Algoritmo de Huffman

Código de Huffman

- Algoritmo para a compressão de arquivos, principalmente arquivos textos
- Atribui códigos menores para símbolos mais frequentes e códigos maiores para símbolos menos frequentes
- Código é um conjunto de bits

Código de Huffman

 Representação dos dados é feita com códigos de tamanho variável

Código ASCII	Código de Huffman
A=01000001	A=? (0)
B=01000010	B=? (110)
· ·	
a=01100001	a=? (1111110)
b=01100010	b=? (1111111110)

Exemplo

 Supondo A e C mais frequentes que B e D no conjunto de valores possíveis

Símbolo	Código
Α	0
В	110
С	10
D	111

- O código de um símbolo não pode ser prefixo de um outro código
 - Se isso acontece, tem-se ambigüidade na decodificação
- Ex: ACBA = 01010
- Os dois bits em vermelho são A e C ou B?
- Veja que o código de A é prefixo do código de B

Símbolo	Huffman
Α	0
В	01
С	1

- Dada uma tabela de freqüências como determinar o melhor conjunto de códigos, ou seja, o conjunto que comprimirá mais os símbolos?
- Huffman desenvolveu um algoritmo para isso e mostrou que o conjunto de símbolos obtidos é o melhor para conjuntos de dados que têm a freqüência de seus símbolos igual a tabela de freqüência usada

Informações de frequência

- Algoritmo de Huffman produz tabela de códigos baseada em informações de freqüência
- Dependência do tipo de dado primário

- Dado: Tabela de freqüências dos N símbolos de um alfabeto
- Objetivo: Atribuir códigos aos símbolos de modo que os mais freqüentes tenham códigos menores (menos bits)

O processo de compressão

- Construir uma árvore binária tal que
 - A) suas folhas sejam os N símbolos do alfabeto
 - B)cada ramo da árvore seja um valor 1 (esquerda) ou 0 (direita)
 - Isso é uma convenção, o contrário também funciona
 - O código de um símbolo será a seqüência de bits dos ramos da raiz até sua posição na árvore

Símbolo	Código
Α	0
В	110
С	10
D	111

Exemplo

Símbolo	Freq.
Α	25
В	20
С	15
D	15
E	10
F	8
G	8
Н	4
I	4

Exemplo

Símbolo	Freq.	Código
Α	25	01
В	20	00
С	15	101
D	15	100
E	10	1111
F	8	1101
G	8	1100
Н	4	11101
I	4	11100

Como chegamos nisso??

- Monta-se uma lista com todas as frequências de símbolos ordenadas pela frequencia
- Agrupam-se as menores frequencias gerando-se um novo nó com frequencia igual à soma das frequencias
- Ordena-se tudo novamente
- Passo é repetido até obter 1 único nó

Passo a passo

- Passo 1
 - A (25) B(20) C(15) D(15) E(10) F(8) G(8) H(4) I(4)
- Passo 2
 - A (25) B(20) C(15) D(15) E(10) HI (8) F(8) G(8)
- Passo 3
 - A (25) B(20) FG(16) C(15) D(15) E(10) HI (8)
- Passo 4
 - A(25) B(20) EHI(18) FG(16) C(15) D(15)

Passo a Passo

- Passo 5
 - CD (30) A(25) B(20) EHI(18) FG(16)
- Passo 6
 - EHIFG(34) CD (30) A(25) B(20)
- Passo 7
 - AB(45) EHIFG(34) CD(30)
- Passo 8
 - AB(45) CDEHIFG(64)
- Passo 9
 - ABCDEHIFG(109)

Tabela de códigos

Símbolo	Nº bits	Código
Α	2	01
В	2	00
С	3	101
D	3	100
Е	4	1111
F	4	1101
G	4	1100
Н	5	11101
Ι	5	11100

Árvore Gerada

Α	25	01
В	20	00
C	15	101
D	15	100
Е	10	1111
F	8	1101
G	8	1100
Н	4	11101
Ι	4	11100