调和点列在圆雕曲线中应用(极点板线)总	
(不要妄悼跳)过调和点列贷习被点被我)(红笔	部分可以此人
一. 调和点列的由来	15. 41.29 to the parties of the
给定四个复常数a,b,c,d,对任一复数(或	形式)w,定义分式线性函数w=fcz)= 03+0,它给
出的映射移为分式我性映射。任验定了平面上	三不同点了 32, 33. 及心平面上三不同点心, W2, W2,
存在唯一分式线性度换,将 3., 72. 37 商为 W.,	Wz.Wz, 这义交比(U, U); Wz.Uz), 以为一个平面对应任
	·换中字恒,即(3,31;72,33)=(w,w,;W2,W3)。其中,
	以的分子或分母逐为1,如以200,证机,如如300
对解析平面中-直线上四点 A.B.C.D. 记	交比LAB; CD)= OAI-10cl: OBI-10cl (0的直线上任-运点
若(AB; CD) = 10A1-1001: 10A1-1001 = -1. 则初.A.B	3. C.D为调和点到 LAB与CD位置可交换), C部为A.B.内分
点,D科为A.B外分点,四个点,位置关系大概	do F:
A C B	
二.调和点,到的比例性质	
(1) 由没义知,IACIIBOI= IADIIBCI,而且A.F	3. C. D等价。
$(2) \frac{1}{ AC } + \frac{1}{ AO } = \frac{2}{ AB } \circ$	
证明: ICBIIAOI = IACIIBOI COICIAC	C(+ (CB)+1BD) - AC 1BD1 =0,
: IACT+IACICOI+IACIBOI+IACICOI+	1 CB1 2 + 1 CB1 1 BV 1 + 1 AC1 2 + 1 AC 1 CB1 = 2 AC1 2 + 2 (AC 1 CB) + 2 AC 1 BV
: IACI + IACI+ICAI+IBDI - IACI+ICAI	tit.
(3) [ABICO] = 2 (ADIIBC) .	
WEBA: : CAILAO = LACLIBO . : CAILLACT+	ICB(+1801)= IACIIBDI,
	= 21AC11CA1+21CB12+21CB11BD1.
: IABIICOI=21ADIIBCI,将证。	
4,记M为AB中东,,柯 1CA 11CB (= 1GU11CD)。	
VEBA: : (CBITADI = LACTIBOT, : (CBICLACI+1)	CB(+1801) = [AC(180],
:. 2 [ACTICA] = IACTICA + (CAT + IACTI	BOI-1081(BDI.
2 2 CATICAL = CICAL- (CBI) CICAL+180	11), 得证。
三. 调和点列与直线外一点,	
对共线四点 ABCD 改直线外一点 X,以下四	个命趣中,任禹两个能推出另外两个:
WA.C.B.D 初调和点到 CC和AB内分点, DS	カAB外分点,);
121 XC为ZAXB内角平分级;	X
sh XD 为ZAXB外南平分战;	
(4) XCIXD.	

证明: (2).(3).(4)任意两个命题显然可以推出第三个命题。	
先证明自平分残灾理。	
过A.B/0岛/17 XC垂截,重定分别为E.F. ΔXAE~ΔXBF, ΔCAE~ΔCBF, 可知 XB=AC,	
过D1FDG11XA交XBJG,则XG=DG, AGDB~AXAB, 代放运算可知赞=能,	MEGL
于是,(1) ⇔ 能 = 般。 (2) ⇔ 始 = 般。(3) ⇔ 始 = 能,任意多价是可以推出第三个	命敬。
通过反证法得出、(17(4) ⇒(2)(3):	
作XC'平分ZAXB交AB于U, XD'平分ZAXB外角交AB于D,	أستست
则XC'LXO', A,C',B.D'为调和点到。	
· 器= 能, 部=Ac' . I.岩 Ac' < AC, 网Bc'>BC, 部 <部,由心啊关系, AD' < AD, B	D' <bd.< td=""></bd.<>
"AB为定值、: 器、>器、矛盾。I.若Ac'>Ac,则Bc' <bc, 器="">器、由心所采名、At</bc,>	
BD'>BD,: 船 <部, 矛盾。于是 C'与 L, D'与D重合, 将证。	
四. 极点极线 (本部分暂下予以证明)	
1. 代勤定义: 对圆雕曲我 Ax2+By2+Cxy+Dx+Ey+F=0, 及平面内-点, P(20, yo).	
直线 Anox+ By,y+ = C(noy+yox)+ =D(x+no)+ =E(y+yo)+ F=0 为P的极线, P为直线的	均极点,
2.12何定义:对圆罐曲钱C和点P,	
当P在C上时,P点的切线为P的极线、P为某极点;	
当P不在C上时,过P作任-交C于A.B两点的直线,都有唯一点及使P.Q.A.B组成	调和点
列,此时Q的轨迹包含于直线,P为其极点,直线为P的极线。	
3. 注: 代數定义与几何定义等价;	
极点在曲线外时,极锐为切点,强;极点,在曲线上时,极线为切线。	
五. 被点,极线有关性质 (本部分暂不予以证明)	
,对-确定二次曲线,平面内任一点,有且只有一般线,平面内任-直线,有且只有一般点,。	
2. 配极原则:对-确定=次曲弦, P极锐过Q⇔Q极线过P; p极点在g上⇔g极点,在p上	. ,
3. 两点连线的极点,为两点,秘统的交点,;两线交点的极铁为两战极点,们连线。	
4. 顶点均在一二次曲线上的四边形 ABCD,满足 AC与BD交点,为 AB与CO交点及AD与BC交点连线自	7极点.
4. Jy 高 / 对 / C 一 / / 网 7人 上 (4) 14 JE 17 A DOOD / 11 J R FO 4 JOS (11) 10 10 4 4 5 10 10 10 10 10 10 10 10 10 10 10 10 10	
- 1985년 - 1985	