UNIVERSIDAD AUTÓNOMA "TOMAS FRÍAS" CARRERA DE INGENIERÍA DE SISTEMAS Materia: Arquitectura de computadoras (SIS-522) Univ. Jonatan Porco Jaita N° Práctica Estudiante: Ing. Gustavo A. Puita Choque Docente: Auxiliar: Univ. Aldrin Roger Perez Miranda 06/11/2024 Fecha publicación 20/11/2024 Fecha de entrega 1 Sede Potosí Grupo:

1) ¿Qué es un UPS y en qué situaciones se utiliza? (10 pts)

Un UPS (Uninterruptible Power Supply) es un dispositivo que proporciona energía eléctrica de respaldo durante cortes de energía o fluctuaciones de voltaje. Funciona como un sistema intermedio entre la fuente de energía principal y los dispositivos conectados, permitiendo un suministro continuo de energía por un periodo limitado.

Situaciones de uso:

- Protección de servidores y equipos críticos: Se utiliza en centros de datos para evitar pérdida de información durante cortes de energía.
- 2. Ambientes domésticos y oficinas: Para mantener computadoras y routers activos en caso de apagones.
- 3. Dispositivos médicos: Garantiza el funcionamiento continuo de equipos como monitores y respiradores en hospitales.
- 4. Industria: Protege maguinaria sensible contra daños por fluctuaciones de voltaje.
- 5. Ambientes con necesidades de alta disponibilidad: Como bancos, donde las interrupciones pueden generar pérdidas significativas.

2) De las siguientes fuentes indique que tipo de modularidad tiene cada una de ellas *(20 pts)*

- 1) RM850 (Corsair): Fuente modular
- Todos los cables son desmontables, permitiendo conectar únicamente los necesarios, lo que mejora la gestión de cables y el flujo de aire.
 - 2) Fuente de la imagen 2: Fuente no modular
- Todos los cables están fijos, lo que significa que no se pueden desconectar. Aunque más económicas, suelen ser menos prácticas para la gestión de cables.
 - 3) CX750 (Corsair): Fuente semi-modular
- Algunos cables están fijos (como los de alimentación principal) y otros son desmontables, ofreciendo un equilibrio entre costo y flexibilidad.
 - 4) ROG Strix 1000W (ASUS): Fuente modular
- Similar a la RM850, permite desmontar todos los cables, optimizando la organización y el flujo de aire dentro del gabinete.

3) Explique las etapas del proceso de transformación de la energía eléctrica que va desde energía alterna a continua, que son necesarios para poder alimentar los componentes de forma correcta de la PC (10 pts)

Las etapas del proceso de transformación de la energía eléctrica desde corriente alterna (AC) a corriente continua (DC), necesarias para alimentar correctamente los componentes de una PC, son las siguientes:

1. Rectificación

- La energía alterna proveniente de la red eléctrica pasa por un **rectificador** (normalmente un puente de diodos), que convierte la corriente alterna (AC) en corriente continua pulsante (DC).
- Resultado: Se elimina la inversión periódica de la dirección de la corriente.

2. Filtrado

- Después de la rectificación, la corriente aún presenta ondulaciones (pulsos). Un filtro capacitivo se utiliza para suavizar estas variaciones y producir una corriente más estable.
- Resultado: La corriente pulsante se transforma en una corriente continua más

uniforme.

3. Regulación de voltaje

- La corriente continua pasa a través de un regulador de voltaje que asegura que el voltaje de salida sea constante y adecuado para los componentes de la PC (por ejemplo, 3.3V, 5V, 12V).
- Esto es fundamental para evitar fluctuaciones que podrían dañar los componentes sensibles.

4. Distribución

- Los voltajes regulados se distribuyen a través de diferentes líneas hacia los componentes específicos:
- o 12V: Para CPU, GPU, discos duros y ventiladores.
- o **5V:** Para periféricos, discos duros y dispositivos USB.
- o **3.3V:** Para componentes de baja potencia como circuitos integrados

El proceso transforma la energía alterna inestable y no apta para dispositivos electrónicos en una corriente continua regulada y estable, necesaria para el correcto funcionamiento de la PC.

4) Con los siguientes datos:

Tipo de Placa Base: Para servidores

Procesadores: 2: AMD Ryzen 7 7700X 4.50 GHz

Memorias RAM:

1: DDR4, Módulo DDR5 16 GB

o 1: DDR4, Módulo DDR5 16 GB

1: DDR4, Módulo DDR5 16 GB

o 1: DDR4, Módulo DDR5 16 GB

Tarjetas Gráficas:

o 1: NVIDIA, Geforce RTX 4090 24Gb

o 1: ADM Radeon, RX 7800 XT 16Gb

>	Almacenamiento:
0	4: SSD PCIe 4 de estas
>	Unidades Ópticas:
0	1: Disquetera
0	3: Lector CD-ROM
>	Tarjetas PCI Express:
0	2: Tarjeta Ethernet de 2 puertos
>	Tarjetas PCI:
0	1: Tarjetas WI-FI
>	Ratones:
0	1: Ratón Gaming cualquiera
>	Teclados:
0	1: Teclado Gaming cualquiera
>	Kit de Refrigeración Líquida:
0	1: Kit de 250 mm con iluminación RGB
>	Bomba de Refrigeración Líquida:
0	1: Bomba con Depósito
>	Ventiladores:
0	4: 140 mm
>	Otros Dispositivos:
0	2: Tira de 30 LEDs
	Determinar cuánto consumiría una fuente de alimentación que tendría que suministrar anergia a todos estos componentes. Para esto puede usar calculadores de energía como:
_	https://latam.msi.com/power-supply-calculator

La calculadora no es completa

- https://pc-builds.com/es/power-supply-calculator/

#	tipo de componente	Nombre	Potencia	Recuento de elementos	Potencia total
1.	Procesador	AMD Ryzen 7 7700X	105 <u>W</u>	x1	105 <u>W</u>
2.	Carta gráfica	NVIDIA GeForce RTX 4090	450 <u>W</u>	x1	450 <u>W</u>
3.	tarjeta madre	Placa base para servidores	95 <u>W</u>	x1	95 <u>.W</u> .
4.	Memoria de acceso aleatorio	DDR4	6 <u>W</u>	x 4	24 <u>W</u>
5.	Almacenamiento de datos	SSD PCIe	20 <u>W</u>	x 4	80 <u>W</u>
6.	Ventiladores de refrigeración	140mm	4 <u>W</u>	x 4	16 <u>.W</u>
7.	Unidades ópticas	Unidad de disquete	10 <u>W</u>	x1	10 <u>W</u>
8.	Tarjetas PCI Express	Tarjeta Ethernet	5 <u>W</u>	x1	5 <u>W</u>
9.	Ratón	Ratón para juegos	3 <u>W</u>	x1	3 <u>W</u>
10.	Teclado	Teclado para juegos	4 <u>W</u>	x1	4 <u>W</u>
11.	Otro	tira de luz led	5 <u>W</u>	x 2	10 <u>.W</u> .
				Vataje de configuración total	802 <u>W</u>

- https://www.geeknetic.es/calculadora-fuente-alimentacion/

Resultado:

Mostrar en capturas de pantalla cuantos watts le salió. (35 pts)

5) Mencione 4 conectores que se usan de las fuentes de alimentación en la actualidad es decir en 2024 (NO MENCIONAR CONECTORES OBSOLETOS) (25 pts)

Conector ATX de 24 pines:

• Uso: Es el conector principal que suministra energía a la placa madre.

 Características: Proporciona voltajes de +3.3V, +5V y +12V necesarios para el funcionamiento de los componentes integrados. Este conector reemplazó al antiguo de 20 pines para soportar las demandas energéticas de los sistemas modernos.

Conector EPS de 8 pines (CPU):

- · Uso: Suministra energía al procesador (CPU).
- Características: Asegura una entrega de energía estable para CPUs de alto rendimiento. Algunas placas madre incluyen conectores adicionales de 4 u 8 pines para overclocking o CPUs con mayor consumo energético.

Conector PCI Express de 6+2 pines (PCIe):

- Uso: Alimenta tarjetas gráficas (GPU) y otros dispositivos PCIe que requieren más energía de la que proporciona la ranura PCIe.
- Características: El diseño modular 6+2 permite compatibilidad con conectores de 6 pines y de 8 pines, adaptándose a las necesidades de diferentes tarjetas gráficas modernas.

Conector de alimentación SATA:

- Uso: Proporciona energía a dispositivos de almacenamiento como discos duros, SSDs y unidades ópticas que utilizan la interfaz SATA.
- Características: Reemplazó al conector Molex de 4 pines en dispositivos de almacenamiento, ofreciendo un diseño más compacto y conexiones más seguras.