1.1. Modules.

Definition 1.1 (Representations). If M is an abelian group, then

$$\operatorname{End}_{\mathbb{Z}}(M) = \{\operatorname{homomorphisms} f \colon M \to M\}$$

is a ring under pointwise addition and composition as multiplication. A representation of a ring R is a ring homomorphism $\varphi \colon R \to \operatorname{End}_{\mathbb{Z}}(M)$ for some abelian group M.

Definition 1.2 (Group ring). Let G be a finite group and k be a commutative ring. The group ring is the set of all functions $\alpha \colon G \to k$ made into a ring with pointwise operations: for all $x \in G$,

$$(\alpha + \beta)(x) = \alpha(x) + \beta(x)$$
 and $(\alpha\beta)(x) = \alpha(x)\beta(x)$.

Definition 1.3 (k-representation). If G is a group and k is a commutative ring, then a k-representation of G is a function $\sigma: G \to \operatorname{Mat}_n(k)$ with

$$\sigma(xy) = \sigma(x)\sigma(y)$$
$$\sigma(1) = I$$

.

Lemma 1.4 (Hom_R(A, B) is an abelian group). For left (resp. right) R-modules, $\operatorname{Hom}_R(A, B)$ is an abelian group and if $p: A' \to A$ and $q: B \to B'$ are R-maps, then

$$(f+g)p = fp + gp$$
 and $q(f+g) = qf + qg$.

Proposition 1.5. Let R be a ring, A, B, B' be left R-modules. Then

- (1) $\operatorname{Hom}_R(A, -)$ is an additive functor ${}_R\operatorname{Mod} \to \operatorname{Ab}$ sending $B \to \operatorname{Hom}_R(A, B)$ and a morphism $q \colon B \to B'$ to $q_* \colon \operatorname{Hom}_R(A, B) \to \operatorname{Hom}_R(A, B')$ by postcomposition.
- (2) If A is a left R-module, then $\operatorname{Hom}_R(A,B)$ is a Z(R)-module, where Z(R) is the center of R, if we define

$$(rf)(a) = f(ra) = rf(a)$$

for all $r \in Z(R)$ and $f : A \to B$. Then $\operatorname{Hom}_R(A, -)$ is a functor ${}_R\operatorname{Mod} \to_{Z(R)}\operatorname{Mod}$

Proof. (1) Since q(f+g) = qf + qg, we have $q_*(f+g) = q_*(f) + q_*(g)$, so $\operatorname{Hom}_R(A,-)(q) = q_* \in \operatorname{Mor}(\operatorname{Hom}_R(A,B),\operatorname{Hom}_R(A,B'))$ in Ab. Furthermore, for $q: A \to B$ and $p: B \to C$, we have

$$(pq)_*(a) = pqa = p_*(qa) = (p_*q_*)(a)$$

so composition is preserved. And for any $a: A \to B$, we have

$$(\mathbb{1}_B)_*(a) = \mathbb{1}_B \circ a = a$$

so
$$(\mathbb{1}_B)_* = \mathbb{1}_{\operatorname{Hom}_B(A,B)}$$
.

Exercise 1.6 (Example of a quotient group which is not a quotient module). We have that $\mathbb Q$ is a module over itself and $\mathbb Q/\mathbb Z$ is a quotient group, but since $\mathbb Z$ is not a submodule of $\mathbb Q$ - it is not closed under scalar multiplication from $\mathbb Q$ -, we are not guaranteed that $\mathbb Q/\mathbb Z$ is a quotient module. And in fact, it is not: $2\left(\frac{1}{2}+\mathbb Z\right)=\mathbb Z$ in $\mathbb Q/\mathbb Z$ but neither factor is zero, but $\mathbb Q$ is a field, so if $\mathbb Q/\mathbb Z$ were a quotient module (over $\mathbb Q$), it would have to be a vector space, but in a vector space, we have av=0 iff a=0 or v=0.

1.2. Isomorphism theorems.

Theorem 1.7 (First isomorphism theorem). If $f: M \to N$ is an R-map of left R-modules, then there is an R-isomorphism

$$\varphi \colon M/\ker f \to \operatorname{im} f$$

given by

$$\varphi \colon m + \ker f \mapsto f(m).$$

Theorem 1.8 (Second isomorphism). If S and T are submodules of a left R-module M, then there is an R-isomorphism

$$S/(S \cap T) \rightarrow (S+T)/T$$

Theorem 1.9 (Third isomorphism theorem). If $T \subset S \subset M$ is a tower of submodules of a left R-module M, then the enlargement of cosets $e: M/T \to M/S$ induces an R-isomorphism

$$(M/T)/(S/T) \rightarrow M/S$$

Theorem 1.10 (Fourth (Correspondence) isomorphism theorem). If T is a submodule of a left R-module M, then $\varphi \colon S \to S/T$ is a bijection:

 $\varphi \colon \{intermediate \ submodules \ T \subset S \subset M\} \to \{submodules \ of \ M/T\}.$

Moreover, $T \subset S \subset S'$ in M if and only if $S/T \subset S'/T$ in M/T.

Definition 1.11 (Simple/irreducible modules). A left R-module M is simple (or irreducible) if $M \neq \{0\}$ and M has no proper nonzero submodules; i.e., $\{0\}$ and M are the only submodules of M.

Lemma 1.12. A left R-module M is simple if and only if $M \approx R/I$, where I is a maximal left ideal.

(1) If $0 \to A \xrightarrow{f}$ **Theorem 1.13** (1st and 3rd isomorphism theorem rephrased). $B \stackrel{g}{\rightarrow} C \rightarrow 0$ is a short exact sequence, then

$$A \approx \operatorname{im} f$$
 and $B/\operatorname{im} f \approx C$.

(2) If $T \subset S \subset M$ is a tower of submodules, then there is an exact sequence

$$0 \to S/T \to M/S \to M/T \to 0$$
.

Lemma 1.14. Suppose M is an R-module. Then

$$M = \bigcup_{\substack{M' \subset M \\ M' \text{ fin. gen.}}} M'.$$

We claim that

- (1) $M \otimes_R A = \bigcup_{\substack{M' \subset M \\ M' \text{ fin. gen.}}} M' \otimes_R A.$ (2) If $id_{M'} \otimes f : M' \otimes_R A \to M' \otimes_R B$ is injective for all finitely generated $M' \subset M$, then so is

$$\mathrm{id}_M \otimes f \colon \bigcup_{\substack{M' \subset M \\ M' \ fin. \ gen.}} M' \otimes_R A \to \bigcup_{\substack{M' \subset M \\ M' \ fin. \ gen.}} M' \otimes_R B$$

(1) Define a diagram $F \colon I \to {}_R \mathrm{Mod}$ which has maps to all finitely Proof. generated submodules of M and all inclusions between them. Then by the universal property, the colim $F = \bigcup_{\substack{M' \subset M \\ M' \text{ fin. gen.}}} M' = M$ with maps $i_{M'} \colon M' \to \operatorname{colim} F$ satisfying the commutativity of the inclusions. Since

 $-\otimes A$ is a left adjoint, we have

$$M\otimes_R A = L\left(\operatorname{colim} F\right) = \operatorname{colim}\left(L\circ F\right) = \bigcup_{\substack{M'\subset M\\ M'\text{ fin. gen.}}} M'\otimes_R A$$

the last equality again following from the universal property.

(2)