

университет итмо Полупроводниковые приборы – биполярные транзисторы.

Николаев Николай Анатольевич nikolay.a.nikolaev@gmail.com

Темы, освещенные в презентации

- Основные сведения
- Осхема включения с общим эмиттером
- Осхема включения с общей базой

ITSMOre than a UNIVERSITY

Классификация транзисторов

Транзистор — это полупроводниковый прибор, функционирующий как управляемый электричеством переключатель или усилитель.

Система обозначений транзисторов

В системе обозначений используется буквенно-цифровой шифр, который состоит из 5 элементов:

1 элемент системы обозначает исходный материал, на основе которого изготовлен транзистор и его содержание не отличается от системы обозначения диодов, то есть:

```
Гили 1 — германий,
```

К или 2 — кремний,

А или 3 — арсенид галлия,

И или 4 — индий.

- **2 элемент** буква Т (биполярный) или П (полевой).
- **3 элемент** цифра, указывающая на функциональные возможности транзистора по допустимой рассеиваемой мощности и частотным свойствам.

Транзисторы малой мощности, Pmax < 0,3 BT:

- 1 маломощный низкочастотный, Гф< 3 МГц;
- 2 маломощный среднечастотный, 3 < frp< 30 МГц;
- 3 маломощный высокочастотный, 30 < frp< 300 МГц.

Транзисторы средней мощности, 0,3 < Pmax <1,5 BT:

- 4 средней мощности низкочастотный;
- 5 средней мощности среднечастотный;
- 6 средней мощности высокочастотный.

Транзисторы большой мощности, Pmax >1,5 Bт:

- 7 большой мощности низкочастотный;
- 8 большой мощности среднечастотный;
- 9 большой мощности высокочастотный и сверхвысокочастотный (frp > 300 Гц).
- **4 элемент** цифры от 01 до 99, указывающие порядковый номер разработки.
- **5 элемент** одна из букв от A до Я, обозначающая деление технологического типа приборов на группы. Например, КТ540Б кремниевый транзистор средней мощности среднечастотный, номер разработки 40, группа Б.

Определение биполярного транзистора

Биполярный транзистор представляет собой трехслойную полупроводниковую структуру с чередующимися типом электропроводности слоев и содержит два p-n перехода.

В зависимости от чередования слоев существуют транзисторы типов p-n-p и n-p-n. Их условное обозначение на электронных схемах показано на рисунке:

(a) n-p-n — тип, б) p-n-р — тип.

Транзистор — это полупроводниковый прибор с тремя выводами, способный усиливать, переключать и управлять сигналами.

Конструкция биполярного транзистора

Основой конструкции биполярного транзистора является пластина монокристалла полупроводника с электропроводностью р — или n — типа, по обеим сторонам которого вплавлены полупроводники, обладающие другим типом электропроводности. На границе раздела областей с разным типом электропроводности образуются p-n или n-p переходы. Каждая из областей, называемых эмиттером, коллектором и базой, снабжены омическим контактом, от которого делается вывод, обозначаемый Э, К и Б соответственно. Стрелкой показано направление движения дырок.

Из трех областей транзистора наибольший размер у коллектора (база узкая (тонкая), размер эмиттера меньше чем коллектора, но больше размера базы.

Правила, которым подчиняется транзистор

Транзисторы n-p-n типа подчиняется следующим правилам (для транзисторов p-n-p типа правила сохраняются, но следует учесть, что полярности напряжений должны быть изменены на противоположные):

- ♥ Коллектор имеет более положительный потенциал чем эмиттер
- ✓ Цепи база-эмиттер и база-коллектор работают как диоды. Обычно диод база-эмиттер открыт, а диод база-коллектор смещен в обратном направлении
- ▼ Каждый транзистор характеризуется максимальными значениями I_K, I_Б, U_{КЭ}. За превышение этих значений приходится расплачиваться новым транзистором. Следует помнить и о предельных значениях других параметров, например рассеиваемой мощности и др.
- Если правила 1-3 соблюдены, то ток I_к прямо пропорционален току I_Б, и можно записать следующее соотношение:
 I_K =βI_Б, где β- коэффициент усиления по току.

Потенциальные барьеры, созданные в транзисторе своеобразным размещением электронов, дырок, положительных ионов (доноров) и отрицательных ионов (акцерторов).

Наиболее распространенные схемы включения:

- 1. Оба перехода смещены в прямом направлении.
- 2. Оба перехода смещены в обратном направлении.
- 3. Эмиттерный переход смещен прямо, коллекторный переход смещен обратно.

Смещенный транзистор

Транзистор с двумя прямо смещенными переходами.

В прямо смещенном эмиттерном переходе снижается потенциальный барьер рп перехода и большой поток электронов из сильно легированного эмиттера диффундирует в базу, в эмиттерной цепи большой эмиттерный ток представляет собой поток, главным образом, электронов.

Аналогично в прямо смещенном коллекторном переходе, большой коллекторный ток состоит в основном из электронов, поступающих в базу из коллектора.

При таком смещении высокие токи текут как в эмиттерной, так и в коллекторной цепях, причем они практически не зависят друг от друга.

Для усиления такая схема смещения p-n переходов неприемлема.

Смещенный транзистор

Транзистор с двумя обратно смещенными переходами.

Эмиттерный переход смещен обратно, чрезвычайно малый ток течет через переход (аналогично диодам). Этот температурно-зависимый «обратный ток насыщения» определяется дрейфующими под воздействием поля носителями заряда, образованными за счет тепловой энергии.

Для перехода коллектор-база ситуация аналогичная.

При обратно смещенных переходах основные носители зарядов тока не создают.

Особенности токов при обратно смещенных переходах:

- 1. Токи имеют низкую величину (мкА), создаются неосновными носителями зарядов.
- 2. Направление токов противоположно направлению токов прямо смещенного транзистора.
- 3. Токи коллектора и эмиттера практически независимы.
- 4. Токи неосновных носителей заряда зависят от температуры (увеличиваются в 2 раза при изменении температуры на 10 градусов).
- 5. Эти неосновные токи практически не зависят от величины приложенного напряжения.

Работа биполярного транзистора как усилителя

Транзистор с двумя прямо смещенными и с двумя обратно смещенными переходами представляет состояния ВКЛЮЧЕНО и ВЫКЛЮЧЕНО, такие режимы работы характерны для цифровых (ключевых схем).

При правильно приложенном напряжении смещения эмиттерный переход транзистора смещен в прямом направлении, а коллекторный переход — в обратном. Смещение в прямом направлении заставляет электроны течь с эмиттера n-p-n транзистора. Прямое смещение — это положительное напряжение на выводе базы по отношению к эмиттеру. Положительный потенциал базы притягивает электроны, создавая поток электронов из эмиттера. На электроны, притянутые базой, начинает влиять положительный

потенциал, приложенный к коллектору.

Большинство электронов притягивается к коллектору и к положительному выводу источника тока, создающего обратное смещение. Небольшая часть электронов поглощается областью базы и поддерживает небольшой ток электронов от базы, область базы при этом должна быть предельно тонкой.

Транзистор структуры n-p-n

Транзистор структуры р-n-р

В отличие от транзистора структуры n-p-n, где к базе д.б. приложен положительный потенциал относительно эмиттера, в транзисторе структуры p-n-p к базе д.б. приложен отрицательный потенциал относительно эмиттера.

Водяная модель биполярного транзистора

Прямосмещенный p-n - переход

$$I_E = I_e + I_h$$
 (суммарный (электронная составляющая) составляющая) составляющая

$$I_C = \alpha I_E + I_{CBO}$$

 I_{CBO} - обратный ток коллектора

Практически всегда справедливо:

$$I_E = I_C + I_B$$

В схемах устройств n-p-n транзисторы используются намного шире, чем p-n-p, поскольку их производство было изначально легче и дешевле, а так же они обеспечивают более быстрое переключение, т.е. электроны обладают большей подвижностью чем дырки.

В чем различия эмиттера и коллектора?

В транзисторе p-n-p они оба типа p, а в транзисторе n-p-n они оба типа n. Не свидетельствует ли это о их взаимозаменяемости?

Ток, идущий от эмиттера к базе, а затем к коллектору, имеет примерно одну и туже величину, чего нельзя сказать о напряжениях.

Напряжение между базой и эмиттером не велико, а между базой и коллектором оно значительно выше.

Следовательно мощность, рассеиваемая со стороны коллектора во много раз больше мощности, рассеиваемой со стороны эмиттера.

Коллектор должен отводить значительно больше тепла, соответственно должен иметь большую площадь.

Режимы работы биполярного транзистора

В зависимости от смещения, созданного на эмиттерном и коллекторном *p-n* переходах, транзистор может работать в трех режимах. Если один переход смещен в прямом направлении, а другой — в обратном, режим называется *активным* (рисунок а). Если в прямом направлении включен эмиттерный переход, а коллекторный — в обратном, такое включение называется *нормальным* (рисунок б). Если смещение на *p-n* переходах противоположное, включение называют *инверсным* (рисунок в). В последнем случае коллектор выполняет роль эмиттера, а эмиттер — коллектора. Когда оба перехода смещены в обратном направлении — режим *отсечки*.

Конфигурация схем биполярного транзистора

В зависимости от того, как к транзистору подключены входные и выходные сигналы различают три схемы включения:

- с общей базой (ОБ) а)
- с общим эмиттером (ОЭ) б)
- с общим коллектором (ОК) в).

Схема включения транзистора с общим эмиттером

Между базой и эмиттером транзистора, включенного по схеме с общим эмиттером (ОЭ), подсоединяют источник сигнала, а к коллектору — нагрузку.

К эмиттеру транзистора подключают полюсы одинаковых знаков источников питания. Входным током каскада выступает ток базы транзистора, а выходным током — ток коллектора.

Это показано на рисунках, сверху схема включения p-n-p транзистора с OЭ, снизу схема включения n-p-n транзистора с OЭ.

Схема включения транзистора с общим коллектором

К эмиттеру транзистора, включенного по схеме с общим коллектором (ОК), подсоединяют нагрузку, на базу подают входной сигнал.

Входным током каскада является ток базы транзистора, а выходным током — ток эмиттера.

На рисунке показана схема включения p-n-p транзистора с OK.

Схема включения транзистора с общей базой

В каскаде, собранном по схеме с общей базой (ОБ), напряжение входного сигнала подают между эмиттером и базой транзистора, а выходное напряжение снимают с выводов коллекторбаза.

Включение транзистора p-nр структуры по схеме с общей базой приведено на рисунке.

Коэффициенты передачи по току транзистора

Коэффициент передачи по току α есть отношение выходного тока ко входному.

В схеме с общей базой входным током является ток эмиттера, а выходным – ток коллектора, т.о. коэффициент передачи по току:

$$lpha = rac{I_C}{I_E}$$
 или в линейном режиме для малых приращений $lpha = rac{\Delta I_C}{\Delta I_E}$

Т.к. коллекторный ток чуть меньше эмиттерного, то коэффициент передачи по току α близок к единице (всегда меньше единицы).

Входным током для транзистора, включенного по схеме ОЭ является ток базы, а выходным – ток коллектора, т.о.

$$eta = rac{I_C}{I_B}$$
 или в линейном режиме для малых приращений $eta = rac{\Delta I_C}{\Delta I_B}$

$$\beta = \frac{\Delta I_C}{\Delta I_B}$$

Связь между коэффициентами передачи:

$$I_E = I_C + I_B$$
 или $I_B = I_E - I_C$, а для малых приращений $\Delta I_B = \Delta I_E - \Delta I_C$

Так как
$$\Delta I_E=\Delta I_C/\alpha$$
 , то
$$\Delta I_B=(\Delta I_C/\alpha)-\Delta I_C \ \Rightarrow \ \frac{\Delta I_C}{\Delta I_B}=\frac{\alpha}{1-\alpha}$$

Следовательно
$$\beta = \frac{\alpha}{(1-\alpha)}$$
 или $\beta pprox \frac{1}{(1-\alpha)}$

Токи транзистора и их взаимоотношение

Статические характеристики биполярного транзистора

На рисунках приведены типовые входные и выходные статические характеристики кремниевого биполярного транзистора для схемы включения с общим эмиттером.

Входная статическая характеристика — зависимость тока базы от напряжения между базой и эмиттером при неизменном напряжении между коллектором и эмиттером.

Выходная статическая характеристика — зависимость тока коллектора от напряжения между коллектором и эмиттером при фиксированном токе базы.

Статические характеристики биполярного транзистора

Схема для снятия характеристик транзистора

$$S = \frac{\Delta I_K}{\Delta U_E}$$

Крутизна транзистора S — является непостоянной Величиной (зависит от напряжения)

Зависимость тока коллектора от тока базы

Кривые, показывающие изменение тока коллектора от тока базы, чаще всего приближаются к прямой линии.

Эти кривые позволяют определить коэффициент усиления по току β , который показывает во сколько раз изменения тока коллектора больше изменений тока базы.

$$\beta = \frac{\Delta I_K}{\Delta I_{\rm B}}$$

При увеличении тока базы с 0,5 до 1 мА (точки А и Б), ток коллектора увеличивается с 70 до 97,5 мА, следовательно изменению тока базы на 0,5 мА соответствует изменение тока коллектора на 27,5 мА. Следовательно коэффициент передачи по току

$$\beta = \frac{\Delta I_K}{\Delta I_E} = \frac{27.5}{0.5} = 55$$

Входное сопротивление транзистора

$$R_{\rm BX} = \frac{\Delta U_{\rm B}}{\Delta I_{\rm B}}$$

Связь крутизны, входного сопротивления и коэффициента усиления

$$S \times R_{\rm BX} = \frac{\Delta I_K}{\Delta U_{\rm E}} \times \frac{\Delta U_{\rm E}}{\Delta I_{\rm E}} = \beta$$

Семейство характеристик (кривых), показывающих зависимость тока коллектора от напряжения коллектора при различных значениях напряжения базы (тока базы)

$$R_{
m BHX} = rac{\Delta U_{
m K}}{\Delta I_{
m K}}$$

Динамические характеристики биполярного транзистора

Схема для снятия динамический характеристик транзистора

$$E_K = 9 B$$
 $R_H = 275 \text{ Om}$

$$I_K = 0 U_K = 9 B$$

$$I_K = \frac{E_{K-9}}{R_{\rm H}} = \frac{9}{275} = 32,5 \text{ mA}$$

А-В — нагрузочная прямая

Применение транзистора в качестве усилителя

Батареи $E_{K-\Im}$ и $E_{B-\Im}$ задают рабочую точку транзистора

Отличие статических и динамических характеристик: -статические характеристики показывают как изменяются напряжения и токи при отсутствии в цепи коллектора нагрузки;

- динамические показывает как ведут себя токи и напряжения при наличии сопротивления в цепи коллектора, а также при наличии входного сигнала.

P – рабочая точка транзистора (U=5 B)

Колебания выходного напряжения происходят между точками В и Г.

Пусть Uвх=20 мВ, создающее изменение тока базы амплитудой 1 мА.

Амплитуда выходного напряжения (для RH=275 Om) составляет 1,8 B.

Т.о. коэффициент усиления по напряжению 1,8:0,02=90 раз.

Амплитуда выходного тока (для Rн=275 Ом) составляет 7 мА.

Т.о. коэффициент усиления по току 7:0,1=70 раз.

Коэффициент усиления по мощности 90x70=6300 раз

ВАХ биполярного транзистора

ВАХ Транзистора (схема ОБ)

ВАХ Транзистора (схема ОЭ)

Производство транзисторов

1. Выращивание перехода или компенсационный метод.

Кристаллы выращиваются из расплава германия или кремния. В определенные интервалы времени в расплав вводятся донорные и акцепторные примеси. Выращенный т.о. (метод вытягивания) кристалл содержит несколько примыкающих друг к другу n- и p- областей. Изменение проводимости полупроводника добавлением соответствующих примесей известно как компенсационный метод.

2. Технология сплавления.

Берется слаболегированная кремниевая пластина р-типа. Несколько маленьких гранул донора (например сурьмы), кладутся на пластину с определенными промежутками. Пластина нагревается выше температуры плавления сурьмы, но ниже температуры

плавления пластины. Сурьма плавится и полупроводник под ней растворяется . При охлаждении полупроводник рекристаллизуется и образуется эмиттер n-типа. Коллектор организуется аналогичным образом с использованием более крупных гранул. После пластина разрезается ультразвуком, получается большое число транзисторов.

3. Диффузионная технология.

Для образования p- и n- областей используется диффузия при повышенной температуре донорных и акцепторных примесей в газообразном виде.

Основные сведения (резюме):

- 1. Транзистор состоит из трех зон-областей: эмиттер, коллектор, база, содержащие примеси, придающие эмиттеру и коллектору свойства, противоположные свойствам базы.
 - 2. Существует два типа биполярных транзисторов p-n-p и n-p-n.
- 3. В транзисторе p-n-p базе сообщают отрицательный по отношению к эмиттеру потенциал, а коллектору еще более отрицательный чем базе.
- 4. В транзисторе n-p-n база д.б. положительной по отношению к эмиттеру, а коллектор еще более положительным, чем база.
- 5. В обоих случаях приложенные напряжения питают переход эмиттер-база в прямом направлении.
- 6. Ток базы имеет очень маленькую величину, ток коллектора значительно больше.
- 7. Малое изменение тока базы вызывает сильное изменение тока коллектора. Отношение тока коллектора к току базы называется коэффициентом усиления по току.
- 8. Вход транзистора (база-эмиттер) имеет относительно небольшое сопротивление.
- 9. Выход транзистора (коллектор-эмиттер) отличается высоким сопротивлением.

- 10. Изменение напряжения, приложенного между базой и эмиттером, определяет изменение тока базы, а это изменение, в свою очередь, вызывает большое изменение тока коллектора. Если в цепь коллектора включен нагрузочный резистор, то на нем можно выделить усиленное напряжение.
- 11. В связи с тем, что подвижность электронов выше, чем дырок, на высоких частотах транзисторы n-p-n имеют преимущество над p-n-p.
 - 12. Из трех областей наиболее сильно легирован эмиттер, слабее всех база.
 - 13. Существует три схемы включения биполярного транзистора (ОЭ, ОК и ОБ)
- 14. Схема с ОЭ имеет наилучшие характеристики (среднее и высокое входное сопротивление, большой коэффициент усиления по току и напряжению), применяется наиболее часто.
 - 15. Базовый ток по величине на 2-3 порядка меньше тока эмиттера.
 - 16. Транзистор в логических схемах применяется как ключ.

n-p-n - транзистор

р-п-р - транзистор

Задача

В схеме на рис. $U_{\text{пит}}=+20$ В, $U_{\text{Б}}=5,6$ В, $R_{\text{I}}=4,7$ кОм, $R_{\text{2}}=3,3$ кОм и $h_{f9}=100$. Определить U_{3} , I_{5} , I_{K} и U_{K} .

Контрольные вопросы

- 1. Дать определение биполярному транзистору.
- 2. Что называется эмиттером, коллектором, базой транзистора?
- 3. Какой из р п-переходов транзистора обычно имеет большую площадь?
- 4. Почему коэффициент передачи тока эмиттера меньше единицы?
- 5. Почему коэффициент передачи тока базы больше единицы?
- 6. В какой из областей транзистора больше атомов примеси?
- 7. Что такое режим отсечки, насыщения, активный?
- 8. В чем разница между коэффициентами передачи α и β?
- 9. Чему равен коэффициент передачи β относительно α?
- 10. Какие сочетания прямого и обратного смещения эмиттерного и коллекторного перехода применяются для усилительных и переключающих схем?

Список использованных источников

- 1. Платт Ч. Энциклопедия электронных компонентов. Том 1. Резисторы, конденсаторы, катушки индуктивности, переключатели, преобразователи, реле, транзисторы: Пер. с англ. СПб.: БХВ-Петербург, 2017. 352 с.: ил.
- 2. Электроника. Теория и практика 4-е издание.: Пер. с англ. / Саймон Монк, Пауль Шерц. СПб.: БХВ-Петербург, 2018. 1168 с.: ил.

Спасибо за внимание!

Николаев Николай Анатольевич nikolay.a.nikolaev@gmail.com