Ejercicios: Infraestructura de clave pública

- 6.1) Una autoridad certificadora (AC) tiene clave pública RSA e_{AC} = 19, siendo n_{AC} = 23·31 = 713. Un usuario, A, tiene clave pública RSA e_{A} = 3, siendo n_{A} = 11·23 = 253.
 - ¿Qué protocolo aplica AC para certificar la clave pública del usuario A? Efectúa los cálculos pertinentes para obtener el certificado de A, c_A.
- 6.2) Consideremos la autoridad certificadora, AC, del ejercicio anterior (RSA, $e_{AC} = 19$, $n_{AC} = 23.31 = 713$), el usuario A (RSA, $e_{A} = 3$, $n_{A} = 11.23 = 253$) de ese ejercicio y un usuario B con clave pública RSA, $e_{B} = 5$, $n_{B} = 13.19 = 247$ y un certificado expedido por AC, $c_{B} = 408$.
 - a) El usuario A envía a B su clave pública e_A, n_A y su certificado c_A. ¿Qué protocolo aplica B para comprobar que la clave es auténtica? Realiza los cálculos.
 - b) El usuario B cifra el mensaje m=12 para A y le envía el criptograma c obtenido y A lo descifra para obtener m. Calcula c y realiza el descifrado que hace A de c para obtener m.
 - c) El usuario B firma digitalmente el mensaje m y le envía la firma digital, s, al usuario A. Calcula s.
 - d) El usuario A verifica que la clave pública de B es de ese usuario y aplica el protocolo de firma digital para comprobar que el mensaje recibido del usuario B es auténtico. Haz los cálculos para ambas verificaciones.
- 6.3) Explica, brevemente, qué es un certificado digital.