# Apprentissage de modèles parcimonieux à partir de génomes complets avec application à la résistance aux antibiotiques

#### Alexandre Drouin

Groupe de recherche en apprentissage automatique Département d'informatique et de génie logiciel Université Laval





## Plan

- Introduction
  - Génomique
  - Apprentissage automatique
- Méthode
  - Représentation des données
  - Set Covering Machine
- Implémentation
- Résultats
  - Résistance aux antibiotiques
- Conclusion

## Introduction

## Génomique

La génomique est un champ d'étude de la biologie portant sur l'étude de l'ensemble de l'ADN (génome).



U.S. National Library of Medicine

## Biologie moléculaire



## Séquençage de l'ADN



Le séquenceur produit un ensemble de courtes séquences représentant des fragments de la molécule d'ADN.

## Assemblage de l'ADN



L'assembleur assemble les fragments pour former de longues séquences contigües.



## Études cas-témoin



Les études cas-témoin comparent l'ADN de plusieurs individus, en vue de déterminer ce qui les distingue.

## Apprentissage automatique

"Field of study that gives computers the ability to learn without being explicitly programmed" - Arthur Samuel, 1959

## Apprentissage Supervisé

| Ensemble | de | données |
|----------|----|---------|
|          |    |         |

$$\mathcal{S} = \{(\mathbf{x}_i, y_i)\}_{i=1}^m \sim D$$
 avec  $(\mathbf{x}_i, y_i) \in \mathcal{X} \times \mathcal{Y}$ 

Espace d'entrée 
$${\mathcal X}$$

L'ensemble de tous les génomes

Espace de sortie 
$$\mathcal{Y}$$
  $\mathcal{Y} = \{0, 1\}$ 

$$\mathcal{Y} = \{0, 1\}$$

$$h=\mathcal{A}(\mathcal{S})$$
,  $h:\mathcal{X} o\mathcal{Y}$ 

$$\mathbf{E}_{(\mathbf{x},y)\sim D}I[h(\mathbf{x})\neq y]$$

# Interprétable

• Les modèles doivent pouvoir être interprétés par des experts du domaine

Parcimonieux

• Structure du modèle

## Support Vector Machine



Supposons que les x sont des vecteurs. Le modèle appris par une SVM est dense et a la forme d'une combinaison linéaire.

#### Arbre de décision

Is it a good time to play baseball?



http://www.cise.ufl.edu/~ddd/cap6635/Fall-97/Short-papers/Image3.gif

La structure d'un arbre de décision est simple à interpréter.

## Arbre de décision



Quand il est parcimonieux...

# Méthode

## Représentation "bag-of-words"

- k-mer: séquence de k nucléotides
- Soit K, l'ensemble de tous les k-mers présents dans les génomes de l'ensemble S.
- On représente chaque génome  $\mathbf{x}$  par un vecteur  $\phi(\mathbf{x}) \in \mathbb{R}^{|\mathcal{K}|}$  tel que  $\phi_j(\mathbf{x}) = 1$  si  $k_j \in \mathcal{K}$  et 0 sinon.
- $|\mathcal{K}|$  peut être très grand! (Humain > 3000000000 / individu)

## Représentation "bag-of-words"

$$\mathbf{x} = \mathsf{cagatagaacagc}$$

$$\phi(\mathbf{x}) = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \end{bmatrix}$$

## Attention au surapprentissage!



## Set Covering Machine

- Proposé par Marchand et Shawe-Taylor en 2003
- Modèles:
  - **★** Parcimonieux
  - ★ Conjonctions/disjonctions de règles à valeur boolénne:

$$r: \mathbb{R}^{|\mathcal{K}|} \to \{0, 1\}$$

• Complexité algorithmique optimale  $O(m|\mathcal{K}|)$ 

## Règles à valeur booléenne

- Pour tout k-mer  $k_j \in \mathcal{K}$  :
  - ★ Règle de présence:

$$p_{k_j}(\boldsymbol{\phi}(\mathbf{x})) = I[\phi_j(\mathbf{x}) = 1]$$

★ Règle d'absence:

$$a_{k_j}(\boldsymbol{\phi}(\mathbf{x})) = I[\phi_j(\mathbf{x}) = 0]$$

## Set Covering Machine

```
Algorithm 1: TrainConjunctionSCM(S, \mathcal{R}, p, s)
```

```
input: S: Set of training examples, \mathcal{R}: Set of boolean-valued rules,
              p: Class tradeoff parameter, s: Early stopping parameter.
\mathcal{R}^{\star} \leftarrow \emptyset
\mathcal{P} \leftarrow the set of examples in \mathcal{S} with label 1
\mathcal{N} \leftarrow the set of examples in \mathcal{S} with label 0
while \mathcal{N} \neq \emptyset and |\mathcal{R}^{\star}| < s do
       \forall r_i \in \mathcal{R}, \ \mathcal{A}_i \leftarrow \text{the subset of } \mathcal{N} \text{ correctly classified by } r_i
       \forall r_i \in \mathcal{R}, \ \mathcal{B}_i \leftarrow \text{the subset of } \mathcal{P} \text{ misclassified by } r_i
       \forall r_i \in \mathcal{R}, \ U_i \leftarrow |\mathcal{A}_i| - p \cdot |\mathcal{B}_i|
       i^{\star} \leftarrow \operatorname{argmax} U_i
       \mathcal{R}^{\star} \leftarrow \mathcal{R}^{\star} \cup \{r_{i^{\star}}\}
      \mathcal{N} \leftarrow \mathcal{N} - \mathcal{A}_{i^{\star}}
       \mathcal{P} \leftarrow \mathcal{P} - \mathcal{B}_{i^{\star}}
```

**return** h, where  $h(\boldsymbol{x}) = \bigwedge_{r_i^{\star} \in \mathcal{R}^{\star}} r_i^{\star}(\boldsymbol{\phi}(\boldsymbol{x}))$ 

## Apprentissage de disjonctions

1. Créer un nouvel ensemble de données:

$$S' = (\mathbf{x}_i, \neg y_i) : (\mathbf{x}_i, y_i) \in \mathcal{S}$$

2. Utiliser SCM pour apprendre à partir de  $\mathcal{S}'$ 

$$h = \bigwedge_{r_i^{\star} \in \mathcal{R}^{\star}} r_i^{\star}(\boldsymbol{\phi}(\mathbf{x}))$$

3. Appliquer la loi de De Morgan:

$$\neg \bigwedge_{r_i^{\star} \in \mathcal{R}^{\star}} r_i^{\star}(\phi(\mathbf{x})) = \bigvee_{r_i^{\star} \in \mathcal{R}^{\star}} \neg r_i^{\star}(\phi(\mathbf{x}))$$

# Implémentation

#### Matrice de Kmers

Nous utilisons Ray Surveyor pour produire une matrice de "bag-of-words" à partir des génomes.

| 1 | K             |  |
|---|---------------|--|
| l | $\mathcal{N}$ |  |

 1
 1
 0
 0
 1
 0
 1
 0
 0
 1
 0

 1
 1
 0
 1
 1
 1
 0
 0
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0



## Calcul de la fonction d'utilité



#### Calcul de la fonction d'utilité



- Astuce: regrouper les bits de chaque colonne dans des int64
  - 8 x moins de mémoire
  - Instruction popcount => 64 x moins d'opérations!

## Stockage et accès aux données



# Résultats

## Résistance aux antibiotiques

"Le rapport 2014 de l'OMS sur la surveillance mondiale de la résistance aux antimicrobiens révèle que la résistance aux antibiotiques n'est plus un souci pour l'avenir; c'est une réalité partout dans le monde aujourd'hui, qui risque de compromettre notre capacité à traiter des infections courantes dans la communauté comme dans les hôpitaux."

- Organisation mondiale de la santé, 2014

## Ensembles de données

| Clostridium Difficile      | $ \mathcal{K} =$ 32 823 803, m = 470<br>Source: Jacques Corbeil + Vivian Loo |
|----------------------------|------------------------------------------------------------------------------|
| Pseudomonas Aeruginosa     | $ \mathcal{K} =$ 132 487 288, m = 393<br>Source: AstraZeneca                 |
| Mycobacterium tuberculosis | $ \mathcal{K}  = 11$ 255 033, m = 154<br>Source: PMID25599400                |
| Streptococcus pneumoniae   | $ \mathcal{K} =10542251$ , m = 680<br>Source: PMID23644493                   |

## Filtres univariés

- Filtrer certains k-mers avant l'apprentissage selon le résultat d'un test statistique univarié.
- Le test du  $\chi^2$  de Pearson pour l'indépendance mesure la dépendance entre chaque k-mer et les étiquettes.
- p-value: probabilité d'obtenir une certaine valeur du  $\chi^2$  sachant qu'un k-mer est indépendant des étiquettes
- Correction de la FDR par la méthode de Benjamini-Yekutieli

## Validation croisée imbriquée



#### Clostridium Difficile

|                 | SCM    | Best  | DT     | L1SVM    | L2SVM       |
|-----------------|--------|-------|--------|----------|-------------|
| Azithromycine   | 0.015  | 0.111 | 0.056  | 0.050    | 0.041       |
|                 | (3.2)  | (1.0) | (8.8)  | (3620.2) | (2462244.2) |
| Ceftriaxone     | 0.070  | 0.877 | 0.126  | 0.067    | 0.088       |
|                 | (2.0)  | (1.0) | (7.8)  | (623.8)  | (2449563.8) |
| Clarithromycine | 0.015  | 0.091 | 0.073  | 0.071    | 0.074       |
|                 | (3.0)  | (1.0) | (10.8) | (1288.6) | (2463616.8) |
| Clindamycine    | 0.025  | 0.019 | 0.008  | 0.008    | 0.027       |
|                 | (2.0)  | (1.0) | (2.4)  | (971.4)  | (2106950.2) |
| Moxifloxacin    | 0.019  | 0.019 | 0.019  | 0.022    | 0.041       |
|                 | (1.0)  | (1.0) | (1.0)  | (414.0)  | (2487703.6) |
| Moyenne         | 0.029  | 0.223 | 0.056  | 0.044    | 0.054       |
|                 | (2.24) | (1.0) | (6.16) | (1383.6) | (2394015.7) |

#### Streptococcus Pneumoniae

|                  | SCM   | Best  | DT    | L1SVM   | L2SVM      |
|------------------|-------|-------|-------|---------|------------|
| Benzylpenicillin | 0.012 | 0.009 | 0.010 | 0.014   | 0.014      |
|                  | (1.0) | (1.0) | (1.6) | (214.8) | (675375.6) |
| Erythromycine    | 0.031 | 0.049 | 0.047 | 0.045   | 0.041      |
|                  | (2.0) | (1.0) | (7.0) | (378.8) | (581550.6) |
| Tetracycline     | 0.025 | 0.025 | 0.025 | 0.025   | 0.025      |
|                  | (1.2) | (1.0) | (1.0) | (445.5) | (616914.4) |
| Moyenne          | 0.023 | 0.028 | 0.027 | 0.028   | 0.027      |
|                  | (1.4) | (1.0) | (3.2) | (346.3) | (624613.5) |

#### Pseudomonas Aeruginosa

|              | SCM             | Best           | DT              | L1SVM             | L2SVM               | Dummy |
|--------------|-----------------|----------------|-----------------|-------------------|---------------------|-------|
| Amikacin     | 0.181 (6.0)     | 0.192<br>(1.0) | 0.195<br>(21.0) | 0.181<br>(710.0)  | 0.195<br>(115537.6) | 0.230 |
| Doripenem    | 0.234<br>(1.4)  | 0.264<br>(1.0) | 0.253<br>(11.4) | 0.262<br>(1532.8) | 0.25<br>(11882.2)   | 0.378 |
| Meropenem    | 0.280<br>(1.8)  | 0.291<br>(1.0) | 0.253<br>(4.4)  | 0.250<br>(174.4)  | 0.261<br>(2961.2)   | 0.472 |
| Levofloxacin | 0.067<br>(1.4)  | 0.073<br>(1.0) | 0.067<br>(1.4)  | 0.067<br>(15.6)   | 0.092<br>(100928.2) | 0.416 |
| Moyenne      | 0.191<br>(2.65) | 0.205<br>(1.0) | 0.192<br>(9.55) | 0.190<br>(608.2)  | 0.2<br>(57827.3)    | 0.347 |

#### **Mycobacterium Tuberculosis**

|              | SCM    | Best  | DT    | L1SVM   | L2SVM    |
|--------------|--------|-------|-------|---------|----------|
| Ethambutol   | 0.209  | 0.297 | 0.230 | 0.202   | 0.202    |
|              | (1.6)  | (1.0) | (4.2) | (208.8) | (3219.8) |
| Isoniazid    | 0.021  | 0.979 | 0.014 | 0.021   | 0.029    |
|              | (1.0)  | (1.0) | (1.0) | (20.2)  | (1550.2) |
| Rifampicin   | 0.035  | 0.035 | 0.035 | 0.028   | 0.029    |
|              | (1.4)  | (1.0) | (1.4) | (40.2)  | (180.2)  |
| Streptomycin | 0.037  | 0.963 | 0.030 | 0.037   | 0.037    |
|              | (1.0)  | (1.0) | (1.4) | (49.4)  | (1185.6) |
| Moyenne      | 0.076  | 0.569 | 0.078 | 0.072   | 0.074    |
|              | (1.72) | (1.0) | (2.0) | (79.7)  | (1554.0) |

## Validation biologique



kinase

#### Conclusion

- Notre méthode permet d'apprendre des modèles parcimonieux à partir de génomes complets.
- Ces modèles sont composés de règles facilement interprétables.
- Nos modèles ont une forme qui les rend particulièrement faciles à transformer en tests cliniques.
- Travaux futurs: corrélation entre certains k-mers, robustesse aux mutations, modèles plus complexes (DNF-SCM), cancer.

## Remerciements

• Personnes impliquées dans le projet:

| Apprentissage<br>Automatique                                                                                      | Bioinformatique                                                                                       |  |  |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|--|
| <ul><li>Sébastien Giguère</li><li>Vladana Sagatovich</li><li>François Laviolette</li><li>Mario Marchand</li></ul> | <ul><li>Maxime Déraspe</li><li>Frédéric Raymond</li><li>Jacques Corbeil</li><li>Paul H. Roy</li></ul> |  |  |
| Lynda Robitaille                                                                                                  |                                                                                                       |  |  |

## Références

- Drouin, A., Giguère, S., Sagatovich, V., Déraspe, M., Laviolette, F., Marchand, M., & Corbeil, J. (2014). Learning interpretable models of phenotypes from whole genome sequences with the Set Covering Machine. arXiv preprint arXiv:1412.1074.
- Marchand, M., & Shawe-Taylor, J. (2003). The set covering machine. *The Journal of Machine Learning Research*, *3*, 723-746.
- World Health Organization. (2014). Antimicrobial resistance. Factsheet 194, 2013.