

AL5

TD nº 7: algorithme de Kruskal

Exercice 1 : algorithme de Kruskal

Trouver un arbre couvrant de poids minimal sur les graphes suivants en appliquant l'algorithme de Kruskal.

FIGURE 1 – Graphe G

FIGURE 2 – Graphe H

Exercice 2 : ordre de parcours

Selon l'ordre dans lequel les arêtes de même poids sont examinées, l'algorithme de Kruskal ne retourne pas le même ACM. Pour un ACM donné, existe-t-il nécessairement un ordre tel que cet arbre soit la sortie de l'algorithme de Kruskal?

Exercice 3 : arbres couvrants avec arêtes imposées

Soit G = (S, A) un graphe connexe.

- 1. Soit $(u, v) \in A$. Montrer qu'il existe un arbre couvrant qui contient (u, v).
- **2.** Soit $A' \subset A$. Donner une condition pour qu'il existe un arbre couvrant contenant A'.

On suppose maintenant que G est muni d'une pondération $w:A\to \mathbf{R}$ de ses arêtes.

- 3. Soit $(u,v) \in A$. Existe-t-il toujours un arbre couvrant de poids minimal contenant (u,v)?
- **4.** Même question si (u, v) est une arête de poids minimum.

L3 Informatique Année 2021-2022

Exercice 4: unicité d'un ACM

1. Donner un exemple de graphe admettant plusieurs arbres couvrants minimaux différents.

2. Soit $T \subseteq A$ un arbre couvrant minimal de G, et $\{x,y\}$ une arête appartenant à T. On définit le graphe G' comme le graphe G dans lequel les sommets x et y ont été fusionnés en un nouveau sommet z.

Formellement, G' est le graphe (S', A', w') avec $S' = (S \setminus \{x, y\}) \cup \{z\}$ et les arêtes A' sont celles de $A \setminus \{(x, y)\}$ où les sommets x et y sont remplacés par z. La fonction w' renvoie le même poids que w. S'il existe $(x, u) \in A$ et $(y, u) \in A$, on ne garde dans G' qu'une seule arête (z, u), de poids $\min(w(x, u), w(y, u))$.

- a. Dessiner le graphe correspondant à G' en fusionnant les sommets d et f de la Figure 1.
- **b.** Montrer que l'ensemble d'arêtes T' contenant les arêtes de $T \setminus \{(x, y)\}$ où les sommets x et y sont remplacés par z, est un arbre couvrant minimal du graphe G'.
- **3.** Montrer que si la fonction poids w de G = (S, A, w) est telle que le poids de chaque arête de A est unique, alors il existe un unique arbre couvrant minimal pour G.

Indice : on pourra utiliser le résultat précédent, faire une récurrence sur |S| et montrer que l'arête de poids minimal est toujours présente dans un ACM de G...

Exercice 5 : voyageur de commerce

On considère un graphe non-orienté valué G=(S,A,w) avec $w:A\to \mathbf{R}_+$. On s'intéresse ici au problème du voyageur de commerce : on cherche une tournée (c-à-d. un circuit passant exactement une fois par chaque état de S) telle que la somme des arêtes de cette tournée soit minimale.

On s'intéresse au cas où A est complet (c-à-d. pour tout $u, v \in S$, on a $(u, v) \in A$) et G vérifie l'inégalité triangulaire : pour tous sommets u, v et x, on a : $w(u, v) \leq w(u, x) + w(x, v)$. Le problème du voyageur de commerce

On va utiliser la recherche d'un ACM pour G pour obtenir une approximation de la solution.

- 1. Soit C_{opt} un ensemble d'arêtes correspondant à une tournée minimale. Soit $T \subseteq A$ un ACM pour G. Montrer que l'on a : $w(T) \leq w(C_{opt})$.
- **2.** On considère l'arbre (S,T) et un sommet $q \in S$. Soit P le parcours *complet* de l'arbre (S,T): on part de q et on visite tous ses sous-arbres etc. et à la fin on revient à q. En déduire que le poids du parcours P est $2 \cdot w(T)$.

Proposer un parcours P depuis q_0 et vérifier la propriété prouvée sur l'exemple ci-dessous.

3. On note C_A la liste des sommets visités lors d'un parcours préfixe de (S,T) à partir de $q \in S$. Montrer que C_A correspond à un circuit de G. Que peut-on déduire sur $w(C_A)$ comparé à $w(C_{opt})$?