

Δέντρο

Θεωρήστε ένα **δέντρο** που αποτελείται από N **κορυφές**, που αριθμούνται από 0 έως N-1. Η κορυφή 0 ονομάζεται **ρίζα**. Κάθε κορυφή, εκτός από τη ρίζα, έχει έναν μόνο **γονέα**. Για κάθε i, έτσι ώστε $1 \leq i < N$, ο γονέας της κορυφής i είναι η κορυφή P[i], όπου P[i] < i. Υποθέτουμε επίσης P[0] = -1.

Για οποιαδήποτε κορυφή i ($0 \le i < N$), το **υποδέντρο** του i είναι το σύνολο των ακόλουθων κορυφών:

- i, και
- κάθε κορυφή της οποίας ο γονέας είναι i, και
- κάθε κορυφή της οποίας ο γονέας του γονέα είναι i, και
- κάθε κορυφή της οποίας ο γονέας του γονέα του γονέα είναι i, και
- κλπ.

Η παρακάτω εικόνα δείχνει ένα παράδειγμα δέντρου που αποτελείται από κορυφές N=6. Κάθε βέλος συνδέει μια κορυφή με τον γονέα του, εκτός από τη ρίζα, που δεν έχει γονέα. Το υποδέντρο της κορυφής 2 περιέχει τις κορυφές 2,3,4 και 5. Το υποδέντρο της κορυφής 0 περιέχει όλες τις 6 κορυφές του δέντρου και το υποδέντρο της κορυφής 4 περιέχει μόνο την κορυφή 4.

Σε κάθε κορυφή εκχωρείται ένα μη αρνητικό ακέραιο **βάρος**. Συμβολίζουμε το βάρος της κορυφής $i\ (0 \le i < N)$ με W[i].

Ο στόχος σας είναι να γράψετε ένα πρόγραμμα που θα απαντά σε Q ερωτήματα, όπου κάθε ένα καθορίζεται από ένα ζεύγος θετικών ακεραίων (L,R). Η απάντηση στο ερώτημα θα πρέπει να υπολογιστεί ως εξής.

Σκεφτείτε να εκχωρήσετε έναν ακέραιο αριθμό, που ονομάζεται **συντελεστής**, σε κάθε κορυφή του δέντρου. Μια τέτοια ανάθεση περιγράφεται από μια ακολουθία $C[0],\ldots,C[N-1]$, όπου C[i] $(0\leq i< N)$ είναι ο συντελεστής που αποδίδεται στην κορυφή i. Ας ονομάσουμε αυτή την

ακολουθία **ακολουθία συντελεστών**. Σημειώστε ότι τα στοιχεία της ακολουθίας συντελεστών μπορεί να είναι αρνητικά, 0 ή θετικά.

Για ένα ερώτημα (L,R), μια ακολουθία συντελεστών ονομάζεται **έγκυρη** εάν, για κάθε κορυφή i $(0 \le i < N)$, ισχύει η εξής προϋπόθεση: το άθροισμα των συντελεστών των κορυφών στο υποδέντρο της κορυφής i δεν είναι μικρότερο από L και όχι μεγαλύτερο από R.

Για μια δεδομένη ακολουθία συντελεστών $C[0],\ldots,C[N-1]$, το **κόστος** μιας κορυφής i είναι $|C[i]|\cdot W[i]$, όπου |C[i]| υποδηλώνει την απόλυτη τιμή του C[i]. Τέλος, το **συνολικό κόστος** είναι το άθροισμα των δαπανών όλων των κορυφών. Το καθήκον σας είναι να υπολογίσετε, για κάθε ερώτημα, το **ελάχιστο συνολικό κόστος** που μπορεί να επιτευχθεί με κάποια έγκυρη ακολουθία συντελεστών.

Μπορεί να διαφανεί ότι για οποιοδήποτε ερώτημα, υπάρχει τουλάχιστον μία έγκυρη ακολουθία συντελεστών.

Λεπτομέρειες υλοποίησης

Θα πρέπει να υλοποιήσετε τις ακόλουθες δύο διαδικασίες:

```
void init(std::vector<int> P, std::vector<int> W)
```

- P, W: πίνακες ακεραίων μήκους N που προσδιορίζουν τους γονείς και τα βάρη.
- Αυτή η διαδικασία καλείται ακριβώς μία φορά στην αρχή της αλληλεπίδρασης μεταξύ του βαθμολογητή και του προγράμματός σας σε κάθε περίπτωση δοκιμής (test case).

```
long long query(int L, int R)
```

- L, R: ακέραιοι αριθμοί που περιγράφουν ένα ερώτημα.
- Αυτή η διαδικασία καλείται Q φορές μετά την επίκληση του init σε κάθε περίπτωση δοκιμής (test case).
- Αυτή η διαδικασία θα πρέπει να επιστρέψει την απάντηση στο συγκεκριμένο ερώτημα.

Περιορισμοί

- $1 \le N \le 200\,000$
- $1 \le Q \le 100000$
- P[0] = -1
- ullet $0 \leq P[i] < i$ για κάθε i έτσι ώστε $1 \leq i < N$
- $0 < W[i] < 1\,000\,000$ για κάθε i έτσι ώστε 0 < i < N
- $1 \le L \le R \le 1000000$ σε κάθε ερώτημα

Subtasks

Subtasks	Βαθμολογία	Πρόσθετοι Περιορισμοί	
1	10	$Q \leq 10$; $W[P[i]] \leq W[i]$ για κάθε i έτσι ώστε $1 \leq i < N$	
2	13	$Q \leq$ 10; $N \leq$ 2 000	
3	18	$Q \leq$ 10; $N \leq$ 60 000	
4	7	$W[i] = 1$ για κάθε i έτσι ώστε $0 \leq i < N$	
5	11	$W[i] \leq 1$ για κάθε i έτσι ώστε $0 \leq i < N$	
6	22	L=1	
7	19	Χωρίς πρόσθετους περιορισμούς.	

Παραδείγματα

Εξετάστε τις ακόλουθες κλήσεις:

Το δέντρο αποτελείται από 3 κορυφές, τη ρίζα και τα 2 παιδιά του. Όλες οι κορυφές έχουν βάρος 1.

Σε αυτό το ερώτημα L=R=1, που σημαίνει ότι το άθροισμα των συντελεστών σε κάθε υποδέντρο πρέπει να είναι ίσο με 1. Θεωρήστε την ακολουθία συντελεστών [-1,1,1]. Το δέντρο και οι αντίστοιχοι συντελεστές (σε σκιασμένα ορθογώνια) παρουσιάζονται παρακάτω.

Για κάθε κορυφή i ($0 \le i < 3$), το άθροισμα των συντελεστών όλων των κορυφών στο υποδέντρο του i ισούται με 1. Επομένως, αυτή η ακολουθία συντελεστών είναι έγκυρη. Το συνολικό κόστος υπολογίζεται ως εξής:

Κορυφή	Βάρος	Συντελεστής	Κόστος
0	1	-1	$ -1 \cdot 1=1$
1	1	1	$ 1 \cdot 1 = 1$
2	1	1	$ 1 \cdot 1 = 1$

Επομένως το συνολικό κόστος είναι 3. Αυτή είναι η μόνη έγκυρη ακολουθία συντελεστών, Έτσι, αυτή η κλήση θα πρέπει να επιστρέψει 3.

```
query(1, 2)
```

Το ελάχιστο συνολικό κόστος για αυτό το ερώτημα είναι 2, και επιτυγχάνεται όταν η ακολουθία συντελεστών είναι [0,1,1].

Δειγματικός βαθμολογητής

Μορφή εισόδου:

```
N
P[1] P[2] ... P[N-1]
W[0] W[1] ... W[N-2] W[N-1]
Q
L[0] R[0]
L[1] R[1]
...
L[Q-1] R[Q-1]
```

όπου L[j] και R[j] (για $0 \le j < Q$) είναι τα ορίσματα εισόδου στην κλήση j-ιοστή στο query. Σημειώστε ότι η δεύτερη γραμμή της εισόδου περιέχει **μόνο** N-1 **ακέραιους**, καθώς ο δειγματικός βαθμολογητής δεν διαβάζει την τιμή του P[0].

Μορφή εξόδου:

```
A[0]
A[1]
...
A[Q-1]
```

όπου A[j] (για $0 \leq j < Q$) είναι η τιμή που επιστρέφεται από την j-ιοστή κλήση στο query.