

IRF6641TRPbF

Features

- Latest MOSFET silicon technology
- Key parameters optimized for Class-D audio amplifier applications
- Low R_{DS(on)} for improved efficiency
- Low Qg for better THD and improved efficiency
- · Low Qrr for better THD and lower EMI
- Low package stray inductance for reduced ringing and lower FMI
- Can deliver up to 400 W per channel into 8Ω load in half-bridge configuration amplifier
- Dual sided cooling compatible
- · Compatible with existing surface mount technologies
- · RoHS compliant, halogen-free
- Lead-free (qualified up to 260°C reflow)

Key Parameters						
V _{DS}	200	V				
$R_{DS(ON)}$ typ. @ V_{GS} = 10V	51	mΩ				
Qg typ.	34	nC				
R _{G(int)} typ.	1.0	Ω				

Applicable DirectFET Outline and Substrate Outline (see p.6, 7 for details)

SQ	SX	ST	SH	MQ	MX	MT	MN	MZ	

Description

This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, gate charge, body-diode reverse recovery and internal gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD, and EMI.

The IRF6641PbF device utilizes DirectFET® packaging technology. DirectFET® packaging technology offers lower parasitic inductance and resistance when compared to conventional wirebonded SOIC packaging. Lower inductance improves EMI performance by reducing the voltage ringing that accompanies fast current transients. The DirectFET® package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing method and processes. The DirectFET® package also allows dual sided cooling to maximize thermal transfer in power systems, improving thermal resistance and power dissipation. These features combine to make this MOSFET a highly efficient, robust and reliable device for Class-D audio amplifier applications.

Base part number	Package Type	Standard P	ack	Orderable Part Number
		Form	Quantity	
IRF6641PbF	DirectFET Medium Can	Tape and Reel	4800	IRF6641TRPbF

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{GS}	Gate-to-Source Voltage	±20	V
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	26	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	4.6	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	3.7	Α
I _{DM}	Pulsed Drain Current ①	37	
P _D @T _C = 25°C	Power Dissipation	89	
P _D @T _A = 25°C	Power Dissipation ③	2.8	W
P _D @T _A = 70°C	Power Dissipation ③	1.8	
E _{AS}	Single Pulse Avalanche Energy ②	46	mJ
I _{AR}	Avalanche Current ①	11	А
	Linear Derating Factor	0.022	W/°C
TJ	Operating Junction and	-40 to + 150	°C
T_{STG}	Storage Temperature Range		

Notes ① through ⑨ are on page 9

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		45	
$R_{ heta JA}$	Junction-to-Ambient ®	12.5		
$R_{ heta JA}$	Junction-to-Ambient ⑦	20		°C/W
$R_{\theta JC}$	Junction-to-Case ® 9		1.4	
$R_{\theta J\text{-PCB}}$	Junction-to-PCB Mounted	1.0		

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.23		V/°C	Reference to 25°C, I _D = 1.0mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		51	59.9	mΩ	$V_{GS} = 10V, I_D = 5.5A $ ④
$V_{GS(th)}$	Gate Threshold Voltage	3.0	4.0	4.9	V	$V_{DS} = V_{GS}, I_{D} = 150 \mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-11		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 200V, V_{GS} = 0V$
				250		$V_{DS} = 160V, V_{GS} = 0V, T_J = 125^{\circ}C$
I_{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V

Dynamic @ T_J = 25°C (unless otherwise specified)

gfs	Forward Transconductance	13			S	$V_{DS} = 10V, I_{D} = 5.5A$
		10	0.4	40		V DS - 10 V, 10 - 3.3A
Q_g	Total Gate Charge		34	48		
Q_{gs1}	Pre-VthGate-to-Source Charge		8.7			$V_{DS} = 100V$
Q_{gs2}	Post-Vth Gate-to-Source Charge		1.9		nC	$V_{GS} = 10V$
Q_{gd}	Gate-to-Drain Charge		9.5	14		$I_{D} = 5.5A$
Q_{godr}	Gate Charge Overdrive		14			
Q _{sw}	Switch Charge (Q _{gs2} + Q _{gd})		11			V _{DS} = 16V, V _{GS} = 0V
$t_{d(on)}$	Turn-On Delay Time		16			$V_{DD} = 100 V, V_{GS} = 10 V$
t_r	Rise Time		11		ns	$I_D = 5.5A$
$t_{d(off)}$	Turn-Off Delay Time		31			$R_G = 6.2\Omega$
t_f	Fall Time		6.5			
C _{iss}	Input Capacitance		2290			$V_{GS} = 0V$
Coss	Output Capacitance		240			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		46		рF	f = 1.0MHz
C _{oss}	Output Capacitance		1780			V_{GS} =0V, V_{DS} =1.0V, f =1.0MHz
Coss	Output Capacitance		100			V _{GS} =0V, V _{DS} =160V, <i>f</i> =1.0MHz

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			26	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			37		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C$, $I_S = 5.5A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		85	130	ns	$T_J = 25^{\circ}C$, $I_F = 5.5A$, $V_{DD} = 100V$
Q _{rr}	Reverse Recovery Charge		320	480	nC	di/dt = 100A/µs ④

www.irf.com © 2013 International Rectifier July 1, 2013

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 6. Typical Gate Charge vs Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 9. Maximum Drain Current vs. Ambient Temperature

Fig 8. Maximum Safe Operating Area

Fig 10. Typical Threshold Voltage vs. Junction Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 3

www.irf.com

Fig 12. Typical On-Resistance vs. Gate Voltage

Fig 15a. Unclamped Inductive Test Circuit

Fig 15b. Unclamped Inductive Waveforms

Fig 16a. Switching Time Test Circuit

Fig 13. Typical On-Resistance vs. Drain Current

Fig 14. Maximum Avalanche Energy vs. Drain Current

Fig 16b. Switching Time Waveforms

Fig 17a. Gate Charge Test Circuit

Fig 17b. Gate Charge Waveform

Fig 18. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

DirectFET® Substrate and PCB Layout, MZ Outline (Medium Size Can, Z-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

DirectFET® Outline Dimension, MZ Outline (Medium Size Can, D-Designation).

Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs.

DirectFET® Part Marking

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

DirectFET® Tape & Reel Dimension (Showing component orientation).

DIMENSIONS							
	ME	TRIC	IMPERIAL				
CODE	MIN	MAX	MIN	MAX			
Α	7.90	8.10	0.311	0.319			
В	3.90	4.10	0.154	0.161			
С	11.90	12.30	0.469	0.484			
D	5.45	5.55	0.215	0.219			
E	5.10	5.30	0.201	0.209			
F	6.50	6.70	0.256	0.264			
G	1.50	N.C	0.059	N.C			
Н	1.50	1.60	0.059	0.063			

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6641TRPBF). For 1000 parts on 7"

	REEL DIMENSIONS								
S ⁻	TANDARI	OPTION	(QTY 48	00)	TR	1 OPTION	(QTY 10	00)	
	ME	TRIC	IMP	ERIAL	ME	TRIC	IMP	ERIAL	
CODE	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
Α	330.0	N.C	12.992	N.C	177.77	N.C	6.9	N.C	
В	20.2	N.C	0.795	N.C	19.06	N.C	0.75	N.C	
С	12.8	13.2	0.504	0.520	13.5	12.8	0.53	0.50	
D	1.5	N.C	0.059	N.C	1.5	N.C	0.059	N.C	
Е	100.0	N.C	3.937	N.C	58.72	N.C	2.31	N.C	
F	N.C	18.4	N.C	0.724	N.C	13.50	N.C	0.53	
G	12.4	14.4	0.488	0.567	11.9	12.01	0.47	N.C	
Н	11.9	15.4	0.469	0.606	11.9	12.01	0.47	N.C	

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

Qualification Level	Consumer ^{††} (per JEDEC JESD47F) ^{†††}					
Moisture Sensitivity Level	DirectFET	MSL1 (per JEDEC J-STD-020D ^{†††)}				
RoHS Compliant	Yes					

- Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.77mH, $R_G = 25\Omega$, $I_{AS} = 11$ A.
- 3 Surface mounted on 1 in. square Cu board.
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- © Coss eff. is a fixed capacitance that gives the same charging time as Coss while V_{DS} is rising from 0 to 80% V_{DSS}.
- © Used double sided cooling, mounting pad with large heatsink.
- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- ® T_C measured with thermal couple mounted to top (Drain) of part.
- R_θ is measured at T_J of approximately 90°C.

International IOR Rectifier

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/

Revision History

Date	Comments
06/28/2013	Added the Consumer qualification level information, on page 9.
05/17/2013	 Converted the data sheet to Class-D Audio formatting template. No change in electrical parameters.

10 <u>www.irf.com</u> © 2013 International Rectifier July 1, 2013

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.