Exercises 7.4.5 — Problem 8

Problem. Compute the radius of convergence of the following power series:

a.
$$\sum n^4/n!x^n$$

b. $\sum \sqrt{n}x^n$
c. $\sum n^22^nx^n$

b.
$$\sum \sqrt{n}x^n$$

c.
$$\sum n^2 2^n x^n$$

Proof.

a. Here $1/R = \limsup_{n \to \infty} (n^4/n!)^{1/n} = \lim_{n \to \infty} (n^4)^{1/n} \lim_{n \to \infty} (1/n!)^{1/n}$. Since n^4 is a polynomial in n we know $\lim_{n \to \infty} (n^4)^{1/n} = 1$ and it was proven in the textbook that $\lim_{n \to \infty} (1/n!)^{1/n} = 0$. Since the RHS is $0, R = +\infty$.

b. Again
$$1/R=\limsup_{n\to\infty}(\sqrt{n})^{1/n}=(\limsup_{n\to\infty}n^{1/n})^{1/2}=1^{1/2}=1.$$
 So $R=1.$

c. As always,
$$1/R = \limsup_{n \to \infty} (n^2 2^n)^{1/n} = \lim_{n \to \infty} (n^2)^{1/n} \lim_{n \to \infty} (2^n)^{1/n} = 1 \lim_{n \to \infty} 2 = 2$$
 which means $R = 1/2$.