

New Compilation Languages Based on Restricted Weak Decomposability

Petr Illner

Department of Theoretical Computer Science and Mathematical Logic, Faculty of Mathematics and Physics, Charles University, Czech Republic illner3@gmail.com

Positive and negative weak decomposable negation normal form (pwDNNF/nwDNNF) circuits

DNNF circuits¹ satisfy the decomposability property

wDNNF circuits² satisfy the weak decomposability property

pwDNNF circuits* satisfy the positive weak decomposability property

nwDNNF circuits* satisfy the negative weak decomposability property

Cardinalities

The cardinality of a model is the number of variables that are set to True.

The minimum (resp. maximum) cardinality of a circuit/formula is the minimum (resp. maximum) cardinality of all its models.

Example:		$(X_1 \lor X_2) \land (X_2 \lor X_3) \land (\neg X_1 \lor \neg X_3)$						
var	weight	models			cardinality		weighted cardinality	
X_1	1	¬X ₁ ,	X ₂ ,	$\neg X_3$	1	(min)	2 (min)	
X_2	2	¬X ₁ ,	X ₂ ,	X_3	2	(max)	2 + 3 = 5 (max)	
X_3	3	X_1	X_2	$\neg X_3$	2	(max)	1 + 2 = 3	

Queries and transformations									
Query ^{3,4,9}	wDNNF	pwDNNF	nwDNNF	DNNF					
Consistency (CO)	✓								
Clausal entailment <i>(CE)</i>									
Model enumeration <i>(ME)</i>	✓	√ *	√ *	√					
(weighted) Minimum cardinality <i>((w)MinCard)</i>	X *	X *							
(weighted) Maximum cardinality <i>((w)MaxCard)</i>	X *	*	X *	√					
Transformation ^{3,9}	wDNNF	pwDNNF	nwDNNF	DNNF					
Conditioning (CD)									
Forgetting (FO)									
Disjunction (VC)									
✓ polytime ✓ polynomial delay X not polytime unless P = NP *new									

Knowledge compilers and succinctness⁸

Currently, when we are interested in the (weighted) minimum or maximum cardinality queries, which are essential for many applications, we must use decision-DNNF circuits, which are strictly less succinct than DNNF circuits, which are strictly less succinct than pwDNNF and nwDNNF circuits. Considering those queries, we can use pwDNNF and nwDNNF circuits instead and our extended variant of Bella – the state-of-the-art compiler for wDNNF circuits.

 $L_1 \rightarrow L_2$ means that L_1 is strictly more succinct than L_2

*our extended variant of Bella⁹ for pwDNNF and nwDNNF circuits

WICHE, Adnan; MARQUIS, Pierre. A knowledge compilation map. Journal of Artificial Intelligence Research, 2002, 17: 229-264.
WICHE, Adnan. Decomposable negation normal form. Journal of the ACM (JACM), 2001, 48.4: 608-647.

K, James D. Using weighted MAX-SAT engines to solve MPE. In: AAAI/IAAI. 2002. p. 682-687.

TSRISAWAT, Knot; DARWICHE, Adnan. Clone: Solving weighted Max-SAT in a reduced search space. In: AI 2007: Advances in Ast, Australia, December 2-6, 2007. Proceedings 20. Springer Berlin Heidelberg, 2007. p. 223-233.

KIESEL, Rafael; EITER, Thomas. Knowledge compilation and more with SharpSAT-TD. In: Proceedings of the International Confe HUANG, Jinbo; DARWICHE, Adnan. The language of search. Journal of Artificial Intelligence Research, 2007, 29: 191-219.

Applications

The most probable explanation (MPE) problem

60%

Instance: Given a Bayesian network (BN) and some evidence. Task: Find a variable instantiation of the remaining variables with the highest probability given that evidence.

Problem: Computing MPEs in two-layer BNs with large domains Required operations: Conditioning, and weighted minimum cardinality

BN reduction ^{5,6} MinCostSat ⁷ Bella nwDNNF circuit										
Experimental results										
#nodes	density	domain	nwDNN	IF circuits (Be	dec-DNNF circuits (D4)					
		size	time (s)	size	#	time (s)	size	#		
		7	108	1 909 132	1	590	6 770 407	1		
	100%	8	459	4 209 175	1	3 296	15 836 293	1		
		9	1 884	8 471 321	1			0		
5 : 5	80%	13	664	19 509 851	10	6 625	34 465 982	1		
		14	1 492	32 614 471	10			0		
		15	3 255	49 867 671	10			0		

29 159 870 | 10 |

34 843 482 10

52 154 815 | 10

2 027

26 635 851