1.
$$B = \frac{\mu_0 I}{2R}$$
 (3 въпрос), $B = \frac{4\pi.10^{-7}.5}{2 \cdot 10^{-1}} = \pi.10^{-5} \text{ T}$.

- 2. Закон на Ампер (4 въпрос) $F = IBl \sin \alpha = 0 \text{ N}$, тъй като $\alpha = 0$.
- 3. $\Phi_B = \int_S B \cos \beta dS = B \cos \beta \int_S dS = BS \cos \beta = B\pi R^2 \cos \beta$ (5 въпрос), $\Phi_B = \pi . 1.10^{-4} . \frac{1}{2} = 5\pi . 10^{-5} \, \text{Wb}$, тъй като ъгълът β е между посоката на индукцията и нормалата към повърхността, т.е. $\beta = \pi/2 \alpha$.
- 4. $\vec{F} = \vec{qv} \times \vec{B}$, сила на Лоренц (7 въпрос).
- 5. Закон на Фарадей (9 въпрос) $\varepsilon_i = -\frac{d\Phi_B}{dt}$. За краен интервал от време Δt , $\varepsilon_i = -\frac{\Delta\Phi_B}{\Delta t} \Rightarrow \Delta\Phi_B = -\varepsilon_i \Delta t$. Тъй като не се интересуваме от посоката, а само от големината на промяната на потока, $\Delta\Phi_B = 10.10^{-2} = 0.1 \, \mathrm{Wb}$.
- 6. Магнитният поток през соленоида е $\Phi_B = LI$ (10 въпрос). Общият поток през всичките N навивки е $\Phi_B = N\Phi_0$, където $\Phi_0 = BS = \mu_0 \frac{N}{l} IS$ е потокът през една навивка ($\vec{B} \perp \vec{S}$, тъй като магнитното поле вътре в соленоида е насочено по оста му и $B = \mu_0 \frac{N}{l} I$, 5 въпрос). $\frac{\mu_0 N^2 IS}{l} = LI \Rightarrow L = \frac{\mu_0 N^2 S}{l}$, $L = \frac{4\pi.10^{-7}.25.10^2.10.10^{-4}}{25.10^{-2}} = 4\pi.10^{-6} \text{H}$.
- 7. $T = 2\pi \sqrt{\frac{l}{g}}$ (12 въпрос). $T = 2\pi \sqrt{\frac{9,8.10^{-2}}{9,8}} = 2\pi.10^{-1} = \frac{\pi}{5}$ s (масата на тялото при математично махало не е от значение).
- 8. Когато тяло извършва хармонични трептения (собствени незатихващи) е изпълнен закона за запазване на пълната механична енергия (12 въпрос). Следователно максималната му кинетична (и максималната потенциална) енергия е равна на пълната му механична енергия $E_{k\,\text{max}} = E_{p\,\text{max}} = E = \frac{1}{2} k A^2 = \frac{1}{2} m \omega^2 A^2$ (12 въпрос).
- 9. $x = A_0 e^{-\beta t} \cos(\omega t + \varphi)$ (15 въпрос).
- 10. $I = \frac{E}{St}$ (17 въпрос). $I = \frac{50}{20.10^{-4}.5} = 5.10^3 \frac{\text{W}}{\text{m}^2}$.
- 11. кохерентни източници (18 въпрос).
- 12. Условие за минимум при дифракция от процеп $a \sin \varphi = m\lambda \Rightarrow \sin \varphi = \frac{m\lambda}{a}$ (21 въпрос). В случая m=2 и $\sin \varphi = \frac{2.5 \cdot 10^{-7}}{2.10^{-6}} = 0,5 \Rightarrow \varphi = \frac{\pi}{6}$ rad.
- 13. Формулировка на закона на Брюстер с думи и формула (22 въпрос).
- 14. Закон на Вин $\lambda_{\text{max}} = \frac{b}{T}$ (23 въпрос). $\Delta \lambda = \lambda_1 \lambda_2 = b \left(\frac{1}{T_1} \frac{1}{T_2} \right)$ и тъй като $T = t^\circ + 273$, $\Delta \lambda = 2, 9.10^{-3} \left(\frac{1}{2.10^3} \frac{1}{4.10^3} \right) = \frac{2.9}{4}.10^{-6} \, \text{m} \, .$
- 15. $\lambda = \frac{h}{m_p v} = \frac{h}{\sqrt{2em_p U}}$ (25 въпрос) (Тъй като $eU = \frac{1}{2}m_p v^2 \Rightarrow v = \sqrt{\frac{2eU}{m_p}}$, работа на електрична сила, 25 въпрос, Физика 1). $\lambda = \frac{6,62.10^{-34}}{\sqrt{2.1,6.10^{-19}.1,6.10^{-27}.200}} = \frac{6,62}{3,2}.10^{-12} \approx 2,07.10^{-12}\,\mathrm{m}$.
- 16. $dW = |\Psi|^2 dV$, (26 въпрос).
- 17. Формулировка на съотношенията на Хайзенберг с думи и формули (26 въпрос).
- 18. Формулировка на трите постулата на Бор с думи и формули (27 въпрос).

- 19. Разликата в оптичните пътища на двете вълни трябва да бъде $\Delta_{\min} = (2m+1)\frac{\lambda}{2}$ (18 въпрос). Извод от формулите за амплитудата на резултантно трептение при събиране на трептения с еднакви направления (13 въпрос) и връзката на вълновото число със скоростта $k = \frac{\omega}{\nu}$ и дължината на вълната $k = \frac{2\pi}{\lambda}$ (17 въпрос).
- 20. Използваме уравнението на Айнщайн за фотоефекта $E=hf=A+\frac{mv_{\text{max}}}{2}=A+eU_{_{3ад}}$ (24 въпрос). За първия метал уравнението има вида $E_1=A_1+eU_1$, а за втория $E_2=A_2+eU_2$. Тъй като светлината, която предизвиква фотоефект, е една и съща в двата случая, то $E_1=E_2$ (енергията на фотоните зависи само от честотата им) и следователно $A_1+eU_1=A_2+eU_2 \Rightarrow A_2=A_1+e\left(U_1-U_2\right)$. $A_2=5,32.1,6.10^{-19}-1,6.10^{-19}.0,2=5,12.1,6.10^{-19}$ J=5,12 eV (1 eV=1,6.10⁻¹⁹ J).