

Estática y Dinámica: Interrogación 3.

Facultad de Física Facultad de Ingeniería

Jueves 6 de Octubre de 2016

Nombre:	#Alumno:	Rut:

Instrucciones:

- Tiene 150 minutos para resolver los siguientes problemas.
- Marque en un círculo solo la alternativa que considere correcta en la hoja de respuesta.
- Todos los problemas tienen el mismo peso en la nota final.
- Las respuestas incorrectas descuentan 1/4 de pregunta correcta.
- No está permitido utilizar calculadora ni teléfono celular.

Tabla de momentos de inercia.

¡No usar ningún aparato electrónico ni apuntes!

Enunciado para problemas 1-4:

Considere el péndulo mostrado en la figura, contenido en un plano vertical y pivotado en el punto P respecto al cual puede girar libremente. El péndulo está compuesto de una barra de largo L, masa M y dos discos de radio R y masa M.

Figura 1: Problemas 1-4

Problema 1: Determine el momento de inercia (I_P) del péndulo respecto a un eje perpendicular al plano de la figura y que pasa por el punto P.

a)
$$I_P = \frac{19}{48}ML^2 + \frac{3}{2}MR^2 + MLR$$

b)
$$I_P = \frac{37}{48}ML^2 + 3MR^2 + 2MLR$$

c)
$$I_P = \frac{19}{48}ML^2 + 3MR^2 + 2MLR$$

d)
$$I_P = \frac{37}{48}ML^2 + 2MR^2 + \frac{3}{2}MLR$$

Problema 2: Determine el módulo de la velocidad angular (ω) que adquiere el péndulo cuando pasa por la posición vertical ($\theta = 0^{\circ}$), si éste se deja evolucionar libremente desde el reposo de la posición mostrada en la figura, en la que $\theta = 30^{\circ}$.

a)
$$\omega = \sqrt{\frac{LMg}{4I_P}}$$

b)
$$\omega = \sqrt{\frac{3(2-\sqrt{3})LMg}{4I_P}}$$

c)
$$\omega = \sqrt{\frac{3(2-\sqrt{3})LMg}{2I_P}}$$

d)
$$\omega = \sqrt{\frac{3LMg}{4I_P}}$$

Problema 3: Determine el módulo de la fuerza ejercida en el pivote (F) cuando el péndulo pasa por la posición vertical $(\theta = 0^{\circ})$, si éste se deja evolucionar libremente desde el reposo de la posición mostrada en la figura, en la que $\theta = 30^{\circ}$.

a)
$$F = 3Mg$$

b)
$$F = 3Mg\left(\frac{\omega^2 L}{4g}\right)$$

c)
$$F = 3Mg\left(1 + \frac{\omega^2 L}{4g}\right)$$

d)
$$F = 3Mg\left(\frac{\omega^2 L}{2q}\right)$$

Problema 4: Determine el período de oscilación (T) del péndulo para oscilaciones de pequeña amplitud $(sin(\theta) \approx \theta)$.

a)
$$T = 2\pi \sqrt{\frac{16\pi^2 I_P}{3LMg}}$$

b)
$$T = 2\pi \sqrt{\frac{4I_P}{3LMg}}$$

c)
$$T = 2\pi \sqrt{\frac{4\pi^2 I_P}{(\sqrt{3} - 2)LMg}}$$

d)
$$T = 2\pi \sqrt{\frac{I_P}{3LMq}}$$

Enunciado para problemas 5-7:

Se tiene una esfera sólida de masa m y radio R que avanza inicialmente sin rodar por una superficie plana de hielo sin roce, con una rapidez de su centro de masa igual a $v_{\rm CM1}$ (instante #1). A continuación ingresa a una región en la que hay roce entre la esfera y la pista y en donde, después de un breve periodo de transición, se estabiliza en un movimiento de rodamiento sin deslizamiento (instante #2). Por último, la esfera rueda sin deslizar por una colina de altura máxima h y cae por el abismo hasta una altura igual a la inicial (instante #3). Puede asumir que en todo momento el roce viscoso con el aire es despreciable.

Problema 5: Determine el momento angular $\vec{L}_{1/O}$ de la esfera en el instante #1 respecto a un punto O sobre la superficie, en función de v_{CM1} :

a)
$$\vec{L}_{1/O} = mRv_{\text{CM}1}\hat{z}$$

b)
$$\vec{L}_{1/\mathcal{O}} = -mRv_{\text{CM}1}\hat{z}$$

c)
$$\vec{L}_{1/O} = \frac{7}{5} mRv_{\text{CM1}} \hat{z}$$

d)
$$\vec{L}_{1/\mathcal{O}} = -\frac{7}{5} m R v_{\text{CM1}} \hat{z}$$

Problema 6: Determine la rapidez del centro de masa de la esfera $v_{\rm CM2}$ durante el instante #2 en función de la magnitud del momento angular del instante #1, $L_{1/{\rm O}}$:

a)
$$v_{\rm CM2} = \frac{1}{mR} L_{1/{\rm O}}$$

b)
$$v_{\text{CM2}} = \frac{5}{7mR} L_{1/\text{O}}$$

c)
$$v_{\text{CM2}} = \frac{7}{10mR} L_{1/\text{O}}$$

d)
$$v_{\text{CM2}} = \frac{3}{8mR} L_{1/\text{O}}$$

Problema 7: Determine la rapidez del centro de masa de la esfera v_{CM3} durante el instante #3, justo antes de que se impacte con el suelo, en función de v_{CM2} :

a) $v_{\text{CM3}} = v_{\text{CM2}}$

b)
$$v_{\text{CM3}} = \sqrt{(v_{\text{CM2}})^2 + \frac{9}{7}gh}$$

c)
$$v_{\text{CM3}} = \sqrt{(v_{\text{CM2}})^2 + gh}$$

d)
$$v_{\text{CM3}} = \sqrt{(v_{\text{CM2}})^2 - \frac{10}{7}gh}$$

Enunciado para problema 8:

Se tienen dos casos. En el primero, una esfera sólida de radio R y masa m se deja rodar por una montaña con una altura inicial h_0 . La esfera rueda sin deslizamiento en todo momento. En el segundo, un bloque sólido perfectamente liso de masa m desliza sin roce por una montaña idéntica a la del primer caso. Tanto la esfera como el bloque se sueltan del reposo al mismo instante.

Problema 8: Determine la aseveración correcta:

- a) El bloque llega a la base de la montaña primero que la esfera.
- b) La esfera llega a la base de la montaña primero que el bloque.
- c) La esfera y el bloque llegan a la base de la montaña con la misma velocidad de su centro de masa.
- d) La esfera y el bloque llegan a la base de la montaña con energías cinéticas diferentes.

Enunciado para problemas 9-11:

Considere la armadura de la figura mostrada a continuación que consiste en 9 barras y 6 nodos, la cual está sometida a las dos cargas externas de $24~\rm kN$ y $36~\rm kN$.

Problema 9: Bajo esas condiciones las fuerzas verticales que hacen los apoyos son:

- a) $A_y = 24 \text{ kN y } F_y = 36 \text{ kN}.$
- b) $A_y = 30 \text{ kN y } F_y = 30 \text{ kN.}$
- c) $A_y = 36 \text{ kN y } F_y = 24 \text{ kN.}$
- d) $A_y = 48 \text{ kN y } F_y = 12 \text{ kN.}$

Problema 10: En tanto que las fuerzas sobre las barras AD, BD y BC están dadas por:

- a) AD = 30 kN (Compresión), BD = 50 kN (Compresión) y BC = 64 kN (Tensión).
- b) AD = 18 kN (Tensión), BD = 54 kN (Tensión) y BC = 30 kN (Compresión).
- c) AD = 30 kN (Tensión), BD = 50 kN (Tensión) y BC = 64 kN (Compresión).
- d) AD = 50 kN (Tensión), BD = 70 kN (Tensión) y BC = 96 kN (Compresión).

Problema 11: Por último, la fuerza sobre la barra AB es:

- a) AB = 36 kN (Tensión).
- b) $AB = 6\sqrt{97}$ kN (Compresión).
- c) $AB = 6\sqrt{97}$ kN (Tensión).
- d) AB = 36 kN (Compresión).

Enunciado para problemas 12-13:

Considere ahora la estructura de la figura mostrada a continuación, la cual está sometida a una única carga P.

Problema 12: Bajo esas condiciones las fuerzas que hacen los apoyos son:

a)
$$A_x = -\frac{9}{4}P$$
, $A_y = P$, $G_x = +\frac{9}{4}P$ y $G_y = 0$.

b)
$$A_x = \frac{9}{4}P$$
, $A_y = P$, $G_x = -\frac{9}{4}P$ y $G_y = 0$.

c)
$$A_x = -\frac{9}{4}P$$
, $A_y = 0$, $G_x = +\frac{9}{4}P$ y $G_y = P$.

d)
$$A_x = +\frac{9}{4}P$$
, $A_y = 0$, $G_x = -\frac{9}{4}P$ y $G_y = P$.

Problema 13: El valor máximo de la carga P para que la fuerza sobre la barra FC no supere los 3 kN bajo tensión ó 2 kN bajo compresión es:

- a) P = 6 kN.
- b) P = 4 kN.
- c) P = 8/5 kN.
- d) P = 12/5 kN.

Enunciado para problemas 14-17:

Considere un sistema compuesto por una viga apoyada en dos soportes, sometida a una carga distribuida, a una fuerza F y a un par M como se muestra en la figura. El origen de la coordenada x está definido en el extremo izquierdo de la viga.

Problema 14: La magnitud total de la carga distribuida es:

- a) $R = 32lw_0$.
- b) $R = 16lw_0$.
- c) $R = 30lw_0$.
- d) $R = 26lw_0$.

Problema 15: Si llamamos R a la magnitud total de la carga distribuida, la ubicación en x que debe tener la resultante para producir el mismo momento de fuerzas que la distribución es:

a)
$$x' = \frac{148w_0l^2}{R}$$
.

b)
$$x' = \frac{392w_0l^2}{R}$$
.

c)
$$x' = \frac{296w_0l^2}{R}$$
.

d)
$$x' = \frac{196w_0l^2}{R}$$
.

Problema 16: La reacción vertical hacia arriba en A es:

a)
$$A_y = \frac{1}{18l}[M + 6Fl\sin\theta - R(24l - x')].$$

b)
$$A_y = \frac{1}{18l}[M + 6Fl\sin\theta + R(24l - x')].$$

c)
$$A_y = \frac{1}{18l}[M + 6Fl\cos\theta + R(24l - x')].$$

d)
$$A_y = \frac{1}{18l}[M + 6Fl\cos\theta - R(24l - x')].$$

Problema 17: Si y representa la dirección vertical hacia arriba, la reacción en el soporte B es:

a)
$$\vec{B} = F \sin \theta \,\hat{x} - \frac{1}{18l} [M + 24Fl \sin \theta + R(6l - x')] \,\hat{y}.$$

b)
$$\vec{B} = F \cos \theta \,\hat{x} - \frac{1}{18l} [M + 24Fl \cos \theta + R(6l - x')] \,\hat{y}.$$

c)
$$\vec{B} = F \cos \theta \,\hat{x} - \frac{1}{18l} [M + 24Fl \sin \theta + R(6l - x')] \,\hat{y}.$$

d)
$$\vec{B} = F \sin \theta \,\hat{x} - \frac{1}{18l} [M + 24Fl \cos \theta + R(6l - x')] \,\hat{y}.$$