

GD8102

Dalian Good Display Co., Ltd.

Table of Content

INTRODUCTION	3
MAIN APPLICATIONS	3
FEATURE HIGHLIGHTS	3
BLOCK DIAGRAM	4
ORDERING INFORMATION	5
PIN DESCRIPTION	6
COMMAND TABLE	8
COMMAND DESCRIPTION	12
HOST INTERFACES	37
POWER MANAGEMENT	39
OTP ADDRESS MAPPING	43
TEMPERATURE RANGE	45
DEEP SLEEP MODE	49
CASCADE APPLICATION CIRCUIT	51
BOOSTER APPLICATION CIRCUIT	52
ABSOLUTE MAXIMUM RATINGS	53
DC CHARACTERISTICS	54
AC CHARACTERISTICS	55
PHYSICAL DIMENSIONS	57
ALIGNMENT MARK INFORMATION	59
PAD COORDINATES	60
TRAY INFORMATION	71
REVISION HISTORY	72

GD8102

All-in-one driver IC with Timing Controller for White/Black/Red Dot-Matrix Micro-Cup ESL

INTRODUCTION

The GD8102 is an all-in-one driver with timing controller for ESL. Its output is of 1-bit white/black and 1-bit red resolution per pixel. The timing controller provides control signals for source driver and gate driver.

The DC-DC controller allows it to generate the source output voltage VDH/VDL (62.4V~615.0V) and VDHR (2.4V~15.0V). The chip also includes an output buffer for the supply of the COM electrode (AC-VCOM or DC-VCOM). The system is configurable through a 3-wire/4-wire (SPI) serial interface.

MAIN APPLICATIONS

E-tag application

FEATURE HIGHLIGHTS

- System-on-chip (SOC) for ESL
- Timing controller supports several resolutions
 - Up to 240 source x 512 gate resolution+ 1 border + 1 VCOM
 - 1 bit for white/black and 1 bit for red per pixel
- Cascade: 2 or more chips cascade mode
- Memory (Max.): 240 x 512 x 2 bits SRAM
- 3-wire/4-wire (SPI) serial interface
 - 2 Clock rate up to 20MHz

- Temperature sensor:
 - 2 On-Chip: -25~50 °C 6 2.0°C / 8-bit status
 - 2 Off-Chip: -55~125°C 6 2.0°C /11-bit status (I²C/LM75)
- Support LPD, Low Power Detection
 - VDD < 2.5V or 2.4V or 2.3V or 2.2V (by setting)
- OSC / PLL: On-chip RC oscillator
- VCOM:
 - 2 AC-VCOM / DC-VCOM (by LUT)
 - 2 Support VCOM sensing (6-bit digital status)
- Charge Pump: On-chip booster and regulator:
 - 2 VGH: +9V~+12V, +17V~+20V (programmable)
 - 2 VGL: -9V~-12V, -17V~-20V (programmable)
 - 2 VDH: +2.4 ~ +15.0V (programmable, black/white)
 - 2 VDL: -2.4 ~ -15.0V (programmable, black/white)
 - 2 VDHR: +2.4 ~ +15.0V (programmable, red)
- Supply voltage: 2.3~ 3.6V
- OTP: 6K-byte OTP for LUTs and Settings
- Package: COG
- Source/Gate bump information

Bump pitch: 14 μM 6 2 μM
 Bump space: 1 μM 6 3 μM

2 Bump surface: (TBD) μM²

Remark: Contact Good Display for a visual inspection document (03-DOC-093).

BLOCK DIAGRAM

ORDERING INFORMATION

Part Number	Description
GD8102cHAA-U0X3-3	IC thickness: 300uM, with 3" double-faced tray
GD8102cHAA-U0X3-4	IC thickness: 300uM, with 4" double-faced tray

General Notes

APPLICATION INFORMATION

For improved readability, the specification contains many application data points. When application information is given, it is advisory and does not form part of the specification for the device.

BARE DIE DISCLAIMER

All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing. There is no post waffle saw/pack testing performed on individual die. Although the latest modern processes are utilized for wafer sawing and die pick-&-place into waffle pack carriers, Good Display has no control of third party procedures in the handling, packing or assembly of the die. Accordingly, it is the responsibility of the customer to test and qualify their application in which the die is to be used. Good Display assumes no liability for device functionality or performance of the die or systems after handling, packing or assembly of the die.

LIFE SUPPORT APPLICATIONS

These devices are not designed for use in life support appliances, or systems where malfunction of these products can reasonably be expected to result in personal injuries. Customer using or selling these products for use in such applications do so at their own risk.

CONTENT DISCLAIMER

Good Display believes the information contained in this document to be accurate and reliable. However, it is subject to change without notice. No responsibility is assumed by Good Display for its use, nor for infringement of patents or other rights of third parties. Nopart of this publication may be reproduced, or transmitted in any form or by any means without the prior consent of Good Display . Good Display 's terms and conditions of sale apply at all times.

PIN DESCRIPTION

Type: I: Input, O: Output, I/O: Input/Output, PWR: Power, C: Capacitor pin

Pin (Pad) Name	Pin Count	Туре	Description
			Power Supply Pins
VDD	7	PWR	Digital power
VDDA	10	PWR	Analog power
VDDIO	7	PWR	IO power
VDDDO	5	PWR	Digital power output (1.8V)
VDDD (VDDDI)	5	PWR	Digital power input (1.8V)
VPP	7	PWR	OTP program power (7.75V)
VDM	6	PWR	Analog Ground.
GND	25	PWR	Digital Ground.
GNDA	17	PWR	Analog Ground
			LDO Pins
VDH (VSH)	9	I/O	Positive source driver Voltage (+2.4V ~ +15V)
VDHR	8	I/O	Positive source driver voltage for Red (+2.4V ~ +15V)
VDL (VSL)	9	I/O	Negative source driver voltage (-2.4V ~ -15V)
		C	CONTROL INTERFACE PINS
			Bus Selection. Select 3-wire / 4-wire SPI interface
BS	1	I	L: 4-wire interface. H: 3-wire interface.
			Global reset pin. Low: active.
RST_N	1	l (Pull-up)	When RST_N becomes low, driver will reset. All register will reset to default value. Driver all function will disable.
		(i dii dp)	Source/Gate/Border/VCOM will be released to floating. The minimal width of RST_N=low is 50us.
			Cascade setting pin.
MS	1	I	L: Slave chip. H: Master chip.
			Clock input/output pin.
CL	2	I/O	Master: Clock output. Slave: Clock input.
CDEI	1	I	Cascade signal input pin. Connect to GND if not used.
CDEO	1	0	Cascade signal output pin. Leave it open if not used.
CDAI	1	Ī	Cascade data input pin. Connect to GND if not used.
CDAO	1	0	Cascade data output pin. Leave it open if not used.
			Driver busy flag.
BUSY_N	1	0	L: Driver is Busy. H: Host side can send command/data to driver.

WF8102c_A_{0.1}

All-in-one driver IC w/ Timing Controller

Pin (Pad) Name	Pin Count	Туре	Description
		MC	CU INTERFACE (SPI) PINS
CSB	1	I	Serial communication chip select.
SDA	1	I/O	Serial communication data input/output
SCL	1		Serial communication clock input.
			Command/Data input.
DC	1	I	L: command
	·		H: data
			Connect to GND if BS=High. I ² C INTERFACE
		_	
TSCL	2	O (open-drain)	I ² C clock (External pull-up resistor is necessary.) Leave them open if not used.
			I ² C data (External pull-up resistor is necessary.)
TSDA	2	I/O (open-drain)	Leave them open if not used.
		,	Output Pins
S0~S239			Source driver output signals.
(S<0>~S<239>)	240	Ο	
G0~G511			Gate driver output signals.
(G<0>~G<511>)	512	0	
VCOM	16	0	VCOM output.
VBD		0	Border output pins.
(VBD<0>, VBD<1>)	1, 1	U	
			BOOSTER PINS
GDR	8	0	N-MOS gate control
RESE	2	Р	Current sense input for control loop.
FB	2	Р	(Keep Open.)
VGH	11	I/O	Positive Gate voltage.
VGL	11	I/O	Negative Gate voltage.
			CHECK PANEL PINS
CHKGI	1	l (Pull-down)	Check panel break input. Leave open if it is not used.
CHKGO	1	0	Check panel break output. Leave open if it is not used.
			RESERVED PINS
VSYNC	2	0	Reserved pins. Leave it floating.
TEST1~TEST3	1x3	l	Reserved pins. Leave it floating or connected to VSS.
TEST4~TEST7	1x4	0	Reserved pins. Leave it floating.
TEST8~TEST13	1x6	I	Reserved pins. Leave it floating.
DUMMY	37	-	Reserved pins. Leave it floating.
GD<0>~GD<3>	1x4		Reserved pins. Leave it floating.
NC	12	-	Not Connected.

COMMAND TABLE

#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Default
		0	0	0	0	0	0	0	0	0	0		00н
1	Panel Setting (PSR)	0	1	_		#	#	#	#	#	#	REG, KW/R, UD, SHL,	0FH
		0	0	0	0	0	0	0	0	0	1	SHD_N, RST_N	01н
		0	1	•	0			U	#	#	#	VSR_EN, VS_EN, VG_EN	03н
		0	1					#	#	#	#	VCOM_HV, VG_LVL[2:0]	00н
2	Power Setting (PWR)	0	1			#	#	#	#	#	#	VDH_LVL[5:0]	26н
		0	1	_		#	#	#	#	#	#	VDL LVL[5:0]	26н
		0	1			#	#	#	#	#	#	VDHR LVL[5:0]	03н
3	Power OFF (POF)	0	0	0	0	0	0	0	0	1	0	· 5 <u>-</u> [e.e.]	02н
	Power OFF Sequence Setting	0	0	0	0	0	0	0	0	1	1		03н
4	(PFS)	0	1	_		#	#					T_VDS_OFF[1:0]	00н
5	Power ON (PON)	0	0	0	0	0	0	0	1	0	0	12,0020,1100	04н
6	Power ON Measure (PMES)	0	0	0	0	0	0	0	1	0	1		05н
	·	0	0	0	0	0	0	0	1	1	0		06н
_	Decetes Coff Ctort (DTCT)	0	1	#	#	#	#	#	#	#	#	BT_PHA[7:0]	17н
7	Booster Soft Start (BTST)	0	1	#	#	#	#	#	#	#	#	BT_PHB[7:0]	17н
		0	1			#	#	#	#	#	#	BT_PHC[5:0]	17н
0	Doon cloop (DCLD)	0	0	0	0	0	0	0	1	1	1		07 н
8	Deep sleep (DSLP)	0	1	1	0	1	0	0	1	0	1	Check code	А5н
	D	0	0	0	0	0	1	0	0	0	0	K/W or OLD Pixel Data (240x512):	10 H
9	Display Start Transmission 1 (DTM1, White/Black Data)	0	1	#	#	#	#	#	#	#	#	KPXL[1:8]	-
9	(x-byte command)	0	1	:	:	:	:	:	:	:	:	:	:
	(x byte command)	0	1	#	#	#	#	#	#	#	#	KPXL[n-7:n]	-
10	Data Stop (DSP)	0	0	0	0	0	1	0	0	0	1		11н
10	Data Stop (DSF)	1	1	#									00н
11	Display Refresh (DRF)	0	0	0	0	0	1	0	0	1	0		12 H
	Diamles Chart transposicion 2	0	0	0	0	0	1	0	0	1	1	Red or NEW Pixel Data (240X512):	13н
12	Display Start transmission 2 (DTM2, Red Data)	0	1	#	#	#	#	#	#	#	#	RPXL[1:8]	-
12	(x-byte command)	0	1	:	:	:	:	:	:	:	:	:	:
	(**	0	1	#	#	#	#	#	#	#	#	RPXL[n-7:n]	-
13	Auto Sequence (AUTO)	0	0	0	0	0	1	0	1	1	1		17 H
	ridio ocquerios (rio i o)	0	1	1	0	1	0	0	1	0	1	Check code	А5н
		0	0	0	0	1	0	0	0	0	0		20н
	VCOM LUT (LUTC)	0	1	#	#	#	#	#	#	#	#	Level select-0~3[1:0]	-
	(61-byte command,	0	1	:	:	:	:	:	:	:	:	Number of frames-0[7:0]	-
14	structure of bytes 2~7 repeated 10	0	1	:	:	:	:	:	:	:	:	Number of frames-1[7:0]	-
	times)	0	1	:	:	:	:	:	:	:	:	Number of frames-2[7:0]	-
		0	1	:	:	:	:	:	:	:	:	Number of frames-3[7:0]	-
		0	1	#	#	#	#	#	#	#	#	Times to repeat[7:0]	-

#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Default
		0	0	0	0	1	0	0	0	0	1		21 H
		0	1	#	#	#	#	#	#	#	#	Level select-0~3[1:0]	-
	W2W LUT (LUTWW)	0	1	:	:	:	:	:	:	:	:	Number of frames-0[7:0]	-
15	(43-byte command,	0	1	:	:	:	:	:	:	:	:	Number of frames-1[7:0]	-
	structure of bytes 2~7 repeated 7 times)	0	1	:	:	:	:	:	:	:	:	Number of frames-2[7:0]	-
	times	0	1	:	:	:	:	:	:	:	:	Number of frames-3[7:0]	-
		0	1	#	#	#	#	#	#	#	#	Times to repeat[7:0]	-
		0	0	0	0	1	0	0	0	1	0		22 H
		0	1	#	#	#	#	#	#	#	#	Level select-0~3[1:0]	-
	K2W LUT (LUTKW / LUTR)	0	1	:	:	:	:	:	:	:	:	Number of frames-0[7:0]	-
16	(61-byte command, structure of bytes 2~7 repeated 10	0	1	:	:	:	:	:	:	:	:	Number of frames-1[7:0]	-
	times)	0	1	:	:	:	:	:	:	:	:	Number of frames-2[7:0]	-
		0	1	:			:	:	:	:	:	Number of frames-3[7:0]	-
		0	1	#	#	#	#	#	#	#	#	Times to repeat[7:0]	-
		0	0	0	0	1	0	0	0	1	1		23 H
	NAVOIC LLIT (LLITANIC (LLITAN)	0	1	#	#	#	#	#	#	#	#	Level select-0~3[1:0]	-
	W2K LUT (LUTWK / LUTW)	0	1	:	**		:	:	:	:		Number of frames-0[7:0]	-
17	(61-byte command, structure of bytes 2~7 repeated 10	0	1	:	**		:	:	:	:		Number of frames-1[7:0]	-
	times)	0	1	:			:	:	:	:	:	Number of frames-2[7:0]	-
		0	1	:	**		:	:	:	:		Number of frames-3[7:0]	-
		0	1	#	#	#	#	#	#	#	#	Times to repeat[7:0]	-
		0	0	0	0	1	0	0	1	0	0		24 H
		0	1	#	#	#	#	#	#	#	#	Level select-0~3[1:0]	-
	K2K LUT (LUTKK / LUTK)	0	1	:	:	:	:	:	:	:	:	Number of frames-0[7:0]	-
18	(61-byte command,	0	1	:		::	:	:	:	:	:	Number of frames-1[7:0]	-
	structure of bytes 2~7 repeated 10 times)	0	1	:	:	:	:	:	:	:	:	Number of frames-2[7:0]	-
	umosy	0	1	:	:	:	:	:	:	:	:	Number of frames-3[7:0]	-
		0	1	#	#	#	#	#	#	#	#	Times to repeat[7:0]	-
		0	0	0	0	•	0	0	1	0	1		25 H
	S 	0	1	#	#	#	#	#	#	#	#	Level select-0~3[1:0]	-
	Border LUT	0	1	:	:	:	:	:	:	:	:	Number of frames-0[7:0]	-
19	(43-byte command, structure of bytes 2~7 repeated 7	0	1	:	:	:	:	:	:	:	:	Number of frames-1[7:0]	-
	times)	0	1	:	:	:	:	:	:	:	:	Number of frames-2[7:0]	-
		0	1		**				::			Number of frames-3[7:0]	-
		0	1	#	#	#	#	#	#	#	#	Times to repeat[7:0]	-
		0	0	0	0	1	0	1	0	1	0		2Ан
20	LUT option (LUTOPT)	0	1	#	#							STATE_XON[9:8]	00н
		0	1	#	#	#	#	#	#	#	#	STATE_XON[7:0]	00н
		0	0	0	0	1	0	1	0	1	1		2Вн
21	KW LUT option (KWOPT)	0	1							#	#	ATRED, NORED	00н
-	INV LOT OPLION (KVVOFT)	0	1	#	#							KWE[9:8]	00н
		0	1	#	#	#	#	#	#	#	#	KWE[7:0]	00н
22	PLL control (PLL)	0	0	0	0	1	1	0	0	0	0		30 H
22	r LL CORROT (FLL)	0	1	_				#	#	#	#	FRS[3:0]	04н
	Tomporatura Conser Calibratica	0	0	0	1	0	0	0	0	0	0		40н
23	Temperature Sensor Calibration (TSC)	1	1	#	#	#	#	#	#	#	#	D[10:3] / TS[7:0]	00н
		1	1	#	#	#	L=	L=	<u></u>	L=	L=	D[2:0] / -	00н
24	Temperature Sensor Selection	0	0	0	1	0	0	0	0	0	1		41н
24	(TSE)	0	1	#				#	#	#	#	TSE,TO[3:0]	00н

#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Default
		0	0	0	1	0	0	0	0	1	0		42 H
25	Taranaratura Canaar Wiita (TCM)	0	1	#	#	#	#	#	#	#	#	WATTR[7:0]	00н
25	Temperature Sensor Write (TSW)	0	1	#	#	#	#	#	#	#	#	WMSB[7:0]	00н
		0	1	#	#	#	#	#	#	#	#	WLSB[7:0]	00н
		0	0	0	1	0	0	0	0	1	1		43н
26	Temperature Sensor Read (TSR)	1	1	#	#	#	#	#	#	#	#	RMSB[7:0]	00н
		1	1	#	#	#	#	#	#	#	#	RLSB[7:0]	00н
27	Panel Break Check (PBC)	0	0	0	1	0	0	0	1	0	0		44н
	and Break officer (1 De)	1	1	-				-			#	PSTA	00н
	VCOM and data interval setting	0	0	0	1	0	1	0	0	0	0		50н
28	(CDI)	0	1	#		#	#			#	#	BDZ, BDV[1:0], DDX[1:0]	31н
	(,	0	1	-				#	#	#	#	CDI[3:0]	07H
29	Lower Power Detection (LPD)	0	0	0	1	0	1	0	0	0	1		51н
Ľ	Zower r ower Beteetien (Er B)	1	1	-				-			#	LPD	01н
30	End Voltage Setting (EVS)	0	0	0	1	0	1	0	0	1	0		52 H
		0	1					#		#	#	VCEND, BDEND[1:0]	02н
31	TCON setting (TCON)	0	0	0	1	1	0	0	0	0	0		60н
•	. con couning (1 cont)	0	1	#	#	#	#	#	#	#	#	S2G[3:0], G2S[3:0]	22н
		0	0	0	1	1	0	0	0	0	1		61н
32	Resolution setting (TRES)	0	1	#	#	#	#	#	0	0	0	HRES[7:3]	F0H
	3(-,	0	1							#	#	VRES[9:0]	02н
		0	1	#	#	#	#	#	#	#	#	-11	00н
		0	0	0	1	1	0	0	1	0	1		65н
33	Gate/Source Start setting (GSST)	0	1	#	#	#	#	#	0	0	0	HST[7:3]	00н
	3 \	0	1								#	VST[8:0]	00н
		0	1	#	#	#	#	#	#	#	#		00н
		0	0	0	1	1	1	0	0	0	0		70 н
34	Revision (REV)	1	1	#	#	#	#	#	#	#	#	LUT_REV[7:0]	FFH
		1	1	-		_		#	#	#	#	CHIP_REV[3:0]	0Сн
25	Cot Status (ELC)	0	0	0	1	1	1	0	0	0	1	DTI 51 40 1 ² 0 5DD 1 ² 0 DU0/41	71н
35	Get Status (FLG)	1	1	-	#	#	#	#	#	#	#	PTL_FLAG ,I ² C_ERR, I ² C_BUSYN, DATA FLAG, PON, POF, BUSY N	13н
20	Auto Macauramant (COM (ANA))	0	0	1	0	0	0	0	0	0	0		80н
36	Auto Measurement VCOM (AMV)	0	1	-		#	#	#	#	#	#	AMVT[1:0], XON,AMVS, AMV, AMVE	10н
0.7	D4)/00M//-b (AA)	0	0	1	0	0	0	0	0	0	1		81н
37	Read VCOM Value (VV)	1	1	-		#	#	#	#	#	#	VV[5:0]	00н
20	VCOM DC Satting (VDCS)	0	0	1	0	0	0	0	0	1	0		82H
38	VCOM_DC Setting (VDCS)	0	1			#	#	#	#	#	#	VDCS[5:0]	00н
		0	0	1	0	0	1	0	0	0	0		90н
		0	1	#	#	#	#	#	0	0	0	HRST[7:3]	00н
		0	1	#	#	#	#	#	1	1	1	HRED[7:3]	ЕFн
39	Partial Window (PTL)	0	1								#	VRST[8:0]	00н
39	Partial Willidow (PTL)	0	1	#	#	#	#	#	#	#	#	VK31[6.0]	00н
		0	1								#	VRED[8:0]	01н
		0	1	#	#	#	#	#	#	#	#	VNED[0.0]	FFH
		0	1	_				-		-	#	PT_SCAN	01н
40	Partial In (PTIN)	0	0	1	0	0	1	0	0	0	1		91н
41	Partial Out (PTOUT)	0	0	1	0	0	1	0	0	1	0		92 H
42	Program Mode (PGM)	0	0	1	0	1	0	0	0	0	0		А0 н
43	Active Programming (APG)	0	0	1	0	1	0	0	0	0	1		А1н

#	Command	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	Registers	Default
		0	0	1	0	1	0	0	0	1	0		А2н
		1	1	-								Read Dummy	N/A
44	Read OTP (ROTP)	1	1	#	#	#	#	#	#	#	#	Data of Address = 000h	N/A
		1	1	:	:	:	:	:	:	:	:	:	N/A
		1	1	#	#	#	#	#	#	#	#	Data of Address = n	N/A
45	Cascade Setting (CCSET)	0	0	1	1	1	0	0	0	0	0		Е0н
45	Cascade Setting (CCSE1)	0	1	-						#	#	TSFIX, CCEN	00н
46	Dower Coving (DMC)	0	0	1	1	1	0	0	0	1	1		Е3н
40	Power Saving (PWS)	0	1	#	#	#	#	#	#	#	#	VCOM_W[3:0], SD_W[3:0]	00н
47	LVD Voltage Select (LVSEL)	0	0	1	1	1	0	0	1	0	0		Е4н
47	LVD Voltage Select (LVSEL)	0	1	-						#	#	LVD_SEL[1:0]	03н
48	Force Temperature (TSSET)	0	0	1	1	1	0	0	1	0	1		Е5н
40		0	1	#	#	#	#	#	#	#	#	TS_SET[7:0]	00н

Note: (1) All other register addresses are invalid or reserved by Good Display, and should NOTbe used.

- (2) Any bits shown here as 0 must be written with a 0. All unused bits should also be set to zero. Device malfunction may occur if this is not done.
- (3) Commands are processed on the 'stop' condition of the interface.
- (4) Registers marked 'W/R' can be read, but the contents are written when the SPI command completes so the contents can be read and altered. The user can subsequently write the register to restore the contents following an SPI read.

COMMAND DESCRIPTION

W/R: 0: Write Cycle / 1: Read Cycle C/D: 0: Command / 1: Data D7-D0: -: Don't Care

(1) PANEL SETTING (PSR) (REGISTER: R00H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Setting the panel	0	0	0	0	0	0	0	0	0	0	00н
Setting the parter	0	1	-	-	REG	KW/R	UD	SHL	SHD_N	RST_N	0Гн

REG: LUT selection

0: LUT from OTP. (Default)

1: LUT from register.

KW/R: Black / White / Red

0: Pixel with Black/White/Red, KWR mode. (Default)

1: Pixel with Black/White, KW mode.

UD: Gate Scan Direction

0: Scan down. First line to Last line: $Gn-1 \rightarrow Gn-2 \rightarrow Gn-3 \rightarrow ... \rightarrow G0$ 1: Scan up. (Default) First line to Last line: $G0 \rightarrow G1 \rightarrow G2 \rightarrow ... \rightarrow Gn-1$

SHL: Source Shift Direction

0: Shift left. First data to Last data: $Sn-1 \rightarrow Sn-2 \rightarrow Sn-3 \rightarrow ... \rightarrow S0$ 1: Shift right. (Default) First data to Last data: $Sn-1 \rightarrow Sn-2 \rightarrow Sn-3 \rightarrow ... \rightarrow Sn-1$

SHD_N: Booster Switch

0: Booster OFF

1: Booster ON (Default)

When SHD_N becomes LOW, charge pump will be turned OFF, register and SRAM data will keep until VDD OFF. And Source/Gate/Border/VCOM will be released to floating.

RST_N: Soft Reset

0: Reset. Booster OFF, Register data are set to their default values, all drivers will be reset, and all functions will be disabled. Source/Gate/Border/VCOM will be released to floating.

1: No effect (Default).

(2) POWER SETTING (PWR) (R01H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	0	0	0	0	1	01н
	0	1	-	-	-	-	-	VSR_EN	VS_EN	VG_EN	07н
Selecting Internal/External	0	1	-	-	-	-	VCOM_HV	V	/G_LVL[2:0	0]	00н
Power	0	1	-	-			VDH_L	VL[5:0]			26н
	0	1	-	-			VDL_L	VL[5:0]			26н
	0	1	-	-			VDHR_I	LVL[5:0]			03н

VSR_EN: Source LV power selection

0 : External source power from VDHR pins

1 : Internal DC/DC function for generating VDHR. (Default)

VS_EN: Source power selection

0 : External source power from VDH/VDL pins
1 : Internal DC/DC function for generating VDH/VDL. (Default)

VG_EN: Gate power selection

External gate power from VGH/VGL pins
 Internal DC/DC function for generating VGH/VGL. (Default)

VCOM_HV: VCOM Voltage Level

0: VCOMH=VDH+VCOM_DC, VCOML=VDL+VCOM_DC. (Default)

1: VCOMH=VGH, VCOML=VGL

VG_LVL[2:0]: VGH / VGL Voltage Level selection.

VG_LVL[2:0]	VGH/VGL Voltage Level
000	VGH=9V, VGL= -9V
001	VGH=10V, VGL= -10V
010	VGH=11V, VGL= -11V
011	VGH=12V, VGL= -12V
100	VGH=17V, VGL= -17V
101	VGH=18V, VGL= -18V
110	VGH=19V, VGL= -19V
111 (Default)	VGH=20V, VGL= -20V

VDH_LVL[5:0]: Internal VDH power selection for KW pixel.(**Default value: 100110b**)

VDH_LVL	Voltage	VDH_LVL	Voltage	VDH_LVL	Voltage	VDH_LVL	Voltage
000000	2.4 V	010001	5.8 V	100010	9.2 V	110011	12.6 V
000001	2.6 V	010010	6.0 V	100011	9.4 V	110100	12.8 V
000010	2.8 V	010011	6.2 V	100100	9.6 V	110101	13.0 V
000011	3.0 V	010100	6.4 V	100101	9.8 V	110110	13.2 V
000100	3.2 V	010101	6.6 V	100110	10.0 V	110111	13.4 V
000101	3.4 V	010110	6.8 V	100111	10.2 V	111000	13.6 V
000110	3.6 V	010111	7.0 V	101000	10.4 V	111001	13.8 V
000111	3.8 V	011000	7.2 V	101001	10.6 V	111010	14.0 V
001000	4.0 V	011001	7.4 V	101010	10.8 V	111011	14.2 V
001001	4.2 V	011010	7.6 V	101011	11.0 V	111100	14.4 V
001010	4.4 V	011011	7.8 V	101100	11.2 V	111101	14.6 V
001011	4.6 V	011100	8.0 V	101101	11.4 V	111110	14.8 V
001100	4.8 V	011101	8.2 V	101110	11.6 V	111111	15.0 V
001101	5.0 V	011110	8.4 V	101111	11.8 V		
001110	5.2 V	011111	8.6 V	110000	12.0 V		
001111	5.4 V	100000	8.8 V	110001	12.2 V		
010000	5.6 V	100001	9.0 V	110010	12.4 V		

VDL_LVL[5:0]: Internal VDL power selection for KW pixel. (Default value: 100110b)

VDL_LVL	Voltage	VDL_LVL	Voltage	VDL_LVL	Voltage	VDL_LVL	Voltage
000000	-2.4 V	010001	-5.8 V	100010	-9.2 V	110011	-12.6 V
000001	-2.6 V	010010	-6.0 V	100011	-9.4 V	110100	-12.8 V
000010	-2.8 V	010011	-6.2 V	100100	-9.6 V	110101	-13.0 V
000011	-3.0 V	010100	-6.4 V	100101	-9.8 V	110110	-13.2 V
000100	-3.2 V	010101	-6.6 V	100110	-10.0 V	110111	-13.4 V
000101	-3.4 V	010110	-6.8 V	100111	-10.2 V	111000	-13.6 V
000110	-3.6 V	010111	-7.0 V	101000	-10.4 V	111001	-13.8 V
000111	-3.8 V	011000	-7.2 V	101001	-10.6 V	111010	-14.0 V
001000	-4.0 V	011001	-7.4 V	101010	-10.8 V	111011	-14.2 V
001001	-4.2 V	011010	-7.6 V	101011	-11.0 V	111100	-14.4 V
001010	-4.4 V	011011	-7.8 V	101100	-11.2 V	111101	-14.6 V
001011	-4.6 V	011100	-8.0 V	101101	-11.4 V	111110	-14.8 V
001100	-4.8 V	011101	-8.2 V	101110	-11.6 V	111111	-15.0 V
001101	-5.0 V	011110	-8.4 V	101111	-11.8 V		
001110	-5.2 V	011111	-8.6 V	110000	-12.0 V		
001111	-5.4 V	100000	-8.8 V	110001	-12.2 V		
010000	-5.6 V	100001	-9.0 V	110010	-12.4 V		

VDHR_LVL[5:0]: Internal VDHR power selection for Red pixel. (Default value: 000011b)

				,			
VDHR_LVL	Voltage	VDHR_LVL	Voltage	VDHR_LVL	Voltage	VDHR_LVL	Voltage
000000	2.4 V	010001	5.8 V	100010	9.2 V	110011	12.6 V
000001	2.6 V	010010	6.0 V	100011	9.4 V	110100	12.8 V
000010	2.8 V	010011	6.2 V	100100	9.6 V	110101	13.0 V
000011	3.0 V	010100	6.4 V	100101	9.8 V	110110	13.2 V
000100	3.2 V	010101	6.6 V	100110	10.0 V	110111	13.4 V
000101	3.4 V	010110	6.8 V	100111	10.2 V	111000	13.6 V
000110	3.6 V	010111	7.0 V	101000	10.4 V	111001	13.8 V
000111	3.8 V	011000	7.2 V	101001	10.6 V	111010	14.0 V
001000	4.0 V	011001	7.4 V	101010	10.8 V	111011	14.2 V
001001	4.2 V	011010	7.6 V	101011	11.0 V	111100	14.4 V
001010	4.4 V	011011	7.8 V	101100	11.2 V	111101	14.6 V
001011	4.6 V	011100	8.0 V	101101	11.4 V	111110	14.8 V
001100	4.8 V	011101	8.2 V	101110	11.6 V	111111	15.0 V
001101	5.0 V	011110	8.4 V	101111	11.8 V		
001110	5.2 V	011111	8.6 V	110000	12.0 V		
001111	5.4 V	100000	8.8 V	110001	12.2 V		
010000	5.6 V	100001	9.0 V	110010	12.4 V		

(3) POWER OFF (POF) (R02H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Tuming OFF the power	0	0	0	0	0	0	0	0	1	0	02F

After the Power OFF command, the driver will be powered OFF. Refer to the POWER MANAGEMENT section for the sequence.

This command will turn off booster, controller, source driver, gate driver, VCOM, and temperature sensor, but register data will be kept until VDD turned OFF or Deep Sleep Mode. Source/Gate/Border/VCOM will be released to floating.

(4) POWER OFF SEQUENCE SETTING (PFS) (R03H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Setting Power OFF sequence	0	0	0	0	0	0	0	0	1	1	03н
Setting Power OFF sequence	0	1	-	-	T_VDS_	OFF[1:0]	-	-	-	-	00H

T_VDS_OFF[1:0]: Source to gate power off interval time.

00b: 1 frame (Default) 01b: 2 frames 10b: 3 frames 11b: 4 frame

(5) POWER ON (PON) (REGISTER: R04H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Turning ON the power	0	0	0	0	0	0	0	1	0	0	04н

After the Power ON command, the driver will be powered ON. Refer to the POWER MANAGEMENT section for the sequence.

This command will turn on booster, controller, regulators, and temperature sensor will be activated for one-time sensing before enabling booster. When all voltages are ready, the BUSY N signal will return to high.

(6) POWER ON MEASURE (PMES) (R05H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	0	0	1	0	1	05⊦

This command enables the internal bandgap, which will be cleared by the next POF.

(7) BOOSTER SOFT START (BTST) (R06H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	0	0	1	1	0	06н
Starting data transmission	0	1	BT_PI	HA[7:6]	В	T_PHA[5:	3]	В	T_PHA[2:0	0]	17н
Starting data transmission	0	1	BT_Pl	DT DUDIZ:61		BT_PHB[5:3]		BT_PHB[2:0		0]	17н
	0	1	-	-	В	T_PHC[5:	3]	В	T_PHC[2:0	0]	17н

BT_PHA[7:6]: Soft start period of phase A.

00b: 10mS 01b: 20mS 10b: 30mS 11b: 40mS

BT_PHA[5:3]: Driving strength of phase A

000b: strength 1 001b: strength 2 **010b: strength 3** 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8 (strongest)

BT_PHA[2:0]: Minimum OFF time setting of GDR in phase A

000b: 0.27uS 001b: 0.34uS 010b: 0.40uS 011b: 0.54uS 100b: 0.80uS 101b: 1.54uS 110b: 3.34uS **111b: 6.58uS**

BT_PHB[7:6]: Soft start period of phase B.

00b: 10mS 01b: 20mS 10b: 30mS 11b: 40mS

BT_PHB[5:3]: Driving strength of phase B

000b: strength 1 001b: strength 2 **010b: strength 3** 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8 (strongest)

BT_PHB[2:0]: Minimum OFF time setting of GDR in phase B

 000b: 0.27uS
 001b: 0.34uS
 010b: 0.40uS
 011b: 0.54uS

 100b: 0.80uS
 101b: 1.54uS
 110b: 3.34uS
 111b: 6.58uS

BT_PHC[5:3]: Driving strength of phase C

000b: strength 1 001b: strength 2 **010b: strength 3** 011b: strength 4

100b: strength 5 101b: strength 6 110b: strength 7 111b: strength 8 (strongest)

BT_PHC[2:0]: Minimum OFF time setting of GDR in phase C

 000b: 0.27uS
 001b: 0.34uS
 010b: 0.40uS
 011b: 0.54uS

 100b: 0.80uS
 101b: 1.54uS
 110b: 3.34uS
 111b: 6.58uS

(8) DEEP SLEEP (DSLP) (R07H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Deep Sleep	0	0	0	0	0	0	0	1	1	1	07н
Беер Зіеер	0	1	1	0	1	0	0	1	0	1	A5⊦

After this command is transmitted, the chip will enter Deep Sleep Mode to save power. Deep Sleep Mode will return to Standby Mode by hardware reset. The only one parameter is a check code, the command will be executed if check code = 0xA5.

(9) DATA START TRANSMISSION 1 (DTM1) (R10H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	1	0	0	0	0	10н
Starting data transmission	0	1	Pixel1	Pixel2	Pixel3	Pixel4	Pixel5	Pixel6	Pixel7	Pixel8]
Starting data transmission	0	1	:	:	:	:	:	:	:	:	
	0	1	Pixel(n-7)	Pixel(n-6)	Pixel(n-5)	Pixel(n-4)	Pixel(n-3)	Pixel(n-2)	Pixel(n-1)	Pixel(n)	

This command starts transmitting data and write them into SRAM.

In KW mode, this command writes "OLD" data to SRAM.

In KWR mode, this command writes "K/W" data to SRAM.

In Program mode, this command writes "OTP" data to SRAM for programming.

(10) DATA STOP (DSP) (R11H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Stopping data transmission	0	0	0	0	0	1	0	0	0	1	11⊦
Stopping data transmission	1	1	data_flag	•	-	-	-	-	-	-	00H

Check the completeness of data. If data is complete, start to refresh display.

Data_flag: Data flag of receiving user data.

0: Driver didn't receive all the data.

1: Driver has already received all the one-frame data (DTM1 and DTM2).

After "Data Start" (R10h) or "Data Stop" (R11h) commands and when data_flag=1, the refreshing of panel starts and BUSY_N signal will become "0".

(11) DISPLAY REFRESH (DRF) (R12H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Refreshing the display	0	0	0	0	0	1	0	0	1	0	12

While user sent this command, driver will refresh display (data/VCOM) according to SRAM data and LUT.

After Display Refresh command, BUSY_N signal will become "0" and the refreshing of panel starts.

(12) DATA START TRANSMISSION 2 (DTM2) (R13H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	0	1	0	0	1	1	13н
Starting data transmission	0	1	Pixel1	Pixel2	Pixel3	Pixel4	Pixel5	Pixel6	Pixel7	Pixel8	
Starting data transmission	0	1	:	:	:	:	:	:	:	:	
	0	1	Pixel(n-7)	Pixel(n-6)	Pixel(n-5)	Pixel(n-4)	Pixel(n-3)	Pixel(n-2)	Pixel(n-1)	Pixel(n)	

This command starts transmitting data and write them into SRAM.

In KW mode, this command writes "NEW" data to SRAM.

In KWR mode, this command writes "RED" data to SRAM.

(13) AUTO SEQUENCE (AUTO) (R17H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Auto Coguenos	0	0	0	0	0	1	0	1	1	1	17н
Auto Sequence	0	1	1	0	1	0	0	1	0	1	А5н

The command can enable the internal sequence to execute several commands continuously. The successive execution can minimize idle time to avoid unnecessary power consumption and reduce the complexity of host's control procedure. The sequence contains several operations, including PON, DRF, POF, DSLP.

AUTO $(0x17) + Code(0xA5) = (PON \rightarrow DRF \rightarrow POF)$

AUTO $(0x17) + Code(0xA7) = (PON \rightarrow DRF \rightarrow POF \rightarrow DSLP)$

(14) VCOM LUT (LUTC) (R20H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0		
	0	0	0	0	1	0	0	0	0	0	20н	
	0	1	LEVEL S	ELECT-0	LEVEL S	ELECT-1	LEVEL S	ELECT-2	LEVEL S	ELECT-3]	
Build Look-up Table for VCOM	0	1		NUMBER OF FRAMES-0								
(61-byte command, structure of bytes 2~7	0	1	NUMBER OF FRAMES-1]	
repeated 10 times)	0	1			NU	JMBER OF	FRAMES	6-2]	
repeated to aimes,	0	1			NU	JMBER OF	FRAMES	S-3]	
	0	1				TIMES TO	REPEAT					

This command stores VCOM Look-Up Table with 10 groups of data. Each group contains information for one state and is stored with 6 bytes (byte 2~7, 8~13, 14~19, 20~25, ...), while the sixth byte indicates how many times that phase will repeat.

(15) W2W LUT (LUTWW) (R21H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	1	0	0	0	0	1	21н
Build	0	1	LEVEL S	ELECT-0	LEVEL S	ELECT-1	LEVEL S	ELECT-2	LEVEL S	ELECT-3	
White Look-up Table for W2W	0	1	NUMBER OF FRAMES-0								
(43-byte command,	0	1	NUMBER OF FRAMES-1								
structure of bytes 2~7	0	1			N	JMBER O	FRAMES	S-2			
repeated 7 times)	0	1	1 NUMBER OF FRAMES-3								
	0	1	TIMES TO REPEAT								

This command stores White-to-White Look-Up Table with 7 groups of data. Each group contains information for one state and is stored with 6 bytes (byte 2~7, 8~13, 14~19, 20~25, ...), while the sixth byte indicates how many times that phase will repeat.

(16) K2W LUT (LUTKW / LUTR) (R22H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	1	
	0	0	0	0	1	0	0	0	1	0	22н	
Build	0	1	LEVEL S	ELECT-0	LEVEL S	ELECT-1	LEVEL S	ELECT-2	LEVEL S	ELECT-3	ļ	
Look-up Table for K2W or Red	0	1		NUMBER OF FRAMES-0								
(61-byte command,	0	1	NUMBER OF FRAMES-1									
structure of bytes 2~7	0	1			N	JMBER OF	FRAMES	S-2				
repeated 10 times)	0	1			N	JMBER OF	FRAMES	S-3			ļ	
	0	1 TIMES TO REPEAT										

This command stores White-to-White Look-Up Table with 10 groups of data. Each group contains information for one state and is stored with 6 bytes (byte 2~7, 8~13, 14~19, 20~25, ...), while the sixth byte indicates how many times that phase will repeat.

(17) W2K LUT (LUTWK / LUTW) (R23H)

This command builds Look-up Table for White-to-Black. Please refer to W2W LUT (LUTWW) for similar definition details. Regardless of KW/R=0 or KW/R=1, LUTWB/LUTW is used.

(18) K2K LUT (LUTKK / LUTK) (R24H)

This command builds Look-up Table for Black-to-Black. Please refer to W2W LUT (LUTWW) for similar definition details. Regardless of KW/R=0 or KW/R=1, LUTKK/LUTK is used.

(19) BORDER LUT (LUTBD) (R25H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0			
	0	0	0	0	1	0	0	1	0	1	25н		
	0	1	LEVEL S	EVEL SELECT-0 LEVEL SELECT-1 LEVEL SELECT-2 LEVEL SELECT									
Build	0	1		NUMBER OF FRAMES-0									
Look-up Table for Border (43-byte command,	0	1	NUMBER OF FRAMES-1										
Bytes 2~7 repeated 7 times)	0	1			N	JMBER OI	FRAMES	S-2]		
Bytes 2 / repeated / times)	0	1			N	JMBER O	FRAMES	S-3]		
	0	1	TIMES TO REPEAT]		

This command stores White-to-White Look-Up Table with 7 groups of data. Each group contains information for one state and is stored with 6 bytes (byte 2~7, 8~13, 14~19, 20~25, ...), while the sixth byte indicates how many times that phase will repeat.

Bytes 2, 8, 14, 20, 26, 32, 38:

Level selection.

00b: GND 01b: VDH 10b: VDL 11b: VDHR

Bytes 3~6, 9~12, 15~18, 21~24, 27~30, 33~36, 39~42:

Number of Frames

0000 0000b: 0 frame

: :

1111 1111b: 255 frames

Bytes 7, 13, 19, 25, 31, 37, 43:

Times to Repeat

0000 0000b: 0 time

: :

1111 1111b: 255 times

Only 7 LUTBD groups are used in KW mode or KWR mode.

(20) LUT OPTION (LUTOPT) (R2AH)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	0	1	0	1	0	1	0	2A _F
LUT Option	0	1	STATE_	XON[9:8]	-	-	-	-	-	-	00н
	0	1				STATE	XON[7:0]				00н

This command sets XON control enable.

STATE_XON[9:0]:

All Gate ON (Each bit controls one state, STATE_XON [0] for state-1, STATE_XON [1] for state-2)

00 0000 0000b: no All-Gate-ON

00 0000 0001b: State-1 All-Gate-ON

00 0000 0011b: State-1 and State2 All-Gate-ON

: :

(21) KW LUT OPTION (KWOPT) (R2BH)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0		
KW LUT Option	0	0	0	0	1	0	1	0	1	1	2Вн	
	0	1	-	-	-	-	-	-	ATRED	NORED	00н	
KW LOT Option	0	1	KWE	[9:8]	-	-	-	-	-	-	00н	
	0	1	KWE[7:0]									

This command sets KW LUT mechanism option in KWR mode's LUT and only valid in K/W/R mode.

{ATRED, NORED}: KW LUT or KWR LUT selection control

ATRED	NORED	Description
0	0	KWR LUT always
0	1	KW LUT only
1	0	Auto detect by red data
1	1	KW LUT only

KWE[9:0]:

KW LUT enable control bits. Each bit controls one state, KWE[0] for state-1, KWE[1] for state-2

At least 1 Enable Control bit should be set when KW LUT only is selected in KWR mode.

00 0000 0001b: KW LUT enable in State-1

00 0000 0011b: KW LUT enable in State-1 and State2

00 0000 1011b: KW LUT enable in State-1, State2 and State-4

(22) PLL CONTROL (PLL) (R30H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Controlling PLL	0	0	0	0	1	1	0	0	0	0	30н
	0	1	-	-	-	-	FRS[3:0]				

The command controls the PLL clock frequency. The PLL structure must support the following frame rates:

FMR[3:0]: Frame rate setting

FRS	Frame rate
0000	10Hz
0001	20Hz
0010	30Hz
0011	40Hz
0100	50Hz
0101	60Hz
0110	70Hz
0111	80Hz

FRS	Frame rate
1000	90Hz
1001	100Hz
1010	110Hz
1011	120Hz
1100	130Hz
1101	140Hz
1110	150Hz
1111	200Hz

(23) TEMPERATURE SENSOR CALIBRATION (TSC) (R40H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	0	0	0	0	0	0	40H
Sensing Temperature	1	1	D10/TS7	D9/TS6	D8/TS5	D7/TS4	D6 / TS3	D5 / TS2	D4 / TS1	D3 / TS0	00н
	1	1	D2	D1	D0	-	-	-	-	-	00н

This command enables internal or external temperature sensor, and reads the result.

TS[7:0]: When TSE (R41h) is set to 0, this command reads internal temperature sensor value.

D[10:0]: When TSE (R41h) is set to 1, this command reads external LM75 temperature sensor value.

1:	when ISE ((R41n) is set to
-	TS[7:0]/D[10:3]	Temp. (°C)
	1110_0111	-25
	1110_1000	-24
	1110_1001	-23
	1110_1010	-22
	1110_1011	-21
	1110_1100	-20
	1110_1101	-19
	1110_1110	-18
	1110_1111	-17
	1111_0000	-16
	1111_0001	-15
	1111_0010	-14
	1111_0011	-13
	1111_0100	-12
	1111_0101	-11
	1111_0110	-10
	1111_0111	-9
	1111_1000	-8
	1111_1001	-7
	1111_1010	-6
	1111_1011	-5
	1111_1100	-4 -3 -2
	1111_1101	-3
	1111_1110	-2
	1111_1111	-1

. (°C)
)
}
3
i
5 7
<u>, </u>
,
3
)
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4

TS[7:0]/D[10:3]	Temp. (°C)
0001_1001	25
0001_1010	26
0001_1011	27
0001_1100	28
0001_1101	29
0001_1110	30
0001_1111	31
0010_0000	32
0010_0001	33
0010_0010	34
0010_0011	35
0010_0100	36
0010_0101	37
0010_0110	38
0010_0111	39
0010_1000	40
0010_1001	41
0010_1010	42
0010_1011	43
0010_1100	44
0010_1101	45
0010_1110	46
0010_1111	47
0011_0000	48
0011_0001	49

(24) TEMPERATURE SENSOR ENABLE (TSE) (R41H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Enable Temperature Sensor	0	0	0	1	0	0	0	0	0	1	41⊦
/Offset	0	1	TSE	-	-	-		TO	3:0]		00н

This command selects Internal or External temperature sensor.

TSE: Internal temperature sensor switch

0: Enable (default)

1: Disable; using external sensor.

TO[3:0]: Temperature offset.

TO[3:0]	Calibration
0000 b	+0 (Default)
0001	+1
0010	+2
0011	+3
0100	+4
0101	+5
0110	+6
0111	+7

TO[3:0]	Calibration
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	_1

(25) TEMPERATURE SENSOR WRITE (TSW) (R42H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	0	0	0	0	1	0	42н
Write External Temperature	0	1				WATT	R[7:0]				00н
Sensor	0	1				WMS	B[7:0]				00н
	0	1				WLS	B[7:0]				00н

This command writes the temperature sensed by the temperature sensor.

WATTR[7:6]: I²C Write Byte Number

00b: 1 byte (head byte only)

01b: 2 bytes (head byte + pointer)

10b : 3 bytes (head byte + pointer + 1st parameter) 11b : 4 bytes (head byte + pointer + 1st parameter + 2nd parameter)

WATTR[5:3]: User-defined address bits (A2, A1, A0)

WATTR[2:0]: Pointer setting

WMSB[7:0]: MSByte of write-data to external temperature sensor

WLSB[7:0]: LSByte of write-data to external temperature sensor

(26) TEMPERATURE SENSOR READ (TSR) (R43H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Deed Feterral Terran control	0	0	0	1	0	0	0	0	1	1	43н
Read External Temperature Sensor	1	1				RMS	B[7:0]				00н
Sensor	1	1				RLS	3[7:0]				00н

This command reads the temperature sensed by the temperature sensor.

RMSB[7:0]: MSByte read data from external temperature sensor

RLSB[7:0]: LSByte read data from external temperature sensor

(27) PANEL GLASS CHECK (PBC)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Check Panel Glass	0	0	0	1	0	0	0	1	0	0	44н
Check Fahel Glass	1	1	•	-	-	-	-	-	-	PSTA	00н

This command is used to enable panel check, and to disable after reading result.

PSTA: 0: Panel check fail (panel broken) 1: Panel check pass

(28) VCOM AND DATA INTERVAL SETTING (CDI) (R50H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set Interval between	0	0	0	1	0	1	0	0	0	0	50h
VCOM and Data	0	1	BDZ	-	BDV	[1:0]	N2OCP	-	DDX	[1:0]	31h
V COIVI AND DATA	0	1	-	-	-	-		CDI	[3:0]		07H

This command indicates the interval of VCOM and data output. When setting the vertical back porch, the total blanking will be kept (20 Hsync).

BDZ: Border Hi-Z control

0: Border output Hi-Z disabled (default)

1: Border output Hi-Z enabled

BDV[1:0]: Border LUT selection

KWR mode (KW/R=0)

DDX[0]	BDV[1:0]	LUT
	00	LUTBD
0	01	LUTR
U	10	LUTW
	11	LUTK
	00	LUTK
1	01	LUTW
(Default)	10	LUTR
	11	LUTBD

KW mode (KW/R=1)

DDX[0]	BDV[1:0]	LUT
	00	LUTBD
0	01	LUTKW $(1 \rightarrow 0)$
U	10	LUTWK (0 → 1)
	11	LUTKK $(0 \rightarrow 0)$
	00	LUTKK $(0 \rightarrow 0)$
1	01	LUTWK $(1 \rightarrow 0)$
(Default)	10	LUTKW $(0 \rightarrow 1)$
	11	LUTBD

N2OCP: Copy frame data from NEW data to OLD data enable control after display refresh with NEW/OLD in KW mode.

0: Copy NEW data to OLD data disabled (default) 1: Copy NEW data to OLD data enabled

DDX[1:0]: Data polality.

Under KWR mode (KW/R=0):

DDX[1] is for RED data. DDX[0] is for K/W data,

DDX[1:0]	Data {Red, K/W}	LUT				
	00	LUTW				
00	01	LUTK				
00	10	LUTR				
	11	LUTR				
	00	LUTK				
01	01	LUTW				
(Default)	10	LUTR				
· ·	11	LUTR				

DDX[1:0]	Data {Red, KW}	LUT
	00	LUTR
10	01	LUTR
10	10	LUTW
	11	LUTR LUTR
	00	LUTR
11	01	LUTR
11	10	LUTK
	11	LUTW

Under KW mode (KW/R=1):

DDX[1]=0 is for KW mode with NEW/OLD, DDX[1]=1 is for KW mode without NEW/OLD.

DDX[1:0]	Data {NEW, OLD}	LUT
	00	LUTWW $(0 \rightarrow 0)$
00	01	LUTKW $(1 \rightarrow 0)$
00	10	LUTWK $(0 \rightarrow 1)$
	00 01 10 11 00 01	LUTKK $(1 \rightarrow 1)$
	00	LUTKK $(0 \rightarrow 0)$
01	01	LUTWK (1 → 0)
(Default)	10	LUTKW (0 → 1)
	11	LUTWW (1 → 1)

DDX[1:0]	Data (NEW)	LUT
10	0	LUTKW (1 → 0)
10	1	LUTWK (0 → 1)
11	0	LUTWK (1 → 0)
"	1	LUTKW (0 → 1)

CDI[3:0]: VCOM and data interval

CDI[3:0]	VCOM and Data Interval
0000 b	17 hsync
0001	16
0010	15
0011	14
0100	13
0101	12
0110	11
0111	10 (Default)

CDI[3:0]	VCOM and Data Interval
1000	9
1001	8
1010	7
1011	6
1100	5
1101	4
1110	3
1111	2

(29) Low Power Detection (LPD) (R51H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Detect Low Power	0	0	0	1	0	1	0	0	0	1	51h
Detect Low Fower	1	1	-	•		-	-	-	-	LPD	01h

This command indicates the input power condition. Host can read this flag to learn the battery condition.

LPD: Internal Low Power Detection Flag

0: Low power input (VDD < 2.5V, 2.4V, 2.3V, or 2.2V, selected by $LVD_SEL[1:0]$ in command LVSEL)

1: Normal status (default)

(30) END VOLTAGE SETTING (EVS) (R52H)

	Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Fod Valtage Cetting	0	0	0	1	0	1	0	0	1	0	52h	
	End Voltage Setting	0	1	-	-	-	-	VCEND	-	BDEN	D[1:0]	02h

This command selects source end voltage and border end voltage after LUTs are finished.

VCEND: VCOM end voltage selection

0b: VCOM_DC 1b: floating

BDEND[1:0]: Border end voltage selection

00b: 0V 01b: 0V **10b: VCOM_DC** 11b: floating

(31) TCON SETTING (TCON) (R60H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0		
Set Gate/Source Non-overlap	0	0	0	1	1	0	0	0	0	0	60h	
Period	0	1		S2G[3:0]				G2S[3:0]				

This command defines non-overlap period of Gate and Source.

S2G[3:0] or G2S[3:0]: Source to Gate / Gate to Source Non-overlap period

S2G[3:0] or G2S[3:0]	Period
0000 b	4
0001	8
0010	12 (Default)
0011	16
0100	20
0101	24
0110	28
0111	32

S2G[3:0] or G2S[3:0]	Period
1000 b	36
1001	40
1010	44
1011	48
1100	52
1101	56
1110	60
1111	64

Period Unit = 667 nS.

(32) RESOLUTION SETTING (TRES) (R61H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set Display Resolution	0	0	0	1	1	0	0	0	0	1	61h
	0	1			HRES[7:3]		0	0	0	F0h	
	0	1	-	-	-	-	-	-	VRES[9]	VRES[8]	02h
	0	1				S[7:0]				00h	

This command defines resolution setting.

HRES[7:3]: Horizontal Display Resolution (Value range: 01h ~ 1Eh)

VRES[9:0]: Vertical Display Resolution (Value range: 01h ~ 200h)

Active channel calculation, assuming HST[7:0]=0, VST[8:0]=0:

Gate: First active gate = G0;

Last active gate = VRES[9:0] – 1

Source: First active source = S0;

Last active source = HRES[7:3]*8 - 1

Example: 128 (source) x 272 (gate), assuming HST[7:0]=0, VST[8:0]=0

Gate: First active gate = G0,

Last active gate = G271; (VRES[8:0] = 272, 272 - 1 = 271)

Source: First active source = S0,

Last active source = \$127; (HRES[7:3]=16, 16*8 - 1 = 127)

(33) GATE/SOURCE START SETTING (GSST) (R65H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	1	0	0	1	0	1	65h
Set Gate/Source Start	0	1			HST[7:3]			0	0	0	00h
Set Gate/Source Start	0	1	-	-	-	-	-	-	-	VST[8]	00h
	0	1				VST	[7:0]				00h

This command defines resolution start gate/source position.

HST[7:3]: Horizontal Display Start Position (Source). (Value range: 00h ~ 1Dh)

VST[8:0]: Vertical Display Start Position (Gate). (Value range: 000h ~ 1FFh)

Example: For 128(Source) x 240(Gate)

Gate:

HST[7:3] = 4 (HST[7:0] = 4*8 = 32),

VST[8:0] = 32

First active gate = G32 (VST[8:0] = 32),

Last active gate = G271 (VRES[8:0] = 240, VST[8:0] = 32, 240-1+32=271)

Source: First active source = S32 (HST[7:0]= 32),

Last active source = S239 (HRES[8:0] = 128, HST[7:0] = 32, 128-1+32=239)

(34) REVISION (REV) (R70H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Chip Revision	0	0	0	1	1	1	0	0	0	0	70h
Chip Revision	1	1				LUT	REV				FFh

The LUT_REV is read from OTP address = 0x001 or 0xC01.

(35) GET STATUS (FLG) (R71H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	0	1	1	1	0	0	0	1	71h
Read Flags	1	1	-	PTL_ Flag	I ² C_ERR	I ² C_ BUSYN	Data_ Flag	PON	POF	BUSY_N	13h

This command reads the IC status.

PTL_Flag: Partial display status (high: partial mode)

I²C_ERR: I²C master error status

I²C_BUSYN: I²C master busy status (low active)

Data_Flag: Driver has already received all the one frame data

PON: Power ON status
POF: Power OFF status

BUSY_N: Driver busy status (low active)

(36) AUTO MEASURE VCOM (AMV) (R80H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Automatically measure VCOM	0	0	1	0	0	0	0	0	0	0	80h
Automatically measure VCOM	0	1	-	-	AMV	T[1:0]	XON	AMVS	AMV	AMVE	10h

This command reads the IC status.

AMVT[1:0]: Auto Measure VCOM Time

00b: 3s **01b: 5s (default)**

10b: 8s 11b: 10s

XON: All Gate ON of AMV

0: Gate normally scan during Auto Measure VCOM period. (default)

1: All Gate ON during Auto Measure VCOM period.

AMVS: Source output of AMV

0: Source output 0V during Auto Measure VCOM period. (default)

1: Source output VDHR during Auto Measure VCOM period.

AMV: Analog signal

0: Get VCOM value with the VV command (R81h) (default)

1: Get VCOM value in analog signal. (External analog to digital converter)

AMVE: Auto Measure VCOM Enable (/Disable)

0: No effect (default)

1: Trigger auto VCOM sensing.

(37) VCOM VALUE (VV) (R81H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Automatically measure VCOM	0	0	1	0	0	0	0	0	0	1	81h
Automatically measure vCOM	1	1	-	-			VV[5:0]			00h

This command gets the VCOM value.

VV[5:0]: VCOM Value Output

VOOIVI Value	Output				
VV [5:0]	VCOM Voltage (V)	VV [5:0]	VCOM Voltage (V)	VV [5:0]	VCOM Voltage (V)
00 0000b	-0.10	01 0100b	-1.10	10 1000b	-2.10
00 0001b	-0.15	01 0101b	-1.15	10 1001b	-2.15
00 0010b	-0.20	01 0110b	-1.20	10 1010b	-2.20
00 0011b	-0.25	01 0111b	-1.25	10 1011b	-2.25
00 0100b	-0.30	01 1000b	-1.30	10 1100b	-2.30
00 0101b	-0.35	01 1001b	-1.35	10 1101b	-2.35
00 0110b	-0.40	01 1010b	-1.40	10 1110b	-2.40
00 0111b	-0.45	01 1011b	-1.45	10 1111b	-2.45
00 1000b	-0.50	01 1100b	-1.50	11 0000b	-2.50
00 1001b	-0.55	01 1101b	-1.55	11 0001b	-2.55
00 1010b	-0.60	01 1110b	-1.60	11 0010b	-2.60
00 1011b	-0.65	01 1111b	-1.65	11 0011b	-2.65
00 1100b	-0.70	10 0000b	-1.70	11 0100b	-2.70
00 1101b	-0.75	10 0001b	-1.75	11 0101b	-2.75
00 1110b	-0.80	10 0010b	-1.80	11 0110b	-2.80
00 1111b	-0.85	10 0011b	-1.85	11 0111b	-2.85
01 0000b	-0.90	10 0100b	-1.90	11 1000b	-2.90
01 0001b	-0.95	10 0101b	-1.95	11 1001b	-2.95
01 0010b	-1.00	10 0110b	-2.00	11 1010b	-3.00
01 0011b	-1.05	10 0111b	-2.05	11 1011b	-3.05

(38) VCOM_DC SETTING (VDCS) (R82H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set VCOM DC	0	0	1	0	0	0	0	0	1	0	82h
Set vCOM_DC	0	1	-	-			VDC:	S[5:0]			00h

This command sets VCOM_DC value

VDCS[5:0]: VCOM_DC Setting

VDCS [5:0]	VCOM Voltage (V)	VDCS [5:0]	VCOM Voltage (V)	VDCS [5:0]	VCOM Voltage (V)
00 0000b	-0.10	01 0100b	-1.10	10 1000b	-2.10
00 0001b	-0.15	01 0101b	-1.15	10 1001b	-2.15
00 0010b	-0.20	01 0110b	-1.20	10 1010b	-2.20
00 0011b	-0.25	01 0111b	-1.25	10 1011b	-2.25
00 0100b	-0.30	01 1000b	-1.30	10 1100b	-2.30
00 0101b	-0.35	01 1001b	-1.35	10 1101b	-2.35
00 0110b	-0.40	01 1010b	-1.40	10 1110b	-2.40
00 0111b	-0.45	01 1011b	-1.45	10 1111b	-2.45
00 1000b	-0.50	01 1100b	-1.50	11 0000b	-2.50
00 1001b	-0.55	01 1101b	-1.55	11 0001b	-2.55
00 1010b	-0.60	01 1110b	-1.60	11 0010b	-2.60
00 1011b	-0.65	01 1111b	-1.65	11 0011b	-2.65
00 1100b	-0.70	10 0000b	-1.70	11 0100b	-2.70
00 1101b	-0.75	10 0001b	-1.75	11 0101b	-2.75
00 1110b	-0.80	10 0010b	-1.80	11 0110b	-2.80
00 1111b	-0.85	10 0011b	-1.85	11 0111b	-2.85
01 0000b	-0.90	10 0100b	-1.90	11 1000b	-2.90
01 0001b	-0.95	10 0101b	-1.95	11 1001b	-2.95
01 0010b	-1.00	10 0110b	-2.00	11 1010b	-3.00
01 0011b	-1.05	10 0111b	-2.05	others	-3.00

(39) PARTIAL WINDOW (PTL) (R90H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
	0	0	1	0	0	1	0	0	0	0	90h
	0	1			HRST[7:3]			0	0	0	00h
	0	1			HRED[7:3]			1	1	1	Efh
Set Partial Window	0	1	-	-	•	•	-	-	-	VRST[8]	00h
Set Faitial Willdow	0	1				VRS	T[7:0]				00h
	0	1	-	-	•	-	-	-	-	VRED[8]	01h
	0	1				VREI	D[7:0]				FFh
	0	1	-	-	-	-	-	-	-	PT_SCAN	01h

This command sets partial window.

HRST[7:3]: Horizontal start channel bank. (Value range: 00h~1Dh)

HRED[7:3]: Horizontal end channel bank. (Value range: 00h~1Dh). HRED must be greater than HRST.

VRST[8:0]: Vertical start line. (Value range: 000h~1FFh)

VRED[8:0]: Vertical end line. (Value range: 000h~1FFh). VRED must be greater than VRST.

PT_SCAN: 0: Gates scan only inside of the partial window.

1: Gates scan both inside and outside of the partial window. (default)

(40) PARTIAL IN (PTIN) (R91H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Partial In	0	0	1	0	0	1	0	0	0	1	91h

This command makes the display enter partial mode.

(41) PARTIAL OUT (PTOUT) (R92H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Partial Out	0	0	1	0	0	1	0	0	1	0	92h

This command makes the display exit partial mode and enter normal mode.

(42) PROGRAM MODE (PGM) (RA0H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Enter Program Mode	0	0	1	0	1	0	0	0	0	0	A0h

After this command is issued, the chip would enter the program mode.

After the programming procedure completed, a hardware reset is necessary for leaving program mode.

(43) ACTIVE PROGRAM (APG) (RA1H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0
Active Program OTP	0	0	1	0	1	0	0	0	0	1

After this command is transmitted, the programming state machine would be activated.

The BUSY N flag would fall to 0 until the programming is completed.

(44) READ OTP DATA (ROTP) (RA2H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0			
	0	0	1	1 0 1 0 0 0 1									
	1	1		Dummy									
	1	1			The data	of addres	s 0x000 in	the OTP					
Read OTP data for check	1	1			The data	of addres	s 0x001 in	the OTP					
	1	1		:									
	1	1			The dat	a of addre	ss (n-1) in	the OTP					
	1	1		The data of address (n) in the OTP									

The command is used for reading the content of OTP for checking the data of programming.

The value of (n) is depending on the amount of programmed data, the max address = 0x17FF.

The sequence of programming OTP.

(45) CASCADE SETTING (CCSET) (RE0H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Set Cascade Option	0	0	1	1	1	0	0	0	0	0	E0h
	0	1	-	-	-	-	-	-	TSFIX	CCEN	00h

This command is used for cascade.

TSFIX: Let the value of slave's temperature is same as the master's.

0: Temperature value is defined by internal temperature sensor / external LM75. (default)

1: Temperature value is defined by TS_SET[7:0] registers.

CCEN: Output clock enable/disable.

0: Output 0V at CL pin. (default)

1: Output clock at CL pin to slave chip.

(46) POWER SAVING (PWS) (RE3H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Power Saving for VCOM &	0	0	1	1	1	0	0	0	1	1	E3h
Source	0	1		VCOM	W[3:0]			SD_V	V[3:0]		00h

This command is set for saving power during refreshing period. If the output voltage of VCOM / Source is from negative to positive or from positive to negative, the power saving mechanism will be activated. The active period width is defined by the following two parameters.

VCOM_W[3:0]: VCOM power saving width (Unit: line period)

SD_W[3:0]: Source power saving width (Unit: 660nS)

(47) LVD VOLTAGE SELECT (LVSEL) (RE4H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Select LVD Voltage	0	0	1	1	1	0	0	1	0	0	E4h
	0	1	-	-	-		-	-	LVD_S	EL[1:0]	03h

LVD_SEL[1:0]: Low Power Voltage selection

LVD_SEL[1:0]	LVD value
00	< 2.2 V
01	< 2.3 V
10	< 2.4 V
11	< 2.5 V (default)

(48) FORCE TEMPERATURE (TSSET) (RE5H)

Action	W/R	C/D	D7	D6	D5	D4	D3	D2	D1	D0	
Force Temperature Value for	0	0	1	1	1	0	0	1	0	1	E5h
Cascade	0	1	TS_SET[7:0]								00h

This command is used for cascade to fix the temperature value of master and slave chip.

HOST INTERFACES

GD8102 provides 3-wire/4-wire serial interface for command and display data transferred from the MCU. The serial interface supports 8-bit mode. Data can be input/output by clocks while the chip is active (CSB =LOW). While input, data are written in order from MSB at the clock rising edge. When too many parameters are input, the chip accepts only defined parameters, and ignores undefined ones.

BS	Interface	CSB	DC	SCL	SDA
High	3-wire SPI	Available	Fix to GND	Available	Available
Low	4-wire SPI	Available	Available	Available	Available

3 wire SPI format

Data / Command is recognized with the first bit transferred. Data are transferred in the unit of 9 bits. To prevent malfunction due to noise, it is recommended to set the CSB signal to HIGH every 9 bits. (The serial counter is reset at the rising edge of the CSB signal.)

Figure: 3-wire SPI write operation

The MSB bit of data will be output at SDA pin after the 1st SCL falling edge, if the 1st input data at SDA is high. Only in the case of OTP data read, the 1st packet of output data are dummy data.

Figure: 3-wire SPI read operation

4 wire SPI format

Data / Command is recognized with DC pin. Data are transferred in the unit of 8 bits. To prevent malfunction due to noise, it is recommended to set the CSB signal to HIGH every 8 bits. (The serial counter is reset at the rising edge of the CSB signal.)

Figure: 4-wire SPI write operation

The MSB bit of data will be output at SDA pin after the CSB falling edge, if DC pin is High. Only in the case of OTP data read, the 1st packet of output data are dummy data.

Figure: 4-wire SPI read operation

POWER MANAGEMENT

Power ON/OFF Sequence

- 1. Temperature sensor will be activated automatically for one-time sensing before enabling booster.
- 2. After refreshing display, VCOM will be set to floating automatically.
- 3. After RST_N rising, the waiting time for internal initial processing, greater than 1mS, is necessary. Any commands transmitted to chip during this time will be ignored.

Data Transmission Waveform

Example 1: After 3 cases, the VCOM driver will send 2 frame VCOM_DC and then floating; and source drivers output 0V.

- 1. All 7 LUT states (KW mode) or 10 LUT states (KWR mode) complete and VCEND=0.
- 2. Meet the state whose Times to Repeat =0 and VCEND=0
- 3. Meet the state whose all Number of Frames =0 and VCEND=0

Example2: After 4 cases, the VCOM driver will send 2 frame VCOM_DC and then floating; and source drivers output 0V.

- 1. While level selection in LUT (LUTC only) is "1111_1111b", all frame number are not '0' and repeat times are not '0', the driver will float VCOM.
- 2. All 7 LUT states (KW mode) or 10 LUT states (KWR mode) complete and VCEND=1.
- 3. Meet the state whose Times to Repeat =0 and VCEND=1.
- 4. Meet the state whose all Number of Frames =0 and VCEND=1.

Display Refresh Waveform

Example 1: After 3 cases, the VCOM driver will send 2 frame VCOM_DC and then floating; and source drivers output 0V.

- 1. All 7 LUT states (KW mode) or 10 LUT states (KWR mode) complete and VCEND=0.
- 2. Meet the state whose Times to Repeat =0 and VCEND=0
- 3. Meet the state whose all Number of Frames =0 and VCEND=0

Example2: After 4 cases, the VCOM driver will send 2 frame VCOM_DC and then floating; and source drivers output 0V.

- 1. While level selection in LUT (LUTC only) is "1111_1111b", all frame number are not '0' and repeat times are not '0', the driver will float VCOM.
- 2. All 7 LUT states (KW mode) or 10 LUT states (KWR mode) complete and VCEND=1.
- 3. Meet the state whose Times to Repeat =0 and VCEND=1.
- 4. Meet the state whose all Number of Frames =0 and VCEND=1.

BUSY N Signal

Commands, except reading command, are restricted by refreshing display (DRF / DSP) as listed in the following table.

BUSY_N is used to represent the status of internal action. Commands activating internal operation or calculation will cause BUSY_N falling to LOW. After actions completed, BUSY_N will return to HIGH.

Command	Refresh Restriction	BUSY_N flag
PSR	X	No action
PWR	X	No action
POF	X	Flag
PFS	X	No action
PON	X	Flag
PMES	X	Flag
BTST	X	No action
DSLP	X	Flag
AUTO	X	Flag
DTM1	X	No action
DSP	X	Flag
DRF	X	Flag
DTM2	X	No action
LUTC	X	No action
LUTWW	X	No action
LUTWB/LUTW	X	No action
LUTBW/LUTR	X	No action
LUTBB/LUTB	X	No action
LUTOPT	X	No action
KWOPT	X	No action
PLL	X	No action
TSC	X	Flag
TSE	X	No action
TSW	X	No action
TSR	X	No action
PBC	X	
CDI	X	No action
LPD	X	No action Flag
EVS	X	
TCON	X X	No action
		No action
TRES	X X	No action
GSST	X V	No action
REV		No action
FLG	V	No action
AMV	X	Flag
VVDOO	V	No action
VDCS	X	No action
PTL	X	No action
PTIN	X	No action
PTOUT	X	No action
PGM	X	No action
APG	X	Flag
ROTP	X	No action
CCSET	X	No action
PWS	X	No action
LVSEL	X	No action
TSSET	X	No action

V: Accepted, X: Ignored

OTP ADDRESS MAPPING

The size of the internal One Time Programmable (OTP) memory is 6K bytes, and the address is from 0x000 to 0x17FF. The unprogrammed bit is logic 1. Only the bit at logic 1 can be programmed to logic 0, but the bit at logic 0 cant be converted to logic 1.

There are 2 areas (0x0BDD~0x0BFF, 0x17DD~0x17FF) reserved for Good Display only. Write all 0xFF of data to skip the 2 areas. The recommended voltage of VPP during programming is 7.75V. In conditions other than programming, let VPP float or be connected to GND. The maximum current of VPP during programming is 5mA.

There are 2 banks in the internal OTP, and each bank has 3K bytes storage memory. The formats of each bank are the same, and the selection of bank is controlled by Check Code (0x0000 and 0x0C00). The 2 banks are used for two times programming.

Table 1: OTP Address Map

	Bank0		Bank1
Address	Content	Address	Content
0x0000	Check Code (0xA5)	0x0C00	Check Code (0xA5)
0x0001	LUT Version	0x0C01	LUT Version
0x0002	Temperature Boundary 0 (TB0)	0x0C02	Temperature Boundary 0 (TB0)
0x0003	Temperature Boundary 1 (TB1)	0x0C03	Temperature Boundary 1 (TB1)
0x0004	Temperature Boundary 2 (TB2)	0x0C04	Temperature Boundary 2 (TB2)
0x0005	Temperature Boundary 3 (TB3)	0x0C05	Temperature Boundary 3 (TB3)
0x0006	Temperature Boundary 4 (TB4)	0x0C06	Temperature Boundary 4 (TB4)
0x0007	Temperature Boundary 5 (TB5)	0x0C07	Temperature Boundary 5 (TB5)
0x0008	Temperature Boundary 6 (TB6)	0x0C08	Temperature Boundary 6 (TB6)
0x0009	Temperature Boundary 7 (TB7)	0x0C09	Temperature Boundary 7 (TB7)
0x000A	Temperature Boundary 8 (TB8)	0x0C0A	Temperature Boundary 8 (TB8)
0x000B	Temperature Boundary 9 (TB9)	0x0C0B	Temperature Boundary 9 (TB9)
0x000C	Temperature Boundary 10 (TB10)	0x0C0C	Temperature Boundary 10 (TB10)
0x000D~0x001E	Command Defatult Setting (Note 1)	0x0C0D~0x0C1E	Command Defatult Setting (Note 1)
0x001F~0x0048	Border LUT	0x0C1F~0x0C48	Border LUT
0x0049~0x013F	TR0 (Note 2)	0x0C49~0x0D3F	TR0 (Note 2)
0x0140~0x0236	TR1 (Note 2)	0x0D40~0x0E36	TR1 (Note 2)
0x0237~0x032D	TR2 (Note 2)	0x0E37~0x0F2D	TR2 (Note 2)
0x032E~0x0424	TR3 (Note 2)	0x0F2E~0x1024	TR3 (Note 2)
0x0425~0x051B	TR4 (Note 2)	0x1025~0x111B	TR4 (Note 2)
0x051C~0x0612	TR5 (Note 2)	0x111C~0x1212	TR5 (Note 2)
0x0613~0x0709	TR6 (Note 2)	0x1213~0x1309	TR6 (Note 2)
0x070A~0x0800	TR7 (Note 2)	0x130A~0x1400	TR7 (Note 2)
0x0801~0x08F7	TR8 (Note 2)	0x1401~0x14F7	TR8 (Note 2)
0x08F8~0x09EE	TR9 (Note 2)	0x14F8~0x15EE	TR9 (Note 2)
0x09EF~0x0AE5	TR10 (Note 2)	0x15EF~0x16E5	TR10 (Note 2)
0x0AE6~0x0BDC	TR11 (Note 2)	0x16E6~0x17DC	TR11 (Note 2)
0x0BDD~0x0BFF	Reserved	0x17DD~0x17FF	Reserved

Note:

- (1) See section "COMMAND DEFAULT SETTING" for more detail.
- (2) See section "LUT FORMAT IN OTP" for more detail.

TEMPERATURE RANGE

The temperature selection mechanism consists of a less-than-or-equal-to operator and 11 temperature boundary settings (TBx) to determine 12 temperature ranges. The sequence of mechanism is from TB0 to TB10, as shown below. If less than 12 tempeature ranges are used, the last TBx must be set to 0x7F to end the mechanism.

Procedure Order	Comparison Condition	Action & Segment Selection
1-0. Read 0x0000	Content = 0xA5 ?	Yes: Jump to Procedure 2 (Bank0), No: Jump to Procedure 1-1
1-1. Read 0x0C00	Content = 0xA5 ?	Yes: Jump to Procedure 2 (Bank1), No: Stop Refresh
2. Read 0x0002 / 0x0C02	Real Temperature ≦ TB0	Use TR0's table & setting, exit
3. Read 0x0003 / 0x0C03	Real Temperature ≤ TB1	Use TR1's table & setting, exit
4. Read 0x0004 / 0x0C04	Real Temperature ≤ TB2	Use TR2's table & setting, exit
5. Read 0x0005 / 0x0C05	Real Temperature ≤ TB3	Use TR3's table & setting, exit
6. Read 0x0006 / 0x0C06	Real Temperature ≤ TB4	Use TR4's table & setting, exit
7. Read 0x0007 / 0x0C07	Real Temperature ≤ TB5	Use TR5's table & setting, exit
8. Read 0x0008 / 0x0C08	Real Temperature ≤ TB6	Use TR6's table & setting, exit
9. Read 0x0009 / 0x0C09	Real Temperature ≤ TB7	Use TR7's table & setting, exit
10. Read 0x000A / 0x0C0A	Real Temperature ≤ TB8	Use TR8's table & setting, exit
11. Read 0x000B / 0x0C0B	Real Temperature ≤ TB9	Use TR9's table & setting, exit
12. Read 0x000C / 0x0C0C	Real Temperature ≤ TB10	Use TR10's table & setting, exit
13. Other	Real Temperature > TB10	Use TR11's table & setting, finish

Note: TRx's content is defined in "LUT FORMAT IN OTP" section.

Example:

If temperature = -20 °C, TR0 is selected.

If temperature = -10 $^{\circ}$ C, TR1 is selected.

If temperature = 0 °C, TR2 is selected.

If temperature = 20 $^{\circ}$ C, TR4 is selected.

If temperature = 40 $^{\circ}$ C, TR5 is selected.

If temperature > 40 $^{\circ}$ C, TR5 is selected.

OTP Address	Content	
002h	0xF1	(-15 °C)
003h	0xFB	(-5 °C)
004h	0x00	(0 °C)
005h	0x0A	(10 °C)
006h	0x1E	(30 °C)
007h	0x7F	-

Temperature Selection Mechanism

COMMAND DEFAULT SETTING

This function can modify the default value of command registers by the OTP content between address 0x000D~0x001E (or 0x0C0D~0x0C1E). The data of address 0x000D (or 0x0C0D) is the enable key of the function. Changing default value function is used to reduce the initial code length executed by the microcontroller.

Address (Hex)	D7	D6	D5	D4	D3	D2	D1	D0	Command	Registers	Original
0x000D	#	#	#	#	#	#	#	#	Check Code	0xA5 (Enable Key)	
0x000E			#	#	#	#			PSR	REG, KW/R, UD, SHL	0x0F
0x000F			#	#	-				PFS	T_VDS_OFF[1:0]	0x00
0x0010	#	#	#	#	#	#	#	#		BT_PHA[7:0]	0x17
0x0011	#	#	#	#	#	#	#	#	BTST	BT_PHB[7:0]	0x17
0x0012			#	#	#	#	#	#		BT_PHC[5:0]	0x17
0x0013							#	#	KWOPT	ATRED, NORED	0x00
0x0014	#		#	#	#		#	#	CDI	BDZ, BDV[1:0], N2OCP, DDX[1:0]	0x31
0x0015				-	#	#	#	#	CDI	CDI[3:0]	0x07
0x0016	#	#	#	#	#	#	#	#	TCON	S2G[3:0], G2S[3:0]	0x22
0x0017	#	#	#	#	#	0	0	0		HRES[7:3]	0xF0
0x0018				-	-		#	#	TRES	VRES[9:0]	0x02
0x0019	#	#	#	#	#	#	#	#		VKES[8.0]	0x00
0x001A	#	#	#	#	#	0	0	0		HST[7:3]	0x00
0x001B				-	-			#	GSST	VCTI0-01	0x00
0x001C	#	#	#	#	#	#	#	#		VST[8:0]	0x00
0x001D	#	#	#	#	#	#	#	#	PWS	VCOM_W[3:0], SD_W[3:0]	0x00
0x001E							#	#	LVSEL	LVD_SEL[1:0]	0x03

LUT FORMAT IN OTP

There are 12 TRs (temperature range) in a bank. Each TR has independent frame rate, voltage, XON settings, KW option enable setting and LUTs. The fomat of LUT is different in different mode. In KWR mode, there are only 4 LUTs including LUTC, LUTR, LUTW and LUTB in TRs. LUTC, LUTR, LUTW and LUTB have 10 states. In KW mode, there are 5 LUTs including LUT, LUTWW, LUTBW, LUTWB and LUTBB in TRs. All LUTs have 7 states. Besides, there is 1 common border LUT, regardless of temperature range, in KWR mode or KW mode.

Common Border LUT Table

Common Bordon	KWR Mode or KW Mode				
Common Border LUT Table	Address (Bank0 / Bank1)	Content			
	0x001F ~ 0x0048 / 0x0C1F ~ 0x0C48	LUTBD			

Separate VCOM LUT and Source LUT (Example: Bank0 / TR0)

		KWR Mode (KW/R=0)		KW Mode (KW/R=1)
	Address	Content	Address	Content
	0x0049	Frame Rate[3:0], VCOM_HV, VG Voltage[2:0]	0x0049	Frame Rate[3:0],VCOM_HV,VG Voltage[2:0]
	0x004A	0b, VCEND, VDH Voltage[5:0]	0x004A	0b, VCEND, VDH Voltage[5:0]
	0x004B	BDEND[1:0], VDL Voltage [5:0]	0x004B	BDEND[1:0], VDL Voltage [5:0]
	0x004C	XON[9:8], VDHR Voltage [5:0]	0x004C	XON[9:8], VDHR Voltage [5:0]
	0x004D	XON [7:0]	0x004D	XON [7:0]
	0x004E	KWE[9:8], VCOM_DC[5:0]	0x004E	00b, VCOM_DC[5:0]
	0x004F	KWE[7:0]	0x004F	LUTC
	0x0050 	LUTC (10 states)	0x0078	(7 states)
TR0	0x008B	(10 states)	0x0079	LUTWW
110	0x008C	000	0x00A2	(7 states)
	I	LUTR	0x00A3	LUTKW
	0x00C7	(10 states)	0x00CC	(7 states)
			0x00CD	LUTWK
	0x00C8	LUTW (10 states)	0x00F6	(7 states)
	0x0103	(10 states)	0x00F7	LUTKK
	0x0104 0x013F	LUTK	0x0120	(7 states)
		(10 states)	0x0121 	Reserved
			0x013F	

DEEP SLEEP MODE

After deep sleep command (R07H) is transmitted, GD8102 enter "Deep Sleep Mode", and leaves by RST_Nfalling. In "Deep Sleep Mode", the control signals are recommended tied to 0v to avoid IO leakage current. And the die must be keep away from light which causes photoelectric effect to make internal nodes unstable.

PANEL BREAK CHECK

The panel break check (PBC) function is accomplished by testing the connection of the ITO along panel edge. If the panel is broken, the loop ITO may be cut off. The connection check is judged by signal transmission from CHKGO to CHKGI.

Figure: Panel break check layout example

Figure: Panel Break Check (PBC) Sequence

CASCADE APPLICATION CIRCUIT

All commands sent to **Master** must be also sent to **Slave** except for data writing (DTM1 and DTM2). The display data must be separated to two parts, one is for **Master** and another is for **Slave**. They are transmitted to **Master** and **Slave** individually by using CSB1 and CSB2.

BOOSTER APPLICATION CIRCUIT

Recommended Device

- 1. Switch MOS NMOS: Vishay Si1308EDL $(V_{DS} > 20V, I_D > 500mA, V_{GS}(th) < 1.5V, C_{ISS} < 200pF, R_{DS}(on) < 400m\Omega)$
- 2. Schottky Diode: OnSemi MBR0530 (VR > 20V, IF > 500mA, IR < 1mA @ VR=15V, TA=100°C)

Recommended Resistor

Item	Pins	Resistance
Powers	VDD, VDDA, VDDIO, GND, GNDA, VDM	< 10 Ω
Boosters	VGL, VGH, GDR, RESE	< 10 Ω
Regulators	VDH, VDL, VDHR, VCOM, VDDD, VDDDO	< 10 Ω
Logics	MS, BS, CSB, SCL, SDA, GDR, etc.	< 50 Ω
OTP	VPP	< 20 Ω

ABSOLUTE MAXIMUM RATINGS

Signal	Item	Min	Max.	Unit
Vdd, Vddio, Vdda	Logic Supply voltage	-0.3	+6.0	V
VPP	OTP programming voltage	-0.3	+8.0	V
Vı	Digital input range	-0.3	VDDIO+0.3	V
VGH-VGL	Supply range	-	+44.0	V
Source				
VDH	Analog supply voltage – positive	+	V	
VDL	Analog supply voltage negative	-1	V	
VDHR	Analog supply voltage – positive	+	V	
Gate				
VGH	Analog supply voltage – positive	-0.3	+22	V
VGL	Analog supply voltage negative	-22	0.3	V
IVGH	Input rush current for VGH	(TBD)	(TBD)	mA
IVGL	Input rush current for VGL	(TBD)	(TBD)	mA
Tstg	Storage temperature range	-55	+125	°C

Warning:

If ICs are stressed beyond those listed above "absolute maximum ratings", they may be permanently destroyed. These are stress ratings only, and functional operation of the device at these or any other condition beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Symbol	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
VDDIO	IO supply voltage		2.3	3.3	3.6	V
VDD	Supply voltage		2.3	3.3	3.6	V
VDDA	DCDC driver supply voltage		2.3	3.3	3.6	V
VIL	LOW Level input voltage	Digital input pins	0	-	0.3xVdd	V
VIH	HIGH Level input voltage	Digital input pins	0.7xVDDIO		VDDIO	V
Vон	HIGH Level output voltage	Digital input pins, loн=400∪A	VDDIO-0.4	-		V
Vol	LOW Level Output voltage	Digital input pins, IoL=-400uA	0	-	0.4	V
lin	Input leakage current	Digital input pins except pull-up, pull-down pin	-1		1	uA
RIN	Pull-up/down impedance			200		Κς
Тор	Operating temperature		-30		85	°C
dVGH	VGH Supply voltage dev		-400	0	+400	mV
VGH-VGL	Voltage Range of VGH - VGL				40	V
dVDH	Supply voltage dev		-200	0	+200	mV
dVDL	Supply voltage dev		-200	0	+200	mV
dVDHR	Supply voltage dev		-200	0	+200	mV
dVCOM	Supply voltage dev		-200	0	+200	mV
Ron	Driver Output Resistance	For source driver, ToP=25°C, VouT = ±15V For gate driver, ToP=25°C, VouT = ±20V		16.0 4.0	38.4 8	K ς

VDD=VDDA=VDDIO=3.0V, TOP=25.0 °C

Symbol	Parameter	Conditions	MIN.	TYP.	MAX.	Unit
	Digital deep sleep current	VDDD OFF		0.3	0.5	uA
IVDD	Digital stand-by current	All stopped		8.2	10.0	uA
	Digital operating current			-	0.1	mA
	IO deep sleep current	VDDD OFF		0.1	0.3	uA
IVDDIO	IO stand-by current	Booster OFF		2.5	4.0	uA
	IO operating current	No load			0.1	mA
	DCDC deep sleep current	VDDD OFF		0.1	0.3	uA
	DCDC stand-by current	Booster OFF		15.5	20.0	uA
		Source output VDH/VDL,			4.0	
		Duty=0.5, Period =126us				
		VCOM DC			4.0	
IVDDA		No load				
	DCDC operating current	Source output VDH/VDL,				mA
		Duty=0.5, Period =126us,				
		VCOM DC		20.0		
		External cap: 415pF,				
		NMOS=340pF				

AC CHARACTERISTICS

Figure: 3-wire Serial Interface Characteristics (Write mode)

Figure: 3-wire Serial Interface Characteristics (Read mode)

Symbol	Signal / Parameter	Conditions	Min.	Тур.	Max.	Unit
T _{CSS}		Chip select setup time	60			ns
T _{CSH}	CSB	Chip select hold time	65			ns
T _{SCC}	COB	Chip select setup time	20			ns
T_CHW		Chip select setup time	40			ns
T _{SCYCW}		Serial clock cycle (Write)	100			ns
T _{SHW}		SCL "H" pulse width (Write)	35			ns
T _{SLW}	SCL	SCL "L" pulse width (Write)	35			ns
T _{SCYCR}	SCL	Serial clock cycle (Read)	150			ns
T _{SHR}		SCL "H" pulse width (Read)	60			ns
T_{SLR}		SCL "L" pulse width (Read)	60			ns
T_{SDS}	SDA	Data setup time	30			ns
T _{SDH}	(DIN)	Data hold time	30			ns
T _{ACC}	SDA	Access time			50	ns
Тон	(DOUT)	Output disable time	15			ns

Figure: 4-wire Serial Interface Characteristics (Write mode)

Figure: 4-wire Serial Interface Characteristics (Read mode)

Symbol	Signal / Parameter	Conditions	Min.	Тур.	Max.	Unit
T _{CSS}		Chip select setup time	60			ns
T _{CSH}	CSB	Chip select hold time	65			ns
T _{SCC}	CSB	Chip select setup time	20			ns
T _{CHW}		Chip select setup time	40			ns
T _{SCYCW}		Serial clock cycle (Write)	100			ns
T _{SHW}		SCL "H" pulse width (Write)	35			ns
T _{SLW}	SCL	SCL "L" pulse width (Write)	35			ns
T _{SCYCR}	SCL	Serial clock cycle (Read)	150			ns
T _{SHR}		SCL "H" pulse width (Read)	60			ns
T _{SLR}		SCL "L" pulse width (Read)	60			ns
T _{DCS}	DC	DC setup time	30			ns
T _{DCH}	DC	DC hold time	30			ns
T _{SDS}	SDA	Data setup time	30			ns
T _{SDH}	(DIN)	Data hold time	30			ns
T _{ACC}	SDA	Access time			50	ns
Тон	(DOUT)	Output disable time	15			ns

PHYSICAL DIMENSIONS

Die Size: $(11130 \mu M 6 40 \mu M) x (1190 \mu M 6 40 \mu M)$

Die Thickness: 300 µM 6 20µM

Die TTV: $(D_{MAX} - D_{MIN})$ within die $\leq 2\mu M$

Bump Height: 15 µM 6 3µM

 $(H_{MAX}-H_{MIN})$ within die $\leq 2\mu M$

Bump Size: $16 \mu M \times 75 \mu M 6 2 \mu M$

/ 5g/Mil²

Bump Area: 1200 μM²
Bump Pitch: 14 μM
Bump Space: 1 μM 6 3μM
Hardness: 65 Hv 6 15Hv

Coordinate origin: Chip center
Pad reference: Pad center

Shear:

Bump Height Coplanarity within Die

ALIGNMENT MARK INFORMATION

Location:

D-Left Mark D-Right Mark

Shapes and Points:

Point Coordinates:

	D-Left Mark		D-Righ	nt Mark
Point	X	Υ	Х	Υ
C(X)	-5440	-320	5440	-320
1	-5450	-290	5430	-290
2	-5430	-290	5450	-290
3	-5430	-310	5450	-310
4	-5410	-310	5470	-310
5	-5410	-330	5470	-330
6	-5430	-330	5450	-330
7	-5430	-350	5450	-350
8	-5450	-350	5430	-350
9	-5450	-330	5430	-330
10	-5470	-330	5410	-330
11	-5470	-310	5410	-310
12	-5450	-310	5430	-310
13	-5470	-290	5460	-290
14	-5460	-290	5470	-290
15	-5460	-300	5470	-300
16	-5470	-300	5460	-300

PAD COORDINATES

#	Pad	Х	Υ	W	Н
1	NC	-5474	-503	28	70
2	VCOM	-5428	-503	28	70
3	VCOM	-5382	-503	28	70
4	VCOM	-5336	-503	28	70
5	VCOM	-5290	-503	28	70
6	VCOM	-5244	-503	28	70
7	VCOM	-5198	-503	28	70
8	VCOM	-5152	-503	28	70
9	VCOM	-5106	-503	28	70
10	VDM	-5060	-503	28	70
11	VDM	-5014	-503	28	70
12	VGL	-4968	-503	28	70
13	VGL	-4922	-503	28	70
14	VGL	-4876	-503	28	70
15	VGL	-4830	-503	28	70
16	VGL	-4784	-503	28	70
17	VGL	-4738	-503	28	70
18	VGL	-4692	-503	28	70
19	VGL	-4646	-503	28	70
20	VGL	-4600	-503	28	70
21	VGL	-4554	-503	28	70
22	VGL	-4508	-503	28	70
23	GNDA	-4462	-503	28	70
24	VDL	-4416	-503	28	70
25	VDL	-4370	-503	28	70
26	VDL	-4324	-503	28	70
27	VDL	-4278	-503	28	70
28	VDL	-4232	-503	28	70
29	VDL	-4186	-503	28	70
30	VDL	-4140	-503	28	70
31	VDL	-4094	-503	28	70
32	VDL	-4048	-503	28	70
33	GNDA	-4002	-503	28	70
34	VGH	-3956	-503	28	70
35	VGH	-3910	-503	28	70
36	VGH	-3864	-503	28	70
37	VGH	-3818	-503	28	70
38	VGH	-3772	-503	28	70
39	VGH	-3772	-503	28	70
40	VGH	-3680	-503	28	70
41	VGH	-3634	-503	28	70
42	VGH	-3588	-503	28	70
43	VGH	-3542	-503	28	70
44	VGH	-3496	-503	28	70
45	GNDA	-3450	-503	28	70
46	VDH	-3404	-503	28	70
47	VDH	-3358	-503	28	70
48	VDH	-3312	-503	28	70
49	VDH	-3266	-503	28	70
50	VDH	-3220	-503	28	70
51	VDH	-3174	-503	28	70
52	VDH	-3128	-503	28	70
53	VDH	-3082	-503	28	70
54	VDH	-3036	-503	28	70
55	GNDA	-2990	-503	28	
56	VPP	-2944	-503		70
50	VFF	-2344	-503	28	70

#	Pad	Х	Υ	W	Н
57	VPP	-2898	-503	28	70
58	VPP	-2852	-503	28	70
59	VPP	-2806	-503	28	70
60	VPP	-2760	-503	28	70
61	VPP	-2714	-503	28	70
62	VPP	-2668	-503	28	70
63 64	VDDDO VDDDO	-2622 -2576	-503 -503	28 28	70
65	VDDDO	-2570	-503	28	70 70
66	VDDDO	-2484	-503	28	70
67		1		28	
68	VDDDO VDDDI	-2438 -2392	-503 -503		70 70
69	VDDDI	-2346	-503	28 28	70
70	VDDDI	-2300	-503	28	70
71	VDDDI	-2254	-503	28	70
72	VDDDI	-2208	-503	28	70
73	VDM	-2162	-503	28	70
74	VDM	-2116	-503	28	70
75 76	GNDA	-2070	-503	28	70
76	GNDA	-2024	-503	28	70
77	GNDA	-1978	-503	28	70
78	GNDA	-1932	-503	28	70
79	GNDA	-1886	-503	28	70
80	GNDA	-1840	-503	28	70
81	GNDA	-1794	-503	28	70
82	GNDA	-1748	-503	28	70
83	GNDA	-1702	-503	28	70
84	GNDA	-1656	-503	28	70
85	GND	-1610	-503	28	70
86	GND	-1564	-503	28	70
87	GND	-1518	-503	28	70
88	GND	-1472	-503	28	70
89	GND	-1426	-503	28	70
90	GND	-1380	-503	28	70
91	GND	-1334	-503	28	70
92	GND	-1288	-503	28	70
93	GND	-1242	-503	28	70
94	GND	-1196	-503	28	70
95	GND	-1150	-503	28	70
96	GND	-1104	-503	28	70
97	VDDA	-1058	-503	28	70
98	VDDA	-1012	-503	28	70
99	VDDA	-966	-503	28	70
100	VDDA	-920	-503	28	70
101	VDDA	-874	-503	28	70
102	VDDA	-828	-503	28	70
103	VDDA	-782	-503	28	70
104	VDDA	-736	-503	28	70
105	VDDA	-690	-503	28	70
106	VDDA	-644	-503	28	70
107	VDD	-598	-503	28	70
108	VDD	-552	-503	28	70
109	VDD	-506	-503	28	70
110	VDD	-460	-503	28	70
111	VDD	-414	-503	28	70
112	VDD	-368	-503	28	70

#	Pad	Х	Υ	W	Н
113	VDD	-322	-503	28	70
114	VDDIO	-276	-503	28	70
115	VDDIO	-230	-503	28	70
116	VDDIO	-184	-503	28	70
117	VDDIO	-138	-503	28	70
118	DUMMY	-92	-503	28	70
119	TEST1	-46	-503	28	70
120	TEST2	0	-503	28	70
121	TEST3	46	-503	28	70
122	VSYNC	92	-503	28	70
123	CL	138	-503	28	70
124	CDEO	184	-503	28	70
125	DUMMY	230	-503	28	70
126	DUMMY	276	-503	28	70
127	DUMMY	322	-503	28	70
128	CDAO	368	-503	28	70
129	DUMMY	414	-503	28	70
130	DUMMY	460	-503	28	70
131	CHKGI	506	-503	28	70
132	DUMMY	552	-503	28	70
133	DUMMY	598	-503	28	70
134	SDA	644	-503	28	70
135	DUMMY	690	-503	28	70
136	DUMMY	736	-503	28	70
137	SCL	782	-503	28	70
138	GND	828	-503	28	70
139	CSB	874	-503	28	70
140	VDDIO	920	-503	28	70
141	GND	966	-503	28	70
142	DC	1012	-503	28	70
143	VDDIO	1012	-503	28	70
144	RST N	1104	-503	28	70
145	DUMMY	1150	-503	28	70
146	DUMMY	1196	-503	28	70
147	DUMMY	1242	-503	28	70
148	BUSY N	1288	-503	28	70
149	DUMMY	1334	-503	28	70
150	GND	1380	-503	28	70
151	BS	1426	-503	28	70
152	VDDIO	1472	-503	28	70
153	MS	1518	-503	28	70
154	GND	1564	-503	28	70
155	GND	1610	-503	28	70
156	TSDA	1656	-503	28	70
157	TSDA	1702	-503	28	70
158	TSCL	1748	-503	28	70
159	TSCL	1794	-503	28	70
160	GND	1840	-503	28	70
161	GND	1886	-503	28	70
162	CHKGO	1932	-503	28	70
163	GND	1978	-503	28	70
164	GND	2024	-503	28	70
165	CDAI	2070	-503	28	70
166	CDEI	2116	-503	28	70
167	DUMMY	2162	-503	28	70
168	DUMMY	2208	-503	28	70
169	DUMMY	2254	-503	28	70
170	CL	2300	-503	28	70
171	DUMMY	2346	-503	28	70
17.1	DOIVIIVI I	2070	505		7.0

ш	Dod	V	V	14/	
172	Pad	X 2392	Y 502	W 20	H
172 173	VSYNC DUMMY	2438	-503 -503	28 28	70 70
	_			28	
174 175	DUMMY	2484	-503	28	70
	DUMMY	2530	-503		70
176	TEST4	2576	-503	28	70
177	TEST5	2622	-503	28	70
178	DUMMY	2668	-503	28	70
179	GND	2714	-503	28 28	70 70
180 181	DUMMY TEST6	2760 2806	-503 -503	28	
182		2852		28	70
183	TEST7 GND	2898	-503 -503	28	70 70
184	DUMMY	2944	-503	28	
185	GND	2990	-503	28	70 70
186	TEST8	3036	-503	28	70
187	TEST9	3082	-503	28	70
188	DUMMY	3128	-503	28	70
189	GND	3174	-503	28	70
190	TEST10	3220	-503	28	70
191	DUMMY	3266	-503	28	70
192	TEST11	3312	-503	28	70
193	DUMMY	3358	-503	28	70
194	DUMMY	3404	-503	28	70
195	TEST12	3450	-503	28	70
196	DUMMY	3496	-503	28	70
197	TEST13	3542	-503	28	70
198	DUMMY	3588	-503	28	70
199	DUMMY	3634	-503	28	70
200	VDHR	3680	-503	28	70
201	VDHR	3726	-503	28	70
202	VDHR	3772	-503	28	70
203	VDHR	3818	-503	28	70
204	VDHR	3864	-503	28	70
205	VDHR	3910	-503	28	70
206	VDHR	3956	-503	28	70
207	VDHR	4002	-503	28	70
208	DUMMY	4048	-503	28	70
209	DUMMY	4094	-503	28	70
210	DUMMY	4140	-503	28	70
211	DUMMY	4186	-503	28	70
212	DUMMY	4232	-503	28	70
213	DUMMY	4278	-503	28	70
214	GNDA	4324	-503	28	70
215	FB	4370	-503	28	70
216	FB	4416	-503	28	70
217	GNDA	4462	-503	28	70
218	RESE	4508	-503	28	70
219	RESE	4554	-503	28	70
220	GNDA	4600	-503	28	70
221	GDR	4646	-503	28	70
222	GDR	4692	-503	28	70
223	GDR	4738	-503	28	70
224	GDR	4784	-503	28	70
225	GDR	4830	-503	28	70
226	GDR	4876	-503	28	70
227	GDR	4922	-503	28	70
228	GDR	4968	-503	28	70
229	VDM	5014	-503	28	70
230	VDM	5060	-503	28	70

#	Pad	Х	Υ	W	Н
231	VCOM	5106	-503	28	70
232	VCOM	5152	-503	28	70
233	VCOM	5198	-503	28	70
234	VCOM	5244	-503	28	70
235	VCOM	5290	-503	28	70
236	VCOM	5336	-503	28	70
237	VCOM	5382	-503	28	70
238	VCOM	5428	-503	28	70
239	NC NC	5474	-503	28	70
240	NC NC	5453	518.5	16	75
241	GD<0>	5439	418.5	16	75
242	G<0>	5425	518.5	16	75
243	G<2>	5411	418.5	16	75
244	G<4>	5397	518.5	16	75
245	G<6>	5383	418.5	16	75
246	G<8>	5369	518.5	16	75
247	G<10>	5355	418.5	16	75
248	G<12>	5341	518.5	16	75
249	G<14>	5327	418.5	16	75
250	G<16>	5313	518.5	16	75
251	G<18>	5299	418.5	16	75
252	G<20>	5285	518.5	16	75
253	G<22>	5271	418.5	16	75
254	G<24>	5257	518.5	16	75
255	G<26>	5243	418.5	16	75
256	G<28>	5229	518.5	16	75
257	G<30>	5215	418.5	16	75
258	G<32>	5201	518.5	16	75
259	G<34>	5187	418.5	16	75
260	G<36>	5173	518.5	16	75
261	G<38>	5159	418.5	16	75
262	G<40>	5145	518.5	16	75
263	G<42>	5131	418.5	16	75
264	G<44>	5117	518.5	16	75
265	G<46>	5103	418.5	16	75
266	G<48>	5089	518.5	16	75
267	G<50>	5075	418.5	16	75
268	G<52>	5061	518.5	16	75
269	G<54>	5047	418.5	16	75
270	G<56>	5033	518.5	16	75
271	G<58>	5019	418.5	16	75
272	G<60>	5005	518.5	16	75
273	G<62>	4991	418.5	16	75
274	G<64>	4977	518.5	16	75
275	G<66>	4963	418.5	16	75
276	G<68>	4949	518.5	16	75
277	G<70>	4935	418.5	16	75
278	G<72>	4921	518.5	16	75
279	G<74>	4907	418.5	16	75 75
280	G<76>	4893	518.5	16	75 75
281	G<78>	4879	418.5	16	75 75
282	G<80>	4865	518.5	16	75 75
283	G<82>	4851	418.5	16	75 75
284	G<84>	4837	518.5	16	75 75
285	G<86>	4823	418.5	16	75 75
286 287	G<88>	4809	518.5	16 16	75 75
	G<90> G<92>	4795 4781	418.5 518.5	16 16	75 75
288 289	G<94>	4767	518.5 418.5	16	75
209	G \34/	7101	+10.5	10	10

- 4	Deal	V	V	18/	
# 290	Pad G<96>	X 4753	Y 518.5	W 16	H 75
290				16	_
	G<98>	4739	418.5	16	75 75
292	G<100>	4725	518.5	16	75 75
293	G<102> G<104>	4711	418.5	16	75
294 295		4697	518.5	16	75 75
	G<106>	4683	418.5	16	75
296	G<108>	4669	518.5	16	75
297	G<110>	4655	418.5	16	75
298	G<112>	4641	518.5	16	75
299	G<114>	4627	418.5	16	75
300	G<116>	4613	518.5	16	75
301	G<118>	4599	418.5	16	75
302	G<120>	4585	518.5	16	75
303	G<122>	4571	418.5	16	75
304	G<124>	4557	518.5	16	75
305	G<126>	4543	418.5	16	75
306	G<128>	4529	518.5	16	75
307	G<130>	4515	418.5	16	75
308	G<132>	4501	518.5	16	75
309	G<134>	4487	418.5	16	75
310	G<136>	4473	518.5	16	75
311	G<138>	4459	418.5	16	75
312	G<140>	4445	518.5	16	75
313	G<142>	4431	418.5	16	75
314	G<144>	4417	518.5	16	75
315	G<146>	4403	418.5	16	75
316	G<148>	4389	518.5	16	75
317	G<150>	4375	418.5	16	75
318	G<152>	4361	518.5	16	75
319	G<154>	4347	418.5	16	75
320	G<156>	4333	518.5	16	75
321	G<158>	4319	418.5	16	75
322 323	G<160>	4305	518.5	16	75
	G<162>	4291	418.5	16	75 75
324 325	G<164> G<166>	4277 4263	518.5 418.5	16 16	75 75
326	G<168>	4249	518.5	16	75 75
327 328	G<170>	4235	418.5	16	
329	G<172> G<174>	4221 4207	518.5 418.5	16 16	75 75
330	G<174>	4193	518.5	16	75
331		4179			
	G<178>		418.5	16 16	75 75
332 333	G<180> G<182>	4165 4151	518.5 418.5	16 16	75
334	G<184>	4137	518.5	16	75
335	G<186>	4123	418.5	16	75
336	G<188>	4109	518.5	16	75
337	G<190>	4095	418.5	16	75
338	G<190>	4095	518.5	16	75
339	G<192>	4067	418.5	16	75
340	G<194>	4057	518.5	16	75
341	G<198>	4033	418.5	16	75
342	G<200>	4039	518.5	16	75
343	G<200>	4023	418.5	16	75
344	G<204>	3997	518.5	16	75
345	G<206>	3983	418.5	16	75
346	G<208>	3969	518.5	16	75
347	G<210>	3955	418.5	16	75
348	G<212>	3941	518.5	16	75
J 7	U 1212	J J J J	0.0.0	٦	, ,

# Pad X Y W 349 G<214> 3927 418.5 16 350 G<216> 3913 518.5 16 351 G<218> 3899 418.5 16 352 G<220> 3885 518.5 16 353 G<222> 3871 418.5 16 354 G<224> 3857 518.5 16 355 G<226> 3843 418.5 16 356 G<228> 3829 518.5 16 357 G<230> 3815 418.5 16 358 G<232> 3801 518.5 16 359 G<234> 3787 418.5 16 360 G<238> 3787 418.5 16 361 G<238> 3773 518.5 16 362 G<240> 3745 518.5 16 363 G<224> 3731 418.5 16 364 G<244> 3717 518.5 16	75 75 75 75 75 75 75 75 75 75 75 75 75
350 G<216> 3913 518.5 16 351 G<218> 3899 418.5 16 352 G<220> 3885 518.5 16 353 G<222> 3871 418.5 16 354 G<224> 3857 518.5 16 355 G<226> 3843 418.5 16 356 G<228> 3829 518.5 16 357 G<230> 3815 418.5 16 358 G<232> 3801 518.5 16 359 G<234> 3787 418.5 16 360 G<236> 3773 518.5 16 361 G<238> 3759 418.5 16 362 G<240> 3745 518.5 16 363 G<242> 3731 418.5 16 364 G<244> 3717 518.5 16	75 75 75 75 75 75 75 75 75 75 75
351 G<218> 3899 418.5 16 352 G<220> 3885 518.5 16 353 G<222> 3871 418.5 16 354 G<224> 3857 518.5 16 355 G<226> 3843 418.5 16 356 G<228> 3829 518.5 16 357 G<230> 3815 418.5 16 358 G<232> 3801 518.5 16 359 G<234> 3787 418.5 16 360 G<236> 3773 518.5 16 361 G<238> 3759 418.5 16 362 G<240> 3745 518.5 16 363 G<242> 3731 418.5 16 364 G<244> 3717 518.5 16	75 75 75 75 75 75 75 75 75
352 G<220> 3885 518.5 16 353 G<222> 3871 418.5 16 354 G<224> 3857 518.5 16 355 G<226> 3843 418.5 16 356 G<228> 3829 518.5 16 357 G<230> 3815 418.5 16 358 G<232> 3801 518.5 16 359 G<234> 3787 418.5 16 360 G<236> 3773 518.5 16 361 G<238> 3759 418.5 16 362 G<240> 3745 518.5 16 363 G<242> 3731 418.5 16 364 G<244> 3717 518.5 16	75 75 75 75 75 75 75 75
353 G<222> 3871 418.5 16 354 G<224> 3857 518.5 16 355 G<226> 3843 418.5 16 356 G<228> 3829 518.5 16 357 G<230> 3815 418.5 16 358 G<232> 3801 518.5 16 359 G<234> 3787 418.5 16 360 G<236> 3773 518.5 16 361 G<238> 3759 418.5 16 362 G<240> 3745 518.5 16 363 G<242> 3731 418.5 16 364 G<244> 3717 518.5 16	75 75 75 75 75 75 75 75
354 G<224> 3857 518.5 16 355 G<226> 3843 418.5 16 356 G<228> 3829 518.5 16 357 G<230> 3815 418.5 16 358 G<232> 3801 518.5 16 359 G<234> 3787 418.5 16 360 G<236> 3773 518.5 16 361 G<238> 3759 418.5 16 362 G<240> 3745 518.5 16 363 G<242> 3731 418.5 16 364 G<244> 3717 518.5 16	75 75 75 75 75 75
355 G<226> 3843 418.5 16 356 G<228> 3829 518.5 16 357 G<230> 3815 418.5 16 358 G<232> 3801 518.5 16 359 G<234> 3787 418.5 16 360 G<236> 3773 518.5 16 361 G<238> 3759 418.5 16 362 G<240> 3745 518.5 16 363 G<242> 3731 418.5 16 364 G<244> 3717 518.5 16	75 75 75 75 75
356 G<228> 3829 518.5 16 357 G<230> 3815 418.5 16 358 G<232> 3801 518.5 16 359 G<234> 3787 418.5 16 360 G<236> 3773 518.5 16 361 G<238> 3759 418.5 16 362 G<240> 3745 518.5 16 363 G<242> 3731 418.5 16 364 G<244> 3717 518.5 16	75 75 75 75
357 G<230> 3815 418.5 16 358 G<232> 3801 518.5 16 359 G<234> 3787 418.5 16 360 G<236> 3773 518.5 16 361 G<238> 3759 418.5 16 362 G<240> 3745 518.5 16 363 G<242> 3731 418.5 16 364 G<244> 3717 518.5 16	75 75 75
358 G<232> 3801 518.5 16 359 G<234> 3787 418.5 16 360 G<236> 3773 518.5 16 361 G<238> 3759 418.5 16 362 G<240> 3745 518.5 16 363 G<242> 3731 418.5 16 364 G<244> 3717 518.5 16	75 75
359 G<234> 3787 418.5 16 360 G<236> 3773 518.5 16 361 G<238> 3759 418.5 16 362 G<240> 3745 518.5 16 363 G<242> 3731 418.5 16 364 G<244> 3717 518.5 16	75
360 G<236> 3773 518.5 16 361 G<238> 3759 418.5 16 362 G<240> 3745 518.5 16 363 G<242> 3731 418.5 16 364 G<244> 3717 518.5 16	
361 G<238> 3759 418.5 16 362 G<240> 3745 518.5 16 363 G<242> 3731 418.5 16 364 G<244> 3717 518.5 16	/ ;)
362 G<240> 3745 518.5 16 363 G<242> 3731 418.5 16 364 G<244> 3717 518.5 16	
363 G<242> 3731 418.5 16 364 G<244> 3717 518.5 16	75 75
364 G<244> 3717 518.5 16	
	75 75
365 G<246> 3703 418.5 16	
000 0 210 0100 11010 10	75
366 G<248> 3689 518.5 16	75
367 G<250> 3675 418.5 16	75
368 G<252> 3661 518.5 16	75
369 G<254> 3647 418.5 16	75
370 G<256> 3633 518.5 16	75
371 G<258> 3619 418.5 16	75
372 G<260> 3605 518.5 16	75
373 G<262> 3591 418.5 16	75
374 G<264> 3577 518.5 16	75
375 G<266> 3563 418.5 16	75
376 G<268> 3549 518.5 16	75
377 G<270> 3535 418.5 16	75
378 G<272> 3521 518.5 16	75
379 G<274> 3507 418.5 16	75
380 G<276> 3493 518.5 16	75
381 G<278> 3479 418.5 16	75
382 G<280> 3465 518.5 16	75
383 G<282> 3451 418.5 16	75
384 G<284> 3437 518.5 16	75
385 G<286> 3423 418.5 16	75
386 G<288> 3409 518.5 16	75
387 G<290> 3395 418.5 16	75
388 G<292> 3381 518.5 16	75
389 G<294> 3367 418.5 16	75
390 G<296> 3353 518.5 16	75
391 G<298> 3339 418.5 16	75
392 G<300> 3325 518.5 16	75
393 G<302> 3311 418.5 16	75
394 G<304> 3297 518.5 16	75
395 G<306> 3283 418.5 16	75
396 G<308> 3269 518.5 16	75
397 G<310> 3255 418.5 16	75
398 G<312> 3241 518.5 16	75
399 G<314> 3227 418.5 16	75
400 G<316> 3213 518.5 16	75
401 G<318> 3199 418.5 16	75
402 G<320> 3185 518.5 16	75
403 G<322> 3171 418.5 16	75
404 G<324> 3157 518.5 16	75
405 G<326> 3143 418.5 16	75
406 G<328> 3129 518.5 16	75
407 G<330> 3115 418.5 16	75

#	Pad	Х	Υ	W	Н
408	G<332>	3101	518.5	16	75
409	G<334>	3087	418.5	16	75
410	G<336>	3073	518.5	16	75
411	G<338>	3059	418.5	16	75
412	G<340>	3045	518.5	16	75
413	G<342>	3031	418.5	16	75
414	G<344>	3017	518.5	16	75
415	G<346>	3003	418.5	16	75
416	G<348>	2989	518.5	16	75
417	G<350>	2975	418.5	16	75
418	G<352>	2961	518.5	16	75
419	G<354>	2947	418.5	16	75
420	G<356>	2933	518.5	16	75
421	G<358>	2919	418.5	16	75
422	G<360>	2905	518.5	16	75
423	G<362>	2891	418.5	16	75
424	G<364>	2877	518.5	16	75
425	G<366>	2863	418.5	16	75
426	G<368>	2849	518.5	16	75
427	G<370>	2835	418.5	16	75
428	G<372>	2821	518.5	16	75
429	G<374>	2807	418.5	16	75
430	G<376>	2793	518.5	16	75
431	G<378>	2779	418.5	16	75
432	G<380>	2765	518.5	16	75
433	G<382>	2751	418.5	16	75
434	G<384>	2737	518.5	16	75
435	G<386>	2723	418.5	16	75
436	G<388>	2709	518.5	16	75
437	G<390>	2695	418.5	16	75
438	G<392>	2681	518.5	16	75
439	G<394>	2667	418.5	16	75
440	G<396>	2653	518.5	16	75
441	G<398>	2639	418.5	16	75
442	G<400>	2625	518.5	16	75
443	G<402>	2611	418.5	16	75
444	G<404>	2597	518.5	16	75
445	G<406>	2583	418.5	16	75
446	G<408>	2569	518.5	16	75
447	G<410>	2555	418.5	16	75
448	G<412>	2541	518.5	16	75
449	G<414>	2527	418.5	16	75
450	G<416>	2513	518.5	16	75
451	G<418>	2499	418.5	16	75
452	G<420>	2485	518.5	16	75
453	G<422>	2471	418.5	16	75
454	G<424>	2457	518.5	16	75
455	G<426>	2443	418.5	16	75 75
456	G<428>	2429	518.5	16	75 75
457	G<430>	2415	418.5	16	75 75
458	G<432>	2401	518.5	16	75 75
459	G<434>	2387	418.5	16 16	75 75
460 461	G<436>	2373	518.5	16	75 75
462	G<438> G<440>	2359 2345	418.5 518.5	16	75 75
462	G<440>		418.5	16	
464	G<4442>	2331	518.5	16	75 75
465	G<446>	2317 2303	418.5	16	75
466	G<448>	2289		16	75
400	G\440/	2209	518.5	10	70

467 G<450> 2275 418.5 16 468 G<452> 2261 518.5 16 469 G<454> 2247 418.5 16 470 G<456> 2233 518.5 16 471 G<458> 2219 418.5 16 472 G<460> 2205 518.5 16 473 G<462> 2191 418.5 16 474 G<464> 2177 518.5 16 475 G<466> 2163 418.5 16 476 G<468> 2149 518.5 16 477 G<470> 2135 418.5 16 479 G<474> 2107 418.5 16 480 G<476> 2093 518.5 16 481 G<478> 2079 418.5 16 482 G<480> 2065 518.5 16 483 G<482> 2051 418.5 <t< th=""><th>H 75 75 75 75 75 75 75 75 75 75 75 75 75</th></t<>	H 75 75 75 75 75 75 75 75 75 75 75 75 75
468 G<452> 2261 518.5 16 469 G<454> 2247 418.5 16 470 G<456> 2233 518.5 16 471 G<458> 2219 418.5 16 472 G<460> 2205 518.5 16 473 G<462> 2191 418.5 16 474 G<464> 2177 518.5 16 475 G<466> 2163 418.5 16 476 G<468> 2149 518.5 16 477 G<470> 2135 418.5 16 478 G<472> 2121 518.5 16 479 G<474> 2107 418.5 16 480 G<476> 2093 518.5 16 481 G<478> 2079 418.5 16 482 G<480> 2065 518.5 16 483 G<482> 2051 418.5 <t< td=""><td>75 75 75 75 75 75 75 75 75 75 75 75 75 7</td></t<>	75 75 75 75 75 75 75 75 75 75 75 75 75 7
469 G<454> 2247 418.5 16 470 G<456> 2233 518.5 16 471 G<458> 2219 418.5 16 472 G<460> 2205 518.5 16 473 G<462> 2191 418.5 16 474 G<464> 2177 518.5 16 475 G<466> 2163 418.5 16 476 G<468> 2149 518.5 16 477 G<470> 2135 418.5 16 478 G<472> 2121 518.5 16 479 G<474> 2107 418.5 16 480 G<476> 2093 518.5 16 481 G<480> 2065 518.5 16 483 G<482> 2051 418.5 16 484 G<484> 2037 518.5 16	75 75 75 75 75 75 75 75 75 75 75 75 75
470 G<456> 2233 518.5 16 471 G<458> 2219 418.5 16 472 G<460> 2205 518.5 16 473 G<462> 2191 418.5 16 474 G<464> 2177 518.5 16 475 G<466> 2163 418.5 16 476 G<468> 2149 518.5 16 477 G<470> 2135 418.5 16 478 G<472> 2121 518.5 16 479 G<474> 2107 418.5 16 480 G<476> 2093 518.5 16 481 G<478> 2079 418.5 16 482 G<480> 2065 518.5 16 483 G<482> 2051 418.5 16 484 G<484> 2037 518.5 16	75 75 75 75 75 75 75 75 75 75 75 75
471 G<458> 2219 418.5 16 472 G<460> 2205 518.5 16 473 G<462> 2191 418.5 16 474 G<464> 2177 518.5 16 475 G<466> 2163 418.5 16 476 G<468> 2149 518.5 16 477 G<470> 2135 418.5 16 478 G<472> 2121 518.5 16 479 G<474> 2107 418.5 16 480 G<476> 2093 518.5 16 481 G<478> 2079 418.5 16 482 G<480> 2065 518.5 16 483 G<482> 2051 418.5 16 484 G<484> 2037 518.5 16	75 75 75 75 75 75 75 75 75 75 75
472 G<460> 2205 518.5 16 473 G<462> 2191 418.5 16 474 G<464> 2177 518.5 16 475 G<466> 2163 418.5 16 476 G<468> 2149 518.5 16 477 G<470> 2135 418.5 16 478 G<472> 2121 518.5 16 479 G<474> 2107 418.5 16 480 G<476> 2093 518.5 16 481 G<478> 2079 418.5 16 482 G<480> 2065 518.5 16 483 G<482> 2051 418.5 16 484 G<484> 2037 518.5 16	75 75 75 75 75 75 75 75 75 75
473 G<462> 2191 418.5 16 474 G<464> 2177 518.5 16 475 G<466> 2163 418.5 16 476 G<468> 2149 518.5 16 477 G<470> 2135 418.5 16 478 G<472> 2121 518.5 16 479 G<474> 2107 418.5 16 480 G<476> 2093 518.5 16 481 G<478> 2079 418.5 16 482 G<480> 2065 518.5 16 483 G<482> 2051 418.5 16 484 G<484> 2037 518.5 16	75 75 75 75 75 75 75 75 75 75
474 G<464> 2177 518.5 16 475 G<466> 2163 418.5 16 476 G<468> 2149 518.5 16 477 G<470> 2135 418.5 16 478 G<472> 2121 518.5 16 479 G<474> 2107 418.5 16 480 G<476> 2093 518.5 16 481 G<478> 2079 418.5 16 482 G<480> 2065 518.5 16 483 G<482> 2051 418.5 16 484 G<484> 2037 518.5 16	75 75 75 75 75 75 75 75 75 75
475 G<466> 2163 418.5 16 476 G<468> 2149 518.5 16 477 G<470> 2135 418.5 16 478 G<472> 2121 518.5 16 479 G<474> 2107 418.5 16 480 G<476> 2093 518.5 16 481 G<478> 2079 418.5 16 482 G<480> 2065 518.5 16 483 G<482> 2051 418.5 16 484 G<484> 2037 518.5 16	75 75 75 75 75 75 75 75 75
476 G<468> 2149 518.5 16 477 G<470> 2135 418.5 16 478 G<472> 2121 518.5 16 479 G<474> 2107 418.5 16 480 G<476> 2093 518.5 16 481 G<478> 2079 418.5 16 482 G<480> 2065 518.5 16 483 G<482> 2051 418.5 16 484 G<484> 2037 518.5 16	75 75 75 75 75 75 75
477 G<470> 2135 418.5 16 478 G<472> 2121 518.5 16 479 G<474> 2107 418.5 16 480 G<476> 2093 518.5 16 481 G<478> 2079 418.5 16 482 G<480> 2065 518.5 16 483 G<482> 2051 418.5 16 484 G<484> 2037 518.5 16	75 75 75 75 75 75 75
478 G<472> 2121 518.5 16 479 G<474> 2107 418.5 16 480 G<476> 2093 518.5 16 481 G<478> 2079 418.5 16 482 G<480> 2065 518.5 16 483 G<482> 2051 418.5 16 484 G<484> 2037 518.5 16	75 75 75 75 75 75
479 G<474> 2107 418.5 16 480 G<476> 2093 518.5 16 481 G<478> 2079 418.5 16 482 G<480> 2065 518.5 16 483 G<482> 2051 418.5 16 484 G<484> 2037 518.5 16	75 75 75 75 75
480 G<476> 2093 518.5 16 481 G<478> 2079 418.5 16 482 G<480> 2065 518.5 16 483 G<482> 2051 418.5 16 484 G<484> 2037 518.5 16	75 75 75 75
481 G<478> 2079 418.5 16 482 G<480> 2065 518.5 16 483 G<482> 2051 418.5 16 484 G<484> 2037 518.5 16	75 75 75
482 G<480> 2065 518.5 16 483 G<482> 2051 418.5 16 484 G<484> 2037 518.5 16	75 75
483 G<482> 2051 418.5 16 484 G<484> 2037 518.5 16	75
484 G<484> 2037 518.5 16	
	75
	75
	75
	75
	75
	75
	75
	75
	75
	75
	75
	75
	75
	75
	75
	75
	75
	75
	75
	75
504 S<0> 1673 518.5 16	75
505 S<1> 1659 418.5 16	75
506 S<2> 1645 518.5 16	75
507 S<3> 1631 418.5 16	75
508 S<4> 1617 518.5 16	75
509 S<5> 1603 418.5 16	75
510 S<6> 1589 518.5 16	75
511 S<7> 1575 418.5 16	75
	75
513 S<9> 1547 418.5 16	75
514 S<10> 1533 518.5 16	75
	75
	75
	75
	75
	75
	75
521 S<17> 1435 418.5 16	75
	75
	75
	75
525 S<21> 1379 418.5 16	75

,,		v		107	
#	Pad	X	Y	W	H
526	S<22>	1365	518.5	16	75
527	S<23>	1351	418.5	16	75
528	S<24>	1337	518.5	16	75
529	S<25>	1323	418.5	16	75
530	S<26>	1309	518.5	16	75
531	S<27>	1295	418.5	16	75
532	S<28>	1281	518.5	16	75
533	S<29>	1267	418.5	16	75
534	S<30>	1253	518.5	16	75
535	S<31>	1239	418.5	16	75
536	S<32>	1225	518.5	16	75
537	S<33>	1211	418.5	16	75
538	S<34>	1197	518.5	16	75
539	S<35>	1183	418.5	16	75
540	S<36>	1169	518.5	16	75
541	S<37>	1155	418.5	16	75
542	S<38>	1141	518.5	16	75
543	S<39>	1127	418.5	16	75
544	S<40>	1113	518.5	16	75
545	S<41>	1099	418.5	16	75
546	S<42>	1085	518.5	16	75
547	S<43>	1071	418.5	16	75
548	S<44>	1057	518.5	16	75
549	S<45>	1043	418.5	16	75
550	S<46>	1029	518.5	16	75
551	S<47>	1015	418.5	16	75
552	S<48>	1001	518.5	16	75
553	S<49>	987	418.5	16	75
554	S<50>	973	518.5	16	75
555	S<51>	959	418.5	16	75
556	S<52>	945	518.5	16	75
557	S<53>	931	418.5	16	75
558	S<54>	917	518.5	16	75
559	S<55>	903	418.5	16	75
560	S<56>	889	518.5	16	75
561	S<57>	875	418.5	16	75
562	S<58>	861	518.5	16	75
563	S<59>	847	418.5	16	75
564	S<60>	833	518.5	16	75
565	S<61>	819	418.5	16	75
566	S<62>	805	518.5	16	75
567	S<63>	791	418.5	16	75
568	S<64>	777	518.5	16	75
569	S<65>	763	418.5	16	75
570	S<66>	749	518.5	16	75
571	S<67>	735	418.5	16	75
572	S<68>	733	518.5	16	75
573	S<69>	707	418.5	16	75
574	S<70>	693	518.5	16	75
575	S<70>	679	418.5	16	75 75
	S<71>	665	518.5	16	75 75
576 577	S<72>				
577 578		651 637	418.5	16 16	75 75
578	S<74>	637	518.5	16 16	75 75
579	S<75>	623	418.5		75 75
580	S<76>	609	518.5	16	75 75
581	S<77>	595	418.5	16	75 75
582	S<78>	581	518.5	16	75 75
583	S<79>	567	418.5	16	75
584	S<80>	553	518.5	16	75

#	Pad	Χ	Υ	W	Н
585	S<81>	539	418.5	16	75
586	S<82>	525	518.5	16	75
587	S<83>	511	418.5	16	75
	S<84>	497		16	75
588			518.5		
589 590	S<85> S<86>	483 469	418.5 518.5	16 16	75 75
590		455			75
	S<87>		418.5	16	
592	S<88>	441	518.5	16	75
593	S<89>	427	418.5	16	75
594	S<90>	413	518.5	16	75
595	S<91>	399	418.5	16	75
596	S<92>	385	518.5	16	75
597	S<93>	371	418.5	16	75
598	S<94>	357	518.5	16	75
599	S<95>	343	418.5	16	75
600	S<96>	329	518.5	16	75
601	S<97>	315	418.5	16	75
602	S<98>	301	518.5	16	75
603	S<99>	287	418.5	16	75
604	S<100>	273	518.5	16	75
605	S<101>	259	418.5	16	75
606	S<102>	245	518.5	16	75
607	S<103>	231	418.5	16	75
608	S<104>	217	518.5	16	75
609	S<105>	203	418.5	16	75
610	S<106>	189	518.5	16	75
611	S<107>	175	418.5	16	75
612	S<108>	161	518.5	16	75
613	S<109>	147	418.5	16	75
614	S<110>	133	518.5	16	75
615	S<111>	119	418.5	16	75
616	S<112>	105	518.5	16	75
617	S<113>	91	418.5	16	75
618	S<114>	77	518.5	16	75
619	S<115>	63	418.5	16	75
620	S<116>	49	518.5	16	75
621	S<117>	35	418.5	16	75
622	S<118>	21	518.5	16	75
623	S<119>	7	418.5	16	75
624	S<120>	-7	518.5	16	75
625	S<121>	-21	418.5	16	75
626	S<122>	-35	518.5	16	75
627	S<123>	-49	418.5	16	75
628	S<124>	-63	518.5	16	75
629	S<125>	-77	418.5	16	75
630	S<126>	-91	518.5	16	75
631	S<127>	-105	418.5	16	75
632	S<128>	-119	518.5	16	75
633	S<129>	-133	418.5	16	75
634	S<130>	-147	518.5	16	75
635	S<131>	-161	418.5	16	75
636	S<132>	-175	518.5	16	75
637	S<133>	-189	418.5	16	75
638	S<134>	-203	518.5	16	75
639	S<135>	-217	418.5	16	75
640	S<136>	-231	518.5	16	75
641	S<137>	-245	418.5	16	75
642	S<138>	-259	518.5	16	75
643	S<139>	-273	418.5	16	75
	• •				

#	Pad	Х	Υ	W	Н
644	S<140>	-287	518.5	16	75
645	S<141>	-301	418.5	16	75
646	S<141>	-315	518.5	16	75
647	S<143>	-329	418.5	16	75
648	S<143>	-343	518.5	16	75
649	S<144>	-357	418.5	16	75
650	S<146>	-371	518.5	16	75
651	S<140>	-385	418.5	16	75
652	S<147>	-399	518.5	16	75
653	S<148>	- 413	418.5	16	75
654	S<150>	- 4 13	518.5	16	75
655	S<150>	- 42 7 -441	418.5	16	75
656	S<151>	-455	518.5	16	75
657	S<152>	- 4 55	418.5	16	75
658	S<153>	-409 -483	518.5	16	75
659	S<154>	- 4 63	418.5	16	75
					75
660	S<156> S<157>	-511 -525	518.5 418.5	16 16	
661 662	S<157>	-525 -539	518.5	16	75 75
663	S<150>	-553	418.5	16	75
664	S<160>	-567	518.5	16	75
665	S<160>			16	75
666	S<161>	-581 -595	418.5 518.5	16	75
667	S<163>	-609	418.5	16	75
668	S<164>	-623	518.5	16	75
669	S<165>	-637	418.5	16	75
670	S<166>	-651	518.5	16	75
671	S<167>	-665	418.5	16	75
672	S<168>	-679	518.5	16	75
673	S<169>	-693	418.5	16	75
674	S<170>	-707	518.5	16	75
675	S<170>	-721	418.5	16	75
676	S<171>	-735	518.5	16	75
677	S<172>	-749	418.5	16	75
678	S<174>	-743	518.5	16	75
679	S<175>	-777	418.5	16	75
680	S<176>	-791	518.5	16	75
681	S<177>	-805	418.5	16	75
682	S<178>	-819	518.5	16	75
683	S<179>	-833	418.5	16	75
684	S<180>	-847	518.5	16	75
685	S<181>	-861	418.5	16	75
686	S<182>	-875	518.5	16	75
687	S<183>	-889	418.5	16	75
688	S<184>	-903	518.5	16	75
689	S<185>	-917	418.5	16	75
690	S<186>	-931	518.5	16	75
691	S<187>	-945	418.5	16	75
692	S<188>	-959	518.5	16	75
693	S<189>	-973	418.5	16	75
694	S<190>	-987	518.5	16	75
695	S<191>	-1001	418.5	16	75
696	S<192>	-1015	518.5	16	75
697	S<193>	-1029	418.5	16	75
698	S<194>	-1043	518.5	16	75
699	S<195>	-1057	418.5	16	75
700	S<196>	-1071	518.5	16	75
701	S<197>	-1085	418.5	16	75
702	S<198>	-1099	518.5	16	75
					-

#	Pad	Х	Υ	W	Н
703	S<199>	-1113	418.5	16	75
704	S<200>	-1127	518.5	16	75
705	S<201>	-1141	418.5	16	75
706	S<202>	-1155	518.5	16	75
707	S<202>	-1169	418.5	16	75
707	S<204>	-1183	518.5	16	75
709	S<205>	-1197	418.5	16	75
710	S<206>	-1211	518.5	16	75
711			418.5		
711	S<207>	-1225		16 16	75 75
712	S<208> S<209>	-1239 -1253	518.5		75 75
713	S<209>	-1253	418.5 518.5	16 16	75
715	S<211>	-1281	418.5	16	75
716	S<212>	-1295	518.5	16	75
717	S<213>	-1309	418.5	16	75
718	S<214>	-1323	518.5	16	75
719	S<215>	-1337	418.5	16	75
720	S<216>	-1351	518.5	16	75
721	S<217>	-1365	418.5	16	75
722	S<218>	-1379	518.5	16	75
723	S<219>	-1393	418.5	16	75
724	S<220>	-1407	518.5	16	75
725	S<221>	-1421	418.5	16	75
726	S<222>	-1435	518.5	16	75
727	S<223>	-1449	418.5	16	75
728	S<224>	-1463	518.5	16	75
729	S<225>	-1477	418.5	16	75
730	S<226>	-1491	518.5	16	75
731	S<227>	-1505	418.5	16	75
732	S<228>	-1519	518.5	16	75
733	S<229>	-1533	418.5	16	75
734	S<230>	-1547	518.5	16	75
735	S<231>	-1561	418.5	16	75
736	S<232>	-1575	518.5	16	75
737	S<233>	-1589	418.5	16	75
738	S<234>	-1603	518.5	16	75
739	S<235>	-1617	418.5	16	75
740	S<236>	-1631	518.5	16	75
741	S<237>	-1645	418.5	16	75
742	S<238>	-1659	518.5	16	75
743	S<239>	-1673	418.5	16	75
744	VBD<1>	-1687	518.5	16	75
745	NC	-1701	418.5	16	75
746	NC	-1715	518.5	16	75
747	NC	-1729	418.5	16	75
748	NC	-1827	518.5	16	75
749	GD<3>	-1841	418.5	16	75
750	G<511>	-1855	518.5	16	75
751	G<509>	-1869	418.5	16	75
752	G<507>	-1883	518.5	16	75
753	G<505>	-1897	418.5	16	75
754	G<503>	-1911	518.5	16	75
755	G<501>	-1925	418.5	16	75
756	G<499>	-1939	518.5	16	75
757	G<497>	-1953	418.5	16	75
758	G<495>	-1967	518.5	16	75
759	G<493>	-1981	418.5	16	75
760	G<491>	-1995	518.5	16	75
761	G<489>	-2009	418.5	16	75
, , ,	J 1100°	_000		10	, 5

762 G<487> -2023 518.5 16 763 G<485> -2037 418.5 16 764 G<483> -2051 518.5 16 765 G<481> -2065 418.5 16 766 G<479> -2079 518.5 16 767 G<477> -2093 418.5 16 768 G<475> -2107 518.5 16 769 G<473> -2121 418.5 16 770 G<471> -2135 518.5 16 771 G<469> -2149 418.5 16 772 G<467> -2163 518.5 16 773 G<465> -2177 418.5 16 774 G<463> -2191 518.5 16 775 G<461> -2205 418.5 16 776 G<459> -2219 518.5 16 778 G<457> -2233 418.5	H 75 75 75 75 75 75 75 75 75 75 75 75 75
763 G<485> -2037 418.5 16 764 G<483> -2051 518.5 16 765 G<481> -2065 418.5 16 766 G<479> -2079 518.5 16 767 G<477> -2093 418.5 16 768 G<475> -2107 518.5 16 769 G<473> -2121 418.5 16 770 G<471> -2135 518.5 16 771 G<469> -2149 418.5 16 772 G<467> -2163 518.5 16 773 G<465> -2177 418.5 16 774 G<463> -2191 518.5 16 775 G<461> -2205 418.5 16 776 G<459> -2219 518.5 16 777 G<457> -2233 418.5 16 779 G<455> -2247 518.5	75 75 75 75 75 75 75 75 75 75 75 75
764 G<483> -2051 518.5 16 765 G<481> -2065 418.5 16 766 G<479> -2079 518.5 16 767 G<477> -2093 418.5 16 768 G<475> -2107 518.5 16 769 G<473> -2121 418.5 16 770 G<471> -2135 518.5 16 771 G<469> -2149 418.5 16 772 G<467> -2163 518.5 16 773 G<465> -2177 418.5 16 774 G<463> -2191 518.5 16 775 G<461> -2205 418.5 16 776 G<459> -2219 518.5 16 778 G<455> -2247 518.5 16 779 G<453> -2261 418.5 16 780 G<451> -2275 518.5	75 75 75 75 75 75 75 75 75 75 75 75
765 G<481> -2065 418.5 16 766 G<479> -2079 518.5 16 767 G<477> -2093 418.5 16 768 G<475> -2107 518.5 16 769 G<473> -2121 418.5 16 770 G<471> -2135 518.5 16 771 G<469> -2149 418.5 16 772 G<467> -2163 518.5 16 773 G<465> -2177 418.5 16 774 G<463> -2191 518.5 16 775 G<461> -2205 418.5 16 776 G<459> -2219 518.5 16 778 G<457> -2233 418.5 16 779 G<453> -2261 418.5 16 780 G<451> -2275 518.5 16	75 75 75 75 75 75 75 75 75 75
766 G<479> -2079 518.5 16 767 G<477> -2093 418.5 16 768 G<475> -2107 518.5 16 769 G<473> -2121 418.5 16 770 G<471> -2135 518.5 16 771 G<469> -2149 418.5 16 772 G<467> -2163 518.5 16 773 G<465> -2177 418.5 16 774 G<463> -2191 518.5 16 775 G<461> -2205 418.5 16 776 G<459> -2219 518.5 16 777 G<457> -2233 418.5 16 779 G<453> -2247 518.5 16 780 G<451> -2275 518.5 16	75 75 75 75 75 75 75 75 75
767 G<477> -2093 418.5 16 768 G<475> -2107 518.5 16 769 G<473> -2121 418.5 16 770 G<471> -2135 518.5 16 771 G<469> -2149 418.5 16 772 G<467> -2163 518.5 16 773 G<465> -2177 418.5 16 774 G<463> -2191 518.5 16 775 G<461> -2205 418.5 16 776 G<459> -2219 518.5 16 777 G<457> -2233 418.5 16 779 G<453> -2247 518.5 16 780 G<451> -2275 518.5 16	75 75 75 75 75 75 75 75 75
768 G<475> -2107 518.5 16 769 G<473> -2121 418.5 16 770 G<471> -2135 518.5 16 771 G<469> -2149 418.5 16 772 G<467> -2163 518.5 16 773 G<465> -2177 418.5 16 774 G<463> -2191 518.5 16 775 G<461> -2205 418.5 16 776 G<459> -2219 518.5 16 777 G<457> -2233 418.5 16 778 G<455> -2247 518.5 16 779 G<453> -2261 418.5 16 780 G<451> -2275 518.5 16	75 75 75 75 75 75 75 75
769 G<473> -2121 418.5 16 770 G<471> -2135 518.5 16 771 G<469> -2149 418.5 16 772 G<467> -2163 518.5 16 773 G<465> -2177 418.5 16 774 G<463> -2191 518.5 16 775 G<461> -2205 418.5 16 776 G<459> -2219 518.5 16 777 G<457> -2233 418.5 16 778 G<455> -2247 518.5 16 779 G<453> -2261 418.5 16 780 G<451> -2275 518.5 16	75 75 75 75 75 75 75
770 G<471> -2135 518.5 16 771 G<469> -2149 418.5 16 772 G<467> -2163 518.5 16 773 G<465> -2177 418.5 16 774 G<463> -2191 518.5 16 775 G<461> -2205 418.5 16 776 G<459> -2219 518.5 16 777 G<457> -2233 418.5 16 778 G<455> -2247 518.5 16 779 G<453> -2261 418.5 16 780 G<451> -2275 518.5 16	75 75 75 75 75 75
771 G<469> -2149 418.5 16 772 G<467> -2163 518.5 16 773 G<465> -2177 418.5 16 774 G<463> -2191 518.5 16 775 G<461> -2205 418.5 16 776 G<459> -2219 518.5 16 777 G<457> -2233 418.5 16 778 G<455> -2247 518.5 16 779 G<453> -2261 418.5 16 780 G<451> -2275 518.5 16	75 75 75 75 75
772 G<467> -2163 518.5 16 773 G<465> -2177 418.5 16 774 G<463> -2191 518.5 16 775 G<461> -2205 418.5 16 776 G<459> -2219 518.5 16 777 G<457> -2233 418.5 16 778 G<455> -2247 518.5 16 779 G<453> -2261 418.5 16 780 G<451> -2275 518.5 16	75 75 75 75
773 G<465> -2177 418.5 16 774 G<463> -2191 518.5 16 775 G<461> -2205 418.5 16 776 G<459> -2219 518.5 16 777 G<457> -2233 418.5 16 778 G<455> -2247 518.5 16 779 G<453> -2261 418.5 16 780 G<451> -2275 518.5 16	75 75 75
774 G<463> -2191 518.5 16 775 G<461> -2205 418.5 16 776 G<459> -2219 518.5 16 777 G<457> -2233 418.5 16 778 G<455> -2247 518.5 16 779 G<453> -2261 418.5 16 780 G<451> -2275 518.5 16	75 75
775 G<461> -2205 418.5 16 776 G<459> -2219 518.5 16 777 G<457> -2233 418.5 16 778 G<455> -2247 518.5 16 779 G<453> -2261 418.5 16 780 G<451> -2275 518.5 16	75
776 G<459> -2219 518.5 16 777 G<457> -2233 418.5 16 778 G<455> -2247 518.5 16 779 G<453> -2261 418.5 16 780 G<451> -2275 518.5 16	
777 G<457> -2233 418.5 16 778 G<455> -2247 518.5 16 779 G<453> -2261 418.5 16 780 G<451> -2275 518.5 16	75
778 G<455> -2247 518.5 16 779 G<453> -2261 418.5 16 780 G<451> -2275 518.5 16	75
779 G<453> -2261 418.5 16 780 G<451> -2275 518.5 16	75
780 G<451> -2275 518.5 16	75
	75
	75 75
	75 75
	75
100 0 110 0 11010 10	75
	75
	75 75
	75
	75 75
	75
	75
	75
	75
	75
	75
	75
	75
	75
	75
	75
	75
	75
802 G<407> -2583 518.5 16	75
	75
	75
	75
	75
807 G<397> -2653 418.5 16	75
	75
	75
	75
	75
812 G<387> -2723 518.5 16	75
	75
	75
815 G<381> -2765 418.5 16	75
	75
	75
	75
	75
820 G<371> -2835 518.5 16	75

# 821 822	Pad	X			
	G<369>	-2849	Y 418.5	W 16	H 75
	G<367>	-2863	518.5	16	75
823	G<365>	-2877	418.5	16	75
824	G<363>	-2891	518.5	16	75
825	G<361>	-2905	418.5	16	75
826	G<359>	-2905	518.5	16	75
827	G<357>	-2933	418.5	16	75
		-2933			
828	G<355>		518.5	16	75
829	G<353>	-2961	418.5	16	75
830	G<351>	-2975	518.5	16	75 75
831	G<349>	-2989 -3003	418.5	16	75 75
832	G<347>		518.5	16	75
833	G<345>	-3017	418.5	16	75 75
834	G<343>	-3031	518.5	16	75
835	G<341>	-3045	418.5	16	75
836	G<339>	-3059	518.5	16	75
837	G<337>	-3073	418.5	16	75
838	G<335>	-3087	518.5	16	75
839	G<333>	-3101	418.5	16	75
840	G<331>	-3115	518.5	16	75
841	G<329>	-3129	418.5	16	75
842	G<327>	-3143	518.5	16	75
843	G<325>	-3157	418.5	16	75
844	G<323>	-3171	518.5	16	75
845	G<321>	-3185	418.5	16	75
846	G<319>	-3199	518.5	16	75
847	G<317>	-3213	418.5	16	75
848	G<315>	-3227	518.5	16	75
849	G<313>	-3241	418.5	16	75
850	G<311>	-3255	518.5	16	75
851	G<309>	-3269	418.5	16	75
852	G<307>	-3283	518.5	16	75
853	G<305>	-3297	418.5	16	75
854	G<303>	-3311	518.5	16	75
855	G<301>	-3325	418.5	16	75
856	G<299>	-3339	518.5	16	75
857	G<297>	-3353	418.5	16	75
858	G<295>	-3367	518.5	16	75
859	G<293>	-3381	418.5	16	75
860	G<291>	-3395	518.5	16	75
861	G<289>	-3409	418.5	16	75
862	G<287>	-3423	518.5	16	75
863	G<285>	-3437	418.5	16	75
864	G<283>	-3451	518.5	16	75
865	G<281>	-3465	418.5	16	75
866	G<279>	-3479	518.5	16	75
867	G<277>	-3493	418.5	16	75
868	G<275>	-3507	518.5	16	75
869	G<273>	-3521	418.5	16	75
870	G<271>	-3535	518.5	16	75
871	G<269>	-3549	418.5	16	75
872	G<267>	-3563	518.5	16	75
873	G<265>	-3577	418.5	16	75
874	G<263>	-3591	518.5	16	75
875	G<261>	-3605	418.5	16	75
876	G<259>	-3619	518.5	16	75
877	G<257>	-3633	418.5	16	75
878	G<255>	-3647	518.5	16	75
879	G<253>	-3661	418.5	16	75

ш	D1	V	V	18/	
#	Pad	X 2075	Y	W	7.5
880	G<251>	-3675	518.5	16	75
881	G<249>	-3689	418.5	16	75
882	G<247>	-3703	518.5	16	75
883	G<245>	-3717	418.5	16	75
884	G<243>	-3731	518.5	16	75
885	G<241>	-3745	418.5	16	75
886	G<239>	-3759	518.5	16	75
887	G<237>	-3773	418.5	16	75
888	G<235>	-3787	518.5	16	75
889	G<233>	-3801	418.5	16	75
890	G<231>	-3815	518.5	16	75
891	G<229>	-3829	418.5	16	75
892	G<227>	-3843	518.5	16	75
893	G<225>	-3857	418.5	16	75
894	G<223>	-3871	518.5	16	75
895	G<221>	-3885	418.5	16	75
896	G<219>	-3899	518.5	16	75
897	G<217>	-3913	418.5	16	75
898	G<215>	-3927	518.5	16	75
899	G<213>	-3941	418.5	16	75
900	G<211>	-3955	518.5	16	75
901	G<209>	-3969	418.5	16	75
902	G<207>	-3983	518.5	16	75
903	G<205>	-3997	418.5	16	75
904	G<203>	-4011	518.5	16	75
905	G<201>	-4025	418.5	16	75
906	G<199>	-4039	518.5	16	75
907	G<197>	-4053	418.5	16	75
908	G<195>	-4067	518.5	16	75
909	G<193>	-4081	418.5	16	75
910	G<191>	-4095	518.5	16	75
911	G<189>	-4109	418.5	16	75
912	G<187>	-4123	518.5	16	75
913	G<185>	-4137	418.5	16	75
914	G<183>	-4151	518.5	16	75
915	G<181>	-4165	418.5	16	75
916	G<179>	-4179	518.5	16	75
917	G<177>	-4193	418.5	16	75
918	G<175>	-4207	518.5	16	75
919	G<173>	-4221	418.5	16	75
920	G<171>	-4235	518.5	16	75
921	G<169>	-4249	418.5	16	75
922	G<167>	-4263	518.5	16	75
923	G<165>	-4277	418.5	16	75
924	G<163>	-4291	518.5	16	75
925	G<161>	-4305	418.5	16	75
926	G<159>	-4319	518.5	16	75
927	G<157>	-4333	418.5	16	75
928	G<155>	-4347	518.5	16	75
929	G<153>	-4361	418.5	16	75
930	G<151>	-4375	518.5	16	75
931	G<149>	-4389	418.5	16	75
932	G<147>	-4403	518.5	16	75
933	G<145>	-4417	418.5	16	75
934	G<143>	-4431	518.5	16	75
935	G<141>	-4445	418.5	16	75
936	G<139>	-4459	518.5	16	75
937	G<137>	-4473	418.5	16	75
938	G<135>	-4487	518.5	16	75

#	Pad	Х	Υ	W	Н
939	G<133>	-4501	418.5	16	75
940	G<131>	-4515	518.5	16	75
941	G<129>	-4529	418.5	16	75
942	G<127>	-4543	518.5	16	75
943	G<125>	-4557	418.5	16	75
944	G<123>	-4571	518.5	16	75
945	G<121>	-4585	418.5	16	75
946	G<119>	-4599	518.5	16	75
947	G<117>	-4613	418.5	16	75
948	G<115>	-4627	518.5	16	75
949	G<113>	-4641	418.5	16	75
950	G<111>	-4655	518.5	16	75
951	G<109>	-4669	418.5	16	75
952	G<107>	-4683	518.5	16	75
953	G<105>	-4697	418.5	16	75
954	G<103>	-4711	518.5	16	75
955	G<101>	-4725	418.5	16	75
956	G<99>	-4739	518.5	16	75
957	G<97>	-4753	418.5	16	75
958	G<95>	-4767	518.5	16	75
959	G<93>	-4781	418.5	16	75
960	G<91>	-4795	518.5	16	75
961	G<89>	-4809	418.5	16	75
962	G<87>	-4823	518.5	16	75
963	G<85>	-4837	418.5	16	75
964	G<83>	-4851	518.5	16	75
965	G<81>	-4865	418.5	16	75
966	G<79>	-4879	518.5	16	75
967	G<77>	-4893	418.5	16	75
968	G<75>	-4907	518.5	16	75
969	G<73>	-4921	418.5	16	75
970	G<71>	-4935	518.5	16	75
971	G<69>	-4949	418.5	16	75
972	G<67>	-4963	518.5	16	75
973	G<65>	-4977	418.5	16	75
974	G<63>	-4991	518.5	16	75

ш	DI	V	V	\A/	
#	Pad	Х	Υ	W	Н
975	G<61>	-5005	418.5	16	75
976	G<59>	-5019	518.5	16	75
977	G<57>	-5033	418.5	16	75
978	G<55>	-5047	518.5	16	75
979	G<53>	-5061	418.5	16	75
980	G<51>	-5075	518.5	16	75
981	G<49>	-5089	418.5	16	75
982	G<47>	-5103	518.5	16	75
983	G<45>	-5117	418.5	16	75
984	G<43>	-5131	518.5	16	75
985	G<41>	-5145	418.5	16	75
986	G<39>	-5159	518.5	16	75
987	G<37>	-5173	418.5	16	75
988	G<35>	-5187	518.5	16	75
989	G<33>	-5201	418.5	16	75
990	G<31>	-5215	518.5	16	75
991	G<29>	-5229	418.5	16	75
992	G<27>	-5243	518.5	16	75
993	G<25>	-5257	418.5	16	75
994	G<23>	-5271	518.5	16	75
995	G<21>	-5285	418.5	16	75
996	G<19>	-5299	518.5	16	75
997	G<17>	-5313	418.5	16	75
998	G<15>	-5327	518.5	16	75
999	G<13>	-5341	418.5	16	75
1000	G<11>	-5355	518.5	16	75
1001	G<9>	-5369	418.5	16	75
1002	G<7>	-5383	518.5	16	75
1003	G<5>	-5397	418.5	16	75
1004	G<3>	-5411	518.5	16	75
1005	G<1>	-5425	418.5	16	75
1006	GD<1>	-5439	518.5	16	75
1007	NC	-5453	418.5	16	75

Output Pad Location

TRAY INFORMATION

REVISION HISTORY

Revision	Contents	Date
	(N/A)	