Facts about Sequences

- 1. Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be such that $a_n \leq x_n \leq b_n$ for all $n \in \mathbb{N}$. If $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ both converge to $x \in \mathbb{R}$, then $\{x_n\}_{n=1}^{\infty}$ must also converge to x.
- 2. Let $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ be convergent sequences. Suppose that $x_n \leq y_n$ for every $n \in \mathbb{N}$. Then $\lim_{n \to \infty} x_n \leq \lim_{n \to \infty} y_n$.
- 3. If $\{x_n\}_{n=1}^{\infty}$ is a convergent sequence such that $x_n \geq 0$ for all $n \in \mathbb{N}$, then $\lim_{n \to \infty} x_n \geq 0$.
- 4. Let $a, b \in \mathbb{R}$ and $\{x_n\}_{n=1}^{\infty}$ be a convergent sequence such that $a \leq x_n \leq b$ for all $n \in \mathbb{N}$. Then $a \leq \lim_{n \to \infty} x_n \leq b$.
- 5. Addition, Subtraction, Multiplication, and Division can all be performed safely on limit expression provided they are both convergent and there is no division by 0.
- 6. Let $\{x_n\}_{n=1}^{\infty}$ be a convergent sequence such that $x_n \geq 0$ for all $n \in \mathbb{N}$. then $\lim_{n \to \infty} \sqrt{x_n} = \sqrt{\lim_{n \to \infty} x_n}$.
- 7. If $\{x_n\}_{n=1}^{\infty}$ is a convergent sequence, then $\{|x_n|\}_{n=1}^{\infty}$ is a convergent sequence and $\lim_{n\to\infty} |x_n| = \left|\lim_{n\to\infty} x_n\right|$.

Convergence Tests

- 1. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence, and suppose there is an $x \in \mathbb{R}$ and a sequence $\{a_n\}_{n=1}^{\infty}$ such that $\lim_{n\to\infty} a_n = 0$ and $|x_n x| \le a_n$ for all $n \in \mathbb{N}$. Then the sequence x_n converges to x.
- 2. Let c > 0. (1) If c < 1, then $\{c^n\}_{n=1}^{\infty}$ converges to zero. (2) If c > 1, then $\{c^n : n \in \mathbb{N}\}$ is an unbounded set of \mathbb{R} and hence cannot converge.
- 3. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence such that $x_n \neq 0$ for all $n \in \mathbb{N}$ and the limit $L := \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right|$ exists. Then, (1) If $0 \leq L < 1$, then $\{x_n\}_{n=1}^{\infty}$ converges to 0. (2) If L > 1, then $\{x_n : n \in \mathbb{N}\}$ is unbounded, and so $\{x_n\}_{n=1}^{\infty}$ is divergent. (3) If L = 1, the test is inconclusive.

Limit Superior & Inferior

1. Let $\{x_n\}_{n=1}^{\infty}$ be a bounded sequence. For each $n \in \mathbb{N}$, define $a_n = \sup\{x_k : k \ge n\}$ and $b_n = \inf\{x_k : k \ge n\}$. Consider the sequences, $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$. Define $\limsup_{n\to\infty} x_n = \lim_{n\to\infty} a_n$ and $\liminf_{n\to\infty} x_n = \lim_{n\to\infty} b_n$, provided both limits exist.

- 2. Let $\{x_n\}_{n=1}^{\infty}$ be a bounded sequence, and $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ be as in the above definition. (1) The sequence $\{a_n\}_{n=1}^{\infty}$ is bounded and monotone decreasing, while $\{b_n\}_{n=1}^{\infty}$ is also bounded but is monotone increasing. In particular $\limsup x_n$ and $\liminf_{n\to\infty} x_n$ both exist. (2) $\limsup x_n = \inf \{a_n : n \in \mathbb{N}\} = \inf \{\sup \{a_k : k \geq n\} : n \in \mathbb{N}\}$ and $\liminf_{n\to\infty} x_n = \sup b_n : n \in \mathbb{N} = \sup \{\inf \{b_k : k \geq n\} : n \in \mathbb{N}\}$. (3) $\limsup_{n\to\infty} x_n \geq \liminf_{n\to\infty} x_n$.
- 3. Given a bounded sequence $\{x_n\}_{n=1}^{\infty}$, there exists subsequences $\{x_{n_k}\}_{k=1}^{\infty}$ and $\{x_{m_k}\}_{k=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$ such that $\lim_{k\to\infty} x_{n_k} = \limsup_{n\to\infty} x_n$ and $\lim_{k\to\infty} x_{m_k} = \liminf_{n\to\infty} x_n$.
- 4. A bounded sequence $\{x_n\}_{n=1}^{\infty}$ converges if and only if $\limsup_{n\to\infty} x_n = \liminf_{n\to\infty} x_n$. In fact, $\limsup_{n\to\infty} x_n = \lim_{n\to\infty} x_n = \liminf_{n\to\infty} x_n$.
- 5. Suppose you have a bounded sequence $\{x_n\}_{n=1}^{\infty}$ and $\{x_{n_k}\}_{k=1}^{\infty}$ is a subsequence. Then $\liminf_{n\to\infty} x_n \leq \liminf_{k\to\infty} x_{n_k} \leq \limsup_{n\to\infty} x_n$.
- 6. A bounded sequence $\{x_n\}_{n=1}^{\infty}$ converges to $x \in \mathbb{R}$ if and only if every convergent subsequence converges to x.

Bolzano-Weierstrass Theorem

- 1. Every bounded sequence of real number must have a convergent subsequence.
- 2. We say that a sequence $\{x_n\}_{n=1}^{\infty}$ diverges to infinity if, for every $k \in \mathbb{R}$, there is some M such that $x_n > k$ whenever $n \ge M$. In this case, we write $\lim_{n \to \infty} x_n := \infty$.
- 3. We say that a sequence $\{x_n\}_{n=1}^{\infty}$ diverges to negative infinity if, for every $k \in \mathbb{R}$, there is some M such that $x_n < k$ whenever $n \ge M$. In this case, we write $\lim_{n \to \infty} x_n := -\infty$.
- 4. Let $\{x_n\}_{n=1}^{\infty}$ be an unbounded sequence of real numbers. Define the sequence of extended real number $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ by $a_n = \sup\{x_k : k \ge n\}$, $b_n = \inf\{x_k : k \ge n\}$. If each a_n and b_n is a real number, then $\limsup_{n \to \infty} x_n = \lim_{n \to \infty} a_n$ and $\liminf_{n \to \infty} x_n = \lim_{n \to \infty} b_n$.

Cauchy Sequences

- 1. Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of real numbers. Then $\{x_n\}_{n=1}^{\infty}$ is said to be a cauchy sequence if, for every $\epsilon > 0$, there is some $M \in \mathbb{N}$ such that $|x_n x_M| < M\epsilon$ whenever $n, m \geq M$.
- 2. Cauchy sequences are bounded.
- 3. A sequence of real numbers is convergent if and only if it is cauchy.

Series

- 1. Given a sequence $\{x_n\}_{n=1}^{\infty}$, we write the formal object $\sum_{n=0}^{\infty} x_n$ and call it a series. A series $\sum_{n=0}^{\infty} x_n$ converges if the sequence $\{S_k\}_{k=1}^{\infty}$ given by $S^k := \sum_{n=1}^k x_n = x_1 + x_2 + x_3 + \dots + x_k$ converges. The numbers S_k are called partial sums. If $\sum_{n=0}^{\infty} x_n$ should converge, we write $\sum_{n=0}^{\infty} x_n = \lim_{k \to \infty} S^k = \lim_{k \to \infty} \sum_{n=0}^k x_n$. If the sequence $\{S^k\}_{k=1}^{\infty}$ diverges, then we say that $\sum_{n=0}^{\infty} x_n$ diverges.
- 2. Let $r \in \mathbb{R}$. The geometric series $\sum_{n=0}^{\infty} r^n$ converges if and only if -1 < r < 1. In particular $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$ given that -1 < r < 1 and the series is convergent.
- 3. A series $\sum_{n=0}^{\infty} x_n$ converges if and only if its tails converge (i.e for $M \in \mathbb{N}$. the series $\sum_{n=M}^{\infty} x_n$ converges).
- 4. A series $\sum_{n=0}^{\infty} x_n$ is said to be cauchy if the sequence of partial sums $\{S^k\}_{k=1}^{\infty}$ is a cauchy sequence. For every $\epsilon > 0$, there exists an $M \in \mathbb{N}$ such that $\left|\sum_{k=1}^{m} x_n \sum_{k=1}^{k} x_n\right| < \epsilon$ whenever $m, k \geq M$. Without loss of generality, we may suppose that K > m. Then we may write $\left|\sum_{n=m+1}^{k} x_n\right| < \epsilon$ for all $k, m \geq M$.
- 5. A series is cauchy if and only if for every $\epsilon > 0$ there is an $M \in \mathbb{N}$ such that $\left| \sum_{n=m+1}^{k} x_n \right| < \epsilon$ whenever $k, m \geq M$.
- 6. Let $\sum_{n=0}^{\infty} x_n$ be a convergent series. Then the sequence of terms $\{x_n\}_{n=1}^{\infty}$ converges and in fact $\lim_{n\to\infty} x_n = 0$. The converse is <u>not</u> true.
- 7. The summation is a linear operator.

- 8. If $x_n \geq 0$ for all $n \in \mathbb{N}$, then $\sum_{n=0}^{\infty} x_n$ converges if and only if the sequence of partial sums in bounded above.
- 9. A series $\sum_{n=0}^{\infty} x_n$ converges absolutely if $\sum_{n=0}^{\infty} |x_n|$ converges. If a series converges, but doesn't converge absolutely, we say that it converges conditionally.
- 10. If $\sum_{n=0}^{\infty} x_n$ converges absolutely, then it also converges conditionally. The converse is <u>not</u> true.

Series Tests

- 1. Comparison Test: Let $\sum_{n=0}^{\infty} x_n$ and $\sum_{n=0}^{\infty} y_n$ be a pair of series such that $0 \le x_n \le y_n$ for all $n \in \mathbb{N}$. (1) If $\sum_{n=0}^{\infty} y_n$ converges, then $\sum_{n=0}^{\infty} x_n$ converges. (2) If $\sum_{n=0}^{\infty} x_n$ diverges, then $\sum_{n=0}^{\infty} y_n$ diverges.
- 2. P-series Test: For $p \in \mathbb{R}$, the series given by $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converges if and only if p > 1.
- 3. Ratio Test: Let $\sum_{n=0}^{\infty} x_n$ be a series such that $x_n \neq 0$ for every $n \in \mathbb{N}$, and such that $L := \lim_{n \to \infty} \frac{|x_{n+1}|}{|x_n|}$. If (1) If L < 1, then $\sum_{n=0}^{\infty} x_n$ converges absolutely. (2) If L > 1, then $\sum_{n=0}^{\infty} x_n$ diverges. (3) If L = 1, then the test is inconclusive.

Limits of Functions

- 1. Let $S \subset \mathbb{R}$. A number $x \in \mathbb{R}$ is called a cluster, or limit, point of S if, for every $\epsilon > 0$, the set $(x \epsilon, x + \epsilon) \cap [S \setminus \{x\}]$ is nonempty. In other words, x is a cluster point of S if for every $\epsilon > 0$, there is some $y \in S$ with $y \neq x$, such that $|y x| < \epsilon$, requiring that $y \in (x \epsilon, x + \epsilon) \cap [S \setminus \{x\}]$.
- 2. Let S be a subset of \mathbb{R} and $c \in \mathbb{R}$, then c is a cluster point of S if and only if there is a sequence $\{x_n\}_{n=1}^{\infty}$ with $x_n \in S \setminus \{c\}$ such that $\lim_{n \to \infty} x_n = c$.
- 3. Let $f: S \to \mathbb{R}$, with $S \subset \mathbb{R}$ be non empty and suppose that $c \in \mathbb{R}$ is a cluster point of S. Suppose $L \in \mathbb{R}$ is such that, for every $\epsilon > 0$, there exists some $\delta > 0$ for which $|f(x) L| < \epsilon$ holds whenever $x \in S \setminus \{c\}$ satisfies $|x c| < \delta$. We then say that f(x)

- converges to L as $x \to c$, and we write $f(x) \to L$ as $x \to c$. We can this L a limit of f(x) as x goes to c, and if L is unique we write $\lim_{x \to c} f(x) = L$. If no such L exists, we say that f diverges at c.
- 4. Let c be a cluster point of $S \in \mathbb{R}$ and let $f: S \to \mathbb{R}$ be a function such that f(x) converges as x goes to c. Then the limit of f(x) as $x \to c$ is unique.
- 5. Let $S \subset \mathbb{R}$, c be a cluster points of S, $f: S \to \mathbb{R}$ be a function, and $L \in \mathbb{R}$. Then $f(x) \to L$ as $x \to c$ if and only if for every sequence $\{x_n\}_{n=1}^{\infty}$ such that $x_n \in S \setminus \{c\}$ for all n, and such that $\lim_{n \to \infty} x_n = c$, we have that the sequence $\{f(x_n)\}_{n=1}^{\infty}$ converges to L.
- 6. $S \subset \mathbb{R}$, c be a cluster point of S, $f: S \to \mathbb{R}$ and $L \in \mathbb{R}$. Then $f(x) \to L$ as $x \to c$ if for every $\epsilon > 0$, there exists some $\delta > 0$ such that $|f(x) L| < \epsilon$ whenever $x \in S \setminus \{c\}$ such that $|x c| < \delta$.
- 7. Let $S \subset \mathbb{R}$ and c be a cluster point of S. Suppose $f: S \to \mathbb{R}$ is a function such that the limit of f(x) as $x \to c$ exists. Suppose there are two real numbers $a, b \in \mathbb{R}$ with $a \le f(x) \le b$ for all $x \in S \setminus \{c\}$. Then $a \le \lim_{x \to c} f(x) \le b$.
- 8. Let $S \subset \mathbb{R}$ and c be a cluster point of S. Suppose $f: S \to \mathbb{R}$ and $g: S \to \mathbb{R}$ are functions such that the limits as $x \to c$ both exist. If $f(x) \leq g(x)$ holds for every $x \in S \setminus \{c\}$ then $\lim_{x \to c} f(x) \leq \lim_{x \to c} g(x)$.
- 9. Limits are preserved across Addition, Subtraction, Multiplication, Division, and Absolute value provided there is no division by 0 and that both limits exist.
- 10. Let $f: S \to \mathbb{R}$ be a function and let $A \subset S \subset \mathbb{R}$. Define the function $f|_A = f(x)$ for $x \in A$. We call $f|_A$ the restriction of f to A.
- 11. Let $S \subset \mathbb{R}$, $c \in \mathbb{R}$, and $f: S \to \mathbb{R}$ be a function. Suppose $A \subset S$ is such that there is some $\alpha > 0$ satisfying $[A \setminus \{c\}] \cap (c \alpha, c + \alpha) = [S \setminus \{c\}] \cap (c \alpha, c + \alpha)$. Then (1) The point c is a cluster point of A if and only if c is a cluster point of S. (2) Supposing c is a cluster point of S, then $f(x) \to L$ as $x \to c$ if and only if $f|_A \to L$ as $x \to c$.

Continuous Functions

- 1. Suppose $S \subset \mathbb{R}$ and $c \in S$. We say $f: S \to \mathbb{R}$ is continuous at c is for every $\epsilon > 0$ there is a $\delta > 0$ such that whenever $x \in S$ and $|x c| < \delta$, we have $|f(x) f(c)| < \epsilon$. When f is continuous at all $c \in S$, then we say that f is a continuous function. If f is continuous for all $c \in A$, we say f is continuous on $A \subset S$. This implies that $f|_A$ is continuous, but the converse does not hold.
- 2. If for $f: S \to \mathbb{R}$ and $A \subset S$, f is continuous, then $f|_A$ is also continuous. The converse is false.

- 3. Consider a function f: S → R defined on a set S ⊂ R and let c ∈ S. Then (1) If c is not a cluster point of S, then f is continuous at c. (2) If c is a cluster point of S, then f is continuous at c if and only if the limit of f(x) as x → c exists and lim_{x→c} f(x) = f(c).
 (3) The function f is continuous at c if and only if for every sequence {x_n}_{n=1}[∞] where x_n ∈ S and lim_{n→∞} x_n = c, the sequence {f(x_n)}_{n=1}[∞] converges to f(c).
- 4. The third statement above allows us to quickly apply what we know about limits of sequences to continuous functions and even prove that certain functions are continuous.
- 5. The Addition, Subtraction, Multiplication, and Division of functions continuous at some $c \in S$ results in a function continuous at c, given that there is no division by 0.
- 6. All polynomials are continuous.
- 7. Let $A, B \subset \mathbb{R}$ and $f: B \to \mathbb{R}$ and $g: A \to B$ be functions. If g is continuous at $c \in A$ and f is continuous at g(c), then $f \circ g = f(g(x)): A \to B$ is continuous at c.
- 8. Discontinuity at a point c is true when f is not continuous at c.
- 9. Let $f: S \to \mathbb{R}$ be a function and $c \in S$. Suppose that there exits a sequence $\{x_n\}_{n=1}^{\infty}$, $x_n \in S$ for all n, and $\lim_{n \to \infty} x_n = c$ such that $\{f(x_n)\}_{n=1}^{\infty}$ does not converge to f(c). Then f is discontinuous at c.

10.

$$f(x) \coloneqq \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

This function is discontinuous at all $c \in \mathbb{R}$.

11.

$$f(x) := \begin{cases} \frac{1}{k} & \text{if } x \text{ is rational and in lowest terms} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

This function is irrational c but discontinuous at all rational c.

12. A point is called a removable discontinuity if we could change the definition of its function by insisting that the point takes on a different value and obtain a continuous function.

Extreme Value Theorem

- 1. $f[a,b] \to \mathbb{R}$ is bounded is there exists a $B \in \mathbb{R}$ such that $|f(x)| \leq B$ for every $x \in [a,b]$.
- 2. A continuous function on a compact interval $f[a,b] \to \mathbb{R}$ is necessarily bounded.
- 3. (1) $f: S \to \mathbb{R}$ achieves an absolute minimum at $c \in S$ if $f(c) \leq f(x)$ for every $x \in S$. (2) $f: S \to \mathbb{R}$ achieves an absolute maximum at $c \in S$ if $f(c) \geq f(x)$ for every $x \in S$.

- 4. Extreme Value Theorem: A continuous function $f[a, b] \to \mathbb{R}$ achieves both an absolute minimum and an absolute maximum on [a, b].
- 5. A compact interval [a, b] is essential to the validity of the EVT. Continuity of f is also essential.