zkLedger: Privacy-Preserving Auditing for Distributed Ledgers

• Reference: https://www.usenix.org/conference/nsdi18/presentation/narula

1. Contributions

- the first distributed ledger system to support strong transaction privacy, public verifiability, and practical, userful auditing
 - Privacy: hides transacting banks and amounts
 - Public Verification: everyone can verify transactions
 - Auditing: compute linear functions over transactions
- do not require trusted setup and only rely on widely-used cryptographic assumptions

2. Overview

- 1. System Model
 - Banks
 - issue thransactions to transfer digital assets
 - should not be able to hide assets from the Auditor
 - Auditor
 - verifies certain operational aspects of transactions performed by the participants
 - should not be able to see individual bank transactions
 - should be able to detect an incorrect answer
 - Depositor
 - use and withdraw assets from the system
 - transactions are public
- 2. Building Blocks
 - Pedersen Commitment
 - Public-Key Encryption
 - a secret key sk_i
 - lacksquare public key $pk_i=h^{sk_i}$
 - Non-Interactive Zero-Knowledge Proofs
- 3. Security Model
 - does not assume that banks will behave honestly
 - assume banks can arbitrarily collude
 - Banks or the auditor might try to learn transaction contents

3. Design

Commitment

- each transaction has an entry for each Bank
- each entry includes a commitment to a value the amount of the asset that is being debited or credited to the bank
- the sum of every entry should be zero
- use <u>Pedersen commitments</u> to commit to the value
- Audit Token
 - \circ $T_i := (pk_i)^{r_i}$
 - o to answer audits without knowing the randomness used in the commitment
 - \circ To sum of values in a bank's column, $\prod cm_i = g^{\sum v_i} h^{\sum r_i}$
 - \circ a bank does not necessarily know all the commitment randomnesses r_k
- Zero-Knowledge Proofs
 - o the spender can create to prove the invariants are maintained
 - Proof of Consent
 - consent to transfer
 - signature
 - Proof of Asset
 - lacksquare a new commitment cm_i' is a re-commitment of cm_i or $\prod cm_i$
 - $lacktriangledown cm_i'$ is in range [0,N) where N is the size of message space (in zkLedger, $N=2^{40}$)
 - range proofs
 - Proof of Balance
 - lacksquare the committed values satisfy $\sum v_i=0$
 - Proof of Consistency
 - cm_i and T_i are generated by the same random r_i for each i
 - lacksquare $\prod cm_i$ and $\prod T_i$ are generated by the same random $\sum r_i$