19 апреля 2020 г.

Состязательный поиск

Минимакс

- max(X) максимизирует счёт
- min(O) минимизирует счёт

ullet S_0 - начальное состояние

- S_0 начальное состояние
- Игрок(s) вычисляет, кто следующий ходит в состоянии s

- S_0 начальное состояние
- Игрок(s) вычисляет, кто следующий ходит в состоянии s
- Действия(s) вычисляет допустимые шаги в состоянии s

- S_0 начальное состояние
- Игрок(s) вычисляет, кто следующий ходит в состоянии s
- Действия(s) вычисляет допустимые шаги в состоянии s
- Результат(s, a) вычисляет состояние после шага а из состояния s

- S_0 начальное состояние
- Игрок(s) вычисляет, кто следующий ходит в состоянии s
- Действия(s) вычисляет допустимые шаги в состоянии s
- Результат(s, a) вычисляет состояние после шага а из состояния s
- Конец(s) проверяет, что состояние s конечное

- S_0 начальное состояние
- Игрок(s) вычисляет, кто следующий ходит в состоянии s
- Действия(s) вычисляет допустимые шаги в состоянии s
- Результат(s, a) вычисляет состояние после шага а из состояния s
- Конец(s) проверяет, что состояние s конечное
- Оценка(s) вычисляет числовое значение конечного состояния s

Игрок(s)

Игрок(s)

Игрок(s)

Nгрок(s)

$$\mathsf{Игрок}(\overline{\ \ \ \ \ \ \ \ \ })=($$

Действия(s)

Действия
$$(\begin{array}{c|ccc} X & O \\ \hline O & X & X \\ \hline Y & O \end{array}) =$$

Действия(s)

Действия
$$(\begin{array}{c|cccc} X & O \\ \hline X & X \\ \hline X & O \end{array}) = \{ \begin{array}{c|cccc} \bullet & & & \\ \hline & & & \\ \hline \end{array})$$

Действия
$$(\begin{array}{c|c} X & O \\ \hline X & O \end{array}) = \{ \begin{array}{c|c} \bullet & & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array} , \begin{array}{c|c} \bullet & & & \\ \hline & & & \\ \hline \bullet & & & \\ \hline & & & \\ \hline \end{array})$$

$$\mathsf{Peзyльтат} \; (\begin{array}{c|c} & \mathsf{X} & \mathsf{O} \\ \hline \mathsf{O} & \mathsf{X} & \mathsf{X} \\ \hline \mathsf{X} & \mathsf{O} \end{array} , \begin{array}{c|c} & & & \\ \hline & & & \\ \hline \end{array}) \; :$$

Конец(s)

Конец
$$\left(\begin{array}{c|c} O & \\ \hline O & X \\ \hline X & O & X \end{array}\right) = \text{false}$$

Kонец
$$(\begin{array}{c|c} O & \\ \hline O & X \\ \hline X & O & X \end{array})$$
 = false

$$Koheu($$
 OX X OX X

Χ

0

Оценка(s)

Оценка (
$$\begin{array}{c|c} O & X \\ \hline O & X \\ \hline X & O & X \end{array}$$
) = 1

Оценка(s)

Оценка (
$$\begin{array}{c|c} O & X \\ \hline O & X \\ \hline X & O & X \end{array}$$
) = 1

х о

) = -1

Оценка(

Kонечное(s)=true

- Дано состояние s:
 - МАКС выбирает действие а из Действия(s), для которого функция Мин-значение(Результат(s, a)) принимает максимальное значение
 - МИН выбирает действие а из Действия(s), для которого функция Макс-значение(Результат(s, a)) принимает минимальное значение

```
функция Макс-значение(состояние): если Конец(состояние): возвращаем Оценка(состояние) v = -\infty для действия в Действия(состояние): v = \text{Макс}(v, \text{Мин-значениe}(\text{Результат}(\text{состояниe}, \text{действиe}))) вернуть v
```

```
функция Мин-значение(состояние): если Конец(состояние): возвращаем Оценка(состояние) v = \infty для действия в Действия(состояние): v = \text{Мин}(v, \text{ Макс-значение}(\text{Результат}(\text{состояние}, \text{действие}))) вернуть v
```