Anotações sobre teoria da medida

Rodrigo Ramos

5 de maio de 2021

Sobre o texto: As páginas a seguir são um resumo do meu estudo sobre teoria da medida usando o livro do Bartle.

Sumário

1	Introdução e funções mensuráveis	1
2	Medidas e Integrais	9
	2.1 Medidas	g
	2.2 Integração	12

1 Introdução e funções mensuráveis

Pelo o que parece, estudar teoria da medida é interessante, no sentido que ela permite generalizar a integral de Riemann à uma nova integral, chamada de integral de Lebesgue. Associados a esta nova integral, estão alguns teoremas de convergência que virão a calhar durante um possível estudo formal de mecânica quântica (teoremas da convergência monótona e dominada, por exemplo), além disso, ela permite uma caracterização mais detalhada dos espaços de Hilbert onde as funções de onda residem.

Durante esta toda parte trabalharemos com a **reta real estendida**, \mathbb{R} , que é o conjunto \mathbb{R} juntamente dos símbolos $-\infty$ e $+\infty$. Estes símbolos não são números reais. Bem, devem existir outras razões para que a adoção deste conjunto seja usual em livros de medida e integração, mas uma delas é que os teoremas de convergência que temos por objetivo entender não fariam sentido sem o uso de \mathbb{R}^1 .

Dados os símbolos $\pm \infty$ e um número $x \in \mathbb{R}$, definimos que:

1)
$$(\pm \infty) + (\pm \infty) = (\pm \infty) + x = \pm \infty$$
;

2)
$$(\pm \infty)(\pm \infty) = \infty \ e \ (\pm \infty)(\mp \infty) = -\infty;$$

3)
$$x(\pm \infty) = (\pm \infty)x = \begin{cases} \pm \infty, & se \ x > 0 \\ 0, & se \ x = 0 \\ \mp \infty, & se \ x < 0 \end{cases}$$

Também é útil definir os limites superior e inferior de uma sequência $(x_n)_{n\in\mathbb{N}}$ de números reais:

$$\lim\sup x_n := \inf_{m} (\sup_{n \ge m} x_n)$$

$$\lim \inf x_n := \sup_{m} (\inf_{n \ge m} x_n)$$

Quando $\lim \sup x_n$ e $\lim \inf x_n$ são iguais, dizemos que este é o limite da sequência.

Definição 1.1 (σ -álgebra). Seja X um conjunto. Uma família Σ de subconjuntos de X é uma σ -álgebra (lê-se sigma álgebra) em X se satisfaz as seguintes propriedades:

- 1) $\emptyset \in \Sigma \ e \ X \in \Sigma$;
- **2)** Para todo $A \in \Sigma$, temos que $X \setminus A \equiv A^c \in \Sigma$;
- **3)** Seja (A_n) uma sequência de elementos de Σ , então $\bigcup_{n=1}^{\infty} A_n \in \Sigma^2$.

¹Provavelmente, algo relacionado ao supremo e ao ínfimo do conjunto vazio :p.

 $^{^2 \}mathrm{Na}$ verdade, o conjunto de índices não precisa ser $\mathbb{N},$ basta que ele seja algum conjunto enumerável $\mathcal{J}.$

Exemplo 1.1. Seja $X = \mathbb{N}$. Definindo $A = \{2n : n \in \mathbb{N}\}$ $e B = \{2n + 1 : n \in \mathbb{N}\}$, temos que $\Sigma = \{\emptyset, A, B, \mathbb{N}\}$ é uma σ -álgebra em \mathbb{N} .

Definição 1.2 (Espaço mensurável). Seja X um conjunto e Σ uma σ -álgebra em X. O par ordenado (X, Σ) é chamado de um espaço mensurável. Ainda, diz-se que todo $A \in \Sigma$ é um conjunto Σ -mensurável.

Quando uma σ -álgebra está subentendida em X, então, para não carregar a notação, iremos dizer que X é um espaço mensurável e que $A \in \Sigma$ é mensurável.

Exercício 1.1. Sejam A e B subconjuntos de um conjunto X. Mostre que $A \setminus B = A \cap B^c$.

Proposição 1.1. Seja (X, Σ) um espaço mensurável. Então:

- a) Para todos $A \in \Sigma$ e $B \in \Sigma$ temos que $A \setminus B \in \Sigma$, onde $A \setminus B := \{x \in X : x \in A \ e \ x \notin B\}$.
- **b)** Dada uma sequência (A_n) de elementos de Σ , então $\bigcap_{n=1}^{\infty} A_n \in \Sigma$.

Demonstração.

- a) Seja X um conjunto e sejam $A \in \Sigma$ e $B \in \Sigma$ quaisquer, onde Σ é uma σ -álgebra em X. Como A é Σ -mensurável, então A^c também o é. Logo, o conjunto $A^c \cup B$ é Σ -mensurável, pois é união enumerável de elementos de Σ . Disto, segue que $(A^c \cup B)^c = A \cap B^c \in \Sigma$. Pelo exercício 1.1, conclui-se que $A \setminus B \in \Sigma$. Como A e B são Σ -mensuráveis quaisquer, temos que $\forall A, B \in \Sigma$ vale que $A \setminus B \in \Sigma$.
- b) Seja (A_n) uma sequência arbitrária de conjuntos Σ -mensuráveis em um espaço mensurável (X, Σ) . Como para cada $n \in \mathbb{N}$ o conjunto A_n é Σ -mensurável, então $A^c \in \Sigma$. Segue que $\bigcup_{n=1}^{\infty} A_n^c \in \Sigma$. Pela definição de σ -álgebra, temos que $\left(\bigcup_{n=1}^{\infty} A_n^c\right)^c = \bigcap_{n=1}^{\infty} A_n \in \Sigma$. Como (A_n) é qualquer, então o resultado vale para toda sequência (A_n) de elementos de Σ .

Exercício 1.2. Seja (X, Σ_1) e (X, Σ_2) espaços mensuráveis. Defina $\Sigma_3 := \{A : A \in \Sigma_1 \cap \Sigma_2\}$. Mostre que Σ_3 é uma σ -álgebra em X.

Exercício 1.3. Seja A uma coleção de índices, tal que, dado um conjunto X, $\forall \alpha \in A$ temos que Σ_{α} é um σ -álgebra em X. Mostre que $\bigcap_{\alpha \in A} \Sigma_{\alpha}$ é uma σ -álgebra em X.

Exercício 1.4. Seja $\mathcal F$ uma família não-vazia de subconjuntos de X. Mostre que a interseção de todas as σ -álgebras em X que contêm $\mathcal F$ é uma σ -álgebra em X. Além disto, mostre que esta é a menor σ -álgebra que contém $\mathcal F$. Denota-se esta σ -álgebra por $\sigma(\mathcal F)$ e diz-se que ela é a σ -álgebra gerada por $\mathcal F$.

Exemplo 1.2 (Álgebra de Borel). Seja (X, τ) um espaço topológico. Então $\sigma(\tau)$ é uma σ -álgebra em X, denominada **álgebra de Borel**. Costuma-se denotá-la por \mathcal{B} e seus elementos são chamados de conjuntos borelianos. Um exemplo de álgebra de Borel é (\mathbb{R}, τ) , onde τ é a topologia usual da reta.

Exemplo 1.3. Seja $X = \overline{\mathbb{R}}$ e seja \mathcal{B} uma álgebra de Borel em \mathbb{R} . Para cada $E \in \mathcal{B}$, defina os conjuntos a seguir:

$$E_1 = E \cup \{+\infty\}, \ E_2 = E \cup \{-\infty\}, \ E_3 = E \cup \{-\infty, +\infty\}.$$

Então, o conjunto $\bar{\mathcal{B}}$ dos E, E_1 , E_2 e E_3 tal que $E \in \mathcal{B}$ é uma σ -álgebra em $\bar{\mathbb{R}}$, chamada de álgebra de Borel estendida.

Definição 1.3. Seja (X, Σ) um espaço mensurável e seja $f: X \to \mathbb{R}$ uma função. Diz-se que $f \notin \Sigma$ -mensurável quando para todo $\alpha \in \mathbb{R}$, o conjunto

$$\{x \in X : f(x) > \alpha\}$$

for Σ -mensurável.

Lema 1.1. Seja $f: X \to \mathbb{R}$, onde X é um espaço mensurável. As seguintes afirmações são equivalentes:

- a) $\forall \alpha \in \mathbb{R}, A_{\alpha} = \{x \in X : f(x) > \alpha\} \text{ \'e mensur\'avel.}$
- **b)** $\forall \alpha \in \mathbb{R}, B_{\alpha} = \{x \in X : f(x) \leq \alpha\} \text{ \'e mensur\'avel.}$
- c) $\forall \alpha \in \mathbb{R}, C_{\alpha} = \{x \in X : f(x) \geq \alpha\} \text{ \'e mensur\'avel.}$
- **d)** $\forall \alpha \in \mathbb{R}, \ D_{\alpha} = \{x \in X : \ f(x) < \alpha\} \ \text{\'e mensur\'avel}.$

Demonstração.

Claramente, $A_{\alpha}^{c} = B_{\alpha}$, portanto, **a**) \iff **b**) é verdade. Um raciocínio análogo pode ser aplicado entre **c**) e **d**). Resta mostrar que **a**) \iff **c**).

Assumindo **a)**, então, temos que $\forall \alpha \in \mathbb{R} \ e \ \forall n \in \mathbb{N}, \ A_{\alpha-1/n}$ é mensurável. Logo, pela proposição 1.1, segue que $\bigcap\limits_{n=1}^{\infty} A_{\alpha-1/n}$ é mensurável. Agora, dado

 $x\in\bigcap_{n=1}^\infty A_{\alpha-1/n}$ qualquer, temos que $f(x)>\alpha-1/n$ para todo $n\in\mathbb{N}$, portanto, f(x) é cota superior desta interseção e concluímos que ela é um subconjunto nãovazio e limitado de \mathbb{R} , isto é, possui supremo em \mathbb{R} . Como $\alpha=\sup\bigcap_{n=1}^\infty A_{\alpha-1/n}$, então necessariamente $f(x)\geq\alpha$, pois α é a menor cota superior desta interseção.

Segue que $x \in C_{\alpha}$. É fácil concluir que $\bigcap_{n=1}^{\infty} A_{\alpha-1/n} \subseteq C_{\alpha}$. A outra inclusão é imediata, pois se $x \in C_{\alpha}$, então $\forall n \in \mathbb{N}, \ f(x) \ge \alpha > \alpha - 1/n$.

Conclusão: $C_{\alpha} = \bigcap_{n=1}^{\infty} A_{\alpha-1/n}$, logo C_{α} é mensurável, i.e., **a**) \Longrightarrow **c**).

Assumindo c), veja que $A_{\alpha} = \bigcup_{n=1}^{\infty} C_{\alpha+1/n}$. Como $C_{\alpha+1/n}$ é mensurável para

4

cada $n \in \mathbb{N}$, então a união deles também será mensurável. Conclusão: A_{α} é mensurável.

Exercício 1.5. Mostre que $A_{\alpha} = \bigcup_{n=1}^{\infty} C_{\alpha+1/n}$.

A seguir temos alguns exemplos de funções mensuráveis (em cada exemplo, assuma que X é um espaço mensurável, por tudo que é sagrado).

Exemplo 1.4. Dado $\alpha \in \mathbb{R}$, seja $f: X \to \mathbb{R}$ tal que $f(x) = \alpha$ para todo $x \in X$. Então, $A_{\beta} = \emptyset$ para todo $\beta \geq \alpha$ e $A_{\beta} = X$ para todo $\beta < \alpha$.

Exemplo 1.5. A função característica de um subconjunto $E \subseteq X$, $\chi_E : X \to \mathbb{R}$ definida por

$$\chi_E(x) = \begin{cases} 1, & se \ x \in E \\ 0, & se \ x \notin E \end{cases}$$

é mensurável. Com efeito, dado $\alpha \in \mathbb{R}$, se $\alpha < 0$, então, $A_{\alpha} = X$; se $0 \le \alpha < 1$, então $A_{\alpha} = E$ e por fim, se $\alpha \ge 1$, então $A_{\alpha} = \emptyset$.

Exemplo 1.6. Seja $(\mathbb{R}, \mathcal{B})$ um espaço mensurável, onde $\mathcal{B} = \sigma(\tau)$, sendo τ a topologia usual da reta. Então, qualquer função contínua $f : \mathbb{R} \to \mathbb{R}$ é $(\mathcal{B}-)$ mensurável. Com efeito, dado que f é contínua, então para qualquer α real temos que A_{α} é um conjunto aberto e portanto um elemento de \mathcal{B} . De agora em diante, $\mathcal{B}(\mathbb{R})$ denotará a álgebra de Borel gerada pela topologia usual da reta.

Exercício 1.6. Considere a álgebra de Borel $\mathcal{B}(\mathbb{R})$ na reta. Mostre que toda função monótona $f: \mathbb{R} \to \mathbb{R}$ é mensurável.

Lema 1.2. Seja X um espaço mensurável e sejam $f,g:X\to\mathbb{R}$ mensuráveis. Então seque que as sequintes funções também são mensuráveis:

- *i)* cf, para todo $c \in \mathbb{R}$.
- ii) f^2 .
- iii) f+g.
- iv) fg.
- v) |f|.

Demonstração.

- i) Se c = 0, então cf é constante, portanto ela é mensurável. No caso em que c > 0, visto que f é mensurável, temos que $\{x \in X : f(x) > \alpha/c\}$ é mensurável para qualquer $\alpha \in \mathbb{R}$. O caso para c negativo é análogo.
- ii) Para qualquer $\alpha < 0$, temos que $\{x \in X: f^2(x) > \alpha\} = X$. Para $\alpha \ge 0$, temos que $\{x \in X: f^2(x) > \alpha\} = \{x \in X: f(x) > \sqrt{\alpha}\}$. Facilmente conclui-se que f^2 é mensurável.

iii) Veja que $f(x) + g(x) < \alpha \iff \exists r \in \mathbb{Q} \ tal \ que \ f(x) < r < \alpha - g(x)$. Logo, o conjunto

$$S_r := \{ x \in X : f(x) < r \} \cap \{ x \in X : g(x) < \alpha - r \}$$

é mensurável para cada racional. Fixado α , segue que $\{x \in X : (f+g)(x) < \alpha\} = \bigcup_{r \in \mathbb{Q}} S_r$, isto é, o conjunto é uma união enumerável de conjuntos mensuráveis. Logo, para cada α fixado, $\{x \in X : (f+g)(x) < \alpha\}$ é mensurável. Conclusão: f+g é mensurável.

- iv) Visto que $fg \equiv \frac{1}{2}(f+g)^2 \frac{1}{2}(f^2+g^2)$, utilizando os itens anteriores, conclui-se que fg é mensurável.
- v) Para qualquer $\alpha < 0$, temos que $\{x \in X : |f(x)| > \alpha\} = X$. Quando $\alpha \ge 0$, segue que $\{x \in X : |f(x)| > \alpha\} = \{x \in X : |f(x)| > \alpha\} \cup \{x \in X : |f(x)| < -\alpha\}$. Logo, no caso positivo, $\{A_{\alpha}\}$ é uma união enumerável de conjuntos mensuráveis e portanto é mensurável. Conclui-se que |f| é mensurável.

Definição 1.4. Seja $f: X \to \mathbb{R}$ uma função definida em um espaço mensurável. As **partes positiva e negativa de f**, denotadas respectivamente por f^+ e f^- , são as funções não-negativas definidas por

$$f^+(x) := \sup\{f(x), 0\}, \qquad f^-(x) := \sup\{-f(x), 0\}.$$

Exercício 1.7. Mostre que, para qualquer função f definida em um conjunto X, vale que $f = f^+ - f^-$ e $|f| = f^+ + f^-$. Como corolário, mostre que $f^+ = \frac{1}{2}(f + |f|)$ e $f^- = \frac{1}{2}(|f| - f)$.

Definição 1.5. Uma $f: X \to \mathbb{R}$ é dita Σ -mensurável quando $\{x \in X : f(x) > \alpha\}$ é um elemento de Σ para todo α real. O conjunto todas estas funções é denotado por $M(X, \Sigma)$.

Temos que

$${x \in X : f(x) = +\infty} = \bigcap_{n \in \mathbb{N}} {x \in X : f(x) > n}$$

$${x \in X : f(x) = -\infty} = \bigcap_{n \in \mathbb{N}} {x \in X : f(x) \le -n}.$$

Daí, quando $f \in M(X, \Sigma)$, estes conjuntos são mensuráveis. Uma forma mais conveniente de identificar funções $f \in M(X, \Sigma)$ encontra-se no

Lema 1.3. Seja $f: X \to \mathbb{R}$. Então $f \in M(X, \Sigma)$ se e somente se os conjuntos

$$A = \{x \in X : f(x) = +\infty\}$$
 $e \ B = \{x \in X : f(x) = -\infty\}$

são mensuráveis e se a função $f_1: X \to \overline{\mathbb{R}}$ definida por

$$f_1(x) = \begin{cases} f(x), & x \notin A \cup B \\ 0, & x \in A \cup B \end{cases}$$

for mensurável.

Demonstração.

Para mostrar a ida, assuma que $f \in M(X, \Sigma)$. Já sabemos que A e B são mensuráveis. Além disso, seja $\alpha \in \mathbb{R}$.

Se $\alpha \geq 0$, então:

$$\{x \in X : f_1(x) > \alpha\} = \{x \in X : f(x) > \alpha\} \setminus A$$

é um conjunto mensurável. No caso em que $\alpha < 0$, temos que

$$\{x \in X : f_1(x) > \alpha\} = \{x \in X : f(x) > \alpha\} \cup B$$

também é mensurável.

Daí, conclui-se que $f_1 \in M(X, \Sigma)$.

Para mostrar a volta, basta ver que

$${x \in X : f(x) > \alpha} = {x \in X : f_1(x) > \alpha} \cup A;$$

 ${x \in X : f(x) > \alpha} = {x \in X : f(x) > \alpha} \setminus B$

quando $\alpha \geq 0$ e $\alpha < 0$, respectivamente. Daí, conclui-se que $f \in M(X, \Sigma)$.

Corolário 1.1. Se $f: X \to \overline{\mathbb{R}} \in M(X,\Sigma)$, então $cf, f^2, |f|, f^+$ e f^- são mensuráveis.

Corolário 1.2. Sejam $f,g: X \to \overline{\mathbb{R}}$ mensuráveis e defina os conjuntos

$$E_1 = \{ x \in X : \ f(x) = \infty \ e \ g(x) = -\infty \}$$
$$E_2 = \{ x \in X : \ f(x) = -\infty \ e \ g(x) = +\infty \}.$$

Se f+g é definida do modo usual em $X\setminus (E_1\cup E_2)$ e se é definido que $(f+g)(E_1\cup E_2)=\{0\}$, então f+g é mensurável.

Para definir a mensurabilidade do produto fg, faremos uso do

Lema 1.4. Seja (f_n) uma sequência em $M(X,\Sigma)$. Sejam

$$f(x) = \inf f_n(x), \qquad F(x) = \sup f_n(x)$$

$$f^*(x) = \lim \inf f_n(x), \quad F^*(x) = \lim \sup f_n(x).$$

Então f, F, f^* e F^* são mensuráveis.

Demonstração.

Usando a definição de ínfimo, temos que para cada $x \in X$ e para cada $\alpha \in \mathbb{R}$:

$$\inf f_n(x) \ge \alpha \iff f_n(x) \ge \alpha.$$

Daí, conclui-se que

$$C_{\alpha} \equiv \{x \in X : f(x) \ge \alpha\} = \bigcap_{n=1}^{\infty} \{x \in X : f_n(x) \ge \alpha\}.$$

Como cada $\{x \in X: f_n(x) \geq \alpha\}$ é mensurável, então C_α é mensurável, pois Σ é fechada com relação a interseções enumeráveis.

De forma análoga ao caso acima, temos as seguintes igualdades:

$$\{x \in X : F(x) > \alpha\} = \bigcup_{n=1}^{\infty} \{x \in X : f_n(x) > \alpha\},$$

$$\{x \in X : f^*(x) > \alpha\} = \bigcup_{n=1}^{\infty} \left(\bigcap_{m=n}^{\infty} \{x \in X : f_m(x) \ge \alpha\}\right),$$

$$\{x \in X : F^*(x) > \alpha\} = \bigcap_{n=1}^{\infty} \left(\bigcup_{m=n}^{\infty} \{x \in X : f_m(x) > \alpha\}\right).$$

Daí, F, f^* e F^* são mensuráveis.

Corolário 1.3. Seja (f_n) uma sequência em $M(X,\Sigma)$ que converge para f. Então $f \in M(X,\Sigma)$.

Demonstração.

 (f_n) convergir pontualmente para f significa que $f(x) = \liminf f_n(x)$. Visto que $\liminf f_n(x) = f^*(x)$, segue que f é mensurável.

Para caracterizar a mensurabilidade do produto fg quando $f,g\in M(X,\Sigma)$, para cada $n\in\mathbb{N}$ defina o **truncamento de f** como sendo

$$f_n(x) = \begin{cases} f(x), & se |f(x)| \le n \\ n, & se |f(x)| > n \\ -n, & se |f(x)| < -n \end{cases}$$

O truncamento é uma função mensurável, pois podemos escrevê-lo como

$$f_n(x) = f(x)\chi_{\{|f(x)| \le n\}} + n\chi_{\{f(x) > n\}} - n\chi_{\{f(x) < -n\}}.$$

Além disso, $f_n(x) \to f(x)$ pontualmente: se $f(x) \in \mathbb{R}$, como a reta é arquimediana, então existe n_0 tal que $f(x) < n_0$; no caso em que $f(x) = \pm \infty$, temos que $f_n(x) = \pm n$ e $\lim f_n(x) = \pm \infty$.

Se g_m é o truncamento de $g \in M(X, \Sigma)$, então pelo lema 1.2, segue que para cada $m, n \in \mathbb{N}$, $f_n g_m$ é mensurável. Daí, pelo corolário anterior, temos que

$$f(x)g_m(x) = \lim_n f_n(x)g_m(x)$$

é mensurável para cada m. Novamente, pelo lema 1.2, o produto fg_m . Invocando novamente o corolário anterior, concluímos que

$$(fg)(x) = \lim_{m} f(x)g_m(x)$$

é mensurável.

Lema 1.5. Se $f \in M(X, \Sigma)$ é não-negativa, então existe uma sequência (φ_n) em $M(X, \Sigma)$ tal que

- a) $0 \le \varphi_n(x) \le \varphi_{n+1}(x)$ para todos $x \in X$, $n \in \mathbb{N}$.
- b) (φ_n) converge pontualmente para f.
- c) Cada φ_n tem um número finito de valores reais.

Demonstração.

Fixado $n \in \mathbb{N}$, para $k = 0, 1, \dots, n2^n - 1$ defina o conjunto

$$E_{kn} := \left\{ x \in X : \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n} \right\}$$

e se $k=n2^n$, definida $E_{nk}=\{x\in X:\ f(x)\geq n\}$. Ainda mantendo n fixado, temos que a coleção $\{E_{kn}$ é uma cobertura disjunta de X. Desta forma, defina $\varphi_n:\ X\to\mathbb{R}$ como sendo

$$\varphi_n(x) = \sum_{k=0}^{n2^n} \frac{k}{2^n} \chi_{E_{kn}}(x).$$

Como cada $\chi_{E_{kn}}$ é mensurável, então φ_n é mensurável para cada n. Além disso, por construção, vale que φ_n tem um número finito de valores reais.

Para mostrar que (φ_n) é não-decrescente e que converge pontualmente, uma vez fixado $x \in X$ e escolhido $n \in \mathbb{N}$ arbitrários, temos que os cenários a seguir. Se f(x) < n, então

$$x \in E_{kn} \iff \frac{k}{2^n} \le f(x) < \frac{k+1}{2^n}$$

 $\iff \frac{2k}{2^{n+1}} \le f(x) < \frac{2k+1}{2^{n+1}} \text{ ou } \frac{2k+1}{2^{n+1}} \le f(x) < \frac{(2k+1)+1}{2^{n+1}}$
 $\iff x \in E_{2k(n+1)} \cup E_{(2k+1)(n+1)}.$

Se $n < n+1 \le f(x)$, temos que $f_n(x) = n$ e $f_{n+1}(x) = n+1$. Se $n \le f(x) < n+1$, temos que $f_n(x) = n$ e $f_{n+1}(x) = \lfloor f(x)2^{n+1} \rfloor/2^{n+1}$. Daí, em qualquer situação

segue que $\varphi_n(x) \leq \varphi_{n+1}(x)$. Sendo x e n quaisquer, então o resultado vale para todo $x \in X$ e para todo $n \in \mathbb{N}$.

Se $f(x) < \infty$, então $(\varphi_n(x))$ é uma sequência limitada e crescente de números reais e portanto é convergente. Visto que o limite superior é f(x), segue que $\varphi_n(x) \to f(x)$. Se $f(x) = \infty$, $\varphi_n(x) = n$ para todo $n \in \mathbb{N}$ e portanto $\varphi(x) \to \infty = f(x)$.

2 Medidas e Integrais

2.1 Medidas

Definição 2.1. Seja (X, Σ) um espaço mensurável. Uma **medida** é uma função $\mu: \Sigma \to \mathbb{R}$ que satisfaz as seguintes propriedades:

- a) $\mu(\emptyset) = 0$.
- b) $\mu(E) \geq 0$ para todo $E \in \Sigma$.
- c) Para qualquer coleção $\{E_n\}_{n=1}^{\infty}$ de elementos de Σ disjuntos dois a dois, vale que

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{n=1}^{\infty} \mu(E_n).$$

Esta propriedade por vezes é denominada de σ -aditividade.

À tripla (X, Σ, μ) dá-se o nome **espaço de medida**.

Quando $\mu(E) \neq \infty$ para qualquer $E \in \Sigma$, diz-se que μ é uma medida finita. Se existe uma coleção $\{E_n\}_{n=1}^{\infty}$ tal que $\Sigma = \bigcup_n E_n$ e $\mu(E_n) < \infty$ para todo $n \in \mathbb{N}$, diz-se que μ é uma medida σ -finita.

Nos exemplos a seguir, considere (X, Σ) como um espaço mensurável.

Exemplo 2.1. Uma vez fixado $x \in X$, define-se a medida de Dirac, $\delta_x : \Sigma \to \overline{\mathbb{R}}$, por

$$\delta_x(E) = \left\{ \begin{array}{ll} 1, & se \ x \in E \\ 0, & se \ x \notin E \end{array} \right.$$

Exemplo 2.2. Fixado $D \subset X$, para cada $E \in \Sigma$ considere $\nu(E)$ como sendo o número de elementos de E capD. Define-se então

$$\nu(E) = \left\{ \begin{array}{ll} |E \cap D|, & se \ E \cap D \ \acute{e} \ finito \\ \infty, & se \ E \cap D \ \acute{e} \ infinito \end{array} \right.$$

onde $|E\cap D|$ é a cardinalidade da interseção. Na situação em que D é um conjunto enumerável, temos que

$$\nu(E) = \sum_{x \in D} \delta_x(E).$$

Exemplo 2.3. Sejam $D \subset X$ um conjunto enumerável $em: D \to (0, \infty)$. Podemos tornar X num espaço de medida ao definirmos $\mu: \Sigma \to \overline{\mathbb{R}}$ como

$$\mu(E) = \sum_{x \in D} m(x) \delta_x(E).$$

Medidas deste tipo são chamadas de **medidas discretas**. Se m(x) representa a massa do ponto x, então $\mu(E)$ seria uma forma de definir a massa do conjunto E.

Exemplo 2.4. Considere $X = \mathbb{R}$ e $\Sigma = \mathcal{B}(\mathbb{R})$. Existe uma única medida λ definida em $\mathcal{B}(\mathbb{R})$ que coincide com o comprimento dos intervalos abertos e limitados E = (a, b), ou seja, tal que $\lambda(E) = b - a$. Esta é a **medida de Lebesgue**.

Exemplo 2.5. Considere $X = \mathbb{R}$ e $\Sigma = \mathcal{B}(\mathbb{R})$. Se $f : \mathbb{R}$ to \mathbb{R} é uma função contínua crescente, então existe uma única medida λ_f definida na álgebra de Borel da reta tal que $\lambda(E) = f(b) - f(a)$ quando E = (a, b). Esta é a medida de Borel-Stieltjes gerada por f.

Exemplo 2.6. Se $\mu: \Sigma \to \overline{\mathbb{R}}$ é uma medida tal que $\mu(E) \in [0,1]$ para todo $E \in \Sigma$ e $\mu(X) = 1$, então a tripla (X, Σ, μ) é chamada de **espaço de probabilidade**.

Lema 2.1. Seja (X, Σ, μ) um espaço de medida. Então

- a) Se $E, F \in \Sigma$ e $E \subseteq F$, então $\mu(E) \leq \mu(F)$.
- b) Se $E, F \in \Sigma$, $E \subseteq F$ e $\mu(E) < \infty$), então $\mu(F \setminus E) = \mu(F) \mu(E)$.
- c) Se (E_n) é uma sequência crescente em Σ , então

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim \mu(E_n).$$

d) Se (F_n) é uma sequência decrescente em Σ e $\mu(F_n) < \infty$ para todo $n \in \mathbb{N}$, então

$$\mu\left(\bigcap_{n=1}^{\infty} F_n\right) = \lim \mu(F_n).$$

Demonstração.

a) Basta escrever F como sendo a união disjunta $(F\setminus E)\cup E$. Daí, pela positividade de μ e σ -aditividade conclui-se que

$$\mu(E) < \mu(E) + \mu(F \setminus E) = \mu(F).$$

b) Como $\mu(E) < \infty$, podemos subtraí-la de ambos os lados da igualdade $\mu(F) = \mu(F \setminus E) + \mu(E)$ e obter a igualdade desejada.

c) No caso em que $\mu(E_n) = \infty$ para algum $n \in \mathbb{N}$, a igualdade é imediata. Suponha agora que $\mu(E_n) < \infty$ para todo $n \in \mathbb{N}$. Defina $G_n := E_n \setminus E_{n-1}$ e por consistência, defina $E_0 = \emptyset$. Claramente $G_{n+1} \cap G_n = \emptyset$ e $\bigcup_n G_n = \bigcup_n E_n$. Logo, por σ -aditividade temos que

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{k=1}^{\infty} \mu(G_k).$$

Agora, dado $n \in \mathbb{N}$, temos que $\sum_{k=1}^{n} \mu(G_k)$ é uma soma telescópica, ou seja,

$$\sum_{k=1}^{n} \mu(G_k) = \mu(E_n) - \mu(E_0).$$

Como a medida de E_0 é zero, segue que

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \sum_{k=1}^{\infty} \mu(G_k) = \lim \sum_{k=1}^{n} \mu(G_k) = \lim \mu(E_n).$$

d) Observe que

$$\mu(F_n) < \infty \ e \bigcap_{n=1}^{\infty} F_n \subseteq F_n \implies \mu\left(\bigcap_{n=1}^{\infty} F_n\right) < \infty.$$

Além disso, da finitude de $\mu(\bigcap_{n=1}^{\infty} F_n)$ e por $\mu(\bigcap_{n=1}^{\infty} F_n) \subseteq F_1$, temos que

$$\mu\left(F_1 \setminus \bigcap_{n=1}^{\infty} F_n\right) = \mu(F_1) - \mu\left(\bigcap_{n=1}^{\infty} F_n\right). \tag{2.1}$$

Pelas leis de De Morgan, vale que

$$F_1 \setminus \bigcap_{n=1}^{\infty} F_n = \bigcup_{n=1}^{\infty} (F_1 \setminus F_n).$$

Veja que $(F_1 \setminus F_n)_{n \in \mathbb{N}}$ é uma sequência crescente de conjuntos mensuráveis. Daí, pelo item anterior concluímos que

$$\mu\left(F_1\setminus\bigcap_{n=1}^{\infty}F_n\right)=\mu\left(\bigcup_{n=1}^{\infty}(F_1\setminus F_n)\right)=\lim\mu(F_1\setminus F_n).$$

Usando o item b, temos que

$$\mu\left(F_1 \setminus \bigcap_{n=1}^{\infty} F_n\right) = \mu(F_1) - \lim \mu(F_n). \tag{2.2}$$

Como (F_n) é uma sequência decrescente, temos que $0 \le \mu(F_{n+1}) \le \mu(F_n) \le \mu(F_1) < \infty$, ou seja, a sequência das medidas é uma sequência não-crescente e limitada de números reais e portanto é convergente.

Usando as eq. (2.1) e eq. (2.2), conclui-se que

$$\lim \mu(F_n) = \mu\left(\bigcap_{n=1}^{\infty} F_n\right).$$

Definição 2.2. Sejam P uma proposição e X um espaço de medida. Diz-se que P vale em quase toda parte pela medida μ , abreviadamente $q.t.p.[\mu]$, se existe um conjunto $N \in \Sigma$ tal que $\mu(N) = 0$ e P vale no complementar de N. Quando a medida mu está subentendida, simplesmente diz-se que a P vale em quase toda parte — abreviadamente q.t.p..

Se (f_n) é uma sequência num espaço de medida, então ela converge em q.t.p[μ] se existe $N \in \Sigma$ tal que $\mu(N) = 0$ e $\lim f_n(x) = f(x)$ para todo $x \notin N$. Isto é denotado por

$$f = \lim f_n, \ q.t.p.[\mu].$$

Por vezes pode ser útil relaxar alguns dos axiomas que definem uma medida, como por exemplo na

Definição 2.3. Seja (X, Σ, μ) um espaço de medida. Uma **carga** é uma função $\lambda: \Sigma \to \mathbb{R}$ que é σ -aditiva e tal que $\lambda(\emptyset) = 0$.

Exercício 2.1. Mostre que a combinação linear de cargas também é uma carga.

Construção de medidas

2.2 Integração

Para iniciar o estudo de integração no contexto de teoria da medida, trabalharemos primeiro com um caso mais simples, que mais para a frente permitirá a definição da *integral de Lebesgue*.

Antes de prosseguirmos, é pertinente apresentar a notação a seguir: se (X, Σ, μ) for um espaço de medida, o conjunto de todas as funções mensuráveis não-negativas definidas neste espaço é denotado por $M^+(X, \Sigma)$. Além do mais, nesta subseção trabalharemos com um espaço de medida (arbitrário) (X, Σ, μ) fixado.

Definição 2.4. Uma função $\varphi: X \to \mathbb{R}$ é dita **simples** se admite apenas um número finito de valores.

Seja $\{E_j\}_{j=1}^n$ uma partição de X tal que uma função simples e mensurável φ assume apenas um valor a_j em cada E_j , sendo que $i \neq j \implies a_i \neq a_j$.

Podemos representar tal função unicamente como

$$\varphi = \sum_{j=1}^{n} a_j \chi_{E_j},$$

onde $a_j \in \mathbb{R}$ é o valor de φ em E_j . Essa representação de φ é única e será chamada de representação padrão de φ .

Definição 2.5. Seja $\varphi \in M^+(X,\Sigma)$ uma função simples. Na representação padrão, a integral de φ relativa à medida μ é o valor

$$\int \varphi d\mu = \sum_{j=1}^{n} a_j \mu(E_j).$$

Lema 2.2. Seja $\varphi \in M^+(X,\Sigma)$ uma função simples. A integral $\int \varphi d\mu$ independe da representação de φ .

Demonstração.

Seja

$$\varphi = \sum_{k=1}^{m} b_k \mu(F_k)$$

uma representação de φ , onde $\{F_k\}_{k=1}^m$ é outra partição de X e os coeficientes $c_k \in [0, +\infty)$ não são todos distintos. Observe que o conjunto das interseções não-vazias $\{E_j \cap F_k\}$ forma uma partição de X, logo se $x \in X$ pertence a um elemento arbitrário deste conjunto, digamos $E_{j_0} \cap F_{k_0}$, então $a_{j_0} = \varphi(x) = b_{k_0}$. Daí, segue que:

$$\int \varphi d\mu = \sum_{j=1}^{n} a_j \mu(E_j) = \sum_{j=1}^{n} \sum_{k=1}^{m} a_j \mu(E_j \cap F_k).$$

A soma acima percorre todos os índices, pois nas interseções vazias temos $\mu(E_j \cap F_k) = 0$. Pela observação acima, segue que

$$\int \varphi d\mu = \sum_{k=1}^{m} \sum_{j=1}^{n} b_k \mu(E_j \cap F_k) = \sum_{k=1}^{m} b_k \mu(F_k),$$

sendo a última igualdade obtida pelo fato de $\{E_j \cap F_k\}$ ser uma partição de X.

Com consequência da definição 2.5, temos o

Lema 2.3. a) Sejam $\varphi, \psi \in M^+(X, \Sigma)$ funções simples e $c \geq 0$. Então

$$\int c\varphi d\mu = c \int \varphi d\mu,$$

$$\int (\varphi + \psi) \mathrm{d}\mu = \int \varphi \mathrm{d}\mu + \int \psi \mathrm{d}\mu.$$

b) Se $\lambda: \Sigma \to \overline{\mathbb{R}}$ for definida para cada $E \in \Sigma$ por

$$\lambda(E) := \int \varphi \chi_E \mathrm{d}\mu,$$

então λ é uma medida em X.

Demonstração.

a) Considere o caso em que c=0. Então, $c\varphi$ é identicamente zero e portanto $\int c\varphi \mathrm{d}\mu = 0$. Além disso, sendo $\int \varphi \mathrm{d}\mu$ ser finita ou não, temos que $0\int \varphi \mathrm{d}\mu = 0$, logo vale a igualdade do lema. Suponha agora que c>0. Neste caso, a representação padrão de $c\varphi$ é

$$c\varphi = \sum_{j=1}^{n} ca_j \chi_{E_j},$$

donde conclui-se que sua integral é

$$\int c\varphi d\mu = \sum_{j=1}^{n} ca_{j}\mu(E_{j}) = c\sum_{j=1}^{n} ca_{j}\mu(E_{j}) = c\int \varphi d\mu.$$

Seja $\psi = \sum_{k=1}^{m} b_k \chi_{F_k}$ a representação padrão de ψ . Sendo $\{F_k\}_{k=1}^{m}$ também uma partição de X, facilmente vemos que

$$\int \varphi d\mu + \int \psi d\mu = \sum_{j=1}^{n} a_j \mu \left(\bigcup_{k=1}^{m} E_j \cap F_k \right) + \sum_{k=1}^{m} b_k \mu \left(\bigcup_{j=1}^{n} E_j \cap F_k \right).$$

Visto que $\{E_j \cap F_k\}$ forma uma partição de X, pela σ -aditividade de μ temos que

$$\int \varphi d\mu + \int \psi d\mu = \sum_{j=1}^{n} \sum_{k=1}^{m} (a_j + b_k) \mu(E_j \cap F_k)$$

O lado direito da igualdade acima é uma representação não-padrão de $\varphi+\psi$. Como a integral de uma função simples não-negativa independe de sua representação (lema 2.2), obtemos a igualdade desejada.

b) Basta mostrar que λ obedece às propriedades listadas na definição 2.1. Veja que

$$\varphi \chi_E = \sum_{j=1}^n a_j \chi_{E_j \cap E}.$$

Daí:

$$\lambda(E) = \sum_{j=1}^{n} a_j \int \chi_{E_j \cap E} d\mu = \sum_{j=1}^{n} a_j \mu(E \cap E_j).$$

Para cada E_j , o mapa $E \in \Sigma \mapsto \mu(E_j \cap E$ é uma medida. Com efeito, se $E = \emptyset$, então $E_j \cap \emptyset = \emptyset$ e portanto $\mu(E \cap \emptyset) = 0$. Como este mapa é a restrição de μ ao conjunto $\{E_j \cap E : E \in \Sigma\} \subset \Sigma$, a não-negatividade é imediata. Por último, se $\{F\}_{k=1}^{\infty}$ é uma coleção disjunta de conjuntos mensuráveis, temos que

$$\mu\left(E_j\cap\bigcup_{k=1}^\infty F_k\right)=\mu\left(\bigcup_{k=1}^\infty (E_j\cap F_k)\right).$$

Como essas interseções são disjuntas, vale a σ -aditividade.

Como a multiplicação usual de uma medida por um número não-negativo ainda é uma medida e a soma usual de medidas também é uma medida, conclui-se que λ satisfaz a definição 2.1.

Definição 2.6. Se $f \in M^+(X,\Sigma)$, a integral de f com respeito à medida μ é definida como

$$\int f \mathrm{d}\mu := \sup_{\varphi \le f} \int \varphi \mathrm{d}\mu,$$

onde o supremo é tomado no conjunto das funções simples não-negativas mensuráveis.

No caso em que E é um conjunto mensurável, define-se a integral de f em E com respeito à medida μ como

$$\int_E f \mathrm{d}\mu := \sup_{\varphi \le f} \int \varphi \chi_E \mathrm{d}\mu.$$

As integrais da definição 2.6 estão bem definidas pois todo subconjunto da reta estendida admite supremo (convença-se disso, ou seja, demonstre esse fato). Além disso, a monotonicidade destas integrais é assegurada pelo

Lema 2.4. a) Sejam $f, g \in M^+(X, \Sigma)$ tais que $f(x) \leq g(x) \ \forall x \in X$. Então

$$\int f \mathrm{d}\mu \le \int g \mathrm{d}\mu.$$

b) Sejam E e F conjuntos mensuráveis tais que $E \subseteq F$. Então

$$\int_{E} f \mathrm{d}\mu \le \int_{F} f \mathrm{d}\mu.$$

Demonstração.

a) Sejam $\Phi_f^+=\{\varphi\in M^+(X,\Sigma):\ \varphi \text{ \'e simples e }0\leq\varphi\leq f\}$ e Φ_g^+ o conjunto análogo para a função g. Como $f\leq g,$ então $\Phi_f^+\subseteq\Phi_g^+.$ Disto, rapidamente verifica-se que vale a desigualdade desejada.

b) Como $f\chi_E \leq f\chi_F$, ao aplicarmos o item a obtemos a desigualdade desejada.

A partir da definição 2.6 e do lema 2.4, podemos enunciar um dos teoremas essenciais de convergência na teoria de integração de Lebesgue:

Teorema 2.1 (convergência dominada). Seja (f_n) uma sequência não-decrescente de funções em $M^+(X,\Sigma)$ que converge para uma função f, então

$$\int f \mathrm{d}\mu = \lim_{n \to \infty} \int f_n \mathrm{d}\mu.$$

Demonstração.

Pelo corolário 1.3, temos que f é mensurável. Além disso, pelo lema 2.4, para todo $n \in \mathbb{N}$, valem as seguintes desigualdades:

$$\int f_n \mathrm{d}\mu \le \int f_{n+1} \mathrm{d}\mu \le \int f \mathrm{d}\mu,$$

donde conclui-se que

$$\lim_{n \to \infty} \int f_n d\mu \le \int f d\mu.$$