开始使用 特性 文档 工具平台 资源 模型库 PaddlePaddle 资讯 联系与

1.5 ▼

新手入门 使用指南 进阶使用 API 环境变量FLAGS FAQ

中文

目录

使用Tensor表

使用Operato 操作

使用Progran 模型

使用Executo

代码实例

What's next

数据传入

安装说明

快速开始

深度学习基础教程

线性回归

数字识别

图像分类

词向量

个性化推荐

情感分析

语义角色标注

机器翻译

生成对抗网络

Fluid编程指南

Fluid编程指南

文档 > 新手入门 > Fluid编程指南

本文档将指导您如何用Fluid API编程并搭建一个简单的神经网络。阅读完本文档,您将掌握:

- Fluid有哪些核心概念
- 如何在fluid中定义运算过程
- 如何使用executor运行fluid操作
- 如何从逻辑层对实际问题建模
- 如何调用API (层,数据集,损失函数,优化方法等等)

在进行模型搭建之前,首先需要明确几个Fluid核心使用概念:

使用Tensor表示数据

Fluid和其他主流框架一样,使用Tensor数据结构来承载数据。

在神经网络中传递的数据都是Tensor,Tensor可以简单理解成一个多维数组,一般而言可以有任意多的维度。不同的Tensor可以具有自己的数据类型和形状,同一Tensor中每个元素的数据类型是一样的,Tensor的形状就是Tensor的维度。

下图直观地表示1~6维的Tensor:

在 Fluid 中存在三种特殊的 Tensor:

1. 模型中的可学习参数

模型中的可学习参数(包括网络权重、偏置等)生存期和整个训练任务一样长,会接受优化算法的更新,在Fluid 中以 Variable 的子类 Parameter 表示。

在Fluid中可以通过 fluid.layers.create_parameter 来创建可学习参数:

```
w = fluid.layers.create\_parameter(name="w",shape=[1],dtype='float32')
```

一般情况下,您不需要自己来创建网络中的可学习参数,Fluid 为大部分常见的神经网络基本计算模块都提供了封装。以最简单的全连接模型为例,下面的代码片段会直接为全连接层创建连接权值(W)和偏置(bias)两个可学习参数,无需显式地调用 Parameter 相关接口来创建。

```
import paddle.fluid as fluid
y = fluid.layers.fc(input=x, size=128, bias_attr=True)
```

2. 输入输出Tensor

整个神经网络的输入数据也是一个特殊的 Tensor,在这个 Tensor中,一些维度的大小在定义模型时无法确定(通常包括:batch size,如果 mini-batch之间数据可变,也会包括图片的宽度和高度等),在定义模型

开始使用 特性 文档 工具平台 资源 模型库 Pa

PaddlePaddle

资讯 联系与

息,当遇到无法确定的维度时,相应维度指定为 None,如下面的代码片段所示:

```
import paddle.fluid as fluid

#定义x的维度为[3,None], 其中我们只能确定x的第一的维度为3,第二个维度未知,要在程序执行过程中才能确定
x = fluid.layers.data(name="x", shape=[3,None], dtype="int64")

#batch size无需显示指定,框架会自动补充第0维为batch size,并在运行时填充正确数值
a = fluid.layers.data(name="a",shape=[3,4],dtype='int64')

#若图片的宽度和高度在运行时可变,将宽度和高度定义为None。
#shape的三个维度含义分别是: channel、图片的宽度、图片的高度
b = fluid.layers.data(name="image",shape=[3,None,None],dtype="float32")
```

其中,dtype="int64"表示有符号64位整数数据类型,更多Fluid目前支持的数据类型请查看: Fluid目前支持的数据类型。

3. 常量 Tensor

Fluid 通过 fluid.layers.fill_constant 来实现常量Tensor,用户可以指定Tensor的形状,数据类型和常量值。代码实现如下所示:

```
import paddle.fluid as fluid
data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
```

需要注意的是,上述定义的tensor并不具有值,它们仅表示将要执行的操作,如您直接打印data将会得到描述该data的一段信息:

print data

输出结果:

具体输出数值将在Executor运行时得到,详细过程会在后文展开描述。

数据传入

Fluid有特定的数据传入方式:

您需要使用 fluid.layers.data 配置数据输入层,并在 fluid.Executor 或 fluid.ParallelExecutor 中,使用 executor.run(feed=...) 传入训练数据。

具体的数据准备过程,请阅读准备数据

使用Operator表示对数据的操作

在Fluid中,所有对数据的操作都由Operator表示,您可以使用内置指令来描述他们的神经网络。

为了便于用户使用,在Python端,Fluid中的Operator被一步封装入 paddle.fluid.layers ,paddle.fluid.nets 等模块。

这是因为一些常见的对Tensor的操作可能是由更多基础操作构成,为了提高使用的便利性,框架内部对基础 Operator 进行了一些封装,包括创建 Operator 依赖可学习参数,可学习参数的初始化细节等,减少用户重复开发的成本。

例如用户可以利用 paddle.fluid.layers.elementwise_add() 实现两个输入Tensor的加法运算:

```
开始使用
          特性
                  文档
                          工具平台
                                     咨源
                                            模型库
                                                                 PaddlePaddle
                                                                                                        资讯
                    a = fluid.layers.data(name="a",shape=[1],dtype='float32')
                    b = fluid.layers.data(name="b",shape=[1],dtype='float32')
                    result = fluid.layers.elementwise_add(a,b)
                    #定义Exector
                    cpu = fluid.core.CPUPlace() #定义运算场所,这里选择在CPU下训练
                    exe = fluid.Executor(cpu) #创建执行器
                    exe.run(fluid.default_startup_program()) #网络参数初始化
                    #准备数据
                    import numpy
                    data_1 = int(input("Please enter an integer: a="))
                   data_2 = int(input("Please enter an integer: b="))
                    x = numpy.array([[data_1]])
                   y = numpy.array([[data_2]])
                   #执行计算
                   outs = exe.run(
                    feed={'a':x,'b':y},
                    fetch_list=[result.name])
                    #验证结果
                    print "%d+%d=%d" % (data_1,data_2,outs[0][0])
                输出结果:
                    a=7
                    b=3
                    7+3=10
                本次运行时,输入a=7, b=3,得到outs=10。
                您可以复制这段代码在本地执行,根据指示输入其他数值观察计算结果。
                如果想获取网络执行过程中的a, b的具体值, 可以将希望查看的变量添加在fetch_list中。
                    #执行计算
                    outs = exe.run(
                      feed={'a':x,'b':y},
                       fetch_list=[a,b,result.name])
                    # 查看输出结果
                    print outs
                输出结果:
                    [array([[7]]), array([[3]]), array([[10]])]
```

使用Program描述神经网络模型

Fluid不同于其他大部分深度学习框架,去掉了静态计算图的概念,代之以Program的形式动态描述计算过程。这种动态的计算描述方式,兼具网络结构修改的灵活性和模型搭建的便捷性,在保证性能的同时极大地提高了框架对模型的表达能力。

开发者的所有 Operator 都将写入 Program ,在Fluid内部将自动转化为一种叫作 ProgramDesc 的描述语言,Program 的定义过程就像在写一段通用程序,有开发经验的用户在使用 Fluid 时,会很自然的将自己的知识迁移过来。

其中, Fluid通过提供顺序、分支和循环三种执行结构的支持,让用户可以通过组合描述任意复杂的模型。

顺序执行:

用户可以使用顺序执行的方式搭建网络:

```
x = fluid.layers.data(name='x',shape=[13], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
```

条件分支——switch、if else:

联系与

开始使用 特性 文档 工具平台 资源 模型库

PaddlePaddle

资讯 联系与

关于 Fluid 中 Program 的详细设计思想,可以参考阅读Fluid设计思想 更多 Fluid 中的控制流,可以参考阅读 API文档

使用Executor执行Program

Fluid的设计思想类似于高级编程语言C++和JAVA等。程序的执行过程被分为编译和执行两个阶段。

用户完成对 Program 的定义后, Executor 接受这段 Program 并转化为C++后端真正可执行的 FluidProgram, 这一自动完成的过程叫做编译。

编译过后需要 Executor 来执行这段编译好的 FluidProgram。

例如上文实现的加法运算,当构建好 Program 后,需要创建 Executor,进行初始化 Program 和训练 Program:

代码实例

至此,您已经对Fluid核心概念有了初步认识了,不妨尝试配置一个简单的网络吧。如果感兴趣的话可以跟随本部分,完成一个非常简单的数据预测。已经掌握这部分内容的话,可以跳过本节阅读What's next。

从逻辑层面明确了输入数据格式、模型结构、损失函数以及优化算法后,需要使用 PaddlePaddle 提供的 API 及算子来实现模型逻辑。一个典型的模型主要包含4个部分,分别是:输入数据格式定义,模型前向计算逻辑,损失函数以及优化算法。

1. 问题描述

给定一组数据 < X,Y> , 求解出函数 f , 使得 y=f(x) , 其中X,Y均为一维张量。最终网络可以依据输入x , 准确预测出 $y_{predict}$ 。

2. 定义数据

假设输入数据X=[1 2 3 4], Y=[2,4,6,8], 在网络中定义:

3. 搭建网络(定义前向计算逻辑)

接下来需要定义预测值与输入的关系,本次使用一个简单的线性回归函数进行预测:

```
开始使用
           特性
                   文档
                            工具平台
                                        资源
                                                模型库
                                                                      PaddlePaddle
                                                                                                                资讯
                       #搭建全连接网络
                       y_predict = fluid.layers.fc(input=x,size=1,act=None)
                    这样的网络就可以进行预测了,虽然输出结果只是一组随机数,离预期结果仍相差甚远:
                       #加载库
                       import paddle.fluid as fluid
                       import numpy
                       #定义数据
                       \label{train_data} train\_data=numpy.array([[1.0],[2.0],[3.0],[4.0]]).astype('float32')
                       y_true = numpy.array([[2.0],[4.0],[6.0],[8.0]]).astype('float32')
                       #定义预测函数
                       x = fluid.layers.data(name="x",shape=[1],dtype='float32')
                       y_predict = fluid.layers.fc(input=x,size=1,act=None)
                       #参数初始化
                       cpu = fluid.core.CPUPlace()
                       exe = fluid.Executor(cpu)
                       exe.run(fluid.default_startup_program())
                       #开始训练
                       outs = exe.run(
                          feed={'x':train_data},
                           fetch_list=[y_predict.name])
                       #观察结果
                       print outs
                    输出结果:
                       [array([[0.74079144],
                                 [1.4815829],
                                 [2.2223744],
                                 [2.9631658 ]], dtype=float32)]
                  4. 添加损失函数
                    完成模型搭建后,如何评估预测结果的好坏呢?我们通常在设计的网络中添加损失函数,以计算真实值与
                    预测值的差。
                    在本例中,损失函数采用均方差函数:
                       cost = fluid.layers.square_error_cost(input=y_predict, label=y)
                       avg_cost = fluid.layers.mean(cost)
                    输出一轮计算后的预测值和损失函数:
                       #加载库
                       import paddle.fluid as fluid
                       import numpy
                       #定义数据
                       train_data=numpy.array([[1.0],[2.0],[3.0],[4.0]]).astype('float32')
                       y_true = numpy.array([[2.0],[4.0],[6.0],[8.0]]).astype('float32')
                       #定义网络
                       x = fluid.layers.data(name="x",shape=[1],dtype='float32')
y = fluid.layers.data(name="y",shape=[1],dtype='float32')
                       y_predict = fluid.layers.fc(input=x,size=1,act=None)
                       #定义损失函数
                       cost = fluid.layers.square_error_cost(input=y_predict,label=y)
                       avg_cost = fluid.layers.mean(cost)
                       #参数初始化
                       cpu = fluid.core.CPUPlace()
                       exe = fluid.Executor(cpu)
                       exe.run(fluid.default_startup_program())
                       #开始训练
                       outs = exe.run(
                           feed={'x':train_data,'y':y_true},
                           fetch_list=[y_predict.name,avg_cost.name])
                       #观察结果
                       print outs
                    输出结果:
                       [array([[0.9010564],
                           [1.8021128],
                           [2.7031693],
```

[3.6042256]], dtype=float32), array([9.057577], dtype=float32)]

联系与

开始使用 特性 文档 工具平台 资源 模型库 PaddlePaddle 资讯 联系与

```
5. 网络优化
```

确定损失函数后,可以通过前向计算得到损失值,然后通过链式求导法则得到参数的梯度值。

获取梯度值后需要更新参数,最简单的算法是随机梯度下降法: $w=w-\eta\cdot g$,由 fluid.optimizer.SGD 实现:

```
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.01)
```

让我们的网络训练100次,查看结果:

```
#加载库
import paddle.fluid as fluid
import numpy
#定义数据
train_data=numpy.array([[1.0],[2.0],[3.0],[4.0]]).astype('float32')
y_true = numpy.array([[2.0],[4.0],[6.0],[8.0]]).astype('float32')
#定义网络
x = fluid.layers.data(name="x",shape=[1],dtype='float32')
y = fluid.layers.data(name="y",shape=[1],dtype='float32')
y_predict = fluid.layers.fc(input=x,size=1,act=None)
#定义损失函数
cost = fluid.layers.square_error_cost(input=y_predict,label=y)
avg_cost = fluid.layers.mean(cost)
#定义优化方法
sgd optimizer = fluid.optimizer.SGD(learning rate=0.01)
sgd_optimizer.minimize(avg_cost)
#参数初始化
cpu = fluid.core.CPUPlace()
exe = fluid.Executor(cpu)
exe.run(fluid.default_startup_program())
##开始训练,迭代100次
for i in range(100):
    outs = exe.run(
        feed={'x':train_data,'y':y_true},
        fetch_list=[y_predict.name,avg_cost.name])
#观察结果
print outs
```

输出结果:

可以看到100次迭代后,预测值已经非常接近真实值了,损失值也从初始值9.05下降到了0.01。

恭喜您!已经成功完成了第一个简单网络的搭建,想尝试线性回归的进阶版——房价预测模型,请阅读: 线性回归。更多丰富的模型实例可以在模型库中找到。

What's next

如果您已经掌握了基本操作,可以进行下一阶段的学习了:

跟随这一教程将学习到如何对实际问题建模并使用fluid构建模型:配置简单的网络。

完成网络搭建后,可以开始在单机或多机上训练您的网络了,详细步骤请参考训练神经网络。

除此之外,使用文档模块根据开发者的不同背景划分了三个学习阶段:新手入门、使用指南和进阶使用。

如果您希望阅读更多场景下的应用案例,可以参考深度学习基础教程。已经具备深度学习基础知识的用户,可以从使用指南开始阅读。

	开始使用 特性 文档	工具平台 资源 模型原	PaddlePaddle	资讯 联系与
产品	文档	资源	联系我们	
AI Studio	安装	模型和数据集	GitHub	
EasyDL	API	学习资料	Email	
EasyEdge	使用指南	应用案例		
工具				※楽官方技术交流群 QQ群号:796771754)

©Copyright 2019, PaddlePaddle developers.