PROVA SCRITTA - MATEMATICA DEL CONTINUO - 20.01.23

Corso di Laurea in Informatica - a.a. 2022/23 - Docenti: Cecilia Cavaterra e Anna Gori

PARTE I Indicare la risposta corretta negli spazi del foglio risposte

La PARTE I è superata se si risponde correttamente a 3 risposte su 5

1.	Le soluzioni	dell'equazione	$e^{ x+1 } - e = 0$	sono
----	--------------	----------------	---------------------	------

a)
$$x = 1 e x = -1$$

a)
$$x = 1$$
 e $x = -1$ b) $x = -2$ e $x = 0$ c) $x = -2$ d) $x = 1$

c)
$$x = -2$$

$$(1) x = 1$$

2. Sia
$$B \subseteq \mathbb{R}$$
 tale che $B = \{ \log(x+1) \mid x < 0 \}$, allora

a)
$$B = (-1, 0)$$

a)
$$B = (-1, 0)$$
 b) $B = (-\infty, 0)$ c) $B = (0, +\infty)$

c)
$$B = (0, +\infty)$$

$$d) B = (-\infty, 1)$$

3. Le soluzioni della disequazione
$$(\log x)^2 - 4 < 0$$
 sono a) $x < e^2$ b) $0 < x < e^2$ c) $e^{-2} < x < e^2$ d) $0 < x < 2$

a)
$$x < e^2$$

b)
$$0 < x < e^2$$

c)
$$e^{-2} < x < e^2$$

d)
$$0 < x < 2$$

4. Le soluzioni della disequazione
$$\cos x \ge 1$$
 sono

a)
$$x = k\pi$$
, $k \in \mathbb{Z}$ b) $\forall x \in \mathbb{R}$, c) $x = 2k\pi$, $k \in \mathbb{Z}$ d) $-\frac{\pi}{2} + 2k\pi < x < \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$

5. L'insieme di definizione della funzione
$$f(x) = \log_2(\log_{\frac{1}{2}} x)$$
 è

a)
$$x > 0$$

b)
$$0 < x < 1$$
 c) $x > 1$ d) $x > \frac{1}{2}$

c)
$$x > 1$$

$$d) (x > \frac{1}{x})$$

PARTE II-1 Indicare la risposta corretta negli spazi del foglio risposte

1. (PUNTI 1) Sia f una funzione definita su \mathbb{R} , 2π – periodica e continua a tratti.

Sia
$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 la serie di Fourier associata. Allora

- a) se f è una funzione dispari allora $b_n = 0, \forall n \in \mathbb{N}$
- b) la serie di Fourier converge in tutti i punti di \mathbb{R}
- c) la serie di Fourier non converge nei punti in cui f(x) non è continua
- d) la serie di Fourier converge nei punti in cui f(x) non è continua a f(x)

2. (PUNTI 1) Sia f continua in [a, b]. Allora

- a) esiste almeno un punto $x_0 \in [a,b]$ tale che $f(x_0)(b-a) = \int_a^b f(x) dx$
- b) esiste almeno un punto $x_0 \in [a, b]$ tale che $f(x_0) = (b a) \int_a^b f(x) dx$

c)
$$\int_a^b f(x)dx = f(b) - f(a)$$

d) se f è derivabile in [a,b] vale $\int_a^b f(x)dx = f'(b) - f'(a)$

3. (**PUNTI 2**) L'integrale definito
$$\int_1^e \frac{\log x}{x^2} dx$$
 vale

a)
$$1 - \frac{2}{e}$$

b)
$$\frac{2}{e} - 1$$
 c) $\frac{1}{e^2}$ d) $\frac{1}{2}$

c)
$$\frac{1}{e^{2}}$$

d)
$$\frac{1}{2}$$

(PUNTI 2) Determinare il raggio di convergenza della serie di potenze $\sum_{n=0}^{\infty} \frac{n^n}{n!} x^n$

a)
$$R = 1$$

b)
$$R = \epsilon$$

c)
$$R = \frac{1}{e}$$

a)
$$R = 1$$
 b) $R = e$ c) $R = \frac{1}{e}$ d) $R = +\infty$

- 5. (PUNTI 2) Data la funzione $f(x) = e^{3x} \sin x \cos x 2x + 2$ allora vale
 - a) $f(x) = 2 + 10x^2 + o(x^2)$ per $x \to 0$ e x = 0 è punto di minimo relativo
 - b) $f(x) = 2 + 5x^2 + o(x^2)$ per $x \to 0$ e x = 0 è punto di minimo relativo
 - c) $f(x) = 2 2x + x^2 + o(x^2)$ per $x \to 0$ e x = 0 non è punto estremante
 - d) $f(x) = 2 2x + 2x^2 + o(x^2)$ per $x \to 0$ e x = 0 non è punto estremante

PARTE II-2 Indicare i passaggi essenziali negli spazi del foglio risposte

- 6. (PUNTI 3) Dare la definizione di $\lim_{x\to+\infty} f(x) = +\infty$ e utilizzarla per dimostrare che $\lim_{x \to +\infty} \frac{x^2}{x+1} = +\infty$
- 7. (PUNTI 3) Trovare le soluzioni in forma algebrica dell'equazione $z^4\overline{z} + i = 0$

PARTE II-3 Indicare i passaggi essenziali negli spazi del foglio risposte - PUNTI $8\,$

Data la funzione $f(x) = \frac{x^2}{-1 + \log x}$ determinare:

- 1) l'insieme di definizione; il segno; i limiti; eventuali asintoti (oriz., vert., obl.); f'(x); segno di f'(x); eventuali punti estremanti; eventuali punti di prolungamento continuo
- 2) Tracciare il grafico di f(x)
- 3) Determinare il numero di soluzioni dell'equazione f(x)=k

PARTE III

Dimostrare il Teorema di Rolle - PUNTI 8

FORMULE DI TAYLOR
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2}) \qquad \text{per } x \to 0$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n+1}) \qquad \text{per } x \to 0$$

$$\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n) \qquad \text{per } x \to 0$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n) \qquad \text{per } x \to 0$$

$$(1+x)^\alpha = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2} x^2 + o(x^2) \qquad \text{per } x \to 0$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + o(x^{2n+2}) \qquad \text{per } x \to 0$$

$$tgx = x + \frac{x^3}{3} + \frac{2}{15}x^5 + o(x^6) \qquad \text{per } x \to 0$$