← Key concepts on Deep Neural Networks Quiz, 10 questions

10/10 points (100.00%)

	✓ Congratulations! You passed!	Next Item			
~	1 / 1 point				
1. What is	s the "cache" used for in our implementation of forward propagation and backward propa	ngation?			
O	We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.				
	ect ect, the "cache" records values from the forward propagation units and sends it to the bacuse it is needed to compute the chain rule derivatives.	ckward propagation units			
	We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.				
	It is used to keep track of the hyperparameters that we are searching over, to speed up computation.				
	It is used to cache the intermediate values of the cost function during training.				
2. Among	1 / 1 point the following, which ones are "hyperparameters"? (Check all that apply.)				
	bias vectors $m{b}^{[l]}$				
Un-s	elected is correct				
	number of iterations				
Corre	ect				
	weight matrices $W^{[l]}$				
Un-s	elected is correct				
	size of the hidden layers $n^{[l]}$				

Correct

1/1 point

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
←
```

```
1 for(i in range(1, len(layer_dims)/2)):

Key concepts on Decip Neural Networks [i], layers[i-1])) *

Quiz, 30 questionmeter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01

10/10 points (100.00%)
```

Correct

1/1 point

6.

Consider the following neural network.

How many layers does this network have?

The number of layers ${\cal L}$ is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

- The number of layers L is 3. The number of hidden layers is 3.
- The number of layers L is 4. The number of hidden layers is 4.

/2019	Neural Networks and D
←	The number of layers L is 5. The number of hidden layers is 4. Key concepts on Deep Neural Networks $_{\rm Quiz,10questions}$
_	1/1 point

10/10 points (100.00%)

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

False

1/1 point

8.

There are certain functions with the following properties:

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

True

Correct

False

1/1 point

9.

Consider the following 2 hidden layer neural network:

Key concepts on Deep Neural Networks 10/10 points (100.00%) Quiz, 10 questions $a_1^{[3]}$ $a_2^{[2]}$ $a_3^{[1]}$ $a_3^{[2]}$ $a_4^{[1]}$

Which of the following statements are True? (Check all that apply).

$igwedge W^{[1]}$ will have shape (4, 4)
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
$b^{[1]}$ will have shape (4, 1)
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$W^{[1]}$ will have shape (3, 4)
Un-selected is correct
$b^{[1]}$ will have shape (3, 1)
Un-selected is correct
$W^{[2]}$ will have shape (3, 4)
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
$b^{[2]}$ will have shape (1, 1)

Un-selected is correct

← □	Key concepts on Deep Neural Networks QUE, 14 Own Ulb Markers Shape (3, 1)	10/10 points (100.00%)
Un-s	selected is correct	
	$b^{[2]}$ will have shape (3, 1)	
Corr Yes.	More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.	
	$W^{\left[3 ight]}$ will have shape (3, 1)	
Un-s	selected is correct	
	$b^{[3]}$ will have shape (1, 1)	
Corr Yes	rect . More generally, the shape of $b^{[l]}$ is $(n^{[l]},1).$	
163.	Note generally, the shape of $u^{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{r_{$	
	$W^{[3]}$ will have shape (1, 3)	
Corr Yes.	Rect . More generally, the shape of $W^{[l]}$ is $(n^{[l]},n^{[l-1]}).$	
	$b^{[3]}$ will have shape (3, 1)	
Un-s	selected is correct	
~	1/1 point	
	eas the previous question used a specific network, in the general case what is the dimension of W $^{\prime}$ ated with layer l ?	^{[l]}, the weight matrix
	$W^{[l]}$ has shape $(n^{[l+1]}, n^{[l]})$	
0	$W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$	
Corr		
True	e	
	$W^{[l]}$ has shape $(n^{[l-1]}, n^{[l]})$	
	$W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$	

10/10 points (100.00%)