Contents

1 確率空間 2

1 確率空間

今までの定義:

 Ω : 全事象は有限集合であるとする. Ω の各元 ω について、 $\{\omega\}$ の起こりやすさはすべて同じと仮定する. このとき事象 $A\subset\Omega$ の起こる確率 $P(A)=\frac{Card\left(A\right)}{Card\left(\Omega\right)}$ と定める. (ここで、 $Card\left(A\right)$ は A の元の数)

e.g. 1. サイコロを一個投げたとき、

- (1) A: 偶数の目が出る、P(A) は? $\Omega = \{1,2,3,\cdots,6\}\,, A = \{2,4,6\}\$ で、 $P(A) = \frac{3}{6} = \frac{1}{2}$
- (2) 3 が出ない確率? $B = \{3\} \ \mbox{で、} P(B^c) = 1 P(B) = 1 \frac{1}{6} = \frac{5}{6}$ が、 Ω や A が無限集合の場合は定義していない.

e.g. 2. I=[0,1] からランダムに一点 x を選ぶ. どの点も同じ確率で選ばれるとする. $I_1=\left[\frac{1}{3},\frac{2}{3}\right]$ として、 $x\in I_1$ となる確率は? $P=\frac{I_1}{I}$ の長さ $=\frac{1}{3}$

となってほしいが、 $\frac{+\infty}{+\infty}$ となり定義できない.

e.g. 3. サイコロを投げつづけて、2 が出つづける確率は? $A_n: n$ 回連続で 2 が出るという事象、 $P(A_n) = \frac{1}{6^n}$

この問題の Ω は、サイコロを無限回投げて出る目全体なので、最初の定義では定義できない. P のみたしてほしい性質:

- (i) $P(\Omega) = 1$ であり、任意の事象 A について、 $0 \le P(A) \le 1$
- (ii) $P(A \cup B) = P(A) + P(B)$ 、ただし、 $A \cap B = \emptyset$
- (iii) $P(A^c) = 1 P(A)$
- (iv) $A_n \stackrel{n \to \infty}{\longrightarrow} A$ のとき、 $P(A_n) \stackrel{n \to \infty}{\longrightarrow} P(A)$ (ある意味で) また、P の定義域も考える必要がある. $Card(\Omega) = \infty$ の場合だと、 2^{Ω} が広すぎる.

Def 1. $\Omega \neq \emptyset$ として、 $\mathscr{F}: \Omega$ の部分集合族が σ – 集合族(または σ – 集合体、 σ – 代数)であるとは:

(1) $\emptyset, \Omega \in \mathscr{F}$

(2)
$$A \in \mathscr{F} \Longrightarrow A^c \in \mathscr{F}$$

$$(3)$$
 $A_1, A_2, \dots \in \mathscr{F} \Longrightarrow \bigcup_{n=1}^{\infty} A_n \in \mathscr{F}$ $(A_i$ は加算無限個)

Def 2. (Ω, \mathcal{F}, P) は確率空間とは $\Omega \neq \emptyset, \mathcal{F} : \sigma$ 集合族

$$P: \mathscr{F} \to \mathbb{R}$$

 $A \mapsto P(A)$

次をみたす:

(1) $0 \le P(A) \le 1 \ (\forall A \in \mathscr{F})$

(2)
$$P(\Omega) = 1$$

$$(3)$$
 $A_1,A_2,\dots\in \mathcal{F}$ が互いに素(つまり、 $i\neq j\Rightarrow A_i\cap A_j=\emptyset) \Longrightarrow P\left(igcup_{n=1}^\infty A_n
ight)=\sum_{n=1}^\infty P\left(A_n
ight)$

このとき、 $A \in \mathcal{F}$ について P(A) を A の確率と呼ぶ.

P の性質:

(i)
$$P(A^c) = 1 - P(A), A \in \mathscr{F}$$

Proof. A, A^c は互いに素で、 $A \cup A^c = \Omega$ から

$$1 = P(\Omega)$$

$$= P(A \cup A^{c})$$

$$= P(A) + P(A^{c})$$

$$P(A^{c}) = 1 - P(A)$$

(ii) $A \subset B \Longrightarrow P(A) < P(B)$

(iii)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$\bigcup_{n=1}^{\infty} A_n$$
, $\bigcap_{n=1}^{\infty} A_n$ の定義を書け

Problem 1.
$$A_n \subset \Omega$$

$$\bigcup_{n=1}^{\infty} A_n, \bigcap_{n=1}^{\infty} A_n \text{ の定義を書け.}$$
言い換えれば、
$$\begin{cases} \bigcup_{n=1}^{\infty} A_n = \{\omega \in \Omega | ????\} \\ \bigcap_{n=1}^{\infty} A_n = \{\omega \in \Omega | ????\} \end{cases}$$

Proof.
$$\begin{cases} \bigcup_{n=1}^{\infty} A_n = \{ \omega \in \Omega | \exists n \in \mathbb{N}, s.t.\omega \in A_n \} \\ \bigcap_{n=1}^{\infty} A_n = \{ \omega \in \Omega | \forall n \in \mathbb{N}, \omega \in A_n \} \end{cases}$$

参考文献