2024 年度プロジェクト実習 I (エレクトロニクス基礎)

スケジュール

実習日	テーマ	実習内容					
12 月	アナログ回	第1:応答特性解析の基礎					
16 日	路基礎	Excel を用いて LCR 回路のインディシャル応答と周波数応答の理					
		論値のグラフを作成する					
		• L,C,R の値は以下のテーブルから選び,その値を変更して簡単に					
		再計算できるようにする					
		抵抗[Ω] 10, 15, 22, 33, 47, 68, 100, 150, 220, 330					
		コンデンサ [μ F] 0.10, 0.22, 1.0, 2.2					
		インダクタ [mH] 10, 20, 30, 47					
		抵抗値とキャパシタ値を選択して、RC 回路のインディシャル応					
		答, ゲイン特性と位相特性の論理グラフを作成する(任意)					
		● 今週はレポートなし					
		<u>テキスト</u>					
		4.2.5~4.2.11 を行っていください					
		4.2.1~4.2.4 (時間があれば)					
		課題					
		なし					
12 月		第2:LCR 回路の時間応答特性					
23 日		● LCR 回路を構築して、出力を測定する					
		測定値を理論値と比較するグラフを作成する					
		レポートには測定したデータのグラフを載せる					
		<u>テキスト</u>					
		4.3.1~4.3.6 を行っていください					
		課題					
		4.5.1~4.5.2					
1 🗆		M 0					
1月		第3:LCR 回路の周波数応答特性					
6日		LCR 回路から測定したゲイン特性と位相特性のデータをもとにボール					
		ード線図を作成する					
		折れ点周波数と共振周波数を特定して、理論値と比較するルポートには、測字したデータの図を載せる					
		レポートには、測定したデータの図を載せる					

		テキスト					
		課題					
		<u>~~</u> なし					
1月	ディジタル	第4:基本論理素子の特性					
20 日	回路基礎						
		CMOS NOT ゲートの入出力特性と消費電力特性を測定する					
		● リング発振器を構築して、遅延時間測定する					
		レポートには、測定したデータの図を載せる					
		テキスト					
		 [実験 1]~[実験 3]を行っていください					
		課題					
		 [課題 1]~[課題 5]					
1月		第 5:フリップフロップ					
27 日							
		◆ 禁止入力の影響を調査する					
		● 追加論理素子によるフリップフロップの動作に与える影響を検証					
		する					
		レポートには、測定したデータの図を載せる					
		テキスト					
		 [実験 4] と [実験 6] を行っていください					
		課題					
		[課題 6]					

レポートに関する注意事項

レポート提出と受理

- 2週目以降の実験(12月23日)について、1回ごとに内容をまとめ、**その実験が行われた週の** 木曜日までにレポートを提出すること
- 毎週提出したレポートは内容のチェック後返却される. 返却されたレポートにはコメントが書き 込まれているので、必要な修正を行うこと。
- 第 2, 3 週の実験と第 4, 5 週の実験でそれぞれ 1 本のレポートを完成させる(アナログ回路基礎レポートとディジタル回路基礎レポート)。第 2 週および第 4 週に提出したレポートに新しい実験内容を追加していくこと。
- **単位取得にはそのレポート二つが受理**されることが必要である。

- 形式と最低限の内容が確認されたレポートは受理される.
- レポートを提出するスケージュールに関しては以下の表で確認してください。

12/16	12/23	1/6	1/20	1/27	2/3	2/10
第1回	第2回の実習	第3回の実習	第4回の実習	第5回の実習	第 4+5 回のレポート	未受理のレポート
の実習		第2回のレポー	第 2+ 3 回のレポ	第4回のレポ	のコメントをもらう	を再提出の提出締
	12月26日	トのコメントを	ートのコメントを	ートのコメン		め切り
	第2回のレポ	もらう。	もらう	トをもらう	コメントに従って修	
	ートの提出締				正した第4週と5週	
	め切り	第3回の結果を	コメントに従って	第5回の結果	の結果をディジタル	
		修正した第2回	修正した第2と3	を修正した第	回路基礎 としてまと	
		の結果に追加し	回の結果を アナロ	4回の結果に	める	
		てレポートを提	グ回路基礎レポー	追加してレポ		
		出する	ト としてまとめる	ートを提出す	2月5日	
				る	アナログ回路基礎レ	
		1月9日	1月23日		ポートとディジタル	
		第 2+3 回のレ	第4回のレポート	1月30日	回路基礎レポートの	
		ポートの提出締	の提出締め切り	第 4+5 回のレ	提出締め切り	
		め切り		ポートの提出		
				締め切り	2月7日	
					受理されたかどうか	
					を Moodle で発表す	
					る	

レポート作成

- エレクトロニクス基礎実習の報告書表紙を使って下さい(Moodle からダウンロードできる)
- プロジェクト実習履修の手引きの資料をよく読んでください!
- 「理論」と「方法」を省略すること。
- 「実験項目」、「目的」、「使用器具」、「結果」、「吟味・考察」、「問題の解答」は、一つのレポートの中で一つの節になるように加えること
- 実験結果のグラフの形式に注意すること. グラフには、測定点と実験曲線を描く. 理論値が計算できる場合は、理論のグラフも描く. 実験曲線は、測定点近傍を通る滑らかな曲線として描く. 下の図を参考にするとよい
- 図や表を記載した場合、どの実験項目の何の結果かなど、それらが何を示すものかを本文中で説明すること.

図 2 LCR 回路の周波数応答