

直流双臂电桥 实验报告单

学 号: 2012604

姓 名: 苏可铮

年 级: 2020 级

学 院: 数学科学学院

完成日期: 2021 年 6 月 12 日

目录

- · · · · · · ·	
- · · - · · -	
- · · - · · · · ·	
数据记录与处理 …	 6
思考颢	 12

实验目的

- 了解电阻的四端结构;
- 学习双臂电桥测量低阻的原理和方法;
- 掌握导体电阻率测量方法和误差分析;

实验报告 直流双臂电桥

实验器材

- ZKY-nA 微电流测量仪
- DF1709SB 电源
- FBZX21 型直流电阻箱

实验原理

- 直流双臂电桥测量电阻
 - i 当检流计 G 示数为零时, 电桥达到平衡, 根据基尔霍夫方程可得:

$$\begin{cases} I_1 R_1 = I_0 R_0 + I_1' R_1' \\ I_1 R_2 = I_0 R_x + I_1' R_2' \\ (I_0 - I_1') r = I_1' (R_1' + R_2') \end{cases}$$

式中 I_1 、 I_0 、 I_1' 分别为电桥平衡时通过电阻 R_1 、 R_0 、 R_1' 的电流。

图 1: 电阻四段结构

ii 整理后,得到双桥平衡时的关系式:

$$R_1 R_x = R_2 R_0 + (R_2 R_1' - R_1 R_2') \frac{r}{r + R_1' + R_2'}$$

为了化简电路,通常设定:

$$R_2 R_1' - R_1 R_2' = 0$$

即:

$$\frac{R_2}{R_1} = \frac{R_2'}{R_1'}$$

这样得到待测电阻:

$$R_x = \frac{R_2}{R_1} R_0$$

所以知道 R_1 、 R_0 、 R_1' 就可以知道待测电阻 R_x

- 调节电桥平衡的方法
 - i 固定比例臂倍率,即让 $\frac{R_2}{R_1} = \frac{R_2'}{R_1'} = 10^n$,然后调整标准电阻 R_0 使检流计为 零。
 - ii 固定标准电阻 R_0 ,同步调节比例臂电阻 R_2,R_2' ,使检流计为零。
 - iii 本实验选择第二种方法。
- 电桥灵敏度
 - i 电桥的平衡是通过检流计示数来判断的,其灵敏度直接影响测量结果,为此引入电桥灵敏度概念,定义为:

$$S = \frac{\Delta I}{\frac{\Delta R_2}{R_2}}$$

其中 R_2 为平衡时电阻, ΔR_2 为电桥平衡后微小改变量, ΔI 为检流计的变化量。

ii 由灵敏度引入的 ΔR_x 相对误差为:

$$\frac{\Delta R_x}{R_x} = \frac{\Delta I}{S}$$

- iii 灵敏度 S 越大, 电桥越灵敏, 电桥平衡判断越精细, 引入的误差也越小。
- 不确定度的计算
 - i R_x 的总相对不确定度为:

$$\rho_x = \sqrt{(1+k)^2(\rho_2^2 + \rho_1^2) + k^2(\rho_2'^2 + \rho_1'^2) + \rho_0^2 + (\frac{\delta}{S})^2}$$

其中 $\rho_1, \rho_2, \rho_1', \rho_2', \rho_0$ 分别为 $R_1, R_2, R_1', R_2', R_0$ 的相对不确定度。

实验内容

- 铜棍电阻率的测量
 - I 预置好 R_2 以及 R_2' ,按电路图连接好电路,调节电桥平衡,测量铜棍电阻 R_x 阻值,以及电桥灵敏度,测量铜棍在两个电压接头之间的电阻
 - II 利用螺旋测微器测量铜棍直径
 - III 根据上述操作所的数据,计算铜棍的电阻率以及不确定度
- 测量铝棍和钢棍的电阻值及其电阻率
 - I 重复上述步骤,测量铝棍和铜棍的电阻值及其电阻率

数据记录与处理

1. 铜棍电阻率的测量

铜棍长度

由于铜棍测量为直尺单次测量,则测量的 B 类不确定度为:

$$u_{bL} = \frac{\Delta}{3} = 0.17mm \quad (\Delta = 0.5mm)$$

数据处理:

$$l = (400.00 \pm 0.17)mm$$

铜棍直径测量

螺旋测微器零点读数为: -0.01mm

表 1: 铜棍直径测量

测量次数	1	2	3	4	5	平均值
直径(mm)	5.11	4.97	5.01	5.04	4.99	5.024

1. 计算 A 类不确定度:

$$s_{\bar{x}} = \frac{s_{x_i}}{\sqrt{n}} = \left[\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}\right]^{1/2} = 0.024mm$$

$$u_{ax} = t_{(0.683,k)} s_{\bar{x}} = 1.11 \times 0.024 = 0.027 mm$$

2. 计算 B 类不确定度:

螺旋测微器分辨率:

$$\varepsilon_x = 0.01mm$$

多次测量的 B 类标准不确定度:

$$u_{bx} = \frac{\varepsilon_x}{\sqrt{3}} = 5.77 \times 10^{-3} mm$$

3. 则不确定度为:

$$u_d = \sqrt{u_{ax}^2 + u_{bx}^2} = 0.028mm$$

数据处理:

$$d = (5.024 \pm 0.028)mm$$

调节电桥平衡

表 2: 调节电桥平衡

电桥状态	R_2	R_x	ΔR_2	ΔI	S
数据记录	351.4Ω	$0.35m\Omega$	3Ω	38nA	4.45×10^{-6}

由 R_x 的总相对不确定度为:

$$\rho_x = \sqrt{(1+k)^2(\rho_2^2 + \rho_1^2) + k^2(\rho_2^{\prime 2} + \rho_1^{\prime 2}) + \rho_0^2 + (1/S)^2} = 0.22$$

注:

$$\rho_1 = \rho_1' = \rho_2 = \rho_2' = 0.1\%, \rho_0 = 0.05\%, k = 0.1$$

$$u_{R_x} = \rho_x R_x = 0.08m\Omega$$

数据处理:

$$R_x = (0.35 \pm 0.08) m\Omega$$

计算铜棍电阻率

计算电阻率,由:

$$\rho_{R_x} = \frac{R_x S}{L} = \frac{\pi R_x d^2}{4L} = 1.735 \times 10^{-8}$$

求全微分可得:

$$u_{\rho} = \rho \left[\left(\frac{u_{R_x}}{R} \right)^2 + \left(\frac{2u_d}{d} \right)^2 + \left(\frac{u_L}{L} \right)^2 \right]^{1/2} = 3.47 \times 10^{-9}$$

则:

$$\rho_{Cu} = (1.735 \pm 0.347) \times 10^{-8}$$

2. 铝棍电阻率的测量

铝棍长度

由于铝棍测量为直尺单次测量,则测量的 B 类不确定度为:

$$u_{bL} = \frac{\Delta}{3} = 0.17mm \quad (\Delta = 0.5mm)$$

数据处理:

$$l = (400.00 \pm 0.17)mm$$

铝棍直径测量

螺旋测微器零点读数为: -0.01mm

表 3: 铝棍直径测量

测量次数	1	2	3	4	5	平均值
直径 (mm)	4.98	4.95	5.01	4.99	4.97	4.98

1. 计算 A 类不确定度:

$$s_{\bar{x}} = \frac{s_{x_i}}{\sqrt{n}} = \left[\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}\right]^{1/2} = 0.01mm$$

$$u_{ax} = t_{(0.683,k)} s_{\bar{x}} = 1.11 \times 0.01 = 0.011 mm$$

2. 计算 B 类不确定度:

螺旋测微器分辨率:

$$\varepsilon_r = 0.01mm$$

多次测量的 B 类标准不确定度:

$$u_{bx} = \frac{\varepsilon_x}{\sqrt{3}} = 5.77 \times 10^{-3} mm$$

3. 则不确定度为:

$$u_d = \sqrt{u_{ax}^2 + u_{bx}^2} = 0.012mm$$

数据处理:

$$d = (4.980 \pm 0.012)mm$$

调节电桥平衡

表 4: 调节电桥平衡

电桥状态	R_2	R_x	ΔR_2	ΔI	S
数据记录	894.6Ω	$0.89m\Omega$	9Ω	50nA	4.97×10^{-6}

由 R_x 的总相对不确定度为:

$$\rho_x = \sqrt{(1+k)^2(\rho_2^2 + \rho_1^2) + k^2(\rho_2'^2 + \rho_1'^2) + \rho_0^2 + (1/S)^2} = 0.20$$

注:

$$\rho_1 = \rho_1' = \rho_2 = \rho_2' = 0.1\%, \rho_0 = 0.05\%, k = 0.1$$

$$u_{R_x} = \rho_x R_x = 0.07m\Omega$$

数据处理:

$$R_x = (0.89 \pm 0.07) m\Omega$$

计算铝棍电阻率

计算电阻率,由:

$$\rho_{R_x} = \frac{R_x S}{L} = \frac{\pi R_x d^2}{4L} = 4.334 \times 10^{-8}$$

求全微分可得:

$$u_{\rho} = \rho \left[\left(\frac{u_{R_x}}{R} \right)^2 + \left(\frac{2u_d}{d} \right)^2 + \left(\frac{u_L}{L} \right)^2 \right]^{1/2} = 3.42 \times 10^{-9}$$

则:

$$\rho_{Al} = (4.334 \pm 0.342) \times 10^{-8}$$

3. 铁棍电阻率的测量

铁棍长度

由于铝棍测量为直尺单次测量,则测量的 B 类不确定度为:

$$u_{bL} = \frac{\Delta}{3} = 0.17mm \quad (\Delta = 0.5mm)$$

数据处理:

$$l = (400.00 \pm 0.17)mm$$

铁棍直径测量

螺旋测微器零点读数为: -0.01mm

表 5: 铁棍直径测量

测量次数	1	2	3	4	5	平均值
直径 (mm)	4.97	4.96	5.00	4.99	4.97	4.978

1. 计算 A 类不确定度:

$$s_{\bar{x}} = \frac{s_{x_i}}{\sqrt{n}} = \left[\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n(n-1)}\right]^{1/2} = 0.008mm$$

$$u_{ax} = t_{(0.683,k)} s_{\bar{x}} = 1.11 \times 0.01 = 0.009 mm$$

2. 计算 B 类不确定度:

螺旋测微器分辨率:

$$\varepsilon_x = 0.01mm$$

多次测量的 B 类标准不确定度:

$$u_{bx} = \frac{\varepsilon_x}{\sqrt{3}} = 5.77 \times 10^{-3} mm$$

3. 则不确定度为:

$$u_d = \sqrt{u_{ax}^2 + u_{bx}^2} = 0.011mm$$

数据处理:

$$d = (4.978 \pm 0.011)mm$$

调节电桥平衡

表 6: 调节电桥平衡

电桥状态	R_2	R_x	ΔR_2	ΔI	S
数据记录	14823Ω	$14.82m\Omega$	150Ω	16nA	1.58×10^{-6}

由 R_x 的总相对不确定度为:

$$\rho_x = \sqrt{(1+k)^2(\rho_2^2 + \rho_1^2) + k^2(\rho_2^{\prime 2} + \rho_1^{\prime 2}) + \rho_0^2 + (1/S)^2} = 0.63$$

注:

$$\rho_1 = \rho_1' = \rho_2 = \rho_2' = 0.1\%, \rho_0 = 0.05\%, k = 0.1$$

$$u_{R_x} = \rho_x R_x = 9.38m\Omega$$

数据处理:

$$R_x = (14.82 \pm 9.38) m\Omega$$

计算铁棍电阻率

计算电阻率,由:

$$\rho_{R_x} = \frac{R_x S}{L} = \frac{\pi R_x d^2}{4L} = 7.21 \times 10^{-7}$$

求全微分可得:

$$u_{\rho} = \rho \left[\left(\frac{u_{R_x}}{R} \right)^2 + \left(\frac{2u_d}{d} \right)^2 + \left(\frac{u_L}{L} \right)^2 \right]^{1/2} = 4.56 \times 10^{-7}$$

则:

$$\rho_{Fe} = (7.21 \pm 4.56) \times 10^{-7}$$

思考题

1. 实验室常用的直流电源有几种?

解 1. 实验室常用直流电源包括有:干电池、蓄电池、直流稳压电池、直流稳流电池共四种。