Pandas real life solution to problems

importing pandas, numpy and matplotlib.pyplot

```
In [2]:
```

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
```

Initial cleaning of data

In [3]:

```
#getting the csv file from the folder path as specified below
yearly_sales=pd.read_csv("D:\\python jupyter\data files\yearly_sales.csv")
```

In [5]:

```
#for dropping nan valued rows
yearly_sales=yearly_sales.dropna(axis=0,how="all")
```

In [6]:

```
#for remonving rows with "Or" in Order Date
yearly_sales=yearly_sales.loc[~(yearly_sales["Order Date"].str.contains("Or"))]
```

In [7]:

```
#keith's method

yearly_sales["month"]=yearly_sales["Order Date"].str[0:2]
yearly_sales["month"]=yearly_sales["month"].astype("int32")
yearly_sales.head()
```

Out[7]:

month	Purchase Address	Order Date	Price Each	Quantity Ordered	Product	Order ID	
4	917 1st St, Dallas, TX 75001	04/19/19 08:46	11.95	2	USB-C Charging Cable	176558	0
4	682 Chestnut St, Boston, MA 02215	04/07/19 22:30	99.99	1	Bose SoundSport Headphones	176559	2
4	669 Spruce St, Los Angeles, CA 90001	04/12/19 14:38	600	1	Google Phone	176560	3
4	669 Spruce St, Los Angeles, CA 90001	04/12/19 14:38	11.99	1	Wired Headphones	176560	4
4	333 8th St, Los Angeles, CA 90001	04/30/19 09:27	11.99	1	Wired Headphones	176561	5

Changing the Quantity Ordered and the Price Each to the required type i.e int,float resp.

```
In [8]:
```

```
yearly_sales["Quantity Ordered"]=yearly_sales["Quantity Ordered"].astype("int32")
yearly_sales["Price Each"]=yearly_sales["Price Each"].astype("float64")
yearly_sales["sales"]=yearly_sales["Quantity Ordered"]*yearly_sales["Price Each"]
ysales=yearly_sales.groupby(["month"]).sum()["sales"]
ysales
```

Out[8]:

```
month
     1.822257e+06
     2.202022e+06
3
     2.807100e+06
     3.390670e+06
     3.152607e+06
6
     2.577802e+06
7
     2.647776e+06
8
     2.244468e+06
     2.097560e+06
10
    3.736727e+06
    3.199603e+06
11
12
     4.613443e+06
Name: sales, dtype: float64
```

Using apply function to get each cell values and manipulate it further

In [9]:

```
def get_state(name):
    return name.split(",")[1]
def get_city(name):
    return name.split(",")[2].split(" ")[1]
yearly_sales["City"]=yearly_sales["Purchase Address"].apply(lambda x:f"{get_state(x)}({get_city(x)})")
yearly_sales.tail()
```

Out[9]:

	Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	month	sales	City
186845	259353	AAA Batteries (4- pack)	3	2.99	09/17/19 20:56	840 Highland St, Los Angeles, CA 90001	9	8.97	Los Angeles(CA)
186846	259354	iPhone	1	700.00	09/01/19 16:00	216 Dogwood St, San Francisco, CA 94016	9	700.00	San Francisco(CA)
186847	259355	iPhone	1	700.00	09/23/19 07:39	220 12th St, San Francisco, CA 94016	9	700.00	San Francisco(CA)
186848	259356	34in Ultrawide Monitor	1	379.99	09/19/19 17:30	511 Forest St, San Francisco, CA 94016	9	379.99	San Francisco(CA)
186849	259357	USB-C Charging Cable	1	11.95	09/30/19 00:18	250 Meadow St, San Francisco, CA 94016	9	11.95	San Francisco(CA)

In [10]:

```
csales=yearly_sales.groupby(["City"]).sum()["sales"]
csales
```

Out[10]:

```
City
Atlanta(GA)
                   2.795499e+06
Austin(TX)
                    1.819582e+06
 Boston(MA)
                     3.661642e+06
Dallas(TX)
                     2.767975e+06
 Los Angeles(CA)
                    5.452571e+06
New York City(NY)
                    4.664317e+06
 Portland(ME)
                     4.497583e+05
Portland(OR)
                     1.870732e+06
 San Francisco(CA)
                   8.262204e+06
 Seattle(WA)
                     2.747755e+06
Name: sales, dtype: float64
```

Changing the order time in datetime object to extract the date and time in better way

In [11]:

```
yearly_sales["Order Date"]=pd.to_datetime(yearly_sales["Order Date"])
```

In [141]:

```
yearly_sales["Hour"]=yearly_sales["Order Date"].dt.hour
yearly_sales["minute"]=yearly_sales["Order Date"].dt.minute
myfavcity=yearly_sales.loc[yearly_sales["City"]==" San Francisco(CA)"]
hsales=myfavcity.groupby(["City","Hour"]).count()
hsales
```

Out[141]:

		Order ID	Product	Quantity Ordered	Price Each	Order Date	Purchase Address	month	sales	minute
City	Hour									
San Francisco(CA)	0	940	940	940	940	940	940	940	940	940
	1	570	570	570	570	570	570	570	570	570
	2	315	315	315	315	315	315	315	315	315
	3	220	220	220	220	220	220	220	220	220
	4	217	217	217	217	217	217	217	217	217
	5	344	344	344	344	344	344	344	344	344
	6	630	630	630	630	630	630	630	630	630
	7	989	989	989	989	989	989	989	989	989
	8	1471	1471	1471	1471	1471	1471	1471	1471	1471
	9	2064	2064	2064	2064	2064	2064	2064	2064	2064
	10	2695	2695	2695	2695	2695	2695	2695	2695	2695
	11	2964	2964	2964	2964	2964	2964	2964	2964	2964
	12	2998	2998	2998	2998	2998	2998	2998	2998	2998
	13	2865	2865	2865	2865	2865	2865	2865	2865	2865
	14	2642	2642	2642	2642	2642	2642	2642	2642	2642
	15	2486	2486	2486	2486	2486	2486	2486	2486	2486
	16	2484	2484	2484	2484	2484	2484	2484	2484	2484
	17	2634	2634	2634	2634	2634	2634	2634	2634	2634
	18	2988	2988	2988	2988	2988	2988	2988	2988	2988
	19	3106	3106	3106	3106	3106	3106	3106	3106	3106
	20	2945	2945	2945	2945	2945	2945	2945	2945	2945
	21	2595	2595	2595	2595	2595	2595	2595	2595	2595
	22	2108	2108	2108	2108	2108	2108	2108	2108	2108
	23	1462	1462	1462	1462	1462	1462	1462	1462	1462

Monthly sales of cities data analysis

In [13]:

```
months=[city for city,df in yearly_sales.groupby("City")]
plt.bar(months,csales,color="yellow")
plt.xticks(months,rotation="vertical")
plt.xlabel("months",color="green",fontname="segoe print",fontsize=15)
plt.ylabel("monthly sales",color="green",fontname="segoe print",fontsize=15)
plt.title("monthly sales data analysis",color="green",fontname="segoe print",fontsize=15)
plt.plot(months,csales,marker=".",color="red",markersize=10,linewidth=3,label="line analysis")
plt.legend()
plt.show()
```


Yearly sales of Los Angeles(CA)

In [143]:

```
hours=[hour for hour,df in yearly_sales.groupby("Hour")]
plt.plot(hours,hsales)
plt.xticks(hours)
plt.xlabel("time in hours")
plt.ylabel("total amount of sales")
plt.grid()
plt.show()
```


Transforming the products into one row which have the same order ID

```
In [15]:
```

```
df=yearly_sales.loc[yearly_sales["Order ID"].duplicated(keep=False)]

df["Groups"]=df.groupby(["Order ID"])["Product"].transform(lambda x:",".join(x))

df=df[["Order ID","Groups"]].drop_duplicates()

df.head(10)

<ipython-input-15-6e609fc564b3>:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
    df["Groups"]=df.groupby(["Order ID"])["Product"].transform(lambda x:",".join(x))

Out[15]:
```

Order ID		Groups
3	176560	Google Phone,Wired Headphones
18	176574	Google Phone, USB-C Charging Cable
30	176585	Bose SoundSport Headphones,Bose SoundSport Hea
32	176586	AAA Batteries (4-pack),Google Phone
119	176672	Lightning Charging Cable, USB-C Charging Cable
129	176681	Apple Airpods Headphones, Think Pad Laptop
138	176689	Bose SoundSport Headphones,AAA Batteries (4-pack)
189	176739	34in Ultrawide Monitor,Google Phone
225	176774	Lightning Charging Cable, USB-C Charging Cable
233	176781	iPhone,Lightning Charging Cable

Using combinations and Counter methods to get the maximum order product in a group

In [96]:

```
from itertools import combinations
from collections import Counter
count=Counter()
for rows in df["Groups"]:
    row_list=rows.split(",")
    count.update(Counter(combinations(row_list,3)))
for x,y in count.most_common():
    print(x,y)
```

```
('Google Phone', 'USB-C Charging Cable', 'Wired Headphones') 87
('iPhone', 'Lightning Charging Cable', 'Wired Headphones') 62
('iPhone', 'Lightning Charging Cable', 'Apple Airpods Headphones') 47
('Google Phone', 'USB-C Charging Cable', 'Bose SoundSport Headphones') 35
('Vareebadd Phone', 'USB-C Charging Cable', 'Wired Headphones') 33
('iPhone', 'Apple Airpods Headphones', 'Wired Headphones') 27
('Google Phone', 'Bose SoundSport Headphones', 'Wired Headphones') 24
('Vareebadd Phone', 'USB-C Charging Cable', 'Bose SoundSport Headphones') 16
('USB-C Charging Cable', 'Bose SoundSport Headphones', 'Wired Headphones') 5
('Vareebadd Phone', 'Bose SoundSport Headphones', 'Wired Headphones') 5
('Lightning Charging Cable', 'Apple Airpods Headphones', 'Wired Headphones') 4
('iPhone', 'Apple Airpods Headphones', 'AAA Batteries (4-pack)') 3 ('iPhone', 'Lightning Charging Cable', 'Lightning Charging Cable') 3 ('iPhone', 'Lightning Charging Cable', 'AA Batteries (4-pack)') 3
('Google Phone', 'USB-C Charging Cable', 'AAA Batteries (4-pack)') 3 ('Google Phone', 'USB-C Charging Cable', 'AA Batteries (4-pack)') 3 ('iPhone', 'Lightning Charging Cable', 'USB-C Charging Cable') 3
('Google Phone', 'USB-C Charging Cable', 'USB-C Charging Cable') 2 ('Google Phone', 'Wired Headphones', 'USB-C Charging Cable') 2
('Google Phone', 'USB-C Charging Cable', '27in FHD Monitor') 2
('Google Phone', 'USB-C Charging Cable', 'Apple Airpods Headphones') 2
('iPhone', 'Lightning Charging Cable', 'Google Phone') 2
('Google Phone', 'Wired Headphones', 'AA Batteries (4-pack)') 2
('USB-C Charging Cable', 'Wired Headphones', 'USB-C Charging Cable') 1
('iPhone', 'Lightning Charging Cable', 'Vareebadd Phone') 1 ('Google Phone', 'USB-C Charging Cable', 'Vareebadd Phone') 1
('iPhone', 'Wired Headphones', 'AA Batteries (4-pack)') 1
('Lightning Charging Cable', 'Wired Headphones', 'AA Batteries (4-pack)') 1
('Vareebadd Phone', 'USB-C Charging Cable', 'iPhone') 1
('Google Phone', 'USB-C Charging Cable', '34in Ultrawide Monitor') 1
('Google Phone', 'Bose SoundSport Headphones', '34in Ultrawide Monitor') 1
('USB-C Charging Cable', 'Bose SoundSport Headphones', '34in Ultrawide Monitor') 1
('Google Phone', 'Wired Headphones', 'Apple Airpods Headphones') 1
('USB-C Charging Cable', 'Wired Headphones', 'Apple Airpods Headphones') 1
('USB-C Charging Cable', 'Wired Headphones', 'Apple Airpods Headphones') 1
('iPhone', 'Lightning Charging Cable', 'iPhone') 1
('Vareebadd Phone', 'Wired Headphones', 'iPhone') 1
('Vareebadd Phone', 'Wired Headphones', 'Apple Airpods Headphones') 1
('iPhone', 'Apple Airpods Headphones', 'Google Phone') 1
('iPhone', 'Wired Headphones', 'Google Phone') 1
('Lightning Charging Cable', 'Apple Airpods Headphones', 'Google Phone') 1
('Lightning Charging Cable', 'Wired Headphones', 'Google Phone') 1
('Apple Airpods Headphones', 'Wired Headphones', 'Google Phone') 1
('Vareebadd Phone', 'Wired Headphones', '27in 4K Gaming Monitor') 1
('Google Phone', 'Wired Headphones', 'Wired Headphones') 1
('USB-C Charging Cable', 'Wired Headphones', 'Wired Headphones') 1
('Google Phone', 'Wired Headphones', 'Macbook Pro Laptop') 1
('Google Phone', 'Wired Headphones', '27in FHD Monitor') 1
('USB-C Charging Cable', 'Wired Headphones', '27in FHD Monitor') {\bf 1}
('iPhone', 'Lightning Charging Cable', '34in Ultrawide Monitor') 1
('Google Phone', 'Bose SoundSport Headphones', '27in FHD Monitor') 1
('iPhone', 'Lightning Charging Cable', '27in 4K Gaming Monitor') 1
('USB-C Charging Cable', 'Wired Headphones', 'AA Batteries (4-pack)') 1
('iPhone', 'Apple Airpods Headphones', 'Bose SoundSport Headphones') 1
('iPhone', 'Wired Headphones', 'USB-C Charging Cable') 1
('Lightning Charging Cable', 'Wired Headphones', 'USB-C Charging Cable') 1
('iPhone', 'Wired Headphones', 'Lightning Charging Cable') 1
('Google Phone', 'Bose SoundSport Headphones', 'Apple Airpods Headphones') 1 ('Vareebadd Phone', 'USB-C Charging Cable', 'Apple Airpods Headphones') 1
('Google Phone', 'USB-C Charging Cable', 'Lightning Charging Cable') 1
('iPhone', 'Lightning Charging Cable', 'AAA Batteries (4-pack)') 1
('Google Phone', 'Bose SoundSport Headphones', 'Lightning Charging Cable') 1
('Vareebadd Phone', 'Bose SoundSport Headphones', 'Flatscreen TV') {\tt 1}
('iPhone', 'Lightning Charging Cable', 'Flatscreen TV') 1
('Google Phone', 'USB-C Charging Cable', 'iPhone') 1
('Google Phone', 'Wired Headphones', 'iPhone') 1
('USB-C Charging Cable', 'Wired Headphones', 'iPhone') 1
```

Grouping dataframe by product

In [111]:

```
product=yearly_sales.groupby(["Product"])
quantity_ordered=product.sum()
quantity_ordered
```

Out[111]:

	Quantity Ordered	Price Each	month	sales	Hour	minute
Product						
20in Monitor	4129	451068.99	29336	454148.71	58764	122252
27in 4K Gaming Monitor	6244	2429637.70	44440	2435097.56	90916	184331
27in FHD Monitor	7550	1125974.93	52558	1132424.50	107540	219948
34in Ultrawide Monitor	6199	2348718.19	43304	2355558.01	89076	183480
AA Batteries (4-pack)	27635	79015.68	145558	106118.40	298342	609039
AAA Batteries (4-pack)	31017	61716.59	146370	92740.83	297332	612113
Apple Airpods Headphones	15661	2332350.00	109477	2349150.00	223304	455570
Bose SoundSport Headphones	13457	1332366.75	94113	1345565.43	192445	392603
Flatscreen TV	4819	1440000.00	34224	1445700.00	68815	142789
Google Phone	5532	3315000.00	38305	3319200.00	79479	162773
LG Dryer	646	387600.00	4383	387600.00	9326	19043
LG Washing Machine	666	399600.00	4523	399600.00	9785	19462
Lightning Charging Cable	23217	323787.10	153092	347094.15	312529	634442
Macbook Pro Laptop	4728	8030800.00	33548	8037600.00	68261	137574
ThinkPad Laptop	4130	4127958.72	28950	4129958.70	59746	121508
USB-C Charging Cable	23975	261740.85	154819	286501.25	314645	647586
Vareebadd Phone	2068	826000.00	14309	827200.00	29472	61835
Wired Headphones	20557	226395.18	133397	246478.43	271720	554023
iPhone	6849	4789400.00	47941	4794300.00	98657	201688

bar graph for best selling product

In [123]:

```
products=[pr for pr,df in product]
plt.bar(products,quantity_ordered["Quantity Ordered"])
plt.xticks(products,rotation="vertical")
plt.xlabel("Products")
plt.ylabel("Quantity Ordered")
plt.title("analysis for best selling product")
plt.show()
```


In [140]:

```
prices=yearly_sales.groupby("Product").mean()["Price Each"]
fig,ax1=plt.subplots()a
ax2=ax1.twinx()
ax1.bar(products,quantity_ordered["Quantity Ordered"],color="r")
ax2.plot(products,prices,"b-")
ax1.set_xlabel("Product",color="green")
ax1.set_ylabel("Quantity Ordered",color="r")
ax2.set_ylabel("Prices(USD)",color="b")
ax1.set_xticklabels(products,rotation="vertical")
plt.show()
```

ax1.set_xticklabels(products,rotation="vertical")

