21 Metric Spaces (Continued)

Exercise 21.1. Let $A \subseteq X$. If d is a metric for the topology of X, show that $d|A \times A$ is a metric for the subspace topology of A.

Solution. Let $d' = d|A \times A$. We have

$$B_{d'}(x,\epsilon) = \{ a \in A \mid d(a,x) < \epsilon \} = A \cap B_d(x,\epsilon).$$

Exercise 21.2. Let X and Y be metric spaces with metrics d_X and d_Y , respectively. Let $f: X \to Y$ have the property that for every pair $x_1, x_2 \in X$,

$$d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2).$$

Show that f is an imbedding. It is called an isometric imbedding of X in Y.

Solution. That f is continuous follows directly from the distance-preserving property. Also, f is injective, since if $f(x_1) = f(x_2)$, then

$$d_Y(f(x_1), f(x_2)) = d_X(x_1, x_2) = 0,$$

thus $x_1 = x_2$. The inverse function f^{-1} is continuous because it's also distance-preserving. Therefore, f is an embedding.

Exercise 21.3. Let X_n be a metric space with metric d_n , for $n \in \mathbb{Z}_+$.

(a) Show that

$$\rho(x,y) = \max\{d_1(x_1,y_1), \dots, d_n(x_n,y_n)\}\$$

is a metric for the product space $X_1 \times \cdots \times X_n$.

(b) Let $\bar{d}_i = \min\{d_i, 1\}$. Show that

$$D(x,y) = \sup\{\bar{d}_i(x_i,y_i)/i\}$$

is a metric for the product space $\prod X_i$.

Solution. (a) Open balls are open in the product topology. Now suppose $U = \prod B_{d_i}(x_i, \epsilon_i)$ is a basis element of the product topology and $a \in U$. Then we have $a_i \in B_{d_i}(x_i, \epsilon)$, so we can find some δ_i such that

$$B_{d_i}(a_i, \delta_i) \subseteq B_{d_i}(x_i, \epsilon).$$

Let $\delta = \min\{\delta_i\}$, and we have $B_{\rho}(a, \delta) \subseteq U$.

(b) It's easy to check that any open set in the product topology contains an open ball with respect to the metric D. Now let $B_D(x,\epsilon)$ be the neighborhood of x with radius ϵ . Define the open set U by the equation

$$U = \prod_{i=1}^{\infty} B_{\bar{d}_i}(x_i, \epsilon i).$$

But we have $B_{\bar{d}_i}(x_i, \epsilon i) = \mathbb{R}$ for all $i > 1/\epsilon$, thus U is open in the product topology. By our chosen definition, we have $x \in U \subseteq B_D(x, \epsilon)$, so the metric D does indeed induce the product topology.

Exercise 21.4. Show that \mathbb{R}_{ℓ} and the ordered square satisfy the first countability axiom.

Solution. Every neighborhood of x in \mathbb{R}_n contains some set of the form [x, x + 1/n).

If $x \times y$ is a point on the ordered square and $y \neq 1$, then every neighborhood of $x \times y$ in the ordered square topology contains some set

$${x} \times (y - 1/n, y + 1/n).$$

If y = 1, then every neighborhood of $x \times 1$ contains some interval

$$((x \times y - 1/n), (x + 1/n \times y)).$$

Exercise 21.5. Let $x_n \to x$ and $y_n \to y$ in the space \mathbb{R} . Then

$$x_n + y_n \to x + y$$

 $x_n - y_n \to x - y$
 $x_n y_n \to xy$
 $x_n/y_n \to x/y$ if $y \neq 0$ and $y_n \neq 0$.

Solution. Let $\epsilon > 0$. For addition, we have

$$|(x_n + y_n) - (x + y)| \le |x_n - x| + |y_n - y| < \epsilon$$

whenever $|x_n - x| < \epsilon/2$ and $|y_n - y| < \epsilon$, which is true for almost all n. Subtraction is very similar.

For multiplication, let M be greater than all of $|y|, |x_1|, |x_2|, \ldots$ Then we have

$$|x_n y_n - xy| = |x_n y_n - x_n y + x_n y - xy|$$

$$\leq |x_n||y_n - y| + |y||x_n - x|$$

$$\leq M(|x_n - x| + |y_n - y|) < \epsilon$$

when $|x_n - x| < \epsilon/2M$ and $|y_n - y| < \epsilon/2M$, which is true for almost all n.

For reciprocals, choose $\delta > 0$ such that $|x_n| > \delta$ for all n, and also $|x| > \delta$. Then we have

$$\left| \frac{1}{x_n} - \frac{1}{x} \right| = \frac{|x_n - x|}{|x_n||x|} \le \frac{|x_n - x|}{\delta^2} < \epsilon$$

whenever $|x_n - x| < \delta^2 \epsilon$. Then convergence of division follows from this combined with multiplication.

Exercise 21.6. Define $f_n:[0,1]\to\mathbb{R}$ by the equation $f_n(x)=x^n$. Show that the sequence $(f_n(x))$ converges for each $x\in[0,1]$, but that the sequence (f_n) doesn't converge uniformly.

Solution. The sequences $(f_n(x))$ all converge by the monotone convergence theorem. Also, we have

$$\lim x^n = \lim x^{n+1} = x \lim x^n,$$

thus $(f_n(x)) \to 0$ except when x = 1, where $(f_n(1)) \to 1$. This limit function is clearly not continuous, so the sequence (f_n) couldn't have converged uniformly.

Exercise 21.7. Let X be a set and let $f_n: X \to \mathbb{R}$ be a sequence of functions. Let $\bar{\rho}$ be the uniform metric on \mathbb{R}^X . Show that the sequence (f_n) converges uniformly to the function $f: X \to \mathbb{R}$ if and only if (f_n) converges to f as elements of the metric space $(\mathbb{R}^X, \bar{\rho})$.

Solution. (f_n) converging to f in the uniform metric is equivalent to the condition that for all $\epsilon > 0$ we have

$$\sup_{x \in X} |f_n(x) - f(x)| \le \epsilon$$

for almost all n. This is equivalent to $|f_n(x) - f(x)| \le \epsilon$ for all x and almost all n, which is the same as (f_n) uniformly converging to f. We can use nonstrict inequalities because $0 < \epsilon/2 < \epsilon$ for all $\epsilon > 0$.

Exercise 21.8. Let X be a topological space and let Y be a metric space. Let $f_n: X \to Y$ be a sequence of continuous functions. Let (x_n) be a sequence of points of X converging to x. Show that if the sequence (f_n) converges uniformly to f, then $(f_n(x_n))$ converges to f(x).

Solution. Let $\epsilon > 0$. By uniform convergence, for almost all n, we have $d(f_n(a), f(a)) < \epsilon/2$ for all a. Also, since the limit f is continuous, we have $d(f(x_n), f(x)) < \epsilon/2$ for almost all n. Combining these,

$$d(f_n(x_n), f(x)) \le d(f_n(x_n), f(x_n)) + d(f(x_n), f(x)) < \epsilon$$

for almost all n, thus $(f_n(x_n)) \to f(x)$.

Exercise 21.9. Let $f_n: \mathbb{R} \to \mathbb{R}$ be the function

$$f_n(x) = \frac{1}{n^3[x - (1/n)]^2 + 1}.$$

Let f be the zero function.

- (a) Show that $f_n(x) \to f(x)$ for each $x \in \mathbb{R}$.
- (b) Show that (f_n) does not converge uniformly to f.

Solution. (a) We have $f_n(x) \to 0$ by properties of the convergence of rational functions

(b) For all n we have $f_n(1/n)=1,$ thus (f_n) doesn't converge uniformly to f.

Exercise 21.10. Using the closed set formulation of continuity, show that the following sets are closed in \mathbb{R}^2 .

$$\begin{split} A &= \{x \times y \mid xy = 1\} \\ S^1 &= \{x \times y \mid x^2 + y^2 = 1\} \\ B^2 &= \{x \times y \mid x^2 + y^2 \leq 1\}. \end{split}$$

Solution. We will assume arithmetic operators are continuous, so the functions f(x,y)=xy and $g(x,y)=x^2+y^2$ are both continuous. Then we have

$$A = f^{-1}(\{1\})$$

$$S^{1} = g^{-1}(\{1\})$$

$$B^{2} = g^{-1}((-\infty, 1]).$$