OmniMCP: A Framework for Self-Generating UI Understanding Through Spatial-Temporal Synthesis

Richard Abrich OpenAdapt.AI

March 2025

Abstract

We present OmniMCP, a novel framework that enables large language models to develop comprehensive UI understanding through the synthesis of spatial and temporal features. The framework combines fine-grained UI segmentation with process graphs derived from human demonstrations to construct rich contextual representations of interface states and interaction patterns. Our approach introduces a self-generating semantic layer that bridges the gap between raw UI elements and task-specific interaction strategies. Through advanced prompt templates and synthetic validation techniques, we demonstrate robust understanding across diverse interface patterns.

1 Introduction

User interface automation remains a significant challenge in artificial intelligence, particularly in developing systems that can generalize across diverse interfaces and adapt to varying contexts. While recent advances in computer vision and natural language processing have improved UI element detection, existing approaches often lack the ability to synthesize spatial understanding with temporal interaction patterns.

This paper introduces OmniMCP, a framework that addresses these limitations through two key mechanisms:

- Real-time UI structure analysis via OmniParser
- Temporal pattern learning through process graph representations

2 Related Work

The challenge of UI automation has been approached from multiple angles in recent years. Screen parsing approaches have focused on hierarchical element

detection, while demonstration-based methods have emphasized pattern recognition. However, few approaches have attempted to synthesize both spatial and temporal understanding in a unified framework.

3 Methodology

3.1 Framework Overview

OmniMCP's architecture enables language models to generate semantic understanding by analyzing:

- UI element hierarchies and spatial relationships
- Historical demonstration patterns encoded in process graphs
- Contextual mappings between current states and successful interaction sequences

3.2 Core Components

The framework consists of four tightly integrated components:

- Visual State Manager: Handles UI element detection and state tracking
- MCP Tools: Provides typed interfaces for model-UI interaction
- UI Parser: Performs element detection and relationship analysis
- Input Controller: Manages precise interaction execution

The core data structures are defined as:

3.3 Process Graph Representation

We formalize UI automation sequences as directed graphs G(V, E) where vertices V represent UI states and edges E represent transitions through interactions. Each vertex contains:

- Screen state representation S
- Element hierarchy H
- Interaction affordances A

Edges capture:

- Interaction type T (click, type, etc.)
- Pre/post conditions P
- Success verification criteria V

This representation enables:

```
class ProcessGraph:
    def validate_sequence(
        actions: List[Action]
) -> ValidationResult:
        """Validate action sequence against graph"""

def suggest_next_actions(
        current_state: ScreenState
) -> List[Action]:
        """Suggest valid next actions"""
```

3.4 Spatial-Temporal Feature Synthesis

The core innovation lies in the dynamic synthesis of spatial and temporal features through our MCP protocol:

```
@mcp.tool()
async def get_screen_state() -> ScreenState:
    """Get current state of visible UI elements"""
    state = await visual_state.capture()
    return state

@mcp.tool()
async def find_element(description: str) -> Optional[UIElement]:
    """Find UI element matching natural language description"""
    state = await get_screen_state()
    return semantic_element_search(state.elements, description)
```

3.5 Performance Optimizations

Critical optimizations focus on maintaining reliable UI understanding:

- Smart State Management: Keep normalized and absolute coordinates with element confidence scores
- Semantic Element Targeting: Use natural language understanding for robust element identification
- Vision-Enhanced Verification: Leverage Claude's visual capabilities to verify action outcomes
- **Prompt Template System**: Optimize context generation through reusable, structured prompts

4 Implementation

The framework exposes a clean API for model interaction:

```
async def describe_element(description: str) -> str:
    """Get rich description of UI element"""
async def find_elements(query: str) -> List[UIElement]:
    """Find elements matching natural query"""
async def click_element(
    description: str,
    click_type: str = "single"
) -> InteractionResult:
    """Click UI element matching description"""
```

5 Testing

The framework includes comprehensive synthetic testing capabilities for systematic validation.

```
def generate_test_ui():
    """Generate synthetic UI with known elements"""
    img = Image.new('RGB', (800, 600))
    elements = []
# Draw UI elements with known positions
    elements.append({
        "type": "button",
        "content": "Submit",
        "bounds": {"x": 100, "y": 100},
        "confidence": 1.0
```

```
    return img, elements

def generate_action_test_pair(
    action_type: str
) -> Tuple[Image, Image, List[Element]]:
    """Generate before/after UI pairs for testing"""
    before_img, elements = generate_test_ui()
    after_img = simulate_action(
        before_img,
        action_type
    )
    return before img = after img = elements
}
```

return before_img, after_img, elements

This enables validation of:

- Element detection accuracy
- Action verification
- State transition logic
- Error recovery mechanisms

The framework provides rich debugging context:

@dataclass

```
class DebugContext:
```

```
tool_name: str  # Operation performed inputs: Dict[str, Any] # Input parameters result: Any  # Operation result duration: float  # Execution time visual_state: Optional[ScreenState]
```

This enables systematic validation of the understanding synthesis process.

6 Limitations and Future Work

Current limitations include:

- Need for more extensive validation across UI patterns
- Optimization of pattern recognition in process graphs
- Refinement of spatial-temporal feature synthesis

Future work will focus on:

- Development of comprehensive evaluation metrics
- Enhanced pattern recognition capabilities
- Expanded cross-platform validation
- Integration with broader LLM architectures

7 Conclusion

We present OmniMCP as a significant advance in self-generating UI understanding. Through the synthesis of spatial and temporal features, coupled with robust prompt engineering and systematic validation capabilities, our framework demonstrates strong potential for generalizable UI automation. While further validation is needed, initial results suggest OmniMCP represents a meaningful step toward more robust and adaptable UI understanding systems.

8 References

[TODO]