P(A>B) Based Analysis - Unbalanced Data

Rain

5/27/2021

This analysis is based on Bayesian result according to P(A>B) > 95% and unbalance ratio = 0.25 (treat-met:control = 4:1).

Recall that

Case ID	Application	Distribution	Effect
1	Payer Conversion	Bernoulli	False
2	Payer Conversion	Bernoulli	True
3	Total Moves	Poisson	False
4	Total Moves	Poisson	True

False/True Positive Rate

All the percentages in the following tables are proportion of the simulated experiments that led to the conclusion that the treatment is chosen.

In Case 1 and 3 where the underlying treatment and control have no difference, the percentages mean false positive rates. Therefore, the lower the percentage, the better.

In Case 2 and 4 where the treatment is better than control, the percentages mean true positive rates. Therefore, the higher the percentage, the better.

Areas of Analysis

1. Effect of peeking

We calculate peek_multiplier - how many times more likely we would choose treatment if monitor daily and stop the experiment earlier when we see a result that's positive enough. Note that only sample size of 500 is used because when the sample size is large enough, % of accepting treatment goes to 100% very quickly and would skew the peek_multiplier.

Result: Bayesian suffers from peeking as well.

case	avg_peek_multiplier_freq	avg_peek_multiplier_bayes
1	4.8	3.4
3	4.5	5.0

2. Effect of sample size

Conclusion: When treatment is not better than control, the false positive rate is controled at 5%.

case	sample_size_per_	_dawyg_freq_treat	avg_freq_treat_p	eekavg_bayes_treat	avg_bayes_treat_peek
1	500	4.15%	19.75%	3.6%	12.65%
1	5000	4.45%	24.55%	4.45%	19.6%
1	50000	5.05%	28.3%	3.9%	23.35%
3	500	6.33%	28.2%	6.8%	33.73%
3	5000	5.4%	28.33%	5.87%	28.87%
3	50000	5.8%	27%	5.27%	24%

Conclusion: When treatment is better than control, Bayesian has slightly more power.

case	sample_size_per_d	awyg_freq_treat	avg_freq_treat_p	eekavg_bayes_treat	avg_bayes_treat_peek
2	500	10.5%	26.6%	15.07%	29.2%
2	5000	52.2%	64.65%	57.35%	67.7%
2	50000	82.35%	89.2%	87.33%	93.4%
4	500	9.03%	32.03%	14.93%	45.93%
4	5000	38.87%	55.9%	44.27%	62.07%
4	50000	56.03%	67.67%	59.6%	72.07%

3. Effect of prior parameter selections

We compare average false/true positive rate by directional, confident, and wrong priors.

Conclusion: Bayesian's prior parameters do not matter much for the sample sizes we have.

case	prior	avg_freq_treat	avg_freq_treat_pec	ek avg_bayes_treat	avg_bayes_treat_peek
1	confident	4.33%	23.8%	3.67%	17.53%
1	directional	4.93%	24.07%	4.53%	20.67%
1	neutral	4.2%	25.07%	4.2%	20.53%
1	wrong	4.73%	23.87%	3.53%	15.4%
2	confident	48.9%	60.07%	53.1%	61.7%
2	directional	48.47%	60.23%	53.43%	63.23%
2	neutral	48.37%	60.4%	54.17%	66.47%
2	wrong	47.67%	59.9%	52.3%	62.33%
3	confident	6.2%	28%	6.67%	32.13%
3	directional	6.27%	28.07%	6.6%	27.8%
3	wrong	5.07%	27.47%	4.67%	26.67%
4	confident	34.87%	51.9%	40.4%	62.97%
4	directional	33.6%	50.97%	38.03%	58.17%
4	wrong	35.47%	52.73%	40.37%	58.93%