An Introduction to Boosting

Yoav Freund Banter Inc.

Plan of talk

- Generative vs. non-generative modeling
- Boosting
- Alternating decision trees
- Boosting and over-fitting
- Applications

Toy Example

- Computer receives telephone call
- Measures Pitch of voice
- Decides gender of caller

Generative modeling

Discriminative approach

Ill-behaved data

Traditional Statistics vs. Machine Learning

Comparison of methodologies

Model	Generative	Discriminative	
Goal	Probability estimates	Classification rule	
Performance measure	Likelihood	Misclassification rate	
Mismatch problems	Outliers	Misclassifications	

Boosting

The boosting process

Adaboost

- Binary labels y = -1, +1
- $margin(x,y) = y [S_t a_t h_t(x)]$
- $P(x,y) = (1/Z) \exp(-margin(x,y))$
- Given h_t , we choose a_t to minimize $S_{(x,y)} \exp(-\text{margin}(x,y))$

Main property of adaboost

• If advantages of weak rules over random guessing are: g1,g2,...,gT then in-sample error of final rule is at most

$$\exp\left(-2\sum_{t=1}^{T}\gamma_t^2\right)$$

(w.r.t. the initial weights)

Adaboost as gradient descent

- Discriminator class: a linear discriminator in the space of "weak hypotheses"
- Original goal: find hyper plane with smallest number of mistakes
 - Known to be an NP-hard problem (no algorithm that runs in time polynomial in d, where d is the dimension of the space)
- Computational method: Use exponential loss as a surrogate, perform gradient descent.

Margins view

$$x, w \in R^n; y \in \{-1,+1\}$$

$$Prediction = sign(w \bullet x)$$

$$Margin = \frac{y(w \bullet x)}{\|w\| \cdot \|x\|}$$

Adaboost et al.

Grey-scale detection score

One coordinate at a time

- Adaboost performs gradient descent on exponential loss
- Adds one coordinate ("weak learner") at each iteration.
- Weak learning in binary classification = slightly better than random guessing.
- Weak learning in regression unclear.
- Uses example-weights to communicate the gradient direction to the weak learner
- Solves a computational problem

What is a good weak learner?

- The set of weak rules (features) should be flexible enough to be (weakly) correlated with most conceivable relations between feature vector and label.
- Small enough to allow exhaustive search for the minimal weighted training error.
- Small enough to avoid over-fitting.
- Should be able to calculate predicted label very efficiently.
- Rules can be "specialists" predict only on a small subset of the input space and abstain from predicting on the rest (output 0).

Alternating Trees

Joint work with Llew Mason

Decision Trees

Decision tree as a sum

An alternating decision tree

Example: Medical Diagnostics

- Cleve dataset from UC Irvine database.
- •Heart disease diagnostics (+1=healthy,-1=sick)
- •13 features from tests (real valued and discrete).
- •303 instances.

Adtree for Cleveland heart-disease diagnostics problem

Cross-validated accuracy

Learning algorithm	Number of splits	Average test error	Test error variance
ADtree	6	17.0%	0.6%
C5.0	27	27.2%	0.5%
C5.0 + boosting	446	20.2%	0.5%
Boost Stumps	16	16.5%	0.8%

Boosting and OVET-fitting

Curious phenomenon

Boosting decision trees

Using <10,000 training examples we fit >2,000,000 parameters

Explanation using margins

Explanation using margins

Experimental Evidence

Theorem

Schapire, Freund, Bartlett & Lee Annals of stat. 98

For any convex combination and any threshold $\forall f \in \mathcal{C}, \forall \theta > 0$:

Probability of mistake

Fraction of training example with small margin

$$P_{(x,y)\sim D}\left[\operatorname{sign}(f(x))\neq y\right]\leq P_{(x,y)\sim S}\left[\operatorname{margin}_f(x,y)\leq \theta\right]$$

Size of training sample

$$+ \tilde{O}\left(\frac{\sqrt{d/m}}{\theta}\right)$$

No dependence on number of weak rules that are combined!!!

VC dimension of weak rules

Suggested optimization problem

Idea of Proof

Applications of Boosting

- Academic research
- Applied research
- Commercial deployment

Academic research

% test error rates

Database	Other	Boosting	Error reduction
Cleveland	27.2 (DT)	16.5	39%
Promoters	22.0 (DT)	11.8	46%
Letter	13.8 (DT)	3.5	74%
Reuters 4	5.8, 6.0, 9.8	2.95	~60%
Reuters 8	11.3, 12.1, 13.4	7.4	~40%

Applied research

- "AT&T, How may I help you?"
- Classify voice requests
- Voice -> text -> category
- Fourteen categories

Area code, AT&T service, billing credit, calling card, collect, competitor, dial assistance, directory, how to dial, person to person, rate, third party, time charge ,time

Examples

- Yes I'd like to place a collect call long distance please

 collect
- Operator I need to make a call but I need to bill it to my office
 third party
- Yes I'd like to place a call on my master card please > calling card
- I just called a number in Sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off my bill

 billing credit

Weak rules generated by "boostexter"

Word does not occur

Results

- 7844 training examples
 - hand transcribed
- 1000 test examples
 - hand / machine transcribed
- Accuracy with 20% rejected
 - Machine transcribed: 75%
 - Hand transcribed: 90%

Commercial deployment

- Distinguish business/residence customers
- Using statistics from call-detail records
- Alternating decision trees
 - Similar to boosting decision trees, more flexible
 - Combines very simple rules
 - Can over-fit, cross validation used to stop

Massive datasets

- 260M calls / day
- 230M telephone numbers
- Label unknown for $\sim 30\%$
- Hancock: software for computing statistical signatures.
- 100K randomly selected training examples,
- ~ 10 K is enough
- Training takes about 2 hours.
- Generated classifier has to be both accurate and efficient

Alternating tree for "buizocity"

Alternating Tree (Detail)

Positive predictions ⇔ Residences

Negative predictions ⇔ Businesses

Precision/recall graphs

Accuracy

Business impact

- Increased coverage from 44% to 56%
- Accuracy ~94%
- Saved AT&T 15M\$ in the year 2000 in operations costs and missed opportunities.

Summary

- Boosting is a computational method for learning accurate classifiers
- Resistance to over-fit explained by margins
- Underlying explanation –
 large "neighborhoods" of good classifiers
- Boosting has been applied successfully to a variety of classification problems

Come talk with me!

- Yfreund@banter.com
- http://www.cs.huji.ac.il/~yoavf