Project Design Phase II Technology Architecture

Date	23/10/2022
Team ID	PNT2022TMID19620
Project Name	Project – Smart Farmer-IoT Enabled smartFarming Application
Maximum Marks	4 Marks

- 1. The different soil parameters temperature, soil moistures and then humidity are sensed using different sensors and obtained value is stored in the IBM B2 cloud.
- 2. Arduino UNO is used as a processing Unit that process the data obtained from the sensors and whether data from the weather API.
- 3. NODE-RED is used as a programming tool to write the hardware, software and APIs. The MQTT protocol is followed for the communication.
- 4. All the collected data are provided to the user through a mobile application that was developed using the MIT app inventor. The user could make a decision through an app, weather to water the field or not depending upon the sensor values. By using the app they can remotely operate the motor switch.

Table-1 : Components & Technologies:

Component	Description	Technology
1. User Interface	How user interacts with application e.g. Web	MIT App Inventor
2. Application Logic-1	Logic for a process in the application	Python
3. Application Logic-2	Logic for a process in the application	IBM Watson IOT service
4. Application Logic-3	Logic for a process in the application	IBM Watson Assistant
5. Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.
6. Cloud Database	Database Service on Cloud	IBM Cloud
7. File Storage	File storage requirements	IBM Block Storage or Other Storage
8. External API-1	Purpose of External API used in the application	Open Weather API
9. Infrastructure	Application Deployment on	Local, Cloud Foundry.
(Server / Cloud)	Local System / Cloud Local Server Configuration: Cloud Server Configuration:	

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source	List the open-source	Technology of
	Frameworks	frameworks used	Opensource
			framework
2.	Security Implementations	Sensitive and private data	Node-Red, Open
		must be protected from their	weather App API,
		production until the	MIT App Inventor
		decision-making and	
		storage stages.	
3.	Scalable Architecture	scalability is a major	Technology used
		concern for IoT platforms. It	
		has been shown that	
		different architectural	
		choices of IoT platforms	
		affect system scalability and	
		that automatic real time	
		decision-making is feasible	
		in an environment	
		composed of dozens of	
		thousand.	