Semiconductor laser wish list MTO Symposium

Dr. Henryk Temkin San Jose, CA March 5-7, 2007

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate or mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 05 MAR 2007		2. REPORT TYPE N/A		3. DATES COVE	RED		
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER						
Semiconductor laser wish list					5b. GRANT NUMBER		
					5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)					5d. PROJECT NUMBER		
	5e. TASK NUMBER						
					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANI DARPA	ZATION NAME(S) AND AD	8. PERFORMING ORGANIZATION REPORT NUMBER					
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	10. SPONSOR/MONITOR'S ACRONYM(S)					
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
_	otes ems Technology Syn original document o	-	•	on March 5-	-7, 2007.		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	TTY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF ABSTRACT OF PAGES RESPONSIBLE PERSON						
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	UU	21	KESPUNSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Semiconductor laser wish list

Today

- Wide wavelength range and tunability (L-PAS, SAIL)
- Efficient mid-IR operation (EMIL)
- Scalable Power

Tomorrow

- Really small lasers
- Really fast lasers with engineered RF response
- Lasers and non-linear waveguides

Quantum Cascade Laser

Tuning is a big deal

Detection in the presence of interferents

Laser Photoacoustic Spectroscopy (L-PAS)

Microphone

L-PAS Detection Cell

Absorption spectra of CWAs

Quantum Cascade Lasers enable development of new CWA sensors:

- Sub-ppb sensitivity (order of magnitude improvement over SOA)
- High specificity with false alarm rate reduced to < 10⁻⁶
- Response time reduced from ~ 1 min to ~ 10 seconds

Need For IRCM

Fundamental Limits for MWIR Lasers in Wall-Plug Efficiency (WPE)

$$egin{aligned} egin{aligned} eta_{WPE} &= rac{P_{Optical}}{P_{Electrical}} = eta_{V} eta_{C} eta_{i} eta_{mo} \end{aligned}$$

Efficient Mid-Wave Infrared Lasers (EMIL)

Program Objective

- Breakthrough in wall-plug efficiency for lasers in the critical mid-wave infrared bands
 - Band IVa (3.8 4.2 μm)
 - Band IVb (4.5 4.8 μ m)

DoD Benefits

- Reduce laser size/weight/power
 - Enable IRCM systems on smaller, vulnerable platforms (e.g., rotorcraft, UAVs)
- IRCM with higher modulation rates than SOA
 - Counter emerging threats (e.g., FPAs)

Slide 8

MJR1 BAE LAMBS

51 optics

4 resonators Mark J. Rosker, 11/23/2005

Raman beam combining and cleanup

- 1. Raman beam cleanup
 - Converts a low quality pump into a diffraction limited beam
- 2. Combine multiple pumps via self imaging in multimode waveguide
 - Incoherent power combining of N oscillators phase control not necessary
- 3. Silicon as the active material
 - High gain coefficient → compact lasers and amplifiers
 - High thermal conductivity → power scaling, excellent cooling
 - High optical damage threshold → high pulse energy
 - Low dn/dT and elasto-optic coefficient → high beam quality

Simulation of Amplification Via Self Imaging in Multimode Si Waveguide

Power evolution

Si and conventional Raman crystals

Property	Silicon	Ba(NO ₃) ₂	LilO ₃	KGd(WO ₄) ₂	CaWO ₄
Optical damage threshold (MW/cm²)	~1000-4000	~400	~100	-	-
Thermal conductivity (W/m-K)	148	1.17	-	2.6 [1 0 0] 3.8 [0 1 0] 3.4 [0 0 1]	16
Raman gain (cm/GW)	20 (1550nm)	11 (1064nm)	4.8 (1064nm)	3.3 (1064 nm)	-
Transmission Range (μm)	1.1-6.5	0.38-1.8	0.38-5.5	0.35-5.5	0.2-5.3
Refractive index	3.42	1.556	1.84	1.986 - 2.033	1.884
Raman shift at 300K (cm ⁻¹)	521	1047.3	770 822	901 768	910.7
Spontaneous Raman linewidth (cm ⁻¹)	3.5	0.4	5.0	5.9	4.8

- 10x higher optical damage threshold
- 100x higher thermal conductivity
- High Raman gain, excellent large crystals

Semiconductor AlGaN Injection Lasers (SAIL)

Objective

• Develop AlGaN injection lasers emitting in the ultraviolet; λ =340-280 nm.

Impact

 Stand-off bio-agent detection; Bio-LIDAR

Key technical goals

- Reduce dislocation density of AlGaN structures by three orders of magnitude, to less than 10⁷/cm²
- •Increase p-type doping in AlGaN to support current densities of 10 kA/cm², to 1 x 10¹⁸ cm⁻³
- •Increase luminescence efficiency of AlGaN active layer to IQE~60%
- Demonstrate stable laser operation

SAIL – Pulsed Lateral Overgrowth

Frequency Response of Injection-Locked DFB Lasers

Profs. Wu and Chang-Hasnain UC Berkeley

State of the Art

- Strong injection locking can overcome the fundamental limit of relaxation oscillation
- Maximum enhanced resonance frequency under optical injection:

$$au_p \cdot f_{R, ext{max}} = rac{1}{4\pi} \sqrt{R_{ ext{ext}}} egin{align*} au_p & : ext{ photon lifetime} \ R_{ ext{ext}} & : ext{ ext. injection ratio} \ \end{pmatrix}$$

• This "time-bandwidth product" provides a guideline for device optimization

Ultra-high injection ratio and near positive detuning edge

Lau, Sung, and Wu, OFC 2006

Optical Cavity Engineering For High Speed

"Optical doublet" cavity

- Similar to high-order filter theory
 - -"Chebyshev" cavity

How can this concept be implemented in an integrated structure?

Sub-λ cavity with surface plasmons

Miyazaki et al, Tsukuba (Japan), PRL 96, 097401 (2006)

Surface plasmons are longitudinal charge density fluctuations on the surface of a conductor

Plasmons confined to nm thick layers propagate through µm-length distances

Calculated dispersion relation

For visible free-space wavelength we get plasmons with soft x-ray wavelengths!

Visible light squeezed into a 3.3 nm core and its λ reduced by 92%, to $\lambda_p{\sim}51\text{-}55$ nm.

BUT: unknown loss-confinement relationship!

What does it take to make a small laser?

$$g_{th} = \frac{1}{\Gamma} (\alpha + \frac{M}{L})$$

 $g_{th} = \frac{1}{\Gamma}(\alpha + \frac{M}{L})$ M is the mirror loss (dB), Γ is the modal confinement factor, and L is the cavity length

$$R_{th} \sim \frac{1}{Q} \frac{V_c}{V_{\rm m}} + (1 - \beta) \frac{N_{th} V_c}{\tau_r} + \frac{N_{th} V_c}{\tau_{nr}}$$

Need higher gain and new laser concepts

Lithographic placement and selective growth of GaN nanowires

Defect-free structures for d<100 nm!

UNM, Prof. Steve Brueck

Lasing GaN nanowire, UNM and Sandia NL, L=5 µm

Young Faculty Award (YFA)

126 submissions from 72 Universities, from Harvard College to Texas Woman's. 24 Awards at \$150,000 each

Prof. C.W. Wong, Columbia

Waveguide coupled photonic cavity devices with high Q~ 247,000 and, at the same time, tightly confined mode with V_m ~ $(\lambda/n)^3$ have been obtained.

These Si-based structures show cavityenhanced optical bistability at low input powers, $\sim 1 \text{mW}$, and thermal TPAinduced free-carrier dispersion. This result, attributed to suppression of radiative modes and excellent fabrication procedures, opens the possibility of $Q\sim 1 \times 10^6$.

- a) Cavity radiation against input power vs detuning. Bistable contrast increases with larger detuning but at a higher threshold.
 - a) 3D nonlinear FDTD bistable simulation.