MAC024 – Introdução à Modelagem Computacional

Leonardo Goliatt

Apresentação Plano de Ensino Introdução

Modelando a Mudança

O Processo de Modelagem, Proporcionalidade e Similaridade Geométrica

Ajustes de Modelos

Simulação Discreta e Probabilística

Apresentação Plano de Ensino

- Introdução aos sistemas dinâmicos: modelagem da mudança através de equações de diferença.
- Classificação de Modelos, análise do processo de modelagem e construção de modelos matemáticos e sua simulação computacional.
- Ajuste de curvas.
- Introdução ao Método de Monte Carlo.
- Análise Dimensional.

Apresentação Plano de Ensino

Bibliografia:

- 1. Giordano, F.R, Fox, W.P., Horton, S.B. e Weir, M.D., A First Course in Mathematical Modeling, Brooks Cole, 2008.
- 2. Velten, K., Mathematical Modeling and Simulation, Wiley-VCH, 2009.
- 3. de Vries, G., Hilen, T., Lewis, M., Müller, J. and Schönfisch, B., A Course in Mathematical Biology, SIAM, 2006.
- 4. Anton, H., Rorres, C., Álgebra linear com aplicações, Bookman, 2002.

Apresentação

Avaliações:

- As avaliações ocorrerão de forma contínua ao longo do período
- Todas as avaliações envolvem o desenvolvimento de um modelo computacional
- Relatórios e apresentações em slides

Nota final:

Média das avaliações realizadas ao longo do período.

- ► O que é Modelagem Matemática?
 - Representação de um problema real numa forma matemática¹ com hipotéses simplificadas que ajudam a entendê-lo de uma maneira fundamental e quantitativa.
 - Complementada com teoria e experimentos.
 - Áreas: Ciências, Engenharias e Tecnologia, Biologia, Saúde e áreas interdisciplinares.

- Por quê a Modelagem é necessária?
 - Representação de um problema real numa forma matemática com hipóteses simplificadas que ajudam a entendê-lo de uma maneira fundamental e quantitativa.
 - Complementada com teoria e experimentos.
 - Áreas: Ciências, Engenharias e Tecnologia, Biologia, Saúde e áreas interdisciplinares.

Apresentação

Introdução

Gartner's 2016 Hype Cycle for Emerging Technologies

- Por que um modelo matemático é necessário?
 - Realizar experimentos pode ser custoso, demorado ou arriscado.
 - Um modelo matemático emerge como uma alternativa para estudar uma variedade de problemas em pesquisa científica, produtos e processos de manufatura.
 - Melhora a qualidade evitando o retrabalho.

- ► E Modelagem Computacional?
 - A solução de problemas reais podem resultar em relações matemáticas complicadas (grande escala).
 - ► Há a necessidade de simular ou testar hipóteses.
 - Podemos associar parâmetros ao modelos e as simulações permitem testar diferentes cenários (combinações de parâmetros).

- Alguns exemplos
 - Modelagem Climática
 - Ciências Aeroespaciais
 - Cosmologia
 - Manufatura e Desenho Industrial
 - Sismologia
 - Ciências Ambientais
 - Economia
 - Ciência dos Materiais
 - Recursos Hídricos
 - Desenho de Fármacos
 - Dinâmica Populacional
 - Medicina

- Alguns exemplos de modelos (do ponto de vista de sua construção)
 - ► Modelos conceituais (modelos verbais)²e.g: modelos do funcionamento de processos geológicos)
 - Modelos baseados em equações de diferenças
 - Modelos conexionistas
 - Modelos baseados em agentes
 - Modelos simbólicos
 - Modelos de equações diferenciais

Outra classificação:

- Modelos Empíricos (Indutivos)
 - Experimentos
 - Observações (relacionados com modelos conceituais)
- Modelos Teóricos (Dedutivos)
 - Estatísticos
 - Matemáticos
 - Computacionais

Ciclo de Modelagem:

- Tipos de modelos:
 - Estáticos ou Dinâmicos
 - Discretos ou Contínuos
 - Determinísticos ou Probabilísticos
 - Lineares ou Não Lineares
 - Explícitos ou Implícitos
 - Qualitativos ou Quantitativos
 - Black-box, White-box, Gray-box³
- ► Inclusão de informação subjetiva
 - Como representar em forma matemática a intuição, experiência, opinião de especialistas?
 - Modelos Fuzzy

³semi-empíricos; combinação dos dois anteriores, onde há conhecimento empírico mas falta a compreensão do funcionamento do fenômeno; em geral os parâmentros desconhecidos do modelo são determinados a partir dos dadoso ○ ○

- Componentes de um modelo matemático:
 - Variáveis independentes
 - Variáveis dependentes (variáveis de estado e saídas do modelo)
 - Parâmetros (variáveis exógenas)
 - Funções (funções-objetivo e restrições)
 - Operadores

► Complexidade:

- Adicionar complexidade em geral melhora o realismo do modelo.
- Em contrapartida, torna o modelo difícil de analisar e interpretar.
- Navalha de Occam.
- Propriedades de um modelo:
 - Fidelidade: precisão com a qual um modelo representa a realidade.
 - Flexibilidade: a capacidade de de mudar e controlar as condições que afetam o modelo.

- Construção de modelos:
 - 1. Identificar um problema
 - 2. Fazer suposições
 - Classificar as variáveis
 - Determinar interrelações entre as váriaveis selecionadas e submodelos
 - 3. Resolver ou interpretare o modelo
 - 4. Verificar o modelo
 - Verificar se o modelo atende ao problema
 - Testar em dados reais
 - 5. Implementar o modelo
 - 6. Realizar a manutenção do modelo

O Processo de Modelagem, Proporcionalidade e Similaridade Geométrica

Ajustes de Modelos

Simulação Discreta e Probabilística