Linear Algebra. Test 2. Variant 1.

First name	Last name	Group	Points#1	Points#2
		BS1-		

I am, _____ (initials), confirming that I have read the following rules and agree to comply with them, that all solutions on this paper is my own work.

ignature

Rules:

- no talking AT ALL is allowed during the exam and after it (if you are still in the room)
- when time is up, you have to put down your pen (pencil) and do NOT write anything else
- you can NOT leave your seat till the end of the test
- any electronic devices are not allowed

1. (*5 points*) Subspace
$$S$$
 of \mathbb{R}^3 is spanned by vectors $a = \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix}$ and $b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. Represent the vector $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ as a sum of projections onto S and S^{\perp} .

Linear Algebra. Test 2. Variant 1.

First name	Last name	Group	Points#3
		BS1-	

I am, _____ (initials), confirming that I have read the following rules and agree to comply with them, that all solutions on this paper is my own work.

_____(signature)

2. (*5 points*) Using least squares method find coefficients of a curve f(x) = acos(x + b) that best fits following points:

х	0	π/4	π/2
f(x)	-1	0	1

f(x) -1 0 1Note: cos(x + y) = cos(x) cos(y) - sin(y) sin(x).

3. (**3+2 points**). Let $a = (1,0,1)^T$, $b = (1,1,0)^T$, $c = (0,1,1)^T$.

Provide Gram-Schmidt procedure to obtain orthonormal basis (3 points). Write corresponding QR factorization (2 points).