

Regression modelling using I-priors

NUS Department of Statistics & Data Science Seminar

Haziq Jamil

Mathematical Sciences, Faculty of Science, UBD https://haziqj.ml

Wednesday, 16 November 2022

Examples

Introduction

For $i = 1, \dots, n$, consider the regression model

$$y_i = f(x_i) + \epsilon_i$$

$$(\epsilon_1, \dots, \epsilon_n)^{\top} \sim N_n(0, \Psi^{-1})$$
 (1)

where each $y_i \in \mathbb{R}$, $x_i \in \mathcal{X}$ (some set of covariates), and f is a regression function. This forms the basis for a multitude of statistical models:

- 1. Ordinary linear regression when f is parameterised linearly.
- 2. Varying intercepts/slopes model when \mathcal{X} is grouped.
- 3. Smoothing models when f is a smooth function.
- 4. Functional regression when \mathcal{X} is functional.

Goal

To estimate the regression function f given the observations $\{(y_i, x_i)\}_{i=1}^n$.

Suppose $f(x_i) = x_i^{\top} \beta$ for i = 1, ..., n, where $x_i, \beta \in \mathbb{R}^p$.

Introduction

0.00000000000

Varying intercepts/slopes model

Introduction

000000000000

Suppose each unit i = 1, ..., n relates to the kth observation in group $j \in \{1, \dots, m\}$. Model the function f additively:

$$f(x_{kj},j) = f_1(x_{kj}) + f_2(j) + f_{12}(x_{kj},j).$$

4 / 23 Х

Examples

Varying intercepts/slopes model

Suppose each unit i = 1, ..., n relates to the kth observation in group $j \in \{1, \dots, m\}$. Model the function f additively:

$$f(x_{kj},j) = \underbrace{x_{kj}^{\top} \beta_1}_{f_1} + \underbrace{\beta_{0j}}_{f_2} + \underbrace{x_{kj}^{\top} \beta_{1j}}_{f_{1j}}$$

4 / 23 Х Suppose $f \in \mathcal{F}$ where \mathcal{F} is a space of "smoothing functions" (models like LOESS, kernel regression, smoothing splines, etc.).

Functional regression

Suppose the input set \mathcal{X} is functional. The (linear) regression aims to estimate a coefficient function $\beta:\mathcal{T}\to\mathbb{R}$

$$y_i = \underbrace{\int_{\mathcal{T}} x_i(t)\beta(t) dt}_{f(x_i)} + \epsilon_i$$

The I-prior

Introduction

For the regression model stated in (1), we assume that f lies in some RKHS of functions \mathcal{F} , with reproducing kernel h over \mathcal{X} .

Definition 1 (I-prior)

The entropy maximising prior distribution for f, subject to constraints, is

$$f(x) = \sum_{i=1}^{n} h(x, x_i) w_i$$

$$(w_1, \dots, w_n)^{\top} \sim N_n(0, \Psi)$$
(2)

Therefore, the covariance kernel of f(x) is determined by the function

$$k(x,x') = \sum_{i=1}^{n} \sum_{i=1}^{n} \Psi_{ij} h(x,x_i) h(x',x_j),$$

which happens to be **Fisher information** between two linear forms of f.

The I-prior (cont.)

Interpretation:

Introduction

0000000000000

The more information about f, the larger its prior variance, and hence the smaller the influence of the prior mean (and vice versa).

Examples

Interpretation:

Introduction 00000000000000

> The more information about f, the larger its prior variance, and hence the smaller the influence of the prior mean (and vice versa).

Of interest then are

1. Posterior distribution for the regression function,

$$p(f|y) = \frac{p(y|f)p(f)}{\int p(y|f)p(f) df}.$$

2. Posterior predictive distribution (given a new data point x_{new})

$$p(y_{new} \mid \mathbf{y}) = \int p(y_{new} \mid f_{new}) p(f_{new} \mid \mathbf{y}) \, \mathrm{d}f_{new},$$

where $f_{new} = f(x_{new})$.

Introduction

0000000000000

Observations $\{(y_i, x_i) \mid y_i, x_i \in \mathbb{R} \ \forall i = 1, ..., n\}.$

Choose $h(x,x')=e^{-\frac{\|x-x'\|^2}{2s^2}}$ (Gaussian kernel). Sample paths from I-prior:

Sample paths from the posterior of f:

Posterior mean estimate for y = f(x) and its 95% credibility interval.

Why I-priors?

Advantages

- Provides a unifying methodology for regression.
- Simple and parsimonious model specification and estimation.
- Often yield comparable (or better) predictions than competing ML algorithms.

Competitors:

Tikhonov regulariser (e.g. cubic spline smoother)

$$\hat{f} = \arg\min_{f} \sum_{i=1}^{n} (y_i - f(x_i))^2 + \lambda \int f''(x)^2 dx$$

• Gaussian process regression

Examples

State of the art

Introduction

000000000000

1. Jamil, 2018

Regression using I-priors
Reproducing kernel Hilbert spaces
The Fisher information
The I-prior

Estimation

Examples

Examples

Reproducing kernel Hilbert spaces

Assumption: Let $f \in \mathcal{F}$ be an RKHS with kernel h over a set \mathcal{X} .

Definition 2 (Hilbert spaces)

A Hilbert space \mathcal{F} is a vector space equipped with a positive semidefinite inner product $\langle \cdot, \cdot \rangle_{\mathcal{F}} : \mathcal{F} \times \mathcal{F} \to \mathbb{R}$.

Definition 3 (Reproducing kernels)

A symmetric, bivariate function $h: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a kernel, and it is a reproducing kernel of \mathcal{F} if h satisfies $\forall x \in \mathcal{X}$,

- i. $h(\cdot,x) \in \mathcal{F}$; and
- ii. $\langle f, h(\cdot, x) \rangle_{\mathcal{F}} = f(x), \forall f \in \mathcal{F}.$

In particular, $\forall x, x' \in \mathcal{F}$, $h(x, x') = \langle h(\cdot, x), h(\cdot, x') \rangle_{\mathcal{F}}$.

Reproducing kernel Hilbert spaces (cont.)

In ML literature. Mercer's Theorem states.

$$h(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{V}} \Leftrightarrow h \text{ is semi p.d.}$$

where $\phi: \mathcal{X} \to \mathcal{V}$ is a mapping from \mathcal{X} to the *feature space* \mathcal{V} .

• In many ML models, need not specify ϕ explicitly; computation is made simpler by the use of kernels.

Introduction

Reproducing kernel Hilbert spaces (cont.)

Theorem 4

There is a bijection between

- i. the set of positive semidefinite functions; and
- ii. the set of RKHSs.

Examples of RKHSs

Introduction

The Fisher information

Introduction

For the regression model (1), the log-likelihood of f is given by

$$\ell(f|y) = \text{const.} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{ij} (y_i - \langle f, h(\cdot, x_i) \rangle_{\mathcal{F}}) (y_j - \langle f, h(\cdot, x_j) \rangle_{\mathcal{F}})$$

Lemma 5 (Fisher information for regression function)

The Fisher information for f is

$$\mathcal{I}_f = - \operatorname{E} \nabla^2 \ell(f|y) = \sum_{i=1}^n \sum_{j=1}^n \psi_{ij} h(\cdot, x_i) \otimes h(\cdot, x_j)$$

where ' \otimes ' is the tensor product of two vectors in \mathcal{F} .

The Fisher information (cont.)

It's helpful to think of \mathcal{I}_f as a bilinear form $\mathcal{I}_f: \mathcal{F} \times \mathcal{F} \to \mathbb{R}$, making it possible to compute the Fisher information on linear functionals $f_g = \langle f, g \rangle_{\mathcal{F}}, \ \forall g \in \mathcal{F} \ \text{as} \ \mathcal{I}_{f_g} = \langle \mathcal{I}_f, g \otimes g \rangle_{\mathcal{F} \otimes \mathcal{F}}.$

In particular, between two points $f_X := f(x)$ and $f_{X'} := f(x')$ [since $f_X = \langle f, h(\cdot, X) \rangle_{\mathcal{F}}$] we have:

$$\mathcal{I}_{f}(x, x') = \left\langle \mathcal{I}_{f}, h(\cdot, x) \otimes h(\cdot, x') \right\rangle_{\mathcal{F} \otimes \mathcal{F}}$$

$$= \left\langle \sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{ij} h(\cdot, x_{i}) \otimes h(\cdot, j), h(\cdot, x) \otimes h(\cdot, x') \right\rangle_{\mathcal{F} \otimes \mathcal{F}}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{ij} \left\langle h(\cdot, x), h(\cdot, x_{i}) \right\rangle_{\mathcal{F}} \left\langle h(\cdot, x'), h(\cdot, x_{j}) \right\rangle_{\mathcal{F}}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \psi_{ij} h(x, x_{i}) h(x', x_{j}) =: k(x, x')$$

(3)

Lemma 6

Introduction

The kernel (3) induces a finite-dimensional RKHS $\mathcal{F}_n < \mathcal{F}$, consisting of functions of the form $\tilde{f}(x) = \sum_{i=1}^{n} h(x, x_i) w_i$ (for some real-valued w_i s) equipped with the squared norm

$$\|\tilde{f}\|_{\mathcal{F}_n}^2 = \sum_{i,j=1}^n \psi_{ij}^- w_i w_j,$$

where ψ_{ii}^- is the (i,j)th entry of Ψ^{-1} .

- Let \mathcal{R} be the orthogonal complement of \mathcal{F}_n in \mathcal{F} . Then $\mathcal{F} = \mathcal{F}_n \oplus \mathcal{R}$, and any $f \in \mathcal{F}$ can be uniquely decomposed as $f = \tilde{f} + r$, with $\tilde{f} \in \mathcal{F}_n$ and $r \in \mathcal{R}$.
- The Fisher information for g is zero iff $g \in \mathcal{R}$. The data only allows us to estimate $f \in \mathcal{F}$ by considering functions in $\tilde{f} \in \mathcal{F}_n$.

Theorem 7 (I-prior)

Introduction

Let ν be a volume measure induced by the norm above. The solution to

$$\arg\max_{p} \left\{ -\int_{\mathcal{F}_n} p(f) \log p(f) \, \nu(\mathrm{d} \, f) \right\}$$

subject to the constraint

$$\mathsf{E}_{f \sim p} \|f\|_{\mathcal{F}_n}^2 = \mathsf{constant}$$

is the Gaussian distribution whose covariance function is k(x, x').

Equivalently, under the I-prior, f can be written in the form

$$f(x) = \sum_{i=1}^{n} h(x, x_i) w_i, \qquad (w_1, \dots, w_n)^{\top} \sim N(0, \Psi)$$

Regression using I-priors

Estimation

Examples

Regression using I-priors

Estimation

Examples

Regression using I-priors

Estimation

Examples

Further research

Hello

Introduction

References

Jamil, H. (2018). Regression modelling using priors depending on fisher information covariance kernels (i-priors) [Doctoral dissertation, London School of Economics and Political Science].