Auxiliary Sections > Integral Transforms > Tables of Inverse Laplace Transforms > Inverse Laplace Transforms: Expressions with Trigonometric Functions

Inverse Laplace Transforms: Expressions with Trigonometric Functions

No	Laplace transform, $\widetilde{f}(p)$	Inverse transform, $f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{px} \widetilde{f}(p) dp$
1	$\frac{\sin(a/p)}{\sqrt{p}}$	$\frac{1}{\sqrt{\pi x}}\sinh(\sqrt{2ax})\sin(\sqrt{2ax})$
2	$\frac{\sin(a/p)}{p\sqrt{p}}$	$\frac{1}{\sqrt{\pi a}}\cosh(\sqrt{2ax})\sin(\sqrt{2ax})$
3	$\frac{\cos(a/p)}{\sqrt{p}}$	$\frac{1}{\sqrt{\pi x}}\cosh(\sqrt{2ax})\cos(\sqrt{2ax})$
4	$\frac{\cos(a/p)}{p\sqrt{p}}$	$\frac{1}{\sqrt{\pi a}}\sinh(\sqrt{2ax})\cos(\sqrt{2ax})$
5	$\frac{1}{\sqrt{p}}\exp(-\sqrt{ap})\sin(\sqrt{ap})$	$\frac{1}{\sqrt{\pi x}}\sin\!\left(\frac{a}{2x}\right)$
6	$\frac{1}{\sqrt{p}}\exp(-\sqrt{ap})\cos(\sqrt{ap})$	$\frac{1}{\sqrt{\pi x}}\cos\left(\frac{a}{2x}\right)$

Inverse Laplace Transforms: Expressions with Inverse Trigonometric Functions

No	Laplace transform, $\widetilde{f}(p)$	Inverse transform, $f(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{px} \widetilde{f}(p) dp$
1	$\arctan \frac{a}{p}$	$\frac{1}{x}\sin(ax)$
2	$\frac{1}{p} \arctan \frac{a}{p}$	Si(ax), where $Si(x)$ is the integral sine
3	$p \arctan \frac{a}{p} - a$	$\frac{1}{x^2} \left[ax \cos(ax) - \sin(ax) \right]$
4	$\arctan \frac{2ap}{p^2 + b^2}$	$\frac{2}{x}\sin(ax)\cos\left(x\sqrt{a^2+b^2}\right)$

References

Bateman, H. and Erdélyi, A., *Tables of Integral Transforms. Vols. 1 and 2*, McGraw-Hill Book Co., New York, 1954. Doetsch, G., *Einführung in Theorie und Anwendung der Laplace-Transformation*, Birkhäuser Verlag, Basel–Stuttgart, 1958. Ditkin, V. A. and Prudnikov, A. P., *Integral Transforms and Operational Calculus*, Pergamon Press, New York, 1965. Polyanin, A. D. and Manzhirov, A. V., *Handbook of Integral Equations*, CRC Press, Boca Raton, 1998.

Inverse Laplace Transforms: Expressions with Trigonometric Functions