Análise de significância de alinhamentos

Análise de significância de um alinhamento

Tão importante como escolher o método de *scoring* ou encontrar o alinhamento que maximiza o score é saber avaliar a *significância estatística* do alinhamento obtido.

Como se compara o score obtido no alinhamento com o score obtido alinhando duas sequências não-relacionadas ?

OU

Qual a probabilidade de obter um score idêntico ao obtido ao alinhar duas sequências aleatórias ?

Análise de significância de um alinhamento

Para duas sequências relacionadas, esperamos que o score do alinhamento original seja superioer ao score do alinhamento "bralhado", ou seja X > Y

Ao "baralhar" a sequência permutando os aminoácidos, mantemos a percentagem de composição.

A sequência deve ser baralhada muitas vezes e o alinhamento repetido, para obter uma distribuição de scores.

Sequências relacionadas

Scores:

SeqA -MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSF-PTTKTYFPH-FDLSHGSAQVK----GHG SeqB -RLL--VSKNSV----NLVGTETEVGGWSPVEQLVTAFRPKTMHFEGGWLAVAAGDDKVELMDPFYP

Score = 1

MVLSPADKTNVKAAWGKVGAHAGE-YGAEALERMFLSFPTTKT-----YFPHFDLSHGSAQVKGH-G Score = -12 SeqA ----GPWDAFTLADVTYFHGEKLGENVGLEPMSKMNPG-PVVQTADETWSLELVGAVVF------LRSKVR SeqB -

SeqA -MVLSPADKTNVKAAWGKVGAH---AGEYGAEALERMFLSFPTTKTYF---PHFDLSHGSAQVKGHG------Score = 8SeqB ----LPSYRS--FRMWGSLEPNDVVAGT--PTGLE----WHELKTVFATGP--DLFDAKQNVEGVGVVKLEAVM

Sequências não-relacionadas

Scores:

O score S1 para o alinhamento das duas sequências encontra-se dentro do intervalo de valores prováveis para um alinhamento aleatório

Como calcular a probabilidade obter um dado score?

•Para poder quantificar a significância estatística de um dado alinhamento, precisamos de calcular a probabilidade de obter um determinado *score* num alinhamento aleatório.

A probabilidade é obtida a partir da curva de distribuição

- •A probabilidade de obter um score **x** igual ou superior a **S1** será dada pela área debaixo da curva de densidade de probabilidade **entre S1 e +∞**
- O histograma com a distribuição de scores tem que ser normalizado para que lhe possa ser ajustada uma densidade de probabilidade (a probabilidade de obter um score s tal que = ∞<s <+∞ tem que ser =1)

Qual a curva de distribuição ?

- Ainda não existe um tratamento completamente geral para o problema estatístico do alinhamento de sequências
- O problema pode ser formulado de forma rigorosa para o caso do alinhamento local sem gaps
- As curvas de distribuição obtidas neste caso são aplicadas de forma empírica a situações mais complexas, como seja o alinhamento local com gaps ou o alinhamento global
- A distribuição de scores não é dada por uma distribuição normal (Gaussiana), mas sim por uma distribuição de valor extremo (Gumbel)

O alinhamento local sem gaps pode considerar-se como a busca da subsequência mais longa entre duas sequências:

Para sequências aleatórias, pode mostrar-se que este problema segue uma distribuição de probabilidade semelhante à do seguinte problema: sequência de caras *mais longa* num conjunto de *n* lançamentos de uma moeda.

Distribuição do número total de caras

Consideremos M repetições dos N lançamentos de uma moeda, contando em cada uma das vezes o número de caras obtido.

Distribuição do número total de caras

Distribuição da sequência mais longa de caras

Consideremos M repetições dos N lançamentos de uma moeda, contando em cada uma das vezes o número de caras obtido.

Distribuição da sequência mais longa de caras

Distribuição de valor extremo (Gumbel)

Em que \mathbf{m} e \mathbf{n} são os comprimentos das sequências, e \mathbf{K} e λ são parâmetros que descrevem a distribuição e variam consoante a matriz e o esquema de "gap penalty" usados e também com o comprimento das duas sequências.

Distribuição de valor extremo: alinhamentos locais com gaps

A distribuição de scores aleatórios ajusta-se perfeitamente a uma distribuição de valor extremo com os valores **miu** e **beta** indicados.

Distribuição de valor extremo: alinhamentos globais com gaps

A distribuição de scores aleatórios não segue uma curva de valor extremo...

P-value

É a probabilidade de encontrar ao menos um alinhamento aleatório com score >= S, dada por:

$$P(s \ge S) = 1 - \exp(-Kmne^{-\lambda S})$$

E-value

corresponde ao número esperado de alinhamentos aleatórios capazes de produzir um score *pelo menos* igual ao score S do alinhamento original:

$$E = L \times P(s \ge S)$$

em que L é o número total de alinhamentos gerados.

Bit scores

Os bit scores são obtidos normalizandos os valores de S de forma a torná-los independentes dos valores de K e $\,\lambda$,

$$S' = (\lambda S - \ln K) / \ln 2$$

ficando os P values, para valores pequenos, simplesmente dados por:

$$P = mn2^{-S'}$$

Exemplo: probabilidade de score num alinhamento aleatório

Ajuste de uma curva de distribuição de valor extremo (linha vermelha) a um conjunto de scores de alinhamentos aleatórios (histograma, a azul), sendo o score do alinhamento não-aleatório **igual 95**

Z-scores

Define-se como **z score** a distância de um determinado valor relativamente à **média** da distribuição, expressa em unidades de **desvio padrão**.

Para o caso da distribuição de valor extremo, a probabilidade de obter um valor Z superior a um determinado valor z é dada por:

$$P(Z>z) = 1 - exp(-e^{-1.285z-0.5772})$$

Parâmetros da distribuição de valor extremo

Scoring matrix	Gap opening penalty ^b	Gap extension penalty ^b	K	λ	Н°
BLOSUM50	∞ ^a	0-∞	0.232	0.11	0.34
BLOSUM50	15	8–15	0.09	0.222	0.31
BLOSUM50	11	8-11	0.05	0.197	0.21
BLOSUM50	11	1	-	8,	5
BLOSUM62	∞^a	0-∞	0.318	0.13	0.40
BLOSUM62	12	3–12	0.1	0.305	0.38
BLOSUM62	8	7–8	0.06	0.270	0.25
BLOSUM62	7	1	-	33 53	-
PAM250	∞^a	0-∞	0.229	0.09	0.23
PAM250	15	5–15	0.06	0.215	0.20
PAM250	10	8-10	0.031	0.175	0.11
PAM250	11	1		<u> </u>	<u> 26 - 2</u> 9

PRSS3 - evaluates the significance of a protein sequence alignment

