Chapter 5

- 1.) a.) $\alpha^{-1} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 3 & 5 & 4 & 6 \end{bmatrix}$ b.) $\beta \alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 6 & 2 & 3 & 4 & 5 \end{bmatrix}$

 - c.) $\alpha\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 2 & 1 & 5 & 3 & 4 \end{bmatrix}$
- 3.) a.) (1235)(413) = (15)(234)
 - b.) (13256)(23)(45612) = (124635)
 - c.) (12)(13)(23)(142) = (1423)
- 5.) The order of a permutation is given by the least common multiple of the lengths of its disjoint cycles.
 - a.) |(124)(357)| = lcm(3,3) = 3
 - a.) |(124)(3567)| = lcm(3,4) = 12
 - c.) |(124)(35)| = lcm(3,2) = 6
 - d.) |(124)(357869)| = lcm(3,6) = 6
 - e.) |(1235)(24567)| = lcm(4,5) = 20
 - f.) |(345)(245)| = lcm(3,3) = 3

Chapter 6

- 1.) I am assuming that, in this case, the even integers include negatives, as the non-negative even integers do not form a group under addition. Let f(n) = 2n. First we will show that f is injective. Let $a, b \in \mathbb{Z}$ where f(a) = f(b), thus 2a = 2b, thus a = b, thus f is injective. Next, we will show that f is surjective. Let a be an even integer, thus a=2n for some $n\in\mathbb{Z}$, thus a/2 is an integer. From this we can see that f(a/2) = 2(a/2) = a, thus f is surjective, and thus bijective. Finally, given $a, b \in \mathbb{Z}$, we can see that f(a+b) = 2(a+b) = 2a+2b = f(a)+f(b), thus f is an isomorphism from the integers to the even integers.
- 6.) Let G, H, and K be groups with operation *. Let $f: G \to G$ where f(g) = g. Let $a, b \in G$, thus f(a*b) = a*b = f(a)*f(b). In addition, f is trivially bijective, thus f is an isomorphism from G to G, thus $G \cong G$, thus group isomorphism is reflexive.

Next, let $G \cong H$, thus there exists a bijective $f: G \to H$ where f(a * b) = f(a) * f(b) for all $a, b \in G$. Since f is bijective, there exists an inverse function f^{-1} that is also bijective. Let $a, b \in G$, thus $f(a), f(b) \in H$. We can see that $f^{-1}(f(a) * f(b)) = f^{-1}(f(a * b)) = a * b = a * b$ $f^{-1}(f(a)) * f^{-1}(f(b))$, thus f^{-1} is an isomorphism from H to G, thus $H \cong G$, thus group isomorphism is symmetric.

Finally, let $G \cong H$ and $H \cong K$, thus there exist isomorphisms $f: G \to H$ and $g: H \to K$. Let $h = q \circ f$ and let $a, b \in G$, then h(a * b) = q(f(a * b)) = q(f(a) * f(b)) = q(f(a)) * q(f(b)) = q(f(b)) * q(f(b)) = qh(a) * h(b), thus $G \cong K$, thus group isomorphism is transitive.

It follows that group isomorphism is an equivalence relation.