

Álgebra Abstracta y Codificación

Taller Preparcial #2

Estudiante:	Nota:	

- 1. [1 pt] Sea D un dominio de integridad y sean $a, b \in D$. Asuma que $a^n = b^n$ y $a^m = b^m$ para dos enteros positivos n y m primos entre sí. Demuestre que a = b.
- 2. [1 pt] Sea A un PID y sea $a \in A$ con $a \neq 0$. Demuestre que $\langle a \rangle$ es un ideal maximal de A si y solo si a es irreducible.
- 3. [2 pts]
 - a) Sea p un número entero primo. Demuestre que o p sigue siendo primo en $\mathbb{Z}[i]$ o p es el producto de dos primos en los enteros de Gauss conjugados: $p = \pi \overline{\pi}$; [Sugerencia: $\pi \mid p \implies \overline{\pi} \mid p$.]
 - b) Sea π un primo en los enteros de Gauss. Luego o $\pi\overline{\pi}$ es un primo en \mathbb{Z} o es el cuadrado de un primo en \mathbb{Z} .

[Sugerencia: una factorización en primos en \mathbb{Z} es todavía una factorización en $\mathbb{Z}[i]$, no necesariamente en irreducibles.]

Observación: este ejercicio implica que los primos en $\mathbb{Z}[i]$ son los primos $p \in \mathbb{Z}$ que no se pueden escribir como suma de cuadrados o los elementos de la forma a+bi tales que a^2+b^2 sea un primo en \mathbb{Z} . Un teorema de teoría de los números dice que $p \in \mathbb{Z}$ es una suma de cuadrados si y solo si p=2 o $p\equiv 1 \pmod{4}$.

4. [1 pt] Demuestre que los enteros de Gauss son un dominio euclídeo con función euclidea: $d(x+iy)=x^2+y^2$.

[Sugerencia: $si\ z_1, z_2 \in \mathbb{Z}[i]$, $con\ z_2 \neq 0$, se puede escribir $z_1/z_2 = u + iv \in \mathbb{C}$, $con\ u,\ v$ racionales. Razonando geometricamente, encuentre $m, n \in \mathbb{Z}$ tales que $|(u + iv) - (m + in)| \leq 1/\sqrt{2}$.]