1. Badanie układu kodera – zadanie za 5 punktów

1.1. Wypełnić tabelę 1 zgodnie z zaleceniami podanymi przez prowadzącego. Wyprowadzić równania układu kodera realizującego operacje konwersji zgodnie z tabelą 1.

Tabela 1. Tabela prawdy układu kodera

					Wyjścia									
L.p.	x_9	x_8	<i>x</i> ₇	x_6	x_5	x_4	x_3	x_2	x_1	x_0	D	С	В	Α
0	у	y	y	y	y	y	y	y	y	Х				
1	у	у	у	у	у	у	у	у	X	у				
2	у	у	у	у	у	у	у	x	у	у				
3	у	у	у	у	у	у	x	у	у	у				
4	у	y	y	у	у	х	у	у	у	у				
5	у	y	y	у	x	y	у	у	у	у				
6	у	у	у	x	у	у	у	у	у	y				
7	у	у	х	y	y	y	y	y	y	y				
8	у	х	y	y	y	y	y	y	y	y				
9	x	у	у	у	у	у	у	у	у	у				

Gdzie
$$x = \dots, y = \overline{x}$$

Równania wyjścia kodera:

A =

B =

C =

D =

1.2. Zbudować, używając funktorów o liczbie wejść nie większej niż dwa z biblioteki 74STD, w programie Multisim, bazując na wyrażeniach wyznaczonych w punkcie 1.1 układ kodera. Sprawdzić poprawność pracy zbudowanego układu kodera wpisując uzyskane wyniki do tabeli 2. Zaprezentować działanie układu prowadzącemu zajęcia.

Tabela 2. Wyniki działania układu kodera

	Wyjścia											
L.p.	D	C	В	A								
0												
1												
2												

1.3. Wyprowadzić równania układu dekodera przyjmując odwróconą kolejność danych przedstawionych w tabeli 1. (Wejście staje się wyjściem, natomiast wyjście – wejściem).

Równania wyjścia dekodera:

 $x_0 = \dots$

 $x_1 = \dots x_1$

x_2	=	•••	•••	• • •	•••	••	••	 •	•	••	••	 •	••	• •	••		•	 ••	••	• •	•	••	•		••	•	. .	••	• •	,
	• •					٠.	•									•		 •		٠.				٠.					•	
x_{o}	=							 . . .				 						 												

1.4. Zbudować, *używając funktorów o liczbie wejść nie większej niż dwa z biblioteki 74STD*, w programie Multisim, bazując na wyrażeniach wyznaczonych w punkcie 1.3, układ dekodera. Sprawdzić poprawność pracy zbudowanego układu dekodera wpisując uzyskane wyniki do tabeli 3. *Zaprezentować działanie układu prowadzącemu zajęcia*.

Tabela 3. Wyniki działania układu dekodera

	Wyjścia											
L.p.	x_9	x_8	x_7	x_6	x_5	x_4	x_3	x_2	x_1	x_0		
0												
1												
2												

2. Badanie translatora kodu – zadanie za 4 punkty

2.1. Wypełnić tabelę 4 zgodnie z zaleceniami podanymi przez prowadzącego. Wyprowadzić równania układu translatora kodu realizującego operacje konwersji zgodnie z tabelą 4.

Tabela 4. Tabela prawdy układu translatora kodu

x_2	x_1	x_0	D	С	В	A
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Równania wyjścia translatora:

A =	
B =	
C =	
D -	

2.2. Zbudować, używając funktorów o liczbie wejść nie większej niż dwa z biblioteki 74STD, w programie Multisim, bazując na wyrażeniach wyznaczonych w punkcie 2.1 układ translatora kodu. Sprawdzić poprawność pracy zbudowanego układu translatora kodu wpisując uzyskane wyniki do tabeli 5. Zaprezentować działanie układu prowadzącemu zajęcia.

Tabela 5 Wyniki działania układu translatora kodu

x_2	x_1	x_0	D	С	В	A

3. Badanie multipleksera – zadanie za 6 punktów

3.1. Wykorzystać multiplekser 74151 do realizacji funkcji logicznej zadanej przez prowadzącego:

Y =

Dla zadanej funkcji wypełnić tablicę Karnaugha (tabela 6) oraz zbudować w programie Multisim, układ kombinacyjny realizujący zadaną funkcję bazując na układzie multipleksera 74151.

Tabela 6. Tablica opisująca działanie układu kombinacyjnego

BA DC	00	01	11	10
00				
01				
11				
10				

Y

- 3.2. Zbudować (na jednym schemacie z układem z pkt 3.1), *używając funktorów o liczbie wejść nie większej niż dwa z biblioteki 74STD*, układ kombinacyjny realizujący zadaną przez prowadzącego funkcję.
- 3.3. Przeprowadzić proces sprawdzenia poprawności działania zaprojektowanych układów, wykorzystując program Multisim. Uzyskane wyniki wpisać w tabeli 7 kolumna **Y** dla układu z pkt. 3.1, kolumna **F** dla układu z pkt. 3.2. Zaprezentować działanie układów prowadzącemu zajęcia. W sprawozdaniu porównać i przedstawić na jednym wykresie, uzyskane wyniki..

Tabela 7 Wyniki działania układu kombinacyjnego bazującego na multiplekserze (Y) oraz bramkach (F)

D	С	В	A	Y	F
0	0	0	0		
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

4. Badanie sumatora 3-bitowego – zadanie za 4 punkty **(zadanie dodatkowe realizowane na zajęciach)**

- 4.1. Zbudować w programie Multisim, używając tylko funkcji logicznych realizowanych przez funktory określone przez wykładowcę oraz liczbie wejść nie większej niż dwa, układ 3-bitowego sumatora równoległego z przeniesieniami szeregowymi.
- 4.2. Sprawdzić, dla zadanych przez prowadzącego wartości wejściowych, poprawność działania zbudowanego układu wpisując odpowiednie wartości do tabeli 8. Zaprezentować działanie układu prowadzącemu zajęcia.

Tabela 8 Wyniki działania układu sumatora 3-bitowego

C-1	\mathbf{A}_2	A 1	\mathbf{A}_{0}	\mathbf{B}_2	B ₁	\mathbf{B}_0	C ₃	S ₂	S ₁	So

Sprawozdanie powinno zwierać:

- 1. Stronę tytułową.
- 2. Projekt wszystkich opracowanych w ćwiczeniu układów z uwzględnieniem:
 - etapu wyprowadzania równań logicznych dla podanych przez prowadzącego danych,
 - schematów logicznych w postaci przedruków z programu Multisim,
 - przebiegów w postaci przedruków z programu Multisim, ukazujących działanie przedstawionych na schematach układów. Oznaczenia na przebiegach powinny

odpowiadać oznaczeniom przyjętym na etapie projektowania układów. Parametry czasowe przebiegów należy dobierać tak, aby zobrazowywały one:

- ➤ dla układów kombinacyjnych wszystkie możliwe kombinacje zależności sygnałów wejściowych i wyjściowych;
- ➤ dla układów sekwencyjnych sekwencję wartości wejściowych oraz odpowiadającą jej sekwencję wartości wyjściowych.
- 3. Wnioski końcowe (w szczególności powinny zawierać):
 - uzasadnienie wyboru zastosowanej metody projektowej. Porównanie jej z innymi znanymi metodami, dla każdego zaprojektowanego układu;
 - omówienie uzyskanych wyników;
 - własne spostrzeżenia i wnioski z ćwiczenia.

Należy zastosować numerację rysunków oraz tabel i odwoływać się w treści do nich poprzez numery.

Badanie układów sekwencyjnych

1. Synteza układu asynchronicznego – zadanie za 6 punktów

- 1.1. Dla podanej przez prowadzącego tabeli przejść i wyjść narysować odpowiadający jej graf przejść i wyjść.
- 1.2. Wykorzystując przerzutniki asynchroniczne **RS** zbudować asynchroniczny układ sekwencyjny działający zgodnie z grafem przejść i wyjść (tabelą przejść i wyjść) użytym w pkt. 1.1.
- 1.3. Sprawdzić, wykorzystując program Multisim, poprawność działania zaprojektowanego układu. Wyniki przedstawić w postaci wykresów zmian odpowiednich wartości wejściowych i wyjściowych. Zaprezentować działanie układu prowadzącemu zajęcia.

2. Synteza układu synchronicznego – zadanie za 6 punktów

- 2.1. Wykorzystując przerzutniki synchroniczne **JK** zbudować synchroniczny układ sekwencyjny działający zgodnie z grafem przejść i wyjść (tabelą przejść i wyjść) użytym w pkt. 1.1.
- 2.2. Sprawdzić, wykorzystując program Multisim, poprawność działania zaprojektowanego w pkt. 2.1 układu. Wyniki przedstawić w postaci wykresów zmian odpowiednich wartości wejściowych i wyjściowych. *Zaprezentować działanie układu prowadzącemu zajęcia*.

3. Synteza licznika synchronicznego – zadanie za 6 punktów

3.1. Wykorzystując przerzutniki typu oraz niezbędne dodatkowe elementy logiczne zbudować licznik synchroniczny o pojemności i kolejności zmian stanów zgodnie z sekwencją przedstawioną w tabeli 1.

Tabela 1 Tabela zmian stanów układu licznika synchronicznego

Stan	Q_D	Qc	Q_{B}	Q_A
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

Badanie układów sekwencyjnych

3.2. Sprawdzić, wykorzystując program Multisim, poprawność działania zaprojektowanego licznik. Wyniki przedstawić w postaci wykresów zmian odpowiednich wartości wejściowych i wyjściowych. Zaprezentować działanie układu prowadzącemu zajęcia.

4. Synteza rejestru – zadanie za 5 punktów **(zadanie dodatkowe realizowane na zajęciach)**

- 4.1. Wykorzystując przerzutniki typu oraz niezbędne dodatkowe elementy logiczne zbudować rejestr
- 4.2. Sprawdzić, wykorzystując program Multisim, poprawność działania zaprojektowanego układu. Wyniki przedstawić w postaci wykresów zmian odpowiednich wartości wejściowych i wyjściowych. Zaprezentować działanie układu prowadzącemu zajęcia.

5. Synteza licznika asynchronicznego – zadanie za 5 punktów (zadanie dodatkowe realizowane na zajęciach)

- 5.1. Wykorzystując przerzutniki typu oraz niezbędne dodatkowe elementy logiczne zbudować licznik asynchroniczny o pojemności
- 5.2. Sprawdzić, wykorzystując program Multisim, poprawność działania zaprojektowanego licznik. Wyniki przedstawić w postaci wykresów zmian odpowiednich wartości wejściowych i wyjściowych. *Zaprezentować działanie układu prowadzącemu zajęcia*.

Sprawozdanie powinno zwierać:

- 1. Stronę tytułową.
- 2. Projekt wszystkich opracowanych w ćwiczeniu układów z uwzględnieniem:
 - etapu wyprowadzania równań logicznych dla podanych przez prowadzącego danych,
 - schematów logicznych w postaci przedruków z programu Multisim,
 - przebiegów w postaci przedruków z programu Multisim, ukazujących działanie przedstawionych na schematach układów. Oznaczenia na przebiegach powinny odpowiadać oznaczeniom przyjętym na etapie projektowania układów. Parametry czasowe przebiegów należy dobierać tak, aby zobrazowywały one:
 - ➤ dla układów kombinacyjnych wszystkie możliwe kombinacje zależności sygnałów wejściowych i wyjściowych;
 - ➤ dla układów sekwencyjnych sekwencję wartości wejściowych oraz odpowiadającą jej sekwencję wartości wyjściowych.
- 3. Wnioski końcowe (w szczególności powinny zawierać):
 - uzasadnienie wyboru zastosowanej metody projektowej. Porównanie jej z innymi znanymi metodami, dla każdego zaprojektowanego układu;
 - przedstawienie sekwencji zmian stanów układu (zgodnie z uzyskanymi przebiegami). Zmiany powinny być podawane w następujący sposób:

Badanie układów sekwencyjnych

$$Y_0Y_1 \xrightarrow{X_0X_1} Y_0Y_1 \xrightarrow{X_0X_1} \dots \xrightarrow{X_0X_1} Y_0Y_1$$

gdzie:

 Y_0Y_1 - wartości wektora wyjściowego dla kolejnych stanów układu,

- $X_0 X_1$ wartości wektora wejściowego wymuszające zmianę stanu układu
- omówienie uzyskanych wyników;
- własne spostrzeżenia i wnioski z ćwiczenia.

Należy zastosować numerację rysunków oraz tabel i odwoływać się w treści do nich poprzez numery.