ENGG 5501: Foundations of Optimization

2020-21 First Term

Solution to Take-Home Midterm Examination

Instructor: Anthony Man-Cho So Due: 11:59pm, November 13, 2020

IMPORTANT: Please remember to observe the rules as stated on the course website. In particular, you must work out the problems on your own.

SOLVE THE FOLLOWING PROBLEMS:

Problem 1 (15pts). Show that the set

$$K = \{(x, y, z) \in \mathbb{R}^3_+ : y \cdot \exp(-x/y) \le z\}$$

is a convex cone, where we adopt the convention that $\exp(-x/0) = 0$ for any $x \ge 0$.

ANSWER: It is straightforward to verify that K is a cone. Indeed, if $(x, y, z) \in K$ and $\alpha > 0$, then

$$(\alpha y) \cdot \exp(-(\alpha x)/(\alpha y)) = \alpha(y \cdot \exp(-x/y)) \le \alpha z,$$

which implies that $\alpha(x, y, z) \in K$. Now, observe that K is the epigraph of the function $\mathbb{R}^2_+ \ni (x, y) \mapsto f(x, y) = y \cdot \exp(-x/y)$. Thus, to show that K is convex, it suffices to show that f is convex on \mathbb{R}^2_+ . Towards that end, let $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2_+$ and $\alpha \in (0, 1)$ be arbitrary. If $y_1 = y_2 = 0$, then

$$f(\alpha x_1 + (1 - \alpha)x_2, \alpha y_1 + (1 - \alpha)y_2) = 0 = \alpha f(x_1, y_1) + (1 - \alpha)f(x_2, y_2).$$

If one of y_1, y_2 is zero, say, $y_2 = 0$, then

$$f(\alpha x_1 + (1 - \alpha)x_2, \alpha y_1 + (1 - \alpha)y_2) = \alpha y_1 \cdot \exp\left(-\frac{\alpha x_1 + (1 - \alpha)x_2}{\alpha y_1}\right)$$

$$\leq \alpha y_1 \cdot \exp(-x_1/y_1) = \alpha f(x_1, y_1) + (1 - \alpha)f(x_2, y_2)$$

by the monotonicity of $\mathbb{R}_+ \ni x \mapsto \exp(-x)$. Otherwise, we have $y_1, y_2 > 0$. We compute

$$f(\alpha x_1 + (1 - \alpha)x_2, \alpha y_1 + (1 - \alpha)y_2) = (\alpha y_1 + (1 - \alpha)y_2) \cdot \exp\left(-\frac{\alpha x_1 + (1 - \alpha)x_2}{\alpha y_1 + (1 - \alpha)y_2}\right)$$

$$= (\alpha y_1 + (1 - \alpha)y_2) \cdot \exp\left(-\frac{\alpha y_1}{\alpha y_1 + (1 - \alpha)y_2} \cdot \frac{x_1}{y_1} - \frac{(1 - \alpha)y_2}{\alpha y_1 + (1 - \alpha)y_2} \cdot \frac{x_2}{y_2}\right)$$

$$\leq (\alpha y_1 + (1 - \alpha)y_2) \cdot \left[\frac{\alpha}{\alpha y_1 + (1 - \alpha)y_2} \cdot y_1 \cdot \exp\left(-\frac{x_1}{y_1}\right) + \frac{1 - \alpha}{\alpha y_1 + (1 - \alpha)y_2} \cdot y_2 \cdot \exp\left(-\frac{x_2}{y_2}\right)\right]$$

$$= \alpha f(x_1, y_1) + (1 - \alpha)f(x_2, y_2),$$

where the inequality follows from the convexity of $\mathbb{R}_+ \ni x \mapsto \exp(-x)$. This completes the proof.

Problem 2 (15pts). Let $C \subseteq \mathbb{R}^n$ be a convex set and $a, b \in \mathbb{R}^n$ be vectors. Suppose that $b^T x > 0$ for all $x \in C$. Show that the function $f: C \to \mathbb{R}$ defined by $f(x) = (a^T x)^2 / b^T x$ is convex.

ANSWER: Since $b^T x > 0$ for all $x \in C$ and f is defined on C, using the appropriate Schur complement, we have

$$\operatorname{epi}(f) = \left\{ (x,t) \in C \times \mathbb{R} : \frac{(a^T x)^2}{b^T x} \le t \right\} = \left\{ (x,t) \in C \times \mathbb{R} : \begin{bmatrix} b^T x & a^T x \\ a^T x & t \end{bmatrix} \succeq \mathbf{0} \right\}.$$

Now, it is straightforward to verify the convexity of the set epi(f). Indeed, let $(x_1, t_1), (x_2, t_2) \in epi(f)$ and $\alpha \in (0, 1)$ be arbitrary. Then, we have

$$\begin{bmatrix} b^T(\alpha x_1 + (1 - \alpha)x_2) & a^T(\alpha x_1 + (1 - \alpha)x_2) \\ a^T(\alpha x_1 + (1 - \alpha)x_2) & (\alpha t_1 + (1 - \alpha)t_2) \end{bmatrix} = \alpha \begin{bmatrix} b^T x_1 & a^T x_1 \\ a^T x_1 & t_1 \end{bmatrix} + (1 - \alpha) \begin{bmatrix} b^T x_2 & a^T x_2 \\ a^T x_2 & t_2 \end{bmatrix} \succeq \mathbf{0},$$

which shows that $\alpha(x_1, t_1) + (1 - \alpha)(x_2, t_2) \in \operatorname{epi}(f)$. To complete the proof, it remains to note that $\operatorname{epi}(f)$ is convex if and only if f is convex.

Problem 3 (25pts). Let $B(\mathbf{0},1) \subset \mathbb{R}^n$ be the unit Euclidean ball in \mathbb{R}^n centered at the origin. For any $x \in B(\mathbf{0},1)$, consider the set

$$N(x) = \{ u \in \mathbb{R}^n : u^T(y - x) \le 0 \text{ for all } y \in B(0, 1) \}.$$

(a) (10pts). Show that N(x) is a convex cone for any $x \in B(0,1)$.

ANSWER: Let $x \in \mathbb{R}^n$ be fixed. For any $\alpha > 0$ and $u \in N(x)$, we have $\alpha u^T(y - x) \le 0$ for all $y \in B(0,1)$. Hence, N(x) is a cone. Moreover, for any $u, v \in N(x)$ and $\alpha \in (0,1)$, we have

$$(\alpha u + (1 - \alpha)v)^T(y - x) = \alpha u^T(y - x) + (1 - \alpha)v^T(y - x) \le 0 \text{ for all } y \in B(0, 1).$$

It follows that N(x) is convex.

(b) (15pts). Give an explicit description of N(x). Simplify your answer as much as possible. Show all your work.

(Hint: Consider the cases $||x||_2 < 1$ and $||x||_2 = 1$ separately. Also, recall that for any $y, z \in \mathbb{R}^n$, $|y^T z| \le ||y||_2 \cdot ||z||_2$ and equality holds if and only if y, z are linearly dependent.)

ANSWER: We claim that

$$N(x) = \begin{cases} \{0\} & \text{if } ||x||_2 < 1, \\ \{\alpha x : \alpha \ge 0\} & \text{if } ||x||_2 = 1. \end{cases}$$

Indeed, if $||x||_2 = \ell < 1$, then $x + (1 - \ell)v \in B(\mathbf{0}, 1)$ for all $v \in S^{n-1}$ (recall that $S^{n-1} = \{v \in \mathbb{R}^n : ||v||_2 = 1\}$). Hence, if $u \in N(x)$, then we must have $u^T(x + (1 - \ell)v - x) = (1 - \ell)u^Tv \le 0$ for all $v \in S^{n-1}$. This implies that $u = \mathbf{0}$.

On the other hand, if $||x||_2 = 1$, then by the Cauchy-Schwarz inequality, for any $\alpha \geq 0$, we have

$$\alpha x^{T}(y-x) = \alpha(x^{T}y - ||x||_{2}) \le \alpha(||y||_{2} - 1) \le 0 \text{ for all } y \in B(\mathbf{0}, 1).$$

This shows that $\{\alpha x : \alpha \geq 0\} \subseteq N(x)$. Conversely, let $u \in N(x)$. By the result in (a), we may assume without loss of generality that $||u||_2 = 1$. Then, since $u \in B(\mathbf{0}, 1)$, we have $u^T(u-x) \leq 0$. This implies that $u^Tu = 1 \leq u^Tx \leq ||u||_2 \cdot ||x||_2 = 1$, which, together with the Cauchy-Schwarz inequality, yields u = x. It follows that $N(x) \subseteq \{\alpha x : \alpha \geq 0\}$, as desired.

Problem 4 (10pts). Let $A \in \mathbb{R}^{m \times n}$ and $c \in \mathbb{R}^n$ be given. Show that $\{x \in \mathbb{R}^n : Ax \leq \mathbf{0}\} \subseteq \{x \in \mathbb{R}^n : Ax \leq \mathbf{0}\}$ $\mathbb{R}^n: c^T x \leq 0$ if and only if $A^T y = c$ for some $y \geq 0$.

ANSWER: By Farkas' lemma, exactly one of the following systems is solvable:

(I)
$$A^T y = c, y \ge \mathbf{0}.$$

(II) $Ax \le \mathbf{0}, c^T x > 0.$

(II)
$$Ax \leq \mathbf{0}, c^T x > 0.$$

It follows that (I) is solvable if and only if $c^T x \leq 0$ whenever $x \in \mathbb{R}^n$ satisfies $Ax \leq 0$. However, this is precisely the statement we need to prove.

Problem 5 (20pts). Let $A \in \mathbb{R}^{m \times n}$ and $c \in \mathbb{R}^n$ be given. Let $v : \mathbb{R}^m \to \mathbb{R}$ be the function defined

$$v(b) = \text{maximize} \quad c^T x$$

subject to $Ax \le b$, $x \ge \mathbf{0}$. (1)

In other words, v(b) is the optimal value of the LP (1) when the right-hand side of the first inequality constraint is b.

(a) (10pts). Let $b \in \mathbb{R}^m$ be fixed. Find the dual of Problem (1).

ANSWER: The given LP can be written in the standard dual form

maximize
$$c^T x$$
 subject to $\begin{bmatrix} A \\ -I \end{bmatrix} x \le \begin{bmatrix} b \\ \mathbf{0} \end{bmatrix}$.

It follows that the dual is given by

minimize
$$b^Tz$$
 minimize b^Tz subject to $A^Tz-w=c$, or equivalently, subject to $A^Tz\geq c$, $z,w\geq \mathbf{0},$ $z\geq \mathbf{0}.$

(b) (10pts). Using the result in (a), or otherwise, show that the function $v(\cdot)$ is concave.

ANSWER: For any $b \in \mathbb{R}^m$ such that v(b) is finite, we have

$$v(b) =$$
minimize $b^T z$
subject to $A^T z \ge c$,
 $z > \mathbf{0}$

by the LP Strong Duality Theorem. Since $v(\cdot)$ is a pointwise infimum of the collection $\{b\mapsto b^Tz:A^Tz\geq c,\,z\geq \mathbf{0}\}\$ of linear functions, we conclude that $v(\cdot)$ is concave.

Problem 6 (15pts). Let $A \in \mathcal{S}^n$ be a symmetric matrix and $c \in \mathbb{R}^n$ be a vector. Consider the following LP:

minimize
$$c^T x$$

subject to $Ax \ge c$, $x \ge 0$. (2)

Show that if $\bar{x} \in \mathbb{R}^n$ satisfies $A\bar{x} = c$ and $\bar{x} \geq 0$, then \bar{x} is an optimal solution to Problem (2).

ANSWER: Since A is symmetric, we see from Problem 5 that the dual of (2) is given by

$$\begin{array}{ll} \text{maximize} & c^T y \\ \text{subject to} & Ay \leq c, \\ & y \geq \mathbf{0}. \end{array}$$

If $\bar{x} \in \mathbb{R}^n$ satisfies $A\bar{x} = c$ and $\bar{x} \geq \mathbf{0}$, then \bar{x} is feasible for both (2) and its dual (3). Moreover, when evaluated at \bar{x} , the objective functions of both (2) and (3) have the same value. It follows from the LP Strong Duality Theorem that \bar{x} is optimal for Problem (2).