Online Learning with Feedback Graphs

Claudio Gentile

INRIA and Google NY
cla.gentile@gmail.com

NYC March 6th, 2018

Content of this lecture

Regret analysis of sequential prediction problems lying between full and bandit information regimes:

- Motivation
- Nonstochastic setting:
 - Brief review of background
 - Feedback graphs
- Stochastic setting:
 - Brief review of background
 - Feedback graphs
- Examples (nonstochastic)

Motivation

Sequential prediction problems with partial information where items in action space have semantic connections turning into observability dependencies of associated losses/gains

Background/1: Nonstochastic experts

K actions for Learner

- 1. Losses $\ell_t(i) \in [0,1]$ are assigned deterministically by Nature to every action i=1...K (hidded to Learner)
- 2. Learner picks action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- 3. Learner gets feedback information: $\ell_t(1), \ldots, \ell_t(I_t), \ldots, \ell_t(K)$

Background/1: Nonstochastic experts

K actions for Learner

- 1. Losses $\ell_t(i) \in [0,1]$ are assigned deterministically by opponent to every action i = 1...K (hidded to Learner)
- 2. Learner picks action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- 3. Learner gets feedback information: $\ell_t(1), \ldots, \ell_t(I_t), \ldots, \ell_t(K)$

Background: Nonstochastic experts

- 1. Losses $\ell_t(i) \in [0,1]$ are assigned deterministically by opponent to every action i = 1...K (hidded to Learner)
- 2. Learner picks action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- 3. Learner gets feedback information: $\ell_t(1), \ldots, \ell_t(I_t), \ldots, \ell_t(K)$

No (External, Pseudo) Regret

Goal: Given T rounds, Learner's total loss

$$\sum_{t=1}^T \ell_t(I_t)$$

must be close to that of single best action in hindsight for Learner Regret of Learner for T rounds:

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \ell_t(I_t)\right] - \min_{i=1...K} \sum_{t=1}^T \ell_t(i)$$

Want: $R_T = o(T)$ as T grows large ("no regret")

Notice: No stochastic assumptions on losses, but assume for simplicity Nature is deterministic and oblivious

Lower bound:

$$R_T \ge (1 - o(1))\sqrt{\frac{T \ln K}{2}}$$
 [CB+97]

as T. $K \to \infty$

 $(\ell_t(i) \text{ random coin flips} + \text{simple probabilistic argument})$

Exponentially-weighted Algorithm

[CB+97]

At round t pick action $I_t=i$ with probability proportional to

$$\exp\left(-\eta \sum_{s=1}^{t-1} \ell_s(i)\right)$$

total loss of action i so far

• if
$$\eta = \sqrt{\frac{\ln K}{8T}}$$
 \Longrightarrow $R_T \leq \sqrt{\frac{T \ln K}{2}}$

• Dynamic $\eta = \sqrt{\frac{\ln K}{t}}$ \Longrightarrow R_T looses constant factors

K actions for Learner

- 1. Losses $\ell_t(i) \in [0,1]$ are assigned deterministically by Nature to every action i=1...K (hidded to Learner)
- 2. Learner picks action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- 3. Learner gets feedback information: $\ell_t(I_t)$

K actions for Learner

- 1. Losses $\ell_t(i) \in [0,1]$ are assigned deterministically by Nature to every action i=1...K (hidded to Learner)
- 2. Learner picks action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- 3. Learner gets feedback information: $\ell_t(I_t)$

- 1. Losses $\ell_t(i) \in [0,1]$ are assigned deterministically by Nature to every action i = 1...K (hidded to Learner)
- 2. Learner picks action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- 3. Learner gets feedback information: $\ell_t(I_t)$

Goal: same as before

Regret of Learner for T rounds:

$$R_T = \mathbb{E}\left[\sum_{t=1}^T \ell_t(I_t)\right] - \min_{i=1...K} \sum_{t=1}^T \ell_t(i)$$

Want: $R_T = o(T)$ as T grows large ("no regret")

Tradeoff exploration vs. exploitation

Nonstochastic bandit problem/3: Exp3 Alg./1 [Auer+ 02]

At round t pick action $I_t = i$ with probability proportional to

$$\exp\left(-\eta\sum_{s=1}^{t-1}\widehat{\ell}_s(i)\right), \qquad i=1\ldots K$$

$$\widehat{\ell}_s(i) = egin{cases} \frac{\ell_s(i)}{\Pr_s(\ell_s(i) \text{ is observed in round } s)} & \text{if } \ell_s(i) \text{ is observed} \\ 0 & \text{otherwise} \end{cases}$$

- ullet Only one nonzero component in $\widehat{\ell}_t$
- Exponentially-weighted alg with (importance sampling) loss estimates

$$\widehat{\ell}_t(i)pprox \ell_t(i)$$

Nonstochastic bandit problem/3: Exp3 Alg./2 [Auer+ 02]

Properties of loss estimates:

- $\mathbb{E}_t[\widehat{\ell}_t(i)] = \ell_t(i)$ unbiasedness
- $\mathbb{E}_t[\widehat{\ell}_t(i)^2] \leq \frac{1}{\Pr_t(\ell_t(i) \text{ is observed in round } t)}$ variance control

Regret analysis:

- Set $p_t(i) = \Pr_t(I_t = i)$
- Approximate exp(x) up to 2nd order, sum over rounds t and overapprox.:

$$\sum_{t=1}^{T} \sum_{i=1}^{K} p_t(i) \widehat{\ell}_t(i) - \min_{i=1,\dots,K} \sum_{t=1}^{T} \widehat{\ell}_t(i) \le \frac{\ln K}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{K} p_t(i) \widehat{\ell}_t(i)^2$$

• Take expectations (tower rule), and optimize over η :

$$R_T \le \frac{\ln K}{\eta} + \frac{\eta}{2} TK = \sqrt{2TK \ln K}$$

• Lower bound $\Omega(\sqrt{TK})$ (improved upper bound by the INF alg. [AB09])

Contrasting expert to nonstochastic bandit problem

Experts:

- Learner observes all losses $\ell_t(1), \ldots, \ell_t(K)$
- $\Pr_t(\ell_t(i) \text{ is observed in round } t) = 1$
- Regret $R_T = O(\sqrt{T \ln K})$

Nonstochastic bandits:

- Learner only observes loss $\ell_t(I_t)$ of chosen action
- $\Pr_t(\ell_t(i) \text{ is observed in round } t) = \Pr_t(I_t = i)$ Note: Exp3 collapses to Exponentially-weighted alg.
- Regret $R_T = O(\sqrt{TK})$

Exponential gap $\ln K$ vs. K: relevant when actions are many

K actions for Learner

- 1. Losses $\ell_t(i) \in [0,1]$ are assigned deterministically by Nature to every action i=1...K (hidded to Learner)
- 2. Feedback graph $G_t = (V, E_t)$, $V = \{1, ..., K\}$ generated by exogenous process (hidden to Learner) all self-loops included
- 3. Learner picks action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- **4.** Learner gets feedback information: $\{\ell_t(j): (I_t,j) \in E_t\} + G_t$

K actions for Learner

- 1. Losses $\ell_t(i) \in [0,1]$ are assigned deterministically by Nature to every action i=1...K (hidded to Learner)
- 2. Feedback graph $G_t = (V, E_t)$, $V = \{1, ..., K\}$ generated by exogenous process (hidden to Learner) all self-loops included
- 3. Learner picks action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- **4.** Learner gets feedback information: $\{\ell_t(j): (I_t,j) \in E_t\} + G_t$

K actions for Learner

- 1. Losses $\ell_t(i) \in [0,1]$ are assigned deterministically by Nature to every action i=1...K (hidded to Learner)
- 2. Feedback graph $G_t = (V, E_t)$, $V = \{1, ..., K\}$ generated by exogenous process (hidden to Learner) all self-loops included
- 3. Learner picks action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- **4.** Learner gets feedback information: $\{\ell_t(j): (I_t,j) \in E_t\} + G_t$

K actions for Learner

0.1

For
$$t = 1, 2, ...$$
:

- 1. Losses $\ell_t(i) \in [0,1]$ are assigned deterministically by Nature to every action i=1...K (hidded to Learner)
- 2. Feedback graph $G_t = (V, E_t)$, $V = \{1, ..., K\}$ generated by exogenous process (hidden to Learner) all self-loops included
- 3. Learner picks action I_t (possibly using randomization) and incurs loss $\ell_t(I_t)$
- 4. Learner gets feedback information: $\{\ell_t(j): (I_t,j) \in E_t\} + G_t$

Nonstochastic bandits with Feedback Graphs/2: Exp3-IX Alg. [Ne+15]

At round t pick action $I_t = i$ with probability proportional to

$$\exp\left(-\eta\sum_{s=1}^{t-1}\widehat{\ell}_s(i)\right), \qquad i=1\dots K$$

$$\widehat{\ell}_s(i) = \begin{cases} \frac{\ell_s(i)}{\gamma_t + \Pr_s\left(\ell_s(i) \text{ is observed in round } s\right)} & \text{if } \ell_s(i) \text{ is observed otherwise} \end{cases}$$

- Note: prob. of observing loss of action \neq prob. of playing action
- Exponentially-weighted alg with γ_t -biased (importance sampling) loss estimates

$$\widehat{\ell}_t(i)pprox \ell_t(i)$$

• Bias is controlled by $\gamma_t = 1/\sqrt{t}$

Independence number $\alpha(G_t)$: disregard edge orientation

$$\leq \alpha(G_t) \leq$$

clique: expert problem

 $\leq lpha(G_t) \leq \underbrace{K}_{ ext{edgeless: bandit problem}}$

Regret analysis:

• If $G_t = G \ \forall t$:

$$R_T = \tilde{O}\left(\sqrt{T\alpha(G)}\right)$$

(also lower bound up to logs)

• In general:

$$R_T = O\left(\ln(TK)\sqrt{\sum_{t=1}^T \alpha(G_t)}\right)$$

Properties of loss estimates:

•
$$p_t(i) = \Pr_t(I_t = i)$$
 (prob. of playing)

•
$$Q_t(i) = \Pr_t(\ell_t(i) \text{ is observed in round } t)$$
 (prob. of observing)

$$ullet \ \widehat{\ell_t}(i) = rac{\ell_t(i)ig\{\ell_t(i) ext{ is observed in round } tig\}}{\gamma_t + Q_t(i)}$$

•
$$\mathbb{E}_t[\widehat{\ell}_t(i)] = \ell_t(i)$$
 unbiasedness

•
$$\mathbb{E}_t[\widehat{\ell}_t(i)^2] \leq \frac{1}{Q_t(i)}$$
 variance control

Some details of regret analysis:

• From
$$\sum_{t=1}^{T} \sum_{i=1}^{K} p_t(i) \hat{\ell}_t(i) - \min_{i=1,\dots,K} \sum_{t=1}^{T} \hat{\ell}_t(i) \le \frac{\ln K}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{i=1}^{K} p_t(i) \hat{\ell}_t(i)^2$$

• Take expectations:
$$R_T \leq \frac{\ln K}{\eta} + \frac{\eta}{2} \sum_{t=1}^T \mathbb{E} \left[\sum_{i=1}^K \frac{p_t(i)}{Q_t(i)} \right] \leftarrow \text{variance}$$

Relating variance to $\alpha(G)$:

• Suppose G is undirected (with self-loops)

$$\Sigma = \sum_{i=1}^{K} \frac{p(i)}{Q^{G}(i)} = \sum_{i=1}^{K} \frac{p(i)}{\sum_{j:j \xrightarrow{G}} p(j)} \le |S|$$

- Pick
$$i_1 = \operatorname{argmin}_{i \in V_1} Q^{G_1}(i)$$

- Augment $S \leftarrow S \cup \{i_1\}$
- Remove i_1 from V_1 , all its neighbors (and incident edges in G_1):

$$\Sigma \leftarrow \Sigma - \sum_{j:j \xrightarrow{G_1} i_1} \frac{p(j)}{Q^{G_1}(j)} \ge \Sigma - \sum_{j:j \xrightarrow{G_1} i_1} \frac{p(j)}{Q^{G_1}(i_1)} = \Sigma - \frac{Q^{G_1}(i_1)}{Q^{G_1}(i_1)} = \Sigma - 1$$

- . . . get smaller graph $G_2 = (V_2, E_2)$ and iterate

 i_1

Relating variance to $\alpha(G)$:

Suppose G is undirected (with self-loops)

$$\Sigma = \sum_{i=1}^{K} \frac{p(i)}{Q^{G}(i)} = \sum_{i=1}^{K} \frac{p(i)}{\sum_{i=1}^{K} \frac{p(i)}{\sum_{i=1}^{K} \frac{p(j)}{\sum_{i=1}^{K} \frac{p(j)}{\sum_{i=1}^$$

where $S \subseteq V$ is an independent set for G = (V, E)

- Init: $S = \emptyset$; $G_1 = G$, $V_1 = V$
 - Pick $i_2 = \operatorname{argmin}_{i \in V_2} Q^{G_2}(i)$
 - Augment $S \leftarrow S \cup \{i_2\}$
 - Remove i_2 from V_2 , all its neighbors (and incident edges in G_2):

$$\Sigma \leftarrow \Sigma - \sum_{\substack{j:j \xrightarrow{G_2} i_2}} \frac{p(j)}{Q^{G_1}(j)} \ge \Sigma - \sum_{\substack{j:j \xrightarrow{G_2} i_2}} \frac{p(j)}{Q^{G_2}(i_2)} = \Sigma - \frac{Q^{G_2}(i_1)}{Q^{G_2}(i_2)} = \Sigma - 1$$

- . . . get smaller graph $G_3 = (V_3, E_3)$ and iterate

Relating variance to $\alpha(G)$:

Suppose G is undirected (with self-loops)

$$\Sigma = \sum_{i=1}^{K} \frac{p(i)}{Q^{G}(i)} = \sum_{i=1}^{K} \frac{p(i)}{\sum_{j:j \xrightarrow{G}} p(j)} \le |S|$$

where $S \subseteq V$ is an independent set for G = (V, E)

- Init: $S = \emptyset$; $G_1 = G$, $V_1 = V$
 - Pick $i_3 = \operatorname{argmin}_{i \in V_3} Q^{G_3}(i)$
 - Augment $S \leftarrow S \cup \{i_3\}$
 - Remove i_3 from V_3 , all its neighbors (and incident edges in G_3):

$$\Sigma \leftarrow \Sigma - \sum_{j:j \xrightarrow{C_3} i_3} \frac{p(j)}{Q^{G_1}(j)} \ge \Sigma - \sum_{j:j \xrightarrow{G_3} i_3} \frac{p(j)}{Q^{G_3}(i_3)} = \Sigma - \frac{Q^{G_3}(i_3)}{Q^{G_3}(i_3)} = \Sigma - 1$$

- . . . get smaller graph $G_4 = (V_4, E_4)$ and iterate

Relating variance to $\alpha(G)$:

Suppose G is undirected (with self-loops)

$$\Sigma = \sum_{i=1}^{K} \frac{p(i)}{Q^{G}(i)} = \sum_{i=1}^{K} \frac{p(i)}{\sum_{j:j \xrightarrow{G}} p(j)} \le |S|$$

where $S \subseteq V$ is an independent set for G = (V, E)

- Init: $S = \emptyset$: $G_1 = G$, $V_1 = V$
 - Pick $i_4 = \operatorname{argmin}_{i \in V_4} Q^{G_4}(i)$
 - Augment $S \leftarrow S \cup \{i_4\}$
 - Remove i_4 from V_4 , all its neighbors (and incident edges in G_4):

$$\Sigma \leftarrow \Sigma - \sum_{\substack{j:j \xrightarrow{G_4} i_4}} \frac{p(j)}{Q^{\boxed{G_1}}(j)} \ge \Sigma - \sum_{\substack{j:j \xrightarrow{G_4} i_4}} \frac{p(j)}{Q^{\boxed{G_4}}(i_4)} = \Sigma - \frac{Q^{G_4}(i_4)}{Q^{G_4}(i_4)} = \Sigma - 1$$

- . . . get smaller graph $G_4 = (V_4, E_4)$ and iterate

Hence:

- ∑ decreases by at most 1
- \bullet |S| increases by 1
- Potential $|S| + \Sigma$ increases over iterations:
 - has minimal value at the beginning $(S = \emptyset)$
 - reaches maximal value is when G becomes empty ($\Sigma = 0$)
- S is independent set by construction
- $|S| \leq \alpha(G)$

When G directed analysis gets more complicated (needs lower bound on $p_t(i)$) and adds a $\log T$ factor in bound

Have obtained:

$$R_T \leq \frac{\ln K}{\eta} + \frac{\eta}{2} \sum_{t=1}^T \alpha(G_t) = \mathcal{O}\left(\sqrt{(\ln K) \sum_{t=1}^T \alpha(G_t)}\right)$$

- K actions for Learner
- When picking action i at time t, Learner receives as reward independent realization of random variable X_i : $\mathbb{E}[X_i] = \mu_i$, $X_i \in [0, 1]$
- The μ_i s are hidden to Learner

For t = 1, 2, ...:

- 1. Learner picks action I_t (possibly using random.) and gathers reward $X_{I_t,t}$
- 2. Learner gets feedback information: $X_{I_t,t}$

$$R_{T} = \max_{i=1...K} \mathbb{E}\left[\sum_{t=1}^{T} X_{i,t}\right] - \mathbb{E}\left[\sum_{t=1}^{T} X_{I_{t},t}\right] = \mu^{*}T - \mathbb{E}\left[\sum_{t=1}^{T} X_{I_{t},t}\right] = \sum_{i=1}^{K} \Delta_{i} \mathbb{E}[T_{i}(T)]$$

- K actions for Learner
- When picking action i at time t, Learner receives as reward independent realization of random variable X_i : $\mathbb{E}[X_i] = \mu_i$, $X_i \in [0, 1]$
- The μ_i s are hidden to Learner

For t = 1, 2, ...:

- 1. Learner picks action I_t (possibly using random.) and gathers reward $X_{I_t,t}$
- 2. Learner gets feedback information: $X_{I_t,t}$

$$R_{T} = \max_{i=1...K} \mathbb{E}\left[\sum_{t=1}^{T} X_{i,t}\right] - \mathbb{E}\left[\sum_{t=1}^{T} X_{I_{t},t}\right] = \mu^{*} T - \mathbb{E}\left[\sum_{t=1}^{T} X_{I_{t},t}\right] = \sum_{i=1}^{K} \Delta_{i} \mathbb{E}[T_{i}(T)]$$

- K actions for Learner
- When picking action i at time t, Learner receives as reward independent realization of random variable X_i : $\mathbb{E}[X_i] = \mu_i$, $X_i \in [0, 1]$
- The μ_i s are hidden to Learner

For t = 1, 2, ...:

- 1. Learner picks action I_t (possibly using random.) and gathers reward $X_{I_t,t}$
- 2. Learner gets feedback information: $X_{I_t,t}$

$$R_{T} = \max_{i=1...K} \mathbb{E}\left[\sum_{t=1}^{T} X_{i,t}\right] - \mathbb{E}\left[\sum_{t=1}^{T} X_{I_{t},t}\right] = \mu^{*}T - \mathbb{E}\left[\sum_{t=1}^{T} X_{I_{t},t}\right] = \sum_{i=1}^{K} \Delta_{i} \mathbb{E}[T_{i}(T)]$$

- K actions for Learner
- When picking action i at time t, Learner receives as reward independent realization of random variable X_i : $\mathbb{E}[X_i] = \mu_i$, $X_i \in [0, 1]$
- The μ_i s are hidden to Learner

For t = 1, 2, ...:

- 1. Learner picks action I_t (possibly using random.) and gathers reward $X_{I_t,t}$
- 2. Learner gets feedback information: $X_{I,t}$

$$R_T = \max_{i=1\dots K} \mathbb{E}\left[\sum_{t=1}^T X_{i,t}\right] - \mathbb{E}\left[\sum_{t=1}^T X_{I_t,t}\right] = \mu^* T - \mathbb{E}\left[\sum_{t=1}^T X_{I_t,t}\right] = \sum_{i=1}^K \Delta_i \mathbb{E}[T_i(T)]$$

Stochastic bandit problem/2: UCB alg

[AFC02]

At round t pick action

$$I_t = \operatorname{argmax}_{i=1\dots K} \left(\bar{X}_{i,t-1} + \sqrt{\frac{\ln t}{T_{i,t-1}}} \right)$$

- $T_{i,t-1}$ = no. of times reward of action i has been observed so far
- $\bar{X}_{i,t-1} = \frac{1}{T_{i,t-1}} \sum_{s \leq t-1: I_s=i} X_{i,s} = \text{average reward of action } i \text{ observed so far}$

(Pseudo)Regret:

$$R_T = \mathcal{O}\left(\left(\sum_{i=1}^K \frac{1}{\Delta_i}\right) \ln T + K\right)$$

Stochastic bandits with feedback graphs/1

- K actions for Learner, arranged into a fixed graph G = (V, E)
- When picking action i at time t, Learner receives as reward independent realization of random variable X_i : $\mathbb{E}[X_i] = \mu_i$, but also reward of nearby actions in G
- The μ_i s are hidden to Learner

For t = 1, 2, ...:

- 1. Learner picks action I_t (possibly using random.) and gathers reward $X_{I_t,t}$
- 2. Learner gets feedback information: $\{X_{j,t}: (I_t,j) \in E\}$

$$R_T = \max_{i=1...K} \mathbb{E}\left[\sum_{t=1}^T X_{i,t}\right] - \mathbb{E}\left[\sum_{t=1}^T X_{I_t,t}\right] = \mu^* T - \mathbb{E}\left[\sum_{t=1}^T X_{I_t,t}\right] = \sum_{i=1}^K \Delta_i \mathbb{E}[T_i(T)]$$

Stochastic bandits with feedback graphs/2: UCB-N [Ca+12]

At round t pick action

$$I_t = \operatorname{argmax}_{i=1...K} \left(\bar{X}_{i,t-1} + \sqrt{\frac{\ln t}{O_{i,t-1}}} \right)$$

- \bullet $O_{i,t-1}$ = no. of times reward of action i has been observed so far
- $\bar{X}_{i,t-1} = \frac{1}{O_{i,t-1}} \sum_{s \leq t-1 : I_s \xrightarrow{G} i} X_{i,s} = \text{average reward of action } i \text{ observed so far}$

Stochastic bandits with feedback graphs/3

Clique covering number $\chi(G)$: assume G is undirected

 $\leq \alpha(G) \leq \chi(G) \leq \underbrace{K}$ edgeless: bandit problem

Regret analysis:

• Given any partition C of V into cliques: $C = \{C_1, C_2, \dots, C_{|C|}\}$

•
$$R_T = \mathcal{O}\left(\sum_{C \in \mathcal{C}} \frac{\max_{i \in C} \Delta_i}{\min_{i \in C} \Delta_i^2} \ln T + K\right)$$

- Sum over $\leq \chi(G)$ regret terms (but can be improved to " $\leq \alpha(G)$ ")
- Term K replaced by $\chi(G)$ by modified alg.
- No tight lower bounds available

Simple examples/1: Auctions (nonstoc.)

- Second-price auction with reserve (seller side) highest bid revealed to seller (e.g. AppNexus)
- Auctioneer is third party
- ullet After seller plays reserve price I_t , both seller's revenue and highest bid revealed to him/her
- Seller/Player in a position to observe all revenues for prices $j \geq I_t$
- $\alpha(G) = 1$: $R_T = O(\ln(TK)\sqrt{T})$ (expert problem up to logs) [CB+17]

Simple examples/2: "Contextual" bandits (nonstoc.)[Auer+02]

K predictors

$$f_i: \{1...T\} \to \{1...N\}, \quad i = 1...K,$$

each one having the same $N \ll K$ actions

Learner's "action space" is the set of K predictors

For
$$t = 1, 2, ...$$
:

2. Learner observes
$$f_1(t)$$
 $f_2(t)$... $f_K(t)$

- 3. Learner picks predictor f_{I_t} (possibly using randomization) and incurs loss $\ell_t(f_{I_t}(t))$
- 4. Learner gets feedback information: $\ell_t(f_{I_t}(t))$

Feedback graph G_t on K predictors made up of $\leq N$ cliques

$$\{i: f_i(t) = 1\} \quad \{i: f_i(t) = 2\} \quad \dots \quad \{i: f_i(t) = N\}$$

Independence number: $\alpha(G_t) \leq N \ \forall t$

References

- CB+97: N.Cesa-Bianchi, Y. Freund, D. Haussler, D. Helmbold, R. Schapire, M. Warmuth, How to use expert advice, Journal of the ACM, 44/3, pp. 427–485, 1997.
 - AB09: J. Audibert and S. Bubeck. Regret bounds and minimax policies under partial monitoring. Journal of Machine Learning Research, 11, pp. 2635–2686, 2010.
- Auer+02: P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. The nonstochastic multi-armed bandit problem. SIAM Journal on Computing, 32/1, pp. 48–77, 2002.
 - ACF02 P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multi- armed bandit problem, Machine Learning Journal, vol. 47, no. 2-3, pp. 235–256, 2002.
 - MS+11: S. Mannor, O. Shamir, From Bandits to Experts: On the Value of Side-Observations, NIPS 2011.
 - Ca+12: S. Caron, B. Kveton, M. Lelarge and S. Bhagat, Leveraging Side Observations in Stochastic Bandits, UAI 2012.
 - A+13: N. Alon, N Cesa-Bianchi, C Gentile, Y. Mansour, From bandits to experts: A tale of domination and independence, NIPS 2013.
 - K+14: T. Kocak, G Neu, M Valko, R Munos, Efficient learning by implicit exploration in bandit problems with side observations, NIPS 2014.
 - Ne15: G. Neu, Explore no more: Improved high-probability regret bounds for non-stochastic bandits, NIPS 2015.
 - CB+17: N Cesa-Bianchi, P Gaillard, C Gentile, S Gerchinovitz, Algorithmic chaining and the role of partial feedback in online nonparametric learning, COLT 2017.