Kotsubinskya
YV 30112024-110053

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 1677 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 10 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 385 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 2 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 5440 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 1293 МГц до 1395 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

1) -87 дБм 2) -90 дБм 3) -93 дБм 4) -96 дБм 5) -99 дБм 6) -102 дБм 7) -105 дБм 8) -108 дБм 9) -111 дБм

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = -0.18163 - 0.44191i$$
, $s_{31} = 0.44898 - 0.18454i$.

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

- 1) -40 дБн 2) -42 дБн 3) -44 дБн 4) -46 дБн 5) -48 дБн 6) -50 дБн 7) -52 дБн
- 8) -54 дБн 9) 0 дБн

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 4.7 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 32 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 15.4 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

- 1) 4.4 дБ 2) 5 дБ 3) 5.6 дБ 4) 6.2 дБ 5) 6.8 дБ 6) 7.4 дБ 7) 8 дБ 8) 8.6 дБ
- 9) 9.2 дБ

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 2. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 3?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

$$1) \ \{16; -53\} \qquad 2) \ \{16; -11\} \qquad 3) \ \{16; -39\} \qquad 4) \ \{10; -39\} \qquad 5) \ \{10; 3\} \qquad 6) \ \{16; -67\}$$

7)
$$\{4; -4\}$$
 8) $\{13; 10\}$ 9) $\{16; 3\}$

Для выделения только **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная минус 11 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна 198 М $\Gamma_{\rm H}$?

Варианты ОТВЕТА:

1) 39.5 нГн 2) 34.6 нГн 3) 48.8 нГн 4) 40.9 нГн

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_3$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 466 МГц, частота ПЧ 24 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

- 490 MΓ_{II}
- 2) 2796 MΓ_{ΙΙ}
- 3) 2330 MΓ_{II}
- 4) 1422 МГц.