Wallets

Objectives

Objective

Explain key features of the three classes of wallets

Objective

Describe how wallets are programmed to interact with a blockchain and help end users

What is a Wallet?

An application that stores and manages keys

Possibly the most important application that interacts with a blockchain

Secure storage and access to private and public keys crucial for signing messages/transactions

Classes of Wallets

Three main classes of wallets

- Nondeterministic
- Deterministic
- Hierarchical

Nondeterministic Wallets

Contain private keys (source of public keys)

Independently generated at random

Require frequent backups for every key generated

Value associated with the keys may become inaccessible

Deterministic Wallets

Contain private keys collectively derived from an initial seed

Can be derived by a simple algorithm such as

Allow for easy backup and storage of keys

Industry standard for most end users

the nth private key = SHA256(seed + n) seed

Hierarchical Deterministic (HD) Wallets

A subset of deterministic wallets

Keys are derived from a single seed in a tree structure

Keys may be derived from parent keys, which can derive their own child keys, which can derive grandchildren keys...

Allows for more structure and varied uses within a single wallet application

Allows public keys to be generated without the associated private keys

Mnemonic Codes/Seeds

A standard created in BIP 0039

- For initial seed generation
- For human-readable representation of a seed

Easy-to-remember words that represent a seed

For seeds used in deterministic wallets

Mnemonic code length can range from 12 to 24 words (depends on required entropy level)

