Representing Word as Vectors

Guanlin Li

Dec. 2 2016

PARTI

- Traditional Language Model Review
 - Modelling Language? Generative Model
 - Perplexity with Intuition
 - Sparsity with Intuition (I hope)
- Intro to Neural Probabilistic Language Model
 - Symbol-in Symbol-out
 - Self Supervision
 - By Product

PART II

- Word Embedding Basic Models
 - Word2vec
 - GloVe
- Representation Learning of Lexical Meaning
 - Sentiment Embedding
 - Topical Embedding
 - Discourse Relation-aware Embedding

PARTI

- Traditional Language Model Review
 - Modelling Language? Generative Model
 - Perplexity with Intuition
 - Sparsity with Intuition (1 hope)
- Intro to Neural Probabilistic Language Model
 - Symbol-in Symbol-out
 - Self Supervision
 - By Product

Human Language & Linguistics: in a few words

- Human Language is the ability to acquire and use complex systems of communication.
- Modern Linguistics: analytic study of language
 - Morphology
 - Syntax
 - Semantics
 - Pragmatics

Language Ability

Syntax & Chomsky

Generative Grammar

- Kind of modelling the language production process of human being
- In a very formal, abstract way

Noam Chomsky

Traditional (Statistical) Language

A Probability distribution over a whole sequence

$$-X \sim P(\cdot)$$

- The property of natural language utterance
 - Segment after segment.
 - A linear structure: from left to right, word by word
- Chain rule can be used without extra assumption

$$-P(w_1, w_2, w_3) = P(w_1)P(w_2|w_1)P(w_3|w_1, w_2)$$

Parameter of the model
$$P(dog|walk) = \frac{count(walk, dog)}{count(walk)}$$

$$P(w_n|w_1,\ldots,w_{n-1})$$

Markov Chain is a natural way of modelling distribution over sequence

$$-P(w_1, ..., w_n) = P(w_1|start)P(w_2|w_1) ... P(w_n|w_{n-1})P(stop|w_n)$$

First-order Markov Assumption:

Given the previous state, the probability of the current state is independent of the history, $P(w_n|w_1, ..., w_{n-1}) = P(w_n|w_{n-1})$.

- If we work with 1st order Markov assumption to model language, we get a bigram model
 - $P(w_i|w_{i-1})$ are the parameters
 - $-w_i \in \{stop\} \cup V, w_{i-1} \in \{start\} \cup V$
 - So if we have a vocabulary size of 10000, we are going to have 10001^2 parameters, $|V|^2$

- If we work with 2st order Markov assumption to model language, we get a 3-gram model
 - $P(w_i|w_{i-1}, w_{i-2})$ are the parameters
 - $-w_i \in \{stop\} \cup V, w_{i-1} \in \{start\} \cup V, w_{i-2} \in \{start\} \cup V$
 - Approximately 10000³ parameters
 - Longer context (

n-gram language model:

An n-gram language model consists of a finite set V, and a parameter $q(w_t|w_{t-1},...,w_{t-n+1})$ for each n-gram $w_{t-n+1},...,w_t$ such that $w_{t-i} \in V \cup \{stop\}$, and $u,v \in V \cup \{*\}$.

An example - trigram

- q(w|u,v) can be seen as the prob. of seeing w after seeing bigram u,v
- For any sentence, $x_1 \dots x_n$ where $x_i \in V$ for $i = 1 \dots (n-1)$, and $x_n = stop$, the prob. of the sentence under the trigram model is
 - $P(x_1, ..., x_n) = \prod_{i=1}^n q(x_1|x_0, x_{-1})$, where $x_{0,-1} = *$

Generative Power

- Once we use maximum likelihood estimation to estimate q(w|u,v) with count ratios over a corpus, we can get a generative model
- That is: start from arbitrary word w_1 , run simulation

Don't be perplexed with Perplexity

- Evaluation of a learned language model
 - Suppose we have two language model $\mathcal{M}_1, \mathcal{M}_2$, estimated on \mathcal{L}_{train}
 - Given \mathcal{L}_{test} , we can compute the probability P_i , $i=\{1,2\}$, of generating \mathcal{L}_{test} under $\mathcal{M}_1,\mathcal{M}_2$
 - According to Maximum Likelihood Principle, the better one, the bigger P_i
- $P_i = \prod_{k=1}^N P_{\mathcal{M}_i}(x^k) = \prod_{k=1}^N \prod_{j=1}^{l^k} q(x_j|x_{j-1}, x_{j-2})$
 - where $x^k \in \{x^1, ..., x^N\} = \mathcal{L}^{test}$
 - Too small

Don't be perplexed with Perplexity

- Perplexity over a word
 - Defined as 2^{-l} , l is average log-likelihood of a word
 - $-l = \frac{1}{M} \sum_{k=1}^{N} log P_{\mathcal{M}_i}(x^k)$, word number $M = \sum l^k$
- Information Theory
 - logP(X = x) is the surprisal of observing an event x
 - The code length we encode this event using 0-1 code, according to frequency

Don't be perplexed with Perplexity

- Since $log P_{\mathcal{M}_i}(x^k) = \Sigma log q(w_i|w_{i-2}, w_{i-1})$
 - $-\log q(w|\cdot)$ means surprisal of observing a w, given context, it is the bits need to encode the random event
 - Sum them all and average! We got average bit length to encode any word.
- Since binary coding, we can compute the total word number it could represent
 - -2^{-l} , this is like the actual vocabulary size after compression

The Problem of Sparsity

- If everyday usage, vocabulary size of 5000, we have 5000^3 parameters, it is 1.25×10^{11}
- Sentence average length 20, 20 triples per sentence
- We need at least 6.25×10^9 sentence with no repeatable triples, can we have every parameter q(.|...) not being zero

$$P(x^{i}) = ... q(x_{t}^{i} | x_{t-2}^{i}, x_{t-1}^{i})...$$

The Problem of Sparsity

- Discrete makes interpolation difficult 美洲鬣蜥蜴
 - The dog is chasing the cat.
 - q(cat|chasing,the) (**)

- The dog is chasing the iguana.
 - q(iguana|chasing,the)

• If the corpus has iguana and cat cooccur with animal. We can use the knowledge to smooth the prediction.

The Problem of Sparsity

The word cat iguana and animal need to share their information of cooccurrence

PARTI

- Traditional Language Model Review
 - Modelling Language? Generative Model
 - Perplexity with Intuition
 - Sparsity with Intuition (I hope)
- Intro to Neural Probabilistic Language Model
 - Symbol-in Symbol-out
 - Self Supervision
 - By Product

- Statistical Language Model
 - $-P(w_i|context)$
 - Count, count; too young, too naïve!
- Change model of $P(w_i|context)$
- Make discrete → continuous
 - Continuousness guarantees neighborhood smooth
 - Model P as continuous density
 - Conditional distribution
 - Ah Hah! Neural NetWORKS!

- 1. Associate with each word in the vocabulary a distributed word feature vector (a real-valued vector in \mathbb{R}^m)
- Express the joint probability function of word sequences in terms of the feature vector of these words in the sequence
- Learn simultaneously the word feature vectors and the parameters of that probability function

Vocabulary: real word vectors

1. Associate with each word in the vocabulary a distributed word feature vector (a real-valued vector in \mathbb{R}^m)

Symbol-in

One-hot |V|-dim

Vocabulary: real word vectors

2. Express the joint probability function of word sequences in terms of the feature vector of these words in the sequence

P(*Output*|*Input*)


```
P(the|...) P(life|...) P(one|...)
      P(good|...) P(is|...) P(inspiration|...)
                   b
                                                     a
    h
                                                     n
                                  n
```

```
P(the|...) P(life|...) P(one|...) P(by|...)
      P(good|...) P(is|...) P(inspiration|...)
                           . . .
                              0
                                           b
                                                         a
    h
                                                         n
                                    n
```

```
P(the|...) P(life|...) P(one|...) P(by|...)
      P(good|...) P(is|...) P(inspiration|...) P(love|...)
                                         b
                                   n
```

```
P(the|...) P(life|...) P(one|...) P(by|...) P(and|...)
      P(good|...) P(is|...) P(inspiration|...) P(love|...)
                                      ---
                                        b
                                  n
```

```
P(the|...) P(life|...) P(one|...) P(by|...) P(and|...)
      P(good|...) P(is|...) P(inspiration|...) P(love|...) P(guided|...)
                                  n
```

```
P(the|...) P(life|...) P(one|...) P(by|...) P(and|...) P(by|...)
      P(good|...) P(is|...) P(inspiration|...) P(love|...) P(guided|...)
                                                n
```

```
P(the|...) P(life|...) P(one|...) P(by|...) P(and|...) P(by|...)
      P(good|...) P(is|...) P(inspiration|...) P(love|...) P(guided|...) P(knowledge|...)
```

```
P(the|...) P(life|...) P(one|...) P(by|...) P(and|...) P(by|...)
     P(good|...) P(is|...) P(inspiration|...) P(love|...) P(guided|...) P(knowledge|...)
```

П

```
P(the|...) P(life|...) P(one|...) P(by|...) P(and|...) P(by|...) P(.|...) P(good|...) P(is|...) P(inspiration|...) P(love|...) P(guided|...) P(knowledge|...)
```


Result

	n	c	h	m	direct	mix	train.	valid.	test.
MLP1	5		50	60	yes	no	182	284	268
MLP2	5		50	60	yes	yes		275	257
MLP3	5		0	60	yes	no	201	327	310
MLP4	5		0	60	yes	yes		286	272
MLP5	5		50	30	yes	no	209	296	279
MLP6	5		50	30	yes	yes		273	259
MLP7	3		50	30	yes	no	210	309	293
MLP8	3		50	30	yes	yes		284	270
MLP9	5		100	30	no	no	175	280	276
MLP10	5		100	30	no	yes		265	252
Del. Int.	3						31	352	336
Kneser-Ney back-off	3							334	323
Kneser-Ney back-off	4							332	321
Kneser-Ney back-off	5							332	321
class-based back-off	3	150						348	334
class-based back-off	3	200						354	340
class-based back-off	3	500						326	312
class-based back-off	3	1000						335	319
class-based back-off	3	2000						343	326
class-based back-off	4	500						327	312
class-based back-off	5	500						327	312

- Speed up
 - Why?
- Layer-wise computation
- Where is the bottleneck?

- Input
 - $-C: m \times |V|$
- Input2Hid
 - $-H: h \times (n-1)m$
- Hid2Out
 - $-U: |V| \times h$
- Input2Out
 - $-W: |V| \times (n-1)m$

Basic computations

- Look-up
- Add
- Multiply
- Tanh
- Concat
- Divide

- Input2Out: 2|V|(n-1)m- $W \cdot x$
- Hid2Out: 2|V|h
 U · tanh (...)
- Input2Hid: $\frac{2h}{n} \times (n-1)m$ - $H \cdot x$
- n-1 Look-ups

- $|V| \gg m, h, n$
- Input2Out: 2|V|(n-1)m- $W \cdot x$
- Hid2Out: $\frac{2|V|h}{V \cdot tanh (...)}$
- Input2Hid: $2h \times (n-1)m$ - $H \cdot x$
- n-1 Look-ups

Future work:

- Representing conditional probability with a tree structure
- Propagating gradients only from a subset of the output words

Bonus!

- Think, think, imagine, imagine!
 - Where do them first share information?

The word cat iguana and animal need to share their information of cooccurrence

Outline

PART II

- Word Embedding Basic Models
 - Word2vec
 - GloVe
- Representation Learning of Lexical Meaning
 - Sentiment Embedding
 - Topical Embedding
 - Discourse Relation-aware Embedding

- CBOW
 - Continuous Bag of Words

Tomas Mikolov

Skip-gram

Tomas Mikolov

Tomas Mikolov

Research scientist, Facebook Artificial Intelligence, Machine Learning, Language Modeling 在 fb.com 的電子郵件地址已通過驗證

標題 1-20	引用次數	年份
Distributed representations of words and phrases and their compositionality T Mikolov, I Sutskever, K Chen, GS Corrado, J Dean Advances in neural information processing systems, 3111-3119	2480	2013
Efficient estimation of word representations in vector space T Mikolov, K Chen, G Corrado, J Dean arXiv preprint arXiv:1301.3781	2308	2013
Recurrent neural network based language model. T Mikolov, M Karafiát, L Burget, J Cernocký, S Khudanpur Interspeech 2, 3	897	2010
Linguistic Regularities in Continuous Space Word Representations. T Mikolov, W Yih, G Zweig HLT-NAACL 13, 746-751	705	2013
Distributed Representations of Sentences and Documents. QV Le, T Mikolov ICML 14, 1188-1196	674	2014
Extensions of recurrent neural network language model T Mikolov, S Kombrink, L Burget, J Černocký, S Khudanpur 2011 IEEE International Conference on Acoustics, Speech and Signal	361	2011
On the difficulty of training recurrent neural networks. R Pascanu, T Mikolov, Y Bengio ICML (3) 28, 1310-1318	308	2013
Devise: A deep visual-semantic embedding model A Frome, GS Corrado, J Shlens, S Bengio, J Dean, T Mikolov Advances in neural information processing systems, 2121-2129	282	2013
Statistical Language Models Based on Neural Networks T Mikolov Ph. D. thesis, Brno University of Technology	238	2012
Exploiting similarities among languages for machine translation T Mikolov, QV Le, I Sutskever arXiv preprint arXiv:1309.4168	214	2013
Strategies for training large scale neural network language models T Mikolov, A Deoras, D Povey, L Burget, J Černocký Automatic Speech Recognition and Understanding (ASRU), 2011 IEEE Workshop on	153	2011

Google 學術搜尋

≧ 追蹤 ▼

建立我自己的個人學術檔案

Q

引又指數			全部	目 2011 年		
引文			9877	9809		
H 指數			25	25		
i10 指數			36	35		
2042 2042	2014	2045	2016			
2012 2013	2014	2015	2016			

共同作者 查看所有共同作者...

Lukas Burget Jeff Dean Jan Cernocky Greg Corrado Kai Chen Stefan Kombrink Martin Karafiat Ilya Sutskever Anoop Deoras Armand Joulin Sanjeev Khudanpur Scott Wen-tau Yih Jon Shlens Samy Bengio Andrea Frome Quoc V. Le Yoshua Bengio Oldřich Plchot

Pavel Matejka Razvan Pascanu

Tomas Mikolov

Who is Tomas Mikolov and why did he leave Google?

I've been blown away by Mikolov's work, starting with his doctoral work on language modeling.

- a) how did a graduate of a relatively unknown university 🗗 become so influential in ML?
- b) Mikolov recently left Google Brain, notably releasing word2vec ☑, for Facebook Al Research. Why leave such a strong team?

How did a graduate of a relatively unknown university became so influential in ML?

Coming from the non-Ivy League university doesn't prevent you from succeeding. Of course, being taught by top researchers helps and in many cases the equipment matters a lot. But in math and CS it's sheer determination and constructive approach that allows you to have an impact and get to the right environment. IMO, a certain psychological bias also takes place here - people are intimidated by the results produced in top universities and it sets back their passion. We talked a bit about the general type of people in ML research - universities, fields of study they come from and so on. He is opposed to any elitism in research departments and grad schools and says that more young people should be given such opportunities based on merit.

Tomas Mikolov

A Neural Probabilistic Language Model, Bengio et al. 2003

引文總數 被引用 1808 次

- Bengio's seminal work has gone through very few attentions over almost ten years. However, gold will never vanish through time.
- Mikolov found that glittering gold, and first he designed and implemented a Recurrent Neural Network Language Model in 2010
- It seems to him that computational efficiency is more important than modelling longer context, so he proposed Word2vec in 2013, and seek intuitive visualization of Word Embedding.
- Dig out gold with sharp eyesight!

middle word → context words

W(t-1) W(t+1)

Skip-gram $P(context|w_m)$

context words → middle word

CBOW $P(w_m|context)$

 $w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, w_9$

Word vectors are here, weights!

- Given supervision signal: context C, middle word w_m pairs, that is $(C, w_m)^i$
- We use a FFNN to model conditional probability, $P(w_m|w_{m-c},...,w_{m+c})$

Cost function – Again Maximum Likelihood

$$- Cost = -\sum_{(C,w_m)^i} loss^i = -\sum_{(C,w_m)^i} logy_{w_m}^i$$

- Some Notation convenience
 - v_{w_m} is the w_m row of W, input embedding of word w_m

- v'_{w_m} is the w_m column of W', output embedding of word w_m

- Pre-activation of output is u

• Let's take gradient of the loss w.r.t. W'_{ij}

$$- loss = -log y_{w_m} = log \Sigma_w e^{u_w} - u_{w_m}$$

$$- \frac{\partial loss}{\partial w'_{ij}} = \frac{\partial (log \Sigma_w e^{u_w} - u_{w_m})}{\partial u_j} \frac{\partial u_j}{\partial w'_{ij}}$$

$$- \left(e^{u_j} \right)$$

$$- = \left(\frac{e^{u_j}}{\Sigma_w e^{u_w}} - I[w_m = j]\right) h_i$$
$$- = \left(y_i - I[w_m = j]\right) h_i$$

$$h$$

$$W'_{N\times V}$$

$$loss = -log y_{w_m}$$

• So, *loss* grad w.r.t. one output vector

$$-\frac{\partial loss}{\partial W'_{i}} = (y_j - I[w_m = j])h$$
, this is for every W'_{ij}

• Let's take gradient of the loss w.r.t. W_{ij}

$$-\frac{\partial loss}{\partial W_{ij}} = \Sigma_{k} \frac{\partial (log\Sigma_{w}e^{uw} - u_{wm})}{\partial u_{k}} \frac{\partial u_{k}}{\partial h_{j}} \frac{\partial h_{j}}{\partial W_{ij}}$$

$$- = \Sigma_{k} (y_{k} - I[w_{m} = k])W'_{jk}x_{i}$$

$$- = (y - I)W'_{j}.x_{i}, I \text{ is one hot}$$
One-hot folded x

• So, *loss* grad w.r.t. one input vector

$$-\frac{\partial loss}{\partial W_{i}} = (y - I)W'x_{i}$$
, this is for every $x_{i} \neq 0$

• Update formula for both word vector, w.r.t. one training example (C, w_m)

$$-\frac{\partial loss}{\partial v'_{w_j}} = \left(y_{w_j} - I[w_m = w_j]\right)h$$
$$-\frac{\partial loss}{\partial v_{w_j}} = (y - I)W'x_j$$

Gradient descent

$$-v'_{w_{j}}^{new} = v'_{w_{j}}^{old} - \eta \frac{\partial loss}{\partial v'_{w_{j}}}$$
$$-v'_{w_{j}}^{new} = v'_{w_{j}}^{old} - \eta \frac{\partial loss}{\partial v_{w_{j}}}$$

$$\begin{bmatrix} - & - & - \\ - & v_1' & - \\ - & v_2' & - \end{bmatrix} \begin{bmatrix} 0.1 \\ 0.15 \\ 0.4 \\ 0.05 \\ 0.3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

- Given supervision signal, middle word w_m and context words around C, these are pairs $(w_m, C)^i$
- Again we use FFNN to model this conditional probability, $P(w_{m-c}, ..., w_{m+c} | w_m)$

 y_w

• $h = W^T w_m$

- $y = \operatorname{softmax}(W'^T h)$
 - $loss = -\Sigma_{w \in C} log y_w$, to be minimized

Cost function – Maximum Likelihood

$$-Cost = -\Sigma_{(w_m,C)^i}loss^i$$

$$- = -\Sigma_{(w_m,C)^i} \log \Pi_{w \in C^i} P(w|w_m^i)$$

- Some Notation convenience
 - v_{w_m} is the w_m row of W, input embedding of word w_m
 - v'_{w_m} is the w_m column of W', output embedding of word w_m
 - Pre-activation of output is u_w

• The gradient w.r.t. W'_{ij}

$$- loss = -\Sigma_{w \in C} log \frac{e^{uw}}{\Sigma_{w' \in V} e^{uw'}}$$

$$- \frac{\partial loss}{\partial W'_{ij}} = -\Sigma_{w \in C} \frac{\partial (u_w - \log \Sigma)}{\partial W'_{ij}}$$

$$- = -\Sigma_{w \in C} \frac{\partial u_w}{\partial W'_{ij}} - y_j \cdot \frac{\partial u_j}{\partial W'_{ij}}$$

$$- = -\Sigma_{w \in C} \frac{\partial u_j}{\partial W'_{ij}} \left(\frac{\partial u_w}{\partial u_j} - y_j \right)$$

$$- = \Sigma_{w \in C} h_i (y_i - I(w = j))$$

• The gradient w.r.t. W_{ij}

$$-\frac{\partial loss}{\partial W_{ij}} = -\Sigma_{w \in C} \left(\frac{\partial u_w}{\partial h_j} - \frac{\partial \Sigma}{\partial h_j} \right) \frac{\partial h_j}{\partial W_{ij}}$$

$$- = \Sigma_{w \in C} \left(W'_{jw} - \Sigma_t \frac{\partial \Sigma}{\partial u_t} \frac{\partial u_t}{\partial h_j} \right) x_i$$

$$- = \Sigma_{w \in C} \left(W'_{jw} - \Sigma_t \cdot \frac{e^{u_t}}{\Sigma} W_{jt} \right) x_i$$

$$- = \Sigma_{w \in C} \left(W'_{jw} - \Sigma_t . y_t W_{jt} \right) x_i$$

Computation Cost

- Softmax is costly for forward computation
 - $-u_j = hW'_{\cdot j}$ for every j in V
 - Σe^{u_j} on |V| elements
- ullet Thus, Gradient update should loop over W'
 - *h* is dense
 - x is sparse

Output Layer Modification

- Hierarchical Softmax (accurate)
 - Decompose softmax as a binary tree
 - We can do iteratively binary search, so that we can use sigmoid

- Negative Sampling (approximate)
 - Monte Carlo

- Output has a hierarchy
 - Binary tree build on Huffman code of each word in corpus
- $P(w_m|h) = \prod_{n \in Path(w_m)} \sigma_n(code(w_m)_n|h, w_n)$
 - $code(w_m)$ is the Huffman code of the word

- Output has a hierarchy
 - Binary tree build on Huffman code of each word in corpus
- $P(w_m|h) = \prod_{n \in Path(w_m)} \sigma_n(code(w_m)_n|h, w_n)$
 - $code(w_m)$ is the Huffman code of the word

- Output has a hierarchy
 - Binary tree build on Huffman code of each word in corpus
- $P(w_m|h) = \prod_{n \in Path(w_m)} \sigma_n(code(w_m)_n|h, w_n)$
 - $code(w_m)$ is the Huffman code of the word

- Output has a hierarchy
 - Binary tree build on Huffman code of each word in corpus
- $P(w_m|h) = \prod_{n \in Path(w_m)} \sigma_n(code(w_m)_n|h, w_n)$
 - $code(w_m)$ is the Huffman code of the word

- Computation cost
 - Forward compute: from h|V| to hlog|V|
 - Backward, gradient update: from h|V| to hlog|V|
 - Parameter number?

- Accurate probability compute
 - Why? No approximate equal
 - Softmax is just one way to achieve picking one item from a class of items, here word from vocabulary, where items are flat

Negative Sampling

- Let's totally forget about softmax!
 - Just for a while: orz
- Think about an intuitive scenario
 - You are learning portrait painting, and learn to distinguish different noses given a face

Adversarial examples

Negative Sampling

- Follow the intuition, for each training instance (C, w)
 - We have the positive instance w, the word we predict
 - Still want some negatives, to discriminate upon, so we design a simple distribution, e.g. unigram to sample a group of fake predictions
- Our objective function becomes, still maximize:

$$-P(D=1|h,v'_{w_m}) + \sum_{w_i \sim p_{u_m}} P(D=0|h,v'_{w_i})$$

Besides Negative Sampling

- Importance Sampling
- Adaptive Importance Sampling
- Target Sampling
- Noise Contrastive Estimation
- Negative Sampling
- ...

Sampling

Monte Carlo

- We have a complex distribution P(X)
- We want to compute expectation w.r.t. f(X)

•
$$E = \int_{x} dx \cdot f(x) P(x)$$

- Intractable for accurate computation
- Sample N points from P(X), $\{x_1, x_2, ..., x_N\}$
- Calculate empirical mean:

•
$$\hat{E} = \frac{1}{N} \Sigma_i f(x_i)$$

Sampling

More formally, sampling methods is doing an approximation of the softmax

•
$$logP(w_m|C) = log\frac{e^{hv_w}}{\Sigma_{v_i}e^{hv_i}} = hv_w - log\Sigma e^{hv_i}$$

• We made gradient of the above:

$$\begin{split} &- \nabla_{\theta} h v_{w} - \nabla_{\theta} log \Sigma e^{hv_{i}} = \nabla_{\theta} h v_{w} - \frac{1}{\Sigma e^{hv_{i}}} \Sigma \nabla_{\theta} e^{hv_{i}} \\ &- = \nabla_{\theta} h v_{w} - \Sigma \frac{1}{\Sigma e^{hv_{i}}} e^{hv_{j}} \nabla_{\theta} h v_{j} = \nabla_{\theta} h v_{w} - \Sigma \frac{e^{hv_{j}}}{\Sigma e^{hv_{i}}} \nabla_{\theta} h v_{j} \\ &- = \nabla_{\theta} h v_{w} - \Sigma P(w_{j} | C) \nabla_{\theta} h v_{j} = \nabla_{\theta} h v_{w} - E[\nabla_{\theta} h v_{j}] \end{split}$$

Some Insights from Word2vec

- Word regularities
 - Similarities and neighborhood

Some Insights from Word2vec

- Word regularities
 - Linear regularities are embodied

Male-Female

Verb tense

Country-Capital

Bonus

 Why we could use weight matrix as our realvalued word feature matrix?

Outline

PART II

- Word Embedding Basic Models
 - Word2vec
 - GloVe
- Representation Learning of Lexical Meaning
 - Sentiment Embedding
 - Topical Embedding
 - Discourse Relation-aware Embedding

GloVe

Embedding and NLP

Is Deep Learning Really necessary for Word Embeddings?