ЛЕКЦІЯ 9Властивості графів (продовження)

Графи й бінарні відношення

Відношенню R, заданому на множині V взаємно однозначно відповідає орієнтований граф $G\left(R\right)$ без кратних ребер з множиною вершин V, у якому ребро $\left(v_i,v_j\right)$ існує тільки тоді, коли виконано v_iRv_j .

Представимо на графах деякі бінарні відношення.

1. **Рефлексивність.** Відношення R на множині V **рефлексивне,** якщо для кожного елемента $v \in V$ справедливе $(v,v) \in R$. На графі це зображається петлею, а матриця суміжності графа з рефлексивними відношеннями містить одиниці на головній діагоналі.

Іншими словами, якщо відношення R рефлексивне, то граф $G\!\left(R\right)$ без кратних ребер має петлі у всіх вершинах.

Приклад 1. На малюнку показаний приклад графа рефлексивного відношення.

Головна діагональ матриці суміжності G(R) складається з одиниць.

$$\mathbf{C} = \begin{bmatrix} \mathbf{1} & 1 & 0 & 0 & 0 \\ 1 & \mathbf{1} & 1 & 0 & 0 \\ 0 & 1 & \mathbf{1} & 1 & 0 \\ 0 & 0 & 1 & \mathbf{1} & 1 \\ 0 & 0 & 0 & 1 & \mathbf{1} \end{bmatrix}$$

2. **Антирефлексивність**. Якщо відношення R на множині V **антирефлексивне**, то для всіх елементів v множини V справедливе $(v,v) \not\in R$.

Якщо R антирефлексивне, то граф $G\!\left(R\right)$ без кратних ребер не має петель.

Приклад 2. На малюнку показаний граф антирефлексивного відношення

$$\mathbf{C} = \begin{bmatrix} \mathbf{0} & 1 & 1 & 0 & 0 \\ 1 & \mathbf{0} & 1 & 0 & 0 \\ 1 & 1 & \mathbf{0} & 1 & 1 \\ 0 & 0 & 1 & \mathbf{0} & 1 \\ 0 & 0 & 1 & 1 & \mathbf{0} \end{bmatrix}$$

Головна діагональ матриці суміжності G(R) складається з нулів.

3. Симетричність. Відношення R на V називають симетричним, якщо з $\left(v_i,v_j\right)\in R$ випливає $\left(v_j,v_i\right)\in R$ при $v_i\neq v_j$. Матриця суміжності симетричного відношення симетрична щодо головної діагоналі.

$$\mathbf{C} = \begin{bmatrix} \mathbf{0} & 1 & 1 & 1 & 0 \\ 1 & \mathbf{0} & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & \mathbf{0} & 1 \\ 0 & 1 & 0 & 1 & \mathbf{0} \end{bmatrix}$$

$$(v_1, v_2) \in R \rightarrow (v_2, v_1) \in R, (v_1, v_3) \in R \rightarrow (v_3, v_1) \in R,$$

$$(v_1, v_4) \in R \rightarrow (v_4, v_1) \in R, (v_2, v_5) \in R \rightarrow (v_5, v_2) \in R,$$

$$(v_3, v_4) \in R \rightarrow (v_4, v_3) \in R, (v_4, v_5) \in R \rightarrow (v_5, v_4) \in R.$$

4. **Антисиметричність.** Відношення R на V називають **антисиметричним**, якщо з $\left(v_i,v_j\right)\in R$ випливає $\left(v_j,v_i\right)\not\in R$ при $v_i\neq v_j$. Матриця суміжності антисиметричного відношення несиметрична щодо головної діагоналі. Антисиметричне відношення завжди представлене орграфом з дугами без повторень.

$$\mathbf{C} = \begin{vmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{vmatrix}$$

$$\begin{pmatrix} v_1, v_2 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_2, v_1 \end{pmatrix} \not \in R, \\ \begin{pmatrix} v_1, v_3 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_3, v_1 \end{pmatrix} \not \in R, \\ \begin{pmatrix} v_4, v_1 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_1, v_4 \end{pmatrix} \not \in R, \\ \begin{pmatrix} v_2, v_5 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_5, v_2 \end{pmatrix} \not \in R, \\ \begin{pmatrix} v_3, v_4 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_4, v_3 \end{pmatrix} \not \in R, \\ \begin{pmatrix} v_5, v_4 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_4, v_5 \end{pmatrix} \not \in R.$$

5. **Транзитивність**. Відношення R на множині V називають **транзитивним**, якщо з $\left(v_i, v_j\right) \in R$, $\left(v_j, v_k\right) \in R$ випливає $\left(v_i, v_k\right) \in R$ при $v_i, v_j, v_k \in V$ і $v_i \neq v_j, v_j \neq v_k, v_i \neq v_k$. У графі, що задає транзитивне відношення для всякої пари дуг, таких, що кінець першої дуги збігається з початком другий, існує транзитивно замикаюча дуга, що має спільний початок з першою і спільний кінець з другою.

$$\mathbf{C} = \begin{bmatrix} v_1 & v_2 & v_3 & v_4 & v_5 \\ v_1 & 0 & 1 & 0 & 1 & 1 \\ v_2 & 1 & 0 & 1 & 0 & 1 \\ v_3 & 0 & 1 & 0 & 1 & 1 \\ v_4 & 1 & 0 & 1 & 0 & 1 \\ v_5 & 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

. . .

$$\begin{pmatrix} v_1, v_2 \end{pmatrix} \in R, \begin{pmatrix} v_2, v_5 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_1, v_5 \end{pmatrix} \in R .$$

$$\begin{pmatrix} v_5, v_1 \end{pmatrix} \in R, \begin{pmatrix} v_1, v_2 \end{pmatrix} \in R \rightarrow \begin{pmatrix} v_5, v_2 \end{pmatrix} \in R .$$

. . .

Відношення R на множині вершин $V = \left\{v_1, v_2, ..., v_5\right\}$ транзитивне, оскільки для довільного ребра в графі виконується умова транзитивності.

6. **Антитранзитивність.** Відношення R на множині V називають **антитранзитивним**, якщо $\mathbf{3} \begin{pmatrix} v_i, v_j \end{pmatrix} \in R$, $\begin{pmatrix} v_j, v_k \end{pmatrix} \in R$ випливає $\begin{pmatrix} v_i, v_k \end{pmatrix} \not\in R$ при $v_i, v_j, v_k \in V$ і $v_i \neq v_j, v_j \neq v_k, v_i \neq v_k$. У графі, що задає антитранзитивне відношення для всякої пари дуг, таких, що кінець першої дуги збігається з початком другої, не існує транзитивно замикаючої дуги, яка має спільний початок з першою і спільний кінець з другою.

$$\mathbf{C} = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

Відношення R на множині вершин $V = \left\{v_1, v_2, ..., v_5\right\}$ антитранзитивне, оскільки для довільних пар ребер виконується умова антитранзитивності.

Зв'язок між операціями над графами і операціями над відношеннями

1. Нехай \overline{R} – доповнення відношення $R\subset V imes V$: $\overline{R}=U\setminus R$,

де U – універсальне (повне) відношення $U = V \times V$, тобто відношення, яке має місце між будь-якою парою елементів з V.

2. Граф $G\left(\overline{R}\right)$ є доповненням графа G(R) (до повного графа K з множиною вершин V і множиною ребер $E\left(K\right) = V \times V$:

$$G(\overline{R}): E(\overline{R}) = E(K) \setminus E(R); V(\overline{R}) = V(R)$$

Приклад 3. Нехай $V = \{v_1, v_2, v_3, v_4\}$.

$$U = \{(v_1, v_1), (v_1, v_2), (v_1, v_3), (v_1, v_4), (v_2, v_1), (v_2, v_2), (v_2, v_3), (v_2, v_4), (v_3, v_1), (v_3, v_2), (v_3, v_3), (v_3, v_4), (v_4, v_1), (v_4, v_2), (v_4, v_3), (v_4, v_4)\}$$

$$R = \{(v_1, v_1), (v_1, v_2), (v_2, v_2), (v_2, v_3), (v_3, v_3), (v_3, v_4), (v_4, v_1), (v_4, v_4)\}$$

$$\overline{R} = \{(v_1, v_3), (v_1, v_4), (v_2, v_1), (v_2, v_4), (v_3, v_1), (v_3, v_2), (v_4, v_2), (v_4, v_3)\}$$

3. Граф зворотного відношення $G\left(R^{-1}\right)$ відрізняється від графа $G\left(R\right)$ тим, що напрямки всіх ребер замінені на зворотні. R R^{-1}

$$v_1$$
 v_2
 v_3
 v_4
 v_3

$$R = \{(v_1, v_2), (v_2, v_3), (v_4, v_1), (v_4, v_3)\}; R^{-1} = \{(v_2, v_1), (v_3, v_2), (v_1, v_4), (v_3, v_4)\}$$

4. Граф об'єднання двох відношень, заданих на V, $G\left(R_1 \cup R_2\right)$ є графом об'єднання двох графів $G\left(R_1\right)$ і $G\left(R_2\right)$:

5. Граф перетину відношень $R_1\cap R_2$ на V $G\big(R_1\cap R_2\big)$ є графом перетинання двох графів $G\big(R_1\big)$ і $G\big(R_2\big)$:

$$G(R_1 \cap R_2) = G(R_1) \cap G(R_2).$$

Багатозначні відображення

Пряме відображення першого порядку вершини v_i — це множина таких вершин v_j графа $G\!\left(V,E\right)$, для яких існує дуга $\!\left(v_i,v_i\right)$, тобто

$$\Gamma^{+}\left(\left.v_{i}\right.\right)=\left\{\left.v_{j}\right|\left(\left.v_{i},v_{j}\right.\right)\in E,i,j=1,2,...,n\right\}\text{,}$$

де $n = \left| V \right|$ – кількість вершин графа

Пряме відображення другого порядку вершини v_i — це пряме відображення від прямого відображення першого порядку

$$\Gamma^{+2}\left(\,v_{i}\,\right) = \,\Gamma^{+}\left(\,\Gamma^{+1}\left(\,v_{i}\,\right)\right).$$

$$v_6$$
 $i = 8$, $v_i = v_8$
 $\Gamma^+(v_8) = \{v_2, v_{11}, v_{10}\}$

$$\Gamma^{+2}(v_8) = \{v_1, v_3, v_4, v_5, v_7, v_9\}$$

Аналогічно можна записати відображення 3-го порядку

$$\Gamma^{+3}\left(\left.v_{i}\right.\right)=\left.\Gamma^{+}\left(\left.\Gamma^{+2}\left(\left.v_{i}\right.\right)\right)=\right.\Gamma^{+}\left(\left.\Gamma^{+}\left(\left.\Gamma^{+1}\left(\left.v_{i}\right.\right)\right)\right),$$

Відображення для 4-го порядку

$$\Gamma^{+4}\left(\left.v_{i}\right.\right)=\left.\Gamma^{+}\left(\left.\Gamma^{+3}\left(\left.v_{i}\right.\right)\right)=\left.\Gamma^{+}\left(\left.\Gamma^{+}\left(\left.\Gamma^{+}\left(\left.\Gamma^{+1}\left(\left.v_{i}\right.\right)\right)\right)\right)\right),$$

i т.д., для p-го порядку.

$$\Gamma^{+p}\left(v_{i}\right) = \Gamma^{+}\left(\Gamma^{+(p-1)}\left(v_{i}\right)\right)$$

Приклад 4. Знайдемо прямі багатозначні відображення для графа, показаного на малюнку:

$$\begin{array}{l} \Gamma^{+1}\left(v_{1}\right)=\left\{v_{2},v_{3}\right\},\\ \Gamma^{+2}\left(v_{1}\right)=\Gamma^{+}\left(\Gamma^{+}\left(v_{1}\right)\right)=\Gamma^{+}\left(v_{2},v_{3}\right)=\left\{v_{3},v_{5}\right\},\\ \Gamma^{+3}\left(v_{1}\right)=\Gamma^{+}\left(\Gamma^{+2}\left(v_{1}\right)\right)=\Gamma^{+}\left(v_{3},v_{5}\right)=\left\{v_{3},v_{1}\right\},\\ \Gamma^{+4}\left(v_{1}\right)=\Gamma^{+}\left(\Gamma^{+3}\left(v_{1}\right)\right)=\Gamma^{+}\left(v_{3},v_{1}\right)=\left\{v_{2},v_{3}\right\}$$
Далі легко

помітити, що

$$\Gamma^{+1}(v_1) = \Gamma^{+4}(v_1) = \Gamma^{+7}(v_1)....$$

$$\Gamma^{+2}(v_1) = \Gamma^{+5}(v_1) = \Gamma^{+8}(v_1)....$$

$$\Gamma^{+3}(v_1) = \Gamma^{+6}(v_1) = \Gamma^{+9}(v_1)....$$

Аналогічно знаходимо відображення для інших вершин графа.

Зворотне відображення першого порядку вершини v_i — це множина таких вершин v_j графа $G\!\left(V,E\right)$, для яких існує дуга $\!\left(v_i,v_i\right)$, тобто

$$\Gamma^{-}\left(v_{i}\right)=\left\{v_{j}\left|\left(v_{j},v_{i}\right)\in E, i, j=1,2,...,n\right.\right\},$$

де n = |V| – кількість вершин графа

Зворотне відображення другого й наступних порядків вершини v_i — це зворотне відображення від зворотного відображення попереднього порядку

$$\begin{split} &\Gamma^{-2}\left(\left.v_{i}\right.\right) = \left.\Gamma^{-}\left(\left.\Gamma^{-1}\left(\left.v_{i}\right.\right)\right)\right. \\ &\Gamma^{-3}\left(\left.v_{i}\right.\right) = \left.\Gamma^{-}\left(\left.\Gamma^{-2}\left(\left.v_{i}\right.\right)\right) = \left.\Gamma^{-}\left(\left.\Gamma^{-1}\left(\left.v_{i}\right.\right)\right)\right)\right. \\ &\cdots \\ &\Gamma^{-p}\left(\left.v_{i}\right.\right) = \left.\Gamma^{-}\left(\left.\Gamma^{-(p-1)}\left(\left.v_{i}\right.\right)\right)\right. \end{split}$$

Приклад 5. Знайдемо зворотні багатозначні відображення для графа, показаного на рисунку :

$$\begin{split} &\Gamma^{-}\left(v_{1}\right)=\left\{v_{5}\right\},\\ &\Gamma^{-2}\left(v_{1}\right)=\Gamma^{-}\left(\Gamma^{-1}\left(v_{1}\right)\right)=\Gamma^{-}\left(v_{5}\right)=\left\{v_{2},v_{4}\right\},\\ &\Gamma^{-3}\left(v_{1}\right)=\Gamma^{-}\left(\Gamma^{-2}\left(v_{1}\right)\right)=\Gamma^{-}\left(v_{2},v_{4}\right)=\left\{v_{1}\right\},\\ &\Gamma^{-4}\left(v_{1}\right)=\Gamma^{-}\left(\Gamma^{-3}\left(v_{1}\right)\right)=\Gamma^{-}\left(v_{1}\right)=\left\{v_{5}\right\} \text{ і т.д.} \end{split}$$

Відображення множини вершин

Якщо розглянуте раніше відображення застосовується одночасно до всіх вершин графа, то воно може бути отримане з виразу:

$$\Gamma^+(V) = \bigcup_{v \in V} \Gamma^+(v).$$

Якщо $V = \left\{ V_1, V_2, ..., V_n \right\}$, то справедливі

співвідношення:

$$\Gamma^{+}\left(\bigcup_{i=1}^{n} V_{i}\right) = \bigcup_{i=1}^{n} \Gamma^{+}\left(V\right)_{i}$$

Визначення графа і його властивостей з використанням відображень

Граф. Говорять, що граф $Gig(V,\Gammaig)$ заданий однозначно, якщо задані:

- 1. Непуста множина V.
- 2. Відображення $\Gamma:V o V$.

Пари вершин v_i і v_j з'єднують ребром за умови, що $v_j \in \Gamma^+ \left(v_i \right)$.

Підграф. Підграфом графа $Gig(V,\Gammaig)$ називають граф виду $Gig(A,\Gamma_Aig)$, де $A\subset V$, а відображення Γ_A визначене в такий спосіб:

$$\Gamma_A^+(v) = \Gamma^+(v) \cap A$$
,

Тобто, відображеня Γ_A включає тільки ті вершини, що входять в множину A

Компонента зв'язності графа

Компонента зв'язності — деяка множина вершин графа, у якій між довільними двома вершинами існує шлях з однієї в іншу, і не існує жодного шляху з вершини цієї множини у вершину не з цієї множини.

Компонента зв'язності — це граф, породжений деякою множиною вершин C_{v} ,

 C_v — множина вершин, що включає вершину v і усі ті вершини графа, які можуть бути з'єднані з нею ланцюгом.

Теорема про розбиття графа. Різні компоненти графа $G(V,\Gamma)$ утворюють розбиття множини V, тобто

1.
$$C_v \neq \emptyset$$
,

2.
$$v_i, v_j \in V, C_{v_i} \neq C_{v_j} \Rightarrow C_{v_i} \cap C_{v_j} = \varnothing$$
,

3.
$$\bigcup C_v = V$$
.

Теорема про зв'язний граф. Граф є зв'язним графом тоді й тільки тоді, коли він складається з одного компонента зв'язності.

Між будь-якою парою вершин зв'язного графа існує як мінімум один шлях.

Досяжні і контрдосяжні вершини

Визначення. Вершину w графа D (або орграфа) називають **досяжною** з вершини v, якщо w = v, або існує шлях з v у w (маршрут від v у w).

Визначення. Вершину w графа D (або орграфа) називають **контрдосяжною** з вершини v, якщо існує шлях з w у v (маршрут від w у v).

Матриця досяжності

Матрицею досяжності називається матриця $n \times n$ $R = \left(r_{ij}\right), i, j = 1, 2, ..., n$, де n – число вершин графа, а кожний елемент визначається в такий спосіб:

$$r_{ij} = \begin{cases} 1, & \text{якщо вершина} \ v_{j} \ \partial o c \, \text{яжи о вершина} \ v_{i}, \\ 0, & \text{у протилежному випадку}. \end{cases}$$

Усі діагональні елементи r_{ii} в матриці R дорівнюють 1, оскільки кожна вершина досяжна з себе самої зі шляхом довжиною 0.

Множина досяжних вершин $D\!\left(v_i\right)$ графа G. Множина $D\!\left(v_i\right)$ вершин, досяжних із заданої вершини v_i , складається з таких елементів v_j , для яких елемент r_{ij} в матриці досяжності дорівнює 1.

$$R = \left(D\left(v_1\right), ..., D\left(v_i\right), ..., D\left(v_n\right)\right)^T$$

Відображення і досяжність

Пряме відображення 1-го порядку $\Gamma^{+1}\left(v_{i}\right)$ – це

множина таких вершин v_j , які досяжні з v_i з використанням шляхів довжиною 1.

Пряме відображення 2-го порядку — це множина $\Gamma^+ \left(\Gamma^{+1} \left(v_i \right) \right) = \Gamma^{+2} \left(v_i \right)$, яка складається з вершин, досяжних з v_i з використанням шляхів довжиною 2.

Пряме відображення р-го порядку — це множина $\Gamma^{+p}\left(v_i\right)$, яка складається з вершин, досяжних із v_i за допомогою шляхів довжини p.

Визначення множини досяжності через відображення

Будь-яка вершина графа G, яка досяжна з v_i , повинна бути досяжна з використанням шляху (або шляхів) довжиною 0 або 1, або 2, ..., або p. Тоді множина вершин, досяжних з вершини v_i , можна представити у вигляді

$$D\left(v_{i}\right)=\left\{ v_{i}\right\} \cup\Gamma^{+1}\left(v_{i}\right) \cup\Gamma^{+2}\left(v_{i}\right) \cup\ldots\cup\Gamma^{+p}\left(v_{i}\right).$$

Побудова матриці досяжності

Будуємо матрицю по рядках.

- 1. Знаходимо досяжні множини $D\!\left(v_i\right)$ для всіх вершин $v_i \in V$.
- 2. Для i-го рядка $r_{ij}=1$, якщо $v_j\in D\big(v_i\big)$, а якщо ж $v_j\not\in D\big(v_i\big)$, то $r_{ij}=0$.

Рисунок. Досяжність у графі: а — граф; б — матриця суміжності C; в — матриця досяжності R; г — матриця контрдосяжності Q.

Множини досяжностей знаходять у такий спосіб:

$$\begin{split} &D\left(\frac{\mathbf{v_1}}{\mathbf{v_1}}\right) = \left\{v_1\right\} \cup \Gamma^{+1}\left(v_1\right) \cup \Gamma^{+2}\left(v_1\right) \cup \Gamma^{+3}\left(v_1\right) = \\ &= \left\{v_1\right\} \cup \left\{v_2, v_5\right\} \cup \left\{v_2, v_4, v_5\right\} \cup \left\{v_2, v_4, v_5\right\} = \left\{v_1, v_2, v_4, v_5\right\} \end{split}$$

$$\begin{split} &D\left(\begin{array}{c} \boldsymbol{v_2} \end{array} \right) = \left\{ \left. \boldsymbol{v_2} \right\} \cup \Gamma^{+1}\left(\left. \boldsymbol{v_2} \right) \cup \Gamma^{+2}\left(\left. \boldsymbol{v_2} \right. \right) = \right. \\ &= \left\{ \left. \boldsymbol{v_2} \right\} \cup \left\{ \left. \boldsymbol{v_2}, \boldsymbol{v_4} \right\} \cup \left\{ \left. \boldsymbol{v_2}, \boldsymbol{v_4}, \boldsymbol{v_5} \right. \right\} = \left\{ \left. \boldsymbol{v_2}, \boldsymbol{v_4}, \boldsymbol{v_5} \right. \right\} \end{split}$$

$$\begin{split} &D\left(\mathbf{v_3} \right) = \left\{ \left. v_3 \right. \right\} \cup \Gamma^{+1} \left(\left. v_3 \right. \right) \cup \Gamma^{+2} \left(\left. v_3 \right. \right) \cup \Gamma^{+3} \left(\left. v_3 \right. \right) = \\ &= \left\{ \left. v_3 \right. \right\} \cup \left\{ \left. v_4 \right. \right\} \cup \left\{ \left. v_5 \right. \right\} \cup \left\{ \left. v_5 \right. \right\} = \left\{ \left. v_3, v_4, v_5 \right. \right\} \end{split}$$

$$\begin{split} &D\left({ \textcolor{red}{v_4}} \right) = \left\{ \left. v_4 \right. \right\} \cup \Gamma^{+1}\left(\left. v_4 \right. \right) \cup \Gamma^{+2}\left(\left. v_4 \right. \right) = \\ &= \left\{ \left. v_4 \right. \right\} \cup \left\{ \left. v_5 \right. \right\} = \left\{ \left. v_4 , v_5 \right. \right\} \end{split}$$

$$\begin{split} &D\left(\frac{\mathbf{v_6}}{\mathbf{o}}\right) = \left\{v_6\right\} \cup \left\{v_3, v_7\right\} \cup \left\{v_4, v_6\right\} \cup \left\{v_3, v_5, v_7\right\} \cup \left\{v_4, v_5, v_6\right\} \cup \ldots \\ &\cup \left\{v_4, v_5, v_6\right\} = \left\{v_3, v_4, v_5, v_6, v_7\right\}, \end{split}$$

$$D\left(\begin{smallmatrix} \mathbf{v_7} \end{smallmatrix} \right) = \left\{ \begin{smallmatrix} v_7 \end{smallmatrix} \right\} \cup \left\{ \begin{smallmatrix} v_4, v_6 \end{smallmatrix} \right\} \cup \left\{ \begin{smallmatrix} v_3, v_5, v_7 \end{smallmatrix} \right\} \cup \left\{ \begin{smallmatrix} v_4, v_5, v_6 \end{smallmatrix} \right\} = \left\{ \begin{smallmatrix} v_3, v_4, v_5, v_6, v_7 \end{smallmatrix} \right\}.$$

Матриця контрдосяжності

Матриця контрдосяжності — це матриця $n \times n$

 $\mathbf{Q} = \left(q_{ij}\right), \, i,j = 1,2,3,...,n$, де n – число вершин графа, визначається в такий спосіб:

$$q_{ij} = \begin{cases} 1, & \text{якщо 3 вершини } v_j & \text{може бути досягнута вершина } v_i, \\ 0, & \text{у протилежному випадку.} \end{cases}$$

Контрдосяжною множиною $K\!\left(v_i\right)$ називають множину вершин, з яких можна досягти вершину v_i . Контрдосяжну множину $K\!\left(v_i\right)$ визначають з виразу:

$$K\left(\left.v_{i}\right.\right) = \left\{\left.v_{i}\right.\right\} \cup \Gamma^{-1}\left(\left.v_{i}\right.\right) \cup \Gamma^{-2}\left(\left.v_{i}\right.\right) \cup \ldots \cup \Gamma^{-p}\left(\left.v_{i}\right.\right).$$

Співвідношення між матрицями досяжності і контрдосяжності

Визначення. Матриця контрдосяжності дорівнює транспонованій матриці досяжності $Q = R^T$.

Дане співвідношення походить з визначення матриць, оскільки стовпець v_i матриці Q збігається з рядком v_i матриці R.

Слід зазначити, що оскільки всі елементи матриць R і Q дорівнюють 1 або 0, те кожний рядок можна зберігати у двійковій формі, заощаджуючи витрати пам'яті комп'ютера. Матриці R і Q зручні для обробки на комп'ютері, тому що з обчислювальної точки зору основними операціями є швидкодіючі логічні операції.

Числа, що характеризують граф

Цикломатичне число Цикломатичним числом графа $G=\left(V,E\right)$

називається число

$$m=N-n+p,$$
 де $N=\left|E\right|$ — число ребер графа, $n=\left|V\right|$ — число вершин графа, p — число компонентів зв'язності графа.

Для зв'язного графа m = N - n + 1.

Теорема. Цикломатичне число графа дорівнює найбільшій кількості незалежних циклів.

Цикли в графі

Циклом називають шлях, у якім перша й остання вершини збігаються.

Довжина циклу – число складових його ребер.

Простий цикл – це цикл без повторюваних ребер.

Елементарний цикл – це простий цикл без повторюваних вершин.

Наслідок

Петля – елементарний цикл.

Вектор-цикл, незалежні цикли

Поставимо у відповідність циклу μ графа G деякий вектор.

Для цього додамо кожному ребру графа довільну орієнтацію.

Якщо цикл μ проходить через ребро e_k , де $1 \le k \le N$, у напрямку його орієнтації r_k раз і в протилежному напрямку s_k раз, то вважаємо $c^k = r_k - s_k$.

Вектор ${f c} = \left(c^1, c^2, c^3, ..., c^k, ..., c^N\right)$ називають вектором-**циклом**, відповідним до циклу μ .

Цикли μ_1 й μ_2 називають **незалежними**, якщо відповідні їм вектори $\mathbf{c}_1=\left(c_1^1,c_1^2,c_1^3,...,c_1^k,...,c_1^N\right)$ і $\mathbf{c}_2=\left(c_2^1,c_2^2,c_2^3,...,c_2^k,...,c_2^N\right)$ лінійно незалежні.

Властивості циклів

1. Зв'язний граф G не має циклів тоді й тільки тоді, коли цикломатичне число m=0. Такий граф є деревом.

2. Зв'язний граф G має єдиний цикл тоді й тільки тоді, коли цикломатичне число m=1.

Визначення цикломатичного числа

Цикломатичне число зв'язного графа можна визначити як число ребер, яке потрібно вилучити, щоб граф став деревом.

Визначення лінійної незалежності векторів-циклів.

3 курсу лінійної алгебри випливає, що вектори $\mathbf{c}_1=\left(c_1^1,c_1^2,c_1^3,...,c_1^k,...,c_1^N\right)$ й $\mathbf{c}_2=\left(c_2^1,c_2^2,c_2^3,...,c_2^k,...,c_2^N\right)$

можна представити як вектори в просторі R^N . Нехай α – деяка константа $\alpha \in R$. Тоді

$$\begin{split} \alpha \mathbf{c}_1 &= \left(\alpha c_1^1, \alpha c_1^2, \alpha c_1^3, ..., \alpha c_1^k, ..., \alpha c_1^N\right) \mathbf{i} \\ \alpha \mathbf{c}_2 &= \left(\alpha c_2^1, \alpha c_2^2, \alpha c_2^3, ..., \alpha c_2^k, ..., \alpha c_2^N\right). \\ \mathbf{c}_1 &+ \mathbf{c}_2 &= \left(c_1^1 + c_2^1, c_1^2 + c_2^2, c_1^3 + c_2^3, ..., c_1^k + c_2^k, ..., c_1^N + c_2^N\right). \end{split}$$

Деяку множину $E \subset R^N$ називають векторним підпростором, коли

1.
$$\alpha \in R$$
, $\mathbf{c} \in E \Rightarrow \alpha \mathbf{c} \in E$.
2. $\mathbf{c}_1, \mathbf{c}_2 \in E \Rightarrow \mathbf{c}_1 + \mathbf{c}_2 \in E$.

Говорять, що вектори $\mathbf{c}_1, \mathbf{c}_2, \mathbf{c}_3, \mathbf{c}_i$ з R^N лінійно незалежні, якщо

$$\alpha_1\mathbf{c}_1 + \alpha_2\mathbf{c}_2 + \ldots + \alpha_i\mathbf{c}_i = 0 \Rightarrow \alpha_1 = \alpha_2 = \ldots = \alpha_i = 0.$$

Навпаки, якщо при $\alpha_1 \mathbf{c}_1 + \alpha_2 \mathbf{c}_2 + ... + \alpha_i \mathbf{c}_i = 0$ деякі α_i одночасно не дорівнюють нулю, то говорять, що дані вектори лінійно залежні.

Якщо, наприклад, $\alpha_1 \neq 0$, то можна записати

$$\mathbf{c}_1 + \frac{\alpha_2}{\alpha_1} \mathbf{c}_2 + \frac{\alpha_3}{\alpha_1} \mathbf{c}_3 + \dots + \frac{\alpha_i}{\alpha_1} \mathbf{c}_i = 0.$$

Звідси
$$\frac{\alpha_2}{\alpha_1}\mathbf{c}_2+\frac{\alpha_3}{\alpha_1}\mathbf{c}_3+...+\frac{\alpha_i}{\alpha_1}\mathbf{c}_i=-\mathbf{c}_1$$

У цьому випадку вектор \mathbf{c}_1 лінійно виражений через вектори $\mathbf{c}_2, \mathbf{c}_3, ..., \mathbf{c}_i$.

Для визначення факту лінійної залежності векторів необхідно розв'язати систему

$$\alpha_1 \mathbf{c}_1 + \alpha_2 \mathbf{c}_2 + \dots + \alpha_i \mathbf{c}_i = 0$$

$$\alpha_1 \begin{pmatrix} c_1^1 \\ c_1^2 \\ c_1^2 \\ \vdots \\ c_1^N \end{pmatrix} + \alpha_2 \begin{pmatrix} c_2^1 \\ c_2^2 \\ \vdots \\ c_2^N \\ \vdots \\ c_2^N \end{pmatrix} + \dots + \alpha_i \begin{pmatrix} c_i^1 \\ c_i^2 \\ c_i^2 \\ \vdots \\ c_i^N \end{pmatrix} = 0$$

$$\mathsf{Aбo} \begin{cases} \alpha_1 c_1^1 + \alpha_2 c_2^1 + \ldots + \alpha_i c_i^1 = 0, \\ \alpha_1 c_1^2 + \alpha_2 c_2^2 + \ldots + \alpha_i c_i^2 = 0, \\ \ldots \\ \alpha_1 c_1^N + \alpha_2 c_2^N + \ldots + \alpha_i c_i^N = 0. \end{cases}$$

Приклад 6. Визначимо цикломатичне число графа, показаного на малюнку.

У розглянутому графі число вершин n=5, число ребер N=7.

Оскільки граф є зв'язним, то число компонентів зв'язності p=1.

Таким чином, m = N - n + p = 7 - 5 + 1 = 3.

Число внутрішньої стійкості

Нехай дано граф $G(V,\Gamma)$. Множину $S\subset V$ називають внутрішньо стійкою, якщо ніякі дві вершини, що входять в S, не є суміжними. Іншими словами сформулюємо цю умову, використовуючи відображення першого порядку:

$$\Gamma^+(S) \cap S = \varnothing$$
.

Якщо позначити через Φ сімейство всіх внутрішньо стійких множин графа, то для нього будуть справедливі співвідношення:

- 1. $\varnothing \in \Phi$, $S \in \Phi$.
- 2. Якщо $A \subset S$, то $A \in \Phi$.

Визначення. Числом *внутрішньої стійкості* графа G є величина, яку визначають з виразу:

$$a = \max_{S \in \Phi} |S|$$
.

Визначення $S \subset V$ називають множиною внутрішньої стійкості, якщо всі вершини з S не суміжні між собою. Потужність найбільшої множини внутрішньої стійкості називають числом внутрішньої стійкості.

Приклад 7. Знайдемо число внутрішньої стійкості графа. Найбільша множина внутрішньої стійкості для нашого графа має вигляд $S = \{v_4, v_5, v_6\}$ додаванні будь-яких інших будемо вершин одержувати суміжні

вершини). Відповідно, *число внутрішньої стійкості* графа G рівно a=3.

Приклад 8. Знайти число внутрішньої стійкості графа:

Всі відмічені вершини даного графа є несуміжними. Потужність відмічених несуміжних множини вершин є максимальною. Тому число внутрішньої стійкості для даного графа дорівнює 3.

Число зовнішньої стійкості

Нехай даний граф $G\big(V,\Gamma\big)$. Говорять, що множина вершин $T\subset V$ зовні стійка, якщо для кожної вершини $v\not\in T$ маємо $\Gamma^+\big(v\big)\cap T\neq\varnothing$, інакше кажучи $V\setminus T\subset \Gamma^{-1}\big(T\big)$.

Якщо Ψ – сімейство всіх зовні стійких множин графа, то для нього слушні такі співвідношення:

- 1. $T \in \Psi$.
- 2. Якщо $T\subset A$, то $A\in\Psi$.

Визначення

Число *зовнішньої стійкості* b графа G є величина, яку одержують з виразу:

$$b = \min_{T \in \Psi} |T|.$$

Зовні стійка множина — множина вершин Т таких, що будьяка вершина графа або належить Т або суміжна з вершиною з Т.

Приклад 9. Для представленого графа найменша множина зовнішньої стійкості має вигляд $T = \{v_1\}$ (тому що будь-яка інша вершина (не приналежна T) з'єднана з вершиною v_1 з T).

Число зовнішньої стійкості графа G рівно b=1 .

Приклад 10. Знайти число зовнішньої стійкості для графа.

Відмічені вершини утворюють множину суміжних вершин з усіма вершинами графа. Потужність цієї множини мінімальна. Тому вона дорівнює числу зовнішньої стійкості графа.