Кинематика

1 Задачи для всех

1.1		Регион 2015-10
	е движение звезды за 1 год равно ее год ость звезды (в км/с) относительно Солн	ичному параллаксу. Определите танген- ща.
1.2 «Бегля	анка»	АД 1.10
называют «летя жений: $\mu_{\alpha} = -$ скорость составл нарда относител близка к Солне	ящей», поскольку она обладает самым б $-798~{ m mas/rog},~\mu_{\delta}=10327~{ m mas/rog}.$ Првляет $v_r=-111~{ m km/c}$ вичислите полную льно Солнечной системы, а также посч	ую звезду в созвездии Змееносца, часто большим из известных собственных дви- ои параллаксе $\pi=547$ mas её лучевая пространственную скорость звезды Бар- итайте, в каком году она будет наиболее ной будет обладать в этот момент, если
1.3		Авторская шиза
	л выпущен снаряд, который полетел пос тво энергии потребуется для выполнения	сле запуска по параболлической орбите. я подобной операции?
1.4		Питер 2014-9
ное прохождени не больше мину:	ием по диску Солнца планеты Юпитер. І	одать полное затмение Солнца, вызван- При этом полное затмение продолжается двумя такими последовательными затме- ыми и лежащими в одной плоскости
1.5		Питер 2015-9
	твенных спутника Земли с одинаковым дените максимально возможную скорос	периодом обращения, равным 12 часам, ть их столкновения.
1.6		Питер 2017-10
тяжелой твердо астероида. Изве не превосходит	ой болванкой массой 300 кг, двигающей естно, что большая полуось орбиты асто	оом 300 м предлагается ударить по нему йся со скоростью 10 км/с относительно ероида равна 1 а.е., а ее эксцентриситет ет измениться большая полуось орбиты
		C 1

2 Задачи для мазохистов

2.1 Питер 2012-10

В центральной части шарообразной эллиптической галактики вокруг ее центра обращаются две звезды. Орбиты обеих звезд круговые, лежат в одной плоскости, направления вращения совпадают, радиус орбиты первой звезды составляет 100 пк, а второй — 50 пк.

Найдите синодический период этих двух звезд, если известно, что в центральной части галактики все звезды расположены примерно однородно, концентрация звезд составляет около $10^4 M_{\odot}/\mathrm{nk}^3$

2.2

Выведете формулу для периода системы из N звезд, расположенных в краях правильного N-угольника с радиусом описанной окружности, равным R \Box

2.3

Давайте представим, что Землю заменили бесконечной по двум координатам почти плоскостью, с толщиной равной радиусу Земли. В предположении, что плотность земли постоянна по её объему, посчитайте ускорение сободного падения на поверхности подобного «блина»

3 Задачи для голодных

3.1 Регион 2016-11

Пульсар PSR B1257+12 стал первым, у которого была найдена планета. Период этого пульсара составляет 6.22 мс, его масса равна 1.5 массам Солнца. Планета была обнаружена на основе того, что импульсы регистрировались не в то время, в которое они должны были поступать. На графике приведена зависимость величины смещения моментов регистрации импульсов пульсара (по сравнению с моделью без этой планеты) от времени. Оцените массу планеты, считая, что луч зрения лежит в плоскости ее орбиты.

Рис. 1: Картинка к задаче 3.1

...... Страница 2