

AMENDMENTS TO THE CLAIMS

1 1. (Currently amended) A DSL modem comprising:
2 a bandwidth allocator adapted to dynamically adjust a bandwidth allocation based
3 on voice channel demand, the bandwidth allocation defining a bandwidth
4 for each of a plurality of one or more voice channels and unchannelized
5 data; and
6 a formatter coupled to the bandwidth allocator, the formatter adapted to combine
7 the voice channels and unchannelized data onto a digital subscriber line
8 according to the bandwidth allocation, thereby creating a transmission
9 signal.

1 2. (Original) The DSL modem of claim 1, further comprising:
2 an off-hook detector coupled to the bandwidth allocator, the off-hook detector
3 adapted to couple to one or more local customer premises voice lines for
4 measuring voice channel demand thereon.
A✓

1 3. (Original) The DSL modem of claim 2, further comprising:
2 a next-format storage coupled to the off-hook detector for storing a next
3 bandwidth allocation, the next bandwidth allocation based on a detected
4 change in voice channel demand.

1 4. (Original) The DSL modem of claim 1, wherein the transmission signal
2 includes next bandwidth allocation data, the next bandwidth allocation data defining an
3 anticipated bandwidth for the voice channels and data.

1 5. (Original) The DSL modem of claim 1, wherein the bandwidth for each voice
2 channel is associated with a timeslot in the transmission signal, the remaining transmission
3 signal bandwidth available for data.

1 6. (Original) The DSL modem of claim 5, wherein the bandwidth allocator is
2 adapted to adjust the bandwidth allocation at integer multiples of the periodicity of the
3 timeslots.

1 7. (Original) The DSL modem of claim 1, wherein the formatter is adapted to
2 format the transmission signal into a series of superframes, each superframe including a
3 plurality of network frames, each network frame including a plurality of low-level frames,
4 each low-level frame including a plurality of timeslots, the timeslots containing a voice call
5 or data.

1 8. (Original) The DSL modem of claim 7, wherein the bandwidth allocator is
2 adapted to adjust the bandwidth allocation at the frequency of the superframe.

1 9. (Original) The DSL modem of claim 7, wherein the network frames are
2 synchronized to a telephone-network timing reference.

1 10. (Original) The DSL modem of claim 1, wherein at least one voice channel
2 includes voice data selected from the group consisting of: voice data, facsimile data, analog
3 modem data, and digital service data.

1 11. (Original) The DSL modem of claim 1, wherein the DSL modem is a central
2 office modem.

1 12. (Currently amended) A DSL modem comprising:
2 a DSL connection for transmitting information over a digital subscriber line;
3 a plurality of voice lines for carrying channelized data; and
4 a module coupled to the DSL connection and the plurality of voice lines for
5 transmitting channelized data and unchannelized data over the digital
6 subscriber line, the module adapted to dynamically allocate bandwidth for
7 transmitting the channelized data based on availability of channelized
8 data, and to dynamically reallocate unused channelized data bandwidth for
9 transmitting the unchannelized data.

1 13. (Currently amended) A method of dynamically allocating bandwidth in a
2 digital subscriber line among channelized data from ~~one or more~~ local phone lines and
3 unchannelized data, the method comprising:
4 establishing a connection to a digital subscriber line;

5 allocating a portion of the bandwidth for each of a plurality of the local phone
6 lines in use, the remaining bandwidth available for unchannelized data;
7 transmitting the channelized and unchannelized data over the digital subscriber
8 line in their respective allocated bandwidths;
9 detecting a change in phone line usage; and
10 reallocating the bandwidths among the local phone lines and unchannelized data
11 based on the detected change.

1 14. (Original) The method of claim 13, further comprising:
2 transmitting a bandwidth allocation over the digital subscriber line, the bandwidth
3 allocation defining bandwidths corresponding to the channelized and
4 unchannelized data.

1 15. (Original) The method of claim 13, wherein the bandwidths allocated for each
2 of the local phone lines in use are substantially equal and are capable of carrying a voice call.

1 16. (Currently ~~amended~~) A method of transmitting voice calls and digital data
2 over a digital subscriber line, the method comprising:
3 transmitting digital data and voice data over the digital subscriber line in a
4 bandwidth;
5 detecting a new voice call;
6 responsive to the new voice call, dynamically reallocating a ~~first~~ portion of the
7 bandwidth to the new voice call ~~and a second portion of the bandwidth to~~
8 ~~the digital data;~~ and
9 combining the voice [[call]] calls ~~in the first portion of the bandwidth~~ and the
10 digital data ~~in the second portion of the bandwidth~~ for transmitting over
11 the digital subscriber line.

1 17. (Original) The method of claim 16, wherein the first portion of the bandwidth
2 is outside POTS band frequencies.

1 18. (Original) The method of claim 16, wherein the voice call includes data
2 selected from the group consisting of: voice data, facsimile data, analog modem data, and
3 digital service data.

1 19. (Original) The method of claim 16, further comprising:
2 responsive to the voice call's ending, reallocating the first portion of the
3 bandwidth to the digital data.

1 20. (Original) A method of dynamically allocating bandwidth among voice and
2 data traffic, the bandwidth comprising a plurality of timeslots, the method comprising:
3 allocating timeslots among the voice and data traffic;
4 composing a first superframe, the first superframe containing a plurality of
5 network frames, each network frame containing a plurality of low-level
6 frames, each low-level frame containing the voice and data traffic in their
7 allocated timeslots;
8 sending the first superframe over a digital subscriber line;
9 in response to detecting a change in the voice traffic demand, reallocating the
10 timeslots among the voice and data traffic;
11 composing a second superframe, the second superframe containing a plurality of
12 network frames, each network frame containing a plurality of low-level
13 frames, each low-level frame containing the voice and data traffic in their
14 reallocated timeslots; and
15 sending the second superframe over the digital subscriber line.

1 21. (Original) The method of claim 20, wherein composing the first superframe
2 includes synchronizing the network frames to a telephone-network timing reference.

1 22. (Original) The method of claim 20, further comprising:
2 sending a next allocation of the timeslots over the digital subscriber line to the
3 remote modem, the next allocation being encoded within the current
4 superframe.