

Joint Coarse-and-Fine Reasoning For Deep Optical Flow

Victor Vaquero, German Ros Francesc Moreno-Noguer, Antonio M. Lopez, Alberto Sanfeliu

Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain Universitat Autonoma de Barcelona, Campus UAB, Barcelona, Spain Computer Vision Center, Campus UAB, Barcelona, Spain Toyota Research Institute, Palo Alto, USA

General Idea & Fundamentals

- Typically CNN-Based learning solutions: Classification [1] or Regression tasks [2]
- We present a novel joint Coarse-and-Fine reasoning for dense pixel-wise estimation tasks:

Coarse general rough solution over a discrete classification space Fine details of the solution are obtained over a continuous regression space

- We prove that estimate both components jointly is beneficial for improving accuracy
- Our architecture treats the fine estimation as a refinement built on top of the coarse one
- We apply our approach to the optical flow estimation challenging problem and validate it against state-of-the-art CNN-based solutions trained from scratch and tested on large optical flow datasets
- First totally CNN-based optical flow approach introduced in FlowNet [2]. Updated in FlowNet-2 [3]
- Residual blocks has proven to yield a notorious improvement in speed and accuracy [4]

Approach

- We define a basic Optical Flow architecture as combination of blocks G_α(•) and F_α(•)
- Initially, for an RGB image $\mathcal{X} \in \mathbb{R}^{HxWx3}$ \Rightarrow $F_{\theta}(\mathcal{X})$, extracts features from the image, based on [2]
- Then, $G_{P}(F_{P}(\mathcal{X})) = \hat{y} \in \mathbb{R}^{HxWx2}$ transforms these features into Optical Flow predictions.
- Our $G_{\rho}(\cdot)$ generates to branched predictions: \hat{y}^{reg} & \hat{y}^{class} solving respectively the regression and classification tasks.
- Final Coarse-and-Fine Loss: $\mathcal{L}_{CaF}(\hat{y},y) = \mathcal{L}_{coarse}(\hat{y}^{class},y^{class}) + \lambda \mathcal{L}_{fine}(\hat{y}^{reg},y^{reg})$

Classification Problem

 $\bullet \text{ K classes: } I_k = \left\{ \begin{array}{ll} (-\infty, \ C_1 + \delta/2) \,, & \text{if } \ k = 1 \\ [C_k - \delta/2, \ C_k + \delta/2) \,, & \text{if } \ 1 < k < K \\ [C_K - \delta/2, +\infty) \,, & \text{if } \ k = K \end{array} \right.$

Weighted Cross Entropy Loss:

$$\mathcal{L}_{WCE} = -\sum_{i,i,k}^{H,W,K} \omega(y_{i,j}^{class}) Id_{[y_{i,j}^{class}]}(log(\hat{y}_{i,j,k}^{class}))$$

Experiments & Results

Three Different experimental configurations:

Regression Baseline:

- Regression-Only loss (Mean Square Error)
- Explicit classification part is deactivated
- FlowNet like architecture

Classification Baseline:

- Classification-Only loss (Weighted Cross Entropy)
- Explicit regression part is deactivated
- Horizontal and Vertical classification decomposition

Full Approach:

- Combined Coarse-and-Fine loss activated
- Experimented with {5,21,41} classes
- Up to 16% of improvement wrt baselines

Ĭ	F.Chairs	Sintel Train		Sintel Test	
	Validation	Clean	Final	Clean	Final
Regression	3.78 (100)	6.93 (100)	7.66 (100)	9.98 (100)	10.72 (100)
Class-5c	6.99 (184.7)	9.66 (139.4)	10.20 (133.1)	13.11 (131.3)	13.54 (126.3)
Class-21c	4.06 (107.3)	7.91 (114.1)	8.50 (110.9)	10.70 (107.1)	11.34 (105.8)
Class-41c	3.81 (100.7)	7.69 (110.87)	8.38 (109.3)	10.66 (106.7)	11.53 (107.5)
CaF-5c	3.55 (93.8)	6.85 (98.8)	7.54 (98.5)	9.98 (99.9)	10.69 (99.7)
CaF-21c	3.44 (90.9)	6.76 (97.5)	7.43 (96.9)	9.88 (98.9)	10.53 (98.2)
CaF-41c	3.47 (91.7)	6.75 (97.4)	7.39 (96.4)	9.77 (97.8)	10.48 (97.7)
CaF-Full-5c	3.25 (85.8)	6.85 (98.84)	7.72 (100.7)	9.74 (97.5)	10.51 (98.1)
CaF-Full-21c	3.23 (85.3)	6.75 (97.34)	7.59 (99.0)	9.57 (95.8)	10.28 (95.9)
CaF-Full-41c	3.18 (84.0)	6.51 (93.84)	7.28 (95.0)	9.42 (94.3)	10.18 (95.0)

Bibliography:

[1] J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in The IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2015.

[2] A. Dosovitskiy, P. Fischer, E. Ilg, P. Caner Hazirbas, V. Golkov, P. van der Smagt, D. Cremers, and T.Brox, "Flownet: Learning optical flow with convolutional networks," in The IEEE International Conference on Computer Vision (ICCV), 2015.

[3] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy and T. Brox, "FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks", in The IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2017.

[4] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in The IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.

Acknowledgements:
This work was partially supported by European AEROARMS project (H2020-ICT-2014-1-644271) and CICYT projects
ColRobTransp (DPI2016-78957-R), ROBINSTRUCT(TIN2014-58178-R). Authors thank Nvidia for GPU hardware donation.

