Research Your Researcher Bayesian Inference in Epidemiology

Zhen-Yen Chan Erwan Delorme Konstanty Kowalewski Jonathan Lee Patricia Yin

Outline

Introduction

Our researcher and research topic Overview of three papers

Dureau et al. (2013)

Methodology

Results

Evolution

Conclusion

Coronavirus

Our researcher and research topic

Researcher: Dr Kostas Kalogeropoulos

► Computational methods for Bayesian Inference

Our researcher and research topic

Researcher: Dr Kostas Kalogeropoulos

Computational methods for Bayesian Inference

Research topic: Epidemic Modelling

- ► Transmission dynamics of disease
- Predict potential outbreaks
- Assess effectiveness of public health interventions

Overview: Malesios et al. (2017)

Bayesian epidemic models for spatially aggregated count data. C. Malesios, N. Demiris, K. Kalogeropoulos, and I. Ntzoufras. 2017.

- Problem tackled: To address the spatial nature of the disease spread
- Measures: Bayesian modelling, branching process-based methods

Overview: Dureau et al. (2016)

A Bayesian approach to estimate changes in condom use from limited human immunodeficiency virus prevalence data. J. Dureau, K. Kalogeropoulos, P. Vickerman, M. Pickles, M. Boily. 2016.

- ▶ Aim: to estimate condom use time trends from HIV prevalence data to assess the effectiveness of public health interventions
- Problem tackled: bias, limited self-reported data
- Measures: a Bayesian inference methodology that incorporates an HIV transmission dynamics model

Overview: Dureau et al. (2013)

Capturing the time-varying drivers of an epidemic using stochastic dynamical systems. J. Durau, K. Kalogeropoulos, M. Baguelin. 2013.

- ► The methodology illustrated on data from A/H1N1 (2009) pandemic in England
- ► A flexible modelling framework encompassing time-varying aspects of the epidemic

Outline

Introduction

Our researcher and research topic Overview of three papers

Dureau et al. (2013)

 ${\sf Methodology}$

Results

Evolution

Conclusion

Coronavirus

Methodology: SEIR

The **SEIR** model divides the population into four groups:

- Susceptible
- Exposed (infected but not infective)
- Infective
- Removed (immune or recovered)

$$\frac{dS_t}{d_t} = -\beta S_t \frac{I_t}{N}, \ \frac{dE_t}{d_t} = -\beta S_t \frac{I_t}{N} - kE_t, \ \frac{dI_t}{d_t} = kE_t - \gamma I_t, \ \frac{dR_t}{dt} = \gamma I_t$$

Assumption: all individual characteristics are fixed over time

Reaction	Effect	Rate
infections	$(S_t, E_t, I_t, R_t) o (S_t - 1, E_t + 1, I_t, R_t) \ (S_t, E_t, I_t, R_t) o (S_t, E_t - 1, I_t + 1, R_t)$	$\beta_t I/N$
onset of symptoms	$(S_t, E_t, I_t, R_t) \rightarrow (S_t, \boldsymbol{E_t} - 1, I_t + 1, R_t)$	k
recovery	$(S_t, E_t, I_t, R_t) \rightarrow (S_t, E_t, I_t - 1, R_t + 1)$	γ

eta is the effective contact rate which directly reflects transmissibility

Methodology: suitability of the model

Time-varying factors: behaviour changes, preventive measures, seasonal effects, holidays

Methodology: adding randomness

Introduce randomness in the parameters (Bayesian) and model β as a probability distribution. Assumption: population model, the random individual effects (biological factors, mode and frequency of travel) are aggregated in the data and hence captured in β_t .

$$\begin{cases} \frac{dS_t}{dt} = -\beta_t S_t \frac{I_t}{N}, & \frac{dE_t}{dt} = -\beta_t S_t \frac{I_t}{N} - kE_t, & \frac{dI_t}{dt} = kE_t - \gamma I_t, & \frac{dR_t}{dt} = \gamma I_t \\ dx_t = \mu_X(x_t, \theta_X) dt + \sigma_X(x_t, \theta_X) dB_t, & x_t = h(\beta_t) \end{cases}$$

Add diffusion process x_t for β_t which will solve the stochastic differential equations in our model.

$$\pi(x_{0:n}|y_{1:n}) \propto f(y_{1:n}|V_{0:n},\theta_y) \times d\mathbb{P}_x \times \pi(\theta)$$

Sample the posterior of x given the priors using a specific Markov Chain Monte Carlo (MCMC) type algorithm.

Motivation for Markov Chain Monte Carlo (MCMC)

- Intractable integrals \rightarrow approximate by sampling (Monte Carlo)
- No closed form of the density to sample from (by e.g. reverse integral transform) → use Markov chains
- A general name for algorithms based on this is Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings (random walk Metropolis) example

```
mh <- function(target, starting, N) {</pre>
x \leftarrow rep(0, N)
x[1] <- starting
for(i in 2:N) {
     last <-x[i-1]
     # Proposal from N(last, 1)
     p <- rnorm(1, mean=last, sd=1)</pre>
     # Compute acceptance probabilty
     accept <- target(p) / target(last)</pre>
     # Either with acceptance probability
     if(runif(1) < accept) {</pre>
         x[i] <- p
     } else {
         x[i] <- last
return(x)
```


Challenges of MCMC

- Mixing relates to dependency of samples obtained with MCMC algorithm and how fast we can get them, can be assessed by Estimated Sample Size (ESS)
- Let $x_t = h(\beta_t)$ where h is a positive-valued function, authors use natural log
- We want to obtain joint posterior density $p(x, \theta \mid y)$ this is a non-standard problem since
 - ▶ The x is high-dimensional (it's the path of β)
 - ▶ There is some dependence between x and θ
 - In effect, classic methods are highly inefficient in mixing

Solution proposed by authors

- Particle filters (PF) and Particle MCMC (PMCMC)
 - ▶ PF gives us $p(x | y, \theta)$ and $p(y | \theta)$ (Doucet and Johansen, 2009)
 - ▶ PMCMC gives us $p(x, \theta \mid y)$ (Andrieu et al., 2010)
- There are still some issues with efficiency
- Adaptive Metropolis (Roberts and Rosenthal, 2009)
- Other methods such as Extended Kalman Filter (EKF) are considered but they require some assumptions which would contrain the generality of the proposed solution

Results: effect of school closures

- Black dots indicate estimates of observed incidence
- Grey rectangular areas indicate school breaks
- Dark and light area indicates the credible intervals
- Offline estimates of the effective contact rate

Results: effect of school closures

- Holidays periods have shown less total incidences.
- ➤ This could also mean that the epidemic had stopped because a critical population already had been infected, conferring that there is groups that have the immunity to stop the epidemic.
- ► The rise in influenza in the second grey area could contribute to the fact that schools were reopened and consequently effective contact rate increased them again.

Results: relationship between influenza cases and the real-time estimates

- Rise of H1N1 incidence fell throughout the school holidays and started rising again.
- An assumption could be made that decision-makers did not have access to the effective contact rate estimates data.
- From the data, it could be seen that the real-time estimates were still rising at the first grey area.
- Reopening schools while the effective contact rate was still rising contributed to another rise in total incidence.

Results: relationship between influenza cases and the real-time estimates

Some things to consider

- The effects of school holidays differ from children and adults
- We assumed here a homogeneous population.
- Will be more precise to consider a model with two age groups

Evolution of the subject

- ➤ SSM: Inference for time series analysis with State Space Models. Dureau et al. 2013.
- ▶ Optimal control and the value of information for a stochastic epidemiological SIS-model. Grandits et al. 2019.
- ► Efficient real-time monitoring of an emerging influenza pandemic: how feasible? Birrell et al. 2019.

Outline

Introduction

Our researcher and research topic Overview of three papers

Dureau et al. (2013)

Methodology

Results

Evolution

Conclusion

Coronavirus

Conclusion: current coronavirus cases in China

Conclusion: general remarks and questions

Bayesian Inference is a powerful tool, applicable to a vast range of problems. If you like the subject, consider taking ST308, a course on Bayesian Inference lectured by Dr Kalogeropoulos.

We're now happy to take any questions.

Feel free to message us at konstanty@kszk.eu

Thanks!