Dimensionality Reduction

1 Motivation I: Data Compression

Data Compression

Reduce data from 2D to 1D

$$x^{(1)} \in \mathbb{R}^{2} \longrightarrow z^{(1)} \in \mathbb{R}$$

$$x^{(2)} \in \mathbb{R}^{2} \longrightarrow z^{(2)} \in \mathbb{R}$$

$$\vdots$$

$$x^{(m)} \longrightarrow z^{(m)}$$

Data Compression

Reduce data from 3D to 2D

2 Motivation II: Data Visualization

Data Vis	ualizatio	n	XE Bro X (1)			e ISO		
						XL		
	XI	X2			Xs	Mean		
		Per capita	X3	X4	Poverty	household		
	GDP	GDP	Human	25.1	Index	income		
	(trillions of	(thousands	Develop-	Life	(Gini as	(thousands		
Country	US\$)	of intl. \$)	ment Index	expectancy	percentage)	of US\$)		
→Canada	1.577	39.17	0.908	80.7	32.6	67.293		
China	5.878	7.54	0.687	73	46.9	10.22		
India	1.632	3.41	0.547	64.7	36.8	0.735		
Russia	1.48	19.84	0.755	65.5	39.9	0.72		
Singapore	0.223	56.69	0.866	80	42.5	67.1		
USA	14.527	46.86	0.91	78.3	40.8	84.3		

[resources from en.wikipedia.org]

Andrew Ng

Data Visualization

			ZiseR
Country	z_1	z_2	Z EIK
Canada	1.6	1.2	
China	1.7	0.3	Reduce data
India	1.6	0.2	from SOD
Russia	1.4	0.5	40 5D
Singapore	0.5	1.7	
USA	2	1.5	

Andrew N

Data Visualization

3 Principal Component Analysis problem formulation

Principal Component Analysis (PCA) problem formulation

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error. Reduce from n-dimension to k-dimension: Find k vectors $u^{(1)}, u^{(2)}, \dots, u^{(k)} \leftarrow$ onto which to project the data, so as to minimize the projection error.

PCA is not linear regression

PCA is not linear regression

4 Principal Component Analysis algorithm

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \ldots, x^{(m)} \leftarrow$

Preprocessing (feature scaling/mean normalization):

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

Replace each $x_j^{(i)}$ with $x_j - \mu_j$. If different features on different scales (e.g., $x_1 =$ size of house, $x_2 =$ number of bedrooms), scale features to have comparable range of values.

Principal Component Analysis (PCA) algorithm

Principal Component Analysis (PCA) algorithm

Reduce data from *n*-dimensions to *k*-dimensions

Compute "covariance matrix":

Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^{n} (x^{(i)})(x^{(i)})^{T}$$

$$\sum_{i=1}^{n} \sum_{k=1}^{n} (x^{(i)})(x^{(i)})^{T}$$

$$\sum_{i=1}^{n} \sum_{k=1}^{n}$$

Principal Component Analysis (PCA) algorithm

From [U,S,V] = svd(Sigma), we get:

$$\Rightarrow U = \begin{bmatrix} u^{(1)} & u^{(2)} & \dots & u^{(n)} \\ & & & \\ & \times \in \mathbb{R}^n & \Rightarrow & z \in \mathbb{R}^k \\ & & & \\ & Z = \begin{bmatrix} u^{(1)} & u^{(2)} & \dots & u^{(k)} \\ & & & \\$$

Principal Component Analysis (PCA) algorithm summary

→ After mean normalization (ensure every feature has zero mean) and optionally feature scaling:

5 Reconstruction from compressed representation

Reconstruction from compressed representation

6 Choosing the number of principal components

Choosing k (number of principal components)

Average squared projection error: $\frac{1}{m} \approx \|\mathbf{x}^{(i)} - \mathbf{x}^{(i)}\|_{2}^{2}$ Total variation in the data: $\frac{1}{m} \approx \|\mathbf{x}^{(i)} - \mathbf{x}^{(i)}\|_{2}^{2}$

Typically, choose k to be smallest value so that

$$\Rightarrow \frac{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - x_{approx}^{(i)}\|^2}{\frac{1}{m} \sum_{i=1}^{m} \|x^{(i)}\|^2} \leq \underbrace{0.01}_{\text{0.10}} \underbrace{1\%}_{\text{0.10}}$$

$$\Rightarrow \text{"99\% of variance is retained"}$$

Choosing k (number of principal components)

Choosing k (number of principal components)

→ [U,S,V] = svd(Sigma)

Pick smallest value of k for which

$$\underbrace{\frac{\sum_{i=1}^{k} S_{ii}}{\sum_{i=1}^{m} S_{ii}}}_{\text{(99\% of variance retained)}} \ge 0.99$$

7 Advice for applying PCA

Application of PCA

- Compression
 - Reduce memory/disk needed to store dataSpeed up learning algorithm <

- Visualization

Bad use of PCA: To prevent overfitting

 \rightarrow Use $z^{(i)}$ instead of $x^{(i)}$ to reduce the number of features to k < n.— 10000

Thus, fewer features, less likely to overfit.

Bad!

This might work OK, but isn't a good way to address overfitting. Use regularization instead.

$$\Rightarrow \min_{\theta} \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \boxed{\frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2}$$

PCA is sometimes used where it shouldn't be

Design of ML system:

- \rightarrow Get training set $\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\}$
- \rightarrow Run PCA to reduce $x^{(i)}$ in dimension to get $z^{(i)}$
- $\begin{array}{lll} \Rightarrow & & \text{Train logistic regression on } \{(z \not\sim y^{(1)}), \dots, (z \not\sim y^{(m)})\} \\ \Rightarrow & & \text{Test on test set: Map } x_{test}^{(i)} \text{ to } z_{test}^{(i)}. \text{ Run } h_{\theta}(z) \text{ on } \\ \{(z_{test}^{(1)}, y_{test}^{(1)}), \dots, (z_{test}^{(m)}, y_{test}^{(m)})\} \end{array}$
- → How about doing the whole thing without using PCA?
- → Before implementing PCA, first try running whatever you want to do with the original/raw data $x^{(i)}$ Only if that doesn't do what you want, then implement PCA and consider using $\underline{z^{(i)}}$