YAMAZAKI et al Q65550 FILM FORMATION CAPABLE OF PREVENTING FLUCTUATION OF RIBBON Filed: July 25, 2001 Darryl Mexic (202) 293-7060 1 of 11

YAMAZAKI et al
FILM FORMATION CAPABLE OF
PREVENTING FLUCTUATION OF RIBBON
Filed: July 25, 2001
Darryl Mexic
2 of 11

FIG.3

YAMAZAKI et al Q65550 FILM FORMATION CAPABLE OF PREVENTING FLUCTUATION OF RIBBON Filed: July 25, 2001 Darryl Mexic (202) 293-7060 3 of 11

YAMAZAĶI et al
FILM FORMATION CAPABLE OF
PREVENTING FLUCŢUATION OF RIBBON
Filed: July 25, 2001
Darryl Mexic
4 of 11

99 -FIG.7 62 63

YAMAZAKI et al Q65550
FILM FORMATION CAPABLE OF
PREVENTING FLUCTUATION OF RIBBON
Filed: July 25, 2001
Darryl Mexic (202) 293-7060
5 of 11

FIG.8

								, 00
	V1 (%)	V2 (%)	(mm) 1	LL - LR (mm)	S1 / S2	C1 (mm)	C1 (mm) \(\Delta \) C2 (mm)	C7 (mm)
	(a/) T h		-	90	0.05	0.4	0.1	0.2
EMBODIMENT 1	60	0	-	0.0	20.0	70	0.1	0.2
EMBODIMENT 2	12	0		0.5	0.0	r. 5	100	0.0
COMPARISON 1	20	0	 1	0.5	0.05	6.4	0.1	0.7
COIMI AIMBOIN 1	5 5	×	-	0.5	0.05	0.4	0.1	0.7
EMBODIMENT 5	12	2 2		0.5	0.05	0.4	0.1	0.2
COMPAKISON 2	2 5	CI C	, , ,	0.5	0.05	0.4	0.1	0.2
EMBODIMENI 4	7] 9		4 V	0.5	0.05	0.4	0.1	0.2
COMPARISON 3	12	o	3 -	80	0.05	0.4	0.1	0.2
EMBODIMENT 5	12	>		0.0	0.05	0.4	0.1	0.2
COMPARISON 4	12	0		3.0	000		0 1	0.0
EMBODIMENT 6	12	0		0.5	0.09	4.0	7.0	
TOUR BUILDING	5	-	-	0.5	7	0.4	0.1	7.0
COMPAKISON 3	71		-	90	0 00 0	0.4	0.1	0.2
COMPARISON 6	12	>	-	0.0	0.05	-	0	0.2
EMBODIMENT 7	12	0		c.0	0.0	200		0.0
COMPARISON 7	12	0		0.5	co.o	CO.U	0.1	
SON TO A TO TOOM 9	12		-	0.5	0.05	1.7	0.1	7.0
CUMPAKISUN 0	\perp		-	0.5	0.05	0.4	0	0.2
EMBODIMENI 8	_		-	0.5	0.05	0.4	0.3	0.2
COMPARISON 9	12		-\ \ -\		30.0	70	0	0.4
EMBODIMENT 9	12	0	- -	0.0	20.0	5	10	90
COMPARISON 10	0 12	0		0.5	0.05	0.4	0.1	0.0
COLUMN TANGET	1							

Office or man difference of the contract of th

YAMAZAKI et al Q65550
FILM FORMATION CAPABLE OF
PREVENTING FLUCTUATION OF RIBBON
Filed: July 25, 2001
Darryl Mexic (202) 293-7060
6 of 11

FIG.9

	$\Delta d / d \times 100 (\%)$	APPEARANCE	RESULT
EMBODIMENT 1	0.8		0
EMBODIMENT 2	1.8		0
COMPARISON 1	2.5		×
EMBODIMENT 3	2.0		0
COMPARISON 2	2.4		×
EMBODIMENT 4	2.0		0
COMPARISON 3	2.8	INSTABILITY IN END PORTIONS	×
EMBODIMENT 5	2.0		0
COMPARISON 4	2.3	WAVY UNEVENNESS	×
EMBODIMENT 6	2.0		0
COMPARISON 5	3.0		×
COMPARISON 6	1.0	RIBBON COHESION	×
EMBODIMENT 7	2.0		0
COMPARISON 7	0.5	ABRASION ON SUPPORT	×
COMPARISON 8	3.0		×
EMBODIMENT 8	1.5		0
COMPARISON 9	2.4		X
EMBODIMENT 9	2.0		0
COMPARISON 10	2.4		×

YAMAZAKI et al
FILM FORMATION CAPABLE OF
PREVENTING FLUCTUATION OF RIBBON
Filed: July 25, 2001
Darryl Mexic
7 of 11

Q65550
(202) 293-7060

FIG.10

	$\Delta d / d \times 100 (\%)$	APPEARANCE	RESULT
EMBODIMENT 1	0.7		0
EMBODIMENT 2	1.9		0
COMPARISON 1	2.4		×
EMBODIMENT 3	1.9		0
COMPARISON 2	2.3		×
EMBODIMENT 4	1.9		0
COMPARISON 3	2.7	INSTABILITY IN END PORTIONS	×
EMBODIMENT 5	1.9		0
COMPARISON 4	2.2	WAVY UNEVENNESS	×
EMBODIMENT 6	1.9		0
COMPARISON 5	2.8		×
COMPARISON 6	0.9	RIBBON COHESION	×
EMBODIMENT 7	1.9		0
COMPARISON 7	0.6	ABRASION ON SUPPORT	×
COMPARISON 8	2.9		×
EMBODIMENT 8	1.4		0
COMPARISON 9	2.3		×
EMBODIMENT 9	1.9		0
COMPARISON 10	2.3		×

The first constituent of start of the property of the first of the start of the sta

YAMAZAKI et al Q65550
FILM FORMATION CAPABLE OF
PREVENTING FLUCTUATION OF RIBBON
Filed: July 25, 2001
Darryl Mexic
9 of 11
Q65550
(202) 293-7060

FIG.12

	$\Delta d / d \times 100 (\%)$	APPEARANCE	RESULT
EMBODIMENT 1	0.9		0
EMBODIMENT 2	1.9		0
COMPARISON 1	2.4		×
EMBODIMENT 3	1.8		0
COMPARISON 2	2.5		×
EMBODIMENT 4	1.3		0
COMPARISON 3	2.7	INSTABILITY IN END PORTIONS	×
EMBODIMENT 5	1.8		0
COMPARISON 4	2.4	WAVY UNEVENNESS	×
EMBODIMENT 6	1.9		0
COMPARISON 5	3.1	_	×
COMPARISON 6	1.1	RIBBON COHESION	×
EMBODIMENT 7	1.9		0
COMPARISON 7	0.6	ABRASION ON SUPPORT	×
COMPARISON 8	2.9		×
EMBODIMENT 8	1.6		0
COMPARISON 9	2.5		×
EMBODIMENT 9			0
COMPARISON 10			X

A 14 CT

YAMAZAKI et al Q65550 FILM FORMATION CAPABLE OF PREVENTING FLUCTUATION OF RIBBON Filed: July 25, 2001 Darryl Mexic (202) 293-7060 10 of 11

FIG.13

	T		Т
	$\Delta d/d \times 100 (\%)$	APPEARANCE	RESULT
EMBODIMENT 1	0.8		0
EMBODIMENT 2	2.0		0
COMPARISON 1	2.5	_	×
EMBODIMENT 3	1.6	_	0
COMPARISON 2	2.3		×
EMBODIMENT 4	1.2		0
COMPARISON 3	2.6	INSTABILITY IN END PORTIONS	×
EMBODIMENT 5	1.7		0
COMPARISON 4	2.3	WAVY UNEVENNESS	×
EMBODIMENT 6	1.8		0
COMPARISON 5	2.9		×
COMPARISON 6	1.0	RIBBON COHESION	×
EMBODIMENT 7	1.7	_	0
COMPARISON 7	0.7	ABRASION ON SUPPORT	×
COMPARISON 8	2.8		×
EMBODIMENT 8	1.5	_	0
COMPARISON 9	2.4		×
EMBODIMENT 9	1.9	_	0
COMPARISON 10	2.4		×

YAMAZAKI et al Q65550
FILM FORMATION CAPABLE OF
PREVENTING FLUCTUATION OF RIBBON
Filed: July 25, 2001
Darryl Mexic (202) 293-7060
11 of 11

