

Гистограммы, Профили, Проекции

Техническое зрение

VİTMO

Гистограммы

Пиксель

- Пиксель (от англ. picture cell) –наименьший логический элемент изображения, представленного на экране
- Параметры пикселя:
 - пара целых значений (x,y) описывающих геометрическое положение пикселя на изображении,
 - значение I характеризующее яркость (интенсивность) в точке на изображении.

Основные определения

- Гистограмма это распределение частоты появления одинаковых по яркости (интенсивности) пикселей на изображении.
- Яркость это средняя интенсивность сигнала.
- *Контраст* это интервал значений между минимальной и максимальной яркостью (интенсивностью) изображения.

Гистограмма

- Для 8-битового полутонового изображения гистограмма представляет собой одномерный целочисленный массив *hist* из 256 элементов [0 ... 255].
- Элемент гистограммы hist[i] это сумма пикселей изображения с яркостью (интенсивностью) i.
- Для цветного изображения RGB необходимо использовать три гистограммы для каждого цвета.

Выравнивание гистограммы

- Если гистограмма неровная, то для визуального улучшения изображения ее можно выровнять.
- Выравнивание гистограммы в зависимости от решаемой задачи может выполняться по-разному.

Изображение

Гистограмма изображения

Арифметические операции

- Если большая часть значений гистограммы находится слева, то изображение будет темным.
- Для повышения детализации в темных областях необходимо сместить гистограмму в правую более светлую область,
 - например, на 50 градаций для каждого цвета:

200

Линейное выравнивание

- Вычислить гистограмму H исходного изображения f(x,y). Вычислить общее число пикселей N.
- Нормировать массив H так, чтобы сумма всех элементов стала равной максимальному значению интенсивности L=255:

$$H(j) = \frac{L}{N}H(j)$$

• Вычислить кумулятивную гистограмму, суммирующую распределение интенсивностей от 0 до i:

$$Sum(i) = \sum_{0}^{i} H(j)$$

• Рассчитать новые значения интенсивности каждого пикселя с координатами (x, y) используя формулу:

$$g(x,y) = \operatorname{Sum}(f(x,y))$$

Линейное выравнивание

Исходное изображение

Преобразованное изображение

Растяжение динамического диапазона

- Если интенсивность большинства пикселей находится в узком динамическом диапазоне, мы можем его растянуть.
- Это преобразование выполняется согласно следующему выражению:

$$I_{new} = \left(\frac{I - I_{min}}{I_{max} - I_{min}}\right)^{\alpha},$$

- где:
 - I и I_{new} массивы значений интенсивности исходного и нового изображений соответственно;
 - I_{min} и I_{max} минимальное и максимальное значения интенсивности исходного изображения соответственно;
 - α коэффициент нелинейности.

Растяжение динамического диапазона

Исходное изображение

Преобразованное изображение

Равномерное преобразование

• Это преобразование осуществляется по следующей формуле:

$$I_{new} = (I_{max} - I_{min}) \cdot P(I) + I_{min},$$

- где:
 - I и I_{new} массивы значений интенсивности исходного и нового изображений соответственно;
 - I_{min} и I_{max} минимальное и максимальное значения интенсивности исходного изображения соответственно;
 - P(I) функция распределения вероятностей исходного изображения, которая аппроксимируется кумулятивной гистограммой.

• **Кумулятивная гистограмма** — это гистограмма, в которой по вертикальной оси указаны не значения для каждой интенсивности, а значение для этой интенсивности плюс все меньшие (сумма значений) интенсивности:

$$P(I) \approx \sum_{m=0}^{l} \operatorname{Hist}(m)$$

Равномерное преобразование

300

Исходное изображение

Преобразованное изображение

Экспоненциальное преобразование

• Это преобразование осуществляется по следующей формуле:

$$I_{new} = I_{min} - \frac{1}{\alpha} \cdot \ln(1 - P(I)),$$

- где:
 - I и I_{new} массивы значений интенсивности исходного и нового изображений соответственно;
 - I_{min} минимальное значение интенсивности исходного изображения;
 - P(I) функция распределения вероятностей исходного изображения, которая аппроксимируется *кумулятивной гистограммой*;
 - α постоянная, характеризующая крутизну преобразования.

Экспоненциальное преобразование

300

Исходное изображение

Преобразованное изображение

Преобразование по закону Рэлея

• Это преобразование осуществляется по следующей формуле:

$$I_{new} = I_{min} + \left(2\alpha^2 \cdot \ln\left(\frac{1}{1 - P(I)}\right)\right)^{1/2},$$

- где:
 - I и I_{new} массивы значений интенсивности исходного и нового изображений соответственно;
 - I_{min} минимальное значение интенсивности исходного изображения;
 - P(I) функция распределения вероятностей исходного изображения, которая аппроксимируется кумулятивной гистограммой;
 - α постоянная, характеризующая гистограмму распределения интенсивностей элементов результирующего изображения.

Преобразование по закону Рэлея

200

300

Исходное изображение

Преобразованное изображение

Преобразование по закону степени 2/3

• Это преобразование осуществляется по следующей формуле:

$$I_{new} = P(I)^{2/3},$$

- где:
 - P(I) функция распределения вероятностей исходного изображения, которая аппроксимируется кумулятивной гистограммой.

Преобразование по закону степени 2/3

Исходное изображение

Преобразованное изображение

Гиперболическое преобразование

• Это преобразование осуществляется по следующей формуле:

$$I_{new} = \alpha^{P(I)}$$
,

- где:
 - α постоянная, относительно которой осуществляется преобразование и, как правило, равная минимальному значению интенсивности элементов исходного изображения $\alpha = I_{min}$.

Гиперболическое преобразование

Исходное изображение

Преобразованное изображение

Соляризация

• Это преобразование осуществляется по следующей формуле:

$$y = kI(I_{max} - I)/I_{max},$$

- где:
 - I_{max} максимальное значение интенсивности (обычно равно 255),
 - k константа, управляющая динамическим диапазоном,
 - Принимается k = 1/64 или k = 4, например.

Соляризация

Функция преобразования

Произвольное нелинейное преобразование //ТМО

Look-Up-Table (LUT):

$$y = f(x)$$
.

X	<i>X</i> ₁	X_2	•••	X_{n-1}	X_{n}
y = f(x)	y_1	y_2	,,,	y_{n-1}	\mathcal{Y}_n

- x исходная интенсивность, используемая в качестве индекса в таблице;
- y новое значение интенсивности.

Произвольное нелинейное преобразование ИТМО

- Look-Up-Table (LUT):
 - Пример: соляризация выполняемая по формуле:

$$y = 4x(255 - x)/255$$
.

• LUT описывается одномерным массивом:

```
[0,4,8,12,16,20,23,27,...,198,199,201,203,...,254,255,255,255,...,12,8,4,0].
```

Вычисляются новые значения интенсивности только 256 раз!

Произвольное нелинейное преобразование ИТМО

• Для изображения X вычислить гистограмму h_x исходного изображения и кумулятивную гистограмму H_x :

$$H_{\mathcal{X}}[j] = \sum_{i=0}^{j} h_{\mathcal{X}}[i].$$

• Определить желаемую гистограмму h_z (из какого-нибудь референсного изображения или формулой) и кумулятивную гистограмму H_z :

$$H_Z[j] = \sum_{i=0}^{j} h_Z[i].$$

Произвольное нелинейное преобразование ИТМО

• Построение Look-Up-Table (LUT):

```
for (i = 0; i \le 255; i++)
j = i;
if(Hx[i] \leq Hz[i])
    LUT[i] = j;
else
    \dot{1} = \dot{1} + 1;
if(Hx[i]-Hz[j]> Hx[i]-Hz[j-1])
    \dot{j} = \dot{j} - 1;
else
    LUT[i] = i;
```

Приведение средней яркости к заданному значению

- Задать требуемое значение средней яркости *К*.
- Вычислить минимальное I_{min} , максимальное I_{max} и среднее арифметическое I_{av} значения яркости исходного изображения.
- Подобрать параметры преобразования значений яркости так, чтобы среднеарифметическое значение яркости пикселей изображения стало равно *K*.

Приведение средней яркости к заданному значению

$$I_{av} = 119$$

$$K = f(\alpha)$$

$$I_{av1} = 177$$

$$I_{av2} = 77$$

VİTMO

Профили

Профиль

- Чтобы свести геометрические компоненты изображения к одномерному массиву данных n = 1 используют такие характеристики, как "профили" и "проекции" изображения.
- Профиль изображения вдоль прямой это функция распределения интенсивности изображения вдоль заданной прямой.

Профиль

 Простейший профиль изображения – это «строковый» профиль:

Profile
$$i(x) = I(x, i)$$
,

где i – это номер строки изображения.

• «Столбцовый» профиль:

Profile
$$j(y) = I(y, j)$$
,

где j — это номер столбца изображения.

• В MATLAB вычисляется функцией improfile():

VİTMO

- Проекцией изображения на некоторую ось является сумма интенсивностей пикселей в направлении, перпендикулярном этой оси.
- Простейшим случаем проекции двумерного изображения является вертикальная проекция на ось Ox,
 - при которой суммируется сумма интенсивностей по столбцам:

$$\operatorname{Proj}X(y) = \sum_{y=0}^{\dim Y - 1} I(x, y).$$

- Аналогично, можно рассчитать горизонтальную проекцию на ось Oy,
 - при которой суммируется сумма интенсивностей по строкам:

$$\operatorname{Proj}Y(x) = \sum_{x=0}^{\dim X - 1} I(x, y).$$

- Допустим, что направление оси задано единичным вектором с координатами (e_x, e_y) .
- Тогда проекция изображения на ось *Ое* определяется следующим выражением:

$$\operatorname{Proj}E(t) = \sum_{xe_x + ye_y = t} I(x, y).$$

LITMO

Активность

Активность

 Как вычислить координаты монотонного объекта на однородном фоне?

Активность

• Вычислить проекции!

Пример

- На рисунке пример проекции на ось Оу машиночитаемого документа.
- Две строки машиночитаемого текста генерируют два значимых экстремума проекционной функции.
- Такие проекции можно использовать в алгоритмах обнаружения и сегментации текстовых строк в системах

распознавания текста.

VA<<IRINA<<<<<<<<<<RUS5907296F2109217<<<<<<<<

ITSMOre than a UNIVERSITY

s.shavetov@itmo.ru