Regressão Sicor

June 18, 2025

1 Introdução

Dados importados da matriz de microdados do crédito rural do Sicor para o ano de 2024. O volume é grande e este documento apresenta uma tentativa experimental de usar estes dados em uma regressão linear para entender que tipo de fatores influenciam o volume de crédito tomado. Grande parte dos dados é categórica, mas ainda alguns dados são quantitativos e podem ser usados para montar uma regressão. Primeiramente, uma análise exploratória dos dados é feita. Alguns outliers são removidos usando as técnicas apresentadas no livro An Introduction to Statistical Learning para diminuir alguns problemas potenciais de pontos que possuem valores muito extremos. Os resultados da regressão dão um bom \mathbb{R}^2 e bons testes de significância estatística. Apesar disso, ainda há indícios de heteroscedasticidade e não normalidade nos erros da regressão. Os resultados são apresentados na tabela a seguir:

Variável	Coeficiente	p-valor	Significativo a 5%
Área Financiada	2375.6845	0.000	Sim
Receita Esperada	0.2558	0.000	Sim
Quantidade produzida	0.0356	0.006	Sim
Recurso Próprio	0.1252	0.046	Sim
Juros	2562.6629	0.000	Sim

Algumas questões podem ser apontadas: 1. O coeficiente positivo para a taxa de juros pode significar que volumes de crédito maiores sendo tomados implicam em mais riscos e, portanto, maiores taxas de juros. 2. O coeficiente para a área financiada pode simplesmente significar que uma área maior implica em uma produção maior e, portanto, em mais crédito que precisa ser tomado. 3. O teste de Jarque-Bera deu estatisticamente significativo, o que dá indícios de que os erros não seguem uma distribuição normal. 4. O teste de Breusch-Pagan deu estatisticamente significativo, o que indica que o erro é heteroscedastico.

Um modelo usando apenas os dados de receita bruta esperada é tentado por último e oferece resultados bons, apesar de ter os mesmos problemas no termo erro.

Referências:

An Introduction to Statistical Learning

Dados

2 Importando os Pacotes e os dados

```
[1]: import pandas as pd
     import seaborn as sns
     import statsmodels.api as sm
     import numpy as np
     import matplotlib.pyplot as plt
[2]: df = pd.read_csv(r"C:\Users\joaop\Documents\Dados de Conjuntura\Dados_\u00dd
      →SICOR\Tabelas\DADOS 2024.csv")
     df.shape
[2]: (2510518, 60)
[3]: # head do dataframe
     df.head()
[3]:
        REF_BACEN
                   NU_ORDEM
                              CNPJ_IF DT_EMISSAO DT_VENCIMENTO
                                                                  CD_INST_CREDITO
     0 516467660
                             92816560 08/01/2024
                                                      15/08/2033
                                                                                 5
                               360305 02/01/2024
     1 517254551
                          1
                                                      21/12/2025
                                                                                 1
     2 517254553
                                    0 02/01/2024
                                                      29/12/2024
                                                                                10
                          1
     3 517254555
                          1
                                    0 02/01/2024
                                                      19/12/2024
                                                                                10
     4 517254557
                          1
                                    0 02/01/2024
                                                      13/12/2024
                                                                                10
        CD_CATEG_EMITENTE CD_FONTE_RECURSO CNPJ_AGENTE_INVEST CD_ESTADO
     0
                     3333
                                         403
                                                             NaN
                                                                         PR
     1
                     2222
                                         201
                                                             NaN
                                                                         PA
     2
                     2222
                                         431
                                                                         MG
                                                             NaN
     3
                     2222
                                         431
                                                             {\tt NaN}
                                                                         GO
                     2222
     4
                                         300
                                                                         RO
                                                             {\tt NaN}
          ATIVIDADE
                                                          MODALIDADE
                    MÁQUINAS, EQUIPAMENTOS, MATERIAIS E UTENSÍLIOS
     0 Pecuário(a)
                                  AQUISIÇÃO E MANUTENÇÃO DE ANIMAIS
     1 Pecuário(a)
     2 Pecuário(a)
                                                       BOVINOCULTURA
     3 Pecuário(a)
                                                       BOVINOCULTURA
     4 Pecuário(a)
                                                       BOVINOCULTURA
                 PRODUTO
                                                                    VARIEDADE \
     0
       GRANJAS AVÍCOLAS
                          ABRANGE A COMPRA DE EQUIPAMENTO NECESSÁRIO A S...
     1
                 BOVINOS
                                                               NÃO SE APLICA
                                                                       LEITE
     2
                 BOVINOS
     3
                                                                        LEITE
                 BOVINOS
                 BOVINOS
                                                                        LEITE
```

```
0
                             RECURSOS LIVRES EQUALIZÁVEIS
     1
                                    OBRIGATÓRIOS - MCR 6.2
      LETRA DE CRÉDITO DO AGRONEGÓCIO (LCA) - CONTRO...
     3 LETRA DE CRÉDITO DO AGRONEGÓCIO (LCA) - CONTRO...
     4 POUPANÇA RURAL - CONTROLADOS - SUBVENÇÃO ECONÔ...
                                        DESCRICAO_PROGRAMA \
      MODERAGRO - PROGRAMA DE MODERNIZAÇÃO DA AGRICU...
     1 PRONAF - PROGRAMA NACIONAL DE FORTALECIMENTO D...
     2 PRONAF - PROGRAMA NACIONAL DE FORTALECIMENTO D...
     3 PRONAF - PROGRAMA NACIONAL DE FORTALECIMENTO D...
     4 PRONAF - PROGRAMA NACIONAL DE FORTALECIMENTO D...
                                     DESCRICAO_SUBPROGRAMA DESCRICAO_AGRO \
       Fomentação Prod Benef Industr Acond Armaz (MCR...
                                                           Não se aplica
     1
                                        Custeio (MCR 10-4)
                                                             Não se aplica
     2
                                        Custeio (MCR 10-4)
                                                             Não se aplica
     3
                                        Custeio (MCR 10-4)
                                                             Não se aplica
                                                             Não se aplica
     4
                                        Custeio (MCR 10-4)
        DESCRICAO_CULTIVO DESCRICAO_INTEGRACAO
     0
            Não se aplica
                                  Não se aplica
     1
            Não se aplica
                                  Não se aplica
     2
            Não se aplica
                                  Não se aplica
     3
            Não se aplica
                                  Não se aplica
            Não se aplica
                                  Não se aplica
     [5 rows x 60 columns]
[4]: # olhando as variáveis
     df.info()
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 2510518 entries, 0 to 2510517
    Data columns (total 60 columns):
     #
         Column
                                     Dtype
         _____
                                     ____
         REF_BACEN
     0
                                     int64
         NU_ORDEM
                                     int64
     1
     2
         CNPJ_IF
                                     int64
     3
         DT EMISSAO
                                     object
     4
         DT VENCIMENTO
                                     object
     5
         CD_INST_CREDITO
                                     int64
     6
         CD_CATEG_EMITENTE
                                     int64
     7
         CD_FONTE_RECURSO
                                     int64
         CNPJ_AGENTE_INVEST
                                     float64
```

DESCRICAO_FONTES \

0	OD FOTADO	-1-2
9	CD_ESTADO	object
10	CD_REF_BACEN_INVESTIMENTO	float64
11	CD_TIPO_SEGURO	int64
12	CD_EMPREENDIMENTO	int64
13	CD_PROGRAMA	int64
14	CD_TIPO_ENCARG_FINANC	int64
15	CD_TIPO_IRRIGACAO	int64
16	CD_TIPO_AGRICULTURA	int64
17	CD_FASE_CICLO_PRODUCAO	int64
18	CD_TIPO_CULTIVO	int64
19	CD_TIPO_INTGR_CONSOR	int64
20	CD_TIPO_GRAO_SEMENTE	int64
21	VL_ALIQ_PROAGRO	float64
22	VL_JUROS	float64
23	VL_PRESTACAO_INVESTIMENTO	
24	VL_PREV_PROD	float64
25	VL_QUANTIDADE	float64
26	VL_RECEITA_BRUTA_ESPERADA	float64
27	VL_PARC_CREDITO	float64
28	VL_REC_PROPRIO	float64
29	VL_PERC_RISCO_STN	float64
30	VL_PERC_RISCO_FUNDO_CONST	float64
31	VL_REC_PROPRIO_SRV	float64
32	VL_AREA_FINANC	float64
33	CD_SUBPROGRAMA	float64
34	VL_PRODUTIV_OBTIDA	float64
35	DT_FIM_COLHEITA	object
36	DT_FIM_PLANTIO	object
37	DT_INIC_COLHEITA	object
38	DT_INIC_PLANTIO	object
39	VL_JUROS_ENC_FINAN_POSFIX	float64
40	VL_PERC_CUSTO_EFET_TOTAL	float64
41	CD_CONTRATO_STN	float64
42	CD_CNPJ_CADASTRANTE	float64
43	VL_AREA_INFORMADA	float64
44	CD_CICLO_CULTIVAR	float64
45	CD_TIPO_SOLO	float64
46	PC_BONUS_CAR	float64
47		object
48		float64
49	FINALIDADE	object
50		object
51		object
52	PRODUTO	object
53	VARIEDADE	object
54	DESCRICAO_FONTES	object
55		object
56	DESCRICAO_SUBPROGRAMA	object
	22301110110_DODI 11001111111	20,000

```
57 DESCRICAO_AGRO object
58 DESCRICAO_CULTIVO object
59 DESCRICAO_INTEGRACAO object
dtypes: float64(25), int64(16), object(19)
memory usage: 1.1+ GB
```

3 Definindo variáveis chave e olhando correlação e distribuição

Os dados dessa tabela possuem 60 variáveis que podem ser utilizadas, sendo que a maioria delas é categórica. Selecionamos as seguintes variáveis quantitativas para usar na regressão:

- 1. Valor da Parcela
- 2. Área Financiada
- 3. Receita Bruta Esperada
- 4. Taxa de Juros
- 5. Quantidade Produzida
- 6. Recurso Próprio

```
[5]: (1487, 6)
```

```
[6]: # sobram apenas 1487 observações se tirar os Nas
sns.heatmap(df2.corr(), annot = True, fmt = '.2f')
```

[6]: <Axes: >


```
y = 'VL_PARC_CREDITO'

# df3 = np.log(df2 + 1)

fig, axes = plt.subplots(3,2, figsize = (12,12), dpi = 720, sharey = True)

axes = axes.flatten()

for i, x in enumerate(xs):
    sns.scatterplot(data = df2 ,x = x, y = y, ax = axes[i], color = 'Teal')

axes[-1].axis('off')

plt.show()
```


4 Detectando e removendo outliers

Para remoção de pontos extremos foram aplicadas as técnicas apresentadas no livro An Introduction to Statistical Learning. Para os outliers, foi calculado o resíduo dividido pelo desvio padrão estimado (resíduos de student) e para as variáveis explicativas foi calculada a alavancagem desses pontos.

```
[9]: # Definindo as variáveis
      Y = df2['VL PARC CREDITO']
      X = df2[['VL_AREA_FINANC',
                'VL_RECEITA_BRUTA_ESPERADA',
                'VL_QUANTIDADE',
                'VL_REC_PROPRIO_SRV',
                'VL_JUROS']]
      X = sm.add\_constant(X)
[10]: # Estimando o modelo para depois detectar os outliers e pontos de altau
        \hookrightarrow alavancagem
      model = sm.OLS(Y,X)
      model = model.fit()
      influencia = model.get_influence()
[11]: # encontrando os outliers
      df2[influencia.resid studentized < 2].head()</pre>
                                                           VL_PARC_CREDITO VL_JUROS
[11]:
             VL_AREA_FINANC
                              VL_RECEITA_BRUTA_ESPERADA
      1906
                       0.29
                                                28731.75
                                                                    7754.33
                                                                                   4.0
      2989
                       0.06
                                               100278.00
                                                                   17181.03
                                                                                   6.0
                       0.90
                                                                                   4.0
      5229
                                                59899.50
                                                                   20936.07
      5813
                       1.49
                                               200880.00
                                                                   45240.96
                                                                                   4.0
      6709
                       1.00
                                                63855.00
                                                                   30669.98
                                                                                   4.0
            VL_QUANTIDADE
                             VL REC PROPRIO SRV
      1906
                    2175.0
                                        15231.07
      2989
                   16200.0
                                            0.00
      5229
                    4050.0
                                        26983.53
      5813
                   13500.0
                                            0.00
      6709
                    5500.0
                                       20414.02
```

```
[12]: # Encontrando os pontos de alta alavancagem
      leverage = influencia.hat_matrix_diag
      limite = 2*X.shape[1]/X.shape[0]
      df2[leverage < limite].head()</pre>
[12]:
            VL_AREA_FINANC VL_RECEITA_BRUTA_ESPERADA VL_PARC_CREDITO VL_JUROS \
                      0.29
                                              28731.75
                                                                7754.33
                                                                               4.0
      1906
      2989
                      0.06
                                             100278.00
                                                               17181.03
                                                                               6.0
                                                                               4.0
      5229
                      0.90
                                              59899.50
                                                               20936.07
      5813
                      1.49
                                             200880.00
                                                               45240.96
                                                                               4.0
      6709
                                                               30669.98
                                                                               4.0
                      1.00
                                              63855.00
            VL_QUANTIDADE VL_REC_PROPRIO_SRV
      1906
                   2175.0
                                     15231.07
      2989
                  16200.0
                                         0.00
      5229
                   4050.0
                                     26983.53
      5813
                  13500.0
                                         0.00
      6709
                   5500.0
                                     20414.02
       Resultados do primeiro modelo
[13]: #### estimando o novo modelo
      # definindo o dataframe
      df3 = df2[(leverage < limite) | (influencia.resid_studentized < 2)]</pre>
      df3.shape
[13]: (1474, 6)
[14]: # definindo as variáveis
      Y = df3['VL PARC CREDITO']
      X = df3[['VL_AREA_FINANC',
               'VL_RECEITA_BRUTA_ESPERADA',
               'VL_QUANTIDADE',
               'VL_REC_PROPRIO_SRV',
               'VL JUROS']]
      X = sm.add_constant(X)
      # estimando o modelo
      model = sm.OLS(Y,X)
```

```
model = model.fit(cov_type = 'HC1')
model.summary()
```

[14]:

Dep. Variable:	VL_PARC_CREDITO	R-squared:	0.817
Model:	OLS	Adj. R-squared:	0.817
Method:	Least Squares	F-statistic:	1198.
Date:	Wed, $18 \text{ Jun } 2025$	Prob (F-statistic):	0.00
Time:	16:38:26	Log-Likelihood:	-16549.
No. Observations:	1474	AIC:	3.311e+04
Df Residuals:	1468	BIC:	3.314e+04
Df Model:	5		
Covariance Type:	HC1		

	\mathbf{coef}	std err	${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025	0.975]
const	-7283.9086	2037.307	-3.575	0.000	-1.13e+04	-3290.861
${ m VL_AREA_FINANC}$	2277.1065	98.964	23.009	0.000	2083.140	2471.073
VL_RECEITA_BRUTA_ESPERADA	0.2549	0.015	16.923	0.000	0.225	0.284
${ m VL}_{ m QUANTIDADE}$	0.0318	0.012	2.746	0.006	0.009	0.054
$ m VL_REC_PROPRIO_SRV$	0.1228	0.055	2.222	0.026	0.014	0.231
$ m VL_JUROS$	2885.4042	426.889	6.759	0.000	2048.717	3722.091

Omnibus:	304.743	Durbin-Watson:	1.712
Prob(Omnibus):	0.000	Jarque-Bera (JB):	8272.215
Skew:	0.237	Prob(JB):	0.00
Kurtosis:	14.596	Cond. No.	6.80e + 05

Notes:

- [1] Standard Errors are heteroscedasticity robust (HC1)
- [2] The condition number is large, 6.8e+05. This might indicate that there are strong multicollinearity or other numerical problems.

O teste de Jarque-Bera possui valor muito elevado, o que indica que os resíduos não seguem uma distribuição normal. Portanto, a interpretação dos coeficientes obtidos deve ser limitada. Além disso, o teste de Breusch-Pagan indica que também há heteroscedasticidade no erro da regressão.

```
[15]: from statsmodels.stats.diagnostic import het_breuschpagan

residuals = model.resid
exog = model.model.exog

bp_test = het_breuschpagan(residuals, exog)

labels = ['LM statistic','LM p-value', 'F statistic','F p-value']

dict(zip(labels, bp_test))
```

6 Testando um modelo com apenas a Receita Bruta Esperada

```
[16]: df2 = df[['VL_PARC_CREDITO','VL_RECEITA_BRUTA_ESPERADA']]
    df2 = df2.dropna()
    X = np.log(df2['VL_RECEITA_BRUTA_ESPERADA'] + 1)
    X = sm.add_constant(X)
    Y = np.log(df2['VL_PARC_CREDITO'] + 1)
    model = sm.OLS(Y,X)
    model = model.fit()
    influencia = model.get_influence()
    leverage = influencia.hat_matrix_diag
    limite = 2*X.shape[1]/X.shape[0]
    df2 = df2[(leverage < limite) | (influencia.resid_studentized < 2)]

[17]: X = np.log(df2['VL_RECEITA_BRUTA_ESPERADA'] + 1)</pre>
```

```
[17]: X = np.log(df2['VL_RECEITA_BRUTA_ESPERADA'] + 1)

X = sm.add_constant(X)

Y = np.log(df2['VL_PARC_CREDITO'] + 1)

sns.scatterplot(y = Y, x = X.iloc[:,1])
plt.show()
```



```
[21]: model = sm.OLS(Y,X)
      model = model.fit()
      model.summary()
[21]:
```

Dep. Variable:	VL_PARC_CREDITO	R-squared:	0.921
Model:	OLS	Adj. R-squared:	0.921
Method:	Least Squares	F-statistic:	1.269e + 07
Date:	Wed, $18 \text{ Jun } 2025$	Prob (F-statistic):	0.00
Time:	16:22:35	Log-Likelihood:	-5.1919e + 05
No. Observations:	1096162	AIC:	1.038e + 06
Df Residuals:	1096160	BIC:	1.038e + 06
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
const	-0.3037	0.003	-93.574	0.000	-0.310	-0.297
VL_RECEITA_BRUTA_ESPERADA	0.9675	0.000	3562.908	0.000	0.967	0.968

Omnibus:	320832.643	Durbin-Watson:	1.699
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1119346.250
Skew:	-1.464	Prob(JB):	0.00
Kurtosis:	6.992	Cond. No.	105.

Notes:

^[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. Uma regressão usando apenas o logaritmo da receita esperada oferece um bom resultado