STAT 3690 Lecture 30

zhiyanggeezhou.github.io

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca)

Apr 11, 2022

Testing the uncorrelatedness of canonical variates

- LRT for $H_0: \Sigma_{YX} = 0$ vs. $H_1:$ otherwise
 - LRT statistic $\lambda = \prod_{k=1}^{p} (1 \hat{\rho}_k^2)^{n/2}$
 - * $\hat{\rho}_k$: the kth sample canonical correlation
 - * Under H_0 , $-2 \ln \lambda = -n \sum_{k=1}^{p} \ln(1 \hat{\rho}_k^2) \approx \chi^2(pq)$
- Sequential inference
 - Determining r, the number of pairs of canonical variates to retain
 - Note that $\Sigma_{YX} = 0 \Leftrightarrow \rho_1 = \cdots = \rho_p = 0 \Leftrightarrow \rho_1 = 0$
 - * Since $\rho_1 \ge \cdots \ge \rho_p$
 - Consider a sequence of p pairs of hypotheses: $H_{0,k}: \rho_{k-1} > 0, \rho_k = 0$ vs. $H_{1,k}: \rho_k > 0$

 - * LRT statistic $\lambda_k = \prod_{\ell=k}^{p} (1 \hat{\rho}_{\ell}^2)^{n/2}$ · Under $H_{0,k}$, $-2 \ln \lambda_k = -n \sum_{\ell=k}^{p} \ln(1 \hat{\rho}_{\ell}^2) \approx \chi^2((p k + 1)(q k + 1))$
 - Stopping rules
 - * p_k : the p-value associated with the testing on $H_{0,k}$ vs. $H_{1,k}$
 - * $p_{(k)}$: the kth smallest value among $\{p_1, \ldots, p_p\}$
 - * Holm-Bonferroni procedure (Holm (1979), Scandinavian Journal of Statistics, 6, 65–70): if $p_{(k)} < \alpha/(p+1-k)$, reject $H_{0,(k)}$ and proceed to larger p-values; otherwise EXIT.
 - * B-H procedure (Benjamini & Hochberg (1995), Journal of the Royal Statistical Society, Series B., 57, 289–300):
 - 1. For a given level α , find $k^* = \max\{k \in \{1, \dots, p\} \mid p_{(k)} \le k\alpha/p\}$
 - 2. Reject $H_{0,(k)}$ for $k = 1, ..., k^*$

Summary of CCA

- Dimension reduction method
 - Maximize correlation
 - Treat **Y** and **X** equally/reduce the dimension of both **Y** and **X** simultaneously
- Limitation: in need of invertible $\Sigma_{\mathbf{Y}}$ and $\Sigma_{\mathbf{X}}$