

HiPerFRED Module

 $V_{RRM} = 600 V$

 $I_{DAV} = 86 A$

 $t_{rr} = 35 \, \text{ns}$

Fast Recovery Epitaxial Diode Low Loss and Soft Recovery 3~ Rectifier Bridge

Part number

VUE75-06NO7

Backside: isolated

Features / Advantages:

- Package with DCB ceramic base plate
- Improved temperature and power cycling
- Planar passivated chips
- Very low forward voltage drop
- Very low leakage current

Applications:

- Supplies for DC power equipment
- Input and output rectifiers for high frequency
- Battery DC power supplies
- Field supply for DC motors

Package: ECO-PAC1

- Isolation Voltage: 3600 V~
- Industry standard outline
- RoHS compliant
- Soldering pins for PCB mounting
- Height: 9 mm
 Base plate: Di
- Base plate: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

Fast Diode				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
V _{RSM}	max. non-repetitive reverse blocki	ng voltage	$T_{VJ} = 25^{\circ}C$			600	V
V_{RRM}	max. repetitive reverse blocking ve	oltage	$T_{VJ} = 25^{\circ}C$			600	V
IR	reverse current, drain current	$V_R = 600 \text{ V}$	$T_{VJ} = 25^{\circ}C$			250	μΑ
		$V_R = 600 V$	$T_{VJ} = 150$ °C			1	mΑ
V _F	forward voltage drop	I _F = 30 A	$T_{VJ} = 25^{\circ}C$			1.57	V
		$I_F = 90 A$				2.20	V
		$I_F = 30 \text{ A}$	T _{vJ} = 150°C			1.22	V
		$I_F = 90 A$				1.75	V
I _{DAV}	bridge output current	T _C = 100°C	T _{vJ} = 150°C			86	Α
		rectangular $d = \frac{1}{3}$					
V _{F0}	threshold voltage	an adadation only	T _{vJ} = 150°C			0.98	V
r _F	slope resistance	ess calculation only				8	mΩ
R _{thJC}	thermal resistance junction to case	9				0.9	K/W
R _{thCH}	thermal resistance case to heatsin	nk			0.30		K/W
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			140	W
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$; (50 Hz), sine; $V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			250	Α
CJ	junction capacitance	$V_R = 400 \text{V}$ f = 1 MHz	$T_{VJ} = 25^{\circ}C$		26		pF
I _{RM}	max. reverse recovery current	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	T _{vJ} = 25 °C		6		Α
		$I_F = 30 \text{ A}; V_R = 300 \text{ V}$	$T_{VJ} = 100 ^{\circ}\text{C}$		10		Α
t _{rr}	reverse recovery time	$\begin{cases} I_F = 30 \text{ A}; V_R = 300 \text{ V} \\ -\text{di}_F/\text{dt} = 200 \text{ A}/\mu\text{s} \end{cases}$	$T_{VJ} = 25 ^{\circ}\text{C}$		35		ns
		l	$T_{VJ} = 100^{\circ}\text{C}$		100		ns

Package ECO-PAC1			ı	Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				100	Α
T _{VJ}	virtual junction temperature			-40		150	°C
T _{op}	operation temperature			-40		125	°C
T _{stg}	storage temperature			-40		125	°C
Weight					19		g
M _D	mounting torque			1.4		2	Nm
d _{Spp/App}	creepage distance on surface striking distance through air		terminal to terminal	6.0			mm
$d_{\text{Spb/Apb}}$			terminal to backside	10.0			mm
V _{ISOL}	isolation voltage	t = 1 second	50/00 LL 51/0 L	3600			
.002		t = 1 minute	50/60 Hz, RMS; IsoL ≤ 1 mA	3000			٧

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	VUE75-06NO7	VUE75-06NO7	Box	25	482846

Equivalent Circuits for Simulation			* on die level	$T_{VJ} = 150$ °C
I - V ₀)—[R ₀]	Fast Diode		
V _{0 max}	threshold voltage	0.98		V
R_{0max}	slope resistance *	6		$m\Omega$

Outlines ECO-PAC1

Fast Diode

Fig. 1 Forward current I_F vs. V_F

Fig. 2 Reverse recovery charge Q_r versus $-di_F/dt$

Fig. 3 Peak reverse current I_{RM} versus $-di_F/dt$

Fig. 4 Dynamic parameters Q_r , I_{RM} versus T_{VJ}

Fig. 5 Recovery time t_{rr} versus $-di_{F}/dt$

Fig. 6 Peak forward voltage V_{FR} and t_{fr} vs. $-di_F/dt$

Fig. 7 Transient thermal resistance junction to case

Constants for \boldsymbol{Z}_{thJC} calculation:

i	R_{thi} (K/W)	t _i (s)
1	0.3012	0.0052
2	0.1160	0.0003
3	0.0241	0.0004
4	0.4586	0.0092