Вариационно-проекционные методы решения краевых задач. Метод Бубнова-Галеркина и метод наименьших квадратов (для решения диф. уравнений)

Задача №1

1) Решите краевую задачу

$$\begin{cases} w'' + x \ w' + w = 2x, \ x \in (0; 1) \\ w(0) = 1, \ w(1) = 0. \end{cases}$$

приближенно методом Бубнова-Галеркина и запишите приближенное решение $w_{np.}\left(x\right)$.

Для его построения используйте базисные функции

$$\varphi_1(x) = x(x-1), \varphi_2(x) = x^2(1-x), \varphi_3(x) = x^3(1-x)$$

2) Используя математический пакет, on-line сервис или свои программные средства, постройте график приближенного решения $w_{nn}\ (x)$.

Решение (схема)

Шаг 1

Метод Бубнова-Галеркина можно применять для решения линейного дифференциального уравнения с линейными однородными граничными условиями.

Приведенная выше задача является линейным дифференциальным уравнением 2-го порядка, но имеет линейные неоднородные граничные условия.

Чтобы построить задачу нужного типа, запишем искомое решение $w\left(x\right)$ в виде

$$w(x) = u(x) + ax + b.$$

Коэффициенты a,b подберем таким образом, чтобы **линейная функция** ax+b соответствовала заданным выше неоднородным граничным условиям.

Для
$$x=0$$
 получим $a\cdot 0+b=1$, то есть $b=1$

Для
$$x = 1$$
 получим $a \cdot 1 + b = 0$, то есть $a = -1$.

Следовательно,

$$w(x) = u(x) + 1 - x$$

Подставим выражение для w(x) в дифференциальное уравнение и граничные условия:

$$\begin{cases} u'' + (1-x)'' + x (u'-1) + (u+1-x) = 2x, & x \in (0; 1) \\ u(0) + 1 - 0 = 1, & u(1) + 1 - 1 = 0. \end{cases}$$

Для неизвестной функции u(x) получим дифференциальное уравнение с линейными однородными граничными условиями:

$$\begin{cases} u "+ x u' + u = 4x - 1, x \in (0; 1) \\ u (0) = 0, u (1) = 0. \end{cases}$$

Именно это уравнение предстоит решить приближенно методом Бубнова-Галеркина.

Шаг 2

Краевую задачу для функции u(x) рассматриваем в гильбертовом пространстве $H = L_2[0;1]$ (отрезок [0;1] взят из краевой задачи).

Решение уравнения ищем в пространстве $K: u \in K \subset H$.

Это функциональное пространство, к элементам которого можно применять операции дифференцирования, указанные в левой части дифференциального уравнения.

Чтобы воспользоваться методом, краевую задачу нужно записать в общем виде

$$\begin{cases} Lu = f \\ lu = 0 \end{cases}$$

где L – линейный дифференциальный оператор, который действует из K в H , через l обозначен линейный оператор, «отвечающий» за граничные условия, правая часть уравнения f задана и является элементом пространства $L_2[0;1]$

В данной задаче

$$L = []'' + x \cdot []' + [],$$

то есть применение оператора L к некоторому элементу $v \in K$ есть

$$Lv = v'' + x \cdot v' + v$$

Правая часть уравнения есть

$$f = 4x - 1$$

Оператор l ставит в соответствие элементу $v \in K$ его значение при x=0 и его значение при x=1.

Линейные свойства операторов L и l можно проверить «по определению»: например, показать, что для любых элементов $u,v\in K$ и любых чисел α,β

$$L(\alpha u + \beta v) = a(Lu) + \beta(Lv)$$

$$l(\alpha u + \beta v) = a(lu) + \beta(lv)$$

Шаг 3

Предложенные выше базисные функции

$$\varphi_1(x) = x(x-1), \varphi_2(x) = x^2(1-x), \varphi_3(x) = x^3(1-x)$$

запишем в виде

$$\varphi_i(x) = x^i(x-1) = x^{i+1} - x^i, i = 1, 2, 3$$

Эти функции соответствуют линейным однородным граничным условиям:

$$\varphi_i(0) = 0, i = 1, 2, 3$$

$$\varphi_i(1) = 0, i = 1, 2, 3$$

Функции $\varphi_i(x), i=1,2,3$ являются элементами каждого из функциональных пространств: и пространства $L_2[0;1],$ и пространства K . К этим функциям можно применить оператор L .

$$L\varphi_1(x) = [x^2 - x]'' + x \cdot [x^2 - x]' + [x^2 - x]$$

$$L\varphi_2(x) = [x^3 - x^2]'' + x \cdot [x^3 - x^2]' + [x^3 - x^2]$$

$$L\varphi_3(x) = [x^4 - x^3]'' + x \cdot [x^4 - x^3]' + [x^4 - x^3]$$

Нетрудно убедиться, что

$$L\varphi_1(x) = 2 + (2x^2 - x) + (x^2 - x) = 3x^2 - 2x + 2$$

$$L\varphi_2(x) = (6x-2) + (3x^3 - 2x^2) + (x^3 - x^2) = 4x^3 - 3x^2 + 6x - 2$$

$$L\varphi_3(x) = (12x^2 - 6x) + (4x^4 - 3x^3) + (x^4 - x^3) = 5x^4 - 4x^3 + 12x^2 - 6x$$

(эти формулы будут нужны при отыскании приближенного решения).

На основе базисных функций определим подпространство K_3 размерности 3, в котором должно быть найдено приближенное решение v(x).

Это подпространство включает все элементы вида

$$v = \alpha_1 \varphi_1 + \alpha_2 \varphi_2 + \alpha_3 \varphi_3$$

где $\alpha_1, \alpha_2, \alpha_3$ — числа.

Шаг 4

Приближенное решение v, найденное в классе K_3 методом Бубнова-Галеркина, должно обеспечить ортогональность невязки всем базисным функциям.

$$(Lv - f, \varphi_1)_{L_2[0;1]} = 0$$

$$(Lv - f, \varphi_2)_{L_2[0;1]} = 0$$

$$(Lv - f, \varphi_3)_{L_2[0;1]} = 0$$

В соответствии с Утверждением 2, Модуль 14.1, коэффициенты α_i , i=1,2,3, определяющие приближенное решение v как элемент K_3

следует искать как решение СЛАУ

$$\begin{bmatrix} \frac{1}{3}(L\varphi_{1}) \cdot \varphi_{1} \, dx & \frac{1}{3}(L\varphi_{2}) \cdot \varphi_{1} \, dx & \frac{1}{3}(L\varphi_{3}) \cdot \varphi_{1} \, dx \\ \frac{1}{3}(L\varphi_{1}) \cdot \varphi_{2} \, dx & \frac{1}{3}(L\varphi_{2}) \cdot \varphi_{2} dx & \frac{1}{3}(L\varphi_{3}) \cdot \varphi_{2} \, dx \\ \frac{1}{3}(L\varphi_{1}) \cdot \varphi_{3} \, dx & \frac{1}{3}(L\varphi_{2}) \cdot \varphi_{3} dx & \frac{1}{3}(L\varphi_{3}) \cdot \varphi_{3} \, dx \end{bmatrix} \cdot \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{bmatrix} = \begin{bmatrix}$$

Поясним, как получены элементы матрицы и правой части СЛАУ, и как они должны быть вычислены.

Например, элемент первой строки первого столбца матрицы СЛАУ определяется скалярным произведением элементов $L\varphi_1(x)$ и $\varphi_1(x)$ в $L_2[0;1]$:

$$(L\varphi_1,\varphi_1)_{L_2[0;1]} = \int_0^1 (L\varphi_1) \cdot \varphi_1 dx = \int_0^1 (3x^2 - 2x + 2) (x^2 - x) dx$$

Первый элемент правой части СЛАУ определяется скалярным произведением элементов f(x) и $\varphi_1(x)$ в $L_2[0;1]$:

$$(f, \varphi_1)_{L_2[0;1]} = \int_0^1 f \cdot \varphi_1 dx = \int_0^1 (4x - 1)(x^2 - x) dx$$

Шаг 5

Чтобы решить задачу методом Бубнова-Галеркина, нужно вычислить элементы матрицы и элементы правой части СЛАУ и затем решить СЛАУ (ее размерность 3*3).

Ответ

Решение задачи с однородными граничными условиями запишется в виде

$$u(x) \sim v(x)$$
, где

$$v(x) = \alpha_1(x^2 - x) + \alpha_2(x^3 - x^2) + \alpha_3(x^4 - x^3)$$

Решение исходного дифференциального уравнения с неоднородными граничными условиями следует записать в виде

$$w(x) \sim v(x) + 1 - x$$
, где

$$v(x) = \alpha_1(x^2 - x) + \alpha_2(x^3 - x^2) + \alpha_3(x^4 - x^3)$$

Задача №1*

1) Решите краевую задачу

$$\begin{cases} w'' + x \ w' + w = 2x, \ x \in (0; 1) \\ w(0) = 1, \ w(1) = 0. \end{cases}$$

приближенно методом наименьших квадратов и запишите приближенное решение $w_{np_-}(x)$. Для его построения используйте базисные функции

$$\varphi_1(x) = x(x-1), \varphi_2(x) = x^2(1-x), \varphi_3(x) = x^3(1-x)$$

2) Используя математический пакет, on-line сервис или свои программные средства, постройте график приближенного решения $w_{np_{\cdot}}\left(x\right)$.

Если нужно решить ту же самую задачу методом наименьших квадратов, отличия решений будут на шаге 4

Шаг 4

Другой принцип отыскания решения:

Приближенное решение v, найденное в классе K_3 методом наименьших квадратов, должно обеспечить минимально возможную невязку дифференциального уравнения в норме гильбертова пространства $L_2[0;1]$ в подпространстве K_3 :

$$\|Lv - f\|_{L_2[0;\,1]} \underset{v \in K_3}{\longrightarrow} \min$$

Другая СЛАУ для поиска неизвестных коэффициентов:

В соответствии с Утверждением 4, Модуль 14.1, коэффициенты α_i , i=1,2,3, определяющие приближенное решение v как элемент K_3 следует искать как решение СЛАУ

$$\begin{bmatrix} \int_{0}^{1} (L\varphi_{1})^{2} dx & \int_{0}^{1} (L\varphi_{2}) \cdot (L\varphi_{1}) dx & \int_{0}^{1} (L\varphi_{3}) \cdot (L\varphi_{1}) dx \\ \int_{0}^{1} (L\varphi_{1}) \cdot (L\varphi_{2}) dx & \int_{0}^{1} (L\varphi_{2})^{2} dx & \int_{0}^{1} (L\varphi_{3}) \cdot (L\varphi_{2}) dx \\ \int_{0}^{1} (L\varphi_{1}) \cdot (L\varphi_{3}) dx & \int_{0}^{1} (L\varphi_{2}) \cdot (L\varphi_{3}) dx & \int_{0}^{1} (L\varphi_{3})^{2} dx \end{bmatrix} \cdot \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \alpha_{3} \end{bmatrix} = \begin{bmatrix} \int_{0}^{1} (4x - 1) (L\varphi_{1}) dx \\ \int_{0}^{1} (4x - 1) (L\varphi_{2}) dx \\ 0 \end{bmatrix}$$

Поясним, как получены элементы матрицы и правой части СЛАУ, и как они должны быть вычислены.

Например, элемент первой строки первого столбца матрицы СЛАУ определяется скалярным квадратом элемента $L\varphi_1(x)$ в $L_2[0;1]$:

$$(L\varphi_1, L\varphi_1)_{L_2[0;1]} = \int_0^1 (L\varphi_1) \cdot (L\varphi_1) \, dx = \int_0^1 (3x^2 - 2x + 2)^2 \, dx$$

Элемент первой строки второго столбца матрицы СЛАУ определяется скалярным произведением элементов $L\varphi_1(x)$ и $L\varphi_2(x)$ в $L_2[0;1]$:

$$(L\varphi_1, L\varphi_2)_{L_2[0;1]} = \int_0^1 (L\varphi_1) \cdot (L\varphi_2) \, dx = \int_0^1 (3x^2 - 2x + 2)(4x^3 - 3x^2 + 6x - 2) \, dx$$

Первый элемент правой части СЛАУ определяется скалярным произведением элементов f(x) и $L\varphi_1(x)$ в $L_2[0;1]$:

$$(f, L\varphi_1)_{L_2[0;1]} = \int_0^1 f \cdot (L\varphi_1) \, dx = \int_0^1 (4x - 1) (3x^2 - 2x + 2) \, dx$$

Последующие действия такие же, как в предыдущем методе.

Шаг 5

Чтобы решить задачу методом наименьших квадратов, нужно вычислить элементы матрицы и элементы правой части СЛАУ и затем решить СЛАУ (ее размерность 3*3).

Ответ

Решение задачи с однородными граничными условиями запишется в виде

$$u(x) \sim v(x)$$
, где

$$v(x) = \alpha_1(x^2 - x) + \alpha_2(x^3 - x^2) + \alpha_3(x^4 - x^3)$$

Решение исходного дифференциального уравнения с неоднородными граничными условиями следует записать в виде

$$w(x) \sim v(x) + 1 - x$$
, где

$$v(x) = \alpha_1(x^2 - x) + \alpha_2(x^3 - x^2) + \alpha_3(x^4 - x^3)$$