LR(0) Items

- LR(0) item: An LR(0) item for a grammar G is a production rule
 of G with the symbol (read as dot or bullet) inserted at some
 position in the rhs of the rule.
- Example of LR(0) items: For the rule given below

```
\begin{array}{c} \textit{decls} \rightarrow \textit{decls} \; \textit{decl} \\ \text{the possible LR(0) items are :} \\ \textit{l}_1 : \textit{decls} \rightarrow \bullet \textit{decls} \; \textit{decl} \\ \textit{l}_2 : \textit{decls} \rightarrow \textit{decls} \; \bullet \; \textit{decl} \\ \textit{l}_3 : \textit{decls} \rightarrow \textit{decls} \; \textit{decl} \bullet \\ \text{The rule} \; \textit{decls} \rightarrow \; \epsilon \; \text{has only one LR(0) item,} \\ \textit{l}_4 : \textit{decls} \rightarrow \; \bullet \end{array}
```

LR(0) Items

- An LR(0) item is complete if the is the last symbol in the rhs.
 Example: I₃ and I₄ are complete items and I₁ and I₂ are incomplete items.
- An LR(0) item is called a *kernel item*, if the dot is not at the left end. However the item $S' \to \bullet S$ is an exception and is defined to be a kernel item.

Example : I_1 , I_2 , I_3 are all kernel items and I_4 is a non-kernel item.

Canonical Collection of LR(0) Items

The construction of the SLR parsing table requires two functions *closure* and *goto*.

closure: Let U be the collection of all LR(0) items of a cfg G. Then closure : $U \rightarrow 2^U$.

- closure(I) = {I}, for $I \in U$
- ② If $A \to \alpha \bullet B\beta \in closure(I)$, then the item $B \to \bullet \eta$ is added to closure(I).
- Apply step (ii) above repeatedly till no more new items can be added to closure(1).

Example: Consider the grammar $A \rightarrow A$ a \mid b

$$closure(A \rightarrow \bullet A a) = \{A \rightarrow \bullet A a, A \rightarrow \bullet b\}$$

Canonical Collection of LR(0) Items

goto: goto : $U \times X \rightarrow 2^U$, where X is a grammar symbol.

$$goto(A \rightarrow \alpha \bullet X\beta, X) = closure(A \rightarrow \alpha X \bullet \beta).$$

Example: $goto(A \rightarrow \bullet Aa, A) = closure(A \rightarrow A \bullet a) = \{A \rightarrow A \bullet a\}$ closure and goto can be extended to a set S of LR(0) items by appropriate generalizations

- $closure(S) = \bigcup_{I \in S} \{closure(I)\}$
- $goto(S, X) = \bigcup_{I \in S} \{goto(I, X)\}$