

# FPGA\_OS\_1in\_1out 使用文档

| 主题   | FPGA_OS_1in_1out 使用文档     |
|------|---------------------------|
| 文档号  |                           |
| 创建时间 | 2019-08-09                |
| 最后修改 | 2019-08-09                |
| 版本号  | 1.0                       |
| 文件名  | FPGA_OS_1in_1out 使用文档.pdf |
| 文件格式 | Portable Document Format  |



## 目录

| 一, | FAST 结构介绍          | . 4 |
|----|--------------------|-----|
| _, | FPGA OS 与 UM 接口定义  | . 4 |
| 三、 | 数据分组结构定义           | . 8 |
| 四、 | 接口分组定义             | . 8 |
| 五、 | 数据报文 Metadata 格式定义 | . 9 |
| 六、 | 控制报文 Metadata 格式定♡ | 10  |



修改记录

| 版本号 | 修改人 | 日期         | 备注   |
|-----|-----|------------|------|
| 1.0 | 张彦龙 | 2019-08-09 | 初始版本 |
|     |     |            |      |
|     |     |            |      |
|     |     |            |      |
|     |     |            |      |



## 一、 FAST 结构介绍

FAST 结构如图 1 所示。其分为 FPGA\_OS 和 UM 两部分。FPGA OS 包括 FPGA OS Ingress、FPGA OS egress 及 FPGA OS CDC 三部分; UM 由用户自己定义。



图 1 FAST 平台结构图

FPGA OS Ingress 部分:主要用于完成 1)接口及 DMA 数据输入的汇聚及输入调度功能; 2)对接口输入的分组数据封装 FAST 的 Metadata 头。

FPGA OS Egress 部分: 主要用于完成 1) 接口数据输出控制 2) 对接口输出的分组数据解封装 FAST 的 Metadata 头。

FPGA OS CDC 部分: 主要用于完成 CPU 与硬件模块的数据交互及管理控制。管理控制可以通过报文形式实现,即输入的 Cin 接口用于输入控制报文, Cout 输出接口用于输出控制报文, 也可以通过 LocalBus 总线方式实现。

## 二、 FPGA OS 与 UM 接口定义

FPGA OS 内与 UM 的连接的信号图如 2 所示。



图 2 FPGA与UM接口定义

#### 接口信号定义及列表

| 信号名                      | 方向              | 位宽  | 描述                |  |  |
|--------------------------|-----------------|-----|-------------------|--|--|
| CLK and RESET            |                 |     |                   |  |  |
| user_clk                 | Input           | 1   | 100Mhz 的输入时钟      |  |  |
| user_reset_n             | Input           | 1   | 复位信号, 低有效         |  |  |
| FPGA OS Ingress to UM 信号 | 定义              |     |                   |  |  |
| pktin_data_wr            | Input           | 1   | 报文数据写信号           |  |  |
| pktin_data               | Input           | 134 | 报文数据              |  |  |
| pktin_data_valid         | Input           | 1   | 报文数据标志位,1 为有效分组,0 |  |  |
|                          | / <b>-</b> // / |     | 为无效分组。            |  |  |
| pktin_data_valid_wr      | Input           | 1   | 报文数据标志位写信号        |  |  |
| pktin_ready              | output          | 1   | 数据 ready 信号       |  |  |
| FPGA OS CDC to UM 信号定    | 义               |     |                   |  |  |
| cin_data_wr              | Input           | 1   | 控制报文数据写信号         |  |  |
| cin_data[133:0]          | Input           | 134 | 控制报文数据            |  |  |
| cin_ready                | output          | 1   | 控制报文数据写 ready 信号  |  |  |
| UM to FPGA OS Egress 模块  |                 |     |                   |  |  |
| pktout_data_wr           | output          | 1   | 输出报文写信号           |  |  |
| pktout_data              | output          | 134 | 输出报文数据            |  |  |
| pktout_data_valid        | output          | 1   | 输出报文标志位           |  |  |
| pktout_data_valid_wr     | output          | 1   | 输出报文标志位写信号        |  |  |
| pktout_ ready            | input           | 1   | 输出报文 ready 信号     |  |  |
| UM to FPGA OS CDC 模块     |                 |     |                   |  |  |
| cout_data_wr             | output          | 1   | 控制报文数据写信号         |  |  |
| cout _data[133:0]        | output          | 134 | 控制报文数据            |  |  |
| cout _ready              | input           | 1   | 控制报文数据写 ready 信号  |  |  |
| UM to FPGA OS CDC 模块     |                 |     |                   |  |  |
| localbus_ack_n           | output          | 1   | wdata 返回数据有效信号    |  |  |

地址:湖南长沙岳麓区中电软件园 6 栋 303 室



| localbus_cmd   | Input  | 1  | 0表示写操作,1表示读操作;          |
|----------------|--------|----|-------------------------|
| localbus_cs_n  | Input  | 1  | cmd/addr/wdata 等信号有效,表示 |
|                |        |    | 一次控制操作开始                |
| localbus_addr  | Input  | 32 | 访问地址                    |
| localbus_rdata | output | 32 | 从 UM 读出的数据;             |
| localbus_wdata | Input  | 32 | 向 UM 写的数据;              |

### 接口时序

#### FPGA OS Ingress to UM 信号时序定义:



#### 操作步骤:

- 1) 在 pktin\_ready 输出有效时,即为1时,检测接收分组;
- 2) 当检测到 pktin\_data\_wr 为 1 时,表示数据分组 pktin\_data 输入数据有效:
- 3) 当数据输入到最后一拍时,则 pktin\_data\_valid\_wr 为 1, 输入分组有效 时 pktin data valid 为 1, 否则为 0。

#### UM to FPGA OS Egress 信号时序定义:



#### 操作步骤:

- 1) 在 pktout\_ready 输入有效时,即为1时,输出分组;
- 2)数据分组输出时即 pktout\_data 输出数据时,置 pktout\_data\_wr 信号为 1:
- 3) 当 数 据 输 出 到 最 后 一 拍 时 , 则 pktout\_data\_valid 与 pktout\_data\_valid\_wr 为 1。

FPGA OS CDC to UM 信号时序定义:





#### 操作步骤:

- 1) 在 cin ready 输出有效时,即为 1时,检测输入控制分组;
- 2) 当检测到 cin\_data\_wr 信号为 1, 控制分组输入 cin\_data 输入数据有效;
- 3)输入的控制分组为2拍数据。

UM to FPGA OS CDC 信号时序定义:



#### 操作步骤:

- 1) 在 cout ready 输入有效时,即为1时,输出控制分组;
- 2) 控制分组输出时即 cout data 输入数据时,置 cout data wr 信号为 1;
- 3)输出的控制分组为2拍数据。
- 4)注意:输出的控制分组的 FAST Metadata 域的 DMID 应为输入分组的 SMID,输出的 SMID 应为输入分组的 DMID。

FPGA OS CDC to UM localbus 读信号时序定义:



#### 操作步骤:

- 1) CDC 输出读请求 localbus cmd 为 1、地址 localbus addr;
- 2) CDC 随之输出片选 localbus cs n, 低有效;
- 3) UM 检测到片选信号为 0,进行读操作、返回读数据 localbus\_rdata,等数据稳定之后将 localbus\_ack\_n 信号置 0;
- 4) CDC 检测到 localbus\_ack\_n 信号为 0, 采样数据 localbus\_rdata, 撤掉 b.诛.
- 5) UM 检测到片选信号为 1,撤掉 localbus ack n信号;

地址:湖南长沙岳麓区中电软件园 6 栋 303 室

6) CDC 检测到 localbus\_ack\_n 变为 1,可以发起下一次操作。 FPGA OS CDC to UM localbus 写信号时序定义:



#### 操作步骤:

- 1) CDC 输出写请求 localbus cmd 为 0、地址 localbus addr;
- 2) CDC 随之输出写数据 localbus wdata;
- 3) CDC 输出片选 localbus cs n, 低有效;
- 4) UM 检测到片选信号为 0,进行写操作,写操作完成之后将 localbus\_ack\_n 置 0:
- 5) CDC 检测到 localbus ack n 信号为 0, 撤掉片选;
- 6) UM 检测到片选信号为 1 之后,撤掉 localbus ack n 信号;
- 7) CDC 检测到 localbus\_ack\_n 信号变为 l 之后,可以发起下一次操作。

## 三、 数据分组结构定义

输入及输出数据分组包括 Metadata 头部及有效数据分组两部分,格式如图 3 所示,Metadata 在 FAST 报文的前 32 字节携带,每个分组进出 UM 的第 1 拍 16 字节为 Metadata0,第二拍数据为 Metadata1。



图 3 分组数据传输格式

## 四、 接口分组定义

接口分组(packet)是应用在 FPGA OS 与 UM 接口上的 134bit 的数据格式, 其中高 6 位为控制信息, 低 128 位为报文数据。分组的前两拍为 FPGA OS 添

加的 32 字节的 metadata, 两拍后的数据为有效分组数据。134 位的数据由 2 位的头尾标识, 4 位无效字节数, 128 位的有效数据组成。

其中,[133:132]位为报文数据的头尾标识,01 代表报文头部,11 代表报文中间数据,10 代表报文尾部;[131:128]位为 4 位的无效字节数,其中 0000 表示 16 个字节全部有效,0001 表示最低一个字节无效,最高 15 个字节有效,依次类推,1111 表示最低 15 个字节无效,最高一个字节有效。格式如图 4 所示。

|   | 带外控      | 制信息     | 报文数据       |
|---|----------|---------|------------|
| 1 | .33 132  | 131 128 | 3 127      |
|   | 头尾标识     | 无效字节数   | 报文数据       |
|   | 01       | 0000    | Metadata0  |
|   | 11       | 0000    | Metadata1  |
|   | 11       | 0000    | 报文前16个字节   |
|   | 11 0000  |         | 报文第17至32字节 |
|   | •        | •       | •          |
|   | 10 vbyte |         | 报文尾部数据     |
|   |          |         |            |

图 4 报文分组传输格式

## 五、 数据报文 Metadata 格式定义

Metadata0 格式定义如下:

| [127]     | 1  | pkttype  | 0 数据报文, 1 控制报文                 |
|-----------|----|----------|--------------------------------|
| [126]     | 1  | pktdst   | 分组目的, 0 为网络接口输出, 1 为送 CPU      |
| [125:120] | 6  | inport   | 分组的输入端口号                       |
| [119:118] | 2  | outtype  | 00:直接输出,01: 查组播,10,11 保留       |
| [117:112] | 6  | outport  | 直接输出: bitmap 方式输出,查组播表: 为查找索引。 |
| [111:109] | 3  | priority | 分组优先级                          |
| [108]     | 1  | discard  | 丢弃位                            |
| [107:96]  | 12 | len      | 包含 MetaData 字段的分组长度            |
| [95:88]   | 8  | smid     | 最近一次处理分组的模块 ID                 |
| [87:80]   | 1  | dmid     | 下一个处理分组的模块 ID                  |
| [79:72]   | 8  | pst      | 标准协议类型                         |
|           |    |          |                                |

地址:湖南长沙岳麓区中电软件园 6栋 303室

| [71:64] | 8  | seq     | 分组接收序列号                      |
|---------|----|---------|------------------------------|
| [63:50] | 14 | flowid  | 流 ID                         |
| [49]    | 1  | pktsrc  | 分组的来源, 0 为网络接口输入, 1 为 CPU 输入 |
| [48:32] | 17 | reserve | 保留                           |
| [31:0]  | 48 | ts      | 时间戳                          |

Metadata1:为用户预留的 16B 的自定义空间,用户可以根据自己需求,自定义内容及使用。

## 六、 控制报文 Metadata 格式定义

#### Metadata0 格式定义如下:

| Wictadatao | THENCE  | CORT ·                                  |
|------------|---------|-----------------------------------------|
| 位置         | 字段      | 含义                                      |
| [127]      | pkttype | 0:数据; 1:控制                              |
| [126:124]  | TYPE    | 001: 读帧; 010 写帧; 011 读响应帧; 100: 硬件主动触发帧 |
| [123:112]  | Seq     | 访问序号                                    |
| [111:104]  | SMID    | 发出 C 消息的模块 ID                           |
| [103:96]   | DMID    | 接收C消息的模块ID                              |
| [95:64]    | Addr    | 操作地址                                    |
| [63:32]    | Mask    | 写数据掩码                                   |
| [31:0]     | Data    | 写的数据/读返回数据                              |

### Metadata1:

| 位置       | 字段        | 含义           |
|----------|-----------|--------------|
| [127:64] | sessionID | 用于标识访问会话的 ID |
| [63:0]   | reserve   | 保留           |

控制报文进 UM 时只有两拍 metadata 信息。