Arbres couvrants minimaux

 ${\sf Algorithmique-L3}$

François Laroussinie

1^{er} décembre 2010

Plan

- Définitions
- 2 Algorithme de Prim
- 3 Algorithme de Kruskal
- 4 Application au « voyageur de commerce »

Plan

- Définitions
- 2 Algorithme de Prim
- 3 Algorithme de Kruskal
- 4 Application au « voyageur de commerce »

Arbres couvrants minimaux

$$G = (S, A, w)$$
: non-orienté, connexe et valué $(w : A \to \mathbb{R})$.

Définitions:

- un arbre couvrant de G est un graphe T = (S, A') avec $A' \subseteq A$, connexe et acyclique.
- un arbre couvrant T = (S, A') est dit minimal lorsque :

$$w(A') = \min\{w(A'') \mid T' = (G, A'') \text{ est un AC de } G\}$$

avec
$$w(A) \stackrel{\text{def}}{=} \sum_{(x,y) \in A} w(x,y)$$

Propriété : Existence d'un ACM

Tout graphe non-orienté, valué et connexe admet un ou plusieurs ACM.

Exemple d'ACM

Exemple d'ACM

Exemple d'ACM

Construire un ACM

On va construire un ACM T = (S, A') de manière incrémentale.

- Au début, A' est vide.
- A chaque étape, on va choisir une nouvelle arête (u, v) tq
 A'∪{(u, v)} est toujours un sous-ensemble d'un ACM pour G.

Def : on dit alors que (u, v) est compatible avec A'.

Construire un ACM

On va construire un ACM T = (S, A') de manière incrémentale.

- Au début, A' est vide.
- A chaque étape, on va choisir une nouvelle arête (u, v) tq
 A'∪{(u, v)} est toujours un sous-ensemble d'un ACM pour G.

Def : on dit alors que (u, v) est compatible avec A'.

Tout le problème est de pouvoir décider (efficacement) si une arête est compatible avec un A'...

Comment connecter à moindre coût des sommets non encore reliés par A'?

Comment vérifier la compatibilité d'une arête?

- Soient C_1, \ldots, C_k les k composantes connexes de (S, A').
- 1- On prend une partition $[S_1, S_2]$ de S qui respecte A'.
- (i.e. $\forall (x,y) \in A'$, x et y sont dans le même S_i)
- (ou chaque C_i est inclue soit dans S_1 , soit dans S_2)
- 2- On choisit une arête (x, y) telle que :
 - (x, y) traverse la partition $[S_1, S_2]$, $\begin{pmatrix} \text{def} \\ = \end{pmatrix}$ $(x \in S_1 \text{ et } y \in S_2)$ ou $(x \in S_2 \text{ et } y \in S_1)$
 - w(x, y) est minimale parmi ces arêtes traversantes.

Compatibilité

Théorème 4

Étant donnés :

- G = (S, A, w) un graphe non-orienté, valué et connexe,
- $A' \subseteq A$ tel qu'il existe un ACM de G contenant A',
- (S_1, S_2) une partition qui respecte A', et
- (u, v) une arête traversante minimale de (S_1, S_2) ,

alors (u, v) est compatible avec A'.

(i.e. il existe un ACM contenant $A' \cup \{(u, v)\}\$).

Plan

- Définitions
- 2 Algorithme de Prim
- 3 Algorithme de Kruskal
- 4 Application au « voyageur de commerce »

Algorithme de Prim – idée

A chaque étape de la construction de A':

- A' correspond à un arbre et un ensemble de sommets isolés;
- L'algorithme choisit une arête de poids minimal qui relie l'arbre à un sommet isolé.

Algorithme de Prim – idée

A chaque étape de la construction de A':

- A' correspond à un arbre et un ensemble de sommets isolés;
- L'algorithme choisit une arête de poids minimal qui relie l'arbre à un sommet isolé.

Propriété [correction de l'algorithme de Prim]

A chaque étape, l'arête choisie est compatible : on applique le théorème 4 avec la partition (S_1, S_2) suivante :

- S₁ les sommets de l'arbre;
- S_2 les sommets isolés.

Algorithme de Prim

- 2 On choisit un sommet de départ s.
- 3 On ajoute à A' une arête (s, x) de poids minimal,
- 4 On ajoute à A' une arête (q, q') reliant un sommet isolé à l'arbre en construction et de poids minimal,
- 5 recommencer le point 4 jusqu'à la connection de tous les sommets.

A' est une solution!

Choix du plus proche sommet...

A chaque étape, l'algorithme doit choisir un sommet isolé le plus proche possible (en une transition) de l'arbre A'.

Choix du plus proche sommet...

A chaque étape, l'algorithme doit choisir un sommet isolé le plus proche possible (en une transition) de l'arbre A'.

On stocke les sommets isolés dans une file de priorité F: la priorité de x sera sa distance à l'arbre A'.

Choix du plus proche sommet...

A chaque étape, l'algorithme doit choisir un sommet isolé le plus proche possible (en une transition) de l'arbre A'.

On stocke les sommets isolés dans une file de priorité F: la priorité de x sera sa distance à l'arbre A'.

En plus de « Extraire-Min », on a besoin des fonctions suivantes :

- IndiceDansF[x]: donne l'indice de x dans F.
- Π[x] : indique par quelle arête x est le plus proche possible de l'arbre.
- MaJ-F-Prim $(F, d, G, x, \Pi, IndiceDansF)$: met à jour F après l'ajout de x dans A'.

Algorithme de Prim

```
Procédure Recherche-ACM-Prim(G, s_0)
begin
     pour chaque s \in S faire

\Pi[s] := \text{nil}

d[s] := \begin{cases} 0 & \text{si } s = s_0 \\ \infty & \text{sinon} \end{cases}

    A' := \emptyset
    F := File(S, d, IndiceDansF)
    tant que F \neq \emptyset faire
        s := \mathsf{Extraire-Min}(F)
        IndiceDansF[s] := -1
       si s \neq s_0 alors A' := A' \cup \{(\Pi(s), s)\}
      MaJ-F-Prim(F, d, G, s, \Pi, IndiceDansF)
     return A'
end
```

Algorithme de Prim (suite)

end

```
Procédure MaJ-F-Prim(F, d, G, s, \Pi, IndiceDansF)
begin
    pour chaque (s, u) \in A faire
       si (IndiceDansF[u] \neq -1) \land (w(s, u) < d[u]) alors
       d[u] := sd[u] := w(s, u)
        //On réorganise...
       //F[i]: le sommet à la position i dans F.
          i := IndiceDansF[u]
           tant que (i/2 \ge 1) \land (d[F[i/2]] > d[F[i]]) faire
                F[i] \leftrightarrow F[i/2]
          IndiceDansF[F[i]] := i
IndiceDansF[F[i/2]] := i/2
i := i/2;
```

Complexité de l'algorithme de Prim

La complexité totale :

- la construction de la file : O(|S|),
- chaque appel de ExtraireMin : $O(\log(|S|))$
- le coût total des $MaJ(F, d, G, s, \Pi)$ est en $O(|A| \cdot \log(|S|))$.

$$O(|S| \cdot \log(|S|) + |A| \cdot \log(|S|))$$

 $\Rightarrow O(|A| \cdot \log(|S|))$

Plan

- Définitions
- 2 Algorithme de Prim
- 3 Algorithme de Kruskal
- 4 Application au « voyageur de commerce »

Algorithme de Kruskal – idée

Deux caractéristiques :

- A' décrit une forêt,
- une arête compatible est une arête de poids minimal reliant deux arbres de la forêt.

Comment trouver la (une) plus petite arête reliant deux arbres de la forêt A'?

Algorithme de Kruskal – idée

Deux caractéristiques :

- A' décrit une forêt,
- une arête compatible est une arête de poids minimal reliant deux arbres de la forêt.

Comment trouver la (une) plus petite arête reliant deux arbres de la forêt A'?

- 2 On trie les arêtes par poids croissant.
- **3** Pour chaque arête (x, y):

Si (x, y) ne crée pas de cycle, alors on l'ajoute à A'

A' est une solution!

Algorithme de Kruskal

Algorithme de Kruskal

Comment tester si x et y sont dans le même arbre?

Pour tester efficacement si deux sommets sont dans le même arbre de A', on utilise des structures « Union-Find » :

- tester si x et y sont dans le même sous-ensemble :
 - 1 Représentant-Ens(x) associe à x un représentant canonique de l'ensemble contenant s.
 - Représentant-Ens(x) = Représentant-Ens(y) : renvoie VRAI ssi x et y sont dans le même arbre.
- Fusion(x, y) fusionne les deux ensembles contenant x et y.

Complexité : le coût total de m opérations dont n opérations CréerEnsemble est en $O(m \cdot \alpha(m, n))$. $\alpha(m, n)$: fct réciproque de la fct d'Ackermann. ($<< \log(m)$).

```
Procédure Recherche-ACM-Kruskal(G)
begin
    A' := \emptyset
    pour chaque s \in S faire
    CréerEnsemble(s)
   Trier A par poids w(u, v) croissant
    pour chaque (x, y) \in A faire
    si Représentant-Ens(x) \neq Représentant-Ens(y) alors A' := A' \cup \{(x,y)\} Fusion(x, y)
    return A'
end
```

Complexité de l'algorithme de Kruskal

```
\mathsf{Tri}: O(|A| \cdot \log(|A|))
```

il y aura |S|-1 arêtes ajoutées dans A'.

If y aura donc |S| - 1 appels à Fusion(-, -).

Au pire, il y aura $2 \cdot |A|$ appels à Représentant-Ens(-).

Complexité totale en $O(|A| \cdot \log(|A|))$ car $|A| \ge |S| - 1$.

Plan

- Définitions
- 2 Algorithme de Prim
- 3 Algorithme de Kruskal
- 4 Application au « voyageur de commerce »

Le voyageur de commerce

Une ville, des routes, des distances...

Question : comment passer une et une seule fois par chaque ville en parcourant une distance minimale?

Le voyageur de commerce

Une ville, des routes, des distances...

Question : comment passer une et une seule fois par chaque ville en parcourant une distance minimale?

Données : un graphe valué non-orienté, connexe : G = (S, A, w)Question : trouver un chemin hamiltonien de poids minimal.

Le voyageur de commerce

Une ville, des routes, des distances...

Question : comment passer une et une seule fois par chaque ville en parcourant une distance minimale?

Données : un graphe valué non-orienté, connexe : G = (S, A, w)Question : trouver un chemin hamiltonien de poids minimal.

C'est problème très classique...et NP-complet.

Approximation du VdC avec les ACM

On fait les hypothèss suivantes :

- G = (S, A, w) est complet. $(\forall x, y \in S, \exists (x, y) \in A)$
- G = (S, A, w) vérifie l'inégalité triangulaire : $\forall x, y, z \in S$, on a : $w(x, y) + w(y, z) \ge w(x, z)$

Et on va essayer d'approximer le circuit hamiltonien minimal...

Approximation du VdC

Fonction Approx-VdC(Graphe G = (S, A, w))

- 1. choisir un sommet $s \in S$
- 2. construire un arbre couvrant minimal T de G à partir de S (avec l'algorithme de Prim, ou Kruskal,...)
- 3. soit L la liste des sommets visités lors d'un parcours préfixe de T
- 4. retourner le cycle correspondant à *L*

Borner l'approximation

Théorème Approx-VdC donne un cycle C dont le coût est inférieur à $(2 \cdot w(S_{opt}))$ où S_{opt} est une solution optimale du problème.

Pourquoi?

Borner l'approximation

Théorème Approx-VdC donne un cycle C dont le coût est inférieur à $(2 \cdot w(S_{opt}))$ où S_{opt} est une solution optimale du problème.

Pourquoi?

Complexité : le coût de la recherche de l'ACM...