Integrable Cosmological Models with Liouville Fields

Alexander A. Andrianov 1,4 Chen Lan 2 Oleg O. Novikov 1 Yi-Fan Wang 3

¹ Saint-Petersburg State University, St. Petersburg 198504, Russia

² ELI-ALPS, ELI-Hu NKft, Dugonics tér 13, Szeged 6720, Hungary

 3 Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln, Germany

⁴Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona, Spain

December 6, 2017

Outline

1. Introduction

2. Classical model and the implicitised trajectories

3. Dirac quantisation and the wave functions

Introduction

Introduction

3 / 23

The Friedmann-Lemaître model 123

- Flat Robertson–Walker metric $\mathrm{d}s^2 = -N^2(t)\,\mathrm{d}t^2 + \varkappa^{-1/2}\mathrm{e}^{2\alpha(t)}\,\mathrm{d}\Omega_3^2$, where $\varkappa := 8\pi G$, $\mathrm{d}\Omega_3^2$ dimensionless spacial metric.
- Homogeneous real Klein–Gordon field with potential (dubbed *Liouville*) $Ve^{\lambda\phi}$, $\lambda,V\in\mathbb{R}$, and kinetic term with sign $\ell=\pm 1$ (quintessence / phantom model).
- Total action $\mathcal{S} = S_{\rm EH} + S_{\rm GHY} + S_{\rm L} = \int {\rm d}\Omega_3^2 \int {\rm d}t \, L$,

$$L := \varkappa^{3/2} N e^{3\alpha} \left(-\frac{3}{\varkappa} \frac{\dot{\alpha}^2}{N^2} + \ell' \frac{\dot{\phi}^2}{2N^2} - V e^{\lambda \phi} \right), \tag{1}$$

in which dot means d/dt and $\ell = \pm 1$.

Decoupling the variables

ullet Choosing $\overline{N} \coloneqq N \mathrm{e}^{-3lpha}$, the effective Lagrangian transforms to

$$L = \kappa^{3/2} \overline{N} \left(-\frac{3}{\varkappa} \frac{\dot{\alpha}^2}{\overline{N}^2} + \ell \frac{\dot{\phi}^2}{2\overline{N}^2} - V e^{\lambda \phi + 6\alpha} \right)$$
 (2)

• Defining $\Delta := \lambda^2 - 6\ell \varkappa$, $\beta := \operatorname{sgn} \Delta$ and $g := \beta \sqrt{|\Delta|} \equiv \beta \sqrt{\delta \Delta}$, the rescaled special orthogonal transformation

$$\begin{pmatrix} \alpha \\ \phi \end{pmatrix} = \frac{s}{g} \begin{pmatrix} \lambda & -\ell \kappa \\ -6 & \lambda \end{pmatrix} \begin{pmatrix} s_{\beta} \beta \\ s_{\gamma} \chi \end{pmatrix} \quad \text{where } s_{\beta}, s_{\chi} = \pm 1 \tag{3}$$

gives the decoupled Lagrangian

$$L = \varkappa^{3/2} \overline{N} \left(-\beta \frac{3}{\varkappa} \frac{\dot{\beta}^2}{\overline{N}^2} + \ell \beta \frac{\dot{\chi}^2}{2\overline{N}^2} - V e^{\beta_{\chi} g \chi} \right). \tag{4}$$

• The Euler–Lagrange equations w.r.t. \overline{N} , β and χ will be called the trsfed. first, second Friedmann eqs. and the Klein–Gordon eq., respectively.

Implicitised integration

 $p_{\beta} \neq 0$

ullet Since eta is cyclic in eq. (4), the second Friedmann equation can be integrated

$${\rm const.} \equiv p_{\beta} \coloneqq \frac{\partial L}{\partial \dot{\beta}} = -6 \Im \varkappa^{1/2} \frac{\dot{\beta}}{\overline{N}} \equiv -6 \Im \jmath_{\beta} \frac{\varkappa^{1/2}}{g} \frac{\lambda \dot{\alpha} + \ell \varkappa \dot{\phi}}{\overline{N}}. \tag{5}$$

• For $p_{\beta} \neq 0$, fixing the *implicitising gauge* $\overline{N} = -6 \Im \sqrt{\varkappa \dot{\beta}}/p_{\beta}$, the trsfed. first Friedmann equation can be integrated

$$e^{s_{\chi}g\chi} = \frac{p_{\beta}^2}{12\varkappa^2|V|} S^2\left(s_{\beta}\sqrt{\frac{3}{2\varkappa}}g\beta\right),\tag{6}$$

in which $v := \operatorname{sgn} V$, and

$$S(\gamma) := \begin{cases} \operatorname{sech}(\gamma + C_{++}) & (\ell, \vartheta v) = (+, +), \\ \operatorname{csch}(\gamma + C_{+-}) & (\ell, \vartheta v) = (+, -), \\ \operatorname{sec}(\gamma + C_{-+}) & (\ell, \vartheta v) = (-, +), \\ \operatorname{icsc}(\gamma + C_{--}) & (\ell, \vartheta v) = (-, -). \end{cases}$$
 (7)

Integration

- Discussions
 - The integrals are consistent with the trsfed. Klein-Gordon equation.
 - The integral for (+,+)
 - has two asymptotes
 - The implicitised integral for (+, -)
 - · contains two distinct solutions
 - has three asymptotes
 - The implicitised integral for (-,+)
 - contains infinite distinct solutions
 - · has infinite asymptotes, which are pairwise parallel
 - The integral for (-,-)
 - is not real
 - The implicitised integral enables one to compare trajectories with wave functions, see below.

Implicitised integration

 $p_{\beta} = 0$

- For $p_{\beta}=0$, one has $\beta\equiv\beta_0$ or $\phi-\phi_0=-\ell\lambda\alpha/\kappa$, which is the familiar power-law special solution¹.
- Further integrating the first Friedmann equation demands (+,-) or (-,+) to guarantee $\overline{N}>0$, and the result is automatically consistent with the trsfed. Klein–Gordon equation.
- Fixing $\overline{N} = (2\varkappa^2|V|)^{-1/2}$ yields

$$e^{g_3} \chi^{\chi} = \left(\frac{2\kappa}{g(t - t_0)}\right)^2. \tag{8}$$

¹Mariusz P. Dąbrowski, Claus Kiefer, and Barbara Sandhöfer. "Quantum phantom cosmology". In: *Physical Review D* 74.4 (Aug. 2006). DOI: 10.1103/physrevd.74.044022.

Introduction

Introduction

9 / 23

Dirac quantisation

• The primary Hamiltonian and the Hamiltonian constraint reads

$$H^{\mathsf{p}} = \overline{N}H_{\perp} + p_{\overline{N}}v^{\overline{N}},\tag{9}$$

$$H_{\perp} = -\beta \frac{p_{\beta}^2}{12\varkappa^{1/2}} + \ell \beta \frac{p_{\chi}^2}{2\varkappa^{3/2}} + \varkappa^{3/2} V e^{g\beta_{\chi}\chi}. \tag{10}$$

• Applying the Dirac quantisation rules with the Laplace–Beltrami opeator for the generalised momenta, one gets the minisuperspace Wheeler–DeWitt equation with (β,χ)

$$0 = \widehat{H}_{\perp} \Psi(\beta, \chi) := \left(s \frac{\hbar^2}{12\varkappa^{1/2}} \partial_{\beta}^2 - \ell s \frac{\hbar^2}{2\varkappa^{3/2}} \partial_{\chi}^2 + \varkappa^{3/2} V e^{g^3 \chi^{\chi}} \right) \Psi. \tag{11}$$

Separation of the variables and mode functions ²³³

• Inserting the separating Ansatz $\Psi(\beta,\chi)=\mathrm{e}^{-\mathrm{i}k_{\beta}\delta_{\beta}\beta}\psi(\chi)$, the remaining equation turns out to be Besselian, and the mode functions are

$$\Psi_{\nu}(\beta, \chi) := e^{-i\nu\gamma} \psi_{\nu}(\chi) := e^{-i\nu\gamma} \left(C_1 B_{\nu}^{(1)}(\sigma) + C_2 B_{\nu}^{(2)}(\sigma) \right), \tag{12}$$

in which

$$\nu \coloneqq \sqrt{\frac{2\varkappa}{3}} \frac{k_{\beta}}{g}, \quad \gamma \coloneqq \sqrt{\frac{3}{2\varkappa}} g\beta, \quad \sigma^2 \coloneqq \frac{8\varkappa^3 |V| \mathrm{e}^{g\jmath_{\chi}\chi}}{\hbar^2 g^2}, \tag{13}$$

$$\mathrm{B}_{\nu}^{(i)}(\sigma) \coloneqq \begin{cases} \mathrm{K} \ \mathrm{or} \ \mathrm{I}_{i\nu}(\sigma) & (\ell, \vartheta \nu) = (+, +), \\ \mathrm{F} \ \mathrm{or} \ \mathrm{G}_{i\nu}(\sigma) & (\ell, \vartheta \nu) = (+, -), \\ \mathrm{J} \ \mathrm{or} \ \mathrm{Y}_{\nu}(\sigma) & (\ell, \vartheta \nu) = (-, +), \\ \mathrm{K} \ \mathrm{or} \ \mathrm{I}_{\nu}(\sigma) & (\ell, \vartheta \nu) = (-, -). \end{cases}$$

• The $F_{i\nu}(\sigma)$ and $G_{i\nu}(\sigma)$ are defined in².

²T. M. Dunster. "Bessel Functions of Purely Imaginary Order, with an Application to Second-Order Linear Differential Equations Having a Large Parameter". In: *SIAM Journal on Mathematical Analysis* 21.4 (July 1990), pp. 995–1018. DOI: 10.1137/0521055.

Physical mode functions 233

- Physical mode functions are expected to be regular on the boundary.
- (+,+): $|I_{\mu\nu}(\sigma)| \to +\infty$ as $\alpha \to +\infty$
- (-,+): $|Y_n(\sigma)| \to +\infty$ as $\alpha \to -\infty$, $\forall n \in \mathbb{Z}$.
- (-,-): $|\mathrm{K}_{\nu}(\sigma)| \to +\infty$ as $\alpha \to -\infty$; $|\mathrm{I}_{\nu}(\sigma)| \to +\infty$ as $\alpha \to +\infty$
- These are not to included in the space of physical wave functions.

Matching quantum number with classical first integral ²³³

- In order to match the quantum number k_{β} (or linearly, ν) with the classical first integral p_{β} , one may apply the principle of constructive interference.
- · Writing the mode function in the WKB form

$$\varPsi_{k_\beta}(\beta,\chi) \sim \sqrt{\rho}\, \mathrm{e}^{\mathrm{i} S/\hbar}, \qquad S/\hbar \gg 1 \text{ and } k_\beta \gg 1, \tag{15}$$

the principle demands that $\partial S/\partial k_{\beta}=0$ be equivalent to the classical trajectory.

Matching quantum number with classical first integral

(+,+) as exemplar $% \left(+,+\right) =-\left(+,+\right)$

• Fixing $\nu/\sigma > 1$, the asymptotic expansion reads

$$K_{i\nu}(\sigma) \sim \frac{\sqrt{2\pi}\cos\left(\sqrt{\nu^2 - \sigma^2} - \nu\arccos\frac{\nu}{\sigma} - \frac{\pi}{4}\right)}{(\nu^2 - \sigma^2)^{1/4}e^{\pi\nu/2}} + O\left(\frac{1}{\sigma}\right). \tag{16}$$

There are two phases with opposite signs $\theta^\pm_\nu(\sigma)$. Applying the principle to the full mode function Ψ_ν , one has $\sigma/\nu=\mathrm{sech}\big(\mathfrak{z}_\beta\gamma\big)$, which match the trajectory if

$$\hbar k_{\beta} \equiv \hbar \sqrt{\frac{3}{2\varkappa}} g\hbar \nu = p_{\beta}, \tag{17}$$

as expected.

- Fixing $\nu/\sigma < 1$, the asymptotic expansion is not oscillatory, but exponential; hence no WKB approximation applies.
- The conclusions also work for $F_{\mathbb{i}\nu}(\sigma)$ and $G_{\mathbb{i}\nu}(\sigma)$ for (+,-), as well as $J_{\nu}(\sigma)$ for (-,+).

Integration of the transformed first Friedmann equation $p_{\beta} \neq 0$

In order to integrate the equation under the implicitising gauge

$$s\frac{p_{\beta}^2}{12}\left(-\ell\frac{\varkappa^{1/2}}{6}\left(\frac{\mathrm{d}\chi}{\mathrm{d}\beta}\right)^2 + \varkappa^{-1/2}\right) - \varkappa^{3/2}Ve^{gs_{\chi}\chi} = 0,\tag{18}$$

one can substitute

$$\gamma := \sqrt{\frac{3}{2\varkappa}} g\beta, \qquad \tilde{\sigma}^2 := \frac{p_\beta^2}{12\varkappa^2 |V|} e^{-g j_\chi \chi},$$
 (19)

to get

$$\left(\frac{\mathrm{d}\tilde{\sigma}}{\mathrm{d}\gamma}\right)^2 + \ell(\mathfrak{s}\nu - \tilde{\sigma}^2) = 0 \quad \Rightarrow \quad \frac{\mathrm{d}\gamma}{\mathrm{d}\tilde{\sigma}} = \pm \frac{1}{\sqrt{\ell(\mathfrak{s}\nu - \tilde{\sigma}^2)}},\tag{20}$$

which is of the standard inverse hyperbolic / trigonometric form.

Integration of the separated mss. Wheeler–DeWitt equation 233

In order to integrate the separated minisuperspace Wheeler-DeWitt equation

$$\mathrm{e}^{-\mathrm{i}k_{\beta} \mathrm{j}_{\beta} \beta} \left(-\ell' \mathrm{j} \frac{\hbar^2}{2 \varkappa^{3/2}} \psi''(\chi) - \mathrm{j} \frac{\hbar^2 k_{\beta}^2}{12 \varkappa^{1/2}} \psi(\chi) + \varkappa^{3/2} V \mathrm{e}^{g \mathrm{j}_{\chi} \chi} \psi(\chi) \right) = 0, \tag{21}$$

one can transform

$$\nu \coloneqq \sqrt{\frac{2\varkappa}{3}} \frac{k_\beta}{g}, \qquad \sigma^2 \coloneqq \frac{8\varkappa^3 |V|_{\mathfrak{S}^{g_3} \chi^\chi}}{\hbar^2 g^2}, \tag{14 rev.}$$

to get

$$\sigma^2 \psi''(\sigma) + \sigma \psi'(\sigma) + \ell (\nu^2 - \vartheta \nu \sigma^2) \psi(\sigma) = 0, \tag{22}$$

which is of the standard Besselian form.

17 / 23

Allgemeines

- Mit diesem beamer theme ist es möglich, Präsentationen in LATEX mit der Beamer-Klasse zu erstellen, die dem Corporate Design der Universität zu Köln entsprechen
- Auf die Beamer-Klasse wird in diesem Dokument nicht n\u00e4her eingegangen, n\u00e4here Informationen finden Sie unter http://latex-beamer.sourceforge.net/

Laden des Themes

Das Theme kann mit den folgenden Optionen geladen werden

Die Fußzeile

- Es stehen verschiedene Fußzeilen zur Auswahl, die als Option beim Laden des themes übergeben werden:
 - Balken mit allen Fakultätsfarben (Option uk)
 - Balken in jeweils einer Fakultätsfarbe (Optionen wiso, jura, medizin, philo, matnat, human, verw)³
- "'Universität zu Köln" sowie der Name der Fakultät sind im Theme definiert, das Institut oder Seminar kann mit dem Befehl \institute{} festgelegt werden
- Die Optionen sind im Quellcode dieser Präsentation dokumentiert

³Es werden die offiziellen RGB-Werte aus dem 2-D Handbuch Corporate Design verwendet.

Englische Präsentationen

- Der Universitäts- sowie die Fakultätsnamen werden standardmäßig auf Deutsch angezeigt.
- Übergeben Sie dem Paket babel die Option english, so werden diese Namen entsprechen angepasst.
- Die Übersetzungen können in der Theme-Datei beamerthemeUzK.sty geändert werden

block-Umgebungen

Standard (block)

Verwendet die Farbe "'Blaugrau Mittel" als Blocktitel-Hintergrund

exampleblock

Bei Verwendung der Fußzeile mit allen Fakultätsfarben Titelhintergrund in Wiso-Grün, sonst in der jeweiligen Fakultätsfarbe

alertblock

Verwendet das Rot der Folientitel

Installation

- Das Theme besteht aus den Dateien beamerthemeUzK.sty und beamercolorthemeUzK.sty sowie den Grafikdateien logo.pdf und logo-small.pdf.
- Das Theme kann auf zwei Arten verwendet werden:
 - Die vier Dateien werden in den selben Ordner wie die zu erstellende Präsentation gelegt
 - 2. Die vier Dateien werden im lokalen texmf-Baum abgelegt
- Die zweite Variante ist der ersten vorzuziehen, da das Theme so an einem zentralen Ort vorliegt

ToDo

Was noch zu tun ist...

- Erstellen einer eigenen Titelseite
- ...

