

DESIGN, AUTOMATION & TEST IN EUROPE

14 – 15 March 2022 · on-site event 16 – 23 March 2022 · online event

The European Event for Electronic System Design & Test

A Precision-Scalable Energy-Efficient Bit-Splitand-Combination Vector Systolic Accelerator for NAS-Optimized DNNs on Edge

Authors: Kai Li, **Junzhuo Zhou**, Yuhang Wang, Junyi Luo, Zhengke Yang, Shuxin Yang, Wei Mao, Mingqiang Huang and Hao Yu*

Southern University of Science and Technology, China

深港溦电子学院 School of Microelectronics

Introduction

Table 1: Evaluated NAS-based multi-precision CNN benchmarks.

CNN	Dataset	Model	Proportion of		
		Weights	8-bits	4-bits	2-bits
VGG-16	CIFAR-10	138.0 MBytes	10.2%	89.8%	0%
LeNet-5	MNIST	0.5 MBytes	0%	55.0%	45.0%
ResNet-18	ImageNet	13.0 MBytes	5.5%	94.5%	0%
NAS-Based	-	-	21.8%	58.6%	19.6%

Note: NAS-Based summarized several VGG-16 models trained by NAS 4-bit operations: >50%!

Existing multi-precision design:

- Low-precision-combination (LPC): mainly 2-bit, large hardware cost, huge power consumption
- High-precision-split (HPS):
 mainly 8-bit, poor throughput

Proposed Work:

- Bit-split-and-combination (BSC) vector PE: mainly 4-bit, tradeoff cost and throughput, better for NAS
- Precision-scalable vector systolic PE array: data reuse and energy efficient

Fig. 1: Typical NAS flow with proposed multi-precision vector systolic array

BSC Multi-Precision Vector PE

22 March 2022

Bit-split-and-combination (BSC) vector PE:

- Combines the advantages of LPC (BitFusion) and HPS(SubwordParallel), decent bandwidth & hardware utilization;
- Mainly 4-bit operation, tradeoff consumption and throughput;
- Adopt vectorized-multiplicator to reduce the number of accumulators and shifters, improve throughput and performance.

Precision-Scalable Vector Systolic PE Array

Fig. 3: BSC precision-scalable vector systolic PE array dataflow

Vector-Systolic PE Array:

- Multi-precision feature data transmits with vector length 32;
- Multi-precision Weight sent to the buffer of each PE after different clocks' delay;
- Multi-precision feature data transmits oneby-one with vector length 32;
- Outputs from PE array transmits to output buffer;

Experiment Results

Fig. 4: Precision scalability comparison among BSC, LPC and HPS: (a) Energy vs. Delay; (b) Energy efficiency vs. Area efficiency

Fig. 5: Energy efficiency comparison of BSC, LPC and HPS: (a) Precision-scalable vector PE; (b) Vector systolic PE array

Table: Evaluated NAS-based multi-precision CNN benchmarks.

CNN	Dataset	Model	Proportion of		
		Weights	8-bits	4-bits	2-bits
VGG-16	CIFAR-10	138.0 MBytes	10.2%	89.8%	0%
LeNet-5	MNIST	0.5 MBytes	0%	55.0%	45.0%
ResNet-18	ImageNet	13.0 MBytes	5.5%	94.5%	0%
NAS-Based	-	- 1	21.8%	58.6%	19.6%

Note: NAS-Based summarized several VGG-16 models trained by NAS

Fig. 6: Average energy efficiencies of precision-scalable vector systolic PE array with HPS, LPC and BSC vectors on multiprecision CNN benchmarks.

Conclusion & Future Work

- For better support for NAS-Optimized Multi-Precision CNNs, the BSC vector systolic accelerator is proposed.
- The proposed vector systolic BSC PE array achieves up to 22 TOPS/W (28nm SMIC) in NAS-optimized multi-precision LeNet-5.

Tapeout Plan:

- 28nm TSMC Low Power;
- 2.25mm² die area (only array with its SRAM, part of whole chip);
- 16×16 BSC vector array with 144KB SRAM;
- Scheduled in next two months (June 2022).

Thanks for your attention! Q & A

Corresponding Author & PI Prof. Hao YU

yuh3@sustech.edu.cn

深港溦电子学院 School of Microelectronics