UNCLASSIFIED AD NUMBER AD830394 **LIMITATION CHANGES** TO: Approved for public release; distribution is unlimited. FROM: Distribution authorized to U.S. Gov't. agencies and their contractors; Administrative/Operational Use; OCT 1963. Other requests shall be referred to Army Materiel Command, Alexandria, VA. AUTHORITY USAMC ltr, 2 Jul 1973

ENGINEERING DESIGN HANDBOOK

MILITARY PYROTECHNICS SERIES

PART THREE — PROPERTIES OF MATERIALS USED N PYROTECHNIC COMPOSITIONS

RECEIVED

MAY 9 1988

N CENTER COM REFERENCE LIBRARY BLDG 5250, C147

HEADQUARTERS UNITED STATES ARMY MATERIEL COMMAND WASHINGTON, D.C. 20315

31 October 1963

AMCP 706-187, Part Three--Properties of Materials Used in Pyrotechnic Compositions, forming part of the Military Pyrotechnics Series of the Army Materiel Command Engineering Design Handbook Series, is published for the information and guidance of all concerned.

(AMCRD)

FOR THE COMMANDER:

SELWYN D. SMITH, JR. Major General, USA Chief of Staff

OFFICIAL:

R. DAVIDSON Colonel, GS

Chief, Administrative Office

DISTRIBUTION: Specia1

PKEFACE

This handbook constitutes Part Three of a planned series on Military Pyrotechnics and torms part of the Engineering Design Handbook Series of the Army Materiel Command. Part Three is devoted to the presentation of data on the principal ingredients of pyrotechnic compositions. The information is presented on data sheets, representing a total of 128 ingredients. The data presented here have been collected from many sources and are intended to facilitate reference and the making o€ calculations by chemists, engineers and physicists in the field of pyrotechnics. A single reference list, showing the main sources of data, is included and each reference is keyed in by number tu appropriate entries on the data sheets. References that pertain only to a specific data sheet are listed at the end of the data sheet under Additional References.

Part Two, a separate handbook with the same date of publication, deals with the problems of safety in the pyrotechnics laboratory and plant, processing procedures and equipment, particle size procedures, and contains a glossary of terms.

Part One, under preparation at the time of publication of Parts Two and Three, will deal with the physical and chemical theoretical aspects of the production of pyrotechnic effects, and the application of the theory to practice. Is will also include a history of the pyrotechnic art and an extensive bibliography.

A future volume, currently in the planning stage, will be devoted to discussion of methods used in the evaluation of pyrotechnic items, determination of their compliance with the requirements of the using services, special equipment and procedures which are followed in tests and evaluation, and considerations affecting the interpretation of results.

Material for Parts Two and Three was prepared by McGrawz Hill Book Company for the Engineering Handbook Office of Duke University, prime contractor to the Army Research Office-Durham. The entire project was under the technical guidance of an interservice committee, with representation from the Army Chemical Center, Ballistics Research Laboratories, Frankford Arsenal, Harry Diamond Laboratories, Picatinny Arsenal, U. S. Naval Ammunition Depot (Crane), U. S. Naval Srdnance Laboratory, and U. S. Naval Ordnance Test Station. Chairman of this committee was Mr. Garry Weingarten of Picatinny Arsenal.

Agencies of the Department of Defense, having need for Handbooks, may submit requisitions or official requests directly to Equipment Manual Field Office (7), Letterkenny Army Depot, Chambersburg, Pennsylvania. Contractors should submit such requisitions or requests to their contracting officers.

Comments and suggestions on this handbook are welcome and should be addressed to Army Research Office--Durham, Box CM, Duke Station, Durham, North Carolina 27706.

TABLE OF CONTENTS

-	Page		Page
PREFACE	i	Calcium Silicide	84
ABBREVIATIONS AND SYMBOLS	iv	Calcium Stearate	86
REFERENCES	x	Carbon Black (Dry) and Lampblack	88
DATA SHEETS		Carbon Tetrachloride	91
Actione	1	Castor Oil	94
. ,hol	4	Chromic Acid	96
diminum	8	Chromic Oxide · · · · · · · · · · · · · · · · · · ·	99
Atuminum Oxide	12	Cobalt Nnphthenate	103
l-Aminoanthraquinone	16	Copper	105
Ammonium Nitrate	18	Cuprous Oxide	109
Ammonium Perchlorate	23	Dechlorane	112
Anthracene	26	Dextrin	114
Antimony Sulphide	28	1,4-Diamino 2.3-Dihydroanthraquinone	116
Asphaltum	30	Diatomaceous Earth	117
Auramine Hydrochloride	32	Dibutylphthalate	114,
Barium Carbonate	34	1.4-Di(Methylamino)Anthraquinone	121
Barium Chlorate	37	4-Dimethylan~inoazobenzene	123
Barium Chloride	39	2-(4-Dimethylaminoazophenyl)Naphthalen	e 125
Barium Chromate	41	Diphenylamine	127
Barium Nitrate	43	Ethylcellulose	129
Barium Oxalate	45	Ferric Oxide	131
Barium Oxide	47	Ferrosoferric Oxide	135
Barium Perchlorate	51	Ferrous Sulfide	138
Barrum Peroxide	53	Graphite	140
Benzanthrone	56	Gum Arabic	143
Black Powder	58	Gum Tragacanth	145
Boron	61	Hexachlorobenzene	146
Calcium	64	Hexachloroethane	148
Calcium Carbonate	68	Indanthrene Golden Yellow G.K.(Spec.	
Calcium Nitrate	71	name)	150
Calcium Oxalate	73	Kerosene	151
Calcium Oxide	75	Lactose	153
Calcium Perchlorate	78	Laminac 4116	157
Calcium Phosphide	80	Lead Chromate	159
Calcium Resinate	82	Lead Oxide (PbO)	161

TABLE OF CONTENTS (cont'd)

Page		Page
Lead Oxide (Lead Tetraoxide) 166	Shellac	254
Lead Peroxide	Silicon	256
Lead Sesquioxide 171	Silicon Dioxide	259
Linseed Oil 173	Sodium	266
Lithium 175	Sodium Bicarbonate	270
Lithium Nitrate 179	Sodium Nitrate	272
Lithium Perchlorate • • • • • • • 181	Sodium Oxalate	274
Lupersol DDM 183	Sodium Oxide	276
Magnesium 185	Stearic Acid	279
Magnesium-Aluminum Alloy 189	Strontium Chloride	281
Magnesium Carbonate 191	Strontium Nitrate	283
Magnesium Oxide 193	Strontium Oxalate and Monohydrate	285
Manganese 196	Strontium Perchlorate	287
Manganese Dioxide 201	Strontium Peroxide	288
1-(2-Methoxyphenylazo)-2-Naphthol 204	Sugar	291
1-Methylaminoanthraquinone 206	Sulfur	294
Molybdenum · · · · · · · · · · · · · · · 208	Tetranitrocarbazole	299
Molybdenum Trioxide 211	Thiokol	. 302
Nickel	Titanium	303
Nitrocellulose	Titanium Dioxide	307
Parlon	Toluidine-Red Toner	311
Phosphorus	l, 4-di-p-Toluidinoanthraquinone	313
Pluronic. F 68 228	Tungsten	315
Polychlorotrifluoroethylene 229	Tungsten Dioxide	318
Polytetrafluoroethylene (Teflon) 232	Zinc	320
Polyvinylchloride	Zinc Carbonate	323
Potassium	Zinc Oxide	325
Potassium Bicarbonate 241	Zinc Stearate	329
Potassium Chlorate 243	Zirconium	331
Potassium Nitrate 246	Zirconium Hydride	335
Potassium Oxide 249	Zirconium-Nickel Alloy	337
Determine Densition to		

ABBREVLATIONS AND SYMBOLS*

a. Angstrom unit(s)

length of side (X-ray data) in Angstrom units

abs. absolute

Acta Chem. Scand. Acta Chemica Scandinavica (Copenhagen, Denmark)

Acta Crystallographica

addnl additional

alc alcohol

alk. alkaline

amor. amorphous

Anal. Chem. Analytical Chemistry

Anal. Chim. Acta Analytica Chimica Acta

Ann. Physik Annalen der Physik

app. apparatus

approx. approximate(ly)

A. S. T. M. American Society for Testing Materials

at. atomic

av. average

atm. atmosphere(s), atmospheric

b length of side (X-ray data) in Angstrom units

Ber. Berichte der deutschen Chemischen Gesellschaft

B. M. Bureau of Mines, Dept. of the Interior

B. P. black powder

b. p. boiling point

^{*}Abbreviations and symbols in the following data sheets generally correspond to those in Chemical Abstracts.

Br. C.em. Abstr. British Chemical Abstracts

Bull. Am. Ceram. Soc. Bulletin of the American Ceramic Society

c. crystal(sj

e length of side (X-raydata) in Angstrom units

C. A. Chemical Abstracts

cal. calories(s)

Can. J. Technol. Canadian Journal of .Technology

cc. cubic centimeter(s)

Chem. Eng. News Chemical and Engineering News

c. f. m. cubic feet per minute

Chem. Eng. Prog. Chemical Engineering Progress

C. I. Colour Index (Refs. 48 and 48A)

Chem. Revs Chemical Reviews

coeff. coefficient compn.(s) compositions

Compt. rend. Compte rendus hebdomadaires des Séances de l'Academie des

Sciences, Paris, France

concd. concentrated concn.

C. P. chemically pure

cryst. crystalline
cu. ft. cubic foot

d. density

DDTA derivative differential thermal analysis

decomp. decomposes

aii. dilute diln. dilution

DTA differential thermal analysis equilibrium equil. equiv. . equivalent est. estimate estd. estimated f. p. m. feet per minute gram(s) 1 Hexachloroethane Smoke Mixture HC HE high explosive ICC **Interstate Commerce Commission** 1. C. T. International Critical Tables (Ref. 42) Ind. Eng. Chem. **Industrial Engineering Chemistry** insol. insoluble i. v. intravenously J. Am. Chem. Soc. Journal of the American Chemical Society J. Am. Ceram. Soc. Journal of the American Ceramic Society J. Appl. Polymer. Sci. Journal of Applied Polymer Science J. Chem. Phys. Journal of Chemical Physics J. Chem. Soc. Journal of the Chemical Society (London) J. Colloid Sci. Journal of Colloid Science

J. Electrochem. Soc. Journal of the Electrochemical Society

J. Franklin Inst. Journal of the Franklin Institute (Philadelphia)

J. Phys. Chem. Journal of Physical Chemistry

J. Research NBS Journal of Research of the National Bureau of Standards

J. Soc. Dyers Colourists Journal of the Society of Dyers and Colourists

k- kilo

Kcal. Kilocalorie

kg. kilogram

1 liquid

1. liter(s)

L. D. lethal dose

liq. liquid

 $m.,\ m.\ {}^{\boldsymbol{5}} \\$

M. A. C. Maximum Allowable Concentration (based on continuous

exposure for an 8-hr. day)

manufacture, manufacturing

M. C. A. Manufacturing Chemists Association

Mém. artillerie franç. Mémorial de l'artillerie française (Paris)

Me". poudres Mémorial des Poudres (Paris)

mg. milligram(s)

min. minimum

M. L. D. minimum lethal dose

mm. millimeter

mol. molecular

m. Q. melting point

NG nitroglycerine

OSM Ordnance Safety Manual

P. A. Picatinny Arsenal

PATR Picatinny Arsenal Technical Report

pdr. powder

powd. powdered

p. p. m. parts per million

press. pressure

Proc. Roy. Soc. Proceedings of the Royal Society (London)

psi pounds per square inch

pt part

Pyro pyrotechnics

Rec. trav. chim. Recueil des Travaux Chimiques des Pays-Bas (Dordrecht,

Netherlands)

Rev. revision

relative humidity

ihbdr. rhombohedral

rhombic, orthorhombic

R. I. report of investigation (followedby number)

R. T. room temperature

satd. soh. saturated solution (hygroscopicity determinations)

S System (used with Ref. 44)

sl. slightly

sol. soluble

soly. solubility

spec. specification

sp. gr. specific gravity

S. P. I. Society of Plastic Industries

stat static

S. T. P. Standard Temperature and Pressure

sup supplement

T temperature

tech. technical(ly)

temp. temperature

TGA ther mogravimetric analysis

Trans. Faraday Soc. Transactions of the Faraday Society (Aberdeen, Scotland)

T.P. transition point

Underwriters Laboratories, Inc., Bulletin of Research u.L.

u. N. **United Nations**

vac. vacuum

vol., V. volume

wt. weight

Zeit. anorg. Chem. Zeitschrift fur anorganischa und allgemeine Chemie

Z. Elektrochem. Zeitschrift für Elektrochemic und angewandte physikalieche Chemie (Berlin)

Zeit. Physik. Zeitschrift fur Physik

Zhurnal Fizicheskoi Khimii (Journal of Physical Chemistry, Moscow, $\, \textbf{U. S. S. R.} \,)$ Zhur. Fiz. Khim.

- 1) Handbook of Chemistry and Physics, 40th ed., C. D. Hodgman, Ed., Chemical Rubber Publishing Co., Cleveland, Ohio (1958-59);1A) 42nd ed. (1960-61)
- 2) "Contributions to the Data on Theoretical Metaliurgy, XII. Heats and Free Energies of Formation of Inorganic Oxides," J. P. Coughlin, Bureau of Mines Bulletin 542 (1954)
- "Contributions to the Data on Theoretical Metallurgy, X1. Entropies of Inorganic Substances, "Revision of "Data and Methods of Calculation" (1948), Bureau of Mines Bulletin 477 (1950)
- 4) "Contributions to the Data on Theoretical Metallurgy, X. High Temperature, Heat Capacity and Entropy Data for the Elements and Inorganic Compounds," K. Kelly, Bureau of Mines Bulletin 584 (1960)
- 5) Thermodynamic Properties of the Elements, D. Stull and G. Sinke, Advances in Chemistry Series No. 18, 'American Chemical Society, Washington, D. C. (1956)
- 6) "The Thermodynamic Properties of the Oxides, Fluorides, and Chlorides to 2500°K," A. Glassner, ANL-5750, Argonne National Laboratory, Chicago, III. (1957)

*This listing gives the main sources from which material has been collected. Numbers in the Ref_column on each data sheet are keyed to these general references.

References that pertain only to specific data sheets are listed at the end of the data sheets under Additional References. Numbers in the Ref. coiumn preceded by Addnl. Ref. are keyed to those references. Some Additional References are sources irom which no data were taken but which contain pertinent information on specific ingredients.

- 7) "Contributions to the **Data** on Theoretical Metallurgy, V. **Heals of** Fusion of Inorganic Substances," Bureau of Mines Bulletin **393** (1936)
- 8) "The Thermodynamic Properties of the Oxides and Their Vaporization Processes," L. Rrewer, Chemical Reviews 52, No. 1 (1953)
- "Selected Values of Chemical Thermodynamic Properties," F. D. Rossini et al., National Bureau of Standards Circular 500 (1953)
- 10) "General Method and Thermodynamic Tables for Computation of Equilibrium Composition and Temperature of Chemical Reactions," V. N. Huff et al., National Advisory Committee for Aeronautics Report 1037 (1951)
- 11) Commercial Trade Names and Commercial Synonyms, W. Haynes, Reinhold Publishing Corp., New York (1955)
- 12) Dangerous Properties of Industrial Materials, N. I. Sax, Reinhold Publishing Corp., New York (1957)
- "Properties of Explosives of Military Interest," W. R. Tomlinson, Jr. (and O.E. Sheffield), Picatinny Arsenal Technical Report No. 1740 (1958)
- 14) Ordnance Safety Manual, ORDM 7-224, Ordnance Corps, Department of the Army (1951)
- 15) "Transport of Dangerous Goods," United Nations Publication 1956. VIII. 1 (1956)
- 16) Materials Handbook, G. S. Brady, McGraw-Hill Book Company, Inc., New York (1956)
- 17) "Military Pyrotechnics," D. Hart, Encyclopedia of Chemical Technology, Vol. 7, R. Kirkand D. Othmer, Eds., Interscience Publishers, New York (1953)

- 18) <u>Grystal Structures</u>, R. W. Wycotf, Interscience Publishers, New York (1948-60)
- 19) <u>Pyrotechnics</u>, G. W. Weingart, Chemical Publishing Co., New York (1947)
- 20) Military Pyrotechnics, H. B. Faber, U. S. Government Printing Office, Washington, D. C. (1919)
- 21) Manual of Explosives, Military Pyrotechnits and Chemical Warfare Agents, J.
 Bebie, The Macmillan Co., New York
 (1943)
- 22) Industrial Chemicals, W. L. Faith et al., John Wiley & Sons, Inc., New York (1957)
- 23) Industrial Gums, R. L. Whistler and J. N. Be Miller, Eds., Academic Press, New York (1959)
- 24) Metallurgical Thermochemistry, 2nd ed., O. Kubachewski and E. L. Evans, John Wiley & Sons, Inc., New York '(1956); 24A)3rd ed., Pergamon Press, Inc.,,New York (1958)
- The Chemistry of Industrial Toxicology,
 H. B. Elkins, John Wiley & Sons, Inc.,
 New York (1959)
- 26 Industrial Hygiene and Toxicology, E.
 Patty, Interscience Publishers, New York
 (1958)
- 27) Smithsonian Physical Tables, W. E. Forsythe, Ed., Smithsonian Institution, Washington, D. C. (1956)
- 28) The Chemical Behavior of Zirconium, W. B. Blumenthal, D. Van Nostrand Co., Inc., Princeton, N. J. (1958)
- 29) The Merck Index of Chemicals and Drugs, P. G. Stecher, Ed., Merck and Co., Ranway, N.J. (1960)
- "Vapor Pressure of Pure Substances,"
 D. R. Stull, Industrial and Engineering Chemistry 39, 544 (1947)
- 31) Handbook of Chemistry, 9th ed., N. A. Lange, McGraw-Hill Book Company, Inc., New York (1956);(31A) 10th ed. (1961)

- "Investigation of the Hygroscopic Effects of Impurities in Pyrotechnic Ingredients,"
 A. E. Harvey and L. L. Hayes, Ordark Research Project, Dept. of Chemistry, Univ. of Arkansas, Fayetteville, for Picatinny Arsenal, Ordnance Project No. TA2-9201 (1955)
- 33) Data obtained from Pyrotechnics Laboratory, Pyrotechnic Chemical Research Section, Picatinny Arsenal, Dover, N. J.
- 34) "Vaporization of Metals and Metalloids in Vacuum," H.Laporte, Chemische Technik
 11, 632 (1953)
- 35) "Kinetics of the Thermal Decomposition of Potassium Nitrate and of the Reaction Between Potassium Nitrate and Oxygen," E. S. Freeman, J. Am. Chem. Soc. 29, 838 (1957)
- 36) Calcium Metallurgy and Technology, C. L.
 Mantelland C. Hardy, Reinhold.Publishing
 Corp., New York (1945)
- 37) Manganese, A.H. Sully, Academic Press, New York (1955)
- 38) <u>Titanium</u>, A. D. McQuillan and M. K. McQuillan, Academic Press, New York (1954)
- 39) Zirconium, G. L. Miller, Academic Press, New York (1954)
- 40) Metals Reference Book, C. J. Smithells, Interscience Publishers, New York (1955)
- 41) American Institute of Physics Handbook,
 D. E. Gray, Ed., McGraw-Hill Book
 Company, Inc., New York (1957)
- 42) International Critical Tables of the Numerical Data of Physics, Chemistry
 Technology, Published under direction of National Academy of Sciences and the Nattional Research Council, McGraw-Hill Book Company, Inc., New York (1926-33)
- 43) Encyclopedia of Explosives and Related Items, B. T. Federoff et al., Picatinny Arsenal Technical Report No. 2700, Available from Office of Technical Services, U. S. Dept of Commerce (1960)

- 44) Hardburn der anorganischen Chemie, Gmelin-Graut, Verlag Chemie, Berlin (1928) (system number, indicated by S, indicates year of volume)
- 45) Inoganic Thermogravimetric Analysis, C. Duvai, Elsevier Publishing Co., An. sterdam, Netherlands (1953)
- 46) "Sulphur Manual," Texas Gulf Sulphur Co., New York (1959)
- 47: "Differential and Thermal Analysis of Inorganic Compounds," S. Gordon and C. Campbell, Analytical Chemistry 27, 1102 (1955)
- 48) Colour Index, F. M. Rowe, Ed., Society of Dyers and Colourists, Bradford, England (1924); 48A) Clorley and Pickersgill. Ltd., Leeds, and Perey, Lund, Humpheys and Co., Ltd., Bradford and London (1956)
- 49) Metals Handbook, 7th ed., T. Lyman, Ed., Arterical Society for Metals. Cleveland, Once (1948); 49A) 8th ed. (1961)
- 50) Encyclopedia of Chemical Technology, R. Kiri and D. Othmer, Eds, interscience Publishers, Inc., New York (1945-57)
- 51; "Intammability and Explosionity of Metal Powders," I. Hartmann et al., Bureau of Minus R13722 (1942)
- 52) Thorpe's Dictionary of Applies Chemistry, J. Thorpe are M. A. Whiteley, Longmans, Green & St., Ltd., Longon (1937-56)
- 53) Handbook of Solvents, I. Mellat., Reinhold Publishing Corp., New York (1947)
- 54) A Comprehensive Treatise or Inorganic and theoretical Chemistry, J. W. Mollor, London (1921-117)
- 55) "Tables of Interntomic Distances and Molecular Configurations Obtained by Electron Diffraction in the Gas Phase," P. W. Altelland L. E. Sutton, Acta Crystallographica 3, 46 (1950)
- 56; Physicochemical Measurements at High Temperatures, J. O'M. Bockris et al., Butterworths Scientific Publications, 1813, 181

- 57) Encyclopedia of Organic Chemistry, E. Josephy and F. Radt, Eds., Elsevier Publishing Co., Amsterdam, Netherlands (1946)
- 58) Webster's New International Dictionary, G. & C. Merriam Co., Springfield, Mess. (1960)
- 59) Polymers and Resins, B. Golding, D. 'an Nostrana Company, Inc., Princeton, N. J. (1959)
- 60) Modern Plastics Encyclopedia, Plastics Catalogue Corporation, Bristol, Conn. (1960)
- 61) The Water Soluble Gums, C. L. Manteli, Reinhold Publishing Corp., New York (1947)
- 62) Encyclopadie der Technischen hentie,
 E. Ullmann, Ed., Urban and Sch varsenberg, Berlin (1931)
- 53) High Temperature Technology, I. E. Campbell, Ed., John Wiley & Sons, Let., New York (1956)
- 64) "Thermophysical Properties of Solid Materials," A. Smith and T. Watermin. WADC-TE-58-476, Wright Air Development Center, Air Research and Development Command, Wright-Patterson in Force Base. Ohio (1959)
- 65) "Chloraces and Perchlorates. There Membrature, Properties, and Coss." Deet. of Chemistry and Chemical Englishment Southwest Research Institute, NAVO(3) Report 7147 (1960)
- GO "Quantitative Characterization of the Absorption Spectrum of Planar Molecules." A. Labhart, Verlag Helv. Ching. Acta 49, 1410 (1947)
- 67) Guide for Safety in the Chemical Laboratory, General Safety Committee of the Manufacturing Chemists Association, In ... D. Van Nostrand Company Inc., Prosest n. N. 1, 1934

- 68) Textbook of Polymer Chemistry, F. W. Billmeyer, Jr., Interscience Publishers, Inc., New York (1957)
- 69) Cellulosics, W. D. Paist, Reinhold Publishing Corp., New York (1958)
- 70) The Chemistry of Plant Gums and Mucilinges, F. Smith and R. Montgomery, Reinhold Publishing Corp., New York (1959)
- iti sentaneous Ignition of Liquid Fuels, B. Mullins, Butterworths Scientific Pubications, London (1955)
- "Chlorates, Their Properties, Man-"Cture and Uses, J. Schumacher, Ed., unhold Publishin, Corp., New York
- Polyesters and Their Applications, Bjorksten Research Laboratories, Inc., Reinhold Publishing Corp., New York (1956)
- Explosions, Detonations, Flammability and Ignition, D. P. Mullin and S.S. Penner, Pergamon Press, Inc., New York (1959)
- 75) "Properties of Flammable Liquids, Gases, and Solids," Associated Factory Mutual Fire Insurance Companies. Ind. & Eng. Chem. 32, 880 (1940)
- 76) Physico-Chemical Constants of Pure Organic Compounds, J. Timmermans, Elsevier Publishing Co., Amsterdam, Retherlands (1950)
- 77) The Perchlorates of the Alkali and Alkaline Earth Metal: and Ammonium. Their Solubility in Water and Other Solvents, H. H. Williad and G. F. Smith, J. Am. Chem. Soc. 45, 286 (1923)
- 78) The emodynamic Constants of Sulphates, Carbonates, Chromates, Bromates, Iodates, Oxalates and Other Salts Slightly Soluble in Water, "N. P. Zhuk, Zhur. Fiz. Khim. 28, 1960 (1954) (In Russian)

- 79) Chemical Elements and Their Compounds, N. V. Sidgwick, Oxford University Press, New York (1950)
- 80) "Investigation of the Vaporization and Thermal Decomposition of Organic Dyes.

 1. Thermogravimetric Determination of the Energies of Activation for Volatilization," D. Anderson et al., PL-C-Technical Note No. 16, Pyrotechnics Laboratory, Picatinny Arsenal, Dover, N. J. (1958)
- 81) "Investigation of the Vaporization and Thermal Decomposition of Organic Decay. 2. Differential Thermal Analysis and Thermogravimetric Analysis of Organic Dyes," D. Edelman et al. PL-C-Technical Note No. 25, Pyrotechnics Haboratory, Picatinny Arsonal, Dover. N. J. (1958)
- 82) The Chemistry and Physics of Organic Pigments, L. S. Pratt, John Wiley & Sonz Inc., New York (1957)
- A Systematic Survey of the Organic Colouring Matters, A.C.G. Green (founded of the German of G. Schultz and P. Julius, Macmillan & Co., Ltd., London (1908)
- 84) The Chemistry of Synthetic Dyes, K. Venkatraman, Academic Press, In., New York (1952)
- Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Teihijk, Landolt-Börnstein, A. Eucken et al., Julius Springer, Berlin (1351 57)
- 96) "Explosibility of Agricultural and Other Dusts as Indicated by Maximum Pressure and Rates of Pressure Rise," P W. Edwards and L. R. Leinbach, U. S. Dept. of Agriculture Tech. Bull. 490 (1935)
- The Oxidation States of the Glements and Their Potentials, in Aqueous Solutions, W. M. Latimer, Prentice-Hall, Inc., Englewood Cliffs, N. J. (1952)
- 88) Handbuch der Organischen Chemie, 4th ed., Beilstein, Julius Springer, Berlin (through 1929, suppl. to 1961)

- 89) Organic Syntheses, Vol. 1, H. Gilman and A. H. Blatt, Vol. 2, A. H. Blatt, Vol. 3, E. C. Horning, John Wiley & Sons, Inc., New York (1941, 1943, 1955)
- 90) Ring Index, A. M. Patterson et al., American Chemical Society, Washington, D. C. (1960)
- 91) Chemical Engineers' Handbook, R. H.
 Perry et al., Eds., McGraw-Hill Book
 Company, Inc., New York (1950)
- 92) "Toxicity of Nine Dyes. A 'Literature Study," N. Anson and P. Parent, C. W. L. Tech. Memo. 47-6, Toxicological Information Center, Army Medical Center, Md. (1959)

- 93) Toxic Hazards Associated with Pyrotechnic Items, "Ordnance Pamphlet 2793,
 U. S. Naval Ordnance Laboratory (1957)
- 94) Rare Metals Handbook, 1st ed., C. A. Hampel, Reinhold Publishing Corp., New York (1956); 94A) 2nd ed. (1961)
- 95) Engineering Materials Handbook, C. L. Mantell, Ed., McGraw-Hill Book Company, Inc., New York (1958)
- 96) Crystal Data, J. D. H. Donnay and W. Nawacki, Geological Society of America, New York (1954)
- 97) "Standard X-Ray Diffraction Powder Patterns, "National Bureau of Standards Circular 539 (1953-60)

ACETONE, (CH₃),CO Ref& (Dimethyl Ketone, \$-Ketopropane, 2-Propanone, Pyroacetie Ether) H₂C - CH₂ Structural Formula: JAN-A-489 Specification No.: 58.08 Molecular Weight: Crystalline Form: liquid Color: colorless (liquid) 0.792 at 4-20°C Density, g./ml.: Coefficient of Thermal Expansion, cubical at **20°C**: 1.487×10^{3} cubical at 0-54°C: $V_t = V_0$ (1 + 1.3240t-3 + 3.8090t-4 - 0.87983t-8) 1 Heat of Formation, Kcal./mole at 298°K: (liquid) -59,240 Addnl. Ref. 4 Addnl. Ref. 5 Free Energy of Formation, Kcal./mole at 298°K: 37,120 Entropy, cal./deg./mole at 298°K: 47.9 Addnl. Ref. 5 Addnl. Ref. 6 at B.P. (ideal gas): 72.7 Melting Point: 177.5°K (-95.5°C) Heat of Fusion, cal. (15°)/g.: 23.4 1 1 Boiling Point: 329.5°K (56.5°C) Heat of Vaporization, cal./g. at 56.1°C: 124.5 1, 42 Addnl. Ref. 7 cal./mole: 6952 ± 1 Transition Point: Heat of Combustion, Kcal./mole at 20°C and 1 atm.: 426.8 1 **Heat** of Sublimation: 700°C 71 Autoignition Temperature, in air: 1118°F 75 Addnl. Ref. 2 Enthalpy Change of Enolization at 25°C: Me_2CO (liquid) $\rightarrow CH_2 = CMeOH$ (liquid) Kcal./mole: HEAT CAPACITY OF ACETONE Set I, Reverse-flow Calorimeter, 760 mm. Addnl. Ref. 1

t, °C	61	75	90	105
T, °K	334	348	363	378
c _{r.} cal./g./deg.	0.375	0.374	0,380	0.384
C, cal./mole/deg.	21.8	21.7	22.1	22.3
t, °C	120	135	155	165
T, °K	393	408	428	438
c, cal./g./deg.	0.390	0.398	0.416	0.420
C, cal./mole/deg.	22.7	23.1	24.2	24.4

Acetone, (CH₃)₂CO (page 2)

Set 11, Direct-flow Calorimeter, 760 mm.

t, °C	59.4	74.6	99.1	149.4
T,°K	332.6	347.8	372.3	422.6
\mathbf{c}_{μ_c} cal./g./deg.	0.376	0.374	0.380	0.406
C _{p.} cal./mole/deg.	21.8	21.7	22.0	23.6

See also Addnl. Ref. 8

Decomposition Temperature and Products: Between 506° and 632°C, the products of decomposition are about $\frac{1}{2}$ saturated hydrocarbons and hydrogen, $\frac{1}{2}$ CO, and the remainder CO₂ and ethylene.

52V1. Addnl. Ref. 3

1

55, 85

Vapor Pressure:

Press.".	1	10	40	100	400	760	M.P.
Temp. °C	-59.4	-31.1	- 9.4	+7.7	39.5	56.5	-94.6

X-Ray Crystallographic Data:

Interatomic Distances and Molecular Configuration

 $C - C = 1.57 \pm 0.04A$ < C-C-O 123° C-O 1.14 Planar C-H 1.09

Hygroscopicity:

Solubility Data: Miscible in all proportions with water, alcohol, ether. Soluble in chloroform.

Health Hazard: Prolonged or repeated inhalation or contact may have a variety of harmful effects although cases of serious poisoning are rare. Also has a narcotic effect, usually not chronic.

1000

Safety Classifications:

M.A.C.:

OSM: Class I, flammable liquid (flash point below 20°F)

ICC: Listed under "Explosives and Other Dangerous Articles" as a flammable liquid; red label

Underwriters' Laboratory: 90 (gasoline class)

Fire and Explosion Hazard: Dangerous when exposed to flame. The vapors form an explosive mixture with air; explosive range (% acetone by volume) 2.55 to 12.8%. Can be ignited by an electric spark. Reacts vigorously with oxidizing materials. Forms an explosive mixture with high concentrations of hydrogen peroxide. To fight fire use water, carbon dioxide, dry chemical, or carbon tetrachloride. For precautions in storage, handling, and dispensing, see Refs. 26 and 14. Caution: Keep away from fire.

Electrostatic Sensitivity: Readily ignited by static discharge. Use in Pyrotechnics:

as a solvent

Additional References:

1) "The Heat Capacity of Organic Vapors. VI. Acetone," B. Collins et al., J. Am. Chem. Soc. 72,2929 (1949)

12, 25, 26, 14, 12V75

12, 25, 29, 14

14

Acetone, (CH₃)₂CO (page 3)

- 2) "The Heat of Hydrolysis of i-Propenyl Acetate and m-Cresyl Acetate and the Heat of Enolization of Acetone," S. Sunner, Acta Chem. Scand. 11, 1757 (1957)
- 3) "Thermal Decomposition of Acetone in the Gaseous State," C. N. Hinshelwood and W. K. Hutchison, Proc. Roy, Soc. A iii 245 (1926). Abstracted in Br, Chem. Abstr.
- 4) "Free Energies of Some Organic Compounds," G. S. Parks and H. M. Hoffman, The Chemical Catalogue Co., New York (1932)
- 5) "The Heat Capacities of Isopropyl Alcohol and Acetone from 16° to 298°K and the Corresponding Entropies and Free Energies," K. K. Kelly, J. Am. Chem. Soc. 51,1145 (1929)
- 6) "The Entropy of Acetone and Isopropyl alcohol from Molecular Data. The Equilibrium in the Dehydrogenation of Isopropyl alcohol," S. C. Schumann and J. G. Aston, J. Chem. Phys. 6,485 (1938)
- 7) "The Thermodynamic Properties of Acetone," R. Pennington and K. A. Kobe, J. Am. Chem. Soc. 79,300 (1957)
- 8) "Estimation of the Heat Capacities of Organic Liquids," A. Johnson and Chen-Jung Huang, Can. J. **Technol. 33,421 (1955)**

ALCOHOL, C.H.OH

(Ethyl Alcohol, Ethanol, Methyl Carbinol, Spirit of Wine, Grain Alcohol, Ethylic: Alcohol, Rectified spirit = 90-95\% alcohol)

MIL-E-463A

Specification No.: The specification covers grades 1, 2, 5, and 6, of which only grade 2 (min.

94.9 alcohol by vol.) is used in pyrotechnics.

Molecular Weight:

Crystalline Form:

Color:

Density, g./ml.:

Coefficient of Thermal Expansion, cubical at $20^{\circ}\text{C}: 1.12 \times 10^{\circ}\text{C}: 1.12 \times 10^{$ Heat of Formation, Kcal./mole at 298°K

See Table a Free Energy of Formation, Kcal,/mole at 293°K:

See Table a Entropy, Kcal./mole:

See Table a

46.07

liquid colorless

(liquid) 0.7893

-56.24(gas) (liquid) -66.356

(gas) -40.30(liquid) 4 1.77

(gas) 67.4 (liquid) **38.4**

a. ENTROPY, FREE ENERGY, AND RELATED QUANTITIES ETHYL ALCOHOL IN THE IDEAL CAS STATE AT

> 1-ATMOSPHERE PRESSURE $(E_0^c = -52,260 \text{ cal./mole}^{-1})$

Addnl. Ref. 5

Refs.

27 1, 41

9

9

9

T	$-\left(\frac{\mathbf{F}^{\circ}-\mathbf{E}_{\bullet}^{\circ}}{\mathbf{T}}\right)$	So	-F °	2 F° *	log ₁₀ K *
	cal./deg. 1	cal./deg. 1			-Δ F°/R,T.
$^{ m o}{f K}$	mole 1	mole 1	cal./mole-1	cal./mole 1	2.3026
298.16 300.00	58.11 . 61.42	66.45 66.56 72.11 77.12 81.76	68,440 68,560 75,500 82,970 90,920	-40,010 -39,910 -34,310 -28,470 -2'2,490	29.329 29.075 18.749 12.447 8.191
700 800 900 1000	. 67.22 . 69.84 . 72.31 . 74.65	86.08 90.12 93.92 97.48 100.85	93,310 108,130 117,330 126,910 136,830	-16,390 -10,230 -4030 +2190 8430	5. I18 2.796 0.980 -0.479 -1.675
1200 1300 1400 1500	. 81.07 . 83.02	104.04 107.06 109.94 112.67	147,080 157,650 168,500 179,640	14,680 20,920 27,170 33.410	-2.673 -3.517 -4.239 -4.867

^{*} Δ F° and K are the ftee energy change and equilibrium constant, respectively, for the reaction forming ethyl alcohol from its elements in their standard. states at T K.

Alcohol, C₂H₅OH (page 2)

Melting Point: 158.6°K (-114.5°C)

. Heat of Fusion, Kcal./mole: 1.200

Boiling Point: 351.7°K (78.6°C)

Boiling Point: 351.7°K (78.6°C) 9
Heat of Vaporization, Kcal./mole: 9.22 9

Heat Content or Enthalpy:

See Table b

Heat Capacity, cal./deg./mole at 298°K: (liquid) 26.64

See also Addnl. Refs. 2 and 5, and Table b

b. HEAT CAPACITY AT CONSTANT PRESSURE, HEAT CONTENT, AND RELATED QUANTITIES OF ETHYL **ALCOHOL** IN THE

IDEAL **GAS** STATE (EO =- 52,260 cal./mole⁻¹)

Addnl. Ref. 5

9

т	H° - E° T	Н∘	Δ H° *	$C_{\mathfrak{p}}^{\mathfrak{o}}$
°K	cal./deg. ¹ mole ¹	cal./mole 1	cal./mole ¹	cal./deg. ⁻¹ mole ⁻¹
298.16	12.18	-48,630	-56,240	17.59
	12.22	-48, 6 00	-56,260	17.66
	14.00	-46,660	-57,250	21.00
	15.70	-44,410	-58,110	24.09
	17.33	-4 1,860	-58,780	26.81
700	18.86	39,060	-59,320	29.18
	20.28	-36,030	-59,710	31.25
	21.61	-32,810	-60,000	33.07
	22.83	-29,430	-60,200	34.66'
	23.97	-25,900	-60,320	36.06
1200	25.02	-22,240	-60,370	37.28
1300	25.99	- 18,470	-60,350	38.34
1400	26.91	-14,590	-60,250	39.27
1500	27.75	,-10,630	-60,190	40.08

^{*} Δ H° is the enthalpy of formation of ethyl alcohol from its elements in their standard **states** at the temperature T.

\mathbf{D}	ecomi	position	Tem	perature	-
IJ	CCOIII	DOSITION	1 6111	Derature	-

Decomposition Products:

burns to CO2 and H2O

Alcohor, CallaOlI (page 3)

Vapor Pressure:

<u>Press</u> , mni.	1	10	40	100	400	760	M.P.
Temp. °C	-31.3	-2.3	+19.0	34.9	63.5	78.4	-112
Tr. Th. Classically annuality To American							

X-Ray Crystallographic Data:

Hygroscopicity:

Solubility Data: Miscible with water and many organic solvents in all proportions.

Health Hazard: It is nor; considered an industrial poison, although large doses cause nausea, vomiting, impaired perception, lack of coordination, stupor, and even death. Habitual use may cause gastritis, delerium tremens, hallucinations, peptic ulcers, and hepatic cirrhosis.

Exposure to concentrations of 5000-10,000 ppm. irritates the eyes and mucous membrane:;. Inhalation produces the same symptoms as ingestion.

M.A.C.:

1000

Safety Classifications:

OSM: Class I

ICC: Listed under "Explosives and Other Dangerous Articles." Flammable liquid red label.

Fire and Explosion Hazard: Readily ignited by flame or static electric discharge. Forms explosive misture with air.

Explosive limits in air:

3.28 to 19% alcohol by vol.

Flash point:

55°F

22.5

Autoignition temperature:

799°F (95% alc.) 738°F (100% alc.)

For proper storage and handling see Refs.

To right fire use CO₂, dry chemical, or CCl₄.

Electrostatic Sensitivity: Can be ignited by static electrical discharge.

Heat of Combustion, Keal./mole at 20°C

and 1 atm.:

327.6

Viscosity, centipoises at 20 12

(for abs. alcohol):

Surface Tension, dynes/em. at 20 °C

(for als, alcohol):

Use in Pyrotechnics: for shellac solutions

See Spec. JAN-S-732

Additional References:

- 1) "Thermodynamic Properties of Ethyl Alcohol," R. C. Reid and J. M Smith, Chem. Eng. Progr. 47, 415 (1951)
- 2; "Estimation of The Reat Capacities of Organic Liquids," A. Johnson and Chen-Jung Huerg, Can. J. Technol. 33, 421 (1955)

l2, 25, 26V1,

29

14

12, 26, 14, 91

14

Addnl. Ref. 6

Addnl. Ref. 6

Alcohol, C.H.OH (page 4)

- "Heat Capacities of C_{1.5} Alphatic Alcohols," G. Sinne and T. DeVries, J. Am. Chem. Soc. 75, 1815 (1953)
- 1) "Ethyl Alcohol," U. S. Industrial Chemical Co., Division of National Distillers and Chemical Corp., New York (1960)
- 5) F. Brickwedde et al., J. Research NBS 37, 270 (1946) (thermodynamic data)
- 6) "The Technology of Solvents and Plasticizers." A. K. Doolittle, John Wiley & Sons, New York (1954)

ALUMINUM, AI

(Aluminum)

Refs.

Specification No.:

JAN-A-667

The specification covers three types, which vary in purity, and five classes, which vary in granulation and apparent density.

Type A—flat flakes manufactured by grinding or stamping.

Type B—granular or spheroidal particles manufactured by the atomizing process or by grinding.

Type C-granular or spheroidal particles manufactured by the atomizing process.

Molecular Weight:

26.98

1

-191 to + 16	18.35 × 10 ⁻⁶	40	23.14 × 10 ⁻⁶
20	25.5×10^{-6}	600	31.50×10^{-6}

5 5 5

5

5

5

3 4. 5

Aluminum, Al (page 2)

a. HEAT CONTENT AND ENTROPY OF Al(c, 1)

(Base, crystals at 298.15°K; atomic wt., 26.98)

Т, ∘К	$H_T - H_{298,18}$ cal./mole	S _T –S _{298,15} cal./deg. mole	т,∘к	H _T -H _{298,15} cal./mole	$S_T - S_{298,15}$ cal./deg.
400	600	1.72	1500	10,830	13.59
500	1230	3.14	1600	11,530	14.04
600	1890	4.34	1700	12,230	14.46
700	2580	5.40	1800	12,930	14.86
800	3310	6.38	1900	13,630	15.24
900	4060	7.26	2000	14,330	15.60
932 (c)	4280	7.50	2100	15,030	15.94
932 (1)	6850	10.26	2200	15,730	16.2 7
1000	7330	10.75	2300	16,430	16.58
1100	8030	11.42	2400	17,130	16.88
1200	8730	12.03	2500	17,830	17.16
1300	9430	12.59	2600	18,530	17.44
1400	10,130	13.11	2700	19,230	17.7 0

Heat Capacity: $C_p = 4.94 + 2.96 \times 10^{-8} T$; A H_{932} (fusion) = 2570

Enthalpy: $H_T - H_{298.15} = 7.00 + 33G$ (0.1percent; $932^{\circ} - 2700^{\circ}K$)

b. HEAT CONTENT AND ENTROPY OF Al(g) (Base, ideal gas at 298.15°K; atomic wt., 26.98)

T,°K	H _T –H _{296,15} cal./mole	S _T - S _{298, 15} cal./deg. mole	т,∘к	H _T – H _{296,15} cal./mole	S _T -S _{206,15} cal./deg. mole
400	. 515	1.49	1900	7995	9.27
500	. 1020	2.62	2000	8490	9.53
600	. 1520	3.53	2200	9485	10.00
700	2020	4.30	2400	10,480	10.43
800	. 2520	4.97	2600	11,470	10.83
900	. 3020	5.55	2800	12,470	11.20
1000	. 3515 .	6.08	3000	13,460	11.54
1100	. 4015	6.55	3500	15,950	12.31
1200	. 4515	6.99	4000	18,440	12.98
1300	. 5010	7.38	4500	20,950	13.57
1400	. 5510	7. 7 5	5000	23,490	14.10
1500	. 6005	8.10	6000	28,790	15.07
1600	. 6505	8.42	7000	34,640	15.97
1700	. 7000	8.72	8000	41,440	16.87
1800	. 7500	9.00			

Al(g):

Enthalpy: $H_T - H_{298.15} = 4.97T - 0.12 \times 10^5 T^{-1} - 1442 (0.1 \text{ percent}; 298^\circ - 5000^\circ \text{K})$

Heat Capacity: $C_p = 4.97 + 0.12 \times 10^5 \text{T}^{-2}$

c. HEAT CAPACITY OF ALUMINUM*

Solidfrom 298° to 932°K Liquid from 932° to 2720°K Gas from 2720° to 3000°K

T,°K	C _p (cal./deg./mole)			
298	5.82			
400	6.12			
600	6.72			
800	7.31			
1000-2700	7.00			
2800_3000	4.97			

^{*}See also C, equations directly above

Decomposition Temperature:

Decomposition Products:

Vapor Pressure:

1								
Press.mm	. 1	10	40	100	400	760	M.P.	
Temp. °C	1284	1487	1635	1749	1947	2056	660	

Aluminum, AP (page 4)			
X-Ray Crystallographic Data:			1
System Space croup a	Molecules/U	nit Cell	
cubic O_h^{ϵ} 5.43A	4		
Hygroscopicity, cumulative increase in weigh	nt after:		51
	Atomized	Stantped	
Storage over H ₂ O for 29 days:	55.2%	0.6%	
Storage over H ₂ SO ₄ for 29 days:	50.2%	0.0%	
Two days in oven at 105°C:	47.8%	-1.4%	
solubility Data: In alkali; hydrochloric,	,		1
sulphuric acids:	soluble		
In nitric acid, acetic acid:	insoluble		
Health Hazard: None. Not usually considered		n Aluminum	12
dust can irritate the eyes. Inhalation of d disease.	ust may cause chron	ic pulmonary	12
M.A.C. :	50 million pa		
Safaty Classifications	(15mg./m	.3)	25
Safety Classifications: OSM: Class 1. Class 2 when not packed	or stored in original	shipping con-	14
tainers or equivalent (types I and II).	or stored in originar	simpping con-	1.3
U.N.: Inflammable solid, which in contac	t with water emits fl	a mm able gas.	15
Fire and Explosion Hazard: Dust may ignit May ignite by chemical action with ox initiated to explosion by discharges of s Sensitivity below.	idizers. Powder easi	ily ignited or	12, 14, 49, 51
Caution: Keep water away. Evolution of sion. When compounded with oxidizing dangerous fire and explosion hazard. Should be used to fight aluminum fires. See also Ref. 86	agents, the powder	ed metal is a	
Electrostatic Sensitivity: Minimum energy re electric sparks (millijoules)	equired for ignition	of powder by	26
• • • •	Dust Cloud	Dust <i>Layer</i>	
Atomized:	15	2.5	
• Stamped:	10	1.5	
Ignition Temp. of Al powders, °C:			26
	Dust Cloud	Dust Layer	
Atomized:	640	750 470	
Stamped:	550	470	
Minimum Explosive Concentration, mg./l.:			26
Atomized:	40 35		
Stamped:		intanga whita	17, 20
Used in Pyrotechnics: Aluminum is used as a light on burning, but no distinctive flame	e coloration.	miense winte	11, 20
Additional References: 1) Ref. 64			

ALUMINUM OXIDE, Al₂O₃

(Alumina, a-Alumina, Corundum, Alundum)

Percent Oxygen: 47.08

Specification No.: MIL-A-10825
Molecular Weight: 101.96

Crystalline Form: hexagonal colorless

Density, g./ml.: (solid) 3.99

(solid) 3.99 (liquid) **2375–2625°K** 5.632–1.127 × 10-T Refs.

1

1

31

9

31A

Addnl. Ref. 5

Alumina may exist in several forms at low temperature, but they are all converted to a alumina (corundum) by heating above 1600°C. The change is irreversible.

 β -Alumina is an impure form that occurs from sodium or potassium aluminate.

Form	C rystalline Structure	Density	Source	Temp. of Trans- formation to corundum, °C
α	hexagonal	3.965		stable form
γ	spinel type		dehydration of y (hydrous) Al₂O₃	> 1200
γ′	cubic	3.619	electrolytic oxidation of Al	750–1000
8	hexagonal	2.40	dehydration of AlCl ₈ •6H ₂ O	950
e	cubic		electron diffraction	4900 valide language
\$	octahedron	3.6	from lithium melts_	> 1600

Coefficient of Thermal Expansion, linear for alundum,

25°-900°C: 8.7×10⁻⁶

Heat of Formation, Kcal./mole: (corundum)a(c)399.09

See Table a **y** (C) **-384.84**

Free Energy of Formation, Kcal./mole at 298°K: (corundum)-376.77

See Table a

Aluminum Oxide, Al₂O₃ (page 2)

corundum (a-alumina)

Heat of Vaporization:

Heat and Free Energy of Formation:

a. HEAT AND FREE ENERGY OF FORMATION OF Al₂O₃ (CORUNDUM)

2

1

Т, °К.	Δ H (cal./mole)	A F" (cal./mole)		
298.16	-399,600 (± 900)	-377,300 (± 900)		
400	-399,700	-369,600		
500	-399,600	-362,100		
600	-399,50 0	3 54,6 00		
700	399,200	-347,100		
800	– 399,100	-339,700		
900	-398,900	332,300		
931.7	398,800	<i>–</i> 329,900 `		
931.7	-403,900	-329,900		
1000	-403,700	-324,600		
1100	-403,400	-316,7 00		
1200	-403,000	308,800		
1300	-4 02,600	-300,900		
1400	-402,300	-293,100		
1500	-401,900	-285,400		
1600	-401,5 00	-277,600		
1700	-401,200	-269,900		
1800	-400,800	-262,200		
1900	-400,400	-254,500		
2000	-400,100	-246,800		

Phase Changes of Metal

M. P., 931.7°K ; $\Delta H == 2570 \text{ cal./g.-atom}$

2 Free Energy Equations: Reaction Range of Validity, oK 1) $2Al(c) + 3/2O_2(g) = Al_2O_3$ (corundum) 298.16 to 931.7 $\Delta F_T^{\circ} = -404,480 - 15.68 T \log T + 2.18 (10^{-9}T^2) + 3.935 (10^{5}T^{-1}) + 123.64 T$ 2) $2Al(1) + 3/2O_2(g) = Al_2O_3$ (corundum) 931.7 to 2000 $\Delta F_T^o = -407,950 - 6.19 \text{T} \log T - 0.78 (10^{-3} \text{T}^2) + 3.935 (10^{5} \text{T}^{-1}) + 102.37 \text{T}$ Entropy at 298°K, cal./deg./mole (corundum): 9 12.186 See Table b 9 Melting Point: 2313°K (2040°C) 9 Heat of Fusion, Kcal./mole: 26.0 Boiling Point: 2523°K (2250°C) 1 3773°K (3500°C)

Aluminum Oxide, Al₂O₃ (page 3)

Transition Point:

Leat of Transition:

Heat of Sublimation

Heat Content or Enthalpy:

L'oK	H _T - H _{298, 15}	$S_{\tau} - S_{298,15}$	T,°K	$H_{T} - H_{298,45}$ $S_{T} - S_{T}$	S _T -S _{298,15}
400	. 2150	6.17	1300	27,730	38.87
500	. 4580	11.59	1400	30,800	41.11
600	. 7200	16.36	1500	33,890	43.27
7 00	. 9960	20.61	1600	36,990	45.27
$800 \dots$. 12,810	24.42	1700	40,100	47.16
$900 \dots$. 15,720	27.84	1800	,	48.94
1000	· •	30.95	1900	46,350	<i>50</i> .63
1100	21,660	33.80	2000	49,490	52.24
1200	. 24.680	36.43			_
(0.5 perce Heat Capacity Heat Capacity	- $\mathbf{H}_{298,15}$ = 27.491 nt; 298° - 1800° l : \mathbf{C}_{ρ} = 27.49 + 2. \mathbf{r}_{ρ} cal./deg./mole b for equation	K) 82 × 10 ⁻³ T - 8		·	4, 9
	Temperature:		3800°K	+ 200	8
Decomposition	-		2AlO (g		63
-	see Addnl. Ref.	4	=1.1.∪ (g	us, - 0	
Vapor Pressur		•			
Press. mm		40	100 400	760 M.P.	_
Temp. °C	2148 2385		2665 2874	2977 2040	
System hexagonal	at 29°C: iter:	р а 5,56A	c <i>Mo</i> 22.55A sorbs moisture fr	3 g ./100 g. e	1 29 1

Aluminum Oxide, Al₂O₃ ; page 4) Health Hazard: High concentrations of dust may be irritating to the respiratory tract and cause Shaver's disease, M.A.C.:50 million particles/ft.3 Safety Classifications: Fire and Explosion Hazard: Electrostatic Sensitivity: Use in Pyrotechnics: A small amount of alumina added to powdered red phos-Spec. MIL 10825 phorus maintains it in a free flowing condition and free from lumps. Aluminum oxide is formed when aluminum or any of its compounds are burned in air, or in a sufficient amount of oxidizer or oxygen. Additional References: 1) A. D. Mah, J. Phys. Chem. 62, 572 (1957) (gives the value for Heat of Formation as -400.48 ± .25 Kcal./mole) 2) "The Gaseous Species of the Al-Al₂O₃ System," L. Brewer and A. Searcy, J. Am. Chem. Soc. 73,5308 (1951). (disassociation pressures) 3) Ref. 64 4) "Differential Thermal Analysis of Organic Compounds," A. T. Perkins and H. L. Mitchell, Trans. Kansas Acad. Sci. 60,437 (1957)

5) "The Density of Liquid Aluminum Oxide," A. D. Kirshenbaum and J. A.

Cahill, J. Inorg. Nucl. Chem. 14, 283 (1960)

I-AMINOANTHRAQUINONE, C,,H,NO,

(1-Amino-9,10-Dihydro-9,10-Dioxoanthracene;

Fast Red Al; a-Anthraquinonylamine, C.I. 37275, Azoic Component 36)

Refs.

l, 84, 48A

Structural Formula: MIL-D-3698 Specification No.: 223.23 Molecular Weight: needles Crystalline Form: 88V14 red Color: Density: Coefficient of Thermal Expansion: Heat of Formation: Free Energy of Formation: Entropy: 525°K (252°C) Melting Point: 84 526°K (253°C) Heat of Fusion: 1,88V14 sublimes Boiling Point: Heat of Vaporization, Kcal./mole at 298°K Addnl. Ref. 1 28.7 ± 0.1 and 1 atm.: Transition Point: Heat of Sublimation: Heat Content or Enthalpy: Heat Capacity: Decomposition Temperature: For DTA and TGA see Ref. 81 Decomposition Products: Vapor Pressure: X-Ray Crystallographic Data: For absorption spectra see Ref. 66 Hygroscopicity: Addnl. Ref. 2 Solubility Data: 1, 28, 88V14 0.00004 In water, g./100 g. at 25°C: and V17 at 80°C: 0.0009 soluble In ether, chloroform, benzene:

dissolves 3.3 g.

In glacial acetic acid, 11. at 11.5°C:

1-Aminoanthraquinone, C14HeNO2 (page 2)

In 92-96% H₂SO₄:

dissolves with yellow color

In oleum, 20% SO3:

dissolves with red color

In concentrated HCl:

dissolves

Health Hazard:

Safety Classifications:

OSM:

not listed

ICC:

not listed

Fire and Explosion Hazard:

Electrostatic Sensitivity:

Use in Pyrotechnics: To color smoke mixtures red. Used in orange smoke mixtures.

Additional References:

- 1) "A Radioactive Ionization Gauge and its Application to the Measurement of Latent Heat of Vaporization," J. H. Beynon and G. R. Nicholson, J. Sci. Instr. 53,376 (1956)
- 2) J. Soc. Dyers Colourists 70, 68-77 (1954)

Percent Oxygen: Specification No.: JAN-A-175 . The specification covers grade I and grade II, which differ slightly in purity. Grade I has three classes differing in granulation. Molecular Weight: 80.05 Crystalline Form: Five forms as follows: System Designation Range °C I (ε) regular (cubic) (isometric) 125.2 to 169.6 II (δ) rhombohedral or tetragonal **84.2** to 125.2 $III (\gamma)$ orthorhombic 32.1 to **84.2** IV (β) -16 to 32.1 orthorhombic V (α) tetragonal **-18to-**16 Color: colorless 1, 43 Density, g/ml.: (solid) 1.725 at 25°C $1.594 \text{ at } 130 \pm 5^{\circ}\text{C}$ 8 1.666 at 93 ± 5°C $y 1.661 at 40 \pm 1^{\circ}C$ β 1.725 at +25°C a 1.710 at -25 ± 5°C Coefficient of Thermal Expansion: Coeff. \times 106 920 677 852 982 1069 44 1113 Temp. °C **-20** -60 0 20 60 100 Heat of Formation, Kcal./mole at 298°K: (c) **-87.27** 1A -87.93 Free Energy of Formation, Kcal./mole at 298°K: (c) -43.82 Addnl. Ref. 11 Entropy, cal./deg./mole at 25°C: 36.0 Addnl. Ref. 11 See Table a Melting Point: 442.8°K (169.7°C) 9 Heat of Fusion, Kcal./mole: 1.53 Addnl. Ref. 9

AMMONIUM NITRATE, NH.NO,

Refs.

1

decomposes at 483°K

(210°C)

Boiling Point:

Heat of Sublimation:

Ammonium Nitrate, NH4NO3 (page 2)

a. HEAT CONTENT AND ENTROPY OF NH₄NO₃(c, 1) (Base, a-crystals at 298.15°K)

T,°K	$H_{\tau} - H_{298,15}$ cal./mole	$S_T - S_{208.15}$ cal./deg. mole	T,°K	H _T -H _{298,15} cal./mole	$S_T = S_{298,15}$ cal./deg.
$305.3 (\alpha) \dots 305.3 (\beta) \dots 305.3 (\beta) \dots 325 \dots 350 \dots 357.4 (\beta) \dots 357.4 (\gamma) \dots 375 \dots 398.4 (\gamma) \dots $	240 620 1180 1890 2100 2420 3020 3820	0.80 2.04 3.82 5.92 6.52 7.41 9.05 11.12	398.4 (δ)	6040 6860 8160 8440 10,360	13.66 13.83 1 6.60 18.48 21.42 22.05 26.09 29.77

$NH_4NO_3(\alpha)$:

Enthalpy: $H_T - H_{298.15} = 33.601' - 10,018$ (0.1 percent; 298° -305.3°K)

Heat Capacity: $C_p = 33.60$; A $H_{305.8}$ (transition) = 380

$NH_4NO_3(\beta)$:

Enthalpy: $H_T - H_{298,15} = 28.40 - 8051$ (0.1 percent; 305.3 ° -357.4 ° K)

Heat Capacity: $C_p = 28.40$; A $H_{857.4}$ (transition) = 320

$NH_4NO_3(\gamma)$:

Enthalpy: $H_T - H_{298.15} = 34.10T - 9767$ (0.1 percent; $357.4^{\circ} - 398.4^{\circ}K$)

Heat Capacity: $C_p = 34.10$; A $H_{398.4}$ (transition) = 1010

$NH_4NO_3(\delta)$:

Enthalpy: $H_T - H_{298,15} = 45.601' - 13,337(0.1 \text{ percent };398.4^{\circ} - 442.8^{\circ}\text{K})$

Heat Capacity: $C_{\scriptscriptstyle D} = 45.60$

$NH_4NO_3(1)$:

Enthalpy: $H_T - H_{298,15} = 38.501' - 8887$ (0.1 percent; $442.8^{\circ} - 550^{\circ}$ K)

Heat Capacity : $C_p = 38.50$

Decomposition Temperature, °C:

210

Decomposition Products: These vary with the conditions of decomposition or explosion. Many different equations for the decomposition reactions are given in the literature. Practically all involve oxides of nitrogen.

For DTA see Refs. 33, 47, and Addnl. Ref. 10

Dissociation Pressure:

Press. mm. Hg.	3.25	7.46	11.55	15.80	<i>2</i> 7.0	41.0	M.P.	
Temp. °C	188	205	216	223	237	249	169.6	

See also Addnl. Ref. 3

Addnl. Ref. 11

1, 13

43

Ammonium Nitrate, NII, NO3 (page 3)

b. X-RAY CRYSTALLOGRAPHIC DATA

Designation	System	Space Group	а	b	c	Molecules/ Unit Cell
& or I	cubic		4.40			1
8 or II	tetragonal		5.75		5.00	2
y or III	orthorhombic	V_h^{16}	7.06	7.66	5.80	4
β or IV	orthorhombic	$\mathbf{V}_{\mathbf{h}}^{13}$	5.75	5.45	4.96	2
α or \mathbf{V}	rhombic	$\mathbf{V}_{\mathbf{h}}^{13}$	4.928	5.434	5.732	2

R.H.%	3	1	43		52		65		
	24hrs.	Equil.	24 hrs.	Equil.	24 hrs.	Equil.	24 hrs.	Equil.	32
Gain mg./g.	0.3	0.5	0.3	0.5	0.7	1.0	131.6		

Addnl. Ref. 7

13

1

Wa	ter	Alc	cohol	Nitrie Acid		eid Pyridine		Acetic Acid		
°C	%	°C	%	°C	$c_{\mathcal{C}}'$	%HNO _a	°C	%	۰C	. %
0	118			0	45.1	30.0	25	Approx.	16.6	0.0
20	192	20	2.5	15	73.0	21.7		20-25	<i>2</i> 7.0	0.39
40	297	40	5	30	10 6	20.8			80.9	5.8
60	421	60	7.5	75	201	31.6			101.0	20.7
80	580	78	10.5						120.0	125
100	871									

Solubility, g./100 solvent:

In ethyl alcohol at 20°C:

In methyl alcohol at 20°C:

In acetone and NH₃:

17.1 slightly soluble

3.8

Health Hazard: Average or large doses may cause nausea and vomiting. **Mod**erately toxic on ingestion or inhalation.

29, 93

29

Safety Classifications:

OSM: Class 12. "When stored in an area where explosives may be projected into the nitrates, the regulations for Class 9 are applicable. When stored in an area with fire hazards only and separated by inhabited building distances from areas containing ammunition, ammonium nitrate may be stored in accordance with the regulations governing the storage of Class 2 solid propellants."

ICC: Oxidizing material; yellow label.

Ammonium Nitrate, NH4NO3 (page 4)

Fire and Explosion Hazard: Many disastrous explosions have been attributed to ammonium nitrate. Although it is relatively insensitive as a high explosive by itself, if allowed to burn unconfined, its tendency to explode increases with pressure and the presence of oxidizable materials. Contamination with chlorides, nitrobodies, sulfur, charcoal, metallic nitrates, metal powders, petroleum derivatives and oxidizable carbonaceous materials sensitizes ammonium nitrate, accelerates its decomposition and increases the violence of the reaction. Zinc or lead contamination lowers the decomposition temperature to below 100°C. Galvanized metals and lead solder should, therefore, not be used in the vicinity of ammonium nitrate. Fires involving ammonium nitrate should be vented to the greatest possible extent because air acts as a diluent for the hazardous gases, minimizing the probability of explosion. Fires should be fought with large quantities of water but never with steam.

12, 30, 14

See also Addnl. Ref. 12

Electrostatic Sensitivity:		
Heat of Combustion, Kcal./mole:	$\mathbf{Q_c^v} = 50.3$ $\mathbf{Q_c^v} = 49.4$	Addnl. Ref. 8
Heat of Explosion, cal./g.:	346	13
gas volume, cc./g. :	980	
Heat arid Stability Tests:		
75°C International Heat Teat, % loss		
in 48 hours: 100°C Heat Test:	0.0	13
% loss first 48 hrs.:	0.74	13
% loss second 48 hrs.:	0.13	
explosion in 100 hrs.:	. none	
Vacuum Stability Tests, gas evolved in 40 hrs.		
at 100°, 120°, and 150°C:	0.3 cc.	13
Explosion Temperature Test, 5 sec. point, °C:	ignites at 465	13 .
Rifle Bullet Impact Test (at density of 1.2 g./ml.): unaffected in 100 trials	13
Sensitivity to Initiation, g. tetryl needed to initiate	0.25	13
Trauzl Test, % TNT:	56	13
Friction Sensitivity:	unaffected by steel shoe	13
Impact Sensitivity: Effect of temperature on grou	nd, C.P. Ammonium Nitrate.	13

Temp. °C	P.A. Impact Test with 2 kg. weight, in.	(10% point)
25	31	
75	28	
100	27	
150	27	
175	12	

Ammonium Nitrate, NH4NO3 (page 5)

Specific Heat: at °C	-150	-100	-50	0	50	100	13
cal./g./°C	0.189	0.330	0.364	0.397	0.414	0.428	

Compatibility with Metals: In the presence of moisture, ammonium nitrate reacts with copper, iron, steel, brass, lead, and cadmium. See Addnl. Ref. 1

Uses in Pyrotechnics:

as an oxidizing agent

Additional References:

- 1) "Military Explosives," **TM-9-T011A-1-34**, Departments of the **Army** and the Air Force (1955)
- 2) "Investigation of Sensitivity of Fertilizer Grade Ammonium Nitrate to Explosion," P. Macy et al., PATR-1658, Picatinny Arsenal, Dover, N.J. (1947)
- 3) "The Dissociation Pressure and Free Energy of Formation of Ammonium Nitrate," A. D. Little, Inc., J. Am. Chem. Soc. 76, (1954)
- 4) "On the Thermogravimetry & Analytical Precipitates," C. Duval and N. Xuong, Anal. Chem. Acta 6,246 (1952)
- 5) DTA and TCA, Ref. 33
- 6) Ref. 54V2, general reference
- 7) "Hygroscopic Properties of Sodium, Potassium and Ammonium Nitrates, Potassium Chlorate and Mercury Fulminate," G. B. Taylor and W. C. Cope, Met. and Chem. Eng. 15,141 (1916)
- 8) L. Médard and M. Thomas, Mém. poudres, 35,155,160 and 172 (1953)
- 9) "The Cryoscopic Heat of Fusion of Ammonium Nitrate," A. G. Keenan, J. Phys. Chem. 60,1356 (1952)
- 10) "Differential Thermal Analysis of the Thermal Decomposition of Ammonium Nitrate," A. G. Keenan, J. Am. Chem. Soc. 77, 1379 (1955)
- 11) "The Dissociation Pressure and Free Energy of Formation of Ammonium Nitrate," G. Feick, J. Am. Chem. Soc. 76,5858 (1954)
- 12) "Investigations on the Explosibility of Ammonium Nitrate," J. J. Burns et al., Bur. of Mines, RI 4994 (1953)
- 13) "The Thermal Decomposition of Ammonium Nitrate. Steady State Reaction Temperatures and Reaction Rate," G. Feick and R.M. Hainer, J. Am. Chem. Soc. 76, 5860 (1954)

AMMONIUM PER	CHL	ORAT	E, NH	l,ClO,			Refs.
Percent Oxygen: 54.47							
Specification No.: JAN-A-1%							
The specification covers two grawnich differ in grammation: grammation: grammation: grammation: grammation: grammation:	ides w ade 1 i	hich dif s used i	fer in p n tracei	urity ar	nd two d te 2 is t	classes ised in	
Molecular Weight:			117.5	30			1
Crystalline Form:			rham	bic		•	1
Color:			colorl	ess			1
Density, g./ml.:			(soli	d) 1.95			1
Coefficient of Thermal Expansion (cubica	1):	$\beta = 0$	(1/v)d\	7/dt		Addnl. Ref. 4
Temp. °F -25 0 25	50	75	100	125	150	175	1
$\beta \times 10^{4}$ °F 1.690 1.613 1.538	1.463	1.389	1.316	1.244	1.172	1.101	1
Heat of Formation, Kcal./mole at 2	98°K :		-69.4	2			9
Free Energy of Formation, cal./g.			-665				13
Entropy:	mole :		-78.1 	4			
Melting Point:			decor 42 8	nposes a	above 0°C)		20V3
Heat of Fusion:			decor	nposes l	oefore f	usion	
Boiling Fornt:				nposes			
Transition Point:			rhom 51 3	bic to ci	ubic (0°C)		9
Ref. 72 cities a to β at 284°C and	βtoγa	at 360°C) .				
See also Ref. 47							
Heat of Subilimation:							
Heat Content or Enthalpy: Heat Capacity:							
Decomposition Temperature and Pr perature at 150°C. Decomposit	oducts ion pro	s : Decor	mposes ire NO ₂	at a ma	nintaine O2.	d tem-	14
Decomposition begins at 130°C, becoming explosive at 380°C. The decomposition varies with the temperature. Below 300°C, decomposition is mainly according to the equation: 4NH ₄ ClO ₄ →2Cl ₂ +3O ₂ +8H ₂ O +2N ₂ O					65. Addnl. Refs. 5, 6, 7		
Above 350° the proportion of nitric oxide increases arid becomes appreciable. Above 350° the following equation represents decomposition: 10NH ₄ ClO ₄ →2½ Cl ₂ + 2N ₂ O +2½ NOCl + HClO ₄ + 1½ HCl + 18¾ H ₂ O +1¾ N ₂ + 68/02						cited by Ref. 72	
The activation energy for dec following are several values fo 240°C and 18.9 Kcal./mole abov is 73.4 Kcal./mole. For DTA see Ref. 47	r activ	ation er	nergy: 2	29.6 Kc	āl./mole	below	47

Ammonium Perchlorate, NH4ClO4 (page 2) Vapor Pressure: X-Ray Crystallographic Data: Space Group Molecules/Unit Cell System b rhombic Vie 9.202 5.816 7.447 Addnl. Ref. 8 9.13 5.17 7.47 4 Dig 97V7 9.231 5.813 7.453 4 My groscopicity: Gain, in mg/g, of a purified sample at equilibrium at 70°F, after equilibrium had been established in a vacuum desiccator: 32 R.H.% 65 75 86 93 0.5 0.5 0.4 0.8 Gain mg./g. 87.0% at 25°C Critical R.H.: Solubility: In water, g./100 cc. of saturated solution: 13 60 Temp. °C 0 25 100 Sol. 12 88 20 39 65, 77 Solubility in Nonaqueous Solvents at 25°C: Solvent g./100 g. solvent 2.26 acetone 0.032 ethyl acetate 1.908 ethyl alcohol ethyl ether insol. methyl alcohol 6.85 12,65 Health Hazard: Moderate. Irritating to skin and mucous membranes. Evolves highly toxic fumes when heated to decomposition. Moderately toxic on ingestion or inhalation. 93, 72 Weak muscular poison; may cause convulsions. Harmful to thyroid. Safety Classifications: OSM: Class I. Class II when not packed in original containers or equivalent. ICC: Oxidizing material; yellow label. Listed under "Explosives and Other Dangerous Articles." 12, 14 Fire and Explosion Hazard: A powerful oxidizer, explodes violently when heated with sulphur, organic matter, or finely divided metals, particularly magnesium and aluminum. Exploded by shock. Fires involving ammonium perchlorate alone may be fought with water. Electrostatic Sensitivity:

Addnl. Ref. 4

Specific Volume: $V_t = \mathbf{a} + \mathbf{b}t + \mathbf{c}t^2$

where $a = 0.5074 \, \text{cm} \cdot ^{8}/\text{g}$.

b = 0.819×10^{-4} cm. $^{8}/g./^{\circ}F$ c = 0.704×10^{7} cm. $^{8}/g./(^{\circ}F)^{2}$

Ammonium Perchlorate, NH4ClO4 (page 3)

Sensitivity: Requires the equivalent of 10 mg. of an XC-32. Very insensitive as an explosive but more and Mg perchlorates. Drop test—min.: 86 in. for a to severe friction. Heating small quantities does not The temperature developed on explosion is 1308°C 344.5 cal./g. Brisance: Trauzi lead block test, expansion in coone-quarter that of 40% N.G. dynamite. Velocity of Detonation, in 60 mm. diameter iron to five No. 8 caps: 3800 m./sec.	e aeneitive than Na, K, in 11-lb. wt. Insensitive tresult in an explosion and the heat liberated, :: 140.2, equivalent to	65, 72
100°C Heat Test Vacuum Si	tability Test	13
loss first 48 hrs. 6 0.02 cc. of gas evolved from loss second 48 hrs. 6 0.00 1.00°C explosion in 100 hra. none 120°C 150°C		
200-Gram Bomb Wand Test, g. sand crushed: 6.0		13
	uires 0.25 grams of etryl	13
Explosion Temp. in 5 sec., °C: 435	;	13
Temperature of Explosion, °C: (es	st.) 1084	72
Impact Sensitivity, 2-kg. weight:		13
Bureau of Mines app,, cm. (10% point): 67		
Picatinny Arsenal app., in. (10% point): 24		
Sample weight, mg.: 24		
Sensitivity to Friction: Bureau of Mines app., steel sho sion or ignition, one snap.	e; 100 trials—no explo-	72
Use in Pyrotechnics:	nn oxidizing agent	
Additional References: 1) "The Use of Differential Thermal Analysis for It of High Energy Radiation on Crystalline Amm Freeman and D. Anderson, J. Phys. Chem. 63,1	nvestigating the Effects onium Perchlorate," E. 1344 (1959)	
2) "Apparatus for Observing Physical Changes tures," V. Hogan and S. Gordon, Anal. Chem.	at Elevated Tempera- &, 573 (1960)	

- 3) "The Thermal Decomposition of Ammonium Perchlorate," L. Bircumshaw and B. Newman, Proc. Roy. Soc. A227, 115 (1954); also A227, 228
- 4) Report Q PR No. 492, Aerojet General Corporation, Sacramento, Calif.
- 5) L. L. Bircumshaw and T. R. Phillips, J. Chem. Soc. 2957, 4741 (1957)
- 6) "The Crystal Structure of Ammonium Perchlorate-NH,ClO,," K. Ven-Katesan, Proc. Indian Acad. Sci. 46A, 134 (1957)

ANTHRACENE, C.H. (Green oil, P-Napht)		Ref s.
Structural Formula:		1, 12
The specification covers a technical grade differ in granulation.	jAN-A-202 in two classes, a and b, which	
Molecular Weight:	178.22	
Crystalline Form:		L
Color:	colorless with violet fluorescence	29
Density, g./ml.:	(solid) 1.2 6	i
Coefficient of Thermal Expansion, eubical, over the range 20-180°C: $V_{t2} = V_t \left[1 + \alpha \left(t_2 - t_1 \right) + \beta \left(t_2 - t_1 \right)^2 \right]$ where $\alpha = 213 \times 10^{-6}$ and $\beta = 3.10 \times 10^{-7}$		Addnl. Ref. 4
Heat of Formation, Kcal./mole at 25°C at consta pressure:	nt 26,53	Addnl. Refs. 1, 2
Free Energy of Formation:		
Entropy, cal./deg./mole at 298.1°K:	49.6	
Melting Point:	` '	1
Heat of Fusion, cal. (15°/g.) at 216.55°C:		1
Boiling Point:		1 31A
Heat of Vaporization, Kcal./mole:	13.10	57V13
Transition Point:		
Heat of Sublimation:	<u>s</u>	
Heat Content or Enthalpy:		
Heat Capacity:	**	
Specific Heat:		
Temp. °K 94.4 124.8 193.2 254.4 297.2	20–100 20–210 liquid	57V13
cal./g. 0.95 0.117 0.177 0.238 0.278	0.312 0.3688 0.509	
Decomposition Temperature:		
Decomposition Products:		
Vapor Pressure:		
Press. mm. 1 10 40 10	0 400 760 M.P.	
Temp. °C 145.0 187.2 217.5 250	0.0 310.2 342 217.6	1

Anthracene, CoH4 (CH2)2CoH4 (page 2) X-Ray Crystallographic Data: Molecules/ System Space Group Axial Angle Unit Cell 57,85 Csh monoclinic $\beta = 125^{\circ}$ 8.58 6.02 11.18 2 2 $\beta = 124^{\circ}42'$ 8,561 6,036 11.163 Hygroscopicity: very slight 1 insoluble Solubility Data, g./100 ml. In water: In alcohol at 160°C: 0.076 at 78°C: 0.83 In ether: 1.189 In CHCla: 1.767 In CS2: 1.500 In benzene at 80°C: 7.5 12, 25, 93 Health Hazard: Purified white material is considered non-toxic. However, the impure technical product may be carcinogenic because of impurities present. Avoid repeated contact or inhalation of dusts or vapors. As a chronic local irritant it is considered severely toxic. 12, 26, 29, 67 Fire and Explosion Hazard: Burns when heated in air. Vapors may explode when ignited in air. Gives off acrid fumes. Reacts with oxidizing:materials. To fight fire, use water, foam, CO₂, dry chemicals, or CCl₄. Safety Classifications: OSM: not listed ICC: not listed Addnl. Ref. 3 Electrostatic Sensitivity: Anthracene dust clouds can be ignited and exploded by an electric spark. 29 Anthracene darkens on exposure to light. 1 Heat of Combustion, Kcal./mole at 20°C: 1700.4 75 250 Flash Point, °F (dosed cup): (open cup) 385 26, 75 Autoignition Temperature, **°F**: 881 Ref. 71 gives 472°C in air 67 Explosive Limits in Air, % by vol., lower: 0.63 Use in Pyrotechnics: as a fuel Additional References: 1) J. Am. Chem. Soc. 68,2527 (1946) 2) J. Am. Chem. Soc. 7'4,1451 (1952) 3) A, Van Dussen, Rec. trav. chim. 54,873 (1935)

4) W, Klem et al., Zeit. anorg. Chem. 176, 10 (1928)

ANTIMONY SULFI			· · · · ·	Refs.	
(Antimony Trisulfide, Antimo	•		•		
Stibnite, Antimonite, Needle		•	,		
Sulfuret of Antimony,	Antime	•	*		
Specification No.:		MIL	A-159		
Molecular Weight:		339.	72		
Crystalline Form:		rhon	nbic		
Color:		black	corred		
For color changes see Ref. 54V9					
Density, g./ml.:		(sol	id) 4.64	1	
Coefficient of Thermal Expansion:			-		
Heat of Formation, Kcal./mole at 25°C:	:	(c) (am	black, -43.5 or.) orange,-36 .0	1 1	
Free Energy of Formation, Keal./mole a	at 3 00° F				
(27°C) :		-66.	[*]	40V2	
Entropy, cal./deg./mole at 298.16°K:		(c)	39.6 30.3 ± 4.0	3 24	
Molting Point:		` '		1	
Melting Point: 823°K (550°C) Sinters in air at 440°C, melts at 510°C					
Heat of Fusion, 15° cal./g. at 540°C: 17.6					
Boiling Point: Volatizes above its melting	temner		d can be distilled with-	1 20V3	
out decomposition	, comper	atar c an	a dan ba angunia with	54V9	
Heat of Vaporization:			•		
Transition Point: See Ref. 54V9					
Heat of Transition, Kcal./mole:			et to black, 4.3 ige-red to black, 5.6	54V9	
Heat of Sublimation, Kcal./mole at M.P.	·, <u>-</u>	51.2	<u> </u>	24, 40V2	
Sublimation Temperature, °C:		380		54V9	
Heat Content or Enthalpy:			•		
Heat Capacity, cal./deg./mole at 298-82	1°K :	C. =	= 24.2 + 13.2T	24	
Decomposition Temperature: When heate verted to the oxide.				45	
Decomposition Products:		loses	s S ;takes up <i>O</i>		
Vapor Pressure:		-020	,		
Press. mm. about0.033	1.17	13.45	244	44V18B	
Temp. ¢C 400	500	650	850	111102	
X-Ray Crystallographic Data:					
System Space Group a	b	С	Molecules/Unit Cell		
	11.48	3.89	4	1	
$\begin{array}{ccc} \text{rhombic} & \textbf{V}_h^{\textbf{16}} & \textbf{11.39} \\ \text{orthorhombic} & \textbf{V}_{2h}^{\textbf{16}} & \textbf{11.23} \end{array}$	11.31	3.84	4	97V5	

Antimony Sulfide (tai), Sb ₂ S ₃ (page 2)				
Solubility Data:				
In water at 18°C:	$0.175 imes10$ 6 g./ml.	E		
In hot water:	decomposes			
In alk., NH, HS, K2S, HC1:	soluble			
in acetic acid:	insoluble			
Health Hazard: Irritates the skin and mucous metestinal upsets. A poison with symptoms sinervous depressant. Antimony poisoning is liver functioning.	milar to arsenic. A cardiac and	12, 21		
M.A.C. :	. 0.5	14, 17V7		
Safety Classification:				
OSM: Inert and presents no particular ordnance establishments.	Are or toxic hazard as used in			
See also Addnl. Refs. 1 and 2		12		
Fire and Explosion Hazard: Dangerous; when heated to decomposition or on contact with acid or acid fumes, it emits highly toxic fumes of oxides of S and Sb . It reacts with steam or water and produces toxic and inflammable vapors. Reacts vigorously with oxidizing materials such as chorates or perchlorates.				
Electrostatic Sensitivity:				
Use in Pyrotechnics: Antimony sulfide is used a color to burning compositions.	s a fuel. It imparts a pale green	20		
Additional References: 1) C.A. 42, 1711 (1948) 2) C.A. 65,9748 (1951)				

ASPHALTUM	Refs.	
(Gilsonite, Asphalt, Asphaltite,	17V2	
Uintate or Uintahite, Mineral	Addni Ref. 1	
Specification No.:	JAN-A-356	
Molecular Weight:	variable mined material, about 4250	Addnl. Ref. 1
Crystalline Form:	amorphous	
Color:	brown to black, leaves brown streak	
Pensity, g./ml.:	(solid) 1.05-1.10	Addnl. Ref. 1
Coefficient of Thermal Expansion, cubical:	5-7 × 10 ⁻⁴	l
Free Energy of Formation: Entropy:		
Softening Point, specification min.: Heat of Fusion:	398°K (125°C)	
Boiling Point:	< 743°K (470°C)	12
Transition Point:		
Heat of Sublimation:	<u> </u>	
Heat Content or Enthaipy:	Accordance of	
Heat Capacity:		Addnl. Ref. 1
Decomposition Temperature and Products: May		
Above this temperature an exothermic react evolution of gaseous products. Between 475 obtained. Vapor Pressure:	o and 650°F an oily distillate	
X-Ray Crystallographic Data:		
Hygroscopicity:	nonhygroscopic	
Solubility Data: Insoluble in water, alcohol, as petroleum, ether, and acetone. The specific		29
CC1 ₄ —99% min., petroleum ether—30% mie		
Heaith Hazard: Furnes or dust may irritate the ey	29, 93	
Moderately toxic , acute or chronic irritant.	1 2	
Safety Classifications:		
ŌSM:	not listed	
icc:	not listed	75
Fire and Explosion Hazard:	slight	75
Flash Point (closed cup) °F':	400 535	
(open cup) of: Autoignition Temperature:	905	1
To fight fire use form. CO _p , dry chemical]
of the transfer of the transfe	01 03.4	

Asphaltum (page 2)

Electrostatic Sensitivity:

Asphaltum is formed from petroleum as the result of heat and pressure working over geologic time. The type of asphalt called for in the specification is known as gilsonite or uintate and is found mainly in Utah and Colorado. Chemically, gilsonite consists mainly of saturated hydrocarbons substantially free from oxygenated bodies with little or no crystallizable paraffins. Gilsonite is marketed in two grades known as "selects" or "firsts" and "seconds." The "firsts" are from the center of the vein and have a lustrous conchoidal fracture. The "seconds" are from near the walls of the vein and show a semiconchoidal and semilustrous fracture. They are differentiated on the basis of softening point and behavior in petroleum solvents. Although gilsonite is a mined product it shows fairly uniform characteristics as follows:

conchoidal Fracture: bright to fairly bright Luster: Hardness on Moh's scale: Fusing point, Kramer and Sarnow 230-350 Method, °F: 270-400 Ball and Ring Method, °F: not less than 2 Volatile in 5 hrs. at 325°F, %: not less than 4 400°F, % : not less than 5 500°F, %: 19-20 Fixed Carbon, %: greater than 98 Solubility in CS2, %: 0-1Non-mineral matter, insoluble %: trace to 1 Mineral matter, %: 0 - 0.5Carbenes, % 10-60 Soluble in 88° petroleum naphtha, %: 8.5 - 10Hydrogen, %: 0.3 - 0.5Sulfur, %: Solid paraffines, %: 0-trace 85-95 Sulfonation residue, %: Saponifiable matter, %: trace Minimum Energy Required for Ignition of Dust Cloud by Electric Sparks, millijoules: 25 560 Ignition Temperature of Dust Claud, °C: 20 mg./l. 20 Minimum Explosive Concentration of Duet:

Use in Pyrotechnics: Asphaltum is used as a fuel and binder. It may act as a desensitizer and waterproofing agent.

Additional References:

- 1) "Asphalts and Allied Substances," H. Abraham, D. Van Nostrand Co., Inc., New York (1960)
- 2) "The Science of Petroleum." Vol. 4, A. E. Dunstan et al., eds., Oxford University Press, New York (1938)

Addnl. Ref. 1

26V1

26Vf 26V1

AURAMINE HYDROCHLORIDE

(4.4'-Dimethyliminobenzeneimide Hydrochloride.

Refs.

4,4'-bis (Dimethylamine) Benzhydrylideneimine Hydrochloride. Imido-tetramethyldiamidodiphylmethane Hydrochloride. 83 (No.425), 82, 48A Auramine O. C.I. 41000, C.L. Basic Yellow 2) Structural Formula: [(CH₈)₂NC₆H₆]₂ C:NH₂Cl or C₁₇H₂₂N₈Cl or $(H_aC)_2N-\langle$ $-C = \langle \overline{\cdot} \rangle N(CH_s)_s \text{ or } (H_sC)_s N \langle \overline{r} \rangle$ $=N(CH_a)_a$ ΝH, NH·HCl CI MIL-A-3664 (1962) Specification No.: 303.84 Molecular Weight: flakes Crystalline Form: 88V14 vellow Color: 0.35 ± 0.1 Apparent Density, g./ml.: spec. Coefficient of Thermal Expansion: Heat of Formation: Free Energy of Formation: Entropy: 88V14 Meiting Point: 540°K (267°C) Addnl. Ref. 1 538°K (265°C) Heat of Fusion: Boiling Point: Transition Point: Heat of Sublimation: Heat Content or Enthalpy: Heat Capacity: Decomposition Temperature: 52 Decomposition Products: The aqueous solution decomposes at about 70°C to NH₄Cl and tetramethyldisminobenzophenone (Michler's Ketone). Addnl. Ref. 2 The same reaction takes place in cold dilute acid. Increase in temperature and acidity increases the rate of hydrolysis. Vapor Pressure: X-Ray Crystallographic Data: Hygroscopicity: Solubility: 88V14 II slightly soluble In water and alcohol: In chloroform: readily soluble In ether or pyridine: almost insoluble

Hydrolized by hot water (see Decomposition Products)

Auramine Hydrochloride (page 2)

Wealth Hazard: Carcinogenic an chronic exposure, moderately toxic. The spec. requires that each container be labeled. "CAUTION: AVOID SKIN CONTACT. USE WITH ADEQUATE VENTILATION."

Safety Classifications

OSM:

not listed

ICC:

not listed

Fire and Explosion Hazard:

Electrostatic Sensitivity:

Use in Pyrotechnics: To produce yellow colored smoke.

Additional References:

- 1) J. Chem, Soc. 461 (1940) (also gives absorption spectra)
- 2) J. Am. Chem. Soc. 46, 2348 (1924); C.A. 18,3872 (1924)

33

92, 93

BARIUM CARI	BONATE,	BaCO ₃	ń	Refs.
(Wit	herite)			
Specification No.:	s 4 g	JAN-B-624	n	
Molecular Weight:	,	197.37		
Crystalline Form:		(witherite,)		1
Color:		white		1
Density, g./ml. :		(solid) 4.43 (witherite)		1A 31A
Coefficient of Thermal Expansion, cu	ibical:	2.33 × ID'		31
· ·			commercially)	
Heat of Formation, Kcal./mole at 29	8°K:	(c) -291.3	2,	1, 9
Free Energy of Formation, Kcal./mole	, at 298°K :	(c)-272.2		1, 9
Entropy, cal./deg./mole, at 298°K:		(c) 26.8		3, 7, 9
See table below				
Melting Point, at 90 atm.:		2013°K (176 fuses at 136; of CO ₂	40°C) 1°C with loss	1 52V1
Heat of Fusion:				
Boiling Point:		decomposes (1450°C) CO ₂	at 1723°K with loss of	22
Heat of Vaporization:		_		
Transition Point:		α 1079°K (8		4
		в 1241°K (9		
Heat of Transition, cal./mole:		α 4490 β	730 y	4
Heat of Sublimation:				
HEAT CONTENT AND		, in the second)	4
(Base, a-cryst	als at 298.1	5°K)		
cal./mole cal	S _{296,15} ./deg. nole	T, °K	H _T –H _{298,15} cal./mole	S _T - S _{208,15} cal./deg. mole
		100	27,060	39.17
		200	30,760	42.39
		241 (β)	32,270	43.62
· · · · · · · · · · · · · · · · · · ·		241 (y) 300	33,000 35,240	44.21 45.98
, , , , , , , , , , , , , , , , , , ,		400	39,040	48.79
		500	42,840	51.41
,		600	46,640	53.86
$1079 (\beta)$ 26,280 3	8.45			

```
Barium Carbonate, BaCO<sub>3</sub> (page 2)
                                    BaCO<sub>3</sub> (a):
Enthalpy: H_T - H_{299,15} = 21.50T + 5.53 \times 10^{-8}T^2 + 3.91 \times 10^{5}T^{-1} - 8213
                (0.5 percent; 2980 - 1079°K)
Heat Capacity: C_0 = 21.50 + 11.06 \times 10^{2} \text{ T} - 3.91 \times 10^{5} \text{ T}^{2}
                                    BaCO_3(\beta):
Enthalpy: H_T - H_{298.15} = 37.00T - 13,644 (0.1 percent; 1079° - 1241°K)
Heat Capacity: C_r = 37.00
                                    BaCO_{\bullet}(\gamma):
Enthalpy: H_{\tau} - H_{298,18} = 38.00T - 14,160 (0.1 percent; 1241 - 1600°K)
Heat Capacity: C_1 = 38.00
Decomposition Products:
     For pyrolysis see Ref. 45 and Addnl. Ref. 1
                                                         BaO + CO_2.
Decomposition Products:
Dissociation Pressure:
                                                                                        54V3
                                        120
                                                                      675
                                                                             760
                         5
                                 45
                                               240
                                                      340
                                                              450
     Press, mm.
                        1017
                               1057
                                       1097
                                              1137
                                                      1157
                                                             1177
     Temp. °C
                 997
                                                                     1197
                                                                            1200
     For Dissociation Pressure see also Addnl. Ref. 3
     Calculated Dissociation Pressures to BaO + CO<sub>2</sub> above 1079°K are given by
                                                                                        Addnl. Ref. 3
     \log P_{min.} = 13,075 + 7.668
                                                                                         52V1
Vapor Pressure of CO2 at 1100°C:
                                                         20 mm.
     At 1600°C the loss of CO<sub>2</sub> is complete
      See also Addnl. Ref. 2
X-Ray Crystallographic Data:
                                                                                         1
                   Space Group
      System
                                             b
                                                             Molecules/Unit Cell
                                                   C
                        V_h^{16}
      rhombic
                                     5.29 8.88 6.41
                                                                      4
Hygroscopicity:
                                                                                         1
Solubility Data: In 100 ml. water:
                                                            =0.002g. at 20°C
                                                              0.006g at 100°C
                                                           =0.0022 q. at 18°C
                                                              0.0065 g. at 100° C
     In acids, NH,Cl:
                                                         soluble
     In alcohol:
                                                         insoluble
Health Hazard: Poisonous. Irritates mucous membranes. It produces dermatitis
                                                                                        12, 29
```

0.5

and causes hemorrhages in the gastrointestinal tract and kidneys.

M.A.C., mg./m.3:

Barium Carbonate, BaCO₃ (page 3)

Safety Classifications:

. OSM:

ICC:

not listed not listed

Fire and Explosion Hazard:

to a burning composition.

none listed

Electrostatic Sensitivity:

Use in Pyrotechnics: BaCO₃ is used as a retardant. It imparts some green color 17

Additional References:

- 1) "Differential Thermal Analysis Studies of Ceramic Materials: Characteristic Heat Effects of Some Carbonates," M. Gruver, J. Am. Ceram. Soc. 33, 96 (1950)
- 2) G. Tammann and W. Pape, Zeit. anorg. Chem. 127, 50 (1923)
- 3) "Experimental Heat Contents of SrO, BaO, CaO, BaCO3 and SrCO3 at High Temperatures. Dissociation Pressures of BaCO₃ and SrCO₃," J. J. Lander, J. Am. Chem. Soc. 73, 5794 (1951)

BARIUM CHLORATE, Ba	(ClO ₃) ₂	Refs.
Percent Oxygen:	31.55	
Specification No.:	not listed	
Molecular Weight:	304.27	
Crystalline Form:		
Color:	colorless	
Density, g./ml.:	(solid) 3.856 at 24°C	2
Coefficient of Thermal Expansion:		1.4.0
Heat of Formation, Kcal./mole at 298°K:	(c)-181.7	LA, 9 14830
Free Energy of Formation, Kcal./mole at 298°K:	53.7	14830 144830
Entropy, cal./deg./mole at 298°K: Melting Point:	414	IA
Heat of Fusion:		
Boiling Point:		
Transition Point:	******	
Heat of Sublimation: Heat Content or Enthalpy:		
		
Heat Capacity of Ba (ClO_0) $_2$ • H_2O , cal,/deg./mole : $C_p = 50.6$ (289–320 °K)		4
Decomposition Temperature: Decomposition starts For DTA see Ref. 33	at about 300°C.	54V2
Decomposition Products: Vapor Pressure:	Ba (ClO ₄) ₂ +2O ₂	54V2
X-Kay Crystdographic Data for Ba (ClO ₃) ₂ ·H ₂ O:		
	Molecules/ Axial Angle :Unit Cell = 94° ± ½° . 4	Addnl. Ref. 2
See also Addnl. Ref. 1 Hygroscopicity:		
Solubility Data:		
En water (g./100 g. solvent):	20.35 at 0°C 84.8at 80°C	31
Health Hazard: Poisonous when taken by mouth. V		29, 14
skin, when inhaled as a dust, or when ingeste M.A.C., mg./m. ³	d. 0.5	12
Safety Classifications		
OSM: Class 1, in original container or equivalent.	alent. Class 2, not in origina	
ICC: Oxidizing material, yellow label. Li Other Dangerous Articles.	sted under Explosives and	
M.C.A.: Warning label required.		

Barium Chlorate, Ba(ClO ₃) ₂ (page 2)		1
Fire and Explosion Hazard: Considered mo Should be stored away from flammable and explosion.		14, 12
Electrostatic Sensitivity:		
Ignition Temperature, °C:	(5 second point) 506	33
Activation Energy, Kcal./mole:	45.7	33
Use.in Pyrotechnics:		
To impart a green color to burning comp	ositions, and as an oxidizing agent.	ĺ
Additional References:		

- 1) "Determination of the Structure of Metallic Chlorates by Infrared Spectroscopy," T. Dupuis, Compt. rend. 242, 2922 (1956). C. A. 50, 15,236 (1956)
- 2) "Unit Cell and Space Croup of Barium Chlorate Monohydrate," G. Kartha, Current Science (India) 20, 151 (1951). C. A. 46,4312 (1952)

	BARIU	M CHLORI	DE, BaC			Refs.
Specification No.			•	listed		·
Molecular Weight	t:		208	.27		
Crystalline Form	:		mo	noclinic		1A
Color:			cole	orless		1A
Density, g./ml.:			(so	lid) 3.856	at 24°C	1A
3	Den	sity of Molte	n BaCl ₂			
Temp. °C	964	975 1025	1050	1085	1100	44S30
Density	3.057 3	.052 3.015	3.108	3.087	3.076	
$D^t = 3.032 - 6$ Note: See re	0.00070 (t–10 efs. for addi	900) tional density	·	given by	the formula	
Coefficient of The 20-170°C:	ermal Expan	ision, cubic,	60	× 10⁻⁵		44330
Heat of Formati	on, Keal./mo	le at 298°K:	(c)	-205.66		1A, 6
Free Energy of Fo			°K : (c)	-193.8		1A, 9
Entropy, cal./deg			30			1A, 9
Melting Point, o	K :		123	5		9
Heat of Fusion,	Kcal./mole a	t 1235°K :	5.4			9, 24A
Boiling Point, oc	:		150	5 <i>0</i>		1A, 31A
Heat of Vaporiza	ation, Keal./	mole:	50. 57	0		24A 41
Transition Point,	monoclinic (α) to cubic β:		8°K ⊢930°C		1A, 9, 6 44S30
Heat of Sublima	tion, Keal./m	ole:	5.7			44330
Heat Content or	Enthalpy:		-		,	
Weat Capacity, o	cal./deg./mol	e: .	(so	lid) 18.0	at 25°C	
$C_0 == 17.00 +$	- 334 × 10 ³T	(estd., 298-11	98°K)			4
Decomposition T	emperature: mental temp		000°C	ė.		33
Decomposition P	_		W	0		
Vapor Pressure		: (وا				
Press, mm.	about 0.7	4.4	6.2	8.5	760	44830
Temp. °K	1342.9	1435.2	1465.9	1486.7	1835	. 4
X-Ray Crystallo	graphic Data System	: Space Group	a b	c	Molecules/ Unit Cell	
BaCl ₂ or	thorhombic	V _{2b}	9.333 7.85		4	18, 96, Addul.
Baci, Ji o vi		D.16	4.51 9.0		•	Ref. 1

Hygroscopicity:	slight	44530
Solubility Data : In H₂O, g./100 ml. :	31 at 0°C 59 at 100°C	81A
In HCl, HNO ₃ :	slightly soluble	
In alcohol:	insoluble	
Health Hazard:		
Extremely toxic. Fatal dose 0.8 to 0.9 g.		29
Safety Classifications:		
OSM:	not listed	
ICC:	not listed	
Fire and Explosion Hazard:	none listed	
Electrostatic Sensitivity:		8
Use in Pyrotechnics: BaCl, results from the b in the presence of chlorine compounds.	urning of some barium compounds	

•

Refs. BARIUM CHROMATE, BaCrO, 1, 11, 25 (Lemon Chrome, Ultramarine Yellow, Baryta Yellow Gelbin) Percent Oxygen: 25.26 Specification No.: MIL-B-550 The specification covers two grades; grade A is for use in delay and nongaseous powder, grade B for use in pyrotechnic mixtures. Molecular Weight: 253.37 Crystalline Form: rhombic 1 Color: 1 vellow Density, g./ml.: 4.498 44S30 sup Coefficient of Thermal Expansion (calculated from lattice constants), linear: Temp. Range °C 10-70 70-130 130-190 190-250 10-250 Coeff. \times 10⁵ 1.75 1.73 1.57 1.65 1.67 Heat of Formation, Kcal,/mole at 298°K: 1, 9 (c) - 341.3Free Energy of Formation, Kcal./mole at 298°K: -315.96 78 Entropy, cal./deg./mole at 298°K: 34.7 78 decomposes (see below) Melting Point: Heat of **Fusion**: decomposes (**see** below) Boiling Point: decomposes (see below) Transition Point: Heat of Sublimation: Heat Content or Enthalpy: Heat Capacity: Addnl. Ref. 1 Decomposition Temperature and Products: When heated, starts to lose weight at about 60°C. On further heating very slowly loses weight even up to 1015°C, at which point it is a mixture of the yellow chromate and green chromite. Even at this temperature the loss is less than 1%. Vapor Pressure: X-Ray Crystallographic Data: Hygroscopicity: Gain in weight (%) at 70°F of specification grade A material Relative Humidity, % 33 Exposure 90 52 75.8 hrs. 24 0.06 0.05 0.25 48 0.06 0.06 0.27 72 0.27 0.06 0.06 144 0.06 0.28 0.09168 0.06 0.09

41

0.0003416° and 0.0004428°

soluble

Solubility Data: In water, g./100 g.:

In mineral acids:

Barium Chromate, BaCrO ₄ (page 2)		
Heaith Hazard: Poisonous. Has a corrosive action branes. Produces dermatitis.		12, 29
The specification requires that all containers precautionary marking: "AVOID INHAI PROLONGED OR REPEATED CONTACT	ATION OF DUST. AVOID	
M.A.C. (as CrO ₃) for an 8-hr, day:	$0.1 \mathrm{mg./m.^3}$	14
Safety Classification:		
OSM:	class 2	
ICC :		
U.N. :	poisonous (toxic)	
Fire and Explosion Hezard: Emits highly toxic f which reacts vigorously with reducing mate Electrostatic Sensitivity:		12
Use in Pyrotechnics: Barium chromate is used impart a green color to a burning composit		17
Additional References: 1) S. Peltier and C. Duval, Anal. Chim. Additional References:	cta 1, 3 61 (1947)	

BARIUM NITRATE, Ba(NO₃)₂

(Nitrobarite)

Percent Oxygen:

36.73

Specification No.:

MIL-B-162B

The specification covers six classes that differ in purity and granulation. The following four classes are used in pyrotechnics:

Class 1, used in priming compositions (in two granulations);

2, used in photoflash compositions; 5, used in incendiary mixtures; 6, used in pyrotechnic compositions.

Molecular Weight:

261.38

Crystalline Form:

cubic

Color:

colorless

Density, g./ml.:

(solid) 3.24 at 23°C

Coefficient of Thermal Expansion, linear. -78° to $+15^{\circ}$ C :

 5×10^{-5}

Heat of Formation, Kcal./mole at 298°K;

-237.06

Free Energy of Formation, Kcal./mole at 298°K: - 190.0

Entropy, cal./deg./mole at 298°K:

9 9

1.9

1

1

1

44S30 sup

Refs.

HEAT CONTENT AND ENTROPY OF Ba(NO₃)₂(c) (Base, crystals at 298.15°K; mol. wt., 261.38)

T,°K	H _T -H _{298,15} cal./mole	S_T – S_{298,15} cal./deg. mole	T,°K	$H_{\tau} - H_{296,15}$ cal./mole	$S_T - S_{296,15}$ cal./deg. mole
400	3960	11.39	700	18,460	38.14
500	8410	21.30	800	24,070	45.62
600	13,240	30.10	850	27,020	49.20

$Ba(NO_3)_2(c)$:

Enthalpy: $H_2 - H_{298, 15} = 30.05T + 17.85 \times 10^{-3}T^2 + 4.01 \times 10^{5}T^{-1} - 11,891$ (0.2 percent; 298° - 850°K)

Heat Capacity: $C_0 = 30.05 + 35.70 \times 10^{-8}T - 4.01 \times 10^{5}T^{-2}$

Melting Point:

868°K

7, 9

9

Heat of Fusion, Kcal./mole:

6

9 1

Boiling Point: Transition.Point: decomposes

Heat of Sublimation:

Heat Capacity, cal./deg./mole at 298°K:

(solid) 36.1

See equation under table above

				_
Barium Nitrate, Ba	(NOS) 2 (page 2)			
Decomposition Tem For DTA see I For TAG see I	Refs. 33 and 47		555–600°C	Addnl. Ref. 1
Decomposition Prod	lucts:		evolves NO2 and O2	20V3
Vapor Pressure:				
X-Ray Crystallogra	phic Data:			
System	Space Group	а	Molecules/ Unit Cell	L
cubic	$\mathbf{T}_{\mathbf{k}}^{\mathbf{s}}$	8.11	4	
Hygroscopicity: Gain in mg./g.	at equilibrium at R.T. :	:	purified < 0.1 at 75% and 86% R.H. 0.6 at 93% R.H.	32
Solubility Data:				
In water (g ./10 In acids:	00 g.) at °C:		8.7 at 20°; 34.2 at 100° slightly soluble	1
In alcohol, conc	. nitric acid:		insoluble	
Health Hazard: M skin; produces trointestinal in	oderately poisonous. I dermatitis. When heat ritation.	rritates e ed evolves	yes, ears, nose, throat, and a toxic fumes. Produces gas-	93, 29, 12, 20, 50V7
M.A.C.			0.5	14
Safety Classification OSM: Class 1 ICC:		ed in origi	nal containers or equivalent. Oxidizing material; yellow label	
oxidizing agen	t it reacts vigorously result in detonation.	e fire haza when heat	rd is moderate. As a strong ted with reducing materials	12
Use in Pyrotechnic	•	used as a	n oxidizer, and to impart a	17
•	ium nitrate in a mois		container in a dry place to	
Additional Referen				

BARIUM' OXALATE,	BaC ₂ O ₄	Refs.
Specificat ran No.:	JAN-B-660	
. Molecular Weight:	225.38	
Crystalline Form:		
Color:	colorless	1
Density, g./ml.:	(solid) 2.658	1
Coedicient of Thermal Expansion:		ļ -
Heat of Formation, Kcal./mole at		
18°C(c) BaC ₂ O ₄ :	327.6	Addnl. Ref. 1
25°C (c) BaC ₂ O ₄ •½H ₂ O:	363.7	1
18°C (ppt.) BaC ₂ O ₄ •H ₂ O:	-397.37	1
25°C BaC ₂ O ₄ ·2H ₂ O:	-470.1	9
25°C BaC ₂ O ₄ • 3.5H ₂ O:	-575 . 73	9
Free Energy of Formation:		
Entropy:		
Melting Point:		
Heat of Fusion:	-	
Boiling Point:	decomposes	
Heat of Vaporization:	•	
Transition Point:		
Heat of Sublimation:		
Heat Content or Enthalpy:		
Heat Capacity:	74	
Decomposition Temperature:	loses CO above 846°C	46
Decomposition remperature.	-	46
Decomposition Products:	CO +BaCO _s	
Vapor Pressure:		
X-Kay Crystallographic Data:	·	
Hygroscopicity:	-	
Solubility Data: In water, g./ml. solvent:	0.0093 at 18°C	1
- 1 ATT 01	0.0228 at 100°C	
In acids, NH ₄ Cl:	soluble	
In alcohol:	insoluble.	
Health Hazard: Poisonous. Irritates eyes, nose, dermatitis.	throat, and skin. Produces	12, 29
Safety Classifications:		
OSM:	not specifically mentioned	
ICC:	not specifically mentioned	
U.N. :	class 6 (a)—poisonous toxic substance	();

Barium Oxalate, BaC2O4 (page 2)	
Fire and Explosion Hazard: Dangerous when heated to decomposition; emits toxic funes.	12
Electrostacic Sensitivity: Use in P3 rotechnics: As a retardant. Imparts some green color to burning compositions.	17
Additional References: 1) L. Médard, Mém. artillerie franç, 28, 467 (1954)	1

BARIUM OXIDE, Ba	0	Refs. 1, 11, 12, 29	
(Barium Moiroxide, Baryta, Barium Protoxide, Calcined Baryta)		1, 11, 12, 29	
Specification No.:	_		
Molecular Weight:	153.36		
Crystalline Form:	cubic or hexagonal	1	
Color:	colorless	1	
Density, g./ml.:	(solid) 5.72 (hex) 5.32	1	
Coefficient of Thermal Expansion:	3.0×10^{-1}	47	
Heat of Formation, Kcal./mole at 298°K:	(c) -133.4	1, 9	
Free Energy of Formation, Kcal./mole at 298°K:	(c)-126.3	1, 9	
a HEAT AND FREE ENERGY OF FOR	MATION OF BaO(c)	2	

a. HEAT AND FREE ENERGY OF FORMATION OF BaO(c)

(Mol. wt., 153.36)

T,°K	A H (cal./mole)	A F° (cal./mole)
298.16	-133,500(± 3000)	-126,500(± 3500)
400	-133,000	-124,000
533	-133,000	-121,500
600	133,000	-119,500
648	-132,500	-118,500
648	-133,000	–118,500
700	-132,500	-117,000
800	-132,500	-115,000
900	-132,500	-113,000
977	-132,000	-111,000
977	-134,500	-111,000
1000	-134,500	-110,500
1100	-184,000	-108,000
1200	-134,000	-106,000
1300	-133,500	-103,500
1400	-133,500	-101,500
1500	-133,000	–99,000 ¹ ∜
1600	- 133,000	-96 , 500 [°]
1700	-132,500	-94,500
1800	-132,500	-92,000
1900	-132,000	-90,000
1911	-132,000	-90,000
1911	-167,500	-90,000
2000	-167,000	-86,000

Rarium Oxide, BaO (page 2)

Phase Changes of Metal T.P.($\alpha \rightarrow \beta$), 648°K $\Delta H = 140 \text{ cal./g.-atom}$ M.Y. 977°K; $\Delta H = 2250 \text{ cal./g.-atom}$ B. P., 1911°K; $\Delta H = 35,660 \text{ cal./g.-atom}$

Free Energy Equations:

Reaction 1) Ba (α) $+ \frac{1}{2} O_2$ (g) = BaO (c)	Range of Validity, °K 298.16 to 648	2
$A F_{T}^{\circ} = -134,590 - 7.60T \log T + .87 (10^{-8}T^{2})$	+ .42 (10°T-1) + 45.76T	
2) Ba (β) + $\frac{1}{2}$ O ₂ (g) = BaO (c) A F _T = -134,140-3.34T log T56 (10 ⁻³ T ²) +	648 to 977 -,42 (10°T-1) +34.01T	
3) Ba (1) $\pm \frac{1}{2}$ O ₂ (g) = BaO (c) $\Delta F_{\uparrow}^{\circ} = -135,900 - 2.19T \log T56 (10^{-8}T^{2}) \pm \frac{1}{2}$	977 to 1911 42 (10 ⁵ T ⁻¹) + 32.37T	
4) Ba (g) $\pm \frac{1}{2}$ O ₂ (g) = BaO (c) $\Delta F_{T}^{\circ} = -176,400 - 8.01 \text{T log T}56 (10^{-8}\text{T}^{2})$	1911 to 2000 +.42 (10°T ⁻¹) + 72.66T	
Entropy, cal./deg./mole at 298°K:	(solid) 16.8 ± .03 (gas) 55.9 ± .5	1, 3, 9
See Tables b and c	(943) 55.7 12 10	
Melting Point:	2190°K (1917°C)	9
Heat of Fusion, Keal./mole:	13.8 ± 2.0	24
Boiling Point:	about 2273°K (2000°C)	1
Transition Point:		
Heat of Sublimation, cal./mole:	90,0	24
b. HEAT CONTENT AND	ENTROPY OF BaO (c)	4

T,°K	$\mathbf{H_T} - \mathbf{H_{298,15}}$ cal./mol \mathbf{e}	S _T - S _{298,15} cal./deg. mole	T, °K	$H_T - H_{298,15}$ cal./mole	S _T - S _{298,15} cal./deg. mole
400	1170	3.36	1300 ,	13,090	18.77
500	2380	6.07	1400	14,520	19.83
600	3660	8.40	1500	15,970	20.83
700	4980	10.43	1600	1 7,44 0 .	21.78
800	6300	12.20	1700	18,920	22.67
900	7620	13.75	1800	20,420	23.53
1000	8950	15.15	1900	21,930	24.35
1100	10,300	16.44	2000	23,450	25.13
1200	. 11,680	17.64			

(Base, crystals at 298.15°K; mol. wt., 153.36)

Barium Oxide, BaO (page 3)

BaO (c):

Entinality: $H_{T} - H_{208.15} = 11.79T + 0.94 \times 10^{8}T^{2} + 0.88 \times 10^{8}T^{-1} - 3894$

(0.5 percent ;298° -2000°K)

Heat Capacity : $C_1 = 11.79 + 1.88 \times 10^{-9} T - 0.88 \times 10^{8} T^{-2}$

c. HEAT CONTENT AND ENTROPY OF BaO (g) (Base, ideal gas at 298.15°K; mol. wt., 153.36)

т, °К	H _T -H _{298,15} cal./mole	S _T -S _{288,13} cal./deg. mole	<i>T,</i> ° K	$H_T - H_{298,15}$ cal/mole	S _T - S _{298,15} cal./deg. mole
400	820	2.36	1000 ,	5985	10.21
500	1650	4.21	1200	7750	11.82
600	2500	5.76	1400	9520	13.18
700	3365	7.10	1600	11,295	14.37
800	4235	8.26	1800	13,075	15.42
900	5910	9.29	2000	14,855	16.35

BaO (g):

4

41

29

29

12, 29, 50V7

Addnl. Ref. 1

Enthalpy: $H_{\tau} - H_{289,15} = 8.621' + 0.10 \times 10^{-3}T^{2} + 0.67 \times 10^{5}T^{-1} - 2804$

(0.3 percent; 298° -2000°K)

Heat Capacity: $C_p = 8.62 \pm 0.20 \times 10^{-8} \text{T} \pm 0.67 \times 10^{8} \text{T}^{-2}$

Decomposition Temperature: When heated in air at 450°C, it combines with 0 and forms BaO₂. On further heating 29

Decomposition Products:) above 600°C, BaO₂ loses **0** and reforms BaO.

Vapor Pressure: 0.00076 mm. at **1650°K**

For the range 900-1200°C: $\log P = -(19400/T + 8.69)$

X-Kay Crystallographic Data:

System Molecules/Unit Cell 1 cubic

Hygroscopicity: Absorbs water with formation of Ba(OH)₂ with evolution of much heat.

Absorbs moisture and CO₂ on exposure to air and forms BaCO₃.

Caution: Keep in tightly closed container,

Solubility Data: In water: 1.5 g./ml., decomposes 1 90.8 g./100 ml. at 80°C

In dil. acids, alcohol: soluble In CH,OH, C2H5OH: slowly soluble In NH₃, acetic acid: insoluble

Health Hazard: Poisonous. Irritates eyes, ears, nose, throat, and skin. Produces

dermatitis. Gastrointestinal irritant:

0.5 M.A.C. : 14 Barium Oxide, BaO (page 4)

Safety Classifications:

ŎSM:

ICC: U.N.: not specifically listed not specifically listed classified under "Poisonous (toxic) substances."

12

Fire and Explosion Hazard: Produces considerable heat on contact with water or steam. Some hazard by chemical reaction.

Electrostatic Sensitivity:

Use in Pyrotechnics: BaO is a product of the burning of many barium compounds.

Additional References:

1) C.A. 52, 3446 (1958)

BARIUM PERCHLORATE,	Ba(ClO ₄),	Refs.
Percent Oxygen:	38.06	
Specification No.:		
. Molecuiar Weight:	336.27	
Crystalline Form:	hexagonal	
Color:	colorless	L
Density, g./ml.:	(solid) (3H ₂ O) 2.74	19
Coefficient of Thermal Expansion:		
Heat of Formation, Kcal./mole at 298°K:	(c) -192.8	լ, 9
Free Energy of Formation:		20
Entropy, cal./deg./mole at 298.16°K:	57.7	36
Melting Point:	687°K (414°C) 778°K (505°C)	1 35
Heat of Fusion:		40
Boiling Point:	decomposes at 673°K (400°C)	12
	decomposes above 793°K (520°C)	Addnl. Ref. 1
Heat of Vaporization:		
Transition Points:	a to β at 557°K (284°C) β to γ at 633°K (360°C)	72
Heat of Sublimation:		
Heat Content or Enthalpy:		
Heat Capacity:		
Decomposition Temperature:	vigorous decomposition at 504°C	4 7
Decomposition Products: For DTA and TGA see Ref. 33	BaCl ₂ and O ₂	Addnl. Ref. 1
Vapor Pressure:		
X-Ray Crystallographic Data:		
System Space Group a b V_1^{16} 5.29 8.88	c Molecules/Unit Cell 6.41 4	1
Hygroscopicity:		
Solubility Data: In water, g./100 ml.:	198.5 at 25°; very sol. hot	65
Solubility in Nonaqueous Solvents, at 25°C		65, 77
Solvent	g./100 g. solvent	
acetone n-butyl alcohol	124.7 58.18	
ethyl acetate	58.18 112.9	
furfural (at 20°C)	43	
methyl alcohol	217.1	
n-propyl alcohol	75.65	

Barium Perchlorate, Ba(ClO ₄) ₂ (page 2) Health Hazard: Ba(ClO ₄) ₂ is poisonous, irritates the eyes, nose, throat, and produces dermatitis. It may affect the central nervous system and kidneys. Its harmful effects are mainly due to the barium ion. Gastrointestinal	12, 26, 29 50V7
Caution: Avoid skin contact. MAC.: 0.5	65 14
Safety Classifications: OSM: Class 1. Class 2 when not packed in original shipping container or equivalent. ICC: Oxidizing material, yellow label. Listed under "Explosives and Other Dangerous Articles." Fire and Explosion Hazard: Ba (ClO ₄) ₂ is dangerous because it may be exploded by shock, heat, or chemical reaction. It forms explosive mixtures with carbonaceous material, S, powdered Mg, and Al. It emits highly toxic fumes when heated. Fires involving perchlorates alone may be fought with water.	12, 14
Electrostatic Sensitivity: Used in Pyrotechnics: Ba(ClO ₄) ₂ is used as an oxidizer, and to give a green color to burning compositions.	17
Additional References: 1) C.A. 51, 2439 (1957)	

Æ,

BARIUM PERO	$XXDE_{1} \ BaO_{2}$	Refs
(Barium Dioxide, Barium Sup	eroxide, Barium Binoxide)	1,29
Percent Oxygen:	18.89	
Specification No.:	JAN-B-153 (1)	
The specification covers one grade a lation.	nd three classes that differ in granu-	
Molecular Weight:	169.36	
Crystalline Form:	powder	1
Color:	white to grey	1
Density, g./ml.:	(solid) 4.96	1
Coefficient of Thermal Expansion:		
Heat of Formation, Kcal./mole at 298°K	: -150.5	1, 9
Free Energy of Formation:		
HEAT AND FREE ENERGY OF FORMATION OF BaO ₂ (c) (Mol. wt., 169.36)		2

T, °K	Δ H (cal./mole)	A F° (cal. /mole)
298.16	-153,000 (± 6000)	-140,500(± 6000)
400	-153,000	-136,500
500	-152,500	-132,000
600	-152,000	-128,000
64 8	-152,000	-1 26,500
648	-152,000	-126,500
700	-152,000	-124,000
800	-151,500	-120,500
900	-151,00 0	-116,500
977	-151,000	-118,500
977	-153,000	-113,500
1000	-1 53,000	<i>-</i> 112,500
1100	-152,500	-108,500
1200	-1 52,500	-104,500
1300	-152,000	-100,500
1400	-151,500	-96 ,500
1500	-151,000	-92,500

Phase Changes of Metal T.P. $(\alpha \rightarrow \beta)$, 648°K; A H = 140 cal./g.-atom

M.P.,977°K; $\Delta H = 2250 \text{ cal./g.-atom}$

Barium Peroxide, BaO ₂ (page 2)		
Free. Energy Equations:		
Reaction Ra	nge of Validity, °K 2	
I) $Ba(\alpha) + O_2(g) = BaO_2(c)$ $\Delta F_T^c = -154,830 - 11.05T \log T + .87 (10^{-3}T^2) + .45$	98.16 to 648 2 (10°T 1) + 74.48T	
2) $Ba(\beta) + O_2(g) = BaO_2(c)$ $\Delta F_T^{\circ} = -154,380 - 679 T \log T56 (10^{-3}T^2) + .42 ($	18 to 977 (10 ⁸ T ⁻¹) +62.73T	
3) Ba(l) $+O_2(g) = BaO_2(c)$ A $F_T^0 = -156,140-5.64T \log T56 (10-8T^2) + .42$	77 to 1500 (10 ⁶ T ⁻¹) + 61.092'	
- · · · · · · · · · · · · · · · · · · ·	2) 18.6	
Melting Point: 72	23°K (450°C) 1	•
Hear of Fusion, Kcal./mole: 5.	7	
Boiling Point: lo	ses O at 1073°K (800°C) 1 ecomposes at 1110°K 8 (837°C) at 1 atm.	
Transition Point:	——————————————————————————————————————	
Hear of Sublimation:	<u> </u>	
Heat Content or Enthalpy:		
Heat Capacity:		
See Ref. 2		
	00 1	
Decomposition Products:		and Inl. Refs. , 2, 3
Vapor Pressure: Dissociation Press.: 76	60 mm. at 795°C Add	dnl. Ref. 1
Press. atm. 0.0149 0.0861 0.1855 0.94	.5 1,220 1,534 42V	7
Temp. °K 891.1 970.1 1010.1 1108.	.1 1126.1 1141.1	
X-Ray Crystallographic Data:		
System Space Group a c	Molecules/Unit Cell	
tetragonal O_{hh}^{17} 5.34 6.77	1	
D ₄ 7 5.39 6.85	4 97V	76
Hygroscopicity: Slowly decomposes in air and on conta with water to form BaO ₂ •8H ₂ O Gain in mg./g. at R.T. after equil. was established		
Reagent Grade:		
R.H. % 65 75 86	93	
24 hrs. 0.6 6.0 28.7	48.0	
Equil. 10 8.6 73.1	126.0	
In hot water:	ery soluble 1 ecomposes pluble; with decomposi-	
In acetone: in	tion forming H ₂ O ₂	

Barium Peroxide, BaO ₂ (page 3)	
Health Hazard: BaO ₂ is poisonous. It irritates the eyes, nose, and throat, and produces dermatitis. Gastrointestinal irritant.	29, 12, 50V
M.A.C.: 0.5	14
Safety Classifications:	
OSM : Class 1 Class 2 when not packed in original containers or equivalent.	
ICC: Oxidizing material; yellow label.	
Fire and Explosion Hazard: As an oxidizer it is dangerous when heated with reducing material; may result in detonation. Electrostatic Sensitivity:	12
Use in Pyrotechnics: BaO ₂ is used as an oxidizer and to impart a green color to burning compositions. It is used in igniter and tracer compositions.	17
Additional References:	
1) "The Decomposition of Barium Peroxide and the Reactivity of the Resulting Barium Oxide," J. A. Hedvall, Zeit. anorg. Chem. 104, 163 (1918); J. Chem. Soc. Abstracts 1919 ii, 26	
2) "Kinetics of the dissociation of Ba and Ca peroxides," M. M. Pavlyuchenco and Yu S. Rubinchik, C.A. 52, 19362 (1958)	
3) "Heating curves for the hydrates of the peroxides of the Group II metals." I. I. Vol'nov C.A. 52, 19384 (1958)	

BENZANTHRONE, C17H10O

Refs.

1

1

(7-oxo-7-benz(d,e)anthraquinone, 7-H-benz(d,e)anthracene-7-one, 7-meso-benzanthrone, Benzan B, Research Vat Golden Yellow GK)

Structural	Formula:	(0)1) (2) (2) (1)
		Λ

MIL-B-50074 Specification No.:

purity — minimum 77% water — maximum 1% The specification requires:

Molecular Weight: 230.25

Crystalline Form:

From alcohol or benzene: orthorhombic

Addnl. Ref. 3 F'rom nitrobenzene: needles

Color. pale yellow

Addnl. Ref. 3 Density, g./ml.: (solid) 1.371

Coefficient of Thermal Expansion:

Heat of Formation:

Free Energy:

Entropy: 447°K (174°C) Melting Point: 446.1°K (173.1°C) Addnl, Ref. 1

Heat of Fusion:

Boiling Point:

Transition Point:

Heat of Sublimation:

Heat Content or Enthalpy:

Heat Capacity:

Decomposition Temperature, °C:
For DTA and **TGA** see Refs. **80** and **81** about 426° (see below)

Decomposition Products:

Vapor Pressure: 40 100 200

Press. mm. 10 297.2 426.5 with decompn 350.0 390 Temp. °C 225.0

Benzanthrone	í	page	2)
	•	P3-	_,

X-Ray Crystallographic Data: Molecules/ Space Group Unit Cell System 15.00 5.07 14.57 orthornomic D₂ 4

18V III. Addnl. Ref. 3

For bond lengths see Addnl, Ref. 2

Hygroscopicity:

Solubility Data: at 20°C per 100 g. solvent,

0.52 0.61

29

benzene: chlorbenzene:

In toluene:

gracial acetic acid:

2.05 soluble

89V14 88V7 II

12•

In tetrachlorethane:

In con. H₂SO₄:

soluble, giving an orangered color with an olivegreen fluorescence

soluble

Health Hazard: Some, as indicated by the spec. requirement that "each container shall be conspicuously labeled: 'CAUTION—AVOID SKIN CONTACT; USE WITH ADEQUATE VENTILATION.' "

Fire and Explosion Hazard:

slight when heated;

emits smoke

Safety Classifications:

OSM: ICC:

not listed not listed

Electrostatic Sensitivity:

Use in Pyrotechnics: To produce a yellow color in smoke grenades.

Additional References:

- 1) "Freezing Point and Purity Data for Some Organic Compounds," C. R. Witschonke, Anal. Chem. 26, 563 (1954)
- 2) "Calculated Bond Lengths in Some Cyclic Compounds. Part II. Benzanthrone, Acedianthrone, and Flavanthrone," T. H. Goodwin, J. Chem, Soc. 1955,1689
- 3) "Cell Dimensions and Space Groups of Some Carbocyclic Compounds," H. C. Bayd et al., Acta Cryst. 7,142 (1954)

BLACK POWDER

(Gunpowder)

Black powder is an intimate mechanical mixture of potassium or sodium nitrate, charcoal, and sulfur. Willow or alder charcoal and flour of sulfur and 2-3% of water are well mixed in a tumbling barrel. This mixture is transferred to a wheel mill arid the desired amount of crystalline potassium nitrate and several percent of water are added. The mill is run for several hours to obtain a uniform mixture. During mixing the mixture is kept damp by the addition of water. The mixture is pressed at about 6000 psi and then broken up by passing between rolls. Broken pieces are screened into sizes and material of undesired size is reconsolidated and passed through rolls and screened. Material of acceptable size is then thoroughly dried in hot air ovens at about 60°C. The material may be polished before drying by rotating it in a tumbling barrel. After tumbling, the black powder is sieved and the fines removed.

Black powder is sensitive to friction, heat, and impact, and is very dangerous to handle. It absorbs moisture and deteriorates rapidly. If kept dry, it will retain its properties indefinitely. Combustible materials that have absorbed liquors leached from black powder are a severe fire hazard and may become explosive. Every safety precaution should be taken in black powder manufacture and operations.

Black powder has a composition close to the stoichiometric proportions needed to satisfy the equation:

$$2KNO_3 + S + 3C \rightarrow K_2S + 3CO_2 + N_2$$

in practice, the proportions may be varied slightly.

Formuia (specification): KNO₃, 74.0%

S, 10.4% charcoal, 15.6%

specification No.: JAN-P-223A

(all seven grades listed in the specification are used in pyrotechnics)

Crystailine Form: mechanical mixture

Color: black

Density, g./ml.: approx. 1.6, variable depending mainly on condi-

pending mainly on conditions of preparation

Decomposition Temperature: Exothermal preignition reaction starts at about 250°C and culminates at approximately 300°C (DTA and TGA curves).

Decomposition Products:

Hygroscopicity: Black powder is appreciably hygroscopic and is prepared and kept under conditions of low humidity so that its properties will not be adversely affected.

Temp. °C	R.H.%	Gain %
26	75	0.75
25	90	1.91
30	90	2.51

Refs.

13,50V6

14, 13

13

Addnl. Ref. 4

Black Powder (page 2)

```
. Explosion Data:
                                                                                    Addnl. Ref. 5
      Specific Volume at S.T.P., L/kg.:
                                                      285 (H<sub>2</sub>O gas)
      Explosion Temperature, °C:
                                                      2770
      Fieat of Explosion, Keal./kg.:
                                                      685 (H<sub>2</sub>() liquid)
      Characteristic Product (VaQ):
                                                      195,200
                                                                                   50V6
      The equation for the burning of black powder has been given as approxi-
      mateiv:
      74KNO_3 + 96C + 30S + 16H_2O \rightarrow 35N_2 + 56CO_2 + 14CO + 3CH_4 + 2H_2S
      +4H_2 + 19K_2CO_3 + 7K_2SO_4 + 8K_2S_2O_3 + 2K_2S + 2KSCN + (NH_4)_2 CO_8
      +C+S
      For other equations see Ref. 54V2
 Health Hazard:
                                                      none mentioned
 Safety Classifications:
      OSM: Class 9 (in charges or containers)
ICC: Class A explosive, not accepted for railway express. Black powder
              igniters with empty cartridge bags, classified class C explosives.
 Fire and Explosion Hazard: Black powder can be detonated by friction, heat,
      arid impact.
                                                                                    Addnl. Ref. 6
 Electrostatic*Sensitivity:
                                                       unconfined > 12.5 joules
      energy required to ignition:
                                                      confined
                                                                       0.8 joules
                                                                                    Following
 Impact Sensitivity, 2 kg. weight falling on 16 mg. sample:
                                                                                    dataonthis
      Bureau of Mines Apparatus, cm.32
                                                      (10% Point)
                                                                                    page from 13
                                      in. 16
      P.A. Apparatus,
                                                       (10% Point)
 Initiating Efficiency (min.wt. in grams required to initiate B.P.):
      igniter Composition K-31:
                                                       2.0
      Igniter Composition K-29:
                                                       2.3
  Friction Pendulum Test:
      Steel shoe:
                                                       snaps
      Fibre shoe:
                                                       unaffected
 Explosion Temperature Test: (0.02 g. sample in No. 6 copper detonating cap)
                               Seconds
                                             Temp. °C
                         0.1 (no cap used)
                                             510
                                              490
                          5
                                              427 ignited
                         10
                                              356
 .75% International Heat Test:
      Loss in 48 hrs., weight %:
                                                       0.31
  Vacuum Stability Tests, cc./hrs. on 5 g. sample:
                                                       100°C, 0.5
                                                       120°C, 0.9
  Sand Test, with 200 g. bomb and 0.4 g. sample of black powder:
       Grams sand crushed to pass 30-mesh screen:
      Sensitivity:
                                                       tetryl, 0.25 a.
  Ballistic Mortar, % of TNT:
                                                       50
```

Black Powder ('page 3)

Trauzl Test, % of TNT:	10
Detonation Rate, meters/sec. at density 1.6:	400
Heat of Explosion, cal./g.:	684
Gas Volume on Explosion, ec./g.	271
- · · · · · · · · · · · · · · · · · · ·	

Method of Loading:

1) loose (granulated)

2) pressed

Loading Density, g./cc. in thousands of psi:

_	psi	25	50	60	65	70	, 75
	Density	1.74	1.84	1.86	1.87	1.88	1.89

Method of Storage: dry

100° Vacuum Stability Test, cc. gas/40 hrs. from a 5 g. sample:

Initial value: 0.5
After 2 years at 65°C: 0.86
After 2 years at 65°C and 75% R.H.: 1.46

Compatibility with metals:

Dry-compatible with all metals when moisture content is less than 0.2%. Wet—attacks all common metals except stainless steel.

Destruction:

Black **powder** may **be** completely destroyed by leaching or washing with large quantities of water and disposing of the washings separately from the residue.

Use in Pyrotechnics: Black powder is used **as** an igniter powder, and in time rings (fuzes), fireworks, rockets, Roman candles, and firecrackers.

Additional References:

- 1) "Initiation, Burning and Thermal Decomposition of Gunpowder," J. Blackwood and F. Bowden, Proc. Roy. Soc. 213, 285 (1952)
- "Chemistry of Powder and Explosives," T. L. Davis, John Wiley & Sons, Inc., New York (1943)
- 3) Refs 52V4 and 54V2
- 4) "A Thermoanalytical Study of the Ignition and Combustion of Black Powder," C. Campbell and G. Weingarten, Trans. Faraday Soc. 55, 2221 (1959)
- 5) "Explosives," H. Brunswig, John Wilcy & Sons, Inc., New York (1912)
- 6) "Sensitivity of Explosives to Initiation by Electrostatic Discharges," F. W. Brown et al., U.S. Dept. of Interior, Bureau of Mines, R.I. 3852 (1946)

60

13

		Refs.			
Specification No.	. :		PAPD-451		
Molecular Weigh			10.82		
Crystalline Form			monoclinic c amorphou		1
Color:			yellow or b	rown	1
Density, g./ml.			(c) 2.34 (an 2.35	nor.) 2.37	1A 31A
Coefficient of The linear, 20–78	ermal Expansion (Company)	on,	17.4×10^{-6}	per °C	27
Heat of Format	ion, Kcal,/mole	at 298°K:	(gas) 97.2		1, 9
Free Energy of	Formation, Kc	al./mole at 298	3°K: (gas) 86.7		1, 9
Entropy, Kcal./r			(c) 1.40		5
			(gas-monat	omic)	
See Table a			36.65		5
Melting Point:			2313°K (20	037 ± · 37°C)	31A
Heat of Fusion,	cal /mole:		5300	,s, _ c,	5
Boiling Point: 4198°K (39275°C)				31A	
Heat of Vaporization, cal./mole: 128,000					5
Transition Point	t :		-		
Heat of Sublimation, cal./mole at 298°K: 141,000				5	
Heat Content or	4 • ·	/mole at 298°I	K: 292		5
See Tables			(III) a ca		
Heat Capacity, o	cal./deg./mole 2	it 298°K :	(solid) 2.63 (liquid) 7.5 (gas) 4.97		5.9
See equatio	ns under Tables	s a and b	(800) 7.5/		
•	a HEAT	CONTENT A	ND ENTROPY (15°K ; atomic wt.		4
T,°K	H _T -H _{298,15}	S _T -S _{298,15}	T,°K	H _T -H _{298,15}	S _T -S _{298,15}
	cal./mole	cal./deg. mole	•	cal./mole	cal./deg. mole
400	31.0 690 112 <i>D</i> 1600 212 <i>D</i> 267'0 3245 3845 4465 5100 5750 6410 7080	0.89 1.75 2.52 3.95 4.60 5.78 6.31 6.30 7.76 8.19	1700 1800 1900 2000 2100 2200 2300 (c) 2300 (1) 2400 2600 3000	7765 8460 9165 9880 10,605 11,340 12,080 17,380 18,130 19,630 21,130 22,630	8.61 9.00 9.38 9.75 10.10 10.45 10.78 13.08 13.40 14.55 15.07

Boron, B (page 2)

B(c):

Enthalpy: $H_T - H_{298,15} = 4.13T + 0.83 \times 10^{-8}T^2 + 1.76 \times 10^{5}T^{-1} - 1895$

(2.1 percent; 298° -2300°K)

Heat Capacity: $C_{\nu} = 4.13 + 1.66 \times 10^{-8} \text{T} - 1.76 \times 10^{8} \text{T}^{-2}$

B(I):

Enthalpy: $H_T - H_{208.16} = 7.50T + 130(0.1 \text{ percent}; 2300^{\circ} - 3000^{\circ}K)$

т,∘К	$H_T - H_{298,15}$ cal./mole	S _T – S _{298,15} cal./deg. mole	T, °K	H _T = H _{298.15} cal./mole	S _T - S _{298,15} cal./deg. mole
400	350	1.00	900	. 3160	5.40
500	785	1.97	1000	. 3840	6.1 2
600	1295	2.90	1100	. 4535	6.78
700	1870	3.78	1200	. 5255	7.40
800	2500	4.62			

B(amor.):

Enthalpy: $H_T - H_{298,15} = 3.34T + 1.98 \times 10^{-8}T^2 + 1.48 \times 10^{8}T^{-1} - 1668$

(1.1 percent;298° -1200°K)

Heat Capacity: $C_0 = 3.34 + 3.96 \times 10^{-8}T - 1.48 \times 10^{5}T^{-2}$

c. HEAT CAPACITY OF B

(Solid to 2300°K; liquid from 2800° to 3000°K)

T, °K	Cp (cal./deg./mole)
298	2.63
400	3.46
800	5.35
1200	6.27
1600	6.78
2000	7.20
2200	7.40
23003000	7.50

Decomposition Temperature:

Decomposition Products:

Vapor Pressure:

тарет ттеввате	-			_				
Press. mm.	10-8	10-6	10-4	10-2	1	10 ²	7 60	M.P.
Temp. °K	1650	1850	2100	2430	2930	3730	4200	2300

Boron, B (page 3)

&Ray Crystallographic Data:

SystemSpace GroupacMolecules/Unit Celltetragonal D_{2d}^{8} or C_{4v}^{4} 8.73A 6.0350hexagonal11.989.54180

See also Ref, 44\$13 sup

Hygroscopicity:

Solubility Data: In water:

insoluble (slightly soluble when freshly prepared)

18

1, 29

12, 25

12, 14, 16

In HNO₃, H₂SO₄: soluble In alc., eth., alk.: insoluble

Health Hazard: Boron is not highly toxic but it is a cumulative poison which affects the central nervous system.

Safety Classification:

OSM: Class 2 when not packed in original containers or equivalent.

Fire and Explosion Hazard: Boron dust is dangerous as it can ignite on contact with air and explode. It reacts with oxidizing agents and is a dangerous fire and explosion hazard. It bums with intense heat. In the presence of moisture hydrogen may be evolved. Therefore B should be stored in a dry atmosphere and in a properly vented building. Use only nonsparking took around B. To fight a fire use no water; use powdered graphite, dolomite salt, or other inert material. At about 600° it ignites and bums with brilliant green dame.

Electrostatic Sensitivity:

Use in Pyrotechnics: Boron is used as a component of non-gaseous fuze powders.

Additional References:

1) "Boron," J. A. Kohn et al., eds., Plenum Press, Inc., New York (1960) Proceedings of the Conference on Boron, sponsored by the Institute fo Exploratory Research, The U.S. Amy Signal Research and Development Laboratory, Rxt Monmouth, N.J.

	CA	ALCIUM, C	sa		į	Refs
Specification No. Molecular Weigh Crystalline For Color:	it:		(12056A (te 40.08 cubic silvery wh cut; tarnisl on exposur	ite when first	1 29
Density, g./ml.: Coefficient of Th	ermal Expansion	n, linear, 0–30 0 cubic, 0–2		(solid) 1.5 22 × 10⁴ 717 × 10 ⁴	5	1 36
Heat of Formati Free Energy of			8°K:	(gas) 42.2 (gas) 34.1		5 5
Entropy, cal./de		K :		(c) 9.95 ± (gas) 36.99	.10 9	3, 5 5
Melting Point:	,			1123°K (8	50°C)	4, 5
Heat of Fusion,	cal./mole:			2070 ± 80		4, 5
Boiling Point:				1765°K (1	492°C)	5
Heat of Vaporiz	ation, cal./mole	:		35,840		5
Transition Point	t :			a to β 713°	K (440°C)	4.5
Heat of Transit	ion, cal./mole:			270		4
Heat of Sublima	,			42,200		5
Heat Content or See Tables		mole at 298°K	⟨:	(did) 13	80	5
Heat Capacity, See data be		t 298°K:		(solid) 6.3 (liquid) 7. (gas) 4.97	40	4, 5
2		ONTENT AN crystals at 29			vt., 40.08)	PPI .
Т, °К	H _T - H _{298,18} cal./mole	ST-Szen.15 cal./deg. mole		r. •K	H _T - H _{298,18} cal./mole	$S_T - S_{294,15}$ cal./deg. mole
400	660	1.90		3 (β)	6825	10.39
500	1340	3.42		3 (l)	8895	12.23
600 700	2055 2800	4.72 5.87	120 130		94 6 5 10,205	12.72 13.31
713 (a)	2900	6.01	140		10,205	13.86
713 (\$)	3170	6.39	150		11,685	14.37
800	3850	7.29 .	160		12,425	14.85
900	4690	8.28	170		13,1 6 5	15.30
1000	5605	9.24	180	0	13,905	15.72
1100	6590	10.18	<u> </u>			

Calcium, Ca (page 2)

Ca(α):

Enthalpy: $H_T - H_{298,15} = 5.25T + 1.72 \times 10^{-9}T^2 - 1718$ (0.3percent; 298° - 713°K)

Heat Capacity: $C_p = 5.25 + 3.44 \times 10^{-9}T$

 $Ca(\beta)$:

Enthalpy: $H_T - H_{200,10} = 2.68T + 3.40 \times 10^{-9}T^3 - 472$ (0.1 percent; 713° -1123°K)

Heat Capacity: $C_p = 2.68 + 6.80 \times 10^{-3}$ T

Ca(1):

Enthalpy: $H_{T} - H_{288,15} = 7.40T + 585$ (0.1 percent; 1123° - 1800°K)

b. HEAT CONTENT AND ENTROPY OF Ca(g) (Base, ideal gas at 298.15°K; atomic wt., 40.08)

 $H_T - H_{298,15}$ $S_T - S_{298,15}$ T, °K Hr - H298:15 ST - S298, 15 T,°K cal./mole cal./mole cal./deg. cal./deg. mole mole 400 505 7965 9.21 1900 1.46 500 1005 8465 9.46 2.57 2000 600 1500 9470 9.94 3.48 2200 '703 10,490 10.39 1995 4.24 2400 800 2495 11,535 10.80 4.90 2600 900 11.20 2990 2800 12,615 5.49 1000 3490 3000 13,745 11.59 6.01 1100 3985 16,880 12.56 6.49 3500 1200 20,670 13.57 6.92 4000 4480 1300 25,250 14.64 4980 7.32 4500 1400 5000 15.79 5475 7.69 30,685 1500 6000 43,870 18.18 5975 8.03 1600 59,365 20.57 6470 8.35 7000 1700 6970 8000 76,140 22.81 8.65 1800 7465 8.91

4

Ca(g):

Enthalpy: $H_T - H_{208,15} = 4.97T - 1482$ (0.1percent; 298° - 2500°K)

Calcium, Ca (page 3)

c. HEAT CAPACITY OF Ca

Solid I from 298° – 713°K Solid II from 713° – 1123°K		Liquid from 1123° 1765°K Gas (mon) from 1765° 3000°		
T,°K	Co (cal./deg./mole)	T, °K	Co (cal./deg./mole)	
298	6.30	1200 to		
400	6.64	1700	7.40	
600	7.31	1800	4.99	
700	7.64	2200	5.06	
800	8.08	2600	5.30	
900	8.78	3000	5.80	
1000	9.49			
1100	10.18		a .	

Decomposition Temperature:

Decomposition Products:

DTA

Vapor Pressure:

Press. • •.	10	40	100	400	760	M.P.
Temp. °C	983	1111	1207	1388	1487	851

X-Ray Crystallographic Data:

System cubic Space Group a Atoms/Unit Cell 5.56

Hygroscopicity: Reacts with water `(much slower than does sodium) to form $Ca(OH)_2$ and hydrogen.

Solubility Data: In water: reacts to form Ca(OH)₂

and hydrogen

In acids: soluble

In alcohol: slightly soluble, with which it reacts slowly

In benzene, liquid NH₈, kerosene : insoluble

Health Hazard: caustic to all tissues

Safety Classifications: OSM:

OSM: not listed ICC: not listed U.N.: not listed

Fire and Explosion Hazard. The powdered Metal exposed to air is a dangerous fire hazard. It burns with intense heat and a crimson flame. When compounded with oxidizing agents the powdered metal is both a dangerous fire and explosion hazard. It is a strong reducing agent. Contact with alkali hy droxides or carbonates may cause detonation. Precautions should be taken to prevent water from contacting the material. Store and process it online rooms or buildings adequately vented at the highest point to preven

12, 14, 29

13

1

1, 29

1

Calcium, Ca (page 4)

accumulation of evolved hydrogen gas which results from the reaction of powdered metal and moisture. In the repair or maintenance of buildings or equipment, powder or dust should be removed and non-sparking tools used. CCl4 should not be used near calcium as an explosion may occur.

Electrostatic Sensitivity:

Use in Pyrotechnics: As a fuel and to impart a crimson color to burning compositions.

Addnl. Ref. 2

CALCIUM CARBONATE,	CaCO ₃	Refs.		
(Marble, Precipitated Chalk, Whiting, White Chalk, Prepared Chalk,				
Calcite, Drop Chalk, Paris White, English	White, Iceland Spar)			
Specification No.:	JAN-C-293			
Molecular Weight:	100.09			
Crystalline Form:	(aragonite) rhombic (calcite) hexagonal	1		
Color:	colorless	1		
Density, g./ml.:	(aragonite) 2.93 (calcite) 2.711	1		
Coefficient of Thermal Expansion, cubical, marble: Iceland Spar, 50-60°C: calcite, linear — parallel to axis, 0-85°C: perpendicular to axis, 0-85°C:	$0.3-0.6 \times 10^{-4}$ 0.1447×10^{-4} 25.14×10^{-6} 5.88×10^{-6}	1 1 1		
Heat of Formation, Kcal./mole at 298°K:	aragonite (c)-288.49 calcite (c)-288.45	1, 9		
Free Energy of Formation, Kcal./mole at 298°K:	aragonite (c)-269.53 calcite (c)-269.78	1, 9		
Entropy, cal./deg./mole at 298°K:	(aragonite) 22.2 ± 0.3 (calcite) 22.2 ± 0.2	3 3		
See Tables a and b	,			
Melting Point:	(aragonite) about 1098°K (825°C)	1		
(at 102.5 atm.)	(calcite) 1612°K (1339°C)			
Heat of Fusion, 15°g. cal./mole: Boiling Point:	12,700	7		
Transition Point:				
Heat of Sublimation:				
Heat Content or Enthalpy:	see below			
a. HEAT CONTENT AND ENTROPY Of (Base, crystals at 298.15°K; mol	l. wt., 100.09)	4		
TOW HH_A	пои н. н	Q Q		

T, °K	$H_T - H_{298,15}$ cal./niole	S _T - S _{298,15} cal./deg. mole	T,°K	$H_T - H_{298,15}$ cal./mole	S _T -S _{298.15} cal./deg, mole
400	2220 4610	6.38 11.71	900	15,500 18,430	27.61 30.7 0
600	7200 9890	16.13 20.57	1100	21,450 24,550	33,58 36.27
800	12,600	24.27			

Calcium Carbonate (page 2)

CaCO₃ (calcite):

Enthaipy: $H_T - H_{208,15} = 24.98T + 2.62 \times 10^{-8}T^2 + 6.20 \times 10^{5}T^{-1} - 9760$ (0.3 percent; 298° - 1200°K)

Heat Capacity : C,= $24.98 + 5.24 \times 10^{-8}\text{T} - 6.20 \times 10^{5}\text{T}^{2}$

T,°K	$H_T - H_{298,15}$ cal./mole	S_T - S_{298,15} cal./deg. mole	T, °K	$H_T - H_{298,15}$ cal./mole	$S_{T}-S_{298,15}$ cal./deg.
350	1050 2130 3260	3.24 6.13 8.79	500	. 5650	11.27 13.58 15.75
	Ca	CO₃ (aragonit	e):		
Enthalpy:H _r -(0.1 percent	$H_{298,15} = 20.13T$ at; 298° -600°K	+ _{5.12} ×10 ⁻³ 7	$T^2 + 3.34 \times 10^5 T$	⁻¹ - 7577	
Heat Capacity:	$C_{\nu} = 20.13 \pm 20$	$0.24 \times 10^{-3} \text{T} - 3$	$.34 \times 10^{5} \mathrm{T}^{-2}$		
Heat Capacity,	cal./deg./mole:		(aragonit (calcite)	e) 19.42 19.57	9
Decomposition	Temperature:		about 82 5	$\circ \mathbf{C}$	
	and C. Duval, A es CO₂ at 660°C		CaO. See also A		
Decomposition	Products: ciation Pressures	200 Dof #4379	$_{\text{CaO}}$ + $_{\text{Ce}}$	O_2	54V3
	=11,355/T -5.38		8		42V7
X-Ray Crystal	lographic Data :	:			1
	$\begin{array}{ccc} Space \\ System \\ rhomb. \end{array}$ $\begin{array}{ccc} Space \\ Group \\ V_h^{16} \\ D_{6d}^{4} \end{array}$		<i>c</i> Axial 5.72 5.72 a = 46°	Unit Cell 4	
Hygroscopicity	7:				
Solubility Dat		irated with Cols:	insoluble slightly s soluble w CO ₂		29
Health Hazard	l:Large doses r	nay cause con	stipation		29

Calcium Carbonate (page 3)

Safety Classifications: OSM: ICC: U.N.:

not listed not listed not listed

Fire and Explosion Hazard:

Electrostatic Sensitivity:

none

Use in Pyrotechnics: CaCO₃ is used as a retardant and antacid. It imparts a yellow-red color to burning compositions.

Additional References:

1) "Differential Thermal-Analysis Studies of Ceramic Materials: 1, Characteristic Heat Effects of Some Carbonates", R. M. Gruver, J. Am. Ceram. Soc. 33, 96 (1950)

CALCIUM NITRATE, Ca(NO ₃) ₂				
(Lime Sultpeter, Lime Nitrate, Nitro Calci	1, 11.16			
Percent Oxygen:	58.50			
Specification No.:	none			
Molecular Weight:	163.10			
Crystalline Form:	cubic	1		
Color:	colorless	1		
Density, g./ml.:	(solid) 2.36	1		
Coefficient of Thermal Expansion:				
Heat of Formation, Kcal./mole at 298°K:	(c) -224.0	1, 9		
Free Energy of Formation, Kcal./mole at 298°K:	(c)-177.34	1.9		
Entropy, cal./deg./mole at 298°K: See table below	46.2	1,4,9		
Melting Point:	834°K (561°C)	7?9		
Heat of Fusion, Kcal./mole:	5.1	9		
Boiling Point:	decomposes	1		
Heat or Vaporization:	-			
Transition Point:				
Heat of Sublimation:				
HEAT CONTENT AND ENTROPY ((Base, crystals at 298.15°K; mol. v		4		

T, °K	$H_T - H_{2t a.15}$ cal./mole	S _T -S _{298,15} cal./deg. mole	T,ºK	H _T - H _{298,15} cal./mole	S_{T} – $S_{298,15}$ cal./deg.
400	3960	11.42	700	18,410	38.01
500	8340	21.15	800	23,970	45.43
600	12 150	20.01	1	*	

		mole			mole
400	3960	11.42	700	18,410	38.01
500	8340	21.15	800	23,970	45.43
600	13,150	29.91			
		$Ca(NO_3)_2(c)$	1		
Enthalpy: H _T -H ₂₀₈	$_{0.15} = 29.37T$	$1 + 18.40 \times 10^{-3}$	$17^{2} + 4.13 \times 10^{5} T^{-1}$		
- 11,778 (0.3 pe					
Heat Capacity: C _p =	=29.37 + 36	$5.80 \times 10^{3}\mathrm{T} - 4.$	$13 \times 10^{5} \mathrm{T}^{2}$		
Heat Capacity, cal./	deg./mole:		\ (solid) 35.69)	9
See also equat					
Decomposition Tem	nerature :		480–500°C		Addni. Ref. 1
Decomposition Pro			11,0 1,00		11001111
For DTA and		ofe 33 and 47			
	TOM See N	sis. 33 and 41			
Vapor Pressure:					1

Calcium Nitrate, Ca(NO ₃) ₂ (page 2)	
X-Ray Crystallographic Data:	
System Space Group a Molecules/Unit Cell cubic T 6 7.60 4	1,97V7
Hygroscopicity: Deliquesces in moist air. Keep in tightly closed container.	29
Solubility Data: In water, g./100 ml. at °C: 102 at 0°, 341 at 25°, 376 at 100°	
In acids: very soluble In ethyl, acetate, and alcohol: soluble	29
Health Hazard: Large amounts taken internally are poisonous.	12
Safety Classifications: OSM: Class 1 ICC: Listed under "Explosives and Other Dangerous Articles." Oxidizing material; yellow label.	
Fire and Explosion Hazard: Ca(NO ₃) ₂ may explode when shocked, or by heat, flame, or chemical reaction. It is a strong oxidizing agent and reacts vigorously with oxidizable materials. Ca(NO ₃) ₂ emits toxic fumes on decomposition.	12
Electrostatic Sensitivity: Use in Pyrotechnics: Ca(NO ₃) ₂ is used as an oxidizer and to impart a yellow-red color to burning compositions.	1
Additional References: 1) C.A. 49, 12932 (1955)	

CALCIUM OXALATE, CaC ₂ O ₄ ·H ₂ O (Monohydrate)						Refs.
Specification No.:				JAI	N-C-628 .	
Molecular Weight:				146	.12	
Crystalline Form:				moi	noclinic	1, 5
Color:				colo	orless	1
Density, g./ml.:				(so	lid) 2.2	1
Coefficient of Thermal Ex	kpansi	on:		<u> </u>	<u>-</u>	
Heat of Formation, Kcal.	-		ζ:	-39	9.1	1
Free Energy of Formation	n, Kca	al./mole	at 298°K	: -36	0.6	1
Entropy, cal./deg./mole a				37.	28	1, 9
Melting Point:					es H₂O at 73° K (200°C)	1, 29
Heat of Fusion:						
Boiling Point:						
Transition Point:					_	
Heat of Sublimation:					_	
Heat Content or Enthalp	y:					
Heat Capacity, cal./deg./r	mole :			(so	olid) 36.40	9
Decomposition Temperatu	ire : T	GA				Addnl. Refs.
See pyrolysis curve l	aelow					1, 2, 3, 4 , 5
Decomposition Products: See pyrolysis curve to	Calciu	ım carbo	nate, cal	cium o	xide.	91
Dissociation Pressure for		0				91
To		P _{mm}	T°C	P _{mm} .		"
		8.2			_	
	78 88	8.2 80.0	410 416	250.0 587.0		
		134.0	418	684.0		
X-Ray Crystallographic I	Data :			00 1.0		
System	-	ce Group		C	Molecules/Unit Cell	
2½ H₂O tetragonal		C _{4h}	12.302			18V2
3 H₂O		Cap	12.376	7.377	4	85
Hygroscopicity:					_	
Soiubility Data:						
In water, acetic acid,	and al	cohol:			oluble	1
in acids:					uble	
Health Hazard: Corrosive mouth, esophagus. ar						12

Calcium Oxalate, CaC2O4. H2O (page 2)

Safety Classifications:

OSM:

not listed

ICC:

not listed

Firs and Explosion Hazard: Can be dangerous when heated to decomposition because of toxic fumes.

Electrostatic Sensitivity:

Pyrolysis Curves of Calcium Oxalate, Carbonate, and Oxide

Addnl. Ref. 1

Temperature °C

Use in Pyrotechnics: As a retardant and to impart a pink color to burning compositions.

Additional References:

- 1) "On the Thermogravimetry of Analytical Precipitates," **S.** Peltier and C. Duval, Anal. Chim. Acta **1,347** (1947)
- 2) E. S. Freeman and B. Carroll, J. Phys. Chem. 65,394 (1958)
- 3) Nature 178,324 (1956)
- 4) "Anhydrous Calcium Oxalate as a Weighing Form for Calcium," C. C. Miller, Analyst 78, 186 (1953)
- 5) C.A. 47, 5756 (1953)

CA	LCIUM OXIDE,	CaO	Refs.
(Lime, Burnt Lin	ne, Fat Lime, Quich	k Lime, Calx, Calcia)	
Specification No.:			
Molecular Weight:		56.08	
Crystalline Form:		cubic	1
Color:	•	colorless	1
Density, g./ml.:		3.346	1
Coefficient of Thermal Exp	oansion, cubical:	$5.0 imes10^{-7}$	31
Heat of Formation, Kcal./ See Table a	mole at 298°K:	(c) –151.9	9
Free Energy of Formation See Table a	_{l,} Kcal./mole at 2989	K: (c)-144.4	9
a. HEAT AND FRE	E ENERGY of fo	ORMATION OF CaO(c)	2
T, °K	H (cal./mole)	F° (cal./mole)	

T, °K	H (cal./mole)	F° (cal./mole)
298.16	-150,650 (± 400)	$-143,250 \ (\pm 500)$
400	-1 50,600	-140,600
500 600	-150,500 -150,450	-138,250 -135,800
	*	,
673	-150,400	-134 ,000
673	-150,500	-134,000
700	-150,450	-133,350
800	-150,400	-130,900
900	-1 50,300	-128,500
1000	-150,250	-126,050
1100	_1 50,200	-123,600
1124	-150,200	-123,050
1124	-152,45 0	-123,060
1200	-152,350	-121,050
1300	-152,200	-118,450
1400	-152,100 .	-115,850
1500	-1 51,950	-113,300
1600	-151,800	-110,700
1700	-151,650	-108,150
1760	-151,550	-106,650
1760	-188,150	-106,660
1800	-188,000	-104,800
1900	-187,550	-100,200
2000	-187,150	- 95,550

Phase Changes of Metal

T.P., 673°K; A H = 115cal./g.-atom

M.P., 1124°K ; A H == 2230 cal./g.-atom

B.P., 1760° K; A H == 36,600 cal./g.-atom

Calcium Oxide, CaO (page 2)

Free Energy Equations:

Reaction

Range of Validity, °K

2

9

4

1) Ca (a) $+\frac{1}{2}$ O₂ (g) == CaO (c) A F_T = -151,850-6.56T log T $+1.46 \times 10^{-8}$ T² $+0.68 \times 10^{5}$ T⁻¹ $+43.931^{\circ}$

2) Ca (β) + $\frac{1}{2}$ O₂ (g) = CaO (c) A F° = -151,730-4.14T log T + 0.41 × 10-8T² + 0.68 × 10⁵T⁻¹ + 37.63T

3) Ca (l) $\pm \frac{1}{2}$ O₂ (g) = CaO (c) 1124 to 1760 A F^o_T = -153,480 - 1.36T log T -0.29×10^{-8} T² $\pm 0.68 \times 10^{8}$ T⁻¹ ± 31.49 T

4) Ca (g) $+\frac{1}{2}$ O₂ (g) = CaO (c) 1760 to 2000 A F_T = -194,670-718 T log T - 0.29×10^{-8} T² $+0.68 \times 10^{8}$ T⁻¹ + 73.84 T

Entropy, cal./deg./mole at $298^{\rm o}K$:

(c) 9.5 (gas) 52.3

See Table b

b. HEAT CONTENT AND ENTROPY OF CaO (c) (Base, crystals at 298.15°K)

T. °K HT - H298, 15 ST-S298,15 T. °K $H_T - H_{298,15}$ $S_T - S_{298,15}$ cal./deg. cal./mole cal./deg. cal/mole mole mole 1100 3.17 1300 12,110 400 17.38 2230 1400 500 5.69 13,430 18.36 3400 1500 14,760 19.28 600 7.82 700 4600 9.67 1600 16,100 20.14 11.30 1700 **17,440** 20.96 800 **582**0 7040 12.73 1800 18,780 21.72 900 1000 8270 14.03 1900 20,130 22.45 23.15 9520 2000 21,480 1100 15.22 1200 10.800 16.34

CaO(c):

Enthalpy: $H_T - H_{298.15} = 11,67T + 0.54 \times 10^{-9}T^2 + 1.56 \times 10^{9}T^{-1} - 4051$

(0.3 percent ;298-2000°K)

Heat Capacity: $C_n = 11.67 + 1.08 \times 10^{-3}T - 1.56 \times 10^{5}T^{-2}$

						E -		
T,°K	H _T - H _{298,15} cal./mole	S_T - S_{298,15} cal./deg. mole	T, °K	H _τ - H _{298,15} cal./mole	S _T - S _{298,15} cal./deg. mole			
400	825	2.38	1000	6005	. 10.25			
500	1665	4.25	1200	7775	11.87			
600	2515	5.80	1400	9545	13.23			
700	3380	7.13	1600	11,325	14.42			
800	4250	8.30	1800	13,115	15.47			
900	5125	9.33	2000	14.910	16.42			

Calcium Oxide, CaO (page 3)

Enthalpy: H _r -1	CaO(g) $H_{298,15} = 8.70T + 0.08 \times 10^{\circ}$ 0.2percent; 298° - 2000°K)	: *T ² + 0.	74 × 10 ⁸ T ¹ - 2845	·
Heat Capacity : 6 Melting Point :	$C_{\nu} = 8.70 + 0.16 \times 10^{-9} \text{T} - 0$	$0.74 \times 10^{\circ}$		31A
C	Trans (mails :		2843°K (2570°C) 12	3 1 2 1 W
Heat of Fusion, Boiling Point:	Kcar./mole_		3123°K (2850°C)	31A
Heat of Vapora	zacion :		——————————————————————————————————————	JIA
Transition Poin	t:			
Heat of Sublima	ation:			
Heat Capacity,	cal./deg./mole : uations under Tables b an	4 4	(solid) 10.23	3 ·
	Temperature and Products			
Dissociation Pre	essure : $\log_{10}P_{mm} = 2.74/10$		(overthe	Addnl. Ref. 2
	e range, 1600-1750°K) e fs. 42V7 and 44B2 for add	itional v	alues	
X-Ray Crystallo				
System cubic	Space Group	<i>a</i> 4.797	Molecules/Unit Cell 4	1
Hygroscopicity	: Very hygroscopic. Combi	nes with	water to form Ca (OH).	
Keep contain	iners dry and tightly closed.			29 .
Solubility Data	In water, 0.131 at 10°C : 0.07 at 80°C :		reacts to form Ca (OH)	1
	In acids, glycerol:		soluble	
	In alcohol:		insoluble	
Health Hazard: an industri water.	Caustic reaction on skin ial hazard. Causes dermat	and resp itis. Tre	iratory system. The dust is at with large quantities of	12, 25, 29
Safety Classific	eations:			
OSM:			not listed	
ICC:			not listed	
U.N.:	IIa	D.	corrosive	12
	m, acids, or acid fumes.	erous. Pr	oduces heat on contact with	12
Use in Pyrotech	•	roduct o	f high temperature burning	
Additional Refe	erences :			
2 j "Vapor tures fr		f BaO, S ate of Ev 2 (1933)	rO and CaO, and Their Mix- aporation," A. Claassen and ; cited by Ref. 65	

CALCIUM P	PERCHLORATI	(AN	HYDF	ROUS), $Ca(ClO_4)_{\oplus}$	Refs.
Percent Oxygen:				53.56	
Specification No.:					
Molecular Weight:	•		238.99		
Crystalline Form:		cubic	1		
Color:				colorless	1
Density, g./ml.:					
Coefficient of Ther	mal Expansion:				
Heat of Formation Free Energy of Fo		8°K:		(estd.) –178	72
Entropy:					
Melting Point:				396°K (123°C)	65
Heat of Fusion:				<u> </u>	
Bailing Point':				decomposes	65
to about 683° K	iterature range from (410°C)	m less th	an 573	° K (300°C)	
Transition Point:					
Heat of Sublimation					
Hear Content of I	enthalpy:				
Heat Capacity:					23-
Decomposition Ter	mperature:			bubbling slight at 258°C , vigorous at 285°C	47
DTA and TGA	k, see Refs. 33, 47			vigorous ac 200°C	
Decomposition Pro	oducts:			CaCl ₂ + O ₂ with traces of CaO and Cl ₂	Addnl. Ref. 1
Vapor Pressure:					
X-Ray Crystallogr	aphic Data for Ca(ClO ₄) 2 • 3	H_2O :		
System	Space Group	a	c	Molecules/Unit Cell	
hexagonal	C_{6V}^4	7.71	5.42	2	65
Hygroscopicity:				deliquescent	1
Solubility Data:In	water:			188.6g./100 g. at 25°C very soluble in hot water	1
Solubility in C	organic Solvents at 2	25°C:			65, 72, 77
	Solvent	g./			
	acetone		ഖ.76		
	ethyl acetate		113.5		
	ethyl alcohol		166.2		
	ethyl ether		0.26		1
	methyl alcohol		237.4		I

Gleium Perchlorate (Anhydrous), Ca (ClO₄)₂ (page 2)

Health Hazard: CaClO₄ is a moderate irritant to the **skin** and mucous membranes. Avoid contact with skin. A weak muscular poison. It is not cumulative and not reduced in the **body**.

12, 65

12

Safety Classifications:

OSM: Class **2** when not packed in original containers or equivalent

ICC: Oxidizing material; yellow label. Listed under "Explosives and Other Dangerous Articles."

Fire and Explosion Hazard: CaClO₄ is a powerful oxidizer. It may cause fires or explosions when shocked or heated or by chemical action with reducing substances such as carbonaceous materials. It forms explosive mixtures with sulphur, powdered magnesium, and aluminum. It also emits highly toxic fumes when heated.

Electrostatic Sensitivity:

Use in Pyrotechnics: CaClO, is used as an oxidizer and to impart a yellow-red color to burning compositions.

Additional References:

1) C.A. 51, 2439 (1957)

Refs. CALCIUM PHOSPHIDE, Ca₃P₂ (Photophor) Specification No.: MTT-C-3539 The specification covers two types: Type A, uncoated, and Type B, coated with K₂Cr₂O₇. Both types are in the form of solid sticks or lumps ½ to 1 in. in diameter. The types differ in their rate of reaction with water. When immersed in sea water, Type A shall immediately produce a vigorous reaction with a strong bright flame while Type B is required to give a maximum evolution of smoke and flames at approximately 15 min. after contact with the water. The two types also evolve different amounts of gas for equal masses. Molecular Weight: 182,20 Addnl. Ref. 2 Crystalline Form: cubic Addnl. Ref. 2 Color: redish-brown, (solid) 2.51 at 15°C **31A** Density, g./ml.: Coefficient of Thermal Expansion: 1, 9 Heat of Formation, Kcal./mole at 298°K: (c)-120.5Free Energy of Formation: Entropy: 1,29 about 1873°K (1600°C) Melting Point: Heat of Fusion: Boiling Point: Transition Point: Heat of Sublimation: Heat Content or Enthalpy: Heat Capacity: Decomposition Temperature: Can be heated to 1250°C without decomposing but reacts with moist air. Reacts in air about 300°C and becomes incan-Addnl. Ref. 1, 54V8 descent. Decomposition Products: Vapor Pressure: X-Ray Crystallographic Data: Hygroscopicity: Decomposed on contact with water, evolving spontaneously flammable phosphine. **29**, Spec. see Hygroscopicity above Solubility Data: In water: 1 In acids: soluble In alcohol, ether, benzene: insoluble 12,93 Health Hazard: Dangerous, due to reactivity with water which evolves severely

Flammable solid; yellow label. Listed under "Explosives and Othei

not listed

toxic phosphine.
Safety Classifications:

Dangerous Materials."

OSM:

ICC:

Calcium Phosphide, Ca,P2 (page 2)

Fire and Explosion Hazard: Liable to spontaneous combustion. Dangerous when heated as it emits highly toxic fumes of oxides of phosphorus. May explode when heated by a flame. See Hygroscopicity.

Caution: Keep dry and tightly closed (for this reason it is packaged in soldered tins). Under these conditions no gas should be evolved.

Electrostatic Sensitivity:

Use in Pyrotechnics: As a fuel and to impart a yellow-red color to burning compositions or to produce smoke and flame.

Additional References:

- 1) "Phosphorus and Its Compounds," by V. Wazer, Interscience Publishers, Inc., New York (1958)
- 2) M. V. Stackelberg and R. Paulus, Zeit. Physik. Chem. 22B, 305 (1933)

15, 12, Addni. Ref. 1

29, spec.

Refs.

50V2

12[°]

Adanl. Ref. 1

32 (Table **14**)

Time	65% R.H.		75% R.H.		86%R.H.		93%R.H.	
	Stat.	Vac.	Stat.	Vac.	Stat.	Vac.	Stat.	Vac.
24 hrs.	14.0	8.3	11.5	14.1	25.4	19.0	27.1	23.4
1 week	12.8	12.1	13.0	12.5	23.2	25.6	23.9	27.5
30 days			14.1		27.7		30.9	

Solubility Data:

soluble in petroleum solvents

Calcium Resinate (page 2)

Health Hazard:

unknown

12

17

Safety Classification:

OSM:

not listed

ICC: Flammable solid: yellow label. Listed under "Explosives and Other Dangerous Materials."

Fire and Explosion Hazard: Slight; when heated it can react with oxidizing materials.

Electrostatic Sensitivity:

Use In Pyrotechnics: Calcium resinate is used as a retardant fuel, and binding agent. Imparts a yellow-red color to burning compositions. Use also as a waterproofing agent.

Additional References:

1) "A Comparative Study of the X-Ray Diffraction Patterns and Thermal Transitions of Metal Soaps," M. J. Vold and R. D, Vold, J. Am. Oil Chemists' Soc. 26,520 (1949)

CALCIIIM SILICIDE, CaSi ₂	Refs.
Specification No.: JAN-C-324	
The specification covers two grades which differ in purity and granulation. Grade I is used in smoke mixtures, and Grade II in both smoke mixtures and tracer compositions.	
and tracer compositions. Molecular Weight: 96.26	
Crystalline Form: glassy solid	l L
Color:	
Density, g./ml.: (solid) 2.5	1
Coefficient of Thermal Expansion:	
Heat of Formation, Kcal./mole at 298°K: (c)-36	1, 9
Free Energy of Formation: —— Entropy: ——	
Melting Point: 1493°K (1220°C) 1020°C	9 44, Addnl. Ref. 2
Heat of Fusion:	Ke1. 2
Roiling Point:	
Transition Point.:	
Heat of Sublimation:	
Heat Content or Enthalpy: Heat Capacity:	
Decomposition Temperature: Decomposition Products: Vapor Pressure:	
X-Way Crystallographic Data:	
System Space Group a Axial Angle Molecules/Unit Cell hexagonal D _{3d} 10.4 21°30′ 2	1
Note: The structure is characterized by layers of rings with six Si atoms	Addnl. Refs.
Note. The structure is characterized by layers of rings with six 31 atoms	2, 3
Hygroscopicity: See Solubility (in water)	
Solubility Data: In cold water: insoluble	1
In hot water decomposes according to the equation: $CaSi_2 + 6H_2O = Ca(OH) + 2SiO_2 + 5H_2O$	Addnl. Ref. 2
In acids and bases: decomposes	12
Health Hazard: Has caustic action irritating to the skin and respiratory system May cause dermatitis and irritation to the eyes and mucous membranes. (Treatment—wash with large volumes of water)	12
Believed to be nontoxic.	93

Calcium Silicide, CaSi₂ (page 2)

Safety Classification:

OSM:

not listed

flammable solid

Fire and Explosion Hazard: Dangerous by chemical reaction with oxidizers. When heated can burn or explode and emit toxic fumes. In contact with water may emit flammable silicon hydrides.

12, Addnl. **Ref.** 1

Electrostatic Sensitivity:

Use in Pyrotechnics: CaSi₂ is used as a fuel and to impart a yellow-red color to burning compositions. Used in igniter compositions for tracer projectiles.

17, Addnl. Ref. 4

Additional References:

- 1) E. Wöhler and E. Schiephake, Zeit. anorg. Chem. 151, 1 (1926)
- 2) "Silicon and Its Binary System," A. S. Birezhnoi (Translated from the Russian), Consultants Bureau, New York (1960)
- 3) H. Bohm and O. Hassel, Zeit. anorg. Chem. 160,162 (1927)
- 4) C.A. 49, 14326 (1955)

CALCIUM STEAR	Refs.	
Formula:	$Ca(C_{18}H_{35}O_2)_2$	
Specification No.:	JAN-C-263	
Molecular Weight:	607.00	
Crystalline Form:	crystalline powder	
See Addnl. Refs. 2, 3		
Color:	opaque, translucent after heating and cooling	Addnl. Ref. 4
Density:	·	
Coefficient of Thermal Expansion:		
Heat of Formation, Kcal./mole at 18°C:	$H_{v} = -662.6$ $H_{v} = -641.1$	Addnl. Ref. 1
Free Energy of Formation:		
Entropy:		
Melting Point:	452-453°K (179-180°C)	1
Heat of Fusion:		
Boiiing Point:	decomposes	1
Transition Point: Phase changes at 65 , 86 , 1 : . 150°C the stable phases are crystalline.	23 , 15 0, 19 5 and 350°C . Below	Addnl. Refs. 2, 3
Transition Temperatures and He	ats of Transition	
°C cal.	/mole	
89		
	9080	
152		
190 58		
89		
	430	
146		
187		
Note: Values vary with the source of the		
The 150-195°C phase is a liquid crystal. of 123-150°C produces an unstable crystal, l		Addnl. Ref. 2
results on quenching from above 150°C. Tech pure material but assumes the vitreous form midifficulty. Heat of Subiimation:		
Heat Content or Enthalpy: Heat Capacity:		
Decomposition Temperature, °C:	above 350	Addnl. Refs.
For DTA see Addnl. Ref. 4		2, 3, 4

٤,

Calcium Stearate (page 2)

Decomposition Products:

Vapor Pressure:

X-Kay Crystallographic Data:

For X-Ray Diffraction Data see Addnl. Ref. 5

Hygroscopicity:

Solubility Data: In water:

0.004 g./100 ml. at 15°C (not readily wetted)

In alcohol and ether:

In methyl acohol and toluol, g./100 g.:

toluol 0.03

insoluble

Temp. °C methyl alcohol 25 0.05 50 0.09 0.47 75 0.22 100 gelled*

*Ca stearate precipitated on cooling

Health Hazard:

none mentioned

Safety Classifications:

OSM:

not listed not listed

ICC: Fire and Explosion Hazard:

Electrostatic Sensitivity:

Use in Pyrotechnics: As a fuel and to impart a yellow-red color to burning com-

Additional References:

1) E. Médard, Mém. artillerie franc 28, 467 (1954)

positions. Also waterproofing, lubricating, and bonding agent.

- 2) "Polymorphic Transformations of Ca Stearate and Ca Stearate Monohydrate," R. Vold et al., J. Colloid. Sci. 3, 339 (1948)
- 3) "Crystal Forms of Anhydrous Ca Stearate Derivable from Calcium Stearate Monohydrate," M. Vold et al., J. Colloid Sci. 4, 93 (1949)
- 4) "Differential Thermal Analysis of Metal Soaps," G. Hattiangdi et al., Ind. Eng. Chem. 41,2320 (1949)
- 5) "Characterization of Heavy Metal Soaps by X-Ray Diffraction," R. Vold and G. Hattiangdi, Ind. Eng. Chem. 41, 2311 (1949)
- 6) "Aero Metallic Stearates," Am. Cyanamid Co., Bound Brook, N. J. (1960)

Addnl. Ref. 6

CARBON BLACK (DRY) and LAMPBLACK, C

(Cape Cod Black, Gloss Soot, Light Soot, Flame Soot, Flame Black, Furnace Black, Channel Black, and a wide variety of proprietary namee and numbers)

Specification No.: Carbon black (dry): Lampblack:

MILC-11403 TT-L-706

Carbon black is an amorphous, quasi-graphitic carbon obtained by burning gas, oils, tars, or other carbonaceous material in an insufficient amount of air to form a deposit of soot. By varying the process and the starting material, properties of the products can be varied considerably. Carbon black is usually one of the following types:

a) Animal charcoal, made by charring bones, meat, or blood.

- b) Gas black, furnace black, or channel black, made by the incomplete combustion of natural gas.
- c) Lampblack obtained by burning various fats, oils, and resins, under controlled conditions.
- d) Wood and vegetable charcoals.

Carbon blacks are very finely divided. Most individual particles are in the range of 13 to 274 m μ . As colloids, the particles are negatively charged and show the Brownian movement. Lampblack is amorphous but most carbon blacks are a mixture of the amorphous and crystalline forms. Carbon blacks have an enormous surface per unit mass and are very absorbent. The structure and pH can also be varied over a wide range. Carbon blacks thus find a wide variety of uses.

The individual fine particles are composed of several thousand crystallites. These are in parallel layers of carbon atoms arranged in hexagonal rings as in graphite, but in carbon black the symmetry is much less precise so that the carbon atoms in adjacent layers are rotated about an axis at right angles to their plane. The structure is similar to that of true graphite as the carbon rings are arranged roughly parallel and equidistant but otherwise completely random, and the dimensions within a layer are the same as in graphite. The layer is somewhat larger than in graphite. The effect of heat treatment is to increase the size of the parallel layer groups. On graphitization the material changes discontinually to the crystalline graphite structure. The usual carbon black is not finely divided graphite. Small angle scattering indicates the existence of clusters of a few hundred angstrom units in size. These clusters are measured by microscope units, by the electron microscope and by surface areas, rather than the much smaller parallel layer groups.

Molecular Weight:

12.011

Crystalline Form:

fluffy, amorphous powder

Color:

black

Density, g./ml.:

(solid) 1.8-2.1

16, 22, 29, 50V3

Refs.

Addnl. Refs. 4, 5, 6, 10, 11

Carbon Black, C (1	page 2)						
Coefficient of Thermal Expansion, linear: 0.65 × 10 ° see also Ref. 63						Addnl. Ref. 1	
Heat of Formation			_				
Free Energy of Fo	ormation:				_		
Entropy:					_		
Melting Point:				392 (5–39 7 0°1 3652–369	K, sublimes 7°C)	1
Heat of Fusion:							
Boiling Point:					3°K (420	00°С)	
Heat of Vaporizat	ion, cai./g	;, <u>I</u>		11,	.900		Addnl. Ref. 1
Transition Point:	on Worl'			135	 : 7		Addnl. Ref. 7
Heat of Sublimation	on, Kean/	moie -			3± 12		Addnl. Ref. 3
Heat Content or I	Enthalpy:				_		
Heat Capacity:							
Decomposition Te	mperature	:			_		
Decomposition Pro	oducts:			•			
Vapor Pressure:					-		
Press.mm.		04	20	120	240	760	Addnl. Ref. 8
Temp. °C		2375	2935	3250	3490	3700]
Press.mm.	243	327	380	509	608	760	Addnl. Ref. 9
Temp.°C	4015	4052	4801	4117	4137	4190]
X-Ray Crystallogi	aphic Dat	a :					
See Addnl. R	efs. 3, 4,	10.11					
		,					
Hygroscopicity:		,					
Hygroscopicity: Solubility Data:In			lkalies :	ins	oluble		1
	water, ac	ids, and a	Prolonge	ed interna	l use may	cause vitamin	1 12, 25, 29
Solubility Data : In Health Hazard : C	water, ac onsidered leficiency a	ids, and a	Prolonge	ed interna	l use may	cause vitamin	I -
Solubility Data: In Health Hazard: C and mineral of Safety Classification	water, ac onsidered leficiency a	ids, and a nontoxic. and inter	Prolonge fere with	ed interna digestion	l use may ı.	cause vitamin	1 -
Solubility Data: In Health Hazard: C and mineral c Safety Classification OSM: Atmo	water, ac onsidered leficiency a	ids, and a nontoxic. and inter	Prolonge fere with	ed interna digestion	l use may ı.		1 -
Solubility Data: In Health Hazard: C and mineral c Safety Classification OSM: Atmo	n water, ac onsidered deficiency a ons: ospheres co	ids, and a nontoxic. and inter	Prolonge fere with	ed interna digestion black are	l use may ı.		I -
Solubility Data: In Health Hazard: C and mineral c Safety Classification OSM: Atmo ous lo ICC: Fire ana Explosio	n water, ac onsidered leficiency a ons: ospheres co cations, cl	ids, and a nontoxic and inter ontaining ass 11.	Prolonge fere with carbon be when expe	ed interna digestion plack are not psed to he	l use may included t listed eat or flar	under hazard- me. Lampblack	I -
Solubility Data: In Health Hazard: C and mineral c Safety Classification OSM: Atmo ous lo ICC: Fire ana Explosio made by incor	n water, ac onsidered leficiency a ons: ospheres co cations, cl n Hazard: nplete con	ids, and a nontoxic, and inter ontaining ass 11. Slight values of the street of the	Prolonge fere with carbon be when exp	ed interna digestion plack are not psed to he um may h	l use may included t listed eat or flar eat spont	under hazard- me. Lampblack aneously when	12, 25, 29
Solubility Data: In Health Hazard: C and mineral c Safety Classification OSM: Atmo ous lo ICC: Fire ana Explosion made by incon freshly bagge	n water, ac onsidered leficiency a ons: ospheres co cations, cl n Hazard: mplete con d. It has g	ids, and a nontoxic, and inter ontaining ass 11. Slight valuation of great affirm	Prolonge fere with carbon to when expo of petrole- nity for li	ed interna digestion plack are not psed to he um may h quids and	l use may included t listed eat or flar eat spont heats sp	under hazard- me. Lampblack aneously when ontaneously on	12, 25, 29
Solubility Data: In Health Hazard: C and mineral c Safety Classification OSM: Atmoo ous lo ICC: Fire ana Explosion made by inconfreshly bagge contact with c	n water, ac onsidered leficiency a ons: ospheres co cations, cl n Hazard: mplete con d. It has g drying oils	ids, and a nontoxic, and interportaining ass 11. Slight valuation of great affing it should	Prolonge fere with carbon by when expe of petrole nity for li d be thor	ed interna digestion plack are not psed to he um may h quids and oughly co	l use may included t listed eat or flar eat spont heats sp oled befo	under hazard- me. Lampblack aneously when	12, 25, 29 12, 50V6

Carbon Black, C (page 3)

Explosibility of Lampblack:

Concentration	Max Press.	Avg. Rate of Press. Rise		86
(mg./l.)	(lbs./sq. in.)	(lbs./sq. in./sec.)	(lbs./sq. in./sec)	
100	10	13	119	

Addnl. Ref. 1

Addr.l. Ref. 2

Addnl. Ref. 1

Ignition Temperature, °C:

Carbon black (produced in reducing atmosphere) 535

Thermal carbon blacks: 449–485

Lampblack (oxidizing atmosphere): 352–362 Carbon blacks (natural gas): 313-324

Heat of Combustion (at constant volume), cal./g.:

Carbon amorphous: 8130 Carbon black (dried at 100°C): 7810

(degassed at 1000°C): 8270

Specific Heat at 25°C, g./cal./g.

Use in Purphysics: Lamphlack is used by the Chemical Corps as a pigme

Use in Pyrotechnics: Lampblack is used by the Chemical Corps as a pigment in protective coatings.

Additional References:

- 1) "Industrial Carbon," C. L. Mantell, D. Van Nostrand Co., Inc., Princeton, N. J. (1946)
- 2) L. Médard, Mém. artillerie franç, 28, 485 (1954)
- 3j "Ionization and Dissociation by Electron Impact, Methylene, Methyl and Methane," A. Langer et al., J. Chem. Phys. 22, 1836 (1954)
- 43 Chem. Eng. News 23,2078 (1945)
- 5) "Carbon Black," E. Cohan and H. Cohan, Vol. 5, pt 11, "The Science of Petroleum," B. T. Brooks and A. E. Dunstan, Eds., Oxford University Press, New York (1953)
- 6) J. D. Bernal, Proc. Royal Soc. 106A, 749 (1924)
- 7) E. Lindholm, C.A. 51, 6345 (1957)
- 8) A. Thiel and F. Ritter, Zeit. anorg. Chem. 132, 125, 153 (1923)
- 9) H.Kohn, Zeit, Physik 3,143 (1920)
- B0) "An X-Ray Study of Carbon Black," J. Biscoe and B. E. Warren, J. Appl. Phys. 23, 364 (1942)
- 11) "X-Ray Study of Carbon Black," B. E. Warren, J. Chem. Phys. 2, 551 (1934)

Refs. CARBON TETRACHLORIDE, CCI, (Tetrachloromethane, Benzinoform) Specification No.: O-C-141 1, 11 Marking: The Air Force requires that each package bear a label as follows: "Caution: Volatile poisonous solvent. Use with adequate ventilation. Avoid prolonged breathing of vapor. Avoid contact with skin." Molecular Weight: 153.84 Normal Color and Form: colorless liquid 1 (liquid) 1.595 at 20/4 1 Density, g./ml.: 1.63195 at 0/4°C Coefficient of Thermal Expansion, cubical, 0-76°C: 1, 3 1.236×10^{3} $V_{1} = V_{0} + 1.8384t^{-3} + 0.89881t^{-6} + 1.35135 \times 10^{-8}$ Heat of Formation, Kcal./mole at 298°K: 1, 9 (gas! -25.5(liquid)-33.3 (gas) -15.3 Free Energy of Formation, Kcal./mole at 298°K: 1, 9 (liquid) **-16.4** 1, 9 (gas) Entropy, cai./deg./mole at 298°K: 73.95 (liquid) 51.25 See table below 9 Melting Point: 250.3°K (-22.8°C) Heat of Fusion, Kcal./mole: 0.609 Boiling Point: 349.9°K (76.8°C) 9 9 Heat of Vaporization, Kcal./mole: 7.17 9 Transition Point: 225.5°K (-47.6°C) 9 Heat of Transition, Kcal./mole: 1.09 Heat of Sublimation: HEAT CONTENT AND ENTROPY OF CCI,(g) 4

T, °K	$H_T = H_{298,15}$ cal./mole	$S_T - S_{208,15}$ cal./deg.	T,°K	$H_T - H_{298,15}$ cal./mole	$S_T - S_{298.15}$ cal./deg.
400	2140	6.16	1000	16,570	27.99
500	4395	11.19	1100	'19,080	30.38
600	6740	15.4 6	1200	21,610	32.58
700	9150	19.17	1300	24,140	34.ഖ
800	11,600	22,45	1400	26,680	36.49
900	14,080	25.37	1500	29,220	38.24

(Base, ideal gas at 298.15°K)

Carbon Tetracl	nloride, C	Cl ₄ (page	2)					
Enthalpy: H _T -(Heat Capacity	0.3 percer	it; 298° – I	1500°K))-3T ² +4.		T 1 -8635	5	4
			X 10-1 ~	4.10 \ 10		04 47		4.0
Heat Capacity,	, cai./deg.	/mole :			(liquid) (gas)	31.47 19.96		4, 9
Decomposition of Cl accept Decomposition of metals.	otors, e.g., Products	metals an	d metal ox	ides.				Addnl. Refs. 2, 3, 4
Vapor Pressur								1
Press. mm.	1	10	40	100	400	760	M.P.	
Temp. °C	-50.0	-19.6	+ 4.2	23.0	57.8	76.7	-22.6	
X-Ray Crystal	lographic	Data:						
Interatom	ic Distanc	ces and M	Iolecular (Configur	ation:			
C-Cl, 1.76	$\mathbf{A} \pm 0.01$;	Cl-Cl, 2.8	$6 \pm .01$					85
Tetrahedr	al model c	onfirmed s	spectrosco	pically				55
Hygroscopicity								
Solubility Data bility m v with alcoi most solve	vater, 0.8 hol, etner	g./100 m	l. at 20°C	CCL is	miscible	in all pr	oportions	53V1
	form. It rous effect when takend its vapor 5 parts por Do not us	may cause s to kidner internal cors are toxer million se CCl, to closets. St	e death theys, liver, lly. Dermaic. in air for fight fire ore in airt	arough reungs, and atitis may an 8-hr. in unvenight drur	espiratory I the nerv result for work day tilated sp ns.	failure fous system from reperations.	, and can em. It can eated skin	12, 14, 29
Note: CC	-	ng is dete	ctable in i	tne blood	and urin	e.		
Safety Classif OSM:	ications.				nat lista	1		
TCC:					not listed			
Fire and Expl	s when he	ated to de			e, but its v	apor is	toxic. It is ghly toxic	12, 14, 29
Azeotrope: CO			pe with v	vater wh	ich boils	at 66°C	at 1 atm.	53\/2
and conta	14467 T. 1 . () ¥							

Carbon Tetrachloride, CCL (page 3)

Use in Pyrotechnics: CCl₄ is used as a noncombustible solvent and fire retardant in certain compositions.

- 1) Ref. 52
- 2) "Poisonous Gases from Carbon Tetrachloride Fire Extinguishers," A. C. Fieldner et al., J. Franklin Inst. 190, 543 (1920)
- 3) "Determination of Phosgene," A. C. Fieldner et al., Ind. Eng. Chem. Anal. Ed. 8, 20 (1936)
- 4) "Mass Spectrographic Study of the Species CS, SO, and CCl₂ Produced in Primary Heterogeneous Reactions," L. P. Blanchard and P. LeGoff, Can. J. Chem. 35, 89 (1957)

CASTOR OIL Reis. (Ricinus Oil, Oil of Palma Christi, Tangan-Tangan Oil, 1,29 Ricinus Communis) Formula: Castor oil is a natural product of somewhat variable composition. Specification No.: MIL-C-15179A (dehydrated) Castor oil is a light yellow to brownish oil obtained from the seed beans of the castor plant. When pure and fresh, it is nearly colorless and transparent. The hot pressed oil is brownish. Castor oil does not readily turn rancid, and is classed as a non-drying oil. Dehydrated castor oil must be made by the dehydration of castor oil and polymerization of the resulting product, without admixture of other oils. castor oil is a variable Molecular Weight: natural product pale yellow oil 29 Normal Color and Form: (liquid) 0.960-967 1 Density, g./ml.:: Coefficient of Thermal Expansion: Melting Point: turbid at 261°K (-12°C), 1 solid at 255-256°K (-17 to -18°C) Boiling Point: 586°K (313°C) 12 Decomposition Temperature: Decomposition Products: Vapor Pressure: Hygroscopicity: 29 Solubility Data: Miscible with absolute ethyl alcohol, methanol, ether, chloroform, glacial acetic acid. Health Hazard: slight, used medicinally Safety Classifications: OSM: not listed ICC: not listed Fire **and** Explosion Hazard: combustible Flash Point, °F: 445 (closed cup); 75 545 (open cup) 75 Autoignition Temperature, °F: To fight fire: use foam, dry chemical, 95 CCl, or water Electrostatic Sensitivity: Use in Pyrotechnics: Castor oil is used as a fuel, as a waterproofing and bind. 17 ing agent, and to reduce sensitivity to friction. See Addnl. Refs.

Castor Oil (page 2)		
Castor oil composition, %:		16
diglycerides of ricineleic acid:	80-86	29
oleic acid;	7–9	
linoleic acid:	3-3.5	
stearic acid:	0.3	
dihydrostearic acid:	0.6-1.8	
tocophorol:	about 0.05	
Castor oil is dextro rotary and has the following	g characteristics:	
Refractive index:	$n_D^{25} = 1.473 - 1.477$ $n_D^{40} = 1.466 - 1.473$	
Viscosity at 25°C, poises:	6–8	
Surface tension at 20°C, dynes/cm.:	39.0	
80°C, dynes/cm.:	35.2	
Acid value:	0.12-0.8	1
Saponification value:	175–183	
Iodine value (Wijs):	84	
Reichert Meissl number:	1.4	
Maumené number:	46-47	
Acetyl vaiue:	146-150.5	
Unsaponifiable matter:	0.6	
Specific heat, cal./g., at 40°C:	0.52	50 V6
at 200°C:	0.59	
Additional References:		
1) "Explosives, Matches, and Fireworks," J. 1	Dailly The University Press	
. Cambridge, England (1938)	xemy, the omversity 1100	
2) "Fats and Oils," H. G. Kirschenbauer, Rei	nhold Publishing Com New	
York (1944)	amora ruonshing Corp., 110	

CHROMIC ACID, CrO₃ Refs. Addnl. Ref. 8 (Chromic Trioxide, Chromic Anhydride, Chromium (VI) Oxide, Red Oxide of Chromium) Percent Oxygen: 48.00 Specification No.: (for technical grade) 0-C-3038 Molecular Weight: 100.01 Crystalline Form: rhombic IA 1A, 54V2 Color: red (color darkens with rise in temperature and is restored on cooling) Density, g./ml. : (solid) 2.70 1 A Coefficient of Thermal Expansion: Heat of Formation, Kcal./mole at 298°K: -142.1 ± 1 Addnl. Ref. 7 -138.5 ± 2.5 24A Addnl. Ref. 8 gives literature values from -140 to -147 Free Energy of Formation at 298°K: -120.26 2 BEAT AND FREE ENERGY OF FORMATION, CrO₈(c) A H (cal./mole) A Fo (cal./mole) $-140,000(\pm 3000)$ $-121,000 (\pm 3500)$ 298.16 -114,500 400 -139,000471. -139.000-110,000-110,000 471 -135,000500 -134.500-108,500600 -133,000-103,500 (solid) 17.5 17.2 \pm 2.5 Entropy, cal./deg./mole at 298°K: 24A Free Energy Equations: Peaction 1) Cr (c) $+\frac{3}{2}O_2$ (g) = CrO₃ (c) Range of Validity, °K 2 298.16to 471 $A F_{\circ}^{\circ} = -141.590 - 13.82 T \log T + 103.90 T$ 2) $Cr(c) + \frac{3}{6}O_2(g) = CrO_3(1)$ 471 to 600 $\Delta F_{\pi}^{\circ} = -141,580 - 32.24 \text{T log T} + 153.14 \text{T}$ 1A, 31 Addnl. Ref. 8 19€ Melting Point, °C: (with decomposition) 19% 2 3.77 Heat of Fusion, Kcal./mole 1A Boiling Point, °K: decomposes Heat of Vaporization: Transition Point: Heat of Sublimation: Heat Content or Enthalpy: Heat Capacity:

Chromic Acid, CrO ₃ (page 2)		
Decomposition Temperature: For TCA see Addnl. Ref. 9 For DTA and TGA see Refs. 33 and 54V2	above 230°C	29
Decomposition Products	$\begin{array}{c} \operatorname{Cr_3O_8,\ Cr_2O_5,\ CrO_2,} \\ \operatorname{Cr_2O_3} + \operatorname{O_2} \end{array}$	54V2 Addnl. Refs. 4, 6
Vapor Pressure: X-Ray Crystallographic Data:	_	·
System Space Group a b orthorhombic D_{26}^{16} 5.70 \pm 0.05 8.46 \pm 0.	Molecules/ c Unit Cell 03 4.77 + 0.03 4	Addnl. Ref. 5
Hygroscopicity:	deliquesces above 35% R.H.	Addnl. Ref. 3
Solubility Data:		
In water:	166 g./100 ml. at 15°C and 206.7 at 100°C	1A
In ether, alcohol, H ₂ SO ₄ :	soluble	29, 12
Health Hazard: Extremely toxic. Local irritant and cutaneously in dogs) 330 mg./kg. Concentrated titis and local ulceration. Inhalation causes irr respiratory tract. Ingestion may cause naused damage, and death. Caution—not for internal use.	solutions may cause derma- itation to nasal mucosa and	20, 52
Safety Classifications: OSM:	not anacifically mantioned	
ICC:	not specifically mentioned oxidizing material, yellow label	
M.C.A.:	warning label required	
Fire and Explosion Hazard: Dangerous; may oxid explosive violence. Contact with combustible evolution of highly toxic fumes.		12, 29
Foamite is ineffective against a chromic acid own oxygen. Carbon tetrachloride should no fire. Water is the only effective agent.		Addnl. Ref. 3
Use in Pyrotechnics:	as an oxidizer	
Additional References:		
 "Preparation of Ferromagnetic Chromit Phys. Soc. Japan 15,1706 (1960) (See note below) 	ım Dioxide," B. Kubota, J.	
2) "Decomposition of Higher Oxides of Chr sares of Oxygen." B. Kubota, J. Am. Cern	romium under Various Pres- n. Soc. 44,239 (1961)	

Chromic Acid, CrO₃ (page 3)

Note: Both references above discuss the thermal decomposition of CrO_3 under high oxygen pressure resulting from the oxygen liberated from CrO_3 itself.

- 3) "Chromic Acid in the Metal Finishing Industry," Diamond Alkali Co., Cleveland, Ohio (1953)
- 4) "The Products of Thermal Decomposition of Chromium Trioxide," R. S. Schwartz et al., J. Am. Chem. Soc. 74,1676 (1952)
- 5) "The Crytal Structure of Chromium Trioxide," A. Bystrom and K. A. Wilhelmi, Acta. Chem. Scand. 4, 1131 (1950). C.A. 45,3679 (1951)
- 6) C.A. 45,21319 (1959)
- 7) "The Heat of Formation of Ammonium Dichromate," C. A. Neugebauer and J. L. Margrave, J. Phys. Chem. 61, 1429 (1957)
- 8) "Chromium," M. Judy, Reinhold Publishing Corp., New York (1956)
- 9) C.A. 42,422 (1948)

CHROMIC OXIDE, Cr.O.

Refs.

(Chromium (III) Oxide, Chromium Sesquioxide, Chrome Green, Green Cinnabar, Green Oxide of Chromium, Anadonis Green, Ultramarine Green, Chrome Ocher, Oil Green, Leaf Green, Green Rouge)

Addnl. Ref. 6

31.57 Percent Oxygen: Specification No.: not listed

Molecular Weight: 152.02 Crystalline Form: hexagonal Color: green

PA 1A

Commercial materials vary Prom a brownish green, to greyish green, to olive green to bright grass green.

54V2

9, 31A

Addnl. Ref. 5

Density g./ml.:

(solid) 5.21

1A

Coefficient of Thermal Expansion:

T,°C	% Linear Expansion bet. 100°C and Indicated Temp.	10° X Mean Thermal Coeff, of Expansion bet, 100°C and Indicated Temp.
200	. 0.07	6.8
400	. 0.14	7.1
600	. 0.36	7.1
800	. 0.51	7.3
1000	. 0.66	7.3
1200	. 0.82	7.4

Heat of Formation, Kcal./mole at 298°K:

-269.7 -272.7 ± 4 -272.65

Addnl. Ref. 4 Addnl. Ref. 3 -268.5

a. HEAT AND FREE ENERGY OF FORMATION OF Cr₂O₈ (α, β)

T, °K	Δ H (cal./mole)	Δ F° (cal./mole)
298.16	-272,650 (± 350)	$-253,150 \ (\pm 500)$
298.16	-272,550	-253,150
400	-272,250	-246,550
500	-271,850	-240,200
600	-231,500.	-233,900
700	-271,200	-227 , 650 .
800	-270,850	-221,450
900	-270,650	-215,250
1000	-270,450	-209,150
1100	-270,300	-203,000
1200	-270,150	-196,900
1300	-270,100	-190,800
1400	-270,100	-184,700

Chromic	Oxide,	Cr ₂ O ₂	(page	2)	
---------	--------	--------------------------------	-------	----	--

T, °K	A H (cal./mole)	A F° (cal./mole)
1500	-270,150	-178,600
1600	-270,200	-172,450
1700	-270,300	-166,400
1800	-270,500	-160,250
1823	-270,550	-158,850
1823	-278,950	-158,850
1900	-279,000	-153,800
2000	-279,100	-147,200

Free Energy of Formation, Kcal./mole at 298°K: -250.3 ± 0.6

Entropy, cal./deg./mole at 298°K:

Addal. Ref. 4 1A, 9, 81A

b. HEAT CONTENT AND ENTROPY Cr₂O₃ (c) (Base,c-crystals at 298.15°K)

4

T,°K	H _T - H _{298,15} cal./mole	$S_T - S_{298,15}$ cal./deg, mole	Т, ∘К	H _T - H _{206,18} cal./mole	S _T - S _{208,15} cal./deg. mole
298.16 (β)	100	0.34	1200	26,430	40.11
400	2740	7.94	1300	29,550	42.60
500	6540	14.19	1400	32,670	44.91
600	8380	19.36	1500	36,790	47.07
700	11,280	23.82	1600	38,920	49.08
800	14,230	27,76	1700	42,050	50.98
900	17,210	31.27	1800	45,180	82.77
1000	20,240	34.46	1900	48,320	54.47
1100	23,320	37.40	2000	51,460	86.08

 $Cr_2O_3(\beta)$:

 $H_{\tau} - H_{298.15} = 28.53T + 1.10 \times 10^{-8}T^{2} + 3.74 \times 10^{5}T^{-1} - 9758$

(0.2 percent; 298° -1800°K)

 $C_p = 28.53 \pm 2.20 \times 10^{-8} \text{T} - 3.74 \times 10^{8} \text{T}^{-2}$

Free Energy Equations:

Reaction Range of Validity, °K

1) $2 \text{ Cr (c)} + \frac{3}{2} O_2 \text{ (g)} = \text{Cr}_2 O_3 \text{ (β)}$ 298.16to 1823

A F $_{\text{T}}^{\circ} = -274,670-14.07\text{T log T} + 2.01 \times 10^{-8}\text{T}^2 + 0.69 \times 10^{-8}\text{T}^{-1} + 105.61\text{T}$

2) $2 \operatorname{Cr} (1) + \frac{3}{2} O_2 (g) = \operatorname{Cr}_2 O_3 (\beta)$ $1823 \operatorname{to} 2000$ A F₁ = -278,030 + 2.33T log T -0.35 × 10-8T² + 1.57 × 10-8T-1 + 58.29T

Melting Point, **°C**: The range of values listed in the literature vary

as much as 500°C.

Lowest value 1900 Highest value 2435

31A Addnl. Ref. 5

Chromic Oxide, Cr2	O ₈ (page 3)			
Heat of Fusion, Ke Boiling Point, oK: Transition Paint, oF		25 decor 306 298	mposes at 3300 ± 300), 41
Heat of Transition,	Kcal./mole:	0.1		:
Heat of Sublimation	n:			
Heat Content or En See Table b	nthalpy:			
Heat Capacity: See Table b				
Decomposition Tem See also Addnl		3300	± 300	3
For DTA see Decomposition Prod		Normaline and N		
Dissociation Pressu				
	Oxygen Pressu	ires over Cr ₂ O ₃		Addnl. Ref. 5
Press. atm.	7.4×10^{-25}	5.1 × 10 ⁻²³	3.8×10^{-22}	
Temp. °C	895	968	1002	
X-Ray-Crystallogra	•		Matandar (III. A. Call	
	2 Group a O _{sd} 4.954	c 13.548 at 26°C	Molecules/Unit Cell 6	97V5
Hygroscopicity:	1.001			
Solubility Data: In	water:	inso	luble	
-	ies, or alcohol:	sligl	ntly soluble	
Health Hazard: Po	oisonous. Corrosive	on skin and muco	us 'membranes.	
Safety Classification	ons:			
OSM:			isted	
ICC:		not l	listed	
Fire and Explosion			-	
Electrostatic Sensi Use in Pyrotechnic compounds.		urning of chromiu	m and some chromium	
sures of O 2) "The Volat	osition of Higher Ox xygen," B. Kubota,	J. Amer. Cerm. So um Oxide," D. Ca	n under Various Presoc. 44,239 (1961) plan and M. Cohen, J.	

Chromic Oxide, Cr2O3 (page 4)

- 3) "Thermodynamics of the Oxidation of Chromium," J. N. Ramsey et al., J. Electrochem. Soc. 108, 135 (1956)
- 4) "Heats of formation of chromium oxide and cadmium oxide from combustion calorimetry," A. D. Mah, J. Am. Chem. Soc. 76,3363 (1954)
 5) "Chromium," M. Judy, Reinhold Publishing Corp., New York (1956)

COBALT NAPHTHENATE

Refs.

Addnl. Ref. 1

Cobalt naphthenate is a solution of the cobalt salts of mixed naphthenic acids in mineral spirits. The product contains about 6% cobalt and is standardized on this basis. Chemical and physical properties of cobalt naphthenate cannot be described in the usual manner because the naphthenic acid usually represents a mixture of various cyclopentane monocarboxylic acids, containing on the average about 12 carbon atoms. The carboxyl group is usually separated from the cyclopentane group by at least one methylene group, but sometimes there may be more than one. The balance of the carbons is made up by alkyl substitution on the cyclopentane nucleus. The acids vary considerably depending on the particular source of the petroleum crude from which they are derived. The cobalt is primarily in the cobaltous form.

Chemically the naphthenic acids have been classified as carboxylic acids of the general formulas C_nH_{2n-2} COOH and C_nH_{3n-4} COOH, with most of them in the first group. They are derivatives of the 2,3,4-trimethylcyclopentane alkane acids, e.g.

Addnl. Ref. 2

Addnl, Refs. 2, 3

Structural Formula:

50V5

Commercially available naphthenic acids are identified by origin and acid number. The lack of a more definite classification is due to the complexity of the mixed acids now known as naphthenic acids and to the absence of information correlating the properties of the acids from different sources.

The general formula has been given as approximately $Co(RCOO)_2$, where R is largely a mixture of trimethylcyclopentane alkane radicles.

Specification No.:

TT-D-643

Specification Requirements:

Metal (cobalt), %: (min.) 5.7 (max.) 6.3

Non-volatile, %: (max.) 70

sp. Gr.: (min.) 0.950 (max.) 1.050

Fiash Pt. (closed cup), °F: (min.) 100

The volatile matter shall be mineral spirits.

Color: red-blue to purple

Density, g./ml.: 0.947 to 0.965

Melting Point: 398°K (125°C)

Solubility: Soluble in benzene

Health 'Hazard: In the stomach, cobalt naphthenate hydrolyzes to CoCl₂. Although this compound has been used medicinally in cases of iron deficiency (anemia), in doses larger than 100mg. CoCl₂ is toxic.

50V5 50V5

50V5 50V5

29V5

Cobalt Naphthenate (page 2)

Safety Classification:

OSM:

not listed

ICC:

not listed

Fire and Explosion Hazard:

Electrostatic Sensitivity:

Nuodex Products Co. specifications for Cobalt Naphthenate (DMRCobalt 6%):

 6.0 ± 0.1

Metal content, %: Color (Gardner), max.:

violet blue

Sp. Gr.:

0.935 -0.980

Addnl. Ref. 1

lbs./gal, (at 80°F):

7.75 - 8.15

Solids, % max.:

67

80°F Viscosity (max.), Cardner:

A, 0.50 poises

20°F Viscosity (max.), Gardner:

K, 2.75 poises

Flash Pt. (Pensky-Marten closed cup), °F: 104

Use in Pyrotechnics: As a paint drier. As a catalyst with Laminac 4116 and Lupersol DDM (q.v.).

- 1) Private communication from W. J. Stewart, Nuodex Products Co., Elizabeth, N. J.
- 2) "Naphthenic Acids and Derivatives," E. R. Littmann and J. R. Klotz, Chem. Revs. 30, 97 (1942)
- 3) "A Manual of Organic Chemistry," G. M. **Dyson, Longmans,** Green and *Co.*, New York (1950)

		Refs.			
Specification No.			JAN-C-768		
Molecular Weigh			63.54		
Crystalline Form			cubic		1
Color:	• -		reddish meta	. l	1
7007			(solid) 8.93-		1
Density, g./ml.:	l n		(50Ha) 0.55-	5.50	•
Coefficient of Th	_				
		Temp. Range, °C		icient	1
	iear L'annual	-191 to + 16		× 10-6	
(electrolytic)	linear	25 to 100		× 10-6	
		25 to 300		× 10-6	
		0 to 600	_	′× 10-6	
			$+.1596 + 0.102t^2$		1
where I, and	l, are the lengtl	nsat the temper	raturet°C and 0°C		
Heat of Formati	ion, Kcal./mole	at 298°K :	(gas) 81.1		5
Free Energy of F	ormation, Kcal	./mole at 298°K	C: (gas) 71.628	3	5
Entropy, cal./de	g./mole at 298	°K :	7.97		5
See Tables					
Melting Point:	,,		1356°K (108	3°C)	5
Heat of Fusion,	cal./mole:		3120		4, 5
Boiling Point:			2855°K (258	32°C)	5
Heat of Vaporiz	ation cal./mol	a -	72,800		5
Transition Point					
Heat of Sublima	tion, cal./mole	at 298°K:	81,000		5
Hear. Content or	Enthalpy, cal./1	mole at 298°K:	(solid) 1201		5
	10,		(gas) 2116		9
See Tables	a.b. and e		(940) 2110		·
			OPY OF Cu(c, 1)		4
(Base, crystals	at 298.15°K;	atomic wt. 63.54)		
T. °K	H _T = H _{298,15}	S _T -S _{298,15}	T,°K	$H_{T} - H_{208,15}$	S _T S _{208,15}
1, 11	cal./mole	cal./deg.		cal./mole	cal./deg.
	3311, 111313	mole			mole
400	600	. 1.73	1100	5190	8.28
500	1215	3.10	1200	5895	8.90
600	1845	4.25	1300	6615	9.47
700	2480	5.23	1357(c)	7040	9.79
860	3130	6.10	1357(1)	10 160	12.09

6.10

6.80

7.61

800

900

1000

3130

3800

4496

1357(l) ...

1400

1500

10,160

10,480

11,230

12.09

12.32

12.84

(page

T,ºK	H _T H _{298,15} cal/mole	S _T – S _{288,18} cal./deg.	Т,°К	H _T H _{298,15} cal./mole	$S_{r} - S_{29\pi,15}$
1600	11,980	13.33	2200	. 16,480	15.71
1700	12,730	13.78	2400	. 17,980	16.37
1800	13,480	14.21	2 6 00	. 19,480	16,97
1900	14,230	14.62	2800		17.52
2000	14,980	15.00		,-	

Cu (c): Enthalpy: $H_{\tau} - H_{296.15} = 5.41T + 0.75 \times 10^{-8}T^2 - 1680$ (0.3 percent; 298° -1357°K) Heat Capacity: $C_p = 5.41 + 1.50 \times 10^{-8}T$

Cu(1):

Enthalpy: $H_{\tau} - H_{298.16} = 7.50T - 20 (0.1 \text{ percent ; 298° - 2800°K})$

Heat Capacity : $C_p = 7.50$

b. XEAT CONTENT AND ENTROPY OF Cu(g) (Base, ideal gas at 298.15°K; atomic wt., 63.54)

'r, ∘K	H _T - H _{298.15} cal./mole	S _T – S _{298,15} cal./deg. mole	T,°K	$H_T = H_{298,15}$ cal./mole	S _T - S _{296,15} cal./deg. mole
400	505	1.46	1900	7985	9.22
500	1005	2.5 7	2000	8495	9.48
600	1500	3.48	2200	9530	9.97
700	1995	4.24	2400	10,590	10.43
800 ,	2495	4.90	2600	11,680	'10.87
900	2990	5.49	2800	12,815	11.29
1000	3490	6.01	3000	13,995	11.70
1100	3985	6.49	3500	17,155	12.67
1200	4480	6.92	4000	20,600	13.59
1300	4980	7.32	4500	24,290	14.46
1400	5475	7.69	5000	28,150	15.27
1500	5975	8.03	6000	36,160	16.73
1600	6475	8.35	7000	44,450	18.01
1700	6975	8.66	8000	53,175	19.17
1800	7480	8.94		•	

Cu(g):

Enthalpy: $H_T - H_{298.15} = 4.97T - 1482 (0.1 \text{ percent }; 298^\circ - 2000^\circ \text{K})$

Heat Capacity: $C_p = 4.97$

Enthalpy: $H_T - H_{298,15} = 2.861' + 0.53 \times 10^{-2}T^2 + 655$ (0.2 percent; 2000° - 5000° K)

Heat Capacity: $C_p = 2.86 + 1.06 \times 10^{-3}T$

~	•		
Copper,	Cu	(page	3)

c. HEAT CAPACITY OF COPPER

Solid irom 298 to 1356°K Liquid frem 1356 to 2855°K Gas from 2855 to 3000°K

t, °K	C _p (cal./deg./mole)
298	5.85
400	6.01
600	6.31
800	6.ଶ
1000	6.91
1300	7.36
1400 to 2800	7.50
2900	5.89
3000	6.01

Decomposition Temperature:

Decomposition Products:

Vapor **Pressure**:

Press. ▼ ▼.	1	YO	40	100	400	760	B.P.
Temp. °C	1628	1879	2067	2207	2465	2595	1083

X-Ray Crystallographic Data:

System	Space Group	a	Atoms/Unit Cell	
cubic	Οş	3.608	Δ	

Hygroscopicity: (Reduced Cu) cumulative increase in weight after

storage over water for 29 days: 1.9% storage over H₂SO₄ for 29 days: 1.0%

2 days in oven at 105°C: 1.0%

In moist air gradually forms green basic copper carbonate, CuCO₃Cu (OH)

Solubility Data: In water: insoluble

In HNO₈, hot **H₂SO₄**: soluble

In HCl, NH₄OH, acetic acid: very slightly soluble

Health **Hazard**: Copper is not considered an industrial poison. It is moderately **toxic** when inhaled or ingested.

Safety Classification:

OSM: class 2

Fire and Explosion Hazard: The powdered metal is a dangerous fire hazard when exposed to flame or hot sparks. By chemical reaction with oxidizers it may explode. It burns with intense heat. Precautions should be taken to prevent water from contacting the material. Store and process only in buildings adequately vented to prevent accumulation of evolved hydrogen

14, 12, 49, 51

3

1

51, 29

1, 29

25, 93

Copper, Cu (page 4)

which results from the reactions of powdered metal and moisture. in the repair or maintenance of buildings use only non-sparking tools after the metal powder or dust has been removed. In fighting fire use no water; use powdered graphite, dolomite, or sodium chloride.

use powdered graphite, dolomite, or sod	ium chloride.	
Electrostatic Sensitivity:	not ignited by electric spar k	49
Ignition Temperature: (Reduced Cu)		
Dust Cloud, °C:	700	49
Quiescent Powder:	oxidized rapidly at 270°C with no ignition	51
Use in Pyrotechnics: Copper is used as a furing compositions.	nel. It produces a blue-green color	20, 50
		i

Additional Reference:

1) Ref. 64

Refs. CUPROUS OXIDE, Cu2O (Cuprite) Specification No.: MIL-C-15169 The spec. covers two types, Type I and Type II, which differ in purity. Molecular Weight: 143.08 Crystalline Form: 1 octagonal, cubic yellow, orange, red, or dark brown, according to the method of preparation Color: 79 1 Density, g./ml.: (solid) 6.0 Coefficient of Thermal Expansion, cubic at 40°C: 2.79×10^{-6} 54V3 linear at 40°C: 9.3 × 10-7 Heat of Formation, Kcal./mole at 298°K: 39.84 1, 9 See Table a 1, 9 Free Energy of Formation, cal./mole at 298°K: -34.98

a. HEAT AND FREE ENERGY OF FORMATION OF Cu₂O (c, 1)

See Table a

T, °K	H (cal./mole)	Fo (cal./mole)
298.16	-40,400 (± 1550)	$-35,000 (\pm 1500)$
400	40,200	_33,200
500	-40,100	-31,500
600	-39,90 0	-29,800
700	-39,700	-28,200
800	-39,500	-26,500
900	-39,300	≟24,90 0
1000	-39,000	-23,300
1100	-38,800	-21,800
1200	–38,400	-20,200
1300	-38,000	-1 8,700
1357	37,700	- 17,900
1357	-43,900	-17,900
1400	-43,700	-17,100
1500	43,100	- 15,200
1502	-43,100	-15 ,200
1502	<i>–</i> 29,700	-15,200
1 600	-29,200	-14,200
1700	<i>–</i> 28,800	-13,300
1800	-28,300	-12,40 0
1900	–27,800	-11,600
2000	<i>–</i> 27,480	-1 0,700

Phase Changes of Metal M.P., 1357°K A H = 3120 cal./g.-atom

Cuprous Ode,	$(u_2())$ (pa	ge 2)							
Entropy, cal./de	g./mole at	298°K	•		24 22	.1 .44			3, 4, 9
Melting Point:					15	02°K ((1229°	C)	2.9
Heat of Fusion,	Kcal./mole	:			13	3.4			2, 7, 9
Roiling Point:					lo	ses oxy 2073 ° I	gen at K (18 0	;)0°C)	1
Transition Point Heat of Sublima									,
b. H	EAT CON (E	TENT ase, cr				OF Cu	₂ O(c)		H LT DE
T, °K	$H_{\tau} - H_{298,1}$ cal./mole		S ₇ – S ₂₉ cal./de mole	g.	T	!,°K		T - H _{298,15} cal./mole	$S_r - S_{298,15}$ cal./deg.
400	1720 3470 5280 7150 3050		4.96 8.87 12.26 15.14 17.68	7 5 4	900 1000 1100 1200			11,000 13,020 15,120 17,320	19.98 22.10 24.10 26.02
Enthalpy: H _T -1 (0) Heat Capacity: C Heat Capacity, c	.2 percent; $C_p = 14.90$	298° -1 + _{5.70}	1200°K × 10-87)		solid)	16.7		
Decomposition about 145°C	-				air st	arts to	oxidi	ze slowly a	t 46
Heated in an Decomposition 1 Ref. 54V3 and oxygen	Products: states that					O disso	ociates	into coppe	44V60B
Dissociation Pr	essure:								
Press. mm.	.02865	.0316	.0328	.038	.138	.446	8.312	2 40.19	54V3,
Temp. °C	500	1000	1500	1800	1900	2000	2300	2500	Addnl. Ref. 1
X-Ray Crystallo System cubic Hygroscopicity: cupric oxide	Sp Cuprous	ace Gra Of oxide is	s stable	4.	a 26 y air,		2		o 29

Cuprous Oxide, Cu ₂ O (page 3)	1	
Solubility Data: In water and alcohol: In HCl, NH ₄ Cl, NH ₄ OH: In HNO ₄ :	insoluble soluble slightly soluble	1
Health Hazard:	slight	12
Safety classifications: OSM: ICC: Fire and Explosion Hazard: Electrostatic Sensitivity:	not listed not listed	•
Use in Pyrotechnics: Cuprous oxide is used as a organic compounds as a color intensifier.	fuel, and with chlorinated	17
Additional References: 1) E. Heyn, Zeit. anorg. Chem. 39, 1 (1904)		

"DECHLORANE," C₁₀Cl₁₂ (Dimer of Hexachlorocyclopentadiene) Note: The name "Dechlorane" is trademarked by the Hooker Chemical Corp.

Refe, Addnl. Ref. 8

Corp. Formula:

Addni, Refs. 1, 2, 4

Specification No. :	not listed	
Molecular Weight :	545.6	
% Chlorine:	78.8	
Crystalline Form:	granular solid	
Color:	white	Addnl. Ref. 1
Density:	2.020 ± 0.005 g./cc. at 24.8°C	Addnl. Ref. 1
coefficient of Thermal Expansion:		
Heat of Formation:	****	
Free Energy of Formation:		
Entropy:		
Melting Point, °C:	(sealed tube method) 485	Addni. Refs. 1, 2, 88
In a DTA run liquifaction started at about 16	:0°С	2,2,00
Heat of Fusion:	-to	
Boiling Point, °C:	starts to sublime about 240	Addnl. Ref. 1
Transition Point:		
Heat of Sublimation:		
Heat Content or Enthalpy:		
Heat Capacity:		
Decomposition Temperature:		88
White fumes noted bet. 300°-500°C. These fuwas raised. Some decomposition above 500°C.	imes darkened as the temp.	
For DTA see Ref. 33		
Decomposition Products:		

Dechlorane, C10Cl12 (page 2)

Vapor Pressure:

Press.mm.	3 × 10-7	6 × 10-4	3 × 10 ⁻¹		Addnl. Ref. 1
Temp. °C	25	50	197		Addin. IXII. x
X-Ray Crystallographic Da Hygroscopicity:	ta:				
solubility Data: In benzene	»:		soluble		Addnl. Ref, 3
Solvent		g./100 g.	solvent at R.T.		Addnl. Ref, 1
toluene xylene perchloroethylene styrene mineral spirits (Stodd			16.3 32.7 10.3 17.2 5.8		
Reactivity: Dechlorane is i as H ₂ SO ₄ , HNO ₃ , aq. N	nert to stror	ng oxidizing			Addnl. Ref. 1
reaction conditions. Un anol, also by oxidizing	affected by	Zn dust plus	HCl, acetic ac		Addnl. Ref. 2
Health Hazard: Only slight	ly toxic. Ess	entially not	irritating to the	e skin . Oral	Addnl. Ref. 1
E.D. 50 (value determi	ned on rats)	approx. 600	0 mg./kg.		
Safety Classifications: OSM: ICC:	·		not listed not listed		
Fire and Explosion Hazard Electrostatic Sensitivity:	d: •				
Use in Pyrotechnics:			as a color intens	sifier	
Additional References:					

- 1) Data obtained from literature prepared by the Hooker Chemical Corp., Niagara Falls, N. Y.
- 2) "An Investigation of the Chlorocarbon, C₁₀Cl₁₂, M.P. 485° and the Ketone, C10C110O, M.P. 349°," E. T. McBee et al., J. Am. Chem. Soc. 78, 1511 (1956)
- 3) "The Chemical Behavior of Hexachlorocyclopentadiene.II. Condensation with Trichloroethylene," J. S. Newcomer and E. T. McBee, J. Am. Chem. Soc. 71,952 (1949)
- 4) "The Structure of the Compound C₁₀Cl₁₂," D. H. Zijp and H. Gerding, Rec. trav. chim. 77,682(1958)

DEXTRIN

(Starch Gum, British Gum, Amylin, Gommelin, Vegetable Gum)

Dextrin or dextrines are obtained by treating starch in any one of a number of ways. These include controlled dilute acid hydrolysis of wet starch, the use of certain enzymes, and dry heat. The resultant products, whose properties vary with the source of the starch and the details of the treatment, are represented by the general chemical formula $(C_6H_{10}O_5)_n \cdot H_2O$. The n is, however, much smaller than in the original starch. The various dextrinization treatments of starch lead to complex mixtures resulting from three main types of reaction:

- 1) Hydrolytic cleavage, which yields smaller and more water soluble compounds.
- 2) Transglucosidation, in which a 1-4 glucosidic bond between two C₆H₁₀O₅ units is broken and a 1-6 bond formed with a different C₆H₁₀O₅ unit, with the formation of a branch point. This reaction produces branched molecules and little change in molecular weight.
- 3) Some repolymerization and condensation of smaller molecules.

Because the polymolecularity of the original starches differ and various treatments result in a mixture of the three main reactions, the products differ in size, distribution of molecules, and in extent of branching, and thus have different properties.

Dextrins are distinguished from starch by the violet and red colors that dextrins give with iodine solution.

Dextrins are usually characterized by giving the **source** or kind of starch used, the color of the dry products, their solubility in water, and the viscosity of their water dispersions. The following table gives the more common treatments of starch to produce dextrins, together with some properties of the resulting starches.

CLASSIFICATION OF DEXTRINS

	White Dextrins	Yellow or Canary Dextrins	British Gums
Manuf. Conditions			
Usual catalyst	HCl	HCl	none or an alkali
Temperature, °C	79–121	149-218	135-218
Time, hrs.	3–8	6–18	10-20
Product Characteristics			
Color	white to light cream	buff to yellow or brown	buffto dark brown
Solubility (dispersi-	1.00	•	
bility), %	1–98	YO-100	1–100
Useful diln., parts of water	2-5	1 or less	3-10

Refs.

1, 16, 23, 24, 29, 70

23

Dextrin (page 2)

Specification:

JAN-D-232

The specification covers **two** types of corn dextrin: Type I—white, and Type 11—yellow. These vary in composition as indicated by a wide difference in water solubility.

Molecular Weight:

variable (appreciably less than starch)

Color:

white to dark brown

Density, g./ml.:

1.0384

Melting Point:

decomposes

Specific Heat, cal./g./°C at 90°C:

0.292

Hygroscopicity:

very deliquescent

Health Hazard:

non toxic

Safety Classifications:

OSM:

not listed

ICC:
Use in Pyrotechnics:

no shipping label required

1

20V3

93.

fuel and binder

Dextrins have strong adhesive properties and are used mainly as pastes.

- 1) B. Brimhail, Pnd. Eng. Chem. 36, 72 (1944)
- 2) J. Geerdes et d. J. Am. Chem. Soc. 79,4209 (1957)
- 3) "Chemistry and Industry of Starch," R. W. Kerr, Ed., Academic Press, Inc., New York (1950)
- 4) G. M. Christensen and F. Smith, J. Am. Chem. Soc. 79,4492 (1957)

1,4-DIAMINO-2,3-DIHYDROANTHRAQUINONE

(1-4, diamino-2, 3-dihydra-9, 10-dihydro-9, 10-diketoanthracene, Violet A 100)

Structural Formula:

82

C14H12O2N2

NH.

Specification No.:

MIL-D-3668

Covers one grade with a minimum purity of 87%.

Molecular Weight:

240.26 violet

Color: Density, g./ml.:

Solubility:

(apparent) 0.35 ± 0.10

soluble in 95% alcohol

Health Hazard: Some toxicity as indicated by the specification requirement that each container be conspicuously labelled: "CAUTION-Avoid skin contact or breathing of dust fumes. Provide adequate ventilation in work areas."

Safety Classifications:

OSM:

not listed

icc:

not listed

Use in Pyrotechnics: To impart a violet color to burning smoke mixtures.

116

Spec.

Spec.

Refs.

DIATOMACEOUS EARTH

Refs.

(Infusorial earth, "Diatomite," fossil flour, Kieselguhr, Triplite, Siliceous earth, Tripoli (a type of crystalline diatomite), "Celite," "Featherstone," "Filter-Cel," Super-Mom)

Diatomaceous earth is composed of the siliceous skeletons of diatoms, which are microscopic aquatic plants of the class Bacillerieae. These occur in great beds and are not earthy. Large deposits occur in the western part of the U.S. after being dug from open pits, the diatomite is prepared for commercial use usually by being heated to remove organic matter and treated with acids to remove iron. The individual diatoms occur in a great many forms and differ considerably in size. The average particle size varies from 1 to 40μ and the specific surface from about 7.050 to as much as 67,000 sq. cm./g. Chemically, diatomite is mainly silica (usually the SiO₂ content is between 84 and 92%).

The impurities are highly variable and are usually Al and Fe oxides. The water content varies from 2 to 10%. The physical properties also vary over a wide range.

Diatomaceous earth is frequently used because of its highly absorptive character which is closely related to its specific surface. Oil absorption varies from 25 to 150 lbs. of oil per 100 lbs. of diatomite; water from one to four times the weight of diatomite. This porosity is a result of the fact that the shells of the diatoms are hollow.

Diatomite is a poor conductor of heat, electricity, and sound, and makes an excellent filter.

Specification: MILD-20550

The specification requires that the material be a naturally mined diatomace ous earth which has not been ignited.

SiO₂ content, %:

Organic matter; %:

Linseed absorption, \mathbf{q} . oil/100 \mathbf{g} , material:

150 to 210

Normal color and form: white to light gray, to pale buff fine powder, varies with the nature of the impurities present

Density g./mi.:

noncalcined 1.90
calcined and bleached, whitest grades 2.35
Apparent: 0.24 to 0.34
Spec. requirement: (max.) 0.3

Melting Point: Uncontaminated diatomaceous earth should melt at the temp of fusion of silica, i.e., 1873°K (1600°C). The average quality sinters a about 1073°K (800°C).

Specific Heat: cal./g./deg. at 25°C:

Hygroscopicity:

0.23

50V10, 16, Addnl. Ref. **1**

52V3, 29

Addnl. Ref. 2

50V10

Addnl. Ref. 2

Addnl. Ref. 2

Diatomaceous Earth (page 2)

Solubility Data: Insoluble in water, acids, and cilute alkalies. Resistant to mast chemicals. Attacked by HF and slowly dissolved by hot aqueous caustic alkali.

29, 52

Health Hazard: Moderately toxic on inhalation. Under long exposure to high concentrations the dust may cause pulmonary fibrosis.

93, 29

Fire and Explosion Hazard:

none mentioned

Use in Pyrotechnics:

as an inertfiller

- 1) "Clarifying Efficiency of Diatomaceous Filter Aids," A B. Cummins, Ind. Chem., 34, 403 (1942)
- 2) "Diatomaceous Earth," R. Calvert, ACS Monograph No. 52, Chemical CatalogueCo., New York (1930)

DIBUTYLPHTHALATE 'Refs. (n-butylphthlate, dibatyl-o-phthallate, butyl phthallate, dibutyl-1,2-benzenedicarboxylate) Formula: C₆H₄(COOC₄H₉)₂ or C₁₄H₂₂O₄ The industrial product made by the Commercial Solvents Corp. has the following properties: Purity, 99-100%; Boiling Range at 37 mm. press., 227-235°C; M.P. < -10°C; Flash Point, 347°F. Specification No.: JAN-D-218 Molecular Weight: 278.34 Form: oily liquid 1 Color: colorless 1 Density, g./mi.: (liquid) 1.0465 1 1.0427 Addnl. Ref. 2 Coefficient of Thermal Expansion: Heat of Formation, Kcal./mole at 18°C: Addnl. Ref. 1 At constant pressures: -207.2At constant volume: -199.6Free Energy of Formation: **Entropy:** Melting Point: 238°K (-35°C) Hear; of Fusion: Boiling Point: 622°K (349°C) 29 613°K (340°C) 31A Transition Point: Heat of Sublimation: Heat Content or Enthalpy: Heat Capacity: Decomposition Temperature: Decomposition Products: Vapor Pressure: Press mm. 1 PO 40 100 400 760 1 Temp. °C 148.2 235.8 198.2 263.7 313.5 340 See also Addnl. Kef. 2 X-Ray Crystallographic Data: Hygroscopicity: Solubility Data: En water: 0.04 g./100 ml. at 25°C 1 Miscible in ail proportions with alcohol, ether, acetone, benzene, and many

organic liquids.

Dibutyphthallate	(page 2)		
Health Hazard: I	_ow; ingestion can cause;	gastrointestinal disturbances.	29
Safety Classifica	tions:		
	ed as substantially inert as hazard as used in Ordna	and presenting no particular fire nce establishments.	or or
ICC :		not listed	
	oxidizing materials. To fi	on exposure to heat or flame. (ght fire use water, foam, CO ₂ ,	
Heat of Combusti	on, Kcal./mole at 20°C (H ₂	20 liquid) : 1536.2	
Flash Point, °F	(closed cup):	315	76
,	(open cup):	335	1
Autoignition Ter	nperature, °F:	757	€7,71
Use in Pyrotechr	nics: As a solvent for nitro	ocellulose.	
			I

- 1) L. Médard, Mém. artillerie franc, 28,476 (1954)
- 2) "The Vapour Pressure of di-n-butyphthalatedi-n-butylsebacate, Lauric Acid and Myristic Acid," E. Hammer and A. L. Lyderson, Chem. Eng. Sei. 1, 66 (1957)

1,4-DI (METHYLAMINO) ANTHRAQUINONE

Refs.

(1,4-bis(methylamino)-anthraquinone; Duranol Brilliant Blue G, Celliton(e) Fast Blue B; CI 61500, CI Disperse Blue 14)

St	rm	cti	ıra	I F	'n	m	ula	-
\sim	ı u	···	414		· VI		uıa	-

 $C_{16}H_{14}N_2O_2$

,	•	1
Specification No. :	MILD-21354	
Molecular Weight:	266.30	
Crystalline Form :	-	M
Color:	blue	
Density:	*****	
Coefficient of Thermal Expansion:	-	
Heat of Formation:		
Free Energy of Formation:	***************************************	
Entropy:	-	
Melting Point:	494–6°K (221–3°C)	Addnl. Ref. 1
Spec. min.:	482°K (209°C)	,
Heat of Fusion:		
Boiling Point:		
Transition Point:	-	
Heat of Sublimation:		
Heat Content or Enthalpy:		
Heat Capacity:		
Decomposition Temperature: For DTA and TGA see Ref. 80		
Decomposition Products:		1
Vapor Pressure:		
X-Ray Crystallographic Data: Absorption Spectra, see Ref. 66	•	b
Hygroscopicity:		
Solubility Data (mg./100 mi.),		
In water at 25°C:	< 0.00002	Addnl. Ref. 2
at 80°C:	0.0002	Addnl. Ref. 3

1,4-Di (methylamino) anthraquinone (page 2)	
(g./l. at 25°C) in C ₂ H ₅ OH:	0.12	
In ethyl acetate:	0.86	
In benzene:	1.9	
Health Hazard:	toxicity unknown	
The spec. requires that each container l Avoid skin contact or breathing of dust lation."	be conspicuously labeled, "Caution or fumes. Provide Adequate Venti	-
Safety Classifications:		
OSM:	not listed	
ICC:	not listed	
Fire and Explosion Hazard:		
Electrostatic Sensitivity:		'
Use in Pyrotechnics:	to color smoke mixtures blue	
Additional References:		1
1) C.A.47,870 (1953)		
2) J. Soc. Dvers Colourists 70, 68-77 (19	54)	

		• •
4-DIMETHYLAMINOAZOBE	Refs.	
(Benzeneazodimethylaniline; N,N-dimethy	. = - ,	
Sudan Yellow GGA, butter yellow;	methyl yellow,	1, 2 9, 48, 48A
C.I. 11020, C.I. Solvent Ye.	llow 2)	
Structural Formula:	$C_{14}H_{15}N_3$	
$(H_3C)_2N-\langle -N:N-\langle -\rangle$		
(1130)214		
Specification No.:	XPA-PD-367 (Rev. 1)	
The spec. requires amin. purity of 98%.		
Moler lar Weight:	225.30	
Crystalline Form:	leaflets	1, 29
Color:	yellow	1
Density:		
Coefficient of Thermal Expansion:		
Heat of, Formation:		
Free Energy of Formation:		
Entropy:		
Melting Point:	388°K (115°C)	48
Heat of Fusion:	390°K (117°C)	Addnl. Ref. 1
Boiling Point:		
Transition Point:		
Heat of Sublimation, Kcal./mole:	28.9	Addnl, Ref. 2
Heat Content or Enthalpy:	28.9	riddiii. Ref. 2
Heat Capacity:		
-		
Decomposition Temperature: For TGA see Ref. 80		
Decomposition Products:		
Vapor Pressure $m\mu$ Hg between 86° and 108° = a +	- (b ∨ 108/T)	Addnl. Refs.
-		1, 2
$a = 17.57 \pm 0.13$, $b = -6.31 \pm 0.05$, $T = absolu$	1	
Temp. °C 100 110	115	Addnl. Ref. 2
V.P. μ 7.52 12.4	20.2	
Energy of Volatilization, Kcal./mole		
at 264–361°C (96% purity):	21.2	80
X-Ray Crystallographic Data:		
Hygroscopicity:		
Solubility Data (g./100 g.)		
In water at 25°C:	0.00003	Addnl. Ref. 3
at 80°C:	0.0008	0017107
In pyridine:	about 28	88V 16 I

4-Dimethylaminoazobenzene (page 2)

In alcohol, benzene, chloroform, ether, petroleum ether, oils, and mineral acids.: soluble

Health Hazard:

may cause cancer

29,84

88V16

29

The spec. requires that "Each container shall be conspicuously labeled: "CAUTION—Avoid skin contact or breathing of dust or fumes. Provide adequate ventilation."

Safety Classifications:

OSM: not listed not listed .

Fire and Explosion Hazard:

Heat of Combustion, cal./mole. Cp: 1909.6

cv: 1908.3

Electrostatic Sensitivity:

to color smokemixtures yellow

Use in Pyrotechnics:

- 1) "The Vapor Pressures and Heats of Sublimation of p-Nitroaniline, NN-Dimethyl-p-nitroaniline, paminoazobenzene and NN-Dimethyl-p-aminoazobenzene," T. G. Majury, Chem. & Ind. 1956,349
- 2) "The Dyeing of Cellulose Acetate with Non-Ionic Dyes. III. Dyeing from the Vapour Phase," T. G. Majury, J. Soc. Dyers Colourists 72, 41 (1956)
- 3) J. Soc. Dyers Colourists, 70, 68-77 (1954)

2-(4-DIMETHYLAMINOAZOPHENYL)) NAPHTHALENE	Refs.
(4- eta -naphthaleneazodimethyla eta -naphthaleneazo-4-dimethyla N , N -Dimethyl- p -2-Naphthylazo	miline;	
Structural Formula:	C ₁₈ H ₁₇ N ₃	
N:N-\ N(CH.)2	
Specification No.:	MIL-D-3613	
Molecular Weight:	275.36	
Crystalline Form:	-	Ì
Color:	brownish-yellow	
Density:		
Coefficient of Thermal Expansion:		
Heat of Formation:		
Free Energy of Formation:		
Entropy:		
Melting Point:	445°K (172°C) 447°K (174°C)	Addnl. Ref. 1 Addnl. Refs. 2, 5
Heat of Fusion:		_,,,
Boiling Point:		
Transition Point:	-	
Heat of Sublimation:	<u> </u>	
Heat Content or Enthalpy:		
Heat Capacity:		
Decomposition Temperature :		
Decomposition Products:		
Vapor Pressure:		
X-Ray Crystallographic Data:		
For Absorption Spectra see Addnl. Refs. 3, 4, 5		
Hygroscopicity:		
Solubility Data (g. to dissolve 1 g. dye):		
In toluene or CCl ₄ :	70	Addnl. Refs.
In benzene:	soluble	2, 3
Health Hazard:	Silver State Control of the Control	
Safety Classification:		
OSM:	not listed	
ICC:	not listed	

2-(4-dimethylaminoazophenyl) Naphthalene (page 2)

Fire and Explosion Hazard:	
Electrostatic Sensitivity:	**************************************
Use in Pyrotechnics:	to color smoke mixtures vellow

Additional References:

1) "Condensation of aromatic amines with nitranilines. Preparation of azoamine compounds," M. Martynoff, Compt. rend. 227, 1373 (1948)

1.5

- 2) "Zur Kentniss der Diazoaminokörper," H. Goldschmidt and B. Bardach, Ber. 20,386 (1928)
- 3) "Some Azo Dyes in Non-Aqueous Solvents," C. May and H. Hunt, Ind. Chem. 20,386 (1928)
- 4) "Absorption spectra and structure of aminoazo derivatives," M. Martynoff, Compt. rend. 236, 88 (1953); "Physical Properties of the Aminoazobenzene Dyes. Absorption Spectra in Acid Solution," E. Sawicki, J. Org. Chem. 22,1084 (1957)
- 5) "Physical Properties of the Aminoazobenzene Dyes. IX. Absorption Spectra in Alcohol and Acid Solution of Disazobenzene Dyes," E. Sawicki, J. Org. Chem. 23, 532 (1958)

DIPHENYLAMINE	Refs.	
(n-phenylaniline, Anilinobe		
Formula: Specification No.: Molecular Weight:	(C _c H _s) ₂ NH JAN-D-98 169.22	
Crystalline Form:	monoclinic	1
Color:	1	
Density, g./ml.:	on exposure t o light) (solid) 1.159	1
Coefficient of Thermal Expansion:		
Heat of Formation, Kcal./mole at 18°C:		
at constant pressure:	-28.2	Addnl. Ref. 1
at constant volume:	-31.7	
Free Energy of Formation:		
Entropy:	000077 (5000)	١,
Melting Point:	326°K (53°C) 25.2	1
Heat of Fusion, cal. (15°C)/g.: Boiling Point:	∠5.2 575°K (302°C)	1 1
Transition Point:		*
Heat of Sublimation: Heat Content or Enthalpy:		
Heat Capacity:		
Decomposition Temperature:		
Decomposition Products:	***************************************	
Vapor Pressure:		1
Press, mm. 1 10 40 100	400 760 M.P.	
Temp. °C 108.3 157.0 194.3 222.8	274.1 302.0 52.9	
X-Ray Crystallographic Deta :		
System a b c Axial A monoclinic 14.0 33.9 39.5 $\beta = 9$		1
Hygroscopicity:	1° 30′ 32	
		4
Solubility Data (g./100 ml.) In water at 25°C:	0.030	' '
In ethyl alcohol:		
in methyl alcohol:		
In ether:		
In benzene and ligroin:	19 90	
Health Hazard: Toxic on ingestion, inhalation, of the mucous membranes.	12, 29	
to the mucous membranes.		I

Diphenylamine (page 2)		
Safety Classifications: OSM: Listed as substantially inert. Presen hazard as used in Ordnance establishments.	ts no particular fire or toxic	
Fire and Explosion Hazard: Dangerous; when he highly toxic fumes. Can react with oxidizing To fight fire use water, CO ₂ , dry chemicals, or Co ₂ ,	materials. Combustible.	12 67, 75
Heat of Combustion, Kcal./mole at 20°C and 1atm	: 1536.2	1
SpecificHeat, cal. (15°)/g./°C, solid at 26°C:	0.337	1
liquid at 53°C : Flash Point, °F (closed cup):	0.464 307	12, 67
Autoignition Temperature, °F: Electrostatic Sensitivity:	846	12, 67
Use in Pyrotechnics:	as a stabilizer for nitrocellulose)% I
A 11'4' 1 D C		l

Additional References:

I) L. Médard, Mém. artillerie franç, 28,478 (1954)

ETHYLCELLULOSE Refs. (Cellulose Ethyl Ether) Formula: $[C_6H_{10-x}O_{5-x} (OC_2H_5)_x]_n$ where x = no. of (OC_2H_5) groups and n = degree of polymerization Specification No.: MIL-E-10853B The spec. covers 46.8-48.5% ethoxyl content or $\mathbf{x} = \text{approximately } 2.4-2.5$, and lists two classes which vary in viscosity, ethoxyl content, ash content, and granulation: class I, 46.8-48.5%; class II, 47.1-48.1%. Molecular Weight: variable high Crystalline Form: (specification) amorphous granules Color: white Density, g./ml.: 60 (solid) 1.09-1.17 Coefficient of Thermal Expansion: Heat of Formation: Free Energy of Formation: Entropy: 513°K + (240 +°C) Melting Point: 12 Ethyl cellulose with 48% ethoxyl content softens at 425-435°K 69 (152-162°C) Heat of Fusion: Boiling Point: Transition Point: 59 Second order transition temperature, °C: Heat of Sublimation: **Heat** Content or Enthalpy: Heat Capacity: Decomposition Temperature: For DTA and TGA see Ref. 33 Decomposition Products: Vapor Pressure: X-Kay Crystallographic Data: Hygroscopicity: Solubility Data (for 47% ethoxyl content): Soluble in ethyl acetate, ethylene, dichloride, benzene, toluene, xylene, butyl acetate, acetone, methanol, ethanol and CCl4. Health Hazard: none mentioned Safety Classifications: OSW . not listed

not listed

ICC:

Ethylcellulose (page 2)		
Fire and Explosion Hazard: Combustible whe chemical reaction with oxidizing agents. Fl content.		12, 60
Ignition Temperature of Dust Cloud, °C:	320	26
Burning Behavior: First melts and drips and d flame is yellow with blue edges.	rippings continue to bum. The	6 0
Commercial Types: A number of types of ethylo able. These range from 44.5 to 49.0 + in low to highly viscous materials (5% concerpoises)	ethoxyl content and from very	69
Electrostatic Sensitivity, minimum energy requ	ired for ignition of dust cloud	
by electric sparks (millijoules):	10	26
Use in Pyrotechnics:	as a binding agent and retardant	1 <i>a</i>
Additional References:		
 "Cellulose and Cellulose Derivatives," I Publishers, Inc., New York (1954) 	E. Ott et al., Eds., Interscience	

FERRIC OXIDE, Fe₂O₃

Refs.
1, 11, 16, 29

1

1

54V13

1, 9

8,9

(Iron Oxide, Burned Ochre, Indian Red Rouge,

Venetian Red, Red Chalk, Red Earth, Red Hematite, Red Stone, Persian Red, Persian Gulf Oxide, Colcothar, Iron Sesquioxide)

Percent Oxygen: 30.06

Specification No.: JAN-1-706

The specification covers class 1, coarse, and class 2, fine. Molecular Weight: 159.70

Crystalline Form: hexagonal

Crystalline Form: hexagonal reddish-brown to black

Color: reddish-brown to be Density, g./ml.: (solid) 5.24

Coefficient of Thermal Expansion, linear: 7×10^{-6}

cubic: 4×10^{-8}

See also Addnl. Ref. 2
Heat of Formation, Kcal./mole:
-196.5

See Table a

Free Energy' of Formation, Kcal./mole: -177.9

See Table a

a. HEAT AND FREE ENERGY OF FORMATION OF Fe₂O₃ (hematite, β, γ)

T, °K	A H (cal./mole)	A F° (cal./mole)
298.16	-196,800 (± 1300)	$-177,400 (\pm 1500)$
400	-196,400	-170,800
500	-195,800	-164,500
600	-195,200	-158,300
700	-1 94,500	-152,200
800	-193,800	-146,200
900	-193,000	-140,300
950	-1 92,800	-137,400
950	-192,600	-137,400
1000	-192,600	-134,500
1033	-193,100	-132,600
1033	-193,100	-132,600
1050	-193,000	-131,600
1050	-193,000	-131,600
1100	-193,000	-128,700
1179	-193,000	-124,100
1179	-193,400	-124,100
1200	-193,300	-122,800
1300	-1 93,000	-117 ,000

Ferric Oxide, Fe₂O₃ (page 2)

T,°K	A H (cal./mole)	A F° (cal./mole)
1400	-192,600 -192,400	111,100 -105,300
1600 1674 1674	-192,100 -1 91,90 0 -192,100	-99,500 -95,200 -95,200
1700	-192,100 -192,100 - 191,700	-93,200 -93,700 - 88,000

Phase Changes of Metal

T.P., 1033°K; $\Delta H = 0$ (Curie point)

T.P., 1179°K; A H = 210 cal./g.*atom

T.P., 1674° K; A H = 110 cal./g.-atom

Free Energy Equations:

Reaction

Range of Validity, °K

2!

- 1) $2F_{\theta}(\alpha) + 3/2 O_{2}(g) = Fe_{2}O_{3}$ (hematite) 298.16-950 $\Delta F_{T}^{\circ} = -200,000 - 13.84T \log T - 1.45 (10^{-3}T^{2}) + 1.905 (10^{5}T^{-1}) + 108.28T$
- 2) $2 \text{Fe}_{(\alpha)} + 3/2 \text{ O}_2 \text{ (g)} = \text{Fe}_2 \text{O}_3 \text{ (β)}$ 950-1033 $\triangle \text{ F'}_{T} = -202,960 - 42.641' \log T + 7.85 (10^{-8}\text{T}^2) + .13 (10^{6}\text{T}^{-1}) + 188.48\text{T}$
- 3) 2 Fe $(\beta) + 3/2$ O_2 (g) = Fe 2 O $_3$ (β) .75 (10- 3 T 2) .30 (10 5 T $^{-1}$) + 92.86T
- 4) 2Fe (β) $\pm 3/2$ O₂ (g) = Fe₂O₃ (γ) 1050-1179 Δ F_{γ} = -193,200-.39T log T -.13 (10-3T²) -.30 (105T-1) \pm 59.961:
- 5) $2\text{Fe}(\gamma) + 3/2 O_2(g) = \text{Fe}_2 O_3(\gamma)$ 1179-1674 A F^o₁ = -202,540 -25.95T log T + 2.87 (10-*T²) - .30 (10⁵T⁻¹) + 142.851'
- 6) $2F_{e}(\delta) + 3/2 O_{2}(g) = F_{e_{2}}O_{3}(\gamma)$ 1674-1800 $\Delta F_{T}^{o} = -192,920-.85T \log T .13 (10^{-3}T^{2}) .30 (10^{5}T^{-1}) + 61.21T$

Entropy, cal./deg./mole at 298.16°K:

21.5

See Table b

Melting Point: 1838°K (1565°C)

Heat of Fusion:

Boiling Point:

Heat of Vaporization:

Transition Point: α 950°K β 1050°K γ

tient of Transition, al./mole: $\alpha \cot \beta = 160; \beta \cot \gamma =$

Heat of Sablimation.

Ferric Oxide, Fe₂O₃ (page 3)

b. HEAT CONTENT AND ENTROPY OF Fe₂O₃(c) (Base, a-crystals at 298.15°K)

	(Desse,	a cryotara at a	JO.10 11/		
T,°K	H _T -H _{208,18} cal./mole	$S_T - S_{298.15}$ cal./deg. mole	Т, °К	H _т – H _{298, 15} cal./mole	$S_T - S_{298,15}$ cal./deg. mole
400	2750	7.91	1050 (y)	. 25,820	41.31
500	5770	14.64	1100	27,500	42.87
600	9010	20.54	1200	30,870	45.80
700	12,460	25.85	1300	34,250	48.51
800	16,130	30.7 5	1400	37,650	51.03
900	20,030	35.34	1500	. 41,070	53.39
950 (a)	22,060	37.54	1600	. 44,540	55.ഒ
950 (β)	22,220	37.71	1700	. 48,100	57.79
1000	24,020	39.55	1800	51,880	59.95
1050 (β)	25,820	41.31		•	

```
Enthalpy: H_{T} - H_{298,18} = 23.49T + 9.30 \times 10^{-8}T^{2} + 3.55 \times 10^{5}T^{-1} - 9021
                (0.1 percent; 298-950°K)
Heat Capacity: C_0 = 23.49 + 18.60 \times 10^{-3} \text{T} - 3.55 \times 10^{5} \text{T}^{-2}
                                       Fe_2O_3(\beta):
Enthalpy: H_T - H_{298,15} = 36.00T - 11,980 (0.1 percent; 950-1050°K)
                                       \text{Fe}_2\text{O}_3(\gamma):
Enthalpy: H_T - H_{298,15} = 31.71T + 0.88 \times 10^{-9}T^2 - 8446^{\circ}
                 (0.1 percent; 1050-1800°K)
Heat Capacity: C_0 = 31.71 + 1.76 \times 10^{3} T
Heat Capacity, cal./deg./mole:
                                                             (solid) \alpha = 25.0
                                                                                              4
Decomposition Temperature, °K:
                                                             1730
                                                                                              8
     See also Ref. 54V13
Decomposition Products: (high temp.) Fe<sub>3</sub>O<sub>4</sub> +O<sub>2</sub>
                                                                                              Addnl. Ref. 3
Vapor Pressure: Difficult to vaporize. Contradictory data in the literature.
                                                                                              44V59B
X-Ray Crystallographic Data:
                     System
                                   Space Group
                                                             Axial Angle
                                                                              Molecules/
                                                                                              1
                   hexagonal
                                                             a = 55^{\circ}17'
                                                                               Unit Cell
  (hematite)
                                                      5.42
                                                                                   2
 (magnetic)
                    cubic
                                                      8.30
Hygroscopicity:
Solubility Data: Insoluble in water; soluble in acids.
Health Hazard:
                                                             none reported
                                                                                              50V7
     M.A.C., mg./m.3 (for fumes):
                                                                                              25
                                                             15
```

Ferric Oxide, Feg. (page 1)

Safety Classifications:

none listed

Fire and Explosion Hazard:

none i isteti

Electrostatic Sensitivity:

as an oxidizer

Use in Pyrotechnics:

Additional References:

- 1) "Health Hazards Associated with Welding," F. Hutchinson, Heating and Ventilating 41,73 (1944)
- 2) C.A. 45, 9978 (1951) refers to Proc. Indian Acad. Sci. 33A, 245-249 (1951) where data are given.
- 3) C.A. 36, 4400 (1942)

FE	RROSOFERRIC OXIDI	E, Fe ₃ O,	Refs.
(Iron (II, III) Oxi	de, Black tron Oxide, Magi	ictite, Triiron Tetroxide,	1, 2, 9
	e Iron Oziste, Ethiops Iron		
Percent Oxygen:		27.64	
Specification No.:		J AN-1-2'75	
Molecular Weight:		231.55	
Crystalline Farm :		cubic	1.
Color:		black to red-black	1
Density, g./ml.:		(solid) 5.18	1
Coefficient of Thermal	Expansion, linear, 17-50 °C:	95.4 × 10 ⁶	54V13
	(magnetite) cubic, 17-50°C:	29×10^6	
Heat of Formation, See Table a	Kcal./mole at 298°K:	-267.0	1, 9
Free Energy of Forn	nation, Kcal./mole at 298°K:	-242.4	1, 9
	Free Energy Equations		16
	E ENERGY OF FORMATION	NOF Fe ₃ O ₄ (magnetite, \$\beta\$, 1)	2
T,°K	Δ H (cal./mole)	A F° (cal./mole)	
298.16	$-267,800 \ (\pm 1000)$	$-243,200 (\pm 1200)$	
460	-267,200	-234,900	
500 600	-266,300 -265,300	-226,900 349,100	
700	-264,000	-219,100 -211,500	
860	-262,300	-204,100	
900	-260,5 0 0	-197,000	
900	-260,500	–1 97,000	
1000	-260,800	-189,900	St
1033 1033	-261,700 -261,700	–187,600 –187,600	
1100	-261,700 -261,700	-187,800 -182,800	
1179	-261,700	-177,100	
1179	-262.300	–177 ,100	
1200	-262,200	-175,600	
1300	-261.700 261.200	-168,400	(1)
1500	-261,300 -261,000	-161,200 -154,100	
1600	-260,800	-1.17,000	
1674	-260,700	-141,700	1
1674	-261,000	-141,700	
1700 1800	-261,100	-139,800	
1803	–261,100 –261,100	-132,700 -135,500	'
1803	-272,200	-133,300 -132,500	A.
1870	-272,200	-127.200	Ļ
1870	-239,200	-127,300	ļ
1900	-239,000 234,200	-125,800 440,800	*öv
2000			

Ferrosoferric Oxide, Fe₃O₄ (page 2)

Phase Changes of Metal T.P., 1033° K; A H = 0 (Curie point) T.P., 1179° K; A H = 210 cal./g.-atom T.P., 1674° K; A H = 110 cal./g.-atom M.P., 1803° K; A H = 3700 cal./g.-atom

Free Energy Equations:

Reaction	Range of Validity, oK	2
1) 3Fe (α) $+2O_2$ (g) = Fe ₃ O ₄ (magnetite)	298,16-900	
1) $3\text{Fe}(\alpha) + 2\text{O}_2(\mathbf{g}) = \text{Fe}_3\text{O}_4 \text{ (magnetite)}$ $\Delta \mathbf{F}_{\mathbf{q}}^{\bullet} = -268,310 + 5.87\text{T} \log \text{T} - 12.45 \text{ (10}^{-3}\text{T}^$	$(10^{5}T^{-1}) + .245 (10^{5}T^{-1}) + 73.11T$	
2) 3Fe (a) $\pm 2O_2$ (g) $= \text{Fe}_3O_4$ (β)	900-1033	
$A F_T^2 = -272,300 - 54.27 T \log T + 11.65 (10^{-87})$	[²] + .245 (10 ⁵ T ⁻¹) + 233.52T	
3) $3 \text{Fe} (\beta) + 2 \hat{O}_2 (g) = \text{Fe}_3 \hat{O}_4 (\beta)$	1033-1179	
$A F_T^{\circ} = -262,990 - 5.71 T \log T + 1.00 (10^{-3}T^2)$	40 (10 ⁵ T ⁻¹) + 89.191'	
4) $3 \text{Fe} (\gamma) + 2 \hat{O}_2 (\mathbf{g}) = \text{Fe}_3 \hat{O}_4 (\beta)$	1179–1674	
$A F_T^{\circ} = -276,990 - 44.05 \text{T log T} + 5.50 (10^{-3}\text{T})$		
5) 3Fe (8) $\pm 2O_2$ (g) = Fe ₃ O ₄ (β) A F $_{\rm T}^{\circ}$ = -262,560 - 6.40T log T + 1.00 (10-8T ²)	1674-1803	
$A F_T^{\circ} = -262,560 - 6.40 T \log T + 1.00 (10^{-8}T^2)$)40 (10 ⁵ T ⁻¹) + 91.05T	
6) $3 \text{Fe (l)} + 2 O_2 (g) = \text{Fe}_3 O_4 (\beta)$	1803-1874	
6) 3Fe (1) $\pm 2O_2$ (g) $= \text{Fe}_3O_4$ (β) A F° $= -275,280 - 8.74 \text{T log T} + 1.00 (10^{-8}\text{T}^2)$	40 (10 ⁵ T ⁻¹) + 104.84T	
7) $3 \text{Fe} (1) + 2 \text{O}_{2} (g) = \text{Fe}_{3} \text{O}_{4} (1)$	1874-2000	
$A F_{7}^{2} = -257,240 - 26.89 \text{T log T} + 1.00 (10^{-3}\text{T}^{2})$	²)40 (10 ⁵ T ⁻¹) + 155.46	
Entropy, cal./deg./mole at 298°K:	35.0	1,9
See Table b		-, -
Melting Point:	1867°K (1594°C)	9
Heat of Fusion, cal./mole:	33,000	2, 9
Boiling Point:	decomposes at	-, -
24	$260 \pm 30^{\circ} \text{K} (1787^{\circ} \text{C})$	8
Heat of Vaporization:		
Transition Point:	900°K (627°C)	
Timilation Tollie.	$a \xrightarrow{\beta} \beta$	4
Heat of Transition and /mole:	•	•
Heat of Transition, cal./mole: Heat of Sublimation:	0.0	
mai of Subilination.		1

T, °K	$ m H_T - H_{298,15}$ cal./mole	S _T – S _{298, 15} cal./deg. mole	T, °K	$H_T - H_{298,15}$ cal./mole	$S_{\tau} - S_{298,15}$ cal./deg.
400	13,060 18,340 24,260 30,550 30,550	11.48 21.12 29.75 37.88 45.77 53.18 53.18 58.24	1100	44,950 49,750 54,550 59,350 64,150 68,950	62.81 66.99 70.83 74.39 77.70 80.80 83.71 86.45

4

Ferrosoferric Oxide, Fe ₃ O ₄ (page 3)		
Fe ₈ O ₄ (1) :		2
Enthalpy: $H_T - H_{298.15} = 21.88 T + 24.10 \times 10^{2} T^2 - 8 (0.5 \text{ percent}; 298-900 K)$	666	
Heat Capacity: $C_p = 21.88 + 48.20 \times 10^{-9}T$		
$\mathbf{Fe_sO_4}(oldsymbol{eta})$:		
Enthalpy: $H_T - H_{208,15} = 48.00T - 12,650 (0.1 percent)$	t; 900–1800°K)	
Heat Capacity, cal./deg./mole:	(solid) β, 48.00	4
Decomposition Temperature, °K:	2060 ± 30	8
Stable at red heat. Begins to decompose in a	current of N at over 1300°.	54
Decomposition Products:		
Vapor Pressure:		
X-Ray Crystallographic Data:		
System Space Group a 8.37	Molecules/Unit Cell 8	1
Solubility Data: Slightly soluble in acid; insoluble i	n alcohol and ether.	50 V 7
Health Hazard:	none reported	
M.A.C., mg./m.* (for fumes):	15	25
Salety Classifications:		
Fire and Explosion Hazard:		
Electrostatic Sensitivity:		
Use in Pyrotechnics:	a s an oxidizer	
Additional Reference: I) "Health Hazards Assoc ated with We ling and Ventilating 41,78 (1944)	g," F, Hutchinson, Heating	

FERROUS SULFIDE, FeS

(Iron Monosulfide, Iron Proto-Sulfide, Pyrrhotite)

Specification No.: JAN-F-279

The spec. covers one grade and two classes. Class A requires **a** min. of **99.9%** through a No. 100 Standard Sieve and Class R requires that the FeS be furnished in pieces capable of passing through a sieve having openings 1-in. square.

Refs.

Molecular Weight:	<i>87.92</i>	
Crystalline Form:	hexagonal	1
Color:	black-brown (colorless when pure)	1, 79
Density, g./ml.:	(solid) 4.84	1
Coefficient of Thermal Expansion (pyrrhotite) at In direction of principal axis: Perpendicular:	40°C: .00000235 .00003120	54
Heat of Formation, Kcal./mole at 298°K:	(c) a_{1} -22.72	1, 9
Free Energy of Formation, Kcal./mole at 298°K:	β , -21.35 (c) α , -23.32	1, 9 1, 9
Entropy, cal./deg./mole at 298°K: See following table	16.1	1, 9
Melting Point:	1468°K (1195°C)	4, 7
Heat of Fusion, cal./mole:	p, 5000 y, 7730	7 4
Boiling Point:	decomposes	1
Transition Point:	a411°Kβ598°Ky	
Heat of Transition, cal./mole:	α 570° K β 120° K γ	4
		1 4

T, ∘K	$H_T = H_{298,15}$ cal./mole	$S_T - S_{268,15}$ cal./deg. mole	т,∘к	$H_T - H_{298,15}$ cal./mole	S _T – S _{298,15} cal./deg. mole
350	710	2.19	1100	12,680	21.35
500	1470	4.21	1200	14,150	22.63
411 ('cy)	1640	4.63	1300	15,680	23.86
411 (β)	2210	6.02	1400	17,260	25.03
500	3760	9.43	1468 (y)	18,350	25.79
598 (β)	5460	12.53	1468 (1)	26,080	31.05
598 (γ)	5580	12.73	1500	26,620	31.42
6 00	5610	12.79	1600	28,320	32.51
700	7020	14.96	1700 ,	30,020	33.54
800	8430	16.84	1800	31,720	34.51
900	9840	'18.50	1900	33,420	35.43 .
1000	11,250	19.99	2000	35.120	36.31

```
Ferrous Sulfide, FeS (page 2)
                                    FeS(a):
Enthalpy: H_T - H_{298,18} = 5.19T + 18.20 \times 10^{-9}T^2 - 2721 (0.8 percent, 298-411°K)
Heat Content: C_{\bullet} = 6.19 + 26.40 \times 10^{-9}T
Enthalpy: H_7 - H_{200.15} = 17.40T - 4944 (0.1 percent; 411-598°K)
                                    FeS(\gamma):
Enthalpy: H_7 - H_{298,15} = 12.20T - 1.19 \times 10^{-9}T^2 - 2138 (0.3 percent; 598-1468°K)
Heat Content : C, = 12.20 +2.38 × 10-1
Enthalpy: H_r - H_{298,15} = 17.00T + 1120 (0.1 percent; 1468-2000°K)
Heat Capacity, cal./deg./mole:
                                                                                    1, 9
                                                       (a) 13.1 (\beta) 17.4
                                                      (liquid) 17.00
Decomposition Temperature: In a vacuum, dissociation starts at about 1100°C
                                                                                    79V2
     and is complete at 1600°C.
Decomposition Products:
Vapor Pressure:
X-Ray Crystallographic Data:
               Space Group
  System
                                                         Molecules/Unit Cell
                                    а
3.43
                                                                                    1
hexagonal
Hygroscopicity:
Solubility Data: In water: .00062 g./100 ml. at 18°C, Soluble in acids with evo-
     lution of H<sub>2</sub>S. Insoluble in ammonia.
                                                                                    12
Health Hazard:
                                                      slight (ordinary temp.)
Safety Classifications:
     OSM:
                                                      not listed
     ICC:
                                                      notlisted
Fire and Explosion Hazard: Dangerous when heated to decomposition, due to
                                                                                    12
     the highly toxic fumes of oxides of sulphur. On contact with moist acids
    poisonous hydrogen sulphide evolves which can form explosive mixtures
     with air. May react violently with powerful oxidizers.
Use in Pyrotechnics:
                                                       as a fuel
```

GRAPHITE

Refs.

(Plumbago, Black Lead, Mineral Carbon, Silver Lead, Carburet of Iron)

Graphite occurs naturally as a mineral and is **also** made artificially by heating carbon, usually coal, in **an** electric furnace. Natural graphites are of three general types: flake, crystalline (plumbago), and amorphous. The artificial product is purer than the natural. Graphite is marketed in a number of grades based on purity, electrical resistance, and fineness. In an inert atmosphere graphite can be kept at 3000°C without change, but in air combines with oxygen above 600°C. The hardness of natural graphite is less than that of talc, which is 1 on **Moh's** scale. Graphite is **a** good conductor of heat and electricity.

16, Addul. Ref. 1

Specification No.:

JAN-G-155

The spec. covers four grades: grades 1 and 3 are manufactured; 2 and 4 are natural. They differ in purity, the natural being less pure and containing up to 6% max. of silica vs. 0.6% for the manufactured material. Natural graphite is used in pyrotechnics.

Molecular Weight:	12.011	
Crystalline Form:	hexagonal	1
Color:	black	1
Density, g./mi.:	(solid) 2.25	P
Coefficient of Thermal Expansion, linear at 40°C:	7.86×10^{-6}	1, ය
Hest of Formation, Kcal./mole at 298°K:	(gas) -170.890	5
Free Energy of Formation, Kcal./mole at 298°K:	(gas) -160.040	5
Entropy, cal./deg./mole at 298°K:	(gas) 37.76 (solid) 1.37	3, 4, 5 5
See following table		
Melting Point:	sublimes	
Heat of Fusion, cal./mole:	8000	Addnl. Ref. 4
Boiling Point:	4000°K (3727°C)	6
Transition Point (sublimation temp.)	4620°K (4347°C)	1
Heat of Sublimation, Kcal./mole, to ideal		
monatomic gas:	170	5
to diatomic and triatomic gas:	200	-
Heat Content or Enthalpy, cal./mole at 298°K:	(solid) 251	
See equation below table	(gas,ideal)	
	monatomic, 1559	5
	diatomic, 2096	
	triatomic, 2541	
	•	

Graphite (page 2)

HEAT CONTENT AND ENTROPY OF C (graphite)

(Base, crystals at 298.15°K)

	4				
T,°K	H _T -H _{298,18} cal./mole	S ₇ – S _{298, 15} cal./deg. mole	T,°K	$H_T - H_{298,15}$ cal./mole	$S_T - S_{298,15}$ cal./deg, mole
400	250	0.72	1800	. 733ð	7 .7 8
500	570	1.43	1900	7920	8.10
600	950	2.12	2000	. 8530	8 .4 1
700	1370	2.77	2100	9130	8.70
800	1830	3.38	2200	. 9740	8.99
900	2320	3.95	2300	. 10,350	9.26
1000	2820	4.48	2400	. 10,970	9.52
1100	3340	4.98	2500	. 11,600	9 .7 8
1200	3880	5 .4 s	2750	13,170	10.38
1300	4430	6.89	3000 . ,	. 14,770	10.93
1400	4990	6.30 ·	3250	. 16,390	11.4 5
1500	556 0	6.70	3500	. 18,020	11.93
1600	6150	7.08	3750	. 19,660	12.39
1700	6740	7.44	4000	. 21,310	12.81
Heat Capacity: Heat Capacity, See equation Decomposition Decomposition Vapor Pressure	4, 5, 9				
Press. m	m. 1	10 40	100 400	760	7 i
Temp. °C	3586	3946 4196	. 4373 4660	4827	1
X-Ray Crystallo System hexagonal Hygroscopicity	Space Group Den	o a 2.455	6.99	oules/Unit Cell 4	, ,
Solubility Data Health Hazard:		•	nd alkalies. Solubl	le in molten iron.	1 12
Safety Classific OSM: ICC:		Traic Cycs.	not listed not listed		

Fire and Explosion Hazard:

Graphite (page 3)

Electrostatic Sensitivity:

Heat of Combustion, Kcal./g.:

Use in Pyrotechnics:

as a lubricant; to improve bonding under pressure

Additional References:

- 1) "Industrial Carbon," C. L. Mantell, D. Van Nostrand Co., Princeton, N. J. (1946)
- 2) "The Specific Heat of Graphite from 13° to 300°K," W. De Sorbo and W. W. Tyler, Chem. Physics 21, 1660 (1953); see also Ref. 63
- 3) Ref. 64
- 4) 'Vapor Pressure and Heat of Vaporization of Graphite," A. L. Marshall and F. J. Norton, J. Am. Chem. Soc. 55,432 (1933)
- 5) For X-Ray structure see also "The Synthesis of Diamond," H. T. Hall, J. Chem. Ed. 38,484 (1961)

GUM ARABIC

Refs.

16,23, 29,61

(Gum Preservative, Gum Acacia)

Gum arabic is the dried gummy extraction obtained from acacia trees. The gum is produced when the trees are in an unhealthy condition. Most of the gum comes from the Sudan and West Africa. Today tapping is widely used. The gum exudes as dropiets or "tears" which gradually harden on exposure to the atmosphere. These "tears" are 0.75 to 3 in. in diameter. After the "tears" are removed the tree continues to exude gum from the wound. For the better grades the cleaned gum is hand picked to remove extraneous material. Some gum is bleached by exposure to the sun for several weeks. The gum is available in several grades: natural, cleaned and sifted, bleached and dust.

In addition **to** the more common names of **gum** arabic, **gum** preservative, and gum acacia, other names relating to the color or grade or to the local area are used **so** that there is a great deal of confusion concerning the relationship among the name, the actual **gum** and the species of acacia from which the **gum** is **derived.** As usually shipped the gum contains about 15% moisture. Its aqueous solution is slightly acid.

Gum arabic has been used **as** an adhesive since ancient times. It is a **good** emulsifying agent.

See also Addnl. Rers. 1, 2, 3

Specification:	JJJ-G-821		
Molecular Weight: Variable high; probably in the a See Structure below	range of 100,000 to 200,000.		
Density, g./ml.:	1.3–1.4 1.35–1.49	1 29	
Vapor Pressure:	•		
X-Ray Crystallographic Data:	•		
Hygroscopicity: Poor resistance to water.		29, 6 0	
Solubility Data: Soluble in hot or cold water; oil and most organic solvents; aqueous aicohol up to about 60% alcohol; glycerol and propylene glycol.			
Safety Classifications: OSM: ICC:	not listed		
Health Hazard: When injected intravenously may oney and liver damage.	cause allergic reactions, kid-	29	
Fire and Explosion Hazard: ,	combustible		
Electrostatic Sensitivity:			
Chemical Structure: Gum arabic from different sources contains the portions vary considerably, as shown by the fi	• •	ki	

Gum Arabic (page 2)

MOLAR RATIO OF CARBOHYDRATE COMPONENTS IN VARIOUS ACACIA GUMS

	Approximate Molar Ratio					
Gum Source	D- Galactose	L-Arabinose	L-Rhamnose	D-Glueuronic Acid		
Gum arabic	3	3	1	1		
Acacia mollissima	5	6	1	1		
Acacia cyanophylla Acacia karroo	11 25	2 22	5 1	5 6		
Acacia verek Acacia pycnantha	4 65	2 27	1 2	1 4		

A number of complex structures have been proposed not only for **gum** from different sources but also from the same source. Hydrolysis of gum **arabic yields** four different sugars, as shown in the table above, which together **make** tip the basic **gum** arabic molecule. Because the proportions of these sugars vary with the source of the gum, no single formula **can** have any real significance. The following proposed structure indicates the complex nature of the **gum**:

PROPOSED STRUCTURE FOR GUM ARABIC

Use in Pyrotechnics:

as a fuel, bonding agent, adhesive, and retardant

Additional References:

- 1) Ref.70
- 2) "Natural Plant Hydrocolloids," Ind. & Eng. Chem., Eds., Advances in Chemistry Series, No. 11, American Chemical Society, Washington, D.C.(1954)
- 3) "The Structure of Acacia Sundra Gum Part I. Nature of the Sugars Present and Structure of the Aldobiuronic Acid," S. Mukherjee and A. N. Shivastava. J. Am. Chem. Soc. 80,2536 (1958)

23

GUM TRAGACANTH

Refs.

23, 29, ti!. 70 Addnl. Ref. **1**

Gum tragacanth is the dried gummy exudate obtained from several varieties of the shrub-like plants of the Astragalus family, which grow in the semi-desert and mountainous areas of Turkey, Iran, and Syria. The gum exudes spontaneously and hardens on exposure to the air either in the form of short (2-4 in.) ribbons which are flat, flexible and opaque, or in thick brittle flakes (0.5-2 in.), depending on the particular species of plant. The supply is increased by making incisions in the shrubs. The gum is sorted into five grades; the best grades being the lightest colored of the longest ribbons or largest flakes.

Chemically, gum tragacanth is a complex mixture of polysaccharides. On hydrolysis D-galacturonic acid, D-galactose, L-fucose, D-xylose, and L-arabinose are obtained. Gum tragacanth is about **60-70%** insoluble in water, but swells to form a gel which is regarded as bassorin $(C_{11}H_{20}O_{10})$. The water soluble **portion** which gives a colloidal hydrosol with water is called tragacanthin, It consists of a ring of three molecules of glucoronic acid and 1 molecule of arabinose with a side chain of two molecules of arabinose.

Gum tragacanth in solution has the properties of a partially cross-linked polymer, in that a small portion is soluble while the greater portion remains as a swollen gel or gel-like dispersion. When properly preserved, gum tragacanth forms stable solutions over long periods of time in either cold or warm storage.

A study of the infrared spectra of a wide variety of gums showed that the different samples of any one type of gum have essentially the same type of spectrum. Tragacanth shows a strong carbonyl absorption at a but 5.75μ . The differences among the various infrared spectra are sufficiently definite to serve as a means of identification and classification.

An analysis of a representative sample of gum tragacanth shows the following percentages:

Moisture	10 3	Ash	3
Starch		Tragacanth	70
Cellulose	4	(swelling part) Araban (soluble part)	10

Viscosity is the most important property in evaluating gum tragacanth. It is the most direct measure of the uniformity and quality of the gum. To obtain maxium viscosity, the gum is crushed and soaked overnight. The dispersion is then stirred for 15–30 minutes. For powdered gums, it is best to disperse the gums in small amounts of ethanol or glycerol before the addition of water. Heat is not recommended for faster dissolution or increased viscosity. Viscosity is also decreased by adding acid, alkali, and NaCl.

Specification No.: JAN-G-96

Solubility Data: Partly soluble in water. Films cast from aqueous solutions of gum tragacanth are unaffected by organic solvents such as acetone, ethanol, CCl₄, xylene, and toluene. When painted with solutions of basic or neutral lead acetate, these films also become insoluble in water.

Health Hazard: Nontoxic. **Used** in pharmaceutical compounding. Safety Classifications:

OSM: not listed ICC: not listed Fire and Explosion Hazard: combustible

Use in Pyrotechnics: fuel; bonding agent

Additional References:

1) "Natural Plant Hydrocolloids," Ind. & Eng. Chem., Eds., Advances in Chemistry Series No. 11, American Chemical Society, Washington, D.C. (1954)

23

23

29

23

29

HEXACHLOROBENZENE, CaCla (Perchlorobenzene) **JAN-H-257** Specification No.: Molecular Weight: 284.80 Crystalline Form: morpelinie or rhombie 1 prisms Color: colorless * 1 Density, g./ml.: (solid) **2.044** (rhomb.) 1 Coefficient of Thermal Expansion: 41.3 ± 0.3 Heat of Formation, Kcal./mole at 25°C: Addnl. Kef. 1 $+3 \pm 1.0$ Free Energy of Formation, Kcal./mole at 298°K: Addnl. Ref. 2 Entropy, cal./deg./mole at 298°K: 62.20 Addnl. Ref. 2 Melting Point: 500°K (227°C) 1 Heat of Fusion: Boiling Point: 599°K (326°C) 316.7°K (43.6°C) Transition Point, rhombic to triclinic: Addnl. Ref. 8 triclinic to cubic: 345°K (72°C) Heat of Sublimation: Heat Content or Enthalpy: Heat Capacity, cal./deg./mole at 298°K: (solid) 48.11 Addnl. Ref. 2 Decomposition Temperature: For DTA see Addnl. Ref. 4 Decomposition Products: Vapor Pressure: Press. mm. 10 40 100 400 760 M.P. Temp. °C 114.4 206.0 235.6 283.5 309.4 230 166.4 1 X-Ray Crystallographic Data: Molecules/ System Space Axial Angle **Unit** Cell monoclinic 3.84 16.61 $\beta = 116^{\circ}52'$ 2 $\bar{8}5$ 8.10 3.86 16.68 Hygroscopicity: 1 Solubility Data: In water: insoluble insoluble cold, very in alcohol: soluble hot soluble hot In benzene: In ether: very slightly soluble Health Hazard: May produce mild skin irritation on prolonged contact. OSM states that it presents no particular toxic hazard as used in Ordnance 29, 14, 93 establishments. Severly toxic on ingestion or inhalation.

0.5

17

M.A.C., mg./m.3:

Hexachlorobenzene, CaCla (page 2)

Safety Classifications:

OSM: Inert and **presents no** particular time hazard in Ordnance establishments.

ICC: No shipping label required.

Manufacturing Chemists Assn. requires a warning label.

22 12

Fire and Explosion **Hazard:** Slight when exposed **to** heat or flame. Flash point **468°F.** Dangerous when heated to decomposition because of emission of highly toxic fumes. **To** fight fire use CO₂, dry chemical, or carbon tetrachloride.

Heat of Combustion, at 20°C and 1atm., Kcal./mole.

(water liquid):

509.0

25°, cal./g. (water liquid):

1995.3

Electrostatic Sensitivity:

Use in Pyrotechnics:

as a color intensumer and chlorine donor in white smokes Addnl. Ref. 1

17

Additional References:

- 1) "Heats of Combustion of Some Organic Compounds Containing Chlorine," G. C. Sinke and D. R. Stull, J. Phys. Chem. 62,397 (1958)
- 2) "The Heat Capacities of Hexachlorobenzene and Pentachlorophenol from 15° to 300°K," D. L. Hildenbrand et al., J. Phys. Chem. 62, 958 (1958)
- 3) "The Vapor Pressures, Latent Heats of Sublimation and Transition Points of Solid Hexachloroethane," K. J. Ivin and F. S. Dainton, Trans. Faraday Soc. 43,32 (1947)
- "Pre-Ignition and Ignition Reactions of the Pyrotechnic System Zn C_eCl_e KClO₄," S. Gordon and C. Campbell, Reinhold Publishing Company, New York (1955)

HEXACHLOROETHANE, CCI ₃ ·CCI ₂	Refs.
(Carbon Hexachloride, Perchlorethane Carbon Trichlorid	le) 1, 12
Specification No.: JAN-H-235	
The spec. covers one grade and two classes: class a, unground, and	l class b,
ground. Molecular Weight: 286.76	
Crystalline Form : rhombic, tablets £ alcohol or ether rhombic, triclinic or	11
Color: colorless to yellowish-white	, 1
Density, g./ml.: (solid) .091	1
Coefficient of Thermal Expansion:	
Heat of Formation, Kcal./mole at 298°K: (gas) -48	9
Free Energy of Formation, Kcal./mole at 298°K:	
Entropy, cal./deg./mole at 298°K: 91.97 See table below	Ad In CRef. 3
Melting Point: (sublimes) 186.6°K (-86.5°	PC) 12
Heat of Fusion, Kcal./mole:	
Boiling Point : (sublimes) 457.5°K (184.4°	9 g
Heat of Vaporization, cal./g.: approx. 46	52V1
Transition Point: sublimes at 457.6°K (184.5°	· .
rhombic — triclini 43.6°K (-229.5°	
triclinic →eubic 72°K (–201°C)	
Heat of Sublimation, Kcal./mole: 12.2	9
Heat Content or Enthalpy: See table below	
Heat Capacity, cal./deg./mole: (solid) 41 See table below	
ENTROPY. ENTHALPY. AND HEAT CAPACITY	Addnl. Ref. 3
Temp. Entropy Enthalpy Heat Cap ok cal./deg./mole cal./mole cal./deg./	mole
273.16 91.97 0 31.52 300 94.98 862 32.74	
500 113.23 8052 38.32	. li
800 132.02 20080 41.31 1000 141.33 28430 42.13	
1200 149.06 36910 42.59 1500 158.061 49750 42.98)

Hexachloroethane CCl3 CCls (page 2) Heat Capacity equation for the range 0-1200°C:

 $C_0^2 = a + b(t) + c(t^2) + d(t^3)$ $(t = {}^{\circ}K)$

a = 31.820; $b \times 10^2 = 3.6396$; $c \times 10^3 = 4.2031$; $d \times 10^8 = 1.6198$

Decomposition Temperature: For DTA and TGA see Ref. 33

Decomposition Products: Heated in a stream of air at about 550-600°C it is completely converted to C2Cl4 and CCl4.

Vapor Pressure:

Press. mm.	1	10	40	100	400	760	M.P.	
Temp. °C	31.7	78.5	102.3	124.2	168.8	185.6	186.6	

X-Ray Crystallographic Data:

Sustem Space Group Molecules/Unit Cell c rhomb. V18 11.51 10.14 6.39 cubic 2 7.43

Hygroscopicity:

Solubility Data: in water: insoluble in bendeue, chioroform, chis: solunia In alcohor and ether: very soluble

Mealth Mazard: May be moderately irritating to the skin and mucous membranes. In high concentrations it has a narcotic effect, and may damage the liver and kidneys. MLD, i.v. (in dogs) \$25 mg./kg. Has an odor similar to that of camphor. Moderately toxic locally, on ingestion, and inhalation.

Safety Classifications:

OSM: Substantially inert and presents no particular fire or toxic hazard as used in Ordnance establishments.

Fire and Explosion Hazards: Relatively inert, but when heated to decomposition it emits highly toxic fumes of chlorides. Dehalogenation by heating with alkalies and metals, produces explosive chloracetylenes. Nontiammable

Electrostatic Sensitivity:

Meat of Combustion, Keal./mole at 20°C and 1 atm.: 110.0 Triple Point, "C: 186.0

Use in Pyrotechnics:

as a chlorine carrier

for screening smoke compositions

Additional References:

- 1) E. H. Wibenga, Zeit, anorg. Chem. 225, 38 (1935)
- 2) K. J. Ivin and F. S. Dainton, Trans. Furaday Soc. 43, 32 (1947)
- 5) "Thermodata for Petroleum Chanicals," K. A. Kobe and R. H. Harrison, Petrol. Renner 36, 155 (1957)

1, 29

12, 29, 93

12

53V1

50V3, 54V3

INDANTHRENE GOLDEN YELLOW G.K. (spec. name)

Refs

(HVT Golden Yellow; Indanthrene Golden Yellow GKAC; dihenzo(a,h)pyrene-7,14-dione; 3,4,8,9-dihenzopyrene-7,14-dione; listed in the Ring Index as No. 3654,

90, 48A

C.I. 59100, C.I. Vat Yellow 4)

Structural Formula:

C24H12O2

84

Specification No.:

MILD-50029

Molecular Weight:

332.3

Crystalline Form:

soluble

Color: **Melting Point:**

golden yellow 658°K (385°C)

Solubility Data: In dilute NaOH, H2SO4, quinoline, nitrobenzene, xylene,

tetrahydronaphthalene:

88**V7** II 88V7 11,

48A

88V7 II

In acetone, benzene, chloroform, pyridine, toluene:

slightly soluble

Health Hazard: Some toxicity as indicated by the spec. requirement that 'Each container shall be conspiccously labeled: CAUTION—Avoid skin contact; use with adequate ventilation!"

Use in Pyrotechnics:

to color smoke mixtures

vellow

KEROSENE Refs. (Kerosine, Coal Oil, Lamp Oil, Fuel Oil No. 1) 1, 11, 16 12, 16, 29, 53 Kerosene is a variable mixture of petroleum hydrocarbons, chiefly of the methane series, 10 to 16 atoms of carbon per molecule. Kerosene is the light oily liquid obtained in the fractionation of petroleum. It is the fraction which is obtained by the overhead distillation of crude petroleurn in the 174° and 188° range. It contains hydrocarbons in the range C₁₀H₂₂ to C₁₀H₃₄. Some commercial kerosenes may include distillates up to 325°C and a specific gravity as high as 0.850. In Pennsylvania, kerosene is defined as having a flash pint above 114°F, with not over 10% distillable at 175° and not over 45% up to 200°C. A typical analysis of the kerosene from a midcontinent crude includes n-dodecane, 3 alkyl derivatives of benzene, naphthalene, 1- and 2-methyl-5, 6, 7, 8-tetrahydronaphthalene. 29 The fraction obtained by distillation is decolorized by washing with fuming H₂SO₄, followed by treatment with sodium plumbite solution and sulfur (Doctor sweetening). W-K-211C Specification No.: Normal Color and Form: pale yellow to white oily 1 liquid (liquid) at 60°F, 0.819 1 Density, g./mi.: Coefficient of Thermal Expansion: -76 14 Melting Point, °F: Boiling Point, °F: 410-572 14 Decomposition Temperature: Decomposition Products: insoluble Solubility Data: In water: miscible 29 With other petroleum solvents: Health Hazard: Toxic when ingested or inhaled; causes local irritation, drowsi-12, 29 ness, collapse and coma, and may damage the heart, liver, and kidneys. Safety Classifications: Underwriters Laboratory Classification: 12 40 OSM: flammable liquid ICC: not listed inflammable liquid U.N.: The ICC does not classify kerosene as a flammable liquid because the flash

point is above the maximum for this classification.

Kerosene (page 2)	
Fire and Explosion Hazard: Ignites when exposed to heat or flame. Can also explode in air. To fight fire use foam, CO ₂ , dry chemical, CCl ₄ . Flash point: Autoignition temperature: 490°F 295°C	14 75
Explosive limits (% by vol. in air): Explosive limits in closed vessel: MAC parts per million in air for ab 8-br. day: 500	26, 75
Heat of Combustion (for kerosene with sp. gr. 0.819) cal./g.: 11,006	71
Use in Pyrotechnics: To prevent dusting in Green Smoke composition I and in Violet Smoke composition II. See specifications MIL-STD-516 and 622.	

LACTOSE, $C_{12}H_{22}O_{11} \cdot H_2O$ (monohydrate)

Refs.
Addnl. Ref. 1

(Milk Sugar, Sugar of Milk, Lactobiose,

D-Glucose 4-(β-D-galactoside),
D-Glucose 4-(β-D-galactopuranoside),

A (β-D-galactosyl)-D-glucose,

4-(\$-D-galactopyranosyl)-D-glucose)

Chemical Structure: Lactose consists of a glucose unit linked to a galactose unit. Because the glucose unit may be in the form of a lactol ring, a and β forms are possible. The **two** forms can be represented **as** follows:

B

The second formula differs from the first only in that the second glucose ring has been turned through an angle of 180°. The glucoserings may also have the aldehyde structure. Both forms show mutarotation $[a]_{20}^p = + 2.3$.

The usual form is the a. By crystallizing solutions of the α form above 93.5°C, the β form is obtained.

Specification No.:	MILL13751	
Molecular Weight:	· 360 .31	
Crystalline Form:	rhombic	1
Color:	colorless	1
Density, g./ml.:	1.525	1
Coefficient of Thermal Expansion:		
Heat of Formation, cal./mole at 298°K:	1	
α-lactose • H ₂ O	-592,900	Addnl. Ref. 2
β-l actose	-533,8 00	
Free Energy of Formation, cal./mole at 298°	K:	
a-lactose • H2O	418,200	Addnl. Ref. 2
β-lactose	-373,700	
Entropy, cal./deg./mole at 298°K:		
a-lactose • H₂O	99.1	Addnl. Ref. 2
β-lactose	92.3	
Meiting Point: 274.7°K (201.6°C) for the heated. The monohydrate when heated at 120°C.		1, 29

Lactose (page 2)

Heat of Fusion: Boiling Point:

decomposes

Transition Point:

 $^{366.6\circ K}_{\alpha-\text{anhydride to }\beta,} +_{1.0}$

Heat of Transition, cal./g.:

Heat of Combustion, anhydrous, Kg.cał./mole (H2O liquid) at 20° and 1 atm.

Addnl. Ref. 3 Addnl. Ref. 3

1

T, °K	C _{rk} cal.	T,∘K	C _{rk} cal.	T,°K	—C _{v.} cal.
			1		
61.33	21.98			239.02	85.49
65.15	23.63			246.02	87.94
69.70	25.49			252.92	90.65
75.00	27.71			257.99	92.06
81.74	30.37			261.72	93.30
86.85	32.48			268.21	96.65
91.73	34.64			274.33	97.14
96.55	36.12			279.56	99.26
103.74	. 38.63			284.21	100.74
109.42	40.61			289.17	102.57
115.57	42.97			292.91	103.59
122.23	45.58			293.35	104.10
129.51	48.12			297.42	105.06
140.75	52.11				
,	(w	t	3.	11 g.)	
65.51	22.14	138.72	47 .7 0	217.62	73.62
72.89	25.03	149.22	50.86	225.97	75.81
78.88	27.29	157.75	53.80	235.29	78.62
87.84	30.58	164.86	56.28	243.97	81.35
95.54	33.19	173.35	58.90	252.86	84.53
104.51	36.22	183.05	61.23	262.76	86.95
114.32	39.58	190.47	63.68	270.93	89.60
121.77	42.02	201.24	67.43	280.11	92.89
129.98	44.61	208.73	69.97	289.44	95.55

Decomposition Temperature:

Decomposition Products:

Vapor Pressure:

X-Ray Crystallographic Data:

decomposes

monoclinic system

Lactose (page 3)

Hygroscopicity:

Equilibrium Relative Humidity, % at 25°C:

98.3

Addnl. Ref. 5

Solubility Data: In cold water:

vater:

40 g./100 ml. :

In hot water: In alcohol:

very slightly soluble

17 g./100 ml.:

In chloroform and ether:

insoluble

SOLUBILITY IN WATER

Addnl. Ref. 4

]	emp.	Initial So	lubility	Final '	Super
	∘C	a	β	Solubility	Solubility
	0	5.0	45.1	. 11.9	25
	25	12.6		21.6	50
	39			31.5	74
	74	34.4		86.2	
	89 .	55.7		139.2	
	100	_	94.7		

Health Hazard:

nontoxic

used in infant feeding

29,93

Salety Classifications:

USM:

not listed

icc:

not listed

Fire and Explosion Hazard (dust ignited electrically in the presence of air):

86

Addnl. Kef. 4

Coneny mg./l,	Max. Press. lbs./sq. in,	Ave. Rate of Press. Rise lbs./sq, in./sec.	Max. Rate of Press. Rise lbs./sq. in./sec.
100	12	89	177
500	22	· 32	168

Electrostatic Sensitivity:

Apparent Dissociation Constants:

0.76-1.05× 10¹²

First constant, literature values: Second constant, literature values:

 $3.0 \text{--} 3.6 imes 10^{-14}$

Third constant:

 1.7×10^{-14}

Fourth constant:

 1.6×10^{-14}

Use in Pyrotechnics:

fuel, retardant, and in smoke mixtures

155

Lactose (page 4)

Additional References:

- 1) "Organic Chemistry," G. Hill and L. Kelley, The Blakiston Company, Philadelphia, Pa. (1943)
- 2) "Heat Capacities of Three Disaccharides," A. Anderson and G. Stegman, J. Am. Chem. Soc. 63,2119 (1941)
- 3) J. Am. Chem. Soc. 30, 960-967 (1908)
- 4) "Lactose and Its Utilization, A Review," E. O. Whittier, J. Dairy Science, 27, 505 (1944)
- 5) C.A. 51,17346 (1967)

LAMINAC 4116

Laminac 4116, a proprietary product manufactured by American Cyanamid Co., is a polyester with monomeric styrene that effects cross linking on curing. It is used as a bonding agent and for this purpose it is treated with a catalyst to effect curing.

The following data are from the technical data sheet on Laminac Polyester Resins of the Plastics and Resins Division of American Cyanamid Co.

Color:	clear, light straw
Specific Gravity at 77°F:	1.10 ± 0.02
Viscosity at "7°F: Gardner Holdt scale Brookfieid, poises	M-○ 4-5

Curing Characteristics:

Geltime at 80°C, 100 g. sample, 0.5% benzoyl	
peroxide, min. :	17-20
SPY gel time, min.:	41/2-6
SPI time to peak temp., min.:	71/2-9
SPI peak exotherm, °F:	330-360
CANAT C C COMM D T 1	••

(SPI = Society of Plastic Industries Test Method)

(Brookfield Model RVF, spindel #1, 20 R.P.M.)

The curing of Laminac 4116 is greatly speeded by adding curing agents. The curing is done either 35 room temperature or by heating. Room temperature curing agents are methylethylketone peroxide and cobalt naphthenate, or benzovi peroxide and Laminac Promoter 400.

GEE TIMES AT 77°F
(Methylethylketone peroxide (60% solution) as the catalyst)

	• • • • • • • • • • • • • • • • • • • •	• /
% catalyst	% Cobalt Naphthenate 6% Cobalt metal	Gel time (minutes)
0.5	0.0	200-220
0.5	0.2	130–150
1.0	0.1	50-70
2.0	0.0	40-50
2.0	0.2	10-15

GEL TIMES AT 77°F (Benzoyl peroxide (50% paste) as the catalyst)

% catalyst	% Cobalt Naphthenate 6% Cobalt metal	Gel time (minutes)
1.0	1.0	120-180
2.0	20	50-70
4.0	4.0	. 5–10

Laminac 4116 (page 2)

Heat Curs: Because of the low reactivity of Laminac 4116, its cure may not be complete with room temperature catalysts, and heat may be required to complete the cure. Benzoyl peroxide alone may be used to cure 4116 at elevated temperatures. Using 0.5-1.0%, cure cycles may be less than 1 minute at 250°F for a section 1/16 in. thick to 10-12 minutes for thicker sections at 200°F.

Safety Classifications:

OSM:

class 2

ICC:

flammable liquid red label

Decomposition Temperature:

about 200°C

FOR TGA see Addnl. Ref. 5

Decomposition Products:

Hygroscopicity (gain in mg./g. after exposure, at R.T. in static and vacuum desiccators):

Laminac 4116 Catalyzed with Lupersol DDM and Nuodex:

32

Time	65%	R.H.		75%	R.H.	86%	R.H.		93%	R.H.	
(days)	Stat.	Vac.	-	Stat.	Vac.	Stat.	Vac.	_	Stat.	Vac.	
1	3.0	1.5		5.2	3.5	6.6	<.1		8.5	3.0	
7	5.0	2.5		3.7	4.0	4.7			7.2	2.6	
30				0.8		1.0	2.0		1.6		

Storage life of Laminac Resins with and without Catalyst and Accelerator:

Addni, Ref. 1

Temp.°C	Uncatalyzed (minimum)	With cobalt, but uneatalyzed (minimum)	With 0.004% cobalt and 0.5% Lupersol DDM
	days	days	hours
25	90	90	3.6-4.0
52	18-21	18-21	

As manufactured, Laminac resin contains 0.04% cobalt, 'asmetal.

Additional References:

- 1) "Casting with Laminac Resins," Plastics and Resins Div., American Cyanamid Co., Wallingford, Conn., cited by Ref. 73
- 2) For exotherm cures of Eaminac 4116 with varying amounts of Lupersol DDM and cobalt see Ref. 73
- 3) "The Kinetics of Thermal Degradation of the Synthetic Styrenated Polyester, Laminac 4116," D. Anderson and E. Freeman, J. Appl. Polymer Sc. & 192 (1959)
- 4) "Characterization of Saturated Polyesters by Differential Thermal Analysis," D. Anderson and E. Freeman, Anal. Chem. 31, 1697 (1959)
- E, "Pre-ignition and Ignition Reactions of the Propagatively Reacting System Magnesium-Sodium Nitrate-Laminac," V. Hogan and S. Gordon, Combustion and Flame 3, No. 1, 3-12 (1959)

LEAD CHROMATE, P.	bCrO,	Refs.
(Pale Chrome, Permanent Yellow, as	nd Paris, Leipzig,	
King's, Cologue, or Lemon Yell	ow Chrome)	1, 11, 12, 29
Percent Oxygen:	19.80	
Specification No. :	JAN-E-488	
Molecular Weight:	323,22	1
Crystalline Form:	monoclinic	1
Color :	yellow or orange-yellow powder	'
See also Ref. 54V11	F	1
Density, g./mi:	(solid) 6.3	1
Coefficient of Thermal Expansion:		
Heat of Formation, Kcal./mole at 298°K:	(c) -217.7	9
Free Energy of Formation, Kcal./mole at 298°K:	-203.6	86
Entropy, cal./deg./mole at 298°K:	36.5	86
Meiting Point:	1117°K (844°C)	1
Heat of Fusion:	not available	7
Bolling Point:	decomposes above its melting point and gives off oxygen	1, 54V11
fransition Point, °K:	(c) III 980 (c) 11 1056 (c) I	9
Heat of Sublimation:		
Heat Content or Enthalpy:		
Freat Capacity, cal./deg./mole (between 292 and 32	23°K) : (est.) (solid.) 29.1	4
Decomposition Temperature, °C: For DTA see Ref. 33	approx. 904	45
Decomposition Prod Uccs: Becomes reddish-brow atures it fuses and finally evolves oxygen with basic lead chromate.		
Vapor Pressure:		
X-Ray Crystallographic Data:		
	Molecules/ xial Angle Unit Cell == 102°33′ 4	1

Lead Chromate, PbCrO₄ (page 2)

Hydrosconicity (specification grade material, after 216 hrs. at 90°F)

I

Hygroscopicity (specificar	tion gr a	ade mat	erial, att	er 216	hrs. at 90°F) :	
R.I	I., %	50	70	90		33
Ga	in, %	0.01	0.02	0.09		
Solubility Data: In water In acids and alkali h In acetic acid, ammo In hot water:	ydroxi			solu insc	00058 uble oluble oluble	1, 29
Health Hazard: Partakes salts. Corrosive action the formation of can its toxicity is less the M.A.C., mg./m.³	a on th cers. P	ie skin, Produces	produces s anemia.	ulcers, Becau	oth lead and chromium and is associated with se of its low solubility,	12
Safety Classifications:						
OSM: Class 2, when	not pa	cked or	stored in	origin	al shipping container.	
Fire and Explosion Haz agents. Dangerous w	ard: M hen he	foderate ated, as	by che	mical r highly	reaction with reducing toxic fumes of lead.	12
Electrostatic Sensitivity :						
Use in Pyrotechnics: As a	an oxic	lizing aç	gent. Use	in no	ngaseous powders.	

LEAD OXIDE, PbO

Refs.

1. 29

(Litharge, Massicot, Plumbous Oxide, Lead Protoxide, Lead Monoxide, Lead Oxide Yellow)

Massicot refers to the unfused oxide and litharge, to the fused. Modern usage tends to the use of litharge for all varieties of PbO.

Specification No. (litharge, dry):

MIL-L-1147A

Molecular Weight:

223.21

Crystalline Form (litharge):

tetragonal-stable

at R.T.

(massicot):

rhombic—stable, 300°C toM.P.

22

Color:

yellow

For the effect of temp. See Ref. 52V7

Density, g./ml.:

(solid) α litharge, 9.58

β massicot, 8.0

Coefficient of Thermal Expansion, cubic:

 7.95×10^{-5}

54V7

Heat of Formation, Kcal./mole, at 298°K:

red (c) -52.40 yellow (c) -62.07 8, 9

1

See Tables a, b, c

Free Energy of Formation, Kcal./mole at 298°K:

red (c) -45.25

yellow (c) -46.05

1, 8, 9

See Tables a, b, c, and equations

a. HEAT AND FREE ENERGY OF FORMATION OF PbO (red, yellow)

2 '

T, °K	Δ H (cal./mole)	A Fo (cal./mole)
298.16	$-52,450 \ (\pm 400)$	$-45,250 (\pm 150)$
٠.٠ فانايه	-52,250	-42,850
500	-52,050	-40,500
6va	41,800	-38,200
600.5	-51,800	-38,200
6v ∪. 5,	-53,050	-38,200
700	-52,800	35,750
762	-52,600	-34,250
7 62	-52,350	34,250

Phase Changes of Metal

M.P., 600.5° K; $\Delta H = 1225 \text{ cal./g.-atom}$

Lead Oxide, PbO (page 2) b. HEAT AND FREE ENERGY OF FORMATION OF PbO (yellow, 1, g)

T,°K	A H (cal./mole)	Δ F° (cal./mole)
298.16	$-52,050 (\pm 300)$	$-45,050 (\pm 150)$
400	-51,900	-42,7 00
500	-51,750	-40,400
600	-51,55 0	-38,150
600.5	41,550	-38,150
600.5	-52,8 00	-38,15 0
700	-52,500	-35,750
800	-52,200	<u> </u>
900	- 51,850	-31,000
1000	-51,46 0	–28 ,760
1100 , . ,	51,000	-26,460
1159	- 50,700	-25,15 0
1159	-47,900	-25,150
1200	-47,700	–24,409
1300	- 47,250	-22,45 0
1400,.	- 46,750	-20,55 0
1500	-46,25 0	–18,700
$1600 \dots$	-45 ,750	-16,850
1700	-45,800	–16,100
1745	45,100	-14,300
1745	+5.700	-14.300

2

Phase Changes of Metal M.P., 600.5°K; A H = 1226cal./g.-atom

c. HEAT AND FREE ENERGY OF FORMATION OF PhO(a)

	KEE ENEKGI OF FORM	
T,°K	Δ H (cal./mole)	A F° (cal./mole)
298.16	$+10,100 (\pm 1400)$	$+5000 (\pm 1500)$
400	+9900	+3200
500	49700	+1600
600	+9500	0
600.5	+ 9500	Ŏ
600.5	+8300	Ŏ
700	+8000	-1400
800	+7800	–2700
900	+7600	-4000
1000	1 7400	-5300
1100	+7200	-6600
9200	+1200 +17000	-7800 -7800
		-7800 -9000
1300	+6700	
1400	+6500	-10,300
1500	+6300	-1 1,400
$1600 \dots$	+6000	-12,600 ·
1700	+5800	-13,800
1800	+ 56 00	-15,000
1900	+5300	-16,100
2000	± 5100	-17.200

Phase Changes of Metal M.P., 600.5°K; a H = 1225cal./g.-atom

Source of Data: Heat of formation at 1745°K derived from heat of formation and heat of vaporization of PbO (1) (see. Table b)

2

Pb

Pb

2 3

2, 9 2, 9 2, 8, 9 9 9

T, °K	H _T - H _{298,15} cal./mole	S _T – S _{298, 18} cal./deg. mole	T, °K	$H_T - H_{298,15}$ cal./mole	$S_T - S_{298.15}$ cal./deg. mole
400	1150	3.32	1100	10,800	16.90
500	2340	5.97	1159 (c)	11,720	17.72
600	3600	8.26	1159 (1)	18,720	23.76
700	4920	10.30	l 1200 `.´	19,380	24.32
800	6310	12.15	1300	20,980	25.60
900	7760	13.86	1400	22,580	26.79
1000	9260	15.44	1500	24,180	27.89

Lead Oxide, PbO (page 4)

e. HEAT CONTENT AND ENTROPY OF PbO (red)

(Base, crystals at 298.15°K)

'Т, °К	H _T H _{298,16} cal./mole	S _T - S _{294,15} cal./deg, mole	T, °K	H _T - H _{298.18} cal./mole	S _T - S _{298,18} cal./deg. mole
400	1220	3.52	700	5060	10.65
500	246 0	6.28	800	6420	12.46
60 <u>9</u>	3740	8.62	900	7820	14.11

Enthalpy: $H_T - H_{298.15} = 10.60T + 2.00 \times 10^{-8}T^2 - 3338 (0.1 \text{ percent}; 298-900°K)$

Heat Capacity: $C_p = 10.60 + 4.00 \times 10^{-8}T$

f. HEAT CONTENT AND ENTROPY OF PbQ (g) (Base, crystals at 298.15°K)

H_T -H_{295,15} $H_T - H_{298,15}$ ST - S298.15 $S_T - S_{298.15}$ cal./deg. T,°K T.°K cal./deg. cal./mole cal./mole mole mole 810 2.34 5950 10.14 400 1000

PbO (g):

Enthalpy: $H_T - H_{208,15} = 8.57T + 0.12 \times 10^{-8}T^2 + 0.79 \times 10^{8}T^{-1} - 2831$

(0.2percent;298-2000°K)

Heat Capacity: $C_p = 8.57 + 0.24 \times 10^{-8} \text{T} - 0.79 \times 10^{6} \text{T}^{-2}$

PbO (c):

Heat Capacity: $C_p = 12.70 + 7.80 \times 10^{-8} \text{T} \text{ (est.) } (298-1000 \text{°K})$

Pb₈O₄(c):

Heat Capacity: $C_p = 35.14$ (298°K)

 $Pb_2O_3(c)$:

Heat Capacity: $C_r = 25.74$ (298°K)

See also Addnl. Ref. 2

Heat Capacity, cal./deg./mole at 298°K:

(solid, yellow) 11.60

(liquid) 16.00

See also Addnl. Ref. 2

Decomposition Temperature and Products: At 300–450°C, in air, it is converted

to Pb₃O₁, but at higher temperatures it is reconverted to PbO.

29, Addnl. Ref. 1. 54V7

4, 9

4

4

For DTA see Ref. 33

a 3.98 5.60 4	b c - 4.01 4.72 5.86 65 rs. equil	75 , 24 hrs. eq	es/Unit Cell 2 4 93 uil. 24 hrs. e	1 aguil.
3.98 5.60 4 3 equil. 24 h	— 4.01 4.72 5.86 . 65 . equil	75 , 24 hrs. eq	2 4 93 uil. 24 hrs. e	equil.
equil. 24 h	rs. equil	. 24 hrs. eq	uil. 24 hrs. e	
		_		
3.9 4.7	7 3.8	5.1 6	.6 7.4	7.5
NH4Cl, Cs	aCl ₂ , SrC	l ₂ , and warn soluble	_	of 29
	proved d			
		0.15		14
5	than met	than metallic lead	NH ₄ Cl, CaCl ₂ , SrCl ₂ , and warr soluble insoluble than metallic lead or most of t. Wear approved dust mask, Ke 0.2 0.15	insoluble than metallic lead or most other lead cont. Wear approved dust mask, Keep away from 0.2 0.15

Additional References:

Electrostatic Sensitivity:
Use in Pyrotechnics:

- 1) C.A. 52,6998 (1958)
- 2) "Low Temperature Heat Capacities and Entropies at 298.15°K of Lead Sesquioxide and Red and Yellow Lead Monoxide," E. G. King. J. Am. Chem. Soc. 80,2400 (1958)

LEAD OXIDE (LEAD TETRORIDE). Ph.O. (Minium, Red Lead, Mineral Orange, Mineral Red, Plumbo, Puce, Orthoplumbate, Paris or Saturn Red)

Refs. 1, 11, 29

G . 111 -		685.63	
Crystalline Form :		scales or amorphous	1
Color :		powder . red	1
When heated becon	nes redder, then violet	and black; on cooling again	_
regains its scarletred Density, g./ml.:	d color.	(solid) 9.1	\
• • • • • • • • • • • • • • • • • • • •	0.40 1' 4- 4	•	1 54V
	9.16 according to meth	nod of preparation.	54 V
Coefficient of Thermal E	•		
Heat of Formation, Kca See table below	l./mole at 298°K:	-175.6	1,8
Free Energy of Formatio	n. Kcal./mole at 298°K	-147.8	1,8
See table below		-	1
			65 1
HEAT AND FRE	_	MATION OF Pb ₃ O ₄ (c)	i
Ţ, ° <u>K</u>	ΔH (cal./mole)	Δ Fo (cal./mole)	1
298.16	-1175,500 (±4000	-147,5500 (±4600)	<u> </u>
400	-175,500	-138,000	4
500	-175,000	-129,000	1
600	-174,500	-119,500	- 1
300.5	-174,500	-119,500	- 1
600.5	-178,000	-119,500 -119,500	
700	-177,500	-110,000	- E
800	-176,500	-100,500	
000			
000	-175,000	-91,000	1 4
900	170 FAA		1
900	-173,500	-81,500	- 12
1000	Phase Changes of M	etal	-
1000		etal	- 2
1000	Phase Changes of M 600.5°K; Δ H == 1225 c	etal	2
1000 M.P.,	Phase Changes of M 600.5°K; Δ H == 1225 c	etal al./gatom	} -
M.P., Free Energy Equations Reaction	Phase Changes of M 600.5°K; Δ H == 1225 c	etal al./gatom Range of Validity, °K	} -
M.P., Free Energy Equations: Reaction 1) 3Pb (c) + 2 O ₂ (g) =	Phase Changes of M 600.5°K ; $\Delta H = 1225^{\circ}\text{C}$ Ph.O. (c)	etal al./gatom Range of Validity, °K 298.16–600.5	} -
M.P., Free Energy Equations: Reaction 1) 3Pb (c) + 2 O ₂ (g) =	Phase Changes of M 600.5°K; Δ H == 1225 c Ph ₃ O ₄ (c) 22T log T = 8.20 (10-8T ²)	etal al./gatom Range of Validity, °K	} -

Lead Oxide, Melting Poi	_	page 2)			d	ecompos	ses at abo (500°C)	out .	1
See Dec Heat of Fus Boiling Poin Transition 1	nt:	PbO_2	perature 290_320° vellow).	C ► Pb₃O	390-42 3		530-1	550°C	Addnl. Ref. 2
Heat of Sub	limation	:	•		_	· · · · · · · · · · · · · · · · · · ·			
Heat Conter					_				
Stablea For TC	on Temped to PbC t 530°C. A see K	erature) . About	and Pro			solid) 34 in air al		o°C, it is	9 29, Addnl. Ref. 1 54V7
Vapor Press		DI 0		DLO /	(11)	+1/0			
Press. 1		Pb ₃ O ₄	.04 7	<u>PbU (</u>	(yellow) 155	589	859	1045	54V7
Temp.						558.3	600.7	607	0111
		_	1 + 11.89		337.0	0.00.0	000.1		
X-Ray Crys System tetragos Hygroscopio	tallograp n Sp	ohic Dat pace Gre V; reagent	ta : oup grade m	a 8,875	c 6.51 after eq		cules/Un 4 1 was es		1 8 32
R.H.%	6	5	7	5		86] ;	93	
Time of Exposure	24 hrs.	equil.	24 hrs,	equil.	24 hrs.	equil.	24 hrs.	equil.	
Grin, _ mg./g .	0.5	0.9*	0.2	0.1*	0.4	0.4*	0.8	0.6'	
C-1 1:114 D									
	ata : In w c acid, ho		dalcohol:			nsoluble soluble			1
In aceti Heaith Haz Ridneys fication Oxide I or expo	c acid, ho ard: A c s, liver, n requires fazardou osure do	t HCl umulati- ervous the fo's Dust. not sat	ve poison system, b lowing w Avoid b	that pollood vest varning reathing	rcduces a ssels, and label:' g dust ar out wash	soluble anemia a dother to the transfer of the	and lesic issues. T g! Conta s. After oughly.	ons of the Specinins Lead handling Use with	1 29, 14

I	Refs.		
(Lead Dioxide, Lea	d Superoxide, Brown L	ead Oxide, Plattnerite)	1, 12, 29
Percent Oxygen:		18.38	
Specification No. :		JAN-L-376	
Molecular Weight:		239.21	
Crystalline Form:		tetragonal	1
Color:		brown	
Density, g./ml.:		(solid) 9.876	Addnl. Ref. 3
V , C		(reguline at 20°C) 9.86	
Coefficient of Thermal	Expansion, linear:	0.067 × 10-4	54V7
Heat of Formation, Kca	•	(c)-66.12	1, 9
See table below			
Free Energy of Formati	on, Kcal./mole at 298°K	-62.34	1, 9
See table below	, N		24
			2.5
HEAT AND FF	REE ENERGY OF FORM	IATION OF PbO ₂ (c)	2
T, oK	A H (cal./mole)	A F° (cal./mole)	
298.16	-66,100 (± 1400)	-52,300 (± 1200)	
400	-65,900	-47,700	
500	-65,700	-43,100	
600	-65,500	-38,600	
600.5	-65,500	38,60 0	
600.5	-66,700	-38,6 00	
700 800	-66,400	20.400	
900	-65,500	-29,400 -24,800 .	
1000	-65,000	-20,300 -20,300	
1100	-64,400	–15,900	
M .F	Phase Changes of Met. P., 600.5°K; AH = 1225 cal	 al.	
Entropy, cal./deg./mol	e at 298°K :	18.3 ± 0.5	3,9
Welting Point:		decomposes	1
Heat of Fusion:			
Boiling Point:			
Transition Point: See	Lead Oxide (Lead Tetroxi	de), Pb ₈ O ₄	
Heat of Sublimation:	·	-	\
Heat Content or Entha	alpy:		
Heat Capacity, cal./deg		(solid) 15.4	9
Decomposition Temper	rature,°C:	290	1

ing Pb ₃ O ₄ , and at high temperatures PbO. 54								17V8, 29 Addnl. Ref. 5 54V7 1	
R.H.; %	, 6	55	7	6	8	6	9	3	
Time of Exposure	24 hrs.	equil.	24 hrs.	equil.	24 hrs.	equil.	24 hrs.	equil.	
Gain, mg./g.	0.3 0.1	0.2* 0.2	0.2 0.4	0.2* 0.6	0.1 0.8	.03	0.8 0.3	0.9 0.0	I
Solubility: In water and alcohol: In dil. HCl: In acetic acid: Health Hazard: A cumulative poison. On ingestion or inhalation it produce! anemia of the kidneys, liver, gonads, nervous system, blood vessels, and other tissues. M.A.C., mg./m.³: O.2 O.15 Safety Classifications: OSM: Class 2 when not packed or stored in original containers or equivalent oxidizing material; yellow label Fire and Explosion Hazard: Dangerous because when heated to decomposition it emits highly toxic fumes of lead. It reacts with reducing material. Electrostatic Sensitivity:								12, 17V8 25 14	
PbO₂ i	PbO ₂ is unstable to 360-365°C, but then dissociates to form Pb ₇ O ₁₁ which							Addni. Rei. 4.	
Use in Pyr Additional 1) "Tl J. C 2) "Si 3) "Tr Lee 616 4) "A 204	Changes under Heat and Oxygen Pressure: Under 200 atmospheres of oxygen PbO ₂ is unstable to 360-365°C, but then dissociates to form Pb ₇ O ₁₁ which is stable to 460-470°C when it passes into Pb ₈ O ₄ . Use in Pyrotechnics: as an oxidizer Additional References: 1) "The Thermal Decomposition of Lead Dioxide in Air," G. Butler and J. Copp, J. Chem. Soc., 725 (1956) 2) "Structure and Equilibria of Lead Oxides." See C.A. 43,6689 (1948) 3) "The Electrical Conductivity and Some Other Properties of Reguline Lead Peroxide," W. Palmaer, Z. Elektrochem 29, 415 (1923); C.A. 18 616 (1924)								

LEAD SESQUIOXI	DE	Refs.
(Lead (III) Oxide, Lead (II, N) Oxide, Lead (III, N) Oxide, Lead	1, 50	
Formula: Pb ₂ O ₃ is generally considered to be lead met compound of PbO and PbO ₂ into which it is	Pb ₂ O ₄	52V 7
Percent Oxygen:	10.38	
Specification No.:	none	
Molecular Weight:	462.42	.74
Crystalline Form:	monoclinicor amorphous .powder	1
Color:	yellow to reddish-yellow	1
Density:		
Coefficient of Thermal Expansion:		
Heat of Formation:		
Free Energy of Formation:		
Entropy, cal./deg./mole at 298.15°K:	36.3 ± 0.7	Addnl. Ref. 1
Melting Point:	decomposes about 643°K (870°C)	1
Heat of Fusion:		
Boiling Point:	· ·	
Transition Point: Heat of Sublimation:	see Lead Oxide (Pb ₂ O ₄)	
Heat Content or Enthalpy:		
Heat Capacity, cal./deg./mole at 298°K:	(solid) 26.74	4, Addnl. Ref. 1
Decomposition Temperature: At 360-415°C, it is At red heat yields PbO + O.	forms red lead with loss of O	54V7
Decomposition Products: Converted'in air at 37	0°C to Pb ₈ O ₄ .	29
Vapor Pressure:		
	Molecules/ Axial Angle Unit Cell β = 80°6′ 2	18
Hygroscopicity:		
Solubility Data: Insoluble in cold water, decord conc. HCl or H ₂ SO ₄ with the liberation of C		1 29

Lead Sesquioxide (page 2)		
Health Hazard: A cumulative poison M.A.C.,mg./m. ³ :	when ingested, inhaled, or absorbed. 0.2	12 25
Safety Classifications: OSM: Not listed. Probably class shipping container or equivalen	s 2 when not packed or stored in original t.	
ICC:	not li sted	
Fire and Explosion Hazard:		
Electrostatic Sensitivity:	<u> </u>	
Use in Pyrotechnics:	as an oxidizing agent	
Additional References:		
	acities and Entropies at 298.15°K of Lead	
Sesquioxide and Red and Ye	llow Lead Monoxide," E. G. King, J. Ann.	
Chem. Soc. 80, 2400 (1958)		

I

LINSEED OIL

(Bung Oil, Bung Hole Oil, Linum Usitatissimum)

Linseed oil is obtained by pressing the seeds of the flax plant. The commercial oil is hot pressed. When fresh, the oil is yellowish with a peculiar odor and a bland taste; however, the hot pressed oil has a bitter taste. On exposure to the air, the oil slowly oxidizes, becoming darker, more viscous and acquires a stronger taste and odor. Boiled linseed oil is prepared by heating with metallic oxides, usually of lead or manganese (called driers). Such oil is called bung oil or bung hole oil. The state law of Ohio defines linseed oil as prepared pure linseed oil heated to a temperature of 225°F, incorporating not more than 4% by weight of drier, and with a specific gravity at 60°F of not less than 0.935 and not greater than 0.945. The oil dries in air with a glassy appearance and makes a hard yellowish film. The oxidized elastic solid is known as linoxyn.

Linseed oil is a mixture of glycerides of higher fatty acids, both saturated and unsaturated. Of these linoleic acid is about 48% and linolenic acid about 34%. Glycerides of stearic, palmitic, and myristic acids are also present. Addnl. Ref. 3 gives the following fatty acid analysis: 0.2 myristic, 6.4 palmitic, 8.5 stearic, 0.6 arachidic, 9.6 oleic, 42.6 linoleic, 38.1 linolenic.

Specification (for boiled linseed oil): (for raw linseed oil):	TT-O-364 TT-O-369	
Density, g./ml.:	0.930-0.938	1
Solidification Point, °C:	-19 to -27	1
Boiling Point:	616°K (343°C) 588.7°K (315.6°C) (600°F)	12 67
Decomposition Temperature and Products:		
Hygroscopicity:	nonhygroscopic	
Solubility Data: In alcohol: With chloroform, ether, petroleum ether, CS ₂ ,	slightly soluble	29
and oil of turbentine:	miscible	1

Health Hazards: Slight. Boiled linseed oil contains a small amount of manganese dioxide. Because of this, if it is splashed in the eyes, it will cause extreme irritation. When handling keep linseed oil away from fire or open flame. Store it in a sealed container and away from oxidizing agents. If linseed oil has been splashed into the eyes, wash the eyes in a solution of one part vinegar and four parts water by volume. Send the victim to a physician for examination and additional treatment.

Safety Classifications:

OSM: Not classified, but listed **as** a flammable liquid.

ICC: not listed

Fire and Explosion Hazard: Flammable and can ignite spontaneously. **To** fight fire **use foam**, CO₂, dry chemical, or CCl₄.

Electrostatic Sensitivity:

Refs.

12

26, 67, 75

l**6, 29, 57** Addnl. Ref. 3

Linseed Oil (page 2)

Constants for Linseed Oil (raw):

Maumené number : 103–126 Acid value : 1–3.5

Refractive index, N_D^{25} : 1.4797–1.4802

Reichert-Meissl number:
Unsaponified matter:
Saponification value:
Iodine value:
Hehner's number:

0.95
0.4-1.2
188-195
175-202
94.5-95.5

Flash Point (closed cup) **CF** (literature references vary):

(raw) from 432 to 468 (boiled) from 878 to 408

Autoignition Temperature, **F**:

Literature references give values ranging from 650 to 820.

Use in Pyrotechnics:

as a binder, a retardant and to reduce

and to reduce hygroscopicity

1

12, 26, 67

26, 67

Additional References:

- .1) "The Chemical Constitution of Natural Fats," T. P. Hilditch, London (1956)
- "Vegetable Fats and Oils," E. W. Eckey, Reinhold Pub. Corp., New York (1954)
- 3) "Fats and Oils," H. G. Kirschenbauer, Reinhold Publishing Co., New York (1944)

LITHIUM, Li					
Specification No. :					
Molecular Weight:	6.940				
Crystalline Form:	cubic	1			
Color:	silvery white, yellows on exposure to moist air	29 			
Density, g./ml.:	(solid) 0.684	1			
Coefficient of Thermal Expansion, linear, 0-95°C	• /	27			
cubic, 0-178°C					
Heat of Formation, Kcal./mole at 298°K:	(gas) 37.07	1, 5			
Free Energy of Formation, Kcal./mole at 298°K:	(gas) 29.19	1, 5			
Entropy, cal./deg./mole at 298°K: See Tables a, b, and c	(gas) 33.14	1, A			
Melting Point:	726.8°K (453.70°C)	4,5			
Heat of Fusion, cal./mole:	722.8	5			
Boiling Point:	1604°K (1331°C)	5			
Heat of Vaporization, cal./mole:	32,990	5			
'transition Point :	(c) II → I 77°K (-196°C)	5, 41'			
Heat of Sublimation, cal./mole at 298°K:	(monatomicgas) 38,440 (diatomicgas) 50,470	5			
Heat Content or Enthalpy, cal./mole at 298°K:	(solid) 1092 (diatomic gas) 2312	5			
See Tables a, b, and c					
a. HEAT CONTENT AND ENTROPY OF Li (c, 1) (Base, crystals at 298.15°K)					

	,				11
T, °K	$H_T - H_{298.15}$ cal./mole	$S_T - S_{298, 15}$ cal./deg.	T, °K	H _T - H _{298,15} cal./mole	S _T – S _{298,25} cal., deg: mole
350	315	0.97	900	4845	9.08
400	6 30	1.82	1000	5535	9.8 0
453.7 (c)	1000	2.68	1100	6225	10.46
453.7 (1)		4.26	1200	6910	11.66
500	2050	4.96	1300	7595	11.ഖ
600	2765	6.26	1400	8280	12.12
700		7.34	1500	8960	12.53
800		8.27	1600	9645	13.03

Li (c): Enthalpy: $H_T - H_{298.15} = 1.64T + 5.55 \times 10^{-9}T^2 - 0.84 \times 10^{8}T^{-1} - 701$ (0.1 percent; 298-453.7°K) Heat Capacity: $C_p = 1.64 + 11.10 \times 10^{-3}T + 0.84 \times 10^{9}T^{-2}$; A $H_{453.7}$ (fusion) = 715

Lithium, Li (page 2)

Li (I):

Enthalpy: $H_T - H_{298,15} = 6.78T - 0.99 \times 10^{5}T^{-1} - 1143 (0.1 \text{ percent}; 453.7 - 1600°K)$

Heat Capacity: $C_p = 6.78 + 0.99 \times 10^{5} \text{ T}^{-2}$

b. HEAT CONTENT AND ENTROPY OF Li (g) (Base, ideal gas at 298.15°K)

T,°K	H _T - H _{298.15} cal./mole	S_T - S_{298,15} cal./deg, mole	T, °K	$H_{\tau} - H_{298,18}$ cal./mole	S _T – S _{298,15} cal./deg. mole
400 500	505 1005	1.46 2.57	1900	7960 8460	9.20 9.46
600 700	1500 1995	3.48 4.24	2200 2400	9460 10,460	9.94 10.37
800	2495 2990	4.90 5.49	2600	11,470 12,496	10.78 11.16
1000	3490	6.01	3000	18,626 16,190	11.51 12.33
1200	3985 4480	6.49 6.92	4000	19,010	13.08
1300	4980 5475	7.32 7.69	4500 6000	22,030 25,316	13.80 14.49
1500 , 1600	6975 6470	8.08 8.35	7000	33,070 43,240	15.90 17.46
1700	6965 7465	8.65 8.94	8000	56,610	19.23

Li (g):

Enthalpy: $H_T - H_{298,15} = 4.971$: -1482 (0.2 percent; 298-3000°K)

c. HEAT CONTENT AND ENTROPY OF Li2 (g):

(Base, ideal gas at 298.15°K; mol. wt., 13.88)

T, °K	H _T – H _{298,15} cal./mole	$S_T - S_{298.15}$ cal./deg. mole	Т,°К	H _T - H _{298,15} cal./mole	S _T - S _{298,15} cal./deg. mole
460	1780 2675 3580 4490 5410 6330	2.59 4.57 6.20 7.61 8.81 9.90 10.87 11.74	1300	10,060 10,985 11,925 . 12,865 13,815 14,770	13.30 14.00 14.64 15.25 15.82 16.36 16.88 17.37
1200	04.00	12.56	2000	15,725	-,,

```
Lithium, Li (page 3)
```

Li2 (g):

Enthalpy: $H_T - H_{298,15} = 8.93T + 0.16 \times 10^{-8}T^2 + 0.36 \times 10^{5}T^{-1} - 2797$

(0.1 percent; 298-2000°K)

Heat Capacity: $C_{p} = 8.93 + 0.32 \times 10^{-8} \text{T} - 0.36 \times 10^{5} \text{T}^{-2}$

Heat Capacity, cal./deg./more at 298°K:

(solid) 6.91

(gas, monatomic) 4.97 (gas, diatomic) 8.62 5

5

d.	HEAT	CAPA	CITY	OF	Li
----	------	------	------	----	----

	0.11.10111 01
Solid	298-453.7°K
Liquid	453.7-1604°K
Gas (mo	on.) 1604–3000°K

Out (mo	,
T, °K	Co (cal./deg./mole)
298	5.91
400	6.50
500	7.20
600	7.06
900	6.90
1200	6.87
1600	6.80
1'700	4.97
2000	4.98
2400	5.03
2800	5.13
3000	5.21

Decomposition Temperature:

Decomposition Products:

Vapor Pressure:

Press. mm.	1	10	40	100	400	76 0	M.P.	
Temp. C	723	881	1003	1097	1273	1372	186	

X-Ray Crystallographic Data:

System cubic

Space Group On

3.502

Atoms/Unit Cell 2

Hygroscopicity: Reacts with water; forms LiOH, evolves H2.

Solubility Data: In water:

forms LiOH, evolves H2

in alcohol:

decomposes

In acids:

soluble, reacts and evolves H2

In liquid NH3:

soluble

Health Hazard: Will burn in contact with many substances, producing a caustic smoke which is toxic by inhalation. Dangerous when ingested or inhaled, and produces painful burns when in contact with the skin.

12, 14

1

Lithium, I: (page 4)

"afety Classifications:

OSM: Not specifically listed; probably class 2 as a powdered metal ICC:

flammable solid, yellow label

14, 12, 16

Fire and Explosion Hazard: Dangerous explosive hazard whea exposed to heat, flame, or by chemical reaction with water, acids or exidizers. On burning, it emits toxic fumes of Li₂O and LiOH. It burns in air with a dazzling bright light. Keep the metal submerged in kerosene. Store and process only in rooms or buildings adequately vented at the highest pint to prevent the accumulation of hydrogen gas which results from the reaction with moisture. Suitable respiratory protective equipment and self-contained breathing apparatus should be used where permissible concentrations are likely to be exceeded. To fight fire, use special mixtures of dry chemicals, soda ash, or graphite.

Autoignition Temperature, °F:

Electrostatic Sensitivity:

12

Use in Pyrotechnics: Burns with a brilliant crimson to carmine-red color. 1, 29

_	Refs.				
Percent Oxygen :			69.62		
Specification No.	:				
Molecular Weigh	t:		68.95		
Crystalline Form	1:		trigonal		l
Color:			colorless		
Density, g./ml.:			(solid) 2.38		1
· •		10-st°C (M.Pto	550°C)		40V2
Coefficient of Th	ermal Expansi	on, at 254°C	1 (2.15)	40.4	4.43700
(molten) cul		. 000017	about 3.15 ×	10-4	44V20
Heat of Formation			(c)-116.28		1, 9 86
Free Energy of F					86
Entropy, cal./deg See table be		0°K ;	.38.4		80
Melting Point:	iow		525°K (252°	C)	4
Heat or Fusion,	cal./mole:		6120	-,	4
Boiling Point:			decomposes		
'Transition Point	- u , =				
heat of Sublima	tion:		*******		
LIEA	T CONTENT	AND ENTED OF	PY OF Lino; (c,	1)	4
IILA		crystals at 298.		1)	7
Т, °К	H _T – H _{298,13} cal./mole	$S_T - S_{298,15}$ cal./deg.	T, °K	H _T - H _{298,18} cal./mole	S _T - S _{298.15} cal./deg. mole
353	1130	3.50	525 (c)	5380	13.29
400 . ,	2280	6.57	525 (1)	11,500	24.95
450	3480	9.39	550	12,160	26.18
500	4730	12.03	600	13,490	28.49
		LiNO ₂ (c) :			
Enthalpy: Hr - F	$I_{298.15} = 14.981^{\circ}$	+ 10.60×10-1		ent; 298-525°K)
Hear, Capacity: 0	$C_p = 14.98 + 21$	$.20 imes 10^{-8}\mathrm{T}$	_ ` .		
		LiNO 3 (1) :			
Enthalpy: Hr - H	$I_{298,15} = 26.60 \mathrm{T}$		ent ;525-600°K)		e e
Heat Capacity, o		•	(liquid) 26.	60	4
a mixture of For DTA a	oxygen and nit	rogen.	en heated, gives c	off oxygen then	54V2 .
Vapor Pressure		DIS. 33 / 11			

Lithium Nitrate	e, LiNO ₃ (page 2))			
X-Ray Crystal	lographic Data :				
System hexagonal Solubility:	Space Group D &		$Axial\ Angle$ $\alpha = 48^{\circ}3'$	Molecules/ Unit Cell 2	1
In water (In acetic a	g./100 ml.) : cid :			cold, 66 at 71°C ghtly soluble	1
Hygroscopicity	: Deliquescent. C	aution :	Keep in closed	containers.	29
Health Hazard	: Large amounts	taken l	oy mouth mary l	œ fatal.	12
Safety Classifi	ications:				
	ss 1. Class 2 wheners or equivalent		ncked or stored i	n original shipping con-	
ICC:	_		ox	idizing material	
Fire and Expl heated wi it emits to	th a fuel, or when	vigoro	us oxidixing ag d to heat or by s	ent. May explode when shock . On decomposition	
Electrostatic S	Sensitivity:		_		
Use in Pyroteo	chnics:			an oxidizer ;to color burning compositions red	1

LITHIUM PE	RCHLORATE,	LiClO,		Refs.
Percent Oxygen:		60.15		
Specification No. :		none		
Molecular Weight:		106.40		
Crystalline Form:		no regular form recognizable		14V20
Color :		colorless		1
Density, g./ml.: coefficient of Thermal Expansion	ı:	(solid) 2.429	70	1, 65
Hest of Formation, Kcal./mole at 2	98°K :	-91.77		72
Free Energy of Formation: Entropy:				
Melting Point:		509°K (236°C) 520°K (247°C)		9 Addnl. Ref. 1
Values vary from < 300 to 41	0°C, with decompo	sition.		65
Boiling Point:		decomposes at 653°K (380°C)		1
Transition Point:				
Heat of Sublimation:				
Heat Content or Enthalpy:				
heat Capacity:				
Decomposition Temperature, °C	:	380		1
For DTA and TGA see Refs	s. 33, 47	_		
Decomposition Products :		LiCl +02		29
Decomposition: Does not begin to the temperature is raised to There is an endothermic breating point of LiCl (614°C), appreciable loss. The temperary rapid decomposition is for range of 255°C:	over 400°C, ak at 610°C, corres At abut 420°C rature interval bet	ponding closely to LiClO, begins to ween salt fusion a	the melt - undergo nd onset	72 Addnl. Ref. 1
	O loses H2O at 146	8°C		Addnl. Ref. 1
The pure anhydrous salt can sition, but ordinary samples and oxygen owing to the catal V apor Pressure:	be heated to at leadecompose at low	ast 300°C without of er temperatures to	chloride	52V7
X-Hay Crystallographic Data for	LiClO.• 3H ₂ O :			1
System hexagonal	Space Group C4	<i>a</i> 7.71 5	с . 42	
Hygroscopicity:	2.1	deliquescent		1
Solubility Data: in water (g./10	10 g.) :	59.7 at 25°C		1

Lithium Perchlorate, LiClO₄ (page 2)

Solubility in Nonaqueous Solvents at 25°C

65, 72, 77

29, 65

12

Solvent	g./100 Q. of Solvent
acetone	136.5
ethyl acetate	95.2
ethyl ether	113.7
methyl alcohol	182
ethylalcohol	151.8

Health Hazard: May irritate the **skin** and mucous membranes. **Lithium** salts are rated moderately toxic. They affect the nervous systems, and *can* cause death.

Safety Classifications:

OSM: Class 1. Class 2 when not stored in original shipping containers or equivalent.

ICC: Oxidizing material; yellow label. Classed under "Explosives and Other Dangerous Articles."

Fire and Explosion Hazard: A powerful oxidizer, can cause fires by chemical reaction, and forms explosive mixtures with carbonaceous materials or finely divided metals, sulphur, powdered magnesium or aluminum. Explodes on shock or by chemical reaction.

Electrostatic Sensitivity:

Use in Pyrotechnics:

as an oxidizer; to color burning compositions red

Additional References:

- 1) "The Differential Thermal Analysis of Perchlorates. 11. The System LiClO₄ LiCO₃," M. M. Markowitz, J. Phys, Chem. 62, 827 (1968)
- 2) "Precise Studies of the Crystal Structures of Lithium Perchlorate Trihydrate, Anhydrous Lithium Perchlorate, and Potassium Perchlorate," R. J. Prosen and K. N. Trueblood, Perchlorates TN-2, OSR TN 56-563, ASTIA Document No. AD110-384 (1956)

LUPERSOL DDM

Refs.

Lupersol DDM is a proprietary mixture of 60% methylethylketone peroxide in dibutylphthalate, marketed by the Lucidol Div., Wallace and Tieman, Inc., Buffalo, New York. The following data, except where otherwise indicated, are from the Lucidol Div., Wallace and Tiernan.

The structure of methylethylketone peroxide is:

Addnl. Ref. 2

The market product has about 11% active oxygen.

Stability: Lupersol loses about 7% of its peroxide content after 12 months of storage at ambient temperatures (20-80°F).

Addnl. Ref. 1

DECOMPOSITION KINETICS

Addnl. Ref. 2

Active %	Conc. g. moles peroxide (-0-0-)/l.	Temp. °C		First Order Rate k./hr.	E (Activation Energy) Kcal./mol e
11 atstart	8.2	85 100	81.2 16.2	0.00854 0.0428	
arstart		115 145	3.6 0.25	0.193 2.77	28.5

DECOMPOSITION TEMPERATURES IN BENZENES AT SELECTED HALF LIFE VALUES

Addnl. Ref. 2

Time	1 min.	10 hrs.	100 hrs.
Temp, C°	182	105	83

Solubility Data: Soluble in most synthetic resin monomers,

Health Hazard: Highly toxic by ingestion.

Safety Classifications:

12

OSM: Not specifically listed but peroxides are in class 1 when stored in original shipping containers, and in class 2 when not in original shipping containers or the equivalent.

Not specifically listed, but organic peroxides not otherwise specified are classed as flammable liquids and as oxidizing materials under "Explosives and Other Dangerous Articles."

Fire and Explosion Hazard: Methylethylketone peroxide alone is shock sensitive. To reduce the sensitivity to shock, it is diluted with dibutylphthalate and is then acceptable for shipment. The peroxide may exist in several different structures, some of which are extremely shock sensitive even in 60% solution. The solution may thus be a hazard. Lupersol DDM will decompose rapidly at 125°C. The solution has a flash point (open cup) above 45°C and burns like gasoline when ignited. Eupersol DDM is widely used

12, Addnl. Ref. 3

Lupersol DDM (page 2)

as a room temperature catalyst with cobalt naphthenate or similar metallic drier as the accelerator. Mixtures of the peroxide and accelerator will decompose explosively and the two should not be brought into direct contact. As a powerful oxidizing agent, the peroxide can react vigorously with reducing materials.

Storage Precautions: Store in an isolated building with no other type of material. Buildings containing the peroxide should be posted "Flammable Storage—Keep Fire Away."

Disposal of **Lupersol** DDM: Burning, the preferred method, or **chemical** hydrolysis.

Burning Method: Pour material to be destroyed into shallow trench. Ignite with a wadded gasoline soaked rag tied to the end of a 6-ft. steel rod. Boiling will be rapid but not violent.

Chemical Hydrolysis Method: Slowly add peroxide solution to 10 times ita weight of 20% NaOH solution with constant stirring. The reaction is exothermic. Decomposition shall be complete in 24 hours, and is confirmed when an acidified sample of the alkaline reaction mixture does not liberate iodine from an acetone solution of NaI.

Electrostatic Sensitivity:

Use in Pyrotechnics: Usually with cobalt naphthenate (g.v.) to cure Laminac 4116 (see PA-PD-594).

Additional References:

- 1) Chem, Eng. News (Dec. 7,1959) (Wallace and Tieman advertisement).
- 2) "The Evaluation of Organic Peroxides on the Basis of Half Life Data,"
 D. Doehnert and O. Mageli, Modem Plastics 86,142 (1959)
- 3) "The Use of Organic Peroxides," C. H. Rybolt, paper presented at the 11th meeting of The Reinforced Plastics Division, S.P.I., Atlantic City, New Jersey (1956)
- 4) For use with Laminac 4116, see Ref. 73

Addnl. Ref. 3

MAGNESIUM, Mg

Refs.

Specification No.:

3AN-M-382

The specification covers three types. Types I and II must be manufactured by grinding, scamping, turning, or any combination of these methods which will yield a suitable product. Type III must be manufactured by the atomizing process. Type I is divided into two grades which differ in purity. Type I, grade A, and types II and III all have the same purity requirements. Grade B is ordinarily manufactured from scrap.

Grade B is ordinarily mandractured Figure Scrap.		
Molecular Weight:	24.32	
Crystalline Form:	hexagonal	1
Color:	silvery white	1
Density, g./ml.:	1.74	1
Coefficient of Thermal Expansion at 20-100°C:	26 × 10⊸	1
-183 to +15 21. 20-200 27.	Coeff. 40×10^{-6} 9×10^{-6} 8×10^{-6}	
Heat of Formation, Kcal./mole at 298°K:	(gas) 35.6	5
Free Energy of Fornation, Kcal./mole at 298°K:	(gas) –27.341	5
Entropy, cal./deg./mole at 298°K:	(c) 7.81	_
See Tables a and b	(gas) 35.51	6 5
Meiting Point:	923°K (650°C)	5, 7
Heat of Fusion, cal./mole:	2140	4, 5
Boiling Point:	1390°K (1117°C)	5
Heat of Vaporization, cal./mole:	30,750	5
Transition Point:		
Heat of Sublimation, cal./mole at 298°K:	35,600	5
Heat Content or Enthalpy, cal./mole at 298°K:	1195	5

a. HEAT CONTENT AND ENTROPY OF Mg (c, !)

(Base, ideal gas at 298.15°K)

T, °K	$H_{\scriptscriptstyle T} = H_{298,15}$ cal./mole	$S_T - S_{298,15}$ cal./deg.	T, °K	$H_T - H_{298,15}$ cal./mole	$\begin{array}{c} \mathbf{S_T} - \mathbf{S}_{298,18} \\ \text{cal/deg.} \\ \text{mole} \end{array}$
400	615 1255 1920 2610 3330 4095 42 75	1.78 3.20 4.41 5.48 6.44 7.34 7.54	923 (1)	6415 7020 7800 8580 9360 10,140	9.86 10.48 11.23 11.91 12.53 13.11

Enthalpy: $H_T - H_{298,15} = 4.97T + \frac{Mg}{1.52 \times 10^{-8}T^2} - 0.04 \times 10^{5}T^{-1} - 1604 (0.2 \text{ percent ; } 298-923^{\circ}K)$

Magnesium, Mg (page 2)

Mg (l): Enthalpy: $H_T - H_{298,15} = 7.80T - 780$ (0.1 percent; 923-1400°K)

b. HEAT CONTENT AND ENTROPY OF Mg (gas) (Base, ideal gas at 298.15°K)

	į	,	١	
	•			

T,°K	$H_T - H_{298.15}$ cal./mole	S_T – S_{298, 18} cal./deg. mole	T,°K	$H_T - H_{298.16}$ cal./mole	$S_T - S_{268,16}$ cal./deg. mole
400	505 1005 1500 1995 2495 2990 3490 3985 4480 4980 5475 5970 6470 6965 7465	1.46 2.57 3.46 4.24 4.90 5.49 6.01 6.49 6.92 7.32 7.69 8.03 8.35 8.65 8.93	1900	7960 8455 9450 10,445 11,440 12,440 13,440 16,980 18,610 21,400 24,410 31,355 39,955 50,805	20 9.93 10.36 10.76 11.13 11.48 12.26 12.96 13.62 14.25 15.52 16.84 18.28

Mg (g):

Enthalpy: $H_T - H_{298.15} = 4.971' - 1482 (0.2 \text{ percent}; 298-3500°K)$

Heat Capacity, cal./deg./mole at 298°K:

(solid) 6.96 (liquid) 7.80

(gas) 4.97

4

c. HEAT CAPACITY OF Mg

Solid 298-923°K Liquid 923-1390°K Gas (mon) 1390-3000°K

T, °K	Co (cal./deg./mole)
298	5.96
400 600	6.24 6.76
800 800	7.42
900	7.81
1000	7.88
1100	8.14
1200	8.40
1300	8.66
1400to	
2400	4.97
25 00	4.98
3000	5.02
	106

Magnesium, Mg (page 3)

Decomposition Temperature and **Products**:

For **TGA see** Addnl. Ref. 7

For TGA and DTA see also Ref. 33

Vapor Pressure:

Press. mm.	1	10	40	100	400	760	M.P.	
Temp. °C	621	743	838	909	1034	1107	651	

X-Ray Crystallographic Data:

System	Space Group	a	С	\boldsymbol{A}	toms/	Unit	Cell	
hexagonal	\mathbf{D}_{6h}^{4}	3.203	5.196			2		
II. one a conjuitor .			1	1	. 1.			

Hygroscopicity:

slowly oxidizes in moist air

29, 33, 50

Grade B	R.H. at 70°F	Time of Exposure, hrs.	Gain in weight, %
material	50	216	0.06
(see Spec. grades)	70	216	0.22
grades)	90	168	0.62

Solubility Data: Insoluble in cold water; slightly soluble in hot; decomposing to Mg (OH)₂. Soluble in mineral acids (except CrO₃), conc. HF, NH₄ salts. Insoluble in alkalies. Reacts readily with dilute acids with evolution of hydrogen.

1, 29

Health Hazard: Slightly to moderately toxic. Particles which perforate the skin may produce severe local tumors characterized by the formation of pockets of gas and acute inflammatory reaction, frequently with necrosis (chemical gas gangrene). Inhalation of fumes or dust may irritate the respiratory tract.

93, 12, 25, 29

M.A.C.: 10 pts. per million in air and 15 mg./m.3 of fumes as MgO.

14

Safety Classifications:

OSM: Class 1; class 2 when not stored in original shipping containers or equivalent.

ICC: Magnesium scrap (shavings, borings or turnings) is classed as a flammable solid; yellow label.

Fire and Explosion Hazard: Contact with water may cause ignition of pow dered magnesium evolution of hydrogen, and explosion. Dangerous in the form? of dust or flakes when exposed to flame or by chemical action with at oxidizing agent. Finely divided magnesium can be ignited by a spark of match flame. Highly explosive. Caution: water, CO₂, or carbon tetrachlor ide should not be used on magnesium fires. Use G-1 powder or powdered tale on open fires and boron trichloride on oven fires.

12, 14, 49, 51

Store and process only in rooms or buildings adequately vented at the high est point to prevent the accumulation of hydrogen gas which results from the reaction of powdered metal and moisture. In the repair and maintenance of buildings or equipment, powder or dust should be removed and non sparking tools used.

Magnesium, Mg (page 4)

Electrostatic Sensitivity: Minimum energy required for ignition of powder by electric sparks (millijoules):

Type	Dust La yer	Cloud Layer	
atomized	120	40	26, 51
milled stamped	40 20	8 1	
_		2.00	۱ ۵۰ ۳۰
Can be ignited tures with not l	by a spark in an atmospherd ess than 3% oxygen. To av	e of CO ₂ br in sir-nitrogen mix- oid ignition process in helium.	49, 51
Ignition Temperatur	es of Magnesium Powders,	°C:	26, 50
Type	Dust Cloud	Dust Layer	
atomized	600	490	
milled	540	475	
stamped	520	480	
Minimum Explosive	Concentration, mg./l. :	(atomized) 10 (milled) 20 (stamped) 20	26, 50
		(SLAIIII) AU	

Use in Pyrotechnics: **As** a fuel, and in tracer, igniter, signal flare, and pyrotechnic compositions.

Additional References:

- 1) "The Kinetics of Underwater Corrosion of Powdered Magnesium," E. Freeman and S. Gordon, J. Phys. Chem. **50,1009 (1955)**
- 2) "Magnesium and Its Alloys," C. S. Roberts, John Wiley & Sons, New York (1960)
- 3) "National Fire Codes, Vol. II, The Prevention of Dust Explosions," National Fire Protection Association, Boston, Mass. (1952)
- 4) "Safety Requirements for Manufacturing and Processing Military Pyrotechnics," ORDM 7-255 (1952)
- 5) C.A. 37, 2578 (1943)
- 6) Ref. 64
- 7) Combustion and Flame 3, No. 1, 3-12 (1959)

MAGNESIUM-ALUMINIONIO RELICTIONIO (Magna Ham)	Refs.
Specification No.: JAN-M-454	
The specification covers two types, A and B, which differ in granulation (B is coarser): A = 50/50 Mg/Al, approx, 53.3 atom % Mg. B = 66/35 Mg/Al, approx. 67.0 atom % Mg.	spec.
Molecular Weight:	
Color and Form: silvery metal	
Density, g./ml.: (solid) type A, about 2.142 type B, about 2.015	
Calculated on the basis of data in Addnl. Ref. 3	
Coefficient of Thermal Expansion: type A, approx. 29.3×10^{-6} type B, approx. 28.7×10^{-6}	
By interpolation from Addnl. Ref. 2 Heat of Formation, cal./mole at 298°K: type A, -1027	24
Boiling Point: Decreases with increasing Mg content.	44S35
Wt. % Mg 20 40 60 80	
B.P. °C 1300 1200 1150 1116	
Vapor Pressure: See Addnl. Refs. 2 and 4	
X-Ray Crystallographic Data:	
a Atoms/Unit Cell	
type A about 10.46 about 58 type B about 10.57 about 58	
By interpolation and extropolation of data in Addnl. Ref. 3	
Hygroscopicity: Cumulative increase in weight after storage:	
ouer water for 29 days over H ₂ SO, for 29 days 2 days in oven at 105°C 4.3%	51
Solubility Data: see Magnesium and Aluminum	
Health Hazard: ano known toxicity	50V8
Safety Classifications:	
OSM: No classification given. Since Al and Mg powders are in class 1, powdered Mg/Al alloy is probably similarly classified.	
ICC: No classification given. However, since powdered metallic magnesium is classified under "Explosives and Other Dangerous Articles," the alloy would be similarly classified as a flammable solid requiring a yellow label.	
Fire and Explosion Hazard: Prevent water from contacting the powdered material. Store and process only in rooms or buildings adequately vented at the highest point to prevent the accumulation of hydrogen gas which results from the reaction of powdered metal and moisture. Powdered Mg/Al alloy mixed with oxidizing agents is a dangerous fire and explosion hazard. Powdered metal exposed to the air is a dangerous fire hazard, and when ignited burns with intense heat. In the repair or maintenance of buildings or equipment, powder or dust should be removed and nonsparking tools used.	14
Minimum Explosive Concentration of type A Mg/Al powder is 50 mg./1.	26

Magnesium-Aluminium (magnalium) (page 2)

Electrostatic Sensitivity: Minimum energy required for ignition of powder by electric sparks, millijoules: (dust cloud) 80

(dustlayer) 20

Ignition Temperature, °C of type A alloy:

(dust cloud) 535 (dustlayer) 46 26, 50

26, 50

Use in Pyrotechnics:

as fuels

Additional References:

- 1) "Magnesium and Its Alloys," by C. S. Roberts, John Wiley & Sons, New York (1960)
- 2) "The Physical Metallurgy of Magnesium and its Alloys," G. V. Raynor, Pergamon Press, New York (1959). Contains a good phase diagram of the system Mg/Al, plus a discussion.
- 3) "Handbook of Lattice Spacings and Structures of Metals," W. B. Pearson, Pergamon Press, New York (1958)
- 4) A. Schneider and E. H. Stroll, Z. Electrochem. 47, 519 (1941)

N	MAGNESIUM	CARBONA	TE, MgCO,		Refs.
Specification No.	:		MIL-M-113	861	
Molecular Weigh			84.33		
Crystalline Form			trigonal		1
Color:			white		1
Density, g./ml.:			(solid) 3.08	37	1
Coefficient of Th	ermal Expansion	on, cubical:	0.5×10^{-7}		31
Heat of Formati	on, Kcal./mole	at 298°K;	-266		1, 9
Free Energy of F					1, 9
Entropy, cal./deg See table be		K :	15.7 .		1, 9
Melting Point:			decompose 623°K (3	sat 350°C)	1
Heat of Fusion:					
Boiling Point:			loses CO₂ a 1173°K	t (9 00°C)	I
Transition Point Heat of Sublima					
HEA	AT CONTENT (Base,	AND ENTRO	PY OF MgCO ₃ .15°K)	(c)	4
T, °K	$H_T - H_{298, 15}$ cal./mole	S _T - S _{298,15} cal./deg. mole	^{ξ,δ} cK	$H_T - H_{298, 15}$ cal./mole	S _T - S _{298,15} cal./deg. mole
400	2060	5.92	700	9450	19.54
600	4300 6 7 90	10.91 15.45	750	10,820	. 21.43
Enthalpy: $H_T - H_{298,15} = 18.62 + 6.90 \times 10^{-3}T^2 + 4.16 \times 10^{5}T^{-1} - 7560$ (0.4 percent; 298–750°K) Heat Capacity: $C_p = 18.62 + 13.80 \times 10^{3}T - 4.16 \times 10^{5}T^{-2}$					
Heat Capacity, of			(solid) 18	.05	9
Decomposition T	-		900°C		64
	ee Addni. Ref.		CO 4 450 50	200 . C	50 V 5
=		3) begins to io	se CO ₂ at 450-50 MgO + C 0		29
Decomposition F Vapor Pressure			MgO I CC) ₂	42V7
Press. atm.	.0001 .008	9 .0776 0.9	983 1.763 1	3.87 -473.4	-
					-
Temp. °K 673.1 723.1 763.1 813.1 843.1* 873.1* 973.1*					
*calculated from equation $\log kp_1 - \log kp_2 = \frac{A H (T-T_2)}{4.571 (T.T_2)}$, $\Delta H = 60.863$					

Magnesium Carl	oonate, MgCO ₃ (page	2)			
X-Ray Crystallo	graphic Data:				
System hexagonal Hygroscopicity:	Space Group D 3d	a 5.61	Axial Angle a=48°12'	Molecules/ Unit Cell 2	1
Solubility Data:		CO ₂ .	.010 6 g./ 100	ml.	1, 29
Health Hazard:	NH ₃ , and alcohol: None. Has an antacid d inhalation.	d and laxat	soluble, reac evolution insoluble tive effect. Slight t		29, 93
Safety Classifica Fire and Explos Electrostatic Ser Use in Pyrotech Additional Refer 1) J. Am. C	ion Hazard: nsitivity : nics :	(1950)	as a retardar	nt	

MAGNESIIJM	OXIDE,	MgO	Refs.	
(Magnesia, Calcined Magnesia, Dead	d Burned	Magnesia, Light Magnesia,	1, 11, 29	
Ponderous Magnesia, Magnesia Usta Periclase)				
Specification No.:		MIL-M-12036A		
The spec. covers one grade of Mg	0, light (te	echnical).		
Molecular Weight:		40.32		
Crystalline Form: The spec. grade is a fluffy white an	morphous p	cubic powder.	1	
Color:		colorless	1	
Density, g./ml.:		(solid) 3.58	1	
Coefficient of Thermal Expansion, linear	, 20-500°C	: 12.4×10 ⁻⁶	182	
•		: 13.7× 10⁴	27	
	25°C:	14.45×10^{-6}	97V1	
Thermodynamic Data for finely divided See also Tables a and b	MgO:		9 .	
Heat of Formation, Kcal./mole at 2989 See Table a	Ϋ́K:	-142.95	×	
Free Energy of Formation, Kcal./mole a	t 298°K :	-135.31		
Emropy, cal./deg./mole at 298°K:		6.66		
Heat Capacity, cal./deg./mole at 298°F See Table b	ζ:	9.03	22	
a. HEAT AND FREE ENERGY OF	FORMA'	PION OF MgO (periclase)	2,8	

T, °K	Δ H (cal./mole)	A Fo (cal./mole)
298.16	$-143,800(\pm 90)$	-136,080(± 150)
400	-143,810	-134,530
500	-143,810	-130,860
G00	-143,810	-128,270
700	-143,800	-125,680
SJU	-343,790	-123,080
930	-113,773	-120,430
923	-143,760	-119,890
928	-145,920	· -11 9,890
1000	-145,890	-117,730
1100	-145,840	-114,910
1200	-145,750	-112,100
1300	-145,660	-109,300
1393	-145 ,560	-106,690
1393	-177,06 0	-106,690
1460	-177,030	-106,350
1500	-176,70 0	-101,300
1600	-176,380	-96 [°] ,280
1760	- 176 ['] ,060	-91,300
1800	-175,740	-86,330
1900	-175,420	-81,370
2000	-175,100	-76 ,4 00

Magneeium Oxide, Mg() (page 2)

Phase Changes of Metal M.P., 923° K; A H = 2160 cal./g.-atom B.P., 1393° K; Δ H = 31,500 cal./g.-atom

	Free Energy Equations:		
	Reaction	Range of Validity, °K	
	1) Mg (c) $+\frac{1}{2}$ O ₂ = MgO (periclase)	298.16-923	
	$\Delta F_{\rm T}^{\circ} = -144,090 - 1.06 \text{T} \log T13 (10^{-8} \text{T}^2)$	+ .25 (10 ⁵ T ⁻¹) +29.16T	
	2) Mg (1) $+ \frac{1}{2} O_2 = MgO$ (periclase)	923-1393	
	$A F_{T}^{\circ} = -146,810 + 1.84T \log T62 (10^{-9}T^{-2})$	$+.64 (10^{5}T^{-1}) + 23.07T$	10
	3) $Mg(g) + \frac{1}{2}O_2 = MgO$ (periclase)	1393-2000	
	$A F_T^{\circ} = -180,700 - 3.75 T \log T62 (10^{-3}T^2)$	$+ .64 (10^{5}T^{-1}) + 65.69T$	15
	Entropy, cal./deg./mole at 298°K:	6.4	1, 9
	See Table b		
	Melting Point:	3173°K (2900°C)	9
	Heat of Fusion, Kcal./mole:	18.5	9
•	Boiling Point:	$3350 \pm 300^{\circ} \text{K} (3077^{\circ} \text{C})$	8
	Heat of Vaporization:		
	Transition Point:		
	Heat of Sublimation, Kcal./mole at 298°K:	> 149.4	64
	•		

Т, °К	$ m H_T - H_{298,15}$ cal./mole	$S_T - S_{298,15}$ cal./deg.	т,∘к	$H_T - H_{298,18}$ cal./mole	S_T – S_{298,15} cal./deg, mole
400	965	2.78	1300	11,310	15.98
500	1975	5.03	1400	12,570	16.92
600	3020	6.94	1500	13,830	1 7.7 9
700	4100	8.60	1600	15,090	18.60
800	5225	10.10 .	1700	16,350	19. 3 6
900	6390	11.47	1800	17,610	20.08
1000	7580	12.73	1900	18,870	20.76
1100	'8800	13.89	2000	20,130	21.41
1200	10,050	14.98	2100	21,390	22.02

MgO (c):

Enthalpy: $H_T - H_{298, 15} = 10.18T + 0.87 \times 10^{-3}T^2 + 1.48 \times 10^{5}T^{-1} - 3690$ (0.8 percent; 298–2100°K)

Heat Capacity: $C_0 = 10.18 + 1.74 \times 10^{-8}T - 1.48 \times 10^{5}T^{-2}$

Heat Capacity, cal./deg./mole: See equation above

(solid, c) 8.94

Magnesium Oxide, MgO (page 3)					
Decomposition Temperature. The temperature required to complete dissociation has been estimated to be above that of the temperature of a Bunsen flame. Partial dissociation is said to take place by evaporating a mixture of MgO and metal.					
Decomposition Products:					
Vapor Pressure : $\log_{10} P_{mm} = 2.732 \times 10^4/T + 13.13$, over the temperature range 1800–2200°K					
X-Ray Crystallographic Data:					
System Space Group Of	a Molecules/Unit Cell 4.212 4	97V1			
Hygroscopicity: Takes up moisture from t from the air to form MgCO ₈ .	he air to form Mg(OH) ₂ and CO ₂				
Caution: Keep container well closed. See also Addnl. Ref. 2.	.	29			
Solubility Data: In water:	.00062 in cold	1			
•	.0086 at 30°C	29			
Solubility in water is increased by CO					
In acids and ammonium salts:	soluble				
In alcohoi:	insoluble				
Health Hazard: inhalation of freshly sub		12			
fever, Large goses taken as an antiacid	· -	29			
M.A.C., mg/m.3 for an 8-hr. day:	15	14			
Safety Classifications:	411 4 1				
OSM: 18C:	not listed not listed				
Fire and Explosion Hazard:	not fisted				
•					
Electrostatic Sensitivity:	C. (1 . 1 C.Mf.)				
Use in Pyrotechnics: MgO is the product of	or the burning of mg.				
Additional References:					
1) "Stability of Ceramic Materials," Ceram. Soc. Bull. 31, (7) 251 (1952)	J. Wygant and W. Kingrey, Am. 2); cited by Ref. 65				
27 "The Sorption of Water Vapor on R. Sh. Mikhail, J. Yhys. Chem. 59,	Magnesium Oxide," R. Razouk and 636 (1955)				
3) "On the Dissociation Energies of Oxygen Molecules," R. Porter et al.	Strontium Oxide and Magnesium, J. Chem. Phys. 23, 1347 (1955)	Ĉ			
	3	31			

MANGANESE	¥ียง	Refs.
Specification No.: The specification covers three grades whice tion. Grade I is intended for delay powde technics.		
Molecular Weight : Crystalline Form :	54.94 cubic or tetragonal	1
Color: Density, g./ml.:	grey-pink (solid at R.T.) $\alpha = 7.44$ $\beta = 7.29$ $\gamma = 7.21$	1 37
Coefficient of Thermal Expansion, linear:		
Temp. (°C)	Coeff. (cm./cm./°C)	27, 37
α phase -190 to 0 -183 to 0 0-20 0-100 0-300	15.9 × 10 ⁻⁶ 17.6 × 10 ⁻⁶ 22.3 × 10 ⁻⁶ · 22.8 × 10 ⁻⁶ 25.2 × 10 ⁻⁶	·
β phase -183 ± 0 0-20	$12.8-20.4 \times 10^{-8}$ $18.7-24.9 \times 10^{-6}$	
γ phase -70 to 0 0-20	13.6×10^{-6} 14.8×10^{-6}	
Heat of Formation, Kcal./mole at 298°K:	(gas) 68.34 (c) γ, 0.37	1, 5
Free Energy of Formation, Kcal./mole at 298°K		1, 5
Entropy, cal./deg./mole at 298°K:	(gas) 41.49 (c) =,7.59 y, 7.72	1
See Tables a, b, c, d		
Melting Point:	1517°K (1244°C)	2, 5
Heat of Fusion, cal./mole: Boiling Point:	3500	2, 4, 5
Heat of Vaporization, cal./mole at 2314°K:	2314°K (2041°C)	5
Transition Points: (727° a 1000		5 2, 4, 5
Heat of Transition, cal./mole: Heat of Sublimation, cal./mole at 298°K: Heat Content or Enthalpy, cal./mole at 298°K: Heat Capacity, cal./mole at 298°K: See Tables	· ·	2, 4, 5 5

Manganese, Mn (page 2)

a. HEAT CONTENT AND ENTROPY OF Mn (c, 1) (Base, a-crystals at 298.15°K)

	(Dase,	a crypton ac ne	0.10 11)		
T, °K	H _T – H _{298,15} cal./mole	$S_T - S_{298, 15}$ cal./deg.	т,∘К	H _T -H _{298,15} cal/mole	S _T - S _{258, 15} cal./deg. mole
400	690	1.99	1410 (γ)	10,330	13.21
500	1385	3.54	1410 (8)	10,760	13.51
600	2120	4.88	1500	11,780	14.21
7 00	2895	6.07	1517 (8)	11,970	14.34
800	3715	7.16	1517 (1)	15,470	16.65
900	4570	8.17	1600	16,380	17.23
1000 (a)	5450	9.10	1700	17,480	17.90
1000 (\$)	5985	9.63	1800	18,580	18.53
1100	6890	10.50	1900	19,680	19.12
1200	7795	11.28	2000	20,780	19.69
1300	8715	12.02	2100	21,880	20.22
1374 (β)	9395	12.53	2200	22,980	20.74
1374 (γ)	9940	12.93	2300	24,080	21.22
1400 ,	18,220	13.13		,	

Mn (a):

Enthalpy: $H_T - H_{298,15} = 5.709^{\circ} + 1.69 \times 10^{-8} T^2 + 0.37 \times 10^{5} T^{-1} - 1974$

(0.7percent;298-1000°K)

Heat Capacity: $C_p = 5.70 + 3.38 \times 10^{-8} \text{T} - 0.37 \times 10^{8} \text{T}^{-2}$

Mn (β) :

Enthalpy: $H_T - H_{298,18} = 8.33T + 0.33 \times 10^{-3}T^2 - 2675$ (0.1percent; 1000-1374°K)

Heat Capacity: $C_1 = 8.33 \pm 0.66 \times 10^{-3} \text{T}$

Mn(y):

Enthalpy: $H_T - H_{298,15} = 10.70T - 4760$ (0.1 percent; 1374-1410°K)

Heat Capacity: $C_p = 10.70$

 $Mn(\delta)$:

Enthalpy: $H_T - H_{298,15} = 11.30T - 5170$ (0.1percent; 1410-1517°K)

Heat Capacity : C₀ == 11.30

Mn (1):

Enthalpy: $H_r - H_{298,15} = 11.00T - 1220$ (0.1percent; 1517-2300°K)

Heat Capacity: C_p =11.00

Manganese, Mn (page*3)

b. HEAT CONTENT AND ENTROPY OF Mn (γ) (Base, γ-crystals at 298.15°K)

T,°K	$H_T - H_{298,15}$ cal./mole	$S_T - S_{298, 15}$ cal./deg. mole	Т, °К	$H_T - H_{298, 15}$ cal./mole	$S_T - S_{208,15}$ cal./deg.
400	705	2.03	1000 ,	5750	9.57
500	1445	3.68	1100	6720	10.50
600	2230	5.11	1200	7730	11.38
700	3050	6.38	1300	87 80	12.22
800	3915	7.53	1374	9570	12.81
900	4815	8.59			

Mn (γ) :

Enthalpy: $H_T - H_{298.15} = 6.03T + 1.78 \times 10^{-8}T^2 + 0.44 \times 10^{5}T^{-1} - 2104$ (0.1 percent; 298-1374°K)

Heat Capacity: $C_p = 6.03 + 3.56 \times 10^{-8}T - 0.44 \times 10^{5}T^{-2}$

e. HEAT CONTENT **AND** ENTROPY OF Mn (g) (Base, ideal gas **at** 298.15°K)

T, °K	H _T - H _{298,15} cal./mole	$S_T - S_{298,15}$ cal./deg.	T, °K	H _T – H _{298,15} cal./mole	$S_T - S_{298.15}$ cal./deg.
400	505	1.46	1900	7960	9.20
500	1005	2.57	2000	8460	9.46
600	1500	3.4 8	2200	9455	9.93
700	1995	4.24	2400	10,455	10.37
800	2495	4.90	2600	11,465	10.77
$900 \dots$	2990	5.49	2800	12,485	11.15
1000	3490	6.01	3000	13,525	11.51
1100	3985	6.49	3500	16,255	12.35
1200	4480	6.92	4000	19,290	13.16
1300	4980	7.32	4500	22,775	13.98
1400	5475	7.68	5000	26,840	14.84
1500	597 0	8.03	6000	36,925	16.69
1600	6470	8.35	7000	49,415	18.59
1700	6965	8:93	8000	63,560	20.48
1800	7465			,	

Manganese, Mn (page 4).

d. HEAT CAPACITY OF Mn: Solid I, 298-1000°K; Solid II, 1000-1374°K; Liquid, 1517-2314°K; Gas (monatomic) 2314-3000°K

T, ∘K	Co (cal./deg./mole)	T, °K	C° (cal./deg./mole)
298	6.29	1400	10.70
400	6.75	1500	11.30
600	7.54	1600 to	11.00
		2300	
80 0	8.21	2400	5.02
90 0	8.60	2600	6.07
1000 to	9.30	2800	5.14
1300		3000	6.26

Decomposition Temperature and **Products**:

For DTA and TGA see Ref. 33

Vapor Pressure:

Press. mm.	1	PO	40	100	400	760	M.P.
Гетр.°С	1292	1505	1666	1792	2029	2151	1260

1

37 34

1

3733

51

1

29

12 25 29

14

System	Space Group	a	С	Atoms/ Unit Cell
cubic (a)	4.3	8.894		58
cubic (β)	O^6 or O^7	6.300		20
tetragonal (y)	Dia	3. <i>7</i> 74	3.526	4
cubic (8)		3.081 at 1140°C	3.088 at M.P.	

Hygroscopicity (% Gain in weight after 720 hrs. of exposure at 70°F of spec. grade powdered Mn):

R.H., % 50 76 90 Gain, % 0.02 0.34 3.91

Solubility Data: Decomposes water slowly in the cold, rapidly on heating. Soluble in dilute acids with evolution of hydrogen.

Health Hazard: Inhalation of heavy concentrations of manganese dusts or rumes may produce chronic manganese poisoning. Mn may affect the nervous system and cause paralysis. Mn poisoning is detectable in the blood. M.A.C., mg./m.³:

Safety Classifications:

OSM: Class 2, when nut packed or stored in the original shipping container or equivalent (dust).

1CC: not specifically mentionec

Manganese, Mn (page 5)	
Fire and Explosion Hazard: Powdered manganese metal exposed to air is a dangerous fire hazard and when ignited burns with intense heat. Prevent water from contacting the material. Store and process only in buildings adequately vented at the highest point to prevent the accumulation of hydrogen gas which results from the reaction of powdered metal and moisture. In the presence of oxidizing agents powdered Mn is a dangerous fire and explosion hazard. Manganese powder is moderately explosive.	12, 14, 49
Caution: to fight fire, use a special mixture of dry chemical or powdered talc. Use nonsparking tools for repair and maintenance of buildings or equipment where manganese has been stored.	51, 75
Electrostatic Sensitivity: Minimum energy required for ignition of powder by electric sparks (millijoules): y 7 0.77% 8 4 0.90%	26
Minimum explosive concentration of powdered Mn: 125 mg./l.	26
Volume change accompanying phase transformations: $\beta \rightarrow \gamma + 0.77\%$ $\gamma \rightarrow \delta + 0.90\%$	37
Manganese is superficially oxidized on exposure to the air, The γ phase (electrolytic Mn) is not attacked by water at ordinary temperatures. It is slightly attacked by steam.	29
Use.in Pyrotechnics: 88 a fuel	

MANGANESE DIOXIDE, MnO₂ (Manganese Black, Pyrolusite, Black Oxide of Manganese,

Re/s. 1, 11, 29

Crystalline Form: Color: Density, g./ml.:		rhombic or powder black or brownish-black (solid) 5.026	1
Coefficient of Thermal Expansion Heat of Formation, Kcal./mole at 2		 -124.5	1, 9
See Table a			
Free Energy of Formation, Kcal. See Table a	/mole at 298°K:	-111.4	1, 9
a. HEAT AND FREE EN	ERGY OF FORI	(3) sentary	2
K	Δ H (cal./mole	Δ F° (cal./mole	e)
298.16	$-124,450 (\pm 200$))
200 · · · · ·	-124,400	–1 06,900	
500 ,	-124,250	-102,500	
600	-124,100	-98,200	
760	-1'23,900	-93,900	
800	-123,750	-89,600	
900	-1 23,650	-85,350	
1000	_123,500		
Free Energy Equation:			
Reaction		Range of Validity,°K	
$Mn(\alpha) + O_2(g) = MnO_2(c)$	_	'298.16–1000	
$\Delta F_{3}^{c} = 126,400 - 8.61 \hat{T} \log T$	97 (10 ⁻⁸ T²) + 1	$1.555(10^{5}T^{-1}) + 70.14T$	
See Table b	:	12.7	1,9
Melting Point:		loses oxygen at 1120°K (847°C)	6, 8
		1120°K (847°C) loses oxygen at 535°C	1
Hear of Fusion:			
Boiling Point:			
Transition Point:			
Heat of Sublimation:			
A COURT OF A CONTRACTOR OF A COURT OF A COUR			\$

Manganese Dioxide, MnO2 (page 2)

ICC:

Coast Guard:

b. HEAT CONTENT AND ENTROPY OF MnO₂ (c) (Base, crystals at 298.15°K)

	(Bas	e, crystals at 298	.15°K)		
1′,°K	'H _T - H _{298,15} cal./mole	S _T = S _{298,15} cal./deg. mole	T,°K	$H_T - H_{298,15}$ cal./mole	$S_{T} - S_{298,15}$ cal./deg. mole
400 500 600	1445 3020 4685	4.16 7.67 10.70	700 800	6415 8185	13.36 15.73
(0.1	percent ; 29 8–	MnO ₂ (c): $0T + 1.22 \times 10^{-3}T$ $000^{\circ}K$) $0.44 \times 10^{-3}T = 3.88$		-6359	
Heat Capacity,	cal /deg /mole	a -	(solid) 12.	01	9
Decomposition			(solid) 12. 1120	/1	8
For DTA s		Α.	1120		ľ
Decomposition lation varying 200°C. The	Products:Los	ses O when heated nethod of prepara educts being succe	ntion from 530°C	down to even	50 V 8
Dissociation Pro		$2 MnO_2 \rightarrow Mn_2O_3$	(s) $\frac{1}{2} O_2$ (g)		42V7
Press.atm.	0.030	0.164 0.263	0.209 1.36	1.000	see also 91
T, °K	655.1	721.1 751.1	803.1 809.3	1 1213.1	
X-Ray Crystall	ographic Data	a :			1
System tetragonal	Space C			les/Unit Cell 2	
Hygroscopicity	:				
Solubility Data	: In water, H	INO3, cold H2SO4	acetone:		
	In HCl wit	h evolution of Cl	insoluble soluble		1
centrations ing. The ch when fresh an eye irri	: Continued of sof MnO ₂ dustiff site of dartily formed, that and toxic ms a strong by	or prolonged inha sts or fumes may mage is the centra e dry crystals or c only in large quase that may bur	lation or exposur cause chronic ma l nervous system powder are norn nantities. In solut	nganese poison- Although toxic nally considered tion, manganese	
M.A.C.,mg			6		14
Safety Classific OSM: Clas	eations:	when not packed o ent.	r stored in origin	al shipping con-	

oxidizing material hazardous material

Manganese Dioxide, MnO2 (page 3)

Fire and Explosion Hazard: A strong oxidizer and a fire hazard in the finely

29

phites.

Precautions When Handling Manganese Dioxide:

Work carefully when handling bulk manganese dioxide to avoid excessive "dusting." Keep work areas clean, and wash hands frequently. Store away from readily oxidizable materials such as powdered metals, oils, acids, or organic solvents.

A solution of one part vinegar to four parts water by volume is an effective neutralizer, and may be safely **used** in the **eyes** or on any part of the skin. Take a victim to a physician immediately for examination and further treatment. Electrostatic Sensitivity:

Use in Pyrotechnics:

as an oxidizer

17

100

1-(2-METHOXYPHENYLAZO).2-NAPHTHOL

(2-anisole-azo-betanaphthol, Sudan Red G, Brilliant Fat Scarlet R, C.I. 12150, C.I. Solvent Red I, C.I. Food Red 16)

Rers.

48A

Formula: C₁₇H₁₄N₂O₂

OCH_a

Specification No.:

MIL-D-3179

The spec. covers two grades differing in purity (grade I, 90%; grade II 80%) and granulation.

Molecular Weight:

278.32

Crystalline Form:

needles

shiny reddish-yellow

38V16

Density, g/ml.:

Apparent Density (spec. grade I)

min. 0.30, max. 0.70

Coefficient of Thermal Expansion:

Heat of Formation:

Free Energy of Formation:

Entropy:

Color:

Melting Point:

451°K (178°C) 448°K (175°C)

88V16

Spec. grade II, min.

Hear of Fusion:

Boiling Point:

Transition Point: Heat of Sublimation:

Heat Content or Enthalpy

Heat Capacity:

Decomposition Temperature:

Decomposition Products:

Vapor Pressure:

X-Ray Crystallographic Data:

Hygroscopicity: Solubility Data:

48, 88V16

In water, alkalies:

In benzene and cold alcohol:

In aicohol:

In CHCl₃ and benzene:

in conc. H₂SO₄:

insoluble difficult

red solution on boiling

fairly soluble

soluble with violet-red

color

1-(2-Methoxyphenylazo)-2-Naphthol (page 2)

Health Hazard: Spec. requires each container be conspicuously Skin Contact. Use Adequate Ventilation."	toxicity unknown labeled, "Caution—Avoid	92
Safety Classifications:		
OSM:	not listed	
ICC:	not listed	İ
Fire and Explosion Hazard:	************	İ
Electrostatic Sensitivity:		
Use in Pyrotechnics:	to color smoke mixtures red	

1-METHYLAMINOANTHRAQUINONE

Refs. 84, 48A

(1-N-methylaminoanthraquinone, Celliton Pink R, Duranol Red CN, C.I. 60505, C.I. Disperse Red 9)

Formula: C15H11NO2

Specification No.:	MIL-D-3824	
Spec. covers two grades differing in granulat	ion.	_
Molecular Weight:	237.11	•
Crystalline Form:	needles .	88V14
Color :	yellow-red	84
Density, g./ml.:		
Apparent Density:	(Spec) $0.35 \pm .15$	
Coefficient of Thermal Expansion:		
Hear of Formation:		
Free Energy of Formation:		
Entropy:		
Melting Point:	443°K (170°C)	84
Spec. grade II, min.:	442°K (169°C)	
Heat of Fusion:		
Boiling Point:		
Heat of Vaporization, Kcal./mole at 25°C and 1atm.	28.4 ± 0.7	Addnl. Ref. 3
Entropy of Vaporization, vapor at 1 atm.,		
cal./mole/°C;	52.87 ± 0.30	Addnl. Ref. 1
Heat of Sublimation: Kcal/mole:	30.85	Addnl. Ref. 1
Heat Content or Enthalpy:		
Heat Capacity:		
Decomposition Temperature:		
For TGA see Ref. 80		
Decomposition Products:		
Vapor Pressure: $\log_{10}P$ (cm Hg) = $\frac{A}{T}$ +b a = -6740;b = 13.435 ± 0.036;T= abs. temp.		Addnl. Ref. 1
Energy of Activation for Volatilization (97% purity),	80
Kcal./mole at 297-376°C:	19.6	
X-Ray Crystallographic Data:		
Hygroscopicity:		

1-Methylaminoanthraquinone (page 2)

Solubility Data:

In water, g./100 ml. at 25°C:

at 80°C:

< .0002 0.00055

In alcohol (abs.) at 60°C:

14.96 g./l.

In CHCl₈, hot dil. HCl, glacial acetic acid :

soluble soluble, red

In benzene: In fuming H₂SO₄:

soluble, light yellow

Health Hazard:

toxicity unknown

Spec. requires each container be conspicuously labeled, "Caution—Avoid Skin Contact or Breathing of Dust or Fumes. Use with Adequate Ventila-

Safety Classifications:

OSM:

not listed

ICC: Fire and Explosion Hazard:

Electrostatic Sensitivity:

not listed

to color smoke mixtures red

Use in Pyrotechnics:

Additional References:

- 1) "Vapor Pressures of Some Dispersed Dyes," R. S. Bradley et al., Nature *178*, 998 (1**956**)
- 2) "The Dyeing Phenomena of Acetate Artificial Silk," V. Kartaschoff and G. Farine, Helv. Chim. Acta. 11,822 (1928)
- 3) "A Radioactive Ionization Gauge and Its Application to the Measurement of Latent Heat of Vaporization," J. H, Benyon and G. R. Nicholson, J. Sci. Instruments 38, 376 (1966)
- 4) For Absorption Spectra see Ref. 66
- 5) J. Soc. Dyers Colourists 70, 68-77 (1964)

207

Addnl. Ref. 5

92, 88V14 I, 84

92,93

MOLYBDENU	M, Mo	Refs.
Molecular Weight:	95.95	
Crystalline Form:	cubic	1A
Color:	silvery-white metal, grey-black powder	1 A ,
Density:	(solid) 10.22 10.24	94 66A
Coefficient of Thermal Expansion, linear:	9.01	31A
$Temp, ^{\circ}C$ $20-149$ $20-482$ $20-649$ $20-982$ $20-1316$ $20-1593$ $L = L_{\circ} \{1 + (5.01t + 0.00)\}$	Coeff. × 10 ⁵ 6.43 5.19 5.36 5.80 6.28 6.65 4.9 0138t²) × 10-61	94 . 50V9
at 20°C:	4×10^{-6}	31A
See also Refs. 49A: (curve of temp. vs. co Heat of Formation, Kcal./mole at 298°K:	(g) -155.5	9, Addnl. Ref. 1
Free Energy of Formation, Kcal./mole at 298 Entropy, cal./deg./mole at 298°K:	(g) 43,462 (c) 6.83	9,318 9 5, 9, 94, 97
a. HEAT CONTENT AND EN (Base, crystals at 2		4

T, °K	$H_T - H_{298.15}$ cal./mole	S _T - S _{298.15} cal./deg. mole	T,°K	H _T - H _{298.15} cal /mole	S _T -S _{298,15} cal./deg, mole
400 500 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800	595 1205 1825 2460 3100 3750 4410 5090 5790 6510 7250 8000 8780 9570 10,380	1.71 3.06 4.20 5.17 f 6.02 6.79 7.49 8.13 8.74 9.31 9.85 10.38 10.88 11.36 11.82	1900 2000 2100 2200 2300 2400 2500 2600 2700 2800 2890 (c) 2890 (1) 2900 3000	11,200 12,040 12,900 13,770 14,670 15,580 16,510 17,460 18,420 19,400 20,290 26,940 27,040 28,040	12.27 12.70 13.12 13.53 13.92 14.31 14.69 15.06 15.42 15.70 16.09 18.39 18.43 18.77

 $\begin{array}{c} \text{Mo (c)}: \\ \mathbf{H_T - H_{298,15}} = 5.18 \text{T} + 0.83 \times 10^{-3} \text{T}^2 - 1618 \ (0.5 \, \text{percent}; \, 298-2890^{\circ} \text{K}) \\ \mathbf{C_p} = 5.18 + 1.66 \times 10^{-8} \text{T} \end{array}$

Molybdenum, Mo (page 2)

See Tables a and b

Mo (1):

 $H_T - H_{298,15} = 10.00T - 1960 (0.1 \text{ percent}; 2890-3000^{\circ}\text{K})$

b. HEAT CONTENT AND ENTROPY OF Mo(g) (Base, ideal gas at 298.15°K)

T,°K	$H_T - H_{208.15}$ cal./mole	$S_T - S_{298.15}$ cal./deg. mole	T,°K	$H_T - H_{298.16}$ cal./mole	$S_T - S_{208.15}$ cal./deg. mole
400	505	1.46	1500	5975	8.03
500	1005	2.57	1600	6470	8.35
$600 \dots$	1500	3.48	1700	6975	8.66
700	1995	4.24	1800	7475	8.94
800	2495	4.91	1900	7980	9.22
900	2990	5.49	2000	8490	9.48
1000	3485	6.01	2200	9530	9.97
1100	3985	6.49	2400	10,600	10.44
1200	4480	6.92	2600	11,710	10.88
1300	4980	7.32	2800	12,880	11.31
1400,	5475	7.69	3000	14,115	11.74

1400 5475	7.69	3000 14,115	11.74
$H_T - H_{298,15} = 4.97T - 1482 (0.5)$ $H_T - H_{298,15} = 3.56T + 0.40 \times 10^{-3}T$ $C_p = 3.56 + 0.80 \times 10^{-3}T$	l percent ;298–18 .0 ⁻³ T² – 230 (0.2 p	ercent ;1800-3000°K)	4
$H_T - H_{298,16} = 5.48T + 0.65 \times 1$ $C_p = 5.48 + 1.30 \times 10^{-9}T$	$.0^{-8}\mathbf{T}^2 - 1692 (\pm 1)$	1 percent ;298–1800°K)	94 24A, 94
Melting Point, °C: Heat of Fusion, cal./mole at S Boiling Point, °C:	28 ₉ 0°K:	2620 ± 10 6.6 ± 0.7 4800 4825	1A, 27, 31A 97, 31A 1A 31A
Considerably higher valu See Vapor Pressure	es are also given	l.	
Heat of Vaporization, Keal./r.	nole:	128.42 117.4 121.0 ± 9.0	3fA 94 97
Transition Point, °K:		2883	1A
Heat of Transition, Kcal./mo	le:	5.8	1A
Heat of Sublimation, Kcal./m	ole at 298° K:	157.5	5
Heat Content or Enthalpy, cal See Tables a and b	/mole at 298°K:	· (solid) 1092	5
Heat Capacity, cal./deg./mole	:	(solid) 5.61 (liquid) 10.00	31A

6.29

(gas) 4.968 at 25°

5, 31A

Į

Molybdenum, Mo (page 3)					
Decomposition Temperature		oxi r	dized to MoO _s :	at	29
Decomposition Products:					
Vapor Pressure:					
Press. atm. 3.9×10^{-10}	1.7× 10 ⁻⁵	8.6×10^{-4}	1.8 × 10 ⁻¹	1.0	94
Temp. °C 1727	2610	3227	4727	5560	
$\log P_{mm} = -31,060T^{-1} - 0$.2 log T 9.41 (t	et. 298°K an	d M.P.)		97
		1 m	nm. at 3102°C		12
See also Refs. 64V1 and					
X-Ray Crystallographic Dat					
System Space Gr cubic Oh		<i>a</i> 103 at 20° 168 at 25°	Molecules/Ur 2	nit Cell '	Addnl. Ref. 1 49 A
Hygroscopicity:	5.1.				1
Solubility Data: Not attacked insol, in alkali hydroxid concd. H ₂ SO ₄ , in fused K	es or fused all	lute acids, or kalies. Sol. i	concd. HCl. P n hot concd. H	ractically INO ₈ , hot	29, 1A
Ref. 94 gives some corro	sion data in sev	eral acids.			
Health Hazard: M.A.C., mg./m.3:		pro 15	obably slight	•	12 12
Safety Classifications:					
OSM: ICC:			ot listed		
Fire and Explosion Hazard:			ot listed oderate		12, 96
Dust may react explosi explosive hazard. In fig chloride, etc., not water.	vely with air. hting fire use p	Sub-200 me	sh dust has li	ttle or no	12, 30
Heat of Combustion, cal./g.	:	18	10		49A
Electrostatic Sensitivity:					
Use in Pyrotechnics:		as	a fuel		
Additional References: 1) "Molybdenum," L. 1 2) Ref. 49A 3) Ref. 64V1	Northcott, Aca	demic Press,	Inc., New You	rk (1956)	

	YBDENUM TRIOXII	•	Refs.
•	lolybdic Anhydride, Mo	•	
ercent Oxygen:		33.34	
pecification No.:		not listed	
Iolecular Weight:		143.95	
Crystalline Form:		rhombic	1A
Color :		white to yellowish or colorless	1A
Density, g./ml.:		(solid) 4.50 at 19.5°C 4.692 at 21°C	1A 29
coefficient of Thermal	Expansion, cubic:	21-78°C 7×10^{-5} 78-195°C 5×10^{-5} 195-273°C 3×10^{-5}	44853
Heat of Formation, Kc	al /mole at 298°K -	(c) -180.33	1A, 9
,	an, more at boo it :		97
	tion, Kcal./mole at 298°K:	-178.2 ± 1.5 (c) -161.95	97 1A, 9
Free Energy of Forma	tion, Kcal./mole at 298°K :	-178.2 ± 1.5	l
Free Energy of Forma	tion, Kcal./mole at 298°K :	-178.2 ± 1.5 (c) -161.95	1A, 9
a. HEAT AND F	tion, Kcal./mole at 298°K: REE ENERGY OF FOR ΔH (cal./mole)	-178.2 ± 1.5 (c) -161.95 MATION OF MoO ₃ (c, 1)	1A, 9
a. HEAT AND F	tion, Kcal./mole at 298°K:	-178.2 ± 1.5 (c) -161.95 MATION OF MoO ₃ (c, 1) A F° (cal./mole)	1A, 9
a. HEAT AND F T, K 298.16	tion, Kcal./mole at 298°K: REE ENERGY OF FOR A H (cal./mole) -180,300 (± 1500) -180,100 -179,700	-178.2 ± 1.5 (c) -161.95 MATION OF MoO ₃ (c, 1) A F° (cal./mole) -162,000 (± 1600) -155,700 -149,600	1A, 9
a. HEAT AND F T, K 298.16	tion, Kcal./mole at 298°K: REE ENERGY OF FOR Δ H (cal./mole) -180,300 (± 1500) -180,100 -179,700 -179,200	-178.2 ± 1.5 (c) -161.95 MATION OF MoO ₃ (c, 1) A F° (cal./mole) -162,000 (± 1600) -155,700 -149,600 -143,700	1A, 9
a. HEAT AND F T, K 298.16	tion, Kcal./mole at 298°K: REE ENERGY OF FOR Δ H (cal./mole) -180,300 (± 1500) -180,100 -179,700 -179,200 -178,700	-178.2 ± 1.5 (c) -161.95 MATION OF MoO ₃ (c, 1) A F° (cal./mole) -162,000 (± 1600) -155,700 -149,600 -143,700 -137,800	1A, 9
a. HEAT AND F T, K 298.16	tion, Kcal./mole at 298°K: REE ENERGY OF FOR Δ H (cal./mole) -180,300 (± 1500) -180,100 -179,700 -179,200 -178,700 -178,200	-178.2 ± 1.5 (c) -161.95 MATION OF MoO ₃ (c, 1) A F° (cal./mole) -162,000 (± 1600) -155,700 -149,600 -143,700 -137,800 -132,000	1A, 9
a. HEAT AND F T, K 298.16	tion, Kcal./mole at 298°K: REE ENERGY OF FOR Δ H (cal./mole) -180,300 (± 1500) -180,100 -179,700 -179,200 -178,700 -178,200 -178,200 -177,600	-178.2 ± 1.5 (c) -161.95 MATION OF MoO ₃ (c, 1) A F° (cal./mole) -162,000 (± 1600) -155,700 -149,600 -143,700 -137,800 -132,000 -126,200	1A, 9
a. HEAT AND F T, K 298.16	tion, Kcal./mole at 298°K: REE ENERGY OF FOR Δ H (cal./mole) -180,300 (± 1500) -180,100 -179,700 -179,200 -178,700 -178,200 -177,600 -177,000	-178.2 ± 1.5 (c) -161.95 MATION OF MoO ₃ (c, 1) A F° (cal./mole) $-162,000 (\pm 1600)$ $-155,700$ $-149,600$ $-143,700$ $-137,800$ $-132,000$ $-126,200$ $-120,600$	1A, 9
a. HEAT AND F T, K 298.16	tion, Kcal./mole at 298°K: REE ENERGY OF FOR Δ H (cal./mole) -180,300 (± 1500) -180,100 -179,700 -179,200 -178,700 -178,200 -177,600 -177,000 -176,600	-178.2 ± 1.5 (c) -161.95 MATION OF MoO ₃ (c, 1) A F° (cal./mole) $-162,000 (\pm 1600)$ $-155,700$ $-149,600$ $-143,700$ $-137,800$ $-132,000$ $-126,200$ $-120,600$ $-116,700$	1A, 9
a. HEAT AND F T, K 298.16	tion, Kcal./mole at 298°K: REE ENERGY OF FOR Δ H (cal./mole) -180,300 (± 1500) -180,100 -179,700 -179,200 -178,700 -178,200 -177,600 -177,600 -176,600 -176,600 -164,600	-178.2 ± 1.5 (c) -161.95 MATION OF MoO ₃ (c, 1) A F° (cal./mole) $-162,000 (\pm 1600)$ $-155,700$ $-149,600$ $-143,700$ $-132,000$ $-132,000$ $-126,200$ $-120,600$ $-116,700$ $-116,700$	1A, 9
a. HEAT AND F T, K 298.16	tion, Kcal./mole at 298°K: REE ENERGY OF FOR Δ H (cal./mole) -180,300 (± 1500) -180,100 -179,700 -179,200 -178,700 -178,200 -177,600 -177,600 -176,600 -164,600 -164,200	-178.2 ± 1.5 (c) -161.95 MATION OF MoO ₃ (c, 1) A F° (cal./mole) $-162,000 (\pm 1600)$ $-155,700$ $-149,600$ $-143,700$ $-132,000$ $-132,000$ $-126,200$ $-120,600$ $-116,700$ $-116,700$ $-115,200$	1A, 9
a. HEAT AND F T, K 298.16 400 500 600 800 1000 1068 1100 1200	tion, Kcal./mole at 298°K: REE ENERGY OF FOR Δ H (cal./mole) -180,300 (± 1500) -180,100 -179,700 -179,200 -178,700 -178,200 -177,600 -177,600 -176,600 -164,600 -164,200 -163,000	-178.2 ± 1.5 (c) -161.95 MATION OF MoO ₃ (c, 1) A F° (cal./mole) $-162,000 (\pm 1600)$ $-155,700$ $-149,600$ $-143,700$ $-132,000$ $-132,000$ $-126,200$ $-126,200$ $-120,600$ $-116,700$ $-116,700$ $-115,200$ $-110,800$	1A, 9
a. HEAT AND F T, K 298.16	tion, Kcal./mole at 298°K: REE ENERGY OF FOR Δ H (cal./mole) -180,300 (± 1500) -180,100 -179,700 -179,200 -178,700 -178,200 -177,600 -177,600 -177,600 -164,200 -164,200 -163,000 -161,800	-178.2 ± 1.5 (c) -161.95 MATION OF MoO ₃ (c, 1) A F° (cal./mole) $-162,000 (\pm 1600)$ $-155,700$ $-149,600$ $-143,700$ $-137,800$ $-132,000$ $-126,200$ $-126,200$ $-126,200$ $-116,700$ $-116,700$ $-115,200$ $-110,800$ $-106,500$	1A, 9
a. HEAT AND F T, K 298.16 400 500 600 800 1000 1068 1100 1200	tion, Kcal./mole at 298°K: REE ENERGY OF FOR Δ H (cal./mole) -180,300 (± 1500) -180,100 -179,700 -179,200 -178,700 -178,200 -177,600 -177,600 -176,600 -164,600 -164,200 -163,000	-178.2 ± 1.5 (c) -161.95 MATION OF MoO ₃ (c, 1) A F° (cal./mole) $-162,000 (\pm 1600)$ $-155,700$ $-149,600$ $-143,700$ $-132,000$ $-132,000$ $-126,200$ $-126,200$ $-120,600$ $-116,700$ $-116,700$ $-115,200$ $-110,800$	1A, 9

Free Energy Equations: Reaction Range of Validity, °K

1) Mo (c) $\div 3/2$ O₂ (g) = MoO₃ (c) 298.16-1068 2 $\Delta F_{T}^{o} = -182,650 - 8.86T \log T - 1.55 \times 10^{-3}T^{2} + 1.54 \times 10^{5}T^{-1} + 90.07T$ 2) Mo (c) + 3/2 O₂ (g) = MoO₃ (1) 1068-1500 $\Delta F_{T}^{o} = -179,770 - 36.341$: log T + 1.40 \times 10-3T² - 0.30 \times 10⁵T⁻¹ + 167.61T

Entropy, cal./deg./mole at 298°K: 18.68 1A, 9

Molybdenum Trioxide, MoO₃ (page 2)

b. HEAT CONTENT AND ENTROPY OF MoO₃ (c, 1)

T, °K	$H_T = H_{298,15}$ cal./mole	$S_{T} - S_{298,15}$ cal./deg. mole	T, °K	H _T - H _{208,15} cal./mole	$S_T - S_{254,15}$ cal./deg. mole
400	1935	5.56	1068 (c)	17,670	28.26
500	4035	10.24	1068 (1)	30,170	39.96
600	6260	14.30	1100	31,200	40.92
700	8570	17.86	1200	34,400	43.70
800	10,940	21.02	1300	37,600	46.26
900	13,390	23.91	1400	40,800	48.63
1000		26.57	1500	44,000	50.84

$MoO_8(c)$:

 $\begin{array}{l} H_{T} - H_{298.15} = 20.73T + 2.59 \times 10^{-8}T^{2} + 4.18 \times 10^{6}T^{-1} - 7813 \ (0.1 \, \mathrm{percent} \ ; 298-1068^{\circ}\mathrm{K}) \\ C_{p} = 20.73 + 5.18 \times 10^{-8}T - 4.18 \times 10^{5}T^{-2} \end{array}$

MoO₈ (1):

$H_r - H_{298.16} = 32.00T - 4000 (0.1 percent; 1068-150)$	0°K)	
Meiting Point, °C:	795 797	PA, 24A Addnl. Ref. 2
Melts to a dark yellow liquid, which solidifies me mass.	to a yellowish-white crystal-	
Heat of Fusion, Keal./mole:	11.91 12.54	2 6
Boiling Point, °K:	1530 ± 50	6 , 8
The following values are also given:	1100°C 1428°K	24A 41
Heat of Vaporization, Kcal./mole:	33	9,411
Temperature of Sublimation, °K:	(gas) 973 volatile above 500°C sublimes about 700°C	52 94
Reat ox' Sublimation, Kcal./mole at 691°C:	65 68.1	9, 41 Addnl. Ref. 3
Heat Content or Enthalpy: See Table b		
Heat Capacity, cal./deg./mole: See Table b	(liquid) 32.0	2
Decomposition Temperature: For DTA see Kef. 33		
Decomposition Products:		0

Press. mm.	.009	0.05	0.30	1.75	10.1	23.4	105.1	288.3	476.2	760	44S53
Temp. °C	610	650	700	760	800	850	950	1050	1100	1155	
298°K to	M.P.:	log p _{mr}	n. == -1	5,280	_4.02	log T d	27.16				24A
M.P. to I X-Ray Cryst				901	- 4.02 I	ogTT	24.60				24A
System	_	-			•	•	Mo	lecules/	Unit Ca	<i>-11</i>	
cubic		Space V	houp	3	3.14103	s at 25°	1/2 0	4	onn ce	···	18, 4455
Hygroscopic	ity:										
Solubility Da											
In wate	r, g./10						0.1066	5			1A
			at 70°				2.065				
In acids	-		,				solubl				
In acids		trongi	gnitioi	1.			-	lightly s			29
Health Haza							probal 400	bly sligh	t		12 29
Safety Class	_						400				29
OSM:	mcauo	115 .					not lis	tod			
ICC:							not lis				
Fire and Ex	piesion	Haza	rd:					ıcu			
Electrostatic	-										
Üse in Pyrot		•	luct of	the hi	ırning	of Mo	and scr	me of its	COMPO	unds.	
U-1 111 1 1 1 1 0 1						02 1120					
Additional R	eferen	ces :									
1 Ref.	7										
2) C.A.	58,209	992 (19	959)								
~ .	10.100										

3) C.A.48,13396 (1954)

Specification No.:		
The standard A.S.T.M. grades of virgin		
Electrolytic	99.5% Ni	1.6
X shot	98.9% Ni	16
$oldsymbol{\mathrm{A}}$ shot $oldsymbol{\mathrm{Ingot}}$	97.75% Ni 98.5% Ni	
-		
Molecular Weight:	58.71	
Crystalline Form:	cubic	1
Color:	silvery metal	1
Density, g./ml.:	(solid) 8.90	1
Coefficient of Thermal Expansion, 16-250°C	: 13.97 × 10 -6	1
Temperature °C	Coeff.	
-19 to + 16	10.12 × 1 0⁻⁵	
40	12.79×10^{-8}	
375 –1000 25 –100	13.46 × 10 -6 12.9 × 10 -6	
Heat of Formation, Kcal./mole at 298°K:	(gas) -101.260	5
Free Energy of Formation, Kcal./mole at 298°	K : (gas) -90.413	
Entropy, cal./deg./mole at 298°K:	(gas) 43.52 (solid) 7.14	5 5
See Tables a and b	(solid) 7.14	3
Melting Point:	1728°K (1455°C)	1
Heat of Fusion, cal./mole:	4210	4, 5
Boiling Point:	3110°K (2837°C)	5
Heat of Vaporization, cal./mole:	88,870	5
Transition Point:	atoβat 633°K (360°C)	4
Heat of Transition, cal./mole:	α to β, 0	4
Heat of Sublimation, cal./mole at 298°K:	101,260	5
Heat Content or Enthalpy, cal./mole:	(solid) 1144	5
	(gas) 1631	
See Tables a and b	,	
a. HEAT CONTENT AND EN !		4
(Base, crystals at 2	298.15°K)	
$T_{,}^{\circ}K$ $H_{T} - H_{298,15}$ $S_{T} - S_{298,15}$ cal./deg. mole	$T, \circ K$ $H_T - H_{298, 15}$ cal./mole	S _T - S _{298,15} cal./deg, mole
400 665 1.91	900 4445	. 8.03
500 1380 3.51	1000 5210	8.84
600 2180 4.96	1100 5985	9.58
$633 (\alpha) \dots 2460 $	1200 6780	10.27 10.93
700 2940 6.14	1400 8450	11.56
83 0 3690 7.14	1500 9320	12.16

NICKEL, Ni

Refs.

Nickel, Ni (page 2)

T, °K	$H_T - H_{298,15}$ cal./mole	S _T -S _{298,15} cal./deg. mole	T,ºK	H _T - H _{208,15} cal./mole	S _r · S _{208,15} cal./deg. mole
1600	10,210 11,110 11,330 15,540 16,230 18,070	12.73 13.28 13.40 15.84 16.24 17.21	2200	19,910 21,750 23,590 25,430 27,270 29,110	18.0% 18.88 19.62 20.30 20.95 21.52

Ni (α):

Enthalpy: $H_T - H_{298,15} = 4.06T + 3.52 \times 10^{-8}T^2 - 1523(0.3 \text{ percent}; 298-633°K)$

Heat Capacity: $C_p = 4.06 + 7.04 \times 10^{-8} \text{T}$

Ni (β) :

Enthalpy: $H_T - H_{298.15} = 6.00T + 0.90 \times 10^{-8}T^2 - 1701$ (0.2 percent; 633-1725°K)

Heat Capacity : C, = $6.00 + 1.80 \times 10^{-8}$ T

Ni (1):

Enthalpy: $H_T - H_{298,15} = 9.20T - 330 (0.1 \text{ percent}; 1725-3200°K)$

b. HEAT CONTENT AND ENTROPY OF Ni (g)

(Base, ideal gas at 298.15°K)

T, °K	H _T - H _{298,15} cal./mole	$S_T - S_{298,15}$ cal./deg. mole	' Т, °К	H _T - H _{298.15} cal./mole	$S_T - S_{298,15}$ cal./deg.
400	575 1150 1740 2335 2930 3525 4120 4715 5303 5885 6465 7040 7615 8185	1.66 2.94 4.01 4.93 5.73 6.43 7.06 7.62 8.13 8.60 9.03 9.43 9.80 10,14	1900	9310 9865 10,970 12,065 13,155 14,235 15,310 17,985 20,665 23,370 26,135 31,940 38,305 45,415	10.77 11.05 11.58 12.06 12.49 12.89 13.26 14.09 14.80 15.44 16.02 17.08 18.06 19.81
1800	8750	10.46	_		

Ni (g):

Enthalpy: $H_T - H_{298,15} = 5.99T + 0.36 \times 10^5 T^{-1} - 1907 (0.3 \text{ percent}; 298-1000°K)$

Heat Capacity: $C_p = 5.99 - 0.36 \times 10^5 \text{T}^{-2}$

Enthalpy: $H_T - H_{298.15} = 6.07T - 0.11 \times 10^{-8}T^2 - 4120 \ (0.4 \text{ percent ;} 1000-4500^{\circ}\text{K})$

Heat Capacity : $C_{\nu} = 6.07 - 0.22 \times 10^{-3} \text{T}$

Nickel, Ni (page 3)							
Heat Capacity, cal./deg./mole at 298°K: (solid) 6.23 (liquid) 9.20 (gas) 5.58								4, 5
c. HEAT CAPACITY OF Ni (Solid, 298–1728°K ; liquid, 1728–3 000°K)								5
	T, °K		C;	(cal./d	eg./mole)		1
	298				6.23			1
	500				7.47			
	800 1200				7.44 8.16			
	1600				8.88			
	1700				9.06			
	180030	00			9.20			
See equations Decomposition Te		re •						
Decomposition Pro	-							
Vapor Pressure:	Jauous .							
Press. mm.	1	10	'40	100	400	760	M.P.	1
Temp. °C	1810	2057	2234	2364	2603	2732	1452	
Temp. U	1010	2037				2132		-
X-Ray Crystallogi	raphic D	ata :					Atoms/	1
System	-	Space G	roup	έ	г с		Unit Cell	
(α) hexagonal		$^{\circ}$ D_{6h}^{4}		2.6		32	2	
(β) cubic		O_h^5		3.	517		4	
Hygroscopicity: N	lonhygro	oscopic.	Not affe	cted by	water.			29
Solubility Data:								1, 29
In water, fuse		s or NH	ş -		insolu			
In dilute HN(In HCl or H₂S					solubl slightl	e ly solub	le	
Health Hazard : E		to nicke	l mav ca	use derr	_	-		12, 25, 29
tive individu								
weight) caus								
vous system,		ocardial	damage	. Its he	alth haza	ard is,	nowever, con.	
sidered slight M.A.C. ,mg./r		0.5			25			
Safety Classificat					0.5			
OSM:					class 2	2		
ICC: Listed	under "	Explosiv	ves and	Other D			ials." Classed	
as a f	lammabl	le solid;	red labe	el.				

Nickel, Ni. (page 4)

Fire and Explosion Hazard: Ni dust is explosive and a dangerous fire hazard. It has an ignition temperature above 700°C, and burns with intense heat. When compounded with oxidizing agents the powdered metal is a dangerous fire and explosion hazard. It decomposes steam at red heat. The amount of powdered metal which may become involved in a fire should be strictly limited. Fires must not be fought with ordinary streams of water because of the danger of liberating large quantities of hydrogen gas. Fires involving small amounts of powdered Ni may be fought with fog nozzles or special extinguishing powders.

In the repair or maintenance of buildings or equipment, powder or dust should be reduced and nonsparking tools used. Store and process only in rooms or buildings adequately ventilated at the highest point.

Electrostatic Sensitivity:

not ignited by electric sparks

Use in Pyrotechnics:

as a fuel

49

12, 14, 49

NITROCELLULOSE (12. (Cellulose Nitrate, Pyrocellulose, Pyro, Nitr	-	Refs.
Formula : $[C_6H_{10-x}O_{5-x}(ONO_2)x]_n$		
Where $x = \text{no. of ONO}_2$ groups and $n = \text{det}_2$.6% N, $x = 2.45$.	egree of polymerization. For	
Specification No.: The spec. lists four grades of which Grade A used for pyrotechnics.	JAN-N-244 A, with 12.60 \pm 0.10% N , is	
Molecular Weight: Variable, approx. 0.42 to 0.78 from formula)	\times 106 or 272.3 n (calculated	Addnl. Ref. 1
Form: Cotton-like fibrous solid or amorphous pow	• •	
Color:	white	1
Density, g./ml.:	(solid) about 1.66	Addnl. Ref. 1
Coefficient of Thermal Expansion, linear:	9–16 × 10"	31
Heat of Formation, cal./g.	-617	13
Free Energy of Formation:		
Entropy:	4500X (0000G)	4 11 1 D C 2
Melting Point: Decomposes. In a vacuum melts a	t approx. 473°K (200°C)	Addnl. Ref. 2
before exploding. Heat of Fusion:		
Boiling Point:	decomposes	
Transition Point:		
Heat of Sublimation:	<u></u>	
Heat Content or Enthalpy:		
Heat Capacity:		
Decomposition Temperature: See Addnl, Refs. 1 For DTA see Ref. 33	1, 2, 3, 4	
Decomposition Products: Depend on conditions of	of decomposition.	
Vapor Pressure:		
Press. mm. 0.0 0.0		13
Temp. °C 25 60		13
X-Ray Crystallographic Data:	for cellulose trinitrate (x = 3)	
System Space Group a b c monoclinic 13.9 25.6 9.0	Axial Angle $\beta = 90^{\circ}$ Molecules/ Unit Cell	Addnl. Ref. 1
Hygroscopicity, g. H ₂ O/100 g. N.C.:	$\frac{334.3 - 23.65 \text{ N}}{31.11 - \text{N}} \text{ (approx.)}$	Addnl. Ref. 1
or more roughly 14.6–N % nitrogen at 30° and 90% R.H.%:	3	13

Nîtrocellulose (12.6% N) (page 2)	
Solubility Data: Numerous substances dissolve or more accurately disperse pyrocellulose. Among these are acctone, ether-alcohol (2:1), fatty acid esters, nitro compounds, and organic nitrates. In water, ether, and benzene: insoluble	Addnl. Ref. 1
Safety Classifications:	
OSM: Class 12 when wet with 8–30% water.	
ICC: Listed under "Explosives and Other Dangerous Materials," as a high explosive when dry and as a flammable liquid when dispersed in a solvent; red label.	
Fire and Explosion Hazard: Dry nitrocellulose is extremely sensitive to shock and friction, and very dangerous when ignited, even in the open, or when heated with oxidizing agents. Dry nitrocellulose burns in an instantaneous flash. Wet nitrocellulose is less hazardous. Nitrocellulose when impure is subject to spontaneous ignition. Storage of dry nitrocellulose is not permitted as it has all the hazards of a sensitive and easily ignited high explosive. It is stored wet (25-30% water) in zinc-lined boxes or metal drums. Must contain not less than 20% moisture by weight when shipped Caution: keep away from heat and open flame.	
Flash Point, closed cup, °F: 40	12
Impact Sensitivity, 2 kg. wt.: Bur. of Mines Apparatus, cm.: Sample weighe, mg.: P.A. Apparatus, in.: 8 (10% point) 3 (10% point) 5	13
Explosion Temperature Test: 5 second point 170°C with decomposition	13
Electrostatic Sensitivity: Readily accumulates static charges when dry.	14
Volatility at 60°C, micrograms/cm.²/hr.:	13
Oxygen Balance to CO ₂ , %:	
eo CO, %:	
Vacuum Stability Test, 5 g. sample	
Temp. °C 90 100 120	
ec. 40hrs. 0.17 1.0	
cc. 16 hrs. 11.+ 200 Gram Bomb Sand Test, 0.4 g. sample	
Grams sand crushed to pass a 30-mesh sieve: 45.0	
Sensitivity (initiator required for complete detonation)	
Lead aziae: 0.10g.	
Neat of Combustion, cal./g.: 2409	
Heat of Explosion, cal./g.: 855	
Gas Volume on Explosion, cc./g.: 919	
Second Order Transition Temperature, °C: (approx.) 66 (nitrogen content not mentioned):	59
Use in Pyrotechnics: For coating compositions to reduce the penetration or moisture, and as a bonding agent.	20

Nitrocellulose (12.6% N) (page 3)

Additional References:

- 1) "Cellulose Nitrate," F. D. Miles, Oliver and Boyd, London and Edinburgh. Interscience Publishers, Inc., New York (1955)
- 2) "The Spontaneous Ignition of Nitrocellulose," E. K. Rideal and A. J. B. Robertson, Third Symposium on Combustion and Flame and Explosion Phenomena, The Williams & Wilkins Company, Baltimore (1949)
- 3) "Cellulose and Cellulose Derivatives," E. Ott et al., Eds., Interscience Publishers, Inc., New York (1954-55)
- 4) "The Kinetics of Thermal Decomposition of Nitrocellulose," R. W. Phillips et al., J. Phy. Chem. 59,1034 (1955)

PARLON (Chlorinated Rubber, Tornesit, Alloprene. by Hercules Powder ©.)	Refs.
Formula: Rubber chlorinated polyisoprene [- CH ₂ nated approximately 67% Cl by weight. Chlorination of rubber results in a complete raddition and substitution of chlorine but also cychains. The theoretical chlorine content for the prene unit, C ₅ H ₆ Cl ₄ , is 68.5%. Parlon is mark Stabilized Parlon usually contains 1% of an epoto improve resistance to heat, ultraviolet light contains 1% of an epoto improve resistance to heat, ultraviolet light contains 1% of an epoto improve resistance to heat, ultraviolet light contains 1% of an epoton of a contains 1% of a co	reaction. There is not only relization along the polymer completely chlorinated isoled in five viscosity types. xy compound as a stabilizer ht and moisture. Sunlight	Addnl. Ref. 1 59, 60, Addnl. Refs. 1, 2
Causes discoloration and embrittlement in unpig Parlon is resistant to dampness, soaps, molds, Molecular Weight: Variable (high) depending on variable (rystalline Form: Coarse amorphous inelastic pogranular powder. Color:	viscosity. owder; poorly crystallized, white (calor of film,	69, Addnl. Ref. 1
Density, g./ml.: Coefficient of Thermal Expansion: Heat of Formation: Free Energy of Formation:	water-white) (solid) 1.66 (also given as 1.64 and up) 12–13 × 10 ⁻⁵ ——	Addnl. Ref. 1 60
Entropy: Melting Point, softening point of film: Heat of Fusion: Boiling Point: Transition Point: Heat of Sublimation:	413°K (140°C)	Addnl. Ref. 1
Heat Content or Enthalpy: Heat Capacity: Decomposition Temperature: Effect of dry heat on film (continuous exposure ciable decomposition at 135°C.) stable up to 125°C, Appre	Addnl. Ref. 1
Decomposition Products: Vapor Pressure: X-Ray Crystallographic Data: Hygroscopicity: Moisture content as shipped is less to a shippe	0.14	Addnl. Ref. 1

Parlon (page 2)

Solubility Data: Soluble in CCl₄, esters, aromatic hydrocarbons, and ketones. Unaffected by strong or weak acids or alkalies, salt spray, aliphatic alcohols, and aliphatic hydrocarbons. Insoluble in acetone alone,

59, 60, Adanl. Ref. 1 .

Health Hazard:

nontoxic

Safety Classifications:

OSM:

not listed not listed

Fire and Explosion Hazard: Nonflammable. Will ignite in the flame of a bunsen burner, but the flame is selfextinguishing. On burning, it melts, gives off bubbles of gas and chars.

59,60

Electrostatic Sensitivity:

Use in Pyrotechnics: As a color intensifier and binder. Used in rapid drying paints.

59, 60, Addnl. **Ref. 1**

Additional References:

- 1) "Parlon, Properties and Uses," Hercules Powder Co., Inc., Wilmington, Del. (1957)
- 2) "Rubber, Polyisoprenes, and Allied Compounds. Part IV. The Relative Tendencies towards Substitutive and Additive Reaction during Chlorination," G. F. Bloomfield, J. Chem. Soc. 1943, 289

PHOSPHORUS, P. (yellow),	P (red)	Refs.
Specification No.: yellow, P ₄ stabilized red, P	JAN-P-211 JAN-P-670	
The spec. covers two grades, A and B, which clation.	differ in purity and granu-	
Molecular Weight:	(yellow, P,) 123.90 (red, P) 30.974	4, 5
Crystalline Form and Colon: The yellow or white is reddish brown, cubic or triclinic in form; the way Phosphorus occurs in four allotropic forms: yand violet. Yellow (white) phosphorus varies in to pale yellow. It is a waxlike solid which phose a greenish light and gives off white fumes. It is Phosphorus is produced directly from phosphorus ace. When distilled at 290°C, the red modificated At 600-800°K, liquid white phosphorus is rapiphorus; at 704-3000°K, the gas is mainly in the it is in the tetratomic form. Black phosphorus ture. It is produced from white phosphorus was phorus, Ked, Spec. No. 51 P, 37, and Phosphorus JAN-P-670 are the two types of red phosphorus phorus is less sensitive and hence slightly less	riolet, monoclinic. rellow or white, red, black, color from almost colorless sphoresces in the dark with gnites spontaneously in air. the rock in the electric furon yields white phosphorus. idly converted to red phosphorus diatomic form; below 704° resembles graphite in texnoder nigh pressure. Phosporus, Red, stabilized, Spectos used in pyrotechnics compowder. Stabilized red phosphorus a fire hazard.	1, 5 1, 5, 16, 29, Addnl. Ref. 1
Density, z./ml.:	(solid) yellow, 1.82 red, 2.20 black, 2.70	1
Coefficient of Thermal Expansion, linear, 0-44°C:	124×10^{-6}	1
Heat of Formation, Kcal./mole at 298°K:	(gas) 75.18	9
Free Energy of Formation, Kcal./mole at 298°K:	(gas) 66.71 white (c) 0.000 red (c)-4.4 black (c) -10.3	9
Entropy, cal./deg./mole at 298°K:	white (c) 10.6 red (c) 5.46	9
See Tables a to e		
Melting Point:	white (a) 317.4°K (44.3°C)	5
Want of Fusion and /mole:	red, 870°K (597°C)	5
Hear of Fusion, cal./mole:	white, 150	ן ט

Boiling Point:

white, 554°K (218°C) red, 280°K (7°C) (ignites in air)

Phosphorus, P4 (yellow), P (red) (page 2)

Transition Points and Heats of Transition:

Form		Temp. of Transition	Heat of Transition
Initial	Final	۰K	Kcal./mole
c, IV c, III c, II	c, III c, II c, I	30.31 49.44 88.12	0.0197 0.1 8 6 0.116

I = black, II = red, III and IV = white

(β -white transforms to α -white at -76.9°C)

Heat of Sublimation, cal./mole at 298°K:

(white to P₄ gas) 14,100 (red to P₄ gas) 30,820 (P₂ gas) 42,725

(P gas) 79,800

Addnl. Ref. 2

a. HEAT CONTENT AND ENTROPY OF P (red)

(Base, crystals at 298.15°K)

T,°K	$H_T - H_{298,15}$ cal./mole	$S_T - S_{298.15}$ cal./deg.	T, °K	H _T - H _{298,15} cal./mole	$S_T - S_{298,15}$ cal./deg.
400	1270	1.79 3.24 4.51	700	2690 3440	5.& 6.&

b. HEAT CONTENT AND ENTROPY OF P₄ (white, 1) (Base, crystals at 298.15°K)

T, °K	$H_{\mathrm{T}}-H_{298,15}$ cal./mole	$S_T - S_{298,15}$ cal./deg.	T, °K	$H_T - H_{298,15}$ cal./mole	$S_T - S_{298,15}$ cal./deg.
317.4 (c)	434	1.41	370	2270	6.90
317.4 (1)	1034	3.30	400	2975	8.74
.350	1800	5.60			

P4 (white):

Enthalpy: $H_T - H_{298,15} = 22.501' - 6708 (0.1 \text{ percent}; 298-317.4°K)$

Heat Capacity: $C_p = 22.50$; A $H_{317.4}$ (fusion) = 600

 $P_4(1)$:

Enthalpy: $H_T - H_{298,15} = 23.50T - 6425 (0.1 percent; 314.7-400°K)$

Heat Capacity: C_p =23.50

c. MEAT CONTENT AND ENTROPY OF P (g)

(Base, ideal gas at 298.15°K)

T, °K	$H_T - H_{298,15}$ cal./mole	$S_{T} - S_{208,18}$ cal./deg. mole	Т, °К	$H_T - H_{288,15}$ cal./mole	S _T - S _{298, 15} cal./deg. mole
400	505	1.46	1900	7975	9.21
500	1005	2.67	2000	8480	9.47
600	1500	3,48	2200 . ,	9500	9.96
700	1995	4.24	2400	10,535	10.41
800	2495	4.90	2600	11,590	10.83
900	2990	5.49	2800	12,670	1123
1000	3490	6.01	3000 ,	13,780	11.61
1100	3985	6.49	3500 ,	16,685	12.51
1200	4480	6.92	4000	19,790	13.34
1300	4980	7.32	4500	23,070	14.11
1400	5445	7.69	5000	26,495	14.83
1500	5975	8.03	6000,	33,605	16.13
1600	6470	8.35	7000	40,825	17.24
1700	6970	8.65	8000	47,980	18.20
1800	7475	8.94			

P (g):

Enthalpy: $H_T - H_{298,15} = 4.97T - 1.482 (0.1 \text{ percent}; 298-2000°K)$

d. HEAT CONTENT AND ENTROPY OF P_2 (g)

(Base, ideal gas at 298.15°K)

	$S_T - S_{208,15}$ le cal./deg, mole	т,°К	$H_T - H_{298,15}$ cal./mole	$S_T - S_{298, 15}$ cal./deg. mole
400 800 500 1620 600 2450	2.31 4.14 5.65 6.96 8.11	1000 1200 1400	5910 7660 9430	10.06 11.65 13.02

 $\begin{array}{c} P_2 \ (g): \\ \text{Enthalpy:} \ H_T - H_{298.15} = 8.31T + 0.23 \times 10^{-3} T^2 + 0.72 \times 10^5 T^{-1} - 2740 \end{array}$

(0.4 percent; 298–2000°K) Heat Capacity: $C_p = 8.31 \pm 0.46 \times 10^{-3}T - 0.72 \times 10^{5}T^{-2}$

			1 1 2011 10 2		4 .
T,°K	$H_T - H_{298,15}$ cal/mole	$S_T - S_{298,15}$ cal./deg.	T,°K	H _T - H _{298,15} cal./mole	$S_T - S_{203,15}$ cal./deg. mole
400	1710	4.93	1300	18,900	27.21
500	3500	8.92	1400	20,860	28.67
600	5360	12.31	1500	22,830	30.03
700	7240	15.21	1600	24,800	31.30
800	9150	17.76	1700	26,770	32.50
900	11,080	20.03	1800	28,740	33.62
1000	13,020	22.07	1900	30,720	34.69
1100	14,980	23.94	2000	32,690	35.70
1200	16,940	25.65		,	
Enthalpy: H _T -1 Heat Capacity: Heat Capacity, See tables	9				

Vapor Pressure:

Press. mm.	1	10	40	100	400	7 60	M.P.
Temp °C (yellow)	76.6	128.0	166.7	197.3	251.0	280.1	44.1
(black)	290	338	371	393	432	453	
(violet)	237	287	323	349	391	417	590

X-Ray Crystallographic Data:

Unit Cell Molecules/ Space Group System red black (rhombic) (yellow) (cubic) (at 35°C) 3.31 4.38 10.50 16 (4P₄) 7,17

(Crystalline and amorphous black and red P give similar X-ray patterns) Hygroscopicity, Red P at 70°F and 216 hr. exposure:

R.H.	50	76	90
Gain in wt %	2.04	5.0	11.06

Solubility Data:

Yellow or White $H_2O: 0.0003 \text{ g./ml.}$ at $15^{\circ}C$ slight in hot

Alcohol : 0.3 g./100 ml. $CS_2 880$ g./100 ml. at $10^{\circ}C$

Red

1

1

33

1, 29

very slight insol. in hot water

slight in abs. alc. insol. in CS₂, ether, NH₃

226

Phosphorus, P4 (yeilow), P (red) (page 5)

Thosphorus, 14 (yenow), 1 (tru) (page 5)	
Benzene :1 g. in 35 ml.	
CliCi3: 1 g./ 40 ml.	
onveon: 1 g./80 ml.	
On of Turpentine: 1g./60 ml.	
Sl. sol. in NH ₃ , alkalies, ether	19 90
Health Hazard: Yellow phosphorus is poisonous even when ingested in small amounts. An approximate fatal dose is 50 mg. Phosphorus fumes are also very poisonous. External contact may cause severe burns. Long continued absorption can cause necrosis of the jaw bone and chronic poisoning. Phosphorus is especially dangerous to the eyes.	12, 29
M.A.C. (yeliow phosphorus), mg./m. ³ : 0.1	14
Ked phosphorus is poisonous on inhalation or ingestion but slower acting than yellow phosphorus. It should never be allowed to come in contact with	12, 93
the eyes. Phosphorus poisoning is detectable in the urine.	12
Safety Classifications:	
OSM: Class not specified. As a fire hazard it should be listed in class 1.	
ICC: Flammable solid; yellow label.	
U.N. Phosphorus, white or yellow, dry, or under water, or in solution is classified as an inflammable solid, liable to spontaneous combustion.	
Fire and Explosion Hazard: On exposure to air white phosphorus (WP) bursts into flame and is thus a serious fire hazard. Containers or ammunition containing WP should be kept below its M.P. or 44.1°C, as pressure may rupture the container. Phosphorus is preferably stored under water in sealed metal vessels enclosed in wooden boxes or metal drums, WP is dangerous when heated with oxidizing agents, as it emits highly toxic fumes of oxides of phosphorus. Use water to fight fire. Red phosphorus, while less reactive than yellow phosphorus, is a dangerous fire hazard. It is easily ignited by spark or friction and is dangerous when in contact with organic materials or oxidizers. It can ignite spontaneously in air. It emits highly toxic fumes when heated.	12, 14
Autoignition Temperature, in air, °F: (yellow) 86 (red, amor.) \$00	75, 29 67, 71
Use in Pyrotechnics: As a fuel, in incendiary and smoke compositions.	
Additional References:	
1) "'Two New Modifications of Phosphorus," P. W. Bridgman, J. Am.	
1) Two New Modifications of Phosphorus, F. W. Bridgman, J. Am.	

- 1) "Two New Modifications of Phosphorus," P. W. Bridgman, J. Am. Chem. Soc. 36, 1334 (1914)
- 2) "Phosphorus and Its Compounds," Voi. I, J. R. Van Wazer, Interscience Publishers, Inc., New York (1958)

PLURONIC F (S

Following information comes from the Wyandotte Chemicals Corporation, Wyandotte, Michigan, manufacturers of Pluronic F 68.

Pluronic F 68 is a block-polymer prepared by adding propylene oxide to the two hydroxyl groups of a propylene glycol nucleus. The resulting hydrophobic base can be made to any desired length, varying from 800 to many thousands in molecular weight. By adding ethylene oxide to this hydrophobic base, it is possible to put polyoxyethylene hydrophilic groups on the end of the molecule These hydrophilic groups can be controlled in length to constitute anywhere from 10 to 90% of the final molecule. The simplified structure can be represented as HO(CH₂-CH₂-O) (CH₂-CH₂O) (CH₂-CH₂O) (CH₂-CH₂O).

CH.

Pluronic F 68 is a flake with a hydrophobic base molecular weight of approximately 1750; 80% of the molecule, by weight, consists of hydrophilic polyoxyethylene groups and the remaining 20%, hydrophobic polyoxypropylene groups. The total molecular weight of F 68 = 1750 = 8750.

pH of 2.5% aqueous solution:

Cloud Point:

or aqueous solutions in concentrations up to 60.0%:

> 100°C

• at 70% concentration: semi-solid

ef 10% aqueous solutions at pH 2 and 10

In 46 NaOH:

40 % concentration:

20% concentration:

20% concentration:

38.5°C

1% concentration:

47°C

Solubility in Organic Solvents at 25°C in g./100 ml. solvent:

Samples of 0.1, 1.0, 5.0, and 10.0 g. were dissolved in 100 ml. of solvent and observed after 30 min. for any phase separations, turbidity, etc.

Ethyl alcohol (95%):

Toluene:
Perchlorethylene:
Kerosene:
Ethylene glycol:

U, getable oil:

Mineral oil:

> 10.0

5.0

insol.
insol.
insol.
insol.

Surface Tension at 25°C, dynes/cm.:

 1.0% solution
 41.9

 0.1% solution
 45.6

 0.0% solution
 49.9

 0.001% solution
 53.3

Using a DuNuoy Tensiometer, samples are in aqueous solutions at the specified concentrations.

Concentration Required for a 25 sec. Draves Sink Time:

At soth 25° and 50°C, the maximum concentration evaluated was 5 g./l. At this concentration the sink time was 300 seconds.

Use in Protechnics: A surface acting agent used as a detergent, emulsifier, and weeting agent.

POLYCHLOROTRIFLUOROETHYLENE

(Kel-F Brand Oils and Waxen)

KEE-F oils and waxes are low molecular weight polymers of chlorotrifluoroethylene (CF₂ = CFCl) which constitute a homologous series of compounds composed of chlorotrifluoroethylene repeating units and terminal chlorine atoms. This series is referred to as "whole telomer." KEL-F oils and waxes are made by Minnesota Mining and Manufacturing Co.

Cl-(CF₂-CFCl)_xCl

Specification No.:

Formula:

MIL-M-55028A

Molecular Weight: From 303 for the lowest boiling (dimeric) component of #1 oil to 5-10,000 for the highest melting ingredients of #200 wax.

Coior: All **KELF** oils and waxes are colorless and odorless. In the liquid state all products are clear and free from sediment. At room temperature the oils are transparent, and the waxes take on a translucent or opaque white appearance.

Specific Gravity: KEEF oils'are comparatively dense, with values approaching twice the density of water. The waxes are generally greater than twice the density of water at temperatures less than 25°C. Specific gravity depends less markedly on temperature than does viscosity.

Vapor Pressure: Because of their low heats of vaporization and **weak** intermolecular forces, the oils and waxes are characterized by relatively high vapor pressures. Values can be calculated by means of the vapor pressure constants and equation in the table of typical properties. (See below).

Sombility: The oils and waxes are soluble in aromatic, aliphatic, and chlorinated hydrocarbons, alcohols, ketones, esters and fluorocarbons; and insoluble in water and mineral acids. The degree of solubility varies widely with molecular weight; the waxes are less soluble than the oils.

Viscosity: KELF oils are available in three viscosity grades (1,3, 10 centistokes at 210°F). #40 wax, by virtue of its low melting point, can also be considered as an extra-heavy oil (viscosity = 40 cs. at 210°F). Viscosities of halofluorocarbon liquids depend markedly on temperature.

Refs.

All data from Addnl. Ref. 1

TYPICAL PROPERTIES OF STANDARD KEL-F OILS AND WAXES

			_				
	Grade Designation						
	1	3	10	40	10-200	200	
Molecular W eight Clarity (R.T.)	500 clear	630 clear	780 clear	940 opaque	— opaque	 opaque	
Refractive Index, n _p 77°F 160°F	1.400	1.405	1.410	 1.398			
Viscosity, centipoises 100°F 210°F 266°F	2 0.8 —	25 3	220 10 —	40	<u></u> 55 	<u></u> 145	
Viscosity, centipoises 160°F 210°F	3.6	47 5	425 18			=	

© ©			Grade De	signation		**
	I	3	10	40	10-200	200
Viscosity, Temp. Coeff.1	0.67	0.88	0.96			
Pour Point, F	<-70	-45	+.30	+90		
Melting Point, ASTM, D-127°F				100	150	200
Specific Gravity,						
68°F/39°F	1.84	1.93	1.96		2.02	2.11
100°F/39°F	1.81	1.90	1.93		1.99	
16∂°F/39°F		1.85	1.88	1.92	1.94	
\apor Pressure Constants ²						
À	7.4991	8.4976	9.0503	10.2123	9.6116	
В	2351	3161	3743	4863	4313	
Heat of Vaporization						
cal./g.	21	23	22	23		
Kcal./mole	10.7	14.5	17.1	22		s annih den
Surface Tension, dynes/cm.	23	28	30			-
Specific Heat, cal./g.			0.22		s 	****
Thermal Conductivity						
BTU/hr./ft. ² /°F/ft.			0.080	0.110	- Passaffi	
Heat of Formation, cal./g.3	-1200	-1200	-1200	-12 00	-1200	-1200

¹ V.T. Coeff. == 1-Vis at 210°F/Vis at 100°F

Dielectric Properties: The oils and waxes have very good electrical properties. The dielectric strength of KEL-F oil (0.100 in. gap) is 500 volts/mil. The volume resistivity is in excess of 10¹⁴ ohm-cm.

Corrosivity: The oils and waxes are noncorrosive, in themselves, towards metals. Storage in nickel, monel, mild steel, stainless steel, and even aluminum oifers no problems under ambient conditions. However, the oils are not rust-inhibiting, and therefore moisture should be excluded from containers.

Chemical Stability: KEL-F oils and waxes are extremely stable against the attack of strong acids, alkalies, and oxidants. No reaction has been observed with permanganate, chromic acid, fuming nitric acid, or hydrogen peroxide. The oils are not attacked by ClF₃ at 300°F, concentrated H₂SO₄ at 400°F, or concentrated aqueous alkali at the boiling point. Oxygen and oxide do not react appreciably with KEL-F oils; indeed there is evidence that the oils are even more chemically stable in the presence of oxygen. Under stringent oxidizing conditions (2000 psig. O₂ at 300°F for 8 hr.) tests have shown no change in KEL-F oil alone or in contact with a variety of metals. Nor is there any effect on the metals themselves, including copper. Caution: Softer metals such as aluminum and magnesium may react vigorously with KEL-F oils under conditions of high shear, where fine particles of fresh metal are expose?

Health Hazard: The oils and waves are substantially nontoxic and physiologically inert. However, thermal decomposition products at extremely elevated temp returns (600 F) are toxic and adequate contilation under these conditions is strongly recommended.

 $^{^{2} \}log P \text{ (mm. Hg)} = A-B/T^{\circ}K$

³ calculated

Polychlorotrifluoroethylene (page 3)

- Fire and Explosion Hazard: Because of their high fluorine and chlorine ~ m-tent, the KEL-F oils and waxes do not support combustion—that is, they are selfextinguishing once the igniting source is removed.
- Infrared Transmission: As halofluorocarbons are substantially free of hydrogen, the KEL-F oils and waxes are transparent in the 2-4 micron infrared region, where most organic liquids are strongly absorbing.
- Use in Pyrotechnics: Oxidizing agent in pyrotechnic compositions.

Additional References:

1) "KEPF Brand Halofluorocarbon Oils, Waxes, Greases and Alkanes," Minnesota Mining and Manufacturing Company (1958)

POLYTETRAFLUORGETHYLENE

(Teflon, Fluon, Fluoroffex, Polytetrafluoroethylene Resin)

Teflon is a thermoplastic, homopolymer composed of long chains of $-CF_2$ units, Its useful temperature range is -75° to $+250^{\circ}$ C. It cannot be molded, but at 205°C it can be extruded. It is not wetted or affected by water, neither does it stick to anything. Teflon is the term used in the U.S. and Fluon in Great Britain.

Where n is unknown (see Molecular Weight).

Specification No.:

PA-PD-614

Covers one type of general purpose molding or extruding material and the quality of the final molded or extruded parts. The applicable A.S.T.M. Specifications and Test Methods are D1457, D257, D150, D638, D785, D256, D792, D648, D696, D543, D542.

Molecular Weight: Unknown; estimated at 500,000 or more and possibly many millions.

40, 68

68, 1

Refs

29, 60

29

1

Form and Color: Colorless to grey powder, flakes, or grains. Transparent in thin sheet. Teflon is highly crystalline with no appreciable cross linking. A degree of crystallinity of 93-97% has been calculated for the polymer with 3 density of 2.296. Teflon is available as film, laminations, powder (pellets or granules), rods or tubes (extruded), or sheets. It is fabricated by extrusion, hoe forming or drawing, compression molding, and injection molding.

Density, g./ml.: (solid) 2.1-2.3 Coefficient of Thermal Expansion, linear: 5.5×10^{-5} 1 1, 10, Addnl. Ref. 12 Addnl. Ref. 10

Below 15° and above 25°C the cubical coefficients of expansion are roughly of the same order, 3×10^{-4} cc./cc./°C, but at about 20°C there is a 1% increase in volume, presumably due to a change in crystal structure.

Heat of Formation, Kcal./monomole at 298°K:

(estimated for particular sample used) -193:5

Addnl. Ref. 7 Addnl. Refs. 14, 15

Addnl. Ref.

Free Energy of Formation:

Entropy, Enthalpy, and Heat Capacity:

Form	Temp.	Entropy	Enthalpy	Heat Capacity*
	$^{\circ}\mathbf{C}$	abs.j. ° K -1g-1	abs.j.g-1	abs.j, °K-1g-1
powder	280	1.005	140.5	1.036
	310	1.134	178.6	0.9959
molded	280	1.019	144.6	1.012
	31 0	1.137	179.3	1.021
annealed	280	1.011	142.9	0.9761
	310	1.135	179.4	1.023

*Experimental data show that the heat capacity of a Teflon sample varies with its mechanical and thermal history.

Polytetrafluoroethylene (page 2)

Melting Point:

(softening) 600°K (327 ± 5°C)

Spec., 68

Heat of Fusion:

Boiling Point:

above 673°K (400°C)

40

Teflon begins to evaporate without melting.

Heat of Polymerization, Kcal./mole of monomer:

Addnl. Ref. 14

Transition Point and Phase Changes:

Teflon crystallizes in two forms. A first order phase change occurs at about 292°K (19°C) and melts at 600°K (327°C). A second order transition, involving the crystalline phase, occurs at about 303°K (30°C). This is not related to the glass transition which has not been located in this polymer, but it must be below 173°K (-100°C) as the polymer is still flexible at this temperature.

68

Addnl, Ref. 3, 9, 10, 11, 12, 13

Heat of Sublimation:

COMPARISON OF THE ENTHALPY AND ENTROPY CHANGE IN THE INTERVAL 280-310°K

Sample and run	AH	AS
'Terion powáer :	abs.j .g-1	abs.j °K⁻¹g⁻¹
Run 4-	38.02	0.1293
Run 6	38.04	0.1294
Molded Teflon:		
Run 3	34.68	0.1177
Run 4	34.75	0.1180
Annealed Tefion:		
Run 2	36.42	0.1236
Run 4	36.53	0.1240
Quenched Teflon:		
Run 2	35.49	0.1205

Addnl. Ref. 11

Specific Heat, cal./deg./g.:

Above 40°C (powdered): (drawn)

 $C_p = 0.2227 + 2.50 \times 10^{-4}t$ ("C) $C_p = 0.2227 + 2.39 \times 10^{-4}t$ (°C)

1

Decomposition Temperature:

about 400°C

Decomposition Products:

Depolymerizes to the monomer. Above 750°F decomposition liberates F. The polymer decomposes at elevated temperatures. In a vacuum, the monomer is the chief product. At low temperatures (250–350°C) degradation seems to start at the chain ends. at higher temperatures random cleavage becomes more important. In air degradation is more complicated, giving off extremely toxic products. Teflon decomposes slowly above 525°F.

68, 70, 60, Addni. Refs. 2, 4, 5

Addnl. Ref. 7

Addnl.'Ref. 8

Vapor Pressure at 25°C, mm.:

 1×10^{-7}

Addnl. keef.6

In the equation $\log p_{mm} = A-B/T$, A = 4.3, and B = 3400 over the range 300-450°K.

Polytetrafluoroethylene (page	3)					
X-Ray Crystallographic Data:						
System Space Croup pseudohexagonal	<i>a</i> 5.54	<i>b</i> 5.54	c 16.8	Axial Angle $\gamma = 119.5$	Molecules/ Unit Cell hightemp. form 15 low temp. form 13	68 Addnl. Ref. 1 40
The chain repeat distance	is 2.6 2	A.				Addnl. Ref. 10
Hygroscopicity: Solubility Data: There is no k fected by strong acids, ev prolonged contact with should be avoided.	en aqu	a regia	, and I	oy strong alkal	lon It is unaf- lies. However,	PA-PD-614 29, 40
Health Hazard: Heated to de-	compos	ition it	gives	off toxic firms	s of F and F	12, Addnl.
compounds. Safety Classifications:						Ref. 2
OSM: ICC: Fire and Explosion Hazard:				not listed not listed nonflammab	le	
Electrostatic Sensitivity: Mechanical Properties:				<u></u>		1
Modulus of elasticity, 103]	osi:			33-65		
Tensile strength, psi: Ultimate elongation, %: Yield stress, psi: Yield strain, %: Rockwell hardness:				1500–3000 120–350 1600–2000 50–70 J 75–J 95 2.5–4.0		
Notched Izod impact test: Refractive Index: Use in Pyrotechnics: To mak positions, and as an oxidiz			or con	1.585-1.600	rotechnic com-	1
Additional References: 1) Nature 174,549 (1954) 2) D. K. Harris, The Land St. E. Weir, J. Research 4) S.L. Madorsky et al., if the standard strength is in the standard strength in the strength in the standard strength in the standard strength in the standard strength in the standard strength in the standard strength in the standard strength in the standard strength in the standard strength in the standard strength in the standard strength	ncet, 10 n NBS 8 bid. 51, . 53, 12	50, 95 (327 (1 1 (1954	(1963) (953) (1)	J. Jensen, J. A	appl. Phys. 27,	
No. 12 (1956)					1 11 1	

7) "Combustion Calorimetry of Organic 'Fluorine Compounds," W. Good et al., J. Phys. Chem. 60,1080 (1956)

Polytetrafluoroethylene (page 4)

- 8) "Specific Heat of Synthetic High Polymers. V. A Study of the Order-Disorder Transition of Polytetrafluoroethylene," P. Marx and M. Dole, J. Am. Chem. Soc. 77,4771 (1955)
- 9) Structural Reports 12, 367-68 (1949)
- 10) "A Room Temperature Transition in Polytetrafluoroethylene,"H. Rigby and C. W. Bunn, Nature 164, 583 (1949)
- 11) "Calorimetric Properties of Polytetrafluoroethylene (Teflon) from 0° to 365°K," G. Furukawa et al., J. Research NBS 49,273 (1952)
- 12) C.A. 52,15118 (1958)
- 13) C.A. 52,12516(1958)
- 14) "Thermal Stability of Polytetrafluoroethylene," C. R. Patrick, Nature 181,698 (1958)
- 15) "Thermochemical Studies of Fluorocarbons," H. C. Duus, Ind. Eng. Chem. 1445 (1955)

POLYVINYLCHLORIDE,	PVCI	Rofs.				
(Exon, Geon, Koroseal, Marvinol, P		59, 60				
Velou, Vinylite, Vygen, Ag	ilide)					
Formula: Approximately (-CH ₂ ·CHCl·CHCl) _n , wh	59					
A variable polymer, Specification calls for 56 ± 1	1 % Cl					
Specification No.:	MIL-P-20307 (includes Army Spec. No. 50-11-147)					
Molecular Weight:	variable, approximately 250,000	59				
Crystalline Form:	(spec. grade) powder					
In PVCl, units of the polymer chains are arran In addition there may be some branching as a ring polymerization. Solid PVCl is only slightly	esult of chain transfer dur-	68				
Color:	colorless to amber	1				
Density, g./ml.:	(solid) unplasticed 1.4	59				
Specification, Apparent Density: Coefficient of Thermal Expansion, linear:	$0.5 \pm 0.1 \text{g./ml.}$	Addnl. Ref, 1				
Coefficient of Thermal Expansion, finear:	$5-6 \times 10^{-5}$	Addnl. Refs. 1,8				
Heat of Formation, Kcal./mole at 25°C, per monomer unit:	22.6 ± .3	Addnl. Ref. 7				
Free Energy of Formation:						
Entropy:						
Melting Point: Variable, depending on degree of soften between 343° and 353°K (70° and 80° polymers do not flow well enough for pract (150°C). Second order transition temperature	ical molding below 423°K	59, Addnl. Refs. 8, 6				
Heat of Fusion:	-					
Boiling Point:						
Transition Point:	see Melting Point					
Heat or Sublimation:	-					
Heat Content or Enthalpy:						
Heat Capacity:						
Decomposition Temperature: For TGA see Addnl. Ref. 9						
PVC1 begins to break down even as low as 18 light, darkening as HCl is evolved. Stability to greatly improved by the addition of stabilizers to be autocatalytic, the stabilizers used are usualkali earth oxides and hydroxides, fatty acids acetylene oxide compounds. Alcoholates, carb compounds have been found to be effective statione or in combination to adjust the propertie tion desired, e.g., flexibility, improved flame re	59					

Polyvinylchloride, PVCl (page 2)

Vapor Pressure:

X-Ray Crystallographic Data: Partly crystalline; fiber period 5.0 + .05 A or a multiple of 5.0 A

Addnl. Ref. 3

Hygroscopicity, Specification Grade Material: Gain in mg./g. at R.T. after exposure in static and vacuum desiccators:

Time,	65% R.H.		75% R.H.		86% R.H.		93% R.H.	
days	Stat.	Vac.	Stat.	Vac.	Stat.	Vac.	Stat.	Vac.
1	0.1	0.1	0.3	0.3	0.5	0.1	0.7	0.2
7 3 0	0.6	0.3	0.2 0.1	0.1	$\begin{array}{c c} 0.3 \\ 0.1 \end{array}$	0.5	0.7 0.1	0.2
_ J U			U.1		0.1		U.I	

59

32

1, 59, 60

Addnl. Ref. 7

PC Specification No.:	TASSIUM, (Kalium)	K		Refs.
Molecular Weight:		39.100		
Crystalline Form:		cubic		1
Color:			1	1
		silvery meta		_
Density, g./ml.:	1:	(solid) 0.87		1
Coefficient of Thermal Expansion Heat of Formation, Kcal./mole	n, linear at 0-5 at 298°K :	(monatomic (diatomic g	gas) 21,420 as) 30,580	27 5
Free Energy of Formation, Kcal	/mole at 298°K	: (monatomic g (diatomic g	c gas) 14,589	5
Entropy, cal./deg./mole at 2989	PK:	(monatomic (diatomic g (c) 15.39	gas) 3830 (as) 59.67	6
See tables below				
Melting Point:		336.4°K (63	3°C)	4, 5
Heat of Fusion, cal./mole:		558		
boiling Point:		1039°K (76	6°C)	5
				5
				5
				5
				4, 5
				4
$T, \circ K \qquad \qquad H_{\tau} - H_{298,15}$	$S_T - S_{298,15}$	T,°K	$H_T - H_{298,15}$	$S_T - S_{298,15}$
cal./mole	cal./deg. mole	· 	cal./mole	cal./deg. mole
336.4 (c) 286	0.90	700	3515	7.97
336.4 (l) 844	2.56	800	4225	8.92
400 1330	3.89	900	4940	9.76
500 2075	5.55	1000	5665	10.53
600 2805	6.88	1100	6400	. 11.23

K (c): Enthalpy: $H_T - H_{298,15} = 1.34T + 9.70 \times 110^{-3}T^2 - 1262$ (0.1 percent; **298–336.4°K)** Heat Capacity: $C_p = 1.34 + 19.40 \times 10^{-3}T$

Potassium, K (page 2)

K(l):

Enthalpy: $H_T = H_{298,16} = 7.06T - 0.70 \times 10^5 T^{-1} - 1323 (0.3 \text{ percent}; 336.4-1100 \text{°K})$

Heat Capacity : $C_{\nu}\!=\!7.06+0.70\times10^{5}T^{\ 2}$

b. HEAT CONTENT AND ENTROPY OF K (g)

(Base, ideal gas at 298.15°K)

T, °K	$H_T - H_{298, 15}$ cal./mole	$S_{\tau} - S_{298,15}$ $cal./deg,$ $mole$	Т,°К	$H_T - H_{298,15}$ cal./mole	S _T - S _{298,15} cal./deg. mole
400	505	1.46	1900.	7965	9.21
500	1005	2.57	2000	8465	9.46
600	1500	3.48	2200	9475	9.94
700	1995	4,24	2400	10,490	10.39
800	2495	4.90	2600	11,525	10.80
900	2990	5.39	2800	12,580	11.19
. 1000	3490	6.01	3000 ,	13,660	11.56
1100	3985	6.48	3500	16,540	12.45
1200	4480	6.92	4000	19,810	13.32
1300	4980	7.32	4500	23,750	14.25
1400	547 5	7.69	5000	28,720	15.29
1500	5975	8.03	6000	42,950	17.87
1600	6470	8.35	7000	62,210	20.83
1760 ,	6970	8.65	8000	82,400	23.53
1800	7465	8.94		•	

K (g):

T, °K	H _T - H _{298,15} cal./mole	$S_T - S_{298,15}$ cal./deg. mole	Т,°К	$H_T - H_{298,15}$ cal./mole	$S_T - S_{298,15}$ cal./deg.
400	925	2,67	1600	12,240	15.65
500 ,	1840	4.71	1700	13,215	16.24
600	2760	6.39	1800	14,200	16.80
700	3685	7.82	1900	15,180	17.33
800	4615	9.06	2000	16,170	17.84
900	5550	10.16	2100	17,165	18.33
1000	6490	11.15	2200	18,165	18.79
1100 ,	7440	12.05	2300	19,170	19.24
1200	8390	12.88	2400	28,180	19.67
1300	9345	13.65	2500	21,195	20.08
1400	10,305	14.36	2750	23,760	21.06
1500	11,270	15.02	3000	26,350	21.96

Potassium, K (page 5)

 $K_2(g)$:

Enthalpy: $H_T - H_{208.45} = 8.91T + 0.26 \times 10^{3}T^2 - 2680 (0.1 \text{ percent}; 298-3000°K)$

Heat Capacity : $C_p = 8.91 + 0.52 \times 10^{-8} \text{T}$

For tables of thermodynamic values see Ref. 5

Decomposition Temperature:

Decomposition Products:

Vapor Pressure:

_	*							
	Press. mm.	1	10	40	100	400	760	ì
•	Temp, °K	341	443	524	586	708	774	

At M.P. vapor pressure is 0.23 mm.

X-Ray Crystallographic Data:

System Space Group a Atoms/Unit Cell cubic 0% 5.333 2

Hygroscopicity: Reacts with water to form KOH and H₂.

Caution: Keep under liquid containing no oxygen; e.g., petroleum or in an iner; atmosphere of argon or nitrogen.

Solubility. Data: Soluble in liquid NH₃, ethylene diamine, aniline, and mercury. Reacts with water, and alcohol.

Health Hazard: Extremely caustic to all tissues. The fumes of potassium oxide are very toxic.

Sarety Classifications:

OSM:

Class 2

ICC: Listed under "Explosives and Other Dangerous Materials" as a "Flammable Solid"; yellow label.

Fire and Explosion Hazard: Potassium reacts vigorously wifh water to form caustic KOH and evolve hydrogen. The heat evolved causes the potassium to melt and the hydrogen to burn. If there is any confinement, the hydrogen may explode. Burning potassium is difficult to extinguish. To fight a fire, use dry powdered soda ash, graphite, or special mixtures of dry chemicals. Even when stored under mineral oil, the peroxide (Ko2 or K2O4) may form, and an explosion may occur when the material is handled or cut. Potassium which has become coated with a layer of oxide should be burned. The fumes of potassium oxide are highly toxic. Do not use CCl4 on fire as an explosion may result. Use powdered talc.

Electrostatic Sensitivity:

Use in Pyrotechnics: As a fuel and to color burning smoke compositions violet.

Additional Reference:

1) C.A. 37,2578 (1943)

12.14, 16, **75**, Addnl. Ref. 1

34

12

14

1, 29

I

POTASSIUM BIC (Potassium Acid Potassium Hydroge	Carbonate,	Refs.
Formula:	KHCO ₃	
Specification No.:	MIL-P-3173	
Molecular Weight:	100.11	
Crystalline Form:	monoclinic	1
Color:	colorless	1
Density, g./ml.:	(solid) 2.17	1
Coefficient of Thermal Expansion:	The state of the s	
Heat of Formation, Kcal./mole at 298°K	: -229.3	1, 9
Free Energy of Formation, Kcal./mole at Entropy:	298°K : -205.7	86
Melting Point:	Y	
Heat of Fusion:	With the subdisplace of the	
Boiling Point:		
Transition Point:		
Heat of Sublimation:		1
Heat Content or Enthalpy:	**************************************	
Heat Capacity:		
Decomposition Temperature, °C:	100–200	1
Decomposition Products:	$K_2CO_3 + CO_2 + H_2O$	44V22 II
Heat of Dissociation, cal./mole:	15,730	Addnl. Re
Vapor Pressure of Dissociation (to CO ₂ +	H ₂ O) is given by	1, 2 Addnl. Re
$\log P_{mm.} = 10.832 - \frac{3420}{T \text{ abs.}}$ $2\text{KHCO}_3(s) = \text{K}_2\text{CO}_3(s) + \text{CO}_2(g)$		
	1527 .6203 .8034 .9645	91
	00.3 419.4 424.9 429.1	la la
X-Ray Crystallographic Data:		
Space Group a b c C3h 15.176 5.630 3.708	Axial Angle $\beta = 103" 45'$ Molecules/Unit Cell 4	18V4
Hygroscopicity: Nonhygroscopic. Stable in humidity it absorbs water. In damp K ₂ CO ₃ .		44V22 II
Solubility Data: In cold water:	22.4 g./100g. •	1
In water at 60°C:	60 g./100g.	
In alcohol:	insoluble	
Wealth Hazard: Excessive doses may cau	se hyperkalemia or alkalosis.	1 29

Potassium Bicarbonate (page 2)

Safety Classifications: OSM:	not listed
ICC:	not listed
Fire and Explosion Hazard:	
Electrostatic Sensitivity:	
Use in Pyrotechnics: As à retardant, a plish-red.	nd to color burning compositions pur

Additional References:

1) "The Dissociation Pressures of the Alkali Carbonates. Part 11. Potassium, Rubidium, and Cesium Hydrogen Carbonates," R. M. Caven and H. J. Sand, J. Chem. Soc. 105,2752 (1914)

POTASSIUM CHLORATE	E, KClO ₃	Refs.
Specification No	MIL-P-150A	ſ
Specification Grades and Classes: The specification Grade A, low bromate content; Grade B, high C with magnesium carbonate. Grade C is divon granulation. Grade A is used in primer mix mixtures, and Grade C in colored smoke mixture.	bromate content; and Grade ided into seven classes based tures, Grade B in pyrotechnic	
Molecular Weight:	122.55	
Crystalline Form:	monoclinic	1
Percent Ogygen:	39.17	
Color:	colorless	
Density, g./ml.:	(solid) 2.32	
Coefficient of Thermal Expansion, y, over the range		4V22 I
-78° to + 21°C:	22×10^{-6}	
Heat of Formation, Kcal./mole at 298°K:	-93.50	99
Free Energy of Formation, Kcal./mole at 298°K:	-69.29	, 9
Entropy, cal./deg./mole at 298°K: Melting Point:	34.17 641.5°K (368.4°C)	i, 9
Literature Values:	334–372°C	E
Heat of Fusion:		
Boiling Point: Decomposes at 673°K (400°C) giving Transition Point: Monoclinic to rhombic 528°K (2) Heat of Sublimation: Heat Content or Enthalpy:		1, 20 12, 44V22 1
Heat Capacity, cal./deg./mole at 298°K:	(solid) 23.96	9
Temp.°C -150 -100 0 50 100 200 225	C _{p.} cat./deg./mole 14.7 18.9 23.4 25.1 28.4 36.2 39.7	35
Decomposition Temperature: For DTA and TGA Decomposition Products: At fusion 2KClO ₃ → KCl At high temperature the KClO ₄ decomposes Heat of Decomposition, kg./cal./mole: Crystalline decomposition, R.T.		20, 29
$\begin{array}{c} \mathrm{KClO_3} & \longrightarrow \mathrm{KCl} + \mathrm{O_2} \\ \mathrm{KClO_3} & \longrightarrow \mathrm{KCl} + 3.0 \end{array}$	12.1 ± 0.3	Addnl. Ref. I
$4KClO_3 \rightarrow KClO_4 + KCl$	-9.7 63	
1110103-110101 - 1101	55	

Potassium Cl	nlorate, KĈlO3	(page 2)					
Vapor Pressi X-Ray Cryst	1						
System monoclinic	Space Group C _{2h}	a b 4.647 5.585	<i>c</i> 7.085	Axial Angle β=109° 38	e Un	ecules/ it Cell. 2	
	$^{\circ}C$	а	b	c			65
	20	4.647	5.585	7.085			Addnl. Ref. 4
	90	4.665	5.600	7.122			
	150	4.679	5.പി	7.152			
	200	4.692	5.621	7.180			
	250	4.706	5.632	7.209			
Hygroscopic cator:	ity: R.T., after	equilibrium ha	as been e	stablished in	a vacuu	ım desic-	32
R.H.%	6	55 7.	5	86		93	
Time Expo	osed 24 hrs.	equil. 24 hrs.	equil. 2	4 hrs. equil.	24 hrs.	equil.	
Gain mg./g	ζ.						
R ¹ S ¹	0.1	0.1 0.1 <.1 0.2	0.1	0.2 8.2 0.3 —	0.5	0.5 0.9	
$R^1 = rea$	gent grade; S	= spec. grade	:				
Critical	R.H.						
	grade, 97.7% a						32
Spec. gr	ade,97.9% at 2	6.2°C					
Watera	bsorbed by 2.00	0g.at25°C (C	.P.mate	rial) :			
	E'ineness	Hours	s	g. H ₂ O absor	bed		
	40-80 mesh			00660			
		693/	4	0.1056			
		931/	/ 2	0.1392			Addnl. Ref. 3
		1221/	4	0.2340			
	ground	16		0.0248			
	very fine	69		0.1062			
		883/	4	0.1488			
Solubility Data: In water at 20°C: 7.1 g./100 ml. at 100°C: 57 g./100 ml.						1, 65	

Solubility Data: In water at 20°C:
at 100°C:
57g./100 ml.
In alkalies:
Slightly soluble

At 25°C, g./100 g. solvent:
In ethyl alcohol:
In glycerol:
In acetone:
In ethylene glycol:
At 20°C in methyl alcohol:
0.81
1.05
insoluble
1.21
At 20°C in methyl alcohol:
0.095

Potassium Chlorate, KClO₃ (page 3)

Health Hazard: Slight to moderately poisonous. The principal toxic effects of chlorates are the production of methemoglobin and the destruction of red blood corpuscles. Chlorates are also irritating to the genito-urinary tract and to the kidneys. The probable lethal human dose is 50-500 mg./kg.	12, 25, 26, 29, 65, 93
Safety Classifications:	
OSM : Class 1. Class 2 when not packed or stored in original containers or equivalent.	
ICC: Listed under "Explosives and Other Dangerous Articles" and classed as oxydizing material: yellow label.	
Fire and Explosion Hazard: Potassium chlorate is exploded by shock, or heat, and when rubbed in the presence of organic or reducing material (sugar, charcoal, shellac, sulfur, starch, sawdust, H ₂ SO ₄ , NH ₄ compounds, cyanides, phosphorus or antimony sulphide). KClO ₃ is sensitive to friction. Chlorate fires should be fought with large streams of water or with water fog. Note. See references for important precautions in the handling of potassium chlorate alone and with mixtures. The danger of spontaneous combustion with sulfur is greatly reduced by the addition of potassium bicarbonate.	12, 29, 14
Explosive Testa on Specification Grade Potassium Chlorate:	38
Explosion Temp. Test (5sec. value), °C: 467	88
Impact Test Values: (10% point)	88
Y.A.Apparatus, 2 kg, hammer	
(22 mg. charge); in: 40 +	i

Additional References:

compositions.

B.M. Apparatus, 2kg. hammer, cm:

1) "The Formation and Decomposition of Potassium Perchlorate and a New Determination of the Heat of Decomposition," C.A. 27, 1264 (1933)

Use in Pyrotechnics: As an oxidizer and to impart a purple-red color to burning

100 +

- 2) "Refinement of the Crystal Structure of Sodium Chlorate and Potassium Chlorate," J. G. Bower et al., Univ. of California, AFOSR Number TN-59-104, ASTIA Document Number AD 210, 386 (1959)
- 3) "Hygroscopic Properties of Sodium, Potassium and Ammonium Nitrates, Potassium Chlorate and Mercury Fulminate," C. B. Taylor and W. C. Cope, Met. & Chem. Eng. 15, 141 (1916)
- 4) G. Ramachandran and M. Lonappan, Acta. Cryst. 10, 281 (1957)

Refs. POTASSIUM NITRATE, KNO₃ 1, 29 (Saltpeter, Niter) 47.48 Percent Oxygen: Specification No.: MIL-P-156B The spec. covers three classes of about equal purity but of different granulation. Class 2 is used in pyrotechnics. Molecular Weight: 101.10 rhombic or trigonal Crystalline Form: Color: 1 colorless Density, g./ml.: (solid) 2.109; (liquid) $2.123 - .755 \times 10^{-8} \text{t}^{\circ}\text{C}$ 40V2 (over the range 350-565°C) 1 Coefficient of Thermal Expansion, cubical, 0-100°C: 1967 × 10-7 See also Ref. 54V2 1, 9 Heat of Formation, Kcal./mole at 298°K: -117.761, 9 Free Energy of Formation, Kcal./mole at 298°K: -93.96Entropy, cal./deg./mole at 298°K: 31.81 3 See table below Melting Point: 611°K (338°C) 7 4 2800 Heat' of Fusion, cal./mole: decomposes at 673°K (400°C) 1 **Boiling Point:**

T, °K	$H_T - H_{298,15}$ cal./mole	$S_T - S_{298,15}$ cal./deg. mole	T,°K	$H_T - H_{298,15}$ cal./mole	S _T – S _{298,15} cal./deg. mole
350	1230	3,80	600	9660	22,36
400	2490	7.17	611 (β)	9970	22.87
401 (a)	2520	7.24	611 (1)	12,770	27.45
$401 (\beta) \dots$	3920	10.73	700 `	15,400	31.46
წნე 	6780	17.11			

Potassium Nitrate, KNO ₃ (page 2) Heat Capacity, cal./deg./mole: (solid) = 23.01 (liquid) 29.50 β = 28.8 See table above Decomposition Temperature, °C: 400	
See table above Decomposition Temperature, °C: 400	
See table above Decomposition Temperature, °C: 400	4, 5
Decomposition Temperature, °C: 400	
• • •	
	1
Decomposition Products: From 650 to 750°C. The products of decomposition are KNO ₂ + o + traces of NO ₂ . At 800°C decomposition is more extensive	35
with KNO_2 decomposing to form K_2O_1 , N_2 , and O_2 .	
For DTA and TGA see Refs. 33 and 47	
Vapor Pressure:	
X-Ray Crystallographic Data:	
Molecules/	1
System Space Croup a Axial Angle Unit Cell hexagonal C_{3v}^{5} 4.365 $a=76^{\circ}$ 56' 1	
Hygroscopicity: Gain in mg./g. at R.T. after equilibrium has been established in vacuum dessicators.	32
% R.H. 65 75 86 93)
Time 24 hrs. equil. 24 hrs. equil. 24 hrs. equil. 24 hrs. equil.	
Spec. grade _ <1 _ 0.2 _ 56.2 _	
Purified	
Critical R.H.: Specification grade, 91.7% at 20.0°C Purified material, 91.8% at 26.2°C Water absorbed by 2.0000 g. at 25°C (C.Pmaterial):	32
Fineness Hrs. H ₂ O absorbed, g .	I J
40–80 mesh 23/4 0.0147	
183/4 0.1136	ł
. 251/4 0.1527	
42 ³ / ₄ 0.2687 47 0 <u>.289</u> 6	
$\frac{47}{\text{ground}} \frac{0.2896}{7\frac{1}{4}} = 0.0453$	
$\frac{1}{\sqrt{1}}$ 0.1056	
fine 40½ 0.2580	
<u> </u>	33
fine 40½ 0.2580 Specification Grade, gain % at 70°F	33
fine 40½ 0.2580 Specification Grade, gain % at 70°F and 90% R.H.: 0.76 Solubility Data: In water (g.100/ml.): 13.3 at 0°C, 31.6 at 20°C, and 247 at	
fine 40½ 0.2580 Specification Grade, gain % at 70°F and 90% R.H.: 0.76 Solubility Data: In water (g.100/ml.): 13.3 at 0°C, 31.6 at 20°C, and 247 at 100°C	

Potassium Nitrate, KNO₃ (page 3)

Safety Classifications:

- OSM: Class 1. Class 2 when not packed or stored in original shipping containers,
- YCC: Listed under "Explosives and Other Dangerous Articles" **as** oxidizing material; yellow label.
- Fire and Explosion Hazard: Dangerous, as it is a fire and explosion hazard. As an oxidizer it can give up its oxygen to other materials to produce a vigorous reaction which may result in detonation. Toxic fumes are emitted on decomposition.
- Potassium nitrate is a strong oxidizer, sensitive to shock, and can be easily detonated. When mixed with flammable materials it becomes very sensitive. Electrostatic Sensitivity:
- Use in Pyrotechnics: **As** an oxidizer and to impart a purple-red color to burning compositions.

Additional References:

- 1) "The Kinetics of Thermal Decomposition of Potassium Nitrate and of the Reaction between Potassium Nitrate and Oxygen," E. Freeman, J. Am. Chem. Soc. 79,838 (1957)
- . 2) "Simple Method for Derivative Thermal Analysis," E. Freeman and D. Edelman, Anal. Chem. 31,624 (1959)
- 3) "Instrumentation and Applications to Thermogravimetry and Differential Thermal Analysis," C. Campbell et al., Anal. Chem. 31, 1189 (1959)
- 4) "A Thermoanalytical Study of the Ignition and Combustion Reactions of Black Powder," C. Campbell and G. Weingarten, Trans. Faraday Soc. 55, No. 444,2221 (1959)
- 5) "Hygroscopic Properties of Sodium, Potassium and Ammonium Nitrates, Potassium Chlorate and Mercury Fulminate," G. B. Taylor and W. C. Cope, Met. & Chem. Eng. 15,141 (1916)

17

12, 14

Refs. POTASSIUM OXIDE, K2O 1 (Potassium Monoxide) Specification No.: 94,20 Molecular Weight: cubic **Crystalline Form:** 1,44V22I Color: colorless to grey White at ordinary temp., yellow when hot. (solid) 2.32° 1 Density, g./ml.: Coefficient of Thermal Expansion: 2 Heat of Formation, cal./mole at 298°K: $-86,400 (\pm 2000)$ See table below Free Energy of Formation, cal./mole at 298°K: 2 $-76,300 (\pm 2800)$ See table below Free Energy Equations: Range of Validity, oK 2 Reaction 1) $2K(c) + \frac{1}{2}O_2(g) = K_2O(c)$ 298.16-336.4 $\Delta F_{\pi}^{\circ} = -86,400 + 33.901$ 2) 2K (1) $+\frac{1}{2}O_2$ (g) $=K_2O$ (c) $\Delta F_2^2 = -87,380 + 1.15T \log T + 33.901$ 336.4-1049 3) $2K(g) + \frac{1}{2}O_2(g) = K_2O(c)$ $\Delta F_T^{\circ} = -103,090-16.12T \log T + 129.641'$ 1049-1500 HEAT AND FREE ENERGY OF FORMATION OF K2O (c)

T,°K	AH (cal./mole)	A Fo (cal./mole)
298.16	-86,400 (± 2000)	-76,300 (± 2800)
336.4	-86,400	- 75,000 '
336.4	-87,600	- 76,000
400	-87,600	-72,600
500	-87,600	-68,900
600	- 87,700	-65,100
700	-87,700	-61,400
800	-87,800	-57,600
900	-87,800	-53,800
1060	-87,900	-50,000
1049	-87,900	-48,200
1049	-125,800	-48,200
1100	-125,400	34,400
1200	-124,700	-37.100
1300	-124,000	-29,800
1 400	-123,300	-22,600
1500	-122,600	-15,400

Phase changes of Metal

M.P. 336.4°K; A H = 558 cal./g.-atom B.P., 1049°K; A H = 18,925 cal./g.-atom

Potassium Oxide, K2O (page 2)		
Entropy, cal./deg./mole at 298°K:	23.5 ± 2.5	24
Melting Point:		
Heat of Fusion:	not obtainable	7
Boiling Point:		_
Transition Point:	1253°K (980°C)	6
Heat of Transition, Kcal./mole:	6.8	6
Heat of Sublimation:		
Heat Content or Enthalpy:		
Heat Capacity:	1 1	
Decomposition Temperature:	below 763°K at 1750 ± 100°K	87
Decomposition Products:		
Vapor Pressure of alkali oxide and alkali metal in atm. at 1000°K (calcd.):	equil. with solid alkali oxide,	Addnl. Ref. 5
X-Ray Crystallographic Data: System Space Group a	Molecules/Cubic Cell	18
cubic 6.436		
Hygroscopicity: Reacts with water to form KOH v heat,	with evolution of considerable	
Solubility Data: Very soluble in water and is sl	ightly soluble in alcohol and	
ecner. The heat of solution in water, Kcal./mole:	75	44V22 I
Health Hazard: Has a caustic reaction on the s		12, 25, 29
Because it causes dermatitis, avoid its dust large quantities of water.	and treat exposed skin with	
Safeey Classifications:	. 11 1	
ÓSM : ICC :	not listed not listed	
Caustic potash liquid is classified under "Exp Articles" as a corrosive liquid.		
Fire and Explosion Hazard: Considerable heat i	s developed by reaction with	12
water. Highly caustic.	s developed by reaction with	
Electrostatic Sensitivity:		
Use in Pyrotechnics:	a product of burning potassium compounds	
Additional References:		
1) "Stability of Solid and Gaseous Alkali an	d Alkaline Earth Oxides " L	
Brewer and D. F. Mastick, J. Am. Chem.	Soc. 73, 2045 (1951)	1

POTA	ASSIUM PERC (Potassium Hy			KCIO,	:	Refs.
Percent Oxygen: Specification No.:		1.4		9 I-P - 217	(2)	·
•	one grade and four g	granulatic	ons. 138 .	==		
Molecular Weight: Crystalline Form:				nbic		1
Color:				orless		1
Density, g./ml.:				lid) 2.52)	1
Coefficient of Thermal from -78° to +1	Expansion, cubical 8°C :	,	·	× 10 ⁻⁵	•	44V22 I
Heat of Formation,	Kaal /mala at 208 0	w -	-10			1, 9
Free Energy of Forms			- <u>10</u>			1, 9
Entropy, cal./deg./m			<i>3</i> 6			1, 8, 9
Melting Point:	s vary from < 400 °	o to 610°C	337	° K (610	0± 10°C) nout mention of	1 65
Heat of Fusion:						
Boiling Point:			dec 9	– omposes 26°K (6	sat 53°C)	Addnl.Ref. 7
Transition Point:			•α (r a	hombic t 572° K) to ß (cubic) (299°C)	9
Heat of Transition, Heat of Sublimation			3.2	9 		9
Heat Content or Ent	halpy:					
Heat Capacity, cal./c			(sc	olid) 26.	33	4, 9
Decomposition Temp		s at abou	t 530° a	and is co	omplex.	Addnl. Ref. 4 47
See Addnl. Ref. Heat of Decomposit		s, Kg. ca + _{O, :}	al./mole 1.7		ant volume) at	Addnl. Ref. 8
Decomposition Produ Vapor Pressure: See 54V1		-	KC	1+40		20
X-Ray Crystallograp	hic Data:					
System rhombic cubic (340°C)	Space Group V_h^{16} T_d^2 or T^2	a 8.834 7.47	<i>b</i> 5.650	c 7.240	Molecules/ Unit Cell 4	Addnl. Ref. 9
	D_{16}^{2h}	8.857	5.663	7.254	4	97V6

Hygroscopicity: Gain (mg./g.) at 23-5°C and 98% R.H. after equilibrium has been established in a vacuum desicator. Spec. grade, after 24 hrs.: Purified, at equilibrium: Critical R.H. of spec. grade material: 99.3% at 26.2°C Solubility Data: In water, g./100 ml.: Solubility in Nonaqueous Solvents at 25°C: Solvent Acetone 0.155 Eethyl acetate 0.0015 Ethyl ether Methyl alcohol Ethyl ether Methyl alcohol Ethyl glycol Health Hazard: Moderately toxic and irritating to the skin, mucous membranes, and respiratory tract. It may affect the kidneys. Avoid contact with KClO., The probable lethal dose for humans is 50-500 mg./kg. Safety Classifications: OSM: Class 1. Class 2 when not packed in original shipping containers or equivalent. TCC: Listed under Explosives and Other Dangerous Materials. Classed as oxidizing material; yellow label. Fire and Explosion Hazard: A fire and explosive hazard, particularly when mixed with organic material, finely divided metals or sulfur. When heated it emits highly toxic fumes. For fighting a fire or potassium perchlorate alone use water. Electrostatic 'Sensitivity: Impact 'Tests Charge weight =0.023 g. Bureau of Mines Apparatus, 2 kg. wt., in.: (10% point) 40 † Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Auditional References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31, 624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 1) L. L. Bircumshaw and B. H. Newman, Proc. Royal Society (London) A227, 115 (1954)	Potassium Perchlorate, KClO4 (page 2)		1
Purified, at Audilibrium: < 1.0 Critical R.H. of spec, grade material: 99.3% at 26.2°C Solubility Data: In water, g./100 ml.: 0.75 at 0°C and 21.8 at 100°C Solubility in Nonaqueous Solvents at 25°C: Solvent g./100 g. of solvent Acetone 0.155 Eethyl acetate 0.0015 Ethyl alcohol 0.012 Ethyl ether insoluble Methyl alcohol 0.105 Ethyl glycol 1.03 Health Hazard: Moderately toxic and irritating to the skin, mucous membranes, and respiratory tract. It may affect the kidneys. Avoid contact with KClO ₄ . The probable lethal dose for humans is 50-500 mg./kg. Safety Classifications: OSM: Class 1. Class 2 when not packed in original shipping containers or equivalent. TCC: Listed under Explosives and Other Dangerous Materials. Classed as oxidizing material; yellow label. Fire and Explosion Hazard: A fire and explosive hazard, particularly when mixed with organic material, finely divided metals or sulfur. When heated it emits highly toxic fumes. For fighting a fire or potassium perchlorate alone use water. Electrostatic 'Sensitivity: —— Impact 'Tests: Charge weight = 0.023 g. Bureau of Mines Apparatus, 2 kg. wt., cm.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Auditumal References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31.624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 1) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)	Hygroscopicity: Gain (mg./g.) at 23-5°C and 98 been established in a vacuum desicator.	% R.H. after equilibrium has	32
Purified, at Audilibrium: < 1.0 Critical R.H. of spec, grade material: 99.3% at 26.2°C Solubility Data: In water, g./100 ml.: 0.75 at 0°C and 21.8 at 100°C Solubility in Nonaqueous Solvents at 25°C: Solvent g./100 g. of solvent Acetone 0.155 Eethyl acetate 0.0015 Ethyl alcohol 0.012 Ethyl ether insoluble Methyl alcohol 0.105 Ethyl glycol 1.03 Health Hazard: Moderately toxic and irritating to the skin, mucous membranes, and respiratory tract. It may affect the kidneys. Avoid contact with KClO ₄ . The probable lethal dose for humans is 50-500 mg./kg. Safety Classifications: OSM: Class 1. Class 2 when not packed in original shipping containers or equivalent. TCC: Listed under Explosives and Other Dangerous Materials. Classed as oxidizing material; yellow label. Fire and Explosion Hazard: A fire and explosive hazard, particularly when mixed with organic material, finely divided metals or sulfur. When heated it emits highly toxic fumes. For fighting a fire or potassium perchlorate alone use water. Electrostatic 'Sensitivity: —— Impact 'Tests: Charge weight = 0.023 g. Bureau of Mines Apparatus, 2 kg. wt., cm.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Auditumal References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31.624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 1) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)	Spec.grade, after 24 hrs.:	1	
Critical R.H. of spec. grade material: Solubility Data: In water, g./100 ml: Solubility in Nonaqueous Solvents at 25°C: Solvent Acetone Acetone Ethyl acetate 0.0015 Ethyl alcohol Ethyl ether Methyl alcohol Ethyl glycol Health Hazard: Moderately toxic and irritating to the skin, mucous membranes, and respiratory tract. It may affect the kidneys. Avoid contact with KClO ₄ . The probable lethal dose for humans is 50-500 mg./kg. Safety Classifications: OSM: Class 1. Class 2 when not packed in original shipping containers or equivalent. TCC: Listed under Explosives and Other Dangerous Materials. Classed as oxidizing material; yellow label. Fire and Explosion Hazard: A fire and explosive hazard, particularly when mixed with organic material, finely divided metals or sulfur. When heated it emits highly toxic fumes. For fighting a fire or potassium perchlorate alone use water. Electrostatic 'Sensitivity: Impact 'Tests: Charge weight =0.023 g. Bureau of Mines Apparatus, 2 kg. wt., em.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Additional References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31. 624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 1) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)		< 1.0	
Solubility Data: In water, g./100 ml.: Solubility in Nonaqueous Solvents at 25°C: Solvent Acctone Q./100 g. of solvent Acctone Ethyl acetate 0.0015 Ethyl ether Methyl alcohol Ethyl glycol 1.03 Health Hazard: Moderately toxic and irritating to the skin, mucous membranes, and respiratory tract. It may affect the kidneys. Avoid contact with KClO ₄ . The probable lethal dose for humans is 50-500 mg./kg. Safety Classifications: OSM: Class 1. Class 2 when not packed in original shipping containers or equivalent. TCC: Listed under Explosives and Other Dangerous Materials. Classed as oxidizing material; yellow label. Fire and Explosion Hazard: A fire and explosive hazard, particularly when mixed with organic material, finely divided metals or sulfur. When heated it emits highly toxic fumes. For fighting a fire or potassium perchlorate alone use water. Electrostatic 'Sensitivity: Impact 'Tests: Charge weight =0.023 g. Bureau of Mines Apparatus, 2 kg. wt., cm.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Additional References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31. 624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 1) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)		99.3% at 26.2°C	32
Solvent Acctone Acctone Bethyl acctate Bethyl alcohol Bethyl alcohol Bethyl ether Methyl alcohol Bethyl glycol Bethyl glycol Health Hazard: Moderately toxic and irritating to the skin, mucous membranes, and respiratory tract. It may affect the kidneys. Avoid contact with KClO4. The probable lethal dose for humans is 50-500 mg./kg. Safety Classifications: OSM: Class 1. Class 2 when not packed in original shipping containers or equivalent. TCC: Listed under Explosives and Other Dangerous Materials. Classed as oxidizing material; yellow label. Fire and Explosion Hazard: A fire and explosive hazard, particularly when mixed with organic material, finely divided metals or sulfur. When heated it emits highly toxic fumes. For fighting a fire or potassium perchlorate alone use water. Electrostatic 'Sensitivity: Impact 'Tests: Charge weight =0.023 g. Bureau of Mines Apparatus, 2 kg. wt., in.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Auditional References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31. 624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 4) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)			l, 65
Acetone Bethyl acetate Bethyl acetate Bethyl alcohol Bethyl ether Methyl alcohol Bethyl glycol Bythyl Solubility in Nonaqueous Solvents at 25°C:			
Acetone Eethyl acetate D.0015 Ethyl alcohol Ethyl ether Mcthyl alcohol Ethyl glycol Health Hazard: Moderately toxic and irritating to the skin, mucous membranes, and respiratory tract. It may affect the kidneys. Avoid contact with KClO4. The probable lethal dose for humans is 50-500 mg./kg. Safety Classifications: OSM: Class 1. Class 2 when not packed in original shipping containers or equivalent. ICC: Listed under Explosives and Other Dangerous Materials. Classed as oxidizing material; yellow label. Fire and Explosion Hazard: A fire and explosive hazard, particularly when mixed with organic material, finely divided metals or sulfur. When heated it emits highly toxic fumes. For fighting a fire or potassium perchlorate alone use water. Electrostatic Sensitivity: Impact Tests Charge weight = 0.023 g. Bureau of Mines Apparatus, 2 kg. wt., cm.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Additional References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31, 624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 4) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)	Solvent g./100	g. of solvent	65
Ethyl alcohol Ethyl ether Methyl alcohol Ethyl glycol 1.03 Health Hazard: Moderately toxic and irritating to the skin, mucous membranes, and respiratory tract. It may affect the kidneys. Avoid contact with KClO ₄ . The probable lethal dose for humans is 50-500 mg./kg. Safety Classifications: GSM: Class 1. Class 2 when not packed in original shipping containers or equivalent. TCC: Listed under Explosives and Other Dangerous Materials. Classed as oxidizing material; yellow label. Fire and Explosion Hazard: A fire and explosive hazard, particularly when mixed with organic material, finely divided metals or sulfur. When heated it emits highly toxic fumes. For fighting a fire or potassium perchlorate alone use water. Electrostatic 'Sensitivity: Impact 'Tests: Charge weight =0.023 g. Bureau of Mines Apparatus, 2 kg. wt., cm.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Additional References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31, 624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 4) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)			72
Ethyl alcohol Ethyl ether Methyl alcohol Ethyl ether Methyl alcohol Ethyl ether Methyl alcohol Ethyl glycol 1.03 Health Hazard: Moderately toxic and irritating to the skin, mucous membranes, and respiratory tract. It may affect the kidneys. Avoid contact with KCiO ₄ . The probable lethal dose for humans is 50-500 mg./kg. Safety Classifications: OSM: Class 1. Class 2 when not packed in original shipping containers or equivalent. TCC: Listed under Explosives and Other Dangerous Materials. Classed as oxidizing material; yellow label. Fire and Explosion Hazard: A fire and explosive hazard, particularly when mixed with organic material, finely divided metals or sulfur. When heated it emits highly toxic fumes. For fighting a fire or potassium perchlorate alone use water. Electrostatic 'Sensitivity: Impact 'Tests: Charge weight =0.023 g. Bureau of Mines Apparatus, 2 kg. wt., cm.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Additional References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31, 624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 4) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)	Eethyl acetate 0	.0015	77
Ethylether Methyl alcohol 6.105 Ethyl glycol 1.03 Health Hazard: Moderately toxic and irritating to the skin, mucous membranes, and respiratory tract. It may affect the kidneys. Avoid contact with KClO4. The probable lethal dose for humans is 50-500 mg./kg. Safety Classifications: OSM: Class 1. Class 2 when not packed in original shipping containers or equivalent. TCC: Listed under Explosives and Other Dangerous Materials. Classed as oxidizing material; yellow label. Fire and Explosion Hazard: A fire and explosive hazard, particularly when mixed with organic material, finely divided metals or sulfur. When heated it emits highly toxic fumes. For fighting a fire or potassium perchlorate alone use water. Electrostatic 'Sensitivity: Impact 'Tests: Charge weight =0.023 g. Bureau of Mines Apparatus, 2 kg. wt., cm.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Auditional References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31, 624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 4) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)	•	.012	
Methyl alcohol Ethyl glycol 1.03 Health Hazard: Moderately toxic and irritating to the skin, mucous membranes, and respiratory tract. It may affect the kidneys. Avoid contact with KClO4. The probable lethal dose for humans is 50-500 mg./kg. Safety Classifications: OSM: Class 1. Class 2 when not packed in original shipping containers or equivalent. TCC: Listed under Explosives and Other Dangerous Materials. Classed as oxidizing material; yellow label. Fire and Explosion Hazard: A fire and explosive hazard, particularly when mixed with organic material, finely divided metals or sulfur. When heated it emits highly toxic fumes. For fighting a fire or potassium perchlorate alone use water. Electrostatic 'Sensitivity: Impact 'Tests: Charge weight =0.023 g. Bureau of Mines Apparatus, 2 kg. wt., cm.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Additional References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31.624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 4) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)		nsoluble	
Health Hazard: Moderately toxic and irritating to the skin, mucous membranes, and respiratory tract. It may affect the kidneys. Avoid contact with KClO4. The probable lethal dose for humans is 50-500 mg./kg. Safety Classifications: OSM: Class 1. Class 2 when not packed in original shipping containers or equivalent. TCC: Listed under Explosives and Other Dangerous Materials. Classed as oxidizing material; yellow label. Fire and Explosion Hazard: A fire and explosive hazard, particularly when mixed with organic material, finely divided metals or sulfur. When heated it emits highly toxic fumes. For fighting a fire or potassium perchlorate alone use water. Electrostatic 'Sensitivity: Impact 'Tests: Charge weight = 0.023 g. Bureau of Mines Apparatus, 2 kg. wt., cm.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Audit.onal References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31, 624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 4) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)			
Health Hazard: Moderately toxic and irritating to the skin, mucous membranes, and respiratory tract. It may affect the kidneys. Avoid contact with KClO4. The probable lethal dose for humans is 50-500 mg./kg. Safety Classifications: OSM: Class 1. Class 2 when not packed in original shipping containers or equivalent. TCC: Listed under Explosives and Other Dangerous Materials. Classed as oxidizing material; yellow label. Fire and Explosion Hazard: A fire and explosive hazard, particularly when mixed with organic material, finely divided metals or sulfur. When heated it emits highly toxic fumes. For fighting a fire or potassium perchlorate alone use water. Electrostatic 'Sensitivity: Impact 'Tests: Charge weight =0.023 g. Bureau of Mines Apparatus, 2 kg. wt., cm.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Additional References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31.624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 4) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)		.03	
 OSM: Class 1. Class 2 when not packed in original shipping containers or equivalent. FOC: Listed under Explosives and Other Dangerous Materials. Classed as oxidizing material; yellow label. Fire and Explosion Hazard: A fire and explosive hazard, particularly when mixed with organic material, finely divided metals or sulfur. When heated it emits highly toxic fumes. For fighting a fire or potassium perchlorate alone use water. Electrostatic 'Sensitivity: —— Impact 'Tests: Charge weight =0.023 g. Bureau of Mines Apparatus, 2 kg. wt., cm.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Additional References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31, 624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 4) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954) 	Health Hazard: Moderately toxic and irritatir branes, and respiratory tract. It may affect	he kidneys. Avoid contact with	93, 12, 29, 65
mixed with organic material, finely divided metals or sulfur. When heated it emits highly toxic fumes. For fighting a fire or potassium perchlorate alone use water. Electrostatic 'Sensitivity: Impact 'Tests: Charge weight =0.023 g. Bureau of Mines Apparatus, 2 kg. wt., cm.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Additional References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31, 624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 4) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)	OSM: Class 1. Class 2 when not packed in cequivalent. ICC: Listed under Explosives and Other D		
 Impact 'Tests: Charge weight =0.023 g. Bureau of Mines Apparatus, 2 kg. wt., cm.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. Additional References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31, 624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 4) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954) 	mixed with organic material, finely divided it emits highly toxic fumes. For fighting a alone use water.	metals or sulfur. When heated	12, 14
Bureau of Mines Apparatus, 2 kg. wt., cm.: (10% point) 100 + P.A. Apparatus, 2 kg. wt., in.: (10% point) 40 + Use in Pyrotechnics: As an oxidizer and to color burning compositions purplered. AuditLonal References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31, 624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 4) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)	•		00
red. Additional References: 1) Ref. 47 2) "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31, 624 (1959) 3) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) 4) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)	Bureau of Mines Apparatus, 2 kg. wt., cm.		33
 Ref. 47 "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31, 624 (1959) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954) 	Use in Pyrotechnics: As an oxidizer and to color red.	burning compositions purple-	
 "Simple Method for Derivative Differential Analysis," E. Freeman and D. Edelman, Anal. Chem. 31, 624 (1959) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954) 			e.
 D. Edelman, Anal. Chem. 31, 624 (1959) M. M. Markowitz, J. Phys. Chem. 61,505 (1957) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954) 	1) Ref. 47		П
1) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)		ial Analysis," E. Freeman and	
1) L. L. Bircumshaw and B. H. Newman, Proc, Royal Society (London) A227, 115 (1954)	3) M. M. Markowitz, J. Phys. Chem. 61.50	5 (1957)	
	1) L. L. Bircumshaw and B. H. Newman,	·	
5) A. D. narvey et al., J. Am. Chem. 80c. 76, 8270 (1994)	5) A. E. Harvey et al., J. Am. Chem. Soc. 76,	3270 (1954)	

Potassium Perchlorate, KCIO₄ (page 3)

- 6) "Precise Studies of the Crystal Structures of Lithium Perchlorate Trihydrate, Anhydrous Lithium Perchlorate, and Potassium Perchlorate," R. J. Prosen and K. N. Trueblood, Perchlorates TN-2, OSRTN 56-563, ASTIA Document No. AD 110-384 (1956)
- 7) C. Duval, C.A. 42,8698 (1948)
- 8) K. A. Hoffman and P. H. Marin, C.A. 27, 1264 (1933)
- 9) "The Crystal Structure of Potassium Perchlorate—KClO₄," N. V. Mani, Proceedings of the Indian Academy of Science, pp. 143-151 (1967)
- 10) Anal. Chem. Acta 2, 105 (1948)

SHELLAC

Refs

16, 20, 59,

52V7

1

29

20.9

(For trade names and manufacturers, see Ref. 60)

Shellac is a variable natural product obtained from various species of Acacia.

Shellac is the only resinous substance of animal origin. It is produced by an insect (Tachadia lacca) which lives on certain trees of southern Asia. The insect takes up sap through its stinger and after a semi-polymerization procesb exudes it as a gum. This lac secretion coats their bodies and the twigs of the trees with **a** heavy incrustation which is scraped off and forms the commercial slick lac. This contains not only the lac resin but also woody matter, lac dye, and the bodies of insects. **The** seed lac is ground and washed to remove the wood and most of the coloring matter. Shellac is prepared from the seed lac by melting or by extraction with solvents. The molten material is spread over **a** hot cylinder, stretched, and cooled. The cooled sheet is then broken into flakes of shellac. After purification, shellac varies in color from orange to lemon yellow. Orange shellac may contain as much as 1% of powdered orpiment (As₂O₃).

Chemically, shellac contains condensed long chain esters of condensed polyhydroxy acids together with rosin and wax. By solvent action the wax content of the seed lac is reduced to 1%. Shellac is graded by color and amount of dirt. The best grade contains no resin, but in inferior grades the resin content may be as high as 12%.

Characteristics of Shellac (analytical):

Acid Number:	48-64	
Ester Number:	137–63	
Saponification Number:	194-213	
Yodine Number:	185-210	
cification No.:	MIL-S-20526	

Specification No.: M. (Includes U.S. Army Specification No. 50-11-17A)

The spec covers three grades which differ in purity. Grade A is used in both primer pyrotechnic compositions. Grade A includes the grades of orange shellac known as "Double Triangle G," "Diamond I," "Superfine," the highest grades, "D.C." and "V.S.O. "The so-called machine-made shellacs, such as "CV" and "CVTN, "in general fall under Grade A.

Molecular Weight:

Crystalline Form:

Color:

pale orangeto
lemonyellow
lemonyellow

(solid) 1.08-1.13

Coefficient of Thermal Expansion:

Heat of Formation:

Free Energy:

Heat of Fusion:

Boiling Point:

decomposes

Shellac (page 2)		
.Transition Point :	Name of Administrative	
Heat of Sublimation:	m) - malayamatel	
Heat Content or Enthalpy:		
Heat Capacity:		
Decomposition Temperature:		
Decomposition Products:		
Vapor Pressure:	·	
X-Ray Crystallographic Data:		
Hygroscopicity: Nonhygroscopic and not altered on	exposure to the air,	1
Solubility Data, g./100 g. solution:		29
In water:	insoluble	
In alcohol:	85-90 (veryslowly soluble)	
In ether:	13-15	
In benzene:	10-20	
Sparingly soluble in oil or turpentine. Soluble alkalies, or borax. Solubility in petroleum eth Soluble in the lower aliphatic alcohols but not	ner, 2-6 g./100 g. solution.	29 , 59
Health Hazard:	none	
Safety Classifications:	,	
OSM:	not listed	
ICC:	not listed	**
Fire and Explosion Hazard: Easily ignited and cor Ignition Temp. of Dust Cloud, °C:	1tinues to burn.	60 26
Minimum Explosive Concentration of Dust,	390	26
mg./l.:	15	26
Electrostatic Sensitivity, minimum energy required	d for ignition of dust cloud	
by electric sparks (millijoules):	10	26
Use in Pyrotechnics: As a binder, a fuel retardan of moisture. It is applied as an alcoholic solution evaporate after application.		20V1 , 20V3

SILICON, Si

Specification No.:	JAN-S-230 and Amendment 1	
Amendment 1 lists two grades differing slightle differing in granulation.	y in purity, and four classes	
Molecular Weight:	28.09	
Crystailine Form: Needle-like crystals or ocatahed in three forms; adamantine (cubic), amorpho		1, 29
Color: Lustrous black to gray. The amorphous for steel grey, black plates.	rm is a dark brown powder,	1, 29
Types and Differences of Behavior: Brown amount motern metals and burns in air to form SiO ₂ . Expression con is not easily oxidized and not attacked by soluble in alkalies, Crystalline silicon is obtained or six-sided pyramids. It is less reactive than attacked by boiling water. The three forms are mercial silicon is the graphitoidal flake form. 97% Si and less than 1% iron.	Black, shiny graphitoidal sili- by the common acids, but is d in dark, steel-grey globules the amorphous form, but is cobtained by reduction. Com -	16, 29
Density, g./ml.:	(solid) adamantine, 2.42 amorphous, 2.08 graphitoidal, about 2.4	1
Coefficient of Thermal Expansion, linear at 25°C: 40°C:	$4.2 imes 10^{-6}$ $7.63 imes 10^{-6}$	29 1
Heat of Formation, Kcal./mole at 298°K:	(gas) 880.4	1, 9
Free Energy of Formation, Kcal./mole at 298°K:	(gas) 77.41	1,9
Entropy, cal./deg./mole at 298°K:	(gas) 40.12	1, 5, 9
See Table a	(c) 4.53	1, 5, 9
Melting Point:	1685°K (1412°C)	4
Heat of Fusion, cal./mole:	12,100	4
Boiling Point:	2950°K (2677°C)	5
Heat of Vaporization, Kcal./mole:	about 72.6	40V2
Transition Point:	none up to 1273°K	Addnl. Ref. 1
	(1000°C) about 2873°K (2600°C)	40
Heat of Sublimation, Kcal./mole:	(monatomicSi) 105	15
Heat Content or Enthalpy, cal./mole at 298°K:	(solid) 769	

Silicon, Si (page 2)

a. HEAT CONTENT AND ENTROPY OF Si (c, i) (Base, crystals at 298.15°K)

т, °К	$H_T - H_{298,15}$ cal./mole	$S_T - S_{298,15}$ cal./deg. mole	T, VK	H _T - H _{298,15} cal./mole	S _T - S _{288,15} , cai./deg. mole
400	515	1.48	1400	6680	9.04
500	1060	2.69	1500	7340	9.49
600	1630	3.73	1600	8010	9.92
700	2220	4.64	1685 (c)	8580	10.27
800	2830	5.46	1685 (l)	20,680	17.45
900	3450	6.19	1700	20,770	17.50
1000	4080	6.85	1800	21,380	17.85
1100	4720	7.46	1900	21,990	18.18
1200	5360	8.02	2000	22,600	18.49
1300	6020	8.65			

ř

4

b. HEAT CONTENT AND ENTROPY OF Si (g) (Base, ideal gas at 298.15°K)

 $H_{\rm T} = H_{298,15}$ ST-S288,18 T, °K $H_T - H_{298,15}$ $S_{\rm T} - S_{298,15}$ T, °K cal./mole cal./mole cal./deg. cal./deg. mole mole 535 1.54 1900 8140 9.43 400 2.68 3.61 9.70 8665 500 PO45 2000 10.20 1555 2200 9715 600 10,780 11,850 700 2060 4.39 2400 10.67 2560 11.16 5.06 2600 800 12,935 14,020 900 3060 5.652800 11.50 3000 11.87 00076.18 3565 1100 4065 6.66 3500 16,765 12.71 19,520 22,280 13.45 7.09 4000 1200 4565 7.49 8.22 5070 14.10 1300 4500 25,040 30,555 1400 5000 14.65 557515.69 15006085 6000 8.55 36,105 16.55 16006595 7000 17.31 1700 7105 8.868000 41,845 1860 . . 76259.15

```
Silicon, Si (page 3)
                                     Si (g):
Enthalpy : H_T - H_{298,15} = 4.82T + 0.09 \times 10^{-8}T^2 - 0.42 \times 10^{5}T^{-1} - 1304 (0.3percent; 298-5000°K)
Heat Capacity: C_0 = 4.82 + 0.18 \times 10^{-8} \text{T} + 0.42 \times 10^{5} \text{T}^{-2}
Heat Capacity, cal./deg./mole at 298°K:
                                                       (solid) 4.80
(liquid) 7.0
                                                                                     5
                                                                 5.32
                                                       (gas)
     Also see above
Decomposition Temperature:
Decomposition Products:
Vapor Pressure:
  Press. mm.
                                                                            M.P.
                                                                                     1
                             10
                                      40
                                               100
                                                         400
                                                                  760
  Temp. °C
                  1724
                            1888
                                     2000
                                               2083
                                                        2220
                                                                  2287
                                                                            1420
                                                                                     33
                                                       0.075
     at melting point, mm.
X-Ray Crystallographic Data:
                      Space Group
                                                            Atoms/Unit Cell
      System
                                                 a
                                                                                     1
                                               5.4173
      cubic
Hygroscopicity (milled Si), cumulative increase in weight after:
    storage over H<sub>2</sub>O for 18days
                                                   3 days in oven at 105°C
                                                                                     50
                 4.3%
                                                            0.4%
      (Some caking of powder noted.)
Solubility data:
                                                                                     1
                                                       insoluble
     in water:
     In molten alkali oxide, HF:
                                                       soluble
                                                                                     29
                                                                                     12,295
Health Hazard:
                                                       slight
Safety Classifications:
                                                       Class 2
                                                       not listed. Probably classed
                                                         as a flammable solid
     U.N.:
                                                       inAammable solid
Fire and Explosion Hazard: Powdered silicon when heated in the air is a dan-
                                                                                     12, 14
    gerous fire hazard. It burns with intense heat and reacts explosively with
    oxidizing materials, and with water or steam. Prevent water from contact-
     ing the material. Store and process only in a room or building adequately
     vented at the highest point to prevent accumulation of hydrogen gas which
     results from the reaction of powdered metal and moisture. In the repair ox'
    maintenance of buildings or equipment, powder or dust should be removed
     and nonsparking tools used.
                                                                                     49, 51
     The powder is moderately explosive.
Electrostatic Sensitivity, minimum energy required for ignition of powder by
     electric sparks, millijoules for dust cloud:
                                                                                     26
Ignition Temperature, °C:
                                                        (dust cloud) 775
                                                                                     26
                                                        (dust layer) 950
Minimum Explosive Concentration of powdered
                                                                                     26
     silicon, mg./l:
                                                        100
Use in Pyrotechnics:
                                                       as a fuel
Additional References:
     1) J. Phys. Chem. 60, 509 (1956)
```

(Quartz, Silica	SILICON DIOXIDE, , Silicic Anhydride, Rock	-	obalite)	<i>Kef</i> 1, 12
Percent Oxygen:		53.25		
Specification No.:				
Molecular Weight:		60.06		
Crystalline Form:				1
Type of SiO2	Crystalline Form	Density	M.P.°C	
cristobalite	cubic or tetragonal	2.32	1710	
lechatelierite quartz tridymite	hexagonal rhombic	2.20 2.653–2.660 2. 28–2.33	<1470 16'70	
Color:		colorless	V	1
Density, g./ml.:		(solid) 2.653	-2.660	1
0 0 0-1	o to + 16°C: -80°C: axis, 0-80°C: -16°C: -30°C: 100°C: 800°C: 200°C: quartz, 50-60°C:	5.21 × 10 ⁻⁶ 7.97 × 10 ⁻⁶ 13.31 × 10 ⁻⁶ 0.256 × 10 ⁻⁶ 0.42 × 10 ⁻⁶ 0.50 × 10 ⁻⁶ 0.546 × 10 ⁻⁶ 0.585 × 10 ⁻⁶ 0.3538 × 10 quartz, -205.	B B 4	1, 9
rieator roimation, n	.cai./mole at 250-K.	cristobalite,	-205.0	1, 5
Free Energy of Form	ation, Keal./mole at 298°K:	quartz, -192. cristobalite, - tridynite, -19	-192.1	1
a. HEAT AN	D FREE ENERGY OF FO (α-quartz, β-quartz, 1		SiO ₂	2
T, °K	A H (cal./mole) .	Δ F° (cal	./mole)	

T 087	A XX 2 - 1 (1 -)	(770 (- u 1 (- u - 1 ·)	
T, °K	AH (cal./mole) .	Δ F° (cal./mole)	
298.16	$-239,900 (\pm 1000)$	-196,900 (± 1000)	
400	-209,900	-192,500	
500	-209,800	-188,100	
600	-209,700	-183,800	
700	-209,500	-179,500	
800	-209,200	-175,200	
848	-209,000	-173,200	
848	-208,700	-173,200	
900	-208,600	-171,000	
1000	-208,400	-166,800	
1100	-208,300	-162,700	
1200	-208,100	-158,500	
1300	-209,900	-1 54,400	

Silicon Dioxide, SiO2 (page 2)

Т, °К	Δ H (cal./mole)	A F° (cal./mole)
1400	-207,800	-150,300
1500	-20 7,6 00	-146,200
1600	-207,400	-142,100
1683	-207,300	-138,700
1683	-218,4 00	-138,700
1700	-218,3 00	-138,000
1800	-218,200	-133,208
1883	-218,100	-129,300
1883	-216,000	-129,300
1900	-215,900	-128,500
2000	-215,20 0	-123,900

Phase changes of Oxide

T.P. (α -quartz to p-quartz), 848°K; Δ H = 290 cal./mole T.P. (p-quartzto p-tridymite), 1140°K; Δ H = 180 cal./mole M.P., 1883°K; Δ H = 2040 cal./mole

b. HEAT AND FREE ENERGY OF FORMATION OF SiO₂ (a-cristobalite; p-cristobalite)

2

T, °K	Δ H (cal./mole)	A F° (cal./mole)
298.16	-209,550 (± 250)	$-196,650 (\pm 300)$
$400 \dots$	-209,600	-192,200
500	-209,500	-187,900
523	-209,450	-186,900
523	-209,250	-186,900
600	-209,100	-183,600
700	-208,900	-179,350
800	-208,700	–175,150
900	–208,500	-17 1,000
1000	-208,300	-166 ,800
1100	-208,100	-162,700
$1200 \dots$	-207,950	-158,550
1300	-207,750	-1 <i>5</i> 4,4 <i>50</i>
1400	-207,550	–150,356
1500	-207,350	-146 ,300
1600	-207,200	-142,200
1683	-207,050	-138,850
1683	<i>-2</i> 18,150	-138,850
$1700 \dots$	-218,100	-138,050
1800	-218,000	-133,350
1900 . ,	-217,850	-128,650
2000	$-\overline{217,700}$	-1 23,950

Phase changes of Oxide . T.P., $523\,^{\circ}K$; Δ Ti = 200 cal./mole

Silicon Dioxide, SiO2 (page 3)

c. HEAT AND FREE ENERGY OF FORMATION OF SiO₂ (α -trid., β -trid., 1)

T, °K	Δ H (cal./mole)	A F° (cal./mole)
298.16	-209,400 (± 1000)	$-196,500 (\pm 1000)$
390	-209,400	-192,600
390	-209,400	-192,600
400	- 209,400	-192,100
500	-209,200	–187,800
600	-209,100	-183,600
700	-208,900	-179,400
800	-208,700	-175,200
900	-208,500	-17 1,000
1000	-208,300	-166,800
1100	- 208,100	-162,700
1200	-207,900	-158,600
1300	- 207,700	-154,400
1400	-207,500	-150,400
1500	- 207,300	-146,300
1600	-207,200	-142,200
1683	_20 7 ,0 0 0	-138,800
1683	- 218,100	-138,800
1700	- 218,000	-138,000
1800	- 218,000	-133,400
1900	-217,800	-128,700 126,200
1953	-217,700	-126,200 126,200
1 953 2000	-215,600	-126,200 122,000
2000	-215,200	-123,900

Phase changes of Oxide

T.P. (α -trid. to p-trid.) ,390°K ;A H = 40 cal./mole T.P. (β -trid. to β -crist.), 1748°K ; Δ H = 30 cal./mole M.P., 1953°K ;A H = 2150 cal./mole

Free Energy Equations:

Reaction

Range of Validity, °K

3

- 1) Si (c) $+ O_2$ (g) = SiO₂ (a-quartz) 298.16-848 $\Delta F_T^{\circ} = -210,070 + 3.981 \log T - 3.32$ (10-3T2) + 6.05 (105T-1) + 34.59T
- 2) Si (c) $+O_2$ (g) = SiO₂ (β -quartz) 848-1683 A F_T = -209,920 -3.36T log T -.19 (10-3T²) -.745 (10⁵T⁻¹) +53.44T
- 3) Si (l) $+ O_2$ (g) = SiO₂ (p-quartz) 1683-1883 . $\Delta F_T^{\circ} = -219,000 + .58T \log T - .47 (10^{-3}T^2) - .20 (10^{5}T^{-1}) + 46.58T$
- 4) Si (1) $+ O_2$ (g) $= SiO_2$ (1) 1883-2000 A $F_{T}^{\circ} = -228,590-15.66 \text{T log T} + 103.97 \text{T}$
- 5) Si (c) $+ O_2$ (g) =SiO₂ (a-cristobalite) 298.16-523 $\Delta F_{T}^{\circ} = -207,330 + 19.96 \text{T log T} - 9.75 (10^{-3}\text{T}^2) - .745 (10^{5}\text{T}^{-1}) - 9.78 \text{T}$

Silicon Dioxide, SiO2 (page 4)

6) Si (c) $+ O_2$ (g) = SiO ₂ (p-cristobalite)		
$\Delta \mathbf{F}_{\mathbf{T}}^{o} = -209,820 - 3.341: \log T24 (10.3T^2)7$	745 (10°T 1) +53.35T	
7) Si (4) $+ O_2(g) = SiO_2$ (p-cristobalite)		
$\Delta \mathbf{F}_{\mathbf{T}}^{o} = -218,900 + .60 \text{T log T}52 (10^{-3} \text{T}^2)2$		
8) Si (c) $+ O_2$ (g) $= SiO_2$ (α -tridymite)		
$A F_{T}^{\circ} = -207,030 + 22.291 \log T - 11.62 (10.3 T^{2})$		
9) Si (c) $+ O_2$ (g) = SiO ₂ (p-tridymite)		
$\Delta F_{T}^{\circ} = -209,350 - 1.59 \text{T log T}54 (10^{-3}\text{T}^{2})50 \text{ m}$		
10) Si (1) $+ \mathbf{0_2}$ (g) = SiO ₂ (p-tridymite)	1683-1953	
$A F_T^{\circ} = -218.430 + 2.351' \log T82 (10^{-3}T^2)82$	20 (10 ⁵ T ⁻¹) +41.00T	
Entropy and /dog /male at 2000V	quartz 10.00	1
Entropy, cal./deg./mole at 298°K:	quartz, 10.00 cristobalite, 10.19	1, 1
	tridymite, 10.36	1
See Table d		İ
Melting Point:		j
~~~		

See Crystalline Form Heat of Fusion, Kcal./mole at 298°K: quartz, 2.04 cristobalite,  $3.6 \pm 0.5$ 

Boiling Point: Heat of Vaporization:

Heat of Sublimation:

	cal./mole	cal./deg. mole		cal./mole	<b>S_T - S_{298,15}</b> cal./deg. mole
400	1210	3.48	1200	14,080	20.90
500	<b>256</b> 0	6.48	1300	15,790	22.27
523 (α)	2910	7.16	1400	17,510	23.54
$523 (\beta) \dots$	3110	7.54	1500	19,240	24.74
600	4310	9.68	1600	20,990	25.87
700	5850	12.05	1700	22,750	26,93
800	<b>746</b> 0	14.20	1800	24,530	27.95
900	9090	16.12	1900	26,320	28.92
1000	10,730	17.85	2000	28,120	.29.84
1100	12,390	19.43		,	

2503°K (2230°C)

 $SiO_{2} \text{ (a-cristobalite)}$  Enthalpy:  $H_{T} - H_{298.15} = 4.281' + 10.53 \times 10^{-3}T^{2} - 2212 \text{ (10 percent; 298-523°K)}$  Heat Capacity:  $C_{9} = 4.28 + 21.06 \times 10^{-3}T$ ; A  $H_{523}$  (transition) = 200

T, <b>°K</b>	$H_T = H_{298,15}$ cal./mole	$S_{\tau} - S_{298,15}$ cal./deg.	T, <b>°K</b>	$H_T - H_{298,15}$ cal./mole	S _T – S _{298,15} cal./deg. mole
400	1230 2550 3950 5430 6990 8610 10,280 11,980	3.54 <b>6.48</b> 9.03 11.31 13.39 <b>15.30</b> 17.06 18.68 20.17	1300	15,450 17,240 19,080 <b>20,980</b> 22,930 24,920 26,950 29.010	21.57 22.90 24.17 25.39 26.57 27.71 28.81 29.87

SiO₂(gl): Enthalpy:  $H_T - H_{298,15} = 13.38'l' + 1.84 \times 10^{-8}T^2 + 3.45 \times 10^{8}T^{-1} - 5310$ (0.4 percent; 298–2000°K)

Heat Capacity:  $C_p = 13.38 + 3.68 \times 10^{-8} T^2 - 3.45 \times 10^{5} T^{-2}$ 

# f. HEAT CONTENT AND ENTROPY OF SiO₂ (tridymite) (Base, α-crystals at 298.15°K)

Т, °К	$H_T - H_{208,15}$ cal./mole	$S_T - S_{298,15}$ cal./deg. mole	Т,°К	$H_T - H_{298.15}$ cal./mole	S _T – S _{298.15} cal./deg. mole
350	585	1.81	1100	12,250	19.25
390 (α)	1085	3.16	1200	<b>13,94</b> 0	20.72
390 (β)	1125	3.26	1300 ,	15,650	22.09
400	1270	3.63	1400	17,370	23.37
500	2710	6.84	1500	19,100	24.56
600	4170	9.50	1600	20,860	25.69
700	5710	11.87	1700	22,610	26.75
800	7320	14.02	1800	24,390	27.77
900	8954)	15.94	1900	26,180	28.74
1000	10,590	17.67	2000	27,980	29.66

 $SiO_{2}(a\text{-tridymite})$  Enthalpy:  $H_{T} - H_{298,15} = 3.27T + 12.40 \times 10^{-3}T^{2} - 2077 \text{ (0.2 percent; 298-390°K)}$  Heat Capacity:  $C_{p} = 3.27 + 24.80 \times 10^{-3}T$ ; A  $H_{390}$  (transition) = 40

SiO₂ (p-tridymite): Enthalpy:  $H_{T} - H_{298,15} = 13.64T + 1.32 \times 10^{3}T^{2} - 4395$  (0.7 percent; 390-2000°K Heat Capacity:  $C_{p} = 13.64 + 2.64 \times 10^{-3}T$ 

263

Silicon Dioxide, SiO2 (pa	ge 6)						I
Transition Point, °K: c, III 91 c, II 846 c, I 1140 tridymite, c, I  Heat of Transition, Kcal./mole: 0.15 0.12  Meet Canacity, cal. (deg. /mole: (colid.) 10.62							3
See Tables d, e, f Decomposition Temperat	Decomposition Temperature: At 1173–1428°K and at 1900°K the gas is SiO.  Decomposition Products:  Dissociation Pressures:						
Press. mm. 10	40	100	400	7	760	M.P.	1
Temp. °C 1732	1867	1969	2141	2:	227	1710	
X-Ray Crystallographic	Data :						լ, 18
Substance p-cristobalite (at 290°C)	System cub	Space Group O _h	<b>a</b> 7.12	b	c	Molecu1es/ Unit Cell 8	
p-cristobante (at 250°C) α-quartz	hex	$D_3^4$ or $D_3^6$			5.393		
β-quartz (at 600°C)	hex	D ₆ or D ₆	5.01		5.47	3	
α-tsidymite β-trimydite	rhomb hex	$\mathbf{D^4_{6h}} \\ \mathbf{D^4_{6h}}$	9.88 <b>5.03</b>	17.1	16.3 8.22	<b>64</b> 64	
Hygroscopicity:  Solubility Data: Soluble in HF; very slightly soluble in alkalies. Insoluble in water and acids. For the effect of particle size on the soly. of amorphous SiO ₂ in water see Addnl. Ref. 1.  Health Hazard: Prolonged exposure to SiO ₂ dust causes disabling pulmonary fibrosis (silicosis). The presence of other dusts may reduce the action of the silica: this is particularly so with small amounts of Al dust.  M.A.C., million particles per cu. ft. of air for an 8 hr. working day.  Silica—high (above 50% free SiO ₂ ):  medium (5to 50% free SiO ₂ ):  Pow (below 5% free SiO ₂ ):  Safety Classifications:  none listed in OSN, ICC or U.N.  Fire and Explosion Hazard:  Electrostatic Sensitivity:						I 12, 14, 25, 29	
TEMPERATURE S'	<b>FABILITY</b>	OF ALLO	TROPIC	FOR	MS O	F SiO ₂	Addnl. Ref. 4
Form  Low (a) quartz High (β) quartz  Stable at atmospheric temp. and up 573°C. Stable from 573 to 870°C; capable of tence above 870°C but is not stable.							
Low (a) tridymite  Low (a) tridymite  Capable of existence at atmospheric te and up to 117°C, but is not stable in range.							emp. this

### Silicon Dioxide, SiO₂ (page 7)

Capable of existence between 117 and 163°C Lower-high  $(\beta_i)$  tridymite

but is not stable in this range.

Capable of existence above 163°C, and is stable from 870 to 1470°C; above 1470°C is again unstable; melts at 1670°C. Upper-high  $(\beta_2)$  tridymite

Capable of existence above 163°C, and up to 200 to 275°C but is not stable in this range. Low (a) cristobalite

Capable of existence above 200 to 275°C, and is stable from 1470 to 1710°C (M.P.). **High**  $(\beta)$  cristobalite

Capable of existence at atmospheric temps. and up to 1000°C and above where it begins Vitreous silica

to crystallize with measurable rapidity, but is an unstable undercooled liquid at all temps. below 1719°C.

Use in Pyrotechnics: A product resulting from burning silicon or silicon compounds.

#### Additional References:

- 1) G. B. Alexander, J. Yhys. Chem. 61, 1563-64 (1957)
- 2) Ref. 44V15B
- 3) L. Brewer and D. F. Mastick, J. Chem. Phys. 19, 834 (1951)
- 4) "Crystal Chemistry in Ceramics: VI Polymorphism," W. Hauth Jr., Bull. Am. Ceram. Soc. SO, (5) 165-67 (1951). Cited by Ref. 65.
- 5) 97V1

			_		
46.88	308,48 0002	86.01	6295	0011	
<b>69.</b> 88	33,865 0091	16.01	9699	0001	
33.42	018,88 0081	83.6	0164	006	
93.14	318,28 0071	<i>TT.</i> 8	4220	008	
32.84	318,28 0001	₽8.7	3520	007	
32.52	1500 31,820	91.9	2820	009	
81.28	31,325	5.44	2002	909	
08.18	328,08	87.8	1355	901	
14.18	1200 0021	12.8	1136	(i) 178	
38,18	022,08 (2) 8711	1.54	P19	371 (5) TTE	
TP.II	0489 (1) 8711	11.1	<b>09</b> 8	$350 \dots$	
mole		alom			
cal.\deg.	cal./mole	cal./deg.	cal./mole		
St - S258 12	T, oK H _T - H _{208, 15}	51,862 S - TZ	81.862H - TH	$\mathbf{L}^{\bullet} \circ \mathbf{K}$	
		<del></del>		250 00	
		crystals at 298.1		****** '9	
₱	Y OF Na (c, l, g)	AND ENTROI			
			, b, c, and d	See Tables a	
9	SEL (bilos)	10le at 298°K :	nthalpy, cal./m	Heat Content or E	
	008,88 (asy oimotsib)				
9	(monatomic gas) 25,900		:ion, cal./mole:	Heat of Sublimat	
	. ——		w :	Transition Point	
₽	53,380	•		Heat of Vaporiza	
₽	1178°K (905°C)		olomi loo moin	Boiling Point:	
			Heat of Fusion, cal./mole:		
Þ	329		.alom\ is:		
9	370.97°K (97.81°C)			Melting Point:	
•			o bana ,d .	See Tables a	
	8.88 (282 simoteib)   12.21 (2)	,	·		
·	17.38 (zsg simotsnom) 8.88 (zsg simotsib)	: <b>v</b> r.	967 18 'aloui/"	Entropy, cal./deg	
_	(	• 210	5000 4° 5[°	pobl for montage	
g	dec.81 (ass simostenom) december (ass simosteib)	: W-962 18 910HI /	ormation, real.	Free Energy of F	
3		. Mogog 42 olom)	Ino M doitemen	M to more all confi	
9	8.63 (2 (2 gas) 8.63 (3 gas) 8.65 (2 gas) (3 gas)	: W-967 1R	סווי עכמוי/וווסופ	Heat of Formati	
	5	- Mogog 42			
τ	8.01 × S.8	n, unear,	ระบเลเ ะเ <b>รอลก</b> อเ อดี	odT to traioffiscO TI+ ot °881-	
•	tota (pyrog)		Signatural Louis		
I	° 3279.0 (bilos)			Gensity, g./ml.:	
				becoming dul	
67, 1	apidly on exposure to air,	y cut; tarnishes i			
Ţ	oiduo		:	Стуяtайние Р <b>огт</b>	
	166.32		::	Molecular Weight	
	828-2-NAU			Specification No.	
		(MuiriaN)			
Refs.		ODIUM, Na	<i>(</i> 7		
		***** *** * * * * * * * * * * * * * *			

#### Sodium, Na (page 2)

Enthalpy:  $H_{r} - H_{298, 15} = 4.02T + 4.52 \times 10^{-8}T^{2} - 1699 (0.3 \text{ percent}; 298 371°K)$ 

Heat Capacity:  $C_p = 4.02 + 9.04 \times 10^{-2} \text{T}$ 

Enthalpy:  $H_T - H_{298,15} = 6.83T - 1.08 \times 10^8 T^{-1} - 1107 \ (0.2 \text{ percent}; 371-1178°K)$ 

Heat Capacity :  $C_p = 6.83 + 1.08 \times 10^{5} \text{ T}^{-2}$ 

Enthalpy:  $H_T - H_{298.15} = 4.97T + 24.365 (0.1 \text{ percent}; 1178-2000 \text{°K})$ 

# b. HEAT CONTENT AND ENTROPY OF Na (g)

(Base, ideal gas at 298.15°K).

 $H_T - H_{298,15}$ T, °K  $H_T = H_{298,15}$  $S_T - S_{298,15}$ T,°K  $S_T - S_{298,15}$ cal./deg. cal./mole cal./deg. cal./mole mole mole 7960 9.20 400 . . . . . 1900 . . . . . 505 1.46 **9.46** 9.93 500 1005 2.57 3.48 2000 8460 9455 600 1500 **2200** 10,450 10.37 700 4.24 2400 1995 4.90 11,450 10.77 800 2495 2600 12,455 11.14 900 2990 5.49 2800 13,470 1000 3490 6.01 3000 11.49 6.49 6.92 16,055 12.29 1100 3985 3500 1200 4000 18,770 13.01 4480 1300 7.32 4500 21,700 13.70 4980 25,015 14.40 1400 5000 5475 7.69 15.98 33,755 1500 5970 6000 8.03 46,850 18.02 1600 6470 8.35 7000 65,295 20.45 1700 6965 8.65 8000 1800 . . . . 7460 8.93

Na (g):

Enthalpy:  $H_T - H_{298.15} = 4.97T - 1482$  (0.1 percent; 298–3000°K)

4

4

T,°K	$H_T - H_{298,15}$ cal./mole	$S_{T} - S_{298,15}$ cal./deg.	T,°K	$H_T - H_{298,15}$ cal./mole	$S_T - S_{298.15}$ cal./deg. mole
400	920 1825 2735 3655 4580 5500 6435 7360. 8305	2.64 4.67 6.33 7.75 8.99 10.07 11.06 11.94 12.76	1300	9240 10,185 11,135 12,090 14,010 15,945 17,895 19,860 21,845	13.51 14.21 14.87 15.48 16.61 17.63 18.56 19.41 20.21

```
Sodium, Na (page 3)
                                      Na_2(g)
Enthalpy: H_T - H_{298,15} = 8.961' + 0.18 \times 10^{-9} T^2 + 0.10 \times 10^{5} T^{-1} - 2721 (0.1 percent; 298–2600°K)
Heat Cape ty: C_D = 8.96 \pm 0.36 \times 10^{-3} \text{T} - 0.10 \times 10^{5} \text{T}^{-2}
Heat Capacity, cal./mole at 298°K:
                                                          (solid) 6.74 (liquid) 7.50
                                                                                         4, 5
                                                          (gas) (monatomic) 4.97
                                                                  (diatomic)
                      d. HEAT CAPACITY OF SODIUM
                                                                                         5
                                 Solid. 298-371°K
                                Liquid, 371-1163°K
                          Gas (monatomic), 1163-3000°K
                         T. • K
                                             C ?(cal./deg./mole)
                           298
                                                      6.74
                           300
                                                      6.75
                           400
                                                      7.52
                           600
                           800
                          1000
                          1100
                       1200-2000
                          2400
                                                      4.99
                          2800
                                                      5.04
                          3000
     See equations above
Decomposition Temperature:
Decomposition Products: Vapor Pressure:
                                                                                         . 2
    Press.".
                                                                           M.P. °C
                                                100
                                                                    760
                                                          400
    Temp. °C
                  439
                            549
                                      633
                                                701
                                                          823
                                                                    892
                                                                              97.5
     \log P = -\frac{1}{T} + 4.521, where P = atm. and T = {}^{\circ}K
                                                                                         Addnl. Ref. 2
X-Ray Crystallographic Data:
     System
                    Space Group
                                                                Atoms/Unit Cell
                                                                                         1
cubic Of 4.282
Hygroscopicity: Reacts vigorously with water to form NaOH + H<sub>2</sub>
                                                                                         1, 29
     Caution: keep under kerosene.
Solubility Data: In water, alcohol:
                                                                                         1
                                                         decomposes
                                                         insoluble
                   In benzene, ether:
Health Hazard: Extremely caustic to all tissues. Reacts exothermally with the
                                                                                         12, 29
     moisture of the body or tissue surfaces causing thermal and chemical burns.
Safety Classifications:
     OSM:
     ICC: Listed under "Explosives and Other Dangerous Articles" as a flam-
```

mable solid ;yellow label.

#### Sodium, Na (page 4)

Fire and Explosion Hazard: Metallic sodium has an autoignition temperature of 115° in dry air. It is dangerous when exposed to heat, flame, moisture, air, or oxidizing material. It reacts exothermally with the halogens, acids, and halogenated hydrocarbons.

Sodium must be kept dry to avoid explosions which may result from evolved hydrogen. When heated it emits toxic fumes of Na₂O. Metallic sodium should be stored in airtight, steel drums. To fight fire use soda ash, dry sodium chloride, powdered talc or graphite. Do not use CCl₄ on fire as an explosion may result.

Electrostatic Sensitivity:

Use in Pyrotechnics: As a fuel and to color 'burning compositions yellow.

### Additional References:

- 1) "Sodium, Its Manufacture, Properties and Uses," M. Sittig, Reinhold Publishing Corp., New York (1956). See especially the chapter on physical and thermodynamic properties.
- "Determination of the Vapor Pressure of Sodium," M. MaKansi et al., J. Phys. Chem. 59, 40 (1955)
- 3) C.A. 37, 2578 (1943)

12, 14, 75, Addnl. Ref. 3

SODIUM BICARBONATE, NaHCO ₃ (Sodium Acid Carbonate, Baking Soda, Sodium Hydrogen Carbonate)							Refs. 1,11, 29
Specification N	o. :				0-S-576B (to grade)	echnical	
Molecular Weig	ht:				84.02		
Crystalline For	rm:				monoclinic p	orisms	1
Color:					white		1
Density, g./ml.	:				(solid) 2.15	9–2.22	1
Coefficient of T	hermal Expansio	n:			<del></del>		
Heat of Forma	tion, Kcal./mole	at <b>298</b> '	° <b>K</b> :		(c) <b>-</b> 226.5		1
Free Energy of	Formation, Keal.,	/mole a	it <b>298</b> °	K :	(c) <b>-</b> 203.6		1
Entropy, cal./d See table b	eg./mole at <b>298</b> °? pelow	K :			$24.4 \pm .4$		1, 3
Melting Point:					loses CO ₂ at <b>543°K (27</b>	70°C)	1
Heat of Fusion	:						
Boiling Point:							
Heat of Vapori							
'Transition Poi	nt:						
Heat of Trans	ition:						
Heat of Sublim	nation:						
Н	EAT CONTENT (Base, o					8	4
Т, ° <b>К</b>	$H_{\tau} - H_{298,15}$ cal./mole	cal.	S _{298,15} /deg. ole		T, <b>°K</b>	H _T - H _{298,15} cal./mole	S _T -S _{298,15} cal./deg. mole
350	1140	3	.52	4	00 ,	2320	6.67
NaHCO ₃ (c): Enthalpy: $H_T - H_{298,15} = 10.19T + 18.03 \times 10^{-3}T^2 - 4641$ (0.3 percent; 298–400°K Heat Capacity: $C_p = 10.19 + 36.06 \times 10^{-3}T$ Decomposition Temperature: Begins to lose $CO_2$ at about 50°C, and at 100°C						)   29	
is converte	d to Na ₂ CO ₃ . In a 20°C and complet	queous	soluti	on beg	ins to break u	p into CO ₂ and	
	iation, cal./mole: ssure of dissocia		(CO ₂	+ H ₂ C	15,360 )) is given by	<b>√</b>	Addnl. Ref. 2
log Pmm. =	labs.						Addnl. Ref. 2
See also 42							
X-Ray Crystall	ographic Data :					Molecules/	1
System monoclinic	Space Group C ⁶ _{2h}	<b>a</b> 6.19	<b>b</b> 6.72	<b>c</b> 6.49	Axial Angle $\beta = 120^{\circ}$ 42	e Unit Cell	

# Sodium Bicarbonate, NaHCO₈ (page 2)

gradually loses CO2 and changes to NaHCO3 · Na2CO3 · H2O Solubility Data: In water: 6.9 g./100 ml. at 0° and 16.4 g./100 ml. at 60°C in alcohol. 62

Safety Classifications:

inert material not listed not listed

ÓSM: ICC:

none

Fire and Explosion Hazard:

Electrostatic Sensitivity: Use in Pyrotechnics:

as a retardant

Additional References:

1) Ref. 52V10

2) R. M. Caven and H. J. Sand, J. Chem. Soc. 99,1359 (1911)

SODIUM NITRATE, NaNO₃ (Soda Niter, Chile Niter, Chile Saltpeter, Nitratine, Cubic Niter) Refs. 1, 11, 12, 29

1' 1 40V2

31 1, 9 1, 9

1, 9

**4** 1

4

4

T,°K	$\begin{array}{c} \mathbf{H_T} - \mathbf{H_{298,15}} \\ \mathbf{cal./mole} \end{array}$	$S_{\tau} - S_{298,16}$ cal./deg.	T,°K	$H_T = H_{298,15}$ cal./mole	$S_T - S_{298,15}$ cal./deg, mole
400	2495	7.16	579.2 (β)	9140	20.59
500	5575	14.01	579.2 (1)	12,630	26.62
549.2 (a)	7260	17.22	600	13,400	27.93
$549.2 (\beta)$	8070	18.70	700	17,100	33.63

Heat Capacity:  $C_p = 6.34 \pm 53.32 \times 10^{-3}T$ 

 $NaNO_3(p)$ :

Enthalpy:  $H_T - H_{298,15} = 35.701' - 11,536(0.1 \text{ percent}; 549.2-579.2°K)$ 

 $NaNO_3(1)$ :

Enthalpy:  $H_T - H_{298,15} = 37.00T - 8800 \ (0.1 \text{ percent}; 579.2-700°K)$ 

Heat Capacity, cal./deg./mole: .

(solid) 35.70 (liquid) 37.00

See also table above

Sodium Nitrate, Nal	NO ₃ (page 2)				
Decomposition Tem For DTA and		33, <b>47</b>	380°C		L
Decomposition Prod	ducts:	,	Na ₂ O +	NO ₂	33, 47
Vapor Pressure:					
X-Ray Crystallogra	phic Data:				
<b>G</b>	C C		Amial Amala	Molecules/ Unit Cell	
<i>System</i> rhombohedral	Space Group D _{3b}	<i>a</i> 6.3108	Axial Angle a == 47° 15\59		l, 97V6
at 280°C	on.	6.56	$a = 45^{\circ} 35'$	_	18
hexagonal		5.07	$\beta = 16.829$	6	37V6
	eliquesces in mo 2.7% at 20°C (j d material (41)	purified m	aterial) Fafter 120 hou (at 70		29 32 33
Water absorbed	d by <b>2.00</b> 0 g. at <b>2</b>	<b>5°</b> (40–80		11.11.) 251,750	Addnl. Ref. 1
Hrs.	3	51/	, 2 7%	16	
g. H₂O.absorb	ed 0.0713	0.13	355 0.197	0.3924	
Solubility Data:					
	00 xnl.): 73 at 0	° <b>C; 1</b> 80 a1			12
In NH ₃ ; In glycerine an	d aastana :		very so	oluble y soluble	
Health Hazard : Mo		I anaa ama		•	93, 12
Safety Classification		Large and	Junts taken mit	many may be talah	.   00, 12
•	packed and sto	red in ori	oinal shinnino	containers	
	when not pack			shipping container	s
•	ng material : yel	low label.			
Fire and Explosion hazard. It can	Hazard: Sodi ignite on frictio materials, par	um nitrate n. When h	eated above 100	s fire and explosion 00°C or when heaten its toxic fumes on	d
Electrostatic Sensi	itivity:				
Use in Pyrotechnic sitions, and inc	s: As an oxidize endiary mixture	er, to impa es.	art a yellow colo	or to burning compo	)-
Additional Referen	ices:				
trates, Pota	pic Properties assium Chlorate , Met. & Chem. I	and Mer	cury Fulminate.	nd Ammonium Ni ,'' G. B. Taylor and	Ē

SODIUM OXALATI	Refs.	
Formula:	$Na_2C_2O_4$	
Specification No.:	JAN-S-210	
Specification: The spec. covers one technical .grade differences in granulation using U.S. standard s	e and three classes based on ieves.	
Class a	b c	
'Through <b>420</b> micron (No.40 sieve) %, min. 99 Through 250 micron (No. <b>60</b> sieve) %, min.	99,9	
Through 149 micron (No. 100 sieve)	99.9	
Molecular Weight:	134.01	
Crystalline Form:	crystalline powder	29
Color:	white	29
Density, g./ml.:	(solid) <b>2.34</b>	1
Coefficient of Thermal Expansion:		
Heat of Formation, Kcal./mole at 298°K:	-314.3	1, 9
Free Energy of Formation:		
Entropy:	<del></del>	
Melting Point:	505°K (232–5°C)	1
Heat of Fusion:	<del></del>	
Boiling Point:		
Transition Point:		
Heat of Sublimation:	<del></del>	
Heat Content or Enthalpy:	<del></del>	
Heat Capacity, cal./deg./mole:	(solid) <b>34</b>	9
Decomposition Temperature, °C: For DTA see Addnl. Refs. 2, 3	480	Addnl. Ref. 1
Decomposition Products:	$Na_2CO_3 + CO$	
Vapor Pressure:		
X-Ray Crystallographic Data:		
System Space Group a b monoclinic C _{2h} 10.35 5.26 3	Molecules/ c β Unit Cell .46 92° 54' 2	r <b>8</b>
Hygroscopicity: Spec. grade (20 μ) Gain in wt. at 70% R.H. and 70°F in 120hr. % Gain in wt. at 90% R.H. and 70°F in 120hr. %: Material dried at 240°C is not hygroscopic		33 44V21
Solubility Data: In water at 20°C: 100°C:	3.7 g./100 g. 6.33 g./100 g.	1
In alcohol:	insoluble	29

Sodium Oxalate (page 2)		
Health Hazard: A strong poison. Corrosi orally has a caustic effect on the mossevere damage to the kidneys.	ive and produces local irritation. Taken uth, esophagus and stomach. Can cause	12, 29
Safety Classifications: ICC:	not listed not listed	
Fire and Explosion Hazard: Dangerous Electrosicaliums ensitivity:	s when heated to decomposition: emits	12
Use In Pyrotechnics: <b>As</b> a retardant are compositions.	nd to impart a yellow color to burning	17
Additional References:		
1) C.A.48, 1891 (1954)		
2) C.A. 49,14461 (1955)		7
3) C A 50 7672 (1956)		1

	SODIUM OXIDE, N (Sodium Monoxide	<del>-</del>	Refs.
Specification No.:			
Molecular Weight:		61.99	
Crystalline Form:		deliquesces in air	$ _{1}$
•		_	
Color: Turns yellow on h	neating.	white	1 50V12
· ·	leating	(1:4) 9 9 <del>7</del>	1
Density, g./ml.:	E	(solid) 2,27	
Coefficient of Thermal			١.,
Heat of Formation, Ko See Table a	cal./mole at 298°K:	(c) $-99.4 \pm 1.5$	2, 9
Free Energy of Format See Table a	ion, Kcal./mole at 298°K:	$(c)-89.9 \pm 1.9$	2
see Table a			
a. HEAT AND FI	REE ENERGY OF FORM	MATION OF Na ₂ O (c, 1)	14
T, ° <b>K</b>	A H (cal./mole)	Δ F° (cal./mole)	
298.16	-99,400 (± 1600)	-89,900 (± 1900)	
371	<b>-</b> 99,400 `	-87,500	
371	-100,700	-87,500	
400	-100,700	-86,500	
500	-100,600	-83,000	Į
600	-100,600	<b>–</b> 79,400	
700	-100,500	<b>-75,900</b>	
800	-100,400	-72,400	
_900	-100,200	-69,000	
1000	-99,900	-65,500	
1100	-99,500	-62,100	
1187	-99,100	59,100	
1187	-145,300	-59,100	
1190 ,	-145,300	-58,900	
1190	-138,200	-58,900	
1200	-138,100	<b>-58,200</b> .	
1300	<b>-1</b> 37,100	<b>-</b> 51,600	
1400	-136,100	-45,100	
1500	-135,100	-38 <b>,6</b> 00	
1600	-134,100	-32,200	
1700	-133,100	-25,900	
1800 ,	-132,100	-19,600	
1900	-131,100	-13,400	
2000	<b>-1</b> 30,100	<b>-7</b> 200	

Phase Changes of Metal M.P.  $371^{\circ}$ K; A H = 625 cal./g.-atom B.P.,  $1187^{\circ}$ K;  $\Delta$  H = 23,120 cal./g.-atom

Sodium Oxide, Na2O (page 2)		
Entropy, cal./deg./mole at 298°K: See Table b	(c) 17.4	9
Melting Point:	1190°K (917°C)	2
Heat of Fusion, cal./mole:	7140 sublimes at	2
Boiling Point:	1548°K ( <b>1275°C</b> )	1

т, ∘к	$H_T - H_{298,15}$ cal./mole	$S_T - S_{298.15}$ cal./deg.	T,°K	$H_T - H_{288,15}$ cal./mole	S ₇ - S _{298,15} cal./deg. mole
400	1750 3600 5500	<b>5.05</b> 9.17 12.63	<b>800</b> 900 <b>1000</b>	9350 11,350 13,500	18.16 <b>20.78</b>
700	<b>74</b> 00 .	15.56	1100	15,750	24.93

 $Na_2O(c)$ :

Enthalpy:  $H_T - H_{298,15} = 15.70T + 2.70 \times 10^{-8}T^2 - 4921$  (0.7 percent; 298-1100°K)

Heat Capacity :  $C_p = 15.40 + 5.40 \times 10^{-8}T$ 

#### $Na_2O_2(c)$ :

Heat Capacity :  $C_p = 21.35 (298^{\circ} \text{K})$ 

Free Energy Equations:

Reaction

Range of Validity, oK

1) 2 Na (c)  $+ \frac{1}{2}$  O₂ (g) = Na₂O (c) 298.16-371  $\Delta \mathbf{F}_{T}^{\circ} = -99,820 - 7.51 \text{T log T} + 5.47 (10^{-3}\text{T}^{2}) - .10 (10^{5}\text{T}^{-1}) + 50.43 \text{T}$ 

2) 2 Na (l) +  $\frac{1}{2}$  O₂ (g) = Na₂O (c) 371-1187 A F_T = -100,150 + 4.97T log T -2.45 (10⁻³T²) -.10 (10⁵T⁻¹) +22.191'

3) 2 Na (g) +  $\frac{1}{2}$  O₂ (g) = Na₂O (c) 1187-1190  $\Delta$  F  $_{\rm T}^{\circ}$  = -156,280-20.72T log T +145.48T

4) 2 Na (g)  $+\frac{1}{2}$  O₂ (g) = Na₂O (l) 1190-2000

 $\Delta F_{T}^{\circ} = -150,250 - 23.03 \text{T} \log T + 147.58 \text{T}$ 

Heat Capacity, cal./deg./mole at 298°K: (solid) 17.24

See Table b

Decomposition Temperature :

above 400°C

**Decomposition Products:** 

Na + O on vaporization

Addnl. Refs. 1, 2

2

Addnl. Refs. 1,2

Vapor Pressure (of aikali oxide and alkali metal in equil. with solid alkali oxide) atm. at 1000°K:\( \) (calcd.) 10-15

#### Sodium Oxide, Na₂O (page 3)

X-Ray Crystallographic Data:

System Space Group Molecules/Unit Cell 5.55 cubic

Hygroscopicity: Na₂O reacts vigorously with water with considerable evolution of heat. Keep containers tightly closed.

Solubility Data: In water and alcohol: decomposes Reacts to neutralize acids.

Health Hazard: Very caustic and dangerous to all tissues. To minimize its effects, wash the area with large volumes of water. Injured person should see a physician.

Caution: Do not handle with bare hands. Avoid contact with skin. M.A.C., mg./m.3 of air:

Safety Classifications:

OSM:

UN:

not specifically mentioned ICC: not specifically mentioned

Alkaline caustic liquids (not otherwise specified) are classed as corrosive liquids and listed under "Explosives and Other Dangerous Articles."

Coast Guard:

hazardous material class 8 (alkaline corrosives)

Fire and Explosion Hazard: Sodium hydroxide formed by the action of water on Na20 may become a fire hazard when mixed with nitro compounds and other materials. (This hazard must be even greater with powdered, solid  $Na_2O.$ 

Electrostatic Sensitivity:

Use in Pyrotechnics: Product of the burning of many sodium compounds

#### Additional References:

- 1) "Sodium, Its Manufacture, Properties and Uses," M. Sittig, Reinhold Publishing Co., New York (1956)
- "The Vapor Pressures of Lithium and Sodium Oxides," L. Brewer and J. Margrave, J. Phys. Chem. 59,421 (1956)
- 3) "Stability of Gaseous Alkali and Alkaline Earth Oxides," L. Brewer and D. F. Mastick, J. Am. Chem. Soc. 73, 2045 (1951)

Iδ

12

#### Refs. STEARIC ACID, CH₃(CH₂)₁₆COOH or C₁₅H₂₅COOH 1 (Octadecanoic Acid, N-Octadecyclic Acid) MIL-A-271 Specification No.: The spec. covers two grades: Grade I in loading ammo. Grade II used as a lubricant, in the pelleting of explosives. Molecular Weight: 284.47 monoclinic leaflets Crystalline Form: colorless Color: 6.22 At room temperature stearic acid is a white, fairly hard, wax-like material. It is usually obtained either from fats and oils by hydrolysis and distillation or from oleic acid by hydrogenation. Pearl stearic acid is the material in free flowing powdered bead form for compounding purposes. Stearic acid is also marketed in cakes, powder or flake form, as single, double, or triple-pressed. Successive chillings and pressings remove more of the unsaturated liquid oils (particularly oleic acid), thus raising the melting point and giving a whiter, purer product. Synthetic stearic acid is also made by hydrogenation of unsaturated animal and fishoils. (solid) 847 at 69°C Density, g./ml.: Coefficient of Thermal Expansion, cubical, 33.8-44.5°C: 11 $81 \times 10$ s 1 Heat of Formation, Keal./mole at 18°C, at constant press.: at constant vol.: Free Energy of Formation: Entropy: 342.5°K (69.4°C) Melting Point: Addnl. Ref. 2 342.7°K (69.6°C) Heat of Fusion, cal./g.: 47.6 656°K (383°C) 1 Boiling Point: **Transition Point:** Heat of Sublimation: Heat Content or Enthalpy: Heat Capacity: Decomposition Temperature and Products: For DTA see Addnl. Ref. 3 Addnl. Ref. 1 Vapor Pressure, mm. at 60°C: $1.42 \times 10^{6}$ 400 760 M.P. P0 40 100 Press. mm. 343.0 370.0d 1 Temp. °C 173.9 225.0 263.3 291.0 69.3. X-Ray Crystallographic Data: Molecules/ Unit Cell Space Group System $a \cdot b$ Axial Angle C $\beta = 63^{\circ} 38^{\circ}$ 4 monoclinic $C_{2h}^4$ or $C_{2h}^5$ 5.546 7.381 48.84 Addnl. Ref. 2 $\beta = 60^{\circ}$ 5.68 4.39 50.07

Hygroscopicity:

Stearic Acid (page 2)		
Solubility <b>Data</b> : In water: <b>0.00029 g./100 g. at 20°0 0.1 g./ml. at 37°C</b>	1, 29	
In alcohol:	<b>2.5</b> g./100 ml.	
In ether: In CHCl., CCl., CS2, toluene: For additional solvent datasee Addnl. Ref. <b>2</b>	yery soluble	
Health Hazard: Negligible. <b>Used</b> to coat medicinal Safety Classifications:	pills and in face creams.	29
OSM: ICC: Fire and Explosion Hazard: Combustible. To fight chemical, or carbon tetrachloride.	not listed not listed at fire use water, foam, dry	<b>67,</b> 75
Electrostatic Sensitivity: Specific Heat, cal./g. at 15°C:	0.399	1
Liquid at <b>74–137°C</b> : Refractive Index, at 80.2°C: Heat of Combustion, Kcal./mole (H ₂ O liquid)	0.550 1.4299	1
at 20°C: Flash Point, °F:	2711.8 (closed cup) 385 (open cup) 425	1   75
Ignition Temperature, °F:	743	67, 71 Addnl. Ref. 2
Neutralization Value: Use in Pyrotechnics:	197.23 as a fuel, retardant, binder, and lubricant	Addin. Ref. 2
Additional References:		
<ol> <li>The Vapor Pressure of Some Solid Organ wood, J. Chem. Soc. 1957,2419</li> </ol>	ic Compounds," R. L. Little-	
2) "Fatty Acids," K. S. Markley, Ed., Inters (1960)	science Pub. Co., New York	
3) J. Phys. Chern. 60 1487 (1956)		
4) E. Médard, Mém. artillerie franç. 28,465 (1	954)	!

STRONTIUM CHLORIDE, SrCl.	Refs.
Specification No.:	
Molecular Weight: 158.54	
Crystalline Form: cubic	1 A
Color: colorless	1A
Density, g./ml.: (solid) 3.05	52 1A
(liquid) $D_t = 2.69 - 0.00045$ (to 900°C)	
Temp. °C 900 950 1000 1050	) 44829
Density 2.69 2.67 2.645 2.62	
Coefficient of Thermal Expansion, cubic at 870°C: 166 × 10-6	44829
Heat of Formation, Kcal./mole at 298°K: (c)-198.0	9,248
Free Energy of Formation, Kcal./mole at 298°K: (c)-186.7	9
-187.5	6
Entropy, cal./deg./mole at 298°K:	9,318
31.7	6
Melting Point, °C: 873 875	1A, 24A 41
Heat of Fusion, Kcal./mole at 1148°K (875°C): 4.2	44S29
4.1	9, 41, 6
$4.1 \pm 0.6$	24A
Boiling Point, °C:	44329 52
Heat of Vaporization Kcal/mole: 55	<b>6</b>
Heat of Vaporization, Kcal./mole: 55  Transition Point:	
Heat of Sublimation:	
Heat Content or Enthalpy:  Heat Capacity, cal./deg./mole:  (solid) 18	9 9
Heat Capacity, cal./deg./mole: (solid) 18 $C_p = 18.20 + 2.45 \times 10^{-3} (\text{est'd} \text{ over } 298 - 1145^{\circ} \text{K})$	4
See also Ref. 24A	
Decomposition Temperature: Noticeable above approx. 955°C	44829
Heating in air or O ₂ at red heat slowly changes the chloric	le to the oxide   52V11, 54V3
Decomposition Products:	ie to the oxide
Vapor Pressure:	
X-Ray Crystallographic <b>Data</b> :	
	les/Unit Cell
cubic 05 6.9767	97V4
Hygroscopicity: hygroscop	ic 44829
very hygro	

Strontium Chloride, SrCl₂ (page 2) Solubility Data: In H₂O, g./100 ml. 43.5 at 0°C and 100.8 at 100°C 1A In absolute alcohol, acetic acid: very slightly soluble In NH₃: insoluble Health Hazard: Probably slight. The Sr ion has a low order of toxicity. 12 **Safety Classifications:** OSM: not listed ICC: not listed Fire and Explosion Hazard: **Electrostatic Sensitivity:** Use in pyrotechnics: to color burning compositions crimson

STRONTIUM NITRATE, Sr (NO,)							Refs.		
Specification No.: MIL-S-20322  The spec. covers one grade and three classes which differ in granulation.									
Molecular Weight: 211.65									
Crystalline For	m :				c	ubic			l
Color:					C	olorless			l
Density, g./ml.	:				(	solid) <b>2.</b> 9	986		I
Coefficient of Th		-	-	-		$=3.22 \times$	< 10⁻⁵		14S29 sup
Heat of Forma	-					233.25			1, 9
Free Energy of		-		it <b>2</b> 98.16					<b>B</b> 6
Entropy, cal./n	nole at 2	298.16°K	<b>(</b> :			7.4			86
Melting Point:						18°K (64 91°K (61			9 47
Heat of Fusion	<b>1</b> :				_				
Boiling Point:					d	ecompos	es <b>580–6</b> 0	00°C	Addnl. Ref. 1
Transition Poin	nt:				_	<del></del>			
Heat of Sublin					-				
Heat Content o					-	<del></del>			
Heat Capacity,		_				solid) 38	8.3 <b>(290</b>	–320°K)	14
Decomposition					5	580-600		Addnl. Ref. 1	
For DTA a			•						47
Vigorous bubbling at 672°C  Decomposition Products:				S	Sro + NO, ;toxic fumes		47		
Decomposition	Troduc				^	emitted		Tunics	T /
Vapor Pressur	e:		,		-				
X-Ray Crystal	lographi	c Data	:						
System	Spa	ce Grou	p	<i>a</i>	M	<i>Solecules</i>		ell	1
eubic Urangganiaita	(cain	,	ot D.T.	7.81	:1:1	4		مناه ماند	22
Hygroscopicity a vacuum o			at K.1.	arter eq	lumoriu	ıın nas <b>x</b> e	en estat	nisnea in	32
	65	5	7	75		86	9	)3	
%, R.H.	<b>24</b> hr.	equil.	24 hr.		24'hr.	equil.	24 hr.	equil.	
Purified Spec. grade	0.3	0.3 <.1	0.1	0.5 0.2	<u>s</u>	s	312.6	_	
Critical R.H.: purified 82.7% at 20°C spec. grade 82.9% at . 26.2°C									
Solubility Data	:In wat	er <b>(g./1</b>	00 ml.) 4	10.1 at <b>0</b>	° and 10	00 at <b>90° (</b>	7		1
In abs. alco	ohol, NH	[ ₃ :			•	very sligh	tly solul	ole	
In acetone	:				S	slightly so	oluble		

# Health Hazard: Moderately toxic. Large amounts taken by mouth may have fatal effects. Sr (NO₈)₂ emits toxic fumes on decomposition. Safety Classifications: OSM: Class 1, in original containers. Class 2 when not packed or stored in original shipping containers or equivalent. ICC: Oxidizing material; yellow label. Fire and Explosion Hazard: A fire and explosion hazard. As an oxidizer it can give up its oxygen to other materials to produce a vigorous reaction which may result in detonation. Toxic fumes are emitted on decomposition. Electrostatic Sensitivity: Use in Pyrotechnics: An oxidizer and to impart a crimson color to burning compositions. (Nonhygroscopic strontium nitrate is used in tracer and pyrotechnic compositions that are sensitive to deterioration by moisture.)

1) C.A.\$9,12932 (1955)

STRONTIUM OXALATE ANHYDROUS AND MONOHYDRATE,   SrC.O. and SrC.O. · H.O	Refs.
Specification No.: MIL-S-12210	
The spec. covers both the anhydrous salt and the monohydrate: Grade A, anhydrous, and Grade B, hydrated. The two grades differ also in granulation.	
Molecular Weight: (anhydrous) 183.65 (monohydrate) 193.67	
Crystalline Form: colorless	1
Density, g./ml.:	
Heat of Formation, Kcal./mole at 18°C, anhydrous: at constant press.: -327.7 at constant vol.: -326.5	Addnl. Ref. 1
Free Energy of Formation, Kcal./mole at 18°C, monohydrate: (c) 360.8	1
Entropy:	
Melting Point: See Decomposition Temperature below	
Heat of Fusion: —	
Boiling Point:	
Heat of Sublimation:	
Heat Content or Enthalpy:	
Heat Canacity:	
Decomp. sition Temperature: TGA. The hydrate begins to lose H ₂ O at 43°C.	Addnl. Ref. 2
All the water is off by 177°C. On further heating the weight remains constant up to around 400°C.	
Decomp sition Products: Dissociates into SrCO ₈ and dangerous CO over the ran = 400-520°C.	Addnl. Ref. 2
See graph below	
Vapor l'essure:	
X-Ray ( ystallographic Data for SrC ₂ O ₄ ·2½ H ₂ O	1
Siss m space Group tetra; all space Group 12.795 7.509 Molecules/Unit Cell	18V2
Hygrest picity:	
Solubility Data: For SrC ₂ O ₄ ·H ₂ O, required for solution of 1 part: 2000 parts of 3.5% acetic acid, 1115 parts of 23% acetic acid, less oluble in 35% acetic acid. Readily soluble in dilute HCl or HNO ₃	29 1
Health azard: Highly toxic. Corrosive and produces local irritation. When tak corally may have a caustic effect on the mouth, esophagus and stomach.	12 93
Safety Cassifications:	
OS1: not listed not listed	!

Strontium Oxalate Anhydrous and Monohydrate (page 2)

Fire and Explosion Hazard: Dangerous when heated to decomposition. Emits poisonous carbon monoxide.

**Electrostatic Sensitivity:** 

Use in Pyrotechnics: SrC₂O₄ and SrC₂O₄·H₂O are used as retardants and to impart a scarlet color to burning compositions.

PYROLYSIS OF SrC2O4·H2O



Temperature °C

Addn. Ref. 2

12

17

## Additional Rei rences:

- 1) L. Médard, Mém artillerie franç. 28, 467 (1954)
- 2) S. Pelt r and C. Duval, Anal. Chem. Acta. 1, 358 (1947)

STRONTIUM PERCHLO	ORATE, Sr(ClO ₄ ) ₂	Refs.
Specification No.:	·	
Molecular Weight:	286.54	
Percent Oxygen:	44.67	
Crystalline Form:		
Color:	colorless	l
Density, g./ml.:	<del></del>	
Coefficient of Thermal Expansion:	<del></del>	
Heat of Formation, Kcal./mole at 298°K:	-184 (estd.)	12
Free Energy of Formation,:	<del></del>	
Entropy:	<del></del>	
Melting Point:	<del></del>	
Heat of Fusion:	<del></del>	
Boiling Point:	<u> </u>	
Transition Point:	<del></del>	
Heat of Sublimation:	<del></del>	
Heat Content or Enthalpy:	·	
Heat Capacity:	<del></del>	
Decomposition Temperature: Vigorous dec For DTA and TGA see Ref. 33	composition at 477°C.	47
Decomposition Products:		
Vapor Pressure:	<del></del>	
X-Ray Crystallographic Data:	<del></del>	
Hygroscopicity:	<del></del>	
Solubility Data: In water, 310 g./100 ml. a	•	1
Solubinty in Organic Solvents at 25°C:		
Solvent	g./100 g. solvent	72, 77
Methyl alcohol Ethyl alcohol	212.01 180.66	
Acetone	150.06	
Ethyl acetate	136.93	
Ethyl ether .	insoluble	
Health Hazard: Avoid contact. Irritating to	skin and mucous membrane.	12
Safety Classifications: OSM: Class 1, Class 2 when not packe	d or stored in original shipping con-	
tainers or equivalent.  100: Oxidizing material; yellow laid other Dangerous Articles."	bel. Listed under "Explosives and	
Fire and E. plosion Hazard: Can be explode It is a explosive hazard when mixed divided metals, or sulfur. It emits hig percharate alone may be fought with w Use in Pyritechnics: As an oxidizer and to	with carbonaceous materials, finely hly toxic fumes. Fires involving the ater.	12, 14
compositions.	in furt a source color to burning	

. -- .

STRC	ONTIUM PEROXIDI	E, SrO ₂	Refs.
Percent Oxygen:		26,75	
Specification No.:		JAN-S-612	
	at differ in purity <b>and</b> grai		
Molecular Weight:		119.63	
Crystalline Form:		powder	1
Color:		white	
Density, g./ml.:		(solid) 4.56	1
Coefficient of Thermal Ex			
Heat of Formation; Kcal See table below	./mole at 298°K:	-153.6	1, 9
Free Energy of Formation See table below	n, Kcal./mole at 298°K:	-141	2
HEAT AND FRE	EE ENERGY OF FORM	ATION OF SrO ₂ (c)	4
T,°K	A H (cal./mole)	A F° (cal.,	/mole)
298.16	$-153,500 (\pm 5000)$		± 6000)
400	<b>-153,000</b>	<b>-137,000</b> .	
500 60∂	-153,000 -152,500	-133,008	
700	-152,000 -152,000	-129,000 -125,000	
800	-151,500	-121,500 -121,500	
900	-151,000	-11'7,500	
1000	-150,500	-114,000	
Free Energy Equation:	-		j 
Reaction Sr (c) $+ O_2$ (g) = $S_1$ a $F_2^{\circ} = -155,510-11$ .	SrO ₂ (c) 40 <b>T</b> log T + .305 (10-3T2)	Range of Validity, °K 298.16-1000 +.675 (10°T 1) +75.44T	
Entropy, cal./deg./mole a For calculation see th	it <b>298°K</b> : iermodynamic equation i	14.8 n Ref. 2	6
Melting Point:		decomposes at 488°K (215°C)	6,8
Heat of Fusion:			
Boiling Point:			
Transition I sint:		William Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of th	
Heat of Sub, imation:			
Heat Content or Enthalp For calculation see th	y:** iermodynamic equation i	n Ref. 2	
Heat Canan	-		

For calculation see thermodynamic equation in Ref. 2

Heat Capacity:

#### Strontium Peroxide, SrO₂ (page 2)

Decomposition Temperature:

dissociates at 357°C 480°C

410°C and TGA

Addnl. Ref. 2 Addnl. Ref. 3 Addnl. Ref. 4

Decomposition Products:

Vapor Pressure: Dissociation Pressure between 322 and 600° is given by  $P_{atm} = -\frac{20280}{4.5711'} - 0.010T + 1.75T + 2.8$ 

Addnl. Ref.

Addnl. Ref. 2

Addnl. Ref. 2

97V6

31% R.H.	43% R.H.	52% R.H.	65% R H.
24 hi equil.	24 hr. equil.	24 hr. equil.	24 hr. equil.
U.4 4.5	0.6 2.2	2.3 21.4	84.3 178.3 56.3 136.0
	75% R.H.	86% R.K.	93% R.H.
	24 hr. equil.	24 hr. equil.	24 hr. equil.
	210.5 474.7 161.0 356.0	418.4 S 251.0 682.0	S S 354.0 834.0

#### Strontium Peroxide, SrO₂ (page 3)

Fire and Explosion Hazard: Heat, **shock**, or catalysts may cause violent decomposition. Reacts violently when heated with reducing materials. Contact with water produces heat.

12, 14

Electrostatic Sensitivity:

**Use** in Pyrotechnics: As an oxidizer to impart a red color to burning compositions.

17

#### Additional References:

- 1) "Direct Oxidation under High Pressures. The Oxides of Strontium, Barium, Lead, Manganese and Cobalt," C. B. Holtermann, Ann. Chim. 24, 121 (1940). C.A. 35, 7859 (1941)
- 2) "On the Formation and Dissociation of Strontium Peroxide," C. Holtermann and P. Lafitte, Compt. rend. 208,617 (1939). C.A. 33,2833 (1939)
- 3) "Heating Curves for the Hydrates of the Peroxides of Group II Metals," I. I. Vol'nov, C.A. 52, 19384 (1958)
- 4) "Thermography of Peroxide Compounds," I. I. Vol'nov, C.A. 48, 7416 (1954)

SUGAR		Refs.
(Cane Sugar, Sucrose, Sacc		1 29
(α-D-glucosido)-β-D-fructof		29
α <b>-D-glucopyranosido-</b> β <b>-D-f</b> ructo	ofuranoside)	
H·Ca CH2OH		
Formula:  HO· ©· H  H: C·OH  H· C·OH	С H V	Addnl. Ref. 5
I		
Specification No.: CH ₂ OH  The specification covers two types of beet or hard, refined (a) granulated or (b) powdered (a) light (b) medium and (c) dark. Type 1 g technics.	l; and Type <b>2</b> : brown, <b>sof</b>	
Molecular Weight:	342.30	
Crystalline, Form:	needles (from alcohol), monoclinic	1, 29
For crystallography <b>see</b> Addnl. Ref. 3 Sucrose crystals are triboluminescent.		
Color:	white	1
Density, g./ml. at 15°C:	crystallized, 1.5879 powdered, 1.5897	Addnl. Ref. 3 <b>v1</b>
Coefficient of Thermal Expansion, linear for		Addnl. Ref. 3V1
longest axis: width: shortest: cubical (calculated):  Heat of Formation   Veel /mole at 1890;	28 × 10 ⁻⁴ 50 × 10 ⁻⁴ 29 × 10 ⁻⁴ 1.1 × 10 ⁻⁴	3 V I
Heat of Formation, Kcal./mole at 18°C:	$H_{\nu} = -536.5$ $H_{\nu} = -527$	Addnl. Ref. 1
Free Energy of Formation:		
Entropy, cai./deg./mole at 298°K:	86.1	Addnl. Ref. 3V1
Melting Point (when crystallized from alcohol):	<b>461°K (188°C,</b> decomp.) 458 (185–6°C)	1 Addnl. Ref. 3v1
When sucrose is heated cautiously to the me forms a viscous, colorless melt; however, when temperature decomposition takes place.	elting point (185–186°C) it heated longer or to a higher	6)
Heat of Fusion, Kcal./mole:	(decomposes) 4.6	Addnl. Ref.

Sugar (page 2)							
Boiling Point: Transition Point:				decom	poses		
Heat of Sublimation:							
Heat Content or Enth	alny :						
Heat Capacity:	агру.						
Molar Heat and S	Specific H	leat of Cr	vetallized	Sucrose			Addnl. Ref.
Temp. °C							3V1
-	<u>0</u>	20	40	60	80	90	
$\frac{C_p \text{ (cal./mole)}}{C_p \text{ (cal./g.)}}.$	<u>92.1</u> 0.260	<u>99.3</u> 0.290	108 0.316	116 0.339	125 0.366	129 0,377	
— Op (can, g.)	0.200	0.230	0.510	0.339	0.500	0.5//	
Decomposition Tempe				160-18	_		29
Decomposition Produc		water, ca	aramelizes	, and the	n <b>chars</b> w	hen heated	29, 50
above its melting p For DTA see Ad-		4					
Vapor Pressure:							
X-Ray Crystallograph	ic Data:						
_	_					olecules/	
	Group 22		b c 5.69 7.77	Axial .	•	Unit Cell   2	18 85
Hygroscopicity: Powd given up on heating	lered sug 1g at 90°(	ar absorl C.	bs up to 1	% moist	ure in air	r, which is	29
Solubility of Sucrose i	n Water	:					•
_Temp.°C 0	20	40	60	80	90	100	
g./100 g. H ₂ O 179	9.2 203	3.9 238	.1 287.3	362.2	415.7	487.2	
Solubility: En alcohol pyridine, Sol ethe CCl ₄ , turpentine, acetate,	r commo	n organic	solvents.	Insoluble	in gasoli	ne, CHCl ₃ ,	1   29   Addnl. Ref. 3   98
Health Hazard:				nontox	cic		I
Safety Classification:		•		not list	ted		
Fire and Explosion Ha Autoignition Tem		°C:		385			71
Electrostatic Sensitivi	ty:						
Specific Hear, cal./15°				0.299			1
Optical Rotation: $\alpha = \frac{25}{D}$	-(26g. ir	100 mi. I	$\rm H_2O$ , 2 dm	tube) +	66.47 to 6	<b>6.49</b> depend.	<b>2</b> 9
ing on the solvent	ror# whi	ch it is cry	ystallized.				
Heat of Combustion, I	Kcal./moi Kcal./g			1351.3 3.949			kddnl. Ref. 3
Use in Pyrotechnics:				as a fu	e1		50

## Sugar (page 3)

#### Additional References:

- 1) L. Médard, Mém artillerie franç 28,481 (1954)
- 2) "On Saccharose B," A. Pictet and H. Vogel, Helv. Chim. Acta 11, 901 (1928)
- 3) "Principles of Sugar Technology," P. Honig, Ed., Vol. 1, Elaevier Publishing Co., New York (1953)
- 4) "Differentisl Thermal Analysis of Organic Compounds," A. T. Perkins and H. L. Mitchell, Transactions of The Kansas Academy of Science 60, No. 4 pp. 437-40 (1967)
- 5) "X-Ray Examination of Sucrose," C. A. Beeves and W. Cochran, Nature 157,872 (1946)

# SULFUR (SULPHUR), S. (Flowers of Sulfur, Milk of Sulfur, Brimstone)

Refs.

Specification No.:

**JAN-S-487** 

The specification covers five grades of ground S:

- A, ground crude S used for black powder.
- B, ground crude S used for pyrotechnics compositions.
- C, ground crude S used for pyrotechnics compositions.
- D, ground refined S used for nongaseous powders and primer compositions.

E, ground crude S used for pyrotechnic compositions. The grades differ slightly in purity and in granulation.

Molecular Weight:

256.53

Crystalline Form : ( $\alpha$ ) rhombic, ( $\beta$ ) monoclinic, ( $\gamma$ ) amorphous

Color:

Forms of Sulfur: Solid sulfur (S) exists in two crystalline forms, rhombic and monoclinic, and also as an elastomer. The rhombic form is stable at ordinary temperatures. Above the transition temperature of 95.4°C and up to the boiling point monoclinic S is the stable variety. Elastic S is prepared by rapidly chilling liquid S which has been heated to elevated temperatures. The infrared spectrum is identical with that of liquid S. On melting, S becomes a straw-yellow transparent liquid, designated as  $\lambda$  S. The liquid may be supercooled in bulk far below its freezing point to room temperature in the form of dropiets which in time may solidify to a clear yellow glass. At about 160°C, the liquid is dark brown. Its color deepens as the temperature is raised, and above 250°C, it turns brownish-black. Apparently the structure of the liquid undergoes an abrupt change at about 160°, and this transformation is accompanied by the absorption of 2.751 cal./g. The sudaen and enormous increase in viscosity which occurs at this temperature is one indication of a structural alteration. Other properties show a marked discontinuity. Long chain polymers referred to as  $\mu$  S, in equilibrium with rings of octatomic molecules, apparently exist in the liquid above 160°. Beyond 230° the viscosity decreases but the color remains dark up to the boiling point, 444.6°C. If S at the boiling point is cooled slowly, it passes through the changes described above in the reverse order.

"Flowers" of sulfur is a term applied to the mined molten S which is finely ground. It is the type used for pyrotechnic purposes.

Density, g./rnl.:

(solid) rhombic 2.07 monoclinic amorphous 1.92

Coefficient of Thermal Expansion:

97-110

Temp. °C Linear (rhombic) Cubic (rhombic) 6-13  $4.567 \times 10^{-5}$  $13.70 \times 10^{-5}$ 13 - 50 $7.433 \times 10^{5}$  $22.30 \times 10^{-5}$  $8.633 \times 10^{-5}$ 50 - 78 $25.90 \times 10^{-5}$ 78 - 97 $20.67 \times 10^{-5}$  $62.01 \times 10^{-5}$ 

 $103.2 \times 10^{-5}$ 

20V3

1,46

1,46

46

 $309.6 \times 10^{-5}$ 

#### Sulfur (Sulphur) S₈ (page 2)

Heat of Formation, Kcal./mole at 298°K: Free Energy of Formation, Kcal./mole at 298°K: Entropy, cal./deg./mole at 298°K:	(gas) 53.25 (gas) 43.57 (rhombic) 7.62 (monoclinic) 7.78	1, 9 9 5, 9 5, 9
See Tables a, b, c, d		
Melting Point, °C: ( $\alpha$ ) 112.8( $\beta$ ) 119.25( $\gamma$ ) about 12	20	1
Heat of Fusion, cal./g.:	(rhombic) 11.9 . (monoclinic) 9.2	9
Boiling Point, °C:	444.6	1,46
Heat of Vaporization, cal./mole at 717.75°K:	2300	5
Transition Point, °C:		
(rhombic → monoclinic)	95.4	46
(liquid+viscous)	159.9	46
Heat of Transition, cal./g.:     (rhombic to monoclinic)     (liquid to viscous)	2.992 <b>2.751</b>	46
Heat of Sublimation, cal./mole at 298°K:	S ₈ 24,350 S ₂ 330,840	5
Heat Content or Enthalpy, cal./mole at 298°K: See Tables a, b, c, and d	(solid) 1053	5

# a. **HEAT** CONTENT AND ENTROPY **OF S** (c, 1) (Base, rh-crystals at **298.15°K)**

T, °K	H _T – H _{298,15} cal /mole	$S_T - S_{298,15}$ cal./deg.
353	290	0.90
368.6 (rh)	400	1.20
368.6 (mon)	485	1.43
392 (mon)	630	1.82
392 (1)	965	2.67
400	1030	2.83
500	1940	4.85
600	2780	<b>6.38</b>
700	3650	7.72
717.8	3810	7.95

Enthalpy :  $H_T - H_{298.15} = 3.58T + 3.12 \times 10^{-3}T^2 - 1345 (0.2 \text{ percent}; 298-368.6°K)$ 

Heat Capacity :  $C_{\nu} = 3.58 \pm 6.24 \times 10^{8} T$  ; A  $H_{368.8} = 85$ 

S (mon):

Enthalpy:  $H_T - H_{298,15} = 6.20T - 1800 (0.1 \text{ percent}; 368.6-392°K)$ 

Heat Capacity:  $C_p = 6.20$ ; A  $H_{392}$  (fusion) = 335

S (1) :

Enthalpy:  $H_T - H_{298.15} = 8.73T - 2457$  (0.6percent; 392-717.8°K)

Heat Capacity: C_p = -8.73

#### Sulfur (Sulphur) S₈ (page 3)

# b. HEAT CONTENT AND ENTROPY OF S (g)

(Base, ideal gas at 298.15°K)

T,°K	$H_T - H_{298,15}$ cal./mole	$S_{T} - S_{298.15}$ cal./deg. mole	T,°K	$H_T - H_{298,15}$ cal,/mole	$S_T - S_{298,15}$ cal./deg, mole
400	570 1120 1660 2190 2715 3235 3750 4260 4770 5280 5790 6295 6800 7305 7815	1.65 2.88 3.86 4.68 5.38 5.99 6.53 7.02 7.46 7.87 8.25 8.60 8.92 9.23 9.52	1900	8320 8830 9850 10,875 11,910 12,950 13,995 16,650 19,340 22,065 24,810 30,330 <b>35,860</b> 41,390	9.79 10.06 10.54 10.99 11.40 11.79 12.15 12.96 13.68 14.32 14.90 15.91 16.76 17.50

4

S (g): Enthalpy:  $H_T - H_{298,15} = 5.26T - 0.05 \times 10^{-8}T^2 - 0.36 \times 10^{5}T^{-1} - 1443$ (0.6 percent; 298–2400°K)

Heat Capacity:  $C_p = 5.26 - 0.10 \times 10^{-8} \text{T} + 0.36 \times 10^{5} \text{T}^{-2}$ 

Enthalpy:  $H_T - H_{298,15} = 4.96L^{\circ} + 0.05 \times 10^{-3}T^2 - 0.60 \times 10^{5}T^{-1} - 1282$ (0.2 percent;  $2400-8000^{\circ}K$ ) Heat Capacity:  $C_p = 4.96 + 0.10 \times 10^{-3}T + 0.60 \times 10^{5}T^{-2}$ 

c. HEAT CONTENT AND ENTROPY OP  $S_2(g)$ 

(Base, ideal gas at 298.15°K)

Т, °К	$H_T - H_{298,15}$ cal./mole	$S_T - S_{298,15}$ cal./deg.	T,°K	$H_{\rm T} = H_{298,15}$ cal./mole	$S_T - S_{291,85}$ cal./deg. mole
400	810	2.34	1500	10,430	13.79
500	1640	4.18	1600	11,325	14.37
<b>6</b> 00	2485	5.72	1700	12,225	14.91
700	3345	7.05	1800	13,125	15.43
800	4220	8.22	1900	14,025	15.92
900	5095	9.25	2000 ,	14,925	16.38
1000	5975	10.17	2200	'66,730	17.24
1106	6855	11.01	2400	18,545	18.03
1200	7745	11.79	2600	20,360	18.76
1300	8635	12.50	2800	22,175	19.43
1400	9535	13.17	3000	23,995	20.06

# Sulfur (Sulphur) S₈ (page 4)

 $H_{298.1}$ 

400     3935     11.32     800     20,580     40.06       500     7985     20.37     900     24,850     45.09       600     12,125     27.90     1000     29,140     49.62       700     16,330     34.39	T,°K	$H_{\rm T} - H_{298,15}$ cal./mole	S _T - S _{298,15} cal./deg. mole	<i>T</i> , <b>°K</b>	$H_{T} - H_{298,15}$ cal./mole	$S_T - S_{298,15}$ call/oleg.
	500	7985	20.37	900	24,850	45.09

Press. mm.	1	10	40	100	400	<b>76</b> 0	M.P.
Temp. °C	183.8	243.8	288.3	327.2	399.6	444.6	112.8
Form		Range	)	Equat	ion (P <b>a</b>	1 mm., T i	n°K)
rhombie		20-80		log P ==	11.664 -	5166 T	
monoclin	ic	96–11	6	log P=	11.364 –	<u>5082</u>	
liquid		25-74		log P = 3	8.70 – <u>40</u>	<u>55</u> T	
		120-32	5			_	$8T - \frac{5405.1}{T}$
		325-55	0	log P == '	7.43287 -	3268.2 T	-
-Ray Crystall	lographic <b>D</b> a	ata:					_
System rhombic	Space Grou V _h ²⁴	ıp a 10.37	b 7 12.8	c 45 24.36		Atom Unit ( 128 6 eight-m ring:	Cell . 3 nembered
monoclime	C:	10.9	0 10.9	6 11.09	_	48 6 eight-me ring	embered

Sulfur (Sulphur) Si @age 5)		
Solubility Data:		
In water: In alcohol arid ether:	insoluble slightly soluble	20
In carbon disulphide, <b>70</b> g./100 g.: In light petroleum, hot benzene, toluene and	soluble	46
benzyl chloride:  Health Hazard: Believed to be nontoxic. Tank car may accumulate poisonous H ₂ S gas, which is al In unloading operations suitable precautions s	so flammable and explosive.	93, 46
Safety Classifications:	moura se tanon.	
OSM: Probably class 2 as a pyrotechnic material.	not specified	
ICC : U.N. Coast Guard:	not mentioned an inflammable solid hazardous	
Fire and Explosion Hazard: When ignited, molten acrid fumes of SO ₂ , which are irritating, suf and inhalation should be avoided. Burning S oxidizing materials. Sulfur when compounded other oxidizing agents, forms sensitive explosive with carbon, lampblack, fats and oils, S forms spontaneously. It should be stored away from fire use water.	S will burn in air producing focating and lachrymatory, can react vigorously with d with chlorates and some sive mixtures. When mixed mixtures which can ignite	12, 14, 46, 75
Electrostatic Sensitivity: When <b>rubbed</b> with most stively charged.	substances it becomes nega-	
Minimum energy required for ignition by an o	electric spark, millijoules : 15	26
Ignition Temperature, in air at atmospheric pressure	e, °C : - <b>248–261</b>	46
closed cup:	405° <b>F</b> 440° <b>F</b>	75
Minimum Explosive Concentration of dust, mg./l.:	35 30	26 22
Heat of Combustion, Kcal./g.:	(monoclinic) 2.240 (rhombic) 2.200	1
Additional References:		
1) "The Sulphur Data Book," W. N. Tuller, E	Ed., McGraw-Hill Book Co.,	
New York (1954) 2) "The National Fire Codes, Vol. II, Combus cals and Explosives," National Fire Protection, Mass. (1958)		
3) "The National Fire <b>Codes</b> , Vol. II, The Prev National Fire Protection Association, Inc.,		
<ul> <li>4) "Sulfur May Have Helical Structure," C &amp; 1</li> <li>5) Trans. Faraday Soc. 55, No. 444,2221 (1959)</li> </ul>	EN, p. 44 (Sept. 5,1960)	

# TETRANITROCARBAZOLE, (C₆H₂)₂ (NO₁)₄NH (Tetranitrobenzopyrrole, Tetranitroidiphenylamine, TNC)

Refs.

Specification No.: PAPD-639 (1954) pending revision of MIL-T-13723 Molecular Weight:

Crystalline Forms :  $\alpha$ , needles ;  $\beta$ , plates ;  $\gamma$  (1,3,6,8) prisms light yellow Color:

13 113

TNC is produced by treating carbazole with sulphuric acid and then nitrating the sulphonic acids to yield a mixture of principally 1,3,6,8 and about 10% of 1,2,6,8 TNC. The structure of the 1,3,6,8 isomer is

88V20 Addnl. Ref. 1

Density, g./ml.:		1
Coefficient of Thermal Expansion:	<del></del>	
<b>Heat</b> of Formation:	<del></del>	
Free Energy of Formation:		
Entropy:		
Melting Point,	a:about 581°K (308°C) with decomposition  β:593°K (320°C)  γ: (1,3,6,8) 558°K (285°C) with decomposition	. 88V20
Specification: 285°C min. to 300°C max.		
Boiling Point:	***************************************	
Transition Point:	<del></del>	
Heat of Sublimation:	-	
Heat Content or Enthalpy:		
Heat Capacity:		1
Decomposition Temperature: Decomposes on heating: For <b>DTA</b> see Ref. 33	turns red-brown above 200°C	Addnl. Ref.
Decomposition Products:		
Vapor Pressure:		
X-Ray Crystallographic Data:		
Hygroscopicity, at 30°C, 90% R.H.:	0.01	13

Tetranitrocarbazole, (C ₀ H ₂ ) ₂ (NO ₂ ) ₄ NH (page 2)		
Solubility Data: In water (g./100 g.) at 95°C:  In nitrobenzene: In hot acetone and hot pyridine: In nitrobenzene, chloroform, CCl ₄ , ether., ligroin	0.1 very soluble soluble : insoluble	13, Addnl. Ref. 3
<ul> <li>α—in glacial acetic acid:         in KOH:         in conc. H₂SO₄:         p—in glacial acetic acid (hot):</li> </ul>	practically insoluble soluble with formation of a yellow color soluble with formation of a green color soluble	88V20, Addnl. Ref. 2
γ—in glacial acetic acid: in pyridine: in ethyl alcohol: Health Hazard:	3.05% 3.55% trace toxic; and is used as an insecticide	12
Safety Classifications:  OSM:  ICC:  Fire and Explosion Hazard: Dangerous, exploded decomposition it emits highly toxic fumes.	class 9 not listed	12
Can react vigorously with oxidizing materials.  Electrostatic Sensitivity: Data on $\gamma$ (1,3,6,8) TNC  Oxygen Balance to CO ₂ , %:	<del></del>	13
Oxygen Balance to CO, %: Nitrogen (calc'd for C.P.) %: Nitro mtrogen (calc'd for C.P.) %: M.P., °C:	-30 20.0 16.0 (spec. min. 15.5) 296	
Impact Sensitivity: 2 kg. wt., sample weight 14 mg. B.M. apparatus, cm.: P.A., in.: Friction Pendulum Test:	: 100+ 18 unaffected by fibre or	13
Explosion Temperature (5sec.), °C: 100°C Heat Test: % loss first 48 hrs.: % loss second 48 hrs.: Explosion in 100 hrs.:	steel shoe decomposes at 470  0.15  0.05  none	
	ample: 0.2 0.2	
band crushed through 30 mesh screen.	(gas) 41.3	l)

### Tetranitrocarbazole, (C₆H₂)₂(NO₂)₄NH (page 3)

Sensitivity to Initiation:

Lead Azide 8.20 g. plus tetryl 0.25 g.

Method of Loading:

pressed

Method of Storage:

dry

Heat of Combustion, cal./g. at 18°C:

3772.4

Use in Pyrotechnics:

**as** a fuel, particularly in some igniter powders

Addnl. Ref. 3

#### Additional References:

"Identification of Isomers Formed in the Nitration of Carbazole," D. B. Murphy et al., J. Am. Chem. Soc. 75,4289 (1953)

- 2) C.A 48, 2084 (1954)
- 3) Picattiny Arsenal Technical Reports 1647,1802,1937,1973, 1984, and 2180
- 4) P. Tavernier and Maurice Lamoroux, Mem. Poudres 89,341 (1957)
- 5) "Uber die Einwirkung von Athylnitrat auf Diphenyl und Diphenyl. Abkömmlinge," H. Raudnitz, Ber. 60,741 (1927)

Refs.

# "THIOKOL" (LIQUID POLYMER LP-2)

(Thiokol is a trademarked name)

Thiokol LP-2 Mix is a polymer manufactured by the Thiokol Corporation in the liquid state. It is a completely polymerizable material which can be converted by suitable curatives to a tough resilient rubber without appreciable shrinkage. In the rubber state it remains flexible to -65°F and does not melt at elevated temperatures. Its maximum service temperature is around 250°F, but it will stand higher intermittent temperatures. It is sold as a viscous liquid with a viscosity of about 400 poises at 25°C. It is cold setting.

All data from **Thiokol** Corporation. Frenton, N.J., Ref. 59

Formula or Structure: The average structure is as follows:  $HS-(C_2H_4-CH_2-O-C_2H_4-S-S)_{23}-C_2H_4-O-CH_2-O-C_2H_4-SH$ . Occasionally in the chain of recurring units there is a side mercaptan group. The terminal SH groups are very reactive.

Specifications:

none

Physical Properties:

Color: Specific Gravity: Molecular Weight: Stability:

Moisture Control pH (of water extract) amber ' 1.27 approximately 4000 indefinite

less than 0.2% 6.0 to 8.0

Chemical Reactivity: LP-2 is slightly acid when pure and is stable. In alkaline medium it polymerizes rapidly.

 $n[HS-(RSS)_{23}R-SH] \xrightarrow{\hat{N}aOH} (RSS-)_x+nH_2O.$ 

The reaction is exothermic. R in the above equation denotes the group  $(C_2H_4-O-CH_2-O-C_2H_4)$ .

Curing: Organic peroxides ; e.g., benzoyl peroxide, tertiary butylhydroperoxide, tertiary butylbenzoate, and cumene hydroperoxide will promote cure. Conventional paint driers will serve to introduce O from the air and can be used to polymerize LP-2. Cobalt driers are outstanding for this purpose.

Compatibility Data:

In the data given below solutions were prepared by stirring small increments of solvent into weighed quantities of the liquid polymer and continuing until precipitation or cloudiness occurred. The figures given indicate the ultimate tolerance of LP-2 for the solvent. Thus 70% for methylethyl ketone indicates 70% of the ketone and 30% LP-2 by weight. At 100%, dilution is infinite.

Solvent	%	• Solvent	%
glacial acetic acid	20	cyclohexanone	100
methanol	0	aniline	10
ethanol	0	benzene	100
diethyl ether	20	toluene	100
dioxane	100	carbon tetrachloride	<b>7</b> 0
petroleum ether	10	ethyl acetate	100
âcetone	50	dibutylphthalate	100
methylethylketone	70	nitromethane	60

These figures do not hold for polynterized LP-2 which has low solubility. Use in Pyrotechnics: As a fuel when polymerized.

	TI	TANIUM, T	i		Refs.
Specification No.:			MIL-T-1340	5A (CmlC)	
Molecular Weight:			<b>47</b> .90		
Crystalline Form (a	t temperature	s up to			
abut 800°C): above transition	n -		α, hexagonal β, cubic		1
Color:	1 -		silver grey to	dark grev	1
Density, g./ml.:			(solid) 4.50	3 - 3	
Coefficient of Therm	al Expansion	linear (a) at l			38
Temp.	Range °C		Coefficien		0#
<b>–195</b>	to.∓20 0–200		$6.8 \times 10^{-1}$ $8.9 \times 10^{-1}$	8 8	27
20	<b>-4</b> 00		9.9 × <b>10</b> -	3.	
	)800		$10.1 \times 10^{-1}$	6	_
Heat of Formation,			(gas) 112.6		5
Free Energy of Form			· ·	44	5
Entropy, cal./deg./r	nole at 298°K	:	(c) 7.33 (gas) 43.07		2, 5 1, 5
See Tables a a	ınd b		(943) 43.07		2,0
Melting Point:			1940°K (16	37°C <u>)</u>	4
Heat of Fésion, cal	l./mole:	•	3700		5
Boiling <b>Point</b> :			3550°K <b>(22</b> '	77°C)	<b>5</b> .
Heat of Vaporization			102,500		5
Transition Point, he	-	ocubic (β):	1155°K (88	2°C) .	4, 5, 9
Heat of Transition			850		4
<b>Heat</b> of Sublimation	*		112,600		5 ~4
Heat Content or Ent	thalpy, cal./m	ole at <b>298°K</b> :	(solid) 115		5
See Tables a a	and b		(gas) 180	<b>.</b> .	3
					4
					7
	т - Н298,15	$S_T - S_{298,15}$	T, °K	H _T - H _{299, 15}	S _T - S _{298.15}
C	:al./mole	cal./deg. mole	•	cal:/mole	cal./deg. mole
			1500	O'COO	12.06
400 · · · · · · · · · · · · · · · · · ·	625 <b>1250</b>	1.80 <b>3.2</b> 0	1500	<b>.9600</b> 10,350	12.53
600	2610	4.42 5.48	1889	11,856	13:42
800	3330	6.44	1900	12,600	13.82
900	4070	7.31	1940 (β)	12,900	13.98
<del>1</del> 988 : : : :	5638	<b>8.12</b>	$2\partial\partial\partial^{(1)}$ .:::	· <del>17</del> ,340	<b>16.28</b>
1155 (α)	<b>6</b> 070	<b>9.26</b>	2200	19,440	17.29 <b>17.98</b>
1155 (β) 1200	7020 <b>7350</b>	10.09 <b>10.38</b>	2400	.21,040 2 <b>2</b> ,640	18.62
1300	8100	10.98	2800	24.240	19.21

10.98 11.53

1800 1400

8100 8850

24,240 25,840

19.21 **19.77** 

#### Titanium, Ti (page 2)

Ti (a): Enthalpy:  $H_T - H_{298,15} = 5.25T + 1.26 \times 10^3 T^2 - 1677$  (0.3percent;298-1155°K) Heat Capacity:  $C_1 = 5.25 + 2.52 \times 10^{-3} T$ 

,Ti (β):

Enthalpy:  $H_T - H_{298,15} = 7.50T - 1650 (0.1 \text{ percent}; 1155-1940°K)$ 

 $\Delta H_{1940}$  (fusion) = 4450

Enthalpy:  $H_{\tau} - H_{298.15} = 8.00T + 1840(0.1 \text{ percent}; 1940-3000°K)$ 

Т,°К	$H_T - H_{298,15}$ cal./mole	$S_T - S_{298,15}$ cal./deg.	т,∘к	H _T = H _{298,15} cal./mole	$S_T - S_{298.15}$ cal /deg.
400	575 1120 1650 2170 2685 3195 3705 4215 3730 5245 6765 6290 6825 7370 7930	1.67 2.88 3.84 4.64 5.33 5.94 6.47 6.96 7.40 7.82 8.20 8.57 8.91 9.24 9.56	1900	8495 9075 10,275 11,530 12,840 14,210 15,635 19,460 23,630 28,110 32,855 42,895 53,320 <b>63,830</b>	9.87 10.16 10.74 11. <b>28</b> 11.79 12.31 12.81 13.98 15.10 16.15 17.15 <b>18.98</b> 20.59 21.99

5, 9

Titanium, Ti (page 3)				
X-Ray Crystallographic Data:				1
System Space Group hexagonal cubic D4h	<i>a</i> <b>2.951 3.283</b>	c 4.692	Atoms/Unit Cell 2 2	
Hygroscopicity (cumulative increase in	weigh	t after)		
Storage over H ₂ O for 29 days: H ₂ SO ₄ for 29 days: Two days in oven at 105°C:		0.0	7% )% )%	51
Solubility Data: In cold water:		ins	soluble	29
In hot water:		de	composes	
In dilute acids on heating:			luble	
Health Hazard:		no	ne; physiologically inert	12
Safety Classifications:				
QSM:		cla	ass 2	
ICC: Powder listed under "Explora flammable solid ; yellow lab	sives ar el.	nd Other	Dangerous Articles" as	
U.N.:			flammable solid	
Fire and Explosion Hazard: Powdered metal exposed to air is a dangerous fire hazard and burns with intense heat. Prevent water from contacting the material. Store and process in rooms or buildings adequately vented at the highest point to prevent the accumulation of hydrogen gas which results from the reaction of powdered metal and moisture. When mixed with oxidizing material, the powdered metal is a dangerous fire and explosion hazard. In the repair and maintenance of buildings or equipment, powder or dust should be removed and nonsparking tools used.  Finely ground titanium powder explodes spontaneously when in contact with hot air, and burns in atmospheres other than air. At 680°C, the fine powder burns in pure carbon dioxide. At red heat, titanium decomposes steam to free hydrogen. Above 1475°F it burns vigorously in atmosphere of pure nitrogen. The metal and its alloys explode when treated with nitric acid. Oil covered titanium chips have ignited spontaneously.				
Precautions When Handling Titanium:  Titanium powder is shipped and stored wet. Moisture content of containers of titanium powaer should be kept above 20% by volume. All standard precautions must be taken when handling the powder. Metal equipment with which it comes in contact must be grounded, and operations carried out in atmospheres of helium, or argon. Atmospheres of carbon dioxide and nitrogen are ineffectivesince dust layers of the powder ignite in these gases.			14	
Electrostatic Sensitivity (minimum encelectric sparks, millijoules):	ergy re	(d	or ignition of powder by lust cloud) 10 lust layer) .008 .	26
Ignition Temperature, °C:				40
Massive metal in air			0-800	12
Powder in air Dust Cloud		25 33		12   26
Dust Cloud Dust Layer		38 38		26 26
Dust Dayot		00	V	1 20

Titanium, Ti (page 4)	
Minimum Explosive Concentration:	
Powdered metal, mg./l. 45	26
Corrosion Resistance: Extremely resistant to corrosion by most substances.	38
Use in Pyrotechnics: As a fuel. According to the specification, it is used in first fire mixtures for incendiary munitions.	
Additional References:	
1) "The Explosive Characteristics of Titanium, Zirconium, Thorium, Uranium and Their Hydrides," I. Hartmann et al., Bureau of Mines R.I. 4835 (1951)	
2) Ref. 64	
3) L. G. Carpenter, Nature 263,527 (1949)	
4) J. Phys. Chem. 59,127-131 (1955)	

#### Refs. TITANYUM DIOXIDE, TiO. 1,29 (Titania, Titanium White, Rutile, Anatase, Brookite) Percent Oxygen: Specification No.: TT-T-425a (Dry-Paint Figment) The specification covers one grade and three types of titanium dioxide pig ment which vary in purity: Type I, Free chalking (anatase) II, Semi-chalking, aluminum treated (rutile) III, Chalk-resisting, silicon-aluminum-zinc-treated (rutile) Molecular Weight: Crystalline Form: tetragonal Allotropic Forms: TiO₂ occurs in four allotropic forms; brookite, rutile, and two forms of anatase. The stability fields of these modifications have not been clearly determined, but anatase II is reported to transform to anatase I at 642°C, and anatase I to rutile at 915°C. The first transformation is rapid; the second slow. The formation of a rutile structure also has been found to occur when Ti₂O₃ is oxidized. Color: (purified titania) translucent water white or vellowish cast. Turns vel-29 54V7 low then brown when heated. Density, g./ml.: (solid) brookite 4.17 octahedrite, anatase, 3.84 1, 22 rutile **4.26** 1 Coefficient of Thermal Expansion: 9 × 10 6 41 Ref. quotes Addnl. Ref. 5 Coefficient of Thermal Expansion per °C: Addnl. Ref. 4 $(E \times 10^{7})$ where E is 70-80 over the range 20-600°C Heat of Formation, Kcal./mole at 298°K: (c, 111) rutile, -218.0 1, 9 See Table a Free Energy of Formation, Keal./mole at 298°K: (c, 111) rutile, -203.8 See Table a a. HEAT AND FREE ENERGY OF FORMATION OF TiO2 (rutile) 2

T, °K	A H (cal./mole)	Δ F° (cal./mole)
298.16	-225,500 (±250)	-212,300 (±250)
400	-225,350	-207,800
500	-225,100	<b>–203,450</b>
600	-224,900	<b>-1</b> 99,150
700	-224,700	-194,850
800	-224,500	<b>–190,600</b>
900	-224,300	<b>–186</b> ,400
1000 ,	-224,150	-182,200
110 <b>0</b>	<b>-224,</b> 000	<b>-178,</b> 000
1150	-223,950	-175,900
1150	-224,900	-175,900

## Titanium Dioxide, TiO₂ (page 2)

	T,°K	Δ <b>H</b> (c	al./mole)	a F° (cal./mole)	
· · · · · · · · · · · · · · · · · · ·	1200 1300	-224,800 -224,600 -224,400 -224,150 -223,900 -223,650 -223,400 -223,150 222,850	-16 -16 -15 -15 -14 -14	73,800 59,550 65,300 61,100 56,950 52,750 48,600 44,450 40,300	_
,	Free Energy Equati	ons:		2	
,	Reaction 1) Ti (a) $+ O_2$ (g) =	=TiO ₂ (rutile)	<b>Range of Validi</b> 298.16 <b>–1150</b>	ity,°K	
, 1	$A \mathbf{F}_{\mathbf{T}}^{\circ} = -228,360$	$-12.80 \hat{T} \log T + 1.62$	$(10^{-3}T^2) + 1.975 (10^{5}T^{-1}) + 8$	82.81T	
,	2) Ti $(\beta) + O_2 (g) = \Delta F_T^\circ = -228,380$	= TiO ₂ (rutile) - 7.62T log T + .36 (1	1160-2000 0-3T ² ) + 1.975 (10 ⁵ T ⁻¹ ) + 68	3.431'	
ě	Entropy, cal./deg./n See Tables b, c	nole at 298°K :	(c, III) rutile, 12.0	01 9	
ć	Melting Point:		2108°K (1835°C)	9	
	Heat of Fusion, Kca	ıl./mole :	$15.5 \pm 2.5$	24	
ſ	Boiling Point:		(rutile) 2500°K (2	·	
ŧ.	Heat of Vaporizatio Transition Point:	n, Kcal./mole:	138.9	Addnl. Ref.	ì
•	Heat of Sublimation	, <del>-</del>	<del> </del>		
	Tieat of Submination	l •			
				4	

T,°K	$H_T - H_{208,15}$ cal./mole	$S_T - S_{298,15}$ cal./deg.	T, <b>°K</b>	$H_{T} - H_{298,15}$ cal./mole	S _T - S _{298, 15} cal./deg, mole
400	1540 3100 4735 6440 8160 9900 11,650 13,420 15,200	4.43 7.91 10.89 13.51 15.81 17.86 19.70 21.39 22.94	1300	17,000 18,820 20,660 22,530 24,420 26,340 28,280 30,250	24.38 25.73 27.00 28.20 29.35 30.44 31.49 <b>32.50</b>

TiO₂ (rutile):
Enthalpy:  $H_T - H_{298,15} = 17.97T + 0.14 \times 10^{-3}T^2 + 4.35 \times 10^{5}T^{-1} - 6829$ (0.8 percent; 298–1800°K)
Heat Capacity:  $C_p = 17.97 + 0.28 \times 10^{-3}T - 4.35 \times 10^{5}T^{-2}$ 

# Titanium Dioxide, TiO₂ (page 3)

# c. HEAT CONTENT **AND ENTROPY** OF TiO₂(anatase) (Base, crystals at 298.15°K)

4

T, °K	$H_T - H_{208,15}$ cal./mole	$S_T - S_{298,15}$ cal./deg, mole	T, <b>°K</b>	$H_T \rightarrow H_{298,15}$ cal./mole	$S_T = S_{298,15}$ cal./deg.
400	1540	4.43	900	9930	17.89
500	3100	7.91	1000	11,720 13,530	19.78
600	4735	10.89	1100	921.51	
700 800	6440 8170	13.52 15.82	1200	15,350 17,180	23.09 24.55
Enthalpy: H _T - :					
Heat Capacity, See equation			(solid) <b>13.1</b>	.6	9
Decomposition '	Temperature:				
Decomposition	Products:				
Dissociation Pro	essures:		***************************************		63
	ssure, log p _{atm.} : log p == 4.97atm	_	492 × 10 ⁻⁸ + 11.1 4V6	9 (T=OK)	Addnl. Ref. 1
X-Ray Crystallo	- 1				1
System (rutile) tetrage	SpaceGro	up a c 4.58 2.95	Molecules/	Unit Cell	
Hygroscopicity : Solubility Data		HNO HI H SC	nonhygrosco	opic	1
Solubility Data	In hot concentra				
cause irrita	tion to the respi		concentrations of	f the dust may	12, 25
M.A.C., mg	./m.³ of air :		(tentative)	15	29
Safety Classific	ations:				
OSM:			not listed		
ICC:			not listed		
Fire and Explo			none		
Eiectrostatic Se	ensitivity:				
Use in Pyrotech	nnics:		a product of combustic	the on of Ti	

#### Additional References:

- 1) "Vapor-Solid Equilibria in the Titanium Oxygen System," W. Groves et al., J. Phys. Chem. 59, 127 (1955)
- 2) Ref. 64
- 3) For color changes see also Ref. 44V29 sup
- 4) F. Hummel and E. Henry, Report 6, Penn. State College School of Mineral Industries, PB 60, 659 (1946); cited by Ref, 65
- 5) Ind. Eng. Chem. 38,1097 (1946)

#### **TOLUIDINE-RED** TONER (dry paint pigment) Refs. (1-(3-Nitro-p-Tolueneazo)-2-Naphthol, 82, 48A Metanitroparatoluidino-azo-Betanaphthol, C.I. 12120, C.I. Pigment Red 3) $NO_2$ OH Formula: C17H13N3O3 TT-T-562 Specification No.: • The color shall be resistant to HNO₈ (1.20 Sp. Gr.), to HCL (1.10 Sp. Gr.) and to 10% caustic soda solution. Molecular Weight: 307.32 Crystalline Form: 82 microscopic delicate feathery needles purplish or brown: bright Color: **82** red to somewhat darker Spec. 84A yellowish red 82 82 Density, g./ml.: (solid) 1.40 (bulking value) 0.08576 Coefficient of Thermal Expansion: Heat of Formation: Free Energy of Formation: Entropy: 258 Melting Point, °C: 48A Heat of Fusion: Boiling Point: Transition Point: Heat of Sublimation: Heat Content or Enthalpy: Heat Capacity: Decomposition Temperature: Decomposition Products: Vapor Pressure: X-Ray Crystallographic Data: Hygroscopicity: Solubility Data: In acetone and chloroform: soluble 82 In alcohol and benzene: slightly soluble 48A In hot water: very slightly soluble 82 Health Hazard: Safety Classifications:

Toluidine-red toner (page 2)

Fire and Explosion Hazard:
Electrostatic Sensitivity:

Resistance to light:

(full shade) excellent
(tint) good
to heat:

to 320°F
poor when baked 20 min.
at 270°F
to acids and alkalies:

Use in Pyrotechnics: Added to igniter compositions to impart a red color for identification.

Additional References:

1) Ref. 82

1,4-di-p-TOLUIDINOANTHRA (1,4-di-p-tolyaminoanthraq D & C Green No. 6, Quin Green G Base, C.I. 61565, C.I. Sol	Refs. 92, 48A	
Formula:  O H  CH ₃ CH ₄ CH ₅	C ₂₈ H ₂₂ N ₂ O ₂	
Specification No.:	MIL-D-3277	*
Molecular Weight:	418.5	
Crystalline Form:	needles	88V14
Color: Green, from chlorobenzol — blue, from glacial acetic acid-dark violet		88V14 88V14
Density, g./ml.		
Apparent Density:	(Spec.) $0.45 \pm 0.25$	
Temperature Coefficient:	<del></del>	
Heat of Formation:		
Free Energy of Formation:	<del></del>	
Entropy:	<del></del>	
Melting Point:	491°K (218°C)	88V14
Heat of Fusion:	<del></del>	
Boiling Point:		
Transition Point:		
Heat of Subiimation:		
Heat Content or Enthalpy:		
Heat Capacity:		
Decomposition Temperature:		
Decomposition Products:		
Vapor Pressure:		
X-Ray Crystallographic Data:	<del></del>	
Hygroscopicity:	<b> </b>	
Solubility Data :In alcohol (g./l.) at 60°C: In aniline: In concentrated H ₂ SO ₄ :	soluble with green color soluble with violet-blue color or violet-red	Addnl. Ref. <b>1 88V14</b>
In chloroform and in benzene:	soluble	
Health Hazard:	unknown	92

## 1,4-Di-p-toluidinoanthraquinone (page 2)

Safety Classification:	
ŎSM:	not listed
ICC:	not listed
Fire and Explosion Hazard:	
Electrostatic Sensitivity :	
Use in Pyrotechnics:	to color smoke mixtures green

## , Additional References:

1) "The Dyeing Phenomena of Acetate Artificial Silk," V. Kartaschoff and G. Farine, Helv. Chim. Acta 2,822 (1928)

#### Refs. TUNGSTEN, W (Wolfram) MIL-T-13827 Specification No.: 183.86 Molecular Weight: 5 (cubic) p-f orm trans-Crystalline Form: forms irreversely to a above 700°C grey-black Color: (solid) 19.3 Density, g./ml.: Coefficientof Thermal Expansion, linear: 1 -108to 0°C: $4.2 \times 10^{-6}$ 0-100 : $4.3 \times 10^{-6}$ 0-300: $4.5 imes 10^{-6}$ $4.6 \times 10^{-6}$ 0-500: 1000-2000: $6.1 \times 10^{-6}$ 5 Heat of Formation, cal./mole at 298°K: (gas) **-200,000** Free Energy of Formation, cal./mole at 298°K: 1, 5 (gas) -190,009 Entropy, cal./deg./mole at 298°K: (gas) 41.55 5 8.04 (c) See Tables b, c 3650 5 Melting Point, °K: 5, 7 Heat of Fusion, cal./mole: 8420 5800°K (5427°C) 5 **Boiling Point:** 5 Heat of Vaporization, cal./mole: 191,000 Transition Point: 5 200,000 Heat of Sublimation, cal/mole: 5 Heat Content or Enthalpy, cal./mole: (solid) 1216 (gas) 1486 5 Heat Capacity: (solid) 5.92 (liquid) 8.5 (gas) 7.5 5

T, <b>°K</b>	Cocal./deg./mole	T,°K	C₀ cal./deg./mole
298	5.92	1600	7.00
600	6.17	2000	<b>7.33</b> .
800	6.34	2500	7.74
1000	6.50 6.67	3000	8.15

See also equations below

## Tungsten, W, (page 2)

T,°K	$H_{\tau} - H_{289.15}$ cal./mole	$S_T - S_{298,15}$ cal./deg.	T, °K	$H_T - \mathbf{H}_{298.15}$ cal./mole	mole
400	615	1.77	1500	7730	10.18
500	1220	3.12	1600	8430	10.63
600	1830	4.23	1700	9130	11.06
700	. 2450	5.19	1800	9840	11.47
800	3080	6.03	1900	10,550	11.85
900	3710	6.77	2000	11,270	12.22
1000	4360	7.46	2200	12,720	12.91
1100	5010	8.08	2400	14,190	13.55
1200	5670	8.65	2600	14,680	14.14
1300	6340	9.19	2800	17,190	14.70
1400	7030	9.70	3000 ,	18,720	15.23

W(c): Enthalpy:  $H_T - H_{298.15} = 5.74T + 0.38 \times 10^{-3}T^2 - 1745$  (0.4 percent; 298–3000°K) Heat Capacity:  $C_p = 5.44 + 0.76 \times 10^{-3}T$ 

T, °K	H _T - H _{298,15} cal./mole	S _T -S _{298,15} cal./deg. mole	T, <b>°K</b>	$H_T - H_{298,15}$ cal./mole	$S_T - S_{298,15}$ cal./deg.
400	540	1.55	1500	10,150	12.47
500	1130	2.86	1600	11,048	13.04
600	1805	4.09	1700	11,895	13.56
700	2580	5.28	1800	12,730	14.04
800	3440	6.44	1900	13,540	14.47
900	4375	7.53	2000	14,325	15.61
1000	5354)	8,56	2200	15,855	14.88
1100	6340	9.50	2400	17,330	. 16.25
1200	7325	10.36	2600	18,780	16.83
1300	8200	11.14	2800	20,210	17.36
1400	9235	11.84	3000	21,635	17.85

W(g): Enthalpy:  $H_T - H_{298,15} = 10.70T - 0.66 \times 10^{-3}T^2 + 4.64 \times 10^{5}T^{-1} - 4688$ (0.3 percent; 1600–3000°K)

Heat Capacity :  $C_p = 10.70 - 1.32 \times 10^{-3}T - 4.64 \times 10^{5}T^2$ 

#### Tungsten, W (page 3)

Vapor Pressure: At 2000-3500°K can be calculated from log p (mm. Hg.) =  $\frac{4200}{7}$  + 9.84 - 0.0146 log T - 0.164T. Where T = temperature ok. Vapor pres-

sure is 1 mm. at 3990°C

X-Ray Crystallographic Data:

System	Space Group	a	Atoms/Unit Cell
α, cubic	$\mathbf{O}_{\mathbf{b}}^{\mathbf{p}}$	3.1583	2
$\beta$ , cubic	$O^2$ or $O_h^3$	5.04	8

Hygroscopicity:

OSM:

Solubility Data: In water: insoluble

In HNO₈, H₂SO₄, and aqua regia: very slightly soluble

In HF and HNO₃: soluble Health Hazard: very slight

Safety Classifications:

class 2 Fire and Explosion Hazard: Tungsten is dangerous in the powdered form when exposed to flame. It burns with intense heat. Prevent water from contacting

the material. Store and process only in **room** or buildings adequately vented at the highest point to prevent the accumulation of hydrogen gas which results from the reaction of the powdered metal and moisture.

When compounded with oxidizing agents, the powdered metal is a dangerous fire and explosion hazard. In the repair or maintenance of buildings or equipment, powder or dust should be removed and nonsparking tools used.

Electrostatic Sensitivity:

Use in Pyrotechnics:

as a fuel

40

1

12

12, 14

#### Additional References:

- 1) "Tungsten," C. J. Smithells, Chapman & Hall Ltd., London (1952)
- 2) Ref. 46

TUNGSTEN DIOXIDE, WO,				
Specification No.:		ĺ		
Molecular Weight:	215.92	1A		
Crystalline Form:	cubic	1A		
Color:	brown	1 A		
Density, g./ml.:	(solid) 12.11	1A		
Coefficient of Thermal Expansion:	<del></del>			
Heat of Formation, Kcal./mole at 298°K:	(c) $-134.0 \pm 2.5$ -136.3	24A 1A, 9, 31A		
Free Energy of Farmation, Kcal./mole at 298°K:	(c) -123.8 -122 -118	6 8 31A		
HEAT AND FREE ENERGY OF FORM	ATION OF WO ₂ (c)	2		

15 15.5	6 2
$16.0 \pm 2.5$	24A
e below. Ignites in air. Ignites	3PA
11.5	6
uite volatile above 1050°. The	.44S54
48.86	44354
***************************************	
decomposes at $2125 \pm 50$	8
W + wO ₃ which sublimes	44S54
	15.5 16.0 ± <b>2.5</b> the below. Ignites in air. Ignites  11.5 the volatile above 1050°. The  48.86  ——————————————————————————————————

Tungsten Dio	xide, W() ₂ (page	2)					1
Vapor Pressu	ıre : allographic Data	, <del>-</del>			appreciable	at 1800°K	44854
System monoclinic tetragonal Hygroscopici Solubility Del	Space Group P 21 D 14 ty: ta: In H ₂ O, aci	a 5.65 4.86	<i>b</i> 4.89 Н:	c 5.56 2.77	Axial Angle 120° 25′  insoluble slightlytoxi	Molecules/ Unit Cell 4 2	4, 24A 2, 1A, 97
Safety Class	ifications : ·						1
OSM: ICC: Fire and Exp easily ox	olosion Hazard :' idized to WO3 .	The am	orpho	us pow	not listed not listed der i <b>s s</b> trongly _l	pyrophoric and	50V14
Electrostatic	<b>Sensitivity</b> :				-	•	
Use in Pyrote	chnics:				-		

ZINC, Zn		Refs.
Specification No.:  Covers three grades, which differ in purity, as granulation.	JAN-Z-365 nd two classes differing in	
Molecular Weight: Crystalline Form: Color: Density, g./ml.: Coefficient of Thermal Expansion, linear at 10-100°C:	66.38 hexagonal bluish-white (solid) 7.14  26.28 × 10-6 89.28 × 10-6	1 1 1
Equation for linear coefficient: 1, =1, (1 + .2969 (0635 × 10 ⁻¹ ) where 1, = length at temp. t in °C and 1 = length Heat of Formation, Kcal./mole at 298°K:  Free Energy of Formation, Kcal./mole at 298°K:  Entropy, cal./deg./mole, at 298°K:	×10-1) +	1, 9 5 1, 5 1, 5
See Tables a and b  Melting Point: Heat of Fusion, cal./mole: Boiling Point: Heat of Vaporization, cal./mole:	692.7°K (419.6°C) 1765 1181°K (908°C) 27,960	4, 5 1, 5 5
Transition Point:  Heat of Sublimation, cal./mole  Heat Content or Enthalpy, cal./mole:  See equations below	31,180 (solid) 1349	) )

°K	cal./mole	cal./deg. mole		cal./mole	S _T - S _{298,15} cal./deg. mole
400	625 1270 1940 2580 4345 4400	1.80 3.24 4.46 5.45 8.00 8.08	800	5150 5900 6650 7400 8150	9.08 9.96 10.75 11.47 12.12

## b. HEAT CONTENT AND ENTROPY OF Zn (g)

(Base, ideal gas at 298.15°K)

T, °K	$H_T = H_{298,15}$ cal./mole	S _T - S _{298, 13} cal./deg. mole	T,ºK	$H_T - H_{298,15}$ cal./mole	$S_{r} = S_{208,15}$ cal./deg.
400	505	1.46	1900,	7960	9.20
500	1005	2.57	2000	8455	9.46
600	1500	3.48	2200	9450	9.93
700	1995	4.24	2400	10,445	10.36
800	2495	4.90	2600	11,440	10.76
900	2990	5.49	2800 ,	12,435	11.13
1000	3490	6.01	3000	13,425	11.47
1100	3985	6.49	3500	15,910	12.24
1200	4480	6.92	4000	18,400	12.90
1300	4980	7.32	4500	20,905	13.49
1400	5475	7.69	5000	23,435	14.03
1500	5975	8.03	6000	28,675	14.98
1600	6470	8.35	7000	34,385	15.86
1700	6965	8.65	8000	40,905	16.73
1800	7465	8.94		•	

Enthalpy:  $H_T - H_{208,15} = 4.971' - 1482(0.1 \text{ percent }; 298-5000°K)$ 

Heat Capacity, cal./deg./mole:

(solid) (liquid) 7.50

4.97 (gas)

Also see above

Decomposition Temperature:

Decomposition Products:

Vapor Pressure:

Press. mm.	1	10	40	100	400	760	M.P.
Temp. °C	487	593	673	736	844	907	419.4

X-Ray Crystallographic Data:

Atoms/Unit Cell System Space Group  $D_{6h}^4$ hexagonal 2.6585 4.9342

Hygroscopicity: On exposure to moist air zinc becomes coated with a white basic carbonate of Zn. Cumulative increase in weight after:

Storage over **H₂O** for 29 days:

5.2%

Storage over H₂SO₄ for 29 days: Two days in oven at 105°C:

4.7% 4.3%

Solubility Data: Insoluble in water, but soluble in acids, alkalies, and ammonia. 1, 29

16, 29

51

Zirc, Zn (page 3)		1
Health Hazard: Zinc powder is slightly <b>to</b> modera of ZnO evolve, which when inhaled <b>can ca</b> "brass chills" <b>and</b> fever, <b>also</b> called "zinc-"galvo." The effect is usually temporary.	93, 12, 25, 29	
M.A.C. of zinc (asZnO),mg./m.3:	15	14
Safety Classifications:		l .
OSM:	class 2	
ICC:	not listed	
Fire and Explosion Hazard: Powdered zinc when hazard. It burns with intense heat. Preve material. Store and process only in buildings the highest point to prevent the accumula When compounded with oxidizing agents, thous fire and explosive hazard. In the repair equipment, powdered dust should be remove Fight fire with special mixtures of dry chem See also Ref. 86	12, 14, 49, 51 75	
Electrostatic Sensitivity (minimum energy requelectric sparks, millijoules):	ired for ignition of powder by (dust cloud) 650	26
Ignition Temperature, °C:	(dust cloud) 20' (dust layer) 100	26
Minimum Explosive Concentration, mg./l.:	480	26
Use in Pyrotechnics: <b>As</b> a fuel. On burning, it bluish-green or bluish tint.	produces a white light with a	20, 29

ZINC CARBONATE						
Formula: Specification No.: Molecular Weight Crystalline Form Color: Density, g./ml.: Coefficient of The	:	:	trig whi	<b>Z-12</b> 0 <b>6</b> .39 onal	1	1 29 1
Heat of Formation Free Energy of Fo Entropy, cal./deg. Melting Point:	, Kcal./mole at <b>2</b> 9 rmation, Kcal./m	98°K : 10le at <b>298</b> °!	K: (c) 19.7 lose	-194.2 -174.8 7 s <b>CO</b> ₂ at <b>73°K (3</b>	00°C)	9 9 3, 9
	on: Enthalpy: l./deg./mole: Capacity can be e	estimated fi	(so $C_p = \frac{1}{2}$	- - - - - lid) 19.1 9.30 + 3	.6 33.0 (10 ⁻⁸ T) at	9
298–780°K  Decomposition Temperature:  Commercial ZnCO ₃ gives off some CO ₂ even at 90°C. Decomposition is complete at 300° in 1 hour, and at 400° in ½ hour.  Decomposition Products:  ZnO + CO ₂ Heat of Dissociation, cal./mole:  Dissociation Pressure: A constant reproducible decomposition pressure has not been observed. The decomposition depends on the grain size and other factors.					1 54V4 54V2 44332 sup 44832 sup	
X-Ray Crystallogn  System S  hexagonal  Hygroscopicity:	raphic Data :  pace Group  D ⁶ _{3d}	<i>a</i> 5.704	Axial An a == 48°		Molecules/ Unit Cell 2	1
Solubility Data: In water at 15 In acids, alkal	°C: ies, NH4 salts: acid, pyridine:	,	solu	oluble		1, 12

Zinc Carbonale (page 2)

Safety Classifications: OSM:

ICC:

Fire and Explosion Hazard:

**Electrostatic Sensitivity:** 

Use in Pyrotechnics:

not listed not listed

as a retardant

ZINC OXIDE, <b>ZnO</b> (Chinese White, Zinc White, Flowers of Zinc, Zinc Bloom, Philosopher's Wool)				
Specification <b>No.</b> :  The specification covers three grades of which pyrotechnic mixtures. They differ somewhat purer) and have the Same granulation.	MIL-Z-291B h grades 1 and 2 are used in in purity (grade 2 is the			
Molecular Weight: Crystalline Form: Color: Becomes lemon yellow on heating, regaining it	81.88  amorphous powder  white (or yellowish) s white color on cooling.	1 ,1 ,52V11		
Density, g./ml.: Coefficient of Thermal Expansion, cubical: Heat of Formation, Kcal./mole at 298°K:	(solid) <b>5.47</b> (aver.) <b>1.8</b> × 10 ⁻⁷ (fused) -84.36 (c) -83.17	1 31 1, 9		
See Table a Free Energy of Formation, Kcal./mole at 298°K: See Table a a. HEAT AND FREE ENERGY OF FORM	(c) <b>-76.06</b>	1, 9		

T, <b>°K</b>	A H (cal./mole)	A F° (cal./mole)
298.16	-83,250 (± 200)	-76,100 (± 200)
400	-83,150	<b>-73,650</b>
500	-83,050	<b>-71,300</b>
600	-82,950	-68,950
692.7	-82,850	46,800
692.7 •	-84,600 ●	-66,800
700	-84,600	<b>-66,6</b> 00
800	-84,560	-64,050
900	-84,500	-61,460
1000	-84,400	-58,900
1100	-84,300	66,860
1180	-84,200	<b>-54,35</b> 0
1180	<b>-111,600</b>	-54,350
1200	<b>–111,560</b>	<b>53,</b> 350
1300	<b>-111,150</b>	<b>-48,50</b> 0
1400	<b>–110</b> ,750	<b>-43,700</b>
1500	<b>–1</b> 10,350	-38,950
1600	<b>–1</b> 09,900	-34,200
1700	-109,460	<b>–29,600</b>
1800 ,	<b>–1</b> 09,000	-24,800
1900	<b>–108,560</b>	-20,160
2000	-108,100	-15,500

#### Zinc Oxide, ZnO (page 2)

Phase Changes of Metal M.P.,  $692.7 \,^{\circ}\text{K}$ ;  $\Delta H = 1765 \,\text{cal./g.-atom}$ B.P.,  $1180^{\circ}$ K ;  $\Delta$  H = 27,430 cal./g.-atom

Free Energy Equations:

Reactions Range of Validity, ° 298.16–692.7 1) Zn (c)  $\pm \frac{1}{2}$  O₂ (g) = ZnO (c) 298.16–692.7  $\Delta F_{\Gamma}^{\circ} = -84,670-6.40 \text{ (T log T)} \pm .84 \text{ (10 } {}^{3}\text{T}^{2}) \pm .99 \text{ (10 }{}^{5}\text{T}^{-1}) \pm 43.25\text{ T}$ Range of Validity, °K

2)  $\operatorname{Zn}(1) + \frac{1}{2} \operatorname{O}_{2}(g) = \operatorname{ZnO}(c)$  692.7-1180  $\Delta F_{1}^{2} = -85,520 - 1.45 (\operatorname{Tlog}T) - .36 (10^{-3}T^{2}) + .99 (10^{5}T^{-1}) + 31.25T$ 

3)  $Z_n(g) + \frac{1}{2}O_2(g) = Z_nO(c)$ 1180-2000  $\Delta F_T^o = -115,940 - 7.28 \text{ (T log T)} - .36 \text{ (10-8T^2)} + .99 + \text{(10-8T^2)} + .74.94T$ 

Entropy, cal./deg./mole at 298°K:

See Tables b, c

Melting Point: > 2073°K (> 1800°C) zincite, 2243°K (1975°C) Heat of Fusion, g./cal./mole: 4470

63 7 decomposes zincite, decomposes 2223°K (1950°C) Boiling Point: 24 63

Transition Point:

Sublimation Temperature: 2073°K (1800°C)

Heat of Sublimation, Kcal./mole: 111-112.5 50V15 44S32 sup

2

9

T, °K	$H_T - H_{298.15}$ cal/mole	$S_T - S_{208,15}$ cal./deg.	Т, °К	$H_T - H_{298,15}$ cal /mol e	$S_T + S_{298,18}$ cal./deg. mole
400	1070	3.08	1300	12,120.	17.29
500	2190	5.58	1400	13,450	18.28
600	3350	7.69	1500 ,	14,800	19.21
700	4530	9.51	1600	16,160	20.09
800	5740	11.13	1700	17,530	20.92
900	6970	12.57	1800	18,910	21.71
1000	8220	13.89	1900	20,300	22.46
1100	9500	15.11	2000	21,700	23.18
1200	10,800	16.24			

ZnO (c): Enthalpy:  $H_{T} - H_{298,15} = 11.71T + 0.61 \times 10^{-3}T^{2} + 2.18 \times 10^{5}T^{-1} - 4277$ (0.4 percent ;298–2000°K)

Heat Capacity:  $C_p = 11.71 + 1.22 \times 10^{-8} \text{T} - 2.18 \times 10^{5} \text{T}^{-2}$ 

т, °К	$H_{\tau} - H_{298,15}$	9	S _{208, 15}		T,°k	_	u ·	H _{298,15}	$S_T - S_{298,15}$
1, °K	cal./mole		0208,15 /deg.		1, 1	`		mole	cal./deg.
		m	ole						mole
400	795		28	10				875	9.99
500 600	1605 2435		10 .61	120	0 <b>0 .</b> 00 .			7630 9390	11.59 12.95
700	3285		92		00 .	 	11	,160	14.13
800	4140		.06		00 .			,930	15.17 <b>16.11</b>
900	5005	9.	.08	20		• • • •	14	,710	10.11
ZnO (g): Enthalpy: $H_T - H_{298,15} = 8.40T + 0.17 \times 10^{-8}T^2 + 0.82 \times 10^{8}T^{-1} - 2795$ (0.3 percent; 298–2000°K) Heat Capacity: $C_0 = 8.40 + 0.34 \times 10^{-8}T^2 - 0.82 \times 10^{8}T^{-2}$									
Heat Capacity,	•					d) 9.62			9
1 27				000	`				44S32 sup
	<b>20 30 50</b> . <b>17 0.6</b> 0 1.9		450 <b>6.22</b>	7.20	300 9.66	500	<b>700</b> 11.8	<b>900</b> 12.3	4
•	. <b>17 0.60</b> 1.9 quations above	_	0.42	7.20	9.00	11.2	11.0	12.5	
Decomposition	•				2250	± 25			8
Heat of Decomposition [to $\mathbf{Zn}(\mathbf{g})$ and $\mathbf{O}(\mathbf{g})$ ]									
Kcal./mole		<u>+</u> ~ (10		40nTZ\	< 92	2			44S32 sup Addnl. Ref. 3
Decomposition I Vapor Pressure		n ¬U (10	10-114	10°N)					Addill, Ref. 3
	Press. mm.	0.1	1.2	3.:		12	76	0	Addnl. Ref. 1
Temp. °C		1000	1400	14:		1500	170		
	iation Pressur						32 sup		
X-Ray Crystalle			np. see	101. 9	-	.iu			
System	Space Gro		$\alpha$	c	j	Molecu	les/ Un	iit Cell	1
hexagonal	$^{\prime}$ $\mathrm{C}_{6\mathbf{v}}^{4}$		24265	5.194			2		
Hygroscopicity: Absorbs H ₂ O and CO, from air. The rate of absorption is greater the finer the oxide and increases with rising temp.							44S32 sup		
Solubility Data: In water: .00016 g./100 ml. at 29°C									
In mineral acids, dilute acetic acid, NH ₄ OH: soluble							1 1		
Health Hazard	: Slight to mo armless excep	derately	toxic.	Zinc of	xide i	s relati	ively i	nert, and	93
ever, and s	should not be	allowed t	o come	e into c	contac	t with	the ev	es. Fresh	25
	inc oxide can	cause "b	rassfou	ınders	ague"	or "bi	rass ch	ills," etc.	29
(See Zinc.) M.A.C. mg.	) ./m.³ of air for	an 8hr.	workin	g day :	15				14

#### Zinc Oxide, ZnO (page 4)

Safety Classifications:

OSM:

not listed not listed

Fire and Explosion Hazard:

none listed

Precautions When Handling:

Handle carefully to avoid excessive "dusting." Keep work area clean, and wash hands frequently.

Store in sealed containers away from acids.

If it enters the eye, thorough washing of the eye in a bubble type fountain or inverted faucet will remove the irritating particles. Take the victim to a physician immediately for examination and further treatment.

Electrostatic Sensitivity:

Use in Pyrotechnics: A product of the burning or oxidation of zinc. Used in screening smoke compositions.

#### Additional References:

- 1) "Zinc Oxide Rediscovered," H. E. Brown, New Jersey Zinc Company, New York
- 2) Ref.64
- 3) "The Stability of Gaseous Diatomic Oxides," Brewer and Mastic, J. Chem. Phys., 19,834 (1951)

	Refs.			
Formula: Specification No.:			$\frac{\text{Zn} \left(C_{18}H_{35}O_{2}\right)_{2}}{$	
Molecular Weight			632.30	
	: Light powde		ch, usually marketed as a fine	16, Addnl. Ref. 1
Coior:			white	
Density:				
Coefficient of The	rmal Expansi	on:		
Heat of Formatio	on: ·			
Free Energy of F	ormation:			
Entropy:				
Melting Point: Melts to a cle of crystalline	ear water-whit appearance an	te liquid and cools Id which is easily p	403°K (130°C) s to a transfucent glassy mass powdered.	1 Addnl. Ref. 1
Heat of Fusion:				
Boiling Point:				
Transition Point:				
Heat of Sublimat				
heat Content or E	Enthalpy :		<del>*************************************</del>	
Heat Capacity:				
Decomposition Te				
Decomposition Pr	oducts:		**************************************	
Vapor Pressure:				
X-Ray Crystallog	raphic Data:		Trape - Adjuncture	
Hygroscopicity:			nonhygroscopic (repels water)	29
Solubility Data: In water, alco	hal ather:		in a chuhla	
In water, alco			insoluble soluble	L
_	Temp. °C	СН₃ОН	Toluol	Addnl. Ref. 2
	25	0.04*	0.04*	
	50	0.06	0.27	
	75 100	1.88 6.56	1.98 <b>4.97</b>	
	e/100 g. solver			
Health Hazard: Inhalation of	the powder c	an lead to pulmon	ary inflammation.	2, 29
Safety Classificati				
OSM:			not listed	
ICC:			not listed	

Zinc Stearate (page 2)		1		
Fire and Explosion Hazard:				
Autoignition Temp., °F:	790	12, 71		
Flash Point (open cup), °F:	530			
Electrostatic Sensitivity:		.		
Use in Pyrotechnics:	as a retardant, fuel, and binder	17		
Additional References:				
1) "Metallic Soaps—Their Uses, Preparation and Properties," W. F. Whit- more and M. Lauro, Ind. Eng. Chem., 42,646 (1930)				
2) "Aero Metallic Stearates," (pamphlet) American Cyanamid Co. (1960)				
3) "The Solubility of Zinc Soaps in Organic Solvents," E. P. Martin and R.C. Pink, J. Chem. Soc. 1750 (1948)				

ZIRCONIUM, 2	Zr	Refs.
Specification No.:  Specification PAPD-464 covers two classes of zirconium powder has been developed wand has three granulations A, B, and C. The specification FA-PD-MI-2364. Granulation packed, shipped, and handled dry. Granulation shipped, and stored under water.  Molecular Weight:  Crystalline Form:	which is made by a new process, his new type is covered by new ns A and B of this type are ation <b>C</b> of this type is packed,  91.22 cubic	1
Color: The bulk metal is silvery white to grey. verized Zr are black and resemble carbon i tions are steel-grey in color and look like c	n appearance. Coarser granula- crushed <b>cast</b> iron.	1, 28, 29
Density, g./ml.: Coefficient of Thermal Expansion, linear: hexagonal, a form (298–1143°K)—linear	(solid) <b>6.49</b>	39 28, 39, 50V15
along <b>a</b> axis : along c axis: cubic, <b>ß (1143–1600°K)</b> :	6.5 <b>× 10</b> -⁴ 10.8 <b>× 10</b> -⁴ 9.7 <b>× 1</b> 0-⁴	
20–400 6.1 >	< 10-6	27
Heat of Formation, Kcal./mole at 298°K:  Free Energy of Formation, Kcal./mole at 298°K  Entropy, cal./deg./gm. at 298°K:	(c) 9.29	1 9
See Tables a and b  Melting Point: Heat of Fusion, cal./mole: Boiling Point: Ref. 39 gives 3577°C (3850°K). Other re  Heat of Vaporization, cal./mole: Transition Point, °K:	(gas) 43.31  2125°K (1832°C) 4000 4650°K (4377°C) efs. vary appreciably. 139,000 1135	5 5 5 5 5 5 5, Addnl. <b>Ref. 2</b>
Heat of Transition, cal./mole: Heat of Sublimation, cal./mole: Heat Content or Enthalpy, cal./mole at 298°F See equations below	920 146,000 (solid) 1313	2 5 5

#### Zirconium, Zr (page 2)

T,ºK	H _T - H _{928,15} cal./mole	$S_T = S_{028.15}$ cal./deg. mole	Т,°К	H _T - H _{928,15} cal./mole	$\begin{array}{c} S_T - S_{928,15} \\ \text{cal./deg.} \\ \text{mole} \end{array}$
400	650	I.87	1600	10,680	12.98
500 600	1330 <b>2030</b>	3.39 <b>4.66</b>	1700	11,470 12,260	13.46 13.91
700	2730	5.76	1900	13,050	14.33
800 900	3460 • <b>4200</b>	6.72 7.59	1 2000	13,840 14,630	14.74 15.12 .
1000	4980	8.41	2130 (c)	14,870	15.24
1100	5800 6090	9.20 <b>9.46</b>	2130 (1)	19,770 20,330	<b>17.54</b> 17.80
$1135 (\beta) \dots$	7005	10.26	2400	21,930	18.49
1200	7520 8310	10.70 11.33	2600	23,530 25,130	19.13 19.72
1400	9100	11.92	3000	26,730	20.28
1500	9890	12.47			

Zr (a):

Enthalpy:  $H_T - H_{298,15} = 6.50T + 0.71 \times 10^{-8}T^2 + 0.82 \times 10^{8}T^{-1} - 2276$ (0.7 percent; 298–1135°K)

Heat Capacity:  $C_p = 6.50 + 1.42 \times 10^{3} \text{T} - 0.82 \times 10^{5} \text{T}^{-2}$ 

 $Zr(\beta)$ :

Enthalpy:  $H_T - H_{208,15} = 7.90T - 1960$  (0.1 percent; 1135-2130°K)  $\Delta H_{2130}$  (fusion) = 4900

Zr (1):

Enthalpy:  $H_T - H_{298,15} = 8.00T + 2730 (0.1 \text{ percent}; 2130-3000 \text{ K})$ 

## b. HEAT CONTENT AND ENTROPY OF Zr (g)

(Base, ideal gas at 298.15°K)

	** **	2 2	m err	TT 11	<u> </u>
T, °K	$H_{\rm T} = H_{298,15}$	$S_T - S_{928, 15}$	T, °K	$H_T - H_{298, 15}$	$S_T - S_{928,15}$
	cal./mole	cal./deg.		cal./mole	cal /deg.
		mole	<u>i</u>		mole
400	665	1.92	1900	10,325	11.92
500	1325	3,39	2000	11,025	12.28
600	1980	4.58	2200	12,450	12.96
700	2620	5.57	2400	13,905	13.59
800	3245	6.40	2600	15,390	14.18
900	3870	7.13	2800	16,900	14.74
1000	4475	7.78	3000	18,435	15.27
1100	5085	8.36	3500	22,410	16.50
1200	5705	8.90	4000	26,575	17.61
1300	6335	9.40	4500	30,925	18.63
1400	6970	9.87	5000	35,430	19.58
1500	7620	10.32	6000	44,750	21.28
1600	8280	10.75	7000	54,235	22.74
1700	8950	11.15	8000	63,645	24.00
1800	9630	11.54			

#### Zirconium, Zr (page 3)

Zr (g):

Enthalpy:  $H_T - H_{298,15} = 7.01T - 0.35 \times 10^{-8}T^2 + 0.38 \times 10^{6}T^{-1} - 2186$ 

(0.7percent; 298-1400°K)

Heat Capacity:  $C_p = 7.01 - 0.70 \times 10^{-8}T - 0.38 \times 10^{6}T^{-2}$ 

Enthalpy:  $H_T - H_{298,16} = 5.59T + 0.36 \times 10^{-3}T^2 - 0.50 \times 10^{6}T^{-1} - 1631$ (0.3percent; 1400-6000°K)

Heat Capacity:  $C_b = 6.69 + 0.72 \times 10^{-8} \text{T} + 0.50 \times 10^{5} \text{T}^{-2}$ 

Heat Capacity, cal./deg./mole at 298°K:

(liquid) 8.00 (a form) 6.01 (\$ form) 7.90 1, 5

39

28

#### c. HEAT CAPACITY OF Zr

## (Solid I, 298-1143°K; Solid II, 1143-2125°K; Liquid, 2125-3000°K)

T,°K	Co (cal./deg./mole)
298	6.01
400	6.36
600	6.88
800	7.34
1000	7. <i>7</i> 9
1100	8.01
1200	6.79
1600	· 7.43
2000	8.07
<b>2100</b> 2200	8.23
to	
3000	8.00

See also equations above

Decomposition Temperature:

Decomposition Products:

Vapor Pressure: For 1949-2054°K the following equation holds:

log P (atm.) =  $-31,066/T + 7.3351 - 2415 \times 10^{-4}$  (where T = absolute temp.

Press. atm.	10-4	10-8	10-2	1
Temp. <b>°K</b>	2450	2700	3000	3850

X-Ray Crystallographic Data:

System	Space Group	а	$\boldsymbol{c}$	Molecules/ Unit Cell
hexagonal cubic	$\begin{array}{c} \mathbf{D_{6h}^4} \\ \mathbf{O_{h}^9} \end{array}$	3.223 3.61	5.123	2

Hygroscopicity:

Solubility Data: Insoluble in water. Soluble in HF, aqua regia, hot phosphoric acid. Slightly soluble in acids.

Zirconium, Zr (page 4)	
Safety Classifications: OSM: (dust) class 1	
ICC: flammable solid; yellow label	
Fire and Explosion Hazard: Dry Zr powder or sponge is a pyrophoric solid liable to spontaneous combustion and burns in air with intense heat. It may explode particularly in the presence of water due to evolution of hydrogen. The explosive range of dust clouds of Zr powder in air is about 45 to 300 mg./l. The range of fire and explosion is increased by heat and the presence of oxidizers.	12, 14, 15, 26, 28
Caution: Do not use water to fight fire. Use special mixtures of dry chemical salt, dry sand, or powdered talc. Use only nonsparking tools for repair or maintenance in storage areas.	<b>49</b> , 51, <b>75</b>
Health Hazard: Zirconium powder is believed to be nontoxic. Zirconium and its alloys explode when treated with nitric acid.  M.A.C. mg./m. ³ :  5	93 12
, .	12
Precautions When Handling:  Zirconium powder (PAPD) is shipped and stored wet. In no case should it be shipped and stored in anything larger than a one-gallon can, nor should the moisture content be reduced to less than 25 percent by volume. Powder containing 5-15% water is extremely dangerous. When once ignited, it burns even more violently than the dry powder. All operations with the powdered metal must be performed in an inert atmosphere, and persons working with it require protective clothing including gloves and face protection. Waste zirconium powder, rags, and other materials that have come in contact with it must be segregated from other wastes, immersed in water, and disposed of at once. At ordinary temperature Zr is not very reactive as a thin protective coating of oxide on the surface is formed. Zr readily combines with oxygen and the rate is appreciable at 200°C. The energy of activation of the reaction has been determined as 18.2 Kcal./mole and the entropy of activation as -25.6 cal./mole.  Zr combines not only with oxygen, but also with nitrogen, carbon, and silicon.  At high temperatures Zr burns with a brilliant white light. When the hot metal is treated with steam at 700-800°C, free hydrogen is evolved.	<b>16</b> 39
Autoignition Temperature: 500°F See FA-PD-M 1-2364 for handling the new type of Zr.	75
Electrostatic Sensitivity (minimum energy required for ignition of powder by electric sparks, millijoules):  (dust cloud) 5 (dust layer) 0.001	26
Use in Pyrotechnics: As a fuel, and a component of nongaseous fuze powders.	17
Additional References:	
1) "The Explosive Characteristics of Titanium, Zirconium, Thorium, Uranium, and Their Hydrides," I. Hartmann et al., Bureau of Mires, RI4835 (Dec. 1951)	
2) "Metallurgy of Zirconium," B. Lustman and F. Kerze, Jr., McGraw-Hill Book Company, New York (1955) for data on the various physical properties of Zr.	

#### ZIRCONIUM HYDRIDE, ZrH₂ (not a definite chemical)

Refs.

Zirconium readily absorbs hydrogen even at room temperature, forming brittle, metallic-like materials whose compositions vary with the amount of hydrogen absorbed and approach  $ZrH_2$  as the limiting maximum hydrogen content. The absorption is reversible and at constant pressure decreases with increasing temperature. The optimum temperature for absorption of H by Zr is given as  $300^{\circ}$ C. However, the data of Addnl. Ref. 4 show a higher absorption at  $20^{\circ}$  and  $150^{\circ}$ C, i.e., 24,000 cc. at S.T.P. per 100 g. of metal and 23,700 cc. at  $300^{\circ}$ C. The absorption of H by Zr is exothermic and results in a large increase in volume, approximately 15%. The absorbed  $H_2$  is completely liberated at about  $800^{\circ}$ C. Absorption depends to some extent on the surface condition of the Zr.

**28, 39,** Addnl. Ref.l *i* 

Zirconium hydrides have been prepared by

- 1) Heating the prepared metal with H₂,
- 2) Forming the metal in the presence of H₂.
- 3) Treating ZrO₂ with CaH₂ at 600-1000° in an atmosphere of H₂.

Although Zr and  $H_2$  do not form definite compounds, five well-defined crystal phases of the two are recognized. These have been designated a,  $\beta$ , etc. The  $\varepsilon$  phase is a face-centered tetragonal phase which includes the range from ZrH 1.67 to close to  $ZrH_2$ , and corresponds to about 66.7 atom % of  $H_2$ .

Specification No.:	MIL- <b>Z-21</b> 353	
Molecular Weight:	93.24	
Crystalline Form: Color:	powder dark grey to black	1 1, 29
Density, g./ml.:	(solid) 5.6 5.74	12 50V15
Coefficient of Thermal Expansion:		
Heat of Formation for <b>ZrH_{1.99}</b> , Kcal./mole:	<b>38.9</b>	50V15
Free Energy of Formation:		
Entropy:		
Melting Point:		
Heat of Fusion:		
Boiling Point:		
Transition Point:		
Heat of Sublimation:		
Heat Content or Enthalpy:		
Heat Capacity:		
Decomposition Temperature:	apparent above 100°C	28
Decomposition Products:	hydrogen driven off	
Vapor Pressure:	· -	

#### Zirconium Hydride, Zrli2 (page 2)

X-Ray Crystallographic Data (for a hydrogen content approaching ZrH₂):

, , , , ,				_		1
System tetragonal	Space Group	<i>a</i> 4.364	c 4.440	Molec Unit	Cell	28
tetragonal (& phase)		3.513	4.450	4	•	Addnl. Ref. 3 44542
Hygroscopicity:						11012
Solubility Data:						
Health Hazard:						
Safety Classifications:						
OSM:			not liste	ed		
·ICC :			not liste			
Fire and Explosion Hazard temperatures ZrH ₂ rea pounds. It may ignite as . See also Ref. 44V42	cts with oxyger	ı and w	ution of h ith oxyg	ydrogen en conta	. At higher ining com-	12, 39
Electrostatic Sensitivity (m	inimum energy	require	d for ign	nition of	powder by	
electric sparks, millijou	les):	_		oud) <b>60</b> ayer)		26
Activation Energy, at 1 atm.	, cal./mole:		17,200	± 200		17
Use in Pyrotechnics:			in ignit <b>a</b> fue	ing flare l	s and as	
Minimum Explosive Conce	ntration of Zirc	onium I	Hydride	Powder,	mg./l. :	26
See Also Addnl. Ref. 1			85			
Autoignition Temperature,	300 <b>–</b> 600°C :		(dust c (dust la	loud) <b>35</b> ayer) <b>27</b>	0	28, 26

#### Additional References:

- 1) T. B. Douglas and A. C. Victor, J. Research N.B.S. 61, 13 (1958).
- 2) "The Explosive Characteristics of Titanium, Zirconium, Thorium, Uranium and Their Hydrides," I. Hartmann et al., Bureau of Mines, RI 4835 (1951)
- 3) "The Crystal Structures of ThH2 and ZrH2", R. Rundle et al., Z. Phys. Chem. 11B, 433 (1931)
- 4) Hall et al., Tran. Far. Soc. 41, 306 (1945) cited in Ref. 40

ZIRCONIUM-NICKEL ALLOY (Powdered)

Refs.

Formula:	(Spec.) Zr/N: 70/30 and 36/70
Specification No.:	MIL-Z-11/10A
The specification covers two types. 'I Zr/Ni alloy.	'ype I is a 70/30 and Type II a 30/70
Molecular Weight:	
Crystalline Form:	cubic
Color:	silver while to grey
Density, g./ml.:	(solid) 6.4
Coefficient of Thermal Expansion:	
Heat of Formation:	
Free Energy of Formation:	
Entropy:	
Melting Point:	
Heat of Fusion:	Promoved
Boiling Point:	- 1
Transition Point:	<u> </u>
Heat of Suclimation:	• ***
Heat Content or Enthalpy:	
Fieat Capacity:	a recompletion, was
Decomposition Temperature:	n of the regulations
Decomposition Products:	n) <del></del>
Vapor Pressure:	T
X-Ray Crystallographic Data:	Production of 1
Hygroscopicity:	and Company and the
Solubility Data:	resistant to acids and 59
Heaith Hazard:	
Safety Classifications: OSM:	(dust) class 2
ICC:	not insted
Fire and Explosion Hazard: The specifica in heat sealed inert plastic liners, suc containers.	tion requires that the alloy be packed th as polyethylene, in new clean metal
Electrostatic Sensitivity:	
Use in Pyrotechnics:	as a fuel ; a vigorous deoxidizer
Additional References:	

1) For the Zr-Ni system up to 40% Ni see E. T. Hayes et al., "The Zirconium-nickel diagram," Trans. Amer. Soc. Metals, \$893 (1953)