ON HIGGS BUNDLES AND HIGGS FUNDAMENTAL GROUP SCHEMES

ARJUN PAUL

ABSTRACT. Let X be a connected reduced proper scheme defined over an algebraically closed field k. We discuss a natural extension of Nori's theory of principal G-bundle as a functor to the case of principal G-Higgs bundles, for G an affine k-group scheme. Then we use this to show invariance of base points for Higgs fundamental group schemes of smooth projective k-varieties.

1. Introduction

Let X be a connected reduced proper scheme defined over an algebraically closed field k. Let G be an affine group scheme over k, and denote by $\mathcal{R}ep_k(G)$ the category of all k-linear representations of G. In [Nor76], Nori established a one-to-one correspondence between the principal G-bundles on X and the functors $\mathcal{R}ep_k(G) \to \mathfrak{QCoh}(X)$ satisfying certain axioms. In this note, we show that this correspondence can be generalized to the case of principal G-Higgs bundles on X.

Let $\mathcal{H}iggs_G(X)$ the category of all principal G-Higgs bundles on X. Let $\mathcal{H}iggs(X)$ be the category of all quasi-coherent Higgs sheaves on X, and let

$$\mathcal{F}un_{\mathrm{HF}}(\mathcal{R}ep_{k}(G),\mathcal{H}iggs(X))\subset \mathcal{F}un(\mathcal{R}ep_{k}(G),\mathcal{H}iggs(X))$$

be the full subcategory of the functor category $Fun(Rep_k(G), Higgs(X))$ whose objects satisfies axioms (HF1) – (HF6) as stated in Proposition 2.5.2; see also (2.5.4). Then we have the following.

Theorem 1.0.1. There is an equivalence of categories

$$\Phi: \mathcal{H}iggs_G(X) \longrightarrow \mathcal{F}un_{\mathrm{HF}}(\mathcal{R}ep_k(G), \mathcal{H}iggs(X)).$$

Let X be a connected smooth projective k-variety. Let $\mathcal{H}iggs_0^{nf}(X)$ be the full subcategory of $\mathcal{H}iggs(X)$, whose objects are Higgs numerically flat (in short, H-nflat) Higgs bundles on X (see Definition 3.1.7). This is a k-linear symmetric monoidal

Date: December 12, 2020.

²⁰²⁰ Mathematics Subject Classification. 14F35, 14J60, 18M25.

Key words and phrases. Fundamental group scheme; Higgs bundle; principal *G*-Higgs bundle; Tannakian category; vector bundle.

category, and fixing a closed point $x \in X(k)$, we get a k-linear exact faithful tensor functor $\mathscr{F}^H_x: \mathcal{H}iggs^{\mathrm{nf}}_0(X) \to \mathcal{V}ect(k)$ defined by sending a H-nflat Higgs bundle (E,θ) to its fiber $E_x \in \mathcal{V}ect(k)$ at x. This gives us a neutral Tannakian category $(\mathcal{H}iggs^{\mathrm{nf}}_0(X), \otimes, \mathcal{O}_X, \mathscr{F}^H_x)$, and the affine k-group scheme $\pi_1^H(X,x)$ Tannakian dual to this is called the Higgs fundamental group scheme of X with base point at x. Then using Theorem 1.0.1, we prove the following.

Theorem 1.0.2. Let X be a connected smooth projective k-variety. Fix a closed point $x \in X(k)$, and let $G := \pi_1^H(X,x)$. Then there is a principal G-Higgs bundle $\mathfrak{P} := (\mathcal{P},\theta_{\mathcal{P}})$ on X such that given any object $\mathfrak{E} := (E,\theta) \in \mathcal{H}iggs_0^{\mathrm{nf}}(X)$, there is an object $\rho : G \to \mathrm{GL}(V)$ in $\mathcal{R}ep_k(G)$ such that $\mathfrak{E} = \mathfrak{P} \times^{\rho} V$.

As an immediate corollary to this, we obtain the following.

Corollary 1.0.3. Let X be a connected smooth projective k-variety. For any two points $x_1, x_2 \in X(k)$, the affine k-group schemes $\pi_1^H(X, x_1)$ and $\pi_1^H(X, x_2)$ are isomorphic.

2. HIGGS BUNDLES

2.1. **Notations.** A k-scheme X is said to be connected if $H^0(X, \mathcal{O}_X) \cong k$. For a k-scheme X, denote by $\mathfrak{QCoh}(X)$ the category of $\mathfrak{QCoh}(X)$, whose objects are coherent sheaves (resp., $\mathcal{V}ect(X)$) be the full subcategory of $\mathfrak{QCoh}(X)$, whose objects are coherent sheaves (resp., locally free coherent sheaves) on X. There are natural fully faithful embeddings $\mathcal{V}ect(X) \subset \mathfrak{Coh}(X) \subset \mathfrak{QCoh}(X)$. The objects of $\mathcal{V}ect(X)$ are also referred to as vector bundles on X. When $X = \operatorname{Spec}(k)$, the category $\mathcal{V}ect(\operatorname{Spec}(k))$ coincides with the category of all finite dimensional k-vector spaces $\mathcal{V}ect(k)$, and hence we simply denote it by $\mathcal{V}ect(k)$. For a locally free coherent sheaf (vector bundle) E on E0 and a point E1 and E3, on contrary to the usual notation of stalk, we denote by E3 the fiber of E3 at E4; whereas the notation \mathcal{O}_{E} 4 is preserved to denote the stalk at E5 of the structure sheaf E6. For any group scheme E6 over E7, denote by E8 Lie E9 the E1 is algebra of E9.

2.2. **The category of Higgs sheaves.** Let *X* ba a connected reduced proper *k*-scheme.

Definition 2.2.1. A *Higgs sheaf* on X is a pair (E, θ) , where E is a quasi-coherent sheaf of \mathcal{O}_X -modules on X and $\theta: E \longrightarrow E \otimes \Omega^1_X$ is an \mathcal{O}_X -module homomorphism such that $\theta \wedge \theta = 0$ in $H^0(X, \mathcal{E}nd(E) \otimes \Omega^2_X)$. When E is coherent we call (E, θ) a *coherent Higgs sheaf* on X. Similarly, for E a locally free coherent sheaf on X, we call (E, θ) a *Higgs bundle* on X.

Given two Higgs sheaves $\mathfrak{E} = (E, \theta)$ and $\mathfrak{E}' = (E', \theta')$ on X, a morphism from \mathfrak{E} to \mathfrak{E}' is given by an \mathcal{O}_X -module homomorphism $f: E \longrightarrow E'$ such that the following diagram commutes

(2.2.2)
$$E \xrightarrow{\theta} E \otimes \Omega^{1}_{X}$$

$$\downarrow^{f} \qquad \qquad \downarrow^{f \otimes \operatorname{Id}_{\Omega^{1}_{X}}}$$

$$E' \xrightarrow{\theta'} E' \otimes \Omega^{1}_{X}.$$

Moreover, the direct sum and tensor product of two Higgs sheaves \mathfrak{E} and \mathfrak{E}' are again Higgs sheaves, given by

$$\mathfrak{E} \oplus \mathfrak{E}' := (E \oplus E', \theta \oplus \theta'), \text{ and}$$

 $\mathfrak{E} \otimes \mathfrak{E}' := (E \otimes E', \theta \otimes \operatorname{Id}_{E'} + \operatorname{Id}_E \otimes \theta').$

Let $\mathcal{H}iggs(X)$ be the category whose objects are Higgs sheaves on X and morphisms are defined by commutative diagrams as in (2.2.2). Then $\mathcal{H}iggs(X)$ is an abelian category. In fact, $\mathfrak{QCoh}(X)$ admits a natural fully faithful embedding inside $\mathcal{H}iggs(X)$ by considering zero Higgs field. We denote by $\mathcal{H}iggs_{\mathfrak{Coh}}(X)$ the full subcategory of $\mathcal{H}iggs(X)$ whose objects are coherent Higgs sheaves on X. Denote by $\mathcal{H}iggs_0(X)$ the full subcategory of $\mathcal{H}iggs(X)$ whose objects are locally free coherent Higgs sheaves on X. Thus, we have fully faithful embeddings

Proposition 2.2.3. Direct limit of a direct system of coherent Higgs sheaves exists in the category of quasi-coherent Higgs sheaves.

2.3. **Principal** G**-Higgs bundles.** Let G be a k-group scheme.

Definition 2.3.1. A *principal G-bundle* on X is a k-variety P together with a G-action $\sigma: P \times G \to P$ on P, and a G-invariant morphism of k-schemes $\pi: P \to X$ such that the morphism $(\operatorname{pr}_1, \sigma): P \times_k G \longrightarrow P \times_X P$ induced by σ and the projection map $\operatorname{pr}_1: P \times G \to P$, is an isomorphism.

Let P be a principal G-bundle on X. Let $\rho: G \to \operatorname{GL}(V)$ be a finite dimensional k-linear representation of G. Then G-acts on $P \times V$ by $(z,v) \cdot g := (z \cdot g, \rho(g)^{-1}(v))$, for all $z \in P$, $v \in V$ and $g \in G$. The associated quotient $P \times^{\rho} V := (P \times V)/G$ is

a vector bundle of rank $r=\dim_k(V)$ on X, denoted by ρ_*P . Using Grothendieck's theory of flat descent [Gro71], the vector bundle ρ_*P can be constructed as a locally free coherent sheaf on X by taking G-invariants of $\mathcal{O}_P\otimes_k V$. The vector bundle $\mathrm{ad}(P):=P\times^{\mathrm{ad}}\mathfrak{g}$ associated to the adjoint representation

$$(2.3.2) ad: G \longrightarrow GL(\mathfrak{g})$$

of G on its Lie algebra $\mathfrak{g} := \text{Lie}(G)$ is called the *adjoint vector bundle* of P. Note that, ad(P) is a Lie algebra bundle on X.

Definition 2.3.3. A principal G-Higgs bundle on X is a pair $\mathfrak{P}:=(P,\theta)$, where P is a principal G-bundle on X and $\theta \in H^0(X, \operatorname{ad}(P) \otimes \Omega^1_X)$ such that $\theta \wedge \theta = 0$ in $H^0(X, \operatorname{ad}(P) \otimes \Omega^2_X)$.

Let P and P' be two principal G-bundles on X. Then any homomorphism of of principal G-bundles $\varphi: P \to P$ induces a homomorphism of their adjoint vector bundles

(2.3.4)
$$\operatorname{ad}(\varphi) : \operatorname{ad}(P) \to \operatorname{ad}(P')$$

Tensoring with Ω^1_X and taking global section functor, we have a k-linear homomorphism

$$(2.3.5) \widetilde{\varphi}: H^0(X, \operatorname{ad}(P) \otimes \Omega^1_X) \longrightarrow H^0(X, \operatorname{ad}(P') \otimes \Omega^1_X).$$

Let $\mathfrak{P} = (P, \theta)$ and $\mathfrak{P}' = (P', \theta')$ be two principal G-Higgs bundles on X.

Definition 2.3.6. A morphism of principal G-Higgs bundles $\mathfrak{P} \to \mathfrak{P}'$ is given by a morphism of principal G-bundles $\varphi: P \to P$ such that the induced homomorphism $\widetilde{\varphi}$ in (2.3.5) sends θ to θ' .

2.4. **Principal** G-**Higgs bundle as a functor.** Let $\mathcal{H}iggs(X)$ be the category of coherent Higgs sheaves on X (see §2.2). Let G be an affine k-group scheme. Let $\mathcal{R}ep_k^{\mathrm{fd}}(G)$ be the category of finite dimensional k-linear representations of G; its objects are pair (V,ρ) , where V is a finite dimensional k-vector space and $\rho:G\to \mathrm{GL}(V)$ is a group homomorphism. A morphism $(V,\rho)\to (V',\rho')$ in $\mathcal{R}ep_k^{\mathrm{fd}}(G)$ is given by a G-equivariant homomorphism of k-vector spaces $V\to V'$. The category $\mathcal{R}ep_k^{\mathrm{fd}}(G)$ admits finite direct sum and tensor products.

Let $\mathfrak{P}=(P,\theta)$ be a principal G-Higgs bundle on X. Any finite dimensional k-linear representation $\rho:G\to \mathrm{GL}(V)$ give rise to a G-module homomorphism

(2.4.1)
$$d\rho: \mathfrak{g} \longrightarrow \mathfrak{gl}(V) := \text{Lie}(\text{GL}(V)),$$

which in turn give rise to a homomorphism of vector bundles

$$(2.4.2) (d\rho)_P : \operatorname{ad}(P) := P \times^{\operatorname{ad}} \mathfrak{g} \longrightarrow \operatorname{End}(\rho_* P),$$

where $\rho_*P := P \times^{\rho} V$ is the vector bundle on X associated to P and the representation (V, ρ) . This gives a k-linear homomorphism

$$(2.4.3) \qquad \qquad \widetilde{\rho}_P: H^0(X, \operatorname{ad}(P) \otimes \Omega^1_X) \longrightarrow H^0(X, \operatorname{End}(\rho_*P) \otimes \Omega^1_X).$$

Thus we obtain a Higgs bundle

on
$$X$$
, where $\rho_*P:=P\times^{\rho}V$ and $\rho_*\theta=\widetilde{\rho}_P(\theta)\in H^0(X,\operatorname{End}(\rho_*P)\otimes\Omega^1_X)$.

A morphism $\varphi:(V,\rho)\longrightarrow (V',\rho')$ in $\mathcal{R}ep_k^{\mathrm{fd}}(G)$ give rise to the following commutative diagram of (Lie algebras) G-module homomorphisms

$$\mathfrak{g} \xrightarrow{d\rho} \mathfrak{gl}(V) \\
\parallel \qquad \qquad \downarrow \widehat{\varphi} \\
\mathfrak{g} \xrightarrow{d\rho'} \mathfrak{gl}(V'),$$

which makes the following diagram of *k*-linear maps commutative

$$(2.4.6) \qquad H^{0}(X,\operatorname{ad}(P)\otimes\Omega^{1}_{X}) \xrightarrow{\widetilde{\rho}_{P}} H^{0}(X,\operatorname{End}(\rho_{*}(P))\otimes\Omega^{1}_{X})$$

$$\downarrow \widetilde{\varphi}$$

$$H^{0}(X,\operatorname{ad}(P)\otimes\Omega^{1}_{X}) \xrightarrow{\widetilde{\rho'}_{P}} H^{0}(X,\operatorname{End}(\rho'_{*}(P))\otimes\Omega^{1}_{X}).$$

Thus we get a homomorphism of Higgs bundles

(see (2.4.4)). The above construction is functorial, and hence give rise to a covariant functor

$$\Phi_{\mathfrak{V}}: \mathcal{R}ep_{\iota}^{\mathrm{fd}}(G) \longrightarrow \mathcal{H}iggs_{0}(X),$$

which sends an object $(V, \rho) \in \mathcal{R}ep_k^{\mathrm{fd}}(G)$ to the Higgs bundle $\rho_*\mathfrak{P} := (\rho_*P, \rho_*\theta)$ as defined in (2.4.4), and a morphism $\varphi : (V, \rho) \to (V', \rho')$ to φ_P as defined in (2.4.7).

Proposition 2.4.9. The functor $\Phi_{\mathfrak{P}}$ defined in (2.4.8) preserve finite direct sums and tensor products.

Proof. It is well-known that $(V, \rho) \mapsto \rho_* P = P \times^{\rho} V$ is a covariant additive tensor functor of tensor abelian categories $\mathcal{R}ep_k^{\mathrm{fd}}(G) \to \mathcal{V}ect(X)$. Therefore, it is enough to check what happens to the Higgs fields.

Let $(V_1, \rho_1), (V_2, \rho_2) \in \mathcal{R}ep_k^{\mathrm{fd}}(G)$. It follows from the commutative diagram of G-module homomorphisms

(2.4.10)
$$\mathfrak{g} \xrightarrow{d\rho_1} \mathfrak{gl}(V_1) \\
\downarrow^{d\rho_2} \qquad \qquad \downarrow \\
\mathfrak{gl}(V_2) \xrightarrow{} \mathfrak{gl}(V_1 \oplus V_2)$$

and the corresponding induced homomorphisms of vector bundles induced by P that $(\rho_1 \oplus \rho_2)_*\theta = (\rho_{1*}\theta) \oplus (\rho_{2*}\theta)$. Similarly, for the case of tensor product representation $\rho_1 \otimes \rho_2 : G \to \operatorname{GL}(V_1 \otimes V_2)$, we have $(\rho_1 \otimes \rho_2)_*\theta = (\rho_{1*}\theta \otimes \operatorname{Id}) + (\operatorname{Id} \otimes \rho_{2*}\theta)$. Hence the result follows.

2.5. Recovering G-Higgs bundle from the associated functor. Let $\mathcal{H}iggs(G,X)$ be the category whose objects are principal G-Higgs bundles on X, and morphisms are morphisms of principal G-Higgs bundles (see Definition 2.3.6). Given any two categories \mathscr{C} and \mathscr{D} , we denote by $\mathcal{F}un(\mathscr{C},\mathscr{D})$ the category whose objects are functors $\mathscr{C} \to \mathscr{D}$ and morphisms are natural transformations of those functors.

Following [Nor76], let

$$(2.5.1) \qquad \mathcal{F}un_{\mathrm{HF}}(\mathcal{R}ep_{k}^{\mathrm{fd}}(G),\mathcal{H}iggs(X)) \subset \mathcal{F}un(\mathcal{R}ep_{k}^{\mathrm{fd}}(G),\mathcal{H}iggs(X))$$

be the full subcategory of $\mathcal{F}un(\mathcal{R}ep_k^{\mathrm{fd}}(G),\mathcal{H}iggs(X))$ whose objects are functors

$$\mathscr{F}: \mathcal{R}ep_k^{\mathrm{fd}}(G) \longrightarrow \mathcal{H}iggs(X)$$

satisfying the following axioms (HF1) – (HF6):

- (HF1) \mathscr{F} is a faithful k-linear exact functor,
- (HF2) \mathscr{F} sends trivial G-module to $(\mathcal{O}_X, 0)$ in $\mathcal{H}iggs(X)$,
- (HF3) $\mathscr{F} \circ \otimes = \otimes \circ (\mathscr{F} \times \mathscr{F})$,
- (HF4) \otimes in $\mathcal{R}ep_k^{\mathrm{fd}}(G)$ is associative and compatible with \mathscr{F} ,
- (HF5) \otimes in $\mathcal{R}ep_k^{\mathrm{fd}}(G)$ is commutative and compatible with \mathscr{F} , and
- (HF6) if $V \in \mathcal{R}ep_k^{\mathrm{fd}}(G)$ is of rank n, then $\mathscr{F}(V)$ is a Higgs bundle of rank n over X.

Let $\mathcal{R}ep_k(G)$ be the category of all (including infinite dimensional) k-linear representations of G. Note that, $\mathcal{R}ep_k^{\mathrm{fd}}(G)$ is a full subcategory of $\mathcal{R}ep_k(G)$, and [Nor76, Lemma 2.1] generalizes to the following.

Proposition 2.5.2. Any functor $\mathscr{F}: \mathcal{R}ep_k^{\mathrm{fd}}(G) \longrightarrow \mathcal{H}iggs(X)$ satisfying axioms (HF1) – (HF6) extends uniquely to a functor $\widehat{\mathscr{F}}: \mathcal{R}ep_k(G) \longrightarrow \mathcal{H}iggs(X)$ such that

- (i) the axioms (HF1) (HF5) holds for $\widehat{\mathscr{F}}$,
- (ii) $\widehat{\mathscr{F}}$ restricts to \mathscr{F} on $\mathcal{R}ep_k^{\mathrm{fd}}(G)$,

- (iii) the underlined \mathcal{O}_X -module of $\widehat{\mathscr{F}}(V)$ is flat, for all $V \in \mathcal{R}ep_k(G)$, and is faithfully flat if V = 0, and
- (iv) $\widehat{\mathscr{F}}$ preserves direct limits.

Proof. In view of Proposition 2.2.3, given any object $V \in \mathcal{R}ep_k(G)$, we define $\widehat{\mathscr{F}}(V) := \varinjlim \mathscr{F}(W)$, where W runs through the directed system of all finite dimensional G-invariant k-linear subspaces of V. Then the result follows.

Henceforth, we use the same notation \mathscr{F} to denote the extended functor $\widehat{\mathscr{F}}$ as in Proposition 2.5.2. The category under consideration would be clear from the context.

It follows from the construction discussed in the subsection §2.4 that given any principal G-Higgs bundle $\mathfrak{P} = (P, \theta)$ on X, the associated covariant functor

$$\Phi_{\mathfrak{P}}: \mathcal{R}ep_k^{\mathrm{fd}}(G) \longrightarrow \mathcal{H}iggs_0(X)$$

defined in (2.4.8) satisfies the axioms (HF1) – (HF6), and hence extends uniquely to a covariant functor, also denoted by

$$\Phi_{\mathfrak{P}}: \mathcal{R}ep_{k}(G) \longrightarrow \mathcal{H}iggs(X)$$

satisfying the conditions (i) – (iv) as in Proposition 2.5.2. We want to show that the converse also holds. More precisely, we construct a natural equivalence between the category of principal G-Higgs bundles on X and the full subcategory

$$(2.5.4) \hspace{1cm} \mathcal{F}un_{\mathrm{HF}}(\mathcal{R}ep_{k}(G),\mathcal{H}iggs(X)) \subset \mathcal{F}un(\mathcal{R}ep_{k}(G),\mathcal{H}iggs(X))$$

of functors $\mathscr{F}: \mathcal{R}ep_k(G) \to \mathcal{H}iggs(X)$ as described in Proposition 2.5.2.

Let $\mathfrak{P}=(P,\theta)$ and $\mathfrak{P}'=(P',\theta')$ be two principal G-Higgs bundles on X. Let $\varphi:\mathfrak{P}\longrightarrow\mathfrak{P}'$ be a morphism of principal G-Higgs bundles (see Definition 2.3.6). Then for an object $(V,\rho)\in\mathcal{R}ep_k(G)$, we have a homomorphism of vector bundles

$$(2.5.5) \varphi_{\rho}: \rho_* P \longrightarrow \rho_* P'.$$

In particular, for the adjoint representation $\operatorname{ad}: G \to \operatorname{GL}(\mathfrak{g})$, we have a homomorphism of adjoint vector bundles $\operatorname{ad}(P) \to \operatorname{ad}(P')$. Since the induced homomorphism of Lie algebras $d\rho: \mathfrak{g} \longrightarrow \mathfrak{gl}(V)$ is a G-module homomorphism, we have a commutative diagram of vector bundle homomorphisms

(2.5.6)
$$\text{ad}(P) \xrightarrow{} \mathcal{E}nd(\rho_*P) \\ \downarrow \qquad \qquad \downarrow \\ \text{ad}(P') \xrightarrow{} \mathcal{E}nd(\rho_*P'),$$

where the horizontal homomorphisms are induced by the G-module homomorphism $d\rho: \mathfrak{g} \longrightarrow \mathfrak{gl}(V)$, and the left and the right vertical homomorphisms are induced

by the adjoint action of G on \mathfrak{g} and the induced G-action on $\mathfrak{gl}(V)$, respectively. Now tensoring the commutative diagram (2.5.6) with Ω^1_X , it follows that φ_ρ sends the Higgs field $\rho_*\theta \in H^0(X, \operatorname{End}(\rho_*P) \otimes \Omega^1_X)$ to $\rho_*\theta' \in H^0(X, \operatorname{End}(\rho_*P') \otimes \Omega^1_X)$. Thus we have a homomorphism of Higgs bundles

$$\Phi_{\varphi}(\rho):\Phi_{\mathfrak{P}}(\rho)\longrightarrow\Phi_{\mathfrak{P}'}(\rho)$$

where $\Phi_{\mathfrak{P}}(\rho) := \rho_* \mathfrak{P} = (\rho_* P, \rho_* \theta)$ and $\Phi_{\mathfrak{P}'}(\rho) := \rho_* \mathfrak{P}' = (\rho_* P', \rho_* \theta')$.

Given a morphism

$$\eta: (V_1, \rho_1) \longrightarrow (V_2, \rho_2)$$

in $\mathcal{R}ep_k(G)$ and any principal G-Higgs bundle $\mathfrak{P}=(P,\theta)$ on X, the construction just before the Proposition 2.4.9 give rise to a homomorphism of flat Higgs sheaves

(2.5.9)
$$\Phi_{\mathfrak{P}}(\eta):\Phi_{\mathfrak{P}}(\rho_1)\longrightarrow\Phi_{\mathfrak{P}}(\rho_2).$$

Now it follows from the construction in the preceding paragraph that, given any morphism of principal G-Higgs bundles $\varphi : \mathfrak{P} \longrightarrow \mathfrak{P}'$ on X, the following diagram is commutative.

(2.5.10)
$$\rho_{1_*}\mathfrak{P} = (\rho_{1_*}P, \rho_{1_*}\theta) \xrightarrow{\Phi_{\varphi}(\rho_1)} \rho_{1_*}\mathfrak{P}' = (\rho_{1_*}P', \rho_{1_*}\theta)$$

$$\downarrow^{\Phi_{\mathfrak{P}}(\eta)} \qquad \qquad \downarrow^{\Phi_{\mathfrak{P}'}(\eta)}$$

$$\rho_{2_*}\mathfrak{P} = (\rho_{2_*}P, \rho_{2_*}\theta) \xrightarrow{\Phi_{\varphi}(\rho_2)} \rho_{2_*}\mathfrak{P}' = (\rho_{2_*}P', \rho_{2_*}\theta').$$

In other words, $\varphi: \mathfrak{P} \longrightarrow \mathfrak{P}'$ induces a morphism of functors $\Phi_{\varphi}: \Phi_{\mathfrak{P}} \longrightarrow \Phi_{\mathfrak{P}'}$.

$$\mathcal{R}ep_{k}(G) \qquad \qquad \mathcal{H}iggs(X)$$

Thus the above construction give rise to a functor

$$(2.5.12) \qquad \Phi: \mathcal{H}iggs_{G}(X) \longrightarrow \mathcal{F}un_{HF}(\mathcal{R}ep_{k}(G), \mathcal{H}iggs(X)).$$

defined by sending a principal G-Higgs bundle $\mathfrak{P} \in \mathcal{H}iggs_G(X)$ on X to the functor $\Phi_{\mathfrak{P}}$ as defined in (2.5.3), and a morphism of principal G-Higgs bundles $\varphi : \mathfrak{P} \to \mathfrak{P}'$ on X to the morphism of functors Φ_{φ} defined in (2.5.11).

Theorem 2.5.13. *The functor* Φ *defined in* (2.5.12) *is an equivalence of categories.*

Proof. We first show that Φ is essentially surjective. Let $\mathscr{F}: \mathcal{R}ep_k(G) \to \mathcal{H}iggs(X)$ be a functor satisfying axioms (HF1) – (HF6). We need to show that there is a (unique) principal G-Higgs bundle $\mathfrak{P}=(P,\theta)$ on X such that $\Phi_{\mathfrak{P}}\cong\mathscr{F}$. Let k[G] be the

function k-algebra of the affine k-group scheme G. There is a natural regular G-action on k[G] given by

$$(2.5.14) (g \cdot f)(a) := f(ga), \ \forall \ g, a \in G \ \text{and} \ f \in k[G].$$

Let E be the underlined \mathcal{O}_X -module of the Higgs sheaf $\mathscr{F}(k[G])$. Then the relative spectrum $\mathcal{P} := \operatorname{Spec}_{\mathcal{O}_X}(E)$ together with the natural projection $\mathcal{P} \to X$ (affine morphism) is a principal G-bundle on X (see proof of [Nor76, Lemma 2.3, p. 32]). Since the associated locally free adjoint vector bundle (sheaf) $\operatorname{ad}(\mathcal{P}) = (\mathcal{O}_{\mathcal{P}} \otimes \mathfrak{g})^G$ is naturally isomorphic to the locally free coherent sheaf $\operatorname{End}(E)$, the Higgs field

$$\theta \in H^0(X, \operatorname{End}(\mathcal{E}) \otimes \Omega^1_X) = H^0(X, \operatorname{ad}(\mathcal{P}) \otimes \Omega^1_X)$$

of $\mathscr{F}(k[G])$ can be considered as a Higgs field on \mathcal{P} . Now with this $\mathfrak{P} := (\mathcal{P}, \theta)$, we have $\Phi_{\mathfrak{P}} \cong \mathscr{F}$. Thus Φ is essentially surjective.

To see Φ is faithful, note that if $\Phi_{\varphi} = \Phi_{\psi}$, for some morphisms of principal G-Higgs bundles $\varphi, \psi: \mathfrak{P}_1 \to \mathfrak{P}_2$, then for any k-linear representation $\rho: G \to \operatorname{GL}(V)$ we have $\Phi_{\varphi}(\rho) = \Phi_{\psi}(\rho)$; see (2.5.7). In particular, taking V = k[G] together with the natural regular G-action described in (2.5.14), we see that $\varphi = \psi$. To see Φ is full, given morphism of functors $\mathscr{F}: \Phi_{\mathfrak{P}_1} \to \Phi_{\mathfrak{P}_1}$ in $\mathcal{F}un_{\operatorname{HF}}(\mathcal{R}ep_k(G), \mathcal{H}iggs(X))$, we can use the G-module k[G] as above to get a morphism of G-Higgs bundles $\psi: \mathfrak{P}_1 \to \mathfrak{P}_2$ on X such that $\Phi_{\psi} = \mathscr{F}$. Thus Φ is an equivalence of categories. \square

Let $\mathfrak{P}:=(P,\theta)$ be a principal G-Higgs bundle on X. Given any morphism of k-schemes $f:Y\to X$, we can pullback P along f to get a principal G-bundle $f^*P:=P\times_X Y$ on Y. Then the image of θ under the induced natural k-linear homomorphism

$$(2.5.15) H^0(X, \operatorname{ad}(P) \otimes \Omega^1_X) \longrightarrow H^0(Y, \operatorname{ad}(f^*P) \otimes \Omega^1_Y)$$

gives a Higgs field $f^*\theta$ on f^*P . Thus we obtain a principal G-Higgs bundle $f^*\mathfrak{P}:=(f^*P,f^*\theta)$ on Y.

Let $\sigma: G \to H$ is a homomorphism of affine k-group schemes. Given a principal G-bundle P on X, we can extend the structure group of P by σ to get a principal H-bundle on X as follow: take quotient of $P \times H$ by the equivalence relation

$$(z, h) \cdot g \sim (z \cdot g, \sigma(g)^{-1}h), \ \forall z \in P, g \in G, \text{ and } h \in H,$$

induced by the twisted G-action on $P \times H$ to obtain a principal H-bundle

$$\sigma_*P := (P \times H)/\sim$$

on X. Let $\mathcal{R}_{\sigma}: \mathcal{R}ep_k(H) \longrightarrow \mathcal{R}ep_k(G)$ be the functor obtained by sending an object $\rho: H \to \mathrm{GL}(V)$ of $\mathcal{R}ep_k(H)$ to the object $\rho \circ \sigma: G \to \mathrm{GL}(V)$ of $\mathcal{R}ep_k(G)$. Considering the adjoint representations of both G and H to their Lie algebras \mathfrak{g} and \mathfrak{h} , respectively,

and the Lie algebra homomorphism $d\sigma: \mathfrak{g} \to \mathfrak{h}$ induced by σ , we get a k-linear homomorphism (denoted by the same symbol)

$$(2.5.16) \sigma_*: H^0(X, \operatorname{ad}(P) \otimes \Omega^1_X) \to H^0(X, \operatorname{ad}(\sigma_*P) \otimes \Omega^1_X).$$

Thus, given a principal G-Higgs bundle $\mathfrak{P}:=(P,\theta)$ on X, we obtain a principal H-Higgs bundle $\sigma_*\mathfrak{P}:=(\sigma_*P,\sigma_*\theta)$ on X. Then we have the following.

Proposition 2.5.17. With the above notations, if \mathfrak{P} is a principal G-Higgs bundle on X, then the following hold.

- (i) For any morphism $f: Y \to X$ of k-schemes, pulled-back of $\Phi_{\mathfrak{P}}$ along f is the functor $f^* \circ \Phi_{\mathfrak{P}} = \Phi_{f^*\mathfrak{P}}$, and hence $f^* \circ \Phi_{\mathfrak{P}} \in \mathcal{F}un_{\mathrm{HF}}(\mathcal{R}ep_k(G), \mathcal{H}iggs(Y))$.
- (ii) For any homomorphism $\sigma: G \to H$ of affine k-group schemes, $\Phi_{\mathfrak{P}} \circ \mathcal{R}_{\sigma} = \Phi_{\sigma_*\mathfrak{P}}$.

Proof. Follows by chasing construction of the functor Φ in (2.5.12).

3. HIGGS FUNDAMENTAL GROUP SCHEMES

3.1. Numerically flat Higgs bundles. Let us first recall some definitions from [BBG19] that we need. Let X be a connected smooth projective k-variety. Let E be a locally free coherent sheaf of rank $r (\geq 2)$ on X. Fix a positive integer s with s < r, and consider the functor:

(3.1.1)
$$\mathcal{G}r(E,s): (\mathrm{Sch}/X)^{\mathrm{op}} \longrightarrow (\mathrm{Set})$$

given by sending $g:T\to X\in (\operatorname{Sch}/X)$ to the set

$$\mathcal{G}r(E,s)(T):=\{q:g^*E \twoheadrightarrow F \mid q \text{ is surjective and } F \text{ is a locally free }$$
 coherent sheaf of rank s on $T\}/\sim$,

where two such quotients $q: g^*E \twoheadrightarrow F$ and $q': g^*E \twoheadrightarrow F'$ are said to be equivalent, denoted $q \sim q'$, if $\mathrm{Ker}(q) = \mathrm{Ker}(q')$. There is a projective X-scheme

$$(3.1.2) p: Gr(E, s) \longrightarrow X$$

which represents the functor $\mathcal{G}r(E,s)$, meaning that there is a natural isomorphism of functors $\mathcal{G}r(E,s) \stackrel{\simeq}{\longrightarrow} \mathrm{Mor}_{(\mathrm{Sch}/X)}(-,\mathrm{Gr}(E,s))$. In particular, the identity morphism of $\mathrm{Gr}(E,s)$ corresponds to an exact sequence of locally free coherent sheaves

$$(3.1.3) 0 \longrightarrow \mathcal{S}(E,s) \xrightarrow{\Psi} p^* E \xrightarrow{\mathscr{F}} \mathcal{Q}(E,s) \longrightarrow 0,$$

known as the universal exact sequence over Gr(E, s).

If $\mathfrak{E} := (E, \theta)$ is a Higgs bundle on X, then its pullback $p^*\mathfrak{E} := (p^*E, p^*\theta)$ is a Higgs bundle on Gr(E, s), where $p: Gr(E, s) \to X$ is the Grassmannian as described in (3.1.2). The Higgs field $p^*\theta$ naturally induces a Higgs field on the universal quotient

Q(E,s) making it a quotient Higgs bundle of $(p^*E,p^*\theta)$ if and only if the universal kernel bundle S(E,s) is preserved under $p^*\theta$ in the sense that

$$p^*\theta(\mathcal{S}(E,s)) \subseteq \mathcal{S}(E,s) \otimes \Omega^1_{Gr(E,s)}$$
.

Let $\mathfrak{Gr}(E,s)\subseteq \mathrm{Gr}(E,s)$ be the subscheme defined by the vanishing locus of the following composite homomorphism

$$(3.1.4) \mathcal{S}(E,s) \xrightarrow{\Psi} p^* E \xrightarrow{p^* \theta} p^* E \otimes p^* \Omega_X^1 \xrightarrow{\mathscr{F} \otimes \mathrm{Id}} \mathcal{Q}(E,s) \otimes p^* \Omega_X^1,$$

(see (3.1.3)). It follows that $\mathfrak{Gr}(E,s)$, is the closed subscheme of Gr(E,s) parametrizing the quotient Higgs bundles of (E,θ) , and we call it the *Higgs Grassmannian of* (E,θ) . This closed embedding of $\mathfrak{Gr}(E,s)$ into Gr(E,s) gives rise to an exact sequence on $\mathfrak{Gr}(E,s)$

$$(3.1.5) 0 \longrightarrow \mathcal{S}(\mathfrak{E}, s) \stackrel{\Psi}{\longrightarrow} p^* \mathfrak{E} \stackrel{\mathscr{F}}{\longrightarrow} \mathcal{Q}(\mathfrak{E}, s) \longrightarrow 0,$$

where $\mathcal{Q}(\mathfrak{E}, s)$ may be called the universal Higgs quotient for \mathfrak{E} (c.f., (3.1.3)).

Definition 3.1.6. Let $\mathfrak{E} = (E, \theta)$ be a Higgs bundle on X. If $\mathrm{rk}(E) = 1$ and E is numerically effective, we say that (E, θ) is *Higgs numerically effective* (in short, *H-nef*). When $r := \mathrm{rk}(E) > 1$, we define H-nefness inductively by requiring that

- (1) the universal Higgs quotient $\mathcal{Q}(\mathfrak{E}, s)$ is H-nef, for all $s = 1, \dots, r-1$, and
- (2) $det(E) := \bigwedge^r E$ is nef.

Definition 3.1.7. A Higgs bundle $\mathfrak{E} := (E, \theta)$ on X is said to be *Higgs numerically flat* (in short, H-nflat) if both \mathfrak{E} and its dual Higgs bundle \mathfrak{E}^{\vee} are H-nef.

Let $\mathcal{H}iggs_0(X) \subset \mathcal{H}iggs(X)$ be the full subcategory of Higgs bundles (locally free) on X. Let $\mathcal{H}iggs_0^{\mathrm{nf}}(X)$ be the full subcategory of $\mathcal{H}iggs_0(X)$ whose objects are Higgs numerically flat in the sense of Definition 3.1.7. It is known that $\mathcal{H}iggs_0^{\mathrm{nf}}(X)$ is an abelian category closed under tensor product, and has a structure of a k-linear symmetric monoidal category As before, fixing a closed point $x \in X(k)$, we have a faithful exact k-linear tensor functor

(3.1.8)
$$\mathscr{F}^H_x: \mathcal{H}iggs^{\mathrm{nf}}_0(X) \longrightarrow \mathcal{V}ect(k)$$

given by sending $(E,\theta) \in \mathcal{H}iggs_0^{\mathrm{nf}}(X)$ to its fiber $E_x \in \mathcal{V}ect(k)$ at x. It turns out that the quadruple $(\mathcal{H}iggs_0^{\mathrm{nf}}(X), \otimes, \mathcal{O}_X, \mathscr{F}_x^H)$ is a neutral Tannakian category, and the associated affine k-group scheme $\pi_1^H(X,x)$ representing the functor of k-algebras $\underline{\mathrm{Aut}}^\otimes(\mathscr{F}_x^H)$ is called the Higgs fundamental group scheme of X with base point at x.

Remark 3.1.9. The notion of Higgs fundamental group scheme of a connected reduced proper *k*-scheme (not necessarily smooth) should make sense following the same line of arguments given in [BBG19].

Theorem 3.1.10. Let X be a connected smooth projective k-variety. Fix a closed point $x \in X(k)$, and let $G := \pi_1^H(X, x)$. Then there is a principal G-Higgs bundle $\mathfrak{P} := (\mathcal{P}, \theta_{\mathcal{P}})$ on X such that given any object $\mathfrak{E} := (E, \theta) \in \mathcal{H}iggs_0^{\mathrm{nf}}(X)$, there is an object $\rho : G \to \mathrm{GL}(V)$ in $\mathcal{R}ep_k(G)$ such that $\mathfrak{E} = \mathfrak{P} \times^{\rho} V$.

Proof. It follows from [DM82, Theorem 2.11] that the fiber functor \mathscr{F}_x^H in (3.1.8) defines an equivalence of k-linear tensor abelian categories

$$\widehat{\mathscr{F}^H_x}: \mathcal{H}iggs_0^{\mathrm{nf}}(X) \longrightarrow \mathcal{R}ep_k^{\mathrm{fd}}(G),$$

whose composition with the forgetful functor $\mathcal{R}ep_k^{\mathrm{fd}}(G) \to \mathcal{V}ect(k)$ gives the fiber functor \mathscr{F}_x^H . Now one can check that the inverse of the equivalence $\widehat{\mathscr{F}_x^H}$ in (3.1.11) give rise to an object of $\mathcal{F}un_{\mathrm{HF}}(\mathcal{R}ep_k(G),\mathcal{H}iggs(X))$ (see (2.5.4) for the definition of this category), and hence by Theorem 2.5.13, it is isomorphic to a functor $\Phi_{\mathfrak{P}}$ for some unique principal G-Higgs bundle \mathfrak{P} on X. From this the result follows.

Corollary 3.1.12. Let X be a connected smooth projective k-variety. For any two points $x_1, x_2 \in X(k)$, the affine k-group schemes $\pi_1^H(X, x_1)$ and $\pi_1^H(X, x_2)$ are isomorphic.

Proof. Using Theorem 3.1.10 above, the result follows from the proof of [PS20, Lemma 2.2.2], mutatis mutandis. \Box

REFERENCES

- [BBG19] Indranil Biswas, Ugo Bruzzo, and Sudarshan Gurjar. Higgs bundles and fundamental group schemes. *Adv. Geom.*, 19(3):381–388, 2019. doi:10.1515/advgeom-2018-0035. [↑ 10 and 11.]
- [DM82] Pierre Deligne and James S. Milne. Tannakian Categories, in: *Hodge Cycles, Motives, and Shimura Varieties*. chapter 2, pages 101–228. Springer-Verlag, Berlin-New York, 1982. doi:10.1007/978-3-540-38955-2_4. Lecture Notes in Mathematics, vol 900. (Corrected Lagrange typeset version is available at https://www.jmilne.org/math/xnotes/tc.html). [† 12.]
- [Gro71] Alexander Grothendieck. *Revêtements étales et groupe fondamental (SGA 1)*, volume 3. Springer-Verlag Berlin Heidelberg, 1971. doi:10.1007/BFb0058656. Lecture Notes in Mathematics, No. 224. Séminaire de géométrie algébrique du Bois Marie 1960–61. [↑ 4.]
- [Nor76] Madhav V. Nori. On the representations of the fundamental group. *Compositio Math.*, 33(1):29–41, 1976. URL http://www.numdam.org/item?id=CM_1976__33_1_29_0. [\dagger 1,6, and 9.]
- [PS20] Arjun Paul and Ronnie Sebastian. Fundamental group schemes of Hilbert scheme of n points on a smooth projective surface. Bull. Sci. Math., 164:102898, 2020. doi:10.1016/j.bulsci.2020.102898. [\uparrow 12.]

(A. Paul) Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India

Email address: arjun.math.tifr@gmail.com