

### Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE171102703

### FCC REPORT

Applicant: PCD, LLC

Address of Applicant: 1500 Tradeport Drive, Suite A, ORLANDO, Florida, 32824.

**United States** 

**Equipment Under Test (EUT)** 

Product Name: Fox II

Model No.: PH4003

Trade mark: PCD

FCC ID: 2ALJJPH4003

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 14 Nov., 2017

**Date of Test:** 14 Nov., to 26 Dec., 2017

Date of report issued: 27 Dec., 2017

Test Result: PASS\*

\* In the configuration tested, the EUT complied with the standards specified above.

### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.





### 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 27 Dec., 2017 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

Tested by: Quen (her Date: 27 Dec., 2017

Test Engineer

Reviewed by: 27 Dec., 2017

Project Engineer



### 3 Contents

|   |       |                                | Page |
|---|-------|--------------------------------|------|
| 1 | CO    | /ER PAGE                       | 1    |
| 2 | VER   | RSION                          | 2    |
| 3 |       | NTENTS                         |      |
|   |       |                                |      |
| 4 | _     | T SUMMARY                      |      |
| 5 | GEN   | NERAL INFORMATION              | 5    |
|   | 5.1   | CLIENT INFORMATION             | 5    |
|   | 5.2   | GENERAL DESCRIPTION OF E.U.T   | 5    |
|   | 5.3   | TEST ENVIRONMENT AND TEST MODE | 6    |
|   | 5.4   | DESCRIPTION OF SUPPORT UNITS   | 6    |
|   | 5.5   | MEASUREMENT UNCERTAINTY        | 6    |
|   | 5.6   | LABORATORY FACILITY            | 7    |
|   | 5.7   | LABORATORY LOCATION            |      |
|   | 5.8   | TEST INSTRUMENTS LIST          | 8    |
| 6 | TES   | T RESULTS AND MEASUREMENT DATA | 9    |
|   | 6.1   | ANTENNA REQUIREMENT            | 9    |
|   | 6.2   | CONDUCTED EMISSION             | 10   |
|   | 6.3   | CONDUCTED OUTPUT POWER         | 13   |
|   | 6.4   | OCCUPY BANDWIDTH               |      |
|   | 6.5   | Power Spectral Density         | 18   |
|   | 6.6   | BAND EDGE                      |      |
|   | 6.6.  |                                |      |
|   | 6.6.2 |                                |      |
|   | 6.7   | Spurious Emission              |      |
|   | 6.7.  |                                |      |
|   | 6.7.2 |                                |      |
| 7 | TES   | T SETUP PHOTO                  | 47   |
| Ω | FUT   | CONSTRUCTIONAL DETAILS         | /19  |





### 4 Test Summary

| Test Items                                        | Section in CFR 47       | Result       |
|---------------------------------------------------|-------------------------|--------------|
| Antenna requirement                               | 15.203/15.247 (c)       | Pass         |
| AC Power Line Conducted Emission                  | 15.207                  | Pass         |
| Conducted Peak Output Power                       | 15.247 (b)(3)           | Pass         |
| 6dB Emission Bandwidth 99% Occupied Bandwidth     | 15.247 (a)(2)           | Pass         |
| Power Spectral Density                            | 15.247 (e)              | Pass         |
| Band Edge                                         | 15.247(d)               | Pass         |
| Conducted and Radiated Spurious Emission          | 15.205/15.209           | Pass         |
| Pass: The EUT complies with the essential require | ements in the standard. | <del>.</del> |





### 5 General Information

### **5.1 Client Information**

| Applicant:    | PCD, LLC                                                              |
|---------------|-----------------------------------------------------------------------|
| Address:      | 1500 Tradeport Drive, Suite A, ORLANDO, Florida, 32824. United States |
| Manufacturer: | Quality One Wireless LLC                                              |
| Address:      | 1500 Tradeport Drive, Suite A, ORLANDO, Florida, 32824. United States |

### 5.2 General Description of E.U.T.

| Product Name:                                    | Fox II                                                                        |
|--------------------------------------------------|-------------------------------------------------------------------------------|
| Model No.:                                       | PH4003                                                                        |
| Operation Frequency:                             | 2412MHz~2462MHz (802.11b/802.11g/802.11n(H20))                                |
| Channel numbers:                                 | 11 for 802.11b/802.11g/802.11(H20)                                            |
| Channel separation:                              | 5MHz                                                                          |
| Modulation technology:<br>(IEEE 802.11b)         | Direct Sequence Spread Spectrum (DSSS)                                        |
| Modulation technology:<br>(IEEE 802.11g/802.11n) | Orthogonal Frequency Division Multiplexing(OFDM)                              |
| Data speed (IEEE 802.11b):                       | 1Mbps, 2Mbps, 5.5Mbps, 11Mbps                                                 |
| Data speed (IEEE 802.11g):                       | 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps                   |
| Data speed (IEEE 802.11n):                       | Up to 72.2Mbps                                                                |
| Antenna Type:                                    | External Antenna                                                              |
| Antenna gain:                                    | -0.5 dBi                                                                      |
| Power supply:                                    | Rechargeable Li-ion Battery DC3.7V-1400mAh                                    |
| AC adapter with two plugs :                      | Model: S4006-T2<br>Input: AC100-240V, 50/60Hz, 0.1A<br>Output: DC 5.0V, 700mA |

| Operation Frequency each of channel for 802.11b/g/n(H20) |           |         |           |         |           |         |           |
|----------------------------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                                                  | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 1                                                        | 2412MHz   | 4       | 2427MHz   | 7       | 2442MHz   | 10      | 2457MHz   |
| 2                                                        | 2417MHz   | 5       | 2432MHz   | 8       | 2447MHz   | 11      | 2462MHz   |
| 3                                                        | 2422MHz   | 6       | 2437MHz   | 9       | 2452MHz   |         |           |
| NI. C.                                                   |           |         |           |         |           |         |           |

Note:

1. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel, Channel.



Report No: CCISE171102703

### 5.3 Test environment and test mode

| Operating Environment: |                                                         |
|------------------------|---------------------------------------------------------|
| Temperature:           | 24.0 °C                                                 |
| Humidity:              | 54 % RH                                                 |
| Atmospheric Pressure:  | 1010 mbar                                               |
| Test mode:             |                                                         |
| Transmitting mode      | Keep the EUT in continuous transmitting with modulation |

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

### Per-scan all kind of data rate, the follow list were the worst case.

| Mode         | Data rate |
|--------------|-----------|
| 802.11b      | 1Mbps     |
| 802.11g      | 6Mbps     |
| 802.11n(H20) | 6.5Mbps   |

### 5.4 Description of Support Units

The EUT has been tested as an independent unit.

### 5.5 Measurement Uncertainty

| Parameters                          | Expanded Uncertainty |
|-------------------------------------|----------------------|
| Conducted Emission (9kHz ~ 30MHz)   | 2.14 dB (k=2)        |
| Radiated Emission (9kHz ~ 30MHz)    | 4.24 dB (k=2)        |
| Radiated Emission (30MHz ~ 1000MHz) | 4.35 dB (k=2)        |
| Radiated Emission (1GHz ~ 18GHz)    | 4.44 dB (k=2)        |
| Radiated Emission (18GHz ~ 26.5GHz) | 4.56 dB (k=2)        |



Report No: CCISE171102703

### 5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

### FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

### IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

### CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

### A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

### 5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com



### 5.8 Test Instruments list

| Radiated Emission: |                 |               |            |                         |                          |
|--------------------|-----------------|---------------|------------|-------------------------|--------------------------|
| Test Equipment     | Manufacturer    | Model No.     | Serial No. | Cal. Date<br>(mm-dd-yy) | Cal. Due date (mm-dd-yy) |
| 3m SAC             | SAEMC           | 9m*6m*6m      | 966        | 07-22-2017              | 07-21-2020               |
| Loop Antenna       | SCHWARZBECK     | FMZB1519B     | 00044      | 02-25-2017              | 02-24-2018               |
| BiConiLog Antenna  | SCHWARZBECK     | VULB9163      | 497        | 02-25-2017              | 02-24-2018               |
| Horn Antenna       | SCHWARZBECK     | BBHA9120D     | 916        | 02-25-2017              | 02-24-2018               |
| EMI Test Software  | AUDIX           | E3            | 6.110919b  | N/A                     | N/A                      |
| Pre-amplifier      | HP              | 8447D         | 2944A09358 | 02-25-2017              | 02-24-2018               |
| Pre-amplifier      | CD              | PAP-1G18      | 11804      | 02-25-2017              | 02-24-2018               |
| Spectrum analyzer  | Rohde & Schwarz | FSP30         | 101454     | 02-25-2017              | 02-24-2018               |
| EMI Test Receiver  | Rohde & Schwarz | ESRP7         | 101070     | 02-25-2017              | 02-24-2018               |
| Cable              | ZDECL           | Z108-NJ-NJ-81 | 1608458    | 02-25-2017              | 02-24-2018               |
| Cable              | MICRO-COAX      | MFR64639      | K10742-5   | 02-25-2017              | 02-24-2018               |
| Cable              | SUHNER          | SUCOFLEX100   | 58193/4PE  | 02-25-2017              | 02-24-2018               |

| Conducted Emission: |                 |            |             |                         |                          |
|---------------------|-----------------|------------|-------------|-------------------------|--------------------------|
| Test Equipment      | Manufacturer    | Model No.  | Serial No.  | Cal. Date<br>(mm-dd-yy) | Cal. Due date (mm-dd-yy) |
| EMI Test Receiver   | Rohde & Schwarz | ESCI       | 101189      | 02-25-2017              | 02-24-2018               |
| Pulse Limiter       | SCHWARZBECK     | OSRAM 2306 | 9731        | 02-25-2017              | 02-24-2018               |
| LISN                | CHASE           | MN2050D    | 1447        | 02-25-2017              | 02-24-2018               |
| LISN                | Rohde & Schwarz | ESH3-Z5    | 8438621/010 | 07-21-2017              | 07-20-2018               |
| Cable               | HP              | 10503A     | N/A         | 02-25-2017              | 02-24-2018               |
| EMI Test Software   | AUDIX           | E3         | 6.110919b   | N/A                     | N/A                      |



### 6 Test results and Measurement Data

### 6.1 Antenna requirement

### Standard requirement:

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

### E.U.T Antenna:

The WiFi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is -0.5 dBi.







### 6.2 Conducted Emission

| 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                  |  |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------|--|--|
| Test Requirement:     | FCC Part 15 C Section 15.207                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |                  |  |  |
| Test Method:          | ANSI C63.10: 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                  |  |  |
| Test Frequency Range: | 150 kHz to 30 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |                  |  |  |
| Class / Severity:     | Class B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |                  |  |  |
| Receiver setup:       | RBW=9 kHz, VBW=30 kl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hz                  |                  |  |  |
| Limit:                | Frequency range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Limit (d            | dBuV)            |  |  |
|                       | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Quasi-peak          | Average          |  |  |
|                       | 0.15-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66 to 56*           | 56 to 46*        |  |  |
|                       | 0.5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56                  | 46               |  |  |
|                       | 5-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60                  | 50               |  |  |
|                       | * Decreases with the loga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                  |  |  |
| Test procedure        | <ol> <li>The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment.</li> <li>The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).</li> <li>Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement.</li> </ol> |                     |                  |  |  |
| Test setup:           | Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                  |  |  |
|                       | AUX Equipment  Test table/Insula  Remark E.U.T: Equipment Under LISN: Line Impedence Ste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E.U.T  EMI Receiver | ilter — AC power |  |  |
|                       | Test table height=0.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                  |  |  |
| Test Instruments:     | Refer to section 5.8 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                  |  |  |
| Test mode:            | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                  |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                  |  |  |





### **Measurement Data:**

### Neutral:



Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL : Fox II Condition

EUT Model : PH4003

Test Mode : WIFI mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

|                                      | Freq  | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|--------------------------------------|-------|---------------|----------------|---------------|-------|---------------|---------------|---------|
|                                      | MHz   | dBu∜          | dB             | ₫B            | dBu₹  | dBu∜          | <u>d</u> B    |         |
| 1                                    | 0.385 | 22.61         | -0.32          | 10.72         | 33.01 | 58.17         | -25.16        | QP      |
| 2                                    | 0.385 | 10.36         | -0.32          | 10.72         | 20.76 | 48.17         | -27.41        | Average |
| 3                                    | 0.466 | 13.69         | -0.31          | 10.75         | 24.13 | 46.58         | -22.45        | Average |
| 4                                    | 0.471 | 26.01         | -0.31          | 10.75         | 36.45 | 56.49         | -20.04        | QP      |
| 5                                    | 0.502 | 26.13         | -0.30          | 10.76         | 36.59 | 56.00         | -19.41        | QP      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | 0.546 | 9.90          | -0.30          | 10.76         | 20.36 | 46.00         | -25.64        | Average |
| 7                                    | 0.585 | 24.86         | -0.30          | 10.76         | 35.32 | 56.00         | -20.68        | QP      |
| 8                                    | 0.909 | 7.11          | -0.29          | 10.84         | 17.66 | 46.00         | -28.34        | Average |
| 9                                    | 1.016 | 21.20         | -0.29          | 10.87         | 31.78 | 56.00         | -24.22        | QP      |
| 10                                   | 1.255 | 6.57          | -0.28          | 10.90         | 17.19 | 46.00         | -28.81        | Average |
| 11                                   | 1.725 | 19.18         | -0.27          | 10.94         | 29.85 | 56.00         | -26.15        | QP      |
| 12                                   | 2.869 | 6.84          | -0.21          | 10.92         | 17.55 | 46.00         | -28.45        | Average |

### Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.





### Line:



: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site

Condition

: Fox II : PH4003 EUT Model Test Mode : WIFI mode Power Rating : AC 120/60Hz

Environment: Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Remark

| Albaco                          | Freq  | Read<br>Level | LISN<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|---------------------------------|-------|---------------|----------------|---------------|-------|---------------|---------------|---------|
|                                 | MHz   | dBu₹          | dB             | ₫B            | dBu₹  | dBu∜          | <u>dB</u>     |         |
| 1                               | 0.381 | 22.39         | -0.50          | 10.72         | 32.61 | 58.25         | -25.64        | QP      |
| 2                               | 0.466 | 26.74         | -0.49          | 10.75         | 37.00 | 56.58         | -19.58        | QP      |
| 3                               | 0.474 | 14.44         | -0.49          | 10.75         | 24.70 | 46.45         | -21.75        | Average |
| 4                               | 0.595 | 24.40         | -0.48          | 10.77         | 34.69 | 56.00         | -21.31        | QP      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 0.637 | 12.61         | -0.48          | 10.77         | 22.90 | 46.00         | -23.10        | Average |
| 6                               | 0.747 | 9.46          | -0.48          | 10.79         | 19.77 | 46.00         | -26.23        | Average |
| 7                               | 0.968 | 6.63          | -0.49          | 10.86         | 17.00 | 46.00         | -29.00        | Average |
| 8                               | 1.054 | 21.63         | -0.49          | 10.88         | 32.02 | 56.00         | -23.98        | QP      |
| 9                               | 1.160 | 3.47          | -0.48          | 10.89         | 13.88 | 46.00         | -32.12        | Average |
| 10                              | 1.762 | 19.31         | -0.44          | 10.94         | 29.81 | 56.00         | -26.19        | QP      |
| 11                              | 2.622 | 19.60         | -0.44          | 10.93         | 30.09 | 56.00         | -25.91        | QP      |
| 12                              | 2.869 | 6.07          | -0.44          | 10.92         | 16.55 | 46.00         | -29.45        | Average |

### Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.



### **6.3 Conducted Output Power**

| Test Requirement: | FCC Part 15 C Section 15.247 (b)(3)                                      |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 9.2.2.2 |  |  |  |  |  |
| Limit:            | 30dBm                                                                    |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane    |  |  |  |  |  |
| Test Instruments: | Refer to section 5.8 for details                                         |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                         |  |  |  |  |  |
| Test results:     | Passed                                                                   |  |  |  |  |  |

### **Measurement Data:**

| Test CH  | Maximum C | onducted Outpu | Limit(dBm)   | Result      |         |  |
|----------|-----------|----------------|--------------|-------------|---------|--|
| 16St CIT | 802.11b   | 802.11g        | 802.11n(H20) | Limit(dBin) | IVESUIL |  |
| Lowest   | 11.55     | 7.97           | 7.44         |             |         |  |
| Middle   | 11.66     | 8.20           | 7.53         | 30.00       | Pass    |  |
| Highest  | 12.03     | 8.78           | 8.20         |             |         |  |



### 6.4 Occupy Bandwidth

| Test Requirement: | FCC Part 15 C Section 15.247 (a)(2)                                   |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 8.1  |  |  |  |  |  |
| Limit:            | >500kHz                                                               |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |  |
| Test Instruments: | Refer to section 5.8 for details                                      |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |  |  |
| Test results:     | Passed                                                                |  |  |  |  |  |

### **Measurement Data:**

| Test CH  | 6dB Eı  | mission Bandwid | Limit(kHz)   | Result       |        |  |
|----------|---------|-----------------|--------------|--------------|--------|--|
| 1031 011 | 802.11b | 802.11g         | 802.11n(H20) | Limit(Ki iz) | Nosuit |  |
| Lowest   | 10.32   | 16.40           | 17.68        |              |        |  |
| Middle   | 10.20   | 16.48           | 17.56        | >500         | Pass   |  |
| Highest  | 10.16   | 16.24           | 17.60        |              |        |  |
| Test CH  | 99% (   | Occupy Bandwid  | Limit(kHz)   | Result       |        |  |
| 1631 011 | 802.11b | 802.11g         | 802.11n(H20) | Limit(Ki iz) | resuit |  |
| Lowest   | 12.72   | 16.56           | 17.68        |              |        |  |
| Middle   | 12.80   | 16.48           | 17.68        | N/A          | N/A    |  |
| Highest  | 13.04   | 16.48           | 17.76        |              |        |  |



### Test plot as follows:

## 

Date: 16.NOV.2017 17:34:16

### Lowest channel



Date: 16.NOV.2017 17:35:08

### Middle channel



Highest channel

### 802.11b



Date: 16.NOV.2017 17:33:45

### Lowest channel



Date: 16.NOV.2017 17:33:29

### Middle channel



Date: 16.NOV.2017 17:33:08

Highest channel



### 6dB EBW



Date: 16.NOV.2017 17:38:01

### Lowest channel



Date: 16.NOV.2017 17:37:24

Date: 16.NOV.2017 17:36:43

### Middle channel



Highest channel

### 802.11g



Date: 16.NOV.2017 17:32:02

### Lowest channel



Date: 16.NOV.2017 17:32:17

### Middle channel



Date: 16.NOV.2017 17:32:40

Highest channel



### 802.11n(H20)





Date: 16.NOV.2017 17:39:03

### Lowest channel







Date: 16.NOV.2017 17:39:40

### Date: 16.NOV.2017 17:31:22

Date: 16.NOV.2017 17:31:06

### Middle channel

### Middle channel





Highest channel

Highest channel



### 6.5 Power Spectral Density

| Test Requirement: | FCC Part 15 C Section 15.247 (e)                                      |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 10.2 |  |  |  |  |  |
| Limit:            | 8dBm                                                                  |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane |  |  |  |  |  |
| Test Instruments: | Refer to section 5.8 for details                                      |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                      |  |  |  |  |  |
| Test results:     | Passed                                                                |  |  |  |  |  |

### **Measurement Data:**

| Test CH  | Power   | Spectral Dens | Limit(dBm)   | Result      |       |  |
|----------|---------|---------------|--------------|-------------|-------|--|
| 1031 011 | 802.11b | 802.11g       | 802.11n(H20) | Limit(dBin) | Nesun |  |
| Lowest   | 2.02    | -3.61         | -4.66        |             | Pass  |  |
| Middle   | 2.17    | -3.53         | -4.75        | 8.00        |       |  |
| Highest  | 2.88    | -2.95         | -3.49        |             |       |  |



### Test plot as follows:





Date: 16.NOV.2017 17:43:10

### Lowest channel



Date: 16.NOV.2017 17:42:47

Date: 16.NOV.2017 17:42:30

# Middle channel \*\*Mar 100 Mar Marker 1 (71.) \*\*Mar 20 Mar \*\*Akt 30 da Mar \*\* \*\*DATE 5 mar 2.46050000 disc \*\*TO 10 Mar Marker 1 (71.) \*\*Akt 30 da Mar 5 mar 2.46050000 disc \*\*TO 10 Mar Marker 1 (71.) \*\*TO 10 Mar Marker 1 (71.) \*\*Akt 30 da Mar Marker 1 (71.) \*\*TO 10 Mar Marker 1 (71.) \*\*Akt 30 da Mar Marker 1 (71.) \*\*TO 10 Mar Marker 1 (71.) \*\*Akt 30 da Marker 1 (71.) \*\*TO 10 Mar Ma

Highest channel

### Test mode: 802.11g



Date: 16.NOV.2017 17:41:41

### Lowest channel



Date: 16.NOV.2017 17:41:55

### Middle channel



Date: 16.NOV.2017 17:42:09

Highest channel







Date: 16.NOV.2017 17:41:22

# Lowest channel - RIM 100 bits Marker 1 (73.1) - 4.73 dim - 4.73 d

Date: 16.NOV.2017 17:41:09



Date: 16.NOV.2017 17:40:55

Highest channel





### 6.6 Band Edge

### 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Test Method:      | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 13                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       | Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Test Instruments: | Refer to section 5.8 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |



### Test plot as follows:







Highest channel



Lowest channel



Date: 16.NOV.2017 17:50:43

Highest channel





Date: 16.NOV.2017 17:48:37



802.11n(H20)



Lowest channel

Highest channel

Date: 16.NOV.2017 17:49:57





### 6.6.2 Radiated Emission Method

| 6.6.2 | Radiated Emission Method |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                           |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                            |  |
|-------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------|--|
|       | Test Requirement:        | FCC Part 15 C Section 15.209 and 15.205                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                            |  |
|       | Test Method:             | ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance v04 section 12.1                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                           |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                            |  |
|       | Test Frequency Range:    | 2.3GHz to 2.5GHz                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                           |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                            |  |
|       | Test Distance:           | 3m                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                           |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                            |  |
|       | Receiver setup:          | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                        | Detec                                                                                                                                                                                                                     | tor                                                                                                  | RBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BW          | Remark                     |  |
|       | ·                        | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                       | Peal                                                                                                                                                                                                                      |                                                                                                      | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ЛHz         | Peak Value                 |  |
|       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RMS                                                                                                                                                                                                                       |                                                                                                      | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ИHz         | Average Value              |  |
|       | Limit:                   | Frequenc                                                                                                                                                                                                                                                                                                                                                                                                                                         | У                                                                                                                                                                                                                         | Lin                                                                                                  | nit (dBuV/m @:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ۸,          | Remark                     |  |
|       |                          | Above 1GI                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ηz                                                                                                                                                                                                                        |                                                                                                      | 54.00<br>74.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | verage Value<br>Peak Value |  |
|       | Test Procedure:          | the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the make the maters and to find the materials and the limit specified EUT have 10dB | at a 3 m<br>e the po<br>as set 3<br>hich was<br>a height<br>to deteriontal and<br>neasurer<br>uspected<br>nen the a<br>the rota<br>maximum<br>ceiver sy<br>sandwidtl<br>sion leve<br>ecified, the<br>would be<br>margin v | eter of sition meters is various vertinent. It emissions table in real vertem h with hen te repwould | camber. The tan of the highest of the highest ers away from the unted on the top aried from one of the maximum cal polarization assion, the EUT in a was turned from the example of the example of the EUT in peak esting could be orted. Otherwish the re-tested of the example of | tating table 1.5 meters above table was rotated 360 degrees to radiation. The interference-receiving up of a variable-height antennal meter to four meters above value of the field strength. The interference receiving up of a variable received to the field strength. The interference receiving up of a variable received and the interference receiving up of a variable received and the interference receiving up of a variable received and the interference receiving up of a variable received and the interference receiving up of a variable received and the interference receiving up of a variable received and the interference receiving up of a variable received and the interference receiving up of a variable received and the interference receiving up of a variable receiving u |             |                            |  |
|       | Test setup:              | - 150cm                                                                                                                                                                                                                                                                                                                                                                                                                                          | AE E                                                                                                                                                                                                                      | . 11/                                                                                                | Hern 3m Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n Antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Antenna Tow | ver V                      |  |
|       | Test Instruments:        | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.8 for c                                                                                                                                                                                                                 | detail                                                                                               | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                            |  |
|       | Test mode:               | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.3 for c                                                                                                                                                                                                                 | detail                                                                                               | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                            |  |
|       | Test results:            | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                           |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                            |  |
|       |                          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                           | _                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                            |  |





### 802.11b

**Test channel: Lowest** 

Horizontal:



Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : Fox II Condition

EUT Model : PH4003 Test mode : 802.11B-L mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

1 2

| - |                      | Read | Antenna | Cable | Preamp    |        | Limit         | Over |                |
|---|----------------------|------|---------|-------|-----------|--------|---------------|------|----------------|
|   | Freq                 |      | Factor  |       |           |        |               |      |                |
|   | MHz                  | dBu₹ |         | dB    | <u>dB</u> | dBuV/m | dBuV/m        | dB   |                |
|   | 2390.000<br>2390.000 |      |         |       |           |        | A 107 E 107 E |      | 27.00 C 277.00 |

### Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.





### Vertical:



: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Fox II Condition

: rH4003
Test mode : 802.11B-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey
REMARK :

| III WILL |          |       |              |       |        |        |        |           |         |
|----------|----------|-------|--------------|-------|--------|--------|--------|-----------|---------|
|          |          | Read  | Ant enna     | Cable | Preamp |        | Limit  | Over      |         |
|          | Freq     | Level | Factor       | Loss  | Factor | Level  | Line   | Limit     | Remark  |
|          | MHz      | dBu∜  | <u>dB</u> /m | dB    | dB     | dBuV/m | dBuV/m | <u>dB</u> |         |
| 1        | 2390.000 | 19.62 | 25.45        | 4.69  | 0.00   | 49.76  | 74.00  | -24.24    | Peak    |
| 2        | 2300 000 | 7 24  | 25 45        | 4 60  | 0.00   | 37 02  | 54 00  | -16 02    | Amerade |

### Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





### Test channel: Highest

### Horizontal:



Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Fox II

Model : PH4003

Test mode : 802.11B-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

|     | Read<br>Freq Level   |      | Antenna<br>Factor |           |           |        |        |           |  |
|-----|----------------------|------|-------------------|-----------|-----------|--------|--------|-----------|--|
|     | MHz                  | dBu₹ | <u>dB</u> /m      | <u>dB</u> | <u>ab</u> | dBuV/m | dBu√/m | <u>dB</u> |  |
| 1 2 | 2483.500<br>2483.500 |      |                   |           |           |        |        |           |  |

### Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





### Vertical:



Site

Condition

EUT : PH4003 Model

Test mode : 802.11B-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

| ra :     |       |          |       |           |        |        |           |         |
|----------|-------|----------|-------|-----------|--------|--------|-----------|---------|
|          | Read  | Ant enna | Cable | Preamp    |        | Limit  | Over      |         |
| Freq     | Level | Factor   | Loss  | Factor    | Level  | Line   | Limit     | Remark  |
| MHz      | dBu∀  | dB/m     | dB    | <u>dB</u> | dBu√/m | dBuV/m | <u>dB</u> |         |
| 2483.500 | 26.13 | 25.66    | 4.81  | 0.00      | 56.60  | 74.00  | -17.40    | Peak    |
| 2483 500 | 18 12 | 25 66    | 4 81  | 0 00      | 48 59  | 54 00  | -541      | Average |

### Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





### 802.11g

**Test channel: Lowest** 

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : Fox II Condition

EUT : PH4003 Model : 802.11G-L mode Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Carey

REMARK

| <br>     | Read  | Antenna | Cable     | Preamp    |        | Limit  | Over   |         |
|----------|-------|---------|-----------|-----------|--------|--------|--------|---------|
| Freq     | Level | Factor  | Loss      | Factor    | Level  | Line   | Limit  | Remark  |
| <br>MHz  | dBu∜  | —dB/m   | <u>dB</u> | <u>dB</u> | dBu√/m | dBu√/m | dB     |         |
| 2390.000 | 20.85 | 25.45   | 4.69      | 0.00      | 50.99  | 74.00  | -23.01 | Peak    |
| 2390.000 | 8.76  | 25.45   | 4.69      | 0.00      | 38.90  | 54.00  | -15.10 | Average |

### Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





### Vertical:



: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Fox II Condition

: Fox II

Model : PH4003

Test mode : 802.11G-L mode

Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK :

| THAN | v :      |       |                   |      |      |                     |               |            |         |
|------|----------|-------|-------------------|------|------|---------------------|---------------|------------|---------|
|      | Freq     |       | Antenna<br>Factor |      |      |                     | Limit<br>Line |            | Remark  |
|      | MHz      | dBu₹  | dB/m              | dB   | dB   | $\overline{dBuV/m}$ | dBuV/m        | <u>d</u> B |         |
| 1    | 2390.000 | 19.03 | 25.45             | 4.69 | 0.00 | 49.17               | 74.00         | -24.83     | Peak    |
| 2    | 2300 000 | 8 40  | 25 45             | 4 69 | 0.00 | 38 54               | 54 00         | -15.46     | Average |

### Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.





### Test channel: Highest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL : FOX II Condition

EUT : PH4003 Model

: 802.11G-H mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

REMARK

|     | Freq                 |      | adAntenna Cable Pres<br>el Factor Loss Fact |           |           |        |        |           |  |
|-----|----------------------|------|---------------------------------------------|-----------|-----------|--------|--------|-----------|--|
|     | MHz                  | dBu∀ | dB/m                                        | <u>dB</u> | <u>dB</u> | dBuV/m | dBuV/m | <u>dB</u> |  |
| 1 2 | 2483.500<br>2483.500 |      |                                             |           |           |        |        |           |  |

### Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



### Vertical:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL : Fox II Condition

EUT : PH4003 Model

Test mode : 802.11G-H mode Power Rating : AC 120V/60Hz

Environment: Temp: 25.5°C Huni: 55%

Test Engineer: Carey REMARK :

| in .      |       |         |       |           |        |                              |           |         |
|-----------|-------|---------|-------|-----------|--------|------------------------------|-----------|---------|
|           | Read  | Antenna | Cable | Preamp    |        | Limit                        | Over      |         |
| Freq      | Level | Factor  | Loss  | Factor    | Level  | Line                         | Limit     | Remark  |
| MHz       | dBu∀  | dB/m    |       | <u>dB</u> | dBuV/m | $\overline{\mathtt{dBuV/m}}$ | <u>dB</u> |         |
| 2483.500  |       |         |       |           |        | 74.00                        |           |         |
| 2483, 500 | 17.99 | 25. 66  | 4.81  | U. UU     | 48.46  | 54.00                        | -5.54     | Average |

### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.





### 802.11n (H20)

**Test channel: Lowest** 

Horizontal:



Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL

EUT : Fox II : PH4003 Model Test mode : 802.11N2O-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

| T III III II | E (E)                |      | Antenna<br>Factor             |    |           |                |        | Over<br>Limit | Remark |
|--------------|----------------------|------|-------------------------------|----|-----------|----------------|--------|---------------|--------|
|              | MHz                  | dBu∀ | $-\overline{dB}/\overline{m}$ | dB | <u>dB</u> | dBuV/m         | dBu√/m | dB            |        |
|              | 2390.000<br>2390.000 |      |                               |    |           | 52.23<br>39.44 |        |               |        |

### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report. 2.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





### Vertical:



Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : Fox II Model : PH4003

Test mode : 802.11N20-L mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

| ш | rv :     |       |          |           |        |        |        |           |         |  |
|---|----------|-------|----------|-----------|--------|--------|--------|-----------|---------|--|
|   |          | Read  | Ant enna | Cable     | Preamp |        | Limit  | Over      |         |  |
|   | Freq     | Level | Factor   | Loss      | Factor | Level  | Line   | Limit     | Remark  |  |
|   | MHz      | dBu∜  | dB/m     | <u>dB</u> | dB     | dBu√/m | dBuV/m | <u>dB</u> |         |  |
|   | 2390.000 | 18.47 | 25.45    | 4.69      | 0.00   | 48.61  | 74.00  | -25.39    | Peak    |  |
|   | 2390 000 | 8 75  | 25 45    | 4 69      | 0.00   | 38 89  | 54 00  | -15 11    | Average |  |

### Remark:

- Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





### Test channel: Highest

Horizontal:



Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18G) HORIZONTAL Condition

EUT : Fox II Model : PH4003

Test mode : 802.11N20-H mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

| rv :     |       |              |           |           |        |        |           |          |
|----------|-------|--------------|-----------|-----------|--------|--------|-----------|----------|
|          | Read  | Ant enna     | Cable     | Preamp    |        | Limit  | Over      |          |
| Freq     | Level | Factor       | Loss      | Factor    | Level  | Line   | Limit     | Remark   |
| MHz      | dBu∜  | <u>dB</u> /m | <u>dB</u> | <u>dB</u> | dBuV/m | dBu√/m | <u>dB</u> |          |
| 2483.500 |       |              |           |           |        |        |           |          |
| 0463 EUU | 17 20 | 2E 66        | 4 01      | 0 00      | 47 TE  | E4 00  | _6 OE     | Arranaga |

### Remark:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor 1.
- The emission levels of other frequencies are very lower than the limit and not show in test report.



### Vertical:



Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18G) VERTICAL Condition

EUT : Fox II

Model : PH4003

Test mode: 802.11N20-H mode
Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Carey

REMARK

| Freq                 |      | Antenna<br>Factor |    |    |        |                     |                 |   |
|----------------------|------|-------------------|----|----|--------|---------------------|-----------------|---|
| MHz                  | dBu₹ | dB/m              | dB | dB | dBuV/m | $\overline{dBuV/m}$ | <br>            | - |
| 2483.500<br>2483.500 |      |                   |    |    |        | 74.00<br>54.00      | Peak<br>Average |   |

### Remark:

1 2

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.



### 6.7 Spurious Emission

### 6.7.1 Conducted Emission Method

| t 15 C Section 15.247 (d) 3.10:2013 and KDB558074 D01 DTS Meas Guidance v04 1 00 kHz bandwidth outside the frequency band in which the pectrum intentional radiator is operating, the radio frequency at is produced by the intentional radiator shall be at least 20 dB at in the 100 kHz bandwidth within the band that contains the evel of the desired power, based on either an RF conducted or a measurement. If the transmitter complies with the conducted nits based on the use of RMS averaging over a time interval, as d under paragraph(b)(3) of this section, the attenuation required |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100 kHz bandwidth outside the frequency band in which the pectrum intentional radiator is operating, the radio frequency at is produced by the intentional radiator shall be at least 20 dB at in the 100 kHz bandwidth within the band that contains the evel of the desired power, based on either an RF conducted or a measurement. If the transmitter complies with the conducted nits based on the use of RMS averaging over a time interval, as                                                                                                                                                |
| pectrum intentional radiator is operating, the radio frequency at is produced by the intentional radiator shall be at least 20 dB at in the 100 kHz bandwidth within the band that contains the evel of the desired power, based on either an RF conducted or a measurement. If the transmitter complies with the conducted nits based on the use of RMS averaging over a time interval, as                                                                                                                                                                                                          |
| s paragraph shall be 30 dB instead of 20 dB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| section 5.8 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |





### Test plot as follows:

### Test mode: 802.11b

### Lowest channel



Date: 16.NOV.2017 17:53:01

### 30MHz~25GHz

### Middle channel



Date: 16.NOV.2017 17:52:41

Date: 16.NOV.2017 17:52:17

### 30MHz~25GHz

### Highest channel



30MHz~25GHz

### Test mode: 802.11g

### Lowest channel



Date: 16.NOV.2017 17:53:27

### 30MHz~25GHz

### Middle channel



Date: 16.NOV.2017 17:53:55

### 30MHz~25GHz

### Highest channel



Date: 16.NOV.2017 17:54:14

30MHz~25GHz



### Test mode: 802.11n(H20)

### Lowest channel



Date: 16.NOV.2017 17:55:45

### 30MHz~25GHz

### Middle channel



Date: 16.NOV.2017 17:54:58

### 30MHz~25GHz

### Highest channel



Date: 16.NOV.2017 17:55:25

30MHz~25GHz





### 6.7.2 Radiated Emission Method

| 6.7.2 | Radiated Emission Me  | ethod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |         |                              |     |      |                         |
|-------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|------------------------------|-----|------|-------------------------|
|       | Test Requirement:     | FCC Part 15 C S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ection 15 | 5.209 a | and 15.205                   |     |      |                         |
|       | Test Method:          | ANSI C63.10:201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13        |         |                              |     |      |                         |
|       | Test Frequency Range: | 9kHz to 25GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |         |                              |     |      |                         |
|       | Test Distance:        | 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |         |                              |     |      |                         |
|       | Receiver setup:       | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Detec     | ctor    | RBW                          | VI  | 3W   | Remark                  |
|       | •                     | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quasi-p   | oeak    | 120KHz                       | 300 | KHz  | Quasi-peak Value        |
|       |                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pea       |         | 1MHz                         |     | /IHz | Peak Value              |
|       | I incit.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RMS       |         | 1MHz<br>: (dBuV/m @3r        |     | /lHz | Average Value<br>Remark |
|       | Limit:                | Frequency<br>30MHz-88MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7         | LIIIII  | . <u>(аваулп @зг</u><br>40.0 | 11) | Oı   | uasi-peak Value         |
|       |                       | 88MHz-216MH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |         | 43.5                         |     |      | uasi-peak Value         |
|       |                       | 216MHz-960MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |         | 46.0                         |     |      | uasi-peak Value         |
|       |                       | 960MHz-1GH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Z         |         | 54.0                         |     |      | uasi-peak Value         |
|       |                       | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |         | 54.0                         |     | I    | Average Value           |
|       | Test Procedure:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |         | 74.0<br>e top of a rota      |     |      | Peak Value              |
|       |                       | <ol> <li>1GHz)/1.5m(above 1GHz) above the ground at a 3 meter chamber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenn tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak value of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet.</li> </ol> |           |         |                              |     |      |                         |
|       | Test setup:           | Below 1GHz  EUT  Turn Table  Ground P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 4m      |                              |     | _    |                         |





|                   | Above 1GHz                                                                                                                                                                                                          |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Horn Anlanna Antenna Tower  Ground Reference Plane  Test Receiver Amptifier Controller                                                                                                                              |
| Test Instruments: | Refer to section 5.8 for details                                                                                                                                                                                    |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                    |
| Test results:     | Passed                                                                                                                                                                                                              |
| Remark:           | <ol> <li>Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.</li> <li>9 kHz to 30MHz is too low, so only shows the data of above 30MHz in this report.</li> </ol> |





### **Below 1GHz**

Horizontal:



Site Condition

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) HORIZONTAL : Fox II : PH4003

EUT Model Test mode : WIFI mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey REMARK :

|                       |         | Read  | Antenna | Cable | Preamp |        | Limit  | Over   |        |
|-----------------------|---------|-------|---------|-------|--------|--------|--------|--------|--------|
|                       | Freq    |       | Factor  |       |        |        |        |        | Remark |
| -                     | MHz     | dBu∜  | dB/m    | d₿    | dB     | dBuV/m | dBuV/m | dB     |        |
| 1                     | 175.037 | 38.38 | 9.30    | 2.69  | 29.01  | 21.36  | 43.50  | -22.14 | QP     |
| 2                     | 202.100 | 40.17 | 11.30   | 2.87  | 28.82  | 25.52  | 43.50  | -17.98 | QP     |
| 3                     | 291.036 | 35.19 | 13.15   | 2.92  | 28.47  | 22.79  | 46.00  | -23.21 | QP     |
| 1<br>2<br>3<br>4<br>5 | 365.539 | 35.23 | 14.58   | 3.09  | 28.63  | 24.27  | 46.00  | -21.73 | QP     |
| 5                     | 582.743 | 30.50 | 18.17   | 3.92  | 28.99  | 23.60  | 46.00  | -22.40 | QP     |
| 6                     | 768.748 | 30.07 | 19.58   | 4.36  | 28.37  | 25.64  | 46.00  | -20.36 | QP     |





### Vertical:



Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M2G) VERTICAL : Fox II Condition EUT

: PH4003 : WIFI mode Model Test mode

Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Carey

REMARK

|             |         | Read  | Antenna | Cable | Preamp    |        | Limit  | Over      |        |
|-------------|---------|-------|---------|-------|-----------|--------|--------|-----------|--------|
|             | Freq    | Level | Factor  | Loss  | Factor    | Level  | Line   | Limit     | Remark |
| _           | MHz     | dBu∜  | dB/m    | ₫B    | <u>dB</u> | dBuV/m | dBu√/m | <u>dB</u> |        |
| 1           | 88.033  | 46.34 | 10.18   | 1.96  | 29.58     | 28.90  | 43.50  | -14.60    | QP     |
| 2           | 142.824 | 43.11 | 8.34    | 2.43  | 29.26     | 24.62  | 43.50  | -18.88    | QP     |
| 3           | 172.599 | 39.62 | 9.10    | 2.68  | 29.03     | 22.37  | 43.50  | -21.13    | QP     |
| 2<br>3<br>4 | 290.017 | 33.75 | 13.09   | 2.91  | 28.47     | 21.28  | 46.00  | -24.72    | QP     |
| 5           | 452.720 | 31.41 | 15.58   | 3.22  | 28.88     | 21.33  | 46.00  | -24.67    | QP     |
| 6           | 758.041 | 30.15 | 19.54   | 4.36  | 28.43     | 25.62  | 46.00  | -20.38    | QP     |



### **Above 1GHz**

| Test mode: 80      | 02.11b                  |                             | Test char             | nnel: Lowest             |                   | Remark: Pea            | ık                    |            |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4824.00            | 49.67                   | 36.06                       | 6.81                  | 41.82                    | 50.72             | 74.00                  | -23.28                | Vertical   |
| 4824.00            | 48.33                   | 36.06                       | 6.81                  | 41.82                    | 49.38             | 74.00                  | -24.62                | Horizontal |
| Test               | mode: 802.              | 11b                         | Te                    | st channel: L            | owest             | Rem                    | ark: Avera            | age        |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4824.00            | 39.96                   | 36.06                       | 6.81                  | 41.82                    | 41.01             | 54.00                  | -12.99                | Vertical   |
| 4824.00            | 38.85                   | 36.06                       | 6.81                  | 41.82                    | 39.90             | 54.00                  | -14.10                | Horizontal |

| Test               | mode: 802.              | 11b                         | Te                    | st channel: M            | /liddle           | Re                     | mark: Pea             | ık         |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4874.00            | 45.93                   | 36.32                       | 6.85                  | 41.84                    | 47.26             | 74.00                  | -26.74                | Vertical   |
| 4874.00            | 47.14                   | 36.32                       | 6.85                  | 41.84                    | 48.47             | 74.00                  | -25.53                | Horizontal |
| Test               | mode: 802.              | 11b                         | Test channel: Middle  |                          |                   | Rem                    | ark: Avera            | age        |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4874.00            | 36.00                   | 36.32                       | 6.85                  | 41.84                    | 37.33             | 54.00                  | -16.67                | Vertical   |
| 4874.00            | 36.83                   | 36.32                       | 6.85                  | 41.84                    | 38.16             | 54.00                  | -15.84                | Horizontal |

| Test               | mode: 802.              | 11b                         | Te                    | st channel: H            | ighest            | Re                     | mark: Pea             | ak         |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4924.00            | 49.36                   | 36.58                       | 6.89                  | 41.86                    | 50.97             | 74.00                  | -23.03                | Vertical   |
| 4924.00            | 46.36                   | 36.58                       | 6.89                  | 41.86                    | 47.97             | 74.00                  | -26.03                | Horizontal |
| Test               | mode: 802.              | 11b                         | Te                    | st channel: H            | ighest            | Remark: Average        |                       | age        |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4924.00            | 39.68                   | 36.58                       | 6.89                  | 41.86                    | 41.29             | 54.00                  | -12.71                | Vertical   |
| 4924.00            | 35.84                   | 36.58                       | 6.89                  | 41.86                    | 37.45             | 54.00                  | -16.55                | Horizontal |

### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





| Test mode: 80      | )2.11g                  |                             | Test char             | nel: Lowest              |                  | Remark: Peak           |                       |            |  |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|------------------|------------------------|-----------------------|------------|--|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4824.00            | 48.43                   | 36.06                       | 6.81                  | 41.82                    | 49.48            | 74.00                  | -24.52                | Vertical   |  |
| 4824.00            | 48.81                   | 36.06                       | 6.81                  | 41.82                    | 49.86            | 74.00                  | -24.14                | Horizontal |  |
| Tes                | t mode: 802.            | 11g                         | Tes                   | t channel: Lo            | west             | Remark: Average        |                       | age        |  |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |  |
| 4824.00            | 38.81                   | 36.06                       | 6.81                  | 41.82                    | 39.86            | 54.00                  | -14.14                | Vertical   |  |
| 4824.00            | 38.35                   | 36.06                       | 6.81                  | 41.82                    | 39.40            | 54.00                  | -14.60                | Horizontal |  |

| Tes                | t mode: 802.            | 11g                         | Tes                   | st channel: Mi           | ddle             | Re                     | mark: Pea             | ık         |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|------------------|------------------------|-----------------------|------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4874.00            | 48.68                   | 36.32                       | 6.85                  | 41.84                    | 50.01            | 74.00                  | -23.99                | Vertical   |
| 4874.00            | 48.41                   | 36.32                       | 6.85                  | 41.84                    | 49.74            | 74.00                  | -24.26                | Horizontal |
| Tes                | t mode: 802.            | 11g                         | Tes                   | Test channel: Middle     |                  | Rem                    | ark: Avera            | age        |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4874.00            | 38.56                   | 36.32                       | 6.85                  | 41.84                    | 39.89            | 54.00                  | -14.11                | Vertical   |
| 4874.00            | 38.85                   | 36.32                       | 6.85                  | 41.84                    | 40.18            | 54.00                  | -13.82                | Horizontal |

| Tes                | t mode: 802.            | 11g                         | Tes                   | t channel: Hiç           | ghest                 | Re                     | mark: Pea             | ık         |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-----------------------|------------------------|-----------------------|------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m<br>) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4924.00            | 47.68                   | 36.58                       | 6.89                  | 41.86                    | 49.29                 | 74.00                  | -24.71                | Vertical   |
| 4924.00            | 48.46                   | 36.58                       | 6.89                  | 41.86                    | 50.07                 | 74.00                  | -23.93                | Horizontal |
| Tes                | t mode: 802.            | 11g                         | Tes                   | Test channel: Highest    |                       | Rem                    | nark: Avera           | age        |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m<br>) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4924.00            | 37.35                   | 36.58                       | 6.89                  | 41.86                    | 38.96                 | 54.00                  | -15.04                | Vertical   |
| 4924.00            | 38.32                   | 36.58                       | 6.89                  | 41.86                    | 39.93                 | 54.00                  | -14.07                | Horizontal |

### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





| Test mode: 8       | 02.11n(H20)             |                             | Test char             | nnel: Lowest             |                   | Remark: Pea            | ık                    |            |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4824.00            | 47.85                   | 36.06                       | 6.81                  | 41.82                    | 48.90             | 74.00                  | -25.10                | Vertical   |
| 4824.00            | 48.01                   | 36.06                       | 6.81                  | 41.82                    | 49.06             | 74.00                  | -24.94                | Horizontal |
| Test mode: 8       | 02.11n(H20)             |                             | Test char             | nnel: Lowest             |                   | Remark: Ave            | rage                  |            |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line (dBuV/m)    | Over<br>Limit<br>(dB) | Polar.     |
| 4824.00            | 37.11                   | 36.06                       | 6.81                  | 41.82                    | 38.16             | 54.00                  | -15.84                | Vertical   |
| 4824.00            | 37.98                   | 36.06                       | 6.81                  | 41.82                    | 39.03             | 54.00                  | -14.97                | Horizontal |

| Test mode: 8       | 02.11n(H20)             |                             | Test char             | nnel: Middle             |                   | Remark: Pea         | ık                    |            |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|---------------------|-----------------------|------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line (dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4874.00            | 48.14                   | 36.32                       | 6.85                  | 41.84                    | 49.47             | 74.00               | -24.53                | Vertical   |
| 4874.00            | 48.35                   | 36.32                       | 6.85                  | 41.84                    | 49.68             | 74.00               | -24.32                | Horizontal |
| Test mode: 8       | 02.11n(H20)             | )                           | Test char             | nnel: Middle             |                   | Remark: Ave         | rage                  |            |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line (dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4874.00            | 38.33                   | 36.32                       | 6.85                  | 41.84                    | 39.66             | 54.00               | -14.34                | Vertical   |
| 4874.00            | 38.08                   | 36.32                       | 6.85                  | 41.84                    | 39.41             | 54.00               | -14.59                | Horizontal |

| Test mode: 8       | 02.11n(H20)             |                             | Test char             | nnel: Highest            |                   | Remark: Pea            | k                     |            |
|--------------------|-------------------------|-----------------------------|-----------------------|--------------------------|-------------------|------------------------|-----------------------|------------|
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4924.00            | 47.81                   | 36.58                       | 6.89                  | 41.86                    | 49.42             | 74.00                  | -24.58                | Vertical   |
| 4924.00            | 48.53                   | 36.58                       | 6.89                  | 41.86                    | 50.14             | 74.00                  | -23.86                | Horizontal |
| Test mode: 8       | 02.11n(H20)             |                             | Test char             | nnel: Highest            |                   | Remark: Ave            | rage                  |            |
| Frequency<br>(MHz) | Read<br>Level<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Loss<br>(dB) | Preamp<br>Factor<br>(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Over<br>Limit<br>(dB) | Polar.     |
| 4924.00            | 37.16                   | 36.58                       | 6.89                  | 41.86                    | 38.77             | 54.00                  | -15.23                | Vertical   |
| 4924.00            | 38.55                   | 36.58                       | 6.89                  | 41.86                    | 40.16             | 54.00                  | -13.84                | Horizontal |

### Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.