NOM (en majuscules) - Prénom :

Dans l'anneau $\mathcal{M}_4(\mathbb{R})$ des matrices 4×4 à coefficients réels, on considère les matrices suivantes :

$$I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad E = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix} \quad F = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \quad \text{et} \quad G = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix}$$

On notera que la famille (I, E, F, G) est libre et donc que $(aI + bE + cF + dG = 0) \Leftrightarrow (a = b = c = d = 0)$ Partie I

1. Vérifier que $E \cdot F = G$, $E^2 = -I$ et $F^2 = -I$ Calculer $F \cdot E$ et $G \cdot E$

$$F.E = G.E =$$

Dans le reste de la partie I, on ne fera plus aucun calcul de matrice, mais on utilisera les résultats du 1.

2. Démontrer que $E \cdot G = -F$. On précisera la propriété de la multiplication qu'on utilise.

$$E.G =$$

Calculer de la même façon F.G, G.F et G^2

$$F.G=$$

$$G.F =$$

$$G^2 =$$

3. Soit $H = \{I, E, F, G, -I, -E, -F, -G\}$. En utilisant 1. et 2. compléter la table de multiplication : (d'abord les composées de I, E, F, G puis compléter en tenant compte des signes)

7	Ι	Ε	F	G	-I	- <i>Е</i>	-F	-G
I								
Е								
F								
G								
-I					 			
-E								
-F								
-G					i			

5. Déterminer le sous-groupe de H engendré par E
sous-groupe engendré par $E = \langle E \rangle =$
6. Combien <i>H</i> a-t-il de sous-groupes d'ordre 4? d'ordre 2?
7. Combien H a-t-il de sous-groupes en tout ?
. Comoren 17 a t ii de sous groupes en tout :

Partie II

1. Calculer $(E+F)^2$, $(I+E)^2$, $(I+E)^3$:

$$(E+F)^2 =$$

$$(I+E)^2 =$$

$$(I+E)^3 =$$

2. Soit $K = \{aI + bE + cF + dG \mid (a,b,c,d) \in \mathbb{R}^4\}$

C'est l'ensemble des combinaisons linéaires des matrices I, E, F et G.

Montrer que $(K,+,\times)$ est un sous-anneau de l'anneau $(\mathcal{M}_{_4}(\mathbb{R}),+,\times)$

3. Soit $Q = aI + bE + cF + dG$ un élément de K . On notera $Q^* = aI - bE - cF - dG$
Soit $V = bE + cF + dG$
Calculer V^2 puis $Q.Q^* = (aI + V)(aI - V)$

$$V^{2} =$$

$$QQ^{*} = (aI + V)(aI - V) =$$

4. En déduire que si $Q \neq 0$, alors $Q.Q^* \neq 0$ et Q est inversible. Noter que son inverse est élément de K. $(K,+,\times)$ est un corps non commutatif.

Partie III

Dans le groupe \mathfrak{S}_8 des permutations de $\{1, 2, 3, 4, 5, 6, 7, 8\}$, on note $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 4 & 7 & 6 & 1 & 8 & 3 \end{pmatrix}$ et $\sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 5 & 2 & 7 & 4 & 1 & 6 \end{pmatrix}$.

1. Calculer $\sigma_3 = \sigma_1 \ \sigma_2$.

$$\sigma_3 = \sigma_1 \quad \sigma_2 = \sigma_1$$

2. Décomposer σ_1 en produits de cycles.

En déduire $s = \sigma_1^2$ en produits de cycles.

Calculer σ_1^4 .

$$\sigma_1$$
 =

$$s = \sigma_1^2 =$$

$$\sigma_{\scriptscriptstyle 1}^{^4}$$
 =

3. Mêmes questions pour σ_2 et σ_3 .

 $\sigma_2 =$

$$\sigma_3 =$$

$$\sigma_2^2 =$$

$$\sigma_{3}^{2} =$$

$$\sigma_1^4 =$$

$$\sigma_3^4 =$$

4. En déduire que σ_2 $\sigma_1 = \sigma_3^{-1}$.

5. Montrer que $\{id, \sigma_1, \sigma_2, \sigma_3, s, \sigma_1^{-1}, \sigma_2^{-1}, \sigma_3^{-1}\}$ est un goupe isomorphe à H.