Recurrence Relations $\begin{cases} \alpha_0, \dots, \alpha_{r-1} \text{ are gliven and} \\ \alpha_n = f(\alpha_{n-1}, \dots, \alpha_{n-r}), \quad n \neq r \end{cases}$ A sequence (an) no is uniquely determined by above Arithmetic Sequence $\begin{cases} a_0 = \alpha \\ a_n = a_{n-1} + d, n71. \end{cases}$ First few terms: a, a+d, a+2d, ---Generally, $a_n = a + nd$ $\sum_{k=0}^{n} a_k = \sum_{k=0}^{n} (a + kd) = \frac{a + (a + nd)}{2} \cdot (n + 1)$ proof) a atd at2d . - atnd + l o+nd a+(n+)d · · · a (2a+ nd) (ntl) Ex. Find the sum of years when FEFA World cap are held

from 2000 to 2050.

501. $\frac{2002 + 2050}{2}$. 13

Notation) $\hat{T}_{1=0} \alpha_1 = \alpha_0 \alpha_1 - \alpha_n$

Cardinality

Denote (A) by the cardinality of A

If A is a finite set, |A| is the number of elements

Definition 1 Two sets A and B have the same cardinality if and only if there is a bijection fix IB.

Definition 2 If there is a one-to-one function $f(A \rightarrow B)$ we write $|A| \leq |B|$.

Remark) Both = and \leq are transitive. That is, if three sets A,B, and C satisfy [A]=[B] \wedge [B]=[C]. then [A]=[C]. Also, if three sets A,B, and C satisfy $[A] \leq [B]$ \wedge $[B] \leq [C]$, then $[A] \leq [C]$.

Definition (Proper subset) A set B is a proper subset of A 4 B \leq A \wedge B \neq A.

Theorem 1 If B is a proper subset of a finite set A, then |B| < |A| (that is $|B| \le |A|$ $\wedge |A| \ne |B|$)

Theorem 2. If A is an intinite set, then there is a proper subset B such that |B| = |A|, polynomial rings Countably intinite sets N, Z, Q, Z[x], F₂(x), Z(x), F₂(x), ...

Uncountably infinite sets |R|, C, |R(x)|, |R(x)|, |C(x)|, |C(x)|, |C(x)|, ... rational function

More results on Cardinality Cantor's Theorem. For any set A, IAI< | PCA) | Schröder - Bernstein Theorem, For two sets A and B, $(|A| \leq |B| \wedge |B| \leq |A|) = (|A| = |B|)$ That is, if there are injections fi A-B and giB-A then there is a bijection hid-) B. Applications @ 12t/< |P(Zt) = |R = |C| (2) $|N| = |Z| = |Q| = |Z(x)| = |F_2(x)|$ $=|Z(x)|=|F_2(x)|$ (countably infinite) (3) |R| = |C| = |R[x]| = |R(x)| = |C[x]| = |C(x)|G |R| < |P(R)| = |f| f: R-1R is a function <math>|R|

Matries

Refinition. Let m and n be positive integers and

The 1th row of A is (a:1 -- a:n)
The 5th column of A is

[a:1]

Arithmetic. (+) let $A = [a_{ij}]$ and $B = (b_{ij})$ be mxn matrix. The sum A + B is a matrix that has $a_{ij} + b_{ij}$ as (i,i) the entry

(.) let $A = (a_{ij})$ be mx K matrix and $B = (b_{ij})$ be k xn matrix. The product of A and B is denoted by AB and Its is the entry is

 $C_{10} = a_{11}b_{12} + a_{12}b_{23} + \cdots + a_{1k}b_{kj} = \sum_{p=1}^{k} a_{1p}b_{p};$

Ex. If A is 3x4 matrix and B is 5x6 matrix then AB is undefined.

EX. $AB \neq BA$ with $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.

Definition (Transpose) Let A=(a,) be an anxa anatrix. The transpose of A, denoted by AT is the nxm martik obtained by $A^{t}=(b_{i})$ with $b_{i}=a_{i}$ for $1\leq i\leq n$ $1\leq j\leq m$ Refinition (Symmetric) If A = [aii] be a square matrix. If AT=A, then A is called symmetric Ex. $A = \begin{bmatrix} 123 \\ 456 \end{bmatrix}$ $A^{T} = \begin{bmatrix} 14 \\ 25 \\ 36 \end{bmatrix}$ Tip) $A = \begin{bmatrix} -Rowl - \\ -Rowl - \\ \\ -Rowm - \end{bmatrix}$, $A^{T} = \begin{bmatrix} R & R & --- & R & R \\ Rowl & Rowl - \\ \\ -Rowl & Rowl - \\ \\ -Rowl - \\$ Ex. A=[13] is symmetric. Refinition (Zeno-One matrix) A matrix whose entries are either 0 or 1. Boolean operations $b_1 \wedge b_2 = \begin{cases} 0 & \text{otherwise} \end{cases}$ (and) $b_1 \vee b_2 = \begin{cases} 1 & \text{if } b_1 = 1 \text{ or } b_2 = 1 \\ 0 & \text{otherwise} \end{cases}$ (or)

AVB: V entrywise ANB: A entrywise Boolean Product. let A = (ay) be mxk zero-one matrix and B=[by] be kxn seno-one matrix. The Boolean product of A and B, denoted by A OB is the mxn matrix whose (is) the entry Ci; is Cij = (a11 1 bij) V (a12 1 b2) V - LV (a1k 1 bkj) $\mathbf{E}_{\mathbf{X}_{i}} \quad A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ $\frac{(1 \wedge 0) \vee (0 \wedge 1)}{(0 \wedge 0) \vee (1 \wedge 1)}$ $\frac{1}{(1 \wedge 0) \vee (0 \wedge 1)}$ (INI) V(ONI) $AOB = \begin{cases} (1/1) \vee (0/0) \\ (0/1) \vee (1/0) \end{cases}$ (ONI)V(INI) (INI) V(ONI) (INI) v (ONO) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 \end{bmatrix}$ 100 $= \begin{cases} 1 & 0 \\ 0 & 0 \\ 1 & 0 \end{cases}$ 011 100 $A^n = A \cdot A \cdot \cdots A$ Notations) n times

$$A^{\circ}=I$$
, $A^{\circ}=I$.