BIOSPECIFIC ASSAY METHOD

This invention relates to a biospecific assay method in which the analyte to be assayed is bound to the surface of microparticles through a bioaffinity reactant binding the aforesaid analyte, and the amount of analyte bound to individual microparticles is determined.

BACKGROUND OF THE INVENTION

10

The publications and other materials used herein to illuminate the background of the invention, and in particular, cases to provide additional details respecting the practice, are incorporated by reference.

Traditionally, radioimmunoassays were in the beginning performed in solution using test-tubes and complicated separation methods. With the advent of solid phase technology radioactive isotopes have been replaced by diverse labels, and especially monoclonal antibodies have been used in an increasing number of applications.

The aforementioned improvements have made a wider range of traditional immunoassays and other bioaffinity assay methods available (e.g. Alternative Immunoassays, W.P. 20 Collins, Wiley, Chichester 1985, and Luminescence Immunoassay and Molecular Applications, Ed. Knox van Dyke, CRC Press, Boston 1990, and R.P. Ekins et al., Clin. Chem. 1991; 37:1955 - 1967). Solid phase assays have become routine assay methods both in the field of competitive and non-competitive assays, and the traditional test-tube has 25 often been replaced by alternative solid phase facility. The microtiter plate was introduced as a solid phase for routine hormone assays in 1984 when Wallac Oy (Turku, Finland) introduced their DELFIA technology. Other commercial enterprises have also adopted the microtiter 30 plate in similar routine assays, which, however, are based on different labelling technologies.

Microparticles manufactured of different materials have for some time been available as an alternative solid phase for bioaffinity assays (e.g. Molday W.J. et al., J. Cell. 5 Biol.: 1975: 64, 75, and Nustad K. et al.: Microspheres. Medical and biological applications, Ed. A. Rembaum and Z.A. Tökes, Boca Raton, Florida, CRC Press 1988). Compared to microtiter plates the microparticles offer several advantages, for instance an immobilization method for 10 bioaffinity reactants more easily adaptable to production scale, and a greater reaction velocity obtainable when using microparticles. The capacity of the microsphereassociated solid phase is also easily controllable by simply dispensing an amount of particles optimal for the method in question. The greatest disadvantages of 15 microparticles have been traditionally associated with liquid handling (e.g. washes). With the introduction of magnetic microspheres this problem has been partly overcome, and in recent years an increasing number of 20 commercial automated immunoassay methods have been based on their use. Nowadays novel manufacturing methods have allowed the production of microparticles of exact and reproducible size (e.g. of a diameter of $0.04 - 100 \mu m$). Also the immobilization of the bioaffinity reactants onto the microparticles can be effected by various chemical 25 methods.

The competitive biospecific assay method may be described as follows: The microparticles are coated with the bioaffinity reagent A, for whose binding sites, on the one 30 hand, the analyte contained in the sample competes, and on the other hand, the bioaffinity reagent B, in this case an appropriately labelled analyte, also competes for the said binding sites. In the case of immunoassay, bioaffinity reagent B will be a labelled antigen, the antigen being the 35 same as the antigen contained in the sample or to a suitable labelled derivative thereof. Because the analyte

contained in the sample and the labelled analyte compete for the binding sites of the bioaffinity reactant A, the amount of label bound to the microparticle via reactant A, and consequently the signal from the microparticle, will be inversely related to the concentration of the analyte in the sample.

The non-competitive biospecific assay method may be described as follows: The microparticles are coated with the bioaffinity reactant A, whose binding sites only bind 10 the analyte contained in the sample. The bioaffinity reactant B, which in this case is a suitably labelled reactant directed against the analyte contained in the sample, is bound by the analyte, which is linked to the microparticle via the bioaffinity reactant A. In the case of immunoassay, bioaffinity reactant B will be a labelled 15 antibody directed against the antigen contained in the sample. The amount of label bound to the microparticle via reactant A, and consequently the signal strength from the microparticle, will be directly related to the 20 concentration of the analyte in the sample.

The sensitivity of the competitive and non-competitive immunoassay has been extensively discussed earlier (Ekins R.P. et al., Pure and Appl. Chem., 1985; 57: 473 - 482, and Ekins R.P. et al., Clin. Chem., 1991; 37: 1955 - 1967). As regards the present invention, it is essential to consider the factors affecting the sensitivity and functionality of each assay principle.

25

Maximal sensitivity in a competitive immunoassay when using an antibody (a bioaffinity reactant) with an affinity

30 constant K will be obtained by dividing by K the relative error of the signal strength at zero concentration. The error of the signal strength will be affected by two components, an experimental error component due to pipetting and other manipulations, and a signal strength

35 measurement component, e.g. the statistical error of signal

strength measurement. For the sake of simplicity, let us assume that the error due to signal strength measurement is 0, which is usually the case when the specific activity of the label is high. The maximal attainable sensitivity of the competitive assay is now E/K where E is the combined relative error due to experimental factors. Let us assume, for instance, that the experimental error is of the order of 1%; the maximal attainable sensitivity then, using an antibody with an affinity constant as high as possible, for

10 ¹²1/mol, is of the order of 0.01 picomol/l. The sensitivity definition also demonstrates that unless the experimental error can be almost completely eliminated (< 0.1%), there is no sensitivity advantage to be gained in using a label with extremely high specific activity.

10

15

instance,

Likewise, the factors affecting the sensitivity of the noncompetitive are the following:

- a) the relative error of the signal strength (α) when the analyte is omitted, i.e., the error due to non-specific
- binding of the labelled antibody (bioaffinity reactant)
 b) the relative amount of non-specifically bound labelled
 antibody (k), and
 - c) the affinity constant (K) of the antibody

 The sensitivity of the non-competitive assay is then
- 25 k/K x α. The sensitivity of both competitive and noncompetitive assay is inversely related to the affinity constant of the antibody used, but the non-competitive assay is affected by the relative error due to, on the one hand, non-specific binding of the labelled antibody and on
- 30 the other hand, the relative binding of the labelled antibody, both of which could be assigned, for instance, a value of 1%. The maximal sensitivity of the non-competitive assay is then 0.0001 x 1/K or 0.1 fmol/l, if the affinity constant of the antibody used is 10 ¹²1/mol, which is
- 35 usually considered to be the highest possible value. In a non-competitive assay it is advisable to consider the specific activity of the label, because it affects factors

a) and b), and offers a possibility to improve the sensitivity of the assay.

In assays based on bioaffinity reactions factors structurally limiting the sensitivity of various

determinations must also be considered; this is also essential as regards the present invention, because measurements will be taken from individual microparticles with extremely small amounts of analytes present.

SUMMARY OF THE INVENTION

10 This invention relates to a biospecific assay method, in which method microparticles coated with the bioaffinity reactant A binding the analyte to be assayed; the sample to be analysed, and the labelled bioaffinity reactant B are mixed. After the binding reaction the signal strength from 15 the labelled bioaffinity reactant B bound to the microparticles is quantitated for the determination of the analyte concentration of the sample. According to the present invention such an amount of sample and microparticles is used in the assay that after binding of 20 the analyte of the sample to the said amount of microparticles, each individual microparticle will emit such a signal strength as to allow the measurement of the analyte concentration in the sample over the whole range of typical analyte concentrations, and the signal strength from each microparticle will be measured separately. 25

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a calibration curve for hCG construed by measuring individual microparticles by time-resolved microfluorometry

30 Figure 2 shows the signal strength versus analyte concentrations for different amounts of microparticles (measured from individual microparticles)

Figure 3 shows the signal strength versus amount of microparticles per assay for two different amounts of analyte DNA present in the reaction (measured from individual microparticles). The curve indicated by closed squares represents 10⁹ molecules per reaction and the curve indicated by open squares represents 10¹⁰ molecules per reaction.

DETAILED DESCRIPTION OF THE INVENTION

The present invention allows the assay of the analyte in 10 the sample at a minimal analyte concentration and in a minimal volume by selecting such an amount of microparticles that allows the measurement of the analyte bound to the surface of an individual microparticle, by the sensitive label technology used. The biospecific reaction 15 may be an immunoassay, a nucleic acid hybridization assay, a ligand-lectin assay or a ligand-receptor assay. The bioaffinity reaction may be advantageously performed on a microparticle having a diameter of less than 1 mm. The analyte concentration on the surface of the microparticle 20 is determined by means of the labelled bioaffinity reactant B, the label being one emitting fluorescence, time-resolved fluorescence, chemiluminescence or bioluminescence. The present invention allows the measurement of both the highest and the lowest concentrations of analyte from 25 individual microparticles. The sensitivity of the assay and the measurement range are controlled by the amount of microparticles used in the assay.

The present invention may be applied to many types of biospecific affinity reactions, although the most commonly used is the immunochemical reaction. This is why the present invention is predominantly described as a immunochemical assay. The relevant biospecific affinity reactions (immunoreactions) are either competitive or non-competitive. Both immunoassay principles are commonly

of the assays can be calculated. The highest attainable sensitivity in the competitive assay is about 10 fmol/l.

5 The sensitivity cannot be improved by increasing the specific activity of the label used. Sensitivity can be improved to a certain degree by using a minimal antibody concentration. In the competitive assay the signal strength from the label to be measured is inversely related to the concentration of the sample (analyte) to be assayed.

The highest possible sensitivity attainable in the noncompetitive assay is about 0.1 - 0.01 fmol/l. The
sensitivity may be enhanced if a label with a very high
specific activity is available. The sensitivity can be
improved up to a certain limit by using the highest
possible concentration of labelled antibody if the
background of the assay (non-specific binding to the
surface) remains low. In the non-competitive assay the
signal strength from the label to be measured is directly
related to the concentration of the sample (analyte) to be
assayed.

In the competitive immunoassay the assumption may be made that the measuring range of the analyte to be assayed is typically 100-fold, i.e., so wide that the ratio of the highest to the lowest measured value is 100. In the 25 competitive assay the lowest concentration gives the strongest signal and the highest concentration gives the weakest signal. In the competitive assay based on the use of microparticles, in which the measurement is taken from individual particles, one must be able to measure the 30 signal strengths from both the lowest and the highest concentration. If we assume a measuring range of 1 - 0.01 pmol/l for the sample to be assayed, then a concentration of 0.01 pmol/l corresponds to the strongest signal, and 1 35 pmol/l to the the weakest signal, respectively. The concentration of the analyte of the example is 1 - 0.01

attomol/ μ l which means that when using a sample volume of 1 μ l (1 - 0.01 attomol of analyte to be assayed) one must be able to measure, from a single microparticle, both the highest (0.01 attomol of sample) and the lowest (1 attomol 5 of sample) signal strength. This means that when the concentration of the competing analyte is low, the highest possible number of analyte, i.e. bioaffinity reactant molecules will specifically bind to the surface of a single microparticle coated with a specific antibody, i.e. a 10 second bioaffinity reactant. The lowest analyte concentration means that a sample volume of 1 µl contains approximately 6,000 molecules of the analyte to be assayed, while the highest concentration corresponds to approximately 600,000 molecules in a microlitre, 15 respectively. It is typical of the competitive assay that the signal strength decreases from about 100% to about 5 -25% with increasing analyte concentration. The amount of the microparticles and of the analyte-specific antibody coated onto them will be adjusted to a minimal sample volume in order to allow a replacement (of labelled analyte by the analyte to be assayed) of 75 - 95% at the highest sample concentration. This still allows the remaining signal strength to be reproducibly measured, by the label technology used, from the surface of individual 25 microparticles, and at the same time, the signal strength (due to the specific binding of labelled analyte to the coated microparticle) corresponding to the lowest analyte concentration will not exceed the binding capacity of individual particles. The measuring range is adjusted for 30 different assays by altering the amounts of the microparticles and antibodies used in the assay method in such a manner that measurements can always be taken from individual microparticles.

The sensitivity of the non-competitive immunoassay is, at 35 best, 0.01 - 0.1 fmol/1, and the measuring range is typically more than 100-fold, i.e. the ratio of the highest to the lowest measurement value is greater than 100. The

signal strength measured in the assay is directly related to the concentration of the analyte to be assayed. For a required sensitivity of 0.01 pmol/l for the analyte to be assayed, and assuming a measuring range of 1,000-fold, a sample volume of 1 μ l will contain 0.01 - 10 attomol of the 5 analyte to be assayed. If the sensitivity of the label technology is about 6,000 molecules per one microparticle, and with a signal strength directly related to the concentration of the analyte, it is possible for one microparticle to bind the analyte contained in 1 μ l, and the amount of the analyte can be measured. The amount of microparticles used in the assay can be increased without changing the sample volume, if the sensitivity of the label techonology is better or if a greater number of labelled 15 molecules are linked to the labelled analyte-specific antibody (bioaffinity reactant). Accordingly, if the sensitivity of the label technology is lower, the sensitivity of the assay will decrease or the amount of analyte required on the surface of a single microparticle 20 must come from a larger sample volume, which however limits the measurement range. The amount of the microparticles used in the assay, coated with the analyte-specific antibody or bioaffinity reactant as well as the amount of the analyte per microparticle will be adjusted so that a minimal concentration and volume of the analyte will 25 contain enough analyte for binding to the surface of individual microparticles, and enough for measurement from individual microparticles by means of a labelled specific antibody (labelled bioaffinity reactant) and with the sensitive label technology used. The measurement range required and the sensitivity of the measurement will be controlled by adjusting the amount of microparticles used in the assay and by adjusting sample volume, if needed.

Other specific bioaffinity assays such as nucleic acid
hybridization assays, ligand-lectin assays and ligandreceptor assays are comparable to the immunoassay methods
described above.

Individual microparticles can be assayed with e.g. a flow cytometer, time-resolved microscope or time-resolved microfluorometer or with other measuring instruments based on the use of time-resolved technology (US 5,028,545; Seveus L et al., Cytometry 13: 329 - 338 (1992).

Microparticles may also eventually be used in multiparameter assays, in which several analytes are simultaneously assayed in the same sample volume. In the multiparameter assay a mixture of microparticles is used, in which the particles assaying for different analytes are 10 coated with analyte-specific bioaffinity reactants. When the measurement is taken the analyte-specific microparticle categories are identified on the basis of e.g. size, fluorescence, time-resolved fluorescence, chemiluminescence 15 or bioluminescence. The multiparameter assays using microparticles, based on a bioaffinity reaction are performed according to the present method. In the case of several analytes being assayed simultaneously the amount of the analyte-specific microparticles used in the assay is 20 adjusted according to analyte following the above principles.

The present invention will also be illustrated by the following non-restrictive examples.

Example 1

Quantitation of label (fluorescent Eu chelate) per microparticle and immunoassay measurement from individual microparticles using as a model the non-competitive hCG assay and measurement based on time-resolved fluorescence.

The hCG (hCG = human chorionic gonadotrophin) assay has

been performed as a non-competitive immunoassay with a

specific monoclonal antibody against the ß subunit being
biotinylated and bound to 20 µm microparticles coated with

streptavidin. The labelled bioaffinity reactant has been a monoclonal antibody labelled with a fluorescent Eu chelate, specifically recognizing the α subunit of hCG. The immunoassay has been performed in one step, during which 5 the antibody-coated microparticles, the hCG calibration standard (2 - 10,000 U/l, where U/l = unit/l) and the labelled antibody are all present simultaneously. After the immunoassay the number of microparticles has been checked by counting, and the Eu concentration has been determined from the known microparticle amount by using the DELFIA assay solution, which then allows the calculation of the amount of Eu molecules per microparticle. In addition individual microparticles have been measured by timeresolved microfluorometry which allows the measurement of the concentration per microparticle of the hCG-specific antibody labelled with fluorescent Eu chelate. The hCG assay presented as an example has not been completely optimized.

Results: Table 1 shows the results of the hCG assay when using 20 µm microparticles. In these assay conditions the lowest hCG concentration resulted in about 5,000 Eu molecules per microparticle, the variation within the experiment still being wide. In addition the measuring range is at least 1,000-fold. Figure 1 shows a calibration 25 curve for hCG construed by measuring individual microparticles by time-resolved microfluorometry.

Example 2

10

15

30

The effect of the amount of microparticles coated with antibody (bioaffinity reactant) on the sensitivity of the assay using as a model the non-competitive hCG immunoassay and the measurement of individual microparticles with a microfluorometer, based on time-resolved fluorescence.

The immunoassay of hCG was performed according to the preceding example. A total volume of 20 µl, three

concentrations of calibration standard (0, 250, and 2,500 U/l) and three different amounts of microparticles were used in the assay. After the immunoreaction individual microparticles were measured by time-resolved

5 microfluorometry.

Results: Table 2 and Figure 2 show the effect of the amount of microparticles on the signal strength (photons/s/particle) measured from individual microparticles; with a smaller amount of microparticles the hCG (analyte) in the sample will be bound in a higher concentration onto the surface of individual microparticles; the sensitivity of the assay and the measurement range may be controlled, if needed, by the amount of the microparticles and the sample volume, so as to allow measurement from individual microparticles. The reproducibility of the assay can be improved by measuring a greater number of individual microparticles.

Example 3

The effect of the amount of microparticles on nucleic acid 20 hybridization reaction using two different concentrations of target nucleic acid.

The microparticles, of a diameter of 20 µm, were coated with streptavidin and used in a hybridization assay where the target was biotin-labelled synthetic oligonucleotide

25 and the probe a synthetic oligonucleotide labelled with a fluorescent Eu chelate. The experiment was performed using two different amounts of target oligonucleotide (109 and 1010 molecules). The total assay volume was 20 µl and 2.0 ng of probe labelled with the fluorescent Eu chelate was used in each assay. The amount of microparticles used per experiment varied from 10 - 10,000 for each target oligonucleotide concentration. After the hybridization reaction the Eu concentration was measured from the surface of the microparticles by time-resolved microfluorometry.

Results: Table 3 and Figure 3 show the effect of the amount of microparticles on the signal strength measured from individual microparticles; with a smaller amount of microparticles the amount of the target oligonucleotide in the sample will bind in higher concentration onto the surface of individual microparticles; again the sensitivity of the assay and the measurement range may be controlled, if needed, by the amount of microparticles used and by the sample volume so as to allow measurement from individual microparticles.

A specialist in the field will appreciate that the different applications of the said invention may vary within the scope of the claims. It will be appreciated that the methods of the present invention can be incorporated in the form of a variety of embodiments, only a few of which are disclosed herein. It will be apparent to the artisan that other embodiments exist and do not depart from the spirit of the invention. Thus, the described embodiments are illustrative and should not be construed as restrictive.

TABLE 1

Calculated Eu amounts in hCG-standards using 20 µm particles. Great assay amount.

CV		72.09	20.21	17.21	21.13	45.32
average	5130	13881	28696	618677	4428302	6989043
Eu molecules/ particle	5130	6805	46732 58897 70459	740727 570299 545006	5504263 3806011 3974632	9996802 3683500 7286826
Eu mol/part.	8.52x10 ⁻²¹	1. j3x10 ⁻²⁰ 3. 48x10 ⁻²⁰	7.76×10 ⁻²⁰ 9.78×10 ⁻²⁰ 1.17×10 ⁻¹⁹	$\begin{array}{c} 1.23 \times 10^{-18} \\ 9.47 \times 10^{-19} \\ 9.05 \times 10^{-19} \end{array}$	9.14×10 ⁻¹⁸ 6.32×10 ⁻¹⁸ 6.60×10 ⁻¹⁸	1.66×10 ⁻¹⁷ 1.06×10 ⁻¹⁷ 1.21×10 ⁻¹⁷
$\frac{\mathrm{Eu}}{\mathrm{fmol/cm}^2}$	0.678	0.899	6.176 7.783 6.933	97.99 75.33 72.01	726.92 502.7 525.55	1323.55 845.67 960.5
<u>Eu</u> fmol	0.082	0.09	0.566 0.603 0.714	9.98 9.11 7.96	54.26 49.4 48.66	101.29 78.3 78.95
particles	9624 10451 7444	7970 6917 6090	7293 6165 8195	7293 9624 8797	5940 7820 7368	6090 7368 6541
signal strength photons/s	118 <0 <0	130 <0 306	817 869 1030	12955 13142 11474	78247 71234 70166	146072 112916 113853
<u>hcg</u> U/1	2	10	100	1000	2000	10000

14

CV = coefficient of variation

TABLE 2

Effect of the amount of microparticles on the signal strength

<u>hCG</u> U/l	<u>particles</u>	<pre>signal strength photons/s/part.</pre>	& S
0	100	252	6.5
250	100	490	26.15
2500	100	1671	23.1
0	1000	277	10.39
250	1000	345	15.76
2500	1000	418	19.98
0	10000	278	7.05
250	10000	366	23.34
2500	10000	401	38.5

Total assay volume 20 μl , of which standard = 5 μl . Size of microparticles 20 μm . Microfluorometry, laser excitation, attenuation 1:100.

TABLE 3

amount of particles	<pre>amount of analyte molecules</pre>	<pre>signal strength photons/s/part.</pre>	<u>€V</u>
10000	103	497	34
1000		1005	48
100		1885	22
10		3852	24
no analyte/100		1358	40
10000	10 ¹⁰	1622	31
1000		5613	25
100		13236	33
10		15594	45
no analyte/100		1887	43