Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Fakultät für Maschinenbau

Prof. Dr. Thomas Carraro Dr. Frank Gimbel Janna Puderbach

Mathematik II

WT 2022

Übungsblatt 1

Grenzwerte

1

Einführende Bemerkungen

- Vermeiden Sie die Verwendung von Taschenrechnern oder Online-Ressourcen.
- Die mit einem Stern *) markierten (Teil-)Aufgaben entfallen in diesem Trimester. Stattdessen werden einzelne Online-Aufgaben im ILIAS-Kurs kenntlich gemacht, zu denen Sie dort Ihre Lösungswege zur Korrektur hochladen können.
- Die mit zwei Sternen **) markierten (Teil-)Aufgaben richten sich an Studierende, die die übrigen Aufgaben bereits gelöst haben und die Inhalte weiter vertiefen möchten.

Aufgabe 1.1: Grenzwertdefinition

Bestimmen Sie zu den unten angegebenen Folgen (a_n) mit dem Grenzwert a und die angegebenen Werte für k jeweils ein N so, dass für alle $n \in \mathbb{N}$ mit n > N gilt

$$|a_n - a| < 10^{-k}$$
.

a)
$$a_n = \frac{1}{\sqrt{n}}, a = 0, k = 2$$

b)
$$a_n = \frac{3n+1}{n+1}, a = 3, k = 4$$

c)
$$a_n = \frac{(-1)^n}{n!} + 1, a = 1, k = 3$$

Lösung 1.1:

a) Es soll gelten $|a_n - a| = \frac{1}{\sqrt{n}} \stackrel{!}{<} 10^{-2}$. Dies lässt sich umstellen zu:

$$n > \left(\frac{1}{10^{-2}}\right)^2 = 10^4 = 10000 = N.$$

b) Hier ergibt sich

$$|a_n - a| < 10^{-4}$$

$$\Rightarrow 10^{-4} > \left| \frac{3n+1}{n+1} - 3 \right| = \frac{|-2|}{n+1}$$

$$\Rightarrow \frac{n+1}{2} > 10^4$$

$$\Rightarrow n > 20000 - 1 = 19999 = N.$$

c) Für diese Folge ist $|a_n - a| = \left| \frac{(-1)^n}{n!} \right| = \frac{1}{n!}$ Mit k = 3 soll also gelten:

$$\frac{1}{n!} < 10^{-3} \Leftrightarrow n! > 1000.$$

Das ist beispielsweise erfüllt für n > 1000 = N. Ein kleinstmögliches N kann man durch die Untersuchung von n! ermitteln. Es ist 6! = 720 < 1000 und $7! = 7 \cdot 6! = 5040 > 1000$. Die Bedingung ist also bereits für n > 6 erfüllt.

Aufgabe 1.2: Folgenkonvergenz

Untersuchen Sie die nachfolgenden Folgen auf Konvergenz und bestimmten Sie – wenn möglich – den Grenzwert:

$$a_{n} = \frac{2n^{2} + 3n}{2n^{2} + 7}$$

$$b_{n} = \frac{2n^{3} - 2}{5n^{2} - 1}$$

$$c_{n} = \frac{2n^{2} + 7n + (-1)^{n}}{5n + 2} - \frac{2n^{3} - 2}{5n^{2} - 1},$$

$$d_{n} = \left(1 + \frac{1}{\sqrt{n}}\right)^{n}$$

$$e_{n} = n\left(\sqrt{n^{2} + 1} - \sqrt{n^{2} - 1}\right)$$

$$f_{n} = \left(1 + \frac{x}{n}\right)^{n} \text{ (mit ganzzahligem } x\text{)}$$

$$g_{n} = \left(\frac{n - 1}{n + 1}\right)^{n+1}$$

Hinweise:

- Setzen Sie voraus, dass f_n konvergiert und ermitteln Sie den Grenzwert.
- Benutzen Sie zur Untersuchung von g_n das Ergebnis für f_n .

Lösung 1.2:

a) Der Bruch wird zunächst mit dem Kehrwert der höchsten auftretenden n-Potenz $(1/n^2)$ erweitert:

$$a_n = \frac{2 + \frac{3}{n}}{2 + \frac{7}{n^2}}$$

Die beiden Ausdrücke $\frac{3}{n}$ und $\frac{7}{n^2}$, die noch von n abhängen, konvergieren beide gegen Null, damit konvergieren Zähler und Nenner jeweils gegen 2 und man hat insgesamt:

$$a_n = \frac{2 + \frac{3}{n}}{2 + \frac{7}{n^2}} \xrightarrow{n \to \infty} \frac{2 + \lim_{n \to \infty} \frac{3}{n}}{2 + \lim_{n \to \infty} \frac{7}{n^2}} = \frac{2 + 0}{2 + 0} = 1.$$

b) Da die n-Potenz des Zählers größer als die des Nenners ist, nehmen wir an, dass b_n divergiert. Um dies zu zeigen, schätzen wir ab:

$$b_n = \frac{2n^3 - 2}{5n^2 - 1} = \frac{\frac{2}{5}(5n^2 - 1)n + \frac{2}{5} \cdot n - 2}{5n^2 - 1} = \frac{2}{5}n + \underbrace{\frac{2n - 10}{25n^2 - 5}}_{\geq 0 \text{ für } n \geq 5}$$
$$\geq \frac{2}{5}n \underset{n \to \infty}{\longrightarrow} \infty$$

Also ist b_n größer als die divergente Folge $\frac{2}{5}n$ und divergiert ebenfalls.

Der Ausdruck für c_n wird zunächst auf einen Bruchstrich gebracht und dann mit dem Kehrwert der höchsten n-Potenz $(1/n^3)$ erweitert:

$$c_n = \frac{(2n^2 + 7n + (-1)^n)(5n^2 - 1) - (2n^3 - 2)(5n + 2)}{(5n + 2)(5n^2 - 1)}$$

$$= \frac{31n^3 + (5 \cdot (-1)^n - 2)n^2 + 3n - (-1)^n + 4}{25n^3 + 10n^2 - 5n - 2}$$

$$= \frac{31 + \frac{5 \cdot (-1)^n - 2}{n} + \frac{3}{n^2} + \frac{4 - (-1)^n}{n^3}}{25 + \frac{10}{n} - \frac{5}{n^2} - \frac{2}{n^3}} \xrightarrow{n \to \infty} \frac{31}{25}$$

Alle Ausdrücke, die noch von n abhängen, haben die Form $\frac{z}{n^l}$, wobei z entweder konstant oder zumindest beschränkt ist, deswegen konvergieren diese Ausdrücke z/n^l gegen Null.

Bringt man beide Ausdrücke nicht auf einen Hauptnenner, kann man nichts weiter über die Konvergenzeigenschaften sagen, da die einzelnen Brüche divergieren. (siehe b_n)

d) Wir zeigen, dass d_n durch eine divergente Folge nach unten abgeschätzt werden kann und folgern die Divergenz von d_n : Für $n \ge 2$ gilt

$$d_{n} = \left(1 + \frac{1}{\sqrt{n}}\right)^{n} = \left(1 + \frac{1}{\sqrt{n}}\right)^{2} \cdot \left(1 + \frac{1}{\sqrt{n}}\right)^{n-2}$$

$$= \left(1 + \frac{2}{\sqrt{n}} + \frac{1}{n}\right) \left(1 + \frac{1}{\sqrt{n}}\right) \cdot \left(1 + \frac{1}{\sqrt{n}}\right)^{n-3}$$

$$= \left(1 + \frac{2}{\sqrt{n}} + \frac{1}{n} + \frac{1}{\sqrt{n}} + \frac{2}{n} + \frac{1}{n\sqrt{n}}\right) \left(1 + \frac{1}{\sqrt{n}}\right)^{n-3}$$

$$= \left(1 + \frac{3}{\sqrt{n}} + \dots\right) \left(1 + \frac{1}{\sqrt{n}}\right)^{n-3}$$

$$\geq 1 + \frac{n}{\sqrt{n}}$$

Die Ungleichung gilt, da die wegfallenden Summanden auf jeden Fall positiv sind, also kann man abschätzen:

$$d_n \ge 1 + \frac{n}{\sqrt{n}} = 1 + \sqrt{n} \xrightarrow[n \to \infty]{} \infty$$

Damit muss auch für d_n gelten $\lim_{n\to\infty} d_n = \infty$.

2

e) Wir erweitern den Ausdruck für die Folge e_n mit $(\sqrt{n^2+1}+\sqrt{n^2-1})$ um die

dritte binomische Formel anzuwenden:

$$e_n = \frac{n(\sqrt{n^2 + 1} - \sqrt{n^2 - 1})(\sqrt{n^2 + 1} + \sqrt{n^2 - 1})}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}} = \frac{n(\sqrt{n^2 + 1}^2 - \sqrt{n^2 - 1}^2)}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}$$
$$= \frac{n(n^2 + 1 - n^2 + 1)}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}} = \frac{2n}{\sqrt{n^2 + 1} + \sqrt{n^2 - 1}}$$

Erweitern mit dem Kehrwert der höchsten n-Potenz $\frac{1}{n}$ liefert nun

$$e_n = \frac{2}{\sqrt{1 + \frac{1}{n^2}} + \sqrt{1 - \frac{1}{n^2}}} \xrightarrow[n \to \infty]{} \frac{2}{1 + 1} = 1.$$

f) Im ersten Schritt werden nur x > 0 zugelassen.

Der Vollständigkeit halber überprüfen wir zunächst als Ergänzung der Aufgabenstellung, dass die Folge f_n konvergiert, dies geschieht in zwei Schritten und unter Nutzung der Bernoulli-Ungleichung

$$(1+y)^m \ge 1 + my$$
 für $m \in \mathbb{N}$ und $y \ge -1$

i) Die Folge f_n steigt monoton:

$$\frac{f_{n+1}}{f_n} = \frac{\left(1 + \frac{x}{n+1}\right)^{n+1}}{\left(1 + \frac{x}{n}\right)^n} = \left(\frac{1 + \frac{x}{n+1}}{1 + \frac{x}{n}}\right)^{n+1} \left(1 + \frac{x}{n}\right) \\
= \left(1 + \frac{-\frac{x}{n} + \frac{x}{n+1}}{1 + \frac{x}{n}}\right)^{n+1} \left(1 + \frac{x}{n}\right) = \left(1 + \frac{-x}{(n+x)(n+1)}\right)^{n+1} \cdot \frac{n+x}{n} \\
\ge \left(1 + (n+1) \cdot \frac{-x}{(n+x)(n+1)}\right) \cdot \frac{n+x}{n} \qquad \text{(Bernoulli-Ungleichung)} \\
= \frac{n+x-x}{n+x} \cdot \frac{n+x}{n} = 1 \\
f_{n+1} \ge f_n$$

ii) Die Folge f_n ist beschränkt: Wegen der Monotonie muss lediglich gezeigt werden, dass f_n eine obere Schranke besitzt:

$$1 + \frac{x}{n} < 1 + \frac{2x}{n}$$

$$\leq \left(1 + \frac{1}{n}\right)^{2x} \qquad \text{(Bernoulli-Ungleichung)}$$

$$\Rightarrow \qquad \left(1 + \frac{x}{n}\right)^n \leq \left(1 + \frac{1}{n}\right)^{2x \cdot n}$$

$$= \left[\left(1 + \frac{1}{n}\right)^n\right]^{2x} \xrightarrow[n \to \infty]{} e^{2x}$$

Damit ist f_n begrenzt durch eine konvergente Folge und somit selbst auch beschränkt.

Als beschränkte, monotone Folge muss f_n auch konvergieren.

Für x > 0 lässt sich f_n umformen zu

$$f_n = \left(1 + \frac{x}{n}\right)^n = \left(\left(1 + \frac{1}{n/x}\right)^{n/x}\right)^x$$

 f_n hat mit $n_k = k \cdot x$ die konvergente Teilfolge

$$f_{n_k} = \left(\left(1 + \frac{1}{k \cdot x/x}\right)^{kx/x}\right)^x = \left(\left(1 + \frac{1}{k}\right)^k\right)^x \underset{k \to \infty}{\longrightarrow} e^x.$$

Wenn also f_n konvergiert muss der Grenzwert mit dem der Teilfolge übereinstimmen und es gilt

$$\lim_{n\to\infty} f_n = e^x.$$

Der Fall negativer x < 0 lässt sich mit Hilfe des Falls x > 0 behandeln: Wir untersuchen dazu mit y = -x > 0 die Folge

$$h_n := f_n \cdot \left(1 + \frac{y}{n}\right)^n = \left(\left(1 - \frac{y}{n}\right)\left(1 + \frac{y}{n}\right)\right)^n = \left(1 - \frac{y^2}{n^2}\right)^n.$$

Es gilt einerseits $h_n < 1$. Andererseits liefert die Bernoulli-Ungleichung zumindest für n > y:

$$h_n \ge 1 - n \cdot \frac{y^2}{n^2} = 1 - \frac{y^2}{n} \xrightarrow[n \to \infty]{} 1.$$

Wegen dieser beiden Ungleichungen muss h_n konvergieren:

$$\lim_{n \to \infty} h_n = 1.$$

Nach Definition von h_n ist

$$f_n = \frac{h_n}{\left(1 + \frac{y}{n}\right)^n}.$$

Zähler und Nenner dieses Ausdruckes konvergieren und somit konvergiert auch f_n :

$$\lim_{n \to \infty} f_n = \frac{\lim_{n \to \infty} h_n}{\lim_{n \to \infty} \left(1 + \frac{y}{n}\right)^n} = \frac{1}{e^y} = e^{-y} = e^x.$$

Für x = 0 hat man ohnehin

$$\lim_{n \to \infty} f_n = \lim_{n \to \infty} 1^n = 1 = e^0.$$

Es gilt also für alle $x \in \mathbb{Z}$:

$$\lim_{n\to\infty} f_n = e^x.$$

g) Es ist

$$g_n = \left(\frac{n+1-2}{n+1}\right)^{n+1} = \left(1 + \frac{-2}{n+1}\right)^{n+1}.$$

Also ist $g_n = f_{n+1}$ mit x = -2 und es gilt

$$\lim_{n \to \infty} g_n = \lim_{n \to \infty} f_n = e^{-2}.$$

Aufgabe 1.3:

a) Zeigen Sie anhand der Definition der Konvergenz, dass gilt

$$\lim_{n \to \infty} \frac{2n^2 + n - 12}{n^2 - 8} = 2.$$

- b) Zeigen Sie: Konvergiert $\{a_n\}_{n\in\mathbb{N}}$ gegen a, so konvergiert auch $\{|a_n|\}_{n\in\mathbb{N}}$ gegen |a|.
- c) Gilt die Umkehrung von b)? Begründen Sie Ihre Aussage mit einem Beweis oder einem Gegenbeispiel.

Lösung 1.3:

Lösung

Zu a) Die Aussage " a_n konvergiert gegen a" bedeutet: Für jedes $k \in \mathbb{N} > 0$ existiert ein $N = N(k) \in \mathbb{R}$, so dass für alle n > N gilt, dass $|a_n - a| < 10^{-k}$. Für $n \in \mathbb{N}$ gilt:

$$a_n := \frac{2n^2 + n - 12}{n^2 - 8} = \frac{2(n^2 - 8) + (n + 4)}{n^2 - 8} = 2 + \frac{n + 4}{n^2 - 8}.$$

Damit folgt

$$|a_n - 2| = \left| \frac{n+4}{n^2 - 8} \right|$$
 für $= 23$ $\frac{n+4}{n^2 - 8} = \frac{n+4}{n^2 - 16 + 8}$

$$\stackrel{\text{für } n \ge 5}{<} \frac{n+4}{n^2 - 16} = \frac{n+4}{(n+4)(n-4)} = \frac{1}{n-4}.$$

Sei nun $k \in \mathbb{N}$ vorgegeben. Es gilt

$$\frac{1}{n-4} = 10^{-k}$$
 \iff $n = 10^k + 4$.

Ist $N(k) := 4 + 10^k$, dann gilt insbesondere für alle n > N(k):

$$|a_n - 2| < 10^{-k}$$
.

Damit ist ist Behauptung bewiesen.

Zu b) Die Aussage " a_n konvergiert gegen a" bedeutet: Für jedes $k \in \mathbb{N}$ gibt es ein $N(k) \in \mathbb{R}$, so dass für alle n > N gilt, dass $|a_n - a| < 10^{-k}$. Wegen

$$||a_n|-|a|| \le |a_n-a|,$$

gilt für jedes $k \in \mathbb{N}$, dass das dazugehörige N(k) und jedes n > N auch

$$||a_n| - |a|| < 10^{-k}$$

erfüllt, d.h. $|a_n|$ konvergiert gegen |a|.

Zu c) Die Umkehrung gilt nicht, zum Beispiel gilt für $a_n = (-1)^n$ sicher $|a_n| = 1 \to 1$, aber $(-1)^n$ ist nicht konvergent.

Aufgabe 1.4: Grenzwerte monotoner Folgen

Es seien $a_1 = \sqrt{2}$ und $a_{n+1} = \sqrt{2 + a_n}$ für $n = 1, 2, 3, \dots$ Überprüfen Sie,

- \mathbf{a}) dass (a_n) beschränkt ist,
- **b**) dass (a_n) monoton wächst und
- c) gegen die größte Lösung der Gleichung $x^2 x 2 = 0$ konvergiert.

Lösung 1.4:

a) Null ist sicher eine untere Schranke für alle $a_n > 0$. Eine obere Schranke ist 2. Wir untersuchen dazu das Quadrat der Folge und rechnen nach, dass $a_n^2 \le 4$ für alle $n \in \mathbb{N}$:

$$a_{n+1}^2 = 2 + a_n \stackrel{!}{\leq} 4$$

Dies ist genau dann erfüllt, wenn bereits $a_n \leq 2$ ist. Das ist für $a_1 = \sqrt{2}$ der Fall und damit auch für alle folgenden a_n .

b) Es ist zu zeigen, dass für alle $n \in \mathbb{N}$ gilt $a_n \leq a_{n+1}$.

Äquivalent dazu ist $\frac{a_{n+1}^2}{a_n^2} \ge 1$:

$$\frac{a_{n+1}^2}{a_n^2} \ge \frac{2+a_n}{2a_n} \qquad \text{(wegen } a_n \le 2\text{)}$$

$$= \frac{1}{a_n} + \frac{1}{2} \ge \frac{1}{2} + \frac{1}{2} = 1 \qquad \text{(wegen } a_n \le 2\text{)}$$

e) Da a_n beschränkt und monoton ist, muss die Folge einen Grenzwert

$$a = \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1}$$

besitzen. Mit diesem Grenzwert ist

$$a^{2} - a - 2 = \lim_{n \to \infty} a_{n+1}^{2} - \lim_{n \to \infty} a_{n} - 2$$
$$= \lim_{n \to \infty} (\sqrt{2 + a_{n}}^{2} - a_{n}) - 2$$
$$= \lim_{n \to \infty} 2 - 2 = 0$$

Damit muss a eine Nullstelle des Polynoms $p(x)=x^2-x-2$ sein. p(x) ist ein Polynom zweiten Grades, besitzt also zwei Nullstellen. Negative Werte nimmt p(x) nur zwischen den beiden Nullstellen an. Da

$$p(a_1) = p(\sqrt{2}) = -\sqrt{2} < 0$$

ist, liegt a_1 zwischen den beiden Nullstellen. Wegen der Monotonie von (a_n) muss es sich bei a also um die größere der beiden Nullstellen handeln.

Aufgabe 1.5: Funktionenlimes

a) Gegeben sei die Funktion

$$f(x) := \frac{x^3 + |x+1| + \operatorname{sign}(x+1)}{\operatorname{sign} x}, \ x \in D(f) := \mathbb{R}.$$

Bestimmen Sie $\lim_{x\to 0+} f(x)$, $\lim_{x\to 0-} f(x)$, $\lim_{x\to (-1)+} f(x)$ und $\lim_{x\to (-1)-} f(x)$.

b) Gegeben sei die Funktion

$$f(x) = \frac{\sinh x}{\cosh(ax)}, \quad a \in \mathbb{R}.$$

Bestimmen Sie $\lim_{x \to \pm \infty} f(x)$.

Hinweise:

- Mit der zunächst als bekannt vorausgesetzten Exponentialfunktion e^x gilt

$$\sinh x := \frac{e^x - e^{-x}}{2}$$
 und $\cosh x := \frac{e^x + e^{-x}}{2}$.

- Die Signum-Funktion liefert das Vorzeichen des Argumentes:

$$\operatorname{sign}(z) = \left\{ \begin{array}{ll} +1 & , z \ge 0 \\ -1 & , z < 0 \end{array} \right.$$

Lösung 1.5:

a) i) Für x > 0 gilt sign(x) = sign(1+x) = 1 sowie |x+1| = x+1, damit gilt

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} (x^3 + x + 1 + 1) = 2.$$

ii) Für -1 < x < 0 gilt sign(x) - 1, sign(1+x) = 1 sowie |x+1| = x+1, damit gilt

$$\lim_{x \to 0-} f(x) = \lim_{x \to 0-} \frac{x^3 + x + 1 + 1}{-1} = -2.$$

iii) Für -1 < x < 0 gilt sign(x) = -1, sign(1+x) = 1 sowie |x+1| = x+1, damit gilt

$$\lim_{x \to (-1)+} f(x) = \lim_{x \to (-1)+} \frac{x^3 + x + 1 + 1}{-1} = 0.$$

iv) Für x < -1 gilt sign(x) = sign(1+x) = -1 sowie |x+1| = -(x+1), damit gilt

$$\lim_{x \to (-1)^{-}} f(x) = \lim_{x \to (-1)^{-}} \frac{x^3 - x - 1 - 1}{-1} = 2.$$

b) Die Funktion f(x) ist eine ungerade Funktion:

$$f(-x) = \frac{\sinh(-x)}{\cosh(ax)} = \frac{e^{-x} - e^{-(-x)}}{e^{-ax} + e^{-(-ax)}} = -\frac{e^{x} - e^{-x}}{e^{ax} + e^{-ax}} = -f(x)$$

Daher ist $\lim_{x\to -\infty} f(x) = -\lim_{x\to +\infty} f(x)$ und es genügt einen der beiden Grenzwerte zu berechnen

Es wird vorausgesetzt, dass e^x stetig ist und dass gilt $\lim_{x\to\infty} e^x = \infty$, somit kann man den Funktionsgrenzwert durch die Substitution $z=e^x$ bestimmen:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{e^x - e^{-x}}{e^{ax} + e^{-ax}} = \lim_{z \to \infty} \frac{z - \frac{1}{z}}{z^a + \frac{1}{z^a}}$$
$$= \lim_{z \to \infty} \left(\frac{z}{z^a} \cdot \frac{1 - \frac{1}{z^2}}{1 + \frac{1}{z^{2a}}} \right)$$

Der Grenzwert des ersten Bruches ist

$$\lim_{z \to \infty} \frac{z}{z^a} = \lim_{z \to \infty} z^{1-a} = \begin{cases} \infty, & a < 1 \\ 1, & a = 1 \\ 0, & a > 1 \end{cases}.$$

Für den zweiten Bruch hat man

$$\lim_{z \to \infty} \frac{1 - \frac{1}{z^2}}{1 + \frac{1}{z^{2a}}} = \begin{cases} 0, & a < 0\\ \frac{1}{2}, & a = 0\\ 1, & a > 0 \end{cases}.$$

Insgesamt ergibt sich daraus:

$$\lim_{x \to \infty} f(x) = \begin{cases} \infty, & 0 \le a < 1 \\ 1, & a = 1 \\ 0, & a > 1 \end{cases}$$

Für a < 0 hat man

$$\lim_{x \to \infty} f(x) = \lim_{z \to \infty} \left(\frac{z}{z^{-a}} \cdot \frac{1 - \frac{1}{z^2}}{z^{2a} + 1} \right) = \begin{cases} 0, & a < -1\\ 1, & a = -1\\ \infty, & -1 < z < 0 \end{cases}.$$

Aufgabe 1.6: Grenzwert Analyse - Definition

- Notieren Sie die Definition des Grenzwertes und zeigen Sie, dass die Folge $a_n = \frac{1}{n}$ gegen den Grenzwert a=0 konvergiert. (Dies ist gleichbedeutend mit dem Nachweis, dass $\forall k \in \mathbb{N}$ eine Zahl $N \in \mathbb{R}$ existiert, so dass für alle $n \in \mathbb{N}$ mit n > N gilt: $|a_n - a| < 10^{-k}$).
- Berechnen Sie den Grenzwert $a=\lim_{n\to\infty}a_n$ der untenstehenden Folgen und dokumentieren Sie die Rechenregel, die Sie zur Berechnung des Grenzwertes verwendet haben (Produktregel, Einschließungssatz, Produkt beschränkter Folgen, Produkt von Nullfolgen etc).

i)
$$a_n = \frac{n^2 + 5n}{3n^2 + 1}$$

i)
$$a_n = \frac{n^2 + 5n}{3n^2 + 1}$$
 ii) $a_n = \log_{10}(10n^2 - 2n) - \log_{10}(n^2 + 1)$

iii)
$$a_n = \frac{(n+1)!}{n! - (n+1)!}$$
 iv) $a_n = \left(1 + \frac{1}{n}\right)^{3n}$

$$\mathbf{iv)} \quad a_n = \left(1 + \frac{1}{n}\right)^{3n}$$

$$\mathbf{v)} \qquad a_n = \frac{\cos n}{n}$$

$$\mathbf{v)} \qquad a_n = \frac{\cos n}{n} \qquad \qquad \mathbf{vi)} \quad a_n = \sqrt{n+1} - \sqrt{n}$$

$$\mathbf{vii)} \quad a_n = \frac{2^n}{n!}$$

Lösung 1.6:

Es ist zu zeigen: $\forall k \in \mathbb{N} : \exists N \in \mathbb{R}$:

$$|n^{-1} - 0| < 10^{-k}, \forall n > N.$$

Wählen Sie $N=10^k$, um die Eigenschaft zu zeigen.

Im vorigen Aufgabenteil wurde gezeigt, dass

$$\lim_{n \to \infty} \frac{1}{n} = 0.$$

Mit dem Ergebnis aus a) gilt

$$\lim_{n\to\infty}\frac{1}{n^{\alpha}}=0, \text{ for all } \alpha\in\mathbb{R},\,\alpha>0.$$

Des Weiteren wird die Stetigkeit der Funktionen vorausgesetzt und ausgenutzt.

Teilen von Zähler und Nenner durch n^2 liefert

$$\frac{1+\frac{5}{n}}{3+\frac{1}{n^2}}$$

Der Grenzwert des Zählers ist 1, der Grenzwert des Nenners ist 3. Somit liefert die Quotientenregel für Grenzwerte das Ergebnis $a=\frac{1}{2}$.

ii)

$$\log_{10}(10n^2 - 2n) - \log_{10}(n^2 + 1) = \log_{10}\frac{10n^2 - 2n}{n^2 + 1}$$
$$= \log_{10}\frac{10 - \frac{2}{n^2}}{1 + \frac{1}{n^2}}.$$

Der Grenzwert des Arguments b des Logarithmus-Terms liefert

$$b = \lim_{n \to \infty} \frac{10 - \frac{2}{n^2}}{1 + \frac{1}{n^2}} = 10.$$

Aufgrund der Stetigkeit der Logarithmus-Funktionen innerhalb ihres Definitionsbereichs auf x > 0, berechnet sich der Grenzwert zu

$$a = \lim_{n \to \infty} \log_{10} b_n = \log_{10} b = 1.$$

Umformung des Bruchausdrucks liefert

$$\frac{(n+1)!}{n! - (n+1)!} = \frac{(n+1)n!}{n! - (n+1)n!} = \frac{(n+1)}{-n} = -(1+\frac{1}{n}).$$

Unter Verwendung der Summenregel ergibt sich der Grenzwert

$$a = \lim_{n \to \infty} \frac{(n+1)!}{n! - (n+1)!} = \lim_{n \to \infty} -(1 + \frac{1}{n}) = -1.$$

iv) Es gilt

$$\left(1 + \frac{1}{n}\right)^{3n} = \left(\left(1 + \frac{1}{n}\right)^n\right)^3$$

Der Grenzwert der Folge $b_n = \left(1 + \frac{1}{n}\right)^n$ ist genau die Eulersche Zahl e.

$$b = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Die Produktregel liefert dann

$$\lim_{n \to \infty} b_n^3 = \lim_{n \to \infty} b_n \lim_{n \to \infty} b_n \lim_{n \to \infty} b_n = b^3 = e^3.$$

Alternativ kann auch die Stetigkeit der Funktion x^3 ausgenutzt werden, um das Ergebnis zu erhalten.

v) Die Folge

$$a_n = \frac{\cos n}{n}$$

kann als Produkt $a_n=b_nc_n$ einer beschränkten Teilfolgen $b_n=\cos n\neq 0$ und einer Nullfolge $c_n=\frac{1}{n}$ aufgefasst werden. Entsprechend ist deren Produkt ebenfalls eine Nullfolge und der Grenzwert ist a=0.

vi) Es gilt

$$\sqrt{n+1} - \sqrt{n} = \frac{\left(\sqrt{n+1} - \sqrt{n}\right)\left(\sqrt{n+1} + \sqrt{n}\right)}{\sqrt{n+1} + \sqrt{n}}$$
$$= \frac{1}{\sqrt{n+1} + \sqrt{n}} = \frac{\frac{1}{\sqrt{n}}}{\sqrt{1 + \frac{1}{n}} + \sqrt{\frac{1}{n}}}.$$

Unter Verwendung der Produkt und Additionsregel erhalten wir den Grenzwert a=0.

vii) Die Folge $a_n = \frac{2^n}{n!}$ kann für n > 3 nach oben und unten beschränkt werden

$$0 \le \frac{2^n}{n!} = \underbrace{\frac{\overbrace{2 \cdot 2 \cdot 2 \dots 2}^n}{1 \cdot 2 \cdot 3 \dots n}} \le \frac{2}{1} \cdot \frac{2}{2} \cdot \underbrace{\frac{2}{3} \cdot \frac{2}{4} \dots \frac{2}{n-1}}_{\leqslant 1} \cdot \frac{2}{n} \le \frac{4}{n}.$$

Da die Folge von oben und unten durch zwei Nullfolge beschränkt ist, erhält man mit dem Einschließungssatz den Grenzwert a=0.

Aufgabe 1.7: Stetigkeit

Betrachten Sie die Funktion y = f(x) mit

$$f(x) = \begin{cases} \frac{1}{x} & \text{für } x \in (-\infty, -1], \\ \frac{3}{x} & \text{für } x \in (-1, 0), \\ \frac{x^2 - 1}{x - 1} & \text{für } x \in [0, 1) \cup (1, \infty), \\ 3 & \text{für } x = 1. \end{cases}$$

und deren Graphen

- a) Finden Sie alle Werte an denen die Funktion unstetig ist.
- b) Begründen Sie für jeden dieser Werte, weshalb die formale Definition der Stetigkeit verletzt ist.
- c) Klassifizieren Sie jede der Untetigkeitsstellen als Sprungstelle, hebbare Unstetigkeit oder Polstelle.

Lösung 1.7:

Die Funktion ist unstetig bei

- i) x = -1,
- $ii) \quad x = 0,$
- iii) x = 1.

i) Die Funktion ist unstetig für x = -1. Diese Unstetigkeit entspricht einer Sprungstelle, da die links- und rechtsseitigen Grenzwerte existieren (sprich, auf einen endlichen Wert konvergieren), diese aber nicht übereinstimmen:

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \frac{1}{x} = -1,$$

$$\lim_{x \to -1^+} f(x) = \lim_{x \to -1^+} \frac{3}{x} = -3.$$

ii) Die Funktion ist unstetig bei x=0. Dies ist eine Polstelle, da der linksseitiger Grenzwert nicht existiert.

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{3}{x} = -\infty,$$

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{x^2 - 1}{x - 1} = \lim_{x \to 0^+} x + 1 = 1.$$

iii) Die Unstetigkeit bei x=1 ist hebbar, da deren links- und rechtsseitige Grenzwerte existieren und übereinstimmen

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \frac{x^{2} - 1}{x - 1} = \lim_{x \to 1^{-}} x + 1 = 2,$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x^2 - 1}{x - 1} = \lim_{x \to 1^+} x + 1 = 2,$$

jedoch vom Funktionswert f(1) = 3 an der Stelle abweichen.

Aufgabe 1.8: Online Aufgabe

Bearbeiten Sie die aktuelle Online-Aufgabe im ILIAS-Kurs. Beachten Sie, dass Sie dort auch die Lösungswege zu einzelnen Aufgaben zur Korrekutur hochladen können.