PROBLEMAS DE FLIP-FLOPS para realizar en casa.

Acudir a la Figura 9.1. Este flip-flop tiene las entradas activas en _____ (ALTA, BAJA).
R: BAJA

Set \longrightarrow S Q \longrightarrow Normal Salidas Reset \longrightarrow R \overline{Q} \longrightarrow Complementaria

Figura 9.1. Símbolo lógico del flip-flop RS.

2.- Si la salida normal del flip-flop RS está en ALTA, entonces la salida Q = _____ (0, 1) y \overline{Q} = _____ (0,1).

R: 1, 0

3.- Activando, efectivamente, la entrada de reset con un nivel_____ (ALTO, BAJO) la salida, Q se pone a _____ (0, 1) lógico.

R: Bajo, 0

4.-Realizar el siguiente flip-flop.

(a) Conexión utilizando puertas NAND

Nombre: Brayan Ramirez Benítez

Entradas		Salidas		
S R		Q Q		
0 0		1	1	
0 1		1	0	
1 0		0	1	
1 1		No can	No cambia	

5.- Diseñar un Flip-Flop con compuertas OR.

6.- Resolver el siguiente FLIP-FLOP síncrono.

Nombre: Brayan Ramirez Benítez

Entradas			Salidas		
CLK	S	R	Q	'Q	
~	0	0	No cambia		
-	0	1	0	1	
~~	1	0	1	0	
~~	1	1	1	1	