Problem A. Bigram Language Model

Input file: stdin
Output file: stdout
Time limit: 5 second

In natural language processing, language models gives how likely a certain English sentence appear in a context (e.g. casual conversations, academic papers, or news websites) by assigning a probability distribution over all possible sentences. Bigram language model approaches this modeling problem by estimating the transition probabilities from previous word to next word. Formally,

$$P(S = w_1 w_2 \dots w_m) = P(w_1) P(w_2 \mid w_1) \dots P(w_m \mid w_{m-1})$$

We can estimate transition probabilities from word s to t from a corpus (a collection of sentences) collected from the context:

$$P(t \mid s) = \frac{c(s,t)}{\sum_{t'} c(s,t')}$$

where c(s,t) denotes the total number of times that word t comes right after word s in the same sentence in the corpus.

Suzukaze has collected a corpus and is trying to compute the probability of some sentences. He needs your help to get some transition probabilities. Can you help him?

Input

The first line contains an integer n ($1 \le n \le 1000$), the number of sentences in the corpus.

In the following n lines, the i-th line starts with an integer m_i ($1 \le m_i \le 100$), the number of words in the i-th sentence. It is then followed by m_i space-separated words.

The next line contains an integer q ($1 \le q \le 10^4$), the number of queries.

In the following q lines, each line contains two space-separated words s and t, querying for the estimated transition probability from word s to t.

All words in the corpus and queries are no more than 10 characters long and contain lowercase letters only.

Output

For each query, output a line containing a real number - the estimated transition probability for the queried word pair. Always print 4 digits after the decimal point.

If you cannot estimate the transition probability from the corpus, print "Insufficient data" instead.

UIUC ICPC Spring Coding Contest 2019 University of Illinois at Urbana-Champaign, Saturday, April 13th, 2019

Examples

stdin	stdout
5	1.0000
7 get busy living or get busy dying	0.5000
4 stay hungry stay foolish	1.0000
6 whatever you do do it well	Insufficient data
6 everything you can imagine is real	0.5000
5 the things you can find	0.3333
8	0.6667
get busy	0.5000
busy living	
hungry stay	
foolish stay	
do do	
you do	
you can	
can find	

Problem B. Greenberg Mass Comparison

Input file: stdin
Output file: stdout
Time limit: 1 second

Linguist Joseph Greenberg proposed the method of mass comparison for determining genetic relatedness between languages. In this method, N languages are categorized into one or more families. Formally, given a set of N different languages $\mathcal{L} = \{L_1, \ldots, L_N\}$, a relation analysis is a set of families \mathcal{F} , satisfying the following properties:

- $\mathcal{F} = \{F_1, \dots, F_k\}$ for some k
- For $1 \leq i \leq k$, $F_i = \{L_{i,1}, \dots, L_{i,m_i}\}$ for some m_i
- For $1 \le i, j \le k, i \ne j, F_i \cap F_j = \emptyset$
- $\bigcup_{1 \leq i \leq k} F_i = \mathcal{L}$

Greenberg wants to know how many distinct relation analysis are there for N languages. Two relation analyses \mathcal{F}_1 and \mathcal{F}_2 are distinct if $\mathcal{F}_1 \neq \mathcal{F}_2$. Can you help him compute this number?

Input

The first line of input contains a single integer T ($1 \le T \le 100$), the number of test cases. In the following T lines, each line contains a single integer N ($1 \le N \le 100$).

Output

For each test case, output a line containing the answer for the queried N.

Examples

stdin	stdout
4	1
1	2
2	5
3	157450588391204931289324344702531067
40	