Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

Cognome, nome e matricola: _

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Sia $h: \mathbb{Q} \to \mathbb{Q}$ definita da $h(z) = \frac{2z+8}{2} - z$ per ogni $z \in \mathbb{Q}$. Stabilire quali delle seguenti affermazioni sono corrette.

2 punti

- \square h è suriettiva.
- \Box h è iniettiva.
- \square h(z) = 2 per qualche $z \in \mathbb{Q}$.
- \square h(z) = 4 per ogni $z \in \mathbb{Q}$.
- (b) Dati due insiemi A e B, indichiamo con A^B l'insieme delle funzioni da B in A. Sia C un insieme non vuoto di cardinalità finita. Stabilire quali delle seguenti affermazioni sono corrette.

2 punti

- \square C^C è un insieme infinito.
- \square C^C è certamente in biezione con $\mathcal{P}(A)$.
- \square \mathbb{N}^C è un insieme infinito numerabile.
- \square $C^{\mathbb{N}}$ è necessariamente più che numerabile.
- (c) Siano C, D, A lettere proposizionali e R una formula proposizionale scritta a partire da esse che abbia la seguente tavola di verità:

2 punti

\mathbf{C}	D	Α	\mathbf{R}
\mathbf{V}	\mathbf{V}	\mathbf{V}	\mathbf{V}
\mathbf{V}	\mathbf{V}	${f F}$	\mathbf{V}
\mathbf{V}	${f F}$	\mathbf{V}	\mathbf{V}
\mathbf{V}	${f F}$	${f F}$	\mathbf{V}
${f F}$	\mathbf{V}	\mathbf{V}	\mathbf{F}
${f F}$	\mathbf{V}	${f F}$	\mathbf{V}
${f F}$	${f F}$	\mathbf{V}	\mathbf{V}
${f F}$	${f F}$	${f F}$	\mathbf{V}

 $\Box R \models D \lor \neg A \lor \neg C$

	\square R è insoddisfacibile. \square \neg R non è valido.	
	\square D \rightarrow A $\models \neg R$	
(d)	Sia $L=\{Q\}$ un linguaggio del prim'ordine con Q simbolo di relazione binario. Quali delle seguenti affermazioni sono formalizzate dalla formula $\neg \exists z \forall w \ Q(z,w)$ relativamente alla struttura $\langle \mathbb{R}, \geq \rangle$? \square "Non c'è un numero reale più piccolo di tutti gli altri."	2 punti
	□ "Ci sono numeri reali arbitrariamente grandi." □ "I numeri reali non hanno un massimo."	
	\square "Non c'è un numero reale più grande di $w.$ "	
(e)	Sia C un insieme non vuoto e sia $L=\{T\}$ un linguaggio del prim'ordine con T simbolo di relazione binaria. Quali delle seguenti sono formule che formalizzano correttamente, relativamente alla struttura $\langle C,T\rangle$, l'affermazione: " T è simmetrica"?	2 punti
	$\Box \forall x \forall y (R(x,y) \to R(y,x))$	
	$\Box \ \forall x \forall y (x = y \to y = x)$	
	$\Box \ \forall x \forall y (R(x,y) = R(y,x))$	
	$\Box \ \forall x \forall y \left(R(x,y) \land R(y,x) \right)$	
(f)	Siano D , A sottoinsiemi di C e sia $h \colon C \to C$. Stabilire quali delle seguenti affermazioni sono corrette.	2 punti
	\square Se $h[D] \subseteq h[A]$ allora si deve avere che $D \supseteq A$.	
	$\Box \ h^{-1}[D\cap A] = h^{-1}[D]\cap h^{-1}[A].$	
	$\square \ D \subseteq h^{-1}[h[D]].$	
	\square Se $D \neq A$ allora certamente accade che $h[D] \neq h[A]$.	
(g)	Siano S e T formule proposizionali. Quali delle seguenti affermazioni	2 punti
	sono corrette?	
	\square Se S è insoddisfacibile, allora $\neg S$ è una tautologia.	
	$\Box \neg (T \lor S) \not\equiv \neg T \lor \neg S$	
	□ Se S non è una tautologia allora S è certamente insoddisfacibile.	
	$\Box T \not\equiv S$ se e solo se $i(T) \neq i(S)$ per qualche interpretazione i .	

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{T, h, e\}$ un linguaggio del prim'ordine contenente un simbolo di relazione binario T, un simbolo di funzione binario h e un simbolo di costante e. Sia ϕ la formula

$$(\neg \exists w \, (h(w, w) = z) \to T(h(x, e), z)).$$

Consideriamo la *L*-struttura $\mathcal{N} = \langle \mathbb{N}, \leq, +, 1 \rangle$.

- 1. Dire se ϕ è un enunciato oppure no e, nel secondo caso, cerchiare le occorrenze libere di variabili.
- 2. È vero che $\mathcal{N} \models \exists w (h(w, w) = z)[z/k, w/l]$ se e solo se k è un numero naturale pari?
- 3. È vero che $\mathcal{N} \models \varphi[z/1, w/0, x/0]$?
- 4. È vero che $\mathcal{N} \models \varphi[z/2, w/1, x/0]$?
- 5. È vero che $\mathcal{N} \models \varphi[z/5, w/1, x/5]$?
- 6. È vero che $\mathcal{N} \models \forall z \, \varphi[z/0, w/0, x/0]$?
- 7. È vero che $\mathcal{N} \models \forall z \, \varphi[z/0, w/0, x/5]$?
- 8. È vero che $\mathcal{N} \models \exists x \forall z \, \varphi$?
- 9. È vero che $\mathcal{N} \models \forall x \forall z \, \boldsymbol{\varphi}$?

Giustificare le proprie risposte.

Esercizio 3 9 punti

Sia C un insieme non vuoto, siano D,A sottoinsiemi di C e sia $h\colon C\to C$ una funzione. Formalizzare relativamente alla struttura $\langle C,D,A,h\rangle$ mediante il linguaggio $L=\{D,A,h\}$ con due simboli di predicato unari ed un simbolo di funzione unario le seguenti affermazioni:

- 1. h è biettiva
- 2. $h \circ h$ è suriettiva
- 3. $h[A] \subseteq D$
- $4. \ h[D] \cup h[A] = C.$