Liban. 2017. Enseignement de spécialité. Corrigé

EXERCICE 1

Partie A

1) Le point D a pour coordonnées (0,0,0) et le point F a pour coordonnées (1,1,1). Donc le vecteur \overrightarrow{DF} a pour coordonnées (1,1,1).

Le point B a pour coordonnées (1,1,0), le point E a pour coordonnées (1,0,1) et le point G a pour coordonnées (0,1,1). Donc, le vecteur \overrightarrow{BE} a pour coordonnées (0,-1,1) et le vecteur \overrightarrow{BG} a pour coordonnées (-1,0,1).

$$\overrightarrow{DF}.\overrightarrow{BE} = 1 \times 0 + 1 \times (-1) + 1 \times 1 = 0$$

et

$$\overrightarrow{DF}.\overrightarrow{BG} = 1 \times (-1) + 1 \times 0 + 1 \times 1 = 0.$$

Le vecteur \overrightarrow{DF} est orthogonal aux vecteurs \overrightarrow{BE} et \overrightarrow{BG} qui sont deux vecteurs non colinéaires du plan (EBG). Donc, le vecteur \overrightarrow{DF} est un vecteur normal au plan (EBG).

- 2) Le plan (EBG) est le plan passant par le point B(1,1,0) et de vecteur normal $\overrightarrow{DF}(1,1,1)$. Une équation cartésienne du plan (EBG) est donc $1 \times (x-1) + 1 \times (y-1) + 1 \times (z-0) = 0$ ou encore x+y+z-2=0.
- 3) La droite (DF) est la droite passant par D(0,0,0) et de vecteur directeur $\overrightarrow{DF}(1,1,1)$. Un système d'équations paramétriques de la droite (DF) est $\begin{cases} x=t \\ y=t \\ z=t \end{cases}$

Soit M(t, t, t), $t \in \mathbb{R}$, un point de la droite (DF).

$$M \in (EBG) \Leftrightarrow t + t + t - 2 = 0 \Leftrightarrow t = \frac{2}{3}$$

Quand $t = \frac{2}{3}$, on obtient les coordonnées du point $I: \left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$.

Partie B

1) $\overrightarrow{DE}.\overrightarrow{DB} = 1 \times 1 + 0 \times 1 + 1 \times 0 = 1$. D'autre part, [DE] est la diagonale d'un carré de côté 1 et donc DE = $\sqrt{2}$. De même, DB = $\sqrt{2}$ puis

$$\cos\left(\widehat{\mathsf{EDB}}\right) = \frac{\overrightarrow{\mathsf{DE}}.\overrightarrow{\mathsf{DB}}}{\mathsf{DE}\times\mathsf{DB}} = \frac{1}{2}.$$

On en déduit que $\widehat{\mathsf{EDB}} = \frac{\pi}{3}$. D'autre part, $\widehat{\mathsf{EFB}} = \frac{\pi}{2}$.

- 2) a) D'après la question 3) de la partie A, les coordonnées du point M sont de la forme (x, x, x) où $x \in \mathbb{R}$. De plus, le point M appartient au segment [DF] si et seulement si $x \in [0, 1]$.
- $\begin{array}{l} \mathbf{b)} \ \overrightarrow{ME}.\overrightarrow{MB} = \overrightarrow{EM}.\overrightarrow{BM} = (x-1)(x-1) + (x-0)(x-1) + (x-1)(x-0) = x^2 2x + 1 + x^2 x + x^2 x = 3x^2 4x + 1. \\ EM = \sqrt{(x-1)^2 + (x-0)^2 + (x-1)^2} = \sqrt{x^2 2x + 1 + x^2 + x^2 2x + 1} = \sqrt{3x^2 4x + 2} \ \mathrm{et} \\ BM = \sqrt{(x-1)^2 + (x-1)^2 + (x-0)^2} = \sqrt{3x^2 4x + 2} = EM. \ \mathrm{Donc}, \end{array}$

$$\cos(\theta) = \frac{\overrightarrow{ME}.\overrightarrow{MB}}{EM \times BM} = \frac{3x^2 - 4x + 1}{\left(\sqrt{3x^2 - 4x + 2}\right)^2} = \frac{3x^2 - 4x + 1}{3x^2 - 4x + 2}.$$

3) a) Le triangle MEB est rectangle en M si et seulement si $\cos(\theta) = 0$ ce qui équivaut à $x = \frac{1}{3}$ ou x = 1. x = 1 est le cas où M = F. $x = \frac{1}{3}$ est le cas où M est le point J.

En résumé, le triangle EMB est rectangle en M si et seulement si M = F ou M = J.

b) La fonction cosinus est décroissante sur $[0,\pi]$ et donc θ est maximal si et seulement si $\cos(\theta)$ est minimal ce qui équivaut à $x=\frac{2}{3}$. $x=\frac{2}{3}$ est le cas où M est le point I.

En résumé, θ est maximal si et seulement si M=I et dans ce cas $\theta=\frac{2\pi}{3}$.

EXERCICE 2

Partie A

1) 75 voitures attendent en moyenne 1 minute, 19 voitures attendent en moyenne 3 minutes, 10 voitures attendent en moyenne 5 minutes et 5 voitures attendent en moyenne 7 minutes. La moyenne de ces durées d'attente est

$$\frac{75 \times 1 + 19 \times 3 + 10 \times 5 + 5 \times 7}{75 + 19 + 10 + 5} = \frac{217}{109} = 1,9908...$$

En arrondissant, une estimation de la durée d'attente moyenne d'une voiture à l'entrée du parking est 2 minutes.

- 2) a) L'espérance de la loi exponentielle de paramètre λ est $\frac{1}{\lambda}$. Il est donc cohérent de prendre $\frac{1}{\lambda}=2$ ou encore $\lambda=0,5$.
- b) On sait que pour tout $t \ge 0$,

$$P(T \le t) = \int_0^t \lambda e^{-\lambda x} dx = \left[-e^{-\lambda x} \right]_0^t = \left(-e^{-\lambda t} \right) - \left(-e^0 \right) = 1 - e^{-\lambda t} = 1 - e^{-0.5t}.$$

Donc, $P(T \le 2) = 1 - e^{-0.5 \times 2} = 1 - e^{-1} = 0.6321$ arrondi à 10^{-4} .

c) La probabilité demandée est $P_{T\geqslant 1}(T\leqslant 2)$. On sait que la loi exponentielle est une loi sans vieillissement et donc cette probabilité est aussi $P(T\leqslant 1)$ avec

$$P(T \le 1) = 1 - e^{-0.5} = 0.3935 \text{ arrondi à } 10^{-4}.$$

Partie B

- 1) a) La durée moyenne de stationnement est μ minutes ou encore 70 minutes.
- b) La probabilité demandée est $P(D \ge 120)$. La calculatrice fournit $P(D \ge 120) = 0,0478$ arrondi à 10^{-4} .
- c) Soit α le réel tel que $P(D \le \alpha) = 0,99$. La calculatrice fournit $\alpha = 139,7...$ ou encore 140 minutes arrondi à la minute. Donc pour au moins 99% des voitures, le temps d'attente est au maximum 140 minutes ou encore 2 heures et 20 minutes.
- 2) Soit G la variable aléatoire égale au tarif en euros. L'espérance de G est

$$\begin{split} E(G) &= P(D \leqslant 15) \times 0 + P(15 < D \leqslant 60) \times 3, 5 + P(60 < D \leqslant 120) \times t + P(120 < D \leqslant 180) \times 2t \\ &= 0,3361 \times 3, 5 + 0,5828 \times t + 0,0477 \times 2t = 1,17635 + 0,6782t. \end{split}$$

Par suite,

$$E(G) = 5 \Leftrightarrow 1,17635 + 0,6782t = 5 \Leftrightarrow t = \frac{5 - 1,17635}{0,6782} = 5,63...$$

En fixant le tarif de l'heure supplémentaire à 6 euros, le prix moyen de stationnement sera au moins de 5 euros.

Partie C

L'énoncé donne $\mu' = 30$ et $P(T' \leqslant 37) = 0,75$. Or $T' \leqslant 37 \Leftrightarrow T' - 30 \leqslant 7 \Leftrightarrow \frac{T' - 30}{\sigma'} \leqslant \frac{7}{\sigma'}$ et donc $P\left(\frac{T' - 30}{\sigma'} \leqslant \frac{7}{\sigma'}\right) = 0,75$. La variable $\frac{T' - 30}{\sigma'}$ suit la loi centrée réduite et la calculatrice fournit $\frac{7}{\sigma'} = 0,67448\ldots$ puis $\sigma' = 10,4$ arrondi à 10^{-1} .

La calculatrice fournit encore $P(10 \le T' \le 50) = 94,5\%$ et on peut considérer que l'objectif est pratiquement atteint.

EXERCICE 3

Soit $k \in]0, +\infty[$. La fonction f_k est dérivable sur $\mathbb R$ et pour tout réel x,

$$f_{\nu}'(x) = 1 - ke^{-x}$$
.

Soit $x \in \mathbb{R}$.

$$\begin{split} f_k'(x) > 0 &\Leftrightarrow 1 - ke^{-x} > 0 \Leftrightarrow -ke^{-x} > -1 \Leftrightarrow e^{-x} < \frac{-1}{-k} \; (\operatorname{car} \, -k < 0) \\ &\Leftrightarrow e^{-x} < \frac{1}{k} \Leftrightarrow \ln \left(e^{-x} \right) < \ln \left(\frac{1}{k} \right) \; (\operatorname{par} \; \operatorname{stricte} \; \operatorname{croissance} \; \operatorname{de} \; \operatorname{la} \; \operatorname{fonction} \; \operatorname{ln} \; \operatorname{sur} \;]0, +\infty[) \\ &\Leftrightarrow -x < -\ln(k) \Leftrightarrow x > \ln(k). \end{split}$$

De même, $f_k'(x) < 0 \Leftrightarrow x < \ln(k)$ et $f_k'(x) = 0 \Leftrightarrow x = \ln(k)$. Ainsi, la fonction f_k' est strictement négative sur $]-\infty, \ln(k)[$ et strictement positive sur $]\ln(k), +\infty[$. On en déduit que la fonction f_k est strictement décroissante sur $]-\infty, \ln(k)[$ et strictement croissante sur $[\ln(k), +\infty[$.

La fonction f_k admet un minimum en le réel $\ln(k)$. Puisque

$$f_k(\ln(k)) = \ln(k) + ke^{-\ln(k)} = \ln(k) + \frac{k}{e^{\ln(k)}} = \ln(k) + \frac{k}{k} = \ln(k) + 1,$$

le point A_k a pour coordonnées $(\ln(k), \ln(k) + 1)$. Mais alors, tous les points A_k , k > 0, appartiennent à la droite Δ d'équation y = x + 1.

On a montré que les points A_k , k > 0, sont alignés.

EXERCICE 4.

1) a) Tableau complété.

k	0	1	2	3	4	5	6	7
\mathfrak{a}_{2k+1}	5	3	4	0	9	6	3	1
$2\mathfrak{a}_{2k+1}$	10	6	8	0	18	12	6	2
R	1	6	8	0	0	3	6	2
I	1	7	15	15	15	18	24	26

La valeur finale de la variable I est 26.

b) La valeur finale de P est $a_2 + a_4 + a_6 + a_8 + a_{10} + a_{12} + a_{14} = 6 + 5 + 0 + 2 + 5 + 1 + 4 = 23$. La somme I + P + c est alors 26 + 23 + 1 = 50. Cette somme est divisible par 10 et donc le numéro de carte est correct.

c) La valeur finale de I est augmentée de 2 et passe à 28. P la valeur de P était 23 est devient $23 - \alpha_2 + \alpha = 17 + \alpha$. La nouvelle somme I + P + c est $28 + 17 + \alpha + 1 = 36 + \alpha$. Puisque $0 \le \alpha \le 9$, $36 \le 36 + \alpha \le 45$ et donc $36 + \alpha$ est un multiple de 10 si et seulement si $36 + \alpha = 40$ ou encore $\alpha = 4$.

2) I + P est un certain entier naturel N. Puisque $0 \le c \le 9$, $N \le I + P + c \le N + 9$. Les entiers de N à N + 9 sont 10 entiers consécutifs. Par mi ces dix entiers consécutifs, un en un seul est un multiple de 10 et il y a donc une clé c et une seule telle que I + P + c soit un multiple de 10.

Finalement, il existe une et une seule clé rendant le numéro de carte correct.

3) Supposons que les 16 chiffres soient égaux à α (y compris la clé c) où α est un chiffre donné entre 0 et 9. On note r le reste de la division euclidienne de α par 9. On obtient le tableau suivant

α	0	1	2	3	4	5	6	7	8	9
r	0	2	4	6	8	1	3	5	7	0
I = 8r	0	16	32	48	64	8	24	40	56	0
P = 7a	0	7	14	21	28	35	42	49	56	63
I + P + c = 8r + 8a	0	24	48	72	96	48	72	96	120	72

Exactement deux numéros ayant les mêmes chiffres sont corrects : le numéro n'ayant que des 0 et le numéro n'ayant que des 8.

4) 1er cas. On suppose que le chiffre 1 porte un numéro pair et que le chiffre avec lequel il a été permuté est un certain chiffre a. Après permutation, 1 porte un numéro impair et a porte un numéro pair. On note r le reste de la division euclidienne de 2a par 9.

On note I et P les nombres à calculer avant permutation. Après permutation, I est remplacé par I-r+2 et P est remplacé par P-1+a. I+P+c est alors remplacé par I+P+c+a-r+1.

 $\mathbf{2}$ ème \mathbf{cas} . On suppose que le chiffre 1 porte un numéro impair et que le chiffre avec lequel il a été permuté est un certain chiffre \mathbf{a} . Après permutation, 1 porte un numéro pair et \mathbf{a} porte un numéro impair.

Après permutation, I est remplacé par I-2+r et P est remplacé par P+1-a. I+P+c est alors remplacé par I+P+c-a+r-1.

Dans les deux cas, le numéro de carte reste correct si et seulement si l'entier relatif N = a - r + 1 est un multiple de 10.

- Si a = 0, N = 1.
- Si a = 1, N = 1 2 + 1 = 0.
- Si $\alpha = 2$, N = 2 4 + 1 = -1.
- Si a = 3, N = 3 6 + 1 = -2.
- Si a = 4, N = 4 8 + 1 = -3.
- Si a = 5, N = 5 1 + 1 = 5.
- Si a = 6, N = 6 3 + 1 = 4.
- Si a = 7, N = 7 5 + 1 = 3.
- Si a = 8, N = 8 7 + 1 = 2.
- Si a = 9, N = 9 0 + 1 = 10.

Il y a deux situations où le numéro reste correct, à savoir $\alpha=1$ et $\alpha=8$. On ne peut donc pas déterminer avec certitude l'autre chiffre permuté.