

PES University, Bengaluru

(Established under Karnataka Act 16 of 2013)

END SEMESTER ASSESSMENT (ESA) - May 2023

UE19EC252 - Electromagnetic Field Theory

Total Marks: 100.0

1	.a.	W	rite'	exp	ressi	ons	for

- 1) transforming a point from cartesian (x,y,z) to cylindrical (ρ,ϕ,z) coordinate system and from cylindrical to cartesian
- 2) transforming a point from cartesian (x,y,z) to spherical (r,θ,ϕ) coordinate system and from spherical to cartesian (6.0 Marks)

1.b. Determine curl of the vector field $\mathbf{A} = \rho z sin\phi \ a_{\rho} + 3\rho z^2 cos\phi \ a_{\phi} \ at (5, \pi/2, 1)$ (6.0 Marks)

1.c. Derive the expression for electric field intensity at any point (ρ, ϕ, z) of an infinite line charge with ρ_L charge density along z-axis. (8.0 Marks)

2.a. If $\mathbf{D} = (2y^2 + z) a_x + 4xy a_y + x a_z C/m^2$, find 1) Volume charge density at (-1, 0, 3) (2M) 2) Flux through the cube defined by $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$ (4M) 3) Total charge enclosed by the cube (2M) (8.0 Marks) 2.b. Given $\mathbf{D} = 50 \ a_x + 80 \ a_y - 30 \ a_z \ nC/m^2$ in region x > 0 where $\varepsilon = 2.1 \ \varepsilon_0$, find \mathbf{D} In the region x < 0 where $\varepsilon = 7.6 \varepsilon_0$ (6.0 Marks) 2.c. $V=5x^3y^2z$ and $\varepsilon=2.25\,\varepsilon_0$. Find **E** at a point P(-3, 1, 2) and ρ_v at point P (6.0 Marks) 3.a. Derive the expression for magnetic field intensity \mathbf{H} , at a height h along z-axis for a circular loop on z=0 plane with its center at origin carrying a current of I amperes in ϕ direction. (8.0 Marks)

3.b. Given
$$\mathbf{H} = 10^3 \rho^2 \, a_{\phi} \, A/m$$
.

- 1) Find **J** (3M)
- 2) Calculate current through the surface $0 < \rho < 2, 0 < \phi < 2\pi, z = 0$ (3M) (6.0 Marks)

3.c. Derive the expression for force between two current elements (6.0 Marks)

4.a. Derive the expression for displacement current (8.0 Marks)

4.b. Express the following time harmonic fields as phasors

1)
$$A = 5 \sin(2t + \frac{\pi}{3}) a_x + 3 \cos(2t + 30^0) a_y$$
 (2M)

2)
$$\mathbf{B} = \frac{100}{\rho} \sin(\omega t - 2\pi z) a_{\rho}$$
 (2M)

4.c. Write all Maxwell's equations in differential form and integral form	(8.0 Marks)
5.a. A lossless transmission line is 80cm long and operates at a frequence 600MHz. The line parameters are L = 0.25 μH/m and C = 100 pF/m. Find characteristic impedance, phase constant and phase velocity	y of the (6.0 Marks)
5.b. Give the expressions for input impedance , reflection coefficient and wave ratio for a shorted line, open circuited line and matched line	l standing (8.0 Marks)
5.c. Derive the expression for input impedance of a quarter wave transfo	ormer (6.0 Marks)