Iniziato giovedì, 19 giugno 2025, 09:15

Stato Completato

Terminato giovedì, 19 giugno 2025, 09:45

Tempo impiegato 30 min.

Punteggio 13,25/20,00

Valutazione 19,88 su un massimo di 30,00 (66,25%)

Domanda 1

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Quanto vale $\int_{-1}^{1} x^3 dx$?

- \bigcirc b. $\frac{1}{4}$
- o c. 0 ✓
- od. non esiste
- \bigcirc e. $\frac{1}{3}$

La risposta corretta è:

0

Domanda 2

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Data $f{:}\, \mathbb{R} o \mathbb{R}$, diciamo che $\lim_{x o 0} f(x) = +\infty$ se

- \bigcirc a. per ogni $\delta>0$ esiste $\epsilon>0$ tale che se $|x|<\delta$ allora |f(x)|<arepsilon
- \bigcirc b. per ogni $\delta>0$ esiste M>0 tale che se $0<|x|<\delta$ allora f(x)>M
- \bigcirc c. per ogni arepsilon>0 esiste $\delta>0$ tale che se $|x|<\delta$ allora |f(x)|<arepsilon
- $_{ullet}$ d. per ogni M>0 esiste $\delta>0$ tale che se $0<|x|<\delta$ allora f(x)>M 🗸

La risposta corretta è:

per ogni M>0 esiste $\delta>0$ tale che se $0<|x|<\delta$ allora f(x)>M

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

La funzione $f{:}\,\mathbb{R} o \mathbb{R}$ definita da $f(x) = x^2$ è

- o a. Nessuna delle altre opzioni
- ob. Bigettiva
- o. Iniettiva ma non surgettiva
- 🏿 d. Né iniettiva né surgettiva 🗸
- e. Surgettiva ma non iniettiva

La risposta corretta è:

Né iniettiva né surgettiva

Domanda 4

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

La derivata di $f(x)=xe^x\;$ è

$$lacksquare$$
 a. $f'(x)=(1+x)e^x$

$$\odot$$
 b. $f'(x)=1+xe^x$

$$\odot$$
 c. $f'(x)=xe^x$

$$\bigcirc$$
 d. $f'(x)=(1-x)e^x$

o e. nessuna delle altre risposte è vera

La risposta corretta è: $f'(x) = (1+x)e^x$

Risposta errata

Punteggio ottenuto 0,00 su 1,00

Sia $f{:}[0,1] o \mathbb{R}$ una funzione continua. Quali fra le seguenti affermazioni sono vere?

- a. esiste almeno un punto di minimo assoluto
- b. esiste al più un punto di massimo assoluto
- c. tutte le altre affermazioni sono false
- 🤍 d. esiste al più un punto di minimo assoluto 🗶
- e. esiste almeno un punto di massimo assoluto

Le risposte corrette sono: esiste almeno un punto di massimo assoluto, esiste almeno un punto di minimo assoluto

Domanda 6

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Sia $f{:}\,\mathbb{R} o \mathbb{R}$ una funzione continua e derivabile tale che

$$\lim_{x\to -\infty} f(x) = -\infty$$

е

$$\lim_{x o +\infty} f(x) = +\infty$$
 .

Quali fra le seguenti affermazioni sono necessariamente vere?

- $oxedsymbol{eta}$ a. f è crescente
- lacksquare b. f è decrescente
- c. tutte le altre affermazioni sono false
- $_{ec{ec{ec{ec{v}}}}}$ e. esiste un punto $c\in\mathbb{R}$ tale che f(c)=0 🗸

La risposta corretta è: esiste un punto $c \in \mathbb{R}$ tale che f(c) = 0

Parzialmente corretta

Punteggio ottenuto 0,33 su 1,00

Sia $f{:}\,\mathbb{R} o \mathbb{R}$ la funzione nulla f(x) = 0.

Quali fra le seguenti affermazioni sono vere?

- $oxedsymbol{eta}$ a. f è invertibile
- $_{ extstyle e$
- $oxed{\ }$ e. $\lim_{x o +\infty}f(x)=0$

Le risposte corrette sono:

L'immagine è formata solo dall'elemento 0, cioè $\,{
m Im}\, f=\{0\}$

1

Il dominio è formato da tutti gli elementi di \mathbb{R} , cioè $\operatorname{dom} f = \mathbb{R}$

,
$$\lim_{x o +\infty} f(x) = 0$$

Domanda 8

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Qual è il dominio di $f(x)=rac{\log x}{x}$?

- lacksquare a. $(0,+\infty)$
- \bigcirc b. $(1,+\infty)$
- \odot c. $[0,+\infty)$
- \circ d. $\mathbb{R}\setminus\{0\}$
- $_{\odot}$ e. \mathbb{R}

La risposta corretta è:

 $(0,+\infty)$

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

L'immagine della funzione $f(x)=\arctan(x)$ è

- \bigcirc a. $[-\pi/2,\pi/2]$
- \bigcirc b. (-1,1)
- c. $(-\pi/2,\pi/2)$
- $_{\odot}$ d. \mathbb{R}
- \bigcirc e. [-1,1]

La risposta corretta è:

 $(-\pi/2,\pi/2)$

Domanda 10

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Quanto vale il $\lim_{x o 2^-} rac{1}{(x-2)^2}$?

- \bigcirc a. 0
- o b. 2
- o. non esiste
- \bullet d. $+\infty$
- \odot e. $-\infty$

La risposta corretta è:

 $+\infty$

Risposta errata Punteggio ottenuto -0,25 su 1,00 Data una funzione $f:[0,1] o\mathbb{R}$ continua tale che f(0)=a e f(1)=b l'affermazione $\mathrm{Im}\,f\supseteq[a,b]$ è conseguenza del o a. teorema dei valori intermedi ob. teorema di Pitagora oc. teorema della media integrale d. teorema di Weierstrass X o e. teorema fondamentale del calcolo integrale La risposta corretta è: teorema dei valori intermedi Domanda 12 Risposta non data Punteggio max.: 1,00 Quale fra le seguenti affermazioni è vera? \bigcirc a. an(rctan(x))=1 per ogni $x\in\mathbb{R}$ \bigcirc b. an(rctan(x)) = x per ogni $x \in \mathbb{R}$ \bigcirc c. $\arctan(\tan(x)) = 1$ per ogni $x \in \mathbb{R}$ \bigcirc d. $\arctan(\tan(x)) = x$ per ogni $x \in \mathbb{R}$ La risposta corretta è: $an(\arctan(x)) = x \quad ext{per ogni } x \in \mathbb{R}$ Domanda 13 Risposta corretta Punteggio ottenuto 1,00 su 1,00 La disequazione $e^{x+1}-1>0$ è vera se: \bigcirc b. x>0 \odot c. x>1 \odot d. x<-1 $_{\odot}$ e. $x\in\mathbb{R}$ La risposta corretta è: x > -1

Domanda 11

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Siano $f,g\colon \mathbb{R} o \mathbb{R}$ definite da $f(x)=x^2$ e $\,g(x)=\cos(1+x)$. Quanto vale la composizione $f(g(x))\,$?

- \bigcirc a. $\cos(1+x^2)$
- \circ b. $\sin(1+x^2)$
- oc. nessuna delle altre risposte è vera
- d. $\cos^2(1+x)$
- o e. $\cos((1+x)^2)$

La risposta corretta è: $\cos^2(1+x)$

Domanda 15

Parzialmente corretta

Punteggio ottenuto 0,50 su 1,00

Quali fra le seguenti affermazioni sono vere?

- $ec{\hspace{-0.1cm}\hspace{-0.1cm}\hspace{-0.1cm}}$ b. $e^{\ln x} \! = x$ per ognix>0
- c. nessuna delle altre affermazioni è vera

Le risposte corrette sono: $e^{\ln x} = x$ per ogni x > 0, $\ln e^x = x$ per ogni $x \in \mathbb{R}$

Risposta non data

Punteggio max.: 1,00

Sia $f{:}\left[0,1
ight]
ightarrow\mathbb{R}$ una funzione. Quali fra le seguenti affermazioni sono vere?

- \Box a. se esiste $\int_0^1 f(x) \, dx$ allora f è monotona

- d. tutte le altre affermazioni sono false
- igcup e. se f è continua allora esiste $\int_0^1 f(x) \, dx$

Le risposte corrette sono:

se f è continua allora esiste $\int_0^1 f(x) \, dx$

se f è monotona allora esiste $\int_0^1 f(x) \, dx$

Domanda 17

Parzialmente corretta

Punteggio ottenuto 0,67 su 1,00

Sia $f(x) = \ln x$. Quali delle seguenti affermazioni sono vere ?

$$ightharpoonup$$
 a. $f(1)=0$ 🗸

$$\bigvee$$
 b. $\lim_{x o +\infty} f(x) = +\infty$ 🗸

$$_{-}$$
 c. $\lim_{x o 0^+} f(x) = +\infty$

$$_{-}$$
 d. $\lim_{x o -\infty}f(x)=+\infty$

$$ec{arphi}$$
 e. $\lim_{x o 0^-} f(x) = -\infty$ X

Le risposte corrette sono:

$$\lim_{x o +\infty}f(x)=+\infty$$

$$f(1) = 0$$

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Quale tra queste funzioni è invertibile?

- \bigcirc a. $f(x)=x^2$
- \bigcirc b. $f(x) = \tan x$
- \bigcirc c. f(x)=|x|
- $oldsymbol{o}$ d. $f(x) = \sin x$
- lacksquare e. $f(x)=x^3$

La risposta corretta è:

$$f(x) = x^3$$

Domanda 19

Risposta corretta

Punteggio ottenuto 1,00 su 1,00

Quali delle seguenti funzioni sono definite per ogni $x \in \mathbb{R}$?

- ightharpoonup a. $f(x)=\sin(x)$ 🗸
- $f(x) = \frac{1}{x}$
- $oxed{}$ d. $f(x) = \ln(x)$
- ightharpoonup e. $f(x)=\arctan(x)$

Le risposte corrette sono:

$$f(x) = \sin(x)$$

$$f(x) = \arctan(x)$$

Risposta non data

Punteggio max.: 1,00

Sia $f{:}[0,1] o\mathbb{R}$ una funzione continua tale che f(0)=a e f(1)=b . Quali fra le seguenti affermazioni sono vere?

- igcup a. $\lim_{x o 0^-}f(x)=a$
- $_{-}$ b. $\lim_{x o 1^{+}}f(x)=b$
- $_{-}$ c. $\lim_{x o 0^{+}}f(x)=a$
- d. tutte le altre affermazioni sono false
- $egin{array}{ccc} oxed{ ext{e.}} & \lim_{x o 1^-} f(x) = b \end{array}$

Le risposte corrette sono:

$$\lim_{x\to 0^+}f(x)=a$$

$$\lim_{x\to 1^-} f(x) = b$$