# Aktivno učenje ob poskusih

Gorazd Planinšič

SSS 20. januar 2012





Slika kaže vezje, ki je sestavljeno iz treh upornikov in dveh idealnih baterij. Izračunajte tok, ki teče skozi  $2\Omega$  upornik in napetost med točkama E in F. Tri enake žarnice so priključene kot kaže slika. Kaj se zgodi, ko sklenemo stikalo S? Se navedene količine povečajo, zmanjšajo ali ostanejo nespremenjene?

Svetlost žarnic A, B, C Tok skozi baterijo Skupna moč, ki jo porablja vezje

Klasična naloga

Konceptualna naloga

#### Klasična naloga

#### Konceptualna naloga









E Mazur, Peer instruction, Prentice Hall, NJ, 1997.

Klasičen pouk ne razvija sposobnosti in znanj, ki so spoznana kot ključna v današnjem času.

Aktivne oblike poučevanja so uspešnejše pri doseganju želeníh sposobnosti in znanj.

# Raziskave na področju izobraževalne fizike

- Interdisciplinarno raziskovalno področje, področje aplikativne fizike (angl. Physics Education Research - PER).
- Težave, ki jih imamo ljudje pri razumevanju fizikalnih pojavov, poskusov, slik, grafov, besed.... so robustne, ponovljive in napovedljive.
- Razvoj novih poučevalskih metod, poskusov, tehnik, orodij ... s katerimi dosegamo boljše razumevanje fizikalnih vsebin ter razvijamo ključne kompetence.
- Podoben razvoj poteka tudi na področjih drugih predmetov.

# Raziskave na področju nevroznanosti

Nove znanstvene metode (kot npr. PET in fMRI) so prinesle revolucionarna odkritja na področju razumevanja delovanja možganov in razumevanja procesov, ki potekajo pri učenju.



### Učni cikel



J E Zull, The art of changing the brain (2002), From barin to mind (2011) Stylus Publ.





Razumevanje jezika, prepoznavanje, primerjava z že znanimi podatki...

# Oblikovanje in preizkušanje idej

Ustvarjalna integracija (čelni reženj) je aktiven proces, ki poteka, če je prisotna motivacija.

Kontekst (zgodbe) - Relevantnost

Podobe - Pestrost

# Lastništvo znanja

Priložnosti za ustvarjanje in preizkušanje lastnih idej



Nadzor nad svojim učenjem



Prenos "lastništva" usvojenega znanja z učitelja na dijaka

## Podobe

 Pomemben je v kakšnem vrstnem redu dijakom predstavimo podobe (bolj zanimive najprej).

 Podobe omogočajo veliko načinov aktivnega učenja: preoblikovanje, prerazporeditev, zamenjava ene podobe z drugo ...

#### Primer

Dva avtomobila vozita po ravnih in vzporednih cestah. Ob času t=0 se oba nahajata pri oznaki x=0. Avto A se ves čas giblje s stalno hitrostjo  $v_A$ , avto B pa s stalnim pospeškom. Ob času t=0 je avto B miroval. Kolikšna je hitrost avtomobila B ob času srečanja?

**BESEDILO** 

#### **SKICA**

A 
$$\overrightarrow{v}_{A}$$
  $\overrightarrow{v}_{A}$ 

B  $\overrightarrow{v}_{A}$   $\overrightarrow{v}_{A}$   $\overrightarrow{v}_{A}$ 
 $t=0$   $t=t_{s}$ 

### DIAGRAM GIBANJA



**GRAF** 





$$\beta_A = v_A \cdot t$$

$$\beta_B = \frac{1}{2}at^2 = \overline{v_B} \cdot t = \frac{v_{BK}}{2} \cdot t$$
At its u specanja  $S_A = S_B$ 

### NAČRTOVANJE IN IZDELAVA POSKUSA



ŠE VEČ: energijski stolpci, risanje silnic, sheme vezij, risanje žarkov...

+ SODOBNA TEHNOLOGIJA: analiza filmov, slik, spektrov, sinhronizacija filma/zvoka in grafa...

# Računanje in sprejemanje ocen

Področje za generiranje in razumevanja jezika = področje računanja



Področje kvalitativnega razmišljanje, sprejemanje ocen, aproksimiranje,

# Katere oblike aktivnega pouka so primerne za fiziko?

#### Dva primera

- 1. Napovej izid poskusa... (E Mazur: Peer Instruction)
- 2. Razmišljaj kot znanstvenik... (Etkina & Heuvelen: ISLE)

# Napovej izid poskusa...

#### A. Klasičen način prikaza demonstracijskega poskusa

#### Dijaki:

- 1. opazujejo (odlično)izvedbo poskusa,
- 2. poslušajo (odlično) razlago učitelja.

Povprečen čas za izvedbo: 11 min

#### B. Napoved, nato prikaz poskusa

#### Dijaki:

- 1. napovejo izid poskusa (klikerji, vprašanje izbirnega tipa),
- 2. opazujejo izvedbo poskusa,
- 3. poslušajo razlago učitelja.

Povprečen čas za izvedbo: 13 min

#### C. Napoved, nato prikaz poskusa in diskusija

#### Dijaki:

- napovejo izid poskusa (pisno, vprašanje odprtega tipa),
- 2. opazujejo izvedbo poskusa,
- diskutirajo z najbližjimi sosedi o napovedih in izidu,
- 4. poslušajo razlago učitelja.

Povprečen čas za izvedbo: 21 min

### Primer iz poglavja "Sila in navor"

Na dve enaki tehtnici položimo lahko letev.



Če na sredino letve položimo utež, kažeta obe tehtnici enako vrednost x.

#### A. Klasična izvedba poskusa

#### B. Napoved, nato prikaz poskusa

Napovejte kaj kažeta tehtnici, če prestavimo utež tako, da je njeno težišče nad levo tehtnico?

A. Desna: x Leva: x

B. Desna: 0 Leva: 2x

C. Desna: 2x Leva 0

D. Desna: 0,5 *x* Leva: 1,5 *x* 

E. Desna: 1,5 *x* Leva: 0,5 *x* 



#### B. Napoved, nato prikaz poskusa

Napovejte kaj kažeta tehtnici, če prestavimo utež tako, da je njeno težišče nad levo tehtnico?

A. Desna: x Leva: x

B. Desna: 0 Leva: 2x

C. Desna: 2x Leva 0

D. Desna: 0,5 *x* Leva: 1,5 *x* 

E. Desna: 1,5 *x* Leva: 0,5 *x* 



#### C. Napoved, nato prikaz poskusa in diskusija

| 1. Napovejte kaj bosta kazali tehtnici, če prestavimo utež tako, da je njeno težišče nad levo tehtnico. Pojasnite vaše razmišljanje. |
|--------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                      |
|                                                                                                                                      |
| 2. <mark>Opišite</mark> izid poskusa.                                                                                                |
| ••••••••••                                                                                                                           |
|                                                                                                                                      |
| 3. Primerjajte vašo napoved (1) z izidom poskusa (2). Ali se napoved in izid ujemata?                                                |
|                                                                                                                                      |
|                                                                                                                                      |

4. Po pogovoru s sosedi opišite zakaj je bil vaš razmislek na podlagi katerega ste podali napoved pravilen oziroma nepravilen.

# Izboljšave dosežkov glede na uporabljeno metodo poučevanja



C H Crouch et al, Classroom demonstrations: Learning tools or entertainment? AJP 72(2004) 835-838.

# Razmišljaj kot znanstvenik...

- Dijake spodbujamo, da rešujejo naloge na podoben način, kot to počnejo pravi znanstveniki.
- Naloge slonijo na premišljeno izbranih poskusih, ki omogočajo različne razlage <u>v okviru UN</u>.
- Poskusi so izbrani tako, da reševanje vključuje vse korake učnega cikla (ISLE cikel).

#### ISLE - učni cikel



Etkina, E, in A Van Heuvelen (2007). Investigative science learning environment—a science process approach to learning physics. (Ur.) E F Redish and P J Cooney. Dostopno na naslovu:

www.compadre.org/per/per\_reviews/media/volume1/isle-2007.pdf (preneseno 12.9.2011). AAPT, 2007.

# 1. Primer: Tehtanje balona



G Planinšič, *Premiki v poučevanju naravoslovnih predmetov,* Proteus, **73** (2011) str. 295-300.

# 2.Primer: Pepsi, Coca-cola in led





G Planinšič, Aktivno učenje ob poskusih, I, DMFA-založništvo, 2010.

#### Hipoteza

# Testni poskus in napoved

# Ali se testni poskus ujema z napovedjo?

H1: Rdeča pločevinka ima debelejče stene kot modra.

Predposlovka: pločevinki sta iz make kojne.

N1: Če pločevinki razrežemo, bomo opazili razliko v debelini sten.



H2: Rdeča pločevinka je iz drugačne kovine kot modra.

#### Predpostavka:

pločevinki imata enako debeli steni. N2: Če je ena od pločevink železna, se bo magnet prijel nanjo.



### 3. Primer: Svetlobni stožec



# Opazovalni poskus



# Različne hipoteze

H1: Struktura papirja odbije in usmeri lasersko svetlobo v stožec.

H2: Nečistoče v stekleni steni akvarija odbijejo in usmerijo lasersko svetlobo v stožec. Vloga papirja je pri tem nepomembna.

H3: Svetloba se na papirju razprši enakomerno v vse smeri. Svetlobni stožec je posledica loma svetlobe na meji med steklom in vodo.

H4: Svetloba se na papirju razprši enakomerno v vse smeri. Svetlobni stožec je posledica loma svetlobe na dveh mejah: med zrakom in steklom ter steklom in vodo.

## Različne hipoteze

# Tipični testni poskusi...

H1: Struktura papirja odbije in usme

Laser + papir + kreda + ec.

H2: Nečistoče v stekleni steni akvarij svetlobo v stožec. Vloga papirja je pr

Laser + akvarij, brez ersko papirja (črn papir)

H3: Svetloba se na papirju razprši enakomerno v vse smeri. Svetlobni stožec je posledica loma svetlobe na meji med steklom in vodo.

Laser + akvarij + moker
papir

A: Svetloba se na papiriu razprši er

H4: Svetloba se na papirju razprši en akomemo v vse smem. Svetlobni stožec je posledica loma svetlobe na dveh mejah: med zrakom in steklom ter steklom in vodo.

...in napovedi

#### Opazovalni poskus



# Izidi testnih poskusov



## Teoretični model



#### Povezava z vsakdanjim življenjem..



Fig. 71. We look at the view for a moment in the same way as fishes do!

M Minnaert, The nature of light and colour in the open air, Dover Publ., 1954.





Računalniška simulacija (SERGEJ FALETIČ): lomni zakon + Fresnelove enačbe. Črte kažejo smeri žarkov, njihove dolžine pa gostoto svetlobnega toka.

# 4. Primer: Električna vezja

Samostojno delo (delovni listi so v prilogi)