

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (IMAD)

Lezione 2: Richiami di statistica

Corso di Laurea Magistrale in INGEGNERIA INFORMATICA

SPEAKER

Prof. Mirko Mazzoleni

PLACE

Università degli Studi di Bergamo

Syllabus

Parte I: sistemi statici

- I. Richiami di statistica
- 2. Teoria della stima
 - 2.1 Proprietà degli stimatori
- 3. Stima a minimi quadrati
 - 3.1 Stima di modelli lineari
 - 3.2 Algoritmo del gradient descent
- 4. Stima a massima verosimiglianza
 - 4.1 Proprietà della stima
 - 4.2 Stima di modelli lineari

- 5. Regressione logistica
 - 5.1 Stima di un modello di regressione logistica
- 6. Fondamenti di machine learning
 - 6.1 Bias-Variance tradeoff
 - 6.2 Overfitting
 - 6.3 Regolarizzazione
 - 6.4 Validazione
- 7. Cenni di stima Bayesiana
 - 7.1 Probabilità congiunte, marginali e condizionate
 - 7.2 Connessione con Filtro di Kalman

Parte I: sistemi statici

Stima parametrica $\widehat{\theta}$

- θ deterministico
 - NO assunzioni su ddp dei dati
 - ✓ Stima parametri popolazione
 - ✓ Stima modello lineare: minimi quadrati
 - SI assunzioni su ddp dei dati
 - ✓ Stima massima verosimiglianza parametri popolazione
 - ✓ Stima modello lineare: massima verosimiglianza
 - ✓ Regressione logistica
- θ variabile casuale
 - SI assunzioni su ddp dei dati
 - ✓ Stima Bayesiana

Machine learning

Parte II: sistemi dinamici

Stima parametrica $\hat{\theta}$

- <u>θ deterministico</u>
 - NO assunzioni su ddp dei dati
 - ✓ Modelli lineari di pss
 - ✓ Predizione
 - ✓ Identificazione
 - ✓ Persistente eccitazione
 - ✓ Analisi asintotica metodi PEM
 - ✓ Analisi incertezza stima (numero dati finito)
 - √ Valutazione del modello

Outline

1. Definizione e proprietà delle variabili casuali: caso scalare

2. Definizione e proprietà delle variabili casuali: caso multivariabile

3. Stima e stimatori

4. Proprietà degli stimatori

Outline

1. Definizione e proprietà delle variabili casuali: caso scalare

2. Definizione e proprietà delle variabili casuali: caso multivariabile

3. Stima e stimatori

4. Proprietà degli stimatori

Intuizione: una variabile casuale v è una variabile definita a partire dall'esito s di un esperimento casuale

Esempio: l'esperimento è il lancio di una moneta. A seconda se l'esito è s = testa o s = croce, la variabile v assume un valore diverso

$$v = \begin{cases} 1 & s = \text{testa} \\ 0 & s = \text{croce} \end{cases}$$

- Indichiamo una variabile casuale (v.c.) come v(s)
- Il valore assunto da una v.c. v a seguito di un particolare esito \bar{s} è $v(\bar{s})$

Problema: dato che v può assumere diversi valori (a seconda del valore assunto da s), come posso descriverli?

Assegno una probabilità che ogni esito accada. Questo influisce sulla probabilità che v assuma i valori che può assumere (distribuzione di probabilità)

Caso 1) v assume valori DISCRETI (v è una variabile casuale discreta)

Funzione di probabilità di massa (pmf) p(x) = P(v = x)

$$p(x) = P(v = x)$$

Associa ad ogni valore x di v una probabilità

Indichiamo con x_i i valori di v. Se v può assumere m diversi valori, allora

$$\sum_{i=1}^{m} p(x_i) = 1$$

Esempio: Esperimento «lancio di un dado»

Caso 2) v assume valori CONTINUI (v è una variabile casuale continua)

• Funzione di densità di probabilità (pdf) $f_v(x)$

In questo caso, dire P(v=x) non ha senso. Infatti, dato che v può assumere infiniti valori, la probabilità che v assuma esattamente un valore specifico è praticamente zero!

Intuizione: se la variabile v (continua) assumesse valori tutti equiprobabili (come nel caso del dado), la probabilità che v assuma una valore specifico sarebbe $\frac{1}{\infty} = 0$

Esempio: sia v l'altezza di un uomo adulto. Non ha senso chiedersi la probabilità che un uomo sia alto <u>esattamente</u> 1,7425415478795121795387 metri

La pdf $f_v(x)$ definisce la probabilità che v appartenga ad un **intervallo di valori** [a,b]

$$P(v \in [a,b]) = \int_{a}^{b} f_{v}(x) dx$$

•
$$f_v(x) \ge 0$$

•
$$f_v(x) \ge 0$$

• $\int_{-\infty}^{+\infty} f_v(x) = 1$

Funzione di densità cumulata (cdf)

$$F_v(z)$$

$$F_v(z) = \int_{-\infty}^{z} f_v(x) dx = P(v \le z)$$
 $F_v(5) = P(v \le 5)$

Valore atteso

Il <u>valore atteso</u> di una variabile casuale v è:

$$\mathbb{E}_{s}[v] = \int_{-\infty}^{+\infty} x \cdot f_{v}(x) \ dx$$

Somma pesata dei valori x che v può assumere. I pesi sono la probabilità di osservare il valore x

Il valore atteso gode della proprietà di linearità:

$$\mathbb{E}_{S}[\alpha \cdot v_{1} + \beta \cdot v_{2} + \gamma] = \alpha \cdot \mathbb{E}_{S}[v_{1}] + \beta \cdot \mathbb{E}_{S}[v_{2}] + \gamma \qquad \forall \alpha, \beta, \gamma \in \mathbb{R}$$

Nota: l'operatore valore atteso $\mathbb{E}_s[v]$ considera tutti i possibili esiti s della variabile casuale v. Di seguito, per semplicità, renderemo implicita la dipendenza da s, esplicitandola quando necessario

Varianza

La <u>varianza</u> di una variabile casuale v è:

$$Var[v] = \int_{-\infty}^{+\infty} (x - \mathbb{E}[v])^2 \cdot f_v(x) \, dx$$

- Quanto i valori *x* si discostano dalla loro media
- Se varianza piccola, v assume valori x molto vicini fra loro

Osservazioni

- $Var[v] \ge 0$. Se Var[v] = 0, la variabile v è deterministica (assume sempre un solo valore)
- Deviazione standard: $\sigma[v] = \sqrt{\text{Var}[v]}$

•
$$\operatorname{Var}[v] = \mathbb{E}[(v - \mathbb{E}[v])^2] = \mathbb{E}[v^2 - 2\mathbb{E}[v]v + \mathbb{E}[v]^2] = \mathbb{E}[v^2] - 2\mathbb{E}[\mathbb{E}[v]v] + \mathbb{E}[\mathbb{E}[v]^2]$$
$$= \mathbb{E}[v^2] - 2\mathbb{E}[v] \cdot \mathbb{E}[v] + \mathbb{E}[v]^2 = \mathbb{E}[v^2] - \mathbb{E}[v]^2$$

• $Var[\alpha \cdot v + \beta] = \alpha^2 \cdot Var[v] \quad \forall \alpha, \beta \in \mathbb{R}$

Correlazione

Date due variabili casuali v_1 e v_2 , si definisce il <u>coefficiente di correlazione</u> come:

$$\rho[v_1, v_2] = \frac{\mathbb{E}[(v_1 - \mathbb{E}[v_1]) \cdot (v_2 - \mathbb{E}[v_2])]}{\sigma[v_1] \cdot \sigma[v_2]}$$

- ρ indica il grado di **dipendenza lineare** tra v_1 e v_2 . Infatti, se $v_2 = \alpha v_1 + \beta$, si ha $\rho = 1$
- Se $\rho = 0$, le due variabili si dicono **scorrelate**

Covarianza

Date due variabili casuali v_1 e v_2 , si definisce la <u>covarianza</u> come:

$$Cov[v_1, v_2] = \mathbb{E}[(v_1 - \mathbb{E}[v_1]) \cdot (v_2 - \mathbb{E}[v_2])]$$

E quindi

$$\rho[v_1, v_2] = \frac{\operatorname{Cov}[v_1, v_2]}{\sigma[v_1] \cdot \sigma[v_2]}$$

• Le variabili casuali v_1 e v_2 sono **scorrelate** se $Cov[v_1, v_2] = 0$

Outline

1. Definizione e proprietà delle variabili casuali: caso scalare

2. Definizione e proprietà delle variabili casuali: caso multivariabile

3. Stima e stimatori

4. Proprietà degli stimatori

Variabili casuali, caso multivariabile

Le precedenti definizioni si possono estendere al caso di vettore di variabili casuali

$$\mathbf{v} = [v_1, v_2, \dots, v_d]^{\mathsf{T}} \in \mathbb{R}^{d \times 1}$$

Assumiamo che v sia una v.c. continua

Funzione di densità cumulata (cdf) $F_v(z_1, z_2, ..., z_d)$

$$F_{\boldsymbol{v}}(z_1, z_2, \dots, z_d)$$

$$F_v(z_1, z_2, ..., z_d) = P(v_1 \le z_1, v_2 \le z_2, ..., v_d \le z_d)$$

$$= \int_{-\infty}^{z_1} \int_{-\infty}^{z_2} \cdots \int_{-\infty}^{z_d} \left[f_{v_1, v_2, \dots, v_d}(x_1, x_2, \dots, x_d) \right] dx_1 dx_2 \dots dx_d$$

Pdf congiunta

Variabili casuali, caso multivariabile

• Il <u>valore atteso</u> è un vettore colonna di *d* componenti

$$\mathbb{E}[\boldsymbol{v}] = \left[\mathbb{E}[v_1], \mathbb{E}[v_2], \dots, \mathbb{E}[v_d]\right]^{\mathsf{T}} \in \mathbb{R}^{d \times 1}$$

• La <u>varianza</u> è una matrice $d \times d$ semidefinita positiva e simmetrica

$$Var[\boldsymbol{v}] = \int_{\mathbb{R}^d} (\boldsymbol{x} - \mathbb{E}[\boldsymbol{v}]) (\boldsymbol{x} - \mathbb{E}[\boldsymbol{v}])^{\mathsf{T}} f_{\boldsymbol{v}}(\boldsymbol{x}) d\boldsymbol{x}$$

$$= \begin{bmatrix} \operatorname{Var}[v_1] & \cdots & \operatorname{Cov}[v_1, v_d] \\ \vdots & \ddots & \vdots \\ \operatorname{Cov}[v_d, v_1] & \cdots & \operatorname{Var}[v_d] \end{bmatrix}$$

- «simile» al ≥ 0 per numeri reali
- Una matrice M reale e simmetrica è definita positiva se $\mathbf{z}^{\mathsf{T}} M \mathbf{z} \geq 0 \ \forall \mathbf{z} \in \mathbb{R}$
- Autovalori di M sono ≥ 0

Indipendenza

Due variabili casuali v_1 e v_2 con funzione di probabilità congiunta $f_{v_1,v_2}(x_1,x_2)$ si dicono indipendenti se

$$f_{v_1,v_2}(x_1,x_2) = f_{v_1}(x_1) \cdot f_{v_2}(x_2)$$

• Se due variabili v_1 e v_2 sono **indipendenti**, allora sono anche scorrelate (non vale il viceversa in quanto potrebbero essere dipendenti in modo **non lineare**)

Variabili casuali: approfondimento

Una definizione più rigorosa di variabile casuale è quella di considerare una v.c. come una funzione, che, in funzione di un valore dell'esito s, ritorna un valore della v.c.

<u>Definizione:</u> una variabile casuale (scalare, reale) è una funzione definita sull'insieme degli esiti S, che, ad ogni esito s_i , restituisce un numero reale $v(\cdot): S \to \mathbb{R}$

Probabilità: approfondimento

Una definizione più rigorosa di probabilità include la definizione di un insieme degli eventi, ovvero di combinazioni di esiti

La probabilità è assegnata ad ogni **singolo evento**, e non all'esito (nel caso in cui gli eventi siano i singoli esiti, si ritorna alla nostra definizione intuitiva basata sugli esiti)

Esempio: Lancio di un dado. Supponiamo di essere interessati alla probabilità che esca un numero pari o un numero dispari

Definisco l'insieme degli eventi $\mathcal{P} = \{\{1,3,5\},\{2,4,6\}\},$ i cui elementi (eventi) sono $\{1,3,5\}$ e $\{2,4,6\},$ ed assegno una probabilità ad ognuno di essi:

$$P(\{1,3,5\}) = 1/2$$

$$P({2,4,6}) = 1/2$$

Outline

1. Definizione e proprietà delle variabili casuali: caso scalare

2. Definizione e proprietà delle variabili casuali: caso multivariabile

3. Stima e stimatori

4. Proprietà degli stimatori

Teoria della stima

Per **gestire l'incertezza** presente nei dati (e.g. rumore di misura) **interpretiamo** i dati come variabili casuali. I **dati osservati** saranno i valori assunti dalle variabili casuali

In questo corso ci concentreremo sul problema della **stima parametrica**. Vogliamo quindi stimare il vettore di parametri θ^0 che ha generato i **dati** $\mathcal{D} = \{y(1), ..., y(N)\}$

Esempio: Lancio di una moneta. Osserviamo N=8 dati $\mathcal{D}=\{1,0,0,1,1,1,0,1\}$. In questo caso, il parametro di interesse θ^0 è la probabilità che esca testa

Quindi, i dati \mathcal{D} dipendono sia dall'esito s, sia dai parametri θ^0 \longrightarrow $\mathcal{D}(s, \theta^0)$

I dati osservati dipendono da uno specifico esito \bar{s} $\square > \mathcal{D} = \mathcal{D}(\bar{s}, \boldsymbol{\theta}^0)$

Teoria della stima

Uno <u>stimatore</u> è una funzione $T(\mathcal{D}(s, \theta^0))$ dei dati (ovvero, una funzione di variabili casuali)

La <u>stima</u> è il risultato di uno stimatore su una specifica realizzazione dei dati $\mathcal{D}(\bar{s}, \boldsymbol{\theta}^0)$

$$\widehat{\boldsymbol{\theta}} = T\big(\mathcal{D}(\bar{s}, \boldsymbol{\theta}^0)\big)$$

Osservazione

Poiché il risultato di $T(\)$ dipende dall'esito s (dal quale dipendono i dati), allora **lo stimatore** è una variabile casuale che dipende da s

Teoria della stima

Esempio: Supponiamo di voler stimare l'altezza media degli studenti e delle studentesse che seguono il corso di IMAD

Supponiamo di poter misurare solo N=10 persone (se misurassimo tutti, non sarebbe più una stima, ma avremmo il valore vero del parametro «altezza media», cioè θ^0)

- esito s_1 : primi 10 studenti «estratti» $\Box T(\mathcal{D}(s_1, \theta^0)) = \widehat{\theta}_{(s_1)}$
- esito s_2 : altri 10 studenti «estratti» $\Box T(\mathcal{D}(s_2, \theta^0)) = \hat{\theta}_{(s_2)} \neq \hat{\theta}_{(s_1)}$

La stima $\hat{\theta}_{(s)}$ fornita da T() dipende da s. Quindi, lo stimatore è una variabile casuale

«Ha senso» parlare di distribuzione di probabilità, valore atteso e varianza dello stimatore

Outline

1. Definizione e proprietà delle variabili casuali: caso scalare

2. Definizione e proprietà delle variabili casuali: caso multivariabile

3. Stima e stimatori

4. Proprietà degli stimatori

La **«bontà» di uno stimatore** non si giudica da una singola stima, ma dalle caratteristiche della sua distribuzione di probabilità

Correttezza (non polarizzazione, non deviato, unbiased)

Uno stimatore (scalare) $\hat{\theta}$ si dice **corretto** se

$$\mathbb{E}[\hat{\theta}] = \theta^0$$
, dove θ^0 è il valore vero del

parametro «In media» lo stimatore mi stima il valore vero del parametro

bias =
$$\mathbb{E}[\hat{\theta}] - \theta^0$$

Correttezza asintotica

Uno stimatore (scalare) $\hat{\theta}$ si dice <u>asintoticamente corretto</u> se

$$\lim_{N\to+\infty} \mathbb{E}\big[\widehat{\theta}\big] = \theta^0$$

Proprietà più debole rispetto alla correttezza

Consistenza

Uno stimatore (scalare) $\hat{\theta}$ si dice **consistente** se, per

$$N \to +\infty$$
, $\widehat{\theta}$ converge a θ^0 in probabilità

Al crescere di N, la stima diventa sempre più precisa (la probabilità di commettere un errore $\geq \varepsilon$ tende a 0)

Convergenza in media quadratica

$$\lim_{N \to +\infty} P\left(\left| \hat{\theta} - \theta^0 \right|^2 \right) = 0$$

Implica la convergenza in probabilità

Cerchiamo di valutare la bontà di uno stimatore senza per forza far riferimento a proprietà asintotiche come la consistenza, quindi per *N* finito

Se due stimatori sono entrambi corretti, qual è il migliore?

Quanto piccola può essere la varianza della stima?

Limite di Cramer-Rao: Dato uno stimatore corretto $\hat{\theta}$, non possiamo rendere la sua varianza

più piccola di una certa quantità

 $Var[\widehat{\boldsymbol{\theta}}] - M^{-1}$ semidefinita positiva

Caso scalare $Var[\hat{\theta}] \ge 1/m$

Caso vettoriale

$$Var[\widehat{\boldsymbol{\theta}}] \geqslant M^{-1}$$

La quantità m (o M) è detta quantità (matrice) di informazione di Fisher

Intuizione: avrò sempre un certo livello di incertezza sui dati che uso per fare la stima, che non posso rimuovere. Quindi, i dati non saranno mai «informativi al 100%» proprio perché affetti da rumore. Esistono dei limiti «strutturali» alla stima

Efficienza e efficienza asintotica

Uno stimatore (scalare) $\hat{\theta}$ si dice <u>efficiente</u> se $Var[\hat{\theta}] = 1/m$

Uno stimatore (scalare) $\hat{\theta}$ si dice <u>asintoticamente efficiente</u> se $\lim_{N\to +\infty} \mathrm{Var} \big[\hat{\theta} \big] = 1/m$

Minima varianza

Uno stimatore (scalare) $\hat{\theta}^m$ corretto si dice <u>a minima varianza</u> se $Var[\hat{\theta}^m] \leq Var[\hat{\theta}]$, dove $\hat{\theta}$ è un qualsiasi stimatore corretto

- Se $\hat{\theta}$ è efficiente, allora è a minima varianza
- Non vale il viceversa. Ci sono casi in cui esistono stimatori a minima varianza che non sono efficienti. Questo accade quando non esistono stimatori che raggiungono il limite di Cramer-Rao

Mean squared error

Per stimatori **non corretti** (distorti, polarizzati), la varianza, da sola, non è sufficiente come criterio di bontà

Abbiamo bisogno di un indicatore «globale», che consideri sia il bias sia la varianza

Idea: uso come criterio l'errore quadratico medio (MSE – mean squared error)

$$MSE = \mathbb{E}\left[\left(\widehat{\theta} - \theta^{0}\right)^{2}\right]$$

• Caso θ^0 scalare

Proprietà

$$MSE = bias[\hat{\theta}]^2 + Var[\hat{\theta}]$$

BIAS-VARIANCE dilemma

Questa proprietà tornerà utile quando vorremo stimare (identificare) modelli dai dati. In quel caso, il «soggetto» non sarà un parametro θ quanto piuttosto l'intero modello (che è di fatto uno stimatore di una funzione)

Esempio (stimatore della media)

Siano $\mathcal{D} = \{y(1), y(2), ..., y(N)\}$ variabili casuali con media μ e varianza σ^2 . Lo stimatore media campionaria $\hat{\mu}$ è corretto e consistente

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} y(i)$$

In questo caso il parametro di interesse θ è la media μ della popolazione

Vogliamo dimostrare la correttezza, ovvero che $\mathbb{E}[\hat{\mu}] = \mu$

$$\mathbb{E}[\hat{\mu}] = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}y(i)\right] = \frac{1}{N}\mathbb{E}\left[\sum_{i=1}^{N}y(i)\right] = \frac{1}{N}\mathbb{E}[y(1) + y(2) + \dots + y(N)] = \frac{1}{N}\cdot N\cdot \mu = \mu$$

Esempio (stimatore della varianza)

Siano $\mathcal{D} = \{y(1), y(2), ..., y(N)\}$ variabili casuali con media μ e varianza σ^2 . Lo stimatore varianza campionaria S_{N-1}^2 è corretto

$$S_{N-1}^2 = \frac{1}{N-1} \cdot \sum_{i=1}^{N} (y(i) - \hat{\mu})^2$$

Esercizio: dimostrare la correttezza di S_{N-1}^2 . Suggerimenti:

- Usare la proprietà di linearità del valore atteso
- Usare la proprietà della varianza tale che $Var[v] = \mathbb{E}[v^2] \mathbb{E}[v]^2$

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione