

TEKNOFEST-2025 ROKET YARIŞMASI Orta İrtifa Kategorisi Ön Tasarım Raporu (ÖTR) Sunuşu TRAKYA ROKET TAKIMI

Takım Yapısı

Takım Danışmanı Dr. Öğr. Üyesi Deniz TAŞKIN Trakya Üniversitesi Bilgisayar Mühendisliği Bölümü

Genel Tasarım ve Analiz Hüseyin Altun Makine Müh. 3. Sınıf

Genel Tasarım ve Analiz Safa Candas Makine Müh. 2. Sınıf

Genel Tasarım ve Analiz Burak Arslan Makine Müh. Mezun

Genel Tasarım ve Analiz Kayahan Filiz Makine Müh. 2. Sınıf

Aviyonik Sistemler Cınar Ünver Bilgisayar Müh. 1. Sınıf

Aviyonik Sistemler Ahmet Elçin Bilgisayar Müh. 1. Sınıf

Aviyonik Sistemler Ataberk Pala Elektrik-Elektronik Müh. 4. Sınıf

Aviyonik Sistemler Cansu Karınca Elektrik-Elektronik Müh. 2.Sınıf

Aviyonik Sistemler Betül Nar Elektrik-Elektronik Müh. 2. Sınıf

Takım Kaptanı Kıvanç Kafran Makine Müh. 2. Sınıf

Kurtarma Sistemleri Semih Vardar Makine Müh. 3. sınıf

Kurtarma Sistemleri Hilal Bayırlı Makine Müh. 3. Sınıf

Kurtarma Sistemleri Buğra Durmaz Makine Müh. 2. Sınıf

Kurtarma Sistemleri Sila Doğanay Makine Müh. Hazırlık Sınıfı

Tüm takım üyeleri Trakya Üniversitesi'nde öğrenim görmektedir.

Yarışma Roketi Genel Bilgiler

Yarışma Roketi Hakkında Genel Bilgiler

	Ölçü
Boy (mm):	2750 mm
Çap (mm):	131 mm
Roketin Kuru Ağırlığı (g):	15748 g
Yakıt Kütlesi (g):	3951 g
Motorun Kuru Ağırlığı (g):	2742 g
Faydalı Yük Ağırlığı (g):	4070 g
Toplam Kalkış Ağırlığı (g):	26511 g

Tahmin Edilen Uçuş Verileri ve Analizleri

	Ölçü
Kalkış İtki/Ağırlık Oranı:	9.27047
Rampa Çıkış Hızı (m/s):	28.9 m/s
Stabilite (0.3 Mach için):	1.91 cal
En büyük ivme (g):	80.9 g
En Yüksek Hız (m/s):	226 m/s
En Yüksek Mach Sayısı:	0.676 Mach
Tepe Noktası İrtifası (m):	2711 m

Motor

AerotechM1850

Genel Tasarım

Operasyon Konsepti (CONOPS)

Görev yükü tepe noktasında 4. aşamada 1. ayrılma ile roketten ayrılır.

Grafik-1: Roketin uçuş süresince Yükseklik-Zaman Grafiği

Tablo-1: Uçuş Profili

Aşama	Zaman (s)	İrtifa (m)	Düşey Hız (m/s)
1-Fırlatma	0	0	0
2- Rampa çıkışı	0.46	6.09	28.9
3- Burn out	6.5	1046.32	204.5
4- 1. Ayrılma	24.26	2711	0
5- Görev yükü ayrılması	24.31	2710.89	0.52
6- 2. Ayrılma	120.39	499.85	22.14
7- Roket inişi	191.27	0	6.82
8-Görev yükü inişi	290.68	0	10.20

Uçuş Benzetim Raporu (UBR)

"Trakya_Roket_Takimi_Ucus_Benzetimi_2025_OTR.pdf" dosyası olarak sisteme yüklenmiştir.

Kütle Bütçesi

"kutle_butcesi.xlsx" dosyası olarak sisteme yüklenmiştir.

Roket Alt Sistem Detayları

Burun Konisi – Detay

Power Series, eğrisel geometrinin yüksek doğrulukla tanımlanmasını sağlayarak aerodinamik performansın optimize edilmesine katkıda bulunmaktadır.

Tablo-2: Burun Konisi Tasarımı

Geometri	Şekil Parametresi	Burun Konisi Uzunluğu	Taban Dış Çapı	Duvar Kalınlığı	Burun Konisi Omuzluk Uzunluğu	Burun Konisi Omuzluk Dış Çapı	Burun Konisi Omuzluk Duvar Kalınlığı	Bileşen Malzemesi
Power Series	0.5	250 mm	131 mm	3 mm	200 mm	124 mm	3 mm	Cam Elyaf
			(CAD Tasarın	าเ			
		© ©						

Geometrinin oluşturulmasında kullanılan formüller:

$$0 \le n \le 1 : y = R(\frac{x}{L})^n$$

Burun Konisi – Detay

	Getir/Götür Analizi Tablosu												
		Seçenek 1			Seçenek	2		Seçenel	k 3	Getir/Götür			
Özellik	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Analizi			
Tasarım	Power Series	Üretim kolaylığı ve 0.8 Mach altı hızlarda iyi sürüklenme sağlar.	Ağırlığı ve yüzey alanı fazladır.	Parabolik	Düşük ağırlık ve yüzey alanına sahiptir.	Üretim zorluğu vardır.	Konik	Yapısal dayanıklılık ve düşük ağırlık sağlar.	Düşük aerodinamik verim sağlar.	Üretim kolaylığı ve istikrarlı uçuş nedeniyle Power Series tercih edilmiştir.			
Malzeme	Cam Elyaf	Hafif ve RF sinyal geçirgenliği vardır. Kolay şekillendirilebilir.	Mukavemeti görece düşüktür.	Karbon Fiber	Yüksek sıcaklıklara karşı dayanıklıdır.	Zor şekillendirilir ve RF sinyali geçirmez.	AISI 304	Yüksek mekanik özellikler sağlar.	Yoğunluğu çok fazladır. RF sinyali geçirmez.	Cam elyaf sinyal geçirgenliği sağladığı için tercih edilmiştir.			
Üretim Yöntemi	Vakum İnfüzyon	Yüzey toleransı düşüktür, boşluklu yapı oluşmadığından mekanik özellikleri çok iyidir.	Üretim zorluğu vardır ve maliyetlidir.	Satın Alma	Zaman tasarrufu sağlar. Kolay temin edilir.	Maliyeti yüksektir.	Elle Yatırma	Üretimi kolaydır ve maliyeti düşüktür.	Yüzey kalitesi ve mekanik özellikler görece düşüktür.	Yüksek mekanik özellikler ve iyi yüzey kalitesi sağladığından vakum infüzyon tercih edilmiştir.			

Tablo-3: Burun Konisi Getir/Götür Analizi

Kanatçık – Detay

Geometri	Kanatçık Sayısı	Kök Uzunluğu	Uç Uzunluğu	Kırpılmış Uzunluğu	Yükseklik	Kanatçık Açısı	Çıkıntı Uzunluğu	Çıkıntı Yüksekliği
Kesik Uçlu Konik	4	280 mm	50 mm	50 mm	82 mm	72	280 mm	18 mm

CAD Görüntüsü

Tablo-4: Kanatçık Tasarımı

Görsel-2: Kanatçık Tasarımları

Kanatçık – Detay

	Getir/Götür Analizi Tablosu											
Özellik		Seçenek 1			Seçenek 2			Seçenek	3	Catir/Cätür Analizi		
Ozeilik	Unsur	Avantaj	Dezavantaj	Unsur	sur Avantaj Dezavantaj		Unsur	Avantaj	Dezavantaj	Getir/Götür Analizi		
Tasarım Prensibi	Kesik Uçlu Konik	Düşük sürüklenmeyle beraber yapısal dayanıklılık ve yüksek stabilite sağlar.	Üretimi karmaşıktır ve iniş anında zarar görebilir.	Eliptik	Yüksek stabilite sağlar ve kaldırma kuvveti daha dengeli dağılır.	Üretimi oldukça zordur ve yapısal kırılganlık gösterebilir.	Delta	Yüksek stabilite sağlar ve üretimi kolaydır.	Kanadın yüksekliği istenilen statik marjini sağlamak için fazla olmalıdır.	Düşük sürüklenme ve yüksek stabilite sağladığı için Kesik Uçlu Konik tercih edilmiştir.		
Malzeme	Karbon Fiber	Mukavemeti yüksektir.	Maliyeti yüksektir.	Cam Elyaf	Maliyeti düşüktür.	Mukavemeti düşüktür.	Al- 6063	Maliyeti düşüktür ve üretimi kolaydır.	Kütlesi fazladır.	Karbon fiber daha düşük ağırlıkla istenilen mekanik özellikleri sağladığından tercih edilmiştir.		
Üretim Yöntemi	Vakum İnfüzyon	Boşluklu yapı oluşmadığından mekanik özellikler çok iyidir.	Üretim yöntemi görece zordur.	Satın Alma	Kolay temin edilir.	Maliyeti yüksektir.	Elle Yatırma	Maliyeti düşüktür.	Hesaplanan mekanik özellikler elde edilemeyebilir.	Vakum infüzyon yöntemi hata payını en aza indirdiğinden dolayı tercih edilmiştir.		

Tablo-5: Kanatçık Getir/Götür Analizi

Gövde ve Entegrasyon Parçaları (YAPISAL) Mekanik Görünüm

Cam elyaf, üst gövde içerisinde bulunan uçuş kontrol bilgisayarının yer istasyonuna iletişim kurmak amacıyla gönderdiği RF sinyallerini engellemediğinden dolayı alt ve üst gövde için tercih edilmiştir.

Gövde	Воу	Dış Çap	Duvar Kalınlığı	Malzeme	CAD Görüntüsü
Orta Gövde	1450 mm	131 mm	3 mm	Cam Elyaf	
Orta Gövde Kapağı	470 mm	131 mm	3 mm	Cam Elyaf	
Alt Gövde	1050 mm	131 mm	3 mm	Cam Elyaf	

Tablo-6: Gövde Tasarımları

Gövde ve Entegrasyon Parçaları (YAPISAL) Mekanik Görünüm

Entegrasyon gövdesi, üst motor tutucunun üst kısmının entegrasyon gövdesi içine geçecek şekilde tasarlanmıştır. Al-7075 kullanılarak üretilecek bu tasarım uçuş anında iki gövdenin aynı doğrultuda kalması amacıyla ve roketin bütünlüğünü sabit tutarak burulmayı önleyeceğinden dolayı tercih edilmiştir.

Entegrasyon Parçaları	Boy (mm)	Dış Çap (mm)	İç Çap (mm)	Duvar Kalınlığı (mm)	Malzeme	CAD Görüntüsü
Burun Bölme Duvarı	10	117	8.25	54.375	Delrin	
Kurtarma Bileziği	10	124.4	20	52.2	Al-7075	
Entegrasyon Gövdesi	200	124.4	118.4	3	Al-7075	

Tablo-7: Entegrasyon Parçaları Tasarımları

Gövde ve Entegrasyon Parçaları (YAPISAL) Mekanik Görünüm

			Getir/	Götür Analizi Ta	blosu			
Özellik/		Seçenek 1			Seçenek 2		Getir/Götür Analizi Açıklaması	
Gövdeler	Unsur Avantaj		Dezavantaj	Unsur	Avantaj	Dezavantaj	Getil/ Gotal Allalizi Açıklaması	
Malzeme	Cam Elyaf	RF sinyali geçirebilir, kolay şekillendirilir ve maliyeti düşüktür.	Mekanik özellikleri görece düşüktür.	Karbon Fiber	Mekanik özellikleri yüksektir.	RF sinyali geçiremez ve maliyeti çok yüksektir.	Cam fiber sinyal geçirdiği için seçilmiştir.	
Üretim Yöntemi	Vakum İnfüzyon	Yüzey kalitesi iyidir, daha düzgün geometrik şekil elde edilir.	Üretimi zordur ve üretim süresi fazladır.	Satın Alma	Kolay temin edilir.	Maliyeti yüksektir.	Vakum infüzyon, boşluksuz yapı ve düzgün geometri sağladığı için tercih edilir.	
Özellik/		Seçenek 1			Seçenek 2	Callado III a Analla da An		
Entegrasyon Parçaları	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Getir/Götür Analizi Açıklaması	
Malzeme	Delrin	Mekanik özellikleri istenilen parçalar için yeterlidir.	Erime sıcaklığı düşüktür.	Al-7075	Mukavemeti ve erime sıcaklığı yüksektir.	Maliyeti ve yoğunluğu fazladır.	Alt motor tutucuda Al-7075 tercih edilmekle beraber diğer entegrasyon parçalarında Delrin tercih edilmiştir.	
Üretim Yöntemi	Satın Alma	Kolay temin edilir.	Maliyeti yüksektir.	Torna	Maliyeti düşüktür ve kolay ulaşılabilir.	Hassasiyeti azdır, toleransı yüksek parçalar üretilir.	Torna, maliyeti düşük ve kolay ulaşılabildiği için tercih edilmiştir.	

Tablo-8: Gövde ve Entegrasyon Getir/Götür Analizi

Motor Bölümü Mekanik Görünüm & Detay

Montaj sıralaması şu şekildedir:

- 1. Aviyonik sistemi yerleştirilir.
- 2. Kurtarma sistemleri yerleştirilir.
- 3. Görev yükü yerleştirilir.
- 4. Sürüklenme paraşütü ve görev yükü paraşütü yerleştirilir.
- 5. Burun konisi ile orta gövde birleştirilir.
- 6. Ana paraşüt yerleştirilir.
- 7. Üst motor bloğu ile entegrasyon gövdesi yerleştirilir.
- 8. Orta gövde ile alt gövde birleştirilir.
- 9. Kanatçıklar, merkezleme bileziklerine montajlanır ve alt gövdeye yerleştirilir.
- 10. Motor yerleştirilir.
- 11. Alt motor bloğu yerleştirilir.

Motor Bölümü	Boy (mm)	Dış Çap (mm)	iç Çap (mm)	Duvar Kalınlığı (mm)	Malzeme	CAD Görünümü
Üst Motor Bloğu	65	124.4	56-26	Max: 58.11 Min: 34.20	Delrin	
Üst Merkezleme Bileziği	30	124.4	76	24.2	Delrin	
Alt Merkezleme Bileziği	45	124.4	76	24.2	Delrin	
Alt Motor Bloğu	10	124.4	65	29.7	Al-7075	

Motor Bölümü Mekanik Görünüm & Detay

	Getir/Götür Analizi Tablosu											
Özellik		Seçenek 1			Seçenek 2		Getir/Götür Analizi Açıklaması					
	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	•					
Tasarım 1	TO S	Hacmi azdır.	CNC ile üretildiğinden maliyetlidir.	6	Tasarım daha az karmaşık olduğundan üretim maliyeti düşüktür.	Kapladığı alan görece fazladır.	İkinci seçenek, maliyetten dolayı tercih edilmiştir.					
Tasarım 2	8	Montaj kolaylığı sağlar.	Döküm ile üretildiğinden maliyetlidir.	0	Üretimi kolaydır.	Diğer seçeneğe göre dayanımı düşüktür.	İkinci seçenek, üretim kolaylığı ve maliyetten tasarruf sağladığından tercih edilmiştir.					
Malzeme	Al-7075	Mukavemeti yüksektir.	Kütlesi fazladır.	Delrin	Kütlesi az ve Maliyeti düşüktür.	Mukavemeti düşüktür.	İstenilen konumlardaki malzeme özelliklerine göre Delrin ve Al-7075 tercih edilmiştir.					
Üretim Yöntemi	CNC	Boyut toleransı sağlar.	Maliyeti yüksektir.	Torna	Erişimi kolay ve maliyeti düşüktür.	Hassasiyeti düşüktür.	Torna, düşük maliyet ve temin edilebilmesi görece kolay olduğun tercih edilmiştir.					

Tablo-10: Motor Bölümü ve Motor Montaj Stratejisi Getir/Götür Analizi Tablosu

Kurtarma Sistemi – Paraşüt Açma Sistemi

Sistemin Adı	Enerjik Madde	Avantajları	Dezavantajları
Mekanik Sistem	Yay	 Roket sistem parçalarına zarar verme riski oluşturmaz. Dayanıklılığı yüksek olduğundan, aynı sistem birden fazla kez kullanılabilir. 	 Diğer sistemlere göre daha büyük bir hacim kaplamaktadır. Tasarımı oluşturmak ve optimizasyonu sağlamak zordur.
Sıcak Gaz Üreteci	Barut	 Tepkime hızı yüksektir. Maliyeti düşüktür. Kompleks tasarımlı bir sistem değildir. Roket içinde kapladığı hacim azdır. 	 Yeteri kadar basınç oluşmadığında, istenilen itki kuvveti elde edilemez. Yalnızca barut ile tetiklendiği için, roketin iç bileşenlerinde deformasyona neden olabilir.
Soğuk Gaz Üreteci	CO_2	 CO₂ tüplerden çıkan soğuk gaz roket bileşenlerine zarar vermez. Roket içerisinde mekanik sistemlere kıyasla daha az hacim kaplar. 	 Yüksek maliyetlidir. Sıcak gaz kullanılan sistemlere oranla daha ağırdır. Sistemde istenilen stabilite sağlanmayabilir.

Tablo-11: Kurtarma Sistemleri Karşılaştırma Tablosu

Tasarlanıp üretilmesi öngörülen sistem "Barut Tetiklemeli Paraşüt Açma Sistemi" olarak seçilmiştir.

Kurtarma Sistemi – Paraşüt Açma Sistemi

	Getir/Götür Analizi Tablosu								
Özellik	Seçenek 1			Seçenek 2			Cotin/Cätür Analizi Asıklaması		
Ozenik	Unsur	Avantaj	Dezavantaj	Unsur	Avantaj	Dezavantaj	Getir/Götür Analizi Açıklaması		
Tasarım/ Çalışma Prensibi	Barutlu Sistem	Diğer sisteme göre reaksiyon hızı yüksektir ve kapladığı hacim düşüktür.	Hasar riski fazladır.	Mekanik Yaylı Sistem	Herhangi bir tahribat riski bulunmaz.	Kapladığı hacim daha büyüktür.	Barut tetiklemeli ayrılma sistemi, mekanik sisteme göre daha az hacim kapladığı için ve yüksek reaksiyon hızından dolayı tercih edilmiştir.		
Malzeme	Al-7075	Mukavemeti yüksektir ve ısıl işleme elverişlidir.	Erime noktası düşüktür.	Delrin	Hafiftir ve kimyasal dayanıklılığa sahiptir.	Düşük mukavemetlidir ve ısıl işleme tabi tutulamaz.	Yüksek mukavemet-ağırlık oranı ve ısıl işleme uygunluğu sebebiyle ilgili sistemin tasarımında Al-7075 kullanılmasına karar verilmiştir.		
Üretim Yöntemi	Talaşlı İmalat	İstenilen ölçülerde, yüksek doğruluklarda, temiz ve hassas üretim yapılabilir.	İşlem süresi uzundur. Yüksek oranda üretim atığı oluşur.	Döküm	Yüksek hızda üretim yapılabilir.	Hassas ölçü ve yüksek yüzey kalitesi sağlanması zordur.	Sistemin üretiminde hassas ve doğru ölçümlerle üretim yapılması ve istenilen yüzey kalitesine ulaşmaya uygun olduğundan talaşlı imalat yöntemi kullanılmasında karar kılınmıştır.		

Tablo-12: Kurtarma Sistemleri Getir/Götür Analizi

Kurtarma Sistemi – Paraşüt Açma Sistemi

Görsel-4: Kurtarma Sistemi Alt Parçaları

- 1. M8 Mapa: Şok kordonunun kurtarma sistemi arasındaki bağlantıyı sağlayan elemandır.
- 2. Merkezleme Bileziği: Kurtarma sisteminin rokete sabitlenmesi ve hizalanmasından sorumlu bileşendir.
- 3. Piroteknik Kapsül: Sistemin çalışma prensibini belirleyen faktör olan barutun bulunduğu elemandır. Yarışma tarafından temin edilir.
- 4. Piroteknik Kapsül Muhafaza: Piroteknik kapsülü koruyan ve kapsülü merkezleme bileziğine sabitleyen bileşendir.
- 5. Montaj Elemanları (Alyan, Cıvata ve Somun): Kurtarma sisteminde ve roketin genelinde sistemleri bütünleştirmek için kullanılacak olan elemanlardır.

Roket tepe noktasına (apogee) ulaştığında, aviyonik sistemden gelecek sinyal ile piroteknik kapsül içerisindeki barut fitiller yardımıyla tetiklenir. Tetiklenme sonucunda yüksek seviyede basınç oluşur. Bu basıncın etkisiyle burun konisi ayrılır ve görev yükü, paraşütüyle beraber roketin dışına çıkar. Ardından sürüklenme paraşütü açılarak yaklaşık 500 m irtifaya gelinceye kadar roketin kontrollü düşüşü gerçekleşir. İkinci ayrılmada aynı prensiple tetiklenerek ana paraşüt açılır ve roket kurtarılmak üzere inişe geçer.

Basınç Çıkış Yönü

Görsel-5: CAD Görüntüsü

Kurtarma Sistemi					
Воу	81 <i>mm</i>				
Çap (bilezikli)	124.4 <i>mm</i>				
Çap (bileziksiz)	58 <i>mm</i>				
Hacim	259016.22 mm ³				

Tablo-13: Hacim ve Boy Bilgileri

Sıcak Gaz Üreteci Gereksinimleri

Ek-3 Sıcak Gaz Üreteci belgesinin 7. sayfasında yer alan "SGÜ Basınç Değerleri" grafiği referans alınarak yapılan hesaplamalara göre;

- 1. Faz Ayrılma işlemi için gerekli olan basınç, 3.73 bar olarak belirlenmiştir.
- 2. Faz Ayrılma işlemi için gerekli olan basınç, 4,74 bar olarak belirlenmiştir.

Ayrılma	Basınçlandırılacak hacim çapı (mm)	Basınçlandırılacak hacim (m^3)	Ulaşılmak istenen basınç (Bar)
1. Ayrılma	125 <i>mm</i>	$7.5 \times 10^{-3} m^3$	3.73 Bar
2. Ayrılma	125 <i>mm</i>	$5.9 \times 10^{-3} m^3$	4.74 Bar

Tablo-14: Sıcak Gaz Üreteci Bilgileri

	İkincil Paraşüt	Birincil Paraşüt	Görev Yükü Paraşütü		2 * m *
Paraşüt Kumaşı	Ripstop Polyester	Ripstop Polyester	Ripstop Polyester	Paraşüt Hesaplamaları	$A_p = \frac{2 * m *}{p * C_d *}$
Paraşüt İpi	EdcX Kordon Tip III 550 Naylon	EdcX Kordon Tip III 550 Naylon	EdcX Kordon Tip III 550 Naylon	A_p : Paraşüt ile akış deliği toplam alanı (m^2)	$A_p = \frac{1}{4} * \pi * D^2$
Renk	Turuncu	Sarı	Kırmızı	m: Kütle (kg)	$^{\nu}$ 4
Panel Adedi	12	8	8	g: Yer çekimi ivmesi (9.81 m^2/s)	
Paraşüt Çapı	3 m	1 m	1,10 <i>m</i>	p: Havanın yoğunluğu (1.225 kg/m^3)	$D = \sqrt{\frac{4 * A_p}{\pi}}$
Katlanmış Silindir Boyu	0,420 m	0,110 m	0,130 <i>m</i>	C_d : 0.8 (sürüklenme katsayısı) V: Yere çarpma hızı (m/s)	ν π
Katlanmış Silindir Çapı	0,123 m	0,080 m	0,120 <i>m</i>	D: Paraşüt çapı (m) A_{AD} : Akış deliği alanı (m^2)	$V = \sqrt{\frac{2 * m *}{p * C_d *}}$
Akış Deliği Çapı	0,237 m	0,079 m	0,086 m	R_{AD} : Akış deliği çapı (m)	$\sqrt{p * C_d *}$
Kütle	1,24 <i>kg</i>	0,194 <i>kg</i>	0,238 <i>kg</i>	4 4 .0/40	\overline{A}_{AB}
Hacim	$0,0058 m^3$	$0,001389 \ m^3$	$0,001421 \ m^3$	$A_{AD} = A_p *\%10$	$R_{AD} = \sqrt{\frac{A_{AD}}{4 * \pi}}$

Tablo-15: Roketin Paraşüt Bilgileri

Görsel-6: Paraşüt Paneli

Ana paraşüt, sürüklenme paraşütü ve görev yükü paraşütü Görsel-6'daki panellerin bir araya dikilmesiyle oluşturulur. Ana paraşüt 12 panelden, sürüklenme paraşütü ve görev yükü paraşütü ise 8 panelden oluşmaktadır. Paneller arasına, paraşüt ipi için 2 cm uzunluğunda pay bırakılır. Paraşüt ipleri bu paylar arasından geçerek paraşüt kumaşına dikilir. Paraşüt ipi, paraşüt çapının 1.5 katı uzunluğunda olmalıdır. Ayrıca ipler mukavemeti arttırmak için paraşüt kubbe deliğine kadar zikzaklı şekilde dikilir.

Şekil-3: Ticari Sistem Bilgisayarı

$$F_d = F = 0.5 \times p \times C_d \times A \times V^2$$

Formül parametreleri yerleştirildiğinde;

$$m \times g = 0.5 \times p \times C_d \times (\pi \times r^2) \times v^2$$

g: Yer Çekimi İvmesi (9.81 m^2/s)

p: Hava Yoğunluğu (1.225 kg/m³)

 C_d : Sürüklenme Katsayısı (0.8)

V: Yere Düşme Hızı (m/s)

A: Paraşüt Alan ($\pi \times r^2$)

Birincil Paraşüt için;

$$18.046 \times 9.81 = 0.5 \times 1.225 \times 0.8 \times (0.785) \times v^2$$

 $v = 21.47 \ m/s$

İkincil Paraşüt için;

$$18.046 \times 9.81 = 0.5 \times 1.225 \times 0.8 \times (7.068) \times v^2$$

 $v = 7.14 \, m/s$

Görev Yükü Paraşütü için;

$$4.070 \times 9.81 = 0.5 \times 1.225 \times 0.8 \times (0.950) \times v^2$$

 $v = 9.26 \ m/s$

Paraşüt Sistemi	Paraşüt Alanı (m^2)	Paraşüt Sisteminin Taşayacağı Kütle (kg)	Paraşüt Sürükleme Katsayısı (m)	Düşüş Hızı (m/s)
Birincil Paraşüt	0.785	18.046	0.8	21.47
İkincil Paraşüt	7.068	18.046	0.8	7.14
Görev Yükü Paraşütü	0.950	4.070	0.8	9.26

Tablo-16: Paraşüt Dinamik Hesap Tablosu

Görev Yükü

Görev yükünün bilimsel görevinde farklı irtifalardaki basınç, sıcaklık ve nem ölçülerek elde edilen verilerle bölge civarındaki hava koşullarının incelenmesi amaçlanmaktadır. Görev yükü tepe noktasına ulaştıktan sonra aviyonik sistem kurtarma sistemini devreye sokacaktır ve faz 1 ayrılması gerçekleşecektir. Faz 1 ayrılmasından sonra bilimsel görev yükünün paraşütü açılacak ve görev yükü, paraşüt ve sürtünme kuvveti yardımıyla 10.20 m/s hızında alçalarak yeryüzüne sağlıklı bir iniş gerçekleştirecektir. İniş esnasında bilimsel görev yükü, üzerindeki sistem yardımıyla yerden belli yüksekliklerdeki sıcaklık, basınç ve nem miktarını ölçerek RF modülü sayesinde 5 Hz frekansla yer istasyonuna anlık veri ve konum bilgisi gönderecektir. Konum bilgisine istinaden kurtarma ekibimiz görev yükünü sağlanan konum bilgilerine gidip kurtarmayı amaçlamaktadır.

Görsel-7: CAD Görüntüsü

Görsel-8: CAD Görüntüsü

Görev Yükü Boyutları							
Воу	169 mm						
Çap	108 mm						
Kütle	4.070 kg						

Tablo-17: Görev Yükü Boyutları Tablosu

Görev Yükü

Görev Yükü Konum Belirleme Sistemi:

- GY-NEO7M: Hesaplanan konum verilerini mikrodenetleyiciye iletmektedir.
- Şekil-5: Görev Yükü Konum Belirleme Sistemi
- ESP32-WROOM-32: Görev yükünün mikrodenetçisidir. Veriler burada işlenir ve RF modülüne iletilir.
- LoRa E32-433T30D: Gelen verileri yer istasyonuna iletir.

Aviyonik – Özet

BİRİNCİL AVİYONİK KOMPONENTLERİ	AÇIKLAMA
ESP32-WROOM-32 Mikrodenetleyici	Uçuş bilgisayarının işlemcisi olarak görev alır.
E32 433T30D 1W RF Modülü	Roketle yer istasyonu arasındaki iletişimi sağlar.
BNO055 İvme ve Gyro Sensörü	Elde edilen açısal oranlar karşılaştırılarak dönüş yönü ve hızı tespit edilir.
BME280 Basınç Sensörü	Basınç değişiklikleri kullanılarak yükseklik verileri elde edilir.
NEO-7M Çift Taraflı GPS Modülü	Alıcılar, uydulardan gelen sinyalleri alıp çözümler ve konum tespitini gerçekleştirir.
LM2596 Ayarlanabilir Voltaj Düşürücü Güç Modülü	Devre kartı üzerindeki sensörlerin düzgün çalışabilmesi için gereken voltajı düzenler.
Piller	Gerekli gücü sağlayarak sistemin çalışmasını sağlar.

Tablo-18: Birincil Aviyonik Sistem

TICARI SISTEM	MODEL	AÇIKLAMA
EASYMINI ALTIMETER	09201	Basınç sensörü kullanılarak roketin yüksekliğini belirleyip istenilen yükseklikte kurtarma sistemini tetiklemek için kullanılır.

Tablo-19: İkincil Aviyonik Sistem

Aviyonik – Özet

SISTEMLER	BENZERLİKLER	FARKLILIKLAR
BIRINCIL AVIYONIK	Mikroişlemci ve basınç sensörleri	RF modülü, ivmeölçer, jiroskop ve GPS bulunmaktadır.
TİCARİ SİSTEM	her iki sistemde de bulunuyor.	Sistemde yalnızca basınç sensörü ve mikrodenetleyici bulunmaktadır.

Tablo-20: Birincil Aviyonik ve Ticari Sistem Fark/Benzerlik Tablosu

Birincil Aviyonik Sistem

Sistem içerisinde bir adet ESP32-WROOM-32 mikrodenetleyici, buna bağlı basınç, ivme ve gyro sensörleri barındırmaktadır. Elde edilen veriler, RF modül aracılığıyla yer istasyonuna iletilmektedir.

Ticari Sistem (İkincil Aviyonik Sistem)

Birincil aviyonik sistem, özgün bir tasarıma sahip olmakla birlikte, olumsuz durumlarda başa çıkabilmek için ikincil aviyonik sistem için sertifikalı ticari bir bilgisayar tercih edilmiştir. Bu ticari bilgisayar ise EasyMini olarak seçilmiştir.

Birincil-İkincil Aviyonik Bilgisayar Arasındaki Geçiş

- Birincil aviyonik sistem ve ikincil aviyonik sistem eş zamanlı faaliyet gösterecektir.
- Birincil aviyonik sistem üzerinde barındırdığı komponentler sayesinde anlık olarak yükseklik ve gyro gibi verilere bağlı olarak kurtarma algoritmasına uygun bir şekilde kurtarma işlemi için gerekli sinyali gönderecektir.
- İkincil aviyonik sistem kendi kapalı sistem yazılımı aracılığıyla barındırdığı komponentlerden gelen verilere dayanarak önceden karar verilen yükseklikte kurtarma işlemi için gerekli sinyali gönderecektir.
- İki sistem bağımsız olarak çalışacak olup, her iki sistem için farklı kurtarma sistemi eyleyici fitil kullanılacaktır.

Adı	Kodu	Avantaj	Dezavantaj	Açıklama
ESP32 Mikrodenetleyici	2AC7Z	Çift çekirdek performansı, düşük güç tüketimi, düşük maliyet.	Daha karmaşık yapı, ısınma sorunu, pin sınırlamaları.	Birincil aviyonik sistem kontrolcüsüdür. Sensörlerden gelen verileri düzenlemek ve yer istasyonuna iletmekle sorumludur.
E32-433T30D 1W RF Modülü	SX1278	Uzun menzil, güçlü iletişim, düşük güç tüketimi.	Maaliyeti yüksektir ve engellerden daha çok etkilenebilir.	Roketin birincil aviyonik sistem ve faydalı yükün bilgisayarında, yer istasyonu ile iletişim kurmak için kullanılır.
BNO055 İvme ve Gyro Sensörü	055	Yüksek entegre düzeyi, düşük güç tüketimi.	Yüksek maliyet, sınırlı hassasiyet.	Roketin üç boyutlu ivmesini, eğimlerini ve açısal dönüş hızlarını ölçmemize yardımcı olur.
BME280 Basınç Sensörü	280	Hassas ölçüm, küçük boyut, düşük güç tüketimi.	Yüksek maliyet, sadece barometrik ölçüm.	Basınç değerlerini ölçerek, roketin irtifa ölçümleri için kullanılır.
NEO-7M Çift Taraflı GPS Modülü	K1C-9	Yüksek çalışma frekansı, düşük güç tüketimi.	Performans kaybı, hızlı hareketlerde hassasiyet kaybı.	Roketin konum bilgisini belirlemek için kullanılır.
Ayarlanabilir Voltaj Düşürücü Güç Modülü	LM2596	Gürültüye dayanıklılık, uzun menzil, düşük güç tüketimi.	Karmaşık kurulum, yüksek maliyet, sınırlı çıkış akımı.	Devrenin çalışması için gerekli olan voltaj aralığını sağlar.

Tablo-21: Birincil Aviyonik Sistem

Modul Modeli	Çalışma Frekansı (Hz)	Çalışma Voltajı /Akımı	Çalışma Sıcaklığı Aralığı (°C)	Boyutlar (mm)	Maliyet (杉)	Avantajlar	Dezavantajlar
Ublox NEO- 7M GPS	10	1.65V-3.6V /10mA	-40°C-85°C	25x35x5	412,93	Dahili anten ve ek donanıma ihtiyaç duyulmaz.	Boyutları görece büyüktür.
Ublox NEO- 8M GPS	18	3V-5V / 12mA	-45°C-105°C	26x26x9	224,76	Geniş uydu sistemi kapsama alanı sağlar.	Dahili anten bulunmaz.
GY-NEO6MV2	5	3.3V-5V / 10mA	-40°C-85°C	35x25x5	171,18	Maaliyeti görece düşüktür.	Çalışma frekansı görece düşüktür.

Tablo-22: Karşılaştırmalı GPS Modül Seçim Tablosu

Modul Modeli	Basınç Ölçüm Aralığı (hPa)	Ölçüm Çözünürlüğü (Pa)	Çalışma Voltajı	Maliyet (₺)	Avantajlar	Dezavantajlar
BME280	300-1100	0.16	1.8-3.6V	937,75	Yüksek hassasiyet ve doğruluk.	Maliyeti görece yüksektir.
<u>BME680</u>	300-1100	0.18	3.3-3.5V	828,48	Hassasiyete ek olarak hava kalitesini ölçer.	Daha fazla enerji tüketir.

Tablo-23: Karşılaştırmalı Barometrik Basınç Sensörü Seçim Tablosu

Model	Frekans (Mhz)	Veri gönderim Hızı(Kbps)	Veri gücü (W)	Alıcı hassasiyeti (dBm)	Maliyet (₺)	Menzil Avantaj		Dezavantaj	
E32-433T30D	433	0.3-19.2	1	-138	1670	10-11km	Yüksek hassasiyete sahiptir.	Maaliyeti yüksektir.	
SX1276 LoraWan	868	0.018-37.5	0.025	-147	360	10-15km	Uzun menzile sahiptir.	Düşük veri gücüne sahiptir.	

Tablo-24: Karşılaştırmalı Alıcı-Verici (RF) Modülü Seçim Tablosu

Geliştirme Kartı	Dijital Pin Sayısı	Analog Pin Sayısı	Kart Boyutu (mm)	Voltaj Aralığı (V) /Tüketilen Enerji (mW)		Maaliyet (₺)	Avantaj	Dezavantaj	
Rasberry Pi Pico	26	3	51x21mm	5V/100-150	133	182.32	Düşük güç tüketimine sahiptir.	Daha az gelişmiş özellikleri vardır.	
ESP32	26	2	18x25.5mm	3.3V/160-260	160	264.87	Hızlı veri iletişimi yapar.	Daha karmaşık yapıdadır.	
Arduino Uno	14	6	68.6x53.4mm	5V/250	16	167.70	Uygun fiyat ve basit kullanıma sahiptir.	Yüksek güç tüketimi, düşük işlemci hızı ve düşük belleğe sahiptir.	

Tablo-25: Karşılaştırmalı Mikrodenetleyici Seçim Tablosu

Modül Modeli	İvme Ölçüm Aralığı(G)	Ölçüm Çözünürlüğü	Açı Ölçüm Aralığı	Çalışma Voltajı(V)/ Akımı(mA)	Çalışma Sıcaklığı Aralığı(°C)	Boyutlar (mm)	Maliyet(₺)	Avantajlar	Dezavantajlar
BNO055 9 Eksenli Ve Gyro Sensörü	±2g, ±4g, ±8g, ±16g	16-Bit	±125°/s- ±2000°/s	3.3V- 5V/5mA	-40°C/+85°C	20x27	1.910,24	Veri kalitesi iyidir.	Maliyeti görece yüksektir.
MPU6500 6 Eksen İvme Ve Gyro Sensörü	±2g, ±4g, ±8g, ±16g	16-Bit	±250°/s- ±2000°/s	2.4V- 3.6V/3.6 mA	-40°C/+85°C	16 x 26	108,02	Yüksek doğruluğa sahiptir.	Kapsama alanı ve sınırlı ölçüm aralığına sahiptir.
ICG 20660L 6 Eksen ivmeölçer Ve Jiroskop	±2g ±4g ±8g ±16g	16-Bit	±245°/s- ±2000°/s	2.4V- 3.6V/3.2 mA	-40°C/+85°C	3.5 x 5	1.055,99	Düşük güç tüketimine sahiptir.	Manyetometre hassasiyeti azdır.

Tablo-26: Karşılaştırmalı İvme ve Gyro Sensörü Seçim Tablosu

Şekil-6: Uçuş Bilgisayarı ve Yer İstasyonu Blok Diyagramı

Görsel-9: Birincil Aviyonik Sistem Kart Tasarımı Arka Görünüm

Görsel-10: Birincil Aviyonik Sistem Kart Tasarımı Ön Görünüm

Kurtarma sisteminin tetiklenme algoritmasında açı ve irtifa verilerine ihtiyaç duyulmaktadır. Bu veriler roket apogee noktasına ulaştıktan sonra maksimum irtifa ve anlık irtifa arasındaki fark algoritmada istenen seviyeye gelmekte ardından kurtarma sistemleri devreye girmektedir. Bunun için gerekli sensörler özgün UKB'de mevcuttur. İkincil aviyonik sistemde açı ölçümüne gerek duyulmamıştır. Kurtarmayı tetiklemek için birincil ve ikincil aviyonik sistemde kullanılan veriler: Birincil aviyonik -> Açı ve İrtifa

İkincil aviyonik-> İrtifa

Aviyonik – 1.Sistem Detay/3

Veri Filtreleme

Sensörlerden gelen veriler, gürültü ve dengesiz çevresel koşullar nedeniyle hatalara ve tutarsızlıklara maruz kalabilmektedir. Bu tür hataları en aza indirmek ve verilerin güvenilirliğini artırmak amacıyla veri filtreleri kullanılır. Bu sebepten ötürü Kalman filtresi kullanılması planlanmaktadır. Kalman filtresi, gözlemlenen verilere dayanarak belirli ölçümlerin tahmin edilmesine olanak tanıyan güçlü bir yöntemdir ve özellikle yükseklik, hız ve yönelim verilerinin hassas ölçümünde etkili bir rol oynamaktadır, bu da veriyi daha güvenli kılmaktadır ve bu sayede gürültü ve dengesiz çevre koşullarından kurtulmak mümkündür.

Bunun yanı sıra, veri filtreleme sürecinde bant geçiren filtreler, hareketli ortalama gibi çeşitli filtreleme teknikleri de uygulanabilir. Yazılımsal filtreler, sinyalin gerçek değerinden sapmadan gürültüleri temizlemek amacıyla tasarlanacaktır ve herhangi bir yanlış veri gelirse bile onu geçersiz kılabilecektir, gelen verilerin güvenilirliği daha fazla artacaktır. Elektriksel gürültülerin önüne geçmek için devre besleme hattında RC filtreleri kullanılacak olup, analog sinyaller için de RC filtrelerinin uygulanabilirliği, yapılan testler doğrultusunda değerlendirilecektir. Bu yöntemler, veri doğruluğunu artırmanın yanı sıra sistem performansını en üst seviyeye çıkarmak için benimsenmiştir.

Aviyonik – 2.Sistem Detay/1

Adı	Kodu	Avantaj	Dezavantaj	Açıklama
<u>EasyMini</u>	09201	, , , , , , , , , , , , , , , , , , , ,	Sadece basınç modülü içerir ve 10 dakikalık uçuş verisi saklar.	Barometrik sensör ile irtifa ölçümü yapar.

Tablo-27: İkincil Aviyonik Sistem Komponenti

Adı	Kodu	Boyut	Voltaj	Maaliyet (₺)	Avantaj	Dezavantaj
RRC3 Sport Altimeter	09095	100x23mm	3.7/10V	\$ 101.33	Görece maaliyeti düşüktür.	Boyutları diğer seçeneklere göre büyüktür.
<u>TeleMega</u>	09200	83x32mm	3.7/12V	\$ 508.85	GPS, ivmeölçer ve barometreye sahiptir.	Görece maaliyeti yüksektir.
<u>EasyMini</u>	09201	38x20mm	4/12V	\$ 101.78	Boyutları diğer seçeneklere göre daha küçüktür. Kalibrasyon ayarlarına sahiptir.	Sadece basınç modülü içerir ve 10 dakikalık uçuş verisi saklar.

Tablo-28: İkincil Aviyonik Sistem Karşılaştırma Tablosu

 Yapılan tablolardaki karşılaştırmalara göre tüm ikincil aviyonik sistemler yeterli olduğundan dolayı boyutları dikkate alınarak seçim yapılmıştır.

Aviyonik – 2.Sistem Detay/2

Görsel-9: İkincil Aviyonik Sistemin Devre Şeması

Görsel-11: İkincil Aviyonik Sistemin Blok Diyagramları

İkincil aviyonik sistemimiz ticari bir sistem olduğundan dolayı üretici firma tarafından aldığımız veriler paylaşılmıştır. [3]

- 1. https://altusmetrum.org/EasyMini/v1.0/easymini-pcb.pdf
- 2. https://altusmetrum.org/EasyMini/
- 3. https://altusmetrum.org/EasyMini/v1.0/easymini-sch.pdf

1

2

3

Aviyonik – 2.Sistem Detay/3

- İkincil aviyonik sistemimiz EasyMini içerisinde MS5607 barometrik sensörünün irtifa değerlerine bağlı kurtarma algoritması tetiklenmektedir.
- İkincil aviyonik sistemimizin üreticisinin kendi yazılımı ile entegre çalışmaktadır. İkincil aviyonik sistemi bir bilgisayara bağlayarak bu yazılım sayesinde birinci ve ikinci faz için gereken veriler sensöre kaydedilecektir. Bu işlemden sonra başka bir ayar yapılmasına gerek kalmamaktadır. İkincil aviyonik sistemin gerekli bağlantıları yapıldıktan sonra uçuşa hazır olacaktır.

Görsel-12: İkincil Aviyonik Sistemin Yazılımdan Bir Ekran Görüntüsü

Aviyonik – İletişim

Anten modeli	Kazancı (dBi)	VSWR (min)	Maaliyet (₺)	Avantaj	Dezavantaj
RF 433Mhz 5dBi SMA	5	1.5	73.57	Kazancı yüksektir.	Maaliyeti yüksektir.
Lora 433 Mhz Anten SMA 3dB	3	1.5	51.48	Maaliyeti yüksek.	Kazancı yüksektir.

Tablo-29: Karşılaştırmalı Verici Modül Anten Seçim Tablosu

Anten modeli	Kazancı (dBi)	VSWR (min)	Maaliyet (₺)	Avantaj	Dezavantaj
DRFA-433Y	12	1.6	4380.41	Kazancı yüksektir.	VSWR değeri yüksektir.
DRF5-466 Mhz	5.5	1.05	1401.73	VSWR değeri düşük.	Maaliyeti yüksektir.

Tablo-30: Karşılaştırmalı Alıcı Modül Anten Seçim Tablosu

Mo	odel	Frekans (Mhz)	Veri gönderim Hızı(Kbps)	Veri gücü (W)	Alıcı hassasiyeti (dBm)	Maliyet (₺)	Menzil	Avantaj	Dezavantaj
	32- T30D	433	0.3-19.2	1	-138	684	10-11 km	Yüksek hassasiyet.	Maaliyeti yüksektir.
	<u>1276</u> aWan	868	0.018-37.5	0.025	-147	484.94	10-15 km	Uzun menzil.	Düşük veri gücü.

Tablo-31: Karşılaştırmalı Alıcı-Verici (RF) Modül Seçim Tablosu

Verilerin yer istasyonuna iletilmesi

Veriler 433Mhz bandında aktarılacaktır. Verilerin aktarımı için standart MAVLink protokolü kullanılacak.

Görsel-13: MAVLink Paket Yapısı
Faydalı yük bilgisayarından yer
istasyonuna aktarılacak veriler;
Sıcaklık-Enlem-Nem-Basınç-Boylam
Birincil aviyonik uçuş bilgisayarından
yer istasyonuna iletilicek veriler;
İrtifa-Hız-Pitch-Enlem-Roll-BoylamYaw

Bütçe

Tablo-32: Mekanik Parçalar Bütçesi

Parça	Maliyet
Burun Konisi	4000 ₺
Bölme Duvarı	400 ₺
Entegrasyon Gövdesi	600₺
Üst Motor Bloğu	880 ₺
Üst Merkezleme Bileziği	650₺
Alt Merkezleme Bileziği	800₺
Kanatçık	2000 ₺
Alt Motor Bloğu	300 ₺
Gövdeler	45000 ₺
TOPLAM	54630₺

Tablo-33: Kurtarma Sistemi Bütçesi

Parça	Maliyet
Mapa	50 ₺
Karabina	100 ₺
Fırdondü	175 ₺
Şok Kordonu	450₺
Merkezleme Bileziği	350₺
Piroteknik Muhafaza	300₺
Paraşüt kumaşı (50 m^2)	10000 ₺
Paraşüt ipi	3900₺
Görev Yükü Muhafaza	580₺
Görev Yükü Kütlesi	1050₺
Aviyonik Muhafaza	450₺
TOPLAM	17405 ₺

Tablo-34: Aviyonik Sistem Bütçesi

Parça	Maliyet
Ublox NEO-7M GPS	412.93 ₺
BME280	937.75₺
E32-433T30D	1670₺
ESP32 WROOM-32	264.87老
BNO055 9 Eksenli ivme ve gyro sensörü	1910.24₺
Easymini Altimeter	\$ 101.78
RF 433Mhz 5 dBi SMA Anten	73.57₺
DRFA - 433Y	4380.41₺
E32-433T30D	684.00 ₺
PCB	\$ 24.49
TOPLAM	14950 ₺

NO	GEREKSINIM MADDE NO	GEREKSINIM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
1	3.2.2.	Yarışmaya takım halinde katılmak zorunludur.		2	Takım yapısında belirtilmiştir.
2	3.2.3.	A Grup yarışma kategorisinde yarışacak takımlar en az altı (6) en fazla 15 (on beş) kişiden oluşmalıdır.		2	Takım yapısında belirtilmiştir.
3	3.2.6.	A1 kategorisi haricindeki tüm (A ve B Grup) yarışma kategorilerinde yarışacak takımlar öğrenci veya mezunlardan müteşekkil olabilir.		2	Takım yapısında belirtilmiştir.

NO	GEREKSINIM MADDE NO	GEREKSINIM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
4	3.2.7.	A1 kategorisi hariç A Grup yarışma kategorisindeki tüm takımların başvuru yapabilmesi için takım üyelerinin asgari yarısının öğrenci olması zorunludur.		2	Takım yapısında belirtilmiştir.
5	3.2.33.	A1 ve A4 kategorileri hariç A Grup yarışma kategorisinde yarışan tüm takımlar Uçuş Benzetim Raporunu (UBR) hem ÖTR hem de KTR aşamalarında hazırlamaktan sorumludurlar.		6	Matlab kullanılarak hazırlanmıştır.
6	3.2.36.	Takımlar, yarışmada görev alan takım üyeleri ve takım danışmanını tüm raporlarında eksiksiz listelemekten sorumludurlar.		2	Takım yapısında belirtilmiştir.

NO	GEREKSINIM MADDE NO	GEREKSINIM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
7	3.2.37.	Her takımın yarışmaya bir (1) danışmanla katılması zorunludur.		2	Takım yapısında belirtilmiştir.
8	3.2.38.	Öğretmenler, Akademisyenler, Eğitmenler ve daha önce yurt içi ve/veya yurt dışında düzenlenen roket yarışmalarında atış hakkı kazanmış takımların üyeleri (18 yaşından daha büyük olmak kaydıyla) danışman olabilir.		2	Takım yapısında belirtilmiştir.
9	3.2.46.	TEKNOFEST Roket Yarışması Komitesiyle iletişim ve koordinasyon süreçlerini yürütmek üzere takım içerisinde bir kişi "KAPTAN" olarak atanmalıdır.		2	Takım yapısında belirtilmiştir.

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
10	3.3.1.1	Takımlar, fırlatma sonrası rokete ait tüm bileşenleri ve görev yükünü tekrar kullanılabilir şekilde kurtarmaktan sorumludurlar.		20	Kurtarma sistemlerinde belirtilmiştir.
11	3.3.1.3	Takımlar, kurtarma işlemini paraşütle sağlamak zorundadır.		20	Kurtarma sistemlerinde belirtilmiştir.
12	3.3.1.4	Görev yüklerinin roketlerin uçuş yörüngesinin tepe noktasından (İng. apogee) hemen sonra ayrılması zorundadır.		5	Operasyon Konseptinde belirtilmiştir.

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
13	3.3.1.5	Sistem üzerindeki haberleşme bilgisayarlarıyla roketin ve görev yükünün anlık konum verilerinin kesintisiz olarak takımın yer istasyonuna paylaşılması zorunludur.		35	UKB'de belirtilmiştir.
14	3.3.1.7	A2, A3, A4 ve A6 kategorilerindeki roketler Şekil 3.2'deki operasyon konseptine uygun olarak uçuş görevini icra etmek zorundadır. Bu kategorilerdeki roketler, iki paraşütle (Şekil 3.1'de sarı renkli paraşüt "Birincil Paraşüt", yeşil renkli paraşüt ise "İkincil Paraşüt"tür) kurtarılırken, görev yükünün roketten farklı bir paraşütle (Şekil 3.2'de turuncu renkli paraşüt) kurtarılması zorunludur.		22	Kurtarma sistemlerinde tablo olarak belirtilmiştir.
15	3.3.1.9	A Grup yarışma kategorisinde yarışanların birincil paraşütlerini uçuş yörüngesinin tepe noktası (İng. apogee) ulaştıktan hemen sonra açması zorunludur.		5	Operasyon Konseptinde belirtilmiştir.
16	3.3.1.10	A Grup yarışma kategorilerinde yarışanlar ikincil paraşütlerini yere 400-600 m kala açması zorunludur.		5	Operasyon Konseptinde belirtilmiştir.

NO	GEREKSINIM MADDE NO	GEREKSINIM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
17	3.3.1.21	Takımların motorların performansını etkileyecek (itkiyi artıran veya azaltan, itkiye yön veren vb.) herhangi bir bileşen tasarımı, üretimi ve rokete entegrasyonu kesinlikle yasaktır.		4	Genel tasarım slaytında belirtilmiştir.
18	3.3.1.22	A5 kategorisi hariç A Grup yarışma kategorisinde seri kademeli roket tasarımları yapılmayacaktır.		4	Genel tasarım slaytında belirtilmiştir.
19	3.3.1.23	A Grup yarışma kategorisinde tek gövde içerisinde çoklu motor sistemlerinin yer aldığı "Küme" (İng. Cluster) konsepti uygulanmayacaktır.		4	Genel tasarım slaytında belirtilmiştir.
20	3.3.1.29	Kurtarılması gereken görev yükü ve roket için ayrı ayrı konum belirleyici (GPS, radyo vericisi vb.) sistem (her biri üzerinde birer adet olmak üzere) bulunacaktır.		27	Aviyonik ve görev yükü slaytında belirtilmiştir.

NO	GEREKSINIM MADDE NO	GEREKSINIM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
21	3.3.1.30	Şekil 3.3'deki "Open Rocket" simülasyon menüsüne uygun olarak takımların yörünge benzetimlerini gerçekleştirmesi ve ilgili raporda Open Rocket ile oluşturulmuş bu yörünge benzetim çıktısını eklemesi zorunludur, aksi halde rapor değerlendirmeye alınmayacaktır.		-	Open Rocket dosyasında belirtilmiştir.
22	3.3.1.31	Takımlar Görev Yüklerini "Unspecified Mass" ismiyle girmeyecektir. Görev Yükü "PAYLOAD" ismi ile adlandırılıp, kütlesi en az 4.000 gram (4 kg) ve tek bir parça olarak girilecektir.		-	Open Rocket dosyasında belirtilmiştir.
23	3.3.1.32	Şekil 3.3 ile verilen "Fırlatma Simülasyonu-Launch Simulation" ekranında yer alan değerler simülasyona girilmelidir. Bu değerler ile benzetim yapmamış olan takımların raporları değerlendirmeye alınmayacaktır.		-	Open Rocket dosyasında belitilmiştir.

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
24	3.3.2.1	Kurtarma sistemi olarak paraşüt kullanılması zorunludur.		22	Kurtarma sistemlerinde belirtilmiştir.
25	3.3.2.4	A1 kategorisi hariç A Grup yarışma kategorisinde kullanılan birincil paraşütle roketin takla atması önlenmelidir.		22	Kurtarma sistemlerinde belirtilmiştir.
26	3.3.2.5	A1 kategorisi hariç A Grup yarışma kategorisinde birincil paraşütle roketin düşüş hızı azaltılmalı ancak paraşütle iniş hızı 20 m/s'den daha yavaş olmamalıdır.		24	Kurtarma sistemlerinde belirtilmiştir.
27	3.3.2.6	A1 kategorisi hariç A Grup yarışma kategorisinde ikincil paraşütle kurtarılması gereken roket ve bileşenlerinin hasar görmemesi için iniş hızının 5-9 m/s arasında olması gerekmektedir.		24	Kurtarma sistemlerinde belirtilmiştir.

NO	GEREKSINIM MADDE NO	GEREKSINIM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
28	3.3.2.7	A Grup kategorisinde paraşütle kurtarılması gereken görev yükünün iniş hızının 9-20 m/s olması gerekmektedir.		24	Kurtarma sistemlerinde belirtilmiştir.
29	3.3.2.8	A Grup yarışma kategorisinde görev yükleri, roketin parçalarına herhangi bir bağlantısı olmadan (hiçbir noktaya şok kordonu vb. herhangi bir ekipman ile bağlanmadan) ve kendi paraşütüyle tek başına kurtarılmalıdır.		20	Kurtarma sistemlerinde belirtilmiştir.
30	3.3.2.9	Paraşütle kurtarma sisteminde ilgili bileşenlerin roketten ayrılmasında kimyasal tepkiyle ortaya çıkan sıcak gaz üreteçleri (barut vb.), pnömatik, mekanik, soğuk gazlı veya takım tarafından özgün geliştirilmiş sistem (çevreye zararlı olmayan ve riskleri yönetilebilen) kullanılabilir.		18	Tasarım için ekip olarak karar verilmiştir. Tasarım ayrıntıları raporda belirtilmiştir.
31	3.3.2.10	Paraşüt ayırma işleminde yüksek riskleri sebebiyle ticarî olmayan basınçlı kapların (basınçlı tank, tüp vb.) kullanılmasına kesinlikle müsaade edilmeyecektir.		18	Gerekli şartlara uyularak kullanılmamıştır.

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
32	3.3.2.11	Takımların sıcak gaz üreteci olarak kendi piroteknik malzemelerini kullanmalarına izin verilmeyecektir.		20	Gerekli şartlara uyularak tasarım yapılmıştır.
33	3.3.2.12	Sıcak Gaz Üreteci (SGÜ) kullanacak takımlara TEKNOFEST Roket Yarışması Komitesi tarafından kapsül şeklinde piroteknik SGÜ atış alanında elden teslim edilecek olup söz konusu SGÜ ile bilgiler EK-3'de yer almaktadır.		21	Kurtarma Sistemi EK-3 dikkate alınarak yapılmıştır.
34	3.3.2.16	Her paraşüt birbirinden farklı renkte ve çıplak gözle uzaktan rahat seçilebilir olacaktır Paraşütlerin beyaz ve/veya mavi renklerde veya bu renklerin farklı tonlarında olması halinde takıma 25 puan ceza uygulanacaktır.		22	Gerekli şartlara uyularak tasarım yapılmıştır.

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
35	3.3.3.1	Tüm kategoriler için görev yükünün kütlesi asgari dört (4) kg olmalıdır.		26	Tablo-17'de sunulmuştur.
36	3.3.3.2	Görev yükü için kütle ölçümü hakem heyeti tarafından Aksaray Atış Alanında Montaj/Entegrasyon bölgesinde yapılacak olup, ölçümün rahat bir şekilde yapılabilmesi için görev yükünün roketten kolay bir şekilde ayrılacak şekilde tasarlanması ve üretilmesi zorunludur.		4	Görsel-1'de roketin tasarımı gösterilmiştir.

NO	GEREKSINIM MADDE NO	GEREKSINIM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
37	3.3.3.6	Bilimsel görev yüklerinin roketten uçuşun tepe noktasında (İng. apogee) ayrılması (bilimsel görev yükünün yapacağı görev, uçuşun başlangıcıyla sonu arasında herhangi bir aralıkta icra edilebilir) ve bilimsel görev(ler)ine ilişkin verileri 5 Hz frekansla takımın yer istasyonuna veri indirmesi gerekmekte olup, bu frekansla veri indirimi sağlanamazsa görev tam başarılı olsa da kısmî görev başarımı yapılmış sayılacaktır.		26	Görev yükü tasarımında belirtilmiştir.
38	3.3.3.7	Bilimsel bir görevi yerine getirecek görev yükleri canlı organizma, aşındırıcı kimyasal malzeme ve radyoaktif materyal barındıramaz, çevreye/canlılara zararlı ve işletim riskleri kontrol edilemez olamazlar		26	Görev yükü tasarımında belirtilmiştir.

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
39	3.3.4.1	A Grup yarışma kategorisinde yarışacak takımlar için azami uçuş hızı kısıtı bulunmamaktadır.		5	Simülasyon verisiyle oluşturulan tablo ile bu gereksinim karşılanmıştır.
40	3.3.4.2	Roketin tüm parçalarının azamî dış çapları aynı değerde olmalıdır, aksi halde takımın tasarımı değerlendirme alınmayacaktır.		4	Tablolar ile bu gereksinim karşılanmıştır.
41	3.3.4.3	Roket kademeleri arasında çap değişimine izin verilmeyecektir, aksi halde takımın tasarımı değerlendirme alınmayacaktır.		4	Tablolar ile bu gereksinim karşılanmıştır.
42	3.3.4.4	Gövde ile gövde üzerindeki kapaklar arasında 0.1 mm'den daha büyük boşluk bırakılmayacaktır, aksi halde sızdırmazlık tedbiri alıncaya kadar hakemler tarafından takıma uygunluk verilmeyecektir.		4	Tablolar ile bu gereksinim karşılanmıştır.

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
43	3.3.4.5	Aktif uçuş kontrolü yapmayı sağlayacak hareketli uçuş kontrol yüzeyleri (kuyruk bölgesindeki sabit kanatçıkların hareketli versiyonu) veya roket sürüklemesini azaltacak "Boat Tail" uygulaması yasaktır, aksi halde takımın tasarımı değerlendirme alınmayacaktır.		4	Tablolar ile bu gereksinim karşılanmıştır.
44	3.3.4.6	A Grup yarışma kategorisinde roketlerin 0,3 Mach'taki stabilite değeri 1,5-2,5 arasında olmalıdır.		4	Open Rocket görseli ile bu gereksinim karşılanmıştır.
45	3.3.4.7	Open Rocket ana tasarım sayfasında 0,3 Mach için stabilite değeri hesaplanmakta olup takımlar roketleri için bu değeri TEKNOFEST Roket Yarışması Komitesine sunmak zorundadır, aksi halde takımın tasarımı değerlendirme alınmayacaktır.		4	Open Rocket görseli ile bu gereksinim karşılanmıştır.
46	3.3.4.9	Takımlar, Tablo 3.10'daki kriterleri sağladığını ilgili raporlarda (ÖTR ve KTR) ve Aksaray Atış Alanındaki Montaj/Entegrasyon faaliyetlerinde TEKNOFEST Roket Yarışması Komitesine ispatlamak zorundadır aksi halde takımın raporu değerlendirmeye alınmayacaktır.		5	Open Rocket verisiyle oluşturulan tablo ile bu gereksinim karşılanmıştır.

NO	GEREKSINIM MADDE NO	GEREKSINIM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
47	3.3.5.4	Roketlerin aerodinamik kuvvetlere maruz kalan yüzeylerinde (gövde, kanatçık, burun) malzeme olarak PVC, sıkıştırılmış kağıt/kraft veya PLA kullanılması yasaktır, aksi halde takım elenir.		4	Open Rocket görseli ile bu gereksinim karşılanmıştır.
48	3.3.5.7	Kullanılacak mapaların (İng. eye bolt) tek parça ve döküm çelikten imal edilmiş olması zorunludur, aksi halde takıma 25 puan ceza uygulanacaktır.		20	Kurtarma sisteminde belirtilmiştir.
49	3.3.5.8	Büküm mapalar ile mapa yerine kullanılabilecek veya mapa ile benzer kuvvetlere maruz kalabilecek parçaların kullanımına izin verilmeyecektir, aksi halde Aksaray Atış Alanındaki Montaj/Entegrasyon faaliyetlerinde TEKNOFEST Roket Yarışması Komitesi tarafından rokete uçuşa elverişlilik onayı verilmeyecektir.		20	Kurtarma sisteminde belirtilmiştir.
50	3.3.5.9	Burun omuzluğunun diğer gövdeye girecek kısmının gövde dış çapının en az bir buçuk (1,5) katı olması zorunludur, aksi halde takımın raporu değerlendirmeye alınmayacaktır.		9	Burun Konisi bölümünde belirtilmiştir.

NO	GEREKSINIM MADDE NO	GEREKSINIM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
51	3.3.5.10	Entegrasyon gövdelerinin entegre edilecekleri gövdelerin her ikisine de gövde dış çapının en az (0,75) katı kadar girmesi gerekmektedir, aksi halde takımın raporu değerlendirmeye alınmayacaktır.		14	Gövdeler slaytlarında belirtilmiştir.
52	3.3.6.1	Rokette bulunan kurtarma sistemlerinin, roket üzerindeki tüm UKB'ler (A1 kategorisinde UKB veya UKB'ler) tarafından yönetilmesi zorunludur.		29	Aviyonik-Özet yansısı ile gereksinim karşılanmıştır.
53	3.3.6.2	Kategoriye bağlı olarak rokette kullanılacak UKB sayısı değişkenlik göstermekle birlikte, A Grup kategorisinde kullanılacak UKB'lerden birisinin ticarî UKB olması zorunludur, aksi halde takımın tasarımı değerlendirme alınmayacaktır.		28-29	Aviyonik-Özet yansısı ile gereksinim karşılanmıştır.
54	3.3.6.3	Takımların kullanacağı ticari UKB'lerin EK-5'de listelenmiş ürünlerden (TEKNOFEST Roket Yarışması Komitesi tarafından onaylanmış ürünler) seçilmesi zorunludur, aksi halde takımın tasarımı değerlendirme alınmayacaktır.		38	Aviyonik-2. Sistem Detay/1 yansısında ge- reksinim karşılanmıştır

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
55	3.3.6.8	Ticarî UKB'de konum belirleme ve haberleşme sistemi bulunmuyorsa takımların ayrıca haberleşme bilgisayarı kullanması/geliştirmesi zorunludur, aksi halde takımın tasarımı değerlendirme alınmayacaktır.		30	Aviyonik-1. Sistem Detay/1 yansısında gereksinim karşılanmıştır
56	3.3.6.9	A1 kategorisi hariç A Grup yarışma kategorisinde, birisi ana diğeri yedek olacak şekilde en az iki (2) UKB kullanılması zorunludur, aksi halde takımın tasarımı değerlendirme alınmayacaktır.		28-29	Aviyonik-Özet yansısında gereksinim karşılanmıştır
57	3.3.6.10	A1 kategorisi hariç A Grup yarışma kategorisinde kullanılacak ana UKB'nin özgün geliştirilmiş ürün ve yedek UKB'nin ticarî ürün olması zorunludur, aksi halde takımın tasarımı değerlendirme alınmayacaktır.		28-29	Aviyonik-Özet yansısında gereksinim karşılanmıştır
58	3.3.6.11	Özgün UKB'de kullanılan uçuş algoritmasının takım üyeleri tarafından özgün tasarlanmış olması zorunludur, aksi halde takımın tasarımı değerlendirme alınmayacaktır.		36	Aviyonik-1. Sistem Detay/3 yansısında karşılanmıştır

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
59	3.3.6.12	Özgün uçuş algoritmasının detayları hakkında Aksaray Atış Alanında uzmanların soracağı sorulara teknik cevap verebilecek takım üye(ler)i alanda bulunmak zorundadır.		2	Alakalı yansıda belirtilen Aviyonik Sistemleri üyeleri gereksinimi karşılanmaktadır.
60	3.3.6.13	Özgün UKB'deki uçuş algoritmasının özgün olmadığı tespit edilen takımlar yarışmadan elenecektir.		36	Algoritma ile gereksinim karşılanmıştır.
61	3.3.6.14	Özgün geliştirilmiş veya ticarî UKB'ler birbirinden tamamen bağımsız çalışmak zorundadır aksi halde TEKNOFEST Roket Yarışması Komitesi tarafından rokete uçuşa elverişlilik onayı verilmeyecektir.		29	Aviyonik-Özet yansısında belirtilmiştir.

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
62	3.3.6.15	Özgün geliştirilmiş veya ticari UKB'lerin kendisine ait özel işlemcisi, sensörleri, güç kaynağı ve kablolaması olmak zorundadır, aksi halde TEKNOFEST Roket Yarışması Komitesi tarafından rokete uçuşa elverişlilik onayı verilmeyecektir.		30	Aviyonik-1. Sistem yan-sısında alakalı materyallerle gereksinim kar- şılanmıştır
63	3.3.6.17	Özgün geliştirilmiş veya ticari UKB'lerden biri kısmen veya tamamen bozulsa bile diğeri roketin kurtarma işlevlerini eksiksiz, aksaksız ve durmaksızın yerine getirmek zorundadır.		29	Aviyonik-Özet yansısında gereksinim karşılanmıştır

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
64	3.3.6.18	Özgün geliştirilmiş UKB'ye asgari iki (2) farklı sensörün bağlantısı olmalı, ticari UKB'ye ise asgari bağlantı sınırı yoktur (farklı UKB'lere bağlanan sensörler aynı olabilir), aksi halde TEKNOFEST Roket Yarışması Komitesi tarafından rokete uçuşa elverişlilik onayı verilmeyecektir.		34	Aviyonik-1. Sistem Detay/2 yansısında gereksinim karşılanmıştır
65	3.3.6.19	Özgün geliştirilmiş veya ticari UKB'lere bağlı sensörlerden en az birinin basınç sensörü olması zorunludur, aksi halde TEKNOFEST Roket Yarışması Komitesi tarafından rokete uçuşa elverişlilik onayı verilmeyecektir.		34	Aviyonik-1. Sistem Detay/2 yansısında gereksinim karşılanmıştır

NO	GEREKSINIM MADDE NO	GEREKSINIM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
66	3.3.6.20	Özgün geliştirilmiş veya ticari UKB'lere bağlı iki (2) adet basınç sensörü verisi kullanılması durumunda sensörlerin birbirinden farklı olması zorunludur, aksi halde TEKNOFEST Roket Yarışması Komitesi tarafından rokete uçuşa elverişlilik onayı verilmeyecektir.		28	Özgün UKB'de belirtildiği üzere bir basınç sensörü kullanılmaktadır
67	3.3.6.21	Özgün geliştirilmiş UKB'lerin gömülü uçuş kontrol algoritmasında en az iki (2) farklı sensörden gelen veriler kullanılmalıdır, aksi halde TEKNOFEST Roket Yarışması Komitesi tarafından rokete uçuşa elverişlilik onayı verilmeyecektir.		36	Alakalı yansılarda gereksinim karşılanmıştır

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
68	3.3.6.22	Uçuş algoritmalarında ayrılma sekanslarını tetikleyecek asgari iki (2) bağımsız kriter kullanılması zorunludur.		36	Aviyonik-1. Sistem Detay/3 yansısında gereksinim karşılanmıştır
69	3.3.6.23	Karar verme parametrelerinde sensörlerden okunan verilerin esas alınması zorunludur.		36	Alakalı yansıda gereksinim karşılanmıştır
70	3.3.6.24	Sensörlerden okunan veriler doğrudan kullanılmamalı ve herhangi bir hatalı okuma ya da sensör hatası durumu göz önünde bulundurulmalıdır.		37	Alakalı yansıda gereksinim karşılanmıştır

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
71	3.3.6.25	Sensörlerden gelebilecek hatalı veriler için alınacak önlemler (filtreleme vb.) ilgili tasarım raporlarında (ÖTR ve KTR) detaylı anlatılmalıdır.		37	Alakalı yansıda gereksinim karşılanmıştır
72	3.3.6.26	Takımdaki aviyonik sorumlusu uçuş algoritmalarını alanda revize edebilecek yetkinlikte olmak zorundadır.		2	Alakalı yansıda belirtilen Aviyonik Sistemleri üyeleri gerek-sinimi karşı- lamaktadır
73	3.3.6.27	A1 kategorisi hariç A Grup yarışma kategorisinde kullanılan UKB'lerden en az biri haberleşme bilgisayarı özellikleri taşıyabilir veya haberleşme için ayrı bir sistem kullanılabilir.		30	Alakalı yansıda gereklilik karşılanmıştır

NO	GEREKSINIM MADDE NO	GEREKSINIM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
74	3.3.6.29	Söz konusu eyleyici sürme kabiliyeti olan ara elektronik bileşen, sadece ticarî UKB'den gelen sinyalleri değerlendirmeli ve herhangi bir sensör verisi ile durum değerlendirmesi yapmamalıdır.		36	Algoritma ile gereklilik karşılanmıştır
75	3.3.6.30	Eyleyici tek ise, (A1 kategorisi hariç) hem birincil hem de ikincil UKB tarafından kontrol edilmelidir.		36-28	İlgili yansılarda gereklilik karşılanmıştır
76	3.3.6.32	Eyleyici tek ise, sistem kontrolsüz bir şekilde aktif hale gelmemelidir.		36-28	İlgili yansılarda gereklilik karşılanmıştır
77	3.3.6.33	Sistemdeki UKB'ler arasında herhangi bir elektriksel veya kablosuz bağlantı yer alamaz.		35-39	Devre şeması ile gereksinim karşılanmıştır

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
78	3.3.6.34	UKB'deki algoritmada ayrılma işlemi GPS'den gelen veriler ile tetiklenmemelidir.		36	Algoritma ile gereksinim karşılanmıştır
79	3.3.6.36	Kurtarma sistemleri istemsiz ve kontrolsüz aktif hale gelmemelidir.		36	Algoritma ile gereksinim karşılanmıştır
80	3.3.6.37	Bütün takımların, roketlerinden ve faydalı yüklerinden anlık ve sürekli veri alabilen bir yer istasyonuna sahip olması zorunludur, aksi halde TEKNOFEST Roket Yarışması Komitesi tarafından rokete uçuşa elverişlilik onayı verilmeyecektir.		34	Aviyonik-1. Sistem Detay/2 yansısında gereksinim karşılanmıştır

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
81	3.3.6.42	Roket parçalarının yer istasyonundan uzak yerlere düşeceği göz önüne alınmalı ve alıcı-verici antenlerin menzili roketlerin uçuş yörüngesi dikkate alınacak şekilde seçilmelidir.		32	Aviyonik-1. Sistem Detay/1 yansısındaki alakalı tablo ile gereksinim karşılanmıştır
82	3.3.6.43	RF modülünün gücü değerlendirilerek link bant genişliği bütçesinin yapılması ve ilgili tasarım raporlarında sunulması gerekmektedir.		31	Aviyonik-1. Sistem Detay/1 yansısındaki alakalı tablo ile gereksinim karşılanmıştır

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
83	3.3.6.47	Sisteme güç sağlayan sistemle (akü, pil, süper kapasitör vb.) bu sistemin beslediği ilk devrelerin arasında açma/kapama anahtarı (Ing. ON/OFF switch) olarak mekanik anahtar (İng. Key Switch) kullanılmalıdır, aksi halde TEKNOFEST Roket Yarışması Komitesi tarafından rokete uçuşa elverişlilik onayı verilmeyecektir.		26	Bu yansıdaki CAD'de görülen buton UKB'de de kullanılmıştır.
84	3.3.6.48	Mekanik anahtar vasıtasıyla bağlantı kesildiğinde, güç besleme elemanının herhangi bir sistem elemanıyla (LED göstergeler, güç çeviriciler, regülatorler de dahil olmak üzere) bağlantısı olmamalıdır.		35	Devre şeması ile gereksinim karşılanmıştır.

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
85	3.3.6.49	UKB'ler ve Bilimsel Görev Yüküne (Bilimsel Görev Yükü içerisindeki elektronik devrelere) enerji verilmesi/kesilmesi için kullanılacak mekanik anahtarın (İng. Key Switch) rampa operasyonlarında rahat erişilebilir olması, enerji verildiğinde anahtara bağlı ışığın yanması/sesli uyarı alınması ve aerodinamik etkiler dikkate alınarak gömülü olması için gerekli tasarım ve üretim yapılmalıdır, aksi halde TEKNOFEST Roket Yarışması Komitesi tarafından rokete uçuşa elverişlilik onayı verilmeyecektir.		4	Tasarım gereksinimlere göre yapılıp karşılanmıştır.

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
86	3.3.6.50	İp, şönt, tornavida vb. aletler kullanılarak UKB'lere enerji verilmesi yasaktır, aksi halde TEKNOFEST Roket Yarışması Komitesi tarafından rokete uçuşa elverişlilik onayı verilmeyecektir.		4	Tasarım gereksinimlere göre yapılıp karşılanmıştır.
87	3.3.6.51	UKB'lere enerji verildiğinde rokete bağlı başka herhangi bir sistem aktif hale gelirse TEKNOFEST Roket Yarışması Komitesi tarafından rokete uçuşa elverişlilik onayı verilmeyecektir.		4	Tasarım gereksinimlere göre yapılıp karşılanmıştır.

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
88	3.3.7.1	Tasarım ve üretim aşamalarında kullanılacak malzeme, donanım ve süreçler insan sağlığına ve çevreye zararlı olmamalıdır.		10-12- 13-14- 15-16- 17	Tasarım ve üretim aşamaları insan sağlığına ve çevreye zararlı değildir.
89	3.3.7.3	Tasarım, üretim, entegrasyon ve atış faaliyetlerinde güvenliği riske sokacak unsurlar önceden belirlenmeli, gerekli tedbirler eksiksiz planlanmalı ve icra edildiği kanıtlanmalıdır, aksi halde takım elenir.		76-77- 78-79	Hata türleri analizinde sunulmuştur.
90	6.1.1.	Yarışmacı takımların hazırladıkları raporlarda kendi takımlarının ve/veya başka takımların güncel veya geçmiş rapor içeriklerinden kopya çekmek, ortak çalışma/test/analiz yapmak yasaktır.		-	Raporumuz özgün olarak hazırlanmıştır.
91	6.1.2.	Yarışmacıların kopya çektiği ve önceki yıllardaki başka takımlara ve/veya kendi takımlarına ait raporları kullandıkları anlaşılırsa veya takımların ortak çalışma/test/analiz yaptığı tespit edilirse (yarışma tamamlanmış olsa bile) söz konusu takımlar elenecektir.		-	Hiçbir takımla işbirliği yapılmamıştır.

NO	GEREKSINIM MADDE NO	GEREKSINIM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
92	6.1.4.	Takımların, referans verecekleri içeriklerde American Psychological Association (APA) referans tipini kullanmaları gerekmektedir. (referans https://apastyle.apa.org/products/publication-manual-7th-edition adresindedir).		80	Raporumuzun kaynakça kısmında uygulanmıştır.
93	6.1.5.	İlgili raporların (ÖTR ve KTR) Ek'inde yer alacak şekilde takımlar tarafından kontrol listeleri doldurulacak ve TEKNOFEST Roket Yarışması Komitesine teslim edilecektir (Örnek kontrol listesi EK-12'de sunulmuştur).		-	Kontrol listesi sunulmuştur.
94	6.2.1.4	Takımların ÖTR'de istenilen tüm bilgileri eksiksiz ve ilgili bölümlerde sunmaları zorunlu olup, raporun ilgili bölümünde olması gereken bilgiler planlı yerinde değilse değerlendirmesi yapılmayacaktır (Raporlar, TEKNOFEST Roket Yarışması Komitesi olarak bütünsel değerlendirmeye alınmamakta, her uzman ÖTR'de ilgili olduğu bölümü değerlendirmeye almaktadır. Takımlar kendilerinden istenilenleri ilgili bölümde sunmadığında hakemler görmek istediği bilgi ve analizleri ilgili bölümde göremeyince takımın elenme riski ortaya çıkmaktadır. Rapor şablonuna eksiksiz uymak tamamıyla takımın sorumluluğundadır).		-	Gerekli şartname ve şablon şartlarına uyulacak şekilde tasarım rapora aktarılmıştır.

NO	GEREKSINIM MADDE NO	GEREKSİNİM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
95	6.2.1.5	Takımlar yarışma takvimindeki miatlara uygun olarak ÖTR'yi TEKNOFEST Roket Yarışması Komitesine teslim etmekle yükümlüdürler.		-	Verilen tarihlere uygun olacak şekilde çalışmalar yürütülmüştür.
96	6.2.1.6	Takımlar, ÖTR'de temel olarak yaptıkları tasarımların TEKNOFEST Roket Yarışması Şartnamesindeki gereksinimleri eksiksiz karşıladığını ispatlamakla yükümlüdürler.		-	Gerekli şartların karşılandığı raporda doldurulan kısımlarda belirtilmiştir.
97	6.2.1.7	Takımlar, ".ork" uzantılı Open Rocket dosyalarını ÖTR ile birlikte teslim etmek zorundadır, aksi halde takım elenir.		-	Open Rocket dosyası istenilen şekilde teslim edilmiştir.
98	6.2.1.8	Teknik gereksinimlerin karşılandığının kanıtlanması için Gereksinimleri Karşılama Matrisi (İng. Compliance Matrix) takımlar tarafından oluşturmak (örnek matris şablonlarda yer alacaktır) ve ilgili tasarım raporlarının (ÖTR ve KTR) parçası olarak sunulmak zorundadır.		-	Kontrol listesi şeklinde belirtilmiştir.

NO	GEREKSINIM MADDE NO	GEREKSINIM	KARŞILAMA DURUMU	ÖTR SLAYT NO	AÇIKLAMA
99	6.2.1.9	ÖTR aşamasında kavramsal (İng. Conceptual) seviyede yürütülecek tasarım faaliyetleri kapsamında takımlar, eniyileme (optimizasyon) süreçlerini işletmek, getiri-götürü analiz yapmak, rasyonel seçimler yapmak ve amaç fonksiyonuna ulaşmaya yönelik gerekli tüm mühendislik analizlerini yapmaktan ve paylaşmaktan sorumludur.		-	Gerekli mühendislik analizleri takımımız tarafından yapılmıştır.
100	6.2.1.10	Takımların yapacakları getiri-götürü analizlerinde (İng. Trade off), karara esas kriterleri (vazgeçilmez ve opsiyonel kriterler) listelemek ve yapılan seçimleri neden ve sonuçlarıyla birlikte ÖTR'de sunmaktan sorumludurlar.		10-12-15- 17-19-31- 32-33-38- 41	Getir-Götür analizleri tablo şeklinde raporda belirtilmiştir.
101	6.2.1.11	Hata Türleri ve Etkileri Analizine (HTEA) yönelik çalışma sonuçları ÖTR'de sunulmak zorundadır (Takımların HTEA çalışmalarını yapabilmeleri için şablon dokümanlar TEKNOFEST Roket Yarışması Komitesi tarafından TEKNOFEST'in internet sitesinde paylaşılacaktır).		<u>-</u>	Excel dosyası olarak raporda belirtilmiştir.
102	6.2.1.12	ÖTR'de takımların üretmeyi planladıkları roketin genel hatlarıyla CAD tasarımını tamamlamış olmaları ve sistemlerini bu tasarım üzerinden detaylı bir şekilde anlatmaları gerekmektedir.		4	CAD tasarımları açıklamaları raporda açık bir şekilde belirtilmiştir.

HTEA Hata Türleri ve Etkileri Analizi

"HTEA.xlsx" dosyası olarak sisteme yüklenmiştir.

HTEA

Hata No	Öge/Fonksiyon	Fonksiyon Tanımı	Hata Türü	Hata Nedeni	Ömür/ Görev Evresi	Hata	a Etkisi	Hata Tespit Yöntemi	Mevcut	t Tasarım Kontrolleri	Alınan Tedbirler	Şiddet Puanı (S)
Hata No	İncelenen öge ve süreç adımı nedir? (Rokete ait ürün ağacı üzerinden giderek, kritik her kalem için meydana gelebilecek hatalar incelenmeli ve listelenmelidir.)	Fonsiyonun gerçekleşmesi için gereken nedir?/ Fonksiyon tanımı nedir?	sağlanamama durumu nedir? (Hatanın ne olduğu	farklı sebeplerden oluşabiliyor ise, farklı sebepler için ayrı satırlarda hatayı tek tek ele alınız.)	nedir?	Yerel Etki (Hata türünün kendi üzerindeki etkisi)	Son Etki (Hata türünün görev başarımı ve Değerlendirme Komitesi beklentileri üzerindeki etkisi)	Söz konusu görev evresinde hatanın tespiti ne şekilde olmakta? (Periyodik test, ölçüm, muayene, kullanıcıyı görsel ve/veya işitsel yollarla uyaran işaretler, insankullanıcı arayüzlerinde yer alan uyarı mesajları, gözle muayene vb)	Önleyici (P) Hata türünü ve/veya hata nedenini engelleyen mevcut kontroller nelerdir?	Tespit Edici (D) Hatanın tespit edilmesini sağlayan mevcut kontroller nelerdir?	Hata oluştuktan sonra hatanın etkisini ortadan kaldıran ya da azaltan tasarım tedbirleri nelerdir? (Yedekleme, başka bir sistemin devreye girmesi, algoritmada alınan önlemler vb.)	Görev başarımı ve Değerlendirme Komitesi beklentileri açısından bu etki ne derece önemlidir?
HT-1	Burun Konisi	Rokete etki eden sürtünme kuvetinin azaltılması.	geometrisinin	Üretimde kullanılacak kalıp ölçülerinin hatalı olması.	Uçuş	Roketin simetrik olmaması.	Roketin istenilen irtifaya ulaşamaması.	Ölçüm muayenesi.	Kalıp üretiminin hassas makinalar ile yapılması.	Uçuş öncesi yer testleri.	Burun konisinin tekrar üretilmesi.	7
HT-2			Kanatçık tasarımının istenilen ölçüde üretilememesi.	Lazer kesim makinasına gönderilen DXF formatında hata olması.	Rampaya yükleme ve Ateşleme hazırlık	Stabilitenin istenilen aralıklarda olmaması.	Roketin istenilen yörüngede uçmaması.	Ölçüm muayenesi.	· ·	Ölçüm aleti ile ölçüm muayenesi yapılması.	Kanatçıkların tekrar üretilmesi.	7
HT-3	Entegrasyon Gövdesi	gövdenin birbirine montajının	Üretim sonrası entegrasyon gövdesi dış çapının yanlış ölçüde olması.	Sıkı geçme toleransının yanlış hesaplanması.	Rampaya yükleme ve ateşleme hazırlık Uçuş	Roketin gövde bütünlüğünün bel vermesi.	Roketin uçuş sırasında yörüngeden çıkması.	Gözle muayene.	Üretimde hassas makine kullanımı.	Uçuş öncesi montaj.	Entegrasyon gövdesinin tekrar üretilmesi.	4

HTEA

Hata Türleri ve Etkileri Analizi

Hata No	Öge/Fonksiyon	Fonksiyon Tanımı	Hata Türü	Hata Nedeni	Ömür/ Görev Evresi	Hata	ı Etkisi	Hata Tespit Yöntemi	Mevcut	Tasarım Kontrolleri	Alınan Tedbirler	Şiddet Puanı (S)
Hata	İncelenen öge ve	Fonsiyonun	Tanımlanmış	Hatanın	Hatanın gözlemlendiği	Yerel Etki	Son Etki	Söz konusu görev	Önleyici (P)	Tespit Edici (D)	Hata oluştuktan sonra	Görev başarımı
No	süreç adımı	gerçekleşmesi	gereksinimin	oluşmasına	ömür/ görev evresi			evresinde hatanın			hatanın etkisini ortadan	ve
	nedir?	için gereken	sağlanamama	sebep olan	nedir?	(Hata türünün	(Hata türünün	tespiti ne şekilde	Hata türünü ve/veya	Hatanın tespit edilmesini	kaldıran ya da azaltan	Değerlendirme
		nedir?/	durumu nedir?	yetersizlikler/ola		kendi üzerindeki	görev başarımı ve	olmakta?	hata nedenini	sağlayan mevcut	tasarım tedbirleri nelerdir?	Komitesi
	(Rokete ait ürün	Fonksiyon tanımı		ylar nelerdir?	-Depolama	etkisi)	Değerlendirme		engelleyen mevcut	kontroller nelerdir?		beklentileri
	ağacı üzerinden	nedir?	(Hatanın ne		-Taşıma		Komitesi	(Periyodik test,	kontroller nelerdir?		(Yedekleme, başka bir	açısından bu etki
	giderek, kritik her		olduğu	(Aynı hata türü	-Rampaya Yükleme ve		beklentileri	ölçüm, muayene,			sistemin devreye girmesi,	ne derece
	kalem için		tanımlanacaktır)	farklı	Ateşleme hazırlık		üzerindeki etkisi)	kullanıcıyı görsel			algoritmada alınan	önemlidir?
	meydana			sebeplerden	-Uçuş			ve/veya işitsel			önlemler vb.)	
	gelebilecek			oluşabiliyor ise,				yollarla uyaran				
	hatalar			farklı sebepler	(Aynı hata türü			işaretler, insan-				
	incelenmeli ve			için ayrı	sistemin farklı ömür			kullanıcı				
	listelenmelidir.)			satırlarda hatayı	evrelerinde			arayüzlerinde yer				
				tek tek ele alınız.)	gözlenebiliyor ise, bu			alan uyarı mesajları,				
					ömür evreleri için ayrı			gözle muayene vb)				
					satırlarda tek tek ele							
LIT 4	N.Al. a. allaa. a	NA a ta muna maluat	N A subsections a	William In titure since	alınız.)	N.A. alla alla anno	Deletie isteriler	Öləövə və və və ə ə əi	Özekler de bereze ezelde.		Vadali madicalama bilasi	
H1-4	Merkezleme	Motorun roket	Merkezleme bileziklerinin	Yüksek titreşim	Uçuş	Merkezleme	Roketin istenilen	Ölçüm muayenesi.	Üretimde hassas makine	Uçuş öncesi montaj.	Yedek merkezleme bileziği	
	Bilezikleri	içinde		ve üretim hatası.		bileziklerinin	irtifaya		kullanımı.		üretimi.	7
		merkezlenmesini	deforme olmasi.			fonksiyonelliğini	ulaşamaması.					
HT-5	Paraşütler	n sağlanması. Roketin tekrar	Parasütlerin	Kurtarma	Heus	kaybetmesi. Parasütlerde	Kurtarma	Gözle muayene.	Paraşütler ile barut	Uçuş öncesi yer testleri.	Ortaya çıkabilecek	
пі-э	,	kullanılabilir bir	zarar görmesi.	sisteminden	Uçuş	,	sisteminin işlevini	Gozie illuayelle.	haznesi arasına ayırıcı	oçuş oncesi yer testleri.	sıcaklıklara uygun kumaş	
		sekilde vere	Zarai gorinesi.	çıkabilecek		yırtıklar oluşınlası.	verine		plaka tasarlanması.		seçimi.	
		inişinin		kıvılcımların			getirememesi.		piaka tasarianinasi.		seçiiii.	4
		-		paraşüt kumaşına			getilelilesi.					
		gerçekleşmesi.		zarar vermesi.								
HT-6	Uçuş Bilgisayarı	Uçuş verilerinin	İşlemci arızası.	Yüksek	Uçuş	Uçuş bilgisayarı	Görev adımlarının	Telemetre verileri.	Uçusta beklenen	Uçuş öncesi yer testleri.	Yedek uçuş bilgisayarı	
	,,, ,,,,,,	analiz edilmesi	,	titreşimler ve şok	- 3 - 3	yazılımının	başarılı bir şekilde		titreşim ve şok	, , ,	kullanımı.	
		ve görev		seviyeleri.		calistirilamaması.	gerçekleştirileme		seviyelerine uyumlu			1 1
		komutlarının		,			mesi.		uçuş bilgisayarı seçimi.			_
		oluşturulması.							, , , ,, ,, ,,			

HTEA

Hata Türleri ve Etkileri Analizi

Hata No	Öge/Fonksiyon	Fonksiyon Tanımı	Hata Türü	Hata Nedeni	Ömür/ Görev Evresi	Hata	a Etkisi	Hata Tespit Yöntemi	Mevcut	t Tasarım Kontrolleri	Alınan Tedbirler	Şiddet Puanı (S)
Hata No	İncelenen öge ve süreç adımı nedir? (Rokete ait ürün ağacı üzerinden giderek, kritik her kalem için meydana gelebilecek hatalar incelenmeli ve listelenmelidir.)	Fonsiyonun gerçekleşmesi için gereken	Tanımlanmış gereksinimin sağlanamama durumu nedir? (Hatanın ne olduğu tanımlanacaktır)	sebeplerden oluşabiliyor ise, farklı sebepler için ayrı satırlarda hatayı tek tek ele alınız.)	Hatanın gözlemlendiği ömür/ görev evresi nedir? -Depolama -Taşıma -Rampaya Yükleme ve Ateşleme hazırlık -Uçuş (Aynı hata türü sistemin farklı ömür evrelerinde gözlenebiliyor ise, bu ömür evreleri için ayrı satırlarda tek tek ele	Yerel Etki (Hata türünün kendi üzerindeki etkisi)	Son Etki (Hata türünün görev başarımı ve Değerlendirme Komitesi beklentileri üzerindeki etkisi)	Söz konusu görev evresinde hatanın tespiti ne şekilde olmakta? (Periyodik test, ölçüm, muayene, kullanıcıyı görsel ve/veya işitsel yollarla uyaran işaretler, insankullanıcı arayüzlerinde yer alan uyarı mesajları, gözle muayene vb)	Önleyici (P) Hata türünü ve/veya hata nedenini engelleyen mevcut kontroller nelerdir?	Tespit Edici (D) Hatanın tespit edilmesini sağlayan mevcut kontroller nelerdir?	Hata oluştuktan sonra hatanın etkisini ortadan kaldıran ya da azaltan tasarım tedbirleri nelerdir? (Yedekleme, başka bir sistemin devreye girmesi, algoritmada alınan önlemler vb.)	Görev başarımı ve Değerlendirme Komitesi beklentileri açısından bu etki ne derece önemlidir?
HT-7	Batarya	Aviyonik sisteme güç sağlanması.	Arayüzde temassızlık sonucu bataryanın güç aktarımı yapamaması.	Montaj hatası ve uçuş titreşimi.	<i>alınız.)</i> Uçuş	Aviyonik sistemin çalışmaması.	Görev komutlarının üretilememesi ve roketle iletişim kurulamaması.		Kilit mekanizmalı konektör seçimi.	Uçuş öncesi yer testleri.	Besleme hattı yedeklenmesi.	7
HT-8	Şok Kordonu	Ayrılma sonrası roket gövdelerinin bir arada tutulması.	Roketin ayrılması sırasında şok kordonunun kopması.	Şok hesabında kullanılan denklemlerde yanlışlık yapılması.	Uçuş	Roketin iniş sırasında bütünlüğünün bozulması.	Roketin balistik çakılması.	Ölçüm muayenesi.	Dayanımı yüksek şok kordonu seçimi.	Uçuş öncesi yer testleri.	Oluşan hasar sonrası hasarı giderme ve güçlendirme dikişi kullanılması.	1
HT-9	Cıvata	İki parçanın birbirine montajlanması.	Cıvatanın paslanması	Yüksek nem oranı.	Depolama Taşıma	Civatanın dayanımının azalması	Cıvata ile montajlanan roket elemanlarının bütünlüğünün bozulması.	Görsel muayene.	Paslanmayan çelik veya alüminyumdan yapılmış cıvata seçimi.	Nem testi yapılması.	Yedek cıvata kullanımı.	1

Referanslar

- 1) Chin, S. S. (1961). *Missile Configuration Design*.
- 2) https://cdn.teknofest.org/media/upload/userFormUpload/EK-3 https://cdn.teknofest.org/media/upload/userFormUpload/EK-3 S%C4%B1cak https://cdn.teknofest.org/media/upload/userFormUpload/EK-3 S%C4%B1cak Gaz S%C4%B1cak https://cdn.teknofest.org/media/upload/userFormUpload/EK-3 S%C4%B1cak https://cdn.teknofest.org/media/upload/userFormUpload/EK-3 https://cdn.teknofest.org/media/upload/userFormUpload/EK-3 https://cdn.teknofest.org/media/upload/userFormUpload/EK-3 https://cdn.teknofest.org/media/upload/userFormUpload/EK-3 https://cdn.teknofest.org/media/upload/userFormUpload/EK-3 https://cdn.teknofest.org/media/userFormUpload/EK-3 https://cdn.teknofest.org/media/userFormUpload/EK-3 https://cdn.teknofest.org/media/userFormupload/EK-3 https://cdn.teknofest.org/me
- 3) https://rocketturk.com/akademi/parasut-boyutu-nasil-hesaplanir/
- 4) Roketsan Model Roketçilik (PDF)
- 5) https://youtube.com/playlist?list=PLx KifMHmX RnLd7KlO-vgLmYUQbsu1QE&si=c3wmdpa-R hH 9yC
- 6) https://www.aero.iitb.ac.in/satelliteWiki/index.php/Link Budget
- 7) https://www.kablosuzkontrol.net/wp-content/uploads/2018/12/DRFA-433Y-ANTEN.pdf
- 8) https://www.youtube.com/watch?v=GC7Lbj5ETfE&t=318s
- 9) https://www.youtube.com/watch?v=MMM4qCJxEo0
- 10) Iyer, Aditya Rajan; Pant, Anjali (August 2020). "A Review on Nose Cone Designs for Different Flight Regimes"
- 11) THE DESCRIPTIVE GEOMETRY OF NOSE CONES © 1996 Gary A. Crowell Sr.
- 12) Teensy[®] 3.6 (pjrc.com)
- 13) EK-3 Sıcak Gaz Üreteci