CMPT-413 Computational Linguistics

Anoop Sarkar http://www.cs.sfu.ca/~anoop

March 7, 2012

1/45

Outline

Algorithms for Hidden Markov Models

Main HMM Algorithms

HMM as Parser Viterbi Algorithm for HMMs HMM as Language Model HMM Learning: Fully Observed Case Learning from Unlabeled Data

Hidden Markov Model

$$\text{Model } \theta = \left\{ \begin{array}{ll} \pi_i & \text{probability of starting at state } i \\ a_{i,j} & \text{probability of transition from state } i \text{ to state } j \\ b_i(o) & \text{probability of output } o \text{ at state } i \end{array} \right.$$

3 / 45

Hidden Markov Model Algorithms

- ► HMM as parser: compute the best sequence of states for a given observation sequence.
- ► HMM as language model: compute probability of given observation sequence.
- ► HMM as learner: given a corpus of observation sequences, learn its distribution, i.e. learn the parameters of the HMM from the corpus.
 - ► Learning from a set of observations with the sequence of states provided (states are not hidden) [Supervised Learning]
 - ► Learning from a set of observations without any state information. [Unsupervised Learning]

Outline

Algorithms for Hidden Markov Models

Main HMM Algorithms

HMM as Parser

Viterbi Algorithm for HMMs HMM as Language Model HMM Learning: Fully Observed Case Learning from Unlabeled Data

5 / 45

HMM as Parser

The task: for a given observation sequence find the most likely state sequence.

HMM as Parser

- Find most likely sequence of states for killer clown
- Score every possible sequence of states: AA, AN, NN, NA
 - ▶ P(killer clown, AA) = $\pi_A \cdot b_A(killer) \cdot a_{A,A} \cdot b_A(clown) = 0.0$
 - ▶ P(killer clown, AN) = $\pi_A \cdot b_A(killer) \cdot a_{A,N} \cdot b_N(clown) = 0.0$
 - ▶ P(killer clown, NN) = $\pi_N \cdot b_N(killer) \cdot a_{N,N} \cdot b_N(clown) = 0.75 \cdot 0.3 \cdot 0.5 \cdot 0.4 = 0.045$
 - ▶ P(killer clown, NA) = $\pi_N \cdot b_N(killer) \cdot a_{N,A} \cdot b_A(clown) = 0.0$
- ▶ Pick the state sequence with highest probability (NN=0.045).

7 / 45

HMM as Parser

- ► As we have seen, for input of length 2, and a HMM with 2 states there are 2² possible state sequences.
- ▶ In general, if we have q states and input of length T there are q^T possible state sequences.
- ▶ Using our example HMM, for input *killer crazy clown problem* we will have 2⁴ possible state sequences to score.
- Our naive algorithm takes exponential time to find the best state sequence for a given input.
- ▶ The **Viterbi algorithm** uses dynamic programming to provide the best state sequence with a time complexity of $q^2 \cdot T$

Outline

Algorithms for Hidden Markov Models

Main HMM Algorithms HMM as Parser

Viterbi Algorithm for HMMs

HMM as Language Model HMM Learning: Fully Observed Case Learning from Unlabeled Data

9 / 45

Viterbi Algorithm for HMMs

- ▶ For input of length T: o_1, \ldots, o_T , we want to find the sequence of states s_1, \ldots, s_T
- ightharpoonup Each s_t in this sequence is one of the states in the HMM.
- ▶ So the task is to find the most likely sequence of states:

$$\underset{s_1,\ldots,s_T}{\operatorname{argmax}} P(o_1,\ldots,o_T,s_1,\ldots,s_T)$$

▶ The Viterbi algorithm solves this by creating a table V[s,t] where s is one of the states, and t is an index between $1, \ldots, T$.

Viterbi Algorithm for HMMs

- ► Consider the input killer crazy clown problem
- ▶ So the task is to find the most likely sequence of states:

$$\operatorname{argmax} P(killer \ crazy \ clown \ problem, s_1, s_2, s_3, s_4)$$

 s_1, s_2, s_3, s_4

► A sub-problem is to find the most likely sequence of states for *killer crazy clown*:

$$\underset{s_1, s_2, s_3}{\operatorname{argmax}} P(killer \ crazy \ clown, s_1, s_2, s_3)$$

11 / 45

Viterbi Algorithm for HMMs

▶ In our example there are two possible values for s_4 :

$$\max_{s_1,...,s_4} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, s_4) = \\ \max \left\{ \max_{s_1,s_2,s_3} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, N), \\ \max_{s_1,s_2,s_3} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, A) \right\}$$

► Similarly:

Viterbi Algorithm for HMMs

Putting them together:

```
P(killer\ crazy\ clown\ problem, s_1, s_2, s_3, N) = \\ \max \{P(killer\ crazy\ clown, s_1, s_2, N) \cdot a_{N,N} \cdot b_N(problem), \\ P(killer\ crazy\ clown, s_1, s_2, A) \cdot a_{A,N} \cdot b_N(problem)\} \\ P(killer\ crazy\ clown\ problem, s_1, s_2, s_3, A) = \\ \max \{P(killer\ crazy\ clown, s_1, s_2, N) \cdot a_{N,A} \cdot b_A(problem), \\ P(killer\ crazy\ clown, s_1, s_2, A) \cdot a_{A,A} \cdot b_A(problem)\}
```

▶ The best score is given by:

```
\max_{s_1,...,s_4} P(killer\ crazy\ clown\ problem, s_1, s_2, s_3, s_4) = \\ \max_{N,A} \left\{ \max_{s_1,s_2,s_3} P(killer\ crazy\ clown\ problem, s_1, s_2, s_3, N), \\ \max_{s_1,s_2,s_3} P(killer\ crazy\ clown\ problem, s_1, s_2, s_3, A) \right\}
```

13 / 45

Viterbi Algorithm for HMMs

► Provide an index for each input symbol: 1:killer 2:crazy 3:clown 4:problem

$$V[N,3] = \max_{s_1,s_2} P(killer \ crazy \ clown, s_1, s_2, N)$$

$$V[N,4] = \max_{s_1,s_2,s_3} P(killer \ crazy \ clown \ problem, s_1, s_2, s_3, N)$$

Putting them together:

$$V[N,4] = \max\{V[N,3] \cdot a_{N,N} \cdot b_{N}(problem),$$

$$V[A,3] \cdot a_{A,N} \cdot b_{N}(problem)\}$$

$$V[A,4] = \max\{V[N,3] \cdot a_{N,A} \cdot b_{A}(problem),$$

$$V[A,3] \cdot a_{A,A} \cdot b_{A}(problem)\}$$

- ► The best score for the input is given by: $\max \{V[N, 4], V[A, 4]\}$
- ► To extract the best sequence of states we backtrack (same trick as obtaining alignments from minimum edit distance)

Viterbi Algorithm for HMMs

- ▶ For input of length T: o_1, \ldots, o_T , we want to find the sequence of states s_1, \ldots, s_T
- **Each** s_t in this sequence is one of the states in the HMM.
- lacksquare For each state q we initialize our table: $V[q,1]=\pi_q\cdot b_q(o_1)$
- ▶ Then compute recursively for t = 1 ... T 1 for each state q:

$$V[q, t+1] = \max_{q'} \left\{ V[q', t] \cdot a_{q', q} \cdot b_q(o_{t+1}) \right\}$$

▶ After the loop terminates, the best score is $\max_q V[q, T]$

15/45

Outline

Algorithms for Hidden Markov Models

Main HMM Algorithms HMM as Parser Viterbi Algorithm for HMMs

HMM as Language Model

HMM Learning: Fully Observed Case Learning from Unlabeled Data

HMM as Language Model

- Find $P(killer\ clown) = \sum_{y} P(y, killer\ clown)$
- ▶ $P(killer\ clown) = P(AA, killer\ clown) + P(AN, killer\ clown) + P(NN, killer\ clown) + P(NA, killer\ clown)$

17 / 45

HMM as Language Model

- Consider the input killer crazy clown problem
- So the task is to find the sum over all sequences of states:

$$\sum_{s_1,s_2,s_3,s_4} P(killer\ crazy\ clown\ problem,s_1,s_2,s_3,s_4)$$

► A sub-problem is to find the most likely sequence of states for *killer crazy clown*:

$$\sum_{s_1,s_2,s_3} P(killer\ crazy\ clown,s_1,s_2,s_3)$$

HMM as Language Model

▶ In our example there are two possible values for s_4 :

$$\sum_{s_1,...,s_4} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, s_4) = \\ \sum_{s_1,s_2,s_3} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, N) + \\ \sum_{s_1,s_2,s_3} P(\textit{killer crazy clown problem}, s_1, s_2, s_3, A)$$

Very similar to the Viterbi algorithm. Sum instead of max, and that's the only difference!

19 / 45

HMM as Language Model

► Provide an index for each input symbol: 1:killer 2:crazy 3:clown 4:problem

$$V[N,3] = \sum_{s_1,s_2} P(killer\ crazy\ clown, s_1, s_2, N)$$

$$V[N,4] = \sum_{s_1,s_2,s_3} P(killer\ crazy\ clown\ problem, s_1, s_2, s_3, N)$$

▶ Putting them together:

$$V[N,4] = V[N,3] \cdot a_{N,N} \cdot b_{N}(problem) + V[A,3] \cdot a_{A,N} \cdot b_{N}(problem)$$

$$V[A,4] = V[N,3] \cdot a_{N,A} \cdot b_{A}(problem) + V[A,3] \cdot a_{A,A} \cdot b_{A}(problem)$$

▶ The best score for the input is given by: V[N,4] + V[A,4]

HMM as Language Model

- For input of length $T: o_1, \ldots, o_T$, we want to find $P(o_1, \ldots, o_T) = \sum_{y_1, \ldots, y_T} P(y_1, \ldots, y_T, o_1, \ldots, o_T)$
- \triangleright Each y_t in this sequence is one of the states in the HMM.
- lacktriangledown For each state q we initialize our table: $V[q,1]=\pi_q\cdot b_q(o_1)$
- ▶ Then compute recursively for t = 1...T 1 for each state q:

$$V[q,t+1] = \sum_{q'} \left\{ V[q',t] \cdot a_{q',q} \cdot b_q(o_{t+1})
ight\}$$

- ▶ After the loop terminates, the best score is $\sum_{q} V[q, T]$
- So: Viterbi with sum instead of max gives us an algorithm for HMM as a language model.
- ▶ This algorithm is sometimes called the *forward algorithm*.

21 / 45

Outline

Algorithms for Hidden Markov Models

Main HMM Algorithms
HMM as Parser
Viterbi Algorithm for HMMs
HMM as Language Model

HMM Learning: Fully Observed Case

HMM Learning from Labeled Data

$$\operatorname{Model} \theta = \left\{ \begin{array}{ll} \pi_i & \text{probability of starting at state } i \\ a_{i,j} & \text{probability of transition from state } i \text{ to state } j \\ b_i(o) & \text{probability of output } o \text{ at state } i \end{array} \right.$$

23 / 45

HMM Learning from Labeled Data

- ► The task: to find the values for the parameters of the HMM:
 - $\rightarrow \pi_A, \pi_N$
 - $\triangleright a_{A,A}, a_{A,N}, a_{N,N}, a_{N,A}$
 - \blacktriangleright $b_A(killer), b_A(crazy), b_A(clown), b_A(problem)$
 - ▶ $b_N(killer), b_N(crazy), b_N(clown), b_N(problem)$

► Labeled Data *L*:

25 / 45

Learning from Fully Observed Data

```
▶ Let's say we have m labeled examples:
```

```
L = (x_1, y_1), \dots, (x_m, y_m)
```

- ► Each $(x_{\ell}, y_{\ell}) = \{o_1, \dots, o_T, s_1, \dots, s_T\}$
- ► For each (x_{ℓ}, y_{ℓ}) we can compute the probability using the HMM:

```
• (x_1 = killer, clown; y_1 = N, N):

P(x_1, y_1) = \pi_N \cdot b_N(killer) \cdot a_{N,N} \cdot b_N(clown)
```

- $(x_2 = killer, problem; y_2 = N, N)$: $P(x_2, y_2) = \pi_N \cdot b_N(killer) \cdot a_{N,N} \cdot b_N(problem)$
- $(x_3 = crazy, problem; y_3 = A, N)$: $P(x_3, y_3) = \pi_A \cdot b_A(crazy) \cdot a_{A,N} \cdot b_N(problem)$
- $(x_4 = crazy, clown; y_4 = A, N)$: $P(x_4, y_4) = \pi_A \cdot b_A(crazy) \cdot a_{A,N} \cdot b_N(clown)$
- $(x_5 = problem, crazy, clown; y_5 = N, A, N)$: $P(x_5, y_5) = \pi_N \cdot b_N(problem) \cdot a_{N,A} \cdot b_A(crazy) \cdot a_{A,N} \cdot b_N(clown)$
- $(x_6 = clown, crazy, killer; y_6 = A, A, N)$: $P(x_6, y_6) = \pi_N \cdot b_N(clown) \cdot a_{N,A} \cdot b_A(crazy) \cdot a_{A,N} \cdot b_N(killer)$
- $\prod_{\ell} P(x_{\ell}, y_{\ell}) = \pi_N^4 \cdot \pi_A^2 \cdot a_{N,N}^2 \cdot a_{N,A}^2 \cdot a_{A,N}^4 \cdot a_{A,A}^0 \cdot b_N(killer)^3 \cdot b_N(clown)^4 \cdot b_N(problem)^3 \cdot b_A(crazy)^4$

- We can easily collect frequency of observing a word with a state (tag)
 - f(i, x, y) = number of times i is the initial state in (x, y)
 - f(i,j,x,y) = number of times j follows i in (x,y)
 - f(i, o, x, y) = number of times i is paired with observation o
- ▶ Then according to our HMM the probability of x, y is:

$$P(x,y) = \prod_{i} \pi_{i}^{f(i,x,y)} \cdot \prod_{i,j} a_{i,j}^{f(i,j,x,y)} \cdot \prod_{i,o} b_{i}(o)^{f(i,o,x,y)}$$

27 / 45

Learning from Fully Observed Data

ightharpoonup According to our HMM the probability of x, y is:

$$P(x,y) = \prod_{i} \pi_{i}^{f(i,x,y)} \cdot \prod_{i,j} a_{i,j}^{f(i,j,x,y)} \cdot \prod_{i,o} b_{i}(o)^{f(i,o,x,y)}$$

lacksquare For the labeled data $L=(x_1,y_1),\ldots,(x_\ell,y_\ell),\ldots,(x_m,y_m)$

$$P(L) = \prod_{\ell=1}^{m} P(x_{\ell}, y_{\ell})$$

$$= \prod_{\ell=1}^{m} \left(\prod_{i} \pi_{i}^{f(i, x_{\ell}, y_{\ell})} \cdot \prod_{i, j} a_{i, j}^{f(i, j, x_{\ell}, y_{\ell})} \cdot \prod_{i, o} b_{i}(o)^{f(i, o, x_{\ell}, y_{\ell})} \right)$$

According to our HMM the probability of x, y is:

$$P(L) = \prod_{\ell=1}^m \left(\prod_i \pi_i^{f(i,\mathsf{x}_\ell,\mathsf{y}_\ell)} \cdot \prod_{i,j} a_{i,j}^{f(i,j,\mathsf{x}_\ell,\mathsf{y}_\ell)} \cdot \prod_{i,o} b_i(o)^{f(i,o,\mathsf{x}_\ell,\mathsf{y}_\ell)} \right)$$

▶ The log probability of the labeled data $(x_1, y_1), \dots, (x_m, y_m)$ according to HMM with parameters θ is:

$$egin{array}{lll} L(heta) &=& \displaystyle\sum_{\ell=1}^m \log P(x_\ell,y_\ell) \ &=& \displaystyle\sum_{\ell=1}^m \displaystyle\sum_i f(i,x_\ell,y_\ell) \log \pi_i + \ &\displaystyle\sum_{i,j} f(i,j,x_\ell,y_\ell) \log a_{i,j} + \ &\displaystyle\sum_i f(i,o,x_\ell,y_\ell) \log b_i(o) \end{array}$$

29 / 45

Learning from Fully Observed Data

$$L(\theta) = \sum_{\ell=1}^{m} \sum_{i,j} f(i,x_{\ell},y_{\ell}) \log \pi_i + \sum_{i,j} f(i,j,x_{\ell},y_{\ell}) \log a_{i,j} + \sum_{i,o} f(i,o,x_{\ell},y_{\ell}) \log b_i(o)$$

- ▶ $L(\theta)$ is the probability of the labeled data $(x_1, y_1), \dots, (x_m, y_m)$
- We want to find a θ that will give us the maximum value of $L(\theta)$
- We find the θ such that $\frac{dL(\theta)}{d\theta} = 0$

$$L(\theta) = \sum_{\ell=1}^{m} \sum_{i,j} f(i,x_{\ell},y_{\ell}) \log \pi_i + \sum_{i,j} f(i,j,x_{\ell},y_{\ell}) \log a_{i,j} + \sum_{i,o} f(i,o,x_{\ell},y_{\ell}) \log b_i(o)$$

▶ The values of π_i , $a_{i,j}$, $b_i(o)$ that maximize $L(\theta)$ are:

$$\pi_{i} = \frac{\sum_{\ell} f(i, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{k} f(k, x_{\ell}, y_{\ell})}$$

$$a_{i,j} = \frac{\sum_{\ell} f(i, j, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{k} f(i, k, x_{\ell}, y_{\ell})}$$

$$b_{i}(o) = \frac{\sum_{\ell} f(i, o, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{o' \in V} f(i, o', x_{\ell}, y_{\ell})}$$

31 / 45

Learning from Fully Observed Data

Labeled Data:

x1,y1: killer/N clown/N
x2,y2: killer/N problem/N
x3,y3: crazy/A problem/N
x4,y4: crazy/A clown/N

x5,y5: problem/N crazy/A clown/N x6,y6: clown/N crazy/A killer/N

▶ The values of π_i that maximize $L(\theta)$ are:

$$\pi_i = \frac{\sum_{\ell} f(i, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{k} f(k, x_{\ell}, y_{\ell})}$$

• $\pi_N = \frac{2}{3}$ and $\pi_A = \frac{1}{3}$ because:

$$\sum_{\ell} f(N, x_{\ell}, y_{\ell}) = 4$$

$$\sum_{\ell} f(A, x_{\ell}, y_{\ell}) = 2$$

33 / 45

Learning from Fully Observed Data

▶ The values of $a_{i,j}$ that maximize $L(\theta)$ are:

$$a_{i,j} = \frac{\sum_{\ell} f(i,j,x_{\ell},y_{\ell})}{\sum_{\ell} \sum_{k} f(i,k,x_{\ell},y_{\ell})}$$

 $ightharpoonup a_{N,N}=rac{1}{2}$; $a_{N,A}=rac{1}{2}$; $a_{A,N}=1$ and $a_{A,A}=0$ because:

$$\sum_{\ell} f(N, N, x_{\ell}, y_{\ell}) = 2 \qquad \sum_{\ell} f(A, N, x_{\ell}, y_{\ell}) = 4$$

$$\sum_{\ell} f(N, A, x_{\ell}, y_{\ell}) = 2 \qquad \sum_{\ell} f(A, A, x_{\ell}, y_{\ell}) = 0$$

▶ The values of $b_i(o)$ that maximize $L(\theta)$ are:

$$b_i(o) = \frac{\sum_{\ell} f(i, o, x_{\ell}, y_{\ell})}{\sum_{\ell} \sum_{o' \in V} f(i, o', x_{\ell}, y_{\ell})}$$

▶ $b_N(killer) = \frac{3}{10}$; $b_N(clown) = \frac{4}{10}$; $b_N(problem) = \frac{3}{10}$ and $b_A(crazy) = 1$ because:

$$\sum_{\ell} f(N, killer, x_{\ell}, y_{\ell}) = 3 \qquad \sum_{\ell} f(A, killer, x_{\ell}, y_{\ell}) = 0$$

$$\sum_{\ell} f(N, clown, x_{\ell}, y_{\ell}) = 4 \qquad \sum_{\ell} f(A, clown, x_{\ell}, y_{\ell}) = 0$$

$$\sum_{\ell} f(N, crazy, x_{\ell}, y_{\ell}) = 0 \qquad \sum_{\ell} f(A, crazy, x_{\ell}, y_{\ell}) = 4$$

$$\sum_{\ell} f(N, problem, x_{\ell}, y_{\ell}) = 3 \qquad \sum_{\ell} f(A, problem, x_{\ell}, y_{\ell}) = 0$$

35 / 45

Learning from Fully Observed Data

x1,y1: killer/N clown/N
x2,y2: killer/N problem/N
x3,y3: crazy/A problem/N

x4,y4: crazy/A clown/N x5,y5: problem/N crazy/A clown/N

x6,y6: clown/N crazy/A killer/N

	$b_i(o)$	Α	Ν
=	clown	0.0	0.4
	killer	0.0	0.3
	problem	0.0	0.3
	crazy	1.0	0.0

Outline

Algorithms for Hidden Markov Models

Main HMM Algorithms
HMM as Parser
Viterbi Algorithm for HMMs
HMM as Language Model
HMM Learning: Fully Observed Case

Learning from Unlabeled Data

37 / 45

```
▶ Unlabeled Data U = x_1, ..., x_m:
```

```
x1: killer clown
x2: killer problem
x3: crazy problem
x4: crazy clown
```

- ▶ y1, y2, y3, y4 are unknown.
- ▶ But we can enumerate all possible values for y1, y2, y3, y4
- For example, for x1: killer clown x1,y1,1: killer/A clown/A $p_1 = \pi_A \cdot b_A(killer) \cdot a_{A,A} \cdot b_A(clown)$ x1,y1,2: killer/A clown/N $p_2 = \pi_A \cdot b_A(killer) \cdot a_{A,N} \cdot b_N(clown)$ x1,y1,3: killer/N clown/N $p_3 = \pi_N \cdot b_N(killer) \cdot a_{N,N} \cdot b_N(clown)$ x1,y1,4: killer/N clown/A $p_4 = \pi_N \cdot b_N(killer) \cdot a_{N,A} \cdot b_A(clown)$

Learning from Unlabeled Data

- Assume some values for $\theta = \pi, a, b$
- ▶ We can compute $P(y \mid x_{\ell}, \theta)$ for any y for a given x_{ℓ}

$$P(y \mid x_{\ell}, \theta) = \frac{P(x, y \mid \theta)}{\sum_{y'} P(x, y' \mid \theta)}$$

▶ For example, we can compute $P(NN \mid killer clown, \theta)$ as follows:

$$\frac{\pi_N \cdot b_N(\textit{killer}) \cdot a_{N,N} \cdot b_N(\textit{clown})}{\sum_{i,j} \pi_i \cdot b_i(\textit{killer}) \cdot a_{i,j} \cdot b_j(\textit{clown})}$$

▶ $P(y \mid x_{\ell}, \theta)$ is called the *posterior probability*

39 / 45

- Compute the posterior for all possible outputs for each example in training:
- For x1: killer clown x1,y1,1: killer/A clown/A P(AA | killer clown, θ) x1,y1,2: killer/A clown/N P(AN | killer clown, θ) x1,y1,3: killer/N clown/N P(NN | killer clown, θ) x1,y1,4: killer/N clown/A P(NA | killer clown, θ)
- ▶ For x2: killer problem
 - x2,y2,1: killer/A problem/A $P(AA \mid killer problem, \theta)$
 - x2,y2,2: killer/A problem/N $P(AN \mid killer problem, \theta)$
 - x2,y2,3: killer/N problem/N $P(NN \mid killer \text{ problem}, \theta)$
 - x2,y2,4: killer/N problem/A $P(NA \mid killer problem, \theta)$
- ► Similarly for x3: crazy problem
- ► And x4: crazy clown

Learning from Unlabeled Data

For unlabeled data, the log probability of the data given θ is:

$$L(\theta) = \sum_{\ell=1}^{m} \log \sum_{y} P(x_{\ell}, y \mid \theta)$$
$$= \sum_{\ell=1}^{m} \log \sum_{y} P(y \mid x_{\ell}, \theta) \cdot P(x_{\ell} \mid \theta)$$

- ▶ Unlike the fully observed case there is no simple solution to finding θ to maximize $L(\theta)$
- We instead initialize θ to some values, and then iteratively find better values of θ : $\theta^0, \theta^1, \ldots$ using the following formula:

$$\theta^{t} = \underset{\theta}{\operatorname{argmax}} Q(\theta, \theta^{t-1})$$

$$= \sum_{\ell=1}^{m} \sum_{y} P(y \mid x_{\ell}, \theta^{t-1}) \cdot \log P(x_{\ell}, y \mid \theta)$$

41 / 45

$$\begin{array}{lcl} \theta^{t} & = & \displaystyle \operatorname{argmax} \, Q(\theta, \theta^{t-1}) \\ Q(\theta, \theta^{t-1}) & = & \displaystyle \sum_{\ell=1}^{m} \sum_{y} P(y \mid x_{\ell}, \theta^{t-1}) \cdot \log P(x_{\ell}, y \mid \theta) \\ \\ & = & \displaystyle \sum_{\ell=1}^{m} \sum_{y} P(y \mid x_{\ell}, \theta^{t-1}) \cdot \\ & \left(\displaystyle \sum_{i} f(i, x_{\ell}, y) \cdot \log \pi_{i} \right. \\ \\ & + \displaystyle \sum_{i, j} f(i, j, x_{\ell}, y) \cdot \log a_{i, j} \\ \\ & + \sum_{i, o} f(i, o, x_{\ell}, y) \cdot \log b_{i}(o) \right) \end{array}$$

Learning from Unlabeled Data

$$g(i, x_{\ell}) = \sum_{y} P(y \mid x_{\ell}, \theta^{t-1}) \cdot f(i, x_{\ell}, y)$$

$$g(i, j, x_{\ell}) = \sum_{y} P(y \mid x_{\ell}, \theta^{t-1}) \cdot f(i, j, x_{\ell}, y)$$

$$g(i, o, x_{\ell}) = \sum_{y} P(y \mid x_{\ell}, \theta^{t-1}) \cdot f(i, o, x_{\ell}, y)$$

$$heta^t = \operatorname*{argmax} \sum_{\ell=1}^m \sum_i g(i, x_\ell) \cdot \log \pi_i + \sum_{i,j} g(i,j,x_\ell) \cdot \log a_{i,j} + \sum_{i,o} g(i,o,x_\ell) \cdot \log b_j(o)$$

43 / 45

Learning from Unlabeled Data

$$egin{aligned} Q(heta, heta^{t-1}) &= \sum_{\ell=1}^m \ \sum_i g(i, x_\ell) \log \pi_i + \sum_{i,j} g(i,j,x_\ell) \log a_{i,j} + \sum_{i,o} g(i,o,x_\ell) \log b_i(o) \end{aligned}$$

▶ The values of π_i , $a_{i,j}$, $b_i(o)$ that maximize $L(\theta)$ are:

$$egin{array}{lcl} \pi_i &=& rac{\sum_\ell g(i,x_\ell)}{\sum_k \sum_k g(k,x_\ell)} \ a_{i,j} &=& rac{\sum_\ell g(i,j,x_\ell)}{\sum_\ell \sum_k g(i,k,x_\ell)} \ b_i(o) &=& rac{\sum_\ell g(i,o,x_\ell)}{\sum_\ell \sum_{o' \in \mathcal{V}} g(i,o',x_\ell)} \end{array}$$

EM Algorithm for Learning HMMs

- ▶ Initialize θ^0 at random. Let t = 0.
- ► The EM Algorithm:
 - ► E-step: compute expected values of y, $P(y \mid x, \theta)$ and calculate g(i, x), g(i, j, x), g(i, o, x)
 - M-step: compute $\theta^t = \operatorname{argmax}_{\theta} Q(\theta, \theta^{t-1})$
 - ▶ Stop if $L(\theta^t)$ did not change much since last iteration. Else continue.
- ► The above algorithm is guaranteed to improve likelihood of the unlabeled data.
- ▶ In other words, $L(\theta^t) \ge L(\theta^{t-1})$
- ▶ But it all depends on θ^0 !