3.1 - Generalizzare il Calcolo Differenziale

Lo spazio euclideo \mathbb{R}^n è l'archetipo di tutte le varietà;

non solo è il più semplice, ma localmente ogni varietà assomiglia a \mathbb{R}^n , per definizione.

Lo spazio euclideo è speciale perché dispone delle coordinate globali standard date da $(\mathbb{R}^n, id_{\mathbb{R}^n})$.

Questo è un vantaggio, perché tutte le costruzioni su \mathbb{R}^n possono essere definite in termini delle coordinate standard e tutti i calcoli possono essere eseguiti esplicitamente;

è di contro uno svantaggio, perché spesso non è ovvio quali concetti definiti in termini di coordinate siano *intrinseci*, cioè indipendenti da queste. Poiché una varietà in generale non ha coordinate standard, hanno senso solo questi concetti intrinseci.

L'obiettivo che ci poniamo è riformulare l'analisi ordinaria su \mathbb{R}^n in modo libero dalle coordinate, adatto alla generalizzazione alle varietà.

Le varie classi di differenziabilità sullo spazio euclideo

Il calcolo delle funzioni C^{∞} sarà il nostro principale strumento per lo studio delle varietà di dimensioni superiori; per questo motivo, inizieremo con un'analisi di queste funzioni.

Prima di tutto, richiamiamo velocemente le definizioni delle varie classi di differenziabilità.

₩ Definizione 3.1.1 (Classi di differenziabilità).

Sia $U \subseteq \mathbb{R}^n$ aperto, e sia $p \in U$.

Una funzione a valori reali $f: U \to \mathbb{R}$ è detta di classe C^0 in p quando è continua in p.

Dato un intero $k \geq 1$, si dice che $f: U \to \mathbb{R}$ è di classe C^k in p quando le sue derivate parziali

$$rac{\partial^{j}f}{\partial x^{i_{1}}\cdots\partial x^{i_{j}}}$$

di tutti gli ordini $j \le k$ esistono e sono continue in p.

Si dice che $f:U\to\mathbb{R}$ è di classe C^∞ (o liscia) in p se è di classe C^k per ogni $k\geq 0$; in altre parole, le sue derivate parziali $\frac{\partial^j f}{\partial x^{i_1}\cdots\partial x^{i_j}}$ di tutti gli ordini $j\geq 1$ esistono e sono continue in p.

Una funzione a valori vettoriali $f: U \to \mathbb{R}^m$ è detta di classe C^k in p (con $k \ge 0$ intero o $k = \infty$), quando tutte le sue funzioni componente f_1, \ldots, f_m sono di classe C^k in p.

Diciamo infine che $f:U\to\mathbb{R}^m$ è di classe C^k su U (con $k\geq 0$ intero o $k=\infty$) quando è di classe C^k in ogni punto di U.

Dalla definizione segue che C^k implica C^0 per ogni k, e C^k implica C^h se $k \ge h$ o $k = \infty$; le implicazioni inverse non valgono.

@ Esempio 3.1.2 (Controesempi alle implicazioni inverse).

La funzione $f: \mathbb{R} \to \mathbb{R}$ definita ponendo $f(x) = x^{1/3}$ è di classe C^0 ma non C^1 , non essendo derivabile in 0. Considerando le primitive successive di questa funzione, troviamo quindi esempi di funzioni di classe C^k ma non C^{k+1} per ogni $k \ge 0$ intero.

Le funzioni elementari (polinomi, seno, coseno, esponenziali) sono tutte di classe C^{∞} su tutto \mathbb{R} .

Funzioni analitiche

Un'altra classe di differenziabilità è data dalle cosiddette funzioni analitiche.

♯ Definizione 3.1.3 (Funzione analitica).

Sia $U\subseteq\mathbb{R}^n$ aperto, e sia $p=(p^1,\ldots,p^n)\in U$.

Una funzione a valori reali $f: U \to \mathbb{R}$ si dice analitica (o di classe C^{ω}) in p quando esiste un intorno $V \subseteq U$ di p in cui f coincide con la sua serie di Taylor in p:

$$f(x) = f(p) + \sum_{1 \leq i \leq n} \frac{\partial f}{\partial x^i}(p)(x^i - p^i) + \frac{1}{2!} \sum_{1 \leq i, j \leq n} \frac{\partial^2 f}{\partial x^i \partial x^j}(p)(x^i - p^i)(x^j - p^j) + \dots + \frac{1}{k!} \sum_{1 \leq i_1, \dots, i_k \leq n} \frac{\partial^k f}{\partial x^{i_1} \dots \partial x^{i_k}}(p)(x^{i_1} - p^{i_1}) \dots (x^{i_k} - p^{i_k}) + \dots$$

Una funzione a valori vettoriali $f: U \to \mathbb{R}^m$ si dice analitica in p quando tutte le sue funzioni componente f_1, \ldots, f_m sono di classe C^k in p.

Diciamo infine che $f: U \to \mathbb{R}^m$ è analitica su U quando è analitica in ogni punto di U.

Una funzione analitica è necessariamente C^{∞} ;

infatti è noto dall'analisi ordinaria che una serie di potenze convergente si può derivare un numero arbitrario di volte nella sua regione di convergenza, e le derivate sono ottenute derivando i vari addendi.

Ad esempio, se

$$f(x) = \sin x = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \dots,$$

allora la derivazione termine a termine dà

$$f'(x) = \cos x = 1 - rac{1}{2!} x^2 + rac{1}{4!} x^4 - \dots$$

Anche in questo caso, non è detto che una funzione C^{∞} sia analitica.

② Esempio 3.1.4 (Di funzione liscia, non analitica).

Si trova che la funzione $f:\mathbb{R}\to\mathbb{R}$ definita ponendo

$$f(x)=egin{cases} 0, & x\leq 0 \ e^{-1/x}, & x>0 \end{cases}$$

è di classe C^{∞} , e si trova che $\left. \frac{d^k f}{dx^k} \right|_{x=0} = 0$ per ogni $k \geq 1$ intero.

Ma allora, la sua serie di Taylor in 0 è la serie identicamente nulla, che non coincide con f in alcun intorno destro di 0; pertanto, f non è analitica.

Il lemma di Hadamard

Anche se una funzione C^{∞} non è necessariamente uguale alla sua serie di Taylor, esiste un teorema di Taylor con il resto, che vale addirittura per funzioni C^1 , che è spesso sufficiente per i nostri scopi. Nella seguente proposizione dimostriamo il caso più semplice, in cui la serie di Taylor consiste solo nel termine costante f(p).

Ricordiamo che un insieme $S \subseteq \mathbb{R}^n$ si dice *stellato* rispetto a un punto $p \in S$ quando, per ogni $x \in S$, il segmento rettilineo [p, x] è contenuto in S.

X

Į.

Proposizione 3.1.5 (Lemma di Hadamard).

Sia $U \subseteq \mathbb{R}^n$ stellato rispetto a un punto $p = (p^1, \dots, p^n) \in U$; sia $f: U \to \mathbb{R}$ una funzione di classe C^k su U, con $k \ge 1$ intero oppure $k \in \{\infty, \omega\}$.

Esistono funzioni $g^1, \ldots, g^n \in C^{k-1}(U)$ (con la convenzione che $\infty - 1 = \infty$ e $\omega - 1 = \omega$) tali che:

•
$$f(x) = f(p) + \sum\limits_{i=1}^n (x^i - p^i) \cdot g_i(x)$$
 per ogni $x \in U$;

$$ullet \ g^i(p) = rac{\partial f}{\partial x^i}igg|_p.$$

Dimostrazione

Essendo U stellato è stellato rispetto a p, per ogni $x \in U$ risulta ben definita la mappa $h_x : [0;1] \to \mathbb{R} : t \mapsto f(p+t(x-p))$.

Notiamo per prima cosa che

$$f(x)-f(p)=h_x(1)-h_x(0)=\int_0^1rac{dh_x}{dt}igg|_{ au}d au\;,$$

Riscriviamo ora la derivata che figura nell'integrale; abbiamo

$$\left. rac{dh_x}{dt}
ight|_{ au} = \sum_{i=1}^n rac{\partial f}{\partial x^i}
ight|_{p+ au(x-p)} \cdot (x^i-p^i) \ ;$$

pertanto, possiamo riscrivere l'espressione precedente così:

$$f(x) = f(p) + \sum_{i=1}^n (x^i - p^i) \cdot \int_0^1 rac{\partial f}{\partial x^i}igg|_{p+ au(x-p)} d au \ ,$$

che vale per ogni $x \in \mathbb{R}^n$.

Definiamo allora le funzioni $g_i:\mathbb{R}^n \to \mathbb{R}$ al variare di $i \in \{1,\ldots,n\}$, ponendo

$$g_i(x) = \int_0^1 rac{\partial f}{\partial x^i}igg|_{p+ au(x-p)} d au$$

La prima condizione è soddisfatta; da una veloce ispezione della legge si vede che anche il secondo punto è verificato. Notiamo che imporre U stellato è meno restrittivo di quanto sembra; difatti ogni intorno sferico / cubico aperto è stellato rispetto al centro (addirittura convesso).

Lo spazio delle funzioni differenziabili

Prendiamo $U \subseteq \mathbb{R}^n$ un aperto non vuoto, e definiamo il seguente insieme:

$$C^k(U) = \{ f : U \to \mathbb{R} : f \text{ di classe } C^k \},$$

con $k \geq 0$ intero oppure $k \in \{\infty, \omega\}$.

Su questo insieme possiamo definire tre operazioni principali:

- Somma tra funzioni: $(f+g)(p) := f(\mathbf{p}) + g(\mathbf{p})$;
- Prodotto per un numero reale: $(k \cdot f)(p) := k \cdot f(p)$;
- Prodotto tra funzioni: $(f \cdot g)(p) : f(p) \cdot g(p)$.

Con queste operazioni, $C^k(U)$ è una \mathbb{R} -algebra commutativa, associativa e unitaria; diventa cioè un \mathbb{R} -spazio vettoriale rispetto alle prime due operazioni, e un anello commutativo e unitario rispetto alla prima e alla terza. L'unità dell'anello è la funzione costante c_1 .