ASSIGNMENT-2

Name: Meghana Reddy Ellukanti

Mail: meghana.20bcr7043@vitap.ac.in

Al Assignment 2

Build an ANN model for Drug classification

This project aims to analyze the relationship between various medical parameters and drug effectiveness. The dataset consists of patient information. including age, sex, blood pressure levels (BP), cholesterol levels, sodium-to-potassium ratio (Na_to_K), drug type, and corresponding labels. The goal is to develop a model that can accurately predict the class or category of a given drug based on its features.

Dataset Link: https://www.kaggle.com/datasets/prathamtripathi/drug-classification

Task 1: Read the dataset and do data pre-processing Task 2: Build the ANN model with (input layer, min 3 hidden layers & output layer)

Task 3: Test the model with random data

Task-1:

```
import pandas as pd
from sklearn.model selection import train test split
from sklearn.preprocessing import LabelEncoder, StandardScaler
dataset = pd.read csv('drug200.csv')
dataset = dataset.dropna()
X = dataset.drop(['Drug'], axis=1)
y = dataset['Drug']
label encoder = LabelEncoder()
X['Sex'] = label encoder.fit transform(X['Sex'])
X['BP'] = label encoder.fit transform(X['BP'])
X['Cholesterol'] = label encoder.fit transform(X['Cholesterol'])
scaler = StandardScaler()
X scaled = scaler.fit transform(X)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y,
test size=0.2, random state=42)
```

Task-2:

```
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
model = Sequential()
model.add(Dense(units=64, activation='relu',
input dim=X train.shape[1]))
```

```
model.add(Dense(units=64, activation='relu'))
model.add(Dense(units=32, activation='relu'))
model.add(Dense(units=16, activation='relu'))

model.add(Dense(units=len(label_encoder.classes_),
activation='softmax'))

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
```

Task-3:

```
import numpy as np

random_data = np.array([[40, 0, 2, 0, 2.5]])

random_data_scaled = scaler.transform(random_data)

predictions = model.predict(random_data_scaled)

predicted_class =
label_encoder.inverse_transform([np.argmax(predictions)])

print('Predicted Drug Class:', predicted_class)
```

Output:

```
import numpy as np

random_data = np.array([[40, 0, 2, 0, 2.5]])

random_data_scaled = scaler.transform(random_data)

predictions = model.predict(random_data_scaled)

predicted_class = label_encoder.inverse_transform([np.argmax(predictions)])

print('Predicted Drug Class:', predicted_class)

[. /usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but StandardScaler was fitted with feature names warnings.warn(
1/1 [===========] - 0s 491ms/step

Predicted Drug Class: ['HIGH']
```