Enunciado

Sea
$$U = \mathcal{P}(\mathbb{R}) - \{\mathbb{N}\}.$$

(U, \subseteq) no es un reticulado.

1

Demostración

Basta con encontrar dos elementos de U tales que no tengan supremo en (U,\subseteq) .

Demostración

Basta con encontrar dos elementos de U tales que no tengan supremo en (U,\subseteq) .

• Sean $C_1, C_2 \in U$ tales que $C_1 \cup C_2 = \mathbb{N}$

Demostración

Basta con encontrar dos elementos de U tales que no tengan supremo en (U,\subseteq) .

- Sean $C_1, C_2 \in U$ tales que $C_1 \cup C_2 = \mathbb{N}$
- Probemos por el absurdo que no existe $sup(\{C_1, C_2\})$

Suposición para llegar al absurdo

Supongamos $X \in U$ es el supremo de $\{C_1, C_2\}$.

• Entonces $C_1 \subseteq X$ y $C_2 \subseteq X$.

- Entonces $C_1 \subseteq X$ y $C_2 \subseteq X$.
- Como $C_1 \cup C_2 = \mathbb{N}$ debe ser que $\mathbb{N} \subseteq X$.

- Entonces $C_1 \subseteq X$ y $C_2 \subseteq X$.
- Como $C_1 \cup C_2 = \mathbb{N}$ debe ser que $\mathbb{N} \subseteq X$.
- Por otro lado sea $S_1 = \mathbb{N} \cup \{0\}$ y $S_2 = \mathbb{N} \cup \{-1\}$.

- Entonces $C_1 \subseteq X$ y $C_2 \subseteq X$.
- Como $C_1 \cup C_2 = \mathbb{N}$ debe ser que $\mathbb{N} \subseteq X$.
- Por otro lado sea $S_1 = \mathbb{N} \cup \{0\}$ y $S_2 = \mathbb{N} \cup \{-1\}$.
- Como $C_1, C_2 \subseteq S_1$, entonces S_1 es cota superior de $\{C_1, C_2\}$

- Entonces $C_1 \subseteq X$ y $C_2 \subseteq X$.
- Como $C_1 \cup C_2 = \mathbb{N}$ debe ser que $\mathbb{N} \subseteq X$.
- Por otro lado sea $S_1 = \mathbb{N} \cup \{0\}$ y $S_2 = \mathbb{N} \cup \{-1\}$.
- Como $C_1, C_2 \subseteq S_1$, entonces S_1 es cota superior de $\{C_1, C_2\}$
- Por el mismo motivo, S_2 es cota superior de $\{C_1, C_2\}$.

- Entonces $C_1 \subseteq X$ y $C_2 \subseteq X$.
- Como $C_1 \cup C_2 = \mathbb{N}$ debe ser que $\mathbb{N} \subseteq X$.
- Por otro lado sea $S_1 = \mathbb{N} \cup \{0\}$ y $S_2 = \mathbb{N} \cup \{-1\}$.
- Como $C_1, C_2 \subseteq S_1$, entonces S_1 es cota superior de $\{C_1, C_2\}$
- Por el mismo motivo, S_2 es cota superior de $\{C_1, C_2\}$.
- Luego, $X \subseteq S_1$ y $X \subseteq S_2$.

- Entonces $C_1 \subseteq X$ y $C_2 \subseteq X$.
- Como $C_1 \cup C_2 = \mathbb{N}$ debe ser que $\mathbb{N} \subseteq X$.
- Por otro lado sea $S_1 = \mathbb{N} \cup \{0\}$ y $S_2 = \mathbb{N} \cup \{-1\}$.
- Como $C_1, C_2 \subseteq S_1$, entonces S_1 es cota superior de $\{C_1, C_2\}$
- Por el mismo motivo, S_2 es cota superior de $\{C_1, C_2\}$.
- Luego, $X \subseteq S_1$ y $X \subseteq S_2$.
- Pero entonces: $X \subseteq (S_1 \cap S_2) = \mathbb{N}$

• Vimos que $\mathbb{N} \subseteq X$ y que $X \subseteq \mathbb{N}$.

- Vimos que $\mathbb{N} \subseteq X$ y que $X \subseteq \mathbb{N}$.
- Por antisimetría de \subseteq , $\mathbb{N} = X$.

- Vimos que $\mathbb{N} \subseteq X$ y que $X \subseteq \mathbb{N}$.
- Por antisimetría de \subseteq , $\mathbb{N} = X$.
- Pero $\mathbb{N} \notin \mathcal{U}$. Absurdo pues $X \in U$.

- Vimos que $\mathbb{N} \subseteq X$ y que $X \subseteq \mathbb{N}$.
- Por antisimetría de \subseteq , $\mathbb{N} = X$.
- Pero $\mathbb{N} \notin \mathbb{U}$. Absurdo pues $X \in U$.
- Como consecuencia no existe el supremo de $\{C_1, C_2\}$.

 $(\mathcal{P}(\mathbb{R})-\{\mathbb{N}\},\subseteq)$ no es un reticulado