Chapitre 9

Récursivité

L.ZERTAL

Chapitre 9 La récursivité

I Fonctions récursives

Utilisation : Elles permettent de réaliser les suites récurrentes.

I.1) Un exemple basique: La fonction factorielle

N! = 1*2*3*4*...*(N-1)*N ou N! = N*(N-1)*(N-2)*...*2*1

Soit l'algo itératif qui réalise cette fonction :

fonction Facto (n : entier) : entier	Ord	Lexique
F ← 1		i (entier) : compteur
<u>pour</u> i ← 1 <u>à</u> n <u>faire</u>		
F← F*i		F (entier) : résultat
fpour		
Facto ← F		

Rappel: Facto(0) = Facto(1) = 1

Facto(n)= Facto(n-1)*n, avec $n \ge 0$

<u>Décomposition</u>: $F \leftarrow F^*i$

On peut calculer F(n) si on connaît F(n-1)

On peut calculer F(n-1) si on connaît F(n-2)

.....

On peut calculer F(1) si on connaît F(0) = 1

Le calcul s'arrête lorsque la valeur de n = 0 ou n = 1

L.ZERTAL :

Chapitre 9 La récursivité

Nouvelle formulation:

fonction Facto (n : entier) : entier	Ord	Lexique
<u>si</u> n ≤ 1 <u>alors</u>		
Facto ← 1		
<u>sinon</u>		
Facto ← Facto(n-1)*n		
Fsi		

- ➤ On appelle la même fonction sur une valeur différente.
- Elle fait appel, ou référence, à elle-même pour se définir.
- > Une telle fonction est dite fonction récursive.

L.ZERTAL 5

Chapitre 9 La récursivité

Exemple d'utilisation :					
algo Calcul_Facto	Ord	Lexique			
ecrire(Facto(3))		Facto(fonction /entier) : factorielle			

Les variables n_1 , n_2 , n_3 , n_4 sont créées lors des activations successives de la fonction **Facto**. Elles ne sont utilisées qu'au retour du niveau d'activation suivant, c.a.d dans l'ordre **inverse** où elles ont été créées.

Ce sont des variables mémoires gérées en pile (First In, Last Out ou Last In, First Out) : premier créé dernier utilisé (ou dernier)

La pile d'exécution est un emplacement mémoire destiné à conserver les paramètres, les variables locales ainsi que les adresses de retour des fonctions en cours d'exécution.

Dans un algorithme :

A chaque appel de fonction (ou module) ⇒ création d'une pile d'exécution propre à l'appel en cours.

- ➤ Au départ ⇒ elle est vide
- ➤ A chaque appel ⇒ tous les objets qui composent l'environnement d'exécution sont empilés
- les appels s'arrêtent lorsque la pile est vide

(ou encore : Lorsque les appels sont terminés ⇒ La pile est vide)

L.ZERTAL

L.ZERTAL 9

Chapitre 9 La récursivité

I.2 Définition

- ☐ Une fonction récursive FR est une fonction dont le résultat est défini à partir d'un ou plusieurs appels d'elle-même dans l'algorithme qui la définit. Les appels récursifs s'arrêtent lorsqu'une certaine condition, dite condition d'arrêt, est vérifiée.
- ☐On peut définir sa forme comme suit :

FR = Fonction(X, **FR**)

où X est un ensemble de *règles* ou de *fonctions* connues et Fonction une combinaison de X et de FR.

□On parle de *fonction récursive terminale* si tout appel récursif à la fonction ne nécessite aucun calcul ni composition de calculs sur la fonction.

Exemple:

La fonction factorielle n'est pas une fonction récursive terminale car sa dernière instruction n'est pas un appel pur de la fonction mais une combinaison d'un appel et d'un produit.

I.3 Performances

- La grande majorité des langages de programmation intègrent cette technique de programmation, correspondant à ce type de raisonnement (récursion) qui est extrêmement puissante.
- > Elle est élégante dans l'écriture car elle permet d'aboutir à des programmes concis et proches de la formulation mathématique du problème.
- Mais c'est une forme de programmation généralement gourmande en place mémoire et en temps d'exécution :
 - ✓ chaque appel récursif oblige le processeur à différer les traitements et calculs en cours en empilant des variables *locales* à l'appel courant.
 - ✓ La pile peut être rapidement saturée en fonction du nombre d'appels (correspondant à la profondeur de la *récursion*).
- ➤ On l'utilise quand on ne peut résoudre le problème de manière itérative.
- ➤ On l'utilise quand on ne peut faire autrement surtout s'il s'agit de résoudre des problèmes portant sur des données de type récursif. <u>Exemple</u>: le type arbre, le type liste,...

L.ZERTAL 1

Chapitre 9 La récursivité

Remarque:

Il est prouvé que tout algorithme *récursif* peut être remplacé par un algorithme *itératif* (de type récurrent : usage de boucles ou itérations conditionnelles ou non) essentiellement dans le cas de récursion terminale.

I.V Exemple

Soit la chaîne "12345".

On veut déterminer la chaîne *miroir* (inverse) de cette chaîne : "12345" ⇒ "54321"

Soit la fonction récursive Miroir qui trouve le miroir de cette chaîne.

```
Miroir ("12345") = Miroir("2345") | '1'
```

```
Miroir ("2345") = Miroir("345") | '2'
Miroir ("345") = Miroir("45") | '3'
Miroir ("45") = Miroir("5") | '4'
```

Miroir ("5") = '5'

ou

Miroir("5") = Miroir("") | '5' et Miroir("") = ""

L.ZERTAL 13

Chapitre 9 La récursivité

fonction Miroir (ch : chaine) : chaine	Ord	Lexique
si longueur(ch) > 1 alors		
Miroir ← Miroir(ch[2longueur(ch)]) ch[1]		
sinon		
Miroir ← ch		
fsi		

II Module récursif

II.1 Définition

Un module récursif est un module qui est défini à partir d'un ou de plusieurs appels de lui-même.

II.2 Exemples

a) Le tri

On utilisera le tri par échange.

L'exemple du tri d'une table illustre un autre principe de récurrence lié à l'utilisation d'un type de données à forme récurrente : la table.

L.ZERTAL 15

Chapitre 9 La récursivité

Principe :

- La table est triée jusque l'élément n° (binf -1) où binf est l'indice de la première case non triée
- > On cherche le minimum entre binf et bsup
- On l'échange avec la case n° binf
- ➤ On recommence selon le même principe à partir de binf+1
- On s'arrête quand le nombre d'éléments à trier = 0 (ou =1) (une table où il y a un seul élément à trier est déjà triée)

module TriEchange (↓ binf,bsup:entier; ‡ T:T_Tabent)	Ord	Lexique
<pre>si bsup ≠ binf alors Echange (T[binf], T[RechPosmin(binf, bsup,T)]) TriEchange(binf+1,bsup,T) fsi</pre>		Echange (module) : échange le contenu de deux cases de la table RechPosmin(fonction /entier) : calcule la position du minimum
	ı	I

L.ZERTAL 17

Chapitre 9 La récursivité

Exemple: Soit le tableau T à trier suivant : 1 2 3 4 3 5 1 2 ➤ TriEchange(1, 4, (3-5-1-2)) ⇒ ✓ Echange(T[1],T[3]) ➤ TriEchange(2, 4, (1-5-3-2)) ⇒ ✓ Echange(T[2], T[4]) ➤ TriEchange(3, 4, (1-2-3-5)) ⇒ ✓ Echange(T[3], T[3]) ➤ TriEchange(4, 4, (1-2-3-5)) ⇒ fin car la condition d'arrêt est vérifiée

b) Les tours de hanoï

L.ZERTAL 19

Chapitre 9 La récursivité

- □On dispose de 3 tours et de *n* disques de tailles différentes
- \square Les *n* disques sont disposés sur une tour
- ☐On ne peut déplacer qu'un seul disque à la fois
- ☐On ne peut empiler un disque sur un autre de taille plus petite
- ☐On veut déplacer les disques d'une tour à une autre

Hypothèses:

- On sait déplacer (n-1) disques d'une tour (source) à une autre (destination)
- ❖ On sait faire le déplacement d'un disque

L.ZERTAL 21

Chapitre 9 La récursivité

Il en ressort les 3 étapes suivantes :

- 1. Déplacer n-1 disques de Source ⇒ Auxilliaire
- 2. Déplacer 1 disque vers Destination : action élémentaire
- 3. Déplacer n-1 disques de Auxiliaire ⇒ Destination

L.ZERTAL 23

Chapitre 9 La récursivité

```
module Hanoi (↓n: entier; ↓Source, Aux, Dest: entier)

si n ≠ 0 alors

| Hanoi(n-1, Source, Dest, Aux)

| Deplacer (1, Source, Dest)

| Hanoi (n-1, Aux, Source, Dest)

fsi
```

Remarque:

- Pour n disques, on effectue 2ⁿ-1 déplacements.
- Ce problème a été posé par le mathématicien Lucas Edouard [1842-1891])