MATH 511 HOMEWORK (ON GRADESCOPE)

SIAMAK YASSEMI

Homework # 2

Due on Jun 23, 2024, 11:59 PM

Section 2.1: P76 #24,

Section 2.2: P88 #33, P89 #43, P91 #68,

Section 2.3: P98 #2, P99 #13, P101 #29,

Section 2.4: P113 #32, #37

2.1.p76.#24

[chapter].[section].[page].[problem]

Problems 21–30 are about column spaces C(A) and the equation Ax = b.

24. For which vectors (b_1, b_2, b_3) do these systems have a solution?

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

2.2.p88.#33

[chapter].[section].[page].[problem]

Problems 33–36 are about the solution of Ax = b. Follow the steps in the text to x_p and x_n . Reduce the augmented matrix $\begin{bmatrix} A & b \end{bmatrix}$.

33. Find the complete solutions of

2.2.p89.#43

[chapter].[section].[page].[problem]

43. Choose the number q so that (if possible) the ranks are (a) 1, (b) 2, (c) 3:

$$A = \begin{bmatrix} 6 & 4 & 2 \\ -3 & -2 & -1 \\ 9 & 6 & q \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 3 & 1 & 3 \\ q & 2 & q \end{bmatrix}.$$

2.2.p91.#68

[chapter].[section].[page].[problem]

- **68.** Show by example that these three statements are generally *false*:
 - (a) A and A^{T} have the same nullspace.
 - (b) A and A^{T} have the same free variables.
 - (c) If R is the reduced form rref(A) then R^T is $rref(A^T)$.

2.3.p98.#02

[chapter].[section].[page].[problem]

Problems 1-10 are about linear independence and linear dependence.

2. Find the largest possible number of independent vectors among

$$v_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} \quad v_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \\ 0 \end{bmatrix} \quad v_3 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix} \quad v_4 = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix} \quad v_5 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -1 \end{bmatrix} \quad v_6 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}.$$

This number is the $___$ of the space spanned by the v's.

2.3.p99.#13

[chapter].[section].[page].[problem]

Problems 11–18 are about the space *spanned* by a set of vectors. Take all linear combinations of the vectors.

13. Find the dimensions of (a) the column space of A, (b) the column space of U, (c) the row space of A, (d) the row space of U. Which two of the spaces are the same?

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 3 & 1 \\ 3 & 1 & -1 \end{bmatrix} \quad \text{and} \quad U = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

2.3.p101.#29

[chapter].[section].[page].[problem]

Problems 19–37 are about the requirements for a basis.

29. For which numbers c and d do these matrices have rank 2?

$$A = \begin{bmatrix} 1 & 2 & 5 & 0 & 5 \\ 0 & 0 & c & 2 & 2 \\ 0 & 0 & 0 & d & 2 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} c & d \\ d & c \end{bmatrix}.$$

2.4.p113.#32

[chapter].[section].[page].[problem]

32. Describe the four subspaces of \mathbb{R}^3 associated with

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad I + A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

2.4.p113.#37

[chapter].[section].[page].[problem]

- **37.** True or false (with a reason or a counterexample)?
 - (a) A and A^{T} have the same number of pivots.
 - (b) A and A^{T} have the same left nullspace.
 - (c) If the row space equals the column space then $A^{T} = A$.
 - (d) If $A^{T} = -A$ then the row space of A equals the column space.