

Briterencoder Absolute Rotary Encoder

RS485&Analog Output Single turn User Manual V202408

1. Wiring Definition and connection

RS485&Output 4~20mA

White wire	RS485A	TR+
Green wire	RS485B	TR-
Grey wire	4-20mA positive	-
Brown wire (optional)	4-20mA negative.	In three-wire configuration, this line remains unconnected as the signal negative and power negative are directly connected. In four-wire configuration, this line needs to be connected to the negative of the 4-20mA current loop (i.e., the signal negative).
Black wire	0V (GND)	-
Red wire	Power Supply	DC 12-24V
Orange wire	Function line	SETH/ Direction
Yellow wire	Function line	SETL/ Reset

RS485&Output 0-5V

White wire	RS485A	TR+
Green wire	RS485B	TR-
Grey wire (optional)	0-5 negative	1.In a three-wire system, since the signal negative and the power negative are directly connected, this line is left unconnected.2.In a four-wire system, this line must be connected to the negative of the 0-5V voltage loop (i.e., the signal negative).
Brown wire	0-5V positive	-
Black wire	0V (GND)	-
Red wire	Power Supply	DC 12-24V
Orange wire	Function line	SETH/ Direction
Yellow wire	Function line	SETL/ Reset

RS485&Output 0-10V

White wire	RS485A	TR+
Green wire	RS485B	TR-
Grey wire (optional)	0-10V negative	1.In a three-wire system, since the signal negative and the power negative are directly connected, this line is left unconnected. 2.In a four-wire system, this line must be connected to the negative of the 0-10V voltage loop (i.e., the signal negative).
Brown wire	0-10V positive	-
Black wire	0V (GND)	-
Red wire	Power Supply	DC 12-24V
Orange wire	Function line	SETH/ Direction
Yellow wire	Function line	SETL/ Reset

How to calculate the encoder rotation angle through sensor feedback analog signal?

Determine the number of turns and signal output type of the sensor you purchased.

Output 4-20mA encoder:

The angle=number of turns * 360 * (current -4)/16 (unit: °)

E.g. If a single turn 4-20mA encoder is used and the current is 12mA, then the angle=1 * 360 (12-4)/16=180 $^{\circ}$

Output 0-5V encoder:

The angle=number of turns * 360 * voltage/5 (unit: °)

E.g. If a single turn 0-5V encoder is used and the voltage is 2.5V, then the angle=1 * 360 * 2.5/5=180 °

Output 0-10V encoder:

The angle=number of turns * 360 * voltage/10 (unit: °)

E.g. If a single turn 0-10V encoder is used and the voltage is 2.5V, then the angle=1 * 360 * 2.5/10=90 °

2. Function Line Setting Method

Set the minimum value:

When power on, use the yellow wire to touch the black wire (0V) for a short time (more than100ms) to set the current position to the minimum analog value;

Set the maximum value:

When power on, use the orange wire to touch the black wire (0V) for a short time (more than100ms) to set the current position to the maximum analog value;

Set the midpoint value:

When power on, use the yellow wire and the orange wire for to touch the black wire (0V) a short time (more than100ms) to set the current position to the midpoint analog value;

Restore the encoder to factory settings:

When the encoder is in power-off state, connect the yellow wire to the black wire (0V). Then power on and keep it on for 2 minutes (110~130 seconds) to reset the encoder.

Set the encoder's value direction

When the encoder is in a powered-off state, the orange wire contacts the black wire (0V). Then power on and keep it on for 2 minutes (110~130 seconds), the encoder can switch its direction of value.

3. Schematic diagram of output signal

4. Encoder RS485 with Modbus-RTU communication protocol

This encoder uses the MODBUS-RTU (national standard GB/T19582-2008) communication protocol for communication, supporting one master station to control multiple slave stations. Through the built-in upper computer, 127 slave station addresses can be configured, and the master station can be a microcontroller unit, PLC, or PC, etc.

Communication parameters

The default configuration of the serial port at the factory is 9600bps, with a data bit of 8, no verification, and a stop bit of 1; The baud rate can be configured in the range of 9600~115200bps, and the default communication address (station number) of the encoder is 1.

MODBUS-RTU Frame format

This encoder supports MODBUS's 0x03 (read hold register), 0x06 (write single register)

1) 0x03 Read the holding register

Main Station Sending

Byte	1	2	3	4	5	6	7	8
Content	ADR	0x03	Start register high byte	Start register low byte	High byte of register number	Low byte of register number	CRC High byte	CRC low byte

The 1st byte ADR: Slave address code(1 ~ 127)

The 2nd byte 0x03: Read register value function code

The 3rd. 4th. byte: Starting address of the register to be read

The 5th., 6th. byte: Number of registers to be read

The 7th.、8th. byte: CRC16 checksum from bytes 1 to 6

Slave Station Response:

Byte	1	2	3	4、5	6、7	M-1、M	M+1	M+2
Content	ADR	0x03	Total byte	Register data 1	Register data 2	 Register data M	CRC High byte	CRC Low byte

The 1st byte ADR: Slave address $code(2 \sim 127)$ The 2nd byte 0x03: Return to read function code

The 3rd byte: The total number of bytes from 4 to M (including 4 and M)

The 4th. ~ M byte: Register data

The M + 1、M+2byte: CRC16 checksum from bytes 1 to M

2) 0x06 Write a single register

Main Station Sending

Byte	1	2	3	4	5	6	7	8

	AD	0.40	Start	Start	High byte	Low byte of	CRC	CRC
content	AD	0x0	register	register	of register	register	High	Low
	I K	0	high byte	low byte	number	number	Byte	byte

When the slave station receives correctly, the slave station sends back:

	Byte	1	2	3	4	5	6	7	8
С	ontent	AD R	0x0 6	Register high byte	Register low byte	High byte of register	Low byte of register	CRC high byte	CRC low byte

3) Register definition

List of encoder register

Register address	Description	Value ranges	Function code	Remarks
0x0000	Encoder single turn value	0~0xFFFFFFF (0~4294967295)	0x03	Power off memory
0x0000~0x0001	Encoder virtual multi turn value	0~0xFFFFFFF (0~4294967295)	0x03	The value returns to Zero after power failure
0x0002	Encoder virtual number of turns	0~0xFFFF (0~65535)	0x03	The value returns to Zero after power failure
0x0003	Encoder angular velocity value	0~0xFFFF (0~65535) Unsigned integer	0x03	1
0x0004	Encoder address	1~255	0x06	Communication address (default 1)
0x0005	Baud rate	0x0000~0x0004	0x06	Default 9600, 0x00: 9600 0x01: 19200 0x02: 38400 0x03: 57600 0x04: 115200
0x0006	Encoder mode	0x0000 0x0001 0x0004 0x0005	0x06	0x00: Query mode 0x01: Automatic return encoder single turn value 0x04: Automatic return encoder virtual multi turn value 0x05: Automatic return of encoder angular velocity value
0x0007	Encoder automatic return time	0~65535(ms)	0x06	default: 20mS
Note: once the autor that may fail. Use wi		et to less than 20 milliseco	nds, the encode	er will set other parameters
0x0008	Encoder reset zero position	0x0001	0x06	Write 0x0001, the encoder takes the current position as the zero point
0x0009	Encoder value increasing direction	0x0000~0x0001	0x06	0x00: clockwise 0x01: counterclockwise
0x000A	Encoder angular velocity Sampling time	0~65535(ms)	0x06	Default: 100mS
0x000B	Set the current value of the encoder	0~65535	0x06	Power off memory
0x000E	Set the encoder's midpoint	0x0001	0x06	Write 0x0001, the encoder takes the current position as the mid-point

0x0020~0x0021	Encoder angular velocity value 2	0~0xFFFFFFF (-2147483648~ 2147483647)	0x03	
0x0025 ~0x0026	Encoder single turn value 2 (support the encoder with a resolution of 17bits and above)	0~0xFFFFFFF (0~4294967295)	0x03	Power off memory

4) Example of Encoder communication

Read encoder single turn value

Register Address	0x0000	Siemens PLC address	40001
Data Range	0∼N (N is single turn resolution- 1)	Unit	-
Default value	-	Read/Write	Read only (supports function codes 0x03)
Effective method	-	Memory	Data can be memorized after power failure
data type	Unsigned integer	Applicable scope	Encoders with a resolution of 16bit and below

Encoder current angle=Encoder single turn value*360/ single turn resolution.

Communication examples:

Tx:01 03 00 00 00 01 (84 0A) Rx:01 03 02 01 42 (39 E5)

Note: The CRC check bits are shown in parentheses, the return data of the encoder single turn value is 01 42 (Decimal: 322)

Read encoder virtual number of turns (virtual multi-turns)

Register Address	0x0000~0x0001	Siemens PLC address	40001~40002
Data Range	0~2147483647	Unit	-
Default value	-	Read/Write	Read only (supports function codes 0x03)
Effective method	-	Memory	The value returns to Zero after power failure
data type	Unsigned integer	Applicable scope	All the single-turn encoders

Multi turn angle encoding value (software implementation)

Encoder's current virtual multi turn angle=Encoder virtual multi turn value*360/single turn resolution.

E.g. reading the virtual multi turn value of the encoder is 100000, the single turn resolution is 10bit (1024ppr), then the Encoder current angle= $100000*360/1024=35156.25^{\circ}$

Communication examples:

Tx:01 03 00 00 00 02 (C4 0B) Rx:01 03 04 00 01 76 3B (CC 40)

Note: The CRC check bits are shown in parentheses, The return data of encoder virtual multi-turn value is 00 01 76 3B

(Decimal: 95803)

Encoder angular velocity value

Register	0x0003	Siemens PLC	40004
----------	--------	-------------	-------

e.g. reading the encoder single turn value is 1000, the single turn resolution is 1024 (10bit). then the encoder current angle= $1000*360/1024=351.5625^{\circ}$

Address		address	
Data Range	-32768~32767	Unit	-
Default value	-	Read/Write	Read only (Support function codes 0x03)
Effective method	-	Memory	-
data type	Signed integer	Applicable scope	All the single-turn encoders

Encoder angular velocity encoding value (the change in encoder single turn value during encoder angular velocity sampling time)

Encoder rotation speed=encoder angular velocity value/single turn resolution/speed calculation time (unit:rpm) E.g. the encoder angular velocity value is transmitted back to 1000, the single turn resolution is 32768, and the speed sampling time is 100ms (0.1/60min)

Encoder rotation speed=1000/32768/(0.1/60)=1000 * 0.0183=18.31 rpm

Communication examples:

Tx:01 03 00 03 00 01 (74 0A)

Rx:01 03 02 02 7A (D8 C6)

Note: The CRC check bits are shown in parentheses, The return data of the encoder angular velocity value is 02 7A (Decimal: 634)

Set the encoder address (ID/ Station Number)

Register Address	0x0004	Siemens PLC address	40005
Data Range	1~255	Unit	-
Default value	1	Read/Write	Write Only (Support function codes 0x06)
Effective method	Effective immediately	Memory	Data can be memorized after power failure
data type	Unsigned integer	Applicable scope	All the single-turn encoders

Communication examples:

Tx:01 06 00 04 00 02 (49 CA)

Rx:01 06 00 04 00 02 (49 CA)

Note: The CRC check bits are shown in parentheses, Set the address as 02 (HEX:0x0002)

Set the encoder baud rate

Register Address	0x0005	Siemens PLC address	40006
Data Range	0~4 (0: 9600bps 1: 19200bps 2: 38400bps 3: 57600bps 4: 115200bps)	Unit	-
Default value	0 (9600bps)	Read/Write	Write Only (Support function codes 0x06)
Effective method	Effective immediately	Memory	Data can be memorized after power failure
data type	Unsigned integer	Applicable scope	All the encoders

Communication examples:

Tx:01 06 00 05 00 02 (18 0A)

Rx:01 06 00 05 00 02 (18 0A)

Note: The CRC check bits are shown in parentheses, Set the baud rate as 38400bps (0x02)

Set encoder data mode.(Encoder working mode)

Register Address	0x0006	Siemens PLC address	40007
	0~5		
	(0x00: Query mode		
Data Range	0x01: Automatic return encoder single turn value	Unit	_
3	0x04: Automatic return encoder virtual multi turn value		
	0x05: Automatic return encoder angular velocity value)		
Default value	0 (Query mode)	Read/Write	Write Only (Support function codes 0x06)
Effective method	Effective immediately	Memory	Data can be memorized after power failure
data type	Unsigned integer	Applicable scope	All the encoders

Communication examples:

Tx: 01 06 00 06 00 01 (A8 0B) Rx: 01 06 00 06 00 01 (A8 0B)

Note: The CRC check bits are shown in parentheses, Set the current encoder data mode to automatically return encoder values.

Set encoder automatic return time (milliseconds).

Register Address	0x0007	Siemens PLC address	40008
Data Range	0~65535	Unit	Milliseconds (mS)
Default value	50 (mS)	Read/Write	Write Only (Support function codes 0x06)
Effective method	Effective immediately	Memory	Data can be memorized after power failure
data type	Unsigned integer	Applicable scope	All the single-turn encoders

Explanation: The time period for the encoder to automatically return data (to be used in conjunction with the encoder's automatic data return mode)

Communication examples:

Tx: 01 06 00 07 00 64 (39 E0) Rx: 01 06 00 07 00 64 (39 E0)

Note: The CRC check bits are shown in parentheses, Set the automatic return time to 100 milliseconds (HEX:0x0064) Note: Once the automatic transmission time is set to less than 20 milliseconds, setting other parameters on the encoder can easily fail. Use with caution.

Set Encoder zero position

Register Address	0x0008	Siemens PLC address	40009
Data Range	0~1	Unit	-
Default value	-	Read/Write	Write Only (Support function codes 0x06)
Effective method	Effective immediately	Memory	-
data type	Unsigned integer	Applicable scope	All the single-turn encoders

Communication examples:

Tx:01 06 00 08 00 01 (C9 C8)

Rx:01 06 00 08 00 01 (C9 C8)

Note: The CRC check bits are shown in parentheses, set the current position of the encoder to 0.

Set the encoder value increment direction.

Register Address	0x0009	Siemens PLC address	40010
Data Range	0~1 (0: CW Clockwise increment) (1: CCW Counterclockwise increment)	Unit	-
Default value	1 (CCW Counterclockwise increment)	Read/Write	Write Only (Support function codes 0x06)
Effective method	Effective immediately	Memory	Data can be memorized after power failure
data type	Unsigned integer	Applicable scope	All the encoders

Explanation: Encoder value increasing direction (Encoder output shaft facing observer)

Communication examples:

Tx:01 06 00 09 00 00 (59 C8)

Rx:01 06 00 09 00 00 (59 C8)

Note: The CRC check bits are shown in parentheses, Set the current encoder value to increase clockwise value

Encoder angular velocity sampling time

Register Address	0x000A	Siemens PLC address	40011
Data Range	0~65535	Unit	Milliseconds (mS)
Default value	100 (mS)	Read/Write	Write Only (Support function codes 0x06)
Effective method	Effective immediately	Memory	Data can be memorized after power failure
data type	Unsigned integer	Applicable scope	All the single-turn encoders

Communication examples:

Tx: 01 06 00 0A 03 E8 (A9 76) Rx: 01 06 00 0A 03 E8 (A9 76)

Note: The CRC check bits are shown in parentheses, Set the automatic return time to 1000 mS (HEX:0x3E8)

Set encoder current value

Register Address	0x000B	Siemens PLC address	40012
Data Range	0~N	Unit	-
	(N is the single turn resolution-		
Default value	-	Read/Write	Write Only (Support function codes 0x06)
Effective method	Effective immediately	Memory	-
data type	Unsigned integer	Applicable scope	All the single-turn encoders

Communication examples:

Tx 01 06 00 0B 03 E8 (F8 B6) Rx: 01 06 00 0B 03 E8 (F8 B6)

Note: The CRC check bits are shown in parentheses, Set the current position to 1000 (HEX:0x3E8)

Set the midpoint of the encoder

Register Address	0x000E	Siemens PLC address	40015
Data Range	0~1	Unit	-
Default value	-	Read/Write	Write Only (Support function codes 0x06)
Effective method	Effective immediately	Memory	-
data type	Unsigned integer	Applicable scope	All the single-turn encoders

Explanation: Set the current encoder value to M (M is the single-turn resolution/2), After setting, calculate the current angle as 180 $^{\circ}$

Communication examples:

Tx:01 06 00 0E 00 01 (29 C9)

Rx:01 06 00 0E 00 01 (29 C9)

Note: The CRC check bits are shown in parentheses, Set the current position of the encoder to the midpoint of the range.

Encoder angular velocity value 2

Register Address	0x0020~0x0021	Siemens PLC address	40033~40034
Data Range	-2147483648~2147483647	Unit	-
Default value	-	Read/Write	Read only (Support function codes 0x03)
Effective method	Effective immediately	Memory	-
data type	Signed integer	Applicable scope	All the single turn encoders

Encoder rotation speed= Encoder angular velocity value/ single turn resolution/ Speed calculation time (Unit: rpm)

e.g. The encoder angular velocity value is returned as 1000, single turn resolution is 32768 (15bit), Speed calculation time is 100ms (0.1/60min).

Encoder rotation speed= 1000/32768/(0.1/60) = 1000*0.0183 = 18.31rpm.

Communication examples:

Tx:01 03 00 20 00 02 (C5 C1)

Rx:01 03 04 00 01 B3 FC (DE 82)

Note: CRC check bits are shown in parentheses, and the return data of encoder angular velocity value 2 is 00 01 B3 FC (Decimal: 111612)

Encoder single turn value 2

Register Address	0x0025~0x0026	Siemens PLC address	40038~40039
Data Range	0∼N (N is single turn resolution-1)	Unit	-
Default value	-	Read/Write	Write Only (Support function codes 0x03)
Effective method	Effective immediately	Memory	Data can be memorized after power failure
data type	Unsigned integer	Applicable scope	Encoders with a resolution of 17bit and above

Encoder current angle=Encoder single turn value*360/ single turn resolution.

e.g. reading the encoder single turn value is 1000, the single turn resolution is 1024 (10bit). then the encoder current angle= $1000*360/1024=351.5625^{\circ}$

Communication examples:

Tx:01 03 00 25 00 02 (D5 C0) Rx:01 03 04 00 01 76 3B (CC 40)

Note: CRC check bits are shown in parentheses, and the returned data for encoder single turn value 2 is 00 01 76 3B (Decimal: 95803)

5) CRC Check Function Code Reference

5. Precautions and warranty

- Encoders belong to precision instruments. Please handle them with care and use them with care, especially do not knock, hit, or forcefully pull the encoder shaft.
- The encoder and mechanical connection should use flexible connectors or elastic brackets to avoid hard damage caused by non concentric rigid connections.
- Although the encoder itself does not lose the number of turns in interference environments, it can cause interference to the data during transmission. Therefore, when there is a motor or strong electromagnetic interference environment in the system, an isolated power supply should be used to power the encoder. And when there's external extended communication lines, it is best to use double shielded cables.
- The encoder casing and shielding wire should be well grounded to prevent damage to the encoder circuit caused by lightning strikes or high-voltage static electricity
- The product is guaranteed for one year free of charge when used correctly.
- When exceed the warranty period, or the product is damaged due to improper use, the product can be sent back to the original factory for repair (only raw material cost is required when repair).

6. Contact us and technology support

WhatsApp/ Wechat: +86 17665280977

Phone: +86 176 6528 0977 Email: brt@briterencoder.com

Technical documentation

Detailed version of the instruction manual; PC software; 2D drawings and 3D model files; Additional Video Tutorials:

For more details, please visit our website: www.briterencoder.com.