

# N-CHANNEL ENHANCEMENT MODE POWER MOSFET

- **▼** Low on-resistance
- **▼** Capable of 2.5V gate drive
- **▼** Low drive current
- **▼** Surface mount package



| BV <sub>DSS</sub>   | 20V                  |
|---------------------|----------------------|
| R <sub>DS(ON)</sub> | $\mathbf{30m}\Omega$ |
| I <sub>D</sub>      | 6A                   |

### **Description**

The Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, ruggedized device design, ultra low on-resistance and cost-effectiveness.



**Absolute Maximum Ratings** 

| Symbol                               | Parameter                                                      | Rating     | Units                  |
|--------------------------------------|----------------------------------------------------------------|------------|------------------------|
| $V_{DS}$                             | Drain-Source Voltage                                           | 20         | V                      |
| $V_{GS}$                             | Gate-Source Voltage                                            | ± 12       | V                      |
| I <sub>D</sub> @T <sub>A</sub> =25°ℂ | Continuous Drain Current <sup>3</sup> , V <sub>GS</sub> @ 4.5V | 6          | А                      |
| I <sub>D</sub> @T <sub>A</sub> =70°C | Continuous Drain Current <sup>3</sup> , V <sub>GS</sub> @ 4.5V | 4.8        | А                      |
| I <sub>DM</sub>                      | Pulsed Drain Current <sup>1,2</sup>                            | 20         | А                      |
| P <sub>D</sub> @T <sub>A</sub> =25°ℂ | Total Power Dissipation                                        | 2          | W                      |
|                                      | Linear Derating Factor                                         | 0.016      | W/°C                   |
| T <sub>STG</sub>                     | Storage Temperature Range                                      | -55 to 150 | $^{\circ}$ C           |
| T <sub>J</sub>                       | Operating Junction Temperature Range                           | -55 to 150 | $^{\circ}\!\mathbb{C}$ |

### **Thermal Data**

| Symbol | Parameter                                        |      | Value | Unit |
|--------|--------------------------------------------------|------|-------|------|
| Rthj-a | Thermal Resistance Junction-ambient <sup>3</sup> | Max. | 62.5  | °C/W |



## Electrical Characteristics@T<sub>j</sub>=25°C(unless otherwise specified)

| Symbol                                 | Parameter                                           | Test Conditions                             | Min. | Тур. | Max. | Units     |
|----------------------------------------|-----------------------------------------------------|---------------------------------------------|------|------|------|-----------|
| BV <sub>DSS</sub>                      | Drain-Source Breakdown Voltage                      | V <sub>GS</sub> =0V, I <sub>D</sub> =250uA  | 20   | -    | -    | V         |
| $\Delta\text{BV}_\text{DSS}/\DeltaT_j$ | Breakdown Voltage Temperature Coefficient           | Reference to 25°C, I <sub>D</sub> =1mA      | -    | 0.1  | -    | V/°C      |
| R <sub>DS(ON)</sub>                    | Static Drain-Source On-Resistance                   | $V_{GS}$ =4.5V, $I_D$ =6A                   | -    | -    | 30   | $m\Omega$ |
|                                        |                                                     | V <sub>GS</sub> =2.5V, I <sub>D</sub> =5.2A | -    | -    | 45   | $m\Omega$ |
| $V_{GS(th)}$                           | Gate Threshold Voltage                              | $V_{DS}=V_{GS}$ , $I_{D}=250uA$             | 0.5  | -    | -    | V         |
| g <sub>fs</sub>                        | Forward Transconductance                            | $V_{DS}$ =10V, $I_{D}$ =6A                  | -    | 15.6 | -    | S         |
| I <sub>DSS</sub>                       | Drain-Source Leakage Current (T <sub>j</sub> =25°C) | $V_{DS}$ =20V, $V_{GS}$ =0V                 | -    | -    | 1    | uA        |
|                                        | Drain-Source Leakage Current (T <sub>j</sub> =70°C) | $V_{DS}=20V$ , $V_{GS}=0V$                  | -    | -    | 25   | uA        |
| $I_{GSS}$                              | Gate-Source Leakage                                 | $V_{GS} = \pm 12V$                          | -    | -    | ±100 | nA        |
| $Q_g$                                  | Total Gate Charge <sup>2</sup>                      | I <sub>D</sub> =6A                          | -    | 12.5 | -    | nC        |
| $Q_{gs}$                               | Gate-Source Charge                                  | V <sub>DS</sub> =20V                        | -    | 1    | -    | nC        |
| $Q_{gd}$                               | Gate-Drain ("Miller") Charge                        | V <sub>GS</sub> =5V                         | -    | 6.5  | -    | nC        |
| t <sub>d(on)</sub>                     | Turn-on Delay Time <sup>2</sup>                     | V <sub>DS</sub> =10V                        | -    | 7    | -    | ns        |
| t <sub>r</sub>                         | Rise Time                                           | I <sub>D</sub> =1A                          | -    | 14.5 | -    | ns        |
| $t_{d(off)}$                           | Turn-off Delay Time                                 | $R_G=3.3\Omega, V_{GS}=5V$                  | -    | 19   | -    | ns        |
| t <sub>f</sub>                         | Fall Time                                           | $R_D=10\Omega$                              | -    | 12   | -    | ns        |
| C <sub>iss</sub>                       | Input Capacitance                                   | V <sub>GS</sub> =0V                         | -    | 355  |      | pF        |
| C <sub>oss</sub>                       | Output Capacitance                                  | V <sub>DS</sub> =20V                        | -    | 190  | -    | pF        |
| $C_{rss}$                              | Reverse Transfer Capacitance                        | f=1.0MHz                                    | -    | 85   | -    | pF        |

### **Source-Drain Diode**

| Symbol   | Parameter                       | Test Conditions                              | Min. | Тур. | Max. | Units |
|----------|---------------------------------|----------------------------------------------|------|------|------|-------|
| $V_{SD}$ | Forward On Voltage <sup>2</sup> | $T_j=25^{\circ}C$ , $I_S=1.7A$ , $V_{GS}=0V$ | -    | -    | 1.2  | V     |

#### Notes:

- 1. Pulse width limited by Max. junction temperature.
- 2.Pulse width ≤300us , duty cycle ≤2%.
- 3.Surface mounted on 1 in² copper pad of FR4 board ; 135°C/W when mounted on min. copper pad.







Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics





Fig 3. On-Resistance v.s. Gate Voltage

Fig 4. Normalized On-Resistance v.s. Junction Temperature







Fig 5. Maximum Drain Current v.s. Case Temperature

Fig 6. Typical Power Dissipation





Fig 7. Maximum Safe Operating Area

Fig 8. Effective Transient Thermal Impedance







Fig 9. Gate Charge Characteristics

Fig 10. Typical Capacitance Characteristics







Fig 12. Gate Threshold Voltage v.s. Junction Temperature







Fig 13. Switching Time Circuit

Fig 14. Switching Time Waveform





Fig 15. Gate Charge Circuit

Fig 16. Gate Charge Waveform