MathTools HW 10

- 1. Let $C_n = [0,1]^n$. Show that C_n is the convex hull of all the binary vectors: $C_n = \text{conv}(\{0,1\}^n)$.
- 2. Let $B_n = \{x \in \mathbb{R}^n : ||x||_1 \le 1$, the $\ell 1$ unit ball.
 - (a) Show that B_n is a polytope.
 - (b) Show that $B_n = \text{conv}(\pm e_1, \dots, \pm e_n)$, where e_i is the i-th standard basis vector.
 - (c) Find all the vertices of B_n . Prove your answer!
- 3. Let $\Delta_n = \{x \in [0,1]^{n+1} : \sum_{i=0}^n x_i = 1\}$ be the *n*-simplex. Δ_n is clearly a polytope.
 - (a) Find the vertices of Δ_n .
 - (b) Let *V* be the set of all vertices. Show that $\Delta_n = \text{conv}(V)$.
 - (c) Take any subset $S \subset V$ of vertices. Show that conv(S) is a face of Δ_n .
- 4. Let $x_1, \ldots, x_m \in \mathbb{R}^n$ be vectors.

Fact: The set $\mathcal{P} = \text{conv}(x_1, \dots, x_m)$ is a polytope.

We will not prove this fact right now (perhaps at a later point in the course), but I hope that at this point your "geometric intuition" tells you that indeed this should be the case.

Prove the following:

- (a) Any face of \mathcal{P} contains one of the points $\{x_1, \ldots, x_m\}$.
- (b) vertices(\mathcal{P}) $\subset \{x_1, \ldots, x_m\}$.
- 5. Denote by $HS(a,b) = \{x : a^{\top}x \leq b\}$ a halfspace, and $H(a,b) = \{x : a^{\top}x = b\}$ its boundary (corresponding hyperplane).

Let $a_1, \ldots, a_m \in \mathbb{R}^n$ and $b_1, \ldots, b_m \in \mathbb{R}$, and consider the polyhedron $\mathcal{P} = \bigcap_{i=1}^m HS(a_i, b_i)$. Throughout, assume that \mathcal{P} is not empty, that is, $\mathcal{P} \neq \emptyset$.

- (a) Suppose that $\mathcal{P} \neq \bigcap_{i=1}^{m-1} HS(a_i, b_i)$, that is, that the constraint $a_m^\top x \leq b_m$ is *not* redundant. Prove that $H(a_m, b_m)$ is a supporting hyperplane of \mathcal{P} .
- (b) Suppose that $a_m \notin \text{span}(a_1, \dots, a_{m-1})$. Prove that $H(a_m, b_m)$ is a supporting hyperplane.