MATH 240 Lecture 1.7 Matrix Operations

Alexander Ng

September 18, 2024

1 Matrix Operations

Let A be an $m \times n$ matrix, where m is the number of rows and n is the number of columns. The notation a_{ij} refers to the entry of the matrix A in row i and column j.

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & a_{ij} & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

1.1 Definitions

Let A, B be $m \times n$ matrices over \mathbb{R} , and $r \in \mathbb{R}$.

Define

Matrix addition:

$$C = A + B$$
 is defined as $c_{ij} = a_{ij} + b_{ij}$

Matrix subtraction:

$$D = A - B$$
 is defined as $d_{ij} = a_{ij} - b_{ij}$

Scalar multiplication:

$$E = rA$$
 is defined as $e_{ij} = r \cdot a_{ij}$

In each of these cases, you just apply the corresponding operation to each entry component-wise.

1.1.1 Properties

Properties of matrix addition and scalar multiplication.

These are the same as the properties of vector addition and scalar multiplication.

**Matrix addition is identical to vector addition

1.2 Matrix Multiplication $C = A \cdot B$

Definition:

Let
$$B = \begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ b_1 & b_2 & \dots & b_n \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$
. $A \cdot B = \begin{bmatrix} Ab_1 & Ab_2 & \dots & Ab_n \end{bmatrix}$

Example:

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 8 & 10 \\ 16 & 20 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 3+5=8 \\ 6+10=16 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 4+6=10 \\ 8+12=20 \end{bmatrix}$$

1.2.1 Shortcut: The Row Column Rule for computing $A \cdot B$

For any $C = A \cdot B$, we can shortcut the computation by computing the dot product of each row of A with it's corresponding column of B.

Notice, in general, $A \cdot B \neq B \cdot A$. Matrix multiplication is not commutative.

The matrices don't have to be square.

1.2.2 Example

Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$$

Let $B = \begin{bmatrix} 1 & 1 \\ 2 & 1 \\ 3 & 1 \end{bmatrix}$

In order to compute $A \cdot B$, the number of columns of A must equal the number of rows of B. A must be an $m \times n$ matrix, and B must be an $n \times p$ matrix. C becomes an $m \times p$ matrix.

Suppose we have two linear transformations $T_1(x) = Ax$ and $T_2(x) = Bx$.

Let
$$T_3(x) = T_1(T_2(x)) = T_1(Bx) = ABx$$
.

Is $T_3(x)$ also a linear transformation? Yes.

Check: (The following properties must hold for $T_3(x)$ to be a linear transformation)

1.
$$T_3(x+y) = T_3(x) + T_3(y)$$

$$A(B(x+y)) = A(Bx+By) = A(Bx) + A(By) = T_1(T_2(x)) + T_1(T_2(y)) = T_3(x) + T_3(y)$$

2.
$$T_3(cx) = cT_3(x)$$

 T_3 's standard matrix is going to be AB.

Thm.
$$A(Bx) = (AB)x$$