Given Dataset

rec	Age	Income	Student	Credit_rating	Buys_computer
r1	<=30	High	No	Fair	No
r2	<=30	High	No	Excellent	No
r3	31-40	High	No	Fair	Yes
r4	>40	Medium	No	Fair	Yes
r5	>40	Low	Yes	Fair	Yes
r6	>40	Low	Yes	Excellent	No
r7	31-40	Low	Yes	Excellent	Yes
r8	<=30	Medium	No	Fair	No
r9	<=30	Low	Yes	Fair	Yes
r10	>40	Medium	Yes	Fair	Yes
r11	<=30	Medium	Yes	Excellent	Yes
r12	31-40	Medium	No	Excellent	Yes
r13	31-40	High	Yes	Fair	Yes
r14	>40	Medium	No	Excellent	No

Use Naïve Bayes to classify the instance

<age=Youth; Income = Medium; Student = Yes; Credit_Rating = Fair >

Will the customer buy a computer?

Solution:

 $P(buys_computer = yes) = 9/14 = 0.643$

P(buys_computer = no) = 5/14= 0.357

P(are=youth | buys_computer = yes) = 2/9 = 0.222

P(age=youth /buys_computer = no) = 3/5 = 0.600

P(income=medium/buys_computer = yes) = 4/9 = 0.444

P(income=medium /buys_computer = no) = 2/5 = 0.400

P(student=yes/buys_computer = yes) = 6/9 = 0.667

P(student=yes/buys_computer = no) = 1/5 =0.200

P(credit rating=fair /buys_computer = yes) = 6/9 = 0.667

P(credit rating=fair /buys_computer = no) = 2/5 = 0.400

P(Customer buy a computer = yes) = P(age=youth | buys_computer = yes) x P(income=medium | buys_computer = yes) x P(student=yes | buys_computer = yes) x P(credit rating=fair | buys_computer = yes) = $0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044$

 $P(\text{Customer buy a computer} = \text{No}) = P(\text{age=youth } | \text{buys_computer} = \text{no}) \times P(\text{income=medium } | \text{buys_computer} = \text{no}) \times P(\text{student=yes } | \text{buys_computer} = \text{no}) \times P(\text{credit rating=fair} | \text{buys_computer} = \text{no}) = 0.600 \times 0.400 \times 0.200 \times 0.400 = 0.019$

Classification result = Customer Buy - yes