ISO Geodetic Registry

Item class Transformation

NZGD2000 to NZVD2016 - NOHt [LINZ]

Item status VALID
Identifier 483

Alias NZGeoid2016

Information source Title Standard for New Zealand Vertical Datum 2016

Author Land Information New Zealand Publisher Land Information New Zealand

Publication date 2016-06-27

Edition date

Issue identification LINZS25009

Data source ISO Geodetic Registry

Remarks Grid transformation using quasigeoid model New Zealand Quasigeoid

2016 (NZGeoid2016).

Operation version LINZ

Scope Spatial referencing.

Operation accuracy 0.03 m

Source CRS NZGD2000 - LatLonEHt Target CRS NZVD2016 - NOHt

Operation method Geographic3D to Gravity Related Height (NZgeoid)

Extent

New Zealand - onshore and offshore Antipodes Islands, Auckland Islands, Bounty
Islands, Campbell Island Chatham Islands,
Kermadec Islands, North Island, Raoul Island,
Snares Islands, South Island, Stewart Island.

Geographic Bounding Box
West-bound longitude
North-bound latitude
East-bound longitude
South-bound latitude
-60.0

Operation parameter values

Geoid (height correction) model file New_Zealand_Quasigeoid_2016.sid

ISO Geodetic Registry

Item class OperationMethod

Name Geographic3D to Gravity Related Height

(NZgeoid)

Item status VALID
Identifier 92

Data source ISO Geodetic Registry

Remarks This transformation involves the application of a geoid-ellipsoid

separation value interpolated from a quasi-geoid model. The model provides separation values at the nodes on a regular grid of latitude and longitude intersection points. The geodetic latitude and longitude used to interpolate within the grid are not affected by this transformation. The grid is referenced to a specific geographic CRS (the source CRS) and interpolation must be made in this system. Calculation of the separation is achieved through a bi-linear interpolation of the grid, using the latitude and longitude of the point. This step provides the geoid-ellipsoid separation (N) above the ellipsoid of the source Geographic 3D CRS. The normal orthometric height (H) in the target vertical CRS is then determined from: H = h - N where h = the height above the ellipsoid in the source geographic 3D CRS.

Operation parameters

Geoid (height correction) model file