SOSP 2024

VPRI: Efficient I/O Page Fault Handling via Software-Hardware Co-Design for laaS Clouds

Kaijie Guo, Dingji Li, Ben Luo, Yibin Shen, Kaihuan Peng, Ning Luo, Shengdong Dai, Chen Liang, Jianming Song, Hang Yang, Xiantao Zhang, Zeyu Mi

Shared by **Zheng Yang** 2025-06-24

Device pass-through kills memory paging

Pass-through: good I/O performance
But bad for dynamic memory utilization
Software solution: not suitable for laaS cloud

- Para-virtualization
- Guest OS modification and/or performance setback

I/O Page Fault (IOPF): difficult to popularize

- ATS: Address Translation Service
- PRI: Page Request Interface

VPRI: Virtualized Page Request Interface

- Low cost/complexity
- Works with existing platforms
- Up to 99% reduced IOPFs

IOPF: IOMMU ATS+PRI

- Address Translation Service (ATS)
 - Page Request Interface (PRI)

Limitations of IOPF: Standard IOMMU ATS+PRI

1. Device TLB

Limitations of IOPF: Standard IOMMU ATS+PRI

1. Device TLB

2. Compatibility

Limitations of IOPF: Standard IOMMU ATS+PRI

1. Device TLB

2. Compatibility

3. Performance

Breakdown of I/O fault v.s. CPU fault

Pre-fault Latency:

- CPU: < 1us
- I/O: ~10-500 us

Observation of IOPF counts in production

- Block : NIC = 2 : 1
- Variation across VM/devices

Max count ~3000 per day

- Burst with workloads
- Peak burst IOPF rate > 20/s

IOPF of a device in 40 minutes

Queue blocked during IOPF handling

Block devices:

- Hike of long tail I/O
- P99.9TH: hike @ fault rate of 10/s
- P99.99th: hike @ fault rate of 1/s

NIC devices:

- Packet drop
- Retransmission
- Service interruption

Evaluation: impact to workloads

Problem	Design Goal	Solution
Fault detection needs ATS	No ATS/MMU in detecting faults	???
Fault reporting needs PRI	No PRI in reporting faults	???
Performance impact of IOPF	Reduce the rate	???

Challenge #1: fault detection

PA-BITMAP: Coherent on-device page attributes bitmap

Page Attribute Entry (PAE):

- **□**2 bits per PAE
- **□4KB GPA/IOVA per PAE**
- **□On-device memory**

Challenge #2: reduce IOPF rates

Footprints distribution in 30 minutes

Footprints distribution in 30 minutes

Challenge #2: NIC characterization

- (Almost) bounded buffer
- Very strong temporal locality
- High return by pinning with LRU

Challenge #2: Storage characterization

- Unbounded buffer (page cache)
- Weaker temporal locality
- >70% page will be visited > twice
- Long access distance

PA-BITMAP:

Break dependency on ATS

DMA access tracking:

Device level
Gap in today's hardware

Customized PCIe interface:

Break dependency on PRI

Software pinning policy:

Minimum pin ratio

Maximum IOPF reduction ratio

Fault detection:

- On-device PA-BITMAP
- Free from ATS

Fault detection:

- On-device PA-BITMAP
- Free from ATS

Fault reporting:

- Sideband channel
- Free from PRI

Fault detection:

- On-device PA-BITMAP
- Free from ATS

Fault reporting:

- Sideband channel
- Free from PRI

Performance opt:

- NIC: > 95% reduction
- Block: > 50% reduction

Fault detection:

- On-device PA-BITMAP
- Free from ATS

Fault reporting:

- Sideband channel
- Free from PRI

Performance opt:

- NIC: > 95% reduction
- Block: > 50% reduction

Zero changes to VM:

- Device
- Driver

VPRI Software Overview

IOPF HW Abstraction Layer:

- VPRI driver
- IOMMU PRI driver

VPRI Software Overview

IOPF HW Abstraction Layer:

- VPRI driver
- IOMMU PRI driver

IOPF Service Layer:

- Device-domain mapping
- vCPU-affined IOPF scheduling
- Fault handling
- Adaptive DMA Protector

ADP: Adaptive DMA Protector

Active DMA pages are not likely to be swapped out.

• (Temporarily) Inactive DMA pages are more prone to IOPF

Bitmap

Metric	On-device lookup (ns)	Host update (ns)
Avg.	69	1,742
P99th	92	2,341
÷ .		*****************

Page Fault RTT

Evaluation: IOPF Reduction

- > Memory overcommit:
 - 10%-30%
- Mixed workloads:
 - Network
 - Storage
- > Result (cmp w/ LRU):
 - NIC: 6.28x
 - Block: 10.56x

>In Production

- NIC: > 99% reduction
- Block > 50% reduction
- 5.2% pinning per VM

- □Deployed in Alibaba Cloud
 - **❖Negligible HW cost**
 - **❖Compatible with all x86 platforms**
 - **❖Landed in production in just 6 months**
- □ Facilitates memory overcommitment
- **□Other use cases:**
 - **❖Post-copy opt.**
 - **❖Page migration**
 - **❖Fast boot**
 - **Etc.**

SOSP 2024

VPRI: Efficient I/O Page Fault Handling via Software-Hardware Co-Design for laaS Clouds

Kaijie Guo, Dingji Li, Ben Luo, Yibin Shen, Kaihuan Peng, Ning Luo, Shengdong Dai, Chen Liang, Jianming Song, Hang Yang, Xiantao Zhang, Zeyu Mi

Thank you for you attention!