PENSUM

MAT1110

V2012

Pensum fra boka

Joakim Myrvoll Johansen

Flervariabel analyse med lineær algebra, Tom Lindstrøm og Klara Hovberg Kalkulus, Tom Lindstrøm, 3. Utgave

Innhold

Pensum fr	a "Flervariabel analyse med lineær algebra"	4
KAP2 -	- FUNKSJONER FRA \mathbb{R}^n TIL \mathbb{R}^m	4
2.7	KJERNEREGELEN	4
KAP1 -	- VEKTORER OG MATRISER	4
1.9	LINEÆRAVBILDNINGER	4
1.10	AFFINAVBILDNINGER	5
KAP2 -	- FUNKSJONER FRA $\mathbb{R}^{ ext{n}}$ TIL $\mathbb{R}^{ ext{m}}$	6
2.8	LINEARISERING	6
KAP3 -	- KURVER OG FLATER	7
3.1	PARAMETRISERTE KURVER	7
3.2	KJERNEREGELEN FOR PARAMETRISERTE KURVER	
3.3	LINJEINTEGRALER FOR SKALARFELT	8
3.4	LINJEINTEGRALER FOR VEKTORFELT	9
3.5	GRADIENTER OG KONSERVATIVE FELT	. 10
3.6	KJEGLESNITT	11
3.7	GRAFISK FREMSTILLING AV SKALARFELT	
3.8	GRAFISK FREMSTILLING AV VEKTORFELT	. 12
3.9	PARAMETRISERTE FLATER	. 12
KAP6 -	- INTEGRASJON	. 13
UNII	FORMT KONTINUERLIG	
6.1	DOBBELTINTEGRALER OVER REKTANGLER	. 13
6.2	DOBBELTINTEGRALER OVER BEGRENSEDE OMRÅDER	. 15
6.3	DOBBELTINTEGRALER I POLARKORDINATER	
6.4	ANVENDELSER AV DOBBELTINTEGRALER	. 15
6.5	GREENS TEOREM	
*6.6	JORDAN-MÅLBARE MENGDER	
6.7	SKIFTE AV VARIABLE I DOBBELTINTEGRALER	. 17
6.8	UEGENTLIGE INTEGRALER I PLANET	
6.9	TRIPPELINTEGRALER	. 20
6.10	SKIFTE AV VARIABLE I TRIPPELINTEGRALER	
6.11	ANVENDELSER AV TRIPPELINTEGRALER	
KAP4 -	- LINEÆR ALGEBRA I \mathbb{R}^n	
4.1	NOEN EKSEMPLER PÅ GAUSS-ELIMINASJON	
4.2	TRAPPEFORM	. 23
4.3	REDUSERT TRAPPEFORM	. 24

4.4	MATRISELIGNINGER	25
4.5	INVERSE MATRISER	25
4.6	LINEÆRKOMBINASJONER OG BASISER	26
4.8	ELEMENTÆRE MATRISER	27
4.9	DETERMINANTER	28
4.10	EGENNVEKTORER OG EGENVERDIER	30
4.11	EGENNVEKTORER I PRAKSIS	31
KAP5 –	- ITERASJON OG OPTIMERING	31
5.1	LITT TOPOLOGI I \mathbb{R}^m	31
5.2	KOMPLETTHET AV \mathbb{R}^m	32
5.4	ITERASJON AV FUNKJSONER	33
5.5	KONVERGENS MOT ET FIKSPUNKT	33
5.6	NEWTONS METODE I FLERE VARIABLE	34
5.7	OMVENDTE OG IMPLISITTE FUNKSJONER	35
5.8	EKSTREMALVERDISETNINGEN	36
5.9	MAKSIMUMS- OG MINIMUMSPUNKTER	36
5.10	LAGRANGES MULTIPLIKATORMETODE	37
5.11	GRADIENTMETODEN	37
MATLA	AB-appendiks	37
Pensum fr	a "KALKULUS"	37
KAP12	– REKKER	37
12.1	KONVERGENS AV REKKER	37
12.1	REKKER MED POSITIVE LEDD	37
12.3	ALTERNERENDE REKKER	37
12.4	ABSOLUTT OG BETINGET KONVERGENS	37
12.5	REKKER AV FUNKSJONER	37
12.6	KONVERGENS AV POTENSREKKER	37
12.7	REGNING MED POTENSREKKER	37
12.8	TAYLOR-REKKER	38

*ikke krav til eksamen

STIKKORD			

Pensum fra "Flervariabel analyse med lineær algebra"

$KAP2 - FUNKSJONER FRA \mathbb{R}^n TIL \mathbb{R}^m$

2.7 KJERNEREGELEN

2.7.1 Teorem (kjerneregelen på matriseform)

Anta at vi har to mengder A delmengde av $|R^n$, B delmengde av $|R^m$ og to funkjsoner G: A --> B, $F: B --> |R^k$. Dersom G er deriverbar i punktet a tilhører A, og F er deriverbar i punktet b = G(a), så er den sammensatte funkjsonen H(x) = F(G(x)) dervierbar i a, og Jacobi-matrisen til a er gitt ved

$$\mathbf{H}'(\mathbf{a}) = \mathbf{F}'(\mathbf{G}(\mathbf{a})) \mathbf{G}'(\mathbf{a})$$

2.7.2 Teorem (kjerneregelen på komponentform)

Anta at vi har to mengder A delmengde av $|R^n$, B delmengde av $|R^m$ og to funkjsoner G: A --> B, F: B --> $|R^k$. Dersom G er deriverbar i punktet a tilhører A, og F er deriverbar i punktet b = G(a), så er den sammensatte funkjsonen H(x) = F(G(x)) dervierbar i a, og de partiellderiverte til **H** er gitt ved

$$\begin{split} \frac{\delta H_i}{\delta x_j}(\mathbf{a}) &= \sum_{p=1}^m \frac{\delta F_i}{\delta u_p}(\mathbf{G}(\mathbf{a})) \frac{\delta G_p}{\delta x_j}(\mathbf{a}) \\ &= \frac{\delta F_i}{\delta u_1}(\mathbf{G}(\mathbf{a})) \frac{\delta G_1}{\delta x_i}(\mathbf{a}) + \frac{\delta F_i}{\delta u_2}(\mathbf{G}(\mathbf{a})) \frac{\delta G_2}{\delta x_i}(\mathbf{a}) + \ldots + \frac{\delta F_i}{\delta u_m}(\mathbf{G}(\mathbf{a})) \frac{\delta G_m}{\delta x_i}(\mathbf{a}) \end{split}$$

KAP1 – VEKTORER OG MATRISER

1.9 LINEÆRAVBILDNINGER

1.9.1 <u>Definisjon</u>

En funksjon $T : |R^n \to |R^m$ kalles en lineæravbildning dersom vi for alle c tilhørt av |R| og alle x, y tilhørt av |R| har:

- (i) $\mathbf{T}(\mathbf{c}\mathbf{x}) = \mathbf{c}\mathbf{T}(\mathbf{x})$
- (ii) $\mathbf{T}(\mathbf{x} + \mathbf{y}) = \mathbf{T}(\mathbf{x}) + \mathbf{T}(\mathbf{y})$

1.9.2 Setning

Anta at
$$\mathbf{T}: |\mathbf{R}^n \to |\mathbf{R}^m$$
 er en lineæravbildning. Da er
$$\mathbf{T}(c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \ldots + c_k\mathbf{x}_k) = c_1\mathbf{T}(\mathbf{x}_1) + c_2\mathbf{T}(\mathbf{x}_2) + \ldots + c_k\mathbf{T}(\mathbf{x}_k)$$

for alle tall $c_1, c_2, ..., c_k$ tilhørt av |R| og alle vektorer $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ tilhørt $|R|^n$.

1.9.3 Setning

Anta at A er en m x n-matrise. Da er funksjonen $T: |R^n \to R^m$ definert ved T(x) = Ax en lineæravbildning

1.9.4 Setning

Anta at $\mathbf{T}: |\mathbf{R}^n \to |\mathbf{R}^m$ er en lineæravbildning. Da finnes det en mx n-matrise A slik at $\mathbf{T}(\mathbf{x}) = A\mathbf{x}$ for alle \mathbf{x} tilhørt av $|\mathbf{R}^n|$.

Matrsien A er gitt ved at den j-te søylen er $T(e_i)$ der e_i er den j-te enhetsvektoren.

$$\mathbf{e}_{j} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \leftarrow j - te \ komponent$$

Vi kaller A matrisen til lineæravbildningen T.

1.9.5 <u>Definisjon</u>

Anta at $T: |\mathbb{R}^n \to \mathbb{R}^n$ er en lineæravbildning. Vi kaller $\mathbf{x} \neq \mathbf{0}$ en egenvektor for T dersom det finnes et tall λ slik at

$$T(x) = \lambda x$$

Tallet λ kaller vi egenverdien til \mathbf{x} .

1.10 AFFINAVBILDNINGER

1.10.1 Definisjon

En funksjon $\mathbf{F}: |\mathbf{R}^n| --> |\mathbf{R}^m|$ kalles en affinavbildning dersom det finnes en m x n-matrise A og en vektor \mathbf{c} tilhørt av $|\mathbf{R}^m|$ slik at

$$\mathbf{F}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{c}$$
 for alle \mathbf{x} tilhørt av $|\mathbf{R}^n|$

Vi kaller A matrisen til **F** og **c** konstantleddet til **F**.

1.10.2 Setning

Anta at $\mathbf{F}(\mathbf{x}) = A\mathbf{x} + \mathbf{c}$ er en affinavbildning fra $|\mathbf{R}^n|$ til $|\mathbf{R}^m|$, og la $\mathbf{r}(t) = \mathbf{a} + t\mathbf{b}$ være parameterfremstillingen til en linje L i $|\mathbf{R}^n|$. Der $A\mathbf{b} \neq \mathbf{0}$, vil bildet av L under \mathbf{F} være linjen i $|\mathbf{R}^m|$ som går gjennom punktet $\mathbf{F}(\mathbf{a})$ og har retningsvektor $A\mathbf{b}$.

Bevis:

$$\mathbf{F}(\mathbf{r}(t)) = \mathbf{A}(\mathbf{a} + t\mathbf{b}) + \mathbf{c} = \mathbf{A}\mathbf{a} + \mathbf{c} + \mathbf{t}(\mathbf{A}\mathbf{b}) = \mathbf{F}(\mathbf{a}) + \mathbf{t}(\mathbf{A}\mathbf{b})$$

som er parameterfremstillingen til en rett linje som går gjennom punktet $\mathbf{F}(\mathbf{a})$ og har retningsvektor $A\mathbf{b}$.

1.10.3 Setning

Dersom $\mathbf{F}: |\mathbf{R}^2 --> |\mathbf{R}^2 \text{ er en affinavbildning med matrise A, så forstørrer } \mathbf{F} \text{ arealer med en faktor } |\det(\mathbf{A})|$. Dersom $\mathbf{F}: |\mathbf{R}^3 --> |\mathbf{R}^3 \text{ er en affinavbildning med matrise A, så forstørrer } \mathbf{F} \text{ volumer med en faktor } |\det(\mathbf{A})|$.

$KAP2 - FUNKSJONER FRA \mathbb{R}^n TIL \mathbb{R}^m$

2.8 LINEARISERING

2.8.1 Setning

Anta at affinavbildningen $\mathbf{F} : |\mathbf{R}^{n}| --> |\mathbf{R}^{m}|$ er gitt ved $\mathbf{F}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{c}$. Da er Jacobi-matrisen til \mathbf{F} lik matrisen A til \mathbf{F}

2.8.2 <u>Definisjon</u>

Anta at $\mathbf{F}: A \dashrightarrow |R^m$ er en funksjon av n variable som er dervierbar i punktet \mathbf{a} . Affinavbildning $T_{\mathbf{a}}\mathbf{F}(\mathbf{x}): |R^n \dashrightarrow |R^m$ gitt ved

$$T_{\mathbf{a}}\mathbf{F}(\mathbf{x}) = \mathbf{F}(\mathbf{a}) + \mathbf{F}'(\mathbf{a})(\mathbf{x} - \mathbf{a})$$

kalles lineariseringen til **F** i punktet **a**.

2.8.3 Teorem

Anta at $\mathbf{F}: A \longrightarrow |\mathbf{R}^m|$ er en funksjon av n variable som er deriverbar i punktet \mathbf{a} , og la $T_{\mathbf{a}}\mathbf{F}$ være lineariseringen til \mathbf{F} i \mathbf{a} . Da er

$$\lim_{r\to 0}\frac{1}{|r|}(\boldsymbol{F}(\boldsymbol{a}+\boldsymbol{r})-T_{\boldsymbol{a}}\boldsymbol{F}(\boldsymbol{a}+\boldsymbol{r}))=0$$

Det finnes ingen annen affinavbildning $\mathbf{G}: |\mathbf{R}^n --> |\mathbf{R}^m$ slik at

$$\lim_{r\to 0}\frac{1}{|r|}(F(a+r)-G(a+r))=0$$

KAP3 – KURVER OG FLATER

3.1 PARAMETRISERTE KURVER

3.1.1 <u>Definisjon</u>

En parametrisert kurve $|R^n|$ er en kontinuerlig funksjon $\mathbf{r}: I --> |R^n|$ der I er delmengde av |R| er et intervall. Vi skriver ofte funksjonen på komponentform

$$\mathbf{r}(t) = (x_1(t), x_2(t), ..., x_n(t))$$

Parametriserte kurver kalles også vektorvaluerte funksjoner.

3.1.2 Definisjon

Anta at funksjonene $x_1, x_2, ..., x_n$ er deriverbare med kontinuerlige deriverte. Da er buelengden til den parametriserte kurven $\mathbf{r}(t) = (x_1(t), x_2(t), ..., x_n(t))$ fra a til b

$$L(a,b) = \int_{a}^{b} \sqrt{x_1'(t)^2 + x_2'(t)^2 + \dots + x_n'(t)^2} dt$$

3.1.3 Definisjon

Anta at funksjonene $x_1, x_2, ..., x_n$ er deriverbare i punktet t. Da sier vi at den parametriserte kurven $\mathbf{r}(t) = (x_1(t), x_2(t), ..., x_n(t))$ er deriverbar i t, og at den deriverte er $\mathbf{v}(t) = \mathbf{r}'(t) = (x_1'(t), x_2'(t), ..., x_n'(t))$

I situasjoner der $\mathbf{r}(t)$ representerer posisjonen til en gjenstant ved tiden t, kaller vi $\mathbf{v}(t)$ for hastigeheten til gjenstanden.

3.14 Setning

Dersom $\mathbf{r}_1(t)$ og $\mathbf{r}_2(t)$ er to deriverbare parametriserte kurver, gjelder:

- (i) $(\mathbf{r}_1(t) + \mathbf{r}_2(t)) = \mathbf{r}_1(t) + \mathbf{r}_2(t)$
- (ii) $(\mathbf{r}_1(t) \mathbf{r}_2(t)) = \mathbf{r}_1 (t) \mathbf{r}_2 (t)$
- (iii) $(\mathbf{r}_1(t) \cdot \mathbf{r}_2(t)) = \mathbf{r}_1(t) \cdot \mathbf{r}_2(t) + \mathbf{r}_1(t) \cdot \mathbf{r}_2(t)$
- (iv) $(\mathbf{r}_1(t) \times \mathbf{r}_2(t)) = \mathbf{r}_1(t) \times \mathbf{r}_2(t) + \mathbf{r}_1(t) \times \mathbf{r}_2(t)$
- (v) Dersom $\mathbf{r}(t)$ er en deriverbar parametrisert kurve og $\mathbf{u}(t)$ er en deriverbar funksjon, er $(\mathbf{u}(t)\mathbf{r}(t))$ '= \mathbf{u} '(t) $\mathbf{r}(t)$ + $\mathbf{u}(t)\mathbf{r}$ '(t)

3.1.5 Korollar

Dersom $|\mathbf{r}(t)|$ er konstant, så er $\mathbf{r}(t)$ og \mathbf{r} '(t) ortogonale.

3.1.6 Setning

Dersom $\mathbf{v}(t) \neq \mathbf{0}$, kan akselerasjonen $\mathbf{a}(t)$ dekomoponeres i to ortogonale vektorer $\mathbf{a}(t) = \mathbf{a}(t)\mathbf{T}(t) + \mathbf{v}(t)\mathbf{T}'(t)$

der $\mathbf{a}(t)\mathbf{T}(t)$ er parallell med tangenten og $\mathbf{v}(t)\mathbf{T}$ '(t) står normalt på tangenten.

3.2 KJERNEREGELEN FOR PARAMETRISERTE KURVER

3.2.1 Setning

Hvis den parametriserte kurven $\mathbf{r}(t) = (x_1(t), ..., x_n(t))$ er deriverbar i punktet t tilhørt av I, og skalarfeltet $f: |R^n --> |R$ er deriverbar i punktet $\mathbf{r}(t)$, så er funksjonen $u(t) = f(\mathbf{r}(t))$ deriverbar i t, og

$$u^{\,\prime}(\,t) = \frac{\delta\,f}{\delta\,x_1}(\boldsymbol{r}\,(t))x_1^{\,\,\prime}(t) + \frac{\delta\,f}{\delta\,x_2}(\boldsymbol{r}\,(t))x_2^{\,\,\prime}(t) + \ldots + \frac{\delta\,f}{\delta\,x_n}(\boldsymbol{r}\,(t))x_n^{\,\,\prime}(t) = \nabla\,f(\boldsymbol{r}\,(t))\cdot\boldsymbol{r}^{\,\prime}(\,t)$$

3.2.2 Setning

La \mathbf{F} : A --> $|\mathbf{R}^{m}|$ være en funksjon av n + 1 variable. Dersom den parametriserte kurven $\mathbf{r}(t) = (\mathbf{x}_{1}(t), \mathbf{x}_{2}(t), \dots, \mathbf{x}_{n}(t))$ er deriverbar i punktet t, og \mathbf{F} er deriverbar i punktet ($\mathbf{r}(t)$, t), så er den sammensatte funksjonen $\mathbf{U}(t) = \mathbf{F}(\mathbf{r}(t),t)$ deriverbar i t og

$$U'(t) = \frac{\delta F}{\delta x_1}(\mathbf{r}(t))x_1'(t) + \dots + \frac{\delta F}{\delta x_n}(\mathbf{r}(t))x_n'(t) + \frac{\delta F}{\delta t}(\mathbf{r}(t),t)$$

3.2.3 <u>Setning (Middelverdisetningen for funksjoner av flere variable)</u>

Anta at f: A -->|R| er en funksjon av m variable, og at f er deriverbar i et område som inneholder linjestykket mellom punktene a, b tilhørt av $|R|^m$. Da finnes det et punkt c på linjestykket fra a til b slik at

$$f(\mathbf{b}) - f(\mathbf{a}) = \nabla f(\mathbf{c}) \cdot (\mathbf{b} - \mathbf{a})$$

3.3 LINJEINTEGRALER FOR SKALARFELT

3.3.1 Definisjon

Anta at $f: A \longrightarrow |R|$ er en funksjon av n variable, og at $\mathbf{r}: [a,b] \longrightarrow A$ er en stykkevis glatt parametrisering av en kurve C. Linjeintegralet til C er definert ved

$$\int_{C} f ds = \int_{a}^{b} f(\mathbf{r}(t)) v(t) dt$$

forutsatt at dette er integralet eksisterer som et vanlig eller uegentlig integral.

3.3.2 Setning

Anta at r er en stykkevis glatt parametrisering og at f, g er to kontinuerlige funksjoner slik at integralene eksisterer. Da er

$$(i) \int_C (f+g) ds = \int_C f ds + \int_C g ds$$

(ii)
$$\int_C (f-g) ds = \int_C f ds - \int_C g ds$$

$$(iii)$$
 $\int_{C} af ds = a \int_{C} f ds$ for all $e \in \mathbb{R}$

3.3.3 Setning

Anta at \mathbf{r} er en stykkevis glatt parametrisering av kurven C og at f er en kontinuerlig funksjon slik at integralet (int from $\{C\}$ f ds) eksisterer. Dersom

$$a = t_0 < t_1 < ... < t_m = b$$

er en partisjon av [a,b], og C_i er kurven parametrisert ved $\mathbf{r}:[t_{i-1},t_i] --> |R^n|$ (vi deler altså kurven opp i m biter og lar C_i være den i-te bite), så er

$$\int_{C} f \, ds = \int_{C_{1}} f \, ds + \int_{C_{2}} f \, ds + \dots + \int_{C_{m}} f \, ds$$

3.3.4 <u>Definisjon</u>

Anta at $\mathbf{r_1}$: [a,b] --> $|\mathbf{R}^{\mathbf{n}}|$ og $\mathbf{r_2}$: [c,d] --> $|\mathbf{R}^{\mathbf{n}}|$ er to stykkevis glatte parametriseringer. Vi aier at $\mathbf{r_1}$ og $\mathbf{r_2}$ er ekvivalente dersom det finnes en funksjon Φ : [a,b] --> [c,d] slik at:

- (i) $\mathbf{r}_2(\Phi(t)) = \mathbf{r}_1(t)$ for alle t tilhørt av [a,b]
- (ii) Φ er kontinuerlig med verdimengde [c,d]
- (iii) Φ ' er kontinuerlig og forskjellig fra 0 på intervallet (a,b).

Dersom Φ er strengt voksende, sier vi at $\mathbf{r_1}$ og $\mathbf{r_2}$ har samme orientering; dersom Φ er strengt avtagende, sier vi at de har motsatt orientering.

3.3.5 Setning

Anta at $\mathbf{r_1}$: [a,b] --> $|\mathbf{R}^{\mathbf{n}}|$ og $\mathbf{r_2}$: [c,d] --> $|\mathbf{R}^{\mathbf{n}}|$ er to ekvivalente, stykkevis glatte parametriseringer av kurven C. Da har integralet (int from{C} f ds) samme verdi uansett hvilken parametrisering vi bruker.

3.4 LINJEINTEGRALER FOR VEKTORFELT

3.4.1 Definision

Anta at $\mathbf{F}: A --> |\mathbf{R}^n|$ er en kontinuerlig funksjon av n variable, og at $\mathbf{r}: [a,b] --> A$ er en stykkevis glatt parametrisering av en (orientert) kurve C. Da er linjeintegralet (int from $\{C\}$ \mathbf{F} d \mathbf{r}) definert ved

$$\int_{C} \mathbf{F} d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$$

forutsatt at integralet til høyre eksisterer som et vanlig eller uegentlig integral.

3.4.2 Setning

Anta at \mathbf{r} er en stykkevis glatt parametrisering av en kurve C og at \mathbf{F} , \mathbf{G} er to kontinuerlige vektorfelt slik at integralene (int from $\{C\}$ \mathbf{F} d \mathbf{r}) og (int from $\{C\}$ \mathbf{G} d \mathbf{r}) eksisterer. Da er

(i)
$$\int_{C} (\mathbf{F} + \mathbf{G}) \cdot d\mathbf{r} = \int_{C} \mathbf{F} \cdot d\mathbf{r} + \int_{C} \mathbf{G} \cdot d\mathbf{r}$$

(ii)
$$\int_{C} (\mathbf{F} - \mathbf{G}) \cdot d\mathbf{r} = \int_{C} \mathbf{F} \cdot d\mathbf{r} - \int_{C} \mathbf{G} \cdot d\mathbf{r}$$

$$(iii) \int_{C} a \mathbf{F} \cdot d \mathbf{r} = a \int_{C} \mathbf{F} \cdot d \mathbf{r} \qquad \text{for all } e a \in \mathbb{R}$$

3.4.3 Setning

Anta at \mathbf{r} er en stykkevis glatt parametrisering av kurven C og at \mathbf{F} er et kontinuerlig vektorfelt slik at integralet (int $\{C\}$ \mathbf{F} d \mathbf{r}) eksisterer. Dersom

$$a = t_0 < t_1 < ... < t_m = b$$

er en partisjon av [a,b], og C_i er kurven parametrisert ved $\mathbf{r}:[t_{i-1},t_i] \dashrightarrow |R^n$ (vi deler altså kurven opp i m biter og lar C_i være den i-te biten), så er

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C_{1}} \mathbf{F} \cdot d\mathbf{r} + \int_{C_{2}} \mathbf{F} \cdot d\mathbf{r} + \dots + \int_{C_{n}} \mathbf{F} \cdot d\mathbf{r}$$

3.4.4 Setning

Anta at $\mathbf{r_1}$: [a,b] --> $|\mathbf{R}^n$ og $\mathbf{r_2}$: [c,d] --> $|\mathbf{R}^n$ er to ekvivalente, stykkevis glatte parametriseringer av kurven C. Dersom de to parametriseringene har samme orientering, får integralet (int from{C} \mathbf{F} d \mathbf{r}) samme verdi uansett hvilken av dem vi bruker. Dersom parametriseringene har motsatt orientering, får integralene samme tallverdi, men motsatt fortegn.

3.5 GRADIENTER OG KONSERVATIVE FELT

3.5.1 Setning

Anta at $\Phi: A$ --|R er en funksjon av n variable med kontinuerlig gradient. Dersom $\mathbf{r}: [a,b]$ --> A parametriserer en stykkevis glatt kurve C som begynner i punktet \mathbf{a} og ender i punktet \mathbf{b} (dvs. $\mathbf{r}(a) = \mathbf{a}$ og $\mathbf{r}(b) = \mathbf{b}$), så er

$$\int_{C} \nabla \Phi d \, r = \Phi(b) - \Phi(a)$$

3.5.2 Definisjon

Dersom vektorfelt \mathbf{F} er lik gradienten til et skalarfelt Φ i et område A (vi har altså $\mathbf{F}(\mathbf{x}) = \nabla \Phi(\mathbf{x})$ for alle $\mathbf{x} \in A$),

sier vi at \mathbf{F} er konservativt i A, og vi kaller Φ en potensialfunksjon.

3.5.3 Setning

Amta at $\mathbf{F}(\mathbf{x}) = (F_1(\mathbf{x}), F_2(\mathbf{x}), ..., F_n(\mathbf{x}))$ er et vektorfelt med kontinuerlige partiellderiverte. Dersom \mathbf{F} er konservativt i området A, er

$$\frac{\delta F_i}{\delta x_i}(x) = \frac{\delta F_j}{\delta x_i}(x)$$

for alle $x \in A$ og alle indekser i , j.

3.5.4 Teorem

Anta $\mathbf{F} = A --> |\mathbf{R}^{\mathbf{n}}|$ er et vektorfelt definer på et enkeltsammenhengende område A som er delmengde av $|\mathbf{R}^{\mathbf{n}}|$. Da er \mathbf{F} konservativt hvis og bare hvis

$$\frac{\delta F_i}{\delta x_i}(x) = \frac{\delta F_j}{\delta x_i}(x)$$

for alle indekser i, j og alle $x \in A$.

3.6 **KJEGLESNITT**

Parabel:

3.6.1 Setning

> Parabelen med brennpunkt F(a, 0) og styrelinje x = -a har ligning $y^2 = 4ax$

Setning (Refleksjonsegenskap for parabler)

Enhver stråle som kommer inn parallelt med aksen til en parabel, reflekteres gjennom brennpunktet.

Ellipse:

3.6.3 Setning

Ligningen

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

fremstiller en ellipse med sentrum i origo og halvakser a og b. Dersom a > b, er brennpunktene (c,0) og (-c,0) der $c = sqrt(a^2 - b^2)$. Dersom a < v, er brennpunktene (0,c) og (0,-c) der $c = sqrt(b^2 - a^2)$. Dersom a = b, er ellipsen en sirkel med radius r = a = b. Brennpunktene faller da sammen og ligger i sentrum av sirkelen.

Setning (Refleksjonsegenskap for ellipser)

En stråle som går ut fra det ene brennpunktet til en ellipse, reflekteres gjennom det andre.

Hyperbler:

3.6.5 Setning

Ligningen

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{1}{a^2}$$

fremstiller en hyperbel med halvakse a og med brennpunkt i (-c,0) og (c,0) der c= $sqrt(a^2 + b^2)$. Ligningen

$$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$

fremstiller en hyperbel med halvakse b og med brennpunkt i (0,-c) og (0,c).

3.6.6 Setning

Hyperblene

$$\frac{(x-m)^2}{a^2} - \frac{(y-n)^2}{b^2} = 1$$

$$\frac{(y-n)^2}{b^2} - \frac{(x-m)^2}{a^2} = 1$$

har asymptotene

$$y - n = \pm \frac{b}{a}(x - m)$$

$$n a x \rightarrow \pm \infty$$

3.6.7 Setning

En stråle som kommer fra utsiden av en hyperbel med retning mot det ene brennpunktet, reflekteres i retning av det andre brennpunktet.

3.7 GRAFISK FREMSTILLING AV SKALARFELT

3.7.1 <u>Definisjon</u>

Anta at f: A --> |R er en funksjon av n variable, og at c tilhørt av |R| er et tall. Da kalles mengden

$$N_C = \{x \text{ tilhørt } A \mid f(x) = c\}$$

en nivåflate for f.

3.7.2 Setning

Anta at f : A --> |R er en funksjon av n variable, og at f er deriverbar i punktet a. Dersom f(a) = c, står gradienten til f(a) alltid normalt på nivåflaten N_C i følgende forstand: Dersom \mathbf{r} er en deriverbar kurve som ligger på nivåflaten (dvs. $f(\mathbf{r}(t)) = c$ for alle t), og \mathbf{r} er i punktet \mathbf{a} ved tiden t_0 , så er $\nabla f(a) \cdot \mathbf{r}'(t_0) = 0$

dvs. tangentvektoren til kurven i punktet a står normalt på gradienten til f(a) i punktet.

3.7.3 Definisjon

Anta at $f: A \longrightarrow |R|$ er en funksjon av to variable, og at f er deriverbar i punket (x_0, y_0) . Tangentplanet til f i punktet $(x_0, y_0, f(x_0, y_0))$ er da definert ved ligningen

$$z = f(x_0, y_0) + \frac{\delta f}{\delta x}(x_0, y_0)(x - x_0) + \frac{\delta f}{\delta y}(x_0, y_0)(y - y_0)$$

Normalvektoren i punktet er gitt ved vektoren

$$\boldsymbol{n} = -\frac{\delta f}{\delta x}(x_0, y_0) \boldsymbol{i} - \frac{\delta f}{\delta y}(x_0, y_0) \boldsymbol{j} + \boldsymbol{k}$$

3.7.4 <u>Definisjon</u>

Anta at $f: A \longrightarrow |R|$ er en funksjon av n variable, og at f er deriverbar i punktet a. Normalretningen til funksjonsgrafen i punktet $(\mathbf{a}, f(\mathbf{a}))$ er gitt ved vektoren

$$n = (-\frac{\delta f}{\delta x_1}(\boldsymbol{a}), -\frac{\delta f}{\delta x_2}(\boldsymbol{a}), \dots, -\frac{\delta f}{\delta x_n}(\boldsymbol{a}), 1)$$

Tangentplanet til f i punktet (\mathbf{a} , f(\mathbf{a})) består av de punktene (\mathbf{x} , \mathbf{z}) tilhørt av $|\mathbf{R}^{n+1}|$ som tilfredstiller ligningen:

$$z = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a})$$

3.8 GRAFISK FREMSTILLING AV VEKTORFELT

3.9 PARAMETRISERTE FLATER

KAP6 – INTEGRASJON

UNIFORMT KONTINUERLIG

Er denne funksjonen uniformt kontinuerlig?

Eks:
$$f(x) = x^2$$

f '(x) = 2x --> dersom x går mot uendelig, går funksjonen mot uendelig

Dersom den deriverte går mot fast verdi/er begrensa, kan vi regne med at funksjonen er uniformt kontinuerlig.

HUSK!

Se definisjonsområde! Kan også være uniformt kontinuerlig selv om den ikke er deriverbar. Alle funkjsoner definert på et lukket og begrenset intervall [a,b] er uniformt kontinuerlig.

6.1 DOBBELTINTEGRALER OVER REKTANGLER

6.1.1 Definisjon

 $\overline{\text{Anta at R}} = [a,b] \times [c,d]$ er et rektangel i $|R^2|$ og at $f:R \longrightarrow |R|$ er en begrenset funksjon. Da definerer vi øvreintegralet til f over R som

$$\overline{\iint_{\mathbb{R}}} f(x, y) dx dy = \inf \{ \emptyset(\Pi) | \Pi \text{ er en partisjon av } R \}$$

og nedreintegralet til f over R som

$$\iint_{\mathbb{R}} f(x, y) dx dy = \sup \{ N(\Pi) | \Pi \text{ er en partisjon av } R \}$$

Dersom øvreintegralet = nedreintegralet, sier vi at f er integrerbar over R, og definerer (dobbelt)integralet til f over R til å være

$$\iint_{\mathbb{R}} f(x, y) dx dy = \overline{\iint_{\mathbb{R}}} f(x, y) dx dy + \underbrace{\iint_{\mathbb{R}}} f(x, y) dx dy$$

6.1.2 Setning

Anta at $R = [a,b] \times [c,d]$ er et rektangel i $|R^2|$. Anta at f, g: R --> |R| er integrerbare funksjoner, og at k er en konstant. Da er

(i) kf integrerbar og
$$\iint\limits_{R}$$
 kf (x, y) dx dy = $k\iint\limits_{R}$ f (x, y)

(ii)
$$f + g$$
 integrerbar og

(ii)
$$f + g$$
 integrerbar og
$$\iint_{R} (f(x, y) + g(x, y)) dx dy = \iint_{R} f(x, y) dx dy + \iint_{R} g(x, y) dx dy$$

$$(iii) \textit{Hvis } f(x,y) \leq g(x,y) \textit{ for all } e(x,y) \in \textit{R} \textit{ , er } \iint\limits_{\textit{R}} f(x,y) \textit{d} x \textit{d} y \leq \iint\limits_{\textit{R}} g(x,y) \textit{d} x \textit{d} y$$

6.1.3 Definision

Anta at f: A --> |R er en funksjon av n variable. Vi sier at f er uniformt kontinuerlig på en mengde B delmengde av A dersom det til enhver $\varepsilon > 0$ finnes en $\delta > 0$, slik at hvis **u,v** tilhørt av B og $|\mathbf{u} - \mathbf{v}| < \delta$, så er $|f(\mathbf{u}) - f(\mathbf{v})| < \epsilon$.

6.1.4 Teorem

Anta at K er en lukket, begrenset delmengde av |Rⁿ. Enhver funksjon f som er kontinuerlig på K, er også uniformt kontinuerlig på K.

6.1.5 Teorem

 $\overline{\text{Anta at }} R = [a,b] \times [c,d] \text{ er et rektangel i } |R^2, \text{ og at } f : R --> 1R \text{ er kontinuerlig. Da er } f$ integrerbar over R.

6.1.6 Setning

Anta at $\{\Pi_n\}$ er en følge av partisjoner av rektangelet $R = [a,b] \times [c,d]$ slik at maskevidden $|\Pi_n|$ går mot null, og la U_n være et utplukk for Π_n . For alle kontinuerlige funksjoner $f : R \longrightarrow |R|$ er da

$$\iint\limits_{\mathbb{R}} f(x,y) dx dy = \lim_{n \to \infty} R(\Pi_n, U_n)$$

6.1.7 Teorem

 $\overline{\text{Anta at }}R = [a,b] \times [c,d] \text{ er et rektangel i } |R^2, \text{ og at } f : R \longrightarrow |R \text{ er integrerbar. Dersom}$ funksjonen $v \mapsto f(x, v)$

er integrerbar over [c,d] for x tilhørt av [a,b], så er funksjonen

$$F(x) = \int_{a}^{d} f(x, y) dy$$

integrerbar over [a,b] og

$$\iint\limits_{R} f(x,y) dx dy = \int\limits_{a}^{b} \left[\int\limits_{c}^{d} f(x,y) dy \right] dx$$

Tilsvarende gjelder om vi bytter om variablene: Dersom funksjonen $x \mapsto f(x, y)$

er integrerbar over [a,b] for y tilhørt av [c,d], så er funksjonen

$$G(y) = \int_{a}^{b} f(x, y) dx$$

integrerbar over [c,d] og
$$\iint_{\mathbb{R}} f(x, y) dx dy = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) dx \right] dy$$

Korollar 6.1.8

 $\overline{\text{Anta at R}} = [a,b] \times [c,d]$ er et rektangel i $|R^2$, og at f : R --> |R| er kontinuerlig.

$$\iint\limits_{\mathbb{R}} f(x,y) dx dy = \int\limits_{a}^{b} \left[\int\limits_{c}^{d} f(x,y) dy \right] dx = \int\limits_{c}^{d} \left[\int\limits_{a}^{b} f(x,y) dx \right] dy$$

DOBBELTINTEGRALER OVER BEGRENSEDE OMRÅDER 6.2

Type:

I : området mellom to kontinuerlige funksjoner begrenset i x-retning II: området mellom to kontinuerlige funksjoner begrenset i y-retning

6.2.1 Setning

Anta at A er av type I, og at f: A --> |R er kontinuerlig. Da er f integrerbar over A og

$$\iint\limits_{A} f(x, y) dx dy = \int\limits_{a}^{b} \left[\int\limits_{\Phi_{1}(x)}^{\Phi_{2}(x)} f(x, y) dy \right] dx$$

Setning 6.2.2

Anta at $f : A \longrightarrow |R|$ er kontinuerlig, og at

$$A = \{(x,y) : c = < y = < d \quad \text{og} \quad \psi 1(y) = < x = < \psi_2(y) \}$$

er av type II. Da er f integrerbar over A og

$$\iint_{A} f(x, y) dx dy = \int_{c}^{d} \left[\int_{\psi_{c}(x)}^{\psi_{c}(x)} f(x, y) dx \right] dy$$

6.3 DOBBELTINTEGRALER I POLARKORDINATER

6.3.1 Setning

> Anta at S er et område i xy-planet som i polarkordinater kan beskrives ved ulikhetene $a = \langle r = \langle b, \alpha = \langle \Theta = \langle \beta \rangle$. For enhver kontinuerlig funksjon f : S --> |R er da

$$\iint\limits_{S} f(x,y) dx dy = \iint\limits_{S} f(r\cos\theta, r\sin\theta) r dr d\theta$$

$$\iint_{S} f(x, y) dx dy = \iint_{S} f(r \cos \theta, r \sin \theta) r dr d\theta$$

$$\det R = [a,b] \times [\alpha, \beta]. \text{ med andre ord}$$

$$\iint_{S} f(x, y) dx dy = \int_{a}^{b} [\int_{\alpha}^{\beta} f(r \cos \theta, r \sin \theta) r d\theta] dr = \int_{\alpha}^{\beta} [\int_{a}^{b} f(r \cos \theta, r \sin \theta) r dr] d\theta$$

6.3.2 Setning

La S være et omrpde i xy-planet som i polarkordinater kan beskriver ved at $\alpha = <\Theta = <\beta \text{ og } \Phi_1(\Theta) = < r = <\Phi_2(\Theta), \text{ der } \Phi_1, \Phi_2 : [\alpha,\beta] --> |R \text{ er to kontinuerlige, ikke-}$ negative funksjoner slik at $\Phi_1(\Theta) = \langle \Phi_2(\Theta) \rangle$ for alle Θ tilhørt $[\alpha, \beta]$. Da er

$$\iint\limits_{S} f(x,y) dx dy = \int\limits_{\alpha}^{\beta} \left[\int\limits_{\Phi_{1(\alpha)}}^{\Phi_{2(\alpha)}} f(r\cos\theta, r\sin\theta) r dr \right] d\theta$$

6.4 ANVENDELSER AV DOBBELTINTEGRALER

- Arealberegninger i planet
- *- Massemiddelpunkt
- Arealet til flater
- Flateintegraler av skalarfelt

6.5 GREENS TEOREM

6.5.1 Greens Teorem

Anta at C er en enkel, lukket kurve med en stykkevis glatt parametrisering \mathbf{r} , og la R være området avgrenset av C. Dersom de partiellderiverte til P og Q er kontinuerlig i et åpent område som inneholder R, så er

$$\int_{C} P dx + Q dy = \iint_{R} \left(\frac{dQ}{dx} - \frac{dP}{dy} \right) dx dy$$

der C er orientert mot klokken.

(oppkalt etter den selvlærte, engelske matematikeren og fysikeren George Green (1793-1841))

6.5.2 Korollar

Anta at C er en enkel, lukket kurve med en stykkevis glatt parametrisering **r**, og la R være området avgrenset av C. Da er arealet til R gitt ved

Areal
$$(R) = \int_C x \, dy = -\int_C y \, dx = \frac{1}{2} \int -y \, dx + x \, dy$$

der kurveintegralene er orientert mot klokken.

6.5.3 Lemma

Anta at ϕ_1 , ϕ_2 : [a,b] --> R er to deriverbare funksjoner slik at $\phi_1(x) < \phi_2(x)$ for alle x inneholdt av (a,b). La

$$R = \{(x,y) : a = < x = < b, \phi_1(x) = < y = < \phi_2(x)\}$$

og la C være randen til R orientert mot klokken. Anta at P er en funksjon av to variable med kontinuerlige partiellderiverte i R. Da er

$$\int_{C} P \, dy = - \iint_{R} \frac{dP}{dy} \, dx \, dy$$

6.5.4 Lemma

Anta at ψ_1 , ψ_2 : [c,d] --> R er to deriverbare funksjoner slik at $\psi_1(y) < \psi_2(y)$ for alle y inneholdt av (c,d). LA

$$R = \{(x,y) : c = < y = < d, \psi_1(y) = < x = < \psi_2(y)\}$$

og la C være randen til R orientert mot klokken. Anta at Q er en funksjon av to variable med kontinuerlig partiellderiverte i R. Da er

$$\int_{C} Q \, dy = \iint_{R} \frac{dQ}{dx} dx \, dy$$

*6.6 JORDAN-MÅLBARE MENGDER

6.6.1 <u>Definisjon</u>

Vi sier at en begrenset mengde $A \subset \mathbb{R}^2$ er Jordan-målbar dersom 1_A er integrerbar

6.6.2 <u>Definisjon</u>

En begrenset mengde $B \subset \mathbb{R}^2$ har innhold 0 dersom det for hver $\varepsilon > 0$ finnes endelig mange rektangler.

$$R1 = [a_1,b_1] \times [c1,d_1], R2 = [a2,b_2] \times [c2,d_2], ..., R_n = [an,b_n] \times [cn,dn]$$

slik at

$$B \subseteq R_1 \subseteq R_2 \subseteq ... \subseteq R_n$$

og summen av arealene til R1, R2, ..., Rn er mindre enn ε

6.6.3 Teorem

En begrenset mengde $A \subset \mathbb{R}^2$ er Jordan-målbar hvis og bare hvis randen dA til A har innhold 0.

6.6.4 Lemma

Anta at $A \subset \mathbb{R}^2$ er en begrenset mengde, og at R er et rektangel som innholder A i sitt indre. Anta at Π er en partisjon som deler R inn i delrektangler $R_{ii} = [a_{i-1}, a_i] \times [b_{i-1}, b_i]$.

- (i) Dersom **a** er innholdt av dA, så er **a** med i et rektangel R_{ij} som inneholder både punkter somer med i A, og punkter som ikke er det.
- (ii) Dersom er delrektangel R_{ij} inneholder både punkter som er med i A, og punkter som ikke er det, så inneholder R_{ij} et randpunkt **a** inneholdt av dA

6.6.5 Setning

Ethvert område av type I eller II er Jordan-målbart.

6.6.6 Teorem

Anta at $A \subset \mathbb{R}^2$ er en lukket, begrenset, Jordan-målbar mengde. Da er enhver kontinuerlig funksjon $f: A \longrightarrow R$ integrerbar over A (dvs. integralet $\iint_A f(x,y) dx dy$ eksisterer). Spesielt er alle kontinuerlige funksjoner integrerbare over områder av type I og II.

6.7 SKIFTE AV VARIABLE I DOBBELTINTEGRALER

6.7.1 Teorem (Skifte av variable i dobbeltintegral)

La U være en åpen, begrenset mengde i $|R^2$ og anta at $T: U --> |R^2$ er en injektiv funksjon med kontinuerlige partiellderiverte slik at T ' $\neq 0$ på hele U. Hvis D delmengde av U er en lukket, Jordan-målbar mengde, og f: T(D) --> |R| er en kontinuerlig funksjon, så er

$$\iint_{A} f(x, y) dx dy = \iint_{D} f(T(u, v)) |det T'(u, v)| du dv$$

der A = T(D).

6.7.2 Lemma

Anta at D delmengde av $|R^2|$ er en begrenset, Jordan-målbar mengde med areal |D|. Dersom $\mathbf{F}(\mathbf{x}) = \mathbf{B}\mathbf{x} + \mathbf{b}$ er en affinavbildning fra $|R^2|$ til $|R^2|$ med matrise B, så er bildet $A = \mathbf{F}(D) = {\mathbf{F}(\mathbf{x}) \mid \mathbf{x} \text{ tilhørt av } D}$

Jordan-målbart med areal |A| = |det(B)||D|. Tallverdien til determinanten er altså forstørrelsesfaktoren til affinavbildningen.

6.7.3 Setning

Anta at B og C er to disjunkte (dvs. at B snitt C = \emptyset), lukkede mengder i |Rn, og at minst en av dem er begrenset. DA finnes det en $\delta > 0$ slik at $|\mathbf{b} - \mathbf{c}| >= \delta$ for alle **b** tilhørt B og **c** tilhørt C.

6.7.4 Lemma

For alle \mathbf{x} tilhørt $|\mathbf{R}^2$ og alle 2x2-matriser A har vi $||\mathbf{A}\mathbf{x}|| = <||\mathbf{A}|| \, ||\mathbf{x}||$

6.7.5 Setning

La K delmengde av $|R^2|$ være et vadrat med areal |K| og sentrum c. Anta at $S: K --> |R^2|$ er en deriverbar avbildning slik at ||S|'(x,y)|| =< C for alle punkter (x,y) i det indre av K. Da er S(K) inneholdt i et kvadrat med sentrum i S@ og areal $C^2|K|$.

6.7.6 Setning

La U være en åpen, begrenset mengde i $|R^2$, og anta at N er en mengde med innhold 0 slik at tillukningen til N er inneholdt i U. Dersom $S: U --> |R^2$ er en funksjon med kontinuerlige partiellderiverte, så har S(N) inneholdt null.

6.7.7 Setning

La U være en åpen, begrenset mengde i $|R^2$, og anta at D er en Jordan-målbar mengde med tillukning inneholdt i U. Anta at $\mathbf{S}: U \dashrightarrow |R^2$ er en injektiv funksjon med kontinuerlige partiellderiverte slik at det \mathbf{S} ' $(x) \ne 0$ for alle x tilhørt U. Da er $\mathbf{S}(D)$ Jordan-målbar.

6.7.8 <u>Lemma</u>

La U være en åpen mengde i $|R^2$ og anta at $T: U --> |R^2$ er en injektiv funksjon med kontinuerlige partiellderiverte slik at det $T \neq 0$ på hele U. Dersom K er et lukket kvadrat inni U, og $B: |R^2 --> |R^2$ er en inverterbar matrise, så er $|T(K)| \le |\det B|^{-1} (\sup_{u \in K} |BT'(u)||)^2 |K|$

6.7.9 <u>Lemma</u>

La U være en åpen mengde i $|R^2$ og anta at $T: U --> |R^2$ er en injektiv funksjon med kontinuerlige partiellderiverte slik at det T ' $\neq 0$ på hele U. Anta at R er en lukket, begrenset delmengde av U. For enhver $\varepsilon > 0$ finnes det en $\delta > 0$ slik at

$$|||T'(v)^{-1}T'(u)||-1|<\varepsilon$$
og
$$||\det T'(v)|^{-1}|\det T'(u)|-1|<\varepsilon$$

for alle **u**, **v** tilhørt av R slik at $|\mathbf{u} - \mathbf{v}| = < \delta$.

6.7.10 Lemma

La U være en åpen, begrenset mengde i $|R^2$ og anta at $T: U --> |R^2$ er en injektiv funksjon med kontinuerlige partiellderiverte slik at det T ' $\neq 0$ på hele U. Hvis D delmengde av U er en lukket, Jordan-målbar mengde, så er

$$|T(D)| \le \iint_{D} |\det T'(u, v)| du dv$$

(de to uttrykkene er faktisk like, men vi nøyer oss med ulikheten foreløpig)

6.7.11 Lemma

La U være en åpen, begrenset mengde i $|R^2$ og anta at $T: U --> |R^2$ er en injektiv funksjon med kontinuerlige partiellderiverte slik at det T ' $\neq 0$ på hele U. Hvis U delmengde av U er en lukket, Jordan-målbar mengde, og f: T(D) --> |R| er en ikkenegativ, kontinuerlig funksjon, så er

$$\iint_{T(D)} f(x, y) dx dy \leq \iint_{D} f(T(u, v)) |det T'(u, v)| du dv$$

6.7.12 Teorem (Skifte av variable i dobbeltintegral)

La U være en åpen, begrenset mengde i $|R^2$, og anta at $T: U --> |R^2$ er en injektiv funksjon med kontinuerlige partiellderiverte slik at det T ' $\neq 0$ på hele U. Hvis D en delmengde av U er en lukket, Jordan-målbar mengde, og f: T(D) --> |R| er en kontinuerlig funksjon, så er

$$\iint\limits_{\boldsymbol{T}(D)} f\left(x,y\right) d\!x\, d\!y = \iint\limits_{D} f\left(\boldsymbol{T}(u,v)\right) \! \left| \det \boldsymbol{T}'(u,v) \right| du \, d\!v$$

6.8 UEGENTLIGE INTEGRALER I PLANET

6.8.1 Definisjon

La A være en delmengde av $|R^2$ slik at A snitt K_n er Jordan-målbar for alle n tilhørt |N|. Hvis f: A --> |R| er en ikke-negativ, kontinuerlig funksjon, definerer vi

$$\iint\limits_A f(x,y) dx dy = \lim\limits_{n \to \infty} \iint\limits_{A \cap K_n} f(x,y) dx dy$$

dersom denne grenseverdien eksisterer. I så fall sier vi at det uegentlige integralet

$$\iint_A f(x,y) dx dy$$

konvergerer, i motsatt fall, sier vi at det divergerer.

6.8.2 Setning

 $\overline{\text{Anta at }}$ A er en delmengde av $|R^2|$ slik at A snitt B(0,n) er Jordan-målbar for alle n. Hvis f: A --> |R er en kontinuerlig, ikke-negativ funksjon, så er

$$\int_{A} f(x,y) dx dy = \lim_{n \to \infty} \iint_{A \cap B(0,n)} f(x,y) dx dy$$

(hvis integralet til venstre divergerer, er grenseverdien til høyre lik uendelig)

6.8.3 Definision

 $\overline{\text{La A være}}$ en delmengde av $|R^2|$ slik at A snitt K_n er Jordan-målbar for alle n tilhørt |N|og at f: A --> |R er en begrenset, kontinuerlig funksjon. Vi sier at integralet

$$\iint\limits_A f(x,y) dx dy$$

konvergerer dersom begge integralene

$$\iint_{A} f_{+}(x,y) dx dy$$

$$\iint_{A} f_{-}(x,y) dx dy$$

konvergerer, i så fall definerer vi

$$\iint_{A} f(x, y) dx dy = \iint_{A} f_{+}(x, y) dx dy - \iint_{A} f_{-}(x, y) dx dy$$

TRIPPELINTEGRALER 6.9

6.9.1 Definisjon

En begrenset funksjon f:
$$R --> |R|$$
 er integrerbar over R dersom:
$$\iiint_{R} f(x, y, z) dx dy dz = \iiint_{R} f(x, y, z) dx dy dz$$

I så fall definerer vi (trippel)integralet av f over R til å være

$$\iiint\limits_R f(x,y,z) dx dy dz = \iiint\limits_{\overline{R}} f(x,y,z) dx dy dz = \iiint\limits_{\overline{R}} f(x,y,z) dx dy dz$$

6.9.2 Setning

Anta at $R = [a_1, a_2] \times [b_1, b_2] \times [c_1, c_2]$ er en rektangulær boks i |R3, og at f: R --> |R er en kontinuerlig funksjon. Da er f integrerbar over R

6.9.3 Setning

Anta at $R = [a_1, a_2] \times [b_1, b_2] \times [c_1, c_2]$ er en rektangulær boks i $|R^3|$, og at $f : R \longrightarrow |R|$ er kontinuerlig. Da er

$$\iiint\limits_{R} f(x,y,z) dx dy dz = \iint\limits_{A} \left[\int\limits_{cl}^{c2} f(x,y,z) dz \right] dx dy = \int\limits_{al}^{a2} \left[\int\limits_{bl}^{b2} \int\limits_{cl}^{c2} f(x,y,z) dz \right] dy$$

der $A = [a_1, a_2] \times [b_1, b_2]$ er projeksjonen av R ned i xy-planet

6.9.4 Definisjon

Anta at S er et begrenset område i $|R^3$, og la R være en rektangulær boks som inneholder S i sitt indre. Hvis f: S --> |R er en begrenset funksjon, sier vi at f er integrerbar over S dersom funksjonen

$$fs(x, y, z) = \begin{cases} f(x, y, z) hvis(x, y, z) \in S \\ 0 \text{ ellers} \end{cases}$$

er integrerbar over R. I så fall setter vi

$$\iiint\limits_{\mathbb{S}} f(x,y,z) dx dy dz = \iiint\limits_{\mathbb{R}} fs(x,y,z) dx dy dz$$

6.9.5 Setning

Anta at A er en lukket, begrenset, Jordan-målbar mengde i xy-planet, og at g, h : A --> |R| er to kontinuerlige funksjoner slik at g(x,y) = < h(x,y) for alle (x,y) inneholdt i A. La S være området mellom de to funksjonsgrafene, dvs.

$$S = \{(x, y, z) \in \mathbb{R}^3 | (x, y) \in \mathbb{R} \text{ og } g(x, y) \le z \le h(x, y) \}$$

Da er enhver kontinuerlig funksjon f : S --> |R integrerbar over S, og

$$\iiint\limits_{S} f(x,y,z) dx dy dz = \iint\limits_{A} \left[\int\limits_{g(x,y)}^{h(x,y)} fs(x,y,z) dz \right] dx dy$$

6.10 SKIFTE AV VARIABLE I TRIPPELINTEGRALER

6.10.1 Teorem (Skifte av variabel i trippelintegral)

La U være en åpen, begrenset mengde i $|R^3|$ og anta at $T: U --> |R^3|$ er en injektiv funksjon med kontinuerlige partiellderiverte slik at det T ' $\neq 0$ på hele U. Hvis D en delmengde av U er en lukket, Jordan-målbar mengde, og f: T(D) --> |R| er en kontinuerlig funksjon, så er

$$\iiint\limits_{T(D)} f(x,y,z) dx dy dz = \iiint\limits_{D} f(T(u,v,w)) |det T'(u,v,w)| du dv dw$$

6.10.2 Teorem (Skifte av variable i |Rⁿ)

La U være en åpen, begrenset mengde i $|R^n$ og anta at $T:U \dashrightarrow |R^n$ er en injektiv funksjon med kontinuerlige partiellderiverte slik at det T ' $\neq 0$ på hele U. Hvis D en delmengde av U er en lukket, Jordan-målbar mengde, og $f:T(D) \dashrightarrow |R$ er en kontinuerlig funksjon, så er

Kontindering ranksjon, sa er
$$\int \dots \int_{T(D)} f(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n$$

$$= \int \dots \int_{D} f(T(u_1, u_2, \dots, u_n)) |\det T'(u_1, u_2, \dots, u_n)| du_1 du_2 \dots du_n$$

6.11 ANVENDELSER AV TRIPPELINTEGRALER

KAP4 – LINEÆR ALGEBRA I \mathbb{R}^n

4.1 NOEN EKSEMPLER PÅ GAUSS-ELIMINASJON

Eks:

$$x + 2y + z - u = 3$$

 $-x - y - 4z + 2u = -1$
 $2x + 5y - z = 9$
 $x + 7z - 5u = -3$

Bruker x-leddet til å kvitte oss med xleddene i de andre ligningene

$$x + 2y + z - u = 3$$

 $y - 3z + u = 2$
 $y - 3z + 2u = 3$
 $-2y + 6z - 4u = -6$

Bruker y-leddet til å kvitte oss med yleddene i ligningene under

$$x + 2y + z - u = 3$$

 $y - 3z + u = 2$
 $u = 1$
 $-2u = -2$

Nå skulle vi brukt z- leddet, deretter uleddet, men siden det ikke er noe z-ledd får vi

$$x + 2y + z - u = 3$$

 $y - 3z + u = 2$
 $u = 1$
 $0 = 0$

Dette betyr at ligningen har uendelig mange løsninger

$$x = 2 - 7z$$

$$y = 1 + 3z$$

$$z = z$$

$$u = 1$$

4.2 TRAPPEFORM

4.2.1 <u>Definisjon</u>

Vi sier at to m x n-matriser A, B er radekvivalente, dersom det finnes en sekvens av radoperasjoner som forvandler A til B. Vi skriver A ~ B når A og B er radekvivalente.

4.2.2 Definisjon

En matrise er på trappeform dersom:

- (i) Enhver rad beståt av enten bare nuller, eller så er det første ikke-null elementet et ett-tall.
- (ii) Enhver rad som ikke bare består av nuller, begynner med minst en null mer enn raden over.

En matrise på trappeform blir også kalt en trappematrise

4.2.3 Setning

Enhver matrise er radekvivalent med en matrise på trappeform.

4.2.4 Setning

Anta ta den utvidede matrisen til et lineært ligningssystem kan reduseres til trappematrisen C. Da gjelder:

(i) Dersom den siste søylen i C er en pivotsøyle, har ligningssystemet ingen løsninger

Dersom den siste søylen ikke er en pivotsøyle, har vi videre:

- (ii) Dersom alle de andre søylene i C er pivotsøyler, har ligningssystemet nøyaktig en løsning
- (iii) Dersom minst en av de andre søylene ikke er en pivotsøyle, har ligningen uendelig mange løsninger.

4.2.5 Korollar

Anta at den utvidede matrisen til et linært ligningssystem kan radreduseres til trappematrisen C. Da har ligningssystemet en entydig løsning hvis og bare hvis alle søyler i C unntatt den siste er pivotsøyler.

4.2.6 Setning

Anta at

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

kan radreduseres til trappematrisen D. Da har ligningssystemet

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots + \dots + \dots + \dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

en løsning for alle valg av b_1 , b_2 , ..., b_m hvis og bare hvis alle radene i D inneholder pivotelementer.

4.2.7 Korollar

Anta at

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

kan radreduseres til trappematrisen D. Da har ligningssystemet

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots + \dots + \dots + \dots + \dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

en entydig løsning for alle valg av b₁, b₂, ..., b_m hvis og bare hvis alle radene og alle søylene i D inneholder pivotelementer. Dette betyr at D er en kvadratisk matrise med pivotelementer på diagonalen.

4.3 REDUSERT TRAPPEFORM

4.3.1 <u>Definition</u>

Vi sier at en matrise er på redusert trappeform dersom den er på trappeform og alle elementene i pivotsøylene, unntatt pivotelementene, er 0.

4.3.2 Setning

Enhver matrise er radekvivalent med en matrise på redusert trappeform

4.3.3 Setning

Ligningssystemet

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\dots + \dots + \dots + \dots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

har en entydig løsning for alle valg av b_1 , b_2 , ..., b_m hvis og bare hvis den tilhørende matrisen

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

er radekvivalent med indentitetsmatrisen

$$I_n = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

4.4 MATRISELIGNINGER

4.4.1 Setning

La B = (A, \mathbf{b}) være den utvidede matrisen til matriseligningen $Ax = \mathbf{b}$

og anta at B kan radreduseres til trappematrisen C. Da gjelder

(i) Dersom den siste søylen til C er en pivotsøyle, har matriseligningen ingen løsninger

Dersom den siste søylen ikke er en pivotsøyle, har vi videre

- (ii) Dersom alle de andre søylene i C er pivotsøyler, har matriseligningen nøyaktig en løsning
- (iii) Dersom minst en av de andre søylene ikke er en pivotsøyle, har matriseligningen uendelig mange løsninger.

4.4.2 Setning

Anta at matrisen A er radekvivalent med trappematrisen D. Da har ligningen $A\mathbf{x} = \mathbf{b}$

løsning for alle vektorer \mathbf{b} tilhørt $|\mathbf{R}^{m}|$ hvis og bare hvis alle radene i D inneholder et pivotelement. Løsningen er entydig dersom også alle søylene i D inneholder et pivotelement – dette betyr at A er en kvadratisk matrise som er radekvivalent med identitetsmatrisen.

4.4.3 Korollar

Anta at matrisen A har trappeform D. Dersom alle søylene i D er pivotsøyler, har den homogene ligningen $Ax = \mathbf{0}$ bare løsningen $x = \mathbf{0}$. Dersom D har søyler som ikke er pivotsøyler, har ligningen uendelig mange løsninger. Dersom A er en kvadratisk n x nmatrise, betyr dettet at ligningen $Ax = \mathbf{0}$ har $\mathbf{0}$ som eneste løsning hvis og bare hvis A er radekvivalent med I_n .

4.4.4 Setning

Anta at x_p er en løsning av matriseligningen $Ax = \mathbf{b}$. De andre løsningene er da vektorene på formen

$$x = x_p + x_h$$

der x_h er en løsning av den homogene ligningen Ax = 0.

4.5 INVERSE MATRISER

4.5.1 Lemma

Anta at B og C er to m x n-matriser slik at Bx = Cx for alle x tilhørt av $|R^n|$. Da er B = C.

4.5.2 Lemma

La A være en n x n-matrise og anta at det finnes en n x n-matrise B slik at $AB = I_n$ (B er altså en høyreinvers av A). Da har matriseligningen $A\mathbf{x} = \mathbf{c}$ en entydig løsning for alle \mathbf{c} tilhørt $|\mathbf{R}^n|$. Søylene \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_n til B er løsningene til ligningen $A\mathbf{x} = e_1$, $A\mathbf{x} = e_2$, ..., $A\mathbf{x} = e_n$.

4.5.3 Setning

Anta ay A og B er to n x n-matriser. Dersom $AB = I_n$ så er A og B inverterbare, og $A^{-1} = B, B^{-1} = A$

4.5.4 Setning

En n x n-matrise A er inverterbar hvis og bare hvis matriseligningen $Ax = \mathbf{c}$ har en entydeig løsning for alle vektorer \mathbf{c} tilhørt $|R^n|$, det vil si hvis og bare hvis A er radekvivalent med indentitetsmatrisen I_n .

4.6 LINEÆRKOMBINASJONER OG BASISER

4.6.1 <u>Setning</u>

Anta at $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$, \mathbf{b} er vektorer i $|\mathbf{R}^m|$. For å undersøke om \mathbf{b} kan skrives som en lineærkombinasjon av $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$, radreduserer vi matrisen $\mathbf{A} = (\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n})$ til en trappematrise C. Da gjelder

(i) Dersom den siste søylen i C er en pivotsøyle, er **b** ikke en lineærkombinasjon av $\mathbf{a_1}, \mathbf{a_1}, ..., \mathbf{a_n}$.

Dersom den siste søylen i C ikke er en pivotsøyle, har vi videre:

- (ii) Dersom alle de andre søylene i C er pivotsøyler, kan \mathbf{b} skrives som en lineærkombinasjon av $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$ på nøyaltig en måte.
- (iii) Dersom minst en av de andre søylene i C ikke er en pivotsøyle, kan **b** skrives som en lineærkombinasjon av $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$ på uendelig mange måter.

4.6.2 Setning

Anta at $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$ er vektorer i $|\mathbf{R}^{m}$, og at matrisen $\mathbf{A} = (\mathbf{a_1}, \mathbf{a_2}, \dots, \mathbf{a_n})$ kan radreduseres til trappematrisen C. Da kan enhver vektro \mathbf{b} i $|\mathbf{R}^{m}|$ skrives som en lineærkombinasjon av $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$ hvis og bare hvis alle radene i C inneholder et pivotelement.

4.6.3 Korollar

Dersom a_1 , a_2 , ..., a_n utspenner hele $|R^m$, er $n \ge m$, det vil si at antall elementer er større enn eller lik dimensjonen til rommet.

4.6.4 Definisjon

Vi sier at vektorene $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$ tilhørt $|R^m|$ er lineært uavhengige dersom hver \mathbf{b} tilhørt $Sp(\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n})$ kan skrives som en lineærkombinasjon av $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$ på en entydig måte. Hvis vektorene $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$ tilhørt $|R^m|$ ikke er lineært uavhengige, sier vi at de er lineært avhengige.

4.6.5 Setning

Vektorene $a_1, a_2, ..., a_n$ tilhørt $|R^m|$ er lineært uavhengige hvis og bare hvis følgende betingelser er oppfylt

En lineærkombinasjon $\mathbf{x_1a_1} + \mathbf{x_2a_2} + ... + \mathbf{x_na_n}$ av $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$ er bare lik $\mathbf{0}$ dersom alle koeffisentene $\mathbf{x_1}$, $\mathbf{x_2}$, ..., $\mathbf{x_n}$ er lik $\mathbf{0}$.

4.6.6 Setning

Anta at $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$ er vektorer i $|\mathbf{R}^{\mathbf{m}}$, og at matrisen $\mathbf{A} = (\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n})$ kan radreduseres til trappematrisen C. Da er $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$ lineært uavhengige hvis og bare hvis alle søylene i C er pivotsøyler.

4.6.7 Korollar

En lineært uavhengig mengde i |R^m har m eller færre elementer. Antall elementer er altså mindre enn eller lik dimensjonen til rommet

4.6.8 Setning

Anta at $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$ er en samling ikke-null vektorer i $|R^m|$. Da er det mulig å finne en lineært uavhengig delmengde $\mathbf{a_{i1}}$, $\mathbf{a_{i2}}$, ..., $\mathbf{a_{ik}}$ av $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$ slik at

$$Sp(a_{i1}, a_{i2}, ..., a_{ik}) = Sp(a_1, a_2, ..., a_n)$$

4.6.9 <u>Definisjon</u>

En basis for $|R^m|$ er en lineært uavhengig mengde vektorer $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$ som utspenner hele $|R^m|$, dvs. at $Sp(\mathbf{a_1}, \mathbf{a_2}, ..., \mathbf{a_n}) = |R^m|$.

4.6.10 <u>Setning</u>

Anta at $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_m}$ er vektorer i $|\mathbf{R}^{\mathrm{m}}$, og la A være m x n-matrisene med disse vekotrene som søyler. Da er $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_m}$ en basis for $|\mathbf{R}^{\mathrm{m}}|$ hvis og bare hvis A er radekvivalent med identitetsmatrisen $\mathbf{I_m}$.

4.6.11 Korollar

Anta at $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_m}$ er m vektorer i $|\mathbf{R}^{\mathrm{m}}$. Dersom vektorene enten er lineært uavhengige eller uspenner hele $|\mathbf{R}^{\mathrm{m}}$, så danner de en basis.

4.6.12 Setning

Anta at $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_n}$ er en lineært uavhengig mengde av vektorer i $|\mathbf{R}^{\mathrm{m}}|$. Da finnes det vektorer $\mathbf{a_{n+1}}$, $\mathbf{a_{n+2}}$, ..., $\mathbf{a_m}$ slik at $\mathbf{a_1}$, $\mathbf{a_2}$, ..., $\mathbf{a_m}$ er en basis for $|\mathbf{R}^{\mathrm{m}}|$.

4.6.13 Setning

Anta at $\mathbf{v_1}$, $\mathbf{v_2}$, ..., $\mathbf{v_n}$ er en basis for $|R^n$, og at $\mathbf{w_1}$, $\mathbf{w_2}$, ..., $\mathbf{w_n}$ er vektorer i $|R^m$. Da finnes det nøyaktig en lineæravbildning $\mathbf{T} : |R^n --> |R^m$ slik at $\mathbf{T}(\mathbf{v_1}) = \mathbf{w_1}$, $\mathbf{T}(\mathbf{v_2}) = \mathbf{w_2}$, ..., $\mathbf{T}(\mathbf{v_n}) = \mathbf{w_n}$.

4.8 ELEMENTÆRE MATRISER

4.8.1. Definisjon

En m x m elementær matrise er en matrise som fremkommer når vi gjør en (og bare en) radoperasjon på identitetsmatrisen I_m . Enhver elementær matrise korresponderer altså til en radoperasjon.

4.8.2. Setning

Anta at E er en elementær m x m – matrise, og la A være en vilkårlig m x n – matrise. La A' være den matrisen vi får når vi bruker radoperasjonen som korresponderer til E på A. Da er A' = E A.

4.8.3. Setning

Enhver elementær matrise er inverterbar, og den inverse er også en elementær matrise.

4.8.4. Setning

Enhver m x n – matrise A kan skriver som er produkt

$$A = E_1 E_2 \dots E_k B$$

der E_1 , E_2 , ..., E_k er elementære matriser og B er den reduserte trappeformen til A. Dersom A er en inverterbar, kvadratisk matrise, kan A altså skrives som et produkt $A = E_1E_2...E_k$ av elementære matriser.

4.8.5. Setning

Den transponerte E^T til en elementær matrise E er selv en elementær matrise. Dersom E korresponderer til å bytte om to rader eller til å gange en rad med et tall s, så er $E = E^T$. Dersom E korresponderer til å addere s ganger linje s til linje s, så korresponderer s til å addere s ganger linje s til linje s.

4.8.6. Setning

Anta at $A = E_1E_2...E_kB$ der $E_1, E_2, ..., E_k$ er elementære matriser og B er på redusert trappeform. Da er

$$\mathbf{A}^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} \mathbf{E_k}^{\mathrm{T}} \dots \mathbf{E_2}^{\mathrm{T}} \mathbf{E_1}^{\mathrm{T}}$$

4.9 DETERMINANTER

4.9.1. Lemma

Anta at A er en kvadratisk matrise der enten en rad eller en søyle bare består av nuller. Da er det(A) = 0

4.9.2. Lemma

Dersom matrisen A er øvre eller nedre triangulær, er determinanten til A lik produktet av elementene på diagonalen.

4.9.3. Lemma

Anta at B er den matrisen vi får når vi ganger den i-te raden i A med tallet s. Da er det(B) = s det(A).

4.9.4. Lemma

Anta at B er den matrisen vi får når vi bytter om de to øverste radene i A. Da er det(A) = -det(B).

4.9.5. Lemma

Anta at B er en matrise som fremkommer ved at vi bytter om to naborader i A. Da er det(B) = -det(A).

4.9.6. Lemma

Dersom B fremkommer ved at vi bytter om to rader i A, så er det(B) = -det(A).

4.9.7. Lemma

Dersom to av radene i A er like, er det(A) = 0.

4.9.8. Lemma

Anta at B fremkommer fra A ved at vi adderer et multiplum av en av radene i A til en av de andre radene. Da er det(B) = det(A).

4.9.9. <u>Teorem</u>

Anta at A er en kvadratisk matrise.

Da gjelder:

- (i) Hvis A er øvre eller nedre triangulær, er determinanten lik produktet av diagonalelementene.
- (ii) Bytter vi om to rader, bytter determinanten fortegn (men beholder tallverdi)
- (iii) Ganger vi en rad med et tall s, endres determinanten med en faktor s.
- (iv) Adderer vi et multiplum av en rad til en annen rad, endres ikke determinanten

4.9.10. Teorem

For $n \times n$ – matriser A er følgende ekvivalent:

- (i) $det(A) \neq 0$
- (ii) A er inverterbar
- (iii) Matriseligningen Ax = b har en entydig løsning for alle **b**
- (iv) Matriseligningen Ax = 0 har bare løsningen x = 0.
- (v) Søylene i A danner en basis for \mathbb{R}^n .
- (vi) A er radekvivalent med I_n.

4.9.11. Lemma

Anta at E er en elementær n x n – matrise. Da er determinanten til E lik faktoren til den tilhørende radoperasjonen. Svarer E til å bytte om to rader, er altså det(E) = -1, svarer E til å gange en rad med s, er det(E) = s, og svarer E til å addere et multiplum av en rad til en annen, er det(E) = 1.

4.9.12. Lemma

Anta at C = E B der E er en elementær matrise. Da er det© = det(E) det(B).

4.9.13. Lemma

Anta at A og B er to n x n – matriser. Hvis ikke A er inverterbar, så er heller ikke produktmatrisen C = AB inverterbar.

4.9.14. <u>Setning</u>

For alle $n \times n - matriser A$, B er det(AB) = det(A)det(B)

4.9.15. Korollar

For alle inverterbare matriser A er

$$\det(A^{-1}) = \frac{1}{\det(A)}$$

4.9.16. Korollar

For alle n x n – matriser er $det(A^T) = det(A)$

4.10 EGENNVEKTORER OG EGENVERDIER

4.10.1. <u>Lemma</u>

 λ er en egenverdi for n x n – matrisen A hvis og bare hvis $\det(\lambda I_n - A) = 0$.

4.10.2. Definisjon

Dersom A er n x n – matrise, kalles n-gradspolynomet

$$P_A(\lambda) = \det(\lambda I_n - A)$$

det karakteristiske polynomet¹ til A.

4.10.3. Setning

La A være en n x n – matrise, og anta at $v_1, v_2, ..., v_k$ er egenvektorer med forskjellige egenverdier. Da er $v_1, v_2, ..., v_k$ lineært uavhengige. Dersom A har n forskjellige egenverdier, finnes det altså en basis som består av egenvektorer for A.

4.10.4. <u>Setning</u>

Anta at A er en reell n x n – matrise, og at \mathbf{v} er en kompleks egenvektor med egenverdi λ . Da er $\overline{\mathbf{v}}$ en egenvektor med egenverdi $\overline{\lambda}$ (her er $\overline{\mathbf{v}}$ den vektoren vi får når vi komplekskonjugerer alle komponentene til \mathbf{v})

4.10.5. Definisjon

 $\overline{\text{En n x n}}$ matrise A er symmetrisk dersom $A = A^T$

4.10.6. Teorem (Spektralteoremet for symmetriske matriser)

Anta at A er en symmetrisk n x n – matrise. Da er alle egenverdiene til A reelle, og det finnes en ortonormal basis for \mathbb{R}^n som består av egenvektorer til A.

4.10.7. Setning

Anta at v1, v2, ..., vn er en ortonormal basis for \mathbb{R}^n . For ethvert element $\mathbf{v} \in \mathbb{R}^n$ er da $\mathbf{v} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \cdots + c_n \mathbf{v_n}$ der $c_i = \mathbf{v} \cdot \mathbf{v_i}$ for i = 1, 2, ..., n.

4.10.8. Setning

Anta at A er en n x n – matrise med en basis $v_1, v_2, ..., v_n$ av egenvektorer, og la $\lambda_1, \lambda_2, ..., \lambda_n$ være de tilhørende egenverdiene. La $T: \mathbb{R}^n \to \mathbb{R}^n$ være en lineæravbildning som for alle i avbilder $\mathbf{e_i}$ på $\mathbf{v_i}$, og la $M = (v_1, v_2, ..., v_n)$ være matrisen til \mathbf{T} . Da er \mathbf{M} inverterbar, og

$$M^{-1}AM = D$$

der D er diagonalmatrisen

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

4.10.9. Korollar

Anta at A er en symmetrisk n x n – matrise, la $v_1, v_2, ..., v_n$ være en ortonormal basis av egenvektorer, og la $\lambda_1, \lambda_2, ..., \lambda_n$ være de tilhørende egenverdiene. La $T: \mathbb{R}^n \to \mathbb{R}^n$ være en lineæravbildning som for alle i avbilder $\mathbf{e_i}$ på $\mathbf{v_i}$, og la $M = (v_1, v_2, ..., v_n)$ være matrisen til \mathbf{T} . Da er

$$M^T A M = D$$

der D er diagonalmatrisen

$$D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

4.10.10. Korollar

Anta at A er en n x n – matrise med en basis $v_1, v_2, ..., v_n$ av egenvektorer, og la $\lambda_1, \lambda_2, ..., \lambda_n$ være de tilhørende egenverdiene. Da er

$$\det(A) = \lambda_1, \lambda_2, \dots, \lambda_n$$

Determinanten er altså lik produktet av egenverdiene.

4.11 EGENNVEKTORER I PRAKSIS

4.11.1. Setning

Anta at \mathbf{v} er en egenvektor for A med egenverdi λ . Da er \mathbf{v} en egenvektor for A^n med egenverdi λ^n , dvs.

$$A^n \boldsymbol{v} = \lambda^n \boldsymbol{v}$$

Ikke avsnittet om diagonalisering

KAP5 – ITERASJON OG OPTIMERING

5.1 LITT TOPOLOGI I \mathbb{R}^m

5.1.1. Definision

La A være en delmengde av \mathbb{R}^m .

- (i) Et punkt $\mathbf{a} \in \mathbb{R}^m$ kalles et indre punkt for A dersom det finnes en kule $B(\mathbf{a}, r)$ om \mathbf{a} som bare inneholder punkter som er med i A.
- (ii) Et punkt $\mathbf{b} \in \mathbb{R}^m$ kalles et ytre punkt for A dersom det finnes en kule $B(\mathbf{b}, r)$ om \mathbf{b} som ikke inneholder noen punkter som er med i A.
- (iii) Et punkt $\mathbf{c} \in \mathbb{R}^m$ kalles et randpunkt for A dersom enhver kule $\mathbf{B}(\mathbf{c}, \mathbf{r})$ om \mathbf{c} inneholder både punkter som er med i A og punkter som ikke er med i A.

5.1.2. Definisjon

En mengde $A \subset \mathbb{R}^m$ er lukket dersom den inneholder alle sine randpunkter, og åpen dersom den ikke inneholder noen randpunkter.

5.1.3. <u>Definisjon</u>

Følgen $\{x_n\}$ i \mathbb{R}^m konvergerer mot punktet $a \in \mathbb{R}^m$ dersom det til enhver $\epsilon > 0$ finnes en $N \in \mathbb{N}$ slik at $|x_n - a| < \epsilon$ for alle $n \ge N$. Vi skriver

$$\lim_{n\to\infty} x_n = a$$

5.1.4. Setning

Anta at $\{x_n\}$ og $\{y_n\}$ er to følger i \mathbb{R}^m som konvergerer mot henholdsvis \mathbf{x} og \mathbf{y} . Da har vi:

- (i) Følgen $\{cx_n\}$ konvergerer for ethvert tall c, og $\lim_{n\to\infty}(cx_n)=cx$.
- (ii) Følgen $\{x_n + y_n\}$ konvergerer, og $\lim_{n\to\infty} (x_n + y_n) = x + y$.
- (iii) Følgen $\{x_n y_n\}$ konvergerer, og $\lim_{n \to \infty} (x_n y_n) = x y$.
- (iv) Følgen $\{x_n \cdot y_n\}$ konvergerer, og $\lim_{n\to\infty} (x_n \cdot y_n) = x \cdot y$. (legg merke til at dette er en tallfølge og ikke en følge av vektorer)

5.1.5. Setning

Anta at $\{x_n\}$ er en følge i \mathbb{R}^m med komponenter

$$\mathbf{x_n} = \left(x_1^{(n)}, x_2^{(n)}, \dots, x_m^{(n)}\right)$$

og at $x \in \mathbb{R}^m$ har komponenter $x = (x_1, x_2, ..., x_m)$. Da er

$$\lim_{n\to\infty} x_n = x$$

hvis og bare hvis

$$\lim_{n\to\infty} x_i^{(i)} = x_i \text{ for alle i = 1,2, ..., m}$$

Med mindre ord:

 $\{x_n\}$ konvergerer mot \mathbf{x} hvis og bare hvis hver komponent i x_n konvergerer mot tilsvarende komponent i \mathbf{x} .

5.1.6. Setning

Anta at $A \subset \mathbb{R}^m$ er lukket, og at $\{x_n\}$ er en følge som konvergerer mot et punkt \mathbf{x} . Da er $\mathbf{x} \in A$.

5.1.7. Setning

Anta at $F: A \to \mathbb{R}^m$ er en funksjon av flere variable, og at **a** er et punkt i definisjonsområdet A til **F**. Da er **F** kontinuerlig i **a** hvis og bare hvis $F(x_n) \to F(a)$ for alle følger $\{x_n\}$ fra A slik at $x_n \to a$.

5.2 KOMPLETTHET AV \mathbb{R}^m

5.2.1. Definisjon

Anta at $\{x_n\}$ er en følge av punkter i \mathbb{R}^m , og at

$$n_1 < n_2 < \cdots < n_k < \cdots$$

er en strengt voksende følge av naturlige tall. Da kalles følgen $\{y_k\}$ der $y_k = x_{n_k}$ en delfølge av $\{x_n\}$.

5.2.2. Setning

Anta at en følge $\{x_n\}$ i \mathbb{R}^m konvergerer mot et punkt \mathbf{x} . Da konvergerer også alle delfølger av $\{x_n\}$ mot \mathbf{x} .

5.2.3. <u>Teorem (Bolzano-Weierstrass' teorem)</u>

Alle begrensede følger i \mathbb{R}^m har en konvergent delfølge.

5.2.4. Definision

En følge $\{x_n\}$ i \mathbb{R}^m er en Cauchy-følge dersom det for enhver $\epsilon < 0$ finnes en $N \in \mathbb{N}$ slik at $|x_n - x_k| < \epsilon$ for alle $n, k \ge N$.

5.2.5. Lemma

Enhver konvergent følge i \mathbb{R}^m er en Cauchy-følge.

5.2.6. Teorem

Alle Cauchy-følger i \mathbb{R}^m konvergerer

5.2.7. Korollar

En følge i \mathbb{R}^m konvergerer hvis og bare hvis den er en Cauchy-følge.

5.4 **ITERASJON AV FUNKJSONER**

5.5 KONVERGENS MOT ET FIKSPUNKT

5.5.1. Definision

Anta at A er en delmengde av \mathbb{R}^m og at **F** er en funksjon fra A til \mathbb{R}^m . Vi sier at $\mathbf{x} \in$ A er et fikspunkt for **F** dersom F(x) = x.

5.5.2. Definision

Anta at A er en ikke-tom delmengde av \mathbb{R}^m . En funksjon $F: A \to A$ kalles en kontraksjon av mengden A dersom det finnes et positivt tall C < 1 slik at

$$|F(x) - F(y)| \le C|x - y|$$

for alle $x, y \in A$. Vi kaller C en kontraksjonsfaktor for F

5.5.3. Lemma

Anta at $F: A \to A$ er en kontraksjon med kontraksjonsfaktor C. For alle $x, y \in A$ og alle $n \in \mathbb{N}$ er da

$$|F^{on}(x) - F^{on}(y)| \le C^n|x - y|$$

 \mathbf{F}^{on} er altså en kontraksjon med kontraksjonsfaktor \mathcal{C}^{n} .

5.5.4. Teorem (Banachs fikspunkttereom)

Anta at A er en ikke-tom, lukket delmengde av \mathbb{R}^m og at $F: A \to A$ er en kontraksjon av A med kontraksjonsfaktor C. da har **F** nøyaktig et fikspunkt **x** i A. Uansett hvilket punkt x_0 i A vi starter iterasjonen i, vil følgen $x_0, x_1, x_2, ..., x_n$, Der $x_n = F^{on}(x_0)$ konvergerer mot \mathbf{x} , og for alle $n \in \mathbb{N}$ er $|x_n - x| \le \frac{C^n}{1 - C} |x_0 - x_1|$

$$|x_n-x|\leq \frac{c^n}{1-c}|x_0-x_1|$$

5.5.5. <u>Setning (Middelverdisetning for funksjoner av flere variable)</u>

Anta at $f: A \to \mathbb{R}$ er en funksjon av m variable, og at f er deriverbar i et område som inneholder linjestykket mellom punktene $a, b \in \mathbb{R}^m$. Da finnes det et punkt c på linjestykket fra a til b slik at

$$f(\mathbf{b}) - f(\mathbf{a}) = \nabla f(\mathbf{c}) \cdot (\mathbf{b} - \mathbf{a})$$

5.5.6. Setning

Anta at $F: A \to \mathbb{R}^m$ er en funksjon av m variable, og at F er deriverbar i et område som inneholder linjestykket mellom punktene $a, b \in \mathbb{R}^m$. Da finnes det punkter c_1, c_2, \ldots, c_m på linjestykket fra a til b, slik at

$$|F(b) - F(a)| \le |b - a| \sqrt{\nabla F_1(C_1)^2 + \dots + \nabla F_m(C_m)^2}$$

der F_1, F_2, \dots, F_m er komponentene til **F**.

5.5.7. Setning

Anta at A er en ikke-tom, lukket, konveks delmengde av \mathbb{R}^m og at $F: A \to A$ er en avbildning som er deriverbar i A. Anta at det finnes et tall C < 1 slik at

$$\sqrt{|\nabla F_1(C_1)|^2 + \dots + |\nabla F_m(C_m)|^2} \le C$$

for alle punkter $c_1, c_2, ..., c_m \in A$. Da er F en kontraksjon og har et entydig fikspunkt. Vi kan iterere oss frem til fikspunktet ved å starte i et hvilket som helst punkt x_0 i A.

5.6 NEWTONS METODE I FLERE VARIABLE

5.6.1. Definisjon

Anta at $F: A \to \mathbb{R}^m$ er en deriverbar funksjon av m variable. Newtons metode anvendt på F med startpunkt x_0 gir os følgen $x_0, x_1, x_2, ..., x_n$, ... der $x_{n+1} = x_n - F'(x_n)^{-1}F(x_n)$

5.6.2. Setning (Newtons metode i en variabel)

Anta at $f: \mathbb{R} \to \mathbb{R}$ har et nullpunkt i a. Dersom $f'(a) \neq 0$, og f''(x) eksisterer og er kontinuerlig i en omegn rundt a, så finnes det en $\delta > 0$ slik at hvis $x_0 \in (a - \delta, a + \delta)$, så konvergerer følgen $\{x_n\}$ i Newtons metode mot a.

Alt etter setning 5.6.2 -> ikke krevd til eksamen

5.7 OMVENDTE OG IMPLISITTE FUNKSJONER

5.7.1. <u>Definisjon</u>

Funksjonen $F: D_F \to V_F$ kalles injektiv dersom det til hver $y \in V_F$ bare finnes en $x \in D_F$ slik at y = F(x). I så fall er den omvendte funksjonen $G: V_F \to D_F$ definert ved G(y) = x dersom F(x) = y

Den omvendte funksjonen **G** betegnes ofte med F^{-1} .

5.7.2. Teorem (Omvendt funksjonsteorem)

Anta at U er en åpen mengde i \mathbb{R}^m , og at $F: U \to \mathbb{R}^m$ har kontinuerlige partiellderiverte. Anta at $\overline{x} \in U$, og at Jacobi-matrisen $F'(\overline{x})$ er inverterbar. Da finnes en omegn $U_0 \subset U$ om \overline{x} slik at F restriktert til U_0 er injektiv. Verdimengden V til denne restriksjonen er en omegn av $\overline{y} = F(\overline{x})$, og den omvendte funksjonen $G: V \to U_0$ er deriverbar i \overline{y} med Jacobi-matrisen

$$G'(\overline{y}) = F'(\overline{x})^{-1}$$

5.7.3. <u>Teorem (Implisitt funksjonsteorem)</u>

Anta at U er en åpen delmengde av \mathbb{R}^{m+1} og la $f: U \to \mathbb{R}$ være en funksjon med kontinuerlige partiellderiverte. Anta at $(\overline{x}, \overline{y}) = (\overline{x}_1, \overline{x}_2, ..., \overline{x}_m, \overline{y})$ er et punkt i U der $f(\overline{x}, \overline{y}) \neq 0$. Anta videre at $\frac{\delta f}{\delta y}(\overline{x}, \overline{y}) \neq 0$. Da finnes det en omegn U_0 om \overline{x} , og en deriverbar funksjon $g: U_0 \to \mathbb{R}$ slik at $g(\overline{x}) = \overline{y}$ og

$$f(\mathbf{x},g(\mathbf{x}))=0$$

for alle $x \in U_0$. Den deriverte til g er gitt ved

$$\frac{\delta g}{\delta x_i}(\overline{x}) = -\frac{\frac{\delta f}{\delta x_i}(\overline{x}, \overline{y})}{\frac{\delta f}{\delta y}(\overline{x}, \overline{y})}$$

5.7.4. <u>Teorem (vektorvaluert versjon av implisitt funksjonsteorem)</u>

Anta at U er en åpen delmengde av \mathbb{R}^{m+1} og la $F: U \to \mathbb{R}^k$ være en funksjon med kontinuerlige partiellderiverte. Anta at $(\overline{x}, \overline{y})$ er et punkt i U der $F(\overline{x}, \overline{y}) = 0$. Anta videre at $k \times k$ – matrisen $\frac{\delta F}{\delta y}(\overline{x}, \overline{y})$ er inverterbar. Da finnes det en omegn U_0 om \overline{x} , og en deriverbar funksjon $G: U_0 \to \mathbb{R}^k$ slik at $G(\overline{x}) = \overline{y}$ og

$$F(x,G(x))=0$$

for alle $x \in U_0$. Den deriverte til **G** er gitt ved

$$\mathbf{G}'(\overline{\mathbf{x}}) = -\left(\frac{\delta F}{\delta y}(\overline{\mathbf{x}}, \overline{y})\right)^{-1} \left(\frac{\delta F}{\delta x}(\overline{\mathbf{x}}, \overline{y})\right)$$

5.7.5. <u>Lemma (Perturbasjonslemma)</u>

La $\overline{B}(\mathbf{0},r)$ være en lukket kule i \mathbb{R}^m , og anta at funksjonen $\mathbf{H}: \overline{B}(\mathbf{0},r) \to \mathbb{R}^m$ er slik at $\mathbf{H}(\mathbf{0}) = \mathbf{0}$ og

$$|H(u) - H(v)| \le \frac{1}{2}|u - v|$$
 for alle $u, v \in \overline{B}(0, r)$

Da er funksjonen $L: \overline{B}(\mathbf{0},r) \to \mathbb{R}^m$ definert ved L(x) = x + H(x) injektiv, og kulen $\overline{B}(\mathbf{0},\frac{r}{2})$ er inneholdt i verdimengden til L.

5.7.6. Lemma

Anta at U er et område i \mathbb{R}^m som inneholder $\mathbf{0}$, og at $\mathbf{L}: U \to \mathbb{R}^m$ er en funksjon med kontinuerlige partiellderiverte slik at $\mathbf{L}(\mathbf{0}) = \mathbf{0}$ og $\mathbf{L}'(\mathbf{0}) = I_m$. Da finnes det en r > 0 slik at \mathbf{L} er injektiv når den restrikteres til $\overline{B}(\mathbf{0},r)$ og har en omvendt funksjon \mathbf{M} definert på et område som inneholder $\overline{B}(\mathbf{0},\frac{r}{2})$. Den omvendte funksjonen \mathbf{M} er deriverbar i $\mathbf{0}$ og har Jacobi-matrise $\mathbf{M}'(\mathbf{0}) = I_m$.

5.7.7. Teorem (Omvendt funksjonsteorem)

Anta at U er en åpen mengde i \mathbb{R}^m , og at $F\colon U\to\mathbb{R}^m$ har kontinuerlige partiellderiverte. Anta at $\overline{x}\in U$ og at Jacobi-matrisen $F'(\overline{x})$ er inverterbar. Da finnes det en omegn $U_0\subset U$ om \overline{x} slik at F restriktert til U_0 er injektiv. Verdimengden V til denne restriksjonen er en omegn om $\overline{y}=F(\overline{x})$, og den omvendte funksjonen $G\colon V\to U_0$ er deriverbar i \overline{y} med Jacobi-matrise

$$G'(\overline{y}) = F'(\overline{x})^{-1}$$

Ikke bevisene for omvendt og inverst funksjonsteorem

5.8 EKSTREMALVERDISETNINGEN

5.8.1. Definisjon

Anta at $f: A \to \mathbb{R}$ er en funksjon av m variable. Vi sier at f er begrenset dersom det finnes et tall K, M slik at

$$K \le f(x) \le M$$
 for alle $x \in A$

Vi sier at $c \in A$ er et (globalt) maksimumspunkt for f dersom

$$f(c) \ge f(x)$$
 for all $x \in A$

og vi sier at $d \in A$ er et (globalt) minimumspunkt for f dersom

$$f(\mathbf{d}) \le f(x)$$
 for alle $x \in A$

5.8.2. <u>Setning (Ekstremalverdisetningen)</u>

Anta at A er en lukket, begrenset delmengde av \mathbb{R}^m og at $f: A \to \mathbb{R}$ er kontinuerlig. Da har f minimumspunkter og maksimumspunkter, og er følgelig begrenset.

5.9 MAKSIMUMS- OG MINIMUMSPUNKTER

- 5.9.1. <u>Definisjon</u>
- 5.9.2. Setning
- 5.9.3. <u>Setning (Taylors formel)</u>
- 5.9.4. Setning (Taylors formel, version 2)
- 5.9.5. Lemma
- 5.9.6. Teorem (Annenderiverttesten)
- 5.9.7. Korollar (Annenderiverttesten i to variable)

5.10 LAGRANGES MULTIPLIKATORMETODE

- 5.10.1. <u>Teorem (Lagranges multiplikatormetode med en bibetingelse)</u>
- 5.10.2. <u>Teorem (Lagranges multiplikatormetode med flere bibetingelser)</u>

5.11 GRADIENTMETODEN

MATLAB-appendiks

(*-merkede avsnitt er ikke pensum)

Pensum fra "KALKULUS"

KAP12 – REKKER

12.1 KONVERGENS AV REKKER

12.1.1.

12.1 REKKER MED POSITIVE LEDD

12.2.1.

12.3 ALTERNERENDE REKKER

12.3.1

12.4 ABSOLUTT OG BETINGET KONVERGENS

12.4.1.

12.5 REKKER AV FUNKSJONER

12.5.1.

12.6 KONVERGENS AV POTENSREKKER

12.6.1.

12.7 REGNING MED POTENSREKKER

12.7.1.

12.8 TAYLOR-REKKER

12.8.1.