ABSTRACT

A process for trimming a photoresist layer during the fabrication of a gate electrode in a MOSFET is described. A bilayer stack with a top photoresist layer on a thicker organic underlayer is patternwise exposed with 193 nm or 157 nm radiation to form a feature having a width w₁ in the top layer. A pattern transfer through the underlayer is performed with an anisotropic etch based on H₂/N₂ and SO₂ chemistry. The feature formed in the bilayer stack is trimmed by 10 nm or more to a width w₂ by a HBr/O₂/Cl₂ plasma etch. The pattern transfer through an underlying gate layer is performed with a third etch based on HBr/O₂/Cl₂ chemistry. The underlayer is stripped by an O₂ ashing with no damage to the gate electrode. Excellent profile control of the gate electrode is achieved and a larger (w₁-w₂) is possible than in prior art methods.