58. RECTAS CORTADAS POR UNA SECANTE. Al cortar dos rec-

tas, AB y CD (Fig. 45) por una tercera recta SS' llamada secante, se forman 8 ángulos, 4 en cada punto de intersección.

59. ANGULOS IN TERNOS. Son los ángulos 24, 23, 26, 25.

60. ANGULOS EX-TERNOS. Son los ángulos $\angle 1$, $\angle 2$, $\angle 8$, $\angle 7$.

Fig. 45 shiftened reinnighted

61. ANGULOS ALTERNOS. Son los pares de ángulos 23 y 25; 24 y 26; 21 y 27; 22 y 28.

Los ángulos alternos pueden ser:

alternos internos: \(\alpha \) y \(\alpha \); \(\alpha \) y \(\alpha \);

2) alternos externos: ∠1 y ∠7; ∠2 y ∠8:

62. ANGULOS CORRESPONDIENTES. Son los pares de ángulos ∠1 y ∠5; ∠2 y ∠6; ∠3 y ∠7; ∠4 y ∠8.

63. ANGULOS CONJUGADOS. Son dos ángulos internos, o dos externos, situados en un mismo semiplano respecto a la secante.

Los ángulos conjugados pueden ser:

∠3 y ∠6; ∠4 y ∠5; 1) con jugados internos:

2) conjugados externos: \(\(\text{2 y } \(\text{7}; \) \(\text{1 y } \(\text{8}: \)

64. PARALELAS CORTADAS POR UNA SECANTE. POSTULADO:

"Toda secante forma con dos paralelas ángulos correspondientes iguales".

Si $\overrightarrow{AB} \parallel \overrightarrow{CD}$, se verifica (Fig. 46);

$$\angle 1 = \angle 5$$
 $\angle 3 = \angle 7$
 $\angle 2 = \angle 6$ $\angle 4 = \angle 8$.

65. LEMA. Admitido el postulado anterior se Fig. 46 demuestra que "Si una se