Optimization and Data Science Lecture 8: Singular Value Decomposition

Prof. Dr. Thomas Slawig

Kiel University - CAU Kiel Dep. of Computer Science

Summer 2020

Contents

- Singular Value Decomposition
 - Overview
 - SVD: The Method
 - SVD for Linear Regression Problems
 - SVD for Data Compression

Contents

- Singular Value Decomposition
 - Overview
 - SVD: The Method
 - SVD for Linear Regression Problems
 - SVD for Data Compression

Singular Value Decomposition

- What is it?
 - Decomposition of an arbitrary matrix into two orthogonal matrices and a diagonal matrix Method to solve linear regression problems and for data analysis and compression
- Why are we studying this?
 Alternative to normal equation method for linear regression
 Basis of the Principal Component Analysis, widely used in data science
- How does it work?
 Mathematical result on the existence of the decomposition
 Exploitation of properties of orthogonal matrices
- What if we can use it?
 Solve linear regression problems
 Detect structures in data
 Detect dominant "modes" in data
 Reduce data size

Contents

- Singular Value Decomposition
 - Overview
 - SVD: The Method
 - SVD for Linear Regression Problems
 - SVD for Data Compression

Singular value decomposition (SVD)

Theorem (Singular value decomposition)

Every matrix $A \in \mathbb{R}^{m \times n}$, $m \ge n$, can be decomposed in the form

$$A = \begin{bmatrix} U \\ U \\ 0 & \sigma_n \\ 0 & \cdots & 0 \end{bmatrix}$$

where

- $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$ are orthogonal matrices,
- $\bullet \ \Sigma \in \mathbb{R}^{m \times n} \ \textit{with} \ \Sigma_{ij} = \left\{ \begin{array}{ll} \sigma_j \geq 0, & i = j, \\ 0, & i \neq j \end{array} \right\}, i = 1, \ldots, m, j = 1, \ldots, n.$
- The σ_j are ordered by magnitude, i.e., $\sigma_j \geq \sigma_{j+1}$ for all j.
- The decomposition also exists for m < n.

Orthogonal matrices

Definition

A matrix $U \in \mathbb{R}^{n \times n}$ is called **orthogonal**, if its rows and columns build an orthonormal system of vectors, i.e., it holds

$$\mathbf{U}_{i*}^{\top} \mathbf{U}_{j*} = \mathbf{U}_{*i}^{\top} \mathbf{U}_{*j} = \left\{ \begin{array}{l} 1, & i = j \\ 0, & i \neq j \end{array} \right\}, i, j = 1, \ldots, n.$$

• Rotation in \mathbb{R}^2 by angle α :

$$U = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix}, \quad U_{i*}^\top U_{i*} = U_{*i}^\top U_{*i} = \cos^2 \alpha + \sin^2 \alpha = 1, i = 1, 2, \\ U_{i*}^\top U_{j*} = U_{*i}^\top U_{*j} = 0, i \neq j.$$

• Reflection in \mathbb{R}^2 around x_1 -axis:

$$U = \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right).$$

Properties of orthogonal matrices

Lemma

An orthogonal matrix $U \in \mathbb{R}^{n \times n}$ satisfies $U^{\top}U = UU^{\top} = I$, i.e., $U^{-1} = U^{\top}$.

Proof.

- For $E = (E_{ij})_{i,j=1}^n := AU$ we have with the rules of matrix multiplication $E_{ij} = A_{i*}^\top U_{*j}$.
- For $A = U^{\top}$ we have $A_{i*} = U_{*i}$, i.e.,

$$E_{ij} = A_{i*}^{\top} U_{*j} = U_{*i}^{\top} U_{*j} = \begin{cases} 0, & i \neq j, \\ 1, & i = j, \end{cases}$$

because U has orthonormal columns.

• Thus, E is the identity matrix.

Properties of orthogonal matrices

Lemma

For a orthogonal matrix $U \in \mathbb{R}^{n \times n}$ we have

$$\begin{array}{rcl} (Ux)^\top Uy & = & x^\top y \\ \|Ux\|_2 & = & \|x\|_2 \end{array} \right\} \quad \text{for all } x,y \in \mathbb{R}^n,$$

i.e., it preserves length of vectors and angles between vectors. If U is orthogonal, so is U^{\top} .

Proof.

This follows from

$$(Ux)^{\top}Uy = x^{\top}U^{\top}Uy = x^{\top}U^{-1}Uy = x^{\top}y.$$

The angle between two vectors is defined by the scalar product. The results for U^{\top} follows directly from the definition.

Examples

Rotations and reflections in \mathbb{R}^n can be described by orthogonal matrices:

• Rotation in \mathbb{R}^2 by angle α :

$$U = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix},$$

$$UU^{\top} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

$$= \begin{pmatrix} \cos^2 \alpha + \sin^2 \alpha & 0 \\ 0 & \cos^2 \alpha + \sin^2 \alpha \end{pmatrix} = I$$

• Reflection in \mathbb{R}^2 around x_1 -axis:

$$U = \left(egin{array}{cc} -1 & 0 \ 0 & 1 \end{array}
ight), \quad U = U^{ op}, \quad UU = I.$$

Singular values and vectors

Definition

In the singular value decomposition of $A \in \mathbb{R}^{m \times n}$,

- the $\sigma_j \geq 0, j = 1, \dots, n$, are called **singular values**,
- the columns of $U \in \mathbb{R}^{m \times m}$ are called **left singular vectors**, and
- the rows of $V \in \mathbb{R}^{n \times n}$ (i.e., the columns of V^{\top}) are called **right singular vectors** of A.

Contents

- Singular Value Decomposition
 - Overview
 - SVD: The Method
 - SVD for Linear Regression Problems
 - SVD for Data Compression

Linear regression problems

Definition

Let $z \in \mathbb{R}^m$ be data and $y = Ax \in \mathbb{R}^m$ a given linear model, i.e., y depends linearly on some parameters $x \in \mathbb{R}^n$. The problem to find

$$x^* = \operatorname*{argmin}_{x \in \mathbb{R}^n} \|Ax - z\|_2^2$$

is called linear regression problem or linear least-squares problem.

Theorem

A solution $x \in \mathbb{R}^n$ to the normal equations

$$A^{\top}Ax = A^{\top}z$$

is a solution of the linear regression problem with data $z \in \mathbb{R}^m$ and matrix $A \in \mathbb{R}^{m \times n}$. If A has full rank, the solution is unique.

Disadvantages and problems when solving the normal equations

- Effort to compute $A^{\top}A$.
- Entries in the matrix $A^{T}A$ may have wide spread in magnitude:

$$\sum_{k=1}^m t_k^{2n} \gg m.$$

- \simples Solution of the linear system will be sensitive to errors.
- Use alternative method to solve

$$\min_{x\in\mathbb{R}^n}\|Ax-z\|_2.$$

Solving the linear regression problem with SVD

• We have $A = U\Sigma V^{\top}$:

$$||Ax - z||_2 = ||U\Sigma V^{\top}x - z||_2$$

• U orthogonal (Lemma above) $\Rightarrow U^{\top}$ (Lemma above) $\Rightarrow ||U^{\top}y||_2 = ||y||_2$ gives:

$$\|U\Sigma V^{\top}x - z\|_2 = \|U^{\top}U\Sigma V^{\top}x - U^{\top}z\|_2$$

• Lemma above: $U^{\top}U = I$ gives:

$$||U^{\top}U\Sigma V^{\top}x - U^{\top}z||_{2} = ||\Sigma V^{\top}x - U^{\top}z||_{2}.$$

• Define $\hat{x} = V^{\top}x, \hat{z} = U^{\top}z$:

$$||Ax - z||_2 = ||\Sigma V^{\top} x - U^{\top} z||_2 = ||\Sigma \hat{x} - \hat{z}||_2.$$

Solving the linear regression problem with SVD

• We have with $\hat{x} = V^{\top}x$, $\hat{z} = U^{\top}z$:

$$||Ax - z||_2 = ||\Sigma \hat{x} - \hat{z}||_2$$

and thus also

$$||Ax - z||_2^2 = ||\Sigma \hat{x} - \hat{z}||_2^2$$

• Use the structure of Σ :

Solving the linear regression problem with SVD

• We get

$$\|Ax - z\|_{2}^{2} = \|\Sigma\hat{x} - \hat{z}\|_{2}^{2} = \left\| \begin{pmatrix} \sigma_{1}\hat{x}_{1} - \hat{z}_{1} \\ \vdots \\ \sigma_{n}\hat{x}_{n} - \hat{z}_{n} \\ -\hat{z}_{n+1} \\ \vdots \\ -\hat{z}_{m} \end{pmatrix} \right\|_{2}^{2} = \sum_{i=1}^{n} (\sigma_{i}\hat{x}_{i} - \hat{z}_{i})^{2} + \sum_{i=n+1}^{m} \hat{z}_{i}^{2}$$

• The first term on the right is minimal (= 0), if

$$\hat{x}_i = \frac{\hat{z}_i}{\sigma_i}, \quad i = 1, \dots, n.$$

• The second one is independent of the choice of \hat{x} . It is the misfit.

Algorithm: Solution of the linear regression problem with SVD

- Given $z \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$.
- Compute SVD of $A \leadsto U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}, \sigma_i \geq 0, i = 1, \dots, n$.
- Compute

$$\hat{z} := U^{\top} z \in \mathbb{R}^m$$
.

Compute

$$\hat{x}_i := \frac{\hat{z}_i}{\sigma_i}, \quad i = 1, \ldots, n.$$

Compute solution

$$x^* := V\hat{x} \in \mathbb{R}^n$$

• ... and value of f (misfit):

$$||Ax^*-z||_2^2 = \sum_{i=n+1}^m \hat{z}_i^2.$$

• Implementations: linear algebra packages (LAPACK), built-in functions in Python, octave

Contents

- Singular Value Decomposition
 - Overview
 - SVD: The Method
 - SVD for Linear Regression Problems
 - SVD for Data Compression

Second look on the SVD

- Let us now assume that $A \in \mathbb{R}^{m \times n}$ is an arbitrary data set.
- SVD gives

$$A = \begin{bmatrix} U & \begin{bmatrix} \sigma_1 & & 0 \\ & \ddots & \\ 0 & & \sigma_n \\ 0 & \cdots & 0 \end{bmatrix} \end{bmatrix} V^\top$$

• We get by the rules for matrix-matrix multiplication:

$$\left(\Sigma V^{\top}\right)_{ij} = \sigma_i (V^{\top})_{ij} = \left\{ \begin{array}{ll} \sigma_i V_{ji}, & i = 1, \dots, n \\ 0, & i = n+1, \dots, m. \end{array} \right.$$

Compression with SVD

Using

$$\left(\Sigma V^{\top}\right)_{ij} = \left\{ \begin{array}{ll} \sigma_i V_{ji}, & i = 1, \dots, n \\ 0, & i = n+1, \dots, m \end{array} \right.$$

we get

$$A_{kj} = \sum_{i=1}^{m} U_{ki} \left(\Sigma V^{\top} \right)_{ij} = \sum_{i=1}^{n} \sigma_{i} U_{ki} V_{ji}.$$

- Theory of the SVD \leadsto the σ_i are ordered by magnitude, i.e., $\sigma_i \geq \sigma_{i+1}$ for all $i=1,\ldots,n$.
- We may omit "very small" values of σ_i and corresponding parts in the data:

$$A_{kj} \approx \sum_{i:\sigma_i > \epsilon} \sigma_i U_{ki} V_{ji}$$
 with some given $\epsilon > 0$.

Compression with SVD

• If we omit small values of σ_i , we only use parts of the matrices

- \dots to obtain a compressed version of A.
- If we take k < n singular values, we have to store

for
$$U: (m \times k)$$

for $V: (n \times k)$
 k singular values
$$= (m + n + 1) \times k$$
 values instead of $(m \times n)$ values for A .

• In many cases, the σ_i decrease rapidly with i and only the first ones are dominant.

Example: Image compression

original size: 1060760

Example: Image compression

Example: Image compression (using 1, 3, 10, 20, 50, 100 singular values)

Example: Image compression (using 100 singular values)

What is important?

- Singular Value Decomposition is the decomposition of an arbitrary matrix in the product of two orthogonal matrices and a diagonal matrix.
- The diagonal matrix contains the non-negative singular values.
- The SVD can be used to solve linear regression problems.
- In this case, it avoids the computation of $A^{T}A$ and $A^{T}z$...
- ... and is less sensitive to data errors or perturbations.
- However, the SVD itself requires additional effort of $\mathcal{O}(n^3)$.
- It can be also used for data compression ...
- ... and data analysis (we will see this later on).