AEDC-TR-66-257

cy1

ARCHIVE COPY DO NOT LOAN

INTERNAL CONVECTION EFFECTS IN THERMAL MODELS OF SPACE VEHICLES

Han M. Hsia and Jan A. van der Bliek ARO, Inc.

February 1967

PROPERTY OF LIES AIR FORCE

Distribution of this document is unlimited.

NOTICES

When U. S. Government drawings specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Documentation Center.

References to named commercial products in this report are not to be considered in any sense as an endorsement of the product by the United States Air Force or the Government.

INTERNAL CONVECTION EFFECTS IN THERMAL MODELS OF SPACE VEHICLES

Han M. Hsia and Jan A. van der Bliek ARO, Inc.

Distribution of this document is unlimited.

FOREWORD

The research reported herein was done at the request of Headquarters, Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC), under Program Element 61440514/8951.

The results of research presented were obtained by ARO, Inc. (a subsidiary of Sverdrup & Parcel and Associates, Inc.), contract operator of AEDC, AFSC, Arnold Air Force Station, Tennessee, under Contract AF 40(600)-1200. The analysis was carried out during the period from June to September, 1966, under ARO Project No. SA0412, and the manuscript was submitted for publication on November 21, 1966.

Dr. Han Min Hsia, Associate Professor, Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota, was employed by ARO, Inc., in the summer of 1966.

Mr. Donald C. Todd did the computer programming for the numerical calculations.

This technical report has been reviewed and is approved.

Terry L. Hershey Captain, USAF Research Division Edward R. Feicht Colonel, USAF

Directorate of Plans and Technology

Director of Plans and Technology

ABSTRACT

The influence of gaseous convection inside a model placed in a space chamber with solar simulation was investigated by means of a numerical calculation. Thermal modeling relations were derived for a model with internal convection.

CONTENTS

NO I. INT II. AN III. NU IV. TH	STRACT	Page iii v 1 1 4 5 7
	APPENDIX Ullustrations	
<u>Figure</u>		
1.	Equilibrium Temperature of Bodies in Cold Space, Exposed to Solar Radiation	11
2.	Temperature of Solid and Gas as a Function of Time	12
3.	Effect of Gas on Temperature of Solid during Transient Conditions	15
	NOMENCLATURE	
A	Area, m^2	
С	Ratio of thermal capacitances, $\frac{C_gM_g}{C_sM_s}$	
Cs, Cg	Specific heat, joule/kg-°K	
$G_{\mathbf{r}}$	Grashof number, $\frac{g\ell^3 (T_s-T_g)}{\nu^2 T}$	
g	Acceleration of gravity, m/\sec^2	
h	Heat-transfer coefficient, w/m2-K	
k	Thermal conductivity, w/m-°K	
£	Reference length, m	
M	Mass, kg	

AEDC-TR-66-257

Nu Nusselt number, $\frac{h\ell}{k}$

P Dimensionless parameter, $\frac{\epsilon_{\sigma}A_{e}}{h}$ $(T_{E}-T_{o})^{3}$

Q Dimensionless parameter, $\frac{T_0}{T_E - T_0}$

q Heat flux, w/m²

T Temperature, K

t Time, sec

α Absorbtivity

 $\Delta \theta_{\rm S}$ $(\theta_{\rm S})_{\rm C=0}$ - $(\theta_{\rm S})_{\rm C>0}$ at θ = 0.8

 $\Delta \tau$ Dimensionless time interval

 ϵ Emissivity

 θ Dimensionless temperature, $\frac{T - T_0}{T_E - T_0}$

ν Kinematic viscosity, m²/sec

σ Stefan-Boltzmann constant, w/m²-°K⁴

τ Dimensionless time

SUBSCRIPTS

E Final equilibrium condition

e External

g Gas

i Internal

o Initial

r Reference

s Solid, solar

SECTION I

In thermal testing of space vehicles in a space simulation chamber there is the question of the influence of the gas (or liquid) in the space-craft on the heat balance and the temperature-time history of the space-craft. Also, if the model is a scaled version of the actual vehicle and if the gas significantly influences the temperature-time history, a scaling procedure must be devised to produce the proper convection effects. Tests carried out in a space chamber with gravity-induced internal convection do not simulate the free space conditions. It is therefore useful to determine the limiting conditions for which the internal convection can be neglected.

Although it is clear that the liquid in a thin-walled tank influences markedly the temperature-time history of such a tank when it is subjected to a periodic solar source in cold space, it is not immediately apparent when the heat capacity of a gas and the heat transmission through the gas are important.

In this report the temperature-time history of an arbitrary shaped container, filled with a gas, is calculated. The container is placed in a cold (0°K) vacuum chamber and suddenly subjected to a simulated solar source maintained at one solar constant. This includes, for example, a simplified case of a space capsule carrying its own atmosphere.

The model used in the present calculations is very simple compared to many actual cases. However, it is believed that the results are useful as a guide in assessing the problem in practical cases.

SECTION II ANALYSIS

2.1 BASIC EQUATIONS

Consider an arbitrary shaped container of temperature T_S with a gas at temperature T_S . The container is placed in a cold (0°K) vacuum environment and it is subjected to parallel radiation, q_S , over its projected surface area, A_S , normal to the radiation direction. For simplicity the thermal conductivity of the

solid is assumed to be infinite. The energy balance of the solid is:

$$aq_sA_s = \epsilon\sigma T_s^4A_e - h(T_s - T_g)A_i = C_sM_s \frac{dT_s}{dt}$$
 (1)

and the energy balance for the gas is:

$$h(T_s - T_g) A_i = C_g M_g \frac{dT_g}{dt}$$
 (2)

The heat-transfer coefficient, h, is an average value over the temperature range considered.

Under steady-state conditions, Eqs. (1) and (2) give:

$$\alpha q_s A_s = \epsilon \sigma T_E^4 A_c \tag{3}$$

where $T_{\rm E}$ is the equilibrium temperature. Substitution of Eq. (3) in Eq. (1) gives:

$$\epsilon \sigma A_e (T_E^4 - T_S^4) - h (T_S - T_g) A_t = C_s M_S \frac{dT_S}{dt}$$
 (4)

The following nondimensional parameters and variables are introduced:

$$\theta_{S} = \frac{T_{s} - T_{s,o}}{T_{E} - T_{s,o}} \qquad \theta_{g} = \frac{T_{g} - T_{g,o}}{T_{E} - T_{s,o}} \quad \tau = \frac{hA_{i}}{C_{s}M_{s}} \quad t$$

$$C = \frac{C_g M_g}{C_5 M_s} \quad P = \frac{\epsilon \sigma A_e}{h A_s} (T_E - T_o)^3 \quad Q = \frac{T_o}{T_E - T_o}$$

We shall assume for the initial temperatures $T_{s,o} = T_{g,o} = T_o$, although no special difficulty is introduced when $T_{s,o} \neq T_{g,o}$. Substitution in Eqs. (2) and (4) gives the basic equations:

$$\theta_{\rm s} - \theta_{\rm g} = C \frac{{\rm d}\theta_{\rm g}}{{\rm d}r} \tag{5}$$

P [(1+Q)⁴ - (
$$\theta_s + Q$$
)⁴] - ($\theta_s - \theta_g$) = $\frac{d\theta_s}{d\tau}$ (6)

The boundary conditions are:

$$r = 0$$
: $\theta_s = \theta_g = 0$

$$\tau \rightarrow \infty$$
: $\theta_s = \theta_g = 1$

2.2 NUMERICAL METHOD

Equations (5) and (6) can be written in finite difference form:

$$\theta_{g,n} = \frac{\Delta_r}{C} \theta_{s,n-1} + (1 - \frac{\Delta_r}{C}) \theta_{g,n-1}$$
 (7)

where n \geq 1 and $\theta_{g,O} = \theta_{S,O} = 0$

$$\theta_{s,n+1} = \theta_{s,n} + \Delta \tau \{ P[(1+Q)^{s} - (\theta_{s,n}+Q)^{s}] - (\theta_{s,n} - \theta_{g,n}) \}$$
 (8)

where $n \ge 0$ and $\theta_{S,O} = \theta_{S,O} = 0$

Equation (7) is a recursion formula for θ_g and can be written as:

$$\theta_{g,n} = \frac{\Delta r}{C} \left[\theta_{s,n-1} + (1 - \frac{\Delta r}{C}) \ \theta_{s,n-2} + (1 - \frac{\Delta r}{C})^2 \ \theta_{s,n-3} + \dots + (1 - \frac{\Delta r}{C})^{n-2} \ \theta_{s,1} \right]$$

or

$$\theta_{g,n} = \frac{\Delta r}{C} \left[\theta_{s,n-1} + \sum_{j=2}^{j=n-1} (1 - \frac{\Delta r}{C})^{j-1} \theta_{s,n-j}\right]$$
 (9)

The convergence criterion for the series in Eq. (9) is:

$$\left| \left(1 - \frac{\Delta \tau}{C} \right) \frac{\theta_{s,n-j}}{\theta_{s,n-j-1}} \right| < 1$$

or also:

$$\left| (1 - \frac{\Delta \tau}{C}) \frac{\theta_{s,i}}{\theta_{s,i+1}} \right| < 1$$

where i is an arbitrary number in the regime of the series. This can also be written as:

$$I - \frac{\theta_{s,i+1}}{\theta_{s,i}} < \frac{\Delta r}{C} < 1 + \frac{\theta_{s,i+1}}{\theta_{s,i}}$$
 (10)

In the present problem

$$\frac{\theta_{s,i+1}}{\theta_{s,i}} > 1$$

and the series can be made to converge. The value of $\Delta \tau$ should be chosen such that the error in θ is as small as desired. For example, by choosing the first temperature increase, $\theta_{S,1} = 0.02$, the following criterion results from Eq. (8):

$$\Delta t = \frac{0.02}{P[(1+0)^4 - O^4]} \tag{11}$$

The value of $\Delta \tau$ is determined by Eqs. (10) and (11) and is dependent on C, P, and Q. For gases, even high pressure gases, the range of C was such that these conditions could be satisfied. However, it may not be possible to apply the same numerical technique to liquids in thin-walled containers.

SECTION III NUMERICAL RESULTS AND DISCUSSION

The temperatures of the solid (θ_S) and gas (θ_g) were calculated as a function of time (τ) with Eqs. (7) and (8). Numerical solutions were obtained for Q = 0.1, 0.3, amd 0.5 and P = 0.2, 0.4, and 0.6 with appropriate values of C, ranging from 0.02 to 0.4.

These values of Q correspond to T_E/T_O = 11, 4.33, and 3, respectively. The equilibrium temperature, T_E , is plotted versus α/ϵ in Fig. 1 for a flat plate $(A_S/A_e$ = 1/2) and a sphere $(A_S/A_e$ = 1/4), assuming radiation of one solar constant $(q_S$ = 1395 w/m²). The ratio α/ϵ ranges from a few tenths for light colored paints to over ten for polished zinc so that the regime of interest is T_E = 200 to 600°K. The values of Q correspond then to the range T_O = 60 to 200°K for the configurations in Fig. 1. In many cases T_O will be higher, which corresponds to a value of Q greater than 0.5. As will be seen, this would correspond to smaller convection effects.

A high value of P corresponds to a relatively small convective heat-transfer contribution as is apparent from the definition of P and Eq. (6). The value of h was estimated from the convective heat-transfer relation, Nu ~ $(Gr)^{1/4}$, where the proportionality constant was taken somewhat lower than for free external convection. For example, for a sphere of one meter diameter filled with air at from 1 to 100 atm at room temperature, it was estimated that h = 3 to 30 w/m²-K. If further ϵ = 1.0, $A_e/A_i = 1$, the range of P is from 0.05 to 0.5.

The quantity C is the ratio of thermal capacity of the gas to that of the enclosure. For air at one atmosphere enclosed in a spherical metal shell with a wall thickness of one hundredth of its diameter, C is of the order of 0.01.

Typical results of the numerical calculations are shown in Fig. 2. All other curves had the same character. The case of C = 0, no gas enclosed, was calculated separately and is shown in Fig. 2.

There are several ways in which the curves can be characterized. The method chosen here is shown in Fig. 3. The decrease in θ_S at θ_S = 0.8, caused by the presence of the gas at a given value of P and Q, was used as a measure of the effect of the gas on the temperature-time history of the solid. For all cases considered, this also corresponded closely to the maximum temperature deviation during the heating time. For the cases of Fig. 3, $\Delta\theta_S$ < 0.5C. This certainly holds for Q > 0.5, which

corresponds to

$$\frac{T_k}{T_0} = 1 + \frac{1}{0} \le 3$$

Most practical cases will satisfy the condition $\frac{T_E}{T_O} \le 3$. Furthermore,

$$\Delta T = \Gamma_S - T_g = \frac{\Gamma_e}{O} \Delta \theta_S$$

If, typically, $C \le 0.01$ and $T_O \le 300$ °K we find for $Q \ge 0.5$,

$$\Delta T < \frac{T_o}{Q}$$
 0.5C or $\Delta T < 3^{\circ} K$

Therefore the major conclusion from Fig. 3 is that when C << 0.1 the effect of the gas on the temperature of the solid is very small and probably within the measuring accuracy in many tests. This is of course only true when P is greater than, say, 0.2. The convection heat-transfer coefficient, h, is proportional to the one-fourth power of the acceleration. In the zero gravity condition, the value of h will be determined by conduction through the gas only. It is expected that h for zero gravity is always smaller than in a space chamber, and that P will be larger, and therefore from Fig. 3, $\Delta\theta_{\rm S}$ somewhat smaller than in a space chamber. However, since the thermal conductivity for gases is very low, it is expected that the time to reach equilibrium within the gas is longer when conduction is the only mode of heat transfer, which may make the present analysis subject to some inaccuracy.

SECTION IV THERMAL SCALING

With the differential equations for the unknown temperatures $T_{\rm S}$ and $T_{\rm g}$ given in dimensionless form, the similarity parameters to be preserved in a scaled model test are given by the nondimensional coefficients in the equations. From Eqs. (5) and (6) it appears that these coefficients are C, P, and Q, and the characteristic time

$$t_r = \frac{C_s M_s}{h A_1}$$

is scaled accordingly. An alternate arrangement avoiding the presence of h in the characteristic time is given below.

Substitution of $\theta_g = \frac{T_g}{T_r} \cdot \theta_s = \frac{T_s}{T_r}$ and $\tau = \frac{t}{t_r}$ in Eqs. (2) and (4) gives, after rearranging:

$$\theta_{\rm S} - \theta_{\rm g} = \frac{G_{\rm g} M_{\rm g}}{h A_{\rm i} t_{\rm r}} - \frac{d\theta_{\rm g}}{d\tau}$$

or also:

$$\theta_{s} - \theta_{g} = \left(\frac{C_{g}M_{g}}{C_{s}M_{s}}\right) \left(\frac{\epsilon\sigma A_{e}T_{r}^{3}}{hA_{1}}\right) - \left(\frac{C_{e}M_{s}}{\epsilon\sigma A_{e}T_{r}^{3}t_{r}}\right) - \frac{d\theta_{g}}{d\tau}$$
(12)

and

$$\left(\frac{\epsilon\sigma A_e T_r^3}{h A_1}\right) \left[\left(\frac{T_E}{T_r}\right)^4 - \theta_S^4\right] - \left(\theta_S - \theta_g\right) = \left(\frac{C_s M_s}{\epsilon\sigma A_e T_r^3 L_r}\right) \left(\frac{\epsilon\sigma A_e T_r^3}{h A_1}\right) \frac{d\theta_s}{d\tau} \tag{13}$$

Apparently similarity between prototype and model is assured when the following parameters are preserved:

$$\left(\frac{C_g M_g}{C_s M_s}\right)$$
, $\left(\frac{\epsilon \sigma A_e T_r^3}{h A_i}\right)$, $\left(\frac{C_s M_s}{\epsilon \sigma A_e T_r^3 t_r}\right)$, and $\left(\frac{T_E}{T_r}\right)$

where

$$TE = \sqrt[4]{\frac{aq_s \Lambda_s}{\epsilon \sigma \Lambda_e}}$$

In practical cases the variation of q_S in a space chamber is limited. Also, it is difficult to change ϵ and α at will so that temperature and material preservation (at least to the extent of its radiative properties) are desirable. Preservation of the external geometry gives

$$\left(\frac{A_s}{A_e}\right)_{\text{model}} = \left(\frac{A_s}{A_e}\right)_{\text{prototype}}$$

If $T_r = T_E$ in both cases, the scaling parameters become:

$$\left(\frac{C_g M_g}{C_s M_s}\right)$$
, $\left(\frac{A_e}{h A_1}\right)$, and $\left(\frac{C_s M_s}{A_e t_r}\right)$

Since it is expected that under space conditions h is much smaller than under laboratory conditions, the internal area, A_i , has to be reduced accordingly for the model test or h has to be reduced by placing internal low conductivity partitions in the model.

The problem of scaling the thermal masses with temperature and material preservation was discussed by Adkins*; similar procedures would be applicable here.

^{*}D. L. Adkins. "Scaling of Transient Temperature Distributions of Simple Bodies in a Space Chamber." Thermophysics and Temperature Control of Spacecraft and Entry Vehicles. Academic Press, New York, 1966, G. B. Heller, editor.

Finally it is noted that the time for corresponding temperatures between model and prototype is given by:

$$(t)_{model} = \frac{(C_s M_s / \Lambda_e)_{model}}{(C_s M_s / \Lambda_e)_{prototype}} \quad (t)_{prototype}$$

SECTION V CONCLUSIONS

The influence of internal convection in a model in a space chamber on the temperature of the model was investigated with a numerical computation.

It was found that for gases with total thermal capacitance below one percent of the thermal capacitance of the test vehicle, the influence of convection is negligible under "normal" conditions (Q > 0.5 or $TE/T_O \le 3$). Charts are presented showing the effect of convection.

Thermal modeling rules for transient heating with internal convection were derived. For simulating space conditions, the internal convection can be reduced by partitioning the model internally.

APPENDIX ILLUSTRATIONS

Fig. 1 Equilibrium Temperature of Bodies in Cold Space, Exposed to Solar Radiation

Fig. 2 Temperature of Solid and Gas as a Function of Time

Fig. 2 Continued

Fig. 2 Concluded

Fig. 3 Effect of Gas on Temperature of Solid during Transient Conditions

County Classification				
Security Classification		_		
	NTROL DATA - RE			
(Security classification of title, body of abstract and index 1 ORIGINATING ACTIVITY (Corporate author)	ing annotation must be a		ECURITY CLASSIFICATION	
Arnold Engineering Development C				
ARO, Inc., Operating Contractor			UNCLASSIFIED	
Arnold Air Force Station, Tennessee			N/A	
3 REPORT TITLE INTERNAL CONVECTION E VEHICLES		ERMAL MOD	DELS OF SPACE	
4 DESCRIPTIVE NOTES (Type of report and inclusive dates) N/A				
5 AUTHOR(S) (Last name, first name, initial)	· · · · · · · · · · · · · · · · · · ·			
Hsia, Han M., and van der Bliek,				
6 REPORT DATE February 1967	74 TOTAL NO OF	AGES 76	NO OF REFS	
Ba CONTRACT OR GRANT NO.				
AF 40(600)-1200	94 ORIGINATOR'S REPORT NUMBER(S)			
b. PROJECT NO	AEDC-TR-66-257			
11 10	11220 111	· - · ·		
Program Element 61440514/8951	SA OTHER REPORT	NO(S) (A ay othe	r numbers that may be seeldned	
			r numbers that may be sesigned	
d	N/	A		
		s report	is unlimited.	
11 SUPPLEMENTARY NOTES Available in DDC.	Arnold Engineering Development Center Air Force Systems Command Arnold Air Force Station, Tennessee			
a space chamber with solar simul numerical calculation. Thermal model with internal convection.	ation was in	vestigate	ed by means of a	

Security Classification LINK C 14 LINK A LINK B KEY WORDS ROLE ROLE ROLE thermal modeling space simulation space vehicles models heat transfer internal convection effects 2. Modeling 3. Span uch

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) Issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., imerim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal withor is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7s. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 86, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, !ask number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponsor), also enter this number(s).
- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those

imposed by security classification, using standard statements such as:

- "Qualified requesters may obtain copies of this report from DDC."
- (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
- (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
- (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
- (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (peying for) the research and development. Include address.
- 13 ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it way also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U)

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.