

From AutoML to AutoDS

Andreas Mueller Grey Systems Lab

The Cliché (since 2016)

Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says (forbes.com)

Dabl: an exploration

detect_types(data)

	continuous	dirty_float	low_card_int_ordinal	low_card_int_categorical	categorical	date	free_string	useless
Order	False	False	False	False	False	False	False	True
PID	True	False	False	False	False	False	False	False
MS SubClass	False	False	False	True	False	False	False	False
MS Zoning	False	False	False	False	True	False	False	False
Lot Frontage	True	False	False	False	False	False	False	False
•••								
Mo Sold	False	False	True	False	False	False	False	False
Yr Sold	False	False	False	False	True	False	False	False
Sale Type	False	False	False	False	True	False	False	False
Sale Condition	False	False	False	False	True	False	False	False
SalePrice	True	False	False	False	False	False	False	False

82 rows × 8 columns

Thanks to Vraj Shah and Arun Kumar (<u>SortingHat</u>)

data = load_ames()

plot(data, target_col='SalePrice')

Also see Lux by Doris Lee

We've tried automating the easiest (and fastest) part of model creation

What's so complicated about data collection and preparation?

- +1) discovery and systems integration. Master data management. Not in this talk but check out <u>Kitana (Huang et al</u>).
- +2) The kinds & shape of data
- +3) Forcing things into a classification / regression problem

Typical Data Science Tasks

Here's a lake now:

- +Build a (and deploy) churn model.
- +Why did the sales for product X in region Y drop?
- +Why is our website slow today?
- +Which of the students are most at risk of not graduating?
- +What subpopulation is most at risk of MPox?

(most) Important Data Is Tabular

loan.csv (1.19 GB) 10 of 145 columns ✓ Detail Compact Column # loan_amnt # funded_amnt_inv द्ध id member_id # funded_amnt A term 100% [null] 100% [null] 36 months 60 months 40.0k 40.0k 40.0k 500 500 2500 36 months 2500 2500 60 months 30000 30000 30000 5000 5000 5000 36 months 4000 4000 4000 36 months

All data is time series data

(nearly) all data is relational

What is the output of Data Science?

- + "typical" ML: a deployed model.
- + IRL often: a graph / number / insight

We need to talk to BI & Stats & Vis more.

- + The two standard tools for causal modeling in practice are:
 - + A single scatter plot
 - + Random Forest feature importances (or SHAP)

Expanding AutoML to AutoDS

We don't even have the data

- +No "as of" datasets?
- +No datasets on feature engineering
- +Few relational datasets
- +Unclear datasets/tasks for EDA
- +Few Datasets for causal analysis / outlier detection
- +Hypothesis creation benchmarks?
- +No (?) Distributional drift based on deployed model

Teaser: Learning on Relational and Semantic Data

- *Getting to closer to the source will make understanding the data EASIER!
- + The source might have additional metadata

See https://www.semanticlayersummit.com/

- + Getml.com (propositionalization)
- + Kumo.ai (graph NNs)
- + AtScale.com (focus on infrastructure)

More realistic data

- +Dirty tables
 (there's some progress here)
- +Time dependent (including as-of)
- +Relational (including encoded semantics)

More realistic tasks

1

Interpretable models

2

Root cause analysis

3

Causal models 4

Decision support & inference

5

Hypothesis generation