Algebra — Egzamin, II termin

Czas: 200 minut.

W rozwiązaniach zaleca się podawanie kroków pośrednich obliczeń, tak aby były one weryfikowalna nawet w przypadku błędu rachunkowego.

Proszę podpisać wszystkie kartki! (Ta kartka jest przeznaczona na brudnopis).

Numer	indeksu:.									

Zadanie 1 Niech M będzie macierzą odwracalną. Pokaż, że M oraz M^{-1} mają takie same wektory własne.

Zadanie 2 Rozważmy permutację:

Podaj permutację odwrotną σ^{-1} . Rozłóż σ oraz σ^{-1} na cykle. Czy σ jest permutacją parzystą, czy nieparzystą? Udowodnij, że jeśli permutacja τ jest parzysta, to również τ^{-1} jest.

Numer	indeksu:.									

Zadanie 3 Niech M,N będą macierzami diagonalnymi rozmiaru $n\times n$. Pokaż, że:

- M + N jest macierzą diagonalną;
- MN jest macierzą diagonalną; jeśli M jest odwracalna, to również M^{-1} jest macierzą diagonalną.

Zadanie 4 Rozważmy poniższy układ równań nad ciałem \mathbb{Z}_5 . Ile ma on rozwiązań, w zależności od parametru $\lambda \in \mathbb{Z}_5$?

$$\begin{cases} \lambda x_1 & +x_2 & +x_3 & = 1 \\ x_1 & +\lambda x_2 & +x_3 & = 1 \\ x_1 & +x_2 & +2x_3 & = 1 \end{cases}.$$

 $Wskaz \acute{o}wka$: Zauważ, że możliwych wartości (x_1,x_2,x_3) jest 125.

Zadanie 5 Dla wielomianów $f = 6x^5 - 19x^4 - 19x^3 + 77x^2 - 27x - 18$, $g = 6x^4 - x^3 - 17x^2 + 16x - 4$ z $\mathbb{R}[X]$ podziel (z resztą) f przez g. Oblicz też $\gcd(f,g)$ i przedstaw je w postaci af + bg dla odpowiednich wielomianów $a,b \in \mathbb{R}[X]$.

Zadanie 6 Dla przestrzeni liniowych $S = \text{LIN}(\{(3,0,3,3,2,0),(3,1,3,2,3,1)\} \text{ oraz } T = \text{LIN}(\{(1,1,1,0,3,1),(0,3,0,-3,-1,3)\} \text{ oblicz } \dim(S+T) \text{ oraz } \dim(S\cap T).$ Podaj dowolną bazę S+T.

N	Inmer	indeksu:.								
Τ,	(umer	mucksu								

Zadanie 7 Rozważmy kwadrat i jego grupę obrotów i symetrii (odbić).

Malujemy każdy bok (bez końców), każdą przekątną (bez końców i punktów przecięć przekątnych) i każdy wierzchołek tego kwadratu, na jeden z 7 kolorów. Dwa takie malowania są nierozróżnialne, jeśli można je przeprowadzić na siebie przy użyciu obrotu lub symetrii tego kwadratu. Ile jest rozróżnialnych pokolorowań tego kwadratu?

Zadanie 8 Niech G_1, G_2 będą dwoma podgrupami G, zaś N_1, N_2 ich podgrupami normalnymi, tzn. $N_1 \leq G_1 \leq G$, $N_2 \leq G_2 \leq G$. Pokaż, że przecięcie N_1 i N_2 jest podgrupą normalną przecięcia G_1 i G_2 , tj.:

$$N_1 \cap N_2 \leq G_1 \cap G_2$$
.

Wskazówka: Podobne zadanie było na pierwszym terminie.

 ${f Zadanie~9}$ Dla standardowego iloczynu skalarnego w \mathbb{R}^5 zortonormalizuj podany układ wektorów. Podaj wektor prostopadły do każdego wektora z podanego układu.

$$\{(2,0,0,0,0);(2,1,-1,1,-1);(3,1,-3,3,-1)\}$$
.

Wskazówka: Dla dobra Nas wszystkich: nie zmieniaj kolejności wektorów.