1. Which of the following concepts is **not** traditionally studied in the Theory of Computation?

- A. Complexity
- B. Computability
- √ C. Security
 - D. Automata

- 2. If Σ={0,1}, which of the following is not in Σ*?
 (3 points)
 A. 00
 B. 010
 C. 110
 √ D. 012
- 3. Which one of the sets below is **not** in the power set for the set A= {0,1,2,3}? (3 points)
 A. {0,1,2}
 B. {1,2,3}
 C. {0,1,2,3}
 ✓ D. {10,2,3}

1. Given an NFA described by the 5-tuple $(Q, \Sigma, \delta, q_0, F)$, what is the range of the transition function δ ?
(3 points)
1. Q

- 2.Σ
- √ 3.P(Q)
 - $4.Q \times \Sigma$
 - 5.F

2. For an NFA, how many transitions (edges) may exist for a given state (node) when reading a particular input symbol from the language's alphabet?

- 1. Exactly one
- 2. None
- 3. More than one
- √4. Any of the above

- 1. Which of the following is **not** a valid property of a finite automaton?
 - (3 points)
 - A. It may accept many strings but only recognizes one language.
 - B. It must read all the input symbols provided.
 - C. After reading each symbol, the machine moves to another state or remains in the current state.
 - D. It may terminate without accepting or rejecting the input string.

2. For the FA given by the 5-tuple (Q,Σ,δ,q₀,F), which of the following is the correct domain for the transition function δ?
(3 points)
A. Q

 \checkmark B. Q× Σ

C. Σ

D.Q×F

3. Assuming that the language recognized by a DFA is not empty, how many accept states can a DFA have?

(3 points)

A. only one

B. an infinite number

√ C. one or more (but a finite number)

D. none of the above

```
    Which one of the following strings (words) is not in the language B= {0<sup>n</sup>1<sup>n</sup>| n≥0}? (3 points)
    1.ε
    2.01
    3.0011
    √4.1100
    5.000111
```

2. Which string (word) is not in the language described by the regular expression a(a*b)*?

- 1.a
- 2.ab
- 3.abb
- **√**4.baa
 - 5.aabab

3. Suppose $M = (Q, \Sigma, \delta, q_0, F)$ is an NFA and N $= (Q', \Sigma, \delta', p_0, F')$ is an equivalent DFA. If Q contains 3 states and F has 2 accept states, how many unique states would F' (initially) have in the DFA before simplification?

- 1.4
- 2.5
- **√**3.6
 - 4.7

- 1. The cartesian product of two DFAs is commonly used to construct a single DFA for the _____ of two regular languages.
 - (3 points)
 - A. complement
 - √ B. intersection
 - C. union
 - D. symmetric difference

2. For which of the following regular languages would it be easier to build a DFA of its **complement** first? Assume $\Sigma = \{0,1\}$.

- A. {w|w starts with a 0 and ends with a 0}.
- B. {w|w has exactly two 1's}
- C. {w|w does not have 010 nor 110 as substrings}
 - D. {w|w has at least one 0}

3. Which of the following would be the appropriate operation to implement (via an NFA) if one want to recognize a repeating substring of any size? (3 points)

A. union

B. intersection

√ C. star operation (*)

D. complement

- 3. Which of the following expressions is equivalent to A^+ ?
 - (3 points)
 - 1.A>A*
 - 2.A+A*
 - 3.A**
 - **√**4.A°A*
 - 5.A¬A*

1. Consider the 4-state NFA given below and assume E represents an ϵ (epsilon) transition, State 3 is the start state and State 4 is the accept state. Which of the following represents the start state of the equivalent DFA? $\Sigma = \{a,b\}$.

(3 points)

√A.{3}

B. $\{2,3\}$

 $C.\{2,3,4\}$

D. None of the above.

2. Consider the 4-state NFA given below and assume E represents an ϵ (epsilon) transition, State 3 is the start state and State 4 is the accept state. Which of the following is the state transitioned to from state $\{1,4\}$ upon reading an "a" from the input word in the equivalent DFA? $\Sigma = \{a,b\}$.

(3 points)

A. {3}

✓ B. {1,3}

 $C.\{1,2,3\}$

D. None of the above.

^{1.} Suppose C={w|w has an equal no. of 0s and 1s} is regular. Consider s = 0^p1^p, where p is the pumping length for C. Suppose s= xyz, where x is ε. Which of the strings below would still be in C?

- **√** 1. xyz
 - 2. xyyz
 - 3. xyyyz
 - 4. all of the above

2. Suppose C={w|w has an equal no. of 0s and 1s} is regular. Consider s = 0^p1^p, where p is the pumping length for C. Suppose s= xyz, where x is ε. Which of the strings below would still be in C?

- 1. XZ
- ². xyyz
- 3. xyyyz
- √4. none of the above

3. The **minimum pumping length** (mpl) for a language A is the smallest integer p that is a pumping length for A. It can be shown that the mpl is the **maximum** number of transitions you can take in a minimized DFA for the language without repeating a state. For the language A defined by the reg. expression 01*, the mpl is 2. What would be the mpl of the language B defined by the reg. expression 0001*?

(3 points)

A. 5

√ B. 4

C. 3

D. 2

1. Which of the following regular expressions describes the language recognized by the DFA below? Note: $\Sigma = \{0,1\}$.

(3 points)

A.110*1

B.1*010

√ C. 101*0

D.1010*

2. What is minimum pumping length for the language recognized by the DFA below? Note: $\Sigma = \{0,1\}$.

- **A.** 2
- B.3
- **√** C. 4
 - D.5

3. We know that the DFA below recognizes the regular language given by 101*0 for $\Sigma=\{0,1\}$. How many additional states would be needed if we wanted to modify the DFA to recognize any string containing 101*0 as a substring?

- A. 1
- B. 2
- C.3
- ✓ D. none of above

1. What is the form of the rule that would be useful when equal counts of terminals a and b are needed and a's must come before b's in a CFL?

Assume R is a variable.

- 1.R→Rba
- 2.R→bRa
- √3.R→aRb
 - 4. R→ε
 - 5.R→baR

2. Consider a grammar with the 4 rules below and start variable E:

Which of the following words could not be generated by this grammar? (terminals in blue)

(3 points)

$$1.(a+a)+a$$

$$2.(a+a)*a$$

$$4.a*(a+a)$$

5. none of the above

- 3. How many DFAs can be constructed to recognize all the words of the language $\{w|w=0^n1^n0^n\}$ for $n>0\}$, assuming $\Sigma=\{0,1\}$?
 (3 points)
 - 1.one
 - 2.an infinite number
 - √ 3. zero
 - 4. three
 - 5. none of the above

Which of the following is the correct updated rule for replacing the nonterminal S after the A -> ε rule is removed from the following CFG: S -> AS|bA, A -> B|ε, B -> b?
 (3 points)
 A. S -> AS | bA | A
 B. S -> AS | b
 C. S -> S | b
 ✓ D.S -> AS | S | bA | b

2. Which of the following is the correct updated rule for replacing the nonterminal S after the B -> ε rule is removed from the following CFG: S -> ASB|BAB, B -> b|ε, A -> Aa|ε?
(3 points)
✓ A. S -> ASB | BAB | AS | AB | BA | A B. S -> ASB | BAB | AS | AB | BA

3. Which of the following is the correct conversion of the grammar rule S -> SAA | bA to CNF?

$$A.S \rightarrow A_1A|BA, A_1\rightarrow AS, B\rightarrow b$$

B. S ->
$$A_1A|bA$$
, A_1 ->AS

$$\checkmark$$
 C.S -> A₁A|BA, A₁->SA, B->b

D. S ->
$$A_1|AB$$
, A_1 ->SA, B->b

3. Consider the 4-state NFA given below and assume E represents an ϵ (epsilon) transition, State 3 is the start state and State 4 is the accept state. Which of the following is the state transitioned to from state $\{4\}$ upon reading a "b" from the input word in the equivalent DFA? $\Sigma = \{a,b\}$.

(3 points)

A. {2}

B. {1,2}

✓ C. {1,2,3}

D. None of the above.

1. Which step of CNF conversion for CFGs was executed below?

Before: After:

 $S_0 \rightarrow S$ $S_0 \rightarrow S$

 $S \rightarrow AS|ASB|SB|S$ $S \rightarrow AS|ASB|SB|S$

 $A \rightarrow aAS|aS|a$ $A \rightarrow aAS|aS|a$

 $B \rightarrow SbS|A|bb$ $B \rightarrow SbS|bb|aAS|aS|a$

- A. Step 1 (New start variable)
- B. Step 2 (Remove ε rules)
- √ C. Step 3 (Remove unit rules)
 - D. Step 4 (Final conversion)

2. Which step of CNF conversion for CFGs was executed below?

```
(Before) (After)
S_0 \rightarrow S S_0 \rightarrow S
S \rightarrow ASB|SB S \rightarrow AS|ASB|SB|S
A \rightarrow aAS|aS|a A \rightarrow aAS|aS|a
B \rightarrow SbS|A|\epsilon|bb B \rightarrow SbS|A|bb

(3 points)

A. Step 1 (New start variable)

B. Step 2 (Remove \epsilon rules)

C. Step 3 (Remove unit rules)
```

D. Step 4 (Final conversion)

3. How many right-hand-sides are not in proper CNF form before Step 4 is applied?

$$S_0 \rightarrow AS|ASB|SB$$

 $S \rightarrow AS|ASB|SB$
 $A \rightarrow aAS|aS|a$
 $B \rightarrow SbS|bb|aAS|a$

- A. 5
- B. 6
- **√** C. 7
 - D.8