Оглавление

\mathbf{B}	ведение	4
1	Разностные схемы для уравений Эйлера в сферической системе координат.	9
	1.1 Аппроксимация уравнения неразрывности	•

Введение

Глава 1

Разностные схемы для уравений Эйлера в сферической системе координат.

1.1 Аппроксимация уравнения неразрывности.

Уравнение неразрывности в сферических координатах $x=r\sin\theta\cos\phi, y=r\sin\theta\sin\phi, z=r\cos\theta$ может быть записано в следующем виде:

$$\frac{\partial \rho}{\partial t} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \rho \upsilon_r \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \rho \upsilon_\theta \right) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \left(\rho \upsilon_\phi \right).$$

Рассмотрим сферическую ячейку Ω , на которой введем систему ортонормированных функций $\psi^m(r,\theta,\phi), m=0..M$. Искомые поля будем искать в виде комбинации этих функций:

$$\rho \approx \sum_{m=0}^{M} \rho^{m}(t) \psi^{m}(r, \theta, \phi).$$