Домашняя работа 1 (на 26.02).

Минимальный необходимый балл 8.

СОМВ 1. (1,5 балла) Пусть G есть простой связный граф, в котором $\delta(G) \ge n-2$, где n — количество вершин в графе. Доказать, что в этом случае $\kappa(G) = \delta(G)$. Предъявить для любого n > 3 граф с $\delta(G) = n-3$, у которого $\kappa(G) < \delta(G)$.

СОМВ 2. (1,5 балла) Пусть G есть простой связный граф, в котором $\delta(G) \ge (n+k-2)/2$, где n — количество вершин в графе, $n \ge k+1$. Доказать, что в этом случае G является k-связным графом, то есть что $\kappa(G) \ge k$.

СОМВ 3. (2 балла) Пусть S есть произвольное подмножество множества V(G) вершин простого связного графа G. Показать, что количество $\partial(S)$ ребер в реберном разрезе $\partial(S)$ рассчитывается по формуле

$$|\partial(S)| = \sum_{x \in S} \deg(x) - 2|E(G[S])|,\tag{1}$$

где G[S] — подграф, индуцированный подмножеством S. С использованием этого равенства доказать, что граф Петерсена является трехсвязным графом.

СОМВ 4.] (1,5 балла) С использованием равенства (1) доказать, что в графе Петерсена любой реберный разрез $\partial(S)$ мощности $|\partial(S)| = 3$ соответствует случаю |S| = 1.

COMB 5. (1,5 балла) Пусть G есть произвольный простой граф, S — произвольное собственное подмножество множества V(G) вершин этого графа. Используя равенство (1), показать, что в случае $|\partial(S)| < \delta(G)$ мощность |S| подмножества S строго больше $\delta(G)$.

[COMB 6.] (2,5 балла) Пусть G есть простой связный граф, диаметр которого равен двум, а $[S, \bar{S}], |S| \leq |\bar{S}|,$ — минимальный реберный разрез в этом графе. Доказать, что любая вершина $x \in S$ имеет хотя бы одну смежную с ней вершину $y \in \bar{S}$. Используя этот факт, показать, что в таком графе $\lambda(G) = \delta(G)$.

COMB 7. (1 балл) Сильной ориентацией неориентированного графа назовем такой выбор направления для каждого из его ребер, что в результате этой операции получившийся ориентированный граф будет состоять из одной компоненты сильной связности. Доказать, что связный граф G допускает сильную ориентацию тогда и только тогда, когда он реберно двусвязен, то есть тогда и только тогда в G отсутствуют мосты (Robbins, 1939).

СОМВ 8. (1 балл) Доказать, что простой граф G, построенный на трех или более вершинах, двусвязен тогда и только тогда, когда для любой тройки различных вершин (x,y,z) в G есть простой путь из x в z, проходящий через y.