Computing Fundamentals

Engr. Mahawish Fatima

Number System

When we type some letters or words, the computer translates them in numbers as computers can understand only numbers.

A computer can understand the positional number system where there are only a few symbols called digits and these symbols represent different values depending on the position they occupy in the number.

The value of each digit in a number can be determined using –

- The digit
- ▶ The position of the digit in the number
- The base of the number system (where the base is defined as the total number of digits available in the number system)

Number Systems Used in Computers

Name of Radix	Radix	Set of Digits E	xample
Decimal	r=10	{0,1,2,3,4,5,6,7,8,9}	255 ₁₀
Binary	r=2	{0,1}	11111111 ₂
Octal	r= 8	{0,1,2,3,4,5,6,7}	377 ₈
Hexadecimal	r=16	{0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F	'} FF ₁₆

Number Base Conversions

- Decimal to Binary
- Binary to Decimal
- Octal to Binary
- Binary to Octal
- Hexadecimal to Binary
- Binary to Hexadecimal
- Decimal to Octal
- Octal to Decimal
- Decimal to Hexadecimal
- Hexadecimal to Decimal

Decimal to Binary Conversion

Convert 41 from decimal to binary:

2	41		1
2	20	1	
2	10	0	
2	5	0	
2	2	1	
	1	0	

$$(41)_{10} = (101001)_2$$

Decimal to Binary Conversion

- To convert decimal fractions to binary, repeated multiplication by 2 is used, until the fractional product is 0 (or until the desired number of binary places). The whole digits of the multiplication results produce the answer, with the first as the MSB, and the last as the LSB.
- Example: Convert 0.3125₁₀ to binary

	Re	sult Digit
$.3125 \times 2 = 0.625$	О	(MSB)
$.625 \times 2 = 1.25$	1	
$.25 \times 2 = 0.50$	0	
$.5 \times 2 = 1.0$	1	(LSB)
$(0.3125)_{10} = (0.0101)_2$		

Binary to Decimal Conversion

 Remember, each digit represents a power of 2, therefore (1011)₂ is

$$1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

 \mathbf{OI}

$$1 \cdot 8 + 0 \cdot 4 + 1 \cdot 2 + 1 \cdot 1 = 11$$

• What about decimal equivalent of (101.11)₂?

$$1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 + 1 \cdot 2^{-1} + 1 \cdot 2^{-2}$$

 \mathbf{OI}

$$1 \cdot 4 + 0 \cdot 2 + 1 \cdot 1 + 0.5 + 0.25 = 5.75$$

OCTAL TO BINARY CONVERSION

Steps

- Step 1 Convert each octal digit to a 3 digit binary number (the octal digits may be treated as decimal for this conversion).
- Step 2 Combine all the resulting binary groups (of 3 digits each) into a single binary number.

Example

Octal Number: 258

Calculating Binary Equivalent:

Step	Octal Number	Binary Number
Step 1	258	210 510
Step 2	258	0102 1012
Step 3	258	0101012

Octal Number: 258 = Binary Number: 101012

Octal to Binary Conversion

- Base 8 uses 0, 1, 2, 3, 4, 5, 6, 7 as digits
- For octal to binary convert each octal digit into its 3 bit binary equivalent. For example:

$$(7 5 6 2)_8 = (111101110010)_2$$

BINARY TO OCTAL CONVERSION

Steps

- Step 1 Divide the binary digits into groups of three (starting from the right).
- Step 2 Convert each group of three binary digits to one octal digit.

Example

Binary Number: 101012

Calculating Octal Equivalent:

Step	Binary Number	Octal Number
Step 1	101012	010 101
Step 2	101012	28 58
Step 3	101012	258

Binary Number: 101012 = Octal Number: 258

Binary to Octal Conversion

For binary to octal group each 3-bit starting from least significant bits and convert into one octal digit. For example:

$$(100101011)_2 = (453)_8$$
4 5 3

Hexadecimal to Binary Conversion

- Base 16
- Uses 0, 1, 2, 3, 4,5, 6, 7, 8, 9, A, B, C, D, E, F as digits.
- Hexadecimal is indicated by 0x prefix in computer literature.
- For example 0x2ac in binary will be:

HEXADECIMAL TO BINARY

steps

- Step 1 Convert each hexadecimal digit to a 4 digit binary number (the hexadecimal digits may be treated as decimal for this conversion).
- Step 2 Combine all the resulting binary groups (of 4 digits each) into a single binary number.

Example

Hexadecimal Number: 0x15₁₆

Calculating Binary Equivalent:

Step	Hexadecimal Number	Binary Number
Step 1	1516	1 ₁₀ 5 ₁₀
Step 2	1516	00012 01012
Step 3	1516	000101012

Hexadecimal Number: 15₁₆ = Binary Number: 10101₂

BINARY TO HEXADECIMAL

Steps

- Step 1 Divide the binary digits into groups of four (starting from the right).
- Step 2 Convert each group of four binary digits to one hexadecimal symbol.

Example

Binary Number: 101012

Calculating hexadecimal Equivalent:

Step	Binary Number	Hexadecimal Number
Step 1	101012	0001 0101
Step 2	101012	1 ₁₀ 5 ₁₀
Step 3	101012	15 ₁₆

Binary Number: 101012 = Hexadecimal Number: 0x1516

Binary to Hexadecimal Conversion

- Just make the group of 4 bits from left to right.
- For example (101001101111011)₂ in Hex will be:

• So, $(0101\ 0011\ 0111\ 1011)_2 = 0 \times 537B$

Octal to Decimal Conversion

- The rule is same as we follow in Binary to Decimal conversion.
- But obviously the base is 8
- Example: what is the decimal equivalent of (725)₈

$$(725)_8 = 7x8^2 + 2*8^1 + 5*8^0$$

= $(448)_{10} + (16)_{10} + (5)_{10}$
= $(469)_{10}$