

Докази

Задача 1: Да се докаже: $p \rightarrow q$, $r \rightarrow q \Rightarrow p \lor r \rightarrow q$

Решение:

1. p→q	претпоставка
2. ¬p∨q	од (1)
3. r→q	претпоставка
4. ¬r∨q	од (2)
5. (¬p∨q) ∧(¬r∨q)	конјукција на (2) и (4)
6. (¬p∧¬r)∨q	дистрибутивност во (5)
7. ¬(p∨r)∨q	Де-Морганови закони во (6)
8. p∨r→q	замена на импликација во (7)

Задача 2: Да се дадат директни и индиректни докази:

- a) $a \rightarrow b$, $c \rightarrow b$, $d \rightarrow (a \lor c)$, $d \Rightarrow b$
- 6) $(p \rightarrow q) \land (r \rightarrow s), (q \rightarrow t) \land (s \rightarrow u), \neg (t \rightarrow u), p \rightarrow r \Rightarrow \neg p$
- B) $p \rightarrow (q \rightarrow r), \neg s \lor p, q \Rightarrow s \rightarrow r$

Решение:

Директни докази:

дире	ктни докази.	
a)	1. d→(a∨c)	претпоставка
	2. d	претпоставка
	3. a∨c	Модус Поненс од (1) и (2)
	4. ¬a→c	замена на импликација во (3)
	5. c→b	претпоставка
	6. ¬a→b	хипотетички силогизам од (4) и (5)
	7. a∨b	замена на импликација во (6)
	8. a→b	претпоставка
	9. ¬a∨b	замена на импликација во (8)
	10. (a∨b)∧(¬a∨b)	конјукција на (7) и (9)
	11. (a∧¬a)∨ b	дистрибутивност во (10)
	12. b	од (11)

б)

1. (p→q)∧(r→s)	претпоставка
2. r→s	упростување од (1)
3. (q→t)∧(s→u)	претпоставка
4. s→u	упростување од (3)
5. r→u	хипотетички силогизам од (2) и (4)
6. p→r	претпоставка
7.p→u	хипотетички силогизам од (5) и (6)
8. ¬(t→u)	претпоставка
9.	замена на импликација во (8)

Аудиториска вежба 4

- 10. t∧¬и Де-Морганови закони во (9)
- 11. ¬и упростување од (10)
- 12. ¬р Модус Толенс од (7) и (11)
- в) Ќе докажуваме: $p \rightarrow (q \rightarrow r)$, $\neg s \lor p$, q, $s \Rightarrow r$
 - 1. ¬ѕ∨р претпоставка
 - 2. s претпоставка
 - 3. р дисјункт. силогизам од (1) и (2)
 - 4. $p \rightarrow (q \rightarrow r)$ претпоставка
 - 5. q→r Модус Поненс од (3) и (4)
 - 6. q претпоставка
 - 7. r Модус Поненс од (5) и (6)

Индиректни докази:

- a) 1. ¬b негиран заклучок
 - 2. а→b претпоставка
 - 3. ¬а Модус Толенс од (1) и (3)
 - 4. с→b претпоставка
 - 5. ¬с Модус Толенс од (1) и (4)
 - 6. ¬а∧¬с конјукција на (3) и (5)
 - 7. ¬(а∨с) Де-Морганови закони во (6)
 - 8. d \rightarrow (a \lor c) претпоставка
 - 9. ¬d Модус Толенс од (7) и (8)
 - 10. d претпоставка
 - 11. \bot конјукција на (9) и (10)
- б) 1. р негиран заклучок2. р→г претпоставка
 - 2. р—л претпоставка 3. r — Модус Поненс од (1) и (2)
 - 4. $(p \rightarrow q) \land (r \rightarrow s)$ претпоставка
 - 5. r→s упростување од (4)
 - 6. s Модус Поненс од (3) и (5)
 - 7. $(q \rightarrow t) \land (s \rightarrow u)$ претпоставка
 - 8. s→и упростување од (7)
 - 9. u Модус Поненс од (6) и (8)
 - 10. \neg (t \rightarrow u) претпоставка
 - 11. ¬(¬t∨u)12. t∧¬u3амена на ипмикација во (10)Де-Морганови закони во (11)
 - 13. ¬u упростување од (12)
 - 14. ⊥ конјукција на (9) и (13)
- в) Ќе докажуваме: $p \rightarrow (q \rightarrow r)$, $\neg s \lor p$, q, $s \Rightarrow r$
 - 1. ¬г негиран заклучок
 - 2. ¬s∨р претпоставка3. s претпоставка

Аудиториска вежба 4

4. p	дисјунктивен силогизам од (2) и (3)
5. $p \rightarrow (q \rightarrow r)$	претпоставка
6. q	претпоставка
7. q∧¬r	конјукција на (1) и (6)
8.	Де-Морганови закони во (7)
9. ¬(q→r)	замена на импликација во (8)
10. ¬p	Модус Толенс од (5) и (9)
11. ⊥	конјукција на (4) и (10)

Задача 3: Докажи дека: $p \rightarrow r, p \lor q \Rightarrow q \lor r$.

Решение: Дисјункцијата во заклучокот можеме да ја земениме со q, со тоа што во претпоставките ќе додадеме $\neg r$. На овој начин добиваме: $p \to r, p \lor q, \neg r \Rightarrow q$.

 1. $p \rightarrow r$ претпоставка.

 2. $\neg r$ претпоставка.

 3. $\neg p$ Модус Толенс од (2) и (3)

 4. $p \lor q$ претпоставка.

 5. q дисјунктивен силогизам од (3) и (4)

Задача 4: Докажи дека: $p \lor q, \neg q \lor r, r \to s \Rightarrow \neg p \to s$

Решение: Импликацијата во заклучокот може да се замени со s , со тоа што во претпоставките додаваме $\neg p$. На овој начин добиваме: $p \lor q, \neg q \lor r, r \to s, \neg p \Longrightarrow s$.

 1. $\neg p$ претпоставка.

 2. $p \lor q$ претпоставка.

 3. q дисјунктивен силогизам од (1) и (2)

 4. $\neg q \lor r$ претпоставка.

 5. r дисјунктивен силогизам од (3) и (4)

 6. $r \to s$ претпоставка.

 7. s Модус Поненс од (5) и (6)

Задача 5: Докажи дека: $p \lor \neg q, r \to s, p \to t, \neg t \lor r, \neg t \lor \neg s \Rightarrow (q \to r) \land (t \to (s \leftrightarrow r))$.

Решение: Со разделување на конјукцијата во заклучокот, задачата се сведува на решавање на следните две задачи: $p \lor \neg q, r \to s, p \to t, \neg t \lor r, \neg t \lor \neg s \Rightarrow q \to r$ и $p \lor \neg q, r \to s, p \to t, \neg t \lor r, \neg t \lor \neg s \Rightarrow t \to (s \leftrightarrow r).$

Импликацијата во заклучокот на првата задача може да се замени со r, со тоа што во претпоставките додаваме q. На овој начин добиваме: $p \lor \neg q, r \to s, p \to t, \neg t \lor r, \neg t \lor \neg s, q \Rightarrow r$.

1. q претпоставка. 2. $p \lor \neg q$ претпоставка.

3. p дисјунктивен силогизам од (1) и (2)

4. $p \rightarrow t$ претпоставка.

Аудиториска вежба 4

6.
$$\neg t \lor r$$
 претпоставка.

7.
$$r$$
 дисјунктивен силогизам од (5) и (6)

И во втората задача ја заменуваме импликацијата во заклучокот:

$$p \lor \neg q, r \to s, p \to t, \neg t \lor r, \neg t \lor \neg s, t \Longrightarrow s \leftrightarrow r$$
.

1.
$$\neg t \lor r$$
 претпоставка.

$$2. t$$
 претпоставка.

3.
$$r$$
 дисјунктивен силогизам од (1) и (2)

4.
$$\neg t \lor \neg s$$
 претпоставка

5.
$$\neg s$$
 дисјунктивен силогизам од (2) и (4)

6.
$$\neg s \lor r$$
 дисјункција од (3) и (5)

7.
$$s \rightarrow r$$
 замена на импликација во (6)

8.
$$r \rightarrow s$$
 претпоставка.

9.
$$r \leftrightarrow s$$
 конјукција на (7) и (8)

Задача 6: Докажи дека: $p \to r, r \to q, (q \lor \neg r) \to (p \land r) \Rightarrow p \leftrightarrow q$.

Решение: Со разделување на еквиваленцијата во заклучокот, дадената задача се сведува на решавање на следните две задачи: $p \to r, r \to q, (q \lor \neg r) \to (p \land r) \Rightarrow p \to q$ и $p \to r, r \to q, (q \lor \neg r) \to (p \land r) \Rightarrow q \to p$.

Решението $p \to r, r \to q, (q \lor \neg r) \to (p \land r) \Rightarrow p \to q$ е:

1.
$$p \rightarrow r$$
 претпоставка.

2.
$$r \rightarrow q$$
 претпоставка.

3.
$$p \to q$$
 Хипот.силогизам на (1) и (2)

Решението $p \to r, r \to q, (q \lor \neg r) \to (p \land r) \Rightarrow q \to p$ е:

1.
$$(q \vee \neg r) \rightarrow (p \wedge r)$$
 претпоставка.

2.
$$\neg (q \lor \neg r) \lor (p \land r)$$
 замена на имликација во 1

3.
$$(\neg q \land r) \lor (p \land r)$$
 Де-Морганови закони во 2

4.
$$(\neg q \lor p) \land r$$
 дистрибутивни закони во (3)

5.
$$\neg q \lor p$$
 упростување од (4)

6.
$$q \to p$$
 замена на импликација во (5)

Задача 7: Докажи дека:

$$(\forall x)(p(x)\lor q(x)),(\forall x)((\neg p(x)\land q(x))\to r(x))\Rightarrow (\forall x)(\neg r(x)\to p(x))$$

Решение

1.
$$(\forall x)((\neg p(x) \land q(x)) \rightarrow r(x))$$
 претпоставка

2.
$$(\neg p(c) \land q(c)) \rightarrow r(c)$$
 универзален примерок од (1)

3.
$$\neg (\neg p(c) \land q(c)) \lor r(c)$$
, за произволно c замена на импликација во (2)

4.
$$(p(c) \lor \neg q(c)) \lor r(c)$$
, за произволно c Де-Морганови закони во (3)

5.
$$(\forall x)(p(x)\lor q(x))$$
 претпоставка

резолуција во (8)

6.
$$p(c) \lor q(c)$$
, за произволно c универзален примерок од (5)

7.
$$((p(c) \lor \neg q(c)) \lor r(c)) \land (p(c) \lor q(c))$$
, за произволно c конјункција на (4) и (6)

8.
$$(-q(c)\lor(p(c)\lor r(c)))\land(q(c)\lor p(c))$$
, за произволно c асоцијативност во (7)

9.
$$p(c) \lor r(c) \lor p(c)$$
, за произволно c

10.
$$p(c) \lor r(c)$$
, за произволно c од (9)

11.
$$\neg r(c) \to p(c)$$
, за произволно c замена на импликација во (10)

12.
$$(\forall x)(\neg r(x) \to p(x))$$
 универзална генерализација од (11)

Задача 8: Докажи дека:

$$(\forall x)(p(x) \lor q(x)), (\forall x)(\neg q(x) \lor s(x)), (\forall x)(r(x) \to \neg s(x)), (\exists x) \neg p(x) \Rightarrow (\exists x) \neg r(x)$$

Решение:

1.
$$(\exists x) \neg p(x)$$
 претпоставка

2.
$$\neg p(a)$$
 егзистенцијален примерок од (1)

3.
$$(\forall x)(p(x)\lor q(x))$$
 претпоставка

4.
$$p(a) \lor q(a)$$
 универзален примерок од (3)

5.
$$q(a)$$
 дисјунктивен силогизам од (2) и (4)

6.
$$(\forall x)(\neg q(x) \lor s(x))$$
 претпоставка

7.
$$\neg q(a) \lor s(a)$$
 универзален примерок од (3)

8.
$$s(a)$$
 дисјунктивен силогизам од (5) и (7)

9.
$$(\forall x)(r(x) \rightarrow \neg s(x))$$
 претпоставка

10.
$$r(a) \to \neg s(a)$$
 универзален примерок од (9)
11. $\neg r(a)$ Модус Толенс од (8) и (10)

11.
$$\neg r(a)$$
 Модус Толенс од (8) и (10)

12.
$$(\exists x) \neg r(x)$$
 егзистенцијална генерализација од (11)

Техники на докажување

Задача 9: Со употреба на директен доказ докажи дека сумата на два непарни природни броја е парен број.

Решение: Нека n и m се непарни природни броеви. Според дефиницијата за непарен број овие може да се запишат како n = 2k + 1 и m = 2l + 1, каде k и l се природни броеви. Тогаш, n+m=2(k+l+1), т.е. n+m=2s, каде s=k+l+1, што исто така е природен број. Ова значи дека по дефиницијата за парен број, сумата на n и m е парен број.

Задача 10: Докажи дека ако m + n и n + p се парни цели броеви, каде m, n, и p се цели броеви, тогаш m + p е парен. Каков тип на доказ користевте?

Решение: Директен доказ: Да претпоставиме дека m+n и n+p се парни. Тогаш, m+n = 2s, за некој цел број s и n + p = 2t за некој цел број t. Ако ги собереме овие се добива m+p+2n = 2s+2t. Со одземање на 2n од двете страни имаме m + p = 2s + 2t - 2n =2(s + t - n). Бидејќи го запишавме m + p на овој начин, може да заклучиме дека m + p е парен број.

Задача 11: Со употреба на директен доказ докажи дека секој непарен цел број е разлика на два квадрати.

Решение: Бидејќи n е непарен, може да запишеме n = 2k + 1 за некој цел број k. Тогаш $(k+1)^2-k^2=k^2+2k+1-k^2=2k+1=n$.

Задача 12: Ако е дадена теоремата: "Сумата на два рационални броеви е рационален број", користи доказ со контрадикција за да се докаже дека сумата на ирационален и рационален број е ирационален број.

Решение: Нека r е рационален број и i е ирационален, а s = r + i е рационален. Тогаш според дадената теорема, s+(-r) = i е рационален, што е контрадикција.

Задача 13: Докажи или негирај дека производот на два ирационални броеви е ирационален број.

Решение: Бидејќи $\sqrt{2}\sqrt{2}=2$ и $\sqrt{2}$ е ирационален број, производот на два ирационални броеви не мора да е ирационален број.

Задача 14: Со употреба на доказ со контрапозиција покажи дека ако $x + y \ge 2$, каде x и y се реални броеви, тогаш $x \ge 1$ или $y \ge 1$.

Решение: Да претпоставиме дека не е точно $x \ge 1$ или $y \ge 1$. Тогаш, x < 1 и y < 1. Со додавање на овие две неравенства, добиваме дека x + y < 2, што е спротивно од $x + y \ge 2$.

Задача 15: Да се докаже дека ако n е цел број и $n^3 + 5$ е непарен, тогаш n е парен со употреба на

- а) доказ со контрапозиција.
- б) доказ со контрадикција.

Решение:

- а) Да претпоставиме дека n е непарен, така што n = 2k+1 за некој цел број k. Тогаш $n^3+5 = 2(4k^3+6k^2+3k+3)$, па n^3+5 е парен.
- б) Да претпоставиме дека $n^3 + 5$ е непарен и n е непарен. Бидејќи n е непарен и производот на два непарни броја е непарен, следува дека n^2 е непарен и дека n^3 е непарен. Но, тогаш $5 = (n^3 + 5) n^3$ мора да биде парен бидејќи е разлика од два непрани броја. Затоа, претпоставката дека и $n^3 + 5$ и n се двата непарни е грешна.

Задача 16: Да се докаже дека најмалку 10 од било кои избрани 64 дена мора да паѓаат во ист ден од неделата.

Решение: Да претпоставиме дека избираме 64 дена. Исто така, да претпоставиме постои начин на кој што ќе се распределат избраните 64 денови во 7те денови од неделата така што не повеќе од 9 денови се во ист ден од неделата, т.е. да претпоставиме дека тврдењето на задачата не е точно. Ако избереме 9 или помалку денови во секој ден од неделата, ова ќе

значи вкупно најмногу $9 \cdot 7 = 63$ денови. Но ние сме избрале 64 денови. Оваа контрадикција покажува дека најмалку 10 од деновите кои сме ги избрале мора да бидат во ист ден во неделата.

Задача 17: Со помош на контрадикција (метод на доведување до противречност) докажи дека следните исказни формули се тавтологии:

a)
$$p \rightarrow q \leftrightarrow \neg p \lor q$$
,

б)
$$((p → q) → p) → p$$
,

B)
$$(p \rightarrow q) \rightarrow ((p \rightarrow r) \rightarrow (p \rightarrow (q \land r)))$$
.

Решение:

a)
$$\alpha: \underbrace{p \to q}_{\beta} \leftrightarrow \underbrace{\neg p \lor q}_{\gamma}$$

Нека α не е тавтологија , значи за некое доделување на вредности на исказните променливи, формулата има вредност \bot .

 $\tau(\alpha)$ = \bot , за некоја комбинација на вредности на исказните променливи р и q.

1°
$$\tau$$
(β)=Т и τ (γ)=⊥ или

$$2^{\circ} \tau(\beta) = \perp u \tau(\gamma) = T.$$

1° Од $\tau(\gamma)=\bot$ следи $\tau(\neg p)=\bot$ и $\tau(q)=\bot$ т.е . $\tau(p)=T$ и $\tau(q)=\bot$, но тогаш $\tau(\beta)=\tau(p\Longrightarrow q)=\bot$, што е контрадикција со $\tau(\beta)=T$.

 2° Од $\tau(\beta)=\bot$ следи $\tau(p)=T$ и $\tau(q)=\bot$, но тогаш $\tau(\gamma)=\tau(\neg p\lor q)=\bot$, што е контрадикција со $\tau(\gamma)=T$. Од 1° и 2° следува дека α е тавтологија .

$$β$$
 $α$: (p $→$ q) $→$ p) $→$ p

Нека α не е тавтологија, значи за некое доделување на вредности на исказните променливи, формулата има вредност \bot .

 $\tau(\alpha)$ = \bot , за некоја комбинација на вредности на исказните променливи р и q, односно имаме:

$$\tau((p\rightarrow q)\rightarrow p)=T$$
 и $\tau(p)=\bot$ т.е.

$$\tau((\bot \rightarrow q) \rightarrow \bot)=T$$
 и $\tau(p)=\bot$ т.е.

$$\tau(\bot \rightarrow q) = \bot u \tau(p) = \bot$$
.

но $\tau(\bot \to q)$ =Т за било која вредност на q, па оттука добиваме дека не постојат вредности за р и q за кои $\tau(\alpha)$ = \bot . Следува $\tau(\alpha)$ =Т за било која вредност на p и q, т.е α е тавтологија.

B)
$$\alpha: \underbrace{(p \to q)}_{\beta} \to \underbrace{((p \to r) \to (p \to (q \land r)))}_{\gamma}$$

Нека α не е тавтологија, значи за некое доделување на вредности на исказните променливи, формулата има вредност \bot .

 $\tau(\alpha)$ = \bot , за некоја комбинација на вредности на исказните променливи р и q, односно имаме:

$$\tau(p\rightarrow q)=T \ u \ \tau((p\rightarrow r)\rightarrow (p\rightarrow (q\land r)))=\bot$$

Од
$$\tau((p\rightarrow r)\rightarrow (p\rightarrow (q\land r)))=\bot$$
 следи

$$\tau(p\rightarrow r)=T$$
 и $\tau(p\rightarrow (q\land r))=\bot$ т.е.

$$\tau(p\rightarrow r)=T$$
, $\tau(p)=T$ и $\tau(q\wedge r)=\bot$

Од $\tau(p\to r)=T$, $\tau(p)=T$ следи $\tau(r)=T$, а ова заедно со $\tau(q\wedge r)=\bot$ повлекува $\tau(q)=\bot$. Доколку се вратиме назад на β добиваме $\tau(p\to q)=\tau(T\to \bot)=\bot$, што е контрадикција со $\tau(p\to q)=T$. Значи α е тавтологија.

Задача 18: Докажи дека овие тврдења за некој цел број х се еквивалентни:

(i) 3x + 2 e парен, (ii) x + 5 e непарен, (iii) x^2 e парен

Решение: Ќе докажеме дека секое од овие тврдења е еквивалентно со тврдењето дека x е парен број. Ако x е парен број, тогаш x = 2k за некој цел број k. Затоа, $3x+2=3\cdot 2k+2=6k+2=2(3k+1)$, што е парен, бидејќи е запишан во форма 2t, каде t = 3k+1. Слично, x+5=2k+5=2k+4+1=2(k+2)+1, па x+5 е непарен; и $x^2=(2k)^2=2(2k^2)$, па x^2 е парен.

За обратното, ќе користиме доказ со контрапозиција. Да претпоставиме дека x не е парен, т.е. може да се запише како x = 2k + 1 за некој цел број k. Тогаш, 3x+2 = 3(2k+1)+2 = 6k+5 = 2(3k+2)+1, што е непарен, бидејќи е запишан во форма 2t+1, каде t=3k+2. Слично, x+5=2k+1+5=2(k+3), па x+5 е парен и $x^2=(2k+1)^2=2(2k^2+2k)+1$, па x^2 е непарен.

Задача 19: Да се докаже дека тврдењата p1, p2, p3, p4, и p5 може да се покаже дека се еквивалентни со докажување дека условните тврдења p1 \rightarrow p4, p3 \rightarrow p1, p4 \rightarrow p2, p2 \rightarrow p5, и p5 \rightarrow p3 се точни.

Решение: Да претпоставиме дека p1 \rightarrow p4 \rightarrow p2 \rightarrow p5 \rightarrow p3 \rightarrow p1. За да се докаже дека било кое тврдење од овие ги повлекува останатите, може да се употреби правилото на хипотетички силогизам последователно.

Задача 20: Да се докаже дека тврдењата за некој реален број x се еквивалентни:

(i) $x \in \text{ирационален}$, (ii) $3x + 2 \in \text{ирационален}$, (iii) $x/2 \in \text{ирационален}$.

Решение: Ќе докажеме дека важат импликациите (i) \rightarrow (ii), (ii) \rightarrow (i), (i) \rightarrow (iii), и (iii) \rightarrow (i). За првото од овие, да претпоставиме дека 3x + 2 е рационален, еднаков на p/q за некои цели броеви p и q со q \neq 0. Тогаш може да запишеме x = ((p/q) - 2)/3 = (p - 2q)/(3q), каде $3q \neq 0$. Ова покажува дека x е рационален. За второто тврдење, да претпоставиме дека x е рационален, еднаков на p/q за некои цели броеви p и q со q \neq 0. Тогаш, може да запишеме 3x+2=(3p+2q)/q, каде q \neq 0. Ова покажува дека 3x+2 е рационален. За третото тврдење, да претпоставиме дека x/2 е рационален еднаков на p/q за некои цели броеви p и q со q \neq 0. Тогаш може да запишеме x = 2p/q, каде q \neq 0. Ова покажува дека x е рационален еднаков на p/q за некои цели броеви p и q со q \neq 0. Тогаш, може да запишеме x/2 = p/(2q), каде x/2

Задача 21: Да се докаже дека ако x и y се реални броеви, тогаш max(x,y)+min(x,y)=x+y.

Решение: Ако $x \le y$, тогаш max(x, y) + min(x, y) = y + x = x + y. Ако $x \ge y$, тогаш max(x, y) + min(x, y) = x + y. Бидејќи ова се сите случаи, тврдењето секогаш важи.

Задача 22: Да се докаже дека постојат 100 последнователни позитивни цели броеви кои не се квадрати. Дали доказот е конструктивен или не?

Решение: 10001, 10002, . . . , 10100 не се квадрати; конструктивен доказ.

Дополнителни задачи

Задача 23. Да се покаже дека $((p \lor q) \land (p \to r) \land (q \to r)) \to r$ е тавтологија.

Решение:

Да претпоставиме дека формулата не е тавтологија. Тогаш

$$\tau((p \lor q) \land (p \to r) \land (q \to r)) = T$$

и $\tau(r)=\bot$.

Од првото добиваме:

$$\tau(p \lor q) = T, \tau(p \to r) = T, \tau(q \to r) = T \dots (*)$$

Од $\tau(p \to r) = \mathrm{T}$ и $\tau(r) = \bot$, следува $\tau(p) = \bot$. Од $\tau(q \to r) = \mathrm{T}$ и $\tau(r) = \bot$, следува $\tau(q) = \bot$. Оттука, $\tau(p \lor q) = \bot$, што е во контрадикција со (*).

Следува дека за било кои вредности на променливите p, r и q во формулата, таа не може да добие вредност \bot . Оттука, формулата секогаш е точна, па според тоа таа е тавтологија.

Задача 24. Да се покаже дека $((\neg q \land \neg r) \land ((p \rightarrow q) \lor (p \rightarrow r))) \rightarrow \neg p$ е тавтологија.

Решение:

Да претпоставиме дека формулата не е тавтологија. Тогаш

$$\tau ((\neg q \land \neg r) \land ((p \to q) \lor (p \to r))) = T$$

и $\tau(\neg p)=\bot$.

Од првото добиваме:

$$\tau(\neg q \land \neg r) = T, \tau((p \rightarrow q) \lor (p \rightarrow r)) = T \dots (*)$$

Оттука $\neg q \equiv T$ и $\neg r \equiv T$, од каде $q \equiv \bot$ и $r \equiv \bot$

Од $\tau(\neg p)$ = \bot . Следува р \equiv Т. Сега да замениме во $\tauig((p o q) \lor (p o r)ig)$ кое треба да биде Т.

$$\tau((p \to q) \lor (p \to r)) = \tau((T \to \bot) \lor (T \to \bot)) = \tau(\bot \lor \bot) = \bot$$
, што е во контрадикција со (*).

Аудиториска вежба 4

Следува дека за било кои вредности на променливите p, r и q во формулата, таа не може да добие вредност \bot . Оттука, формулата секогаш е точна, па според тоа таа е тавтологија.

Задача 25: Докажи дека или $2 \cdot 10^{500}$ + 15 или $2 \cdot 10^{500}$ + 16 не е квадрат. Дали докажот е констуктивен или не?

Решение: Неконструктивен доказ: Ако и двата се квадрати, тогаш со запишување $a^2=2 \cdot 10^{500}$ + 16 и $b^2=2 \cdot 10^{500}$ + 15, добиваме дека $a^2-b^2=(a-b)(a+b)=1$. Бидејќи а и b се цели броеви, или а-b=1 или a+b=1, што нема решение во целите броеви, или a-b=-1 и a+b=-1, што исто така нема решение. Затоа добиваме контрадикција, што значи дека двата броја не може да бидат квадрати.

Задача 26: Да се докаже дека $n^2 + 1 \ge 2^n$ кога n е позитивен цел број каде $1 \le n \le 4$.

Решение: $1^2 + 1 = 2 \ge 2 = 2^1$; $2^2 + 1 = 5 \ge 4 = 2^2$; $3^2 + 1 = 10 \ge 8 = 2^3$; $4^2 + 1 = 17 \ge 16 = 2^4$

Задача 27: Да се докаже дека без губење на општоста min(x, y) = (x + y - |x - y|)/2 и max(x, y) = (x + y + |x - y|)/2 ако x и y се реални броеви.

Решение: Бидејќи |x-y| = |y-x|, вредностите на x и y може да се заменат една со друга. Затоа, без губење на општоста, може да претпоставиме дека $x \ge y$. Тогаш (x + y - (x - y))/2 = (x + y - x + y)/2 = 2y/2 = y = min(x, y). Слично, (x + y + (x - y))/2 = (x + y + x - y)/2 = 2x/2 = x = max(x, y).