CHƯƠNG 3: DÃY SỐ THỰC

CHƯƠNG 3: DÃY SỐ THỰC

- 3.1 Các định nghĩa
- 3.2 Các tính chất và các phép tính về giới hạn của dãy số hội tụ
- 3.3 Dãy con, dãy Cauchy
- 3.4 Dãy số tiến ra vô cùng
- 3.5 Giới hạn trên (limsup) và giới hạn dưới (liminf)
- 3.6 Chuỗi số thực
- 3.7. Chuỗi số dương

3.1 Các định nghĩa

Định nghĩa 1. Dãy số thực là một ánh xạ

$$x: \mathbb{N} \to \mathbb{R}$$

 $n \longmapsto x(n),$

Ta đặt $x_n = x(n)$, với mọi $n \in \mathbb{N}$, ta có thể dùng một trong các ký hiệu sau để chỉ dãy số thực x:

$$\{x_n\}, \{x_n\}_{n\in\mathbb{N}}, \{x_n, n\in\mathbb{N}\}, (x_n), (x_n)_{n\in\mathbb{N}}, (x_n, n\in\mathbb{N}),$$

hoặc

$$\{x_n\}\subset \mathbf{R}.$$

3 / 140

Chú thích. Cho tập $A \neq \phi$. Dãy trong A (còn gọi là dãy các phần tử trong A) là một ánh xạ

$$\begin{aligned} x: \mathrm{N} &\to A \\ n &\longmapsto x(n) = x_n. \end{aligned}$$

Ta cũng dùng các ký hiệu như trên và

$$\{x_n\}\subset A$$

để chỉ một dãy trong A.

A = N, $\{x_n\} : N \to A$ dãy các số tự nhiên,

A = Q, $\{x_n\} : N \to Q$ dãy các số hữu tỉ,

 $A = R \setminus Q$, $\{x_n\} : N \to R \setminus Q$ dãy các số vô tỉ.

Ví dụ 1.
$$\left\{\frac{1}{n^2}\right\}$$
, $\left\{\frac{\cos(n^3)}{n}\right\}$, $\left\{\cos(n^3)\right\}$, $\left\{n+3n^3\right\}$, $\left\{\cos(n^3)\right\}$, là các dãy số thực.

Ví dụ 2. Đặt $x_1 = 1$, $x_n = 3x_{n-1} + 2$, $n = 2, 3, \cdots$ khi đó $\{x_n\}$ là một dãy số thực.

() 4 / 140

Định nghĩa 2 (Sự hội tụ dãy số thực). Cho $\{x_n\}$ là một dãy số thực.

Ta nói dãy $\{x_n\}$ là **hội tụ** nếu tồn tại $a \in \mathbb{R}$ sao cho:

Với mọi arepsilon>0, tồn tại $extstyle{N}\in \mathrm{N}$ sao cho

$$\forall n \in \mathbb{N}, \ n > N \Longrightarrow |x_n - a| < \varepsilon.$$
 (1)

Nếu dãy $\{x_n\}$ hội tụ thì số thực a ở trên là duy nhất.

Thật vậy, giả sử có hai số thực a, a' khác nhau thỏa mệnh đề (1), tức là, với mọi $\varepsilon>0$, tồn tại N, $N'\in {\bf N}$ sao cho

$$\forall n \in \mathbb{N}, \ n > N \Longrightarrow |x_n - a| < \varepsilon,$$

 $\forall n \in \mathbb{N}, \ n > N' \Longrightarrow |x_n - a'| < \varepsilon.$ (2)

5 / 140

Vì $a \neq a'$, ta chọn $\varepsilon = \frac{1}{2} |a - a'| > 0$, ta có hai số N, $N' \in \mathbb{N}$ thỏa hai mệnh đề. Chọn $n > \max\{N, N'\}$, ta có từ (2) rằng

$$|a-a'| \le |a-x_n| + |x_n-a'| < \varepsilon + \varepsilon = |a-a'|$$
,

tức là |a-a'|<|a-a'|. Điều này không thể xảy ra. Vậy a=a'. Khi dãy $\{x_n\}$ hội tụ, số thực a ở trên gọi là **giới hạn của dãy** $\{x_n\}$ và ký hiệu nó hoặc viết là

$$a=\lim_{n\to\infty}x_n$$
, hay $a=\lim x_n$,
hay $x_n\to a$ khi $n\to\infty$, hay $x_n\to a$.

(ロ) (레) (토) (토) (토) (의익(C

6 / 140

Ví dụ: Cho một dãy số thực $\{x_n\}$ như sau

$$x_n = \frac{n+2}{n}, \ \forall n \in \mathbb{N}.$$

Chứng minh rằng dãy số thực $\{x_n\}$ là hội tụ và tính $\lim x_n$. Ta có

$$|x_n-1|=\frac{2}{n}, \ \forall n\in\mathbb{N}.$$

Cho $\varepsilon > 0$, chọn số tự nhiên $N > \frac{2}{\varepsilon}$, khi đó ta có

$$\forall n \in \mathbb{N}, \ n > N \Longrightarrow |x_n - 1| = \frac{2}{n} < \frac{2}{N} < \varepsilon.$$

Vậy dãy $\{x_n\}$ hội tụ và $\lim x_n = 1$.

7 / 140

Dùng các ký hiệu logic ta có thể diễn đạt định nghĩa trên như sau:

$$x_n \to a \iff \forall \varepsilon > 0, \ \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, \ n > N \Longrightarrow |x_n - a| < \varepsilon.$$

Chú ý rằng, số N tồn tại trên đây nói chung phụ thuộc vào ε , do đó ta có thể viết $N=N(\varepsilon)$.

Hơn cũng không cần thiết N phải là số tự nhiên.

Thật vậy, nếu N không là số tự nhiên, dùng tính chất Archimède ta sẽ thay nó bởi một số tự nhiên lớn hơn nó.

Theo đó, ta viết lại mệnh đề định nghĩa ở trên như sau

$$x_n \to a \Longleftrightarrow \forall \epsilon > 0, \ \exists N \in \mathbf{R} : \forall n \in \mathbf{N}, \ n > N \Longrightarrow |x_n - a| < \epsilon.$$

Ta nói dãy $\{x_n\}$ là **phân kỳ** nếu $\{x_n\}$ không hội tụ.

Chú thích.

(i) Ta diễn đạt định nghĩa dãy $\{x_n\}$ là phân kỳ bằng cách phủ định mệnh đề dưới đây

Ta nói dãy $\{x_n\}$ là **hội tụ** \iff

$$\exists a \in \mathbb{R} : \forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, \ n > N \Longrightarrow |x_n - a| < \varepsilon.$$
 (1a)

Ta nói dãy $\{x_n\}$ là **phân kỳ** \iff

$$\forall a \in \mathbb{R} : \exists \varepsilon > 0, \ \forall N \in \mathbb{N} : \exists n_N \in \mathbb{N}, \ n_N > N \ \text{và} \ |x_{n_N} - a| \ge \varepsilon.$$
 (1b)

(ii) Từ định nghĩa ta cũng thấy rằng

$$x_n \rightarrow a \iff x_n - a \rightarrow 0,$$

 $|x_n| \rightarrow 0 \iff x_n \rightarrow 0.$

(iii) Với dãy hằng số: $x_n = C$, $\forall n \in \mathbb{N}$, ta luôn có $x_n \to C$.

(iv) Từ định nghĩa ta cũng thấy rằng, tính chất hội tụ và giới hạn của một dãy số thực **không phụ thuộc vào một số hữu hạn các số hạng đầu tiên**. Để thấy rõ hơn, ta xét dãy số hội tụ $\{x_n\}$ như trên. Cho trước $q \in \mathbb{N}$, ta xét một dãy số thực mới $\{\tilde{x}_n\}$ được xác định bởi $\tilde{x}_n = x_{n+q}$, $n = 1, 2, \cdots$, khi đó ta có thể chứng minh được rằng dãy $\{\tilde{x}_n\}$ cũng hội tụ và có cùng giới hạn a với dãy số thực $\{\tilde{x}_n\}$. Như vậy giới hạn a này không phụ thuộc vào q, và cũng không phụ thuộc vào q số hạng đầu tiên x_1, x_2, \cdots, x_q .

Ví dụ: Cho một dãy số thực $\{x_n\}$ như sau $x_n=\frac{n+2}{n}$, $\forall n\in\mathbb{N}$, và một dãy số thực khác $\{\tilde{x}_n\}$ xác định bởi $\tilde{x}_n=x_{n+5}=\frac{n+7}{n+5}$, $\forall n\in\mathbb{N}$. Khi đó ta có cả hai dãy số thực $\{x_n\}$ và $\{\tilde{x}_n\}$ đều hội tụ và có cùng một giới hạn

(v) Nhận xét tương tự cho tính chất phân kỳ cũng vậy.

Dịnh nghĩa 2. Cho $\{x_n\}$ là một dãy số thực. Ta nói

- $\{x_n\}$ bị chận trên nếu tập $\{x_n : n \in \mathbb{N}\}$ bị chận trên, i.e., $\exists M \in \mathbb{R} : x_n \leq M, \ \forall n \in \mathbb{N}$:
- $\{x_n\}$ bị chận dưới nếu tập $\{x_n : n \in \mathbb{N}\}$ bị chận dưới, i.e., (ii) $\exists m \in \mathbb{R} : x_n > m, \ \forall n \in \mathbb{N};$
- $\{x_n\}$ bị chận nếu $\{x_n\}$ bị chận trên và bị chận dưới, i.e., (iii) $\exists m, M \in \mathbb{R} : m < x_n < M, \forall n \in \mathbb{N}$ hay tương đương với

 $\exists M \in \mathbb{R} : |x_n| \leq M, \ \forall n \in \mathbb{N};$

- (iv) $\{x_n\}$ là dãy **tăng** nếu $x_n < x_{n+1}, \forall n \in \mathbb{N}$;
- (v) $\{x_n\}$ là dãy giảm nếu $x_n > x_{n+1}, \forall n \in \mathbb{N}$;
- (vi) $\{x_n\}$ là dãy không giảm nếu $x_n \le x_{n+1}, \forall n \in \mathbb{N};$
- (vii) $\{x_n\}$ là dãy không tăng nếu $x_n \ge x_{n+1}$, $\forall n \in \mathbb{N}$.
- (viii) $\{x_n\}$ là dãy đơn điệu nếu 1 trong 4 tính chất (iv)-(vii) được thỏa.

Đế phân biệt có lúc người ta còn gọi tên đi kèm chữ đơn điệu, chẳng hạn như: đơn điệu tăng, đơn điệu giảm, đơn điệu không giảm, đơn điệu không tăng.

Chú thích. Bốn đinh nghĩa (iv)-(vii) là 4 khái niệm khác nhau và độc lâp, tức là phủ định một trong 4 định nghĩa (iv)-(vii) không phải là một trong ba định nghĩa còn lai. Ví du, dãy không tăng \neq không phải là dãy tăng. Bởi vì dãy $\{x_n\}$ không phải là dãy tăng có nghĩa là: $\exists n_0 \in \mathbb{N}$: $x_{n_0} \ge x_{n_0+1}$, trong khi đó để dãy $\{x_n\}$ không tăng thì bất đẳng thức $x_n > x_{n+1}$ phải đúng $\forall n \in \mathbb{N}$.

3.2 Các tính chất và các phép tính về giới hạn của dãy số hội tụ Định lý 1. $Gi\mathring{a}$ sử $x_n \to a$.

- (i) $N \hat{e} u \ a > M$, thì $\exists N \in \mathbb{N} : x_n > M$, $\forall n > N$;
- (ii) Nếu $x_n > M$, $\forall n \in \mathbb{N}$, thì $a \geq M$;
- (iii) Nếu a < M, thì $\exists N \in \mathbb{N} : x_n < M$, $\forall n > N$;
- (iv) $N \hat{e} u x_n < M, \forall n \in \mathbb{N}, thi a \leq M;$
- (v) $\{x_n\}$ bị chận.

Chứng minh Định lý 1.

(i) Với
$$a>M$$
, chọn ε sao cho $0<\varepsilon=\frac{a-M}{2}< a-M$ thì

$$a-\varepsilon=\frac{a+M}{2}>M.$$

Với số ε này thì

$$\exists N \in \mathbb{N} : \forall n > N \Longrightarrow a - \varepsilon < x_n < a + \varepsilon \Longrightarrow x_n > a - \varepsilon > M.$$

- (iii) Chứng minh tương tự với (i).
- (ii) Giả sử ngược lại a < M. Khi đó theo (iii), thì $\exists N \in \mathbb{N} : x_n < M$, $\forall n > N$. Đặc biệt với $n_0 = N + 1$, ta có $x_{n_0} < M$. Điều này mâu thuẫn với giả thiết (ii). Vậy (ii) đúng.

14 / 140

- (iv) Chứng minh tương tự với (ii).
- (v) Chọn $\varepsilon = 1$, $\exists N \in \mathbb{N} : \forall n > N \Longrightarrow |x_n a| < 1$, từ đó

$$|x_n| \le |x_n - a| + |a| < 1 + |a|, \ \forall n > N,$$

do đó

$$|x_n| \le \max\{1 + |a|, |x_1|, |x_2|, \dots, |x_N|\} = M, \ \forall n \in \mathbb{N}.$$

Dịnh lý 1 được chứng minh xong. \square

Dịnh lý 2. Cho hai dãy hội tụ $x_n \rightarrow a$ và $y_n \rightarrow b$.

- (i) Nếu $x_n < y_n \ \forall n \in \mathbb{N}$, thì $a \leq b$.
- (ii) Nếu a < b, thì $\exists N \in \mathbb{N} : \forall n \in \mathbb{N}, \ n > N \Longrightarrow x_n < y_n$.

Chứng minh Định lý 2.

(i) Giả sử ta có a > b. Lấy một số $M = \frac{a+b}{2}$ ta có a > M > b. Khi đó theo Định lý 1 (i), với a > M ta có $N_1 \in \mathbb{N} : x_n > M$, $\forall n > N_1$. Mặt khác, theo Định lý 1 (iii), với b < M ta có $N_2 \in \mathbb{N} : y_n < M$, $\forall n > N_2$.

Chọn $n_0 \in \mathbb{N}$ và $n_0 > \max\{N_1, N_2\}$, ta có $x_{n_0} > M > y_{n_0}$. Điều nầy mâu thuẫn với giả thiết (ii). Do đó $a \leq b$.

(ii)
$$\varepsilon = \frac{b-a}{2} > 0$$
, $N_1 \in \mathbb{N} : |x_n-a| < \varepsilon$, $|y_n-b| < \varepsilon$, $\forall n > N_1$.

Vậy, $\forall n > N_1$, ta có $x_n < a + \varepsilon < a + \frac{b-a}{2} = b - \frac{b-a}{2} = b - \varepsilon < y_n$. Đinh lý 2 được chứng minh xong. \square

Dịnh lý 3. Cho ba dãy $\{x_n\}$, $\{y_n\}$ và $\{z_n\}$ sao cho

- (i) $x_n \leq y_n \leq z_n \ \forall n \in \mathbb{N}$,
- (ii) $x_n \rightarrow a, z_n \rightarrow a$.

Khi đó dãy $\{y_n\}$ cũng hội tụ và $y_n \rightarrow a$.

Chứng minh Định lý 3. Do $x_n \to a$, $z_n \to a$, theo định nghĩa sự hội tụ, $\forall \varepsilon > 0$, ta có N_1 , $N_2 \in \mathbb{N}$ sao cho

$$\forall n > N_1 \Longrightarrow |x_n - a| < \varepsilon \Longrightarrow a - \varepsilon < x_n < a + \varepsilon,$$

 $\forall n > N_2 \Longrightarrow |z_n - a| < \varepsilon \Longrightarrow a - \varepsilon < z_n < a + \varepsilon.$

Khi đó, $\forall n > \max\{N_1, N_2\} \Longrightarrow a - \varepsilon < x_n \le y_n \le z_n < a + \varepsilon \Longrightarrow |y_n - a| < \varepsilon$. Vậy $y_n \to a$. Dinh lý 3 được chứng minh xong. \square

Định lý 4. Cho hai dãy hội tụ $x_n \to a$ và $y_n \to b$. Cho $k \in \mathbb{R}$. Khi đó, các dãy $\{x_n + y_n\}$, $\{x_ny_n\}$, $\{kx_n\}$, $\{|x_n|\}$ cũng hội tụ và

- (i) $x_n + y_n \rightarrow a + b$;
- (ii) $x_n y_n \rightarrow ab$;
- (iii) $kx_n \rightarrow ka$;
- (iv) $|x_n| \rightarrow |a|$;
- (v) Nếu $b \neq 0$ thì tồn tại $N \in \mathbb{N}$: $y_n \neq 0$, $\forall n > N$ và $\frac{x_n}{y_n} \rightarrow \frac{a}{b}$.

- ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

21 / 140

Chứng minh Định lý 4.

Chứng minh (i). Theo định nghĩa giới hạn, $\forall \varepsilon>0$, ta có $\mathit{N}_1,\ \mathit{N}_2\in\mathrm{N}$ sao cho

$$\forall n > N_1 \Longrightarrow |x_n - a| < \varepsilon/2,$$

 $\forall n > N_2 \Longrightarrow |y_n - b| < \varepsilon/2.$

Khi đó, $\forall n > \max\{N_1, N_2\}$ dẫn đến

$$|(x_n+y_n)-(a+b)|\leq |x_n-a|+|y_n-b|<\varepsilon/2+\varepsilon/2=\varepsilon.$$

Vậy $x_n + y_n \rightarrow a + b$.

Chứng minh (ii). Ta có

$$|x_n y_n - ab| = |x_n (y_n - b) + b (x_n - a)|$$

 $\leq |x_n| |y_n - b| + |b| |x_n - a|.$

Do $\{x_n\}$ hội tụ, nên $\{x_n\}$ bị chận, ta có $M>0: |x_n|\leq M, \ \forall n\in \mathbb{N}.$ Cho $\varepsilon>0$, do $x_n\to a$, ta có $N_1\in \mathbb{N}$ sao cho

$$\forall n > N_1 \Longrightarrow |x_n - a| < \frac{\varepsilon}{2(1+|b|)}.$$

Mặt khác, do $y_n \rightarrow b$, ta có $N_2 \in \mathbb{N}$ sao cho

$$\forall n > N_2 \Longrightarrow |y_n - a| < \frac{\varepsilon}{2(1+M)}.$$

<□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

23 / 140

Khi đó, $\forall n > \max\{N_1, N_2\}$ dẫn đến

$$|x_{n}y_{n} - ab| \leq |x_{n}| |y_{n} - b| + |b| |x_{n} - a|$$

$$\leq M \frac{\varepsilon}{2(1+M)} + |b| \frac{\varepsilon}{2(1+|b|)}$$

$$= \left[\frac{M}{1+M} + \frac{|b|}{1+|b|} \right] \frac{\varepsilon}{2} < \varepsilon.$$

Vậy $x_n y_n \rightarrow ab$.

Chứng minh (iii). Xét $y_n = k$, $\forall n \in \mathbb{N}$. Ta có $y_n \to k$. Khi đó theo (ii), thì $kx_n \to ka$.

24 / 140

Chứng minh (iv). Ta có

$$0 \le ||x_n| - |a|| \le |x_n - a| \to 0.$$

Do Định lý 3, ta có $|x_n| - |a| \rightarrow 0$, i.e., $|x_n| \rightarrow |a|$.

25 / 140

Chứng minh (v). Do $b \neq 0$ và $y_n \to b$, ta có $|y_n| \to |b| > \frac{|b|}{2} > 0$, do Định lý 1 (i), ta có $N_1 \in \mathbb{N}$ sao cho

$$|y_n|>\frac{|b|}{2}, \ \forall n>N_1.$$

Với mọi $n > N_1$, ta có

$$\begin{vmatrix} \frac{x_n}{y_n} - \frac{a}{b} \end{vmatrix} = \begin{vmatrix} \frac{b(x_n - a) + a(b - y_n)}{by_n} \end{vmatrix}$$

$$\leq \frac{1}{|y_n|} \left[|x_n - a| + \frac{|a|}{|b|} |b - y_n| \right]$$

$$\leq \frac{2}{|b|} \left[|x_n - a| + \frac{|a|}{|b|} |b - y_n| \right]$$

$$= \frac{2}{|b|} |x_n - a| + 2\frac{|a|}{b^2} |b - y_n|.$$

⟨□⟩⟨□⟩⟨≡⟩⟨≡⟩⟨≡⟩ ≡ √0⟨○⟩

26 / 140

Với mọi $\varepsilon > 0$, $x_n \to a$ và $y_n \to b$, tồn tại N_2 , $N_3 \in \mathbb{N}$, sao cho

$$\forall n > N_2 \Longrightarrow \frac{2}{|b|} |x_n - a| < \frac{\varepsilon}{2},$$

 $\forall n > N_3 \Longrightarrow |y_n - a| < \frac{b^2 \varepsilon}{4(1+|a|)}.$

Khi đó, $\forall n > \max\{N_1, N_2, N_3\}$ dẫn đến

$$\left| \frac{x_n}{y_n} - \frac{a}{b} \right| \leq \frac{2}{|b|} |x_n - a| + 2 \frac{|a|}{b^2} |b - y_n|$$

$$\leq \frac{\varepsilon}{2} + 2 \frac{|a|}{b^2} \frac{b^2 \varepsilon}{4 (1 + |a|)} < \varepsilon.$$

Vậy
$$\frac{x_n}{y_n} \to \frac{a}{b}$$
.

Định lý 4 được chứng minh xong. \square

Định lý 5 (Tiêu chuẩn Weierstrass). Cho dãy số thực $\{x_n\}$ thỏa một trong 4 điều kiện dưới đây:

- (i) $\{x_n\}$ tăng và bị chận trên;
- (ii) $\{x_n\}$ không giảm và bị chận trên;
- (iii) $\{x_n\}$ giảm và bị chận dưới;
- (iv) $\{x_n\}$ không tăng và bị chận dưới;

Khi đó, dãy $\{x_n\}$ hội tụ.

Chứng minh Định lý 5.

Chứng minh (i). Cho $\{x_n\}$ là dãy tăng và bị chận trên. Khi đó tập $A = \{x_n : n \in \mathbb{N}\} \neq \phi$ và bị chận trên. Do đó, tồn tại $a = \sup A$. Ta sẽ chứng minh rằng $x_n \to a$.

Cho $\varepsilon > 0$, do $a = \sup A$, ta có $x_{n_0} \in A : x_{n_0} > a - \varepsilon$.

Với mọi $n>n_0$, do $\{x_n\}$ là dãy tăng ta có $x_n>x_{n_0}$, do đó ta suy ra

$$a - \varepsilon < x_{n_0} < x_n \le a < a + \varepsilon$$
,

điều này dẫn đến

$$|x_n-a|<\varepsilon.$$

Vậy $x_n \rightarrow a$.

30 / 140

Chứng minh (ii): Một cách tương tự, chứng minh $x_n \to \sup A$. **Chứng minh (iii) và (iv)**: Một cách tương tự, chứng minh $x_n \to \inf A$. Đinh lý 5 được chứng minh xong. \square

31 / 140

Chú thích.

(i) Mọi dãy $\{x_n\}$ tăng (hoặc không giảm) và bị chận trên thì hội tụ về

$$\sup\{x_n:n\in\mathrm{N}\}\equiv\sup_{n\in\mathrm{N}}x_n.$$

(ii) Mọi dãy $\{x_n\}$ giảm (hoặc không tăng) và bị chận dưới thì hội tụ về

$$\inf\{x_n:n\in\mathrm{N}\}\equiv\inf_{n\in\mathrm{N}}x_n.$$

Ví dụ 3: (Xem như Bài tập). Cho $\phi \neq A \subset \mathbb{R}$ và bị chặn trên. Chứng minh có một dãy $\{x_n\} \subset A$ hội tụ về $a = \sup A$.

Giải Ví dụ 3. Do $\phi \neq A \subset \mathbb{R}$ và bị chặn trên, nên tồn tại sup A.

Với mỗi $n\in \mathbb{N}$, lấy $arepsilon=rac{1}{n}$, ta có phần tử $x_n\in A$ (phụ thuộc vào n) sao

cho $x_n > a - \frac{1}{n}$. Từ đây ta suy ra

$$a-\frac{1}{n}< x_n \leq a < a+\frac{1}{n},$$

tức là $|x_n - a| < \frac{1}{n} \to 0$. Vậy $x_n \to a$.

Ví dụ 4: (Xem như Bài tập). Cho $\phi \neq A \subset \mathbb{R}$ và bị chặn dưới. Chứng minh có một dãy $\{x_n\} \subset A$ hội tụ về inf A.

3.3 Dãy con, dãy Cauchy

Định nghĩa 3. Cho dãy số thực $\{x_n\}$ và cho $\{n_k\}: \mathbb{N} \to \mathbb{N}$ là dãy tăng các số tự nhiên, tức là $n_k < n_{k+1}, \ \forall k \in \mathbb{N}$. Ánh xạ hợp $\{x_n\} \circ \{n_k\}: \mathbb{N} \to \mathbb{R}$ là một dãy số thực được xác định bởi $y_k = x_{n_k} \ \forall k \in \mathbb{N}$. Dãy số thực $\{y_k\}$ được gọi là một **dãy con của dãy** $\{x_n\}$ **tương ưng với dãy** $\{n_k\}$. Dãy con $\{y_k\}$ được ký hiệu lại là $\{x_{n_k}\}$ (xem lược đồ)

$$\{x_{n_k}\} = \{x_n\} \circ \{n_k\} = \{x_{n_k}\}$$

$$N \xrightarrow{\{n_k\}} N \xrightarrow{\{x_n\}} R$$

$$k \longmapsto n_k \longmapsto x_{n_k} = y_k.$$

Ta cũng dùng ký hiệu như trên và $\{x_{n_k}\}\subset\{x_n\}$ để chỉ $\{x_{n_k}\}$ là một dãy con của dãy $\{x_n\}$.

34 / 140

Chú thích.

- (i) $\{n_k\}: \mathbb{N} \to \mathbb{N}$ là dãy tăng dẫn đến $n_k \geq k$, $\forall k \in \mathbb{N}$. Thật vậy hiển nhiên $n_1 \geq 1$; Giả sử $n_k \geq k$, do $\{n_k\}$ là dãy tăng, nên $n_{k+1} > n_k \geq k$. Từ đây ta suy ra $n_{k+1} > k$. Do đó $n_{k+1} \geq k+1$.
- (ii) Bản thân $\{x_n\}$ cũng là dãy con của chính nó.
- (iii) Dãy con của dãy con cũng là dãy con của dãy ban đầu, nghĩa là nếu $\{y_k\}=\{x_{n_k}\}$ là dãy con của dãy $\{x_n\}$ và $\{z_j\}=\{y_{k_j}\}$ cũng là dãy con của $\{x_n\}$. Ta chú ý là $z_j=x_{n_{k_j}}=x_{q_j}$. Mà $q_j=n_{k_j}$ là dãy các số tự nhiên tăng, bởi vì $k_j< k_{j+1}$, dẫn đến $q_j=n_{k_j}< n_{k_{j+1}}=q_{j+1}$.

Xem lược đồ

$$\{x_{n_{k_j}}\}=\{x_n\}\circ\{n_k\}\circ\{k_j\}$$

$$\begin{array}{ccc} \mathbf{N} \stackrel{\{k_j\}}{\longrightarrow} \mathbf{N} \stackrel{\{n_k\}}{\longrightarrow} \mathbf{R} \\ j \longmapsto k_j \longmapsto n_{k_j} \longmapsto x_{n_{k_i}} = y_{k_j} = z_j. \end{array}$$

4□ > 4□ > 4 = > 4 = > = 90

35 / 140

Ví dụ 5: Cho dãy số thực $\{x_n\}$, với $x_n = \frac{1}{n}$, xét hai dãy $\{y_k\}$ và $\{z_k\}$ như sau:

$$y_k = x_{2k} = \frac{1}{2k},$$

 $z_k = x_{2k-1} = \frac{1}{2k-1}, \ \forall k \in \mathbb{N}.$

Ta có $\{y_k\}$ là một dãy con của dãy $\{x_n\}$ tương ứng với dãy $n_k=2k$, và $\{z_k\}$ là một dãy con của dãy $\{x_n\}$ tương ứng với dãy $n_k=2k-1$.

36 / 140

Định lý 6. Mọi dãy con của một dãy hội tụ thì cũng hội tụ và có cùng một giới hạn.

Chứng minh Định lý 6. Cho $x_n \to a$ và $\{x_{n_k}\}$ là một dãy con của dãy $\{x_n\}$. Ta sẽ chứng minh rằng $x_{n_k} \to a$.

Thật vậy, cho $\varepsilon > 0$, do $x_n \to a$, ta có $N \in \mathbb{N}$: $|x_n - a| < \varepsilon$, $\forall n > N$.

Chú ý rằng $n_k \ge k$, $\forall k \in \mathbb{N}$, ta chọn $k_0 \in \mathbb{N}$ sao cho $k_0 > N$, khi đó $n_k \ge k > k_0 > N$, $\forall k > k_0$.

Do đó, ta suy ra $|x_{n_k} - a| < \varepsilon$, $\forall k > k_0$.

Vậy $x_{n_k} \rightarrow a$.

Định lý 6 được chứng minh xong.

Dịnh nghĩa 4. Cho dãy số thực $\{x_n\}$. Ta nói $\{x_n\}$ là dãy **Cauchy** nếu

 $\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall m, n \in \mathbb{N}, m, n > N \Longrightarrow |x_m - x_n| < \varepsilon.$

Định lý 7. Cho $\{x_n\}$ là một dãy số thực. Khi đó

 $\{x_n\}$ hội tụ $\iff \{x_n\}$ là dãy Cauchy.

Chứng minh Định lý 7.

Chứng minh phần thuận (\Longrightarrow): Cho $x_n \to a$, ta sẽ chứng minh rằng $\{x_n\}$ là dãy Cauchy.

Thật vậy, cho $\varepsilon>0$, do $x_n\to a$, ta có $N\in {\mathbb N}: |x_n-a|<rac{\varepsilon}{2}, \ \forall n>N.$

Do đó, $\forall m, n \in \mathbb{N}$, m, n > N, ta có

$$|x_m-x_n|\leq |x_m-a|+|a-x_n|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

Vậy $\{x_n\}$ là dãy Cauchy.

)

Chứng minh phần đảo (\iff): Giả sử $\{x_n\}$ là dãy Cauchy. Ta chứng minh $\{x_n\}$ hội tụ.

Dùng Ví dụ 6 dưới đây, ta chỉ cần chứng minh dãy $\{x_n\}$ chứa một dãy con hội tụ.

Trước hết chúng ta chứng minh dãy $\{x_n\}$ bị chận.

Do $\{x_n\}$ là dãy Cauchy, với $\varepsilon=1$, ta có $N\in \mathbb{N}: |x_m-x_n|<1$, $\forall m,n>N$.

Suy ra

$$\begin{aligned} |x_m| & \leq & |x_m - x_{N+1}| + |x_{N+1}| \leq 1 + |x_{N+1}| \\ & \leq & \max(1 + |x_{N+1}|, |x_1|, |x_2|, \cdots, |x_N|) = M, \ \forall m \in \mathbb{N}. \end{aligned}$$

Dùng **Định lý Bolzano-Weierstrass** (Sẽ chứng minh ở Định lý 8), ta có một dãy con $\{x_{n_k}\}$ của dãy $\{x_n\}$ hội tụ về một giới hạn $a \in [-M, M]$. Sử dụng Bài tập dưới đây ta có Định lý 7 được chứng minh xong. \square

Ví dụ 6: (Xem như Bài tập). Cho $\{x_n\}$ là một dãy Cauchy. Giả sử $\{x_n\}$ có một dãy con hội tụ về a. Chứng minh $\{x_n\}$ hội tụ về a.

Giải Ví dụ 6. Giả sử $\{x_{n_k}\}$ là một dãy con của dãy $\{x_n\}$ sao cho $x_{n_k} \to a$. Ta sẽ chứng minh rằng $x_n \to a$.

Thật vậy, cho $\varepsilon > 0$.

Do $\{x_n\}$ là một dãy số thực Cauchy, nên có $N \in \mathbb{N}: |x_m - x_n| < \frac{\varepsilon}{2}, \forall m, n > N.$

Do $x_{n_k} \to a$, ta có $k_0 > N : |x_{n_k} - a| < \frac{\varepsilon}{2}$, $\forall k > k_0$.

Đặc biệt lấy một số tự nhiên $k_1=k_0+1>k_0$, ta có

$$\begin{vmatrix} x_{n_{k_1}} - a \end{vmatrix} < \frac{\varepsilon}{2},$$

$$n_{k_1} \geq k_1 > N.$$

Với mọi m > N, ta suy ra

$$|x_m - a| \le \left| x_m - x_{n_{k_1}} \right| + \left| x_{n_{k_1}} - a \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Vậy $x_n \rightarrow a$.

Giải Ví dụ 6 giải xong. \square

Ví dụ 7: (Xem như Bài tập). Cho hai dãy số thực $\{a_n\}$ và $\{b_n\}$ sao cho $[a_n,b_n]\subset [a_m,b_m], \, \forall m,n\in\mathbb{N},\, n\geq m.$

(i) Đặt $a_{\max} = \sup_{n \in \mathbb{N}} a_n$, $b_{\min} = \inf_{m \in \mathbb{N}} b_m$. Chứng minh rằng

$$[a_{\mathsf{max}}, b_{\mathsf{min}}] \subset \bigcap_{k \in \mathbb{N}} [a_k, b_k].$$

(ii) Nếu thêm điều kiện $b_n-a_n \to 0$, hãy chứng minh rằng $a_{\max}=b_{\min}$.

- ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

43 / 140

Giải Ví dụ 7.

Chứng minh (i). Viết lại điều kiện

$$a_m \le a_n \le b_n \le b_m, \ \forall m, n \in \mathbb{N}, \ m \le n.$$

Lấy m=1

$$a_1 \leq a_n \leq b_n \leq b_1, \ \forall n \in \mathbb{N}.$$

Suy ra:

 $\{a_n\}$ là dãy (tăng) không giảm và bị chận trên, do đó

$$a_n \to a_{\max} \equiv \sup_{n \in \mathbb{N}} a_n$$

 $\{b_n\}$ là dãy (giảm) không tăng và bị chận dưới, do đó

$$b_n \to b_{\min} \equiv \inf_{n \in \mathbb{N}} b_n$$
.

44 / 140

Cố định $m\in \mathbb{N}$, do $a_m\leq a_n\leq b_m,\ \forall n\geq m.$ Cho $n\to\infty$, ta thu được

$$a_m \le a_{\max} \le b_{\min} \le b_m, \ \forall m \in \mathbb{N}.$$

Do đó

$$[a_{\max}, b_{\min}] \subset [a_m, b_m], \ \forall m \in \mathbb{N}.$$

Vậy

$$[a_{\max}, b_{\min}] \subset \bigcap_{m \in \mathbb{N}} [a_m, b_m].$$

Chứng minh (ii). Từ các bất đẳng thức $a_m \leq a_{\max} \leq b_{\min} \leq b_m$, $\forall m \in \mathbb{N}$, ta suy ra

$$0 \le b_{\min} - a_{\max} \le b_m - a_m, \ \forall m \in \mathbb{N}.$$

Cho $m \to \infty$, ta thu được $b_{\mathsf{min}} - a_{\mathsf{max}} = 0$, hay $\sup_{n \in \mathbb{N}} a_n = \inf_{m \in \mathbb{N}} b_m$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

46 / 140

Ví dụ 8: (Xem như Bài tập). Cho ba dãy số thực $\{a_n\}$, $\{b_n\}$ và $\{x_n\}$ sao cho $[a_n,b_n]\subset [a_m,b_m]$, $\forall m,n\in\mathbb{N},\ m\leq n$.

- (i) $[a_n, b_n] \subset [a_m, b_m], \forall m, n \in \mathbb{N}, m \leq n;$
- (ii) $b_n a_n \rightarrow 0$;
- (iii) $a_n \leq x_n \leq b_n, \forall n \in \mathbb{N}.$

Chứng minh $\{x_n\}$ là một dãy hội tụ.

Giải Ví dụ 8. Theo Ví dụ 7, thì **(i)**, **(ii)** dẫn đến $a_n \to a_{\max}$, $b_n \to b_{\min}$ và $a_{\max} = b_{\min}$.

Từ các điều kiện (iii), dẫn đến $x_n \to a_{\max} = b_{\min}$.

Dịnh lý 8 (Bolzano-Weierstrass). Cho a, $b \in \mathbb{R}$, a < b và $\{x_n\}$ một dãy số thực sao cho $a \le x_n \le b$, $\forall n \in \mathbb{N}$. Khi đó có một dãy con của dãy $\{x_n\}$ hội tụ về $x \in [a,b]$.

Chứng minh Định lý 8.

(i) Chia đoạn [a,b] thành hai đoạn bởi trung điểm $c=rac{a+b}{2}$. Đặt

$$J_1^- = \{ n \in \mathbb{N} : x_n \in [a, c] \},$$

 $J_1^+ = \{ n \in \mathbb{N} : x_n \in [c, b] \},$

ta thu được $J_1^- \cup J_1^+ = N$.

Do N vô hạn phần tử nên một trong hai tập J_1^- , J_1^+ phải vô hạn phần tử.

Nếu J_1^- vô hạn phần tử: Chọn $n_1 \in J_1^-$ và ta đặt $[a, c] = [a_1, b_1]$;

Nếu J_1^+ vô hạn phần tử: Chọn $n_1 \in J_1^+$ và ta đặt $[c,b]=[a_1,b_1].$

50 / 140

Cả hai trường hợp ta luôn chọn được n_1 thuộc một trong hai tập J_1^- , J_1^+ có vô hạn phần tử, ta ký hiệu lại tập vô hạn đó là

$$J_1 = \{ n \in \mathbb{N} : x_n \in [a_1, b_1] \}, \ x_{n_1} \in [a_1, b_1],$$

trong đó $[a_1, b_1] \subset [a, b], b_1 - a_1 = \frac{b-a}{2}.$

(ii) Tiếp tục ta chia đoạn $[a_1,b_1]$ thành hai đoạn bởi trung điểm $c_1=rac{a_1+b_1}{2}$, như vậy

$$n_1 \in J_1 = \{n \in \mathbb{N} : x_n \in [a_1, b_1]\} = J_2^- \cup J_2^+,$$

 $J_2^- = \{n \in J_1 : x_n \in [a_1, c_1]\},$
 $J_2^+ = \{n \in J_1 : x_n \in [c_1, b_1]\}.$

51 / 140

Do $J_1=J_2^-\cup J_2^+$ vô hạn phần tử nên một trong hai tập J_2^- , J_2^+ phải vô hạn phần tử.

Nếu J_2^- vô hạn phần tử: Chọn $n_2 \in J_2^-$ sao cho $n_2 > n_1$ và ta đặt $[a_1, c_1] = [a_2, b_2];$

Nếu J_2^+ vô hạn phần tử: Chọn $n_1\in J_2^+$ sao cho $n_2>n_1$ và ta đặt $[c_1,b_1]=[a_2,b_2].$

Cả hai trường hợp ta luôn chọn được $n_2>n_1$ thuộc một trong hai tập J_2^- , J_2^+ có vô hạn phần tử, ta ký hiệu lại tập vô hạn đó là

$$J_2 = \{ n \in \mathbb{N} : x_n \in [a_2, b_2] \}, \ x_{n_2} \in [a_2, b_2],$$

trong đó
$$[a_2, b_2] \subset [a_1, b_1] \subset [a, b], b_2 - a_2 = \frac{b_1 - a_1}{2} = \frac{b - a}{2^2}.$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

52 / 140

(iii) Tiếp tục ta chia đoạn $[a_2,b_2]$ thành hai đoạn bởi trung điểm $c_2=rac{a_2+b_2}{2}$, như vậy

$$n_2 \in J_2 = \{n \in \mathbb{N} : x_n \in [a_2, b_2]\} = J_3^- \cup J_3^+,$$

 $J_3^- = \{n \in J_1 : x_n \in [a_2, c_2]\},$
 $J_3^+ = \{n \in J_1 : x_n \in [c_2, b_2]\}.$

Do $J_2 = J_3^- \cup J_3^+$ vô hạn phần tử nên một trong hai tập J_3^- , J_3^+ phải vô han phần tử.

Nếu J_3^- vô hạn phần tử: Chọn $n_3 \in J_3^-$ sao cho $n_3 > n_2$ và ta đặt $[a_2, c_2] = [a_3, b_3]$;

Nếu J_3^+ vô hạn phần tử: Chọn $n_3\in J_3^+$ sao cho $n_3>n_2$ và ta đặt $[c_2,b_2]=[a_3,b_3].$

Cả hai trường hợp ta luôn chọn được $n_3>n_2$ thuộc một trong hai tập J_3^- , J_3^+ có vô hạn phần tử, ta ký hiệu lại tập vô hạn đó là

$$J_3 = \{ n \in \mathbb{N} : x_n \in [a_3, b_3] \}, \ x_{n_3} \in [a_3, b_3],$$

trong đó
$$[a_3,b_3]\subset [a_2,b_2]\subset [a_1,b_1]\subset [a,b],$$

$$b_3 - a_3 = \frac{b_2 - a_2}{2} = \frac{b_1 - a_1}{2^2} = \frac{b - a}{2^3}.$$

:

:

Tiếp tục quá trình trên ta chọn được tập con vô hạn $J_k \equiv \{n \in J_{k-1}: x_n \in [a_k,b_k]\}$, của N, gồm những n sao cho $x_n \in [a_k,b_k]$, với

$$J_{k} \equiv \{n \in J_{k-1} : x_{n} \in [a_{k}, b_{k}]\}$$

$$J_{k} \subset J_{k-1}, [a_{k}, b_{k}] \subset [a_{k-1}, b_{k-1}],$$

$$b_{k} - a_{k} = \frac{b_{k-1} - a_{k-1}}{2} = \dots = \frac{b-a}{2^{k}}, \forall k \in \mathbb{N}.$$

Chọn $n_k \in J_k$, sao cho $n_k > n_{k-1}$, ta có

$$x_{n_k} \in [a_k, b_k] \subset [a_{k-1}, b_{k-1}] \subset \cdots \subset [a, b],$$
 $b_k - a_k = \frac{b-a}{2^k} \to 0$, khi $k \to \infty$.

55 / 140

Từ đây, ta viết lại

$$\begin{array}{rcl} a & \leq & a_{k-1} \leq a_k \leq x_{n_k} \leq b_k \leq b_{k-1} \leq b, \ \forall k \in \mathbb{N}, \\ b_k - a_k & = & \frac{b-a}{2^k} \to 0, \ \text{khi} \ k \to \infty. \end{array}$$

Do đó dãy $\{a_k\}$ không giảm và bị chận trên bởi b, do đó $\{a_k\}$ hội tụ về a_* , trong khi đó dãy $\{b_k\}$ không tăng và bị chận dưới bởi a, do đó $\{b_k\}$ hôi tu về b_* .

Mặt khác do $b_k - a_k = \frac{b-a}{2^k} \to 0$, nên ta suy ra $a_* = b_*$. Từ bất đẳng thức $a_k \le x_{n_k} \le b_k$, $\forall k \in \mathbb{N}$, và $a_k \to a_*$, $b_k \to a_*$, ta suy ra $x_{n_k} \to a_*$. (Nếu không lý luận như đoạn này thì ta có thể sử dụng Ví dụ 9, ta cũng thu được dãy $\{x_{n_k}\}$ hội tụ).

Định lý 8 được chứng minh xong. □

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥९○

3.4 Dãy số tiến ra vô cùng Định nghĩa 5. Ta nói dãy số thực $\{x_n\}$ tiến ra $+\infty$ nếu

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, \ n > N \Longrightarrow x_n > A.$$

Khi dãy $\{x_n\}$ tiến ra $+\infty$, ta có thể nói dãy $\{x_n\}$ có giới hạn $+\infty$ [Dọc nguyên cụm từ: Dãy $\{x_n\}$ có giới hạn cộng vô cùng, mà không được đọc là: Dãy $\{x_n\}$ có giới hạn và giới hạn của $\{x_n\}$ = cộng vô cùng] và ta có thể viết một theo các cách sau

$$\lim_{n \to \infty} x_n = +\infty$$
, hay $\lim x_n = +\infty$,
hay $x_n \to +\infty$ khi $n \to \infty$, hay $x_n \to +\infty$.

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ ㅌ 쒸٩)

Định nghĩa tương tự cho giới hạn $-\infty$ cho dãy $\{x_n\}$ như sau **Định nghĩa 6**. Ta nói dãy số thực $\{x_n\}$ **tiến ra** $-\infty$ nếu

$$\forall A \in \mathbb{R}, \exists N \in \mathbb{N} : \forall n \in \mathbb{N}, \ n > N \Longrightarrow x_n < A.$$

Khi dãy $\{x_n\}$ tiến ra $-\infty$, ta có thể nói dãy $\{x_n\}$ có giới hạn $-\infty$ [Dọc nguyên cụm từ: Dãy $\{x_n\}$ có giới hạn trừ vô cùng, mà không được đọc là: Dãy $\{x_n\}$ có giới hạn và giới hạn của $\{x_n\}$ = trừ vô cùng] và ta có thể viết một theo các cách sau

$$\lim_{n \to \infty} x_n = -\infty$$
, hay $\lim x_n = -\infty$,
hay $x_n \to -\infty$ khi $n \to \infty$, hay $x_n \to -\infty$.

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ ㅌ 쒸٩)

Chú thích.

- (i) Chú ý rằng dãy $\{x_n\}$ với hai trường hợp $x_n \to +\infty$ và $x_n \to -\infty$ (không có giới hạn hữu hạn) được xếp vào loại dãy phân kỳ (không hội tụ).
- (ii) Trong trường hợp dãy $\{x_n\}$ tăng và không bị chận trên, khi đó ta có $x_n \to +\infty$.

Nhắc lại: [Dãy $\{x_n\}$ bị chận trên $\iff \exists M \in \mathbb{R} : x_n \leq M, \forall n \in \mathbb{N}$] Thật vậy, do dãy $\{x_n\}$ không bị chận trên, ta có

$$\forall M \in \mathbb{R}, \ \exists n_M \in \mathbb{N} : x_{n_M} > M.$$

Do dãy $\{x_n\}$ tăng, nên, $\forall m \in \mathbb{N}, \ m > n_M \Longrightarrow x_m > x_{n_M} > M.$ Vậy, $x_n \to +\infty$.

(iii) Với chú ý tương tự là nếu dãy $\{x_n\}$ giảm và không bị chận dưới, ta có $x_n \to -\infty$.

(iv) Các phép tính giới hạn của dãy cũng được mở rộng cho các phép tính với giới hạn vô cực như sau.

$$(+\infty) \cdot (+\infty) = +\infty, \ (-\infty) \cdot (-\infty) = +\infty,$$

$$(-\infty) \cdot (+\infty) = -\infty, \ (+\infty) \cdot (-\infty) = -\infty,$$

$$a \cdot (+\infty) = +\infty, \ a \cdot (-\infty) = -\infty,$$

$$(-a) \cdot (-\infty) = +\infty, \ (-a) \cdot (+\infty) = -\infty, \ a > 0;$$

$$\frac{a}{\pm \infty} = 0, \ a \in \mathbb{R}.$$

)

Ngoài ra cũng có các dạng vô định (không xác định)

$$\frac{0}{0}, \frac{\pm \infty}{\pm \infty}, \ 0 \cdot (\pm \infty), \ (\pm \infty) \cdot 0, \ 1^{\infty}, \ 0^{0}.$$

Ví dụ 9: (Xem như Bài tập). Cho dãy số thực $\{x_n\}$ không bị chận trên. Chứng minh rằng tồn tại một dãy con $\{x_{n_k}\}$ của $\{x_n\}$ sao cho $x_{n_k} \to +\infty$. **Ví dụ 10**: (tương tự như **Ví dụ 9, x**em như Bài tập). Cho dãy số thực $\{x_n\}$ không bị chận dưới. Chứng minh rằng tồn tại một dãy con $\{x_{n_k}\}$ của $\{x_n\}$ sao cho $x_{n_k} \to -\infty$.

Giải Ví dụ 9.

$$\{x_n\} \text{ bị chận trên} \iff \exists k \in \mathbf{R} : x_n \leq k, \ \forall n \in \mathbf{N};$$

$$\{x_n\} \text{ không bị chận trên} \iff \forall k \in \mathbf{R}, \exists n_k \in \mathbf{N} : x_{n_k} > k$$

$$\iff \forall k \in \mathbf{N}, \exists n_k \in \mathbf{N} : x_{n_k} > k.$$

() 63 / 140

Nhắc lại trước khi qua phần Giới hạn trên (limsup) và giới hạn dưới (liminf)

- (i) Mọi dãy $\{x_n\}$ tăng (hoặc không giảm) và bị chận trên thì hội tụ và có giới hạn là $\lim_{n\to\infty} x_n = \sup_{n\in\mathbb{N}} x_n = \sup_{n\in\mathbb{N}} \{x_n : n\in\mathbb{N}\}$ (Tiêu chuẩn Weierstrass).
- (ii) Mọi dãy $\{x_n\}$ giảm (hoặc không tăng) và bị chận dưới thì hội tụ và có giới hạn là $\lim_{n\to\infty}x_n=\inf_{n\in\mathbb{N}}x_n\equiv\inf\{x_n:n\in\mathbb{N}\}$ (Tiêu chuẩn Weierstrass).
- (iii) Mọi dãy $\{x_n\}$ tăng và không bị chận trên thì ta có $x_n \to +\infty$.
- (iv) Mọi dãy $\{x_n\}$ giảm và không bị chận dưới thì ta có $x_n \to -\infty$.
- (v) Mọi dãy số thực $\{x_n\}$ không bị chận trên đều tồn tại một dãy con $\{x_{n_k}\} \subset \{x_n\}$ sao cho $x_{n_k} \to +\infty$ (**Ví dụ 9,** xem như Bài tập).
- (vi) Mọi dãy số thực $\{x_n\}$ không bị chận dưới đều tồn tại một dãy con $\{x_{n_k}\}\subset\{x_n\}$ sao cho $x_{n_k}\to-\infty$ (**Ví dụ 10,** xem như Bài tập).

(ロ) (레) (토) (토) (토) (토) (의익()

3.5 Giới hạn trên (limsup) và giới hạn dưới (liminf)

Cho một dãy số thực $\{x_n\}$.

Đặt $A_n = \{x_k : k \ge n\} = \{x_n, x_{n+1}, x_{n+2}, \cdots\}$, ta có dãy $\{A_n\}$ giảm dần các tập con khác trống của N:

$$A_{n+1} \subset A_n \subset \cdots \subset A_1, \ \forall n \in \mathbb{N},$$

hay

$$A_m \subset A_n \subset A_1$$
, $\forall m, n \in \mathbb{N}$, $m \ge n$.

Định nghĩa limsup.

- (i) Nếu A_1 không bị chận trên (i.e. $\{x_n\}$ không bị chận trên), ta đặt: $\limsup_{n\to\infty} x_n = +\infty$.
- (ii) Nếu A_1 bị chận trên (i.e. $\{x_n\}$ bị chận trên), ta đặt $y_n = \sup A_n = \sup x_k$, ta có $\{y_n\}$ là dãy giảm: $k \ge n$

$$y_{n+1} \le y_n \le y_1, \ \forall n \in \mathbb{N}.$$

(ii1) Nếu $\{y_n\}$ không bị chặn dưới, khi đó $y_n \to -\infty$, ta đặt: $\limsup_{n \to \infty} x_n = -\infty = \lim_{n \to \infty} y_n$.

(ii2) Nếu $\{y_n\}$ bị chặn dưới, khi đó $\{y_n\}$ hội tụ về một giới hạn là $\lim_{n\to\infty}y_n=\inf_{n>1}y_n$, ta đặt

$$\limsup_{n\to\infty} x_n = \lim_{n\to\infty} y_n.$$

67 / 140

Chú thích 1. Trường hợp (ii2) này, $\{y_n\}$ giảm và bị chặn dưới, ta có $y_n \to \inf_{n>1} y_n$ khi $n \to \infty$.

Do đó, ta viết lại theo một cách như sau

$$\limsup_{n\to\infty} x_n = \lim_{n\to\infty} y_n = \inf_{n\geq 1} y_n = \inf_{n\geq 1} \left(\sup_{k\geq n} x_k \right).$$

Chú thích 2. Cũng còn gọi tên là giới hạn trên của dãy $\{x_n\}$, và người ta có thể dùng thêm một ký hiệu khác $\overline{\lim_{n\to\infty}} x_n$ thay cho $\limsup_{n\to\infty} x_n$.

68 / 140

Định nghĩa liminf.

Cho một dãy số thực $\{x_n\}$.

Đặt $A_n = \{x_k : k \ge n\} = \{x_n, x_{n+1}, x_{n+2}, \dots\}$, ta có dãy $\{A_n\}$ giảm dần các tập con khác trống:

$$\phi \neq A_{n+1} \subset A_n \subset A_1, \ \forall n \in \mathbb{N}.$$

- (i) Nếu A_1 không bị chận dưới (i.e. $\{x_n\}$ không bị chận dưới), ta đặt: $\lim_{n\to\infty}\inf x_n=-\infty$.
- (ii) Nếu A_1 bị chận dưới (i.e. $\{x_n\}$ bị chận dưới), ta đặt: $z_n = \inf A_n = \inf_{k \ge n} x_k$, ta có $\{z_n\}$ là dãy tăng:

$$z_1 \le z_n \le z_{n+1}, \ \forall n \in \mathbb{N}.$$

◄□▶◀圖▶◀불▶◀불▶ 불 쒸٩○

69 / 140

- (ii1) Nếu $\{z_n\}$ không bị chặn trên, khi đó $z_n \to +\infty$, ta đặt: $\liminf_{n \to \infty} x_n = +\infty = \lim_{n \to \infty} z_n$.
- (ii2) Nếu $\{z_n\}$ bị chặn trên, khi đó $\{z_n\}$ hội tụ về một giới hạn là $\lim_{n\to\infty}z_n=\sup_{n>1}$, ta đặt

$$\lim_{n\to\infty}\inf x_n=\lim_{n\to\infty}z_n.$$

70 / 140

Chú thích 3. Trường hợp (ii2) này, $\{z_n\}$ tăng và bị chặn trên, ta có $z_n \to \sup_{n \ge 1} \operatorname{khi} n \to \infty$.

Do đó, ta viết lại theo một cách như sau

$$\liminf_{n\to\infty} x_n = \lim_{n\to\infty} z_n = \sup_{n\geq 1} \left(\inf_{k\geq n} x_k \right).$$

Chú thích 4a. Cũng còn gọi tên là **giới hạn dưới của dãy** $\{x_n\}$, và người ta có thể dùng thêm một ký hiệu khác $\lim_{n\to\infty} x_n$ thay cho $\liminf_{n\to\infty} x_n$.

Tóm tắt Định nghĩa.

$$y_n = \left\{ egin{array}{ll} +\infty, & ext{n\'eu} \left\{ x_n
ight\} ext{ không bị chận trên,} \ \sup x_k = \sup A_n, & ext{n\'eu} \left\{ x_n
ight\} ext{ bị chận trên,} \ k \geq n \end{array}
ight.$$

$$z_n = \begin{cases} -\infty, & \text{n\'eu } \{x_n\} \text{ không bị chận dưới,} \\ \inf_{k > n} x_k, & \text{n\'eu } \{x_n\} \text{ bị chận dưới,} \end{cases}$$

$$\lim_{n \to \infty} \inf x_n = \begin{cases}
-\infty, \\
+\infty, \\
\lim_{n \to \infty} z_n = \sup_{n \ge 1} z_n \\
= \sup_{n \ge 1} \left(\inf_{k \ge n} x_k\right),
\end{cases}$$

nếu $\{x_n\}$ không BC dưới, nếu $\{x_n\}$ BC dưới, $\{z_n\}$ không BC trên,

nếu $\{x_n\}$ BC dưới, $\{z_n\}$ BC trên.

73 / 140

Chú thích 4b.

- (i) Nếu $\{x_n\}$ không bị chận trên, ta định nghĩa lim sup $x_n = +\infty$.
- (ii) Nếu $\{x_n\}$ không bị chận dưới, ta định nghĩa $\liminf_{n \to \infty} x_n = -\infty$.

74 / 140

Chú thích 4c. Nếu ta đặt

 $\sup A_n = \sup_{k \geq n} x_k = +\infty, \text{ n\'eu } \{x_n\} \text{ không bị chận trên,}$ $\inf A_n = \inf_{k \geq n} x_k = -\infty, \text{ n\'eu } \{x_n\} \text{ không bị chận dưới,}$

khi đó không chia các trường hợp chúng ta có thể định nghĩa $\limsup_{n\to\infty} x_n$ bằng công thức

$$\limsup_{n\to\infty} x_n = \inf_{n\geq 1} \left(\sup_{k\geq n} x_k \right),\,$$

và $\liminf_{n\to\infty} x_n$ bằng công thức

$$\lim_{n\to\infty}\inf x_n = \sup_{n>1}\left(\inf_{k\geq n}x_k\right).$$

| **イロト 4回 ト 4 恵 ト 4 恵 ト - 恵 - り**90で

75 / 140

)

Ví dụ 11: Cho $x_n = (-1)^n$, với mọi $n \in \mathbb{N}$. Giải Ví dụ 11. Đặt

$$A_n = \{x_k : k \ge n\} = \{(-1)^k : k \ge n\} = \{-1, 1\}.$$

Tính lim inf x_n . Ta có:

 A_1 bị chặn dưới, ta đặt

$$z_n = \inf A_n = -1.$$

Do $\{z_n\}$ bị chặn trên, ta có

$$\liminf_{n\to\infty} x_n = \lim_{n\to\infty} z_n = -1.$$

Ta thấy rằng dãy $\{x_n\}$ là phân kỳ nhưng vẫn có $\liminf_{n\to\infty} x_n = -1$.

◆ロト ◆個 ト ◆ 差 ト ◆ 差 ・ 釣 へ @

76 / 140

Tính $\limsup x_n$. Ta có A_1 bị chặn trên

$$y_n = \sup A_n = 1.$$

Do $\{y_n\}$ bị chặn dưới, ta có

$$\limsup_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 1.$$

Trong trường hợp này, ta có

$$\limsup_{n\to\infty} x_n = 1 \neq -1 = \liminf_{n\to\infty} x_n.$$

Ví dụ 12: Cho $x_n = (-1)^n n$, với mọi $n \in \mathbb{N}$. Giải Ví du 12.

$$A_1 = \{x_k : k \ge 1\} = \{(-1)^k k : k \ge 1\} = \{-1, \mathbf{2}, -3, \mathbf{4}, -5, \mathbf{6}, \cdots\}$$

Đăt

$$A_n = \{x_k : k \ge n\} = \{(-1)^k k : k \ge n\},$$

ta có

$$A_1 = \{x_k : k \ge 1\} = \{(-1)^k k : k \ge 1\}$$

$$\supset \{-2k - 1 : k \ge 1\} = \{-3, -5, -7, -9, \dots\}.$$

Tính lim inf x_n . Ta có A_1 không bị chặn dưới, vậy $\liminf_{n\to\infty} x_n = -\infty$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

78 / 140

Tính $\limsup x_n$. Ta có

$$A_1 = \{x_k : k \ge 1\} = \{(-1)^k k : k \ge 1\}$$

$$\supset \{2k : k \ge n\} = \{2n, 2n + 2, 2n + 4, \dots\}.$$

Do đó A_1 không bị chặn trên, vậy $\limsup_{n \to \infty} x_n = +\infty$.

79 / 140

)

Ví dụ 13: Cho $x_n = -n$, với mọi $n \in \mathbb{N}$. Giải Ví dụ 13. Đặt

$$A_n = \{x_k : k \ge n\} = \{-k : k \ge n\}$$

$$= \{-n, -n - 1, -n - 2, \cdots\}$$

$$= \{k \in \mathbb{Z} : k \le -n\} \subset \{k : k \le -1\} = A_1$$

$$= A_1 = \{-1, -2, -3, \cdots\}.$$

Tính lim sup x_n . Ta có A_1 bị chặn trên, $y_n = \sup A_n = -n$. Do $\{y_n\}$ không bị chặn dưới, ta có lim sup $x_n = -\infty$.

Tính lim inf x_n . Ta có A_1 không bị chặn dưới, vậy $\liminf_{n\to\infty} x_n = -\infty$.

80 / 140

Ví dụ 14: Cho $x_n = n$, với mọi $n \in \mathbb{N}$. Giải Ví du 14. Đăt

$$A_n = \{x_k : k \ge n\} = \{k : k \ge n\}$$

 $\subset A_1 = \{x_k : k \ge 1\} = N.$

Tính lim sup x_n . Ta có, A_1 không bị chặn trên, vậy lim sup $x_n = +\infty$.

Tính lim inf x_n . Ta có, A_1 bị chận dưới, ta đặt $z_n = \inf A_n = n$. Do $\{z_n\}$ không bị chặn trên, ta có $\liminf_{n \to \infty} x_n = +\infty$.

- ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

81 / 140

Ví dụ 15: (Xem như Bài tập). Cho một dãy số thực $\{x_n\}$. Giả sử $\limsup_{n\to\infty} x_n$ và $\liminf_{n\to\infty} x_n$ đều là các số thực. Chứng minh $\liminf_{n\to\infty} x_n \leq \limsup_{n\to\infty} x_n$.

Giải Ví dụ 15.

$$A_n = \{x_k : k \ge n\},$$

$$\phi \neq A_{n+1} \subset A_n \subset A_1, \ \forall n \in \mathbb{N}.$$

$$y_n = \sup A_n.$$

$$\lim_{n \to \infty} \sup x_n = \lim_{n \to \infty} y_n = \lim_{n \to \infty} (\sup A_n)$$

$$z_n = \inf A_n.$$

$$\lim_{n \to \infty} \inf x_n = \lim_{n \to \infty} z_n = \lim_{n \to \infty} (\inf A_n)$$

$$z_n = \inf A_n < x_n < \sup A_n = y_n, \ \forall n \in \mathbb{N}.$$

Do
$$z_n o \liminf_{n \to \infty} x_n$$
 và $y_n o \limsup_{n \to \infty} x_n$, ta có
$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} z_n \le \lim_{n \to \infty} y_n = \limsup_{n \to \infty} x_n.$$

Ví dụ 16: (Xem như Bài tập). Cho một dãy số thực $\{x_n\}$. Chứng minh rằng

$$\limsup_{n\to\infty}x_n=-\liminf_{n\to\infty}(-x_n).$$

Giải Ví du 16. Ta có

$$\limsup_{n \to \infty} x_n = \inf_{n \ge 1} \left(\sup_{k \ge n} x_k \right) = \inf_{n \ge 1} \left(-\inf_{k \ge n} (-x_k) \right) \\
= -\sup_{n \ge 1} \left(\inf_{k \ge n} (-x_k) \right) = -\liminf_{n \to \infty} (-x_n).$$

83 / 140

Ví dụ 17: (Xem như Bài tập). Cho một dãy số thực $\{x_n\}$. Giả sử $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n = a \in \mathbb{R}$. Chứng minh rằng $x_n\to a$.

Ví dụ 18: (Xem như Bài tập). Cho một dãy số thực $\{x_n\}$. Giả sử $x_n \to a$. Chứng minh rằng $\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = a$.

Giải Ví dụ 17. Ta có

$$z_n = \inf_{k \ge n} x_k \le x_n \le \sup_{k \ge n} x_k = y_n, \ \forall n \in \mathbb{N}.$$

Do $z_n o \liminf_{n o \infty} x_n = a$ và $y_n o \limsup_{n o \infty} x_n = a$, ta có $x_n o a$.

84 / 140

Giải Ví dụ 18.

(i) Chứng minh $\limsup_{n\to\infty} x_n=a$. Cho $\varepsilon>0$, do $x_n\to a$ ta có $N\in\mathbb{N}$:

$$\forall n > N \Longrightarrow |x_n - a| < \varepsilon/2.$$

Do $y_n = \sup_{k > n} x_k$, $\exists k_n(\varepsilon) \ge n : y_n - \varepsilon/2 < x_{k_n(\varepsilon)} \le y_n$. Điều này dẫn đến

$$\left|x_{k_n(\varepsilon)}-y_n\right|<\varepsilon/2.$$

 $\forall n > N$, ta có $k_n(\varepsilon) \geq n > N$, do đó

$$\left|x_{k_n(\varepsilon)}-a\right|<\varepsilon/2.$$

Vậy

$$|y_n - a| \le |y_n - x_{k_n(\varepsilon)}| \le |x_{k_n(\varepsilon)} - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Suy ra $y_n \to a$, tức là $\limsup_{n \to \infty} x_n = \lim_{n \to \infty} y_n = a$.

85 / 140

(ii) Chứng minh $\liminf_{n\to\infty} x_n = a$.

Do $z_n=\inf_{k\geq n}x_k$, $\exists q_n(\varepsilon)\geq n$: $z_n\leq x_{q_n(\varepsilon)}< z_n+\varepsilon/2$. Điều này dẫn đến

$$\left|x_{q_n(\varepsilon)}-z_n\right|<\varepsilon/2.$$

 $\forall n > N$, ta có $q_n(\varepsilon) \geq n > N$, do đó

$$\left|x_{q_n(\varepsilon)}-a\right|<\varepsilon/2.$$

Vậy

$$|z_n - a| \le |z_n - x_{q_n(\varepsilon)}| \le |x_{q_n(\varepsilon)} - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

Suy ra $z_n \to a$, tức là $\liminf_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a$.

86 / 140

Ví dụ 19: (Xem như Bài tập). Cho một dãy số thực $\{x_n\}$ bị chận. Đặt

 $A = \{a \in \mathbb{R} : a \text{ là giới hạn của một dãy con của } \{x_n\}\}$ [tập các điểm giới hạn của dãy $\{x_n\}$] $= \{a \in \mathbb{R} : \exists \{x_{n_k}\} \subset \{x_n\} : x_{n_k} \to a\} \neq \phi.$

Khi đó $\exists \max A$, $\min A \in A$, và $\max A = \limsup_{n \to \infty} x_n$, $\min A = \liminf_{n \to \infty} x_n$.

(ロ) (레) (토) (토) (토) 연약(

87 / 140

Ví dụ 19: (Xem như Bài tập). Cho một dãy số thực $\{x_n\}$ bị chận. Đặt $A = \{a \in \mathbb{R} : a \text{ là giới hạn của một dãy con của } \{x_n\} \}$. Chứng minh rằng

$$\lim_{\substack{n \to \infty \\ \text{lim inf } x_n = \infty}} \sup A \in A,$$

Giải Ví dụ 19. Cho $a \in A = \{a \in \mathbb{R} : a \text{ là giới hạn của một dãy con của } \{x_n\} \}$. Khi đó, ta có một dãy con $\{x_{n_j}\} \subset \{x_n\}$ sao cho $x_{n_j} \to a$. Ta sẽ chứng minh rằng

$$\liminf_{n\to\infty}x_n\leq a\leq \limsup_{n\to\infty}x_n.$$

Từ bất đẳng thức

$$z_{n_j} = \inf_{k \ge n_j} x_k \le x_{n_j} \le \sup_{k \ge n_i} x_k = y_{n_j},$$

kết hợp với sự hội tụ $z_n = \inf_{k \ge n} x_k \to \liminf_{n \to \infty} x_n$ và $y_n = \sup_{k \ge n} x_k \to \limsup_{n \to \infty} x_n$,

ta suy ra $z_{n_j}=\inf_{k\geq n_j}x_k\to \liminf_{n\to\infty}x_n$ và $y_{n_j}=\sup_{k\geq n_j}x_k\to \limsup_{n\to\infty}x_n$, do đó ta

có

Ta sẽ chứng minh rằng lim sup $x_n = M \in A$, và lim inf $x_n = m \in A$.

(i) Chứng minh $\limsup x_n = M \in A$.

Ta có
$$M = \limsup_{n \to \infty} x_n = \inf_{n \ge 1} y_n = \inf_{n \ge 1} \left(\sup_{k \ge n} x_k \right).$$

Với mọi
$$j \in \mathbb{N}$$
, $\varepsilon = \frac{1}{j}$, ta có $n_j \in \mathbb{N}$: $M \leq y_{n_j} < M + \frac{1}{j}$.

Với
$$y_{n_j} = \sup_{k \geq n_j} x_k$$
, ta có $k_j \geq n_j$ sao cho $y_{n_j} - \frac{1}{j} < x_{k_j} \leq y_{n_j}$.

Mà
$$x_{k_j} \leq \sup_{k \geq k_i} x_k = y_{k_j} \leq y_{n_j}$$
, do đó

$$M - \frac{1}{j} \le y_{n_j} - \frac{1}{j} < x_{k_j} \le y_{n_j} < M + \frac{1}{j}$$

Ta suy ra $\left|x_{k_j}-M\right|<rac{1}{i} o 0$, vậy $x_{k_j} o M$. nghĩa là $M\in A$ và $M = \max A$.

(ii) Chứng minh $\liminf x_n = m \in A$.

Ta có
$$m = \liminf_{n \to \infty} x_n = \sup_{n \ge 1} z_n = \sup_{n \ge 1} \left(\inf_{k \ge n} x_k\right)$$

Ta có
$$m=\liminf_{n\to\infty}x_n=\sup_{n\geq 1}z_n=\sup_{n\geq 1}\left(\inf_{k\geq n}x_k\right).$$

Với mọi $j\in \mathbb{N}$, $\varepsilon=\frac{1}{j}$, ta có $n_j\in \mathbb{N}:m-\frac{1}{j}< z_{n_j}\leq m.$

Với
$$z_{n_j} = \inf_{k \geq n_j} x_k$$
, ta có $k_j \geq n_j$ sao cho $z_{n_j} \leq x_{k_j} < z_{n_j} + \frac{1}{j}$.

Mà
$$x_{k_j} \geq \inf_{k \geq k_j} x_k = z_{k_j} \geq z_{n_j}$$
, do đó

$$m - \frac{1}{j} < z_{n_j} \le x_{k_j} < z_{n_j} + \frac{1}{j} \le z_{k_j} + \frac{1}{j} \le m + \frac{1}{j}$$

Ta suy ra $\left|x_{k_j}-m\right|<rac{1}{i}
ightarrow 0$, vậy $x_{k_j}
ightarrow m$. nghĩa là $m\in A$ và $m = \min A$.

90 / 140

3.6 Chuỗi số thực

3.6.1. Định nghĩa

Cho dãy số thực $\{x_n\}$, $n \in \mathbb{N}$, từ đó ta thiết lập một dãy số mới $\{S_n\}$, $n \in \mathbb{N}$ như sau

$$S_n = \sum_{k=1}^n x_k = x_1 + x_2 + \dots + x_n, \quad n = 1, 2, \dots$$

Nếu ta khảo sát sự hội tụ của dãy số $\{x_n\}$ thì ta gọi $\{x_n\}$ là một **dãy số.** Nếu ta khảo sát sự hội tụ của dãy số $\{S_n\}$ thì ta gọi $\{x_n\}$ là một **chuỗi số.** Tuy nhiên, **cùng một ký hiệu** $\{x_n\}$ mà chỉ hai khái niệm **dãy số** và **chuỗi số** rất dễ gây nhầm lẫn, cho nên người ta sẽ dùng một trong các ký hiệu sau đây để chỉ một chuỗi số:

$$\sum_{n=1}^{\infty} x_n, \text{ hay } x_1 + x_2 + \dots + x_n + \dots, \text{ hay } x_1 + x_2 + \dots,$$

hay đơn giản hơn ta ký hiệu $\sum x_n$.

Nếu dãy số $\{S_n\}$ hội tụ ta nói **chuỗi số** $\sum x_n$ **hội tụ**. Khi đó $S = \lim_{n \to \infty} S_n$ được gọi là **tổng của chuỗi số** $\sum x_n$. Ta sẽ dùng một trong ba ký hiệu đầu tiên của chuỗi số để chỉ tổng của chuỗi số, tức là

$$\sum_{n=1}^{\infty} x_n = S, \text{ hay } x_1 + x_2 + \dots + x_n + \dots = S, \text{ hay } x_1 + x_2 + \dots = S.$$

Chuỗi số không hội tụ được gọi là **phân kỳ**. Về tên gọi thì x_n được gọi là **số hạng thứ** n hay **số hạng tổng quát** của chuỗi số $\sum x_n$ và tổng hữu hạn $S_n = \sum_{k=1}^n x_k = x_1 + x_2 + \cdots + x_n$ (tổng của n số hạng đầu tiên) được gọi là **tổng riêng thứ** n của chuỗi $\sum x_n$.

(□ > ∢⊡ > ∢ ≣ > ∢ ≣ >) Q (>

92 / 140

Chú thích. Từ định nghĩa ta có

Chuỗi số
$$\sum x_n$$
 là hội tụ $\iff \{S_n\}$ là dãy Cauchy.

3.6.2. Điều kiện cần để chuỗi số hội tụ

Định lý. Nếu chuỗi số $\sum x_n$ hội tụ thì $\lim_{n\to\infty} x_n = 0$.

Chứng minh. Do $\sum x_n$ hội tụ, nên $S_n \to S$, do đó $S_{n-1} \to S$. Vậy

$$x_n = S_n - S_{n-1} \rightarrow S - S = 0.$$

Chú thích. Từ điều kiện cần nầy ta suy ra một hệ quả rất thông dụng để chứng minh một chuỗi số phân kỳ như sau:

Hệ quả. Nếu $x_n \rightarrow 0$ thì chuỗi $\sum x_n$ phân kỳ.

93 / 140

Ví dụ 1. Chuỗi cấp số nhân $\sum q^n$, $q \in \mathbb{R}$.

Ta có

$$S_n=\sum_{k=1}^nq^k=q+q^2+\cdots+q^n=\left\{egin{array}{c} rac{q(1-q^n)}{1-q}, & ext{n\'eu } q
eq 1, \ n, & ext{n\'eu } q=1. \end{array}
ight.$$

- Nếu |q|<1, thì $q^n o 0$. Do đó $S_n=rac{q(1-q^n)}{1-q} o rac{q}{1-q}$ và như vậy chuỗi $\sum q^n$ hội tụ và có tổng là

$$S = \lim_{n \to \infty} S_n = \frac{q}{1 - q}.$$

- Nếu $|q| \geq 1$, thì $q^n \not\to 0$ và theo hệ quả trên ta có chuỗi $\sum q^n$ phân kỳ. **Tóm lại:**

Chuỗi
$$\sum q^n \left\{egin{array}{ll} ext{hội tụ,} & ext{nếu } |q| < 1, \ ext{phân kỳ,} & ext{nếu } |q| \geq 1. \end{array}
ight.$$

Hơn nữa nếu |q|<1, tổng của chuỗi cho bởi $\sum_{n=1}^{\infty}q^n=rac{q}{1-q}$.

#**-1** □ **>** ⟨♠ **>** (♠

Ví dụ 2. Tính tổng của chuỗi $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

Ta có

$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{1.2} + \frac{1}{2.3} + \dots + \frac{1}{n(n+1)}$$
$$= (\frac{1}{1} - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \dots + (\frac{1}{n} - \frac{1}{n+1})$$
$$= 1 - \frac{1}{n+1} \to 1, \text{ khi } n \to \infty.$$

Vậy chuỗi $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ hội tụ và có tổng $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

Ví dụ. Xét sự hội tụ của chuỗi $\sum_{n=1}^{\infty} \ln(1+\frac{1}{n})$.

Ta có

$$S_n = \sum_{k=1}^n \ln(1 + \frac{1}{k}) = \sum_{k=1}^n [\ln(1+k) - \ln k]$$

= $(\ln 2 - \ln 1) + (\ln 3 - \ln 2) + \dots + [\ln(n+1) - \ln n]$
= $\ln(n+1) \to +\infty$, khi $n \to \infty$.

Vậy chuỗi $\sum_{n=1}^{\infty} \ln(1+\frac{1}{n})$ phân kỳ.

Ví dụ. Xét sự hội tụ của chuỗi $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.

Ta có

$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > n \frac{1}{\sqrt{n}} = \sqrt{n} \to +\infty.$$

Vậy chuỗi $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ phân kỳ.

Ví dụ. Chuỗi $\overset{\infty}{\Sigma}$ n phân kỳ, vì $x_n=n \to \infty \neq 0$.

Ví dụ. Chuỗi
$$\sum\limits_{n=1}^{\infty} rac{n}{n+1}$$
 phân kỳ, vì $x_n = rac{n}{n+1}
ightarrow 1
eq 0$.

Ví dụ. Chuỗi $\sum_{n=0}^{\infty} (-1)^n$ phân kỳ, vì $x_n = (-1)^n \nrightarrow 0$ (chú ý là $\lim_{n \to \infty} (-1)^n$ không tồn tại).

3.6.2. Các tính chất của chuỗi số hội tụ

Định lý. a) Cho các chuỗi $\sum x_n$, $\sum y_n$ hội tụ và có tổng lần lượt là S, T. Cho α là một hằng số thực. Khi đó các chuỗi $\sum (x_n + y_n)$, $\sum \alpha x_n$ cũng hội tụ và có tổng lần lượt là S + T, αS .

b) Nếu chuỗi $\sum x_n$ hội tụ và $\sum y_n$ phân kỳ, thì chuỗi $\sum (x_n \pm y_n)$ cũng phân kỳ.

Chứng minh. a) Đặt $S_n = \sum_{k=1}^n x_k$, $T_n = \sum_{k=1}^n y_k$, theo giả thiết ta có $S_n \to S$, $T_n \to T$. Do đó,

$$\sum_{k=1}^{n} (x_k + y_k) = S_n + T_n \to S + T.$$

Vậy chuỗi $\sum (x_n+y_n)$ hội tụ và có tổng S+T. Tương tự, ta cũng kết luận phần còn lại nhờ vào

$$\sum_{k=1}^{n} \alpha x_k = \alpha S_n \to \alpha S.$$

◄□▶
◄□▶
◄□▶
◄□▶
◄□▶
₹
₹
₽
♥
Q
♥

98 / 140

b) Giả sử chuỗi $\sum x_n$ hội tụ và $\sum y_n$ phân kỳ, ta cũng kết luận chuỗi $\sum (x_n+y_n)$ phân kỳ. Thật vậy, nếu chuỗi $\sum (x_n+y_n)$ hội tụ, ta có tổng của chuỗi nầy với một chuỗi hội tụ $\sum (-x_n)$ là chuỗi sau đây

$$\sum [(x_n + y_n) + (-x_n)] = \sum y_n$$

cũng là một chuỗi hội tụ. Điều nầy mâu thuẫn với giả thiết rằng chuỗi $\sum y_n$ phân kỳ. Vậy chuỗi $\sum (x_n + y_n)$ phân kỳ. Lý luận tương tự, ta cũng có chuỗi $\sum (x_n - y_n)$ phân kỳ.

Dịnh nghĩa. Với $n \in \mathbb{N}$ cố định. Chuỗi số

$$R_n = \sum_{k=n+1}^{\infty} x_k = x_{n+1} + x_{n+2} + \cdots,$$

được gọi là **chuỗi số dư** của chuỗi $\sum_{n=1}^{\infty} x_n$.

Dịnh lý. Chuỗi $\sum_{n=1}^{\infty} x_n$ hội tụ khi và chỉ khi chuỗi số dư của nó hội tụ.

Chứng minh. Giả sử chuỗi $\sum_{n=1}^{\infty} x_n$ hội tụ và có tổng là S. Đặt

$$S_m' = \sum_{k=n+1}^{n+m} x_k$$
 là tổng riêng thứ m của chuỗi dư $\sum_{k=n+1}^{\infty} x_k$. (với n cố định).

$$S'_{m} = \sum_{k=n+1}^{n+m} x_{k} = x_{n+1} + x_{n+2} + \cdots + x_{n+m} = S_{n+m} - S_{n} \rightarrow S - S_{n},$$

khi $m \to \infty$. Vậy chuỗi số dư $\sum\limits_{k=n+1}^{\infty} x_k$ hội tụ và và có tổng là $S' = S - S_n$.

Ngược lại, nếu chuỗi dư $\sum_{k=n+1}^{\infty} x_k$ hội tụ và và có tổng là S'. Với m>n, ta

có

$$S'_{m-n} = S_m - S_n$$
, suy ra $S_m = S_n + S'_{m-n}$.

Do đó

$$\lim_{m\to\infty} S_m = S_n + \lim_{m\to\infty} S'_{m-n} = S_n + S'.$$

)

Vậy chuỗi $\sum_{n=1}^{\infty} x_n$ hội tụ và và có tổng là $S_n + S'$.

Hệ quả. Tính chất hội tụ của chuỗi số không thay đổi nếu ta bỏ đi hoặc thêm vào một số hữu hạn các số hạng đầu tiên.

3.7. Chuỗi số dương

3.7.1. Định nghĩa

Chuỗi số $\sum_{n=1}^{\infty} x_n$, được gọi là **chuỗi số không âm** nếu $x_n \geq 0$, $\forall n \in \mathbb{N}$.

Chuỗi số $\sum_{n=1}^{\infty} x_n$, được gọi là **chuỗi số dương** nếu $x_n > 0$, $\forall n \in \mathbb{N}$.

Xét chuỗi số không âm $\sum_{n=1}^{\infty} x_n$, $x_n \geq 0$. Vì $S_{n+1} = S_n + x_n \geq S_n$ nên dãy

các tổng riêng $\{S_n\}$ không giảm nên $\sum x_n$ hội tụ khi và chỉ khi $\{S_n\}$ bị chận trên, nghĩa là tồn tại số thực M sao cho $S_n \leq M$, $\forall n \in \mathbb{N}$.

4 L P 4 B P 4 E P 4 E P 4 E P 7 Y Y Y

3.7.2. Các tiêu chuẩn hội tụ [Chỉ học hai tiêu chuẩn] Tiêu chuẩn so sánh 1 Dinh lý. Cho hai chuỗi $\sum x_n$, $\sum y_n$ thỏa điều kiên

$$\exists n_0 \in \mathbb{N} : 0 \le x_n \le y_n \ \forall n \ge n_0.$$

Khi đó

- a) Nếu chuỗi $\sum y_n$ hội tụ thì chuỗi $\sum x_n$ hội tụ.
- b) Nếu chuỗi $\sum x_n$ phân kỳ thì chuỗi $\sum y_n$ phân kỳ.

103 / 140

Chứng minh. Không làm giảm tính tổng quát, có thể giả sử

$$0 \le x_n \le y_n \ \forall n \in \mathbb{N}.$$

Gọi S_n và S_n' lần lượt là các tổng riêng của các chuỗi $\sum x_n$, $\sum y_n$. Ta có

$$S_n = \sum_{k=1}^n x_k \le \sum_{k=1}^n y_k = S'_n.$$

Nếu $\{S'_n\}$ hội tụ thì $\{S'_n\}$ bị chận trên, nên $\{S_n\}$ cũng bị chận trên. Vậy $\{S_n\}$ hội tụ và do đó phần a) được chứng minh. Phần b) được suy ra trực tiếp từ phần a).

104 / 1-

Tiêu chuẩn so sánh 2

Dịnh lý. Cho hai chuỗi dương $\sum x_n$, $\sum y_n$. Giả sử

$$K = \lim_{n \to \infty} \frac{x_n}{y_n}, \quad (0 \le K \le +\infty).$$

Khi đó có ba trường hợp:

- a) $0 < K < +\infty$: Hai chuỗi $\sum x_n$ và $\sum y_n$ có cùng tính chất, nghĩa là, đồng thời hội tụ hoặc đồng thời phân kỳ.
- b) K = 0: Nếu $\sum y_n$ hội tụ thì $\sum x_n$ hội tụ.
- c) $K = +\infty$: Nếu $\sum y_n$ phân kỳ thì $\sum x_n$ phân kỳ.

105 / 140

Chứng minh.

a) $0 < K < +\infty$: Chọn $0 < \varepsilon < K$ và vì $K = \lim_{n \to \infty} \frac{x_n}{y_n}$, nên tồn tại $n_0 \in \mathbb{N}$ sao cho

$$\forall n \geq n_0 \Longrightarrow \left| \frac{x_n}{y_n} - K \right| < \varepsilon.$$

Do đó

$$(K-\varepsilon)y_n < x_n < (K+\varepsilon)y_n \ \forall n \geq n_0.$$

Từ đây ta có kết luận a) nhờ vào tiêu chuẩn so sánh 1.

106 / 140

b) K=0: Vi $\lim_{n\to\infty}\frac{x_n}{y_n}=0$ nên nên tồn tại $n_0\in\mathbb{N}$ sao cho

$$\forall n \geq n_0 \Longrightarrow \left| \frac{x_n}{y_n} - 0 \right| < 1.$$

Do đó

$$0 \le x_n < y_n \ \forall n \ge n_0.$$

Áp dụng tiêu chuẩn so sánh 1 ta có $\sum x_n$ hội tụ nếu như chuỗi $\sum y_n$ hội tụ.

107 / 140

c) $K = +\infty$: Ta có giới hạn nghịch đảo $\lim_{n \to \infty} \frac{y_n}{x_n} = \frac{1}{\lim_{n \to \infty} \frac{y_n}{x_n}} = 0$.

Áp dụng lại trường hợp b) ta có c) đúng.

Ví dụ. Xét sự hội tụ của chuỗi điều hoà $\sum_{n=1}^{\infty} \frac{1}{n}$.

Ta có: $\lim_{n \to \infty} \frac{\ln(1+\frac{1}{n})}{\frac{1}{n}} = 1$, mà chuỗi $\sum_{n=1}^{\infty} \ln(1+\frac{1}{n})$ phân kỳ (ví dụ mục

1.1) nên chuỗi $\sum_{n=1}^{\infty} \frac{1}{n}$ phân kỳ theo tiêu chuẩn so sánh 2.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

108 / 140

Cách khác. Xét dãy tổng riêng $S_n = \sum_{k=1}^n \frac{1}{k} = \frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n}$. Ta chứng minh dãy này không hội tụ. Thật vậy, nếu $\{S_n\}$ hội tụ, ta có $S_n \to L$ và do đó $S_{2n} \to L$. Mặt khác

$$S_{2n}-S_n=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}\geq \frac{n}{n+n}=\frac{1}{2},$$

và do $S_{2n}-S_n\to L-L=0$, ta có điều mâu thuẫn $0\geq \frac{1}{2}$. Vậy chuỗi $\sum_{n=1}^{\infty}\frac{1}{n}$ phân kỳ.

<□▶ <┛▶ <≧▶ <≧▶ = 900

- **Ví dụ**. Với $\alpha \leq 1$, chuỗi $\sum\limits_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ phân kỳ.
 Hiển nhiên với $\alpha \leq 0$, $\frac{1}{n^{\alpha}} \nrightarrow 0$, theo điều kiện cần của chuỗi hội tụ ta có chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ phân kỳ.
- Với $0 < \alpha \le 1$, ta có $\frac{1}{n^{\alpha}} \ge \frac{1}{n} > 0$, $\forall n \in \mathbb{N}$, mà chuỗi $\sum_{n=1}^{\infty} \frac{1}{n}$ phân kỳ, ta có chuỗi $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\alpha}}$ phân kỳ theo tiêu chuẩn so sánh 1.

Ví dụ. Với $\alpha > 1$, chuỗi $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ hội tụ.

Giải. Với mọi $n\in\mathbb{N}$, $\forall \alpha>1$, ta có $n^{\alpha}\geq \left(n^2-\frac{1}{a}\right)^{\alpha/2}=\left(n+\frac{1}{2}\right)^{\alpha/2}\left(n-\frac{1}{2}\right)^{\alpha/2}$, như vậy

$$\frac{1}{n^{\alpha}} \leq \frac{1}{\left(n + \frac{1}{2}\right)^{\alpha/2} \left(n - \frac{1}{2}\right)^{\alpha/2}} = \left\lfloor \frac{\frac{1}{b_n}}{\left(n - \frac{1}{2}\right)^{\alpha/2}} - \frac{\frac{1}{b_n}}{\left(n + \frac{1}{2}\right)^{\alpha/2}} \right\rfloor,$$

trong đó
$$b_n=\left(n+\frac{1}{2}\right)^{\alpha/2}-\left(n-\frac{1}{2}\right)^{\alpha/2}>0.$$

Chú ý rằng $b_n \leq b_{n+1}$, $\forall n \in \mathbb{N}$.

Thật vậy, ta có

$$b_{n+1} - b_n = \left(n + \frac{3}{2}\right)^{\alpha/2} + \left(n - \frac{1}{2}\right)^{\alpha/2} - 2\left(n + \frac{1}{2}\right)^{\alpha/2}.$$

Sử dụng bất đẳng thức $\left(\frac{a+b}{2}\right)^p \leq \frac{a^p+b^p}{2}$, $\forall a,b \geq 0, \forall p>1$, với

$$a=n+rac{3}{2},\ b=n-rac{1}{2},\ p=rac{lpha}{2}>1$$
, ta có

$$\frac{\left(n+\frac{3}{2}\right)^{\alpha/2}+\left(n-\frac{1}{2}\right)^{\alpha/2}}{2} \geq \left(\frac{\left(n+\frac{3}{2}\right)+\left(n-\frac{1}{2}\right)}{2}\right)^{\alpha/2} = \left(n+\frac{1}{2}\right)^{\alpha/2}$$

Như vậy,
$$b_{n+1}-b_n=\left(n+\frac{3}{2}\right)^{\alpha/2}+\left(n-\frac{1}{2}\right)^{\alpha/2}-2\left(n+\frac{1}{2}\right)^{\alpha/2}\geq 0$$
, dẫn đến $\frac{-1}{b_n}\leq \frac{-1}{b_{n+1}}$ và do đó

$$\frac{1}{n^{\alpha}} \leq \left| \frac{\frac{1}{b_n}}{\left(n - \frac{1}{2}\right)^{\alpha/2}} - \frac{\frac{1}{b_{n+1}}}{\left(n + \frac{1}{2}\right)^{\alpha/2}} \right| = c_n - c_{n+1}, \ \forall n \in \mathbb{N}.$$

Từ đó ta suy ra

$$S_n = \sum_{k=1}^n \frac{1}{k^{\alpha}} \le \sum_{k=1}^n (c_k - c_{k+1}) = c_1 - c_{n+1} < c_1.$$

Điều này dẫn đến dãy dãy tổng riêng $\{S_n\}$ bị chận trên, do đó chuỗi $\sum \frac{1}{n^{\alpha}}$ hội tụ.

Tóm lại:

Chuỗi
$$\sum \frac{1}{n^{lpha}} \left\{ egin{array}{ll} ext{hội tụ,} & ext{nếu } lpha > 1, \\ ext{phân kỳ,} & ext{nếu } lpha \leq 1. \end{array}
ight.$$

Ví dụ. Xét sự hội tụ của các chuỗi

a)
$$\sum_{n=1}^{\infty} 2^n \sin \frac{1}{4^n}$$
 b) $\sum_{n=1}^{\infty} n \sin \frac{1}{n^2}$ c) $\sum_{n=1}^{\infty} (\sqrt[n]{n} - 1)$.

Giải. a) Ta có $x_n=2^n\sin\frac{1}{4^n}>0$ vì $0<\frac{1}{4^n}\leq\frac{1}{4},\ n=1,2,\cdots$. Hơn nữa, $x_n=2^n\sin\frac{1}{4^n}$ " $y_n=\frac{1}{2^n}$ khi $n\to\infty$. Nhưng mà chuỗi $\sum\limits_{n=1}^\infty\frac{1}{2^n}$ hội tụ (ví dụ mục 1.1, với $q=\frac{1}{2}$, có |q|<1) nên chuỗi $\sum\limits_{n=1}^\infty x_n$ hội tụ theo tiêu chuẩn so sánh 2.

b) Ta có $x_n = n \sin \frac{1}{n^2} > 0$ vì $0 < \frac{1}{n^2} \le 1$, $n = 1, 2, \cdots$. Hơn nữa, $x_n = n \sin \frac{1}{n^2} \frac{1}{n}$ khi $n \to \infty$. Vậy chuỗi $\sum x_n$ phân kỳ theo tiêu chuẩn so sánh 1.

c) $x_n = \sqrt[n]{n} - 1 > 0 \quad \forall n \ge 2$. Hơn nữa, $x_n = \sqrt[n]{n} - 1 = e^{\frac{1}{n} \ln n} - 1$ ~ $\frac{1}{n} \ln n > \frac{1}{n}$, $\forall n \ge 3$. Vậy chuỗi $\sum x_n$ phân kỳ theo tiêu chuẩn so sánh 1 và

Kết thúc phần chuỗi

◆ロト ◆個ト ◆意ト ◆意ト ・意 ・ 釣りぐ

()

Bài tập bổ sung

- **1.** Cho dãy số thực $\{x_n\}$ hội tụ về a.
 - (i) Giả sử $x_n \geq 0$, $\forall n \in \mathbb{N}$. Chứng minh rằng $a \geq 0$ và $\sqrt{x_n} \to \sqrt{a}$.
 - (ii) Chứng minh rằng $\sqrt[3]{x_n} \rightarrow \sqrt[3]{a}$.
 - (iii) Cho $\alpha \in (0,1)$. Chứng minh rằng $|x_n|^{\alpha} \to |a|^{\alpha}$.
 - (iv) Chứng minh rằng $\frac{x_1 + x_2 + \cdots + x_n}{n} \rightarrow a$.

(v) Chứng minh rằng
$$\frac{x_1 + \frac{x_1 + x_2}{2} + \dots + \frac{x_1 + x_2 + \dots + x_n}{n}}{n} \rightarrow$$

- (vi) Giả sử $x_n > 0$, $\forall n \in \mathbb{N}$ và a > 0. Chứng minh rằng
- (vi) Gia str $x_n > 0$, $\forall n \in \mathbb{N}$ va a > 0. Chung minn ran $(x_1x_2\cdots x_n)^{1/n} \to a$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

115 / 140

()

Hướng dẫn:

- (i) Dùng bất đẳng thức $\left|\sqrt{x}-\sqrt{y}\right| \leq \sqrt{|x-y|}, \ \forall x,y \geq 0.$
- (ii) (a) Dùng bất đẳng thức $\left|\left|x\right|^{\alpha-1}x-\left|y\right|^{\alpha-1}y\right|\leq 2^{1-\alpha}\left|x-y\right|^{\alpha}$, $\forall x,y>0, \, \forall \alpha\in(0,1)$.
- (ii) (b) Cách khác
- **(b1)** a = 0, hiển nhiên $\sqrt[3]{x_n} \to 0$.
- (b2) Xét a>0. Dùng hằng đẳng thức $a^3-b^3=(a-b)(a^2+ab+b^2)$ $\forall a,b\in \mathbb{R}$ và bất đẳng thức

$$a^2 + ab + b^2 = \left(a + \frac{ab}{2}\right)^2 + \frac{3}{4}b^2 \ge \frac{3}{4}b^2, \ \forall a, b \in \mathbb{R},$$

ta có

$$\left|\sqrt[3]{x_n} - \sqrt[3]{a}\right| = \frac{|x_n - a|}{\sqrt[3]{x_n^2} + \sqrt[3]{x_n a} + \sqrt[3]{a^2}} \le \frac{|x_n - a|}{\sqrt[3]{a^2}} = \frac{4|x_n - a|}{3\sqrt[3]{a^2}}$$

Cho $\varepsilon > 0$, do $x_n \to a$, ta có $N \in \mathbb{N}$:

$$\forall n \in \mathbb{N}, \ n > N \Longrightarrow \frac{4|x_n - a|}{3\sqrt[3]{a^2}} < \varepsilon.$$

Vậy $\sqrt[3]{x_n} \rightarrow \sqrt[3]{a}$.

- **(b3)** Xét a < 0. Xét dãy $y_n = -x_n \to -a > 0$, dùng kết quả với giới hạn dương ta có $\sqrt[3]{y_n} \to \sqrt[3]{-a} = -\sqrt[3]{a}$. Vậy $\sqrt[3]{x_n} = -\sqrt[3]{y_n} \to \sqrt[3]{a}$.
- (iii) Dùng bất đẳng thức $\left|\left|x\right|^{\alpha}-\left|y\right|^{\alpha}\right|\leq\left|x-y\right|^{\alpha}$, $\forall x,y\in\mathrm{R}$, $\forall \alpha\in(0,1)$.
- (iv) Dùng bất đẳng thức $\left|\frac{x_1+x_2+\cdots+x_n}{n}-a\right| \leq \frac{\sum_{i=1}^n|x_i-a|}{n}$.
- (v) Áp dụng kết quả (iv).
- (vi) Dùng bất đẳng thức $\left|\ln\left(x_1x_2\cdots x_n\right)^{1/n}-\ln a\right|\leq \frac{\sum_{i=1}^n\left|\ln x_i-\ln a\right|}{n}.$

2. Cho dãy số thực $\{x_n\}$ xác định bởi công thức qui nạp

$$\begin{cases} x_1 = 1, \\ x_n = \frac{1}{2}x_{n-1} - 1, \ n = 2, 3, \cdots \end{cases}$$

Chứng minh rằng $\{x_n\}$ hội tụ. Tính $\lim_{n\to\infty} x_n$.

3. Cho dãy số thực $\{x_n\}$ xác định bởi công thức qui nạp

$$\begin{cases} x_1 = 1, \\ x_n = \sqrt{x_{n-1} + 2}, \ n = 2, 3, \cdots \end{cases}$$

Chứng minh rằng $\{x_n\}$ hội tụ. Tính $\lim_{n\to\infty} x_n$.

- **4.** Cho $\phi \neq A \subset \mathbb{R}$ và bị chặn trên. Chứng minh rằng có một dãy $\{x_n\} \subset A$ sao cho $x_n \to \sup A$.
- **5.** Cho $\phi \neq A \subset \mathbb{R}$ và bị chặn dưới. Chứng minh rằng có một dãy $\{x_n\} \subset A$ sao cho $x_n \to \inf A$.
- **6**. Cho dãy số thực $\{x_n\}$ tăng (hoặc không giảm) và không bị chận trên. Chứng minh rằng $x_n \to +\infty$.
- **7**. Cho dãy số thực $\{x_n\}$ giảm (hoặc không tăng) và không bị chận dưới. Chứng minh rằng $x_n \to -\infty$.

- **8**. Cho dãy số thực $\{x_n\}$ không bị chận trên. Chứng minh rằng có một dãy con $\{x_{n_k}\}$ của $\{x_n\}$ sao cho $x_{n_k} \to +\infty$.
- 9. Cho dãy số thực $\{x_n\}$ không bị chận dưới. Chứng minh rằng có một dãy con $\{x_{n_k}\}$ của $\{x_n\}$ sao cho $x_{n_k} \to -\infty$.
- **10**. Cho dãy số thực $\{x_n\}$ xác định bởi công thức $x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$, $n \in \mathbb{N}$. Chứng minh rằng $\{x_n\}$ phân kỳ và $x_n \to +\infty$.
- **10a**. Cho dãy số thực $\{x_n\}$ xác định bởi công thức $x_n = \sin(n)$, $n \in \mathbb{N}$. Chứng minh rằng $\{x_n\}$ phân kỳ.
- **10b**. Cho dãy số thực $\{x_n\}$ xác định bởi công thức $x_n = \cos(n)$, $n \in \mathbb{N}$. Chứng minh rằng $\{x_n\}$ phân kỳ.
- **10c.** Cho một dãy số thực $\{x_n\}$ bị chận.

Đặt $A = \{a \in \mathbb{R} : a \text{ là giới hạn của một dãy con của } \{x_n\} \}.$

- (i) Cho $a \in \mathbb{R}$ sao cho có một dãy số thực $\{a_n\} \subset A \setminus \{a\}$ sao cho $a_n \to a$. Chứng minh rằng $a \in A$.
- (ii) Cho $a \in \mathbb{R}$ sao cho $(a \varepsilon, a + \varepsilon) \cap (A \setminus \{a\}) \neq \phi$, $\forall \varepsilon > 0$. Chứng minh rằng $a \in A$.

() 119 / 140

- **11.** Cho $x \in \mathbb{R}$. Chứng minh rằng tồn tại hai dãy số $\{x_n\}$ và $\{y_n\}$ sao cho:
 - (i) $\{x_n\} \subset Q, \ \forall n \in \mathbb{N} : x_n \to x;$
 - (ii) $\{y_n\} \subset (R \setminus Q), \forall n \in N : y_n \to x$.
- **12**. Cho dãy số thực $\{x_n\}$. Giả sử $x_{2n} \to a$ và $x_{2n-1} \to a$. Chứng minh rằng $\{x_n\}$ hội tụ về a.
- 13. Cho dãy số thực $\{x_n\}$ xác định bởi công thức qui nạp

$$\begin{cases} x_1 = 1, \\ x_n = \frac{1 + x_{n-1}}{2}, \ n = 2, 3, \cdots \end{cases}$$

Chứng minh rằng $\{x_n\}$ là dãy Cauchy. Tính $\lim_{n\to\infty} x_n$.

14. Cho $a, p, q \in \mathbb{R}, |q| < 1$ và dãy số thực $\{x_n\}$ xác định bởi công thức qui nạp

$$\begin{cases} x_1 = a, \\ x_n = q \sin x_{n-1} + p, \ n = 2, 3, \cdots, \end{cases}$$

Chứng minh rằng $\{x_n\}$ hội tụ.

4 D > 4 B > 4 E > 5 = 40 C

- **15**. Cho dãy số thực $\{x_n\}$ thỏa điều kiện $2\cos^2 x_n + \sin x_{n-1} + 4 = 0$, $n = 2, 3, \cdots$. Chứng minh rằng dãy $\{x_n\}$ phân kỳ.
- **16**. Cho $f:[a,b] \to [a,b]$ thỏa điều kiện, tồn tại hằng số $\alpha \in [0,1)$ sao cho $|f(x) f(y)| \le \alpha |x y|$, $\forall x,y \in [a,b]$.

Cho $x_0 \in [a,b]$, xét dãy số thực $\{x_n\}$ xác định bởi công thức qui nạp $x_n = f(x_{n-1}), n = 1, 2, \cdots$.

Chứng minh rằng:

- (i) $\{x_n\}$ hội tụ về một giới hạn $x_* \in [a, b]$.
- (ii) x_* là nghiệm duy nhất của phương trình $x_* = f(x_*)$.
- (iii) $|x_n x_*| \leq \frac{b-a}{1-\alpha} \alpha^n$, $\forall n \in \mathbb{N}$.
- 17. (Bài này sẽ làm trong chương hàm số liên tục). Cho $f:[a,b] \to [a,b]$ thỏa điều kiện |f(x)-f(y)|<|x-y|, $\forall x,y\in [a,b], x\neq y$. Chứng minh rằng tồn tại duy nhất $x_*\in [a,b]$ sao cho $x_*=f(x_*)$.

◆ロト ◆卸ト ◆恵ト ◆恵ト ・恵 ・ 釣り(で)

()

BT1/3. Cho dãy số thực $\{x_n\}$ xác định bởi công thức $x_n=(-1)^n$, $n\in\mathbb{N}$. Chứng minh rằng $\{x_n\}$ phân kỳ.

Định lý 6. Mọi dãy con của một dãy hội tụ thì cũng hội tụ và có cùng một giới hạn.

$$n_k = 2k < 2k + 2 = n_{k+1},$$
 $x_{n_k} = (-1)^{n_k}, \{x_{n_k}\} \subset \{x_n\},$
 $x_{n_k} = (-1)^{n_k} = (-1)^{2k} = 1, \ \forall k \in \mathbb{N}.$
 $x_{n_k} = 1 \to 1, \ \text{khi } k \to \infty.$
 $m_k = 2k + 1 < 2k + 3 = m_{k+1},$
 $x_{m_k} = (-1)^{m_k}, \{x_{m_k}\} \subset \{x_n\},$
 $x_{m_k} = (-1)^{m_k} = (-1)^{2k+1} = -1, \ \forall k \in \mathbb{N}.$
 $x_{m_k} = -1 \to -1, \ \text{khi } k \to \infty.$
 $\exists \{x_{n_k}\} \subset \{x_n\} : x_{n_k} \to 1 = L_1,$
 $\{x_{m_k}\} \subset \{x_n\} : x_{m_k} \to -1 = L_2 \neq L_1.$
 $\forall \hat{\mathbf{a}} \mathbf{y} \{x_n\} \text{ phân kỳ}$

- **10a.** Cho dãy số thực $\{x_n\}$ xác định bởi công thức $x_n = \sin(n)$, $n \in \mathbb{N}$. Chứng minh rằng $\{x_n\}$ phân kỳ.
- **Chú thích.** Ta ký hiệu c = [x] là phần nguyên của x.
- Tóm lại $[x] = \sup\{n \in \mathbb{Z} : n \le x\} = \max\{n \in \mathbb{Z} : n \le x\} =$ là số nguyên lớn nhất nhỏ hơn hay bằng x. Số này có tính chất
- (i) $[x] \le x < [x] + 1$, $\forall x \in \mathbb{R}$; (là phần nguyên của x).
- (ii) $\{x\} = x [x] \in [0, 1)$, $\forall x \in \mathbb{R}$; (là phần lẻ của x).
- (iii) $\{x\} = x [x] = 0 \iff x \in \mathbb{Z}.$

Hướng dẫn bài 10a. Cho dãy số thực $\{x_n\}$ xác định bởi công thức $x_n = \sin(n), n \in \mathbb{N}$. Chứng minh rằng $\{x_n\}$ phân kỳ.

 $\acute{\mathsf{Y}}$ chứng minh là chỉ ra hai dãy con của $\{x_n\}$ hội tụ về hai giới hạn khác nhau.

(i) $n_k=[2k\pi]$, ta có $0\leq 2k\pi-n_k<1<\frac{\pi}{2}$, mà trong $[0,\frac{\pi}{2}]$ thì $x \longmapsto \sin x$ là hàm tăng, ta có

$$0 = \sin 0 \le \sin(2k\pi - n_k) = -\sin n_k < \sin 1,$$

hay

$$-\sin 1 < x_{n_k} = \sin n_k \le 0.$$

[Dinh lý 8 (Bolzano-Weierstrass). Cho a, $b \in \mathbb{R}$, a < b và $\{x_n\}$ một dãy số thực sao cho a $\leq x_n \leq b$, $\forall n \in \mathbb{N}$. Khi đó có một dãy con của dãy $\{x_n\}$ hội tụ về $x \in [a, b]$.

Theo Định lý Bolzano-Weierstrass, ta có dãy con $\{x_{n_k}\}\subset\{x_{n_k}\}$ sao cho $x_{n_k} \to L_1 \in [-\sin 1, 0].$

(ii)
$$m_k = [2k\pi - \frac{5\pi}{4}]$$
, ta có $0 \le 2k\pi - \frac{5\pi}{4} - m_k < 1$, do đó $\frac{5\pi}{4} \le 2k\pi - m_k < 1 + \frac{5\pi}{4} < \frac{7\pi}{4}$.

$$-1 \leq \sin(2k\pi - m_k) = -\sin m_k \leq \frac{-\sqrt{2}}{2},$$

hay

$$\frac{\sqrt{2}}{2} < x_{m_k} = \sin m_k \le 1.$$

Theo Định lý Bolzano-Weierstrass, ta có dãy con $\{x_{m_{k_j}}\}\subset \{x_{m_k}\}$ sao cho

$$x_{m_{k_j}} \to L_2 \in \left[\frac{\sqrt{2}}{2}, 1\right].$$

Do
$$-\sin 1 \le L_1 \le 0 < \frac{\sqrt{2}}{2} \le L_2 \le 1$$
, do đó $L_1 < L_2$.

Kết luận $\{x_n\}$ phân kỳ.

Hướng dẫn cách khác cho bài 10a.

Giả sử dãy $x_n = \sin(n)$ hội tụ về $a \in [-1,1]$, Khi đó, ta có

$$x_{n+1} = \sin(n+1) = \sin(n)\cos 1 + \sin 1\cos(n)$$
$$= x_n \cos 1 + \sin 1\cos(n).$$

Do đó

$$y_n = \cos(n) = \frac{x_{n+1} - x_n \cos 1}{\sin 1} \to \frac{a - a \cos 1}{\sin 1} = \frac{a(1 - \cos 1)}{\sin 1} = b.$$

Mặt khác

$$y_{n+1} = \cos(n+1) = \cos(n)\cos 1 - \sin(n)\sin 1$$

= $y_n\cos 1 - x_n\sin 1$;

Do đó

$$x_n = \frac{y_n \cos 1 - y_{n+1}}{\sin 1}$$

$$\rightarrow \frac{b \cos 1 - b}{\sin 1} = \frac{-b(1 - \cos 1)}{\sin 1} = a$$

Từ đây dẫn đến hệ phương trình mà ẩn là (a, b):

()

$$\frac{a(1-\cos 1)}{\sin 1} = b,$$

$$\frac{-b(1-\cos 1)}{\sin 1} = a,$$

Khử b,

$$\frac{a\left(1-\cos 1\right)}{\sin 1} = b,$$

$$\left[1+\frac{\left(1-\cos 1\right)^2}{\sin^2 1}\right]a = 0,$$

Điều này dẫn đến a = b = 0, mà điều này vô lý vì từ $x_n^2 + y_n^2 = 1$, $\forall n \in \mathbb{N}$, dẫn đến $a^2 + b^2 = 1$.

Vậy dãy $x_n = \sin(n)$ phân kỳ.

Chú thích: Với cùng cách lập luận như trên, ta có thể chứng minh được dãy phân kỳ $\{\cos(n)\}$.

- **10a**. Cho dãy số thực $\{x_n\}$ xác định bởi công thức $x_n = \sin(n)$, $n \in \mathbb{N}$. Chứng minh rằng $\{x_n\}$ phân kỳ.
- **10c.** Cho một dãy số thực $\{x_n\}$ bị chận.

Đặt $A = \{a \in \mathbb{R} : a \mid \text{à giới hạn của một dãy con của } \{x_n\} \}.$

- (i) Cho $a \in \mathbb{R}$ sao cho có một dãy số thực $\{a_n\} \subset A \setminus \{a\}$ sao cho $a_n \to a$. Chứng minh rằng $a \in A$.
- (ii) Cho $a \in \mathbb{R}$ sao cho $(a \varepsilon, a + \varepsilon) \cap (A \setminus \{a\}) \neq \phi, \ \forall \varepsilon > 0$. Chứng minh rằng $a \in A$.

10a. Cho dãy số thực $\{x_n\}$ xác định bởi công thức $x_n = \sin(n)$, $n \in \mathbb{N}$. Chứng minh rằng $\{x_n\}$ phân kỳ.

Ý chứng minh là chỉ ra hai dãy con của $\{x_n\}$ hội tụ về hai giới hạn khác nhau.

(i) $n_k = [2k\pi]$, ta có $0 \le 2k\pi - n_k < 1 < \frac{\pi}{2}$, mà trong $[0, \frac{\pi}{2}]$ thì $x \longmapsto \sin x$ là hàm tăng, ta có

$$0 = \sin 0 \le \sin(2k\pi - n_k) = -\sin n_k < \sin 1,$$

hay

$$-\sin 1 < x_{n_k} = \sin n_k \le 0.$$

Theo Định lý Bolzano-Weierstrass, ta có dãy con $\{x_{n_{k_j}}\}\subset \{x_{n_k}\}$ sao cho $x_{n_{k_i}}\to L_1\in [-\sin 1,0]$.

(ii)
$$m_k = [2k\pi - \frac{5\pi}{4}]$$
, ta có $0 \le 2k\pi - \frac{5\pi}{4} - m_k < 1$, do đó $\frac{5\pi}{4} \le 2k\pi - m_k < 1 + \frac{5\pi}{4} < \frac{\pi}{2} + \frac{5\pi}{4} = \frac{7\pi}{4}$. Mà hàm $x \longmapsto \sin x$ là hàm giảm trong $[\frac{5\pi}{4}, \frac{\pi}{2}]$ và tăng trong $[\frac{\pi}{2}, \frac{7\pi}{4}]$, do đó

$$-1 \leq \sin(2k\pi - m_k) = -\sin m_k \leq \frac{-\sqrt{2}}{2},$$

hay

$$1 < x_{m_k} = \sin m_k \le \frac{\sqrt{2}}{2}.$$

Theo Định lý Bolzano-Weierstrass, ta có dãy con $\{x_{m_{k_j}}\}\subset \{x_{m_k}\}$ sao cho

$$x_{m_{k_j}} \to L_2 \in [1, \frac{\sqrt{2}}{2}].$$

Do đó $L_1 \leq 0 < \overline{L_2}$, dẫn đến $L_1 \neq L_2$.

Kết luận $\{x_n\}$ phân kỳ.

Cách khác: Giả sử dãy $x_n = \sin(n)$ hội tụ về $a \in [-1, 1]$, Khi đó, ta có

$$x_{n+1} = \sin(n+1) = \sin(n)\cos 1 + \sin 1\cos(n)$$

$$= x_n \cos 1 + \sin 1\cos(n);$$

$$\cos(n) = \frac{x_{n+1} - x_n \cos 1}{\sin 1} \to \frac{a - a \cos 1}{\sin 1} = \frac{a(1 - \cos 1)}{\sin 1} = b.$$

Măt khác

$$\cos(n+1) = \cos(n)\cos 1 - \sin(n)\sin 1$$

$$= \cos(n)\cos 1 - x_n\sin 1;$$

$$x_n = \frac{\cos(n)\cos 1 - \cos(n+1)}{\sin 1}$$

$$\rightarrow \frac{b\cos 1 - b}{\sin 1} = \frac{-b(1-\cos 1)}{\sin 1} = a$$

$$\frac{a(1-\cos 1)}{\sin 1} = b,$$

$$\frac{-b(1-\cos 1)}{\sin 1} = a,$$

Khử b,

$$\frac{a\left(1-\cos 1\right)}{\sin 1} = b,$$

$$\left[1+\frac{\left(1-\cos 1\right)^2}{\sin^2 1}\right]a = 0,$$

Điều này dẫn đến a=b=0, mà điều này vô lý vì từ $\sin^2(n) + \cos^2(n) = 1$, dẫn đến $a^2 + b^2 = 1$. Vậy dãy $x_n = \sin(n)$ phân kỳ.

Chú thích: Với cùng cách lập luận như trên, ta có thể chứng minh được dãy phân kỳ $\{\cos(n)\}$.

10b. Cho dãy số thực $\{x_n\}$ xác định bởi công thức $x_n = \cos(n), n \in \mathbb{N}$. Chứng minh rằng $\{x_n\}$ phân kỳ.

Ý chứng minh giống như trên là chỉ ra hai dãy con của $\{x_n\}$ hội tụ về hai giới hạn khác nhau.

(i)
$$n_k = [2k\pi]$$
, ta có $0 \le 2k\pi - n_k < 1 < \frac{\pi}{2}$, mà trong $[0, \frac{\pi}{2}]$ thì $x \longmapsto \cos x$ là hàm giảm, ta có

$$1=\cos 0 \ge \cos(2k\pi - n_k) = \cos n_k > \cos 1,$$

hay

$$\cos 1 < x_{n_k} = \cos n_k \le 1.$$

Theo Dinh Iý Bolzano-Weierstrass, ta có dãy con $\{x_{n_k}\}\subset\{x_{n_k}\}$ sao cho $x_{n_k} \to L_1 \in [\cos 1, 1].$

(ii)
$$m_k = [2k\pi - \frac{\pi}{2}]$$
, ta có $0 \le 2k\pi - \frac{\pi}{2} - m_k < 1$, do đó $\frac{\pi}{2} \le 2k\pi - m_k < 1 + \frac{\pi}{2} < \frac{\pi}{2} + \frac{\pi}{2} = \pi$. Mà hàm $x \longmapsto \cos x$ là hàm giảm trong $[\frac{\pi}{2}, \pi]$, do đó

$$0 = \cos \frac{\pi}{2} \ge \cos(2k\pi - m_k) = \cos m_k > \cos(1 + \frac{\pi}{2}) = -\sin 1,$$

hay

$$-\sin 1 < x_{m_k} = \cos m_k \le 0.$$

Theo Định lý Bolzano-Weierstrass, ta có dãy con $\{x_{m_{k_j}}\}\subset \{x_{m_k}\}$ sao cho $x_{m_{k_j}}\to L_2\in [-\sin 1,0]$.

Do đó $0 < L_1 \neq L_2 < 0$.

Kết luận $\{x_n\}$ phân kỳ.

- **10c.** Cho một dãy số thực $\{x_n\}$ bị chận.
 - Đặt $A = \{a \in \mathbb{R} : a \text{ là giới hạn của một dãy con của } \{x_n\} \}$ = $\{a \in \mathbb{R} : \exists \{x_{n_k}\} \subset \{x_n\} : x_{n_k} \to a\}.$
- (i) Cho $a \in \mathbb{R}$ sao cho có một dãy số thực $\{a_n\} \subset A \setminus \{a\}$ sao cho $a_n \to a$. Chứng minh rằng $a \in A$.
- (ii) Cho $a \in \mathbb{R}$ sao cho $(a \varepsilon, a + \varepsilon) \cap (A \setminus \{a\}) \neq \phi$, $\forall \varepsilon > 0$. Chứng minh rằng $a \in A$.

136 / 140

()

Giải (i) Cho $a \in \mathbb{R}: \exists \{a_n\} \subset A \setminus \{a\} \text{ và } a_n \to a.$ Chứng minh rằng $a \in A$. Muốn vậy ta cần chứng minh rằng: $\exists \{x_{N_k}\} \subset \{x_n\}: x_{N_k} \to a.$ Với k=1, $\varepsilon=\frac{1}{2k}=\frac{1}{2}:$ Do $a_n \to a$, $\exists n_1 \in \mathbb{N}: |a_{n_1}-a|<\frac{1}{2}.$ Do $a_{n_1} \in A \setminus \{a\}$, ta có $\{x_{m_k}\} \subset \{x_n\}: x_{m_k} \to a_{n_1}.$

Do $x_{m_k} \to a_{n_1} \neq a$, $\exists N_1 \in \mathbb{N} : x_{N_1} \neq a \text{ và } |x_{N_1} - a_{n_1}| < \frac{1}{2}$. Từ đây ta suy ra: $|x_{N_1} - a| \leq |x_{N_1} - a_{n_1}| + |a_{n_1} - a| < 1$

() 137 / 140

Với
$$k=2$$
, $\varepsilon=\frac{1}{2k}=\frac{1}{4}$: Do $a_n\to a$, $\exists n_2\in {\mathbb N}: |a_{n_2}-a|<\frac{1}{4}$. Do $a_{n_2}\in A\setminus\{a\}$, ta có một dãy con của $\{x_n\}$ hội tụ về a_{n_2} . Do đó $\exists N_2\in {\mathbb N}, N_2>N_1: x_{N_2}\neq a$ và $|x_{N_2}-a_{n_2}|<\frac{1}{4}$.
$$|x_{N_2}-a|\leq |x_{N_2}-a_{n_2}|+|a_{n_2}-a|<\frac{1}{4}+\frac{1}{4}=\frac{1}{2},$$

Giả sử ta làm như vậy đến bước k-1, ta thu được x_{N_1} , x_{N_2} , \cdots , $x_{N_{k-1}}$ và $N_1 < N_2 < \cdots < N_{k-1}$ sao cho

$$\left|x_{N_{k-1}}-a\right|<\frac{1}{k-1}.$$

Với $\varepsilon = \frac{1}{2k}$: Do $a_n \to a$, $\exists n_k \in \mathbb{N} : |a_{n_k} - a| < \frac{1}{2k}$.

 $\begin{array}{c} 2k \\ \text{Do } a_{n_k} \in A \backslash \{a\}, \text{ ta c\'o m\^ot d\~ay con của } \{x_n\} \text{ h\^oi tụ về } a_{n_k}. \\ 1 \end{array}$

Do đó
$$\exists N_k \in \mathbb{N}, \ N_k > N_{k-1} : x_{N_k} \neq a \ \text{và} \ |x_{N_k} - a_{n_k}| < \frac{1}{2k}.$$

$$|x_{N_k}-a|\leq |x_{N_k}-a_{n_k}|+|a_{n_k}-a|<\frac{1}{2k}+\frac{1}{2k}=\frac{1}{k}.$$

Từ đây ta suy ra $\{x_{N_k}\}\subset\{x_n\}$ và $x_{N_k}\to a$. Vậy $a\in A$.

Giải (ii) Với mỗi $n \in \mathbb{N}$, $\varepsilon = \frac{1}{n} > 0$, ta có

$$(a-\frac{1}{n},a+\frac{1}{n})\cap (A\setminus\{a\})\neq \phi,\ \forall n\in\mathbb{N}.$$

Tồn tại
$$x_n\in (a-\frac{1}{n},a+\frac{1}{n})\cap (A\backslash\{a\})$$
, $\forall n\in \mathbb{N}$, do đó
$$\{x_n\}\subset A\backslash\{a\},\ \forall n\in \mathbb{N},\ x_n\to a,$$

Theo câu (i), ta có $a \in A$.