Derivadas

Definição

Uma função $f: X \longrightarrow \mathbb{R}$ diz-se **derivável em** $x_0 \in X \cap X'$ se existe $d \in \mathbb{R}$ tal que $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = d$. Ao valor real d chama-se **derivada de f em** x_0 e escreve-se $f'(x_0) = d$ ou $Df(x_0) = d$.

Nota

Observe-se que, considerando h tal que $x_0 + h \in \mathsf{Dom}\,\mathsf{f}$, e fazendo a mudança de variável $x = x_0 + h$, obtemos que

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Dada uma função $f: X \longrightarrow \mathbb{R}$ derivável em $c \in X \cap X'$, a recta de equação y - f(c) = f'(c)(x - c) designa-se por recta tangente ao gráfico de f em (c, f(c)).

Definição

Dada uma função $f: X \longrightarrow \mathbb{R}$ derivável em $c \in X \cap X'$, chama-se recta normal ao gráfico de f em (c, f(c)) à recta perpendicular à recta tangente ao gráfico de f nesse ponto.

Uma função $f: X \longrightarrow \mathbb{R}$ diz-se **derivável** se f for derivável em todos os pontos de X.

A função
$$f': X \longrightarrow \mathbb{R}$$
 diz-se a função derivada de f . $x \longmapsto f'(x)$

Teorema

Sejam $f: X \longrightarrow \mathbb{R}$ uma função, $x_0 \in X \cap X'$. Se f é derivável em x_0 então f é contínua em x_0 .

Corolário

Seja $f: X \longrightarrow \mathbb{R}$ uma função derivável. Então f é contínua.

Uma função $f:X\longrightarrow \mathbb{R}$ diz-se

- ▶ derivável à direita em $x_0 \in X \cap X'_+$ se existe $d \in \mathbb{R}$ tal que $\lim_{x \to x_0^+} \frac{f(x) f(x_0)}{x x_0} = d. \text{ Ao valor real } d \text{ chama-se derivada à direita de f em } x_0 \text{ e escreve-se } f'(x_0^+) = d;$
- ▶ derivável à esquerda em $x_0 \in X \cap X'_-$ se existe $d \in \mathbb{R}$ tal que $\lim_{x \to x_0^-} \frac{f(x) f(x_0)}{x x_0} = d$. Ao valor real d chama-se derivada à esquerda de f em x_0 e escreve-se $f'(x_0^-) = d$.

Proposição

Sejam $f: X \longrightarrow \mathbb{R}$ uma função, $x_0 \in X \cap X'_+ \cap X'_-$. Então

Sejam
$$f:X\longrightarrow \mathbb{R}$$
 uma função, $x_0\in X\cap X_+\cap X_-$. Entace

existem $f'(x_0^+)$ e $f'(x_0^-)$

$$f$$
 derivável em x_0 \iff $existem \ f'(x_0^+) \ e \ f'(x_0^-) \ e$ $f'(x_0^+) = f'(x_0^-).$

Regras de derivação

Proposição

Sejam $f, g: X \longrightarrow \mathbb{R}$ funções deriváveis em $x_0 \in X \cap X'$. Então:

1. f+g é derivável em x_0 e

$$(f+g)'(x_0) = f'(x_0) + g'(x_0);$$

2. dado $\lambda \in \mathbb{R}$, λf é derivável em x_0 e

$$(\lambda f)'(x_0) = \lambda f'(x_0);$$

3. fg é derivável em x_0 e

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0);$$

4. se $g(x_0) \neq 0$ então $\frac{f}{g}$ é derivável em x_0 e

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}.$$

Teorema

Sejam X, Y subconjuntos de \mathbb{R} , $f: X \longrightarrow Y$, $g: Y \longrightarrow \mathbb{R}$ funções, $c \in X \cap X'$, $f(c) \in Y'$. Suponhamos que f é derivável em c e que g é derivável em f(c). Então $g \circ f$ é derivável em c e

$$(g \circ f)'(c) = g'(f(c))f'(c).$$

Teorema

Sejam X e Y subconjuntos não vazios de \mathbb{R} , $f: X \longrightarrow Y$ uma função bijectiva e suponhamos que:

- 1. f é derivável em $c \in X \cap X'$;
- 2. $f'(c) \neq 0$;
- 3. f^{-1} é contínua em f(c).

Então f^{-1} é derivável em f(c). Além disso,

$$(f^{-1})'(f(c)) = \frac{1}{f'(c)}.$$

Alguns teoremas envolvendo derivadas

Teorema

Seja $f:X\longrightarrow \mathbb{R}$ uma função derivável em $c\in X\cap X'$ e tal que $f'(c)\neq 0$. Então ,

$$f'(c) > 0 \Longrightarrow \exists \delta > 0 \,\forall x \in X \cap]c - \delta, c[\,\forall y \in X \cap]c, c + \delta[\quad f(x) < f(c) < f(y),$$

$$f'(c) < 0 \Longrightarrow \exists \delta > 0 \,\forall x \in X \cap]c - \delta, c[\,\forall y \in X \cap]c, c + \delta[\quad f(x) > f(c) > f(y).$$

Teorema

Seja $f: X \longrightarrow \mathbb{R}$ uma função derivável em $c \in X \cap X'$. Se c é um ponto de extremo de f então f'(c) = 0.

Teorema (de Rolle)

Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função contínua, derivável em]a,b[e tal que f(a)=f(b). Então existe $c\in]a,b[$ tal que f'(c)=0.

Teorema (de Lagrange)

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua, derivável em]a,b[. Então

 $\exists c \in [a, b]$ f(b) - f(a) = f'(c)(b - a).

Corolário

Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função contínua, derivável em]a,b[. Se f'(x)=0 para todo o $x\in]a,b[$ então f é constante.

Corolário

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função contínua, derivável em]a,b[.

- 1. Se f'(x) > 0 para todo o $x \in]a,b[$ então f é estritamente crescente.
- 2. Se f'(x) < 0 para todo o $x \in]a,b[$ então f é estritamente decrescente.

Teorema (de Cauchy)

Sejam $f,g:[a,b] \longrightarrow \mathbb{R}$ funções contínuas, deriváveis em]a,b[. Então

$$\exists c \in]a, b[$$
 $[f(b) - f(a)] g'(c) = [g(b) - g(a)] f'(c).$

Teorema (de Darboux)

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função derivável. Então

f'([a,b]) contém o intervalo fechado de extremos f'(a) e f'(b).

Corolário

Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função derivável tal que f'(a)f'(b) < 0. Então existe $c \in]a,b[$ tal que f'(c) = 0.

Corolário

Sejam I um intervalo de \mathbb{R} e $f:I\longrightarrow \mathbb{R}$ uma função derivável. Então f'(I) é um intervalo.

Teorema (Regra de l'Hôpital)

Sejam a,b números reais, a< b, $f,g:]a,b [\longrightarrow \mathbb{R}$ funções deriváveis. Seja $c\in \{a,b\}$ e suponhamos que

$$\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = 0 \text{ e que existe } \lim_{x \to c} \frac{f'(x)}{g'(x)}.$$

Então existe
$$\lim_{x\to c}\frac{f(x)}{g(x)} \qquad \text{e} \qquad \lim_{x\to c}\frac{f(x)}{g(x)}=\lim_{x\to c}\frac{f'(x)}{g'(x)}.$$

Nota

A Regra de l'Hôpital é também válida:

- 1. quando se calcula o limite quando $x \to +\infty$ ou quando $x \to -\infty$;
- 2. considerando, no teorema anterior,

$$\lim_{x \to c} f(x) = \lim_{x \to c} g(x) = +\infty \quad \text{ou} \quad \lim_{x \to c} f(x) = \lim_{x \to c} g(x) = -\infty$$

$$e \text{ tomando } c \in \mathbb{R} \cup \{-\infty, +\infty\}.$$

Derivadas de ordem superior

Definição

Sejam $f: X \longrightarrow \mathbb{R}$ uma função e $c \in X' \cap X$. Diz-se que f é duas vezes derivável em c, ou que f tem derivada de $\mathbf{2}^{\underline{a}}$ ordem em c ou que f tem segunda derivada em c se

$$\exists\,\delta>0\,\ g=f'_{|X\cap]c-\delta,c+\delta[}\,\ \text{\'e deriv\'avel em }c.$$

Representa-se a segunda derivada de f em c por

$$f''(c)$$
 ou $f^{(2)}(c)$ ou $D^2 f(c)$.

Diz-se que f tem derivada de $2^{\underline{a}}$ ordem se f é duas vezes derivável em qualquer ponto do seu domínio (note-se que, em particular, temos que $X \subseteq X'$).

À função
$$f'': X \longrightarrow \mathbb{R}$$
 chama-se função segunda $x \longmapsto f''(x)$

derivada de f.

Nota

Indutivamente define-se derivada de ordem n de f em c e a função derivada de ordem n de f.

Denota-se a derivada de f de ordem n por $f^{(n)}$ ou $D^n f$. Convenciona-se que $f^{(0)} = f$.

Teorema

Seja $f: X \longrightarrow \mathbb{R}$ uma função que admite segunda derivada em $c \in X \cap X'$. Suponhamos que f'(c) = 0. Então, se f''(c) > 0, c é um ponto de mínimo local de f e se f''(c) < 0, c é um ponto de máximo local de f.

Seja X um subconjunto não vazio de $\mathbb R$ tal que $X\subseteq X'$. Dado $k\in\mathbb N_0$, chama-se conjunto das funções de X em $\mathbb R$ deriváveis até à ordem k ao conjunto

$$\mathscr{D}^k(X) = \{ f : X \longrightarrow \mathbb{R} : f \notin k \text{ vezes derivável em } X \}.$$

Chama-se conjunto das funções de X em $\mathbb R$ indefinidamente deriváveis ao conjunto

$$\mathscr{D}^{\infty}(X) = \{f: X \longrightarrow \mathbb{R}: f \text{ admite derivada de qualquer ordem em } X\}$$

Definição

Seja X um subconjunto não vazio de $\mathbb R$ tal que $X\subseteq X'$. Dado $k\in\mathbb N_0$, chama-se conjunto das funções de classe $\mathscr C^k$ de X em $\mathbb R$ ao conjunto

$$\mathscr{C}^k(X) = \{f: X \longrightarrow \mathbb{R}: f \text{ \'e } k \text{ vezes deriv\'avel em } X \text{ e } f^{(k)} \text{ \'e contínua} \}$$

Chama-se conjunto das funções de classe \mathscr{C}^{∞} de X em $\mathbb R$

Teorema

Seja I um intervalo não degenerado de $\mathbb R$. Então

$$\mathscr{D}^{0}(I) \supseteq \mathscr{C}^{0}(I) \supseteq \mathscr{D}^{1}(I) \supseteq \mathscr{C}^{1}(I) \supseteq \cdots$$
$$\cdots \supseteq \mathscr{D}^{n}(I) \supseteq \mathscr{C}^{n}(I) \supseteq \cdots \supseteq \mathscr{D}^{\infty}(I) = \mathscr{C}^{\infty}(I),$$

sendo as inclusões estritas.