CANS2D モデルパッケージ md_parker

Parker 不安定

2006. 1. 11.

1 はじめに

このモデルパッケージは、2次元平面内でのParker不安定を解くためのものである。

2 仮定と基礎方程式

流体は非粘性・圧縮性・磁気拡散なし磁気流体とする。計算領域は 2 次元デカルト座標(xy 平面)で $\partial/\partial z=0$ 、 $V_z=0$ 、 $B_z=0$ と仮定する。重力がかかっているとする(関数形は後述)。解くのは、 密度 ρ 、圧力 p、速度 V_x 、 V_y 、磁場 B_x 、 B_y についての 2 次元 MHD 方程式

$$\frac{\partial}{\partial t}(\rho) + \frac{\partial}{\partial x}(\rho V_x) + \frac{\partial}{\partial y}(\rho V_y) = 0 \tag{1}$$

$$\frac{\partial}{\partial t}(\rho V_x) + \frac{\partial}{\partial x}\left(\rho V_x^2 + p + \frac{B^2}{8\pi} - \frac{B_x^2}{4\pi}\right) + \frac{\partial}{\partial y}\left(\rho V_x V_y - \frac{B_x B_y}{4\pi}\right) = \rho g_x \tag{2}$$

$$\frac{\partial}{\partial t}(\rho V_y) + \frac{\partial}{\partial x}\left(\rho V_x V_y - \frac{B_x B_y}{4\pi}\right) + \frac{\partial}{\partial y}\left(\rho V_y^2 + p + \frac{B^2}{8\pi} - \frac{B_y^2}{4\pi}\right) = \rho g_y \tag{3}$$

$$\frac{\partial}{\partial t}(B_x) + \frac{\partial}{\partial u}(E_z) = 0 \tag{4}$$

$$\frac{\partial}{\partial t}(B_y) - \frac{\partial}{\partial x}(E_z) = 0 \tag{5}$$

$$\frac{\partial}{\partial t} \left(\frac{p}{\gamma - 1} + \frac{1}{2} \rho V^2 + \frac{B^2}{8\pi} \right) + \frac{\partial}{\partial x} \left(\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_x - \frac{B_y E_z}{4\pi} \right) + \frac{\partial}{\partial y} \left(\left(\frac{\gamma}{\gamma - 1} p + \frac{1}{2} \rho V^2 \right) V_y + \frac{B_x E_z}{4\pi} \right) = \rho g_x V_x + \rho g_y V_y \tag{6}$$

$$E_z = -V_x B_y + V_y B_x \tag{7}$$

である。ここで、 γ は比熱比。

3 無次元化

計算コードの中では、変数は以下のように無次元化して扱われる(表 1 参照)。長さ、速度、時間の単位はそれぞれ H_0 、 $C_{\rm S0}$ 、 $H_0/C_{\rm S0}$ 。ここで、 H_0 は初期円盤内(後述)の圧力スケール長、 $C_{\rm S0}$ は初期円盤内の音速。密度は y=0 での値 ρ_0 で無次元化する。以下、無次元化した変数を使う。

変数	規格化単位
x, y	H_0
V_x, V_y	C_{S0}
t	$H_0/C_{\rm S0}$
ho	$ ho_0$
p	$ ho_0 C_{\mathrm{S0}}^2$
B_x, B_y	$\sqrt{ ho_0 C_{ m S0}^2}$
	$C_{\rm S0}^2/(\gamma k_{\rm B}/m)$

表 1: 変数と規格化単位。 $k_{
m B}$ は ${
m Boltzmann}$ 定数、m は平均粒子質量

4 パラメータ・初期条件・計算条件・境界条件

 $|x| < X_{\rm bnd}$ 、 $|y| < Y_{\rm bnd}$ の領域を解く。初期状態は以下のようなもの。サブルーチン model で設定する。ガスは、円盤部(低温ガス)とコロナ部(高温ガス)とからなる。次のような重力・温度・プラズマベータ分布のもとでの力学平衡で圧力分布を決める。

$$g_x = 0$$
, $g_y = -\frac{1}{\gamma} \tanh(y/w_g)$

これは、y 方向一様な強さの重力が、y=0 の面に垂直に分布していることを示す。

$$T = 1 + \frac{1}{2}(T_{\text{cor}} - 1) \left[\tanh\left(\frac{|y| - y_{\text{tr}}}{w_{\text{tr}}}\right) + 1 \right]$$

これは、 $|y| < y_{\rm tr}$ に低温ガス(T=1)、 $|y| > y_{\rm tr}$ に高温ガス($T=T_{\rm cor}$)が分布していることを表す。

$$\alpha = \left|\alpha_0 \frac{1}{2} \left[\tanh \frac{y - y_{\rm f1}}{w_f} + 1\right] \frac{1}{2} \left[\tanh \frac{y - y_{\rm f2}}{w_f} + 1\right]\right|$$

これは、プラズマベータが $1/\alpha_0$ であるような磁束シートが $y_{\rm f1} < y < y_{\rm f2}$ に分布していることを表す。これらの条件のもと、密度・圧力分布は次の式を解くことで求める。

$$\frac{d}{du}[(1+\alpha)p] = \rho g_y$$

$$p = \rho T / \gamma$$

また、磁場はx成分のみとし

$$B_x = \sqrt{8\pi p\alpha}$$

$$B_y = 0$$

とする。この初期状態に以下のような速度擾乱を加える。

$$V_r = 0$$

$$V_y = a\cos\left(2\pi x/\lambda_p\right)\frac{1}{2}\left[\tanh\frac{x+3\lambda_p/4}{w_p} - \tanh\frac{x-3\lambda_p/4}{w_p}\right]\frac{1}{2}\left[\tanh\frac{y-y_{p1}}{w_p} - \tanh\frac{y-y_{p2}}{w_p}\right]$$

パラメータ	値	コード中での変数名	設定サブルーチン名
境界の位置 x 方向 $X_{ m bnd}$	50	xmax	model
境界の位置 y 方向 $Y_{ m bnd}$	25	ymax	model
比熱比 γ	5/3	gm	model
高温ガスの温度 $T_{ m cor}$	25	tcor	model
低温高温ガスの境界 $y_{ m tr}$	6	ytr	model
初期プラズマベータの逆数 $lpha_0$	5	rbetaf	model
磁束シートの範囲 y_{f1} 、 y_{f2}	-2.5, 2.5	yf1、yf2	model
擾乱の振幅 a	0.1	amp	pertub
擾乱の x 方向の波長・印加範囲 λ_p	20	xptb	pertub
擾乱の y 方向の印加範囲 $y_{p1}、y_{p2}$	-4, 4	yptb1、yptb2	pertub

表 2: おもなパラメータ

以上の式に現れた $w_{\rm tr}$ 、 w_f 、 w_g 、 w_p は数値的な振動を防ぐための遷移幅でいずれも 0.5 にとっている。 境界条件は、x 境界では周期境界。y 境界では、対称境界、すなわち V_y 、 B_y は「絶対値が等しく符号反転で鏡面配置」、 ρ 、p、 V_x 、 B_x は「絶対値・符号が等しく鏡面配置」。 サブルーチン bnd で設定する。 計算パラメータは以下の通り(表 3 参照)。

パラメータ	値	コード中での変数名	設定サブルーチン名
	83		
	00	ix	main
グリッド数 y 方向	123	jx	main
マージン	4	margin	main
終了時刻	60	tend	main
出力時間間隔	2	dtout	main
CFL 数	0.4	safety	main
進行時刻下限値	10^{-10}	dtmin	main

表 3: おもな数値計算パラメータ。マージンとは、境界の値を格納するための配列の「そで」部分の幅のこと。進行時刻下限値とは、各計算ステップの Δt の値がこの値を下回ったときに計算を強制終了するための臨界値。

5 参考文献