40.017 PROBABILITY & STATISTICS

An Introduction to Probability & Statistics

Michael Hoon

January 25, 2024

Contents

1	\mathbf{Set}	Theory
	1.1	Sample Spaces
	1.2	Naive Definition of Probability
	1.3	General Definition of Probability
		1.3.1 Properties of Probability
		1.3.2 Inclusion-Exclusion Principle
	1.4	Conditional Probability
2	Der	rangement
	2.1	Counting Derangements
		2.1.1 Limiting Growth
3	Disc	crete Random Variables
	3.1	Binomial
	3.2	Hypergeometric
		3.2.1 Hypergeometric Symmetry
	3.3	Geometric
	3.4	Negative Binomial
1		

1 Set Theory

1.1 Sample Spaces

The mathematical framework for probability is built around sets. The sample space S of an experiment is the set of all possible outcomes of the experiment. An event A is a subset of S, and we say that A occurred if the actual outcome is in A.

1.2 Naive Definition of Probability

Let A be an event for an experiment with a finite sample space S. A naive probability of A is

$$\mathbb{P}_{\text{naive}}(A) = \frac{|A|}{|S|} = \frac{\text{number of outcomes favorable to A}}{\text{total number of outcomes}} \tag{1}$$

In general, the result about complements always holds:

$$\mathbb{P}_{\text{naive}}(A^c) = \frac{|A^c|}{|S|} = \frac{|S| - |A|}{|S|} = 1 - \frac{|A|}{|S|} = 1 - \mathbb{P}_{\text{naive}}(A)$$

An important factor about the naive definition is that it is restrictive in requiring S to be finite.

1.3 General Definition of Probability

Definition 1.1. A probability space consists of a sample space S and a probability function P which takes an event $A \subseteq S$ as input and returns P(A), where $P(A) \in \mathbb{R}$, $P(A) \in [0,1]$. The function must satisfy the following axioms:

- 1. $\mathbb{P}(\emptyset) = 1$, $\mathbb{P}(S) = 1$
- $2. \ \mathbb{P}(A) \ge 0$
- 3. If A_1, A_2, \ldots are disjoint events, then:

$$\mathbb{P}\left(\bigcup_{j=1}^{\infty}\right) = \sum_{j=1}^{\infty} \mathbb{P}(A_j)$$

Disjoint events are **mutually exclusive** (i.e. $A_i \cap A_j = \emptyset \ \forall \ i \neq j$).

1.3.1 Properties of Probability

Theorem 1.2. Probability has the following properties, for any events A and B:

- 1. $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$
- 2. If $A \subseteq B$, then $\mathbb{P}(A) \leq \mathbb{P}(B)$
- 3. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

1.3.2 Inclusion-Exclusion Principle

For any events $A_1, \ldots A_n$,

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_i\right) = \sum_{i} \mathbb{P}(A_i) - \sum_{i < j} \mathbb{P}(A_i \cap A_j) + \sum_{i < j < k} \mathbb{P}(A_i \cap A_j \cap A_k) - \dots + (-1)^{n+1} \mathbb{P}(A_1 \cap \dots \cap A_n)$$
 (2)

For n = 2, we have a nicer result:

$$\mathbb{P}(A_1 \cup A_2) = \mathbb{P}(A_1) + \mathbb{P}(A_2) - \mathbb{P}(A_1 \cap A_2)$$

1.4 Conditional Probability

Definition 1.3. If A and B are events with $\mathbb{P}(B) > 0$, then the *conditional probability* of A given B, denoted by $\mathbb{P}(A \mid B)$ is defined as:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Here A is the event whose uncertainty we want to update, and B is the evidence we observe. $\mathbb{P}(A)$ is the prior probability of A and $\mathbb{P}(A|B)$ is the posterior probability of A. (For any event A, $\mathbb{P}(A|A) = \frac{\mathbb{P}(A \cap A)}{\mathbb{P}(A)}$).

2 Derangement

A derangement is a permutation of the elements of a set in which no element appears in its original position. We use D_n to denote the number of derangements of n distinct objects.

2.1 Counting Derangements

We consider the number of ways in which n hats (h_1, \ldots, h_n) can be returned to n people (P_1, \ldots, P_n) such that no hat makes it back to its owner.

We obtain the recursive formula:

$$D_n = (n-1)(D_{n-1} + D_{n-2}), \ \forall \ n \ge 2$$
(3)

With the initial conditions $D_1 = 0$ and $D_2 = 1$, we can use the formula to recursively compute D_n for any n.

There are various other expressions for D_n , equivalent to formula 3:

$$D_n = n! \sum_{i=0}^n \frac{(-1)^i}{i!}, \ \forall \ n \ge 0$$
 (4)

2.1.1 Limiting Growth

From Equation 4, and the taylor series expansion for e:

$$e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!} \tag{5}$$

we substitute x = -1 and obtain the limiting value as $n \to \infty$:

$$\lim_{n \to \infty} \frac{D_n}{n!} = \lim_{n \to \infty} \sum_{i=0}^n \frac{(-1)^i}{i!} = e^{-1} \approx 0.367879\dots$$

This is the limit of the probability that a randomly selected permutation of a large number of objects is a derangement. The probability converges to this limit extremely quickly as n increases, which is why D_n is the nearest integer to $\frac{n!}{e}$.

3 Discrete Random Variables

We formally define a random variable:

Definition 3.1. Given an experiment with sample space S, a random variable (r.v.) is a function from the sample space S to the real numbers \mathbb{R} . It is common to denote random variables by capital letters.

Thus, a random variable X assigns a numerical value X(s) to each possible outcome s of the experiment. The randomness comes from the fact that we have a random experiment (with Probabilities described by the probability function P); the mapping itself is deterministic.

There are two main types of random variables used in practice: discrete and continuous r.v.s.

Definition 3.2. A random variable X is said to be discrete if there is a finite list of values a_1, a_2, \ldots, a_n or an infinite list of values a_1, a_2, \ldots such that $\mathbb{P}(X = a_j \text{ for some } j) = 1$. If X is a discrete r.v., then the finite or countably infinite set of values x such that P(X = x) > 0 is called the *support* of X.

3.1 Binomial

3.2 Hypergeometric

If we have an urn filled with w white and b black balls, then drawing n balls out of the urn with replacement yields a Binom $(n, \frac{w}{(w+b)})$. If we instead sample without replacement, then the number of white balls follow a **Hypergeometric** distribution.

Theorem 3.3. If $X \sim \text{hypgeo}(n, j, k)$, then the PMF of X is:

$$\mathbb{P}(X=x) = \frac{\binom{j}{x} \binom{k}{n-x}}{\binom{j+k}{n}}$$

 $\forall x \in \mathbb{Z} \text{ satisfying } 0 \le x \le n \text{ and } 0 \le n - x \le j, \text{ and } P(X = x) = 0 \text{ otherwise.}$

If j and k are large compared to n, then selection without replacement can be approximated by selection with replacement. In that case, the hypergeometric RV $X \sim \text{hypgeo}(n, j, k)$ can be approximated by a binomial RV $Y \sim \text{binomial}(n, p)$, where $p := \frac{j}{j+k}$ is the probability of selecting a black marble.

We can also write X as the sum of (dependent) Bernoulli random variables:

$$X = X_1 + X_2 + \dots + X_n$$

where each X_i equals 1 if the *i*th selected marble is black, and 0 otherwise.

3.2.1 Hypergeometric Symmetry

Theorem 3.4. The hypergeo(w, b, n) and hypergeo(n, w + b - n, w) distributions are identical.

The proof follows from swapping the two sets of tags in the Hypergeometric story (white/black balls in urn) 3 .

³The binomial and hypergeometric distributions are often confused. Note that in Binomial distributions, the Bernoulli trials are **independent**. The Bernoulli trials in Hypergeometric distribution are **dependent**, since the sampling is done *without replacement*.

3.3 Geometric

3.4 Negative Binomial

In a sequence of independent Bernoulli trials with success probability p, if X is the number of failures before the rth success, then X is said to have the Negative Binomial distribution with parameters r and p, denoted $X \sim \text{NBin}(r, p)$.

Both the Binomial and Negative Binomial distributions are based on independent Bernoulli trials; they differ in the *stopping rule* and in what they are counting. The Negative Binomial counts the **number of failures** until a fixed number of successes.

Theorem 3.5. If $X \sim \text{NBin}(r, p)$, then the PMF of X is

$$P(X = x) = {x-1 \choose n-1} (1-p)^{x-n} p^n, \ \forall \ x \ge n$$

4