

SHANGHAI JIAO TONG UNIVERSITY

螺旋桨设计

SHIP PRINCIPLE PROJECT-PROPELLER DESIGH

学生姓名:_____简心语____

学生学号: _____515021910260

专 业: ____船与海洋工程 ___

指导老师:_____杨晨俊_____

学 院:船舶海洋与建筑工程学院

Contents

1	Introduction	2
2	Data2.1Main Parameters of the Container Ship2.2Parameters of Main Engine and Propeller2.3Design Conditions2.4Propulsive Factors	2 3 3 3
3	Design for Maximum Ship Speed 3.1 Related Parameters	3 3 4
4	Cavitation Check 4.1 Related Parameters	4
5	Strength Check 5.1 Power Coefficient	7 7 7
6	Pitch Ratio Modification6.1 Different Hub to Diameter Ratios6.2 Different Blade Thickness Ratios6.3 Final Pitch Ratio	8 8 8 9
7	Calculation of Weight and Inertia Moment 7.1 The Weight and Length	9 9
8	Open Water Graph of Propeller	9
9	Calculation of the Tied Column	10
10	Calculation of the Cruising Characters	10
11	Conclusion	12
\mathbf{A}	Code	12
В	Cavitation Check Caculation Sheet	17

1 Introduction

The goal is to design a MAU right-handed propeller with five blades for a certain container ship.

2 Data

2.1 Main Parameters of the Container Ship

Table 1 gives the main parameters of the container ship.

L_{wl}	Design waterline	215	\overline{m}
T	9	210	
L_{pp}	Length between perpendiculars	210	m
B	Breadth	32	m
D	Depth	12.7	m
Δ	Volume of displacement	54000	m^3
C_b	Block coefficient	0.655	-

Table 1: Main Parameters

The data sheet of the ship's effective power in different speed has been given as Table 2.

Ship Speed(kn)	Ballast(kW)	Full load(kW)	Super full load(kW)
19	7542	9552	11323
19.5	8117	10275	12186
20	8861	11208	13303
20.5	9689	12247	14544
21	10562	13342	15855
21.5	11490	14506	17248
22	12532	15812	18811
22.5	13791	17389	20700
23	15420	19429	23143
23.5	17618	22181	26442
24	20634	25954	30966
24.5	24762	31118	37159
25	30345	38100	45533

Table 2: Effective Power

\overline{MCR}	maximum continuous rating of main engine	33000	kW
N	rated speed	102	rpm
-	type of the propeller	MAU series	-
\mathbf{n}	number of the blades	5	-
-	number of the propeller	1	-
-	direction of the propeller	right-handed	-
-	material of the propeller	Cu3 nickel aluminum bronze	-
Z_p	distance between the boss and the base line	4.7	\mathbf{m}
d_h	diameter of the boss	1.4	m

Table 3: Main Engine and Propeller

2.2 Parameters of Main Engine and Propeller

Parameters of main engine and propeller are shown in Tab. 3.

2.3 Design Conditions

design condition	full load
design main engine power	$P_s = 0.85MCR = 28050kw$
desing rotating speed	N = 102rpm

Table 4: Design Conditions

2.4 Propulsive Factors

ω	wake fraction	0.25
t	thrust deduction fraction	0.16
η_R	relative rotating efficiency	1.0
η_s	shaft system efficiency	0.98
η_H	ship hull efficiency	1.12

Table 5: Propulsive Factors

3 Design for Maximum Ship Speed

In this part, we select a number of EARs(Extend Area Ratio), and determine a maximum ship speed for each of them.

3.1 Related Parameters

Firstly, the basic related parameters is shown in Tab 6.

density of sea water $(15^{\circ}C)$	$\rho = 1025.91kg/m^3 = 104.63kgf \cdot s^2/m^4$
main engine power	$P_s = 0.85MCR = 28050kw$
receiveing power of propeller in open water	$P_D = \eta_s \eta_R P_s = 27209kW$
rotating speed of propeller	N=102rpm=1.7rps
receiveing torque of propeller	$Q = \frac{P_D}{2\pi n} = 2.547^6 N \cdot m$

Table 6: Related Parameters in Speed Design

3.2 Assume Parameters

- 1. In the range of 0.5 to 0.8, we assume 7 EARs in equivilent distance.
- For each EAR, assuming 21 diameters between 7.5m to 8.5m in the step of 0.05m.
- 3. For each diameter, assuming 21 crusing speed between 21kn to 25kn in the step of 0.2.
- 4. For each diameter, assuming 13 pitch ratios between 0.4 to 1.6 in the step of 0.1.
- 5. According to the torque equilibrium and using the regression formula, we can get different thrusts and torques in different pitch ratios for each diameter and cruising speed. Furthermore, we can get the right pitch ratio, the effective thrust and the open water efficiency using interpolation.
- 6. We can determine the cruising speed by interpolation when the effective thrust equals to the drag force for each diameter. Thus, the pitch ration can be set.
- 7. Choosing the maximum opening water efficiency, we can get the diameter accordingly.

We can do caculation in Matlab following the procedure above. The code is shown in Appendix. The result is in the Tab. 7.

4 Cavitation Check

Determine an EAR required for each propeller design to be cavitationfree, and subsequently determine the minimum EAR that ensures the propeller has the highest efficiency while being free of cavitation.

4.1 Related Parameters

Thus, we can caculate the differential pressure conditions:

$$p_0 - p_v = p_a + \gamma h_s - p_v = 10330 + 1025.91 \times 8 - 174 = 18363.28 kg f/m^2$$
 (1)

The principle equations are as follows:

$$\begin{cases}
\sigma_{0.7R} = \frac{P_0 - P_v}{\frac{1}{2}\rho V_{0.7R}^2} \\
\tau = \frac{T/AP}{\frac{1}{2}\rho V_{0.7R}^2}
\end{cases} \tag{2}$$

EAR	Diameter	Crusing Speed	Pitch Ratio
$\frac{A_E}{A_0}$	D	V_s	$\frac{P}{D}$
0.50	7.7406	23.9632	0.9380
0.55	7.8925	23.9861	0.9087
0.60	7.6945	24.0030	0.9675
0.65	8.0147	24.0056	0.8948
0.70	7.8520	23.9855	0.9381
0.75	7.8476	23.9347	0.9392
0.80	8.1915	23.8449	0.8474
Advance Coefficient	Thrust Coefficient	Torque Coefficient	Open Water Efficiency
J	K_t	K_q	η_0
0.6457	0.1865	0.0309	0.7020
0.8643	0.1736	0.0280	0.6891
0.7365	0.1923	0.0316	0.7070
0.7062		0.0050	
0.7002	0.1638	0.0259	0.6790
0.7166	$0.1638 \\ 0.1773$	0.0259 0.0288	$0.6790 \\ 0.6927$

Table 7: Best Parameters for Design

Depth of the boss	$h_s = D - Z_p = 8m$
wake fraction	$\omega = 0.25$
Sea water mass density $(15^{\circ}C)$	$\rho = 104.63kgf \cdot s^2/m^4$
Sea water gravity density $(15^{\circ}C)$	$\gamma = 1025.91kg/m^3$
Sea water vapor pressure $(15^{\circ}C)$	$p_v = 174kgf/m^2$
Atmospheric pressure $(15^{\circ}C)$	$p_a = 10330 kg/m^2$

Table 8: Basic Parameters

Figure 1: Cavitation Checking Result

In this part, it is convenient to use EXCEL and caculation sheet is shown in Appendix. The cavitation verification results are shown in Tab.9. According

		MAU5-50	MAU5-55	MAU5-60	MAU5-65	MAU5-70	MAU5-75	MAU5-80
$V_m ax$	kn	23.9632	23.9861	24.0030	24.0056	23.9855	23.9347	23.8449
D	\mathbf{m}	7.7406	7.8925	7.6945	8.0147	7.8520	7.8476	8.1915
η_0	-	0.7020	0.6891	0.7070	0.6790	0.6927	0.6916	0.6571
$V_{0.7R}^{2}$	m/s2	922.8968	956.2511	913.2449	983.5733	947.3309	946.0171	1022.459
$\sigma_{0.7R}$	-	0.3803	0.3671	0.3844	0.3569	0.3705	0.3710	0.3433
$ au_c$	-	0.1481	0.1425	0.1484	0.1393	0.1437	0.1439	0.1372
P/D	-	0.9380	0.9087	0.9675	0.8948	0.9381	0.9392	0.8474
A_E/A_0	-	0.7422	0.6968	0.7678	0.6592	0.7140	0.7153	0.5930

Table 9: Cavitation Check Results

to the result of EAR above, we can get the Fig.1. From the figure, the point of intersection of two curves is the EAR we want, which satisfies the conditions of maximum crusing speed, thrust equivalence. Meanwhile, we can get the minimum extend area ratio when there is no cavitation through interpolation. Furthermore, other best propeller factors can be achieved. The result is shown in Tab.10

Extend Area Ration(EAR)	A_E/A_0	0.7145
Maximum Speed	$V_m ax$	23.9601kn
Diameter	D	7.8498 m
Pitch Ratio	P/D	0.9386
Open Water Efficiency	η_0	0.6921

Table 10: Best Parameters of Propeller

5 Strength Check

Safty is one of the most important issues among the design. Aaccording to the principle of the "Rules and Regulations for the Construction and Classification of Sea Going Steel Ships" in 2001, we should check the $t_{0.25R}$ and $t_{0.6R}$ whether they are both bigger than the following value:

$$t = \sqrt{\frac{Y}{K - X}} \tag{3}$$

Specifically, X is called rotate speed coefficient and Y is called power coefficient, K=1.38 is material factor of Cu3 nickel aluminum bronze.

5.1 Power Coefficient

$$Y = \frac{1.36A_1N_e}{Zbn_e} \tag{4}$$

$$A_1 = \frac{D}{P}(K_1 - K_2 \frac{D}{P_{0.7}}) + K_3 \frac{D}{P_{0.7}} - K_4$$
 (5)

The diameter of the propeller: D = 7.8498m

The pitch ratio in the section: $P = P_{0.7} = \frac{P}{D}D = 0.9386 \times 7.8498 = 7.3678$

 $K_1 - K_4$ can be found in Tab.11

The main engine power: $N_e = 32010kw = 43551hp$

The number of blades: Z=5

The rotating speed of propeller: $n_e = 102rpm$

According to the blades outline of the AU propeller, we can calculate the b:

$$b_{0.66R} = 0.266D \frac{EAR}{0.1Z} = 2.9838m \tag{6}$$

 $b_{0.25R} = 0.7212b_{0.66R} = 2.1519m, b_{0.6R} = 0.9911b_{0.66R} = 2.9573m.$

Radius	K_1	K_2	K_3	K_4	K_5	K_6	K_7	K_8
0.25R	634	250	1410	4	82	34	41	380
0.60R	207	151	635	34	23	12	65	330

Table 11: K Factor Table of Different Radius of Propeller

5.2 Rotate Speed Coefficient

$$X = \frac{A_2 G A_d N^2 D^3}{10^{10} Z b} \tag{7}$$

$$A_2 = \frac{D}{P}(K_5 + K_6\epsilon) + K_7\epsilon + K_8 \tag{8}$$

 D, P, n_e, Z, b are the same with Y.

The back-inclined angle: $\epsilon = 10^{\circ}$

The density of blades: $G = 7.6g \cdot cm^{-3}$

The extend area ratio: $A_d = 0.7145$

		0.25R	0.6R
b	\mathbf{m}	2.1519	2.9573
A1		1925.033	703.7262
Y		76360.82	20312.47
A2		1249.445	1135.689
X		0.317334	0.209887
t	mm	268.063	131.7551
Standard	mm	300.2549	171.1256
Checking Results		Satisfied	Satisfied

Table 12: Strength checking

 $K_5 - K_8$ can be found in Tab.11

Results of caculation of cavitation varification are shown in Tab.12.

As a result, we can determine the propeller's thickness in different radiuses as Tab.13 shows.

r/R	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
t/mm	324.6	287.4	250.3	213.2	176.0	138.9	101.7	64.6	27.5

Table 13: The Propeller's Thickness in Different Radiuses

Pitch Ratio Modification

Different Hub to Diameter Ratios

MAU series five blades propeller's standard pitch ratio is 0.18. However, according to design, the ratio is $(\frac{d_h}{D})' = \frac{1.4}{7.8498} = 0.1783$. Thus, modification is

$$\Delta \left(\frac{d_h}{D}\right)_h = \frac{1}{10} \left[\left(\frac{d_h}{D}\right)' - \left(\frac{d_h}{D}\right) \right] = -0.000165 \tag{9}$$

Different Blade Thickness Ratios

Because MAU series propeller's thickness fail to pass the strength varification, another modification is needed. Setting MAU5-80 as standard propeller to modifiy.

Standard Propeller $(\frac{t}{h})_{0.7R} = 0.04715$

$$a_E = 0.8$$

Real Propeller
$$(\frac{t}{D})'_{0.7R} = 0.05498$$

 $a'_E = (1 + 1.1[(\frac{d_h}{D})' - (\frac{d_h}{D})])\frac{A_E}{A_0} = 0.7132$

$$\Delta(\frac{t}{b})_{0.7R} = \left[(\frac{t}{b})'_{0.7R} - (\frac{t}{b})_{0.7R} \times \frac{a_E}{a_E'} \right] \times 0.75 = 0.001569 \tag{10}$$

$$1 - s = \frac{V_A}{NP} = \frac{30.866(1 - w)V}{NP} = 0.6927 \tag{11}$$

$$\Delta(\frac{P}{D})_t = -2\frac{P}{D}(1-s)\Delta(\frac{t}{b})_{0.7R} = -0.00204$$
 (12)

6.3 Final Pitch Ratio

$$(\frac{P}{D})_m = \frac{P}{D} + \Delta(\frac{P}{D})_B + \Delta(\frac{P}{D})_t = 0.9364$$
 (13)

7 Calculation of Weight and Inertia Moment

7.1 The Weight and Length

The weight of the blades:

$$G_{b1} = 0.169\gamma Z b_{max} \left(0.5 t_{0.2R} + t_{0.6R} \right) \left(1 - \frac{d}{D} \right) D = 41810.7788 kgf \qquad (14)$$

The length of the hub: $L_K = 0.2D = 1.5699m$ The weight of the hub:

$$G_n = \left(0.88 - 0.6 \frac{d_0}{d}\right) l_K \gamma d^2 = 12743.1 kgf \tag{15}$$

$$d_0 = 0.045 + 0.108 \left(\frac{P_D}{N}\right)^{1/3} - \frac{KL_K}{2} = 0.78535 \tag{16}$$

Thus, the overall weight of the propeller $G = G_{b1} + G_n = 54553.9 kgf$ The value of related parameters are given in Tab.14.

$\overline{\gamma}$	$7600kgf/m^3$	Z	5
$b_m ax = b_{0.66R}$	$2.9838 \mathrm{m}$	d	$1.4 \mathrm{m}$
$t_{0.2R}$	$324.6 \mathrm{mm}$	$t_{0.6R}$	$176 \mathrm{mm}$
D	$7.8498 { m m}$	P_D	43970.1 hp
N	102rpm	K	$\frac{1}{10}$

Table 14: Related Parameters of Weight and Length

7.2 Inertia

First, we caculate:

$$\frac{d}{D} = \frac{d_h}{D} = \frac{1.4}{7.8498} = 0.1783 \le 0.18 \tag{17}$$

Thus, we can get:

$$I_{mp} = 0.0948\gamma Z b_{max} (0.5t_{0.2} + t_{0.6}) D^3 = 1758892.985kgf \cdot cm \cdot s^2$$
 (18)

8 Open Water Graph of Propeller

Considering propeller open water characteristics regression curve formula:

$$\begin{cases}
K_T = \sum_{k=1}^{16} a_k \left(\frac{A_E}{A_0}\right)^{r_k} \left(\frac{P}{D}\right)^{s_k} J^{t_k} \\
10K_Q = \sum_{k=1}^{23} b_k \left(\frac{A_E}{A_0}\right)^{u_k} \left(\frac{P}{D}\right)^{v_k} J^{w_k} \\
\eta_0 = \frac{K_T}{K_Q} \frac{J}{2\pi}
\end{cases} (19)$$

Figure 2: Open Water Graph

Related parameters are Extend Area Ratio $\frac{A_E}{A_0}=0.7145$ and Pitch Ratio $\frac{P}{D}=0.9364$. Now we can draw curves as Fig.2 shows.

9 Calculation of the Tied Column

From open water graph, we can get K_T, K_Q when J=0 and do caculations. The result is shown in Tab.15.

J		0
K_T		0.4529
K_Q		0.62
D	m	7.8498
power	KW	32340
tied column thrust deduction fraction		0.04
main engine torque	$N \cdot m$	3027688.741
tied column thrust	N	281749.5722
rotating speed of the propeller	r/s	0.399807886

Table 15: Tied Column Characteristics

10 Calculation of the Cruising Characters

When the rotating speed equals to 102rpm, 97rpm, 92rpm, we can get the following results as Tab.16 shows and draw Fig.3.

	Speed	21	22	23	24	25
	Advance Speed	8.1025	8.4883	8.8741	9.2600	9.6458
	Diameter	7.8498	7.8498	7.8498	7.8498	7.8498
	Pitch Ratio	0.9364	0.9364	0.9364	0.9364	0.9364
-	J	0.6072	0.6361	0.6650	0.6939	0.7228
	KT	0.2170	0.2032	0.1892	0.1750	0.1607
102	KQ	0.0337	0.0320	0.0303	0.0285	0.0267
	Effective Power	22151.6100	21730.3294	21153.3168	20418.1316	19522.3492
	Main Engine Power	32413.6127	30788.6961	29131.4690	27440.8480	25715.6250
	J	0.6519	0.6830	0.7140	0.7450	0.7761
	KT	0.1956	0.1804	0.1651	0.1495	0.1337
95	KQ	0.0311	0.0292	0.0273	0.0253	0.0233
	Effective Power	17316.9855	16736.5377	16007.3687	15127.0594	14093.1918
	Main Engine Power	24145.3232	22690.9451	21204.7782	19685.5318	18131.7809
	J	0.7286	0.7633	0.7980	0.8327	0.8674
	KT	0.1578	0.1402	0.1224	0.1044	0.0861
85	KQ	0.0264	0.0241	0.0219	0.0196	0.0172
	Effective Power	11182.7016	10413.1062	9504.8403	8455.4640	7262.5075
	Main Engine Power	14679.5793	13448.8532	12186.4460	10890.7113	9559.8528

Table 16: Cruising Results of the Ship

Figure 3: Cruising Characteristics Graph

According to the caculation results, we can get the maximum crusing speed and power of the main engine by interpolation as Tab.17 shows.

Cruising Condition	Maximum Cruising Speed)(kn)	Power of Main Engine(w)
Ballast	23.94	27546.97
Fully Loaded	23.22	28759.24
Super Fully Loaded	22.56	29868.74

Table 17: Final Results

11 Conclusion

Now, we have the ultimate design of the propeller. The data is shown in Tab.18.

Diameter	D	7.8498	\overline{m}
Pitch Ratio	P/D	0.9364	-
Type		MAU	
Number of Blades	Z	5	-
EAR	A_E/A_0	0.7145	-
Inclined Angle	ϵ	10	degree
Open Water Efficiency	η_0	0.6921	-
Designed Cruising Speed	V	23.9601	kn
Ratio of boss to diameter	d_h/D	0.1783	-
Rotating Direction		Right	-
Material		Cu3 nickle aluminum bronze	-
Weight	G	54553.9	kgf
Inertial Moment	I	1758892.985	$kgf \cdot cm \cdot s^2$

Table 18: Ultimate Design

A Code

Listing 1: Caculate Max Speed


```
for D=7.5:0.05:8.5 %直径 21个
15
              for Vs=21:0.2:25 %航速 21个
16
              for m=1:13
17
             PD=0.1*m+0.3;%螺距比 pitch ratio 共13个
              J=0.5144*(1-w)*Vs/(n*D); %计算进速系数J
19
              [Kt, Kq]=calKtKq(J, EAR, PD);%计算推力系数Kt,转矩系数Kq
20
              eta0 = (Kt./Kq)*(J/(2*pi)); %计算敞水效率 eta0
21
                                                           %计算结果矩阵第一列是伸张面比
              Result (m+k, 1)=EAR;
22
                                                           %第二列是直径
              Result (m+k, 2)=D;
23
              Result (m+k,3)=Vs;
                                                           %第三列是航速
24
              Result (m+k, 4)=J;
                                                           %第四列是进速系数
25
                                                           %第五列是螺距比
26
              Result (m+k,5)=PD;
              Result (m+k, 6)=Kt;
                                                           %第六列是推力系数
27
              Result(m+k,7)=Kq;
                                                           %第七列是转矩系数
28
              Result (m+k, 8) = eta0;
                                                           %第八列是敝水效率
29
              end
30
              k=k+13;
31
              end
32
              end
33
              end
34
35
             %%-----通过插值确定满足设计功率要求 (即:螺旋桨要求的扭矩与设计功率
36
             9%与转速下的收到转矩平衡)的螺距及相应的有效推力与敝水效率)-----
              PD_req = findPD(Result, Q, den, n);
38
39
             %%-----对每个直径,根据阻力曲线及不同航速下的有效推力值,通过播值
40
             %%确定有效推力与阻力平衡的航速,以及对应的螺距和敞水效率-----%%
41
              Vs\_req = findVs(PD\_req, den, n, w, t);
42
              output = findD(Vs_req);
43
44
45
              function [Kt,Kq]= calKtKq(J, EAR, PD)
46
             %计算推力系数(Thrust Coefficient)Kt, 转矩系数(Torque Coe.)Kq
47
             %输入:进速系数(Advance Coe.)J, 伸张面比(Extend Area ...
48
                      Ratio)EAR, 螺距比(Pitch Ratio)PD
             %输出:推力系数(Thrust Coefficient)Kt,转矩系数(Torque Coe.)Kq
              a = [0.05367018, -0.3023566, 0.4333625, -0.1065471, -0.6582904, 0.118910]1, \dots
50
              -0.0004408557, -0.03317857, 1.151124, 0.1960773, -0.09747062, 0.2036384, \dots
              -0.2566153, -0.1370242, -0.2874294, -0.2851609;
52
              r = [0,0,0,1,3,1,0,1,2,3,1,0,1,0,2,1];
53
              s = [0,0,1,0,2,1,6,1,2,0,3,1,1,0,0,2];
54
55
              t = [0, 1, 0, 2, 0, 3, 0, 4, 0, 0, 0, 1, 1, 2, 0, 0];
              b = [-0.0925139, -0.1229, 0.3050697, -0.2935303, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -1.02205, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.3991474, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.399144, -0.39914
56
              0.01022833, 0.0035211, 0.002552059, 0.2143532, 0.000713111, 0.2078488, \dots
57
              0.6397058, 0.0009404846, -0.02930044, -0.07807623, -0.3025523, 0.1855 \mid 05, \dots
58
              -0.672421, -0.2087142, 0.9400654, 0.9316346, -0.04348397;
59
              u = [0, 0, 0, 0, 1, 1, 0, 3, 0, 3, 0, 1, 0, 0, 1, 0, 3, 1, 2, 3, 1, 3, 0];
60
              v = [0, 2, 1, 0, 2, 1, 7, 1, 5, 0, 4, 1, 1, 7, 0, 0, 2, 1, 2, 4, 3, 2, 6];
61
              \mathbf{w} = [0, 0, 1, 2, 0, 1, 0, 0, 2, 1, 4, 2, 0, 1, 1, 4, 2, 3, 1, 0, 0, 1, 0];
62
              Kt=0:
63
64
              Ka=0:
              for i = 1:16
65
               \label{eq:Kt-Atom}  \text{Kt=Kt+a(i)*(EAR)^(r(i))*(PD)^(s(i))*(J)^(t(i));} 
67
              for i = 1:23
68
69
              Kq=Kq+(b(i)*(EAR)^(u(i))*(PD)^(v(i))*(J)^(w(i)))/10;
70
71
              function PD_req = findPD(Result, Q, den, n)
72
             %在某个螺旋桨直径下, 通过插值确定满足设计功率要求 (即:螺旋桨
73
```



```
%要求的扭矩与设计功率与转速下的收到转矩平衡)的螺距及相应的有效推力
74
       %与敝水效率)
 75
       %输入:Result
76
             螺旋桨收到转矩D, 海水密度den, 螺旋桨转速n
       %输出:每个螺旋桨直径下合适的螺距比PD
78
79
       k=1:
       PD_{req=zeros}(length(Result)/13,8);
 80
       for i=1:1:length(Result)/13
81
       Kq_req=Q/(den*n^2*Result(k,2)^5);%螺旋桨要求的扭矩
82
       PD_req(i,1)=Result(k,1);%固定盘面比
83
       PD_req(i,2)=Result(k,2);%固定直径
 84
 85
       PD_req(i,3)=Result(k,3);%固定航速
       %由扭矩系数插值得到螺距比
86
87
       PD\_req(i,4) = \underbrace{interp1}(Result(k:k+12,7), Result(k:k+12,5), Kq\_req, 'spline');
       %由扭矩系数插值得到敞水效率
 88
       PD req(i,5)=interp1(Result(k:k+12,7), Result(k:k+12,8), Kq req, 'spline');
89
       %由扭矩系数插值得到推力系数
90
91
       PD_{req}(i,6) = interp1(Result(k:k+12,7), Result(k:k+12,6), Kq_{req}, 'spline');
       %由推力系数计算出的有效推力
92
       PD\_req(i,7) = PD\_req(i,6) *den*n^2*Result(k,2)^4;
 93
94
       PD_req(i,8)=Kq_req;%对应扭矩系数
       k=k+13;
95
       end
97
       function Vs_req = findVs(PD_req, den, n, w, t)
98
       %到某一螺旋桨直径下设计所需的航速
99
       %输入:海水密度den,螺旋桨转速n,伴流系数w,推力减额分数t
100
       %输出:最优航速
101
102
       Vs = PD_{req}(:,3);%从矩阵中提取航速
103
104
       [ PE1, PE2, PE3 ] = calPE(Vs);%PE1压载功率, PE2满载功率, ...
           PE3超满载功率
       R = (PE1.*1000)./(Vs.*0.514);%计算阻力
105
       Kt2 = (R./PD_{req}(:,2).^4)./((1-t)*den*n^2);%计算需要的推力系数
106
       \Delta_Kt=Kt2-PD_req(:,6);
107
108
109
       PD_{len=length}(Kt2)/21;
110
       Vs\_req=zeros(PD\_len,8);
111
       for i=1:1:PD len
112
       Vs_{req}(i,1) = PD_{req}(k,1);%第一列盘面比
113
       Vs_req(i,2) = PD_req(k,2);%第二列直径
114
       %第三列插值确定需要的航速
115
116
       Vs\_req(i,3) = ...
           interp1(\Delta_{k:k+20,1}), PD_{req(k:k+20,3),0}, 'spline');
       %第四列插值确定需要的螺距
117
       Vs\_req(i,4) = ..
           interp1(\Delta Kt(k:k+20,1), PD reg(k:k+20,4), 0, 'spline');
       %第五列插值确定需要的效率
119
120
       Vs\_req(i,5) = ...
           interp1(\Delta_{Kt}(k:k+20,1), PD_{req}(k:k+20,5), 0, 'spline');
       %第六列插值确定需要的推力系数
121
       Vs\_req(i,6) = ...
122
           interp1(\Delta_Kt(k:k+20,1), PD_req(k:k+20,6), 0, 'spline');
       Vs_req(i,7) = PD_req(k,8);%第七列计算扭矩系数
       Vs\_req(i,8) = ...
124
           0.514*Vs_req(i,3)*(1-w)/n/Vs_req(i,2);%第八列计算进速系数
125
       k=k+21;
       end
126
127
       function output = findD(Vs_req)
128
       %插值求最大速度对应的直径%
129
```



```
130
        k=1:
        output=zeros(length(Vs_req)/21,8);
131
        for i=1:length(Vs\_req)/21
132
        for j=1:10001
133
        d=0.0001*j+7.4999;
134
        v(i,j)=interp1(Vs_req(k:k+20,2),Vs_req(k:k+20,3),d,'spline');
135
        end
136
        vmax1=max(v'):
137
        vmax=vmax1(1,i);
138
        d_max=interp1(Vs_req(k:k+20,3), Vs_req(k:k+20,2), vmax, 'spline');
139
                                         %v_d第一列为盘面比
        output (i\ ,1) \!\!=\!\! Vs\_req(k\, ,1)\ ;
140
                                      %第二列是直径最优值
141
        output(i,2)=d_{max};
        output (i,3)=vmax;
                                      %第三列是速度最大值
142
        %第四列为螺距
143
        output(i,4)=interp1(Vs_req(k:k+20,3),Vs_req(k:k+20,4),vmax,'spline');
144
        %第五列为效率
145
        output(i,5)=interp1(Vs_req(k:k+20,3),Vs_req(k:k+20,5),vmax,'spline');
146
147
        %第六列为推力系数
        output(i,6)=interp1(Vs_req(k:k+20,3),Vs_req(k:k+20,6),vmax,'spline');
148
        %第七列为扭矩系数
149
150
        output(i,7)=interp1(Vs_req(k:k+20,3),Vs_req(k:k+20,7),vmax,'spline');
        %第八列为进速系数
151
        output(i,8)=interp1(Vs_req(k:k+20,3),Vs_req(k:k+20,8),vmax,'spline');
152
        k=k+21;
153
154
        end
155
        end
156
```

Listing 2: Open Water Caculate and Draw Graph

```
EAR=0.7145; PD=0.9364;
  1
                          a = [0.05367018, -0.3023566, 0.4333625, -0.1065471, -0.6582904, 0.118910], \dots
  2
                          -0.0004408557, -0.03317857, 1.151124, 0.1960773, -0.09747062, 0.2036384, ...
  3
                          -0.2566153, -0.1370242, -0.2874294, -0.2851609];
                          r = [\, 0 \,\, , 0 \,\, , 0 \,\, , 1 \,\, , 3 \,\, , 1 \,\, , 0 \,\, , 1 \,\, , 2 \,\, , 3 \,\, , 1 \,\, , 0 \,\, , 1 \,\, , 0 \,\, , 2 \,\, , 1\,]\,;
  5
                          s = [0,0,1,0,2,1,6,1,2,0,3,1,1,0,0,2];
  6
                          t = [0, 1, 0, 2, 0, 3, 0, 4, 0, 0, 0, 1, 1, 2, 0, 0];
                          b \!=\! [-0.0925139\,, -0.1229\,, 0.3050697\,, -0.2935303\,, -0.3991474\,, -1.02205\,,\, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.3991474\,, -1.02205\,, \, .0.399144\,, -1.02200\,, \, .0.399144\,, -1.02200\,, \, .0.399144\,, -1.02200\,, \, .0.399144\,, -1.02200\,, \, .0.399144\,, -1.02200\,, \, .0.399144\,, -1.02200\,, \, .0.399144\,, -1.02200\,, \, .0.399144\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.02200\,, -1.0
                          0.01022833\,, 0.0035211\,, 0.002552059\,, 0.2143532\,, 0.000713111\,, 0.2078488
                          0.6397058, 0.0009404846, -0.02930044, -0.07807623, -0.3025523, 0.1855105, \dots
 10
                          -0.672421, -0.2087142, 0.9400654, 0.9316346, -0.04348397;
 11
                          u = [0, 0, 0, 0, 1, 1, 0, 3, 0, 3, 0, 1, 0, 0, 1, 0, 3, 1, 2, 3, 1, 3, 0];
 12
                          v = [0, 2, 1, 0, 2, 1, 7, 1, 5, 0, 4, 1, 1, 7, 0, 0, 2, 1, 2, 4, 3, 2, 6];
13
                          w = [0, 0, 1, 2, 0, 1, 0, 0, 2, 1, 4, 2, 0, 1, 1, 4, 2, 3, 1, 0, 0, 1, 0];
 15
                          result=zeros(3,3);
                          for j = 1:110
 16
                          J=j/100;
 17
                         KT=0;
 18
 19
                          for g=1:16
                         KT = KT + a(g) * (EAR) ^ (r(g)) * (PD) ^ (s(g)) * (J) ^ (t(g));
20
                          end
21
22
                         KQ=0;
                          for e=1:23
23
                         \label{eq:KQ+b} $$ KQ\!\!+\!\!k(e)*(EAR)^(u(e))*(PD)^(v(e))*(J)^(w(e)); $$
24
 25
                          eta=KT/(KQ/10)*J/(2*pi);
26
27
                          result(j,1)=KT;
28
                          result(j,2)=KQ;
                          result(j,3)=eta;
29
```



```
30
        end
        J = 1:1:100;
31
        plot(J, result(1:100,1), 'b');
32
        text(10, result(10,1), '\leftarrow KT');
        hold on
34
        plot(J, result(1:100,2), 'k');
35
        text(15, result(15,2), '\leftarrow 10KQ');
36
        hold on
37
        plot(J, result(1:100,3), 'r');
38
        text(20, result(20,3), '\leftarrow \eta');
39
        xlabel('J')
40
41
        kt=0:
        kq=0;
42
43
        for g=1:16
        kt=kt+a(g)*(EAR)^(r(g))*(PD)^(s(g))*(0)^(t(g));
44
        end
45
46
        for e = 1:23
47
        kq=kq+b(e)*(EAR)^(u(e))*(PD)^(v(e))*(0)^(w(e));
48
```

Listing 3: Caculate Cruising Characteristics

```
J102 = [0.607170003,
                                          0.63608286, 0.664995717, 0.693908575, ...
1
                     0.722821432];
               J95 = [0.651908845]
                                           0.682952123,
                                                                 0.713995402,
2
                     0.74503868, 0.776081959];
               J85 = [0.728604003,
                                          0.763299432,
                                                                 0.797994861,
                     0.83269029, 0.867385718];
               KT102=zeros(1,5);
               KQ102=zeros(1,5);
6
               KT95=zeros(1,5);
7
               KQ95=zeros(1,5);
               KT85=zeros(1,5);
9
10
               KQ85=zeros(1,5);
               for i=1:5
11
                [\;kt102\;,\;\;kq102]\!=\!calKtKq(\;\!J102(\;i\;\!)\;,0\,.7145\;,0\;.9364\,\!)\;;
12
               KT102(i)=kt102;
13
               KQ102(i)=kq102;
14
               [\,kt95\,,\ kq95]{=}calKtKq(\,J95\,(\,i\,)\,\,,0\,.7145\,\,,0\,.9364\,)\,;
15
16
               KT95(i)=kt95;
               KQ95(i)=kq95;
17
               [kt85, kq85]=calKtKq(J85(i),0.7145,0.9364);
               KT85(i)=kt85;
19
               KQ85(i)=kq85;
20
               end
22
               Vs = [21, 22, 23, 24, 25];
23
                [PE1, PE2, PE3] = calPE(Vs);
24
25
               function [ PE1, PE2, PE3 ] = calPE(Vs)
26
               %计算有效功率曲线
27
               %输入: 航速
28
               %输出: PE1压载功率, PE2满载功率, PE3超满载功率
29
               c \hspace{-0.05cm}=\hspace{-0.05cm} [5.82329 \hspace{-0.05cm}E6 \;,\;\; -1.12816 \hspace{-0.05cm}E6 \;,\;\; 81927.6702 \;,\;\; -2642.77266 \;,\;\; 31.99959 \,;
30
               \begin{array}{l} 7.28287E6\,,\;\; -1.41085E6\,,\;\; 102451.99935\,,\;\; -3304.68079\,,\;\; 40.01248\,;\\ 8.7346E6\,,\;\; -1.69215E6\,,\;\; 122883.80611\,,\;\; -3963.87495\,,\;\; 47.99561\,]\,; \end{array}
31
32
               PE1=0;
33
               PE2=0:
34
               PE3=0;
35
               for i=1:5
36
```



```
\begin{array}{lll} \text{37} & & \text{PE1} = \text{PE1} + \text{c}(1,\text{i})*\text{Vs.}^{(\text{i}-1)};\\ \text{38} & & \text{PE2} = \text{PE2} + \text{c}(2,\text{i})*\text{Vs.}^{(\text{i}-1)};\\ \text{39} & & \text{PE3} = \text{PE3} + \text{c}(3,\text{i})*\text{Vs.}^{(\text{i}-1)};\\ \text{40} & & \text{end} \end{array}
```

B Cavitation Check Caculation Sheet

项目	单位	MALIS SO	MALIE EE	MALIE 60	MALIS 65	MAU5-70	MALIS 75	MALIE RO
最大船速	+ I¥ kn	23.9632	23.9861	24.0030	24.0056	23.9855	23.9347	23.8449
螺旋桨直径	m	7.7406	7.8925	7.6945	8.0147	7.8520	7.8476	8.1915
敞水效率 η ₀	-	0.7020	0.6891	0.7070	0.6790	0.6927	0.6916	0.6571
转速	r/s	1.7	1.7	1.7	1.7	1.7	1.7	1.7
伴流分数	-	0.25	0.25	0.25	0.25	0.25	0.25	0.25
螺旋桨收到功率	kw	27489	27489	27489	27489	27489	27489	27489
螺旋桨进速	m/s	9.245786	9.254595	9.261143	9.262119	9.254369	9.234787	9.20014
V ² _{0.7R}	m/s^2	922.8968	956.2511	913.2449	983.5733	947.3309	946.0171	1022.459
桨轴深沉	m	8	8	8	8	8	8	8
压力差p ₀ -p _v	kgf/m^2	18363.28	18363.28	18363.28	18363.28	18363.28	18363.28	18363.28
空泡数σ	-	0.380339	0.367073	0.384359	0.356876	0.370529	0.371044	0.343303
单位面积平均推力系数τc	-	0.1481	0.1425	0.1484	0.1393	0.1437	0.1439	0.1372
推力T	kgf	212833.7	208725.8	213999.3	205492.1	209815.2	209916.1	200211.2
投射面积Ap	m^2	29.765	29.27946	30.18318	28.6689	29.46133	29.47541	27.28112
螺距比P/D	-	0.9380	0.9087	0.9675	0.8948	0.9381	0.9392	0.8474
展开面积AE	m^2	34.92703	34.08909	35.70147	33.2551	34.57178	34.59878	31.25173
台面ドA-/A。	_	0.742209	0.696785	0.767776	0.659157	0.713963	0.715311	0.593007

Figure 4: Cavitation Check Caculation Sheet