Sample tutorial test: Propositional logic

Time limit: 45 minutes. Total points: 100.

- 1. Consider three brothers, each of whom either always tells the truth or always lies.
 - (i) The eldest says: "Both my brothers are liars."
 - (ii) The middle one says: "The youngest is a liar."
 - (iii) The youngest says: "The eldest is a liar."

Let the propositional variables p_1 , p_2 , p_3 represent (in order) that "the eldest / middle / youngest brother is truthful" and denote $\mathbb{P} = \{p_1, p_2, p_3\}$.

- (a) Write formulas (in the form of equivalences) φ_1 , φ_2 , φ_3 over \mathbb{P} representing the knowledge derived (in order) from (i), (ii), (iii). (15 points)
- (b) Write a theory S in set notation obtained by converting $\varphi_1, \varphi_2, \varphi_3, p_3$ or their negations into CNF, which is unsatisfiable if and only if it follows from statements (i), (ii), (iii) that "the youngest is truthful". (15 points)
- (c) Prove by resolution that S is unsatisfiable. Represent the resolution refutation with a resolution tree. (20 points)
- 2. Let $T = \{ (\neg p \land q) \to r, (q \to r) \leftrightarrow p \}$ be a theory over $\mathbb{P} = \{ p, q, r \}$.
 - (a) Using the tableaux method, determine all models of theory T. (20 points)
 - (b) Is T an extension of the theory $S = \{q \to p\}$ over $\{p, q\}$? Is T a conservative extension of S? Justify. (15 points)
 - (c) Determine how many pairwise inequivalent propositions over \mathbb{P} are there that are independent in both S and T. Justify. (15 points)