Hoja de problemas 11

22/11/2022

Curvas algebraicas

1. Sean $a, b \in \mathbb{Z}_{\geq 2}$ con $\gcd(a, b) = 1$ y $C = V(X^a - Y^b)$. En este caso, sabemos que C tiene una única rama R en el punto $p = (0, 0) \in \mathbb{A}^2$. Demonstrar que el semigrupo S_R es generada por a y b, es decir,

$$S_R = \{ na + mb \in \mathbb{Z}_{>0} \mid n, m \in \mathbb{Z}_{>0} \}.$$

- 2. Sea $C \subset \mathbb{P}^2$ una curva. Demonstrar
 - Si deg(C) = 3, entonces C tiene como mucho 1 punto singular.
 - Si deg(C) = 4, entonces C tiene como mucho 4 puntos singulares.
- 3. Sean $L_1 = V(X)$, $L_2 = V(Y)$ los ejes, $p = (0,0) \in \mathbb{A}^2$, y S el subsemigrupo de elementos $(\operatorname{mult}_p(L_1, D), \operatorname{mult}_p(L_2, D)) \in \mathbb{Z}^2_{\geq 0}$, donde $D \subset \mathbb{A}^2$ es una curva.

Demonstrar que S no es finitamente generado. Es decir, no hay vectores $(a_1,b_1),\ldots,(a_s,b_s)\in\mathbb{Z}_{\geq 0}$ tal que

$$S = \left\{ \sum_{i=1}^{s} n_i \cdot (a_i, b_i) \,\middle|\, n_i \in \mathbb{Z}_{\geq 0} \right\}.$$

- 4. Sean $f,g \in k[X_1]$ polinomios de grado d,e, y suponemos que $2 \le e < d$. Definimos curvas afines $C = V(X_2 f(X_1))$ y $D = V(X_2 g(X_1))$, y $\overline{C}, \overline{D} \in \mathbb{P}^2$ sus completados. Sea $\mathbb{A}^2 \cong U_0 \subset \mathbb{P}^2$ la carta afin con coordinadas X_1, X_2 .
 - (a) ¿Cuáles son los puntos de intersección entre C y D en U_0 ?
 - (b) Demonstrar

$$\sum_{p \in U_0} \operatorname{mult}_p(C, D) = d.$$

(c) Calcular $\operatorname{mult}_p(\overline{C}, \overline{D})$ donde p = [0:0:1].