

17 October 2020

Introduction to Electronics

Lecture 02 Review on Circuits Basics

Dr. Hesham A. Omran

Electronics and Communications Eng. Dept. Integrated Circuits Lab (ICL) Faculty of Engineering Ain Shams University

Ohm's Law

Kirchhoff's Current Law (KCL)

☐ The sum of all currents flowing into a node is zero.

$$\Sigma I=0$$

$$I_1 + I_2 + I_3 - I_4 = 0$$

Kirchhoff's Voltage Law (KVL)

☐ The sum of all voltage drops around any closed loop is zero

$$\Sigma V = 0$$

$$-V_{DD} + I_D R_D + V_{DS} + I_D R_S = 0$$

$$V_{DD} = I_D R_D + V_{DS} + I_D R_S = I_D (R_D + R_S) + V_{DS}$$

02: Circuits Basics

Resistor Combinations

Resistors in series: Largest resistor dominates

$$-\begin{matrix} R_1 & R_2 & R_3 \\ \hline \end{matrix}$$

$$R_{eq} = R_1 + R_2 + R_3$$

□ Resistors in parallel: Smallest resistor dominates

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

Voltage and Current Dividers

- □ Voltage divider → the largest resistor takes most of the voltage
- Current divider → the smallest resistor (largest conductance) takes most of
- Remember that current flows in the least resistance path

$$V_{out} = V_{DD} \cdot \frac{R_3}{R_1 + R_2 + R_3}$$

$$I_{out} = I_{in} \cdot \frac{G_3}{G_1 + G_2 + G_3}$$

Thevenin Equivalent Circuit

Any one port circuit can be replaced by a voltage source and a series impeda

$$V_{TH} = V_{o.c.}$$

 $Z_{TH}=Z_{eq}$ (turn OFF all independent sources)

Norton Equivalent Circuit

Any one port circuit can be replaced by a current source and a parallel imper

$$I_N = I_{S.C.}$$

 $Z_N = Z_{eq}$ (turn OFF all independent sources)

$$egin{aligned} oldsymbol{Z}_N &= oldsymbol{Z}_{TH} \ oldsymbol{V}_{TH} &= oldsymbol{V}_{o.c.} &= oldsymbol{I}_N imes oldsymbol{Z}_N \end{aligned}$$

Superposition Theorem

- Deactivate all independent sources except one
- Independent voltage source → short circuit (s.c.)
- Independent current source \rightarrow open circuit (o.c.)
- Do NOT deactivate dependent sources
- Solve the circuit
- Repeat the previous two steps for every source
- Algebraically add all the results

We use this frequently to separate AC and DC solutions

Superposition Theorem

Capacitance

$$Q = CV \Rightarrow i = \frac{dQ}{dt} = C\frac{dV}{dt}$$

$$V = V_o \cos(\omega t + \theta) = V_o \cdot Re\{e^{j(\omega t + \theta)}\}$$

$$V = V_o e^{j(\omega t + \theta)} = V_o \angle \theta$$

$$i = C \frac{dV}{dt} = j\omega C (V_o e^{j\omega t}) = j\omega C \cdot V$$

$$Z_C = \frac{V}{i} = \frac{1}{j\omega C} = \frac{1}{sC} \Rightarrow X_C = |Z_C| = \frac{1}{\omega C}$$
$$\omega \uparrow \uparrow \Rightarrow X_C \to 0 \Rightarrow s.c.$$
$$\omega \downarrow \downarrow \Rightarrow X_C \to \infty \Rightarrow o.c.$$

Capacitance Combinations

■ Capacitors in series: Smallest capacitor dominates

$$\begin{array}{c} C_1 & C_2 & C_3 \\ \hline + & + & + \\ \hline \frac{1}{C_{eg}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \end{array}$$

Capacitors in parallel: Largest capacitor dominates

$$C_{eq} = C_1 + C_2 + C_3$$

Hank your