

Zusammenfassung LA

Lineare Algebra für Informatik [MA0901] (Technische Universität München)

Lineare Algebra

1: Matrizen

1.1 - Definitionen

Was sind Matrizen?

Seien $m, n \in \mathbb{N}_{>0}$ - eine $m \times n$ Matrix ist eine "rechteckige Anordnung" mit $a_{i,j} \in K$ (Körper).

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{pmatrix}$$

 $\{1,...,m\} \times \{1,...,n\} \rightarrow K$ Formale Darstellung als Funktion

Was sind Zeilen- und Spaltenvektoren?

- Menge aller $m \times n$ Matrizen: $K^{m \times n}$

- Zeilenvektor: $1 \times n$ Matrix

- Spaltenvektor: $m \times 1$ Matrix

Was sind Skalare?

Elemente des Körpers K, spricht einzelne Zahlen in Zahlenmengen

Nullmatrix

$$0 = \begin{pmatrix} 0 & \dots & 0 \\ \dots & & \dots \\ 0 & \dots & 0 \end{pmatrix}$$

Einheitsmatrix

$$I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

1.2 - Eigenschaften

Quadratische Matrix

Matrizen mit $A \in K^{m \times n}$: m = n nennt man quadratisch

Transponierte Matrix

Für $A=(a_{i,j})\in K^{m\times n}$ ist $A^T:=(a_{j,i})\in K^{n\times m}$ die transponierte Matrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

Symmetrische Matrix

Quadratische Matrizen mit $A = A^T$

1.3 - Beispiele

Ebenen

Analog zu Koordinatensystemen bzw. Angabe Koordinaten

$$\mathbb{R}^2 = \{ \begin{pmatrix} x \\ y \end{pmatrix} | x, y \in \mathbb{R} \}$$

Distanzmatrix

Seien S_1, \ldots, S_n Städte und $d_{i,j}$ die Entfernung zwischen S_i und S_j dann ist $D = (d_{i,j}) \in \mathbb{R}^{n \times n}$ (meist) symmetrisch.

Weblink-Matrix

Seien P_1, \dots, P_n Seiten des Internets, $w_{i,j} = \{ \substack{1 \text{ falls } P_i \text{ einen Link auf } P_j \text{ enthält } 0 \text{ sonst} \}$

Transitionsmatrix

Wahrscheinlichkeit, von i nach j zu kommen, wird in Transitionsmatrix angegeben ($P_{i,j}$)

1.4 - Operationen auf Matrizen

Summe zweier Matrizen

Komponentenweise Addition

$$A, B \in K^{m \times n} : A + B = c_{i,j} : c_{i,j} = a_{i,j} + b_{i,j} \in K^{m \times n}$$

Produkt zweier Matrizen

Nicht komponentweise Multiplikation

$$A \in K^{m \times n}, B \in K^{n \times l} : A \cdot B = c_{i,j} : c_{i,j} = \sum_{k=1}^{n} a_{i,k} * b_{k,j} \in K^{m \times l}$$

Produkt einer Matrix mit einem Skalar

Komponentenweise Muptiplikation

$$A \in K^{m \times n}, s \in K : A \cdot s = c_{i,j} : c_{i,j} = a_{i,j} \cdot s \in K^{m \times n}$$

Gruppen

- $(K^{m \times n}, +)$ ist eine abelsche Gruppe
- $(K^{m \times n}, \cdot)$ ist ein Ring mit Eins (nicht kommutativ)

 $A \cdot B = B \cdot A$ ist falsch - nicht kommutativ

Regeln Addition und Multiplikation mit Skalaren

Für alle
$$A, B \in K^{n \times m}$$
 und $s, s' \in K$
$$s \cdot (A+B) = s \cdot A + S \cdot B$$

$$(s+s') \cdot A = s \cdot A + s' \cdot A$$

$$s \cdot (s' \cdot A) = (s \cdot s') \cdot A$$

$$1 \cdot A = A$$

Regeln Addition und Multiplikation mit Matrizen

Seien A, B, C Matrizen, s.d. jeweils die gebildeten Summen und Produkte definiert sind (s.o.)

$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

$$(A + B) \cdot C = A \cdot C + B \cdot C$$

$$I_n \cdot A = A, I_n \cdot B = B$$

2: Lineare Gleichungssysteme

2.1 - Definitonen

Was sind Lineare Gleichungssysteme?

Lineare Gleichungssysteme (LGS) sind Gleichungen der Form $A \cdot x = b : A \in K^{m \times n}, b \in K^m$

Was ist eine Lösungsmenge?

Die Lösungsmenge (\mathbb{L}) ist die Menge aller $x \in K^n$, die die Gleichung erfüllen, Bsp:

$$\mathbb{L} = \{ \begin{pmatrix} 1 \\ b \\ 2b - 1 \end{pmatrix}, b \in K \}$$

Homogene und Inhomogene LGS

homogen:
$$\begin{pmatrix} 0 \\ \cdots \\ 0 \end{pmatrix} = b$$

- inhomogen sind alle nicht homogenen LGS

Was ist eine erweiterte Koeffizientenmatrix?

- A ist die Koeffizientenmatrix
- $(A \mid b) \in K^{m \times (n+1)}$ ist die erweiterte Koeffizientenmatrix
 - > durch hinzufügen des Vektors b als (n + 1)-te Spalte an A (bei homogenen LGS nicht nötig)

Was ist der Rang einer Matrix?

- Eingabematrix: $A \in K^{m \times n}$
- Matrix in Zeilenstufenform: $A' \in K^{m \times n}$,
- Rang von A: Anzahl r der Zeilen von A', die mindestens einen Eintrag $\neq 0$ haben r = rg(a) = rk(a) = Rang(a)

2.2 - LGS lösen

Elementare Zeilenoperationen

- I. Vertauschen zweier Zeilen
- II. Multiplizieren einer Zeile mit einem Skalar $s \in K \setminus \{0\}$
- III. Addieren des s-fachen einer Zeile zu einer anderes, wobei $s \in K$

(strenge) Zeilenstufenform

Sei $A \in K^{m \times n}$

A ist in Zeilenstufenform, falls gilt:

- a) Beginnt eine Zeile mit k Nullen, so stehen unter diesen Nullen lauter weitere Nullen.
- b) Unter dem ersten Eintrag $\neq 0$ jeder Zeile (falls nicht nur aus Nullen) stehen lauter Nullen.

A ist in strenger Zeilenstufenform, falls zusätzlich gilt:

c) Über dem ersten Eintrag $\neq 0$ jeder Zeile (falls nicht nur aus Nullen) stehen lauter Nullen.

Gauß-Algorithmus

Eingabe: Matrix $A \in K^{m \times n}$

Ausgabe: Matrix $B \in K^{m \times n}$ in (strenger) Zeilenstufenform

- 1) Setze B := A.
- 2) B sei bis Zeile r in Zeilenstufenform (r = 0 ist möglich)
- 3) Falls r = m (Zeilenstufenform erreicht), gehe zu Schritt 8
- 4) Suche den weitesten link stehenden Eintrag $\neq 0$ von B unter Zeile r (eventuell unspezifisch)
- 5) Bringe den Eintrag mit Zeilenoperation I in die (r + 1)-te Zeile
- 6) Erzeuge unterhalb des Eintrages lauter Nullen wende Zeilenoperationen II. und III. an
- 7) Gehe zu Schritt 2
- 8) Bringe B mit Zeilenoperation III. auf strenge Zeilenstufenform

Auslesen der Zeilenstufenform

Eingabe: LGS $A \cdot x = b: A \in K^{m \times n}, b \in K^m$ (d.h. m Gleichungen mit n unbekannten) Ausgabe: \mathbb{L}

- 1) Erweiterte Koeffizientenmatrix $(A \mid b) \in K^{m \times (n+1)}$ in strenge Zeilenstufenform bringen
- 2) r ist Anzahl der Zeilen, die mindestens einen Eintrag $\neq 0$ haben. Für i=1,...,r sei $j_i\in\{1,...,n+1\}$ die Position (=Spalte), in der der erste Eintrag $\neq 0$ in der i-ten Zeile steht
- 3) Falls $j_r = n + 1$, ist das LGS unlösbar ($\mathbb{L} = \emptyset$)
- 4) Sonst seien k_1,\ldots,k_{n-r} die Zahlen in $\{1,\ldots,n\}$, die nicht j_i sind (Zahlen, die frei gewählt weren müssen) $\{1,\ldots,n\}\setminus\{j_1,\ldots,j_r\}=\{k_1,\ldots,k_{n-r}\}$
- 5) Die Lösungsmenge ist $\mathbb{L} = \{\dots nicht wichtig \}$

Mögliche Lösungsmengen

- 1) Unlösbarkeit (siehe 3. oben): $\mathbb{L} = \emptyset$
- 2) Eindeutige Lösbarkeit: $|\mathbb{L}| = 1 \Leftrightarrow r = n, j_r = n$ > notwendige Bedingung: mindestens so viele Gleichungen wie Unbekannte
- 3) Uneindeutige Lösbarkeit: $|\mathbb{L}| > 1 \Leftrightarrow r > n$, $j_r \neq n+1$, die Lösungsmenge hat dann n-r freie Parameter. Falls K undendlich viele Elemente hat (Standardfall) $\longrightarrow |\mathbb{L}| = \infty$

3: Vektorräume

3.1 - Definitonen

Was ist ein Vektorraum?

Ein Vektorraum ist eine Menge ${\it V}$ zusammen mit zwei Abbildungen, deren Elemente man Vektoren nennt.

$$\coprod : V \times V \to V, (v, w) \to v \coprod w \text{ und } \boxdot : V \times V \to V, (v, w) \to v \boxdot w$$

Geltende Axiome für Vektorräume

- 1) V ist mit \coprod als Operator eine abelsche Gruppe.
- 2) $\forall a \in K, \forall v, w \in V : a \boxdot (v \boxplus w) = a \boxdot v \boxplus a \boxdot w^*$
- 3) $\forall a, b \in K, \forall v \in V : (a+b) \boxdot v = a \boxdot v \boxminus b \boxdot v^*$
- 4) $\forall a, b \in K, \forall v \in V : (a \cdot b) \boxdot v = a \boxdot (b \boxdot v)$
- 5) $\forall v \in V : v \odot 1 = v$ * (es gilt: Punkt vor Strich)

Was ist ein n-dimensionaler Standardraum?

$$K^{m \times n}: m = 1 \rightarrow K^{1 \times n} \rightarrow K^n$$

Was ist ein Nullraum?

$$V = \{0\}$$

Was ist ein Untervektorraum?

Ein Untervektorraum ist eine Teilmenge $U \subseteq V$ falls gilt:

- 1) $U \neq \emptyset$
- 2) Abgeschlossenheit: $v, w \in U \rightarrow v \coprod w \in U$ und $v \in U$, $a \in K \rightarrow a \coprod v \in U$
- Jeder Unterraum enthält den Nullvektor
- Vereinigung zweier Untervektorräume ist im allgemeinen kein Untervektorraum

Was sind Erzeugte Vektorräume?

Sei V ein K-Vektorraum und $S \subseteq V$ (S ist nicht zwingend Unterraum).

$$\mathcal{M} := \{U \subseteq V \mid U \text{ ist ein Unterraum und } S \subseteq U \}$$

$$\langle S \rangle := \bigcap_{U \in \mathcal{M}} U \text{ von } S \text{ erzeugter/aufgespannter Unterraum}$$

Der von S erzeugte Unterraum ist die Menge aller Linearkombinationen von S

$$\langle S \rangle = \{ v \in V \mid v \text{ ist Linearkombination von } S \}$$

3.2 - Rechenregeln

Propositionen

Falls gilt: $\forall a \in K, \forall v \in V, V \text{ ist } K\text{-Vektorraum}$

$$a \cdot \overrightarrow{0} = \overrightarrow{0} \text{ und } 0 \cdot v = \overrightarrow{0}$$

 $(-a) \cdot v = a \cdot (-v) = -(a \cdot v)$
 $a \cdot v = \overrightarrow{0} \longrightarrow a = 0 \text{ oder } v = \overrightarrow{0}$

Seien V ein K-Vektorraum und $U_1, U_2 \subseteq V$ Unterräume, dann gilt

$$\begin{array}{l} U_1 + U_2 := \{ v + w \, | \, v \in U_1, \, w \in U_2 \} \subseteq V \quad \text{Summenraum} \\ \mathscr{M} \neq \varnothing \, | \, \mathscr{M} := \{ x : x \subseteq V \} : \bigcap_{U \subseteq \mathscr{U}} U \subseteq V \end{array}$$

Vereinigung von Untervektorräumen

Sei V ein K-Vektorraum, U_1 und U_2 Unterräume (von V) und $S:=U_1\cup U_2$, dann gilt $\langle S\rangle=U_1+U_2$

3.3 - Beispiele

Untervektorraum

- Jede Gerade durch den Nullpunkt ist ein Vektorraum (im $V = \mathbb{R}^2$)
- Lösungsmenge eines LGS $A \cdot x = 0$: $A \in K^{m \times n} \subseteq K^n$

$$\begin{split} \mathbb{L} &= U := \{x \in K^n \mid A \cdot x = 0\} \subseteq K \\ 0 \in U \to U \neq \emptyset & x_1, x_2 \in U \to A x_1 = 0, \ A x_2 = 0 \to x_1 + x_2 \in U \end{split}$$

4: Linearkombinationen

4.1 - Definitionen

Was sind Linearkombinationen?

Ein Vektor $v \in V$ heißt Linearkombination von $v_1, \ldots, v_n \in V$, falls es Skalare $a_1, \ldots, a_n \in K$: $v = a_1v_1 + \ldots + a_nv_n$ gibt.

Lineare Abhängigkeit

Vektoren $v_1, \ldots, v_n \in V$ heißen linear unabhängig, falls gilt:

$$a_1v_1 + \ldots + a_nv_n = 0 \rightarrow a_1 = \ldots = a_n = 0$$

Falls $\exists a : a \neq 0$, sind die Vektoren linear abhängig

4.2 - Rechenregeln

Proposition

Seien $A,A'\in K^{m\times n}$ (A' ist durch elementare Zeilenumformungen aus A hervorgegangen), dann erzeugen die Zeilen von A und A' denselben Unterraum $\in K^{1\times n}$

Rang & Lineare Abhängigkeit

$$v_1, \dots, v_n$$
 sind linear unabhängig $\iff rg(A) = n$

5: Basen

5.1 - Definitionen

Was ist eine Basis?

Basen müssen folgende Eigenschaften erfüllen

- Maximal linear unabhängige Teilmenge
 - > fügt man einen weiteren Vektor hinzu, wird die Menge linear abhängig
 - > S ist linear unabhängig, $S \cup \{v\} : \forall v \in V \setminus S \rightarrow \text{ linear abhängig}$
- Minimales Erzeugendensystem
 - > Minimale Anzahl von Vektoren, die ein Erzeugendensystem bilden
 - $> V = \langle S \rangle$ aber $S \setminus \{v\} : v \in S \rightarrow \text{ kein Erzeugendensystem }$

Dimension

Die Dimension ist die Anzahl der Elemente einer Basis, K^n hat per Definition die Dimension n.

5.2 - Rechenregeln

Dimension & LGS

$$A \cdot x = 0 : A \in K^{m \times n} \to \dim(\mathbb{L}) = n - rg(A)$$

 $rg(A) : A \in K^{m \times n} = \text{von Zeilen aufgespannter Unterraum } \in K^{1 \times n}$

Eigenschaften von Basen

Seien $V_1, \ldots, v_n \in V$ disjunkt und $S = \{v_1, \ldots, v_n\}$

- S ist Basis von $V \iff \dim(V)$ und S ist linear unabhängig $\iff \dim(V) = n$ und $V = \langle S \rangle$
- Falls $n < \dim(V) \rightarrow V \neq \langle S \rangle$
- Falls $n > \dim(V) \rightarrow S$ ist linear abhängig

Basisergänzung

Sei V ein endlich dimensionaler K-Vektorraum, Sei $S \subseteq V$ eine linear unabhängige Teilmenge Es gilt: Es gibt eine Basis B von $V: S \subseteq B$, B ist Basisergänzung zu S

Kardinalität & Dimension

Sei V ein K-Vektorraum, $U \subseteq V$ ein Untervektorraum, dann gilt

- $\dim(V) \leq \dim(U)$
- Falls $\dim(U) = \dim(V) < \infty \rightarrow U = V$

6: Lineare Codes

6.1 - Definitionen

Was sind Lineare Codes?

Lineare Codes werden zum 'codieren' von Nachrichten verwendet und ermöglichen das identifizieren von Fehlern bei der Übertragung

Sonstige Begrifflichkeiten

- Informationswort: die zu versendende Nachricht im uncodierten Zustand. $(x_1, \ldots, x_k)^T \in K^k$
- Codewort: das codierte Informationswort also das, was versendet wird. $(c_1,\ldots,c_n)^T\in K^n$
- Generatormatrix: ergibt multipliziert mit dem Informationswort das Codewort. $G \in K^{n \times k}$ Die Spalten der Generatormatrix müssen linear unabhängig sein. $\rightarrow rg(G) = dim(C) = k$ $(c_1, \dots, c_n)^T = G \cdot (x_1, \dots, x_k)^T$

Eigenschaften eines Linearen Codes

Ein linearer Code ist ein Unterraum $C \in K^n$. Mit k := dim(C) bezeichnen wir C auch als einen (n,k)-Code.

- Länge (von *C*, des Codewortes): *n*
- Informations rate: k/n
- Redundanz: n k
- Länge (des Informationswortes): k

Hamming Gewicht

$$w(c) := |\{i \in \{1,...,n\} : c_i \neq 0\}| : c = (c_1,...,c_n) \in K^n$$
 intuitiv: zähle $\epsilon \neq 0$

Hamming Abstand

Hamming Abstand zwischen zwei Vektoren, inutuitiv: nötige Bitflips

$$d(c,c') := w(c-c') = |\{i \in \{1,...,n\} : c_i \neq c_i'\}| : c,c' \in K^n$$

Hamming Abstand einer Menge, intuitiv: minimaler Hamming Abstand

$$d(C) := \min\{d(c,c') : c,c' \in C, c \neq c'\} : C \subseteq K^n$$

$$|C| \le 1 \to d(C) := n+1$$

$$C \text{ ist ein Unterraum } \to d(C) = \min\{w(c) : c \in C \setminus \{0\}\}$$

6.2 - Anwendung

Menge der Codewörter

$$C := \{G \cdot (x_1, \dots, x_k)^T | (x_1, \dots, x_k)^T \in K^n\} \subseteq K^n$$

= \{G \cdot x | x \in K^k\} \subseteq K^n

Fehlerkorrigierung

- Falls $d(C) = 2e + 1 \rightarrow C$ ist e-fehlerkorrigierend
- Falls $d(C) = 2e + 2 \rightarrow C$ ist e-fehlerkorrigierend und (e + 1)-fehlerekennend

Daten Senden

- gegeben: $x \in K^k$, $G \in K^{n \times k}$
- berechne: $c = G \cdot x$
- sende: c

Daten Empfangen

- empfange: $c' \in K^n$
- 1. Fall: $c' \in C \subseteq K^n$

$$> \exists x \in K^k : G \cdot x = c'$$

- > Annahme: Es gab keine Übertragungsfehler, c' = c und damit ist $x \in K^k$ das Info.wort.
- 2. Fall: $c' \notin C \subseteq K^n$

$$> \neg \exists x \in K^k : G \cdot x = c'$$

- > Annahme: Es gab mindestens einen Übertragungsfehler, $c' \neq c$
- > Idee: Suche $c'' \in C$, dass so wenig wie möglich von c' abweicht

Generatormatrix & Parity-Check-Matrix

$$G = (I_k, A)^T : A \in K^{(n-k)\times k}$$

$$P := (-A \mid I_{n-k}) \in K^{(n-k) \times n}$$

$$P \cdot G = 0$$

$$P \cdot c = 0 \iff c \in C$$

Dekodierung mit Parity-Check-Matrix

- Falls $P \cdot c' \neq 0$, ist sicher ein Fehler aufgetreten und man sucht $f \in \mathbb{F}$,

$$\{f' \in K^n : P \cdot f' = P \cdot (c + f') = P \cdot c'\} = \mathbb{F}$$
, f ist Fehlervektor: $f := c' - c \in K^n$

- Das gesuchte $f \in \mathbb{F}$ hat minimales Hamminggewicht
- Falls es ein eindeutiges f gibt, dann ist $c^{\prime\prime}=c^{\prime}-f$ das gesendete Codewort

$$> \exists x \in K^k : Gx = c'' = c$$

- Falls es kein eindeutiges f gibt, dann ist die Codierung fehlerkennend aber nicht fehlerkorrigierend

$$P \cdot c' \in K^{n-k}$$
 Syndrom von c' , intuitiv: Abstand von c' zum Codewort

- 1. Man berechnet das Syndrom $P \cdot c'$
- 2. Man sucht $f \in K^n$, welches unter allen $f' \in K^n$: $P \cdot f'$? = $P \cdot c'$ minimales Hamming-Gewicht hat
 - > falls $c' \in C \rightarrow f = 0$, man gibt $x \in K^n : G \cdot x = c$ aus
 - > falls es ein eindeutiges f gibt, setzt man $c'' := c' f \in C$ und gibt $x \in K^n : G \cdot x = c''$ aus
 - > falls es kein eindeutiges f gibt, gibt man eine Fehlermeldung aus

7: Lineare Abbildungen

7.1 - Definitionen

Bedingungen für Lineare Abbildungen

Sei K ein Körper. Seien V, W zwei K-Vektorräumen. $\phi: V \to W$ heißt linear, falls

- 1. $\forall v, v' \in V : \phi(v + v') = \phi(v) + \phi(v')$
- 2. $\forall v \in V, \forall a \in K : \phi(a \cdot v) = a \cdot \phi(v)$
- 3. $\overrightarrow{0} \rightarrow \overrightarrow{0}$

Kern & Bild

Bild und Kern sind Unterräume

Sei $\phi: V \to W$ eine lineare Abbildung

$$Kern(\phi) := \{ v \in V \mid \phi(v) = 0 \} \subseteq V$$

$$\mathsf{Bild}(\phi) := \{\phi(v) \,|\, v \in V\} \subseteq W$$

7.2 - Regeln

Kern & Injektivität

Es gilt die Äquivalenz ϕ ist injektiv \iff Kern $(\phi) = \{0\}$

Isomorphie

Eine lineare Abbildung $\phi:=V\to W$ ist isomorph, falls ϕ bijektiv. Dann ist auch die Umkehrabbildung $\phi^{-1}:=W\to V$ isomorph.

$$V \cong W : \exists \phi : V \to W, \phi^{-1} : W \to V$$

Es gilt ferner: $n := \dim(V) < \infty \Longrightarrow V \cong K^n$ - der Isomorphismus ist jedoch nicht kanonisch und kann erst nach Wahl einer Basis bestimmt werden.

Dimensionsformel

Sei
$$\phi: V \to W$$
 linear, dann gilt $\dim(V) = \dim(\operatorname{Kern}(\phi)) + \dim(\operatorname{Bild}(\phi))$

Zeilen- und Spaltenrang

Der Rang einer Matrix $A \in K^{m \times n}$ ist die Dimension des von den Spalten aufgespannten Unterraums von K^m .

$$dim(Bild(A)) = rg(A) \longrightarrow "Zeilenrang" = "Spaltenrang"$$

Injektivität, Surjektivität & Isomorphismus

Sei
$$\dim(V) = \dim(W) < \infty, \phi : V \to W$$
 linear ϕ ist Isomorphismus $\iff \phi$ ist injektiv $\iff \phi$ ist surjektiv $\iff \phi$ ist bijektiv

Umkehrabbildung bestimmen

Eingabe: Matrix $A \in K^{n \times n}$

Ausgabe: eindeutige Matrix $A^{-1} \in K^{n \times n}$: $A \cdot A^{-1} = A^{-1} \cdot A = I_n$

- 1) Bilde die erweitere Matrix $(A | I_n) \in K^{n \times (2n)}$ durch anhängen einer Einheitsmatrix
- 2) Führe die Matrix (mit Gauß-Algorithmus) in strenge Zeilenstufenform, so dass in jeder Zeile $\neq 0$ der erste Eintrag $\neq 0$ eine 1 ist.

Fall 1: Die Zeilenstufenform hat die Gestalt $(I_n | A^{-1}) : A^{-1} \in K^{n \times n} \Rightarrow A \cdot A^{-1} = I_n$

Fall 2: Die Zeilenstufenform hat eine andere Gestalt, dann ist $rg(A) < n, \nexists A^{-1} : A \cdot A^{-1} = I_n$ A invertierbar \iff A regulär (voller Rang)

Lineare Fortsetzung

Lineare Abbildungen sind eindeutig durch die Bilder der Basisvektoren des Urbildes definiert.

8: Darstellungsmatrizen

8.1 - Definitionen

Darstellungsmatrix

Sei $\phi: V \to W$, B Basis von V und C Basis von W. Für $j \in [1; n]$ können wir schreiben:

$$\phi(v_j) = \sum_{i=1}^m a_{i,j} \cdot w_i \text{ mit } a_{i,j} \in K$$

$$A = (a_{i,j}) = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \vdots & & \vdots \\ a_{m,1} & \dots & a_{m,n} \end{pmatrix}, \text{ die Spalten von } A \text{ sind die Koordinatenvektoren der } \phi(v_i)$$

A nennt man Darstellungsmatrix (bezüglich der Basen B und C)

$$A = D_{B,C}(\phi)$$
, falls $V = W \rightarrow A = D_B(\phi)$

Spalten der Darstellungsmatrix ←→ Bilder der Basisvektoren

Allgemeine lineare Gruppe

Die allgemeine lineare Gruppe besteht aus der Menge von invertierbaren Matrizen

$$GL_n(K) = \{A \in K^{n \times n} | A \text{ ist invertierbar} \}$$

Basiswechselmatrix

Wechselt man die Basis eines Vektorraums in einer Abbildung, so verändert sich auch die Darstellungsmatrix. Seien B, B' Basen von V.

Wir können die neuen Basisvektoren v'_i mit Hilfe der alten v_i ausdrücken (und umgekehrt: T):

$$\begin{aligned} v_j' &= \sum_{i=1}^n a_{i,j} \cdot v_i \text{ mit } a_{i,j} \in K \\ S &:= (a_{j,k}) \in K^{n \times n} = S_{B,B'} \end{aligned}$$

Spalten von $S \longleftrightarrow Koordinatenvektoren der "neuen" Basisvektoren$

$$D_{B'}(\phi) = S^{-1} \cdot D_B(\phi) \cdot S$$

Ähnlichkeit und Äquivalenz

- Zwei quadratische Matrizen $A, B \in K^{n \times n}$ heißen ähnlich, falls es $S \in GL_n(K)$: $B = S^{-1}AS$
- Zwei Matrizen $A, B \in K^{m \times n}$ heißen äquivalent, falls es $S \in GL_n(K), T \in GL_m(K)$: $B = T^{-1}AS$

8.2 - Regeln

Darstellungsmatrizen und Lineare Abbildungen

Gegeben seien $V = K^n$, $W = K^m$ mit den Standardbasen B und C und eine Abbildung

$$\phi: V \to W: A := D_{B,C}(\phi) \Longrightarrow \phi = \phi_A$$

Kompositionen von Abbildungen

Seien U,V,W endlich dimensionale K-Vektorräume mit Basen A,B,C , $\phi:U o V$ und $\psi:V o W$

$$\begin{split} D_{A,C}(\psi \circ \phi) &= D_{B,C}(\psi) \cdot D_{A,B}(\phi) \\ \phi_A \circ \phi_B &= \phi_{A \cdot B} \end{split}$$

$$\phi_A \circ \phi_{A^{-1}} = \phi_{I_n} = i d_{K^n}$$

$$\phi_{A^{-1}} = \phi_A^{-1}$$

Komposition von lin. Abbildungen \longleftrightarrow Matrixprodukt

Basiswechselmatrix bei verschiedenen Vektorräumen

Seien B, B' endliche Basen von V und C, C' endliche Basen von W, dann gilt für $\phi: V \to W$

$$D_{D',C'}(\phi) = S_{C,C'}^{-1} \cdot D_{B,C}(\phi) \cdot S_{B,B'}$$

9: Determinanten

9.1 - Definitionen

Symmetrische Gruppe

Permutationen über n mit Gruppeneigenschaften: $S_n := \{ \sigma : \{1,...,n\} \mid \sigma \text{ ist bijektiv} \}$

Permutationen

Für σ defnieren wir

$$w(\sigma) = |\{(i,j) \in \mathbb{N} \times \mathbb{N} : 1 \le i < j \le n \land \sigma(i) > \sigma(j)\}|$$
 Fehlstellen $\operatorname{sgn}(\sigma) = (-1)^{w(\sigma)}$ Vorzeichen/Signum $\operatorname{sgn}(\sigma) \cdot \operatorname{sgn}(\tau) = \operatorname{sgn}(\sigma \cdot \tau)$

Permanente

$$\mathrm{Sei}\,A = a_{i,j} \in K^{n \times n}$$

$$\mathrm{perm}(A) := \sum_{\sigma \in S_n} \prod_{i=1}^n a_{i,\sigma(i)}$$

Determinante

$$\mathrm{Sei}\,A = a_{i,j} \in K^{n \times n}$$

$$\det(A) = \sum_{\sigma \in S_n} \mathrm{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

Spezielle Lineare Gruppe

$$SL_n(K) := \{A \in K^{n \times n} | \det(A) = 1\}$$

Adjunkte Matrix & Gramersche Regel

Die adjunkte Matrix $C = c_{i,j} \in K^{n \times n}$ ist definiert durch

$$\begin{aligned} c_{i,j} &:= (-1)^{i+j} \cdot \det(A_{j,i}) \\ A \cdot C &= C \cdot A = \det(A) \cdot I_n \end{aligned}$$

Äquivalente Aussagen & Folgerungen

Für $A \in K^{n \times n}$ gelten folgende Äquivalenzen:

- A ist regulär
- A ist invertierbar ($A \in GL_n(K)$)
- Zeilen/Spalten von A sind linear unabhänging
- Die Abbildung φ_A ist bijektiv (injektiv & surjektiv)
- LGS mit $A \cdot x = 0$ ist eindeutig lösbar (homogen)
- LGS mit $A \cdot x = b : \forall b \in K^n$ ist eindeutig lösbar (inhomogen)
- $det(A) \neq 0$

9.2 - Determinanten effizient Berechnen

Determinante Konkret

Für $n \leq 3$ konkrete Definitionen, $A = a_{i,j} \in K^{n \times n}$

$$n = 1 : \det(A) = \operatorname{perm}(A) = a$$

$$n = 2 : \operatorname{perm}\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = ad + bc, \det\begin{pmatrix} a & b \\ c & d \end{pmatrix}) = ad - bc$$

$$n = 3 : \det\begin{pmatrix} a & b & c \\ d & e & f \\ h & i & j \end{pmatrix}) = aej + bfh + cdi - bdj - ceh - afi$$

Rechenregeln mit Determinanten

$$det(A \cdot B) = det(A) \cdot det(B)$$
 Determinantenmultiplikationssatz

$$det(A) = det(A^T)$$
 Transponierte Matrix

$$det(B) = det(A) \cdot sgn(\sigma)$$
 Permutierte Matrix

$$\exists$$
 zwei Zeilen/Spalten stimmen überein \rightarrow $\det(A) = 0$

$$\det(A^{-1}) = \frac{1}{\det(A)}$$
 Inverse

Determinanten von ähnlichen Matrizen & Abbildungen

Zwei Matrizen $A, B \in K^{n \times n}$ seien ähnlich

$$det(A) = det(B)$$

Sei $\varphi: V \to V$ eine lineare Selbstabbildung

$$\det(\varphi) := \det(D_R(\varphi))$$

Entwicklung der Determinante nach Laplace

Sei $A=a_{i,j}\in K^{n\times n}: n\geq 2$, für $i,j\in [1,n]$ sei $A_{i,j}\in K^{(n-1)\times (n-1)}$ die Matrix, die durch das Weglassen der i-ten Zeile und der j-ten Spalte entsteht.

$$\forall i \in [1,n] : \det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \cdot \det(A_{i,j})$$

$$\forall j \in [1,n] : \det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{i,j} \cdot \det(A_{i,j})$$

$$\begin{aligned} &\operatorname{Dreiecks-}\operatorname{und}\operatorname{Diagonal matrizen} \\ &\det(A) = a_1 \cdot \ldots \cdot a_n : A = \begin{pmatrix} a_1 & 0 \\ & \ddots & \\ 0 & a_n \end{pmatrix} = \operatorname{diag}(a_1, \ldots, a_n) & \operatorname{Diagonal matrix} \\ &\det(A) = a_1 \cdot \ldots \cdot a_n : A = \begin{pmatrix} a_1 & * \\ 0 & * \\ 0 & a_n \end{pmatrix} & \operatorname{obere}\operatorname{Dreiecksmatrix} \\ &\det(A) = \det(B) \cdot \det(D) : A = \begin{pmatrix} B & 0 \\ C & D \end{pmatrix} & \operatorname{untere/(Block-)Dreiecksmatrix} \end{aligned}$$

Gauß & Determinanten

- I. (Vertauschen zweier Zeilen): Determinante ändert das Vorzeichen
- II. (Multiplikation einer Zeile mit einem Skalar $s \in K \setminus \{0\}$: Determinante multipliziert sich mit s
- III. (Addition des s-fachen einer Zeile zu einer anderen): Determinante ändert sich nicht Gilt für elementare Spaltenoperationen/Zeilenoperationen.

Anwendung: Erstelle Matrizen, die sich leicht entwickeln lassen.

10: Eigenwert

10.1 - Definitonen

Eigenwert, Eigenvektor und Eigenraum

Sei $A \in K^{n \times n}$

$$\lambda \in K : \exists v \in K^n \setminus \{0\} : A \cdot v = v \cdot \lambda$$

$$E_{\lambda} := \{v \in K^n \mid A \cdot v = \lambda \cdot v\} \cup \{\overrightarrow{0}\}$$

- Eigenwert: λ ist Eigenwert von A
- Eigenvektor: v ist Eigenvektor von A (zum Eigenwert λ)
- Eigenraum: E_{λ} ist Eigenraum zum Eigenwert λ
- A hat höchstens n Eigenwerte
- Falls K algebraisch abgeschlossen ist, so hat A Eigenwerte

$$> E_{\lambda} = \{v \in \mathbb{R}^2 \mid A \cdot v = v\} = \{v \in \mathbb{R}^2 \mid (A - \lambda I_n) \cdot v = 0\} =$$
 Lösungen des hom. LGS $> E_{\lambda} \subseteq K^n$ ist ein Unterraum

Geometrische und Algebraische Vielfachheit

Ist $\lambda \in K$ ein Eigenwert einer Matrix $A \in K^{n \times n}$, so gilt $1 \leq m_g(\lambda) \leq m_a(\lambda) \leq 1$ $m_a(\lambda) = \text{Vielfachheit der Nullstelle } \lambda \text{ im charakteristischen Polynom } \mathcal{X}_A$ $m_g(\lambda) = \dim(E_\lambda)$

Diagonalisierbarkeit

Eine quadratische Matrix $A \in K^{n \times n}$ heißt diagonalisierbar, falls es eine Basis von K^n bestehend aus Eigenvektoren von A gibt (A ist ähnlich zu einer Diagonalmatrix).

Beide der folgenden Bedingungen müssen erfüllt sein:

- Das charakteristische Polynom \mathcal{X}_A zerfällt in Linearfaktoren
- \forall Eigenwerte λ_i gilt $m_g(\lambda_i) = m_a(\lambda_i)$

Lineare Abbildungen

Die Definitionen lassen sich auch auf lineare Abbildungen der Form $\varphi:V\to V$ eines K -Vektorraums V übertragen.

$$\varphi(v) = \lambda v : v \in V \setminus \{0\}$$

Fundamentalsatz der Algebra

Jedes nicht-konstante Polynom $f \in \mathbb{C}[x]$ hat eine Nullstelle in \mathbb{C} . Damit zerfällt f in Linearfaktoren.

10.2 - Polynomringe

Charakteristische Polynome

Sei $A \in K^{n \times n}$, im Polynomring K[x] bilden wir

$$\mathcal{X}_A := \det(x \cdot I_n - A)$$

- \mathscr{X}_A ist ein Polynom von Grad n mit höchstem Koeffizient 1
- Eigenwerte einer quadratischen Matrix A sind die Nullstellen des charakterist. Polynoms \mathscr{X}_A

Polynomdivison

Sei K[x] ein Polynomring. Bei der Division mit Rest für $f,g\in K[x]:g\neq 0$ gibt es $q,r\in K[x]$

$$f = g \cdot q + r : \deg(r) < \deg(g)$$
 (q: Quotient, r: Rest)

Falls $\lambda \in K$ eine Nullstelle des Polynoms $f \neq 0$ ist, so können wir durch $g = x - \lambda$ dividieren

$$f = (x - \lambda) \cdot q + r : \deg(r) < 1$$
 (r/Rest ist also ein konstantes Polynom)

$$f = (x - \lambda) \cdot q : \deg(q) = \deg(f) - 1$$

Man kann so Schrittweise Linearfaktoren von Typ $x-\lambda$ abspalten. Sei $\mu\in K$ eine weitere

Nullstelle von f mit $\lambda \neq \mu$, so folgt

$$(\mu - \lambda) \cdot q(\mu) = 0 \longrightarrow q(\mu) = 0$$

So kann man f mit Hilfe seiner disjunkten Nullstellen $\lambda_1, ..., \lambda_r$ weiter in Linearfaktoren aufspalten

$$f = (x - \lambda_1)^{e_1} \cdot \dots \cdot (x - \lambda_r)^{e_r} \cdot g : \forall c \in K : g(c) \neq 0, g \in K[x]$$
 (e_i: Multiplizität)

Falls g ein konstantes Polynom ist, sagen wir, dass f in Linearfaktoren zerfällt.

11: Komplexe Zahlen

11.1 - Definitonen

Komplexe Zahlen

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$$
 a Realteil, b Imaginärteil

Rechenregeln

$$\begin{split} \bar{z} &:= a - bi \\ (a + bi)^{-1} &= \frac{a - bi}{a^2 + b^2} \\ (a_1 + b_1i) \cdot (a_2 + b_2i) &= (a_1a_2 - b_1b_2) + (a_1a_2 - b_1b_2)i \\ |z| &= \sqrt{a^2 + b^2} \qquad |z_1 + z_2| \leq |z_1| + |z_2| \end{split}$$

komplexe Konjugation

Inversionsregel

Multiplikationsregel

Betrag

12: Google-Matrix

12.1 - Google Matrix

1. Adjazenzmatrix für Verbindungen zwischen den Seiten des Internets (Weblink-Matrix) $w_{i,j} = \begin{cases} 1 \text{ falls } P_i \text{ einen Link auf } P_j \text{ enthält} \\ 0 \text{ sonst} \end{cases}$

2. Wir ändern diese Matrix indem wir in jeder Zeile durch die Anzahl der Einsen in dieser Zeile dividieren. $\longrightarrow H$

$$p \cdot H = p \mid p := (\alpha_1, ..., \alpha_n) \in \mathbb{R}^{1 \times n}$$
 wobei p^T Eigenvektor zum Eigenwert $\lambda = 1$ von H^T ist.

3. Errechne die Google-Matrix

$$G := (1 - \alpha) \cdot H + \frac{\alpha}{n} \begin{pmatrix} 1 & \dots & 1 \\ \vdots & & \vdots \\ 1 & \dots & 1 \end{pmatrix}$$

4. Rechne den Page-Rank aus

$$\lim_{k \to \infty} G^k = \begin{pmatrix} \alpha_1 & \dots & \alpha_n \\ \vdots & & \vdots \\ \alpha_1 & \dots & \alpha_n \end{pmatrix}, \text{ wobei } G^T \cdot \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

Algorithmus 12.12 (Google-Algorithmus).

- (1) Bilde die Weblink-Matrix, daraus die Google-Matrix (mit "geeigneter Webl des Passes etwas »)
- (2) Wähle einen Vektor p ∈ R^{1×n} mit Komponentensumme
- (2) Waste einen vervor p e. a. mat romposemensamte i. (3) Ersetze immer wieder p durch p G, bis sich hierdurch p kaum noch ändert. (Hierbei sollte ein Schwellenwert für die Änderung von p vorgegeben werden.)
- (4) Verwende p als Pagerank-Vektor. Seine i-te Komponente beinhaltet also die Wichtiebeit der Seite P, im Internet

12.2 - Definitionen

Stochastische Matrizen

Eine Matrix $A=(a_{i,j})\in\mathbb{R}^{n\times n}$ heißt stochastisch (oder auch zeilen-stochastisch), falls

$$(a_{i,j}) \ge 0 \qquad \sum_{j=1}^{n} a_{i,j} = 1$$

A heißt positiv, falls $(a_{i,j}) > 0$

Falls $A, B \in \mathbb{R}^{n \times n}$ stochastisch, dann ist auch $A \cdot B$ stochastisch.

Eigenwerte & stochastische Matrizen

Sei $A = (a_{i,j}) \in \mathbb{R}^{n \times n}$ stochastisch

- A hat den Eigenwert 1, und für alle Eigenwerte $\lambda \in \mathbb{C}$ von A gilt: $|\lambda| \leq 1$
- Falls A zusätzlich positiv ist, so gilt $m_a(1)=m_g(1)=1$, und für alle Eigenwerte $\lambda\in\mathbb{C}\backslash\{1\}\to |\lambda|<1$

13: Skalarprodukt

13.1 - Definitionen

Eigenschaften von Skalarprodukten

Für alle $u, v, w \in K^n$ und $a \in K$ gilt:

$$\langle u, v + a \cdot w \rangle = \langle u, v \rangle + a \cdot \langle u, w \rangle \qquad \langle u + a \cdot v, w \rangle = \langle u, w \rangle + a \cdot \langle v, w \rangle \qquad \text{bilinear}$$

$$\langle v, w \rangle = \langle w, v \rangle$$
 symmetrie

$$(K^n)^{\perp} = \{0\}$$
 Nullvektor steht auf allen Vektoren senkrecht

Euklidische Länge

Für $v = \mathbb{R}^n$ heißt $|v| := \sqrt{\langle v, v \rangle}$ die (euklidische) Länge von v.

13.1 - Gram-Schmidt Verfahren

Orthonomalsystem

Eine Menge $S = \{v_1, ..., v_k\} \subset \mathbb{R}^n$ heißt Orthogonalsysten, falls v_i und v_j für $i \neq j$ orthogonal sind, und $\forall i : |v_i| = 1$. Orthogonalsysteme sind linear unabhängig.

$$\langle v_i, v_j \rangle = \delta_{i,j} \text{ mit } \delta_{i,j} := \begin{cases} 1 \text{ falls } i = j \\ 0 \text{ sonst} \end{cases}$$

Wenn $A \in \mathbb{R}^{n \times k}$ die Matrix mit den v_i Spalten ist, ergibt sich

S Orthonormalsystem
$$\iff$$
 $A^T \cdot A = I_k$

Orthonormalbasis

Sei $U \subseteq \mathbb{R}^n$ ein Unterraum, $k := \dim(U)$ und $S = \{v_1, ..., v_k\} \subset U$ sei ein Orthonormalsystem. Dann ist S eine Basis von U (Orthonormalbasis).

Gram-Schmidtsches Orthogonalisierungsverfahren

- Eingabe: Ein Unterraum $U=\langle v_1,...,v_k\rangle\subseteq\mathbb{R}^n$ (erzeugt von Vektoren v_i).
- 1. Setze m := 0.
- 2. Für $i \in [1:k]$ führe Schritte 3 und 4 aus.

3. Setze
$$w_i := v_i - \sum_{j=1}^m \langle u_j, v_i \rangle \cdot u_j$$

4. Falls
$$w_i \neq 0$$
, setze $m := m + 1$ und $u_m := \frac{w_i}{|w_i|}$

- Ausgabe: Eine Orthonormalbasis $\{u_1,...,u_m\}$ von U.

Damit hat jeder Unterraum von \mathbb{R}^n eine Orthonormalbasis.

Weitere Definitionen

Eine quadratische Matrix $A \in \mathbb{R}^{n \times n}$ heißt orthogonal, falls $A^T \cdot A = I_n$.

$$O_n(\mathbb{R}) := \{ A \in \mathbb{R}^{n \times n} | A^T \cdot A = I_n \}$$

orthogonale Gruppe

$$SO_n(\mathbb{R}) := O_n(\mathbb{R}) \cap SL_n(\mathbb{R})$$

spezielle orthogonale Gruppe ($SL \rightarrow \dim = 1$)

14: Symmetrische Matrizen

$$\begin{split} D_{A,B} &= \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & -1 \\ 2 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} v_1 - v_2 \\ -v_3 \\ 2v_1 \end{pmatrix} \\ m_g(\lambda) &= n - rg(A - \lambda I_n) : A \in K^{n \times n} \end{split}$$