#### **Essentials of MOSFETs**

## Unit 4: Transmission Theory of the MOSFET

# Lecture 4.2: Landauer at Low and High Bias

#### **Mark Lundstrom**

Iundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA



## Low and high bias Landauer expressions



$$I_{DLIN} = \frac{W}{L} \mu_n C_{ox} (V_{GS} - V_T) V_{DS} \rightarrow ?$$

## 1) Low bias

$$I = \frac{2q}{h} \int \mathcal{T}(E) M(E) \Big( f_1(E) - f_2(E) \Big) dE$$

#### Fermi window

$$f_1(E) = \frac{1}{1 + e^{(E - E_{F1})/k_B T}} = f_0(E)$$

$$\delta E_F = -qV$$

$$f_2(E) \approx f_1(E) + \frac{\partial f_1}{\partial E_F} \delta E_F$$

$$f_2(E) \approx f_1(E) + \left(-\frac{\partial f_1}{\partial E}\right) \delta E_F$$

$$f_1(E) - f_2(E) = \left(-\frac{\partial f_0}{\partial E}\right)(qV)$$

$$f_1(E) - f_2(E) \approx -\left(-\frac{\partial f_1}{\partial E}\right) \delta E_F$$
 Lundstrom: 2018

#### Fermi window: Low bias



$$W_F(E) = \left(-\frac{\partial f_0}{\partial E}\right)$$

$$\int W_F(E)dE = 1$$

(window function)

## Current for a small voltage difference



#### Small bias conductance

$$I = GV$$
 A

$$I = GV A$$

$$G = \frac{2q^2}{h} \int \mathcal{T}(E)M(E) \left(-\frac{\partial f_0}{\partial E}\right) dE S$$

$$\mathcal{T}(E) = 1$$
  $\left(-\frac{\partial f_0}{\partial E}\right) = \delta(E_F)$   $\rightarrow G = \frac{2q^2}{h}M(E_F)$  (ballistic)

#### Quantized conductance



D. Holcomb, *American J. Physics*, **67**, pp. 278-297 1999.

Data from: B. J. van Wees, et al., *Phys. Rev. Lett.* **60**, 848851, 1988.

Lundstrom: 2018

## 1) Linear Current in the Landauer Approach



$$I_{DLIN} = \frac{W}{L} \mu_n C_{ox} (V_{GS} - V_T) V_{DS}$$

$$I_{DLIN} = \frac{W}{L} \mu_n C_{ox} \left( V_{GS} - V_T \right) V_{DS} \qquad \left[ I_{DLIN} = \left[ \frac{2q^2}{h} \int \mathcal{T}(E) M(E) \left( -\frac{\partial f_0}{\partial E} \right) dE \right] V_{DS} \right]$$

#### Aside: Bulk semiconductors

Before we consider the high bias case, let's consider a bulk semiconductor (many MFP's long in both directions).



$$G = \sigma_S \frac{W}{L}$$
  $\sigma_S = G \frac{L}{W}$   $\Omega/\Box$   $\sigma_S \equiv n_S q \mu_n$ 

## Conductivity (bulk)

$$G = \frac{2q^2}{h} \int \mathcal{T}(E) M(E) \left( -\frac{\partial f_0}{\partial E} \right) dE \qquad \sigma_S = G \frac{L}{W}$$

$$\sigma_{S} = \frac{2q^{2}}{h} \int \left[ \mathcal{T}(E)L \right] M(E) / W \left[ \left( -\frac{\partial f_{0}}{\partial E} \right) dE \right]$$

$$\mathcal{T}(E) = \frac{\lambda(E)}{\lambda(E) + L} \rightarrow \frac{\lambda(E)}{L}$$
 diffusive

$$M(E) = W \frac{\sqrt{2m^*(E - E_C)}}{\pi\hbar}$$
 2D

## Sheet conductivity

$$\sigma_{S} = \frac{2q^{2}}{h} \int \lambda(E) (M(E)/W) \left(-\frac{\partial f_{0}}{\partial E}\right) dE$$

$$\lambda(E) = \lambda_0$$
  $M(E)/W = \frac{\sqrt{2m^*(E - E_C)}}{\pi \hbar}$   $f_0(E) = \frac{1}{1 + e^{(E - E_F)/k_B T}}$ 

$$\sigma_S = \frac{q^2}{h} \lambda_0 \frac{\sqrt{2\pi m^* k_B T}}{\pi \hbar} e^{(E_F - E_C)/k_B T} \quad \text{(non-degenerate)}$$

$$n_S = \frac{m^* k_B T}{\pi \hbar^2} e^{(E_F - E_C)/k_B T}$$

## Sheet conductivity

$$\sigma_{S} = \frac{q^{2}}{h} \lambda_{0} \frac{\sqrt{2\pi m^{*} k_{B} T}}{\pi \hbar} e^{(E_{F} - E_{C})/k_{B} T} \equiv n_{S} q \mu_{n} \qquad n_{S} = \frac{m^{*} k_{B} T}{\pi \hbar^{2}} e^{(E_{F} - E_{C})/k_{B} T}$$

$$\mu_n = \frac{\upsilon_T \lambda_0}{2(k_B T/q)}$$

$$\upsilon_{T} = \sqrt{\frac{2k_{B}T}{\pi m^{*}}} \text{ m/s}$$

uni-directional thermal velocity (non-degenerate)

$$\frac{D_n}{\mu_n} = \frac{k_B T}{q}$$

$$D_n = \frac{\upsilon_T \lambda_0}{2} \, \text{cm}^2/\text{s}$$

(Einstein relation)

## 2) Saturation Current in the Landauer Approach



$$I_{DLIN} = \frac{W}{L} \mu_n C_{ox} (V_{GS} - V_T) V_{DS} \left[ I_{DLIN} = \left[ \frac{2q^2}{h} \int \mathcal{T}(E) M(E) \left( -\frac{\partial f_0}{\partial E} \right) dE \right] V_{DS} \right]$$

## Current for a large voltage difference



$$I = \frac{2q}{h} \int \mathcal{T}(E) M(E) (f_1 - f_2) dE$$

$$f_1 = f_0(E) = \frac{1}{1 + e^{(E - E_{F1})/k_B T}}$$
  $E_{F2} = E_{F1} - qV_D$   $f_2 = \frac{1}{1 + e^{(E - E_{F1} + qV_D)/k_B T}} \approx 0$ 

18

#### How current flows



Contact 2

## Current in the Landauer Approach



$$I_{DLIN} = \frac{W}{L} \mu_n C_{ox} \left( V_{GS} - V_T \right) V_{DS} \left[ I_{DLIN} = \left[ \frac{2q^2}{h} \int \mathcal{T}(E) M(E) \left( -\frac{\partial f_0}{\partial E} \right) dE \right] V_{DS} \right]$$

## **Summary**

$$I = \frac{2q}{h} \int \mathcal{T}(E) M(E) (f_1 - f_2) dE$$

$$I_{DLIN} = \left[ \frac{2q^2}{h} \int \mathcal{T}(E) M(E) \left( -\frac{\partial f_0}{\partial E} \right) dE \right] V_{DS}$$

$$I_{DSAT} = \frac{2q}{h} \int \mathcal{T}(E) M(E) f_1(E) dE$$

## Next topic



$$I = \frac{2q}{h} \int \mathcal{T}(E) M(E) (f_1 - f_2) dE$$

1) Ballistic MOSFET

2) MOS electrostatics

$$\mathcal{T}=1$$