Министерство образования Республики Беларусь Учреждение Образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра электроники

Лабораторная работа № 1 «Исследование полупроводниковых диодов»

Проверила: Стома С.С.

Выполнили: ст. гр. 950503 Сякачёв П.В. Шалль И.Э. Прудников А.С.

Порядок выполнения работы:

- 1 Ознакомиться с методическим описанием лабораторной работы. (Теоретическое описание лабораторной работы изложено в методическом пособии [1], стр. 9-26).
- 2 Получить у преподавателя необходимый комплект для проведения лабораторной работы.
- 3 Уточнить количество и типы исследуемых приборов у преподавателя и вписать их в соответствующие поля отчета.
- 4 Собрать схему, представленную на рисунке 1 данного отчета, для одного из исследуемых приборов.
- 5 Измерить прямую вольт-амперную характеристику (BAX) для каждого исследуемого прибора. Полученные результаты записать в таблицы 1 5 данного отчета. (Качественный вид и описание BAX представлены в методическом пособии [1], стр. 16).
- 6 Собрать схему, представленную на рисунке 2 данного отчета, для одного из исследуемых приборов.
- 7 Измерить обратную BAX для каждого исследуемого прибора. Полученные результаты записать в таблицы 6-10 данного отчета.
 - 8 Предоставить измеренные данные на проверку преподавателю.

Порядок оформления отчета:

- 1 По измеренным данным построить соответствующие графики.
- 2 По построенным графикам рассчитать параметры исследуемых приборов в окрестностях рабочей точки.
 - 3 Записать общие выводы по проделанной лабораторной работе.

[1] — Электронные приборы. Лабораторный практикум: учеб.-метод. пособие. В 2 частях. Часть 1: Активные компоненты полупроводниковой электроники / А. Я. Бельский — Минск: БГУИР, 2012

1 Цель работы

Изучить устройство, принцип действия, систему обозначений, параметры и характеристики полупроводниковых диодов, типовые схемы включения и области их применения.

Экспериментально исследовать вольт-амперные характеристики диодов (ВАХ), и рассчитать по измеренным характеристикам их параметры.

2 Ход работы

2.1 Исследование прямой ветви ВАХ полупроводниковых приборов

Для исследования прямой ветви BAX полупроводниковых приборов собрана цепь по схеме, представленной на рисунке 1.

Рисунок *1* – Схема электрическая для исследования прямой ветви ВАХ диода

Исследование проводилось при изменении напряжения источника питания и контролировалось миллиамперметром. Результаты исследований прямых ветвей ВАХ диодов 1N4007, AA118, ZPD3.3, ZPD10, LED занесены в таблицу 1, таблицу 2, таблицу 3, таблицу 4, таблицу 5 соответственно.

Таблица 1 – Результаты измерения диода 1N4007

,			1 ' '	, ,			
Ід, мА	0	$0,1\pm0,05$	$0,25\pm0,1$	$0,5\pm0,1$	1±0,1	2±0,1	3±0,1
Uд, B	0	0,473	0,516	0,547	0,582	0,615	0,635
Ід, мА	4±0,1	5±0,1	6±0,1	7±0,1	8±0,1	9±,1	10±0,1
Uд, B	0,648	0,659	0,667	0,674	0,680	0,658	0,690

Таблица 2 – Результаты измерения диода АА118

				'			
Ід, мА	0	$0,1\pm0,05$	$0,25\pm0,1$	$0,5\pm0,1$	$1\pm0,1$	$2\pm0,1$	3±0,1
Uд, B	0	0,132	0,177	0,220	0,270	0,330	0,365
Ід, мА	$4\pm0,1$	5±0,1	6±0,1	$7 \pm 0,1$	8±0,1	9±0,1	10±0,1
Uд, B	0,390	0,411	0,430	0,446	0,459	0,470	0,484

Таблица 3 – Результаты измерения стабилитрона ZPD3.3

Ід, мА	0	$0,1\pm0,05$	$0,25\pm0,1$	$0,5\pm0,1$	$1\pm0,1$	$2\pm0,1$	3±0,1
Uд, B	0	0,645	0,677	0,699	0,722	0,743	0,756
Ід, мА	4±0,1	5±0,1	6±0,1	7±0,1	8±0,1	9±0,1	10±0,1
Uд, B	0,764	0,771	0,777	0,781	0,786	0,789	0,792

Таблица 4 – Результаты измерения стабилитрона ZPD10

Ід, мА	0	$0,1\pm0,05$	$0,25\pm0,1$	$0,5\pm0,1$	$1\pm 0,1$	$2\pm0,1$	3±0,1
Uд, B	0	0,584	0,609	0,627	0,646	0,647	0,676
Ід, мА	4±0,1	5±0,1	6±0,1	7±0,1	8±0,1	9±0,1	10±0,1
Uд, B	0,683	0,689	0,694	0,699	0,702	0,705	0,708

Таблица 5 – Результаты измерения светодиода

				F 1 F 1			
Ід, мА	0	$0,1\pm0,05$	$0,25\pm0,1$	$0,5\pm0,1$	$1\pm0,1$	$2\pm0,1$	3±0,1
Uд, B	0	1,786	1,828	1,860	1,892	1,931	1,956
Ід, мА	4±0,1	5±0,1	6±0,1	7±0,1	8±0,1	9±0,1	10±0,1
Uд, B	1,976	1,993	2,009	2,020	2,031	2,041	2,050

2.2 Исследование обратных ветвей ВАХ полупроводниковых приборов

Для исследования обратной ветви BAX полупроводниковых приборов собрана цепь по схеме, представленной на рисунке 2.

Рисунок 2 – Схема электрическая для исследования обратной ветви ВАХ диода

Результаты исследований обратных ветвей ВАХ диодов 1N4007, AA118, ZPD3.3, ZPD10, светодиода занесены в таблицу 6, таблицу 7, таблицу 8, таблицу 9, таблицу 10 соответственно.

Таблица 6 - Результаты измерения диода 1N4007

Ід, мА	0	0	0	0	0	0	0
U обр, В	0	1	3	5	10	15	20

Таблица 7 - Результаты измерения диода АА118

1 -		1	r 1 r	1 -			
Ід, мА	0	0	0	0	0	0	0
U обр, В	0	1	3	5	10	15	20

Таблица 8 – Результаты измерения стабилитрона ZPD3.3

				-			
Ід, мА	0	$0,1\pm0,05$	$0,25\pm0,1$	$0,5\pm0,1$	$1\pm0,1$	$2\pm0,1$	$3\pm0,1$
U обр, В	0	6,093	6,134	6,147	6,157	6,164	6,173
Ід, мА	4±0,1	5±0,1	6±0,1	7±0,1	8±0,1	9±0,1	10±0,1
U обр, В	6,181	6,186	6,195	6,201	6,207	6,214	6,220

Таблица 9 – Результаты измерения стабилитрона ZPD10

Ід, мА	0	$0,1\pm0,05$	$0,25\pm0,1$	$0,5\pm0,1$	1±0,1	2±0,1	3±0,1
U обр, В	0	9,979	9,991	9,994	10,003	10,016	10,027
Ід, мА	4±0,1	5±0,1	6±0,1	$7\pm0,1$	8±0,1	9±0,1	10±0,1
U обр, В	10,038	10,050	10,063	10,074	10,086	10,098	10,110

Таблица 10 – Результаты измерения светодиода

Ід, мА	0	0	0	0,001	0	0	0
U обр, В	0	0,1	1	2	3	4	5

2.3 Результаты экспериментальных исследований

По результатам измерений полупроводниковых приборов построены графики их вольт-амперных характеристик (рисунки 1-4).

Рисунок 1 – График ВАХ выпрямительных диодов

Рисунок 2 – График ВАХ стабилитронов

Рисунок 3 – График обратных ВАХ стабилитронов

Рисунок 4 – График ВАХ светодиодов

2.4 Расчет параметров исследованных полупроводниковых приборов

По построенным графикам характеристик диодов рассчитаны их параметры в окрестностях рабочей точки I = 5 мA:

1) Для диода АА118

$$R_{np1} = \frac{0.411}{0.005} = 82.2 \text{ Om}$$

$$r_{\text{диф1}} = \frac{0,430 - 0,411}{0,001} = 19 \text{ Om}$$

2) Для диода 1N4007

$$R_{\pi p2} = \frac{0,659}{0,005} = 131,8 \text{ Om}$$

$$r_{\text{ди} ф2} = \frac{0,667 - 0,659}{0,001} = 8 \text{ Om}$$

3) Для стабилитрона ZPD10 на обратной ветви BAX

$$R_{\text{обр3}} = \frac{10,050}{0,005} = 2010 \text{ Om}$$

$$r_{\text{диф.обр3}} = \frac{10,063 - 10,050}{0,001} = 13 \text{ Om}$$

4) Для стабилитрона ZPD33 на обратной ветви BAX

$$R_{\text{ofp4}} = \frac{6,186}{0,005} = 123,72 \text{ Om}$$

$$r_{\text{диф.обр4}} = \frac{6,195 - 6,186}{0,001} = 9 \text{ Oм}$$

5) Для светодиода LED

$$R_{\text{np5}} = \frac{1,993}{0,005} = 398,6 \text{ Om}$$

$$r_{\text{ди} \Phi 5} = \frac{2,009 - 1,993}{0,001} = 16 \text{ Om}$$

3 Выводы

В результате опыта провели измерение, по полученным данным рассчитали характеристики диодов и построили ВАХ.

Выяснили, что экспериментальная ВАХ и теоретическая, отличаются, что обусловлено неучтенной генерацией носителей зарядов в переходе, а также критическим напряжением пробоя и примесными свойствами полупроводникового материала.