Введение

Здесь содержатся знания maxim4133 о математике. Принятые обозначения:

- \forall **квантор всеобщности**. Обозначение условия, которое верно для всех указанных элементов. Читается как «для всех», «для каждого», «для любого» или «все», «каждый», «любой».
- 3 **квантор существования**. Обозначение условия, которое верно хотя бы для одного из указанных элементов. Читается как «существует», «найдётся».
- $\exists !$ **квантор существования и единственности**. Обозначение условия, которое верно ровно для одного из указанных элементов. Читается как «существует единственный».
- : «что», «такой (такие)», «что», «так, что», «обладающий свойством».
- \bullet & знак конъюнкции. Читается как «и».
- \bullet \lor знак дизъюнкции. Читается как «или».
- ullet \Rightarrow знак импликации (следствия). Читается как «если..., то...», «значит», «тогда».
- ullet \Leftrightarrow знак эквивалентности (равносильности). Читается как «тогда и только тогда, когда», «ровно/в точности тогда, когда».
- \blacksquare Q.E.D. (лат. quod erat demonstrandum, рус. что и требовалось доказать). Обозначение конца доказательства.

Приоритет связок в порядке от высшего к низшему: $\&, \lor, \Rightarrow, \Leftrightarrow$.

Благодарности

borisgk98 за его отличные идеи по улучшению данного сборника

Оглавление

Ι	Школьный курс		
1	Арифметика 1.1 Вещественные числа 1.1.1 Аксиоматика вещественных чисел 1.1.2 Существование иррациональных чисел 1.1.3 Геометрическое представление вещественных чисел 1.2 Прогрессии 1.2.1 Арифметическая прогрессия 1.2.2 Геометрическая прогрессия	77 77 88 88 99 10	
2	Комбинаторика 2.1 Элементы комбинаторики	11 11	
3	Математическая логика 3.1 Метод математической индукции	13 13	
4	Теория многочленов 4.1 Многочлены от одной переменной	14	
5	Теория множеств 5.1 Отношения между множествами 5.2 Операции над множествами 5.3 Подмножества множества ℝ 5.3.1 Промежутки 5.3.2 Окрестности	16 16 16	
6	Элементарная алгебра 6.1 Алгебраические преобразования 6.2 Метод интервалов 6.3 Уравнения с модулем 6.4 Неравенства с модулем	19 19	
7	7.1 Функции 7.1.1 Возрастающие и убывающие функции 7.1.2 Чётные и нечётные функции 7.1.3 Ограниченные функции 7.1.4 Обратные функции 7.1.5 Линейная функция 7.1.6 Квадратичная функция	20 21 22 23 23	

II	Университе	етский курс	25
8	Арифметика		26
		ие числа	. 26
		етрическое представление комплексного числа	
		онометрическая форма комплексного числа	
	•		
9	Линейная алге	бра	28
	9.1 Линейные ко	омбинации	. 28
	9.2 Векторные г	пространства	. 28
	9.2.1 Базис	с и размерность векторного пространства	. 28
	9.3 Системы лиг	нейных алгебраических уравнений	. 29
	9.3.1 Матр	ричная форма системы линейных уравнений	. 30
	9.3.2 Лине	йная независимость	. 30
	9.3.3 Реше	ние систем линейных уравнений	. 31
	9.3.4 Фунд	цаментальная система решений	. 32
		ьые формы	
10	Математически		35
		ые подмножества множества $\mathbb R$	
		<u> педовательности</u>	
		иентарные свойства пределов	
		рметические свойства пределов	
		вные свойства пределов последовательностей	
		ю Эйлера	
		ерий Коши	
		кции	
		ел функции в точке	
		ел функции на бесконечности	
		чательные пределы	
	10.4 Бесконечно	малые и бесконечно большие функции	. 44
		ость функции	
		ства непрерывных функций	
	10.6 Производная	я функции	. 46
	10.6.1 Геоме	етрический смысл производной	. 46
	10.6.2 Физи	ческий смысл производной	. 47
	10.6.3 Дифо	ференциал функции	. 47
	10.6.4 Прав	ила дифференцирования	. 47
	10.6.5 Таблі	ица производных	. 49
	10.6.6 Teope	емы о дифференцируемых функциях	. 50
	10.6.7 Прои	зводные и дифференциалы высших порядков	. 51
	10.6.8 Форм	и <mark>ула Тейлора</mark>	. 51
	10.6.9 Прав	ило Лопиталя	. 52
	10.7 Исследовани	ие функции	. 53
	10.7.1 Лока	льный экстремум функции	. 53
	10.7.2 Наим	иеньшее и наибольшее значения функции	. 54
	10.7.3 Выпу	уклость функции	. 54
	•	ШТОТЫ	
	10.8 Функции нес	скольких переменных	. 55
	•	ел функции нескольких переменных	
		рерывность функции нескольких переменных	
	-	ференцируемость функции нескольких переменных	
		ремумы функции нескольких переменных	
	-	ух и трёх переменных	
		етрическая интерпретация частных производных функции двух переменных	
		нение касательной плоскости к поверхности	
		кции	

	10.10.1 Дифференцируемость вектор-функции	
	10.10.2 Суперпозиция вектор-функций	 . 60
	10.11Неопределённый интеграл	
	10.11.1 Свойства неопределённого интеграла	 . 60
	10.11.2 Таблица первообразных	 . 61
	10.11.3 Интегрирование простейших дробей	 . 64
	10.11.4 Интегрирование дробно-рациональных выражений	 . 65
	10.11.5 Интегрирование тригонометрических выражений	
	10.11.6 Интегрирование квадратичных иррациональностей	
	10.12Интеграл Римана	
	10.12.1 Свойства интеграла Римана	
	10.12.2 Формула Ньютона—Лейбница	
	10.12.3 Приложения интеграла Римана	
	10.12.4Приближённые методы вычисления интеграла	
	10.13Несобственный интеграл	
	10.13.1 Несобственный интеграл I рода	
	10.13.2 Несобственный интеграл II рода	
	10.14-Числовые ряды	
	10.14 1 Исловые ряды	
	10.14.1 Энакоположительные ряды	 . 12
11	1 Стереометрия	7 4
	11.1 Векторы	
	11.1.1 Векторное произведение	
	11.1.1 Векторное произведение	 . 15
12	2 Теория автоматов и формальных языков	76
	12.1 Детерминированные конечные автоматы	
	12.1.1 Распознаваемость языков	
	12.2 Недетерминированные конечные автоматы	
	12.2.1 Распознаваемость языков	
	12.2.2 Построение ДКА по НКА	
	12.2.3 Алгоритм Бржозовского	
	12.3 Регулярные выражения	
	12.3.1 Алгебраические законы	
	12.5.1 Алгеораи ческие законы	
	12.4.1 Распознаваемость языков	
	12.5 Контекстно-свободные грамматики	 . 82
12	З Теория булевых функций	84
10	13.1 Логические операции	
	13.2 Формулы	
	13.3 Разложение булевых функций по переменным	
	13.4 Дизъюнктивная нормальная форма	
	13.5 Принцип двойственности	
	13.6 Конъюнктивная нормальная форма	
	13.7 Методы нахождения сокращённой ДНФ	
	13.8 Геометрическая интерпретация булевых функций	
	13.9 Операции типа I и II	
	13.10Построение тупиковых ДНФ	
	13.11Полнота и замкнутость классов булевых функций	
	$13.11.1\mathrm{K}$ ласс T_0 функций, сохраняющих константу 0	
	$13.11.2\mathrm{K}$ ласс T_1 функций, сохраняющих константу 1	
	$13.11.3\mathrm{K}$ ласс S самодвойственных функций	
	$13.11.4\mathrm{K}$ ласс M монотонных функций	
	13.12Многочлен Жегалкина	
	13.13Замкнутые классы булевых функций	 . 95

14			97
	14.1	Неориентированные графы	97
		14.1.1 Связность неориентированных графов	98
		14.1.2 Эйлеровы графы	98
		14.1.3 Гамильтоновы графы	99
		14.1.4 Планарность графов	00
		14.1.5 Деревья	01
		14.1.6 Остовы	03
		14.1.7 Помеченные деревья	04
	14.2	Ориентированные графы	04
		14.2.1 Связность ориентированных графов	
		14.2.2 Способы задания ориентированного графа	06
		14.2.3 Взвешенные графы	
	14.3	Транспортные сети	
		14.3.1 Алгоритмы нахождения максимального потока	08
15	Teo	рия матриц 1	10
		Операции над матрицами	10
	15.2	Блочные матрицы	11
	15.3	Определитель матрицы	11
		Ранг матрицы	
		Элементарные преобразования матриц	
	15.6	Обратные матрицы	17
16	Teo	рия многочленов	2 0
	16.1	Многочлены от одной переменной	20
		16.1.1 Деление многочленов	
		16.1.2 Корень многочлена	
	16.2	Многочлены от нескольких переменных	
		16.2.1 Симметрические многочлены	
17	Teo	рия множеств 1	23
		Мощность множеств	
		17.1.1 Мощность числовых множеств	
	17.2	Отношения	
		17.2.1 Отношение эквивалентности	

Часть I Школьный курс

Арифметика

1.1 Вещественные числа

Множество вещественных чисел обозначается \mathbb{R} .

1.1.1 Аксиоматика вещественных чисел

Аксиомы сложения:

- 1. Коммутативность: $\forall a, b \in \mathbb{R} \ a + b = b + a$
- 2. Ассоциативность: $\forall a, b, c \in \mathbb{R}$ a + (b + c) = (a + b) + c
- 3. Существование **нуля**: $\exists 0 \in \mathbb{R} : \forall a \in \mathbb{R} \ a+0=a$
- 4. Существование **противоположного** числа: $\forall a \in \mathbb{R} \ \exists (-a) \in \mathbb{R} \colon a + (-a) = 0$

Аксиомы умножения:

- 1. Коммутативность: $\forall a, b \in \mathbb{R} \ a \cdot b = b \cdot a$
- 2. Ассоциативность: $\forall a, b, c \in \mathbb{R}$ $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- 3. Дистрибутивность относительно сложения: $\forall a,b,c \in \mathbb{R} \ a \cdot (b+c) = a \cdot b + a \cdot c$
- 4. Существование единицы: $\exists 1 \in \mathbb{R} : \forall a \in \mathbb{R} \ a \cdot 1 = a$
- 5. Существование обратного числа: $\forall a \in \mathbb{R} \setminus \{0\} \ \exists \frac{1}{a} = a^{-1} \in \mathbb{R} \colon a \cdot a^{-1} = 1$

Аксиомы порядка:

- 1. Рефлексивность: $\forall a \in \mathbb{R} \ a \leqslant a$
- 2. Антисимметричность: $\forall a, b \in \mathbb{R} \ a \leq b \ \& \ b \leq a \Rightarrow a = b$
- 3. Транзитивность: $\forall a, b, c \in \mathbb{R} \ a \leq b \ \& \ b \leq c \Rightarrow a \leq c$
- 4. Линейная упорядоченность: $\forall a, b \in \mathbb{R} \ a \leq b \lor b \leq a$
- 5. Связь сложения и порядка: $\forall a,b,c \in \mathbb{R} \ a \leqslant b \Rightarrow a+c \leqslant b+c$
- 6. Связь умножения и порядка: $\forall a,b \in \mathbb{R} \ 0 \leqslant a \ \& \ 0 \leqslant b \Rightarrow 0 \leqslant a \cdot b$

Аксиома нетривиальности: $0 \neq 1$

Аксиома непрерывности: $\forall A, B \subset \mathbb{R}$: $(\forall a \in A, b \in B \ a \leqslant b) \exists x \in \mathbb{R}$: $a \leqslant x \leqslant b$

1.1.2 Существование иррациональных чисел

Иррациональным называется число, не являющееся рациональным. Множество иррациональных чисел обозначается \mathbb{I} .

Утверждение 1.1.1. Существуют иррациональные числа.

Доказательство методом от противного. Пусть $\exists p \in \mathbb{Z}, \ q \in \mathbb{N} \colon \left(\frac{p}{q}\right)^2 = 2 \ \& \ \mathrm{HOД}(p,q) = 1.$ Тогда

$$p^2 = 2q^2 \Rightarrow p^2 \vdots 2 \Leftrightarrow p \vdots 2 \Leftrightarrow p = 2l \& l \in \mathbb{Z} \Rightarrow 2l^2 = q^2$$

Аналогичными рассуждениями получим $q \, \vdots \, 2. \, p \, \vdots \, 2 \, \& \, q \, \vdots \, 2 \Rightarrow \mathrm{HOД}(p,q) \neq 1.$ Противоречие.

Утверждение 1.1.2. Среди вещественных чисел есть иррациональные.

Доказательство. Пусть $X = \{x \in \mathbb{R}^+ \mid x^2 < 2\}, Y = \{y \in \mathbb{R}^+ \mid y^2 > 2\}.$

$$\forall x \in X, \ y \in Y \ y^2 - x^2 = (y - x)(y + x) > 0 \Rightarrow y > x \Rightarrow \exists z \in \mathbb{R} \colon \forall x \in X, \ y \in Y \ x \leqslant z \leqslant y$$

1. Пусть $z^2 < 2$. $z \in X$, z > 1,1, тогда

$$0 < 2 - z^2 < 1 \Rightarrow \frac{2 - z^2}{5} < 1 \Rightarrow \left(\frac{2 - z^2}{5}\right)^2 < \frac{2 - z^2}{5}$$

•
$$z + \frac{2-z^2}{5} > z \Rightarrow z + \frac{2-z^2}{5} \notin X$$

$$\bullet \left(z + \frac{2 - z^2}{5}\right)^2 = z^2 + 2z \cdot \frac{2 - z^2}{5} + \left(\frac{2 - z^2}{5}\right)^2 < z^2 + \frac{4}{5}(2 - z^2) + \frac{2 - z^2}{5} = 2 \Rightarrow z + \frac{2 - z^2}{5} \in X$$

Противоречие, значит, $z^2 \ge 2$.

2. Пусть $z^2 > 2$. $z \in Y$, z < 1.9, тогда

$$0 < z^2 - 2 < 2 \Rightarrow \frac{z^2 - 2}{4} < 1 \Rightarrow \left(\frac{z^2 - 2}{4}\right)^2 < \frac{z^2 - 2}{4}$$

$$\bullet \ z - \frac{z^2 - 2}{4} < z \Rightarrow z + \frac{z^2 - 2}{4} \notin Y$$

$$\bullet \left(z - \frac{z^2 - 2}{4}\right)^2 = z^2 - z \cdot \frac{z^2 - 2}{2} + \left(\frac{2 - z^2}{4}\right)^2 > z^2 - (z^2 - 2) = 2 \Rightarrow z - \frac{z^2 - 2}{4} \in Y$$

Противоречие, значит, $z^2 \le 2$.

T. o.,
$$z^2 \le 2 \& z^2 \ge 2 \Leftrightarrow z^2 = 2 \Rightarrow \exists z \in \mathbb{R} \colon z^2 = 2 \Rightarrow z \notin \mathbb{Q}$$
.

1.1.3 Геометрическое представление вещественных чисел

Самой распространённой интерпретацией множества $\mathbb R$ является бесконечная прямая.

Рис. 1.1: Множество $\mathbb R$ в виде прямой

Множество $\mathbb R$ также можно представить в виде окружности, одна точка которой соответствует нулю, а другая — бесконечности.

Рис. 1.2: Множество \mathbb{R} в виде окружности

Покажем, что эти интерпретации взаимозаменяемы. Изобразим их так, чтобы точка, соответствующая нулю на прямой a, совпадала с точкой, соответствующей нулю на окружности. Теперь из точки, соответствующей бесконечности на окружности, проведём все возможные прямые. Каждая из них пересекает одну точку на прямой a и одну точку на окружности и таким образом устанавливает взаимно однозначное соответствие, при этом $-\infty$ и $+\infty$ означают движение к одной и той же точке на окружности, соответствующей бесконечности.

1.2 Прогрессии

1.2.1 Арифметическая прогрессия

Арифметической прогрессией называется последовательность (a_n) , если $\exists d \colon \forall n \in \mathbb{N} \ a_{n+1} = a_n + d. \ d$ называется **разностью арифметической прогрессии**. Если d < 0, то прогрессия называется **убывающей**, а если d > 0, то **возрастающей**.

Утверждение 1.2.1. $\forall n \in \mathbb{N} \ a_n = a_1 + d(n-1)$.

Доказательство методом математической индукции.

- База индукции. $a_1 = a_1 + d \cdot (1-1)$
- Шаг индукции. Пусть $a_n = a_1 + d(n-1)$, тогда $a_{n+1} = a_n + d = a_1 + dn$.

Теорема 1.2.2 (характеристическое свойство арифметической прогрессии). (a_n) — арифметическая прогрессия $\Leftrightarrow \forall n \in \mathbb{N} \setminus \{1\}$ $a_n = \frac{a_{n-1} + a_{n+1}}{2}$.

Доказательство.

 $1. \Rightarrow .$

$$a_n = \frac{a_1 + d(n-1)}{2} + \frac{a_1 + d(n-1)}{2} = \frac{a_1 + d(n-2) + a_1 + dn}{2} = \frac{a_{n-1} + a_{n+1}}{2}$$

- 2. \Leftarrow . Пусть $d=a_2-a_1$. Докажем методом математической индукции, что $\forall n \in \mathbb{N} \ a_{n+1}-a_n=d$.
 - *База индукции*. $a_2 a_1 = d$ по определению.
 - Шаг индукции. Пусть $a_{n+1} a_n = d$.

$$a_{n+1} = \frac{a_n + a_{n+2}}{2} \Leftrightarrow 2a_{n+1} = a_n + a_{n+2} \Leftrightarrow a_{n+2} - a_{n+1} = a_{n+1} - a_n = d$$

Тогда $\forall n \in \mathbb{N} \ a_{n+1} = a_n + d \Rightarrow (a_n)$ — арифметическая прогрессия.

Лемма 1.2.3.

$$\forall i, j \in \mathbb{N} \ i+j=n+1 \Rightarrow a_i+a_j=a_1+a_n$$

Доказательство.

$$a_i + a_j = a_1 + d(i-1) + a_1 + d(j-1) = 2a_1 + d(i+j-2) = 2a_1 + d(n+1-2) = a_1 + a_1 + d(n-1) = a_1 + a_n$$

Теорема 1.2.4.

$$\sum_{k=1}^{n} a_k = \frac{a_1 + a_n}{2} \cdot n$$

Доказательство.

$$2\sum_{k=1}^{n} a_k = \sum_{k=1}^{n} (a_k + a_k) = \sum_{k=1}^{n} (a_k + a_{n-k+1}) |k + (n-k+1) = n+1| = \sum_{k=1}^{n} (a_1 + a_n) = n(a_1 + a_n) \Leftrightarrow \sum_{k=1}^{n} a_k = \frac{a_1 + a_n}{2} \cdot n$$

1.2.2 Геометрическая прогрессия

Геометрической прогрессией называется последовательность (b_n) , если $b_1 \neq 0 \& \exists q \neq 0 \colon \forall n \in \mathbb{N} \ b_{n+1} = b_n q$. q называется знаменателем геометрической прогрессии.

Утверждение 1.2.5. $\forall n \in \mathbb{N} \ b_n = b_1 q^{n-1}$

Доказательство методом математической индукции.

- База индукции. $b_1 = b_1 q^{1-1}$
- Шаг индукции. Пусть $b_n = b_1 q^{n-1}$, тогда $b_{n+1} = b_n q = b_1 q^n$.

Теорема 1.2.6 (характеристическое свойство геометрической прогрессии). (b_n) — геометрическая прогрессия $\Leftrightarrow \forall n \in \mathbb{N} \setminus \{1\} \ |b_n| = \sqrt{b_{n-1}b_{n+1}} \neq 0.$

Доказательство.

 $1. \Rightarrow .$

$$|b_n| = \sqrt{b_n^2} = \sqrt{b_1 q^{n-2} b_1 q^n} = \sqrt{b_{n-1} b_{n+1}}$$

2. \Leftarrow . Пусть $q=\frac{b_2}{b_1}$. Докажем методом математической индукции, что $\forall n\in\mathbb{N}\ \frac{b_{n+1}}{b_n}=q$.

- *База индукции*. $\frac{b_2}{b_1} = q$ по определению.
- Шаг индукции. Пусть $\frac{b_{n+1}}{b_n} = q$.

$$|b_{n+1}| = \sqrt{b_n b_{n+2}} \Leftrightarrow b_{n+1}^2 = b_n b_{n+2} \Leftrightarrow \frac{b_{n+2}}{b_{n+1}} = \frac{b_{n+1}}{b_n} = q$$

Тогда $\forall n \in \mathbb{N} \ b_{n+1} = b_n q \Rightarrow (b_n)$ — геометрическая прогрессия.

Теорема 1.2.7.

$$\sum_{k=1}^{n} b_k = \frac{b_1(q^n - 1)}{q - 1} = \frac{b_n q - b_1}{q - 1}, \ q \neq 1$$

Доказательство.

$$(q-1)\sum_{k=1}^{n}b_{k} = \sum_{k=1}^{n}(b_{k+1} - b_{k}) = b_{n+1} - b_{1} \Leftrightarrow \sum_{k=1}^{n}b_{k} = \frac{b_{n}q - b_{1}}{q - 1} = \frac{b_{1}(q^{n} - 1)}{q - 1}$$

Если q=1, то очевидно, что $\sum\limits_{k=1}^n b_k=b_1n.$

Геометрическая прогрессия называется **бесконечно убывающей**, если модуль её знаменателя меньше 1. В этом случае $\sum\limits_{k=1}^{\infty}b_k=rac{b_1}{1-q}.$

Комбинаторика

2.1 Элементы комбинаторики

Пусть элемент A можно выбрать m способами, а элемент B-n способами. Существуют основные правила комбинаторики:

- 1. **Правило суммы:** выбор либо A, либо B можно сделать m+n способами.
- 2. **Правило произведения:** выбор A и B можно сделать $m \cdot n$ способами.

Факториалом числа $n \in \mathbb{N}$ называется произведение $1 \cdot 2 \cdot \ldots \cdot n$ и обозначается n!. Также принято считать, что 0! = 1.

Двойным факториалом числа $n \in \mathbb{N}$ называется произведение всех натуральных чисел той же чётности, что и n, и обозначается n!!. Т. о., $(2k)!! = 2 \cdot 4 \cdot \ldots \cdot (2k)$, $(2k-1)!! = 1 \cdot 3 \cdot \ldots \cdot (2k-1)$, где $k \in \mathbb{N}$. Также принято считать, что 0!! = 1.

Перестановкой n-элементного **множества** A называется биекция $f: \{1, 2, ..., n\} \to A$ и записывается в виде упорядоченного набора $(a_1, a_2, ..., a_n)$, где $a_i = f(i), i = 1, 2, ..., n$.

k-элементным размещением n-элементного множества A, или размещением из n элементов по k, называется инъекция $f \colon \{1, 2, \dots, n\} \to A$. Количество k-элементных размещений n-элементного множества обозначается A^k .

Утверждение 2.1.1. $A_n^k = \frac{n!}{(n-k)!}$

Доказательство методом математической индукции.

- ullet База индукции. При k=1 $A_n^1=n=rac{n!}{(n-1)!}.$
- Шаг индукции. Пусть теорема верна при k-1. Докажем её для k. Разобьём все k-элементные размещения n-элементного множества на группы так, чтобы во всех размещениях одной группы на первом месте стоял один и тот же элемент. Получим n групп. В каждом размещении на оставшихся k-1 местах могут стоять остальные n-1 элементов. Т. о., по предположению индукции в каждой группе A_{n-1}^{k-1} размещений. Тогда всего размещений $n \cdot A_{n-1}^{k-1} = \frac{n!}{(n-k)!} = A_n^k$.

Следствие 2.1.2. Количество перестановок n-элементного множества равно n!.

Доказательство. Заметим, что искомое количество равно $A_n^n = \frac{n!}{0!} = n!$.

k-элементным сочетанием n-элементного множества A, или сочетанием из n элементов по k, называется множество $X \subseteq A \colon |X| = k$. Количество k-элементных сочетаний n-элементного множества обозначается C_n^k , или $\binom{n}{k}$.

Утверждение 2.1.3. $C_n^k = \frac{n!}{k!(n-k)!}$

Доказательство. Разобьём множество всех перестановок n-элементного множества на группы так, чтобы во всех перестановках одной группы на первых k местах находились одни и те же элементы (в том или ином порядке), тогда и на последних n-k местах будут находиться одни и те же элементы. Получим C_n^k групп. В перестановках одной группы первые k элементов могут находиться в произвольном порядке, т. е. они могут быть расположены k! способами. Аналогично последние n-k элементов могут быть расположены (n-k)! способами. Тогда, учитывая правило произведения, получим $n! = C_n^k k! (n-k)! \Leftrightarrow C_n^k = \frac{n!}{k!(n-k)!}$.

Инверсией в перестановке π называется пара индексов i,j: $i < j \& \pi(i) > \pi(j)$. Чётность перестановки определяется чётностью числа инверсией в ней.

Утверждение 2.1.4. Если в перестановке (a_1, a_2, \dots, a_n) поменять местами два элемента, то её чётность изменится.

Доказательство.

- 1. Пусть переставлены соседние элементы. Если они образовывали инверсию, то после обмена местами не образуют, и наоборот. При этом наличие инверсий с остальными элементами остаётся неизменным. Значит, количество инверсий в перестановке изменилось на 1, т. е. чётность числа инверсий изменилась, тогда изменилась и чётность перестановки.
- 2. Поменяем местами элементы a_i и a_{i+d} , где d>0. Для этого последовательно поменяем местами элементы, имеющие индексы i+d и i+d-1, i+d-1 и i+d-2, ..., i+2 и i+1, i+1 и i, i+1 и i+2, i+2 и i+3, ..., i+d-2 и i+d-1, i+d-1 и i+d. Всего совершили 2d-1 обменов соседних элементов местами, тогда перестановка изменила чётность, т. к. 2d-1 / 2.

Математическая логика

3.1 Метод математической индукции

Предположим, что даны утверждения P_1, P_2, \dots Пусть

- верно P_1 **база индукции**;
- ullet верно, что $orall i\in \mathbb{N}$ $(P_i\Rightarrow P_{i+1})$ шаг индукции.

Тогда для любого $n \in \mathbb{N}$ верно P_n .

Теория многочленов

4.1 Многочлены от одной переменной

Одночленом, или **мономом**, называется произведение числового множителя и нуля и более переменных, взятых каждая в неотрицательной степени.

Степенью одночлена называется сумма степеней входящих в него переменных. Степень тождественного нуля равна $-\infty$.

Многочленом, или полиномом, от одной переменной называется сумма вида

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, \ a_n \neq 0$$

где x_1, \ldots, x_n — переменные.

Степенью многочлена f называется максимальная из степеней его одночленов и обозначается $\deg f$. Многочлен 1-й степени называется **линейным**, 2-й степени — **квадратным**, 3-й степени — **кубическим**.

Утверждение 4.1.1. Пусть f и g — многочлены, тогда $\deg(f+g) \leqslant \max\{\deg f, \deg g\}$.

Утверждение 4.1.2. Пусть f и g — многочлены, тогда $\deg fg = \deg f + \deg g$.

4.1.1 Деление многочленов

Теорема 4.1.3. Пусть f(x) и $g(x) \neq 0$ — многочлены, тогда существуют единственные многочлены q(x) и r(x) такие, что f = qg + r, причём $\deg r < \deg g$.

Доказательство. Пусть $\deg f = n$, $\deg g = m$.

- 1. Докажем существование. Если m=0, то $q=\frac{f}{g},\,r=0$. Пусть m>0. Если n< m, то $q=0,\,r=f$. Пусть $n\geqslant m$. В таком случае докажем существование q и r методом математической индукции.
 - База индукции. n = m. Пусть $f = ax^n + f_1$, $g = bx^n + g_1$, тогда $\deg f_1, \deg g_1 < n$. $\deg(f_1 \frac{a}{b}g_1) \le \max\{\deg f_1, \deg g_1\} < \deg g$, тогда $q = \frac{a}{b}$, $r = f_1 \frac{a}{b}g_1$.
 - Шаг индукции. Пусть n > m, теорема верна для k < n и $f = ax^n + f_1$, $g = bx^m + g_1$. Рассмотрим

$$h_1(x) = \frac{a}{b}x^{n-m} \Rightarrow h_1g = ax^n + h_1g_1 \Rightarrow f - h_1g = ax^n + f_1 - ax^n - h_1g_1 = f_1 - h_1g_1$$

Тогда

$$\deg h_1 g_1 = \deg h_1 + \deg g_1 < (n - m) + m = n \Rightarrow$$

$$\Rightarrow \deg(f - h_1 g) = \deg(f_1 - h_1 g_1) \le \max\{\deg f_1, \deg h_1 g_1\} < n$$

По предположению индукции

$$f - h_1 q = q_1 q + r \Rightarrow f = (h_1 + q_1)q + r, \deg r < \deg q$$

2. Докажем единственность. Пусть

$$f = q_1 g + r_1 = q_2 g + r_2 \Rightarrow (q_1 - q_2)g = r_2 - r_1, \deg r_1, \deg r_2 < \deg g$$

Возможны два случая:

- (a) $q_1 \neq q_2 \Rightarrow \deg(r_1 r_2) \leqslant \max\{\deg r_1, \deg r_2\} < \deg g \leqslant \deg(q_1 q_2)g$ Противоречие.
- (b) $q_1 = q_2 \Rightarrow r_1 = r_2$
- Многочлен q называется **частным**, а r **остатком от деления** $\frac{f}{g}$. Если r=0, то говорят, что f делится на g без остатка, и пишут $f \\cdots g$.

4.1.2 Корень многочлена

Корнем многочлена f(x) называется такое число a, что f(a) = 0.

Теорема 4.1.4 (Безу). Остаток от деления многочлена f(x) на двучлен x-a равен f(a).

Доказательство.

$$f(x) = g(x)(x-a) + r \Rightarrow f(a) = g(a)(a-a) + r \Leftrightarrow r = f(a)$$

Следствие 4.1.5. Если a — корень f(x), то f(x) делится на x — a без остатка.

Кратностью корня a многочлена f(x) называется число $m: f(x) \vdots (x-a)^m, f(x) \not / (x-a)^{m+1}.$

Теорема 4.1.6. Если многочлен $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$, где $a_0, \ldots, a_n \in \mathbb{Z}$, имеет рациональный корень, то этот корень равен частному делителя числа a_0 и делителя числа a_n .

Доказательство. Пусть $\frac{p}{q}$ — несократимая дробь, являющаяся корнем P(x). Тогда

$$a_n \left(\frac{p}{q}\right)^n + a_{n-1} \left(\frac{p}{q}\right)^{n-1} + \dots + a_1 \frac{p}{q} + a_0 = 0 \Leftrightarrow a_n p^n + a_{n-1} p^{n-1} q + \dots + a_1 p q^{n-1} a_0 q^n = 0$$

Учитывая, что HOД(p,q) = 1, получим

$$a_n p^n = -q(a_{n-1}p^{n-1} + \ldots + a_1pq^{n-2} + a_0q^{n-1}) \Rightarrow a_n : q$$

$$a_0q^n = -p(a_np^{n-1} + a_{n-1}p^{n-2}q + \dots + a_1q^{n-1}) \Rightarrow a_0 : p$$

Теория множеств

Множество — аксиоматическое понятие, не имеющее определения. Его можно описать как совокупность различных элементов, рассматриваемую как единое целое.

5.1 Отношения между множествами

Пусть A, B — множества. Между ними определены следующие отношения:

- A включено в B (является **подмножеством** B): $A \subseteq B \Leftrightarrow \forall a \in A \ a \in B$ Нередко вместо знака \subseteq пишется знак \subset .
- A равно B: $A = B \Leftrightarrow \forall a \ (a \in A \Leftrightarrow a \in B)$
- A строго включено в B: $A \subset B \Leftrightarrow A \subseteq B \& A \neq B$

5.2 Операции над множествами

Пусть A, B — множества. Над ними определены следующие операции:

- Объединение: $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Пересечение: $A \cap B = \{x \mid x \in A \& x \in B\}$
- Разность: $A \setminus B = \{x \mid x \in A \& x \notin B\}$
- Симметрическая разность: $A \triangle B = \{x \mid x \in A \& x \notin B \lor x \notin A \& x \in B\}$
- Дополнение до U, где $A \subseteq U$: $\overline{A} = \{x \in U \mid x \notin A\}$
- Декартово произведение: $A \times B = \{(x,y) \mid x \in A \& y \in B\}$
- Декартова степень: $A^n = \underbrace{A \times A \times \ldots \times A}_n$

5.3 Подмножества множества $\mathbb R$

5.3.1 Промежутки

Промежутком называется множество вещественных чисел, которое вместе с любыми двумя числами содержит любое число между ними. Типы промежутков:

- $[a;b] = \{x \in \mathbb{R} \mid a \leqslant x \leqslant b\}$ отрезок
- $(a;b) = \{x \in \mathbb{R} \mid a < x < b\}$ интервал
- ullet $[a;b)=\{x\in\mathbb{R}\mid a\leqslant x< b\}$ полуинтервал

• $(a;b] = \{x \in \mathbb{R} \mid a < x \leqslant b\}$ — полуинтервал

Также определяются бесконечные промежутки:

- $[a; +\infty) = \{x \in \mathbb{R} \mid x \geqslant a\}$
- $(a; +\infty) = \{x \in \mathbb{R} \mid x > a\}$
- $(-\infty; a] = \{x \in \mathbb{R} \mid x \leqslant a\}$
- $\bullet \ (-\infty; a) = \{ x \in \mathbb{R} \mid x < a \}$
- $(-\infty; +\infty) = \mathbb{R}$

5.3.2 Окрестности

Окрестностью точки $x\in\mathbb{R}$ называется интервал $(a;b)\colon x\in(a;b)$. ε -окрестностью $U_{\varepsilon}(x)$ точки $x\in\mathbb{R}$ называется интервал $(x-\varepsilon;x+\varepsilon)$. Проколотой ε -окрестностью $\check{U}_{\varepsilon}(x)$ точки $x\in\mathbb{R}$ называется $U_{\varepsilon}(x)\setminus\{x\}$.

Элементарная алгебра

6.1 Алгебраические преобразования

Формулы сокращённого умножения:

1. Квадрат суммы: $(a \pm b)^2 = a^2 \pm 2ab + b^2$ Доказательство.

$$(a \pm b)^2 = (a \pm b)(a \pm b) = a^2 \pm 2ab + b^2$$

2. Разность квадратов: $a^2 - b^2 = (a+b)(a-b)$

Доказательство.

$$a^{2} - b^{2} = a^{2} - ab + (ab - b^{2}) = (a + b)(a - b)$$

3. Куб суммы: $(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$

Доказательство.

$$(a \pm b)^3 = (a^2 \pm 2ab + b^2)(a \pm b) = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

4. Сумма кубов: $a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$

Доказательство.

$$a^{3} \pm b^{3} = a^{3} \mp a^{2}b + ab^{2} \pm a^{2}b - ab^{2} \pm b^{3} = a(a^{2} \mp ab + b^{2}) \pm b(a^{2} \mp ab + b^{2}) = (a \pm b)(a^{2} \mp ab + b^{2})$$

Теорема 6.1.1 (формула бинома Ньютона).

$$\forall n \in \mathbb{N} \ (a+b)^n = \sum_{m=0}^n C_n^m a^{n-m} b^m$$

Доказательство методом математической индукции.

- База индукции. n = 1: $(a + b)^1 = a + b = C_1^0 a + C_1^1 b$
- *Шаг индукции*. Пусть формула верна для n. Докажем истинность для n+1.

$$=a^{n+1}+\sum_{m=0}^{n-1}C_n^{m+1}a^{n-m}b^{m+1}+\sum_{m=0}^{n-1}C_n^ma^{n-m}b^{m+1}=a^{n+1}+\sum_{m=0}^{n-1}C_{n+1}^{m+1}a^{n-m}b^{m+1}+b^{n+1}=a^{n-1}a^{n-m}b^{m+1}+a^{n-1}a^{n-m}b^{m+1}+a^{n-1}a^$$

$$=a^{n+1}+\sum_{m=1}^{n}C_{n+1}^{m}a^{n+1-m}b^{m}+b^{n+1}=\sum_{m=0}^{n+1}C_{n+1}^{m}a^{n+1-m}b^{m}$$

6.2 Метод интервалов

Метод интервалов — метод решения рациональных неравенств, т. е. неравенств вида $\frac{P(x)}{Q(x)} < 0$ или $\frac{P(x)}{Q(x)} > 0$, где P(x) и Q(x) — многочлены, причём как строгих, так и нестрогих.

- 1. Найдём корни многочленов P(x) и Q(x) и отметим их на числовой прямой, разбив её таким образом на интервалы.
- 2. Найдём знак значения дроби $\frac{P(x)}{Q(x)}$ на каждом из полученных интервалов. Для этого достаточно найти знак значения дроби в любой точке, лежащей в рассматриваемом интервале.
- 3. Включаем в ответ подходящие интервалы, а также корни многочленов, если они удовлетворяют неравенству. Заметим, что нахождение знаков значений дроби можно упростить.
- Если старшие коэффициенты P(x) и Q(x) оба положительны или оба отрицательны, то дробь положительна на интервале $(a; +\infty)$, где a наибольший из найденных корней.
- Дробь меняет знак при переходе через корень нечётной кратности и не меняет при переходе через корень чётной кратности.

6.3 Уравнения с модулем

$$|f(x)| = g(x) \Leftrightarrow (f(x) = g(x) \lor f(x) = -g(x)) \& g(x) \geqslant 0$$

6.4 Неравенства с модулем

- 1. $|f(x)| < g(x) \Leftrightarrow -g(x) < f(x) < g(x)$
- 2. $|f(x)| > g(x) \Leftrightarrow f(x) < -g(x) \lor f(x) > g(x)$
- 3. $|f(x)| < |g(x)| \Leftrightarrow (f(x) g(x))(f(x) + g(x)) < 0$

Доказательство.

$$|f(x)| < |g(x)| \Leftrightarrow f^2(x) < g^2(x) \Leftrightarrow f^2(x) - g^2(x) < 0 \Leftrightarrow (f(x) - g(x))(f(x) + g(x)) < 0$$

4. $|f(x)| > |g(x)| \Leftrightarrow (f(x) - g(x))(f(x) + g(x)) > 0$

Доказательство.

$$|f(x)|>|g(x)|\Leftrightarrow f^2(x)>g^2(x)\Leftrightarrow f^2(x)-g^2(x)>0\Leftrightarrow (f(x)-g(x))(f(x)+g(x))>0$$

Элементарная математика

7.1 Функции

Пусть A и B — множества. Функцией f называется правило, ставящее в соответствие каждому элементу $a \in A$ единственный элемент $f(a) \in B$. A называется областью определения функции f и обозначается D(f), B — областью значений функции f и обозначается E(f). a называется прообразом f(a), f(a) — образом a.

Нулём функции $f: X \to \mathbb{R}$, где $X \subseteq \mathbb{R}$, называется элемент $x \in X: f(x) = 0$.

Последовательностью называется функция, заданная на множестве $X \subseteq \mathbb{N}$, и обозначается (x_n) .

Подпоследовательностью последовательности (x_n) называется последовательность (x_{n_k}) , если $\forall k \in \mathbb{N}$ $n_k < n_{k+1}$.

7.1.1 Возрастающие и убывающие функции

Функция f называется возрастающей, или монотонной, на множестве X, если $\forall x_1, x_2 \in X$ $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$.

Функция f называется **убывающей**, или **монотонной**, **на множестве** X, если $\forall x_1, x_2 \in X$ $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$.

Если функция возрастает (убывает) на всей области определения, то её называют возрастающей (убывающей), или монотонной.

Свойства монотонных функций:

1. Если f(x) и g(x) — возрастающие (убывающие) на множестве X функции, то h(x) = f(x) + g(x) — возрастающая (убывающая) на X функция.

Доказательство. Пусть f(x) и g(x) возрастают на $X, x_1, x_2 \in X : x_1 < x_2$.

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \& g(x_1) < g(x_2) \Rightarrow f(x_1) + g(x_1) < f(x_2) + g(x_2) \Rightarrow h(x_1) < h(x_2)$$

Значит, h(x) возрастает на X.

Доказательство для случая убывания аналогично. ■

- 2. Если f(x) возрастающая (убывающая) на множестве X функция, то:
 - при C < 0 h(x) = Cf(x) убывающая (возрастающая) на X функция;
 - \bullet при C>0 h(x)=Cf(x) возрастающая (убывающая) на X функция.

Доказательство. Пусть f(x) возрастает на $X, C < 0, x_1, x_2 \in X : x_1 < x_2$.

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \Rightarrow Cf(x_1) > Cf(x_2) \Rightarrow h(x_1) > h(x_2)$$

Значит, h(x) убывает на X.

Доказательства для остальных трёх случаев аналогичны.

3. Если f(x) и g(x) — возрастающие (убывающие) на множестве X функции и

- f(x), g(x) < 0 на X, то h(x) = f(x)g(x) убывающая (возрастающая) на X функция;
- f(x), g(x) > 0 на X, то h(x) = f(x)g(x) возрастающая (убывающая) на X функция.

Доказательство. Пусть f(x) и g(x) возрастают на X, f(x), g(x) < 0 на $X, x_1, x_2 \in X$: $x_1 < x_2$.

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \& g(x_1) < g(x_2) \Rightarrow$$

$$\Rightarrow -f(x_1) > -f(x_2) \& -g(x_1) > -g(x_2) \Rightarrow f(x_1)g(x_1) > f(x_2)g(x_2) \Rightarrow h(x_1) > h(x_2)$$

Значит, h(x) убывает на X.

Доказательства для остальных трёх случаев аналогичны.

4. Если $f(x) \neq 0$ — функция, возрастающая (убывающая) на множестве X и сохраняющая на нём знак, то $h(x) = \frac{1}{f(x)}$ — убывающая (возрастающая) на X функция.

Доказательство. Пусть f(x) возрастает на $X, x_1, x_2 \in X : x_1 < x_2$.

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \Rightarrow \frac{f(x_1)}{f(x_1)f(x_2)} < \frac{f(x_2)}{f(x_1)f(x_2)} \Rightarrow \frac{1}{f(x_1)} > \frac{1}{f(x_2)} \Rightarrow h(x_1) > h(x_2)$$

Значит, h(x) убывает на X.

Доказательство для случая убывания аналогично.

5. Если f(x) и g(x) — обе возрастающие или обе убывающие на множестве X функции, то h(x) = g(f(x)) — возрастающая на X функция.

Доказательство. Пусть f(x) и g(x) возрастают на $X, x_1, x_2 \in X : x_1 < x_2$.

$$x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \Rightarrow g(f(x_1)) < g(f(x_2)) \Rightarrow h(x_1) < h(x_2)$$

Значит, h(x) возрастает на X.

Доказательство для случая убывания аналогично.

7.1.2 Чётные и нечётные функции

Функция f(x) называется **чётной**, если $\forall x \in D(f) - x \in D(f) \& f(-x) = f(x)$.

Функция f(x) называется **нечётной**, если $\forall x \in D(f) - x \in D(f) \& f(-x) = -f(x)$.

Свойства чётных и нечётных функций:

1. Функция f(x): $\forall x \in D(f) - x \in D(f)$ единственным образом может быть представлена в виде суммы чётной и нечётной функций.

Доказательство.

• Докажем представимость. Пусть

$$g(x) = \frac{f(x) + f(-x)}{2}, \ h(x) = \frac{f(x) - f(-x)}{2}$$

Тогда

$$g(-x) = \frac{f(-x) + f(x)}{2} = g(x), \ h(-x) = \frac{f(-x) - f(x)}{2} = -h(x)$$

Значит, g(x) чётна, h(x) нечётна.

$$f(x) = \frac{1}{2}f(x) + \frac{1}{2}f(x) + \frac{1}{2}f(-x) - \frac{1}{2}f(-x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) - f(-x)}{2} = g(x) + h(x)$$

• Докажем единственность представления. Пусть $f(x) = g(x) + h(x) = g_1(x) + h_1(x)$, где g, g_1 — чётные функции, h, h_1 — нечётные функции.

$$g(x) + h(x) = g_1(x) + h_1(x) \Leftrightarrow g(x) - g_1(x) = h_1(x) - h(x)$$

Подставляя -x, получим

$$g(-x) - g_1(-x) = h_1(-x) - h(-x) \Leftrightarrow g(x) - g_1(x) = h(x) - h_1(x)$$

Тогда

$$h_1(x) - h(x) = g(x) - g_1(x) = h(x) - h_1(x) \Rightarrow$$

$$\Rightarrow g(x) - g_1(x) = 0 \& h_1(x) - h(x) = 0 \Rightarrow g_1(x) = g(x) \& h_1(x) = h(x)$$

2. Если f(x) и g(x) — чётные (нечётные) функции, то h(x) = f(x) + g(x) чётна (нечётна).

Доказательство.

- Пусть f(x) и g(x) чётны, тогда h(-x) = f(-x) + g(-x) = f(x) + g(x) = h(x), значит, h(x) чётна.
- ullet Пусть f(x) и g(x) нечётны, тогда h(-x) = f(-x) + g(-x) = -f(x) g(x) = -h(x), значит, h(x) нечётна.

3. Если f(x) — чётная (нечётная) функция, то h(x) = Cf(x) чётна (нечётна).

Пократови стро

Доказательство.

- Пусть f(x) чётна, тогда h(-x) = Cf(-x) = Cf(x) = h(x), значит, h(x) чётна.
- ullet Пусть f(x) нечётна, тогда h(-x)=Cf(-x)=-Cf(x)=-h(x), значит, h(x) нечётна.

4. Если f(x) и g(x) — обе чётные или обе нечётные функции, то h(x) = f(x)g(x) чётна.

Доказательство.

- \bullet Пусть f(x) и g(x) чётны, тогда h(-x) = f(-x)g(-x) = f(x)g(x) = h(x), значит, h(x) чётна.
- ullet Пусть f(x) и g(x) нечётны, тогда h(-x) = f(-x)g(-x) = (-f(x))(-g(x)) = h(x), значит, h(x) нечётна.

- 5. Если f(x) и g(x) нечётная и чётная функции, то h(x) = f(x)g(x) нечётна. Доказательство. h(-x) = f(-x)g(-x) = -f(x)g(x) = -h(x), значит, h(x) нечётна.
- 6. Если f(x) и g(x) нечётные функции, то h(x) = g(f(x)) нечётна. Доказательство. h(-x) = g(f(-x)) = g(-f(x)) = -g(f(x)) = -h(x), значит, h(x) нечётна.
- 7. Если f(x) и g(x) нечётная и чётная функции соответственно, то h(x) = g(f(x)) чётна. Доказательство. h(-x) = g(f(-x)) = g(-f(x)) = g(f(x)) = h(x), значит, h(x) чётна.
- 8. Если f(x) и g(x) функции, причём f(x) чётна, то h(x) = g(f(x)) чётна. Доказательство. h(-x) = g(f(-x)) = g(f(x)) = h(x), значит, h(x) чётна.

7.1.3 Ограниченные функции

Функция f(x) называется ограниченной сверху на множестве X, если $\exists M : \forall x \in X \ f(x) \leqslant M$. Если X = D(f), то f(x) называется ограниченной сверху.

Функция f(x) называется ограниченной снизу на множестве X, если $\exists m \colon \forall x \in X \ f(x) \geqslant m$. Если X = D(f), то f(x) называется ограниченной снизу.

Функция называется **ограниченной на множестве**, если она ограничена и сверху, и снизу на этом множестве. Если данное множество совпадает с областью определения этой функции, то она называется **ограниченной**.

7.1.4 Обратные функции

Функция называется **обратимой**, если $\forall x_1, x_2 \in D(f) \ (x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)).$

Функция $g: Y \to X$ называется **обратной к** обратимой **функции** $f: X \to Y$, если $\forall x \in X \ g(f(x)) = x \ \& \ \forall y \in Y \ f(g(y)) = y$, и обозначается f^{-1} .

Утверждение 7.1.1. $(f^{-1})^{-1} = f$.

Доказательство. Пусть даны функции $f\colon X\to Y$ и $g\colon Y\to X$, причём $g=f^{-1}$, тогда $\forall x\in Y\ f(g(x))=x\ \&\ \forall y\in X\ g(f(y))=y\Rightarrow f=g^{-1}=(f^{-1})^{-1}$. \blacksquare

Функции f и $g = f^{-1}$ называются **взаимно обратными**.

Теорема 7.1.2. Графики взаимно обратных функций симметричны относительно прямой y = x.

Доказательство. Пусть даны функции $f: X \to Y$ и $g: Y \to X$, причём $g = f^{-1}$, тогда f(a) = b, g(b) = g(f(a)) = a, где $a \in X$, $b \in Y$. Т. о., точка (a,b) принадлежит графику функции $f \Leftrightarrow$ точка (b,a) принадлежит графику функции g.

Найдём расстояния от точек (a,b) и (b,a) до произвольной точки (c,c) прямой y=x:

$$d_1 = \sqrt{(a-c)^2 + (b-c)^2}, \ d_2 = \sqrt{(b-c)^2 + (a-c)^2}$$

 $d_1 = d_2$, значит, прямая y = x — серединный перпендикуляр к отрезку, концами которого являются точки (a,b) и (b,a), поэтому они симметричны относительно y = x. В силу того, что a может принимать любое значение из множества X, графики функций f и g симметричны относительно прямой y = x.

7.1.5 Линейная функция

Линейной называется функция вида y = kx + b. k называется **угловым коэффициентом**.

Очевидно, что $D(y) = E(y) = \mathbb{R}$.

Докажем монотонность линейной функции при $k \neq 0$.

1. Пусть $k < 0, x_1 < x_2$, тогда

$$f(x_1) - f(x_2) = kx_1 + b - kx_2 - b = k(x_1 - x_2) > 0 \Rightarrow f(x_1) > f(x_2)$$

Значит, функция убывает.

2. Аналогичным образом легко доказать, что при k > 0 функция возрастает.

График линейной функции — прямая.

Докажем, что $k=\lg\alpha$. Пусть $y_0=kx_0+b$. Заметим, что при $k\neq 0$ график линейной функции пересекает ось абсцисс в точке $(-\frac{b}{k},0)$.

1. Если k<0, то для определённости предположим, что $x_0<-\frac{b}{k}$.

$$\operatorname{tg} \alpha = -\operatorname{tg}(\pi - \alpha) = -\frac{y_0}{-\frac{b}{k} - x_0} = \frac{ky_0}{kx_0 + b} = k$$

- 2. При $k = 0 \operatorname{tg} \alpha = 0$.
- 3. Если k > 0, то для определённости предположим, что $x_0 > -\frac{b}{k}$.

$$\operatorname{tg} \alpha = \frac{y_0}{x_0 - (-\frac{b}{k})} = \frac{ky_0}{kx_0 + b} = k$$

7.1.6Квадратичная функция

Квадратичной называется функция вида $y = ax^2 + bx + c$, где $a \neq 0$.

Очевидно, что $D(y) = \mathbb{R}$.

Для исследования функции выделим в правой части уравнения полный квадрат:

$$y = a\left(x^2 + \frac{b}{a}x\right) + c \Leftrightarrow y = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a} \Leftrightarrow y = a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a}$$

• Пусть a < 0.

$$E(y) = \left(-\infty; -\frac{b^2 - 4ac}{4a}\right]$$

Функция возрастает на $\left(-\infty; -\frac{b}{2a}\right]$ и убывает на $\left[-\frac{b}{2a}; +\infty\right)$.

• Пусть a > 0.

$$E(y) = \left[-\frac{b^2 - 4ac}{4a}; +\infty \right)$$

Функция убывает на $\left(-\infty; -\frac{b}{2a}\right]$ и возрастает на $\left[-\frac{b}{2a}; +\infty\right)$.

Найдём нули функции:

$$a\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a} = 0 \Leftrightarrow \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \Leftrightarrow x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a} \Leftrightarrow x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \ b^2 - 4ac \geqslant 0$$

Если $b^2 - 4ac < 0$, то график квадратичной функции не пересекает ось абсцисс. Выражение $D = b^2 - 4ac$ называется дискриминантом квадратного многочлена.

График квадратичной функции называется **параболой**. При a < 0 её **ветви** направлены вниз, а при a > 0 вверх. Точка наименьшего или наибольшего значения функции называется **вершиной параболы** (на рисунках обозначена через M), которая имеет координаты $\left(-\frac{b}{2a}, -\frac{b^2-4ac}{4a}\right)$

7.1.7Рациональная функция

Рациональной называется функция вида $y = \frac{a_n x^n + \ldots + a_1 x + a_0}{b_m x^m + \ldots + b_1 x + b_0}$

$$D(y) = \{ x \in \mathbb{R} \mid b_m x^m + \ldots + b_0 \neq 0 \}$$

 $D(y) = \{x \in \mathbb{R} \mid b_m x^m + \ldots + b_0 \neq 0\}$ Выражение $\frac{P(x)}{Q(x)}$, где P(x) и Q(x) — многочлены, называется **правильной рациональной дробью**, если $\deg P(x) < \deg Q(x)$, иначе — неправильной рациональной дробью.

Делением многочленов любую рациональную функцию можно представить в виде суммы многочлена и правильной рациональной дроби.

Часть II Университетский курс

Арифметика

8.1 Комплексные числа

Мнимой единицей называется число $i: i^2 = -1$.

Комплексным называется число вида $a+bi, a,b \in \mathbb{R}$. Если a=0, то такое число называется **мнимым**, или **чисто мнимым**. Множество комплексных чисел обозначается \mathbb{C} .

Если z = a + bi, то $\overline{z} = a - bi$ называется сопряжённым к z.

Следующие операции над комплексными числами $z_1 = a_1 + b_1 i, z_2 = a_2 + b_2 i, a_1, b_1, a_2, b_2 \in \mathbb{R}$ осуществляются так же, как над вещественными, и обладают теми же свойствами:

- Сложение: $z_1 + z_2 = (a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2) i$
- Умножение: $z_1 \cdot z_2 = (a_1 + b_1 i)(a_2 + b_2 i) = (a_1 a_2 b_1 b_2) + (a_1 b_2 + a_2 b_1)i$
- Деление: $\frac{z_1}{z_2} = \frac{a_1 + b_1 i}{a_2 + b_2 i} = \frac{(a_1 + b_1 i)(a_2 b_2 i)}{a_2^2 + b_2^2} = \frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2} + \frac{a_2 b_1 a_1 b_2}{a_2^2 + b_2^2} i$

8.1.1 Геометрическое представление комплексного числа

Комплексное число a+bi принято изображать на координатной плоскости точкой (a,b), а также радиус-вектором, соединяющим начало координат с этой точкой. Такая плоскость называется **комплексной**.

Модулем комплексного числа z = a + bi, или его **абсолютной величиной**, называется длина соответствующего радиус-вектора комплексной плоскости, равная

$$|z| = \sqrt{a^2 + b^2}$$

Аргументом комплексного числа z=a+bi называется угол соответствующего радиус-вектора на комплексной плоскости (с точностью до $2\pi k, k \in \mathbb{Z}$):

$$a = |z| \cos \operatorname{Arg} z, \ b = |z| \sin \operatorname{Arg} z$$

Главным аргументом называется значение $\operatorname{Arg} z \in (-\pi; \pi]$ и обозначается $\operatorname{arg} z$.

8.1.2 Тригонометрическая форма комплексного числа

Тригонометрической формой комплексного числа z называется его представление в виде

$$z = |z|(\cos \varphi + i \sin \varphi), \ \varphi = \operatorname{Arg} z$$

При использовании тригонометрических форм операции умножения и деления комплексных чисел $z_1 = |z_1| \cdot (\cos \alpha + i \sin \alpha), z_2 = |z_2| (\cos \beta + i \sin \beta)$ упрощаются:

- $z_1 z_2 = |z_1||z_2|(\cos\alpha\cos\beta \sin\alpha\sin\beta + i(\sin\alpha\cos\beta + \cos\alpha\sin\beta)) = |z_1||z_2|(\cos(\alpha+\beta) + i\sin(\alpha+\beta))$
- $\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} \cdot \frac{(\cos \alpha \cos \beta + \sin \alpha \sin \beta + i(\sin \alpha \cos \beta \cos \alpha \sin \beta))}{\cos^2 \beta + \sin^2 \beta} = \frac{|z_1|}{|z_2|} (\cos(\alpha \beta) + i\sin(\alpha \beta))$

Теорема 8.1.1 (формула Эйлера).

$$\cos x + i\sin x = e^{ix}$$

Доказательство. Воспользуемся разложением $\cos x$, $\sin x$ и e^{ix} в ряд Маклорена:

$$\cos x + i \sin x = 1 + \frac{ix}{1!} - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} + \dots = 1 + \frac{ix}{1!} + \frac{i^2x^2}{2!} + \frac{i^3x^3}{3!} + \frac{i^4x^4}{4!} + \frac{i^5x^5}{5!} + \dots = e^{ix}$$

При подстановке $x=\pi$ в формулу Эйлера получим замечательное **тождество Эйлера**, связывающее пять фундаментальных математических констант:

$$e^{i\pi} + 1 = 0$$

Теорема 8.1.2 (формула Муавра). Eсли $z=|z|(\cos\varphi+i\sin\varphi),\ n\in\mathbb{R},\ то$

$$z^n = |z|^n (\cos n\varphi + i\sin n\varphi)$$

Доказательство. Для $n \in \mathbb{N}$ формулу можно доказать методом математической индукции, тогда показать истинность формулы для $n \in \mathbb{Z}$ несложно. Мы же докажем формулу сразу для $n \in \mathbb{R}$, пользуясь формулой Эйлера:

$$z^{n} = |z|^{n} (\cos \varphi + i \sin \varphi)^{n} = |z|^{n} e^{i\varphi n} = |z|^{n} (\cos n\varphi + i \sin n\varphi)$$

Пользуясь формулой Муавра, можно извлекать корни из комплексного числа $z=|z|(\cos\varphi+i\sin\varphi)$:

$$\sqrt[n]{z} = \sqrt[n]{|z|} \left(\cos \frac{\varphi}{n} + i \sin \frac{\varphi}{n} \right)$$

Следует не забывать, что φ определено с точностью до $2\pi k, k \in \mathbb{Z}$, поэтому комплексный корень имеет не одно, а n значений (что можно показать, пользуясь следствием 16.1.3).

Линейная алгебра

9.1 Линейные комбинации

Выражение, построенное на множестве элементов путём сложения этих элементов, умноженных на некоторые коэффициенты, называется **линейной комбинацией**. Если все коэффициенты линейной комбинации равны нулю, то она называется **тривиальной**, иначе — **нетривиальной**.

9.2 Векторные пространства

n-мерным векторным пространством над полем вещественных чисел называется множество

$$V_n = \mathbb{R}^n = \{(x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathbb{R}\}\$$

элементы которого называются **векторами**. Над ними определены операции сложения и умножения на число, удовлетворяющие аксиомам:

- 1. Коммутативность сложения: $\forall \overline{a}, \overline{b} \in V_n \ \overline{a} + \overline{b} = \overline{b} + \overline{a}$
- 2. Ассоциативность сложения: $\forall \overline{a}, \overline{b}, \overline{c} \in V_n \ \overline{a} + (\overline{b} + \overline{c}) = (\overline{a} + \overline{b}) + \overline{c}$
- 3. Существование **нулевого** вектора, или **нуля**: $\exists \overline{0} \in V_n \colon \forall \overline{a} \in V \ \overline{a} + \overline{0} = \overline{0} + \overline{a} = \overline{a}$
- 4. Существование **противоположного** вектора: $\forall \overline{a} \in V_n \ \exists (-\overline{a}) \in V_n \colon \overline{a} + (-\overline{a}) = \overline{0}$
- 5. Ассоциативность умножения на число: $\forall \alpha, \beta \in \mathbb{R}, \ \forall \overline{a} \in V_n \ \alpha(\beta \overline{a}) = (\alpha \beta) \overline{a}$
- 6. Дистрибутивность умножения на число относительно сложения векторов: $\forall \alpha \in \mathbb{R}, \ \forall \overline{a}, \overline{b} \in V_n \ \alpha(\overline{a} + \overline{b}) = \alpha \overline{a} + \alpha \overline{b}$
- 7. Дистрибутивность умножения на число относительно сложения чисел: $\forall \alpha, \beta \in \mathbb{R}, \ \forall \overline{a} \in V_n \ (\alpha + \beta) \overline{a} = \alpha \overline{a} + \beta \overline{a}$
- 8. Существование единицы: $\forall \overline{a} \in V_n \ 1 \cdot \overline{a} = \overline{a}$

9.2.1 Базис и размерность векторного пространства

Множество векторов $\overline{a}_1, \dots, \overline{a}_n$ называется **линейно зависимым**, если

$$\exists \alpha_1, \dots, \alpha_n \colon \sum_{i=1}^n \alpha_i \overline{a}_i = \overline{0} \& \sum_{i=1}^n \alpha_i^2 \neq 0$$

иначе — линейно независимым.

Множество линейно независимых векторов $\overline{e}_1, \dots, \overline{e}_n$ векторного пространства V называется **базисом** этого **пространства**, если

$$\forall \overline{x} \in V \ \exists \alpha_1, \dots, \alpha_n \colon \overline{x} = \sum_{i=1}^n \alpha_i \overline{e}_i$$

Приведённое равенство называется разложением вектора \overline{x} по базису $\overline{e}_1,\ldots,\overline{e}_n$.

Теорема 9.2.1 (о базисе). Любой вектор \overline{x} может быть разложен по базису $\overline{e}_1, \dots, \overline{e}_n$ единственным образом. Доказательство. Пусть

$$\overline{x} = a_1 \overline{e}_1 + \ldots + a_n \overline{e}_n$$

$$\overline{x} = b_1 \overline{e}_1 + \ldots + b_n \overline{e}_n$$

Вычитанием одного равенства из другого получим:

$$(a_1 - b_1)\overline{e}_1 + \ldots + (a_n - b_n)\overline{e}_n = \overline{0}$$

В силу линейной независимости векторов $\bar{e}_1, \ldots, \bar{e}_n$

$$\begin{cases} a_1 - b_1 = 0 \\ \dots \\ a_n - b_n = 0 \end{cases} \Leftrightarrow \begin{cases} a_1 = b_1 \\ \dots \\ a_n = b_n \end{cases}$$

Размерностью векторного пространства называется максимальное количество линейно независимых векторов.

Теорема 9.2.2. В векторном пространстве V размерности n любые n линейно независимых векторов образуют его базис.

Доказательство. Рассмотрим множество линейно независимых векторов $\overline{e}_1, \dots, \overline{e}_n \in V$. Для любого вектора $\overline{x} \in V$ множество векторов $\overline{e}_1, \dots, \overline{e}_n, \overline{x}$ линейно зависимо, т. к. размерность V равна n, тогда

$$\exists \alpha_1, \dots, \alpha_n, \alpha_{n+1} \colon \sum_{i=1}^n \alpha_i \overline{e}_i + \alpha_{n+1} \overline{x} = \overline{0} \& \alpha_{n+1} \neq 0 \Rightarrow \overline{x} = \sum_{i=1}^n -\frac{\alpha_i}{\alpha_{n+1}} \overline{e}_i$$

Значит, векторы $\overline{e}_1, \dots, \overline{e}_n$ образуют базис пространства V.

Теорема 9.2.3. Если векторное пространство V имеет базис из n векторов, то его размерность равна n. Доказательство. Рассмотрим базис, состоящий из векторов $\overline{e}_1, \ldots, \overline{e}_n \in V$.

$$\forall \overline{e}_{n+1} \in V \ \exists \alpha_1, \dots, \alpha_n \colon \overline{e}_{n+1} = \sum_{i=1}^n \alpha_i \overline{e}_i$$

Значит, базис из n+1 векторов не существует, тогда размерность пространства V равна n.

9.3 Системы линейных алгебраических уравнений

Система линейных алгебраических уравнений имеет вид

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

где x_1, \ldots, x_n — переменные.

 $a_{11}, a_{12}, \ldots, a_{mn}$ называются коэффициентами при переменных, b_1, b_2, \ldots, b_m — свободными членами.

Система линейных уравнений называется **однородной**, если все её свободные члены равны 0, иначе — **неоднородной**.

Система линейных уравнений называется **совместной**, если она имеет хотя бы одно решение, иначе — **несовместной**.

Система линейных уравнений называется **определённой**, если она имеет единственное решение. Если система имеет более одного решения, то она называется **неопределённой**.

Две системы линейных уравнений называются **эквивалентными**, если их решения совпадают или обе не имеют решений.

Если применить к системе линейных уравнений одно из следующих преобразований, называемых **элементарными**, то получим систему, эквивалентную исходной, что элементарно проверяется подстановкой:

- 1. Перестановка двух уравнений.
- 2. Умножение одного из уравнений на ненулевое число.
- 3. Сложение одного уравнения с другим, умноженным на некоторое число.

9.3.1 Матричная форма системы линейных уравнений

Систему линейных уравнений можно представить в матричной форме:

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{vmatrix} = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{vmatrix} \Leftrightarrow$$

$$\Leftrightarrow \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix} \cdot \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix} = \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{vmatrix} \Leftrightarrow$$

A называется основной матрицей системы, X — столбцом переменных, B — столбцом свободных членов. Если к основной матрице справа приписать столбец свободных членов, то получится расширенная матрица системы:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{vmatrix}$$

9.3.2 Линейная независимость

Уравнение системы линейных уравнений называется **линейно зависимым**, если соответствующая ему строка расширенной матрицы является нетривиальной линейной комбинацией других строк, иначе — **линейно независимым**.

Система линейных уравнений называется **линейно зависимой**, если существует нетривиальная линейная комбинация строк расширенной матрицы, в результате которой получается нулевая строка, иначе — **линейно независимой**.

Утверждение 9.3.1. Система линейных уравнений линейно зависима ⇔ одно из её уравнений линейно зависимо.

Доказательство.

1. \Rightarrow . Пусть система строк A_1, \dots, A_n линейно зависима:

$$\sum_{i=1}^{n} \alpha_{i} A_{i} = O \& \sum_{i=1}^{n} \alpha_{i}^{2} \neq 0$$

где O — нулевая строка. Без ограничения общности можно считать, что $\alpha_1 \neq 0$, тогда

$$A_1 = -\sum_{i=2}^n \frac{\alpha_i}{\alpha_1} A_i$$

Значит, A_1 — линейно зависимая строка.

2. ←. Пусть одна из строк линейно зависима:

$$A_1 = \sum_{i=2}^{n} \alpha_i A_i \Leftrightarrow 1 \cdot A_1 - \alpha_2 A_2 - \dots - \alpha_n A_n = O$$

Значит, система линейно зависима.

9.3.3 Решение систем линейных уравнений

Лемма 9.3.2. Пусть система строк A_1, \ldots, A_n линейно независима и A_{n+1} не является линейной комбинацией A_1, \ldots, A_n . Тогда система строк $A_1, \ldots, A_n, A_{n+1}$ линейно независима.

Доказательство методом от противного. Пусть система строк $A_1, \ldots, A_n, A_{n+1}$ линейно зависима:

$$\sum_{i=1}^{n+1} \alpha_i A_i = O \& \sum_{i=1}^{n+1} \alpha_i^2 \neq 0$$

где O — нулевая строка. Система строк A_1, \ldots, A_n линейно независима по условию, тогда

$$\alpha_{n+1} \neq 0 \Rightarrow A_{n+1} = -\sum_{i=1}^{n} \frac{\alpha_i}{\alpha_{n+1}} A_i$$

Значит, A_{n+1} — линейная комбинация A_1, \ldots, A_n . Противоречие с условием.

Теорема 9.3.3 (Кронекера—**Капелли).** Система линейных уравнений совместна \Leftrightarrow ранг основной матрицы A совпадает c рангом расширенной матрицы.

Доказательство.

- 1. \Rightarrow . Пусть (a_1, \ldots, a_n) решение системы, B столбец свободных членов системы. Тогда $\sum_{i=1}^n a_i A^i = B$, значит, B линейная комбинация столбцов A^1, \ldots, A^n , поэтому ранг расширенной матрицы совпадает с рангом основной.
- 2. \Leftarrow . Пусть ранг основной матрицы равен рангу расширенной. Предположим, что система несовместна, тогда B не является линейной комбинацией столбцов A^1, \ldots, A^n , значит, по лемме 9.3.2 система строк A^1, \ldots, A^n, B линейно независима. Получили, что ранг расширенной матрицы больше ранга основной. Противоречие.

Метод Гаусса

Пусть дана система линейных уравнений

 $\begin{cases}
 a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
 a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
 \dots \\
 a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$ (9.1)

Её расширенную матрицу можно привести к ступенчатому виду, т.е. (9.1) эквивалентна

$$\begin{cases}
a_{1j_1}x_{j_1} + \dots + a_{1j_n}x_{j_n} = b_1 \\
a_{2j_2}x_{j_2} + \dots + a_{2j_n}x_{j_n} = b_2 \\
\dots \\
a_{rj_r}x_{j_r} + \dots + a_{rj_n}x_{j_n} = b_r \\
0 = b_{r+1} \\
\dots \\
0 = b_m
\end{cases}$$
(9.2)

где $a_{1j_1}, \ldots, a_{rj_r} \neq 0$. Без ограничения общности можно считать, что в базисный минор основной матрицы системы (9.2) входят только коэффициенты при переменных x_{j_1}, \ldots, x_{j_r} , называемых **главными (зависимыми)**. Остальные переменные называются **свободными (независимыми)**.

Если $\exists i > r \colon b_i \neq 0$, то система несовместна. Пусть $\forall i > r \ b_i = 0$. Тогда получим систему

$$\begin{cases} x_{j_1} = \frac{b_1}{a_{1\,j_1}} - \frac{a_{1\,j_2}}{a_{1\,j_1}} x_{j_2} - \dots - \frac{a_{1\,j_n}}{a_{1\,j_1}} x_{j_n} \\ x_{j_2} = \frac{b_2}{a_{2\,j_2}} - \frac{a_{2\,j_3}}{a_{2\,j_2}} x_{j_3} - \dots - \frac{a_{2\,j_n}}{a_{2\,j_2}} x_{j_n} \\ \dots \\ x_{j_r} = \frac{b_r}{a_{r\,j_r}} - \frac{a_{r\,j_{r+1}}}{a_{r\,j_r}} x_{j_{r+1}} - \dots - \frac{a_{r\,j_n}}{a_{r\,j_r}} x_{j_n} \end{cases}$$

Если свободным переменным полученной системы придавать все возможные значения и решать новую систему относительно главных неизвестных от нижнего уравнения к верхнему, то получим все решения данной системы.

Метод Крамера

Теорема 9.3.4 (Крамера). Пусть дана система линейно независимых уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$

Если определитель её основной матрицы не равен 0, то система имеет единственное решение. Доказательство. Запишем систему в матричной форме:

$$AX = B \Leftrightarrow A^{-1}AX = A^{-1}B \Leftrightarrow X = A^{-1}B \Leftrightarrow$$

$$\Leftrightarrow \begin{vmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{vmatrix} = \begin{vmatrix} \frac{A_{11}}{|A|} & \frac{A_{21}}{|A|} & \cdots & \frac{A_{n1}}{|A|} \\ \frac{A_{12}}{|A|} & \frac{A_{22}}{|A|} & \cdots & \frac{A_{n2}}{|A|} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{A_{1n}}{|A|} & \frac{A_{2n}}{|A|} & \cdots & \frac{A_{nn}}{|A|} \end{vmatrix} \cdot \begin{vmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{vmatrix}$$

где A_{ij} — алгебраическое дополнение a_{ij} .

Т. о., получим решение системы:

$$x_{i} = \frac{\sum_{j=1}^{n} A_{ji}b_{j}}{|A|} = \frac{1}{|A|} \cdot \begin{vmatrix} a_{11} & \cdots & a_{1\,i-1} & b_{1} & a_{1\,i+1} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2\,i-1} & b_{2} & a_{2\,i+1} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{n\,i-1} & b_{n} & a_{n\,i+1} & \cdots & a_{nn} \end{vmatrix}, \ i = 1, 2, \dots, n$$

$$(9.3)$$

Полученные формулы (9.3) называется формулами Крамера.

9.3.4 Фундаментальная система решений

Утверждение 9.3.5. Однородная линейно независимая система уравнений

$$\begin{cases} \sum_{i=1}^{n} a_{1i}x_{i} = 0\\ \sum_{i=1}^{n} a_{2i}x_{i} = 0\\ \dots\\ \sum_{i=1}^{n} a_{mi}x_{i} = 0 \end{cases}$$

задаёт векторное пространство.

Доказательство. Пусть $(\alpha_1, \ldots, \alpha_n), (\beta_1, \ldots, \beta_n)$ — решения данной системы, $\lambda \neq 0$.

$$\begin{cases} \sum_{i=1}^{n} a_{1i}(\alpha_{i} + \beta_{i}) = 0 \\ \sum_{i=1}^{n} a_{2i}(\alpha_{i} + \beta_{i}) = 0 \\ \dots \\ \sum_{i=1}^{n} a_{mi}(\alpha_{i} + \beta_{i}) = 0 \end{cases} \Leftrightarrow \begin{cases} \sum_{i=1}^{n} a_{1i}\alpha_{i} + \sum_{i=1}^{n} a_{1i}\beta_{i} = 0 \\ \sum_{i=1}^{n} a_{2i}\alpha_{i} + \sum_{i=1}^{n} a_{2i}\beta_{i} = 0 \\ \dots \\ \sum_{i=1}^{n} a_{mi}\alpha_{i} + \sum_{i=1}^{n} a_{mi}\beta_{i} = 0 \end{cases} \Leftrightarrow \begin{cases} 0 = 0 \\ 0 = 0 \\ \dots \\ 0 = 0 \end{cases}$$

Значит, $(\alpha_1 + \beta_1, \dots, \alpha_n + \beta_n)$ тоже является решением системы.

$$\begin{cases} \sum_{i=1}^{n} a_{1i} \lambda \alpha_{i} = 0 \\ \sum_{i=1}^{n} a_{2i} \lambda \alpha_{i} = 0 \\ \dots \\ \sum_{i=1}^{n} a_{mi} \lambda \alpha_{i} = 0 \end{cases} \Leftrightarrow \begin{cases} \lambda \sum_{i=1}^{n} a_{1i} \alpha_{i} = 0 \\ \lambda \sum_{i=1}^{n} a_{2i} \alpha_{i} = 0 \\ \dots \\ \lambda \sum_{i=1}^{n} a_{mi} \alpha_{i} = 0 \end{cases} \Leftrightarrow \begin{cases} 0 = 0 \\ 0 = 0 \\ \dots \\ 0 = 0 \end{cases}$$

Значит, $(\lambda \alpha_1, \dots, \lambda \alpha_n)$ тоже является решением системы.

Тогда множество решений данной системы — векторное пространство. ■

Фундаментальной системой решений однородной системы линейных уравнений называется базис множества всех её решений.

Пусть дана однородная линейно независимая система уравнений:

$$\begin{cases}
\sum_{i=1}^{n} a_{1i}x_{i} = 0 \\
\sum_{i=1}^{n} a_{2i}x_{i} = 0 \\
\vdots \\
\sum_{i=1}^{n} a_{mi}x_{i} = 0
\end{cases}
\Leftrightarrow
\begin{cases}
\sum_{i=1}^{m} a_{1i}x_{i} = -\sum_{i=m+1}^{n} a_{1i}x_{i} \\
\sum_{i=m+1}^{n} a_{2i}x_{i} \\
\vdots \\
\sum_{i=1}^{m} a_{mi}x_{i} = -\sum_{i=m+1}^{n} a_{mi}x_{i}
\end{cases}$$
(9.4)

Присваивая переменным x_{m+1}, \ldots, x_n произвольные значения, получаем систему уравнений, которая по теореме Крамера имеет единственное решение. Тогда решения системы (9.4)

$$\overline{e}_1 = (x_{11}, x_{21}, \dots, x_{m1}, 1, 0, \dots, 0), \ \overline{e}_2 = (x_{12}, x_{22}, \dots, x_{m2}, 0, 1, \dots, 0), \ \dots,$$
$$\overline{e}_{n-m} = (x_{1 n-m}, x_{2 n-m}, \dots, x_{m n-m}, 0, 0, \dots, 1)$$

образуют фундаментальную систему решений.

Доказательство. Пусть $\bar{r}=(r_1,\ldots,r_n)$ — решение системы $(9.4), \bar{p}=(p_1,\ldots,p_n)=r_{m+1}\bar{e}_1+r_{m+2}\bar{e}_2+\ldots+r_n\bar{e}_{n-m}-\bar{r}$. По утверждению 9.3.5 \bar{p} — решение системы (9.4). Легко проверить, что $p_{m+1}=\ldots=p_n=0$. Подставим эти значения в систему (9.4), тогда по теореме Крамера она имеет единственное решение — нулевое. Значит, $\bar{r}=r_{m+1}\bar{e}_1+r_{m+2}\bar{e}_2+\ldots+r_n\bar{e}_{n-m}$, т. е. $\bar{e}_1,\ldots,\bar{e}_{n-m}$ — фундаментальная система решений. ■

Теорема 9.3.6. Пусть дана линейно независимая система уравнений:

$$\begin{cases}
\sum_{i=1}^{n} a_{1i}x_{i} = b_{1} \\
\sum_{i=1}^{n} a_{2i}x_{i} = b_{2} \\
\dots \\
\sum_{i=1}^{n} a_{mi}x_{i} = b_{m}
\end{cases}$$
(9.5)

Eсли \overline{e}_0 — её решение, а векторы $\overline{e}_1,\ldots,\overline{e}_{n-m}$ — фундаментальная система решений системы уравнений

$$\begin{cases}
\sum_{i=1}^{n} a_{1i}x_{i} = 0 \\
\sum_{i=1}^{n} a_{2i}x_{i} = 0 \\
\dots \\
\sum_{i=1}^{n} a_{mi}x_{i} = 0
\end{cases}$$
(9.6)

то любое решение системы (9.5) можно найти по формуле

$$\lambda_1 \overline{e}_1 + \ldots + \lambda_{n-m} \overline{e}_{n-m} + \overline{e}_0$$

где $\lambda_1, \dots, \lambda_{n-m}$ — произвольные числа.

Доказательство. Пусть \overline{v} — решение системы (9.5). Убедимся подстановкой, что \overline{v} — \overline{u}_0 — решение системы (9.6). Тогда

$$\overline{v} - \overline{u}_0 = \sum_{i=1}^{n-m} \lambda_i \overline{u}_i \Leftrightarrow \overline{v} = \sum_{i=1}^{n-m} \lambda_i \overline{u}_i + \overline{u}_0$$

9.4 Квадратичные формы

Квадратичной формой называется многочлен, все одночлены в котором второй степени:

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$$

Для определённости полагают $a_{ij} = a_{ji}$.

Квадратичной форме можно сопоставить матрицу квадратичной формы, составленную из коэффициентов:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

Каноническим видом квадратичной формы называется её представление в виде суммы квадратов с некоторыми коэффициентами.

Теорема 9.4.1 (метод Лагранжа). Любая квадратичная форма может быть приведена к каноническому виду.

Доказательство. Пусть дана квадратичная форма $f(x_1,\ldots,x_n) = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i x_j$. Возможны два случая:

1. $\exists i \colon a_{ii} \neq 0.$ Без ограничения общности будем считать, что $a_{11} \neq 0,$ тогда

$$f(x_1, \dots, x_n) = a_{11} \left(x_1^2 + \frac{2x_1}{a_{11}} \sum_{i=2}^n a_{1i} x_i + \frac{1}{a_{11}^2} \left(\sum_{i=2}^n a_{1i} x_i \right)^2 \right) + \sum_{i=2}^n \sum_{j=2}^n a_{ij} x_i x_j - \frac{1}{a_{11}} \left(\sum_{i=2}^n a_{1i} x_i \right)^2 =$$

$$= a_{11} \left(x_1 + \frac{1}{a_{11}} \sum_{i=2}^n a_{1i} x_i \right)^2 + f_1(x_2, \dots, x_n)$$

2. $\forall i\ a_{ii}=0$. Тогда $\exists i,j\colon a_{ij}\neq 0$. Без ограничения общности будем считать, что $a_{12}\neq 0$, тогда заменой переменных $x_1=y_1+y_2,\ x_2=y_1-y_2,\ x_i=y_i,\ i=3,4,\ldots,n$ этот случай сводится к первому.

 $f_1(x_2,...,x_n)$ — квадратичная форма от n-1 переменных. Применяя к ней описанные действия, получим квадратичную форму от n-2 переменных. Продолжая таким образом, получим канонический вид $f(x_1,...,x_n)$.

Нормальным видом квадратичной формы называется её канонический вид, коэффициенты в котором равны -1 или 1.

Рангом квадратичной формы называется количество переменных в её каноническом виде. Количество положительных коэффициентов в каноническом виде квадратичной формы называется её положительным индексом, а отрицательных — отрицательным индексом. Сигнатурой квадратичной формы называется модуль разности положительного и отрицательного индексов.

Ранг, положительный и отрицательный индексы и сигнатура одинаковы для всех канонических видов квадратичной формы.

Математический анализ

10.1 Ограниченные подмножества множества \mathbb{R}

Множество $X \subset \mathbb{R}$ называется **ограниченным сверху**, если $\exists a \in \mathbb{R} \colon \forall x \in X \ x \leqslant a$. Число a называется **мажорантой множества** X.

Множество $X \subset \mathbb{R}$ называется **ограниченным снизу**, если $\exists a \in \mathbb{R} \colon \forall x \in X \ a \leqslant x$. Число a называется **минорантой множества** X.

Множество, ограниченное и сверху, и снизу, называется ограниченным.

Мажоранта ограниченного сверху множества A, принадлежащая ему, называется **его максимальным элементом** и обозначается $\max A$. Миноранта ограниченного снизу множества A, принадлежащая ему, называется **его минимальным элементом** и обозначается $\min A$.

Очевидно, что во множестве может быть не более одного минимального элемента и не более одного максимального элемента.

Минимальный элемент множества мажорант ограниченного сверху множества A называется **супремумом** и обозначается $\sup A$.

Утверждение 10.1.1. Если множество A ограничено сверху, то $\exists! \sup A$.

Доказательство. Пусть B — множество всех мажорант множества A, тогда $\forall a \in A, \ b \in B \ a \leqslant b$. По аксиоме непрерывности $\exists c \in \mathbb{R} \colon \forall a \in A, \ b \in B \ a \leqslant c \leqslant b$, тогда c — минимальная мажоранта множества A.

Единственность следует из единственности минимального элемента.

Утверждение 10.1.2. Если $a = \sup A$, то $\forall \varepsilon > 0 \ \exists x \in A \colon a - \varepsilon < x \leqslant a$.

Доказательство методом от противного. Пусть $\exists \varepsilon_0 \colon \forall x \in A \ x \leqslant a - \varepsilon_0$. Тогда $a - \varepsilon_0$ — мажоранта множества A, значит, $a \neq \sup A$. Противоречие.

Максимальный элемент множества минорант ограниченного снизу множества A называется **инфимумом** и обозначается inf A.

Утверждение 10.1.3. *Если множество А ограничено снизу, то* \exists ! inf *A.* Доказательство аналогично доказательству утверждения 10.1.1.

Утверждение 10.1.4. *Если* $a = \inf A$, то $\forall \varepsilon > 0 \ \exists x \in A \colon a \leqslant x < a + \varepsilon$. Доказательство аналогично доказательству утверждения 10.1.2.

Теорема 10.1.5 (принцип Архимеда). *Если* h > 0, то $\forall x \in \mathbb{R} \ \exists k \in \mathbb{Z} \colon (k-1)h \leqslant x < kh$.

Доказательство. Рассмотрим множество $A = \{z \in \mathbb{Z} \mid z > \frac{x}{h}\}$, тогда $\exists a = \inf A$. По утверждению 10.1.4 $\forall \varepsilon \in (0;1] \ \exists z_0 \colon a \leqslant z_0 < a + \varepsilon$. Т. к. в промежутке [a;a+1) лежит только одно целое число, то $a = z_0$, тогда $a-1 \leqslant \frac{x}{h} < a$. Т. о., a- искомое значение k. \blacksquare

Из принципа Архимеда следует, что не существует бесконечно больших чисел.

Следствие 10.1.6.

$$\forall \varepsilon > 0 \ \exists n \in \mathbb{N} \colon \frac{1}{n} < \varepsilon$$

Доказательство. По принципу Архимеда для $h = \varepsilon, x = 1$ получим:

$$\forall \varepsilon > 0 \ \exists n \in \mathbb{N} \colon (n-1)\varepsilon \leqslant 1 < n\varepsilon \Leftrightarrow (1-\frac{1}{n})\varepsilon \leqslant \frac{1}{n} < \varepsilon \Rightarrow \frac{1}{n} < \varepsilon$$

Отсюда следует, что не существует бесконечно малых чисел.

Следствие 10.1.7.

$$\forall a, b \in \mathbb{R} \ \exists c \in \mathbb{Q} \colon a < c < b$$

Доказательство. Из следствия 10.1.6 для $\varepsilon = b - a$ получим $\exists n \in \mathbb{N} \colon \frac{1}{n} < b - a$. По принципу Архимеда для $h = \frac{1}{n}, \ x = a$ получим:

$$\exists k \in \mathbb{Z} \colon \frac{k-1}{n} \leqslant a < \frac{k}{n} \Rightarrow a < \frac{k}{n} = \frac{k-1}{n} + \frac{1}{n} < a + (b-a) = b$$

T. o., $\frac{k}{n}$ — искомое значение c.

Точка $a \in \mathbb{R}$ называется **предельной точкой множества** $A \subset \mathbb{R}$, если $\forall \varepsilon > 0 \ \check{U}_{\varepsilon}(a) \cap A \neq \varnothing$.

Точка $a \in A$ называется дискретной точкой множества $A \subset \mathbb{R}$, если $\exists \varepsilon > 0 \colon \check{U}_{\varepsilon}(a) \cap A = \varnothing$.

Точка $a \in A$ называется внутренней точкой множества $A \subset \mathbb{R}$, если $\exists \varepsilon > 0 \colon U_{\varepsilon}(a) \subset A$.

Множество называется открытым, если состоит только из внутренних точек.

Множество называется **замкнутым**, если его дополнение \overline{A} до $\mathbb R$ является открытым.

Утверждение 10.1.8. Множество A замкнуто \Leftrightarrow оно содержит все свои предельные точки.

Доказательство.

1. ⇒. Докажем методом от противного, что A содержит все свои предельные точки. Пусть $∃a_0 \notin A$ — предельная точка A, тогда

$$a_0 \in \overline{A} \Rightarrow \exists \varepsilon > 0 \colon U_{\varepsilon}(a_0) \subset \overline{A} \Rightarrow U_{\varepsilon}(a_0) \cap A = \emptyset$$

Значит, a_0 не является предельной точкой A. Противоречие.

2. \Leftarrow . Докажем методом от противного, что \overline{A} открыто. Пусть $\exists a \in \overline{A} \colon \forall \varepsilon > 0 \ U_{\varepsilon}(a) \cap A \neq \varnothing$, тогда $a \notin A$ предельная точка A. Противоречие.

Теорема 10.1.9 (Вейерштрасса). Если A — бесконечное ограниченное множество, то $\exists a \in \mathbb{R}$ — предельная точка A.

Доказательство. $A\subseteq [a;b]$, где $a=\inf A,\ b=\sup A$. Пусть a не является предельной точкой A, т. е. $\exists \varepsilon_0>0$: $\check{U}_{\varepsilon_0}(a)\cap A=\varnothing$, тогда $a\in A$, значит, a — дискретная точка A.

Рассмотрим множество B точек y таких, что интервал $(-\infty; y)$ содержит конечное число точек A. Интервал $(-\infty; a + \varepsilon_0)$ содержит только одну точку множества A - a, значит, $\forall k \in (0; 1] \ a + k\varepsilon_0 \in B$.

 $A \subset (-\infty; b]$, тогда b — мажоранта B, значит, $\exists c = \sup B$.

- 1. $\forall \varepsilon > 0 \ (-\infty; c \varepsilon)$ содержит конечное число точек множества A.
- 2. $\forall \varepsilon > 0 \ (-\infty; c + \varepsilon)$ содержит бесконечное число точек множества A, т. к. $c + \varepsilon \notin B$.

Тогда $\forall \varepsilon > 0 \ \check{U}_{\varepsilon}(c)$ содержит бесконечное число точек множества A, значит, c — предельная точка множества A.

10.2 Предел последовательности

Число a называется пределом последовательности (x_n) , если

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ |x_n - a| < \varepsilon$$

и обозначается $\lim_{n\to\infty} x_n$. Говорят, что последовательность (x_n) **сходится**, если $\exists \lim_{n\to\infty} x_n$, иначе говорят, что (x_n) расходится.

Последовательность (x_n) называется **ограниченной**, или **ограниченной величиной**, если $\exists a > 0 \colon \forall n \in \mathbb{N}$ $|x_n| < a$.

Бесконечно малой величиной называется последовательность (x_n) , если

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ |x_n| < \varepsilon$$

Можно определить предел последовательности, используя понятие бесконечно малой величины.

Число a называется **пределом последовательности** (x_n) , если $x_n = a + \alpha_n$, где α_n — бесконечно малая величина.

Докажем эквивалентность этих определений.

Доказательство.

1. Пусть дана последовательность (x_n) такая, что

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ |x_n - a| < \varepsilon$$

Докажем, что $x_n = a + \alpha_n$. В самом деле, $\alpha_n = x_n - a$ — бесконечно малая величина. Т. о., $x_n = a + \alpha_n$.

- 2. Проведя те же самые рассуждения в обратную сторону, докажем обратное утверждение.
- Также определяется бесконечный предел:
- $\lim_{n \to \infty} x_n = \infty \Leftrightarrow \forall M > 0 \; \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \; |x_n| > M$
- $\lim_{n \to \infty} x_n = +\infty \Leftrightarrow \forall M > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ x_n > M$
- $\lim_{n \to \infty} x_n = -\infty \Leftrightarrow \forall M > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ x_n < -M$

10.2.1 Элементарные свойства пределов

1. Последовательность может иметь не более одного предела.

Доказательство. Пусть $a=\lim_{n\to\infty}x_n,\ b=\lim_{n\to\infty}x_n.$ Тогда

$$\forall \varepsilon > 0 \ \left(\exists n_1 \in \mathbb{N} \colon \forall n > n_1 \ | x_n - a | < \frac{\varepsilon}{2} \right) \& \left(\exists n_2 \in \mathbb{N} \colon \forall n > n_2 \ | x_n - b | < \frac{\varepsilon}{2} \right) \Rightarrow$$
$$\Rightarrow \forall n > \max\{n_1, n_2\} \ |a - b| = |a - x_n + x_n - b| \leqslant |a - x_n| + |x_n - b| < \varepsilon$$

Значит, a = b.

2. **Теорема 10.2.1 (о двух милиционерах).** Пусть $\forall n \in \mathbb{N} \ x_n \leqslant y_n \leqslant z_n$. Если $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a$, то $\lim_{n \to \infty} y_n = a$.

Доказательство.

$$\forall \varepsilon > 0 \ (\exists n_1 \in \mathbb{N} \colon \forall n > n_1 \ |x_n - a| < \varepsilon) \& (\exists n_2 \in \mathbb{N} \colon \forall n > n_2 \ |z_n - a| < \varepsilon) \Rightarrow$$
$$\Rightarrow \forall n > \max\{n_1, n_2\} \ a - \varepsilon < x_n \leqslant y_n \leqslant z_n < a + \varepsilon \Rightarrow |y_n - a| < \varepsilon$$

3. Если $\forall n \in \mathbb{N} \ x_n \geqslant 0 \ \& \lim_{n \to \infty} x_n = a$, то $a \geqslant 0$.

Доказательство методом от противного. Пусть a < 0.

$$\exists n_0 \in \mathbb{N} : \forall n > n_0 \ |x_n - a| < -\frac{a}{2} \Rightarrow \frac{a}{2} < x_n - a < -\frac{a}{2} \Rightarrow x_n < \frac{a}{2} < 0$$

Противоречие. ■

4. Если $\lim_{n\to\infty} x_n = a$, то $\lim_{n\to\infty} |x_n| = |a|$.

Доказательство.

$$\begin{cases} |a| - |x_n| \leqslant |a - x_n| \\ |x_n| - |a| \leqslant |x_n - a| \end{cases} \Rightarrow ||x_n| - |a|| \leqslant |x_n - a|$$

Тогда

$$\lim_{n \to \infty} x_n = a \Rightarrow \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ \left| |x_n| - |a| \right| \leqslant |x_n - a| < \varepsilon \Rightarrow \lim_{n \to \infty} |x_n| = |a|$$

5. Если последовательность (x_n) сходится, то она ограничена.

Доказательство. Пусть $\lim_{n\to\infty}x_n=a\Rightarrow\lim_{n\to\infty}|x_n|=|a|$. Получим:

$$\exists n_0 \in \mathbb{N} : \forall n > n_0 \ ||x_n| - |a|| < 1 \Rightarrow |x_n| < |a| + 1$$

Тогда $\forall n \in \mathbb{N} \ |x_n| < \max\{|x_1|+1,|x_2|+1,\ldots,|x_{n_0}|+1,|a|+1\}.$

6. Если последовательности (x_n) и (y_n) — ограниченная и бесконечно малая величины соответственно, то $z_n = x_n y_n$ — бесконечно малая величина.

Доказательство. Пусть a>0: $\forall n\in\mathbb{N}\ |x_n|< a,$ тогда

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ |y_n| < \frac{\varepsilon}{a} \Rightarrow |x_n y_n| < \varepsilon \Rightarrow \lim_{n \to \infty} z_n = 0$$

7. Если последовательности (x_n) и (y_n) — бесконечно малые величины, то $z_n = x_n + y_n$ — тоже бесконечно малая величина.

Доказательство.

$$\forall \varepsilon > 0 \ \left(\exists n_1 \in \mathbb{N} \colon \forall n > n_1 \ |x_n| < \frac{\varepsilon}{2} \right) \& \left(\exists n_2 \in \mathbb{N} \colon \forall n > n_2 \ |y_n| < \frac{\varepsilon}{2} \right) \Rightarrow$$
$$\Rightarrow \forall n > \max\{n_1, n_2\} \ |x_n + y_n| \leqslant |x_n| + |y_n| < \varepsilon \Rightarrow \lim_{n \to \infty} z_n = 0$$

10.2.2 Арифметические свойства пределов

Пусть даны сходящиеся последовательности $x_n = a + \alpha_n$ и $y_n = b + \beta_n$, где $(\alpha_n), (\beta_n)$ — бесконечно малые величины.

 $1. \lim_{n \to \infty} (x_n + y_n) = a + b$

Доказательство.

$$\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} (a + b + \alpha_n + \beta_n) = a + b$$

 $2. \lim_{n \to \infty} x_n y_n = ab$

Доказательство.

$$\lim_{n \to \infty} x_n y_n = \lim_{n \to \infty} (ab + a\beta_n + b\alpha_n + \alpha_n \beta_n) = ab$$

3. Если $a \neq 0$, то $\lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{a}$

Доказательство. Покажем, что $\left| \frac{1}{x_n} - \frac{1}{a} \right| = \frac{|\alpha_n|}{|a||\alpha_n + a|}$ — бесконечно малая величина.

$$\exists n_0 \in \mathbb{N} \colon \forall n > n_0 \mid x_n - a| < \frac{|a|}{2} \Rightarrow$$

$$\Rightarrow \forall n > n_0 \mid a| = |a - x_n + x_n| \leqslant |a - x_n| + |x_n| < \frac{|a|}{2} + |x_n| \Rightarrow |x_n| > \frac{|a|}{2} \Rightarrow \frac{1}{|x_n|} < \frac{2}{|a|}$$

Тогда $\frac{1}{|x_n|} = \frac{1}{|\alpha_n + a|}$ — ограниченная величина, значит, $\frac{|\alpha_n|}{|a||\alpha_n + a|} = \left|\frac{1}{x_n} - \frac{1}{a}\right|$ — бесконечно малая величина. Отсюда $\lim_{n \to \infty} \left(\frac{1}{x_n} - \frac{1}{a}\right) = 0 \Leftrightarrow \lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{a}$.

4. Если $b \neq 0$, то $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{a}{b}$.

$$\lim_{n \to \infty} \frac{x_n}{y_n} = \lim_{n \to \infty} \left(x_n \cdot \frac{1}{y_n} \right) = a \cdot \frac{1}{b} = \frac{a}{b}$$

Основные свойства пределов последовательностей

1. Из ограниченной последовательности можно выбрать сходящуюся подпоследовательность.

Доказательство. Пусть A — множество значений, принимаемых членами ограниченной последовательности (x_n) .

- (a) Пусть A конечно. Тогда бесконечное множество членов последовательности (x_n) принимает хотя бы одно значение из A, значит, подпоследовательность, состоящая из них, сходится к этому значению.
- (b) Пусть A бесконечно, тогда оно ограничено, значит, по теореме Вейерштрасса оно имеет предельную точку a. В окрестности $U_1(a)$ содержится хотя бы одна точка из множества A, а соответствующее значение принимает член x_{n_1} .

Рассмотрим множество A_1 , полученное из A удалением значений, принимаемых членами x_1, x_2, \ldots, x_n . A_1 бесконечно и имеет предельную точку a, поэтому в окрестности $U_{rac{1}{2}}(a)$ найдётся значение, принимаемое членом x_{n_2} , причём $n_1 < n_2$.

Рассмотрим множество A_2 , полученное из A_1 удалением значений, принимаемых членами $x_{n_1+1}, x_{n_1+2},$ \dots, x_{n_2} . A_2 бесконечно и имеет предельную точку a, поэтому в окрестности $U_{\frac{1}{2}}(a)$ найдётся значение, принимаемое членом x_{n_3} , причём $n_2 < n_3$.

Продолжая, получим последовательность (x_{n_k}) : $|x_{n_k} - a| < \frac{1}{k}$. По следствию 10.1.6 $\lim_{k \to \infty} x_{n_k} = a$.

2. Монотонная ограниченная последовательность (x_n) сходится.

Доказательство. Для опредёленности предположим, что $\forall n \in \mathbb{N} \ x_n \leqslant x_{n+1}$. Последовательность ограничена, поэтому множество A её значений имеет супремум $a = \sup A$. По утверждению 10.1.2

$$\forall \varepsilon > 0 \ \exists k \in \mathbb{N} : a - \varepsilon < x_k \leqslant a \Rightarrow \forall n > k \ a - \varepsilon < x_k \leqslant x_n \leqslant a \Rightarrow |x_n - a| < \varepsilon \Rightarrow \lim_{n \to \infty} x_n = a$$

3. Лемма 10.2.2 (о вложенных отрезках). Пусть $(a_n), (b_n)$ — последовательности концов последовательно вложенных друг в друга отрезков (т. е. $[a_n;b_n]\subset [a_{n-1};b_{n-1}]$), причём $\lim_{n\to\infty}(b_n-a_n)=0$. Тогда $\bigcap_{k=1}^\infty [a_k;b_k]=\{a\}$.

Доказательство. Очевидно, что (a_n) монотонна и ограничена сверху, (b_n) монотонна и ограничена снизу, тогда $\lim_{n\to\infty} a_n = a$, $\lim_{n\to\infty} b_n = b$. Имеем:

$$b = \lim_{n \to \infty} b_n = \lim_{n \to \infty} (b_n - a_n + a_n) = \lim_{n \to \infty} (b_n - a_n) + \lim_{n \to \infty} a_n = a$$

Отрезки последовательно вложены друг в друга, поэтому $\bigcap_{k=1}^{n} [a_k; b_k] = [a_n; b_n].$

$$\bigcap_{k=1}^{\infty} [a_k; b_k] = \lim_{n \to \infty} \bigcap_{k=1}^{n} [a_k; b_k] = \lim_{n \to \infty} [a_n; b_n] = \{a\}$$

10.2.4 Число Эйлера

Утверждение 10.2.3. $\exists \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$. Доказательство. Рассмотрим последовательность (x_n) :

$$x_{n} = \left(1 + \frac{1}{n}\right)^{n} = 1 + \frac{n}{n} + \frac{n(n-1)}{2n^{2}} + \frac{n(n-1)(n-2)}{2 \cdot 3n^{3}} + \dots + \frac{n!}{n!n^{n}} =$$

$$= 2 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \frac{1}{3!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \cdot \dots \cdot \left(1 - \frac{n-1}{n}\right) <$$

$$< 2 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} < 2 + \frac{1}{2!} + \frac{1}{2^{2}} + \dots + \frac{1}{2^{n-1}} = 2 + 1 - \frac{1}{2^{n-1}} < 3$$

$$(10.1)$$

Значит, (x_n) ограничена. Кроме того, из выражения (10.1) ясно, что (x_n) монотонна. Тогда (x_n) сходится. Число $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = 2{,}718281828\dots$ называется числом Эйлера (иногда числом Непера, или неперовым числом).

10.2.5 Критерий Коши

Последовательность (x_n) называется фундаментальной, если

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \colon \forall m, n > n_0 \ |x_n - x_m| < \varepsilon$$

Теорема 10.2.4 (критерий Коши). Последовательность сходится ⇔ она фундаментальна. Доказательство.

1. \Rightarrow . Пусть $\lim_{n\to\infty} x_n = a$, тогда

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ |x_n - a| < \frac{\varepsilon}{2}$$

Пусть $m, n > n_0$.

$$|x_n - x_m| = |x_n - a + a - x_m| \le |x_n - a| + |a - x_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

 $2. \Leftarrow.$

$$\exists n_0 \in \mathbb{N} \colon \forall m, n > n_0 \ |x_n - x_m| < 1 \Rightarrow$$

$$\Rightarrow |x_n - x_{n_0+1}| < 1 \Rightarrow ||x_n| - |x_{n_0+1}|| < 1 \Rightarrow |x_n| < |x_{n_0+1}| + 1$$

Значит, $\forall x \in \mathbb{N} \ |x_n| < \max\{|x_1|+1,|x_2|+1,\dots,|x_{n_0}|+1\}$, т. е. (x_n) ограничена.

Выберем из неё сходящуюся подпоследовательность $(x_{n_k}): \lim_{k\to\infty} x_{n_k} = a.$

$$\forall \varepsilon>0 \ \exists k_0,n_1\in\mathbb{N}\colon \forall k>k_0,n>n_1 \ |x_n-x_{n_k}|<\varepsilon\Rightarrow$$

$$|\ \Pi$$
ри $k\to\infty$ получим
$$|\Rightarrow |x_n-a|<\varepsilon\Rightarrow \lim_{n\to\infty}x_n=a$$

10.3 Предел функции

10.3.1 Предел функции в точке

Пусть a — предельная точка области определения функции f(x). Следующие определения эквивалентны:

1. Определение по Гейне

Число b называется **пределом функции** f(x) в точке a, если $\lim_{n\to\infty} f(x_n)=b$ для любой последовательности $(x_n)\colon \lim_{n\to\infty} x_n=a.$

2. Определение по Коши

Число b называется **пределом функции** f(x) в точке a, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon \forall x \ (|x - a| < \delta \Rightarrow |f(x) - b| < \varepsilon)$$

Предел функции f(x) в точке a обозначается $\lim_{x\to a} f(x)$.

Доказательство эквивалентности.

1. (2) \Rightarrow (1). Пусть $\lim_{n\to\infty} x_n = a$, тогда

$$\forall \delta > 0 \ \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \ |x_n - a| < \delta \Rightarrow \forall \varepsilon > 0 \ |f(x_n) - b| < \varepsilon \Rightarrow \lim_{n \to \infty} f(x_n) = b$$

2. $(1) \Rightarrow (2)$. Докажем методом от противного, что условия определения (2) выполняются. Пусть

$$\exists \varepsilon_0 > 0 \colon \forall \delta > 0 \ \exists x_0 \colon |x_0 - a| < \delta \& |f(x_0) - b| \geqslant \varepsilon_0$$

Тогда

$$\forall n \in \mathbb{N} \ \exists x_n \colon |x_n - a| < \frac{1}{n} \& |f(x_n) - b| \geqslant \varepsilon_0$$

Получили последовательность (x_n) : $\lim_{n\to\infty} x_n = a \& \lim_{n\to\infty} f(x_n) \neq b$. Противоречие.

Также определяются односторонние пределы.

Число b называется **левым пределом**, или **пределом слева**, функции f(x) в точке a, если

$$\forall \varepsilon > 0 \; \exists \delta > 0 \colon \forall x \; (0 < a - x < \delta \Rightarrow |f(x) - b| < \varepsilon)$$

и обозначается $\lim_{x\to a-0} f(x)$.

Число b называется правым пределом, или пределом справа, функции f(x) в точке a, если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon \forall x \ (0 < x - a < \delta \Rightarrow |f(x) - b| < \varepsilon)$$

и обозначается $\lim_{x \to a+0} f(x)$.

При a=0 также существуют обозначения $\lim_{x\to -0} f(x)$ и $\lim_{x\to +0} f(x)$ для левого и правого пределов соответственно.

T. o.,
$$\lim_{x \to a} f(x) = b \Leftrightarrow \lim_{x \to a-0} f(x) = \lim_{x \to a+0} f(x) = b$$
.

С помощью определения по Гейне и свойств предела последовательности доказываются свойства предела функции в точке.

Элементарные свойства:

- 1. Функция может иметь не более одного предела в одной точке.
- 2. **Теорема 10.3.1 (о двух милиционерах).** Если в окрестности точки $a \ f(x) \leqslant g(x) \leqslant h(x), \ \lim_{x \to a} f(x) = \lim_{x \to a} h(x) = b, \ \text{то} \ \lim_{x \to a} g(x) = b.$
- 3. Если в окрестности точки $a f(x) \ge 0$, $\lim_{x \to a} f(x) = b$, то $b \ge 0$.
- 4. $\lim_{x \to a} f(x) = b \Rightarrow \lim_{x \to a} |f(x)| = |b|.$

Арифметические свойства. Пусть $\lim_{x \to x_0} f(x) = a$, $\lim_{x \to x_0} g(x) = b$.

- 1. $\lim_{x \to x_0} (f(x) + g(x)) = a + b$
- $2. \lim_{x \to x_0} f(x)g(x) = ab$
- 3. Если $a \neq 0$, то $\lim_{x \to x_0} \frac{1}{f(x)} = \frac{1}{a}$
- 4. Если $b \neq 0$, то $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}$

10.3.2 Предел функции на бесконечности

Пусть f(x) — функция. Следующие определения эквивалентны:

1. Определение по Гейне

Число a называется **пределом функции** f(x) **на бесконечности**, если $\lim_{n\to\infty} f(x_n) = a$ для любой последовательности (x_n) : $\lim_{n\to\infty} x_n = \infty$.

2. Определение по Коши

Число a называется **пределом функции** f(x) на бесконечности, если

$$\forall \varepsilon > 0 \ \exists M > 0 \colon \forall x \ (|x| > M \Rightarrow |f(x) - b| < \varepsilon)$$

Предел функции f(x) на бесконечности обозначается $\lim_{x\to\infty} f(x)$.

Доказательство эквивалентности.

1. (2) \Rightarrow (1). Пусть $\lim_{n\to\infty}x_n=\infty$, тогда

$$\forall M > 0 \; \exists n_0 \in \mathbb{N} \colon \forall n > n_0 \; |x_n| > M \Rightarrow$$

$$\Rightarrow \forall \varepsilon > 0 |f(x_n) - a| < \varepsilon \Rightarrow \lim_{n \to \infty} f(x_n) = a$$

2. (1) \Rightarrow (2). Докажем методом от противного, что условия определения (2) выполняются. Пусть

$$\exists \varepsilon_0 > 0 : \forall M > 0 \ \exists x_0 : |x_0| > M \ \& |f(x_0) - a| \ge \varepsilon_0$$

Тогда

$$\forall n \in \mathbb{N} \ \exists x_n \colon |x_n| > n \ \& \ |f(x_n) - a| \geqslant \varepsilon_0$$

Получили последовательность (x_n) : $\lim_{n\to\infty} x_n = \infty$ & $\lim_{n\to\infty} f(x_n) \neq a$. Противоречие.

Аналогично доказывается эквивалентность следующих определений:

1. Определение по Гейне

Число a называется пределом функции f(x) на плюс (минус) бесконечности, если $\lim_{n\to\infty} f(x_n) = a$ для любой последовательности (x_n) : $\lim_{n\to\infty} x_n = +\infty$ $(\lim_{n\to\infty} x_n = -\infty)$.

2. Определение по Коши

Число a называется пределом функции f(x) на плюс (минус) бесконечности, если

$$\forall \varepsilon > 0 \ \exists M > 0 \colon \forall x \ (x > M \Rightarrow |f(x) - b| < \varepsilon)$$

$$(\forall \varepsilon > 0 \ \exists M > 0 \colon \forall x \ (x < -M \Rightarrow |f(x) - b| < \varepsilon))$$

Предел функции на бесконечности обладает теми же свойствами, что и предел функции в точке.

10.3.3 Замечательные пределы

Замечательными пределами называют два тождества, часто используемых при нахождении других пределов.

Первый замечательный предел

Утверждение 10.3.2.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Доказательство. Пусть x > 0. Рассмотрим сектор AOB единичного круга (OA = OB = 1) с углом x и касательную BC к нему.

$$S_{AOB} < S_{\text{cekt}} < S_{BOC} \Leftrightarrow \sin x < x < \operatorname{tg} x \Leftrightarrow 1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

Применяя теорему о двух милиционерах, получим:

$$\lim_{x\to 0} 1 = \lim_{x\to 0} \frac{1}{\cos x} = 1 \Rightarrow \lim_{x\to 0} \frac{\sin x}{x} = \lim_{x\to 0} \frac{x}{\sin x} = 1$$

Для
$$x<0$$
 $\lim_{x\to 0}\frac{\sin x}{x}=\lim_{x\to 0}\frac{\sin(-x)}{-x}=1.$ \blacksquare Следствия:

$$\bullet \lim_{x \to 0} \frac{\sin ax}{x} = a, \ a \neq 0$$

Доказательство.

$$\lim_{x \to 0} \frac{\sin ax}{x} = a \lim_{x \to 0} \frac{\sin ax}{ax} = a$$

Доказательство.

$$\lim_{x \to 0} \frac{\operatorname{tg} ax}{x} = a \lim_{x \to 0} \frac{\sin ax}{ax \cos ax} = a$$

42

•
$$\lim_{x \to 0} \frac{1 - \cos ax}{x^2} = \frac{a^2}{2}, \ a \neq 0$$

Доказательство

$$\lim_{x \to 0} \frac{1 - \cos ax}{x^2} = \lim_{x \to 0} \frac{2\sin^2 \frac{ax}{2}}{x^2} = \frac{a^2}{2} \lim_{x \to 0} \frac{\sin^2 \frac{ax}{2}}{\left(\frac{ax}{2}\right)^2} = \frac{a^2}{2}$$

•
$$\lim_{x \to 0} \frac{\arcsin ax}{x} = a, \ a \neq 0$$

Доказательство.

$$\lim_{x\to 0} \frac{\arcsin ax}{x} \ |\text{Пусть } ax = \sin y| = a \lim_{y\to 0} \frac{y}{\sin y} = a$$

•
$$\lim_{x \to 0} \frac{\arctan ax}{x} = a, a \neq 0$$

Доказательство.

$$\lim_{x\to 0} \frac{\arctan ax}{x} |\Pi \text{усть } x = \operatorname{tg} y| = a \lim_{y\to 0} \frac{y}{\operatorname{tg} y} = a$$

Второй замечательный предел

Утверждение 10.3.3.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

Доказательство.

1. Пусть x > 0. По определению числа Эйлера $\lim_{x \to +\infty} \left(1 + \frac{1}{[x]}\right)^{[x]} = \lim_{x \to +\infty} \left(1 + \frac{1}{[x]+1}\right)^{[x]+1} = e$.

$$\left(1 + \frac{1}{[x]+1}\right)^{[x]+1} \left(1 + \frac{1}{[x]+1}\right)^{-1} = \left(1 + \frac{1}{[x]+1}\right)^{[x]} < \left(1 + \frac{1}{x}\right)^{x} < \left(1 + \frac{1}{[x]}\right)^{[x]+1} = \left(1 + \frac{1}{[x]}\right)^{[x]} \left(1 + \frac{1}{[x]}\right)$$

Применяя теорему о двух милиционерах, получим:

$$\begin{split} \lim_{x \to +\infty} \left(1 + \frac{1}{[x]+1}\right)^{[x]} &= \lim_{x \to +\infty} \left(1 + \frac{1}{[x]+1}\right)^{[x]+1} \left(1 + \frac{1}{[x]+1}\right)^{-1} = e, \\ \lim_{x \to +\infty} \left(1 + \frac{1}{[x]}\right)^{[x]+1} &= \lim_{x \to +\infty} \left(1 + \frac{1}{[x]}\right)^{[x]} \left(1 + \frac{1}{[x]}\right) = e \Rightarrow \\ &\Rightarrow \lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = e \end{split}$$

2. Пусть x < 0, y = -x, тогда

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = \lim_{y \to +\infty} \left(1 - \frac{1}{y} \right)^{-y} = \lim_{y \to +\infty} \left(\frac{y}{y-1} \right)^y = \lim_{y \to +\infty} \left(1 + \frac{1}{y-1} \right)^y = \lim_{y \to +\infty} \left(1 + \frac$$

Следствия:

•
$$\lim_{x \to 0} (1 + ax)^{\frac{1}{x}} = e^a, \ a \neq 0$$

Доказательство.

$$\lim_{x \to 0} (1 + ax)^{\frac{1}{x}} \left| \Pi \text{усть } y = \frac{1}{ax} \right| = \lim_{y \to \infty} \left(\left(1 + \frac{1}{y} \right)^y \right)^a = e^a$$

• $\lim_{x \to \infty} \left(1 + \frac{a}{x}\right)^x = e^a, \ a \neq 0$

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = \lim_{x \to \infty} \left(\left(1 + \frac{a}{x} \right)^{\frac{x}{a}} \right)^a = e^a$$

• $\lim_{x \to 0} \frac{\ln(1+ax)}{bx} = \frac{a}{b}, a, b \neq 0$

$$\lim_{x \to 0} \frac{\ln(1+ax)}{bx} = \lim_{x \to 0} \ln(1+ax)^{\frac{1}{bx}} = \ln\lim_{x \to 0} \left((1+ax)^{\frac{1}{ax}} \right)^{\frac{a}{b}} = \ln e^{\frac{a}{b}} = \frac{a}{b}$$

• $\lim_{x\to 0} \frac{c^{ax}-1}{bx} = \frac{a}{b} \ln c, \ a,b \neq 0, \ c > 0$

Доказательство.

$$\begin{split} \lim_{x\to 0} \frac{c^{ax}-1}{bx} &= \\ \left| \Pi \text{усть } c^{ax}-1 &= y \Leftrightarrow ax \ln c = \ln(y+1) \Leftrightarrow x = \frac{\ln(y+1)}{a \ln c} \right| \\ &= \frac{a \ln c}{b} \lim_{y\to 0} \frac{y}{\ln(y+1)} = \frac{a}{b} \ln c \end{split}$$

• $\lim_{x \to 0} \frac{(1+ax)^n - 1}{bx} = \frac{an}{b}, a, b, n \neq 0$

Доказательство

$$\lim_{x \to 0} \frac{(1+ax)^n - 1}{bx} \ |\text{Пусть } 1 + ax = e^y| = \frac{a}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^y - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^{ny} - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^{ny} - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^{ny} - 1} = \frac{an}{b} \lim_{y \to 0} \frac{e^{ny} - 1}{ny} \cdot \frac{y}{e^{ny} - 1} = \frac{an}$$

10.4 Бесконечно малые и бесконечно большие функции

Функция $\alpha(x)$ называется **бесконечно малой** при $x \to x_0,$ если $\lim_{x \to x_0} \alpha(x) = 0.$

Функция A(x) называется **бесконечно большой** при $x \to x_0$, если $\lim_{x \to \infty} A(x) = \infty$.

Очевидны следующие утверждения.

Утверждение 10.4.1. Если $\alpha(x)$ — бесконечно малая функция, то $\frac{1}{\alpha(x)}$ — бесконечно большая функция. **Утверждение 10.4.2.** Если A(x) — бесконечно большая функция, то $\frac{1}{A(x)}$ — бесконечно малая функция.

Функции $\alpha(x)$ и $\beta(x)$ называются **бесконечно малыми одного порядка малости** при $x \to x_0$, если $0 < \left| \lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} \right| < \infty.$

Функции $\alpha(x)$ и $\beta(x)$ называются **эквивалентными бесконечно малыми** при $x \to x_0$, если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 1$. При этом пишут $\alpha(x) \sim \beta(x)$.

Функция $\alpha(x)$ называется бесконечно малой более высокого порядка малости, чем $\beta(x)$, при $x \to x_0$, если $\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = 0$, и обозначается $\alpha(x) = o(\beta(x))$. Следует помнить, что это не равенство в обычном смысле, т. е. запись $o(\beta(x)) = \alpha(x)$ бессмысленна.

10.5 Непрерывность функции

Пусть функция f задана на множестве $D\subseteq\mathbb{R}$ и $a\in D.$ f называется **непрерывной в точке** a, если $\lim_{x\to a}f(x)=$ $=f(\lim_{x\to a}x)$, что эквивалентно $\lim_{x\to a}f(x)=f(a)$.

Точкой разрыва І рода функции f(x) называется точка a, в которой и левый, и правый пределы функции f(x) конечны, причём f(x) не является непрерывной в точке a.

Точкой разрыва II рода функции f(x) называется предельная точка a множества D(f), в которой левый или правый предел функции f(x) не существует или бесконечен.

Функция называется непрерывной на некотором множестве, если она непрерывна в каждой точке этого множества.

10.5.1Свойства непрерывных функций

Пусть f(x) и g(x) — функции, непрерывные в точке a. Для них справедливы следующие арифметические свойства:

1. h(x) = f(x) + g(x) непрерывна в точке a.

Доказательство.

$$\lim_{x\to a}h(x)=\lim_{x\to a}f(x)+\lim_{x\to a}g(x)=f(a)+g(a)=h(a)$$

2. h(x) = f(x)g(x) непрерывна в точке a.

Доказательство.

$$\lim_{x \to a} h(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = f(a) \cdot g(a) = h(a)$$

3. Если $g(x) \neq 0$, то $h(x) = \frac{f(x)}{g(x)}$ непрерывна в точке a.

Доказательство.

$$\lim_{x \to a} h(x) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{f(a)}{g(a)} = h(a)$$

рывна в точке а.

Утверждение 10.5.1. Если функция f(x) непрерывна в точке a, g(x) — в точке f(a), то h(x) = g(f(x)) непре-

Доказательство.

$$\lim_{x\to a}h(x)=\lim_{x\to a}g(f(x))=g\bigl(\lim_{x\to a}f(x)\bigr)=g(f(a))$$

Пусть функция f(x) непрерывна на отрезке [a;b].

1. f(x) ограничена на [a;b].

Доказательство методом от противного. Пусть $\forall n \in \mathbb{N} \ \exists x_n \in [a;b] \colon |f(x_n)| > n$. Получили ограниченную последовательность (x_n) . Выберем из неё сходящуюся подпоследовательность (x_{n_k}) : $\lim_{k\to\infty} x_{n_k} = x_0$. Точка x_0 предельная для [a;b], значит, $x_0 \in [a;b]$, т. к. [a;b] — замкнутое множество. Тогда в силу непрерывности f(x) $\lim_{k\to\infty} f(x_{n_k}) = f(x_0)$. Это противоречит тому, что $|f(x_{n_k})| > n_k$.

2. Если $m = \inf_{x \in [a;b]} f(x), M = \sup_{x \in [a;b]} f(x),$ то $\exists x_m, x_M \in [a;b] \colon f(x_m) = m \ \& \ f(x_M) = M.$

Доказательство. По утверждению 10.1.4 $\forall n \in \mathbb{N} \ \exists x_n \in [a;b] \colon m \leqslant x_n < m + \frac{1}{n}$. Получили ограниченную последовательность (x_n) . Выберем из неё сходящуюся подпоследовательность $(x_{n_k}) \colon \lim_{k \to \infty} x_{n_k} = x_m$. Точка x_m предельная для [a;b], значит, $x_m \in [a;b]$, т. к. [a;b] — замкнутое множество. Тогда в силу непрерывности f(x) $\lim_{k \to \infty} f(x_{n_k}) = f(x_m)$, $m \leqslant x_{n_k} < m + \frac{1}{n_k} \Rightarrow f(x_m) = m$.

 $f(x_M) = M$ доказывается аналогично.

3. Теорема 10.5.2 (о нуле непрерывной функции). Eсли $f(a) \cdot f(b) < 0$, то $\exists x_0 \in [a;b] \colon f(x_0) = 0$.

Доказательство. Разделим отрезок [a;b] пополам. Если $f\left(\frac{a+b}{2}\right)=0$, то $x_0=\frac{a+b}{2}$. Иначе выберём ту половину отрезка [a;b], на границах которой функция принимает разные знаки. Разделим её пополам и проверим значение в середине. Продолжая таким образом, получим либо 0 в одной из середин полученных отрезков, либо последовательность вложенных отрезков $[a_n;b_n]$: $\lim_{n\to\infty}(b_n-a_n)=0$ & $f(a_n)\cdot f(b_n)<0$. По лемме о вложенных отрезках $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c\in[a;b]$. В силу непрерывности $f(x)\lim_{n\to\infty}f(a_n)=\lim_{n\to\infty}f(b_n)=f(c)=0$, т. к. $f(a_n)$ и $f(b_n)$ имеют разные знаки. \blacksquare

4. Теорема 10.5.3 (о промежуточном значении). Если $f(a) \neq f(b)$, то $[f(a); f(b)] \subseteq E(f) \vee [f(b); f(a)] \subseteq$ $\subseteq E(f)$.

Доказательство. Без ограничения общности предположим, что f(a) < f(b). Пусть $C \in (f(a); f(b)), g(x) =$ f(x) - C. g(a) = f(a) - C < 0, g(b) = f(b) - C > 0, тогда по теореме о нуле непрерывной функции $\exists c \in [a;b]$: $g(c) = 0 \Leftrightarrow f(c) = C$.

5. Если $m=\inf_{x\in[a;b]}f(x),\,M=\sup_{x\in[a;b]}f(x),$ то $[m;M]\subseteq E(f).$

10.6 Производная функции

Условие непрерывности функции f(x) в точке a можно сформулировать так:

$$\lim_{\Delta x \to 0} \Delta f = \lim_{\Delta x \to 0} (f(a + \Delta x) - f(a)) = 0$$

где $\Delta x = x - a$ называется приращением аргумента, $\Delta f = f(x) - f(a)$ — приращением функции.

Функция f(x) называется дифференцируемой в точке a, если $\Delta f = k\Delta x + o(\Delta x)$ при $\Delta x \to 0$, где $\Delta f =$ $f(x) = f(x) - f(a), \ \Delta x = x - a, \ k$ — константа, называемая **производной функции** f(x) **в точке** a и обозначаемая f'(a).

Из определения следует, что функция, дифференцируемая в точке a, непрерывна в ней.

Функция называется **дифференцируемой на** некотором **множестве**, если она дифференцируема в каждой точке этого множества.

Точки, в которых функция дифференцируема, называются точками гладкости. Функция называется гладкой, если она дифференцируема на всей области определения.

Найдём производную функции f(x) в точке a.

$$f'(a) = \lim_{\Delta x \to 0} \frac{\Delta f}{\Delta x} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Т. о., производная функции f(x) является функцией f'(x).

Также можно определить односторонние производные путём рассмотрения соответствующих односторонних пределов.

Левой производной функции f(x) в точке a называется предел $\lim_{x \to a - 0} \frac{f(x) - f(a)}{x - a}$ и обозначается $f'_-(a)$. Правой производной функции f(x) в точке a называется предел $\lim_{x \to a + 0} \frac{f(x) - f(a)}{x - a}$ и обозначается $f'_+(a)$.

10.6.1Геометрический смысл производной

Пусть дана кривая, заданная уравнением $y=f(x),\,f(x)$ непрерывна на [a;b]. Проведём касательную к этой кривой в точке $c\in(a;b)$. Заметим, что касательная — это прямая, получающаяся в пределе из хорд, проходящих через точки (c,f(c)) и $(c+\Delta x,f(c+\Delta x))$. Уравнение такой хорды имеет вид

$$\frac{x-c}{(c+\Delta x)-c} = \frac{y-f(c)}{f(c+\Delta x)-f(c)} \Leftrightarrow y = f(c) + \frac{f(c+\Delta x)-f(c)}{\Delta x}(x-c)$$

Переходя к пределу при $\Delta x \to 0$, получим значение углового коэффициента k касательной:

$$k = \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} = f'(c)$$

Т. о., y = f(c) + f'(c)(x - c) — уравнение касательной в точке c.

Существование касательной означает, что

$$\exists \lim_{\Delta x \to 0} \frac{f(c + \Delta x) - f(c)}{\Delta x} = f'(c) \Rightarrow f(c + \Delta x) - f(c) = f'(c)\Delta x + a\Delta x$$

где $\lim_{\Delta x \to 0} a = 0 \Rightarrow a\Delta x = o(\Delta x)$. Т. о., существование касательной к графику функции f(x) в точке c равносильно дифференцируемости функции f(x) в точке c.

10.6.2 Физический смысл производной

Пусть зависимость пути, пройденного некоторой точкой, от времени выражается функцией S(t). Чтобы найти среднюю скорость движения в промежутке времени $[t_0;t_0+\Delta t]$, достаточно вычислить $\frac{S(t_0+\Delta t)-S(t_0)}{\Delta t}$. Перейдём к пределу при $\Delta t \to 0$, тогда $[t_0;t_0+\Delta t]$ выродится в точку, а средняя скорость движения превратится в мгновенную скорость в точке t_0 . Т. о., производная функции S(t) представляет зависимость мгновенной скорости от времени.

10.6.3 Дифференциал функции

Пусть f(x) — функция, дифференцируемая в точке x_0 , тогда по определению

$$f(x) - f(x_0) = f'(x_0)(x - x_0) + \alpha$$

где $\alpha = o(x - x_0)$ при $x \to x_0$. Слагаемое $f'(x_0)(x - x_0)$ представляет линейную часть приращения функции. Его называют **дифференциалом функции** f(x) в точке x_0 и обозначают $df(x_0) = f'(x_0) dx$, где $dx = \Delta x$ — приращение аргумента.

Можно записать производную, используя дифференциал:

$$f'(x) = \frac{df}{dx}$$

10.6.4 Правила дифференцирования

Пусть f(x), g(x) — функции, дифференцируемые в точке a, C — константа.

$$h'(a) = \lim_{x \to a} \frac{(f(x) + g(x)) - (f(a) + g(a))}{x - a} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} + \lim_{x \to a} \frac{g(x) - g(a)}{x - a} = f'(a) + g'(a)$$

 $f(x_0) + f'(x_0)\Delta x$

 $f(x_0)$

2. h(x) = Cf(x) дифференцируема в точке a, причём h'(x) = Cf'(x).

$$h'(a) = \lim_{x \to a} \frac{Cf(x) - Cf(a)}{x - a} = Cf'(x)$$

3. h(x) = f(x)g(x) дифференцируема в точке a, причём h'(x) = f'(x)g(x) + f(x)g'(x). Доказательство.

$$h'(a) = \lim_{x \to a} \frac{f(x)g(x) - f(a)g(a)}{x - a} = \lim_{x \to a} \frac{f(x)g(x) - f(a)g(x) + f(a)g(x) - f(a)g(a)}{x - a} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}g(x) + \lim_{x \to a} f(a)\frac{g(x) - g(a)}{x - a} = f'(a)g(a) + f(a)g'(a)$$

4. Если $f(a) \neq 0$, то $h(x) = \frac{C}{f(x)}$ дифференцируема в точке a, причём $h'(x) = -\frac{Cf'(x)}{f^2(x)}$.

Доказательство.

$$h'(a) = \lim_{x \to a} \frac{\frac{C}{f(x)} - \frac{C}{f(a)}}{x - a} = -C \lim_{x \to a} \frac{f(x) - f(a)}{f(x)f(a)(x - a)} = -\frac{Cf'(a)}{f^2(a)}$$

5. Если $g(a) \neq 0$, то $h(x) = \frac{f(x)}{g(x)}$ дифференцируема в точке a, причём $h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$. Доказательство.

$$h'(x) = \left(f(x) \cdot \frac{1}{g(x)}\right)' = \frac{f'(x)}{g(x)} - \frac{f(x)g'(x)}{g^2(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

Сложная функция

Если h(x) = g(f(x)), то $h'(x) = g'(f(x)) \cdot f'(x)$. Доказательство.

 $h'(a) = \lim_{x \to a} \frac{g(f(x)) - g(f(a))}{x - a} = \lim_{x \to a} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \cdot \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = g'(f(a)) \cdot f'(a)$

Если $f'(x) \neq 0$, g(f(x)) = x, то $g'(x) = \frac{1}{f'(g(x))}$.

Доказательство.

$$g'(f(a)) = \lim_{f(x) \to f(a)} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} = \lim_{x \to a} \frac{x - a}{f(x) - f(a)} = \frac{1}{f'(a)} = \frac{1}{f'(g(f(a)))} \Rightarrow g'(x) = \frac{1}{f'(g(x))}$$

Метод логарифмического дифференцирования

Если f(x) > 0, то $(\ln f(x))' = \frac{f'(x)}{f(x)} \Leftrightarrow f'(x) = f(x) \cdot (\ln f(x))'$.

$$(g(x)^{h(x)})' = g(x)^{h(x)} \cdot (h(x) \ln g(x))' = g(x)^{h(x)} \cdot \left(h'(x) \ln g(x) + h(x) \frac{g'(x)}{g(x)}\right)$$

Параметрически заданная функция

Если $x = \varphi(t), y = \psi(t), \varphi'(t) \neq 0$, то $y'(x) = \frac{y'(t)}{x'(t)}$

$$y'(x) = \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{y'(t)}{x'(t)}$$

10.6.5 Таблица производных

Здесь производная берётся по переменной x.

• (C)' = 0

•
$$(x^n)' = nx^{n-1}, \ n \neq 0$$

Доказательство. Пусть h = x - a. Пользуясь формулой бинома Ньютона, получим

$$(a^n)' = \lim_{h \to 0} \frac{(a+h)^n - a^n}{h} = \lim_{h \to 0} \frac{a^n - a^n + na^{n-1}h + \frac{1}{2}n(n-1)a^{n-2}h^2 + \dots}{h} =$$
$$= na^{n-1} + \lim_{h \to 0} \left(\frac{1}{2}n(n-1)a^{n-2}h + \dots\right) = na^{n-1}$$

• $(f^n(x))' = nf'(x)f^{n-1}(x), n \neq 0$

• $(|x|)' = \operatorname{sgn} x$

 $\bullet \ (\ln x)' = \frac{1}{x}$

• $(a^x)' = a^x \cdot \ln a, \ a > 0$

• $(a^{f(x)})' = a^x \cdot \ln a \cdot f'(x), \ a > 0$

• $(\sin x)' = \cos x$

Доказательство.

$$\sin a = \lim_{x \to a} \frac{\sin x - \sin a}{x - a} = \lim_{x \to a} \frac{2\cos\frac{x + a}{2}\sin\frac{x - a}{2}}{x - a} = \lim_{x \to a} \frac{2\sin\frac{x - a}{2}}{x - a} \cdot \lim_{x \to a} \cos\frac{x + a}{2} = \cos a$$

 $\bullet \ (\cos x)' = -\sin x$

Доказательство.

$$(\cos x)' = (\sin\left(\frac{\pi}{2} - x\right))' = -\cos\left(\frac{\pi}{2} - x\right) = -\sin x$$

• $(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$

Доказательство.

$$(\operatorname{tg} x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

 $\bullet \ (\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$

Доказательство.

$$(\operatorname{ctg} x)' = \left(\frac{\cos x}{\sin x}\right)' = \frac{-\sin^2 x - \cos^2 x}{\sin^2 x} = -\frac{1}{\sin^2 x}$$

• $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$

$$(\arcsin x)' = \frac{1}{\cos \arcsin x} = \frac{1}{\sqrt{1 - \sin^2 \arcsin x}} = \frac{1}{\sqrt{1 - x^2}}$$

• $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$

Доказательство.

$$(\arccos x)' = \left(\frac{\pi}{2} - \arcsin x\right)' = -\frac{1}{\sqrt{1 - x^2}}$$

 $\bullet \ (\operatorname{arctg} x)' = \frac{1}{1 + r^2}$

Доказательство.

$$(\arctan x)' = \cos^2 \arctan x = \frac{1}{1 + \tan^2 \arctan x} = \frac{1}{1 + x^2}$$

• $(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$

Доказательство.

$$(\operatorname{arcctg} x)' = \left(\frac{\pi}{2} - \operatorname{arctg} x\right)' = -\frac{1}{1+x^2}$$

10.6.6Теоремы о дифференцируемых функциях

Теорема 10.6.1 (Ролля). Если функция f(x) непрерывна на [a;b], дифференцируема на (a;b), причём f(a) = $= f(b), \text{ TO } \exists c \in (a;b): f'(c) = 0.$

Доказательство. Если f(x) = f(a), то в качестве точки c можно взять любую точку из (a;b).

люоую точку из
$$(a;b)$$
.
 Пусть $f(x)$ не является константой на $[a;b]$, тогда по свойству $\frac{2}{2}$ непрерывной функции $\exists c \in (a;b) \colon f(c) = \inf_{x \in [a;b]} f(x) \lor f(c) = \sup_{x \in [a;b]} f(x)$. Для определённости предположим, что
$$f(c) = \inf_{x \in [a;b]} f(x) \Leftrightarrow \forall x \in [a;b] \ f(x) - f(c) > 0 \Rightarrow \begin{cases} \frac{f(x) - f(c)}{x - c} < 0, \ x < c \\ \frac{f(x) - f(c)}{x - c} > 0, \ x > c \end{cases}$$

f(x) дифференцируема в точке c, тогда $\exists f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$.

$$\lim_{x \to c - 0} \frac{f(x) - f(c)}{x - c} \leqslant 0 \, \& \lim_{x \to c + 0} \frac{f(x) - f(c)}{x - c} \geqslant 0 \Rightarrow f'(c) = 0$$

Доказательство в случае $f(c) = \sup_{x \in \mathcal{X}} f(x)$ аналогично.

Теорема 10.6.2 (Коши о среднем значении). Если функции f(x) и g(x) непрерывны на [a;b], дифференцируемы на $(a; b), g(a) \neq g(b),$ то

$$\exists c \in (a;b) \colon \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Доказательство. Пусть

$$F(x) = f(x) - \frac{f(b) - f(a)}{g(b) - g(a)}(g(x) - g(a))$$

F(x) дифференцируема на (a;b), F(a) = F(b) = f(a), тогда по теореме Ролля

$$\exists c \in (a;b) \colon 0 = F'(c) = f'(c) - \frac{f(b) - f(a)}{g(b) - g(a)}g'(c) \Rightarrow \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Полагая g(x) = x, получим формулу конечных приращений:

Теорема 10.6.3 (Лагранжа о среднем значении). Если функция f(x) непрерывна на [a;b], дифференцируема на (a;b), то

$$\exists c \in (a; b) : f(b) - f(a) = f'(c)(b - a)$$

10.6.7 Производные и дифференциалы высших порядков

Производная произвольного порядка определяется рекуррентно:

$$\forall n \in \mathbb{N} \ f^{(0)}(x) = f(x), \ f^{(1)}(x) = f'(x), f^{(2)}(x) = f''(x), f^{(n+1)}(x) = (f^{(n)}(x))'$$

Также определяется дифференциал произвольного порядка:

$$\forall n \in \mathbb{N} \ d^0 f(x) = f(x), \ df(x) = f'(x) dx, \ d^2 f(x) = f''(x) dx^2, \ d^n f(x) = f^{(n)}(x) dx^n$$

10.6.8 Формула Тейлора

Теорема 10.6.4 (формула Тейлора). Если функция f(x) в некоторой окрестности U(a) имеет все производные порядка n+1 и ниже, то

$$\forall x \in U(a) \ f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x-a)^{k}}{k!} + R(x), \ R(x) = \frac{f^{(n+1)}(a+\Theta(x-a))}{(n+1)!} (x-a)^{n+1}, \ \Theta \in (0;1)$$

R(x) называется **остаточным членом** в форме Лагранжа и используется для оценки ошибки. Также его можно представить в форме Пеано $-R(x) = o((x-a)^n)$ — которая используется при вычислении пределов.

Подставив a=0 в формулу Тейлора, получим формулу Маклорена:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}x^{k}}{k!} + R(x), \ R(x) = \frac{f^{(n+1)}(\Theta x)}{(n+1)!}x^{n+1}, \ \Theta \in (0;1)$$
(10.2)

Разложения некоторых функций в ряд Маклорена

•
$$f(x) = e^x$$
, $f^{(n)}(x) = e^x$, $f^{(n)}(0) = 1$

$$\forall n \in \mathbb{N} \ f(x) = 1 + x + \frac{x^2}{2!} + \ldots + \frac{x^n}{n!} + R(x), \ R(x) = \frac{e^{\Theta x}}{(n+1)!} x^{n+1}$$

$$|R(x)| \leqslant e^{\max\{0,x\}} \cdot \frac{|x|^{n+1}}{(n+1)!} \Rightarrow \begin{cases} |R(x)| \leqslant \frac{|x|^{n+1}}{(n+1)!}, x < 0\\ |R(x)| \leqslant 3^x \cdot \frac{|x|^{n+1}}{(n+1)!}, x > 0 \end{cases}$$

•
$$f(x) = \sin x$$
, $f^{(n)}(x) = \sin\left(x + \frac{\pi}{2}n\right)$, $f^{(n)}(0) = \sin\frac{\pi}{2}n = \begin{cases} 0, & n \in \mathbb{Z} \\ 1, & \exists k \in \mathbb{Z} : n = 4k + 1 \\ -1, & \exists k \in \mathbb{Z} : n = 4k + 3 \end{cases}$

$$\forall n \in \mathbb{N} \ f(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots + \frac{(-1)^{n-1} \cdot x^{2n-1}}{(2n-1)!} + R(x), \ R(x) = \frac{\sin\left(\Theta x + \frac{\pi}{2}(2n+1)\right)}{(2n+1)!} x^{2n+1}$$

$$|R(x)| \le \frac{|x|^{2n+1}}{(2n+1)!}$$

•
$$f(x) = \cos x$$
, $f^{(n)}(x) = \cos\left(x + \frac{\pi}{2}n\right)$, $f^{(n)}(0) = \cos\frac{\pi}{2}n = \begin{cases} 0, & n \not/ 2 \\ 1, & \exists k \in \mathbb{Z} : n = 4k \\ -1, & \exists k \in \mathbb{Z} : n = 4k + 2 \end{cases}$

$$\forall n \in \mathbb{N} \ f(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^{n-1}x^{2n-2}}{(2n-2)!} + R(x), \ R(x) = \frac{\cos(\Theta x + \pi n)}{(2n)!} x^{2n}$$

$$|R(x)| \leqslant \frac{x^{2n}}{(2n)!}$$

•
$$f(x) = \ln(1+x)$$
, $f^{(n)}(x) = \frac{(-1)^{n-1}(n-1)!}{(1+x)^n}$, $f^{(n)}(0) = (-1)^{n-1}(n-1)!$

$$\forall n \in \mathbb{N} \ f(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{(-1)^{n-1}x^n}{n} + R(x), x \in (-1;1], \ R(x) = \frac{(-1)^n x^{n+1}}{(n+1)(1+\Theta x)^{n+1}}$$

Для вычисления $\ln a, a \neq -1$, можно воспользоваться формулой

$$\forall n \in \mathbb{N} \ln \frac{1+x_0}{1-x_0} = \ln(1+x_0) - \ln(1-x_0) = 2\left(x_0 + \frac{x_0^3}{3} + \frac{x_0^5}{5} + \dots\right)$$
$$a = \frac{1+x_0}{1-x_0} \Leftrightarrow a - ax_0 = 1 + x_0 \Leftrightarrow x_0 = \frac{a-1}{a+1}$$

•
$$f(x) = (1+x)^{\alpha}$$
, $f^{(n)}(x) = \alpha(\alpha-1)(\alpha-2) \cdot \dots \cdot (\alpha-n+1)(1+x)^{\alpha-n}$, $f^{(n)}(0) = \alpha(\alpha-1)(\alpha-2) \cdot \dots \cdot (\alpha-n+1)$

$$\forall n \in \mathbb{N} \ f(x) = 1 + \alpha x + \frac{\alpha(\alpha-1)x^2}{2!} + \dots + \frac{\alpha(\alpha-1) \cdot \dots \cdot (\alpha-n+1)x^n}{n!} + R(x), |x| < 1,$$

$$R(x) = \frac{\alpha(\alpha-1) \cdot \dots \cdot (\alpha-n)(1+\Theta x)^{\alpha-n-1}}{(n+1)!} x^{n+1}$$

10.6.9 Правило Лопиталя

Теорема 10.6.5 (правило Лопиталя). Если

1.
$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0 \lor \lim_{x \to a} f(x) = \lim_{x \to a} g(x) = \infty$$

2.
$$q'(x) \neq 0$$

3.
$$\exists \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

To
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$
.

Если f(x) и g(x) непрерывны в окрестности точки a, то для случая $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ можно провести следующее доказательство:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - 0}{g(x) - 0} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} |\text{По теореме Коши}| = \lim_{x \to a} \frac{f'(c)}{g'(c)} = \lim_{x \to a} \frac{f(x) - 0}{g(x) - 0} = \lim_{x \to a} \frac{f(x) - 0}{g(x$$

$$|c \in (x; a) \lor c \in (a; x)| = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Полное доказательство правила Лопиталя слишком сложно, поэтому здесь не приводится.

10.7Исследование функции

10.7.1Локальный экстремум функции

Теорема 10.7.1. Если функция f(x) дифференцируема на (a;b), то она не убывает (не возрастает) на $(a;b) \Leftrightarrow$ $\Leftrightarrow \forall x \in (a;b) \ f'(x) \geqslant 0 \ (f'(x) \leqslant 0).$

Доказательство.

1. \Rightarrow . Пусть f(x) не убывает на $(a;b), x_1, x_2 \in (a;b)$.

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \geqslant 0 \Rightarrow \lim_{x_2 \to x_1} \frac{f(x_2) - f(x_1)}{x_2 - x_1} \geqslant 0 \Leftrightarrow f'(x_1) \geqslant 0$$

Доказательство в случае невозрастания f(x) аналогично.

2. \Leftarrow . Пусть $\forall x \in (a;b)$ $f'(x) \geqslant 0$, $a < x_1 < x_2 < b$. По теореме Лагранжа

$$\exists x_3 \in (x_1; x_2) \colon f(x_2) - f(x_1) = f'(x_3)(x_2 - x_1)$$

 $f'(x_3)(x_2-x_1) \geqslant 0 \Leftrightarrow f(x_2)-f(x_1) \geqslant 0 \Leftrightarrow f(x)$ не убывает на (a;b).

Доказательство в случае $f'(x) \leq 0$ аналогично.

Точка x_0 называется **точкой локального минимума функции** f(x), если существует проколотая окрест-HOCTH $U(x_0)$: $\forall x \in U(x_0)$ $f(x) > f(x_0)$.

Точка x_0 называется **точкой локального максимума функции** f(x), если существует проколотая окрест-HOCTE $U(x_0)$: $\forall x \in U(x_0) \ f(x) < f(x_0)$.

Точки локального минимума и максимума называются точками локального экстремума.

Теорема 10.7.2. Если x_0 — точка локального экстремума функции f(x), то $\nexists f'(x_0) \lor f'(x_0) = 0$.

Доказательство. Пусть x_0 — точка локального минимума, $\exists f'(x_0)$, тогда

$$\begin{cases} \frac{f(x) - f(x_0)}{x - x_0} < 0, & x < x_0 \\ \frac{f(x) - f(x_0)}{x - x_0} > 0, & x > x_0 \end{cases} \Rightarrow \begin{cases} \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \le 0 \\ \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0 \end{cases} \Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = 0 \Leftrightarrow f'(x_0) = 0$$

Доказательство для локального максимума аналогично.

Точка, в которой производная функции не существует или равна нулю, называется критической.

Существуют следующие признаки локального экстремума:

1. Если $f'_{-}(x_0) \leq 0 \ (\geq 0) \ \& \ f'_{+}(x_0) \geq 0 \ (\leq 0)$, то x_0 — точка локального минимума (максимума).

Доказательство. Пусть

$$f'_{-}(x_0) \leqslant 0 \& f'_{+}(x_0) \geqslant 0 \Leftrightarrow \lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \leqslant 0 \& \lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \geqslant 0$$

Значит, в некоторой окрестности точки x_0 $f(x) \ge f(x_0)$, тогда x_0 — точка локального минимума.

Аналогичное доказательство для максимума.

- 2. Если $f'(x_0) = f''(x_0) = \ldots = f^{(2n-1)}(x_0) = 0$, то
 - x_0 точка локального максимума при $f^{(2n)}(x_0) < 0$;
 - x_0 точка локального минимума при $f^{(2n)}(x_0) > 0$;
 - x_0 не является точкой локального экстремума при $f^{(2n)}(x_0) = 0, f^{(2n+1)}(x_0) \neq 0.$

• Пусть $f^{(2n)}(x_0) < 0$. По формуле Тейлора

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(2n)}(x_0)}{(2n)!}(x - x_0)^{2n} + o((x - x_0)^{2n}) \Leftrightarrow$$

$$\Leftrightarrow f(x) - f(x_0) = \frac{f^{(2n)}(x_0)}{(2n)!}(x - x_0)^{2n} + o((x - x_0)^{2n}) < 0$$

Тогда x_0 — точка локального максимума.

- Случай при $f^{(2n)}(x_0) > 0$ доказывается аналогично.
- Пусть $f^{(2n)}(x_0) = 0$, $f^{(2n+1)}(x_0) \neq 0$. По формуле Тейлора

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots +$$

$$+ \frac{f^{(2n)}(x_0)}{(2n)!}(x - x_0)^{2n} + \frac{f^{(2n+1)}(x_0)}{(2n+1)!}(x - x_0)^{2n+1} + o((x - x_0)^{2n+1}) \Leftrightarrow$$

$$\Leftrightarrow f(x) - f(x_0) = \frac{f^{(2n+1)}(x_0)}{(2n+1)!}(x - x_0)^{2n+1} + o((x - x_0)^{2n+1})$$

Знак $f(x) - f(x_0)$ зависит от знака $x - x_0$, поэтому в точке x_0 не может быть локального экстремума.

10.7.2 Наименьшее и наибольшее значения функции

Минимальное и максимальное значения функции на некотором отрезке не всегда находятся в точках экстремума. Для того, чтобы найти эти значения, необходимо вычислить значения функции в критических и граничных точках и выбрать среди них наименьшее и наибольшее.

10.7.3 Выпуклость функции

Кривая называется **выпуклой**, или **выпуклой вверх**, **в точке**, если в некоторой окрестности данной точки касательная к кривой в этой точке находится выше этой кривой.

Кривая называется **вогнутой**, или **выпуклой вниз**, **в точке**, если в некоторой окрестности данной точки касательная к кривой в этой точке находится ниже этой кривой.

Теорема 10.7.3. Пусть дана функция f(x). Если $f''(x_0) < 0$, то кривая, задаваемая уравнением y = f(x), выпукла в точке x_0 . Если же $f''(x_0) > 0$, то эта кривая вогнута в точке x_0 .

Доказательство. Касательная к кривой в точке $(x_0, f(x_0))$ задаётся уравнением y = g(x), где

$$g(x) = f(x_0) + f'(x_0)(x - x_0)$$

По формуле Тейлора

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + o((x - x_0)^2)$$

Тогда

$$f(x) - g(x) = \frac{1}{2}f''(x_0)(x - x_0)^2 + o((x - x_0)^2)$$

Т. о., знак разности f(x) - g(x) совпадает со знаком $f''(x_0)$.

- При $f''(x_0) < 0$ получим f(x) < g(x) в некоторой окрестности точки x_0 , значит, кривая выпукла.
- При $f''(x_0) > 0$ получим f(x) > g(x) в некоторой окрестности точки x_0 , значит, кривая вогнута.

Пусть f(x) — функция. Если $f''_-(x_0) \cdot f''_+(x_0) \leqslant 0$, то точка x_0 называется **точкой перегиба**.

10.7.4Асимптоты

Прямая называется асимптотой кривой, если расстояние от переменной точки кривой до данной прямой при удалении этой точки в бесконечность стремится к нулю. Если указанное расстояние стремится к нулю при $x \to \infty$, то такая асимптота называется **наклонной**, а если при $y \to \infty$, то **вертикальной**. Если наклонная асимптота задаётся уравнением y = b, то она называется **горизонтальной**.

Теорема 10.7.4. Кривая, задаваемая уравнением y = f(x), имеет наклонную асимптоту, задаваемую уравнением y=kx+b, если $\lim_{x\to\infty}\frac{f(x)}{x}=k$ и $\lim_{x\to\infty}(f(x)-kx)=b.$ Доказательство. Из определения наклонной асимптоты $f(x)-(kx+b)=\alpha(x),$ где $\alpha(x)$ — бесконечно малая

при $x \to \infty$. Тогда

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \left(k + \frac{b}{x} + \frac{\alpha(x)}{x} \right) = k, \ \lim_{x \to \infty} (f(x) - kx) = \lim_{x \to \infty} (b + \alpha(x)) = b$$

10.8 Функции нескольких переменных

Функцией от n переменных называется функция $f\colon D\to E$, где $D\subseteq\mathbb{R}^n,\,E\subseteq\mathbb{R}$, и обозначается $f(\overline{x})$, или

Расстоянием между точками $\bar{a} = (a_1, \dots, a_n)$ и $\bar{b} = (b_1, \dots, b_n)$ называется величина

$$\rho(\overline{a}, \overline{b}) = \sqrt{\sum_{i=0}^{n} (a_i - b_i)^2}$$

10.8.1 Предел функции нескольких переменных

Число a называется пределом функции $f(\bar{x})$ в точке \bar{x}_0 , если

$$\forall \varepsilon > 0 \ \exists \delta > 0 \colon \forall \overline{x} \ (\rho(\overline{x}, \overline{x}_0) < \delta \Rightarrow |f(\overline{x}) - a| < \varepsilon)$$

Для вычисления предела функции двух переменных удобно перейти в полярные координаты, трёх переменных в сферические.

10.8.2Непрерывность функции нескольких переменных

Функция $f(\overline{x})$ называется **непрерывной в точке** \overline{x}_0 , если $\lim_{
ho(\overline{x},\overline{x}_0) o 0} f(\overline{x}) = f(\overline{x}_0)$.

Функция $f(\overline{x})$ называется **непрерывной на множестве**, если она непрерывна в каждой точке этого множества.

Дифференцируемость функции нескольких переменных

Функция $f(x_1,...,x_n)$ называется **дифференцируемой в точке** $\overline{x}_0=(x_{10},...,x_{n0})$, если

$$\exists (a_1, \dots, a_n) \colon \forall \Delta \overline{x} = (\Delta x_1, \dots, \Delta x_n) \ f(\overline{x}_0 + \Delta \overline{x}) - f(\overline{x}_0) = a_1 \Delta x_1 + \dots + a_n \Delta x_n + o(\rho(\overline{x}_0 + \Delta \overline{x}, \overline{x}_0))$$

Матрица-строка $||a_1 \quad a_2 \quad \dots \quad a_n||$ называется **производной матрицей**.

Пусть функция $f(x_1, \ldots, x_n)$ дифференцируема в точке $\overline{x}_0 = (x_{10}, \ldots, x_{n0}), \, \Delta \overline{x} = (0, \ldots, 0, \Delta x_k, 0, \ldots, 0), \,$ тогда

$$\rho(\overline{x}_0 + \Delta \overline{x}, \overline{x}_0) = |\Delta x_k|, \ f(\overline{x}_0 + \Delta \overline{x}) - f(\overline{x}_0) = a_k \Delta x_k + o(|\Delta x_k|)$$

Это означает, что функция $g(x)=f(x_{10},\ldots,x_{k-1\,0},x_k,x_{k+1\,0},\ldots,x_{n0})$ дифференцируема в точке x_{k0} и $a_k=$ $g(x)=g'(x_{k0}).$ g(x) называется **частной производной функции** $f(\overline{x})$ и обозначается $\frac{\partial f}{\partial x_k}$, или $f'_{x_k}(\overline{x})$. Т. о., производ-

ная матрица функции $f(\overline{x})$ имеет вид $(f'_{x_1}, f'_{x_2}, \dots, f'_{x_n})$. Следует обратить внимание, что обозначение $\frac{\partial f}{\partial x_k}$ следует понимать как цельный символ, а не как отношение некоторых величин. Например, $\frac{\partial f}{\partial r} \cdot \frac{\partial x}{\partial t} \neq \frac{\partial f}{\partial t}$.

Существование частных производных функции в некоторой точке не является достаточным условием дифференцируемости этой функции в данной точке. Например, функция $f(x,y) = \begin{cases} 0, & xy = 0 \\ 1, & xy \neq 0 \end{cases}$ имеет частные производные в точке (0,0): $f_x'(0,0) = f_y'(0,0) = 0$, — однако не является дифференцируемой в этой точке, т. к., очевидно, терпит в ней разрыв.

Частная производная $f_1(x_1,\ldots,x_n)=f'_{x_k}$ функции $f(x_1,\ldots,x_n)$ также является функцией. Частная производная $f'_{1\,x_l}$ называется **частной производной функции** $f(\overline{x})$ **второго порядка** и обозначается $f''_{x_kx_l}=\frac{\partial^2 f}{\partial x_k\partial x_l}$. При этом, если $k\neq l$, то такая производная называется **смешанной**. Частные производные большего порядка определяются по индукции.

Теорема 10.8.1 (Шварца). Пусть дана функция $f(x_1, \ldots, x_n)$. Если $f''_{x_i x_j}$ и $f''_{x_j x_i}$ непрерывны, то $f''_{x_i x_j} = f''_{x_j x_i}$.

Дифференциалом функции $f(\overline{x})$ в точке \overline{x}_0 называется величина $\sum_{k=1}^n f'_{x_k}(\overline{x}_0)dx_k$, являющаяся линейной частью приращения функции и обозначаемая $df(\overline{x}_0)$. По аналогии с частными производными произвольного порядка вводятся дифференциалы произвольного порядка.

Формулу Тейлора можно обобщить на случай нескольких переменных:

$$f(\overline{x}) - f(\overline{x}_0) = df(\overline{x}_0) + \frac{d^2 f(\overline{x}_0)}{2!} + \frac{d^3 f(\overline{x}_0)}{3!} + \dots + \frac{d^n f(\overline{x}_0)}{n!} + o(\rho(\overline{x}, \overline{x}_0))$$

$$(10.3)$$

Пусть функция $f(x_1,\ldots,x_n)$ дифференцируема в точке $\overline{x}_0, \overline{e}=(e_1,\ldots,e_n)$ — единичный вектор. **Производной** функции $f(\overline{x})$ по направлению \overline{e} называется величина

$$\frac{\partial f}{\partial \overline{e}} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \cdot e_i$$

Градиентом функции $f(x_1,\ldots,x_n)$, дифференцируемой в точке \overline{x}_0 , называется вектор grad $f=(f'_{x_1}(\overline{x}_0),\ldots,f'_{x_n}(\overline{x}_0))$.

10.8.4 Экстремумы функции нескольких переменных

Точка $\overline{x}_0 = (x_{10}, \dots, x_{n0})$ называется **точкой локального минимума функции** $f(\overline{x}) = f(x_1, \dots, x_n)$, если существует проколотая окрестность $\check{U}(\overline{x}_0)$: $\forall \overline{x} \in \check{U}(\overline{x}_0)$ $f(\overline{x}) > f(\overline{x}_0)$.

Точка $\overline{x}_0 = (x_{10}, \dots, x_{n0})$ называется **точкой локального максимума функции** $f(\overline{x}) = f(x_1, \dots, x_n)$, если существует проколотая окрестность $\check{U}(\overline{x}_0)$: $\forall \overline{x} \in \check{U}(\overline{x}_0)$ $f(\overline{x}) < f(\overline{x}_0)$.

Точки локального минимума и максимума называются точками локального экстремума.

Teopema 10.8.2. В точке локального экстремума частные производные функции равны нулю или не существуют.

Доказательство. Пусть $\overline{x}_0 = (x_{10}, \dots, x_{n0})$ — точка локального экстремума функции $f(\overline{x})$, дифференцируемой в точке \overline{x}_0 . Рассмотрим $g(x) = f(x_{10}, \dots, x_{k-10}, x, x_{k+10}, \dots, x_{n0})$. \overline{x}_0 — точка экстремума $f(\overline{x})$, тогда x_{k0} — точка экстремума g(x), значит, $g'(x_{k0}) = 0$ или не существует. Тогда $f'_{x_k}(\overline{x}_0) = 0$ или не существует.

Теорема 10.8.3. Пусть дана функция f(x,y). Если

- $f'_x(x_0, y_0) = f'_y(x_0, y_0) = 0$
- $(f_{xy}''(x_0, y_0))^2 f_{xx}''(x_0, y_0)f_{yy}''(x_0, y_0) < 0$

то (x_0, y_0) — точка локального экстремума f(x, y).

- 1. (x_0,y_0) точка локального минимума, если $f''_{xx}(x_0,y_0)>0 \lor f''_{yy}(x_0,y_0)>0$.
- 2. (x_0,y_0) точка локального максимума, если $f''_{xx}(x_0,y_0)<0$ \lor $f''_{yy}(x_0,y_0)<0$.

Доказательство. По формуле Тейлора

$$f(x,y) - f(x_0, y_0) = f(x_0, y_0) + df(x_0, y_0) + \frac{1}{2}d^2f(x_0, y_0) + o(\rho^2((x, y), (x_0, y_0))) - f(x_0, y_0) =$$

$$= \frac{1}{2}d^2f(x_0, y_0) + o(\rho^2((x, y), (x_0, y_0)))$$

значит, $f(x,y) - f(x_0,y_0)$ сохраняет знак, если $d^2 f(x_0,y_0)$ сохраняет знак.

$$d^{2}f(x_{0}, y_{0}) = f''_{xx}(x_{0}, y_{0}) dx^{2} + 2f''_{xy}(x_{0}, y_{0}) dx dy + f''_{yy}(x_{0}, y_{0}) dy^{2} =$$

$$= \left(f''_{xx}(x_{0}, y_{0}) + 2f''_{xy}(x_{0}, y_{0}) \frac{dy}{dx} + f''_{yy}(x_{0}, y_{0}) \left(\frac{dy}{dx} \right)^{2} \right) dx^{2}$$

Т. о., (x_0, y_0) — точка локального экстремума f(x, y), если $d^2 f(x_0, y_0)$ сохраняет знак, т. е. при

$$(f_{xy}''(x_0, y_0))^2 - f_{xx}''(x_0, y_0)f_{yy}''(x_0, y_0) < 0$$

$$(f''_{xy}(x_0, y_0))^2 - f''_{xx}(x_0, y_0) f''_{yy}(x_0, y_0) < 0 \Leftrightarrow$$

$$\Leftrightarrow f''_{xx}(x_0, y_0) f''_{yy}(x_0, y_0) > (f''_{xy}(x_0, y_0))^2 \Rightarrow f''_{xx}(x_0, y_0) f''_{yy}(x_0, y_0) > 0$$

значит, $f_{xx}^{\prime\prime}(x_0,y_0)$ и $f_{yy}^{\prime\prime}(x_0,y_0)$ одного знака.

- 1. Если $f_{xx}''(x_0,y_0)>0$ \forall $f_{yy}''(x_0,y_0)>0$, то $d^2f(x_0,y_0)>0$, тогда (x_0,y_0) точка локального минимума.
- 2. Если $f_{xx}''(x_0,y_0)<0$ \lor $f_{yy}''(x_0,y_0)<0$, то $d^2f(x_0,y_0)<0$, тогда (x_0,y_0) точка локального максимума.

Теорема 10.8.4. Пусть дана функция $f(\overline{x}) = f(x_1, \dots, x_n)$ и $f'_{x_1}(\overline{x}_0) = \dots = f'_{x_n}(\overline{x}_0) = 0$ в некоторой точке $\overline{x}_0 = (x_{10}, \dots, x_{n0})$.

- \overline{x}_0 точка локального минимума, если $\sum_{\substack{i=\overline{1,n}\\i=\overline{1,n}}} f_{x_ix_j}''(\overline{x}_0)\,dx_i\,dx_j>0.$
- \overline{x}_0 точка локального максимума, если $\sum_{\substack{i=1,n\\j=1,n}} f_{x_ix_j}''(\overline{x}_0)\,dx_i\,dx_j < 0.$

Доказательство. По формуле Тейлора

$$f(\overline{x}) - f(\overline{x}_0) = f(\overline{x}_0) + df(\overline{x}_0) + \frac{d^2 f(\overline{x}_0)}{2!} + o(\rho^2(\overline{x}, \overline{x}_0)) - f(\overline{x}_0) = \frac{d^2 f(\overline{x}_0)}{2!} + o(\rho^2(\overline{x}, \overline{x}_0))$$

значит, $f(\overline{x}) - f(\overline{x}_0)$ сохраняет знак, если $d^2 f(\overline{x}_0)$ сохраняет знак.

$$d^2 f(\overline{x}_0) = \sum_{\substack{i=\overline{1},n\\i=\overline{1},\overline{n}}} f''_{x_i x_j}(\overline{x}_0) dx_i dx_j$$

- 1. Если $\sum_{\substack{i=\overline{1,n}\\i-\overline{1,n}}} f_{x_ix_j}''(\overline{x}_0)\,dx_i\,dx_j>0$, то $d^2f(\overline{x}_0)>0$, тогда \overline{x}_0 точка локального минимума.
- 2. Если $\sum_{\substack{i=\overline{1,n}\\j=1,n}}f_{x_ix_j}''(\overline{x}_0)\,dx_i\,dx_j<0$, то $d^2f(\overline{x}_0)<0$, тогда \overline{x}_0 точка локального максимума.

При практическом применении теоремы 10.8.4 полезен критерий Сильвестра.

Метод наименьших квадратов

Пусть даны точки x_1, \ldots, x_n и требуется найти аппроксимирующую прямую для значений некоторой функции f(x) в этих точках. Уравнение прямой — y = Ax + B. Найдём точку, в которой сумма

$$S(A, B) = \sum_{i=1}^{n} (Ax_i + B - f(x_i))^2$$

принимает наименьшее значение.

$$S'_{A} = \sum 2x_{i}(Ax_{i} + B - f(x_{i}))$$

$$S'_{B} = \sum 2(Ax_{i} + B - f(x_{i}))$$

$$\begin{cases}
S'_{A} = 0 \\
S'_{B} = 0
\end{cases} \Leftrightarrow \begin{cases}
A \sum_{i} x_{i}^{2} + B \sum_{i} x_{i} = \sum_{i} x_{i} f(x_{i}) \\
A \sum_{i} x_{i} + Bn = \sum_{i} f(x_{i})
\end{cases} \Leftrightarrow \begin{cases}
\left(n \sum_{i} x_{i}^{2} - \left(\sum_{i} x_{i}\right)^{2}\right) A = n \sum_{i} x_{i} f(x_{i}) - \sum_{i} x_{i} \sum_{i} f(x_{i}) \\
Bn = \sum_{i} f(x_{i}) - A \sum_{i} x_{i}
\end{cases} \Leftrightarrow \begin{cases}
A = \frac{n \sum_{i} x_{i} f(x_{i}) - \sum_{i} x_{i} \sum_{i} f(x_{i})}{n \sum_{i} x_{i}^{2} - \left(\sum_{i} x_{i}\right)^{2}} \\
B = \frac{\sum_{i} x_{i}^{2} \sum_{i} f(x_{i}) - \sum_{i} x_{i} \sum_{i} x_{i} f(x_{i})}{n \sum_{i} x_{i}^{2} - \left(\sum_{i} x_{i}\right)^{2}}
\end{cases}$$

Найденные значения A и B — искомые коэффициенты в уравнении аппроксимирующей прямой. Для оценки точности аппроксимации можно найти коэффициент корреляции по формуле

$$r = \sqrt{\frac{\sum (f(x_i) - \tilde{y})^2 - \sum (f(x_i) - \tilde{y_i})^2}{\sum (f(x_i) - \tilde{y})^2}} = \sqrt{1 - \frac{\sum (f(x_i) - \tilde{y_i})^2}{\sum (f(x_i) - \tilde{y})^2}}$$

где $\tilde{y} = \frac{1}{n} \sum f(x_i)$, $\tilde{y_i} = Ax_i + B$, а значение коэффициента r тем ближе к единице, чем точнее аппроксимация.

Метод множителей Лагранжа

Пусть дана функция $f(x_1,...,x_n)$, переменные которой удовлетворяют условиям

$$\begin{cases} g_1(x_1, \dots, x_n) = 0 \\ \dots \\ g_m(x_1, \dots, x_n) = 0 \end{cases}$$

Для нахождения её экстремумов (называемых условными) введём функцию Лагранжа

$$L(x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_m)=f(x_1,\ldots,x_n)+\lambda_1g_1(x_1,\ldots,x_n)+\ldots+\lambda_mg_m(x_1,\ldots,x_n)$$

и исследуем её. Её экстремумы являются условными экстремумами функции f.

10.9 Функции двух и трёх переменных

10.9.1 Геометрическая интерпретация частных производных функции двух переменных

Пусть функция f(x,y) имеет частные производные в точке (x_0,y_0) . Пересечением плоскости $x=x_0$ с поверхностью z=f(x,y) является кривая $z=f(x_0,y)$. Т. о., значение $f_y'(x_0,y_0)$ равно тангенсу угла между касательной к кривой $z=f(x_0,y)$ в точке (x_0,y_0) и положительным направлением оси Oy, а направляющий вектор этой касательной имеет координаты $(0,1,f_y'(x_0,y_0))$.

Аналогичный геометрический смысл имеет частная производная f'_x .

10.9.2 Уравнение касательной плоскости к поверхности

Поверхность, заданная явно

Пусть поверхность задана уравнением z = f(x,y). Проведём через точку $(x_0,y_0,f(x_0,y_0))$ такую плоскость, что векторы $(0,1,f_y'(x_0,y_0))$ и $(1,0,f_x'(x_0,y_0))$ лежат в ней. Эта плоскость называется **касательной**. Найдём вектор (A,B,C), перпендикулярный этим векторам, а значит, и проведённой плоскости:

$$\begin{cases} B + Cf'_y(x_0, y_0) = 0 \\ A + Cf'_x(x_0, y_0) = 0 \end{cases} \Leftrightarrow \begin{cases} A = -Cf'_x(x_0, y_0) \\ B = -Cf'_y(x_0, y_0) \end{cases}$$

Вектор $(f'_x(x_0, y_0), f'_y(x_0, y_0), -1)$ перпендикулярен проведённой плоскости, тогда её уравнение

$$f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0) - (z - f(x_0, y_0)) = 0 \Leftrightarrow$$

$$\Leftrightarrow z = f(x_0, y_0) + f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0)$$
(10.4)

Поверхность, заданная параметрически

Пусть поверхность задана функцией f(u,v)=(x(u,v),y(u,v),z(u,v)), а в точке (x_0,y_0,z_0) к ней проведена касательная плоскость, причём $\frac{\partial(x,y)}{\partial(u,v)}\neq 0$. Тогда $\exists u_0,v_0\colon x(u_0,v_0)=x_0$ & $y(u_0,v_0)=y_0$.

Имеем явное и параметрическое задание одной и той же поверхности: z(u,v) = z(x(u,v),y(u,v)). Рассматривая производные матрицы этих функций, получим:

$$||z'_u \quad z'_v|| = ||z'_x \quad z'_y|| \cdot ||x'_u \quad x'_v|| \Rightarrow \begin{cases} z'_u = z'_x x'_u + z'_y y'_u \\ z'_v = z'_x x'_v + z'_y y'_v \end{cases}$$

Решая систему относительно z_x' и z_y' , получим

$$z'_{x}(x_{0}, y_{0}) = \frac{\frac{\partial(z, y)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}}{\frac{\partial(x, y)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}} = -\frac{\frac{\partial(y, z)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}}{\frac{\partial(x, y)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}}, \ z'_{y}(x_{0}, y_{0}) = \frac{\frac{\partial(x, z)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}}{\frac{\partial(x, y)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}} = -\frac{\frac{\partial(z, x)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}}{\frac{\partial(x, y)}{\partial(u, v)}\Big|_{(u_{0}, v_{0})}}$$

Подставим полученные значения в уравнение (10.4) и получим уравнение касательной плоскости:

$$z = z_0 - \frac{\frac{\partial(y,z)}{\partial(u,v)}\Big|_{(u_0,v_0)}}{\frac{\partial(x,y)}{\partial(u,v)}\Big|_{(u_0,v_0)}} (x - x_0) - \frac{\frac{\partial(z,x)}{\partial(u,v)}\Big|_{(u_0,v_0)}}{\frac{\partial(x,y)}{\partial(u,v)}\Big|_{(u_0,v_0)}} (y - y_0) \Leftrightarrow$$

$$\Leftrightarrow \frac{\partial(y,z)}{\partial(u,v)}\Big|_{(u_0,v_0)} (x - x_0) + \frac{\partial(z,x)}{\partial(u,v)}\Big|_{(u_0,v_0)} (y - y_0) + \frac{\partial(x,y)}{\partial(u,v)}\Big|_{(u_0,v_0)} (z - z_0)$$

10.10 Вектор-функции

Вектор-функцией размерности m называется функция $f \colon D \to E$, где $D \subseteq \mathbb{R}^n$, $E \subseteq \mathbb{R}^m$, и обозначается $f(\overline{x}) = (f_1(\overline{x}), f_2(\overline{x}), \dots, f_m(\overline{x}))$. f_1, \dots, f_m называются **координатными функциями**.

10.10.1 Дифференцируемость вектор-функции

Вектор-функция $f(x_1,\ldots,x_n)=(f_1(\overline{x}),f_2(\overline{x}),\ldots,f_m(\overline{x}))$ называется дифференцируемой в точке $\overline{x}_0=(x_{10},\ldots,x_{n0}),$ если

$$\& \lim_{\rho(\overline{x}_0 + \Delta \overline{x}, \overline{x}_0) \to 0} \frac{\sqrt{\alpha_1^2 + \alpha_2^2 + \ldots + \alpha_m^2}}{\rho(\overline{x}_0 + \Delta \overline{x}, \overline{x}_0)} = 0$$

Матрица *А* называется **производной матрицей**, или **матрицей Якоби**, и состоит из значений всех частных производных всех координатных функций в данной точке:

$$A = \begin{vmatrix} f'_{1\,x_{1}}(\overline{x}_{0}) & f'_{1\,x_{2}}(\overline{x}_{0}) & \cdots & f'_{1\,x_{n}}(\overline{x}_{0}) \\ f'_{2\,x_{1}}(\overline{x}_{0}) & f'_{2\,x_{2}}(\overline{x}_{0}) & \cdots & f'_{2\,x_{n}}(\overline{x}_{0}) \\ \vdots & \vdots & \ddots & \vdots \\ f'_{m\,x_{1}}(\overline{x}_{0}) & f'_{m\,x_{2}}(\overline{x}_{0}) & \cdots & f'_{m\,x_{n}}(\overline{x}_{0}) \end{vmatrix}$$

Если $f(x_1,\ldots,x_n)$ — вектор-функция размерности n, дифференцируемая в точке \overline{x}_0 , то **якобианом** называется определитель её производной матрицы и обозначается $\frac{\partial f}{\partial \overline{x}}\Big|_{\overline{x}_0}$.

10.10.2 Суперпозиция вектор-функций

Пусть $f(x_1, ..., x_n)$ и $g(x_1, ..., x_k) - m$ -мерная и n-мерная вектор-функции соответственно, тогда **их суперпо- зицией** называется вектор-функция $h(x_1, ..., x_k) = f(g_1(\overline{x}), ..., g_n(\overline{x}))$.

Теорема 10.10.1. Если $f(\overline{x})$ и $g(\overline{x})$ дифференцируемы в точках $g(\overline{x}_0)$ и \overline{x}_0 соответственно и имеют в этих точках производные матрицы A и B соответственно, то $h(\overline{x})$ дифференцируема в точке \overline{x}_0 и имеет в ней производную матрицу $A \cdot B$.

10.11 Неопределённый интеграл

Первообразной функции f(x) называется функция F(x): F'(x) = f(x).

Теорема 10.11.1. Если F'(x) = G'(x) = f(x), то F(x) - G(x) = C, где C — некоторая константа.

Доказательство. Пусть H(x) = F(x) - G(x), тогда по теореме Лагранжа

$$H(b) - H(a) = H'(c)(b - a) = 0 \Rightarrow H(b) - H(a) = (F'(c) - G'(c))(b - a) = 0 \Rightarrow H(x) = C$$

Множество всех первообразных функции f(x) называется **неопределённым интегралом** и обозначается $\int f(x) \, dx = F(x) + C$, где F(x) — первообразная f(x), C — произвольная константа. f(x) называется **подынтегральной функцией**, а $f(x) \, dx$ — **подынтегральным выражением**.

10.11.1 Свойства неопределённого интеграла

Пусть C — произвольная константа.

- 1. Пусть F(x) первообразная функции f(x), тогда $d\left(\int f(x)\,dx\right) = f(x)\,dx$.
- 2. $\int dF(x) = F(x) + C$.
- 3. $\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx.$

Доказательство. Пусть F'(x) = f(x), G'(x) = g(x), тогда (F(x) + G(x))' = f(x) + g(x). Получим:

$$\int f(x) dx + \int g(x) dx = F(x) + C_1 + G(x) + C_2 = (F(x) + G(x)) + C = \int (f(x) + G(x)) dx$$

4. $\int af(x) dx = a \int f(x) dx$.

Доказательство. Пусть F'(x) = f(x), тогда (aF(x))' = af(x). Получим:

$$a \int f(x) dx = a(F(x) + C_1) = aF(x) + C = \int af(x) dx$$

5. Если $\int f(x) dx = F(x) + C$, u(x) — дифференцируемая функция, то $\int f(u) du = F(u) + C$.

Пусть u(x) и v(x) — дифференцируемые функции. Существует **метод интегрирования по частям**, использующий следующее свойство: $\int uv' dx = uv - \int u'v dx$.

Доказательство.

$$d(uv) = du \, v + u \, dv \Rightarrow \int d(uv) = \int du \, v + u \, dv \Rightarrow uv + C = \int du \, v + \int u \, dv \Rightarrow \int uv' \, dx = u \, v - \int u'v \, dx$$

10.11.2 Таблица первообразных

•
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$$

$$\bullet \int \frac{dx}{x+a} = \ln|x+a| + C$$

Доказательство.

$$(\ln|x+a|+C)' = (\ln\sqrt{(x+a)^2})' = \frac{1}{|x+a|} \cdot \frac{1}{2\sqrt{(x+a)^2}} \cdot 2(x+a) = \frac{1}{x+a}$$

 $\bullet \int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C, \ a > 0$

Доказательство.

$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a^2} \int \frac{dx}{1 + \left(\frac{x}{a}\right)^2} = \frac{1}{a} \int \frac{d\left(\frac{x}{a}\right)}{1 + \left(\frac{x}{a}\right)^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

ullet Т. н. «высокий логарифм»: $\int \frac{dx}{x^2-a^2} = \frac{1}{2a} \ln \left| \frac{x-a}{x+a} \right| + C, \ a>0$

Доказательство.

$$\int \frac{dx}{x^2 - a^2} = \int \frac{dx}{2a(x - a)} - \int \frac{dx}{2a(x + a)} = \frac{1}{2a} ((\ln|x - a| + C_1) - (\ln|x + a| + C_2)) = \frac{1}{2a} \ln\left|\frac{x - a}{x + a}\right| + C_2$$

• $\int \frac{x}{x^2 + a} dx = \frac{1}{2} \ln|x^2 + a| + C, \ a \neq 0$

Доказательство.

$$\int \frac{x}{x^2 + a} dx = \frac{1}{2} \int \frac{d(x^2 + a)}{x^2 + a} = \frac{1}{2} \ln|x^2 + a| + C$$

• Т. н. «длинный логарифм»: $\int \frac{dx}{\sqrt{x^2+a}} = \ln \left| x + \sqrt{x^2+a} \right| + C, \ a \neq 0$

Доказательство. Пусть $k = \sqrt{|a|}$.

1. Пусть a < 0, $x = \frac{k}{\sin t}$.

$$\int \frac{dx}{\sqrt{x^2 - k^2}} = -\int \frac{\cos t}{\sin^2 t \cdot \sqrt{\frac{1}{\sin^2 t} - 1}} dt = -\int \frac{dt}{\sin t} = \int \frac{d(\cos t)}{1 - \cos^2 t} = -\frac{1}{2} \ln \left| \frac{\cos t - 1}{\cos t + 1} \right| + C_1 =$$

$$= -\frac{1}{2} \ln \left| \frac{\cos^2 t - 1}{\cos^2 t + 1 + 2\cos t} \right| + C_1 = \left| x = \frac{k}{\sin t} \Rightarrow \sqrt{1 - \cos^2 t} = \frac{k}{x} \Rightarrow \cos^2 t = 1 - \frac{k^2}{x^2} \right|$$

$$= -\frac{1}{2} \ln \left| \frac{-\frac{k^2}{x^2}}{-\frac{k^2}{x^2} + 2 + 2\sqrt{1 - \frac{k^2}{x^2}}} \right| + C_1 = \frac{1}{2} \ln \left| 1 - \frac{2x^2}{k^2} - \frac{2x}{k^2} \sqrt{x^2 - k^2} \right| + C_1 =$$

$$= \frac{1}{2} \ln \frac{1}{k^2} \left| 2x^2 + 2x\sqrt{x^2 + a} + a \right| + C_1 = \frac{1}{2} \ln \left| x^2 + 2x\sqrt{x^2 + a} + (x^2 + a) \right| + C =$$

$$= \ln \left| x + \sqrt{x^2 + a} \right| + C$$

2. Пусть a > 0, $x = k \operatorname{tg} t$.

$$\int \frac{dx}{\sqrt{x^2 + k^2}} = \int \frac{dt}{\cos^2 t \cdot \sqrt{tg^2 t + 1}} = \int \frac{dt}{\cos t} = \int \frac{d(\sin t)}{1 - \sin^2 t} = -\frac{1}{2} \ln \left| \frac{\sin t - 1}{\sin t + 1} \right| + C_1 =$$

$$= -\frac{1}{2} \ln \left| \frac{\sin^2 t - 1}{\sin^2 t + 1 + 2 \sin t} \right| + C_1 =$$

$$\left| x = k \operatorname{tg} t \Rightarrow \sqrt{\frac{1}{\cos^2 t} - 1} = \frac{x}{k} \Rightarrow \cos^2 t = \frac{k^2}{x^2 + k^2} \Leftrightarrow \sin^2 t = \frac{x^2}{x^2 + k^2} \right|$$

$$= -\frac{1}{2} \ln \left| \frac{-\frac{k^2}{x^2 + k^2}}{\frac{2x^2 + k^2}{x^2 + k^2}} + 2\sqrt{\frac{x^2}{x^2 + k^2}} \right| + C_1 = \frac{1}{2} \ln \frac{1}{k^2} \left| 2x^2 + k^2 + 2x\sqrt{x^2 + k^2} \right| + C_1 =$$

$$= \frac{1}{2} \ln \left| x^2 + 2x\sqrt{x^2 + a} + (x^2 + a) \right| + C = \ln \left| x + \sqrt{x^2 + a} \right| + C$$

•
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C, \ a > 0$$

Доказательство. Пусть $x = a \sin t$, тогда

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = a \int \frac{\cos t}{a\sqrt{1 - \sin^2 t}} dt = \int dt = t + C = \arcsin \frac{x}{a} + C$$

• $\int \frac{x}{\sqrt{a^2 + x^2}} dx = \pm \sqrt{a^2 \pm x^2} + C, \ a \neq 0$

Доказательство.

$$\int \frac{x}{\sqrt{a^2 \pm x^2}} \, dx = \pm \frac{1}{2} \int (a^2 \pm x^2)^{-\frac{1}{2}} \, d(a^2 \pm x^2) = \pm \sqrt{a^2 \pm x^2} + C$$

 $\bullet \int a^x \, dx = \frac{a^x}{\ln a} + C$

 $\bullet \int \ln x \, dx = x \ln x - x + C$

Доказательство.

$$\int \ln x \, dx = \int \ln x \cdot 1 \cdot dx = x \ln x - \int \frac{x}{x} \, dx = x \ln x - x + C$$

$$\bullet \int \cos x \, dx = \sin x + C$$

$$\bullet \int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$$

$$\bullet \int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C$$

$$\bullet \int \operatorname{tg} x \, dx = -\ln|\cos x| + C$$

Доказательство.

$$\int \operatorname{tg} x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\int \frac{d(\cos x)}{\cos x} = -\ln|\cos x| + C$$

Доказательство.

$$\int \operatorname{ctg} x \, dx = \int \frac{\cos x}{\sin x} \, dx = \int \frac{d(\sin x)}{\sin x} = \ln|\sin x| + C$$

•
$$\int \arcsin x \, dx = x \arcsin x + \sqrt{1 - x^2} + C$$

Доказательство.

$$\int \arcsin x = \int \arcsin x \cdot 1 \cdot dx = x \arcsin x - \int \frac{x}{\sqrt{1 - x^2}} dx =$$

$$= x \arcsin x + \frac{1}{2} \int (1 - x^2)^{-\frac{1}{2}} d(1 - x^2) = x \arcsin x + \sqrt{1 - x^2} + C$$

•
$$\int \arccos x \, dx = x \arccos x - \sqrt{1 - x^2} + C$$

Доказательство.

$$\int \arccos x = \int \arccos x \cdot 1 \cdot dx = x \arccos x + \int \frac{x}{\sqrt{1 - x^2}} dx =$$

$$= x \arccos x - \frac{1}{2} \int (1 - x^2)^{-\frac{1}{2}} d(1 - x^2) = x \arccos x - \sqrt{1 - x^2} + C$$

•
$$\int \arctan x \, dx = x \arctan x - \frac{1}{2} \ln|1 + x^2| + C$$

Доказательство.

$$\int \arctan x = \int \arctan x \cdot 1 \cdot dx = x \arctan x - \int \frac{x}{1+x^2} dx =$$

$$= x \arctan x - \frac{1}{2} \int \frac{d(1+x^2)}{1+x^2} = x \arctan x - \frac{1}{2} \ln|1+x^2| + C$$

•
$$\int \operatorname{arcctg} x \, dx = x \operatorname{arcctg} x + \frac{1}{2} \ln|1 + x^2| + C$$

$$\int \operatorname{arcctg} x = \int \operatorname{arcctg} x \cdot 1 \cdot dx = x \operatorname{arcctg} x + \int \frac{x}{1+x^2} dx =$$

$$= x \operatorname{arcctg} x + \frac{1}{2} \int \frac{d(1+x^2)}{1+x^2} = x \operatorname{arcctg} x + \frac{1}{2} \ln|1+x^2| + C$$

10.11.3 Интегрирование простейших дробей

•
$$\int \frac{dx}{(x-a)^n} = \begin{cases} \frac{(x-a)^{1-n}}{1-n} + C, & n \neq 1\\ \ln|x-a| + C, & n = 1 \end{cases}$$

Доказательство.

$$\int \frac{dx}{(x-a)^n} = \int (x-a)^{-n} d(x-a) = \frac{(x-a)^{1-n}}{1-n} + C, \ n \neq 1$$

•
$$\int \frac{x+a}{(x-b)^2+c^2} dx = \frac{1}{2} \ln((x-b)^2+c^2) + \frac{a+b}{c} \arctan \frac{x-b}{c} + C$$

Доказательство.

$$\int \frac{x+a}{(x-b)^2 + c^2} dx |\Pi \text{усть } t = x-b \Rightarrow dt = dx| = \int \frac{t+b+a}{t^2 + c^2} dt =$$

$$= \int \frac{t}{t^2 + c^2} dt + (a+b) \int \frac{dt}{t^2 + c^2} = \frac{1}{2} \ln((x-b)^2 + c^2) + \frac{a+b}{c} \arctan \frac{x-b}{c} + C$$

• Интеграл $\int \frac{x+a}{((x-b)^2+c^2)^n}\,dx$ при $n \neq 1$ нельзя взять непосредственно.

Пусть
$$I_n = \int \frac{dx}{((x-b)^2+c^2)^n}$$
, тогда

$$\int \frac{x+a}{((x-b)^2+c^2)^n} dx = (a+b)I_n - \frac{1}{2(n-1)((x-b)^2+c^2)^{n-1}}$$
$$I_n = \left(1 + \frac{1}{2(n-1)}\right) \frac{I_{n-1}}{c^2} + \frac{x-b}{2(n-1)c^2((x-b)^2+c^2)^{n-1}}$$

Доказательство.

$$\int \frac{x+a}{((x-b)^2+c^2)^n} dx \ |\Pi \text{усть } t = x-b \Rightarrow dt = dx| = \int \frac{t+b+a}{(t^2+c^2)^n} dt =$$

$$\int \frac{t}{(t^2+c^2)^n} dt + (a+b) \int \frac{dt}{(t^2+c^2)^n} = \frac{1}{2} \int (t^2+c^2)^{-n} d(t^2+c^2) + (a+b) \int \frac{dt}{(t^2+c^2)^n} =$$

$$\left|\Pi \text{усть } I_n = \int \frac{dt}{(t^2+c^2)^n} \right| = \frac{(t^2+c^2)^{1-n}}{2(1-n)} + (a+b)I_n$$
(10.5)

Найдём I_n :

$$I_n = \frac{1}{c^2} \int \frac{(t^2 + c^2) - t^2}{(t^2 + c^2)^n} dt = \frac{I_{n-1}}{c^2} - \frac{1}{c^2} \int \frac{t^2}{(t^2 + c^2)^n} dt$$

Найдём $\int \frac{t^2}{(t^2+c^2)^n} dt$:

$$\int \frac{t^2}{(t^2+c^2)^n} dt = \left| \Pi \text{усть } u = t, v' = \frac{t}{(t^2+c^2)^n} \right|$$
$$= \frac{t(t^2+c^2)^{1-n}}{2(1-n)} - \int \frac{(t^2+c^2)^{1-n}}{2(1-n)} dt = \frac{t}{2(1-n)(t^2+c^2)^{n-1}} - \frac{I_{n-1}}{2(1-n)}$$

Тогда

$$I_n = \frac{I_{n-1}}{c^2} + \frac{1}{2(n-1)c^2} \left(\frac{t}{(t^2 + c^2)^{n-1}} - I_{n-1} \right) = \left(1 + \frac{1}{2(n-1)} \right) \frac{I_{n-1}}{c^2} + \frac{t}{2(n-1)c^2(t^2 + c^2)^{n-1}}$$

Получим рекуррентную формулу:

$$I_n = \left(1 + \frac{1}{2(n-1)}\right) \frac{I_{n-1}}{c^2} + \frac{x-b}{2(n-1)c^2((x-b)^2 + c^2)^{n-1}}$$

Используя (10.5), получим конечную формулу:

$$\int \frac{x+a}{((x-b)^2+c^2)^n} dx = \frac{(t^2+c^2)^{1-n}}{2(1-n)} + (a+b)I_n = (a+b)I_n - \frac{1}{2(n-1)((x-b)^2+c^2)^{n-1}}$$

10.11.4 Интегрирование дробно-рациональных выражений

Пусть $P_n(x)$ и $Q_m(x)$ — многочлены n-й и m-й степеней соответственно, n < m. По теореме 16.1.6 $Q_m(x)$ можно разложить на множители

$$Q_m(x) = \prod_{i=1}^{p} (x - a_i)^{\alpha_i} \cdot \prod_{i=1}^{q} ((x - b_i)^2 + c_i^2)^{\beta_i}$$

Тогда дробь $\frac{P_n(x)}{Q_m(x)}$ может быть представлена в виде суммы простейших дробей

$$\frac{P_n(x)}{Q_m(x)} = \sum_{i=1}^p \sum_{j=1}^{\alpha_i} \frac{A_{ij}}{(x-a_i)^j} + \sum_{i=1}^q \sum_{j=1}^{\beta_q} \frac{B_{ij}x + C_{ij}}{((x-b_i)^2 + c_i^2)^j}$$

 ${
m T.\,o.}$, интегрирование дробно-рациональных выражений сводится к интегрированию простейших дробей и, в случае $n\geqslant m$, многочленов от переменной x.

10.11.5 Интегрирование тригонометрических выражений

Пусть $R(x_1,\ldots,x_n)=\frac{P(x_1,\ldots,x_n)}{Q(x_1,\ldots,x_n)}$, где $P(\overline{x})$ и $Q(\overline{x})$ — многочлены.

•
$$\int R(\sin x)\cos^{2k+1}x \, dx = \int R(\sin x)(1-\sin^2 x)^k \, d(\sin x), \ k \in \mathbb{Z}$$

•
$$\int R(\cos x)\sin^{2k+1}x \, dx = -\int R(\cos x)(1-\cos^2 x)^k \, d(\cos x), \, k \in \mathbb{Z}$$

•
$$\int R(\sin^2 x, \cos^2 x) dx = \int \frac{R\left(\frac{\lg^2 x}{1 + \lg^2 x}, \frac{1}{1 + \lg^2 x}\right)}{1 + \lg^2 x} d(\lg x)$$

•
$$\int R(\operatorname{tg} x) dx = \int \frac{R(\operatorname{tg} x)}{1 + \operatorname{tg}^2 x} d(\operatorname{tg} x)$$

•
$$\int R(\sin x, \cos x) dx = \int \frac{2R\left(\frac{2 \operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}}, \frac{1 - \operatorname{tg}^2 \frac{x}{2}}{1 + \operatorname{tg}^2 \frac{x}{2}}\right)}{1 + \operatorname{tg}^2 \frac{x}{2}} d(\operatorname{tg} \frac{x}{2})$$

Т.о., интегрирование тригонометрических выражений сводится к интегрированию рациональных дробей.

10.11.6 Интегрирование квадратичных иррациональностей

Пусть $R(x_1,\dots,x_n)=rac{P(x_1,\dots,x_n)}{Q(x_1,\dots,x_n)},$ где $P(\overline{x})$ и $Q(\overline{x})$ — многочлены.

$$\int R(x, \sqrt{ax^2 + bx + c}) dx = \int R\left(x, \sqrt{a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}}\right) dx =$$

Пусть
$$y=x+rac{b}{2a},\ z=c-rac{b^2}{4a}$$
 = $\int R\left(y-rac{b}{2a},\sqrt{ay^2+z}
ight)dy$

Пусть $\alpha = \sqrt{|a|}, \, \beta = \sqrt{|z|}.$ Возможны три случая:

• Если a > 0, z > 0

$$\int R\left(y - \frac{b}{2a}, \sqrt{\alpha^2 y^2 + \beta^2}\right) dy = \left|\Pi \text{усть } y = \frac{\beta}{\alpha} \operatorname{tg} t\right|$$

$$= \frac{\beta}{\alpha} \int \frac{R\left(\frac{\beta}{\alpha} \operatorname{tg} t - \frac{b}{2a}, \beta \sqrt{\operatorname{tg}^2 t + 1}\right)}{\cos^2 t} dt = \frac{\beta}{\alpha} \int \frac{R\left(\frac{\beta \sin t}{\alpha \cos t} - \frac{b}{2a}, \frac{\beta}{\cos t}\right)}{\cos^2 t} dt$$

• Если a > 0, z < 0

$$\int R\left(y - \frac{b}{2a}, \sqrt{\alpha^2 y^2 - \beta^2}\right) \, dy = \left|\Pi \text{усть } y = \frac{\beta}{\alpha \sin t}\right|$$

$$= -\frac{\beta}{\alpha} \int \frac{R\left(\frac{\beta}{\alpha \sin t} - \frac{b}{2a}, \beta \sqrt{\frac{1}{\sin^2 t} - 1}\right) \cos t}{\sin^2 t} \, dt = -\frac{\beta}{\alpha} \int \frac{R\left(\frac{\beta}{\alpha \sin t} - \frac{b}{2a}, \frac{\beta \cos t}{\sin t}\right) \cos t}{\sin^2 t} \, dt$$

• Если a < 0, z > 0

$$\int R\left(y - \frac{b}{2a}, \sqrt{-\alpha^2 y^2 + \beta^2}\right) dy = \left|\Pi \text{усть } y = \frac{\beta}{\alpha} \sin t\right|$$
$$= \frac{\beta}{\alpha} \int R\left(\frac{\beta}{\alpha} \sin t - \frac{b}{2a}, \beta \sqrt{1 - \sin^2 t}\right) \cos t \, dt = \frac{\beta}{\alpha} \int R\left(\frac{\beta}{\alpha} \sin t - \frac{b}{2a}, \beta \cos t\right) \cos t \, dt$$

Т. о., интегрирование квадратичных иррациональностей сводится к интегрированию тригонометрических выражений.

10.12 Интеграл Римана

Пусть на отрезке [a;b] определена функция f(x). Рассмотрим разбиение $R=(x_0,x_1,\ldots,x_n)$ этого отрезка, где $a=x_0< x_1<\ldots< x_{n-1}< x_n=b$. Среди длин подынтервалов $\Delta x_i=x_i-x_{i-1},\ i=1,\ldots,n$, найдём диаметр $d=\max\{\Delta x_1,\Delta x_2,\ldots,\Delta x_n\}$ разбиения. Выберём множество точек $\xi=\{\xi_1,\ldots,\xi_n\}$, где $\xi_i\in[x_{i-1};x_i],\ i=1,\ldots,n$.

Интегральной суммой Римана называется сумма $\sigma(f,R,\xi)=$

$$= \sum_{i=1}^{n} f(\xi_i) \Delta x_i.$$

Рассмотрим криволинейную трапецию M, ограниченную прямыми y=0, x=a, x=b и кривой y=f(x). Пусть S — площадь M, S_1, \ldots, S_n — площади трапеций, на которые разбивается M прямыми $x=x_1, \ldots, x=x_{n-1}$, тогда

$$S = \sum_{i=1}^{n} S_i \approx \sum_{i=1}^{n} f(\xi_i) \Delta x_i = \sigma(f, R, \xi)$$

Т. о., интегральная сумма Римана приближённо равна площади соответствующей криволинейной трапеции.

Если независимо от выбора $\xi \equiv \lim_{d \to 0} \sigma(f, R, \xi)$, то значение предела $\lim_{d \to 0} \sigma(f, R, \xi)$ называется **интегралом Рима**

на, или определённым интегралом, и обозначается $\int\limits_a^b f(x)\,dx.$ f(x) называется интегрируемой (по Риману) на [a;b].

Интеграл Римана $\int_a^b f(x) dx$ численно равен площади трапеции, ограниченной прямыми y = 0, x = a, x = b и кривой y = f(x).

Теорема 10.12.1. Любая непрерывная функция интегрируема по Риману.

10.12.1 Свойства интеграла Римана

1.
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

Доказательство. Пусть $R'=(x_0'=b,x_1'=x_{n-1},\dots,x_{n-1}'=x_1,x_n'=a).$

$$\sigma(f, R, \xi) = \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}) = -\sum_{i=1}^{n} f(\xi_i)(x_i' - x_{i-1}') = -\sigma(f, R', \xi)$$

Тогда

$$\int_{a}^{b} f(x) dx = \lim_{d \to 0} \sigma(f, R, \xi) = \lim_{d \to 0} -\sigma(f, R', \xi) = -\lim_{d \to 0} \sigma(f, R, \xi) = -\int_{a}^{a} f(x) dx$$

2. Линейность: $\int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$

Доказательство.

$$\sigma(\alpha f(x) + \beta g(x), R, \xi) = \sum_{i=1}^{n} (\alpha f(\xi_i) + \beta g(\xi_i)) \Delta x_i =$$

$$= \alpha \sum_{i=1}^{n} f(\xi_i) \Delta x_i + \beta \sum_{i=1}^{n} g(\xi_i) \Delta x_i = \alpha \sigma(f(x), R, \xi) + \beta \sigma(g(x), R, \xi)$$

Тогда

$$\int_{a}^{b} (\alpha f(x) + \beta g(x)) dx = \lim_{d \to 0} \sigma(\alpha f(x) + \beta g(x), R, \xi) =$$

$$= \lim_{d \to 0} \alpha \sigma(f(x), R, \xi) + \beta \sigma(g(x), R, \xi) =$$

$$= \alpha \lim_{d \to 0} \sigma(f(x), R, \xi) + \beta \lim_{d \to 0} \sigma(g(x), R, \xi) = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

3. Аддитивность: $\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{a}^{b} f(x) \, dx$

Доказательство.

(a) Пусть $c \in [a;b]$, $\int\limits_a^b f(x)\,dx = \lim_{d\to 0} \sigma(f(x),R,\xi)$, причём $c=x_k\in R$, а также $R_1=(a=x_0,\dots,x_k=c),\,R_2=(c=x_k,\dots,x_n=b),$ $\lambda_1=\{\xi_1,\dots,\xi_k\},\,\lambda_2=\{\xi_{k+1},\dots,\xi_n\}.$

$$\sigma(f(x), R, \xi) = \sum_{i=1}^{n} f(\xi_i) \Delta x_i = \sum_{i=1}^{k} f(\xi_i) \Delta x_i + \sum_{i=k+1}^{n} f(\xi_i) \Delta x_i = \sigma(f(x), R_1, \lambda_1) + \sigma(f(x), R_2, \lambda_2)$$

Тогда

$$\int_{a}^{b} f(x) dx = \lim_{d \to 0} \sigma(f(x), R, \xi) = \lim_{d \to 0} (\sigma(f(x), R_1, \lambda_1) + \sigma(f(x), R_2, \lambda_2)) =$$

$$= \lim_{d \to 0} \sigma(f(x), R_1, \lambda_1) + \lim_{d \to 0} \sigma(f(x), R_2, \lambda_2) = \int_{a}^{c} f(x) dx + \int_{a}^{b} f(x) dx$$

(b) Для остальных случаев свойство легко доказывается с использованием свойства 1 и уже рассмотренного случая. Например, пусть f(x) интегрируема на [c;b], $a \in [c;b]$, тогда

$$\int_{c}^{b} f(x) dx = \int_{c}^{a} f(x) dx + \int_{a}^{b} f(x) dx \Leftrightarrow \int_{a}^{b} f(x) dx = -\int_{c}^{a} f(x) dx + \int_{c}^{b} f(x) dx \Leftrightarrow$$

$$\Leftrightarrow \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

4. Невырожденность: $\int_{a}^{b} dx = b - a$

Доказательство. Пусть f(x) = 1.

$$\sigma(f, R, \xi) = \sum_{i=1}^{n} f(\xi_i) \Delta x_i = \sum_{i=1}^{n} \Delta x_i = -x_0 + x_1 - x_1 + x_2 - \dots - x_{n-2} + x_{n-1} - x_{n-1} + x_n = x_n - x_0 = b - a$$

Тогда

$$\int_{a}^{b} dx = \lim_{d \to 0} \sigma(f, R, \xi) = \lim_{d \to 0} (b - a) = b - a$$

5. Если $f(x)\geqslant 0$ при $x\in [a;b],$ то $\int\limits_a^b f(x)\,dx\geqslant 0$

6. Если $f(x) \leqslant g(x)$ при $x \in [a;b]$, то $\int\limits_a^b f(x) \, dx \leqslant \int\limits_a^b g(x) \, dx$

Доказательство.

$$f(x) \leqslant g(x) \Leftrightarrow g(x) - f(x) \geqslant 0 \Rightarrow \int\limits_a^b \left(g(x) - f(x)\right) dx \geqslant 0 \Leftrightarrow \int\limits_a^b g(x) \, dx - \int\limits_a^b f(x) \, dx \geqslant 0 \Leftrightarrow \int\limits_a^b f(x) \, dx \leqslant \int\limits_a^b g(x) \, dx$$

7. Если $m=\min_{x\in[a;b]}f(x),\,M=\max_{x\in[a;b]}f(x),$ то $m(b-a)\leqslant\int\limits_a^bf(x)\,dx\leqslant M(b-a)$

8. **Теорема 10.12.2** (о среднем). Если f(x) непрерывна на [a;b], то $\exists x_0 \in [a;b]$: $\int\limits_a^b f(x) \, dx = f(x_0)(b-a)$.

Доказательство. $m(b-a)\leqslant\int\limits_a^bf(x)\,dx\leqslant M(b-a)\Leftrightarrow m\leqslant\frac{1}{b-a}\int\limits_a^bf(x)\,dx\leqslant M,$ тогда по теореме о промежуточном значении $\exists x_0\colon f(x_0)=\frac{1}{b-a}\int\limits_a^bf(x)\,dx\Leftrightarrow\int\limits_a^bf(x)\,dx=f(x_0)(b-a).$

Методы вычисления определённого интеграла:

1. Замена переменной

Если
$$\varphi(t)\colon [\alpha;\beta] \to [a;b]$$
 — монотонная функция, то $\int\limits_a^b f(x)\,dx = \int\limits_\alpha^\beta f(\varphi(t))\varphi'(t)\,dt$

2. Интегрирование по частям

$$\int_{a}^{b} u(x)v'(x) \, dx = \left. (u(x)v(x)) \right|_{a}^{b} - \int_{a}^{b} u'(x)v(x) \, dx$$

10.12.2 Формула Ньютона—Лейбница

Теорема 10.12.3 (Ньютона—**Лейбница).** Если функция f(x) непрерывна на $[a;b], \Phi(x)$ — её первообразная, то

$$\int_{a}^{b} f(x) dx = \Phi(x)|_{a}^{b} = \Phi(b) - \Phi(a)$$
(10.6)

Равенство (10.6) называется формулой Ньютона—Лейбница.

Доказательство. Пусть $I(t) = \int_a^t f(x) dx$, тогда I(a) = 0, $I(b) = \int_a^b f(x) dx$.

$$I(t + \Delta t) - I(t) = \int_{a}^{t + \Delta t} f(x) dx - \int_{a}^{t} f(x) dx = \int_{t}^{t + \Delta t} f(x) dx \Rightarrow$$

$$\Rightarrow \exists \Theta \colon 0 \leqslant \Theta \leqslant 1 \& I(t + \Delta t) - I(t) = f(t + \Theta \Delta t) \Delta t \Rightarrow \lim_{\Delta t \to 0} \frac{I(t + \Delta t) - I(t)}{\Delta t} = \lim_{\Delta t \to 0} f(t + \Theta \Delta t) \Rightarrow I'(t) = f(t)$$

Тогда I(x) — первообразная функции f(x), значит, $\Phi(a) = I(a) + C$, $\Phi(b) = I(b) + C$.

$$\Phi(b) - \Phi(a) = I(b) - I(a) = \int_a^b f(x) dx$$

10.12.3 Приложения интеграла Римана

Вычисление площади плоской фигуры

Пусть фигура, расположенная над отрезком [a;b], заключена между кривыми $y=f_1(x)$ и $y=f_2(x)$, причём $f_1(a)=f_2(a)$ & $f_1(b)=f_2(b)$ & $\forall x\in (a;b)$ $f_1(x)< f_2(x)$. Тогда площадь этой фигуры равна

$$S = \int_{a}^{b} (f_2(x) - f_1(x)) dx$$

Вычисление площади криволинейного отрезка

Пусть криволинейный сектор ограничен лучами $\varphi = \alpha$ и $\varphi = \beta$ и кривой $r = f(\varphi)$, где (r, φ) — точка, заданная полярными координатами. Рассмотрим его разбиение лучами $\alpha = \varphi_0 < \varphi_1 < \ldots < \varphi_n = \beta$ и обозначим $\Delta = \max\{\varphi_1 - \varphi_0, \varphi_2 - \varphi_1, \ldots, \varphi_n - \varphi_{n-1}\}$. Выберем точки $\xi_i \in [\varphi_{i-1}; \varphi_i]$, где $i = 1, \ldots, n$, тогда площадь сектора равна

$$S = \lim_{\Delta \to 0} \sum_{i=1}^{n} \frac{f^{2}(\xi_{i})}{2} (\varphi_{i} - \varphi_{i-1}) = \frac{1}{2} \int_{0}^{\beta} f^{2}(\varphi) d\varphi$$

Длина кривой

Пусть кривая задана уравнением y=f(x) на отрезке [a;b]. Рассмотрим разбиение $R=(x_0,x_1,\ldots,x_n)$ этого отрезка, где $a=x_0< x_1<\ldots< x_{n-1}< x_n=b$ и обозначим $d=\max\{x_1-x_0,x_2-x_1,\ldots,x_n-x_{n-1}\}$. Выберём точки $\xi_i\in[x_{i-1};x_i]$, где $i=1,\ldots,n$, тогда длина кривой равна

$$L = \lim_{d \to 0} \sum_{i=1}^n \sqrt{(x_i - x_{i-1})^2 + (f(x_i) - f(x_{i-1}))^2} = |\Pi$$
о формуле конечных приращений

$$= \lim_{d \to 0} \sum_{i=1}^{n} \sqrt{(x_i - x_{i-1})^2 + (x_i - x_{i-1})^2 (f'(\xi_i))^2} = \lim_{d \to 0} \sum_{i=1}^{n} \sqrt{1 + (f'(\xi_i))^2} (x_i - x_{i-1}) = \int_a^b \sqrt{1 + (f'(x))^2} dx$$

Если кривая задана параметрически: $\begin{cases} x=x(t)\\ y=y(t)\\ z=z(t) \end{cases}$ где $t\in[a;b]$, то её длина равна $L=\int\limits_{-\infty}^{b}\sqrt{(x'(t))^2+(y'(t))^2+(z'(t))^2}\,dt.$

Вычисление объёма тела

Пусть тело расположено над отрезком [a;b], а площадь его сечения плоскостью $x=x_0$ выражается функцией S(x). Рассмотрим разбиение $R=(x_0,x_1,\ldots,x_n)$ отрезка [a;b], где $a=x_0< x_1<\ldots< x_{n-1}< x_n=b$. Среди длин подынтервалов $\Delta x_i=x_i-x_{i-1},\ i=1,\ldots,n$, найдём диаметр $d=\max\{\Delta x_1,\Delta x_2,\ldots,\Delta x_n\}$ разбиения. Выберём множество точек $\xi=\{\xi_1,\ldots,\xi_n\}$, где $\xi_i\in[x_{i-1};x_i],\ i=1,\ldots,n$, тогда объём тела равен

$$V = \lim_{d \to 0} \sum_{i=1}^{n} S(\xi_i) \Delta x_i = \int_{a}^{b} S(x) dx$$

Пусть тело получено вращением кривой y = f(x), заданной на отрезке [a;b], вокруг оси Ox, тогда $S(x) = \pi f^2(x)$ и $V = \pi \int\limits_a^b f^2(x) \, dx$.

10.12.4 Приближённые методы вычисления интеграла

Пусть непрерывная функция f(x) задана на [a;b]. Рассмотрим приближённые методы нахождения интеграла $\int\limits_a^b f(x)\,dx$.

Формула прямоугольников

Разобьём отрезок [a;b] на n частей точками $a=x_0 < x_1 < \ldots < x_n = b$ и заменим каждую криволинейную трапецию с основанием $[x_{i-1};x_i]$ на прямоугольник шириной x_i-x_{i-1} и высотой либо $f(x_{i-1})$, либо $f(x_i)$, где $i=1,\ldots,n$. Тогда получим формулу левых прямоугольников

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} f(x_{i-1})(x_{i} - x_{i-1})$$

а также формулу правых прямоугольников

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} f(x_i)(x_i - x_{i-1})$$

Формула трапеций

Разобьём отрезок [a;b] на n частей точками $a=x_0 < x_1 < \ldots < x_n = b$ и построим отрезки, соединяющие точки $(x_{i-1},f(x_{i-1}))$ и $(x_i,f(x_i))$, где $i=1,\ldots,n$. Площадь получившейся фигуры приближённо равна площади всей криволинейной трапеции. Т. о., получим формулу трапеций, или формулу средних прямоугольников:

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} \frac{f(x_{i-1}) + f(x_i)}{2} (x_i - x_{i-1})$$

Несобственный интеграл 10.13

10.13.1 Несобственный интеграл I рода

Пусть функция f(x) непрерывна на $[a; +\infty)$ и $\forall b > a \exists \int_{-\infty}^{b} f(x) dx$.

Несобственным интегралом Римана I рода называется интеграл $\int_{a}^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx$.

Пусть функция f(x) непрерывна на $(-\infty, b]$ и $\forall a < b \exists \int\limits_{-b}^{b} f(x) \, dx.$

Несобственным интегралом Римана I рода называется интеграл $\int\limits_{-\infty}^{b} f(x) \, dx = \lim_{a \to -\infty} \int\limits_{a}^{b} f(x) \, dx$. Несобственный интеграл называется **сходящимся**, если он существует и конечен, иначе — **расходящимся**.

Если функция f(x) непрерывна на \mathbb{R} , то $\int\limits_{-\infty}^{+\infty}f(x)\,dx=\lim_{a\to-\infty}\int\limits_a^cf(x)\,dx+\lim_{b\to+\infty}\int\limits_c^bf(x)\,dx$

10.13.2 Несобственный интеграл II рода

Пусть функция f(x) непрерывна на [a;b), терпит разрыв II рода в точке b и $\forall \varepsilon > 0 \ \exists \int_{-\varepsilon}^{b-\varepsilon} f(x) \, dx$.

Несобственным интегралом Римана II рода называется интеграл $\int\limits_{\varepsilon}^{b}f(x)\,dx=\lim_{\varepsilon\to+0}\int\limits_{0}^{b-\varepsilon}f(x)\,dx.$

Пусть функция f(x) непрерывна на (a;b], терпит разрыв II рода в точке a и $\forall \varepsilon > 0 \; \exists \; \int\limits_{-b}^{b} \; f(x) \, dx$.

Несобственным интегралом Римана II рода называется интеграл $\int\limits_{c}^{b} f(x) \, dx = \lim_{c \to +0} \int\limits_{a+c}^{b} f(x) \, dx.$

Если функция f(x) терпит разрыв II рода в точке $c \in (a;b)$, то $\int\limits_a^b f(x)\,dx = \int\limits_a^c f(x)\,dx + \int\limits_a^b f(x)\,dx$.

10.14 Числовые ряды

Пусть дана бесконечная последовательность (a_n) , $S_n = \sum_{k=1}^n a_k$.

Числовым рядом называется совокупность последовательностей (a_n) и (S_n) и обозначается $\sum_{k=1}^{\infty} a_k$. S_n называется частичной суммой числового ряда.

Если существует конечный предел $\lim_{n\to\infty} S_n = S$, то S называется **суммой числового ряда**, а ряд называется **сходящимся**, иначе — **расходящимся**.

Свойства рядов:

1. Ряд $\sum_{k=1}^{\infty} a_k$ сходится $\Rightarrow \lim_{n \to \infty} a_n = 0$.

Доказательство.

$$a_n = S_n - S_{n-1} |\Pi$$
о критерию Коши $|\Rightarrow \lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = 0$

2. Если ряды $\sum\limits_{k=1}^{\infty}a_k=S$ и $\sum\limits_{k=1}^{\infty}b_k=\sigma,$ то $\sum\limits_{k=1}^{\infty}(\alpha a_k+\beta b_k)=\alpha S+\beta \sigma.$

$$\lim_{n \to \infty} \sum_{k=1}^{n} (\alpha a_k + \beta b_k) = \lim_{n \to \infty} (\alpha \sum_{k=1}^{n} a_k + \beta \sum_{k=1}^{n} b_k) = \alpha S + \beta \sigma$$

3. $\forall N \in \mathbb{N} \sum_{k=1}^{\infty} a_{k+N}$ сходится $\Leftrightarrow \sum_{k=1}^{\infty} a_k$ сходится.

Доказательство. $\sigma_n = S_{n+N} - S_N$, тогда

$$\exists \lim_{n \to \infty} \sigma_n = \lim_{n \to \infty} S_n - S_N \Leftrightarrow \exists \lim_{n \to \infty} S_n$$

10.14.1 Знакоположительные ряды

Числовой ряд называется знакоположительным, если все его члены положительны.

Лемма 10.14.1. Знакоположительный ряд сходится \Leftrightarrow последовательность его частных сумм ограничена. Доказательство.

- 1. \Rightarrow . Пусть $\exists \lim_{n \to \infty} S_n = S$, тогда $\forall n \in N \ S_n \leqslant S$.
- 2. \Leftarrow . Пусть $\exists T > 0 \colon \forall n \in \mathbb{N} \ S_n \leqslant T$, тогда по свойству 2 предела последовательности ряд сходится.

Теорема 10.14.2 (сравнения). Пусть даны знакоположительные ряды $\sum\limits_{k=1}^{\infty}a_k$ и $\sum\limits_{k=1}^{\infty}b_k,$ $\forall n\in\mathbb{N}$ $a_n\leqslant b_n.$

- Если $\sum_{k=1}^{\infty} b_k$ сходится, то $\sum_{k=1}^{\infty} a_k$ тоже сходится.
- Если $\sum_{k=1}^{\infty} a_k$ расходится, то $\sum_{k=1}^{\infty} b_k$ тоже расходится.

Доказательство. Пусть (σ_n) и (S_n) — частичные суммы рядов $\sum_{k=1}^{\infty} a_k$ и $\sum_{k=1}^{\infty} b_k$ соответственно.

• Пусть $\sum_{k=1}^{\infty} b_k$ сходится.

$$\exists T > 0 \colon \forall n \in N \ S_n \leqslant T \Rightarrow \sigma_n \leqslant S_n < T$$

По лемме 10.14.1 $\sum_{k=1}^{\infty} a_k$ сходится.

- Если $\sum_{k=1}^{\infty} a_k$ расходится, то $\sum_{k=1}^{\infty} b_k$ тоже расходится, что легко доказывается методом от противного.
- **Теорема 10.14.3 (сравнения).** Пусть даны знакоположительные ряды $\sum\limits_{k=1}^{\infty}a_k$ и $\sum\limits_{k=1}^{\infty}b_k$, $\lim\limits_{n\to\infty}\frac{a_n}{b_n}=c$. Если $0< c<\infty$, то $\sum\limits_{k=1}^{\infty}a_k$ сходится $\Leftrightarrow \sum\limits_{k=1}^{\infty}b_k$ сходится.

Доказательство.

$$\forall \varepsilon > 0 \exists N \in \mathbb{N} \colon \forall k > N \ \left| \frac{a_k}{b_k} - L \right| < \varepsilon$$

Пусть $\varepsilon = \frac{c}{2}$, тогда

$$\exists N_0 \in \mathbb{N} : \forall k > N_0 \ c - \frac{c}{2} < \frac{a_k}{b_k} < \frac{c}{2} + c \Rightarrow a_k < \frac{3}{2} b_k c \& b_k < \frac{2a_k}{c}$$

По теореме 10.14.2 получим:

- Если $\sum_{k=1}^{\infty} a_k$ сходится, то $\sum_{k=1}^{\infty} \frac{2a_k}{c}$ сходится $\Rightarrow \sum_{k=1}^{\infty} b_k$ сходится.
- Если $\sum_{k=1}^{\infty} b_k$ сходится, то $\sum_{k=1}^{\infty} \frac{3}{2} b_k c$ сходится $\Rightarrow \sum_{k=1}^{\infty} a_k$ сходится.

Теорема 10.14.4 (д'Аламбера). Пусть $\sum\limits_{k=1}^{\infty}a_k$ — знакоположительный ряд, $\lim\limits_{n\to\infty}\frac{a_{n+1}}{a_n}=p$. Если p<1, то $\sum\limits_{k=1}^{\infty}a_k$ сходится, а если p>1, то расходится.

Доказательство.

1. Пусть p < 1. Выберём $\varepsilon > 0$: $p + \varepsilon < 1$, тогда

$$\exists N \in \mathbb{N} \colon \forall n > N \ \left| \frac{a_{n+1}}{a_n} - p \right| < \varepsilon \Rightarrow \frac{a_{n+1}}{a_n} < p + \varepsilon \Rightarrow$$

$$\Rightarrow \frac{a_{N+2}}{a_{N+1}}
$$\sum_{k=1}^{\infty} (p+\varepsilon)^{k-1} a_{N+1} \operatorname{сходится} \Rightarrow \sum_{k=1}^{\infty} a_{N+k} \operatorname{сходится} \Rightarrow \sum_{k=1}^{\infty} a_k \operatorname{сходится}.$$$$

2. Пусть p>1. Выберём $\varepsilon>0$: $p-\varepsilon>1$, тогда

$$\exists N \in \mathbb{N} \colon \forall n > N \ \left| \frac{a_{n+1}}{a_n} - p \right| < \varepsilon \Rightarrow \frac{a_{n+1}}{a_n} > p - \varepsilon \Rightarrow$$

$$\Rightarrow \frac{a_{N+2}}{a_{N+1}} > p - \varepsilon \, \& \, \frac{a_{N+3}}{a_{N+2}} > p - \varepsilon \Rightarrow a_{N+3} > (p - \varepsilon)a_{N+2} > (p - \varepsilon)^2 a_{N+1} \Rightarrow a_{N+k} > (p - \varepsilon)^{k-1} a_{N+1}$$

$$\sum_{k=1}^{\infty} (p - \varepsilon)^{k-1} a_{N+1} \text{ расходится} \Rightarrow \sum_{k=1}^{\infty} a_{N+k} \text{ расходится} \Rightarrow \sum_{k=1}^{\infty} a_k \text{ расходится}.$$

Теорема 10.14.5 (радикальный признак Коши). Пусть $\sum\limits_{k=1}^{\infty}a_{k}$ — знакоположительный ряд и $\exists\lim_{n\to\infty}\sqrt[n]{a_{n}}=p$. Если p<1, то $\sum\limits_{k=1}^{\infty}a_{k}$ сходится, а если p>1, то расходится.

Доказательство.

1. Пусть p < 1. Выберём $\varepsilon > 0$: $p + \varepsilon < 1$, тогда

$$\exists N \in \mathbb{N} \colon \forall n > N \mid \sqrt[n]{a_n} - p| < \varepsilon \Rightarrow \sqrt[n]{a_n} < p + \varepsilon \Rightarrow a_n < (p + \varepsilon)^n \Rightarrow \frac{a_{n+1}}{a_n} < p + \varepsilon \Rightarrow \lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1$$

Тогда по признаку д'Аламбера $\sum_{k=1}^{\infty} a_k$ сходится.

2. Пусть p>1. Выберём $\varepsilon>0$: $p-\varepsilon>1$, тогда

$$\exists N \in \mathbb{N} \colon \forall n > N \mid \sqrt[n]{a_n} - p| < \varepsilon \Rightarrow \sqrt[n]{a_n} > p - \varepsilon \Rightarrow a_n > (p - \varepsilon)^n \Rightarrow \frac{a_{n+1}}{a_n} > p - \varepsilon \Rightarrow \lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1$$

Тогда по признаку д'Аламбера $\sum\limits_{k=1}^{\infty}a_k$ расходится.

Глава 11

Стереометрия

11.1 Векторы

Векторы называются компланарными, если они лежат в одной плоскости.

Некомпланарные векторы $\overline{a}, \overline{b}, \overline{c}$, начала которых находятся в одной точке, называются **правой тройкой** $(\overline{a}, \overline{b}, \overline{c})$, если с конца \overline{c} кратчайший поворот от \overline{a} к \overline{b} виден против часовой стрелки при условии, иначе — **левой трой-кой** $(\overline{a}, \overline{b}, \overline{c})$. Также говорят о **левой** или **правой ориентации тройки**.

11.1.1 Векторное произведение

Векторным произведением векторов \overline{a} и \overline{b} называется вектор \overline{c} такой, что:

- $|\overline{c}| = |\overline{a}| \cdot |\overline{b}| \cdot \sin \angle (\overline{a}, \overline{b})$
- $\overline{c} \perp \overline{a} \& \overline{c} \perp \overline{b}$
- $(\overline{a}, \overline{b}, \overline{c})$ правая тройка

и обозначается $[\overline{a}\cdot\overline{b}]$ или $[\overline{a}\,\overline{b}].$

Свойства векторного произведения:

1. $[\overline{a}\,\overline{a}] = \overline{0}$

Доказательство.

$$\angle(\overline{a}, \overline{a}) = 0 \Rightarrow ||\overline{a}\overline{a}|| = |\overline{a}|^2 \cdot \sin \angle(\overline{a}, \overline{a}) = 0 \Rightarrow ||\overline{a}\overline{a}|| = \overline{0}$$

 $2. \ [\overline{a}\,\overline{b}] = -[\overline{b}\,\overline{a}]$

Доказательство. Достаточно заметить, что тройки $(\overline{a}, \overline{b}, \overline{c})$ и $(\overline{b}, \overline{a}, \overline{c})$ имеют разную ориентацию.

3. $\forall \alpha \in \mathbb{R} \left[(\alpha \overline{a}) \, \overline{b} \right] = \alpha \left[\overline{a} \, \overline{b} \right]$

Доказательство.

- (a) Пусть $\alpha<0$, тогда $[(\alpha\overline{a})\,\overline{b}]=-|\alpha|[\overline{a}\,\overline{b}]=\alpha[\overline{a}\,\overline{b}].$
- (b) Пусть $\alpha \geqslant 0$, тогда $[(\alpha \overline{a}) \overline{b}] = |\alpha|[\overline{a} \overline{b}] = \alpha[\overline{a} \overline{b}].$

4. $[(\overline{a} + \overline{b})\overline{c}] = [\overline{a}\overline{c}] + [\overline{b}\overline{c}]$

Доказательство.

- (a) Пусть $\bar{a}, \bar{b}, \bar{c}$ лежат в плоскости π . Введём векторы $\bar{e}: \bar{e} \in \pi \& \bar{e} \perp \bar{c}$ и \bar{g} такой, что:
 - $[\overline{a}\,\overline{c}] = |\overline{a}| \cdot |\overline{c}| \cdot \sin \angle (\overline{a}, \overline{c}) \cdot \overline{g}$
 - $[\overline{b}\,\overline{c}] = |\overline{b}| \cdot |\overline{c}| \cdot \sin \angle (\overline{b}, \overline{c}) \cdot \overline{g}$

Тогда

$$\begin{split} [\overline{a}\,\overline{c}] &= |\overline{a}| \cdot |\overline{c}| \cdot \cos \angle (\overline{a}, \overline{e}) \cdot \overline{g} = \operatorname{pr}_{\overline{e}} \overline{a} \cdot |\overline{c}| \cdot \overline{g} \\ [\overline{b}\,\overline{c}] &= |\overline{b}| \cdot |\overline{c}| \cdot \cos \angle (\overline{b}, \overline{e}) \cdot \overline{g} = \operatorname{pr}_{\overline{e}} \overline{a} \cdot |\overline{c}| \cdot \overline{g} \\ [(\overline{a} + \overline{b})\,\overline{c}] &= \operatorname{pr}_{\overline{e}} (\overline{a} + \overline{b}) \cdot |\overline{c}| \cdot \overline{g} = \operatorname{pr}_{\overline{e}} \overline{a} \cdot |\overline{c}| \cdot \overline{g} + \operatorname{pr}_{\overline{e}} \overline{b} \cdot |\overline{c}| \cdot \overline{g} = [\overline{a}\,\overline{c}] + [\overline{b}\,\overline{c}] \end{split}$$

(b) Пусть $\overline{a}, \overline{b}, \overline{c}$ некомпланарны, тогда $[(\overline{a}+\overline{b})\,\overline{c}], [\overline{a}\,\overline{c}], [\overline{b}\,\overline{c}] \perp \overline{c} \Rightarrow [(\overline{a}+\overline{b})\,\overline{c}], [\overline{a}\,\overline{c}], [\overline{b}\,\overline{c}]$ компланарны $\Rightarrow \alpha[(\overline{a}+\overline{b})\,\overline{c}] = \beta[\overline{a}\,\overline{c}] + \gamma[\overline{b}\,\overline{c}].$

Докажем, что $\alpha = \beta$.

- $\alpha[(\overline{a} + \overline{b})\overline{c}] = \beta[\overline{a}\overline{c}] + \gamma[\overline{b}\overline{c}] \Rightarrow \alpha(\overline{a} + \overline{b})\overline{c}\overline{b} = \beta\overline{a}\overline{c}\overline{b}$
- Пусть V_1 и V_2 объёмы параллеленинедов, построенных на OA, OB, OH и OC, OB, OH соответственно, тогда $S(OACB) = S(OCDB) \Rightarrow V_1 = V_2 \Rightarrow \overline{a} \, \overline{b} \, \overline{c} = (\overline{a} + \overline{b}) \, \overline{b} \, \overline{c} \Rightarrow \overline{a} \, \overline{c} \, \overline{b} = (\overline{a} + \overline{b}) \, \overline{c} \, \overline{b}$

C \overline{a} \overline{a} \overline{b} $\overline{b$

Отсюда $\alpha = \beta$. Аналогично $\alpha = \gamma$.

Глава 12

Теория автоматов и формальных языков

Алфавитом называется конечное непустое множество и обозначим через X. Его элементы называются **буквами**. Конечная последовательность букв называется **словом**, а его **длиной** — количество букв в слове с учётом повторений.

Слово, не содержащее букв, называется **пустым** и обозначается λ , ε или e.

Множество из всех слов алфавита X обозначается X^* .

Конкатенацией слов $\alpha=x_1x_2\dots x_n$ и $\beta=y_1y_2\dots y_m$ называется слово $\alpha\cdot\beta=x_1\dots x_ny_1\dots y_m.$

Степенью слова $\alpha = x_1 \dots x_n$ называется слово $\alpha^n = \alpha \cdot \alpha \cdot \dots \cdot \alpha$, где $n \in \mathbb{N}$. $\alpha^0 = \lambda$.

Языком называется множество $L \subseteq X^*$. Язык, не содержащий слов, называется **пустым**.

12.1 Детерминированные конечные автоматы

Детерминированным конечным автоматом, или **ДКА**, называется набор (S, X, δ, s_1, F) , где

S — конечное множество **состояний**;

X — алфавит;

 $\delta \colon S \times (X \cup \{\lambda\}) \to S$ — функция перехода, причём $\forall k > 0 \ s\delta(\lambda^k) = s;$

 $s_1 \in S$ — начальное состояние;

 $F \subseteq S$ — множество допускающих состояний.

Конечный автомат (S, X, δ, s_1, F) удобно представлять в виде графа, в котором вершины представляют состояния автомата, а дуги показывают, между какими состояниями возможен переход и по каким буквам.

Функция перехода по буквам определяет функцию $\delta^* \colon S \times X^* \to S$ перехода по словам:

- 1. $\delta^*(s,x) = \delta(s,x)$
- 2. $\delta^*(s, \alpha x) = \delta(\delta^*(s, \alpha), x)$

где $\alpha \in X^*$, $x \in X \cup \{\lambda\}$.

Запись $\delta^*(s,\alpha)$ несколько громоздка, поэтому вместо неё обычно используется запись $s\delta(\alpha)$.

12.1.1 Распознаваемость языков

Говорят, что ДКА (S, X, δ, s_1, F) распознаёт язык L, если $\alpha \in L \Leftrightarrow s_1\delta(\alpha) \in F$.

Утверждение 12.1.1. Любой конечный язык распознаётся конечным автоматом.

Доказательство. Пусть L — конечный язык, множество S состояний состоит из префиксов слов L, а также

включает дополнительное состояние $s', \alpha \delta(x) = \begin{cases} \alpha x, & \alpha x \in S \\ s', & \alpha x \notin S \end{cases}$

Рассмотрим автомат $(S, X, \delta, \lambda, L)$.

$$\lambda\delta(\alpha) = \begin{cases} \alpha, \ \alpha \in S \setminus \{s'\} \\ s', \ \alpha \notin S \setminus \{s'\} \end{cases} \Rightarrow (s_1\delta(\alpha) \in F \Leftrightarrow \alpha \in L)$$

Теорема 12.1.2. Язык $L = \{a^k b^k \mid k \geqslant 0\}$ не распознаётся конечным автоматом.

Доказательство методом от противного. Пусть L распознаётся конечным автоматом $A=(S,X,\delta,s_1,F)$ с n состояниями. Тогда какие-то из состояний $s_1,s_1\delta(a),s_1\delta(aa),\ldots,s_1\delta(a^{n-1}),s_1\delta(a^n)$ совпадают. Пусть $s_1\delta(a^i)=s_1\delta(a^j)$, тогда $s_1\delta(a^i)\delta(b^i)\in F\Rightarrow s_1\delta(a^j)\delta(b^i)\in F$. Значит, $a^jb^i\in L$. Противоречие.

Слова α и β называются различимыми словом $\gamma \in X^*$ относительно языка L, если $\alpha \gamma \in L \& \beta \gamma \notin L \lor \lor \alpha \gamma \notin L \& \beta \gamma \in L$. Различимость обозначается $\alpha \not\sim_L \beta$.

Слова α и β называются **неразличимыми относительно языка** L, если $\forall \gamma \in X^* \ \alpha \gamma \in L \Leftrightarrow \beta \gamma \in L$. Неразличимость обозначается $\alpha \sim_L \beta$.

Утверждение 12.1.3. Отношение неразличимости слов относительно языка является отношением эквивалентности.

Доказательство. Очевидно, что $\alpha \sim \alpha$ и $\alpha \sim \beta \Rightarrow \beta \sim \alpha$.

Пусть $\alpha \sim \beta \& \beta \sim \gamma$, тогда $\forall \Theta \in X^* \ \alpha \Theta \in L \Leftrightarrow \beta \Theta \in L \Leftrightarrow \gamma \Theta \in L \Rightarrow \alpha \sim \gamma$.

Фактор-класс слова α относительно неразличимости обозначается $[\alpha]$.

Утверждение 12.1.4. $\alpha \sim \beta \Rightarrow \forall \gamma \in X^* \ \alpha \gamma \sim \beta \gamma$.

Доказательство. $\forall \Theta \in X^* \ (\alpha \gamma)\Theta \in L \Leftrightarrow \alpha (\gamma \Theta) \in L \Leftrightarrow \beta (\gamma \Theta) \in L \Leftrightarrow (\beta \gamma)\Theta \in L \Rightarrow \alpha \gamma \sim \beta \gamma. \blacksquare$

Рангом языка L называется количество элементов в фактор-множестве относительно неразличимости слов и языка L и обозначается rank L.

Теорема 12.1.5 (Майхилла—Нероуда).

- 1. Язык L распознаётся конечным автоматом c n состояниями \Leftrightarrow rank $L \leqslant n$.
- 2. Если $\operatorname{rank} L = n$, то существует конечный автомат с n состояниями, который распознаёт L, и никакой конечный автомат с меньшим числом состояний не распознаёт L.

Доказательство.

1. Пусть язык L распознаётся конечным автоматом $A = (X, S, \delta, s_1, F)$ с n состояниями. Рассмотрим слова $\alpha_1, \ldots, \alpha_{n+1} \in X^*$. Хотя бы два из состояний $s_1\delta(\alpha_1), \ldots, s_1\delta(\alpha_{n+1})$ совпадают.

Пусть $s_1\delta(\alpha_i) = s_1\delta(\alpha_i)$, где $i \neq j$, тогда

$$s_1\delta(\alpha_i\gamma) = s_1\delta(\alpha_i)\delta(\gamma) = s_1\delta(\alpha_j)\delta(\gamma) = s_1\delta(\alpha_j\gamma) \Rightarrow (\alpha_i\gamma \in L \Leftrightarrow \alpha_j\gamma \in L)$$

T. o., среди n+1 состояний всегда найдётся пара неразличимых, значит, rank $L \leqslant n$.

2. Пусть $A = (X, S, \delta, s_1, F)$, где $S = \{ [\alpha] \mid \alpha \in X^* \}$, $\delta : [\alpha] \delta(x) = [\alpha x]$, $s_1 = [\lambda]$, $F = \{ [\alpha] \mid \alpha \in L \}$, тогда $s_1 \delta(\alpha) = [\alpha] \in F \Leftrightarrow \alpha \in L$.

Пусть L распознаётся конечным автоматом с k состояниями, где k < n. Тогда $n = \operatorname{rank} L \leq k$. Противоречие.

Базисом языка L называется множество $W \subset X^*$ такое, что:

- 1. Все слова из W попарно различимы.
- 2. Любое другое слово неотличимо от одного из слов множества W.

Теорема 12.1.6. Множество W- базис языка \Leftrightarrow

- 1. Все слова из W попарно различимы.
- $2. \lambda \in W.$
- 3. $\forall \alpha \in W \ \forall x \in X \ \exists \beta \in W : \alpha x \sim \beta$.

Доказательство.

- 1. ⇐. Очевидно.
- $2. \Rightarrow$. Докажем пункт 3 по индукции.
 - *База индукции*. Пусть $\alpha=\lambda$, тогда $\forall x\in X\ \exists \beta\in W\colon x\sim\beta$, т. к. W базис.
 - Шаг индукции. Пусть доказано для α : $|\alpha| \leq k$, тогда $\alpha \sim \beta \in W \Rightarrow \alpha x \sim \beta x \sim \gamma \in W$.

Два состояния s и s' называются **эквивалентными относительно автомата** $A=(S,X,\delta,s_1,F),$ если $\forall \alpha \in X^*$ $s\delta(\alpha) \in F \Leftrightarrow s'\delta(\alpha) \in F.$

Автомат называется **связным**, если $\forall s \in S \ \exists \alpha \in X^* \ s_1 \delta(\alpha) = s.$

Автомат называется приведённым, или минимальным, если в нём нет эквивалентных состояний.

Пусть задан автомат $A = (S, X, \delta, s_1, F)$. Рассмотрим автомат $A_m = (S_m, X, \delta_m, s_m, F_m)$, где

$$S_m = \{ [s] \mid s \in S \},\$$

$$\delta_m : [s]\delta(x) = [s\delta(x)],$$

$$s_m = [s_1], F_m = \{[s] \mid s \in F\},\$$

тогда $[s_1]\delta(\alpha)=[s_1\delta(\alpha)]\in F_m$, т. к. $s_1\delta(\alpha)\in F$, значит, A_m приведённый.

Два автомата (S, X, δ, s_1, F) и $(S', X, \delta', s_2, F')$ называются **изоморфными**, если существует биекция $\varphi \colon S \to S'$ такая, что:

- 1. $s\delta(x) = t \Leftrightarrow \varphi(s)\delta'(x) = \varphi(t);$
- 2. $\varphi(s_1) = s_2$;
- 3. $t \in F \Leftrightarrow \varphi(t) \in F'$.

Утверждение 12.1.7. *Если* два минимальных автомата распознают один и тот же язык, то они изоморфны. Доказательство. Пусть $\alpha \in \{\alpha_1, \dots, \alpha_n\}$, причём $S = \{s_1\delta(\alpha) \mid \alpha \in \{\alpha_1, \dots, \alpha_n\}\}$ & $S' = \{s_2\delta'(\alpha) \mid \alpha \in \{\alpha_1, \dots, \alpha_n\}\}$. В каждом из автоматов нет эквивалентных состояний, поэтому можно построить биекцию $\varphi(s_1\delta(\alpha)) = s_2\delta'(\alpha)$. Тогда $s_1\delta(\alpha) \in F \Leftrightarrow \alpha \in L \Leftrightarrow s_1'\delta'(\alpha) \in F$.

Исследуем распознаваемость дополнения, пересечения и объединения языков. Пусть L_1, L_2 — языки, распознаваемые некоторыми конечными автоматами, rank $L_1 = m$ и rank $L_2 = n$.

1. Докажем, что $\operatorname{rank} L_1 = \operatorname{rank} \overline{L}_1$.

Доказательство. $\alpha \not\sim_{L_1} \beta \Leftrightarrow \exists \gamma \colon \alpha \gamma \in L_1 \& \beta \gamma \notin L_1 \Leftrightarrow \alpha \gamma \notin \overline{L}_1 \& \beta \gamma \in \overline{L}_1 \Leftrightarrow \alpha \not\sim_{\overline{L}_1} \beta$.

2. Докажем, что rank $L_1 \cap L_2 \leqslant mn$.

Доказательство. Пусть $\alpha_1, \ldots, \alpha_m$ и β_1, \ldots, β_n — базисы L_1 и L_2 соответственно. Тогда

$$\forall \gamma \in X^* \ \exists \alpha_i, \beta_i : \alpha_i \sim_{L_1} \gamma \& \beta_i \sim_{L_2} \gamma$$

Пусть γ_{ij} : $\alpha_i \sim_{L_1} \gamma_{ij} \& \beta_j \sim_{L_2} \gamma_{ij}$, тогда $\forall \Theta \in X^*$

- $\gamma\Theta \in L_1 \Leftrightarrow \alpha_i\Theta \in L_1 \Leftrightarrow \gamma_{ij}\Theta \in L_1$;
- $\gamma\Theta \in L_2 \Leftrightarrow \beta_i\Theta \in L_2 \Leftrightarrow \gamma_{ij}\Theta \in L_2$.

Отсюда $\gamma\Theta \in L_1 \cap L_2 \Leftrightarrow \alpha_i\Theta \in L_1 \& \beta_i \in L_2 \Leftrightarrow \gamma_{ij}\Theta \in L_1 \cap L_2$.

3. Аналогично доказывается, что rank $L_1 \cup L_2 \leqslant mn$.

Лемма 12.1.8 (о накачке). Если L распознаётся конечным автоматом, то $\exists n \in \mathbb{N} \colon (\forall \alpha \in X^* \colon |\alpha| > n)$ $\exists \alpha_1, \alpha_2, \alpha_3 \colon \alpha = \alpha_1 \alpha_2 \alpha_3$, причём

- 1. $\alpha_2 \neq \lambda$;
- 2. $\alpha \in L \Rightarrow \forall i \ \alpha_1 \alpha_2^i \alpha_3 \in L;$
- 3. $|\alpha_1 \alpha_2| \leq n$.

Доказательство. Пусть в конечном автомате n состояний, $|\alpha| = k \geqslant n \& \alpha = x_1 \dots x_k$. Среди состояний $s_1\delta(\lambda), s_1\delta(x_1), s_1\delta(x_1x_2), \dots, s_1\delta(x_1\dots x_n)$ найдутся два совпадающих, т.е. $\exists l, m \colon 0 \leqslant l < m \leqslant n \& s_1\delta(x_1\dots x_l) = s_1\delta(x_1\dots x_m) = s'$.

Пусть $\alpha_1 = x_1 \dots x_l$, $\alpha_2 = x_{l+1} \dots x_m$, $\alpha_3 = x_{m+1} \dots x_k$, $s_1 \delta(\alpha_1) = s'$, тогда $s_1 \delta(\alpha_1 \alpha_2) = s' \Rightarrow s_1 \delta(\alpha_1 \alpha_2^i) = s' \Rightarrow s_1 \delta$

Следствие 12.1.9. Если $\forall n \in \mathbb{N} \ \exists \alpha \colon |\alpha| \in n$, причём для любых слов $\alpha_1, \alpha_2, \alpha_3$:

- 1. $\alpha_2 \neq \lambda$;
- 2. $\alpha \in L \& \exists i \ \alpha_1 \alpha_2^i \alpha_3 \notin L;$

 $3. |\alpha_1 \alpha_2| \leq n.$

то L не распознаётся конечным автоматом.

Утверждение 12.1.10. Если непустой язык распознаётся автоматом с n состояниями, то он содержит слово длины не больше n.

Доказательство. Если автомат распознаёт слово, то в соответствующем графе есть путь из начального состояния в допускающее, а значит, есть и простой путь. В графе n вершин, тогда длина простого пути не больше n, а ему соответствует слово длины не больше n.

12.2Недетерминированные конечные автоматы

Недетерминированным конечным автоматом, или **НКА**, называется набор (S, X, δ, s_1, F) , где

S — конечное множество состояний;

X — конечный алфавит;

 $\delta \colon S \times (X \cup \{\lambda\}) \to 2^S$ — функция перехода;

 $s_1 \in S$ — начальное состояние;

 $F \subseteq S$ — множество допускающих состояний.

Функция δ определяет функцию $\delta^* \colon S \times X^* \to 2^S \colon$

1.
$$\delta^*(s,x) = \delta(s,x)$$

2.
$$\delta^*(s, \alpha x) = \bigcup_{s' \in \delta^*(s, \alpha)} \delta(s', x)$$

где $s \in S$, $x \in X \cup \{\lambda\}$, $\alpha \in X^*$.

Допустима запись $s\delta(\alpha)$ вместо $\delta^*(s,\alpha)$.

Конкатенацией языков L_1 **и** L_2 называется язык $\{\alpha\beta \mid \alpha \in L_1 \& \beta \in L_2\}$ и обозначается $L_1 \cdot L_2 = L_1 L_2$. n-й степенью языка L называется $L^n = \underbrace{LL \dots L}_n$.

Итерацией, или звёздочкой Клини, языка L называется $L^* = \bigcup_{n=1}^{\infty} L^n$.

12.2.1Распознаваемость языков

Говорят, что **HKA** (S, X, δ, s_1, F) распознаёт язык L, если $\alpha \in L \Leftrightarrow s_1\delta(\alpha) \cap F \neq \emptyset$.

Если языки L_1 и L_2 распознаются НКА $(S_1, X, \delta_1, S_1, F_1)$ и $(S_2, X, \delta_2, S_2, F_2)$ соответственно, тогда автомат $(S_1 \cup S_2, X, S_2, S_2, F_2)$ $\cup S_2, X, \delta, s_1, F_2$) распознаёт язык L_1L_2 , где

$$s\delta(x) = \begin{cases} s\delta_1(x), & s \in S_1 \\ s\delta_2(x), & s \in S_2 \\ s_2, & s \in F_1 \& x = \lambda \end{cases}$$

Если L распознаётся НКА (S, X, δ, s_1, F) , то $(S \cup \{s_0\}, X, \delta_1, s_0, F \cup \{s_0\})$ распознаёт L^* , где

$$s(\delta_1) = \begin{cases} s\delta(x), & s \in S \\ s_1, & s \notin S \& x = \lambda \end{cases}$$

12.2.2Построение ДКА по НКА

Замыканием состояния s некоторого НКА называется множество $\{s' \mid s\delta(\lambda^k) = s'\}$ и обозначается [s]. Пусть язык L распознаётся НКА (S, X, δ, s_1, F) . Тогда ДКА $(T, X, \delta', [s_1], F')$ тоже распознаёт L, где

$$T = \{M \mid M = \{m_1, \dots, m_k\} \subseteq S \& \bigcup_{i=1}^k [m_i] = M\},$$

$$\delta'(\{m_1,\ldots,m_k\},x) = \bigcup_{i=1}^k [\delta(m_i,x)],$$

$$F' = \{M \mid M \in T \& M \cap F \neq \varnothing\}.$$

$$F' = \{ M \mid M \in T \& M \cap F \neq \emptyset \}.$$

Доказательство методом математической индукции.

- База индукции. $s_1\delta(\lambda^k)=[s_1]\ \&\ [s_1]\delta'(\lambda^k)=[s_1]\Rightarrow s_1\delta(\lambda^k)=[s_1]\delta'(\lambda^k)$
- Шаг индукции. Пусть доказано для слов α длины $n, s_1 \delta(\alpha) = \{m_1, \dots, m_k\}.$

$$s_1\delta(\alpha x) = \bigcup_{i=1}^k [\delta(m_i, x)] \& [s_1]\delta'(\alpha x) = \bigcup_{i=1}^k [\delta(m_i, x)] \Rightarrow s_1\delta(\alpha x) = [s_1]\delta'(\alpha x)$$

T.o., $\forall \alpha \in X^* \ s_1 \delta(\alpha) = [s_1] \delta'(\alpha)$.

12.2.3 Алгоритм Бржозовского

Рассмотрим автомат $A = (S, X, \delta, s_1, F)$ и произвольное состояние $s' \in S$.

Назовём язык, распознаваемый автоматом $(S, X, \delta, s_1, \{s'\})$, левым языком $L_l(s')$, а язык, распознаваемый автоматом (S, X, δ, s', F) — правым языком $L_r(s')$. Тогда $L = \bigcup_{s' \in S} L_l(s') L_r(s')$.

Обратным к языку L назовём язык $r(L) = \{ \alpha \mid \alpha = x_1 \dots x_n \& x_n \dots x_1 \in L \}.$

Обратным к автомату A назовём автомат r(A), в котором начальное и допускающее состояния сменены местами, а переходы идут в обратном направлении.

Заметим, что автомат с несколькими допускающими состояниями можно преобразовать в автомат с одним допускающим состоянием, если исходные допускающие сделать недопускающими и добавить переходы из них по пустому слову в новое допускающее.

Рассмотрим следующие утверждения:

1. Автомат детерминирован ⇔ все его левые языки не пересекаются.

Доказательство методом от противного. Пусть $\alpha \in L_l(s') \cap L_l(s'')$, тогда по α можно прийти и в s', и в $s'' \Leftrightarrow$ автомат недетерминирован.

- 2. Если $L_l(s')$ левый язык автомата A, то $r(L_l(s'))$ правый язык r(A).
- 3. Автомат минимальный ⇔ все его правые языки различны и все состояния достижимы.

Доказательство.

- Если $L_r(s) = L_r(s')$, тогда s и s' можно объединить в одно состояние.
- Если одно из состояний недостижимо, то его можно убрать.

Через d(A) обозначим операцию детерминизации автомата A.

Теорема 12.2.1 (Бржозовского). ДКА drdr(A) минимален и распознаёт тот же язык, что и A, где A — конечный автомат.

Доказательство.

- drdr(A) детерминирован по построению.
- \bullet Если A распознаёт L, тогда dr(A) распознаёт $r(L) \Rightarrow dr dr(A)$ распознаёт L.
- Левые языки автомата dr(A) не пересекаются \Rightarrow правые языки rdr(A) не пересекаются \Rightarrow правые языки drdr(A) различны $\Rightarrow drdr(A)$ минимален.

12.3 Регулярные выражения

Регулярным выражением называются:

- 1. \varnothing , λ , x, где x буква, и задают языки \varnothing , $\{\lambda\}$, $\{x\}$ соответственно;
- 2. $L \cup M$, $L \cdot M$, L^* , где L, M регулярные выражения, и задают языки $L_1 \cup M_1$, $L_1 M_1$ и L_1^* соответственно, где L_1, M_1 языки, задаваемые L и M соответственно.

Приоритет операций в порядке возрастания слева направо: \cup , ·, *.

Допустимы записи L+M и LM вместо $L\cup M$ и $L\cdot M$ соответственно.

Язык называется регулярным, если он может быть задан регулярным выражением, иначе — нерегулярным.

Теорема 12.3.1 (Клини). Язык L распознаётся конечным автоматом \Leftrightarrow он регулярный.

Доказательство.

- 1. \Leftarrow . Можно построить автоматы, распознающие языки \varnothing , $\{\lambda\}$, $\{x\}$, а также их объединение, конкатенацию и итерацию.
- 2. \Rightarrow . Пусть состояния автомата пронумерованы от 1 до n, $L_{ij}^{(k)} = \{\alpha = x_1 \dots x_p \mid i\delta(\alpha) = j \& \forall q \in \mathbb{N} \ q$
 - ullet База индукции. $L_{ij}^{(0)} = egin{cases} x_{q_1} + \ldots + x_{q_m}, \ i
 eq j \ x_{q_1} + \ldots + x_{q_m} + \lambda, \ i = j \end{cases}$ где x_{q_1}, \ldots, x_{q_m} буквы, по котором возможен переход из i в j.
 - Шаг индукции. $L_{ij}^{(k+1)} = L_{ij}^{(k)} + L_{i\,k+1}^{(k)} \left(L_{k+1\,k+1}^{(k)}\right)^* L_{k+1\,j}^{(k)}$

Т. о., язык $L_{ij}^{(n)} = L$ задаётся регулярным выражением.

12.3.1 Алгебраические законы

Пусть L, M, N — регулярные выражения.

Законы объединения:

- 1. Коммутативность: L + M = M + L
- 2. Ассоциативность: (L + M) + N = L + (M + N)
- 3. Идемпотентность: L + L = L
- 4. Существование единичного элемента: $L + \emptyset = L$

Законы конкатенации:

- 1. Ассоциативность: (LM)N = L(MN)
- 2. Дистрибутивность относительно объединения: L(M+N) = LM + LN, (L+M)N = LN + MN
- 3. Существование нулевого элемента: $L\varnothing = \varnothing L = \varnothing$
- 4. Существование единичного элемента: $L\lambda = \lambda L = L$

Законы итерации:

- 1. Идемпотентность: $(L^*)^* = L^*$
- 2. $(\lambda + L)^* = L^*$

12.4 Автоматы с магазинной памятью

Конечным автоматом с магазинной памятью, или **МП-автоматом**, называется набор $(S, X, \Gamma, \delta, s_1, Z_0, F)$, где

S — конечное множество состояний;

X — алфавит;

 Γ — конечное множество магазинных символов, причём $\lambda \in \Gamma$;

 $\delta \colon S \times (X \cup \{\lambda\}) \times \Gamma \to 2^{(S \times \Gamma^*)}$ — функция перехода;

 $s_1 \in S$ — начальное состояние;

 $Z_0 \in \Gamma$ — начальный магазинный символ (маркер дна);

 $F \subseteq S$ — множество допускающих состояний.

Функция δ определяет функцию $\delta^*\colon S\times X^*\times \Gamma\to 2^{(S\times\Gamma^*)}$:

- 1. $\delta^*(s, x, Z) = \delta(s, x, Z)$
- 2. Пусть $\delta^*(s,\alpha,Z) = \{(s_1,Y_1\xi_1),\dots,(s_m,Y_m\xi_m)\},\ \delta(s_i,x,Y_i) = \{(s_{i1},\xi_{i1}),\dots,(s_{in},\xi_{in})\},\ \text{тогда}\ \delta^*(s,\alpha x,Z) = \bigcup_{i=1}^m \bigcup_{j=1}^n (s_{ij},\xi_{ij}\xi_i)$

где $s \in S$, $x \in X \cup \{\lambda\}$, $\alpha \in X^*$, $Z \in \Gamma$.

Говорят, что автомат с магазинной памятью распознаёт язык L:

- по конечному состоянию, если $\alpha \in L \Leftrightarrow \delta(s_1, \alpha, Z_0) = (s_f, \gamma)$, где $s_f \in F, \gamma \in \Gamma^*$;
- по пустому магазину, если $\alpha \in L \Leftrightarrow \exists \beta, \gamma \colon \alpha = \beta \gamma \& \delta(s_1, \beta, Z_0) = (s, \lambda)$, где $s \in S$.

12.4.1 Распознаваемость языков

```
Утверждение 12.4.1. Язык L = \{a^nb^n \mid n \geqslant 0\} распознаётся МП-автоматом. Доказательство. Автомат (S, X, \Gamma, \delta, s_0, Z, \{s_2\}) распознаёт L по конечному состоянию, где S = \{s_0, s_1, s_2\}, X = \{a, b\}, \Gamma = \{A, Z\}, \delta задаётся переходами s_0\delta(a, Z) = (s_0, AZ), s_0\delta(a, A) = (s_0, AA), s_0\delta(b, A) = (s_1, \lambda), s_0\delta(b, A) = (s_1, \lambda), s_1\delta(b, A) = (s_1, \lambda), s_1\delta(b, A) = (s_1, \lambda).
```

12.5 Контекстно-свободные грамматики

Контекстно-свободной грамматикой, или **КС-грамматикой**, называется набор (V, X, P, S), где

V — конечное множество **переменных**, представляющих языки;

X — конечное множество **терминальных символов**, или **терминалов**;

P — конечное множество **продукций** — правил вывода вида $A \to B$, в результате которого A заменяется на B;

S — **стартовый символ** — переменная, представляющая определяемый язык.

Говорят, что язык L задаётся КС-грамматикой (V, X, P, S), если $\alpha \in L \Leftrightarrow \alpha$ может быть получено в результате конечного числа применений продукций из P к S.

Язык называется контекстно-свободным, или КС-языком, если он может быть задан КС-грамматикой.

Теорема 12.5.1. Язык $\{a^nb^n \mid n \geqslant 0\}$ — нерегулярный и контекстно-свободный.

Доказательство. Данный язык задаётся КС-грамматикой ($\{S\}, \{a,b\}, \{S \to \lambda, S \to aSb\}, S$).

Деревом разбора для КС-грамматики G = (V, X, P, S) называется дерево такое, что:

- 1. Каждый внутренний узел отмечен переменной из V.
- 2. Каждый лист отмечен либо переменной из V, либо терминалом, либо λ . Если он отмечен λ , то он должен быть единственным потомком своего родителя.
- 3. Если внутренний узел отмечен A, а его потомки $-X_1, X_2, \ldots, X_k$ слева направо, то $(A \to X_1 X_2 \ldots X_k) \in P$.

 ${
m KC}$ -грамматика называется **неоднозначной**, если она содержит слово, для которого можно построить несколько деревьев разбора, иначе — **однозначной**.

Теорема 12.5.2.

- 1. Все КС-языки распознаются автоматами с магазинной памятью.
- 2. Все автоматы с магазинной памятью задают КС-языки.

Пусть языки L_1 и L_2 заданы КС-грамматиками (V_1, X, P_1, S_1) и (V_2, X, P_2, S_2) соответственно.

• \varnothing задаётся ($\{S\}, X, \{S \to S\}, S$).

- $\{\lambda\}$ задаётся $(\{S\}, X, \{S \to \lambda\}, S).$
- $\{x\}$ задаётся $(\{S\}, X, \{S \to x\}, S)$, где $x \in X$.
- $L_1 \cup L_2$ задаётся $(V_1 \cup V_2 \cup \{S\}, X, P_1 \cup P_2 \cup \{S \to S_1, S \to S_2\}, S).$
- L_1L_2 задаётся $(V_1 \cup V_2 \cup \{S\}, X, P_1 \cup P_2 \cup \{S \to S_1S_2\}, S).$
- L_1^* задаётся $(V_1 \cup \{S\}, X, P_1 \cup \{S \to \lambda, S \to SS_1\}, S)$.

Глава 13

Теория булевых функций

Булевым называется множество $B = \{0, 1\}$.

Булевой называется функция $f \colon B^n \to B$. Булеву функцию можно задать таблицей, называемой **таблицей** истинности.

Утверждение 13.0.1. Количество булевых функций от n переменных равно 2^{2^n} .

Доказательство. Число всех возможных наборов аргументов булевой функции от n переменных равно 2^n , тогда число всех возможных таких функций равно 2^{2^n} .

Пусть $f(x_1,...,x_n)$ — булева функция. Переменная x_i называется **существенной**, если

$$\exists a_1, \dots, a_{i-1}, a_{i+1}, \dots, a_n : f(a_1, \dots, a_{i-1}, 0, a_{i+1}, \dots, a_n) \neq f(a_1, \dots, a_{i-1}, 1, a_{i+1}, \dots, a_n)$$

иначе — несущественной, или фиктивной.

Две булевы функции называются **равными**, если одну из них можно получить из другой последовательным удалением или введением несущественных переменных.

13.1 Логические операции

Пусть $x, y \in B$. Основные логические операции (в порядке убывания приоритета выполнения):

- 1. Отрицание, или инверсия: $\neg x$, \overline{x} .
- 2. Конъюнкция, или логическое **И**: $x \& y, x \land y, x \cdot y, xy$.
- 3. Дизъюнкция, или логическое ИЛИ: $x \lor y$

Следующие операции не имеют общепринятого приоритета выполнения, но обычно выполняются после вышеуказанных.

- 1. Импликация: $x \to y$.
- 2. Эквиваленция: $x \leftrightarrow y$, $x \sim y$, $x \equiv y$.
- 3. Сложение по модулю 2, или исключающее ИЛИ: $x \oplus y, x + y$.
- 4. Штрих Шеффера: $x \mid y$.
- 5. Стрелка Пирса: $x \downarrow y$.

Приведём таблицу истинности рассмотренных логических операций:

x	\overline{x}	y	x & y	$x \vee y$	$x \to y$	$x \sim y$	x+y	$x \mid y$	$x \downarrow y$
0	1	0	0	0	1	1	0	1	1
0	1	1	0	1	1	0	1	1	0
1	0	0	0	1	0	0	1	1	0
1	0	1	1	1	1	1	0	0	0

Также определяется булева степень:

$$x^{\sigma} = \begin{cases} \overline{x}, & \sigma = 0 \\ x, & \sigma = 1 \end{cases}$$

где $\sigma \in B$ — параметр.

13.2 Формулы

Формулой над множеством F **булевых функций** называются:

- 1. $f(x_1, \ldots, x_n) \in F$;
- 2. $\Phi(A_1,\ldots,A_n)$, где $\Phi(x_1,\ldots,x_n)$ формула, A_1,\ldots,A_n переменные или функции из F, называемые подформулами.

Утверждение 13.2.1. Каждой формуле Φ над множеством F булевых функций соответствует булева функция. Доказательство. Возможны два случая:

- 1. Если $\Phi = f(x_1, ..., x_n) \in F$, то $\Phi \to f(x_1, ..., x_n)$.
- 2. Если $\Phi = f(A_1, ..., A_n)$, где $A_1 \to f_1, A_2 \to f_2, ..., A_n \to f_n, f_1, ..., f_n \in F$, то $\Phi \to f(f_1, ..., f_n)$.

Две формулы называются эквивалентными, если им соответствуют равные функции.

Утверждение 13.2.2. Если формула Φ' получается из формулы Φ заменой подформулы A на эквивалентную ей A', то Φ' эквивалентна Φ .

13.3 Разложение булевых функций по переменным

Теорема 13.3.1. Булева функция $f(x_1, ..., x_n)$ может быть записана в виде

$$f(x_1,\ldots,x_n) = \bigvee_{(\sigma_1,\ldots,\sigma_m)} x_1^{\sigma_1} \& \ldots \& x_m^{\sigma_m} \& f(\sigma_1,\ldots,\sigma_m,x_{m+1},\ldots,x_n)$$

Доказательство. Рассмотрим произвольный набор $(\alpha_1, \dots, \alpha_n)$ и покажем, что левая и правая части данного соотношения принимают на нём одно и то же значение:

- 1. Для левой части получим $f(\alpha_1, \ldots, \alpha_n)$.
- 2. Для правой части получим

$$\bigvee_{(\sigma_1, \dots, \sigma_m)} \alpha_1^{\sigma_1} \& \dots \& \alpha_m^{\sigma_m} \& f(\sigma_1, \dots, \sigma_m, \alpha_{m+1}, \dots, \alpha_n) =$$

$$|\alpha_1^{\sigma_1} \& \dots \& \alpha_m^{\sigma_m} = 1 \Leftrightarrow \sigma_1 = \alpha_1, \dots, \sigma_m = \alpha_m|$$

$$= \alpha_1^{\alpha_1} \& \dots \& \alpha_m^{\alpha_m} \& f(\alpha_1, \dots, \alpha_m, \alpha_{m+1}, \dots, \alpha_n) = f(\alpha_1, \dots, \alpha_n)$$

Следствие 13.3.2. Любая булева функция может быть реализована формулой над $\{\neg, \&, \lor\}$.

13.4 Дизъюнктивная нормальная форма

Литералом называется переменная или её отрицание.

Элементарным конъюнктом называется конъюнкция литералов, в которую каждая переменная входит не более одного раза. Элементарный конъюнкт называется **полным**, если он содержит все рассматриваемые переменные.

Элементарный конъюнкт K называется **импликантом** булевой функции f, если $K \vee f = f$. Импликант называется **простым**, если вычёркиванием литералов из него нельзя получить импликант f.

Утверждение 13.4.1. Элементарный конъюнкт K — импликант булевой функции $f \Leftrightarrow K \to f = 1$.

Доказательство. $K \vee f = f \Leftrightarrow \overline{K} \vee K \vee f = f \vee \overline{K} \Leftrightarrow 1 = K \to f$.

Дизъюнктивной нормальной формой, или ДНФ, называется дизъюнкция элементарных конъюнктов.

Совершенной дизъюнктивной нормальной формой, или **СДНФ**, называется дизъюнкция полных элементарных конъюнктов.

Утверждение 13.4.2. Булева функция f от n переменных, не равная тождественно 0, представима в виде $CДН\Phi$. Для доказательства достаточно разложить её по всем переменным.

ДНФ булевой функции f называется **сокращённой**, если все её конъюнкты — простые импликанты f.

Утверждение 13.4.3. Булева функция представима в виде сокращённой ДНФ, причём единственным образом.

Доказательство. Пусть $f(x_1, \ldots, x_n)$ — булева функция, $D = K_1 \vee K_2 \vee \ldots \vee K_m$ — дизъюнкция всех простых импликантов f. Возможны два случая:

- 1. Пусть $f = 0 \Leftrightarrow K_i = 0 \Leftrightarrow D = 0 \Rightarrow D = f$, где $i = 1, \ldots, m$.
- 2. Пусть f=1. Запишем f в виде СДН Φ :

$$1 = f = \bigvee_{\substack{(\sigma_1, \dots, \sigma_n) \\ f(\sigma_1, \dots, \sigma_n) = 1}} x_1^{\sigma_1} \& x_2^{\sigma_2} \& \dots \& x_n^{\sigma_n} \Rightarrow \exists \alpha_1, \dots, \alpha_n \colon x_1^{\alpha_1} \& x_2^{\alpha_2} \& \dots \& x_n^{\alpha_n} = 1$$

Получили импликант. Из него можно получить простой импликант K вычёркиванием литералов, причём K=1. K входит в D, тогда D=1=f.

13.5 Принцип двойственности

Если $f(x_1, \ldots, x_n)$ — булева функция, то **двойственной** к f функцией называется функция $\overline{f}(\overline{x_1}, \overline{x_2}, \ldots, \overline{x_n})$, обозначаемая $f^*(x_1, x_2, \ldots, x_n)$.

Утверждение 13.5.1. $(f^*)^* = f$.

Доказательство. $\left(f^*(x_1,x_2,\ldots,x_n)\right)^* = \left(\overline{f}(\overline{x_1},\overline{x_2},\ldots,\overline{x_n})\right)^* = f(x_1,x_2,\ldots,x_n)$.

Теорема 13.5.2 (принцип двойственности). Если формула $\Phi_1 = f_0(f_1, f_2, \dots, f_n)$ задаёт некоторую функцию f, то формула $\Phi_2 = f_0^*(f_1^*, f_2^*, \dots, f_n^*)$ задаёт f^* .

Доказательство. Без ограничения общности можно считать, что f_1, \ldots, f_n — функции от m переменных, т. к. можно добавить несущественные переменные.

$$f^*(x_1, \dots, x_m) = \overline{f}(\overline{x_1}, \dots, \overline{x_m}) = \overline{f}_0(\overline{\overline{f_1}}(\overline{x_1}, \dots, \overline{x_m}), \dots, \overline{\overline{f_n}}(\overline{x_1}, \dots, \overline{x_m})) =$$

$$= \overline{f}_0(\overline{f_1^*}(x_1, \dots, x_m), \dots, \overline{f_n^*}(x_1, \dots, x_m)) = f_0^*(f_1^*(x_1, \dots, x_m), \dots, f_n^*(x_1, \dots, x_m)) = \Phi_2$$

13.6 Конъюнктивная нормальная форма

Элементарным дизъюнктом называется дизъюнкция литералов, в которую каждая переменная входит не более одного раза. Элементарный дизъюнкт называется **полным**, если он содержит все рассматриваемые переменные.

Конъюнктивной нормальной формой, или КНФ, называется конъюнкция элементарных дизъюнктов.

Совершенной конъюнктивной нормальной формой, или **СКНФ**, называется конъюнкция полных элементарных дизъюнктов.

Утверждение 13.6.1. Булева функция $f(x_1, \ldots, x_n)$, не равная тождественно 1, представима в виде СКНФ. Доказательство.

$$f^*(x_1, \dots, x_n) = \bigvee_{\substack{(\sigma_1, \dots, \sigma_n) \\ f^*(\sigma_1, \dots, \sigma_n) = 1}} x_1^{\sigma_1} \& \dots \& x_n^{\sigma_n} \Leftrightarrow$$

$$\Leftrightarrow f^{**}(x_1, \dots, x_n) = \bigwedge_{\substack{(\sigma_1, \dots, \sigma_n) \\ f^*(\sigma_1, \dots, \sigma_n) = 1}} x_1^{\sigma_1} \vee \dots \vee x_n^{\sigma_n} =$$

$$= \bigwedge_{\substack{(\sigma_1, \dots, \sigma_n) \\ f(\overline{\sigma_1}, \dots, \overline{\sigma_n}) = 0}} x_1^{\sigma_1} \vee \dots \vee x_n^{\sigma_n} = \bigwedge_{\substack{(\sigma_1, \dots, \sigma_n) \\ f(\sigma_1, \dots, \sigma_n) = 0}} x_1^{\overline{\sigma_1}} \vee \dots \vee x_n^{\overline{\sigma_n}} \Leftrightarrow$$

$$\Leftrightarrow f(x_1, \dots, x_n) = \bigwedge_{\substack{(\sigma_1, \dots, \sigma_n) \\ f(\sigma_1, \dots, \sigma_n) = 0}} x_1^{\overline{\sigma_1}} \vee \dots \vee x_n^{\overline{\sigma_n}}$$

13.7 Методы нахождения сокращённой ДНФ

Утверждение 13.7.1. Пусть булева функция $f = D(K_1, \ldots, K_m) = K_1 \vee K_2 \vee \ldots \vee K_m$, где K_1, \ldots, K_m элементарные конъюнкты и K — простой импликант f. Тогда

- K содержит только переменные, входящие в D;
- $\exists i, K' : K_i = K \vee K'$.

Доказательство.

$$K \to f = 1 \Rightarrow (K = 1 \Rightarrow f = 1)$$

• Докажем методом от противного, что K содержит только переменные, входящие в D. Пусть K содержит переменную y, не входящую в D, тогда

$$K = x_1^{\sigma_1} \cdot \ldots \cdot x_n^{\sigma_n} y^{\sigma} \Rightarrow K(\sigma_1, \ldots, \sigma_n, \sigma) = 1 \Rightarrow f(\sigma_1, \ldots, \sigma_n, \sigma) = 1$$

y не входит в $D\Rightarrow f(\sigma_1,\ldots,\sigma_n,\overline{\sigma})=1\Rightarrow x_1^{\sigma_1}\cdot\ldots\cdot x_n^{\sigma_n}$ — импликант $\Rightarrow K$ не является простым импликантом. Противоречие.

• Пусть

$$K = x_1^{\sigma_1} \cdot \ldots \cdot x_n^{\sigma_n} \Rightarrow K(\sigma_1, \ldots, \sigma_n) = 1 \Rightarrow f(\sigma_1, \ldots, \sigma_n) = 1 \Rightarrow \exists i \colon K_i(\sigma_1, \ldots, \sigma_n) = 1$$

Покажем, что все литералы, содержащиеся в K, содержатся и в K_i .

- Пусть x_j входит в K, тогда $K(\sigma_1,\ldots,\sigma_{j-1},1,\sigma_{j+1},\ldots,\sigma_n)=1$. Если $\overline{x_j}$ входит в K_i , то $K_i(\sigma_1,\ldots,\sigma_{j-1},1,\sigma_{j+1},\ldots,\sigma_n)=0$. Противоречие, значит, $\overline{x_j}$ не входит в K_i .
- Пусть $\overline{x_i}$ входит в K. Аналогично доказывается, что x_i не входит в K_i .
- Пусть $x_j^{\sigma_j}$ входит в K. Если ни x_j , ни $\overline{x_j}$ не входят в K_i , то $K_i(\sigma_1,\ldots,\sigma_j,\ldots,\sigma_n)=K_i(\sigma_1,\ldots,\overline{\sigma_j},\ldots,\sigma_n)=1\Rightarrow x_1^{\sigma_1}\cdot\ldots\cdot x_{i-1}^{\sigma_{i-1}}x_{i+1}^{\sigma_{i+1}}\cdot\ldots\cdot x_n^{\sigma_n}$ импликант $\Rightarrow K$ не является простым импликантом. Противоречие, значит, x_j или $\overline{x_j}$ входит в K_i .

Остаётся единственный возможный случай: если $x_j^{\sigma_j}$ входит в K, то $x_j^{\sigma_j}$ входит и в K_i . Тогда $\exists K'\colon K_i=K\&K'$.

Утверждение 13.7.2. Если K_1, \ldots, K_m и M_1, \ldots, M_r — простые импликанты булевых функций f и g соответственно, то любой простой импликант функции f & g равен K_iM_j для некоторых i,j.

Доказательство. Пусть K — простой импликант f & g. По утверждению 13.7.1 $\exists i, j, K' \colon K_i M_i = KK'$.

- 1. Докажем методом от противного, что $K_iM_j=K$. Пусть $K'\neq 1,\ y$ переменная, входящая в K', тогда y входит в K_i или в M_j . Без ограничения общности можно считать, что y входит в K_i . Рассмотрим элементарный конъюнкт \widetilde{K}_i , полученный из K_i удалением y. Тогда \widetilde{K}_i импликант f, т. к. если изменить значение y, то значение \widetilde{K}_i и K не изменятся. Если $\widetilde{K}_i=1$, то можно подобрать такой набор значений переменных, что $K_i=1\Rightarrow f\ \&\ g=1\Rightarrow f=1$, тогда K_i не является простым импликантом. Противоречие, значит, $K_iM_j=K$.
- 2. Докажем методом от противного, что K_iM_j простой импликант. Пусть найдётся переменная y такая, что её удаление из K_iM_j даёт импликант $\widetilde{K_iM_j}$. $\widetilde{K_iM_j}=1\Rightarrow f\ \&\ g=1\Rightarrow f=1\ \&\ g=1$, тогда K_i или M_j не является простым импликантом. Противоречие, значит, K_iM_j простой импликант.

Метод Блейка

Применяется к произвольной ДНФ.

- 1. Применяем формулу обобщённого склеивания, пока возможно: $xK_1 \vee \overline{x}K_2 = xK_1 \vee \overline{x}K_2 \vee K_1K_2$.
- 2. Применяем формулу поглощения: $K \vee KK_1 = K$.

Доказательство корректности. Пусть после первого этапа метода Блейка получена ДНФ D' булевой функции f.

- 1. Докажем методом математической индукции, что для любого импликанта K функции f найдётся такой конъюнкт K' в D', что K импликант K'.
 - База индукции. Пусть K содержит все переменные f. K импликант f, значит, K входит в D'.
 - Шаг индукции. Пусть для любого импликанта K функции f, содержащего более n переменных, найдётся такой конъюнкт K' в D', что K импликант K'. Докажем то же для импликанта K, содержащего n переменных. Пусть y переменная, не входящая в K, тогда $K_1 = y \& K$, $K_2 = \overline{y} \& K$ импликанты f. По предположению индукции для них найдутся конъюнкты K'_1, K'_2 в D' такие, что K_1, K_2 импликанты K'_1, K'_2 соответственно. Возможны два случая:
 - (а) Пусть K_1' или K_2' не содержит y, тогда K его импликант.
 - (b) Пусть и K_1' , и K_2' содержат y, тогда $K_1' = y \& K_1''$, $K_2' = \overline{y} \& K_2''$. D' содержит $K_1'' \& K_2''$, значит, D' содержит $K_1'' \& K_2''$. K импликант $K_1'' \& K_2''$.

Если K — простой импликант f, то существует такой конъюнкт K' в D', что K — импликант K'. Легко показать методом от противного, что K = K', значит, в D' входят все простые импликанты.

2. Пусть K — не простой импликант f, содержащийся в D', тогда из него вычёркиванием литералов можно получить простой импликант K'. D' содержит K', тогда на втором этапе метода Блейка имеем $K \vee K' = K'$. Т. о., после второго этапа метода Блейка получим ДНФ, содержащую только простые импликанты.

Метод Квайна

Применяется к СДНФ. Пусть дана булева функция от n переменных. Начинаем с k=n.

- 1. Применяем формулу $xK \vee \overline{x}K = xK \vee \overline{x}K \vee K$ ко всем конъюнктам, содержащим k литералов.
- 2. Применяем формулу поглощения: $K \vee KK_1 = K$.
- 3. Уменьшаем значение k на 1 и повторяем с начала.

Доказательство корректности. Пусть в сокращённой ДНФ K — элементарный конъюнкт, не содержащий переменной y, тогда $K = yK \vee \overline{y}K$. Добавляя таким образом переменные, получим СДНФ. Тогда, если проделаем обратные операции (что и является методом Квайна), получим сокращённую ДНФ. \blacksquare

Метод Нельсона

Применяется к произвольной КНФ.

- 1. Раскрываем скобки: $(a \lor c)(b \lor c) = ab \lor c$.
- 2. Упрощаем, используя формулы $xxK=xK, x\overline{x}K=0, K\vee KK_1=K.$

Доказательство корректности. КНФ — конъюнкция сокращённых ДНФ, поэтому раскрытием скобок и упрощением по утверждению 13.7.2 получим сокращённую ДНФ. ■

13.8 Геометрическая интерпретация булевых функций

Пусть дана булева функция $f \colon B^n \to B$. B^n можно отождествить с вершинами единичного куба в \mathbb{R}^n .

С каждой булевой функцией f можно связать множество N_f , состоящее из вершин, в которых f=1.

Пусть дан n-мерный куб. Множество его вершин, для которых значения x_{i_1}, \ldots, x_{i_k} совпадают, называется **гранью ранга** n-k. Очевидно, что каждая грань однозначно соответствует некоторому элементарному конъюнкту, который принимает значение 1 в точности на вершинах грани.

Грань N_K называется максимальной относительно булевой функции f, если $N_K \subseteq N_f$ & $\forall N_{K'}$ $N_K \subseteq N_{K'} \subseteq N_f \Rightarrow N_K = N_K'$.

Утверждение 13.8.1. Каждой максимальной относительно булевой функции f грани соответствует простой импликант f.

Доказательство. Пусть N_K — максимальная грань.

- 1. $K(\alpha_1,\ldots,\alpha_n)=1\Rightarrow (\alpha_1,\ldots,\alpha_n)\in N_K\subseteq N_f\Rightarrow f(\alpha_1,\ldots,\alpha_n)=1\Rightarrow K$ импликант f.
- 2. Докажем методом от противного простоту K. Пусть K не простой, тогда можно получить простой импликант K' из K вычёркиванием переменных, поэтому $N_K \subset N_{K'} \subseteq N_f$, значит, N_K не является максимальной гранью. Противоречие.

Утверждение 13.8.2. *Если* K — простой импликант, то N_K — максимальная грань.

Доказательство методом от противного. Пусть N_K не является максимальной гранью, тогда $N_K \subset N_K'$, где N_K' — максимальная грань, значит, можно получить простой импликант K' из K вычёркиванием переменных, поэтому K не является простым импликантом. Противоречие. \blacksquare

Набор граней N_{K_1},\dots,N_{K_m} называется покрытием булевой функции f, если $N_f=N_{K_1}\cup\dots\cup N_{K_m}.$

Утверждение 13.8.3. Каждое покрытие булевой функции f однозначно соответствует ДН Φ для f.

Доказательство. Каждому конъюнкту в ДНФ однозначно соответствует некоторая грань в покрытии, тогда покрытие из этих граней однозначно соответствует данной ДНФ. ■

Следствие 13.8.4. Сокращённой $\mathcal{L}H\Phi$ соответствует покрытие из всех максимальных граней.

ДНФ булевой функции f, содержащая наименьшее число литералов, называется минимальной.

ДНФ булевой функции f, содержащая наименьшее число элементарных конъюнктов, называется **кратчайшей**.

Покрытие булевой функции f называется **неприводимым**, если оно состоит только из максимальных граней и при удалении любой грани из него оно перестаёт быть покрытием, а ДН Φ , соответствующая ему, называется **тупиковой**.

Утверждение 13.8.5. Кратчайшая или минимальная ДНФ является тупиковой.

Доказательство методом от противного. Пусть кратчайшая/минимальная ДНФ не является тупиковой, тогда из соответствующего ей покрытия можно удалить грань. Но в таком случае исходная ДНФ не является кратчайшей/минимальной. Противоречие. ■

13.9 Операции типа I и II

Пусть даны ДНФ D и эквивалентная ей D'. Говорят, что:

- ДНФ D' получается из D операцией типа I, если D' получена из D вычёркиванием элементарного конъюнкта;
- ДНФ D' получается из D операцией типа II, если D' получена из D вычёркиванием одного или нескольких литералов в каком-либо элементарном конъюнкте.

ДНФ D называется **тупиковой относительно операций типа I и II**, если они к ней неприменимы.

Утверждение 13.9.1. ДНФ D тупиковая относительно операций типа I и $II \Leftrightarrow D$ тупиковая в геометрическом смысле.

Доказательство.

- $1. \Rightarrow$. Если к D неприменимы операции типа I и II, то ей соответствует неприводимое покрытие, поэтому D тупиковая в геометрическом смысле.
- $2. \Leftarrow.$

- (a) Операции типа I соответствует удаление грани из покрытия, соответствующего D. Удалить грань нельзя, значит, операция типа I неприменима к D.
- (b) Пусть $D=K_1\vee\ldots\vee K_m,\, K_i=x_j^{\sigma_j}K_i',\,$ тогда $N_{K_i'}\subset N_{K_i}.$ Если $N_f=N_{K_1}\cup\ldots\cup N_{K_i'}\cup\ldots\cup N_{K_m},\,$ то N_{K_i} не является максимальной гранью, что неверно, значит, операция типа II неприменима к D.

Тогда D тупиковая относительно операций типа I и II.

13.10 Построение тупиковых ДНФ

Пусть дана булева функция f.

- 1. Находим сокращённую ДНФ $D = K_1 \vee \ldots \vee K_m$ для f.
- 2. Пусть $N_f = \{P_1, \dots, P_r\}$. Составляем следующую таблицу, называемую **таблицей Квайна**:

	P_1	P_2		P_r	
K_1	σ_{11}	σ_{12}		σ_{1r}	(0. D. 4.W.
K_2	σ_{21}	σ_{22}		σ_{2r}	$, \ \sigma_{ij} = \begin{cases} 0, \ P_j \notin N_{K_i} \\ 1, \ P_j \in N_{K_i} \end{cases}$
:	:	:	٠	:	$ (1, P_j \in N_{K_i}) $
K_m	σ_{m1}	σ_{m2}		σ_{mr}	

3. Составляем выражение $\bigotimes_{j=1}^r (\sigma_{1j}K_1 \vee \sigma_{2j}K_2 \vee \ldots \vee \sigma_{mj}K_m)$ и раскрываем в нём скобки по формулам $(A \vee B)C = AC \vee BC$, $A \vee BA = A$. В полученной ДНФ относительно переменных K_1, \ldots, K_m каждому конъюнкту однозначно соответствует тупиковая ДНФ для $f \colon K_{i_1} \& \ldots \& K_{i_p} \to K_{i_1} \vee \ldots \vee K_{i_p}$.

Доказательство. $\sigma_{1j}K_1 \vee \ldots \vee \sigma_{mj}K_m = 1 \Rightarrow P_j \in N_{\sigma_{1j}K_1} \cup \ldots \cup N_{\sigma_{mj}K_m}$, тогда если $\bigoplus_{j=1}^r (\sigma_{1j}K_1 \vee \ldots \vee \sigma_{mj}K_m) = 1$, то набор полученных граней покрывает все вершины из N_f .

13.11 Полнота и замкнутость классов булевых функций

Множество F булевых функций (также называемое **классом**) называется **полным**, если любая булева функция реализуется формулой над F.

Множество, состоящее из всех булевых функций, обозначается P_2 .

Теорема 13.11.1. Если $F = \{f_1, f_2, \ldots\}$ — полный набор булевых функций, $G = \{g_1, g_2, \ldots\}$ — набор булевых функций, причём каждая функция из F реализуется формулой над G, то G — полный набор.

Доказательство.

$$f_1 = \Phi_1(g_1, g_2, \dots) \& f_2 = \Phi_2(g_1, g_2, \dots) \& \dots \Rightarrow$$

$$\Rightarrow \forall f = \Phi(f_1, f_2, \dots) = \Phi(\Phi_1(g_1, g_2, \dots), \Phi_2(g_1, g_2, \dots), \dots) = \Phi(g_1, g_2, \dots)$$

Значит, G — полный набор.

Замыканием множества F булевых функций называется множество всех булевых функций, реализуемых формулами над F, и обозначается [F]. Свойства замыкания:

- 1. $F \subseteq [F]$;
- 2. [[F]] = [F], т. к. [[F]] множество функций, реализуемых формулами над [F], которые реализуются формулами над [F];
- 3. $F \subseteq K \Rightarrow [F] \subseteq [K]$, т. к. формула над F является формулой над K.

Утверждение 13.11.2. Множество F булевых функций полно \Leftrightarrow $[F] = P_2$.

13.11.1 Класс T_0 функций, сохраняющих константу 0

$$T_0 = \{ f(x_1, \dots, x_n) \mid f(0, \dots, 0) = 0 \}$$

Доказательство замкнутости. Пусть $f, f_1, \ldots, f_n \in T_0$, тогда

$$\Phi = f(f_1(0, \dots, 0), \dots, f_n(0, \dots, 0)) = f(0, \dots, 0) = 0$$

Значит, Φ реализует функцию из T_0 .

 T_0 содержит $\frac{2^{2^n}}{2} = 2^{2^n-1}$ функций от n переменных.

13.11.2 Класс T_1 функций, сохраняющих константу 1

$$T_1 = \{ f(x_1, \dots, x_n) \mid f(1, \dots, 1) = 1 \}$$

Доказательство замкнутости. Пусть $f, f_1, \ldots, f_n \in T_1$, тогда

$$\Phi = f(f_1(1,\ldots,1),\ldots,f_n(1,\ldots,1)) = f(1,\ldots,1) = 1$$

Значит, Φ реализует функцию из T_1 .

 T_1 содержит $\frac{2^{2^n}}{2} = 2^{2^n-1}$ функций от n переменных.

13.11.3 Класс S самодвойственных функций

Булева функция f называется **самодвойственной**, если $f^* = f$.

$$S = \{ f(x_1, \dots, x_n) \mid f(x_1, \dots, x_n) = f^*(x_1, \dots, x_n) \} \Leftrightarrow$$

$$\Leftrightarrow S = \{ f(x_1, \dots, x_n) \mid f(x_1, \dots, x_n) = \overline{f}(\overline{x_1}, \dots, \overline{x_n}) \}$$

Доказательство замкнутости. Пусть $f, f_1, \ldots, f_n \in S$, тогда $\Phi = f(f_1, \ldots, f_n) = f^*(f_1^*, \ldots, f_n^*) = \Phi^*$, значит, Φ реализует функцию из S.

S содержит $2^{2^{n-1}} = \sqrt{2^{2^n}}$ функций от n переменных.

Лемма 13.11.3 (о несамодвойственной функции). Если булева функция $f \notin S$, то подстановкой x, \overline{x} вместо переменных можно получить константу.

Доказательство.

$$f(x_1,\ldots,x_n) \notin S \Leftrightarrow \exists \alpha_1,\ldots,\alpha_n \colon f(\alpha_1,\ldots,\alpha_n) \neq \overline{f(\overline{\alpha_1},\ldots,\overline{\alpha_n})}$$

Подставим в $f x^{\alpha_i}$ вместо x_i .

- 1. При x=0 получим $f(0^{\alpha_1},\ldots,0^{\alpha_n})=f(\overline{\alpha_1},\ldots,\overline{\alpha_n})=f(\alpha_1,\ldots,\alpha_n)$.
- 2. При x = 1 получим $f(1^{\alpha_1}, \dots, 1^{\alpha_n}) = f(\alpha_1, \dots, \alpha_n)$.

 $f(0^{\alpha_1}, \dots, 0^{\alpha_n}) = f(1^{\alpha_1}, \dots, 1^{\alpha_n})$, значит, $f(x^{\alpha_1}, \dots, x^{\alpha_n})$ — константа.

13.11.4 Класс M монотонных функций

Введём отношение \preccurlyeq : $\overline{\alpha} = (\alpha_1, \dots, \alpha_n) \preccurlyeq \overline{\beta} = (\beta_1, \dots, \beta_n) \Leftrightarrow \alpha_1 \leqslant \beta_1 \& \dots \& \alpha_n \leqslant \beta_n$. Булева функция f называется **монотонной**, если $\forall \overline{\alpha}, \overline{\beta} \ \overline{\alpha} \preccurlyeq \overline{\beta} \Rightarrow f(\overline{\alpha}) \leqslant f(\overline{\beta})$.

$$M = \{ f(x_1, \dots, x_n) \mid \forall \overline{\alpha}, \overline{\beta} \ \overline{\alpha} \preccurlyeq \overline{\beta} \Rightarrow f(\overline{\alpha}) \leqslant f(\overline{\beta}) \} \Leftrightarrow$$

$$\Leftrightarrow M = \{ f(x_1, \dots, x_n) \mid (\forall i \ \alpha_i \leqslant \beta_i) \Rightarrow f(\alpha_1, \dots, \alpha_n) \leqslant f(\beta_1, \dots, \beta_n) \}$$

Доказательство замкнутости. Пусть $f, f_1, \ldots, f_n \in S, \Phi = f(f_1, \ldots, f_n)$.

$$\overline{\alpha} \preccurlyeq \overline{\beta} \Rightarrow f(\overline{\alpha}) \leqslant f(\overline{\beta}) \& f_1(\overline{\alpha}) \leqslant f_1(\overline{\beta}) \& \dots \& f_n(\overline{\alpha}) \leqslant f_n(\overline{\beta}) \Rightarrow$$

$$\Rightarrow (f_1(\overline{\alpha}), \dots, f_n(\overline{\alpha})) \leq (f_1(\overline{\beta}), \dots, f_n(\overline{\beta})) \Rightarrow f(f_1(\overline{\alpha}), \dots, f_n(\overline{\alpha})) \leq f(f_1(\overline{\beta}), \dots, f_n(\overline{\beta}))$$

Значит, Φ реализует функцию из M.

Следствие 13.11.4. Если некоторая ДН Φ для булевой функции f не содержит отрицаний, то f монотонна.

Доказательство. ДНФ без отрицаний — это формула над $\{\&, \lor\}$. $\&, \lor$ — монотонные функции, значит, ДНФ без отрицаний тоже монотонна, тогда и f монотонна.

Лемма 13.11.5 (о немонотонной функции). Если булева функция $f \notin M$, то подстановкой 0, 1, x вместо переменных можно получить \overline{x} .

Доказательство.

$$f(x_1, \dots, x_n) \notin M \Leftrightarrow \exists \overline{\alpha}, \overline{\beta} : \overline{\alpha} \preccurlyeq \overline{\beta} \& f(\overline{\alpha}) \nleq f(\overline{\beta}) \Leftrightarrow f(\overline{\alpha}) = 1 \& f(\overline{\beta}) = 0$$

1. Пусть $\overline{\alpha}$ и $\overline{\beta}$ отличаются в нескольких позициях: $\overline{\alpha}=(\ldots,\gamma_1,\ldots,\gamma_2,\ldots,\gamma_k,\ldots)$, где γ_1,\ldots,γ_k — позиции, в которых $\overline{\alpha}$ и $\overline{\beta}$ отличаются, тогда $\gamma_1=\gamma_2=\ldots=\gamma_k=0$.

Рассматривая эти позиции, введём наборы значений

$$\overline{\alpha}_0 = \overline{\alpha} = (\dots, 0, \dots, 0, \dots, 0, \dots), \ \overline{\alpha}_1 = (\dots, 1, \dots, 0, \dots, 0, \dots),$$
$$\overline{\alpha}_2 = (\dots, 1, \dots, 1, \dots, 0, \dots), \ \dots, \ \overline{\alpha}_k = (\dots, 1, \dots, 1, \dots, 1, \dots)$$

Легко показать методом от противного, что $f(\overline{\alpha}) > f(\overline{\beta}) \Rightarrow \exists 0 \leqslant i < k : f(\overline{\alpha}_i) > f(\overline{\alpha}_{i+1})$. Т.о., этот случай сведён к следующему случаю.

2. Пусть $\overline{\alpha}$ и $\overline{\beta}$ отличаются только в одной позиции.

$$f(\alpha_1, \dots, \alpha_{i-1}, 0, \alpha_{i+1}, \dots, \alpha_n) = 1, \ f(\alpha_1, \dots, \alpha_{i-1}, 1, \alpha_{i+1}, \dots, \alpha_n) = 0 \Rightarrow$$
$$\Rightarrow f(\alpha_1, \dots, \alpha_{i-1}, x, \alpha_{i+1}, \dots, \alpha_n) = \overline{x}$$

Теорема 13.11.6. Если булева функция $f \in M$ и K — простой импликант f, то K не содержит отрицаний. Доказательство методом от противного. Пусть дана $f(x_1, \ldots, x_n, y), K = x_1^{\sigma_1} \cdot \ldots \cdot x_k^{\sigma_k} \overline{y}$.

$$K(\sigma_1, \dots, \sigma_k, 0) = 1 \Rightarrow f(\sigma_1, \dots, \sigma_k, x_{k+1}, \dots, x_n, 0) = 1 \Rightarrow f(\sigma_1, \dots, \sigma_k, x_{k+1}, \dots, x_n, 1) = 1$$

Пусть $K' = x_1^{\sigma_1} \& \dots \& x_k^{\sigma_k} \Rightarrow K(\sigma_1, \dots, \sigma_k) = 1 \& f(\sigma_1, \dots, \sigma_k, x_{k+1}, \dots, x_n, y) = 1 \Rightarrow K'$ – импликант $f \Rightarrow K$ не является простым импликантом f. Противоречие.

Теорема 13.11.7. Булева функция $f \in M \Leftrightarrow$ сокращённая ДНФ для неё не содержит отрицаний. Доказательство.

- $1. \Rightarrow$. Простые импликанты f не содержат отрицаний. Сокращённая ДНФ дизъюнкция простых импликантов, значит, она не содержит отрицаний.
- $2. \Leftarrow. f \in M$ как функция, реализуемая формулой над монотонными функциями.

Теорема 13.11.8. Сокращённая ДНФ для монотонной булевой функции является тупиковой.

Доказательство. Пусть $K=x_1 \& \dots \& x_k$ — простой импликант монотонной булевой функции $f(x_1,\dots,x_n)$, $f=K \lor f'$. Каждый импликант f' должен содержать один из литералов x_{k+1},\dots,x_n , т. к. K — простой импликант. Тогда при $x_1=\dots=x_k=1,\ x_{k+1}=\dots=x_n=0$ имеем $f(x_1,\dots,x_n)=1,\ f'(x_1,\dots,x_n)=0 \Rightarrow f\neq f'$ \Rightarrow из сокращённой ДНФ нельзя вычеркнуть ни один из конъюнктов, поэтому она тупиковая. \blacksquare

Класс L линейных функций

Булева функция f называется **линейной**, если она реализуется формулой над $\{+,1\}$.

$$L = \{ f(x_1, \dots, x_n) \mid f(x_1, \dots, x_n) = a_0 + a_1 x_1 + \dots + a_n x_n, \ a_i \in B \}$$

Доказательство замкнутости. Пусть

$$f(x_1, \dots, x_n) = c_0 + c_1 x_1 + \dots + c_n x_n,$$

$$f_1(x_1, \dots, x_n) = c_{10} + c_{11} x_1 + \dots + c_{1n} x_n, \dots, f_n(x_1, \dots, x_n) = c_{n0} + c_{n1} x_1 + \dots + c_{nn} x_n$$

$$\Phi = f(f_1, \dots, f_n) = c_0 + c_1(c_{10} + c_{11}x_1 + \dots + c_{1n}x_n) + \dots + c_n(c_{n0} + c_{n1}x_1 + \dots + c_{nn}x_n) =$$

$$= c_0 + c_1c_{10} + \dots + c_nc_{n0} + (c_1c_{11} + \dots + c_nc_{n1})x_1 + \dots + (c_1c_{1n} + \dots + c_nc_{nn})x_n$$

Значит, Φ реализует функцию из L.

L содержит 2^{n+1} функций от n переменных.

Лемма 13.11.9 (о нелинейной функции). Если булева функция $f \notin L$, то подстановкой $0, 1, x, y, \overline{x}, \overline{y}$ вместо переменных u, возможно, инверсией значения f можно получить x & y.

Доказательство. $f \notin L$, тогда без ограничения общности можно считать, что f содержит x_1x_2 . Пусть

$$f(x_1, \dots, x_n) = x_1 x_2 f_1(x_3, \dots, x_n) + x_1 f_2(x_2, x_3, \dots, x_n) + x_2 f_3(x_1, x_3, \dots, x_n) + f_4(x_3, \dots, x_n) \Rightarrow$$

$$\Rightarrow \exists \alpha_3, \dots, \alpha_n \colon f_1(\alpha_3, \dots, \alpha_n) = 1$$

Рассмотрим

$$\varphi(x_1, x_2) = f(x_1, x_2, \alpha_3, \dots, \alpha_n) = x_1 x_2 + \alpha x_1 + \beta x_2 + \gamma,$$

$$\psi(x_1, x_2) = \varphi(x_1 + \beta, x_2 + \alpha) + \alpha \beta + \gamma =$$

$$= x_1 x_2 + \alpha x_1 + \beta x_2 + \alpha \beta + \alpha x_1 + \alpha \beta + \beta x_2 + \alpha \beta + \gamma + \alpha \beta + \gamma = x_1 x_2$$

 ψ получена из φ подстановкой $x,y,\overline{x},\overline{y}$ и, возможно, инверсией значения φ , которая, в свою очередь, получена из f подстановкой 0,1. ■

13.12 Многочлен Жегалкина

Многочленом Жегалкина называется многочлен вида $\sum_{(i_1,...,i_k)} a_{i_1,...,i_k} x_{i_1} \cdot ... \cdot x_{i_k}$, где $a_{i_1,...,i_k} \in B$.

Теорема 13.12.1 (Жегалкина). Каждая булева функция единственным образом представима в виде многочлена Жегалкина.

Доказательство.

- 1. Докажем представимость. Любую булеву функцию можно реализовать формулой над ⟨¬, &, ∨⟩. Тогда
 - (a) Заменим $\bar{x} = x + 1$, x & y = xy, $x \lor y = xy + x + y$.
 - (b) Раскроем скобки по дистрибутивности: x(y+z) = xy + xz.
 - (c) Упростим по формулам x + x = 0, $x + \overline{x} = 1$, x + 0 = x, $x \cdot 0 = 0$, xx = x.

Получим многочлен Жегалкина.

- 2. Докажем единственность. Многочлен Жегалкина для булевой функции от n переменных можно представить в виде $\sum_{i=0}^{2^n-1} c_i K_i$, где c_i некоторые коэффициенты, K_i элементарные конъюнкты. Тогда всего различных многочленов 2^{2^n} , т. е. столько же, сколько и булевых функций. Каждая булева функция представима хотя бы одним многочленом, значит, каждой функции однозначно соответствует многочлен Жегалкина.
- Методы построения многочленов Жегалкина по заданной функции:
- 1. Эквивалентные преобразования

Описаны в доказательстве теоремы Жегалкина.

2. Эквивалентные преобразования СДНФ

Заменим в СДНФ $K_1 \vee K_2 = K_1 + K_2$, $\overline{x} = x + 1$ и упростим.

Доказательство корректности. Пусть K_1 и K_2 — элементарные конъюнкты СДНФ. Тогда

$$\exists x \colon K_1 = xK_1' \& K_2 = \overline{x}K_2' \Rightarrow K_1 \lor K_2 = x\overline{x}K_1'K_2' + xK_1' + \overline{x}K_2' = xK_1' + \overline{x}K_2' = K_1 + K_2$$

3. Метод неопределённых коэффициентов

Пусть $f(x_1,\ldots,x_n)=\sum\limits_{i=0}^{2^n-1}c_iK_i$. Составим систему уравнений:

$$\begin{cases}
f(0, \dots, 0, 0) = c_0 \\
f(0, \dots, 0, 1) = c_0 + c_{2^n - 1} \\
\dots \\
f(1, \dots, 1, 1) = c_0 + \dots + c_{2^n - 1}
\end{cases}$$

Решив её, найдём коэффициенты многочлена Жегалкина.

4. Метод Паскаля

Введём по индукции операцию T над векторами размерности 2^n :

- База индукции. n=1. Пусть $\overline{\alpha}=(\alpha_0,\alpha_1)$, тогда $T(\overline{\alpha})=(\alpha_0,\alpha_0+\alpha_1)$.
- Шаг индукции. n>1. Пусть $\overline{\alpha}=(\overline{\alpha}_0,\overline{\alpha}_1)$, где $\overline{\alpha}_0,\overline{\alpha}_1$ векторы размерности 2^{n-1} , тогда $T(\overline{\alpha})=(T(\overline{\alpha}_0),T(\overline{\alpha}_0)+T(\overline{\alpha}_1))$.

Исследуем свойства операции T:

(a)
$$T(\overline{\alpha} + \overline{\beta}) = T(\overline{\alpha}) + T(\overline{\beta})$$

Доказательство методом математической индукции.

• База индукции. n=1. Пусть $\overline{\alpha}=(\alpha_0,\alpha_1), \overline{\beta}=(\beta_0,\beta_1),$ тогда

$$T(\overline{\alpha} + \overline{\beta}) = T((\alpha_0, \alpha_1) + (\beta_0, \beta_1)) = T((\alpha_0 + \beta_0, \alpha_1 + \beta_1)) = (\alpha_0 + \beta_0, \alpha_0 + \beta_0 + \alpha_1 + \beta_1) =$$

$$= (\alpha_0 + \beta_0, \alpha_0 + \alpha_1 + \beta_0 + \beta_1) = T(\alpha_0, \alpha_1) + T(\beta_0, \beta_1) = T(\overline{\alpha}) + T(\overline{\beta})$$

• *Шаг индукции*. Предположим, что утверждение верно для векторов размерности 2^n . Докажем его для $\overline{\alpha} = (\overline{\alpha}_0, \overline{\alpha}_1), \ \overline{\beta} = (\overline{\beta}_0, \overline{\beta}_1), \ \text{где } \overline{\alpha}_0, \overline{\alpha}_1, \overline{\beta}_0, \overline{\beta}_1$ — векторы размерности 2^n , тогда

$$T(\overline{\alpha} + \overline{\beta}) = T((\overline{\alpha}_0, \overline{\alpha}_1) + (\overline{\beta}_0, \overline{\beta}_1)) = T((\overline{\alpha}_0 + \overline{\beta}_0, \overline{\alpha}_1 + \overline{\beta}_1)) =$$

$$= (T(\overline{\alpha}_0 + \overline{\beta}_0), T(\overline{\alpha}_0 + \overline{\beta}_0) + T(\overline{\alpha}_1 + \overline{\beta}_1)) =$$

$$= (T(\overline{\alpha}_0) + T(\overline{\beta}_0), T(\overline{\alpha}_0) + T(\overline{\beta}_0) + T(\overline{\alpha}_1) + T(\overline{\beta}_1)) =$$

$$= (T(\overline{\alpha}_0), T(\overline{\alpha}_0) + T(\overline{\alpha}_1)) + (T(\overline{\beta}_0), T(\overline{\beta}_0) + T(\overline{\beta}_1)) =$$

$$= T(\overline{\alpha}_0, \overline{\alpha}_1) + T(\overline{\beta}_0, \overline{\beta}_1) = T(\overline{\alpha}) + T(\overline{\beta})$$

(b) $T(T(\overline{\alpha})) = \overline{\alpha}$

Доказательство методом математической индукции.

• База индукции. n=1. Пусть $\overline{\alpha}=(\alpha_0,\alpha_1)$, тогда

$$T(T(\overline{\alpha})) = T(T((\alpha_0, \alpha_1))) = T((\alpha_0, \alpha_0 + \alpha_1)) = (\alpha_0, \alpha_0 + \alpha_0 + \alpha_1) = (\alpha_0, \alpha_1) = \overline{\alpha}$$

• Шаг индукции. Предположим, что утверждение верно для векторов размерности 2^n . Докажем его для $\overline{\alpha} = (\overline{\alpha}_0, \overline{\alpha}_1)$, где $\overline{\alpha}_0, \overline{\alpha}_1$ — векторы размерности 2^n , тогда

$$T(T(\overline{\alpha})) = T(T((\overline{\alpha}_0, \overline{\alpha}_1))) = T((T(\overline{\alpha}_0), T(\overline{\alpha}_0) + T(\overline{\alpha}_1))) =$$

$$= (T(T(\overline{\alpha}_0)), T(T(\overline{\alpha}_0)) + T(T(\overline{\alpha}_0) + T(\overline{\alpha}_1))) =$$

$$= (T(T(\overline{\alpha}_0)), T(T(\overline{\alpha}_0)) + T(T(\overline{\alpha}_0)) + T(T(\overline{\alpha}_1))) =$$

$$= (T(T(\overline{\alpha}_0)), T(T(\overline{\alpha}_1))) = (\overline{\alpha}_0, \overline{\alpha}_1) = \overline{\alpha}$$

Если \overline{c}_f — вектор коэффициентов многочлена Жегалкина, соответствующего булевой функции $f, \overline{\alpha}_f$ — вектор значений f, то $T(\overline{\alpha}_f) = \overline{c}_f, T(\overline{c}_f) = \overline{\alpha}_f$.

Доказательство. Докажем методом математической индукции, что $T(\overline{\alpha}_f) = \overline{c}_f$.

• База индукции. n=1. Пусть $\overline{\alpha}_f=(a,b)$. Найдём \overline{c}_f методом неопределённых коэффициентов:

$$\begin{cases} f(0) = c_0 \\ f(1) = c_0 + c_1 \end{cases} \Leftrightarrow \begin{cases} c_0 = a \\ c_0 + c_1 = b \end{cases} \Leftrightarrow \begin{cases} c_0 = a \\ c_1 = a + b \end{cases} \Rightarrow \overline{c}_f = (a, a + b) = T(\overline{\alpha}_f)$$

• *Шаг индукции*. Предположим, что утверждение верно для вектора значений размерности 2^n . Докажем его для размерности 2^{n+1} .

$$f(x_1, \dots, x_{n+1}) = \sum_{i=0}^{2^{n+1}-1} c_i K_i = \sum_{i=0}^{2^n-1} c_i K_i + \sum_{i=2^n}^{2^{n+1}-1} c_i K_i$$

 x_1 не входит ни в один из конъюнктов $K_0, K_1, \dots, K_{2^n-1}$ и входит в каждый из $K_{2^n}, K_{2^n+1}, \dots, K_{2^{n+1}-1}$.

(a) Пусть $x_1 = 0$.

$$f_0(x_2, \dots, x_{n+1}) = \sum_{i=0}^{2^n - 1} c_i K_i \Rightarrow T(\overline{\alpha}_{f_0}) = \overline{c}_{f_0} = (c_0, c_1, \dots, c_{2^n - 1})$$

(b) Пусть $x_1 = 1$.

$$f_1(x_2, \dots, x_{n+1}) = f(1, x_2, \dots, x_{n+1}) = \sum_{i=0}^{2^n - 1} c_i K_i + x_1 \sum_{i=2^n}^{2^{n+1} - 1} c_i K_i' = \sum_{i=0}^{2^n - 1} (c_i + c_{2^n + i}) K_i$$

т. к. $K_0=1$ и $K_{2^n}=x_1, K_1=x_n$ и $K_{2^n+1}=x_1x_n, \ldots,$ т. е. $K'_{2^n+i}=K_i,$ тогда $T(\overline{\alpha}_{f_1})=\overline{c}_{f_1}=(c_0+c_{2^n},c_1+c_{2^n+1},\ldots,c_{2^n-1}+c_{2^{n+1}-1}).$

Т. о., получим

$$T(\overline{\alpha}_f) = T((\overline{\alpha}_{f_0}, \overline{\alpha}_{f_1})) = (T(\overline{\alpha}_{f_0}), T(\overline{\alpha}_{f_0}) + T(\overline{\alpha}_{f_1})) =$$

$$= ((c_0, \dots, c_{2^n - 1}), (c_0 + c_0 + c_{2^n}, c_1 + c_1 + c_{2^n + 1}, \dots, c_{2^n - 1} + c_{2^n - 1} + c_{2^{n + 1} - 1})) =$$

$$= ((c_0, \dots, c_{2^n - 1}), (c_{2^n}, \dots, c_{2^{n + 1} - 1})) = \overline{c}_f$$

Тогда $T(\overline{c}_f) = T(T(\overline{\alpha}_f)) = \overline{\alpha}_f$.

13.13 Замкнутые классы булевых функций

Теорема 13.13.1 (Поста о функциональной полноте). Класс F булевых функций полон \Leftrightarrow он не лежит целиком ни в одном из классов T_0, T_1, S, M, L .

Доказательство.

- 1. ⇒. Докажем методом от противного. Пусть среди классов T_0, T_1, S, M, L найдётся класс K: $F \subseteq K$, тогда $[F] \subseteq [K] = K \neq P_2$, значит, F не является полным. Противоречие.
- $2. \Leftarrow.$

$$\exists f_0, f_1, f_S, f_M, f_L \in F : f_0 \notin T_0 \& f_1 \notin T_1 \& f_S \notin S \& f_M \notin M \& f_L \notin L$$

- (a) Покажем, что 0 и 1 реализуются формулой над $\{f_0, f_1, f_S\}$. Пусть $\varphi(x) = f_0(x, \dots, x) \Rightarrow \varphi(0) = 1$.
 - і. Пусть $\varphi(1) = 0 \Rightarrow \varphi(x) = \overline{x}$. Подставляя x, \overline{x} в f_S , получим одну из констант. Другую константу можно выразить через полученную константу и \overline{x} .
 - іі. Пусть $\varphi(1) = 1 \Rightarrow \varphi(x) = 1 \Rightarrow f_1(\varphi(x), \dots, \varphi(x)) = f(1, \dots, 1) = 0.$
- (b) Подставляя 0, 1, x в f_M , получим \overline{x} .
- (c) Подставляя $0, 1, x, \overline{x}, y, \overline{y}$ в f_L и, возможно, изменяя её значение на противоположное, получим x & y.

Т. о., функции из полного набора $\{\neg, \&\}$ реализуются формулами над $\{f_0, f_1, f_S, f_M, f_L\} \subseteq F$, значит, F полный набор.

Утверждение 13.13.2. T_0, T_1, S, M, L попарно различны.

Доказательство. Составим таблицу, в которой + означает принадлежность функции классу, а - означает её отсутствие в классе.

	T_0	T_1	S	M	L
0	+	_	_	+	+
1	_	+	_	+	+
\overline{x}	_	_	+	_	+

Класс F булевых функций называется **предполным**, если $[F] \neq P_2$ и $\forall f \notin F \colon [F \cup \{f\}] = P_2$. **Утверждение 13.13.3.** Существует ровно 5 предполных классов булевых функций: T_0, T_1, S, M, L . Доказательство.

- 1. \Rightarrow . Пусть $K \in \{T_0, T_1, S, M, L\}$, $f \notin K$. $K \cup \{f\}$ не лежит целиком ни в одном из классов T_0, T_1, S, M, L , значит, $[K \cup \{f\}] = P_2$, т. е. K предполный класс.
- 2. \Leftarrow . Пусть K предполный класс \Rightarrow K не является полным \Rightarrow K лежит в одном из классов T_0, T_1, S, M, L . Докажем методом от противного, что K равен одному из них. Пусть $K_1 \in \{T_0, T_1, S, M, L\}, K \subset K_1$. $f \notin K$ & & $f \in K_1 \Rightarrow K \cup \{f\} \subseteq K_1 \neq P_2$, значит, K не является предполным классом. Противоречие.

Следствие 13.13.4. Любой замкнутый класс булевых функций $F \neq P_2$ целиком лежит в одном из классов T_0, T_1, S, M, L .

Доказательство методом от противного. Пусть F не лежит ни в одном из классов T_0, T_1, S, M, L , тогда $F = [F] = P_2$. Противоречие.

Пусть F — замкнутый набор булевых функций. Набор $M\subseteq F$ называется полным в F, если [M]=F.

Набор K булевых функций называется базисом замкнутого класса F булевых функций, если K полон в F и при удалении из него любой булевой функции он перестаёт быть полным.

Глава 14

Теория графов

14.1 Неориентированные графы

Неориентированным графом называется пара (V, E), где V — непустое конечное множество вершин графа, E — совокупность множеств $\{u, v\}$, где $u, v \in V$. Элементы V называются **вершинами графа**. Элементы E называются **рёбрами графа**.

На рисунках вершины графа изображают точками, а рёбра $e = \{u, v\}$ — кривыми, соединяющими точки, которые изображают вершины u и v.

Если $e = \{u, v\} \in E$, то говорят, что:

- ullet ребро e соединяет вершины u и v;
- \bullet u и v концы ребра e;
- ullet ребро e инцидентно вершинам u и v;
- ullet вершины u и v инцидентны ребру e.

Вершины называются **соседними**, или **смежными**, если их соединяет ребро, иначе — **несоседними**, или **несмежными**.

Число рёбер, инцидентных вершине u, называется **степенью вершины** и обозначается $\deg u$.

Если степень вершины равна 0, то она называется **изолированной**, а если 1 — то **висячей**.

Лемма 14.1.1 (о рукопожатиях).

$$\sum_{u \in V} \deg u = 2|E|$$

где (V, E) — граф.

Доказательство. Достаточно заметить, что каждое ребро увеличивает степени двух некоторых вершин на 1.

Ребро вида $e = \{u, u\}$ называется **петлёй**.

Рёбра, инцидентные одним и тем же вершинам, называются кратными.

Граф называется простым, если он не содержит петель и кратных рёбер.

Граф, в котором любые две вершины соединены ребром, называется **полным** и обозначается K_n , где n — число вершин в нём.

Графы $G_1=(V_1,E_1)$ и $G_2=(V_2,E_2)$ называются **изоморфными**, если существует биекция $\varphi\colon V_1\to V_2$ такая, что $\{u,v\}\in E_1\Leftrightarrow \{\varphi(u),\varphi(v)\}\in E_2$, иначе — **неизоморфными**. φ называется **изоморфизмом**.

Маршрутом в графе называется последовательность вершин и рёбер вида $(v_1, e_1, v_2, \ldots, e_k, v_{k+1})$, где $e_i = \{v_i, v_{i+1}\}$.

Маршрут, в котором все рёбра различны, называется цепью.

Цепь, в которой все вершины, за исключением, может быть, первой и последней, различны, называется **простой**.

Маршрут, в котором первая и последняя вершины совпадают, называется замкнутым.

Замкнутая цепь называется циклом.

Рис. 14.1: Граф K_5

Маршрут, соединяющий вершины u и v, называется (u, v)-маршрутом.

Лемма 14.1.2. (u, v)-маршрут содержит (u, v)-простую цепь.

Доказательство. Пусть $(u = v_1, e_1, v_2, \dots, e_k, v_{k+1} = v)$ — не простая цепь, тогда $\exists i < j : v_i = v_j$. Уберём из маршрута подпоследовательность $(e_i, v_{i+1}, \dots, e_{j-1}, v_j)$ и получим маршрут, в котором совпадающих вершин на одну меньше. Повторяя, получим простую цепь, являющуюся частью данного маршрута.

Лемма 14.1.3. Любой цикл содержит простой цикл, причём каждая вершина и ребро цикла принадлежат некоторому простому циклу.

Доказательство. Пусть $(u=v_1,e_1,v_2,\ldots,e_k,v_{k+1}=u)$ — не простой цикл, тогда $\exists i< j\colon v_i=v_j$. Уберём из цикла подпоследовательность $(e_i,v_{i+1},\ldots,e_{j-1},v_j)$ и получим цикл, в котором совпадающих вершин на одну меньше. Повторяя, получим простой цикл, являющийся частью данного цикла.

Заметим, что подпоследовательность $(v_i, e_i, v_{i+1}, \dots, e_{j-1}, v_j = v_i)$ также является циклом, из которого можно получить простой цикл. Значит, некоторые вершины и рёбра этой подпоследовательности принадлежат простому циклу, остальные же снова образуют некоторые циклы, из которых можно получить простые. Продолжая рассуждать таким образом, приходим к выводу, что любая вершина и ребро исходного цикла принадлежат некоторому простому циклу. \blacksquare

Лемма 14.1.4. Если в графе есть две различные простые цепи, соединяющие одни и те же вершины, то в этом графе есть простой цикл.

Доказательство. Пусть $(u=v_1,e_1,v_2,\ldots,e_n,v_{n+1}=v),~(u=v_1',e_1',v_2',\ldots,e_m',v_{m+1}'=v)$ — простые цепи. Найдём наименьшее $i\colon e_i\neq e_i',~$ тогда $(v_i,e_i,v_{i+1},\ldots,e_n,v_{n+1}=v_{m+1}',e_m',\ldots,e_i',v_i'=v_i)$ — цикл, значит, можно получить простой цикл. \blacksquare

14.1.1 Связность неориентированных графов

Вершины u и v называются **связанными**, если существует (u,v)-маршрут, иначе — **несвязанными**.

Граф называется связным, если в нём любые две вершины связаны, иначе — несвязным.

Граф G' = (V', E') называется подграфом графа G = (V, E), если $V' \subseteq V \& E' \subseteq E$.

Компонентой связности графа называется его максимальный относительно включения связный подграф.

14.1.2 Эйлеровы графы

Цикл, содержащий все рёбра графа, называется эйлеровым.

Граф, содержащий эйлеров цикл, называется эйлеровым.

Теорема 14.1.5. Связный граф эйлеров ⇔ степени всех вершин чётны.

Доказательство.

1. \Rightarrow . Пусть в графе есть эйлеров цикл. Выберем вершину v_0 в этом цикле и начнём обходить его. При каждом посещении вершины $v \neq v_0$ её степень увеличивается на 2. Т. о., если посетить её k раз, то deg $v = 2k \div 2$.

Для v_0 степень увеличивается на 1 в начале обхода, на 1 в конце обхода и на 2 при промежуточных посещениях. Т. о., её степень чётна.

2. \Leftarrow . Пусть степени всех вершин чётны. Выберём цепь $C = (v_0, e_0, v_1, e_1, \dots, e_{k-1}, v_k)$ наибольшей длины. Все рёбра, инцидентные v_k , присутствуют в этой цепи, иначе её можно было бы удлинить.

Докажем методом от противного, что $v_0 = v_k$. Пусть $v_0 \neq v_k$. При прохождении вершины $v_i = v_k$, $i = 1, 2, \ldots, k-1$, степень v_k увеличивается на 2. Также проходим по ребру e_{k-1} , тогда степень v_k нечётна. Противоречие.

Докажем методом от противного, что C содержит все рёбра. Пусть найдётся ребро $e = \{u, v\}$, не входящее в C. Возьмём первое ребро $e' = \{v_i, v'\}$ из (v_0, u) -маршрута, не входящее в C. Тогда цепь $(v', e', v_i, e_i, \ldots, e_{k-1}, v_k = v_0, e_0, v_1, e_1, \ldots, v_{i-1})$ длиннее, чем C. Противоречие.

Алгоритмы нахождения эйлерова цикла

Алгоритм Флёри. В качестве текущей вершины выберем произвольную.

1. Выбираем ребро, инцидентное текущей вершине. Оно не должно быть мостом, если есть другие рёбра, не являющиеся мостами.

- 2. Проходим по выбранному ребру и вычёркиваем его. Вершина, в которой теперь находимся, текущая.
- 3. Повторяем с шага 1, пока есть рёбра.

Алгоритм объединения циклов.

- 1. Выбираем произвольную вершину.
- 2. Выбираем любое непосещённое ребро и идём по нему.
- 3. Повторяем шаг 2, пока не вернёмся в начальную вершину.
- 4. Получили цикл C. Если он не эйлеров, то $\exists u \in C, \ e = \{u, u'\} \colon u' \notin C$. Повторяем шаги 2–3, начиная с вершины u. Получили цикл C', рёбра которого не совпадают с рёбрами C. Объединим эти циклы и получим новый. Повторяем шаг 4.

Цепь называется эйлеровым путём, если она не является циклом и содержит все рёбра графа.

Граф называется полуэйлеровым, если в нём есть эйлеров путь.

Теорема 14.1.6. Связный граф полуэйлеров \Leftrightarrow степени двух вершин нечётны, а остальных — чётны. Доказательство.

- 1. ⇒. Пусть в графе есть эйлеров путь. Соединив его концы ребром, получим эйлеров цикл. Степени соединённых вершин увеличились каждая на 1, значит, они были нечётными, а степени остальных вершин чётными.
- 2. ←. Пусть степени двух вершин нечётны, а остальных чётны. Соединим нечётные вершины ребром, тогда можно получить эйлеров цикл. Убрав из него добавленное ребро, получим эйлеров путь.

14.1.3 Гамильтоновы графы

Простой цикл, содержащий все вершины графа, называется гамильтоновым.

Граф называется гамильтоновым, если в нём есть гамильтонов цикл.

Теорема 14.1.7 (Оре). Если в графе с $n \ge 3$ вершинами для любых двух несмежных вершин u u v deg u + deg $v \ge n$, то граф гамильтонов.

Доказательство.

1. Докажем методом от противного, что граф связный. Пусть он несвязный, тогда в нём найдутся хотя бы две компоненты связности $G_1(V_1, E_1)$ и $G_2(V_2, E_2)$. Пусть $u \in V_1, v \in V_2$. u и v несмежные, тогда

$$\deg u \le |V_1| - 1, \ \deg v \le |V_2| - 1 \Rightarrow \deg u + \deg v \le |V_1| + |V_2| - 2 \le n - 2$$

Противоречие с условием.

2. Докажем, что граф гамильтонов. Выберем цепь $W = (v_0, e_0, v_1, \dots, e_{k-1}, v_k)$ наибольшей длины. В ней содержатся все вершины, соседние с v_0 или с v_k . Т. о., среди вершин v_1, \dots, v_k находится ровно $\deg v_0$ соседних с v_0 вершин. Аналогично для v_k .

 $\deg v_0 + \deg v_k \geqslant n$, тогда найдутся v_i и v_{i+1} такие, что v_i соседняя с v_k , а $v_{i+1} - c v_0$.

Докажем, что $(v_{i+1}, e_{i+1}, \dots, v_k, e, v_i, e_{i-1}, v_{i-1}, \dots, e_0, v_0, e', v_{i+1})$ — гамильтонов цикл, методом от противного. Предположим обратное, тогда есть вершина u, не входящая в цикл, и существует (v_0, u) -маршрут. Значит, существует ребро, инцидентное одной из вершин цикла, но не входящее в него, и можно получить более длинную цепь. Противоречие, значит, G — гамильтонов граф.

Теорема 14.1.8 (Дирака). *Если в графе* G=(V,E) с $n\geqslant 3$ вершинами $\forall u\in V \deg u\geqslant \frac{n}{2}$, то граф гамильтонов. Доказательство. Пусть u,v — несвязные вершины в G, тогда $\deg u\geqslant \frac{n}{2}$ & $\deg v\geqslant \frac{n}{2}\Rightarrow \deg u+\deg v\geqslant n\Rightarrow$ по теореме Оре G гамильтонов. \blacksquare

Цепь называется **гамильтоновым путём**, если она не является циклом и содержит все вершины графа. Граф называется **полугамильтоновым**, если в нём есть гамильтонов путь.

14.1.4 Планарность графов

Плоским называется граф G = (V, E) такой, что:

- $V \subset \mathbb{R}^2$;
- рёбра кривые, концами которых являются вершины;
- различные рёбра не имеют общих точек, за исключением концов.

Планарным называется граф, изоморфный плоскому.

Если G — граф и G' — плоский граф, изоморфный G, то G' называется **укладкой** G в \mathbb{R}^2 .

Аналогично можно определить плоский граф в \mathbb{R}^3 , на сфере и т.д.

Теорема 14.1.9. Любой граф можно уложить в \mathbb{R}^3 .

Доказательство. Пусть G=(V,E) — граф, $V=\{(1,0,0),(2,0,0),\ldots,(n,0,0)\}$. Рассмотрим плоскости, проходящие через Ox и образующие с плоскостью Oxy углы $\frac{\pi}{2},\frac{\pi}{2\cdot 2},\ldots,\frac{\pi}{2m},$ где m=|E|. В каждой такой плоскости можно провести ровно одно ребро, тогда получим плоский граф, т. к. плоскости пересекаются только по прямой Ox.

Теорема 14.1.10. Граф укладывается на плоскость \Leftrightarrow он укладывается на сферу.

Доказательство. Пусть плоскость z=0 касается сферы в точке $O(0,0,0),\,N$ — точка на сфере, диаметрально противоположная точке O. Для каждой точки сферы, не совпадающей с N, проведём прямую через неё и точку N, которая пересечёт сферу и плоскость, причём любые две из таких прямых имеют единственную общую точку N. Получим биекцию между точками сферы и точками плоскости, тогда можно построить биекцию между укладками на сфере и укладками на плоскости. \blacksquare

Множество на плоскости называется **линейно связным**, если любые две точки этого множества можно соединить кривой, целиком лежащей в этом множестве.

Гранью плоского графа G = (V, E) называется часть множества $\mathbb{R}^2 \setminus G$, которая линейно связна и не является подмножеством другого линейно связного множества.

Теорема 14.1.11 (формула Эйлера). В плоском связном графе n-m+f=2, где n,m,f- число вершин, рёбер и граней соответственно.

Доказательство. Рассмотрим остов данного графа. В нём n вершин, n-1 рёбер и 1 грань. Формула Эйлера верна для него: n-(n-1)+1=2.

Добавим 1 ребро данного графа, тогда оно разобьёт одну грань на две, т.е. число граней увеличится на 1. Формула Эйлера верна для полученного графа. Повторяя m-(n-1) раз, получим исходный граф, для которого формула Эйлера верна.

Теорема 14.1.12. Пусть G — планарный граф c $n \geqslant 3$ вершинами и m рёбрами. Тогда $m \leqslant 3n-6$.

Доказательство. При m=2 неравенство выполняется.

Пусть в графе f граней, m_i — число рёбер в границе i-й грани. Тогда $m_i\geqslant 3,\;\sum\limits_{i=1}^f m_i\geqslant 3f.$ С другой стороны,

 $\sum\limits_{i=1}^{f}m_{i}\leqslant 2m$, т. к. каждое ребро является границей для не более чем 2 граней. По формуле Эйлера $n-m+f=2\Leftrightarrow m_{i}$

f = m + 2 - n. Получим:

$$2m \geqslant 3f \Leftrightarrow 2m \geqslant 3m + 6 - 3n \Leftrightarrow m \leqslant 3n - 6$$

Следствие 14.1.13. Планарный граф G=(V,E) содержит хотя бы одну вершину со степенью, не большей 5. Доказательство методом от противного. Пусть $\forall v \in V \deg v \geqslant 6, |V|=n, |E|=m,$ тогда $m=\frac{1}{2}\sum_{v \in V} \deg v \geqslant 0$

 $\geqslant 3n$. Имеем: $3n \leqslant m \leqslant 3n - 6 \Rightarrow 0 \leqslant -6$

Противоречие. ■

Теорема 14.1.14. Графы K_5 и $K_{3,3}$ не планарные.

Доказательство.

- Рассмотрим K_5 . Для него n=5, m=10. Тогда $m\leqslant 3n-6 \Leftrightarrow 10\leqslant 9$. Неверно, значит, K_5 не планарен.
- Рассмотрим $K_{3,3}$. Пусть он планарный. В нём самый короткий цикл имеет длину 4. Тогда рассуждениями, аналогичными рассуждениям при доказательстве теоремы 14.1.12, получим

$$2m \geqslant 4f \Leftrightarrow 2m \geqslant 4m + 8 - 4n \Leftrightarrow m \leqslant 2n - 4$$

Для $K_{3,3}$ n=6, m=9, тогда $9 \le 8$. Неверно, значит, $K_{3,3}$ не планарен.

- Граф G' = (V', E') получается **подразбиением ребра** $e = \{u, v\}$ графа G = (V, E), если:
 - $\bullet \ V' = V \cup \{u'\};$
 - $E' = (E \setminus \{e\}) \cup \{\{u, u'\}, \{v, u'\}\}.$

Графы G и G' **гомеоморфны**, если они изоморфны графам, получающимся подразбиениями рёбер одного и того же графа.

Теорема 14.1.15 (Понтрягина—Куратовского). Γ раф G планарен \Leftrightarrow он не содержит подграфов, гомеоморфных K_5 или $K_{3,3}$.

Доказательство.

- 1. ⇒. Очевидно, что подграф планарного графа планарен. Если G планарный граф, содержащий подграф G', гомеоморфный K_5 или $K_{3,3}$, то G' тоже планарный, значит, K_5 или $K_{3,3}$ планарен, т. к. подразбиение ребёр не влияет на планарность. Противоречие, значит, G не планарен.
- 2. ←. Доказательство слишком сложно, поэтому здесь не приводится.

14.1.5 Деревья

Граф без циклов называется лесом.

Связный лес называется деревом.

Ребро называется мостом, если при его удалении увеличивается число компонент связности.

Утверждение 14.1.16. Ребро — мост \Leftrightarrow оно не содержится в цикле.

Доказательство.

- 1. \leftarrow . Пусть ребро e содержится в цикле $W = (v_0, e_0, \dots, u, e, v, \dots, v_k)$, u' и v' связные вершины.
 - (a) Если в (u', v')-маршруте нет ребра e, то при его удалении из графа u' и v' останутся связными.
 - (b) Пусть $(u'=v'_0,e'_0,\ldots,u,e,v,\ldots,e'_m,v'_m=v')$ маршрут, соединяющий u' и v', тогда при удалении e из графа u' и v' соединяет маршрут $(u'=v'_0,e'_0,\ldots,u,\ldots,e_0,v_0=v_k,e_{k-1},\ldots,v,\ldots,e'_m,v'_m=v')$.
- 2. \Rightarrow . Пусть $e = \{u, v\}$ не является мостом, тогда u, v лежат в одной компоненте связности. Удалим e из графа. Число компонент связности не изменится, значит, u и v также лежат в одной компоненте связности, т.е. существует цепь, соединяющая u и v: $(u = v_0, e_0, \dots, e_{k-1}, v_k = v)$. Тогда в исходном графе существует цикл $(u = v_0, e_0, \dots, e_{k-1}, v_k = v, e, u)$.

Теорема 14.1.17. Следующие утверждения о графе G = (V, E) с n вершинами эквивалентны:

- 1. G дерево.
- 2. G связный и каждое его ребро мост.
- 3. G связный и имеет n-1 ребро.
- 4. G не содержит циклов и имеет n-1 ребро.
- 5. Любые две вершины графа G соединены ровно одной простой цепью.
- 6. G не содержит циклов и добавление ребра приводит к появлению ровно одного цикла.

Доказательство.

• $1 \Rightarrow 2$. Связность следует из определения дерева.

В силу утверждения 14.1.16 каждое ребро — мост.

• $2 \Rightarrow 3$. Связность следует из предположения.

Докажем методом математической индукции, что в графе n-1 ребро.

- *База индукции*. Для n = 1, 2 очевидно.
- Шаг индукции. Пусть утверждение верно для чисел, меньших n. Возьмём мост e и удалим его. Получим две компоненты связности $G_1=(V_1,E_1),\ G_2=(V_2,E_2).$ По предположению индукции $|E_1|=|V_1|-1,\ |E_2|=|V_2|-1.$ Тогда в исходном графе рёбер $|E_1|+|E_2|+1=|V_1|+|V_2|-1=n-1.$
- $3 \Rightarrow 4$. G имеет n-1 ребро по предположению.

Докажем методом математической индукции, что G не содержит циклов.

- *База индукции*. Для n = 1, 2 очевидно.
- *Шаг индукции.* Пусть утверждение верно для чисел, меньших n. Докажем методом от противного, что в графе есть вершина степени 1. Пусть

$$\forall u \in V \ \deg u \geqslant 2 \Rightarrow 2|E| = \sum_{u \in V} \deg u \geqslant 2n \Rightarrow n-1 = |E| \geqslant n \Rightarrow -1 \geqslant 0$$

Противоречие, значит, в графе найдётся вершина степени 1.

Удалим её и инцидентное ей ребро. Полученный граф содержит n-1 вершину и удовлетворяет утверждению 3. По предположению индукции он не содержит циклов, тогда и исходный граф не содержит циклов.

• $4 \Rightarrow 5$.

Пусть в графе k компонент связности: $G_1 = (V_1, E_1), G_2 = (V_2, E_2), \dots, G_k = (V_k, E_k)$. Они не содержат циклов по предположению, тогда они являются деревьями.

$$|E_1| = |V_1| - 1 \& |E_2| = |V_2| - 1 \& \dots \& |E_k| = |V_k| - 1 \& n - 1 = |E_1| + \dots + |E_k| = n - k \Rightarrow k = 1$$

Значит, граф связный.

Пусть существуют вершины u и v такие, что их соединяют две простые цепи, тогда по лемме 14.1.4 в графе есть цикл, что противоречит предположению. Значит, эти вершины соединены ровно одной простой цепью.

• $5 \Rightarrow 6$.

Докажем методом от противного, что в графе нет циклов. Предположим, что есть цикл $(v_0, e_0, v_1, \ldots, v_k = v_0)$, тогда есть две простые цепи $(v_0, e_0, \ldots, v_{k-1})$ и $(v_{k-1}, e_k, v_k = v_0)$, соединяющие v_0 и v_{k-1} , что противоречит предположению.

Докажем, что добавление ребра приводит к появлению ровно одного цикла. Рассмотрим несоседние вершины u и v. По предположению есть цепь ($u=v_0,e_0,\ldots,v_k=v$), соединяющая их. Тогда, добавив $e=\{u,v\}$, получим цикл ($u=v_0,e_0,\ldots,v_k=v,e,u$).

Пусть есть 2 цикла, соединяющих u и v. Удалим e, тогда один цикл останется. Получим исходный граф, в котором не должно быть циклов. Противоречие.

• $6 \Rightarrow 1$.

Докажем связность методом от противного. Рассмотрим несвязные вершины u и v. Соединим их и по предположению получим цикл $(v_0, e_0, \ldots, u, e, v, \ldots, e_{k-1}, v_k = v_0)$. Тогда в исходном графе $(u, \ldots, e_0, v_0 = v_k, e_{k-1}, \ldots, v) - (u, v)$ -маршрут. Противоречие.

В ходе доказательства было получено, что в связном графе с n вершинами и n-1 рёбрами существует висячая вершина. Т. к. доказано, что такой граф является деревом, то верно следующее утверждение.

Утверждение 14.1.18. В дереве существует висячая вершина.

Утверждение 14.1.19. Если в лесу n вершин, m рёбер и k компонент связности, то m=n-k.

Доказательство. Пусть n_1, \ldots, n_k — число вершин в каждой компоненте связности, тогда

$$m = (n_1 - 1) + (n_2 - 1) + \ldots + (n_k - 1) = n - k$$

14.1.6 Остовы

Остовом графа G = (V, E) называется его подграф G' = (V', E'): V = V' & G' — дерево.

Утверждение 14.1.20. Любой связный граф содержит остов.

Утверждение 14.1.21. Если граф не является деревом, то в нём несколько остовов.

Пусть G = (V, E) — граф.

Весом называется функция $\alpha \colon E \to \mathbb{R}^+$.

Весом ребра $e \in E$ называется $\alpha(e)$.

Весом графа называется $\sum_{e} \alpha(e)$.

Пусть дан граф G = (V, E), n = |V| и весовая функция $\alpha \colon E \to R^+$, и необходимо найти остов наименьшего веса T = (V, P).

Алгоритм Краскала

- 1. Выбираем ребро $e \in E$ с наименьшим весом: $P_1 = \{e\}, T_1 = (V, P_1).$
- і. Выбираем ребро $e \in E$ с наименьшим весом такое, что $e \notin P_i$ и добавление этого ребра не приводит к образованию цикла в $T: T_{i+1} = (V, P_i \cup \{e\})$.

 T_n — искомый остов.

Доказательство корректности. Пусть T=(V,P) — построенный остов, где $P=\{e_1,e_2,\ldots,e_{n-1}\},\ e_1,e_2,\ldots,e_{n-1}$ — рёбра в порядке их добавления в остов, а также D=(V,M) — другой остов, где $M=\{e'_1,e'_2,\ldots,e'_{n-1}\},\ e'_1,e'_2,\ldots,e'_{n-1}$ — рёбра в порядке неубывания их весов.

Если $T \neq D$, то пусть i — наименьшее число такое, что $e_i \neq e_i'$. e_i' не входит в T, значит, оно образует цикл с рёбрами в T, выбранными ранее, тогда вес этих рёбер не больше $\alpha(e_i')$. Выберем из них ребро e такое, что при добавлении его в D образуется цикл. Пусть $D_1 = (V, M \cup \{e\} \setminus \{e_i'\})$. Этот граф — остов, причём вес D_1 не больше веса D и у T и D_1 на 1 общее ребро больше, чем у T и D. Повторяя, получим $D_k = T$. Значит, вес построенного остова не превосходит веса любого другого остова.

Алгоритм Прима

Строится последовательность деревьев $S_1 \subset S_2 \subset \ldots \subset S_n = T$.

- 1. Выбираем произвольную вершину $v. S_1 = (\{v\}, \varnothing).$
- і. Пусть построено $S_{i-1}=(V_{i-1},E_{i-1})$. Находим ребро $e=\{u,v_{i-1}\}\in E$, где $u\in V_{i-1},\,v_{i-1}\notin V_{i-1}$, наименьшего веса, добавление которого не приводит к образованию цикла: $S_i=(V_{i-1}\cup\{v_{i-1}\},E_{i-1}\cup\{e\})$.

 S_n — искомый остов.

14.1.7 Помеченные деревья

Дерево с n вершинами, которым сопоставлены числа $1, \ldots, n$, называется **помеченным**.

Каждому помеченному дереву можно взаимнооднозначно сопоставить последовательность из n-2 чисел от 1 до n, называемую кодом Прюфера. Алгоритм построения кода Прюфера для помеченного дерева G = (V, E):

- 1. Выбираем висячую вершину v с наименьшим номером.
- 2. Добавляем номер вершины, смежной с v, в код.
- 3. Удаляем v и ребро, инцидентное v, из дерева.
- 4. Повторить, начиная с шага 1, n-2 раза.

Утверждение 14.1.22. Различным помеченным деревьям соответствуют различные коды Прюфера. Доказательство методом математической индукции.

- $\mathit{База}\ \mathit{uндукцuu}.\ \mathsf{При}\ \mathit{n}=3$ легко проверить.
- Шаг индукции. Пусть утверждение верно при n, G = (V, E) и G' = (V', E') различные помеченные деревья с n+1 вершинами в каждом. Если в G и G' вершины с наименьшим номером смежны с вершинами с одинаковыми номерами, то выполняем шаг построения кода, тогда оставшиеся деревья различны, значит, по предположению индукции у них различные коды.

Алгоритм построения дерева по коду $A_0 = (a_0, \dots, a_{n-3})$: Пусть $B_0 = \{1, \dots, n\}$.

- 1. Находим наименьшее $b \in B_i$: $b \notin A_i$. Тогда в дереве есть ребро $\{b, a_i\}$: $A_{i+1} = A_i \setminus \{a_i\} \& B_{i+1} = B_i \setminus \{b\}$.
- 2. Повторяем шаг 1 n-2 раз. Получим $B_{n-2} = \{b', b''\}$, значит, в дереве есть ребро $\{b', b''\}$.

Докажем, что указанный алгоритм по коду из n чисел строит дерево.

Доказательство методом математической индукции.

- *База индукции*. При n=1 легко проверить.
- Шаг индукции. Рассмотрим графы T_1, \ldots, T_{n-1} , полученные в процессе построения дерева. T_1 не содержит циклов. T_2 получается из T_1 либо добавлением новой вершины, либо добавлением моста, что не приводит к появлению цикла. По индукции получим, что T_{n-1} не содержит циклов и содержит n вершин и n-1 ребёр, значит, T_{n-1} дерево.
- **Теорема 14.1.23 (Кэли).** Количество неизоморфных помеченных деревьев c n вершинами равно n^{n-2} .

14.2 Ориентированные графы

Ориентированным графом называется пара (V, E), где V — непустое конечное множество, E — совокупность элементов множества V^2 . Элементы V называются **вершинами графа**. Элементы E называются **дугами графа**.

На рисунках ориентированные графы изображаются так же, как неориентированные, за тем исключением, что на дуги дополнительно наносятся стрелки, направленные от начальной вершины к конечной.

Если $e = (u, v) \in E$, то говорят, что:

- ullet дуга e выходит из вершины u и входит в вершину v;
- u начало дуги e, а v $e\ddot{e}$ конец;
- ullet дуга e инцидентна вершинам u и v;
- ullet вершины u и v инцидентны дуге e.

Количество выходящих из вершины v дуг называется **полустепенью исхода вершины** и обозначается $\deg_+ v$. Количество входящих в вершину v дуг называется **полустепенью захода вершины** и обозначается $\deg_- v$.

Количество инцидентных вершине v дуг называется **степенью вершины** и обозначается $\deg v$. Очевидно, что

 $\deg v = \deg_+ v + \deg_- v.$ Утверждение 14.2.1.

$$\sum_{v \in V} \deg_+ v = \sum_{v \in V} \deg_- v = |E|$$

где (V, E) — граф.

Доказательство. Достаточно заметить, что каждая дуга увеличивает полустепень исхода некоторой вершины на 1 и полустепень захода некоторой вершины на 1. ■

Дуга e = (u, u) называется **петлёй**.

Если в графе есть несколько дуг (u, v), то они называются **кратными**.

Дуги (u,v) и (v,u) называются **противоположно направленными**.

Граф называется простым, если в нём нет пётель и кратных дуг.

Граф (V_1, E_1) называется подграфом графа (V, E), если $V_1 \subseteq V \& E_1 \subseteq E$.

Неориентированный граф, полученный из ориентированного графа G заменой дуг на рёбра, называется основанием графа G.

Графы $G_1 = (V_1, E_1)$ и $G_2 = (V_2, E_2)$ называются **изоморфными**, если существует биекция $\varphi \colon V_1 \to V_2$ такая, что $(u, v) \in E_1 \Leftrightarrow (\varphi(u), \varphi(v)) \in E_2$, иначе — **неизоморфными**.

Путём в графе называется последовательность $(v_1, e_1, v_2, e_2, \dots, v_{k-1}, e_k, v_k)$ его вершин и дуг такая, что $e_i = (v_i, v_{i+1})$.

Путь называется простым, если в нём все вершины, кроме, возможно, первой и последней, различны.

Путь называется замкнутым, если в нём первая и последняя вершины совпадают.

Замкнутый путь называется контуром.

Путь, соединяющий вершины u и v, называется (u, v)-путём.

Если в графе существует (u, v)-путь, то говорят, что вершина v достижима из вершины u. Если также существует (v, u)-путь, то говорят, что вершины u и v взаимодостижимы.

Лемма 14.2.2. Любой путь содержит простой путь. Доказательство аналогично доказательству леммы 14.1.2. **Лемма 14.2.3.** Любой контур содержит простой контур, причём каждая вершина и дуга контура принадлежат некоторому простому контуру. Доказательство аналогично доказательству леммы 14.1.3.

14.2.1 Связность ориентированных графов

Ориентированный граф называется **сильно связным**, если для любых его вершин u и v существуют (u,v)-путь и (v,u)-путь.

Ориентированный граф называется слабо связным, если связно его основание.

Теорема 14.2.4. Связный неориентированный граф обладает сильно связной ориентацией ⇔ он не содержит мостов.

Доказательство.

- 1. \Rightarrow . Если граф содержит мост $\{u, v\}$, то при его ориентации можно получить либо дугу (u, v), либо дугу (v, u). В таком случае одна из компонент связности, соединяемых мостом, будет недостижима из другой.
- $2. \Leftarrow$. Любое ребро принадлежит некоторому циклу C, так как оно не является мостом. Ориентируем все рёбра цикла в одну сторону. Если остались другие рёбра, то в силу связности графа можно получить ещё один цикл, часть которого является частью цикла C. Ориентируем все рёбра полученного цикла в одну сторону, не изменяя уже ориентированные рёбра. Повторяя, ориентируем все рёбра графа.

Для любых двух вершин u и v исходного графа существует маршрут ($u = v_1, e_1, \ldots, e_{k-1}, v_k = v$). Чтобы получить (u, v)-путь, идём по дугам (v_1, v_2), (v_2, v_3) и т.д. Если дуги (v_i, v_{i+1}) нет, то есть дуга (v_{i+1}, v_i), состоящая в некотором цикле, пройдя по которому, можно из вершины v_i попасть в вершину v_{i+1} .

Аналогично получим (v, u)-путь.

Компонентой сильной связности ориентированного графа называется максимальный относительно включения сильно связный подграф. Аналогично определяется компонента слабой связности.

Конденсацией ориентированного графа называется ориентированный граф, вершинами которого являются компоненты сильной связности исходного графа, а дуга между вершинами показывает наличие пути между вершинами компонент.

Утверждение 14.2.5. Конденсация не содержит контуров.

Доказательство методом от противного. Предположим, что в конденсации существует контур. Тогда очевидно, что вершины различных компонент, входящих в него, взаимодостижимы, а значит, лежат в одной компоненте сильной связности. Противоречие. ■

14.2.2Способы задания ориентированного графа

Пронумеруем вершины графа G = (V, E), т.е. зададим биекцию $\varphi \colon V \to \{1, 2, \dots, n\}$, где n = |V|, и будем их обозначать 1, 2, ..., n.

Матрица смежности

Матрицей смежности графа G называется матрица $A = \|a_{ij}\|_{i=\overline{1,n}}$, где a_{ij} равно числу рёбер (i,j) в графе.

Теорема 14.2.6. Если $A=\|a_{ij}\|_{\substack{i=\overline{1,n}\\ \underline{-1,n}}}$ — матрица смежности графа $G,\ A^k=\|b_{ij}\|_{\substack{i=\overline{1,n}\\ \underline{-1,n}}},\ \text{то }b_{ij}$ равно числу $\substack{j=\overline{1,n}\\ \underline{-1,n}}$ (i, j)-путей длины k.

Доказательство методом математической индукции.

- *База индукции*. Для k=1 истинность следует из определения.
- *Шаг индукции.* Пусть теорема верна для $k,\,A^{k+1}=\|c_{ij}\|_{\,i=\overline{1,n}}$.

$$A^{k+1} = AA^k \Rightarrow c_{ij} = \sum_{l=1}^n a_{il} b_{lj}$$

Значение выражения $a_{il}b_{lj}$, очевидно, равно числу (i,j)-путей длины k+1, проходящих по дуге (i,l) (если таких дуг нет в графе, то выражение равно 0). Тогда, суммируя эти выражения по всем l, получим число всех (i, j)-путей длины k + 1.

Матрица инцидентности

Так же, как и вершины, пронумеруем дуги графа G и будем их обозначать $1, 2, \ldots, m$.

Матрицей инцидентности графа G называется матрица $A = \|a_{ij}\|_{i=\overline{1,n}}$, где

$$a_{ij} = \begin{cases} -1, \text{ вершина } i - \text{ конец дуги } j \\ 0, \text{ вершина } i \text{ не инцидентна дуге } j \\ 1, \text{ вершина } i - \text{ начало дуги } j \end{cases}$$

14.2.3 Взвешенные графы

Граф (V, E) называется взвешенным, если задана функция $w: E \to R^+$, называемая весом.

Весом дуги $e \in E$ называется w(e).

Весом пути называется сумма весов входящих в него дуг.

(u,v)-путь называется **кратчайшим**, если он имеет наименьший вес среди всех (u,v)-путей.

Наименьший вес среди всех (u, v)-путей называется расстоянием между вершинами u и v и обозначается d(u,v).

Утверждение 14.2.7.

$$d(u, v) \leq d(u, k) + d(k, v)$$

причём $d(u,v) = d(u,k) + d(k,v) \Leftrightarrow k$ лежит на одном из кратчайших (u,v)-путей.

Доказательство. Пусть p_1 и p_2 — кратчайшие (u,k)-путь и (k,v)-путь соответственно. Тогда $p_1 \cup p_2 = (u,v)$ путь. Значит, либо этот путь кратчайший и его вес минимален (в таком случае d(u,v) = d(u,k) + d(k,v)), либо его вес больше, чем d(u,v) (в этом случае ни один из кратчайших (u,v)-путей не проходит через вершину k). Пусть дан граф (V, E) и вес $w: E \to R^+$.

Алгоритм Дейкстры

Алгоритм Дейкстры ищет длины кратчайших путей между некоторой вершиной и всеми остальными. Каждой вершине v сопоставим метки $l(v) \ge d(u, v)$.

0.
$$l_0(u) = 0, \forall v \in V \ v \neq u \Rightarrow l_0(v) = \infty$$

к. Пусть m — непосещённая вершина с минимальным $l_{k-1}(m)$. Отметим m как посещённую.

$$\forall v \in V \ l_k(v) = \min\{l_{k-1}(v), l_{k-1}(m) + w(m, v)\}\$$

Теорема 14.2.8. Если вершина v становится посещённой на k-м шаге, то $d(u,v) = l_k(v)$. Доказательство методом математической индукции.

- База индукции. n = 0: v = u, $0 = l_0(v) = d(u, u) = 0$.
- Шаг индукции. Пусть для $n \leqslant k \ l_k(v) = d(u,v)$. Пусть (u,\ldots,x,y,\ldots,v) кратчайший (u,v)-путь, причём y — первая непосещённая вершина, v — вершина, посещённая на шаге k+1, тогда

$$l_{k+1}(v) \leqslant l_{k+1}(y) = \min\{l_k(y), l_k(x) + w(x, y)\} \leqslant l_k(x) + w(x, y) = d(u, x) + w(x, y) = d(u, y) \leqslant d(u, v)$$
$$l_{k+1}(v) \leqslant d(u, v) \& d(u, v) \leqslant l_{k+1}(v) \Rightarrow l_{k+1}(v) = d(u, v)$$

Алгоритм Флойда—Уоршелла

Обозначим через $d_k(i,j)$ длину кратчайшего (i,j)-пути с промежуточными вершинами из множества $\{1,2,\ldots,k\}$. Тогда

$$d_0(i,j) = \begin{cases} w(i,j), & (i,j) \in E \\ \infty, & (i,j) \notin E \end{cases}, d_{k+1}(i,j) = \min(d_k(i,j), d_k(i,k+1) + d_k(k+1,j))$$

14.3 Транспортные сети

Транспортной сетью называется ориентированный граф, в котором выделены две вершины, одна из которых называется источником и обозначается s, а другая — стоком и обозначается t. Источник имеет нулевую полустепень захода, а сток — нулевую полустепень исхода. Кроме того, каждой дуге графа сопоставлено положительное число, называемое **пропускной способностью**, т. е. задана функция $q: E \to R^+$.

Потоком в сети (V, E) называется функция $p: E \to R^+$ такая, что

- $\forall (i,j) \in E \ p(i,j) \leqslant q(i,j);$
- $\forall k \in V \setminus \{s, t\}$ $\sum_{(i,k) \in E} p(i,k) = \sum_{(k,j) \in E} p(k,j).$

Разрезом в сети (V,E) называется разбиение множества вершин на два подмножества V и \overline{V} таких, что $s\in X$, $t \in \overline{X}$.

Пропускной способностью разреза называется сумма $\sum\limits_{i\in X,j\in\overline{X}}q(i,j).$ Величиной потока через разрез (X,\overline{X}) называется сумма $\sum\limits_{i\in X,j\in\overline{X}}p(i,j)-\sum\limits_{i\in X,j\in\overline{X}}p(j,i)$ и обозначается $p(X, \overline{X}).$

Лемма 14.3.1. Величина потока через любой разрез одна и та же.

Доказательство. Пусть (X, \overline{X}) — разрез сети (V, E), причём $s \neq j \in X$. Рассмотрим разрез $(X \setminus \{j\}, \overline{X} \cup \{j\})$.

$$\begin{split} p(X\setminus\{j\},\overline{X}\cup\{j\}) &= p(X,\overline{X}) + \sum_{i\in X} p(i,j) + \sum_{i\in \overline{X}} p(i,j) - \sum_{i\in X} p(j,i) - \sum_{i\in \overline{X}} (j,i) = \\ &= p(X,\overline{X}) + \sum_{i\in V} p(i,j) - \sum_{i\in V} p(j,i) = p(X,\overline{X}) \end{split}$$

Т. о., величиной потока называется величина потока через любой разрез и обозначается |p|. Следствие 14.3.2. $\sum_{i \in V} p(s,i) = \sum_{i \in V} p(i,t)$.

Лемма 14.3.3. Для любого потока p верно $\forall (X,\overline{X}) \ p(X,\overline{X}) \leqslant q(X,\overline{X}).$ Доказательство.

$$p(X,\overline{X}) = \sum_{i \in X, j \in \overline{X}} p(i,j) - \sum_{i \in X, j \in \overline{X}} p(j,i) \leqslant \sum_{i \in X, j \in \overline{X}} p(i,j) \leqslant \sum_{i \in X, j \in \overline{X}} q(i,j) = q(X,\overline{X})$$

Разрез с минимальной пропускной способностью называется минимальным разрезом.

Поток максимальной величины называется максимальным потоком.

Лемма 14.3.4. Если $p_0(X_0, \overline{X}_0) = q(X_0, \overline{X}_0)$, то (X_0, \overline{X}_0) — минимальный разрез, а p_0 — максимальный поток. Доказательство. Пусть p — произвольный поток, (X, \overline{X}) — произвольный разрез.

- $|p_0| = q(X_0, \overline{X}_0) \geqslant |p|$
- $q(X_0, \overline{X}_0) = |p_0| \leqslant q(X, \overline{X})$

14.3.1 Алгоритмы нахождения максимального потока

Алгоритм Форда-Фалкерсона

Изначально считаем, что $\forall i, j \in V \ p(i, j) = 0$. Также пометим источник $s^{(-, \infty)}$.

- 1. Помечаем вершины, смежные с помеченными, следующим образом: $i^{(x^{\pm},\varepsilon)} \to j^{(i^{+},\min(\varepsilon,q_{ij}-p_{ij}))}$, если $q_{ij}-p_{ij}>0$, или $i^{(x^{\pm},\varepsilon)} \leftarrow j^{(i^{-},\min(\varepsilon,p_{ij}))}$, если $p_{ij}>0$, где i— уже помеченная вершина. Если сток не достигнут, то поток максимален, иначе пометили $t^{(x^{+},\delta)}$.
- 2. Идём в обратном направлении. Если в вершину u пришли по (i, u)-дуге, то увеличиваем поток p(i, u) на δ , а если по (u, i)-дуге, то уменьшаем p(i, u) на δ . Т. о., величина потока увеличилась на $\delta > 0$.

Повторяя, увеличим поток до максимума, т.е. в какой-то момент не сможем пометить следующую вершину. Получим некоторый разрез (X, \overline{X}) .

Лемма 14.3.5. Найденный поток максимален, а разрез минимален. **Доказательство.**

 $|p| = \sum_{i \in X, j \in \overline{X}} p(i, j) - \sum_{i \in X, j \in \overline{X}} p(j, i)$

 ${
m T.}$ к. из i нельзя попасть в j и из j нельзя попасть в i, где $i\in X,\,j\in\overline{X},$ то $p(i,j)=q(i,j),\,p(j,i)=0,$ тогда

$$|p| = \sum_{i \in X} q(i, j)$$

Алгоритм Эдмондса-Карпа

Путь $(s=v_1,\ldots,v_{k+1}=t)$ в сети (V,E) называется **увеличивающим**, если $\forall i\in\{1,\ldots,k\}$ $\varepsilon(v_i,v_{i+1})>0$, где $\varepsilon(v_i,v_{i+1})=\begin{cases}q(v_i,v_{i+1})-p(v_i,v_{i+1}),\ (v_i,v_{i+1})\in E\\p(v_{i+1},v_i),\ (v_{i+1},v_i)\in E\end{cases}$

Введём $\delta = \min_{0 \le i \le k} \varepsilon(v_i, v_{i+1})$, тогда новое значение потока в сети равно $\begin{cases} p(v_i, v_{i+1}) + \delta, \ (v_i, v_{i+1}) \in E \\ p(v_{i+1}, v_i) - \delta, \ (v_{i+1}, v_i) \in E \end{cases}$

Рассмотрим случай, когда до t не существует увеличивающего пути. Пусть X — множество вершин, до которых существует увеличивающий путь, $u \in X$, $v \notin X$. Если $(u,v) \in E$, то q(u,v) = p(u,v), а если $(v,u) \in E$, то p(v,u) = 0, тогда

$$p(X,\overline{X}) = \sum_{u \in V, v \in \overline{X}} p(u,v) - \sum_{u \in V, v \in \overline{X}} p(v,u) = \sum_{u \in V, v \in \overline{X}} q(u,v)$$

Лемма 14.3.6. В ходе работы алгоритма Эдмондса—Карпа кратчайший (s,t)-путь не уменьшается.

Доказательство методом от противного. Рассмотрим самую близкую к s вершину v, для которой кратчайший путь (s, \ldots, u, v) уменьшается, тогда для вершины u кратчайший (s, u)-путь не уменьшается. Пусть d_u и d_v — длины кратчайших (s, u)- и (s, v)-путей соответственно на предыдущем шаге, а d_u' и d_v' — на текущем.

$$d_v > d'_v = d'_u + 1 \geqslant d_u + 1 \Rightarrow d_v \geqslant d_u + 2$$

Значит, на предыдущем шаге не было дуги (u,v), тогда не было и кратчайшего (s,v)-пути. Противоречие. \blacksquare Назовём дугу (v_i,v_{i+1}) **критической**, если $\varepsilon(v_i,v_{i+1})=\delta$.

Лемма 14.3.7. Каждая дуга может быть критической на увеличивающем пути порядка $\frac{|V|}{2}$ раз.

Доказательство. Пусть дуга (u, v) критическая на шагах t_1 и t_2 . Если она была использована как прямая два раза, то между этими использованиями она должна была быть использована как обратная (на шаге t_3), тогда

$$d_v(t_2) = d_u(t_2) + 1 \ge d_u(t_3) + 1 = d_v(t_3) + 2 \ge d_v(t_1) + 2$$

Глава 15

Теория матриц

Матрицей называется прямоугольная таблица из чисел, содержащая m строк и n столбцов, и обозначается

$$A = (a_{ij})_{\substack{i = \overline{1,m} \\ j = \overline{1,n}}} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} = \|a_{ij}\|_{\substack{i = \overline{1,m} \\ j = \overline{1,n}}}$$

Числа m и n называются **порядками** матрицы.

Если m=n, то матрица называется **квадратной**, а число m=n- её **порядком**. **Главной** называется диагональ квадратной матрицы, состоящая из элементов $a_{11}, a_{22}, \ldots, a_{nn}$, а **побочной** — состоящая из элементов $a_{n1}, a_{n-12}, \ldots, a_{1n}$.

i-я строка матрицы обозначается A_i , j-й столбец — A^j .

Две матрицы называются **равными**, если их порядки и соответствующие элементы совпадают, иначе — **неравными**.

15.1 Операции над матрицами

Матрица, все элементы которой равны 0, называется **нулевой** и обозначается O.

Квадратная матрица, в которой элементы главной диагонали равны 1, а остальные -0, называется **единичной** и обозначается E.

Над матрицами определены следующие операции:

• Сложение. Определено только над матрицами одинакового размера

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} + \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{vmatrix} = \begin{vmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{vmatrix}$$

Пусть A, B, C — матрицы. Свойства сложения:

- коммутативность: A + B = B + A
- ассоциативность: (A + B) + C = A + (B + C)
- Умножение на число.

$$\lambda \cdot \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{vmatrix} = \begin{vmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{vmatrix}$$

Пусть α, β — числа, A, B — матрицы. Свойства умножения на число:

- ассоциативность: $(\alpha \cdot \beta) \cdot A = \alpha \cdot (\beta \cdot A)$
- дистрибутивность относительно сложения чисел: $(\alpha + \beta) \cdot A = \alpha \cdot A + \beta \cdot A$
- дистрибутивность относительно сложения матриц: $\alpha \cdot (A+B) = \alpha \cdot A + \alpha \cdot B$
- Умножение. $A \cdot B$ определено, только если количество столбцов в матрице A совпадает с количеством строк в матрице B.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mk} \end{vmatrix} \cdot \begin{vmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \cdots & b_{kn} \end{vmatrix} = \begin{vmatrix} \sum a_{1i}b_{i1} & \sum a_{1i}b_{i2} & \cdots & \sum a_{1i}b_{in} \\ \sum a_{2i}b_{i1} & \sum a_{2i}b_{i2} & \cdots & \sum a_{2i}b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \sum a_{mi}b_{i1} & \sum a_{mi}b_{i2} & \cdots & \sum a_{mi}b_{in} \end{vmatrix}$$

где суммирование производится по i от 1 до k.

Пусть λ — число, A, B, C — матрицы. Свойства умножения:

- ассоциативность: $(A \cdot B) \cdot C = A \cdot (B \cdot C)$
- дистрибутивность: $(A+B)\cdot C = A\cdot C + B\cdot C, A\cdot (B+C) = A\cdot B + A\cdot C$
- ассоциативность и коммутативность относительно умножения на число: $(\lambda \cdot A) \cdot B = \lambda \cdot (A \cdot B) = A \cdot (\lambda \cdot B)$
- Транспонирование.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}^{T} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

15.2 Блочные матрицы

Если матрицу при помощи горизонтальных и вертикальных прямых разделить на прямоугольные клетки, называемые блоками, то получится блочная матрица, состоящая из блоков, которые, в свою очередь, также являются матрицами. Легко проверить непосредственно, что операции над блочными матрицами осуществляются так же, как и над обычными.

15.3 Определитель матрицы

Определителем порядка n квадратной матрицы A порядка n, называется число, равное

$$\Delta = \det A = |A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{\sigma = (i_1, \dots, i_n) \in S_n} (-1)^{|\sigma|} a_{1\,i_1} a_{2\,i_2} \cdot \dots \cdot a_{n\,i_n}, \ |\sigma| = \begin{cases} 0, \sigma \text{ чётная} \\ 1, \sigma \text{ нечётная} \end{cases}$$
(15.1)

где S_n — множество всех перестановок n-элементного множества.

Матрица называется **вырожденной**, если её определитель равен 0, иначе — **невырожденной**. Свойства определителя:

• Если элементы какой-либо строки или столбца определителя имеют общий множитель λ , то его можно вынести за знак определителя.

Доказательство.

$$\Delta = \sum (-1)^{|\sigma|} a_{1 \, i_1} a_{2 \, i_2} \cdot \ldots \cdot a_{n \, i_n}$$

Каждое слагаемое имеет множитель из каждой строки, а также из каждого столбца, т. к. σ является перестановкой и содержит все номера столбцов от 1 до n включительно. Тогда все слагаемые имеют общий множитель λ , поэтому его можно вынести за скобки.

• Если какая-либо строка или столбец определителя состоит из нулей, то он равен 0.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + b_{i1} & a_{i2} + b_{i2} & \cdots & a_{in} + b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} & b_{i2} & \cdots & b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов аналогично.

Доказательство.

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} + b_{i1} & a_{i2} + b_{i2} & \cdots & a_{in} + b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum (-1)^{|\sigma|} a_{1\,i_{1}} \cdot \dots \cdot a_{n\,i_{n}} =$$

 \mid Каждое слагаемое содержит ровно 1 элемент из i-й строки и поэтому имеет вид \mid

$$= \sum (-1)^{|\sigma|} a_{1 \, i_{1}} \cdot \ldots \cdot a_{k-1 \, i_{k-1}} (a_{k \, i_{k}} + b_{k \, i_{k}}) a_{k+1 \, i_{k+1}} \cdot \ldots \cdot a_{n \, i_{n}} =$$

$$= \sum (-1)^{|\sigma|} a_{1 \, i_{1}} \cdot \ldots \cdot a_{k \, i_{k}} \cdot \ldots \cdot a_{n \, i_{n}} + \sum (-1)^{|\sigma|} a_{1 \, i_{1}} \cdot \ldots \cdot b_{k \, i_{k}} \cdot \ldots \cdot a_{n \, i_{n}} =$$

$$= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{i1} & b_{i2} & \cdots & b_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов доказывается аналогично.

- Если в определителе поменять две строки или два столбца местами, то он изменит знак.
 - Доказательство. При перестановке строк или столбцов местами по утверждению 2.1.4 все перестановки в формуле (15.1) меняют чётность, значит, каждое слагаемое меняет знак, тогда и определитель меняет знак. ■
- Если в определителе две строки или два столбца совпадают, то он равен 0.

Доказательство. Если поменять местами совпадающие строки или столбцы, то он, с одной стороны, не изменится, а с другой, поменяет знак. Значит, определитель равен 0. ■

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{i1} + a_{j1} & \lambda a_{i2} + a_{j2} & \cdots & \lambda a_{in} + a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов аналогично.

Доказательство.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \cdots & a_{jn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Свойство для столбцов доказывается аналогично.

Рассмотрим квадратную матрицу A n-го порядка. Пусть $1 \le i_1 < i_2 < \ldots < i_k \le n, \ 1 \le j_1 < j_2 < \ldots < j_k \le n.$ Минором k-го порядка матрицы A называется определитель, образованный элементами матрицы, стоящими на пересечении строк с номерами i_1, i_2, \ldots, i_k и столбцов с номерами j_1, j_2, \ldots, j_k , и обозначается $M_{j_1 j_2 \ldots j_k}^{i_1 i_2 \ldots i_k}$.

Дополнительным минором порядка n-k к минору $M^{i_1i_2...i_k}_{j_1j_2...j_k}$ называется определитель, полученный вычеркиванием строк с номерами i_1,i_2,\ldots,i_k и столбцов с номерами j_1,j_2,\ldots,j_k из определителя матрицы A, и обозначается $\overline{M}^{i_1i_2...i_k}_{j_1j_2...j_k}$.

Алгебраическим дополнением элемента a_{ij} матрицы A называется величина, равная $(-1)^{i+j}\overline{M}_{j}^{i}$, и обозначается A_{ij} .

Теорема 15.3.1. Любой определитель можно разложить по элементам произвольной строки или столбца:

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{j=1}^{n} a_{ij} A_{ij} = \sum_{i=1}^{n} a_{ij} A_{ij}$$

Доказательство.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = (-1)^{i-1} \cdot \begin{vmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i-1} & a_{i-12} & \cdots & a_{i-1n} \\ a_{i+11} & a_{i+12} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = (-1)^{i+1} \cdot \begin{vmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$\cdot \left(\begin{vmatrix} a_{i1} & 0 & \cdots & 0 \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i-11} & a_{i-12} & \cdots & a_{i-1n} \\ a_{i+11} & a_{i+12} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} 0 & a_{i2} & \cdots & 0 \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i-1n} & a_{i-1n} & a_{i-1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nn} & a_{nn} \end{vmatrix} + \cdots + \begin{vmatrix} 0 & 0 & \cdots & a_{in} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i-11} & a_{i-12} & \cdots & a_{i-1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nn} & a_{n2} & \cdots & a_{nn} \end{vmatrix} =$$

$$+ (-1)^{n-1} \cdot \begin{vmatrix} a_{in} & 0 & \cdots & 0 \\ a_{1n} & a_{11} & \cdots & a_{1\,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i-1\,n} & a_{i-1\,1} & \cdots & a_{i-1\,n-1} \\ a_{i+1\,n} & a_{i+1\,1} & \cdots & a_{i+1\,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{nn} & a_{n1} & \cdots & a_{n\,n-1} \end{vmatrix}$$

Пользуясь формулой (15.1), получим
$$\begin{vmatrix} a & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} =$$

$$= \sum a \cdot a_{2\,i_{2}} \cdot \ldots \cdot a_{n\,i_{n}} + \sum 0 \cdot a_{2\,i_{2}} \cdot \ldots \cdot a_{n\,i_{n}} + \ldots + \sum 0 \cdot a_{2\,i_{2}} \cdot \ldots \cdot a_{n\,i_{n}} =$$

$$= a \sum a_{2\,i_{2}} \cdot \ldots \cdot a_{n\,i_{n}} = a \cdot \begin{vmatrix} a_{22} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$= (-1)^{i+1}a_{i1} \cdot \begin{vmatrix} a_{12} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{i-12} & \cdots & a_{i-1n} \\ a_{i+12} & \cdots & a_{i+1n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \cdots & a_{nn} \end{vmatrix} + (-1)^{i+2}a_{i2} \cdot \begin{vmatrix} a_{11} & a_{13} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i-11} & a_{i-13} & \cdots & a_{i-1n} \\ a_{i+11} & a_{i+13} & \cdots & a_{i+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n3} & \cdots & a_{nn} \end{vmatrix} + \dots + (-1)^{i+n}a_{in} \cdot \begin{vmatrix} a_{11} & \cdots & a_{1n-1} \\ \vdots & \ddots & \vdots \\ a_{i-11} & \cdots & a_{i-1n-1} \\ a_{i+11} & \cdots & a_{i+1n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n3} & \cdots & a_{nn} \end{vmatrix} =$$

$$= \sum_{j=1}^{n} a_{ij} A_{ij}$$

Аналогично доказывается

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \sum_{i=1}^{n} a_{ij} A_{ij}$$

Следствие 15.3.2 (фальшивое разложение определителя). Пусть дана квадратная матрица $A=\|a_{ij}\|$ n-го порядка, тогда

$$\sum_{k=1}^{n} a_{ik} A_{jk} = \sum_{k=1}^{n} a_{ki} A_{kj} = 0, \ i \neq j$$

Доказательство.

$$\sum_{k=1}^{n} a_{ik} A_{jk} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = 0 = \begin{vmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1i} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2i} & \cdots & a_{2i} & \cdots & a_{2n} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{ni} & \cdots & a_{ni} & \cdots & a_{nn} \end{vmatrix} = \sum_{k=1}^{n} a_{ki} A_{kj}$$

Утверждение 15.3.3. Определитель транспонированной матрицы равен определителю исходной. Доказательство.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}^{T} = \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix} = \sum_{j=1}^{n} a_{1j} A_{1j} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

Теорема 15.3.4 (Лапла́са). Пусть дана квадратная матрица А n-го порядка.

$$\forall 0 < k < n, \ 1 \leqslant i_1 < i_2 < \ldots < i_k \leqslant n \ \det A = \sum_{1 \leqslant j_1 < \ldots < j_k \leqslant n} (-1)^{i_1 + \ldots + i_k + j_1 + \ldots + j_k} M_{j_1 \ldots j_k}^{i_1 \ldots i_k} \overline{M}_{j_1 \ldots j_k}^{i_1 \ldots i_k}$$

Доказательство методом математической индукции.

- База индукции. При k=1 данная теорема эквивалентна теореме 15.3.1.
- *Шаг индукции*. Пусть теорема верна при k-1. Докажем её для k.

$$\det A = \sum_{1 \le j_1 < \dots < j_{k-1} \le n} (-1)^{i_1 + \dots + i_{k-1} + j_1 + \dots + j_{k-1}} M_{j_1 \dots j_{k-1}}^{i_1 \dots i_{k-1}} \overline{M}_{j_1 \dots j_{k-1}}^{i_1 \dots i_{k-1}} =$$

 $\Big|$ Разложим каждый минор $\overline{M}_{j_1...j_{k-1}}^{i_1...i_{k-1}}$ по строке A_{i_k} , полагая, что $\Theta_{j_1...j_k}$ — некоторое число

$$= \sum_{1 \leqslant j_1 < \dots < j_k \leqslant n} \Theta_{j_1 \dots j_k} \overline{M}_{j_1 \dots j_k}^{i_1 \dots i_k}$$

Найдём значение $\Theta_{j_1...j_k}$. Заметим, что минор $\overline{M}_{j_1...j_k}^{i_1...i_k}$ получается при разложении только миноров

$$\overline{M}_{j_1...j_{s-1}j_{s+1}...j_k}^{i_1...i_{k-1}}, \ s=1,2,...,k$$

причём

$$\overline{M}_{j_1...j_{s-1}j_{s+1}...j_k}^{i_1...i_{k-1}} = (-1)^{i_k - (k-1) + j_s - (s-1)} a_{i_k j_s} \overline{M}_{j_1...j_k}^{i_1...i_k} + \dots$$

где многоточием обозначены остальные слагаемые.

Тогда

$$\Theta_{j_1...j_k} = (-1)^{i_1 + \dots + i_k + j_1 + \dots + j_k} \sum_{s=1}^k (-1)^{k+s} M_{j_1...j_{s-1}j_{s+1}...j_k}^{i_1...i_{k-1}} = (-1)^{i_1 + \dots + i_k + j_1 + \dots + j_k} M_{j_1...j_k}^{i_1...i_k}$$

Теорема 15.3.5. Если $A = ||a_{ij}||, B = ||b_{ij}||$ — квадратные матрицы n-го порядка, то $\det AB = \det A \cdot \det B$. Доказательство. Пусть O, E — нулевая и единичная соответственно квадратные матрицы n-го порядка, C = AB. Рассмотрим блочные матрицы

$$\begin{vmatrix} A & O \\ -E & B \end{vmatrix}, \begin{vmatrix} A & C \\ -E & O \end{vmatrix}$$

Раскладывая первую матрицу по первым n строкам, а вторую — по последним n строкам, получим

$$\begin{vmatrix} A & O \\ -E & B \end{vmatrix} = |A||B|, \ \begin{vmatrix} A & C \\ -E & O \end{vmatrix} = (-1)^{1+\dots+2n}|-E||C| = |C|$$

Тогда

$$\det A \cdot \det B = \begin{vmatrix} A & O \\ -E & B \end{vmatrix} = \begin{vmatrix} a_{11} & \cdots & a_{1n} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} & 0 & \cdots & 0 \\ -1 & \cdots & 0 & b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -1 & b_{n1} & \cdots & b_{nn} \end{vmatrix} =$$

$$= \begin{vmatrix} a_{11} & \cdots & a_{1n} & \sum_{i=1}^{n} a_{1i}b_{i1} & \cdots & \sum_{i=1}^{n} a_{1i}b_{in} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} & \sum_{i=1}^{n} a_{ni}b_{i1} & \cdots & \sum_{i=1}^{n} a_{ni}b_{in} \\ -1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -1 & 0 & \cdots & 0 \end{vmatrix} = \begin{vmatrix} A & C \\ -E & O \end{vmatrix} = \det C$$

15.4 Ранг матрицы

Строка (столбец) матрицы называется **линейно зависимой**, если она является линейной комбинацией остальных строк (столбцов), иначе — **линейно независимой**.

Рангом матрицы называется максимальное количество её линейно независимых строк.

Минор наибольшего порядка, отличный от нуля, называется базисным.

Теорема 15.4.1. Ранг матрицы равен порядку базисного минора.

Доказательство. Пусть $A = \|a_{ij}\|$ — квадратная матрица n-го порядка, M_k — базисный минор k-го порядка. При перестановке строк и столбцов минора равенство с нулём сохраняется, значит, без ограничения общности можно считать, что

$$M_k = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{vmatrix}$$

 $M_k \neq 0$, значит, строки A_1, \dots, A_k линейно независимы. Пусть M_{k+1} — минор порядка k+1:

$$M_{k+1} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} & a_{1j} \\ a_{21} & a_{22} & \cdots & a_{2k} & a_{2j} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} & a_{kj} \\ a_{i1} & a_{i2} & \cdots & a_{ik} & a_{ij} \end{vmatrix} = 0$$

т. к. M_k — базисный минор. Тогда

$$\forall j \ a_{1j}A_{1j} + a_{2j}A_{2j} + \dots + a_{kj}A_{kj} + a_{ij}A_{ij} = 0 \& A_{ij} = M_k \neq 0 \Rightarrow$$
$$\Rightarrow a_{ij} = -\frac{A_{1j}}{A_{ij}}a_{1j} - \frac{A_{2j}}{A_{ij}}a_{2j} - \dots - \frac{A_{kj}}{A_{ij}}a_{kj}$$

где $A_{1j},\ldots,A_{kj},A_{ij}$ — алгебраические дополнения $a_{1j},\ldots,a_{kj},a_{ij}$ в миноре $M_{k+1},A_{1j},\ldots,A_{kj},A_{ij}$ не зависят от j, тогда A_i — линейная комбинация A_1,\ldots,A_k , значит, k — ранг матрицы A.

Рангом матрицы по строкам (столбцам) называется максимальное количество её линейно независимых строк (столбцов).

Следствие 15.4.2. *Ранг матрицы по строкам равен рангу матрицы по столбцам.* Для доказательства достаточно заметить, что определитель транспонированной матрицы равен определителю исходной.

15.5 Элементарные преобразования матриц

Элементарными преобразованиями называются следующие операции над матрицей:

- Перестановка строк матрицы преобразование I типа
- Умножение строки на $\lambda \neq 0$ преобразование II типа
- Прибавление к строке матрицы другой строки, умноженной на λ .

Аналогично определяются элементарные преобразования над столбцами.

Теорема 15.5.1. Элементарные преобразования матрицы не изменяют её ранг.

Доказательство. Для доказательства достаточно показать, что в результате элементарных преобразований равенство определителя с нулём сохраняется.

- Перестановка строк матрицы изменяет только знак определителя.
- Умножение строки матрицы на ненулевое число приводит к умножению определителя на это же число.
- Прибавление к строке матрицы другой строки, умноженной на некоторое число, не изменяет определитель.

Матрица *А* имеет **ступенчатый вид**, если:

- все нулевые строки стоят последними;
- для любой ненулевой строки A_p верно, что $\forall i>p,\ j\leqslant q\ a_{ij}=0$, где a_{pq} первый ненулевой элемент строки A_p .

Теорема 15.5.2. Любую матрицу путём элементарных преобразований только над строками можно привести к ступенчатому виду.

Доказательство. Приведём алгоритм, преобразующий любую матрицу $\|a_{ij}\|_{\substack{i=\overline{1,m}\\j=\overline{1,n}}}$ к ступенчатому виду путём элементарных преобразований только над строками. В качестве текущего элемента возьмём a_{11} .

- 1. Если текущий элемент $a_{ij} = 0$, то переходим к шагу 2, иначе к каждой строке A_k , где $k = i + 1, i + 2, \ldots, n$, добавляем строку $-\frac{a_{kj}}{a_{ij}}A_i$. Если i = m или j = n, то матрица приведена к ступенчатому виду, иначе выбираем новый текущий элемент $a_{i+1,j+1}$ и повторяем шаг 1.
- 2. Просматриваем элементы матрицы, расположенные под текущим элементом a_{ij} . Если $a_{kj} \neq 0$, то меняем местами строки A_i и A_k и переходим к шагу 1, иначе переходим к шагу 3.
- 3. Пусть a_{ij} текущий элемент. Если j=n, то матрица приведена к ступенчатому виду, иначе выбираем новый текущий элемент $a_{i\,j+1}$ и переходим к шагу 1.

Матрица имеет конечные размеры, а положение текущего элемента смещается как минимум на 1 столбец вправо за не более, чем 3 шага, поэтому алгоритм закончит работу за не более, чем 3n шагов. ■

15.6 Обратные матрицы

Матрица B называется **левой обратной** к квадратной матрице A, если BA = E.

Матрица C называется **правой обратной** к квадратной матрице A, если AC = E.

Заметим, что обе матрицы B и C — квадратные того же порядка, что и A.

Утверждение 15.6.1. Если существуют левая и правая обратные к A матрицы B и C, то они совпадают.

Доказательство. B = BE = BAC = EC = C.

Т. о., матрица A^{-1} называется **обратной** к матрице A, если $A^{-1}A = AA^{-1} = E$.

Приведём методы вычисления обратной матрицы.

Теорема 15.6.2 (метод присоединённой матрицы). Пусть даны матрицы $A = \|a_{ij}\|_{\substack{i=\overline{1,n}\\j=\overline{1,n}}}, \ \hat{A} = \|A_{ij}\|_{\substack{i=\overline{1,n}\\j=\overline{1,n}}},$

где A_{ij} — алгебраическое дополнение a_{ij} .

Eсли $|A| \neq 0$, то

$$A^{-1} = \frac{1}{|A|} \cdot \hat{A}^T$$

Доказательство.

$$A \cdot \left(\frac{1}{|A|} \cdot \hat{A}^{T}\right) = \frac{1}{|A|} \cdot A \cdot \hat{A}^{T} = \frac{1}{|A|} \cdot \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \cdot \begin{vmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{vmatrix} =$$

$$= \frac{1}{|A|} \cdot \begin{vmatrix} \sum_{k=1}^{n} a_{1k} A_{1k} & \sum_{k=1}^{n} a_{1k} A_{2k} & \cdots & \sum_{k=1}^{n} a_{1k} A_{nk} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} a_{2k} A_{1k} & \sum_{k=1}^{n} a_{2k} A_{2k} & \cdots & \sum_{k=1}^{n} a_{2k} A_{nk} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} a_{nk} A_{1k} & \sum_{k=1}^{n} a_{nk} A_{2k} & \cdots & \sum_{k=1}^{n} a_{nk} A_{nk} \end{vmatrix} = \frac{1}{|A|} \cdot \begin{vmatrix} |A| & 0 & \cdots & 0 \\ 0 & |A| & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & |A| \end{vmatrix} = E \Rightarrow$$

$$\Rightarrow \frac{1}{|A|} \cdot \hat{A}^{T} = A^{-1}$$

Теорема 15.6.3 (метод Гаусса—Жордана). Пусть дана невырожденная матрица $A = \|a_{ij}\|_{\substack{i=\overline{1,n}\\j=\overline{1,n}}}$. Присоединим к ней единичную матрицу:

$$B = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 1 & 0 & \cdots & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & 0 & 0 & \cdots & 1 \end{vmatrix}$$

и с помощью элементарных преобразований только над строками полученной матрицы (или только над столбцами) приведём её левую часть к единичной матрице. Тогда правая часть будет обратной к A матрицей.

Доказательство. Каждое элементарное преобразование квадратной матрицы A эквивалентно её умножению на некоторую матрицу T того же порядка:

$$\begin{vmatrix} 1 & 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ 0 & 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ 0 & 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ 0 & 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ 0 & 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{vmatrix}$$

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1i} & \dots & a_{1i} & \dots & a_{1i} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{j1} & a_{j2} & \dots & a_{ji} & \dots & a_{jn} & \dots & a_{nn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots & \dots \\ a_{j1} & a_{j2} & \dots & a_{ji} & \dots & a_{jn} & \dots & a_{nn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{ii} & \dots & a_{in} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots & \dots \\ a_{i1} & a_{i2} & \dots & a_{ii} & \dots & a_{in} & \dots & a_{nn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots & \dots \\ a_{in} & a_{2n} & \dots & a_{in} & \dots & a_{in} & \dots & a_{nn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{in} & a_{2n} & \dots & a_{in} & \dots & a_{nn} & \dots & a_{nn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{in} & a_{2n} & \dots & a_{in} & \dots & a_{in} & \dots & a_{nn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{in} & a_{2n} & \dots & a_{in} & \dots & a_{in} & \dots & a_{nn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{in} & a_{2n} & \dots & a_{in} & \dots & a_{in} & \dots & a_{nn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{in} & a_{2n} & \dots & a_{in} & \dots & a_{nn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots & \dots \\ a_{in} & a_{2n} & \dots & a_{in} & \dots & a_{nn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots & \dots \\ a_{in} & a_{2n} & \dots & a_{in} & \dots & a_{nn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \dots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \dots \\$$

$$\begin{vmatrix} 1 & 0 & \dots & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots \\ 0 & 0 & \dots & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots \\ 0 & 0 & \dots & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{i1} & a_{i2} & \dots & a_{in} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{in} & a_{2n} & \dots & a_{in} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1i} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2i} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots \\ \lambda a_{i1} & \lambda a_{i2} & \dots & \lambda a_{ii} & \dots & \lambda a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \dots \\ a_{1n} & a_{2n} & \dots & a_{in} & \dots & a_{nn} \end{vmatrix}$$

$$= \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1i} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2i} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ii} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \lambda a_{i1} + a_{j1} & \lambda a_{i2} + a_{j2} & \dots & \lambda a_{ii} + a_{ji} & \dots & \lambda a_{ij} + a_{jj} & \dots & \lambda a_{in} + a_{jn} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{in} & \dots & a_{jn} & \dots & a_{nn} \end{vmatrix}$$

Т. о., результат последовательных элементарных преобразований матрицы B можно представить в виде $T_k \cdot \ldots \cdot T_1 \cdot B$. Рассматривая отдельно левую и правую части матрицы B, получим:

$$\begin{cases} T_k \cdot \ldots \cdot T_1 \cdot A = E \\ T_k \cdot \ldots \cdot T_1 \cdot E = A_1 \end{cases} \Rightarrow A_1 \cdot A = E \Rightarrow A_1 = A^{-1}$$

Теорема 15.6.4. *Если* A- *квадратная матрица, то* $\exists A^{-1} \Leftrightarrow \det A \neq 0$. Доказательство.

1.
$$\Rightarrow$$
. $A \cdot A^{-1} = E \Rightarrow \det A \cdot \det A^{-1} = 1 \Rightarrow \det A \neq 0$

2. \Leftarrow . $\exists A^{-1}$ по теореме 15.6.2.

Глава 16

Теория многочленов

16.1 Многочлены от одной переменной

16.1.1 Деление многочленов

Общим делителем многочленов f(x) и g(x) называется многочлен h(x), на который и f, и g делятся без остатка: f = ph, g = qh.

Наибольшим называется общий делитель наибольшей степени и обозначается НОД.

Теорема 16.1.1 (алгоритм Евклида). Любые два многочлена имеют единственный НОД.

Доказательство. Будем делить многочлены следующим образом:

$$f = q_1 g + r_1, \ g = q_2 r_1 + r_2, \ r_1 = q_3 r_2 + r_3, \dots,$$
$$r_{n-1} = q_{n+1} r_n + r_{n+1}, \ r_n = q_{n+2} r_{n+1} + r_{n+2} = q_{n+2} r_{n+1},$$
$$\deg g > \deg r_1 > \deg r_2 > \dots > \deg r_{n+1} > \deg r_{n+2} = -\infty$$

Докажем, что r_{n+1} — общий делитель f и g.

$$r_n : r_{n+1} \Rightarrow r_{n-1} : r_{n+1} \Rightarrow \ldots \Rightarrow r_1 : r_{n+1} \Rightarrow g : r_{n+1} \Rightarrow f : r_{n+1}$$

Докажем, что $\forall h \ f \ \vdots \ h \ \& \ g \ \vdots \ h \Rightarrow r_{n+1} \ \vdots \ h$.

$$f : h \& g : h \Rightarrow r_1 : h, g : h \& r_1 : h \Rightarrow r_2 : h, r_1 : h \& r_2 : h \Rightarrow r_3 : h, \dots, r_{n-1} : h \& r_n : h \Rightarrow r_{n+1} : h$$

Значит, $r_{n+1} = \text{HOД}(f, g)$.

16.1.2 Корень многочлена

Теорема 16.1.2 (основная теорема алгебры). Если f(x) — многочлен, отличный от константы, то он имеет хотя бы один комплексный корень. Доказательство теоремы слишком сложно, поэтому здесь не приводится.

Следствие 16.1.3. Mногочлен n-й степени имеет ровно n комплексных корней с учётом их кратности.

Доказательство. Пусть f(x) — многочлен n-й степени. По основной теореме алгебры он имеет корень a, тогда по следствию 4.1.5 f(x) = g(x)(x-a), где g(x) — многочлен степени n-1, который также имеет корень. Будем повторять деление до тех пор, пока не получим константу. Т. о., получим n корней. \blacksquare

Следствие 16.1.4. Любой многочлен f(x) n-й степени представим в виде

$$f(x) = a(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1})$$

где a — число, x_0, \ldots, x_{n-1} — корни f(x).

Лемма 16.1.5. Если f(x) — многочлен c действительными коэффициентами, $z \in \mathbb{C}$, то $f(z) = f(\overline{z})$.

Доказательство. Пусть $z_1 = a_1 + b_1 i$, $z_2 = a_2 + b_2 i$, $a_1, b_1, a_2, b_2 \in \mathbb{R}$. Многочлен строится при помощи операций сложения и умножения, поэтому достаточно доказать следующее:

 $1. \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$

$$\overline{z_1 + z_2} = \overline{(a_1 + a_2) + (b_1 + b_2)i} = (a_1 + a_2) - (b_1 + b_2)i = (a_1 - b_1i) + (a_2 - b_2i) = \overline{z_1} + \overline{z_2}$$

 $2. \ \overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$

$$\overline{z_1 z_2} = \overline{(a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i} = (a_1 a_2 - b_1 b_2) - (a_1 b_2 + a_2 b_1)i = (a_1 - b_1 i)(a_2 - b_2 i) = \overline{z_1} \cdot \overline{z_2}$$

Тогда $\overline{a_n z^n + \ldots + a_1 z + a_0} = a_n \overline{z}^n + \ldots + a_1 \overline{z} + a_0$ при $a_0, a_1, \ldots, a_n \in \mathbb{R}$.

Теорема 16.1.6. Любой многочлен с действительными коэффициентами можно разложить на линейные и квадратные множители с действительными коэффициентами.

Доказательство. Пусть f(x) — многочлен с действительными коэффициентами, тогда если f(z) = 0, то $f(\overline{z}) = \overline{f(z)} = \overline{0} = 0$. Значит, если a + bi — корень f(x), то a - bi — тоже корень f(x). Имеем:

$$f(x) = a \prod_{j=1}^{m} (x - x_j) \cdot \prod_{j=1}^{n} (x - (a_j + b_j i))(x - (a_j - b_j i)) = a \prod_{j=1}^{m} (x - x_j) \cdot \prod_{j=1}^{n} (x^2 - 2a_j x + a_j^2 + b_j^2)$$

где $a, x_1, \ldots, x_m, a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{R}, x_1, \ldots, x_m, a_1 + b_1 i, \ldots, a_n + b_n i$ — корни f(x).

Теорема 16.1.7 (формулы Виета). Пусть

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = a_n (x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1})$$

$$(16.1)$$

тогда

$$a_{n-1} = -a_n \sum_{i=0}^{n-1} x_i, \ a_{n-2} = a_n \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} x_i x_j, \ a_{n-3} = -a_n \sum_{i=0}^{n-1} \sum_{j=i+1}^{n-1} \sum_{k=i+1}^{n-1} x_i x_j x_k, \dots,$$

$$a_2 = (-1)^{n-1} \cdot a_n \sum_{i=0}^{n-1} x_0 x_1 \cdot \ldots \cdot x_{i-1} x_{i+1} \cdot \ldots \cdot x_{n-1}, \ a_1 = (-1)^n \cdot a_n x_0 x_1 \cdot \ldots \cdot x_{n-1}$$

Для доказательства достаточно раскрыть скобки в правой части равенства (16.1).

Теорема 16.1.8. Пусть на плоскости даны n+1 точек, никакие две из которых не лежат на прямой, паралелльной оси ординат, тогда через них проходит единственная кривая n-го порядка.

Доказательство. Пусть данные точки заданы координатами $(a_0, b_0), (a_1, b_1), \ldots, (a_n, b_n)$.

1. Докажем существование. Рассмотрим многочлен f(x), называемый **интерполяционным многочленом Лагранжа**:

$$f(x) = \sum_{i=0}^{n} b_i \frac{(x-a_0) \cdot \dots \cdot (x-a_{i-1})(x-a_{i+1}) \cdot \dots \cdot (x-a_n)}{(a_i-a_0) \cdot \dots \cdot (a_i-a_{i-1})(a_i-a_{i+1}) \cdot \dots \cdot (a_i-a_n)}$$

Докажем, что кривая, задаваемая функцией f, проходит через все данные точки. Рассмотрим точку (a_k, b_k) . Подставим $x = a_k$, тогда k-е (считая с нуля) слагаемое равно b_k , а остальные -0.

2. Докажем единственность. Предположим, что существуют многочлены f(x) и g(x) n-й степени такие, что $f(a_i) = g(a_i) = b_i$, где $i = 0, 1, \ldots, n$. Рассмотрим $h(x) = f(x) - g(x) \Rightarrow \deg h \leqslant n \Rightarrow h(x)$ имеет не более n корней. При этом h(x) = 0 в n+1 точках $\Rightarrow h(x)$ тождественно равен нулю $\Rightarrow f(x) = g(x)$.

16.2 Многочлены от нескольких переменных

- 1. В многочлене $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$ подставим $a_i = P_i(y), i = 0, 1, \ldots, n$ многочлен от y. Получим многочлен от x и y.
- 2. Пусть имеем многочлен от n переменных. Подставим вместо его коэффициентов многочлен от одной переменной, получим многочлен от n+1 переменных.

Одночлены многочлена будем записывать в лексикографическом порядке степеней переменных (члены с бо́льшими степенями идут раньше).

Утверждение 16.2.1. Старший член произведения многочленов равен произведению старших членов множителей.

Доказательство. Перемножая члены с наибольшими показателями старшей переменной, получим член с наибольшим показателем при этой переменной. Проведя аналогичные рассуждения для остальных переменных, придём к выводу, что полученный член является старшим. ■

Аналогично доказывается следующее утверждение.

Утверждение 16.2.2. Младший член произведения многочленов равен произведению младших членов множителей.

16.2.1 Симметрические многочлены

Многочлен называется симметрическим, если при перестановке переменных он не изменяется.

Утверждение 16.2.3. Если $f(x_1, \ldots, x_n) = ax_1^{i_1}x_2^{i_2} \cdot \ldots \cdot x_n^{i_n} + \ldots -$ симметрический многочлен, то $i_1 \geqslant i_2 \geqslant \ldots \geqslant i_n$.

Доказательство методом от противного. Пусть $\exists r < q \colon i_r < i_q$, тогда f содержит $bx_1^{i_1} \cdot x_2^{i_2} \cdot \ldots \cdot x_r^{i_q} \cdot \ldots \cdot x_q^{i_r} \cdot \ldots \cdot x_n^{i_n}$, который старше, чем $ax_1^{i_1} \cdot x_2^{i_2} \cdot \ldots \cdot x_n^{i_n}$. Противоречие. \blacksquare

Элементарными симметрическими многочленами от n переменных называются многочлены

$$\sigma_1(x_1, \dots, x_n) = \sum_{i=1}^n x_i, \ \sigma_2(x_1, \dots, x_n) = \sum_{i=1}^n \sum_{j=i+1}^n x_i x_j, \ \dots, \ \sigma_n(x_1, \dots, x_n) = x_1 x_2 \cdot \dots \cdot x_n$$

Teopema 16.2.4 (основная теорема о симметрических многочленах). Любой симметрический многочлен может быть представлен в виде многочлена от элементарных симметрических многочленов.

Доказательство. Пусть $f(x_1,\ldots,x_n)=ax_1^{k_1}\cdot\ldots\cdot x_n^{k_n}+\ldots-$ симметрический многочлен. Введём

$$g_1(\sigma_1, \dots, \sigma_n) = a\sigma_1^{k_1 - k_2} \sigma_2^{k_2 - k_3} \cdot \dots \cdot \sigma_{n-1}^{k_{n-1} - k_n} \sigma_n^{k_n} =$$

$$= a(x_1 + \dots)^{k_1 - k_2} (x_1 x_2 + \dots)^{k_2 - k_3} \cdot \dots \cdot (x_1 x_2 \cdot \dots \cdot x_{n-1} + \dots)^{k_{n-1} - k_n} (x_1 x_2 \cdot \dots \cdot x_n)^{k_n} =$$

$$= ax_1^{k_1} \cdot \dots \cdot x_n^{k_n} + \dots$$

Тогда старший член многочлена $f_1 = f - g_1$ младше старшего члена многочлена f. Повторим те же действия с многочленом f_1 . Будем продолжать таким образом, пока не получим ноль. В итоге получим $f = g_1 + g_2 + \ldots + g_m$, где g_1, g_2, \ldots, g_m — многочлены от элементарных симметрических многочленов.

Глава 17

Теория множеств

Функция $f: A \to B$ называется **инъективной (инъекцией)**, если $\forall x, y \in A \ x \neq y \Rightarrow f(x) \neq f(y)$.

Функция $f:A\to B$ называется сюръективной (сюръекцией), если $\forall b\in B\ \exists a\in A\colon f(a)=b.$

Функция $f: A \to B$ называется **биективной (биекцией)**, если она инъективная и сюръективная.

17.1 Мощность множеств

Множества A и B называются равномощными (имеют одинаковую мощность), если существует биекция $f \colon A \to B$, иначе — неравномощными.

Для конечных множеств это означает, что у них одинаковое количество элементов.

Мощностью конечного множества A называется количество его элементов и обозначается |A|.

Множество всех подмножеств множества A обозначается $2^{A} = \mathcal{P}(A) = \{x \mid x \subseteq A\}.$

Множество всех подмножеств множества A мощности k обозначается $\mathcal{P}_k(A) = \{x \subseteq A \mid |x| = k\}.$

Теорема 17.1.1 (Кантора). Множества A и $\mathcal{P}(A)$ не равномощны.

Доказательство методом от противного. Пусть $f: A \to \mathcal{P}(A)$ — биекция. Рассмотрим множество

$$X = \{a \in A \mid a \notin f(a)\} \Rightarrow X \subset A \Rightarrow X \in \mathcal{P}(A)$$

f — биекция, тогда $\exists b \in A \colon f(b) = X$. Возможны два случая:

- 1. Пусть $b \in X \Rightarrow b \in f(b) \Rightarrow b \notin X$. Противоречие.
- 2. Пусть $b \notin X \Rightarrow b \in f(b) \Rightarrow b \in X$. Противоречие.

В обоих случаях получили противоречие.

Теорема 17.1.2. Пусть дано множество A: |A| = n, тогда $|\mathcal{P}_k(A)| = C_n^k$.

Доказательство методом математической индукции.

• База индукции. n = 0:

$$|A| = 0 \Rightarrow A = \emptyset \Rightarrow \mathcal{P}(A) = \{\emptyset\} \Rightarrow |\mathcal{P}_0(A)| = 1 = C_0^0$$

- Шаг индукции. Пусть теорема верна для n. Докажем её для n+1. Пусть $X \subset A$, |X|=k, $a \in A$. Подсчитаем количество таких X. Возможны два случая:
 - 1. Пусть $a \notin X \Rightarrow X \subset A \setminus \{a\}$, тогда таких $X C_n^k$.
 - 2. Пусть $a \in X$, тогда таких X столько же, сколько множеств $X \setminus \{a\} \subset A \setminus \{a\}$, т. е. C_n^{k-1} .

Тогда
$$|\mathcal{P}(A)| = C_n^{k-1} + C_n^k = C_{n+1}^k$$
.

17.1.1 Мощность числовых множеств

Множество называется **счётным**, если оно равномощно множеству натуральных чисел. Бесконечное множество, не являющееся счётным, называется **несчётным**.

Утверждение 17.1.3. \mathbb{Z} счётно.

Доказательство. Построим биекцию $f: \mathbb{Z} \to \mathbb{N}$:

$$f(n) = \begin{cases} -2n - 1, & n < 0 \\ 2n, & n \geqslant 0 \end{cases}$$

Тогда $|\mathbb{Z}| = |\mathbb{N}|$. ■

Утверждение 17.1.4. \mathbb{Q} *счётно.*

Доказательство. Составим таблицу, в верхней строке которой стоят $p_i \in \mathbb{Z}$, где i = 1, 2, ..., в левом столбце — $q_j \in \mathbb{N}$, где j = 1, 2, ..., а на пересечении столбца и строки — $\frac{p_i}{q_j}$. Обходя таблицу в указанном порядке, будем нумеровать очередной элемент, только если он не встречался ранее:

Ясно, что таким образом можно пронумеровать все элементы \mathbb{Q} , причём ни один из них не будет пронумерован дважды, значит, \mathbb{Q} счётно. ■

Утверждение 17.1.5. (0;1) несчётно.

Доказательство методом от противного. Пусть все числа из интервала (0; 1) можно пронумеровать. Тогда представим каждое число в виде десятичной дроби и расположим эти дроби в соответствии с нумерацией:

- 1. $0,a_{11}a_{12}...$
- $2. \ 0, a_{21}a_{22}\dots$

. . .

где $a_{11}, a_{12}, \ldots, a_{21}, a_{22}, \ldots$ — цифры. Рассмотрим дробь $0, b_1 b_2 \ldots$, где b_1, b_2, \ldots — цифры такие, что $b_1 \neq a_{11}$, $b_2 \neq a_{22}, \ldots$ Такая дробь отличается от каждой из пронумерованных хотя бы в одной позиции, значит, она не пронумерована. Противоречие.

Утверждение 17.1.6. Отрезок [a;b] равномощен отрезку [c;d].

Доказательство. Рассмотрим функцию

$$f(x) = \frac{c-d}{a-b}(x-a) + c, \ D(f) = [a;b]$$

E(f) = [c; d], f — биекция, значит, любые два отрезка равномощны друг другу.

Утверждение 17.1.7. Множество \mathbb{R} равномощно интервалу (0; 1).

Доказательство. Рассмотрим функцию

$$f(x) = \begin{cases} \frac{1}{x} - 2, & 0 < x \le \frac{1}{2} \\ \frac{1}{x - 1} + 2, & \frac{1}{2} < x < 1 \end{cases}$$

 $D(f) = (0;1), \, E(f) = \mathbb{R}, \, f$ — биекция, значит, интервал (0;1) равномощен $\mathbb{R}.$

17.2 Отношения

Пусть \circ — некоторое отношение. Назовём свойства, которыми оно может обладать:

- $a \circ a$ рефлексивность;
- $a \circ b \Rightarrow b \circ a$ симметричность;
- $a \circ b \& b \circ c \Rightarrow a \circ c$ транзитивность.

17.2.1 Отношение эквивалентности

Некоторое отношение \sim называется **отношением эквивалентности**, если оно обладает свойствами рефлексивности, симметричности и транзитивности.

Классом эквивалентности, или фактор-классом, элемента x называется множество $[x] = \{y \mid y \sim x\}$. Фактор-множеством называется множество различных фактор-классов.

Предметный указатель

Arg, 26	дифференцируемая, 59
arg, 26	Векторное пространство, 28
0,	Векторы
$\mathbb{C}, \frac{26}{}$	компланарные, 74
	- ·
d, 47	Bec, 103
deg, 14, 97, 105	Градиент, <mark>56</mark>
det, 111	Грамматика
det, 111	контекстно-свободная, 82
- 20	Грань, 89, 100
e, 39	Графы
1 50	гамильтоновы, 99
grad, 56	гомеоморфные, 101
T 0	
$\mathbb{I}, 8$	неориентированные, 97
$i, \frac{26}{}$	ориентированные, 104
\inf , $\frac{35}{}$	планарные, 100
	плоские, <mark>100</mark>
lim, 36, 40	полугамильтоновы, 99
	полуэйлеровы, 99
$\max, \frac{35}{}$	связные, <mark>98</mark>
\min , $\frac{35}{3}$	эйлеровы, <mark>98</mark>
	- ·
$\mathbb{R}, \frac{7}{2}$	Дерево, 101
ρ , $\frac{55}{}$	помеченное, 104
p, 50	Дизъюнкт, <mark>86</mark>
sup, <mark>35</mark>	Дизъюнкция, 84
sup, 50	Дискриминант, <mark>24</mark>
A professive and a property 119	Дифференциал, 47
Алгебраическое дополнение, 113	Замыкание, 79, 90
Алгоритм	Звёздочка Клини, 79
Бржозовского, <mark>80</mark>	
Дейкстры, 107	Импликант, 85
Евклида, <mark>120</mark>	Инверсия, <mark>11</mark> , 84
Краскала, <mark>103</mark>	Интеграл
Прима, 103	Римана, <mark>66</mark>
Флойда—Уоршелла, <u>107</u>	неопределённый, <mark>60</mark>
Флёри, <u>98</u>	несобственный, <mark>71</mark>
Форда—Фалкерсона, 108	определённый, <mark>66</mark>
	Интервал, <mark>16</mark>
Эдмондса—Карпа, 109	Инфимум, <mark>35</mark>
объединения циклов, <mark>99</mark>	Инъекция, 123
Алфавит, <mark>76</mark>	
Асимптота, 55	Источник, 107
Базис	Итерация, 79
векторного пространства, 28	Квадратичная форма, 34
класса булевых функций, 96	Класс
Бесконечно малая величина, 36	фактор-класс, <mark>125</mark>
	эквивалентности, 125
Биекция, 123	Код Прюфера, <mark>104</mark>
Буква, 76	Компонента связности, 98, 105
Вектор-функция, 59	110MIIOHOHTA CDASHOCTH, 30, 100

Конечный автомат	ограниченное, <mark>35</mark>
детерминированный, <mark>76</mark>	фактор-множество, 125
минимальный, <mark>78</mark>	Моном, <mark>14</mark>
недетерминированный, <mark>79</mark>	Мост, <mark>101</mark>
приведённый, <mark>78</mark>	Мощность, <mark>123</mark>
с магазинной памятью, <mark>81</mark>	Одночлен, <mark>14</mark>
связный, <mark>78</mark>	Окрестность, 17
Конкатенация	Операции
слов, <mark>76</mark>	логические, 84
языков, 79	Определитель, <mark>111</mark>
Контур, 105	Остов, <mark>103</mark>
Конъюнкт, 85	Отношение, <mark>125</mark>
Конъюнкция, 84	эквивалентности, <mark>125</mark>
Корень, 15	Отрезок, <mark>16</mark>
Лемма	Отрицание, 84
о накачке, <mark>78</mark>	Парабола, <mark>24</mark>
о вложенных отрезках, <mark>39</mark>	Первообразная, 60
о рукопожатиях, 97	Переменная
$ \sqrt{101} $	существенная, 84
Линейная комбинация, 28	фиктивная, 84
Литерал, 85	Перестановка, 11
Мажоранта, 35	Петля, 97, 105
Максимум	Покрытие, 89
множества, 35	Полином, 14
функции, <mark>53</mark> , <u>56</u>	Последовательность, 20
Маршрут, <mark>97</mark>	фундаментальная, 40
Матрица, <mark>110</mark>	Поток, 107
Якоби, <mark>60</mark>	Предел
блочная, 111	последовательности, 36
инцидентности, 106	функции, <mark>40</mark>
обратная, <mark>117</mark>	Прогрессия
производная, 55, 60	арифметическая, 9
смежности, <mark>106</mark>	геометрическая, 10
Метод	Произведение
Блейка, 88	векторное, 74
Гаусса—Жордана, <mark>118</mark>	Производная, <mark>46</mark>
Квайна, 88	по направлению, 56
Нельсона, <mark>88</mark>	частная, <mark>55</mark>
Паскаля, 94	Промежуток, <mark>16</mark>
интервалов, 19	Пропускная способность, 107
математической индукции, 13	Путь, <mark>105</mark>
наименьших квадратов, 58	Размещение, <u>11</u>
неопределённых коэффициентов, 94	Разрез, 107
Минимум	Ранг, 116
множества, 35	Расстояние между точками, 55
функции, 53, 56	Регулярное выражение, 80
Минор, 113	Ряд
базисный, 116	
Миноранта, 35	знакоположительный, 72
	числовой, 71
Мнимая единица, 26	Слово, <mark>76</mark>
Многочлен, 14 Жого мунур. 03	Сокращения пкл. 76
Жегалкина, 93	ДКА, 76
от нескольких переменных, 121	КС-грамматика, 82
симметрический, 122	МП-автомат, 81
Множество, <u>16</u>	HKA, 79
булево, <mark>84</mark>	Сочетание, 11

Степень	бесконечно малая, 44
булева, 84	булева, <mark>84</mark>
слова, <mark>76</mark>	двойственная, <mark>86</mark>
языка, 79	линейная, 92
Сток, 107	монотонная, <mark>91</mark>
Супремум, <mark>35</mark>	самодвойственная, <mark>91</mark>
Сходимость, 36	возрастающая, 20
Сюръекция, <mark>123</mark>	гладкая, <mark>46</mark>
Теорема	квадратичная, <mark>24</mark>
Безу, 15	линейная, <mark>23</mark>
Бржозовского, 80	нескольких переменных, 55
Вейерштрасса, <mark>36</mark>	дифференцируемая, 55
Дирака, <mark>99</mark>	непрерывная, <mark>55</mark>
Жегалкина, 93	нечётная, <mark>21</mark>
Кантора, <u>123</u>	обратимая, 23
Клини, 81	обратная, <mark>23</mark>
Коши о среднем значении, 50	ограниченная, 22
Кронекера—Капелли, 31	одной переменной
Кэли, 104	дифференцируемая, <mark>46</mark>
Лагранжа о среднем значении, 50	непрерывная, 45
Лапласа, 115	рациональная, 24
Майхилла—Нероуда, <mark>77</mark>	убывающая, 20
Ньютона—Лейбница, <mark>69</mark>	чётная, 21
Ope, 99	Цепь, 97
Понтрягина—Куратовского, 101	Цикл, 97
Поста, 95	Число
Ролля, 50	Эйлера, <mark>39</mark>
Шварца, 56	вещественное, 7
о двух милиционерах, 37, 41	иррациональное, 8
основная т. алгебры, 120	комплексное, 26
основная т. о симметрических многочленах, 122	мнимое, <mark>26</mark>
Точка	Экстремум, 53, 56
внутренняя, 36	Язык, <mark>76</mark>
дискретная, 36	контекстно-свободный, 82
критическая, 53	регулярный, 81
перегиба, 54	Якобиан, <u>60</u>
предельная, 36	Zikoonan, oo
разрыва, 45	
Транспортная сеть, 107	
Факториал, 11	
Формула, 85	
Виета, 121	
Крамера, <mark>32</mark>	
Маклорена, <u>51</u>	
Муавра, <mark>27</mark>	
нустра, 27 Ньютона—Лейбница, <mark>69</mark>	
Тейлора, 51	
Эйлера	
в математическом анализе, <mark>27</mark>	
в теории графов, 100	
бинома Ньютона, 18	
конечных приращений, 50	
конечных приращении, 50 прямоугольников, 70	
прямоугольников, 70 трапеций, 70	
Функция, 20	
бесконечно большая, 44	
Committee in Committee, 11	