Введение в молекулярную биологию

Лекция 9. Клеточная сигнализация и коммуникация

Клеточная сигнализация: введение

Типы межклеточной коммуникации

Signaling cell

Target cell

Автокринная сигнализация

Паракринная сигнализация

Эндокринная сигнализация

Юкстакринная сигнализация

Синаптическая сигнализация

Мембранные рецепторы

activated

enzyme

active catalytic

domain

inactive catalytic

domain

Структура GPCR

Механизм GPCR-сигнализации

- **Зрение:** Родопсин в фоторецепторных клетках сетчатки является GPCR, отвечающим за восприятие света.
- Обоняние: Большинство обонятельных рецепторов относятся к GPCR и распознают различные запахи.
- Нейротрансмиттеры: Рецепторы для серотонина, допамина, адреналина являются GPCR и регулируют настроение, эмоции и стресс.
- Регуляция сердечной деятельности: Бета- адренорецепторы контролируют частоту сердечных сокращений и силу сокращений.

Тирозинкиназные рецепторы (ТКР)

Рецептор эпидермального фактора роста (EGFR): Важен для развития и регенерации тканей.

- Рецептор инсулина: Регулирует уровни глюкозы в крови и энергетический метаболизм.
- Рецептор тромбоцитарного фактора роста (PDGFR): Участвует в заживлении ран и развитии сосудов.
- Рецепторы факторов роста нервов (Trk-рецепторы): Критичны для выживания и функционирования нейронов.

Активация ТКР

Ионные канальные рецепторы

- Никотиновый ацетилхолиновый рецептор (nAChR): При связывании с ацетилхолином открывает канал для Na⁺ и K⁺, вызывая деполяризацию мышечной или нейронной мембраны.
- ГАМК_А-рецепторы: Связывают ү-аминомасляную кислоту (ГАМК), открывая канал для СГ, что приводит к гиперполяризации нейронов и снижению их возбудимости.
- Глутаматные рецепторы (АМРА, NMDA): Отвечают на глутамат, основной возбуждающий нейротрансмиттер в ЦНС, регулируя потоки Na⁺, K⁺ и Ca²⁺.

Внутриклеточные рецепторы

- Тип I (стероидные рецепторы):
 - Локализованы в цитоплазме.
 - Образуют гомодимеры.
 - Примеры: эстрогенный рецептор (ER), андрогенный рецептор (AR).
- Тип II (нестероидные рецепторы):
 - Постоянно находятся в ядре.
 - Образуют гетеродимеры с ретиноидным X-рецептором (RXR).
 - Примеры: рецепторы тиреоидных гормонов (TR), рецепторы витамина D (VDR).

Сигнальный путь сАМР

Путь IP3 и DAG

Регуляция кальциевых сигналов

- •Мышечное сокращение: Ca²⁺ связывается с тропонином в скелетных и сердечных мышцах, инициируя взаимодействие актина и миозина.
 - Нейротрансмиссия: Вход Са²⁺ в пресинаптические терминали вызывает экзоцитоз синаптических везикул с нейромедиаторами.
 - Секреция гормонов и ферментов: Кальциевые сигналы регулируют экзоцитоз в эндокринных и экзокринных клетках.
 - Клеточная пролиферация и дифференцировка: Са²⁺ влияет на циклин-зависимые киназы и другие факторы, контролируя клеточный цикл.

МАРК-сигнальный путь

Методы анализа

Роль в медицине

Редактирование генома

История редактирования генома

Традиционные методы генетической модификации

Инструменты редактирования генома

Сравнение технологий редактирования

Factors	ZFN	TALEN	CRISPR/Cas9	
Nuclease construction	significant	significant	simple	
In vitro testing	significant	significant	simple	
Target-efficient	limiting factor	average	good	
Off-target-efficient	high	low	low	
Target site choose	limited	limited	unlimited	
Multiple gene mutations	limited	limited	unlimited	
Designed component	protein	protein	RNA	
Essential components	zinc finger proteins +	TALE and FokI	guid RNA + Cas9 protein	
Essential components	FokI fusion protein	fusion protein		
Time consumption	long (7–15 days)	long (5–7 days)	short (1–3 days)	
Cost	high	high	low	

Механизм действия CRISPR-Cas9

Дизайн направляющих РНК

Методы доставки инструментов редактирования

Точность и офф-таргет эффекты

Этические аспекты редактирования генома

SOMATIC GENE EDITING

VS. GERMLINE GENE EDITING

Редактирование генома в медицине

Trends in Molecular Medicine

Редактирование генома в сельском хозяйстве

Суор	Vrnit	Edited general	Stage
Banana	Disease resistance (BXW, Fusarium wilt, BSV)	DMR6, BSV sequences	3,1
Cassava	Disease resistance (BB)	SWEET gene promoters	3
	Food safety (cyanide-free)	Linamarin synthase	3
	Quality (waxy starch)	GBSS1	3
Maize	Disease resistance (MLN)	C6 QTL	1
	Weed resistance (Striga)	Strigolactone	3
Potato	Disease resistance (PVYª, late blight)	elF-4E, StDMR6-1, StCHL1	2
Rice	Disease resistance (BLB, RHB)	SWEET gene promoters, AGO4, STV11	4,3
	Food safety (low arsenic and cadmium)	OsNRAMP5, OsPT8, LS1, LS2	3
	Nitrogen remobilization, and methane emission reduction	Unpublished	3
	Insect resistance ^a (BPH)	BPH resistance alleles	2
Wheat	Disease resistance (rusts, mildew) ^a	Lr67 and others	3

Вопросы и обсуждение