A Comparison of PCA, Lasso and AE for Dimensionality Reduction with SVM

Ashley Babjac 3/16/22

Background

- Using three datasets to compare
 - TARA: Predicting ocean regions from metagenome assembled genomes coming from ocean water
 - Rhizo: Predicting drought tolerance given OTU tables
 - GEM: Predicting cultured/uncultured status based on organism fine/coarse grained abundances
- Each dataset consists of metadata and features

Example of the data

	latitude	longitude	depth	(more metadata)	organism1_ abundance	organism2_ abundance	 organismN_ abundance
Site 1	coor1	coor1	15.1		0	1	 5
Site 2	coor2	coor2	1.5		4	2	 3
Site N	coor3	coor3	20.6		0	0	 0

Pipeline

- 1. Read in/pre-process data (if necessary)
- 2. Call SMOTE (necessary for TARA, optional for GEM)
- Run feature selection
 - a. Either PCA/Lasso/AE
- 4. Use the resulting features to call SVM

Note: Both feature selection methods and SVM are using 5-fold cross validation with GridSearch of standard parameters.

Results TARA

TARA: Arctic Ocean

TARA: Indian Ocean

TARA: Mediterranean Sea

TARA: North Atlantic

TARA: North Pacific

TARA: Red Sea

TARA: South Atlantic

TARA: Southern Ocean

TARA: South Pacific

Results Rhizo

Rhizo: Drought Tolerance

Results GEM

GEM: Cultured/Uncultured

Could not get PCA to run

Results TARA (no metadata)

TARA: Arctic Ocean

TARA: Indian Ocean

TARA: Mediterranean Sea

TARA: North Atlantic

TARA: North Pacific

TARA: Red Sea

TARA: South Atlantic

TARA: Southern Ocean

TARA: South Pacific

Results Rhizo (no metadata)

Rhizo: Drought Tolerance

Results GEM (no metadata)

GEM: Cultured/Uncultured

Could not get PCA to run

Conclusions

- PCA, Lasso, and Autoencoders seem relatively comparable if we include the metadata
 - Best model is generally AE, but sometimes Lasso or PCA does slightly better
- Autoencoders consistently do the best when we remove metadata
 - Lasso seems to have trouble picking out "good" features when there is no metadata
 - PCA never finished on GEM but seems inconsistent in terms of whether it produces a good feature selection or not

General insights about runtimes

- Autoencoders run by far the fastest on large datasets
 - AE+SVM: ~3 hours on GEM
 - Lasso+SVM: ~6 hours on GEM
 - PCA+SVM: Ran for >24 hours and never finished for GEM
- Small datasets the runtimes didn't make much difference but PCA generally ran the fastest

Current problems/Next steps

- Having an issue with Lasso where all coefficients are being set to 0 (i.e. nothing is deemed important)
 - a. Owen suggested trying lower alpha values
 - b. Also going to do a test for multicollinearity
- 2. Cai suggested summarizing in a table with error bars
 - a. Going to switch over to AUC instead of accuracy, but this is on my to-do:)
- 3. Still having an issue with PCA
 - a. Appears to just hang in the terminal for certain grid search parameters?
 - b. Run it on UTK's ISAAC?