Theory Of Automata & Formal Languages

LECTURE 3

Recursive Definition & Regular Expressions

Instructor: Sulaman Ahmad Naz

Recursive Definition

- The following three steps are used in recursive definition
 - 1. Some basic words are specified in the language.
 - 2. Rules for constructing more words are defined in the language.
 - 3. No strings except those constructed in above, are allowed to be in the language.

TASK

• Defining the language PALINDROME, defined over $\Sigma = \{a,b\}$

Step 1:

 Λ , a and b are in **PALINDROME**.

Step 2:

If x is palindrome, then axa and bxb will also be PALINDROME.

<u>Step 3:</u>

No strings except those constructed in above, are allowed to be in PALINDROME.

<u>Step 1:</u>

aa and bb are in L

<u>Step 2:</u>

s(aa)s and s(bb)s are also in L, where s belongs to Σ^*

Step 3:

No strings except those constructed in above, are allowed to be in L

A Language L, defined over {a, b}, containing strings having at least two consecutive a's or two consecutive b's.

```
Step 1:
   aa is in L
Step 2:
   s(aa)s is also in L, where s belongs to b*
Step 3:
```

No strings except those constructed in above, are allowed to be in L

A Language L, defined over {a, b}, containing strings having exactly two consecutive a's and any number of b's.

What is the Recursive Definition of Regular Expressions?

BUT WHAT ARE REGULAR EXPRESSIONS?

Regular Expressions

- ▶ a^{*} generates Λ, a, aa, aaa, ...
 - So $L_1 = \{\Lambda, a, aa, aaa, ...\}$
- ▶ a⁺ generates a, aa, aaa, aaaa, ...
 - So $L_2 = \{a, aa, aaa, aaaa, ...\}$
- NOTE: a* and a+ are called the regular expressions (RE) for L₁ and L₂ respectively.

Note: L₂ can also be generated by aa^{*} and a^{*}a.

Regular Expressions

Compound Regular Expressions can be expressed as:

$$R_1+R_2$$

for OR/UNION Operation

$$R_1.R_2$$

for **CONCATENATION** Operation

for KLEENE STAR Operation

for **PLUS** Operation

What is the Recursive Definition of Regular Expressions?

<u>Step 1:</u> Every letter of Σ including Λ is a regular expression.

Step 2: If r₁ and r2 are regular expressions then

```
1.(r<sub>1</sub>)
2.r<sub>1</sub> r<sub>2</sub>
3.r<sub>1</sub> + r<sub>2</sub> and
4. r<sub>1</sub>*
5. r<sub>1</sub>+
```

are also regular expressions.

Step 3: Nothing else is a regular expression.

Types of Definitions

Definition by Regular Expressions

- Consider the language $L=\{\Lambda, x, xx, xxx, ...\}$ of strings, defined over $\Sigma=\{x\}$.
 - We can write this language as the Kleene star closure of alphabet Σ or $L=\Sigma^*=\{x\}^*$
 - This language can also be expressed by the regular expression x*.

Definition by Regular Expressions

Similarly the language $L=\{x, xx, xxx,\}$, defined over $\Sigma=\{x\}$, can be expressed by the regular expression x^+ .

Examples

- Consider another language L, consisting of all possible strings, defined over $\Sigma = \{a, b\}$.
- This language can also be expressed by the regular expression

$$(a + b)^*$$

• A language L, of strings having exactly double a, defined over $\Sigma = \{a, b\}$.

b*aab*

• A language L, of strings having exactly two a's, defined over $\Sigma = \{a, b\}$.

• A language L, of strings of even length, defined over $\Sigma = \{a, b\}$.

$$((a+b)(a+b))*$$

• A language L, of strings of odd length, defined over $\Sigma = \{a, b\}$.

$$(a+b)((a+b)(a+b))*$$

or
 $((a+b)(a+b))*(a+b)$

TASK

Consider the language, defined over $\Sigma=\{a, b\}$ of words ending in "b".

Consider the language, defined over $\Sigma=\{a, b\}$ of words not ending in "a".

Equivalent Regular Expressions

Two regular expressions are said to be equivalent if they generate the same language.

Example:

Consider the following regular expressions $r_1 = (a + b)^* (aa + bb)$ $r_2 = (a + b)^* aa + (a + b)^* bb$ then both regular expressions define the language of strings ending in aa or bb.

Regular Languages

- Any Language associated with Regular Expression is called as a Regular Language.
- In other words, the language generated by any regular expression is called a Regular Language.

Regular Languages

- If r_1 , r_2 are regular expressions, corresponding to the languages L_1 and L_2 then the languages generated by $r_1 + r_2$, $r_1 r_2$, $r_2 r_1$, r_1^* and r_2^* are also regular languages.
 - 1. $r_1 + r_2$, is the language $L_1 + L_2$ or $L_1 \cup L_2$
 - 2. $r_1r_{2,}$, is the language L_1L_2 , of strings obtained by prefixing every string of L_1 with every string of L_2
 - 3. r_1^* , is the language L_1^* , of strings obtained by concatenating the strings of L, including the null string.

Remarks

All finite languages are regular languages. A language contains even thousand words, its RE may be expressed, placing ' + ' between all the words.

Thanks

- End of Lecture
- Q/A