SEQUENCE LISTING

<110>	BUNEMANN, MORITZ VILARDAGA, JEAN PIERRE HOFFMAN, CARSTEN LOHSE, MARTIN JOHANNES	
<120>	MILLISECOND ACTIVATION SWITCH FOR SEVEN-TRANSMEMBRANE PROTEINS	;
<130>	VOSS:008US	
<140> <141>	10/538985 2005-06-15	
<150> <151>	DE 102 59 874.6 2002-12-19	
<150> <151>	DE 102 59 874.6 2002-12-19	
<150> <151>	EP 03 00 4394.7 2003-03-03	
<160>	46	
<170>	PatentIn version 3.1	
<210><211><212><212><213>	1 1409 DNA Mouse	
<400> atgggc	1 tacc catacgacgt cccagactac gccagcatgg gctcactgca gccggatgcc	60
ggcaaca	agca gctggaacgg gaccgaagcg cccggaggcg gcacccgagc caccccttac	120
tccctg	cagg tgacactgac gctggtttgc ctggctggcc tgctcatgct gttcacagta	180
tttggca	aacg tgctggttat tatcgcggtg ttcaccagtc gcgcgctcaa agctccccaa	240
aacctc	ttcc tggtgtccct ggcctcagcg gacatcctgg tggccacgct ggtcattccc	300
ttttct	ttgy ccaacgaggt tatgggttac tggtactttg gtaaggtgtg gtgtgagatc	360

tatttggctc tcgacgtgct cttttgcacg tcgtccatag tgcacctgtg cgccatcagc 420 cttgaccgct actggtccat cacgcaggcc atcgagtaca acctgaagcg cacgccgcgt 480 cgcatcaagg ccatcattgt caccgtgtgg gtcatctcgg ctgtcatctc cttcccgcca 540 ctcatctcca tagagaagaa gaccagaagt ggtatgtcat ctcctcgtcc atcggttcct 600 tettegegee ttgeeteate atgateetgg tetaegtgeg tatttaceag ategeeaage 660 gtegeaceeg egtgeeteec ageegeeggg gteeggaege etgtteegeg eegeeggggg 720 gegeegateg caggeecaac gggetgggee eggagegegg egegggteec aegggegetg 780 aggeggagee getgeeeace eagettaaeg gtgeeeeggg ggageeegeg eeegeegge 840 cccgcgatgg ggatgcgctg gacctagagg agagttcgtc gtccgagcac gccgagcggc 900 ccccggggcc ccgcagaccc gaccgcggcc cccgagccaa gggcaagacc cgggcgagtc 960 aggtgaagcc gggggacagt ctgccgcggc gcggggcccgg ggccgcgggg ccgggggctt 1020 cggggtccgg gcacggagag gagcgcggcg ggggcgccaa agcgtcgcgc tggcgcggga 1080 ggcaaaaccg ggagaaacgc ttcacgttcg tgctggcggt ggtgatcggc gtgttcgtgg 1140 tgtgttggtt teegttettt tteaectaea egeteatage ggteggetge eeggtgeeea 1200 gccagctctt caacttcttc ttctggttcg gctactgcaa cagctcgctg aaccctgtta 1260 totacaccat ottoaaccac gacttocgac gogoottoaa gaaqatooto tgoogtqqqq 1320 acagaaaacg catcgtgtga ttcaaccacg acttccgacg cgccttcaag aagatcctct 1380 1409 gccgtgggga cagaaaacgc atcgtgtga

<210> 2

<211> 462

<212> PRT

<213> Mouse

<400> 2

Met Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ser Met Gly Ser Leu
1 5 10 15

Gln Pro Asp Ala Gly Asn Ser Ser Trp Asn Gly Thr Glu Ala Pro Gly
20 25 30

- Gly Gly Thr Arg Ala Thr Pro Tyr Ser Leu Gln Val Thr Leu Thr Leu 35 40 45
- Val Cys Leu Ala Gly Leu Leu Met Leu Phe Thr Val Phe Gly Asn Val 50 55 60
- Leu Val Ile Ile Ala Val Phe Thr Ser Arg Ala Leu Lys Ala Pro Gln 65 70 75 80
- Asn Leu Phe Leu Val Ser Leu Ala Ser Ala Asp Ile Leu Val Ala Thr 85 90 95
- Leu Val Ile Pro Phe Ser Leu Ala Asn Glu Val Met Gly Tyr Trp Tyr 100 105 110
- Phe Gly Lys Val Trp Cys Glu Ile Tyr Leu Ala Leu Asp Val Leu Phe 115 120 125
- Cys Thr Ser Ser Ile Val His Leu Cys Ala Ile Ser Leu Asp Arg Tyr 130 135 140
- Trp Ser Ile Thr Gln Ala Ile Glu Tyr Asn Leu Lys Arg Thr Pro Arg 145 150 155 160
- Arg Ile Lys Ala Ile Ile Val Thr Val Trp Val Ile Ser Ala Val Ile
 165 170 175
- Ser Phe Pro Pro Leu Ile Ser Ile Glu Lys Lys Gly Ala Gly Gly 180 185 190
- Gln Gln Pro Ala Glu Pro Ser Cys Lys Ile Asn Asp Gln Lys Trp Tyr 195 200 205
- Val Ile Ser Ser Ser Ile Gly Ser Phe Phe Ala Pro Cys Leu Ile Met 210 215 220
- Ile Leu Val Tyr Val Arg Ile Tyr Gln Ile Ala Lys Arg Arg Thr Arg 225 230 235 240
- Val Pro Pro Ser Arg Arg Gly Pro Asp Ala Cys Ser Ala Pro Pro Gly
 245 250 255
- Gly Ala Asp Arg Arg Pro Asn Gly Leu Gly Pro Glu Arg Gly Ala Gly

260 265 270

Pro Thr Gly Ala Glu Ala Glu Pro Leu Pro Thr Gln Leu Asn Gly Ala 275 280 285

Pro Gly Glu Pro Ala Pro Ala Gly Pro Arg Asp Gly Asp Ala Leu Asp 290 295 300

Leu Glu Glu Ser Ser Ser Ser Glu His Ala Glu Arg Pro Pro Gly Pro 305 310 315 320

Arg Arg Pro Asp Arg Gly Pro Arg Ala Lys Gly Lys Thr Arg Ala Ser 325 330 335

Gln Val Lys Pro Gly Asp Ser Leu Pro Arg Arg Gly Pro Gly Ala Ala 340 345 350

Gly Pro Gly Ala Ser Gly Ser Gly His Gly Glu Glu Arg Gly Gly 355 360 365

Ala Lys Ala Ser Arg Trp Arg Gly Arg Gln Asn Arg Glu Lys Arg Phe 370 380

Thr Phe Val Leu Ala Val Val Ile Gly Val Phe Val Val Cys Trp Phe 385 390 395 400

Pro Phe Phe Phe Thr Tyr Thr Leu Ile Ala Val Gly Cys Pro Val Pro 405 410 415

Ser Gln Leu Phe Asn Phe Phe Phe Trp Phe Gly Tyr Cys Asn Ser Ser 420 425 430

Leu Asn Pro Val Ile Tyr Thr Ile Phe Asn His Asp Phe Arg Arg Ala 435 440 445

Phe Lys Lys Ile Leu Cys Arg Gly Asp Arg Lys Arg Ile Val 450 455 460

<210> 3

<211> 1785

<212> DNA

<400> 3 atggggaceg cccggatege acceggeetg gegeteetge tetgetgeee egtgeteage 60 teegegtaeg egetggtgga tgeagatgae gteatgaeta aagaggaaca gatetteetg 120 ctgcaccgtg ctcaggccca gtgcgaaaaa cggctcaagg aggtcctgca gaggccagcc 180 agcataatgg aatcagacaa gggatggaca tetgegteea catcagggaa geecaggaaa 240 gataaggcat ctgggaagct ctaccctgag tctgaggagg acaaggaggc acccactggc 300 agcaggtacc gagggcgccc ctgtctgccg gaatgggacc acatcctgtg ctggccgctg 360 ggggcaccag gtgaggtggt ggctgtgccc tgtccggact acatttatga cttcaatcac 420 aaaggccatg cctaccgacg ctgtgaccgc aatggcagct gggagctggt gcctgggcac 480 aacaggacgt gggccaacta cagcgagtgt gtcaaatttc tcaccaatga gactcgtgaa 540 egggaggtgt ttgacegeet gggcatgatt tacacegtgg getacteegt gteeetggeg 600 teceteaceg tagetgtget cateetggee taetttagge ggetgeactg caegegeaac 660 tacatccaca tgcacctgtt cctgtccttc atgctgcgcg ccgtgagcat cttcgtcaag 720 gacgctgtgc tctactctgg cgccacgctt gatgaggctg agcgcctcac cgaggaggag 780 etgegegeea tegeceagge geceegeeg eetgeeaeeg eegetgeegg etaegeggge 840 tgcagggtgg ctgtgacctt cttcctttac ttcctggcca ccaactacta ctggattctg 900 gtggagggc tgtacctgca cagcctcatc ttcatggcct tcttctcaga gaagaagtac 960 etgtgggget teacagtett eggetggggt etgeeegetg tettegtgge tgtgtgggte 1020 agtgtcagag ctaccctggc caacaccggg tgctgggact tgagctccgg gaacaaaaag 1080 tggatcatcc aggtgcccat cctggcctcc attgtgctca acttcatcct cttcatcaat 1140 ategteeggg tgetegeeac caagetgegg gagaceaacg ceggeeggtg tgacacaegg 1200 cagcagtacc ggaagctgct caaatccacg ctggtgctca tgcccctctt tggcgtccac 1260 tacattgtct tcatggccac accatacacc gaggtctcag ggacgctctg gcaagtccag 1320 atgcactatg agatgctctt caactccttc cagggatttt ttgtcgcaat catatactgt 1380 ttctgcaatg gcgaggtaca agctgagatc aagaaatctt ggagccgctg gacactggca 1440 ctggacttca agcgaaaggc acgcagcggg agcagcagct atagctacgg ccccatggtg 1500 teccacacaa gtgtgaccaa tgteggeeee egtgtgggae teggeetgee eeteageeee 1560

cgcctactgc	ccactgccac	caccaacggc	caccctcagc	tgcctggcca	tgccaagcca	1620
gggaccccag	ccctggagac	cctcgagacc	acaccacctg	ccatggctgc	tcccaaggac	1680
gatgggttcc	tcaacggctc	ctgctcaggc	ctggacgagg	aggcctctgg	gcctgagcgg	1740
ccacctgccc	tgctacagga	agagtgggag	acagtcatgt	gatga		1785

<210> 4

<211> 593

<212> PRT

<213> homo sapiens

<400> 4

Met Gly Thr Ala Arg Ile Ala Pro Gly Leu Ala Leu Leu Cys Cys 1 5 10 15

Pro Val Leu Ser Ser Ala Tyr Ala Leu Val Asp Ala Asp Asp Val Met 20 25 30

Thr Lys Glu Glu Gln Ile Phe Leu Leu His Arg Ala Gln Ala Gln Cys 35 40 45

Glu Lys Arg Leu Lys Glu Val Leu Gln Arg Pro Ala Ser Ile Met Glu 50 55 60

Ser Asp Lys Gly Trp Thr Ser Ala Ser Thr Ser Gly Lys Pro Arg Lys 65 70 75 80

Asp Lys Ala Ser Gly Lys Leu Tyr Pro Glu Ser Glu Glu Asp Lys Glu 85 90 95

Ala Pro Thr Gly Ser Arg Tyr Arg Gly Arg Pro Cys Leu Pro Glu Trp
100 105 110

Asp His Ile Leu Cys Trp Pro Leu Gly Ala Pro Gly Glu Val Val Ala 115 120 125

Val Pro Cys Pro Asp Tyr Ile Tyr Asp Phe Asn His Lys Gly His Ala 130 135 140

Tyr 145	Arg	Arg	Cys	Asp	Arg 150	Asn	Gly	Ser	Trp	Glu 155	Leu	Val	Pro	Gly	His 160
Asn	Arg	Thr	Trp	Ala 165	Asn	Tyr	Ser	Glu	Cys 170	Val	Lys	Phe	Leu	Thr 175	Asn
Glu	Thr	Arg	Glu 180	Arg	Glu	Val	Phe	Asp 185	Arg	Leu	Gly	Met	Ile 190	Tyr	Thr
Val	Gly	Tyr 195	Ser	Val	Ser	Leu	Ala 200	Ser	Leu	Thr	Val	Ala 205	Val	Leu	Ile
Leu	Ala 210	Tyr	Phe	Arg	Arg	Leu 215	His	Cys	Thr	Arg	Asn 220	Tyr	Ile	His	Met
His 225	Leu	Phe	Leu	Ser	Phe 230	Met	Leu	Arg	Ala	Val 235	Ser	Ile	Phe	Val	Lys 240
Asp	Ala	Val	Leu	Tyr 245	Ser	Gly	Ala	Thr	Leu 250	Asp	Glu	Ala	Glu	Arg 255	Leu
Thr	Glu	Glu	Glu 260	Leu	Arg	Ala	Ile	Ala 265	Gln	Ala	Pro	Pro	Pro 270	Pro	Ala
Thr	Ala	Ala 275	Ala	Gly	Tyr	Ala	Gly 280	Cys	Arg	Val	Ala	Val 285	Thr	Phe	Phe
Leu	Tyr 290	Phe	Leu	Ala	Thr	Asn 295	Tyr	Tyr	Trp	Ile	Leu 300	Val	Glu	Gly	Leu
Tyr 305	Leu	His	Ser	Leu	Ile 310	Phe	Met	Ala	Phe	Phe 315	Ser	Glu	Lys	Lys	Tyr 320
Leu	Trp	Gly	Phe	Thr 325	Val	Phe	Gly	Trp	Gly 330	Leu	Pro	Ala	Val	Phe 335	Val
Ala	Val	Trp	Val 340	Ser	Val	Arg	Ala	Thr 345	Leu	Ala	Asn	Thr	Gly 350	Cys	Trp
Asp	Leu	Ser 355	Ser	Gly	Asn	Lys	Lys 360	Trp	Ile	Ile	Gln	Val 365	Pro	Ile	Leu
Ala	Ser	Ile	Val	Leu	Asn	Phe	Ile	Leu	Phe	Ile	Asn	Ile	Val	Arg	Val

Leu 385	Ala	Thr	Lys	Leu	Arg 390	Glu	Thr	Asn	Ala	Gly 395	Arg	Cys	Asp	Thr	Arg 400
Gln	Gln	Tyr	Arg	Lys 405	Leu	Leu	Lys	Ser	Thr 410	Leu	Val	Leu	Met	Pro 415	Leu
Phe	Gly	Val	His 420	Tyr	Ile	Val	Phe	Met 425	Ala	Thr	Pro	Tyr	Thr 430	Glu	Val
Ser	Gly	Thr 435	Leu	Trp	Gln	Val	Gln 440	Met	His	Tyr	Glu	Met 445	Leu	Phe	Asn
Ser	Phe 450	Gln	Gly	Phe	Phe	Val 455	Ala	Ile	Ile	Tyr	Cys 460	Phe	Cys	Asn	Gly
Glu 465	Val	Gln	Ala	Glu	Ile 470	Lys	Lys	Ser	Trp	Ser 475	Arg	Trp	Thr	Leu	Ala 480
Leu	Asp	Phe	Lys	Arg 485	Lys	Ala	Arg	Ser	Gly 490	Ser	Ser	Ser	Tyr	Ser 495	Tyr
Gly	Pro	Met	Val 500	Ser	His	Thr	Ser	Val 505	Thr	Asn	Val	Gly	Pro 510	Arg	Val
Gly	Leu	Gly 515	Leu	Pro	Leu	Ser	Pro 520	Arg	Leu	Leu	Pro	Thr 525	Ala	Thr	Thr
Asn	Gly 530	His	Pro	Gln	Leu	Pro 535	Gly	His	Ala	Lys	Pro 540	Gly	Thr	Pro	Ala
Leu 545	Glu	Thr	Leu	Glu	Thr 550	Thr	Pro	Pro	Ala	Met 555	Ala	Ala	Pro	Lys	Asp 560
Asp	Gly	Phe	Leu	Asn 565	Gly	Ser	Cys	Ser	Gly 570	Leu	Asp	Glu	Glu	Ala 575	Ser
Gly	Pro	Glu	Arg 580	Pro	Pro	Ala	Leu	Leu 585	Gln	Glu	Glu	Trp	Glu 590	Thr	Val

Met

<210> 5

<211> 1238

<212> DNA

<213> homo sapiens

<400> 5 atgcccatca tgggctcctc ggtgtacatc acggtggagc tggccattgc tgtgctggcc 60 atcctgggca atgtgctggt gtgctgggcc gtgtggctca acagcaacct gcagaacgtc 120 accaactact ttgtggtgtc actggcggcg gccgacatcg cagtgggtgt gctcgccatc 180 ccctttgcca tcaccatcag caccgggttc tgcgctgcct gccacggctg cctcttcatt 240 geotgetteg teetggteet caegeagage tecatettea gteteetgge categecatt 300 gaccgctaca ttgccatccg catcccgctc cggtacaatg gcttggtgac cggcacgagg 360 gctaagggca tcattgccat ctgctgggtg ctgtcgtttg ccatcggcct gactcccatg 420 ctaggttgga acaactgcgg tcagccaaag gagggcaaga accactccca gggctgcggg 480 gagggccaag tggcctgtct ctttgaggat gtggtcccca tgaactacat ggtgtacttc 540 aacttettte etgtgtgetg gtgeeeetge tgeteatget gggtgtetat ttgeggatet 600 tcctggcggc gcgacgacag ctgaagcaga tggagagcca gcctctgccg ggggagcggg 660 cacggtccac actgcagaag gaggtccatg ctgccaagtc actggccatc attgtggggc 720 tetttgeeet etgetggetg eccetacaea teatcaactg etteaettte ttetgeeeeg 780 actgcagcca cgcccctctc tggctcatgt acctggccat cgtcctctcc cacaccaatt 840 eggttgtgaa teeetteate taegeetaee gtateegega gtteegeeag acetteegea 900 agateatteg cagecacgte etgaggeage aagaacettt caaggeaget ggeaceagtg 960 eccgggtett ggcageteat ggcagtgaeg gagageaggt cageeteegt etcaaeggee 1020 accegecagg agtgtgggec aacggcagtg ctccccacce tgagcggagg cccaatgget 1080 atgccctggg gctggtgagt ggagggagtg cccaagagtc ccaggggaac acgggcctcc 1140 cagacgtgga gctccttagc catgagctca agggagtgtg cccagagccc cctggcctag 1200 atgacccct ggcccaggat ggagcaggag tgtcctga 1238

```
<210> 6
```

<211> 391

<212> PRT

<213> homo sapiens

<400> 6

Met Pro Ile Met Gly Ser Ser Val Tyr Ile Thr Val Glu Leu Ala Ile
1 5 10 15

Ala Val Leu Ala Ile Leu Gly Asn Val Leu Val Cys Trp Ala Val Trp 20 25 30

Leu Asn Ser Asn Leu Gln Asn \dot{V} al Thr Asn Tyr Phe Val Ser Leu Ala 35 40 45

Ala Ala Asp Ile Ala Val Gly Val Leu Ala Ile Pro Phe Ala Ile Thr 50 55 60

Ile Ser Thr Gly Phe Cys Ala Ala Cys His Gly Cys Leu Phe Ile Ala 65 70 75 80

Cys Phe Val Leu Val Leu Thr Gln Ser Ser Ile Phe Ser Leu Leu Ala 85 90 95

Ile Ala Ile Asp Arg Tyr Ile Ala Ile Arg Ile Pro Leu Arg Tyr Asn 100 105 110

Gly Leu Val Thr Gly Thr Arg Ala Lys Gly Ile Ile Ala Ile Cys Trp 115 120 125

Val Leu Ser Phe Ala Ile Gly Leu Thr Pro Met Leu Gly Trp Asn Asn 130 135 140

Cys Gly Gln Pro Lys Glu Gly Lys Asn His Ser Gln Gly Cys Gly Glu 145 150 155 160

Gly Gln Val Ala Cys Leu Phe Glu Asp Val Val Pro Met Asn Tyr Met 165 170 175

Val Tyr Phe Asn Phe Phe Ala Cys Val Leu Val Pro Leu Leu Met

Leu Gly Val Tyr Leu Arg Ile Phe Leu Ala Ala Arg Arg Gln Leu Lys 195 200 205

Gln Met Glu Ser Gln Pro Leu Pro Gly Glu Arg Ala Arg Ser Thr Leu 210 215 220

Gln Lys Glu Val His Ala Ala Lys Ser Leu Ala Ile Ile Val Gly Leu 225 230 235 240

Phe Ala Leu Cys Trp Leu Pro Leu His Ile Ile Asn Cys Phe Thr Phe 245 250 255

Phe Cys Pro Asp Cys Ser His Ala Pro Leu Trp Leu Met Tyr Leu Ala 260 265 270

Ile Val Leu Ser His Thr Asn Ser Val Val Asn Pro Phe Ile Tyr Ala 275 280 285

Tyr Arg Ile Arg Glu Phe Arg Gln Thr Phe Arg Lys Ile Ile Arg Ser 290 295 300

His Val Leu Arg Gln Gln Glu Pro Phe Lys Ala Ala Gly Thr Ser Ala 305 310 315 320

Arg Val Leu Ala Ala His Gly Ser Asp Gly Glu Gln Val Ser Leu Arg 325 330 335

Leu Asn Gly His Pro Pro Gly Val Trp Ala Asn Gly Ser Ala Pro His 340 345 350

Pro Glu Arg Arg Pro Asn Gly Tyr Ala Leu Gly Leu Val Ser Gly Gly 355 360 365

Ser Ala Gln Glu Ser Gln Gly Asn Thr Gly Leu Pro Asp Val Glu Leu 370 380

Leu Ser His Glu Leu Lys Gly 385 390

```
<211> 720
<212> DNA
<213> artificial sequence
```

<220>

<223> eCFP (enhanced CFP) cDNA sequence

<400> atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60 ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120 ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180 ctcgtgacca ccctgacctg gggcgtgcag tgcttcagcc gctaccccga ccacatgaag 240 300 cagcacgact tetteaagte egecatgeee gaaggetaeg teeaggageg caccatette ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360 gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420 aagctggagt acaactacat cagccacaac gtctatatca ccgccgacaa gcagaagaac 480 ggcatcaagg ccaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540 gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600 tacctgagca cccagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660

ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtacaagtaa

720

<210> 8

<211> 239

<212> PRT

<213> artificial sequence

<220>

<223> eCFP (enhanced CFP) amino acid sequence

<400> 8

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu 1 5 10 15

- Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly 20 25 30
- Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 35 40 45
- Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 50 55 60
- Leu Thr Trp Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys 65 70 75 80
- Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 95
- Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 105 110
- Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly 115 120 125
- Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135 140
- Asn Tyr Ile Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys Asn 145 150 155 160
- Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 175
- Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly
 180 185 190
- Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu 195 200 205
- Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 210 215 220
- Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 225 230 235

<210> 9 <211> 720 <212> DNA <213> artificial sequence <220> <223> YFP cDNA sequence <400> 9 atggtgagca agggcgagga gctgttcacc ggggtggtgc ccatcctggt cgagctggac 60 ggcgacgtaa acggccacaa gttcagcgtg tccggcgagg gcgagggcga tgccacctac 120 ggcaagctga ccctgaagtt catctgcacc accggcaagc tgcccgtgcc ctggcccacc 180 ctcgtgacca ccttcggcta cggcctgcag tgcttcgccc gctaccccga ccacatgaag 240 cagcacgact tetteaagte egecatgeee gaaggetacg teeaggageg caccatette 300 ttcaaggacg acggcaacta caagacccgc gccgaggtga agttcgaggg cgacaccctg 360 gtgaaccgca tcgagctgaa gggcatcgac ttcaaggagg acggcaacat cctggggcac 420 aagctggagt acaactacaa cagccacaac gtctatatca tggccgacaa gcagaagaac 480 ggcatcaagg tgaacttcaa gatccgccac aacatcgagg acggcagcgt gcagctcgcc 540 gaccactacc agcagaacac ccccatcggc gacggccccg tgctgctgcc cgacaaccac 600 tacctgagct accagtccgc cctgagcaaa gaccccaacg agaagcgcga tcacatggtc 660 ctgctggagt tcgtgaccgc cgccgggatc actctcggca tggacgagct gtacaagtaa 720 <210> 10 <211> 239 <212> PRT <213> artificial sequence

Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu

<220>

<400> 10

<223> YFP amino acid sequence

Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly
20 25 30

Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile 35 40 45

Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr 50 55 60

Phe Gly Tyr Gly Leu Gln Cys Phe Ala Arg Tyr Pro Asp His Met Lys 65 70 75 80

Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu 85 90 95

Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu 100 105 110

Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly
115 120 125

Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr 130 135 140

Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn 145 150 155 160

Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser 165 170 175

Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly
180 185 190

Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Tyr Gln Ser Ala Leu 195 200 205

Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 210 215 220

Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 225 230 235 <210> 11

<211> 2457

<212> DNA

<213> artificial sequence

<220>

<223> alpha2a adrenergic receptor-cam cDNA sequence

<400> 11 atgggetace catacgaegt cecagaetae gecageatgg geteactgea geeggatgee 60 ggcaacagca gctggaacgg gaccgaagcg cccggaggcg gcacccgagc caccccttac 120 tecetgeagg tgacactgae getggtttge etggetggee tgeteatget gtteaeagta 180 tttggcaacg tgctggttat tatcgcggtg ttcaccagtc gcgcgctcaa agctccccaa 240 aacctettee tggtgteect ggeeteageg gaeateetgg tggeeaeget ggteatteee 300 ttttctttgg ccaacgaggt tatgggttac tggtactttg gtaaggtgtg gtgtgagatc 360 tatttggctc tcgacgtgct cttttgcacg tcgtccatag tgcacctgtg cgccatcagc 420 ettgaceget actggtecat caegeaggee ategagtaca acetgaageg caegeegegt 480 cgcatcaagg ccatcattgt caccgtgtgg gtcatctcgg ctgtcatctc cttcccgcca 540 ctcatctcca tagagaagaa gggcgctggc ggcgggcagc agccggccga gccaagctgc 600 aagatcaacg accagaagtg gtatgtcatc teetegteea teggtteett ettegegeet 660 720 tgcctcatca tgatcctggt ctacgtgcgt atttaccaga tcgccaagcg tcgcacccgc gtgcctccca gccgccgggg tccggacgcc atggtgagca agggcgagga gctgttcacc 780 ggggtggtgc ccatcctggt cgagctggac ggcgacgtaa acggccacaa gttcagcgtg 840 teeggegagg gegagggega tgecacetae ggeaagetga ceetgaagtt catetgeace 900 accggcaage tgecegtgee etggeceace etegtgaeea cetteggeta eggeetgeag 960 tgcttcgccc gctaccccga ccacatgaag cagcacgact tcttcaagtc cgccatgccc 1020 gaaggctacg tccaggagcg caccatcttc ttcaaggacg acggcaacta caagacccgc 1080 gccgaggtga agttcgaggg cgacaccctg gtgaaccgca tcgagctgaa gggcatcgac 1140 ttcaaggagg acggcaacat cctggggcac aagctggagt acaactacaa cagccacaac 1200

gtctatatca	tggccgacaa	gcagaagaac	ggcatcaagg	tgaacttcaa	gatccgccac	1260
aacatcgagg	acggcagcgt	gcagctcgcc	gaccactacc	agcagaacac	ccccatcggc	1320
gacggccccg	tgctgctgcc	cgacaaccac	tacctgagct	accagtccgc	cctgagcaaa	1380
gaccccaacg	agaagcgcga	tcacatggtc	ctgctggagt	tcgtgaccgc	cgccgggatc	1440
actctcggca	tggacgagct	gtacaagcgc	tggcgcggga	ggcaaaaccg	ggagaaacgc	1500
ttcacgttcg	tgctggcggt	ggtgatcggc	gtgttcgtgg	tgtgttggtt	tccgttcttt	1560
ttcacctaca	cgctcatagc	ggtcggctgc	ccggtgccca	gccagctctt	caacttcttc	1620
ttctggttcg	gctactgcaa	cagctcgctg	aaccctgtta	tctacaccat	cttcaaccac	1680
gacttccgac	gcgccttcaa	gaagatcctc	tgccgtgggg	acagaaaacg	catcgtgatg	1740
gtgagcaagg	gcgaggagct	gttcaccggg	gtggtgccca	tcctggtcga	gctggacggc	1800
gacgtaaacg	gccacaagtt	cagcgtgtcc	ggcgagggcg	agggcgatgc	cacctacggc	1860
aagctgaccc	tgaagttcat	ctgcaccacc	ggcaagctgc	ccgtgccctg	gcccaccctc	1920
gtgaccaccc	tgacctgggg	cgtgcagtgc	ttcagccgct	accccgacca	catgaagcag	1980
cacgacttct	tcaagtccgc	catgcccgaa	ggctacgtcc	aggagcgcac	catcttcttc	2040
aaggacgacg	gcaactacaa	gacccgcgcc	gaggtgaagt	tcgagggcga	caccctggtg	2100
aaccgcatcg	agctgaaggg	catcgacttc	aaggaggacg	gcaacatcct	ggggcacaag	2160
ctggagtaca	actacatcag	ccacaacgtc	tatatcaccg	ccgacaagca	gaagaacggc	2220
atcaaggcca	acttcaagat	ccgccacaac	atcgaggacg	gcagcgtgca	gctcgccgac	2280
cactaccagc	agaacacccc	catcggcgac	ggccccgtgc	tgctgcccga	caaccactac	2340
ctgagcaccc	agtccgccct	gagcaaagac	cccaacgaga	agcgcgatca	catggtcctg	2400
ctggagttcg	tgaccgccgc	cgggatcact	ctcggcatgg	acgagetgta	caaqtaa	2457

<210> 12

<211> 818

<212> PRT

<213> artificial sequence

<220>

<223> alpha 2a adrenergic receptor-cam "chameleon" amino acid sequence

Met Gly Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Ser Met Gly Ser Leu 1 5 10 15

Gln Pro Asp Ala Gly Asn Ser Ser Trp Asn Gly Thr Glu Ala Pro Gly
20 25 30

Gly Gly Thr Arg Ala Thr Pro Tyr Ser Leu Gln Val Thr Leu Thr Leu 35 40 45

Val Cys Leu Ala Gly Leu Leu Met Leu Phe Thr Val Phe Gly Asn Val 50 55 60

Leu Val Ile Ile Ala Val Phe Thr Ser Arg Ala Leu Lys Ala Pro Gln 65 70 75 80

Asn Leu Phe Leu Val Ser Leu Ala Ser Ala Asp Ile Leu Val Ala Thr 85 90 95

Leu Val Ile Pro Phe Ser Leu Ala Asn Glu Val Met Gly Tyr Trp Tyr 100 105 110

Phe Gly Lys Val Trp Cys Glu Ile Tyr Leu Ala Leu Asp Val Leu Phe 115 120 125

Cys Thr Ser Ser Ile Val His Leu Cys Ala Ile Ser Leu Asp Arg Tyr 130 135 140

Trp Ser Ile Thr Gln Ala Ile Glu Tyr Asn Leu Lys Arg Thr Pro Arg 145 150 155 160

Arg Ile Lys Ala Ile Ile Val Thr Val Trp Val Ile Ser Ala Val Ile 165 170 175

Ser Phe Pro Pro Leu Ile Ser Ile Glu Lys Lys Gly Ala Gly Gly 180 185 190

Gln Gln Pro Ala Glu Pro Ser Cys Lys Ile Asn Asp Gln Lys Trp Tyr 195 200 205

Val Ile Ser Ser Ser Ile Gly Ser Phe Phe Ala Pro Cys Leu Ile Met 210 225 220

Ile Leu Val 225	Tyr Val	Arg Ile	Tyr G	In Ile	Ala Lys 235	Arg Arg	Thr	Arg 240
Val Pro Pro	Ser Arg 245	Arg Gly	Pro A	Asp Ala 250	Met Val	Ser Lys	Gly 255	Glu
Glu Leu Phe	Thr Gly 260	Val Val		le Leu 165	Val Glu	Leu Asp 270	Gly	Asp
Val Asn Gly 275	His Lys	Phe Ser	Val S 280	Ser Gly	Glu Gly	Glu Gly 285	Asp	Ala
Thr Tyr Gly 290	Lys Leu	Thr Leu 295	_	Phe Ile	Cys Thr 300	Thr Gly	Lys	Leu
Pro Val Pro 305	Trp Pro	Thr Leu	'Val T	Thr Thr	Phe Gly 315	Tyr Gly	Leu	Gln 320
Cys Phe Ala	Arg Tyr 325	Pro Asp	His M	Met Lys 330	Gln His	Asp Phe	Phe 335	Lys
Ser Ala Met	Pro Glu 340	Gly Tyr		Gln Glu 845	Arg Thr	Ile Phe		Lys
Asp Asp Gly 355	Asn Tyr	Lys Thr	Arg A 360	Ala Glu	Val Lys	Phe Glu 365	Gly	Asp
Thr Leu Val 370	Asn Arg	Ile Glu 375		ys Gly	Ile Asp 380	Phe Lys	Glu	Asp
Gly Asn Ile 385	Leu Gly	His Lys 390	Leu G	Glu Tyr	Asn Tyr 395	Asn Ser	His	Asn 400
Val Tyr Ile	Met Ala 405	Asp Lys	Gln L	Lys Asn 410	Gly Ile	Lys Val	Asn 415	Phe
Lys Ile Arg	His Asn 420	Ile Glu		Sly Ser 125	Val Gln	Leu Ala 430		His
Tyr Gln Gln 435	Asn Thr	Pro Ile	Gly A 440	Asp Gly	Pro Val	Leu Leu 445	Pro	Asp

Asn	His 450	Tyr	Leu	Ser	Tyr	Gln 455	Ser	Ala	Leu	Ser	Lys 460	Asp	Pro	Asn	Glu
Lys 465	Arg	Asp	His	Met	Val 470	Leu	Leu	Glu	Phe	Val 475	Thr	Ala	Ala	Gly	Ile 480
Thr	Leu	Gly	Met	Asp 485	Glu	Leu	Tyr	Lys	Arg 490	Trp	Arg	Gly	Arg	Gln 495	Asn
Arg	Glu	Lys	Arg 500	Phe	Thr	Phe	Val	Leu 505	Ala	Val	Val	,Ile	Gly 510	Val	Phe
Val	Val	Cys 515	Trp	Phe	Pro	Phe	Phe 520	Phe	Thr	Tyr	Thr	Leu 525	Ile	Ala	Val
Gly	Cys 530	Pro	Val	Pro	Ser	Gln 535	Leu	Phe	Asn	Phe	Phe 540	Phe	Trp	Phe	Gly
Tyr 545	Cys	Asn	Ser	Ser	Leu 550	Asn	Pro	Val	Ile	Tyr 555	Thr	Ile	Phe	Asn	His 560
Asp	Phe	Arg	Arg	Ala 565	Phe	Lys	Lys	Ile	Leu 570	Cys	Arg	Gly	Asp	Arg 575	Lys
Arg	Ile	Val	Met 580	Val	Ser	Lys	Gly	Glu 585	Glu	Leu	Phe	Thr	Gly 590	Val	Val
Pro	Ile	Leu 595	Val	Glu	Leu	Asp	Gly 600	Asp	Val	Asn	Gly	His 605	Lys	Phe	Ser
Val	Ser 610	Gly	Glu	Gly	Glu	Gly 615	Asp	Ala	Thr	Tyr	Gly 620	Lys	Leu	Thr	Leu
Lys 625	Phe	Ile	Cys	Thr	Thr 630	Gly	Lys	Leu	Pro	Val 635	Pro	Trp	Pro	Thr	Leu 640
Val	Thr	Thr	Leu	Thr 645	Trp	Gly	Val	Gln	Cys 650	Phe	Ser	Arg	Tyr	Pro 655	Asp
His	Met	Lys	Gln 660	His	Asp	Phe	Phe	Lys 665	Ser	Ala	Met	Pro	Glu 670	Gly	Tyr
_	_														

Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr

675 680 685

Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu 690 695 700

Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys 705 710 715 720

Leu Glu Tyr Asn Tyr Ile Ser His Asn Val Tyr Ile Thr Ala Asp Lys
725 730 735

Gln Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu 740 745 750

Asp Gly Ser, Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile 755 760 765

Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln
770 780

Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu 785 790 795 800

Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu 805 810 815

Tyr Lys

<210> 13

<211> 2928

<212> DNA

<213> artificial sequence

<220>

<223> PTH receptor-cam "chameleon" 8 cDNA sequence

<400> 13

atggggaccg cccggatcgc acccggcctg gcgctcctgc tctgctgccc cgtgctcagc

60

120

teegegtaeg egetggtgga tgeagatgae gteatgaeta aagaggaaca gatetteetg

ctgcaccgtg ctcaggccca gtgcgaaaaa cggctcaagg aggtcctgca gaggccagcc 180 agcataatgg aatcagacaa gggatggaca tetgegteca catcagggaa geecaggaaa 240 gataaggcat ctgggaagct ctaccctgag tctgaggagg acaaggaggc acccactggc 300 agcaggtacc gagggcgccc ctgtctgccg gaatgggacc acatcctgtg ctggccgctg 360 ggggcaccag gtgaggtggt ggctgtgccc tgtccggact acatttatga cttcaatcac 420 aaaggccatg cctaccgacg ctgtgaccgc aatggcagct gggagctggt gcctgggcac 480 aacaggacgt gggccaacta cagcgagtgt gtcaaatttc tcaccaatga gactcgtgaa 540 egggaggtgt ttgacegeet gggeatgatt tacacegtgg getacteegt gteeetggeg 600 teceteaceg tagetgtget cateetggee taetttagge ggetgeactg caegegeaac 660 720 tacatccaca tgcacctgtt cctgtccttc atgctgcgcg ccgtgagcat cttcgtcaag 780 gacgctgtgc tctactctgg cgccacgctt gatgaggctg agcgcctcac cgaggaggag 840 etgegegeea tegeceagge geeceegeeg cetgeeaceg eegetgeegg etaegeggge tgcagggtgg ctgtgacctt cttcctttac ttcctggcca ccaactacta ctggattctg 900 gtggaggggc tgtacctgca cagcctcatc ttcatggcct tcttctcaga gaagaagtac 960 etgtgggget teaeagtett eggetggggt etgeeegetg tettegtgge tgtgtgggte 1020 agtgtcagag ctaccctggc caacaccggg tgctgggact tgagctccgg gaacaaaaag 1080 tggatcatcc aggtgcccat cctggcctcc attgtgctca acttcatcct cttcatcaat 1140 1200 ategteeggg tgetegeeac caagetgegg gagaceaacg eeggeatggt gageaaggge gaggagctgt tcaccggggt ggtgcccatc ctggtcgagc tggacggcga cgtaaacggc 1260 cacaagttca gcgtgtccgg cgagggcgag ggcgatgcca cctacggcaa gctgaccctg 1320 aagttcatct gcaccaccgg caagctgccc gtgccctggc ccaccctcgt gaccaccctg 1380 acctggggcg tgcagtgctt cagccgctac cccgaccaca tgaagcagca cgacttcttc 1440 1500 aagteegeea tgeeegaagg etaegteeag gagegeacea tettetteaa ggaegaegge 1560 aactacaaga cccgcgccga ggtgaagttc gagggcgaca ccctggtgaa ccgcatcgag 1620 ctgaagggca tcgacttcaa ggaggacggc aacatcctgg ggcacaagct ggagtacaac tacatcagcc acaacgtcta tatcaccgcc gacaagcaga agaacggcat caaggccaac 1680 ttcaagatcc gccacaacat cgaggacggc agcgtgcagc tcgccgacca ctaccagcag 1740 aacaccccca teggegaegg eccegtgetg etgeeegaea accaetaeet gageaeceag 1800

teegeeetga geaaagaeee caacgagaag egegateaea tggteetget ggagttegtg 1860 accgccgccg ggatcactct cggcatggac gagctgtaca agcggtgtga cacacggcag 1920 cagtaccgga agctgctcaa atccacgctg gtgctcatgc ccctctttgg cgtccactac 1980 attgtcttca tggccacacc atacaccgag gtctcaggga cgctctggca agtccagatg 2040 cactatgaga tgctcttcaa ctccttccag ggattttttg tcgcaatcat atactqtttc 2100 tgcaatggcg aggtacaagc tgagatcaag aaatcttgga gccgctggac actggcactg 2160 gacttcaagc gaaaggcacg cagcgggagc agcagctata gctacggcat ggtgagcaag 2220 ggcgaggagc tgttcaccgg ggtggtgccc atcctggtcg agctggacgg cgacgtaaac 2280 ggccacaagt tcagcgtgtc cggcgagggc gagggcgatg ccacctacgg caagctgacc 2340 ctgaagttca tctgcaccac cggcaagctg cccgtgccct ggcccaccct cgtgaccacc 2400 ttcggctacg gcctgcagtg cttcgcccgc taccccgacc acatgaagca gcacgacttc 2460 ttcaagtccg ccatgcccga aggctacgtc caggagcgca ccatcttctt caaggacgac 2520 ggcaactaca agacccgcgc cgaggtgaag ttcgagggcg acaccctggt gaaccgcatc 2580 gagetgaagg geategaett caaggaggae ggeaacatee tggggeacaa getggagtae 2640 aactacaaca gccacaacgt ctatatcatg gccgacaagc agaagaacgg catcaaggtg 2700 aacttcaaga tccgccacaa catcgaggac ggcagcgtgc agctcgccga ccactaccag 2760 cagaacaccc ccatcggcga cggccccgtg ctgctgcccg acaaccacta cctgagctac 2820 cagtccgccc tgagcaaaga ccccaacgag aagcgcgatc acatggtcct gctgqagttc 2880 gtgaccgccg ccgggatcac tctcggcatg gacgagctgt acaagtaa 2928

<210> 14

<211> 975

<212> PRT

<213> artificial sequence

<220>

<223> PTH receptor-cam8 "chameleon" amino acid sequence

<400> 14

Met Gly Thr Ala Arg Ile Ala Pro Gly Leu Ala Leu Leu Cys Cys
1 5 10 15

- Pro Val Leu Ser Ser Ala Tyr Ala Leu Val Asp Ala Asp Asp Val Met 20 25 30
- Thr Lys Glu Glu Gln Ile Phe Leu Leu His Arg Ala Gln Ala Gln Cys 35 40 45
- Glu Lys Arg Leu Lys Glu Val Leu Gln Arg Pro Ala Ser Ile Met Glu 50 55 60
- Ser Asp Lys Gly Trp Thr Ser Ala Ser Thr Ser Gly Lys Pro Arg Lys 65 70 75 80
- Asp Lys Ala Ser Gly Lys Leu Tyr Pro Glu Ser Glu Glu Asp Lys Glu 85 90 95
- Ala Pro Thr Gly Ser Arg Tyr Arg Gly Arg Pro Cys Leu Pro Glu Trp
 100 105 110
- Asp His Ile Leu Cys Trp Pro Leu Gly Ala Pro Gly Glu Val Val Ala 115 120 125
- Val Pro Cys Pro Asp Tyr Ile Tyr Asp Phe Asn His Lys Gly His Ala 130 135 140
- Tyr Arg Arg Cys Asp Arg Asn Gly Ser Trp Glu Leu Val Pro Gly His 145 150 155 160
- Asn Arg Thr Trp Ala Asn Tyr Ser Glu Cys Val Lys Phe Leu Thr Asn 165 170 175
- Glu Thr Arg Glu Arg Glu Val Phe Asp Arg Leu Gly Met Ile Tyr Thr
 180 185 190
- Val Gly Tyr Ser Val Ser Leu Ala Ser Leu Thr Val Ala Val Leu Ile 195 200 205
- Leu Ala Tyr Phe Arg Arg Leu His Cys Thr Arg Asn Tyr Ile His Met 210 215 220
- His Leu Phe Leu Ser Phe Met Leu Arg Ala Val Ser Ile Phe Val Lys 225 230 235 240

Asp Ala Val Leu Tyr Ser Gly Ala Thr Leu Asp Glu Ala Glu Arg Leu 245 250 255

1

Thr Glu Glu Leu Arg Ala Ile Ala Gln Ala Pro Pro Pro Ala 260 265 270

Thr Ala Ala Ala Gly Tyr Ala Gly Cys Arg Val Ala Val Thr Phe Phe 275 280 285

Leu Tyr Phe Leu Ala Thr Asn Tyr Tyr Trp Ile Leu Val Glu Gly Leu 290 295 300

Tyr Leu His Ser Leu Ile Phe Met Ala Phe Phe Ser Glu Lys Lys Tyr 305 310 315 320

Leu Trp Gly Phe Thr Val Phe Gly Trp Gly Leu Pro Ala Val Phe Val 325 330 335

Ala Val Trp Val Ser Val Arg Ala Thr Leu Ala Asn Thr Gly Cys Trp 340 345 350

Asp Leu Ser Ser Gly Asn Lys Lys Trp Ile Ile Gln Val Pro Ile Leu 355 360 365

Ala Ser Ile Val Leu Asn Phe Ile Leu Phe Ile Asn Ile Val Arg Val 370 380

Leu Ala Thr Lys Leu Arg Glu Thr Asn Ala Gly Met Val Ser Lys Gly 385 390 395 400

Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly
405 410 415

Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp 420 425 430

Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys 435 440 445

Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Trp Gly Val 450 455 460

Gln 465	Cys	Phe	Ser	Arg	Туr 470	Pro	Asp	His	Met	Lys 475	Gln	His	Asp	Phe	Phe 480
Lys	Ser	Ala	Met	Pro 485	Glu	Gly	Tyr	Val	Gln 490	Glu	Arg	Thr	Ile	Phe 495	Phe
Lys	Asp	Asp	Gly 500	Asn	Tyr	Lys	Thr	Arg 505	Ala	Glu	Val	Lys	Phe 510	Glu	Gly
Asp	Thr	Leu 515	Val	Asn	Arg	Ile	Glu 520	Leu	Lys	Gly	Ile	Asp 525	Phe	Lys	Glu
Asp	Gly 530	Asn	Ile	Leu	Gly	His 535	Lys	Leu	Glu	Tyr	Asn 540	Tyr	Ile	Ser	His
Asn 545	Val	Tyr	Ile	Thr	Ala 550	Asp	Lys	Gln	Lys	Asn 555	Gly	Ile	Lys	Ala	Asn 560
Phe	Lys	Ile	Arg	His 565	Asn	Ile	Glu	Asp	Gly 570	Ser	Val	Gln	Leu	Ala 575	Asp
His	Tyr	Gln	Gln 580	Asn	Thr	Pro	Ile	Gly 585	Asp	Gly	Pro	Val	Leu 590	Leu	Pro
Asp	Asn	His 595	Tyr	Leu	Ser	Thr	Gln 600	Ser	Ala	Leu	Ser	Lys 605	Asp	Pro	Asn
Glu	Lys 610	Arg	Asp	His	Met	Val 615	Leu	Leu	Glu	Phe	Val 620	Thr	Ala	Ala	Gly
Ile 625	Thr	Leu	Gly	Met	Asp 630	Glu	Leu	Tyr	Lys	Arg 635	Cys	Asp	Thr	Arg	Gln 640
Gln	Tyr	Arg	Lys	Leu 645	Leu	Lys	Ser	Thr	Leu 650	Val	Leu	Met	Pro	Leu 655	Phe
Gly	Val	His	Tyr 660	Ile	Val	Phe	Met	Ala 665	Thr	Pro	Tyr	Thr	Glu 670	Val	Ser
Gly	Thr	Leu 675	Trp	Gln	Val	Gln	Met 680	His	Tyr	Glu	Met	Leu 685	Phe	Asn	Ser
				_ •	=		_							_	_

Phe Gln Gly Phe Phe Val Ala Ile Ile Tyr Cys Phe Cys Asn Gly Glu

Val Gln Ala Glu Ile Lys Lys Ser Trp Ser Arg Trp Thr Leu Ala Leu Asp Phe Lys Arg Lys Ala Arg Ser Gly Ser Ser Tyr Ser Tyr Gly Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe Gly Tyr Gly Leu Gln Cys Phe Ala Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser

Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly

Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Tyr Gln Ser Ala Leu 930 935 940

Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe 945 950 955 960

Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 965 970 975

<210> 15

<211> 2361

<212> DNA

<213> artificial sequence

<220>

<223> A2A-CFP14/10-YFP-C33 cDNA sequence; A2A "chameleon"

<400> 15

atgcccatca tgggctcctc qqtqtacatc acqqtqqaqc tqqccattqc tqtqctqqcc 60 atcctgggca atgtgctggt gtgctgggcc gtgtggctca acagcaacct gcagaacgtc 120 accaactact ttgtggtgtc actggcggcg gccgacatcg cagtgggtgt gctcgccatc 180 ccctttgcca tcaccatcag caccgggttc tgcgctgcct gccacggctg cctcttcatt 240 gcctgcttcg tcctggtcct cacgcagagc tccatcttca gtctcctggc catcgccatt 300 gaccgctaca ttgccatccg catcccgctc cggtacaatg gcttggtgac cggcacgagg 360 gctaagggca tcattgccat ctgctgggtg ctgtcgtttg ccatcggcct gactcccatq 420 ctaggttgga acaactgcgg tcagccaaag gagggcaaga accactccca gggctgcggg 480 gagggccaag tggcctgtct ctttgaggat gtggtcccca tgaactacat ggtgtacttc 540 aacttetttg cetgtgtget ggtgeecetg etgeteatge tgggtgteta tttgeggate 600 ttcctggcgg cgcgacgaca gctgaagcag atggaggtga gcaagggcga ggagctgttc 660 accggggtgg tgcccatcct ggtcgagctg gacggcgacg taaacggcca caagttcagc 720 gtgtccggcg agggcgaggg cgatgccacc tacggcaagc tgaccctgaa gttcatctgc 780 accaccagea agetacceat accetagece acceteata ccaccetaac ctagageata 840

cagtgcttca gccgctaccc	cgaccacatg	aagcagcacg	acttcttcaa	gtccgccatg	900
cccgaaggct acgtccagga	gcgcaccatc	ttcttcaagg	acgacggcaa	ctacaagacc	960
cgcgccgagg tgaagttcga	gggcgacacc	ctggtgaacc	gcatcgagct	gaagggcatc	1020
gacttcaagg aggacggcaa	catcctgggg	cacaagctgg	agtacaacta	catcagccac	1080
aacgtctata tcaccgccga	caagcagaag	aacggcatca	aggccaactt	caagatccgc	1140
cacaacatcg aggacggcag	cgtgcagctc	gccgaccact	accagcagaa	cacccccatc	1200
ggcgacggcc ccgtgctgct	gcccgacaac	cactacctga	gcacccagtc	cgccctgagc	1260
aaagacccca acgagaagcg	cgatcacatg	gtcctgctgg	agttcgtgac	cgccgccggg	1320
atcactctcg gcatggacga	gctgtacaag	cttcagaagg	aggtccatgc	tgccaagtca	1380
ctggccatca ttgtggggct	ctttgccctc	tgctggctgc	ccctacacat	catcaactgc	1440
ttcactttct tctgccccga	ctgcagccac	gcccctctct	ggctcatgta	cctggccatc	1500
gtcctctccc acaccaattc	ggttgtgaat	cccttcatct	acgcctaccg	tatccgcgag	1560
ttccgccaga ccttccgcaa	gatcattcgc	agccacgtcc	tgaggcagca	agaacctttc	1620
aaggcagctg gcaccagtgc	ccgggtcgtg	agcaagggcg	aggagctgtt	caccggggtg	1680
gtgcccatcc tggtcgagct	ggacggcgac	gtaaacggcc	acaagttcag	cgtgtccggc	1740
gagggcgagg gcgatgccac	ctacggcaag	ctgaccctga	agttcatctg	caccaccggc	1800
aagctgcccg tgccctggcc	caccctcgtg	accaccttcg	gctacggcct	gcagtgcttc	1860
gcccgctacc ccgaccacat	gaagcagcac	gacttcttca	agtccgccat	gcccgaaggc	1920
tacgtccagg agcgcaccat	cttcttcaag	gacgacggca	actacaagac	ccgcgccgag	1980
gtgaagttcg agggcgacac	cctggtgaac	cgcatcgagc	tgaagggcat	cgacttcaag	2040
gaggacggca acatcctggg	gcacaagctg	gagtacaact	acaacagcca	caacgtctat	2100
atcatggccg acaagcagaa	gaacggcatc	aaggtgaact	tcaagatccg	ccacaacatc	2160
gaggacggca gcgtgcagct	cgccgaccac	taccagcaga	acacccccat	cggcgacggc	2220
cccgtgctgc tgcccgacaa	ccactacctg	agctaccagt	ccgccctgag	caaagacccc	2280
aacgagaagc gcgatcacat	ggtcctgctg	gagttcgtga	ccgccgccgg	gatcactctc	2340
ggcatggacg agctgtacaa	g				2361

<212> PRT

<213> artificial sequence

<220>

<223> A2A-CFP14/10-YFP-C33 amino acid sequence; "A2A chameleon"

<400> 16

Met Pro Ile Met Gly Ser Ser Val Tyr Ile Thr Val Glu Leu Ala Ile
1 5 10 15

Ala Val Leu Ala Ile Leu Gly Asn Val Leu Val Cys Trp Ala Val Trp 20 25 30

Leu Asn Ser Asn Leu Gln Asn Val Thr Asn Tyr Phe Val Ser Leu Ala 35 40 45

Ala Ala Asp Ile Ala Val Gly Val Leu Ala Ile Pro Phe Ala Ile Thr 50 55 60

Ile Ser Thr Gly Phe Cys Ala Ala Cys His Gly Cys Leu Phe Ile Ala 65 70 75 80

Cys Phe Val Leu Val Leu Thr Gln Ser Ser Ile Phe Ser Leu Leu Ala 85 90 95

Ile Ala Ile Asp Arg Tyr Ile Ala Ile Arg Ile Pro Leu Arg Tyr Asn 100 105 110

Gly Leu Val Thr Gly Thr Arg Ala Lys Gly Ile Ile Ala Ile Cys Trp 115 120 125

Val Leu Ser Phe Ala Ile Gly Leu Thr Pro Met Leu Gly Trp Asn Asn 130 135 140

Cys Gly Gln Pro Lys Glu Gly Lys Asn His Ser Gln Gly Cys Gly Glu 145 150 155 160

Gly Gln Val Ala Cys Leu Phe Glu Asp Val Val Pro Met Asn Tyr Met 165 170 175

Val Tyr Phe Asn Phe Phe Ala Cys Val Leu Val Pro Leu Leu Met

Leu Gly Val Tyr Leu Arg Ile Phe Leu Ala Ala Arg Arg Gln Leu Lys Gln Met Glu Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Trp Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Ile Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln

Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly 385 390 395 400

Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Asp

Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser 405 410 415

Ala	Leu	Ser	Lys 420	Asp	Pro	Asn	Glu	Lys 425	Arg	Asp	His	Met	Val 430	Leu	Leu
Glu	Phe	Val 435	Thr	Ala	Ala	Gly	Ile 440	Thr	Leu	Gly	Met	Asp 445	Glu	Leu	Tyr
Lys	Leu 450	Gln	Lys	Glu	Val	His 455	Ala	Ala	Lys	Ser	Leu 460	Ala	Ile	Ile	Val
Gly 465	Leu	Phe	Ala	Leu	Cys 470	Trp	Leu	Pro	Leu	His 475	Ile	Ile	Asn	Суѕ	Phe 480
Thr	Phe	Phe	Cys	Pro 485	Asp	Cys	Ser	His	Ala 490	Pro	Leu	Trp	Leu	Met 495	Tyr
Leu	Ala	Ile	Val 500	Leu	Ser	His	Thr	Asn 505	Ser	Val	Val	Asn	Pro 510	Phe	Ile
Tyr	Ala	Tyr 515	Arg	Ile	Arg	Glu	Phe 520	Arg	Gln	Thr	Phe	Arg 525	Lys	Ile	Ile
Arg	Ser 530	His	Val	Leu	Arg	Gln 535	Gln	Glu	Pro	Phe	Lys 540	Ala	Ala	Gly	Thr
Ser 545	Ala	Arg	Val	Met	Val 550	Ser	Lys	Gly	Glu	Glu 555	Leu	Phe	Thr	Gly	Val 560
Val	Pro	Ile	Leu	Val 565	Glu	Leu	Asp	Gly	Asp 570	Val	Asn	Gly	His	Lys 575	Phe
Ser	Val	Ser	Gly 580	Glu	Gly	Glu	Gly	Asp 585	Ala	Thr	Tyr	Gly	Lys 590	Leu	Thr
Leu	Lys	Phe 595	Ile	Cys	Thr	Thr	Gly 600	Lys	Leu	Pro	Val	Pro 605	Trp	Pro	Thr
Leu	Val 610	Thr	Thr	Phe	Gly	Tyr 615	Gly	Leu	Gln	Cys	Phe 620	Ala	Arg	Tyr	Pro
Asp 625	His	Met	Lys	Gln	His 630	Asp	Phe	Phe	Lys	Ser 635	Ala	Met	Pro	Glu	Gly 640

Tyŗ	Val	Gln	Glu	Arg 645	Thr	Ile	Phe	Phe	Lys 650	Asp	Asp	Gly	Asn	Tyr 655	Lys	
Thr	Arg	Ala	Glu 660	Val	Lys	Phe	Glu	Gly 665	Asp	Thr	Leu	Val	Asn 670	Arg	Ile	
Glu	Leu	Lys 675	Gly	Ile	Asp	Phe	Lys 680	Glu	Asp	Gly	Asn	Ile 685	Leu	Gly	His	
Lys	Leu 690	Glu	Tyr	Asn	Tyr	Asn 695	Ser	His	Asn	Val	Tyr 700	Ile	Met	Ala	Asp	
Lys 705	Gln	Lys	Asn	Gly	Ile 710	Lys	Val	Asn	Phe	Lys 715	Ile	Arg	His	Asn	Ile 720	
Glu	Asp	Gly	Ser	Val 725	Gln	Leu	Ala	Asp	His 730	Tyr	Gln	Gln	Asn	Thr 735	Pro	
Ile	Gly	Asp	Gly 740	Pro	Val	Leu	Leu	Pro 745	Asp	Asn	His	Tyr	Leu 750	Ser	Tyr	
Gln	Ser	Ala 755	Leu	Ser	Lys	Asp	Pro 760	Asn	Glu	Lys	Arg	Asp 765	His	Met	Val	
Leu	Leu 770	Glu	Phe	Val	Thr	Ala 775	Ala	Gly	Ile	Thr	Leu 780	Gly	Met	Asp	Glu	
<210)> :	17														
<21	l> '	177														
<212	2 > 3	ANC														
<213	3> I	Mouse ,	e													
<400		17														
															ggtccg	60
															ccggag	120
															ggtgcc	180
ccg	3999	agc (ccgcg	gccc	ge eg	gggc	cccg	c gat	tgggg	gatg	cgct	tgga	cct	agag	gagagt	240
tcg	cgt	ccg a	agcad	cgccq	ga go	egge	cccc	g gg	gccc	cgca	gac	ccga	ccg	cggc	cccga	300

gccaagggca	agacccgggc	gagtcaggtg	aagccggggg	acagtetgee	gcggcgcggg
cccggggccg	cggggccggg	ggcttcgggg	tccgggcacg	gagaggagcg	cggcgggggc
gccaaagcgt	cgcgctggcg	cgggaggcaa	aaccgggaga	aacgcttcac	gttcgtg
<210> 18					
<211> 159					
<212> PRT					
<213> Mous	se				
<400> 18					
Val Arg Ile 1	e Tyr Gln II 5	le Ala Lys A	Arg Arg Thr 10	Arg Val Pro	Pro Ser 15
Arg Arg Gly	Pro Asp A	_	Ala Pro Pro 25	Gly Gly Ala 30	Asp Arg
Arg Pro Ası	n Gly Leu G	ly Pro Glu <i>I</i> 40	Arg Gly Ala	Gly Pro Thr 45	Gly Ala
Glu Ala Glu 50	ı Pro Leu Pı	ro Thr Gln I 55	Leu Asn Gly	Ala Pro Gly 60	Glu Pro
Ala Pro Ala 65	a Gly Pro Ai		Asp Ala Leu 75	Asp Leu Glu	Glu Ser 80
Ser Ser Ser	Glu His Al 85	la Glu Arg I	Pro Pro Gly 90	Pro Arg Arg	Pro Asp 95
Arg Gly Pro	Arg Ala Ly		Thr Arg Ala 105	Ser Gln Val	=
Gly Asp Ser		rg Arg Gly I 120	Pro Gly Ala	Ala Gly Pro	Gly Ala
Ser Gly Ser 130	Gly His G	ly Glu Glu <i>I</i> 135	Arg Gly Gly	Gly Ala Lys 140	Ala Ser

Arg Trp Arg Gly Arg Gln Asn Arg Glu Lys Arg Phe Thr Phe Val

<210> 19													
<211> 63													
<212> DNA	DNA												
<213> Mouse													
<400> 19 cacgacttcc gacgcgcctt caagaagatc ctctgccgtg gggacagaaa acgcatcgtg	60												
tga	63												
<210> 20													
<211> 20	20												
<212> PRT	PRT												
<213> Mouse													
<400> 20													
His Asp Phe Arg Arg Ala Phe Lys Lys Ile Leu Cys Arg Gly Asp Arg													
1 5 10 15													
Lys Arg Ile Val													
20													
<210> 21													
<211> 107													
<212> DNA													
<213> homo sapiens													
<400> 21													
ggatetteet ggeggegea egacagetga ageagatgga gageeageet etgeegggg													
agcgggcacg gtccacactg cagaaggagg tccatgctgc caagtca	107												

155

145 . 150

<210> 22

<212>	PRT															
<213>	homo	sapi	ens.													
<400>	22															
Arg Ile 1	Phe	Leu	Ala 5	Ala	Arg	Arg	Gln	Leu 10	Lys	Gln	Met	Glu	Ser 15	Gln		
Pro Leu	ı Pro	Gly 20	Glu	Arg	Ala	Arg	Ser 25	Thr	Leu	Gln	Lys	Glu 30	Val	His		
Ala Ala	Lys 35	Ser														
<210>	23															
<211>	369															
<212>	DNA															
<213>	homo	sapi	ens													
<400> cgtatco	23 gcg a	agtto	cgcc	ca ga	acctt	cege	: aag	atca	ittc	gcag	gccad	egt	cctga	aggca	ag 60)
caagaac	ctt t	caag	gcaç	gc to	ggcad	cagt	gcc	cggg	jtct	tggc	cagct	ca	tggca	agtga	ac 120)
ggagagc	agg t	cago	ctco	g to	ctcaa	cggc	cac	ccgc	cag	gagt	gtgg	ggc	caaco	ggcag	jt 180)
gctcccc	acc o	ctgag	ıcgga	ag go	ccaa	atggo	tat	gccc	tgg	ggct	ggt	gag	tggag	gggag	gt 240)
gcccaag	gagt o	cccag	ıggga	aa ca	acggg	gcctc	cca	gaco	ıtgg	agct	cctt	ag	ccato	gagct	c 300)
aagggag	ıtgt g	gccca	gago	cc co	cctgg	gccta	gat	gaco	ccc	tggd	ccag	gga	tggag	gcago	ga 360)
gtgtcct	ga											,-			369	•
<210>	24															
<211>	102															
<212>	PRT															
<213>	homo	sapi	ens													

<211> 36

<400> 24

Arg Ile Arg Glu Phe Arg Gln Thr Phe Arg Lys Ile Ile Arg Ser His 1 5 10 15

Val Leu Arg Gln Glu Pro Phe Lys Ala Ala Gly Thr Ser Ala Arg
20 25 30

Val Leu Ala Ala His Gly Ser Asp Gly Glu Gln Val Ser Leu Arg Leu 35 40 45

Asn Gly His Pro Pro Gly Val Trp Ala Asn Gly Ser Ala Pro His Pro 50 60

Glu Arg Arg Pro Asn Gly Tyr Ala Leu Gly Leu Val Ser Gly Gly Ser 65 70 75 80

Ala Gln Glu Ser Gln Gly Asn Thr Gly Leu Pro Asp Val Glu Leu Leu 85 90 95

Ser His Glu Leu Lys Gly 100

<210> 25

<211> 57

<212> DNA

<213> homo sapiens

<400> 25 accaagetge gggagaceaa egeeggeegg tgtgacacae ggeageagta eeggaag

57

<210> 26

<211> 19

<212> PRT

<213> homo sapiens

<400> 26

1 5 10 15
Tyr Arg Lys
<210> 27
<211> 393
<212> DNA
<213> homo sapiens
<pre><400> 27 gaggtacaag ctgagatcaa gaaatcttgg agccgctgga cactggcact ggacttcaag 60</pre>
cgaaaggcac gcagcgggag cagcagctat agctacggcc ccatggtgtc ccacacaagt 120
gtgaccaatg teggeeceeg tgtgggacte ggeetgeece teageeceeg ectaetgeee 180
actgccacca ccaacggcca ccctcagctg cctggccatg ccaagccagg gaccccagcc 240
ctggagaccc tcgagaccac accacctgcc atggctgctc ccaaggacga tgggttcctc 300
aacggctcct gctcaggcct ggacgaggag gcctctgggc ctgagcggcc acctgccctg 360
ctacaggaag agtgggagac agtcatgtga tga 393
<210> 28
<211> 129
<212> PRT
<213> homo sapiens
<400> 28
Glu Val Gln Ala Glu Ile Lys Lys Ser Trp Ser Arg Trp Thr Leu Ala 1 5 10 15
Leu Asp Phe Lys Arg Lys Ala Arg Ser Gly Ser Ser Ser Tyr Ser Tyr 20 25 30

Gly Pro Met Val Ser His Thr Ser Val Thr Asn Val Gly Pro Arg Val 35 40 45

Gly Leu Gly Leu Pro Leu Ser Pro Arg Leu Leu Pro Thr Ala Thr Thr 50 55 60

Asn Gly His Pro Gln Leu Pro Gly His Ala Lys Pro Gly Thr Pro Ala 65 70 75 80

Leu Glu Thr Leu Glu Thr Thr Pro Pro Ala Met Ala Ala Pro Lys Asp
85 90 95

Asp Gly Phe Leu Asn Gly Ser Cys Ser Gly Leu Asp Glu Glu Ala Ser 100 105 110

Gly Pro Glu Arg Pro Pro Ala Leu Leu Gln Glu Glu Trp Glu Thr Val 115 120 125

Met

<210> 29

<211> 264

<212> PRT

<213> artificial sequence

<220>

<223> PTHR-cam7 amino acid sequence

<400> 29

Glu Val Gln Ala Glu Ile Lys Lys Ser Trp Ser Arg Trp Thr Leu Ala 1 5 10 15

Leu Asp Phe Lys Arg Lys Ala Arg Ser Met Val Ser Lys Gly Glu Glu
20 25 30

Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val 35 40 45

Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr 50 55 60

Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro 65 70 75 80

Val Pro Trp Pro Thr Leu Val Thr Thr Phe Gly Tyr Gly Leu Gln Cys 85 90 95

Phe Ala Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser 100 105 110

Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp 115 120 125

Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr 130 135 140

Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly 145 150 155 160

Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val 165 170 175

Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys 180 185 190

Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr
195 200 205

Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn 210 215 220

His Tyr Leu Ser Tyr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys 225 230 235 240

Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr 245 250 255

Leu Gly Met Asp Glu Leu Tyr Lys 260

<210> 30

<211> 270

<212> PRT

<213> artificial sequence

<220>

<223> PTHR-cam9 amino acid sequence

<400> 30

Glu Val Gln Ala Glu Ile Lys Lys Ser Trp Ser Arg Trp Thr Leu Ala 1 5 10 15

Leu Asp Phe Lys Arg Lys Ala Arg Ser Gly Ser Ser Ser Tyr Ser Met 20 25 30

Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 35 40 45

Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu 50 55 60

Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 65 70 75 80

Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe
85 90 95

Gly Tyr Gly Leu Gln Cys Phe Ala Arg Tyr Pro Asp His Met Lys Gln
100 105 110

His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 115 120 125

Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val 130 135 140

Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 145 150 155 160

Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 165 170 175

Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly

180 185 190

Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val
195 200 205

Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 210 215 220

Val Leu Leu Pro Asp Asn His Tyr Leu Ser Tyr Gln Ser Ala Leu Ser 225 230 235 240

Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val 245 250 255

Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 260 265 270

<210> 31

<211> 272

<212> PRT

<213> artificial sequence

<220>

<223> PTHR-cam8 amino acid sequence

<400> 31

Glu Val Gln Ala Glu Ile Lys Lys Ser Trp Ser Arg Trp Thr Leu Ala 1 5 10 15

Leu Asp Phe Lys Arg Lys Ala Arg Ser Gly Ser Ser Ser Tyr Ser Tyr
20 25 30

Gly Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile 35 40 45

Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser 50 55 60

Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe 70 75 80

Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr 85 90 95

Thr Phe Gly Tyr Gly Leu Gln Cys Phe Ala Arg Tyr Pro Asp His Met 100 105 110

Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln
115 120 125

Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala 130 135 140

Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys 145 150 155 160

Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu 165 170 175

Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys
180 185 190

Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly
195 200 205

Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp 210 215 220

Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu 245 250 255

Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 260 265 270

<210> 32

<211> 275

<212> PRT

<220>

<223> PTHR-cam2 amino acid sequence

<400> 32

Glu Val Gln Ala Glu Ile Lys Lys Ser Trp Ser Arg Trp Thr Leu Ala 1 5 10 15

Leu Asp Phe Lys Arg Lys Ala Arg Ser Gly Ser Ser Ser Tyr Ser Tyr 20 25 30

Gly Pro Met Val Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val
35 40 45

Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 50 60

Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 65 70 75 80

Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 85 90 95

Leu Val Thr Thr Phe Gly Tyr Gly Leu Gln Cys Phe Ala Arg Tyr Pro 100 105 110

Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly 115 120 125

Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 130 135 140

Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 145 150 155 160

Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 165 170 175

Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 180 185 190 Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 195 200 205

Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 210 215 220

Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Tyr 225 230 235 240

Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 245 250 255

Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu 260 265 270

Leu Tyr Lys 275

<210> 33

<211> 289

<212> PRT

<213> artificial sequence

<220>

<223> PTHR-cam5 amino acid sequence

<400> 33

Glu Val Gln Ala Glu Ile Lys Lys Ser Trp Ser Arg Trp Thr Leu Ala 1 5 10 15

Leu Asp Phe Lys Arg Lys Ala Arg Ser Gly Ser Ser Ser Tyr Ser Tyr
20 25 30

Gly Pro Met Val Ser His Thr Ser Val Thr Asn Val Gly Pro Arg Val 35 40 45

Gly Leu Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro 50 55 60

Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe Gly Tyr Gly Leu Gln Cys Phe Ala Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Pro Asp Asn His Tyr Leu Ser Tyr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr

<210> 34

<211> 325

<212> PRT

<213> artificial sequence

<220>

<223> PTHR-cam1 amino acid sequence

<400> 34

Glu Val Gln Ala Glu Ile Lys Lys Ser Trp Ser Arg Trp Thr Leu Ala 1 5 10 15

Leu Asp Phe Lys Arg Lys Ala Arg Ser Gly Ser Ser Ser Tyr Ser Tyr 20 25 30

Gly Pro Met Val Ser His Thr Ser Val Thr Asn Val Gly Pro Arg Val
35 40 45

Gly Leu Gly Leu Pro Leu Ser Pro Arg Leu Leu Pro Thr Ala Thr Thr 50 55 60

Asn Gly His Pro Gln Leu Pro Gly His Ala Lys Pro Gly Thr Pro Ala 65 70 75 80

Leu Glu Thr Leu Glu Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr 85 90 95

Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His 100 105 110

Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys 115 120 125

Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp 130 135 140

Pro Thr Leu Val Thr Thr Phe Gly Tyr Gly Leu Gln Cys Phe Ala Arg 145 150 155 160 Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro 165 170 175

Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn 180 185 190

Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn 195 200 205

Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu 210 215 220

Gly His Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met 225 230 235 240

Ala Asp Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His
245 250 255

Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn 260 265 270

Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu 275 280 285

Ser Tyr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His 290 295 300

Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met 305 310 315 320

Asp Glu Leu Tyr Lys 325

<210> 35

<211> 339

<212> PRT

<213> artificial sequence

<223> PTHR-cam4 amino acid sequence

<400> 35

Glu Val Gln Ala Glu Ile Lys Lys Ser Trp Ser Arg Trp Thr Leu Ala 1 5 10 15

Leu Asp Phe Lys Arg Lys Ala Arg Ser Gly Ser Ser Ser Tyr Ser Tyr 20 25 30

Gly Pro Met Val Ser His Thr Ser Val Thr Asn Val Gly Pro Arg Val 35 40 45

Gly Leu Gly Leu Pro Leu Ser Pro Arg Leu Leu Pro Thr Ala Thr Thr 50 55 60

Asn Gly His Pro Gln Leu Pro Gly His Ala Lys Pro Gly Thr Pro Ala 65 70 75 80

Leu Glu Thr Leu Glu Thr Thr Pro Pro Ala Met Ala Ala Pro Lys Asp 85 90 95

Asp Gly Phe Leu Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val

Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe 115 120 125

Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr 130 135 140

Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr 145 150 155 160

Leu Val Thr Thr Phe Gly Tyr Gly Leu Gln Cys Phe Ala Arg Tyr Pro 165 170 175

Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly
180 185 190

Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys 195 200 205 Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile 210 215 220

Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His 225 230 235 240

Lys Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp 245 250 255

Lys Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile 260 265 270

Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro 275 280 285

Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Tyr 290 295 300

Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val 305 310 315 320

Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu 325 330 335

Leu Tyr Lys

<210> 36

<211> 354

<212> PRT

<213> artificial sequence

<220>

<223> PTHR-cam3 amino acid sequence

<400> 36

Glu Val Gln Ala Glu Ile Lys Lys Ser Trp Ser Arg Trp Thr Leu Ala 1 5 10 15

Leu Asp I	Phe Lys 20	Arg Lys	Ala	Arg	Ser 25	Gly	Ser	Ser	Ser	Tyr 30	Ser	Tyr
Gly Pro M	Met Val 35	Ser His	Thr	Ser 40	Val	Thr	Asn	Val	Gly 45	Pro	Arg	Val
Gly Leu (Gly Leu	Pro Leu	. Ser 55	Pro	Arg	Leu	Leu	Pro 60	Thr	Ala	Thr	Thr
Asn Gly H 65	His Pro	Gln Leu 70	Pro	Gly	His	Ala	Lys 75	Pro	Gly	Thr	Pro	Ala 80
Leu Glu 7	Thr Leu	Glu Thr 85	Thr	Pro	Pro	Ala 90	Met	Ala	Ala	Pro	Lys 95	Asp
Asp Gly I	Phe Leu 100	Asn Gly	Ser	Cys	Ser 105	Gly	Leu	Asp	Glu	Glu 110	Ala	Ser
Gly Pro (Glu Met 115	Val Ser	Lys	Gly 120	Glu	Glu	Leu	Phe	Thr 125	Gly	Val	Val
Pro Ile I	Leu Val	Glu Leu	Asp 135	Gly	Asp	Val	Asn	Gly 140	His	Lys	Phe	Ser
Val Ser (Gly Glu	Gly Glu 150	Gly	Asp	Ala	Thr	Туг 155	Gly	Lys	Leu	Thr	Leu 160
Lys Phe	Ile Cys	Thr Thr	Gly	Lys	Leu	Pro 170	Val	Pro	Trp	Pro	Thr 175	Leu
Val Thr	Thr Phe 180	Gly Tyr	Gly	Leu	Gln 185	Cys	Phe	Ala	Arg	Tyr 190	Pro	Asp
His Met I	Lys Gln 195	His Asp	Phe	Phe 200	Lys	Ser	Ala	Met	Pro 205	Glu	Gly	Tyr
Val Gln (Glu Arg	Thr Ile	Phe 215	Phe	Lys	Asp	Asp	Gly 220	Asn	Tyr	Lys	Thr
Arg Ala (225	Glu Val	Lys Phe 230	Glu	Gly	Asp	Thr	Leu 235	Val	Asn	Arg	Ile	Glu 240
Leu Lys (Gly Ile	Asp Phe	Lys	Glu	Asp	Gly	Asn	Ile	Leu	Gly	His	Lys

245 250 255

Leu Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys 260 265 270

Gln Lys Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu 275 280 285

Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile 290 295 300

Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Tyr Gln 305 310 315

Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu 325 330 335

Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu 340 345 350

Tyr Lys

<210> 37

<211> 368

<212> PRT

<213> artificial sequence

<220>

<223> PTHR-cam10 amino acid sequence

<400> 37

Glu Val Gln Ala Glu Ile Lys Lys Ser Trp Ser Arg Trp Thr Leu Ala 1 5 10 15

Leu Asp Phe Lys Arg Lys Ala Arg Ser Gly Ser Ser Ser Tyr Ser Tyr 20 25 30

Gly Pro Met Val Ser His Thr Ser Val Thr Asn Val Gly Pro Arg Val 35 40 45

Gly Leu Gly Leu Pro Leu Ser Pro Arg Leu Leu Pro Thr Ala Thr Thr 50 55 60

Asn Gly His Pro Gln Leu Pro Gly His Ala Lys Pro Gly Thr Pro Ala 65 70 75 80

Leu Glu Thr Leu Glu Thr Thr Pro Pro Ala Met Ala Ala Pro Lys Asp 85 90 95

Asp Gly Phe Leu Asn Gly Ser Cys Ser Gly Leu Asp Glu Glu Ala Ser 100 105 110

Gly Pro Glu Arg Pro Pro Ala Leu Leu Gln Glu Glu Trp Glu Thr Val 115 120 125

Met Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile 130 135 140

Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser 145 150 155 160

Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe 165 170 175

Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr 180 185 190

Thr Phe Gly Tyr Gly Leu Gln Cys Phe Ala Arg Tyr Pro Asp His Met 195 200 205

Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln 210 215 220

Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala 225 230 235 240

Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys 245 250 255

Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu 260 265 270 Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys 275 280 285

Asn Gly Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly
290 295 300

Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp 305 310 315 320

Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Tyr Gln Ser Ala 325 330 335

Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu 340 345 350

Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 355 360 365

<210> 38

<211> 518

<212> PRT

<213> artificial sequence

<220>

<223> PTHR-PTHR-FRETcontrol amino acid sequence

<400> 38

Glu Val Gln Ala Glu Ile Lys Lys Ser Trp Ser Arg Trp Thr Leu Ala 1 5 10 15

Leu Asp Phe Lys Arg Lys Ala Arg Met Val Ser Lys Gly Glu Glu Leu 20 25 30

Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn 35 40 45

Gly His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr 50 55 60

Gly 65	Lys	Leu	Thr	Leu	Lys 70	Phe	Ile	Cys	Thr	Thr 75	Gly	Lys	Leu	Pro	Val 80
Pro	Trp	Pro	Thr	Leu 85	Val	Thr	Thr	Phe	Gly 90	Tyr	Gly	Leu	Gln	Cys 95	Phe
Ala	Arg	Tyr	Pro 100	Asp	His	Met	Lys	Gln 105	His	Asp	Phe	Phe	Lys 110	Ser	Ala
Met	Pro	Glu 115	Gly	Tyr	Val	Gln	Glu 120	Arg	Thr	Ile	Phe	Phe 125	Lys	Asp	Asp
Gly	Asn 130	Tyr	Lys	Thr	Arg	Ala 135	Glu	Val	Lys	Phe	Glu 140	Gly	Asp	Thr	Leu
Val 145	Asn	Arg	Ile	Glu	Leu 150	Lys	Gly	Ile	Asp	Phe 155	Lys	Glu	Asp	Gly	Asn 160
Ile	Leu	Gly	His	Lys 165	Leu	Glu	Tyr	Asn	Tyr 170	Asn	Ser	His	Asn	Val 175	Tyr
Ile	Met	Ala	Asp 180	Lys	Gln	Lys	Asn	Gly 185	Ile	Lys	Val	Asn	Phe 190	Lys	Ile
Arg	His	Asn 195	Ile	Glu	Asp	Gly	Ser 200	Val	Gln	Leu	Ala	Asp 205	His	Tyr	Gln
Gln	Asn 210	Thr	Pro	Ile	Gly	Asp 215	Gly	Pro	Val	Leu	Leu 220	Pro	Asp	Asn	His
Tyr 225	Leu	Ser	Tyr	Gln	Ser 230	Ala	Leu	Ser	Lys	Asp 235	Pro	Asn	Glu	Lys	Arg 240
Asp	His	Met	Val	Leu 245	Leu	Glu	Phe	Val	Thr 250	Ala	Ala	Gly	Ile	Thr 255	Leu
Gly	Met	Asp	Glu 260	Leu	Tyr	Lys	Ser	Gly 265	Ser	Ser	Ser	Tyr	Ser 270	Tyr	Gly
Pro	Met	Val 275	Ser	His	Thr	Ser	Met 280	Val	Ser	Lys	Gly	Glu 285	Glu	Leu	Phe

Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly

His Lys Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly 310 315 Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro 325 330 Trp Pro Thr Leu Val Thr Thr Leu Thr Trp Gly Val Gln Cys Phe Ser 340 345 Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met 355 360 Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly 370 375 Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val 390 395 Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile

405 410 415

Leu Gly His Lys Leu Glu Tyr Asn Tyr Ile Ser His Asn Val Tyr Ile
420 425 430

Thr Ala Asp Lys Gln Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg 435 440 445

His Asn Ile Glu Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln 450 455 460

Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr 465 470 475 480

Leu Ser Thr Gln Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp 485 490 495

His Met Val Leu Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly 500 505 510

Met Asp Glu Leu Tyr Lys 515 <210> 39

<211> 1737

<212> DNA

<213> artificial sequence

<220>

<223> A2A-FlashPG-CFP-C49 cDNA sequence

<400> 39 atgeceatea tgggeteete ggtgtacate aeggtggage tggecattge tgtgetggee 60 atcctgggca atgtgctggt gtgctgggcc gtgtggctca acagcaacct gcagaacgtc 120 accaactact ttgtggtgtc actggcggcg gccgacatcg cagtgggtgt gctcgccatc 180 ccctttgcca tcaccatcag caccgggttc tgcgctgcct gccacggctg cctcttcatt 240 gcctgcttcg tcctggtcct cacgcagagc tccatcttca gtctcctggc catcgccatt 300 360 gaccgctaca ttgccatccg catcccgctc cggtacaatg gcttggtgac cgggacgagg gctaagggca tcattgccat ctgctgggtg ctgtcgtttg ccatcggcct gactcccatg 420 ctaggttgga acaactgcgg tcagccaaag gagggcaaga accactccca gggctgcggg 480 gagggccaag tggcctgtct ctttgaggat gtggtcccca tgaactacat ggtgtacttc 540 aacttetttg cetgtgtget ggtgeeeetg etgeteatge tgggtgteta tttgeggate 600 ttcctggcgg cgcgacgaca gctgaagcag atggagagcc agtgttgtcc ggggtgttgt 660 gcacggtcca cactgcagaa ggaggtccat gctgccaagt cactggccat cattgtgggg 720 ctctttgccc tctgctggct gcccctacac atcatcaact gcttcacttt cttctgcccc 780 gactgcagcc acgcccctct ctggctcatg tacctggcca tcgtcctctc ccacaccaat 840 teggttgtga atccettcat ctacgeetae egtateegeg agtteegeea gaeetteege 900 aagatcattc gcagccacgt cctgaggcag caagaacctt tcaaggcagc tggcaccagt 960 gcccgggtct tggcagctca tggcagtgac ggagagcagg tcagcctccg tctcaacggt 1020 gtgagcaagg gcgaggagct gttcaccggg gtggtgccca tcctggtcga gctggacggc 1080 gacgtaaacg gccacaggtt cagcgtgtcc ggcgagggcg agggcgatgc cacctacggc 1140 aagetgacee tgaagtteat etgeaceace ggeaagetge eegtgeeetg geeeaceete 1200

gtgaccaccc	tgacctgggg	cgtgcagtgc	ttcagccgct	accccgacca	catgaagcag	1260
cacgacttct	tcaagtccgc	catgcccgaa	ggctacgtcc	aggagcgtac	catcttcttc	1320
aaggacgacg	gcaactacaa	gacccgcgcc	gaggtgaagt	tcgagggcga	caccctggtg	1380
aaccgcatcg	agctgaaggg	catcgacttc	aaggaggacg	gcaacatcct	ggggcacaag	1440
ctggagtaca	actacatcag	ccacaacgtc	tatatcaccg	ccgacaagca	gaagaacggc	1500
atcaaggccc	acttcaagat	ccgccacaac	atcgaggacg	gcagcgtgca	gctcgccgac	1560
cactaccagc	agaacacccc	catcggcgac	ggccccgtgc	tgctgcccga	caaccactac	1620
ctgagcaccc	agtccgccct	gagcaaagac	cccaacgaga	agcgcgatca	catggtcctg	1680
ctggagttcg	tgaccgccgc	cgggatcact	ctcggcatgg	acgagctgta	caagtaa	1737

<210> 40

<211> 578

<212> PRT

<213> artificial sequence

<220>

<223> A2A-FlashPG-CFP-C49 amino acid sequence

<400> 40

Met Pro Ile Met Gly Ser Ser Val Tyr Ile Thr Val Glu Leu Ala Ile 1 5 10 15

Ala Val Leu Ala Ile Leu Gly Asn Val Leu Val Cys Trp Ala Val Trp
20 25 30

Leu Asn Ser Asn Leu Gln Asn Val Thr Asn Tyr Phe Val Val Ser Leu 35 40 45

Ala Ala Asp Ile Ala Val Gly Val Leu Ala Ile Pro Phe Ala Ile 50 55 60

Thr Ile Ser Thr Gly Phe Cys Ala Ala Cys His Gly Cys Leu Phe Ile 65 70 75 80

Ala Cys Phe Val Leu Val Leu Thr Gln Ser Ser Ile Phe Ser Leu Leu 85 90 95

Asn Gly Leu Val Thr Gly Thr Arg Ala Lys Gly Ile Ile Ala Ile Cys Trp Val Leu Ser Phe Ala Ile Gly Leu Thr Pro Met Leu Gly Trp Asn Asn Cys Gly Gln Pro Lys Glu Gly Lys Asn His Ser Gln Gly Cys Gly Glu Gly Gln Val Ala Cys Leu Phe Glu Asp Val Val Pro Met Asn Tyr Met Val Tyr Phe Asn Phe Phe Ala Cys Val Leu Val Pro Leu Leu Leu Met Leu Gly Val Tyr Leu Arg Ile Phe Leu Ala Ala Arg Arg Gln Leu Lys Gln Met Glu Ser Gln Cys Cys Pro Gly Cys Cys Ala Arg Ser Thr Leu Gln Lys Glu Val His Ala Ala Lys Ser Leu Ala Ile Ile Val Gly Leu Phe Ala Leu Cys Trp Leu Pro Leu His Ile Ile Asn Cys Phe Thr Phe Phe Cys Pro Asp Cys Ser His Ala Pro Leu Trp Leu Met Tyr Leu

Ala Ile Val Leu Ser His Thr Asn Ser Val Val Asn Pro Phe Ile Tyr

Ala Tyr Arg Ile Arg Glu Phe Arg Gln Thr Phe Arg Lys Ile Ile Arg

Ser His Val Leu Arg Gln Gln Glu Pro Phe Lys Ala Ala Gly Thr Ser

Ala Ile Ala Ile Asp Arg Tyr Ile Ala Ile Arg Ile Pro Leu Arg Tyr

- Ala Arg Val Leu Ala Ala His Gly Ser Asp Gly Glu Gln Val Ser Leu 325 330 335
- Arg Leu Asn Gly Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val 340 345 350
- Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Arg Phe Ser 355 360 365
- Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu 370 380
- Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu 385 390 395 400
- Val Thr Thr Leu Thr Trp Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp 405 410 415
- His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr 420 425 430
- Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr 435 440 445
- Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu 450 455 460
- Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys 465 470 475 480
- Leu Glu Tyr Asn Tyr Ile Ser His Asn Val Tyr Ile Thr Ala Asp Lys
 485 490 495
- Gln Lys Asn Gly Ile Lys Ala His Phe Lys Ile Arg His Asn Ile Glu 500 505 510
- Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile 515 520 525
- Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln 530 540

Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu 545 550 555 560

Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu 565 570 575

Tyr Lys

<210> 41

<211> 1686

<212> DNA

<213> artificial sequence

<220>

<223> A2A-FlashPG-CFP-C33 cDNA sequence

<400> 41

atgcccatca	tgggctcctc	ggtgtacatc	acggtggagc	tggccattgc	tgtgctggcc	60
atcctgggca	atgtgctggt	gtgctgggcc	gtgtggctca	acagcaacct	gcagaacgtc	120
accaactact	ttgtggtgtc	actggcggcg	gccgacatcg	cagtgggtgt	gctcgccatc	180
ccctttgcca	tcaccatcag	caccgggttc	tgcgctgcct	gccacggctg	cctcttcatt	240
gcctgcttcg	tcctggtcct	cacgcagagc	tccatcttca	gtctcctggc	catcgccatt	300
gaccgctaca	ttgccatccg	catcccgctc	cggtacaatg	gcttggtgac	cgggacgagg	360
gctaagggca	tcattgccat	ctgctgggtg	ctgtcgtttg	ccatcggcct	gactcccatg	420
ctaggttgga	acaactgcgg	tcagccaaag	gagggcaaga	accactccca	gggctgcggg	480
gagggccaag	tggcctgtct	ctttgaggat	gtggtcccca	tgaactacat	ggtgtacttc	540
aacttctttg	cctgtgtgct	ggtgcccctg	ctgctcatgc	tgggtgtcta	tttgcggatc	600
ttcctggcgg	cgcgacgaca	gctgaagcag	atggagagcc	agtgttgtcc	ggggtgttgt	660
gcacggtcca	cactgcagaa	ggaggtccat	gctgccaagt	cactggccat	cattgtgggg	720
ctctttgccc	tctgctggct	gcccctacac	atcatcaact	gcttcacttt	cttctgcccc	780
gactgcagcc	acgcccctct	ctggctcatg	tacctggcca	tcgtcctctc	ccacaccaat	840
tcggttgtga	atcccttcat	ctacgcctac	cgtatccgcg	agttccgcca	gaccttccgc	900

aagatcattc gcagccacgt cctgaggcag caagaacctt tcaaggcagc tggcaccagt 960 gcccgggtcg tgagcaaggg cgaggagctg ttcaccgggg tggtqcccat cctqqtcqaq 1020 ctggacggcg acgtaaacgg ccacaggttc agcgtgtccg gcgagggcga gggcgatgcc 1080 acctacggca agetgaccet gaagtteate tgeaceaeeg geaagetgee egtgeeetgg 1140 cccaccctcg tgaccaccct gacctggggc gtgcagtgct tcagccgcta ccccgaccac 1200 atgaagcagc acgacttett caagteegee atgeeegaag getaegteea ggagegtaee 1260 atcttcttca aggacgacgg caactacaag acccgcgccg aggtgaagtt cgagggcgac 1320 accetggtga accgcatega getgaaggge ategaettea aggaggaegg caacateetg 1380 gggcacaagc tggagtacaa ctacatcagc cacaacgtct atatcaccgc cgacaagcag 1440 aagaacggca tcaaggccca cttcaagatc cgccacaaca tcgaggacgg cagcgtgcag 1500 ctcgccgacc actaccagca gaacaccccc atcggcgacg gccccgtgct gctgcccgac 1560 aaccactacc tgagcaccca gtccgccctg agcaaagacc ccaacgagaa gcgcgatcac 1620 atggtcctgc tggagttcgt gaccgccqcc qqqatcactc tcqqcatqqa cqaqctqtac 1680 aaqtaa 1686

<210> 42

<211> 561

<212> PRT

<213> artificial sequence

<220>

<223> A2A-FlashPG-CFP-C33 amino acid sequence

<400> 42

Met Pro Ile Met Gly Ser Ser Val Tyr Ile Thr Val Glu Leu Ala Ile 1 5 10 15

Ala Val Leu Ala Ile Leu Gly Asn Val Leu Val Cys Trp Ala Val Trp
20 . 25 30

Leu Asn Ser Asn Leu Gln Asn Val Thr Asn Tyr Phe Val Val Ser Leu 35 40 45

Ala	Ala 50	Ala	Asp	Ile	Ala	Val 55	Gly	Val	Leu	Ala	Ile 60	Pro	Phe	Ala	Ile
Thr 65	Ile	Ser	Thr	Gly	Phe 70	Cys	Ala	Ala	Cys	His 75	Gly	Cys	Leu	Phe	Ile 80
Ala	Cys	Phe	Val	Leu 85	Val	Leu	Thr	Gln	Ser 90	Ser	Ile	Phe	Ser	Leu 95	Leu
Ala	Ile	Ala	Ile 100	Asp	Arg	Tyr	Ile	Ala 105	Ile	Arg	Ile	Pro	Leu 110	Arg	Tyr
Asn	Gly	Leu 115	Val	Thr	Gly	Thr	Arg 120	Ala	Lys	Gly	Ile	Ile 125	Ala	Ile	Cys
Trp	Val 130	Leu	Ser	Phe	Ala	Ile 135	Gly	Leu	Thr	Pro	Met 140	Leu	Gly	Trp	Asn
Asn 145	Cys	Gly	Gln	Pro	Lys 150	Glu	Gly	Lys	Asn	His 155	Ser	Gln	Gly	Cys	Gly 160
Glu	Gly	Gln	Val	Ala 165	Cys	Leu	Phe	Glu	Asp 170	Val	Val	Pro	Met	Asn 175	Tyr
Met	Val	Tyr	Phe 180	Asn	Phe	Phe	Ala	Cys 185	Val	Leu	Val	Pro	Leu 190	Leu	Leu
Met	Leu	Gly 195	Val	Tyr	Leu	Arg	Ile 200	Phe	Leu	Ala	Ala	Arg 205	Arg	Gln	Leu
Lys	Gln 210	Met	Glu	Ser	Gln	Cys 215	Cys	Pro	Gly	Cys	Cys 220	Ala	Arg	Ser	Thr
Leu 225	Gln	Lys	Glu	Val	His 230	Ala	Ala	Lys	Ser	Leu 235	Ala	Ile	Ile	Val	Gly 240
Leu	Phe	Ala	Leu	Cys 245	Trp	Leu	Pro	Leu	His 250	Ile	Ile	Asn	Cys	Phe 255	Thr
Phe	Phe	Cys	Pro 260	Asp	Cys	Ser	His	Ala 265	Pro	Leu	Trp	Leu	Met 270	Tyr	Leu

Ala Ile Val Leu Ser His Thr Asn Ser Val Val Asn Pro Phe Ile Tyr

275 280 285

Ala Tyr Arg Ile Arg Glu Phe Arg Gln Thr Phe Arg Lys Ile Ile Arg Ser His Val Leu Arg Gln Gln Glu Pro Phe Lys Ala Ala Gly Thr Ser Ala Arg Val Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Arg Phe Ser Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Leu Thr Trp Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn Tyr Ile Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln Lys Asn Gly Ile Lys Ala His Phe Lys Ile Arg His Asn Ile Glu Asp

Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly

Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser 515 520 525

Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val-Leu Leu 530 535 540

Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr 545 550 555 560

Lys

<210> 43

<211> 1788

<212> DNA

<213> artificial sequence

<220>

<223> A2A-CFP-ModelPG-C49 cDNA sequence

<400> 43

atgeceatea tgggeteete ggtgtaeate aeggtggage tggecattge tgtgetggee 60 atcctgggca atgtgctggt gtgctgggcc gtgtggctca acagcaacct gcagaacgtc 120 accaactact ttgtggtgtc actggcggcg gccgacatcg cagtgggtgt gctcgccatc 180 ccctttgcca tcaccatcag caccgggttc tgcgctgcct gccacggctg cctcttcatt 240 gcctqcttcq tcctqqtcct cacqcaqaqc tccatcttca qtctcctqqc catcqccatt 300 gaccgctaca ttgccatccg catcccgctc cggtacaatg gcttggtgac cggcacgagg 360 gctaagggca tcattgccat ctgctgggtg ctgtcgtttg ccatcggcct gactcccatg 420 ctaggttgga acaactgcgg tcagccaaag gagggcaaga accactccca gggctgcggg 480 gagggccaag tggcctgtct ctttgaggat gtggtcccca tgaactacat ggtgtacttc 540 aacttettig cetgtgtget ggtgeecetg etgeteatge tgggtgteta titgeggate 600 ttcctggcgg cgcgacgaca gctgaagcag atggagagcc agcctctgcc gggggagcgg 660 gcacggtcca cactgcagaa ggaggtccat gctgccaagt cactggccat cattgtgggg 720 ctctttgccc tctgctggct gcccctacac atcatcaact gcttcacttt cttctgcccc 780 gactgcagcc acgcccctct ctggctcatg tacctggcca tcgtcctctc ccacaccaat 840 teggttgtga atcccttcat ctacgcctac cgtatccgcg agttccgcca gaccttccgc 900 aagatcattc gcagccacgt cctgaggcag caagaacctt tcaaggcagc tggcaccagt 960 gcccgggtct tggcagctca tggcagtgac ggagagcagg tcaqcctccq tctcaacqqc 1020 gtgagcaagg gcgaggagct gttcaccggg gtggtgccca tcctggtcga gctggacqqc 1080 gacgtaaacg gccacaggtt cagcgtgtcc ggcgagggcg agggcgatgc cacctacggc 1140 aagetgacce tgaagtteat etgeaceace ggeaagetge eegtgeeetg geeeaceete 1200 gtgaccaccc tgacctgggg cgtgcagtgc ttcagccgct accccgacca catgaagcag 1260 cacgacttct tcaagtccgc catgcccgaa ggctacgtcc aggagcgtac catcttcttc 1320 aaggacgacg gcaactacaa gacccgcgcc gaggtgaagt tcgagggcga caccctggtg 1380 aaccgcatcg agctgaaggg catcgacttc aaggaggacg gcaacatcct ggggcacaag 1440 ctggagtaca actacatcag ccacaacgtc tatatcaccg ccgacaagca gaagaacggc 1500 atcaaggccc acttcaagat ccgccacaac atcgaggacg gcagcgtgca gctcgccgac 1560 cactaccage agaacaccce categgegae ggeecegtge tgetgeecga caaccactae 1620 ctgagcaccc agtccgccct gagcaaagac cccaacgaga agcgcgatca catggtcctg 1680 ctggagttcg tgaccgccgc cgggatcact ctcggcatgg acgagctgta caaggctgag 1740 gctgcagcgc gcgaagcatg ctgcccaggt tgttgcgctc gcgcatga 1788

<210> 44

<211> 595

<212> PRT

<213> artificial sequence

<220>

<223> A2A-CFP-ModelPG-C49 amino acid sequence

<400> 44

Met Pro Ile Met Gly Ser Ser Val Tyr Ile Thr Val Glu Leu Ala Ile
1 5 10 15

Ala Val Leu Ala Ile Leu Gly Asn Val Leu Val Cys Trp Ala Val Trp 20 25 30

Leu Asn Ser Asn Leu Gln Asn Val Thr Asn Tyr Phe Val Val Ser Leu 35 40 45

Ala Ala Asp Ile Ala Val Gly Val Leu Ala Ile Pro Phe Ala Ile 50 55 60

Thr Ile Ser Thr Gly Phe Cys Ala Ala Cys His Gly Cys Leu Phe Ile 65 70 75 80

Ala Cys Phe Val Leu Val Leu Thr Gln Ser Ser Ile Phe Ser Leu Leu 85 90 95

Ala Ile Ala Ile Asp Arg Tyr Ile Ala Ile Arg Ile Pro Leu Arg Tyr 100 105 110

Asn Gly Leu Val Thr Gly Thr Arg Ala Lys Gly Ile Ile Ala Ile Cys 115 120 125

Trp Val Leu Ser Phe Ala Ile Gly Leu Thr Pro Met Leu Gly Trp Asn 130 135 · 140

Asn Cys Gly Gln Pro Lys Glu Gly Lys Asn His Ser Gln Gly Cys Gly 145 150 155 160

Glu Gly Gln Val Ala Cys Leu Phe Glu Asp Val Val Pro Met Asn Tyr 165 170 175

Met Val Tyr Phe Asn Phe Phe Ala Cys Val Leu Val Pro Leu Leu Leu 180 185 190

Met Leu Gly Val Tyr Leu Arg Ile Phe Leu Ala Ala Arg Arg Gln Leu 195 200 205

Lys Gln Met Glu Ser Gln Pro Leu Pro Gly Glu Arg Ala Arg Ser Thr 210 215 220

Leu Gln Lys Glu Val His Ala Ala Lys Ser Leu Ala Ile Ile Val Gly
225 230 235 240

Leu Phe Ala Leu Cys Trp Leu Pro Leu His Ile Ile Asn Cys Phe Thr

Phe Phe Cys Pro Asp Cys Ser His Ala Pro Leu Trp Leu Met Tyr Leu 260 265 270

Ala Ile Val Leu Ser His Thr Asn Ser Val Val Asn Pro Phe Ile Tyr 275 280 285

Ala Tyr Arg Ile Arg Glu Phe Arg Gln Thr Phe Arg Lys Ile Ile Arg 290 295 300

. Ser His Val Leu Arg Gln Gln Glu Pro Phe Lys Ala Ala Gly Thr Ser 305 310 315 320

Ala Arg Val Leu Ala Ala His Gly Ser Asp Gly Glu Gln Val Ser Leu 325 330 335

Arg Leu Asn Gly Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val 340 345 350

Pro Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Arg Phe Ser 355 360 365

Val Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu 370 375 380

Lys Phe Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu 385 390 395 400

Val Thr Thr Leu Thr Trp Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp 405 410 415

His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr 420 425 430

Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr 435 440 445

Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu 450 455 460

Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys 465 470 475 480

Leu	Glu	Tyr	Asn	Tyr 485	Ile	Ser	His	Asn	Val 490	Tyr	Ile	Thr	Ala	Asp 495	Lys		
Gln	Lys	Asn	Gly 500	Ile	Lys	Ala	His	Phe 505	Lys	Ile	Arg	His	Asn 510	Ile	Glu		
Asp	Gly	Ser 515	Val	Gln	Leu	Ala	Asp 520	His	Tyr	Gln	Gln	Asn 525	Thr	Pro	Ile		
Gly	Asp 530	Gly	Pro	Val	Leu	Leu 535	Pro	Asp	Asn	His	Tyr 540	Leu	Ser	Thr	Gln		
Ser 545	Ala	Leu	Ser	Lys	Asp 550	Pro	Asn	Glu	Lys	Arg 555	Asp	His	Met	Val	Leu 560		
Leu	Glu	Phe	Val	Thr 565	Ala	Ala	Gly	Ile	Thr 570	Leu	Gly	Met	Asp	Glu 575	Leu		
Tyr	Lys	Ala	Glu 580	Ala	Ala	Ala	Arg	Glu 585	Ala	Cys	Cys	Pro	Gly 590	Cys	Cys		
Ala	Arg	Ala 595															
<210)> 4	15															
<211	.> :	1737															
<212	?> I	ONA															
<213	3 > a	artii	ficia	al se	equer	ice											
<220)>																
<223	S> 1	A2A-0	CFP-C	249 c	DNA	sequ	ence	:									
<400 atgo		15 ca t	gggo	ctcct	c gg	ıtgta	cato	ac <u>c</u>	gtgg	jagc	tggo	catt	gc t	gtgo	tggcc		60
atco	tggg	gca a	atgtg	gctgg	ıt gt	gctg	ggcc	gto	gtggd	tca	acaç	gcaac	ct c	gcaga	acgtc	1	20
acca	acta	act t	tgtg	gtgt	c ac	tggc	ggcg	gcc	gaca	tcg	cagt	gggt	gt g	gctc	gccatc	1	80
ccct	ttg	cca t	caco	catca	ıg ca	ccgg	gttc	tgc	gcto	cct	gcca	cggc	tg d	cctct	tcatt	2	40

gcctgcttcg tcctggtcct cacgcagagc tccatcttca gtctcctggc catcgccatt 300 gaccgctaca ttgccatccg catcccgctc cggtacaatg gcttggtgac cggcacgagg 360 gctaagggca tcattgccat ctgctgggtg ctgtcgtttg ccatcggcct gactcccatg 420 ctaggttgga acaactgcgg tcagccaaag gagggcaaga accactccca gggctgcggg 480 gagggccaag tggcctgtct ctttgaggat gtggtcccca tgaactacat ggtgtacttc 540 aacttetttg cetgtgtget ggtgeeeetg etgeteatge tgggtgteta tttgeggate 600 ttcctggcgg cgcgacgaca gctgaagcag atggagagcc agcctctgcc gggggagcgg 660 gcacggtcca cactgcagaa ggaggtccat gctgccaagt cactggccat cattgtgggg 720 ctctttgccc tctgctggct gcccctacac atcatcaact gcttcacttt cttctgcccc 780 gactgcagcc acgcccctct ctggctcatg tacctggcca tcgtcctctc ccacaccaat 840 teggttgtga atcectteat etacgeetae egtateegeg agtteegeea gaeetteege 900 aagatcattc gcagccacgt cctgaggcag caagaacctt tcaaggcagc tggcaccagt 960 gcccgggtct tggcagctca tggcagtgac ggagagcagg tcagcctccg tctcaacggt 1020 gtgagcaagg gcgaggagct gttcaccggg gtggtgccca tcctggtcga gctggacggc 1080 gacgtaaacg gccacaggtt cagcgtgtcc ggcgagggcg agggcgatgc cacctacggc 1140 aagetgaeee tgaagtteat etgeaeeaee ggeaagetge eegtgeeetg geeeaeeete 1200 gtgaccaccc tgacctgggg cgtgcagtgc ttcagccgct accccgacca catgaagcag 1260 cacgaettet teaagteege catgeeegaa ggetaegtee aggagegtae catettette 1320 1380 aaggacgacg gcaactacaa gacccgcgcc gaggtgaagt tcgagggcga caccctggtg aaccgcatcg agctgaaggg catcgacttc aaggaggacg gcaacatcct ggggcacaag 1440 1500 ctggagtaca actacatcag ccacaacgtc tatatcaccg ccgacaagca gaagaacggc atcaaggccc acttcaagat ccgccacaac atcgaggacg gcagcgtgca gctcgccgac 1560 cactaccage agaacaccce categgegae ggeecegtge tgetgeecga caaccactae 1620 ctgagcaccc agtccgccct gagcaaagac cccaacgaga agcgcgatca catggtcctg 1680 ctggagttcg tgaccgccgc cgggatcact ctcggcatgg acgagctgta caagtaa 1737

<210> 46

<211> 578

<212> PRT

<220>

<223> A2A-CFP-C49 amino acid sequence

<400> 46

Met Pro Ile Met Gly Ser Ser Val Tyr Ile Thr Val Glu Leu Ala Ile 1 5 10 15

Ala Val Leu Ala Ile Leu Gly Asn Val Leu Val Cys Trp Ala Val Trp
20 25 30

Leu Asn Ser Asn Leu Gln Asn Val Thr Asn Tyr Phe Val Val Ser Leu 35 40 45

Ala Ala Asp Ile Ala Val Gly Val Leu Ala Ile Pro Phe Ala Ile 50 55 60

Thr Ile Ser Thr Gly Phe Cys Ala Ala Cys His Gly Cys Leu Phe Ile 65 70 . 75 80

Ala Cys Phe Val Leu Val Leu Thr Gln Ser Ser Ile Phe Ser Leu Leu 85 90 95

Ala Ile Ala Ile Asp Arg Tyr Ile Ala Ile Arg Ile Pro Leu Arg Tyr 100 105 110

Asn Gly Leu Val Thr Gly Thr Arg Ala Lys Gly Ile Ile Ala Ile Cys 115 120 125

Trp Val Leu Ser Phe Ala Ile Gly Leu Thr Pro Met Leu Gly Trp Asn 130 135 140

Asn Cys Gly Gln Pro Lys Glu Gly Lys Asn His Ser Gln Gly Cys Gly 145 150 155 160

Glu Gly Gln Val Ala Cys Leu Phe Glu Asp Val Val Pro Met Asn Tyr 165 170 175

Met Val Tyr Phe Asn Phe Phe Ala Cys Val Leu Val Pro Leu Leu Leu 180 185 190

ncc	Бец	195	vai	TYL	Бец	Arg	200	FIIC	пец	AIG	AIG	205	Arg	GIII	Бей
Lys	Gln 210	Met	Glu	Ser	Gln	Pro 215	Leu	Pro	Gly	Glu	Arg 220	Ala	Arg	Ser	Thr
Leu 225	Gln	Lys	Glu	Val	His 230	Ala	Ala	Lys	Ser	Leu 235	Ala	Ile	Ile	Val	Gly 240
Leu	Phe	Ala	Leu	Cys 245	Trp	Leu	Pro	Leu	His 250	Ile	Ile	Asn	Cys	Phe 255	Thr
Phe	Phe	Cys	Pro 260	Asp	Cys	Ser	His	Ala 265	Pro	Leu	Trp	Leu	Met 270	Tyr	Leu
Ala	Ile	Val 275	Leu	Ser	His	Thr	Asn 280		Val	Val	Asn	Pro 285	Phe	Ile	Tyr
Ala	Tyr 290	Arg	Ile	Arg	Glu	Phe 295	Arg	Gln	Thr	Phe	Arg 300	Lys	Ile	Ile	Arg
Ser 305	His	Val	Leu	Arg	Gln 310	Gln	Glu	Pro	Phe	Lys 315	Ala	Ala	Gly	Thr	Ser 320
Ala	Arg	Val	Leu	Ala 325	Ala	His	Gly	Ser	Asp 330	Gly	Glu	Gln	Val	Ser 335	Leu
Arg	Leu	Asn	Gly 340	Val	Ser	Lys	Gly	Glu 345	Glu	Leu	Phe	Thr	Gly 350	Val	Val
Pro	Ile	Leu 355	Val	Glu	Leu	Asp	Gly 360	Asp	Val	Asn	Gly	His 365	Arg	Phe	Ser
Val	Ser 370	Gly	Glu	Gly	Glu	Gly 375	Asp	Ala	Thr	Tyr	Gly 380	Lys	Leu	Thr	Leu
Lys 385	Phe	Ile	Cys	Thr	Thr 390	Gly	Lys	Leu	Pro	Val 395	Pro	Trp	Pro	Thr	Leu 400

Val Thr Thr Leu Thr Trp Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp

410

405

Met Leu Gly Val Tyr Leu Arg Ile Phe Leu Ala Ala Arg Arg Gln Leu

His Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr 420 425 430

Val Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr 435 440 445

Arg Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu 450 455 460

Leu Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys 465 470 475 480

Leu Glu Tyr Asn Tyr Ile Ser His Asn Val Tyr Ile Thr Ala Asp Lys 485 490 495

Gln Lys Asn Gly Ile Lys Ala His Phe Lys Ile Arg His Asn Ile Glu 500 505 510

Asp Gly Ser Val Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile 515 520 525

Gly Asp Gly Pro Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln 530 540

Ser Ala Leu Ser Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu 545 550 . 555 560

Leu Glu Phe Val Thr Ala Ala Gly Ile Thr Leu Gly Met Asp Glu Leu 565 570 575

Tyr Lys

50/66

51/66