$x^2 + \frac{412}{27}x - \frac{436}{27} = (0)$	
For the correct $3TQ$. Must have $= 0$.	
$27x^2 + 412x - 436 = 0$	A1
Must have integer coefficients. Accept a multiple of this.	[6]
Total 14 mark	

Question	Scheme	Marks
9(a)	$ar^2 = \frac{27}{2}$	B1
	$a + ar + \frac{27}{2} = \frac{57}{2} \left(\Rightarrow a + ar = 15 \Rightarrow a \left(1 + r \right) = 15 \Rightarrow a = \frac{15}{1 + r} \right)$	M1
	$\left(\frac{15}{1+r}\right)r^2 = \frac{27}{2} \Rightarrow 30r^2 - 27r - 27 = 0 \Rightarrow \left(10r^2 - 9r - 9 = 0\right)$	M1
	ALT	B1
	$ar^{2} = \frac{27}{2}$ $\frac{57}{2} = \frac{a(r^{3}-1)}{r-1}$	M1
	$\frac{1}{2} = \frac{1}{r-1}$ $\frac{57}{2} = \frac{27}{2r^2} \times \frac{(r^3 - 1)}{r - 1} \Rightarrow 30r^3 - 57r^2 + 27 = 0$	M1
	$(\Rightarrow 10r^3 - 19r^2 + 9 = 0)$	
	r: $10r^2 - 9r - 9 = 0 \Rightarrow (5r + 3)(2r - 3) = 0 \Rightarrow r = \frac{3}{2}$	M1A1
	a: $a = \frac{15}{1 + \frac{3}{2}} = 6$	A1
	$S_n = \sum_{r=1}^n \left({}^{\prime} 6 {}^{\prime} \div \frac{3}{2} \right) \left(\frac{3}{2} \right)^r \Rightarrow S_n = \sum_{r=1}^n 4 \left(\frac{3}{2} \right)^r *$	M1A1 cso [8]
(b)	$\frac{6(1.5^k - 1)}{1.5 - 1} > 50 \ 000$	M1
	$1.5^k > \frac{12\ 503}{3} \Rightarrow \lg 1.5^k > \lg \frac{12\ 503}{3}$	M1
	$k > \frac{\lg \frac{12\ 503}{3}}{\lg \frac{3}{2}} \text{ or } k > \frac{\lg \frac{12\ 503}{3}}{\lg 1.5} *$	A1 [cso] [3]

(c)	For $k > 20.556$ so $k = 21$	[1]	
	Tot	otal 12 marks	

Question	Scheme	Marks
9(a)	For stating, $ar^2 = \frac{27}{2}$	D1
	<u></u>	B1
	For summing the first three terms;	M1
	$a + ar + \frac{27}{2} = \frac{57}{2} \left(\Rightarrow a + ar = 15 \Rightarrow a(1+r) = 15 \Rightarrow a = \frac{15}{1+r} \right)$	1V11
	OR	
	$\left \frac{57}{2} = \frac{a(r^3 - 1)}{r - 1} \right $	
	For attempting to form a 3TQ using their two expressions for	
	U_3 and S_3	
	$\left(\frac{15}{1+r}\right)r^2 = \frac{27}{2} \Rightarrow 30r^2 - 27r - 27 = 0 \Rightarrow \left(10r^2 - 9r - 9 = 0\right)$	M1
	OR	
	For attempting to form a cubic using their two expressions for	
	U_3 and S_3	
	$\frac{57}{2} = \frac{27}{2r^2} \times \frac{(r^3 - 1)}{r - 1} \Rightarrow 30r^3 - 57r^2 + 27 = 0$	
	For attempting to solve their 3TQ (see general guidance).	
	$10r^2 - 9r - 9 = 0 \Rightarrow (5r + 3)(2r - 3) = 0 \Rightarrow r =$	M1
	OR	
	If following the alt method then this mark is awarded for	
	factorising the cubic into a linear expression and a 3TQ and attempting to solve their 3TQ.	
	$(r-1)(10r^2 - 9r - 9) = 0 \Rightarrow (r-1)(5r+3)(2r-3) = 0$	
	$\Rightarrow r = \cdots$	
	For the correct value of $r = \frac{3}{2}$	A1
	For the correct value of $r = \frac{1}{2}$ For the correct value of $a = \frac{15}{1 + \frac{3}{2}} = 6$	
		A1
	For attempting to use their a and r to find the correct expression	
	for S_n	

		Ī
	$S_n = \sum_{r=1}^n \left('6' \div \frac{3}{2} \right) \left(\frac{3}{2} \right)^r \Longrightarrow S_n = \dots$	M1
	OR	
	For demonstrating that a particular value of r gives the correct	
	term in the sequence.	
	For the correct expression $S_n = \sum_{r=1}^n 4\left(\frac{3}{2}\right)^r *$	A1 cso
	OR	[8]
	For demonstrating that a particular value of r gives the correct	
	term in the sequence and commenting on a correct common ratio.	
(b)	For using the summation formula > 50 000	
	$\left \frac{6(1.5^k - 1)}{1.5 - 1} \right > 50 \ 000$	M1
	For rearranging the inequality to achieve,	
	$1.5^k > \frac{12\ 503}{3}$ and takes logs base 10 of both sides	M1
	$\lg 1.5^k > \lg \frac{12\ 503}{3}$	
	For using the laws of logs to make k the subject.	
	$\log \frac{12\ 503}{\log \log $	
	$k > \frac{15}{3}$ or $k > \frac{15}{3}$ *	A1
	For using the laws of logs to make k the subject. $k > \frac{\lg \frac{12 \ 503}{3}}{\lg \frac{3}{2}} \text{ or } k > \frac{\lg \frac{12 \ 503}{3}}{\lg 1.5} *$	cso
		[3]
(c)	For $k > 20.556 \Rightarrow k = 21$	B1
	m.4.1	[1]
	1 Otal	12 marks