EMISSÃO DE CO₂ DO SOLO EM ÁREAS AGRÍCOLAS: ABORDAGEM EM APRENDIZADO DE MÁQUINA ESTATÍSTICO

Autor: Prof. Dr. Alan Rodrigo Panosso (https://www.fcav.unesp.br/#!/alan)

E-mail: alan.panosso@unesp.br (mailto:alan.panosso@unesp.br)

Departamento de Engenharia e Ciências Exatas

UNESP - Câmpus de Jaboticabal

Objetivo

O objetivo do repositório tese-fco2-m1-2023 é promover a transparência, a reprodutibilidade e a colaboração em pesquisa. Você é incentivado a explorar o código-fonte, utilizar os dados e contribuir com melhorias, se desejar. Sinta-se à vontade para entrar em contato caso tenha alguma dúvida ou precise de mais informações sobre minha pesquisa.

Contribuições

Contribuições são bem-vindas! Se você deseja colaborar com melhorias nos códigos, correções de erros ou qualquer outro aprimoramento, sintase à vontade para abrir uma solicitação de pull request.

Licença

Este projeto é licenciado sob MIT License . Consulte o arquivo LICENSE (https://github.com/arpanosso/tese-fco2-ml-2023/blob/master/LICENSE.md) para obter mais detalhes.

Base de dados

Apresentação do pacote fco2r construído para divulgação e análise dos resultados obtidos ao longo de mais de 21 anos de ensaios em campo. Este pacote, permite a visualização dos dados, a execução de análises estatísticas avançadas e a geração de gráficos interativos para tornar os resultados mais acessíveis e compreensíveis para a comunidade científica.

Instalação

Você pode instalar uma versão de desenvolvimento do pacote fco2r a partir do GitHub (https://github.com/) com os seguintes comandos:

```
# install.packages("devtools")
# devtools::install_github("arpanosso/fco2r")
```

Problemas na instalação:

Possíveis problemas na instalação do pacote podem ser sanados com os seguintes comandos:

```
# Sys.getenv("GITHUB_PAT")
# Sys.unsetenv("GITHUB_PAT")
# Sys.getenv("GITHUB_PAT")
```

Carregando os pacotes

```
library(fco2r)
library(tidyverse)
```

```
## Warning: package 'tidyverse' was built under R version 4.4.0
## Warning: package 'dplyr' was built under R version 4.4.0
## -- Attaching core tidyverse packages --
                                                                  ---- tidyverse 2.0.0 --
## \checkmark dplyr 1.1.2 \checkmark readr 2.1.4
## \checkmark forcats 1.0.0 \checkmark stringr 1.5.0
## \checkmark ggplot2 3.4.2 \checkmark tibble 3.2.1
## \checkmark lubridate 1.9.2 \checkmark tidyr 1.3.0
## √ purrr 1.0.1
## -- Conflicts -
                                                       ----- tidyverse conflicts() ---
## X dplyr::filter() masks stats::filter()
## X dplyr::lag() masks stats::lag()
\#\# i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become errors
library (patchwork)
library(ggspatial)
## Warning: package 'ggspatial' was built under R version 4.3.1
library(readxl)
library(skimr)
library(tidymodels)
## -- Attaching packages ----
                                                    ----- tidymodels 1.1.0 --
## \checkmark broom 1.0.4 \checkmark rsample 1.1.1
## / dials 1.2.0 / tune 1.1.1
## / infer 1.0.4 / workflows 1.1.3
## / modeldata 1.1.0 / workflowsets 1.0.1
## / parsnip 1.1.0 / yardstick 1.2.0
## / recipes 1.0.6
## -- Conflicts ---
                                                        ----- tidymodels_conflicts() --
## X scales::discard() masks purrr::discard()
## X dplyr::filter() masks stats::filter()
## X recipes::fixed() masks stringr::fixed()
## X dplyr::lag() masks stats::lag()
## X yardstick::spec() masks readr::spec()
## X recipes::step() masks stats::step()
## • Use tidymodels prefer() to resolve common conflicts.
library(ISLR)
library (modeldata)
library(vip)
## Attaching package: 'vip'
## The following object is masked from 'package:utils':
##
       vi
library(ggpubr)
source("R/graficos.R")
theme_set(theme_bw())
```

Conhecendo a base de dados de emissão de CO₂ do solo

Base proveniente de ensaios de campo.

```
glimpse(data_fco2)
```

```
## Rows: 15,397
## Columns: 39
## $ experimento
                            <chr> "Espacial", "Espacial", "Espacial", "Espacial", "Esp...
## $ data
                              <date> 2001-07-10, 2001-07-10, 2001-07-10, 2001-07-10, 200...
## $ manejo
                              <chr> "convencional", "convencional", "convencional", "con...
                              <chr> "AD_GN", "AD_GN", "AD_GN", "AD_GN", "AD_GN", "AD_GN"...
## $ tratamento
## $ revolvimento_solo <1g1> FALSE, F
## $ conversao
                              <date> 1970-01-01, 1970-01-01, 1970-01-01, 1970-01-01, 197...
## $ cobertura
                              <1gl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE...
                            <chr> "milho soja", "milho soja", "milho soja", "milho soj...
## $ cultura
## $ x
                            <dbl> 0, 40, 80, 10, 25, 40, 55, 70, 20, 40, 60, 10, 70, 3...
## $ y
                              <dbl> 0, 0, 0, 10, 10, 10, 10, 10, 20, 20, 20, 25, 25, 30,...
## $ estado
                           <chr> "SP", "SP", "SP", "SP", "SP", "SP", "SP", "SP", "SP"...
                             <chr> "Jaboticabal", "Jaboticabal", "Jaboticabal", "Jaboti...
## $ municipio
## $ ID
                              <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 1...
                              <chr> "0-0.1", "0-0.1", "0-0.1", "0-0.1", "0-0.1", "0-0.1"...
## $ prof
## $ FCO2
                            <dbl> 1.080, 0.825, 1.950, 0.534, 0.893, 0.840, 1.110, 1.8...
## $ Ts
                              <dbl> 18.73, 18.40, 19.20, 18.28, 18.35, 18.47, 19.10, 18....
## $ Us
                               ## $ pH
                              <dbl> 5.1, 5.1, 5.8, 5.3, 5.5, 5.7, 5.6, 6.4, 5.3, 5.8, 5....
## $ MO
                             <dbl> 20, 24, 25, 23, 23, 21, 26, 23, 25, 24, 26, 20, 25, ...
                              <dbl> 46, 26, 46, 78, 60, 46, 55, 92, 55, 60, 48, 71, 125,...
## $ P
## $ K
                              <dbl> 2.4, 2.2, 5.3, 3.6, 3.4, 2.9, 4.0, 2.3, 3.3, 3.6, 4...
                              <dbl> 25, 30, 41, 27, 33, 38, 35, 94, 29, 36, 37, 29, 50, ...
## $ Ca
## $ Mg
                              <dbl> 11, 11, 25, 11, 15, 20, 16, 65, 11, 17, 15, 11, 30, ...
## $ H_Al
                              <dbl> 31, 31, 22, 28, 27, 22, 22, 12, 31, 28, 28, 31, 18, ...
## $ SB
                              <dbl> 38.4, 43.2, 71.3, 41.6, 50.6, 60.9, 55.0, 161.3, 43....
## $ CTC
                              <dbl> 69.4, 74.2, 93.3, 69.6, 77.9, 82.9, 77.0, 173.3, 74....
## $ V
                            <dbl> 55, 58, 76, 60, 65, 73, 71, 93, 58, 67, 67, 58, 82, ...
## $ Ds
                              ## $ Macro
                              ## $ Micro
                              ## $ VTP
                              ## $ PLA
                              ## $ AT
                               ## $ SILTE
                              ## $ ARG
                              ## $ HLIFS
```

Vamos conhecer, um pouco mais a nossa base de dados.

skimr::skim(data_fco2)

Name	data_fco2
Number of rows	15397
Number of columns	39
Column type frequency:	
character	7
Date	3
logical	2
numeric	27
Group variables	None

Data summary

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
experimento	0	1	8	8	0	2	0
manejo	0	1	6	15	0	10	0
tratamento	0	1	2	10	0	21	0
cultura	0	1	4	14	0	11	0

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
estado	0	1	2	2	0	2	0
municipio	0	1	7	20	0	6	0
prof	0	1	5	7	0	2	0

Variable type: Date

skim_variable	n_missing	complete_rate	min	max	median	n_unique
data	0	1	2001-07-10	2019-12-01	2014-07-12	205
data_preparo	0	1	1986-03-01	2019-04-01	2002-01-01	14
conversao	0	1	1970-01-01	2009-07-03	1986-03-01	11

Variable type: logical

skim_variable	n_missing	complete_rate	mean count	
revolvimento_solo	0	1	0 FAL: 15397	
cobertura	0	1	1 TRU: 15397	

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100	hist
х	0	1.00	1392083.56	2923710.70	0.00	0.00	30.00	100.00	7749472.16	-
у	0	1.00	495854.97	1722529.75	0.00	0.00	27.00	80.00	7630525.47	
longitude_muni	0	1.00	1067926.05	1796771.47	456798.63	458447.46	458447.46	792043.56	7638196.06	
latitude_muni	0	1.00	7231328.21	1754220.76	795907.06	7635356.70	7749398.84	7749821.85	7758831.37	
ID	0	1.00	40.52	31.52	1.00	13.00	35.00	60.00	141.00	
FCO2	110	0.99	2.78	2.08	-3.42	1.30	2.16	3.75	46.93	
Ts	317	0.98	21.84	6.76	1.00	19.33	22.50	26.15	195.63	
Us	1754	0.89	16.31	8.93	0.00	10.00	14.06	22.00	89.00	
pН	2802	0.82	4.64	1.13	3.50	4.00	4.50	5.15	52.00	
МО	1355	0.91	21.59	12.60	1.35	12.00	23.00	29.00	61.26	
Р	1355	0.91	20.95	24.74	1.00	6.00	15.48	27.36	253.00	
K	1348	0.91	2.40	2.21	0.03	0.90	1.70	3.40	34.00	
Са	1376	0.91	17.20	14.57	1.10	6.00	11.00	26.00	94.00	-
Mg	1376	0.91	10.13	5.65	0.32	7.00	10.00	13.00	65.00	
H_AI	1362	0.91	46.89	29.38	0.00	26.00	42.29	72.00	121.00	
SB	1376	0.91	29.69	20.10	1.54	15.60	23.80	42.00	161.30	-
СТС	1369	0.91	77.10	32.99	4.62	59.23	83.40	103.20	173.30	
V	1383	0.91	41.68	20.05	4.96	22.00	43.00	58.00	100.00	
Ds	3284	0.79	1.38	0.17	0.88	1.24	1.38	1.52	1.86	
Macro	3277	0.79	8.55	7.85	-45.30	0.15	8.13	13.64	49.77	
Micro	3298	0.79	25.30	17.13	0.07	0.37	33.86	38.30	52.42	
VTP	3298	0.79	42.34	15.65	-4.68	40.81	46.25	51.32	87.80	_ =-
PLA	3438	0.78	29.57	11.80	-47.30	21.27	32.41	38.15	79.80	_=
AT	8083	0.48	1013.33	1358.81	11.72	236.00	593.62	816.00	4542.73	.
SILTE	8048	0.48	229.26	336.37	1.26	50.87	73.65	188.00	1395.00	
ARG	8055	0.48	995.41	1560.32	27.19	173.27	403.69	609.50	5244.76	■
HLIFS	10872	0.29	14590.11	17253.55	158.39	1110.15	2409.80	29707.78	84692.90	- _

Alguns gráficos a respeito de nossa variável alvo, emissão de CO₂ do solo (FCO₂).

```
## Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0.
## i Please use `after_stat(density)` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


Aplicando a transformação logarítmica nos dados de FCO₂

```
composition(log10(FCO2),data_fco2)
```

```
## Warning: Removed 1 rows containing non-finite values (`stat_qq()`).
## Warning: Removed 1 rows containing non-finite values (`stat_qq_line()`).
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## Warning: Removed 1 rows containing non-finite values (`stat_bin()`).
## Warning: Removed 1 rows containing non-finite values (`stat_density()`).
## Warning: Removed 1 rows containing non-finite values (`stat_boxplot()`).
```


Carregando os dados do pacote {geobr}

Shape dos estados do Brasil

A fonte dos shapes abaixo utilizados é o pacote {geobr}, para maiores inofrmações acesse o link no GitHub, por comodidade, deixamos armazenados no repositório os arquivos que aqui serão utilizados.

```
# library(geobr)
# brasil_geobr <- geobr::read_country()
# estados <- read_state(code_state = "all")
# write_rds(estados, "data/estados.rds")
# write_rds(brasil_geobr, "data/brasil_geobr.rds")
estados <- read_rds("data/estados.rds")</pre>
```

Shape dos municípios

```
# muni <- read_municipality()</pre>
# write_rds(muni,"data/municipios.rds")
muni <- read rds("data/municipios.rds")</pre>
sp_ms <- muni %>%
 filter(abbrev state == "SP" | abbrev state == "MS")
fsp_ms<-if_else(sp_ms$name_muni == "Jaboticabal" |</pre>
             sp_ms$name_muni == "Guariba" |
             sp_ms$name_muni == "Padrópolis" |
             sp_ms$name_muni == "Rincão"|
             sp_ms$name_muni == "Mococa"|
             sp_ms$name_muni == "Ilha Solteira" |
             sp_ms$name_muni == "Aparecida Do Taboado" |
             sp_ms$name_muni == "Selvíria"|
             sp_ms$name_muni == "Dourados"
             ,"red","lightyellow")
sp_ms_ <- estados %>%
     filter(abbrev state == "SP" | abbrev state == "MS")
ggplot(sp_ms) +
 geom sf(fill="lightyellow") +
 theme_minimal() +
 annotation scale(location="bl") +
 geom_sf(data = sp_ms, fill=fsp_ms,col=fsp_ms) +
 # geom_sf(data = sp_ms, fill=fms,col=fms) +
 geom_sf(data = sp_ms_,fill="transparent") +
 tema mapa()
```


Conhecendo a base de dados de concentração de CO₂ atmosférico, oriundo do sensor orbital NASA-OCO2.

O satélite OCO-2 foi lançado em órbita em julho de 2014 pela NASA, e oferece um grande potencial nas estimativas dos fluxos de dióxido de carbono (CO₂). O satélite mede a concentração de CO₂ atmosférico indiretamente por meio da intensidade da radiação solar refletida em função da presença de dióxido de carbono em uma coluna de ar. Desta forma, faz-se a leitura em três faixas de comprimento de onda: a do O2, na faixa de 0,757 a 0,775 μ m, e as do CO₂, que são subdividas em banda fraca $(1,594-1,627~\mu\text{m})$ e banda forte $(2,043-2,087~\mu\text{m})$.

Ele foi o primeiro satélite da NASA direcionado para o monitoramento dos fluxos de CO₂ atmosférico, sendo um dos mais recentes, e vem apresentando usos bem diversificados, mostrando-se capaz de monitorar as emissões de combustíveis fósseis, fotossíntese, e produção de biomassa.

```
glimpse(oco2_br)
```

```
## Rows: 37,387
## Columns: 18
## $ longitude
                                                                       <db1> -70.5, -...
## $ longitude_bnds
                                                                       <chr> "-71.0:-...
## $ latitude
                                                                       <db1> -5.5, -4...
## $ latitude bnds
                                                                       <chr> "-6.0:-5...
                                                                       <db1> 2.014091...
\#\# $ time_yyyymmddhhmmss
## $ time bnds yyyymmddhhmmss
                                                                       <chr> "2014090...
                                                                       <dbl> 3307.8, ...
## $ altitude_km
## $ alt_bnds_km
## $ fluorescence_radiance_757nm_uncert_idp_ph_sec_1_m_2_sr_1_um_1 <dbl> 7.272876...
## $ fluorescence_radiance_757nm_idp_ph_sec_1_m_2_sr_1_um_1
                                                                      <dbl> 2.537127...
## $ xco2 moles mole 1
                                                                       <db1> 0.000394...
## $ aerosol total aod
                                                                       <dbl> 0.148579...
## $ fluorescence_offset_relative_771nm_idp
                                                                       <db1> 0.016753...
## $ fluorescence_at_reference_ph_sec_1_m_2_sr_1_um_1
                                                                       <dbl> 2.615319...
## $ fluorescence_radiance_771nm_idp_ph_sec_1_m_2_sr_1_um_1
                                                                      <db1> 3.088582...
## $ fluorescence offset relative 757nm idp
                                                                       <dbl> 0.013969...
\#\# $ fluorescence radiance 771nm uncert idp ph sec 1 m 2 sr 1 um 1 <dbl> 5.577878...
                                                                       <dbl> 387.2781...
```

Breve resumo do banco de dados de X_{CO2}

s	skimr::skim(oco2_br)	

Name	oco2_br
Number of rows	37387
Number of columns	18

Column	type	frequency:
--------	------	------------

character 4

numeric 14

Group variables None

Data summary

Variable type: character

skim_variable	n_missing	complete_rate	min	max	empty	n_unique	whitespace
longitude_bnds	0	1	11	11	0	39	0
latitude_bnds	0	1	7	11	0	38	0
time_bnds_yyyymmddhhmmss	0	1	29	29	0	1765	0
alt_bnds_km	0	1	11	20	0	64	0

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	р0	
longitude	0	1	-5.120000e+01	8.280000e+00	-7.350000e+01	-5.65000
latitude	0	1	-1.179000e+01	7.850000e+00	-3.250000e+01	-1.75000
time_yyyymmddhhmmss	0	1	2.016952e+13	1.564571e+10	2.014091e+13	2.01602
altitude_km	0	1	3.123200e+03	1.108800e+02	2.555700e+03	3.05635
fluorescence_radiance_757nm_uncert_idp_ph_sec_1_m_2_sr_1_um_1	0	1	8.520719e+17	5.599367e+18	-9.999990e+05	6.32325
fluorescence_radiance_757nm_idp_ph_sec_1_m_2_sr_1_um_1	0	1	-1.358150e+18	1.946775e+20	-3.400736e+22	7.73515
xco2_moles_mole_1	0	1	0.000000e+00	0.000000e+00	0.000000e+00	0.00000
aerosol_total_aod	0	1	4.828100e+02	7.848572e+04	2.000000e-02	1.10000
fluorescence_offset_relative_771nm_idp	0	1	-4.814400e+02	2.193698e+04	-9.999990e+05	1.00000
fluorescence_at_reference_ph_sec_1_m_2_sr_1_um_1	0	1	1.296932e+18	2.245185e+18	-8.394901e+19	2.01456
fluorescence_radiance_771nm_idp_ph_sec_1_m_2_sr_1_um_1	0	1	1.904438e+18	2.236381e+18	-8.453983e+19	9.69470
fluorescence_offset_relative_757nm_idp	0	1	-3.744400e+02	1.934763e+04	-9.999990e+05	1.00000
fluorescence_radiance_771nm_uncert_idp_ph_sec_1_m_2_sr_1_um_1	0	1	5.235574e+17	7.580471e+16	-9.999990e+05	4.69546
XCO2	0	1	3.858900e+02	3.120000e+00	3.383400e+02	3.84410

Manipulando a base oco2_br para criação das variáveis temporais e ajuste de unidade de xco2.

Inicialmente devemos transformar os dados de concentração de CO₂, variável xco2_moles_mole_1 para ppm em seguida devemos criar as variáveis de data a partir da variável time_yyyymmddhhmmss. Além disso, é necessário ajustar os valores de SIF, para compor a variável a partir dos dois sinais fornecidos pelo produto ("YU, L.; WEN, J.; CHANG, C. Y.; FRANKENBERG, C.; SUN, Y. High-Resolution Global Contiguous SIF of OCO-2. **Geophysical Research Letters**, v. 46, n. 3, p. 1449-1458, 2019.").

Mapa das leituras do satélite OCO2-NASA

Scale on map varies by more than 10%, scale bar may be inaccurate

composition(xco2,oco2_br)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

composition(SIF,oco2_br)

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Necessário tratamento dos dados de SIF

```
oco2_br %>% filter (SIF > 0) %>% pull(SIF) %>% summary
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.00002 0.38094 0.64297 0.70352 0.89260 31.96757
```

```
sif_median <- 0.64297
oco2_br <- oco2_br %>%
mutate(SIF = ifelse(SIF > 0, SIF, sif_median))
```

Existe uma tendência de aumento monotônica mundial da concentração de CO₂ na atmosfera, assim, ela deve ser retirada para podermos observar as tendências regionais. Observe que o sinal na variável xco2 não apresenta a tendência descrita.

```
oco2_br %>%
ggplot(aes(x=data,y=XCO2)) +
geom_point(shape=21,color="black",fill="gray") +
geom_smooth(method = "lm") +
stat_regline_equation(ggplot2::aes(
label = paste(..eq.label.., ..rr.label.., sep = "*plain(\",\")~~")))
```

```
## `geom_smooth()` using formula = 'y ~ x'
```


Compare com os dados da variáveis xco2 que apresenta a tendência de crescimento monotônica.

```
oco2_br %>%
  ggplot(aes(x=data,y=xco2)) +
  geom_point(shape=21,color="black",fill="gray") +
  geom_smooth(method = "lm") +
  stat_regline_equation(ggplot2::aes(
  label = paste(..eq.label.., ..rr.label.., sep = "*plain(\",\")~~")))
```

```
## `geom_smooth()` using formula = 'y ~ x'
```


Agora, deve-se vizualizar os dados perdidos nas bases

```
visdat::vis_miss(data_fco2)
```


Listando as datas dos arquivos

```
lista_data_fco2 <- unique(data_fco2$data)
lista_data_oco2 <- unique(oco2_br$data)
datas_fco2 <- paste0(lubridate::year(lista_data_fco2),"-",lubridate::month(lista_data_fco2)) %>% unique()

datas_oco2 <- paste0(lubridate::year(lista_data_oco2),"-",lubridate::month(lista_data_oco2)) %>% unique()
datas <- datas_fco2[datas_fco2 %in% datas_oco2]
```

Chaves para mesclagem

```
fco2 <- data_fco2 %>%
  mutate(ano_mes = paste0(lubridate::year(data),"-",lubridate::month(data))) %>%
  dplyr::filter(ano_mes %in% datas)

xco2 <- oco2_br %>%
  mutate(ano_mes=paste0(ano,"-",mes)) %>%
  dplyr::filter(ano_mes %in% datas)
```

Coordenadas das cidades

```
## Warning in left_join(fco2 %>% mutate(ano = lubridate::year(data), mes = lubridate::month(data)), : Detected an
unexpected many-to-many relationship between `x` and `y`.
## i Row 1 of `x` matches multiple rows in `y`.
## i Row 1 of `y` matches multiple rows in `x`.
## i If a many-to-many relationship is expected, set `relationship =
## "many-to-many" to silence this warning.
```

```
data_set<-data_set %>%
  select(-fluorescence_radiance_757nm_idp_ph_sec_1_m_2_sr_1_um_1, -fluorescence_radiance_771nm_idp_ph_sec_1_m_2_s
r_1_um_1 )  %>%
  filter(dist <= .16, FCO2 <= 30 )</pre>
```

composition(SIF,data_set)

`stat bin()` using `bins = 30`. Pick better value with `binwidth`.

Definindo o plano de multisession
future::plan("multisession")

visdat::vis_miss(data_set)


```
## `summarise()` has grouped output by 'ano_mes'. You can override using the
## `.groups` argument.
```

```
## Warning in geom_smooth(method = "lm", se = FALSE, ldw = 2, color = "red"):
## Ignoring unknown parameters: `ldw`
## `geom_smooth()` using formula = 'y ~ x'
```



```
## lm(formula = XCO2 ~ SIF + SIF2, data = tab medias %>% filter(SIF >
    0) %>% mutate(SIF2 = SIF^2))
##
## Residuals:
## Min 1Q Median 3Q
## -3.0362 -1.3729 0.1043 0.6334 3.9880
## Coefficients:
       Estimate Std. Error t value Pr(>|t|)
## (Intercept) 388.2875 0.9331 416.126 <2e-16 ***
         -4.5561 2.7099 -1.681 0.0987 .
1.5192 1.5931 0.954 0.3447
## SIF
## SIF2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.826 on 52 degrees of freedom
## Multiple R-squared: 0.1791, Adjusted R-squared: 0.1475
## F-statistic: 5.672 on 2 and 52 DF, p-value: 0.005913
```

```
## lm(formula = XCO2 \sim SIF + SIF2 + SIF3, data = tab medias %>%
   filter(SIF > 0) %>% mutate(SIF2 = SIF^2, SIF3 = SIF^3))
##
## Residuals:
## Min 1Q Median 3Q
## -2.9810 -1.3315 0.1091 0.7363 4.0294
##
## Coefficients:
        Estimate Std. Error t value Pr(>|t|)
## (Intercept) 388.654 1.734 224.086 <2e-16 ***
                         8.135 -0.797
10.808 0.389
                                        0.429
## SIF -6.484
## SIF2
               4.208
## SIF3
              -1.054
                        4.189 -0.252 0.802
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\#\# Residual standard error: 1.843 on 51 degrees of freedom
## Multiple R-squared: 0.1801, Adjusted R-squared: 0.1319
## F-statistic: 3.734 on 3 and 51 DF, p-value: 0.01676
```

```
## Warning in geom_smooth(method = "lm", se = FALSE, ldw = 2, color = "red"):
## Ignoring unknown parameters: `ldw`
## `geom_smooth()` using formula = 'y ~ x'
```



```
## Call:
## lm(formula = XCO2 ~ FCO2, data = tab_medias %>% filter(SIF >
##
     0))
##
## Residuals:
##
              1Q Median
                            3Q
## -3.8763 -0.9973 0.0098 0.7118 3.7944
## Coefficients:
##
           Estimate Std. Error t value Pr(>|t|)
## (Intercept) 388.3840 0.4956 783.599 < 2e-16 ***
## FCO2
              -0.6252
                       0.1263 -4.952 7.87e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.651 on 53 degrees of freedom
## Multiple R-squared: 0.3163, Adjusted R-squared: 0.3034
## F-statistic: 24.52 on 1 and 53 DF, p-value: 7.867e-06
```

```
## Call:
\#\# lm(formula = XCO2 ~ FCO2 + FCO22, data = tab medias %>% filter(SIF >
##
   0) %>% mutate(FCO22 = FCO2^2))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.7982 -0.8280 0.0033 0.6508 3.6498
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 387.81592 1.01518 382.018 <2e-16 ***
          -0.25984 0.58283 -0.446 0.658
-0.04630 0.07208 -0.642 0.523
## FCO2
## FCO22
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.66 on 52 degrees of freedom
## Multiple R-squared: 0.3217, Adjusted R-squared: 0.2956
## F-statistic: 12.33 on 2 and 52 DF, p-value: 4.141e-05
```

```
## Call:
## lm(formula = XCO2 ~ FCO2 + FCO22 + FCO23, data = tab_medias %>%
## filter(SIF > 0) %>% mutate(FCO22 = FCO2^2, FCO23 = FCO2^3))
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.9322 -0.9353 0.0675 0.6658 3.3518
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 384.0046 1.9473 197.201 <2e-16 ***
## FCO2 3.5011 1.7542 1.996 0.0513.
## FC022
             -1.0680
                        0.4568 -2.338
                                       0.0234 *
             0.0810 0.0358 2.263 0.0279 *
## FCO23
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
\#\# Residual standard error: 1.598 on 51 degrees of freedom
## Multiple R-squared: 0.3836, Adjusted R-squared: 0.3473
## F-statistic: 10.58 on 3 and 51 DF, p-value: 1.616e-05
```

```
## Call:
\#\# lm(formula = XCO2 ~ FCO2 + FCO22 + FCO23 + FCO24, data = tab medias %>%
      filter(SIF > 0) %>% mutate(FCO22 = FCO2^2, FCO23 = FCO2^3,
##
      FCO24 = FCO2^4)
##
## Residuals:
             1Q Median
##
    Min
                            30
## -4.1290 -0.7578 -0.0005 0.8101 3.5196
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 380.75370 3.54284 107.471 <2e-16 ***
## FCO2
              7.96676
                         4.42977 1.798
                                          0.0781 .
                        1.85387 -1.640 0.1073
## FC022
              -3.04007
## FCO23
              0.42194 0.31271 1.349 0.1833
              -0.02000 0.01822 -1.097 0.2777
## FCO24
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.595 on 50 degrees of freedom
## Multiple R-squared: 0.3981, Adjusted R-squared: 0.3499
## F-statistic: 8.267 on 4 and 50 DF, p-value: 3.373e-05
```

```
## Warning in geom_smooth(method = "lm", se = FALSE, ldw = 2, color = "red"):
## Ignoring unknown parameters: `ldw`
## `geom_smooth()` using formula = 'y ~ x'
```



```
## lm(formula = FCO2 ~ SIF, data = tab medias %>% filter(SIF > 0))
## Residuals:
                             3Q Max
              1Q Median
## Min
## -2.5468 -0.7814 -0.2975 0.7166 3.2571
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.4350 0.3371 4.257 8.50e-05 ***
## SIF
              ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.281 on 53 degrees of freedom
## Multiple R-squared: 0.4915, Adjusted R-squared: 0.4819
## F-statistic: 51.23 on 1 and 53 DF, p-value: 2.514e-09
lm(FCO2 ~ SIF + SIF2,
         data = tab medias %>% filter(SIF > 0) %>% mutate(SIF2 = SIF^2)) %>%
 summary.lm()
## lm(formula = FCO2 ~ SIF + SIF2, data = tab_medias %>% filter(SIF >
    0) %>% mutate(SIF2 = SIF^2))
##
## Residuals:
## Min 1Q Median 3Q
## -2.5244 -0.8894 -0.2424 0.7600 3.1917
##
## Coefficients:
        Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.4461 0.6409 0.696 0.4895 ## SIF 6.4331 1.8613 3.456 0.0011 **
              6.4331 1.8613 3.456 0.0011 *
-1.9698 1.0942 -1.800 0.0776.
## SIF2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.254 on 52 degrees of freedom
## Multiple R-squared: 0.5214, Adjusted R-squared: 0.5029
## F-statistic: 28.32 on 2 and 52 DF, p-value: 4.791e-09
lm(FCO2 ~ SIF + SIF2 + SIF3,
         data = tab medias %>% filter(SIF > 0) %>% mutate(SIF2 = SIF^2,
                                                          SIF3 = SIF^3)) %>%
summary.lm()
## lm(formula = FCO2 \sim SIF + SIF2 + SIF3, data = tab medias %>%
## filter(SIF > 0) %>% mutate(SIF2 = SIF^2, SIF3 = SIF^3))
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.5431 -0.8731 -0.2585 0.7704 3.1687
##
## Coefficients:
      Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2809 1.1917 0.236 0.815
## SIF 7.3019 5.5894 1.306 0.197
## SIF2 -3.1818 7.4263 -0.428 0.670
              0.4750 2.8779 0.165 0.870
## SIF3
##
## Residual standard error: 1.266 on 51 degrees of freedom
## Multiple R-squared: 0.5216, Adjusted R-squared: 0.4935
## F-statistic: 18.54 on 3 and 51 DF, p-value: 2.901e-08
data set temporal <- data set %>%
 filter(experimento == "Temporal")
data_set_espacial <- data_set %>%
 filter(experimento == "Espacial")
```

Carregando dados Meteorológicos de Ilha Solteira

```
dados_estacao <- read_excel("data-raw/xlsx/estacao_meteorologia_ilha_solteira.xlsx", na = "NA")
glimpse(dados_estacao)</pre>
```

```
## Rows: 1,826
## Columns: 16
<dbl> 30.5, 30.0, 26.8, 27.1, 27.0, 27.6, 30.2, 28.2, 28.5, 29.9, 30...
## $ Tmed
        <dbl> 36.5, 36.7, 35.7, 34.3, 33.2, 36.4, 37.2, 32.4, 37.1, 38.1, 38...
## $ Tmax
       <dbl> 24.6, 24.5, 22.9, 22.7, 22.3, 22.8, 22.7, 24.0, 23.0, 23.3, 24...
## $ Tmin
## $ Umed <dbl> 66.6, 70.4, 82.7, 76.8, 81.6, 75.5, 65.8, 70.0, 72.9, 67.6, 66...
## $ Rad <dbl> 23.6, 24.6, 20.2, 21.4, 17.8, 19.2, 27.0, 15.2, 21.6, 24.3, 24...
## $ PAR <dbl> 496.6, 513.3, 430.5, 454.0, 378.2, 405.4, 565.7, 317.2, 467.5,...
## $ Eto
        <dbl> 5.7, 5.8, 4.9, 5.1, 4.1, 4.8, 6.2, 4.1, 5.5, 5.7, 5.9, 6.1, 6...
## $ Velmax <dbl> 6.1, 4.8, 12.1, 6.2, 5.1, 4.5, 4.6, 5.7, 5.8, 5.2, 5.2, 4.7, 6...
## $ Velmin <dbl> 1.0, 1.0, 1.2, 1.0, 0.8, 0.9, 0.9, 1.5, 1.2, 0.8, 0.8, 1.2, 1...
## $ Dir_vel <dbl> 17.4, 261.9, 222.0, 25.0, 56.9, 74.9, 53.4, 89.0, 144.8, 303.9...
## $ inso
         <dbl> 7.9, 8.7, 5.2, 6.2, 3.4, 4.5, 10.5, 1.3, 6.3, 8.4, 8.6, 7.9, 1...
```



```
data_set_temporal <- data_set_est_isa %>%
  filter(experimento == "Temporal")

data_set_espacial <- data_set_est_isa %>%
  filter(experimento == "Espacial")
```

Quarta Aproximação

- · Alvo: FCO2 temporal
- restrição dados após 2014
- Features: Atributos do Solo + Xco2 e SIF + Dados da Estação de ISA
- Modelo mais simples e geral
- Teste de três métodos baseados em árvores de decisão

```
visdat::vis_miss(data_set_temporal)
```


Definindo a Base de treino e teste

```
# data_set_ml <- data_set_espacial # <-----
data_set_ml <- data_set_temporal # <-----
fco2_initial_split <- initial_split(data_set_ml, prop = 0.75)</pre>
```

```
fco2_train <- training(fco2_initial_split)
# fco2_test <- testing(fco2_initial_split)
# visdat::vis_miss(fco2_test)
fco2_train %>%
ggplot(aes(x=FCO2, y=..density..))+
geom_histogram(bins = 30, color="black", fill="lightgray")+
geom_density(alpha=.05,fill="red")+
theme_bw() +
labs(x="FCO2 - treino", y = "Densidade")
```



```
fco2_testing <- testing(fco2_initial_split)
fco2_testing %>%
  ggplot(aes(x=FCO2, y=..density..))+
  geom_histogram(bins = 30, color="black", fill="lightgray")+
  geom_density(alpha=.05,fill="blue")+
  theme_bw() +
  labs(x="FCO2 - teste", y = "Densidade")
```



```
fco2_train %>% select(FCO2:HLIFS,XCO2,SIF,Tmed:inso) %>%
mutate(range_T = Tmax-Tmin) %>% select(-c(Tmax,Tmin,Umax,Umin,Dir_vel)) %>% select(where(is.numeric)) %>%
drop_na() %>%
cor() %>%
corrplot::corrplot()
```


data prep

```
## # A tibble: 2,676 × 51
       pH MO P
                                         Mg H_Al
                            K Ca
                                                        SB
                                                             CTC
            <dbl>
## 1 1.26 -0.545 -1.18 -0.819 -0.108 -0.884 -1.68 -0.514 -1.92
## 2 -0.512 -0.864 1.50 1.55 -0.298 0.415 0.471 0.156 0.573 -0.285
## 3 0.292 -0.0142 -1.27 -0.723 -0.393 -0.327 -0.932 -0.501 -1.45 0.336
  4 3.35 0.836 -0.0107 -0.385 3.13 2.27 -1.68 3.00 -0.106 2.54
  5 -0.833 1.69 -0.848 0.195 -0.679 0.0438 0.471 -0.440 0.259 -0.668
  6 2.06 1.37 -0.346 -0.288 2.36 1.71 -1.68 2.27 -0.313 2.16
  7 -0.512 -0.864 1.50 1.55 -0.298 0.415 0.471 0.156 0.573 -0.285
## 8 2.06 0.304 -1.10 -0.578 0.558 1.53 -1.32 0.873 -1.19 2.01
## 9 0.935 0.517 -1.02 -0.771 -0.298 0.415 -1.08 -0.169 -1.46 0.909
## 10 0.453 1.05 -0.764 -0.192 1.03 2.46 -0.424 1.60 0.266 0.957
\#\# # \mathbf{i} 2,666 more rows
## # i 41 more variables: Ds <dbl>, Macro <dbl>, Micro <dbl>, VTP <dbl>,
     PLA <dbl>, AT <dbl>, SILTE <dbl>, ARG <dbl>, HLIFS <dbl>, XCO2 <dbl>,
     SIF <dbl>, Tmed <dbl>, Tmax <dbl>, Tmin <dbl>, Umed <dbl>, Umax <dbl>,
## # Umin <dbl>, PkPa <dbl>, Rad <dbl>, PAR <dbl>, Eto <dbl>, Velmax <dbl>,
     Velmin <dbl>, Dir vel <dbl>, chuva <dbl>, inso <dbl>, FCO2 <dbl>,
## #
\verb|## # Us_poly_1 < dbl>, Us_poly_2 < dbl>, Ts_poly_1 < dbl>, Ts_poly_2 < dbl>, ...
```

```
visdat::vis_miss(bake(prep(fco2_recipe), new_data = NULL))
```


Reamostragem definida e será padrão para todos os modelos

```
fco2_resamples <- vfold_cv(fco2_train, v = 10)</pre>
```

Árvore de Decisão

Definição do modelo

```
fco2_dt_model <- decision_tree(
  cost_complexity = tune(),
  tree_depth = tune(),
  min_n = tune()
) %>%
  set_mode("regression") %>%
  set_engine("rpart")
```

Workflow

```
fco2_dt_wf <- workflow() %>%
  add_model(fco2_dt_model) %>%
  add_recipe(fco2_recipe)
```

Criando a matriz (grid) com os valores de hiperparâmetros a serem testados

```
# grid_dt <- grid_regular(
# cost_complexity(c(-6, -4)),
# tree_depth(range = c(8, 18)),
# min_n(range = c(42, 52)),
# levels = 20 # <------
# )

## melhor hiperparâmetros
grid_dt <- expand.grid(
    cost_complexity = c(1.438450e-05, 1.000000e-06),
    tree_depth = c(12,14),
    min_n = c(42, 43)
)
glimpse(grid_dt)</pre>
```

Tuning de hiperparâmetros

```
fco2_dt_tune_grid <- tune_grid(
  fco2_dt_wf,
  resamples = fco2_resamples,
  grid = grid_dt,
  metrics = metric_set(rmse)
)</pre>
```

```
autoplot(fco2_dt_tune_grid)
```



```
collect_metrics(fco2_dt_tune_grid)
```

```
## # A tibble: 8 × 9
## cost_complexity tree_depth min_n .metric .estimator mean n std_err
           <dbl> <dbl> <dbl> <chr> <chr> <dbl> <int> <dbl> <int> <dbl>
## 1
       0.0000144
                       12 42 rmse standard 1.26 10 0.0394
       0.000001
                       12 42 rmse standard 1.26 10 0.0394
14 42 rmse standard 1.26 10 0.0384
## 2
## 3
        0.0000144
                       14 42 rmse standard 1.26 10 0.0384
       0.000001
## 4
## 5
       0.0000144
                       12 43 rmse standard 1.26 10 0.0398
       0.000001
## 6
                       12 43 rmse standard 1.26 10 0.0398
                   14 43 rmse standard 1.26 10 0.0388
14 43 rmse standard 1.26 10 0.0388
## 7
         0.0000144
       0.000001
## 8
## # i 1 more variable: .config <chr>
```

```
fco2_dt_tune_grid %>% show_best(metric = "rmse", n = 6)
```

```
## # A tibble: 6 × 9
## cost_complexity tree_depth min_n .metric .estimator mean
                                                     n std err
          14 42 rmse standard 1.26 10 0.0384
14 42 rmse standard 1.26 10 0.0384
## 1
        0.0000144
## 2
        0.000001
                      12 42 rmse standard 1.26 10 0.0394
## 3
       0.0000144
## 4
       0.000001
                      12 42 rmse standard 1.26 10 0.0394
       0.0000144
                   14 43 rmse standard 1.26 10 0.0388
14 43 rmse standard 1.26 10 0.0388
## 5
## 6
        0.000001
## # i 1 more variable: .config <chr>
```

Desempenho dos modelos finais

```
fco2_dt_best_params <- select_best(fco2_dt_tune_grid, "rmse")
fco2_dt_wf <- fco2_dt_wf %>% finalize_workflow(fco2_dt_best_params)
fco2_dt_last_fit <- last_fit(fco2_dt_wf, fco2_initial_split)</pre>
```

Criando os preditos

```
fco2_test_preds <- bind_rows(
  collect_predictions(fco2_dt_last_fit) %>% mutate(modelo = "dt")
)
fco2_test <- testing(fco2_initial_split)
visdat::vis_miss(fco2_test)</pre>
```



```
fcc2_test_preds %>%
   ggplot(aes(x=.pred, y=FC02)) +
   geom_point()+
   theme_bw() +
   geom_smooth(method = "lm") +
   stat_regline_equation(ggplot2::aes(
   label = paste(..eq.label.., ..rr.label.., sep = "*plain(\",\")~~"))) +
   geom_abline (slope=1, linetype = "dashed", color="Red")
```

```
## `geom_smooth()` using formula = 'y ~ x'
```


Importância

```
fco2_dt_last_fit_model <-fco2_dt_last_fit$.workflow[[1]]$fit$fit
vip(fco2_dt_last_fit_model,
    aesthetics = list(color = "black", fill = "orange")) +
    theme(axis.text.y=element_text(size=rel(1.5)),
        axis.text.x=element_text(size=rel(1.5)),
        axis.title.x=element_text(size=rel(1.5))
)</pre>
```


Métricas

```
tree_fit_rpart <- extract_fit_engine(fco2_dt_last_fit)
rpart.plot::rpart.plot(tree_fit_rpart,cex=.4)</pre>
```

```
## Warning: Cannot retrieve the data used to build the model (so cannot determine roundint and is.binary for the
variables).
## To silence this warning:
## Call rpart.plot with roundint=FALSE,
## or rebuild the rpart model with model=TRUE.
## Warning: labs do not fit even at cex 0.15, there may be some overplotting
```


Random Forest

Definição do modelo

```
fco2_rf_model <- rand_forest(
  min_n = tune(),
  mtry = tune(),
  trees = tune()
)  %>%
  set_mode("regression") %>%
  set_engine("randomForest")
```

Workflow

```
fco2_rf_wf <- workflow() %>%
  add_model(fco2_rf_model) %>%
  add_recipe(fco2_recipe)
```

Tune

```
fco2_rf_tune_grid <- tune_grid(
fco2_rf_wf,
  resamples = fco2_resamples,
  grid = grid_rf,
  metrics = metric_set(rmse)
)
autoplot(fco2_rf_tune_grid)</pre>
```



```
collect metrics(fco2 rf tune grid)
```

```
## # A tibble: 8 × 9
    mtry trees min_n .metric .estimator mean
                                                n std_err .config
    ## 1 5 300 20 rmse standard 1.06 10 0.0439 Preprocessor1_Model1
      5 300 21 rmse standard 1.06 10 0.0431 Preprocessor1_Model2
10 300 20 rmse standard 1.04 10 0.0446 Preprocessor1_Model3
10 300 21 rmse standard 1.04 10 0.0430 Preprocessor1_Model4
## 2
## 3
## 4
## 5
      5 500 20 rmse standard 1.06 10 0.0442 Preprocessor1_Model5
## 6
      5 500 21 rmse standard 1.06 10 0.0439 Preprocessor1_Model6
     10 500 20 rmse standard 1.04
10 500 21 rmse standard 1.04
## 7
                                                 10 0.0446 Preprocessor1_Model7
                                               10 0.0439 Preprocessor1_Model8
## 8
```

```
fco2_rf_tune_grid %>% show_best(metric = "rmse", n = 6)
```

```
## # A tibble: 6 × 9

## mtry trees min_n .metric .estimator mean n std_err .config

## <dbl> <dbl> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <in> <dbl> <chr> <dbl> <in <dbl> <chr> <dbl> <in> <dbl> <chr> <dbl> <in> <dbl> <chr> <dbl> <in> <dbl> <chr> <dbl> <in> <dbl> <in> <dbl> <chr> <dbl> <in> <dbl> <in> <dbl> <in> <dbl> <in> <dbl> <in> <dbl> <in> <dbl> <in <dbl> <in <dbl> <in <dbl ></d> <in <dbl ></d> <in <dbl ></d> <in <db ></d> <in <db ></d> <in <db  </d> <in </d> <in <db  <th> 
  ## 4 10 300 21 rmse standard 1.04 10 0.0446 Preprocessor1_Model7

  ## 4 10 300 21 rmse standard 1.04 10 0.0430 Preprocessor1_Model4

  ## 5 5 500 20 rmse standard 1.06 10 0.0442 Preprocessor1_Model5

  ## 6 5 300 20 rmse standard 1.06 10 0.0439 Preprocessor1_Model1
```

Desempenho modelo final

```
fco2_rf_best_params <- select_best(fco2_rf_tune_grid, "rmse")
fco2_rf_wf <- fco2_rf_wf %>% finalize_workflow(fco2_rf_best_params)
fco2_rf_last_fit <- last_fit(fco2_rf_wf, fco2_initial_split)</pre>
```

Criando os preditos

```
fco2_test_preds <- bind_rows(
  collect_predictions(fco2_rf_last_fit) %>% mutate(modelo = "rf")
)
fco2_test <- testing(fco2_initial_split)
visdat::vis_miss(fco2_test)</pre>
```



```
fco2_test_preds %>%
  ggplot(aes(x=.pred, y=FCO2)) +
  geom_point()+
  theme_bw() +
  geom_smooth(method = "lm") +
  stat_regline_equation(ggplot2::aes(
  label = paste(..eq.label.., ..rr.label.., sep = "*plain(\",\")~~"))) +
  geom_abline (slope=1, linetype = "dashed", color="Red")
```

```
## `geom_smooth()` using formula = 'y ~ x'
```


Importância

```
fco2_rf_last_fit_model <-fco2_rf_last_fit$.workflow[[1]]$fit$fit
vip(fco2_rf_last_fit_model,
    aesthetics = list(color = "black", fill = "orange")) +
    theme(axis.text.y=element_text(size=rel(1.5)),
        axis.text.x=element_text(size=rel(1.5)),
        axis.title.x=element_text(size=rel(1.5))
)</pre>
```


Boosting gradient tree (xgb)

```
cores = 4
fco2_xgb_model <- boost_tree(
  mtry = 0.8,
  trees = tune(), # <-----
  min_n = 5,
  tree_depth = 4,
  loss_reduction = 0, # lambda
  learn_rate = tune(), # epsilon
  sample_size = 0.8
) %>%
  set_mode("regression") %>%
  set_engine("xgboost", nthread = cores, counts = FALSE)
```

```
fco2_xgb_wf <- workflow() %>%
add_model(fco2_xgb_model) %>%
add_recipe(fco2_recipe)
```

```
grid_xgb <- grid_regular(
  learn_rate(range = c(0.005, 0.3)),
  trees(range = c(3, 100)),
  levels = 5
)</pre>
```

```
fco2_xgb_tune_grid <- tune_grid(
fco2_xgb_wf,
    resamples = fco2_resamples,
    grid = grid_xgb,
    metrics = metric_set(rmse)
)</pre>
```

```
## Warning: package 'xgboost' was built under R version 4.3.1
```

```
autoplot(fco2 xgb tune grid)
```



```
fco2_xgb_tune_grid %>% show_best(metric = "rmse", n = 6)
```

```
fco2_xgb_select_best_passo1 <- fco2_xgb_tune_grid %>%
  select_best(metric = "rmse")
fco2_xgb_select_best_passo1
```

```
## # A tibble: 1 × 3
## trees learn_rate .config
## <int> <dbl> <chr>
## 1 27 1.01 Preprocessor1_Model02
```

```
fco2 xgb model <- boost tree(
 mtry = 0.8,
 trees = fco2_xgb_select_best_passo1$trees,
 min_n = tune(),
 tree depth = tune(),
 loss\_reduction = 0,
learn_rate = fco2_xgb_select_best_passo1$learn_rate,
 sample_size = 0.8
) %>%
 set_mode("regression") %>%
 set engine("xgboost", nthread = cores, counts = FALSE)
#### Workflow
fco2_xgb_wf <- workflow() %>%
   add model(fco2 xgb model) %>%
   add_recipe(fco2_recipe)
#### Grid
fco2_xgb_grid <- grid_regular(</pre>
 tree_depth(range = c(1, 4)),
 min n(range = c(5, 60)),
 levels = 5
fco2_xgb_tune_grid <- fco2_xgb_wf %>%
 tune grid(
   resamples =fco2_resamples,
  grid = fco2 xgb grid,
   control = control_grid(save_pred = TRUE, verbose = FALSE, allow_par = TRUE),
   metrics = metric_set(rmse)
#### Melhores hiperparâmetros
autoplot(fco2 xgb tune grid)
```



```
fco2_xgb_tune_grid %>% show_best(metric = "rmse", n = 5)
```

```
## # A tibble: 5 × 8

## min_n tree_depth .metric .estimator mean n std_err .config

## <int> <int> <chr> <chr> <chr> <dbl> <int> <chr> <dbl> <int> <chr> <dbl> <int> mse standard 1.19 10 0.0473 Preprocessor1_Model04

## 2 60 4 rmse standard 1.19 10 0.0407 Preprocessor1_Model20

## 3 32 4 rmse standard 1.20 10 0.0425 Preprocessor1_Model12

## 4 46 4 rmse standard 1.20 10 0.0409 Preprocessor1_Model16

## 5 18 3 rmse standard 1.21 10 0.0377 Preprocessor1_Model07
```

```
fco2_xgb_select_best_passo2 <- fco2_xgb_tune_grid %>% select_best(metric = "rmse")
fco2_xgb_select_best_passo2
```

```
## # A tibble: 1 × 3
## min_n tree_depth .config
## <int> <int> <chr>
## 1 5 4 Preprocessor1_Model04
```

```
fco2_xgb_model <- boost_tree(</pre>
 mtry = 0.8,
 trees = fco2_xgb_select_best_passo1$trees,
min_n = fco2_xgb_select_best_passo2$min_n,
tree_depth = fco2_xgb_select_best_passo2$tree_depth,
 loss_reduction =tune(),
learn rate = fco2 xgb select best passo1$learn rate,
 sample_size = 0.8
 set_mode("regression") %>%
 set_engine("xgboost", nthread = cores, counts = FALSE)
#### Workflow
\label{eq:co2_xgb_wf <- workflow() %>% } \\
   add_model(fco2_xgb_model) %>%
   add_recipe(fco2_recipe)
fco2_xgb_grid <- grid_regular(</pre>
 loss\_reduction(range = c(0.01, 8)),
 levels = 6
fco2_xgb_tune_grid <- fco2_xgb_wf %>%
 tune_grid(
   resamples = fco2 resamples,
   grid = fco2_xgb_grid,
   control = control grid(save pred = TRUE,
                          verbose = FALSE,
                          allow_par = TRUE),
   metrics = metric_set(rmse)
#### Melhores hiperparâmetros
autoplot(fco2_xgb_tune_grid)
```



```
fco2_xgb_tune_grid %>% show_best(metric = "rmse", n = 5)
```

```
## # A tibble: 5 × 7

## loss_reduction .metric .estimator mean n std_err .config

## <dbl> <chr> <chr> <dbl> <int> <dbl> <chr> <h > <br/>
## 1 1.02 rmse standard 1.22 10 0.0461 Preprocessor1_Model1

## 2 40.6 rmse standard 1.30 10 0.0435 Preprocessor1_Model2

## 3 1607. rmse standard 1.61 10 0.0329 Preprocessor1_Model3

## 4 63680. rmse standard 2.20 10 0.0463 Preprocessor1_Model4

## 5 100000000 rmse standard 2.21 10 0.0463 Preprocessor1_Model6
```

```
fco2_xgb_select_best_passo3 <- fco2_xgb_tune_grid %>% select_best(metric = "rmse")
fco2_xgb_select_best_passo3
```

```
## # A tibble: 1 × 2
## loss_reduction .config
## <dbl> <chr>
## 1 1.02 Preprocessor1_Model1
```

```
fco2_xgb_model <- boost_tree(</pre>
mtry = tune(),
 trees = fco2_xgb_select_best_passo1$trees,
 min_n = fco2_xgb_select_best_passo2$min_n,
 tree_depth = fco2_xgb_select_best_passo2$tree_depth,
loss_reduction = fco2_xgb_select_best_passo3$loss_reduction,
learn_rate = fco2_xgb_select_best_passo1$learn_rate,
 sample_size = tune()
 set mode("regression") |>
 set_engine("xgboost", nthread = cores, counts = FALSE)
#### Workflow
fco2_xgb_wf <- workflow() %>%
   add model(fco2 xgb model) %>%
   add recipe(fco2 recipe)
#### Grid
fco2 xgb grid <- expand.grid(
   sample_size = seq(0.5, 1.0, length.out = 4), ## <---
   mtry = seq(0.1, 1.0, length.out = 4) ## <---
\label{local_xgb_tune_grid <- fco2_xgb_wf} \ \ \mbox{$\  \  $>$}
 tune grid(
   resamples = fco2 resamples,
   grid = fco2 xgb grid,
   control = control_grid(save_pred = TRUE,
                           verbose = FALSE,
                           allow_par = TRUE),
   metrics = metric_set(rmse)
autoplot(fco2_xgb_tune_grid)
```



```
fco2_xgb_tune_grid |> show_best(metric = "rmse", n = 5)
```

```
fco2_xgb_select_best_passo4 <- fco2_xgb_tune_grid %>% select_best(metric = "rmse")
fco2_xgb_select_best_passo4
```

```
## # A tibble: 1 × 3
## mtry sample_size .config
## <dbl> <dbl> <chr>
## 1 0.7 1 Preprocessor1_Model12
```

```
fco2_xgb_model <- boost_tree(</pre>
 mtry = fco2_xgb_select_best_passo4$mtry,
 trees = tune(),
 min_n = fco2_xgb_select_best_passo2$min_n,
 tree depth = fco2 xgb select best passo2$tree depth,
 loss_reduction = fco2_xgb_select_best_passo3$loss_reduction,
 learn_rate = tune(),
 sample_size = fco2_xgb_select_best_passo4$sample_size
) |>
 set mode("regression") %>%
 set_engine("xgboost", nthread = cores, counts = FALSE)
#### Workflow
\label{eq:co2_xgb_wf <- workflow() %>%} fco2\_xgb\_wf <- workflow() %>%
   add model(fco2 xgb model) %>%
   add recipe(fco2 recipe)
#### Grid
fco2_xgb_grid <- expand.grid(</pre>
   learn_rate = c(0.10, 0.15, 0.25, 0.50),
   trees = c(100, 250, 500)
fco2_xgb_tune_grid <- fco2_xgb_wf %>%
 tune_grid(
   resamples = fco2 resamples,
   grid = fco2_xgb_grid,
   control = control_grid(save_pred = TRUE,
                           verbose = FALSE,
                           allow_par = TRUE),
   metrics = metric_set(rmse)
#### Melhores hiperparâmetros
autoplot(fco2_xgb_tune_grid)
```



```
fco2_xgb_tune_grid %>% show_best(metric = "rmse", n = 5)
```

```
fco2_xgb_select_best_passo5 <- fco2_xgb_tune_grid %>% select_best(metric = "rmse")
fco2_xgb_select_best_passo5
```

Desempenho dos modelos finais

```
fco2_xgb_model <- boost_tree(
    mtry = fco2_xgb_select_best_passo4$mtry,
    trees = fco2_xgb_select_best_passo5$trees,
    min_n = fco2_xgb_select_best_passo2$min_n,
    tree_depth = fco2_xgb_select_best_passo2$tree_depth,
    loss_reduction = fco2_xgb_select_best_passo3$loss_reduction,
    learn_rate = fco2_xgb_select_best_passo5$learn_rate,
    sample_size = fco2_xgb_select_best_passo4$sample_size
) %>%
    set_mode("regression") %>%
    set_engine("xgboost", nthread = cores, counts = FALSE)
```

```
df <- data.frame(
    mtry = fco2_xgb_select_best_passo4$mtry,
    trees = fco2_xgb_select_best_passo5$trees,
    min_n = fco2_xgb_select_best_passo2$min_n,
    tree_depth = fco2_xgb_select_best_passo2$tree_depth,
    loss_reduction = fco2_xgb_select_best_passo3$loss_reduction,
    learn_rate = fco2_xgb_select_best_passo5$learn_rate,
    sample_size = fco2_xgb_select_best_passo4$sample_size
)
fco2_xgb_wf <- fco2_xgb_wf %>% finalize_workflow(df) # <-----
fco2_xgb_last_fit <- last_fit(fco2_xgb_wf, fco2_initial_split) # <-------</pre>
```

Criar Preditos

```
fco2_test_preds <- bind_rows(
  collect_predictions(fco2_xgb_last_fit) %>% mutate(modelo = "xgb")
)
```

```
fco2_test_preds %>%
  ggplot(aes(x=.pred, y=FCO2)) +
  geom_point()+
  theme_bw() +
  geom_smooth(method = "lm") +
  stat_regline_equation(ggplot2::aes(
  label = paste(..eq.label.., ..rr.label.., sep = "*plain(\",\")~~")))+
  geom_abline (slope=1, linetype = "dashed", color="Red")
```

```
## `geom_smooth()` using formula = 'y ~ x'
```



```
fco2_xgb_last_fit_model <-fco2_xgb_last_fit$.workflow[[1]]$fit$fit
vip(fco2_xgb_last_fit_model,
   aesthetics = list(color = "black", fill = "orange")) +
   theme(axis.text.y=element_text(size=rel(1.5)),
        axis.text.x=element_text(size=rel(1.5)),
        axis.title.x=element_text(size=rel(1.5))
)</pre>
```


Métricas

##	vector_of_metrics
## r	0.9142274
## R2	0.8358117
## MSE	0.8211791
## RMSE	0.9061893
## MAE	0.6019709
## MAPE	19.3042846