Kontekstno-neodvisne gramatike za kodiranje in stiskanje podatkov

Janez Podlogar

Univerza v Ljubljani, Fakulteta za matematiko in fiziko

16. 9. 2024

Razdeljamo pojme v naslovu.

- Kodiranje je spreminjanje zapisa sporočila.
- Stiskanje podatkov je kodiranje, katerega cilj je zapisati sporočilo v zgoščeni obliki.

Kontekstno-neodvisna gramatika je četverica $G = (V, \Sigma, P, S)$, kjer je

- *V* abeceda *nekončnih simbolov*:
- Σ abeceda *končnih simbolov* taka, da $\Sigma \cap V = \emptyset$:
- $P \subset V \times (V \cup \Sigma)^*$ celovita relacija;
- $S \in V$ začetni simbol.

Gramatike za stiskanje podatkov —Kontekstno-neodvisna gramatika

Konteksino-neadvisna gramatika je četverica $G = (V, \Sigma, P, S)$, kjer je \bullet V aboceda nekančnih simbolov; \bullet Σ aboceda končnih simbolov taka, da $\Sigma \cap V = \emptyset$; \bullet $P \subseteq V \times (V \cup \Sigma)^*$ colovita relacija; \bullet $S \subseteq V$ nativni simbol

Kontekstno-neodvisna gramatika

—Kontekstno-neodvisna gramatika

- Abeceda je končna neprazna množica.
- Relacija $R \subseteq A \times B$ je *celovita*, če velja $\forall x \in A \exists y \in B \colon (x,y) \in R$.
- $(V \cup \Sigma)^*$ je množica vseh nizov končne dolžine končnih in nekončnih simbolov. Vsebuje tudi prazen niz ε , saj je to niz dolžine 0.
- Prazen niz ε je enota za operacijo stik.
- Okrajšamo z KNG.

Primer

2024

Naj bo $V = \{S\}, \Sigma = \{a, b, c\}, P = \{(S, aSb), (S, \epsilon)\}$ in S = S.

- Prepisovalno pravilo $(A, \beta) \in P$ pišemo $A \to \beta$.
- Niz $\alpha A \gamma$ se prepiše s pravilom $A \to \beta$ v $\alpha \beta \gamma$, pišemo $\alpha A \gamma \Rightarrow \alpha \beta \gamma$.
- Niz α *izpelje* niz β , če lahko α prepišemo v β z uporabo končno mnogo prepisovalnih pravil.

Gramatike za stiskanje podatkov —Kontekstno-neodvisna gramatika

Elementom relacije P pravimo prepisovalna pravila.
 Prepisovalno pravilo (A, β) ∈ P pišemo A → β.

Niz αAγ se prepiše s pravilou A → β v αβγ, pišemo αAγ → αβγ.
 Niz α izpelje niz β, če lahko α prepišemo v β z uporabo končno

iz α izprije niz β, ce lahko α prepisemo v β z uporabo kono mogo prepisovalnih pravil.

• Leva stran prepisovalnega pravila $A \to \beta$ je A in desna stran prepisovalnega pravila je β .

Primer

prepisovalna pravila zapišemo kot $P = \{S \rightarrow aSb, S \rightarrow \epsilon\}.$ Izpeljemo nize

$$S \Rightarrow \epsilon$$
, $S \Rightarrow aSb \Rightarrow ab$, $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$, ...

Jezik je $\{a^nb^n \mid n \ge 0\}$.

- Prepisovalno pravilo $(A, \beta) \in P$ pišemo $A \to \beta$.
- Niz $\alpha A \gamma$ se prepiše s pravilom $A \to \beta$ v $\alpha \beta \gamma$, pišemo $\alpha A \gamma \Rightarrow \alpha \beta \gamma$.
- Niz α *izpelje* niz β , če lahko α prepišemo v β z uporabo končno mnogo prepisovalnih pravil.

Jezik KNG je množica nizov, ki jih lahko izpeljemo iz začetnega simbola in ne vsebujejo nekončnih simbolov.

Gramatike za stiskanje podatkov —Kontekstno-neodvisna gramatika

Elementom relacije P pravimo prepisovalna pravila.
 Prepisovalno pravilo (A, β) ∈ P pišemo A → β.

• Niz $\alpha A\gamma$ se prepiše s pravilom $A\to\beta$ v $\alpha\beta\gamma$ pišemo $\alpha A\gamma \Rightarrow \alpha\beta\gamma$

 Niz α izpelje niz β, če lahko α prepišemo v β z uporabo končno mnogo prepisovalnih pravil.

Definicija

Jezik KNG je množica nizov, ki jih lahko izpeljemo iz začetne simbola in ne vsebujejo nekončnih simbolov.

• Leva stran prepisovalnega pravila $A \to \beta$ je A in desna stran prepisovalnega pravila je β .

Primer

prepisovalna pravila zapišemo kot $P = \{S \rightarrow aSb, S \rightarrow \epsilon\}.$ Izpeljemo nize

$$S \Rightarrow \epsilon$$
, $S \Rightarrow aSb \Rightarrow ab$, $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$, ...

Jezik je $\{a^nb^n \mid n \ge 0\}$.

—Stiskanje niza

- Glavna ideja je, da je jezik G_w je $\{w\}$, saj lahko enolično rekonstruramo niz w.
- ullet Alternativni pristop: KNG G je poznana tako kodirniku kot dekodirniku in jezik KNG G vsebuje vse nize, ki jih želimo stistniti. Posamezni niz stisnemo tako, da stistnemo izpeljavo niza iz začetnega simbola.

2024-09-1

Dopustna gramatika

Definicija

KNG je *deterministična*, če vsak nekončen simbol $A \in V$ nastopa natanko enkrat kot leva stran nekega prepisovalnega pravila.

Dopustna gramatika

- Prejšnji primer ni deterministična gramatika.
- Če odstranimo odstarnimo pravilo $S \to aSb$, postane deterministična, a je jezik $\{\varepsilon\}$.
- Če odstranimo $S \to \varepsilon$ postane deterministična, a je njen jezik prazna množica.
- Determinizem sam po sebi ni dovolj močan, da prepreči praznost jezika. Zato bomo od dopustnih gramatik zahtevali, da je njihov jezik neprazen in da ne vsebuje pravila oblike $A \to \varepsilon$.

Dopustna gramatika

Definicija

KNG je deterministična, če vsak nekončen simbol $A \in V$ nastopa natanko enkrat kot leva stran nekega prepisovalnega pravila.

Trditev

Jezik deterministične KNG je enojec ali prazna množica.

Gramatike za stiskanje podatkov -Kontekstno-neodvisna gramatika Dopustna gramatika Dopustna gramatika

- Prejšnji primer ni deterministična gramatika.
- Če odstranimo odstarnimo pravilo $S \to aSb$, postane deterministična, a je jezik $\{\varepsilon\}$.
- Če odstranimo $S \to \varepsilon$ postane deterministična, a je njen jezik prazna množica.
- Determinizem sam po sebi ni dovolj močan, da prepreči praznost jezika. Zato bomo od dopustnih gramatik zahtevali, da je njihov jezik neprazen in da ne vsebuje pravila oblike $A \to \varepsilon$.

2024

KNG ne vsebuje neuporabnih simbolov, če se vsak simbol $y \in V \cup \Sigma$, $y \neq S$ pojavi vsaj enkrat v izpeljavi niza, ki je v jeziku KNG. • Povedano drugače: simbol je neupraven, če se ne pojavi v nobeni izpeljavi niza, ki je v jeziku KNG.

Kontekstno-neodvisna gramatika Dopustna gramatika

KNG je dopustna gramatika, če je:

- deterministična,
- ne vsebuje neuporabnih simbolov,
- ima neprazen jezik,
- prazen niz ne nastopa kot desna stran kateregakoli prepisovalnega pravila.

Gramatike za stiskanje podatkov -Kontekstno-neodvisna gramatika -Dopustna gramatika

KNG je dopustna oramatika, če je:

- a deterministična,
- a ne vsebuje neuporabnih simbolov,
- o ima neprazen jezik, o prazen niz ne nastopa kot desna stran kateregakoli prepisovalnega pravila.

Dopustna gramatika

Kontekstno-neodvisna gramatika

Definicija

KNG je dopustna gramatika, če je:

- deterministična,
- ne vsebuje neuporabnih simbolov,
- ima neprazen jezik,
- prazen niz ne nastopa kot desna stran kateregakoli prepisovalnega pravila.

Posledica

Jezik dopustne gramatike je enojec.

Gramatike za stiskanje podatkov -Kontekstno-neodvisna gramatika -Dopustna gramatika

KNG je dovustna oramatika, če je:

- a deterministična, ne vsebuje neuporabnih simbolov.
- o ima neprazen jezik o prazen niz ne nastopa kot desna stran kateregakoli prepisovalnega pravila.

Posledica

Jezik dopustne gramatike je enojec

Janez Podlogar (UL-FMF)

Prirejanje gramatike

Od tu naprej naj bo:

- \mathcal{A} poljubna abeceda , $|\mathcal{A}| \geq 2$;
- $\{A_0, A_1, \ldots\}$ končna množica , $\mathcal{A} \cap \{A_0, A_1, \ldots\} = \emptyset$.

Gramatike za stiskanje podatkov -Prirejanj gramatike -Prirejanje gramatike

2024-09-14

 Če naštejemo nekončne simbole V v vrstnem redu prve pojavitve pri izpeljavi niza gramatike, dobimo zaporedje

 $V = \{A_0, A_1, ..., A_{W_{i-1}}\};$

Definicija

Naj bo $\mathcal{G}(A)$ množica vseh KNG G, ki zadostujejo:

- \bullet *G* je dopustna gramatika;
- $\Sigma \subseteq \mathcal{A};$
- $V = \{A_0, A_1, \dots, A_{|V|-1}\};$
- $S = A_0;$
- **5** Če naštejemo nekončne simbole V v vrstnem redu prve pojavitve pri izpeljavi niza gramatike, dobimo zaporedje $A_0, A_1, A_2, \ldots, A_{|V|-1}$.

- Z zahtevo 5. so nekončni simboli poimenovani po edinstvem vrstnem redu. Ta vrstni red omogoča pravilno dekodiranje.
- KNG $G \notin \mathcal{G}(\mathcal{A})$, ki izpolnjuje zahtevi 1. in 2., preimenujmo nekončne simbole tako, da izpolnimo 5. zahtevo. Potem izpolnimo tudi 3. in 4. zahtevi. Dobimo $[G] \in \mathcal{G}(\mathcal{A})$, ki jo imenujemo *kanonično oblika G*, in velja da sta jezika [G] in G enaka.

Prirejanje gramatike nizu abecede A je preslikava

$$\pi \colon \mathcal{A}^+ \to \mathcal{G}(\mathcal{A}),$$

$$w \mapsto G_w.$$

Gramatike za stiskanje podatkov —Prirejanj gramatike

kodiranje

gramatike

 $\rightarrow B(G_w)$

-Prirejanj gramatike

Definicija

 $Z \mathcal{G}^*(A)$ označimo pravo podmnožico množice $\mathcal{G}(A)$, da za vsak $G \in \mathcal{G}^*(\mathcal{A})$ velja

$$\forall A, B \in V, \ A \neq B \colon f_G^{\infty}(A) \neq f_G^{\infty}(B).$$

• Za prirejanja, ki jih predstavimo potrebujemo še eno omejitev s katero se v predstavitvi ne obremenjujemo.

Gramatike za stiskanje podatkov -Prirejanj gramatike

 $Z G^*(A)$ označimo pravo podmnožico množice G(A), da za vsak $\forall A, B \in V, A \neq B : f_G^{\infty}(A) \neq f_G^{\infty}(B).$

Z |G| označimo vsoto dolžin desnih strani prepisovalnih pravil KN

• Za prirejanja, ki jih predstavimo potrebujemo še eno omejitev s katero se v predstavitvi ne obremenjujemo.

 $\forall A, B \in V, A \neq B : f_G^{\infty}(A) \neq f_G^{\infty}(B).$

Z |G| označimo vsoto dolžin desnih strani prepisovalnih pravil KNG

Asimptotsko kompaktno prirejanje gramatike

Definicija

Prirejanje gramatike nizu abecede \mathcal{A} je asimptotsko kompaktno, če za vsak niz $w \in \mathcal{A}^+$ velja $G_w \in \mathcal{G}^*(\mathcal{A})$ in je

$$\lim_{n \to \infty} \max_{w \in \mathcal{A}^n} \frac{|G_w|}{|w|} = 0.$$

Gramatike za stiskanje podatkov

Prirejanj gramatike

Asimptotsko kompaktno prirejanje gramatike

Asimptotsko kompaktno prirejanje gramatike

Asimptotsko kompaktno prirejanje gramatike

Asimptotsko kompaktno prirejanje gramatike $\label{eq:localization} \begin{minipage}{0.5\textwidth} $\operatorname{Definicips}$ & $\operatorname{De$

• Primer je bisekcijsko prirejanje gramatike.

2024-09

Neskrčljivo prirejanje gramatike

Definicija

Pravimo, da je $G \in \mathcal{G}^*(A)$ neskrčljiva gramatika, če:

- **1** Vsak $A \in V$, $A \neq S$ nastopa vsaj dvakrat v desni strani prepisovalnih pravil;
- **2** Ne obstajata $y_1, y_2 \in V \cup \Sigma$, da niz y_1y_2 nastopa kot podniz desne strani kateregali prepisovalnega pravila več kot enkrat na neprekrivajočih se mestih.

Gramatike za stiskanje podatkov -Prirejanj gramatike -Neskrčljivo prirejanje gramatike -Neskrčljivo prirejanje gramatike

Pravimo, da ie $G \in G^*(A)$ neskrčlitva eramatika, če: \P Vsak $A \in V$, $A \neq S$ nastopa vsaj dvakrat v desni strani

Neskrčljivo prirejanje gramatike

- Primer prekrivajočih mest je <u>11</u>1 in 1<u>11</u>.
- Primer neprekriavjočih mest je 11 11.
- Različna neskrčjiva prirejanja gramatike dobimo tako, da izvajamo različne nabore skrčitvenih pravil.
- Primer je metodo najdaljšega ujemajočega podniza.

2024-09

Neskrčljivo prirejanje gramatike

Definicija

Pravimo, da je $G \in \mathcal{G}^*(A)$ neskrčljiva gramatika, če:

- **1** Vsak $A \in V$, $A \neq S$ nastopa vsaj dvakrat v desni strani prepisovalnih pravil;
- **2** Ne obstajata $y_1, y_2 \in V \cup \Sigma$, da niz y_1y_2 nastopa kot podniz desne strani kateregali prepisovalnega pravila več kot enkrat na neprekrivajočih se mestih.

Definicija

Neskrčljivo prirejanje gramatike nizu abecede A vsakemu nizu abecede A priredi neskrčljivo gramatiko.

Gramatike za stiskanje podatkov -Prirejanj gramatike -Neskrčljivo prirejanje gramatike -Neskrčljivo prirejanje gramatike

Pravimo, da ie $G \in G^*(A)$ neskrčlijog oramatika, če: \P Vsak $A \in V$, $A \neq S$ nastopa vsaj dvakrat v desni strani nenrekrivajočih se mostih

Neskrčlitvo prirejanje oramatike nizu abecade A vsakomu nizu abecode A

Neskrčljivo prirejanje gramatike

priredi neskrčljivo gramatiko

- Primer prekrivajočih mest je <u>11</u>1 in 1<u>11</u>.
- Primer neprekriavjočih mest je 11 11.
- Različna neskrčjiva prirejanja gramatike dobimo tako, da izvajamo različne nabore skrčitvenih pravil.
- Primer je metodo najdaljšega ujemajočega podniza.

2024-

Binarno kodiranje gramatike

Definicija

Binarno kodiranje dopustne gramatike je preslikava

$$B: \mathcal{G}(\mathcal{A}) \to \{0,1\}^+,$$

 $G \mapsto B(G).$

Gramatike za stiskanje podatkov

Binarno kodiranje gramatike

Binarno kodiranje gramatike

2024-09-14

Dzek.

Obstaja bijektivno binarno kodiranje dopustne gramatike, da $\forall G_1, G_2 \in \mathcal{G}(A), G_1 \neq G_2 \text{ niz } B(G_1) \text{ ni predpona niza } B(G_2),$ $a \forall G \in \mathcal{G}(A) : |B(G)| \leq |A| + 4|G| + |B(G)|.$

Izrek

Obstaja bijektivno binarno kodiranje dopustne gramatike, da

- \bullet $\forall G_1, G_2 \in \mathcal{G}(\mathcal{A}), G_1 \neq G_2 \text{ niz } B(G_1) \text{ ni predpona niza } B(G_2),$
- $\forall G \in \mathcal{G}(\mathcal{A}) \colon |B(G)| \le |\mathcal{A}| + 4|G| + \lceil H(G) \rceil.$

• Abeceda je poznana tako kodirniku kot dekodirniku.

Stiskanje niza abecede A z gramatikami G(\mathcal{A}) je par preslikav kodne in dekodne preslikave $\Phi = (\kappa, \delta)$. Kodna preslikava je

$$\kappa \colon \mathcal{A}^+ \to \{0,1\}^+,$$

$$w \mapsto B(\pi(w)),$$

kjer je π prirejanje gramatike nizu abecede ${\mathcal A}$ in B binarno kodiranje dopustne gramatike.

- Odvečnost meri količino ponavljajočih se ali predvidljivih podatkov znotraj sporočila, ki jih je mogoče odstraniti, da se prihrani prostor, brez izgube informacije.
- Odvečnost stiskanja z asimptotsko kompaktnim prirejanjem konvergira proti 0 v odvisnosti od izbire kodiranja znotraj razreda.
- Stiskanje z neskrčljivim prirejanjem tudi stiskanje z asimptotsko kompaktnim prirejanjem in odvečnost konvergira enakomerno proti 0 za vsa stiskanja z neskrčljivim prirejanjem, vsaj tako hitro kot $\frac{\log_2\log_2(n)}{\log_2(n)}$ pomnoženo z neko konstanto.