Escuela Politecnica Nacional

Metodos Numericos

Tarea 11

Fecha: 16/07/2025

Nombre: Joseph Jimenez

Enlace al repositorio : https://github.com/Josefu-zero/Metodos-Numericos-Tareas/tree/main/Tarea11

Conjunto de ejercicios

Codigo con los metodos gauss jacobi y gauss seidel

```
In [4]: import numpy as np
        def gauss jacobi(
            A: np.array, b: np.array, x0: np.array, tol: float, max_iter: int
        ) -> np.array:
            # --- Validación de los argumentos de la función ---
            if not isinstance(A, np.ndarray):
                A = np.array(A, dtype=float)
            assert A.shape[0] == A.shape[1], "La matriz A debe ser de tamaño n-by-(n)."
            if not isinstance(b, np.ndarray):
                b = np.array(b, dtype=float)
            assert b.shape[0] == A.shape[0], "El vector b debe ser de tamaño n."
            if not isinstance(x0, np.ndarray):
                x0 = np.array(x0, dtype=float)
            assert x0.shape[0] == A.shape[0], "El vector x0 debe ser de tamaño n."
            # --- Algoritmo ---
            n = A.shape[0]
            x = x0.copy()
            for k in range(1, max_iter):
                x_{new} = np.zeros((n, 1)) # prealloc
                for i in range(n):
                     suma = sum([A[i, j] * x[j] for j in range(n) if j != i])
                     x_{new}[i] = (b[i] - suma) / A[i, i]
                if np.linalg.norm(x_new - x) < tol:</pre>
                     return x_new
                x = x_new.copy()
```

return x

```
In [5]:
        def gauss_seidel(
            A: np.array, b: np.array, x0: np.array, tol: float, max_iter: int
        ) -> np.array:
            # --- Validación de los argumentos de la función ---
            if not isinstance(A, np.ndarray):
                A = np.array(A, dtype=float)
            assert A.shape[0] == A.shape[1], "La matriz A debe ser de tamaño n-by-(n)."
            if not isinstance(b, np.ndarray):
                b = np.array(b, dtype=float)
            assert b.shape[0] == A.shape[0], "El vector b debe ser de tamaño n."
            if not isinstance(x0, np.ndarray):
                x0 = np.array(x0, dtype=float)
            assert x0.shape[0] == A.shape[0], "El vector x0 debe ser de tamaño n."
            # --- Algoritmo ---
            n = A.shape[0]
            x = x0.copy()
            for k in range(1, max_iter):
                x_{new} = np.zeros((n, 1)) # prealloc
                for i in range(n):
                     suma = sum([A[i, j] * x_new[j] for j in range(i) if j != i]) + sum(
                         [A[i, j] * x[j] for j in range(i, n) if j != i]
                     x_{new[i]} = (b[i] - suma) / A[i, i]
                if np.linalg.norm(x_new - x) < tol:</pre>
                     return x_new
                x = x_new.copy()
            return x
```

1. Encuentre las primeras dos iteraciones del método de Jacobi para los siguientes sistemas lineales, por medio de x(0) = 0:

a)

```
In [6]: A = [
        [3, -1, 1],
        [3, 6, 2],
        [3, 3, 7]
]

b = [1, 0, 4]

x = gauss_jacobi(A, b, [0, 0, 0], 10e-5, 100)
print(x)

[[ 0.0350863 ]
        [-0.23685698]
        [ 0.65787809]]
```

b)

```
In [7]: A = [
           [10, -1, 1],
            [-1, 10, -2],
            [0, -2, 10]
        b = [9, 7, 6]
        x = gauss_jacobi(A, b, [0, 0, 0], 10e-5, 100)
        print(x)
       [[0.9159701]
        [0.9495603]
        [0.7899054]]
        c)
In [8]: A = [
            [10, 5, 0, 0],
            [5, 10, -4, 0],
            [0, -4, -8, 1],
            [0, 0, -1, 5]
        b = [6, 25, -11, -11]
        x = gauss_jacobi(A, b, [0, 0, 0, 0], 10e-5, 100)
        print(x)
       [[-0.78792172]
        [ 2.77583088]
        [-0.29530611]
        [-2.25906474]]
        d)
In [9]: A = [
            [4, 1, 1, 0, 1],
            [-1, -3, 1, 1, 0],
            [2, 1, 5, -1, -1],
            [-1, -1, -1, 4, 0],
            [0, 2, -1, 1, 4]
        b = [6, 6, 6, 6, 6]
        x = gauss_jacobi(A, b, [0, 0, 0, 0, 0], 10e-5, 100)
        print(x)
       [[ 0.78661584]
        [-1.00257369]
        [ 1.86634212]
        [ 1.91259293]
        [ 1.98974776]]
```

2. Repita el ejercicio 1 usando el método de Gauss-Siedel.

```
a)
```

```
In [10]: A = [
             [3, -1, 1],
             [3, 6, 2],
             [3, 3, 7]
         b = [1, 0, 4]
         x = gauss_seidel(A, b, [0, 0, 0], 10e-5, 100)
         print(x)
        [[ 0.03510326]
         [-0.23683891]
         [ 0.6578867 ]]
         b)
In [11]: A = [
             [10, -1, 1],
             [-1, 10, -2],
             [0, -2, 10]
         b = [9, 7, 6]
         x = gauss\_seidel(A, b, [0, 0, 0], 10e-5, 100)
         print(x)
        [[0.91596497]
         [0.94957898]
         [0.7899158]]
         c)
In [12]: A = [
             [10, 5, 0, 0],
             [5, 10, -4, 0],
             [0, -4, -8, 1],
             [0, 0, -1, 5]
         b = [6, 25, -11, -11]
         x = gauss\_seidel(A, b, [0, 0, 0, 0], 10e-5, 100)
         print(x)
        [[-0.78791707]
         [ 2.77583885]
         [-0.29530191]
         [-2.25906038]]
         d)
In [13]: A = [
             [4, 1, 1, 0, 1],
             [-1, -3, 1, 1, 0],
             [2, 1, 5, -1, -1],
            [-1, -1, -1, 4, 0],
```

```
[0, 2, -1, 1, 4]
 ]
 b = [6, 6, 6, 6, 6]
 x = gauss\_seidel(A, b, [0, 0, 0, 0, 0], 10e-5, 100)
 print(x)
[[ 0.78663577]
[-1.00257108]
[ 1.86632614]
[ 1.91259771]
 [ 1.98971765]]
```

3. Utilice el método de Jacobi para resolver los sistemas lineales en el ejercicio 1, con $TOL = 10^{-3}$.

```
a)
In [14]: A = [
             [3, -1, 1],
             [3, 6, 2],
             [3, 3, 7]
         b = [1, 0, 4]
         x = gauss_jacobi(A, b, [0, 0, 0], 10e-3, 100)
         print(x)
        [[ 0.03516089]
         [-0.23570619]
         [ 0.65922185]]
         b)
In [15]: A = [
             [10, -1, 1],
             [-1, 10, -2],
             [0, -2, 10]
         b = [9, 7, 6]
         x = gauss_jacobi(A, b, [0, 0, 0], 10e-3, 100)
         print(x)
        [[0.91603]
         [0.94913]
         [0.78962]]
         c)
In [16]: A = [
             [10, 5, 0, 0],
             [5, 10, -4, 0],
             [0, -4, -8, 1],
             [0, 0, -1, 5]
```

```
b = [6, 25, -11, -11]
         x = gauss_jacobi(A, b, [0, 0, 0, 0], 10e-3, 100)
         print(x)
        [[-0.788375]
        [ 2.77715625]
         [-0.29553125]
         [-2.26032813]]
         d)
In [17]: A = [
             [4, 1, 1, 0, 1],
            [-1, -3, 1, 1, 0],
             [2, 1, 5, -1, -1],
             [-1, -1, -1, 4, 0],
             [0, 2, -1, 1, 4]
         b = [6, 6, 6, 6, 6]
         x = gauss_jacobi(A, b, [0, 0, 0, 0, 0], 10e-3, 100)
         print(x)
        [[ 0.78718101]
         [-1.00174151]
         [ 1.8658388 ]
         [ 1.91274157]
         [ 1.98672138]]
         4. Utilice el método de Gauss-Siedel para resolver los sistemas
         lineales en el ejercicio 1, con TOL = 10^{-3}.
         a)
In [18]: A = [
            [3, -1, 1],
             [3, 6, 2],
             [3, 3, 7]
         ]
         b = [1, 0, 4]
         x = gauss_seidel(A, b, [0, 0, 0], 10e-3, 100)
         print(x)
        [[ 0.0361492 ]
         [-0.23660752]
         [ 0.65733928]]
         b)
In [19]: A = [
             [10, -1, 1],
             [-1, 10, -2],
             [0, -2, 10]
```

```
b = [9, 7, 6]
         x = gauss_seidel(A, b, [0, 0, 0], 10e-3, 100)
         print(x)
        [[0.91593697]
         [0.94956218]
         [0.78991244]]
         c)
In [20]: A = [
             [10, 5, 0, 0],
             [5, 10, -4, 0],
             [0, -4, -8, 1],
             [0, 0, -1, 5]
         b = [6, 25, -11, -11]
         x = gauss\_seidel(A, b, [0, 0, 0, 0], 10e-3, 100)
         print(x)
        [[-0.78802812]
         [ 2.77579328]
         [-0.29528544]
         [-2.25905709]]
         d)
In [21]: A = [
             [4, 1, 1, 0, 1],
             [-1, -3, 1, 1, 0],
             [2, 1, 5, -1, -1],
             [-1, -1, -1, 4, 0],
             [0, 2, -1, 1, 4]
         ]
         b = [6, 6, 6, 6, 6]
         x = gauss\_seidel(A, b, [0, 0, 0, 0, 0], 10e-3, 100)
         print(x)
        [[ 0.78616258]
         [-1.00240703]
         [ 1.86606999]
         [ 1.91245638]
         [ 1.98960692]]
```

5. El sistema lineal:

$$2x_1 - x_2 + x_3 = -1$$
 $2x_1 + 2x_2 + 2x_3 = 4$ $-x_1 - x_2 + 2x_3 = -5$

tiene las soluciones 1, 2 y -1.

a) Muestre que el método de Jacobi con x(0) = 0 falla al proporcionar una buena aproximación después de 25 iteraciones.

b) Utilice el método de Gauss-Siedel con x(0)=0 para aproximar la solución para el sistema lineal dentro de 10^{-5} .

6. El sistema lineal

$$x_1-x_3=0.2$$
 $-rac{1}{2}x_1+x_2-rac{1}{4}x_3=-1.425$ $x_1-rac{1}{2}x_2+x_3=2$

tiene las soluciones 0.9, -0.8, 0.7.

a) ¿La matriz de coeficientes tiene diagonal estrictamente dominante?

Si, en la primera fila, segunda y tercera, la sumatoria de los elementos menos los de la diagonal es menor que los elementos de la misma diagonal.

b) Utilice el método iterativo de Gauss-Siedel para aproximar la solución para el sistema lineal con una tolerancia de 10^{-22} y un máximo de 300 iteraciones.

```
In [24]: A = [
             [1, 0, -1],
             [-0.5, 0, -0.25],
             [1, -0.5, 1]
         b = [0.2, -1.425, 2]
         x = gauss\_seidel(A, b, [0, 0, 0], 10e-22, 300)
         print(x)
        [[nan]
         [nan]
         [nan]]
        C:\Users\andyj\AppData\Local\Temp\ipykernel_25288\2200652469.py:27: RuntimeWarning: d
        ivide by zero encountered in divide
          x_{new}[i] = (b[i] - suma) / A[i, i]
        C:\Users\andyj\AppData\Local\Temp\ipykernel_25288\2200652469.py:25: RuntimeWarning: i
        nvalid value encountered in multiply
          [A[i, j] * x[j] for j in range(i, n) if j != i]
```

c) ¿Qué pasa en la parte b) cuando el sistema cambia por el siguiente?

$$x_1-2x_3=0.2$$
 $-rac{1}{2}x_1+x_2-rac{1}{4}=-1.425$ $x_1-rac{1}{2}x_2+x_3=2$

```
In [25]: A = [
            [1, 0, -2],
            [-0.5, 0, -0.25],
             [1, -0.5, 1]
         b = [0.2, -1.425, 2]
         x = gauss\_seidel(A, b, [0, 0, 0], 10e-22, 300)
         print(x)
        [[nan]
         [nan]
         [nan]]
        C:\Users\andyj\AppData\Local\Temp\ipykernel_25288\2200652469.py:27: RuntimeWarning: d
        ivide by zero encountered in divide
          x_new[i] = (b[i] - suma) / A[i, i]
        C:\Users\andyj\AppData\Local\Temp\ipykernel 25288\2200652469.py:25: RuntimeWarning: i
        nvalid value encountered in multiply
          [A[i, j] * x[j] for j in range(i, n) if j != i]
```

División por cero en los dos casos, podría ser el hecho de tender a cero.

Un cable coaxial está formado por un conductor interno de 0.1 pulgadas cuadradas y un conductor externo de 0.5 pulgada cuadradas. El potencial en un punto en la sección transversal del cable se describe mediante la ecuación de Laplac Suponga

que el conductor interno se mantiene en 0 volts y el conductor externo se mantiene en 110 volts.

Aproximar el potencial entre los dos conductores requiere resolver el siguiente sistema lineal.e.

a) ¿La matriz es estrictamente diagonalmente dominante?

Si, se puede notar a simple vista, la diagonal está compuesta solo de 4 siendo el mayor numero.

b) Resuelva el sistema lineal usando el método de Jacobi con x(0)=0 y $TOL=10^{-2}$.

```
In [27]: x = gauss_jacobi(A7, b7, [0]*len(b7), 10e-2, 300)
    print(x)

[[87.98209548]
    [65.98209679]
    [87.98209548]
    [65.98209679]
    [65.98209679]
    [65.98209679]
    [87.98209548]
    [65.98209679]
    [87.98209548]
    [87.98209548]]
```

c) Repita la parte b) mediante el método de Gauss-Siedel.

```
In [28]: x = gauss_seidel(A7, b7, [0]*len(b7), 10e-2, 300)
print(x)
```

- [[87.98217949]
- [65.98985217]
- [65.99375664]
- [87.99604191]
- [65.98985217]
- [65.9974727]
- [65.99375664]
- [65.99838442]
- [87.99604191] [65.9974727]
- [65.99838442]
- [87.99896428]]