1

NCERT Physics 11.15 Q14

EE23BTECH11212 - ABBURI TANUSHA*

Question: A wire stretched between two rigid supports vibrates in its fundamental mode with a frequency of 45 Hz. The mass of the wire is 3.5×10^{-2} kg, and its linear mass density is 4.0×10^{-2} kg/m. The length of the wire is 0.875 m. Determine the speed of a transverse wave on the string and the tension in the string.

Solution: The following information is provided in the question:

Parameters	Values
Mass per unit length	$4.0 \times 10^{-2} \text{ kg/m}$
Frequency	45 Hz
Mass	$3.5 \times 10^{-2} \mathrm{kg}$

TABLE I Parameters

Fig. 1. Stretched string between two rigid supports

Fig. 2. Tensions acting on the small element of the string

The angle θ between the string and the *x*-direction is much smaller than 1, so $\sin \theta \approx \theta$ and $\cos \theta \approx 1$. Let's apply Newton's second law in the vertical *y* direction:

$$F_{v} = ma_{v} \tag{1}$$

The sum of forces in the Y direction is

Fig. 3. Forces acting on the body in Y-direction

From Figure Fig. 2

$$F_{v} = T\sin\theta_2 - T\sin\theta_1 \tag{2}$$

Using the small angle approximation, $\sin \theta \approx \tan \theta = \frac{\partial y}{\partial x}$. So we may write:

$$F = T \left(\frac{dy}{dx} \Big|_2 - \frac{dy}{dx} \Big|_1 \right) \tag{3}$$

The acceleration in the y direction is the rate of change in the y velocity, so $a_y = \frac{\partial v_y}{\partial t} = \frac{\partial^2 y}{\partial t^2}$. Now, Newton's second law in the y direction

$$F = T \left(\frac{dy}{dx} \Big|_2 - \frac{dy}{dx} \Big|_1 \right) = \mu dx \frac{d^2y}{dt^2}$$
 (4)

$$\frac{d^2y}{dt^2} = \frac{T}{\mu} \left(\frac{dy}{dx} \Big|_2 - \frac{dy}{dx} \Big|_1 \right) \tag{5}$$

Now we have been using the subscript 1 to identify the position x, and 2 to identify the position (x+dx).

$$\frac{d^2y}{dt^2} = \frac{T}{u}\frac{d^2y}{dx^2} \tag{6}$$

So the acceleration is proportional to the tension T and inversely proportional to the mass per unit length μ . It is also proportional to $\frac{\partial^2 y}{\partial x^2}$. $y = A \sin(kx - \omega t)$, Wave speed in a stretched string.

However, to be a solution to

$$\frac{d^2y}{dt^2} = \frac{T}{\mu} \frac{d^2y}{dx^2},\tag{7}$$

The second partial derivatives of $y = A \sin(kx - \omega t)$ with respect to x and t are given by:

$$\frac{\partial^2 y}{\partial x^2} = -k^2 A \sin(kx - \omega t),\tag{8}$$

$$\frac{\partial^2 y}{\partial t^2} = -\omega^2 A \sin(kx - \omega t). \tag{9}$$

In other words, $y = A \sin(kx - \omega t)$ is a solution provided that

$$\frac{T}{\mu} = \frac{\omega^2}{k^2}.\tag{10}$$

In Travelling waves II, we saw that $\frac{\omega}{k}$ was the wave speed v, so we now have an expression for the speed of a wave in a stretched string:

$$v = \sqrt{\frac{T}{\mu}} \tag{11}$$

This completes the derivation of the wave speed using first principles.

1. Find the wavelength (λ) for the fundamental mode:

$$\lambda = 2L \quad \Rightarrow \quad \lambda = 2 \times 0.875 \,\mathrm{m} = 1.75 \,\mathrm{m} \quad (12)$$

2. Use the frequency and wavelength to find the wave speed (v):

$$v = f \cdot \lambda$$
 \Rightarrow $v = 45 \text{ Hz} \times 1.75 \text{ m} = 78.75 \text{ m/s}$
(13)

3. Use the wave speed (v) to find the tension (T) using the wave equation:

$$T = \mu \cdot v^2 \tag{14}$$

$$T = (4 \times 10^{-2} \text{ kg/m}) \times (78.75 \text{ m/s})^2 = 123.1875 \text{ N}$$
(15)

Therefore, the speed of the transverse wave on the string is 78.75 m/s, and the tension in the string is 123.1875 N.