UNCLASSIFIED

AD NUMBER AD918907 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies only; Test and Evaluation; 05 APR 1974. Other requests shall be referred to Commander, Naval Undersea Center, San Diego, CA 92132. **AUTHORITY** CNO [N772] 1tr N772A/6U875630, 20 Jan 2006 and ONR 1tr 31 Jan 2006

NUC-TN-1224

Code 23

DOCUMENTATION FOR COMPUTER PROGRAM SUMARY: A COMPUTER PROGRAM TO SUMMARIZE SOUND SPEED PROFILE DATA.

> 10 (JOHN J. RUSSELL SYSTEMS ANALYSIS GROUP (CODE

approval of the Naval Undersea Center.

Naval Undersea Center, San Diego, California 9213

390 458

Copy overlettle to DDC doss me permit fully legible reproduction

AD NO.
DDC FILE COPY

AD918907

Distribution limited to U.S. 10:5 APR 1974

World's Section | D EISTRI UTICA AVAILABILITY OCCES BIST. AFAIL ENCY OF SPECIAL

Best Available Copy

Abstract

A computer program, labeled SUMARY, has been written to summarize sound speed values computed from oceanographic station data. The program determines the following values at each of 40 standard depths from selected data populations:

mean variance standard deviation minimum. 10th through 90th percentiles, first quantile third quantile maximum. 1...4 number of observations

Summary data is available on punched cards for 146 of 240 ocean data populations.

CONTENTS

<u>Pa</u>	<u>ıge</u>
ABSTRACT	i
FORWARD	v
INTRODUCTION	1
INPUT	1
OUTPUT DATA	1
GENERAL PROGRAM OPERATION	3
DATA CARDS	3
PROGRAM FORM	4
PROGRAM OPERATING PROCEDURE	4
CONCLUSION	4
REFERENCES	7
APPENDIX A - REQUIRED MAGNETIC TAPE FORMAT FOR INPUT TO SUMMARY	- 1
APPENDIX B - OUTPUT DATA CARD FORMAT	-1
APPENDIX C - TYPICAL OUTPUT CARD DECK LISTING	-1
APPENDIX D - DATA CARDS FORMAT	-1
APPENDIX E - SUMMARY PROGRAM LISTING	-]

LIST OF ILLUSTRATIONS

<u>Page</u>

Figure

1	Marsden Square Chart Showing Sixty Designated Ocean Regions	5
	LIST OF TABLES	
Table		Page
I	Standard Depths and Associated Depth Numbers Used For SUMARY	
II	Ordered List of Sound Speed Values at O Meters For Area 1092	
III	Summary of Data Processed Through SUMARY	

FOREWORD

This report is one of a series describing work to develop summary sound speed profile data for application in a variety of underwater acoustic problems. The work is under joint sponsorship of the Long Range Acoustic Propagation Project (LRAPP) and the Acoustic Environment Support Detachment (AESD) of the Office of Naval Research (ONR). The Fleet Numerical Weather Central (FNWC), Monterey, California is assisting in this project by furnishing computer time and physical support. The Naval Undersea Center (NUC), San Diego, California is furnishing a research oceanographer to perform and direct the work at FNWC, Monterey.

INTRODUCTION

This report is documentation for a FORTRAN Extended computer program which performs statistical manipulations and computations on oceanographic station data organized by time-space populations contained on magnetic tape. The program was written for operation on the CDC 6500 computer system at the Fleet Numerical Weather Central (FNWC), Monterey, California.

The acronym given this program is SUMARY. The purpose for SUMARY is to produce printouts of ordered sound speed data at 40 standard ocean depths; select eleven statistical percentiles and maximum and minimum values from the ordered sets; compute mean, variance and standard deviation from sound speed data at each of the 40 depths; and, finally, to punch the selected percentiles, maximum, minimum, mean, variance, standard deviation and number of observations into cards.

The 40 standard depths used for SUMARY are shown in Table I.

The current report is the third in a series describing work to develop summary sound speed data by specific ocean regions for application in a variety of underwater sound propagation problems. References 1 and 2 are other reports in this series.

INPUT

Input data to SUMARY is oceanographic station data assembled on magnetic tape by a program labeled TPCONV. These data are sound speed (C), temperature (T), salinity (S), and sigma-t (σ_t) at 40 standard leve's. The data are grouped by specific ocean regions and by three month time periods. Appendix A is a layout of the input data tape format. NUC Technical Note 1223 presents a description of the generating program TPCONV.

OUTPUT DATA

SUMARY produces a series of printout listings and a deck of data cards.

The computer prints out 40 tables of ordered sound speed values. One for each of the 40 standard depths shown in Table I. The maximum value heads each list, the minimum value is at the end. The tables contain twenty decreasing values per line. The number of data values determines the number of lines. Table II is a typical ordered data list for sound speed values at depth 1, or 0 meters. The printed values are sound speed in meters per second minus 1000.

TABLE I
STANDARD DEPTHS AND ASSOCIATED DEPTH NUMBERS USED FOR SUMARY

1 0 2 10 3 20 4 25 5 30 6 35 7 50 8 75 9 100 10 125 11 150 12 200 13 250 14 300 15 400
2 10 3 20 4 25 5 30 6 35 7 50. 8 75 9 100 10 125 11 150 12 200 13 250 14 300
5 30 6 35 7 50 8 75 9 100 10 125 11 150 12 200 13 250 14 300
5 30 6 35 7 50 8 75 9 100 10 125 11 150 12 200 13 250 14 300
8 75 9 100 10 125 11 150 12 200 13 250 14 300
8 75 9 100 10 125 11 150 12 200 13 250 14 300
8 75 9 100 10 125 11 150 12 200 13 250 14 300
9 100 10 125 11 150 12 200 13 250 14 300
10 125 11 150 12 200 13 250 14 300
11 150 12 200 13 250 14 300
12 200 13 250 14 300
13 250 14 300
15 400
16 500
17 600 18 700
18 700 19 800
20 900
21 1000
22 1100
23 1200
24 1250
25 1300
26 1400
27 1500
28 1750 29 2000
29 2000 30 2500
31 3000
32 4000
33 5000
34 6000
35 7000
36 8000
37 9000
38 10000 39 11000
39 11000 40 12000

TABLE II

FERED LIST OF SOUND SPEED VALUES AT 0 METERS FOR AREA 1092

Best Available Copy

A second type of output is the deck of data cards. This output card deck contains 80 cards, two cards of information for each of the 40 standard depths. The first card of each pair contains maximum, 10, 20, 30, 40, 50, 50, 70, 80, and 90th percentiles, minimum, first quantile, and third quantile sound speed values at a specific depth. This card also contains the depth number (see Table I), the number of sound speed observations in the population and the specific label given the data group. The second card for a specific depth contains standard deviation, variance, number of observations in decimal form, mean value, depth number, number of observations in integer form and the data group label. The program inserts a flag card containing 80 columns of nine (9) to separate data card groups. Appendix B is a description of the output data card format. Appendix C is a typical listing of an output data card deck.

GENERAL PROGRAM OPERATION

SUMARY was written to operate sper fically on sound speed data. A simple program modification will permit operation on any one of the other, T, S, or σ_+ data populations.

SUMARY will process one or more populations of sound speed data in a single run. A series of data cards directs the computer in selecting the appropriate data groups, or populations, from the input tape for processing. Appendix D is a description of the data cards format.

The computer central memory is insufficient to contain an entire potential data population at each of the 40 standard depths. For this reason the program reads data from the input tape and fills a holding buffer in central memory then outputs this buffer to disk storage. The program reads blocks of data, loads the holding buffer up to 500 observations at each of the 40 standard depths, than transfers the full buffer to disk storage before accepting more data. This process continues until a complete data population has been transferred from tape to disk. Upon completing the input transfer of data the program begins to operate on the data stored on disk. All data for one depth is brought from disk back into central memory. Once the entire data population from one depth is in central memory the program orders the values, computes mean, variance and standatd deviation and selects the minimum, maximum and eleven percentile values. The ordered list is then printed out and the appropriate data cards punched. This procedure continues through the 40 standard depths. The program then determines if another data group is to be processed or if the job is to end. This process continues until a data card directs the computer to end the job.

DATA CARDS

The series of cards which control the selection of data groups for processing include one or more data cards and a terminating flag card.

Each data card contains three fields. The first field is found in columns 1 through 5. The computer will pass over the number of data groups on the input tape that is punched into this field. Processing will begin on the data group number following the figure in this first field. The second field is found in card columns 6 through 10. This figure instructs the computer in the number of data groups to process under the current data card control. The computer will process the number of consecutive data groups indicated by the number in this second field. The last field is found in columns 11 through 15. This is an optional field. This field contains the number of EOF on the input data tape. If field three is blank the number of EOF is assumed to be 1. A separate data card must appear in the data card series for each non-consecutive data group to be processed.

A flag card containing nines (9's) in columns 1 through 80 signals the computer to end the job.

PROGRAM FORM

The basic program, SUMARY, is in the form of a 400 card source deck. The general program operation is run from this source deck.

PROGRAM OPERATING PROCEDURE

The procedure for obtaining a production run of SUMARY is to follow this sample procedure.

- 1. Select the input data tape.
- 2. Punch the appropriate system control card to request the selected data tape.
- 3. Determine the data groups to be processed from the input tape.
- 4. Punch the appropriate data and flag cards.
- 5. Insert the data cards at the end of the SUMARY source deck.
- 6. Submit for production run.

CONCLUSION

SUMARY is a FORTRAN Extended computer program designed to (1) generate ordered lists of sound speed data at each of 40 standard levels; (2) select maximum, minimum and eleven percentiles from each ordered list; (3) compute mean, variance, standard deviation and number of observations at each depth; and (4) punch the selected and computed values into a deck of data cards.

The program was written to automatically select and process sound speed data. A simple program modification will permit the selection and processing of temperature, salinity or sigma-t data.

Production runs for sound speed data have been run for many ocean areas. Figure 1 is a chart showing 60 ocean regions. NUC Technical Note 1223, Reference 2, discusses the origin of Figure 1. Table III is a summary of the areas shown in Figure 1 for which outputs from SUMARY are available.

A program listing is given in Appendix E.

Numbers of Marsden ten-degree squares

Marsden Square Chart Showing Sixty Designated Ocean Regions **,**... FIGURE

TABLE III
SUMMARY OF DATA PROCESSED THROUGH SUMARY

	SE	ASON					SEASON		
AREA	1	2	<u>3</u>	4	AREA	1	2	<u>3</u>	4
101	X	X	X	X	201	X	X	X	X
102	X	X	X	X	202	X	X	O	X
103	X	O	X	X	203	X	X	X	X
104	X	X	X	X	204	X	X	X	X
105	X	X	X	X	205	X	X	X	X
106	X	X	X	X	206	X	X	X	X
107	X	X	X	X	207	0	X	X	X
108	Ö	O	0	O	208	X	X	X	X
109	X	O	X	X	209	X	X	X	X
110	X	X	X	X	210	X	X	X	X
111	X	X	X	X	211	X	X	X	χ
112	X	X	O	C	212	X	X	X	X
113	\mathbf{c}	X	\mathbf{c}	C	213	X	X	X	X
114	X	X	X	X	214	X	X	X	X
115	X	X	X	X	215	X	X	X	X
116	X	X	X	X	216	X	X	X	X
117	X	X	X	X	217	X	X	X	X
118	X	X	X	X	218	0	X	X	X
119	X	X	X	X	219	X	X	X	X
120	X	X	O	X	220	X	X	X	X
Note:					221	C	C	О	X

X = Data processed through SUMARY

C = Data not processed through SUMARY

REFERENCES

- 1. Naval Undersea Center Technical Note 1059, Status Report on Summary Sound Speed Profile Data Atlas, John J. Russell, March 1973.
- 2. Naval Undersea Center Technical Note 1223, <u>Documentation for Computer Program TPCONV: A Computer Program to Organize Selected Oceanographic Station Data on Magnetic Tape</u>, John J. Russell, October 1973.

APPENDIX A

REQUIRED MAGNETIC TAPE FORMAT FOR INPUT TO SUMARY

TPCONY OUTPUT DATA TAPE FORMAT

WORD	DATA	BITS	BIT POSITIONS
1	Label for the area	15	(46-60)
	Blank `	5	(41-45)
	Standard depth indicators	40	(1-40)
2	Latitude	19	(42-60)
	Longi tud e	20	(22-41)
	Day	10	(12-21)
	Month	4	(8-11)
	Year	7	(1-7)
3	Marsden Square	15	(46-60)
	Layer depth	15	(31-45)
	Layer sound speed	15	(16-30)
	Blank	9	(7-15)
	No. of standard levels	6	(1-6)
4	In-layer gradient	15	(46-60)
	Below-layer gradient	15	(31-45)
	Axis depth	15	(16-30)
	Axis sound speed	15	(115)
5	Sound speed	15	(46-60)
	Temperature	15	(31-45)
	Salinity	15	(16-30)
	Sigma-t	15	(1-15)

Repeat word 5 for each recorded standard level.

Standard recorded depths in meters: 0, 10, 20, 25, 30, 35, 50, 75, 100, 125, 150, 200, 250, 300, 400. 500, 600, 700, 800, 900, 1000, 1100, 1200, 1250, 1300, 1400, 1500, 1750, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000.

Start each new station with a new word 1.

Maximum of 511 words per record.

Three special records are placed at the end of each data group.

FORMAT FOR THREE SPECIAL RECORDS FOLLOWING A DATA ASSEMBLY GROUP Record 1 - 5 words

WORD	DATA	BITS	BIT POSITIONS
1	Area label	15	(46-60)
1	Blank	45	(1-45)
2	No. records output	30	(1-30)
	Blank	30	(31-60)
3	No. stations accepted	30	(1-30)
	Blank	30	(31-60)
4	Length of output data	30	(1-30)
	Blank	30	(31-60)
5	Zeros	60	(1-60)

Record 2 - 5000 words

This record contains a geographical distribution map of data assembled in the current data group. The record is written as MAP (Latitude, Longitude), where latitude goes from 1 to 50 and longitude from 1 to 100.

Record 3 - 1200 words

This record contains a time distribution by months and years table of data assembled in the current data group. The record is written as MYCNT (Year, Month), where year goes from 1 to 100 and month from 1 to 12.

The three 5, 500, and 1200 special word records separate data groups. One EOF occurs at the end of data on the tape.

25-NAV 52:6/144 (REV 670)
5/N 2:77 778 8097
DEPARTMENT OF THE NAVY

Memorandum

DATE: 30 April 1974

FROM.

J. J. Russell, Naval Undersea Center

TO:

Distribution

SUBJ

Changes to NUC TN 1224, Documentation for Computer Program SUMARY: A Computer Program to Summarize Sound Speed Profile Data, dated October 1973

1. Enclosed revised Appendix B replaces same in original NUC)TN 1224.

J. J. RUSSELL

APPENDIX B

OUTPUT DATA CARD FORMAT

SUMARY OUTPUT DATA CARD FORMAT

CARD NO.	CARD COLUMNS	DATA
1	2-5	Maximum
	7-10	10th percentile
	12-15	20th percentile
	17-20	30th percentile
	22-25	40th percentile
	27-30	5Cth percentile
	32-35	60th percentile
	37-40	70th percentile
	42-45	80th percentile
	47-50	90th percentile
	52-55	Minimum
	57-60	lst quartile
	62-65	3rd quartile
	69-70	Depth number (see Note 4)
	71-75	Number of observations
	77-80	Numerical area label
2	1-10	Standard deviation - decimal
	11-20	Variance - decimal
	21-30	Number of observations - decimal
	31-40	Mean sound speed minus - 1000.000C decimal
	55-56	Depth number - integer
	58-62	Number of observations - integer
	66-68	Numerical area label
3	1-80	Repeat of Card 1 format for depth 2
4	1-80	Repeat of Card 2 format for depth 2
•		

79	1-80	Repeat of Card I format for depth 40
80	1-80	Repeat of Card 2 format for depth 40
81	1-80	999 mandatory flag

NOTES:

- 1. There are two cards for each of 40 depths.
- 2. Card formats 1 and 2 are repeated for each of the 40 depths.
- 3. Depth number is the sequence number of depth value in the following list.
 0, 10, 20, 25, 30, 35, 50, 75, 100, 125, 150, 175, 200, 250, 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1250, 1300, 1400, 1500, 1750, 2000, 2500, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000.
- 4. All percentile sound speed values (C) of card & type are recorded (10C-10000).
- 5. All depth values are in meters.
- 6. All sound speed values are in meters per second.

APPENDIX C

TYPICAL OUTPUT CARD DECK LISTING

Table Sal	1			Car de			J. 3		e pe		, s.		٠,	3 F	Samuel Same
2,79		7845		000			de la	1/		A Likeway	3	الله الما الما			
5460 543 2.796		7.: A 3 R.		2000	- Marie 2		215		9			54.			24
5460 343	3 342	7 SU18	5.19	E KLLIN		2	77		4			3		116	
2.817 0	0 .	7.9372 6) () 54. XYM	0	β 330 0. Λ 6	ouven B	*0	0	3	S. Parket					
0.000 545 8 543	0 ·	0.0000				, 'Y	, , • 0					Tie.	EX.	# ## #	
2.900	4	8.4121	1 716	9000	540	1310	, paila	****	Post	7.4	16	2144	. 2	116	Šī š 4
0 • 0 0 0	0	ს 0 00 0	_	0.000	U	0	٥ با	. 0	, . 6	rj i (3	0 2 1 44	6	. 4	2184
5451 543	n 542	5 5420	5u10	5409	5390	5380	5365	5355	5311	6 5422	537	2 	` 7	117	2184
3.153 5451 542	T (Q. Q U92	• • • • •		540	- 603				.	117	4 ma			2186
3.311	7 1	2.3318	117	.0000	538	.1487) •	300,	•	A 1	17	2184		***	2184
545 3 541 3. 563	L.	7 009	115	.0000	536	. 7548	٠ ١		£.,	0 1	195	2100	9	115	2184
5430 539 3.493	5 536	2 5372	5765	5355	5343	5331	5321	5306		5376	548	0		115	2184
5405 537		2.2042 J 5052	5742	-0000 5335	5 32 5	.2704 5315	5305	5295	fi235	9 1 5357	l 15 7 531	21 84	4.4	115	2184
3.290 5357 533	15 1	82 73	115	.0000	533.	4043	i	,	1	1 1	15	91 AB			
3.100	0	J.6102	115	.0000	528 .	.9339)		1	2 1	15	2188	12	115	2184
5331 525 -••61	1 520, 6 1	n 5255 J.5540	•5p45	5235 4000	5228	5216	5210	5193	5101	5257	521	3		115	2184
5275 523	3 304	5 יבוו	5190	5183	5171	5100	5147	5120	5047	3 1 5206	115 51 5	2184 6	14	115	2184
4.521 197 51c	.0 21	i, • 4432	115	•0000	517	. 8739	5016		1	A `'1	15	9184			
5.441	اء 1	y•6652	115	0.000	506	.01.50	1		1	K 1	15	2184	15	113	2184
5107 503 4.643	10 206. 15 2	, 4886 1.5025	113	.0000	4951	494 <u>1</u> 5920,	4935	+907			493		16	113	2184
5017 495	F 495	0 4417	4008	4896	4867	4641	4376	486 6	4645	4923	487	8	17	113	2184
2.400 4936 490		5620 2.48 7 8	4071	4863	4800	452 2 455 3	4850	4843	4631	7 1 4885	13	2184 1	18	112	2184
2.267 4882 486	6 :	5.1421	. 112	• 0000	426	9196			1	A 1	12	2184	_		
1.470	0.	1619	106	• មេ 🛈	434.	.7630			1	a 1	06	2124	19	106	2184
4805 485 1.05c	7 484; 2	n 4041 ∡∙1155		4876 •0001		41 3 2 8500		4826			483	1 :	50	106	2184
4355 464	6 484	4637	4536	4835	4833	4031	4828	4825	2 4820	48 41	.00 483	2184 1	21	73	2184
• 000 4851 484	7	•6500	73	•0000	483.	5466			ن	٠.	73	2184			
•65	.*	**************************************	nd '	*4466	ARZ.	.6.750	•		-	^	40	A4 44	22	60	2184
4351 454	4 454) G	4843 2703 •	4942	4841	484.	4838 1176	4837	4836	.4831 2			R 2184	32	17	2184
0		0 م	0	U	0	0		* . p	٥		-		24	0	2184
0.609 4655 4-ე	5 485;	00 j 0 5 4853	4A52	.0000 .4852	4850	4850	4845	4845	2	4 4853	D I	2184 0	26	177	2184
•429 486 6	11	• 1848	·	•0000	485	0195		, w	. 7 2	5',	7	2184	- \ - 4	¥ .	deri-
.141	h	- ADAD	•	TAAAA.	4DE	Oran	4857		صد ت		S	? 21 8 4	20,	., 8 `	2164
4871	. ∪ , (.4871 .0800	4A71	4871/	487¥	4871 9054	4866	1869	1866	1	1		.	🙀	2104
9691	ņ., t	, 0	مَر .	4891	#891	4891	4091	4003	4491			2100	241	26	2184
8 · 000	n (3+006- 1 8	• • • • • • • • • • • • • • • • • • •	00QG.	489.	2000 1952	MOD'S	N.		M_{J}	7	3	X	4	
0.00	0 '	ودهور	The state of	6000	102	3004							100	5 S	A Comment
0.000	n T	. 450 0	ر م	#99¢	499		497			4					
And the same	QY		**	9485	Seco.	1			4						
5.2 6.6	_	u-0000 0		3,000	500	200		R.	1	4	*	3 -/1 			3
0 •000 5641	10	H-COS		, noon	5.0	-90	1227. 12					Yae.	1	. Y. 1	
0.000	_	0.0000) <u>, p</u>	5441 +0000	- 3543 544	- 8 000	5441	A 11	-		5. P.	3	39."	"	2114
5627 0.000		0 (5627	\$627	5027	5627	5627	862		• 5 41	3.4	'34 ³⁴	· 1	ZIÀ
5817	n .	ა იმ ი ნ) e	-0000 5817	5817	.8000 5817	7 5817	5817	75k1) 14 '	1' 0 501	2184	35	٠.	2184
0.060 0010	_	ყ•მმენ ვ	, 1	•8000	581	.8000	6010		3	15		2169) 	. •	
C+600	0	0000) 1	•0000		.0010		an 10) ()6	B 601	10 -21 84	36 7	1	2164
0•00 <i>t</i>	0 .	ა ინენენ ა.ინენენენე	•	0 0000	0	1	•	΄ 0	` () (ַם פֿ	0	37 .	ď	2184
. 6	n ;	u 0	Ò	0	o	Ġ		Ó		5 7	ο Φ .	2184	38	٥	2184
t•90t €	Δ,	0000 0000		9000•1	i.	1		^		. 8	ő"	2184)	•	4-0·
Ü+500	n (0.0000	Ö	•0000	U	Ī	•	0) (٥	0 21 8 4	39	0	2
v • ∉⊍0	n :	u 0 0∩∪€•⊾	, 0	0000	0	0		0	•) (ַ ס	0 2184	40		2184
وعود ووسو	יייואל טט	^a or d da	100099	กฤจกฤ	99949	99999	99999	9 999	9 9 99	9999	99999	9999	9999	9999	99999

APPENDIX D

DATA CARDS FORMAT

SUMARY DATA CARD FORMAT

CARD COLUMNS	LEGAL CHARACTERS	NOTES
1-5	Integers	No. of data groups to skip on input data tape before reaching the first data group to be processed.
6-10	Integers	No. of consecutive data groups to process
11-15	Integers or blank	No. of files on input data tape. Blank implies file.
Additional data groups.	cards, one for each non-adj	acent continuous sequence of data
1-80	9999	Mandatory flag following last data card.

APPENDIX E

SUMARY PROGRAM LISTING

. . 3

```
2 B INTER-$15.55.50.23

2 B INTER-$15.55.50.25

3 CANTINE—$1200.25.30.25

3 CANTINE—$1200.25.30.25

3 CANTINE—$1200.25.30.25

3 CALL ZILCH($1.50.00)

3 STEP ($1.50.00)

3 STEP ($1.50.00)

5 STEP ($1.50.00)

6 STEP ($1.50.00)

7 STEP ($1.50.0
```

The second secon

```
94. COUTINE

CALL ZLACK(NO-40)

NST=0

NST=0

NST=0

NST=0

10. 05 NA AGOJO-10-11-73

10. 05 NA
```

```
| 15 | PRINT 51, (APP (35.L), L=1.100) |
| 15 | PRINT 55, (APP (4).L), L=1.100) |
| 16 | PRINT 55, (APP (4).L), L=1.100) |
| 17 | PRINT 55, (APP (4).L), L=1.100) |
| 18 | PRINT 55, (APP (4).L), L=1.100) |
| 19 | PRINT 55, (APP (4).L), L=1.100) |
| 19 | PRINT 55, (APP (4).L), L=1.100) |
| 19 | PRINT 55, (APP (4).L), APP (4).L), L=1.100 |
| 19 | PRINT 55, (APP (4).L), APP (4).L
```

```
FEATN 2

CALL ILC, H((PP.9)
FG71=
FG
```

```
CG3=C(K)

ICG3=C(K)

ICG3=C(K)

ICMAX=(C(1)* 10.)

ICMIN=(C(NDM)*10.)

ICMIN=(C(NDM)*10.)

ICMIN=(C(ND)*10.)

ICMIN=(C(ND)*10.)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1 CONTINUE

REWIND 2

DO 270 K=1.60

10 NINF(A)=>

PRINT 557; (NINE(K).K=1.80)

NDGP=(NDGP+1)

PRINT 562.NDGP

IF (NDGP-HDGTP) 35,20.20
IFOT1=F311
FGT2=IFG11
FGT3=(F311-FGT2)
GTL1=FGT2
IF(FGT3.6T..50)GTL1=(FGT2+1)
                                                                                                                                                                                                                                                                                                                                                                         T072=17011
T073=(T071-7072)
OTL3=T072
IF (T073-6E..5) 07L3=(T672+1)
K=07L3
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    STOP 7777

1 PRINT 526

2 STOP 66566

6 CONTINUE

1 PET=(1FET+1)

1F (1PET-6FT+1)

64CKSPACE 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        PRINT 569, TFET(1)
60 TO 55
STOP 11115
                                                                                                                                                                                                                         CO1=C(K)
ICG1=C(K)*10.
TGT1=(PINC*7.5)
ITGT1=TG11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     STOP 11112
PRINT 550
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     SIGMA=0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             275
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                281
282
306
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     301
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     305
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     200
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     201
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                270
```

```
306 5TOP 1112
315 5TOP 1112
325 5TOP 1112
32
```


DEPARTMENT OF THE NAVY

OFFICE OF NAVAL RESEARCH 875 NORTH RANDOLPH STREET SUITE 1425 ARLINGTON VA 22203-1995

IN REPLY REFER TO:

5510/1 Ser 321OA/011/06 31 Jan 06

MEMORANDUM FOR DISTRIBUTION LIST

Subj: DECLASSIFICATION OF LONG RANGE ACOUSTIC PROPAGATION PROJECT (LRAPP) DOCUMENTS

Ref:

(a) SECNAVINST 5510.36

Encl: (1) List of DECLASSIFIED LRAPP Documents

- 1. In accordance with reference (a), a declassification review has been conducted on a number of classified LRAPP documents.
- 2. The LRAPP documents listed in enclosure (1) have been downgraded to UNCLASSIFIED and have been approved for public release. These documents should be remarked as follows:

Classification changed to UNCLASSIFIED by authority of the Chief of Naval Operations (N772) letter N772A/6U875630, 20 January 2006.

DISTRIBUTION STATEMENT A: Approved for Public Release; Distribution is unlimited.

3. Questions may be directed to the undersigned on (703) 696-4619, DSN 426-4619.

BRIAN LINK
By direction

Subj: DECLASSIFICATION OF LONG RANGE ACOUSTIC PROPAGATION PROJECT (LRAPP) DOCUMENTS

DISTRIBUTION LIST:

NAVOCEANO (Code N121LC - Jaime Ratliff)

NRL Washington (Code 5596.3 – Mary Templeman)

PEO LMW Det San Diego (PMS 181)

DTIC-OCQ (Larry Downing)

ARL, U of Texas

Blue Sea Corporation (Dr.Roy Gaul)

ONR 32B (CAPT Paul Stewart)

ONR 321OA (Dr. Ellen Livingston)

APL, U of Washington

APL, Johns Hopkins University

ARL, Penn State University

MPL of Scripps Institution of Oceanography

WHOI

NAVSEA

NAVAIR

NUWC

SAIC

Declassified LRAPP Documents

			3 3 4			
Report Number	Personal Author	Title	Publication Source (Originator)	Pub. Date	Current Availability	Class.
WHOI73-59	Tollios, C. D.	THE ACODAC DATA PROCESSING SYSTEM	Woods Hole Oceanographic Institution	730901	AD0773114; ND	n
Unavailable	Russell, J. J.	DOCUMENTATION FOR COMPUTER PROGRAM SUMMARY: A COMPUTER PROGRAM TO SUMMARIZE SOUND SPEED PROFILE DATA	Naval Undersea Center	731001	AD0918907	U
MC001Vol2	Unavailable	LYSIS PLAN VOL 2 (U)	Maury Center for Ocean Science	731001	ND	U
73-9M7-VERAY-R2	Jones, C. H.	LRAPP VERTICAL ARRAY- PHASE III	Westinghouse Research Laboratories	731105	ADA001130; ND	n
55	Weinstein, M. S., et al.	SUS QUALITY ASSESSMENT	Underwater Systems, Inc.	731201	AD 185675	U
ARL-TM-73-42	Mitchell, S. K., et al.	QUALITY CONTROL ANALYSIS OF SUS PROCESSING FROM ACODAC DATA	University of Texas, Applied Research Laboratories	731220	406 ND 263	Ω
Unavailable	Daubin, S. C.	CHURCH GABBRO TECHNICAL NOTE: CONTINUOUS CURRENT PROFILES	University of Miami, Rosenstiel School of Marine and Atmospheric Science	740101	AD0775333	U
Unavailable	Bitterman, D. S.	ACODAC AMBIENT NOISE SYSTEM	Woods Hole Oceanographic Institution	740101	ADA009440	n
ONR MC-002 VOL. 2; XONICS 885	Unavailable		Maury Center for Ocean Science; Xonics, Inc.	740101	ND	n
ARL-TM-74-12	Groman, R. O., et al.	SPECIAL HARDWARE FOR ARL ANALYSIS OF ACODAC DATA	University of Texas, Applied Research Laboratories	740314	ADA000295; ND	U
Unavailable	Unavailable	ASEPS NEAR FIELD TRANSMISSION LOSS MODIFICATION, P-2205	Ocean Data Systems, Inc.	740401	ADA096583	Ω
Report 001; MSAG-1	Unavailable	MEASUREMENT SYSTEMS ADVISORY GROUP	Office of Naval Research	740401	ADA096586; ND	U
ACR-196	Gregory, J. B.	PROJECT PACIFIC SEA SPIDER, TECHNOLOGY USED IN DEVELOPING A DEEP-OCEAN ULTRASTABLE PLATFORM	Office of Naval Research	740412	AD0529945; ND	Ω
Unavailable Unavailable	Gottwald, J. T. Unavailable	ANNUAL REPORT FOR 1 MAY 1973 - 30 APRIL 1974 ACOUSTIC MODEL SUPPORT ACTIVITIES P-2220	Tracor, Inc.	740524	AD0920210 ADA096584	n
HCI-CMC-18540	Daubin, S. C.	TRANSMISSION LOSS OF LOW FREQUENCY UNDERWATER SOUND IN THE CAYMAN TROUGH (CHURCH GABBRO TECHNICAL NOTE)	University of Miami, Rosenstiel School of Marine and Atmospheric Science	740601	ADC000424; ND	n
HCI-CMC-18343	Daubin, S. C.	AMBIENT NOISE IN THE NORTHWEST CARIBBEAN SEA (CHURCH GABBRO TECHNICAL NOTE) (U)		740601	QN	Ω
Unavailable	Barnes, A., et al.	DISCRETE SHIPPING MODEL	Planning Systems, Inc.	740604	QN	N

O

ENCL (1)