Econ 897 (math camp). Part I

Problem set №3. Solutions

July 12

Artemii Korolkov

Problem 1. Prove that following statements are equivalent

- (i) x_0 is an isolated point of (X, d);
- (ii) there exist ε -neighborhood of x_0 that contains finite number of elements of X.

Solution. If x_0 is not a limited point, there exists a punctured ε -neighborhood that doesn't contain any elements of X. Hence corresponding ε -neighborhood will contain finite number of elements – one element (x_0) .

In other direction: there exist ε -neighborhood of x_0 that contains finite number $\{x_i\}_{i=1}^n$ of elements of X, let's take $\bar{\varepsilon} = \min_{i=1}^b d(x_0, x_n)$. Punctured $\bar{\varepsilon}$ -neighborhood will be empty, that means x_0 is an isolated point.

Problem 2. Show that any contraction is continuous.

Solution. It's not hard to see, that for any x_0 image of $U_{\delta}(x_0)$ will entirely lie in $U_{\lambda\delta}(f(x_0))$. So in definition of continuity we can take any $\delta \leq \frac{\varepsilon}{\lambda}$.

Problem 3 (*). Let f be a continuous function from \mathbb{R} to \mathbb{R} . Prove that if there is no x such that f(x) = x, then there is no x such that f(f(x)) = x.

Hint. Try to look at the intermediate value theorem as a sufficient condition for function taking certain values.

Solution. If there is no x such that f(x) = x, then function g(x) = f(x) - x is never equal to 0. That mean there is no interval [a, b] such that g(x) is negative at a and positive at b or vice versa – otherwise by intermediate value theorem g will be equal to 0 somewhere on this interval. That means that for every pair of $a, b \in \mathbb{R}$ g(a) and g(b) have the same sign. And then g is either strictly positive on \mathbb{R} , either strictly negative. WLOG let's assume it is positive. Then f(x) > x for all x, and then f(f(x)) > f(x) > x for all x.

Problem 4. Is it true that if $\lim_{x\to a} f(x) = b$ and $\lim_{x\to b} g(x) = c$, then $\lim_{x\to a} g(f(x)) = c$?

Solution. No. Consider the following counterexample. $g(x) = x^2$ if $x \neq 2$ and g(x) = 5 if x = 2. Then $\lim_{x\to 2} g(x) = 4$. Then define f(x) = 2 constantly. Then in any point $\lim_{x\to a} g(f(x)) = 5$.

Problem 5. Not-constant continuous function maps $I \subset \mathbb{R}$ into \mathbb{R} . What can f(I) be if I is:

- (i) open interval (a, b);
- (ii) closed interval [a, b];
- (iii) \mathbb{R} ?

Solution. (i) open interval, closed interval or real line, open or closed ray;

- (ii) closed interval;
- (iii) open interval, closed interval or real line, open or closed ray.

Problem 6. Prove that any infinite bounded subset of \mathbb{R} has at least one limit point.

Solution. Let's denote this set as X. It entirely belongs to some interval $[a_0, b_0]$. If we will split it in two halves, at least one of them would contain infinitely many elements of X. Let's call it $[a_1, b_1]$. Repeating this procedure, we will obtain two sequences (a_n) and (b_n) . They converge (they are monotone and bounded) and they converge to one point. This point will be the limit point of X. Indeed any ε -neighborhood will contain $[a_n, b_n]$ for some n and hence infinitely many points of X.

Problem 7. Prove that the following two statements about the set $X \subset \mathbb{R}$ are equivalent:

- (i) X is open;
- (ii) $\mathbb{R} \setminus X$ contains all it's limit points.

Here limit point doesn't necessarily have to lie within set $\mathbb{R} \setminus X$.

Solution. Assume X is open and $\mathbb{R} \setminus X$ doesn't contain all limit points. That mean there exists sequence $(x_n) \in \mathbb{R} \setminus X$ that converges to point in X. Then every open ball around x contains infinitely many elements of this sequence. Hence X is not open. Contradiction.

Now assume $\mathbb{R} \setminus X$ contains all it's limit points and X is not open. That means there exists a point in X (x_0) such that in every neighborhood of x_0 there at least one point from $\mathbb{R} \setminus X$. Decreasing ε , we will construct sequence in $\mathbb{R} \setminus X$ that converges to x_0 . That contradicts the fact that $\mathbb{R} \setminus X$ contains all it's limit points.