

SCC.121: Fundamentals of Computer Science Sorting, Trees and Graphs

Algorithmic Paradigms: Greedy Algorithms

Today's Lecture

Aim:

- Introduce the concept of greedy algorithms
 - For various problems, including shortest paths
 - Existence of a solution does not imply greedy algorithm will find it.
- Describe greedy algorithms for the minimum-weight spanning tree (MST) problem.

Algorithmic paradigms

Generic framework that underlies a class of algorithms:

- Recursion
- Divide and conquer
- (Sweep-line algorithms)
- Greedy algorithm

Greedy algorithms

- Greedy algorithms:
 - Solve your problem in stages,
 - In each stage, choose the locally optimal choice.
- Greedy algorithms are fast! But for many problems, greedy can be incorrect, or give non-optimal solutions...
- Maybe surprisingly, it turns out that greedy algorithms:
 - Can approximate (for some problems) the optimal solution (and fast),
 - Solve some very well-known problem.

Greedy algorithm for the Euclidean Travelling Salesman Problem

(Euclidean) Travelling Salesman Problem:

- Given a set of nodes (with associated 2D points) and a starting city, compute the shortest route that leaves the origin city, visits all other nodes exactly once and comes back to the origin city.
- Where distances between nodes = distances between the corresponding points

Greedy algorithm for the Euclidean Travelling Salesman Problem

• (Euclidean) Travelling Salesman Problem:

- Given a set of nodes (with associated 2D points) and a starting city, compute the shortest route that leaves the origin city, visits all other nodes exactly once and comes back to the origin city.
- Where distances between nodes = distances between the corresponding points

Greedy algorithm for the Euclidean Travelling Salesman Problem

- Greedy algorithm for TSP, starting at node 1:
 - Repeatedly visit nearest node (to current)
 - When you have visited all nodes, go back to origin city

Greedy does not output the shortest route!

Greedy algorithm for shortest paths

Shortest path computation:

Given a directed weighted graph G = (V, E), compute shortest path from the source node $s \in V$ to all other nodes in V.

Greedy Algorithm:

- Start at the source node, and visit in each stage, the (yet) unvisited node which is closest to the source.
- This is Dijkstra's algorithm!
- But importantly, it gives an optimal solution to the shortest path computation problem.

• 3-coloring (ring) graphs:

3-coloring (ring) graphs:

- Greedy 3-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2,3\}$ that no neighbor has chosen already

3-coloring (ring) graphs:

- Greedy 3-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2,3\}$ that no neighbor has chosen already

3-coloring (ring) graphs:

- Greedy 3-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2,3\}$ that no neighbor has chosen already

3-coloring (ring) graphs:

- Greedy 3-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2,3\}$ that no neighbor has chosen already

3-coloring (ring) graphs:

- Greedy 3-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2,3\}$ that no neighbor has chosen already

3-coloring (ring) graphs:

- Greedy 3-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2,3\}$ that no neighbor has chosen already

3-coloring (ring) graphs:

- Greedy 3-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2,3\}$ that no neighbor has chosen already

3-coloring (ring) graphs:

- Greedy 3-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2,3\}$ that no neighbor has chosen already

3-coloring (ring) graphs:

- Greedy 3-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2,3\}$ that no neighbor has chosen already

3-coloring (ring) graphs:

- Greedy 3-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2,3\}$ that no neighbor has chosen already

3-coloring (ring) graphs:

- Greedy 3-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2,3\}$ that no neighbor has chosen already

3-coloring (ring) graphs:

- Greedy 3-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2,3\}$ that no neighbor has chosen already

3-coloring (ring) graphs:

- Greedy 3-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2,3\}$ that no neighbor has chosen already

2-coloring (ring) graphs:

- Greedy 2-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2\}$ that no neighbor has chosen already

2-coloring (ring) graphs:

- Greedy 2-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2\}$ that no neighbor has chosen already

2-coloring (ring) graphs:

- Greedy 2-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2\}$ that no neighbor has chosen already

2-coloring (ring) graphs:

Given an undirected ring graph G = (V, E), assign a color in $\{1,2\}$ to all nodes such that no two neighbors have the same color

- Greedy 2-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2\}$ that no neighbor has chosen already

What color to give to node 4? Algorithm fails...

2-coloring (ring) graphs:

- Greedy 2-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2\}$ that no neighbor has chosen already

2-coloring (ring) graphs:

Given an undirected ring graph G = (V, E), assign a color in $\{1,2\}$ to all nodes such that no two neighbors have the same color

- Greedy 2-coloring algorithm:
 - For i = 1, ..., |V|:
 - Choose for node v_i the smallest color in $\{1,2\}$ that no neighbor has chosen already

What color to give to node 5? Algorithm fails...

- 2-coloring (ring) graphs: Given an undirected ring graph G=(V,E), assign a color in $\{1,2\}$ to all nodes such that no two neighbors have the same color
- Although it is similar to 3-coloring problem:
 - Greedy algorithm will fail on odd-numbered ring graphs, because these graphs cannot be colored using only 2 colors.
 - But more importantly:
 - Greedy algorithm will also fail on even-numbered ring graphs
 - Even though there is a way to color the nod $\frac{1}{2}$ with 2 colors $\frac{4}{2}$.
 - The existence of a solution does not imply the greedy algorithm will find that solution.

• Maximal Independent Set (MIS): Given an undirected graph G = (V, E), compute a subset of nodes $I \subseteq V$ such

that there are no two neighbors in I, and all nodes not in I have a neighbor in I.

Maximal Independent Set (MIS):

- Greedy MIS algorithm:
 - Initialize $I = \emptyset$
 - For i = 1, ..., |V|:
 - Check if node v_i has any neighbors in I.
 - If not, then add v_i to I, or also: $I = I \cup \{v_i\}$

Maximal Independent Set (MIS):

- Greedy MIS algorithm:
 - Initialize $I = \emptyset$
 - For i = 1, ..., |V|:
 - Check if node v_i has any neighbors in I.
 - If not, then add v_i to I, or also: $I = I \cup \{v_i\}$

Maximal Independent Set (MIS):

- Greedy MIS algorithm:
 - Initialize $I = \emptyset$
 - For i = 1, ..., |V|:
 - Check if node v_i has any neighbors in I.
 - If not, then add v_i to I, or also: $I = I \cup \{v_i\}$

Maximal Independent Set (MIS):

- Greedy MIS algorithm:
 - Initialize $I = \emptyset$
 - For i = 1, ..., |V|:
 - Check if node v_i has any neighbors in I.
 - If not, then add v_i to I, or also: $I = I \cup \{v_i\}$

Maximal Independent Set (MIS):

- Greedy MIS algorithm:
 - Initialize $I = \emptyset$
 - For i = 1, ..., |V|:
 - Check if node v_i has any neighbors in I.
 - If not, then add v_i to I, or also: $I = I \cup \{v_i\}$

Maximum Independent Set (MaxIS):

- Greedy algorithm:
 - Initialize $I = \emptyset$
 - For i = 1, ..., |V|:
 - Check if node v_i has any neighbors in I.
 - If not, then add v_i to I, or also: $I = I \cup \{v_i\}$

Summary for greedy algorithms

- Greedy algorithms:
 - Solve your problem in stages,
 - In each stage, choose the locally optimal choice.
- Greedy algorithms are fast! But for many problems, greedy can be incorrect, or give non-optimal solutions...
- Maybe surprisingly, it turns out that greedy algorithms:
 - Can approximate (for some problems) the optimal solution (and fast),
 - Solve some very well-known problem.

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

Greedy algorithm?

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with tree $T = \emptyset$,
- Sort edges from lowest to highest weight,
- For i = 1, ..., |E|:
 - If edge e_i does not form a cycle when added to T, then add e_i to T, or also: $T = T \cup \{e_i\}$

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with tree $T = \emptyset$,
- Sort edges from lowest to highest weight,
- For i = 1, ..., |E|:
 - If edge e_i does not form a cycle when added to T, then add e_i to T, or also: $T = T \cup \{e_i\}$

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with tree $T = \emptyset$,
- Sort edges from lowest to highest weight,
- For i = 1, ..., |E|:
 - If edge e_i does not form a cycle when added to T, then add e_i to T, or also: $T = T \cup \{e_i\}$

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with tree $T = \emptyset$,
- Sort edges from lowest to highest weight,
- For i = 1, ..., |E|:
 - If edge e_i does not form a cycle when added to T, then add e_i to T, or also: $T = T \cup \{e_i\}$

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with tree $T = \emptyset$,
- Sort edges from lowest to highest weight,
- For i = 1, ..., |E|:
 - If edge e_i does not form a cycle when added to T, then add e_i to T, or also: $T = T \cup \{e_i\}$

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with tree $T = \emptyset$,
- Sort edges from lowest to highest weight,
- For i = 1, ..., |E|:
 - If edge e_i does not form a cycle when added to T, then add e_i to T, or also: $T = T \cup \{e_i\}$

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with tree $T = \emptyset$,
- Sort edges from lowest to highest weight,
- For i = 1, ..., |E|:
 - If edge e_i does not form a cycle when added to T, then add e_i to T, or also: $T = T \cup \{e_i\}$

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with tree $T = \emptyset$,
- Sort edges from lowest to highest weight,
- For i = 1, ..., |E|:
 - If edge e_i does not form a cycle when added to T, then add e_i to T, or also: $T = T \cup \{e_i\}$

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with tree $T = \emptyset$,
- Sort edges from lowest to highest weight,
- For i = 1, ..., |E|:
 - If edge e_i does not form a cycle when added to T, then add e_i to T, or also: $T = T \cup \{e_i\}$

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with tree $T = \emptyset$,
- Sort edges from lowest to highest weight,
- For i = 1, ..., |E|:
 - If edge e_i does not form a cycle when added to T, then add e_i to T, or also: $T = T \cup \{e_i\}$

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with tree $T = \emptyset$,
- Sort edges from lowest to highest weight,
- For i = 1, ..., |E|:
 - If edge e_i does not form a cycle when added to T, then add e_i to T, or also: $T = T \cup \{e_i\}$

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with tree $T = \emptyset$,
- Sort edges from lowest to highest weight,
- For i = 1, ..., |E|:
 - If edge e_i does not form a cycle when added to T, then add e_i to T, or also: $T = T \cup \{e_i\}$

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Takes $O(|E| \log |V|)$ worst-case time
 - $O(|E|\log|V|)$ time for sorting edges
 - Checking for all |E| edges whether they create a cycle is a bit harder to bound.
- Output is a spanning tree is trivial to show (spanning + no cycles)
- Minimum-weight can be shown by proof of induction.
 - Induction step is a bit tricky.

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Start with $V_T = v_1$ and $E_T = \emptyset$
- While $V_T \neq V$:
 - Find the minimum weight edge $\{u, w\}$ going from a node in T to a node outside T,
 - Add $\{u, w\}$ to E_T ,
 - Without loss of generality, $u \in T$. Then add w to V_T .

• Minimum-weight spanning tree (MST) problem: Given an undirected weighted graph G=(V,E), compute the spanning tree with minimum total edge weights.

- Best implementation gives $O(|E| + |V| \log |V|)$ worst-case time
- Easier implementations give $O(|V|^2)$ or $O(|E|\log|V|)$ worst-case time
- Output is a spanning tree is trivial to show (spanning + no cycles)
- Minimum-weight also a bit tricky to show (just as for Kruskal's algorithm).

Summary

Today's lecture:

Introduced:

- Greedy algorithms, with multiple examples
- Algorithms for the Minimum-Weight Spanning Tree problem:
 - Kruskal's algorithm
 - Prim's algorithm
- Next Lecture: Dynamic programming
- Any questions?