Sèrie1 Travaux dirigés d'algèbre tensoriel

Exercice 1

Soit $\overrightarrow{e_1}, \overrightarrow{e_2}$ une base d'un espace vectoriel E_2 et soient deux vecteurs de E_2 :

$$\overrightarrow{X} = 2\overrightarrow{e_1} + 4\overrightarrow{e_2}, \quad \overrightarrow{Y} = 5\overrightarrow{e_1} + 3\overrightarrow{e_2}$$

- 1. On note $\overrightarrow{e_i} \otimes \overrightarrow{e_j}$ les vecteurs de base d'un espace $E_4 = E_2 \otimes E_2$. Déterminer l'expression du produit tensoriel $\overrightarrow{X} \otimes \overrightarrow{Y}$.
- 2. Le tenseur suivant :

$$U = 11\overrightarrow{e_1} \otimes \overrightarrow{e_1} + 8\overrightarrow{e_1} \otimes \overrightarrow{e_2} + 20\overrightarrow{e_2} \otimes \overrightarrow{e_1} + 12\overrightarrow{e_2} \otimes \overrightarrow{e_2}$$

est-il le produit tensoriel de deux vecteurs de E_2 ?

3. Montrer que le tenseur U est la somme du produit tensoriel $\overrightarrow{X} \otimes \overrightarrow{Y}$ et d'un autre tenseur W que l'on déterminera. Ce dernier est-il un produit tensoriel et lequel?

Exercice 2

On considère dans un plan, un système d'axes orthogonaux portant les vecteurs $\overrightarrow{e_1}$ et $\overrightarrow{e_2}$ de longueur unité (Fig. 1.3). Une rotation des axes dans le plan d'un angle α , transforme ces vecteurs respectivement en $\overrightarrow{e_1}$ et $\overrightarrow{e_2}$.

- 1. Déterminer les expressions de $\overrightarrow{e_1}$ et $\overrightarrow{e_2}$ sur la base $\{\overrightarrow{e_1}, \overrightarrow{e_2}\}$ et écrire les expressions des A_k^i .
- 2. Faire de même pour $\overrightarrow{e_1}$ et $\overrightarrow{e_2}$ sur la base $\left\{\overrightarrow{e_1},\overrightarrow{e_2}\right\}$ et déterminer les $A_k^{'i}$.
- 3. Soit x^1 et x^2 les composantes du vecteurs \overrightarrow{OM} sur la base $\{\overrightarrow{e_1}, \overrightarrow{e_2}\}$ et x'^1 et x'^2 sur la base $\{\overrightarrow{e_1}, \overrightarrow{e_2}\}$. Déterminer x^1 et x^2 en fonction de x'^1 et x'^2 et inversement.

FIGURE 1 -