Darshan Institute of Engineering & Technology

B.E. Semester – I ● Pre GTU Examination – February 2021

Subject Name: Mathematics - 1

Instructions: 1. Attempt any **FOUR** out of **SEVEN** questions.

- **2.** Figure to the right indicate full marks.
- 3. Don't do any kind of rough work or calculation in Question Paper.

Q. 1 (A) Show that
$$e^x = \sum_{n=1}^{\infty} \frac{2n\pi}{L^2 + n^2\pi^2} [1 - (-1)^n e^L] \sin\left(\frac{n\pi x}{L}\right)$$
 using half range series, where $0 < x < L$.

(B) Check the convergence of
$$\sum_{n=1}^{\infty} \frac{(n+3)!}{3! \, n! \, 3^n}.$$

(C) Find the minimum distance from the origin to the plane 3x + 2y + z = 12.

Q. 2 (A) Evaluate:
$$\lim_{x \to 0} \left[\frac{\pi}{4x} - \frac{\pi}{2x(e^{\pi x} + 1)} \right]$$
.

(B) If
$$z = f(x, y)$$
, $x = e^u + e^{-v} \& y = e^{-u} - e^v$, show that $\frac{\partial z}{\partial u} - \frac{\partial z}{\partial v} = x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y}$. **04**

(C) Find Fourier series of
$$f(x) = x^2$$
 in $[0, 2\pi]$.

- **Q. 3 (A)** Evaluate $\iint e^{y^2} dxdy$ over the region bounded by the triangle with vertices (0,0), **03** (2,1) and (0,1).
 - **(B)** Discuss the maxima and minima of the function $3x^2 y^2 + x^3$.

(C) Find the eigen values and eigen vectors for
$$A = \begin{bmatrix} 4 & 6 & 6 \\ -8 & -10 & -8 \\ 4 & 4 & 2 \end{bmatrix}$$
.

Q.4 (A) Find the directional derivative of
$$f(x, y, z) = xy + yz + zx$$
 at $(1, 2, 0)$ in the direction of the vector $(1, 2, 2)$.

- (B) Solve the following system of linear equations by Gauss Elimination method: x + 2y z = 1, x + y + 2z = 9 & 2x + y z = 2.
- (C) State the Cayley Hamilton theorem and verify it for the matrix $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}.$

Q. 5 (A) Check the convergence of the improper integral
$$\int_{0}^{\infty} x^{2}e^{-x} dx$$
.

(B) Test the convergence of
$$\frac{1}{1 \cdot 3} + \frac{2}{3 \cdot 5} + \frac{3}{5 \cdot 7} + \frac{4}{7 \cdot 9} + \cdots$$
.

(C) Expand
$$f(x) = \begin{cases} 1 + \frac{2x}{\pi} ; -\pi \le x \le 0 \\ 1 - \frac{2x}{\pi} ; 0 \le x \le \pi \end{cases}$$
 in terms of sine and cosine.

Hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$ is convergent.

Q. 6 (A) Test the convergence of the series
$$\sum_{n=1}^{\infty} \frac{1}{(\log n)^n}.$$

(B) If
$$u = e^{xyz}$$
, show that $\frac{\partial^3 u}{\partial x \partial y \partial z} = (1 + 3xyz + x^2y^2z^2) e^{xyz}$.

(C) Find the inverse of a matrix
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 2 & -3 \\ 1 & -4 & 9 \end{bmatrix}$$
 by Gauss – Jordan method. **07**

Q.7 (A) Find the rank of the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ -2 & -1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$$
.

(B) Find the sum of the series
$$\sum_{n=0}^{\infty} \left(\frac{2^{n+1}}{5^n} \right)$$
.

(C) Find the radius and interval of convergence of the series
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x+2)^n}{2^n \cdot n}.$$
 07

Also, for what values of x does the series converges absolutely or conditionally?

* * * * * * * * * *