Thuật toán tiến hóa đa nhiệm tự thích ứng

Lê Tiến Thành Giáo viên hướng dẫn: **PGS.TS Huỳnh Thị Thanh Bình**

Trường Đại học Bách Khoa Hà Nội

- 💶 Giới thiệu
- Cơ sở lý thuyết
 - Thuật toán tiến hóa đa nhiệm
 - Mô hình Multi-Armed Bandits
- 3 Các nghiên cứu liên quan
- Thuật toán đề xuất
- Kết quả thực nghiệm
 - 10 tác vụ
 - 50 tác vụ
 - Mujoco tác vụ

- Giới thiệu
- 2 Cơ sở lý thuyết
 - Thuật toán tiến hóa đa nhiệm
 - Mô hình Multi-Armed Bandits
- Các nghiên cứu liên quan
- 4 Thuật toán đề xuất
- Kết quả thực nghiệm
 - 10 tác vu
 - 50 tác vụ
 - Mujoco tác vụ

Ý tưởng chính của tiến hóa đa nhiệm

Ý tưởng

Hình 1: Khả năng đa nhiệm của con người

Xu hướng

Thuật toán mô phỏng trí thông minh trong tự nhiên.

Thuật toán tiến hóa đa nhiệm

Hình 2: Tiến hóa đa nhiệm mô phỏng lại khả năng giải quyết nhiều việc cùng một thời điểm của con người

Ứng dụng nổi bật của tiến hóa đa nhiệm

Tối ưu tại cloud computing

Các nghiên cứu đã áp dụng tiến hóa đa nhiệm

- Huynh Thi Thanh Binh, Pham Dinh Thanh, Tran Ba Trung, and Le Phuong Thao. "Effective
 multifactorial evolutionary algorithm for solving the cluster shortest path tree problem". In: 2018 IEEE
 Congress on Evolutionary Computation (CEC). IEEE. 2018, pp. 1–8
- Rohitash Chandra, Abhishek Gupta, Yew-Soon Ong, and Chi-Keong Goh. "Evolutionary multi-task learning for modular knowledge representation in neural networks". In: Neural Processing Letters 47.3 (2018), pp. 993–1009

Câu hỏi nghiên cứu còn tồn tại

Các tồn tại của các nghiên cứu trước

- Ứng dụng hướng đến làm thuật toán tối ưu trên cloud.
- Cloud có số lượng người dùng lớn.
- Chỉ thử nghiệm và chứng minh tính hiệu quả trên tập hợp 2 đến 3 tác vu.

Yêu cầu

- Thiết kế thuật toán chạy tốt với số lượng lớn tác tác vụ.
- Thuật toán có ít tham số.

Hướng giải quyết cụ thể

- Thiết kế cấu trúc mới cho tiến hóa đa nhiệm phù hợp với tối ưu nhiều tác vụ.
- Áp dụng mô hình Multi-Armed Bandits, học trên dữ liệu hàm mục tiêu để ghép cặp các tác vụ

- Giới thiệu
- Cơ sở lý thuyết
 - Thuật toán tiến hóa đa nhiệm
 - Mô hình Multi-Armed Bandits
- Các nghiên cứu liên quan
- 4 Thuật toán đề xuất
- Kết quả thực nghiệm
 - 10 tác vu
 - 50 tác vụ
 - Mujoco tác vụ

- Giới thiệu
- Cơ sở lý thuyết
 - Thuật toán tiến hóa đa nhiệm
 - Mô hình Multi-Armed Bandits
- Các nghiên cứu liên quan
- 4 Thuật toán đề xuất
- 5 Kết quả thực nghiệm
 - 10 tác vu
 - 50 tác vụ
 - Mujoco tác vụ

Thuật toán tiến hóa đa nhiệm - 1

Phát biểu bài toán

- Cho: K bài toán tối ưu.
- Tác vụ T_k ứng với việc giải bài toán thứ k.
- T_k có không gian tìm kiếm \mathcal{X}_k , hàm mục tiêu $f_k: \mathcal{X}_k \to \mathbb{R}$
- **Yêu cầu:** tìm $\{x_1^*, x_2^*, \dots, x_{K-1}^*, x_K^*\} = argmin\{f_1(x), f_2(x), \dots, f_{K-1}(x), f_K(x)\}$ với x_k^* là nghiêm tối ưu toàn cục của T_k .

Tính chất đặt biệt của tiến hóa đa nhiệm

Việc giải tác vụ T_k có thể có ảnh hưởng tốt giúp giải $T_{k'}, k' \neq k$ tối ưu hơn.

Thuật toán tiến hóa đa nhiệm - 2

Không gian biểu diễn chung

- Cho: K tác vụ với chiều lần lượt là $\{D_1, D_2, \dots, D_K\}$.
- Biểu diễn chung: $D_{unified} = max\{D_1, D_2, \dots, D_K\}$.

Không gian biểu diễn chung trong tối ưu số thực

• Quy ước là $[0,1]^{D_{unified}}$.

Cách sử dụng không gian biểu diễn chung

- Thực hiện toán tử tiến hóa trên cá thể với chiều $D_{unified}$.
- Đánh giá trên cá thể với chiều $\{D_1, D_2, \dots, D_K\}$.

Thuật toán tiến hóa đa nhiệm - 3

MFEA - Multifactorial Evolutionary Algorithm

Hình 3: Khung thuật toán MFEA

Skill factor

Skill factor τ_i của cá thể i^{th} là index của tác vụ trong K tác vụ, mà cá thể i thuộc về.

Algorithm 1 Lai ghép trong MFEA

- 1: Lấy ngẫu nhiên hai cá thể cha mẹ p_a và p_b từ P
- 2: if $\tau_a == \tau_b$ then
- 3: $[c_a, c_b] \leftarrow Lai ghép cùng tác vụ giữa <math>p_a$ và p_b
- 4: Gán skill factor τ_a cho c_a và c_b
- 5: else if $rand \leq rmp$ then
- 6: $[c_a, c_b] \leftarrow Lai ghép khác tác vụ giữa <math>p_a$ và p_b
- 7: Gãn ngẫu nhiên *skill factor* au_a or au_b cho từng con sinh ra
- 8: else
 - Gán skill factor τ_a cho c_a
- 10: Gán skill factor τ_b cho c_b
- 11: end if

- Giới thiệu
- Cơ sở lý thuyết
 - Thuật toán tiến hóa đa nhiệm
 - Mô hình Multi-Armed Bandits
- Các nghiên cứu liên quan
- 4 Thuật toán đề xuất
- 5 Kết quả thực nghiệm
 - 10 tác vu
 - 50 tác vụ
 - Mujoco tác vụ

Mô hình Multi-Armed Bandits - 1

Nguồn gốc tên gọi Multi-Armed Bandits

Hình 4: Lựa chọn chơi máy nào, thứ tự thế nào, mỗi máy bao lần, thắng càng nhiều tiền càng tốt

Algorithm 2 Mô hình Multi-armed bandits

- 1: Cho: K lựa chọn, T vòng.
- 2: for vòng thứ $t \in \{1, \dots, T\}$ do
- 3: Chọn lựa chọn a_t ;
- 4: Nhận về phần thưởng $r_t \in [0, 1]$ cho lưa chọn a_t ;
- 5: end for

Mô hình Multi-Armed Bandits - 2

Ứng dụng của MAB

Hình 5: Lựa chọn nguồn in và đề xuất tin tức sao cho người dùng xem nhiều nhất

Hình 6: Lựa chọn kênh đầu tư sao cho lãi nhất

- Giới thiệu
- Cơ sở lý thuyết
 - Thuật toán tiến hóa đa nhiệm
 - Mô hình Multi-Armed Bandits
- 3 Các nghiên cứu liên quan
- 4 Thuật toán đề xuất
- 5 Kết quả thực nghiệm
 - 10 tác vu
 - 50 tác vụ
 - Mujoco tác vụ

MFEA - giải số lượng tác vụ nhỏ

MFEA

- Abhishek Gupta, Yew-Soon Ong, and Liang Feng. "Multifactorial evolution: toward evolutionary multitasking". In: *IEEE Transactions on Evolutionary Computation* 20.3 (2015), pp. 343–357
- Vấn đề: Lai ghép khác tác vụ một cách ngẫu nhiên.

MFEA-II

- Kavitesh Kumar Bali, Yew-Soon Ong, Abhishek Gupta, and Puay Siew Tan.
 "Multifactorial evolutionary algorithm with online transfer parameter estimation: MFEA-II". In: *IEEE Transactions on Evolutionary Computation* 24.1 (2019), pp. 69–83
- **Ý tưởng:** Giải quyết bài toán con (tối ưu hàm lồi), tối ưu $RMP \in \mathbb{R}^{K \times K}$ sao cho con sinh ra từ quần thể cha mẹ và RMP giống với con được chọn lọc sang thế hệ tiếp theo nhất.
- Vấn đề: Thuật toán chạy chậm, khi phải giải quyết K² bài toán con.

MFEA - giải số lượng tác vụ lớn

GMFEA

- Jing Tang, Yingke Chen, Zixuan Deng, Yanping Xiang, and Colin Paul Joy. "A Group-based Approach to Improve Multifactorial Evolutionary Algorithm.". In: IJCAI. 2018, pp. 3870–3876
- Với mỗi tác vụ, chọn một vài cá thể tốt nhất làm đai diên, gôp lai thành một tập dữ liêu
- Dùng thuật toán K-Means, nhóm dữ liệu trên lai.
- Các tác vụ ở cùng một cụm mới được trao đổi thông tin cho nhau.
- Vấn đề: trường hợp quần thể cùng phân phối nhưng cần đi về khác hướng (Hình 7).

Hình 7: Hai tác vụ cùng vị trí quần thể, khác vị trí cực trị.

MFEA - giải số lượng tác vụ lớn

SBSGA

- Rung-Tzuo Liaw and Chuan-Kang Ting. "Evolutionary manytasking optimization based on symbiosis in biocoenosis". In: *Proceedings of the AAAI* conference on artificial intelligence. Vol. 33. 01. 2019, pp. 4295–4303
- Trao đổi thông tin giữa các tác vụ bằng việc tráo cá thể (swap) thay vì lai ghép.
- Lưu lại số lần trao đổi thành công T^{pos} (con được chọn lọc vào quần thể mới) và thất bai T^{neg} .
- Xác suất trao đổi tính bằng công thức:

$$RMP_{i,j} = \frac{T^{pos}}{T^{pos} + T^{neg}} \tag{1}$$

• Vấn đề: Phương pháp ghép cặp tự thiết kế không dựa trên lý thuyết.

MFEA - giải số lượng tác vụ lớn

MaTGA

- Yongliang Chen, Jinghui Zhong, Liang Feng, and Jun Zhang. "An adaptive archive-based evolutionary framework for many-task optimization". In: IEEE Transactions on Emerging Topics in Computational Intelligence 4.3 (2019), pp. 369–384
- Lưu một phần quần thể của từng tác vụ qua nhiều thế hệ.
- Tính khoảng cách KL Divergence giữa các tập quần thể đã lưu.
- Vấn đề: Có nhiều tham số, thời gian tính toán chậm.

- Giới thiệu
- Cơ sở lý thuyết
 - Thuật toán tiến hóa đa nhiệm
 - Mô hình Multi-Armed Bandits
- Các nghiên cứu liên quan
- Thuật toán đề xuất
- Kết quả thực nghiệm
 - 10 tác vu
 - 50 tác vụ
 - Mujoco tác vụ

Cơ chế chọn tác vụ hỗ trợ - MAB

Mô hình hóa việc chọn tác vụ để lai ghép bằng MAB

Definition (Lựa chọn)

Với mỗi tác vụ T_k , sẽ có K-1 lựa chọn, tương ứng với K-1 tác vụ $T_{k'}$ mà $k' \in \{1, \ldots, K\}$ và $k' \neq k$.

Definition (Phần thưởng)

Sau khi tác vụ $T_{k'}$ được lựa chọn để ghép cặp với tác vụ T_k , phần thưởng của việc chọn tác vụ $T_{k'}$ được định nghĩa như sau:

$$r(k,k') = \begin{cases} 1 \text{ n\'eu } f_k(c) < f_k(p), \exists p \in P^k \\ 0 \text{ trong c\'ac trường hợp khác.} \end{cases}$$
 (2)

- c là con sinh ra trong quá trình lai ghép khác tác vụ
- f_k(.) là hàm đánh giá của tác vụ T_k

Cách giải bài toán con chọn tác vụ hỗ trợ - KLUCB

Giả định

- Phần thưởng: Biến ngẫu nhiên với giá trị $\{0,1\}$
- Giả định: Phần thưởng sinh từ phân phối Bernoulli chưa biết trước.

Cách giải - KLUCB

$$k' = \underset{j}{\operatorname{argmax}} \ \mu(j) + \frac{1 + t \times \log^2(t)}{N(j)}$$
 (3)

- ullet $\mu(j)$ là giá trị trung bình ước lượng được của phần thưởng khi lựa chọn j
- N(j) là tổng số lần thuật toán đã lựa chọn j
- t là tổng số của tất cả các lần lựa chọn

Tham khảo

Tor Lattimore and Csaba Szepesvári. *Bandit algorithms*. Cambridge University Press, 2020

Cấu trúc cập nhật tuần tự

Viết cái giải thuật mô tả

Cấu trúc cập nhật tuần tự

Vẽ cái nguyên lý, giải thích lý do.

Tóm tắt

Tóm tắt những ý tốt xấu so với các nghiên cứu liên quan

Áp dụng - Tối ưu nhiều mạng nơ-ron

Tổng kết vào đây.

- Giới thiệu
- Cơ sở lý thuyết
 - Thuật toán tiến hóa đa nhiệm
 - Mô hình Multi-Armed Bandits
- Các nghiên cứu liên quan
- 4 Thuật toán đề xuất
- Kết quả thực nghiệm
 - 10 tác vụ
 - 50 tác vụ
 - Mujoco tác vụ

- Giới thiệu
- Cơ sở lý thuyết
 - Thuật toán tiến hóa đa nhiệm
 - Mô hình Multi-Armed Bandits
- Các nghiên cứu liên quan
- 4 Thuật toán đề xuất
- Kết quả thực nghiệm
 - 10 tác vụ
 - 50 tác vụ
 - Mujoco tác vụ

Dữ liệu thử nghiệm

10 tác vụ

Cài đặt thực nghiệm

Kết quả tối ưu

Kết quả ghép cặp

- Giới thiệu
- 2 Cơ sở lý thuyết
 - Thuật toán tiến hóa đa nhiệm
 - Mô hình Multi-Armed Bandits
- Các nghiên cứu liên quan
- 4 Thuật toán đề xuất
- Kết quả thực nghiệm
 - 10 tác vu
 - 50 tác vụ
 - Mujoco tác vụ

50 tác vụ

Dữ liệu thử nghiệm

Cài đặt thực nghiệm

Kết quả tối ưu

So sánh thời gian chạy

- Giới thiệu
- Cơ sở lý thuyết
 - Thuật toán tiến hóa đa nhiệm
 - Mô hình Multi-Armed Bandits
- Các nghiên cứu liên quan
- 4 Thuật toán đề xuất
- Kết quả thực nghiệm
 - 10 tác vụ
 - 50 tác vụ
 - Mujoco tác vụ

Dữ liệu thử nghiệm

Cài đặt thực nghiệm

Kết quả tối ưu

So sánh thời gian chạy

Tóm tắt và kết luận

Bài báo trong quá trình học

- Le Tien Thanh, La Van Cuong, Ta Bao Thang, and Huynh Thi Thanh Binh.
 "Multi-Armed Bandits for Many-task Evolutionary Optimization". In: 2021
 IEEE Congress on Evolutionary Computation (CEC). IEEE. 2021, pp. 1–8
- Le Van An, Le Tien Thanh, Nguyen Phi Le, Huynh Thi Thanh Binh, Akerkar Rajendra, and Yusheng Ji. "GCRINT: Network Traffic Imputation Using Graph Convolutional Recurrent Neural Network". In: 2021 IEEE International Conference on Communications. IEEE. 2021, pp. 1–8
- Le Van An, Le Tien Thanh, Nguyen Phi Le, Huynh Thi Thanh Binh, and Yusheng Ji. "Multi-time-step Segment Routing based Traffic Engineering Leveraging Traffic Prediction". In: 2021 IFIP/IEEE International Symposium on Integrated Network Management. IEEE. 2021, pp. 1–8

Cảm ơn thầy cô đã lắng nghe!