Identity and Inverse

Let A be a set. We define the **identity** function on A, denoted $Id_A : A \to A$, by $Id_A(a) = a$ for all $a \in A$

Let $f: A \to B$ be an arbitrary function. The function $g: B \to A$ is:

A left inverse of f: $\forall a \in A \ g \circ f = I d_A$ A right inverse of f: $\forall b \in B \ f \circ g = I d_B$

The function $g: B \to A$ is an inverse of f (written f^{-1}) when it is both a left and right inverse

Proposition

 $f: A \rightarrow B$ has an inverse \iff f is a bijection The Inverse is unique

Example

Consider the function $f: \mathbb{N} \to \mathbb{N}$ defined by

$$f(x) = \begin{cases} x+1, & x \text{ even} \\ x-1, & x \text{ odd} \end{cases}$$

It is easy to check that $(f \circ f)(x) = x$, considering the cases when x is odd and even separately.

Therefore f is its own inverse, and we can deduce that it is a bijection.