ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

SUMMER SEMESTER, 2017-2018

DURATION: 1 Hour 30 Minutes

FULL MARKS: 75

CSE 4835: Pattern Recognition

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 4 (four) questions. Answer any 3 (three) of them.

Figures in the right margin indicate marks.

		1154100 111 115	
1.	a)	Define Pattern Recognition. Briefly describe the design eyers of a particular	1+13
	1.1	system with appropriate figures. Compare between the different types of learning methods with examples.	6
	b)	What is a class model? How is the class model related to the class decision?	1+4
	c)	what is a class model. How is the class model related to the class decision	
2.	a)	Devise the decision rule for the Bayes classifier with minimum risk for a two-class problem. When can this classifier ensure minimum error? Prove it.	4+4
	b)	Consider the following decision rule for a two-class one dimensional problem:	7
	U)	Decide ω_1 if $x > \theta$; otherwise decide ω_2 .	
		Show that the probability of error for this rule is given by:	
		$P(error) = P(\omega_1) \int_{-\infty}^{\theta} p(x \mid \omega_1) dx + P(\omega_2) \int_{\theta}^{\infty} p(x \mid \omega_2) dx$	
	c)	Find the weight vector w and bias w_0 for the discriminant function $g(x)$ of Bayes classifier with minimum error rate. Assume that the likelihood probability follows a multivariate normal density function. What conditions are required for this classifier to behave same as a distance classifier?	8+2
3.	a)	Why is Whitening Transform essential? How do you perform it?	2+3
	b)	When is the Mahalanobis distance measure better than the Euclidean distance? Explain with	5
	U)	an example scenario.	
	c)	What is a phi-function? How does this function map a non-linear discriminant function into a linear discriminant function? Design a phi function of your own when the original feature space is three dimensional.	2+4
	d)	There are generally three ways to devise multicategory classifiers employing linear discriminant functions. Describe each of such designs along with their pros and cons. Use necessary illustrations.	9
4.	a)	You are given the following sample points in a 2-class problem:	5
		S ₁ : (1,1), (1,-1), (2,3) S ₂ : (2,1), (0,1), (2,1)	
	b)	Plot these samples (use graph paper) and determine by inspection whether they are separable with a linear decision boundary. Find the equation of a decision boundary which can correctly classify all the samples in Question 4.(a). Show all calculations required with the Gradient-Descent technique. Choose any criterion function. Assume any values for necessary variables.	