CHUONG IV

KHÔNG GIAN VECTOR Rⁿ

I. CÁC KHÁI NIỆM CƠ BẢN:

1.1/ KHÔNG GIAN VECTOR Rⁿ:

Cho số nguyên $n \ge 1$ và $\mathbf{R}^n = \{ X = (x_1, x_2, \dots, x_n) \mid x_1, x_2, \dots, x_n \in \mathbf{R} \}.$

Ta gọi $X = (x_1, x_2, ..., x_n)$ là *vector* X trong \mathbf{R}^n . Ta thường "hình học hóa" X bằng một đoạn thẳng có gốc, ngọn, phương, chiều và độ dài. Ta định nghĩa các phép toán *cộng vector* (+) và *nhân số thực với vector* (.) trên \mathbf{R}^n như sau:

$$\forall X = (x_1, x_2, ..., x_n), Y = (y_1, y_2, ..., y_n) \in \mathbf{R}^n, \forall c \in \mathbf{R},$$

$$X+Y=(x_1+y_1\;,\,x_2\,+y_2\;\,,\,\ldots\,,\,x_n\,+y_n)\in {\textbf {R}}^{\textbf {n}}\;\;\text{và}\;\;c.X=(cx_1,\,cx_2,\,\ldots\,,\,cx_n)\in {\textbf {R}}^{\textbf {n}}\;.$$

Về mặt hình học, phép *nhân số thực với vector* có thể thay đổi chiều và độ dài nhưng không thay đổi phương của vector. Phép *cộng vector* có thể tạo ra ra các vector có phương mới.

Cấu trúc đại số $(\mathbf{R}^n, +, .)$ gọi là không gian vector \mathbf{R}^n (trên \mathbf{R}).

Ta cũng có thể đồng nhất $\mathbf{R}^{\mathbf{n}}$ với $M_{1 \times n}(\mathbf{R})$ trong đó phép *nhân số thực với vector* và phép *cộng vector* chính là phép *nhân số thực với ma trận* và phép *cộng ma trận* .

Ví dụ:

Với
$$X = (-5, 1, -4, 9), Y = (8, 0, -2, -7) \in \mathbb{R}^4$$
 và $c = \frac{2}{3} \in \mathbb{R}$, ta có

$$X+Y=(3,\,1,-6,\,2)\in {\textbf R}^{\textbf 4} \ \ v\grave{a} \ \ cX=\frac{2}{3}(8,\,0,-2,-7)=(\frac{16}{3},\,0,\,-\frac{4}{3}\,,-\frac{14}{3}\,\,)\in {\textbf R}^{\textbf 4}.$$

1.2/ MINH HOA HÌNH HỌC:

- a) $\mathbf{R}^1 = \mathbf{R}$ được đồng nhất với "Không gian các vector gốc O trên trục x'Ox".
- b) $\mathbf{R}^2 = \{ X = (a, b) \mid a, b \in \mathbf{R} \}$ được đồng nhất với "Không gian các vector gốc O trên mặt phẳng (Oxy)".
- c) $\mathbf{R}^3 = \{ X = (a, b, c) \mid a, b, c \in \mathbf{R} \}$ được đồng nhất với "Không gian các vector gốc O trên trong hệ trục tọa độ (Oxyz)".

1.3/ <u>TÍNH CHẤT:</u>

Không gian vector $(\mathbf{R}^{\mathbf{n}}, +, .)$ trên \mathbf{R} thỏa 7 tính chất sau đây:

 (A_1) Phép (+) giao hoán và kết hợp, nghĩa là $\forall X, Y, Z \in \mathbf{R}^n$, X + Y = Y + X và (X + Y) + Z = X + (Y + Z) = X + Y + Z.

$$(A_2) \exists O = (0, 0, ..., 0) \in \mathbb{R}^n, \forall X \in \mathbb{R}^n, O + X = X + O = X.$$

Ta nói O là "vector không "và O là phần tử trung hòa của phép (+)

- $(A_3) \ \forall X = (x_1, \, x_2, \, \ldots, \, x_n) \in \mathbf{R^n} \ , \ \exists X' = (-x_1, -x_2, \, \ldots, -x_n) \in \mathbf{R^n} \ \text{ thỏa}$ $X' + X = X + X' = \mathbf{O}. \ \text{Ký hiệu} \ \ X' = -X = (-1)X \ \text{ là } \textit{vector đổi} \ \text{của} \ \ X.$ $(A_1), (A_2) \ \text{và} \ (A_3) \ \text{là các tính chất riêng của phép (+)}.$
- $(B_1) \ \forall X \in \mathbf{R}^n$, 1.X = X.
- $(B_2) \ \forall X \in \mathbf{R}^n, \ \forall c, d \in \mathbf{R}, c.(d.X) = (c.d).X$ $(B_1) \ va \ (B_2) \ la các tính chất riêng của phép (.).$
- $(C_1) \forall X \in \mathbf{R}^n, \forall c, d \in \mathbf{R}, (c+d).X = c.X + d.X$
- $(C_2) \forall X, Y \in \mathbb{R}^n, \forall c \in \mathbb{R}, c.(X + Y) = c.X + c.Y$
- (C_1) và (C_2) là các tính chất liên quan giữa phép (+) và phép (.).

1.4/ $\underline{H}\hat{E}$ QUÅ: $\forall X \in \mathbb{R}^n$, $\forall c \in \mathbb{R}$,

a)
$$c.X = O \Leftrightarrow (c = 0 \text{ hay } X = O).$$

b)
$$c.X \neq \mathbf{O} \iff (c \neq 0 \text{ và } X \neq \mathbf{O}).$$

II. KHÔNG GIAN VECTOR CON TRONG Rⁿ:

2.1/ **<u>ĐỊNH NGHĨA:</u>** Cho $W \subset \mathbb{R}^n$.

Các phép toán (+) và (.) trên \mathbf{R}^n vẫn được sử dụng trên W.

- a) Ta nói W là *một không gian vector con* của \mathbf{R}^n (ký hiệu $W \leq \mathbf{R}^n$) nếu W thỏa các điều kiện sau đây:
 - * $0 \in W(1)$
 - * $\forall \alpha, \beta \in W, \alpha + \beta \in W$ (2)
 - * $\forall \alpha \in W, \forall c \in \mathbf{R}, c.\alpha \in W$ (3)
- b) Suy ra $W \le \mathbf{R}^n \iff \forall \alpha, \beta \in W, \forall c \in \mathbf{R}, c.\alpha + \beta \in W$ (4)
- c) $\mathbf{R}^{\mathbf{n}}$ luôn luôn có hai không gian con tầm thường là $\{\mathbf{O}\}$ và chính $\mathbf{R}^{\mathbf{n}}$.

Nếu $W \le \mathbf{R}^n$ và $\{\mathbf{O}\} \ne W \ne \mathbf{R}^n$ thì ta nói W là một không gian con không tầm thường của \mathbf{R}^n .

Nếu $W \le \mathbf{R}^n$ và $W \ne \mathbf{R}^n$ thì ta nói W là *một không gian con thực sự* của \mathbf{R}^n và ký hiệu $W < \mathbf{R}^n$.

<u>Ví dụ:</u>

- a) R¹ chỉ có hai không gian con là {O} và chính R¹.
 (chúng đều là các không gian con tầm thường).
- b) \mathbf{R}^2 luôn luôn có hai không gian con tầm thường là $\{\mathbf{O}\}$ và chính \mathbf{R}^2 .

Ta mô tả dưới dạng hình học các không gian con không tầm thường của $\,{f R}^2.\,$

Xét đường thẳng tùy ý (D) trong mặt phẳng \mathbf{R}^2 sao cho (D) đi qua gốc O. Đặt $\mathbf{H} = \{$ các vector gốc O trên đường thẳng (D) $\}$. Ta có $\mathbf{H} \subset \mathbf{R}^2$ và H thỏa (4) trong (2.1). Do đó $\mathbf{H} \leq \mathbf{R}^2$ và H được gọi là *một không gian con kiểu đường thẳng* của \mathbf{R}^2 . Suy ra \mathbf{R}^2 có vô số không gian con kiểu đường thẳng vì có vô số đường thẳng trong mặt phẳng \mathbf{R}^2 đi qua gốc O.

- c) ${\bf R}^3$ luôn luôn có hai không gian con tầm thường là $\{{\bf O}\}$ và chính ${\bf R}^3$.

 Ta mô tả dưới dạng hình học các không gian con không tầm thường của ${\bf R}^3$.
 - $-\mathbf{R}^3$ có vô số không gian con kiểu đường thẳng (mỗi đường thẳng thuộc về không gian \mathbf{R}^3 và đi qua gốc O).
 - Xét mặt phẳng (P) tùy ý trong \mathbf{R}^3 sao cho (P) đi qua gốc O. Đặt $K = \{$ các vector gốc O trên mặt phẳng (P) $\}$. Ta có $K \subset \mathbf{R}^3$ và K thỏa (4) trong (2.1). Do đó $K \leq \mathbf{R}^3$ và K được gọi là *một không gian con kiểu mặt phẳng* của \mathbf{R}^3 . Suy ra \mathbf{R}^3 có vô số không gian con kiểu mặt phẳng vì có vô số mặt phẳng trong \mathbf{R}^3 đi qua gốc O.
- d) Tổng quát, \mathbb{R}^n ($n \ge 4$) có các không gian con như sau:
 - Không gian con tầm thường $\{\mathbf{O}\}$ (ta gọi là không gian con θ phẳng).
 - vô số không gian con kiểu đường thẳng (ta gọi là không gian con 1 phẳng).
 - vô số không gian con kiểu mặt phẳng (ta gọi là không gian con 2 phẳng).
 - vô số không gian con 3 phẳng, ..., vô số không gian con (n-1) phẳng. Các không gian con (n-1) phẳng của $\mathbf{R}^{\mathbf{n}}$ được gọi là *các siêu phẳng* trong $\mathbf{R}^{\mathbf{n}}$.
 - Không gian con tầm thường \mathbf{R}^{n} (gọi là không gian con n phẳng).

2.2/ MÊNH ĐÈ: Khi $W \le \mathbb{R}^n$ thì W cũng được gọi là không gian vector (W, +, .)

trên \mathbf{R} và nó cũng thỏa 7 tính chất sau đây [tương tự như ($\mathbf{R}^{\mathbf{n}}$, +, .)]:

$$(A_1) \ \forall X, Y, Z \in W, X + Y = Y + X \ va \ (X + Y) + Z = X + (Y + Z) = X + Y + Z.$$

$$(A_2) \exists \mathbf{O} = (0, 0, ..., 0) \in W, \forall X \in W, \mathbf{O} + X = X + \mathbf{O} = X.$$

$$(A_3) \ \forall X = (x_1, x_2, \dots, x_n) \in W, \ \exists X' = -X = (-x_1, -x_2, \dots, -x_n) \in W \ \text{thoa}$$

$$X' + X = X + X' = \mathbf{O}.$$

$$(B_1) \ \forall X \in W, 1.X = X.$$

$$(B_2) \forall X \in W, \forall c, d \in \mathbf{R}, c.(d.X) = (c.d).X$$

$$(C_1) \forall X \in W, \forall c, d \in \mathbf{R}, (c+d).X = c.X + d.X$$

$$(C_2) \forall X, Y \in W, \forall c \in \mathbf{R}, c.(X + Y) = c.X + c.Y$$

Suy ra
$$\forall X \in W$$
, $\forall c \in \mathbb{R}$, $c.X = \mathbb{O} \Leftrightarrow (c = 0 \text{ hay } X = \mathbb{O})$

$$c.X \neq \mathbf{O} \iff (c \neq 0 \text{ và } X \neq \mathbf{O}).$$

2.3/ $\underline{\mathbf{M}} \hat{\mathbf{E}} \mathbf{N} \mathbf{H} \mathbf{D} \hat{\mathbf{E}} \hat{\mathbf{E}}$ (nhận diện không gian con của $\mathbf{R}^{\mathbf{n}}$).

Cho $W \subset \mathbf{R}^n$. Khi đó

$$W \leq \boldsymbol{R^n} \iff \exists A \in M_{m \times n}(\boldsymbol{R}) : W = \{ \ X \in \boldsymbol{R^n} \ | \ AX = \boldsymbol{O} \ \}.$$

Như vậy mỗi không gian con của \mathbf{R}^n đều là k*hông gian nghiệm của một hệ phương* trình tuyến tính thuần nhất nào đó.

 $\underline{Vi \ du:}$ Giải thích tập hợp sau là một không gian con của \mathbb{R}^4 :

$$W = \{ X = (u, v, w, t) \in \mathbf{R}^4 \mid 4u - v + 5w - 8t = -7u + 2w + t = 6u + 9v - 3w = -9u - 4v + 7w + 3t \}.$$

Ta có thể sử dụng [(1),(2),(3)] hoặc (4) của (2.1) để giải thích $W \le \mathbb{R}^4$.

Tuy nhiên ta sẽ sử dụng (2.3) để giải thích $W \le \mathbb{R}^4$ một cách đơn giản hơn.

Ta viết lại (bằng cách lần lượt phối hợp các vế sau với vế đầu tiên)

$$W = \{ X = (u, v, w, t) \in \mathbf{R}^4 \mid 11u - v + 3w - 9t = 2u + 10v - 8w + 8t$$

$$= 13u + 3v - 2w - 11t = 0 \}, \text{ nghĩa là}$$

$$W = \{ \ X = (u, \, v, \, w, \, t) \in \textbf{R}^{4} \mid AX = \textbf{O} \ \} \ v\acute{\sigma}i \ \ A = \begin{pmatrix} 11 & -1 & 3 & -9 \\ 1 & 5 & -4 & 4 \\ 13 & 3 & -2 & -11 \end{pmatrix} \in M_{3 \, \times \, 4}(\textbf{R}).$$

Do đó $W \le \mathbb{R}^4$.

2.4/ $\underline{\mathbf{M}} \hat{\mathbf{E}} \mathbf{N} \mathbf{H} \underline{\mathbf{D}} \hat{\mathbf{E}} \mathbf{:}$ (phủ nhận không gian con của $\mathbf{R}^{\mathbf{n}}$).

Cho $W \subset \mathbf{R}^n$. Khi đó

a)
$$W \subseteq \mathbf{R}^{\mathbf{n}}$$
 (W không phải là không gian con của $\mathbf{R}^{\mathbf{n}}$) \Leftrightarrow

$$\exists \alpha, \beta \in W, \alpha + \beta \notin W(6) .$$

$$hay$$

$$\exists \alpha \in W, \exists c \in R, c\alpha \notin W(7)$$

b) $W \subseteq \mathbb{R}^n \iff \exists \alpha, \beta \in W, \exists c \in \mathbb{R}, c\alpha + \beta \notin W.$

Khi giải thích $W \subseteq \mathbb{R}^n$, ta thường sử dụng a), nghĩa là chỉ ra W thỏa (5) hay thỏa (6) hay thỏa (7) là đủ.

 $\underline{\text{V\'i du:}}$ Giải thích các tập hợp sau đây không phải là không gian con của \mathbb{R}^3 :

a) $H = \{ X = (u, v, w) \in \mathbf{R}^3 \mid uvw = 0 \}$. Để ý H không thỏa (5) và (7). H thỏa (6) vì $\exists \alpha = (1, 0, 0), \beta = (0, 1, 1) \in H, \alpha + \beta = (1, 1, 1) \notin H$. Vậy $H \subseteq \mathbf{R}^3$.

b) $K = \{ X = (u, v, w) \in \mathbf{R}^3 \mid 2u - 5v + 8w \ge 1 \}$. K thỏa (5) vì $\mathbf{O} = (0, 0, 0) \notin K$. Vậy $K \le \mathbf{R}^3$. Để ý K cũng thỏa (7) nhưng không thỏa (6).

c)
$$L = \{ X = (u, v, w) \in \mathbf{R}^3 \mid u^2 + 3v - 4w^3 = -3 \}.$$

$$L \text{ thỏa (7) vì } \exists \alpha = (0, -1, 0) \in L, \exists c = -1 \in \mathbf{R}, c\alpha = (0, 1, 0) \not\in L. \text{ Vậy } L \subseteq \mathbf{R}^3.$$

$$\text{Để ý } L \text{ cũng thỏa (5) và (6)}.$$

2.5/ KHÔNG GIAN GIAO VÀ KHÔNG GIAN TỔNG:

Cho $V,\,W,\,V_1,\,V_2,\,...,\,V_k$ là các không gian vector con của $\,{f R}^n\,(k\ge 2).\,$

a) Đặt $V \cap W = \{ \alpha \mid \alpha \in V \text{ và } \alpha \in W \} \text{ và }$

$$V+W \ = \{ \ \alpha = \beta + \gamma \ | \ \beta \in V \ va \ \gamma \in W \ \}.$$

Dùng (4) của (2.1), ta kiểm chứng được $(V \cap W)$ và (V + W) đều là *các không* gian vector con của \mathbb{R}^n . Ta nói $(V \cap W)$ và (V + W) lần lượt là các *không gian* giao và *không gian tổng* của V và W.

b) Đặt
$$V_1 \cap V_2 \cap ... \cap V_k = \bigcap_{j=1}^k V_j = \{ \alpha \mid \alpha \in V_j, \forall j = 1, 2, ..., k \}$$
 và

$$V_1 + V_2 + ... + V_k = \sum_{j=1}^k V_j = \{ \alpha = \alpha_1 + \alpha_2 + ... + \alpha_k \mid \alpha_j \in V_j, \forall j = 1, 2, ..., k \}.$$

Dùng (4) của (2.1), ta kiểm chứng được $\bigcap_{j=1}^k V_j$ và $\sum_{j=1}^k V_j$ đều là *các không gian*

 $vector\ con\ của\ \mathbf{R^n}$. Ta nói $\bigcap_{j=1}^k V_j\ và\ \sum_{j=1}^k V_j\ lần lượt là các không gian giao và không gian tổng của <math>V_1,V_2,\ldots$ và V_k .

c) Đặt $V \cup W = \{ \alpha \mid \alpha \in V \text{ hay } \alpha \in W \} \text{ và}$

$$V_1 \cup V_2 \cup \ldots \cup V_k = \bigcup_{j=1}^k V_j = \{ \alpha \mid \exists j = 1, 2, \ldots, k \text{ thỏa } \alpha \in V_j \}.$$

d) Ta có $V \cup W$ và $\bigcup_{j=1}^{k} V_j$ không nhất thiết là các không gian vector con của \mathbb{R}^n .

<u>Ví dụ:</u>

- a) V và W là các không gian con kiểu đường thẳng của ${\bf R^2}$ sao cho hai đường thẳng tương ứng giao nhau tại O. Ta có ${\rm V} \cap {\rm W} = \{{\bf O}\}$ và ${\rm V} + {\rm W} = {\bf R^2}$.
- b) H và K lần lượt là các không gian con kiểu đường thẳng và mặt phẳng của \mathbb{R}^3 sao cho

đường thẳng và mặt phẳng tương ứng giao nhau tại O. Ta có $H \cap K = \{O\}$ và $H + K = R^3$.

- c) P và Q là các không gian con kiểu mặt phẳng của ${\bf R}^3$ sao cho hai mặt phẳng tương ứng giao nhau theo giao tuyến (D) qua O. Ta có ${\bf P} \cap {\bf Q} = {\bf Z}$ (Z là không gian con kiểu đường thẳng tương ứng với (D) của ${\bf R}^2$) và ${\bf P} + {\bf Q} = {\bf R}^3$.
- d) E, F và G là các không gian con kiểu đường thẳng của \mathbf{R}^3 sao cho ba đường thẳng tương ứng không đồng phẳng và giao nhau tại O. Ta có $E \cap F \cap G = \{\mathbf{O}\}\$ và $E + F + G = \mathbf{R}^3$.
- 2.6/ ĐỊNH NGHĨA: Cho V và W là các không gian vector con của Rⁿ.
 - a) Nếu $W \subset V$ thì ta cũng nói W là *một không gian vector con (trên* \mathbf{R}) của V và ký hiệu $W \leq V$.
 - b) Không gian {O} chỉ có duy nhất một không gian con là chính {O}.
 Nếu V ≠ {O} thì V luôn luôn có hai không gian con tầm thường là {O} và V.
 Nếu W ≤ V và {O} ≠ W ≠ V thì ta nói W là một không gian con không tầm thường của V.

Nếu $W \le V$ và $W \ne V$ thì ta nói W là *một không gian con thực sự* của V và ký hiệu là W < V.

Ví dụ:

W và V lần lượt là các không gian con kiểu đường thẳng và mặt phẳng của ${\bf R^3}$ sao cho đường thẳng chứa trong mặt phẳng và chúng đều qua O. Ta có $\{{\bf O}\} < {\bf W} < {\bf V} < {\bf R^3}$.

III. KHÔNG GIAN CON SINH BỞI MỘT TẬP HỢP HỮU HẠN:

- **3.1**/ **<u>DINH NGHĨA</u>**: Cho $k \ge 1$ và $S = \{ \alpha_1, \alpha_2, ..., \alpha_k \} \subset \mathbb{R}^n$.
 - a) Chọn tùy ý $c_1, c_2, \ldots, c_k \in \mathbf{R}$ và đặt $\alpha = (c_1\alpha_1 + c_2\alpha_2 + \cdots + c_k\alpha_k) \in \mathbf{R}^n$.

Ta nói α là một tổ hợp tuyến tính của S (hay của $\alpha_1, \alpha_2, \ldots$ và α_k).

Như vậy từ một số hữu hạn các vector cho trước, ta có thể tạo ra được nhiều tổ hợp tuyến tính khác nhau của các vector đó.

- b) Cho $\gamma \in \mathbb{R}^n$. Khi đó
- * γ là một tổ hợp tuyến tính của $S \Leftrightarrow \exists c_1, c_2, \dots, c_k \in \mathbf{R}, \gamma = c_1\alpha_1 + c_2\alpha_2 + \dots + c_k\alpha_k$
- $\Leftrightarrow \text{ Phương trình } c_1\alpha_1+c_2\alpha_2+\dots+c_k\alpha_k=\;\gamma\;(\mathring{a}n\;s\acute{o}\;\;c_1,\,c_2\,,\dots\,,\,c_k\in\textbf{R})\;\textit{c\'o}\;\textit{nghiệm trên}\;\;\textbf{R}.$
 - * γ không là tổ hợp tuyến tính của $S \Leftrightarrow \forall c_1, c_2, ..., c_k \in \mathbf{R}, \gamma \neq c_1\alpha_1 + c_2\alpha_2 + ... + c_k\alpha_k$
- \Leftrightarrow Phương trình $c_1\alpha_1 + c_2\alpha_2 + \dots + c_k\alpha_k = \gamma$ (ẩn số $c_1, c_2, \dots, c_k \in \mathbf{R}$) vô nghiệm trên \mathbf{R} .

Ví du: Cho S = { α_1 = (1, 1, 1, 1), α_2 = (2, 3, -1, 0), α_3 = (-1, -1, 1, 1) } $\subset \mathbb{R}^4$.

a)
$$\alpha = -2\alpha_1 + 3\alpha_2 - 5\alpha_3 = -2(1,1,1,1) + 3(2,3,-1,0) - 5(-1,-1,1,1) = (9,12,-10,-7) \in \mathbf{R}^4$$
.

$$\beta = 4\alpha_1 - 3\alpha_2 + 2\alpha_3 = 4(1, 1, 1, 1) - 3(2, 3, -1, 0) + 2(-1, -1, 1, 1) = (-4, -7, 9, 6) \in \mathbf{R}^4$$
.

b) Cho $\gamma = (u, v, w, t) \in \mathbf{R}^4$.

 γ là một tổ hợp tuyến tính của $S \Leftrightarrow \exists c_1, c_2, c_3 \in \mathbf{R}, \gamma = c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3$

 \Leftrightarrow Phương trình $c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 = \gamma$ (ẩn số $c_1, c_2, c_3 \in \mathbf{R}$) có nghiệm trên \mathbf{R} .

$$X\acute{e}t \ c_1\alpha_1+c_2\alpha_2+c_3\alpha_3=\ \gamma \ \Leftrightarrow \ c_1(1,1,1,1)+c_2(2,3,-1,0)+c_3(-1,-1,1,1)=(u,v,w,t)$$

$$\Leftrightarrow \begin{cases} c_1 + 2c_2 - c_3 = u \\ c_1 + 3c_2 - c_3 = v \\ c_1 - c_2 + c_3 = w \end{cases} \Leftrightarrow \begin{pmatrix} 1 & 0 & 1 & t \\ 1 & 3 & -1 & v \\ 1 & 2 & -1 & u \\ 1 & -1 & 1 & w \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 1 & t \\ 0 & 1 & 0 & v - u \\ 0 & 2 & -2 & u - t \\ 0 & -1 & 0 & w - t \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 1 & t \\ 0 & 1^* & 0 & v - u \\ 0 & 0 & -2^* & u + 2w - 3t \\ 0 & 0 & 0 & v + w - u - t \end{pmatrix}.$$

Như vậy : $\gamma = (u, v, w, t)$ là một tổ hợp tuyến tính của $S \Leftrightarrow$

 \Leftrightarrow Hệ trên có nghiệm trên $\mathbf{R} \Leftrightarrow \mathbf{v} + \mathbf{w} - \mathbf{u} - \mathbf{t} = 0$ (*).

Lúc đó ta có biểu diễn duy nhất

$$\gamma = c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 \text{ v\'oi } c_3 = 2^{-1}(3t - u - 2w), c_2 = v - u \text{ v\'a } c_1 = 2^{-1}(u + 2w - t) (\Box)$$

Suy ra $\gamma = (u, v, w, t)$ không là tổ hợp tuyến tính của $S \Leftrightarrow$

 \Leftrightarrow Hệ trên vô nghiệm trên $\mathbf{R} \Leftrightarrow \mathbf{v} + \mathbf{w} - \mathbf{u} - \mathbf{t} \neq 0$ (**).

Xét cụ thể
$$\varepsilon = (9, 10, -2, -1)$$
 và $\theta = (-7, 1, 4, -8) \in \mathbb{R}^4$.

Ta có ϵ thỏa (*) và θ thỏa (**) nên ϵ là một tổ hợp tuyến tính của S với $\epsilon = (3\alpha_1 + \alpha_2 - 4\alpha_3) \ do (□) và θ \ không là tổ hợp tuyến tính của <math>S$.

3.2/ **DINH NGHĨA:** Cho $k \ge 1$ và $S = \{ \alpha_1, \alpha_2, ..., \alpha_k \} \subset \mathbb{R}^n$.

a) Đặt W là *tập hợp tất cả các tổ hợp tuyến tính có từ* S (ký hiệu W = < S >),

nghĩa là
$$W = \langle S \rangle = \{ \alpha = c_1 \alpha_1 + c_2 \alpha_2 + \dots + c_k \alpha_k \mid c_1, c_2, \dots, c_k \in \mathbf{R} \} \subset \mathbf{R}^n.$$

Ta chứng minh được $W = \langle S \rangle$ là một không gian vector con của \mathbf{R}^n [sử dụng (4) của (2.1)].

Ta nói $W = \langle S \rangle$ là không gian vector con (của \mathbb{R}^n) sinh bởi tập hợp S.

- b) Nếu $S = \emptyset$ thì ta qui ước $\langle S \rangle = \{O\}(\emptyset \text{ sinh ra không gian con } \{O\} \text{ của } \mathbb{R}^n)$.
- c) < S > la không gian vector con nhỏ nhất chứa được S của $\mathbf{R}^{\mathbf{n}}$, nghĩa là \forall V \leq $\mathbf{R}^{\mathbf{n}}$, S \subset V \Rightarrow < S > \subset V.
- d) Cho $\gamma \in \mathbf{R}^n$. Khi đó

 $\gamma \in W = \, < S \, > \iff \gamma \,$ là một tổ hợp tuyến tính của $\, S \, \iff \,$

 $\Leftrightarrow \text{Phương trình } c_1\alpha_1+c_2\alpha_2+\dots+c_k\alpha_k=\;\gamma\;(\mathring{\text{an số}}\;\;c_1,\,c_2\,,\dots\,,\,c_k\in\textbf{R})\;\text{có nghiệm trên }\;\textbf{R}.$

Suy ra : $\gamma \notin W = \langle S \rangle \Leftrightarrow \gamma$ không là tổ hợp tuyến tính của $S \Leftrightarrow \varphi$

 \Leftrightarrow Phương trình $c_1\alpha_1 + c_2\alpha_2 + \dots + c_k\alpha_k = \gamma$ (ẩn số $c_1, c_2, \dots, c_k \in \mathbf{R}$) vô nghiệm trên \mathbf{R} .

Ví dụ:

Cho S = {
$$\alpha_1 = (-3,2,1,5)$$
, $\alpha_2 = (4,-3,-1,-7)$, $\alpha_3 = (1,-3,2,-4)$, $\alpha_4 = (-2,5,-3,7)$ } $\subset \mathbf{R}^4$.

Ta mô tả $W = \langle S \rangle$ và tìm điều kiện để vector $\gamma = (u, v, w, t) \in W$.

a) W =
$$\langle S \rangle$$
 = { $\alpha = c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 + c_4\alpha_4 \mid c_1, c_2, c_3, c_4 \in \mathbf{R}$ }
= { $\alpha = c_1(-3,2,1,5) + c_2(4,-3,-1,-7) + c_3(1,-3,2,-4) + c_4(-2,5,-3,7) \mid c_1, c_2, c_3, c_4 \in \mathbf{R}$ }
= { $\alpha = (-3c_1 + 4c_2 + c_3 - 2c_4, 2c_1 - 3c_2 - 3c_3 + 5c_4, c_1 - c_2 + 2c_3 - 3c_4, 5c_1 - 7c_2 - 4c_3 + 7c_4)$
| $c_1, c_2, c_3, c_4 \in \mathbf{R}$ }.

- b) Cho $\gamma = (u, v, w, t) \in \mathbf{R}^4$. $\gamma \in W = < S > \Leftrightarrow \gamma \text{ là một tổ hợp tuyến tính của } S$
- \Leftrightarrow Phương trình $c_1\alpha_1+c_2\alpha_2+c_3\alpha_3+c_4\alpha_4=\gamma$ (ẩn số $c_1,c_2,c_3,c_4\in\mathbf{R}$) có nghiệm trên \mathbf{R} . Xét $c_1\alpha_1+c_2\alpha_2+c_3\alpha_3+c_4\alpha_4=\gamma$

$$\Leftrightarrow c_1(-3,2,1,5) + c_2(4,-3,-1,-7) + c_3(1,-3,2,-4) + c_4(-2,5,-3,7) = (u,v,w,t).$$

$$\Leftrightarrow \begin{pmatrix} 1 & -1 & 2 & -3 & w \\ -3 & 4 & 1 & -2 & u \\ 2 & -3 & -3 & 5 & v \\ 5 & -7 & -4 & 7 & t \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & -1 & 2 & -3 & w \\ 0 & 1 & 7 & -11 & u+3w \\ 0 & -1 & -7 & 11 & v-2w \\ 0 & -2 & -14 & 22 & t-5w \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 9 & -14 & u+4w \\ 0 & 1^* & 7 & -11 & u+3w \\ 0 & 0 & 0 & 0 & u+v+w \\ 0 & 0 & 0 & 0 & 2u+w+t \end{pmatrix}$$

 $\gamma = (u,v,w,t) \in W = < S > \Leftrightarrow H \\ \hat{e} \text{ trên có nghiệm trên } \mathbf{R} \\ \Leftrightarrow (u+v+w=0=2u+w+t) \ (*).$

Lúc đó ta có vô số biểu diễn $\gamma = c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 + c_4\alpha_4$ với $c_3 = a$, $c_4 = b$ (a, b \in **R**), $c_1 = 14b - 9a + u + 4w$ và $c_2 = 11b - 7a + u + 3w$ (\Box).

$$\begin{split} \gamma &= (u,v,w,t) \not\in W \Leftrightarrow \text{Hệ trên vô nghiệm trên } \mathbf{R} \Leftrightarrow (u+v+w \neq 0 \text{ hay } 2u+w+t \neq 0) \text{ (**)}. \end{split}$$
 Xét cụ thể $\epsilon = (5,-6,1,-11) \text{ và } \theta = (-3,2,7,-4) \in \mathbf{R}^4.$

Ta có ε thỏa (*) và θ thỏa (**) nên θ \notin W = < S > và ε \in W = < S > với vô số biểu diễn ε = $(14b - 9a + 9)\alpha_1 + (11b - 7a + 8)\alpha_2 + a\alpha_3 + b\alpha_4$ (a, b \in **R**) do (\Box).

3.3/ MINH HQA: Các vector β , γ , δ trong $\mathbf{R}^{\mathbf{n}}$ dưới đây đều có gốc là O.

a) Nếu
$$S = \{O\} \subset \mathbb{R}^n$$
 thì $\langle S \rangle = \{\alpha = cO = O \mid c \in \mathbb{R}\} = \{O\} = S$.

- b) Nếu $S = \{ \beta \} \subset \mathbf{R}^n \setminus \{ \mathbf{O} \}$ thì $< S > = \{ \alpha = c\beta \mid c \in \mathbf{R} \}$ là *một không gian con kiểu đường thẳng* của \mathbf{R}^n và đường thẳng này chứa β .
- c) Nếu $S = \{ \beta, \gamma \} \subset \mathbf{R}^n \ (\beta, \gamma \ khác \ phương) \ thì < S > = \{ \alpha = c\beta + d\gamma \mid c, d \in \mathbf{R} \}$ là *một không gian con kiểu mặt phẳng* của \mathbf{R}^n và mặt phẳng này chứa β, γ .
- d) Nếu $S = \{ \beta, \gamma \} \subset \mathbf{R}^n \setminus \{ \mathbf{O} \}$ $(\beta, \gamma \ \text{cùng phương})$ thì $< S > = \{ \alpha = c\beta + d\gamma \mid c, d \in \mathbf{R} \}$ là *một không gian con kiểu đường thẳng* của \mathbf{R}^n và đường thẳng này chứa β và γ .
- e) Nếu $S = \{ \beta, \gamma, \delta \} \subset \mathbf{R}^3 (\beta, \gamma, \delta \text{ không đồng phẳng})$ thì $\langle S \rangle = \{ \alpha = c\beta + d\gamma + e\delta \mid c, d, e \in \mathbf{R} \} \text{ và } \langle S \rangle = \mathbf{R}^3.$
- f) Nếu $S = \{ \beta, \gamma, \delta \} \subset \mathbf{R}^n$ $(\beta, \gamma, \delta \text{ khác phương đôi một nhưng đồng phẳng})$ thì $< S > = \{ \alpha = c\beta + d\gamma + e\delta \mid c, d, e \in \mathbf{R} \}$ là một không gian con kiểu mặt phẳng của \mathbf{R}^n và mặt phẳng này chứa β, γ và δ .
- g) Nếu $S = \{ \beta, \gamma, \delta \} \subset \mathbf{R}^n \setminus \{ \mathbf{O} \}$ $(\beta, \gamma, \delta \ \text{cùng phương với nhau})$ thì $< S > = \{ \alpha = c\beta + d\gamma + e\delta \mid c, d,e \in \mathbf{R} \} \text{ là một không gian con kiểu đường thẳng của } \mathbf{R}^n \text{ và đường thẳng này chứa } \beta, \gamma \text{ và } \delta.$

3.4/ <u>MÊNH ĐỀ:</u>

Cho các tập hợp hữu hạn $S_1, S_2, \ldots, S_k \subset \mathbf{R^n}$ $(k \ge 2)$ và $< S_j > = W_j \le \mathbf{R^n}$ $(1 \le j \le k)$. Đặt $S = S_1 \cup S_2 \cup \ldots \cup S_k$. Ta có $< S > = W_1 + W_2 + \cdots + W_k$.

 $\underline{\textbf{Vi du:}} \text{ Cho } S_1 = \{\alpha\}, S_2 = \{\beta, \gamma\}, S_3 = \{\delta, \epsilon, \theta\} \subset \mathbf{R^n} \text{ và } \langle S_j \rangle = W_j \leq \mathbf{R^n} \ (1 \leq j \leq 3).$

IV. SỰ ĐỘC LẬP TUYẾN TÍNH VÀ PHỤ THUỘC TUYẾN TÍNH:

4.1/ **<u>DINH NGHĨA</u>**: Cho $k \ge 1$ và $S = \{ \alpha_1, \alpha_2, ..., \alpha_k \} \subset \mathbf{R}^n$.

Xét phương trình $c_1\alpha_1+c_2\alpha_2+\cdots+c_k\alpha_k=\mathbf{O}$ (*) với các ẩn số thực $c_1,\,c_2\,,\,\ldots\,,\,c_k$.

- (*) có ít nhất một nghiệm thực là $c_1 = c_2 = \dots = c_k = 0$ (nghiệm tầm thường).
- a) Nếu (*) có nghiệm thực duy nhất (nghiệm tầm thường) thì ta nói S độc lập tuyến tính (nghĩa là không có vector nào của S được tính theo các vector khác trong S dưới dạng tổ hợp tuyến tính).
- b) Nếu (*) có vô số nghiệm thực (có nghiệm tầm thường và vô số nghiệm không tầm thường) thì ta nói S phụ thuộc tuyến tính (nghĩa là có ít nhất một vector của S được tính theo các vector khác trong S dưới dạng tổ hợp tuyến tính).
- c) Nếu $S = \emptyset$ thì ta qui ước S độc lập tuyến tính.

Ví dụ:

a) Cho S = { $\alpha_1 = (-3, 1, 2, 7)$, $\alpha_2 = (1, -2, 5, -4)$, $\alpha_3 = (2, 4, 1, 6)$ } $\subset \mathbf{R}^4$.

Phương trình $c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3 = \mathbf{O} \Leftrightarrow c_1(-3,1,2,7) + c_2(1,-2,5,-4) + c_3(2,4,1,6) = \mathbf{O}$

$$\Leftrightarrow \begin{pmatrix} 1 & c_{2} & c_{3} \\ 1 & -2 & 4 & 0 \\ -3 & 1 & 2 & 0 \\ 2 & 5 & 1 & 0 \\ 7 & -4 & 6 & 0 \end{pmatrix} \to \begin{pmatrix} 1^{*} & -2 & 4 & 0 \\ 0 & -5 & 14 & 0 \\ 0 & 9 & -7 & 0 \\ 0 & 10 & -22 & 0 \end{pmatrix} \to \begin{pmatrix} 1^{*} & -2 & 4 & 0 \\ 0 & -1^{*} & 21 & 0 \\ 0 & 0 & 182 & 0 \\ 0 & 0 & 6 & 0 \end{pmatrix} \to \begin{pmatrix} 1^{*} & -2 & 4 & 0 \\ 0 & -1^{*} & 21 & 0 \\ 0 & 0 & 1^{*} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Phương trình có nghiệm duy nhất $(c_1 = c_2 = c_3 = 0)$ nên S độc lập tuyến tính.

b) Cho T = { β_1 = (3, -4, 1, 7), β_2 = (-2, 6, 8, -1), β_3 = (-13, 24, 13, -23) } $\subset \mathbf{R}^4$.

Phương trình $c_1\beta_1 + c_2\beta_2 + c_3\beta_3 = \mathbf{O} \iff$

$$\Leftrightarrow$$
 $c_1(3, -4, 1, 7) + c_2(-2, 6, 8, -1) + c_3(-13, 24, 13, -23) = O$

$$\Leftrightarrow \begin{pmatrix} c_1 & c_2 & c_3 \\ 1 & 8 & 13 & 0 \\ 3 & -2 & -13 & 0 \\ -2 & 3 & 12 & 0 \\ 7 & -1 & -23 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 8 & 13 & 0 \\ 0 & -26 & -52 & 0 \\ 0 & 19 & 38 & 0 \\ 0 & -57 & -114 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & -3 & 0 \\ 0 & 1^* & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Phương trình có vô số nghiệm là $[c_3 = a \ (a \in \mathbf{R}), c_1 = 3a, c_2 = -2a]$ nên T phụ thuộc tuyến tính. Trích ra một nghiệm không tầm thường (bằng cách chọn a = 1), ta có $(c_1 = 3, c_2 = -2, c_3 = 1)$ và được hệ thức $3\beta_1 - 2\beta_2 + \beta_3 = \mathbf{O}$. Suy ra $\beta_3 = 2\beta_2 - 3\beta_1$, nghĩa là β_3 được tính theo β_1 và β_2 dưới dạng tổ hợp tuyến tính.

4.2/ <u>NHẬN XÉT:</u>

a)
$$S = \{ \alpha \} \subset \mathbb{R}^n$$
.

Nếu $\alpha = \mathbf{O}$ thì S phụ thuộc tuyến tính.

(phương trình c.O = O có vô số nghiệm $c \in R$).

Nếu $\alpha \neq \mathbf{O}$ thì S độc lập tuyến tính.

(phương trình $c.\alpha = \mathbf{O}$ có nghiệm thực duy nhất c = 0).

b)
$$S = \{ \alpha, \beta \} \subset \mathbf{R}^{\mathbf{n}}$$
.

Nếu α cùng phương với β (α và β có các thành phần tỉ lệ với nhau) thì S phụ thuộc tuyến tính.

Nếu α khác phương với β (α và β có các thành phần không tỉ lệ với nhau) thì S độc lập tuyến tính.

c)
$$S = {\alpha, \beta, \gamma} \subset \mathbb{R}^3$$
.

Nếu α, β, γ đồng phẳng thì S phụ thuộc tuyến tính.

Nếu α , β , γ không đồng phẳng thì S độc lập tuyến tính.

d) Cho $S \subset T \subset \mathbb{R}^n$.

Nếu S phụ thuộc tuyến tính thì T cũng phụ thuộc tuyến tính.

Nếu T độc lập tuyến tính thì S cũng độc lập tuyến tính.

Nếu $O \in S$ thì S phụ thuộc tuyến tính (vì $\{O\}$ phụ thuộc tuyến tính).

Nếu S độc lập tuyến tính thì $O \notin S$.

Ví dụ:

Xét S = {α = (-2,4,-8,6), β = (3,-6,12,-9)} và T = { γ = (5,1,-4,7), δ = (-1,8,2,-3)}
$$\subset \mathbf{R}^4$$
.

Ta có S phụ thuộc tuyến tính ($\beta = \frac{-3}{2}\alpha$) và T độc lập tuyến tính (γ không tỉ lệ với δ).

4.3/ MÊNH ĐÈ: (xác định sự độc lập tuyến tính và phụ thuộc tuyến tính)

$$Cho\ m\geq 3\ va\ S=\{\ \alpha_1\,,\,\alpha_2\,,\,...,\,\alpha_m\,\}\subset {\hbox{\bf R}}^n.$$

Đặt
$$A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{pmatrix} \in M_{m \times n}(\mathbf{R})$$
 và ta có thể hoán đổi các dòng của A .

Ta tìm S_A (dạng bậc thang của A) để xác định r(A) với $r(A) \le m$.

- a) Nếu m>n thì S phụ thuộc tuyến tính.
- b) Xét trường hợp $m \le n$.

Nếu r(A) < m thì S phụ thuộc tuyến tính.

Nếu r(A) = m thì S độc lập tuyến tính.

c) Xét trường hợp đặc biệt m = n và $A \in M_n(\mathbf{R})$.

Nếu A không khả nghịch (|A| = 0) thì S phụ thuộc tuyến tính.

Nếu A khả nghịch ($|A| \neq 0$) thì S độc lập tuyến tính.

Ví dụ:

a) Cho $Z = \{ \alpha, \beta, \gamma, \delta, \epsilon \} \subset \mathbf{R}^3$. Do m = |Z| = 5 > n = 3 nên Z phụ thuộc tuyến tính.

b) Cho S = {
$$\alpha_1 = (-3, 1, 2, 7)$$
, $\alpha_2 = (1, -2, 5, -4)$, $\alpha_3 = (2, 4, 1, 6)$ } $\subset \mathbf{R}^4$ và
$$T = \{ \beta_1 = (3, -4, 1, 7), \beta_2 = (-2, 6, 8, -1), \beta_3 = (-13, 24, 13, -23) \} \subset \mathbf{R}^4.$$

$$A \to \begin{pmatrix} 1^* & -2 & 5 & -4 \\ 0 & -5 & 17 & -5 \\ 0 & 8 & -9 & 14 \end{pmatrix} \to \begin{pmatrix} 1^* & -2 & 5 & -4 \\ 0 & -5^* & 17 & -5 \\ 0 & 0 & 91^* & 30 \end{pmatrix} = S_A \text{ có } r(A) = 3 = m = 3 < n = 4.$$

$$B \to \begin{pmatrix} 1^* & 2 & 9 & 6 \\ 0 & 10 & 26 & 11 \\ 0 & 50 & 130 & 55 \end{pmatrix} \to \begin{pmatrix} 1^* & 2 & 9 & 6 \\ 0 & 10^* & 26 & 11 \\ 0 & 0 & 0 & 0 \end{pmatrix} = S_B \text{ có } r(B) = 2 < m = 3 < n = 4.$$

Do đó S độc lập tuyến tính và T phụ thuộc tuyến tính.

c) Cho H = {
$$\gamma_1$$
 = (a, 1, 1), γ_2 = (1, a, 1), γ_3 = (1, 1, a) } $\subset \mathbf{R}^3$ (m = n = 3).

Đặt
$$C = \begin{pmatrix} \gamma_2 \\ \gamma_1 \\ \gamma_3 \end{pmatrix} = \begin{pmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{pmatrix} \in M_3(\mathbf{R}) \text{ và}$$

$$|C| = \begin{vmatrix} a & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & a \end{vmatrix} = \begin{vmatrix} 0 & 1-a & 1-a^2 \\ 0 & a-1 & 1-a \\ 1^* & 1 & a \end{vmatrix} = \begin{vmatrix} 1-a & 1-a^2 \\ a-1 & 1-a \end{vmatrix} = (a-1)^2 \begin{vmatrix} 1 & 1+a \\ -1 & 1 \end{vmatrix} = (a-1)^2 (a+2).$$

Như vậy H độc lập tuyến tính \Leftrightarrow C khả nghịch \Leftrightarrow $|C| \neq 0 \Leftrightarrow -2 \neq a \neq 1$.

H phụ thuộc tuyến tính \Leftrightarrow C không khả nghịch \Leftrightarrow | C | = 0 \Leftrightarrow (a = -2 hoặc a = 1).

V. CƠ SỞ VÀ SỐ CHIỀU CỦA KHÔNG GIAN VECTOR:

5.1/ $\underline{VAN \ DE}$: Cho $W \le \mathbb{R}^n$. Có nhiều tập hợp hữu hạn của \mathbb{R}^n sinh ra W. Ta muốn tìm một tập sinh S nào đó của W sao cho S *có số lượng vector là ít nhất*. Khi đó ta nói

S là một tập sinh tối ưu của W.

- **5.2**/ MÊNH ĐÈ: Cho $W \le \mathbb{R}^n$ và $W = \langle S \rangle$ với S là một tập hợp hữu hạn của \mathbb{R}^n .
 - a) Nếu S độc lập tuyến tính thì S chính là một tập sinh tối ưu của W. (nghĩa là $\forall T \subset S, T \neq S \Rightarrow \langle T \rangle \neq W$)
 - b) Nếu S phụ thuộc tuyến tính thì S là một tập sinh chưa tối ưu của W. (nghĩa là $\exists T \subset S, T \neq S \text{ và } < T > = W$)

$Vi du: W = R^2$.

- a) $S = \{ \alpha, \beta \} \subset \mathbf{R}^2$ (α khác phương với β). Ta có $\langle S \rangle = \mathbf{R}^2$ và S độc lập tuyến tính nên S chính là một tập sinh tối ưu của \mathbf{R}^2 . Xét $T = \{ \alpha \} \subset S$ và $T \neq S$. Ta có $\langle T \rangle \neq \mathbf{R}^2$ vì $\langle T \rangle$ là một không gian con kiểu đường thẳng của \mathbf{R}^2 .
- b) $Z = \{ \alpha, \beta, \gamma \} \subset \mathbf{R}^2$ (α, β, γ đôi một khác phương nhau). Ta có $< Z > = \mathbf{R}^2$ và Z phụ thuộc tuyến tính nên Z là một tập sinh chưa tối ưu của \mathbf{R}^2 . Xét $T = \{ \alpha, \beta \} \subset S$ thì $T \neq S$ và $< T > = \mathbf{R}^2$.

5.3/ ĐỊNH NGHĨA: Cho $W \le R^n$.

Một cơ sở của W là một tập sinh độc lập tuyến tính (một tập sinh tối ưu) của W.

5.4/ **MÊNH ĐỀ:** Cho $W \le \mathbb{R}^n$.

- a) Nếu W \neq {**O**} thì W $c\acute{o} v\^{o} s\^{o} co s\^{o}$.
- b) Nếu W ≠ {O} và W có cơ sở B gồm m vector thì mọi cơ sở khác cũng có m vector. Ta gọi m là số chiều của không gian vector W và ký hiệu m = dimW (viết gọn là m = dimW). Như vậy số chiều của một không gian vector là số lượng các vector hiện diện trong mỗi cơ sở của nó.

Ví dụ:

- b) ${f R}^1$ có vô số cơ sở khác nhau. Mỗi cơ sở B của ${f R}^1$ gồm một vector $\alpha \neq {f O}$ tùy ý vì $B = \{ \ \alpha \ \}$ độc lập tuyến tính và $< B > = {f R}^1$. Suy ra $\dim {f R}^1 = |\ B\ | = 1$ và ta nói ${f R}^1$ là không gian 1 chiều.
- c) \mathbf{R}^2 có vô số cơ sở khác nhau. Mỗi cơ sở B của \mathbf{R}^1 gồm hai vector α , β *khác phương* nhau tùy ý vì $\mathbf{B} = \{ \alpha, \beta \}$ độc lập tuyến tính và $\langle \mathbf{B} \rangle = \mathbf{R}^2$. Suy ra $\dim \mathbf{R}^2 = |\mathbf{B}| = 2$ và ta nói \mathbf{R}^2 là không gian 2 chiều.
- d) R³ có vô số cơ sở khác nhau. Mỗi cơ sở B của R³ gồm ba vector α, β, γ không đồng phẳng tùy ý vì B = { α, β, γ } độc lập tuyến tính và < B > = R³.
 Suy ra dimR³ = | B | = 3 và ta nói R³ là không gian 3 chiều.
- e) $\mathbf{R}^{\mathbf{n}}$ ($n \ge 1$) có vô số cơ sở khác nhau. Trong đó có một cơ sở đơn giản thông dụng gọi là $\cos s \cos t \sinh t \, \dot{a} \cos t \, \dot{b} \cos t \, \dot{c} \cos t \, \dot{c$
- f) $S = \{ \alpha = (8,7) \} \subset \mathbb{R}^2 \text{ và } V = \langle S \rangle = \{ \delta = a\alpha \mid a \in \mathbb{R} \} \leq \mathbb{R}^2 \text{. Do } \alpha \neq \mathbb{O} \text{ nên } S \text{ dộc}$ lập tuyến tính và cũng là một cơ sở của V. Ta có V là một không gian con kiểu đường thẳng của \mathbb{R}^2 có $\dim V = |S| = 1 < \dim \mathbb{R}^2 = 2$. Như vậy $\{ \mathbf{O} \} < V < \mathbb{R}^2 \text{ và } V$ là một không gian con không tầm thường của \mathbb{R}^2 .
- g) $T = \{ \beta = (5,-2,4), \gamma = (-3,1,8) \} \subset \mathbf{R}^3 \text{ và } W = < T > = \{ \delta = b\beta + c\gamma \mid b, c \in \mathbf{R} \} \le \mathbf{R}^3 \}$ Do β không tỉ lệ với γ nên T độc lập tuyến tính và cũng là một cơ sở của W. Ta có W là một không gian con kiểu mặt phẳng của \mathbf{R}^3 có $\dim W = |T| = 2 < \dim \mathbf{R}^3 = 3$.

Như vậy $\{O\} \le W \le R^3$ và W là một không gian con không tầm thường của R^3 .

5.5/ NHẬN DIỆN CƠ SỞ CỦA KHÔNG GIAN Rⁿ:

Cho
$$S = \{ \alpha_1, \alpha_2, ..., \alpha_n \} \subset \mathbf{R^n} \text{ với } |S| = n.$$
 Đặt $A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \in M_n(\mathbf{R})$. Khi đó

- a) S là một cơ sở của $\mathbf{R}^n \iff A$ khả nghịch $\iff |A| \neq 0$.
- b) S không là cơ sở của $\mathbb{R}^n \Leftrightarrow A$ không khả nghịch $\Leftrightarrow |A| = 0$.

Ví dụ:

a) Cho $Z=\{\,\alpha,\,\beta,\,\gamma\,\}\,$ và $T=\{\,\delta,\,\epsilon,\,\theta,\,\eta,\,\lambda\,\}\,$ trong ${\bf R}^4$. Ta có $|\,Z\,|=3\,$ và $|\,T\,|=5\,$ nên Z và T không phải là cơ sở của ${\bf R}^4$ vì mỗi cơ sở của ${\bf R}^4$ có $4\,$ vector.

b) Cho
$$S = \{ \alpha = (1, -2, a), \beta = (2, a - 2, 1), \gamma = (2, a - 5, a + 1) \} \subset \textbf{R}^3 \text{ có } |S| = 3.$$

Đặt
$$A = \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} 1 & -2 & a \\ 2 & a-2 & 1 \\ 2 & a-5 & a+1 \end{pmatrix} \in M_3(\mathbf{R})$$
. Ta có

$$|A| = \begin{vmatrix} 1 & -2 & a \\ 2 & a-2 & 1 \\ 2 & a-5 & a+1 \end{vmatrix} = \begin{vmatrix} 1^* & -2 & a \\ 0 & 3 & -a \\ 0 & a-1 & 1-a \end{vmatrix} = \begin{vmatrix} 3 & -a \\ a-1 & 1-a \end{vmatrix} = (a-1)\begin{vmatrix} 3 & -a \\ 1 & -1 \end{vmatrix} = (a-1)(a-3).$$

S là một cơ sở của $\mathbb{R}^3 \iff A$ khả nghịch $\iff |A| \neq 0 \iff 1 \neq a \neq 3$.

S không là cơ sở của $\mathbb{R}^3 \iff A$ không khả nghịch $\iff |A| = 0 \iff (a = 1 \text{ hoặc } a = 3).$

5.6/ Ý NGHĨA CỦA CƠ SỞ VÀ SỐ CHIỀU:

 $Cho \ W \leq \textbf{R}^{\textbf{n}} \ va \ W \ co \ co \ so \ B = \{ \ \alpha_1 \,,\, \alpha_2 \,,\, ...,\, \alpha_m \, \} \subset \textbf{R}^{\textbf{n}} \, (\ dimW = | \ B \ | = m \,).$

a) $\forall \alpha \in W$, có duy nhất $c_1, c_2, ..., c_m \in \mathbf{R}$ thỏa $\alpha = c_1\alpha_1 + c_2\alpha_2 + ... + c_m\alpha_m$ (*). Muốn tìm $c_1, c_2, ..., c_m$, ta phải giải phương trình vector (*).

Như vậy không gian W hoàn toàn được xác định bởi một cơ sở bất kỳ của nó (vì

mỗi vector trong W được biểu diễn một cách duy nhất dưới dạng tổ hợp tuyến tính theo các vector trong cơ sở). Do đó muốn xác định một không gian vector trong \mathbf{R}^n , ta chỉ cần giới thiệu một cơ sở của nó là đủ. Điều này rất thuận lợi vì các không gian vector $\neq \{\mathbf{O}\}$ có vô hạn vector trong khi mỗi cơ sở của nó chỉ có hữu hạn vector.

b) Các không gian vector (≠ {O}) có vô hạn vector nên ta không thể so sánh " tầm vóc (độ lớn)" của các không gian dựa trên số lượng vector của chúng được. Chúng ta dùng đại lượng " số chiều " để thấy được " tầm vóc (độ lớn)" của các không gian. Không gian có số chiều càng cao thì " tầm vóc " càng lớn.

Ví dụ:

a) Cho B =
$$\{X_1 = (7,-2), X_2 = (-4,1)\}\$$
là một cơ sở của $\mathbf{R^2}(\text{ vì } \begin{vmatrix} X_1 \\ X_2 \end{vmatrix} = \begin{vmatrix} 7 & -2 \\ -4 & 1 \end{vmatrix} = -1 \neq 0).$

 $\forall X = (u, v) \in \mathbb{R}^2$, ta có biểu diễn tổ hợp tuyến tính duy nhất

 $X = (-u - 4v)X_1 + (-2u - 7v)X_2$ bằng cách giải hệ $X = c_1X_1 + c_2X_2$ với các ẩn số thực c_1 và c_2 :

$$(X_1^t \ X_2^t \ | \ X^t \) = \begin{pmatrix} c_1 & c_2 \\ 7 & -2 & u \\ -4 & 1 & v \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & -1 & u+3v \\ 0 & -1 & 2u+7v \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & -u-4v \\ 0 & 1^* & -2u-7v \end{pmatrix} .$$

b) Cho S = {
$$\alpha_1$$
 = (1, 1, 1, 1), α_2 = (2, 3, -1, 0), α_3 = (-1, -1, 1, 1) } $\subset \mathbf{R}^4$.
Xét W = \langle S \rangle = { α = $a\alpha_1$ + $b\alpha_2$ + $c\alpha_3$ | a , b , $c \in \mathbf{R}$ } $\leq \mathbf{R}^4$.

$$A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & -1 & 0 \\ -1 & -1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 1 & 1 & 1 \\ 0 & 1^* & -3 & -2 \\ 0 & 0 & 2^* & 2 \end{pmatrix} = S_A \text{ thì } r(A) = 3 \text{ nên } S \text{ dộc lập tuyến}$$

tính và cũng là một cơ sở của W với $dimW = |S| = 3 < dim \mathbb{R}^4 = 4$. Suy ra $W < \mathbb{R}^4$.

Theo **Ví dụ** của (3.1), $\forall \gamma = (u, v, w, t) \in W$ (γ thỏa v + w - u - t = 0), ta có biểu diễn

duy nhất dưới dạng tổ hợp tuyến tính $\gamma = \frac{u + 2w - t}{2}\alpha_1 + (v - u)\alpha_2 + \frac{3t - u - 2w}{2}\alpha_3$.

5.7/ TÌM CƠ SỞ CHO KHÔNG GIAN SINH BỞI MỘT TẬP HỢP HỮU HẠN:

- a) Vấn đề: Cho W= < S > \le \mathbf{R}^4 với S = $\{$ α_1 , α_2 , ..., α_m $\}$ \subset \mathbf{R}^n . Tìm một cơ sở cho W.
- b) Giải quyết:

Đặt
$$A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{pmatrix} \in M_{m \times n}(\mathbf{R})$$
 và tìm ma trận dạng bậc thang S_A của A .

 S_A có k dòng không tầm thường tạo thành các vector $\gamma_1, \gamma_2, ..., \gamma_k$.

$$C = \{\; \gamma_1 \,,\, \gamma_2 \,,\, \ldots,\, \gamma_k \,\} \; \text{là một cơ sở của} \;\; W = \, < S > \; \text{và } \; \text{dim} \\ W = \mid S \mid \; = k = r(A).$$

Ta cũng nói W là không gian dòng của ma trận A.

 $\underline{\text{V\'i du:}}$ Trong \mathbb{R}^4 , cho tập hợp (được mô tả theo các tham số thực a, b, c, d)

$$W = \{X = (a + 4b - 2c + 3d, 2a + 7b - 3c + 7d, 2a + b + 4c + 15d, -a - 2b - 5d) \mid a,b,c,d \in \mathbf{R}\}$$

Hãy tìm một tập hợp hữu hạn S của \mathbf{R}^4 thỏa $W = < S > \le \mathbf{R}^4$ và tìm một cơ sở cho W.

Dùng cách tách riêng các tham số và đặt mỗi tham số làm thừa số chung, ta có

$$W = \{ X = (a,2a,2a,-a) + (4b,7b,b,-2b) + (-2c,-3c,4c,0) + (3d,7d,15d,-5d) \mid a,b,c,d \in \mathbf{R} \}$$

$$= \{ X = a(1, 2, 2, -1) + b(4, 7, 1, -2) + c(-2, -3, 4, 0) + d(3, 7, 15, -5) \mid a, b, c, d \in \mathbf{R} \}.$$

$$V \hat{a} y \ W = < S > v \acute{o} i \ S = \{\alpha_1 = (1,2,2,-1), \ \alpha_2 = (4,7,1,-2), \ \alpha_3 = (-2,-3,4,0), \ \alpha_4 = (3,7,15,-5)\}.$$

$$\label{eq:definition} \vec{\mathrm{D}} \Tilde{\mathbf{A}} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \\ \alpha_4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 & -1 \\ 4 & 7 & 1 & -2 \\ -2 & -3 & 4 & 0 \\ 3 & 7 & 15 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 2 & 2 & -1 \\ 0 & 1 & 9 & -2 \\ 0 & 1 & 8 & -2 \\ 0 & 1 & 9 & -2 \end{pmatrix} \rightarrow \mathbf{S}_{\mathbf{A}} = \begin{pmatrix} 1^* & 2 & 2 & -1 \\ 0 & 1^* & 9 & -2 \\ 0 & 0 & -1^* & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ O \end{pmatrix}.$$

$$W \ \text{c\'o c\'o s\'o l\`a} \ C = \{ \ \gamma_1 = (1,2,2,-1), \ \gamma_2 = (0,1,9,-2), \ \gamma_3 = (0,0,-1,0) \ \} \ \text{v\'a} \ \ \text{dim} \\ W = | \ C \ | = 3.$$

5.8/ TÌM CƠ SỞ CHO KHÔNG GIAN NGHIỆM CỦA HỆ PHƯƠNG TRÌNH TUYẾN TÍNH THUẦN NHẤT:

- a) $\underline{V\acute{a}n}$ $\underline{d\grave{e}}$: Cho $A \in M_{m \times n}(\mathbf{R})$ và $W = \{ X \in \mathbf{R}^n \mid AX = \mathbf{O} \} \leq \mathbf{R}^n$. Tìm một cơ sở cho W.
- b) $\underline{Giải \ quy\'et}$: Giải hệ $AX = \mathbf{O}$ để mô tả không gian nghiệm W.
 - Nếu W = $\{\mathbf{O}\}\$ thì W có cơ sở (duy nhất) là \emptyset và dimW = $|\emptyset|$ = 0.
 - Nếu hệ có vô số nghiệm với k ẩn tự do thì ta mô tả W theo k ẩn tự do đó.
 Dùng cách tách riêng các ẩn tự do và đặt mỗi ẩn tự do làm thừa số chung, ta có được một tập sinh D (gồm k vector) cho W. Tập sinh D độc lập tuyến tính (kết quả này đã được chứng minh trong lý thuyết) nên D là *một cơ sở* của W.
 Ta có dimW = | D | = k = (Số ẩn tự do của hệ AX = 0).

Ví dụ:

a) Cho
$$V = \{ X \in \mathbf{R}^4 \mid HX = \mathbf{O} \} \le \mathbf{R}^4 \text{ v\'oi } H = \begin{pmatrix} 1 & 2 & 3 & 4 \\ -2 & 1 & -4 & 3 \\ 3 & -4 & -1 & 2 \\ 4 & 3 & -2 & 1 \end{pmatrix} \in M_4(\mathbf{R}).$$

Ta tìm một cơ sở cho V. Trước hết ta giải hệ $HX = \mathbf{O}$ với $X = (x, y, z, t) \in \mathbf{R}^4$. Ta có

$$|H| = \begin{vmatrix} 1 & 2 & 3 & 4 \\ -2 & 1 & -4 & 3 \\ 3 & -4 & -1 & 2 \\ 4 & 3 & -2 & 1 \end{vmatrix} = \begin{vmatrix} 1^* & 2 & 3 & 4 \\ 0 & 5 & 2 & 11 \\ 0 & -10 & -10 & -10 \\ 0 & 5 & -10 & 7 \end{vmatrix} = \begin{vmatrix} 1^* & 2 & 3 & 4 \\ 0 & 5^* & 2 & 11 \\ 0 & 0 & -6 & 12 \\ 0 & 0 & -12 & -4 \end{vmatrix} = \begin{vmatrix} 1^* & 2 & 3 & 4 \\ 0 & 5^* & 2 & 11 \\ 0 & 0 & -6^* & 12 \\ 0 & 0 & 0 & -28^* \end{vmatrix} = 840 \neq 0.$$

Vậy H khả nghịch và hệ $HX = \mathbf{O}$ chỉ có nghiệm tầm thường $X = \mathbf{O} = (0, 0, 0, 0)$.

Do đó $V = \{O\}$ và V có cơ sở là \emptyset với $\dim V = |\emptyset| = 0$.

b) Cho W = {
$$X \in \mathbb{R}^5 \mid AX = \mathbf{O}$$
 } $\leq \mathbb{R}^5$ với $A = \begin{pmatrix} 1 & -5 & -1 & -7 & 3 \\ -2 & 10 & 3 & 18 & -7 \\ 3 & -15 & -5 & -29 & 11 \\ -4 & 20 & 7 & 40 & -15 \end{pmatrix} \in M_{4 \times 5}(\mathbb{R}).$

Ta tìm một cơ sở cho W. Trước ta giải hệ $AX = \mathbf{O}$ với $X = (x, y, z, t, u) \in \mathbf{R}^5$.

Hệ có vô số nghiệm với 3 ẩn tự do : y, t, $u \in \mathbf{R}$, x = 5y + 3t - 2u, z = u - 4t.

$$W = \{ X = (5y + 3t - 2u, y, u - 4t, t, u) \mid y, t, u \in \mathbf{R} \}$$

$$= \{ X = y(5, 1, 0, 0, 0) + t(3, 0, -4, 1, 0) + u(-2, 0, 1, 0, 1) \mid y, t, u \in \mathbf{R} \}.$$

$$W = < D > \ v\acute{\sigma}i \ D = \{\ \delta_1 = (5,\ 1,\ 0,\ 0,\ 0),\ \delta_2 = (3,\ 0,\ -4,\ 1,\ 0),\ \delta_3 = (-\ 2,\ 0,\ 1,\ 0,\ 1)\ \} \subset \mathbf{R^5}.$$

D độc lập tuyến tính nên D là một cơ sở của W và dimW = |D| = 3 = số ẩn tự do của hệ.

5.9/ TÌM CƠ SỞ CHO KHÔNG GIAN TỔNG:

- a) $\underline{V \acute{a}n}$ đề: Cho $V = \langle S \rangle \leq \mathbf{R^n}$ và $W = \langle T \rangle \leq \mathbf{R^n}$ với S, T là các tập hợp con hữu hạn của $\mathbf{R^n}$. Ta có $(V + W) \leq \mathbf{R^n}$. Ta tìm một cơ sở cho V + W.
- b) Giải quyết: Đặt $Z = S \cup T$ thì $V + W = \langle Z \rangle$. Sử dụng (5.6) , ta tìm được một cơ sở cho V + W từ tập sinh Z của nó.

Tìm một cơ sở cho V + W.

Đặt
$$Z = S \cup T = \{ \alpha, \beta, \gamma, \delta, \epsilon \}$$
 thì $V + W = \langle Z \rangle$. Ta có

$$\mathbf{A} = \begin{pmatrix} \varepsilon \\ \beta \\ \gamma \\ \delta \\ \alpha \end{pmatrix} = \begin{pmatrix} 1 & 6 & -8 & 1 \\ 2 & 0 & -5 & 3 \\ -4 & 4 & -5 & 1 \\ 4 & -6 & 4 & 1 \\ 5 & -2 & -5 & 4 \end{pmatrix} \longrightarrow \begin{pmatrix} 1^* & 6 & -8 & 1 \\ 0 & -12 & 11 & 1 \\ 0 & 4 & -15 & 7 \\ 0 & -2 & -1 & 2 \\ 0 & -32 & 35 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1^* & 6 & -8 & 1 \\ 0 & 0 & 17 & -11 \\ 0 & 0 & -17 & 11 \\ 0 & -2 & -1 & 2 \\ 0 & 0 & 51 & -33 \end{pmatrix} \longrightarrow \begin{pmatrix} 1^* & 6 & -8 & 1 \\ 0 & 2^* & 1 & -2 \\ 0 & 0 & 17^* & -11 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

V + W có cơ sở $E = \{ \lambda = (1, 6, -8, 1), \mu = (0, 2, 1, -2), \nu = (0, 0, 17, -11) \}.$

5.10/ TÌM CƠ SỞ CHO KHÔNG GIAN GIAO:

- a) $\underline{\textit{V\'{a}n}}$ $\underline{\textit{d\'{e}}}$: Cho $V = < S > \le \mathbf{R^n}$ và $W = < T > \le \mathbf{R^n}$ với $S = \{ \alpha_1, \alpha_2, ..., \alpha_p \} \subset \mathbf{R^n}$ và $T = \{ \beta_1, \beta_2, ..., \beta_q \} \subset \mathbf{R^n}$ ($p \ge q$). Tìm một cơ sở cho $V \cap W$.
- b) Giải quyết: Xét $\alpha \in \mathbf{R}^{\mathbf{n}}$. Ta có

$$\alpha \in V \cap W \iff (\alpha \in V \text{ và } \alpha \in W) \iff$$

$$\Leftrightarrow \exists c_1,\,c_2,\,...,\,c_p \in \mathbf{R},\,\alpha = c_1\alpha_1 + c_2\alpha_2 + \cdots + c_p\alpha_p \ \text{ và phương trình}$$

$$d_1\beta_1 + d_2\beta_2 + \cdots + d_q\beta_q = \alpha \ (\mathring{a}n \ s\acute{o} \ d_1,\,d_2,\,... \ \text{ và } \ d_q) \ c\acute{o} \ \text{nghiệm thực}.$$

Ta sẽ thấy $c_1,\,c_2,\,...,\,c_p\,$ bị ràng buộc bởi một hệ phương trình tuyến tính thuần nhất.

Giải hệ này để chỉ ra các ẩn tự do và mô tả $\alpha \in V \cap W$ theo các ẩn tự do này.

Từ đó ta tìm được một tập sinh độc lập tuyến tính (một cơ sở) cho $V \cap W$.

Ví du: Cho S = { α = (-2,4,3,0), β = (4,-1,-2,2), γ = (-1,4,1,1) }
$$\subset$$
 R⁴, V = < S > ≤ **R**⁴,
T = { δ = (0, 5, 1,-1), ε = (1, 5,-1, 0), θ = (3, 4, 1, 0) } \subset **R**⁴, W = < T > ≤ **R**⁴.

Tìm một cơ sở cho $V \cap W$.

$$Ta\ co'\ \alpha\in V\cap W\ \Leftrightarrow\ (\alpha\in V\ va\ \alpha\in W)\ \Leftrightarrow$$

 $\Leftrightarrow \exists a,b,c \in \mathbf{R}, \ \alpha = a\alpha + b\beta + c\gamma \ \text{và phương trình } r\delta + s\epsilon + t\theta = \alpha \ (\text{ẫn số} \ r,s,t) \text{ có}$ nghiệm thực.

Phương trình
$$r(0,5,1,-1) + s(1,5,-1,0) + t(3,4,1,0) =$$

= $a(-2,4,3,0) + b(4,-1,-2,2) + c(-1,4,1,1)$

$$\Leftrightarrow \begin{pmatrix}
1 & -1 & 1 & 3a - 2b + c \\
0 & 1 & 3 & 4b - 2a - c \\
-1 & 0 & 0 & 2b + c \\
5 & 5 & 4 & 4a - b + 4c
\end{pmatrix}
\rightarrow \begin{pmatrix}
1^* & -1 & 1 & 3a - 2b + c \\
0 & 1 & 3 & 4b - 2a - c \\
0 & -1 & 1 & 3a + 2c \\
0 & 5 & 4 & 4a + 9b + 9c
\end{pmatrix}
\rightarrow \begin{pmatrix}
1^* & -1 & 1 & 3a - 2b + c \\
0 & 1^* & 3 & 4b - 2a - c \\
0 & 0 & 4 & a + 4b + c \\
0 & 0 & 9 & 19a + 9b + 19c
\end{pmatrix}$$

r s t
$$\rightarrow \begin{pmatrix}
1^* & -1 & 1 & 3a - 2b + c \\
0 & 1^* & 3 & 4b - 2a - c \\
0 & 0 & 4^* & a + 4b + 2c \\
0 & 0 & 0 & 67a + 67c
\end{pmatrix}. \text{ Phương trình có nghiệm } \Leftrightarrow a + c = 0 \Leftrightarrow c = -a.$$

5.11/ <u>SO SÁNH SỐ VECTOR TRONG MỘT TẬP HỢP ĐỘC LẬP TUYẾN TÍNH</u> <u>VÀ TRONG MỘT TẬP SINH VỚI SỐ CHIỀU CỦA KHÔNG GIAN VECTOR:</u>

Cho $W \le \mathbb{R}^n$ có dimW = m.

- a) Nếu S độc lập tuyến tính \subset W thì $|S| \le m$. Nếu (S độc lập tuyến tính \subset W và |S| = m) thì S là một cơ sở của W.
- b) Nếu < S > = W thì | S | \ge m. Nếu (< S > = W và | S | = m) thì S là một cơ sở của W.
- c) Nếu $(S \subset W \text{ và } |S| > m)$ thì S phụ thuộc tuyến tính.
- d) Nếu $(S \subset W \text{ và } |S| < m)$ thì $< S > \neq W$.

<u>Ví dụ:</u>

a) Nếu S độc lập tuyến tính $\subset \mathbf{R^4}$ thì $|S| \le \dim \mathbf{R^4} = 4$. Nếu (S độc lập tuyến tính $\subset \mathbf{R^4}$ và $|S| = \dim \mathbf{R^4} = 4$) thì S là một cơ sở của $\mathbf{R^4}$.

- b) Nếu < S > = \mathbf{R}^4 thì | S | \geq dim \mathbf{R}^4 = 4. Nếu (< S > = \mathbf{R}^4 và | S | = dim \mathbf{R}^4 = 4) thì S là một cơ sở của \mathbf{R}^4 .
- c) Nếu $(S \subset \mathbf{R}^5 \text{ và } |S| > \text{dim} \mathbf{R}^5 = 5)$ thì S phụ thuộc tuyến tính.
- d) Nếu $(S \subset \mathbb{R}^5 \text{ và } |S| < \text{dim} \mathbb{R}^5 = 5) \text{ thì } < S > \neq \mathbb{R}^5.$

5.12/ NHẬN DIỆN CƠ SỞ CHO KHÔNG GIAN VECTOR:

Trong (5.5), ta đã nêu ra cách nhận diện một cơ sở cho không gian $\mathbf{R}^{\mathbf{n}}$ ($\mathbf{R}^{\mathbf{n}}$ được gọi là *không gian đầy*). Bây giờ ta giới thiệu cách nhận diện cơ sở cho không gian W mà $\mathbf{W} < \mathbf{R}^{\mathbf{n}}$ (\mathbf{W} được gọi là *không gian vơi*).

- a) Khi chưa biết dimW: Ta dùng định nghĩa (5.3) nói về cơ sở.
 B là một cơ sở của W ⇔ (=W và B độc lập tuyến tính).
- b) Khi đã biết dimW = m : Ta dùng phần a) của (5.11).

B là một cơ sở của $W \Leftrightarrow (B \subset W, B \text{ độc lập tuyến tính và } | B | = \text{dim}W = m).$

<u>Ví dụ:</u> Cho S = { α = (-2,1,3,0), β = (3,4,-1,5)}, T = { γ = (4,9,1,10), δ = (9,1,-10,5)} \subset \mathbb{R}^4 Đặt W = \langle S > = { X = $\alpha\alpha$ + $b\beta$ | α , β ∈ \mathbb{R} } \leq \mathbb{R}^4 . Theo (5.11), dimW \leq | S | = 2 nên W \neq \mathbb{R}^4 , nghĩa là W \langle \mathbb{R}^4 . Ta giải thích S và T là các cơ sở của W. Giải thích S là một cơ sở của W (chưa biết dimW) : Do \langle S > = W và S độc lập tuyến tính (α không tỉ lệ với β) nên S là một cơ sở của W và dimW = | S | = 2. Giải thích T là một cơ sở của W (đã biết dimW = 2):

* $T = \{\gamma, \delta\} \subset W = \langle S = \{\alpha, \beta\} \rangle$ vì các phương trình $c_1\alpha + c_2\beta = \gamma$ (ẩn là c_1 và c_2) và $d_1\alpha + d_2\beta = \delta$ (ẩn là d_1 và d_2) đều có nghiệm thực là $c_1 = 1$, $c_2 = 2$, $d_1 = -3$, $d_2 = 1$ Các phương trình trên có vế trái như nhau nên có thể giải chung trong một bảng :

$$(\alpha^{t} \ \beta^{t} \ | \ \gamma^{t} \ | \ \delta^{t} \) = \begin{pmatrix} c_{1} \ c_{2} \\ -2 \ 3 \ | \ 4 \ | \ 9 \\ 1 \ 4 \ 9 \ | \ 1 \\ 3 \ -1 \ 1 \ | \ -10 \\ 0 \ 5 \ | \ 10 \ | \ 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1^{*} \ 2 \ | \ 5 \ | \ -1 \\ 0 \ 2 \ 4 \ | \ 2 \\ 0 \ -7 \ | \ -14 \ | \ -7 \\ 0 \ 5 \ | \ 10 \ | \ 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1^{*} \ 0 \ 1 \ | \ -3 \\ 0 \ 1^{*} \ 2 \ 1 \\ 0 \ 0 \ 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \ 0 \end{pmatrix} .$$

$$d_{1} \ d_{2}$$

$$d_{1} \ d_{2}$$

* T = { γ , δ } độc lập tuyến tính (γ không tỉ lệ với δ) và | T | = 2 = dimW.

5.13/ $\underline{\mathbf{DINH LY:}}$ Cho V, W $\leq \mathbf{R^n}$.

- a) Nếu $W \le V$ thì $\dim W \le \dim V$. Nếu W < V thì $\dim W < \dim V$.
- b) Nếu ($W \le V$ và dim $W = \dim V$) thì V = W.
- c) $\dim(V + W) = \dim V + \dim W \dim(V \cap W)$ nên $\dim(V + W) \le \dim V + \dim W$.
- d) Suy ra $\dim(V + W) = \dim V + \dim W \Leftrightarrow \dim(V \cap W) = 0 \Leftrightarrow V \cap W = \{O\}.$

Ví dụ:

a) Xét lại Ví dụ của (2.5) mục a), b), c) về các không gian giao và không gian tổng.

Thử lại $\dim(V + W) = \dim V + \dim W - \dim(V \cap W)$, ta thấy 2 = 1 + 1 - 0.

$$\dim(H + K) = \dim H + \dim K - \dim(H \cap K)$$
, ta thấy $3 = 1 + 2 - 0$.

$$\dim(P + Q) = \dim P + \dim Q - \dim(P \cap Q)$$
, ta thấy $3 = 2 + 2 - 1$.

b) Xét lại Ví dụ của (2.6). Do $\{O\} < W < V < R^3$ nên

$$\dim\{\mathbf{O}\} = 0 < \dim W = 1 < \dim V = 2 < \dim \mathbf{R}^3 = 3.$$

- c) Nếu ($W \le \mathbb{R}^4$ và dim $W = \dim \mathbb{R}^4 = 4$) thì $W = \mathbb{R}^4$.
- **5.14**/ <u>HÊ QUA:</u> Cho $S = \{ \alpha_1, \alpha_2, ..., \alpha_m \}$ độc lập tuyến tính $\subset \mathbb{R}^n$ với m < n.

Đặt
$$W = \langle S \rangle$$
 thì S là một cơ sở của W và $dimW = |S| = m$ và $W \langle \mathbf{R}^n$.

Ta có thể chọn (n-m) vector (từ cơ sở chính tắc $B_o = \{ \, \epsilon_1, \, \epsilon_2, \, ..., \, \epsilon_n \, \})$ thêm vào S để được một cơ sở B của \mathbf{R}^n và $S \subset B$. cách chọn như sau :

Đặt $A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{pmatrix} \in M_{m \times n}(\mathbf{R})$ và tìm ma trận dạng bậc thang S_A của A. S_A có (n-m)

cột không bán chuẩn hóa được là các cột thứ $i_1, i_2, ..., i_{n-m}$ $(1 \leq i_1 < i_2 < ... < i_{n-m} \leq n).$

Ta thêm $\{\varepsilon_{i_1}, \varepsilon_{i_2}, ..., \varepsilon_{i_{n-m}}\}$ vào S để có $B = S \cup \{\varepsilon_{i_1}, \varepsilon_{i_2}, ..., \varepsilon_{i_{n-m}}\}$ là một cơ sở của \mathbf{R}^n .

<u>Ví du:</u> Cho S = { α_1 = (3,1,-2,5), α_2 = (-2,0,4,-3)} độc lập tuyến tính $\subset \mathbf{R}^4$ (m = 2 < n = 4).

$$A = \begin{pmatrix} \alpha_1 \\ \alpha_2 \end{pmatrix} = \begin{pmatrix} 3 & 1 & -2 & 5 \\ -2 & 0 & 4 & -3 \end{pmatrix} \rightarrow S_A = \begin{pmatrix} 1^* & 1 & 2 & 2 \\ 0 & 2^* & 8 & 1 \end{pmatrix} \text{ có cột 3 và 4 không bán chuẩn hóa được}$$

Đặt $B=S\cup\{\ \epsilon_3=(0,0,1,0),\ \epsilon_4=(0,0,0,1)\ \}=\{\ \alpha_1\ ,\ \alpha_2\ ,\ \epsilon_3\ ,\ \epsilon_4\ \}$ thì B là một cơ sở của \mathbf{R}^4 .

VI. TOA ĐỘ CỦA VECTOR THEO CƠ SỞ CÓ THỨ TỰ:

Trong mục VI này, ta qui định tất cả các cơ sở được sử dụng đều có thứ tự.

6.1/ **<u>DINH NGHĨA</u>**: Cho $W \le \mathbb{R}^n$ và W có cơ sở $A = \{ \alpha_1, \alpha_2, ..., \alpha_m \}$.

a) $\forall \alpha \in W$, có duy nhất c_1 , c_2 , ..., $c_m \in \mathbf{R}$ thỏa $\alpha = c_1\alpha_1 + c_2\alpha_2 + \dots + c_m\alpha_m$ (*).

Muốn tìm $c_1, c_2, ..., c_m$, ta phải giải phương trình vector (*) [theo (5.6)].

Ta ký hiệu
$$[\alpha]_A = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix}$$
 và $[\alpha]_A$ gọi là *tọa độ của vector* α *theo cơ sở* A

 $b) \ \forall \alpha, \, \beta \in W, \ \forall c \in \textbf{R}, \, [\ c\alpha \]_{A} = c[\ \alpha \]_{A} \ \ va \ \ [\ \alpha \pm \beta \]_{A} = [\ \alpha \]_{A} \pm [\ \beta \]_{A} \ .$

<u>Ví dụ:</u> W = \mathbb{R}^3 có cơ sở A = { $\alpha_1 = (1, -2, 2), \alpha_2 = (2, -3, 6), \alpha_3 = (1, 1, 7) }$ (có thứ tự).

a) Xét
$$\alpha \in \mathbf{R}^3$$
 có $\begin{bmatrix} \alpha \end{bmatrix}_A = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix}$. Ta có $\begin{bmatrix} -5\alpha \end{bmatrix}_A = -5 \begin{bmatrix} \alpha \end{bmatrix}_A = -5 \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} -20 \\ 5 \\ -15 \end{pmatrix}$ và

$$\alpha = 4\alpha_1 - \alpha_2 + 3\alpha_3 = 4(1, -2, 2) - (2, -3, 6) + 3(1, 1, 7) = (5, -2, 23).$$

b) Tìm [β]_A nếu $\beta = (3,11,35) \in \mathbf{R}^3$. Đặt [β]_A = $\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$ thì $\beta = c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3$, nghĩa là $c_1(1,-2,2) + c_2(2,-3,6) + c_3(1,1,7) = (3,11,35)$. Ma trận hóa phương trình trên

$$\begin{pmatrix} c_1 & c_2 & c_3 \\ 1 & 2 & 1 & 3 \\ -2 & -3 & 1 & 11 \\ 2 & 6 & 7 & 35 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 2 & 1 & 3 \\ 0 & 1 & 3 & 17 \\ 0 & 3 & 8 & 46 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & -5 & -31 \\ 0 & 1^* & 3 & 17 \\ 0 & 0 & -1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 0 & -6 \\ 0 & 1^* & 0 & 2 \\ 0 & 0 & 1^* & 5 \end{pmatrix} \Rightarrow \begin{bmatrix} \beta \end{bmatrix}_A = \begin{pmatrix} -6 \\ 2 \\ 5 \end{pmatrix}.$$

c)
$$[\alpha \pm \beta]_A = [\alpha]_A \pm [\beta]_A = \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} \pm \begin{pmatrix} -6 \\ 2 \\ 5 \end{pmatrix} = \begin{pmatrix} -2 \\ 1 \\ 8 \end{pmatrix}$$
 hoặc $\begin{pmatrix} 10 \\ -3 \\ -2 \end{pmatrix}$.

$$[-\sqrt{3} \alpha]_A = -\sqrt{3} [\alpha]_A = -\sqrt{3} \begin{pmatrix} 4 \\ -1 \\ 3 \end{pmatrix} = \begin{pmatrix} -4\sqrt{3} \\ \sqrt{3} \\ -3\sqrt{3} \end{pmatrix}.$$

6.2/ MA TRẬN ĐỔI CƠ SỞ:

Cho $W \leq \mathbf{R}^n$ và W có các cơ sở $A = \{\alpha_1, \alpha_2, ..., \alpha_m\}$ và $B = \{\beta_1, \beta_2, ..., \beta_m\}$.

Lập ma trận $(A \rightarrow B) = ([\beta_1]_A [\beta_2]_A ... [\beta_m]_A) \in M_m(\mathbf{R}).$

Ta nói $(A \rightarrow B)$ là ma trận đổi cơ sở từ A qua B.

[mỗi vector của cơ sở B (đi sau) được lấy tọa độ theo cơ sở A (đi trước)].

Ví dụ:

a) Không gian W có các cơ sở $A=\{\alpha_1,\alpha_2,\alpha_3\}$ và $B=\{\beta_1,\beta_2,\beta_3\}$ thỏa các hệ thức $\beta_1=\pi\alpha_1-\alpha_2\ +\sqrt{3}\,\alpha_3\ , \ \beta_2=-2\alpha_1-(\text{ln}5)\alpha_3\ \text{ và }\ \beta_3=4\alpha_1+e\alpha_2-(9/7)\alpha_3\ .$

Ta có
$$(A \to B) = ([\beta_1]_A [\beta_2]_A [\beta_3]_A) = \begin{pmatrix} \pi & -2 & 4 \\ -1 & 0 & e \\ \sqrt{3} & -\ln 5 & -9/7 \end{pmatrix} \in M_3(\mathbf{R}).$$

b) \mathbf{R}^2 có các cơ sở $A = \{ \alpha_1 = (-2,5), \alpha_2 = (1,-3) \}$ và $B = \{ \beta_1 = (-1,1), \beta_2 = (6,-17) \}.$

Ta có $\beta_1=2\alpha_1+3\alpha_2$ và $\beta_2=-\alpha_1+4\alpha_2$ bằng cách giải 2 phương trình $c_1\alpha_1+c_2\alpha_2=\beta_1 \ ({\rm an \ la \ } c_1 \ va \ c_2) \ va \ d_1\alpha_1+d_2\alpha_2=\beta_2 \ ({\rm an \ la \ } d_1 \ va \ d_2) \ có vế trái như nhau trong một bảng :$

$$(\alpha_{1}^{t} \ \alpha_{2}^{t} | \beta_{1}^{t} \ | \beta_{2}^{t}) = \begin{pmatrix} c_{1} & c_{2} \\ -2 & 1 & -1 & 6 \\ 5 & -3 & 1 & -17 \end{pmatrix} \rightarrow \begin{pmatrix} 1^{*} & -1 & -1 & -5 \\ 0 & 2 & 6 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1^{*} & 0 & 2 & -1 \\ 0 & 1^{*} & 3 & 4 \end{pmatrix}$$

$$d_{1} \ d_{2}$$

$$d_{1} \ d_{2}$$

$$\mbox{n\'en } (A \rightarrow B) = (\ [\ \beta_1 \]_A \ \ [\ \beta_2 \]_A \) = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix} \in M_2(\textbf{R}).$$

- **6.3**/ **TÍNH CHÁT:** Cho $W \le \mathbb{R}^n$ với dimW = m và W có các cơ sở A, B, C. Khi đó
 - a) $(A \rightarrow B)$ là ma trận vuông cấp m khả nghịch và $(A \rightarrow B)^{-1} = (B \rightarrow A)$.

b)
$$(A \rightarrow A) = I_m$$
.

c)
$$(A \rightarrow C) = (A \rightarrow B).(B \rightarrow C).$$

Ví dụ:

a) Cho không gian W có cơ sở $A=\{\alpha_1,\alpha_2,\alpha_3\}$ và dimW=|A|=3. Hiển nhiên $\alpha_1=1.\alpha_1+0.\alpha_2+0.\alpha_3\;,\;\alpha_2=0.\alpha_1+1.\alpha_2+0.\alpha_3\;\text{ và }\;\alpha_3=0.\alpha_1+0.\alpha_2+1.\alpha_3$

$$\label{eq:nendom} \mbox{n\'en } (A \to A) = (\ [\ \alpha_1 \]_A \ \ [\ \alpha_2 \]_A \ \ [\ \alpha_3 \]_A \) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I_3 \in M_3({\bf R}).$$

b) Cho không gian V có các cơ sở A, B, C và $(A \to B) = \begin{pmatrix} 7 & -2 \\ 4 & -1 \end{pmatrix}$, $(B \to C) = \begin{pmatrix} -3 & 5 \\ 2 & 6 \end{pmatrix}$.

Ta có
$$(B \to A) = (A \to B)^{-1} = \begin{pmatrix} 7 & -2 \\ 4 & -1 \end{pmatrix}^{-1} = \begin{pmatrix} -1 & 2 \\ -4 & 7 \end{pmatrix} và$$

$$(A \to C) = (A \to B).(B \to C) = \begin{pmatrix} 7 & -2 \\ 4 & -1 \end{pmatrix} \begin{pmatrix} -3 & 5 \\ 2 & 6 \end{pmatrix} = \begin{pmatrix} -25 & 23 \\ -14 & 14 \end{pmatrix}.$$

6.4/ CÔNG THỨC ĐỔI TỌA ĐỘ THEO CƠ SỞ:

Cho $W \le \mathbb{R}^n$ có các cơ sở A và B.

Khi đó ta có công thức đổi tọa độ theo cơ sở

$$\forall \alpha \in W, [\alpha]_A = (A \rightarrow B).[\alpha]_B$$

<u>Ví dụ:</u> Không gian W có các cơ sở $A = \{ \alpha, \beta \}$ và $B = \{ \gamma, \delta \}$ thỏa

$$(A \to B) = \begin{pmatrix} -5 & 2 \\ -7 & 3 \end{pmatrix} \text{ và } (B \to A) = (A \to B)^{-1} = \begin{pmatrix} -5 & 2 \\ -7 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} -3 & 2 \\ -7 & 5 \end{pmatrix}.$$

 $Cho \ \epsilon \,,\, \theta \in W \ thỏa \ [\ \epsilon \,]_B = \begin{pmatrix} -6 \\ 5 \end{pmatrix} \ và \ [\ \theta \,]_A = \begin{pmatrix} 3 \\ -8 \end{pmatrix}. \ Tính \ [\ \epsilon \,]_A \ và \ [\ \theta \,]_B \,.$

Ta có
$$[\epsilon]_A = (A \rightarrow B).[\epsilon]_B = \begin{pmatrix} -5 & 2 \\ -7 & 3 \end{pmatrix} \begin{pmatrix} -6 \\ 5 \end{pmatrix} = \begin{pmatrix} 40 \\ 57 \end{pmatrix}$$

(nghĩa là $\varepsilon = -6\gamma + 5\delta \implies \varepsilon = 40\alpha + 57\beta$).

Ta có
$$[\theta]_B = (B \rightarrow A).[\theta]_A = \begin{pmatrix} -3 & 2 \\ -7 & 5 \end{pmatrix} \begin{pmatrix} 3 \\ -8 \end{pmatrix} = \begin{pmatrix} -25 \\ -61 \end{pmatrix}$$

(nghĩa là
$$\theta = 3\alpha - 8\beta \implies \theta = -25\gamma - 61\delta$$
).

6.5/ MA TRẬN ĐỔI CƠ SỞ TRONG KHÔNG GIAN Rⁿ:

a) \mathbf{R}^n có cơ sở chính tắc $B_o = \{ \ \epsilon_1 = (1,0,...,0), \ \epsilon_2 = (0,1,...,0), ..., \ \epsilon_n = (0,0,...,1) \ \}.$

$$\forall \alpha \in \mathbf{R}^{\mathbf{n}}, \, \alpha = (a_1, a_2, \dots, a_n) \iff \alpha = a_1 \varepsilon_1 + a_2 \varepsilon_2 + \dots + a_n \varepsilon_n \iff [\alpha]_{B_o} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} = \alpha^{\mathbf{t}}.$$

Chẳng hạn
$$\alpha = (7, -\sqrt{2}, e, -\pi) \in \mathbf{R}^4$$
 có $[\alpha]_{B_o} = \begin{pmatrix} 7 \\ -\sqrt{2} \\ e \\ -\pi \end{pmatrix} = \alpha^t$.

b) Giả sử \mathbf{R}^n có các cơ sở $A = \{ \alpha_1, \alpha_2, ..., \alpha_n \}$ và $B = \{ \beta_1, \beta_2, ..., \beta_n \}.$ Ta muốn viết $L = (A \rightarrow B)$.

<u>Cách 1:</u> (tìm gián tiếp thông qua cơ sở chính tắc B_0).

Viết
$$H = (B_o \to A) = ([\alpha_1]_{B_o} [\alpha_2]_{B_o} ... [\alpha_n]_{B_o}) = (\alpha_1^t \alpha_2^t ... \alpha_n^t) \in M_n(\mathbf{R}).$$

$$K = (B_0 \to B) = ([\beta_1]_{B_0} [\beta_2]_{B_0} ... [\beta_n]_{B_n}) = (\beta_1^t \ \beta_2^t \ ... \ \beta_n^t) \in M_n(\mathbf{R}).$$

 $Ta~c\acute{o}~L=(A\rightarrow B)=(A\rightarrow B_o)(B_o\rightarrow B)=H^{-1}K.~\mathring{O}~\textrm{dây ta tìm}~L~\textrm{dựa vào}~H^{-1}~.$ Cách 2: (tìm trực tiếp theo định nghĩa).

Ta có $L = (A \rightarrow B) = ([\beta_1]_A [\beta_2]_A ... [\beta_n]_A)$. Muốn tìm tọa độ của các vector β_1 , β_2 , ..., β_n theo cơ sở A, ta phải giải n hệ phương trình tuyến tính, mỗi hệ có n phương trình và n ẩn số. Các hệ này cùng có vế trái là $(\alpha_1^t \ \alpha_2^t \ ... \ \alpha_n^t) = H$ và các vế phải của chúng lần lượt là các cột β_1^t , β_2^t , ..., β_n^t . Do đó ta có thể giải đồng thời n hệ trên trong cùng một bảng là $(\alpha_1^t \quad \alpha_2^t \quad ... \quad \alpha_n^t | \beta_1^t | \beta_2^t | ... | \beta_n^t)$, nghĩa là n hệ trên được viết thành dạng ma trận là (H | K) và khi giải xong bằng phương pháp Gauss – Jordan, ta thu được ($I_n \mid H^{-1}K$). Ta có $L = (A \rightarrow B) = H^{-1}K$.

 \mathring{O} đây ta tìm được $L = H^{-1}K$ mà không cần phải tìm riêng H^{-1} .

<u>Ví dụ:</u> W = \mathbb{R}^3 có các cơ sở A = { $\alpha_1 = (-3, 4, 6), \alpha_2 = (0, 1, 1), \alpha_3 = (2, -3, -4) },$ $B = \{ \; \beta_1 = (3,\,4,\,9), \; \beta_2 = (2,\,1,\,2), \; \beta_3 = (-\,7,\,1,\,4) \; \} \; \text{và cơ sở chính tắc} \; \; B_o = \{ \; \epsilon_1, \; \epsilon_2, \; \epsilon_3 \; \}.$ a) Viết $L = (A \rightarrow B)$.

Cách 1:

$$H = (B_o \to A) = (\alpha_1^t \ \alpha_2^t \ \alpha_3^t \) = \begin{pmatrix} -3 & 0 & 2 \\ 4 & 1 & -3 \\ 6 & 1 & -4 \end{pmatrix} \text{ có } H^{-1} = \begin{pmatrix} 1 & -2 & 2 \\ 2 & 0 & 1 \\ 2 & -3 & 3 \end{pmatrix} \text{ theo so } \text{d\^{o}} \text{ sau}$$

$$(\mathbf{H} \mid \mathbf{I_3}) = \begin{pmatrix} -3 & 0 & 2 & 1 & 0 & 0 \\ 4 & 1 & -3 & 0 & 1 & 0 \\ 6 & 1 & -4 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 1 & -1 & 1 & 1 & 0 \\ 0 & -3 & 1 & -4 & -3 & 0 \\ 0 & -5 & 2 & -6 & -6 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & -1 & -1 & 1 & -1 \\ 0 & 1 & 0 & 2 & 0 & 1 \\ 0 & 0 & 2 & 4 & -6 & 6 \end{pmatrix} \rightarrow$$

$$\rightarrow \begin{pmatrix} 1^* & 0 & 0 & 1 & -2 & 2 \\ 0 & 1^* & 0 & 2 & 0 & 1 \\ 0 & 0 & 1^* & 2 & -3 & 3 \end{pmatrix} = (\mathbf{I}_3 \mid \mathbf{H}^{-1}).$$

$$K = (B_o \to B) = (\beta_1^t \ \beta_2^t \ \beta_3^t) = \begin{pmatrix} 3 & 2 & -7 \\ 4 & 1 & 1 \\ 9 & 2 & 4 \end{pmatrix} \text{ và } L = H^{-1}K = \begin{pmatrix} 13 & 4 & -1 \\ 15 & 6 & -10 \\ 21 & 7 & -5 \end{pmatrix}.$$

Cách 2:

$$(H \mid K) = (\alpha_1^t \quad \alpha_2^t \quad \alpha_3^t \mid \beta_1^t \mid \beta_2^t \mid \beta_3^t) = \begin{pmatrix} -3 & 0 & 2 & 3 & 2 & -7 \\ 4 & 1 & -3 & 4 & 1 & 1 \\ 6 & 1 & -4 & 9 & 2 & 4 \end{pmatrix} \rightarrow (I_3 \mid H^{-1}K) \text{ như sau:}$$

$$\rightarrow \begin{pmatrix}
-3 & 0 & 2 & 3 & 2 & -7 \\
4 & 1 & -3 & 4 & 1 & 1 \\
6 & 1 & -4 & 9 & 2 & 4
\end{pmatrix}
\rightarrow \begin{pmatrix}
1^* & 1 & -1 & 7 & 3 & -6 \\
0 & -3 & 1 & -24 & -11 & 25 \\
0 & 1 & 0 & 15 & 6 & -10
\end{pmatrix}
\rightarrow \begin{pmatrix}
1^* & 0 & -1 & -8 & -3 & 4 \\
0 & 1^* & 0 & 15 & 6 & -10 \\
0 & 0 & 1 & 21 & 7 & -5
\end{pmatrix}
\rightarrow$$

$$\rightarrow \begin{pmatrix} 1^* & 0 & 0 & | & 13 & 4 & | & -1 \\ 0 & 1^* & 0 & | & 15 & | & 6 & | & -10 \\ 0 & 0 & 1^* & | & 21 & | & 7 & | & -5 \end{pmatrix}. \quad V\hat{a}y \quad L = H^{-1}K = \begin{pmatrix} 13 & 4 & -1 \\ 15 & 6 & -10 \\ 21 & 7 & -5 \end{pmatrix}.$$

b) Tìm
$$\alpha \in \mathbf{R}^3$$
 nếu $[\alpha]_A = \begin{pmatrix} 2 \\ 1 \\ -5 \end{pmatrix}$. Ta có

$$\alpha = 2\alpha_1 + \alpha_2 - 5\alpha_3 = 2(-3, 4, 6) + (0, 1, 1) - 5(2, -3, -4) = (-16, 24, 33).$$

c) Tìm $[\beta]_A$ nếu $\beta = (4, -3, -2) \in \mathbb{R}^3$.

Cách 1: dùng định nghĩa của tọa độ. Đặt $[\beta]_A = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$ thì $\beta = c_1\alpha_1 + c_2\alpha_2 + c_3\alpha_3$.

Ma trận hóa phương trình vector trên, ta có $(\alpha_1^t \quad \alpha_2^t \quad \alpha_3^t | \quad \beta^t) = (H \mid \beta^t) \rightarrow (I_3 \mid H^{-1}\beta^t)$:

$$\begin{pmatrix} c_1 & c_2 & c_3 \\ -3 & 0 & 2 & 4 \\ 4 & 1 & -3 & -3 \\ 6 & 1 & -4 & -2 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 1 & -1 & 1 \\ 0 & -3 & 1 & -7 \\ 0 & 1 & 0 & 6 \end{pmatrix} \rightarrow \begin{pmatrix} *1 & 0 & -1 & -5 \\ 0 & 1^* & 0 & 6 \\ 0 & 0 & 1 & 11 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 0 & 6 \\ 0 & 1^* & 0 & 6 \\ 0 & 0 & 1^* & 11 \end{pmatrix} \Rightarrow \begin{bmatrix} \beta \end{bmatrix}_A = \begin{pmatrix} 6 \\ 6 \\ 11 \end{pmatrix}.$$

Cách 2: dùng công thức đổi tọa độ theo cơ sở.

Ta có
$$[\beta]_{B_o} = \beta^t = \begin{pmatrix} 4 \\ -3 \\ -2 \end{pmatrix}$$
 và $[\beta]_A = (A \to B_o) [\beta]_{B_o} = H^{-1}\beta^t = \begin{pmatrix} 1 & -2 & 2 \\ 2 & 0 & 1 \\ 2 & -3 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ -3 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \\ 11 \end{pmatrix}$.

d) Xét
$$\gamma \in \mathbf{R}^3$$
 có $[\gamma]_B = \begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix}$. Tính $[\gamma]_A$.

Ta có
$$[\gamma]_A = (A \to B) [\gamma]_B = L [\gamma]_B = \begin{pmatrix} 13 & 4 & -1 \\ 15 & 6 & -10 \\ 21 & 7 & -5 \end{pmatrix} \begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 79 \\ 100 \\ 131 \end{pmatrix}$$

(nghĩa là $\gamma = 6\beta_1 - \beta_3 \implies \gamma = 79\alpha_1 + 100\alpha_2 + 131\alpha_3$).

6.6/ MA TRẬN ĐỔI CƠ SỞ TRONG KHÔNG GIAN W < Rⁿ:

Cho $W < \mathbf{R^n}$ (nghĩa là $W \le \mathbf{R^n}$ và dimW = m < n). Ta có $B_o = \{ \epsilon_1, \epsilon_2, ..., \epsilon_n \} \not\subset W$. Giả sử W có các cơ sở $A = \{ \alpha_1, \alpha_2, ..., \alpha_m \}$ và $B = \{ \beta_1, \beta_2, ..., \beta_m \}$. Ta có $L = (A \rightarrow B) = ([\beta_1]_A [\beta_2]_A ... [\beta_m]_A)$. Muốn tìm $[\beta_j]_A (1 \le j \le m)$, ta phải giải m hệ phương trình tuyến tính, mỗi hệ có n phương trình và m ẩn số. Các hệ này cùng có vế trái là $(\alpha_1^t \alpha_2^t ... \alpha_m^t)$ và các vế phải của chúng lần lượt là các cột β_1^t , β_2^t , ..., β_m^t . Do đó ta có thể giải đồng thời m hệ trên trong cùng một bảng là $(\alpha_1^t \alpha_2^t ... \alpha_m^t | \beta_1^t | \beta_2^t | ... | \beta_m^t)$.

Khi giải xong hệ trên bằng phương pháp Gauss - Jordan, ta xóa bỏ (n-m) dòng tầm thường ở phía dưới và thu được $L = (A \rightarrow B)$ ở các vế bên phải.

<u>Ví dụ:</u> Cho W ≤ \mathbf{R}^4 nhận A = { α₁ = (-1,1,5,0) , α₂ = (2,-5,-4,1), α₃ = (-3,0,-2,4) } và B = { β₁ = (-1,7,16,-5) , β₂ = (11,-17,3,-4), β₃ = (-19,13,15,14) } là các cơ sở. Ta có dimW = | A | = 3 < dim \mathbf{R}^4 = 4 nên W < \mathbf{R}^4 và \mathbf{B}_0 = { ε₁, ε₂, ε₃ , ε₄ } $\not\subset$ W. Do đó L = (A → B) = ([β₁]_A [β₂]_A [β₃]_A). Để tìm [β₁]_A , [β₂]_A và [β₃]_A , ta giải đồng thời 3 hệ (α₁ α₂ α₃ β₁ β₁ β₂ β₃) (mỗi hệ 3 phương trình, 4 ẩn số):

$$\begin{pmatrix}
-1 & 2 & -3 & -1 & 11 & -19 \\
1 & -5 & 0 & 7 & -17 & 13 \\
5 & -4 & -2 & 16 & 3 & 15 \\
0 & 1 & 4 & -5 & -4 & 14
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1^* & -2 & 3 & 1 & -11 & 19 \\
0 & -3 & -3 & 6 & -6 & -6 \\
0 & 6 & -17 & 11 & 58 & -80 \\
0 & 1 & 4 & -5 & -4 & 14
\end{pmatrix}
\rightarrow$$

$$\rightarrow \begin{pmatrix} 1^* & 0 & 5 & -3 & -7 & 23 \\ 0 & 1^* & 1 & -2 & 2 & 2 \\ 0 & 0 & -23 & 23 & 46 & -92 \\ 0 & 0 & 3 & -3 & -6 & 12 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 0 & 2 & 3 & 3 \\ 0 & 1^* & 0 & -1 & 4 & -2 \\ 0 & 0 & 1^* & -1 & -2 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Xóa dòng cuối tầm thường, từ các cột ở vế bên phải ta có

$$L = (A \to B) = ([\beta_1]_A [\beta_2]_A [\beta_3]_A) = \begin{pmatrix} 2 & 3 & 3 \\ -1 & 4 & -2 \\ -1 & -2 & 4 \end{pmatrix}.$$

6.7/ NHẬN DIỆN MỘT CƠ SỞ DỰA THEO MỘT CƠ SỞ KHÁC:

Cho $W \leq \mathbf{R}^n$ có cơ sở $A = \{ \alpha_1, \alpha_2, ..., \alpha_m \}$ (dimW = m). Xét tập hợp $B = \{ \beta_1, \beta_2, ..., \beta_m \} \subset \mathbf{R}^n$ có |B| = m.

a) Nếu có ma trận khả nghịch
$$P \in M_m(\mathbf{R})$$
 thỏa $\begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{pmatrix} = P \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{pmatrix}$ thì B cũng là một cơ sở của W . Lúc đó $(A \to B) = P^t$.

b) Nếu có ma trận khả nghịch $P \in M_m(\mathbf{R})$ thỏa $\begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{pmatrix} = P \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{pmatrix}$ thì B cũng là một cơ

sở của W. Lúc đó $(B \rightarrow A) = P^t$.

<u>Ví du:</u> Cho $W \le \mathbb{R}^5$ có cơ sở $A = \{ \alpha_1, \alpha_2, \alpha_3 \}$ (dimW = 3).

Giả sử có các tập hợp $B=\{\;\beta_1\,,\,\beta_2\,,\beta_3\,\}\;$ và $\;C=\{\;\gamma_1\,,\,\gamma_2\,,\,\gamma_3\,\}\;$ trong $\;\mathbf{R^5}\;$ thỏa

$$\beta_1=2\alpha_1+3\alpha_2+3\alpha_3 \ , \ \beta_2=-\alpha_1+4\alpha_2-2\alpha_3 \ \ va \ \ \beta_3=-\alpha_1-2\alpha_2+4\alpha_3 \ ,$$

$$\alpha_1 = 2\gamma_1 + 3\gamma_2 + 3\gamma_3$$
, $\alpha_2 = -\gamma_1 + 4\gamma_2 - 2\gamma_3$ và $\alpha_3 = -\gamma_1 - 2\gamma_2 + 4\gamma_3$. Như vậy

$$\begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 3 \\ -1 & 4 & -2 \\ -1 & -2 & 4 \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} \quad \text{và} \quad \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{pmatrix} 2 & 3 & 3 \\ -1 & 4 & -2 \\ -1 & -2 & 4 \end{pmatrix} \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \end{pmatrix} \quad \text{v\'oi} \quad P = \begin{pmatrix} 2 & 3 & 3 \\ -1 & 4 & -2 \\ -1 & -2 & 4 \end{pmatrix}.$$

Ta có
$$|P| = \begin{vmatrix} 2 & 3 & 3 \\ -1 & 4 & -2 \\ -1 & -2 & 4 \end{vmatrix} = \begin{vmatrix} 0 & 11 & -1 \\ -1 & 4 & -2 \\ 0 & -6 & 6 \end{vmatrix} = \begin{vmatrix} 11 & -1 \\ -6 & 6 \end{vmatrix} = 60 \neq 0$$
 nên P khả nghịch.

Do đó B và C đều là các cơ sở của W với

$$(A \to B) = (C \to A) = P^{t} = \begin{pmatrix} 2 & -1 & -1 \\ 3 & 4 & -2 \\ 3 & -2 & 4 \end{pmatrix}.$$
