

Model Optimization and Tuning Phase

Date	07 July 2024
Team ID	739915
Project Title	BlueBerry Yield Prediction
Maximum Marks	6 Marks

Hyperparameter Tuning Documentation:

Hyperparameter tuning involves adjusting the parameters that govern the training process of machine learning models to optimize their performance. It includes methods such as grid search, random search, and Bayesian optimization. Proper documentation helps in understanding the impact of different hyperparameters, streamlining the tuning process, and replicating results. Clear records of hyperparameter settings and their outcomes are essential for achieving the best model accuracy and efficiency.

Model	Tuned Hyperparameters	Optimal Values
Linear Regression	<pre>from sklearn.linear_model import Ridge ridge = Ridge() parameters = {'alpha': [0.1, 1, 10]} # Example values for regularization strength ridge_regressor = GridSearchCV(ridge, parameters, scoring='neg_mean_squared_error', cv=5) ridge_regressor.fit(x_train, y_train) best_alpha = ridge_regressor.best_params_['alpha'] print("Best Alpha:", best_alpha) # Using the best model found by GridSearchCV best_ridge = ridge_regressor.best_estimator_ best_ridge = ridge_regressor.best_estimator_ best_ridge = best_ridge.predict(x_test)</pre>	<pre>mae_ridge = mean_absolute_error(y_test, pred_ridge) mse_ridge = mean_squared_error(y_test, pred_ridge) rmse_ridge = np.sqrt(mse_ridge) rsq_ridge = r2_score(y_test, pred_ridge) print("MAE: %.3f" % mae_ridge) print("MSE: %.3f" % mse_ridge) print("RMSE: %.3f" % rmse_ridge) print("R-Square: %.3f" % rsq_ridge) print("Training Accuracy:", best_ridge.score(x_train, y_train)) print("Testing Accuracy:", best_ridge.score(x_test, y_test)) Best Alpha: 0.1 MAE: 95.466 MSE: 14043.502 RMSE: 118.505 R-Square: 0.991 Training Accuracy: 0.991011446378135 Testing Accuracy: 0.9913088598782471</pre>

mae rf train tu = mean absolute error(v train, pred rf train tu) mae_rf_tu = mean_absolute_error(y_test, pred_rf_tu) mse_rf_tu = mean_squared_error(y_test, pred_rf_tu) 'n_estimators': [50, 100, 200], 'max_depth': [None, 10, 20, 30], 'min_samples_split': [2, 5, 10], rmse_rf_tu = np.sqrt(mse_rf_tu) rsq_rf_tu = r2_score(y_test, pred_rf_tu) 'min_samples_leaf': [1, 2, 4], 'bootstrap': [True, False] print("MAE train: %.3f" % mae rf train tu) print("MAE: %.3f" % mae_rf_tu) print("MSE: %.3f" % mse_rf_tu) rf = RandomForestRegressor(random state=42) print("RMSE: %.3f" % rmse_rf_tu) print("R-Square: %.3f" % rsq_rf_tu) RandomForest grid_search = GridSearchCV(estimator=rf, param_grid=param_grid, cv=5, n_jobs=-1, verbose=2) print("Training Accuracy: %.3f" % best rf.score(x train, y train)) print("Testing Accuracy: %.3f" % best_rf.score(x_test, y_test)) grid_search.fit(x_train, y_train) Regressor Fitting 5 folds for each of 216 candidates, totalling 1000 fits Best Parameters: {'bootstrap': True, 'max_depth': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 200} Best Cross-Validation Score: 0.906 best_params = grid_search.best_params_ best_score = grid_search.best_score MAE train: 41.448 MAE: 110.332 MSE: 19188.170 RMSE: 138.521 print(f"Best Parameters: {best params}") print(f"Best Cross-Validation Score: {best_score:.3f}") R-Square: 0.988 Training Accuracy: 0.998 best_rf = grid_search.best_estimator Testing Accuracy: 0.988 pred_rf_train_tu = best_rf.predict(x_train) pred_rf_tu = best_rf.predict(x_test) mae_dt_tu = mean_absolute_error(y_test, pred_dt_tu) dt = DecisionTreeRegressor() mse_dt_tu = mean_squared_error(y_test, pred_dt_tu) rmse_dt_tu = np.sqrt(mse_dt_tu) param_grid = { rsq_dt_tu = r2_score(y_test, pred_dt_tu) 'max_depth': [None, 10, 20, 30, 40, 50], 'min_samples_split': [2, 5, 10, 15], 'min_samples_leaf': [1, 2, 5, 10], print("MAE:", mae_dt_tu) print("MSE:", mse_dt_tu) print("MSE:", mse_dt_tu) print("RSGuared:", rsq_dt_tu) print("R-Squared:", rsq_dt_tu) print("Training Accuracy:", best_dt.score(x_train, y_train)) print("Testing Accuracy:", best_dt.score(x_test, y_test)) 'max_features': ['auto', 'sqrt', 'log2', None] **DecisionTree** grid_search = GridSearchCV(estimator=dt, param_grid=param_grid, cv=5, scoring='neg_mean_squared_error', n_jobs=-1) Regressor grid search.fit(x train, y train) Best Parameters: ('max_depth': None, 'max_features': None, 'min_samples_leaf': 5, 'min_samples_split': 10} Best CV Score: -40740.29928310072 MRE: 128.1739536646462 MSE: 30284.679955869266 print("Best Parameters:", grid_search.best_params_) print("Best CV Score:", grid_search.best_score_) RMSE: 174.02494061446845 R-Squared: 0.9812576374711801 Training Accuracy: 0.9931849259250838 Testing Accuracy: 0.9812576374711801 best_dt = grid_search.best_estimator pred_dt_tu = best_dt.predict(x_test) xgb = XGBRegressor() mae xgb tuned = mean absolute error(y test, pred xgb tuned) mse_xgb_tuned = mean_squared_error(y_test, pred_xgb_tuned) param_grid = { rmse xgb tuned = np.sart(mse xgb tuned) 'learning_rate': [0.01, 0.1, 0.2], rsq_xgb_tuned = r2_score(y_test, pred_xgb_tuned) 'max_depth': [3, 5, 7], 'min_child_weight': [1, 3, 5], 'subsample': [0.6, 0.8, 1.0], print("MAE: %.3f" % mae xgb tuned) print("ME: 3.1" % me_xgb_tumed) print("ME: 8.3" % me_xgb_tumed) print("ME: 8.3" % rese_xgb_tumed) print("Asquared: 8.3" % rese_xgb_tumed) print("Asquared: 8.3" % rese_xgb_tumed) print("Texting Accuracy:", best_xgb.score(x_train, y_train)) print("Texting Accuracy:", best_xgb.score(x_text, y_text)) 'colsample_bytree': [0.6, 0.8, 1.0] **XGBoost** grid_search = GridSearchCV(estimator=xgb, param_grid=param_grid, scoring='neg_mean_squared_error', cv=5, verbose=1) Regressor Fitting 5 folds for each of 243 candidates, totalling 1215 fits Best Parameters: ("colsample_bytere': 0.8, 'learning_rate': 0.1, 'max_depth': 3, 'min_child_weight': 1, 'subsample': 0.6) Best CV Score: -16626.085239377753 grid_search.fit(x_train, y_train) print("Best Parameters:", grid_search.best_params_) Tuned Model Metrics: print("Best CV Score:", grid_search.best_score_) MAE: 94.131 MSE: 14517.358 best_xgb = grid_search.best_estimator_ RMSE: 120.488 R-Squared: 0.991 Training Accuracy: 0.9951537856788809 Testing Accuracy: 0.9910156029061967 pred_xgb_tuned = best_xgb.predict(x_test)