SUBSET SUM problem (ControleM1Complexity2013)

	x_1	x_2	x_3	C_1	C_2	C_3	C_4
v_1	1	0	0	1	0	0	1
v_1'	1	0	0	0	1	1	0
v_2	0	1	0	0	0	0	1
v_2'	0	1	0	1	0	1	0
v_3	0	0	1	0	0	1	1
v_3'	0	0	1	1	1	0	0
s_1	0	0	0	1	0	0	0
s_1'	0	0	0	2	0	0	0
s_2	0	0	0	0	1	0	0
s_2'	0	0	0	0	2	0	0
s_3	0	0	0	0	0	1	0
s_3'	0	0	0	0	0	2	0
s_4	0	0	0	0	0	0	1
s_4'	0	0	0	0	0	0	2
t	1	1	1	4	4	4	4

First check the polynomiality of this construction : Table has (2n + 2k + 1) rows and (n + k) columns. This is polynomial (parameters n AND k).

1 SAT \Rightarrow SUBSET SUM

If ϕ is True

Then at least one literal $(x_i \text{ or } \neg x_i)$ per clause C_j is True

According to the rule specified in Question 4, v_i (resp. v'_i) is then picked in A' (because True)

In the column indexed by C_i :

- if 2 others v_l (resp. v'_l) corresponding to x_l (resp. $\neg x_l$) in C_j have also been picked into A' then choose s_j
- if only one v_l (resp. v'_l) corresponding to x_l (resp. $\neg x_l$) in C_j have also been picked into A' then choose s'_j
- if no other v_l (resp. v'_l) corresponding to x_l (resp. $\neg x_l$) in C_j have also been picked into A' then choose s_j and s'_j

This ensures that the numbers in column indexed by C_j sum to 4 Concerning the n first columns:

In the column indexed by x_i , only one of the numbers v_i and v'_i has been picked into A'.

This ensures that the numbers in column indexed by x_i sum to 1

2 SUBSET SUM \Rightarrow SAT

Once again: column by column

n first columns : sum to 1

Thus, **only one** of the numbers v_i and v'_i has been picked into A'

If v_i has been picked, let us set x_i to True If v_i' has been picked, then set $\neg x_i$ to True

This ensures that we have built a truth assignment

k last columns : sum to 4

in column C_j , s_j and s'_j are not sufficient to obtain a 4.

Thus at least one of the value 1 in the 2n first rows is required.

It is on a row v_i (resp. $\neg x_i$) and encodes the occurrence of x_i (resp. $\neg x_i$) in C_j .

As v_i (resp. v_i) is in A' then x_i (resp. $\neg x_i$) is set to True (see above) and thus C_i is True

3 NP-hardness

3-SAT is known to be NP-complete, thus NP-hard (Definition 20 in the Slides)

From section 1. and 2., we have : 3-SAT \leq_P SUBSET SUM.

Thus (Prop. 6) SUBSET SUM is NP-hard.

4 NP-complete

SUBSET SUM is in NP: given $A' \subseteq A$ a certificate, it suffices to check if $\sum_{a \in A'} a = t$. This takes O(|A|) operations (as A' is a subset of A).

Together with the fact that SUBSET SUM is NP-hard, we conclude that SUBSET SUM is NP-complete.