Wishart 分布

1. 引入与动机

在统计学中,我们经常需要处理样本协方差矩阵的分布。

- 在一元(单变量)情况下,如果样本 x_1, \ldots, x_n 来自正态分布 $N(\mu, \sigma^2)$,那么样本方差 $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$ 的一个重要性质是 $\frac{(n-1)s^2}{\sigma^2} \sim \chi^2_{n-1}$ (卡方分布,自由度为n-1)。
- Wishart 分布可以看作是卡方分布在多元(多变量)情况下的推广。它描述的是样本协 方差矩阵(或与之成比例的样本离差阵)的抽样分布,当原始数据来自多元正态分布 时。

2. Wishart 分布的定义

有两种常见的定义方式,一种是基于零均值正态向量的和,另一种是基于样本离差阵。

定义 1: 基于独立同分布的零均值正态向量 (中心Wishart分布)

定义 设 Z_1, Z_2, \ldots, Z_k 是 k 个独立的 p 维随机列向量,并且每一个 Z_a 都服从多元正态分布 $N_p(\mathbf{0}, \Sigma)$,其中 $\mathbf{0}$ 是 p 维零均值向量, Σ 是一个 $p \times p$ 的正定协方差矩阵 (称为参数矩阵或尺度矩阵)。

则随机矩阵 W 定义为这些向量外积的和:

$$W=\sum_{a=1}^k Z_a Z_a'$$

我们称随机矩阵 W 服从自由度为 k、参数矩阵为 Σ 的 Wishart 分布、记作:

$$W \sim W_p(k,\Sigma)$$

- W 是一个 $p \times p$ 的对称半正定矩阵。
- p是随机向量的维度(也是Wishart矩阵的维度)。
- k是自由度 (degrees of freedom),表示参与求和的独立向量的个数。

定义 2 (称为来源可能更合适):作为样本离差阵的分布(更常见于应用)

定义 设 $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ 是 n 个独立的 p 维随机列向量,并且每一个 $X_{(a)}$ 都服从多元正态分布 $N_p(\mu, \Sigma)$ 。

令 $\bar{X} = \frac{1}{n} \sum_{a=1}^{n} X_{(a)}$ 为样本均值向量。

则样本离差阵 (Sum of Squares and Cross-Products matrix, SSCP) S 定义为:

$$S = \sum_{a=1}^n (X_{(a)} - ar{X})(X_{(a)} - ar{X})'$$

那么, S 服从自由度为n-1、参数矩阵为 Σ 的 Wishart 分布:

$$S \sim W_p(n-1,\Sigma)$$

这里的自由度是n-1 而不是n,因为从数据中估计了均值向量 μ (通过 \bar{X})。

3. Wishart分布的概率密度函数 (PDF)

当自由度 $k \geq p$ 且参数矩阵 Σ 是正定的时候,Wishart分布 $W_p(k,\Sigma)$ 的随机矩阵 W 是几乎必然正定的,并且存在概率密度函数。

对于一个 $p \times p$ 的对称正定矩阵w, 其PDF为:

$$f(w;k,\Sigma) = rac{|w|^{(k-p-1)/2} \exp\left(-rac{1}{2} \mathrm{tr}(\Sigma^{-1}w)
ight)}{2^{kp/2} |\Sigma|^{k/2} \Gamma_p\left(rac{k}{2}
ight)}$$

其中:

- |w| 是矩阵 w 的行列式。
- $\operatorname{tr}(\Sigma^{-1}w)$ 是矩阵 $\Sigma^{-1}w$ 的迹 (主对角线元素之和)。
- $\Gamma_p(\cdot)$ 是多元伽马函数 (multivariate Gamma function),定义为:

$$\Gamma_p(x)=\pi^{p(p-1)/4}\prod_{j=1}^p\Gamma\left(x-rac{j-1}{2}
ight)$$
其中 $\Gamma(\cdot)$ 是一元伽马函数。

如果 w 不是对称正定矩阵,则 $f(w; k, \Sigma) = 0$ 。

4. 与卡方分布的关系

Wishart 分布是卡方分布的直接推广:

• 当 p=1 (一维情况) 时,随机向量 Z_a 就是一个标量 $Z_a\sim N(0,\sigma^2)$ 。 参数矩阵 Σ 就是一个标量 σ^2 。 随机矩阵 W 就是一个标量 $W=\sum_{a=1}^k Z_a^2$ 。 那么 $\frac{W}{\sigma^2}=\sum_{a=1}^k \left(\frac{Z_a}{\sigma}\right)^2$ 。

由于 $Z_a/\sigma \sim N(0,1)$,所以 $\frac{W}{\sigma^2} \sim \chi_k^2$ (自由度为 k 的卡方分布)。 因此, $W_1(k,\sigma^2)$ 分布等价于 $\sigma^2\chi_k^2$ 分布。

5. Wishart 分布的性质

• 期望:

如果 $W \sim W_p(k, \Sigma)$,则 $E(W) = k\Sigma$ 。

这意味着样本离差阵 $S \sim W_p(n-1,\Sigma)$ 的期望是 $E(S) = (n-1)\Sigma_o$

因此,样本协方差矩阵 $V=\frac{1}{n-1}S$ 的期望是 $E(V)=\frac{1}{n-1}E(S)=\Sigma$,这表明 V 是 Σ 的无偏估计。

• 可加性:

如果 $W_1 \sim W_p(k_1, \Sigma)$ 和 $W_2 \sim W_p(k_2, \Sigma)$ 是独立的 Wishart 随机矩阵(具有相同的参数矩阵 Σ),则它们的和也服从 Wishart 分布:

$$W_1+W_2\sim W_p(k_1+k_2,\Sigma)$$

• 线性变换:

如果 $W \sim W_p(k, \Sigma)$ 并且 C 是一个 $q \times p$ 的常数矩阵,则:

 $CWC' \sim W_q(k, C\Sigma C')$

特别地,如果 C 是一个 $p \times p$ 的非奇异矩阵 (q = p),则 $CWC' \sim W_p(k, C\Sigma C')$ 。

• 正定性:

如果 Σ 是正定的,则 $W\sim W_p(k,\Sigma)$ 的随机矩阵 W 是几乎必然正定的当且仅当自由度 $k\geq p_\circ$

如果 k < p, 则 W 是奇异的(行列式为0, 秩小于 p)。

对于样本离差阵 $S \sim W_p(n-1,\Sigma)$,它几乎必然正定当且仅当 $n-1 \geq p$,即 n > p。

• 对角元素的分布:

如果 $W \sim W_p(k, \Sigma)$,则 W 的第 j 个对角元素 W_{jj} 服从 $\sigma_{jj}\chi_k^2$ 分布,其中 σ_{jj} 是 Σ 的第 j 个对角元素 (即第 j 个基础正态变量的方差)。

这是因为 $W_{jj} = \sum_{a=1}^k Z_{aj}^2$,而 $Z_{aj} \sim N(0, \sigma_{jj})$ 。所以 $\sum_{a=1}^k (Z_{aj}/\sqrt{\sigma_{jj}})^2 \sim \chi_k^2$ 。

• 行列式的分布:

Wishart 矩阵的行列式 |W| 的分布也是已知的,它与一系列独立的卡方随机变量的乘积有关。

6. 非中心Wishart分布

如果定义 Wishart 矩阵的基础正态向量 Z_a 的均值不为零,即 $Z_a \sim N_p(\mu_a, \Sigma)$,则 $$W = \sum_{a=1}^k Z_a Z_a'$$

服从非中心Wishart分布,记为 $W_p(k, \Sigma, \mathbf{M})$,其中 $\mathbf{M} = \sum_{a=1}^k \mu_a \mu_a'$ 是非中心参数矩阵。

非中心Wishart分布在假设检验的备择假设下或某些模型的推导中会出现。它的期望是 $E(W)=k\Sigma+\mathbf{M}_{\circ}$

7. 应用

- 假设检验: 用于构造关于协方差矩阵的检验统计量,例如检验 $\Sigma = \Sigma_0$ 或检验不同总体的协方差矩阵是否相等 (如 Box's M-test)。
- 置信区间/区域: 用于构造协方差矩阵元素的置信区间或整个协方差矩阵的置信区域。
- 多元方差分析 (MANOVA): Wishart 分布出现在MANOVA的检验统计量中,用于比较多个总体的均值向量。
- 贝叶斯统计: Wishart 分布常被用作协方差矩阵的共轭先验分布。
- 随机矩阵理论: Wishart 矩阵是随机矩阵理论中一类重要的研究对象。