微分形式とベクトル解析

ゐぶ

概要

本稿は微分形式などを簡単に説明し、ベクトル解析で扱う gradient(勾配) や rotation(回転) や divergence(発散) が \mathbf{R}^3 のド・ラーム複体と外微分を用いる事で理解できることを述べる。そして、最後にその性質が外微分の性質と一致していることをみる。

1 微分形式と外微分

まず、微分形式と外微分について簡単に述べる.

1.1 外積代数

Definition 1.1 (交代 k 重線形関数)

 \mathfrak{S}_k を k 次対称群とし, V を線型空間とする. このとき, $f: V^k \to \mathbf{R}$ が k 重線形関数であり,

$$\forall \sigma \in \mathfrak{S}_k, \ f(v_{\sigma(1)}, \dots, v_{\sigma(k)}) = (\operatorname{sgn} \sigma) f(v_1, \dots, v_k)$$

を満たすとき, 交代 k 重線形関数という.

線型空間 V 上の全ての交代 k 重線形関数からなる線型空間を $A_k(V)$ と表す. 線型空間 V 上の 2 つの交代 多重線形関数に対し, ウェッジ積という交代多重線形関数を得ることができる

Definition 1.2 (ウェッジ積)

V を線型空間とし, $f \in A_k(V)$, $g \in A_l(V)$ とする. このとき, 以下により定まる $f \land g \in A_{k+l}(V)$ をウェッジ積という.

$$f \wedge g: V^{k+l} \longrightarrow \mathbf{R}$$

$$(v_1, \dots, v_{k+l}) \longmapsto \frac{1}{k! l!} \sum_{\sigma \in \mathfrak{S}_{k+l}} (\operatorname{sgn}\sigma) f(v_{\sigma(1)}, \dots, v_{\sigma(k)}) g(v_{\sigma(k+1)}, \dots, v_{\sigma(k+l)})$$

 e_1,\ldots,e_n を V の基底とし、 $\alpha^{(1)},\ldots,\alpha^{(n)}$ を双対空間 $V^*=\mathrm{Hom}(V,\mathbf{R})$ の双対基底とする. ここで、多重指数

$$I = (i_1, \dots, i_k)$$

を導入し、 $e_I = (e_{i_1}, \dots, e_{i_k})$ 、 $\alpha^I = (\alpha^{(i_1)} \wedge \dots \wedge \alpha^{(i_k)})$ と表すことにすると、 $A_k(V)$ の基底は α^I ($I = (i_1 < \dots < i_k)$) である.

Definition 1.3 (外積代数)

V を n 次元線型空間とする. このとき,

$$A_*(V) = \bigoplus_{k=0}^{\infty} A_k(V) = \bigoplus_{k=0}^{n} A_k(V)$$

はウェッジ積を乗法として反交換次数付き代数となり、外積代数またはグラスマン代数という.

1.2 \mathbf{R}^n 上の微分形式

 $x_1, \ldots x_n$ を \mathbf{R}^n の標準座標とする.

Definition 1.4 (k 次微分形式)

U を \mathbf{R}^n の開集合とする. このとき, U の各点 p に接空間 $T_p(\mathbf{R}^n)$ 上の交代 k 重線形関数 $\omega_p \in A_k(T_p\mathbf{R}^n)$ を割り当てる写像を U 上の k 次微分形式または k 形式という.

 $A_k(T_p\mathbf{R}^n)$ の基底は,

$$dx_p^I = dx_p^{(i_1)} \wedge \dots \wedge dx_p^{(i_k)} \qquad (1 \le i_1 < \dots < i_k \le n)$$

であるため, $ω_p$ は,

$$\omega_p = \sum_{I} f_I dx_p^I$$

と表せる. よって, U上の k 次微分形式 ω は,

$$\omega = \sum_{I} f_{I} dx^{I}$$

と表せる. $f_I: U \to \mathbf{R}$ が C^{∞} 級のとき, ω は C^{∞} 級であるという.

 \mathbf{R}^n の開集合 U 上の C^∞ 級 k 次微分形式からなる線型空間を $\Omega^k(U)$ と表す.

U 上の C^{∞} 級 0 次微分形式は U の各点 p に $A_0(T_p\mathbf{R}^n)=\mathbf{R}$ の元を対応させるため, $\Omega^0(U)=C^{\infty}(U)$ である.

1.3 外微分とド・ラーム複体

U を \mathbb{R}^n の開集合とする. このとき, 作用素

$$\begin{array}{cccc} d: & \Omega^0(U) = C^\infty(U) & \longrightarrow & \Omega^1(U) \\ & & & & & \cup \\ f & & & \longmapsto & \sum_i \frac{\partial f}{\partial x^{(i)}} dx^{(i)} \end{array}$$

を C^{∞} 級 0 次微分形式の外微分といい, $k \geq 1$ に対し, 作用素

$$d: \qquad \Omega^k(U) \qquad \longrightarrow \qquad \Omega^{k+1}(U)$$

$$\omega = \sum_I f_I \wedge dx^I \quad \longmapsto \quad \sum_I df_I \wedge dx^I$$

を C^{∞} 級 k 次微分形式の外微分という.

Proposition 1.5

$$d^2 = 0$$

Proof

$$\forall \omega = \sum_{I} f_{I} dx^{I} \in \Omega^{k}(U), \ d^{2} \left(\sum_{I} f_{I} dx^{I} \right) = d \left(\sum_{I} df_{I} \wedge dx^{I} \right)$$

$$= d \left(\sum_{I} \sum_{j} \frac{\partial f_{I}}{\partial x^{(j)}} \wedge dx^{I} \right)$$

$$= \sum_{I} \sum_{j} \sum_{k} \frac{\partial^{2} f_{I}}{\partial x^{(k)} \partial x^{(j)}} dx^{(k)} \wedge dx^{(j)} \wedge dx^{I}$$

$$= \frac{1}{2} \sum_{I} \sum_{j} \sum_{k} \frac{\partial^{2} f_{I}}{\partial x^{(k)} \partial x^{(j)}} dx^{(k)} \wedge dx^{(j)} \wedge dx^{I}$$

$$+ \frac{1}{2} \sum_{I} \sum_{k} \sum_{j} \frac{\partial^{2} f_{I}}{\partial x^{(j)} \partial x^{(k)}} dx^{(j)} \wedge dx^{(k)} \wedge dx^{I}$$

$$= \frac{1}{2} \sum_{I} \sum_{j} \sum_{k} \frac{\partial^{2} f_{I}}{\partial x^{(k)} \partial x^{(j)}} dx^{(k)} \wedge dx^{(j)} \wedge dx^{I}$$

$$= \frac{1}{2} \sum_{I} \sum_{I} \sum_{j} \sum_{k} \frac{\partial^{2} f_{I}}{\partial x^{(k)} \partial x^{(j)}} dx^{(k)} \wedge dx^{(j)} \wedge dx^{I}$$

$$= 0$$

線型空間の族 $\{V^k\}_{k=0}^\infty$ と $d_{k+1}\circ d_k=0$ を満たす線形写像 $d_k\colon V^k\to V^{k+1}$ の集まり

$$V^0 \xrightarrow{d_0} V^1 \xrightarrow{d_1} V^2 \xrightarrow{d_2} V^3 \longrightarrow \cdots$$

を微分複体またはコチェイン複体という.

$$\{\Omega^k(U)\}_{k=0}^{\infty}$$
 と $d:\Omega^k(U)\to\Omega^{k+1}(U)$ の集まり

$$\Omega^0(U) \stackrel{d}{\longrightarrow} \Omega^1(U) \stackrel{d}{\longrightarrow} \Omega^2(U) \stackrel{d}{\longrightarrow} \Omega^3(U) \longrightarrow \cdots$$

は微分複体をなし、ド・ラーム複体という.

2 ベクトル解析

まず、ベクトル解析の基本的なことを述べ、微分形式の性質により理解できることを述べる.

2.1 勾配と回転と発散

$$\mathbf{R}^3$$
 の 2 つのベクトル $\mathbf{a} = \begin{pmatrix} a^{(1)} \\ a^{(2)} \\ a^{(3)} \end{pmatrix}$, $\mathbf{b} = \begin{pmatrix} b^{(1)} \\ b^{(2)} \\ b^{(3)} \end{pmatrix}$ に対し, 内積 $\mathbf{a} \cdot \mathbf{b}$ と外積 $\mathbf{a} \times \mathbf{b}$ は,

$$\mathbf{a} \cdot \mathbf{b} = a^{(1)}b^{(1)} + a^{(2)}b^{(2)} + a^{(3)}b^{(3)}, \ \mathbf{a} \times \mathbf{b} = \begin{pmatrix} a^{(2)}b^{(3)} - a^{(3)}b^{(2)} \\ -(a^{(1)}b^{(3)} - a^{(3)}b^{(1)}) \\ a^{(1)}b^{(2)} - a^{(2)}b^{(1)} \end{pmatrix}$$

と与えられる. また, \mathbf{R}^3 の開集合 U 上のスカラー値関数およびベクトル値関数における 3 つの作用素 gradient(勾配) や rotation(回転) や divergence(発散) は,

 $\{ \ \mathsf{CADP} - \mathsf{digm} \ \} \xrightarrow{\operatorname{grad}} \{ \ \mathsf{CAPP} - \mathsf{digm} \ \} \xrightarrow{\operatorname{rot}} \{ \ \mathsf{CAPP} - \mathsf{digm} \ \} \xrightarrow{\operatorname{div}} \{ \ \mathsf{CAPP} - \mathsf{digm} \ \}$

$$\operatorname{grad} f = \begin{pmatrix} \frac{\partial}{\partial x^{(1)}} \\ \frac{\partial}{\partial x^{(2)}} \\ \frac{\partial}{\partial x^{(3)}} \end{pmatrix} f = \begin{pmatrix} \frac{\partial f}{\partial x^{(1)}} \\ \frac{\partial f}{\partial x^{(2)}} \\ \frac{\partial f}{\partial x^{(3)}} \end{pmatrix}$$

$$\operatorname{rot} \mathbf{F} = \begin{pmatrix} \frac{\partial}{\partial x^{(1)}} \\ \frac{\partial}{\partial x^{(2)}} \\ \frac{\partial}{\partial x^{(3)}} \end{pmatrix} \times \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \begin{pmatrix} \frac{\partial f_3}{\partial x^{(2)}} - \frac{\partial f_2}{\partial x^{(3)}} \\ -(\frac{\partial f_3}{\partial x^{(1)}} - \frac{\partial f_1}{\partial x^{(3)}}) \\ \frac{\partial f_2}{\partial x^{(1)}} - \frac{\partial f_1}{\partial x^{(2)}} \end{pmatrix}$$

$$\operatorname{div} \mathbf{F} = \begin{pmatrix} \frac{\partial}{\partial x^{(1)}} \\ \frac{\partial}{\partial x^{(2)}} \\ \frac{\partial}{\partial x^{(3)}} \end{pmatrix} \cdot \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix} = \frac{\partial f_1}{\partial x^{(1)}} + \frac{\partial f_2}{\partial x^{(2)}} + \frac{\partial f_3}{\partial x^{(3)}}$$

と与えられる.

2.2 微分形式によるベクトル解析

ここで、ベクトル値関数 $\mathbf{F}:U\to\mathbf{R}^3$ は U の各点 p に対し、ベクトル $\mathbf{F}_p\in\mathbf{R}^3\cong T_p(\mathbf{R}^3)$ を対応させるため、U 上のベクトル場である。よって、U 上のベクトル場を $\mathfrak{X}(U)$ と表すと、図式

$$C^{\infty}(U) \xrightarrow{\operatorname{grad}} \mathfrak{X}(U) \xrightarrow{\operatorname{rot}} \mathfrak{X}(U) \xrightarrow{\operatorname{div}} C^{\infty}(U)$$

を得る.

 $\Omega^1(U) \succeq \mathfrak{X}(U)$ \mathfrak{t} ,

により同一視できる. また, $\Omega^2(U)$ と $\mathfrak{X}(U)$ は,

$$\Omega^{2}(U) \longleftrightarrow \mathfrak{X}(U)$$

$$\cup$$

$$f_{1}dx^{(2)} \wedge dx^{(3)} + f_{2}dx^{(3)} \wedge dx^{(1)} + f_{3}dx^{(1)} \wedge dx^{(2)} \longleftrightarrow \begin{pmatrix} f_{1} \\ f_{2} \\ f_{3} \end{pmatrix} = \mathbf{F}$$

により同一視できる. また, $\Omega^3(U)$ と $C^{\infty}(U)$ は,

$$\begin{array}{ccc}
\Omega^{3}(U) & \longleftrightarrow & C^{\infty}(U) \\
 & & & & & & \\
fdx^{(1)} \wedge dx^{(2)} \wedge dx^{(3)} & \longleftrightarrow & f
\end{array}$$

により同一視できる.

以上の同一視を踏まえると, $f\in C^\infty(U)=\Omega^0(U)$ の外微分 $d\colon \Omega^0(U)\to \Omega^1(U)$ と grad: $\Omega^0(U)\to \Omega^1(U)$ は,

$$df = \frac{\partial f}{\partial x^{(1)}} dx^{(1)} + \frac{\partial f}{\partial x^{(2)}} dx^{(2)} + \frac{\partial f}{\partial x^{(3)}} dx^{(3)} \longleftrightarrow \begin{pmatrix} \frac{\partial f}{\partial x^{(1)}} \\ \frac{\partial f}{\partial x^{(2)}} \\ \frac{\partial f}{\partial x^{(3)}} \end{pmatrix} = \operatorname{grad} f$$

により同一視できる. また, $\mathbf{F} = f_1 dx^{(1)} + f_2 dx^{(2)} + f_3 dx^{(3)} \in \Omega^1(U)$ の外微分 $d: \Omega^1(U) \to \Omega^2(U)$ と $\mathrm{rot}: \Omega^1(U) \to \Omega^2(U)$ は,

$$d\mathbf{F} = \left(\frac{\partial f_3}{\partial x^{(2)}} - \frac{\partial f_2}{\partial x^{(3)}}\right) dx^{(2)} \wedge dx^{(3)} - \left(\frac{\partial f_3}{\partial x^{(1)}} - \frac{\partial f_1}{\partial x^{(3)}}\right) dx^{(3)} \wedge dx^{(1)} + \left(\frac{\partial f_2}{\partial x^{(1)}} - \frac{\partial f_1}{\partial x^{(2)}}\right) dx^{(1)} \wedge dx^{(2)}$$

1

$$\begin{pmatrix} \frac{\partial f_3}{\partial x^{(2)}} - \frac{\partial f_2}{\partial x^{(3)}} \\ -(\frac{\partial f_3}{\partial x^{(1)}} - \frac{\partial f_1}{\partial x^{(3)}}) \\ \frac{\partial f_2}{\partial x^{(1)}} - \frac{\partial f_1}{\partial x^{(2)}} \end{pmatrix} = \text{rot } \mathbf{F}$$

により同一視できる. また、 $\mathbf{F} = f_1 dx^{(2)} \wedge dx^{(3)} + f_2 dx^{(3)} \wedge dx^{(1)} + f_3 dx^{(1)} \wedge dx^{(2)} \in \Omega^2(U)$ の外微分 $d: \Omega^2(U) \to \Omega^3(U)$ と $\mathrm{div}: \Omega^2(U) \to \Omega^3(U)$ は、

$$d\mathbf{F} = \left(\frac{\partial f_1}{\partial x^{(1)}} + \frac{\partial f_2}{\partial x^{(2)}} + \frac{\partial f_3}{\partial x^{(3)}}\right) dx^{(1)} \wedge dx^{(2)} \wedge dx^{(3)}$$

1

$$\frac{\partial f_1}{\partial x^{(1)}} + \frac{\partial f_2}{\partial x^{(2)}} + \frac{\partial f_3}{\partial x^{(3)}} = \text{div } \mathbf{F}$$

により同一視される. したがって, 図式

を得る.

以上により,

rotgrad
$$f = \mathbf{0}$$
, divrot $\mathbf{F} = 0$

は

$$d^2 = 0$$

に対応していることがわかる.

参考文献

- [1] Loring W. Tu (著)·「An Introduction to Manifolds」·Springer·2010
- [2] Raoul Bott (著), Loring W. Tu (著) · 「Differential Forms in Algebraic Topology」 · Springer · 2010