МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное агентство по образованию

МОСКВОСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

Кафедра вакуумной электроники

Термоэлектронный диод

Лабораторная работа по курсу: Вакуумная электроника

> Работу выполнил студент 654 группы Нехаев Александр

Долгопрудный 2018 г.

Содержание

1.	Цели и задачи исследования	2
2.	Схема установки	2
3.	Обработка результатов	3
4.	Выводы	5

1. Цели и задачи исследования

- 1) Практическое изучение явления термоэлектронной эмиссии и процессов токопрохождения в вакууме;
- 2) Изготовление вакуумного диода;
- 3) Исследование некоторых характеристик диода;
- 4) Проверка справедливости законов Ричардсона-Дешмана и Чайлда-Ленгмюра.

2. Схема установки

Рис. 1: Схема установки

- 1) Форвакуумный насос
- 2) Турбомолекулярный насос
- 3) Вакуумная камера
- 4) Клапан с электрическим управлением
- 5) Измерительная насадка
- 6) Фильтр входящего воздуха
- 7) Диод
- 8) Источник питания НҮ 3010Е
- 9) Вольтметр GPR-30H100

3. Обработка результатов

1) Построим график зависимости тока накала $(I_{\text{нак}})$ от напряжения накала $(U_{\text{нак}})$ (рис. 2)

Рис. 2: График зависимости тока накала от напряжения накала

Построим график зависимости сопротивления R катода от приложенной мощности P. Сопротивление катода рассчитаем по формуле:

$$R = \frac{U_{\text{\tiny HAK}}}{I_{\text{\tiny HAK}}} \tag{1}$$

Приложенную мощность - по формуле:

$$P = U_{\text{\tiny HAK}} \times I_{\text{\tiny HAK}} \tag{2}$$

Построим график зависимости температуры от силы тока на катоде (рис. 3). Температуру рассчитаем по формуле Ричардсона-Дэшмана:

$$j = 120.4T^2 \exp\left(-\frac{11600}{T}\varphi\right) \tag{3}$$

Построим графики зависимости температуры катода $(T_{\text{кат}})$ от тока накала $(I_{\text{нак}})$. Для построения графика на основании изменения сопротивления катода воспользуемся формулой:

$$T_{\text{KAT}} = \frac{R - R_0}{\alpha R_0} \tag{4}$$

где α - коэффициент температурной зависимости электрического сопротивления.

Для построения графика на основании расчётов с использованием энергетического баланса воспользуемся законом Стефана-Больцмана и значениями подводимой мощности, полученной в предыдущих шагах работы. Таким образом будем использовать формулу:

$$T_{\text{\tiny KAT}} = \sqrt[4]{\frac{P}{S\varepsilon\sigma}} \tag{5}$$

Рис. 3: График зависимости сопротивления R катода от приложенной мощности P.

S - площадь эмитирующей поверхности, ε - степень черноты и σ - постоянная Стефана-Больцмана ($\sigma=5.67\cdot 10^{-8} \frac{\rm Дж}{\rm с\times m^2\times K^4}$). На рис. 4 верхний график — это график, построенный с помощью формулы (5), нижний график — с помощью формулы (4)

Рис. 4: График зависимости температуры катода от тока накала.

2) Построим графики зависимости анодного тока от анодного напряжения при различных значениях тока накала $I_{\text{нак}}$ в координатах \log_{I_a} от \log_{U_a} (смотреть рис. 6 - 11). При помощи графика найдем первеанс g, используя формулу:

$$I_a = gU_a^{\frac{3}{2}} \tag{6}$$

С помощью первеанса определим отношение заряда электрона к его массе по формуле:

$$\frac{e}{m} = \frac{81}{8} \left(g \times \frac{R_a}{L_a} \right)^2 \tag{7}$$

I_a	g	$\frac{e}{m}$, 10 ⁹
2.5	0.000022	0
2.6	0.000172	0
2.8	0.004283	0
3	0.008627	0
2.9	0.002212	0
2.7	0.004255	0

Таблица 1: Отношение заряда электрона к массе

3) Найдём теоретическое значение первеанса по формуле:

$$g = 14.67 \cdot 10^{-6} \frac{L_a}{R_a \beta^2} \tag{8}$$

где L_a — длина анода, R_a - радиус анода, $\beta_2 = f(R_a/R_c) = 1$. Подставив данные, получим:

$$g = 0.000088$$

Рассчитаем эффективность катода по формуле:

$$H = \frac{I_{\text{\tiny HAK}}}{P_{\text{\tiny HAK}}} \tag{9}$$

Данные полученные в ходе работы и результаты сведены в таблицу ниже:

$I_{\text{\tiny HaK}}, A$	$U_{\text{\tiny HAK}}, B$	$P_{\text{\tiny HAK}}$	$I_{\text{нак}}$, мА	$H,\!\mathrm{A/Br}$
2.5	3.5	8.75	0.44	5.0×10^{-5}
2.6	3.8	9.88	2.2	3.94×10^{-5}
2.7	4.1	11.07	3.9	3.25×10^{-4}
2.8	4.5	12.6	11.4	9.04×10^{-4}
2.9	4.8	13.92	40.5	2.91×10^{-3}
3.0	5.1	15.3	68.5	4.47×10^{-3}

Таблица 2: Различные характеристики.

4) Построим график зависимости анодного тока от тока накала при $U_a=140~{\rm B}$ в координатах $\log(I_a)$ от $I_{\rm нак}$ (см. рис. 5).

4. Выводы

При выполнении данной лабораторной работы:

1) Получены представления о структуре элементарного диода

Рис. 5: График зависимости анодного тока от катодного, при напряжении анода 140 В.

- 2) Были изучены следующие характеристики диода: вольт-амперная характеристика, первеанс и его эффективность;
- 3) Были проверены закономерности ВАХ диода: при больших токах накала справедливо уравнение Чайлда-Ленгмюра, а при насыщении уравнение Ричардсона-Дэшмана;
- 4) Была рассчитана температура катода, исходя из трёх разных позиций: с точки зрения сопротивления катода, с точки зрения уравнения энергетического баланса, с точки зрения закона Ричардсона-Дэшмана;
- 5) Обнаружены совпадения при токах накала выше 2 А, лежащие в погрешности, значения первеанса, определённого экспериментально, и первеанса, рассчитанного теоретически. Это так же подтверждает, что закон Чайлда-Ленгмюра зависит от плотности заряда.

Рис. 6: График зависимости логарифма анодного тока от логарифма анодного напряжения, при токе накала $2.5~\mathrm{A}.$

Рис. 7: График зависимости логарифма анодного тока от логарифма анодного напряжения, при токе накала $2.6~\mathrm{A}.$

Рис. 8: График зависимости логарифма анодного тока от логарифма анодного напряжения, при токе накала $2.8~\mathrm{A.}$

Рис. 9: График зависимости логарифма анодного тока от логарифма анодного напряжения, при токе накала $3\ A.$

Рис. 10: График зависимости логарифма анодного тока от логарифма анодного напряжения, при токе накала $2.9~\mathrm{A}.$

Рис. 11: График зависимости логарифма анодного тока от логарифма анодного напряжения, при токе накала $2.7~\mathrm{A}.$