

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MATHEMATICS 18MAB101T CALCULUS & LINEAR ALGEBRA UNIT-2 Functions of Several Variables

	UNIT-2 Functions of Several variables	
Sl.No.	Tutorial Sheet-3	Answers
PART – B		
1	If $x = u(1-v)$, $y = uv$ verify that $\frac{\partial(x,y)}{\partial(u,v)} \cdot \frac{\partial(u,v)}{\partial(x,y)} = 1$.	
2	If $u = x^2$, $v = y^2$ find $J = \frac{\partial(u, v)}{\partial(x, y)}$. If $x = r\cos\theta$, $y = r\sin\theta$, $z = z$ find $\frac{\partial(x, y, z)}{\partial(r, \theta, z)}$.	J=4xy
3	If $x = r \cos \theta$, $y = r \sin \theta$, $z = z$ find $\frac{\partial(x, y, z)}{\partial(r, \theta, z)}$.	J = r
4	If $u = xyz$, $v = xy + yz + zx$, $w = x + y + z$ find $J = \left(\frac{\partial(u, v, w)}{\partial(x, y, z)}\right)$.	J = (x-y)(y-z)(z-x)
5	The temperature T at any point (x,y,z) in space is $T = 400xyz^2$.	50°C
	Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$.	
	PART – C	
6	If $x = r \cos \theta$, $y = r \sin \theta$ verify that $\frac{\partial(x,y)}{\partial(r,\theta)} \cdot \frac{\partial(r,\theta)}{\partial(x,y)} = 1$.	
7	If we transform from 3D-Cartesian co-ordinates (x, y, z) to spherical	
	polar co-ordinates (r, θ, ϕ) show that $\frac{\partial(x, y, z)}{\partial(r, \theta, z)} = r^2 \sin \theta$.	
8	Find the $J = \left(\frac{\partial(y_1, y_2, y_3)}{\partial(x_1, x_2, x_3)}\right)$ if $y_1 = \frac{x_2 x_3}{x_1}$; $y_2 = \frac{x_1 x_3}{x_2}$; $y_3 = \frac{x_2 x_1}{x_3}$.	$J = 4$ $J = 0, v - w = 2u^2$
9	Examine the functional dependence of the functions $u = y + z$; $v =$	$J=0,\ v-w=2u^2$
	$x + 2z^2$; $w = x - 4yz - 2y^2$. If so find the relationship.	
10	Find the shortest and longest distance from the point $(1,2,-1)$ to	$\sqrt{6}$ and $3\sqrt{6}$
	the sphere $x^2 + y^2 + z^2 = 24$, using Lagrange's method of constrained	
	maxima and minima.	