# RIS LAB 6

Maulik Chhetri, Mahiem Agrawal ${\rm May}\ 2021$ 

## 1 Task 1.26



## 2 Task 1.27

## 2.1 Part 1, 2, 3

| KD  | KI  | KP | Max Current(A) | Max Voltage(V) | Max Overshoot(rad) | Settle time(s) |
|-----|-----|----|----------------|----------------|--------------------|----------------|
| 0   | 0   | 1  | 0.42           | 1.047          | 1.420              | 6.5            |
| 0.1 | 0   | 1  | 3.56           | 9.65           | 1.28               | 3.4            |
| 0.1 | 0.1 | 1  | 4.85           | 11.52          | 11.31              | 4.9            |





kd=0.1, ki=0



kd=0.1, ki=0.1

### 2.2 Part 4



We can observe from the figure that due to the additional torque at 10 seconds, the system is not able to reach the reference value.

### 2.3 Part 5



We can see that the system eventually reaches the reference value when we increase  $\mathrm{Ki}{=}0.1.$ 

### 2.4 Part 6



The system becomes very unstable as we increase the value of Ki=1.

#### 2.5 Part 7

With the values given in the part 6, we obtain the roots of Q(s) by using a matlab function.

We found the roots to be as follows:

$$0.0969 + 1.9679i$$
  
 $0.0969 - 1.9679i$   
 $-1.8185 + 0.000i$ 

We can see that only the last root has the negative real part (in LHP). Other roots are not in LHP hence the system is not stable.