PASSE BAS avec AOP

Figure 1 - Schéma de câblage

 $H(j\omega)$ la fonction de transfert

A0 le gain

 $\omega 0$ la pulsation de coupure

$$H\left(j\,\omega\right) \; = \; -(\frac{Z}{R}) \; = \; -\frac{R_2}{R + j\,R\,R_2\,C\,\omega} \; = \; -\frac{R_2}{R}.\frac{1}{1 + j\,R_2\,C\,\omega}$$

$$H\left(j\,\omega\right) \;=\; A_0.\frac{1}{1+j\frac{\omega}{\omega_0}} \quad avec \quad A_0 \;=\; -\frac{R_2}{R} \quad et \quad \omega_0 \;=\; \frac{1}{R_2C}$$

Fréquence de coupure :
$$f_c = \frac{1}{2\pi R_2 C}$$

Le gain et la fréquence de coupure varient en fonction de la résistance variable R2 Gain compris entre -5 et 0.

Fréquence de coupure comprise entre 0 et 318Hz.

Composant	Nom	Valeur	Code fournisseur RS
Résistance	R1	10k	125-1148
Résistance variable	R2	50k	<u>167-3358</u>
Condensateur	C1	10nF	170-0212
AOP	U1	TL081ACD	920-3447
Bornier	HDR1X9		

PASSE BAS avec AOP

Figure 2 - Plan PCB

2