{x}}$ is defined in equation (22) and define analogously $\bar{\sigma} = (1 - L_{n+1})\sigma + L_{n+1}X_{n+1}$. We can thus rewrite

$$\mathbb{E}[\log(Z_{n+1,\epsilon_n})] = \mathbb{E}\log\left(\sum_{\mathbf{x}\in S^n} P_0(\mathbf{x})e^{H_n'(\bar{\mathbf{x}})} \left[\sum_{\sigma\in S} P_0(\sigma)\exp(\bar{\sigma}z_0(\bar{\mathbf{x}}) + \bar{\sigma}^2s_0(\bar{\mathbf{x}}))\right]\right)$$

We now define the Gibbs measure $\langle \cdot \rangle$ by

$$\langle f(\mathbf{x}) \rangle = \frac{1}{Z_{n,\epsilon_n}} \sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) f(\bar{\mathbf{x}}) \exp(H'_n(\bar{\mathbf{x}}))$$
 (24)

for any function f on S^n . We have then

$$A_n^{(0)} = \mathbb{E}\log\left\langle \sum_{\sigma \in S} P_0(\sigma) \exp\left(\bar{\sigma}z_0(\mathbf{x}) + \bar{\sigma}^2 s_0(\mathbf{x})\right) \right\rangle - \mathbb{E}\log\left\langle \exp(y_0(\mathbf{x})) \right\rangle$$

It will be more convenient to use "simplified" versions of z_0, s_0 and y_0 . We define

$$\begin{split} z(\mathbf{x}) &= \sum_{i=1}^{n} \sqrt{\frac{\lambda}{n}} Z_{i,n+1} x_{i} + \frac{\lambda}{n} X_{i} X_{n+1} x_{i} = \sqrt{\frac{\lambda}{n}} \sum_{i=1}^{n} x_{i} Z_{i,n+1} + \lambda(\mathbf{x}.\mathbf{X}) X_{n+1} \\ s(\mathbf{x}) &= -\frac{\lambda}{2n} \sum_{i=1}^{n} x_{i}^{2} = -\frac{\lambda}{2} \|\mathbf{x}\|^{2} \\ y(\mathbf{x}) &= \frac{\sqrt{\lambda}}{\sqrt{2}n} \sum_{i=1}^{n} Z_{i}'' x_{i}^{2} + \frac{\lambda}{2n^{2}} \sum_{i=1}^{n} \left(x_{i}^{2} X_{i}^{2} - \frac{x_{i}^{4}}{2} \right) + \frac{\sqrt{\lambda}}{n} \sum_{1 \leq i < j \leq n} x_{i} x_{j} \left(\tilde{Z}_{i,j} + \frac{\sqrt{\lambda}}{n} X_{i} X_{j} \right) - \frac{\lambda}{2n^{2}} x_{i}^{2} x_{j}^{2} \\ &= \frac{\sqrt{\lambda}}{\sqrt{2}n} \sum_{i=1}^{n} Z_{i}'' x_{i}^{2} + \frac{\sqrt{\lambda}}{n} \sum_{1 \leq i < j \leq n} x_{i} x_{j} \tilde{Z}_{i,j} + \frac{\lambda}{2} \left((\mathbf{x}.\mathbf{X})^{2} - \frac{1}{2} (\mathbf{x}.\mathbf{x})^{2} \right) \end{split}$$

where $Z_i'' \sim_{i.i.d.} \mathcal{N}(0,1)$ independently of any other random variables. Define now

$$A_n = \mathbb{E}\log\left\langle \sum_{\sigma \in S} P_0(\sigma) \exp(\bar{\sigma}z(\mathbf{x}) + \bar{\sigma}^2 s(\mathbf{x})) \right\rangle - \mathbb{E}\log\left\langle \exp(y(\mathbf{x})) \right\rangle$$

Using Gaussian interpolation techniques, it is easy to show that

$$\mathbb{E}_{\epsilon}|A_n - A_n^{(0)}| \xrightarrow[n \to \infty]{} 0$$

which ensure (using equation (23)) that

$$\limsup_{n \to \infty} F_n \le \limsup_{n \to \infty} \mathbb{E}_{\epsilon}[A_n] \tag{25}$$

4.4 Overlap concentration

We will see in this section that the small perturbation that we considered in Section 4.2 forces the overlaps to concentrate. Recall that $\langle \cdot \rangle$ is the Gibbs measure defined in equation (24). $\langle \cdot \rangle$ correspond to the posterior distribution of **X** given **Y** and **Y**' in the following observation channel

$$Y_{i,j} = \sqrt{\frac{\lambda}{n+1}} X_i X_j + Z_{i,j}, \text{ for } 1 \le i < j \le n$$

$$Y_i' = \begin{cases} X_i & \text{if } L_i = 1 \\ * & \text{if } L_i = 0 \end{cases} \text{ for } 1 \le i \le n$$

where $X_i \sim_{i.i.d.} P_0$, $Z_{i,j} \sim_{i.i.d.} \mathcal{N}(0,1)$ and $L_i \sim_{i.i.d.} \text{Ber}(\epsilon_n)$ are independent random variables. The Nishimori property (Proposition 16) will thus be valid under $\langle \cdot \rangle$.

The following lemma comes from [23] (lemma 3.1). It shows that the extra information \mathbf{Y}' forces the correlations to decay.

$$n^{-1/2}\mathbb{E}_{\epsilon}\left[\frac{1}{n^2}\sum_{1\leq i,j\leq n}I(X_i;X_j|\mathbf{Y},\mathbf{Y}')\right]\leq \frac{2H(P_0)}{n}$$

This implies that the overlap between to replicas, i.e. two independent samples $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ from the Gibbs distribution $\langle \cdot \rangle$, concentrates. Let us define

$$Q = \left\langle \frac{1}{n} \sum_{i=1}^{n} x_i^{(1)} x_i^{(2)} \right\rangle$$
$$b_i = \left\langle x_i \right\rangle$$

Q is a random variable depending only on $(Y_{i,j})_{i < j \le n}$ and $(Y'_i)_{i \le n}$. Notice that $Q = \frac{1}{n} \sum_i b_i^2 \ge 0$.

Proposition 25 (Overlap concentration)

$$\mathbb{E}_{\epsilon} \mathbb{E} \left\langle \left(\frac{1}{n} \sum_{i=1}^{n} x_i^{(1)} x_i^{(2)} - Q \right)^2 \right\rangle \xrightarrow[n \to \infty]{} 0$$

Proof.

$$\begin{split} \left\langle (\mathbf{x}^{(1)}.\mathbf{x}^{(2)} - Q)^2 \right\rangle &= \left\langle (\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^2 \right\rangle - \left\langle \mathbf{x}^{(1)}.\mathbf{x}^{(2)} \right\rangle^2 \\ &= \frac{1}{n^2} \sum_{1 \leq i,j \leq n} \left\langle x_i^{(1)} x_i^{(2)} x_j^{(1)} x_j^{(2)} \right\rangle - \left\langle x_i^{(1)} x_i^{(2)} \right\rangle \left\langle x_j^{(1)} x_j^{(2)} \right\rangle \\ &= \frac{1}{n^2} \sum_{1 \leq i,j \leq n} \left\langle x_i x_j \right\rangle^2 - \left\langle x_i \right\rangle^2 \left\langle x_j \right\rangle^2 \\ &\leq \frac{C}{n^2} \sum_{1 \leq i,j \leq n} \left| \left\langle x_i x_j \right\rangle - \left\langle x_i \right\rangle \left\langle x_j \right\rangle \right| \\ &\leq \frac{C}{n^2} \sum_{1 \leq i,j \leq n} \left| \sum_{x_i, x_j} x_i x_j \mathbb{P}(X_i = x_i, X_j = x_j | \mathbf{Y}, \mathbf{Y}') - x_i x_j \mathbb{P}(X_i = x_i | \mathbf{Y}, \mathbf{Y}') \mathbb{P}(X_j = x_j | \mathbf{Y}, \mathbf{Y}') \right| \\ &\leq \frac{C'}{n^2} \sum_{1 \leq i,j \leq n} D_{TV} \left(\mathbb{P}(X_i = ., X_j = . | \mathbf{Y}, \mathbf{Y}'); \mathbb{P}(X_i = . | \mathbf{Y}, \mathbf{Y}') \otimes \mathbb{P}(X_j = . | \mathbf{Y}, \mathbf{Y}') \right) \\ &\leq \frac{C''}{n^2} \sum_{1 \leq i,j \leq n} \sqrt{D_{KL} \left(\mathbb{P}(X_i = ., X_j = . | \mathbf{Y}, \mathbf{Y}'); \mathbb{P}(X_i = . | \mathbf{Y}, \mathbf{Y}') \otimes \mathbb{P}(X_j = . | \mathbf{Y}, \mathbf{Y}') \right)} \\ &\leq C'' \sqrt{\frac{1}{n^2} \sum_{1 \leq i,j \leq n} D_{KL} \left(\mathbb{P}(X_i = ., X_j = . | \mathbf{Y}, \mathbf{Y}'); \mathbb{P}(X_i = . | \mathbf{Y}, \mathbf{Y}') \otimes \mathbb{P}(X_j = . | \mathbf{Y}, \mathbf{Y}') \right)} \end{aligned}$$

for some constants C, C', C'' > 0, where we used Pinsker's inequality to compare the total variation distance D_{TV} with the Kullback-Leibler divergence D_{KL} . So that:

$$\mathbb{E}_{\epsilon} \mathbb{E} \left\langle \left(\frac{1}{n} \sum_{i=1}^{n} x_i^{(1)} x_i^{(2)} - Q \right)^2 \right\rangle \leq C'' \sqrt{\mathbb{E}_{\epsilon} \left[\frac{1}{n^2} \sum_{1 \leq i, j \leq n} I(X_i; X_j | \mathbf{Y}, \mathbf{Y}') \right]} \xrightarrow[n \to \infty]{} 0$$

As a consequence of the Nishimori property, the overlap between one replica and the planted solution concentrates around the same value as the overlap between two independent replicas.

Corollary 26

$$\mathbb{E}_{\epsilon} \mathbb{E} \Big\langle (\mathbf{x}.\mathbf{X} - Q)^2 \Big\rangle \xrightarrow[n \to \infty]{} 0 \quad and \quad \mathbb{E}_{\epsilon} \mathbb{E} \Big\langle (\mathbf{x}.\mathbf{b} - Q)^2 \Big\rangle \xrightarrow[n \to \infty]{} 0$$

Proof. The first limit is an application of the Nishimori property 16 and Proposition 25. For the second one,

$$(\mathbf{x}^{(1)}.\mathbf{b} - Q)^2 = \langle \mathbf{x}^{(1)}.\mathbf{x}^{(2)} - Q \rangle^2 \le \langle (\mathbf{x}^{(1)}.\mathbf{x}^{(2)} - Q)^2 \rangle$$

where the Gibbs measure $\langle \cdot \rangle$ is only with respect to the variable $\mathbf{x}^{(2)}$. Proposition 25 concludes the proof.

21

4.5 The main estimate

Let us denote, for $\epsilon \in [0, 1]$,

$$\mathcal{F}_{\epsilon}: (\lambda, q) \mapsto -\frac{\lambda}{4}q^2 + \epsilon (\mathbb{E}_{P_0}X^2) \frac{\lambda q}{2} + (1 - \epsilon) \mathbb{E} \log \left[\sum_{x \in S} P_0(x) \exp(\sqrt{\lambda q} Zx + \lambda q x X - \frac{\lambda}{2} q x^2) \right]$$

where the expectation \mathbb{E} is taken with respect to the independent random variables $X \sim P_0$ and $Z \sim \mathcal{N}(0,1)$. The following proposition is one of the key steps of the proof.

Proposition 27

$$\lim_{n \to \infty} \mathbb{E}_{\epsilon} \left| A_n - \mathbb{E} \mathcal{F}_{\epsilon_n}(\lambda, Q) \right| = 0$$

The proof of Proposition 27 is reported to Section 4.6. We deduce here Theorem 13 from Proposition 27 and the results of the previous sections. Because of Proposition 22, we only have to show that $\limsup_{n\to\infty} F_n \leq \sup_{q\geq 0} \mathcal{F}(\lambda,q)$.

We have by equation (25) and Proposition 27

$$\limsup_{n\to\infty} F_n \leq \limsup_{n\to\infty} \mathbb{E}_{\epsilon}[A_n] = \limsup_{n\to\infty} \mathbb{E}_{\epsilon} \mathbb{E} \mathcal{F}_{\epsilon_n}(\lambda, Q)$$

It remains therefore to show that $\limsup_{n\to\infty} \mathbb{E}_{\epsilon} \mathbb{E} \mathcal{F}_{\epsilon_n}(\lambda, Q) \leq \sup_{q>0} \mathcal{F}(\lambda, q)$. We have for $\epsilon \in [0, 1]$,

$$\sup_{q \in [0, K_0^2]} |\mathcal{F}_{\epsilon}(\lambda, q) - \mathcal{F}(\lambda, q)| \le \epsilon \sup_{q \in [0, K_0^2]} \left(\frac{\lambda q}{2} (\mathbb{E}_{P_0} X^2) + \left| \mathbb{E} \log \left[\sum_{x \in S} P_0(x) \exp(\sqrt{\lambda q} Z x + \lambda q x X - \frac{\lambda}{2} q x^2) \right] \right| \right) \le C\epsilon$$

where C is a constant independent of ϵ . Noticing that $Q \in [0, K_0^2]$ a.s., we have then $|\mathbb{E}\mathcal{F}_{\epsilon}(\lambda, Q) - \mathbb{E}\mathcal{F}(\lambda, Q)| \leq C\epsilon_0$, for all $\epsilon \in [0, \epsilon_0]$ and therefore

$$\mathbb{E}_{\epsilon} \mathbb{E} \mathcal{F}_{\epsilon_n}(\lambda, Q) \leq \mathbb{E}_{\epsilon} \mathbb{E} \mathcal{F}(\lambda, Q) + C n^{-1/2} \leq \sup_{q \geq 0} \mathcal{F}(\lambda, q) + C n^{-1/2}$$

which implies $\limsup_{n\to\infty} \mathbb{E}_{\epsilon} \mathbb{E} \mathcal{F}_{\epsilon_n}(\lambda, Q) \leq \sup_{q>0} \mathcal{F}(\lambda, q)$. Theorem 13 is proved.

4.6 Proof of Proposition 27

In this section, we prove Proposition 27. This will be a consequence of the following Lemmas 28 and 34. In order to lighten the formulas, we will use the following notations

$$X' := X_{n+1}$$
 and $Z'_i := Z_{i,n+1}$

Recall

$$A_n = \mathbb{E}\log\left\langle \sum_{\sigma \in S} P_0(\sigma) \exp(\bar{\sigma}z(\mathbf{x}) + \bar{\sigma}^2 s(\mathbf{x})) \right\rangle - \mathbb{E}\log\left\langle \exp(y(\mathbf{x})) \right\rangle$$
 (26)

Where we recall that for $\sigma \in S$, $\bar{\sigma} = (1 - L_{n+1})\sigma + L_{n+1}X'$. We are going to compute the asymptotic of A_n . The computations here are closely related to the cavity computations in the SK model, see for instance [30].

4.6.1 First part

In this section, we deal with the first term in equation (26). Indeed, we prove the following lemma.

Lemma 28

$$\mathbb{E}_{\epsilon} \Big| \mathbb{E} \log \Big\langle \sum_{\sigma \in S} P_0(\sigma) \exp(\bar{\sigma}z(\mathbf{x}) + \bar{\sigma}^2 s(\mathbf{x})) \Big\rangle \\ - \Big(\epsilon_n (\mathbb{E}_{P_0} X^2) \mathbb{E} \frac{\lambda Q}{2} + (1 - \epsilon_n) \mathbb{E} \log \sum_{\sigma \in S} P_0(\sigma) \exp \Big(\sqrt{\lambda Q} \sigma Z_0 + \lambda Q \sigma X' - \frac{\lambda \sigma^2}{2} Q \Big) \Big) \Big| \xrightarrow[n \to \infty]{} 0$$

where $Z_0 \sim \mathcal{N}(0,1)$ is independent of all other random variables.

We write also

$$f(z,s) := \sum_{\sigma \in S} P_0(\sigma) e^{\bar{\sigma}z + \bar{\sigma}^2 s}$$

We define:

$$U_{1} = \langle f(z(\mathbf{x}), s(\mathbf{x})) \rangle$$

$$V_{1} = \sum_{\sigma \in S} P_{0}(\sigma) \exp(\bar{\sigma} \sqrt{\frac{\lambda}{n}} \sum_{i=1}^{n} b_{i} Z'_{i} + \lambda Q X' \bar{\sigma} - \frac{\lambda Q}{2} \bar{\sigma}^{2})$$

Lemma 29

$$\mathbb{E}_{\epsilon} \mathbb{E} \Big[(U_1 - V_1)^2 \Big] \xrightarrow[n \to \infty]{} 0$$

Proof. We are going to show successively that $\mathbb{E}_{\epsilon}|\mathbb{E}U_1^2 - \mathbb{E}V_1^2| \xrightarrow[n \to \infty]{} 0$ and $\mathbb{E}_{\epsilon}|\mathbb{E}U_1V_1 - \mathbb{E}V_1^2| \xrightarrow[n \to \infty]{} 0$.

We will write $\mathbb{E}_{\mathbf{Z}'}$ to denote the expectation with respect to \mathbf{Z}' only. Let us compute

$$\mathbb{E}_{\mathbf{Z}'}V_1^2 = \mathbb{E}_{\mathbf{Z}'} \sum_{\sigma_1, \sigma_2 \in S} P_0(\sigma_1, \sigma_2) \exp\left((\bar{\sigma}_1 + \bar{\sigma}_2)\sqrt{\frac{\lambda}{n}} \sum_{i=1}^n b_i Z_i' + \lambda Q X'(\bar{\sigma}_1 + \bar{\sigma}_2) - \frac{\lambda Q}{2}(\bar{\sigma}_1^2 + \bar{\sigma}_2^2)\right) \\
= \sum_{\sigma_1, \sigma_2 \in S} P_0(\sigma_1, \sigma_2) \exp\left((\bar{\sigma}_1 + \bar{\sigma}_2)^2 \frac{\lambda}{2} Q + \lambda Q X'(\bar{\sigma}_1 + \bar{\sigma}_2) - \frac{\lambda Q}{2}(\bar{\sigma}_1^2 + \bar{\sigma}_2^2)\right) \\
= \sum_{\sigma_1, \sigma_2 \in S} P_0(\sigma_1, \sigma_2) \exp\left(\bar{\sigma}_1 \bar{\sigma}_2 \lambda Q + \lambda Q X'(\bar{\sigma}_1 + \bar{\sigma}_2)\right) \tag{27}$$

where we write for $i = 1, 2, \bar{\sigma}_i = (1 - L_{n+1})\sigma_i + L_{n+1}X'$, as before.

Step 1:
$$\mathbb{E}_{\epsilon}|\mathbb{E}U_1^2 - \mathbb{E}V_1^2| \xrightarrow[n \to \infty]{} 0$$

$$\mathbb{E}_{\mathbf{Z}'}U_1^2 = \mathbb{E}_{\mathbf{Z}'}\langle f(z(\mathbf{x}), s(\mathbf{x}))\rangle^2$$

$$= \mathbb{E}_{\mathbf{Z}'}\langle f(z(\mathbf{x}^{(1)}), s(\mathbf{x}^{(1)}))f(z(\mathbf{x}^{(2)}), s(\mathbf{x}^{(2)}))\rangle \text{ (where } \mathbf{x}^{(1)} \text{ and } \mathbf{x}^{(2)} \text{ are independent samples from } \langle \cdot \rangle)$$

$$= \left\langle \mathbb{E}_{\mathbf{Z}'}f(z(\mathbf{x}^{(1)}), s(\mathbf{x}^{(1)}))f(z(\mathbf{x}^{(2)}), s(\mathbf{x}^{(2)}))\right\rangle$$

$$= \left\langle \sum_{\sigma_1, \sigma_2 \in S} P_0(\sigma_1, \sigma_2)\mathbb{E}_{\mathbf{Z}'} \exp\left(\bar{\sigma}_1 z(\mathbf{x}^{(1)}) + \bar{\sigma}_1^2 s(\mathbf{x}^{(1)}) + \bar{\sigma}_2 z(\mathbf{x}^{(2)}) + \bar{\sigma}_2^2 s(\mathbf{x}^{(2)})\right)\right\rangle$$

The next lemma follows from the simple fact that for $N \sim \mathcal{N}(0,1)$ and $t \in \mathbb{R}$, $\mathbb{E}e^{tN} = \exp(\frac{t^2}{2})$.

Lemma 30

Let $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \in S^n$ and $\sigma_1, \sigma_2 \in S$ be fixed. Then

$$\mathbb{E}_{\mathbf{Z}'} \exp(\sigma_1 \sqrt{\frac{\lambda}{n}} \sum_{i=1}^n x_i^{(1)} Z_i' + \sigma_2 \sqrt{\frac{\lambda}{n}} \sum_{i=1}^n x_i^{(2)} Z_i') = \exp(\lambda \sigma_1 \sigma_2 \mathbf{x}^{(1)} \cdot \mathbf{x}^{(2)} + \frac{1}{2} \lambda \sigma_1^2 ||\mathbf{x}^{(1)}||^2 + \frac{1}{2} \lambda \sigma_2^2 ||\mathbf{x}^{(2)}||^2)$$

Therefore, for all $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \in S^n$ and $\sigma_1, \sigma_2 \in S$, using Lemma 30 and the fact that $s(\mathbf{x}) = -\frac{\lambda}{2} ||\mathbf{x}||^2$ for all $\mathbf{x} \in S^n$,

$$\mathbb{E}_{\mathbf{Z}'} \exp \left(\bar{\sigma}_1 z(\mathbf{x}^{(1)}) + \bar{\sigma}_1^2 s(\mathbf{x}^{(1)}) + \bar{\sigma}_2 z(\mathbf{x}^{(2)}) + \bar{\sigma}_2^2 s(\mathbf{x}^{(2)}) \right)$$

$$= \exp \left(\lambda \bar{\sigma}_1 \bar{\sigma}_2 \mathbf{x}^{(1)} . \mathbf{x}^{(2)} + \lambda X' (\bar{\sigma}_1(\mathbf{x}^{(1)}.\mathbf{X}) + \bar{\sigma}_2(\mathbf{x}^{(2)}.\mathbf{X})) \right)$$

We have therefore

$$\mathbb{E}_{\mathbf{Z}'}U_1^2 = \left\langle \sum_{\sigma_1, \sigma_2 \in S} P_0(\sigma_1, \sigma_2) \exp\left(\lambda \bar{\sigma}_1 \bar{\sigma}_2 \mathbf{x}^{(1)}.\mathbf{x}^{(2)} + \lambda X'(\bar{\sigma}_1(\mathbf{x}^{(1)}.\mathbf{X}) + \bar{\sigma}_2(\mathbf{x}^{(2)}.\mathbf{X}))\right) \right\rangle$$

Define

$$F_1: (s, r_1, r_2) \mapsto \sum_{\sigma_1, \sigma_2 \in S} P_0(\sigma_1, \sigma_2) \exp\left(\lambda \bar{\sigma}_1 \bar{\sigma}_2 s + \lambda X'(\bar{\sigma}_1 r_1 + \bar{\sigma}_2 r_2)\right)$$

We have $\mathbb{E}_{\mathbf{Z}'}U_1^2 = \langle F_1(\mathbf{x}^{(1)}.\mathbf{x}^{(2)},\mathbf{x}^{(1)}.\mathbf{X},\mathbf{x}^{(2)}.\mathbf{X}) \rangle$.

Lemma 31

There exists a constant L_0 such that F_1 is almost surely L_0 -Lipschitz.

Proof. F_1 is a random function that depends only on the random variables ϵ_n , X' and L_{n+1} (because of $\bar{\sigma}_1$ and $\bar{\sigma}_2$). F_1 is C^1 on the compact $[-K_0^2, K_0^2]^3$. An easy computation show that

$$\forall (s, r_1, r_2) \in [-K_0^2, K_0^2]^3, \ \|\nabla F_1(s, r_1, r_2)\| \le 3\lambda K_0^4 \exp(3\lambda K_0^4)$$

 F_1 is thus L_0 -Lipschitz with $L_0 = 3\lambda K_0^4 \exp(3\lambda K_0^4)$.

Using Lemma 31 we obtain

$$\left\langle |F_1(\mathbf{x}^{(1)}.\mathbf{x}^{(2)},\mathbf{x}^{(1)}.\mathbf{X},\mathbf{x}^{(2)}.\mathbf{X}) - F_1(Q,Q,Q)| \right\rangle \le L_0 \left\langle \sqrt{(\mathbf{x}^{(1)}.\mathbf{x}^{(2)} - Q)^2 + (\mathbf{x}^{(1)}.\mathbf{X} - Q)^2 + (\mathbf{x}^{(2)}.\mathbf{X} - Q)^2} \right\rangle$$

We recall equation (27) to notice that $F_1(Q,Q,Q)=\mathbb{E}_{\mathbf{Z}'}V_1^2$, thus, using Proposition 25 and Corollary 26

$$\mathbb{E}_{\epsilon} \mathbb{E} |\mathbb{E}_{\mathbf{Z}'} U_1^2 - \mathbb{E}_{\mathbf{Z}'} V_1^2| \leq L_0 \mathbb{E}_{\epsilon} \mathbb{E} \left\langle \sqrt{(\mathbf{x}^{(1)}.\mathbf{x}^{(2)} - Q)^2 + (\mathbf{x}^{(1)}.\mathbf{X} - Q)^2 + (\mathbf{x}^{(2)}.\mathbf{X} - Q)^2} \right\rangle \xrightarrow[n \to \infty]{} 0$$

Step 2: $\mathbb{E}_{\epsilon} |\mathbb{E}U_1V_1 - \mathbb{E}V_1^2| \xrightarrow[n \to \infty]{} 0$

$$\mathbb{E}_{\mathbf{Z}'}U_1V_1 = \left\langle \mathbb{E}_{\mathbf{Z}'} \sum_{\sigma_1, \sigma_2 \in S} P_0(\sigma_1, \sigma_2) \exp\left(\bar{\sigma}_1 z(\mathbf{x}) + \bar{\sigma}_1 s(\mathbf{x}) + \bar{\sigma}_2 \sqrt{\frac{\lambda}{n}} \sum_{i=1}^n b_i Z_i' + \lambda Q X' \bar{\sigma}_2 - \frac{\lambda Q}{2} \bar{\sigma}_2^2 \right) \right\rangle$$

Applying Lemma 30 with $\mathbf{x}^{(1)} = \mathbf{x}$ and $\mathbf{x}^{(2)} = \mathbf{b}$ (and using that $\|\mathbf{b}\|^2 = Q$) one has

$$\mathbb{E}_{\mathbf{Z}'} \exp\left(\bar{\sigma}_1 z(\mathbf{x}) + \bar{\sigma}_1 s(\mathbf{x}) + \bar{\sigma}_2 \sqrt{\frac{\lambda}{n}} \sum_{i=1}^n b_i Z_i' + \lambda Q X' \bar{\sigma}_2 - \frac{\lambda Q}{2} \bar{\sigma}_2^2\right) = \exp\left(\lambda \bar{\sigma}_1 \bar{\sigma}_2 \mathbf{x} \cdot \mathbf{b} + \bar{\sigma}_1 \lambda (\mathbf{x} \cdot \mathbf{X}) X' + \bar{\sigma}_2 \lambda Q X'\right)$$

Therefore,

$$\mathbb{E}_{\mathbf{Z}'}U_1V_1 = \Big\langle \sum_{\sigma_1, \sigma_2 \in S} P_0(\sigma_1, \sigma_2) \exp\left(\lambda \bar{\sigma}_1 \bar{\sigma}_2 \mathbf{x}. \mathbf{b} + \bar{\sigma}_1 \lambda(\mathbf{x}. \mathbf{X}) X' + \bar{\sigma}_2 \lambda Q X'\right) \Big\rangle$$

We can thus identify

$$\mathbb{E}_{\mathbf{Z}'}U_1V_1 = \langle F_1(\mathbf{x}.\mathbf{b}, \mathbf{x}.\mathbf{X}, Q) \rangle$$
$$\mathbb{E}_{\mathbf{Z}'}V_1^2 = F_1(Q, Q, Q)$$

Again, using Lemma 31 and the concentration result Corollary 26 we obtain

$$\mathbb{E}_{\epsilon}\mathbb{E}|E_{\mathbf{Z}'}U_1V_1-E_{\mathbf{Z}'}V_1^2| \xrightarrow[n\to\infty]{} 0$$

This concludes the proof.

We have now $|\log U_1 - \log V_1| \le \max(U_1^{-1}, V_1^{-1})|U_1 - V_1|$. Thus, using Cauchy-Schwarz inequality,

$$\mathbb{E}|\log U_1 - \log V_1| \le \sqrt{\mathbb{E}U_1^{-2} + \mathbb{E}V_1^{-2}} \sqrt{\mathbb{E}(U_1 - V_1)^2}$$

Lemma 32

There exists a constant C such that

$$\mathbb{E}U_1^{-2} + \mathbb{E}V_1^{-2} \le C$$

Proof. Using Jensen inequality, we have $U_1 \geq f(\langle z(\mathbf{x}) \rangle, \langle s(\mathbf{x}) \rangle)$. Then

$$U_1^{-2} \le f(\langle z(\mathbf{x}) \rangle, \langle s(\mathbf{x}) \rangle)^{-2} \le \sum_{\sigma \in S} P_0(\sigma) \exp(-2\bar{\sigma}\langle z(\mathbf{x}) \rangle - 2\bar{\sigma}^2 \langle s(\mathbf{x}) \rangle)$$

It remains to show that for any value of σ , $\mathbb{E} \exp(-2\bar{\sigma}\langle z(\mathbf{x})\rangle - 2\bar{\sigma}^2\langle s(\mathbf{x})\rangle)$ is bounded (independently of n and ϵ_n). P_0 as a bounded support, therefore

$$\mathbb{E}\exp(-2\bar{\sigma}\langle z(\mathbf{x})\rangle - 2\bar{\sigma}^2\langle s(\mathbf{x})\rangle) \le C_0 \mathbb{E}\exp(-2\bar{\sigma}\sum_{i=1}^n \sqrt{\frac{\lambda}{n}}\langle x_i\rangle Z_i') = C_0 \mathbb{E}\exp(2\lambda Q\bar{\sigma}^2) \le C_1$$

for some constant C_1 . The same kind of arguments shows that $\mathbb{E}V_1^{-2}$ is dominated by a constant.

Using the previous Lemma

$$\mathbb{E}_{\epsilon} \mathbb{E} |\log U_1 - \log V_1| \xrightarrow[n \to \infty]{} 0$$

We compute $\mathbb{E} \log V_1$ explicitly.

Lemma 33

$$\mathbb{E}\log V_1 = \epsilon_n(\mathbb{E}_{P_0}X^2)\mathbb{E}\frac{\lambda Q}{2} + (1 - \epsilon_n)\mathbb{E}\log\sum_{\sigma\in S} P_0(\sigma)\exp\left(\sigma\sqrt{\frac{\lambda}{n}}\sum_{i=1}^n b_i Z_i' + \lambda Q\sigma X' - \frac{\lambda\sigma^2}{2}Q\right)$$

Proof. It suffices to distinguish the cases $L_{n+1} = 0$ and $L_{n+1} = 1$. If $L_{n+1} = 1$ then for all $\sigma \in S$, $\bar{\sigma} = X'$ and

$$\log V_1 = \log \left(\exp(X' \sqrt{\frac{\lambda}{n}} \sum_{i=1}^n b_i Z_i' + \lambda Q X'^2 - \frac{\lambda X'^2}{2} Q) \right)$$
$$= X' \sqrt{\frac{\lambda}{n}} \sum_{i=1}^n b_i Z_i' + \frac{\lambda X'^2}{2} Q$$

 L_{n+1} is independent of all other random variables, thus

$$\mathbb{E}\Big[1(L_{n+1}=1)\log V_1\Big] = \epsilon_n(\mathbb{E}_{P_0}X^2)\frac{\lambda}{2}\mathbb{E}Q$$

because the Z'_i are centered, independent from X' and because X' is independent from Q. The case $L_{n+1} = 0$ is obvious.

The variables $(b_i)_{1 \leq i \leq n}$ and $(Z_i')_{1 \leq i \leq n}$ are independent. Recall that $Q = \frac{1}{n} \sum_{i=1}^{n} b_i^2$. Therefore,

$$(Q, \frac{1}{\sqrt{n}} \sum_{i=1}^{n} b_i Z_i') = (Q, \sqrt{Q} Z_0)$$
 in law

where $Z_0 \sim \mathcal{N}(0,1)$ is independent of all other random variables. The expression of $\mathbb{E} \log V_1$ from Lemma 33 simplifies

$$\mathbb{E}\log V_1 = \epsilon_n(\mathbb{E}_{P_0}X^2)\mathbb{E}\frac{\lambda Q}{2} + (1 - \epsilon_n)\mathbb{E}\log\sum_{\sigma \in S} P_0(\sigma)\exp\left(\sqrt{\lambda Q}\sigma Z_0 + \lambda Q\sigma X' - \frac{\lambda\sigma^2}{2}Q\right)$$

thus

$$\mathbb{E}_{\epsilon} \Big| \mathbb{E} \log U_1 - \Big(\epsilon_n (\mathbb{E}_{P_0} X^2) \mathbb{E} \frac{\lambda Q}{2} + (1 - \epsilon_n) \mathbb{E} \log \sum_{\sigma \in S} P_0(\sigma) \exp \Big(\sqrt{\lambda Q} \sigma Z_0 + \lambda Q \sigma X' - \frac{\lambda \sigma^2}{2} Q \Big) \Big) \Big| \xrightarrow[n \to \infty]{} 0$$

This proves Lemma 28.

4.6.2 Second part

In this section, we handle the second term of equation (26). The arguments are similar to the previous section. We show here the following lemma.

Lemma 34

$$\mathbb{E}_{\epsilon} |\mathbb{E} \log \langle \exp(y(\mathbf{x})) \rangle - \frac{\lambda}{4} \mathbb{E} Q^2 | \longrightarrow_{n \to \infty} 0$$

Define

$$U_2 = \langle \exp(y(\mathbf{x})) \rangle$$

$$V_2 = \exp(\frac{\sqrt{\lambda}}{\sqrt{2n}} \sum_{i=1}^n b_i^2 Z_i'' + \frac{\sqrt{\lambda}}{n} \sum_{1 \le i \le j \le n} b_i b_j \tilde{Z}_{i,j} + \frac{\lambda}{4} Q^2)$$

and recall

$$y(\mathbf{x}) = \frac{\sqrt{\lambda}}{\sqrt{2}n} \sum_{i=1}^{n} Z_i'' x_i^2 + \frac{\sqrt{\lambda}}{n} \sum_{1 \le i \le j \le n} x_i x_j \tilde{Z}_{i,j} + \frac{\lambda}{2} ((\mathbf{x}.\mathbf{X})^2 - \frac{1}{2} (\mathbf{x}.\mathbf{x})^2)$$

Lemma 35

$$\mathbb{E}_{\epsilon} \mathbb{E} \Big[(U_2 - V_2)^2 \Big] \xrightarrow[n \to \infty]{} 0$$

Proof. We are going to show successively that $\mathbb{E}_{\epsilon}|\mathbb{E}U_2^2 - \mathbb{E}V_2^2| \xrightarrow[n \to \infty]{} 0$ and $\mathbb{E}_{\epsilon}|\mathbb{E}U_2V_2 - \mathbb{E}V_2^2| \xrightarrow[n \to \infty]{} 0$. We write $\mathbb{E}_{\mathbf{Z}'',\tilde{\mathbf{Z}}}$ to denote the expectation with respect to the random variables \mathbf{Z}'' and $\tilde{\mathbf{Z}}$ only. Let us compute

$$\mathbb{E}_{\mathbf{Z}'',\tilde{\mathbf{Z}}}V_2^2 = \mathbb{E}_{\mathbf{Z}'',\tilde{\mathbf{Z}}}\exp(\frac{\sqrt{2\lambda}}{n}\sum_{i=1}^n b_i^2 Z_i'' + \frac{2\sqrt{\lambda}}{n}\sum_{i< j \le n} b_i b_j \tilde{Z}_{i,j} + \frac{\lambda}{2}Q^2)$$

$$= \exp(\frac{\lambda}{n^2}\sum_{i=1}^n b_i^4 + \frac{2\lambda}{n^2}\sum_{i< j \le n} b_i^2 b_j^2 + \frac{\lambda Q^2}{2}) = \exp(\frac{\lambda}{n^2}\sum_{1 \le i, j \le n} b_i^2 b_j^2 + \frac{\lambda Q^2}{2})$$

$$= \exp(\frac{3\lambda Q^2}{2})$$
(28)

because $\frac{1}{n}\sum_{i=1}^{n}b_i^2=Q$.

Step 1:
$$\mathbb{E}_{\epsilon} |\mathbb{E}U_2^2 - \mathbb{E}V_2^2| \xrightarrow[n \to \infty]{} 0$$

As Lemma 30, the next lemma follows from the simple fact that for $N \sim \mathcal{N}(0,1)$ and $t \in \mathbb{R}$, $\mathbb{E}e^{tN} = \exp(\frac{t^2}{2})$.

Lemma 36

Let $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \in S^n$ be fixed. Then $\mathbb{E}_{\mathbf{Z}'', \tilde{\mathbf{Z}}} \exp\left(\frac{\sqrt{\lambda}}{\sqrt{2}n} \sum_{i=1}^n Z_i''(x_i^{(1)})^2 + \frac{\sqrt{\lambda}}{n} \sum_{1 \le i < j \le n} x_i^{(1)} x_j^{(1)} \tilde{Z}_{i,j} + \frac{\sqrt{\lambda}}{\sqrt{2}n} \sum_{i=1}^n Z_i''(x_i^{(2)})^2 + \frac{\sqrt{\lambda}}{n} \sum_{1 \le i < j \le n} x_i^{(2)} x_j^{(2)} \tilde{Z}_{i,j}\right)$ $= \exp\left(\frac{\lambda}{2} (\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^2 + \frac{\lambda}{4} (\|\mathbf{x}^{(1)}\|^4 + \|\mathbf{x}^{(2)}\|^4)\right)$

Therefore

$$\mathbb{E}_{\mathbf{Z''},\tilde{\mathbf{Z}}}U_2^2 = \left\langle \mathbb{E}_{\mathbf{Z''},\tilde{\mathbf{Z}}} \; \exp(y(\mathbf{x}^{(1)}) + y(\mathbf{x}^{(2)})) \right\rangle = \left\langle \exp\left(\frac{\lambda}{2}((\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^2 + (\mathbf{x}^{(1)}.\mathbf{X})^2 + (\mathbf{x}^{(2)}.\mathbf{X})^2)\right) \right\rangle$$

The function $F_2: (s, r_1, r_2) \in [-K_0^2, K_0^2]^3 \mapsto \exp\left(\frac{\lambda}{2}(s^2 + r_1^2 + r_2^2)\right)$ is L_0' -Lipschitz, for some $L_0' > 0$. Remark that $\mathbb{E}_{\mathbf{Z}'',\tilde{\mathbf{Z}}}U_2^2 = \langle F_2(\mathbf{x}^{(1)}.\mathbf{x}^{(2)},\mathbf{x}^{(1)}.\mathbf{X},\mathbf{x}^{(2)}.\mathbf{X})\rangle$ and $\mathbb{E}_{\mathbf{Z}'',\tilde{\mathbf{Z}}}V_2^2 = F_2(Q,Q,Q)$ (see equation (28)).

Thus

$$\mathbb{E}_{\epsilon} |\mathbb{E}\mathbb{E}_{\mathbf{Z}'',\tilde{\mathbf{Z}}} U_2^2 - \mathbb{E}\mathbb{E}_{\mathbf{Z}'',\tilde{\mathbf{Z}}} V_2^2| \leq \mathbb{E}_{\epsilon}\mathbb{E} \Big\langle |F_2(\mathbf{x}^{(1)}.\mathbf{x}^{(2)},\mathbf{x}^{(1)}.\mathbf{X},\mathbf{x}^{(2)}.\mathbf{X}) - F_2(Q,Q,Q)| \Big\rangle$$

$$\leq L_0' \mathbb{E}_{\epsilon}\mathbb{E} \Big\langle \sqrt{(\mathbf{x}^{(1)}.\mathbf{x}^{(2)} - Q)^2 + (\mathbf{x}^{(1)}.\mathbf{X} - Q)^2 + (\mathbf{x}^{(2)}.\mathbf{X} - Q)^2} \Big\rangle$$

$$\xrightarrow[n \to \infty]{} 0$$

because of Proposition 25 and Corollary 26.

Step 2: $\mathbb{E}_{\epsilon}|\mathbb{E}U_2V_2 - \mathbb{E}V_2^2| \xrightarrow[n \to \infty]{} 0$ Using Lemma 36 with $\mathbf{x}^{(1)} = \mathbf{x}$ and $\mathbf{x}^{(2)} = \mathbf{b}$

$$\mathbb{E}_{\mathbf{Z}'',\tilde{\mathbf{Z}}}U_{2}V_{2} = \left\langle \mathbb{E}_{\mathbf{Z}'',\tilde{\mathbf{Z}}}e^{y(\mathbf{x})} \exp\left(\frac{\sqrt{\lambda}}{\sqrt{2}n} \sum_{i=1}^{n} b_{i}^{2} Z_{i}'' + \frac{\sqrt{\lambda}}{n} \sum_{1 \leq i < j \leq n} b_{i} b_{j} \tilde{Z}_{i,j} + \frac{\lambda}{4} Q^{2}\right) \right\rangle$$

$$= \left\langle \exp\left(\frac{\lambda}{2} (\mathbf{x}.\mathbf{b})^{2} + \frac{\lambda}{4} (\|\mathbf{x}\|^{4} + \|\mathbf{b}\|^{4}) + \frac{\lambda}{2} ((\mathbf{x}.\mathbf{X})^{2} - \frac{1}{2} \|\mathbf{x}\|^{4}) + \frac{\lambda}{4} Q^{2}\right) \right\rangle$$

$$= \left\langle \exp\left(\frac{\lambda}{2} (\mathbf{x}.\mathbf{b})^{2} + \frac{\lambda}{2} (\mathbf{x}.\mathbf{X})^{2} + \frac{\lambda}{2} Q^{2}\right) \right\rangle = F_{2}(\mathbf{x}.\mathbf{b}, \mathbf{x}.\mathbf{X}, Q)$$

Using same arguments as in "Step 1", we obtain finally $\mathbb{E}_{\epsilon}|\mathbb{E}\mathbb{E}_{\mathbf{Z}'',\tilde{\mathbf{Z}}}U_2V_2 - \mathbb{E}\mathbb{E}_{\mathbf{Z}'',\tilde{\mathbf{Z}}}V_2^2| \xrightarrow[n \to \infty]{} 0.$

We have $|\log U_2 - \log V_2| \le \max(U_2^{-1}, V_2^{-1})|U_2 - V_2|$. Thus, by the Cauchy-Schwarz inequality

$$\mathbb{E}|\log U_2 - \log V_2| \le \sqrt{(\mathbb{E}U_2^{-2} + \mathbb{E}V_2^{-2})\mathbb{E}|U_2 - V_2|^2} \le C\sqrt{\mathbb{E}|U_2 - V_2|^2}$$

because, similarly to Lemma 32, we have for some constant C>0, $(\mathbb{E}U_2^{-2}+\mathbb{E}V_2^{-2})\leq C^2$. Therefore $\mathbb{E}_{\epsilon}|\mathbb{E}\log U_2-\mathbb{E}\log V_2|\xrightarrow[n\to\infty]{}0$. Compute

$$\mathbb{E} \log V_2 = \mathbb{E} \left(\frac{\sqrt{\lambda}}{\sqrt{2}n} \sum_{i=1}^n b_i^2 Z_i'' + \frac{\sqrt{\lambda}}{n} \sum_{1 \le i \le j \le n} b_i b_j \tilde{Z}_{i,j} + \frac{\lambda}{4} Q^2 \right) = \frac{\lambda}{4} \mathbb{E} Q^2$$

because the variables $(Z_i'')_i$ and $(\tilde{Z}_{i,j})_{i,j}$ are centered and independent of the $(b_i)_i$. Thus

$$\mathbb{E}_{\epsilon}|\mathbb{E}\log U_2 - \frac{\lambda}{4}\mathbb{E}Q^2| \xrightarrow{n\to\infty} 0$$

and Lemma 34 is proved.

5 Overlap concentration without perturbation, proof of Theorem 21

In this section, we prove Theorem 21. In order to clarify the dependencies in λ , we will use in the following the notations $H_n(\mathbf{x}, \lambda)$ and $\langle \cdot \rangle_{\lambda}$ to denote the Gibbs measure corresponding to the Hamiltonian $\log P_0(\mathbf{x}) + H_n(\mathbf{x}, \lambda)$. Define

$$L_n(\mathbf{x}, \lambda) = 2\sqrt{\lambda} \frac{\partial H_n}{\partial \lambda}(\mathbf{x}, \lambda) = \sum_{i < j} \frac{1}{\sqrt{n}} Z_{i,j} x_i x_j + \frac{2\sqrt{\lambda}}{n} x_i x_j X_i X_j - \frac{\sqrt{\lambda}}{n} x_i^2 x_j^2$$

We are going to show first that L_n concentrates around its expected value:

Proposition 37

For all
$$\lambda \in D$$
,
$$\frac{1}{n} \mathbb{E} \Big\langle |L_n(\mathbf{x}, \lambda) - \mathbb{E} \langle L_n(\mathbf{x}, \lambda) \rangle| \Big\rangle_{\lambda} \xrightarrow[n \to \infty]{} 0$$

We will start by the following lemma.

Lemma 38

For all
$$\lambda \in D$$
,

$$\frac{1}{n} \mathbb{E} \Big\langle |L_n(\mathbf{x}, \lambda) - \langle L_n(\mathbf{x}, \lambda) \rangle| \Big\rangle_{\lambda} \xrightarrow[n \to \infty]{} 0$$

Proof. Let us fix $\lambda_0 \in D$ and let $\lambda' > \lambda_0$. We are going to make use of the following lemma.

Lemma 39

Let f be a function such that there exists a continuous function g such that, for all $t \in \mathbb{R}$

$$\limsup_{t' \to t, t' \neq t} \left| \frac{f(t) - f(t')}{t - t'} \right| \le g(t)$$

Then for all $t_1 \leq t_2$

$$|f(t_1) - f(t_2)| \le \int_{t_1}^{t_2} g(t)dt$$

Define $f: \lambda \mapsto \mathbb{E}\langle |L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda)| \rangle_{\lambda}$. Let $\lambda > \lambda_0$ be fixed. Let $\lambda' > \lambda_0$ such that $\lambda' \neq \lambda$.

$$|f(\lambda) - f(\lambda')| \le \left| \mathbb{E} \left\langle |L_n(\mathbf{x}^{(1)}, \lambda') - L_n(\mathbf{x}^{(2)}, \lambda')| - |L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda)| \right\rangle_{\lambda'} \right|$$

+
$$\left| \mathbb{E} \left\langle \left| L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda) \right| \right\rangle_{\lambda'} - \mathbb{E} \left\langle \left| L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda) \right| \right\rangle_{\lambda} \right|$$

We are going to upper bound successively these two terms. For the first one

$$\left| \mathbb{E} \left\langle |L_n(\mathbf{x}^{(1)}, \lambda') - L_n(\mathbf{x}^{(2)}, \lambda')| - |L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda)| \right\rangle_{\lambda'} \right| \leq 2 \mathbb{E} \left\langle |L_n(\mathbf{x}^{(1)}, \lambda') - L_n(\mathbf{x}^{(1)}, \lambda)| \right\rangle_{\lambda'}$$

and

$$\mathbb{E}\left\langle |L_n(\mathbf{x}^{(1)}, \lambda') - L_n(\mathbf{x}^{(1)}, \lambda)| \right\rangle_{\lambda'} = |\sqrt{\lambda} - \sqrt{\lambda'}| \mathbb{E}\left\langle \left| \frac{1}{n} \sum_{i < j} 2X_i X_j x_i x_j - x_i^2 x_j^2 \right| \right\rangle_{\lambda'} \le \frac{1}{\sqrt{\lambda_0}} K_0^4 n |\lambda - \lambda'|$$

So that

$$\limsup_{\lambda' \to \lambda, \lambda' \neq \lambda} \frac{\left| \mathbb{E} \left\langle |L_n(\mathbf{x}^{(1)}, \lambda') - L_n(\mathbf{x}^{(2)}, \lambda')| - |L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda)| \right\rangle_{\lambda'} \right|}{|\lambda - \lambda'|} \leq \frac{1}{\sqrt{\lambda_0}} K_0^4 n$$

For the second term, we remark that the function $\lambda' \mapsto \mathbb{E}\langle |L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda)| \rangle_{\lambda'}$ is differentiable at λ with derivative equal to

$$\frac{1}{2\sqrt{\lambda}} \Big(\mathbb{E} \big\langle |L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda)| (L_n(\mathbf{x}^{(1)}, \lambda) + L_n(\mathbf{x}^{(2)}, \lambda)) \big\rangle_{\lambda} \\
- \mathbb{E} \big\langle |L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda)| \big\rangle \big\langle (L_n(\mathbf{x}^{(1)}, \lambda) + L_n(\mathbf{x}^{(2)}, \lambda)) \big\rangle_{\lambda} \Big) \\
= \lambda^{-1/2} \mathbb{E} \big\langle |L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda)| (L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(3)}, \lambda)) \big\rangle_{\lambda} \\
\leq \lambda^{-1/2} \mathbb{E} \big\langle (L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda))^2 \big\rangle_{\lambda}$$

Thus for all $\lambda > \lambda_0$

$$\limsup_{\lambda' \to \lambda, \lambda' \neq \lambda} \left| \frac{f(\lambda') - f(\lambda)}{\lambda - \lambda'} \right| \leq \frac{1}{\sqrt{\lambda_0}} K_0^4 n + \frac{1}{\sqrt{\lambda_0}} \mathbb{E} \left\langle (L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda))^2 \right\rangle_{\lambda}$$

Let $\lambda' > \lambda_0$. Using the Lemma, we have, for all $\lambda' \ge \lambda \ge \lambda_0$

$$f(\lambda_0) \le f(\lambda) + \int_{\lambda_0}^{\lambda'} \frac{1}{\sqrt{\lambda_0}} K_0^4 n + \frac{1}{\sqrt{\lambda_0}} \mathbb{E}\left\langle (L_n(\mathbf{x}^{(1)}, l) - L_n(\mathbf{x}^{(2)}, l))^2 \right\rangle_l dl$$

We integrate with respect to λ over $[\lambda_0, \lambda']$, and write $\delta = \lambda' - \lambda_0$

$$\begin{split} &\delta f(\lambda_0) \leq \int_{\lambda_0}^{\lambda'} f(\lambda) d\lambda + \delta \int_{\lambda_0}^{\lambda'} \frac{1}{\sqrt{\lambda_0}} K_0^4 n + \frac{1}{\sqrt{\lambda_0}} \mathbb{E} \left\langle (L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda))^2 \right\rangle_{\lambda} d\lambda \\ &\leq \int_{\lambda_0}^{\lambda'} f(\lambda) d\lambda + 2\delta \int_{\lambda_0}^{\lambda'} \mathbb{E} \left\langle (L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda))^2 \right\rangle_{\lambda} d\lambda + \frac{1}{\sqrt{\lambda_0}} \delta^2 K_0^4 n \\ &\leq \left(\delta \int_{\lambda_0}^{\lambda'} \mathbb{E} \left\langle (L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda))^2 \right\rangle_{\lambda} d\lambda \right)^{1/2} + \frac{\delta}{\sqrt{\lambda_0}} \int_{\lambda_0}^{\lambda'} \mathbb{E} \left\langle (L_n(\mathbf{x}^{(1)}, \lambda) - L_n(\mathbf{x}^{(2)}, \lambda))^2 \right\rangle_{\lambda} d\lambda + \frac{1}{\sqrt{\lambda_0}} \delta^2 K_0^4 n \\ &\leq \left(2\delta \int_{\lambda_0}^{\lambda'} \mathbb{E} \left\langle (L_n(\mathbf{x}, \lambda) - \langle L_n(\mathbf{x}, \lambda) \rangle_{\lambda})^2 \right\rangle_{\lambda} d\lambda \right)^{1/2} + 2\frac{\delta}{\sqrt{\lambda_0}} \int_{\lambda_0}^{\lambda'} \mathbb{E} \left\langle (L_n(\mathbf{x}, \lambda) - \langle L_n(\mathbf{x}, \lambda) \rangle_{\lambda})^2 \right\rangle_{\lambda} d\lambda + \frac{1}{\sqrt{\lambda_0}} \delta^2 K_0^4 n \end{split}$$

Define $\epsilon_n = \frac{1}{n} \int_{\lambda_0}^{\lambda'} \mathbb{E} \langle (L_n(\mathbf{x}, \lambda) - \langle L_n(\mathbf{x}, \lambda) \rangle_{\lambda})^2 \rangle_{\lambda} d\lambda$. We have shown

$$\frac{1}{n}\mathbb{E}\langle |L_n(\mathbf{x}^{(1)}, \lambda_0) - L_n(\mathbf{x}^{(2)}, \lambda_0)| \rangle_{\lambda_0} \le \sqrt{\frac{2\epsilon_n}{n\delta}} + \frac{2\epsilon_n}{\sqrt{\lambda_0}} + \frac{\delta K_0^4}{\sqrt{\lambda_0}}$$
(29)

It will be slightly more convenient to "replace" λ by λ^2 , we define therefore the function

$$\phi_n : \lambda \mapsto \frac{1}{n} \log \sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) e^{H_n(\mathbf{x}, \lambda^2)} + K_0^4 \lambda^2$$

The derivatives of ϕ_n are

$$\phi'_n(\lambda) = \frac{1}{n} \langle L_n(\mathbf{x}, \lambda^2) \rangle_{\lambda^2} + 2K_0^4 \lambda$$

$$\phi''_n(\lambda) = \frac{1}{n} \left(\langle L_n(\mathbf{x}, \lambda^2)^2 \rangle_{\lambda^2} - \langle L_n(\mathbf{x}, \lambda^2) \rangle_{\lambda^2}^2 \right) + \frac{1}{n^2} \sum_{i < j} \langle 2x_i x_j X_i X_j - x_i^2 x_j^2 \rangle + 2K_0^4$$

Define $G_n: \lambda \mapsto \mathbb{E}\phi_n(\lambda)$, then

$$\forall \lambda > 0, \ G_n''(\lambda) \ge \frac{1}{n} \mathbb{E} \left(\langle L_n(\mathbf{x}, \lambda^2)^2 \rangle_{\lambda^2} - \langle L_n(\mathbf{x}, \lambda^2) \rangle_{\lambda^2}^2 \right)$$

Therefore

$$G'_{n}(\sqrt{\lambda'}) - G'_{n}(\sqrt{\lambda_{0}}) = \int_{\sqrt{\lambda_{0}}}^{\sqrt{\lambda'}} G''_{n}(\lambda) d\lambda \ge \frac{1}{n} \int_{\sqrt{\lambda_{0}}}^{\sqrt{\lambda'}} \mathbb{E}\left(\langle L_{n}(\mathbf{x}, \lambda^{2})^{2} \rangle_{\lambda^{2}} - \langle L_{n}(\mathbf{x}, \lambda^{2}) \rangle_{\lambda^{2}}^{2}\right) d\lambda$$

$$= \frac{1}{n} \int_{\lambda_{0}}^{\lambda'} \frac{1}{2\sqrt{\lambda'}} \mathbb{E}\left(\langle L_{n}(\mathbf{x}, \lambda)^{2} \rangle_{\lambda} - \langle L_{n}(\mathbf{x}, \lambda) \rangle_{\lambda}^{2}\right) d\lambda$$

$$\ge \frac{1}{2\sqrt{\lambda'}} \epsilon_{n}$$

By convexity of G_n , we have, for all y > 0

$$G_n'(\sqrt{\lambda'}) - G_n'(\sqrt{\lambda_0}) \leq \frac{G_n(\sqrt{\lambda'} + y) - G_n(\sqrt{\lambda'})}{y} - \frac{G_n(\sqrt{\lambda_0}) - G_n(\sqrt{\lambda_0} - y)}{y}$$

 G_n converge to $\psi: \lambda \mapsto \phi(\lambda^2) + K_0^4 \lambda^2$

$$\limsup_{n\to\infty} \epsilon_n \leq 2\sqrt{\lambda'} (\frac{\psi(\sqrt{\lambda'}+y) - \psi(\sqrt{\lambda'})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0}-y)}{y})$$

Thus, taking the limsup in n in equation (29):

$$\limsup_{n\to\infty} \frac{1}{n} \mathbb{E}\langle |L_n(\mathbf{x}^{(1)}, \lambda_0) - L_n(\mathbf{x}^{(2)}, \lambda_0)| \rangle_{\lambda_0} \leq 4 \frac{\sqrt{\lambda'}}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda_0})}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda_0})}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda_0})}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} \right) + \frac{\delta K_0^4}{\sqrt{\lambda_0}} \left(\frac{\psi(\sqrt{\lambda'} + y) - \psi(\sqrt{\lambda'})}{y} \right) + \frac{\delta K$$

We let then $\lambda' \to \lambda_0 \ (\delta \to 0)$.

$$\limsup_{n \to \infty} \frac{1}{n} \mathbb{E}\langle |L_n(\mathbf{x}^{(1)}, \lambda_0) - L_n(\mathbf{x}^{(2)}, \lambda_0)| \rangle_{\lambda_0} \le 4\left(\frac{\psi(\sqrt{\lambda_0} + y) - \psi(\sqrt{\lambda_0})}{y} - \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y}\right)$$

By hypothesis, ψ is differentiable in $\sqrt{\lambda_0}$, hence, by letting $y \to 0$, $\frac{1}{n} \mathbb{E}\langle |L_n(\mathbf{x}^{(1)}, \lambda_0) - L_n(\mathbf{x}^{(2)}, \lambda_0)| \rangle_{\lambda_0} \xrightarrow[n \to \infty]{} 0$, which means

$$\frac{1}{n} \mathbb{E} \langle |L_n(\mathbf{x}, \lambda_0) - \langle L_n(\mathbf{x}, \lambda_0) \rangle_{\lambda_0} | \rangle_{\lambda_0} \xrightarrow[n \to \infty]{} 0$$

Lemma 40

For all
$$\lambda \in D$$
,
$$\frac{1}{n} \mathbb{E}|\langle L_n(\mathbf{x}, \lambda) \rangle_{\lambda} - \mathbb{E}\langle L_n(\mathbf{x}, \lambda) \rangle_{\lambda}| \xrightarrow[n \to \infty]{} 0$$

Proof. Let $\lambda_0 \in D$. We are going to reuse the functions ϕ_n and G_n defined in the proof of the previous Lemma. Notice that ϕ_n and G_n are both convex, differentiable functions. We have

$$\frac{1}{n}\mathbb{E}|\langle L_n(\mathbf{x}, \lambda_0)\rangle - \mathbb{E}\langle L_n(\mathbf{x}, \lambda_0)\rangle| = \mathbb{E}|\phi'_n(\sqrt{\lambda_0}) - G'_n(\sqrt{\lambda_0})|$$
(30)

Let y > 0 and define $\delta_n(y) = |\phi_n(\sqrt{\lambda_0} - y) - G_n(\sqrt{\lambda_0} - y)| + |\phi_n(\sqrt{\lambda_0}) - G_n(\sqrt{\lambda_0})| + |\phi_n(\sqrt{\lambda_0} + y) - G_n(\sqrt{\lambda_0} + y)|$. By convexity of ϕ_n

$$\phi'_{n}(\sqrt{\lambda_{0}}) - G'_{n}(\sqrt{\lambda_{0}}) \leq \frac{\phi_{n}(\sqrt{\lambda_{0}} + y) - \phi_{n}(\sqrt{\lambda_{0}})}{y} - G'_{n}(\sqrt{\lambda_{0}})$$

$$\leq \left| \frac{G_{n}(\sqrt{\lambda_{0}} + y) - G_{n}(\sqrt{\lambda_{0}})}{y} - G'_{n}(\sqrt{\lambda_{0}}) \right| + \frac{\delta_{n}(y)}{y}$$
(31)

Analogously,

$$\phi_n'(\sqrt{\lambda_0}) - G_n'(\sqrt{\lambda_0}) \ge \left| \frac{G_n(\sqrt{\lambda_0}) - G_n(\sqrt{\lambda_0} - y)}{y} - G_n'(\sqrt{\lambda_0}) \right| - \frac{\delta_n(y)}{y} \tag{32}$$

Thus, combining (31) and (32),

$$\mathbb{E}|\phi'_{n}(\sqrt{\lambda_{0}}) - G'_{n}(\sqrt{\lambda_{0}})| \leq \left| \frac{G_{n}(\sqrt{\lambda_{0}} + y) - G_{n}(\sqrt{\lambda_{0}})}{y} - G'_{n}(\sqrt{\lambda_{0}}) \right| \\
+ \left| \frac{G_{n}(\sqrt{\lambda_{0}}) - G_{n}(\sqrt{\lambda_{0}} - y)}{y} - G'_{n}(\sqrt{\lambda_{0}}) \right| + \frac{\mathbb{E}\delta_{n}(y)}{y} \tag{33}$$

We are going to show that for $y \in [-\sqrt{\lambda_0}/2, \sqrt{\lambda_0}/2], \delta_n(y) \xrightarrow[n \to \infty]{} 0$. Define

$$v_n = \sup_{\lambda \in [\sqrt{\lambda_0}/2, 2\sqrt{\lambda_0}]} \mathbb{E}|\phi_n(\lambda) - \mathbb{E}\phi_n(\lambda)| = \sup_{\lambda \in [\lambda_0/4, 4\lambda_0]} \mathbb{E}|\frac{1}{n}\log \sum_{\mathbf{x} \in S^n} e^{H_n(\mathbf{x}, \lambda)} - F_n(\lambda)|$$

Lemma 41

$$v_n = O(n^{-1/2})$$

Proof. Let $\lambda \in [\lambda_0/4, 4\lambda_0]$. Let us decompose $H_n(\mathbf{x}, \lambda) = h_1(\mathbf{x}) + h_2(\mathbf{x})$ where

$$h_1(\mathbf{x}) = \sqrt{\frac{\lambda}{n}} \sum_{i < j} Z_{i,j} x_i x_j$$
$$h_2(\mathbf{x}) = \sum_{i < j} \frac{\lambda}{n} x_i x_j X_i X_j - \frac{\lambda}{2n} x_i^2 x_j^2$$

We are going to use the following theorem from [26] (theorem 1.2).

Theorem 42 ($\frac{26}{}$, Theorem 1.2)

Consider a countable set Σ and some finite measure G on it. Consider the quantity

$$X = \log \sum_{\sigma \in \Sigma} \exp(g(\sigma)) G(\sigma)$$

where $(g(\sigma))_{\sigma}$ is a Gaussian process such that for some constant $\alpha > 0$ we have

$$\forall \sigma \in \Sigma, \ \mathbb{E}g(\sigma)^2 \le \alpha$$

Then we have

$$\mathbb{E}(X - \mathbb{E}X)^2 \le 8\alpha$$

Consider **X** to be fixed. We apply then this Theorem with $\Sigma = S^n$, $G(\mathbf{x}) = P_0(\mathbf{x}) \exp(h_2(\mathbf{x}))$ and $g = h_1$. For $\mathbf{x} \in S^n$

$$\mathbb{E}h_1(\mathbf{x})^2 \le K_0^4 \lambda n$$

Therefore, for all values of X

$$\mathbb{E}_{\mathbf{Z}}(\log \sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) e^{H_n(\mathbf{x}, \lambda)} - \mathbb{E}_{\mathbf{Z}} \log \sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) e^{H_n(\mathbf{x}, \lambda)})^2 \le 8K_0^4 \lambda n$$

Therefore $\mathbb{E}(\log \sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) e^{H_n(\mathbf{x}, \lambda)} - \mathbb{E}_{\mathbf{Z}} \log \sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) e^{H_n(\mathbf{x}, \lambda)})^2 \le 8K_0^4 \lambda n.$

We are now going to show that $\mathbb{E}_{\mathbf{Z}} \log \sum_{\mathbf{x} \in S^n} e^{H_n(\mathbf{x}, \lambda)}$ concentrates around its expectation (with respect to \mathbf{X}). $\mathbb{E}_{\mathbf{Z}} \log \sum_{\mathbf{x} \in S^n} e^{H_n(\mathbf{x}, \lambda)}$ is a function of \mathbf{X} . We can easily verify that this function has "the bounded differences property" (see [8], section 3.2) because \mathbf{X} has bounded support. Then Corollary 3.2 from [8] (which is a consequence of the Efron-Stein inequality) gives

$$\mathbb{E}(\mathbb{E}_{\mathbf{Z}}\log\sum_{\mathbf{x}\in S^n}P_0(\mathbf{x})e^{H_n(\mathbf{x},\lambda)} - \mathbb{E}\log\sum_{\mathbf{x}\in S^n}P_0(\mathbf{x})e^{H_n(\mathbf{x},\lambda)})^2 \le Cn$$

where C is a constant that does not depend on $\lambda \in [\lambda_0/4, 4\lambda_0]$. We conclude that $v_n = O(n^{-1/2})$.

We suppose now that $y \in [-\sqrt{\lambda_0}/2, \sqrt{\lambda_0}/2]$. Then $\delta_n(y) \xrightarrow[n \to +\infty]{} 0$. Recall that G_n converges to $\psi : \lambda \mapsto \phi(\lambda^2) + 2K_0^4\lambda^2$ which is also convex and differentiable in $\sqrt{\lambda_0}$ (remember that $\lambda_0 \in D$). Then, Lemma 18 gives that $G'_n(\sqrt{\lambda_0}) \to \psi'(\sqrt{\lambda_0})$. Letting $n \to \infty$ in (33)

$$\limsup_{n \to \infty} \mathbb{E} |\phi'_n(\sqrt{\lambda_0}) - G'_n(\sqrt{\lambda_0})| \le \left| \frac{\psi(\sqrt{\lambda_0} + y) - \psi(\sqrt{\lambda_0})}{y} - \psi'(\sqrt{\lambda_0}) \right| + \left| \frac{\psi(\sqrt{\lambda_0}) - \psi(\sqrt{\lambda_0} - y)}{y} - \psi'(\sqrt{\lambda_0}) \right|$$

We let then $y \to 0$: by differentiability of ψ in $\sqrt{\lambda_0}$, the right-hand side of the previous inequality goes to 0. We conclude using (30).

We are now able to prove Theorem 21. Let $\lambda \in D$.

$$\frac{1}{n} \left| \mathbb{E} \langle L_n(\mathbf{x}^{(1)}) (\mathbf{x}^{(1)} \cdot \mathbf{x}^{(2)})^2 \rangle - \mathbb{E} \langle (\mathbf{x}^{(1)} \cdot \mathbf{x}^{(2)})^2 \rangle \mathbb{E} \langle L_n(\mathbf{x}^{(1)}) \rangle \right| \leq \frac{1}{n} K_0^4 \mathbb{E} \left\langle \left| L_n(\mathbf{x}) - \mathbb{E} \langle L_n(\mathbf{x}) \rangle \right| \right\rangle \xrightarrow[n \to \infty]{} 0$$

Compute

$$\frac{1}{n}\mathbb{E}\langle L_n(\mathbf{x})\rangle = \sqrt{\lambda} \frac{1}{n^2} \mathbb{E}\langle \sum_{i < j} x_i^{(1)} x_i^{(2)} x_j^{(1)} x_j^{(2)} \rangle = \frac{\sqrt{\lambda}}{2} \mathbb{E}\langle (\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^2 \rangle + O(\frac{1}{n})$$

Therefore $\mathbb{E}\langle (\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^2 \rangle \mathbb{E}\langle L(\mathbf{x}^{(1)}) \rangle = \frac{\sqrt{\lambda}}{2} (\mathbb{E}\langle (\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^2 \rangle)^2$. Moreover, using Gaussian integration by parts and the Nishimori property,

$$\mathbb{E}\langle L_{n}(\mathbf{x}^{(1)})(\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^{2}\rangle = \sqrt{\lambda}\mathbb{E}\langle (\mathbf{x}^{(1)}.\mathbf{X})^{2}(\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^{2}\rangle + \frac{1}{n^{3/2}}\sum_{i < j}\mathbb{E}Z_{i,j}\langle x_{i}^{(1)}x_{j}^{(1)}(\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^{2}\rangle
- \frac{\sqrt{\lambda}}{n^{2}}\sum_{i < j}\mathbb{E}\langle (x_{i}^{(1)}x_{j}^{(1)})^{2}(\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^{2}\rangle + O(\frac{1}{n})
= O(\frac{1}{n}) + \sqrt{\lambda}\Big(\mathbb{E}\langle (\mathbf{x}^{(1)}.\mathbf{X})^{2}(\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^{2}\rangle
+ \sum_{i < j}\mathbb{E}\Big[\langle (x_{i}^{(1)}x_{j}^{(1)}x_{i}^{(2)}x_{j}^{(2)})(\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^{2}\rangle - \langle (x_{i}^{(1)}x_{j}^{(1)}x_{i}^{(3)}x_{j}^{(3)} + x_{i}^{(1)}x_{j}^{(1)}x_{i}^{(4)}x_{j}^{(4)})(\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^{2}\rangle\Big]\Big)
= \frac{\sqrt{\lambda}}{2}\mathbb{E}\langle (\mathbf{x}^{(1)}\mathbf{x}^{(2)})^{2}(\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^{2}\rangle + O(\frac{1}{n})
= \frac{\sqrt{\lambda}}{2}\mathbb{E}\langle (\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^{4}\rangle + O(\frac{1}{n})$$

Hence $\mathbb{E}\left\langle \left((\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^2 - \mathbb{E}\left\langle (\mathbf{x}^{(1)}.\mathbf{x}^{(2)})^2 \right\rangle \xrightarrow[n \to \infty]{} 0. \text{ Proposition 17 leads then to the theorem statement.} \right.$

6 Extension to multidimensional bounded input distributions

In this section, we generalize the results of Section 3 to any probability distributions P_0 over \mathbb{R}^k ($k \in \mathbb{N}^*$ is fixed) with bounded support.

6.1 Main results

Let P_0 be a probability distribution with support $S \subset [-K_0, K_0]^k$ for some $K_0 > 0$. Consider the following Gaussian observation channel

$$Y_{i,j} = \sqrt{\frac{\lambda}{n}} \mathbf{X}_i^T \mathbf{X}_j + Z_{i,j} \text{ for } 1 \le i < j \le n$$

where $\mathbf{X}_i \sim_{i.i.d.} P_0$ and $Z_{i,j} \sim_{i.i.d.} \mathcal{N}(0,1)$. We write $P_0^{\otimes n} = P_0 \otimes P_0 \otimes \cdots \otimes P_0$ (n times).

We will prove in the beginning of Section 6.2 that the mutual information for this Gaussian channel is

$$I(\mathbf{X}, \mathbf{Y}) = -\mathbb{E}\Big[\log\big(\int_{\mathbf{x} \in S^n} dP_0^{\otimes n}(\mathbf{x}) \exp(\sum_{i < j} \mathbf{x}_i^T \mathbf{x}_j \sqrt{\frac{\lambda}{n}} Z_{i,j} - \frac{\lambda}{2n} (\mathbf{x}_i^T \mathbf{x}_j - \mathbf{X}_i^T \mathbf{X}_j)^2)\big)\Big]$$

We are interested in computing the limit of $\frac{1}{n}I(\mathbf{X},\mathbf{Y})$. To do so, it will be more convenient to consider the free energy. Let us define the random Hamiltonian $H_n(\mathbf{x}) = \sum_{i < j} \mathbf{x}_i^T \mathbf{x}_j \sqrt{\frac{\lambda}{n}} (Z_{i,j} + \sqrt{\frac{\lambda}{n}} \mathbf{X}_i^T \mathbf{X}_j) - \frac{\lambda}{2n} (\mathbf{x}_i^T \mathbf{x}_j)^2$. We define the partition function as

$$Z_n = \int_{\mathbf{x} \in S^n} dP_0^{\otimes n}(\mathbf{x}) \ e^{H_n(\mathbf{x})}$$

and the free energy as

$$F_n = \frac{1}{n} \mathbb{E} \log Z_n$$

We will express the limit of F_n using the following function

$$\mathcal{F}: (\lambda, \mathbf{q}) \in \mathbb{R} \times S_k^+ \mapsto -\frac{\lambda}{4} \|\mathbf{q}\|^2 + \mathbb{E} \log \left[\int_{\mathbf{x} \in S} dP_0(\mathbf{x}) \exp(\sqrt{\lambda} (\mathbf{Z}^T \mathbf{q}^{1/2} \mathbf{x}) + \lambda \mathbf{x}^T \mathbf{q} \mathbf{X} - \frac{\lambda}{2} \mathbf{x}^T \mathbf{q} \mathbf{x}) \right]$$

where S_k^+ denote the set of $k \times k$ symmetric positive-semidefinite matrices and $\mathbf{Z} \sim \mathcal{N}(0, \mathbf{I}_k)$ and $\mathbf{X} \sim P_0$ are independent random variables.

Theorem 43 (Replica-Symmetric formula, general case)

$$\lim_{n \to +\infty} F_n = \sup_{\mathbf{q} \in S_k^+} \mathcal{F}(\lambda, \mathbf{q})$$

The Replica-Symmetric formula allows us to compute the limit of the mutual information.

Corollary 44

$$\lim_{n \to +\infty} \frac{1}{n} I(\mathbf{X}, \mathbf{Y}) = \frac{\lambda \|\mathbb{E}_{P_0}(\mathbf{X}\mathbf{X}^T)\|^2}{4} - \sup_{\mathbf{q} \in S_k^+} \mathcal{F}(\lambda, \mathbf{q})$$

Proof.

$$\frac{1}{n}I(\mathbf{X}, \mathbf{Y}) = -F_n - \frac{1}{n}\mathbb{E}\log\exp(-\frac{\lambda}{2n}\sum_{i < j}(\mathbf{X}_i^T\mathbf{X}_j)^2) = \frac{\lambda}{2n^2}\sum_{i < j}\mathbb{E}(\mathbf{X}_i^T\mathbf{X}_j)^2 - F_n$$
$$= \frac{\lambda(n-1)}{4n}\|\mathbb{E}_{P_0}(\mathbf{X}\mathbf{X}^T)\|^2 - F_n$$

and Theorem 43 gives the result.

We define $\phi: \lambda \mapsto \sup_{\mathbf{q} \in S_k^+} \mathcal{F}(\lambda, \mathbf{q})$. ϕ is the limit of $\lambda \mapsto F_n(\lambda)$, which is convex. ϕ is therefore convex and is thus derivable everywhere except on a countable set of points. Let $D \subset (0, +\infty)$ be the set of points where ϕ is derivable.

Proposition 45

For all $\lambda \in D$, all the maximizers \mathbf{q} of $\mathbf{q} \in S_k^+ \mapsto \mathcal{F}(\lambda, \mathbf{q})$ have the same norm $\|\mathbf{q}\|^2 = q^*(\lambda)^2$ and

$$\phi'(\lambda) = \frac{q^*(\lambda)^2}{4}$$

The proof is the same than for Proposition 15. Analogously to the unidimensional case, we define

$$\begin{aligned} \text{MMSE}_n(\lambda) &= \min_{\hat{\theta}} \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} \mathbb{E}\left[\left(\mathbf{X}_i^T \mathbf{X}_j - \hat{\theta}_{i,j}(\mathbf{Y})\right)^2\right] \\ &= \frac{2}{n(n-1)} \sum_{1 \leq i < j \leq n} \mathbb{E}\left[\left(\mathbf{X}_i^T \mathbf{X}_j - \mathbb{E}\left[\mathbf{X}_i^T \mathbf{X}_j | \mathbf{Y}\right]\right)^2\right], \end{aligned}$$

where the minimum is taken over all estimators $\hat{\theta}$ (i.e. measurable functions of the observations **Y** that could depend on auxiliary randomness). The following result is the analog of Corollary 19 and is proved with the same arguments.

Corollary 46

For all
$$\lambda \in D$$
,
$$\text{MMSE}_n(\lambda) \xrightarrow[n \to \infty]{} \|\mathbb{E}_{P_0} \mathbf{X} \mathbf{X}^T\|^2 - q^*(\lambda)^2$$

6.2 Proofs

In this section we prove Theorem 43: we will show how the proofs of Section 4 generalize to the general multidimensional case.

6.2.1 Mutual information

We start by the general expression of the mutual information.

Lemma 47

$$I(\mathbf{X}, \mathbf{Y}) = -\mathbb{E}\Big[\log\Big(\int_{\mathbf{x} \in S^n} dP_0^{\otimes n}(\mathbf{x}) \exp(\sum_{i < j} \mathbf{x}_i^T \mathbf{x}_j \sqrt{\frac{\lambda}{n}} Z_{i,j} - \frac{\lambda}{2n} (\mathbf{x}_i^T \mathbf{x}_j - \mathbf{X}_i^T \mathbf{X}_j)^2)\Big)\Big]$$

Proof. Let μ denote the Lebesgue measure on $\mathbb{R}^{n(n-1)/2}$. The mutual information between \mathbf{X} and \mathbf{Y} is defined as the Kullback-Leibler divergence between $P_{(\mathbf{X},\mathbf{Y})}$, the joint distribution of (\mathbf{X},\mathbf{Y}) , and $P_0^{\otimes n} \otimes P_{\mathbf{Y}}$, the product of the marginal distributions of \mathbf{X} and \mathbf{Y} . This Kullback-Leibler divergence is well defined because $P_{(\mathbf{X},\mathbf{Y})}$ is absolutely continuous with respect to $P_0^{\otimes n} \otimes P_{\mathbf{Y}}$. Indeed for any Borel set A of $\mathbb{R}^{kn} \times \mathbb{R}^{n(n-1)/2}$:

$$P_{(\mathbf{X},\mathbf{Y})}(A) = \frac{1}{(2\pi)^{n(n-1)/4}} \int_{\mathbf{x} \in S^n} \int_{\mathbf{y}} 1((\mathbf{x},\mathbf{y}) \in A) \exp\left(-\frac{1}{2} \sum_{i < j} (y_{i,j} - \sqrt{\frac{\lambda}{n}} \mathbf{x}_i^T \mathbf{x}_j)^2\right) d\mu(\mathbf{y}) dP_0^{\otimes n}(\mathbf{x})$$

If A is a Borel set of $\mathbb{R}^{n(n-1)/2}$, then

$$P_{\mathbf{Y}}(A) = \frac{1}{(2\pi)^{n(n-1)/4}} \int_{\mathbf{y}} 1(\mathbf{y} \in A) \left(\int_{\mathbf{x} \in S^n} \exp\left(-\frac{1}{2} \sum_{i < j} (y_{i,j} - \sqrt{\frac{\lambda}{n}} \mathbf{x}_i^T \mathbf{x}_j)^2 \right) dP_0^{\otimes n}(\mathbf{x}) \right) d\mu(\mathbf{y})$$

so that

$$\frac{dP_{(\mathbf{X},\mathbf{Y})}}{dP_0^{\otimes n} \otimes P_{\mathbf{Y}}} = \frac{\exp\left(-\frac{1}{2}\sum_{i < j}(Y_{i,j} - \sqrt{\frac{\lambda}{n}}\mathbf{X}_i^T\mathbf{X}_j)^2\right)}{\int_{\mathbf{x} \in S^n} \exp\left(-\frac{1}{2}\sum_{i < j}(Y_{i,j} - \sqrt{\frac{\lambda}{n}}\mathbf{x}_i^T\mathbf{x}_j)^2\right) dP_0^{\otimes n}(\mathbf{x})}$$

We can thus compute the mutual information

$$\begin{split} I(\mathbf{X}, \mathbf{Y}) &= \mathbb{E} \log \Big(\frac{\exp \left(-\frac{1}{2} \sum_{i < j} (Y_{i,j} - \sqrt{\frac{\lambda}{n}} \mathbf{X}_i^T \mathbf{X}_j)^2 \right)}{\int_{\mathbf{x} \in S^n} \exp \left(-\frac{1}{2} \sum_{i < j} (Y_{i,j} - \sqrt{\frac{\lambda}{n}} \mathbf{x}_i^T \mathbf{x}_j)^2 \right) dP_0^{\otimes n}(\mathbf{x})} \Big) \\ &= -\mathbb{E} \log \Big(\int_{\mathbf{x} \in S^n} dP_0^{\otimes n}(\mathbf{x}) \exp(\sum_{i < j} \mathbf{x}_i^T \mathbf{x}_j \sqrt{\frac{\lambda}{n}} Z_{i,j} - \frac{\lambda}{2n} (\mathbf{x}_i^T \mathbf{x}_j - \mathbf{X}_i^T \mathbf{X}_j)^2) \Big) \end{split}$$

6.2.2 Reduction to finite distribution

We will show in this section that it suffices to prove Theorem 43 when S is finite.

Suppose the Theorem 43 holds for distribution over \mathbb{R}^k with finite support. Let P_0 be a probability distribution with bounded support $S \subset [K_0, K_0]^k$. In order to show that Theorem 43 holds for P_0 , we are going to approach P_0 with distributions with finite supports.

Let $0 < \epsilon \le 1$ and let $m \in \mathbb{N}^*$ such that $\frac{K_0}{m} \le \epsilon$. For $x \in [-K_0, K_0]$ we will use the notation

$$\bar{x} = \frac{K_0}{m} \left\lfloor \frac{xm}{K_0} \right\rfloor$$

Consequently, $\bar{x} \leq x < \bar{x} + \frac{K_0}{m} \leq \bar{x} + \epsilon$. For $\mathbf{x} \in [-K_0, K_0]^k$ we also define $\bar{\mathbf{x}} = (\bar{x}_1, \dots, \bar{x}_k) \in \bar{S}$ where $\bar{S} = \{i\frac{K_0}{m} \mid i = -m, \dots, m\}^k$. Finally, we define \bar{P}_0 the image distribution of P_0 through the application $\mathbf{x} \mapsto \bar{\mathbf{x}}$. Let $n \geq 1$. We will note \bar{F}_n the free energy corresponding to the distribution \bar{P}_0 and $\bar{\mathcal{F}}$ the function \mathcal{F} corresponding to the distribution \bar{P}_0 . \bar{P}_0 has a finite support, we have then by assumptions

$$\bar{F}_n \xrightarrow[n \to \infty]{} \sup_{\mathbf{q} \in S_k^+} \bar{\mathcal{F}}(\lambda, \mathbf{q})$$
 (34)

Lemma 48

There exists a constant C>0, that depends only on λ , k and K_0 , such that, for all $n\geq 1$

$$|F_n - \bar{F}_n| \le C\epsilon$$

Г

Proof. In order to precise the dependency in X, we will note $H_n(x, X)$ instead of $H_n(x)$. Remark that

$$\bar{F}_n = \frac{1}{n} \mathbb{E} \log \left(\int_{\mathbf{x} \in S^n} dP_0^{\otimes n}(\mathbf{x}) \exp \left(H_n(\bar{\mathbf{x}}, \bar{\mathbf{X}}) \right) \right)$$

We define the Gibbs measure $\langle \cdot \rangle$ by

$$\langle f(\mathbf{x}) \rangle = \frac{1}{Z_n} \int_{\mathbf{x} \in S^n} dP_0^{\otimes n}(\mathbf{x}) f(\mathbf{x}) \exp\left(H_n(\mathbf{x}, \mathbf{X})\right)$$

for any continuous function f on $([-K_0, K_0]^k)^n$. We have then

$$\bar{F}_n - F_n = \frac{1}{n} \mathbb{E} \log \langle \exp(H_n(\bar{\mathbf{x}}, \bar{\mathbf{X}}) - H_n(\mathbf{x}, \mathbf{X})) \rangle$$

Define

$$\psi : t \in [0, 1] \mapsto \frac{1}{n} \mathbb{E} \log \langle \exp \left(t(H_n(\bar{\mathbf{x}}, \bar{\mathbf{X}}) - H_n(\mathbf{x}, \mathbf{X})) \right) \rangle$$

 ψ is differentiable over [0,1] and, for $t \in [0,1]$,

$$\psi'(t) = \frac{1}{n} \mathbb{E} \left[\frac{\left\langle (H_n(\bar{\mathbf{x}}, \bar{\mathbf{X}}) - H_n(\mathbf{x}, \mathbf{X})) \exp\left(t(H_n(\bar{\mathbf{x}}, \bar{\mathbf{X}}) - H_n(\mathbf{x}, \mathbf{X}))\right)\right\rangle}{\left\langle \exp\left(t(H_n(\bar{\mathbf{x}}, \bar{\mathbf{X}}) - H_n(\mathbf{x}, \mathbf{X}))\right)\right\rangle} \right]$$

Compute

$$H_n(\bar{\mathbf{x}}, \bar{\mathbf{X}}) - H_n(\mathbf{x}, \mathbf{X}) = \sum_{i < j} \sqrt{\frac{\lambda}{n}} Z_{i,j} (\bar{\mathbf{x}}_i^T \bar{\mathbf{x}}_j - \mathbf{x}_i^T \mathbf{x}_j) + \frac{\lambda}{n} (\bar{\mathbf{x}}_i^T \bar{\mathbf{x}}_j \bar{\mathbf{X}}_i^T \bar{\mathbf{X}}_j - \mathbf{x}_i^T \mathbf{x}_j \mathbf{X}_i^T \mathbf{X}_j) - \frac{\lambda}{2n} ((\bar{\mathbf{x}}_i^T \bar{\mathbf{x}}_j)^2 - (\mathbf{x}_i^T \mathbf{x}_j)^2)$$

Thus

$$\left| \psi'(t) - \frac{1}{n} \mathbb{E} \left[\frac{\left\langle \sum_{i < j} \sqrt{\frac{\lambda}{n}} Z_{i,j}(\bar{\mathbf{x}}_i^T \bar{\mathbf{x}}_j - \mathbf{x}_i^T \mathbf{x}_j) \exp\left(t(H_n(\bar{\mathbf{x}}, \bar{\mathbf{X}}) - H_n(\mathbf{x}, \mathbf{X}))\right) \right\rangle}{\left\langle \exp\left(t(H_n(\bar{\mathbf{x}}, \bar{\mathbf{X}}) - H_n(\mathbf{x}, \mathbf{X}))\right) \right\rangle} \right] \right| \leq C_1 \epsilon$$

where C_1 is a constant depending only on λ , k and K_0 . It remains to compute for i < j

$$\mathbb{E}\left[\sqrt{\frac{\lambda}{n}}Z_{i,j}\frac{\left\langle(\bar{\mathbf{x}}_{i}^{T}\bar{\mathbf{x}}_{j}-\mathbf{x}_{i}^{T}\mathbf{x}_{j})\exp\left(t(H_{n}(\bar{\mathbf{x}},\bar{\mathbf{X}})-H_{n}(\mathbf{x},\mathbf{X}))\right)\right\rangle}{\left\langle\exp\left(t(H_{n}(\bar{\mathbf{x}},\bar{\mathbf{X}})-H_{n}(\mathbf{x},\mathbf{X}))\right)\right\rangle}\right]$$

$$=\frac{\lambda}{n}\mathbb{E}\left[\frac{\left\langle(\bar{\mathbf{x}}_{i}^{T}\bar{\mathbf{x}}_{j}-\mathbf{x}_{i}^{T}\mathbf{x}_{j})(t\bar{\mathbf{x}}_{i}^{T}\bar{\mathbf{x}}_{j}+(1-t)\mathbf{x}_{i}^{T}\mathbf{x}_{j})\exp\left(t(H_{n}(\bar{\mathbf{x}},\bar{\mathbf{X}})-H_{n}(\mathbf{x},\mathbf{X}))\right)\right\rangle}{\left\langle\exp\left(t(H_{n}(\bar{\mathbf{x}},\bar{\mathbf{X}})-H_{n}(\mathbf{x},\mathbf{X}))\right)\right\rangle}\right.$$

$$+\frac{\left\langle(\bar{\mathbf{x}}_{i}^{T}\bar{\mathbf{x}}_{j}-\mathbf{x}_{i}^{T}\mathbf{x}_{j})\exp\left(t(H_{n}(\bar{\mathbf{x}},\bar{\mathbf{X}})-H_{n}(\mathbf{x},\mathbf{X}))\right)\right\rangle\left\langle(t\bar{\mathbf{x}}_{i}^{T}\bar{\mathbf{x}}_{j}+(1-t)\mathbf{x}_{i}^{T}\mathbf{x}_{j})\exp\left(t(H_{n}(\bar{\mathbf{x}},\bar{\mathbf{X}})-H_{n}(\mathbf{x},\mathbf{X}))\right)\right\rangle}{\left\langle\exp\left(t(H_{n}(\bar{\mathbf{x}},\bar{\mathbf{X}})-H_{n}(\mathbf{x},\mathbf{X}))\right)\right\rangle^{2}}\right]$$

and one see that this last quantity is bounded in absolute value by $\frac{1}{n}C_2\epsilon$, where C_2 is a constant depending only on λ , k and K_0 . This leads to $\psi'(t) \leq (C_1 + C_2)\epsilon$. Noticing that $\psi(0) = 0$ and $\psi(1) = \bar{F}_n - F_n$ we conclude that $|\bar{F}_n - F_n| \leq (C_1 + C_2)\epsilon$.

$$|\sup_{\mathbf{q}\in S_k^+} \mathcal{F}(\lambda, \mathbf{q}) - \sup_{\mathbf{q}\in S_k^+} \bar{\mathcal{F}}(\lambda, \mathbf{q})| \le C'\epsilon$$

Proof. First notice that both supremum are achieved over a common compact set $K \subset S_k^+$. Indeed, for $\mathbf{q} \in S_k^+$,

$$\mathbb{E} \log \left[\int_{\mathbf{x} \in S} dP_0(\mathbf{x}) \exp(\sqrt{\lambda} (\mathbf{Z}^T \mathbf{q}^{1/2} \mathbf{x}) + \lambda \mathbf{x}^T \mathbf{q} \mathbf{X} - \frac{\lambda}{2} \mathbf{x}^T \mathbf{q} \mathbf{x}) \right] \leq \mathbb{E} \log \left[\int_{\mathbf{x} \in S} dP_0(\mathbf{x}) e^{\sqrt{\lambda} (\mathbf{Z}^T \mathbf{q}^{1/2} \mathbf{x})} \right] + 2\lambda k K_0^2 \|\mathbf{q}\|$$

$$\leq \log \left[\int_{\mathbf{x} \in S} dP_0(\mathbf{x}) e^{\frac{\lambda}{2} (\mathbf{x}^T \mathbf{q} \mathbf{x})} \right] + 2\lambda k K_0^2 \|\mathbf{q}\|$$

$$\leq C_1 \|q\|$$

where C_1 is a constant depending only on λ , k and K_0 . Thus $\mathcal{F}(\lambda, \mathbf{q}), \bar{\mathcal{F}}(\lambda, \mathbf{q}) \xrightarrow{\|\mathbf{q}\| \to \infty} -\infty$. Both supremum thus are achieved over a common compact set $K \subset S_k^+$. Using the same kind of arguments that in the proof of Lemma 48, we obtain that there exists a constant C' that depends only on λ , K_0 and k such that $\forall \mathbf{q} \in K, |\mathcal{F}(\lambda, \mathbf{q}) - \bar{\mathcal{F}}(\lambda, \mathbf{q})| \leq C'\epsilon$. This proves the lemma.

Combining equation 34 and Lemmas 48 and 49, we obtain that there exists $n_0 \ge 1$ such that for all $n \ge n_0$,

$$|F_n - \sup_{\mathbf{q} \in S_k^+} \mathcal{F}(\lambda, \mathbf{q})| \le (C + C' + 1)\epsilon$$

where C and C' are two constants independent of n_0 and ϵ . This proves Theorem 43. It remains therefore to prove Theorem 43 for distribution P_0 with finite support. In the following, we suppose such a distribution to be fixed.

6.2.3 The lower bound: Guerra's interpolation technique

We have the extension of Proposition 22.

Proposition 50

$$\liminf_{n \to \infty} F_n \ge \sup_{\mathbf{q} \in S_k^+} \mathcal{F}(\lambda, \mathbf{q}) \tag{35}$$

The proof is exactly the same as in the unidimensional case. The Nishimori property (Proposition 16) applies to the general case, the computations are the same.

6.2.4 Adding a small perturbation

The results of Section 4.2 can be easily generalized. Let us fix $\epsilon \in [0, 1]$, and suppose we have access to the additional information, for $1 \le i \le n$

$$\mathbf{Y}_i' = \begin{cases} \mathbf{X}_i & \text{if } L_i = 1\\ * & \text{if } L_i = 0 \end{cases}$$

where $L_i \sim_{i.i.d.} \text{Ber}(\epsilon)$ and * is a value that does not belong to S. The free energy is now

$$F_{n,\epsilon} = \frac{1}{n} \mathbb{E} \Big[\log (\sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) \ e^{H_n(\bar{\mathbf{x}})}) \Big]$$

where $\bar{\mathbf{x}} = (L_i \mathbf{X}_i + (1 - L_i) \mathbf{x}_i)_{1 \le i \le n}$.

The proof of Proposition 23 can be adapted to the general case to obtain:

Proposition 51

For all
$$n \ge 1$$
 and for all $\epsilon, \epsilon' \in [0, 1]$,
$$|F_{n,\epsilon} - F_{n,\epsilon'}| \le \lambda k^2 K_0^4 |\epsilon - \epsilon'|.$$

We define now ϵ as a uniform random variable over [0,1], independently of every other random variable. We will note \mathbb{E}_{ϵ} the expectation with respect to ϵ . For $n \geq 1$, we define also $\epsilon_n = n^{-1/2} \epsilon \sim \mathcal{U}[0, n^{-1/2}]$. Proposition 51 implies that

$$|F_n - \mathbb{E}_{\epsilon}[F_{n,\epsilon_n}]| \xrightarrow[n \to \infty]{} 0.$$

It remains therefore to compute the limit of the free energy averaged over small perturbations.

6.2.5 Aizenman-Sims-Starr scheme

In the multidimensional case the overlaps becomes $k \times k$ matrices. For $\mathbf{x}^{(1)}, \mathbf{x}^{(2)} \in S^n \sim M_{n,k}(\mathbb{R})$ we write

$$\mathbf{x}^{(1)}.\mathbf{x}^{(2)} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{(1)} (\mathbf{x}_{i}^{(2)})^{T} \in M_{k,k}(\mathbb{R})$$

In this section, $\|\cdot\|$ will denote the norm over $M_{k,k}(\mathbb{R})$ defined as $\|A\| = \sqrt{\text{Tr}(A^T A)}$. We can adapt Section 4.3 to the general case. Define for $\mathbf{x} \in S^n$

$$H_n'(\mathbf{x}) = \sum_{1 \leq i < j \leq n} \mathbf{x}_i^T \mathbf{x}_j \sqrt{\frac{\lambda}{n+1}} (Z_{i,j} + \sqrt{\frac{\lambda}{n+1}} \mathbf{X}_i^T \mathbf{X}_j) - \frac{\lambda}{2(n+1)} (\mathbf{x}_i^T \mathbf{x}_j)^2$$

and the Gibbs measure $\langle \cdot \rangle$ by

$$\langle f(\mathbf{x}) \rangle = \frac{\sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) f(\bar{\mathbf{x}}) \exp(H'_n(\bar{\mathbf{x}}))}{\sum_{\mathbf{x} \in S^n} P_0(\mathbf{x}) \exp(H'_n(\bar{\mathbf{x}}))}$$
(36)

for any function f on S^n , where we recall that $\bar{\mathbf{x}} = (L_i \mathbf{X}_i + (1 - L_i) \mathbf{x}_i)_{1 \leq i \leq n}$ (where $L_i \sim_{i.i.d.} \text{Ber}(\epsilon_n)$, independently of everything else). We have then, by the same decomposition as in Section 4.3,

$$\limsup_{n \to \infty} F_n = \limsup_{n \to \infty} \mathbb{E}_{\epsilon}[F_{n,\epsilon_n}] \le \limsup_{n \to \infty} \mathbb{E}_{\epsilon}[A_n]$$
(37)

where

$$A_n = \mathbb{E}\log\left\langle \int_{\sigma \in S} dP_0(\sigma) \exp(\bar{\sigma}^T z(\mathbf{x}) + \bar{\sigma}^T s(\mathbf{x})\bar{\sigma}) \right\rangle - \mathbb{E}\log\left\langle \exp(y(\mathbf{x})) \right\rangle$$

where $\bar{\sigma} = (1 - L_{n+1})\sigma + L_{n+1}\mathbf{X_{n+1}}$ and

$$\begin{split} z(\mathbf{x}) &= \sum_{i=1}^{n} \sqrt{\frac{\lambda}{n}} Z_{i,n+1} \mathbf{x}_i + \frac{\lambda}{n} (\mathbf{x}_i^T \mathbf{X}_i) \mathbf{X}_{n+1} \\ s(\mathbf{x}) &= -\frac{\lambda}{2n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T \\ y(\mathbf{x}) &= \frac{\sqrt{\lambda}}{\sqrt{2n}} \sum_{i=1}^{n} Z_i'' \|\mathbf{x}_i\|^2 + \frac{\sqrt{\lambda}}{n} \sum_{1 \leq i \leq n} \mathbf{x}_i^T \mathbf{x}_j \tilde{Z}_{i,j} + \frac{\lambda}{2} (\|\mathbf{x}.\mathbf{X}\|^2 - \frac{1}{2} \|\mathbf{x}.\mathbf{x}\|^2) \end{split}$$

where $\tilde{Z}_{i,j}, Z_i'' \sim_{i.i.d.} \mathcal{N}(0,1)$ independently of any other random variables.

6.2.6 Overlap concentration

Recall that $\langle \cdot \rangle$ is the Gibbs measure defined in equation (36). $\langle \cdot \rangle$ correspond to the posterior distribution of **X** given **Y** and **Y**' in the following observation channel

$$Y_{i,j} = \sqrt{\frac{\lambda}{n+1}} \mathbf{X}_i^T \mathbf{X}_j + Z_{i,j}, \text{ for } 1 \le i < j \le n$$
$$\mathbf{Y}_i' = \begin{cases} \mathbf{X}_i & \text{if } L_i = 1\\ * & \text{if } L_i = 0 \end{cases} \text{ for } 1 \le i \le n$$

where $\mathbf{X}_i \sim_{i.i.d.} P_0$, $Z_{i,j} \sim_{i.i.d.} \mathcal{N}(0,1)$ and $L_i \sim_{i.i.d.} \mathrm{Ber}(\epsilon_n)$ are independent random variables. The Nishimori property (Proposition 16) will thus be valid under $\langle \cdot \rangle$. Lemma 3.1 from [23] gives

Lemma 52

$$n^{-1/2}\mathbb{E}_{\epsilon}\left[\frac{1}{n^2}\sum_{1\leq i,j\leq j}I(\mathbf{X}_i;\mathbf{X}_j|\mathbf{Y},\mathbf{Y}')\right]\leq \frac{2H(P_0)}{n}$$

This implies that the overlap between to replicas, i.e. two independent samples $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ from the Gibbs distribution $\langle \cdot \rangle$, concentrates. Let us define

$$\mathbf{Q} = \left\langle \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}^{(1)} (\mathbf{x}_{i}^{(2)})^{T} \right\rangle = \left\langle \mathbf{x}^{(1)} \cdot \mathbf{x}^{(2)} \right\rangle$$
$$\mathbf{b}_{i} = \left\langle \mathbf{x}_{i} \right\rangle$$

 \mathbf{Q} is a random variable depending only on $(Y_{i,j})_{i < j \le n}$ and $(\mathbf{Y}'_i)_{i \le n}$. Notice that $\mathbf{Q} = \mathbf{b}.\mathbf{b} \in S_k^+$.

Proposition 53 (Overlap concentration)

$$\mathbb{E}_{\epsilon} \mathbb{E} \Big\langle \|\mathbf{x}^{(1)}.\mathbf{x}^{(2)} - \mathbf{Q}\|^2 \Big\rangle \xrightarrow[n \to \infty]{} 0$$

Proof.

$$\begin{split} \left\langle \|\mathbf{x}^{(1)}.\mathbf{x}^{(2)} - \mathbf{Q}\|^{2} \right\rangle &= \left\langle \|\mathbf{x}^{(1)}.\mathbf{x}^{(2)}\|^{2} \right\rangle - \|\left\langle \mathbf{x}^{(1)}.\mathbf{x}^{(2)} \right\rangle\|^{2} \\ &= \frac{1}{n^{2}} \sum_{1 \leq i,j \leq n} \left\langle \mathbf{x}_{i}^{(1)T} \mathbf{x}_{i}^{(2)} \mathbf{x}_{j}^{(1)T} \mathbf{x}_{j}^{(2)} \right\rangle - \left\langle \mathbf{x}_{i}^{(1)T} \right\rangle \left\langle \mathbf{x}_{i}^{(2)} \right\rangle \left\langle \mathbf{x}_{j}^{(1)T} \right\rangle \left\langle \mathbf{x}_{j}^{(2)} \right\rangle \\ &= \frac{1}{n^{2}} \sum_{1 \leq i,j \leq n} \|\left\langle \mathbf{x}_{i} \mathbf{x}_{j}^{T} \right\rangle\|^{2} - \|\left\langle \mathbf{x}_{i}^{T} \right\rangle \left\langle \mathbf{x}_{j}^{(1)T} \right\rangle \left\langle \mathbf{x}_{j}^{(2)} \right\rangle \\ &\leq \frac{C}{n^{2}} \sum_{1 \leq i,j \leq n} \left\|\left\langle \mathbf{x}_{i} \mathbf{x}_{j}^{T} \right\rangle - \left\langle \mathbf{x}_{i} \right\rangle \left\langle \mathbf{x}_{j}^{T} \right\rangle \right\| \\ &\leq \frac{C}{n^{2}} \sum_{1 \leq i,j \leq n} \left\|\sum_{\mathbf{x}_{i}, \mathbf{x}_{j}} \mathbf{x}_{i} \mathbf{x}_{j}^{T} \mathbb{P}(\mathbf{X}_{i} = \mathbf{x}_{i}, \mathbf{X}_{j} = \mathbf{x}_{j} | \mathbf{Y}, \mathbf{Y}') - \mathbf{x}_{i} \mathbf{x}_{j}^{T} \mathbb{P}(\mathbf{X}_{i} = \mathbf{x}_{i} | \mathbf{Y}, \mathbf{Y}') \right\| \\ &\leq \frac{C'}{n^{2}} \sum_{1 \leq i,j \leq n} \left\|D_{TV} \left(\mathbb{P}(\mathbf{X}_{i} = ., \mathbf{X}_{j} = . | \mathbf{Y}, \mathbf{Y}'); \mathbb{P}(\mathbf{X}_{i} = . | \mathbf{Y}, \mathbf{Y}') \otimes \mathbb{P}(\mathbf{X}_{j} = . | \mathbf{Y}, \mathbf{Y}')\right) \\ &\leq \frac{C''}{n^{2}} \sum_{1 \leq i,j \leq n} \sqrt{D_{KL} \left(\mathbb{P}(\mathbf{X}_{i} = ., \mathbf{X}_{j} = . | \mathbf{Y}, \mathbf{Y}'); \mathbb{P}(\mathbf{X}_{i} = . | \mathbf{Y}, \mathbf{Y}') \otimes \mathbb{P}(\mathbf{X}_{j} = . | \mathbf{Y}, \mathbf{Y}')\right)} \\ &\leq C''' \sqrt{\frac{1}{n^{2}} \sum_{1 \leq i,j \leq n} D_{KL} \left(\mathbb{P}(\mathbf{X}_{i} = ., \mathbf{X}_{j} = . | \mathbf{Y}, \mathbf{Y}'); \mathbb{P}(\mathbf{X}_{i} = . | \mathbf{Y}, \mathbf{Y}') \otimes \mathbb{P}(\mathbf{X}_{j} = . | \mathbf{Y}, \mathbf{Y}')\right)} \end{aligned}$$

for some constants C, C', C'' > 0, where we used Pinsker's inequality to compare the total variation distance D_{TV} with the Kullback-Leibler divergence D_{KL} . So that:

$$\mathbb{E}_{\epsilon} \mathbb{E} \Big\langle \|\mathbf{x}^{(1)}.\mathbf{x}^{(2)} - \mathbf{Q}\|^2 \Big\rangle \leq C'' \sqrt{\mathbb{E}_{\epsilon} \Big[\frac{1}{n^2} \sum_{1 \leq i,j \leq n} I(\mathbf{X}_i; \mathbf{X}_j | \mathbf{Y}, \mathbf{Y}') \Big]} \xrightarrow[n \to \infty]{} 0$$

As a consequence of the Nishimori property, the overlap between one replica and the planted solution concentrates around the same value as the overlap between two independent replicas.

Corollary 54

$$\mathbb{E}_{\epsilon} \mathbb{E} \Big\langle \|\mathbf{x}.\mathbf{X} - \mathbf{Q}\|^2 \Big\rangle \xrightarrow[n \to \infty]{} 0 \quad and \quad \mathbb{E}_{\epsilon} \mathbb{E} \Big\langle \|\mathbf{x}.\mathbf{b} - \mathbf{Q}\|^2 \Big\rangle \xrightarrow[n \to \infty]{} 0$$

The remaining part of the proof is then exactly the same than for the finite, unidimensional case.

7 Application to community detection in the stochastic block model

We prove in this section the phase transition for community detection on the stochastic block model, namely Theorem 9.

We will make use of the following notation. For $\mathbf{x} \in \{1,2\}^n$ we denote $\tilde{\mathbf{x}} = (\phi_p(x_1), \dots, \phi_p(x_n)) \in \{-\sqrt{\frac{p}{1-p}}, \sqrt{\frac{1-p}{p}}\}^n$, where $\phi_p(1) = \sqrt{\frac{1-p}{p}}$ and $\phi_p(2) = -\sqrt{\frac{p}{1-p}}$.

In order to apply the results we proved for matrix factorization, we first show that the mutual information between the observed graph G and the hidden labels X is asymptotically equal to the mutual

information between \mathbf{Y} and $\tilde{\mathbf{X}}$ in the following Gaussian observation channel

$$Y_{i,j} = \sqrt{\frac{\lambda}{n}} \tilde{X}_i \tilde{X}_j + Z_{i,j}$$
 for $1 \le i < j \le n$

where $\tilde{X}_i = \phi_p(X_i)$ and $Z_{i,j} \sim_{i.i.d.} \mathcal{N}(0,1)$ independently of everything else. The following theorem generalize the result from [11] to the asymmetric case.

Theorem 55

There exists a constant C > 0 such that, for d large enough

$$\limsup_{n \to \infty} \frac{1}{n} \Big| I(\mathbf{X}, \mathbf{G}) - I(\tilde{\mathbf{X}}, \mathbf{Y}) \Big| \le C \sqrt{\frac{\lambda}{d}}$$

Now, Theorem 13 allows us to compute the limit of $\frac{1}{n}I(\tilde{\mathbf{X}},\mathbf{Y})$. Define

$$\mathcal{F}_g: (\lambda, q) \mapsto -\frac{\lambda q^2}{4} + \mathbb{E}_{\tilde{X}_0, Z_0} \log \left[p \exp\left(\sqrt{\frac{1-p}{p}} \left(\sqrt{\lambda q} Z_0 + \lambda q \tilde{X}_0\right) - \frac{\lambda (1-p)}{2p} q\right) + (1-p) \exp\left(-\sqrt{\frac{p}{1-p}} \left(\sqrt{\lambda q} Z_0 + \lambda q \tilde{X}_0\right) - \frac{\lambda p}{2(1-p)} q\right) \right]$$
(38)

where the expectation is taken over $Z_0 \sim \mathcal{N}(0,1)$ and $\tilde{X}_0 \sim p\delta_{\phi_p(1)} + (1-p)\delta_{\phi_p(2)}$ independently from Z_0 . Define also

$$\Phi_g: \lambda \mapsto \sup_{q>0} \mathcal{F}_g(\lambda, q). \tag{39}$$

Corollary 14 gives then

Corollary 56

There exists a constant C > 0 such that, for d large enough

$$\limsup_{n \to \infty} \left| \frac{1}{n} I(\mathbf{X}, \mathbf{G}) - \left(\frac{\lambda}{4} - \Phi_g(\lambda) \right) \right| \le C \sqrt{\frac{\lambda}{d}}$$

7.1 The limit of the mutual information: proof of Theorem 55

We are going to compute $I(\mathbf{X}, \mathbf{G})$ and $I(\tilde{\mathbf{X}}, \mathbf{G})$. We recall that for $\mathbf{x} \in \{1, 2\}^n$ we denote $\tilde{\mathbf{x}} = (\phi_p(x_1), \dots, \phi_p(x_n)) \in S_p^n$, where $\phi_p(1) = \sqrt{\frac{1-p}{p}}$, $\phi_p(2) = -\sqrt{\frac{p}{1-p}}$ and $S_p = \{-\sqrt{\frac{p}{1-p}}, \sqrt{\frac{1-p}{p}}\}$.

For $x \in \{1,2\}$ we define $P_0(x) = P_0(\tilde{x}) = p$, if x = 1 and $P_0(x) = P_0(\tilde{x}) = 1 - p$, if x = 2. For $\mathbf{x} \in \{1,2\}^n$ we will write, with a slight abuse of notation

$$P_0(\mathbf{x}) = P_0(\tilde{\mathbf{x}}) = \prod_{i=1}^n P_0(x_i)$$

The following lemma is a consequence of the general result from Lemma 47.

Lemma 57

$$I(\tilde{\mathbf{X}}, \mathbf{Y}) = -\mathbb{E}\Big[\log\Big(\sum_{\tilde{\mathbf{x}} \in S_p^n} P_0(\tilde{\mathbf{x}}) \exp(\sum_{i < j} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) \sqrt{\frac{\lambda}{n}} Z_{i,j} - \frac{\lambda}{2n} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j)^2)\Big)\Big]$$

Define $V_{i,j} = \epsilon(G_{i,j} - \mathbb{E}(G_{i,j}|X_i,X_j))$

Lemma 58

For d large enough,

$$I(\mathbf{X}, \mathbf{G}) = -\mathbb{E}\Big[\log \sum_{\mathbf{x} \in \{1, 2\}^n} P_0(\mathbf{x}) \exp(\sum_{i < j} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) V_{i,j} - \frac{1}{2} \epsilon((\tilde{x}_i \tilde{x}_j)^2 - (\tilde{X}_i \tilde{X}_j)^2) V_{i,j} - \frac{\lambda}{2n} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j)^2)\Big] + O(n\epsilon)$$

Proof. By definition, $I(\mathbf{X}, \mathbf{G}) = \mathbb{E} \log \frac{\mathbb{P}(\mathbf{X}, \mathbf{G})}{\mathbb{P}(\mathbf{X})\mathbb{P}(\mathbf{G})} = -\mathbb{E} \log \frac{\mathbb{P}(\mathbf{G})}{\mathbb{P}(\mathbf{G}|\mathbf{X})}$. Thus

$$I(\mathbf{X}, \mathbf{G}) = -\mathbb{E}\log \frac{\sum_{\mathbf{x} \in \{1, 2\}^n} P_0(\mathbf{x}) \mathbb{P}(\mathbf{G}|\mathbf{x})}{\mathbb{P}(\mathbf{G}|\mathbf{X})}$$

Recall that $\mathbb{P}(\mathbf{G}|\mathbf{x}) = \prod_{i < j} M_{x_i, x_j}^{G_{i,j}} (1 - M_{x_i, x_j})^{1 - G_{i,j}} = \exp(\sum_{i < j} G_{i,j} \log M_{x_i, x_j} + (1 - G_{i,j}) \log(1 - M_{x_i, x_j}))$. This leads to

$$I(\mathbf{X}, \mathbf{G}) = -\mathbb{E}\left[\log\left(\sum_{\mathbf{x} \in \{1, 2\}^n} P_0(\mathbf{x}) \exp(\sum_{i < j} G_{i, j} \log(\frac{M_{x_i, x_j}}{M_{X_i, X_j}}) + (1 - G_{i, j}) \log(\frac{1 - M_{x_i, x_j}}{1 - M_{X_i, X_j}}))\right)\right]$$
(40)

Notice that $M_{x_i,x_j} = \frac{d}{n}(1 + \tilde{x}_i\tilde{x}_j\epsilon)$. Therefore $\log(\frac{M_{x_i,x_j}}{M_{x_i,x_j}}) = \log(\frac{1+\tilde{x}_i\tilde{x}_j\epsilon}{1+\tilde{X}_i\tilde{X}_j\epsilon})$. By the Taylor-Lagrange inequality, there exist a constant C > 0 such that, for ϵ small enough (i.e. for d large enough):

$$\left|\log\left(\frac{1+\tilde{x}_i\tilde{x}_j\epsilon}{1+\tilde{X}_i\tilde{X}_j\epsilon}\right) - \epsilon(\tilde{x}_i\tilde{x}_j - \tilde{X}_i\tilde{X}_j) + \frac{1}{2}\epsilon^2\left((\tilde{x}_i\tilde{x}_j)^2 - (\tilde{X}_i\tilde{X}_j)^2\right)\right| \le C\epsilon^3$$
(41)

$$\left|\log\left(\frac{1 - M_{x_i, x_j}}{1 - M_{X_i, X_j}}\right) + \frac{d}{n}\epsilon(\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j)\right| \le C\frac{d^2}{n^2}$$

$$(42)$$

By summation and triangle inequality:

$$\sum_{i < j} G_{i,j} \log(\frac{M_{x_i, x_j}}{M_{X_i, X_j}}) + (1 - G_{i,j}) \log(\frac{1 - M_{x_i, x_j}}{1 - M_{X_i, X_j}})$$

$$= \sum_{i < j} \epsilon(\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) G_{i,j} - \frac{1}{2} \epsilon^2 ((\tilde{x}_i \tilde{x}_j)^2 - (\tilde{X}_i \tilde{X}_j)^2) G_{i,j} - (1 - G_{i,j}) (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) \frac{d}{n} \epsilon + \Delta_n$$

where $|\Delta_n| \leq C(d^2 + \sum_{i < j} G_{i,j} \epsilon^3)$ because of equations (41) and (42). Then

$$\begin{split} &\sum_{i < j} G_{i,j} \log(\frac{M_{x_i,x_j}}{M_{X_i,X_j}}) + (1 - G_{i,j}) \log(\frac{1 - M_{x_i,x_j}}{1 - M_{X_i,X_j}}) \\ &= \sum_{i < j} \left(\epsilon(\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) (G_{i,j} - \frac{d}{n} - \frac{d\tilde{X}_i \tilde{X}_j \epsilon}{n}) + \epsilon^2 \frac{d}{n} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) \tilde{X}_i \tilde{X}_j - \frac{1}{2} \epsilon^2 ((\tilde{x}_i \tilde{x}_j)^2 - (\tilde{X}_i \tilde{X}_j)^2) G_{i,j} \right. \\ &+ G_{i,j} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) \frac{d}{n} \epsilon \right) + \Delta_n \\ &= \sum_{i < j} \left(\epsilon(\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) V_{i,j} + \epsilon^2 \frac{d}{n} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) \tilde{X}_i \tilde{X}_j \right. \\ &- \frac{1}{2} \epsilon^2 ((\tilde{x}_i \tilde{x}_j)^2 - (\tilde{X}_i \tilde{X}_j)^2) V_{i,j} - \frac{1}{2} \epsilon^2 ((\tilde{x}_i \tilde{x}_j)^2 - (\tilde{X}_i \tilde{X}_j)^2) \frac{d}{n} (1 + \tilde{X}_i \tilde{X}_j \epsilon) + G_{i,j} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) \frac{d}{n} \epsilon \right) + \Delta_n \\ &= \sum_{i < j} \left(\epsilon(\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) V_{i,j} - \frac{1}{2} \epsilon^2 ((\tilde{x}_i \tilde{x}_j)^2 - (\tilde{X}_i \tilde{X}_j)^2) V_{i,j} \right. \\ &+ \epsilon^2 \frac{d}{n} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) (\tilde{X}_i \tilde{X}_j - \frac{\tilde{x}_i \tilde{x}_j + \tilde{X}_i \tilde{X}_j}{2} (1 + \tilde{X}_i \tilde{X}_j \epsilon)) + G_{i,j} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) \frac{d}{n} \epsilon \right) + \Delta_n \\ &= \sum_{i < j} \left(\epsilon(\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) (\tilde{X}_i \tilde{X}_j - \frac{\tilde{x}_i \tilde{x}_j + \tilde{X}_i \tilde{X}_j}{2} (1 + \tilde{X}_i \tilde{X}_j \epsilon)) V_{i,j} - \frac{\lambda}{2n} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j)^2 + O(\frac{\epsilon}{n}) + G_{i,j} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) \frac{d}{n} \epsilon \right) + \Delta_n \\ &= \sum_{i < j} \left(\epsilon(\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) V_{i,j} - \frac{1}{2} \epsilon^2 ((\tilde{x}_i \tilde{x}_j)^2 - (\tilde{X}_i \tilde{X}_j)^2) V_{i,j} - \frac{\lambda}{2n} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j)^2 + O(\frac{\epsilon}{n}) + G_{i,j} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) \frac{d}{n} \epsilon \right) \\ &+ \Delta_n \end{aligned}$$

Notice that $G_{i,j} \in \{0,1\}$, we have therefore, for some constant C' > 0,

$$\left| \sum_{i < j} G_{i,j} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) \frac{d}{n} \right| \le C' \frac{d}{n} \sum_{i < j} G_{i,j}$$

We use then the following lemma to control $\sum_{i < j} G_{i,j}$.

Lemma 59

For d large enough and n large enough, we have

$$\mathbb{P}\left(\sum_{i < j} G_{i,j} > 2dn\right) \le \exp(-\frac{1}{2}nd)$$

Proof. Conditionally to **X**, the variables $(G_{i,j})_{i < j}$ are independent and distributed as Bernoulli random variables with expectations equal to $\frac{ad}{n}$, $\frac{bd}{n}$ or $\frac{cd}{n}$, depending of the **X** variables. Notice that $a, b, c \xrightarrow[d \to \infty]{} 1$, therefore for d large enough the variables $G_{i,j}$ are stochastically bounded by independent identically distributed variables $B_{i,j} \sim \text{Ber}(\frac{2d}{n})$. Thus, using standard concentration result for binomial random variables,

$$\mathbb{P}(\sum_{i < j} G_{i,j} > 2dn) \le \mathbb{P}(\sum_{i < j} B_{i,j} > 2dn) \le \exp\left(-\frac{1}{2}n(n-1)\mathrm{kl}(\frac{4d}{n-1}, \frac{2d}{n})\right)$$

where $kl(\frac{4d}{n-1}, \frac{2d}{n}) = \frac{4d}{n-1}\log(\frac{2n}{n-1}) + (1 - \frac{4d}{n-1})\log\frac{1 - 4d/(n-1)}{1 - 2d/n} > \frac{d}{n-1}$ for n large enough.

We have now

$$I(\mathbf{X}, \mathbf{G}) = -\mathbb{E}\left[\log \sum_{\tilde{\mathbf{x}} \in S_p^n} P_0(\tilde{\mathbf{x}}) \exp\left(\Delta_n + O(n\epsilon) + O(\frac{d}{n} \sum_{i < j} G_{i,j})\right) + \sum_{i < j} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) V_{i,j} - \frac{1}{2} \epsilon ((\tilde{x}_i \tilde{x}_j)^2 - (\tilde{X}_i \tilde{X}_j)^2) V_{i,j} - \frac{\lambda}{2n} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j)^2\right]$$

$$= -\mathbb{E}\left[\log \sum_{\tilde{\mathbf{x}} \in S_p^n} P_0(\tilde{\mathbf{x}}) \exp\left(O((\frac{d}{n} + \epsilon^3) \sum_{i < j} G_{i,j})\right) + \sum_{i < j} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) V_{i,j} - \frac{1}{2} \epsilon ((\tilde{x}_i \tilde{x}_j)^2 - (\tilde{X}_i \tilde{X}_j)^2) V_{i,j} - \frac{\lambda}{2n} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j)^2\right] + O(n\epsilon)$$

Distinguishing the cases $\sum_{i < j} G_{i,j} > 2dn$ (which happens with an exponentially small probability) and $\sum_{i < j} G_{i,j} \le 2dn$, we obtain the desired result.

7.1.1 Lindeberg argument

We recall the Lindeberg generalization theorem (Theorem 2 from [17]).

Theorem 60 (Lindeberg generalization theorem)

Let $(U_i)_{1 \leq i \leq n}$ and $(V_i)_{1 \leq i \leq n}$ be two collection of random variables with independent components and $f: \mathbb{R}^n \to \mathbb{R}$ a \mathcal{C}^3 function. Denote $a_i = |\mathbb{E}U_i - \mathbb{E}V_i|$ and $b_i = |\mathbb{E}U_i^2 - \mathbb{E}V_i^2|$. Then

$$\begin{split} |\mathbb{E}f(U) - \mathbb{E}f(V)| &\leq \sum_{i=1}^{n} \left(a_{i} \mathbb{E}|\partial_{i} f(U_{1:i-1}, 0, V_{i+1:n})| + \frac{b_{i}}{2} \mathbb{E}|\partial_{i}^{2} f(U_{1:i-1}, 0, V_{i+1:n})| \right. \\ &+ \frac{1}{2} \mathbb{E} \int_{0}^{U_{i}} |\partial_{i}^{3} f(U_{1:i-1}, 0, V_{i+1:n})| (U_{i} - s)^{2} ds \\ &+ \frac{1}{2} \mathbb{E} \int_{0}^{V_{i}} |\partial_{i}^{3} f(U_{1:i-1}, 0, V_{i+1:n})| (V_{i} - s)^{2} ds \right) \end{split}$$

Define

$$J(\mathbf{X}, \mathbf{Z}) = -\mathbb{E} \log \sum_{\tilde{\mathbf{x}} \in S_p^n} P_0(\tilde{\mathbf{x}}) \exp(\sum_{i < j} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) \sqrt{\frac{\lambda}{n}} Z_{i,j} - \frac{1}{2} \epsilon((\tilde{x}_i \tilde{x}_j)^2 - (\tilde{X}_i \tilde{X}_j)^2) \sqrt{\frac{\lambda}{n}} Z_{i,j} - \frac{\lambda}{2n} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j)^2)$$

We will show, using Theorem 60, that $J(\mathbf{X}, \mathbf{Z})$ is close to $I(\mathbf{X}, \mathbf{G})$.

Lemma 61

$$\frac{1}{n}|I(\mathbf{X}, \mathbf{G}) - J(\mathbf{X}, \mathbf{Z})| = O(\epsilon)$$

Proof. We apply here Theorem 60 conditionally to X to the function

$$\Phi(u) = -\log \sum_{\tilde{\mathbf{x}} \in S_n^n} P_0(\tilde{\mathbf{x}}) \exp(\sum_{i < j} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j) u_{i,j} - \frac{1}{2} \epsilon ((\tilde{x}_i \tilde{x}_j)^2 - (\tilde{X}_i \tilde{X}_j)^2) u_{i,j} - \frac{\lambda}{2n} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j)^2)$$

 Φ is \mathcal{C}^3 with bounded derivatives (because α is bounded). Notice that $I(\mathbf{X}, \mathbf{G}) = \mathbb{E}\Phi(\mathbf{V})$ and $J(\mathbf{X}, \mathbf{Z}) = \mathbb{E}\Phi(\mathbf{V})$ $\mathbb{E}\Phi(\sqrt{\frac{\lambda}{n}}\mathbf{Z})$. Let us compute $V_{i,j}$ moments, conditionally to \mathbf{X} .

$$\mathbb{E}(V_{i,j}|\mathbf{X}) = 0$$

$$\mathbb{E}(V_{i,j}^2|\mathbf{X}) = \epsilon^2 \text{Var}(G_{i,j}|\mathbf{X}) = \epsilon^2 \frac{d}{n} (1 + \tilde{X}_i \tilde{X}_j \epsilon) (1 + O(\frac{d}{n}))$$

$$= (1 - \epsilon) \frac{\lambda}{n} (1 + \tilde{X}_i \tilde{X}_j \epsilon) (1 + O(\frac{d}{n}))$$

$$= \frac{\lambda}{n} + O(\frac{\epsilon}{n}) = \frac{\lambda}{n} \mathbb{E}(Z_{i,j}^2) + O(\frac{\epsilon}{n})$$

Analogously, $\mathbb{E}(V_{i,j}^3|\mathbf{X}) = O(\frac{\epsilon}{n})$. Using the Lindeberg generalization theorem we obtain

$$|\mathbb{E}(\Phi(\sqrt{\frac{\lambda}{n}}\mathbf{Z})) - \mathbb{E}(\Phi(\mathbf{V}))| \le C'' \sum_{i < j} O(\frac{\epsilon}{n}) = O(n\epsilon)$$

Gaussian interpolation

It remains to show

Lemma 62

$$I(\mathbf{X}, \mathbf{Y}) = J(\mathbf{X}, \mathbf{Z}) + O(n\epsilon)$$

Proof. The $Z_{i,j}$ are centered and independent of $X_{i,j}$ we can therefore simplify:

$$I(\mathbf{X}, \mathbf{Y}) = -\mathbb{E}\Big[\log \sum_{\tilde{\mathbf{x}} \in S_p^n} P_0(\tilde{\mathbf{x}}) \exp(\sum_{i < j} \sqrt{\frac{\lambda}{n}} Z_{i,j} \tilde{x}_i \tilde{x}_j - \frac{\lambda}{2n} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j)^2)\Big]$$

$$J(\mathbf{X}, \mathbf{Z}) = -\mathbb{E}\Big[\log \sum_{\tilde{\mathbf{x}} \in S_n^n} P_0(\tilde{\mathbf{x}}) \exp(\sum_{i < j} \sqrt{\frac{\lambda}{n}} Z_{i,j} \tilde{x}_i \tilde{x}_j - \frac{\lambda}{2n} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j)^2 - \frac{1}{2} \epsilon (\tilde{x}_i \tilde{x}_j)^2 \sqrt{\frac{\lambda}{n}} Z_{i,j})\Big]$$

We define:

$$H(\mathbf{x}, \mathbf{X}, \mathbf{Z}, \epsilon) = \sum_{i < j} \tilde{x}_i \tilde{x}_j \sqrt{\frac{\lambda}{n}} Z_{i,j} - \frac{\lambda}{2n} (\tilde{x}_i \tilde{x}_j - \tilde{X}_i \tilde{X}_j)^2 - \frac{1}{2} \epsilon (\tilde{x}_i \tilde{x}_j)^2 \sqrt{\frac{\lambda}{n}} Z_{i,j}$$
$$F(\epsilon) = \mathbb{E} \log \sum_{\mathbf{x} \in \{1,2\}^n} P_0(\mathbf{x}) \exp(H(\mathbf{x}, \mathbf{X}, \mathbf{Z}, \epsilon))$$

Notice that $F(0) = I(\mathbf{X}, \mathbf{Y})$ and $F(\epsilon) = J(\mathbf{X}, \mathbf{Z})$. We are going to control the derivative of F. We note $\langle \cdot \rangle$ the expectation with respect to the Gibbs measure: $\langle g(\tilde{\mathbf{x}}) \rangle := \frac{\sum_{\tilde{\mathbf{x}}} P_0(\tilde{\mathbf{x}}) g(\tilde{\mathbf{x}}) \exp(H(\mathbf{x}, \mathbf{X}, \mathbf{Z}, \epsilon))}{\sum_{\tilde{\mathbf{x}}} P_0(\tilde{\mathbf{x}}) \exp(H(\mathbf{x}, \mathbf{X}, \mathbf{Z}, \epsilon))}$. F is derivable and

$$F'(\epsilon) = -\frac{1}{2} \sqrt{\frac{\lambda}{n}} \sum_{i < j} \mathbb{E} \left[Z_{i,j} \langle (\tilde{x}_i \tilde{x}_j)^2 \rangle \right]$$

Here $\langle (\tilde{x}_i \tilde{x}_j)^2 \rangle$ is a continuously differentiable function of $Z_{i,j}$ and

$$\partial_{Z_{i,j}} \langle (\tilde{x}_i \tilde{x}_j)^2 \rangle = \langle (\tilde{x}_i \tilde{x}_j)^2 \sqrt{\frac{\lambda}{n}} (\tilde{x}_i \tilde{x}_j - \frac{1}{2} \epsilon (\tilde{x}_i \tilde{x}_j)^2) \rangle - \langle (\tilde{x}_i \tilde{x}_j)^2 \rangle \langle \sqrt{\frac{\lambda}{n}} (\tilde{x}_i \tilde{x}_j - \frac{1}{2} \epsilon (\tilde{x}_i \tilde{x}_j)^2) \rangle$$

$$= \sqrt{\frac{\lambda}{n}} \operatorname{Cov}_{\langle \cdot \rangle} (\tilde{x}_i \tilde{x}_j, (\tilde{x}_i \tilde{x}_j - \frac{1}{2} \epsilon (\tilde{x}_i \tilde{x}_j)^2))$$

Using Gaussian integration by parts: $F'(\epsilon) = -\frac{\lambda}{2n} \sum_{i < j} \mathbb{E} \Big[\operatorname{Cov}_{\langle \cdot \rangle} (\tilde{x}_i \tilde{x}_j, (\tilde{x}_i \tilde{x}_j - \frac{1}{2} \epsilon (\tilde{x}_i \tilde{x}_j)^2)) \Big]$. The \tilde{x}_i are bounded, so we have

$$|F'(\epsilon)| \le \frac{\lambda}{2n} \sum_{i < j} \mathbb{E}|\text{Cov}_{\langle \cdot \rangle}(\tilde{x}_i \tilde{x}_j, (\tilde{x}_i \tilde{x}_j - \frac{1}{2} \epsilon(\tilde{x}_i \tilde{x}_j)^2))| \le Cn$$

We conclude $|F(0) - F(\epsilon)| \leq Cn\epsilon$.

7.2 From mutual information to solvability: proof of Theorem 9

We are first going to introduce an estimation metric that will allow us to make the link between the minimum mean square error for matrix factorization, and the overlap for community detection. Define

$$MMSE_n^G(\lambda) = \min_{\hat{\theta}} \frac{2}{n(n-1)} \sum_{i < j} \mathbb{E} \left(\tilde{X}_i \tilde{X}_j - \hat{\theta}_{i,j}(\mathbf{G}) \right)^2 = \frac{2}{n(n-1)} \sum_{i < j} \mathbb{E} \left(\tilde{X}_i \tilde{X}_j - \mathbb{E}(\tilde{X}_i \tilde{X}_j | \mathbf{G}) \right)^2$$
(43)

where the minimum is taken over all function $\hat{\theta}$ of \mathbf{G} (and possibly of some auxiliary randomization). By considering the trivial estimator $\hat{\theta} = 0$, we see that $\mathrm{MMSE}_n^G(\lambda) \in [0,1]$. This estimation metric correspond (up to a vanishing error term) to the derivative of the mutual information between the graph \mathbf{G} and the labels \mathbf{X} .

Proposition 63

Let $\lambda_0 > 0$. There exists a constant C > 0 such that, for all $\lambda \in (0, \lambda_0]$, $d \ge 1$ and $n \ge 1$

$$\left| \frac{1}{n} \frac{\partial I(\mathbf{X}, \mathbf{G})}{\partial \lambda} - \frac{1}{4} \text{MMSE}_n^G(\lambda) \right| \le C \left(d^{-1/2} + \frac{d}{n} + \frac{d^{1/2} \lambda^{-1/2}}{n} + d^{3/2} n^{-2} \lambda^{-1/2} \right)$$
(44)

Proof. We are going to differentiate $H(\mathbf{X}|\mathbf{G})$ with respect to λ . To do so we will use a differentiation formula from [11] (Lemma 7.1), which was first proved in [21]. Let us recall the setting (taken from [11]) of this Lemma.

For n an integer, denote by $\binom{[n]}{2}$ the set of unordered pairs in [n] (in particular $\#\binom{[n]}{2} = \binom{n}{2}$)). We will use e, e_1, e_2, \ldots to denote elements of $\binom{[n]}{2}$. For for each e = (i, j) we are given a one-parameter family of discrete noisy channels indexed by $\theta \in J$ (with $J = (a_1, a_2)$ a non-empty interval), with finite input alphabet \mathcal{X}_0 and finite output alphabet \mathcal{Y} . Concretely, for any e, we have a transition probability

$$\{p_{e,\theta}(y|x)\}_{x\in\mathcal{X}_0,y\in\mathcal{Y}},\tag{45}$$

П

which is differentiable in θ . We shall omit the subscript θ since it will be clear from the context.

We then consider $\mathbf{X} = (X_1, X_2, \dots, X_n)$ a random vector in \mathcal{X}^n , and $\mathbf{Y} = (Y_{ij})_{(i,j) \in \binom{[n]}{2}}$ a set of observations in $\mathcal{Y}^{\binom{[n]}{2}}$ that are conditionally independent given \mathbf{X} . Further Y_{ij} is the noisy observation of $X_i X_j \in \mathcal{X}_0$ through the channel $p_{ij}(\cdot | \cdot)$. In formulae, the joint probability density function of \mathbf{X} and \mathbf{Y} is

$$p_{\mathbf{X},\mathbf{Y}}(\mathbf{x},\mathbf{y}) = p_{\mathbf{X}}(\mathbf{x}) \prod_{(i,j) \in \binom{[n]}{2}} p_{ij}(y_{ij}|x_ix_j).$$

$$(46)$$

This obviously include the two-groups stochastic block model as a special case. In that case $\mathbf{Y} = \mathbf{G}$ is just the adjacency matrix of the graph. In the following we write $\mathbf{Y}_{-e} = (Y_{e'})_{e' \in \binom{[n]}{2} \setminus e}$ for the set of observations excluded e, and $X_e = X_i X_j$ for e = (i, j).

Lemma 64

With the above notation, we have:

$$\frac{\partial H(\mathbf{X}|\mathbf{Y})}{\partial \theta} = \sum_{e \in \binom{[n]}{2}} \sum_{x_e, y_e} \frac{\partial p_e(y_e|x_e)}{\partial \theta} \mathbb{E} \left\{ p_{X_e|\mathbf{Y}_{-e}}(x_e|\mathbf{Y}_{-e}) \log \left[\sum_{x'_e} \frac{p_e(y_e|x'_e)}{p_e(y_e|x_e)} p_{X_e|\mathbf{Y}_{-e}}(x'_e|\mathbf{Y}_{-e}) \right] \right\}$$
(47)

We apply Lemma 64 to the stochastic block model. Let $\lambda_0 > 0$ and $\lambda \in (0, \lambda_0]$. Instead of having $G_{i,j} \in \{0,1\}$, it will be more convenient to consider $G_{i,j} \in \{-1,1\}$: $G_{i,j} = 1$ if $i \sim j$, $G_{i,j} = -1$ else. Notice that neither the mutual information nor MMSE $_n^G$ are affected by this change. $G_{i,j}$ is, conditionally to $\tilde{X}_i \tilde{X}_j$, independent of any other random variable, and distributed as follows

$$\mathbb{P}(G_{i,j} = 1 | \tilde{X}_i \tilde{X}_j) = \frac{d}{n} (1 + \sqrt{\frac{\lambda}{d}} \tilde{X}_i \tilde{X}_j)$$

The transition probability from equation (45) is then $p_{\lambda}(g_{i,j}|\tilde{x}_i\tilde{x}_j) = \frac{1-g_{i,j}}{2} + g_{i,j}\frac{d}{n}(1+\tilde{x}_i\tilde{x}_j\sqrt{\frac{\lambda}{d}})$. Thus

$$\frac{\partial}{\partial \lambda} p_{\lambda}(g_{i,j} | \tilde{x}_i \tilde{x}_j) = \frac{1}{2n} g_{i,j} \tilde{x}_i \tilde{x}_j \sqrt{\frac{d}{\lambda}}$$

Lemma 64 gives

$$\frac{\partial H(\mathbf{X}|\mathbf{G})}{\partial \lambda} = \frac{1}{2n} \sqrt{\frac{d}{\lambda}} \sum_{i < j} \sum_{\substack{\tilde{x}_{i}, \tilde{x}_{j} \\ g_{i,j}}} g_{i,j} \tilde{x}_{i} \tilde{x}_{j} \mathbb{E} \left[p_{(\tilde{X}_{i}, \tilde{X}_{j})|\mathbf{G}_{-(i,j)}}(\tilde{x}_{i}, \tilde{x}_{j}|\mathbf{G}_{-(i,j)}) \log \left(\sum_{\tilde{x}'_{i}, \tilde{x}'_{j}} p_{\lambda}(g_{i,j}|\tilde{x}'_{i} \tilde{x}'_{j}) p_{(\tilde{X}_{i}, \tilde{X}_{j})|\mathbf{G}_{-(i,j)}}(\tilde{x}'_{i}, \tilde{x}'_{j}|\mathbf{G}_{-(i,j)}) \right) \right]} - \frac{1}{2n} \sqrt{\frac{d}{\lambda}} \sum_{i < j} \sum_{\substack{\tilde{x}_{i}, \tilde{x}_{j} \\ g_{i,j}}} g_{i,j} \tilde{x}_{i} \tilde{x}_{j} \mathbb{E} \left[p_{(\tilde{X}_{i}, \tilde{X}_{j})|\mathbf{G}_{-(i,j)}}(\tilde{x}_{i}, \tilde{x}_{j}|\mathbf{G}_{-(i,j)}) \log \left(p_{\lambda}(g_{i,j}|\tilde{x}_{i}\tilde{x}_{j}) \right) \right]}$$

$$(48)$$

Compute

$$\begin{split} B &= \sum_{\substack{\tilde{x}_i, \tilde{x}_j \\ g_{i,j}}} g_{i,j} \tilde{x}_i \tilde{x}_j p(\tilde{x}_i, \tilde{x}_j) \log \left(p_{\lambda}(g_{i,j} | \tilde{x}_i \tilde{x}_j) \right) \\ &= p^2 \frac{1-p}{p} \left(\log \left(\frac{ad}{n} \right) - \log (1-\frac{ad}{n}) \right) - 2p(1-p) \left(\log \left(\frac{bd}{n} \right) - \log (1-\frac{bd}{n}) \right) + (1-p)^2 \frac{p}{1-p} \left(\log \left(\frac{cd}{n} \right) - \log (1-\frac{cd}{n}) \right) \\ &= p(1-p) \log \left(\frac{ac}{b^2} \right) + p(1-p) d(2\frac{b}{n} - \frac{a}{n} - \frac{c}{n}) + O(\frac{d^2}{n^2}) \\ &= p(1-p) \epsilon \left(\frac{1-p}{p} + \frac{p}{1-p} + 2 \right) + O(\epsilon^2) + O(\frac{d^2}{n^2}) \\ &= \epsilon + O(\epsilon^2) + O(\frac{d^2}{n^2}) \end{split}$$

and

$$\begin{split} A &= \sum_{g_{i,j}} g_{i,j} \mathbb{E} \Big[\mathbb{E} (\tilde{X}_i \tilde{X}_j | \mathbf{G}_{-(i,j)}) \log \Big(\sum_{\tilde{x}_i', \tilde{x}_j'} p_{\lambda}(g_{i,j} | \tilde{x}_i' \tilde{x}_j') p_{(\tilde{X}_i, \tilde{X}_j) | \mathbf{G}_{-(i,j)}} (\tilde{x}_i', \tilde{x}_j' | \mathbf{G}_{-(i,j)}) \Big) \Big] \\ &= \mathbb{E} \Big[\mathbb{E} (\tilde{X}_i \tilde{X}_j | \mathbf{G}_{-(i,j)}) \log \Big(\frac{\sum_{\tilde{x}_i', \tilde{x}_j'} p_{\lambda}(1 | \tilde{x}_i' \tilde{x}_j') p_{(\tilde{X}_i, \tilde{X}_j) | \mathbf{G}_{-(i,j)}} (\tilde{x}_i', \tilde{x}_j' | \mathbf{G}_{-(i,j)})}{\sum_{\tilde{x}_i', \tilde{x}_j'} p_{\lambda}(-1 | \tilde{x}_i' \tilde{x}_j') p_{(\tilde{X}_i, \tilde{X}_j) | \mathbf{G}_{-(i,j)}} (\tilde{x}_i', \tilde{x}_j' | \mathbf{G}_{-(i,j)})} \Big) \Big] \end{split}$$

Define $\hat{a}_{i,j} = \mathbb{E}(\tilde{X}_i \tilde{X}_j | \mathbf{G}_{-(i,j)}).$

$$\begin{split} A &= \mathbb{E} \Big[\hat{a}_{i,j} \log \big(\frac{\sum_{\tilde{x}_i',\tilde{x}_j'} \frac{d}{n} (1 + \tilde{x}_i' \tilde{x}_j' \sqrt{\frac{\lambda}{d}}) p_{(\tilde{X}_i,\tilde{X}_j)|\mathbf{G}_{-(i,j)}}(\tilde{x}_i', \tilde{x}_j'|\mathbf{G}_{-(i,j)})}{\sum_{\tilde{x}_i',\tilde{x}_j'} (1 - \frac{d}{n} (1 + \tilde{x}_i' \tilde{x}_j' \sqrt{\frac{\lambda}{d}})) p_{(\tilde{X}_i,\tilde{X}_j)|\mathbf{G}_{-(i,j)}}(\tilde{x}_i', \tilde{x}_j'|\mathbf{G}_{-(i,j)})} \big) \Big] \\ &= \mathbb{E} \Big[\hat{a}_{i,j} \log \big(\frac{\frac{d}{n} (1 + \hat{a}_{i,j} \sqrt{\frac{\lambda}{d}})}{1 - \frac{d}{n} (1 + \hat{a}_{i,j} \sqrt{\frac{\lambda}{d}})} \big) \Big] = \mathbb{E} \Big[\hat{a}_{i,j} \Big(\log \frac{d}{n} + \epsilon \hat{a}_{i,j} + O(\epsilon^2) + O(\frac{d}{n}) \Big) \Big] \end{split}$$

 $\mathbb{E}\hat{a}_{i,j} = \mathbb{E}\tilde{X}_i\tilde{X}_j = (\mathbb{E}\tilde{X}_1)^2 = 0 \text{ therefore } A = \epsilon \mathbb{E}\hat{a}_{i,j}^2 + O(\epsilon^2 + \tfrac{d}{n}). \text{ By replacing } A \text{ and } B \text{ in (48), we have } A = \epsilon \mathbb{E}\hat{a}_{i,j}^2 + O(\epsilon^2 + \tfrac{d}{n}).$

$$\frac{\partial H(\mathbf{X}|\mathbf{G})}{\partial \lambda} = \frac{1}{2n} \epsilon^{-1} \sum_{i < j} \left(\epsilon \mathbb{E} \hat{a}_{i,j}^2 + O(\epsilon^2) + O(\frac{d}{n}) \right) - \frac{1}{2n} \epsilon^{-1} \sum_{i < j} \left(\epsilon + O(\epsilon^2) + O(\frac{d^2}{n^2}) \right)$$

$$= \frac{1}{2n} \sum_{i < j} \left(\mathbb{E} \hat{a}_{i,j}^2 - 1 \right) + O(n\epsilon) + O(d^{1/2} \lambda^{-1/2} + d^{3/2} n^{-1} \lambda^{-1/2}) \tag{49}$$

Define $a_{i,j} = \mathbb{E}(\tilde{X}_i \tilde{X}_j | \mathbf{G})$. Using Bayes rule, we have

$$p(\tilde{x}_i, \tilde{x}_j | \mathbf{G}) = \frac{p(G_{i,j} | \tilde{x}_i \tilde{x}_j) p(\tilde{x}_i, \tilde{x}_j | \mathbf{G}_{-(i,j)})}{\sum_{\tilde{x}_i', \tilde{x}_j'} p(G_{i,j} | \tilde{x}_i' \tilde{x}_j') p(\tilde{x}_i', \tilde{x}_j' | \mathbf{G}_{-(i,j)})}$$

If $G_{i,j} = 1$, then

$$p(\tilde{x}_i, \tilde{x}_j | \mathbf{G}) = \frac{\frac{d}{n}(1 + \tilde{x}_i \tilde{x}_j \epsilon) p(\tilde{x}_i, \tilde{x}_j | \mathbf{G}_{-(i,j)})}{\sum_{\tilde{x}_i', \tilde{x}_j'} \frac{d}{n}(1 + \tilde{x}_i' \tilde{x}_j' \epsilon) p(\tilde{x}_i', \tilde{x}_j' | \mathbf{G}_{-(i,j)})} = \frac{(1 + \epsilon \tilde{x}_i \tilde{x}_j) p(\tilde{x}_i, \tilde{x}_j | \mathbf{G}_{-(i,j)})}{1 + \epsilon \hat{a}_{i,j}}$$

Thus

$$a_{i,j} = \frac{\hat{a}_{i,j} + \epsilon \mathbb{E}((\tilde{X}_i \tilde{X}_j)^2 | \mathbf{G}_{-(i,j)})}{1 + \epsilon \hat{a}_{i,j}} = \hat{a}_{i,j} + O(\epsilon)$$

If $G_{i,j} = -1$,

$$p(\tilde{x}_i, \tilde{x}_j | \mathbf{G}) = \frac{(1 - \frac{d}{n}(1 + \tilde{x}_i \tilde{x}_j \epsilon))p(\tilde{x}_i, \tilde{x}_j | \mathbf{G}_{-(i,j)})}{1 - \sum_{\tilde{x}_i', \tilde{x}_i'} \frac{d}{n}(1 + \tilde{x}_i' \tilde{x}_j' \epsilon)p(\tilde{x}_i', \tilde{x}_j' | \mathbf{G}_{-(i,j)})} = (1 - \frac{d}{n}(1 + \tilde{x}_i \tilde{x}_j \epsilon))p(\tilde{x}_i, \tilde{x}_j | \mathbf{G}_{-(i,j)}) + O(\frac{d}{n})$$

Therefore $a_{i,j} = \hat{a}_{i,j} + O(\frac{d}{n})$. Equation (49) becomes then

$$\frac{\partial H(\mathbf{X}|\mathbf{G})}{\partial \lambda} = \frac{1}{2n} \sum_{i < j} \left(\mathbb{E}a_{i,j}^2 - 1 \right) + O(n\epsilon + d) + O(d^{1/2}\lambda^{-1/2} + d^{3/2}n^{-1}\lambda^{-1/2})
= -\frac{1}{2n} \sum_{i < j} \mathbb{E}\left((\tilde{X}_i \tilde{X}_j - \mathbb{E}(\tilde{X}_i \tilde{X}_j | \mathbf{G}))^2 \right) + O(n\epsilon + d + d^{1/2}\lambda^{-1/2} + d^{3/2}n^{-1}\lambda^{-1/2})$$
(50)

Decomposing $I(\mathbf{X}; \mathbf{G}) = H(\mathbf{X}) - H(\mathbf{X}|\mathbf{G})$ we obtain the desired result.

Consequently, if one consider a sufficiently large d (in order to apply Corollary 56) and one integrate equation (44) from 0 to $\lambda > 0$, and let n tend to infinity,

$$\limsup_{n \to \infty} \left| \int_0^{\lambda} \text{MMSE}_n^G(\lambda') d\lambda' - \left(\frac{\lambda}{4} - \Phi_g(\lambda)\right) \right| \le C\lambda d^{-1/2} + C'\epsilon \le K\epsilon \tag{51}$$

for some constant (depending on λ but not on d) K > 0.

Proposition 65

For
$$\lambda < \lambda_c(p)$$

$$\lim_{d \to \infty} \liminf_{n \to \infty} \text{MMSE}_n^G(\lambda) = 1$$
For $\lambda > \lambda_c(p)$

$$\lim_{d \to \infty} \lim_{n \to \infty} \text{sup MMSE}_n^G(\lambda) < 1$$
(52)

Proof. This is a consequence of equation (51) and the definition of $\lambda_c(p)$. We will show (52) first. Φ_g is continuous, $\Phi_g(0) = 0$ and for almost every $\lambda \in]0, \lambda_c[$, $\Phi_g'(\lambda) = 0$. Therefore $\Phi_g(\lambda_c) = 0$. Equation (51) gives then $\limsup_{n\to\infty} |\int_0^{\lambda_c} \frac{1}{4} \mathrm{MMSE}_n^G(\lambda) d\lambda - \frac{\lambda_c}{4}| \leq K\epsilon$, which gives

$$\limsup_{n \to \infty} \int_0^{\lambda_c} |1 - \text{MMSE}_n^G(\lambda)| d\lambda \le 4K \sqrt{\frac{\lambda_c}{d}}$$

because $\mathrm{MMSE}_n^G(\lambda) \leq 1$. Equation (52) follows.

Equation (53) is proved analogously. If $\limsup_{d\to\infty}\limsup_{n\to\infty}\mathrm{MMSE}_n^G(\lambda_0)=1$ for some $\lambda_0>\lambda_c$, then $\limsup_{d\to\infty}\limsup_{n\to\infty}|\int_0^{\lambda_0}\frac{1}{4}\mathrm{MMSE}_n^G(\lambda)d\lambda-\frac{\lambda_0}{4}|=0$ which implies (by equation (51)) that $\Phi_g(\lambda_0)=0$. This is absurd because $\Phi_g(\lambda_c)=0$ and Φ_g is strictly increasing on $]\lambda_c,\lambda_0[$.

The following two lemmas will be useful to make the link between the MMSE and the overlap.

Lemma 66

Let $n \in \mathbb{N}^*$. Let (A_1, A_2) and (B_1, B_2) be two partitions of $\{1, \ldots, n\}$. Then

$$#A_1 \cap B_1 - \frac{1}{n} #A_1 #B_1 = #A_2 \cap B_2 - \frac{1}{n} #A_2 #B_2$$
(54)

$$#A_1 \cap B_1 - \frac{1}{n} #A_1 #B_1 = -\left(#A_1 \cap B_2 - \frac{1}{n} #A_1 #B_2\right)$$
(55)

Proof. We prove (54) first. Remark that $\#A_2 \cap B_2 = \#B_2 - (\#A_1 - \#B_1 \cap A_1)$ and $\#A_2 \#B_2 = n^2 - n(\#A_1 + \#B_1) + \#A_1 \#B_1$. So that

$$#A_1 \cap B_1 - \frac{1}{n} #A_1 #B_1 = #A_2 \cap B_2 - \frac{1}{n} #A_2 #B_2 + #B_2 - #A_1 - n + #A_1 + #B_1$$
$$= #A_2 \cap B_2 - \frac{1}{n} #A_2 #B_2$$

To prove (55), write $\#A_1 \cap B_1 = \#A_1 - \#A_1 \cap B_2$. Thus

$$\#A_1 \cap B_1 - \frac{1}{n} \#A_1 \#B_1 = \#A_1 - \#A_1 \cap B_2 - \frac{1}{n} \#A_1 (n - \#B_2) = -\left(\#A_1 \cap B_2 - \frac{1}{n} \#A_1 \#B_2\right)$$

Lemma 67

Let $\mathbf{x}=(x_1,\ldots,x_n)\in\{1,2\}^n$. Recall that $\tilde{\mathbf{x}}=(\phi_p(x_1),\ldots,\phi_p(x_n))$ where $\phi_p(1)=\sqrt{\frac{1-p}{p}}$ and $\phi_p(2)=-\sqrt{\frac{p}{1-p}}$. Then

$$\frac{1}{n} \Big| \sum_{i=1}^{n} \tilde{X}_{i} \tilde{x}_{i} \Big| = \frac{1}{2p(1-p)} \text{overlap}(\mathbf{x}, \mathbf{X}) + O\Big(\left| \frac{S_{1}(\mathbf{X})}{n} - p \right| + \left| \frac{S_{2}(\mathbf{X})}{n} - (1-p) \right| \Big)$$

Proof.

$$\frac{1}{n} \left| \sum_{i=1}^{n} \tilde{X}_{i} \tilde{x}_{i} \right| = \frac{1}{n} \left| \frac{1-p}{p} \# S_{1}(\mathbf{x}) \cap S_{1}(\mathbf{X}) + \frac{p}{1-p} \# S_{2}(\mathbf{x}) \cap S_{2}(\mathbf{X}) - (n-\#S_{1}(\mathbf{x}) \cap S_{1}(\mathbf{X}) - \#S_{2}(\mathbf{x}) \cap S_{2}(\mathbf{X})) \right| \\
= \frac{1}{n} \left| \frac{1}{p} \# S_{1}(\mathbf{x}) \cap S_{1}(\mathbf{X}) + \frac{1}{1-p} \# S_{2}(\mathbf{x}) \cap S_{2}(\mathbf{X}) - n \right| \\
= \frac{1}{n} \left| \frac{1}{p} (\# S_{1}(\mathbf{x}) \cap S_{1}(\mathbf{X}) - p \# S_{1}(\mathbf{x})) + \frac{1}{1-p} (\# S_{2}(\mathbf{x}) \cap S_{2}(\mathbf{X}) - (1-p) \# S_{2}(\mathbf{x})) \right| \\
= \frac{1}{n} \left| \frac{1}{p} (\# S_{1}(\mathbf{x}) \cap S_{1}(\mathbf{X}) - \frac{1}{n} \# S_{1}(\mathbf{X}) \# S_{1}(\mathbf{x})) + \frac{1}{1-p} (\# S_{2}(\mathbf{x}) \cap S_{2}(\mathbf{X}) - \frac{1}{n} \# S_{2}(\mathbf{X}) \# S_{2}(\mathbf{x})) \right| \\
+ O\left(\frac{S_{1}(\mathbf{x})}{pn} |p - \frac{S_{1}(\mathbf{X})}{n}| + \frac{S_{2}(\mathbf{x})}{(1-p)n} |(1-p) - \frac{S_{2}(\mathbf{X})}{n}| \right)$$

Using Lemma 66, one obtain then

$$\frac{1}{n} \Big| \sum_{i=1}^{n} \tilde{X}_i \tilde{x}_i \Big| = \frac{1}{2p(1-p)} \text{overlap}(\mathbf{x}, \mathbf{X}) + O(\left| \frac{S_1(\mathbf{X})}{n} - p \right| + \left| \frac{S_2(\mathbf{X})}{n} - (1-p) \right|)$$

We are now going to prove Theorem 9. Remark that

$$MMSE_n^G(\lambda) = \frac{2}{n(n-1)} \sum_{i < j} \mathbb{E} \left(\tilde{X}_i \tilde{X}_j - \mathbb{E} (\tilde{X}_i \tilde{X}_j | \mathbf{G}) \right)^2$$
$$= \frac{2}{n(n-1)} \sum_{i < j} \mathbb{E} \left(1 - (\mathbb{E} (\tilde{X}_i \tilde{X}_j | \mathbf{G}))^2 \right)$$

We will denote $\langle \cdot \rangle_G$ the expectation with respect to the posterior distribution $\mathbb{P}(.|\mathbf{G})$. We have then $\mathbb{E}(\mathbb{E}(\tilde{X}_i\tilde{X}_j|\mathbf{G})^2) = \mathbb{E}\langle \tilde{X}_i\tilde{X}_j\tilde{x}_i\tilde{x}_j\rangle_G$, where \tilde{x} is sampled, conditionally to \mathbf{G} , from $\mathbb{P}(.|\mathbf{G})$. Thus

$$MMSE_n^G(\lambda) = 1 - \frac{1}{n^2} \sum_{i,j} \mathbb{E}\langle \tilde{X}_i \tilde{X}_j \tilde{x}_i \tilde{x}_j \rangle_G + o(1) = 1 - \mathbb{E}\left\langle \left(\frac{1}{n} \sum_{i=1}^n \tilde{X}_i \tilde{x}_i\right)^2 \right\rangle_G + o(1)$$
 (56)

Suppose $\lambda > \lambda_c$. Then (56) and Proposition 65 imply

$$\liminf_{d \to \infty} \liminf_{n \to \infty} \mathbb{E} \langle | \frac{1}{n} \sum_{i=1}^{n} \tilde{x}_i \tilde{X}_i | \rangle_G > 0$$

Using Lemma 67, this gives

$$\liminf_{d \to \infty} \liminf_{\mathbf{x} \to \infty} \mathbb{E} \langle \operatorname{overlap}(\mathbf{x}, \mathbf{X}) \rangle_G > 0$$

where \mathbf{x} is sampled according to the posterior distribution of \mathbf{X} . Sampling from the posterior distribution $\mathbb{P}(\mathbf{X} = .|\mathbf{G})$ provides thus an estimator that achieves a non zero overlap: the community detection problem is solvable.

Suppose now $\lambda < \lambda_c$. Suppose that the community detection problem is solvable. There is therefore an estimator **a** that achieves a non zero overlap. Lemma 67 gives then

$$\alpha := \liminf_{d \to \infty} \liminf_{n \to \infty} \frac{1}{n} \mathbb{E} |\sum_{i=1}^{n} \tilde{X}_{i} \tilde{a}_{i}| > 0$$

Compute now for $\delta \in (0,1]$

$$\frac{2}{n(n-1)} \sum_{i < j} \mathbb{E}(\tilde{X}_i \tilde{X}_j - \delta \tilde{a}_i \tilde{a}_j)^2 = \frac{1}{n^2} \sum_{i,j} \mathbb{E}(\tilde{X}_i \tilde{X}_j - \delta \tilde{a}_i \tilde{a}_j)^2 + o(1)$$

$$= \frac{1}{n^2} \sum_{i \neq j} \mathbb{E}(\tilde{X}_i^2 \tilde{X}_j^2) + O(\delta^2) - \frac{2\delta}{n^2} \mathbb{E}(\sum_{i=1}^n \tilde{X}_i \tilde{a}_i)^2 + o(1)$$

$$\leq 1 + O(\delta^2) - 2\delta \left(\frac{1}{n} \mathbb{E}|\sum_{i=1}^n \tilde{X}_i \tilde{a}_i|\right)^2 + o(1)$$

So that

$$\liminf_{d\to\infty} \liminf_{n\to\infty} \mathrm{MMSE}_n^G(\lambda) \leq \liminf_{d\to\infty} \liminf_{n\to\infty} \frac{2}{n(n-1)} \sum_{i< j} \mathbb{E}(\tilde{X}_i \tilde{X}_j - \delta \tilde{a}_i \tilde{a}_j)^2 = 1 - 2\delta\alpha^2 + O(\delta^2)$$

The right-hand side will be strictly inferior to 1 for δ sufficiently small. This is contradictory with Proposition 65 (recall that $\lambda < \lambda_c$). The community detection problem is not solvable. Theorem 9 is proved.

References

- [1] Michael Aizenman, Robert Sims, and Shannon L Starr. Extended variational principle for the sherrington-kirkpatrick spin-glass model. *Physical Review B*, 68(21):214403, 2003.
- [2] Jinho Baik, Gérard Ben Arous, and Sandrine Péché. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. *Annals of Probability*, pages 1643–1697, 2005.
- [3] Afonso S Bandeira, Nicolas Boumal, and Amit Singer. Tightness of the maximum likelihood semidefinite relaxation for angular synchronization. arXiv preprint arXiv:1411.3272, 2014.

- [4] Jess Banks, Cristopher Moore, Roman Vershynin, and Jiaming Xu. Information-theoretic bounds and phase transitions in clustering, sparse pca, and submatrix localization. arXiv preprint arXiv:1607.05222, 2016.
- [5] Jean Barbier, Mohamad Dia, Nicolas Macris, Florent Krzakala, Thibault Lesieur, and Lenka Zdeborova. Mutual information for symmetric rank-one matrix estimation: A proof of the replica formula. arXiv preprint arXiv:1606.04142, 2016.
- [6] Florent Benaych-Georges and Raj Rao Nadakuditi. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. *Advances in Mathematics*, 227(1):494–521, 2011.
- [7] Charles Bordenave, Marc Lelarge, and Laurent Massoulié. Non-backtracking spectrum of random graphs: community detection and non-regular ramanujan graphs. In *Foundations of Computer Science* (FOCS), 2015 IEEE 56th Annual Symposium on, pages 1347–1357. IEEE, 2015.
- [8] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A nonasymptotic theory of independence. Oxford university press, 2013.
- [9] Francesco Caltagirone, Marc Lelarge, and Léo Miolane. Recovering asymmetric communities in the stochastic block model. arXiv preprint arXiv:1610.03680, 2016.
- [10] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. *Physical Review E*, 84(6):066106, 2011.
- [11] Yash Deshpande, Emmanuel Abbe, and Andrea Montanari. Asymptotic mutual information for the two-groups stochastic block model. arXiv preprint arXiv:1507.08685, 2015.
- [12] Yash Deshpande and Andrea Montanari. Information-theoretically optimal sparse pca. In 2014 IEEE International Symposium on Information Theory, pages 2197–2201. IEEE, 2014.
- [13] Delphine Féral and Sandrine Péché. The largest eigenvalue of rank one deformation of large wigner matrices. Communications in mathematical physics, 272(1):185–228, 2007.
- [14] Francesco Guerra. Broken replica symmetry bounds in the mean field spin glass model. *Communications in mathematical physics*, 233(1):1–12, 2003.
- [15] Dongning Guo, Shlomo Shamai, and Sergio Verdú. Mutual information and minimum mean-square error in gaussian channels. *IEEE Transactions on Information Theory*, 51(4):1261–1282, 2005.
- [16] Bruce Hajek, Yihong Wu, and Jiaming Xu. Information limits for recovering a hidden community. arXiv preprint arXiv:1509.07859, 2015.
- [17] Satish Babu Korada and Andrea Montanari. Applications of the lindeberg principle in communications and statistical learning. *IEEE Transactions on Information Theory*, 57(4):2440–2450, 2011.
- [18] Florent Krzakala, Jiaming Xu, and Lenka Zdeborová. Mutual information in rank-one matrix estimation. arXiv preprint arXiv:1603.08447, 2016.
- [19] Thibault Lesieur, Florent Krzakala, and Lenka Zdeborová. MMSE of probabilistic low-rank matrix estimation: Universality with respect to the output channel. In 53rd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2015, Allerton Park & Retreat Center, Monticello, IL, USA, September 29 October 2, 2015, pages 680–687. IEEE, 2015.
- [20] Thibault Lesieur, Florent Krzakala, and Lenka Zdeborová. Phase transitions in sparse PCA. In *IEEE International Symposium on Information Theory, ISIT 2015, Hong Kong, China, June 14-19, 2015*, pages 1635–1639. IEEE, 2015.
- [21] Cyril Méasson, Andrea Montanari, Tom Richardson, and Rudiger Urbanke. The generalized area theorem and some of its consequences. arXiv preprint cs/0511039, 2005.
- [22] Paul Milgrom and Ilya Segal. Envelope theorems for arbitrary choice sets. *Econometrica*, 70(2):583–601, 2002.

- [23] Andrea Montanari. Estimating random variables from random sparse observations. European Transactions on Telecommunications, 19(4):385–403, 2008.
- [24] Andrea Montanari. Finding one community in a sparse graph. *Journal of Statistical Physics*, 161(2):273–299, 2015.
- [25] Joe Neeman and Praneeth Netrapalli. Non-reconstructability in the stochastic block model. arXiv preprint arXiv:1404.6304, 2014.
- [26] Dmitry Panchenko. The Sherrington-Kirkpatrick model. Springer Science & Business Media, 2013.
- [27] Amelia Perry, Alexander S Wein, Afonso S Bandeira, and Ankur Moitra. Optimality and sub-optimality of pca for spiked random matrices and synchronization. arXiv preprint arXiv:1609.05573, 2016.
- [28] Alaa Saade, Marc Lelarge, Florent Krzakala, and Lenka Zdeborová. Spectral detection in the censored block model. In 2015 IEEE International Symposium on Information Theory (ISIT), pages 1184–1188. IEEE, 2015.
- [29] Alaa Saade, Marc Lelarge, Florent Krzakala, and Lenka Zdeborová. Clustering from sparse pairwise measurements. arXiv preprint arXiv:1601.06683, 2016.
- [30] Michel Talagrand. Mean field models for spin glasses: Volume I: Basic examples, volume 54. Springer Science & Business Media, 2010.
- [31] Michel Talagrand. Mean field models for spin glasses: Volume II: Advanced Replica-Symmetry and Low Temperature, volume 55. Springer Science & Business Media, 2011.