

ЛИНЕЙНАЯ АЛГЕБРА И АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

2 CEMECTP

Лектор: Горшунова Татьяна Алексеевна – доцент кафедры ВМ-2

e-mail: gorshunova@mirea.ru

Лекция 7

СОБСТВЕННЫЕ ВЕКТОРЫ И СОБСТВЕННЫЕ ЗНАЧЕНИЯ ЛИНЕЙНОГО ОПЕРАТОРА

- Операторы в геометрических пространствах
- Собственные значения и собственные векторы линейного оператора
- Характеристический многочлен линейного оператора

25 марта 2021 г.

Операторы в геометрических пространствах

Пример 1. Оператор в пространстве V_3 : \widehat{A} - поворот вокруг координатной оси на угол α против часовой стрелки.

а) Поворот **вокруг оси О**х

Подействуем линейным оператором на базисные векторы $\{\vec{\imath}, \vec{\jmath}, \vec{k}\}$:

$$\hat{A}\vec{i} = \vec{i} = 1 \cdot \vec{i} + 0 \cdot \vec{j} + 0 \cdot \vec{k} = (1;0;0)$$
 $\hat{A}\vec{j} = 0 \cdot \vec{i} + \cos\alpha\vec{j} + \sin\alpha\vec{k} = (0;\cos\alpha;\sin\alpha)$
 $\hat{A}\vec{k} = 0 \cdot \vec{i} - \sin\alpha\vec{j} + \cos\alpha\vec{k} = (0;-\sin\alpha;\cos\alpha)$
Тогда матрица оператора будет иметь вид (координаты образов базисных векторов записываем в столбцы):

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$
 — матрица поворота вокруг оси Ox на угол α против

часовой стрелки.

b) Поворот вокруг оси **О**у

Подействуем линейным оператором на базисные векторы $\{\vec{\imath}, \vec{\jmath}, \vec{k}\}$:

$$\hat{A}\vec{i} = \cos\alpha\,\vec{i} + 0\cdot\vec{j} - \sin\alpha\,\vec{k} = (\cos\alpha\,;0;-\sin\alpha)$$
 $\hat{A}\vec{j} = \vec{j} = 0\cdot\vec{i} + 1\cdot\vec{j} + 0\cdot\vec{k} = (0;1;0)$
 $\hat{A}\vec{k} = \sin\alpha\cdot\vec{i} + 0\cdot\vec{j} + \cos\alpha\cdot\vec{k} = (\sin\alpha\,;0;\cos\alpha)$
Координаты образов базисных векторов надо записать в столбцы матрицы:

$$A = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{pmatrix}$$
 — матрица поворота вокруг оси Oy на угол α против

часовой стрелки.

c) Поворот вокруг оси *Oz*

Подействуем линейным оператором на базисные векторы $\{\vec{\imath}, \vec{\jmath}, \vec{k}\}$:

$$\hat{A}\vec{i} = \cos \alpha \, \vec{i} + \sin \alpha \cdot \vec{j} + 0 \cdot \vec{k} = (\cos \alpha \, ; \sin \alpha \, ; 0)$$
 $\hat{A}\vec{j} = -\sin \alpha \, \vec{i} + \cos \alpha \, \vec{j} + 0 \cdot \vec{k} = (-\sin \alpha \, ; \cos \alpha \, ; 0)$
 $\hat{A}\vec{k} = \vec{k} = 0 \cdot \vec{i} + 0 \cdot \vec{j} + 1 \cdot \vec{k} = (0; 0; 1)$
Координаты образов базисных векторов надо записать в столбцы матрицы:

$$A = egin{pmatrix} \cos lpha & -\sin lpha & 0 \ \sin lpha & \cos lpha & 0 \ 0 & 0 & 1 \end{pmatrix}$$
 — матрица поворота вокруг оси Oz на угол $lpha$ против

часовой стрелки

Замечание. Из геометрических соображений видно, что под действием линейного оператора \widehat{A} - поворот вокруг координатной оси на угол α , в нулевой элемент переходит только $\overrightarrow{0}$, следовательно, ядро оператора состоит только из нулевого вектра:

$$\operatorname{Ker} \hat{A} = \{ \vec{0} \}$$

Образом оператора \hat{A} является все пространство V_3 :

$$\operatorname{Im} \hat{A} = V_3$$

Данные выводы подтверждаются тем фактом, что rang A=3 Следовательно, линейный оператор \widehat{A} – поворот вокруг координатной оси на угол α обратим:

1) $\det A \neq 0$; 2) $\operatorname{Im} \hat{A} = V_3$; 3) $\operatorname{Ker} \hat{A} = \{\vec{0}\}$ \hat{A}^{-1} — поворот вокруг координатной оси на угол α по часовой стрелке.

Пусть оператор \hat{B} — поворот вокруг оси Oz на угол $\frac{\pi}{6}$ против часовой стрелки.

$$\alpha = \frac{\pi}{6} \Rightarrow$$
 матрица оператора имеет вид: $B = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Найдем образ вектора $\vec{a}=(-1;1;2)$ при данном преобразовании:

$$\hat{B}\vec{a} = \begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} & 0\\ \frac{1}{2} & \frac{\sqrt{3}}{2} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1\\1\\2 \end{pmatrix} = \begin{pmatrix} -\frac{\sqrt{3}}{2} - \frac{1}{2}\\ -\frac{1}{2} + \frac{\sqrt{3}}{2}\\ -\frac{1}{2} + \frac{\sqrt{3}}{2} \end{pmatrix}$$

Замечание. Действие оператора поворота на угол 2π совпадает с действием тождественного оператора \hat{I} : $\hat{I}\overline{x} = \overline{x}$.

Пример 2. Оператор в пространстве V_3 : \widehat{A} – проектирование на координатную ось Oy.

Подействуем линейным оператором на базисные векторы $\{\vec{\imath}, \vec{\jmath}, \vec{k}\}$:

$$\hat{A}\vec{\imath} = \vec{0} = (0;0;0),$$

$$\hat{A}\vec{j} = \vec{j} = (0; 1; 0),$$

$$\hat{A}\vec{k} = \vec{0} = (0; 0; 0).$$

Запишем матрицу оператора \hat{A} :

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Найдем образ вектора $\vec{a} = (-1,5,2)$:

$$\hat{A}\vec{x} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \\ 0 \end{pmatrix}$$

Из геометрических соображений видно, что под действием линейного оператора \widehat{A} - проектирование на координатную ось Oy в $\overrightarrow{0}$ переходят все векторы, параллельные плоскости Oxz, следовательно, ядро оператора имеет вид:

$$\operatorname{Ker} \hat{A} = \{\alpha \vec{\imath} + \beta \vec{k}\}\$$

Образом оператора \hat{A} является ось Oy:

Im
$$\hat{A} = \{\gamma \vec{j}\}$$

Defect $\hat{A} = 2$, Rang $\hat{A} = 1$

По всем трем критериям линейный оператор необратим:

1) det
$$A = 0$$
; 2) Im $\hat{A} \neq V_3$; 3) Ker $\hat{A} \neq \{\vec{0}\}$

Составить матрицы в каноническом базисе операторов - проектирование на координатные оси Ox, Oz и координатные плоскости Oxy, Oyz и Oxz.

Пример 3. Оператор в пространстве V_3 :

Â – зеркальное отражение относительно плоскости Оху.

Подействуем линейным оператором на базисные векторы $\{\vec{i}, \vec{j}, \vec{k}\}$:

$$\hat{A}\vec{i} = \vec{i} = (1; 0; 0),$$

 $\hat{A}\vec{j} = \vec{j} = (0; 1; 0),$
 $\hat{A}\vec{k} = -\vec{k} = (0; 0; -1).$

Запишем матрицу оператора \hat{A} :

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Найдем образ вектора $\vec{a} = (2; -4; -3)$:

$$\hat{A}\vec{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ -4 \\ -3 \end{pmatrix} = \begin{pmatrix} 2 \\ -4 \\ 3 \end{pmatrix}$$

Из геометрических соображений видно, что под действием данного линейного оператора в нулевой элемент переходит только $\vec{0} \Rightarrow$

$$\operatorname{Ker} \hat{A} = \{ \vec{0} \}$$

Образом оператора \hat{A} является все пространство V_3 :

$$\operatorname{Im} \hat{A} = V_3$$

Данные выводы подтверждаются тем факторм, что rang A = 3. Данный линейный оператор обратим:

1)
$$\det A \neq 0$$
; 2) $\operatorname{Im} \hat{A} = V_3$; 3) $\operatorname{Ker} \hat{A} = \{\vec{0}\}\$

✓ Составить матрицы в каноническом базисе операторов - зеркальное отражение относительно координатных осей Ox, Oy, Oz и координатных плоскостей Oyz и Oxz.

Собственные значения и собственные векторы линейного оператора

Пусть L - n-мерное линейное пространство.

 $\hat{A}: L \to L$ – линейный оператор, действующий в L.

Определение. Число $\lambda \in \mathbb{R}$ называется **собственным значением** или **собственным числом** линейного оператора \hat{A} , если существует такой ненулевой вектор $\vec{x} \in L$ ($\vec{x} \neq \vec{0}$), что $\hat{A}\vec{x} = \lambda \vec{x}$. Этот вектор \vec{x} называется **собственным вектором** линейного оператора \hat{A} .

Таким образом, собственные векторы, это ненулевые векторы, которые под действием линейного оператора переходят в себе пропорциональные.

Множество всех собственных значений оператора \hat{A} называется его *спектром* и обозначается Spec \hat{A} .

Замечание 1. Каждому собственному числу соответствуют свои собственные векторы, причем их бесконечно много.

Замечание 2. Каждому собственному вектору соответствует единственное собственное число.

Замечание 3. В пространстве геометрических векторов собственные векторы линейного оператора, это векторы, которые под его действием переходят в себе коллинеарные.

Примеры:

- 1) $\hat{I}: L \to L$ тождественный оператор: $\hat{I}\vec{x} = \vec{x}$ \Rightarrow \forall ненулевой вектор $\vec{x} \in L$ является собственным с собственным значением $\lambda = 1$.
- **2)** $\hat{A}: V_3 \to V_3$ оператор проектирования на плоскость Oxz:

$$\hat{A}\vec{i} = \vec{i} = 1 \cdot \vec{i}$$

$$\hat{A}\vec{j} = \vec{0} = 0 \cdot \vec{j}$$

$$\hat{A}\vec{k} = \vec{k} = 1 \cdot \vec{k}$$

Векторы базиса являются собственными с собственными значениями 1; 0; 1.

3) $\hat{A}: V_3 \to V_3$ - оператор гомотетия с коэффициентом $k: \hat{A}\vec{x} = k\vec{x}, \, \forall \vec{x} \in V_3$ Таким образом, \forall ненулевой вектор $\vec{x} \in V_3$ является собственным вектором с собственным значением $\lambda = k$.

Пусть $S = \{\vec{e}_1, ..., \vec{e}_n\}$ — базис в линейном пространстве L и матрица линейного оператора $\hat{A}: L \to L$ в этом базисе имеет вид:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$

Если \vec{x} — собственный вектор оператора \hat{A} , соответствующий собственному значению λ , то $\vec{x} \neq \vec{0}$ и выполняется равенство: $\hat{A}\vec{x} = \lambda\vec{x}$ Тогда $\hat{A}\vec{x} - \lambda\hat{I}\vec{x} = \vec{0} \Rightarrow (\hat{A} - \lambda\hat{I})\vec{x} = \vec{0}$ или в матричном виде: $(A - \lambda E)X = 0$,

где E — единичная матрица порядка n.

РТУ МИРЭА Кафедра ВМ-2

Таким образом, имеем матричное уравнение вида:

вом, имеем матричное уравнение вида:
$$\begin{pmatrix} a_{11}-\lambda & a_{12} & ... & a_{1n} \\ a_{21} & a_{22}-\lambda & ... & a_{2n} \\ ... & ... & ... & ... \\ a_{n1} & a_{n2} & ... & a_{nn}-\lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
 цную систему уравнений:
$$\begin{pmatrix} (a_{11}-\lambda)x_1+a_{12}x_2+\cdots+a_{1n}x_n=0, \end{pmatrix}$$

или однородную систему уравнений:

$$\begin{cases} (a_{11} - \lambda)x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0, \\ a_{21}x_1 + (a_{22} - \lambda)x_2 + \dots + a_{2n}x_n = 0, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + (a_{nn} - \lambda)x_n = 0. \end{cases}$$

Согласно определению, собственный вектор \vec{x} должен быть ненулевым. Полученная однородная система уравнений имеет ненулевые решения тогда и только тогда, когда определитель матрицы коэффициентов равен нулю. Таким образом, справедлива следующая теорема.

Теорема 1. Для того, чтобы действительное число λ являлось собственным значением линейного оператора, необходимо и достаточно, чтобы оно было корнем уравнения:

$$\det(A - \lambda E) = 0$$

где A – матрица оператора \hat{A} в базисе $S = \{\vec{e}_1, \dots, \vec{e}_n\}$.

► <u>Необходимость.</u> Выше показано что, если λ – собственное значение линейного оператора \hat{A} и \vec{x} – соответствующий собственный вектор, то из равенства $\hat{A}\vec{x} = \lambda\vec{x}$, имеем $\hat{A}\vec{x} = \lambda\hat{l}\vec{x} \Rightarrow (\hat{A} - \lambda\hat{l})\vec{x} = \vec{0}$.

В матричном виде получаем однородную систему линейных уравнений:

$$(A - \lambda E)X = O,$$

которая имеет ненулевое решение $\vec{x} \neq \vec{0}$ при условии: $\det(A - \lambda E) = 0$, следовательно, λ – корень уравнения $\det(A - \lambda E) = 0$.

<u>Достаточность.</u> Пусть λ — корень уравнения: $\det(A - \lambda E) = 0 \Rightarrow$

однородная система уравнений $(A - \lambda E)X = 0$ имеет ненулевое решение \vec{x} и для \vec{x} выполняется $(\hat{A} - \lambda \hat{I}) \vec{x} = \vec{0} \Rightarrow \hat{A}\vec{x} = \lambda \vec{x} \Rightarrow \vec{x} - \text{собственный вектор,}$ соответствующий собственному значению λ .

Характеристический многочлен линейного оператора

Если λ – собственное значение оператора \hat{A} (т.е. $\hat{A}\vec{x} = \lambda\vec{x}$) \Rightarrow ядро оператора $(\hat{A} - \lambda\hat{I})$ состоит из всех собственных векторов, соответствующих собственному числу λ , и нулевого вектора.

 $\operatorname{Ker}(\hat{A} - \lambda \hat{I})$ является подпространством в пространстве L и называется собственным подпространством оператора \hat{A} .

Определитель

$$\det(A - \lambda E) = |A - \lambda E| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix}$$

Представляет собой многочлен степени n от переменной λ .

Определение. Многочлен вида:

$$\chi(\lambda) = \det(A - \lambda E)$$

называется характеристическим многочленом матрицы А.

Определение. Уравнение вида:

$$\det(A - \lambda E) = 0$$

называется xарактеристическим уравнением матрицы A, а его корни - xарактеристическими числами матрицы A.

Определение. Характеристическим многочленом и характеристическим уравнением линейного оператора называются характеристический многочлен и характеристическое уравнение его матрицы в каком-либо базисе.

Определение. Кратность числа λ как корня характеристического уравнения оператора \hat{A} называется *алгебраической кратностью* собственного значения λ . *Геометрической кратностью* собственного значения λ называется размерность собственного подпространства оператора \hat{A} , отвечающего собственному числу λ этого оператора:

 $\dim \operatorname{Ker}(\hat{A}-\lambda\hat{I})$ - геометрическая кратность собственного значения λ

Теорема 2. Для любого оператора \hat{A} , действующего в конечномерном пространстве L, геометрическая кратность любого собственного числа не превосходит его алгебраической кратности.

Замечание. Геометрическая кратность собственного значения λ равна n-r, где $n=\dim L$, $r=rang(A-\lambda E)$.

Теорема 3. Характеристический многочлен линейного оператора и, следовательно, спектр не зависят от выбора базиса, в котором найдена матрица линейного оператора.

▶ Пусть $S = \{\vec{e}_1, ..., \vec{e}_n\}$ и $S' = \{\vec{f}_1, ..., \vec{f}_n\}$ – базисы в пространстве L и A, A' – матрицы линейного оператора \hat{A} в базисах S и S' соответственно. Если $P = P_{S \to S'}$ - матрица перехода от базиса S к базису $S' \Rightarrow A' = P^{-1}AP$. Рассмотрим характеристический многочлен оператора \hat{A} в базисе S': $\det(A' - \lambda E) = \det(P^{-1}AP - \lambda E) = \det(P^{-1}AP - \lambda P^{-1}EP) = \\ = \det(P^{-1}(A - \lambda E)P) = \det(P^{-1}\det(A - \lambda E)\det(P - \lambda E) = \det(A - \lambda E)$

Алгоритм нахождения собственных значений и собственных векторов линейного оператора:

- 1) Выбрать базис в пространстве L и составить в нем матрицу A линейного оператора \hat{A} .
- 2) Составить характеристическое уравнение:

$$\det(\mathbf{A} - \lambda E) = 0$$

и найти все его действительные корни λ_k , которые и будут собственными значениями линейного оператора.

3) Для каждого корня λ_k найти фундаментальную систему решений (ФСР) однородной системы линейных алгебраических уравнений:

$$(A - \lambda_k E)X = O$$

Столбцы фундаментальной системы решений, являются координатами собственных векторов оператора \hat{A} , соответствующих собственному значению λ_k (и любой собственный вектор, соответствующий собственному значению λ_k можно представить как их линейную комбинацию).

3adaua 1. Найти собственные значения и собственные векторы линейного оператора \hat{A} , заданного в некотором базисе трехмерного пространства матрицей:

$$A = \begin{pmatrix} -2 & 2 & -2 \\ -5 & 7 & -3 \\ -1 & 3 & 1 \end{pmatrix}$$

Решение. Найдем собственные значения. Для этого составим характеристическое уравнение $\det(A - \lambda E) = 0$:

$$\begin{vmatrix} -2 - \lambda & 2 & -2 \\ -5 & 7 - \lambda & -3 \\ -1 & 3 & 1 - \lambda \end{vmatrix} = 0$$

Разложим определитель по первой строке:

$$(-2 - \lambda) \begin{vmatrix} 7 - \lambda & -3 \\ 3 & 1 - \lambda \end{vmatrix} - 2 \begin{vmatrix} -5 & -3 \\ -1 & 1 - \lambda \end{vmatrix} - 2 \begin{vmatrix} -5 & 7 - \lambda \\ -1 & 3 \end{vmatrix} = 0$$

$$(-2 - \lambda) ((7 - \lambda)(1 - \lambda) + 9) - 2(-5(1 - \lambda) - 3) - 2(-15 + 7 - \lambda) = 0$$

$$-\lambda^3 + 6\lambda^2 - 8\lambda = 0 \Rightarrow$$

РТУ МИРЭА Кафедра ВМ-2

$$-\lambda(\lambda^2 - 6\lambda + 8) = 0 \Rightarrow -\lambda(\lambda - 4)(\lambda - 2) = 0$$

 $\lambda_1 = 0, \lambda_2 = 4, \lambda_3 = 2$ - собственные значения.

Найдем собственные векторы, соответствующие собственным значениям.

1)
$$\lambda_1 = 0$$

Решим систему $(A - 0 \cdot E)X = 0$

$$\begin{pmatrix} -2 - 0 & 2 & -2 \\ -5 & 7 - 0 & -3 \\ -1 & 3 & 1 - 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -2 & 2 & -2 \\ -5 & 7 & -3 \\ -1 & 3 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Решим систему методом Гаусса.

$$\begin{pmatrix} -2 & 2 & -2 \\ -5 & 7 & -3 \\ -1 & 3 & 1 \end{pmatrix} \sim \begin{pmatrix} -1 & 3 & 1 \\ -2 & 2 & -2 \\ -5 & 7 & -3 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -1 \\ 1 & -1 & 1 \\ 5 & -7 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -1 \\ 0 & 2 & 2 \\ 0 & 8 & 8 \end{pmatrix} \sim$$

РТУ МИРЭА Кафедра ВМ-2

$$\sim \begin{pmatrix} 1 & -3 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \operatorname{rang} A = 2$$

Пусть x_3 – свободная переменная, тогда x_1 , x_2 – базисные.

Если $x_3 = C$, то $x_2 = -C$, $x_1 = -2C \Rightarrow$ общее решение системы имеет вид:

$$X^{1} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} -2C \\ -C \\ C \end{pmatrix} = C \begin{pmatrix} -2 \\ -1 \\ 1 \end{pmatrix}, C \in \mathbb{R} \implies$$

Фундаментальная система решений состоит из одного вектора $\vec{f_1} = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$

 $\vec{x}_1 = C\vec{f}_1 = (-2C; -C; C), \ C \neq 0$ - собственные векторы, соответствующие собственному значению $\lambda_1 = 0$.

2)
$$\lambda_2 = 4$$

Решим систему (A - 4E)X = 0

РТУ МИРЭА Кафедра ВМ-2

$$\begin{pmatrix} -2-4 & 2 & -2 \\ -5 & 7-4 & -3 \\ -1 & 3 & 1-4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -6 & 2 & -2 \\ -5 & 3 & -3 \\ -1 & 3 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Решим систему методом Гаусса.

$$\begin{pmatrix} -6 & 2 & -2 \ -5 & 3 & -3 \ -1 & 3 & -3 \ \end{pmatrix} \sim \begin{pmatrix} -1 & 3 & -3 \ -5 & 3 & -3 \ \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 3 \ -5 & 3 & -3 \ \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 3 \ 0 & -8 & 8 \ \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 3 \ 0 & 1 & -1 \ \end{pmatrix} \Rightarrow \operatorname{rang} A = 2$$

Пусть x_3 – свободная переменная, тогда x_1 , x_2 – базисные переменные. Если x_3 = C, то x_2 = C, x_1 = 0 \Rightarrow общее решение системы имеет вид:

$$X^{2} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ C \\ C \end{pmatrix} = C \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, C \in \mathbb{R} \implies$$

Фундаментальная система решений состоит из одного вектора $\vec{f}_2 = \begin{pmatrix} \vec{1} \\ 1 \end{pmatrix}$

 $\vec{x}_2 = C\vec{f}_2 = (0; C; C), C \neq 0$ - собственные векторы, соответствующие собственному значению $\lambda_2 = 4$.

3)
$$\lambda_3 = 2$$

Решим систему (A - 2E)X = O

$$\begin{pmatrix} -2-2 & 2 & -2 \\ -5 & 7-2 & -3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ -1 & 3 & 1-2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -4 & 2 & -2 \\ -5 & 5 & -3 \\ -1 & 3 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

РТУ МИРЭА Кафедра ВМ-2

Решим систему методом Гаусса.

$$\begin{pmatrix} -4 & 2 & -2 \\ -5 & 5 & -3 \\ -1 & 3 & -1 \end{pmatrix} \sim \begin{pmatrix} -1 & 3 & -1 \\ -5 & 5 & -3 \\ -4 & 2 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 1 \\ -5 & 5 & -3 \\ 2 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 1 \\ 0 & -10 & 2 \\ 0 & 5 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & 1 \\ 0 & 5 & -1 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow \operatorname{rang} A = 2$$

Пусть x_2 — свободная переменная, тогда x_1 , x_3 — базисные переменные.

Если $x_2 = C$, то $x_3 = 5C$, $x_1 = -2C \Rightarrow$ общее решение системы имеет вид:

$$X^{3} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} -2C \\ C \\ 5C \end{pmatrix} = C \begin{pmatrix} -2 \\ 1 \\ 5 \end{pmatrix}, C \in \mathbb{R} \implies$$

Фундаментальная система решений состоит из одного вектора $\vec{f}_3 = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$

 $\vec{x}_3 = C\vec{f}_3 = (-2C; C; 5C), C \neq 0$ - собственные векторы, соответствующие собственному значению $\lambda_3 = 2$.

Задачи для самостоятельного решения

- **1.** Линейный оператор $\hat{C} = \hat{A}\hat{B}$ и действует в пространстве V_3 , оператор \hat{A} поворот вокруг оси Ox по часовой стрелке на 45°, оператор \hat{B} отражение относительно оси Oy. Найти матрицы операторов \hat{A} , \hat{B} и \hat{C} в каноническом базисе пространства V_3 . Обратим ли оператор \hat{C} ? Если да, то описать действие оператора \hat{C}^{-1} .
- **2.** Оператор Â действует в пространстве P_3 многочленов степени не выше трех:

$$\hat{A}p(t) = p(t) - p(t+2)$$

- 1) Показать линейность оператора.
- 2) Найти его матрицу в каноническом базисе пространства P_3 .
- 3) Найти ядро линейного оператора Â.
- 4) Существует ли обратный оператор? Если да, то найти его матрицу в том же базисе.
- 5) Найти собственные значения и собственные векторы линейного оператора \hat{A} .

образование в стиле hi tech

РТУ МИРЭА Кафедра ВМ-2

Спасибо за внимание!