Supplemental Material to "Robust Data-Driven Inference for Density-Weighted Average Derivatives"*

MATIAS D. CATTANEO

DEPARTMENT OF ECONOMICS, UNIVERSITY OF MICHIGAN

RICHARD K. CRUMP

FEDERAL RESERVE BANK OF NEW YORK

MICHAEL JANSSON

DEPARTMENT OF ECONOMICS, UC BERKELEY AND CREATES

March 26, 2010

1. Description

This document contains a comprehensive set of results from the Monte Carlo experiment summarized in Section 5 of the paper entitled "Robust Data-Driven Inference for Density-Weighted Average Derivatives". These results include all combinations of sample sizes (n = 100, n = 400, n = 700), dimension of regressors vector (d = 2, d = 4), and kernel orders (P = 2, P = 4).

Figures 1 through 12 plot the empirical coverage for the three competing 95% confidence intervals as a function of the choice of bandwidth for each of the six models. Figures 13 through 24 plot kernel density estimates for the test statistic PSS coupled with either h_{PS}^* and h_{NR}^* , and for the test statistics CCJ1 and CCJ2 coupled with h_{CCJ}^* .

Tables 1 through 6 report empirical coverage of each possible confidence intervals (PSS, CCJ1, CCJ2) when using each possible population bandwidth selector $(h_{PS}^*, h_{NR}^*, h_{CCJ}^*)$. Tables 7 through 12 report average empirical bias and average empirical interval length for each

^{*}The first author gratefully acknowledges financial support from the National Science Foundation (SES 0921505). The third author gratefully acknowledges financial support from the National Science Foundation (SES 0920953) and the research support of CREATES (funded by the Danish National Research Foundation).

competing confidence interval when coupled with each possible population bandwidth selector. Tables 13 through 18 report empirical coverage of each possible confidence interval (PSS, CCJ1, CCJ2) when using each possible estimated bandwidth selector $(\hat{h}_{PS}, \hat{h}_{NR}, \hat{h}_{CCJ})$.

Further results, and computer code in R with C implementations, are available upon request.

Figure 1: Empirical Coverage Rates for 95% Confidence Intervals: $d=2,\,P=2,\,n=100$

Figure 2: Empirical Coverage Rates for 95% Confidence Intervals: $d=2,\,P=2,\,n=400$

Figure 3: Empirical Coverage Rates for 95% Confidence Intervals: $d=2,\,P=2,\,n=700$

Figure 4: Empirical Coverage Rates for 95% Confidence Intervals: $d=2,\,P=4,\,n=100$

Figure 5: Empirical Coverage Rates for 95% Confidence Intervals: $d=2,\,P=4,\,n=400$

Figure 6: Empirical Coverage Rates for 95% Confidence Intervals: $d=2,\,P=4,\,n=700$

Figure 7: Empirical Coverage Rates for 95% Confidence Intervals: $d=4,\,P=2,\,n=100$

Figure 8: Empirical Coverage Rates for 95% Confidence Intervals: $d=4,\,P=2,\,n=400$

Figure 9: Empirical Coverage Rates for 95% Confidence Intervals: $d=4,\,P=2,\,n=700$

Figure 10: Empirical Coverage Rates for 95% Confidence Intervals: $d=4,\,P=4,\,n=100$

Figure 11: Empirical Coverage Rates for 95% Confidence Intervals: $d=4,\,P=4,\,n=400$

Figure 12: Empirical Coverage Rates for 95% Confidence Intervals: $d=4,\,P=4,\,n=700$

Figure 13: Empirical Coverage Rates for 95% Confidence Intervals: $d=2,\,P=2,\,n=100$

Figure 14: Empirical Coverage Rates for 95% Confidence Intervals: $d=2,\, P=2,\, n=400$

Figure 15: Empirical Coverage Rates for 95% Confidence Intervals: $d=2,\,P=2,\,n=700$

Figure 16: Empirical Coverage Rates for 95% Confidence Intervals: $d=2,\,P=4,\,n=100$

Figure 17: Empirical Coverage Rates for 95% Confidence Intervals: $d=2,\,P=4,\,n=400$

Figure 18: Empirical Coverage Rates for 95% Confidence Intervals: $d=2,\,P=4,\,n=700$

Figure 19: Empirical Coverage Rates for 95% Confidence Intervals: $d=4,\,P=2,\,n=100$

Figure 20: Empirical Coverage Rates for 95% Confidence Intervals: $d=4,\,P=2,\,n=400$

Figure 21: Empirical Coverage Rates for 95% Confidence Intervals: $d=4,\,P=2,\,n=700$

Figure 22: Empirical Coverage Rates for 95% Confidence Intervals: $d=4,\,P=4,\,n=100$

Figure 23: Empirical Coverage Rates for 95% Confidence Intervals: $d=4,\, P=4,\, n=400$

Figure 24: Empirical Coverage Rates for 95% Confidence Intervals: $d=4,\, P=4,\, n=700$

Table 1: Empirical Coverage Rates of 95% Confidence Intervals with Population Bandwidth: $d=2,\,n=100.$

			Mo	del 1			Mo	del 3			Mod	del 5	
		$_{\mathrm{BW}}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.345	0.928	0.854	0.851	0.367	0.929	0.858	0.853	0.365	0.906	0.844	0.842
	h_{NR}^*	0.345	0.928	0.854	0.851	0.367	0.929	0.858	0.853	0.365	0.906	0.844	0.842
	h_{CCJ}^{*}	0.192	0.991	0.928	0.943	0.175	0.994	0.933	0.949	0.199	0.988	0.914	0.934
P=4	h_{PS}^*	0.592	0.949	0.909	0.901	0.607	0.951	0.907	0.899	0.614	0.933	0.900	0.892
	h_{NR}^*	0.627	0.936	0.898	0.885	0.643	0.939	0.898	0.884	0.650	0.924	0.892	0.880
	h_{CCJ}^{**}	0.442	0.979	0.930	0.936	0.439	0.984	0.932	0.938	0.450	0.971	0.919	0.926
			Mo	del 2			Mo	del 4			Mod	del 6	
		$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.227	0.972	0.910	0.911	0.243	0.977	0.916	0.918	0.279	0.957	0.895	0.900
	h_{NR}^*	0.227	0.972	0.910	0.911	0.243	0.977	0.916	0.918	0.279	0.957	0.895	0.900
	h_{CCJ}^*	0.128	0.992	0.935	0.946	0.148	0.993	0.932	0.946	0.119	0.995	0.930	0.949
P=4	h_{PS}^*	0.409	0.966	0.912	0.905	0.426	0.971	0.926	0.918	0.461	0.960	0.918	0.918
	h_{NR}^{*}	0.433	0.955	0.903	0.893	0.451	0.964	0.922	0.911	0.489	0.954	0.914	0.911
N C. l	h_{CCJ}^*	0.336	0.982	0.929	0.933	0.361	0.983	0.932	0.933	0.290	0.988	0.925	0.944

Note: Column BW reports population bandwidths.

Table 2: Empirical Coverage Rates of 95% Confidence Intervals with Population Bandwidth: $d=2,\,n=400.$

			Mo	del 1			Mo	del 3			Mo	del 5	
		$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.244	0.931	0.878	0.876	0.260	0.939	0.887	0.881	0.258	0.929	0.885	0.880
	h_{NR}^*	0.244	0.931	0.878	0.876	0.260	0.939	0.887	0.881	0.258	0.929	0.885	0.880
	h_{CCJ}^*	0.121	0.994	0.948	0.952	0.110	0.995	0.947	0.954	0.125	0.993	0.947	0.951
P=4	h_{PS}^*	0.470	0.949	0.926	0.920	0.483	0.951	0.930	0.921	0.488	0.941	0.925	0.918
	h_{NB}^*	0.498	0.940	0.920	0.912	0.512	0.943	0.925	0.912	0.517	0.935	0.918	0.910
	h_{CCJ}^*	0.335	0.978	0.942	0.943	0.333	0.981	0.945	0.945	0.342	0.975	0.940	0.941
			Mo	del 2			Mo	del 4			Mo	del 6	
-		$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.161	0.970	0.921	0.916	0.172	0.978	0.935	0.931	0.197	0.968	0.920	0.919
	h_{NR}^*	0.161	0.970	0.921	0.916	0.172	0.978	0.935	0.931	0.197	0.968	0.920	0.919
	h_{CCJ}^*	0.081	0.994	0.944	0.946	0.093	0.993	0.947	0.949	0.074	0.995	0.946	0.950
P=4	h_{PS}^*	0.325	0.951	0.917	0.907	0.338	0.964	0.938	0.927	0.366	0.962	0.936	0.931
	h_{NR}^*	0.344	0.940	0.909	0.897	0.358	0.958	0.933	0.922	0.388	0.956	0.931	0.926
	h_{CCJ}^*	0.254	0.977	0.940	0.939	0.273	0.982	0.945	0.943	0.220	0.990	0.945	0.949

Note: Column BW reports population bandwidths.

Table 3: Empirical Coverage Rates of 95% Confidence Intervals with Population Bandwidth: d = 2, n = 700.

-			Mo	del 1			Mod	del 3			Mod	del 5	
		$_{\mathrm{BW}}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.212	0.940	0.892	0.889	0.226	0.942	0.895	0.889	0.224	0.936	0.900	0.895
	h_{NR}^*	0.212	0.940	0.892	0.889	0.226	0.942	0.895	0.889	0.224	0.936	0.900	0.895
	h_{CCJ}^{*}	0.100	0.993	0.949	0.952	0.091	0.994	0.951	0.952	0.104	0.993	0.947	0.949
P=4	h_{PS}^*	0.428	0.951	0.930	0.925	0.438	0.950	0.934	0.927	0.444	0.948	0.933	0.927
	h_{NR}^*	0.453	0.942	0.924	0.916	0.464	0.944	0.930	0.920	0.471	0.941	0.928	0.921
	h_{CCJ}^*	0.299	0.978	0.946	0.946	0.298	0.978	0.943	0.942	0.306	0.976	0.944	0.945
			Mo	del 2			Mod	del 4			Mod	del 6	
		BW	PSS	CCJ1	CCJ2	BW	PSS	CCJ1	CCJ2	BW	PSS	CCJ1	CCJ2
		DW	1 00	0 001			- 1010				- 10 10		
P=2	h_{PS}^*	0.140	0.970	0.919	0.914	0.150	0.977	0.934	0.932	0.172	0.969	0.927	0.926
P=2	h_{PS}^* h_{NR}^*							0.934 0.934	0.932 0.932				
P=2	h_{NR}^*	0.140	0.970	0.919	0.914	0.150	0.977			0.172	0.969	0.927	0.926
P = 2 $P = 4$	$h_{NR}^* \ h_{CCJ}^*$	0.140 0.140	0.970 0.970	0.919 0.919	0.914 0.914	0.150 0.150	0.977 0.977	0.934	0.932	$0.172 \\ 0.172$	0.969 0.969	0.927 0.927	0.926 0.926
	$\frac{h_{NR}^*}{h_{CCJ}^*}$ h_{PS}^*	0.140 0.140 0.067	0.970 0.970 0.993	0.919 0.919 0.946	0.914 0.914 0.947	0.150 0.150 0.077	0.977 0.977 0.994	$0.934 \\ 0.951$	$0.932 \\ 0.954$	0.172 0.172 0.062	0.969 0.969 0.994	0.927 0.927 0.951	0.926 0.926 0.952
	$h_{NR}^* \ h_{CCJ}^*$	0.140 0.140 0.067 0.296	0.970 0.970 0.993 0.947	0.919 0.919 0.946 0.916	0.914 0.914 0.947 0.909	0.150 0.150 0.077 0.307	0.977 0.977 0.994 0.964	0.934 0.951 0.937	0.932 0.954 0.931	0.172 0.172 0.062 0.333	0.969 0.969 0.994 0.962	0.927 0.927 0.951 0.936	0.926 0.926 0.952 0.934

Note: Column BW reports population bandwidths.

Table 4: Empirical Coverage Rates of 95% Confidence Intervals with Population Bandwidth: d = 4, n = 100.

			Mo	del 1			Mo	del 3			Mod	del 5	
		$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.410	0.900	0.788	0.796	0.440	0.888	0.783	0.788	0.431	0.876	0.764	0.773
	h_{NR}^*	0.393	0.921	0.815	0.828	0.422	0.912	0.811	0.817	0.414	0.898	0.790	0.804
	h_{CCJ}^*	0.300	0.977	0.903	0.922	0.252	0.976	0.898	0.939	0.312	0.968	0.882	0.908
P=4	h_{PS}^*	0.679	0.951	0.878	0.882	0.705	0.942	0.875	0.875	0.703	0.928	0.858	0.863
	h_{NR}^*	0.693	0.946	0.873	0.875	0.719	0.935	0.867	0.864	0.717	0.919	0.850	0.853
	h_{CCJ}^*	0.575	0.977	0.913	0.925	0.528	0.983	0.913	0.931	0.589	0.966	0.896	0.912
			Mo	del 2			Mo	del 4			Mod	del 6	
		$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.325	0.946	0.844	0.859	0.314	0.960	0.871	0.892	0.339	0.946	0.848	0.868
	h_{NR}^*	0.312	0.955	0.862	0.878	0.302	0.966	0.878	0.902	0.326	0.952	0.858	0.878
	h_{CCJ}^*	0.207	0.986	0.919	0.946	0.223	0.966	0.892	0.939	0.197	0.972	0.903	0.948
P=4	h_{PS}^*	0.513	0.966	0.893	0.904	0.516	0.969	0.895	0.908	0.545	0.963	0.886	0.902
	h_{NB}^*	0.523	0.963	0.889	0.897	0.527	0.966	0.892	0.903	0.557	0.961	0.881	0.899
	h_{CCJ}^*	0.423	0.983	0.917	0.932	0.454	0.980	0.909	0.924	0.386	0.983	0.911	0.937

Note: Column BW reports population bandwidths.

Table 5: Empirical Coverage Rates of 95% Confidence Intervals with Population Bandwidth: d = 4, n = 400.

			Mo	del 1			Mo	del 3			Mod	del 5	
		$_{\mathrm{BW}}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.311	0.926	0.820	0.820	0.333	0.920	0.826	0.822	0.327	0.910	0.811	0.813
	h_{NB}^*	0.298	0.945	0.847	0.853	0.319	0.940	0.851	0.852	0.314	0.932	0.838	0.846
	h_{CCJ}^*	0.213	0.992	0.940	0.946	0.174	0.995	0.948	0.952	0.220	0.990	0.929	0.936
P=4	h_{PS}^*	0.556	0.955	0.905	0.902	0.579	0.947	0.899	0.892	0.578	0.946	0.899	0.895
	h_{NB}^*	0.567	0.949	0.897	0.894	0.591	0.941	0.894	0.884	0.590	0.940	0.892	0.888
	h_{CCJ}^*	0.456	0.984	0.936	0.939	0.422	0.990	0.940	0.943	0.468	0.980	0.934	0.939
			Mo	del 2			Mo	del 4			Mod	del 6	
		$_{\mathrm{BW}}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.246	0.962	0.874	0.877	0.238	0.980	0.913	0.915	0.257	0.970	0.894	0.898
	h_{NR}^*	0.237	0.971	0.894	0.895	0.228	0.983	0.920	0.924	0.247	0.976	0.904	0.910
	h_{CCJ}^*	0.146	0.995	0.946	0.952	0.157	0.996	0.946	0.953	0.136	0.996	0.949	0.960
P=4	h_{PS}^*	0.421	0.970	0.904	0.903	0.423	0.979	0.923	0.922	0.447	0.974	0.916	0.919
	h_{NR}^{*}	0.429	0.965	0.898	0.897	0.432	0.977	0.922	0.919	0.456	0.971	0.914	0.914
	h_{CCJ}^*	0.334	0.990	0.938	0.939	0.361	0.989	0.938	0.939	0.302	0.993	0.943	0.947

Note: Column BW reports population bandwidths.

Table 6: Empirical Coverage Rates of 95% Confidence Intervals with Population Bandwidth: d = 4, n = 700.

			Mo	del 1			Mod	del 3			Mod	del 5	
		$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.278	0.932	0.830	0.832	0.298	0.926	0.831	0.826	0.292	0.922	0.831	0.832
	h_{NR}^*	0.267	0.950	0.860	0.862	0.286	0.945	0.859	0.859	0.281	0.943	0.858	0.861
	$h_{CCJ}^{*,n}$	0.185	0.992	0.941	0.944	0.155	0.996	0.948	0.951	0.192	0.992	0.938	0.944
P=4	h_{PS}^*	0.514	0.955	0.914	0.911	0.535	0.952	0.912	0.904	0.532	0.949	0.910	0.907
	h_{NR}^*	0.524	0.950	0.908	0.904	0.546	0.948	0.906	0.896	0.543	0.943	0.906	0.901
	h_{CCJ}^*	0.416	0.986	0.938	0.941	0.387	0.990	0.944	0.946	0.427	0.982	0.937	0.941
			Mo	del 2			Mod	del 4			Mod	del 6	
		BW	PSS	CCJ1	CCJ2	BW	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.220	0.963	0.874	0.875	0.213	0.984	0.925	0.925	0.230	0.975	0.902	0.904
P=2	h_{PS}^* h_{NR}^*	$0.220 \\ 0.212$	$0.963 \\ 0.972$	0.874 0.894	$0.875 \\ 0.894$	0.213 0.204	0.984 0.986	$0.925 \\ 0.930$	0.925 0.932	$0.230 \\ 0.221$	$0.975 \\ 0.980$	$0.902 \\ 0.912$	0.904 0.914
P=2	h_{NR}^*												
P = 2 $P = 4$	$h_{NR}^* \ h_{CCJ}^*$	0.212	0.972	0.894	0.894	0.204	0.986	0.930	0.932	0.221	0.980	0.912	0.914
	$h_{NR}^* \ h_{CCJ}^* \ h_{PS}^* \ h_{NR}^*$	$0.212 \\ 0.127$	$0.972 \\ 0.995$	$0.894 \\ 0.954$	$0.894 \\ 0.957$	$0.204 \\ 0.137$	$0.986 \\ 0.995$	0.930 0.949	$0.932 \\ 0.954$	$0.221 \\ 0.121$	$0.980 \\ 0.997$	$0.912 \\ 0.949$	$0.914 \\ 0.954$
	$h_{NR}^* \ h_{CCJ}^*$	0.212 0.127 0.388	0.972 0.995 0.964	0.894 0.954 0.902	0.894 0.957 0.900	0.204 0.137 0.390	0.986 0.995 0.978	0.930 0.949 0.925	0.932 0.954 0.921	0.221 0.121 0.413	0.980 0.997 0.975	0.912 0.949 0.923	0.914 0.954 0.924

Note: Column BW reports population bandwidths.

Table 7: Empirical Average Length of 95% Confidence Intervals with Population Bandwidth: d = 2, n = 100.

			Mod	del 1			Mod	del 3			Mod	lel 5	
		BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.009	0.068	0.057	0.055	0.003	0.024	0.021	0.020	0.005	0.040	0.035	0.033
	h_{NR}^*	0.009	0.068	0.057	0.055	0.003	0.024	0.021	0.020	0.005	0.040	0.035	0.033
	h_{CCJ}^*	0.003	0.175	0.127	0.128	0.001	0.084	0.059	0.061	0.002	0.101	0.074	0.075
P=4	h_{PS}^*	0.373	6.400	5.597	5.341	0.149	2.388	2.094	1.962	0.214	3.969	3.547	3.361
	h_{NR}^*	0.453	6.016	5.344	5.038	0.177	2.234	1.990	1.839	0.259	3.751	3.401	3.183
	h_{CCJ}^*	0.140	9.218	7.349	7.337	0.055	3.667	2.896	2.877	0.073	5.672	4.594	4.585
-			Mod	del 2			Mod	del 4			Mod	lel 6	
		BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.011	0.153	0.120	0.118	0.003	0.055	0.043	0.042	0.004	0.057	0.046	0.046
	h_{NR}^*	0.011	0.153	0.120	0.118	0.003	0.055	0.043	0.042	0.004	0.057	0.046	0.046
	h_{CCJ}^{**}	0.004	0.426	0.303	0.307	0.001	0.131	0.094	0.095	0.001	0.258	0.181	0.185
P=4	h_{PS}^*	0.821	12.644	10.543	10.128	0.206	4.711	3.941	3.778	0.203	5.488	4.607	4.519
	h_{NR}^*	0.928	11.708	9.932	9.454	0.236	4.364	3.718	3.528	0.234	5.124	4.383	4.263
	h_{CCJ}^{*}	0.535	16.894	13.272	13.079	0.138	5.975	4.740	4.658	0.055	11.081	8.108	8.282

Note: Column BIAS reports absolute difference between average of $\hat{\theta}_n$ (across simulations) and θ_0 . All figures times 100.

Table 8: Empirical Average Length of 95% Confidence Intervals with Population Bandwidth: d = 2, n = 400.

			Mod	del 1			Mod	del 3			Mo	del 5	
		BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.005	0.036	0.031	0.030	0.002	0.013	0.011	0.011	0.003	0.022	0.019	0.019
	h_{NR}^*	0.005	0.036	0.031	0.030	0.002	0.013	0.011	0.011	0.003	0.022	0.019	0.019
	h_{CCJ}^{**}	0.002	0.110	0.080	0.080	0.000	0.053	0.038	0.038	0.001	0.064	0.047	0.047
P=4	h_{PS}^*	0.183	3.096	2.842	2.755	0.050	1.184	1.091	1.043	0.090	1.981	1.849	1.782
	h_{NR}^*	0.221	2.971	2.762	2.657	0.065	1.133	1.057	1.001	0.112	1.909	1.802	1.723
	h_{CCJ}^*	0.070	4.302	3.566	3.556	0.002	1.720	1.417	1.409	0.021	2.696	2.279	2.268
			Mod	del 2			Mod	del 4			Mo	del 6	
		BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.006	0.080	0.065	0.064	0.002	0.029	0.023	0.023	0.002	0.030	0.025	0.025
	h_{NR}^{*}	0.006	0.080	0.065	0.064	0.002	0.029	0.023	0.023	0.002	0.030	0.025	0.025
	h_{CCJ}^*	0.002	0.270	0.193	0.194	0.000	0.083	0.060	0.060	0.000	0.168	0.119	0.120
P=4	h_{PS}^*	0.483	5.983	5.292	5.093	0.114	2.229	1.973	1.905	0.125	2.558	2.266	2.227
	h_{NB}^*	0.551	5.651	5.077	4.853	0.132	2.108	1.896	1.818	0.143	2.432	2.190	2.142
	$h_{CCJ}^{*,n}$	0.270	7.995	6.555	6.454	0.061	2.843	2.353	2.317	0.042	5.024	3.796	3.821

Note: Column BIAS reports absolute difference between average of $\hat{\theta}_n$ (across simulations) and θ_0 . All figures times 100.

Table 9: Empirical Average Length of 95% Confidence Intervals with Population Bandwidth: d = 2, n = 700.

			Mod	del 1			Mod	del 3			Mod	del 5	
		BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.003	0.028	0.024	0.023	0.001	0.010	0.009	0.009	0.002	0.017	0.015	0.015
	h_{NR}^{*}	0.003	0.028	0.024	0.023	0.001	0.010	0.009	0.009	0.002	0.017	0.015	0.015
	h_{CCJ}^*	0.001	0.091	0.065	0.066	0.000	0.044	0.032	0.032	0.000	0.053	0.038	0.039
P=4	h_{PS}^*	0.124	2.316	2.156	2.103	0.046	0.894	0.835	0.805	0.071	1.490	1.408	1.367
	h_{NR}^{*}	0.152	2.238	2.107	2.042	0.056	0.862	0.814	0.778	0.087	1.446	1.379	1.330
	h_{CCJ}^*	0.036	3.163	2.656	2.652	0.010	1.270	1.059	1.055	0.019	1.986	1.700	1.695
			Mod	del 2			Mod	del 4			Mo	del 6	
		BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.005	0.062	0.050	0.049	0.001	0.022	0.018	0.018	0.002	0.023	0.019	0.019
	h_{NR}^*	0.005	0.062	0.050	0.049	0.001	0.022	0.018	0.018	0.002	0.023	0.019	0.019
	h_{CCJ}^*	0.002	0.224	0.160	0.160	0.001	0.069	0.050	0.050	0.000	0.137	0.097	0.097
P=4	h_{PS}^*	0.401	4.425	3.985	3.849	0.082	1.650	1.487	1.442	0.087	1.890	1.704	1.677
	h_{NR}^*	0.457	4.210	3.847	3.694	0.096	1.572	1.438	1.387	0.102	1.809	1.655	1.623
	h_{CCJ}^*	0.220	5.879	4.886	4.819	0.041	2.095	1.756	1.735	0.017	3.676	2.805	2.817

Note: Column BIAS reports absolute difference between average of $\hat{\theta}_n$ (across simulations) and θ_0 . All figures times 100.

Table 10: Empirical Average Length of 95% Confidence Intervals with Population Bandwidth: d = 4, n = 100.

			Mod	del 1			Mod	del 3			Mo	del 5	
		BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.001	0.008	0.006	0.006	0.000	0.002	0.002	0.002	0.001	0.005	0.004	0.004
	h_{NR}^*	0.001	0.009	0.007	0.007	0.000	0.003	0.002	0.002	0.001	0.005	0.004	0.004
	h_{CCJ}^*	0.001	0.018	0.013	0.014	0.000	0.010	0.007	0.008	0.000	0.011	0.008	0.008
P=4	h_{PS}^*	0.064	0.807	0.648	0.633	0.019	0.245	0.199	0.190	0.037	0.476	0.389	0.376
	h_{NR}^*	0.068	0.772	0.625	0.608	0.020	0.234	0.192	0.182	0.039	0.455	0.376	0.362
	h_{CCJ}^*	0.039	1.190	0.899	0.903	0.007	0.506	0.370	0.373	0.021	0.712	0.543	0.544
			Mod	del 2			Mod	del 4			Mo	del 6	
		BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.002	0.017	0.013	0.012	0.000	0.006	0.005	0.005	0.001	0.008	0.006	0.006
	h_{NR}^*	0.002	0.019	0.014	0.014	0.000	0.007	0.005	0.005	0.001	0.009	0.007	0.007
	h_{CCJ}^*	0.001	0.058	0.041	0.042	0.000	0.016	0.011	0.012	0.000	0.035	0.025	0.026
P=4	h_{PS}^*	0.107	1.775	1.337	1.326	0.027	0.599	0.450	0.445	0.034	0.855	0.646	0.649
	h_{NR}^*	0.112	1.683	1.276	1.262	0.028	0.567	0.429	0.423	0.036	0.813	0.619	0.619
	h_{CCJ}^*	0.067	2.990	2.157	2.180	0.022	0.843	0.612	0.617	0.013	2.139	1.511	1.560

Note: Column BIAS reports absolute difference between average of $\hat{\theta}_n$ (across simulations) and θ_0 . All figures times 100.

Table 11: Empirical Average Length of 95% Confidence Intervals with Population Bandwidth: d = 4, n = 400.

			Mod	del 1			Mod	del 3			Mod	del 5	
		BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.001	0.005	0.004	0.004	0.000	0.001	0.001	0.001	0.000	0.003	0.002	0.002
	h_{NR}^*	0.001	0.005	0.004	0.004	0.000	0.002	0.001	0.001	0.000	0.003	0.002	0.002
	h_{CCJ}^{**}	0.000	0.013	0.009	0.010	0.000	0.009	0.006	0.006	0.000	0.008	0.005	0.006
P=4	h_{PS}^*	0.034	0.399	0.334	0.327	0.010	0.126	0.107	0.103	0.020	0.240	0.206	0.200
	h_{NR}^*	0.037	0.384	0.325	0.317	0.011	0.121	0.104	0.099	0.021	0.232	0.201	0.194
	h_{CCJ}^*	0.018	0.611	0.470	0.471	0.004	0.260	0.194	0.194	0.010	0.368	0.287	0.286
			Mod	del 2			Mod	del 4			Mo	del 6	
		BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.001	0.010	0.007	0.007	0.000	0.004	0.003	0.003	0.000	0.005	0.004	0.004
	h_{NR}^{*}	0.001	0.011	0.008	0.008	0.000	0.004	0.003	0.003	0.000	0.006	0.004	0.004
	h_{CCJ}^*	0.001	0.044	0.031	0.031	0.000	0.013	0.009	0.009	0.000	0.030	0.021	0.022
P=4	h_{PS}^*	0.072	0.855	0.667	0.657	0.017	0.296	0.231	0.227	0.022	0.416	0.326	0.323
	h_{NR}^{*}	0.076	0.814	0.640	0.629	0.018	0.282	0.222	0.217	0.023	0.396	0.314	0.310
	h_{CCJ}^*	0.045	1.561	1.141	1.142	0.013	0.449	0.333	0.331	0.008	1.174	0.839	0.847

Note: Column BIAS reports absolute difference between average of $\hat{\theta}_n$ (across simulations) and θ_0 . All figures times 100.

Table 12: Empirical Average Length of 95% Confidence Intervals with Population Bandwidth: $d=4,\,n=700.$

			Mod	del 1			Mod	del 3			Mod	del 5	
		BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.001	0.004	0.003	0.003	0.000	0.001	0.001	0.001	0.000	0.002	0.002	0.002
	h_{NR}^{*}	0.001	0.004	0.003	0.003	0.000	0.001	0.001	0.001	0.000	0.002	0.002	0.002
	h_{CCJ}^*	0.000	0.011	0.008	0.008	0.000	0.007	0.005	0.005	0.000	0.007	0.005	0.005
P=4	h_{PS}^*	0.025	0.298	0.253	0.249	0.008	0.095	0.082	0.079	0.014	0.182	0.158	0.154
	h_{NR}^{*}	0.027	0.288	0.247	0.242	0.009	0.092	0.080	0.077	0.015	0.176	0.154	0.150
	h_{CCJ}^*	0.012	0.463	0.358	0.358	0.003	0.195	0.147	0.146	0.006	0.279	0.219	0.219
			Mod	del 2			Mod	del 4			Mo	del 6	
		BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2	BIAS	PSS	CCJ1	CCJ2
P=2	h_{PS}^*	0.001	0.008	0.006	0.006	0.000	0.003	0.002	0.002	0.000	0.004	0.003	0.003
	h_{NR}^*	0.001	0.009	0.007	0.007	0.000	0.003	0.003	0.003	0.000	0.004	0.003	0.003
	h_{CCJ}^*	0.000	0.038	0.027	0.027	0.000	0.011	0.008	0.008	0.000	0.025	0.018	0.018
P=4	h_{PS}^*	0.059	0.634	0.502	0.493	0.013	0.221	0.174	0.171	0.017	0.307	0.244	0.242
	h_{NR}^*	0.062	0.605	0.482	0.473	0.014	0.210	0.168	0.164	0.018	0.294	0.235	0.233
	h_{CCJ}^*	0.032	1.187	0.872	0.870	0.009	0.344	0.256	0.254	0.006	0.860	0.617	0.621

Note: Column BIAS reports absolute difference between average of $\hat{\theta}_n$ (across simulations) and θ_0 . All figures times 100.

Table 13: Empirical Coverage Rates of 95% Confidence Intervals with Estimated Bandwidth: $d=2,\,n=100.$

			Model 1					del 3			Model 5			
		$_{\mathrm{BW}}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	
P=2	\hat{h}_{PS}	0.327	0.884	0.808	0.805	0.330	0.897	0.815	0.810	0.331	0.888	0.823	0.822	
	\hat{h}_{NR}	0.327	0.884	0.808	0.805	0.330	0.897	0.815	0.810	0.331	0.888	0.823	0.822	
	\hat{h}_{CCJ}	0.182	0.971	0.916	0.927	0.198	0.972	0.906	0.924	0.194	0.968	0.900	0.919	
P=4	\hat{h}_{PS}	0.373	0.980	0.905	0.917	0.374	0.982	0.903	0.921	0.374	0.970	0.897	0.911	
	\hat{h}_{NR}	0.395	0.976	0.903	0.912	0.397	0.978	0.902	0.914	0.397	0.966	0.896	0.907	
	\hat{h}_{CCJ}	0.271	0.992	0.928	0.948	0.284	0.991	0.918	0.940	0.280	0.988	0.916	0.940	
			Mo	del 2			Mo	del 4		Model 6				
		$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{\mathrm{BW}}$	PSS	CCJ1	CCJ2	
P=2	\hat{h}_{PS}	0.278	0.864	0.789	0.775	0.282	0.908	0.835	0.820	0.284	0.919	0.838	0.840	
	\hat{h}_{NR}	0.278	0.864	0.789	0.775	0.282	0.908	0.835	0.820	0.284	0.919	0.838	0.840	
	\hat{h}_{CCJ}	0.167	0.961	0.898	0.905	0.182	0.968	0.907	0.915	0.170	0.976	0.919	0.934	
P=4	\hat{h}_{PS}	0.322	0.970	0.898	0.903	0.322	0.980	0.910	0.920	0.323	0.980	0.900	0.914	
	\hat{h}_{NR}	0.341	0.962	0.892	0.894	0.341	0.977	0.907	0.913	0.342	0.976	0.898	0.910	
	\hat{h}_{CCJ}	0.246	0.987	0.922	0.934	0.253	0.990	0.922	0.939	0.246	0.991	0.921	0.943	

Note: Column BW reports sample mean of estimated bandwidths.

Table 14: Empirical Coverage Rates of 95% Confidence Intervals with Estimated Bandwidth: d = 2, n = 400.

			Mo	del 1			Mo	del 3			Model 5				
		BW	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2		
P=2	\hat{h}_{PS}	0.248	0.870	0.817	0.809	0.255	0.883	0.819	0.809	0.252	0.887	0.833	0.823		
	\hat{h}_{NR}	0.248	0.870	0.817	0.809	0.255	0.883	0.819	0.809	0.252	0.887	0.833	0.823		
	\hat{h}_{CCJ}	0.113	0.980	0.937	0.940	0.132	0.976	0.932	0.932	0.120	0.981	0.938	0.941		
P=4	\hat{h}_{PS}	0.290	0.978	0.921	0.924	0.290	0.980	0.922	0.923	0.290	0.979	0.923	0.926		
	\hat{h}_{NR}	0.308	0.975	0.921	0.922	0.307	0.977	0.921	0.921	0.308	0.975	0.921	0.922		
	\hat{h}_{CCJ}	0.187	0.993	0.949	0.953	0.198	0.994	0.948	0.954	0.192	0.995	0.949	0.954		
		Model 2					Mo	del 4		Model 6					
-		$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2		
P=2	\hat{h}_{PS}	0.201	0.858	0.796	0.780	0.208	0.903	0.851	0.838	0.212	0.920	0.860	0.854		
	\hat{h}_{NR}	0.201	0.858	0.796	0.780	0.208	0.903	0.851	0.838	0.212	0.920	0.860	0.854		
	\hat{h}_{CCJ}	0.104	0.972	0.916	0.919	0.119	0.973	0.929	0.930	0.105	0.986	0.943	0.946		
P=4	\hat{h}_{PS}	0.239	0.975	0.912	0.911	0.241	0.981	0.925	0.925	0.241	0.986	0.922	0.925		
	\hat{h}_{NR}	0.254	0.967	0.908	0.906	0.255	0.976	0.925	0.921	0.256	0.981	0.919	0.921		
	\hat{h}_{CCJ}	0.166	0.991	0.942	0.945	0.175	0.993	0.943	0.948	0.164	0.995	0.951	0.958		

Note: Column BW reports sample mean of estimated bandwidths.

Table 15: Empirical Coverage Rates of 95% Confidence Intervals with Estimated Bandwidth: $d=2,\,n=700.$

			Mo	del 1			Mo	del 3		Model 5				
		$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	
P=2	\hat{h}_{PS}	0.220	0.871	0.820	0.811	0.225	0.886	0.834	0.825	0.224	0.892	0.846	0.838	
	\hat{h}_{NR}	0.220	0.871	0.820	0.811	0.225	0.886	0.834	0.825	0.224	0.892	0.846	0.838	
	\hat{h}_{CCJ}	0.095	0.984	0.939	0.941	0.108	0.982	0.944	0.946	0.098	0.985	0.947	0.949	
P=4	\hat{h}_{PS}	0.261	0.980	0.923	0.924	0.261	0.981	0.931	0.930	0.260	0.978	0.925	0.926	
	\hat{h}_{NR}	0.276	0.976	0.923	0.922	0.277	0.976	0.929	0.928	0.276	0.974	0.925	0.926	
	\hat{h}_{CCJ}	0.161	0.993	0.952	0.956	0.171	0.994	0.953	0.955	0.164	0.994	0.952	0.954	
			Mo	del 2			Mo	del 4		Model 6				
		$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	
P=2	\hat{h}_{PS}	0.178	0.849	0.796	0.783	0.182	0.902	0.849	0.836	0.185	0.922	0.869	0.862	
	\hat{h}_{NR}	0.178	0.849	0.796	0.783	0.182	0.902	0.849	0.836	0.185	0.922	0.869	0.862	
	\hat{h}_{CCJ}	0.088	0.973	0.926	0.925	0.100	0.978	0.938	0.936	0.085	0.989	0.951	0.952	
P=4	\hat{h}_{PS}	0.213	0.970	0.918	0.916	0.212	0.983	0.928	0.928	0.212	0.984	0.927	0.928	
	\hat{h}_{NR}	0.225	0.963	0.915	0.913	0.225	0.980	0.928	0.924	0.225	0.982	0.926	0.927	
	\hat{h}_{CCJ}	0.143	0.991	0.948	0.949	0.151	0.991	0.947	0.950	0.138	0.995	0.950	0.954	

Note: Column BW reports sample mean of estimated bandwidths.

Table 16: Empirical Coverage Rates of 95% Confidence Intervals with Estimated Bandwidth: $d=4,\,n=100.$

				Mo	del 3			Model 5					
		$_{\mathrm{BW}}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{\mathrm{BW}}$	PSS	CCJ1	CCJ2
P=2	\hat{h}_{PS}	0.297	0.948	0.856	0.882	0.297	0.950	0.865	0.903	0.297	0.944	0.850	0.884
	\hat{h}_{NR}	0.286	0.957	0.869	0.898	0.285	0.955	0.876	0.917	0.285	0.950	0.859	0.898
	\hat{h}_{CCJ}	0.218	0.971	0.912	0.950	0.222	0.943	0.879	0.944	0.224	0.955	0.887	0.935
P=4	\hat{h}_{PS}	0.374	0.987	0.908	0.936	0.374	0.979	0.902	0.943	0.373	0.980	0.898	0.934
	\hat{h}_{NR}	0.382	0.986	0.907	0.933	0.381	0.980	0.902	0.938	0.381	0.980	0.896	0.932
	\hat{h}_{CCJ}	0.324	0.989	0.925	0.957	0.332	0.974	0.905	0.958	0.330	0.980	0.908	0.953
			del 2			Mo	del 4		Model 6				
		$_{\mathrm{BW}}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{\mathrm{BW}}$	PSS	CCJ1	CCJ2
P=2	\hat{h}_{PS}	0.256	0.953	0.866	0.891	0.256	0.953	0.876	0.918	0.257	0.958	0.875	0.914
	\hat{h}_{NR}	0.246	0.959	0.877	0.904	0.246	0.955	0.881	0.927	0.247	0.960	0.883	0.923
	\hat{h}_{CCJ}	0.192	0.968	0.908	0.951	0.197	0.932	0.868	0.939	0.201	0.957	0.889	0.945
P=4	\hat{h}_{PS}	0.323	0.987	0.911	0.937	0.322	0.975	0.903	0.950	0.322	0.980	0.906	0.944
	\hat{h}_{NR}	0.330	0.986	0.909	0.933	0.328	0.976	0.903	0.947	0.329	0.981	0.905	0.941
	\hat{h}_{CCJ}	0.286	0.987	0.921	0.956	0.293	0.971	0.902	0.957	0.293	0.978	0.906	0.956

Note: Column BW reports sample mean of estimated bandwidths.

Table 17: Empirical Coverage Rates of 95% Confidence Intervals with Estimated Bandwidth: d = 4, n = 400.

			Mo	del 1			Mo	del 3			Model 5				
		$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2		
P=2	\hat{h}_{PS}	0.230	0.960	0.886	0.893	0.230	0.970	0.903	0.909	0.230	0.967	0.893	0.904		
	\hat{h}_{NR}	0.221	0.967	0.900	0.906	0.221	0.975	0.914	0.921	0.220	0.973	0.905	0.916		
	\hat{h}_{CCJ}	0.151	0.988	0.955	0.962	0.152	0.989	0.957	0.974	0.155	0.989	0.953	0.966		
P=4	\hat{h}_{PS}	0.291	0.994	0.931	0.938	0.291	0.994	0.937	0.944	0.290	0.995	0.932	0.941		
	\hat{h}_{NR}	0.297	0.993	0.929	0.936	0.297	0.994	0.934	0.942	0.296	0.994	0.930	0.939		
	\hat{h}_{CCJ}	0.233	0.996	0.953	0.961	0.237	0.998	0.955	0.966	0.239	0.996	0.953	0.965		
			Mo	del 2			Mo	del 4		Model 6					
		$_{\mathrm{BW}}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{\mathrm{BW}}$	PSS	CCJ1	CCJ2		
P=2	\hat{h}_{PS}	0.190	0.969	0.904	0.911	0.189	0.980	0.917	0.926	0.191	0.980	0.916	0.927		
	\hat{h}_{NR}	0.182	0.974	0.913	0.922	0.181	0.984	0.926	0.937	0.183	0.984	0.925	0.938		
	\hat{h}_{CCJ}	0.128	0.990	0.957	0.969	0.130	0.988	0.959	0.981	0.135	0.989	0.957	0.976		
P=4	\hat{h}_{PS}	0.240	0.994	0.935	0.942	0.240	0.996	0.939	0.946	0.240	0.995	0.934	0.945		
	\hat{h}_{NR}	0.245	0.993	0.934	0.939	0.245	0.996	0.936	0.943	0.245	0.995	0.931	0.942		
	\hat{h}_{CCJ}	0.199	0.997	0.954	0.964	0.201	0.997	0.959	0.971	0.203	0.998	0.953	0.969		

Note: Column BW reports sample mean of estimated bandwidths.

Table 18: Empirical Coverage Rates of 95% Confidence Intervals with Estimated Bandwidth: d = 4, n = 700.

			Mo	del 1			Mo	del 3		Model 5				
		$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	
P=2	\hat{h}_{PS}	0.205	0.963	0.892	0.896	0.207	0.971	0.907	0.910	0.207	0.971	0.905	0.911	
	\hat{h}_{NR}	0.197	0.970	0.905	0.910	0.199	0.977	0.916	0.920	0.199	0.976	0.916	0.921	
	\hat{h}_{CCJ}	0.130	0.992	0.956	0.962	0.132	0.992	0.961	0.970	0.135	0.991	0.956	0.968	
P=4	\hat{h}_{PS}	0.260	0.993	0.931	0.936	0.262	0.994	0.936	0.941	0.262	0.994	0.930	0.938	
	\hat{h}_{NR}	0.266	0.992	0.928	0.934	0.268	0.994	0.934	0.939	0.267	0.994	0.928	0.937	
	\hat{h}_{CCJ}	0.203	0.996	0.953	0.958	0.208	0.998	0.956	0.961	0.209	0.996	0.956	0.961	
			Mo	del 2			Mo	del 4		Model 6				
		$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	$_{ m BW}$	PSS	CCJ1	CCJ2	
P=2	\hat{h}_{PS}	0.169	0.970	0.908	0.910	0.168	0.982	0.925	0.930	0.168	0.982	0.925	0.930	
	\hat{h}_{NR}	0.162	0.975	0.917	0.922	0.161	0.986	0.932	0.936	0.161	0.985	0.931	0.938	
	\hat{h}_{CCJ}	0.110	0.992	0.964	0.967	0.111	0.992	0.968	0.979	0.114	0.993	0.963	0.973	
P=4	\hat{h}_{PS}	0.213	0.994	0.941	0.944	0.213	0.996	0.938	0.943	0.213	0.996	0.935	0.940	
	\hat{h}_{NR}	0.217	0.994	0.938	0.940	0.217	0.995	0.935	0.940	0.217	0.995	0.933	0.937	
	\hat{h}_{CCJ}	0.171	0.997	0.957	0.963	0.174	0.998	0.958	0.966	0.176	0.998	0.957	0.964	

Note: Column BW reports sample mean of estimated bandwidths.