Berkeley Preliminary Exam

Jacob Denson

December 1, 2015

Table Of Contents

1 2007 Preliminary Exam

2

Chapter 1

2007 Preliminary Exam

Exercise 1.1. Let f and g be entire functions for which f' = g, g' = -f, and f(2z) = 2f(z)g(z) for all $z \in \mathbb{C}$. Find all possibilities for f.

Proof. Consider the differential equation f'' = -f. If $f = e^{Kiz}$. Then $f'' = -K^2 e^{Kiz}$, so $K = \pm 1$, and the general solution is

$$f(z) = Ae^{iz} + Be^{-iz}$$

$$f(2z) = Ae^{2iz} + Be^{-2iz} = 2(Ae^{iz} + Be^{-iz})(Aie^{iz} - Bie^{-iz}) = 2(A^2ie^{2iz} - B^2ie^{-2iz})$$

This means that $A = 2A^2i$, $B = -2B^2i$, so either A = 0, -i/2, B = 0, i/2. Thus either

$$f(z) = 0$$
 $f(z) = i/2e^{-iz}$ $f(z) = -i/2e^{iz}$ $f(z) = i/2(e^{-iz} - e^{iz}) = \sin(z)$