Machine Learning

Lecture 5 - Odds and Logistic Regression

Dr SHI Lei

- Binary Classifier
- Performance Measures

Last Lecture

Binary Classifier

- Observed response y takes only two possible values + and -
- Define relationship between h(x) and y
- Use the decision rule: $\hat{y} = \begin{cases} +, & h(x) \ge t \\ -, & otherwise \end{cases}$

Last Lecture

Performance Measures

Prediction Success (Confusion Matrix)

	actual +	_
redicted	true	false
+	positives	positives
pr	false	true
_	negatives	negatives

Precision, Sensitivity (Recall), Specificity

$$Pr = \frac{tp}{tp + fp}$$
 $Se = \frac{tp}{tp + fn}$ $Sp = \frac{tn}{tn + fp}$

Last Lecture

Performance Measures

• ROC Curve (receiver operating characteristic curve)

It tells how much model is capable of distinguishing between classes.

Today

- Odds
- Logistic Regression

OOOS

Odds

Odds, a numerical expression, expressed as a pair of numbers.

The **odds for** or **odds of** some *event* reflect the <u>likelihood</u> that the event will take place, while **odds against** reflect the <u>likelihood</u> that it will not.

An example ...

Odds

An example

We may say the **odds** in favour of students to graduate with 1st-class honours is 1 to 4:

Visually, there are 5 students total.

1 of them will graduate with 1st-class honours.

4 of them will graduate without 1st-class honours.

So, the **odds** are 1 to 4.

An example

We may say the **odds** in favour of students to graduate with 1st-class honours is 1 to 4:

Alternatively, we can write this as a **fraction** $\frac{1}{4} = 0.25$

$$\frac{1}{4} = 0.25$$

Visually, we have one students graduate with 1st-class honours, divided by the 4 who not.

NOTE: Odds are not probabilities.

Odds

NOTE: Odds are not probabilities.

odds

VS

probability

1 to 4

1 to 5

Odds

odds(success)

$$=\frac{1}{4}=0.25$$

probability(success)

$$=\frac{1}{5}=0.20$$

probability(unsuccess)

$$=\frac{4}{5}=0.80$$

either...

probability(unsuccess) = 1 - probability(unsuccess) = $1 - \frac{1}{5} = \frac{4}{5} = 0.80$

)

odds(success)

$$=\frac{1}{4}=0.25$$

probability(success)

probability(unsuccess)

probability(success)

probability(unsuccess)

$$\frac{p}{q} = \frac{0.20}{0.80} = 0.25$$

$$\frac{p}{q} = \frac{0.20}{0.80} = 0.25$$
 or $\frac{p}{1-p} = \frac{1/X}{4/X} = \frac{1}{4} = 0.25$

Odds

odds(success)

一种中华

probability(success)

$$=\frac{1}{5}=0.20$$

probability(unsuccess)

$$=\frac{4}{5}=0.80$$

probability(success)

probability(unsuccess)

$$\frac{p}{q} = \frac{0.20}{0.80} = 0.25$$
 or $\frac{p}{1-p}$

$$\frac{p}{1-p} = \frac{1/X}{4/X} = \frac{1}{4} = 0.25$$

Log of odds

odds(success), if students were the worst

$$=\frac{1}{32}=0.031$$

Odds against success is between 0 and 1

odds(success), if students were really good

Odds in favour of success is between 1 and +∞

Another way to look at this is with a number line

The **asymmetry** makes it difficult to compare odds(success) and odds(unsuccess)

The **magnitude** of these odds looks way smaller

Taking the log() of the odds (i.e. log(odds)) solves this problem by making everything symmetrical.

e.g. If odds(success) 1 to 6, then log(odds) = log(1/6) = log(0.17) = -1.79

If odds(success) 6 to 1, then log(odds)=log(6/1)=log(6)=1.79

Using the log function, the distance from the origin (or 0) is the same for 1 to 6 and 6 to 1 odds.

In Summary

The **odds** are the ratio of something happening to something not happening $\frac{p}{1-p}$

$$\log(\text{odds}) = \log(\frac{p}{1-p})$$

logit function ——— The basis for logistic regression

$$Odds = \frac{something happening}{something not happening}$$

Happening / success Not happening / unsuccess

$$Odds = \frac{something happening}{something not happening}$$

$$\frac{2}{4} = 0.5$$

Odds ratio

$$=\frac{2/4}{3/1}$$

$$=\frac{2/4}{3/1} = 0.17$$

Can we use odds ratio to determine if there is a **relationship** between the mutated gene and cancer? If someone has the mutated gene, are odds higher that they will get cancer?

Larger values mean that the mutated gene is a good predictor of cancer. Smaller values mean that the mutated gene is not a good predictor of cancer.

Today

- Odds
- Logistic Regression

Logistic Regression

Logistic Regression

• is similar to **Linear Regression**, except...

Logistic Regression

predicts True / False

fits an "S" shaped "logistic function"

• its curves goes from 0 to 1

• is used for **prediction**

• like with Linear Regression, we can make simple models:

Exam result is predicted by coursework mark

or more complicated models:

Exam result is predicted by coursework mark + lecture attendance

- Logistic Regression provides probabilities and classifies new samples using continuous and discrete measurements.
- A popular machine learning method.

Logistic Regression vs Linear Regression

How the line is fit to the data

Linear Regression

Does not have concept of a "Residual", so it cannot use least squares and cannot calculate R².

How is this squiggle optimised to fit the data the best? - Maximum Likelihood

How are lines fit in linear regression?

How are lines fit in linear regression?

To draw the "best fitting" squiggle

The only problem...

The transformation pushes the raw data to

The residuals are equal to $+\infty$ and $-\infty$

So, we cannot use least-squares to find the best fitting line $oldsymbol{oldsymbol{arphi}}$

But we can use maximum likelihood ©

To draw the "best fitting" squiggle

First, project the original data points onto the candidate line. This gives each sample a candidate log(odds) value.

To draw the "best fitting" squiggle

First, project the original data points onto the candidate line. This gives each sample a candidate log(odds) value.

To draw the "best fitting" squiggle

First, project the original data points onto the candidate line. This gives each sample a candidate log(odds) value.

To draw the "best fitting" squiggle

Then, transform the candidate log(odds) to candidate probabilities using:

To draw the "best fitting" squiggle

Then, transform the candidate log(odds) to candidate probabilities using:

How to convert the equation...

$$\log(\frac{p}{1-p}) = \log(odds)$$

Input: probability

Output: log(odds)

to

$$p = \frac{e^{\log(odds)}}{1 + e^{\log(odds)}}$$

Input: log(odds)

Output: probability

How to convert the equation...

$$\log(\frac{p}{1-p}) = \log(odds)$$

$$\frac{p}{1-p} = e^{\log(odds)}$$

$$p = (1 - p)e^{\log(odds)} = e^{\log(odds)} - pe^{\log(odds)}$$

$$p + pe^{\log(odds)} = e^{\log(odds)}$$

$$p(1 + e^{\log(odds)}) = e^{\log(odds)}$$

$$p = \frac{e^{\log(odds)}}{1 + e^{\log(odds)}}$$

To draw the "best fitting" squiggle

Then, transform the candidate log(odds) to candidate probabilities using:

To draw the "best fitting" squiggle

Then, transform the candidate log(odds) to candidate probabilities using:

$$p = \frac{e^{\log(odds)}}{1 + e^{\log(odds)}}$$

 $+\infty$

$$p = 0.1$$

To draw the "best fitting" squiggle

Then, transform the candidate log(odds) to candidate probabilities using:

To draw the "best fitting" squiggle

Then, transform the candidate log(odds) to candidate probabilities using:

To draw the "best fitting" squiggle

Now, calculate the likelihood.

To draw the "best fitting" squiggle

Now, calculate the likelihood.

To draw the "best fitting" squiggle

Now, calculate the likelihood.

To draw the "best fitting" squiggle

Now, calculate the likelihood.

Likelihood that these students will pass the exam

 $= 0.75 \times 0.9 \times 0.91 \times 0.91 \times 0.91 \times 0.92$

To draw the "best fitting" squiggle

Now, calculate the likelihood.

Likelihood that these students will pass the exam

$$= 0.75 \times 0.9 \times 0.91 \times 0.91 \times 0.91 \times 0.92$$

Likelihood that these students will not pass the exam = (1-0.01)x(1-0.01)x(1-0.01)x(1-0.02)x(1-0.03)x(1-0.8)

To draw the "best fitting" squiggle

Now, calculate the likelihood.

Likelihood of data given the squiggle

= $0.75 \times 0.9 \times 0.91 \times 0.91 \times 0.91 \times 0.92 \times (1-0.01) \times (1-0.01) \times (1-0.01) \times (1-0.02) \times (1-0.03) \times (1-0.8)$

= 0.086

Questions about Assignment