IC-830 Introdução à Computação Móvel *Prof. Marcio*

Conteúdo

2022.1

Metodologia

2022.1

Avaliação

M = (P + S1 + S2)/3 S - apresentação dos artigosP - prova

Computadores para as próximas décadas

Integrados

- □ Pequenos, de baixo custo, portáteis, substituíveis
- Não mais dispositivos separados

A tecnologia está no background

- □ Computadores são cientes do seu ambiente e se adaptam
- □ Computadores reconhecem a localização do usuário e reagem apropriadamente (ex.: encaminhamento de conexões, sensibilidade ao contexto)

Avanços na tecnologia

- □ Maior poder de computação em pequenos dispositivos
- Novas interfaces de usuário, voltadas para pequenas dimensões
- Mais largura de banda por metro cúbico
- Múltiplas interfaces de rede sem fio: para redes locais e de longa distância, bem como para serviços regionais

Redes Móveis e Sem Fio

Contexto:

- Número de assinantes de telefones celulares já há algum tempo ultrapassa o número de assinantes de telefone fixos (10 p/ 1 em 2019)!
- Mais dispositivos conectados por banda larga móvel do que dispositivos conectados por banda larga fixa (5-1 em 2019)!
 - Redes celulares 4G/5G agora adotando a pilha de protocolos da Internet
- Dois importantes (e diferentes) conceitos:
 - Sem fio: Comunicação sobre um enlace sem fio
 - Mobilidade: Gerenciamento de um usuário móvel que troca o seu ponto de acesso à rede

Portabilidade vs. Mobilidade

Portabilidade: é a capacidade de um host operar a partir de diferentes pontos de conexão, mas não durante o tempo em que ele está mudando de ponto de conexão. Se um host é movido de um lugar para outro, todas suas conexões de rede são encerradas e reiniciadas no novo ponto de conexão

Mobilidade:
 é a capacidade de um host continuar em contato praticamente contínuo com os recursos de rede necessários às aplicações. Dessa forma, nem o sistema e nem as aplicações precisam ser encerrados e reiniciados

Comunicações móveis

Dois aspectos da mobilidade

- □ Mobilidade de usuário: usuários se comunicam (sem fio) a qualquer momento e em qualquer lugar
- □ Portabilidade de dispositivos: capazes de se conectar à rede a qualquer momento e em qualquer lugar

Sem fio	vs. Portá	til Exemplos
SC	*	Computador em rede cabeada em casa ou no escritório
*	\checkmark	Notebook em casa movido para a empresa
\checkmark	*	LAN sem fio em redes residenciais ou escritórios
\checkmark	\checkmark	Tablets, Smartphones, etc

A demanda por comunicação móvel criou a necessidade de integração de redes móveis com as redes fixas existentes

- Redes locais: padrões IEEE 802.11 (Wi-fi)
- Extensão móvel do protocolo IP: IP móvel
- Redes de longa distância: 4G e 5G

Modo Ad hoc

- não existem estações base
- nós podem transmitir para outros somente dentro de uma determinada cobertura
- nós se organizam em uma rede e o roteamento só pode ser feito entre eles

Taxonomia de Redes sem fio

	único hop	múltiplos hops
infraestruturada (APs)	host se conecta à estação-base (WiFi, celular), a qual se conecta à Internet	host pode ter que repassar através de muitos nós para se conectar à Internet: redes em malha (mesh)
s/ infraestrutura	Sem estação-base, sem conexão c/ a Internet (Bluetooth, redes ad hoc)	Sem estação-base, sem conexão com a Internet. Pode ter que repassar para alcançar o nó de uma MANET, VANET

Características de alguns enlaces sem fio

Características de enlaces sem fio

Importantes diferenças para os enlaces com fio:

- Decremento na potência do sinal:
 sinais de rádio se atenuam ao longo do caminho (path loss)
- Interferência de outras fontes:

frequências padronizadas para redes sem fio (por ex. 2.4 GHz) são compartilhadas por outros dispositivos (por ex., telefone); motores também interferem

• Propagação multipath:

sinal de rádio reflete em obstáculos terrestres, chegando no destino com pequenas diferenças de tempo

Faz da comunicação sobre um enlace sem fio (mesmo um ponto a ponto) muito mais difícil

Características das redes sem fio

A existência de múltiplos transmissores e receptores sem fio cria problemas adicionais, que vão além do múltiplo acesso:

Problema do terminal Escondido

- B, A escutam um ao outro
- B, C escutam um ao outro
- A, C não podem escutar um ao outro
- ⇒ A e C não podem prever uma

Atenuação do sinal:

- B, A escutam um ao outro
- B, C escutam um ao outro
- A, C não podem escutar um ao

Efeitos da portabilidade dos dispositivos

Consumo de energia

- □ Poder computacional é limitado p/ capacidade de bateria
- □ CPU: consumo de energia ~ CV²f
 - C: capacidade interna, reduzida pela integração
 - V: fonte de voltagem, pode ser reduzida até um limite
 - f: frequência do relógio, pode ser reduzida temporariamente

Perda de dados

□ Probabilidade mais alta, deve ser prevista com antecipação

Interfaces de usuário limitadas

□ Compromisso entre o tamanho dos dedos e a portabilidade

Redes sem fio x Redes fixas

Taxas de perda mais altas devido à interferência

□ Emissões de motores, relâmpagos

Regulamentação restritiva do uso de frequências

□ Frequências devem ser coordenadas, frequências úteis já estão quase todas ocupadas

Atraso e jitter mais altos

□ Tempo de estabelecimento de conexão: da ordem de segundos

Baixa segurança, mais simples de se atacar

☐ Interface de rádio acessível a qualquer um, estação base pode ser simulada (por ex., para atrair chamadas de smartphones)

Meio sempre compartilhado

☐ Mecanismos de acesso seguro são importantes (criptografia)

Algumas áreas de pesquisa em comunicações móveis

Comunicação sem fio

- □ Qualidade de transmissão (largura de banda, taxa de erros, atrasos, variações no atraso)
- □ Modulação, codificação, interferências
- □ Acesso ao meio, regulamentações
- □ Segurança
- □ Protocolos de acesso ao meio compartilhado

Mobilidade

- Serviços dependentes de localização
- > Transparência de localização
- > Suporte de qualidade de serviço (atraso, jitter, segurança)

Portabilidade

- Consumo de energia
- Usabilidade (interface com o usuário, conectividade, etc.)
- **...**

Influência da comunicação móvel no modelo de camadas

Aplicação	serviços de localização	
Apricação	☐ aplicações adaptativas (sensíveis ao contex	to)
Transporte	□ controle de fluxo e de congestionamento	
	□ qualidade de serviço (QoS)	
	□ endereçamento, roteamento, localização do	o dispositivo
Rede	□ hand-over	GISP OSIGN O
Enlaga	□ autenticação	
Enlace	□ multiplexação	
	☐ controle de acesso ao meio, criptografia	
	□ modulação	
Física	□ interferência	
	☐ atenuação do sinal	
	☐ frequência	21
	-	

Code Division Multiple Access (CDMA)

"código" único é atribuído para cada usuário, isto é, existe um conjunto de códigos

- todos os usuários compartilham a mesma frequência, mas cada um tem sua própria sequência de bits (código) para codificar os dados
- permite que múltiplos usuários "coexistam" e transmitam simultaneamente com interferência minima

sinal codificado = (dados originais) x (sequência de bits)

decodificação:

produto do sinal codificado pela sequência de bits (código)

CDMA: codificação/decodificação

CDMA: codificação/decodificação

Para o m-ésimo mini-intervalo do tempo de transmissão de bits de d_i , a saída do codificador CDMA, $Z_{i,m}$, é o valor de d_i multiplicado pelo m-ésimo bit do código CDMA escolhido:

$$Z_{i,m} = d_i \cdot c_m$$

Receptor vai receber os bits codificados, $Z_{i,m}$, e recuperar os bits de dados originais, d_i , calculando:

$$d_i = \frac{1}{M} \sum_{m=1}^{M} Z_{i, m} \cdot c_m$$

CDMA: interferência com dois emissores

