Maß und Integral WS2018/19

Dozent: Prof. Dr. Rene Schilling

16. November 2018

In halts verzeichnis

1	Einleitung	2
2	Sigma-Algebren	3
3	Maße	4
4	Eindeutigkeit von Maßen	6
5	Integration positiver Funktionen	7
6	Messbare Abbildungen	8
7	Messbare Funktionen	9
8	Integration positiver Funktionen	0

Vorwort

1. Einleitung

messen: Längen, Flächen, Volumina, $\mathbb{N} \to \text{zählen}$, Wahrscheinlichkeiten, Energie \to Integrale, ... Wenn man ein Integral hat: $\int_{t_0}^t F(t) dt$, also wird das dt durch ein Maß $\mu(dt)$ ersetzt. Wir messen Mengen:

$$\mu: \mathcal{F} \to [0, \infty] \text{ mit } \mathcal{F} \subset \mathcal{P}(X)$$

Dabei ist:

- \bullet X eine beliebige Grundmenge
- $\mathcal{P}(X) = \{A \mid A \subset X\}$ die Potenzmenge von X
- $F \to \mu(F) \in [0, \infty]$

Konvention:

- Familien von Mengen: $\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{F}, \dots, \mathcal{R}$
- Mengen: A, B, X
- Maße: $\mu, \lambda, \nu, \rho, \delta$
- Beispiel 1.1 (Flächenmessung)

$$\mu(F) = g \cdot h = \mu(F_1) + \mu(F_2) + \mu(F_3)$$
$$= g' \cdot h + h' \cdot g'' + h'' \cdot g''$$
$$= \dots \stackrel{!}{=} gh$$

 F_1, F_2, F_3 disjunkt bzw. nicht überlappend!

$$\mu(F) = \mu(\Delta_1) + \mu(\Delta_2) \text{ mit } \mu(\Delta) = 0.5gh$$

Allgemein für Dreiecke:

 $\mu(\Delta) = 0.5gh \stackrel{!}{=} 0.5g'h'$ und das ganze ist wohldefiniert!

Dreiecke lassen allgemeine Flächenberechnung zu - Triangulierung!

$$F = \biguplus_{n \in \mathbb{N}} \Delta_n \text{ (disjunkte Vereinigung } \Delta_i \cap \Delta_k = \emptyset \quad k \neq i)$$

2. Sigma-Algebren

Ziel: Charakterisierung der Definitionsgebiete von Maßen.

Definition 2.1 (σ -Algebra, messbar)

Eine $\underline{\sigma\text{-Algebra}}$ über einer beliebigen Grundmenge $X \neq \emptyset$ ist eine Familie von Mengen in $\mathcal{P}(X)$, $\mathcal{A} \subset \mathcal{P}(X)$:

- (S1): $X \in \mathcal{A}$
- (S2): $A \in \mathcal{A} \to A^C = X \setminus A \in \mathcal{A}$
- (S3): $(A_n)_{n\in\mathbb{N}}\subset\mathcal{A}\Rightarrow\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{A}$

Eine Menge $A \in \mathcal{A}$ heißt $\underline{\text{messbar}}$.

Satz 2.2 (Eigenschaften einer σ -Algebra)

Sei \mathcal{A} eine σ -Algebra über X.

- (a) $\emptyset \in \mathcal{A}$
- (b) $A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$
- (c) $(A_n)_{i\in\mathbb{N}}\subset\mathcal{A}\Rightarrow\bigcap_{n\in\mathbb{N}}A_n\in\mathcal{A}$
- (d) $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$
- (e) $A, B \in \mathcal{A} \Rightarrow A \setminus B \in \mathcal{A}$

Beweis. (a) $\emptyset = X^C \in \mathcal{A}$

- (b) $A_1 = A$, $A_2 = Bm$ $A_3 = A_4 = ... = \emptyset \Rightarrow A \cup B = \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$
- (c) $A_n \in \mathcal{A} \stackrel{\text{S2}}{\Longrightarrow} A_n^C \in \mathcal{A} \stackrel{\text{S3}}{\Longrightarrow} \bigcup_{n \in \mathbb{N}} A_n^C \in \mathcal{A} \Rightarrow \bigcap_{n \in \mathbb{N}} A_n = \left(\bigcap_{n \in \mathbb{N}} A_n^C\right)^C \in \mathcal{A}$
- (d) wie (b)

(e)
$$A \setminus B = A \cap B^C \in \mathcal{A}$$

Fazit: Auf einer σ -Algebra kann man alle üblichen Mengenoperationen abzählbar oft durchführen ohne \mathcal{A} zu verlassen!

■ Beispiel 2.3

 $X \neq \emptyset$ Menge, $A, B \subset X$

- (a) $\mathcal{P}(X)$ ist eine σ -Algebra (größtmögliche)
- (b) $\{\emptyset, X\}$ ist eine σ -Algebra (kleinstmögliche)
- (c) $\{\emptyset, A, A^C, X\}$ ist eine σ -Algebra
- (d) $\{\emptyset, B, X\}$ ist eine σ -Algebra, wenn $B = \emptyset$ oder B = X
- (e) $\mathcal{A} = \{A \subset X \mid \#A \leq \#\mathbb{N} \text{ oder } \#A^C \leq \#\mathbb{N} \}$ ist eine σ -Algebra

3. Maße

Sei E eine beliebige nicht-leere Grundmenge.

Definition 3.1 (Maß)

Ein Maß μ ist eine Abbildung $\mu: \mathcal{A} \to [0, \infty]$ mit folgenden Eigenschaften:

- (M_0) \mathcal{A} ist eine σ -Algebra auf E
- (M_1) $\mu(\emptyset) = 0$ (M_2) $(A_n)_{n \in \mathbb{N}} \subset \mathcal{A}$ paarweise disjunkt $\longleftarrow \mu(\bigcup_{n \in \mathbb{N}} A_n) = \sum_{n \in \mathbb{N}} \mu(A_n)$

Gilt für $\mu: \mathcal{A} \to [0, \infty]$ nur $(M_1), (M_2),$ dann heißt μ Prämaß.

Für auf- und absteigende Folgen von Mengen schreiben wir auch

$$A_n \uparrow A \iff A_1 \subset A_2 \subset \dots \text{ und } A = \bigcup_{n \in \mathbb{N}} A_n$$

 $B_n \downarrow B \iff B_1 \subset B_2 \subset \dots \text{ und } B = \bigcap_{n \in \mathbb{N}} B_n$

Definition 3.2

- Es sei \mathcal{A} eine σ -Algebra auf E und μ ein Maß. Dann heißt (E, \mathcal{A}) Messraum und (E, \mathcal{A}, μ) .
- Ein Maß mit $\mu(E) < \infty$ heißt endliches Maß und (E, \mathcal{A}, μ) endlicher Maßraum .
- Gilt $\mu(E)=1$, dann sprechen wir von einem Wahrscheinlichkeitsmaß (W-Maß) und Wahrscheinlichkeitsraum (W-Raum).
- Gibt es eine Folge $(A_n)_{n\in\mathbb{N}}\subset\mathcal{A}$, sodass $A_n\uparrow E$ und $\mu(A_n)<\infty$, dann heißen μ und (E,\mathcal{A},μ) σ -endlich .

Satz 3.3 (Eigenschaften von Maßen)

Es sei μ ein Maß auf (E, A) und $A, B, A_n, B_n \in A, n \in \mathbb{N}$.

- 1. $A \cap B = \emptyset \Longrightarrow \mu(A \cup B) = \mu(A) + \mu(B)$ (additiv)
- 2. $A \subset B \Longrightarrow \mu(A) \le \mu(B)$ (monoton)
- 3. $A \subset B \& \mu(A) < \infty \Longrightarrow \mu(B \setminus A) = \mu(B) \mu(A)$
- 4. $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$ (stark additiv)
- 5. $\mu(A \cup B) \le \mu(A) + \mu(B)$ (subadditiv)
- 6. $A_n \uparrow A \Longrightarrow \mu(A) = \sup_{n \in \mathbb{N}} (A_n) = \lim_{n \to \infty} \mu(A_n)$ (stetig von unten)
- 7. $B_n \downarrow B \& \mu(B_1) < \infty \Longrightarrow \mu(B_n) = \sup_{n \in \mathbb{N}} (B_n) = \lim_{n \to \infty} \mu(B_n)$ (stetig von oben)
- 8. $\mu(\bigcup_{n\in\mathbb{N}} A_n) \leq \sum_{n\in\mathbb{N}} \mu(A_n)$ (σ -additiv)

Beweis. Wird noch ergänzt später!

▶ Bemerkung 3.4

Die Aussagen von Satz 3.3 gelten auf für Prämaße, wenn das zu Grunge leigende Mengensystem groß genug ist. Genauer braucht man dafür:

- a)-e) Stabilität unter endlichen vielen Wiederholungen von
 \cup,\cap,\backslash
- f) $A_{n+1} \setminus A_n, \bigcup_n^{\infty} A_n \in \mathcal{A}$
- g) $B_1 \setminus B_n, B_n \setminus B_{n+1}, \bigcap_n^{\infty} B_n, B_1 \setminus \bigcap_n^{\infty} \in \mathcal{A}$
- h) $\bigcup_{n=0}^{\infty} A_n, \bigcup_{n=0}^{\infty} A_n \in \mathcal{A}$

■ Beispiel 3.5

1. (Dirac-Maß). Es sei (E, \mathcal{A}) ein beliebiger Messraum und $x \in E$ fest. Dann ist

$$\delta_x : \mathcal{A} \to [0, 1] \text{ mit } \delta_x(A) := \begin{cases} 0 & x \notin A, \\ 1 & x \in A \end{cases}$$

ist ein W-Maß, das Dirac-Maß (auch $\delta\text{-Funktion}$, Einheitsmasse)

2. Es sei $E=\mathbb{R}$ und \mathcal{A} wie in Beispiel 2.3 e) (d.h. $A\in\mathcal{A}\Longleftrightarrow A$ oder A^C abzählbar). Dann ist

$$\gamma(A) := \begin{cases} 0 & A \text{ ist abz\"{a}hlbar}, \\ 1 & A^C \text{abz\"{a}hlbar} \end{cases}$$

mit $A \in \mathcal{A}$ und γ ist ein W-Maß.

3. gibt noch mehr, werden später ergänzt!

4. Dilideutignett voll Mabe	4.	Eindeutigkeit	von	Maße
-----------------------------	----	---------------	-----	------

5 .	Integration	positiver	Funktionen
		0 0 0 - 0 - 0 -	_ 0

6. Messbare Abbildungen

7. Messbare Funktionen

8.	Integration	positiver	Funktionen
\sim .		POSTOTO	_ 01111010110

