BRAC UNIVERSITY CSE460 VLSI DESIGN Quiz - 2

Time: 30 minutes Set-B

Name	e <i>:</i>				,	D:		S	ection:
Ques	stion	<u>1:</u> [1	0 Marks	s]					
a.			_			_		the Ts avoiding	
	-				-		•	n in separate	-
	conse	ecutiv	e numbers	s to denote	the grids i	n every i	teration.		(6)
		T ₁							
					T ₁				
T ₂			S						
- 2				T_2		S			
		T_1							
					T ₁		4		
T ₂			S						
12			3	T_2		S			
									(0)
			•	requireme			:6	1.0	(2)
C.				een the me	emory requ	urement	if we denote	ed the grids as	
لہ			3,"	4l		.!	: £	والمنسو موالا إما	(1)
a.	vvna	ı wou	iu nave be	een the me	mory requ	urement	ii we denote	ed the grids as	

(1)

"0,0,1,1,0,0,1,1,...."

Question 2: [10 Marks]

The graph below (nodes a-d) can be optimally partitioned using the Kernighan-Lin algorithm. The dotted line represents the initial partitioning. Assume all the edges have the same weight.

a.	Calculate the initial cut cost.	(1)
b.	How many iterations will there be in the first pass (pass is the outer loop)?	(1)
C.	Perform the first pass of the KL algorithm. Identify the optimized partition.	(7)
d.	Are any further passes necessary? State the reason for your answer.	(1)