Übungen zur Algebra II

Sommersemester 2021

Universität Heidelberg Mathematisches Institut PROF. DR. A. SCHMIDT DR. C. DAHLHAUSEN

Blatt 0
Keine Abgabe

Im Folgenden sei A stets ein kommutativer Ring mit Eins.

Aufgabe 1. Welche der folgenden Aussagen sind in jedem Ring (kommutativ, mit Eins) wahr? Geben Sie einen Beweis oder ein Gegenbeispiel an.

- (a) Die Summe zweier Einheiten ist eine Einheit.
- (b) Das Produkt zweier Einheiten ist eine Einheit.
- (c) Die Summe zweier nilpotenter Elemente ist nilpotent.
- (d) Das Produkt zweier nilpotenter Elemente ist nilpotent.
- (e) Die Summe zweier Nullteiler in ist ein Nullteiler.
- (f) Das Produkt zweier Elemente ist genau dann ein Nullteiler, wenn (mindestens) einer der Faktoren dies ist.

Aufgabe 2 (Lemma 1.21). Zeigen Sie, dass für Ideale in A gilt:

- (a) $\mathfrak{a} \subset (\mathfrak{a} : \mathfrak{b})$.
- (b) $(\mathfrak{a} : \mathfrak{b})\mathfrak{b} \subseteq \mathfrak{a}$.
- (c) $(\mathfrak{a} : \mathfrak{b}) : \mathfrak{c} = \mathfrak{a} : (\mathfrak{bc}) = (\mathfrak{a} : \mathfrak{c}) : \mathfrak{b}$.
- (d) $(\bigcap_{i} \mathfrak{a}_{i}) : \mathfrak{b} = \bigcap_{i} (\mathfrak{a}_{i} : \mathfrak{b}).$
- (e) $\mathfrak{a}: (\sum_i \mathfrak{b}_i) = \bigcap_i (\mathfrak{a}: \mathfrak{b}_i).$

Aufgabe 3 (Lemma 1.23). Seien \mathfrak{a} und \mathfrak{b} zwei Ideale in A sowie $\mathfrak{p} \subset A$ ein Primideal. Zeigen Sie:

- (a) $r(\mathfrak{a}) \supset \mathfrak{a}$.
- (b) $r(r(\mathfrak{a})) = r(\mathfrak{a})$.
- (c) $r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b})$.
- (d) $r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})).$
- (e) $\forall n \in \mathbb{N} : r(\mathfrak{p}^n) = \mathfrak{p}$.

Anwesenheitsaufgaben für die erste Übung in der zweiten Semesterwoche (19.–23. April).

- **Aufgabe 4.** (a) Im Ring $\mathbb{C}[T]$ betrachten wir die Ideale $\mathfrak{a} = (T^5 + T^4 T^3 T^2)$ und $\mathfrak{b} = (T^2 2T)$. Bestimmen Sie $r(\mathfrak{a})$ und $(\mathfrak{a} : \mathfrak{b})$.
 - (b) Im Ring $\mathbb{Z}/6\mathbb{Z}[T]$ betrachten wir die Ideale $\mathfrak{a}=(T^2)$ und $\mathfrak{b}=(T+\bar{2})$. Bestimmen Sie $(\mathfrak{a}:\mathfrak{b})$.
 - (c) Im Ring $\mathbb{Z}[T]$ betrachten wir das Ideal $\mathfrak{b} = (T, T+2)$. Bestimmen Sie die Kontraktion \mathfrak{b}^c von \mathfrak{b} auf \mathbb{Z} unter der natürlichen Inklusion $\mathbb{Z} \hookrightarrow \mathbb{Z}[T]$.
 - (d) Gegeben sei der Ringhomomorphismus

$$\Phi: \mathbb{Z}[T] \to \mathbb{Z}/6\mathbb{Z},$$

$$f \mapsto f(1) \bmod 6.$$

Bestimmen Sie die Erweiterung \mathfrak{a}^e des Ideals $\mathfrak{a} = (9, 2T + 1) \subset \mathbb{Z}[T]$ auf $\mathbb{Z}/6\mathbb{Z}$.

Aufgabe 5. Zeigen Sie: Ist $x \in A$ nilpotent und $y \in A$ ein Nullteiler, so ist auch x + y ein Nullteiler. *Hinweis:* Sei $z \in A, z \neq 0$, mit yz = 0 und $n \in \mathbb{N}_0$ maximal mit der Eigenschaft $x^nz \neq 0$. Betrachten Sie Ann (x^nz) .

Aufgabe 6. Sei $f = a_0 + a_1 T + \cdots + a_n T^n \in A[T]$ ein Polynom. Zeigen Sie:

- (a) Es ist f ist genau dann nilpotent, wenn alle a_0, a_1, \dots, a_n nilpotent sind.
- (b) Es ist f ist genau dann ein Nullteiler, wenn es ein $b \in A \setminus \{0\}$ gibt, so dass bf = 0. Hinweis: Wählen Sie ein Polynom $g = b_0 + b_1 T + \dots + b_m T^m$ minimalen Grades, so dass fg = 0. Dann gilt $a_n b_m = 0$ und somit $a_n g = 0$ (denn $a_n g$ annulliert f und hat einen Grad, der kleiner als m ist). Zeigen Sie nun mittels Induktion, dass $a_{n-r}b_m = 0$ und $a_{n-r}g = 0$ für $0 \le r \le n$.