for some invertible matrix Q. Indeed, we know that in a change of basis matrix, a Gram matrix G becomes $G' = P^{\top}GP$. If the basis corresponding to G' is orthonormal, then G' = I, so $G = (P^{-1})^{\top}P^{-1}$.

There is a more constructive way of proving Proposition 12.9, using a procedure known as the Gram-Schmidt orthonormalization procedure. Among other things, the Gram-Schmidt orthonormalization procedure yields the QR-decomposition for matrices, an important tool in numerical methods.

Proposition 12.10. Given any nontrivial Euclidean space E of finite dimension $n \geq 1$, from any basis (e_1, \ldots, e_n) for E we can construct an orthonormal basis (u_1, \ldots, u_n) for E, with the property that for every k, $1 \leq k \leq n$, the families (e_1, \ldots, e_k) and (u_1, \ldots, u_k) generate the same subspace.

Proof. We proceed by induction on n. For n = 1, let

$$u_1 = \frac{e_1}{\|e_1\|}.$$

For $n \geq 2$, we also let

$$u_1 = \frac{e_1}{\|e_1\|},$$

and assuming that (u_1, \ldots, u_k) is an orthonormal system that generates the same subspace as (e_1, \ldots, e_k) , for every k with $1 \le k < n$, we note that the vector

$$u'_{k+1} = e_{k+1} - \sum_{i=1}^{k} (e_{k+1} \cdot u_i) u_i$$

is nonnull, since otherwise, because (u_1, \ldots, u_k) and (e_1, \ldots, e_k) generate the same subspace, (e_1, \ldots, e_{k+1}) would be linearly dependent, which is absurd, since (e_1, \ldots, e_n) is a basis. Thus, the norm of the vector u'_{k+1} being nonzero, we use the following construction of the vectors u_k and u'_k :

$$u_1' = e_1, \qquad u_1 = \frac{u_1'}{\|u_1'\|},$$

and for the inductive step

$$u'_{k+1} = e_{k+1} - \sum_{i=1}^{k} (e_{k+1} \cdot u_i) u_i, \qquad u_{k+1} = \frac{u'_{k+1}}{\|u'_{k+1}\|},$$

where $1 \le k \le n-1$. It is clear that $||u_{k+1}|| = 1$, and since (u_1, \ldots, u_k) is an orthonormal system, we have

$$u'_{k+1} \cdot u_i = e_{k+1} \cdot u_i - (e_{k+1} \cdot u_i)u_i \cdot u_i = e_{k+1} \cdot u_i - e_{k+1} \cdot u_i = 0,$$

for all i with $1 \le i \le k$. This shows that the family (u_1, \ldots, u_{k+1}) is orthonormal, and since (u_1, \ldots, u_k) and (e_1, \ldots, e_k) generates the same subspace, it is clear from the definition of u_{k+1} that (u_1, \ldots, u_{k+1}) and (e_1, \ldots, e_{k+1}) generate the same subspace. This completes the induction step and the proof of the proposition.