For S a compact Hausdorff space, we now have two definitions of the cohomology of S with coefficients in an abelian group A.

1 Consider the constant sheaf A on S. We define

(Sheaf cohomology)

(2) Consider the constant sheaf A on Comps (:= category of compact Hausdorff spaces, with our usual site structure), and view 5 as an object of Comp. Define

(condensed cohomology)

First goal for today: For any SE Comp,

2. Topos theoretic preliminaries

Def: A topos is a category of the form

$$\tau = Sh(\mathcal{C})$$

for Ca (small) site. A geometric morphism of topoi

15 a pair of functors ft, fx such that

(i) f* is left adjoint to f*.

(ii) for preserves finite limits (i.e. for exact)

subcanonical Struction: Given a site & and X & E, we may form the overcategory C/X:

$$Ob(C_{/X}) = \{ y \rightarrow X \in Mor(C) \}$$

$$Hom(Y_1, Y_2) = \{ Y_1 \xrightarrow{5} Y_2 \in Hom(Y_1, Y_2) \}$$

H is naturally a site. So, we may form the topos

On the other hand, we can view X as an object of T = Sh(E).

There is an equivalence:

In particular, T/x is once again a topos

Generalization: We can just let $F \in Sh(E)$ be general (i.e. not necessarily in the image of the Yorkola embedding $C \hookrightarrow Sh(E)$).

Then Cf. still makes sense:

and it is naturally a site.

Thm (Fundamental theorem of topos theory):

In particular, TIF is a topos. It is the overtopos of F.

Remarks (I) There is a natural geometric morphism.

$$f_{*}(G) = G G F$$

2) Every topos has a terminal object 1. Then the geometric morphism

is an equivalence of topoi

3. Cohomology in a topos

abelian group abelian shower objects in
$$T$$
 on C .

We may also see the global sections functor internally:

$$\Gamma := Hom_{\tau}(\underline{1}, -).$$

$$\Gamma: Sh(x) \longrightarrow Set$$

15 given by

$$\Gamma(\mathcal{F}) = Hom_{Sh(x)}(*, \mathcal{F}) = \mathcal{F}(\chi),$$

Now we may define cohomology in T.

Def For FET,

Rmk This doesn't depend on the site C we use to write T=Sh(e). Metto: one tops, one cohomology functor.

Def: The point is the topos Sh(*) = Set. There is a natural geometric morphism

$$P*(F) = \Gamma(F) = Hom(I,F).$$

$$p^*(S) = S$$
 (constant sheaf associated to S).
Set

Thm. Let
$$f^*$$
 T_a
 T_a

be a geometric morphism, with f* fully faithful. For any Fe Tab, I a canonical isomorphism

Proof: We have a diagram

f preserves finite limits and colimits, so it is exact. Since f is fully faithful, the counit it is it is fully faithful, the counit

is an isomorphism. By exactness of f*, we have an isomorphism id ~ Rf + f*.

Thus,

Rp2*(F) ~ Rp2 * Rf & F ~ Rp, * f*F.

Take H' on both sides.

the Back to condensed sets

Let us now properly interpret Hisheaf and Hound Let SE Comp.

The global sections functor is

$$F \longrightarrow S \longmapsto F(S)$$

$$H = P^*A$$
.

If we produce a geometric morphism

Then we will artomatically have $f^*A = A$, so if f^* is fully faithful,

Tore generally, suppose that 5 is LCH. View it as a condensed set. We can form the topos $Sh(Comp/s) = Sh(Comp/s)$ and define H^i and Sh^i . We will show $= C \cdot M$
a condensed set. We can form the topas Shican /) a Shic
and define Hi and (S, A). We will show = Cond
H'comd (5, A) = H'sheef (5, A)
by exhibiting a shape equivalence $5h(S) \xrightarrow{f*} 5h(Comp/S)$
t^*
We will do it by introducing a third topos, $5h(Comp(5))$.
Step 1: Lurie's description of Sh(5).
Let 5 be LCH. Consider the poset/category
Comp(S) = poset of compact subsets of S under inclusion.
Note that Comp(s) has a natural site structure: a covering is
a finite family {5; -5} i=1
with $S = \hat{U}_{i=1}^{S_i}$.

hm (Lurie, HTT 7.3.4) Let S be LCH. on Then
e*: Sh(S) - Fun (Comp(S) op, Set)
F H [K H colim F(h)]
has the following properties.
(1) e * is fully faithful.
(2) e* factors through Sh (Comp(S))
(3) The essential image of e consists of exerconvergent
Def. F & Sh (Comp(5)) is overconvergent if $\forall K \in Comp(5)$,
colim $F(K') \rightarrow F(K)$ $K' \ni K$
is an 1500
(4). The functor & (Sh(I)) Sh(Comp(s)) has
a right adjoint
e*: Sh(comp (s)) → Sh(s)
G H ex G
$C_*G(K) = colim G(K)$.
(5) e * is left exact (filtered colimits are exact in set)
5 - 1-10
Sh (Comp(S)) Ex Sh(L)

Step 2 Now we must relate Sh(Comp(s)) with $Cond(Set)_{s} = Sh(Comp_{s})$

There is an obvious function

i: $Comp(S) \hookrightarrow Comp/S$ $k \leq S \longmapsto k \rightarrow S$

It yields a geometric morphism

Sh(Comp(s)) (comp/s)

All that remains is to see that it is fully faithful.

Since I satisfies the covering lifting property,

right kan extension along

preserves sheaves, guing a functor

i! Sh (comp(s)) - Sh (comp/s).

It is fully faithful because in is, and right adjoint to ix. Hence

i! fully faithful => i fully faithful.