This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

ATTACH HY

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/12, 5/10, C07K 14/47, C12Q 1/68, A61K 38/17

A2

(11) International Publication Number:

WO 98/01554

(43) International Publication Date:

15 January 1998 (15.01.98)

(21) International Application Number:

PCT/US97/11876

(22) International Filing Date:

7 July 1997 (07.07.97)

(30) Priority Data:

08/677,231

9 July 1996 (09.07.96)

US

(71) Applicant: GENETICS INSTITUTE, INC. [US/US]; 87 CambridgePark Drive, Cambridge, MA 02140 (US).

(72) Inventors: JACOBS, Kenneth; 151 Beaumont Avenue, Newton, MA 02160 (US). MCCOY, John, M.; 56 Howard Street, Reading, MA 01867 (US). LAVALLIE, Edward, R.; 90 Grean Meadow Drive, Tewksbury, MA 01876 (US). RACIE, Lisa, A.; 124 School Street, Acton, MA 01720 (US). MERBERG, David; 2 Orchard Drive, Acton, MA 01720 (US). TREACY, Maurice; 93 Walcoot Road, Chestnut Hill, MA 02167 (US). EVANS, Cheryl; 111 Locust Street #41, Woburn, MA 01801 (US). SPAULDING, Vikki; 11 Meadowbank Road, Billerica, MA 01821 (US). BOWMAN, Michael; 50 Aldrich Road, Canton, MA 02021 (US).

(74) Agent: SPRUNGER, Suzanne, A.; Genetics Institute, Inc., 87 CambridgePark Drive, Cambridge, MA 02140 (US). (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: SECRETED PROTEINS AND POLYNUCLEOTIDES ENCODING THEM

(57) Abstract

Novel polynucleotides and the proteins encoded thereby are disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES.	Spain	LS	Leootho	SI	Slovenia
AM.	Armenia	Ft	Finland	LT	Lithumin	SK	Slovakia
AT	Austria	FR	Prence	LU	Lexembourg	SN	Senegal
UA	Australia	GA	Gaboa	LV	Lavia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Moneco	TD	Ched
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Тово
BB	Borbedes	GH	Chann	MG	Medagencor	ŤĴ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BP	Burking Page	GR	Greece		Republic of Mecedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Moli	TT	•
BJ	Benin	ie	Irekind	MN	Mongolia	ÜA	Trinided and Tobago Ukraine
BR	Brozil	IL	kreel	MR	Mcuritonio	UG	Uganda
BY	Behrus	IS	lceland	WW	Malawi	US	•
CA	Canada	IT	Italy	MX	Mexico	UZ	United States of America Uzbekiston
CF	Central African Republic	JP	Jepan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	
CH	Switzerland	KG	Kyrgyzston	NO	Norway	2W	Yngoslavia
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	ZW	Zimbabwe
CM	Comercoa		Republic of Korea	PL	Polend		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazrketra	RO	Romania		
CZ	Czech Republic	LC	Saint Legio	RU	Rusian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lenko	SE	Sweden		
EE	Estonia	LR	Liberio	SG	Singepore		

SECRETED PROTEINS AND POLYNUCLEOTIDES ENCODING THEM

FIELD OF THE INVENTION

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins.

BACKGROUND OF THE INVENTION

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons. CSFs and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning: activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity by virtue of their secreted nature in the case of leader sequence cloning, or by virtue of the cell or tissue source in the case of PCR-based techniques. It is to these proteins and the polynucleotides encoding them that the present invention is directed.

25

30

20

5

10

SUMMARY OF THE INVENTION

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:2;
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:2 from nucleotide 210 to nucleotide 552:
 - (c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:2 from nucleotide 297 to nucleotide 552;
- (d) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone BF245_1 deposited under accession number ATCC 98101:

5

10

30

- (e) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone BF245_1 deposited under accession number ATCC 98101;
- (f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BF245_I deposited under accession number ATCC 98101;
- (g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BF245_1 deposited under accession number ATCC 98101:
- (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:3;
- (i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:3 having biological activity;
- (j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above:
- (k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above.

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:2 from nucleotide 210 to nucleotide 552; the nucleotide sequence of SEQ ID NO:2 from nucleotide 297 to nucleotide 552; the nucleotide sequence of the full length protein coding sequence of clone BF245_1 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone BF245_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full length or mature protein encoded by the cDNA insert of clone BF245_1 deposited under accession number ATCC 98101.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:2. SEQ ID NO:1 or SEQ ID NO:4.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

- (a) the amino acid sequence of SEQ ID NO:3:
- (b) fragments of the amino acid sequence of SEQ ID NO:3; and
- (c) the amino acid sequence encoded by the cDNA insert of clone BF245_1 deposited under accession number ATCC 98101; the protein being substantially free from other mammalian proteins. Preferably such protein

comprises the amino acid sequence of SEQ ID NO:3.

In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:

(a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:6;

5

- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:6 from nucleotide 31 to nucleotide 180;
- (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone AX92_3 deposited under accession number ATCC 98101;

10

- (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone AX92_3 deposited under accession number ATCC 98101;
- (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AX92_3 deposited under accession number ATCC 98101:

15

- (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AX92_3 deposited under accession number ATCC 98101;
- (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:7;

20

- (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:7 having biological activity;
- (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)(d) above:
- (j) a polynucleotide which encodes a species homologue of the proteinof (g) or (h) above.

25 Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:6 from nucleotide 31 to nucleotide 180; the nucleotide sequence of the full length protein coding sequence of clone AX92_3 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone AX92_3 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full length or mature protein encoded by the cDNA insert of clone AX92_3 deposited under

accession number ATCC 98101.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:6, SEQ ID NO:5 or SEQ ID NO:8.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

- (a) the amino acid sequence of SEQ ID NO:7;
- 5 (b) fragments of the amino acid sequence of SEQ ID NO:7; and
 - (c) the amino acid sequence encoded by the cDNA insert of clone AX92_3 deposited under accession number ATCC 98101;

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:7.

In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:

15

20

25

30

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:9;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:9 from nucleotide 477 to nucleotide 752;
 - (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone AX56_8 deposited under accession number ATCC 98101;
 - (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone AX56_8 deposited under accession number ATCC 98101;
 - (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AX56_8 deposited under accession number ATCC 98101;
 - (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AX56_8 deposited under accession number ATCC 98101;
 - (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ'ID NO:10;
 - (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:10 having biological activity;
 - (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)(d) above;
 - (j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above.

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:9 from nucleotide 477 to nucleotide 752; the nucleotide sequence of the full length protein

coding sequence of clone AX56_8 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone AX56_8 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full length or mature protein encoded by the cDNA insert of clone AX56_8 deposited under accession number ATCC 98101.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:9.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

(a) the amino acid sequence of SEQ ID NO:10;

10

25

30

- (b) fragments of the amino acid sequence of SEQ ID NO:10: and
- (c) the amino acid sequence encoded by the cDNA insert of clone AX56_8 deposited under accession number ATCC 98101;
- the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:10.

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:12:
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:12 from nucleotide 262 to nucleotide 594;
 - (c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:12 from nucleotide 367 to nucleotide 594;
 - (d) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone AS209_1 deposited under accession number ATCC 98101;
 - (e) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101;
 - (f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AS209_1 deposited under accession number ATCC 98101:
 - (g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101;

(h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:13:

- (i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:13 having biological activity;
- (j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above:

10

15

20

(k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above.

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:12 from nucleotide 262 to nucleotide 594; the nucleotide sequence of SEQ ID NO:12 from nucleotide 367 to nucleotide 594; the nucleotide sequence of the full length protein coding sequence of clone AS209_1 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone AS209_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full length or mature protein encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:13 from amino acid 1 to amino acid 40.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:12, SEQ ID NO:11 or SEQ ID NO:14.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

- (a) the amino acid sequence of SEQ ID NO:13:
- 25 (b) the amino acid sequence of SEQ ID NO:13 from amino acid 1 to amino acid 40;
 - (c) fragments of the amino acid sequence of SEQ ID NO:13; and
 - (d) the amino acid sequence encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101;
- the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:13 or the amino acid sequence of SEQ ID NO:13 from amino acid 1 to amino acid 40.

5

10

15

20

25

30

35

(a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:15;

- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:15 from nucleotide 220 to nucleotide 338;
- (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone AK684_1 deposited under accession number ATCC 98101;
- (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone AK684_1 deposited under accession number ATCC 98101;
- (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AK684_1 deposited under accession number ATCC 98101;
- (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AK684_1 deposited under accession number ATCC 98101:
- (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:16;
- (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:16 having biological activity:
- (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(d) above;
- (j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above.

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:15 from nucleotide 220 to nucleotide 338; the nucleotide sequence of the full length protein coding sequence of clone AK684_1 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone AK684_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full length or mature protein encoded by the cDNA insert of clone AK684_1 deposited under accession number ATCC 98101.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:15 or SEQ ID NO:.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

(a) the amino acid sequence of SEQ ID NO:16:

(b) fragments of the amino acid sequence of SEQ ID NO:16; and

(c) the amino acid sequence encoded by the cDNA insert of clone AK684_1 deposited under accession number ATCC 98101;

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:16.

In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:

(a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:18;

10

- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:18 from nucleotide 196 to nucleotide 501;
- (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone AJ168_4 deposited under accession number ATCC 98101;

15

- (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone AJ168_4 deposited under accession number ATCC 98101;
- (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AJ168_4 deposited under accession number ATCC 98101;

20

25

- (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AJ168_4 deposited under accession number ATCC 98101;
- (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:19:
- (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:19 having biological activity;
 - (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(d) above;
 - (j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above.

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:18 from nucleotide 196 to nucleotide 501: the nucleotide sequence of the full length protein coding sequence of clone AJ168_4 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone AJ168_4 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes

the full length or mature protein encoded by the cDNA insert of clone AJ168_4 deposited under accession number ATCC 98101.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:18.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

(a) the amino acid sequence of SEQ ID NO:19;

5

20

25

30

35

(b) fragments of the amino acid sequence of SEQ ID NO:19; and

(c) the amino acid sequence encoded by the cDNA insert of clone AJ168_4 deposited under accession number ATCC 98101;

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:19.

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:21;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:21 from nucleotide 612 to nucleotide 671;
- (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101;
- (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone AJ143_1 deposited under accession number ATCC 98101;
- (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101;
- (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AJ143_1 deposited under accession number ATCC 98101:
- (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:22;
- (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:22 having biological activity;
- (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(d) above:

(j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above.

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:21 from nucleotide 612 to nucleotide 671; the nucleotide sequence of the full length protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full length or mature protein encoded by the cDNA insert of clone AJ143_1 deposited under accession number ATCC 98101.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:21 or SEQ ID NO:.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

15

20

10

- (a) the amino acid sequence of SEQ ID NO:22:
- (b) fragments of the amino acid sequence of SEQ ID NO:22; and
- (c) the amino acid sequence encoded by the cDNA insert of clone AJ143_1 deposited under accession number ATCC 98101;

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:22.

In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:23;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:23 from nucleotide 404 to nucleotide 634;
 - (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone AC41_1 deposited under accession number ATCC 98101;

30

- (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone AC41_1 deposited under accession number ATCC 98101;
- (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AC41_1 deposited under accession number ATCC 98101;

(f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AC41_1 deposited under accession number ATCC 98101;

- (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:24;
- (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:24 having biological activity:
- (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)(d) above:
- (j) a polynucleotide which encodes a species homologue of the proteinof (g) or (h) above.

5

25

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:23 from nucleotide 404 to nucleotide 634; the nucleotide sequence of the full length protein coding sequence of clone AC41_1 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone AC41_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full length or mature protein encoded by the cDNA insert of clone AC41_1 deposited under accession number ATCC 98101. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:24 from amino acid 1 to amino acid 66.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:23 or SEQ ID NO:.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

- (a) the amino acid sequence of SEQ ID NO:24:
- (b) the amino acid sequence of SEQ ID NO:24 from amino acid 1 to amino acid 66;
 - (c) fragments of the amino acid sequence of SEQ ID NO:24; and
- (d) the amino acid sequence encoded by the cDNA insert of clone

 AC41_1 deposited under accession number ATCC 98101;

 the protein being substantially free from other mammalian proteins. Preferably such protein

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:24 or the amino acid sequence of SEQ ID NO:24 from amino acid 1 to amino acid 66.

5

10

15

20

25

30

(a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:26;

- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:26 from nucleotide 161 to nucleotide 553;
- (c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:26 from nucleotide 218 to nucleotide 553;
- (d) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone AC222_1 deposited under accession number ATCC 98101;
- (e) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC 98101;
 - (f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AC222_I deposited under accession number ATCC 98101;
 - (g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC 98101;
 - (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:27;
 - (i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:27 having biological activity;
 - (j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above;
 - (k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above.
- Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:26 from nucleotide 161 to nucleotide 553; the nucleotide sequence of SEQ ID NO:26 from nucleotide 218 to nucleotide 553; the nucleotide sequence of the full length protein coding sequence of clone AC222_1 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone AC222_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full length or mature protein encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC 98101. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:27 from amino acid 1 to amino acid 92.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:26 or SEQ ID NO:.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

(a) the amino acid sequence of SEQ ID NO:27;

5

20

25

30

- (b) the amino acid sequence of SEQ ID NO:27 from amino acid 1 to amino acid 92:
 - (c) fragments of the amino acid sequence of SEQ ID NO:27; and

(d) the amino acid sequence encoded by the cDNA insert of clone AC222_1 deposited under accession number ATCC 98101;

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:27 or the amino acid sequence of SEQ ID NO:27 from amino acid 1 to amino acid 92.

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:29:
- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:29 from nucleotide 61 to nucleotide 693;
 - (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone O289_1 deposited under accession number ATCC 98101:
 - (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone O289_1 deposited under accession number ATCC 98101;
 - (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone O289_1 deposited under accession number ATCC 98101;
- (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone O289_1 deposited under accession number ATCC 98101;
 - (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:30;
 - (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:30 having biological activity;

(i) a polynucleotide which is an allelic variant of a polynucleotide of (a)(d) above:

(j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above.

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:29 from nucleotide 61 to nucleotide 693; the nucleotide sequence of the full length protein coding sequence of clone O289_1 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone O289_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full length or mature protein encoded by the cDNA insert of clone O289_1 deposited under accession number ATCC 98101. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:30 from amino acid 91 to amino acid 130.

5

10

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:29 or SEQ ID NO:.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

- (a) the amino acid sequence of SEQ ID NO:30;
- 20 (b) the amino acid sequence of SEQ ID NO:30 from amino acid 91 to amino acid 130;
 - (c) fragments of the amino acid sequence of SEQ ID NO:30; and
 - (d) the amino acid sequence encoded by the cDNA insert of clone O289_1 deposited under accession number ATCC 98101;
- the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:30 or the amino acid sequence of SEQ ID NO:30 from amino acid 91 to amino acid 130.

- 30 (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:32;
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:32 from nucleotide 165 to nucleotide 857;

5

10

15

- (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone J317_1 deposited under accession number ATCC 98101;
- (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone J317_1 deposited under accession number ATCC 98101;
- (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone J317_1 deposited under accession number ATCC 98101;
- (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone J317_1 deposited under accession number ATCC 98101:
- (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:33:
- (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:33 having biological activity;
- (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(d) above;
- (j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above.

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:32 from nucleotide 165 to nucleotide 857; the nucleotide sequence of the full length protein coding sequence of clone J317_1 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone J317_1 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full length or mature protein encoded by the cDNA insert of clone J317_1 deposited under accession number ATCC 98101. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:33 from amino acid 5 to amino acid 115.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:32 or SEQ ID NO:.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

- (a) the amino acid sequence of SEQ ID NO:33;
- (b) the amino acid sequence of SEQ ID NO:33 from amino acid 5 to amino acid 115;

(c) fragments of the amino acid sequence of SEQ ID NO:33; and

(d) the amino acid sequence encoded by the cDNA insert of clone J317_1 deposited under accession number ATCC 98101;

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:33 or the amino acid sequence of SEQ ID NO:33 from amino acid 5 to amino acid 115.

In one embodiment, the present invention provides a composition comprising an isolated polynucleotide selected from the group consisting of:

(a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:35;

15

20

25

35

- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:35 from nucleotide 290 to nucleotide 652;
- (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone BG33_7 deposited under accession number ATCC 98101;
- (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone BG33_7 deposited under accession number ATCC 98101;
- (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BG33_7 deposited under accession number ATCC 98101;
- (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BG33_7 deposited under accession number ATCC 98101;
- (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:36;
- (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:36 having biological activity;
- (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)(d) above:
- (j) a polynucleotide which encodes a species homologue of the protein30 of (g) or (h) above .

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:35 from nucleotide 290 to nucleotide 652; the nucleotide sequence of the full length protein coding sequence of clone BG33_7 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone BG33_7 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes

the full length or mature protein encoded by the cDNA insert of clone BG33_7 deposited under accession number ATCC 98101.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:35 or SEQ ID NO:.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

(a) the amino acid sequence of SEQ ID NO:36:

5

20

25

30

35

(b) fragments of the amino acid sequence of SEQ ID NO:36; and

10 (c) the amino acid sequence encoded by the cDNA insert of clone BG33_7 deposited under accession number ATCC 98101;

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:36.

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:38:
- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:38 from nucleotide 281 to nucleotide 621:
- (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone BM46_3 deposited under accession number ATCC 98101;
- (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone BM46_3 deposited under accession number ATCC 98101;
- (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BM46_3 deposited under accession number ATCC 98101:
- (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BM46_3 deposited under accession number ATCC 98101;
- (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:39;
- (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:39 having biological activity;
- (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)(d) above:

(j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above.

Preferably, such polynucleotide comprises the nucleotide sequence of SEQ ID NO:38 from nucleotide 281 to nucleotide 621; the nucleotide sequence of the full length protein coding sequence of clone BM46_3 deposited under accession number ATCC 98101; or the nucleotide sequence of the mature protein coding sequence of clone BM46_3 deposited under accession number ATCC 98101. In other preferred embodiments, the polynucleotide encodes the full length or mature protein encoded by the cDNA insert of clone BM46_3 deposited under accession number ATCC 98101. In yet other preferred embodiments, the present invention provides a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:39 from amino acid 1 to amino acid 79.

Other embodiments provide the gene corresponding to the cDNA sequence of SEQ ID NO:38 or SEQ ID NO:.

In other embodiments, the present invention provides a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:

- (a) the amino acid sequence of SEQ ID NO:39:
- (b) the amino acid sequence of SEQ ID NO:39 from amino acid 1 to amino acid 79;

20

30

35

10

- (c) fragments of the amino acid sequence of SEQ ID NO:39; and
- (d) the amino acid sequence encoded by the cDNA insert of clone BM46_3 deposited under accession number ATCC 98101:

the protein being substantially free from other mammalian proteins. Preferably such protein comprises the amino acid sequence of SEQ ID NO:39 or the amino acid sequence of SEQ ID NO:39 from amino acid 1 to amino acid 79.

In certain preferred embodiments, the polynucleotide is operably linked to an expression control sequence. The invention also provides a host cell, including bacterial, yeast, insect and mammalian cells, transformed with such polynucleotide compositions.

Processes are also provided for producing a protein, which comprise:

- (a) growing a culture of the host cell transformed with such polynucleotide compositions in a suitable culture medium; and
 - (b) purifying the protein from the culture.

The protein produced according to such methods is also provided by the present invention. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.

Protein compositions of the present invention may further comprise a pharmaceutically acceptable carrier. Compositions comprising an antibody which specifically reacts with such protein are also provided by the present invention.

Methods are also provided for preventing, treating or ameliorating a medical condition which comprises administering to a mammalian subject a therapeutically effective amount of a composition comprising a protein of the present invention and a pharmaceutically acceptable carrier.

BRIEF DESCRIPTION OF FIGURES

Fig. 1 is an autoradiograph evidencing the expression of the following clone(s) disclosed herein, BG33_7.

DETAILED DESCRIPTION

ISOLATED PROTEINS AND POLYNUCLEOTIDES

15

20

25

30

35

Nucleotide and amino acid sequences are reported below for each clone and protein disclosed in the present application. In some instances the sequences are preliminary and may include some incorrect or ambiguous bases or amino acids. The actual nucleotide sequence of each clone can readily be determined by sequencing of the deposited clone in accordance with known methods. The predicted amino acid sequence (both full length and mature) can then be determined from such nucleotide sequence. The amino acid sequence of the protein encoded by a particular clone can also be determined by expression of the clone in a suitable host cell, collecting the protein and determining its sequence.

For each disclosed protein applicants have identified what they have determined to be the reading frame best identifiable with sequence information available at the time of filing. Because of the partial ambiguity in reported sequence information, reported protein sequences include "Xaa" designators. These "Xaa" designators indicate either (1) a residue which cannot be identified because of nucleotide sequence ambiguity or (2) a stop codon in the determined nucleotide sequence where applicants believe one should not exist (if the nucleotide sequence were determined more accurately).

As used herein a "secreted" protein is one which, when expressed in a suitable host cell, is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins which are transported across the membrane of the endoplpasmic reticulum.

Clone "BF245_1"

10

15

20

30

A polynucleotide of the present invention has been identified as clone "BF245_1". BF245_1 was isolated from a human fetal brain cDNA library using methods which are selective for cDNAs encoding secreted proteins. BF245_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "BF245_1 protein").

The nucleotide sequence of the 5' portion of BF245_1 as presently determined is reported in SEQ ID NO:1. An additional internal nucleotide sequence from BF245_1 as presently determined is reported in SEQ ID NO:2. What applicants believe is the proper reading frame and the predicted amino acid sequence encoded by such internal sequence is reported in SEQ ID NO:3. Amino acids 1 to 29 of SEQ ID NO:3 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 30. Additional nucleotide sequence from the 3' portion of BF245_1, including the polyA tail, is reported in SEQ ID NO:4.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone BF245_1 should be approximately 1500 bp.

The nucleotide sequence disclosed herein for BF245_1 was searched against the GenBank database using BLASTA/BLASTX and FASTA search protocols. BF245_1 demonstrated at least some homology with an EST identified as "yc91h04.s1 Homo sapiens cDNA clone 23509 3" (R39256, BlastN) and a human mRNA identified as "KIAA0052" (D29641 (Fasta). Based upon homology, BF245_1 proteins and each homologous protein or peptide may share at least some activity.

Clone "AX92_3"

A polynucleotide of the present invention has been identified as clone "AX92_3". AX92_3 was isolated from a human adult testes cDNA library using methods which are selective for cDNAs encoding secreted proteins. AX92_3 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AX92_3 protein").

The nucleotide sequence of the 5' portion of AX92_3 as presently determined is reported in SEQ ID NO:5. An additional internal nucleotide sequence from AX92_3 as presently determined is reported in SEQ ID NO:6. What applicants believe is the proper reading frame and the predicted amino acid sequence encoded by such internal sequence is reported in SEQ ID NO:7. Additional nucleotide sequence from the 3' portion of AX92_3, including the polyA tail, is reported in SEQ ID NO:8.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AX92_3 should be approximately 1500 bp.

The nucleotide sequence disclosed herein for AX92_3 was searched against the GenBank database using BLASTA/BLASTX and FASTA search protocols. No hits were found in the database.

5 Clone "AX56 8"

A polynucleotide of the present invention has been identified as clone "AX56_8". AX56_8 was isolated from a human adult testes cDNA library using methods which are selective for cDNAs encoding secreted proteins. AX56_8 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AX56_8 protein").

The nucleotide sequence of AX56_8 as presently determined is reported in SEQ ID NO:9. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AX56_8 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:10.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AX56_8 should be approximately 730 bp.

The nucleotide sequence disclosed herein for AX56_8 was searched against the GenBank database using BLASTA/BLASTX and FASTA search protocols. No hits were found in the database. The amino acid sequence of AX56_8 indicates that it may have some homology with chicken cytotactin.

20

25

30

10

Clone "AS209 1"

A polynucleotide of the present invention has been identified as clone "AS209_1". AS209_1 was isolated from a human fetal brain cDNA library using methods which are selective for cDNAs encoding secreted proteins. AS209_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AS209_1 protein").

The nucleotide sequence of the 5' portion of AS209_1 as presently determined is reported in SEQ ID NO:11. An additional internal nucleotide sequence from AS209_1 as presently determined is reported in SEQ ID NO:12. What applicants believe is the proper reading frame and the predicted amino acid sequence encoded by such internal sequence is reported in SEQ ID NO:13. Amino acids 1 to 35 of SEQ ID NO:13 are a predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 36. Additional nucleotide sequence from the 3' portion of AS209_1, including the polyA tail, is reported in SEQ ID NO:14.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AS209_1 should be approximately 3320 bp.

The nucleotide sequence disclosed herein for AS209_1 was searched against the GenBank database using BLASTA/BLASTX and FASTA search protocols. No hits were found in the database.

5 <u>Clone "AK684_1"</u>

A polynucleotide of the present invention has been identified as clone "AK684_1". AK684_1 was isolated from a human fetal kidney cDNA library using methods which are selective for cDNAs encoding secreted proteins. AK684_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AK684_1 protein").

The nucleotide sequence of the 5' portion of AK684_1 as presently determined is reported in SEQ ID NO:15. What applicants presently believe is the proper reading frame for the coding region is indicated in SEQ ID NO:16. The predicted acid sequence of the AK684_1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:16. Additional nucleotide sequence from the 3' portion of AK684_1, including the polyA tail, is reported in SEQ ID NO:17.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AK684_1 should be approximately 1078 bp.

The nucleotide sequence disclosed herein for AK684_1 was searched against the GenBank database using BLASTA/BLASTX and FASTA search protocols. No hits were found in the database.

Clone "AJ168_4"

20

25

30

A polynucleotide of the present invention has been identified as clone "AJ168_4". AJ168_4 was isolated from a human adult testes cDNA library using methods which are selective for cDNAs encoding secreted proteins. AJ168_4 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AJ168_4 protein").

The nucleotide sequence of AJ168_4 as presently determined is reported in SEQ ID NO:18. What applicants presently believe to be the proper reading frame and the predicted amino acid sequence of the AJ168_4 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:19.

The nucleotide sequence disclosed herein for AJ168_4 was searched against the GenBank database using BLASTA/BLASTX and FASTA search protocols. AJ168_4 demonstrated at least some homology with an EST identified as "yc79c02.s1 Homo sapiens

cDNA clone 22106 3" (T65223, BlastN). Based upon homology, AJ168_4 proteins and each homologous protein or peptide may share at least some activity.

Clone "AJ143_1"

5

10

15

20

25

30

A polynucleotide of the present invention has been identified as clone "AJ143_1". AJ143_1 was isolated from a human adult testes cDNA library using methods which are selective for cDNAs encoding secreted proteins. AJ143_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AJ143_1 protein").

The partial nucleotide sequence of AJ143_1, including its 3' end and any identified polA tail, as presently determined is reported in SEQ ID NO:21. What applicants presently believe is the proper reading frame for the coding region is indicated in SEQ ID NO:22. The predicted acid sequence of the AJ143_1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:22. Additional nucleotide sequence from the 5' portion of AJ143_1 is reported in SEQ ID NO:20.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AJ143_1 should be approximately 1350 bp.

The nucleotide sequence disclosed herein for AJ143_1 was searched against the GenBank database using BLASTA/BLASTX and FASTA search protocols. No hits were found in the database. The amino acid sequence of AJ143_1 indicates that it may show some similarity to phosphoenolpyruvate phosphomutase.

Clone "AC41_1"

A polynucleotide of the present invention has been identified as clone "AC41_1". AC41_1 was isolated from a human adult placenta cDNA library using methods which are selective for cDNAs encoding secreted proteins. AC41_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AC41_1 protein").

The nucleotide sequence of the 5' portion of AC41_1 as presently determined is reported in SEQ ID NO:23. What applicants presently believe is the proper reading frame for the coding region is indicated in SEQ ID NO:24. The predicted acid sequence of the AC41_1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:24. Additional nucleotide sequence from the 3' portion of AC41_1, including the polyA tail, is reported in SEQ ID NO:25.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AC41_1 should be approximately 2500 bp.

The nucleotide sequence disclosed herein for AC41_1 was searched against the GenBank database using BLASTA/BLASTX and FASTA search protocols. AC41_1 demonstrated at least some homology with rat developmentally regulated protein (L20319, BlastN). Based upon homology, AC41_1 proteins and each homologous protein or peptide may share at least some activity.

Clone "AC222 1"

A polynucleotide of the present invention has been identified as clone "AC222_1". AC222_1 was isolated from a human adult placenta cDNA library using methods which are selective for cDNAs encoding secreted proteins. AC222_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "AC222_1 protein").

The nucleotide sequence of the 5' portion of AC222_1 as presently determined is reported in SEQ ID NO:26. What applicants presently believe is the proper reading frame for the coding region is indicated in SEQ ID NO:27. The predicted acid sequence of the AC222_1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:27. Amino acids 1 to 19 are the predicted leader/signal sequence, with the predicted mature amino acid sequence beginning at amino acid 20. Additional nucleotide sequence from the 3' portion of AC222_1, including the polyA tail, is reported in SEQ ID NO:28.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone AC222_1 should be approximately 1400 bp.

The nucleotide sequence disclosed herein for AC222_1 was searched against the GenBank database using BLASTA/BLASTX and FASTA search protocols. AC222_1 demonstrated at least some homology with a chicken proteoglycan core protein, proteoglycan-Lb (D10485, BlastX). Based upon homology, AC222_1 proteins and each homologous protein or peptide may share at least some activity.

Clone "O289 1"

25

35

A polynucleotide of the present invention has been identified as clone "O289_1". O289_1 was isolated from a human dendritic cell cDNA library using methods which are selective for cDNAs encoding secreted proteins. O289_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "O289_1 protein").

The nucleotide sequence of the 5' portion of O289_1 as presently determined is reported in SEQ ID NO:29. What applicants presently believe is the proper reading frame for the coding region is indicated in SEQ ID NO:30. The predicted acid sequence of the O289_1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:30.

Additional nucleotide sequence from the 3' portion of O289_1, including the polyA tail, is reported in SEQ ID NO:31.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone O289_1 should be approximately 800 bp.

The nucleotide sequence disclosed herein for O289_1 was searched against the GenBank database using BLASTA/BLASTX and FASTA search protocols. No hits were found in the database.

Clone "J317_1"

5

10

15

20

25

A polynucleotide of the present invention has been identified as clone "J317_1". J317_1 was isolated from a human PBMC cDNA library using methods which are selective for cDNAs encoding secreted proteins. J317_1 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "J317_1 protein").

The nucleotide sequence of the 5' portion of J317_1 as presently determined is reported in SEQ ID NO:32. What applicants presently believe is the proper reading frame for the coding region is indicated in SEQ ID NO:33. The predicted acid sequence of the J317_1 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:33. Additional nucleotide sequence from the 3' portion of J317_1, including the polyA tail, is reported in SEQ ID NO:34.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone J317_1 should be approximately 1350 bp.

The nucleotide sequence disclosed herein for J317_1 was searched against the GenBank database using BLASTA/BLASTX and FASTA search protocols. J317_1 demonstrated at least some identity with EST identified as "ye06h06.r1 Homo sapiens cDNA clone 116987 5" (T93953, BlastN), "yx58f09.s1 Homo sapiens cDNA clone 265961 3" (N21491, BlastN) and "yd08h03.s1 Homo sapiens cDNA clone 25214 3" (R39024, BlastN). Based upon identity, J317_1 proteins and each identical protein or peptide may share at least some activity.

30 Clone "BG33 7"

A polynucleotide of the present invention has been identified as clone "BG33_7". BG33_7 was isolated from a human adult brain cDNA library using methods which are selective for cDNAs encoding secreted proteins. BG33_7 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "BG33_7 protein").

The nucleotide sequence of the 5' portion of BG33_7 as presently determined is reported in SEQ ID NO:35. What applicants presently believe is the proper reading frame for the coding region is indicated in SEQ ID NO:36. The predicted acid sequence of the BG33_7 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:36.

Additional nucleotide sequence from the 3' portion of BG33_7, including the polyA tail, is reported in SEQ ID NO:37.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone BG33_7 should be approximately 1080 bp.

The nucleotide sequence disclosed herein for BG33_7 was searched against the GenBank database using BLASTA/BLASTX and FASTA search protocols. No hits were found in the database.

Clone "BM46 3"

A polynucleotide of the present invention has been identified as clone "BM46_3". BM46_3 was isolated from a human adult muscle cDNA library using methods which are selective for cDNAs encoding secreted proteins. BM46_3 is a full-length clone, including the entire coding sequence of a secreted protein (also referred to herein as "BM46_3 protein").

The nucleotide sequence of the 5' portion of BM46_3 as presently determined is reported in SEQ ID NO:38. What applicants presently believe is the proper reading frame for the coding region is indicated in SEQ ID NO:39. The predicted acid sequence of the BM46_3 protein corresponding to the foregoing nucleotide sequence is reported in SEQ ID NO:39. Additional nucleotide sequence from the 3' portion of BM46_3, including the polyA tail, is reported in SEQ ID NO:40.

The EcoRI/NotI restriction fragment obtainable from the deposit containing clone BM46_3 should be approximately 3600 bp.

The nucleotide sequence disclosed herein for BM46_3 was searched against the GenBank database using BLASTA/BLASTX and FASTA search protocols. BM46_3 demonstrated at least some identity with ESTs identified as "zb43c09.s1 Homo sapiens cDNA clone 306352 3" (N79027, BlastN) and "H. sapiens EST sequence 008-X" (F19321, Fasta). Based upon identity, BM46_3 proteins and each identical protein or peptide may share at least some activity.

Fig. I is an autoradiograph evidencing expression of clones of the present invention.

All clones were expressed in COS cells.

30

20

Deposit of Clones

10

15

Clones BF245_1, AX92_3, AX56_8, AS209_1, AK684_1, AJ168_4, AJ143_1, AC41_1, AC222_1, O289_1, J317_1, BG33_7 and BM46_3 were deposited on July 9, 1996 with the American Type Culture Collection under accession number ATCC 98101, from which each clone comprising a particular polynucleotide is obtainable. Each clone has been transfected into separate bacterial cells (*E. coli*) in this composite deposit. Each clone can be removed from the vector in which it was deposited by performing an EcoRI/NotI digestion (5' cite, EcoRI; 3' cite, NotI) to produce the appropriately sized fragment for such clone (approximate clone size fragment are identified below). Bacterial cells containing a particular clone can be obtained from the composite deposit as follows:

An oligonucleotide probe or probes should be designed to the sequence that is known for that particular clone. This sequence can be derived from the sequences provided herein, or from a combination of those sequences. The sequence of the oligonucleotide probe that was used to isolate each full-length clone is identified below, and should be most reliable in isolating the clone of interest.

	Clone	Probe Sequence
	BF245_1	SEQ ID NO:41
	AX92_3	SEQ ID NO:42
20	AX56_8	SEQ ID NO:43
	AS209_1	SEQ ID NO:44
	AK684_1	SEQ ID NO:45
	AJ168_4	SEQ ID NO:46
	AJ143_1	SEQ ID NO:47
25	AC41_1	SEQ ID NO:48
	AC222_1	SEQ ID NO:49
	O289_I	SEQ ID NO:50
	J317_1	SEQ ID NO:51
	BG33_7	SEQ ID NO:52
30	BM46_3	SEQ ID NO:53

In the sequences listed above which include an N at position 2, that position is occupied in preferred probes/primers by a biotinylated phosphoaramidite residue rather than a nucleotide (such as, for example, that produced by use of biotin phosphoramidite (1-dimethoxytrityloxy-

2-(N-biotinyl-4-aminobutyl)-propyl-3-O-(2-cyanoethyl)-(N.N-diisopropyl)-phosphoramadite) (Glen Research, cat. no. 10-1953)).

The design of the oligonucleotide probe should preferably follow these parameters:

(a) It should be designed to an area of the sequence which has the fewest ambiguous bases ("N's"), if any;

5

10

15

20

30

35

(b) It should be designed to have a T_m of approx. 80 ° C (assuming 2° for each A or T and 4 degrees for each G or C).

The oligonucleotide should preferably be labeled with g-32P ATP (specific activity 6000 Ci/mmole) and T4 polynucleotide kinase using commonly employed techniques for labeling oligonucleotides. Other labeling techniques can also be used. Unincorporated label should preferably be removed by gel filtration chromatography or other established methods. The amount of radioactivity incorporated into the probe should be quantitated by measurement in a scintillation counter. Preferably, specific activity of the resulting probe should be approximately 4e+6 dpm/pmole.

The bacterial culture containing the pool of full-length clones should preferably be thawed and 100 µl of the stock used to inoculate a sterile culture flask containing 25 ml of sterile L-broth containing ampicillin at 100 µg/ml. The culture should preferably be grown to saturation at 37°C, and the saturated culture should preferably be diluted in fresh L-broth. Aliquots of these dilutions should preferably be plated to determine the dilution and volume which will yield approximately 5000 distinct and well-separated colonies on solid bacteriological media containing L-broth containing ampicillin at 100 µg/ml and agar at 1.5% in a 150 mm petri dish when grown overnight at 37°C. Other known methods of obtaining distinct, well-separated colonies can also be employed.

Standard colony hybridization procedures should then be used to transfer the colonies to nitrocellulose filters and lyse, denature and bake them.

The filter is then preferably incubated at 65°C for 1 hour with gentle agitation in 6X SSC (20X stock is 175.3 g NaCVliter, 88.2 g Na citrate/liter, adjusted to pH 7.0 with NaOH) containing 0.5% SDS, 100 µg/ml of yeast RNA, and 10 mM EDTA (approximately 10 mL per 150 mm filter). Preferably, the probe is then added to the hybridization mix at a concentration greater than or equal to 1e+6 dpm/mL. The filter is then preferably incubated at 65°C with gentle agitation overnight. The filter is then preferably washed in 500 mL of 2X SSC/0.5% SDS at room temperature without agitation, preferably followed by 500 mL of 2X SSC/0.1% SDS at room temperature with gentle shaking for 15 minutes. A third wash with 0.1X SSC/0.5% SDS at 65°C for 30 minutes to 1 hour is optional. The filter is then preferably dried

and subjected to autoradiography for sufficient time to visualize the positives on the X-ray film. Other known hybridization methods can also be employed.

The positive colonies are picked, grown in culture, and plasmid DNA isolated using standard procedures. The clones can then be verified by restriction analysis, hybridization analysis, or DNA sequencing.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H.U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R.S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites. For example, fragments of the protein may be fused through "linker" sequences to the Fc portion of an immunoglobulin. For a bivalent form of the protein, such a fusion could be to the Fc portion of an IgG molecule. Other immunoglobulin isotypes may also be used to generate such fusions. For example, a protein - IgM fusion would generate a decayalent form of the protein of the invention.

10

20

25

35

The present invention also provides both full-length and mature forms of the disclosed proteins. The full-length form of the such proteins is identified in the sequence listing by translation of the nucleotide sequence of each disclosed clone. The mature form of such protein may be obtained by expression of the disclosed full-length polynucleotide (preferably those deposited with ATCC) in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein may also be determinable from the amino acid sequence of the full-length form.

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials.

Where the protein of the present invention is membrane-bound (e.g., is a receptor), the present invention also provides for soluble forms of such protein. In such forms part or all of the intracellular and transmembrane domains of the protein are deleted such that the protein is fully secreted from the cell in which it is expressed. The intracellular and transmembrane

domains of proteins of the invention can be identified in accordance with known techniques for determination of such domains from sequence information.

Species homologs of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

5

10

15

20

25

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

A number of types of cells may act as suitable host cells for expression of the protein. Mammalian host cells include, for example, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, California, U.S.A. (the MaxBac® kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein: one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearl® or Cibacrom blue 3GA Sepharose®: one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

10

20

25

35

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX). Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, MA), Pharmacia (Piscataway, NJ) and InVitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("Flag") is commercially available from Kodak (New Haven, CT).

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The protein may also be produced by known conventional chemical synthesis. Methods for constructing the proteins of the present invention by synthetic means are known to those skilled in the art. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications in the peptide or DNA sequences can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Patent No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and may thus be useful for screening or other immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are believed to be encompassed by the present invention.

25

20

USES AND BIOLOGICAL ACTIVITY

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified below. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or by administration or use of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA).

Research Uses and Utilities

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels: as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides: for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns: to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

10

15

20

25

30

35

The proteins provided by the present invention can similarly be used in assay to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch

and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Nutritional Uses

5

15

30

35

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation. such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

Cytokine and Cell Proliferation/Differentiation Activity

A protein of the present invention may exhibit cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one 20 of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e and CMK.

The activity of a protein of the invention may, among other means, be measured by the following methods: 25

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152: 1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation,

Kruisbeek, A.M. and Shevach, E.M. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14. John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human Interferon γ, Schreiber, R.D. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4. Bottomly, K., Davis, L.S. and Lipsky, P.E. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVrics et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6 - Nordan, R. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11 - Bennett, F., Giannotti, J., Clark, S.C. and Turner, K. J. In Current Protocols in Immunology. J.E.e.a.
Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9 - Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J. In Current Protocols in Immunology. J.E.e.a. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3. In Vitro assays for Mouse Lymphocyte Function; Chapter 6. Cytokines and their cellular receptors; Chapter 7. Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immunol. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Immune Stimulating or Suppressing Activity

20

25

30

35

A protein of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be

caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

25

30

35

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 lymphocyte antigen with its natural

ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins *in vivo* as described in Lenschow *et al.*, Science 257:789-792 (1992) and Turka *et al.*, Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murne models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function *in vivo* on the development of that disease.

15

20

25

30

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor: ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and

BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory forms of B lymphocyte antigens systemically.

10

20

25

30

35

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the *in vitro* activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells *in vivo*.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated

portion) of an MHC class I α chain protein and β_2 microglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Bowmanet al., J. Virology 61:1992-1998; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: *In vitro* antibody production, Mond, J.J. and Brunswick, M. In *Current Protocols in Immunology*. J.E.e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

30

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-

Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3,1-3,19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137;3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

25 <u>Hematopoiesis Regulating Activity</u>

30

35

A protein of the present invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or crythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and

proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either *in-vivo* or *ex-vivo* (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

The activity of a protein of the invention may, among other means, be measured by the following methods:

10

15

20

30

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M.G. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential. McNiece, I.K. and Briddell, R.A. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R.E. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; Long term culture initiating cell assay, Sutherland, H.J. In Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Tissue Growth Activity

5

20

25

35

A protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. *De novo* bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of

tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, *i.e.* for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

15

20

25

30

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to regenerate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for tissue generation activity include, without limitation, those described in:

35 International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International

Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, HI and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Activin/Inhibin Activity

A protein of the present invention may also exhibit activin- or inhibin-related activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin-β group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

30 <u>Chemotactic/Chemokinetic Activity</u>

35

A protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. Chemotactic and chemokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in

treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober. Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25: 1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153: 1762-1768, 1994.

Hemostatic and Thrombolytic Activity

10

20

A protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis

Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Receptor/Ligand Activity

A protein of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in:Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W.Strober. Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160, 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

25

30

35

5

10

15

20

Anti-Inflammatory Activity

Proteins of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-

reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease. Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

Tumor Inhibition Activity

In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, eliminating or inhibiting factors, agents or cell types which promote tumor growth.

Other Activities

15

20

25

30

35

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites: effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eve color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or caricadic cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat; lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes. correcting deficiencies of the enzyme and treating deficiency-related diseases: treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an

antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

5 ADMINISTRATION AND DOSING

25

30

35

A protein of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources) may be used in a pharmaceutical composition when combined with a pharmaceutically acceptable carrier. Such a composition may also contain (in addition to protein and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or compliment its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein of the invention, or to minimize side effects. Conversely, protein of the present invention may be included in formulations of the particular cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent.

A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes.

The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunolgobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithin, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent No. 4,235,871; U.S. Patent No. 4,501,728; U.S. Patent No. 4,837,028; and U.S. Patent No. 4,737,323, all of which are incorporated herein by reference.

10

15

20

25

30

As used herein, the term "therapeutically effective amount" means the total amount of each active component of the pharmaceutical composition or method that is sufficient to show a meaningful patient benefit, i.e., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, the term refers to that ingredient alone. When applied to a combination, the term refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein of the present invention is administered to a mammal having a condition to be treated. Protein of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When coadministered with one or more cytokines, lymphokines or other hematopoietic factors, protein of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.

Administration of protein of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

5

20

25

30

35

When a therapeutically effective amount of protein of the present invention is administered orally, protein of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein of the present invention, and preferably from about 25 to 90% protein of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein of the present invention, and preferably from about 1 to 50% protein of the present invention.

When a therapeutically effective amount of protein of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein of the present invention, an isotonic vehicle such as Sodium Chloride Injection. Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art.

The amount of protein of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated. and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein of the present invention and observe the patient's response. Larger doses of protein of

the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 µg to about 100 mg (preferably about 0.1µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein of the present invention per kg body weight.

The duration of intravenous therapy using the pharmaceutical composition of the present invention will vary, depending on the severity of the disease being treated and the condition and potential idiosyncratic response of each individual patient. It is contemplated that the duration of each application of the protein of the present invention will be in the range of 12 to 24 hours of continuous intravenous administration. Ultimately the attending physician will decide on the appropriate duration of intravenous therapy using the pharmaceutical composition of the present invention.

Protein of the invention may also be used to immunize animals to obtain polyclonal and monoclonal antibodies which specifically react with the protein. Such antibodies may be obtained using either the entire protein or fragments thereof as an immunogen. The peptide immunogens additionally may contain a cysteine residue at the carboxyl terminus, and are conjugated to a hapten such as keyhole limpet hemocyanin (KLH). Methods for synthesizing such peptides are known in the art, for example, as in R.P. Merrifield, J. Amer.Chem.Soc. <u>85</u>, 2149-2154 (1963); J.L. Krstenansky, *et al.*, FEBS Lett. <u>211</u>, 10 (1987). Monoclonal antibodies binding to the protein of the invention may be useful diagnostic agents for the immunodetection of the protein. Neutralizing monoclonal antibodies binding to the protein may also be useful therapeutics for both conditions associated with the protein and also in the treatment of some forms of cancer where abnormal expression of the protein is involved. In the case of cancerous cells or leukemic cells, neutralizing monoclonal antibodies against the protein may be useful in detecting and preventing the metastatic spread of the cancerous cells, which may be mediated by the protein.

20

25

30

35

For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered

simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalciumphosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalciumphosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability.

Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

20

25

35

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses hydroxyalkylcelluloses), (including including methylcellulose. ethylcellulose, hydroxypropylcellulose, hydroxyethylcellulose, hydroxypropyl-methylcellulose. carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt%, preferably 1-10 wt% based on total formulation weight, which represents the amount necessary to prevent desorbtion of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells.

In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF- α and TGF- β), and insulinlike growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins of the present invention.

The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either *in vivo* or *ex vivo* into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA).

20

25

Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

Patent and literature references cited herein are incorporated by reference as if fully set forth.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: Jacobs, Kenneth McCoy, John LaVallie, Edward Racie, Lisa Merberg, David Treacy, Maurice Evans, Cheryl Spaulding, Vikki Bowman, Michael

- (ii) TITLE OF INVENTION: SECRETED PROTEINS AND POLYNUCLEOTIDES ENCODING THEM
- (iii) NUMBER OF SEQUENCES: 53
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Genetics Institute, Inc.
 - (B) STREET: 87 CambridgePark Drive
 - (C) CITY: Cambridge
 - (D) STATE: Massachusetts
 - (E) COUNTRY: U.S.A.
 - (F) ZIP: 02140
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Brown, Scott A.
 - (B) REGISTRATION NUMBER: 32,724
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (617) 498-8224
 - (B) TELEFAX: (617) 876-5851
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 339 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

	(X1) S	ECOENCE DES	LRIPTION: Si	EÕ ID NO:I:			
GCGC	GCCGCAG	GTCTAGAATT	CAATCGGGAG	AGAGATACTG	CCTGGTTCTT	ACAGACACAG	60
ATTA	ATGTCAT	CCTTGCAGCC	TTCACCCAAA	GTTGCTCCCT	CCTTCTAGGG	CATTTTGTTT	120
TCCI	ГАСТТАА	TACCAAGTGT	CAGCATGTTA	GTAATAAACA	GGTGTCTCTA	CCATTAGTCA	180
AAGO	GTGGGAG	TTAAGCCTTT	CATCTTTGTA	GCTTTCTCCA	GTACCTAACC	ATGATTTACT	240
TCAT	DAADDD1	TCCCTCAAAG	TACTATTAAT	TATCCTGTGT	TCTCCTGCCT	TGCCTCTTAA	300
CAAA	LAATT CT	GCTGTTCCTG	ATTATTTCCA	TTTTACCAG			339

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 552 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

AAATANAAAT	ANAACAAATT	NTAGGGAAGG	ACTAAACTGT	CTAAAGAAAT	GTAAAATCCA	60
AAGACTTGGA	TTTTCAACCT	ATATCAGAAG	ACACTTTTTT	TTCAGTTCCC	ATGTGAAATT	120
CTTTNTAGGC	CAAGGAAGGA	САААТАСААА	TTTTGATTAC	AAATTATTTT	TAGAACTTTG	180
ACACCTACAC	TTAAATTCTG	AGTCATTAAA	CAGGCCTACA	TTTATCAACT	GTGGAAATAT	240
CAGCCAGTTT	TTGCAAACCT	CTTCTTAGGA	CACTAAGTTG	TTTGCAGAAA	TCACTAGCAT	300
TGACTGACTC	AGCAACAATG	TGGTTATATT	CTTTGATTAA	CTTAGTCCTT	TTTCTTGGTC	360
AAGAGTCAGT	AGACAGGACT	GAAGCTTATG	CCCCTTGCCC	CCCCACCACC	ACTCCATTAC	420
TACCACCTTG	GTTTAGCCAT	CCTTTTCTTG	ATCTGTTCTC	CCCACTTCTA	CTGTGCTACT	480
CTACAGACTT	GCCCTGAATG	TAAGAGCAAC	AATTACCTTG	TAAAGTCCAA	GTTGGGGCAG	540
GTCACTCCCA	AA					552

(2) INFORMATION FOR SEQ ID NO:3:

(i)	(B)	LEI TYI	NGTH: PE: & RANDI	: 47 amin EDNE:	amii o ac	no ad id										
(ii)	MOLE	ECUL	E TY!	PE:	prot	ein										
(xi)	SEQU	JENC	E DES	SCRI	PTIO	N: Si	EQ I	ON C	: 3 :							
Thr 1	Gly	Leu	His	Leu 5	Ser	Thr	Val	Glu	Ile 10	Ser	Ala	Ser	Phe	Cys 15	Lys	
Pro	Leu	Leu	Arg 20	Thr	Leu	Ser	Cys	Leu 25	Gln	Lys	Ser	Leu	Ala 30	Leu	Thr	
Asp	Ser	Ala 35	Thr	Met	Trp	Leu	Tyr 40	Ser	Leu	Ile	Asn	Leu 45	Val	Leu		
(2) INFO	RMATI	ON F	FOR S	SEQ :	ID NO	D:4 :										
(i)	(B) (C)	LEN TYI STF	NGTH: PE: r RANDE	: 308 nucle EDNE:	renis 8 bas eic a SS: c	se pa acid doubl	airs									
(ii)	MOLE	ECULE	Е ТҮЕ	PE: «	DNA											
(xi)	SEQU	IENCE	E DES	CRI	OITS	N: S	EQ II	ONO:	: 4 :							
TTTTTTNG	GA AT	CACC	AAAA	TC!	AAGNO	GNGA	TAT	rgtgi	TTT (CTG	CCAG	C Ti	NAN1	TGTA		60
GAGTCAGC	ra aa	.GGAA	TGTO	NG/	ATTT	AAA	TTAT	PTGAC	CCA (CTG	rttg/	עד דא	\CAG1	TGAN	Ī	120
NACAAATGO	CC TG	CAAG	STGTC	GAT	rttgo	STTT	TCC	CANAC	CAT T	LATT1	YTATO	ST AT	ATATI	ATTTA		180
AATCAAACI	AT CA	TTC	ATAGA	AAC	GCATA	ATNA	CANA	TANA	GTT 7	CANAC	CATA	AG CA	TNAC	CATTI	•	240
TTTTAATA	AA AA	TGTA	NACA	GGT	rggg(GCAA	AAA	LAAA	AAA A	\AAA/	\AAA/	AA AA	\AAAA	AAAA		300
AAAAAAA																308

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(A) LENGTH: 371 base pairs

7.533	TOPOI	OCY.	linear	•
(U)	LOPUL	<i>J</i> UGI:	Tilleal	

(ii) MOLECULE TYPE: cDNA

	(X1) S	EQUENCE DESC	IRIPTION: SE	£Q ID NO:5:			
CTGG	AAACTG	TGTTCCCTGC	AACCAGTGTG	GGCCAGGCAT	GGAGTTGTCT	AAGGAATGTG	60
GCTT	CGGCTA	TGGGGAGGAT	GCACAGTGTG	TGACGTGCCG	GCTGCACAGG	TTCAAGGAGG	120
ACTG	GGGCTT	CCAAAAATGC	AAGCCCTGTC	TGGACTGCGC	AGTGGTGAAC	CGCTTTCAGA	180
AGGC	AAATTG	TTCAGCCACC	AGTGATGCCA	TCTGCGGGGA	CTGCTTGCCA	NGATTTTATA	240
GGAA	GACNAA	ACTTGTCGGC	TTTCAAAACA	TGGAGTGTGT	GCCTTGTGGA	AACCCTCCTC	300
CTCC	TTACGA	ACCGCACTGT	GCCAGCAAGG	TCAACCTCGT	GAAAATCNCG	TCCACGGCCT	360
CCAG	CCCACG	G					371

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 181 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GGCCTTCATG GCCTAGCTTC CTCTTCAAAA ATGTGTCTAC CTAAGATACT ATTATTAAG 60
CCTCTGTGTA CTTTTAACCG TAGAACTGAT TTTATAGGAA GACGAAACTT GTCGGCTTTC 120
AAGACATGGA GTGTGTGCCT TGTGGAGACC CTCCTCCTCC TTACGAACCG CACTCTCATC 180
C 181

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 50 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met Cys Leu Pro Lys Ile Leu Leu Phe Lys Pro Leu Cys Thr Phe Asn 1 5 10 15

Arg Arg Thr Asp Phe Ile Gly Arg Arg Asn Leu Ser Ala Phe Lys Thr 20 25 30

Trp Ser Val Cys Leu Val Glu Thr Leu Leu Leu Leu Thr Asn Arg Thr 35 40 45

Leu Ile 50

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 284 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

AACATTATTA TAATAAACAC CCTCACCANT ACAATNTTCC TAGGAACAAC ATATGACGCA 60

TTNTCCCCTG AANTCNACAC AACATATTTT GTCACCAAGA CCCTANTTCT AACCTCCCTG 120

TTNTTATGAA TTCGAACAGC ANACCCCGA TTCCGNTACG ACCAANTCAN ACACNTCCTA 180

TGAAAAAAANT TCCTACCACT CACCCTAGCA TTACTTATAT GATATGTCTC CANACCCATT 240

ACAATCTCCA GCATTCCCCC TCAAACNTAA AAAAAAAAA AAAA

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1077 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

CATTTGATCT	TTCCACNACT	ATCCAACTCA	CAACGTGGCA	NTGGGGTTGT	GCCGCCTTTG	60
CAGGTGTATA	TNANACACGT	GGTTTTGGCC	GCAGAGGCAC	CNGTCGNCAG	GTGGGGGGTT	120
CCGCTGCCTG	CAAAGGGTCG	CTACAGACGT	TGTTTGTNTT	CAAGAAGCTT	CCAGAGGAAN	180
TGCTTCCTTC	ACGACATTCA	ACAGACCTTG	CATTCCTTTG	GCGAGAGGGG	AAAGACCCCT	240
AGGNATGNTT	GTCAAGAAGA	CAGGGNCAGG	TTTTCCGGCC	CTTNACATTG	CCAAAAGACG	300
GCAATATGGT	GGNAAATAAC	ATATAGACAA	ACGCACACCG	GCCTTATTCC	AAGCGGNTTC	360
GGCCAGTAAC	GTTAGAATTG	CGGCCGCAGG	TCTAGAATTC	AGTCTTTTCA	AGAGAACAAT	420
AAAATAGGCA	GTCTCCTACC	TCTTGTCTTA	СТСТААТАТА	AACTCCATGA	AGATAAGTAT	480
TGTATCCATA	CTGTTCATGC	TGCACAGCAG	TTGCCCTTAT	CTGCAGGGCG	ACGCATCCCA	540
AGACCCCCAG	TGGATGCTTG	AAACTGCAGA	ANANTNACAC	ACGTGATTGC	CACCATCGGA	600
ACACATTTCT	GTTCACGTCT	TCCACCCACA	GATTTAATGC	CTTTTCCATC	TTAACTAAGC	660
ACTCATCATG	GACTGTGGCC	ATAACTTTTG	CAGTTTTAGA	TGCAACAGCA	AAACTAACAT	720
TAATTTTTTC	TTCTTCTTCA	CAATTTCATG	GGTAGATTTG	TTCTTACCGT	AGATCTTAKC	780
AACCTCAGCA	TATGATGTTT	TTTCTTTTGA	GAACTTTCAC	CTTTTNTCTT	AAAGAAAGCA	840
CTTTACAGCT	TNTCTTTGGC	ATATCTCAAC	TGCCAGCATC	ACTGNTCTTG	AACTTTGGGG	900
CCATTATTAA	GTCAGNAAAG	GGTTANTTCA	AACNAGCTTT	TGTANTCCCA	CNTACTTGGG	960
AGGNTAAGGC	AGGAGAATGG	NATGAACCCG	AGAGGCAGAG	GTTGCAGTGA	GCTGAGATCG	1020
TGCCACTGCA	CTCCAGCGTG	GGTGACAGAG	AGATTNTGTC	ТЛАААААААА	AAAAAA	1077

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 92 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:
- Val Leu Tyr Pro Tyr Cys Ser Cys Cys Thr Ala Val Ala Leu Ile Cys
 1 5 10 15

Arg	Ala	Thr	His	Pro	Lys	Thr	Pro	Ser	Cly	Cys	Leu	Lys	Leu	Gln	Xaa
			20					25					30		

Xaa Xaa Thr Arg Asp Cys His His Arg Asn Thr Phe Leu Phe Thr Ser 35 40 45

Ser Thr His Arg Phe Asn Ala Phe Ser Ile Leu Thr Lys His Ser Ser 50 55 60

Trp Thr Val Ala Ile Thr Phe Ala Val Leu Asp Ala Thr Ala Lys Leu 65 70 75 80

Thr Leu Ile Phe Scr Ser Ser Ser Gln Phe His Gly 85 90

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 235 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

ATTTCGTACA GTAGGAGATT TCAACAACGT GACAATATTC TCTAGGCACT TGGGCTCACT 60

GTCTGTAGCC CCCACCCCCC GCCTTTCGCC ACCTCCTTGC TTCCCTACTC CCCCTTCTGC 120

TTTTGCCTTT GATGANTTTT TGGCTTACTT TTTGGCGGAG TCTCTTGGAC ACGTTTTTGC 180

TGGTGCTGGA ANATCANATA CATGGAACCT TTGANNNCTG ATTATTTTC TCCGC 235

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 594 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

AGAAACGGTC CATGAACAAT TTGCTACAGG TATAAAGAAG TATCTGCAGA AATCCAGAGC 60

ACTTATTAAA	CTTCTTTGAG	TTTTNTCAGG	AAGATCAANA	CAANANGGAG	AAATTTTATT	120
AAGATTGGCA	AACGCACTGC	CTACTTACAG	CATAGAGACC	CCCAGTGGAG	AGCTAGACTG	180
TTTGAATTCC	AGAAGGACCA	ACACCAGATA	AATTATGAAT	GTTGAACAAG	ATGACCTTAC	240
ATCCACAGCA	GAGAATGATA	GGTCCTAGGT	TTAACAGGGC	CCTATTTGAC	CCCCTGCTTG	300
TGGTGCTGCT	GGCTCTTCAA	CTTCTTGTGG	TGGCTGGTCT	GGTGCGGGCT	CAGACCTGCC	360
CTTCNTGTGT	GCTCCTGCAG	CAACCAGTTC	AGCAAGGTGA	TTTGTGTTCG	GAAAAACCTG	420
CGTGAGGTTC	CGGATGGCAT	CTCCACCAAC	ACACGGCTGC	TGAACCTCCA	TGAGAACCAA	480
ATCCAGATCA	TCAAAGTGAA	CAGCTTCAAG	CACTTGAGAC	ACTTGGAAAT	CCTACAGTTG	540
AGTAGGAACC	ATATCAGAAC	CATTGAAATT	GGGGCTTTCA	ATGGTCTGGC	GAAC	594

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 111 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
- Val Leu Gly Leu Thr Gly Pro Tyr Leu Thr Pro Cys Leu Trp Cys Cys 1 5 10 15
- Trp Leu Phe Asn Phe Leu Trp Trp Leu Val Trp Cys Gly Leu Arg Pro 20 25 30
- Ala Leu Xaa Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val Ile Cys 35 40 45
- Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser Thr Asn Thr 50 55 60
- Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile Ile Lys Val Asn 65 70 75 80
- Ser Phe Lys His Leu Arg His Leu Glu Ile Leu Gln Leu Ser Arg Asn 85 90 95
- His Ile Arg Thr Ile Glu Ile Gly Ala Phe Asn Gly Leu Ala Asn 100 105 110

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 88 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
AACAAAGNNC AANATAAAGA ANAGNNCNTA NNCCANTANA GNNAAGAGCC CCNGNACCCC	60
TTATACNAAN AANNAAAAAA AAAAAAAA	88
(2) INFORMATION FOR SEQ ID NO:15:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 338 base pairs (B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
TTCCATTNTG TATTATCACA CCCACCCCC AATGCCATAC NTTTCTTTCA ATTTAGGATT	60
GTTTNTAGTC AGTCGAGTTT TCCCAGATTG ACTAAGAGTT CCTHMNCTGC CTACTGTAGT	120
CAGCTACANG AACAGTAAAA GAGACCCAGG ACTTGGGCCA GCTGGAAGAC TCAGAAAAA	180
GTTTCTGTGG GATGCAGACA GCTAAAGAAT GACAATCACA TGCAATTGTC CCAAACCCCA	240
CGTCCGCCCC AAAGGACACC CTCATCTGCC CTTTTCAGAC CCCTTCACAA AGAGCTTCAG	300
GAGCCCTTTT ATGGGGCATC GCCTCTTTGG CCGAATTC	338
(2) INFORMATION FOR SEQ ID NO:16:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 35 amino acids (B) TYPE: amino acid	
(C) STRANDEDNESS:	
(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	

(xi)	SEQUENC	E DESC	CRIPTIO	N: SE	EQ II	ON C	16:							
Met 1	Gln Leu		Sin Thr	Pro	Arg	Pro	Pro	Gln	Arg	Thr	Pro	Ser 15	Ser	
Ala	Leu Phe	Arg F	Pro Leu	His	Lys	Glu 25	Leu	Gln	Glu	Pro	Phe 30	Tyr	Gly	
Ala	Ser Pro 35													
(2) INFOR	RMATION	FOR SE	EQ ID N	0:17:	:									
(i)	(B) TY (C) ST	NGTH: PE: nu RANDEI	RACTERI 118 ba ucleic DNESS: Y: line	se pa acid doubl	airs									
(ii)	MOLECUL	Е ТҮРЕ	E: cDNA											
(xi)	SEQUENC	E DESC	CRIPTIO	N: SE	EQ II	D NO	:17:							
TGAGAGCT	rc ccage	TTAGA	TTNTGG	TGGC	TGC	ATNTO	GAG A	AGCT	rccci	AG C	rt a G?	ATTC	<u>.</u>	6 (
GGTGGGAT	rg gatct	GGGAG	GGGGAA	GACC	CCA	AAAA	GCA /	LAAA	LAAA	AA AA	AAAA	AAA		118
(2) INFO	RMATION	FOR SE	EQ ID N	0:18:	:									
(i)	(B) TY (C) ST	NGTH: PE: ni RANDEI	RACTERI 665 ba ucleic DNESS: Y: line	se pa acid doubi	airs									
(ii)	MOLECUL	E TYPI	E: cDNA											
(xi)	SEQUENC	E DESC	CRIPTIC	N: SI	EQ I	D NO	:18:							
TGGAATTC	GG CNTTC	ATGGC	CTARAA	AGAR	GAR	CTGG	GCG (GGGT	GGGG	GG A	ARGC	GGAR(G	60
CAGTCTAG	TA ATGTA	AAGCT	CCGCTG	ARAG	GGA	GAGT	GCC (GCCC'	TAAA	CV C.	rcat(GCTG(С	120
CAGTCCCC	aa aagac	TTCAT	TCATTO	AACA	TAT	ATGT(GAC (CGCC'	TGCT	AC G	rgcc.	AGGC	G	180

240

300

TGGGCCAGGT CCTAGGGACA AAGGAGAGGC CTCCGCACCC CACCCCATGA CCCATACCTC

CTCTTCCCCA CCTCCCTGGG CCAGCCTGCC TTCCTTCTCC CTCCTCCTCC TTCCTGGGGG

AAGGAAGCCC	CACCTTCTGT	GCGCAGTCAG	CTCCTAAGCA	CGCTCCCGCT	TCCCCTGGCC	360
TCCCCATTTA	AAAAGGGAGG	CAAAGGATGT	CACCACTGTC	ACTACACTCA	TGGCTTTGCT	420
CTGGGAAGTC	CTGCAAATAA	AATGAAAGTT	CTCCAACCCN	TCCANACCCA	TTNGGGCCAC	480
AAAGGNGAGG	GGAGGCAGNT	TTGAGGCAGA	GGAGCCAGGG	CAGGTGCGGC	GNTTCCGCTT	540
NTGGTCCCAA	AGCAAAGATT	CCCCTGNGAC	TGACAGCCCG	TGTTATGTTA	AANACATTTT	600
GTTGGTTTGT	AATTCAAATC	CCATAAAGCA	GGAGGTAGAG	AGCCAAAAAA	ААААААА	660
AAAAA .						665

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 85 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Gly Gln Arg Arg Gly Leu Arg Thr Pro Pro His Asp Pro Tyr Leu Leu 1 5 10 15

Phe Pro Thr Ser Leu Gly Gln Pro Ala Phe Leu Leu Pro Pro Pro Pro 20 25 30

Ser Trp Gly Lys Glu Ala Pro Pro Ser Val Arg Ser Gln Leu Leu Ser 35

Thr Leu Pro Leu Pro Leu Ala Ser Pro Phe Lys Lys Gly Gly Lys Gly 50 55 60

Cys His His Cys His Tyr Thr His Gly Phe Ala Leu Gly Ser Pro Ala 65 70 75 80

Asn Lys Met Lys Val

- (2) INFORMATION FOR SEQ ID NO:20:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 256 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

CNAAAAANAT GAGACCTGGG NTCAGACCTT ACTGTATGAG AAGCAATGCT CCTCAAACCT 60

TCTGCGTGCT GACNTNNACC TTCCCAAAAN CTNNACTGTT GGCGGCGACN TNANCGCTGG 120

AAGCCGAAGG GGAAGANGAG GGAGACNCGA ANCCNGGGCG GTCGGCACTT AGGCGGCGGA 180

CTCGCGGGGG CANCNCCTGC CCGGCCGGGA GCACCACCCA NGGNCCTACN CCAGCGAAGT 240

CCCGCTCCGG CTTCTA

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 811 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

60 ANGGCCTTTA TTCCAGNGAA NTCCAAAAAA AAAANAAAGG GNTNNAAGTT TANGTTTTTC NTGAGGCCGC ACCCCCACT TCCCACNCAG GACNGNACAT NTCNGTGTCT TCNTCCCCCA 120 AATTCCATTA GGGACCCCGA GAACCACCCC AGCTTTCCGG CCACCACAAC AAAGAGCCGC 180 240 ACCGACCGC GAGGATAAAC AGCGCCGGAG GGCGAGAGGG CGGCGGGGCG AGCGCCTCCA CGCAGCAACT CCGGAGTCCC CCGCTTGCCC GAGCGCAGNT TCTCCGCTGC TGTTTCCACC 300 360 GGCTTTGTAA CACTGGGAAT TTACATCCTC ACCCGCACCC CTCACGCCCG AGGATTTTAA ACTCACCTTT ACTCTCGAAC TGAGAGTTGC GGTAGATGGG ATTTTTGCCT TTTCCCCAGA 420 TGGTTGAAGG TTAAGATTTT TGGAAACCCC CCCACCTCCT TATTTCTATT ATTATTTCTG 480 CNAGAAAAGT ATAAAGAGAG TTGTAGTGGA GGTGAGATTT GTGATCGGGA AAGCCTTCGA 540 CTCCCTCCTT CTCCGTCTTC CGCTTCTCTC TCTCTGATTA GTTCCTATCC AGCAGCAGAT 600 TGAANCAGGA GATGATTCTT CTCAAGGTTT GTTCAGCAGC TTCACTTNTA GGCGAAGGCT 660 720 TCATGAACCA AGTGACNTCA ACCAACAAGG NTTGTTTNTC TNTCCTNTNT CGGAAAAAAA

GNGNGAGAAT TGTTNANACC ATTTCAGTTC CAATAATAAA GGACCTATCA GTTCNTAAAG	780
GNGCCAAAAA ANANAAANAA AAAAAAAAAA A	811
(2) INFORMATION FOR SEQ ID NO:22:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 amino acids(B) TYPE: amino acid(C) STRANDEDNESS:(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
Met Ile Leu Leu Lys Val Cys Ser Ala Ala Ser Leu Xaa Gly Glu Gly 1 5 10 15	
Phe Met Asn Gln 20	
(2) INFORMATION FOR SEQ ID NO:23:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 704 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
TNTCAAGCTT GAGGTGTGGC AGGCTTGAGA TTTGGCCAAA CACTNGAGTG ACAATGANAT	60
CCACTTTGCC TTTNTCTCCA CAGGTGTCCA ATCCCAGGTC CAACTGCAGA ATTGGAATTC	120
GGCCTTCATG GCCTACTTCG TTCAAGTGTG AGCTGCGGCT GAGCCCAGCG CTCGAGGCGC	180
GAGGCAGCCA GGAGGCCCG TGCGGCGCGG GGAGCCASCG AGCGCGCCTT CGGCATTGGC	240

300

360

420

480

CGCCGCGATG TCAGCTCAGT GCTGTGCGGG CCAGCTGGCC TGCTGCTGTG GGTYTGCAGG

CTGCTCTYTY TGCTGTGATT GCTGCCCCAG GATTCGGCAG TCCCTCAGCA CCCGCTTYAT

GTACGCCCTC TACTTCATTC TGGTCGTCGT CCTCTGCTGC ATCATGATGT CAACAACCGT

GGCTCACAAG ATGAAAGAGC ACATTCCTTT TTTTGAAGAT ATGTGTAAAG GCATTAAAGC

TGGTGACACC TGTGAGAAGC TGGTGGGATA TTCTNCCGTG TATAGAGTCT GTTTTGGAAT 540

GGCTTGTTTC TTCTTTATCT TCTGTCTACT GACCTTGAAA ATCAACAACA GCAAAAGTTG 600

TAGAGCTCAT ATTCACAATG GCTTTTGGTT TCTTTAAACT TCTGCTGTTG GGGCCATGT 660

GCTCAGGAGC TTTCTTCATT CCAGATCAGG ACACCTTTCT GAAC 704

- (2) INFORMATION FOR SEQ ID NO:24:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 77 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Met Met Ser Thr Thr Val Ala His Lys Met Lys Glu His Ile Pro Phe 1 15

Phe Glu Asp Met Cys Lys Gly Tle Lys Ala Gly Asp Thr Cys Glu Lys 20 25 30

Leu Val Gly Tyr Ser Xaa Val Tyr Arg Val Cys Phe Gly Met Ala Cys 35 40 45

Phe Phe Phe Ile Phe Cys Leu Leu Thr Leu Lys Ile Asn Asn Ser Lys 50 55 60

Ser Cys Arg Ala His Ile His Asn Gly Phe Trp Phe Leu 70 75

- (2) INFORMATION FOR SEQ ID NO:25:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 417 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

TCCAGTCTTC NTGTTGGNGG AGTTTGCACA TAAGTGGAAC AAGAACTGGT GTGTGCCTTT

60

ATGGAAAGTT	CCCATTGACT	CACAGAAACT	GCCCAGTTTT	GACCAAGGCT	GNANTCAACT	120
GCATTGCTAG	GGATTTGCAG	TTTTGTTTCC	CTTNANACCT	GCTTTTTNGN	ACNTCTTCAT	180
NNANTCNTNT	CCTTCATTCA	CTTNTNACTT	TTNGACCCCC	TGCCCCNANT	CCCTTGCTTG	240
GGTTNTGAGT	CAACCAGTGG	TGTGAATTAG	CCANACTCAA	TCCCCTGTTC	GTACGGGTTT	300
CGATTTCCTG	ACNTNGTGAT	CCGCCCACCT	CGGCCTCCCA	AAGTGCTGGG	ATTACAGGCT	360
NGAGCCACCG	CACCTGGCCT	GATGTTTNTG	СЛААААААА	ааааааааа	AAAAAA	417

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 553 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

AGGGCCAGGT TTTCCGGGCC NTCACATTGC CAAAAGACGG CAATATGGTG GGAAATAACA 60 TATAGACAAA CGCACACCGG CCTTATTCCA AGCGGNTTCG GCCAGTAACG TTAGAATTGC 120 GGCCGCAGGT YTAGGTCAGA GCCAAAGGAA AGCTTGAAAA ATGAAGACAT TAGCAGGACT 180 TGTTCTGGGA CTTGTCATCT TTGATGCTGC TGTGACTNCC CCAACTCTAG AGTCCATCAA 240 CTATGACTCA GAAACCTATG ATGCCACCTT AGAAGACCTG GATAATTTGT ACAACTATGA 300 AAACATACCT GTTGATAAAG TTGAGATTGA AATAGCCACA GTGATGCCTT CAGGGAACAG 360 AGAGCTCCTC ACTCCACCCC CACAGCCTGA GAAGGCCCAG GAAGAGGAAG AGGAGGAGGA . 420 ATCTACTCCC AGGCTGATTG ATGGCTCTTC TCCCCAGGAG CCTGAATTCA CAGGGGTTCT 480 GGGGCCACAC ACAAATGAAG ACTTTCCAAC CTGTCTTTTG TGTACTTGTA TAAGTACCAC 540 CGTGTACTGT GAT 553

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 131 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Met Lys Thr Leu Ala Cly Leu Val Leu Cly Leu Val Ile Phe Asp Ala 1 5 10 15

Ala Val Thr Xaa Pro Thr Leu Glu Ser Ile Asn Tyr Asp Ser Glu Thr
20 25 30

Tyr Asp Ala Thr Leu Glu Asp Leu Asp Asn Leu Tyr Asn Tyr Glu Asn 35 40 45

The Pro Val Asp Lys Val Glu He Glu He Ala Thr Val Met Pro Ser 50 55 60

Gly Asn Arg Glu Leu Leu Thr Pro Pro Pro Gln Pro Glu Lys Ala Gln
65 70 75 80

Glu Glu Glu Glu Glu Glu Ser Thr Pro Arg Leu Ile Asp Gly Ser 85 90 95

Ser Pro Glu Pro Glu Phe Thr Gly Val Leu Gly Pro His Thr Asn 100 105 110

Glu Asp Phe Pro Thr Cys Leu Leu Cys Thr Cys Ile Ser Thr Thr Val

Tyr Cys Asp 130

(2) INFORMATION FOR SEQ ID NO:28:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 358 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

TTATAATATA ATGAAAATGT AGTAATTTAA GAAAACACCA GATGAGTTAG GAATAAACCT 60
ATAACATTTA CAAAAAGAGC AAAATTAAGT GATAGAAAAT ATTTCACACA TGTTCTTATA 120
GATCATGTAT CACTTGCAAG TTTTNGGAGT TCATATCCTA TATCATTTCA AATTAAGNAC 180

TAAAGAGCAT	GAAAAAAAGA	ATAAATGTAT	TTGAAAATTA	AAAAAAAA	AAAAAAA	358
ттааттааас	TTTTTCTTC	CTTTTTTTT	CACTAAAGCA	TGTTTATTCC	ССТААТССЛТ	300
ATAATAAAGT	AAAATTTTGA	AATGAACACT	TTAGGTATTT	TTGCCAAGAT	TTAGATGTTT	240

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 693 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

	GCGGCCGCTC	TANAACTAGT	GGATCCCCCG	GGCTGCAGGA	ATTCGGCCAA	AGAGGCCTAG	60
,	AATGAAAATC	CAGGTGTTTG	TCATTCATCA	GCAACAGGTG	ATCCCCATTG	CAGGCAGCCG	120
1	GAACCGACGT	CTCCTGGACC	ACTGAGCTGG	CTGTTCTCAT	TACTGCCCTT	TCCGCCCAGG	180
ı	CTGGCGGTGA	CTCACCGTGA	GACAAGTCAG	CTAGGTGTTC	AGGACAGGGA	TTTCAGAGTA	240
	TTTTTGTCCA	AAGAGGAAAG	GGATGATTTC	TACGGATCAC	TACCAGTTGG	TTTACTGTTA	300
(GCTCATCGTG	TTGATCACAC	CAAGTCTTGC	CAATTTGGTT	TTCTAAGTAT	TTTCACGCCT	360
,	TCTCCTCGTG	TCCGCGTCAC	TGCTCTGATT	CAGGCCCTTG	TCATTTCTCA	TCTTTGCCAT	420
•	TTTAGTAGTT	TTTGGATTGG	GCTCCCGGCT	GCTAATTTTG	TCCCCTTTTC	CACTATCTTC	480
(CACATTGTCA	CCGCAGTCAT	GTTTCTAAGG	CAGAATCTCA	CTGTGCCCCW	CATCGTGTTG	540
(CTGGGCCCTT	GCATGCCGTA	CCCTGGCCTT	TGTGAAATGC	CCTTCATCTG	TGCTCTTCCC	600
,	TCCACCTGGA	ATGTCCGTCT	CTCTTTTTCT	GCCAACCCAC	NCGACCCCTC	CCTCCTNCAA	660
(GCCCGTGAGT	GTCCCCNCCC	TCCATGTCCT	GTG			693

(2) INFORMATION FOR SEQ ID NO:30:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 130 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi)	i) SEQUENCE DESCRIPTION: SEQ ID NO:30:														
Asn 1	Glu	Asn	Pro	Gly 5	Val	Cys	His	Ser	Ser 10	Ala	Thr	Gly	Asp	Pro 15	His
Cys	Arg	Gln	Pro 20	Glu	Pro	Thr	Ser	Pro 25	Gly	Pro	Leu	Ser	Trp	Leu	Phe
Ser	Leu	Leu 35	Pro	Phe	Pro	Pro	Arg 40	Leu	Ala	Val	Thr	His 45	Arg	Glu	Thr
Ser	Gln 50	Leu	Gly	Val	Gln	Asp 55	Arg	Asp	Phe	Arg	Val 60	Phe	Leu	Ser	Lys
Glu 65	Glu	Arg	Asp	Asp	Phe 70	Tyr	Gly	Ser	Leu	Pro 75	Val	Gly	Leu	Leu	Leu 80
Ala	His	Arg	Val	Asp 85	His	Thr	Lys	Ser	ã0 CÀS	Gln	Phe	Gly	Phe	Leu 95	Ser
Ile	Phe	Thr	Pro 100	Ser	Pro	Λrg	Val	Arg 105	Val	Thr	Ala	Leu	Ile 110	Gln	Ala
Leu	Val	Ile 115	Ser	His	Leu	Cys	His 120	Phe	Ser	Ser	Phe	Trp 125	Ile	Gly	Leu
Pro	Ala 130														
TNEOT	NEODMARTON FOR CEO ID NO. 31.														

- (2) INFORMATION FOR SEQ ID NO:31:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 327 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

TTCGTGGGGC CTGCCCGTTC NGATNTNGNT GCNGCCTCGC TGTCCCCCTC CTCCCTCCNG 60

TGGTTNATAT TCCAGGAATT CTGAATTAGT TGCACCGTGN TCTNATATTT ACTGCAAGAA 120

TAGACCAGTG GTTCTCCAGC TTTTCTGCAC TCTGGAATCA CCTGGGGGTC TTTAAAAAAAC 180

ACTGCCTGGC TCCTAGTCCT AAATTTGGAG ATTTAACTGG ACTTACAGTT TTTCAAAGCA 240

CCCCAAAAGA TTNTAATGTG CAGCAAAGTT TGGGAACCAC TGGTATAGAC TGTCTTCTGC 300

TTGTTTTCTT GAAAAACACA AACACAA 327

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 857 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

AGACTTGTTG	CCAGTGATAC	CAAAACAGAC	TTTTCCCAAG	CAGTGCCTCA	CATGTCTGCT	60
GGTGTGGCTT	TGGGATTCTC	CTGCCCCACC	CCCCCGTCCA	TGGCAGCCCC	CTCCCCAAGG	120
CTTTGCTCAC	ACCTGANACA	GGAAGGAGGA	AGGGGATCCA	ATAGGAATAT	GGGCCCCGGA	180
GGGGAARTCA	TGCACCCCCA	AGCCAMCAMC	CCCCCAGCY	TTCMASGCAC	ATCTCYTGTK	240
TTKGAAKARA	RCCAYCCCAA	AAAGGGGACA	CAGGCTGCCC	CGGCCCNTCA	ACNGCATCCA	300
CACCCCATCC	TCTCATCTTG	GGTCCCAGCC	AGGCCCCCC	AAAACCAAAG	CCCCYTCAAG	360
TCCTGGGGTC	CCAGCCTGTG	CCCCCAGCTT	CCTGCCCACC	CAGCCCYGAG	CATTCTCACA	420
CAGAGAAAGA	ACAAGCAAGG	GCTCCAGGGG	GACAGGATGG	GGCAGGGCAT	ACAGTGGGGG	480
GTGGGGGGC	AGMTGGGAGG	AGGGAGGAC	AAAACAAAAC	ATTTTCCTTT	GGGTTTTTTT	540
TTTCTTTCTT	TTTTCTCCCC	TTTACTCTTT	GGGTGGTGTT	GCTTTTCCTT	TCCTTTTCCC	600
TTTGAGATTT	TTTTGTTGTT	GTTTCCTTTT	TGTATTTTAC	TGATATCACC	AGGATAGTTT	660
ACTCTCCTTC	TAGCTTTCTG	CTTACCGCAC	ACTGGATAAC	ACACACATAC	ACACCCACAA	720
AAATGCTCAT	GAACCCAATC	CGGAGAAGGT	TCCAGCAGGT	CCCCCACCCT	CCCCTCCTCC	780
TCCTACTTCT	CCTCTTGACA	GCGAGGACAG	GAGGGGGACA	AGGGGACACC	TGGGCAGACC	840
CGCCGGCTCT	CCCCCCA					857

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 115 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS:

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

	(xi)	SEQU	JENCI	E DES	SCRII	PTIO	V: SI	EQ II	ON C	:33:							
	Glu 1	Tyr	Gly	Pro	Arg 5	Arg	Gly	Xaa	His	Ala 10	Pro	Pro	Ser	Xaa	Xaa 15	Pro	
	Pro	Gln	Xaa	Ser 20	Xaa	His	Ile	Ser	Cys 25	Xaa	Xaa	Xaa	Xaa	Pro 30	Xaa	Gln	
	Lys	Gly	Asp 35	Thr	Gly	Cys	Pro	Gly 40	Pro	Ser	Thr	Ala	Ser 45	Thr	Pro	His	
	Pro	Leu 50	Ile	Leu	Gly	Pro	Ser 55	Gln	Ala	Pro	Pro	Lys 60	Pro	Lys	Pro	Xaa	
	Gln 65	Val	Leu	Gly	Ser	Gln 70	Pro	Val	Pro	Pro	Ala 75	Ser	Cys	Pro	Pro	Ser 80	
	Pro	Glu	His	Ser	His 85	Thr	Glu	Lys	Glu	Gln 90	Ala	Arg	Ala	Pro	Gly 95	Gly	
	Gln	Asp	Gly	Ala 100	Gly	His	Thr	Val	Gly 105	Gly	Gly	Gly	λla	Xaa 110	Gly	Arg	
	Arg Glu Gly 115																
(2)	INFO	RMAT:	ION I	FOR S	SEQ :	ID NO	0:34	:									
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 86 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 																
	(ii)	MOLI	ECULI	E TY	PE: d	DNA											
	(xi)	SEQ	JENCI	E DES	SCRI	PTIO	N: SI	EQ II	ON C	:34:							
AAA	AAAA	AA AA	AAAA	AAAA/	LAA A	LAAA	AAAA	AAA	AAAA	AAA A	LAAAA	\AAA/	ia az	LAAA	\AAA/	Ą	60
AAA	AAAAA	AA AA	AAAA	AAA.	AA A	AAA											86
(2)	INFO	RMAT:	ION 1	FOR S	SEQ :	ID N	0:35	:									
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 652 base pairs (B) TYPE: nucleic acid																

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

TCCTCTGGCT ACTGGGTGCT CGTGGTGCAT TTTACTCGGA GAGAGGCCAT CAAGCAGATC 60 GAGGTGCTGC AGCACGTGGC CACCAACCTG GGGCGCAGCC GTGCCTTCCT TGGAGAGCTA 120 CCTGCGGTTG TTCCARGAGA ACCTGGGCCT GCTGCATAAG TACTACGTCA AGAATGCCCT 180 GGTCTGCAGC CACGATCACC TGACGYTTTT CCTGACCTTG GTGTCCGGGC TAGAGTTCAT 240 TCGTTTCGAG CTGGATCTGG ATGCCCCTTA CCTAGAACTG GCCCCCTACA TGCCCGABTA 300 CTACAAACCT CAGTACCTGN TGGACTTTGA AGACCGCCTT CCCAGCTCGG TCCACGGCTC 360 AGACAGTCTG TCCCTCAANT CTTTCAANTC CGTCACCTCC ACCAACCTGG AGTGGGATGA 420 CAGTGCGATT GCCCCATTTA GTGAGGATGG AGACCTCACA GACACGGTCA GTGGTCCCCG 480 CTCCACAGCC TCCGACCTGA CCAGCAGCAA GGCCTCCACC AGGAGCCCCA CCCAGCGCCA 540 GAACCCCTTN AACGAGGAGC CGGCAGAGAC TGTGTCCTCC TTTGACACCA CCCCGTGCA 600 CACCACCTTT CAGGAGAAGG NGGAGGCCCA GGCCCTGGAC CCGCCGGANG CC 652

(2) INFORMATION FOR SEQ ID NO:36:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 121 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Met Pro Xaa Tyr Tyr Lys Pro Gln Tyr Leu Xaa Asp Phe Glu Asp Arg 1 5 10 15

Leu Pro Ser Ser Val His Gly Ser Asp Ser Leu Ser Leu Xaa Ser Phe 20 25 30

Xaa Ser Val Thr Ser Thr Asn Leu Glu Trp Asp Asp Ser Ala Ile Ala 35 40 45

Pro Phe Ser Glu Asp Gly Asp Leu Thr Asp Thr Val Ser Gly Pro Arg
50 55 60

Ser Thr Ala Ser Asp Leu Thr Ser Ser Lys Ala Ser Thr Arg Ser Pro 70 75 80

Thr Gln Arg Gln Asn Pro Xaa Asn Glu Glu Pro Ala Glu Thr Val Ser 85 90 95

Ser Phe Asp Thr Thr Pro Val His Thr Thr Phe Gln Glu Lys Xaa Glu 100 105 110

Ala Gln Ala Leu Asp Pro Pro Xaa Ala 115 120

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 413 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

ACTTGTGGAT TTGAAGCCGC TTCCCAGTTC GTTCCAGGGT TCAGACAGTC TGTCCTTCAA 60

TTCTTTCAAT TCCGTCACTT CCACCAACNT GGAGTGGGAT GACAGTGCGA TTGCCCCATN 120

TAGTGAGGAT TATGATTTNG GAGATGTGTT TCCAGCAGTG CNGTCTGNAC CCAGCACAGA 180

TTGGGAAGAT GGAGACNTCA CAGACACGGT CAGTGGTCCC CGTTCCACAG CTTCCGACCT 240

GACCAGCAGC AAGGCTTCCA CCAGGAGCCC CACCCAGCGC CAGAACCCTT TCAANGAGGA 300

GCCGGCAGAG CGTGCACACC ACTTNTCAGG AGAAGGAGGA GGCCCAGGCC CTGGACCCC 360

CGGATGCCTG CACGGAGNTC GAGGTCATCA GGGTCACCAA AAAAAAAAAA AAA 413

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 621 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA

60

120

180

240

300

ATAACATCTC	CCCAGACCCA	GAAAAACAGA	AAGCTCCACA	GAAATTAAAT	GTTGAAGAGA
AACTCTCAAA	GGAAGTTACA	GAAGAAAACT	ATCTCTTTCC	CAGTAAGTTC	AGTGGAAAG'T
GCACTAGAAC	ATGAATATGA	CTTGGTGAAT	TAGATGAAAG	TTTTTATGGA	CCAGAAAAGG
CCACAACATA	TTATCTCATC	CAGAGACCCA	AAGCCAAAAC	TCAGCTGACA	GGAATGTTTC

AAAGGACACA AAGAGAGATG TGGACTCAAA GTCACCGGGG ATGCCTTTAT TTGAAGCAGA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

GGAAGGAGTT CTATCACGAA CCCAGATATT TCCTACCACT ATTAAAGTCA TTGATCCAGA 360

ATTTCTGGAG GAGCCACCTG CACTTGCATT TTTATATAAG GATCTGTATG AAGAAGCAGT 420

TGGAGAGAAA AAGAAGGAAG AGGAGACAGC TTCTGAAGGT GACAGTGTGA ATTCTGAGGC 480

ATCATTTCCC AGCAGAAATT CTGACACTGA TGATGGAACA GGAATATATT TTGAGAAGTN 540

CATACTCAAA GATGACATTC TCCATGACAC ATCTCTAACT CAAAAGGACC ANGGCCAAGG 600

TCTGGAAAAA AAACAANTTG G 621

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 112 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS:
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

Met Pro Leu Phe Glu Ala Glu Glu Gly Val Leu Ser Arg Thr Gln Ile 1 5 10 15

Phe Pro Thr Thr Ile Lys Val Ile Asp Pro Glu Phe Leu Glu Glu Pro 20 25 30

Pro Ala Leu Ala Phe Leu Tyr Lys Asp Leu Tyr Glu Glu Ala Val Gly 35 40 45

Glu Lys Lys Glu Glu Glu Thr Ala Ser Glu Gly Asp Ser Val Asn 50 55 60

Ser Glu Ala Ser Phe Pro Ser Arg Asn Ser Asp Thr Asp Asp Gly Thr 65 70 75 80

Gly Ile Tyr Phe Glu Lys Xaa Ile Leu Lys Asp Asp Ile Leu His Asp 85 90 95	٥
Thr Ser Leu Thr Gln Lys Asp Xaa Gly Gln Gly Leu Glu Lys Lys Gl 100 105 110	1
(2) INFORMATION FOR SEQ ID NO:40:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 315 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
TCTGTTTTAC TGGTAAAGGA AATCCTCTGA TGGACAGGTC AGAGTGAAGG AAGGTTGTGC	60
TGGTAAGACA TNTCTGANGA AGAGCCATGG ATGCTTTCCA CAAAATGTCA CCTCGCTGCA	120
CTAAAGGATG ATGAATCCTA ATCATTAAAG GAATTGTTTC AGCTGATTTA AATTTATAAT	180
GAACTCTTTT GTAATAATGT ATACTGTAGA ACATGAGTCT CTCCTCCCTA AAATTTTAAA	240
TGTAGAAAAG TGCTATATAT TAGAAATTTC CATTTTGTTA AATAAATGGT TAGAGTCTAT	300
AAAAAAAAA AAAAA	31/5
(2) INFORMATION FOR SEQ ID NO:41:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"	
(x1) SEQUENCE DESCRIPTION: SEQ ID NO:41:	•
GNTAAACCAA GGTGGTAGTA ATGGAGTGG	29

77

(2) INFORMATION FOR SEQ ID NO:42:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 29 base pairs

	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
GNAA	GCCGAC AAGTTTCGTC TTCCTATAA	29
(2)	INFORMATION FOR SEQ ID NO:43:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:	
GNTC	TTGGGA TGCGTCGCCC TGCAGATAA	29
(2)	INFORMATION FOR SEQ ID NO:44:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:	
TNTT	TGGTGGA GATGCCATCC GGAACCTCA	29
(2)	INFORMATION FOR SEQ ID NO:45:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs	

		(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:45:	
TGAA	AGGGG'	TC TGAAAAGGC AGATGAG	27
(2)	INFO	RMATION FOR SEQ ID NO:46:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"	
	(x1)	SEQUENCE DESCRIPTION: SEQ ID NO:46:	
TNAC	STGTA	GT GACAGTGGTG ACATCCTTT	29
(2)	INFO	RMATION FOR SEQ ID NO:47:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:47:	
TNC	CATCT.	AC CGCAACTCTC AGTTCGAGA	29
(2)	INFO	RMATION FOR SEQ ID NO:48:	
	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid	

(C) STRANDEDNESS: single

	(D) TOPOLOGY: linear	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:	
ANTA	ATCCCAC CAGCTTCTCA CAGGTGTCA	29
(2)	INFORMATION FOR SEQ ID NO:49:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:	
GNA	GGCATCA CTGTGGCTAT TTCAATCTC	29
(2)	INFORMATION FOR SEQ ID NO:50:	
	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
TNC	CTTAGAA ACATGACTGC GGTGACAAT	29
(2)	INFORMATION FOR SEQ ID NO:51:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single	

(D) TOPOLOGY: linear

<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:	
TCCTCCTACT TCTCCTCTTG ACAGCGA	27
(2) INFORMATION FOR SEQ ID NO:52:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:	
GNTTGGTGGA GGTGACGGAG TTGAAAGAG	29
(2) INFORMATION FOR SEQ ID NO:53:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
<pre>(ii) MOLECULE TYPE: other nucleic acid (A) DESCRIPTION: /desc = "oligonucleotide"</pre>	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:	
GNCTCCTCCA GAAATTCTGG ATCAATGAC	29

What is claimed is:

1. A composition comprising an isolated polynucleotide selected from the group consisting of:

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:23;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:23 from nucleotide 404 to nucleotide 634;
- (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone AC41_1 deposited under accession number ATCC 98101:
- (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone AC41_1 deposited under accession number ATCC 98101;
- (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AC41_1 deposited under accession number ATCC 98101:
- (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AC41_1 deposited under accession number ATCC 98101;
- (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:24;
- (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:24 having biological activity;
- (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(f) above:
- (j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above ; and
- (k) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h).
- 2. A composition of claim 1 wherein said polynucleotide is operably linked to an expression control sequence.
 - 3. A host cell transformed with a composition of claim 2.
 - 4. The host cell of claim 3, wherein said cell is a mammalian cell.
 - 5. A process for producing a protein, which comprises:

(a) growing a culture of the host cell of claim 3 in a suitable culture medium:

- (b) purifying the protein from the culture
- 6. A protein produced according to the process of claim 5.
- 7. The protein of claim 6 comprising a mature protein.
- 8. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:24;
 - (b) the amino acid sequence of SEQ ID NO:24 from amino acid 1 to amino acid 66:
 - (c) fragments of the amino acid sequence of SEQ ID NO:24: and
- (d) the amino acid sequence encoded by the cDNA insert of clone AC41_1 deposited under accession number ATCC 98101: the protein being substantially free from other mammalian proteins.
- 9. The composition of claim 8, wherein the protein comprises the amino acid sequence of SEQ ID NO:24.
- 10. The composition of claim 8, further comprising a pharmaceutically acceptable carrier.
- 11. A method for preventing, treating or ameliorating a medical condition which comprises administering to a mammalian subject a therapeutically effective amount of a composition of claim 10.
- 12. The gene corresponding to the cDNA sequence of SEQ ID NO:23 or SEQ ID NO:25.
- 13. A composition comprising an isolated polynucleotide selected from the group consisting of:
 - (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:6:

(b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:6 from nucleotide 31 to nucleotide 180:

- (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone AX92_3 deposited under accession number ATCC 98101;
- (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone AX92_3 deposited under accession number ATCC 98101;
- (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AX92_3 deposited under accession number ATCC 98101;
- (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AX92_3 deposited under accession number ATCC 98101:
- (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:7:
- (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:7 having biological activity;
- (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(f) above;
- (j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above; and
- (k) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h).
- 14. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:7;
 - (b) fragments of the amino acid sequence of SEQ ID NO:7; and
 - (c) the amino acid sequence encoded by the cDNA insert of clone AX92_3 deposited under accession number ATCC 98101;

the protein being substantially free from other mammalian proteins.

- 15. The gene corresponding to the cDNA sequence of SEQ ID NO:6, SEQ ID NO:5 or SEQ ID NO:8.
- 16. A composition comprising an isolated polynucleotide selected from the group consisting of:

- (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:12;
- (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:12 from nucleotide 262 to nucleotide 594;
- (c) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:12 from nucleotide 367 to nucleotide 594:
- (d) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone AS209_1 deposited under accession number ATCC 98101;
- (e) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101;
- (f) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AS209_1 deposited under accession number ATCC 98101;
- (g) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101:
- (h) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:13;
- (i) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:13 having biological activity:
- (j) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(g) above:
- (k) a polynucleotide which encodes a species homologue of the protein of (h) or (i) above : and
- (I) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(i).
- 17. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:13:
 - (b) the amino acid sequence of SEQ ID NO:13 from amino acid 1 to amino acid 40;
 - (c) fragments of the amino acid sequence of SEQ ID NO:13; and
- (d) the amino acid sequence encoded by the cDNA insert of clone AS209_1 deposited under accession number ATCC 98101; the protein being substantially free from other mammalian proteins.

18. The gene corresponding to the cDNA sequence of SEQ ID NO:12, SEQ ID NO:11 or SEQ ID NO:14.

- 19. A composition comprising an isolated polynucleotide selected from the group consisting of:
 - (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:15;
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:15 from nucleotide 220 to nucleotide 338;
 - (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone AK684_1 deposited under accession number ATCC 98101;
 - (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone AK684_1 deposited under accession number ATCC 98101:
 - (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AK684_1 deposited under accession number ATCC 98101;
 - (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AK684_1 deposited under accession number ATCC 98101;
 - (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:16;
 - (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:16 having biological activity;
 - (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(f) above;
 - (j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above; and
 - (k) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h).
- 20. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:16;
 - (b) fragments of the amino acid sequence of SEQ ID NO:16; and
- (c) the amino acid sequence encoded by the cDNA insert of clone AK684_1 deposited under accession number ATCC 98101; the protein being substantially free from other mammalian proteins.

21. The gene corresponding to the cDNA sequence of SEQ ID NO:15 or SEQ ID NO:17.

- 22. A composition comprising an isolated polynucleotide selected from the group consisting of:
 - (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:18;
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:18 from nucleotide 196 to nucleotide 501;
 - (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone AJ168_4 deposited under accession number ATCC 98101:
 - (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone AJ168_4 deposited under accession number ATCC 98101:
 - (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AJ168_4 deposited under accession number ATCC 98101;
 - (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AJ168_4 deposited under accession number ATCC 98101:
 - (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:19;
 - (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:19 having biological activity;
 - (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(f) above:
 - (j) a polynucleotide which encodes a species homologue of the protein of (g)or (h) above; and
 - (k) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h).
- 23. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:19;
 - (b) fragments of the amino acid sequence of SEQ ID NO:19; and
- (c) the amino acid sequence encoded by the cDNA insert of clone AJ168_4 deposited under accession number ATCC 98101: the protein being substantially free from other mammalian proteins.

24. The gene corresponding to the cDNA sequence of SEQ ID NO:18.

- 25. A composition comprising an isolated polynucleotide selected from the group consisting of:
 - (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:21;
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:21 from nucleotide 612 to nucleotide 671;
 - (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101;
 - (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone AJ143_1 deposited under accession number ATCC 98101:
 - (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone AJ143_1 deposited under accession number ATCC 98101;
 - (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone AJ143_1 deposited under accession number ATCC 98101:
 - (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:22;
 - (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:22 having biological activity;
 - (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(f) above;
 - (j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above : and
 - (k) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h).
- 26. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:22;
 - (b) fragments of the amino acid sequence of SEQ ID NO:22; and
- (c) the amino acid sequence encoded by the cDNA insert of clone AJ143_1 deposited under accession number ATCC 98101; the protein being substantially free from other mammalian proteins.

The gene corresponding to the cDNA sequence of SEQ ID NO:21 or SEQ ID NO:20.

- 28. A composition comprising an isolated polynucleotide selected from the group consisting of:
 - (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:32:
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:32 from nucleotide 165 to nucleotide 857:
 - (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone J317_1 deposited under accession number ATCC 98101:
 - (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone J317_1 deposited under accession number ATCC 98101;
 - (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone J317_1 deposited under accession number ATCC 98101:
 - (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone J317_1 deposited under accession number ATCC 98101;
 - (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:33;
 - (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:33 having biological activity;
 - (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(f) above; and
 - $(j) \qquad \text{a polynucleotide which encodes a species homologue of the protein of } (g) \\$ or (h) above .
- 29. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:33;
 - (b) the amino acid sequence of SEQ ID NO:33 from amino acid 5 to amino acid 115;
 - (c) fragments of the amino acid sequence of SEQ ID NO:33; and
 - (d) the amino acid sequence encoded by the cDNA insert of clone J317_1 deposited under accession number ATCC 98101:

the protein being substantially free from other mammalian proteins.

30. The gene corresponding to the cDNA sequence of SEQ ID NO:32 or SEQ ID NO:34.

- 31. A composition comprising an isolated polynucleotide selected from the group consisting of:
 - (a) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:35:
 - (b) a polynucleotide comprising the nucleotide sequence of SEQ ID NO:35 from nucleotide 290 to nucleotide 652:
 - (c) a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone BG33_7 deposited under accession number ATCC 98101;
 - (d) a polynucleotide encoding the full length protein encoded by the cDNA insert of clone BG33_7 deposited under accession number ATCC 98101:
 - (e) a polynucleotide comprising the nucleotide sequence of the mature protein coding sequence of clone BG33_7 deposited under accession number ATCC 98101;
 - (f) a polynucleotide encoding the mature protein encoded by the cDNA insert of clone BG33_7 deposited under accession number ATCC 98101;
 - (g) a polynucleotide encoding a protein comprising the amino acid sequence of SEQ ID NO:36;
 - (h) a polynucleotide encoding a protein comprising a fragment of the amino acid sequence of SEQ ID NO:36 having biological activity;
 - (i) a polynucleotide which is an allelic variant of a polynucleotide of (a)-(f) above;
 - (j) a polynucleotide which encodes a species homologue of the protein of (g) or (h) above; and
 - (k) a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a)-(h).
- 32. A composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group consisting of:
 - (a) the amino acid sequence of SEQ ID NO:36;
 - (b) fragments of the amino acid sequence of SEQ ID NO:36; and
- (c) the amino acid sequence encoded by the cDNA insert of clone BG33_7 deposited under accession number ATCC 98101; the protein being substantially free from other mammalian proteins.

33. The gene corresponding to the cDNA sequence of SEQ ID NO:35 or SEQ ID NO:37.

1/1

FIGURE 1

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

INTERNATIONAL APPLICATION PUR	RLIZHED	JUN	DER THE PATENT COUPERATION TREATT (PCT)
(51) International Patent Classification 6:	.,,		11) International Publication Number: WO 98/01554
C12N 15/12, 5/10, C07K 14/47, C12Q 1/68, A61K 38/17	Q A3		43) International Publication Date: 15 January 1998 (15.01.98)
	CT/US97/11		BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
	1997 (07.07	.97)	HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG,
(30) Priority Data: 08/677,231 9 July 1996 (09.07.96)	US	ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF,
(71) Applicant: GENETICS INSTITUTE, INC. [US bridgePark Drive, Cambridge, MA 02140 (U	US).		BJ. CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(72) Inventors: JACOBS, Kenneth; 151 Beaumont ton, MA 02160 (US). MCCOY, John, M Street, Reading, MA 01867 (US). LAVAR.; 90 Grean Meadow Drive, Tewksbury, M RACIE, Lisa, A.; 124 School Street, Acta (US). MERBERG, David; 2 Orchard Driv 01720 (US). TREACY, Maurice; 93 Walcomut Hill, MA 02167 (US). EVANS, Cher Street #41, Woburn, MA 01801 (US). SPAU 11 Meadowbank Road, Billerica, MA 0182 MAN, Michael; 50 Aldrich Road, Canton, M	M.; 56 How LLIE, Edw AA 01876 (U.on, MA 01 ve, Acton, Chryl; 111 Los JLDING, Vill (US). BC	ward, US). 1720 MA hest- cust ikki; OW-	With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments. (88) Date of publication of the international search report: 5 March 1998 (05.03.98)
(74) Agent: SPRUNGER, Suzanne, A.; Genetics Inc CambridgePark Drive, Cambridge, MA 0214	stitute, Inc., 40 (US).	, 87	
(54) Title: SECRETED PROTEINS AND POLYNG	UCLEOTIE)ES I	ENCODING THEM
(57) Abstract			
Novel polynucleotides and the			II OF ITOMET & AX56-8
proteins encoded thereby are disclosed.			OFFINE S AR28-1
	•		(I)
	₿ .		DI CONTRACTOR IL-11
			IP D
•	0		0 0 0 11-1
		* ()	श्र स्थापन के स्यापन के स्थापन के स्यापन के स्थापन के स
	4	÷ 8	-1
	٠٥٠ (Ŋ¢.	& AR109-1
	ŧ	?	AX56-8
	[30	() : (A) AR28-1
Ģ	* Can	 	₫ BG33-7
	ř	į	្រី ! ប្រាប្រាប្រាប់ ស្តី AJ143-1
	NE	~~~	PED M
	V	~	PED (CM)

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	es	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuonia	SK	Slovetia
AT	Austria	FR	France	LU	Luxembourg	SN	
AU	Australia	GA	Gabon	LV	Latvia	SZ	Senegal Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	•
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Ched
BB	Barbedos	GH	Ghana	MG	Medagaseer		Togo
BE	Belgium	GN	Guinen	MK	The former Yugoslav	TJ TO	Tajikistan
BF	Burkina Pago	GR	Greece	MILE	Republic of Mecedonia	TM	Turkmenistan
BG	Bulgaria	HU	Hungary	ML	Mali	TR	Turkey
BJ	Benin	18	Ireland	MN		TT	Trinided and Tobago
BR	Brazil	IL	brel	MR	Mongolia	UA	Ultraine
BY	Belarus	IS	iceland	MW	Mauritania	UG	Uganda
CA	Concda	IT	Italy		Malawi	US	United States of America
CF	Central African Republic	JP		MX	Mexico	UZ	Uzbekistan
CG	Congo	KE	Japan Kanna	NE	Niger	VN	Viet Nam
СН	Switzerland	KG	Kenya	NL	Netherlands	YU	Yugoslavia
CI	Côte d'Ivoire		Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CM	Cameroon	KP	Democratic People's	NZ	New Zealand		
CN		•	Republic of Korea	PL	Poland		
CU	China	KR	Republic of Karea	PT	Portugal		
CZ	Cuba Court D. A.V.	KZ	Kazekstan	RO	Romania		
DE	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DK	Germany	น	Liechtenstein	SD	Sudan		
f	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

Interna il Application No PCT/US 97/11876

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12N15/12 C12N5/10 A61K38/17 C12Q1/68 C07K14/47 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C12N C07K C12Q A61K IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fiolds searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Rolovant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category ° 1-12 EMBL SEQUENCE DATABASE, Α 8 July 1993, HEIDELBERG, BRD, XP002044042 S.S. PFEIFFER: "TPO-1: A developmentally regulated gene expressed during the transition from oligodedroblast to oligodendrocyte" cited in the application Accession no. L20319 1-12 NATURE GENETICS, Α vol. 4, no. 3, pages 256-267, XP000611495 ADAMS M D ET AL: "3,400 NEW EXPRESSED SEQUENCE TAGS IDENTIFY DIVERSITY OF TRANSCRIPTS IN HUMAN BRAIN" see the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. * Special categories of atod documents: "T" lator document published after the international filing date or priority date and not in conflict with the application but citod to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier decument but published on or after the international "X" decurrent of particular relevance; the claimed invention cannot be considered nevel or cannot be considered to filing date involve an inventive step when the document is taken alone "L" document which may throw doubts on priority claim(s) or "Y" document of particular rolovance; the plaimed invention which is cited to establish the publication date of another cannot be considered to involve an inventive step when the citation or other special reason (as specified) document is combined with one or more other such docu-"O" document referring to an oral disclosuro, uso, exhibition or monts, such combination being obvious to a person skilled other means in the art. document published prior to the international filing date but "&" document member of the same potent family lator than the priority date claimed Date of maiting of the international search report Dato of the actual completion of the international search 2 7. 01. 98 20 October 1997 **Authorized officer** Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tol. (+31-70) 340-2040, Tx. 31 651 epo nl. HORNIG H. Fax: (+31-70) 340-3016

1

Internal I Application No
PCT/US 97/11876

C.(Continue	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	PC1/05 9//118/6
Catogory •	Citation of document, with indication, where appropriate, of the relevant passages	Relevent to claim No.
A	KEYSTONE SYMPOSIUM ON DENDRITIC CELLS: ANTIGEN PRESENTING CELLS OF T AND B LYMPHOCYTES, TAOS, NEW MEXICO, USA, MARCH 10-16, 1995. JOURNAL OF CELLULAR BIOCHEMISTRY SUPPLEMENT 0 (21A). 1995. 19. ISSN: 0733-1959, XP002040894 JACOBS K ET AL: "A novel method for isolating eukaryotic cDNA clones encoding secreted proteins." abstract no. C1-207 see abstract	1-12
A	EP 0 510 691 A (OSAKA BIOSCIENCE INST) 28 October 1992 see the whole document	1-12
A	WO 94 07916 A (MERCK & CO INC ;SCHMIDT AZRIEL (US); RODAN GIDEON A (US); RUTLEDGE) 14 April 1994 see the whole document	1-12
A	WO 90 05780 A (OREGON STATE) 31 May 1990 see the whole document	1-12
A	WO 90 14432 A (GENETICS INST) 29 November 1990 see the whole document	1-12
A	WO 96 17925 A (IMMUNEX CORP) 13 June 1996 see the whole document	1-12
A	MOL. CELL. BIOL., vol. 9, no. 3, March 1989, ASM WASHINGTON, DC,US, pages 1233-1242, XP002041592 R.J. KAUFMAN ET AL.: "Effect of von Willebrand factor coexpression on the synthesis and secretion of factor VIII in chinese hamster ovary cells" see the whole document	1-12
A	MOL. CELL. BIOL., vol. 9, no. 3, March 1989, ASM WASHINGTON, DC,US, pages 946-958, XP002041593 R.J. KAUFMAN ET AL.: "The phosphorylation state of eucaryotic initiation factor 2 alters translation efficiency of specific mRNAs" see the whole document	1-12

1

Interna al Application No PCT/US 97/11876

		PCT/US 97/11876
C.(Continua	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, whore appropriate, of the relevant passages	Relovant to claim No.
A	NUCLEIC ACIDS RESEARCH, vol. 19, no. 16, 1991, IRL PRESS LIMITED, OXFORD, ENGLAND, pages 4485-4490, XP002041594 R.J. KAUFMAN ET AL.: "Improved vectors for stable expression of foreign genes in mammalian cells by use of the untranslated leader sequence from EMC virus" cited in the application see the whole document	1-12
P,A	US 5 536 637 A (JACOBS KENNETH) 16 July 1996 see the whole document	1-12
P , A	WO 97 07198 A (GENETICS INSTITUT) 27 February 1997 see the whole document	1-12
	WO 97 25427 A (GENETICS INST) 17 July 1997 see the whole document	1-12

1

International Search Report

Int tional application No.

PCT/US 97/11876

B II Observations where cortain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been ostablished in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim 11 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see continuation-sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.: 1-12
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

1. Claims: 1-12

A composition comprising an isolated polynucleotide selected from the group consisting of: SEQ ID no.23; a polynucleotide comprising the nucleotide sequence of the full length protein coding sequence of clone AC41 1: said composition wherein said polynucleotide is operably linked to an expression control sequence; a host cell transformed with said composition; a process for producing a protein which is encoded by said polynucleotide sequence; a composition comprising a protein, wherein said protein comprises an amino acid sequence selected from the group of SEQ ID no.24, said composition further comprising a pharmaceutical acceptable carrier; a method for preventing, treating or ameliorating a medical condition which comprises administering to a mammalian subject a therapeutically effective amount of said composition, the gene corresponding to the cDNA sequence of SEQ ID no.23, or SEQ ID no.25.

2. Claims: 13-15

A composition comprising an isolated polynucleotide sequence selected from the group of SEQ ID no.6; a composition comprises a protein, wherein said protein comprises an amino acid sequence selected from the group of SEQ ID no.7; the gene corresponding to the cDNA sequence of SEQ ID no.5, SEQ ID no.6 or SEQ ID no.8;

3. Claims: 16-18

Idem as subject 2 but limited to SEQ ID no.11, SEQ ID no.12, SEQ ID no.13 and SEQ ID no.14.

4. Claims: 19-21

Idem as subject 2 but limited to SEQ ID no.15, SEQ ID no.16, and SEQ ID no.17.

5. Claims: 22-24

Idem as subject 2 but limited to SEQ ID no.18, and SEQ ID no.19.

6. Claims: 25-27

Idem as subject 2 but limited to SEQ ID no.20, SEQ ID no.21, and SEQ ID no.22.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

7. Claims: 28-30

Idem as subject 2 but limited to SEQ ID no.32, SEQ ID no.33, and SEQ ID no.34.

8. Claims: 31-33

Idem as subject 2 but limited to SEQ ID no.35, SEQ ID no.36, and SEQ ID no.37.

Intermation on patent family members

Internat Application No PCT/US 97/11876

Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
EP 0510691 A	28-10-92	CA 2067031 A JP 5184368 A	27-10-92 27-07-93	
WO 9407916 A	14-04-94	AU 5165193 A	26-04-94	
WO 9005780 A	31-05-90	AT 154636 T AU 645963 B AU 4668689 A DE 68928137 D EP 0447483 A JP 4506449 T	15-07-97 03-02-94 12-06-90 24-07-97 25-09-91 12-11-92	
WO 9014432 A	29-11-90	US 5580753 A AT 147436 T AU 637620 B AU 5928990 A CA 2056997 A DE 69029657 D DE 69029657 T EP 0473724 A ES 2099096 T JP 4506006 T US 5414071 A	03-12-96 15-01-97 03-06-93 18-12-90 24-11-90 20-02-97 07-08-97 11-03-92 16-05-97 22-10-92 09-05-95	
WO 9617925 A	13-06-96	AU 4639396 A CA 2206488 A FI 972390 A NO 972455 A	26-06-96 13-06-96 05-06-97 06-08-97	
US 5536637 A	16-07-96	NONE		
WO 9707198 A	27-02-97	AU 6712396 A AU 6768596 A WO 9704097 A	18-02-97 12-03-97 06-02-97	
WO 9725427 A	17-07-97	AU 1532697 A	01-08-97	