(Partie 2) Résolvante et principe de résolution

Dans cette partie, on ne considère que des formules qui sont déjà sous forme clausale ¹. On introduit une seconde représentation où :

- une clause est représentée par une liste de littéraux,
- une formule (conjonction de clauses) est représentée par une liste de clauses.

En conséquence, on définit les types synonymes suivants :

```
type Clause = [Formule]
type FormuleBis = [Clause]
```

1. Transformer une Formule en une FormuleBis

 (Q_9) Compléter les définitions des fonctions ci-dessous qui permettent de transformer une formule f $(d\acute{e}j\grave{a}\ sous\ forme\ clausale)$ en une FormuleBis, i.e. en une liste de clauses.

```
-- exemples
> ouToListe (Non (Var "b"))
[Non (Var "b")]
> etToListe (Non (Var "b"))
[ [Non (Var "b")] ]
> ouToListe (Ou (Non (Var "a")) (Non (Var "b")))
[Non (Var "a"), Non (Var "b")]
> etToListe (Ou (Non (Var "a")) (Non (Var "b")))
[ [Non (Var "a"), Non (Var "b")] ]
> ouToListe (Ou (Non (Var "a")) (Ou (Var "c") (Non (Var "b"))))
[Non (Var "a"), Var "c", Non (Var "b")]
> etToListe (Ou (Non (Var "a")) (Ou (Var "c") (Non (Var "b"))))
[ [Non (Var "a"), Var "c", Non (Var "b")] ]
> etToListe (Et (Ou (Non (Var "c")) (Var "d")) (Ou (Non (Var "b")) (Var "d")))
[ [Non (Var "c"), Var "d"], [Non (Var "b"), Var "d"] ]
> etToListe (Et (Ou (Var "a") (Non (Var "b")))
               (Et (Ou (Non (Var "c")) (Var "d"))
                  (Ou (Var "b") (Ou (Non (Var "d")) (Var "c")))))
[ [Var "a", Non (Var "b")], [Non (Var "c"), Var "d"], [Var "b", Non (Var "d"), Var "c"] ]
etToListe ::
etToListe (Et g d) = (ouToListe g) :
etToListe f
ouToListe ::
ouToListe (Ou g d) = g :
ouToListe
```

^{1.} Si l'on souhaitait traiter une formule f quelconque, il suffirait de lui appliquer la fonction (formeClausale f) vue dans la première partie.

2. Résolvante de deux clauses

Définiton 2.1 (clauses liées) Deux clauses c_1 et c_2 sont dites liées ssi il existe (au moins) un littéral (positif ou négatif) apparaissant dans c_1 et tel que sa négation apparaisse dans c_2 .

Exemples :

 $c_1 = a \lor \neg b \lor d$ et $c_2 = a \lor \neg d \lor \neg b$ sont liées car le littéral d appartient à c_1 et sa négation $\neg d$ appartient à c_2 . $c_1 = \neg a \lor \neg b$ et $c_2 = \neg d \lor c \lor b$ sont liées car le littéral $\neg b$ appartient à c_1 et sa négation b appartient à c_2 . $c_1 = \neg a \lor b \lor c$ et $c_2 = \neg d \lor \neg a \lor c$ ne sont pas liées; aucun littéral figurant dans c_1 n'a sa négation dans c_2 .

 (Q_{10}) Définir la fonction (neg 1) qui à un littéral 1 associe sa négation.

 (Q_{11}) Compléter la définition de la fonction (sontLiees xs ys) qui détermine si deux clauses xs et ys sont liées.

```
-- exemples
```

```
> sontLiees [Non (Var "a"), Non (Var "b")] [Non (Var "d"), Var "b", Var "c"] ==> True
> sontLiees [Non (Var "a"), Var "b", Var "c"] [Non (Var "d"), Var "a", Var "c"] ==> True
> sontLiees [Var "a", Non (Var "b"), Var "d"] [Var "a", Non (Var "c"), Non (Var "d")] ==> True
> sontLiees [Var "a", Var "b", Var "c"] [Var "a", Non (Var "c"), Non (Var "d")] ==> True
> sontLiees [Non (Var "a"), Var "b", Var "c"] [Non (Var "d"), Non (Var "a"), Var "c"] ==> False
> sontLiees [Var "a", Non (Var "b"), Var "d"] [Var "a", Non (Var "c"), Var "d"] ==> False
sontLiees []
sontLiees (x:
```

Définiton 2.2 (résolvante de deux clauses)

On considère deux clauses c_1 et c_2 qui sont supposées être liées.

- 1. soit l un littéral positif apparaissant dans c_1 (i.e. $c_1 = l \vee c'_1$) et tel que sa négation $\neg l$ apparaisse dans c_2 (i.e. $c_2 = \neg l \vee c'_2$)
- 2. soit l un littéral positif apparaissant dans c_2 (i.e. $c_2 = l \vee c_2$) et tel que sa négation $\neg l$ apparaisse dans c_1 (i.e. $c_1 = \neg l \vee c_1$)

Dans les deux cas, la résolvante des clauses c_1 et c_2 est la clause $c'_1 \vee c'_2$.

Exemples:

La résolvante des deux clauses $(c_1 = a \lor \neg b \lor d)$ et $(c_2 = a \lor \neg d \lor \neg b)$ est la clause $(a \lor \neg b)$ car le littéral d appartient à c_1 et sa négation $\neg d$ appartient à c_2 .

La résolvante de $(c_1 = \neg a \lor \neg b)$ et $(c_2 = \neg d \lor c \lor b)$ est la clause $(\neg a \lor \neg d \lor c)$, car le littéral $\neg b$ appartient à c_1 et sa négation b appartient à c_2 .

Enfin, la résolvante des clauses $(c_1 = \neg a \lor \neg b)$ et $(c_2 = \neg d \lor c \lor \neg a)$ n'est pas définie car les clauses c_1 et c_2 ne sont pas liées (cf Définition 2.1).

Attention. La clause $(c \lor d)$ n'est pas la résolvante de $(c_1 = a \lor b \lor c)$ et $(c_2 = \neg a \lor \neg b \lor d)$. Dans ce cas particulier, il existe 2 résolvantes possibles pour c_1 et c_2 :

- $b \lor c \lor \neg b \lor d$ en choisissant le littéral a
- $a \lor c \lor \neg a \lor d$ en choisissant le littéral b

On voit que l'on pourrait construire des exemples de clauses avec 3, 4, ..., n résolvantes possibles.

Mais, pour la suite du DM, le choix d'une résolvante parmi plusieurs n'aura aucune incidence. En conséquence, toute fonction qui calcule une résolvante (peu importe laquelle) sera OK.

 (Q_{12}) Compléter la définition de la fonction (resolvante xs ys) qui calcule une résolvante des deux clauses xs et ys qui sont supposées être liées

```
-- exemples
> resolvante [Non (Var "a"), Non (Var "b")] [Var "b", Var "c"]
[Non (Var "a"), Var "c"]
> resolvante [ Var "a", Non (Var "b"), Var "d"] [Var "a", Non (Var "d"), Non (Var "b")]
[Var "a", Non (Var "b")]
> resolvante [ Var "a", Non (Var "b"), Var "d"] [Non (Var "a"), Non (Var "d"), Non (Var "b")]
[Non (Var "b"), Var "d", Non (Var "d"), Non (Var "b")]
-- deux resolvantes possibles - on retourne ici la premiere rencontree
-- une autre reponse possible aurait ete [Var "a", Var "c", Non (Var "a"), Var "d"]
> resolvante [ Var "a", Var "b", Var "c"] [Non (Var "a"), Non (Var "b"), Var "d"]
[Var "b", Var "c", Non (Var "b"), Var "d"]
resolvante ::
resolvante []
resolvante (x:
     . . .
     | otherwise
```

Pour Q_{11} et Q_{12} , on pourra utiliser toute fonction auxiliaire jugée nécessaire.

A VENIR les JEUX de DONNEES pour EFFECTUER les TESTS