

icessões apro

Funções (11.º ano)

Limite (definição de Heine)

Exercícios de Provas Nacionais e Testes Intermédios - Propostas de resolução

1. Temos que:

$$\lim u_n = \lim(2n^2 - n) = \lim (n(2n - 1)) = +\infty \times \infty = +\infty$$

Logo:
$$\lim \frac{1}{u_n} = \frac{1}{+\infty} = 0^+$$

E assim, vem que:

$$\lim f\left(\frac{1}{u_n}\right) = +\infty \iff \lim_{x \to 0^+} f(x) = +\infty$$

Desta forma, dos gráficos apresentados, o único que representa uma função que pode verificar esta condição é o gráfico da opção (A).

2. Temos que:

$$\lim (v_n) = \lim \left(2 - \frac{5}{n+3}\right) = 2 - \frac{5}{+\infty + 3} = 2 - \frac{5}{+\infty} = 2 - 0^+ = 2^-$$

Então vem que:

$$\lim g\left(v_n\right) = \lim_{x \to 2^-} g(x) = 1$$

Resposta: Opção B

Exame – 2021, 2.ª Fase

3. Temos que $\lim u_n = \lim \left(2 + \frac{1}{n}\right) = 2^+$

Como $\lim f(u_n) = +\infty$ então $\lim f(u_n) = \lim_{x \to 2^+} f(x) = +\infty$

No gráfico da opção (A), temos que $0<\lim f(u_n)<2$ pelo que $\lim f(u_n)=\lim_{x\to 2^+}f(x)\neq +\infty$

No gráfico da opção (B), temos que $-2<\lim f(u_n)<0$ pelo que $\lim f(u_n)=\lim_{x\to 2^+}f(x)\neq +\infty$

No gráfico da opção (D), temos que $\lim_{x\to 2^+} f(x) \neq -\infty$

No gráfico da opção (C) temos que $\lim_{x\to 2^+} f(x) = +\infty$ (como se ilustra graficamente na figura anterior.

Resposta: Opção C

Teste Intermédio 12.º ano - 28.02.2013

4. Como (x_n) é uma sucessão com termos em] -1,1[e $\lim(x_n)=1,$ então:

$$\lim x_n = 1^-$$

E assim, de acordo com o gráfico, temos que:

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} f(x) = +\infty$$

Graficamente, na figura ao lado, estão representados alguns termos de (x_n) como objetos, e alguns termos da sucessão das imagens $f(x_n)$, que tendem para $+\infty$, quando (x_n) tende para 1

Resposta: Opção A

 $\rm Exame-2012,~2.^a~Fase$

5. Como

$$\lim \left(4 - \frac{1000}{n}\right) = 4 - \frac{1000}{+\infty} = 4 - 0^{+} = 4^{-}$$

então, pela observação do gráfico da função h, temos que

$$\lim u_n = \lim \left(h \left(4 - \frac{1000}{n} \right) \right) = \lim_{x \to 4^-} h(x) = 1$$

Graficamente, na figura ao lado, estão representados alguns termos de $\left(4-\frac{1000}{n}\right)$ como objetos, e alguns termos da sucessão (u_n) no eixo vertical, que tendem para 1^- , quando o valor de n aumenta.

Teste Intermédio 12.º ano - 15.03.2010

6. Como $\lim_{n\to +\infty} g(x_n)=+\infty$, e como, pela observação do gráfico temos que $\lim_{x\to +\infty} g(x)=+\infty$ e que $\lim_{x\to -2^-} g(x)=+\infty$, temos que

$$\lim(x_n) = +\infty$$
 ou então $\lim(x_n) = -2^-$

Assim, calculando os limites das sucessões de cada uma das hipóteses, temos:

•
$$\lim \left(-2 + \frac{2}{n}\right) = -2 + 0^+ = -2^+$$

•
$$\lim \left(-2 - \frac{1}{n}\right) = -2 - 0^+ = -2^-$$

•
$$\lim \left(1 + \frac{1}{n}\right) = 1 + 0^+ = 1^+$$

•
$$\lim \left(1 - \frac{1}{n}\right) = 1 - 0^+ = 1^-$$

Pelo que, de entre os termos gerais de sucessões apresentados, o único em que $\lim_{n\to+\infty}g(x_n)=+\infty$ é $-2-\frac{1}{n}$

Graficamente, na figura anterior, estão representados alguns termos da sucessão $x_n = -2 + \frac{1}{n}$ como objetos, e alguns termos da sucessão das imagens $g(x_n)$, que tendem para $+\infty$, quando o valor de n aumenta.

Resposta: Opção B

Exame - 2008, 2.ª Fase

7. Como $\lim_{n\to +\infty} g(x_n) = +\infty$, e como, pela observação do gráfico temos que $\lim_{x\to 3^-} g(x) = +\infty$, então

$$\lim(x_n) = 3^-$$

Assim, calculando os limites das sucessões de cada uma das hipóteses, temos:

•
$$\lim \left(3 + \frac{1}{n}\right) = 3 + 0^+ = 3^+$$

•
$$\lim_{n \to \infty} \left(-4 - \frac{1}{n} \right) = -4 - 0^{+} = -4^{-}$$

•
$$\lim_{-4^{+}} \left(-4 + \frac{1}{n} \right) = -4 + 0^{+} =$$

Pelo que, de entre os termos gerais de sucessões apresentados, o único em

que
$$\lim_{n \to +\infty} g(x_n) = +\infty \text{ \'e } 3 - \frac{1}{n}$$

Graficamente, na figura anterior, estão representados alguns termos da sucessão $x_n = 3 - \frac{1}{n}$ como objetos, e alguns termos da sucessão das imagens $g(x_n)$, que tendem para $+\infty$, quando o valor de n aumenta.

Resposta: Opção A

Exame – 2001, Ép. Especial (cód. 435)

8. Como

$$\lim(x_n) = \lim \left(2 - n^2\right) = 2 - \infty = -\infty$$

E como a reta x=1 é assintota do gráfico de f, quando $x\to -\infty,$ temos que:

$$\lim f(x_n) = \lim_{x \to -\infty} f(x) = 1$$

Graficamente, na figura ao lado, estão representados alguns termos de (x_n) como objetos, e alguns termos da sucessão das imagens $f(x_n)$, que tendem para 1, quando o valor de n aumenta.

Resposta: Opção B

Exame – 1999, $1.^{\rm a}$ fase - $1.^{\rm a}$ chamada (cód. 135)

9. Como

$$\lim(x_n) = \lim\left(1 + \frac{1}{n}\right) = 1 + 0^+ = 1^+$$

E como a reta y=1 é assintota do gráfico de f, pela observação do gráfico, temos que

$$\lim(u_n) = \lim f(x_n) = \lim_{x \to 1^+} f(x) = -\infty$$

Graficamente, na figura ao lado, estão representados alguns termos de (x_n) como objetos, e alguns termos da sucessão das imagens $f(x_n)$, que tendem para $-\infty$, quando o valor de n aumenta.

Resposta: Opção A

Exame - 1999, Prova modelo (cód. 135)

10. Como

$$\lim(u_n) = \lim\left(\frac{1}{n}\right) = 0^+$$

Pela observação do gráfico da função g, temos que

$$\lim_{n \to +\infty} g(u_n) = \lim_{x \to 0^+} g(x) = 2$$

Graficamente, na figura ao lado, estão representados alguns termos de (u_n) como objetos, e alguns termos da sucessão das imagens $g(u_n)$, que tendem para 2, quando o valor de n aumenta.

Resposta: Opção C

Exame – 1998, Prova modelo (cód. 135)