		Note	2
	Ι,	I	П
Name Vorname	$\begin{vmatrix} 1 \end{vmatrix}$		
	2		
Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach)			
	3		
Unterschrift der Kandidatin/des Kandidaten	4		
	5		
TECHNISCHE UNIVERSITÄT MÜNCHEN			
Fakultät für Mathematik	6		
Klausur	7		
MA9202 Mathematik für Physiker 2	'		
(Analysis 1)	8		
,			
Prof. Dr. M. Keyl	9		
0. F-h 2016, 10-20, 12-00 III			
9. Februar 2016, 10:30 – 12:00 Uhr	\sum		
Hörsaal: Platz: Platz:			
Hinweise:	I.		
Überprüfen Sie die Vollständigkeit der Angabe: $m{9}$ Aufgaben	'	Erstkorrek	tur
Bearbeitungszeit: 90 min			
Erlaubte Hilfsmittel: ${f ein}$ selbsterstelltes DIN A4 Blatt		Zweitkorre	ktur
	╛		
Nur von der Aufsicht auszufüllen:			
Hörsaal verlassen von bis			
Vorzeitig abgegeben um			

Besondere Bemerkungen:

1. Vollständige Induktion Beweisen Sie mittels vollständiger Induktion, dass	[8 Punkte]
(a) $4^n + 5$ ist für alle $n \in \mathbb{N}_0$ durch 3 teilbar.	
(b) $4^n + 15n - 1$ ist für alle $n \in \mathbb{N}_0$ durch 9 teilbar. <i>Hinweis:</i> Benutzen Sie Teil (a).	

Γ

٦

2. Komplexe Zahlen

[8 Punkte]

(a) Bestimmen Sie Real– und Imaginärteil von $\sqrt{8+6i}$

$$\operatorname{Re}\left(\sqrt{8+6i}\right) =$$

$$\operatorname{Im}\left(\sqrt{8+6i}\right) =$$

(b) Geben Sie Betrag und Argument von $\left(1 - \frac{\sqrt{3}}{i}\right)^{-1}$ an.

$$\left| \left(1 - \frac{\sqrt{3}}{i} \right)^{-1} \right| =$$

$$\arg\left(\left(1 - \frac{\sqrt{3}}{i}\right)^{-1}\right) =$$

3. Konvergenz von Folgen und Reihen	[6 Punkte]				
(a) Bestimmen Sie den Grenzwert $\lim_{n\to\infty} \left(\ln(n^4+n^2)-4\ln(n)\right)$.					
$\square = -\infty$ $\square = 0$ $\square = \ln(2)$ $\square = \frac{1}{2}$ $\square = 1$ $\square = \infty$	\square existiert nicht				
(b) Gegen welchen Wert ist die Reihe $\sum_{n=1}^{\infty} \frac{n^n}{e^n}$ eigentlich oder uneigentlich konvergent?					
$\square \ \frac{1}{2} \square \ 1 \square \ 3 \square \ 0 \square \ \frac{3}{7} \square \ \frac{4}{7} \square \ \infty \square \ \text{keiner der ange}$	egebenen Werte				
(c) Die Reihe $\sum_{n=1}^{\infty} \frac{e^{in^2 \pi}}{n(n+1)}$ ist					
\square konvergent \square absolut konvergent \square bestimmt divergent	$t \Box \; \mathrm{undefiniert}$				

4. Konvergenzkriterien [10 Punkte] Prüfen Sie mit dem Wurzel-, Quotienten- und Majorantenkriterium nach, ob die Reihe $\sum_{k=1}^{\infty} \frac{1}{k^k}$ kon-
Prüfen Sie mit dem Wurzel-, Quotienten- und Majorantenkriterium nach, ob die Reihe $\sum_{k=1}^{\infty} \frac{1}{k^k}$ konvergiert.

5. Grenzwerte von Funktionen, stetige Fortsetz	zbarkeit
--	----------

[7 Punkte]

- (a) Bestimmen sie den Grenzwert $\lim_{x \to \infty} \frac{\ln(\ln x)}{\sqrt{\ln(x)}}$.
- (b) Begründen Sie warum die Funktion $f: \mathbb{R} \setminus \{-1,1\} \to \mathbb{R}$, $f(x) = \frac{x^2 + 3x + 2}{x^2 1}$ stetig ist und geben Sie mögliche stetige Fortsetungen in den Punkten ± 1 an.

	vergenz von Funktionenfolgen [7 Punkte] achten Sie die Funktionenfolge $f_n : \mathbb{R} \to \mathbb{R}, x \mapsto f_n(x) = \sin(\frac{x}{n}); n \in \mathbb{N}$ und zeigen Sie
(a)	$(f_n)_{n\in\mathbb{N}}$ konvergiert punktweise gegen $f:\mathbb{R}\to\mathbb{R},\ x\mapsto f(x)=0$. Mit anderen Worten: $\forall x\in\mathbb{R}$ $\lim_{n\to\infty}f_n(x)=0$.
	Die Konvergenz ist auf $\mathbb R$ nicht gleichmäßig. $\sup_{x\in\mathbb R} f_n(x)-f(x) $ konvergiert also für $n\to\infty$ nicht gegen 0.
(c)	Schränken wir die f_n dagegen auf das kompakte Intervall $I=[0,1]$ ein, ist die Konvergent gleichmäßig. Mit anderen Worten: $\lim_{n\to\infty}\sup_{x\in I} f_n(x)-f(x) =0$.

7. Taylorentwicklung

[6 Punkte]

Gegeben sei die Funktion $f:(-1,\infty)\to\mathbb{R},\,x\mapsto\sqrt{x+1}.$

- (a) Bestimmen Sie die ersten vier Ableitungen von f.
- (b) Bestimmen Sie das Taylorpolynom 4. Ordnung $T_4f(x,0)$ um den Entwicklungspunkt 0.
- (c) Benutzen Sie die bekannte Aussage $f(x) = Tf_4(x,0) + O(x^5), x \to 0$ um zu zeigen, dass

$$\frac{\sqrt{x+1}}{x} = \frac{1}{x} + \frac{1}{2} - \frac{x}{8} + \frac{x^2}{16} - \frac{5x^3}{128} + O(x^4), \quad x \to 0$$

gilt.

0	Stammfunktionen
ο.	Stammunktionen

[9 Punkte]

Gegeben Sie für die folgenden Funktionen Stammfunktionen an:

$$\int e^x x^2 dx = \boxed{$$

$$\int \frac{x \cos(x^2)}{\sin(x^2)} dx = \boxed{}$$

$$\int \frac{dx}{x^2 - 1} = \boxed{}$$

9. Integration Für welche Werte von $a, b \in \mathbb{R}$ konvergiert das Integral $\int_{-\infty}^{\infty} \frac{1}{(x-a)^2+b^2} dx$? Bestimmen Sie im Konvergenzfall seinen Wert.	[7 Punkte]
Destination of an incircon general work.	