FUENTES DISCRETAS DE INFORMACIÓN DE MEMORIA NULA

1. (Cap. 1 – Prob. 1) En la sección 1.4 se definieron dos códigos, *A* y *B*, utilizados en la transmisión del estado del tiempo en Los Angeles. La longitud media del código *A* fue de dos binits por mensaje, y la del código *B*, 17/8 binits por mensaje. La menor longitud media posible de un código para el problema de la tabla 1-5 es de 7/4 binits por mensaje:

Mensajes Probabilidades

Asoleado	1/4
Nublado	1/8
Lluvioso	1/8
Brumoso	1/2

Intente encontrar un código que tenga una longitud media igual a 7/4 binits por mensaje.

2. (Cap. 2 – Prob. 3a) Dos fuentes de memoria nula, S_1 y S_2 , tienen q_1 y q_2 símbolos, respectivamente. Los símbolos de S_1 se representan con probabilidades P_i , $i=1,2,...,q_1$; los de S_2 con Q_i , $i=1,2,...,q_2$; las entropías de ambas son H_1 y H_2 , respectivamente. Una nueva fuente de memoria nula $S(\lambda)$, denominada compuesta de S_1 y S_2 está formada con q_1+q_2 símbolos. Los q_1 primeros símbolos de $S(\lambda)$ tienen probabilidades λP_i , $i=1,2,...,q_1$, y los últimos q_2 probabilidades $\bar{\lambda}Q_i$, $i=1,2,...,q_2$. ($\bar{\lambda}=1-\lambda$).

Demostrar: $H[S(\lambda)] = \lambda H_1 + \overline{\lambda} H_2 + H(\lambda)$. Interprete esta igualdad.

3. (Cap. 2 – Prob. 14) Sea S una fuente de memoria nula, de alfabeto $S = \{s_i\}, \ i = 1, 2, ..., q$ cuyos símbolos tienen probabilidades $P_1, P_2, ..., P_q$. Crear una nueva fuente de memoria nula, S, de doble número de símbolos, S = $\{s_i\}$, i = 1, 2, ..., 2q con símbolos de probabilidades definidas por P_i = $(1 - \varepsilon)P_i$, i = 1, 2, ..., q y P_i = εP_{i-q} , i = q + 1, q + 2, ..., 2q.

Expresar H(S') en función de H(S).