I CLAIM:

1	1.	A water activated release mechanism comprising:
2		a first probe exposed to the environment;
3		a second probe exposed to the environment;
4		at least one first battery electronically connected between the first probe and a first
5	,	node;
6		at least one second battery electronically connected between the second probe and a
7		second node; and
8		a squib electrically connected between the first node and the second node.
1	2.	The mechanism of Claim 1 further including:
2		a capacitance C electrically connected between the first node and the second node;
3		a resistance R1 electrically connected between the first node and the second node;
4		a voltage Vc across the capacitance C;
5		a switch between the squib and one of the first node and the second node; and
6		means for closing the switch if the voltage Vc is at least a threshold voltage Vt.
	3.	The mechanism of Claim 2 wherein the capacitance C comprises at least an

approximately 2.7 m Farad capacitance.

4.	The mechanism of Claim 3 wherein the at least an approximately 2.7 m Farad
	capacitance comprises six approximately 0.45 m Farad capacitors, and wherein the resistance
	R1 comprises an approximately 150 ohm thermistor having a negative temperature coefficient,
	in series with an approximately 350 ohm resister.

The mechanism of Claim 2 wherein the at least one first battery and the at least one 5. 1 second battery are electrically connected to produce a positive voltage at the first node, and 2 wherein the switch closing means comprises: 3 a diode connected between the first node and the second node; 4 a cathode terminal of the diode electrically connected to the first node; 5 an anode terminal of the diode electrically connected to the second node; 6 a third node electrically connected between the anode terminal and the second node; 7 a second resister electrically connected between the third node and the second node; 8 9 and a lead electrically connected between the third node and a control gate on the switch, 10

6. The mechanism of Claim 5 wherein the second resister is at least approximately a 10,000 ohm resister.

wherein the switch is normally open, and is adapted to close when the diode conducts.

11

	8.	The mechanism of Claim 2 wherein the switch comprises a Silicon Controlled Rectifier (SCR).
	9.	The mechanism of Claim 2 wherein the at least one first battery comprises two 6 volt batteries and the at least one second battery comprises two 6 volt batteries.
	10.	The mechanism of Claim 2 wherein the squib comprises a minimum force of approximately 100 lbs and a stroke of approximately .25 inches
	11.	The mechanism of Claim 2 wherein the squib is adapted to provide force and distance sufficient to release the buckle.
	12.	The mechanism of Claim 2 wherein the squib is in thermal cooperation with a heat sink.
1	13.	A water activated release mechanism comprising:
2		a first probe exposed to the environment;
3		a second probe exposed to the environment;

The mechanism of Claim 5 wherein the diode is a zener diode.

7.

4	at least one dattery electronically connected between one of the set consisting of the
5	first probe and a first node, and the second probe and a second node, wherein the at least one
6	battery is electrically connected to produce a positive voltage at the first node;
7	a squib and a switch serially electrically connected between the first node and the
8	second node;
9	a capacitance C electrically connected between the first node and the second node;
10	a diode having a cathode terminal and an anode terminal, wherein the cathode terminal
11	is electrically connected to the first node and the anode terminal is electrically connected to the
12	second node;
13	a third node electrically connected between the anode terminal and the second node;
14	a second resister electrically connected between the third node and the second node;
15	and
16	a lead electrically connecting the third node to a control gate of the switch.

- 14. The mechanism of Claim 14 wherein the at least one battery comprises at least one first battery electronically connected between the first probe and a first node and at least one second battery electronically connected between the second probe and a second node.
- 15. The mechanism of Claim 14 wherein the switch comprises a Silicon Controlled Rectifier (SCR).

16.	The mechanism of Claim 14 wherein the capacitance C comprises six approxima	tely
	0.45 m Farad capacitors.	

1	17.	A method for activating a release mechanism, comprising:
2		closing a circuit between a first probe and a second probe;
3		creating a positive voltage at a first node from at least one of a first battery electrically
4		connected between the first probe and the first node, and a second battery electrically
5		connected between a second node and the second probe;
6		charging a capacitor electrically connected between the first node and the
7		second node;
8		exceeding a breakdown voltage of a diode having a cathode terminal
9		electrically connected to the first node, and an anode terminal electrically connected
10		to a control gate of a normally open switch, wherein the switch and a squib are serially
11		electrically connected between the first node and the second node;
12		closing the switch;
13		providing between approximately 550,000 and approximately 5,000,000 ergs
14		of energy to the squib; and
15		firing the squib.

134/142

- 18. The method of Claim 18, wherein charging a capacitor comprises charging six approximately 0.45 m Farad capacitors.
- 19. The method of Claim 18, wherein closing the switch comprises providing a voltage to a Silicon Controlled Rectifier (SCR) serially electrically connected with the squib between the first node and the second node.