Union Find

Data Structures and Algorithms 2

Oswin Aichholzer

Union Find, setting:

- Set S of n elements: $S = \{s_1, s_2, \dots, s_n\}$
- S is partitioned into subsets S_1, S_2, \ldots, S_k , that is, $S = \bigcup_{i=1,\ldots,k} S_i$ and $S_i \cap S_j = \emptyset$ for $i \neq j$.

Union Find, setting:

- Set S of n elements: $S = \{s_1, s_2, \ldots, s_n\}$
- S is partitioned into subsets S_1, S_2, \ldots, S_k , that is, $S = \bigcup_{i=1,\ldots,k} S_i$ and $S_i \cap S_j = \emptyset$ for $i \neq j$.

S set

Union Find, setting:

- Set S of n elements: $S = \{s_1, s_2, \dots, s_n\}$
- S is partitioned into subsets S_1, S_2, \ldots, S_k , that is, $S = \bigcup_{i=1,\ldots,k} S_i$ and $S_i \cap S_j = \emptyset$ for $i \neq j$.

S set

 $oxed{S_1}$ $oxed{S_2}$ $oxed{S_3}$ $oxed{S_4}$ partition

Union Find, setting:

- Set S of n elements: $S = \{s_1, s_2, \dots, s_n\}$
- S is partitioned into subsets S_1, S_2, \ldots, S_k , that is, $S = \bigcup_{i=1,\ldots,k} S_i$ and $S_i \cap S_j = \emptyset$ for $i \neq j$.

S set

 $oxed{S_1} oxed{S_2} oxed{S_3} oxed{S_4}$ partition

A B C D E F G H I J K elements

Union Find, setting:

- Set S of n elements: $S = \{s_1, s_2, \dots, s_n\}$
- S is partitioned into subsets S_1, S_2, \ldots, S_k , that is, $S = \bigcup_{i=1,\ldots,k} S_i$ and $S_i \cap S_j = \emptyset$ for $i \neq j$.

Two operations:

2 v

- Union (S_i, S_j) : Combine two subsets S_i and S_j to a new subset: $S_{new} = S_i \cup S_j$.
- Find(s_x): Find the subset S_i to which s_x belongs

Union Find, setting:

- Set S of n elements: $S = \{s_1, s_2, \dots, s_n\}$
- S is partitioned into subsets S_1, S_2, \ldots, S_k , that is, $S = \bigcup_{i=1,\ldots,k} S_i$ and $S_i \cap S_j = \emptyset$ for $i \neq j$.

Two operations:

- Union (S_i, S_j) : Combine two subsets S_i and S_j to a new subset: $S_{new} = S_i \cup S_j$.
- Find(s_x): Find the subset S_i to which s_x belongs

Question:

2 vi

• How fast can a sequence of n-1 unions and f finds (in arbitrarily interleaved order) be performed?

Initial setting:

3 i

- Initially there are n subsets $S_i = \{s_i\}$, $i = 1, \ldots, n$
- Exampe: $S = \{A, B, C, D, E\}$ $S_1 = \{A\}$, $S_2 = \{B\}$, $S_3 = \{C\}$, $S_4 = \{D\}$, $S_5 = \{E\}$,

Initial setting:

- Initially there are n subsets $S_i = \{s_i\}$, $i = 1, \ldots, n$
- Exampe: $S = \{A, B, C, D, E\}$ $S_1 = \{A\}$, $S_2 = \{B\}$, $S_3 = \{C\}$, $S_4 = \{D\}$, $S_5 = \{E\}$,

$$FIND(D)=S_4$$

3 ii

Initial setting:

3 iii

- Initially there are n subsets $S_i = \{s_i\}$, $i = 1, \ldots, n$
- Exampe: $S=\{A,B,C,D,E\}$ $S_1=\{A\},\ S_2=\{B\},\ S_3=\{C\},\ S_4=\{D\},\ S_5=\{E\},$

$$FIND(D)=S_4$$

 $UNION(S_3, S_4)$

%New set always gets smaller index

Initial setting:

3 iv

- Initially there are n subsets $S_i = \{s_i\}$, $i = 1, \ldots, n$
- Exampe: $S=\{A,B,C,D,E\}$ $S_1=\{A\},\ S_2=\{B\},\ S_3=\{C\},\ S_4=\{D\},\ S_5=\{E\},$

$$FIND(D)=S_4$$
 $UNION(S_3,S_4)$ %New set always gets smaller index
 $FIND(A)=S_1$

Initial setting:

3 v

- Initially there are n subsets $S_i = \{s_i\}$, $i = 1, \ldots, n$
- Exampe: $S=\{A,B,C,D,E\}$ $S_1=\{A\}$, $S_2=\{B\}$, $S_3=\{C\}$, $S_4=\{D\}$, $S_5=\{E\}$,

FIND(D)=
$$S_4$$

UNION(S_3, S_4)
FIND(A)= S_1
FIND(D)= S_3

%New set always gets smaller index

Initial setting:

- Initially there are n subsets $S_i = \{s_i\}$, $i = 1, \ldots, n$
- Exampe: $S=\{A,B,C,D,E\}$ $S_1=\{A\},\ S_2=\{B\},\ S_3=\{C\},\ S_4=\{D\},\ S_5=\{E\},$

FIND(D)=
$$S_4$$

UNION(S_3, S_4)
FIND(A)= S_1
FIND(D)= S_3
UNION(S_1, S_3)

3 vi

%New set always gets smaller index

Initial setting:

- Initially there are n subsets $S_i = \{s_i\}$, $i = 1, \ldots, n$
- Exampe: $S=\{A,B,C,D,E\}$ $S_1=\{A\},\ S_2=\{B\},\ S_3=\{C\},\ S_4=\{D\},\ S_5=\{E\},$

FIND(D)=
$$S_4$$

UNION(S_3, S_4)
FIND(Δ)- S_4

%New set always gets smaller index

FIND(A)= S_1 FIND(D)= S_3 UNION(S_1, S_3) UNION(S_2, S_5)

Initial setting:

- Initially there are n subsets $S_i = \{s_i\}, i = 1, \ldots, n$
- Exampe: $S = \{A, B, C, D, E\}$ $S_1 = \{A\}, S_2 = \{B\}, S_3 = \{C\}, S_4 = \{D\}, S_5 = \{E\},$

$$FIND(D)=S_4$$

 $UNION(S_3, S_4)$

%New set always gets smaller index

UNION
$$(S_3, S_4)$$

FIND(A)= S_1
FIND(D)= S_3
UNION (S_1, S_3)
UNION (S_2, S_5)
FIND(D)= S_1

Initial setting:

- Initially there are n subsets $S_i = \{s_i\}, i = 1, \ldots, n$
- Exampe: $S = \{A, B, C, D, E\}$ $S_1 = \{A\}, S_2 = \{B\}, S_3 = \{C\}, S_4 = \{D\}, S_5 = \{E\},$

$$\mathsf{FIND}(\mathsf{D}) = S_4 \ \mathsf{UNION}(S_3, S_4) \ \mathsf{``New set always gets smaller index}$$

$$FIND(A)=S_1$$

$$FIND(D)=S_3$$

$$\mathsf{UNION}(S_1,S_3)$$

$$\mathsf{UNION}(S_2,S_5)$$

$$FIND(D)=S_1$$

$$FIND(E)=S_2$$

$$FIND(E)=S_2 \Rightarrow S_1 = \{A, C, D\}, S_2 = \{B, E\}$$

Minimum Spanning Tree:

- Let G be a weighted graph.
- ullet Compute a spanning tree $\in G$ of minimum weight

More details about minimum spanning trees (algorithms, correctness etc.) in the lecture Design and Analysis of Algorithms

Minimum Spanning Tree:

- Let G be a weighted graph.
- ullet Compute a spanning tree $\in G$ of minimum weight

More details about minimum spanning trees (algorithms, correctness etc.) in the lecture Design and Analysis of Algorithms

Algorithm:

- Greedy Algorithm: Add short edges (in increasing order),
 but only if they don't close a cycle, until we get a tree.
- We need to check if an edge $e = p_i, p_j$ closes a cycle!

Minimum Spanning Tree:

- Let G be a weighted graph.
- ullet Compute a spanning tree $\in G$ of minimum weight

More details about minimum spanning trees (algorithms, correctness etc.) in the lecture Design and Analysis of Algorithms

Algorithm:

- Greedy Algorithm: Add short edges (in increasing order),
 but only if they don't close a cycle, until we get a tree.
- We need to check if an edge $e = p_i, p_j$ closes a cycle!

Minimum Spanning Tree:

- Let G be a weighted graph.
- ullet Compute a spanning tree $\in G$ of minimum weight

More details about minimum spanning trees (algorithms, correctness etc.) in the lecture Design and Analysis of Algorithms

Algorithm:

4 iv

- Greedy Algorithm: Add short edges (in increasing order),
 but only if they don't close a cycle, until we get a tree.
- We need to check if an edge $e = p_i, p_j$ closes a cycle!

Minimum Spanning Tree:

- Let G be a weighted graph.
- ullet Compute a spanning tree $\in G$ of minimum weight

More details about minimum spanning trees (algorithms, correctness etc.) in the lecture Design and Analysis of Algorithms

Algorithm:

- Greedy Algorithm: Add short edges (in increasing order),
 but only if they don't close a cycle, until we get a tree.
- We need to check if an edge $e = p_i, p_j$ closes a cycle!

Minimum Spanning Tree:

- Let G be a weighted graph.
- ullet Compute a spanning tree $\in G$ of minimum weight

More details about minimum spanning trees (algorithms, correctness etc.) in the lecture Design and Analysis of Algorithms

Algorithm:

- Greedy Algorithm: Add short edges (in increasing order),
 but only if they don't close a cycle, until we get a tree.
- We need to check if an edge $e = p_i, p_j$ closes a cycle!

Minimum Spanning Tree:

- Let G be a weighted graph.
- ullet Compute a spanning tree $\in G$ of minimum weight

More details about minimum spanning trees (algorithms, correctness etc.) in the lecture Design and Analysis of Algorithms

Algorithm:

4 vii

- Greedy Algorithm: Add short edges (in increasing order),
 but only if they don't close a cycle, until we get a tree.
- We need to check if an edge $e = p_i, p_j$ closes a cycle!

Minimum Spanning Tree:

- Let G be a weighted graph.
- ullet Compute a spanning tree $\in G$ of minimum weight

More details about minimum spanning trees (algorithms, correctness etc.) in the lecture Design and Analysis of Algorithms

Algorithm:

- Greedy Algorithm: Add short edges (in increasing order),
 but only if they don't close a cycle, until we get a tree.
- We need to check if an edge $e = p_i, p_j$ closes a cycle!

Minimum Spanning Tree:

- Let G be a weighted graph.
- ullet Compute a spanning tree $\in G$ of minimum weight

More details about minimum spanning trees (algorithms, correctness etc.) in the lecture Design and Analysis of Algorithms

Algorithm:

4 ix

- Greedy Algorithm: Add short edges (in increasing order),
 but only if they don't close a cycle, until we get a tree.
- We need to check if an edge $e = p_i, p_j$ closes a cycle!

Minimum Spanning Tree:

- Let G be a weighted graph.
- ullet Compute a spanning tree $\in G$ of minimum weight

More details about minimum spanning trees (algorithms, correctness etc.) in the lecture Design and Analysis of Algorithms

Algorithm:

- Greedy Algorithm: Add short edges (in increasing order),
 but only if they don't close a cycle, until we get a tree.
- We need to check if an edge $e = p_i, p_j$ closes a cycle!

Minimum Spanning Tree:

- Let G be a weighted graph.
- ullet Compute a spanning tree $\in G$ of minimum weight

More details about minimum spanning trees (algorithms, correctness etc.) in the lecture Design and Analysis of Algorithms

Algorithm:

4 xi

- Greedy Algorithm: Add short edges (in increasing order),
 but only if they don't close a cycle, until we get a tree.
- We need to check if an edge $e = p_i, p_j$ closes a cycle!

Minimum Spanning Tree:

- Let G be a weighted graph.
- ullet Compute a spanning tree $\in G$ of minimum weight

How to check if an edge $e = p_i, p_j$ closes a cycle?

- Use UNION-FIND
- Initially each point is in its own set: $S_i = \{p_i\}$
- When inserting the edge $e = p_i, p_j$: UNION (S_{p_i}, S_{p_j})
- Edge $e = p_i, p_j$ closes a cycle $\Leftrightarrow \mathsf{FIND}(p_i) = \mathsf{FIND}(p_j)$

Minimum Spanning Tree:

- Let G be a weighted graph.
- ullet Compute a spanning tree $\in G$ of minimum weight

How to check if an edge $e = p_i, p_j$ closes a cycle?

- Use UNION-FIND
- Initially each point is in its own set: $S_i = \{p_i\}$
- When inserting the edge $e = p_i, p_j$: UNION (S_{p_i}, S_{p_j})
- Edge $e = p_i, p_j$ closes a cycle $\Leftrightarrow \mathsf{FIND}(p_i) = \mathsf{FIND}(p_j)$

Runtime:

• If G has n vertices and m edges, then we need n-1 unions and O(m) finds

Version I: Fast FIND

Constant time FIND operation

Store each set as a tree:

- Each set S_i is a tree of height 1
- Leaves of the tree are the elements (in arbitrary order)
- Each leaf points to the root and to the next element

6 i

Store each set as a tree:

6 ii

- Each set S_i is a tree of height 1
- Leaves of the tree are the elements (in arbitrary order)
- Each leaf points to the root and to the next element

• FIND(x): inspect pointer to root in $\Theta(1)$ time

Store each set as a tree:

- Each set S_i is a tree of height 1
- Leaves of the tree are the elements (in arbitrary order)
- Each leaf points to the root and to the next element

- FIND(x): inspect pointer to root in $\Theta(1)$ time
- UNION (S_i, S_j) : update pointers of one set and link elements in time $\Theta(|S_i|)$ or $\Theta(|S_j|)$

Store each set as a tree:

6 iv

- Each set S_i is a tree of height 1
- Leaves of the tree are the elements (in arbitrary order)
- Each leaf points to the root and to the next element

Remark: root contains pointers to first and last element

- FIND(x): inspect pointer to root in $\Theta(1)$ time
- UNION (S_i, S_j) : update pointers of one set and link elements in time $\Theta(|S_i|)$ or $\Theta(|S_j|)$

Analysis UNION operation:

- Assume UNION (S_i, S_j) updates the pointers of S_j
- The new sets gets index i

7 i

Analysis UNION operation:

- Assume UNION (S_i, S_j) updates the pointers of S_j
- The new sets gets index i

7 ii

Then the sequence $\mathsf{UNION}(S_{i-1}, S_i)$ for i = n down to 2 needs $1 + 2 + 3 + \ldots + (n-1) = \Theta(n^2)$ pointer updates

• Then a UNION() operation needs $\Theta(n)$ time in average.

Fast FIND

Analysis UNION operation:

- Assume UNION (S_i, S_j) updates the pointers of S_j
- The new sets gets index i

Then the sequence $\mathsf{UNION}(S_{i-1}, S_i)$ for i = n down to 2 needs $1 + 2 + 3 + \ldots + (n-1) = \Theta(n^2)$ pointer updates

• Then a UNION() operation needs $\Theta(n)$ time in average.

Idea: update smaller set (make u UNION() operations)

- For a fixed element $x \in S$ in each UNION() step which 'moves' x the size of the resulting set at least doubles
- After u_x UNION() steps of x we get $2^{u_x} \le |S_{u_x}| \le u$
- $u_x = O(\log u)$: each element is updated $O(\log u)$ times
- So u UNION() operations need $O(u \log u)$ time

Fast FIND

Lemma (Fast FIND):

8 i

• A sequence of n-1 unions and f finds can be performed in $O(n\log n + f)$ time.

Fast FIND

Lemma (Fast FIND):

8 ii

• A sequence of n-1 unions and f finds can be performed in $O(n\log n + f)$ time.

Remark: The minimum spanning tree of a graph with n vertices and m edges can be computed in $O(n \log n + m)$ time.

Version II: Fast UNION

Constant time UNION operation

Store each set as a tree:

- Each set S_i is a tree of height h_i
- Nodes are the elements with pointers towards the root
- Root contains the id S_i and the number of nodes

10 i

Store each set as a tree:

10 ii

- Each set S_i is a tree of height h_i
- Nodes are the elements with pointers towards the root
- Root contains the id S_i and the number of nodes

• FIND(x): follow pointers towards the root, then inspect root. Time needed: $\Theta(h_i)$

Store each set as a tree:

- Each set S_i is a tree of height h_i
- Nodes are the elements with pointers towards the root
- Root contains the id S_i and the number of nodes

- FIND(x): follow pointers towards the root, then inspect root. Time needed: $\Theta(h_i)$
- UNION (S_i, S_j) : connect root of the smaller tree as child to the root of the larger tree, update treesize. Time $\Theta(1)$

Store each set as a tree:

- Each set S_i is a tree of height h_i
- Nodes are the elements with pointers towards the root
- Root contains the id S_i and the number of nodes

- FIND(x): follow pointers towards the root, then inspect root. Time needed: $\Theta(h_i)$
- UNION (S_i, S_i) : connect root of the smaller tree as child to the root of the larger tree, update treesize. Time $\Theta(1)$

Analysis of depth of tree:

- For a (sub)tree T let h_T be its height, and |T| its size
- Claim: $|T| \geq 2^{h_T}$

11 i

Analysis of depth of tree:

- For a (sub)tree T let h_T be its height, and |T| its size
- Claim: $|T| \geq 2^{h_T}$

11 ii

- Proof by induction over h_T
- Induction base: $h_T = 0$ (single node), $|T| = 1 \ge 2^0 = 1$

Analysis of depth of tree:

- For a (sub)tree T let h_T be its height, and |T| its size
- Claim: $|T| \geq 2^{h_T}$
- Proof by induction over h_T
- Induction base: $h_T = 0$ (single node), $|T| = 1 \ge 2^0 = 1$
- Induction step: $h_T > 0$
- Let s be the son with heighest subtree T_s , $h_{T_s} = h_T 1$
- By induction we have $|T_s| \ge 2^{h_{T_s}} = 2^{h_T-1}$
- Consider UNION() when s got a son of the root of $T \setminus T_s$: by the 'smaller' rule we know $|T \setminus T_s| \ge |T_s|$
- Thus $|T| \ge 2|T_s| = 2 \times 2^{h_T 1} = 2^{h_T}$, q.e.d.

- From $|T| \ge 2^{h_T}$ we have $h_T = \log_2 |T| = O(\log n)$
- FIND() needs only $O(\log n)$ time

- From $|T| \ge 2^{h_T}$ we have $h_T = \log_2 |T| = O(\log n)$
- FIND() needs only $O(\log n)$ time

Lemma (Fast UNION):

12 ii

• A sequence of n-1 unions and f finds can be performed in $O(n+f\log n)$ time.

Remark: For few finds (f = o(n)) this is faster than the previous approach

Version III: Almost Linear

Fast UNION and FIND operation

Idea: shorten path to root

14 i

 For each FIND() of the previous approach link the visited nodes directly to the root

Idea: shorten path to root

 For each FIND() of the previous approach link the visited nodes directly to the root

ullet First search for the root r as usual

Idea: shorten path to root

 For each FIND() of the previous approach link the visited nodes directly to the root

- ullet First search for the root r as usual
- ullet Then search a second time and relink all pointers to r

Idea: shorten path to root

 For each FIND() of the previous approach link the visited nodes directly to the root

- ullet First search for the root r as usual
- ullet Then search a second time and relink all pointers to r

Idea: shorten path to root

14 v

 For each FIND() of the previous approach link the visited nodes directly to the root

- ullet First search for the root r as usual
- ullet Then search a second time and relink all pointers to r

Idea: shorten path to root

 For each FIND() of the previous approach link the visited nodes directly to the root

- ullet First search for the root r as usual
- ullet Then search a second time and relink all pointers to r

Idea: shorten path to root

 For each FIND() of the previous approach link the visited nodes directly to the root

- ullet First search for the root r as usual
- ullet Then search a second time and relink all pointers to r
- Further FIND() operations get potentially much faster

Lemma (Almost Linear):

- A sequence of n-1 unions and $f \ge n$ finds can be performed in $O(f \cdot \alpha(f,n))$ time.
- Lemma without proof

15 i

• $\alpha(f,n)$ is the inverse of the Ackermann-function A(i,n)

Lemma (Almost Linear):

- A sequence of n-1 unions and $f \ge n$ finds can be performed in $O(f \cdot \alpha(f,n))$ time.
- Lemma without proof
- $\alpha(f,n)$ is the inverse of the Ackermann-function A(i,n)
- $A(1,n) = 2^n \text{ for } n \ge 1$
- A(i,1) = A(i-1,2) for $i \ge 2$
- A(i,n) = A(i-1,A(i,n-1)) for $i,n \ge 2$

Reasonable input: $\alpha(f, n) < 4$

16 i

- $\alpha(f,n)$ grows more than moderate:
- For $f \geq 3$ we have $\alpha(f,n) < \alpha(2,n) = \log_2^* n 1$

Reasonable input: $\alpha(f, n) < 4$

16 ii

- $\alpha(f,n)$ grows more than moderate:
- For $f \geq 3$ we have $\alpha(f,n) < \alpha(2,n) = \log_2^* n 1$
- $\log_2^* n = \min\{i \in \mathbb{N} | \log_2^{(i)} n \le 1\}$ (iterative logarithm)
- $\log_2^{(i)} n = \log_2(\log_2(\log_2(\ldots \log_2 n))) i$ times
- Example: $\log_2^*(65536) = 1 + \log_2^*(16) = 2 + \log_2^*(4) = 3 + \log_2^*(2) = 4$
- For $n \le 2^{65536} \approx 10^{19728}$ we have $\log_2^* n \le 5$.

Reasonable input: $\alpha(f, n) < 4$

16 iii

- $\alpha(f,n)$ grows more than moderate:
- For $f \geq 3$ we have $\alpha(f,n) < \alpha(2,n) = \log_2^* n 1$
- $\log_2^* n = \min\{i \in \mathbb{N} | \log_2^{(i)} n \le 1\}$ (iterative logarithm)
- $\log_2^{(i)} n = \log_2(\log_2(\log_2(\ldots \log_2 n))) i$ times
- Example: $\log_2^*(65536) = 1 + \log_2^*(16) = 2 + \log_2^*(4) = 3 + \log_2^*(2) = 4$
- For $n \le 2^{65536} \approx 10^{19728}$ we have $\log_2^* n \le 5$.
- So for any reasonable input $\log_2^* n \le 5$
- Thus $O(f\alpha(f,n))$ is linear in f for all practical problems
- A lower bound of $\Omega(f\alpha(f,n))$ can be shown

UNION - FINAL

Lemma (Fast FIND): A sequence of n-1 unions and f finds can be performed in $O(n \log n + f)$ time.

Lemma (Fast UNION): A sequence of n-1 unions and f finds can be performed in $O(n+f\log n)$ time.

Lemma (Almost Linear): A sequence of n-1 unions and $f \ge n$ finds can be performed in $O(f \cdot \alpha(f, n))$ time.