Análisis Avanzado Recuperatorio del segundo parcial

26/07/2021

"Reparad en ese pato que corre. Reparad en aquel cordero que trisca. Reparad esa cerca que huyen los animalitos.."

Roberto Fontanarrosa

1. Sean E y F espacios normados y sea $T:E\to F$ una transformación lineal. Probar que T es continua si y sólo si para toda sucesión $(x_n)_{n\geq 1}$ en E que tiende a 0 la sucesión $(T(x_n))_{n\geq 1}$ es acotada.

Está resuelto en el 2do parcial del primer cuatrimestre de 2024

2. Probar que la serie

$$f(x) = \sum_{n>1} 2^n \sin\left(\frac{1}{3^n x}\right)$$

define una función continua en $(0,+\infty)$. Probar que además f es derivable, y calcular su derivada.

Para probar que la serie

$$f(x) = \sum_{n>1} 2^n \sin\left(\frac{1}{3^n x}\right)$$

define una función continua en $(0, +\infty)$, procederemos de la siguiente manera:

Paso 1: Estudio de la continuidad de cada sumanto.

Consideremos el término general de la serie:

$$a_n(x) = 2^n \sin\left(\frac{1}{3^n x}\right).$$

se vé facilmente que es continuo, por lo que la sumatoria también es continua.

Paso 2: Cota del Término General

Utilizamos la cota del seno, $|\sin y| \le |y|$, para obtener:

$$\left| 2^n \sin\left(\frac{1}{3^n x}\right) \right| \le 2^n \left| \frac{1}{3^n x} \right| = \frac{2^n}{3^n x}.$$

Observamos que:

$$\frac{2^n}{3^n x} = \frac{(2/3)^n}{x}.$$

La serie $\sum_{n\geq 1} \left(\frac{2}{3}\right)^n$ es una serie geométrica con razón $\frac{2}{3}<1$, por lo que converge. Esto implica que la serie

$$\sum_{n>1} \frac{2^n}{3^n x}$$

converge para cualquier x > 0.

Paso 3: Aplicación de la Prueba de la Convergencia Absoluta

Dado que los términos $\frac{2^n}{3^n x}$ son dominados por una serie geométrica convergente, por la prueba de la convergencia absoluta, usando Weierstrass, la serie

$$\sum_{n>1} 2^n \sin\left(\frac{1}{3^n x}\right)$$

converge absolutamente y uniformemente para todo x > 0.

Y como la convergencia uniforme de funciones continua define una función continua, hemos demostrado que la serie

$$f(x) = \sum_{n>1} 2^n \sin\left(\frac{1}{3^n x}\right)$$

define una función continua en $(0, +\infty)$.

Para probar que $f(x) = \sum_{n \geq 1} 2^n \sin\left(\frac{1}{3^n x}\right)$ es derivable y calcular su derivada, seguiremos estos pasos:

Paso 1: Convergencia Uniforme de la Serie de Derivadas

Primero, necesitamos considerar la derivada de cada término de la serie. Sea

$$f_n(x) = 2^n \sin\left(\frac{1}{3^n x}\right).$$

Calculemos la derivada de $f_n(x)$:

$$f'_n(x) = 2^n \frac{d}{dx} \left(\sin \left(\frac{1}{3^n x} \right) \right).$$

Usando la regla de la cadena, obtenemos:

$$\frac{d}{dx}\left(\sin\left(\frac{1}{3^nx}\right)\right) = \cos\left(\frac{1}{3^nx}\right) \cdot \frac{d}{dx}\left(\frac{1}{3^nx}\right).$$

La derivada de $\frac{1}{3^n x}$ respecto a x es:

$$\frac{d}{dx}\left(\frac{1}{3^nx}\right) = -\frac{1}{3^nx^2}.$$

Entonces:

$$f'_n(x) = 2^n \cos\left(\frac{1}{3^n x}\right) \left(-\frac{1}{3^n x^2}\right) = -\frac{2^n}{3^n x^2} \cos\left(\frac{1}{3^n x}\right).$$

Paso 2: Convergencia de la Serie de Derivadas

Para mostrar que f(x) es derivable, necesitamos que la serie de derivadas $f'_n(x)$ converja uniformemente. Consideremos la cota de $|f'_n(x)|$:

$$|f'_n(x)| = \left| -\frac{2^n}{3^n x^2} \cos\left(\frac{1}{3^n x}\right) \right| \le \frac{2^n}{3^n x^2}.$$

La serie:

$$\sum_{n\geq 1} \frac{2^n}{3^n x^2} = \frac{1}{x^2} \sum_{n\geq 1} \left(\frac{2}{3}\right)^n$$

es una serie geométrica con razón $\frac{2}{3}$, que converge. Por lo tanto, la serie de derivadas $\sum_{n>1} f'_n(x)$ converge uniformemente en cualquier intervalo $[a,b] \subseteq (0,\infty)$.

Paso 3: Aplicación del Teorema de Convergencia Uniforme

Dado que la serie $\sum_{n\geq 1} f_n(x)$ converge uniformemente y la serie de derivadas $\sum_{n\geq 1} f'_n(x)$ también converge uniformemente, podemos intercambiar la suma y la derivada:

$$f'(x) = \sum_{n \ge 1} f'_n(x).$$

Paso 4: Cálculo de la Derivada

Hemos encontrado que:

$$f_n'(x) = -\frac{2^n}{3^n x^2} \cos\left(\frac{1}{3^n x}\right).$$

Por lo tanto, la derivada de f(x) es:

$$f'(x) = \sum_{n \ge 1} -\frac{2^n}{3^n x^2} \cos\left(\frac{1}{3^n x}\right).$$

Simplificando, obtenemos:

$$f'(x) = -\frac{1}{x^2} \sum_{n>1} \frac{2^n}{3^n} \cos\left(\frac{1}{3^n x}\right).$$

Conclusión

Hemos demostrado que $f(x) = \sum_{n \geq 1} 2^n \sin\left(\frac{1}{3^n x}\right)$ es derivable en $(0, +\infty)$ y su derivada es:

$$f'(x) = -\frac{1}{x^2} \sum_{n>1} \frac{2^n}{3^n} \cos\left(\frac{1}{3^n x}\right).$$

3. Sea $f:[0,1]\to\mathbb{R}$ medible. Probar que para todo $\epsilon>0$ existen $M\geq 0$ y $A\subseteq [0,1]$ medible tales que:

3

- $|f(x)| \le M$ para todo $x \in [0,1] \setminus A$.
- $\mu(A) < \epsilon$.

Vamos a trabajar con funciones medibles en un intervalo finito y la noción de conjuntos de nivel.

Paso 1: Definición del Conjunto de Nivel

Dado que f es medible, consideramos los conjuntos de nivel de f. Definimos los conjuntos A_k como:

$$A_k = \{x \in [0,1] : |f(x)| > k\}.$$

Paso 2: Propiedades de los Conjuntos de Nivel

Cada conjunto A_k es medible porque f es medible y el conjunto $\{x \in [0,1] : |f(x)| > k\}$ es un conjunto medible. Además, tenemos:

$$A_1 \supset A_2 \supset A_3 \supset \cdots$$
.

Paso 3: Consideración del Límite de los Conjuntos de Nivel

Definimos $A = \bigcap_{k=1}^{\infty} A_k$. Este conjunto A contiene los puntos donde |f(x)| no está acotado. Es decir, para $x \in A$, |f(x)| no es finito. La medida de A es:

$$\mu(A) = \lim_{k \to \infty} \mu(A_k).$$

Paso 4: Existencia de k para Aproximación Fina

Dado que $\mu(A) \to 0$ a medida que $k \to \infty$, para cualquier $\epsilon > 0$, podemos encontrar un k suficientemente grande tal que:

$$\mu(A_k) < \epsilon$$
.

Sea M = k. Entonces, $|f(x)| \leq M$ para todo $x \in [0, 1] \setminus A_k$ y $\mu(A_k) < \epsilon$.

Conclusión

Tomando $A = A_k$ con el k encontrado en el paso 4, concluimos que existen $M \ge 0$ y un conjunto medible $A \subseteq [0,1]$ tales que: - $|f(x)| \le M$ para todo $x \in [0,1] \setminus A$, - $\mu(A) < \epsilon$.

Esta conclusión es válida para cualquier $\epsilon > 0$. Por lo tanto, hemos probado el enunciado.

4. Sea $f:[0,1]\to\mathbb{R}$ integrable. Probar que para todo x>0 la función $F_x:[0,1]\to\mathbb{R}$ dada por $F_x(t)=f(t)e^{-xt}$ es integrable, y que la función

$$g:(0,+\infty)\to \mathbb{R}, \quad g(x)=\int_{[0,1]}f(t)e^{-xt}\,dt$$

es continua.

Ver ejercicio 14 de la guia 9.