

■ Features

- V_{DS} (V) = 30V
- ID = 5.8 A (VGS = 10V)
- RDS(ON) \leq 27m Ω (VGS = 10V)
- $\bullet~\text{RDS(ON)} \leq 31\text{m}~\Omega~\text{(VGS = 4.5V)}$
- RDS(ON) < 48m Ω (VGS = 2.5V)

■ Absolute Maximum Ratings Ta = 25°C

Parameter		Symbol	Rating	Unit	
Drain-Source Voltage		VDS	30	V	
Gate-Source Voltage		Vgs	±12	V	
Continuous Drain Current	Ta=25°C	lp	5.8	А	
	TA=70°C	טו	4.9		
Pulsed Drain Current *		Ірм	30		
Power Dissipation	Ta=25°C	Pp	1.4	W	
	TA=70°C	FB	1	VV	
Thermal Resistance.Junction- to-Ambient		RthJA	125	°C/W	
Thermal Resistance.Junction- to-Case		Rthc	60	°C/W	
Junction and Storage Temperature Range		TJ, TSTG	-55 to 150	$^{\circ}$	

^{*} Repetitive rating, pulse width limited by junction temperature.

■ Electrical Characteristics Ta = 25°C

Parameter	Symbol	Testconditions	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	VDSS	ID=250 μ A, VGS=0V	30			V
Zoro Coto Voltago Drain Current	lane	V _{DS} =24V, V _{GS} =0V			1	μA
Zero Gate Voltage Drain Current	IDSS	VDS=24V, VGS=0V ,TJ=55°C			5	
Gate-Body leakage current	Igss	V _{DS} =0V, V _{GS} =12V			±100	nA
Gate Threshold Voltage	VGS(th)	VDS=VGS ID=250 μ A	0.7	1.1	1.4	V
	RDS(ON)	Vgs=10V, ID=5.8A Vgs=4.5V, ID=5A			27	27 31 m Ω
Static Drain-Source On-Resistance					31	
		Vgs=2.5V, ID=4A			48	mΩ
On state drain current	Id(on)	VGS=4.5V, VDS=5V	30			Α
Forward Transconductance	grs	VDS=5V, ID=5A	10	15		S
Input Capacitance	Ciss	Vgs=0V, Vps=15V, f=1MHz		823	1050	pF
Output Capacitance	Coss			99		pF
Reverse Transfer Capacitance	Crss			77		pF
Gate resistance	Rg	Vgs=0V, Vps=0V, f=1MHz		1.4	3.6	Ω
Total Gate Charge	Qg	Vgs=4.5V, Vps=15V, lp=5.8A		9.7	12	nC
Gate Source Charge	Qgs			1.6		nC
Gate Drain Charge	Qgd			3.1		nC
Turn-On DelayTime	tD(on)			3.3	5	ns
Turn-On Rise Time	tr	Vgs=10V, Vds=15V, RL=2.7 Ω ,Rgen=3 Ω		4.8	7	ns
Turn-Off DelayTime	tD(off)			26.3	40	ns
Turn-Off Fall Time	tf			4.1	6	ns
Body Diode Reverse Recovery Time	trr	I=5A, dı/dt=100A/ μ s		16	20	ns
Body Diode Reverse Recovery Charge	Qrr	IF=5A, dı/dt=100A/ μ s		8.9	12	nC
Maximum Body-Diode Continuous Current	Is				2.5	Α
Diode Forward Voltage	Vsd	Is=1A,VGs=0V		0.71	1	V

■ Typical Characterisitics

Fig 1: On-Region Characteristics

Figure 2: Transfer Characteristics

Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Figure 4: On-Resistance vs. Junction Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics

■ Typical Characterisitics

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

SOT-23 PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions	In Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
е	0.950 TYP.		0.037 TYP.		
e1	1.800	2.000	0.071	0.079	
L	0.550 REF.		0.022 REF.		
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	8°	

Marking

Ordering information

Order code	Package	Baseqty	Deliverymode
UMW AO3400A	SOT-23	3000	Tape and reel