

# Assignment: Predicting Attrition

# 294 - VIMAL KUMAR N, KRITIKA SHARMA, LAL CHAND SHARMA

#### Introduction to Data Science

## M.Tech Data Science and Engineering

#### Overview

- Objective: Analyzing and Building models for Predicting Attrition
- Methodology:
  - EDA: Perform exploratory analysis of the data
  - Preprocessing the collected data: Perform data wrangling / Pre-Processing to improve outcomes
  - Analyzing the dataset: The most important features that push an employee to leave the organization are detected
  - Balancing the dataset: Since the dataset is not already balanced, it is necessary to be equalized
  - Building the predictive model: The suitable configuration for the model is selected to increase the prediction accuracy (Logistic regression and Decision tree to predict)
  - Validating the model: Compare the performance of the two classifiers – Logistic regression and Decision tree to predict

# Methodology

- EDA: Perform exploratory analysis of the data
- Preprocessing the collected data: Perform data wrangling / Pre-Processing to improve outcomes
- Analyzing the dataset: The most important features that push an employee to leave the organization are detected
- Balancing the dataset: Since the dataset is not already balanced, it is necessary to be equalized
- Building the predictive model: The suitable configuration for the model is selected to increase the prediction accuracy (Logistic regression and Decision tree to predict)
  - Logistic regression:
    - For better performance we used **feature scaling** in Logistic regression
    - Applying Recursive Feature Elimination (RFE) for feature selection in Logistic regression
  - Decision Tree:
    - Performed Class Imbalance Check
    - Applied UNDERSAMPLING
    - Applied OVERSAMPLING
- Validating the model: Compare the performance of the two classifiers Logistic regression and Decision tree to predict

### Results

- Table for the evaluation metric for each ML technique used
- Logical regression:

| Accuracy  | 86.5 |           |          |          |         |
|-----------|------|-----------|----------|----------|---------|
|           |      | precision | recall   | f1-score | support |
|           | 0    | 0.865248  | 0.987854 | 0.922495 | 247     |
|           | 1    | 0.75      | 0.191489 | 0.305085 | 47      |
| accuracy  |      |           |          | 0.860544 | 294     |
| Macro avg |      | 0.807624  | 0.589672 | 0.61379  | 294     |
| Weighted  | avg  | 0.846824  | 0.860544 | 0.823794 | 294     |



# Assignment: Predicting Attrition

# 294 - VIMAL KUMAR N, KRITIKA SHARMA, LAL CHAND SHARMA

## Introduction to Data Science

M.Tech Data Science and Engineering

#### Dataset

- Data columns (total 33 columns):
  - dtypes: float64(2), int64(17), object(14)
  - o memory usage: 379.1+ KB
  - There are 1,470 rows and 33 columns in the data.
- Single file used (Final dataset Attrition-1.csv)
- ['Date\_of\_termination', 'Unnamed: 32'] columns have only one Unique Values and drop them
- ['BusinessTravel', 'NumCompaniesWorked',
   'StockOptionLevel','TrainingTimesLastYear'] columns are
   removed due to usability
- There are 1 column to remove due to high correlations (['MonthlyIncome']
- Balanced or imbalanced what is the distribution
- 20 % data is distributed as Training set, 80% used as testing set

#### Results

#### • Recursive Feature Elimination (RFE) for feature selection

| Accuracy         | 86.5 |           |          |          |         |
|------------------|------|-----------|----------|----------|---------|
|                  |      | precision | recall   | f1-score | support |
|                  | 0    | 0.867857  | 0.983806 | 0.922201 | 247     |
|                  | 1    | 0.714286  | 0.212766 | 0.327869 | 47      |
| accu <b>racy</b> |      |           |          | 0.860544 | 294     |
| Macro avg        |      | 0.791071  | 0.598286 | 0.625035 | 294     |
| Weighted         | avg  | 0.843307  | 0.860544 | 0.827189 | 294     |

#### • Decision Tree:

| Accurac                |           |        |          |         |
|------------------------|-----------|--------|----------|---------|
| Classification report- |           |        |          |         |
|                        | precision | recall | f1-score | support |
| 0                      | 0.87      | 0.85   | 0.86     | 247     |
| 1                      | 0.30      | 0.34   | 0.32     | 47      |
| accuracy               |           |        | 0.77     | 294     |
| macro avg              | 0.59      | 0.60   | 0.59     | 294     |
| weighted avg           | 0.78      | 0.77   | 0.77     | 294     |

#### Method 1: UNDERSAMPLING

| Accurac                |           |        |          |         |
|------------------------|-----------|--------|----------|---------|
| Classification report- |           |        |          |         |
|                        | precision | recall | f1-score | support |
| 0                      | 0.57      | 0.54   | 0.55     | 48      |
| 1                      | 0.55      | 0.57   | 0.56     | 47      |
| accuracy               |           |        | 0.56     | 95      |
| macro avg              | 0.56      | 0.56   | 0.56     | 95      |
| weighted avg           | 0.56      | 0.56   | 0.56     | 95      |



# Assignment: Predicting Attrition

## 294 - VIMAL KUMAR N, KRITIKA SHARMA, LAL CHAND SHARMA

## Introduction to Data Science

M.Tech Data Science and Engineering

# Feature Engineering Techniques

- ['Date\_of\_termination', 'Unnamed: 32'] columns have only one Unique Values and drop them
- ['BusinessTravel', 'NumCompaniesWorked',
  'StockOptionLevel','TrainingTimesLastYear'] columns are
  removed due to usability
- There are 1 column to remove due to high correlations (['MonthlyIncome']
- Implemented feature encoding using label encoder for below features:
- ['Attrition'] is selected as feature

#### Results

#### Method 2: OVERSAMPLING

| Accura                 |           |        |          |         |
|------------------------|-----------|--------|----------|---------|
| Classification report- |           |        |          |         |
|                        | precision | recall | f1-score | support |
| 0                      | 0.97      | 0.85   | 0.91     | 247     |
| 1                      | 0.87      | 0.98   | 0.92     | 247     |
| accuracy               |           |        | 0.91     | 494     |
| macro avg              | 0.92      | 0.91   | 0.91     | 494     |
| weighted avg           | 0.92      | 0.91   | 0.91     | 494     |

#### Plot of the curves



#### Conclusion

We can see that Decision tree has ~6% better accuracy than Logistic regression but Decision tree is an Oversampling model hence we will select Logistic regression.