```
In [1]: !wget https://ora.ox.ac.uk/objects/uuid:99d7c092-d865-4a19-b096-cc16440cd
       --2024-11-06 06:24:02-- https://ora.ox.ac.uk/objects/uuid:99d7c092-d865-4
       a19-b096-cc16440cd001/files/rpr76f381b
       Resolving ora.ox.ac.uk (ora.ox.ac.uk)... 129.67.246.216
       Connecting to ora.ox.ac.uk (ora.ox.ac.uk)|129.67.246.216|:443... connecte
       HTTP request sent, awaiting response... 200 OK
       Length: unspecified [application/zip]
       Saving to: 'rpr76f381b'
       rpr76f381b
                               [
                                                <=> ]
                                                        6.43G 27.0MB/s
                                                                           in 4m
       11s
       2024-11-06 06:28:14 (26.3 MB/s) - 'rpr76f381b' saved [6902652480]
In [2]: !unzip rpr76f381b -d data >> /dev/null
In [3]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import scipy.stats as stats
        import scipy.signal as signal
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.metrics import confusion matrix, classification report
        import seaborn as sns
In [4]: def extract features(xyz, sample rate=100):
            ''' Extract commonly used HAR time-series features. xyz is a window o
            feats = {}
            x, y, z = xyz.T
            feats['xmin'], feats['xq25'], feats['xmed'], feats['xq75'], feats['xm
                x, (0, .25, .5, .75, 1))
            feats['ymin'], feats['yq25'], feats['ymed'], feats['yq75'], feats['ym
                y, (0, .25, .5, .75, 1))
            feats['zmin'], feats['zq25'], feats['zmed'], feats['zq75'], feats['zm
                z, (0, .25, .5, .75, 1))
            with np.errstate(divide='ignore', invalid='ignore'): # ignore div by
                # xy, xy, zx correlation
                feats['xycorr'] = np.nan_to_num(np.corrcoef(x, y)[0, 1])
                feats['yzcorr'] = np.nan_to_num(np.corrcoef(y, z)[0, 1])
                feats['zxcorr'] = np.nan_to_num(np.corrcoef(z, x)[0, 1])
            v = np.linalg.norm(xyz, axis=1)
            feats['min'], feats['q25'], feats['med'], feats['q75'], feats['max']
                v, (0, .25, .5, .75, 1))
            with np.errstate(divide='ignore', invalid='ignore'): # ignore div by
                # 1s autocorrelation
                feats['corr1s'] = np.nan_to_num(np.corrcoef(
                    v[:-sample_rate], v[sample_rate:]))[0, 1]
```

```
# Angular features
    feats.update(angular_features(xyz, sample_rate))
    # Spectral features
    feats.update(spectral_features(v, sample_rate))
    # Peak features
    feats.update(peak_features(v, sample_rate))
    return feats
def spectral_features(v, sample_rate):
    """ Spectral entropy, 1st & 2nd dominant frequencies """
    feats = {}
    # Spectrum using Welch's method with 3s segment length
    # First run without detrending to get the true spectrum
    freqs, powers = signal.welch(v, fs=sample_rate,
                                 nperseg=3 * sample_rate,
                                 noverlap=2 * sample_rate,
                                 detrend=False,
                                 average='median')
    with np.errstate(divide='ignore', invalid='ignore'): # ignore div by
        feats['pentropy'] = np.nan_to_num(stats.entropy(powers + 1e-16))
    # Spectrum using Welch's method with 3s segment length
    # Now do detrend to focus on the relevant fregs
    freqs, powers = signal.welch(v, fs=sample_rate,
                                 nperseg=3 * sample rate,
                                 noverlap=2 * sample_rate,
                                 detrend='constant',
                                 average='median')
    peaks, _ = signal.find_peaks(powers)
    peak_powers = powers[peaks]
    peak_freqs = freqs[peaks]
    peak_ranks = np.argsort(peak_powers)[::-1]
    if len(peaks) >= 2:
        feats['f1'] = peak_freqs[peak_ranks[0]]
        feats['f2'] = peak_freqs[peak_ranks[1]]
        feats['p1'] = peak_powers[peak_ranks[0]]
        feats['p2'] = peak_powers[peak_ranks[1]]
    elif len(peaks) == 1:
        feats['f1'] = feats['f2'] = peak_freqs[peak_ranks[0]]
        feats['p1'] = feats['p2'] = peak_powers[peak_ranks[0]]
    else:
        feats['f1'] = feats['f2'] = 0
        feats['p1'] = feats['p2'] = 0
    return feats
def peak_features(v, sample_rate):
    """ Features of the signal peaks. A proxy to step counts. """
    feats = {}
    u = butterfilt(v, (.6, 5), fs=sample_rate)
```

```
peaks, peak_props = signal.find_peaks(
        u, distance=0.2 * sample_rate, prominence=0.25)
    feats['numPeaks'] = len(peaks)
    if len(peak_props['prominences']) > 0:
        feats['peakPromin'] = np.median(peak_props['prominences'])
    else:
        feats['peakPromin'] = 0
    return feats
def angular features(xyz, sample rate):
    """ Roll, pitch, yaw.
    Hip and Wrist Accelerometer Algorithms for Free-Living Behavior
    Classification, Ellis et al.
    feats = {}
    # Raw angles
    x, y, z = xyz.T
    roll = np.arctan2(y, z)
    pitch = np.arctan2(x, z)
    yaw = np.arctan2(y, x)
    feats['avgroll'] = np.mean(roll)
    feats['avgpitch'] = np.mean(pitch)
    feats['avgyaw'] = np.mean(yaw)
    feats['sdroll'] = np.std(roll)
    feats['sdpitch'] = np.std(pitch)
    feats['sdyaw'] = np.std(yaw)
    # Gravity angles
    xyz = butterfilt(xyz, 0.5, fs=sample_rate)
    x, y, z = xyz.T
    roll = np.arctan2(y, z)
    pitch = np.arctan2(x, z)
    yaw = np.arctan2(y, x)
    feats['rollg'] = np.mean(roll)
    feats['pitchg'] = np.mean(pitch)
    feats['yawg'] = np.mean(yaw)
    return feats
def butterfilt(x, cutoffs, fs, order=10, axis=0):
    nyq = 0.5 * fs
    if isinstance(cutoffs, tuple):
        hicut, lowcut = cutoffs
        if hicut > 0:
            btype = 'bandpass'
            Wn = (hicut / nyq, lowcut / nyq)
            btype = 'low'
            Wn = lowcut / nyq
    else:
```

```
btype = 'low'
    Wn = cutoffs / nyq
sos = signal.butter(order, Wn, btype=btype, analog=False, output='sos
y = signal.sosfiltfilt(sos, x, axis=axis)
return y

def get_feature_names():
    """ Hacky way to get the list of feature names """
    feats = extract_features(np.zeros((1000, 3)), 100)
    return list(feats.keys())

In [5]:
data = pd.read_csv(
    "data/capture24/P001.csv.gz", compression="gzip",
    index_col="time", parse_dates=["time"],
```

index_cot="time", parse_dates=["time"],
 dtype={"x": "f4", "y": "f4", "z": "f4", "annotation": "string"}
)
data

 $\mathsf{Out}\left[\mathsf{5}\right]$: x y z annotation

time				
2016-11-13 02:18:00.000	-0.466690	-0.533341	0.658472	7030 sleeping;MET 0.95
2016-11-13 02:18:00.010	-0.466690	-0.533341	0.658472	7030 sleeping;MET 0.95
2016-11-13 02:18:00.020	-0.466690	-0.533341	0.658472	7030 sleeping;MET 0.95
2016-11-13 02:18:00.030	-0.466690	-0.533341	0.658472	7030 sleeping;MET 0.95
2016-11-13 02:18:00.040	-0.466690	-0.533341	0.658472	7030 sleeping;MET 0.95
•••	•••			
2016-11-14 06:07:59.960	0.049416	-0.797846	0.565700	7030 sleeping;MET 0.95
2016-11-14 06:07:59.970	0.049416	-0.782285	0.565700	7030 sleeping;MET 0.95
2016-11-14 06:07:59.980	0.049416	-0.782285	0.565700	7030 sleeping;MET 0.95
2016-11-14 06:07:59.990	0.049416	-0.782285	0.565700	7030 sleeping;MET 0.95
2016-11-14 06:08:00.000	0.049416	-0.782285	0.565700	7030 sleeping;MET 0.95

10020001 rows × 4 columns

```
In [6]: annot = pd.read_csv("data/capture24/annotation-label-dictionary.csv", ind
annot
```

Out[6]:

label:WillettsSpecific2018 label:WillettsMET2018

7030 sleeping;MET 0.95	sleep	sleer
occupation; office and administrative support; 11580 office/computer work general; MET 1.5	sitting	sitstand+lowactivity

annotation

general; MET 1.5

class;MET 3.0

occupation; office and
administrative support; 11580
office wok/computer work
sitting sitstand+lowactivity

home
activity;miscellaneous;sitting;9060
sitting/lying reading or without sitting sitstand+lowactivity
observable/identifiable
activities;MET 1.3

transportation; walking; 17250
walking as the single means to a
destination not to work or

mixed-activity
walking

transportation; walking; 17270

walking as the single means to walking walking walking

work or class (not from); MET 3.5

transportation;public
transportation;16016 riding in a vehicle vehicle
bus or train;MET 1.3

householdchores;sitstand+lowactivity;MET household-chores sitstand+lowactivity
2.8

vehicle;MET 1.3 vehicle vehicle

206 rows × 6 columns

In [7]: # using Willetts2018
annot["label:Willetts2018"]

Out [7]: label:Willetts2018

annotation

sleep	7030 sleeping;MET 0.95
sit-stand	occupation; office and administrative support; 11580 office/computer work general; MET 1.5
mixed	home activity; household chores; preparing meals/cooking/washing dishes; 5035 kitchen activity general cooking/washing/dishes/cleaning up; MET 3.3
sit-stand	occupation; office and administrative support; 11580 office wok/computer work general; MET 1.5
sit-stand 	home activity;miscellaneous;sitting;9060 sitting/lying reading or without observable/identifiable activities;MET 1.3
mixed	transportation; walking; 17250 walking as the single means to a destination not to work or class; MET 3.0
walking	transportation; walking; 17270 walking as the single means to work or class (not from); MET 3.5
vehicle	transportation; public transportation; 16016 riding in a bus or train; MET 1.3
mixed	household-chores; sitstand+lowactivity; MET 2.8
vehicle	vehicle;MET 1.3

206 rows × 1 columns

dtype: object

```
In [8]: # mapping data to low dimension annotation
  data["label"] = annot["label:Willetts2018"].reindex(data["annotation"]).t
  data
```

Out [8]: x y z annotation label

time					
2016-11-13 02:18:00.000	-0.466690	-0.533341	0.658472	7030 sleeping;MET 0.95	sleep
2016-11-13 02:18:00.010	-0.466690	-0.533341	0.658472	7030 sleeping;MET 0.95	sleep
2016-11-13 02:18:00.020	-0.466690	-0.533341	0.658472	7030 sleeping;MET 0.95	sleep
2016-11-13 02:18:00.030	-0.466690	-0.533341	0.658472	7030 sleeping;MET 0.95	sleep
2016-11-13 02:18:00.040	-0.466690	-0.533341	0.658472	7030 sleeping;MET 0.95	sleep
•••	•••	•••	•••		•••
2016-11-14 06:07:59.960	0.049416	-0.797846	0.565700	 7030 sleeping;MET 0.95	 sleep
2016-11-14					sleep
2016-11-14 06:07:59.960 2016-11-14	0.049416	-0.797846	0.565700	sleeping;MET 0.95	·
2016-11-14 06:07:59.960 2016-11-14 06:07:59.970 2016-11-14	0.049416	-0.797846 -0.782285	0.565700 0.565700	sleeping;MET 0.95 7030 sleeping;MET 0.95 7030	sleep

10020001 rows × 5 columns

```
In [9]: data.label.unique()
 Out[9]: array(['sleep', nan, 'mixed', 'walking', 'vehicle', 'sit-stand'],
               dtype=object)
In [10]: def window(data, size = "10s"):
           X, Y = [], []
           for time, d in data.resample(size, origin='start'):
               if d.isna().any().any() or len(d) != 1000:
                   continue
               x = d[["x", "y", "z"]].to_numpy()
               y = d["label"].mode(dropna=False).item()
               X.append(x)
               Y.append(y)
           X = np.stack(X)
           Y = np.stack(Y)
           return X, Y
In [11]: # creating the windows
```

X, Y = window(data)In [12]: # plotting the activities plots = 5unique_labels = np.unique(Y) fig, ax = plt.subplots(len(unique_labels), plots, sharex = True, sharey = for label, row in zip(unique_labels, ax): i = np.random.choice(np.where(Y == label)[0], size = plots) row[0].set_ylabel(label) for feature, x in zip(X[i], row): x.plot(feature) $x.set_ylim(-5, 5)$ fig.show() 5.0 2.5 -2.5-5.0 5.0 2.5 sit-stand 0.0 -2.5-5.05.0 2.5 0.0 -2.5-5.05.0 2.5 0.0 -2.5-5.05.0 2.5 0.0 -2.5 500 1000 500 1000 500 1000 1000 1000 # training model to predict activity

```
In [13]: # training model to predict activity
Xf = pd.DataFrame([extract_features(x) for x in X])
Xf
```

Out[13]:		xmin	xq25	xmed	xq75	xmax	ymin	уq
	0	-0.482334	-0.466690	-0.466690	-0.466690	-0.466690	-0.548902	-0.5489
	1	-0.482334	-0.466690	-0.466690	-0.466690	-0.466690	-0.548902	-0.5489
	2	-0.482334	-0.482334	-0.466690	-0.466690	-0.466690	-0.548902	-0.5333
	3	-0.482398	-0.482334	-0.466690	-0.466690	-0.466690	-0.548902	-0.5333
	4	-0.482398	-0.482334	-0.466690	-0.466690	-0.466626	-0.548902	-0.5333
	•••							
	7347	0.033708	0.033772	0.049416	0.049416	0.049416	-0.813407	-0.7978
	7348	0.033708	0.033772	0.049416	0.049416	0.065059	-0.813407	-0.7978
	7349	0.033772	0.049416	0.049416	0.049416	0.049416	-0.797846	-0.7978
	7350	0.033708	0.033772	0.049352	0.049416	0.049416	-0.797846	-0.7978
	7351	0.033708	0.033772	0.049416	0.049416	0.049416	-0.797846	-0.7978

7352 rows × 40 columns

	precision	recall	f1-score	support
mixed sit-stand sleep vehicle walking	1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00 1.00	1.00 1.00 1.00 1.00	1383 2081 2742 588 558
accuracy macro avg weighted avg	1.00 1.00	1.00 1.00	1.00 1.00 1.00	7352 7352 7352

```
In [16]: Yp = rfc.predict(Xf)
sns.heatmap(confusion_matrix(Y, Yp), cmap = "mako", annot = True, fmt = "
plt.show()
```



```
In [17]: # trying to extend model to another person
data = pd.read_csv(
    "data/capture24/P002.csv.gz", compression="gzip",
    index_col="time", parse_dates=["time"],
    dtype={"x": "f4", "y": "f4", "z": "f4", "annotation": "string"}
    )
    data["label"] = annot["label:Willetts2018"].reindex(data["annotation"]).t
    X, Y = window(data)
    Xf = pd.DataFrame([extract_features(x) for x in X])
    Xf
```

Out[17]:

	xmin	xq25	xmed	xq75	xmax	ymin	yq2
(-0.394386	-0.378620	-0.378620	-0.362854	-0.331323	0.444236	0.45996
,	I -0.410152	-0.378620	-0.378620	-0.378620	-0.347089	0.444236	0.45996
2	-0.410152	-0.394386	-0.378620	-0.378620	-0.347089	0.444236	0.45996
3	-0.410152	-0.394386	-0.378620	-0.378620	-0.347089	0.444236	0.45996
4	-0.410152	-0.394386	-0.378620	-0.378620	-0.347089	0.444236	0.45996
••	•						
558′	-0.360339	-0.344573	-0.344573	-0.344573	-0.328807	-0.732336	-0.71660
5582	2 -0.344933	-0.344933	-0.344573	-0.344573	-0.328807	-0.717062	-0.70133
5583	-0.344933	-0.344933	-0.344573	-0.344573	-0.328807	-0.717062	-0.70133
5584	-0.344933	-0.344933	-0.344933	-0.344933	-0.329167	-0.717062	-0.70133
5585	5 -0.344933	-0.344933	-0.344933	-0.344933	-0.329167	-0.717062	-0.70133

5586 rows × 40 columns

```
In [18]: # checking metrics
print(classification_report(Y, rfc.predict(Xf), zero_division=0))
```

	precision	recall	f1-score	support
bicycling mixed sit-stand sleep vehicle walking	0.00 0.40 0.69 0.93 0.00 0.52	0.00 0.77 0.52 0.78 0.00 0.24	0.00 0.52 0.59 0.85 0.00	230 724 2073 2160 0 399
accuracy macro avg weighted avg	0.42 0.70	0.39 0.61	0.61 0.38 0.64	5586 5586 5586

```
In [19]: # plotting prediction heatmap
Yp = rfc.predict(Xf)
sns.heatmap(confusion_matrix(Y, Yp), cmap = "mako", annot = True, fmt = "
plt.show()
```

