

Mixed Model A model containing both Fixed and Random component

Fixed Effect

- Variation in fixed effects for subjects are same. Inferences based on parameters.
- 2. Effects are fixed when the study focuses on those individual effects.
- 3. When the entire population of interest is included in the study, the effect is fixed
- 4. Values of fixed effects are estimated by least squares
- Inferences cannot be extended to other data sets

Random Effect

- Variation in random effects for subjects vary
- 2. Effects are random when the study focuses on characteristics of an underlying population
- 3. When a small fraction of the population is included, the effect is random.
- 4. Values of random effects are estimated with shrinkage (i.e., best linear unbiased predictors).
- 5. Inferences cannot be extended to other data sets

Degrees of freedom less than 5, use fixed?

Foundation of mixed models

Ronald Fisher (1918) *Infinitesimal* model (P = G + E)

Francis Galton (1988)

Regression and h²

Sewall Wright (1922)

Pedigree matrix (A)

Charles Henderson (1950)

BLUPs and BLUEs

Why Mixed Models

(Predict BLUPs/BV's and Variance Components)

Model phenotypic observations on related individuals which can provide information about their underlying genotypic values

Mixed model allows efficient estimation of genetic parameters (such as variance components, breeding values and heritability

More flexibility to handle the unbalanced and missing data.

Powerful to use performance information from all known relatives to Estimate Breeding values (co-variances)

Fixed effects can be controlled and accounted to infer rightly about the predicted values

More control on nuisance effects blocks in case of Field Design

Mixed Effect Model

$$E(y) = X\beta$$
, $E(u) = 0$, $E(\epsilon) = 0$

Mixed Effect Model

Example of RCBD design with 3 Replications and 4 genotypes Replications as Fixed and Genotypes as Random

$$y = X\beta + Zu + \varepsilon$$

$$\begin{bmatrix} \mathbf{40} \\ \mathbf{39} \\ \mathbf{60} \\ \mathbf{70} \\ \mathbf{56} \\ \mathbf{20} \\ \mathbf{78} \\ \mathbf{43} \\ \mathbf{56} \\ \mathbf{67} \\ \mathbf{56} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \boldsymbol{\beta}_3 \end{bmatrix} + \begin{bmatrix} \boldsymbol{\beta}_1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} + [\boldsymbol{\epsilon}]$$

Purpose is to get solution for β (BLUE) and \mathbf{u} (BLUP) and estimate variance components

Henderson (1950) Mixed model Equation

$$y = X\beta + Zu + \varepsilon$$

$$\downarrow \\ \begin{bmatrix} \acute{X}R^{-1} X & \acute{X}R^{-1} Z \\ \acute{Z}R^{-1} X & \acute{Z}R^{-1} Z + G^{-1} \end{bmatrix} \begin{vmatrix} \beta \\ u \end{vmatrix} = \begin{bmatrix} \acute{X}R^{-1} y \\ \acute{Z}R^{-1} y \end{bmatrix}$$

multiply $R = \sigma^2 I$ on both sides

$$\begin{bmatrix} \dot{X}X & \dot{X}Z \\ \dot{Z}X & \dot{Z}Z + \lambda G^{-1} \end{bmatrix} \begin{bmatrix} \dot{\beta} \\ \dot{u} \end{bmatrix} = \begin{bmatrix} \dot{X}y \\ \dot{Z}y \end{bmatrix}$$
Where, $\lambda = \frac{\sigma_{\varepsilon}^{2}}{\sigma_{u}^{2}}$ is shrinkage factor
$$\begin{bmatrix} \dot{X}X & \dot{X}Z \\ \dot{Z}X & \dot{Z}Z + \lambda G^{-1} \end{bmatrix} \begin{bmatrix} \dot{\beta} \\ \dot{u} \end{bmatrix} = \begin{bmatrix} \dot{X}y \\ \dot{Z}y \end{bmatrix}$$
BLUP

 $m{eta}$ from mixed model is BLUE and equal to OLS and is given as $\widehat{m{eta}} = (\hat{X}V^{-1}X)^{-1} \; \hat{X}V^{-1}Y$

$$u$$
 from mixed model is BLUP and is given as $\hat{u} = G \hat{Z} V^{-1} (y - X \hat{\beta})$

where
$$V = \mathbf{Z} \boldsymbol{G} \boldsymbol{\sigma}_{u}^{2} \boldsymbol{Z} + R \boldsymbol{\sigma}_{\varepsilon}^{2}$$

Solving Mixed model Equation

$$\begin{bmatrix} \dot{X}X & \dot{X}Z \\ \dot{Z}X & \dot{Z}Z + \lambda G^{-1} \end{bmatrix} \begin{bmatrix} \beta \\ u \end{bmatrix} = \begin{bmatrix} \dot{X}y \\ \dot{Z}y \end{bmatrix}$$
LHS
RHS

$$\begin{bmatrix} \widehat{\beta} \\ \widehat{u} \end{bmatrix} = \begin{bmatrix} \acute{X}X & \acute{X}Z \\ \acute{Z}X & \acute{Z}Z + \lambda G^{-1} \end{bmatrix} \cdot \begin{bmatrix} \acute{X}y \\ \acute{Z}y \end{bmatrix}$$

Restricted maximum likelihood (REML) decomposes the matrices and get best solutions of parameters (BLUPs and BLUEs) and variance components through iterative methods (convergence)

N	Υ	Rep	Gen
1	40	R1	Ge1
2	39	R1	Ge2
3	60	R1	Ge3
4	70	R1	Ge4
5	56	R2	Ge1
6	20	R2	Ge2
7	78	R2	Ge3
8	43	R2	Ge4
9	56	R3	Ge1
10	86	R3	Ge2
11	67	R3	Ge3
12	56	R3	Ge4

What is then X

N	Rep1	Rep2	Rep3
1	1	0	0
2	1	0	0
3	1	0	0
4	1	0	0
5	0	1	0
6	0	1	0
7	0	1	0
8	0	1	0
9	0	0	1
10	0	0	1
11	0	0	1
12	0	0	1

What is then Z

N	Gen1	Gen2	Gen3	Gen4
1	1	0	0	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	1
5	1	0	0	0
6	0	1	0	0
7	0	0	1	0
8	0	0	0	1
9	1	0	0	0
10	0	1	0	0
11	0	0	1	0
12	0	0	0	1

Z is 12 x 4 matrix

What is then $\hat{X}X$

Dissect the Mixed model Equation

 \hat{X} is 3 x 12 matrix \hat{X} is 12 x 3 matrix $\hat{X}\hat{X}$ is 3 x 3 matrix

	Rep1	Rep2	Rep3
Rep1	4	0	0
Rep2	0	4	0
Rep3	0	0	4

3 x 3 matrix, counting number of phenotypes in each replication

What is then $\hat{X}Z$

 \hat{X} is 3 x 12 matrix

Z is 12 x 4 matrix

 $\hat{X}Z$ is 3 x 4 matrix

	Gen1	Gen2	Gen3	Gen4
Rep1	1	1	1	1
Rep2	1	1	1	1
Rep3	1	1	1	1

3 x 4 matrix, counting number of genotype in each replication

What is then $\hat{Z}X$

Dissect the Mixed model Equation

 \hat{Z} is 4 x 12 matrix X is 12 x 3 matrix

 $\mathbf{Z}\mathbf{X}$ is 4 x 3 matrix

	Rep1	Rep2	Rep3
Gen1	1	1	1
Gen2	1	1	1
Gen3	1	1	1
Gen4	1	1	1

4 x 3 matrix, counting number of genotype in each environment

What is then $\hat{Z}Z$

 \hat{Z} is 4 x 12 matrix

Z is 12 x 4 matrix

 $\mathbf{Z}\mathbf{Z}$ is 4 x 4 matrix

 Gen1 Gen2 Gen3 Gen4

 Gen1 3 0 0 0

 Gen2 0 3 0 0

 Gen3 0 0 3 0

 Gen4 0 0 0 3

4 x 4 diagonal matrix counting the number of phenotypes observed for each genotype

What is then $\hat{Z}Z + \lambda G^{-1}$

 \hat{Z} is 4 x 12 matrix

Z is 12 x 4 matrix

 $\mathbf{Z}\mathbf{Z}$ is 4 x 4 matrix

Assume G=1 (no relationship)

$$\lambda = \frac{\sigma_{\varepsilon}^2}{\sigma_u^2} = 1.89/10$$
 =0.18

4 x 4 diagonal matrix counting the
number of phenotypes observed for each
genotype + λ value in the diagonal
elements

	Gen1	Gen2	Gen3	Gen4
Gen1	3.18	0	0	0
Gen2	0	3.18	0	0
Gen3	0	0	3.18	0
Gen4	0	0	0	3.18

What is then LHS

$$\begin{bmatrix} \dot{X}X & \dot{X}Z \\ \dot{Z}X & \dot{Z}Z + \lambda G^{-1} \end{bmatrix}$$

	Rep1	Rep2	Rep3	Gen1	Gen2	Gen3	Gen4
Rep1	4	0	0	1	1	1	1
Rep2	0	4	0	1	1	1	1
Rep3	0	0	4	1	1	1	1
Gen1	1	1	1	3.18	0	0	0
Gen2	1	1	1	0	3.18	0	0
Gen3	1	1	1	0	0	3.18	0
Gen4	1	1	1	0	0	0	3.18

What is then $\acute{X}y$

3 x1 matrix counting the sum of phenotypes in each environment

What is then $\acute{Z}y$

 \hat{Z} is 4 x 12 matrix y is 12 x 1 $\hat{Z}y$ is 4 x 1 matrix

Gen21	110
Gen2	202
Gen3	303
Gen4	403

4 x1 matrix counting the sum of phenotypes for each genotype

What is then RHS

$$\begin{bmatrix} \hat{X} \ y \end{bmatrix}$$

Rep1	101
Rep2	202
Rep3	302
Gen1	332
Gen2	231
Gen3	432
Gen4	434

Solutions

$$\begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} \dot{X}X & \dot{X}Z \\ \dot{Z}X & \dot{Z}Z + \lambda G^{-1} \end{bmatrix}. \begin{bmatrix} \dot{X}y \\ \dot{Z}y \end{bmatrix}$$
RHS
LHS

Rep1	-20	l l
Rep2	-43	BLUES
Rep3	12	
Gen1	-65	ì
Gen2	-80	DILLID
Gen3	32	- BLUPs
Gen4	20	J

$$\begin{bmatrix} \dot{X}X & \dot{X}Z \\ \dot{Z}X & \dot{Z}Z + \lambda G^{-1} \end{bmatrix}$$

Off-diagonal elements are replaced with values of G matrix

What when we know the G the

		Rep1	Rep2	Rep3	Gen1	Gen2	Gen3	Gen4
	Rep1	4	0	0	1	1	1	1
١	Rep2	0	4	0	1	1	1	1
1	Rep3	0	0	4	1	1	1	1
	Gen1	1	1	1	3.18	0.67	0.23	0.11
/	Gen2	1	1	1	0.67	3.18	0.99	0.89
	Gen3	1	1	1	0.23	0.99	3.18	0.50
	Gen4	1	1	1	0.11	0.89	0.50	3.18

Construction of G matrix

First G matrix, VanRanden (2008)

Covariance Between Individuals

$$Cov(X,Y) = 2f_{xy}\sigma_a^2(assuming\ Dominance = 0)$$

Where f_{xy} is the coefficient of co-ancestary between two individuals and σ_a^2 is the additive genetic variance

	IRRI 154	IRRI 147	IRRI 219	IRRI 220
IRRI 154	1	2/3	2/16	2/18
IRRI 147		1	2/16	2/18
IRRI 219			1	2/18
IRRI 220				1

$$v(u) = A\sigma_a^2$$

Note:

- If genotypes are independent offdiagonal elements=0
- Non-zero elements of offdiagonal reflect use of relative information for BLUP estimation

Elements of the additive relationship matrix (A) has the elements given by the $u(x, y) = 2f_{xy}$

Best	Best solutions with minimum variance
Linear	Solutions are a linear combination of the observations
Unbiased	Low bias equal to their true values

BLUEs	BLUPs	Breeding Values
Associated with Fixed Effect	Associated with Random Effect	Associated with Random Effect, BLUPs of BV is called Estimated Breeding Value
$BLUE_i = y_i - \mu$	$BLUP_{i} = \frac{\sigma_{a}^{2}}{\sigma_{a}^{2} + \frac{\sigma_{\epsilon}^{2}}{n}} y_{i} - \mu$	BLUP of Breeding Value _i = $\frac{\sigma_a^2}{\sigma_a^2 + \frac{\sigma_\epsilon^2}{n}} y_i - \mu$
Values are simply average	Values are averaged but Shrinked, does not only depend upon the heritability but also on information (n) and effect error variance	Values are averaged but Shrinked, does not only depend upon the heritability but also on information (n) and effect error variance

BLUPs or BV"s are always less than BLUEs, and depends upon the amount of Shrinkage

BLUEs, BLUPs, and Breeding Values

$$\lambda = \frac{1 - h^2}{h^2}$$

- Less shrinkage with more observations
- Higher heritability, less shrinkage

BLUE is average sum of phenotypes in each environment= $\frac{sum}{x}$

BLUE is simply computing averages

BLUP is the sum of phenotypes for each genotype divide by the number of phenotypes observed for each genotype = $\frac{sum}{z+\lambda}$

Shrinkage towards 0, proportional to λ

Accuracy of Predictions (How Accurate we are!)

Accuracy is defined as the correlation between true and estimated breeding values

$$r_i = \rho(\hat{a}_i, a_i)$$

Reliability and Prediction Error Variance (PEV)

Reliability is a squared correlation of accuracy and is proportion of true genetic variance explained by the EBVs

Prediction error variance (PEV): fraction of additive variance not accounted for by the prediction

$$PEV = var(\widehat{a}_i - a_i) = (1 - r_i^2)\sigma_a^2$$

- ➤ The closer the PEV to true values, the closer the reliability is to 1.
- >PEV depends upon the n, the individuals with more information have small PEV

$$\begin{array}{ccc}
\dot{XX} & \dot{XZ} \\
\dot{ZX} & \dot{ZX} + I\lambda
\end{array} = \begin{pmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{pmatrix}$$

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}^{-1} = \begin{pmatrix} C^{11} & C^{12} \\ C^{21} & C^{22} \end{pmatrix}$$

Now, PEV =
$$\rho(\hat{a}_i, a_i) = C^{22}\sigma_e^2$$

For ach level of random effect or individual breeding value $PEV_i=(d_i\sigma_e^2)$, Where, d_i is the diagonal element of C^{22}

Accuracy of Predictions (How Accurate we are!)

	Rep1	Rep2	Rep3	Gen1	Gen2	Gen3	Gen4
Rep1	4	0	0	1	1	1	1
Rep2	0	4	0	1	1	1	1
Rep3	0	0	4	1	1	1	1
Gen1	1	1	1	3.18	0	0	0
Gen2	1	1	1	0	3.20	0	0
Gen3	1	1	1	0	0	3.17	0
Gen4	1	1	1	0	0	0	3.15

and **Reliabilities** of predictions based on *PEV* is given by
$$r_i^2=1-rac{PEV}{\sigma_u^2}$$

Literature to Read on Matrix

- https://courses.lumenlearning.com/wmopencollegealgebra/chapter/introduction-matrices-and-matrixoperations/
- https://courses.lumenlearning.com/boundlessalgebra/chapter/introduction-to-matrices/
- https://math.libretexts.org/Bookshelves/Applied Mathem atics/Book%3A Applied Finite Mathematics (Sekhon and Bloom)/02%3A Matrices/2.01%3A Introduction to Matrices
- https://byjus.com/maths/singular-matrix/
- https://www.onlinemathlearning.com/singular-matrix.html