Project 01: Amazon Project.

Submitted By Mr. Vivek Gautam in October 2020

Building user-based recommendation model for Amazon. DESCRIPTION

The dataset provided contains movie reviews given by Amazon customers. Reviews were given between May 1996 and July 2014.

Data Dictionary UserID – 4848 customers who provided a rating for each movie Movie 1 to Movie 206 – 206 movies for which ratings are provided by 4848 distinct users

Data Considerations

All the users have not watched all the movies and therefore, all movies are not rated. These missing values are represented by NA. Ratings are on a scale of -1 to 10 where -1 is the least rating and 10 is the best. Analysis Task

- Exploratory Data Analysis:
- 1- Which movies have maximum views/ratings? 2-What is the average rating for each movie? Define the top 5 movies with the maximum ratings. 3-Define the top 5 movies with the least audience.
 - Recommendation Model: Some of the movies hadn't been watched and therefore, are not rated by the
 users. Netflix would like to take this as an opportunity and build a machine learning recommendation
 algorithm which provides the ratings for each of the users. Divide the data into training and test data, Build
 a recommendation model on training data,

Make predictions on the test data

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

```
In [8]:
```

```
amazon=pd.read_csv(r'D:\Data_Science_Data\Amazon_Movies and TV Ratings.csv')
amazon
```

Out[8]:

	user_id	Movie1	Movie2	Movie3	Movie4	Movie5	Movie6	Movie7	Movie8
0	A3R5OBKS7OM2IR	5.0	5.0	NaN	NaN	NaN	NaN	NaN	NaN
1	AH3QC2PC1VTGP	NaN	NaN	2.0	NaN	NaN	NaN	NaN	NaN
2	A3LKP6WPMP9UKX	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN
3	AVIY68KEPQ5ZD	NaN	NaN	NaN	5.0	NaN	NaN	NaN	NaN
4	A1CV1WROP5KTTW	NaN	NaN	NaN	NaN	5.0	NaN	NaN	NaN
4843	A1IMQ9WMFYKWH5	NaN							
4844	A1KLIKPUF5E88I	NaN							
4845	A5HG6WFZLO10D	NaN							
4846	A3UU690TWXCG1X	NaN							
4847	Al4J762Yl6S06	NaN							
4848 rows × 207 columns									

In [7]:

```
amazon.keys()
Out[7]:
Index(['user_id', 'Movie1', 'Movie2', 'Movie3', 'Movie4', 'Movie5', 'Movie
6',
       'Movie7', 'Movie8', 'Movie9',
       'Movie197', 'Movie198', 'Movie199', 'Movie200', 'Movie201', 'Movie20
2',
       'Movie203', 'Movie204', 'Movie205', 'Movie206'],
      dtype='object', length=207)
```

summarize on amazon data

```
In [9]:
amazon.shape
Out[9]:
(4848, 207)
```

In [10]:

```
amazon.isnull().sum()
```

Out[10]:

user_id 0 Movie1 4847 Movie2 4847 Movie3 4847 Movie4 4846 ... Movie202 4842 Movie203 4847 Movie204 4840 Movie205 4813 Movie206 4835

Length: 207, dtype: int64

In [11]:

amazon.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4848 entries, 0 to 4847

Columns: 207 entries, user_id to Movie206

dtypes: float64(206), object(1)

memory usage: 7.7+ MB

In [12]:

amazon.describe()

Out[12]:

	Movie1	Movie2	Movie3	Movie4	Movie5	Movie6	Movie7	Movie8	Movie9	Movie10
count	1.0	1.0	1.0	2.0	29.000000	1.0	1.0	1.0	1.0	1.0
mean	5.0	5.0	2.0	5.0	4.103448	4.0	5.0	5.0	5.0	5.0
std	NaN	NaN	NaN	0.0	1.496301	NaN	NaN	NaN	NaN	NaN
min	5.0	5.0	2.0	5.0	1.000000	4.0	5.0	5.0	5.0	5.0
25%	5.0	5.0	2.0	5.0	4.000000	4.0	5.0	5.0	5.0	5.0
50%	5.0	5.0	2.0	5.0	5.000000	4.0	5.0	5.0	5.0	5.0
75%	5.0	5.0	2.0	5.0	5.000000	4.0	5.0	5.0	5.0	5.0
max	5.0	5.0	2.0	5.0	5.000000	4.0	5.0	5.0	5.0	5.0

8 rows × 206 columns

In [13]:

amazon.describe().T

Out[13]:

	count	mean	std	min	25%	50%	75%	max
Movie1	1.0	5.000000	NaN	5.0	5.00	5.0	5.0	5.0
Movie2	1.0	5.000000	NaN	5.0	5.00	5.0	5.0	5.0
Movie3	1.0	2.000000	NaN	2.0	2.00	2.0	2.0	2.0
Movie4	2.0	5.000000	0.000000	5.0	5.00	5.0	5.0	5.0
Movie5	29.0	4.103448	1.496301	1.0	4.00	5.0	5.0	5.0
Movie202	6.0	4.333333	1.632993	1.0	5.00	5.0	5.0	5.0
Movie203	1.0	3.000000	NaN	3.0	3.00	3.0	3.0	3.0
Movie204	8.0	4.375000	1.407886	1.0	4.75	5.0	5.0	5.0
Movie205	35.0	4.628571	0.910259	1.0	5.00	5.0	5.0	5.0
Movie206	13.0	4.923077	0.277350	4.0	5.00	5.0	5.0	5.0

206 rows × 8 columns

quest 1:find out movies having maximum numbers of rating

In [14]:

```
amazon_count=amazon.describe()[:1].T
amazon_count
```

Out[14]:

	count
Movie1	1.0
Movie2	1.0
Movie3	1.0
Movie4	2.0
Movie5	29.0
Movie202	6.0
Movie203	1.0
Movie204	8.0
Movie205	35.0
Movie206	13.0

206 rows × 1 columns

In [15]:

```
amazon_count.sort_values('count',ascending=False).head()
```

Out[15]:

	count
Movie127	2313.0
Movie140	578.0
Movie16	320.0
Movie103	272.0
Movie29	243.0

In [16]:

```
top5_movies=amazon_count.sort_values('count',ascending=False)[:5]
top5_movies
```

Out[16]:

	count
Movie127	2313.0
Movie140	578.0
Movie16	320.0
Movie103	272.0
Movie29	243.0

In [17]:

```
top5_movies.plot(kind='barh',alpha=1,figsize=(10,10))
plt.xlabel("Viewership Ratings Count",size=15)
plt.ylabel("Movies (Top 5)",size=30)
plt.title("Top 25 movies by viewership rating")
plt.show()
```


quest2: find out the average rating of all the movies

```
In [18]:
amazon_mean=amazon.describe()[1:2].T

In [19]:
amazon_mean
Out[19]:
```

	mean
Movie1	5.000000
Movie2	5.000000
Movie3	2.000000
Movie4	5.000000
Movie5	4.103448
Movie202	4.333333
Movie203	3.000000
Movie204	4.375000
Movie205	4.628571
Movie206	4.923077
206 rows ×	1 columns

quest 2.1: top 5 movies with the maximum rating

```
In [20]:
amazon_mean.sort_values('mean',ascending=False).head()
Out[20]:
```

 Movie1
 5.0

 Movie66
 5.0

 Movie76
 5.0

 Movie75
 5.0

5.0

Movie74

quest3: top 5 movies with the least audience.

In [21]:

```
amazon_count.sort_values('count',ascending=True)[:5]
```

Out[21]:

	count
Movie1	1.0
Movie71	1.0
Movie145	1.0
Movie69	1.0
Movie68	1.0

In [22]:

```
top5_least_audience=amazon_count.sort_values('count',ascending=True)[:5]
```

In [23]:

top5_least_audience

Out[23]:

	count
Movie1	1.0
Movie71	1.0
Movie145	1.0
Movie69	1.0
Movie68	1.0

In [24]:

```
top5_least_audience.plot(kind='barh',alpha=1,figsize=(5,5))
plt.xlabel("Viewership Ratings Count",size=15)
plt.ylabel("Movies (Top 5)",size=30)
plt.title("top5_least_audience",size=15)
plt.show()
```


In [26]:

amazon_df=amazon.set_index('user_id').fillna(0)
amazon_df

Out[26]:

	Movie1	Movie2	Movie3	Movie4	Movie5	Movie6	Movie7	Movie8	Movie
user_id									
A3R5OBKS7OM2IR	5.0	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AH3QC2PC1VTGP	0.0	0.0	2.0	0.0	0.0	0.0	0.0	0.0	0.0
A3LKP6WPMP9UKX	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0
AVIY68KEPQ5ZD	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0	0.0
A1CV1WROP5KTTW	0.0	0.0	0.0	0.0	5.0	0.0	0.0	0.0	0.0
A1IMQ9WMFYKWH5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A1KLIKPUF5E88I	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A5HG6WFZLO10D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
A3UU690TWXCG1X	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
AI4J762YI6S06	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

4848 rows × 206 columns

lets find out the user user correlation

```
In [28]:
```

```
from scipy.spatial.distance import cosine
from sklearn.metrics import pairwise_distances

#Pairwise distance only accept Matrix object

user_corr = 1 - pairwise_distances( amazon_df, metric="correlation" )

ratings_matrix = pd.DataFrame( user_corr )
ratings_matrix
```

Out[28]:

	0	1	2	3	4	5	6	7	
0	1.000000	-0.006915	-0.006915	-0.006915	-0.006915	-0.006915	-0.006915	-0.006915	-0.0
1	-0.006915	1.000000	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.0
2	-0.006915	-0.004878	1.000000	1.000000	-0.004878	-0.004878	-0.004878	-0.004878	-0.0
3	-0.006915	-0.004878	1.000000	1.000000	-0.004878	-0.004878	-0.004878	-0.004878	-0.0
4	-0.006915	-0.004878	-0.004878	-0.004878	1.000000	1.000000	1.000000	1.000000	1.0
4843	-0.006915	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.0
4844	-0.006915	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.0
4845	-0.006915	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.0
4846	-0.006915	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.0
4847	-0.006915	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.004878	-0.0
4848 rows × 4848 columns									
4									•

In [29]:

```
ratings_matrix.index=amazon.user_id.unique()
ratings_matrix.columns=amazon.user_id.unique()
```

In [31]:

ratings_matrix

Out[31]:

	A3R5OBKS7OM2IR	AH3QC2PC1VTGP	A3LKP6WPMP9UKX	AVIY68KEPQ5ZI
A3R5OBKS7OM2IR	0.000000	-0.006915	-0.006915	-0.00691
AH3QC2PC1VTGP	-0.006915	0.000000	-0.004878	-0.00487{
A3LKP6WPMP9UKX	-0.006915	-0.004878	0.000000	1.000000
AVIY68KEPQ5ZD	-0.006915	-0.004878	1.000000	0.000000
A1CV1WROP5KTTW	-0.006915	-0.004878	-0.004878	-0.00487{
A1IMQ9WMFYKWH5	-0.006915	-0.004878	-0.004878	-0.00487{
A1KLIKPUF5E88I	-0.006915	-0.004878	-0.004878	-0.00487{
A5HG6WFZLO10D	-0.006915	-0.004878	-0.004878	-0.00487{
A3UU690TWXCG1X	-0.006915	-0.004878	-0.004878	-0.00487{
AI4J762YI6S06	-0.006915	-0.004878	-0.004878	-0.00487{

4848 rows × 4848 columns

In [32]:

np.fill_diagonal(user_corr,0)

_

In [33]:

ratings_matrix

Out[33]:

	A3R5OBKS7OM2IR	AH3QC2PC1VTGP	A3LKP6WPMP9UKX	AVIY68KEPQ
A3R5OBKS7OM2IR	0.000000	-0.006915	-0.006915	-0.006
AH3QC2PC1VTGP	-0.006915	0.000000	-0.004878	-0.004
A3LKP6WPMP9UKX	-0.006915	-0.004878	0.000000	1.000
AVIY68KEPQ5ZD	-0.006915	-0.004878	1.000000	0.000
A1CV1WROP5KTTW	-0.006915	-0.004878	-0.004878	-0.004
A1IMQ9WMFYKWH5	-0.006915	-0.004878	-0.004878	-0.004
A1KLIKPUF5E88I	-0.006915	-0.004878	-0.004878	-0.004
A5HG6WFZLO10D	-0.006915	-0.004878	-0.004878	-0.004
A3UU690TWXCG1X	-0.006915	-0.004878	-0.004878	-0.004
AI4J762YI6S06	-0.006915	-0.004878	-0.004878	-0.004
4848 rows × 4848 colu	ımns			
4				>

lets find out the corelation between movies

Let's choose two movies: movie2 and movie4¶

Now lets grab the user ratings for those two movies:

```
In [35]:
Movie2 user ratings = amazon df['Movie2']
Movie4_user_ratings = amazon_df['Movie4']
Movie2_user_ratings.head(20)
Out[35]:
user_id
A3R50BKS70M2IR
                   5.0
AH3QC2PC1VTGP
                  0.0
A3LKP6WPMP9UKX
                  0.0
AVIY68KEPQ5ZD
                  0.0
A1CV1WROP5KTTW
                  0.0
AP57WZ2X4G0AA
                  0.0
A3NMBJ2LCRCATT
                  0.0
A5Y15SA0MX6XA
                  0.0
A3P671HJ32TCSF
                  0.0
A3VCKTRD24BG7K
                  0.0
ANF0AGIV0JCH2
                  0.0
A3LDEBLV6MVUBE
                  0.0
A1R2XZWQ6NM5M1
                  0.0
A36L1XGA5AQIJY
                  0.0
A2HWI21H23GDS4
                  0.0
A1DNYFL3RSXRMO
                  0.0
A39VF226GBM1JH
                  0.0
ASB0E202FLNA7
                  0.0
A19E15Y9V09CVJ
                  0.0
A3K979KQ7K0S5K
                  0.0
Name: Movie2, dtype: float64
In [36]:
Movie4_user_ratings.head()
Out[36]:
user_id
A3R5OBKS7OM2IR
                  0.0
AH3QC2PC1VTGP
                  0.0
A3LKP6WPMP9UKX
                   5.0
AVIY68KEPQ5ZD
                  5.0
A1CV1WROP5KTTW
                  0.0
Name: Movie4, dtype: float64
In [37]:
similar to Movie2 = amazon df.corrwith(Movie2 user ratings)
```

this is the correlation for movie2

similar_to_Movie4 = amazon_df.corrwith(Movie4_user_ratings)

In [38]:

```
print('the reference movie title based on which recommendations are to be made:' )
corr_Movie2 = pd.DataFrame(similar_to_Movie2,columns=['correlation with movie4'])
corr_Movie2.dropna(inplace=True)
corr_Movie2.head(20)
```

the reference movie title based on which recommendations are to be made:

Out[38]:

Movie19

Movie20

	correlation with movie4
Movie1	1.000000
Movie2	1.000000
Movie3	-0.000206
Movie4	-0.000292
Movie5	-0.001049
Movie6	-0.000206
Movie7	-0.000206
Movie8	-0.000206
Movie9	-0.000206
Movie10	-0.000206
Movie11	-0.000292
Movie12	-0.000462
Movie13	-0.000206
Movie14	-0.000206
Movie15	-0.000206
Movie16	-0.003757
Movie17	-0.000206
Movie18	-0.000206

this is the correlation for movie4

-0.000268

-0.000206

In [41]:

```
print('the reference movie title based on which recommendations are to be made:' )
corr_Movie4 = pd.DataFrame(similar_to_Movie4,columns=['correlation with movie4'])
corr_Movie4.dropna(inplace=True)
corr_Movie4.head(20)
```

the reference movie title based on which recommendations are to be made:

Out[41]:

corre	lation	with	mo\	∕ie4
-------	--------	------	-----	------

	correlation with movie4
Movie1	-0.000292
Movie2	-0.000292
Movie3	-0.000292
Movie4	1.000000
Movie5	-0.001483
Movie6	-0.000292
Movie7	-0.000292
Movie8	-0.000292
Movie9	-0.000292
Movie10	-0.000292
Movie11	-0.000413
Movie12	-0.000653
Movie13	-0.000292
Movie14	-0.000292
Movie15	-0.000292
Movie16	-0.005313
Movie17	-0.000292
Movie18	-0.000292
Movie19	-0.000379
Movie20	-0.000292

**End*