Unimathematik für Informatikstudiengänge Zusammenfassung

Konstantin Lukas

Fassung vom 05.08.2021

Contents

1	Mengen	2
	1.1 Vereinigung	2
	1.2 Durchschnitt	2
	1.3 Differenz	
	1.4 Symmetrische Differenz	
	1.5 Definierte Zahlenmengen	
2	Betrag	4
3	Intervalle	4
	3.1 Abgeschlossene Intervalle	4
	3.2 Offene Intervalle	4
	3.3 Halboffene Intervalle	4
4	Binomische Formeln	4
5	Euklidischer Algorithmus	5
6	Brüche dividieren	5
7	Potenzgesetze	5
8	Wurzelgesetze	
9	Lösungsmenge	8
10	Normalform	
11	Quadratische Ergöngung	O

12	Faktorisieren	9
	12.1 Faktorisierung durch Ausklammern	10
	12.2 Faktorisierung mit binomischen Formeln	10
	12.3 Faktorisierung mit dem Satz von Viëta	10
13	Wurzelgleichungen	10
	13.1 Wurzelgleichungen mit mehreren Wurzeln (Beispiel)	12
14	Betragsgleichungen	12
	14.1 Betragsgleichungen mit mehreren Beträgen	13
15	Substitution	16
16	Ungleichungen	16
	16.1 Rechenregeln	16
	16.2 Quadratische Ungleichungen	16
	16.3 Ungleichungen mit Beträgen	17
	16.4 Ungleichungen mit Variable im Nenner – Teil I	18
	16.5 Ungleichungen mit Variable im Nenner – Teil II	

1 Mengen

1.1 Vereinigung

 $A \cup B := \{x \mid x \in A \ oder \ x \in B\}$

1.2 Durchschnitt

$$A\cap B:=\{x\mid x\in A\ und\ x\in B\}$$

1.3 Differenz

$$A \setminus B := \{x \mid x \in A \ und \ x \not \in B\}$$

1.4 Symmetrische Differenz

$$A \triangle B := \{ x \mid (x \in A) \ \veebar \ (x \in B) \}$$

$$A \triangle B := \{ x \mid (x \in A) \iff (x \in B) \}$$

1.5 Definierte Zahlenmengen

Natürliche Zahlen

$$\mathbb{N}=\{1;2;3;\ldots\}$$

Menge der Natürliche Zahlen

$$\mathbb{N}_0 = \{0; 1; 2; 3; \dots\}$$

Ganze Zahlen

$$\mathbb{Z} = \{...; -2; -1; 0; 1; 2; 3; ...\}$$

Rationale Zahlen

$$\mathbb{Q} = \left\{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \right\}$$

Reelle Zahlen

Die reellen Zahlen umfassen die rationalen Zahlen und die irrationalen Zahlen.

Irrationale Zahlen

 $\mathbb{R}\setminus\mathbb{Q}$

2 Betrag

$$|a| = \begin{cases} a & a \ge 0 \\ -a & a < 0 \end{cases}$$

$$|-a| = |a|$$

3 Intervalle

3.1 Abgeschlossene Intervalle

$$[a;b] := \{x \in \mathbb{R} \mid a \le x \le b\}$$

3.2 Offene Intervalle

$$(a;b) =]a;b[:= \{x \in \mathbb{R} \mid a < x < b\}$$

3.3 Halboffene Intervalle

Rechtsoffen

$$[a;b) = [a;b[:= \{x \in \mathbb{R} \mid a \le x < b\}]$$

Linksoffen

$$(a;b] =]a;b] \; := \{x \in \mathbb{R} \mid a < x \le b\}$$

4 Binomische Formeln

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a-b)^2 = a^2 - 2ab + b^2$$

$$(a+b)(a-b) = a^2 - b^2$$

5 Euklidischer Algorithmus

Der euklidische Algorithmus findet den größten gemeinsamen Teiler zweier Zahlen. Das eignet sich ausgezeichnet dazu, Brüche zu kürzen. Der vorletzte Rest bevor R=0 eintritt, ist das Ergebnis.

2160: 2592 = 0 R = 21602592: 2160 = 1 R = 432

2160:432=5 R=0

 $\frac{2592}{2160} = \frac{6 \cdot 432}{5 \cdot 432} = \frac{6}{5}$

6 Brüche dividieren

Um zwei Brüche zu dividieren bildet man den Kehrwert vom Divisor und multipliziert diesen mit dem Dividend.

 $\frac{p_1}{q_1} : \frac{p_2}{q_2} = \frac{p_1}{q_1} \cdot \frac{q_2}{p_2}$

 $\frac{\frac{p_1}{q_1}}{\frac{p_2}{q_2}} = \frac{p_1}{q_1} \cdot \frac{q_2}{p_2}$

7 Potenzgesetze

 $a^k \cdot a^m = a^{k+m}$

 $\frac{b^k}{b^m} = b^{k-m}$

 $a^k \cdot b^k = (a \cdot b)^k$

 $\frac{a^k}{b^k} = \left(\frac{a}{b}\right)^k$

 $(a^k)^m = a^{k \cdot m}$

Für a>0 und jede rationale Zahl $\frac{p}{q}$ (mit $p,q\in\mathbb{Z}$ und q>0) ist

 $a^{\frac{p}{q}} = \sqrt[q]{a^p} = (\sqrt[q]{a})^p$

Beispiel: Bestimmen Sie m und n so, dass gilt: $(9x^7)^2 = mx^n$

$$(9x^7)^2 = mx^n$$
$$81x^{14} = mx^n$$

m = 81 und n = 14

8 Wurzelgesetze

Für $a,b,c\in\mathbb{R}$ mit $a,b\geq 0,c>0$ und $m,n\in\mathbb{N}$ gilt

$$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

$$\sqrt[n]{\frac{a}{c}} = \frac{\sqrt[n]{a}}{\sqrt[n]{c}}$$

$$\sqrt[n]{\sqrt[m]{a}} = \sqrt[n \cdot m]{a}$$

Beispiel 1: Nach der dritten Binomischen Formel gilt für $a,b>0, a\neq b$:

 $\cdot(\sqrt{a}-\sqrt{b})$

$$\frac{1}{\sqrt{a} + \sqrt{b}}$$

$$= \frac{\sqrt{a} - \sqrt{b}}{(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})}$$

$$= \frac{\sqrt{a} - \sqrt{b}}{\sqrt{a^2} - \sqrt{b}^2}$$

$$= \frac{\sqrt{a} - \sqrt{b}}{a - b}$$

Beispiel 2:

$$\frac{\sqrt{(1+a^2)\cdot(a-b)^2}}{\sqrt[4]{16(1+a^2)^2}}$$

$$=\sqrt{\frac{(1+a)^2\cdot(a-b)^2}{\sqrt{16(1+a^2)^2}}}$$

$$=\sqrt{\frac{(1+a)^2\cdot(a-b)^2}{4(1+a)^2}}$$

$$=\frac{1}{2}\sqrt{(a-b)^2}$$

$$=\frac{|a-b|}{2}$$

8.1 Wurzeltherme vereinfachen (Beispiele)

$$\sqrt{2} + \frac{2}{2\sqrt{2} + 3} = \sqrt{2} + \frac{2 \cdot (2\sqrt{2} -])}{(2\sqrt{2} + 3)(2\sqrt{2} - 3)}$$

$$= \sqrt{2} + \frac{4\sqrt{2} - 6}{(2\sqrt{2})^2 - 3^2}$$

$$= \sqrt{2} + \frac{4\sqrt{2} - 6}{-1}$$

$$= \sqrt{2} - 4\sqrt{2} + 6$$

$$= 6 - 3\sqrt{2}$$

$$\frac{1}{\sqrt{1+x^2}-1} - \frac{1}{\sqrt{1+x^2}+1} = \frac{\sqrt{1+x^2}+1}{\left(\sqrt{1+x^2}-1\right)\cdot\left(\sqrt{1+x^2}+1\right)} - \frac{\sqrt{1+x^2}-1}{\left(\sqrt{1+x^2}+1\right)\cdot\left(\sqrt{1+x^2}-1\right)}$$

$$= \frac{\left(\sqrt{1+x^2}+1\right)-\left(\sqrt{1+x^2}-1\right)}{1+x^2-1}$$

$$= \frac{2}{x^2}$$

Beispiel 3: Bestimmen Sie x und y, sodass $\frac{x}{y}$ vollständig gekürzt ist.

$$\frac{2 \cdot 2^{\frac{5}{2}}}{2^{\frac{1}{4}}} = 2^{\frac{x}{y}}$$

$$2 \cdot \frac{2^{\frac{5}{2}}}{2^{\frac{1}{4}}} = 2^{\frac{x}{y}}$$

$$2 \cdot 2^{\frac{5}{2} - \frac{1}{4}} = 2^{\frac{x}{y}}$$

$$2 \cdot 2^{\frac{9}{4}} = 2^{\frac{x}{y}}$$

$$2^{\frac{13}{4}} = 2^{\frac{x}{y}}$$

Damit gilt x = 13 und y = 4.

9 Lösungsmenge

Beispiel 1
$$(x^2 = -1)$$
:
 $\mathbb{L} = \emptyset$
Beispiel 2 $(x^2 = 4)$:
 $\mathbb{L} = \{-2; 2\}$
Beispiel 3 $(sin(x) = 0)$:
 $\mathbb{L} = \{...; -2\pi; -\pi; 0; \pi; 2\pi; ...\}$
Beispiel 4 $(x^2 + y = 5)$:
 $\mathbb{L} = \{(x_0; y_0) \in \mathbb{R}^2 \mid x_0^2 + y_0 = 5\} = \{(x_0; 5 - x_0^2) \mid x_0 \in \mathbb{R}^2\}$

In diesem Fall ist die Lösungsmenge die Funktion $y = 5 - x^2$.

10 Normalform

Eine Gleichung in der Form $ax^2 + bx + c = 0$ mit $a \neq 0$ und $b, c \in \mathbb{R}$, heißt quadratisch. Spezial bezeichnet man $x^2 + px + q = 0$ mir $p, q \in \mathbb{R}$, als quadratische Gleichung in Normalform.

Man kann eine quadratische Gleichung in die Normalform überführen, indem man durch a teilt: $x^2 + \frac{b}{a}x + \frac{c}{a} = 0$.

10.1 p-q-Formel

Um die Nullstellen einer quadratischen Gleichung in der Normalform zu finden, kann man die p-q-Formel benutzen: $x_{\pm} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$.

 $D = \left(\frac{p}{2}\right)^2 - q$ ist die Diskriminante. Sie gibt Aufschluss über die Lösungsmenge.

 $D > 0 \Rightarrow Es\ gibt\ zwei\ Lsg.$

 $D = 0 \Rightarrow Es \ qibt \ eine \ Lsq.$

 $D < 0 \Rightarrow Es \ gibt \ keine \ Lsg.$

11 Quadratische Ergänzung

Die äquivalente Umformung der quadratischen Gleichung in Normalform $x^2+px+q=0$ in $\left(x+\frac{p}{2}\right)^2=-q+\left(\frac{p}{2}\right)^2$ wird als quadratische Ergänzung bezeichnet. In anderen Worten fügt man den Term $+\left(\frac{p}{2}\right)^2-\left(\frac{p}{2}\right)^2$ hinzu.

Beispiel:

$$x^{2} + 8x + 7 = 0$$

$$x^{2} + 8x + \left(\frac{8}{2}\right)^{2} + \left(\frac{8}{2}\right)^{2} + 7 = 0$$

$$x^{2} + 8x + 4^{2} + 4^{2} + 7 = 0$$

$$(x+4)^{2} + 4^{2} + 7 = 0$$

$$(x+4)^{2} - 9 = 0 \qquad |+9$$

$$(x+4)^{2} = 9 \qquad |\sqrt{}$$

$$x = \pm \sqrt{9} - 4$$

$$\mathbb{L} = \{-1; -7\}$$

12 Faktorisieren

Um die Nullstellen eines Terms zu finden, bietet es sich an, ihn als Produkt einfacher Terme zu schreiben, denn ist ein Faktor 0, ist das Produkt ebenfalls 0. Den Term in so eine Form zu überführen, nennt sich Faktorisieren.

12.1 Faktorisierung durch Ausklammern

Beispiel:

$$x^{4} + 2x^{3} + 3x^{2} = 0$$

$$x^{2}(x^{2} + 2x + 3) = 0$$

$$x^{2} = 0 \ oder \ (x^{2} + 2x + 3) = 0$$

$$\mathbb{L} = \{0\}$$

Für $x^2 + 2x + 3 = 0$ existiert keine reelle Lösung (p-q-Formel (S. ??)).

12.2 Faktorisierung mit binomischen Formeln

Beispiel:

$$9x^{2} + 30x + 25 = 0$$

$$(3x + 5)^{2} = 0$$

$$3x + 5 = 0 \qquad | -5$$

$$3x = -5 \qquad | : 3$$

$$x = -\frac{5}{3}$$

$$\mathbb{L} = \left\{-\frac{5}{3}\right\}$$

12.3 Faktorisierung mit dem Satz von Viëta

Der Satz von Viëta besagt, dass $x^2 + px + q = (x - x_1) \cdot (x - x_2)$ ist. p und q lassen sich auf die Nullstellen zurückführen: $x_1 + x_2 = -p$ und $x_1 \cdot x_2 = q$.

Daraus lässt sich $x_2 = \frac{q}{x_1}$ ableiten. Wenn man also durch Raten eine Nullstelle findet, kann man so die andere Nullstelle auch ganz einfach finden.

Beispiel (eine Nullstelle ist 1, die andere ergibt sich als $\sqrt{2} = \frac{\sqrt{2}}{1}$):

$$x^{2} + (\sqrt{2} - 1)x - \sqrt{2} = 0$$
$$(x - 1) \cdot (x + \sqrt{2}) = 0$$
$$\mathbb{L} = \{1; -\sqrt{2}\}$$

13 Wurzelgleichungen

Bei Wurzelgleichungen wird zuerst der Definitionsbereich bestimmt werden, also die Menge an reellen Zahlen, für die der Radikand positiv oder gleich Null ist. Zur Lösung von Wurzelgleichungen wird die Wurzel auf einer Seite der Gleichung isoliert. Dann werden beide Seiten der Gleichung

mit dem Wurzelexponenten (im Falle der Quadratwurzel also mit 2) so lange potenziert, bis alle Wurzeln eliminiert sind. Man bekommt also unter Umständen durch das Quadrieren (das Potenzieren mit einer geraden Zahl ist keine Äquivalenzumformung) neue Lösungen (Scheinlösungen) hinzu, die die ursprüngliche Gleichung nicht hatte. Die Probe ist folglich für Wurzelgleichungen unverzichtbar!

Beispiel $(\sqrt{2x+1} = x - 17)$:

$$2x + 1 \ge 0$$
$$x \ge -\frac{1}{2}$$

Damit haben wir den Definitionsbereich. Jetzt kann man nach der Lösung suchen.

$$\sqrt{2x+1} = x - 17$$

$$2x+1 = (x-17)^{2}$$

$$2x+1 = x^{2} - 34x + 289$$

$$x^{2} - 36x + 288 = 0$$

$$x_{1} = 12$$

$$x_{2} = 24$$

Jetzt MUSS man das Ergebnis noch überprüfen, indem man die Werte x_1 und x_2 in die ursprüngliche Gleichung einsetzt.

$$\sqrt{2x_1 + 1} = x_1 - 17$$

$$\sqrt{2 \cdot 12 + 1} = 12 - 17$$

$$\sqrt{25} = -5$$

$$5 = -5$$

Das Einsetzen von x_1 liefert keine wahre Aussage und ist somit nicht Teil der Lösungsmenge.

$$\sqrt{2x_2 + 1} = x_2 - 17$$

$$\sqrt{2 \cdot 24 + 1} = 24 - 17$$

$$\sqrt{49} = 7$$

$$7 = 7$$

Da x_2 im Definitionsbereich liegt und beim Einsetzen eine wahre Aussage ergibt, ist es in der Lösungsmenge enthalten.

$$\mathbb{L} = \{24\}$$

Übrigens: Wenn man mehrere Wurzeln in der Gleichung hat, muss man den Definitionsbereich für den Radikanden jeder Wurzel bestimmen.

Mithilfe dieser Grafik kann man das Ergebnis wunderbar visualisieren, denn das Ergebnis ist der x-Wert des Schnittpunkts der beiden Funktionen, die man aus der linken und rechten Seite der Wurzelgleichung entnehmen kann.

13.1 Wurzelgleichungen mit mehreren Wurzeln (Beispiel)

$$\sqrt{8x - 14} + \sqrt{5x - 2} = \sqrt{27x - 36}$$

$$(\sqrt{8x - 14} + \sqrt{5x - 2})^2 = 27x - 36$$

$$8x - 14 + 2\sqrt{(8x - 14)(5x - 2)} + 5x - 2 = 27x - 36$$

$$2\sqrt{(8x - 14)(5x - 2)} = 14x - 20$$

$$\sqrt{(8x - 14)(5x - 2)} = 7x - 10$$

$$40x^2 - 86x + 28 = (7x - 10)^2$$

$$40x^2 - 86x + 28 = 49x^2 - 140x + 100$$

$$0 = 9x^2 - 54x + 72$$

$$0 = x^2 - 6x + 8$$

Jetzt kann man die p-q-Formel (S. ??) anwenden und erhält die Lösungsmenge $\mathbb{L} = \{2, 4\}$.

14 Betragsgleichungen

Um mit Betragsgleichungen oder auch Betragsfunktionen rechnen zu können muss man mehrere Fälle betrachten. Nämlich einmal den Fall, dass im Betrag ein Wert größer oder gleich 0 entsteht und einmal den Fall, dass das Ergebnis im Betrag kleiner als Null ist. Betrachten wir einmal ein Beispiel, wo man den Schnittpunkt zwischen f(x) = |x + 1| und f(x) = x + 2 finden soll.

Zunächst setzen wir unsere Funktionen gleich und erhalten eine Betragsgleichung. Dann betrachten wir die verschiedenen Fälle für den Betrag.

$$|x+1| = \begin{cases} x+1 & Fall \ x \ge -1 \\ -(x+1) & Fall \ x < -1 \end{cases}$$

Durch die Fallunterscheidung kann man die Betragsstriche weglassen, indem man jeden Fall einzeln betrachtet. Hinterher muss man aber noch überprüfen, ob das Ergebnis der Bedingung für x in dem Fall entspricht.

Fall $x \ge -1$ (x + 1 ist positiv):

$$x+1 = x+2 \qquad |-x|$$

$$1 = 2$$

Für den Fall $x \ge -1$ gibt es keine Lösung, also weiter zum nächsten Fall.

Fall x < -1 (x + 1 ist negativ):

$$-x - 1 = x + 2$$

$$2x = -3$$

$$x = -\frac{3}{2}$$

Damit haben wir unsere Lösungsmenge, denn wir bekommen für den Fall -(x < -1) ein Ergebnis, welches dem Kriterium x < -1 entspricht.

$$\mathbb{L} = \left\{ -\frac{3}{2} \right\}$$

Durch einsetzen dieser x-Koordinate, finden wir auch den dazugehörigen y-Wert: $P\left(-\frac{3}{2} \mid \frac{1}{2}\right)$:

14.1 Betragsgleichungen mit mehreren Beträgen

Haben wir mehrere Beträge in unserer Gleichung, haben wir auch mehrere Fälle zu betrachten. Schon wir uns das an einem Beispiel an, indem wir die Schnittpunkte von f(x) = |x + 1| + 5 und f(x) = |2x - 4| suchen.

Zunächst setzen wir die Funktionen wieder gleich.

$$|x+1| + 5 = |2x - 4|$$

Die Fälle müssen wir alle einzeln betrachten. Das heißt, wir haben insgesamt 4 Fälle. Wir schauen uns zunächst die beiden Fälle eines Betrages an und dann innerhalb dieser Fälle betrachten wir die Fälle für den zweiten Betrag.

1. Fall für |x+1|: $x \ge -1$ (x+1 ist positiv)

$$x + 1 + 5 = |2x - 4|$$
$$x + 6 = |2x - 4|$$

Innerhalb dieses ersten Falles unterscheiden wir jetzt noch einmal für den übrigen Betrag.

1. Fall für |2x-4|: $x \ge 2$ (2x-4 ist positiv)

$$x + 6 = 2x - 4$$
$$x + 10 = 2x$$
$$10 = x$$

Jetzt müssen wir überprüfen, ob $x \ge 2$ und $x \ge -1$ für x = 10 gelten. Das ist der Fall daher haben wir schon mal einen Teil unserer Lösungsmenge. Auf der Grafik kann man auch sehen, dass sich die beiden Graphen dort schneiden.

2. Fall für |2x - 4|: x < 2 (2x - 4 ist negativ)

$$x + 6 = -(2x - 4)$$

$$x + 6 = -2x + 4$$

$$3x + 6 = 4$$

$$3x = -2$$

$$x = -\frac{2}{3}$$

Wir überprüfen jetzt wieder, ob x < 2 und $x \ge -1$ für $x = -\frac{2}{3}$ gelten. Da das der Fall ist, können wir auch dieses x zu unserer Lösungsmenge hinzufügen.

2. Fall für |x+1|: x < -1 (x+1) ist negativ

$$-(x+1) + 5 = |2x - 4|$$
$$-x + 4 = |2x - 4|$$

1. Fall für
$$|2x-4|$$
: $x \ge 2$ $(2x-4$ ist positiv)

In diesem Fall müssen wir gar nicht erst versuchen x auszurechnen, denn es gibt keine Zahl, die sowohl $x \ge 2$, als auch x < -1 erfüllt.

2. Fall für |2x - 4|: x < 2 (2x - 4 ist negativ)

$$-x + 4 = -(2x - 4)$$
$$-x + 4 = -2x + 4$$
$$-x = -2x$$
$$x = 0$$

Wir haben jetzt x = 0 als Lösung, jedoch erfüllt dieses Ergebnis nicht die Bedingung x < -1 und ist daher auch nicht in der Lösungsmenge enthalten.

Abschließend können wir feststellen, dass unsere Lösungsmenge $\mathbb{L} = \{10; -\frac{2}{3}\}$ ist. Durch Einsetzen in eine der beiden Funktionen erhalten wir dann unsere Schnittpunkte $P_1(10 \mid 16)$ und $P_2\left(-\frac{2}{3} \mid \frac{16}{3}\right)$.

Substitution 15

Substitution erlaubt es uns manchmal Gleichungen zu vereinfachen, um leichter mit ihnen rechnen zu können.

Beispiel: $x^8 - 15x^4 - 16 = 0$

Hier bietet es sich an x^4 durch u zu ersetzen.

$$u^{2} - 15u - 16 = 0$$

$$u_{\pm} = \frac{15}{2} \pm \sqrt{\left(\frac{-15}{2}\right)^{2} + 6}$$

Diesen Term wiederum können wir ganz einfach mit der p-q-Formel (S. ??) lösen. Dabei erhalten wir $u_{+}=16$ und $u_{-}=-1$. Um unsere endgültige Lösungsmenge zu bekommen, müssen wir noch resubstituieren.

$$x^4 = u_+ = 16$$

$$x_1 = 2$$

$$x_2 = -2$$

Da es kein x gibt, das $x^4 = -1$ erfüllt, haben wir bereits unsere komplette Lösungsmenge:

$$\mathbb{L} = \{-2, 2\}.$$

Ungleichungen 16

16.1 Rechenregeln

Wenn man ein Ungleichung mit einer negativen Zahl multipliziert oder durch diese teilt, muss das Vergleichszeichen umgekehrt werden.

Für
$$c < 0$$
 gilt:

$$a < b \iff c \cdot a > c \cdot b$$

Für
$$c < 0$$
 gilt:
 $a < b \iff c \cdot a > c \cdot b$
 $a < b \iff \frac{a}{c} > \frac{b}{c}$

16.2 Quadratische Ungleichungen

Um die Lösungsmenge einer quadratischen Ungleichung zu finden, formt man die Ungleichung zunächst so um, dass auf einer Seite 0 steht. Auf der anderen Seite hat man dann optimalerweise eine quadratische Funktion. Schauen wir uns mal das Beispiel $x^2 > 2x + 7$ an.

Wir stellen also zunächst um und erhalten $x^2 - 2x - 7 > 0$. Daraus ergibt sich auch die Funktion oben. An der Grafik erkennt man sehr gut, was wir eigentlich suchen. Denn unsere Lösungsmenge sind alle x, für die f(x) größer als 0 ist. Und wie kriegen wir das raus? Indem wir die Nullstellen berechnen. Das Intervall von Unendlich bis zur linken Nullstelle ist ein Teil unserer Lösung und der andere ist das Intervall von der rechten Nullstelle bis unendlich. Dabei muss man stets verschiedene Fälle beachten. Für eine nach unten geöffnete Funktion $(-x^2)$ suchen wir den Bereich zwischen den Nullstellen. Für eine Funktion oberhalb der x-Achse, die keine Nullstellen hat, sind alle reellen Zahlen unsere Lösungsmenge, wohingegen eine Funktion ohne Nullstellen unterhalb der x-Achse eine leere Lösungsmenge liefern würde. Eine Funktion mit genau einer Nullstelle liefert hingegen eine Lösungsmenge aller reellen Zahlen außer der Nullstelle. Es gibt je nach Art der Funktion und Vergleichszeichen in unserer Ungleichung viele unterschiedliche Szenarien, weshalb es immer ratsam ist eine Skizze anzufertigen. Für das Beispiel oben können wir die p-q-Formel (S. 9) verwenden, um die Nullstellen zu berechnen.

$$x_{\pm} = -\frac{-2}{2} \pm \sqrt{\left(\frac{-2}{2}\right)^2 + 7}$$

$$x_1 = 1 - 2\sqrt{2}$$

$$x_2 = 1 + 2\sqrt{2}$$

Jetzt, wo wir die Nullstellen haben, ist es nicht schwer die Lösungsmenge anzugeben. Dabei sollte man darauf achten, dass man abgeschlossene und offene Intervalle (S. 4) nicht verwechselt.

$$\mathbb{L} = \mathbb{R} \setminus \left[1 - 2\sqrt{2}; 1 + 2\sqrt{2} \right] = \left(-\infty; 1 - 2\sqrt{2} \right) \cup \left(1 + 2\sqrt{2} \right)$$

16.3 Ungleichungen mit Beträgen

Das Vorgehen bei Betragsungleichungen ist im Grunde genommen dasselbe Prinzip, wie bei den quadratischen. Schauen wir uns das Beispiel |x| - 3 < 0 an.

Wir erkennen die Nullstellen in dem Fall sehr leicht. Das sind -3 und 3. Erkennt man das nicht sofort, muss man eine Fallunterscheidung (S. 12) durchführen. Jetzt können wir aber erst mal unsere Lösungsmenge definieren, denn wir wissen, dass wir alle x suchen für die f(x) < 0 gilt.

$$\mathbb{L} = (-3; 3)$$

Hinweis: Wäre unsere Ausgangsungleichung $|x|-3 \le 0$, sehe unsere Lösungsmenge jetzt so aus:

$$\mathbb{L} = [-3; 3]$$

16.4 Ungleichungen mit Variable im Nenner – Teil I

Aus den vorherigen Erklärungen kann man sich herleiten, wie man das macht. Deshalb ist hier nur noch mal ein erklärendes Beispiel: $2 \le \frac{14}{|2x+5|}$.

Wichtig ist, dass wir zunächst alle x ausschließen, für die im Nenner 0 rauskommt. In diesem Fall ist dass $-\frac{5}{2}$.

$$2 \le \frac{14}{|2x+5|}$$
$$2|2x+5| \le 14$$
$$|2x+5| \le 7$$

Fall 1:
$$2x + 5 > 0$$

$$2x + 5 \le 7$$

$$2x \leq 2$$

$$x \leq 1$$

Fall 2: 2x + 5 < 0

$$-2x - 5 \le 7$$

$$-2x \le 12$$

$$x \ge -6$$

$$\mathbb{L} = \left[-6; -\frac{5}{2} \right) \cup \left(-\frac{5}{2}; 1 \right]$$

16.5 Ungleichungen mit Variable im Nenner – Teil II

Wenn wir uns an die Rechenregeln (S. 16) für Ungleichungen erinnern, könnte man sich fragen, was passiert, wenn der Nenner mit einer Variable sowohl positiv als auch negativ sein kann. Denn wenn wir mit einer negativen Zahl multiplizieren, müssten wir das Vorzeichen umkehren. Hier muss man wieder verschiedene Fälle unterscheiden.

Beispiel: $\frac{1}{x-2} \le -x$

Der Fall x=2 ist aufgrund des x im Nenner wieder auszuschließen. Fall 1: x>2

$$\frac{1}{x-2} \le -x$$

$$1 \le -x(x-2)$$

$$1 \le -x^2 + 2x$$

$$x^2 - 2x + 1 \le 0$$

$$(x-1)^2 \le 0$$

Dieser Fall gilt für x=1. Das widerspricht allerdings der Bedingung x>2 und das Ergebnis ist entsprechend nicht Teil unserer Lösungsmenge.

Fall 2:
$$x < 2$$

$$\frac{1}{x-2} \le -x$$

$$1 \ge -x(x-2)$$

$$1 \ge -x^2 + 2x$$

$$x^2 - 2x + 1 \ge 0$$

$$(x-1)^2 \ge 0$$

Dieser Fall ist für alle x erfüllt, daher gehören alle x < 2 zur Lösungsmenge.

$$\mathbb{L} = (-\infty; 2)$$