Classification

Big Data y Machine Learning para Economía Aplicada

Ignacio Sarmiento-Barbieri

Universidad de los Andes

Agenda

- 1 Motivation
- 2 Risk, Probability, and Classification
- 3 Bayes Classifier
- 4 Logit
 - MLE

Classification: Motivation

- ► Many predictive questions are about classification
 - ► Email should go to the spam folder or not
 - ► A household is bellow the poverty line
 - Accept someone to a graduate program or no
- ightharpoonup Aim is to classify *y* based on X's

Classification: Motivation

- ▶ Main difference is that y represents membership in a category: $y \in \{1, 2, ..., n\}$
 - Qualitative (e.g., spam, personal, social)
 - Not necessarily ordered

The prediction question is, given a new X, what is our best guess at the response category \hat{y}

Agenda

- Motivation
- 2 Risk, Probability, and Classification
- 3 Bayes Classifier
- 4 Logit
 - MLE

- ▶ Two states of nature $Y \rightarrow i \in \{0, 1\}$
- ► Two actions $(\hat{Y}) \rightarrow j \in \{0, 1\}$

Source: https://dzone.com/articles/understanding-the-confusion-matrix

- ► Two actions $\hat{Y} \rightarrow j \in \{0,1\}$
- ▶ Two states of nature $Y \rightarrow i \in \{0, 1\}$
- Probabilities
 - ightharpoonup p = Pr(Y = 1|X)
 - ▶ 1 p = Pr(Y = 0|X)

- ► Actions have costs associated to them
- ► Loss: L(i,j), penalizes being in bin i,j
 - We define L(i,j)

$$L(i,j) = \begin{cases} 1 & i \neq j \\ 0 & i = j \end{cases} \tag{1}$$

▶ Risk: expected loss of taking action *j*

$$E[L(i,j)] = \sum_{i} p_{j}L(i,j)$$

$$R(j) = (1-p)L(0,j) + pL(1,j)$$
(2)

► The objective is to minimize the risk

Agenda

- Motivation
- 2 Risk, Probability, and Classification
- 3 Bayes Classifier
- 4 Logit
 - MLE

Bayes classifier

$$R(1) < R(0) \tag{3}$$

Bayes classifier

▶ Under a 0-1 penalty the problem boils down to finding

$$p = Pr(Y = 1|X) \tag{4}$$

- ▶ We then predict 1 if p > 0.5 and 0 otherwise (Bayes classifier)
- ► Many ways of finding this probability in binary cases

Agenda

- Motivation
- 2 Risk, Probability, and Classification
- 3 Bayes Classifier
- 4 Logit
 - MLE

Setup

- ightharpoonup Y is a binary random variable $\{0,1\}$
- ► *X* is a vector of K predictors
- ightharpoonup p = Pr(Y = 1|X)

► Logit

$$p = \frac{e^{X\beta}}{1 + e^{X\beta}}$$

$$= \frac{exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}{1 + exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}$$
(5)

► Logit

$$p = \frac{e^{X\beta}}{1 + e^{X\beta}}$$

$$= \frac{exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}{1 + exp(\beta_0 + \beta_1 x_1 + \dots + \beta_k x_k)}$$
(5)

Odds ratio

$$ln\left(\frac{p}{1-p}\right) = X\beta$$

$$= \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$
(6)

Agenda

- 1 Motivation
- 2 Risk, Probability, and Classification
- 3 Bayes Classifier
- 4 Logit
 - MLE

- ▶ Developed by Ronald A. Fisher (1890-1962)
- ► "If Fisher had lived in the era of "apps," maximum likelihood estimation might have made him a billionaire" (Efron and Tibshiriani, 2016)
- ► Why? MLE gives "automatically"
 - Consistent
 - Asymptotically normal
 - ► Asymptotically efficient

$$Pr(Y = y|X) = f(y;\theta)$$
 (7)

- ightharpoonup f() known
- $\triangleright \theta$ unknown
- Example:

$$Y|X \sim Poisson(\lambda)$$

$$f(y;\lambda) = \frac{e^{-\lambda}\lambda^y}{y!}$$

(9)

 $Y_1, \ldots, Y_n \sim_{iid} f(Y; \theta)$

$$Pr(Y_i = y_i | X_i) = f(y_i; \theta)$$
(10)

Likelihood

$$L(\theta; y_i) = f(y_i; \theta) \tag{11}$$

- ► For a random sample $y_1, ..., y_n \sim_{iid} f(y_i; \theta)$
- ► The likelihood function is

$$L(\theta|y_1,\ldots,y_n) = \prod_{i=1}^n L(\theta;y_i)$$

= $\prod_{i=1}^n f(x_i;\theta)$ (12)

ightharpoonup A maximum likelihood estimator of the parameter θ :

$$\hat{\theta}^{MLE} = \underset{\theta \in \Theta}{\operatorname{argmax}} L(\theta, x) \tag{13}$$

▶ Note that maximizing (12) is the same as maximizing

$$l(\theta; y_1, \dots, y_n) = \ln L(\theta; y_1, \dots, y_n) = \sum_{i=1}^n l(\theta; y_i)$$
(14)

- ► Advantages of (14)
 - ► Contribution of observation *i*: $l_i(x|\theta) = \ln f(y_i;\theta)$
 - ► Eq. (12) is prone to underflow.

MLE Logit

- ▶ Imagine that we have a sample of iid observations (y_i, x_i) ; i = 1, ..., n, where $y_i \in \{0, 1\}$
- ▶ Under logit we have

$$p = \frac{e^{x_i \beta}}{1 + e^{x_i \beta}} \tag{15}$$

► Then the likelihood

$$L(\theta; y_1, \dots, y_n) = \prod_{y_i = 1} p_i \prod_{y_i \neq 1} (1 - p_i)$$
(16)

$$= \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i} \tag{17}$$

$$= \prod_{i=1}^{n} \left(\frac{p_i}{1 - p_i} \right)^{y_i} (1 - p_i) \tag{18}$$

MLE Logit

► The log likelihood is then

$$l(\theta; y_1, \dots, y_n) = \sum_{i=1}^n \log\left(\frac{p_i}{1 - p_i}\right)^{y_i} + \sum_{i=1}^n \log(1 - p_i)$$
 (19)

► FOC

$$\frac{\partial l}{\partial \beta_j} = \sum_{i=1}^n \frac{y_i}{p_i(1-p_i)} \frac{\partial p_i}{\partial \beta_j} - \sum_{i=1}^n \frac{1}{(1-p_i)} \frac{\partial p_i}{\partial \beta_j}$$
(20)

$$=\sum_{i=1}^{n} \frac{y_i - p_i}{p_i (1 - p_i)} \frac{\partial p_i}{\partial \beta_j}$$
 (21)

- ► Note:
 - This is a system of *K* non linear equations with *K* unknown parameters.
 - We cannot explicitly solve for $\hat{\beta}$
 - ► It's important to check SOC

Summary

- ▶ We observe (y_i, X_i) i = 1, ..., n
- ► Logit

$$p_i = \frac{e^{X_i \beta}}{1 + e^{X_i \beta}}$$

Prediction

$$\hat{p}_i = \frac{e^{X_i \hat{\beta}}}{1 + e^{X_i \hat{\beta}}}$$

Classification

 $\hat{Y}_i = 1[\hat{p}_i > 0.5]$

◆□▶◆御▶◆臣▶◆臣▶ 臣 めぬ◎

(24)

(22)

(23)

Example

 $photo\ from\ \texttt{https://www.dailydot.com/parsec/batman-1966-labels-tumblr-twitter-vine/allowers.}$