

Universität Bayreuth 95447 Bayreuth

Anorganische Chemie III

Ton und Tonminerale

Justus Friedrich
Studiengang: B.Sc. Chemie
4. Fachsemester

Matrikelnummer: 1956010 E-Mail: bt725206@myubt.de

Inhaltsverzeichnis

1	Ziel	des Versuches	1
2	Durchführung		2
	2.1	Synthese von $Na_{0.5} \cdot nH_2O[Zn_{2.5}Li_{0.5}](Si_4O_{10})F_2$	2
3	Auswertung		
	3.1	Schichtdicke von $Na_{0.5} \cdot nH_2O[Zn_{2.5}Li_{0.5}](Si_4O_{10})F_2 \dots \dots \dots \dots \dots$	3
	3.2	Schichtdicke der Interkalationsverbindung	5
4 Zusammenfassung		ammenfassung	6
5	Literaturverzeichnis		7

1 Ziel des Versuches

Tonminerale sind ein Wichtiger Bestandteil der Industrie, da diese als Katalysator oder Einlagerungsstätte dienen können. Daruter zählt auch der Zn

2 Durchführung

2.1 Synthese von $Na_{0.5} \cdot nH_2O[Zn_{2.5}Li_{0.5}](Si_4O_{10})F_2$

3 Auswertung

3.1 Schichtdicke von $Na_{0.5} \cdot nH_2O[Zn_{2.5}Li_{0.5}](Si_4O_{10})F_2$

Um die Schichtdicke des Hectorits zu bestimmen, wird ein Pulverdiffraktogramm aufgenommen und mit dem Programm $HighScore\ Plus$ ausgewertet. Dies wird in der Abbildung 1 abgebildet. Dabei wird der Abstand des d_{001} -Reflexes ermittelt.

Abbildung 1: Zeigt das Pulverdiffraktogramm des Hectorits, dabei sind die Reflexe mit den Abstand der d_{00n} Serie markiert.

Aus Abbildung 1 ist ersichtlich, dass der d_{001} -Reflex bei einem Abstand von 12.46937 Åliegt. Auf Grundlage dieses Werts lassen sich die theoretischen Abstände der d_{00n} -Serie berechnen. Dies erfolgt mithilfe der Formel 1.

$$d_{00n} = \frac{d_{001}}{n} \tag{1}$$

Die daraus erhaltenen Werte werden mit den in Abbildung 1 dargestellten experimentellen Daten verglichen und in Tabelle 1 zusammengefasst.

Tabelle 1: Vergleich der aus Gleichung 1 berechneten theoretischen Werte mit den experimentell bestimmten Werten aus Abbildung 1.

	Berrechnete Werte	experimentellen Werte
d ₀₀₁ [Å]	12.46937	12.46937
d ₀₀₂ [Å]	6.234685	Konnte nicht
		zugeordnet werden
d ₀₀₃ [Å]	4.156457	4.56099
d ₀₀₄ [Å]	3.117343	3.12766
d ₀₀₅ [Å]	2.493874	2.63185

Aus den experimentellen Werten in Tabelle 1 wird der Mittelwert gemäß Formel 2 berechnet.

$$\overline{d} = \frac{\sum_{i=0}^{n} d_{00i} \cdot i}{n} = 12.783 \tag{2}$$

Zur Berechnung des Variationskoeffizienten CV werden die Gleichungen 3 und 4 herangezogen.

$$\sqrt{\frac{\sum_{i}^{n} (d_{00i} \cdot i - \overline{d})^{2}}{n - 1}} = 0.612 \tag{3}$$

$$CV = \frac{100 \cdot 0.612}{12.783} = 4.788\% \tag{4}$$

Somit beträgt die Schichtdicke des Hectorits $12.783 \, \text{Å} \pm 4.788 \, \%$. Die Synthese des Hectorits war zwar erfolgreich, jedoch treten im XRD auch Fremdreflexe auf. Diese stammen vermutlich von nicht vollständig umgesetztem ZnSiO₄, was wahrscheinlich auf eine nicht vollständige umgesetztem der Fluoridsalze am 3. Tag schließen lässt.

3.2 Schichtdicke der Interkalationsverbindung

Um die Schichtdicke der Interkalationsverbindung zu bestimmen, wird wie in Abschnitt 3.1 vorgegangen. Das XRD wird in der Abbildung 2 abgebildet. In der Tabelle 2

Abbildung 2: Zeigt das Pulverdiffraktogramm des Hectorits, dabei sind die Reflexe mit den Abstand der d_{00n} Serie markiert.

Tabelle 2: Vergleich der aus Gleichung 1 berechneten theoretischen Werte mit den experimentell bestimmten Werten aus Abbildung 1.

	Berrechnete Werte	experimentellen Werte
d ₀₀₁ [Å]	12.46937	12.46937
d ₀₀₂ [Å]	6.234685	Konnte nicht
		zugeordnet werden
d ₀₀₃ [Å]	4.156457	4.56099
d ₀₀₄ [Å]	3.117343	3.12766
$d_{005} [{ m \AA}]$	2.493874	2.63185

4 Zusammenfassung

5 Literaturverzeichnis

Literatur

(1) Breu, J.; Senker, J., Praktikum Präparative Anorganische Chemie, 2025, S. 17–30.