Back to: Behaviors = (Poor Man's) Control Theory?!?!

yes and no...

some additional crucial issues:

- need for good system models for control theory
 - see example of underwater robot
 - decoupling to keep things manageable, e.g., considering diving control loop independent from motions in 2D plane
 - hence very good for designing single behaviors
- how to combine control-loops/behaviors
 - matters of architecture

Hierarchical Programming with Behaviors

- Herbert Jäger
- behaviors
 - as dynamical systems
 - using ordinary differential equations (ODEs)
- agents have modes
 - coherent, relatively stable "frames of mind"
 - used to tune into different situations and tasks
 - especially, different responses to sensory signals
- transitions between modes
 - "formally" a bifurcation (dynamical systems)
 - regulated by the ODEs
 - in contrast to FSM / subsumption architecture
 - naively speaking: sigmoid versus if (= step function)

behaviors

- main building blocks of a DD robot architecture
- ordered in levels

bottom level

- elementary behaviors
- sensomotoric
- direct access to sensor data and actuators

higher levels

- increasingly comprehensive
- also access to sensors
- cannot activate actuators
- regulate modes

- elementary behaviors
 - are different from higher-level behaviors
 - made from two subsystems
 - target & activation dynamics

b)

b)

- target dynamics
 - calculates target trajectories for all actuators
 - which are relevant for the behavior
 - target dynamics should not undergo bifurcations
 - naively speaking: simple control functions

b)

- activation dynamics
 - regulates a single variable,
 - the behavior's activation
 - should have a dynamic range between 0 and 1
 - i.e, ranging from inhibited to fully active
- are allowed to undergo bifurcations
 - control parameters which induce these bifurcations
 - are the activation variables of higher-level behaviors

Example

- AUV diving through cave
 - fully actuated, i.e., surge, sway, heave
 - 5 pencil beam sonars: forward, left, right, down, up
- 4 processes
 - forward
 - obstacle avoid. (slow forward down on forward-sonar reading)
 - vertical alignment (center AUV between up/down readings)
 - horizontal alignment (center AUV between left/right readings)
- with Dual Dynamics
 - use of the alignment errors
 - to damp forward activation

(you can also think about using PDL processes to program this)

Modern Al Architectures

- typically *hybrid*, i.e., combine aspects of behaviors (low-level control) and higher level action-oriented planning (aka cognitive control)
- higher levels simply activate/deactivate behaviors
- no exploitation of side-effects in contrary, avoiding them

Hierarchies with Actions and Behaviors

hybrid architectures

- "lower" level(s): behaviors
- "higher" levels: world-modeling & planning
 - "cognitive" functions (e.g., problem solving, reasoning)
 - "actions" as activations and deactivations of behaviors (can be also layered, e.g., via Dual Dynamics)
 - plus continuous behaviors, e.g., for safety fct's etc.

Hierarchies with Actions and Behaviors

roughly speaking

- behaviors take care of the "here and now"
- actions are a good basis for "long-term" goal-oriented guidance of the system