	(1)	(2)	(3)	(1)	(2)	(3)
	$\frac{R_{ur}^2 +}{(R_{ur}^2 - R_r^2)}$	$2 \cdot R_{ur}^2$	$R^2 \text{ for } \beta_{ols} = \beta_{iv}$	$\frac{R_{ur}^2 +}{(R_{ur}^2 - R_r^2)}$	$2 \cdot R_{ur}^2$	$R^2 \text{ for } \beta_{ols} = \beta_{iv}$
Probability of Election	1.05 (.23)	0.63 (.29)	(.46)	1.69 (.96)	1.49 (1.00)	(3.07)
Vote Share	0.68 (.64)	0.48 (.74)	- (.99)	2.05 (1.00)	2.05 (1.00)	(3.01)
Vote Distance to Cutoff	7.74	6.05	_	20.51	20.51	_

Panel B: Individual Covariate and

Fixed-Effects Models

(City Councilor) (.21)(2.11)(.23)(1.00)(1.00)(24.86)Vote Distance to Cutoff 2.64 1.56 1.21 1.21

(Mayor) (.23)(.29)

column 3 in each panel.

(.64)(1.00)

(1.00)(1.51)

Note: In each panel, I compare the unrestricted coefficient for the model in the panel title $(\tilde{\beta})$ against the restricted

Panel A: Individual Covariate Models

coefficient for the bivariate model (β^0). The different outcomes are summarized across rows. Columns 1 and 2 in each panel display conditions for R_{max} calculations in the row just above table content. The first value in each cell

not cap it for calculations of the necessary R^2 to yield $\beta_{ols} = \beta_{iv}$; therefore, some nonsensical $R^2 > 1$ appear in

is the δ for each model. R^2 values are reported inside parentheses. While I cap R^2 at one for δ calculations, I do