In this note we describe the space of weight-4 polylogarithm functions which depend on \mathcal{X} -coordinates of the A_2 cluster algebra. Taking our seed cluster as $x_1 \to x_2$, we define our \mathcal{X} -coordinates:

$$\mathcal{X}_1 = \frac{1}{x_1}, \quad \mathcal{X}_2 = x_2, \quad \mathcal{X}_3 = x_1(1+x_2), \quad \mathcal{X}_4 = \frac{1+x_1+x_1x_2}{x_2}, \quad \mathcal{X}_5 = \frac{1+x_1}{x_1x_2}.$$
 (1)

These satisfy $1 + \mathcal{X}_i = \mathcal{X}_{i-1}\mathcal{X}_{i+1}$, and $\{1/\mathcal{X}_i, \mathcal{X}_{i+1}\}$ form the 5 clusters. Of course you can also work in the Gr(2,5) language, where we have the \mathcal{A} -coordinates $\langle ij \rangle$ and the \mathcal{X} -coordinates

$$\mathcal{X}_1 = \frac{\langle 14 \rangle \langle 23 \rangle}{\langle 12 \rangle \langle 34 \rangle}, \quad \mathcal{X}_2 = \frac{\langle 13 \rangle \langle 45 \rangle}{\langle 15 \rangle \langle 34 \rangle}, \quad \mathcal{X}_3 = \frac{\langle 12 \rangle \langle 35 \rangle}{\langle 15 \rangle \langle 23 \rangle}, \quad \mathcal{X}_4 = \frac{\langle 25 \rangle \langle 34 \rangle}{\langle 23 \rangle \langle 45 \rangle}, \quad \mathcal{X}_5 = \frac{\langle 15 \rangle \langle 24 \rangle}{\langle 12 \rangle \langle 45 \rangle}. \quad (2)$$

This makes it easy to define cluster \mathcal{A} -adjacency: the allowed pairs are $\{\langle 13 \rangle, \langle 14 \rangle\}, \{\langle 14 \rangle, \langle 24 \rangle\}, \{\langle 24 \rangle, \langle 25 \rangle\}, \{\langle 25 \rangle, \langle 35 \rangle\}, \{\langle 35 \rangle, \langle 13 \rangle\}$ (along with all of the frozen nodes, $\langle i i + 1 \rangle$).

Integrable Symbol

Imposing integrability on a generic symbol of weight 4 with arguments drawn from (1) leaves us with 211 free parameters.

A-adjacency vs. X-adjacency

The two criteria we consider are:

- cluster \mathcal{A} -adjacency (only $\{\langle i | i+2 \rangle, \langle i | i+3 \rangle\}$ +frozen can appear),
- cluster \mathcal{X} -adjacency (only $\{\mathcal{X}_i, \mathcal{X}_{i+1}\}$ can appear).

For weight-4 integrable symbols on A_2 , these criteria turn out to be equivalent (this is not surprising since there are an equal number of \mathcal{A} - and \mathcal{X} -coordinates). In both cases, 130 parameters are fit by cluster adjacency, leaving us with 81.

Imposing cluster-y coproduct

Now that we have a symbol which is cluster adjacent, let us also impose that the coproduct be cluster-y as well. Based on experience we know that imposing full cluster adjacency at the level of the coproduct is not possible for A_2 (we have to wait for A_3 for that property), but we can at least impose that the $B_2 \wedge B_2$ and $B_3 \otimes \mathbb{C}^*$ take only $\{\mathcal{X}\}_k$ as arguments.

Interestingly, cluster adjacency at symbol level already imposes a cluster-y coproduct at the level of $B_2 \wedge B_2$. Imposing this for $B_3 \otimes \mathbb{C}^*$ fixes 15 parameters (I think this is killing off terms like $\text{Li}_4(-1-\mathcal{X})$ and $\text{Li}_4(-1-I/\mathcal{X})$), leaving us with 66.

Imposing symmetries

We now impose that the function respect the automorphisms of A_2 . A_2 has a cyclic symmetry, $\sigma: \mathcal{X}_i \to \mathcal{X}_{i+1}$, and a flip symmetry $\tau: \mathcal{X}_i \to \mathcal{X}_{6-i}$. For each symmetry, we consider the case where f_{A_2} is either invariant or "covariant" – i.e. $\sigma(f_{A_2}) = f_{A_2}$ or $\sigma(f_{A_2}) = -f_{A_2}$. We will now tabulate how many free parameters remain for each of the 4 possible sign choices:

We'll refer to these functions by their behavior under σ and τ : $f_{A_2}^{++}$ and $f_{A_2}^{+-}$. Note that only $f_{A_2}^{+-}$ has non-zero $B_2 \wedge B_2$ – this is what we have traditionally called "the A_2 function" (at coproduct level).

Poisson Structure and Mutation Interpretation

It would be nice to have an understanding of the Poisson structure in adjacent symbol entries for these functions – in particular, can we fit the remaining parameters in order to bring out a nice Poisson structure? A dream scenario would be to have an interpretation of these symbol terms as a mutation sequence.

Unfortunately at this point I don't seen any obvious interpretation, but this is worth returning to!

Summary

We have determined two weight-4 functions of interested related to the A_2 cluster algebra: $f_{A_2}^{++}$ and $f_{A_2}^{+-}$. They have 9,5 free parameters (respectively), and $f_{A_2}^{+-}$ has non-zero $B_2 \wedge B_2$. The next step is to evaluate these functions across A_3 , impose the ++ automorphism sign choice, and see how close we get to $\mathcal{E}_6^{(2)}$!