Supplementary Material for "On Achievable Rates of Line Networks with Generalized Batched Network Coding"

APPENDIX A

PROOFS ABOUT CONVERSE

Proof of Lemma 3: Denote by $\mathbf{y}^* = (y^* \cdots y^*)$. We have

$$W(\mathbf{y}|\mathbf{x}) = \begin{cases} \frac{Q^{\otimes N}(\mathbf{y}^*|\mathbf{x}) - p_0}{1 - p_0} & \mathbf{y} = \mathbf{y}^*, \\ \frac{Q^{\otimes N}(\mathbf{y}|\mathbf{x})}{1 - p_0} & \text{otherwise.} \end{cases}$$
(51)

Let $P(y) = \sum_{\mathbf{x}} Q^{\otimes N}(y|\mathbf{x})p(\mathbf{x})$ and $P'(y) = \sum_{\mathbf{x}} W(y|\mathbf{x})p(\mathbf{x})$. We have

$$P'(\mathbf{y}) = \begin{cases} \frac{1}{1-p_0} (P(\mathbf{y}) - p_0) & \mathbf{y} = \mathbf{y}^*, \\ \frac{1}{1-p_0} P(\mathbf{y}) & \text{otherwise.} \end{cases}$$
(52)

Substituting (51) and (52) into I(p, W), we get

$$I(p, W) = \sum_{\mathbf{x}} p(\mathbf{x}) \sum_{\mathbf{y}} W(\mathbf{y}|\mathbf{x}) \log \frac{W(\mathbf{y}|\mathbf{x})}{P'(\mathbf{y})}$$
(53)

$$= \frac{1}{1 - p_0} I(p, Q^{\otimes N}) + \frac{1}{1 - p_0} U(\mathbf{y}^*), \tag{54}$$

where

$$U(\mathbf{y}^*) \triangleq \sum_{\mathbf{x}} p(\mathbf{x}) \left((Q^{\otimes N}(\mathbf{y}^*|\mathbf{x}) - p_0) \log \frac{Q^{\otimes N}(\mathbf{y}^*|\mathbf{x}) - p_0}{P(\mathbf{y}^*) - p_0} - Q^{\otimes N}(\mathbf{y}^*|\mathbf{x}) \log \frac{Q^{\otimes N}(\mathbf{y}^*|\mathbf{x})}{P(\mathbf{y}^*)} \right).$$
(55)

Using $P(\mathbf{y}^*) = \sum_{\mathbf{x}} Q^{\otimes N}(\mathbf{y}^*|\mathbf{x})p(\mathbf{x}) \ge \sum_{\mathbf{x}} \epsilon^N p(\mathbf{x}) = \epsilon^N$, we have

$$U(\mathbf{y}^*) = -p_0 \sum_{\mathbf{x}} p(\mathbf{x}) \log(Q^{\otimes N}(\mathbf{y}^*|\mathbf{x}) - p_0) + P(\mathbf{y}^*) \log \frac{P(\mathbf{y}^*)}{P(\mathbf{y}^*) - p_0}$$
(56)

$$+p_0 \log(P(\mathbf{y}^*) - p_0) + \sum_{\mathbf{x}} p(\mathbf{x}) Q^{\otimes N}(\mathbf{y}^* | \mathbf{x}) \log \frac{Q^{\otimes N}(\mathbf{y}^* | \mathbf{x}) - p_0}{Q^{\otimes N}(\mathbf{y}^* | \mathbf{x})}$$
(57)

$$\leq -p_0 \log(\epsilon^N - p_0) + q^* \log \frac{\epsilon^N}{\epsilon^N - p_0} + p_0 \log(q^* - p_0) + q^* \log \frac{q^* - p_0}{q^*}$$
 (58)

$$= (q^* + p_0) \log \frac{q^* - p_0}{\epsilon^N - p_0} + q^* \log \frac{\epsilon^N}{q^*}$$
 (59)

The proof is completed by combining (54) and (59).

Proof of Lemma 5: We relax N to a real number and solve $\frac{dF(N)}{dN} = 0$, i.e.,

$$1 - \epsilon^N + LN\epsilon^N \ln \epsilon = 0, (60)$$

or

$$\epsilon^{-N} - 1 + LN \ln \epsilon = 0. \tag{61}$$

Let $t = -N \ln \epsilon$, and denote by $t^*(L)$ the solution of $g(t) \triangleq e^t - 1 - Lt = 0, t > 0$. Then the solution of (60) is $N^* = t^*(L)/\ln(1/\epsilon)$.

We know that g(t) < 0 for $0 < t < t^*(L)$; and g(t) > 0 for $t > t^*(L)$. Since $g(\ln L) = L - t$ $1 - L \ln L < 0$ and $g(2 \ln L) = L^2 - 1 - 2L \ln L > 0$ when L > 1, we have $\ln l < t^*(L) < 2 \ln L$ when L > 1. Last, using $e^{N^*} = e^{-t^*(L)}$.

$$0.25 \le (1 - 1/L)^L \le (1 - \epsilon^{N^*})^L \le (1 - 1/L^2)^L < 1, \tag{62}$$

and hence
$$F(N^*) = \frac{(1-\epsilon^{N^*})^L}{N^*} = \frac{\ln \frac{1}{\epsilon} (1-\epsilon^{N^*})^L}{t^*(L)} = \Theta(\frac{\ln \frac{1}{\epsilon}}{\ln L}).$$

Proof of Lemma 6: We group the elements of S_i into $\lceil |S_i|/2 \rceil$ pairs, denoted collectively as $\mathcal{S}_i^{(2)}$, where each element of \mathcal{S}_i appears in exactly one pair. When $|\mathcal{S}_i|$ is even, all pairs have distinct entries. When $|S_i|$ is odd, exactly one pair has the two entries same and the other pairs have distinct entries.

For each pair $(x, x') \in \mathcal{S}_{\mathbf{i}}^{(2)}$, fix $y_{x,x'}$ such that $Q(y_{x,x'}|x) \geq \varepsilon_Q$ and $Q(y_{x,x'}|x') \geq \varepsilon_Q$. Define ${\mathcal Z}$ as the collection of $z=(z_x,x\in{\mathcal Q}_{\mathrm i})$ such that $z_x=y_{x,x'}$ and $z_{x'}=y_{x,x'}$ for all pairs $(x,x')\in\mathcal{S}_{\mathrm{i}}^{(2)}$. Let $\mathcal{S}_{\mathrm{o}}=\{y_{x,x'}:(x,x')\in\mathcal{S}_{\mathrm{i}}^{(2)}\}$. Therefore, $|\mathcal{S}_{\mathrm{o}}|\leq\lceil|\mathcal{S}_{\mathrm{i}}|/2\rceil$. Hence for any $x \in \mathcal{S}_{i}$ and $z \in \mathcal{Z}$, $\alpha(x, z) = z_{x} \in \mathcal{S}_{o}$. When \mathcal{A} is even,

$$P(Z \in \mathcal{Z}) = \prod_{(x,x') \in \mathcal{S}_{i}^{(2)}} P(Z[x] = y_{x,x'}) P(Z_{x'} = y_{x,x'})$$
(63)

$$= \prod_{(x,x')\in\mathcal{S}_{i}^{(2)}} Q(y_{x,x'}|x)Q(y_{x,x'}|x') \ge \prod_{(x,x')\in\mathcal{S}_{i}^{(2)}} \varepsilon_{Q}^{2} = \varepsilon_{Q}^{|\mathcal{S}_{i}|}.$$
 (64)

When \mathcal{A} is odd,

$$P(Z \in \mathcal{Z}) = \prod_{(x,x') \in \mathcal{S}_{i}^{(2)}: x \neq x'} P(Z[x] = y_{x,x'}) P(Z_{x'} = y_{x,x'}) \prod_{(x,x) \in \mathcal{S}_{i}^{(2)}} P(Z[x] = y_{x,x})$$
(65)
$$= \prod_{(x,x') \in \mathcal{S}_{i}^{(2)}: x \neq x'} Q(y_{x,x'}|x) Q(y_{x,x'}|x') \prod_{(x,x) \in \mathcal{S}_{i}^{(2)}} Q(y_{x,x}|x) \ge \varepsilon_{Q}^{|\mathcal{S}_{i}|}.$$
(66)

$$= \prod_{(x,x')\in\mathcal{S}_{i}^{(2)}:x\neq x'} Q(y_{x,x'}|x)Q(y_{x,x'}|x') \prod_{(x,x)\in\mathcal{S}_{i}^{(2)}} Q(y_{x,x}|x) \ge \varepsilon_{Q}^{|\mathcal{S}_{i}|}.$$
(66)

Proof of Theorem 7: Consider a line network of length L of general DMCs Q_ℓ with $\varepsilon_{Q_\ell} \ge \epsilon > 0$ and a GBNC as described in §II. Without loss of optimality, we assume a deterministic recoding scheme, i.e., ϕ_ℓ are deterministic. Channel $Q_\ell^{\otimes N}$ can be modelled by the function α_ℓ^N with the channel status variable $Z_\ell = (Z_\ell[\mathbf{x}], \mathbf{x} \in \mathcal{Q}_i^N)$ so that

$$\mathbf{Y}_{\ell} = \alpha_{\ell}^{N}(\mathbf{U}_{\ell}, Z_{\ell}). \tag{67}$$

As $\varepsilon_{Q_\ell^{\otimes N}} \geq \varepsilon_{Q_\ell}^N > 0$, the condition of applying Lemma 6 on $Q_\ell^{\otimes N}$ is satisfied.

Let $\mathcal{S}_{i}^{(1)} = \mathcal{Q}_{i}^{N}$. Applying Lemma 6 on $\mathcal{Q}_{1}^{\otimes N}$ w.r.t. $\mathcal{S}_{i}^{(1)}$, there exists subsets $\mathcal{Z}^{(1)}$ and $\mathcal{S}_{o}^{(1)} \subseteq \mathcal{Q}_{o}^{N}$ with $|\mathcal{S}_{o}^{(1)}| \leq \lceil |\mathcal{S}_{i}^{(1)}|/2 \rceil$ such that $\alpha_{1}^{N}(\mathbf{x}, z_{1}) \in \mathcal{S}_{o}^{(1)}$ for any $\mathbf{x} \in \mathcal{S}_{i}^{(1)}$ and $z_{1} \in \mathcal{Z}^{(1)}$, and $P(Z_{1} \in \mathcal{Z}^{(1)}) \geq \varepsilon^{N|\mathcal{Q}_{i}|^{N}}$. Fix an integer $K = \lceil N \log |\mathcal{Q}_{i}| \rceil$. For $i = 2, 3, \ldots, K$, define recursively $\mathcal{S}_{i}^{(i)}$, $\mathcal{S}_{o}^{(i)}$ and $\mathcal{Z}^{(i)}$ as follows: $\mathcal{S}_{i}^{(i)} = \left\{\mathbf{x} \in \mathcal{Q}_{i}^{N} : \mathbf{x} = \phi_{i-1}(\mathbf{y}) \text{ for certain } \mathbf{y} \in \mathcal{S}_{o}^{(i-1)} \right\}$, and $\mathcal{S}_{o}^{(i)}$ and $\mathcal{Z}^{(i)}$ are determined as in the proof of Lemma 6 w.r.t. $Q_{i}^{\otimes N}$ and $\mathcal{S}_{i}^{(i)}$ so that $\alpha_{i}^{\otimes N}(\mathbf{x}, z) \in \mathcal{S}_{o}^{(i)}$ for any $\mathbf{x} \in \mathcal{S}_{i}^{(i)}$ and $z \in \mathcal{Z}^{(i)}$, and $P(Z_{i} \in \mathcal{Z}^{(i)}) \geq \varepsilon^{N|\mathcal{S}_{i}^{(i)}|}$.

According to the construction, $|\mathcal{S}_{i}^{(i)}| \leq |\mathcal{S}_{o}^{(i-1)}|$ and $|\mathcal{S}_{o}^{(i)}| \leq \lceil |\mathcal{S}_{i}^{(i)}|/2 \rceil$. Hence $|\mathcal{S}_{o}^{(K)}| \leq \lceil |\mathcal{S}_{i}^{(i)}|/2 \rceil = 1$. Since the set $\mathcal{S}_{o}^{(K)}$ is non-empty, we have $|\mathcal{S}_{o}^{(K)}| = 1$, i.e., there exists an output of $Q_{K}^{\otimes N}$ that occurs with a positive probability for all inputs of $Q_{1}^{\otimes N}$. Define the channel $G_{1} = Q_{1}^{\otimes N} \phi_{1} Q_{2}^{\otimes N} \cdots \phi_{K-1} Q_{K}^{\otimes N}$. Under the condition $Z_{i} \in \mathcal{Z}^{(i)}, i = 1, \ldots, K$, the output of G_{1} must be unique for all possible channel inputs, i.e., G_{1} is canonical. Note that

$$P(Z_i \in \mathcal{Z}^{(i)}, i = 1, \dots, K) \ge \varepsilon^{N \sum_{i=1}^K |\mathcal{A}_i|} \ge \varepsilon^{N(2|\mathcal{Q}_i|^N + K)}.$$
(68)

Let $L' = \lfloor L/K \rfloor$. For $i = 2, \ldots, L'$, define $G_i = Q_{K(i-1)+1}^{\otimes N} \phi_{K(i-1)+1} Q_{K(i-1)+2}^{\otimes N} \cdots \phi_{Ki-1} Q_{Ki}^{\otimes N}$. Similar as G_1 , we know that G_i , $i = 2, \ldots, L'$ are all canonical. We see that G_i , $i = 1, \ldots, L'$ forms a length-L' network. Let $\tilde{W}_{L'} = \phi_0 G_1 \phi_K G_2 \phi_{2K} \cdots G_{L'}$, which is the end-to-end transition matrix of a GBNC with inner block length 1 for the length-L' network of canonical channels G_i . By the data processing inequality, $I(p_{\mathbf{X}}, W_L) \leq I(p_{\mathbf{X}}, \tilde{W}_{L'})$. Based on this relation, we are ready to prove the theorem, similar to that of Theorem 4.

APPENDIX B

PROOFS ABOUT ACHIEVABILITY

Proof of Lemma 9: Suppose that the node $\ell-1$ transmits $u_{\ell}(x)$ for N times, where $x \in \mathcal{A}$. We know that the entries of \mathbf{y}_{ℓ} are i.i.d. random variables with distribution $Q_{\ell}(\cdot \mid u_{\ell}(x))$. The

error probability for ML decoding at the node ℓ satisfies

$$\epsilon_{\ell}(x) \le P\left(\bigvee_{\overline{x} \ne x} \mathcal{L}_{\ell}(\overline{x}; \mathbf{y}_{\ell}) \ge \mathcal{L}_{\ell}(x; \mathbf{y}_{\ell})\right)$$
 (69)

$$\leq \sum_{\overline{x} \in \mathcal{A}: \ \overline{x} \neq x} P\left(\mathcal{L}_{\ell}(\overline{x}; \mathbf{y}_{\ell}) \geq \mathcal{L}_{\ell}(x; \mathbf{y}_{\ell})\right), \tag{70}$$

where the second inequality follows from the union bound. For fixed $\overline{x} \in \mathcal{A}$ so that $\overline{x} \neq x$, we bound the probability $P(\mathcal{L}_{\ell}(\overline{x}; \mathbf{Y}_{\ell}) \geq \mathcal{L}_{\ell}(x; \mathbf{Y}_{\ell}))$ by considering two cases.

If there exists a non-empty subset $\mathcal{Y}_0 \subseteq \mathcal{Q}_0$ so that for any $y_0 \in \mathcal{Y}_0$, $Q_\ell(y_0 \mid u_\ell(x)) > 0$ but $Q_\ell(y_0 \mid u_\ell(\overline{x})) = 0$, as long as $\mathbf{y}_\ell[i] \in \mathcal{Y}_0$ for some i, we can assert that $\mathcal{L}_\ell(\overline{x}; \mathbf{y}_\ell) < \mathcal{L}_\ell(x; \mathbf{y}_\ell)$. Therefore,

$$P\left(\mathcal{L}_{\ell}(\overline{x}; \mathbf{y}_{\ell}) \ge \mathcal{L}_{\ell}(x; \mathbf{y}_{\ell})\right) \le P\left(\mathbf{Y}_{\ell}[i] \notin \mathcal{Y}_{0}, i = 1, \dots, N\right)$$
(71)

$$= \left[\sum_{y \notin \mathcal{Y}_0} Q_{\ell}(y \mid u_{\ell}(x)) \right]^N = \exp\left(-N \log \frac{1}{\sum_{y \notin \mathcal{Y}_0} Q_{\ell}(y \mid u_{\ell}(x))} \right), \tag{72}$$

where $\sum_{y \notin \mathcal{Y}_0} Q_\ell(y \mid u_\ell(x)) = 1 - \sum_{y \in \mathcal{Y}_0} Q_\ell(y \mid u_\ell(x)) < 1$.

Otherwise, consider that the support of $Q_{\ell}(\cdot \mid u_{\ell}(x))$ belongs to the support of $Q_{\ell}(\cdot \mid u_{\ell}(\overline{x}))$. For $i = 1, \ldots, N$, define the random variable $D_i = \log \frac{Q_{\ell}(\mathbf{Y}_{\ell}[i]|u_{\ell}(\overline{x}))}{Q_{\ell}(\mathbf{Y}_{\ell}[i]|u_{\ell}(x))}$. We see that D_i are i.i.d., and satisfy

$$\log \varrho_{\ell} \le D_i \le -\log \varrho_{\ell},\tag{73}$$

where $\varrho_{\ell} = \min_{x \in \mathcal{Q}_i, y \in \mathcal{Q}_0: Q_{\ell}(y|x) > 0} Q_{\ell}(y|x)$, and

$$\mathbb{E}[D_i] = E_\ell' \triangleq -\mathcal{D}_{KL} \left(Q_\ell(\cdot \mid u_\ell(x)) \| Q_\ell(\cdot \mid u_\ell(\overline{x})) \right), \tag{74}$$

where $\mathcal{D}_{\mathrm{KL}}$ denotes the Kullback-Leibler divergence. We see that $E'_{\ell} > -\infty$. Moreover, as $u_{\ell}(x) \neq u_{\ell}(\bar{x}) \in \mathcal{Q}^{\ell}_{\mathrm{i}}$, $Q_{\ell}(\cdot \mid u_{\ell}(x)) \neq Q_{\ell}(\cdot \mid u_{\ell}(\bar{x}))$ and hence $E'_{\ell} \neq 0$. Applying Hoeffding's inequality, we obtain

$$P\left(\mathcal{L}_{\ell}(\overline{x}; \mathbf{y}_{\ell}) \ge \mathcal{L}_{\ell}(x; \mathbf{y}_{\ell})\right) = P\left(\sum_{i=1}^{N} D_{i} \ge 0\right)$$
(75)

$$=P\left(\sum_{i=1}^{N} \left(D_i - E'_{\ell}\right) \ge -NE'_{\ell}\right) \tag{76}$$

$$\leq \exp\left(-\frac{NE_{\ell}^{\prime 2}}{2\log^2\varrho_{\ell}}\right).$$
(77)

The proof is completed by combining both cases.

Proof of Lemma 11: Suppose Q has size $m \times n$. As $C(Q) > \epsilon > 0$, $m \ge 2$. Let $\mathbf{a} = (a_1, \ldots, a_n)$ be a row of Q, and construct a new $m \times n$ stochastic matrix \tilde{Q} with all the rows \mathbf{a} . We have $C(\tilde{Q}) = 0$ and hence $|C(Q) - C(\tilde{Q})| > \epsilon$. Since channel capacity as a function of stochastic matrices is uniformly continuous [10, Lemma I.1], there exists a constant $\delta > 0$ depending on ϵ such that $\|\tilde{Q} - Q\|_{\infty} > \delta$. As a consequence, there exists another row $\mathbf{a}' = (a'_1, \ldots, a'_n)$ of Q such that $\|\mathbf{a} - \mathbf{a}'\|_{\infty} > \delta$. Denote by j the index such that $|a_j - a'_j| > \delta$.

Using the example of uniform reduction with s=2, we can choose R so that RQ is formed by a and a'. Then we can find W so that $RQW=U_2(\rho_1)$, where

$$\rho_1 = \sum_{k:a_k + a_k' > 0} \frac{a_k^2}{a_k + a_k'} = 1 - \sum_{k:a_k + a_k' > 0} \frac{a_k a_k'}{a_k + a_k'}.$$
 (78)

Based on the relation that

$$\frac{1}{2} - \sum_{k:a_k + a_k' > 0} \frac{a_k a_k'}{a_k + a_k'} = \frac{1}{4} \sum_{k:a_k + a_k' > 0} \frac{(a_k - a_k')^2}{a_k + a_k'} \ge \frac{1}{4} \frac{(a_j - a_j')^2}{a_j + a_j'} \ge \frac{\delta^2}{8},\tag{79}$$

we have the lower bound $\rho_1 \geq B$ with $B = \frac{1}{2} + \frac{\delta^2}{8} > 1/2$. For any ϱ such that $1/2 < \varrho \leq B$, we have $U_2(\varrho) = U_2(\rho_1)U_2(\frac{\rho_1+\varrho-1}{2\rho_1-1})$, and hence $RQWU_2(\frac{\rho_1+\varrho-1}{2\rho_1-1}) = U_2(\varrho)$.

Proof of Lemma 13: As $\operatorname{rank}(Q) = r \geq s$, we can find stochastic matrices R and W such that $\min \operatorname{inv}(RQW) = \kappa_s(Q)$. Let $B = (RQW)^{-1}$, and $K = BU_s(\varrho)$. As $RQWK = U_s(\varrho)$, we only need to show that for $1/s < \varrho \leq \rho_s(Q)$, K is a stochastic matrix. Let 1 be the all-one vector of certain length. We see that $K\mathbf{1} = BU_s(\varrho)\mathbf{1} = B\mathbf{1} = \mathbf{1}$, where the last equality follows because $RQW\mathbf{1} = \mathbf{1}$ and RQW is invertible.

It remains to show that all the entries of K are nonnegative. Let b_{ij} be the (i,j) entry of B. The (i,j) entry of K is $k_{ij} = \frac{1}{s-1} \left[(1-\varrho) + b_{ij}(s\varrho - 1) \right] \geq \frac{1}{s-1} \left[(1-\varrho) + \kappa_s(Q)(s\varrho - 1) \right]$. When $\kappa_s(Q) \geq 0$, we have $k_{ij} \geq 0$ for any $\varrho \in (1/s,1]$. When $\kappa_s(Q) < 0$, we have $k_{ij} \geq 0$ for any $\varrho \in (1/s,\frac{\kappa_s(Q)-1}{s\kappa_s(Q)-1}]$.

Proof of Theorem 14: Recall the Markov chain relation in (45), where the transition matrix **P** is an $(M+1) \times (M+1)$ matrix with the (i,j) entry $(0 \le i, j \le M)$:

$$p_{i,j} = \begin{cases} 0 & i < j, \\ \sum_{k=j}^{N} f(k; N, \epsilon) \zeta_j^{i,k} & i \ge j, \end{cases}$$
 (80)

where $f(k; N, \epsilon) = \binom{N}{k} (1 - \epsilon)^k \epsilon^{N-k}$ is the probability mass function (PMF) of the binomial distribution with parameters N and $1 - \epsilon$, and $\zeta_j^{i,k}$ is the probability that the $i \times k$ matrix with

independent entries uniformly distributed over the field \mathbb{F}_q has rank j. We know that (ref. [27, (2.4)]) $\zeta_j^{i,k} = \frac{\zeta_j^i \zeta_j^k}{\zeta_j^i q^{(i-j)(k-j)}}$, where

$$\zeta_r^m = \begin{cases}
1 & r = 0, \\
(1 - q^{-m})(1 - q^{-m+1}) \cdots (1 - q^{-m+r-1}) & 1 \le r \le m.
\end{cases}$$
(81)

As shown in [29], the matrix \mathbf{P} admits the eigendecomposition $\mathbf{P} = \mathbf{V}\Lambda\mathbf{V}^{-1}$, where $\mathbf{V} = (v_{i,j})_{0 \leq i,j \leq M}$ and $\mathbf{\Lambda} = \mathrm{diag}(\lambda_0,\lambda_1,\ldots,\lambda_M)$. Here $\lambda_j = \sum_{k=j}^N f(k;N,\epsilon)\zeta_j^k$, $v_{i,j} = \zeta_j^i$ for $i \geq j$ and otherwise $v_{i,j} = 0$. It can be checked that $\lambda_0 > \lambda_1 > \cdots > \lambda_M$. Denote the (i,j) entry $0 \leq i,j \leq M$ of V^{-1} by $u_{i,j}$. We know that $u_{i,j} = 0$ for i < j and $u_{i,i} = 1/\zeta_i^i$. Based on the formulation above, we have

$$\mathbf{E}[\pi_L] = \pi_0 \mathbf{V} \mathbf{\Lambda}^L \mathbf{V}^{-1} \begin{bmatrix} 0 & 1 & \cdots & M \end{bmatrix}^\top = \sum_{i=1}^M \lambda_i^L v_{M,i} \sum_{j=1}^i j u_{i,j}$$
(82)

$$= \lambda_1^L v_{M,1} u_{1,1} \left(1 + \sum_{i=2}^M \frac{\lambda_i^L v_{M,i}}{\lambda_1^L v_{M,1} u_{1,1}} \sum_{j=1}^i j u_{i,j} \right)$$
(83)

$$=\Theta(\lambda_1^L),\tag{84}$$

where (83) follows from the fact that $v_{M,1}u_{1,1} > 0$, and (84) is obtained by noting that

$$\sum_{i=2}^{M} \frac{\lambda_{i}^{L} v_{M,i}}{\lambda_{1}^{L} v_{M,1} u_{1,1}} \sum_{j=1}^{i} j u_{i,j} = o(1)$$
(85)

as $\lambda_i \leq \lambda_1$ for $i \geq 2$. By (81), we further have

$$\lambda_1 = \sum_{k=1}^{N} f(k; N, \epsilon) (1 - q^{-k}) = \sum_{k=1}^{N} f(k; N, \epsilon) - \sum_{k=1}^{N} f(k; N, \epsilon) q^{-k}$$
(86)

$$= 1 - f(0; N, \epsilon) - \sum_{k=1}^{N} {N \choose k} (1 - \epsilon)^k \epsilon^{N-k} q^{-k} = 1 - (\epsilon + (1 - \epsilon)/q)^N.$$
 (87)

The proof is completed.