Métodos Iterativos

Clase 07 - 24/05/2023

Problema

Resolver $Ax = b \operatorname{con} A \in \mathbb{R}^{n \times n}$ y $b \in \mathbb{R}^n$.

Problema

Resolver $Ax = b \operatorname{con} A \in \mathbb{R}^{n \times n}$ y $b \in \mathbb{R}^n$.

- Reescribo mis datos para tener cuentas "menos costosas" y obtener un resultado.
- Uso descomposiciones LU, QR, $U\Sigma V^t$, BDB^{-1} .

Problema

Resolver $Ax = b \operatorname{con} A \in \mathbb{R}^{n \times n} \text{ y } b \in \mathbb{R}^n$.

- Reescribo mis datos para tener cuentas "menos costosas" y **obtener** un resultado.
- Uso descomposiciones LU, QR, $U\Sigma V^t$, BDB^{-1} .
- Cuanto más propiedades sé de A, más opciones tengo para saber "elegir mejor":

Problema

Resolver $Ax = b \operatorname{con} A \in \mathbb{R}^{n \times n}$ y $b \in \mathbb{R}^n$.

- Reescribo mis datos para tener cuentas "menos costosas" y **obtener** un resultado.
- Uso descomposiciones LU, QR, $U\Sigma V^t$, BDB^{-1} .
- Cuanto más propiedades sé de A, más opciones tengo para saber "elegir mejor":
 - Si A simétrica definida positiva, LU se refina a LL^t.
 - Cuanto más cerca esté Cond(A) de 1, menor es el error relativo que se comete.

Métodos Iterativos

Forma Directa

Problema

Resolver $Ax = b \operatorname{con} A \in \mathbb{R}^{n \times n}$ y $b \in \mathbb{R}^n$.

- Reescribo mis datos para tener cuentas "menos costosas" y **obtener** un resultado.
- Uso descomposiciones LU, QR, $U\Sigma V^t$, BDB^{-1} .
- Cuanto más propiedades sé de A, más opciones tengo para saber "elegir mejor":
 - Si A simétrica definida positiva, LU se refina a LL^t.
 - Cuanto más cerca esté Cond(A) de 1, menor es el error relativo que se comete.
- Se puede estimar el error según la descomposición elegida, pero no hay segundas oportunidades.

Problema

Resolver $Ax = b \operatorname{con} A \in \mathbb{R}^{n \times n}$ y $b \in \mathbb{R}^n$.

Problema

Resolver $Ax = b \text{ con } A \in \mathbb{R}^{n \times n} \text{ y } b \in \mathbb{R}^n$.

- Reescribo los datos para tener cuentas "menos costosas" para obtener aproximaciones que puedo volver a usar para acercarme cada vez más al resultado que busco (si se dan las condiciones).
- Uso descomposiciones de Jacobi (J) y Gauss-Seidel (GS), entre otras.

Problema

Resolver $Ax = b \operatorname{con} A \in \mathbb{R}^{n \times n}$ y $b \in \mathbb{R}^n$.

- Reescribo los datos para tener cuentas "menos costosas" para obtener aproximaciones que puedo volver a usar para acercarme cada vez más al resultado que busco (si se dan las condiciones).
- Uso descomposiciones de Jacobi (J) y Gauss-Seidel (GS), entre otras.
- Estructura general: $x^{(k+1)} = Rx^{(k)} + c$ con $R \in \mathbb{R}^{n \times n}$ y $c \in \mathbb{R}^n$.

Problema

Resolver $Ax = b \operatorname{con} A \in \mathbb{R}^{n \times n}$ y $b \in \mathbb{R}^n$.

- Reescribo los datos para tener cuentas "menos costosas" para obtener aproximaciones que puedo volver a usar para acercarme cada vez más al resultado que busco (si se dan las condiciones).
- Uso descomposiciones de Jacobi (J) y Gauss-Seidel (GS), entre otras.
- Estructura general: $x^{(k+1)} = Rx^{(k)} + c \text{ con } R \in \mathbb{R}^{n \times n} \text{ y } c \in \mathbb{R}^n$.
- Cuanto más propiedades sé de A o de R, más opciones tengo para saber "elegir mejor":
 - Si A simétrica definida positiva, GS converge.
 - Si $R^k \xrightarrow{k \to \infty} 0$ se llega a la solución exacta.

Problema

Resolver $Ax = b \operatorname{con} A \in \mathbb{R}^{n \times n}$ y $b \in \mathbb{R}^n$.

- Reescribo los datos para tener cuentas "menos costosas" para obtener aproximaciones que puedo volver a usar para acercarme cada vez más al resultado que busco (si se dan las condiciones).
- Uso descomposiciones de Jacobi (J) y Gauss-Seidel (GS), entre otras.
- Estructura general: $x^{(k+1)} = Rx^{(k)} + c \text{ con } R \in \mathbb{R}^{n \times n} \text{ y } c \in \mathbb{R}^n$.
- Cuanto más propiedades sé de A o de R, más opciones tengo para saber "elegir mejor":
 - Si A simétrica definida positiva, GS converge.
 - Si $R^k \xrightarrow{k \to \infty} 0$ se llega a la solución exacta.
- Se puede estimar el error según la cantidad de pasos.

Escribimos a A como sumas/restas de triangulares L y U y una diagonal D:

$$A = D - L - U$$

Escribimos a A como sumas/restas de triangulares L y U y una diagonal D:

$$A = D - L - U$$

Método de Jacobi: $R_j = D^{-1}(L + U)$ y $c = D^{-1}b$.

$$(D - L - U)x = b$$

$$Dx = b + (L + U)x$$

$$x = D^{-1}b - D^{-1}(L + U)x$$

$$x^{(k+1)} = D^{-1}b + D^{-1}(L + U)x^{(k)}$$

Escribimos a A como sumas/restas de triangulares L y U y una diagonal D:

$$A = D - L - U$$

Método de Jacobi: $R_j = D^{-1}(L + U)$ y $c = D^{-1}b$.

$$(D - L - U)x = b$$

$$Dx = b + (L + U)x$$

$$x = D^{-1}b - D^{-1}(L + U)x$$

$$x^{(k+1)} = D^{-1}b + D^{-1}(L + U)x^{(k)}$$

Método de Gauss-Seidel: $R_{GS} = (D - L)^{-1}U$ y $c = (D - L)^{-1}b$.

$$(D - L - U)x = b$$

$$(D - L)x = b + Ux$$

$$x = (D - L)^{-1}b + (D - L)^{-1}Ux$$

$$x^{(k+1)} = (D - L)^{-1}b + (D - L)^{-1}Ux^{(k)}$$

Escribimos a A como sumas/restas de triangulares L y U y una diagonal D:

$$A = D - L - U$$

Método de Jacobi: $R_j = D^{-1}(L + U)$ y $c = D^{-1}b$.

$$(D - L - U)x = b
Dx = b + (L + U)x
x = D^{-1}b - D^{-1}(L + U)x
x^{(k+1)} = D^{-1}b + D^{-1}(L + U)x^{(k)}$$

Método de Gauss-Seidel: $R_{GS} = (D - L)^{-1}U$ y $c = (D - L)^{-1}b$.

$$(D - L - U)x = b$$

$$(D - L)x = b + Ux$$

$$x = (D - L)^{-1}b + (D - L)^{-1}Ux$$

$$x^{(k+1)} = (D - L)^{-1}b + (D - L)^{-1}Ux^{(k)}$$

Idea: Escribir a A como suma de matrices "lindas": ralas, diagonales, triangulares, etc., a como suma de matrices "lindas": ralas, diagonales, triangulares, etc., a como suma de matrices "lindas": ralas, diagonales, triangulares, etc., a como suma de matrices "lindas": ralas, diagonales, triangulares, etc., a como suma de matrices "lindas": ralas, diagonales, triangulares, etc., a como suma de matrices "lindas": ralas, diagonales, triangulares, etc., a como suma de matrices "lindas": ralas, diagonales, triangulares, etc., a como suma de matrices "lindas": ralas, diagonales, triangulares, etc., a como suma de matrices "lindas": ralas, diagonales, triangulares, etc., a como suma de matrices "lindas": ralas, diagonales, triangulares, etc., a como suma de matrices "lindas": ralas, diagonales, triangulares, etc., a como suma de matrices "lindas": ralas, diagonales, diagonale

Tenemos dos estructuras:

- $Ax = b \operatorname{con} A \in \mathbb{R}^{n \times n} \operatorname{y} b \in \mathbb{R}^{n}$.
- $x^{(k+1)} = Rx^{(k)} + c \operatorname{con} R \in \mathbb{R}^{n \times n} \operatorname{y} c \in \mathbb{R}^{n}$.

Tenemos dos estructuras:

- $Ax = b \operatorname{con} A \in \mathbb{R}^{n \times n} \operatorname{y} b \in \mathbb{R}^{n}$.
- $x^{(k+1)} = Rx^{(k)} + c \text{ con } R \in \mathbb{R}^{n \times n} \text{ y } c \in \mathbb{R}^n$.

Podemos pedir condiciones sobre $A \circ R$ o sobre $x^{(0)}$, $b \circ c$. Pero:

Tenemos dos estructuras:

- $Ax = b \text{ con } A \in \mathbb{R}^{n \times n} \text{ y } b \in \mathbb{R}^n$.
- $x^{(k+1)} = Rx^{(k)} + c \text{ con } R \in \mathbb{R}^{n \times n} \text{ y } c \in \mathbb{R}^n$.

Podemos pedir condiciones sobre $A \circ R$ o sobre $x^{(0)}$, $b \circ c$. Pero:

■ R depende de A y de la descomposición elegida y c depende de b y de la descomposición elegida.

Tenemos dos estructuras:

- $Ax = b \text{ con } A \in \mathbb{R}^{n \times n} \text{ y } b \in \mathbb{R}^n$.
- $x^{(k+1)} = Rx^{(k)} + c \text{ con } R \in \mathbb{R}^{n \times n} \text{ y } c \in \mathbb{R}^n$.

Podemos pedir condiciones sobre A ó R o sobre $x^{(0)}$, b ó c. Pero:

- R depende de A y de la descomposición elegida y c depende de b y de la descomposición elegida.
- Esta bueno que "no importe" el valor inicial ni el valor de b.

Tenemos dos estructuras:

- $Ax = b \operatorname{con} A \in \mathbb{R}^{n \times n} \operatorname{y} b \in \mathbb{R}^{n}$.
- $x^{(k+1)} = Rx^{(k)} + c \text{ con } R \in \mathbb{R}^{n \times n} \text{ y } c \in \mathbb{R}^n$.

Podemos pedir condiciones sobre $A \circ R$ o sobre $x^{(0)}$, $b \circ c$. Pero:

- R depende de A y de la descomposición elegida y c depende de b y de la descomposición elegida.
- Esta bueno que "no importe" el valor inicial ni el valor de b.
- No sé si notaron que $x^{(k+1)} = R^k x^{(0)} + \sum_{i=0}^{k-1} R^i c$. Si R fuera un número, converge si |R| < 1.

Tenemos dos estructuras:

- $Ax = b \text{ con } A \in \mathbb{R}^{n \times n} \text{ y } b \in \mathbb{R}^n$.
- $x^{(k+1)} = Rx^{(k)} + c \text{ con } R \in \mathbb{R}^{n \times n} \text{ y } c \in \mathbb{R}^n.$

Podemos pedir condiciones sobre $A \circ R$ o sobre $x^{(0)}$, $b \circ c$. Pero:

- R depende de A y de la descomposición elegida y c depende de b y de la descomposición elegida.
- Esta bueno que "no importe" el valor inicial ni el valor de b.
- No sé si notaron que $x^{(k+1)} = R^k x^{(0)} + \sum_{i=0}^{k-1} R^i c$. Si R fuera un número, converge si |R| < 1.

Ganó la R en importancia, y en segunda lugar A junto con la descomposición elegida.

La generalización del módulo para matrices son las normas:

La generalización del módulo para matrices son las normas:

Proposición

Si ||R|| < 1 para alguna norma, el sistema iterado converge.

La generalización del módulo para matrices son las normas:

Proposición

Si ||R|| < 1 para alguna norma, el sistema iterado converge.

¿Y si tomamos el mínimo valor posible y ya?

La generalización del módulo para matrices son las normas:

Proposición

Si ||R|| < 1 para alguna norma, el sistema iterado converge.

¿Y si tomamos el mínimo valor posible y ya?

Teorema

$$\inf_{\|\|}\|R\| = \rho(R)$$

donde $\rho(R)$ es el radio espectral:

$$\rho(R) = \max\{|\lambda| / \lambda \text{ autovalor de } R\}$$

Situación estándar

Situación general de un ejercicio típico:

1. Pasar del sistema clásico al iterativo dada una descomposición:

$$Ax = b \quad \leadsto \quad x^{(k+1)} = Rx^{(k)} + c$$

2. Analizar la convergencia recordando lo visto en la teórica:

Teorema de Convergencia

El sistema iterativo converge para cualquier $x^{(0)}$ inicial $\Leftrightarrow \rho(R) < 1$.

No necesariamente hay que demostrar que $\rho(R) < 1$, también sirve $\|R\|_1$, $\|R\|_2$ ó $\|R\|_\infty$ pues ínf $\|R\| = \rho(R)$.

- 3. En el caso de convergencia anterior, sabemos que hay un $x \in \mathbb{R}^n$ tal que x = Rx + c y ||R|| < 1 para alguna norma.
 - **Cálculo** "directo" (vía ejercicio 21 de la guía 2): $x = (I R)^{-1}c$
 - Cota para el error $e_k = x x^k$ en el k-ésimo paso (en teórica):

$$||x - x^{(k)}|| \le ||R|| ||x - x^{(k-1)}|| \le \dots \le ||R||^k ||x - x^{(0)}||$$

 $||x - x^{(k)}|| \le ||R||^k / (1 - ||R||) \cdot ||x^{(1)} - x^{(0)}||$