

(19)日本国特許庁(JP)

(12) 特 許 公 報 (B 2)

(11)特許番号

特許第3243376号 (P3243376)

(45)発行日 平成14年1月7日(2002.1.7)

(24)登録日 平成13年10月19日(2001.10.19)

(F1) 7 . C1 7		American in			
(51) Int.Cl. ⁷		識別記号	FΙ		
G 0 3 G	9/107		G 0 3 G	9/08	
	9/08		H01F	1/36	
	9/113		G 0 3 G	9/10	3 2 1
H01F	1/36				3 5 1

請求項の数3(全 6 頁)

(21)出願番号	特願平6-174909	(73)特許権者	000231970
			パウダーテック株式会社
(22)出顧日	平成6年7月5日(1994.7.5)		千葉県柏市十余二217番地
		(72)発明者	本庄 俊夫
(65)公開番号	特開平8-22150		千葉県柏市十余二217番地パウダーテッ
(43)公開日	平成8年1月23日(1996.1.23)		ク株式会社内
審査請求日	平成12年3月30日(2000.3.30)	(72)発明者	佐藤 祐二
			千葉県柏市十余二217番地パウダーテッ
			ク株式会社内
		(72)発明者	茅本 金男
			千葉県柏市十余二217番地パウダーテッ
			ク株式会社内
		(74)代理人	100086287
			弁理士 伊東 哲也
			21 :
		審査官	菅野 芳男
			国 db マデ l a bib ノ
			最終頁に続く

(54) 【発明の名称】 電子写真現像剤用フェライトキャリアおよび該キャリアを用いた現像剤

(57) 【特許請求の範囲】

【請求項1】 下記一般式

(MnO)x (MgO)y (Fe2 O3)z,

(zzv, x+y+z=100mol%vba)

において、x, y及びzがそれぞれ35~45、5~1 40 【0002】 <u> 5及び45~55mol%の組成であり、</u>MnO、Mg O及びFe2 O3 の一部をSrOで<u>O. 35~5.0m</u> <u>o I %</u>置換したことを特徴とする電子写真現像剤用フェ ライトキャリア。

【請求項2】 請求項1に記載のキャリア表面に樹脂被 覆したことを特徴とする電子写真現像剤用フェライトキ ャリア。

【請求項3】 請求項1または2に記載のフェライトキ ャリアとトナーとからなる電子写真現像剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、複写機、プリンタ一等 に使用される二成分系電子写真現像剤用キャリアおよび 該キャリアを用いた現像剤に関する。

50

【従来の技術】電子写真法に使用される二成分系現像剤 はトナーとキャリアより構成されており、キャリアは現 像ポックス内でトナーと混合撹拌され、トナーに所望の 電荷を与え、電荷を帯びたトナーを感光体上の静電潜像 に運び、トナー像を形成させる担体物質である。

【0003】キャリアはマグネット上に残り、再び現像 ボックスに戻り、新たなトナーと再び混合撹拌され、繰 り返し使用される。

【0004】従って、現像剤としては所望の画像特性 (画像濃度、カブリ、白斑 (キャリア飛散)、階調性、 解像力等)を、初期から耐刷期間中変化が少なく、安定 して維持するためには、当然のことながら、キャリアの 特性が使用期間中、変化が生じることがなく、かつ安定 であることが要求されている。

【0005】近年、二成分系現像方式において、高画質 画像を得るため従来の酸化被膜鉄粉あるいは樹脂被覆鉄 粉の代わりに、MOa・M'Ob (Fe2 O3)x (こ こでM、M'は金属元素、a,b,xは整数を示す)で 代表されるソフトフェライト、例えばNi-Znフェラ フェライト等のキャリアに用いられてきた。

【0006】しかし、これらのソフトフェライトキャリ アは、従来から用いられている鉄粉キャリアに比べ高画 質画像を得るのに有利な特質を多く持っているが、最 近、環境規制が厳しくなり、Ni、Cu、Znなどの金 属が敬遠されるようになってきた。

【0007】環境に優しいという点から言えば、従来か ら用いられている鉄粉キャリアやマグネタイトキャリア などもあるが、これらのキャリアでも上記フェライトキ ャリア並みの画質及び寿命を得ることは難しい。このよ 20 うな点から、フェライトキャリアが使用されるようにな り、鉄粉キャリアに比べて長寿命にはなったものの、さ らに長寿命化が望まれている。

【0008】また、環境に優しいという観点から見れ ば、従来から提案されているフェライトキャリアの中に Li-Mn系フェライトがあるが、Liは温度、湿度な どの周囲環境の影響を受けやすく、特性が大きく変化す るために実用化されていない。さらに、Mn-Mg系フ ェライトも提案されているが、従来から用いられている フェライトキャリアと同様にキャリア粒子間の磁化のパ 30 ラツキを低減させる課題は達成されていないのが現状で ある。

[0009]

【発明が解決しようとする課題】本発明の目的は、これ ら従来技術の課題を解消し、フェライトキャリア粒子間 の磁化のパラツキを低減させることにより画質および耐 久性に優れ、環境に優しく、長寿命でかつ環境安定性に 優れた電子写真現像剤用キャリアを提供することにあ

[0010]

【課題を解決するための手段】そこで、本発明者らはこ れらの課題を解決すべく鋭意検討を進めた結果、所定の 組成を有するMn-Mg系フェライトに所定量の酸化ス トロンチウムSrOを置換することにより、上記目的が 達成できることを見い出し本発明を完成するに至った。

【0011】すなわち、本発明は、下記一般式 (MnO)x (MgO)y (Fe2 O3)z

(ここで、x+y+z=100mol%である)において、x, y及びzがそれぞれ35~45、5~1 O及びFe2 O3 の一部をSrOで<u>O. 35~5. Om</u> o | %置換したことを特徴とする電子写真現像剤用フェ ライトキャリアにある。

【0012】以下、本発明を詳細に説明する。

【0013】本発明のフェライトキャリアは、所定の組 成を有するMn-Mg系フェライトキャリアであって、 その組成は下記式で示される。

[0014] (MnO)x (MgO)y (Fe2 O3)z 上記一般式において×+y+z=100mo 1%であ り、基本組成としてx、yおよびzはそれぞれ35~4 5、5~15及び45~55mol%の範囲が好まし い。また、本発明においてはMnO、MgO及びFe2 O3 の一部をSrOで置換する。SrOの置換量は、 O. 35~5. Omo I %が好ましい。

【0015】SrOの量が0.35mol%以下では、 飛散物の磁化が減少し、一方、SrOの量が5. Omo 1%以上では、残留磁化、保磁力が発生し、キャリア粒 子間で凝集が生じるため好ましくない。このように、S r Oの置換量が O. 35~5. Omo I %の範囲内にあ れば、フェライトキャリア粒子間の磁化のバラツキを低 滅させることができ、これにより画質および耐久性に優 れ、環境に優しく、長寿命でかつ環境安定性に優れたキ ャリアが得られる。

【0016】本発明のフェライトキャリアは、鉄粉キャ リアやマグネタイトキャリアと比較して磁化が小さく、 磁気ブラシの穂が柔らかくなるためソフトな現像がで き、また、絶縁破壊電圧が高いことなどにより高画質が 得られる。

【0017】本発明のフェライトキャリアの粒径は平均 粒径15~200μm程度のものであり、さらに好まし くは平均粒径20~150μmである。特に好ましくは 平均粒径20~100μmである。平均粒径が15μm 未満になるとキャリア粒子の分布において微粉が多くな り、1粒子当たりの磁化が低くなり、現像の際にキャリ ア飛散が生じる。また、キャリア平均粒子が200μm を超えると、キャリアの比表面積が低下し、現像の際に トナー飛散が生じ、またベタ黒部の再現が悪く好ましく ない。

【0018】本発明のフェライトキャリアの抵抗値は、 $10^{7} \sim 10^{14} \Omega \cdot cm$ の範囲、好ましくは $10^{9} \sim 10$ 13 Ω・cmの範囲である。また、本発明のフェライトキャ リアの飽和磁化値は、20~75emu/gの範囲、好 ましくは30~75emu/gである。

【0019】次に、本発明のフェライトキャリアの製造 方法について簡単に述べる。

【0020】まず、Mn-Mg系フェライトにおいて、 MnO、MgO及びFe2 O3 がそれぞれ35~45、 5~15及び45~55mol%の組成となるように各 酸化物を適量配合し、さらにこれにSrOまたは最終的 <u>5及び45~55mol%の組成であり、</u>MnO、Mg 50 にSrOとなるSrCO3 を所定量配合し、通常、水を

10

加え、湿式ボールミルまたは湿式振動ミル等で 1 時間以上、好ましくは 1~20時間粉砕混合する。このようにして得られたスラリーを乾燥し、さらに粉砕した後 700~1200 $^{\circ}$ の温度で仮焼成する。見掛密度をさらに下げたい場合等は仮焼成の工程を省いてもよい。仮焼成後さらに湿式ボールミルまたは湿式振動ミル等で 15 μ m以下、好ましくは 5μ m以下、おらに好ましくは 2μ m以下に粉砕した後、必要に応じ分散剤、バインダー等を添加し、粘度調整後、造粒し、1000~1500 $^{\circ}$ の温度で 1~24時間保持し、本焼成を行なう。

【 O O 2 1】この焼成物を、粉砕し、分級する。なお、 さらに必要に応じ還元を若干行なった後に表面を低温で 再酸化してもよい。

【0022】次に、このようにして得られた本発明のSrOで置換したMn-Mg系フェライトキャリアの表面を樹脂で被覆する。本発明のフェライト粒子の被覆に用いられる樹脂としては、各種の樹脂を用いることは可能である。正荷電性トナーに対しては、例えばフッ素樹脂、フッ素アクリル系樹脂、シリコーン系樹脂等を用いることができ、好ましくは縮合型のシリコーン系樹脂が20よい。また、逆に負荷電性トナーに対しては例えばアクリル・スチレン系樹脂、アクリル・スチレン系樹脂、アクリル・スチレン系樹脂とびその硬化樹脂、エポキシ系樹脂、ポリエステル系樹脂等が挙げられ、好ましくはアクリル・スチレン系樹脂とメラミン系樹脂の硬化樹脂および縮合型のシリコーン系樹脂がよい。また必要に応じ荷電制御剤または抵抗制御剤等を添加してもよい。

【0023】このような樹脂の被覆量としては、キャリア芯材に対して0.05~10.0wt%が好ましく、特に0.1~7.0wt%が好ましい。樹脂量が0.05wt%未満ではキャリア表面に均一な被覆層を形成することができず、また10wt%を超えると被覆層が厚くなりすぎ、キャリア粒子同士の造粒が発生し、均一なキャリア粒子が得られない傾向にある。

【0024】また、樹脂コーティング方法としては、樹脂を溶剤に希釈し、キャリア芯材の表面に被覆するのが一般的である。ここに用いられる溶剤は、各樹脂に可溶なものであればよく、有機溶剤に可溶性のある樹脂である場合は、トルエン、キシレン、セルソルブブチルアセインテート、メチルエチルケトン、メチルイソブチルケトン、メタノール等が挙げられ、水溶性樹脂またはエマルジョンタイプであれば水を用いればよい。また、キャリア芯材表面に、溶剤で希釈された樹脂を被覆させる方法は、浸漬法、スプレー法、ハケ塗り法、混練法等により塗布され、その後、溶剤を揮発させる。なお、このような溶剤を用いた湿式法ではなく、乾式法によってキャリア芯材表面に樹脂粉を被覆することも可能である。

【0025】樹脂をキャリア芯材表面に被覆後、焼付する場合は、外部加熱方式または内部加熱方式のいずれで 50

もよく、例えば固定式または流動式電気炉、ロータリー 式電気炉、パーナー炉でもよく、もしくはマイクロウエ ーブによる焼付でもよい。焼付の温度は使用する樹脂に より異なるが、融点またはガラス転移点以上の温度は必 要であり、また熱硬化性樹脂または縮合型樹脂では、十 分硬化が進む温度まで上げる必要がある。

【0026】このようにして、キャリア芯材表面に樹脂が被覆、焼付けされた後、冷却され、解砕、粒度調整を経て樹脂コーティングキャリアが得られる。

【0027】本発明のフェライトキャリアは、トナーと 混合して二成分現像剤として用いられる。ここに用いられるトナーとしては、結着樹脂中の着色剤等を分散させたものである。トナーに使用する結着樹脂としては、特に限定されるものではないが、ポリスチレン、クロロポリスチレン、スチレンークロロスチレン共重合体、スチレンーアクリル酸エステル共重合体、スチレンーメタクリル酸共重合体、さらにはロジン変性マレイン酸樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリウレタン樹脂等が挙げられる。これらは単独または混合して用いられる。

【0028】本発明に用いることのできる荷電制御剤としては、任意の適当なものを用いることができる。例えば正荷電性トナー用としては、ニグロシン系染料、4級アンモニウム塩等があり、負荷電性トナー用としては、含金属モノアゾ染料等が挙げられる。

【0029】着色体としては、従来より知られている染料および/または顔料が使用可能である。例えばカーボンブラック、フタロシアニンブルー、パーマネントレッド、クロムイエロー、フタロシアニングリーン等を使用することができる。この着色剤の含有量は結着樹脂100wt%に対し、05~10wt%程度でよい。その他、トナーの流動性、耐凝集性向上のためシリカ微粉体、チタニア等の如き外添剤をトナー粒子に応じて加えることができる。

【0030】トナーの製造方法は特に限定されるものではなく、例えば結着樹脂、荷電制御剤、着色剤をヘンシェルミキサー等の混合機で十分混合し、次いで、二軸押出機等で溶融混練し、冷却後、粉砕、分級し、外添剤を添加後、ミキサー等で混合することにより得ることができる。

[0031]

【実施例】以下、実施例等により本発明をさらに具体的 に説明する。

<u>実施例1-3</u>

Mn Oを35mo I%、Mg Oを15mo I%、Fe2 O3 を44.5mo I%及びSr CO3 を0.5mo I %湿式ポールミルで5時間粉砕、混合し、乾燥させた 後、850℃で1時間保持し、仮焼成を行なった。これ を湿式ポールミルで7時間粉砕し、3μm以下とした。 このスラリーに分散剤およびパインダーを適量添加し、 次いでスプレードライヤーにより造粒、乾燥し、電気炉 にて、1200℃で4時間保持し、本焼成を行なった。 その後、解砕し、さらに分級して平均粒径50μm、3 0~70μmの粒径分布をもつフェライト粒子の芯材を 得た。

【0032】この造粒フェライト粒子の成分分析を行な ったところMnOが35mol%、MgOが14.5m o 1%、SrOがO. 5mo 1%、Fe2 O3 50mo 1%であった(実施例1)。

rOおよびMgOの組成比率を変えたMn-Mg系フェ ライトキャリアを得た(実施例2,3)。

【0034】これらのフェライト粒子を芯材とし、シリ コーン系樹脂(商品名:SR-2411、固形分20w t%、東レ・ダウコーニング・シリコーン社製)をトル エン溶剤に溶解させ、流動床を用いてキャリア芯材に対 し0.6wt%コーティングし、さらに250℃で3時 · 間焼付を行ない、上記樹脂によって被覆されたフェライ トキャリアを得た。

【0035】このようにして樹脂被覆されたMn-Mg 20 <u>比較例9</u> 系フェライトキャリアについて、飛散量の試験を行っ

【0036】飛散量の試験方法は、フェライトキャリア (試料) 600gを東芝社製のレオドライ7610複写 機用の現像ボックスに入れ、モーターにて回転数 158 rpmで10分間攪拌した際、現像ボックスより飛散し た試料を回収し、その飛散量と飛散物についての1KO e 時の磁化を求めた。

【0037】ここで、飛散量の試験を行う前のキャリア により評価した。

【0038】これらの得られた結果を表1に示す。

<u>比較例1~3</u>

実施例1と同様の方法により、表1に示されるような組 成でSrOを含まない組成比の異なるMn-Mg系フェ ライトキャリアの芯材を得た。

【0039】これらのフェライト粒子を芯材とし、実施 例1で使用したのと同一の樹脂を用い、同様の方法およ び同一樹脂量でコーティングし、焼付を行ないフェライ トキャリアを得た。

【0040】このようにして樹脂被覆されたMn-Mg

系フェライトキャリアを実施例1と同様に、飛散量の試 験を行った。

【0041】これらの得られた結果を表1に示す。

<u>比較例4~7</u>

比較例1~3とまったく同様の方法により、表1に示さ れるような組成でSrOを含まず、さらにBaO、Ca O、SiO2 及びAI2 O3 をそれぞれ添加したMn-Mg系フェライトキャリアの芯材を得た。

【0042】これらのフェライト粒子を芯材とし、実施 【0033】実施例1とまったく同様の方法により、S 10 例1と同様の方法により樹脂被覆されたMn-Mg系フ ェライトキャリアを得た。

> 【0043】このようにして樹脂被覆されたMn-Mg 系フェライトキャリアを実施例1と同様に、飛散量の試 験を行った。

【〇〇44】これらの得られた結果を表1に示す。

比較例8

実施例1と同様の方法により、表1に示されるような組 成のSrOを含まないCu-Zn系フェライトキャリア の芯材を得た。

実施例1と同様の方法により、表1に示されるような組 成のSrOを含まないZn-Ni系フェライトキャリア の芯材を得た。

比較例10

実施例1と同様の方法により、表1に示されるような組 成のSrOを含まないMg-Cu-Zn系フェライトキ ャリアの芯材を得た。

<u>比較例11-12</u>

実施例1と同様の方法により、表1に示されるような組 の磁化をXとし、飛散物の磁化をYとして、Y/Xの値 30 成のSrOを含まないLi系フェライトキャリアの芯材 を得た(比較例11~12)。

> 【0045】このようにして得られた比較例8~12の フェライト粒子を芯材とし、実施例1で使用したのと同 一の樹脂を用い、同様の方法および同一樹脂量でコーテ ィングし、焼付を行ないフェライトキャリアを得た。

> 【0046】このようにして樹脂被覆された各フェライ トキャリアを実施例1と同様に、飛散量の試験を行った (比較例8~12)。

【0047】これらの得られた結果を表1に示す。

[0048]

【表 1 】

No.			A	成	(_	1	96)		計別で	試験前 の磁化 X (exou/g)	飛散物 の強化 Y	Y/X
	Mn0	Mg0	Cu0	Zn0	Li _e 0	NiO	Sr0	Ba0	Ca ₀	Si O,	A1,0,	Fe ₂ 0 _a	(TES)	(enerty 8)	(eanu/g)	
実施例	35	1 4 . 5					0. 5					50	6	54. 0	54. 0	1. 0
実施例 2	35	10. 3					4.7					50	5	52. 0	52. 0	1.0
実施例	40	10					0. 4					49. 6	4	58. 0	58. 0	1. 0
比較例 l	30	20						-				50	15	52. 0	18. 5	0. 356
比較例 2	35	15										50	23	54. 0	22. 5	0. 417
比較例 3	40	10										50	27	55. 0	25. 0	0. 455
比較例 4	35	14. 5						0. 5				50	27	54. 0	21. 0	0. 389
比較例 5	35	14. 5							0. 5			50	46	53. 0	6.0	0. 113
比較例 6	3 5	14. 5								0. 5		50	166	53. 0	2.0	0. 038
比較例	35	14. 5									0. 5	50	12	53. 0	45. 5	0. 858
比較例 8			20	25								55	152	60. 0	53. 0	0. 883
比較例 9				37		13						50	29	49. 0	34. 5	0. 704
比較例 10		11	9	30								50	205	48. 0	38. 0	0. 791
比較例 11					13. 8							86. 2	531	59. 0	9. 0	0. 153
比較例 12					16. 7							83. 3	36	60. 0	20. 0	0. 333

表1に示された結果から明らかなように、所定の組成の Mn-Mg系フェライトにSrOを所定濃度に置換した 本発明のフェライトキャリアの飛散量は、比較例1~1 2に比較して極めて少ない。また、飛散量の試験を行う 前のキャリアの磁化と、飛散物についての磁化の値より どないことが分かる。

[0049]

【発明の効果】以上説明したように、所定の組成のMn -Mg系フェライトにSrOを所定濃度に置換制御した

本発明のフェライトキャリアは、従来のSrOを含まな いMn-Mg系、Cu-Zn系、Zn-Ni系およびM g-Cu-Zn系フェライトキャリア粒子に比べて飛散 量が極めて少なく、かつキャリア粒子間の磁化のバラツ キが殆どない電子写真現像剤用キャリアが得られる。ま 明らかなように、キャリア粒子間の磁化のバラツキが殆 30 た、本発明の電子写真現像用<u>Mn-Mg-Sr</u>フェライ トキャリアによって、現像に際して所望の画質特性を得 るために幅の広い設計をできると共に、厳しい環境規制 にも充分対応できる。

フロントページの続き

(72) 発明者 尾形 正広

千葉県柏市十余二217番地パウダーテッ 40 (56)参考文献

ク株式会社内

(72) 発明者 小林 弘道

千葉県柏市十余二217番地パウダーテッ

ク株式会社内

特開 昭60-227269 (JP, A)

特開 昭58-123550 (JP, A)

特開 昭58-145621 (JP, A)

特開 昭59-111159 (JP, A)

特開 昭63-184764 (JP, A)

特開 昭64-28233 (JP. A)

特開 昭64-28234 (JP, A)

特開 昭64-28236 (JP, A)

(58)調査した分野(Int.Cl.⁷, DB名) G03G 9/08

(1 to 1) to 1.4

G03G 9/10