Algorithmen und Datenstrukturen Aufgabenblatt 01

1. Laufzeitverhalten

If: n-j+1

J durch 3 teilbar	$\frac{n - \left(Rest \frac{n}{3}\right) - j}{3} + 1$		
J nicht durch 3 teilbar	$\frac{n - \left(Rest \frac{n}{3}\right) - (j + 3 - \left(Rest \frac{j}{3}\right))}{3} + 1$		

If: 2(b-a)

Print:

A gerade und B gerade	3(b-a)
A ungerade und B ungerade	2
A ungerade und B gerade	$2(b-a)-\left\lceil \left(\frac{b-a}{2}\right)\right\rceil$
A gerade und B ungerade	$2(b-a)-\lfloor \left(\frac{b-a}{2}\right)\rfloor$

2. und 3. Laufzeitverhalten, Implementierung

Der erstellte Programmcode befindet sich mit in der zip-Datei der Abgabe.

4. Auswertung

n	n^3	$\frac{1}{6}n^3 + \frac{1}{2}n^2 + \frac{1}{3}n$	Additionen (Python)	Laufzeit (Python)	Additionen (Java)	Laufzeit (Java)
30	$2,7*10^4$	4.960	4.960	1 ms	4.960	< 1 ms
300	$2,7*10^7$	4.545.100	4.545.100	0,9 s	4.545.100	10 ms
3000	$2,7*10^{10}$	4.504.501.000	4.504.501.000	16,2 min	4.504.501.000	5 s

Java benötigt für die gleiche Anzahl an Additionen weniger Zeit.

Da Python eine Skriptsprache ist, benötigt sie mehr Zeit für die Berechnung.

5. Spezifikationen

Algorithmus:

Eingabe: Eine Folge A an reellen Zahlen

Ausgabe: Die kleinste reelle Zahl n aus der Folge A

Sonderfälle: Wenn die kleinste reelle Zahl mehr als einmal in der Folge vorkommt wird trotzdem

nur eine Zahl ausgegeben.

Programm:

Es soll ein Programm geschrieben werden, das die kleinste Zahl aus einer Folge an Fließkomma-Zahlen findet. Die Folge soll dabei als Kommandozeilenparameter wie in folgendem Beispiel übergeben werden:

./calc 5.7 3 77 98.2 0.1 -2.5

Die ermittelte kleinste Zahl soll über die Standardausgabe ausgegeben werden, in dem obigen Beispiel sollte das Programm also -2.5 ausgeben. Anschließend soll sich das Programm beenden.