

Week 1: Determinants of Epidemic Growth

Dr. Henrik Salje University of Cambridge

Week 1 Overview

- Monday, July 26:
 - Introductory material, history of mathematical modeling
 - Introduction to R
- Tuesday, July 27:
 - Epidemic determinants & parameters
 - Guided practice in R
- Wednesday. July 28:
 - Model structures
 - Plots & compartmental models in R

Objectives

- Learn the key determinants of epidemics
- Understand how these determinants are related to one another
- Learn to estimate these determinants in simple scenarios

Post Questions in the Chat!

(we will have breaks to answer these during the workshop)

Workshop Schedule

Time	Topics
2:00-2:05 pm	Greetings
2:05-3:00 pm	Epidemic Determinants
3:00-3:10 pm	Break
3:10-4:00 pm	R Practical: Working with Data
4:00-4:10 pm	Break
4:10-5:00 pm	R Practical: Data Summaries

Determinants of Epidemic Growth

Doubling Time & Reproductive Number

Doubling Time

- Simple measure of growth
- The time it takes for the number of incident cases to double early in an epidemic
- Good measure of how quickly a disease spreads in a population

$$T_d = \frac{t_{\tau} - t_{\tau-1}}{\log_2\left(\frac{N_{\tau}}{N_{\tau-1}}\right)}$$

- T_d : doubling time
- t_{τ} : time τ
- N_{τ} : number of incident cases at time τ

Reproductive Number

- Basic reproductive number (R_0) , R-naught
 - the number of people a single case will infect in a completely susceptible population
 - the 0 indicates t=0, or the start of the epidemic when the population is completely susceptible and a case enters the population

Reproductive Number

- Reproductive number (R_t)
 - sometimes called net reproductive number or effective reproductive number
 - the number of people a single infectious person will infect at time t, or when there is some immunity in the population
 - this has an impact on the doubling time

Reproductive Numbers & Epidemic Curve

- Reproductive numbers change throughout an epidemic
 - Rt will correlate to trends in incidence
 - at the start, as long as Rt>1, the epidemic will grow
 - Rt>1 means each case causes more than one additional case

Reproductive Numbers & Epidemic Curve

- Reproductive numbers change throughout an epidemic
 - as the epidemic continues, there will be fewer susceptible people and the reproductive number will decrease unless:
 - more susceptibles are added
 - something changes to increase transmission
 - if Rt=1, transmission will be stable
 - as soon as Rt<1, the epidemic will start to fade

What is the Reproductive Number?

- The entire population is susceptible
 - R0 or Rt?

Susceptible

What is the Reproductive Number?

- The entire population is susceptible
 - R0=4

Susceptible

What is the Reproductive Number?

- Same population, but now 50% of the population is immune
 - R0 or Rt?

- SusceptibleImmune

What is the Reproductive Number?

- Same population, but now 50% of the population is immune
 - R0=4
 - Rt=2
 - if there is random mixing, then the reproductive number is R0 time the proportion of susceptibles in the population
 - $R_t = R_0 s_t$

- Susceptible
- Immune

Reproductive Number & Disease Control

- our ability to control disease arises from knowledge that a reproductive number below 1 will results in decreasing incidence
- if we can calculate the reproductive number from its determinants, we can assess which control measures will cause a decline in the reproductive number
- estimating the reproductive number is a common modeling goal

Reproductive Number & Disease Control

- Do we need to eliminate mosquitoes to eliminate malaria?
 - malaria elimination was thought to be impossible
 - MacDonald demonstrated mathematically that an increase in mosquito mortality would eliminate malaria

•
$$R_0 = b^2 sa$$

- *b*: mosquito biting rate
- *s*: time τ
- *a*: number of incident cases at time τ

Reproductive Numbers are Disease- and Setting-specific

Pathogen	R0
Cholera	2.6, 5.0, 4.0—15.0
Dengue	1.3-6.3
Influenza	1.5-2.0
Malaria	1-10, 100-1000, 1-3000
Measles	7.7, 7.1-29.3, 11.0-18.0
Rubella	2.9-7.8, 3.4-5.6
SARS	1.2, 2.7, 2.2-3.6
Smallpox	3.2, 6.9, 3.5–6.0

 For many diseases, the reproductive number will be very similar across different settings

Reproductive Number

- If there is not random mixing, R0 is more difficult to calculate, but models can help achieve this
 - it is more likely that there is heterogenous mixing
 - not everyone has an equal chance of encountering everyone else in the population

Population A

- each infected child leads to 3 infections in adults, and 1 infection in children
- each infected adult leads to 1 infection in adults and 3 infections in children

Population B

- each infected child leads to 1 infection in adults, and 3 infections in children
- each infected adult leads to 3 infections in adults and 1 infection in children

Reproductive Number

Population A

- each infected child leads to 3 infections in adults, and 1 infection in children
- each infected adult leads to 1 infection in adults and 3 infections in children

Population B

- each infected child leads to 1 infection in adults, and 3 infections in children
- each infected adult leads to 3 infections in adults and 1 infection in children
- If we vaccinate children, which population would see the biggest effect?

Generation Time & Serial Intervals

Measles outbreak in Iceland

$$T_d = \frac{t_{\tau} - t_{\tau - 1}}{\log_2\left(\frac{N_{\tau}}{N_{\tau - 1}}\right)}$$

Measles outbreak in Iceland

$$T_{d} = \frac{t_{\tau} - t_{\tau-1}}{\log_{2}\left(\frac{N_{\tau}}{N_{\tau-1}}\right)}$$

$$T_{d} = \frac{1 \, month}{\log_{2}\left(\frac{514}{191}\right)}$$

$$= 0.7 \, months$$

 Doubling time ranges from 0.5-1.5 months during epidemic

- Influenza outbreak in USA
- Doubling time ranges from 0.3–0.6 weeks during epidemic
- Comparing the two epidemics:
 - Measles: 0.7 months
 - Influenza: 0.6 weeks

- Influenza outbreak in USA
- Doubling time ranges from 0.3–0.6 weeks during epidemic
- Comparing the two epidemics:
 - Measles: 0.7 months
 - Influenza: 0.6 weeks
- But
 - Measles $R_0=15$
 - Influenza R₀=2

- Influenza outbreak in USA
- Doubling time ranges from 0.3–0.6 weeks during epidemic
- Comparing the two epidemics:
 - Measles: 0.7 months
 - Influenza: 0.6 weeks
- But
 - Measles $R_0=15$
 - Influenza R₀=2

- Consider two outbreaks:
 - Blue: R=2
 - Red: R=3

- Consider two outbreaks:
 - Blue: R=2
 - Red: R=3
- Because blue grows more rapidly, we may think it has a higher reproductive number
- The outbreaks have different generation times
 - Blue: Generation T=2
 - Red: Generation T=4

- Generation time
 - time between time of infection in subsequent generations of infection
 - time between becoming infected and infecting others
- Both R₀ and generation time are important for the disease growth rate early in an epidemic

Generation Time & Serial Intervals

- Serial Interval
 - time between symptom onset in subsequent generations of cases
 - often used as a proxy for generation time

symptom infection onset generation time incubation period infectiousness latent period

Generation Time & Epidemics

- Incubation period
 - time between infection and development of symptoms
- Latent period
 - time between infection and becoming infectious
- Infectious period
 - period when a case is infectious
- Generation time is most important
 - depends on biological factors and number of contacts

Reproductive Numbers & Generation Times

Pathogen	R0	Generation Time (days)
Cholera	2.6, 5.0, 4.0-15.0	7.1-9.3, 7-10
Dengue	1.3-6.3	19-22, 24
Influenza	1.5-2.0	3.6, 1.5–2.7, 3.1, 2.2–4, 2.7
Malaria	1-10, 100-1000, 1-3000	60—120, >200
Measles	7.7, 7.1—29.3, 11.0—18.0	9—17, 12
Rubella	2.9-7.8, 3.4-5.6	22, 15–23
SARS	1.2, 2.7, 2.2-3.6	8.4
Smallpox	3.2, 6.9, 3.5-6.0	14-16, 16, 14-20

- Generation time is also disease- and setting-specific
- Easier to understand why influenza grows more quickly than measles

Doubling Time & Generation Time

- R, doubling time, and generation time are related
- Influenza

•
$$T_d = 2.5 \ days$$

- $T_g = 2.5 \ days$
- Measles
 - $T_d = 4.7 \ days$
 - $T_g = 18 \ days$

$$T_d = \frac{\ln 2}{\ln \left(\frac{R}{T_g}\right)}$$

- T_d : doubling time
- T_g : generation time
- *R*: reproductive number

Doubling Time & Generation Time

Disease	R_0	T _g (days)	T _d (days)
Cholera	2.6	8.5	6.4
Dengue	4.0	20	10
Influenza	2.0	2.5	2.5
Measles	15.0	18	4.7
Rubella	5.0	22	9.5
SARS	2.7	8.4	5.8
Smallpox	4.0	16	8

$$R = 2^{T_g/T_d}$$

 We can use doubling time and generation time to estimate R

Herd Immunity

- Herd immunity
 - proportion of the population that is immune to infection
 - indirect protection resulting from immune individuals in the population
 - HI = 1 s

- Susceptible
- Immune

- Herd immunity
 - recall that the number of new cases depends on the presence of infected persons (to cause infection) but also the presence of susceptible persons (to become infected)
 - $\bullet R_t = R_0 s_t$

- Susceptible
- Immune

- Herd immunity
 - recall that the number of new cases depends on the presence of infected persons (to cause infection) but also the presence of susceptible persons (to become infected)
 - $R_t = R_0 s_t$
 - if half of the population is immune, the reproductive number is cut in half
 - if there are enough immunes, we can control transmission

- Susceptible
- Immune

- Herd immunity threshold (HIT)
 - the proportion of the population that would need to be immune to control transmission
 - transmission is controlled when Rt=1

•
$$HIT = 1 - \frac{1}{R_0}$$

What is the HIT for this population?

- Susceptible
- Immune

- Herd immunity threshold (HIT)
 - the proportion of the population that would need to be immune to control transmission
 - transmission is controlled when Rt=1

•
$$HIT = 1 - \frac{1}{R_0}$$

- What is the HIT for this population?
- HIT=75%

- Susceptible
- Immune

Herd Immunity Threshold

Disease	R_0	HIT (%)
Diphtheria	7.2	82-87
Malaria	100	99
Measles	15.0	90-95
Pertussis	15.0	90-95
Poliomyelitis	6.0	82-87
Rubella	5.0	82-87
Smallpox	4.0	70-80

Determinants of Epidemic Growth

- Many factors contribute to the growth of an epidemic
 - we are interested in trying to estimate these parameters
 - these give us an idea of how much control/intervention is needed
- In simple scenarios (e.g. random mixing), R is easier to estimate
- More complex scenarios require the use of modeling

Workshop Schedule

Time	Topics
2:00-2:05 pm	Greetings
2:05-3:00 pm	Epidemic Determinants
3:00-3:10 pm	Break
3:10-4:00 pm	R Practical: Working with Data
4:00-4:10 pm	Break
4:10-5:00 pm	R Practical: Data Summaries