Chapter 5 Expected Values

Jingrui Sun

Email: sunjr@sustech.edu.cn

Southern University of Science and Technology

September 8, 2024

Outline I

- Part 5.1: The Expected Value of a Random Variable
 - Part 5.1.1: Idea
 - Part 5.1.2: Definition of Expected Values: Discrete Case
 - Part 5.1.3: Basic Examples (Discrete Case)
 - Part 5.1.4: Further Examples (Discrete Case)
 - Part 5.1.5: Expected Value of Continuous R.V.s
 - Part 5.1.6: Basic Examples (Continuous Case)
 - Part 5.1.7: Further Examples (Continuous Case)
- 2 Part 5.2: Expectation of Functions of Random Variables
 - Part 5.2.1: Problem
 - Part 5.2.2: Conclusion
 - Part 5.2.3: Examples
 - Part 5.2.4: The Second Moment
 - Part 5.2.5: Expectations of Function of Several r.v.s

Outline II

- Part 5.3: Probability Theory Properties of Expectation, Variance and Standard Deviation
 - Part 5.3.1: Properties of Expectation
 - Part 5.3.2: Variance and Standard Deviation
 - Part 5.3.3: Examples
- 4 Part 5.4: Covariance and Correlation
 - Part 5.4.1: Covariance
 - Part 5.4.2: Variance Formula and Application in Statistics
 - Part 5.4.3: Correlation Coefficients
 - Part 5.4.4: Examples
 - Part 5.4.5: Covariance Matrix and Correlation Matrix
- 5 Part 5.5: Moment Generating Functions
 - Part 5.5.1: Moment Generating Functions
 - Part 5.5.2: Examples

Outline III

- Part 5.6: Applications of Moment Generating Functions
 - Part 5.6.1: Find Moments
 - Part 5.6.2: Determine the Distribution
 - Part 5.6.3: Statistic Application Weak Law of Large Number
 - Part 5.6.4: Summary of Application of m.g.f.s.
- Part 5.7: Three Special Distributions
 - Part 5.7.1: Chi-Square (χ^2) -Distribution
 - Part 5.7.2: Student's (t)-Distribution
 - Part 5.7.3: F-Distribution
- 8 Part 5.8: Summary of Mathematical Expectation
 - Part 5.8.1: Mixing Case
 - Part 5.8.2: Summary of Chapter 5: Mathematical Expectation

Outline

- 1 Part 5.1: The Expected Value of a Random Variable
- 2 Part 5.2: Expectation of Functions of Random Variables
- 3 Part 5.3: Probability Theory Properties of Expectation, Variance and Standard Deviation
- 4 Part 5.4: Covariance and Correlation
- 5 Part 5.5: Moment Generating Functions
- 6 Part 5.6: Applications of Moment Generating Functions
- Part 5.7: Three Special Distributions

Part 5.1.1: Idea

1. Example: Play a game with a "computer", say.

If win, get \$10; if lose, get \$-2; if tie, get \$1.

Probabilities: win: 1/4, loss: 1/2, tie: 1/4.

Let X denote the amount of cash you get after the play. Then X is a (discrete) random variable.

Question: How much one could get, averagely, after a play? (This might decide whether one should try)

Not suitable just simply [10 + (-2) + 1]/3. Why? (The probability of winning is not considered)

Part 5.1.1: Idea

In order to get the correct "average", consider as follows:

Suppose one play n times (n is very large, and for convenience, assume that n=4m where m is a positive integer.), then one can expect to win n/4 times and thus get $n/4 \times 10$.

Similarly one can expect to lose n/2 times and get $n/2 \times (-2)$, and expect to get tie n/4 times and thus get $n/4 \times 1$.

So, after play n times, one reasonably expects to get $n/4 \times 10 + n/2 \times (-2) + n/4 \times 1$.

Hence, "on the average", for each play one would get $[n/4 \times 10 + n/2 \times (-2) + n/4 \times 1]/n = 1/4 \times 10 + 1/2 \times (-2) + 1/4 \times 1 = 1.75.$

Part 5.1.1: Idea

The value 1.75 is the value one could expect to get – this value is $10 \times P(X = 10) + (-2) \times P(X = -2) + 1 \times P(X = 1)$ i.e. summing over all the possible values \times the corresponding probability,

i.e. "weighted average" with weighted function of probability. We shall call this value "1.75" the "expected value" of the r.v. X.

2. Notes:

- (1) The "expected value" is a real number, NOT a r.v.
- (2) This value may not be a possible value of X (In the above example, one gets either \$10, \$1 or (-2) after a play. One never gets "1.75" after a play).
- (3) However, this value is important in "understanding" the r.v. X

Part 5.1.2: Definition of Expected Values: Discrete Case

1. Definition: Suppose X is a discrete r.v. with all possible values $x_1, x_2, \dots, x_n, \dots$ (finite or a sequence) together with the p.m.f.

$$p(x_i) = P(X = x_i).$$

Then the expected value of X, denoted by E(X), is defined as

$$E(X) = \sum_{i} x_{i} \cdot p(x_{i})$$

$$\equiv \sum_{i} x_{i} \cdot P(X = x_{i}).$$
(5.1.1)

The expected value is also called "the mean value", "the mean", "the expectation", "the mathematical expectation", etc.

Part 5.1.2: Definition of Expected Values: Discrete Case

2. Note:

If all the possible value of X is a sequence, then there is a "convergence" problem in Definition (5.1.1). Hence we need the condition that

$$\sum_{i} |x_i| \cdot p(x_i) < +\infty. \tag{5.1.2}$$

Otherwise, "expected value" is undefined.

Part 5.1.3: Basic Examples (Discrete Case)

- 1. Let X be the outcome when rolling a fair dice. E(X) = ?
- 2. Binomial distribution: $X \sim B(n; p)$; E(X) = ?
- 3. Poisson Distribution: $X \sim \text{Poisson } (\lambda)$; E(X) = ?

September 8, 2024

1. The Geometric Random Variable X:

X : Independent Bernoulli trials; the No. required until the 1st success!

2. The Negative Binomial Distribution

Recall $X \sim NB(p, r)$ (Negative binomial distribution with parameters p and r). The p.m.f. is

$$p_n \triangleq P\{X=n\} = \binom{n-1}{r-1} p^r (1-p)^{n-r}, \quad n=r,r+1,\cdots$$

Recall: X denotes the No. required to get rth successes in the independent Bernoulli trials, and thus

$$P\{X = n\} = p \cdot \binom{n-1}{r-1} p^{r-1} (1-p)^{(n-1)-(r-1)}$$
$$\equiv \binom{n-1}{r-1} p^r (1-p)^{n-r}$$

Therefore,

$$E(X) = \sum_{n=r}^{\infty} n \cdot P\{X = n\} = \sum_{n=r}^{\infty} n \binom{n-1}{r-1} p^r (1-p)^{n-r}.$$
 (5.1.3)

but

$$n\left(\begin{array}{c}n-1\\r-1\end{array}\right)=r\left(\begin{array}{c}n\\r\end{array}\right). \tag{5.14}$$

Substituting (5.1.4) into (5.1.3) yields

$$E(X) = \sum_{n=r}^{\infty} r \binom{n}{r} p^{r} (1-p)^{n-r}$$
$$= \frac{r}{p} \sum_{n=r}^{\infty} \binom{n}{r} p^{r+1} (1-p)^{n-r}.$$

[letting m=n+1, then $n:r\to\infty\Leftrightarrow m:r+1\to\infty$ and thus]

$$E(X) = \frac{r}{\rho} \sum_{m=r+1}^{\infty} {m-1 \choose r} p^{r+1} (1-p)^{m-1-r} = \frac{r}{\rho}.$$

Why
$$\sum_{m=r+1}^{\infty} {m-1 \choose r} p^{r+1} (1-p)^{m-1-r} = 1$$
?

Recall if

$$Y \sim NB(p, r+1)$$

then the p.m.f. is: for $m = r + 1, r + 2, \cdots$

$$P(Y = m) = {m-1 \choose r+1-1} p^{r+1} (1-p)^{m-(r+1)}$$
$$= {m-1 \choose r} p^{r+1} (1-p)^{m-1-r}.$$

and thus

$$\sum_{m=r+1}^{\infty} {m-1 \choose r} p^{r+1} (1-p)^{m-1-r} = 1.$$

Therefore, if $X \sim NB(p, r)$, then

$$E(X) = \frac{r}{p}$$
.

In particular, if r = 1 (geometric distribution), then

$$E(X)=\frac{1}{p}.$$

Part 5.1.5: Expected Value of Continuous R.V.s

1. Definition:

(Compare with the discrete case: summation should be replaced by integration and the p.m.f. should be replaced by p.d.f.)

Suppose X is a continuous r.v. with p.d.f. f(x), then the expected value of X, denoted by E(X), is defined by

$$E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx. \tag{5.1.5}$$

Part 5.1.5: Expected Value of Continuous R.V.s

- 2. Notes:
- (1) Again, we need the condition that

$$\int_{-\infty}^{+\infty} |x| \cdot f(x) dx < +\infty. \tag{5.1.6}$$

(2) If X is a non-negative r.v. then

$$E(X) = \int_0^{+\infty} x \cdot f(x) dx.$$

Part 5.1.5: Expected Value of Continuous R.V.s

Indeed, for this case, $f(x) \equiv 0$ if x < 0 and thus

$$E(X) = \int_{-\infty}^{+\infty} xf(x)dx = \int_{-\infty}^{0} xf(x)dx + \int_{0}^{+\infty} xf(x)dx$$
$$= \int_{-\infty}^{+\infty} 0 \cdot xdx + \int_{0}^{+\infty} xf(x)dx$$
$$= \int_{0}^{+\infty} xf(x)dx.$$

1. Uniform distribution:

Easy, also see below.

2. Exponential distribution:

Recall: X is exponentially distributed with parameter λ if the p.d.f. is

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases}$$

Then

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{+\infty} x \cdot f(x) dx + 0 = \int_{0}^{+\infty} x \cdot \lambda e^{-\lambda x} dx$$

$$= \int_{0}^{+\infty} x d \left(-e^{-\lambda x} \right) = x \left(-e^{-\lambda x} \right) \Big|_{0}^{+\infty} - \int_{0}^{+\infty} \left(-e^{-\lambda x} \right) dx$$

$$= 0 - 0 + \int_{0}^{+\infty} e^{-\lambda x} dx = \left[-\frac{1}{\lambda} e^{-\lambda x} \right] \Big|_{0}^{+\infty} = 0 - \left(-\frac{1}{\lambda} e^{0} \right)$$

$$= \frac{1}{\lambda}.$$

Conclusion: $E(X) = 1/\lambda$.

- 3. Normal Distribution:
- (1) Standard Normal Distribution:

Recall $X \sim N(0,1)$, then

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

Thus

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x \cdot e^{-\frac{x^2}{2}} dx.$$

It is easy to see then E(X) = 0.

Indeed,

$$E(X) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} x e^{-\frac{x^2}{2}} dx$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} x \cdot e^{-\frac{x^2}{2}} dx + \frac{1}{\sqrt{2\pi}} \int_{0}^{+\infty} x \cdot e^{-\frac{x^2}{2}} dx.$$

For the former, let y = -x, then

$$x: -\infty \to 0$$

$$y: +\infty \to 0$$

$$\Rightarrow \int_{-\infty}^{0} x \cdot e^{-\frac{x^{2}}{2}} dx = \int_{+\infty}^{0} (-y) \cdot e^{-\frac{(-y)^{2}}{2}} d(-y)$$

$$= \int_{+\infty}^{0} y e^{-\frac{y^{2}}{2}} dy$$

$$= -\int_{0}^{+\infty} y e^{-\frac{y^{2}}{2}} dy$$

$$= -\int_{0}^{+\infty} x e^{-\frac{x^{2}}{2}} dx.$$

Thus

$$E(X) = \frac{1}{\sqrt{2\pi}}(-1) \cdot \int_0^{+\infty} x e^{-\frac{x^2}{2}} dx + \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} x e^{-\frac{x^2}{2}} dx = 0.$$

Conclusion: If $X \sim N(0,1)$, then E(X) = 0.

Intuitively, clear!! Just recall the graph of f(x): is symmetric with x = 0.

Easy to see $\int_{-\infty}^{+\infty} x f(x) dx = 0$.

However, one needs to check $\int_{-\infty}^{+\infty} |x| \cdot f(x) dx < \infty$. Since otherwise, the above arguments may not be valid. But

$$\int_{-\infty}^{+\infty} |x| f(x) dx = \int_{-\infty}^{0} |x| f(x) dx + \int_{0}^{+\infty} |x| f(x) dx$$

$$= \int_{-\infty}^{0} (-x) f(x) dx + \int_{0}^{+\infty} x f(x) dx$$

$$= \int_{+\infty}^{0} y f(-y) (-1) dy + \int_{0}^{+\infty} x f(x) dx$$

$$= \int_{0}^{+\infty} y f(y) dy + \int_{0}^{+\infty} x f(x) dx$$

$$= 2 \int_{0}^{+\infty} x f(x) dx.$$

Hence only need to check that

$$\int_0^{+\infty} x f(x) dx = \int_0^{+\infty} x \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx < +\infty,$$

or, only need to check $\int_0^{+\infty} x e^{-\frac{x^2}{2}} dx < +\infty$?

But for $0 < y < +\infty$,

$$\int_0^y xe^{-\frac{x^2}{2}}dx = \int_0^y (-1)de^{-\frac{x^2}{2}} = (-1)\left[e^{-\frac{x^2}{2}}\right]\Big|_0^y = -e^{-\frac{y^2}{2}} + 1.$$

Letting $y \to +\infty$ we get $\int_0^{+\infty} x e^{-\frac{x^2}{2}} dx = 1 < +\infty$.

(2) General Normal Distribution:

Suppose
$$X \sim N(\mu, \sigma^2), E(X) = ?$$

Recall: $X \sim N(\mu, \sigma^2)$, then

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

$$E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx = \int_{-\infty}^{+\infty} x \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$
$$= \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} x \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx.$$

September 8, 2024

Let
$$y = \frac{x - \mu}{\sigma}$$
, then $x = \mu + \sigma y$, $dx = \sigma dy$, and $x : -\infty \to +\infty \quad \Leftrightarrow \quad y : -\infty \to +\infty \quad (\because \sigma > 0)$.

$$E(X) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} (\mu + \sigma y) e^{-\frac{y^2}{2}\sigma} dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (\mu + \sigma y) e^{-\frac{y^2}{2}} dy$$

$$= \frac{\mu}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{y^2}{2}} dy + \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y e^{-\frac{y^2}{2}} dy$$

$$= \frac{\mu}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{y^2}{2}} dy + 0$$

$$= \mu.$$

Conclusion: If $X \sim N(\mu, \sigma^2)$, then $E(X) = \mu$.

1. Gamma Distribution: E(X) = ?

Recall $X \sim \Gamma(\alpha,\lambda)$ (where $\alpha>0,\lambda>0$) if p.d.f. is given by

$$f(x) = \begin{cases} \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(\alpha)}, & \text{if } x \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

where the gamma function $\Gamma(\alpha)$ is defined as

$$\Gamma(\alpha) = \int_0^\infty e^{-y} \cdot y^{\alpha-1} dy.$$

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{0}^{+\infty} x f(x) dx = \int_{0}^{+\infty} x \cdot \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha - 1}}{\Gamma(\alpha)} dx$$

$$= \frac{1}{\Gamma(\alpha)} \int_{0}^{+\infty} e^{-\lambda x} \cdot (\lambda x)^{\alpha} dx = \frac{1}{\Gamma(\alpha) \cdot \lambda} \int_{0}^{+\infty} \lambda e^{-\lambda x} (\lambda x)^{\alpha} dx$$

$$= \frac{1}{\lambda \cdot \Gamma(\alpha)} \int_{0}^{+\infty} \lambda e^{-\lambda x} \cdot (\lambda x)^{\alpha + 1 - 1} dx$$

let $\lambda x = y$ then $dy = \lambda dx$ or $dx = \frac{1}{\lambda} dy$ and

$$x: 0 \to +\infty \quad \Leftrightarrow \quad y: 0 \to +\infty \quad (:: \lambda > 0)$$

Hence

$$E(X) = \frac{1}{\lambda \cdot \Gamma(\alpha)} \int_{0}^{+\infty} \lambda e^{-y} \cdot y^{\alpha+1-1} \cdot \frac{1}{\lambda} dy$$

$$= \frac{1}{\lambda \Gamma(\alpha)} \int_{0}^{+\infty} e^{-y} \cdot y^{\alpha+1-1} dy$$

$$= \frac{1}{\lambda \Gamma(\alpha)} \cdot \Gamma(\alpha+1) = \frac{1}{\lambda \Gamma(\alpha)} \cdot \alpha \Gamma(\alpha)$$

$$= \frac{\alpha}{\lambda}.$$

2. The standard Cauchy distribution: E(X) does not exist.

Recall X obey the Cauchy distribution with parameters μ if

p.d.f.:
$$f(x) = \frac{1}{\pi} \cdot \frac{1}{1 + (x - \mu)^2}$$
 $(-\infty < x < +\infty)$.

If $\mu=$ 0, then the p.d.f. of the standard Cauchy distribution is

$$f(x) = \frac{1}{\pi} \cdot \frac{1}{1 + x^2} \quad (-\infty < x < +\infty)$$

Note that f(-x) = f(x), but we can not say

$$E(Z) = \int_{-\infty}^{+\infty} x f(x) dx = 0,$$

since we haven't checked the condition $\int_{-\infty}^{+\infty} |x| f(x) dx < +\infty$ yet.

Now,

$$\int_{-\infty}^{+\infty} |x| f(x) dx = \int_{-\infty}^{0} (-x) f(x) dx + \int_{0}^{+\infty} x f(x) dx$$

$$= 2 \int_{0}^{+\infty} x f(x) dx = 2 \int_{0}^{+\infty} x \cdot \frac{1}{\pi} \cdot \frac{1}{1 + x^{2}} dx$$

$$= \frac{1}{\pi} \int_{0}^{+\infty} \frac{d(1 + x^{2})}{1 + x^{2}} = \left[\ln (1 + x^{2}) \right]_{0}^{+\infty}$$

$$= +\infty.$$

Hence E(X) does not exist!!! Similarly for other Cauchy r.v.s.

3. A Remark:

Note that, for both discrete and continuous r.v., we have

$$X(\omega) \ge 0 \ (\forall \omega) \quad \Rightarrow \quad E(X) \ge 0.$$

This is clear either from the definitions or from the meaning of Expectation.

Indeed, $E(X) = \sum_{x} xp(x) \ge 0$ (for non-negative discrete r.v.) is clear since all x > 0.

For continuous r.v. (non-negative)

$$\int_{-\infty}^{+\infty} xf(x)dx = \int_{-\infty}^{0} xf(x)dx + \int_{0}^{+\infty} xf(x)dx$$
$$= \int_{0}^{+\infty} xf(x)dx \ge 0.$$

Hence, in the future, if we could prove that

$$E(X - Y) = E(X) - E(Y),$$

then we would be able to get the conclusion that:

$$X(\omega) \ge Y(\omega) \ (\forall \omega) \quad \Rightarrow \quad E(X) \ge E(Y).$$

Indeed, if $X(\omega) \geq Y(\omega)$ then

$$X(\omega) - Y(\omega) \ge 0 \quad \Rightarrow \quad E(X - Y) \ge 0.$$

Now if E(X - Y) = E(X) - E(Y), then we obtain $E(X) \ge E(Y)$.

September 8, 2024

Outline

- Part 5.1: The Expected Value of a Random Variable
- 2 Part 5.2: Expectation of Functions of Random Variables
- 3 Part 5.3: Probability Theory Properties of Expectation, Variance and Standard Deviation
- 4 Part 5.4: Covariance and Correlation
- 5 Part 5.5: Moment Generating Functions
- 6 Part 5.6: Applications of Moment Generating Functions
- Part 5.7: Three Special Distributions

Part 5.2.1: Problem

1. Function: Suppose X is a r.v., then easy to see X^2 , for example, is also a random variable.

Let $Y = X^2$, then Y is a r.v.. This random variable Y is called a function of this r.v. X. [The function form is $y = x^2$.]

Similarly, $Y=X^3$, $Y=e^X$, $Y=c_1X+c_2X^2+c_3\cdot X^5\cdot e^X$, (where c_1,c_2,c_3 are constants) are all functions of the r.v. X.

Corresponding function forms are $y = x^3$, $y = e^x$, $y = c_1x + c_2x^2 + c_3x^5 \cdot e^x$, etc.

Part 5.2.1: Problem

In general, if y = g(x) is an ordinary function, X is a r.v., then g(X) is also a r.v., denoted by, say,

$$Y = g(X)$$
.

Question:
$$E(Y) = E(g(X)) = ?$$

The key thing here is that we <u>only know</u> the p.m.f. (or p.d.f.) of X (but not Y!!)

Part 5.2.1: Problem

2. Expectation of the Function of the Random Variable:

To calculate E(Y) = E(g(X)), one method is:

First try to find the p.m.f. (or p.d.f.) of Y and then use the definition.

However, this method is usually quite difficult or even impossible.

Fortunately, we have the following alternative method.

Part 5.2.2: Conclusion

- 1. **Theorem:** Suppose that X is a r.v. and that Y = g(X) where y = g(x) is a function.
 - (i) If X is discrete with p.m.f. p(x), then

$$E(Y) \equiv E(g(X)) = \sum_{x} g(x)p(x).$$
 (5.2.1)

(ii) If X is continuous with p.d.f. f(x), then

$$E(Y) \equiv E(g(X)) = \int_{-\infty}^{+\infty} g(x)f(x)dx. \tag{5.2.2}$$

Part 5.2.2: Conclusion

2. Meaning: (5.2.1) means

$$E(Y) = \sum_{i} g(x_i) \cdot p(x_i),$$

where the summation is taken for all possible values of X.

 $[g(x_i)$ then: all the possible values of the r.v. Y = g(X).

(5.2.2): Integrand: $f(x) \cdot g(x)$.

Example 1. Find $E(X^2)$ with X having p.m.f.

$$P(X = -1) = 0.2$$
, $P(X = 0) = 0.5$, $P(X = 1) = 0.3$.

Solution.

$$E(X^{2}) = (-1)^{2} \cdot P(X = -1) + 0^{2} \cdot P(X = 0) + 1^{2} \cdot P(X = 1)$$

= $P(X = -1) + P(X = 1)$
= $0.2 + 0.3 = 0.5$.

Note that

$$E(X) = (-1) \cdot P(X = -1) + 0 \cdot P(X = 0) + 1 \cdot P(X = 1)$$

= -0.2 + 0.3 = 0.1 \Rightarrow $(E(X))^2 = 0.01$

So, usually, $E(X^2) \neq (E(X))^2$.

Example 2. $X \sim B(n, p)$. $E(X^2) = ?$

Solution.

$$E(X^{2}) = \sum_{k=0}^{n} k^{2} \cdot P(X = k) = \sum_{k=1}^{n} k^{2} \cdot \binom{n}{k} p^{k} q^{n-k}.$$

Similarly,
$$E(X^m) = \sum_{k=1}^n k^m \binom{n}{k} p^k q^{n-k}$$
.

Example 3. $X \sim \mathsf{Poisson}(\lambda)$. $E(X^2) = ?$

Solution.

$$E(X^{2}) = \sum_{k=0}^{n} k^{2} \cdot P(X = k)$$
$$= \sum_{k=1}^{n} k^{2} \cdot \binom{n}{k} p^{k} q^{n-k}.$$

Similarly, $E(X^m) = \sum_{k=1}^n k^m \cdot e^{-\lambda} \cdot \frac{\lambda^k}{k!}$.

Note: For any r.v. X, the quantity $E(X^m)$ $(m \ge 1)$ is called the m'th moment of X.

Example 4. Normal Distribution.

Suppose
$$X \sim N(\mu, \sigma^2)$$
, i.e. p.d.f.: $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$.

We know that $E(X) = \mu$.

Now, let $Y = a \cdot X + b$, where $a \neq 0$ and b are two constants.

$$E(Y) = ?$$

$$E(Y) = \int_{-\infty}^{+\infty} (ax + b) \cdot f(x) dx = \int_{-\infty}^{+\infty} [axf(x) + b \cdot f(x)] dx$$

$$= \int_{-\infty}^{+\infty} ax \cdot f(x) dx + \int_{-\infty}^{+\infty} b \cdot f(x) dx$$

$$= a \int_{-\infty}^{+\infty} x \cdot f(x) dx + b \cdot \int_{-\infty}^{+\infty} f(x) dx$$

$$= a \cdot E(X) + b.$$

1. Binomial Random Variables

Recall $X \sim B(n, p)$, then

$$P\{X=k\} = \binom{n}{k} p^{k} (1-p)^{n-k}, \quad k=0,1,\cdots,n,$$
$$E(X) = np.$$

What is $E(X^2)$?

Solution: By the law of calculating the mean value of a function of random variables,

$$E(X^{2}) = \sum_{k=0}^{n} k^{2} P\{X = k\}$$

$$= \sum_{k=0}^{n} k^{2} \binom{n}{k} p^{k} (1-p)^{n-k}$$

$$= \sum_{k=1}^{n} k^{2} \binom{n}{k} p^{k} q^{n-k},$$

where q=1-p. Write $k^2=k(k-1+1)=k(k-1)+k$ and thus

$$E(X^{2}) = \sum_{k=1}^{n} [k(k-1) + k] \binom{n}{k} p^{k} q^{n-k}$$

$$= \sum_{k=1}^{n} k(k-1) \binom{n}{k} p^{k} q^{n-k} + \sum_{k=1}^{n} k \binom{n}{k} p^{k} q^{n-k}.$$
(5.2.3)

Probability

But
$$\sum_{k=1}^{n} k \binom{n}{k} p^k q^{n-k} = E(X) = np$$
.

Hence only need to consider

$$\sum_{k=1}^{n} k(k-1) \binom{n}{k} p^{k} q^{n-k}. \tag{5.2.4}$$

Consider
$$(px + q)^n = \sum_{k=0}^n \binom{n}{k} (px)^k q^{n-k}$$
. $\boxed{p+q=1}$

$$\Rightarrow n(px+q)^{n-1} \cdot p = \frac{d}{dx} (px+q)^n$$

$$= \sum_{k=1}^n \binom{n}{k} k (px)^{k-1} \cdot pq^{n-k}$$
.
$$\Rightarrow n(px+q)^{n-1} = \sum_{k=1}^n k \binom{n}{k} (px)^{k-1} \cdot q^{n-k}$$
.
$$\Rightarrow \frac{d}{dx} (n(px+q)^{n-1}) = \sum_{k=1}^n k \binom{n}{k} (k-1)(px)^{k-2} \cdot pq^{n-k}$$
,

or equivalently,

$$n(n-1)(px+q)^{n-2} \cdot p = \sum_{k=2}^{n} k(k-1) \binom{n}{k} (px)^{k-2} \cdot pq^{n-k}$$

Letting x=1 and noticing $(px+q)^{n-2}=(p+q)^{n-2}=1$ then yields

$$n(n-1)p = \sum_{k=2}^{n} k(k-1) \binom{n}{k} p^{k-1} \cdot q^{n-k}$$

Timing p on both side yields

$$n(n-1)p^{2} = \sum_{k=2}^{n} k(k-1) \binom{n}{k} p^{k} q^{n-k}, \qquad (5.2.5)$$

which yields the result (5.2.4).

Now substituting (5.2.4) into (5.2.3) yields

$$E(X^2) = n(n-1)p^2 + np = [(n-1)p + 1] \cdot np.$$

Conclusion: If $X \sim B(n, p)$, then

$$E(X^2) = [(n-1)p+1] \cdot np$$

Poisson Random Variables

Recall $X \sim \text{Poisson } (\lambda)$, if

$$p_k = P\{X = k\} = e^{-\lambda} \cdot \frac{\lambda^k}{k!}, \quad k = 0, 1, \cdots$$

We have already known $E(X) = \sum_{k=0}^{\infty} kp_k = \sum_{k=1}^{\infty} ke^{-\lambda} \cdot \frac{\lambda^k}{k!} = \lambda$.

$$\begin{split} E(X^2) &= \sum_{k=0}^{\infty} k^2 e^{-\lambda} \cdot \frac{\lambda^k}{k!} = \sum_{k=1}^{\infty} k^2 e^{-\lambda} \cdot \frac{\lambda^k}{k!} \\ &= \sum_{k=1}^{\infty} k e^{-\lambda} \cdot \frac{\lambda^k}{(k-1)!} = \lambda \sum_{k=1}^{\infty} k e^{-\lambda} \cdot \frac{\lambda^{k-1}}{(k-1)!}. \end{split}$$

Let j = k - 1. Then

$$E(X^{2}) = \lambda \sum_{j=0}^{\infty} (j+1)e^{-\lambda} \cdot \frac{\lambda^{j}}{j!}$$

$$= \lambda \left[\sum_{j=0}^{\infty} je^{-\lambda} \cdot \frac{\lambda^{j}}{j!} + \sum_{j=0}^{\infty} e^{-\lambda} \cdot \frac{\lambda^{j}}{j!} \right]$$

$$= \lambda [E(X) + 1]$$

$$= \lambda (\lambda + 1) \quad (\because E(X) = \lambda)$$

In short: If $X \sim \text{Poisson } (\lambda)$, then

$$E(X) = \lambda, \quad E(X^2) = \lambda^2 + \lambda$$

3. Geometric Random Variables

Recall p.m.f.:

$$P{X = n} = p(1-p)^{n-1} = pq^{n-1}, \quad n = 1, 2, \dots,$$

and

$$E(X) = \frac{1}{p} \equiv \sum_{n=1}^{\infty} npq^{n-1}.$$

$$E(X^2) = ?$$

$$E(X^{2}) = \sum_{n=1}^{\infty} n^{2} p q^{n-1} = p \sum_{n=1}^{\infty} n^{2} q^{n-1} = p \sum_{n=1}^{\infty} \frac{d}{dq} (nq^{n})$$

$$= p \frac{d}{dq} \left(\sum_{n=1}^{\infty} nq^{n} \right) = p \frac{d}{dq} \left(\frac{q}{p} \sum_{n=1}^{\infty} npq^{n-1} \right)$$

$$= p \frac{d}{dq} \left(\frac{q}{1-q} E(X) \right) \quad \left(\because E(X) = \sum_{n=1}^{\infty} npq^{n-1} \right)$$

$$= p \frac{d}{dq} \left(\frac{q}{1-q} \cdot \frac{1}{p} \right) \quad \left(\because E(X) = \frac{1}{p} \right)$$

$$= p \frac{d}{dq} \left(\frac{q}{(1-q)^{2}} \right) \quad \left(\because p = 1 - q \right)$$

Therefore (noting q = 1 - p),

$$E(X^{2}) = p \frac{d}{dq} \left[q(1-q)^{-2} \right]$$

$$= p \left[(1-q)^{-2} + q \cdot (-2)(1-q)^{-3} \cdot (-1) \right]$$

$$= \frac{2}{p^{2}} - \frac{1}{p}.$$

In short, if $X \sim Geo(p)$, then

$$E(X) = \frac{1}{p}, \quad E(X^2) = \frac{2}{p^2} - \frac{1}{p}$$
 (5.2.6)

Note: By (5.2.6) we get

$$E(X^2) - [E(X)]^2 = \frac{2}{p^2} - \frac{1}{p} - \frac{1}{p^2} = \frac{1}{p^2} - \frac{1}{p} = \frac{1-p}{p^2}.$$

In the future we shall show that this is the variance.

4. The Uniform Random Variable (over [a, b])

Recall p.d.f.:

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a \le x \le b, \\ 0, & \text{otherwise.} \end{cases}$$

$$E(X) = \int_{-\infty}^{+\infty} xf(x)dx = \int_{a}^{b} xf(x)dx$$
$$= \int_{a}^{b} x \cdot \frac{1}{b-a} dx = \frac{1}{b-a} \left[\frac{x^{2}}{2} \right]_{a}^{b}$$
$$= \frac{a+b}{2}.$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \int_{a}^{b} x^{2} f(x) dx$$
$$= \int_{a}^{b} \frac{x^{2}}{b - a} dx = \frac{1}{b - a} \left[\frac{x^{3}}{3} \right]_{a}^{b}$$
$$= \frac{a^{2} + ab + b^{2}}{3}.$$

In short

$$E(X) = \frac{a+b}{2}, \quad E(X^2) = \frac{a^2+ab+b^2}{3}$$

$$\Rightarrow$$
: $E(X^2) - [E(X)]^2 = \frac{(b-a)^2}{12}$.

In particular, if $X \sim U(0,1)$, then

$$E(X) = \frac{1}{2}, \quad E(X^2) = \frac{1}{3}, \quad E(X^2) - [E(X)]^2 = \frac{1}{12}.$$

5. Exponential Random Variables

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0, \\ 0, & \text{if } x < 0. \end{cases} (\lambda > 0)$$

$$E(X) = \frac{1}{\lambda}, \quad E(X^2) = ?$$

Solutions:

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx = \int_{0}^{+\infty} x^{2} \lambda e^{-\lambda x} dx$$

$$= (-1) \int_{0}^{+\infty} x^{2} de^{-\lambda x}$$

$$= (-1) \left[x^{2} e^{-\lambda x} \Big|_{x=0}^{x=+\infty} - \int_{0}^{+\infty} e^{-\lambda x} d(x^{2}) \right]$$
[Integration by Parts!!]

$$E(X^{2}) = 0 + \int_{0}^{+\infty} e^{-\lambda x} \cdot 2x dx = \frac{2}{\lambda} \cdot \int_{0}^{+\infty} \lambda x e^{-\lambda x} dx = \frac{2}{\lambda} E(X)$$
$$= \frac{2}{\lambda} \cdot \frac{1}{\lambda} = \frac{2}{\lambda^{2}}.$$

In short,

$$E(X) = \frac{1}{\lambda}, \quad E(X^2) = \frac{2}{\lambda^2}, \quad E(X^2) - [E(X)]^2 = \frac{1}{\lambda^2}.$$

6. Normal: $X \sim N(\mu, \sigma^2)$. $E(X) = \mu$, $E(X^2) = ?$

$$E(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx = \int_{-\infty}^{+\infty} x^2 \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

Let $\frac{x-\mu}{\sigma}=y$, then $x=\sigma y+\mu, dx=\sigma dy$

$$E(X^{2}) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{+\infty} (\sigma y + \mu)^{2} e^{-\frac{y^{2}}{2}} \sigma dy$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} (\sigma^{2} y^{2} + 2\mu \sigma y + \mu^{2}) e^{-\frac{y^{2}}{2}} dy$$

$$= \frac{\sigma^{2}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y^{2} e^{-\frac{y^{2}}{2}} dy + \frac{2\mu \sigma}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y e^{-\frac{y^{2}}{2}} dy + \frac{\mu^{2}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{y^{2}}{2}} dy$$

$$= \frac{\sigma^{2}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y^{2} e^{-\frac{y^{2}}{2}} dy + 0 + \mu^{2}.$$

If we could show that

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y^2 e^{-\frac{y^2}{2}} dy = 1 \tag{5.2.7}$$

then

$$E(X^2) = \sigma^2 + \mu^2. (5.2.8)$$

But (5.2.7) is easy. Indeed, by Integration by parts

$$\begin{split} &\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} y^2 e^{-\frac{y^2}{2}} dy = \frac{1}{\sqrt{2\pi}} (-1) \int_{-\infty}^{+\infty} y d\left(e^{-\frac{y^2}{2}}\right) \\ &= \frac{-1}{\sqrt{2\pi}} \left[y e^{-\frac{y^2}{2}} \Big|_{y=-\infty}^{y=+\infty} - \int_{-\infty}^{+\infty} e^{-\frac{y^2}{2}} dy \right] \\ &= \frac{-1}{\sqrt{2\pi}} \left[0 - 0 - \int_{-\infty}^{+\infty} e^{-\frac{y^2}{2}} dy \right] \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{y^2}{2}} dy = 1. \end{split}$$

Hence we have shown that if $X \sim N(\mu, \sigma^2)$, then

$$E(X) = \mu$$
, $E(X^2) = \sigma^2 + \mu^2$, $E(X^2) - [E(X)]^2 = \sigma^2$.

In the future, we shall reobtain these conclusions more easily!

In particular, if $X \sim N(0,1)$, then

$$E(X^2) = 1, \quad E(X^2) - (E(X))^2 = 1.$$

Part 5.2.5: Expectations of Function of Several r.v.s

Question: Suppose that X_1, X_2, \dots, X_n are r.v.s and

$$Y=g(X_1,X_2,\cdots,X_n),$$

where g is a function of n variables. How to find E(Y)?

Part 5.2.5: Expectations of Function of Several r.v.s

Theorem. Suppose that X_1, X_2, \dots, X_n are r.v.s and

$$Y=g(X_1,X_2,\cdots,X_n),$$

where g is a function of n variables. Then

(i) If X_1, X_2, \dots, X_n are all discrete with joint p.m.f. p, then

$$E(Y) = \sum_{x_1} \cdots \sum_{x_n} g(x_1, \cdots, x_n) p(x_1, \cdots, x_n).$$

(ii) If X_1, X_2, \dots, X_n are all continuous with joint p.d.f. f, then

$$E(Y) = \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} g(x_1, \cdots, x_n) f(x_1, \cdots, x_n) dx_1 \cdots dx_n$$

Example 1.

(1) The joint p.m.f. of (X, Y) is given by

X	0	1	2
0	1/6	1/3	1/12
1	2/9	1/6	0
2	1/36	0	0

Find E(X), E(Y), and E(X + Y).

(2) The joint p.d.f. f(x, y) of X and Y is given by

$$f(x,y) = \begin{cases} \frac{2}{7}(x+2y), & \text{if } 0 < x < 1, \ 1 < y < 2, \\ 0, & \text{otherwise.} \end{cases}$$

Find $E(X/Y^3)$.

Outline

- Part 5.1: The Expected Value of a Random Variable
- 2 Part 5.2: Expectation of Functions of Random Variables
- 3 Part 5.3: Probability Theory Properties of Expectation, Variance and Standard Deviation
- 4 Part 5.4: Covariance and Correlation
- 5 Part 5.5: Moment Generating Functions
- 6 Part 5.6: Applications of Moment Generating Functions
- Part 5.7: Three Special Distributions

Part 5.3.1: Properties of Expectation

Proposition 1.

- If X is a constant C, then E(C) = C.
- (Linearity) If X, Y are r.v.s and a, b are real numbers, then $E(a \cdot X + b \cdot Y) = a \cdot E(X) + b \cdot E(Y)$.

Remark 2. Generally, for r.v.s X and Y,

$$E(X \cdot Y) \neq Y \cdot E(X),$$
 $E(X^2) \neq X \cdot E(X),$ $E(X \cdot Y) \neq E(X) \cdot E(Y),$ $E(X \cdot X) \neq E(X) \cdot E(X).$

Proposition 3. If X and Y are independent r.v.s, then

$$E(X \cdot Y) = E(X) \cdot E(Y)$$
.

Corollary 4. If X and Y are independent r.v.s and g and h are functions, then

$$E[g(X) \cdot h(Y)] = E[g(X)] \cdot E[h(Y)].$$

Meaning: if X and Y are independent, then for example,

$$E[X^3 \cdot e^Y] = E[X^3] \cdot E[e^Y].$$

We summarize the above results as follows.

Theorem 5. The expectation satisfies the following properties:

- (i) E(C) = C for all constants C.
- (ii) E(aX + bY) = aE(X) + bE(Y) for any r.v.s X, Y and any constants a, b.
- (iii) If X and Y are independent, then E(XY) = E(X)E(Y).

Part 5.3.2: Variance and Standard Deviation

A motivating example. Consider two r.v.s X and Y:

$$X = \begin{cases} -1, & \text{with probability } \frac{1}{2}, \\ +1, & \text{with probability } \frac{1}{2}. \end{cases} \quad Y = \begin{cases} -100, & \text{with probability } \frac{1}{2}, \\ +100, & \text{with probability } \frac{1}{2}. \end{cases}$$

Easy to see E(X) = E(Y) = 0.

However, the "spread" of values for X and Y is different. There is much greater spread in the possible values of Y.

How to measure the "spread": $E[(X - E(X))^2]$. Why so?

September 8, 2024

Definition 1. The <u>variance</u> of the r.v. X, denoted by Var(X), is defined by

$$Var(X) = E[(X - E(X))^2].$$

 $\sqrt{\operatorname{Var}(X)}$ is called the standard deviation of X.

Remark 2.

- (1) Note: X E(X) is a function of X. So X E(X), and hence $(X E(X))^2$, is a r.v.. The expected value of $(X E(X))^2$ is called the variance of the original r.v. X.
- (2) Note that $Y \triangleq (X E(X))^2$ is a non-negative r.v. So $E[(X E(X))^2] \ge 0$ and thus $\sqrt{\text{Var}(X)}$ is meaningful.

Proposition 3. For discrete or continuous r.v. X,

$$Var(X) = E(X^2) - [E(X)]^2$$
.

Remark 4. If Var(X) = 0, i.e., $E[(X - E(X))^2] = 0$, then $[X - E(X)]^2 \ge 0$ would imply that $X(\omega) = E(X)$ for almost all ω .

Proposition 5. Let X, Y be a r.v.s and a, b constants. Then

- (i) $Var(X) \geq 0$;
- (ii) Var(X) = 0 iff X is a constant r.v. and in this case, X = E(X);
- (iii) $Var(a \cdot X + b) = a^2 \cdot Var(X);$
- (iv) If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Note that $Var(a \cdot X) \neq a \cdot Var(X)$ in general.

Part 5.3.3: Examples

1. Bernoulli r.v.: X takes on values 0 and 1, with probability 1-p and p, respectively.

$$E(X) = \sum_{i} x_{i} \cdot p(x_{i}) = 0 \times P(X = 0) + 1 \times P(X = 1) = p,$$
 $E(X^{2}) = \sum_{i} x_{i}^{2} \cdot p(x_{i}) = 0^{2} \times P(X = 0) + 1^{2} \times P(X = 1) = p,$
 $Var(X) = E(X^{2}) - [E(X)]^{2} = p - p^{2}.$

2. Binomial r.v. $X \sim B(n, p)$: Recall that

$$E(X) = np, \quad E(X^2) = np[n-1)p+1].$$

Thus,
$$Var(X) = E(X^2) - [E(X)]^2 = np(1-p)$$
.

3. Poisson r.v. $X \sim \text{Poisson } (\lambda)$: Recall

$$E(X) = \lambda, \quad E(X^2) = \lambda^2 + \lambda.$$

Hence,

$$Var(X) = E(X^2) - [E(X)]^2 = \lambda.$$

4. Geometric r.v. $X \sim \text{Geo}(p)$: Recall

$$E(X^2) - [E(X)]^2 = \frac{1-p}{p^2}.$$

So
$$Var(X) = \frac{1-p}{p^2}$$
.

5. Uniform r.v. $X \sim U[a, b]$: Recall

$$Var(X) = E(X^2) - [E(X)]^2 = \frac{(b-a)^2}{12}.$$

6. Exponential r.v. $X \sim \text{Exp}(\lambda)$: Recall

$$E(X) = \frac{1}{\lambda}, \quad E(X^2) = \frac{2}{\lambda^2}.$$

So
$$Var(X) = E(X^2) - [E(X)]^2 = \frac{1}{\lambda^2}$$
.

7. Normal r.v. $X \sim N(\mu, \sigma^2)$:

$$E(X) = \mu$$
, $Var(X) = \sigma^2$.

- 8. The p.d.f. of X is $f(x) = \frac{1}{\sqrt{2\pi} \cdot \sqrt{5}} e^{-\frac{(x+3)^2}{10}}$. Find E(X) and Var(X).
- 9. T p.d.f. of X is given by

$$f(x) = \begin{cases} \frac{1}{x(\ln 3)}, & 1 < x < 3, \\ 0, & \text{otherwise.} \end{cases}$$

Find E(X), $E(X^2)$, Var(X), and $E(2X^2 - 3X + 1)$.

10. X and Y have joint p.d.f.

$$f(x,y) = \begin{cases} x+y, & 0, \le x \le 1, \ 0 \le y \le 1, \\ 0, & \text{otherwise.} \end{cases}$$

Find $E(X + Y)^2$.

Outline

- Part 5.1: The Expected Value of a Random Variable
- 2 Part 5.2: Expectation of Functions of Random Variables
- 3 Part 5.3: Probability Theory Properties of Expectation, Variance and Standard Deviation
- 4 Part 5.4: Covariance and Correlation
- 5 Part 5.5: Moment Generating Functions
- Part 5.6: Applications of Moment Generating Functions
- Part 5.7: Three Special Distributions

Part 5.4.1: Covariance

Single r.v.: expectation and variance.

Several r.v.s: need a quantity to "measure" the relationship among them.

Definition 1. The <u>covariance</u> of two r.v.s X and Y, denoted by Cov(X, Y), is defined by

$$Cov(X, Y) \triangleq E[\{X - E(X)\}\{Y - E(Y)\}].$$

Proposition 2. We have

$$Cov(X, Y) = E(X \cdot Y) - E(X) \cdot E(Y).$$

Proposition 3. Let X, Y, Z, W be r.v.s and a, b, c, d constants.

- (i) Cov(X, Y) = Cov(Y, X) and Cov(X, X) = Var(X).
- (ii) If X and Y are independent, then Cov(X, Y) = 0. In particular, Cov(X, a) = Cov(a, X) = 0.
- (iii) (Bilinearity) Cov(aX + bY, Z) = aCov(X, Z) + bCov(Y, Z). Consequently,

$$Cov(aX + bY, cZ + dW)$$

$$= acCov(X, Z) + bcCov(Y, Z)$$

$$+ adCov(X, W) + bdCov(Y, W).$$

Corollary 4. Let X_1, X_2, \dots, X_n ; Y_1, Y_2, \dots, Y_m be r.v.s and a_0, a_1, \dots, a_n ; b_0, b_1, \dots, b_m constants. Then

Cov
$$\left(a_0 + \sum_{i=1}^n a_i X_i, b_0 + \sum_{j=1}^m b_j Y_j\right) = \sum_{i=1}^n \sum_{j=1}^m a_i b_j \text{Cov }(X_i, Y_j).$$

Remark 5. Cov (X, Y) can be any real number.

if Cov(X, Y) = 0, we say X and Y are uncorrelated;

if Cov(X, Y) > 0, we say X and Y are positively correlated;

if Cov(X, Y) < 0, we say X and Y are negatively correlated.

Part 5.4.2: Variance Formula and Application in Statistics

Proposition 1. Let X_1, X_2, \ldots, X_n be r.v.s. Then

$$\operatorname{Var}\left(\sum_{i=1}^{n}X_{i}\right) = \sum_{i=1}^{n}\operatorname{Var}\left(X_{i}\right) + 2\sum_{i < j}\operatorname{Cov}\left(X_{i}, X_{j}\right).$$

Note that if the r.v.s X_1, X_2, \dots, X_n are (mutual) independent, then the above formula yields

$$\operatorname{Var}\left(\sum_{i=1}^{n}X_{i}\right)=\sum_{i=1}^{n}\operatorname{Var}\left(X_{i}\right).$$

Application in Statistics.

Suppose X_1, X_2, \dots, X_n are i.i.d. r.v.s having the finite common expected value μ and variance σ^2 . Let

$$\bar{X} \triangleq \frac{1}{n} \sum_{i=1}^{n} X_i$$
 (sample mean)

$$S^2 \triangleq \sum_{i=1}^{n} (X_i - \bar{X})^2$$
 (sample variance)

Find $E(\bar{X})$, $Var(\bar{X})$, and $E\left[\frac{S^2}{n-1}\right]$.

Proposition 2. Suppose X_1, X_2, \dots, X_n are i.i.d. r.v.s with common mean μ and common variance σ^2 which are assumed to be finite. Let

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad S^2 = \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

Then

$$E(\bar{X}) = \mu$$
, $Var(\bar{X}) = \frac{1}{n}\sigma^2$, $E(\frac{S^2}{n-1}) = \sigma^2$.

In statistics, $\frac{S^2}{n-1}$ is called the unbiased estimator of σ^2 .

Part 5.4.3: Correlation Coefficients

Definition 1. The <u>correlation coefficient</u> between two r.v.s X and Y is defined as

$$\rho = \rho(X, Y) \triangleq \frac{\mathsf{Cov}(X, Y)}{\sqrt{\mathsf{Var}(X) \cdot \mathsf{Var}(Y)}}.$$

Note: We assume that <u>neither X nor Y</u> is a constant so that Var(X) > 0, Var(Y) > 0 and thus the above definition is well-defined.

Proposition 2. For any r.v.s X and Y,

$$-1 \le \rho(X, Y) \le 1.$$

Remark 3. By Proposition 2, we have

$$[\operatorname{\mathsf{Cov}}(X,Y)]^2 \leq \operatorname{\mathsf{Var}}(X) \cdot \operatorname{\mathsf{Var}}(Y).$$

$$\rho = 0 \Leftrightarrow Cov(X, Y) = 0$$
: uncorrelated;

$$ho > 0 \quad \Leftrightarrow \quad \mathsf{Cov}\left(X,Y
ight) > 0$$
: positively correlated;

$$\begin{array}{lll} \rho = 0 & \Leftrightarrow & \mathsf{Cov}\left(X,Y\right) = 0 \text{:} & \mathsf{uncorrelated;} \\ \rho > 0 & \Leftrightarrow & \mathsf{Cov}\left(X,Y\right) > 0 \text{:} & \mathsf{positively correlated;} \\ \rho < 0 & \Leftrightarrow & \mathsf{Cov}\left(X,Y\right) < 0 \text{:} & \mathsf{negatively correlated.} \end{array}$$

Remark 4. With $Var(X) = \sigma_X^2$ and $Var(Y) = \sigma_Y^2$, that

$$\begin{split} &0 \leq \mathsf{Var} \, \left(\frac{X}{\sigma_X} + \frac{Y}{\sigma_Y} \right) = 2 \Big[1 + \rho(X,Y) \Big], \\ &0 \leq \mathsf{Var} \, \left(\frac{X}{\sigma_X} - \frac{Y}{\sigma_Y} \right) = 2 \Big[1 - \rho(X,Y) \Big]. \end{split}$$

Thus,

$$ho(X,Y) = -1 \quad \Leftrightarrow \quad Y = a + bX \quad \text{with } b = -\frac{\sigma_Y}{\sigma_X} < 0,$$
 $ho(X,Y) = 1 \quad \Leftrightarrow \quad Y = a + bX \quad \text{with } b = \frac{\sigma_Y}{\sigma_X} > 0.$

If X and Y are independent, then $\rho=0$ and thus X and Y are uncorrelated, but the converse is usually not true.

Part 5.4.4: Examples

X and Y obeys a bivariate normal distribution if the joint p.d.f. is

$$f(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)} \cdot \left[\frac{(x-\mu_1)^2}{\sigma_1^2} + \frac{(y-\mu_2)^2}{\sigma_2^2} - \frac{2\rho(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2}\right]\right\}.$$

We can prove that $\text{Cov}(X,Y) = \rho \cdot \sigma_1 \cdot \sigma_2$. Recall that $\text{Var}(X) = \sigma_1^2$, $\text{Var}(Y) = \sigma_2^2$, then $\rho(X,Y) = \frac{\rho \cdot \sigma_1 \cdot \sigma_2}{\sigma_1 \cdot \sigma_2} = \rho$.

We know that, for bivariate normal distribution, X and Y are independent iff $\rho = 0$ (it is not true for general case).

Theorem. Suppose (X, Y) is bivariate normal distributed. Then X and Y are independent iff X and Y are uncorrelated, i.e., $\rho = 0$.

Part 5.4.5: Covariance Matrix and Correlation Matrix

For a *n*-dimiensional random (column) vector $X = (X_1, X_2, \cdots, X_n)^{\top}$, we define

$$E(X) \triangleq (E(X_1), E(X_2), \cdots, E(X_n))^{\top}.$$

Also we define the covariance and correlation matrices, resp., as

$$C = \begin{bmatrix} \mathsf{Cov}\; (X_1, X_1) & \mathsf{Cov}\; (X_1, X_2) & \cdots & \mathsf{Cov}\; (X_1, X_n) \\ \mathsf{Cov}\; (X_2, X_1) & \mathsf{Cov}\; (X_2, X_2) & \cdots & \mathsf{Cov}\; (X_2, X_n) \\ \cdots & \cdots & \cdots & \cdots \\ \mathsf{Cov}\; (X_n, X_1) & \mathsf{Cov}\; (X_n, X_2) & \cdots & \mathsf{Cov}\; (X_n, X_n) \end{bmatrix},$$

$$R = \begin{bmatrix} \rho(X_1, X_1) & \rho(X_1, X_2) & \cdots & \rho(X_1, X_n) \\ \rho(X_2, X_1) & \rho(X_2, X_2) & \cdots & \rho(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \rho(X_n, X_1) & \rho(X_n, X_2) & \cdots & \rho(X_n, X_n) \end{bmatrix}.$$

Note that C and R are symmetric and all the diagonal elements are $Cov(X_i, X_i) = Var(X_i)$ and $\rho(X_i, X_i) = 1$, resp., $i = 1, 2, \dots, n$.

Proposition. *C* is a nonnegative definite matrix.

Key point: covariance matrix has the representation

$$C = E\left[(\bar{X}_1, \bar{X}_2, \cdots, \bar{X}_n)^\top (\bar{X}_1, \bar{X}_2, \cdots, \bar{X}_n)\right],$$

where $\bar{X}_i = X_i - E(X_i)$, $i = 1, \dots, n$.

Moreover, if X_1, X_2, \ldots, X_n are (mutual) independent and $E(X_i^2) > 0$ (i.e., $X_i \not\equiv 0$) for all $i = 1, 2, \cdots, n$, then C is positive definite.

Outline

- Part 5.1: The Expected Value of a Random Variable
- 2 Part 5.2: Expectation of Functions of Random Variables
- 3 Part 5.3: Probability Theory Properties of Expectation, Variance and Standard Deviation
- 4 Part 5.4: Covariance and Correlation
- 5 Part 5.5: Moment Generating Functions
- Part 5.6: Applications of Moment Generating Functions
- Part 5.7: Three Special Distributions

Part 5.5.1: Moment Generating Functions

Definition 1. The moment generating function (m.g.f.) of a r.v. X, denoted by $M_X(t)$, is defined (for those $t \in \mathbb{R}$ s.t. $E\left[e^{tX}\right] < \infty$) as

$$M_X(t) = E\left[e^{tX}\right].$$

Remark 2. If X is a continuous r.v. with p.d.f. f(x), then

$$M_X(t) = \int_{-\infty}^{+\infty} e^{tx} f(x) dx.$$

If X is a discrete r.v. with p.m.f. $p(x_i)$, then

$$M_X(t) = \sum_i e^{tx_i} p(x_i).$$

Note: $M_X(t)$ may not exist for all real values t.

Proposition 3. The m.g.f. has the following properties:

- (i) $M_X(0) = 1$.
- (ii) If Y = aX + b $(a, b \in \mathbb{R})$, then $M_Y(t) = e^{bt}M_X(at)$.
- (iii) If X and Y are independent, then $M_{X+Y}(t) = M_X(t) \cdot M_Y(t)$.
- (iv) If X_1, X_2, \dots, X_n are independent, then

$$M_{X_1+X_2+\cdots+X_n}(t)=M_{X_1}(t)M_{X_2}(t)\cdots M_{X_n}(t)=\prod_{i=1}^n M_{X_i}(t).$$

- (v) If $Y = b_0 + \sum_{i=1}^n b_i X_i$, where X_1, X_2, \dots, X_n are independent r.v.s and b_i are constants, then $M_Y(t) = e^{b_0 t} \cdot \prod_{i=1}^n M_{X_i}(b_i t)$.
- (vi) Two r.v.s X and Y have the same m.g.f. iff they have the same p.d.f. (the proof of this part is vary complicated!).

September 8, 2024

Part 5.5.2: Examples

1. Binomial Distribution: $X \sim B(n, p)$.

p.m.f.:
$$P\{X = k\} = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, 1, 2, \dots, n.$$

$$M_X(t) = E\left[e^{tX}\right] = \sum_{k=0}^n e^{tk} \binom{n}{k} p^k (1-p)^{n-k}$$

$$= \sum_{k=0}^n \binom{n}{k} (pe^t)^k (1-p)^{n-k}$$

$$= (pe^t + 1 - p)^n.$$

If
$$M_X(t) = (pe^t + 1 - p)^n$$
, then $X \sim B(n, p)$.

2. Poisson Distribution

p.m.f.:
$$p_k = e^{-\lambda} \cdot \frac{\lambda^k}{k!}, \quad k = 0, 1, \cdots$$

$$egin{aligned} M_X(t) &= E\left[e^{tX}
ight] = \sum_{k=0}^\infty e^{tk}e^{-\lambda}\cdotrac{\lambda^k}{k!} \ &= e^{-\lambda}\sum_{k=0}^\inftyrac{\left(\lambda e^t
ight)^k}{k!} = e^{\lambda(e^t-1)}. \end{aligned}$$

If $M_X(t) = e^{\lambda(e^t - 1)}$, then $X \sim \text{Poisson } (\lambda)$.

3. Exponential Distribution

p.d.f.:
$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

$$M_X(t) = E\left[e^{tx}\right] = \int_0^\infty e^{tx} f(x) dx = \int_0^\infty e^{tx} \lambda e^{-\lambda x} dx$$
$$= \lambda \int_0^\infty e^{-(\lambda - t)x} dx = \lambda \cdot \left[-\frac{e^{-(\lambda - t)x}}{\lambda - t} \right]_0^\infty = \frac{\lambda}{\lambda - t}, \quad \text{for } t < \lambda.$$

Note that $M_X(t)$ does not exist for $t \ge \lambda$. Hence the m.g.f. of the exponential distribution is only defined for $t < \lambda$.

If
$$M_X(t) = \frac{\lambda}{\lambda - t}$$
 for $t < \lambda$, then $X \sim \text{Poisson}(\lambda)$.

4. Standard Normal Distribution

p.d.f.:
$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$
.

$$M_X(t) = E[e^{tx}] = \int_{-\infty}^{+\infty} e^{tx} f(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{tx} e^{-\frac{x^2}{2}} dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{x^2 - 2tx}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{x^2 - 2tx + t^2}{2}} \cdot e^{\frac{t^2}{2}} dx$$

$$= \frac{e^{\frac{t^2}{2}}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{(x-t)^2}{2}} dx = e^{\frac{t^2}{2}}.$$

5. General Normal Distribution

Recall: if $X \sim N(\mu, \sigma^2)$, then $Z = \frac{X-\mu}{\sigma} \sim N(0, 1)$, $M_Z(t) = e^{\frac{t^2}{2}}$. So,

$$M_X(t) = E\left[e^{tX}\right] = E\left[e^{t(\mu+\sigma Z)}\right] = e^{t\mu}M_Z(t\sigma) = \exp\left[\mu t + \frac{\sigma^2 t^2}{2}\right].$$

Important formula:

$$igg| X \sim \mathcal{N}(\mu, \sigma^2) \quad \Leftrightarrow \quad M_X(t) = e^{\mu t + rac{\sigma^2 t^2}{2}}$$

If you find the m.g.f. of some r.v. X is in the form of e^{at+bt^2} , where a>0, then you may immediately claim that $X \sim N(a,2b)$.

6. Other Examples

(1) If $X \sim \Gamma(\lambda, \alpha)$ (where $\alpha > 0$), then

$$M_X(t) = \left(\frac{\lambda}{\lambda - t}\right)^{\alpha}, \quad \text{for } t < \lambda.$$

(2) If $X \sim \text{Geo}(p)$, then for $t < \ln[1/(1-p)]$,

$$M_X(t) = \frac{pe^t}{1 - (1-p)e^t}.$$

(3) If $X \sim NB(p, r)$ (where r is a positive integer), then

$$M_X(t) = \left\lceil rac{pe^t}{1 - (1-p)e^t}
ight
ceil^r.$$

(4) If $X \sim U[a,b]$, then $M_X(t) = \frac{e^{bt}-e^{at}}{(b-a)t}$.

Outline

- Part 5.1: The Expected Value of a Random Variable
- 2 Part 5.2: Expectation of Functions of Random Variables
- 3 Part 5.3: Probability Theory Properties of Expectation, Variance and Standard Deviation
- 4 Part 5.4: Covariance and Correlation
- 5 Part 5.5: Moment Generating Functions
- 6 Part 5.6: Applications of Moment Generating Functions
- Part 5.7: Three Special Distributions

Part 5.6.1: Find Moments

If we know the m.g.f. $M_X(t) = E\left[e^{tX}\right]$ of X, then all m-th moments $E\left(X^m\right)$ (m is a positive integer) can be obtained, by successively differentiating the m.g.f. with t:

$$M'_X(t) = \frac{d}{dt}E\left[e^{tX}\right] = E\left[\frac{d}{dt}e^{tX}\right] = E\left[Xe^{tX}\right].$$

Letting t = 0 yields E(X) = M'(0). Similarly,

$$M_X''(t) = \frac{d}{dt}M_X'(t) = \frac{d}{dt}E\left[Xe^{tX}\right] = E\left[\frac{d}{dt}\left(Xe^{tX}\right)\right] = E\left[X^2e^{tX}\right].$$

Letting t = 0 yields $E(X^2) = M_X''(0)$.

Proposition 1. If the m.g.f. $M_X(t)$ is known for some r.v. X, then for all $n \in \mathbb{N}_+$

$$E(X^{n}) = M_{X}^{(n)}(0),$$

$$E(X - EX)^{n} = \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} (EX)^{n-k} EX^{k}$$

$$= \sum_{k=0}^{n} (-1)^{n-k} \binom{n}{k} [M'_{X}(0)]^{n-k} M_{X}^{(k)}(0),$$

$$E(X^{n}) = \sum_{k=0}^{n} \binom{n}{k} E(X - EX)^{k} (EX)^{n-k}.$$

Example 1: Binomial Distribution

Recall $X \sim B(n, p)$ if p.m.f.

$$p(k) = P\{X = k\} = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 1, 2, ... n.$$

$$M_X(t) = \left(pe^t + q\right)^n,$$

$$M'_X(t) = n(pe^t + q)^{n-1}pe^t, \quad E(X) = M'_X(0) = np(p+q)^{n-1} = np,$$

$$M_X''(t) = np \left[e^t \left(pe^t + q \right)^{n-1} + e^t (n-1) \left(pe^t + q \right)^{n-2} \cdot pe^t \right],$$

$$E(X^2) = M_X''(0) = np + n(n-1)p^2$$
, $Var(X) = np(1-p)$.

Example 2: Poisson Distribution

Recall $X \sim \text{Poisson}(\lambda)$ if p.m.f.

$$p_k=e^{-\lambda}\cdot rac{\lambda^k}{k!}, \quad k=0,1,\cdots$$
 $M_X(t)=e^{\lambda(e^t-1)},$ $M_X'(t)=e^{\lambda(e^t-1)}\cdot \lambda e^t, \quad E(X)=M_X'(0)=\lambda,$ $M_X''(t)=(\lambda e^t)^2\,e^{\lambda(e^t-1)}+\lambda e^t e^{\lambda(e^t-1)},$ $E(X^2)=M_X''(0)=\lambda^2+\lambda, \quad {\sf Var}(X)=\lambda.$

Example 3: Exponential Distribution

Recall $X \sim \text{Exp}(\lambda)$ if p.d.f.

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

$$M_X(t) = E\left[e^{tX}\right] = \frac{\lambda}{\lambda - t}, \quad t < \lambda,$$

$$M'_X(t)=rac{\lambda}{(\lambda-t)^2},\quad E(X)=M'_X(0)=rac{1}{\lambda},$$

$$M_X''(t) = rac{2\lambda}{(\lambda - t)^3}, \quad E(X^2) = M_X''(0) = rac{2}{\lambda^2}, \quad {\sf Var}(X) = rac{1}{\lambda^2}.$$

Example 4: General Normal Distribution

Recall: if $X \sim N(\mu, \sigma^2)$, then

$$M_X(t) = \exp\left[\frac{\sigma^2 t^2}{2} + \mu t\right].$$

Hence

$$M_X'(t) = e^{\mu t + \frac{\sigma^2 t^2}{2}} \cdot (\mu + \sigma^2 t), \quad E(X) = M_X'(0) = \mu,$$
 $M_X''(t) = \left[(\mu + \sigma^2 t)^2 + \sigma^2 \right] e^{\mu t + \frac{\sigma^2 t^2}{2}},$ $E(X^2) = \mu^2 + \sigma^2, \quad \text{Var}(X) = \sigma^2.$

Example 5: Negative Binomial Distribution

Recall:
$$X \sim NB(p, r)$$
, then $M_X(t) = \left(\frac{pe^t}{1-qe^t}\right)^r$.

$$\begin{split} M_X(t) &= \left(\frac{p}{e^{-t}-q}\right)^r = p^r \left(e^{-t}-q\right)^{-r}, \\ M_X'(t) &= \frac{rp^r}{e^t \left(e^{-t}-q\right)^{r+1}}, \quad E(X) = M_X'(0) = \frac{r}{p}, \\ M_X''(t) &= \frac{rp^r}{e^t \left(e^{-t}-q\right)^{r+1}} \left[\frac{r+1}{1-qe^t}-1\right], \\ E(X^2) &= M_X''(0) = \frac{r(r+1-p)}{p^2}, \quad \text{Var}(X) = \frac{r(1-p)}{p^2}. \end{split}$$

In particular, if r = 1, then we obtain that for Geometric r.v.:

$$E(X) = \frac{1}{p}$$
, $Var(X) = \frac{1-p}{p^2}$.

Use Maclaurin Series to Find Moments:

Recall if a function f(x) can be expanded into a Maclaurin power series, then

$$f(x) = \sum_{n=0}^{\infty} c_n x^n, \quad c_n = \frac{f^{(n)}(0)}{n!}, \quad n \ge 0.$$

Therefore, if we can expand the m.g.f. of X into power series

$$M_X(t) = C_0 + C_1 t + C_2 t^2 + \cdots + C_n t^n + \cdots$$

then
$$C_n = \frac{M_X^{(n)}(0)}{n!}$$
, and thus $E(X^n) = M_X^{(n)}(0) = C_n \cdot n!$.

For example, if $X \sim N(0,1)$, then

$$M_X(t) = e^{\frac{t^2}{2}} = 1 + \frac{t^2}{2} + \frac{\left(\frac{t^2}{2}\right)^2}{2!} + \cdots + \frac{\left(\frac{t^2}{2}\right)^n}{n!} + \cdots = \sum_{n=0}^{\infty} \frac{1}{2^n \cdot n!} t^{2n}.$$

Therefore,

$$E(X^{2m+1}) = 0, \quad E(X^{2m}) = \frac{(2m)!}{2^m m!} = (2m-1)!!.$$

In particular,

$$E(X^2) = 1$$
, $E(X^4) = 3$, $E(X^6) = 15$, $E(X^8) = 105$.

If $X \sim N(0, t)$ with t > 0, then for any p > 0,

$$E|x|^p = C_p t^{\frac{p}{2}} < \infty, \text{ with } C_p = \frac{1}{\sqrt{2\pi}} \int_0^\infty x^p e^{-\frac{x^2}{2}} dx < \infty.$$

Higher Moments of the Exponential Distribution:

Recall if $X \sim \text{Exp}(\lambda)$, then for $\lambda > t$,

$$M_X(t) = \frac{\lambda}{\lambda - t} = \frac{1}{1 - \frac{t}{\lambda}} = \sum_{n=0}^{\infty} \left(\frac{t}{\lambda}\right)^n \quad \left(\frac{t}{\lambda} < 1\right)$$
$$= 1 + \frac{t}{\lambda} + \left(\frac{t}{\lambda}\right)^2 + \dots + \left(\frac{t}{\lambda}\right)^n + \dots$$
$$= 1 + \frac{1}{\lambda}t + \frac{1}{\lambda^2}t^2 + \dots + \frac{1}{\lambda^n}t^n + \dots$$

Hence

$$E(X^n) = n! \cdot \frac{1}{\lambda^n} = \frac{n!}{\lambda^n}, \quad n = 0, 1, 2, \cdots$$

Part 5.6.2: Determine the Distribution

General principle: "m.g.f." and "distribution" is "one-to-one".

For example, if you find the m.g.f. of some r.v. takes the form of

$$M_X(t)=e^{at+bt^2},$$

then you may immediately obtain that $X \sim N(a, 2b)$.

Example 1: Sum of Independent Binomial r.v.s

If $X \sim B(n, p)$, $Y \sim B(m, p)$, and X and Y are independent, then what is the p.m.f. of $Z \triangleq X + Y$?

Solution: (1) "Old method": The possible values of Z: $0, 1, 2, \dots, n + m$. For $r = 0, 1, 2, \dots, n + m$,

$$p_r = P\{Z = r\} = P\{X + Y = r\}$$

$$= P\left\{\bigcup_{k=0}^r [(X = k) \cap (Y = r - k)]\right\}$$

$$= \sum_{k=0}^r \binom{n}{k} \binom{m}{r - k} p^r (1 - p)^{m+n-r} = \cdots$$

Workable, but guite complicated!

September 8, 2024

(2) New method: with the same p and thus same q = 1 - p,

$$X \sim B(n,p) \Rightarrow M_X(t) = (pe^t + q)^n,$$

 $Y \sim B(m,p) \Rightarrow M_Y(t) = (pe^t + q)^m.$

Now Z = X + Y and X and Y are independent,

$$M_Z(t) = M_X(t) \cdot M_Y(t) = (pe^t + q)^{n+m}.$$

Since we recognize that $(pe^t + q)^{n+m}$ is the m.g.f. of Binomial distribution with parameters n + m and p, we conclude that

$$Z \sim B(n+m,p)$$
.

This particularly shows that:

if $Y_i : 1 \le i \le r$ are i.i.d. Geo(p) r.v.s, then $X \sim NB(p, r)$.

September 8, 2024

Example 2: Sum of Independent Normal r.v.s

If $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, and X and Y are independent, what is the distribution of $Z \triangleq X + Y$?

Solution: Since *X* and *Y* are independent and

$$X \sim \mathcal{N}(\mu_1, \sigma_1^2) \quad \Rightarrow \quad M_X(t) = \exp\left[\mu_1 t + \frac{\sigma_1^2 t^2}{2}\right],$$
 $Y \sim \mathcal{N}(\mu_2, \sigma_2^2) \quad \Rightarrow \quad M_Y(t) = \exp\left[\mu_2 t + \frac{\sigma_2^2 t^2}{2}\right].$

So the m.g.f. of Z = X + Y is

$$M_Z(t) = M_X(t) \cdot M_Y(t) = e^{(\mu_1 + \mu_2)t + \frac{\sigma_1^2 + \sigma_2^2}{2}t^2}.$$

Hence by checking the m.g.f. table, we immediately obtain

$$Z \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$
.

Example 3: Sum of Independent exponential r.v.s

If X_1, X_2, \dots, X_n are i.i.d. with a common exponential distribution $\text{Exp}(\lambda)$, what is the distribution of $Z \triangleq X_1 + X_2 + \dots + X_n$?

Solution: Each X_i obeys $Exp(\lambda)$ and they are independent, so

$$M_{X_i}(t) = rac{\lambda}{\lambda - t} \quad ext{(for } t < \lambda) \quad \Rightarrow \quad M_Y(t) = \left(rac{\lambda}{\lambda - t}
ight)^n.$$

Checking the m.g.f. Table, we see that

$$Y \sim \Gamma(\lambda; n)$$
.

Part 5.6.3: Statistic Application – Weak Law of Large Number

Let X_1, X_2, \cdots be i.i.d. (independent observations of some r.v. X and thus are called a "Sample"). We are interested in the following two r.v.s:

$$S_n = X_1 + X_2 + \dots + X_n,$$

 $\bar{X}_n = \frac{1}{n} S_n = \frac{X_1 + X_2 \dots + X_n}{n}.$

Usually, it is very difficult to find the c.d.f.s or p.d.f.s for them, but it is easy to find their m.g.f.s if we know the m.g.f. of X. Indeed, suppose the m.g.f. of X is $M_X(t)$, then all X_1, \dots, X_n have the same $M_X(t)$. Then by the independent property,

$$M_{S_n}(t) = [M_X(t)]^n, \quad M_{\bar{X}_n}(t) = \left[M\left(\frac{t}{n}\right)\right]^n.$$

Let's consider the case that the r.v. $X \sim \text{Exp}(\lambda)$, then

$$egin{aligned} M_{\mathcal{S}_n}(t) &= \left(rac{\lambda}{\lambda - t}
ight)^n, \ M_{ar{X}_n}(t) &= \left(rac{\lambda}{\lambda - rac{t}{n}}
ight)^n &= \left(rac{1}{1 - rac{t}{n\lambda}}
ight)^n
ightarrow e^{rac{t}{\lambda}} ext{ as } n
ightarrow \infty. \end{aligned}$$

Note $e^{\frac{t}{\lambda}}$ is the m.g.f. of a **constant** r.v. $\frac{1}{\lambda} = E(X)$. This property also holds for general cases.

Theorem (Weak Law of Large Number). If X_1, X_2, \cdots are i.i.d with common mean $E(X) < \infty$, then

$$\lim_{n\to\infty} M_{\bar{X}_n}(t) = e^{tE(X)}.$$

Part 5.6.4: Summary of Application of m.g.f.s.

- (1) For any r.v. X, the m.g.f. $M_X(t)$ is defined as $M_X(t) = E\left[e^{tX}\right]$ for those t s.t. the expectation exists
- (2) M.g.f.s and distributions are uniquely determined with each other if we find the m.g.f. of X and recognize it as the m.g.f. of a known distribution, then X must have that distribution
- (3) If X and Y are independent r.v.s then the m.g.f. of Z=X+Y is the product of their m.g.f.: $M_{X+Y}(t)=M_X(t)\cdot M_Y(t)$. In particular, $M_{aX+b}(t)=e^{bt}M_X(at)$ for $a,b\in\mathbb{R}$
- (4) If $M_X(t)$ exists in a neighbourhood of 0 for a r.v. X, then the moments of X exist and can be found from the power series expansion of $M_X(t)$ with $E(X^k) = M^{(k)}(0)$:

$$M_X(t) = 1 + t \cdot E(X) + \frac{t^2}{2} \cdot E(X^2) + \cdots + \frac{t^n}{n!} E(X^n) + \cdots$$

September 8, 2024

Outline

- Part 5.1: The Expected Value of a Random Variable
- Part 5.2: Expectation of Functions of Random Variables
- 3 Part 5.3: Probability Theory Properties of Expectation, Variance and Standard Deviation
- 4 Part 5.4: Covariance and Correlation
- 5 Part 5.5: Moment Generating Functions
- 6 Part 5.6: Applications of Moment Generating Functions
- Part 5.7: Three Special Distributions

Part 5.7.1: χ^2 -Distribution

Recall that if $X \sim \Gamma(\lambda, \alpha)$, then

$$M_X(t) = \left(\frac{\lambda}{\lambda - t}\right)^{\alpha} = \left(1 - \frac{1}{\lambda}t\right)^{-\alpha}, \quad t < \lambda.$$

Let $X \sim N(0,1)$. Then

$$\begin{split} M_{X^2}(t) &= E e^{tX^2} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx^2} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(1-2t)x^2}{2}} dx \\ &= \frac{1}{\sqrt{1-2t}} = (1-2t)^{-\frac{1}{2}}, \quad t < \frac{1}{2}. \end{split}$$

Thus, $X^2 \sim \Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$.

Proposition 1. Let X_1, \dots, X_n be i.i.d. with common N(0,1)-distribution. Then

$$Y:=X_1^2+X_2^2+\cdots+X_n^2\sim\Gamma\left(\frac{1}{2},\frac{n}{2}\right).$$

The distribution of the above Y is called $\chi^2(n)$ -distribution, i.e., $\chi^2(n) = \Gamma\left(\frac{1}{2}, \frac{n}{2}\right)$, then the p.d.f. f(x) of the χ^2 -Distribution is

$$f(x) = \begin{cases} \frac{1}{2^{\frac{n}{2}}\Gamma\left(\frac{n}{2}\right)} x^{\frac{n}{2}-1} e^{-\frac{x}{2}}, & \text{if } x > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Proposition 2. Let $X \sim \chi^2(n)$. Then

$$EX^{k} = n(n+2)(n+4)\cdots(n+2k-2)$$

for any positive integer k. In particular,

$$E(Y) = n$$
, $E(Y^2) = n(n+2)$, $Var(Y) = 2n$.

Proof. Recall the general formula (with $m \in \mathbb{R}$)

$$(1+x)^m = \sum_{k=0}^m \binom{k}{m} x^k = 1 + mx + \dots + \frac{m(m-1)(m-2)\cdots(m-k+1)}{k!} x^k + \dots$$

Taking x = -2t and $m = -\frac{n}{2}$, we obtain

$$M_X(t) = \sum_{k=0}^{\infty} \frac{n(n+2)(n+4)\cdots(n+2k-2)}{k!} t^k.$$

The p.d.f. of $\chi^2(n)$ -Distribution

Part 5.7.2: *t*–Distribution

Definition 1. If $X \sim N(0,1)$, $Y \sim \chi^2(n)$, X and Y are independent, then the distribution of $T = \frac{X}{\sqrt{Y/n}}$ is called t-distribution with n degree of freedom, denoted by $T \sim t(n)$.

Proposition 2. Let $T \sim t(n)$. Then T has p.d.f. f given by

$$f(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)\sqrt{n\pi}} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}}, \quad x \in \mathbb{R}.$$

Recall the Γ -function is given by

$$\Gamma(z) \triangleq \int_0^\infty x^{z-1} e^{-x} dx, \quad z > 0.$$

It has the following properties:

$$\Gamma(z+1)=z\Gamma(z).$$

$$\Gamma\left(\frac{1}{2}+n\right)=\frac{(2n)!}{4^n n!}\sqrt{\pi}=\frac{(2n-1)!!}{2^n}\sqrt{\pi}=\binom{n-\frac{1}{2}}{n}n!\sqrt{\pi}.$$

Try to prove

$$\lim_{n\to\infty}t(n)\to N(0,1)$$

using the above properties.

The p.d.f. of t-Distribution

Part 5.7.3: *F*-Distribution

Definition 1. If $X \sim \chi^2(m)$, $Y \sim \chi^2(n)$, X and Y are independent, then the distribution of $F = \frac{X/m}{Y/n}$ is called F-distribution with (m, n) degrees of freedom, denoted by $F \sim F(m, n)$.

Proposition 2.

(i) Let $T \sim F(m, n)$. Then T has p.d.f. f given by

$$f(x) = \begin{cases} \frac{\Gamma\left(\frac{m+n}{2}\right)}{\Gamma\left(\frac{m}{2}\right) \cdot \Gamma\left(\frac{n}{2}\right)} \left(\frac{m}{n}\right) \left(\frac{m}{n}x\right)^{\frac{m}{2}-1} \left(1 + \frac{m}{n}x\right)^{-\frac{m+n}{2}}, & \text{if } x > 0, \\ 0, & \text{if } x \leq 0. \end{cases}$$

(ii) If $X \sim F(m,n)$, then $X^{-1} \sim F(n,m)$; if $T \sim t(n)$, then $T^2 \sim F(1,n)$.

September 8, 2024

The p.d.f. of *F*-Distribution

Outline

- Part 5.1: The Expected Value of a Random Variable
- 2 Part 5.2: Expectation of Functions of Random Variables
- 3 Part 5.3: Probability Theory Properties of Expectation, Variance and Standard Deviation
- 4 Part 5.4: Covariance and Correlation
- 5 Part 5.5: Moment Generating Functions
- 6 Part 5.6: Applications of Moment Generating Functions
- Part 5.7: Three Special Distributions

Part 5.8.1: Mixing Case

Suppose X is a discrete r.v. but Y is a continuous r.v., then the joint c.d.f. and margin c.d.f.s of X and Y are defined as

$$F_{(X,Y)}(x,y) = P\{X \le x, Y \le y\},\$$

 $F_X(x) = P\{X \le x\},\$
 $F_Y(y) = P\{Y \le y\}.$

It is clear that

$$F_X(x) = \lim_{y \to +\infty} F_{(X,Y)}(x,y),$$

$$F_Y(y) = \lim_{x \to +\infty} F_{(X,Y)}(x,y).$$

We say that X and Y are independent if the joint c.d.f. is the product of two marginal c.d.f.s:

$$F_{(X,Y)}(x,y) = F_X(x) \cdot F_Y(y).$$

We can also define the so-called "joint p.d.f.-p.m.f." function

$$f_{(X,Y)}(x,y)$$
 $\begin{bmatrix} x:\{x_1,x_2,\cdots\}\\ y:(-\infty,+\infty) \end{bmatrix}$

such that for any real numbers a, b, we have

$$F_{(X,Y)}(a,b) = \sum_{x \le a} \int_{-\infty}^{b} f(x,y) dy$$

It can be easily seen that

- $f(x,y) \geq 0$ $(\forall x = x_i; \forall y \in \mathbb{R});$
- $\sum_{x} \int_{-\infty}^{+\infty} f(x,y) dy = \int_{-\infty}^{+\infty} (\sum_{x} f(x,y)) dy = 1;$
- $p_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy$, $f_Y(y) = \sum_x f(x, y)$;
- X and Y are independent iff joint p.d.f.-p.m.f. =(marginal p.d.f.) × (marginal p.m.f.).

Summary of Chapter 5: Basic Concepts

- (1) Expected value: E(X) (Weighted average).
- (2) Variance: $Var(X) = E[(X E(X))^2].$
- (3) Standard Deviation: $\sqrt{\text{Var}(X)}$.
- (4) Covariance: Cov(X, Y) = E[(X E(X))(Y E(Y))].
- (5) Correlation: $\rho(X, Y) = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \cdot \text{Var}(Y)}}$.
- (6) Function of r.v.s: g(X), g(X, Y) etc.

Summary of Chapter 5: Basic properties

1. Expectation:

- (1) E(C) = C for constant C.
- (2) $E(a \cdot X + b \cdot Y) = a \cdot E(X) + b \cdot E(Y)$ (linear property).
- (3) If X and Y are independent, then $E(X \cdot Y) = E(X) \cdot E(Y)$.

2. Variance:

- (1) Var(C) = 0 for constant C.
- (2) $Var(a \cdot X + b) = a^2 \cdot Var(X)$.
- (3) If X and Y are independent, then Var(X + Y) = Var(X) + Var(Y).

Summary of Chapter 5: Basic properties

3. Covariance:

- (1) Cov(a, b) = 0 for constants a and b.
- (2) Cov $(a_1X + b_1Y + c_1, a_2U + b_2V + c_2) = a_1 \cdot a_2 \text{Cov}(X, U) + a_1b_2 \text{Cov}(X, V) + a_2 \cdot b_1 \text{Cov}(Y, U) + b_1b_2 \text{Cov}(Y, V).$
- (3) If X and Y are independent, then Cov(X, Y) = 0 (the converse is not true; true for bivariate normal r.v.)
- (4) Correlation: for any two r.v.s, $-1 \le \rho(X, Y) \le 1$.

Summary of Chapter 5: Calculation

1. Function of r.v.s.

$$E[g(X)] = \int_{-\infty}^{+\infty} g(x) \cdot f(x) dx.$$

$$E[g(X)] = \sum_{i} g(x_{i}) \cdot p(x_{i}).$$

$$E[g(X, Y)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f(x, y) dx dy.$$

$$E[g(X, Y)] = \sum_{i} \sum_{j} g(x_{i}, y_{j}) \cdot f(x_{i}, y_{j}).$$

- 2. Variance: $Var(X) = E(X^2) (EX)^2$.
- 3. Covariance: $Cov(X, Y) = E(X \cdot Y) E(X) \cdot E(Y)$.

Probability

Summary of Chapter 5: Important Facts

- 1. Normal distribution:
 - (1) If $X \sim N(\mu, \sigma^2)$, then $E(X) = \mu$, $Var(X) = \sigma^2$.
 - (2) If $X \sim N(\mu, \sigma^2)$, a, b are constants, $a \neq 0$, then $a \cdot X + b \sim N(a\mu + b, a^2\sigma^2)$.
 - (3) If $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, and X and Y are independent, then $X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.
 - (4) If $X \sim N(\mu, \sigma^2)$, let $Y = \frac{X \mu}{\sigma}$, then $Y \sim N(0, 1)$.
- 2. Poisson distribution:

If
$$X \sim \text{Poisson}(\lambda)$$
, then $E(X) = \lambda$, $\text{Var}(X) = \lambda$.

- 3. Binomial distribution: If $X \sim B(n, p)$, then E(X) = np, Var(X) = npq = np(1 p).
- 4. Exponential distribution: If $X \sim \text{Exp}(\lambda)$, then $E(X) = \frac{1}{\lambda}$, $\text{Var}(X) = \frac{1}{\lambda^2}$.

Summary of Chapter 5: Examples

Example 1. Suppose the m.g.f of X is $M_X(t) = \frac{2}{4-t}$, t < 4.

- (1) Find E(X), $E(X^2)$ and Var(X).
- (2) If X and Y are independent and both with this m.g.f. Then find the m.g.f and also identify the distribution of X + Y.

Example 2. Let X_1, \dots, X_n be i.i.d., each having the $N(\mu, \sigma^2)$ distribution.

- (1) Find the m.g.f. of the sample mean $\bar{X}_n := \frac{1}{n} \sum_{i=1}^n X_i$
- (2) What is the distribution of the above sample mean?

September 8, 2024