From Preparation to Measurement

Through the Eyes of Entropic Uncertainty Relations

Alastair A. Abbott

joint work with Cyril Branciard

Institut Néel (CNRS & Université Grenoble Alpes), Grenoble, France

ICQF, Patna, 17–21 October 2016 arXiv:1607 00261

Outline

Motivation

Preparation Uncertainty Relations

Quantifying uncertainty Entropic uncertainty regions

Measurement Uncertainty Relations

Quantifying noise and disturbance

Measurement uncertainty regions

Relations between preparation, noise-noise and noise-disturbance relations

Qubit Measurement Uncertainty Relations

Qubit noise-noise relations

Qubit noise-disturbance relations

A. A. Abbott Outline

Heisenberg's Uncertainty Principle

Heisenberg's Uncertainty Principle (informally)

The measurement of one quantum observable introduces an irreversible disturbance into any complementary observable property of the system.

- HUP is a statement about the tradeoff between the accuracy of a measurement and the disturbance the measurement induces on the state with respect to a complementary observable.
- Historical work mostly focused on the tradeoff between how accurately a state can be prepared with respect to two complementary observables

Types of Uncertainty Relations

Preparation Uncertainty Relations

- Example: $\Delta \hat{x} \Delta \hat{p}_x \geq \frac{\hbar}{2}$
- Not about measurement *per se*

Measurement Uncertainty Relations:

- HUP: $N(\mathcal{M}, \hat{x})D(\mathcal{M}, \hat{p}_x) \geq \frac{\hbar}{2}$
- How to formally quantify the noise and disturbance?
- We can further distinguish two types of MUR:
 - Joint-measurement (noise-noise) relations, expressing the tradeoff between accuracy of a measurement for two complementary observables
 - Noise-disturbance relations, expressing the HUP-type tradeoff

How are all these relations related?

■ They all express different, but related, consequences of non-commutativity of complementary observables

Types of Uncertainty Relations

Preparation Uncertainty Relations

- Example: $\Delta \hat{x} \Delta \hat{p}_x \geq \frac{\hbar}{2}$
- Not about measurement *per se*

Measurement Uncertainty Relations:

- HUP: $N(\mathcal{M}, \hat{x})D(\mathcal{M}, \hat{p}_x) \geq \frac{\hbar}{2}$
- How to formally quantify the noise and disturbance?
- We can further distinguish two types of MUR:
 - Joint-measurement (noise-noise) relations, expressing the tradeoff between accuracy of a measurement for two complementary observables
 - Noise-disturbance relations, expressing the HUP-type tradeoff

How are all these relations related?

■ They all express different, but related, consequences of non-commutativity of complementary observables

Types of Uncertainty Relations

Preparation Uncertainty Relations

- Example: $\Delta \hat{x} \Delta \hat{p}_x \geq \frac{\hbar}{2}$
- Not about measurement *per se*

Measurement Uncertainty Relations:

- HUP: $N(\mathcal{M}, \hat{x})D(\mathcal{M}, \hat{p}_x) \geq \frac{\hbar}{2}$
- How to formally quantify the noise and disturbance?
- We can further distinguish two types of MUR:
 - Joint-measurement (noise-noise) relations, expressing the tradeoff between accuracy of a measurement for two complementary observables
 - Noise-disturbance relations, expressing the HUP-type tradeoff

How are all these relations related?

■ They all express different, but related, consequences of non-commutativity of complementary observables

Preparation Uncertainty Relations

Tradeoff between how uncertain the physical properties associated with two observable A and B are for any state ρ

■ We will restrict ourselves to finite dimensional, non-degenerate observables: $A = \sum_a a|a\rangle\langle a|$

How to quantify this uncertainty?

- \blacksquare Standard Deviations: $\Delta_{\rho}A=\sqrt{\langle A\rangle_{\rho}^2-\langle A^2\rangle_{\rho}}$
 - Robertson's relation: $\Delta A \Delta B \geq \frac{1}{2} |\langle [A, B] \rangle|$
 - Bound is state dependent
- Entropies: $H(A|\rho) = -\sum_{a} \text{Tr} \left[|a\rangle\langle a| \rho \right] \log \text{Tr} \left[|a\rangle\langle a| \rho \right]$
 - Invariant under relabelling/scaling of outcomes
 - Information theoretic flavour
 - Can use other entropies (e.g., Renyi entropies)
 - Helpful for finding state independent relations

Preparation Uncertainty Relations

Tradeoff between how uncertain the physical properties associated with two observable A and B are for any state ρ

■ We will restrict ourselves to finite dimensional, non-degenerate observables: $A = \sum_a a|a\rangle\langle a|$

How to quantify this uncertainty?

- Standard Deviations: $\Delta_{\rho}A = \sqrt{\langle A \rangle_{\rho}^2 \langle A^2 \rangle_{\rho}}$
 - Robertson's relation: $\Delta A \Delta B \geq \frac{1}{2} |\langle [A, B] \rangle|$
 - Bound is state dependent
- Entropies: $H(A|\rho) = -\sum_{a} \text{Tr} [|a\rangle\langle a|\rho] \log \text{Tr} [|a\rangle\langle a|\rho]$
 - Invariant under relabelling/scaling of outcomes
 - Information theoretic flavour
 - Can use other entropies (e.g., Renyi entropies)
 - Helpful for finding state independent relations

Preparation Uncertainty Relations

Tradeoff between how uncertain the physical properties associated with two observable A and B are for any state ρ

■ We will restrict ourselves to finite dimensional, non-degenerate observables: $A = \sum_a a|a\rangle\langle a|$

How to quantify this uncertainty?

- \blacksquare Standard Deviations: $\Delta_{\rho}A=\sqrt{\langle A\rangle_{\rho}^2-\langle A^2\rangle_{\rho}}$
 - Robertson's relation: $\Delta A \Delta B \ge \frac{1}{2} |\langle [A, B] \rangle|$
 - Bound is state dependent
- Entropies: $H(A|\rho) = -\sum_{a} \text{Tr} \left[|a\rangle\langle a| \rho \right] \log \text{Tr} \left[|a\rangle\langle a| \rho \right]$
 - Invariant under relabelling/scaling of outcomes
 - Information theoretic flavour
 - Can use other entropies (e.g., Renyi entropies)
 - Helpful for finding state independent relations

Entropic Uncertainty Relations

Maassen & Uffink's relation:¹

$$H(A|\rho) + H(B|\rho) \ge -\log \max_{a,b} |\langle a|b\rangle|^2$$

- State independent
- Not generally tight (and often poor)
- When can the bound be saturated, and by what states?
 - More generally, what values of $\big(H(A|\rho), H(B|\rho)\big)$ can be obtained?

Entropic Uncertainty Region

$$E(A,B) = \left\{ \left(H(A|\rho), H(B|\rho) \right) \mid \rho \text{ is any quantum state} \right\}$$

Goal: Characterise E(A,B) to give tight uncertainty relations

¹H. Maassen and J. Uffink, PRL **60**, 1103 (1998).

Entropic Uncertainty Relations

Maassen & Uffink's relation:¹

$$H(A|\rho) + H(B|\rho) \ge -\log \max_{a,b} |\langle a|b\rangle|^2$$

- State independent
- Not generally tight (and often poor)
- When can the bound be saturated, and by what states?
 - More generally, what values of $\big(H(A|\rho), H(B|\rho)\big)$ can be obtained?

Entropic Uncertainty Region

$$E(A,B) = \left\{ \left(H(A|\rho), H(B|\rho) \right) \mid \rho \text{ is any quantum state} \right\}$$

Goal: Characterise E(A,B) to give tight uncertainty relations

¹H. Maassen and J. Uffink, PRL **60**, 1103 (1998).

Consider Pauli measurements $A = a \cdot \sigma$, $B = b \cdot \sigma$:

 $\mathbf{a} \cdot \mathbf{b} = 1/2$

Let
$$h(x) = -\frac{1+x}{2}\log\left(\frac{1+x}{2}\right) - \frac{1-x}{2}\log\left(\frac{1-x}{2}\right)$$
 and $g(x) = h^{-1}(x)$.

$$g(H(A|\rho))^{2} + g(H(B|\rho))^{2} - 2|\boldsymbol{a} \cdot \boldsymbol{b}| g(H(A|\rho)) g(H(B|\rho)) \le 1 - (\boldsymbol{a} \cdot \boldsymbol{b})^{2}$$

² A. A., P.-L. Alzieu, M. Hall, & C. Branciard. Mathematics 4, p. 8 (2016).

Consider Pauli measurements $A = a \cdot \sigma$, $B = b \cdot \sigma$:

 $\mathbf{a} \cdot \mathbf{b} = 1/2$

Let
$$h(x) = -\frac{1+x}{2}\log\left(\frac{1+x}{2}\right) - \frac{1-x}{2}\log\left(\frac{1-x}{2}\right)$$
 and $g(x) = h^{-1}(x)$.

$$g(H(A|\rho))^2 + g(H(B|\rho))^2 - 2|\boldsymbol{a} \cdot \boldsymbol{b}| g(H(A|\rho)) g(H(B|\rho)) \le 1 - (\boldsymbol{a} \cdot \boldsymbol{b})^2$$

² A. A., P.-L. Alzieu, M. Hall, & C. Branciard. Mathematics 4, p. 8 (2016).

Consider Pauli measurements $A = a \cdot \sigma$, $B = b \cdot \sigma$:

 $\mathbf{a} \cdot \mathbf{b} = 1/2$

Let $h(x) = -\frac{1+x}{2}\log\left(\frac{1+x}{2}\right) - \frac{1-x}{2}\log\left(\frac{1-x}{2}\right)$ and $g(x) = h^{-1}(x)$.

$$g(H(A|\rho))^2 + g(H(B|\rho))^2 - 2|\boldsymbol{a} \cdot \boldsymbol{b}| g(H(A|\rho)) g(H(B|\rho)) \le 1 - (\boldsymbol{a} \cdot \boldsymbol{b})^2$$

² A. A., P.-L. Alzieu, M. Hall, & C. Branciard. Mathematics **4**, p. 8 (2016).

Consider Pauli measurements $A = a \cdot \sigma$, $B = b \cdot \sigma$:

$$\mathbf{a} \cdot \mathbf{b} = 1/2$$

$$0.8$$

$$0.6$$

$$0.6$$

$$0.6$$

$$0.4$$

$$0.2$$

Let $h(x) = -\frac{1+x}{2} \log\left(\frac{1+x}{2}\right) - \frac{1-x}{2} \log\left(\frac{1-x}{2}\right)$ and $g(x) = h^{-1}(x)$.

$$g(H(A|\rho))^2 + g(H(B|\rho))^2 - 2|\boldsymbol{a} \cdot \boldsymbol{b}| g(H(A|\rho)) g(H(B|\rho)) \le 1 - (\boldsymbol{a} \cdot \boldsymbol{b})^2$$

² A. A., P.-L. Alzieu, M. Hall, & C. Branciard. Mathematics 4, p. 8 (2016).

Measurement Uncertainty Relations

- To formalise measurement uncertainty relations, we need to quantify two properties of a measurement device \mathcal{M} :
 - Noise: How well does \mathcal{M} measure a target observable A?
 - Disturbance: How much does \mathcal{M} disturb the state measured?
- Many ways one can do this:
 - Distance between target and observed distributions
 - Noise operators
- What about information theoretic approaches?
 - Quantify noise and disturbance as properties of M only, not for particular states

Measurement Uncertainty Relations

- To formalise measurement uncertainty relations, we need to quantify two properties of a measurement device \mathcal{M} :
 - Noise: How well does \mathcal{M} measure a target observable A?
 - lacksquare Disturbance: How much does $\mathcal M$ disturb the state measured?
- Many ways one can do this:
 - Distance between target and observed distributions
 - Noise operators
- What about information theoretic approaches?
 - Quantify noise and disturbance as properties of M only, not for particular states

P. Busch, P. Lahti and R. Werner. Rev. Mod. Phys. **86**, 1261 (2014).

Measurement Uncertainty Relations

- To formalise measurement uncertainty relations, we need to quantify two properties of a measurement device \mathcal{M} :
 - Noise: How well does \mathcal{M} measure a target observable A?
 - lacksquare Disturbance: How much does $\mathcal M$ disturb the state measured?
- Many ways one can do this:
 - Distance between target and observed distributions
 - Noise operators
- What about information theoretic approaches?
 - Quantify noise and disturbance as properties of M only, not for particular states

P. Busch, P. Lahti and R. Werner. Rev. Mod. Phys. **86**, 1261 (2014).

Quantum Measurements

The most general kind of measurement device can be formalised as a quantum instrument:

Quantum Instruments

A quantum instrument $\mathcal{M}=\{\mathcal{M}_m\}_m$ is a collection of completely positive trace-non-increasing maps \mathcal{M}_m such that $\sum_m \mathcal{M}_m(\rho)$ is trace-preserving for all ρ . The probability of obtaining outcome m on input ρ is $\mathrm{Tr}[\mathcal{M}_m(\rho)]$ and the post-measurement state is $\frac{\mathcal{M}_m(\rho)}{\mathrm{Tr}[\mathcal{M}_m(\rho)]}$.

■ Every instrument $\mathcal{M} = \{\mathcal{M}_m\}_m$ can be associated with a POVM $M = \{M_m\}_m$ specifying only the probabilities of each outcome

Defining Noise³

Let A be a discrete observable and consider the scenario:

Noise – $N(\mathcal{M}, A)$

The noise is calculated from the joint distribution p(a, m):

$$N(\mathcal{M},A) = H(\mathbb{A}|\mathbb{M}) = \sum_{m} p(m)H(\mathbb{A}|\mathbb{M} = m).$$

■ Note that $N(\mathcal{M}, A)$ depends only on the probabilities of each outcome, and not the transformation \mathcal{M}_m

³F. Buscemi, M. J. W. Hall, M. Ozawa & M. W. Wilde. PRL **112**, 050401, 2014.

Defining Disturbance

Let B be a discrete observable and consider the scenario:

Disturbance – $D(\mathcal{M}, B)$

 $D(\mathcal{M},B)$ is the uncertainty in a measurement of B following the measurement of \mathcal{M} on a randomly prepared state $|b\rangle$ and the possible application of a correction $\mathcal{E}\colon D(\mathcal{M},B)=\min_{\mathcal{E}}H(\mathbb{B}|\mathbb{B}'_{\mathcal{M},\mathcal{E}}).$

- Captures the irreversible disturbance to the state
- Note that $\mathbb{B}'_{M,\mathcal{E}}$ only takes d values, unlike \mathbb{M}

Defining Disturbance

Let B be a discrete observable and consider the scenario:

Disturbance – $D(\mathcal{M}, B)$

 $D(\mathcal{M},B)$ is the uncertainty in a measurement of B following the measurement of \mathcal{M} on a randomly prepared state $|b\rangle$ and the possible application of a correction $\mathcal{E}\colon D(\mathcal{M},B)=\min_{\mathcal{E}}H(\mathbb{B}|\mathbb{B}'_{\mathcal{M},\mathcal{E}}).$

- Captures the irreversible disturbance to the state
- Note that $\mathbb{B}'_{\mathcal{M},\mathcal{E}}$ only takes d values, unlike \mathbb{M}

Measurement Uncertainty Regions

The following noise-noise and noise-disturbance relations hold:

$$N(\mathcal{M}, A) + N(\mathcal{M}, B) \ge -\log \max_{a,b} |\langle a|b\rangle|^2,$$

 $N(\mathcal{M}, A) + D(\mathcal{M}, B) \ge -\log \max_{a,b} |\langle a|b\rangle|^2,$

As for preparation relations, would like to characterise:

Noise-Noise Region

$$R_{NN}(A,B) = \{ (N(\mathcal{M},A), N(\mathcal{M},B)) \mid \mathcal{M} \text{ is any instrument} \}$$

Noise-Disturbance Region

$$R_{ND}(A,B) = \{ (N(\mathcal{M},A), D(\mathcal{M},B)) \mid \mathcal{M} \text{ is any instrument} \}$$

How are E(A,B), $R_{NN}(A,B)$ and $R_{ND}(A,B)$ related?

■ Note that all three regions depend only on A and B

From Preparation to Joint-Measurement

The noise can be rewritten in terms of measurement entropies as

$$N(\mathcal{M}, A) = \sum_{m} p(m)H(\mathbb{A}|\mathbb{M} = m) = \sum_{m} p(m)H\left(A \mid \rho_{m} = \frac{M_{m}}{\text{Tr}[M_{m}]}\right)$$

and the noise-noise region simplifies to

$$\begin{split} R_{NN}(A,B) &= \Big\{ \sum_m p(m) \left(H(A|\rho_m), \, H(B|\rho_m) \right) \big| \{ p(m), \rho_m \}_m \\ & \text{is an ensemble with } \sum_m p(m) \rho_m = 1/d \Big\} \\ &\subseteq \Big\{ \sum_m p(m) \left(H(A|\rho), \, H(B|\rho) \right) \Big\} = \operatorname{conv} E(A,B) \end{split}$$

- One can extend this trivially to more observables
- Any entropic preparation UR can thus be used to derive a valid ioint-measurement UR

From Preparation to Joint-Measurement

The noise can be rewritten in terms of measurement entropies as

$$N(\mathcal{M},A) = \sum_{m} p(m)H(\mathbb{A}|\mathbb{M} = m) = \sum_{m} p(m)H\left(A \mid \rho_{m} = \frac{M_{m}}{\text{Tr}[M_{m}]}\right)$$

and the noise-noise region simplifies to

$$\begin{split} R_{NN}(A,B) &= \Big\{ \sum_m p(m) \left(H(A|\rho_m), \, H(B|\rho_m) \right) \big| \{ p(m), \rho_m \}_m \\ & \text{is an ensemble with } \sum_m p(m) \rho_m = \mathbb{1}/d \Big\} \\ &\subseteq \Big\{ \sum_m p(m) \left(H(A|\rho), \, H(B|\rho) \right) \Big\} = \operatorname{conv} E(A,B) \end{split}$$

- One can extend this trivially to more observables
- Any entropic preparation UR can thus be used to derive a valid joint-measurement UR

From Noise-Noise to Noise-Disturbance

Consider a measurement device \mathcal{M}' that measures both \mathcal{M} and subsequently, post-correction, B

- We have $N(\mathcal{M}', A) \leq N(\mathcal{M}, A)$ and $N(\mathcal{M}', B) \leq D(\mathcal{M}, B)$
- Thus $R_{ND}(A, B) \subseteq \operatorname{cl} R_{NN}(A, B)$ (cl denotes the closure under increasing either coordinate up to $\log d$)
 - Note this argument requires more outcomes. The result doesn't hold in general if the number of outcomes is fixed
 - Valid (but not generally tight) noise-disturbance URs can thus be obtained from noise-noise and entropic preparation URs
- How tight are these relations?

From Noise-Noise to Noise-Disturbance

Consider a measurement device \mathcal{M}' that measures both \mathcal{M} and subsequently, post-correction, B

- We have $N(\mathcal{M}', A) \leq N(\mathcal{M}, A)$ and $N(\mathcal{M}', B) \leq D(\mathcal{M}, B)$
- Thus $R_{ND}(A,B) \subseteq \operatorname{cl} R_{NN}(A,B)$ (cl denotes the closure under increasing either coordinate up to $\log d$)
 - Note this argument requires more outcomes. The result doesn't hold in general if the number of outcomes is fixed
 - Valid (but not generally tight) noise-disturbance URs can thus be obtained from noise-noise and entropic preparation URs
- How tight are these relations?

From Noise-Noise to Noise-Disturbance

Consider a measurement device \mathcal{M}' that measures both \mathcal{M} and subsequently, post-correction, B

- We have $N(\mathcal{M}', A) \leq N(\mathcal{M}, A)$ and $N(\mathcal{M}', B) \leq D(\mathcal{M}, B)$
- Thus $R_{ND}(A,B) \subseteq \operatorname{cl} R_{NN}(A,B)$ (cl denotes the closure under increasing either coordinate up to $\log d$)
 - Note this argument requires more outcomes. The result doesn't hold in general if the number of outcomes is fixed
 - Valid (but not generally tight) noise-disturbance URs can thus be obtained from noise-noise and entropic preparation URs
- How tight are these relations?

Qubit Noise-Noise Region

For qubits, we have equality:

$$R_{NN}(A,B) = \left\{ \sum_{m} p(m) \left(H(A|\rho_m), H(B|\rho_m) \right) \right\} = \operatorname{conv} E(A,B)$$

- Condition that $\sum_m p(m)\rho_m = 1/d$ can be removed for qubits at the expense of doubling the number of outcomes
 - If one considers only dichotomic \mathcal{M} , $R_{NN}(A,B) = E(A,B)$
- The tight entropic preparation uncertainty relations for qubits can be used to give tight joint-measurements relations!
- Let us look at some examples for Pauli observables $A = a \cdot \sigma$, $B = b \cdot \sigma$

Qubit Noise-Noise Region

For qubits, we have equality:

$$R_{NN}(A,B) = \left\{ \sum_{m} p(m) \left(H(A|\rho_m), H(B|\rho_m) \right) \right\} = \operatorname{conv} E(A,B)$$

- Condition that $\sum_m p(m)\rho_m = 1/d$ can be removed for qubits at the expense of doubling the number of outcomes
 - If one considers only dichotomic \mathcal{M} , $R_{NN}(A,B) = E(A,B)$
- The tight entropic preparation uncertainty relations for qubits can be used to give tight joint-measurements relations!
- Let us look at some examples for Pauli observables $A = a \cdot \sigma$, $B = b \cdot \sigma$

Orthogonal Spin Measurements

Consider $\mathbf{a} \cdot \mathbf{b} = 0$ (e.g., $A = \sigma_z$, $B = \sigma_x$)

■ E(A,B) characterised by $g(H(A|\rho))^2 + g(H(B|\rho))^2 \le 1$

Note that this is precisely the MU-type bound $N(\mathcal{M},A)+N(\mathcal{M},B)\geq 1$

Orthogonal Spin Measurements

Consider $\mathbf{a} \cdot \mathbf{b} = 0$ (e.g., $A = \sigma_z$, $B = \sigma_x$)

■ E(A,B) characterised by $g(H(A|\rho))^2 + g(H(B|\rho))^2 \le 1$

Note that this is precisely the MU-type bound $N(\mathcal{M},A) + N(\mathcal{M},B) \geq 1$

Orthogonal Spin Measurements

Consider $\mathbf{a} \cdot \mathbf{b} = 0$ (e.g., $A = \sigma_z$, $B = \sigma_x$)

■ E(A,B) characterised by $g(H(A|\rho))^2 + g(H(B|\rho))^2 \le 1$

Note that this is precisely the MU-type bound $N(\mathcal{M},A)+N(\mathcal{M},B)\geq 1$

Non-Orthogonal Spin Measurements

Two cases: E(A,B) convex for $|a \cdot b| \gtrsim 0.391$, concave otherwise

$$a \cdot b = 1/2$$

$$0.8 \quad 0.6 \quad 0.8$$

$$0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0$$

$$N(M, A)$$

 $N(\mathcal{M}, A)$

 $a \cdot b = 0.28$

- $g(N(\mathcal{M},A))^2 + g(N(\mathcal{M},B))^2 2|\boldsymbol{a} \cdot \boldsymbol{b}|g(N(\mathcal{M},A))g(N(\mathcal{M},B)) \le 1 (\boldsymbol{a} \cdot \boldsymbol{b})^2$
 - $\blacksquare R_{NN}(A,B) = E(A,B)$
 - Two-outcome measurement sufficient to saturate bound
- No general analytic form for $|a \cdot b| \lesssim 0.391$
 - Four-outcome measurements needed to saturate lower bound

Non-Orthogonal Spin Measurements

Two cases: E(A,B) convex for $|a \cdot b| \gtrsim 0.391$, concave otherwise

$$a \cdot b = 1/2$$

$$0.8 \quad 0.6 \quad 0.8 \quad 0.0$$

$$0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0$$

$$N(M,A)$$

 $N(\mathcal{M}, A)$

 $a \cdot b = 0.28$

- $g(N(\mathcal{M},A))^2 + g(N(\mathcal{M},B))^2 2|\boldsymbol{a}\cdot\boldsymbol{b}|g(N(\mathcal{M},A))g(N(\mathcal{M},B)) \le 1 (\boldsymbol{a}\cdot\boldsymbol{b})^2$
 - $\blacksquare R_{NN}(A,B) = E(A,B)$
 - Two-outcome measurement sufficient to saturate bound
- No general analytic form for $|a \cdot b| \lesssim 0.391$
 - Four-outcome measurements needed to saturate lower bound

Non-Orthogonal Spin Measurements

Two cases: E(A, B) convex for $|a \cdot b| \gtrsim 0.391$, concave otherwise

$$a \cdot b = 0.28$$

$$0.8$$

$$0.6$$

$$0.8$$

$$0.4$$

$$0.2$$

 $N(\mathcal{M}, A)$

- $g(N(\mathcal{M},A))^2 + g(N(\mathcal{M},B))^2 2|\boldsymbol{a}\cdot\boldsymbol{b}|g(N(\mathcal{M},A))g(N(\mathcal{M},B)) \le 1 (\boldsymbol{a}\cdot\boldsymbol{b})^2$
 - $\blacksquare R_{NN}(A,B) = E(A,B)$
 - Two-outcome measurement sufficient to saturate bound
- No general analytic form for $|a \cdot b| \lesssim 0.391$
 - Four-outcome measurements needed to saturate lower bound

Non-Orthogonal Spin Measurements

Two cases: E(A, B) convex for $|a \cdot b| \gtrsim 0.391$, concave otherwise

- $g(N(\mathcal{M},A))^2 + g(N(\mathcal{M},B))^2 2|\boldsymbol{a}\cdot\boldsymbol{b}|g(N(\mathcal{M},A))g(N(\mathcal{M},B)) \le 1 (\boldsymbol{a}\cdot\boldsymbol{b})^2$
 - $\blacksquare R_{NN}(A,B) = E(A,B)$
 - Two-outcome measurement sufficient to saturate bound
- No general analytic form for $|a \cdot b| \lesssim 0.391$
 - Four-outcome measurements needed to saturate lower bound

Non-Orthogonal Spin Measurements

Two cases: E(A,B) convex for $|a \cdot b| \gtrsim 0.391$, concave otherwise

 $N(\mathcal{M}, A)$

 $a \cdot b = 0.28$

- $g(N(\mathcal{M},A))^2 + g(N(\mathcal{M},B))^2 2|\boldsymbol{a}\cdot\boldsymbol{b}|g(N(\mathcal{M},A))g(N(\mathcal{M},B)) \le 1 (\boldsymbol{a}\cdot\boldsymbol{b})^2$
 - $\blacksquare R_{NN}(A,B) = E(A,B)$
 - Two-outcome measurement sufficient to saturate bound
- No general analytic form for $|a \cdot b| \lesssim 0.391$
 - Four-outcome measurements needed to saturate lower bound

0.2

Non-Orthogonal Spin Measurements

Two cases: E(A,B) convex for $|a \cdot b| \gtrsim 0.391$, concave otherwise

- $g(N(\mathcal{M},A))^2 + g(N(\mathcal{M},B))^2 2|\boldsymbol{a}\cdot\boldsymbol{b}|g(N(\mathcal{M},A))g(N(\mathcal{M},B)) \le 1 (\boldsymbol{a}\cdot\boldsymbol{b})^2$
 - $\blacksquare R_{NN}(A,B) = E(A,B)$
 - Two-outcome measurement sufficient to saturate bound
- No general analytic form for $|\boldsymbol{a} \cdot \boldsymbol{b}| \lesssim 0.391$
 - Four-outcome measurements needed to saturate lower bound

- Noise-noise uncertainty relations restricted to the lower boundary of $R_{NN}(A,B)$ are also noise-disturbance relations
 - $N(\mathcal{M}, \sigma_z) + D(\mathcal{M}, \sigma_x) \ge 1$
- But are these relations tight?

- \blacksquare Noise-noise uncertainty relations restricted to the lower boundary of $R_{NN}(A,B)$ are also noise-disturbance relations
 - $N(\mathcal{M}, \sigma_z) + D(\mathcal{M}, \sigma_x) \ge 1$
- But are these relations tight?

- Noise-noise uncertainty relations restricted to the lower boundary of $R_{NN}(A,B)$ are also noise-disturbance relations
 - $N(\mathcal{M}, \sigma_z) + D(\mathcal{M}, \sigma_x) \ge 1$
- But are these relations tight?

- \blacksquare Noise-noise uncertainty relations restricted to the lower boundary of $R_{NN}(A,B)$ are also noise-disturbance relations
 - $N(\mathcal{M}, \sigma_z) + D(\mathcal{M}, \sigma_x) \ge 1$
- But are these relations tight?

- lacktriangleright Noise-noise uncertainty relations restricted to the lower boundary of $R_{NN}(A,B)$ are also noise-disturbance relations
 - $N(\mathcal{M}, \sigma_z) + D(\mathcal{M}, \sigma_x) \ge 1$
- But are these relations tight?

Characterising $R_{ND}(A, B)$

- Characterising exactly $R_{ND}(A,B)$ is more difficult than $R_{NN}(A,B)$ since the transformation of the state under \mathcal{M}_m and the optimal correction \mathcal{E}_m must be taken into account
 - Recall the noise depends only on the POVM outcomes (i.e., outcome probabilities)
- Although the disturbance for a given \mathcal{M} requires determining the optimal correction \mathcal{E} , one can ignore the correction in order to characterise the lower boundary of $R_{ND}(A,B)$
 - lacktriangle Can always incorporate ${\mathcal E}$ into ${\mathcal M}$ to give a new measurement ${\mathcal M}'$
 - Similarly, can also restrict oneself to *purity preserving* instruments:

$$\operatorname{cl} R_{ND}(A,B) = \operatorname{cl}\{(N(\mathcal{M},A),H(\mathbb{B}|\mathbb{B}'_{\mathcal{M},\mathcal{I}})) \mid \mathcal{M} \text{ is purity preserving}\}$$

■ Still very difficult to tackle analytically: restrict to $A=\sigma_z$ and $B=\sigma_x$ and study $R_{ND}(\sigma_z,\sigma_x)$ numerically by generating random instruments

Characterising $R_{ND}(A, B)$

- Characterising exactly $R_{ND}(A,B)$ is more difficult than $R_{NN}(A,B)$ since the transformation of the state under \mathcal{M}_m and the optimal correction \mathcal{E}_m must be taken into account
 - Recall the noise depends only on the POVM outcomes (i.e., outcome probabilities)
- Although the disturbance for a given \mathcal{M} requires determining the optimal correction \mathcal{E} , one can ignore the correction in order to characterise the *lower boundary* of $R_{ND}(A,B)$
 - lacksquare Can always incorporate ${\mathcal E}$ into ${\mathcal M}$ to give a new measurement ${\mathcal M}'$
 - Similarly, can also restrict oneself to *purity preserving* instruments:

$$\operatorname{cl} R_{ND}(A,B) = \operatorname{cl}\{(N(\mathcal{M},A),H(\mathbb{B}|\mathbb{B}'_{\mathcal{M},\mathcal{I}})) \mid \mathcal{M} \text{ is purity preserving}\}$$

■ Still very difficult to tackle analytically: restrict to $A=\sigma_z$ and $B=\sigma_x$ and study $R_{ND}(\sigma_z,\sigma_x)$ numerically by generating random instruments

Characterising $R_{ND}(A, B)$

- Characterising exactly $R_{ND}(A,B)$ is more difficult than $R_{NN}(A,B)$ since the transformation of the state under \mathcal{M}_m and the optimal correction \mathcal{E}_m must be taken into account
 - Recall the noise depends only on the POVM outcomes (i.e., outcome probabilities)
- Although the disturbance for a given \mathcal{M} requires determining the optimal correction \mathcal{E} , one can ignore the correction in order to characterise the *lower boundary* of $R_{ND}(A,B)$
 - lacksquare Can always incorporate ${\mathcal E}$ into ${\mathcal M}$ to give a new measurement ${\mathcal M}'$
 - Similarly, can also restrict oneself to *purity preserving* instruments:

$$\operatorname{cl} R_{ND}(A,B) = \operatorname{cl}\{(N(\mathcal{M},A),H(\mathbb{B}|\mathbb{B}'_{\mathcal{M},\mathcal{I}})) \mid \mathcal{M} \text{ is purity preserving}\}$$

■ Still very difficult to tackle analytically: restrict to $A=\sigma_z$ and $B=\sigma_x$ and study $R_{ND}(\sigma_z,\sigma_x)$ numerically by generating random instruments

Numerically Studying $R_{ND}(\sigma_z, \sigma_x)$

Most random instruments are far from the boundary: need to sample carefully

■ Generate random POVMs $M=\{M_m\}_m$ and consider transformations of form $\mathcal{M}_m(\rho)=U_m\sqrt{M_m}\rho\sqrt{M_m}U_m^\dagger$ Look for optimal $\{U_m\}_m$ for each such M

- Seems to be that $E(\sigma_z, \sigma_x) \subsetneq R_{ND}(\sigma_z, \sigma_x) \subsetneq R_{NN}(\sigma_z, \sigma_x)$
- What is this apparent bound?

Numerically Studying $R_{ND}(\sigma_z, \sigma_x)$

Most random instruments are far from the boundary: need to sample carefully

■ Generate random POVMs $M=\{M_m\}_m$ and consider transformations of form $\mathcal{M}_m(\rho)=U_m\sqrt{M_m}\rho\sqrt{M_m}U_m^\dagger$ Look for optimal $\{U_m\}_m$ for each such M

- Seems to be that $E(\sigma_z, \sigma_x) \subsetneq R_{ND}(\sigma_z, \sigma_x) \subsetneq R_{NN}(\sigma_z, \sigma_x)$
- What is this apparent bound?

Saturating the $R_{ND}(\sigma_z,\sigma_x)$ bound

The apparent numerical bound can be parameterised by a class of 3-outcome measurements:

- Consider the POVM $M=\{M_m=p_m(\mathbb{1}+\boldsymbol{n}_m\cdot\boldsymbol{\sigma})\}_m$ where p_m which must satisfy $\sum p_m=1$ and $\sum p_m\boldsymbol{n}_m=\mathbf{0}$
- For $\theta \in [0, \pi/2]$ take \boldsymbol{n}_m as follows:

- lacktriangle Following measurement outcome m, the system is in state with Bloch-vector $oldsymbol{n}_m$
- lacksquare Perform the correction mapping $m{n}_2, m{n}_3 o m{x}$ and leaving $m{n}_1 = -m{x}$ unchanged

Conjecture

$$R_{ND}(\sigma_z, \sigma_x)$$
 is bounded by the parametric curve $(N(\mathcal{M}, \sigma_z), D(\mathcal{M}, \sigma_x)) = \left(\frac{\cos \theta + h(\sin \theta)}{1 + \cos \theta}, \frac{h(\cos \theta)}{1 + \cos \theta}\right)$ for $0 \le \theta \le \frac{\pi}{2}$.

Note that (cf. noise-noise case)

- This region is non-convex
- Asymmetrical
- Three-outcome measurement appear to be optimal
- Makes use of non-trivial corrections/transformations for the measurements

Conjecture

$$R_{ND}(\sigma_z, \sigma_x)$$
 is bounded by the parametric curve $(N(\mathcal{M}, \sigma_z), D(\mathcal{M}, \sigma_x)) = \left(\frac{\cos \theta + h(\sin \theta)}{1 + \cos \theta}, \frac{h(\cos \theta)}{1 + \cos \theta}\right)$ for $0 \le \theta \le \frac{\pi}{2}$.

Note that (cf. noise-noise case)

- This region is non-convex
- Asymmetrical
- Three-outcome measurement appear to be optimal
- Makes use of non-trivial corrections/transformations for the measurements

Conjecture

$$R_{ND}(\sigma_z,\sigma_x)$$
 is bounded by the parametric curve $(N(\mathcal{M},\sigma_z),D(\mathcal{M},\sigma_x))=\left(rac{\cos \theta + h(\sin \theta)}{1+\cos \theta},rac{h(\cos \theta)}{1+\cos \theta}
ight)$ for $0\leq \theta \leq rac{\pi}{2}$.

Note that (cf. noise-noise case):

- This region is non-convex
 - Asymmetrical
 - Three-outcome measurement appear to be optimal
 - Makes use of non-trivial corrections/transformations for the measurements

Conjecture

$$R_{ND}(\sigma_z,\sigma_x)$$
 is bounded by the parametric curve $(N(\mathcal{M},\sigma_z),D(\mathcal{M},\sigma_x))=\left(rac{\cos \theta + h(\sin \theta)}{1+\cos \theta},rac{h(\cos \theta)}{1+\cos \theta}
ight)$ for $0\leq \theta \leq rac{\pi}{2}.$

Note that (cf. noise-noise case):

- This region is non-convex
- Asymmetrical
- Three-outcome measurement appear to be optimal
- Makes use of non-trivial corrections/transformations for the measurements

Relations for Lüders Instruments

The fact that non-trivial dynamics seem necessary to saturate $R_{ND}(\sigma_z,\sigma_x)$ raises the question: What noise-disturbance values can be obtained by dynamics implementing simple dynamics

- In particular, for Lüders instruments that implement $\mathcal{M}(\rho) = \sqrt{M_m} \rho \sqrt{M_m}$
- Analytic analysis simplified, can calculate " \mathcal{I} -disturbance" directly from $\sum_m \mathcal{M}_m(\rho)$

$\mathsf{Theorem}$

For Lüders instruments with no post-measurement correction (on qubits), $R_{ND_{\mathcal{I}}}(A,B)=E(A,B)$ and for orthogonal spins we have the tight relation

$$g(N(\mathcal{M}, \sigma_z))^2 + g(D_{\mathcal{I}}(\mathcal{M}, \sigma_x))^2 \le 1.$$

Relations for Lüders Instruments

The fact that non-trivial dynamics seem necessary to saturate $R_{ND}(\sigma_z,\sigma_x)$ raises the question: What noise-disturbance values can be obtained by dynamics implementing simple dynamics

- In particular, for Lüders instruments that implement $\mathcal{M}(\rho) = \sqrt{M_m} \rho \sqrt{M_m}$
- Analytic analysis simplified, can calculate " \mathcal{I} -disturbance" directly from $\sum_m \mathcal{M}_m(\rho)$

Theorem

For Lüders instruments with no post-measurement correction (on qubits), $R_{ND_{\mathcal{I}}}(A,B)=E(A,B)$ and for orthogonal spins we have the tight relation

$$g(N(\mathcal{M}, \sigma_z))^2 + g(D_{\mathcal{I}}(\mathcal{M}, \sigma_x))^2 \le 1.$$

Dichotomic Measurements

For dichotomic measurements, $R_{NN}^*(A,B)=E(A,B)$. Is the same true for $R_{ND}^*(A,B)$, given that $R_{ND}(\sigma_z,\sigma_x)\subseteq R_{NN}(\sigma_z,\sigma_x)$?

Perhaps surprisingly, no.

Dichotomic Measurements

For dichotomic measurements, $R_{NN}^*(A,B)=E(A,B)$. Is the same true for $R_{ND}^*(A,B)$, given that $R_{ND}(\sigma_z,\sigma_x)\subseteq R_{NN}(\sigma_z,\sigma_x)$?

■ Perhaps surprisingly, no.

There is a measurement \mathcal{M} giving $g(N(\mathcal{M}, \sigma_z))^2 + g(D(\mathcal{M}, \sigma_x))^2 \approx 1.024$.

Summary

- Relations between preparation and measurement URs
 - $\blacksquare R_{ND}(A,B) \subseteq \operatorname{cl} R_{NN}(A,B) \& R_{NN}(A,B) \subseteq \operatorname{conv} E(A,B)$
 - lacktriangle Entropic preparation uncertainty relations (lower bounds for E(A,B)) can immediately give joint-measurement and noise-disturbance relations
 - Inclusions not necessarily tight
- Tight joint-measurement uncertainty relations for qubits
 - Four-outcome POVMs needed for "optimal" measurements when E(A,B) non-convex
 - Can readily generalise to 3 or more observables
- Conjectured tight characterisation of noise-disturbance region
 - Three-outcome measurements with non-trivial corrections or measurement dynamics needed for "optimal" measurements

A. A. Abbott Summary

Outlook and References

Several points remain to explore:

- Noise-disturbance for non-orthogonal Pauli measurements
- Measurements that are optimal with respect to both tradeoffs
- Higher dimensional systems
- Relation to other notions of noise/disturbance

Thank You!

Further information:

- A. A. and C. Branciard., arXiv:1607.00261.
- A. A. et al., Mathematics 4, p. 8 (2016), arXiv:1512.02383.
- F. Buscemi et al., PRL 112, 050401 (2014).

A. A. Abbott Summary

Outlook and References

Several points remain to explore:

- Noise-disturbance for non-orthogonal Pauli measurements
- Measurements that are optimal with respect to both tradeoffs
- Higher dimensional systems
- Relation to other notions of noise/disturbance

Thank You!

Further information:

- A. A. and C. Branciard., arXiv:1607.00261.
- **A**. A. et al., Mathematics **4**, p. 8 (2016), arXiv:1512.02383.
- F. Buscemi et al., PRL 112, 050401 (2014).

A. A. Abbott Summary

Saturating Noise-Noise Bound

■ Any point $(N(\mathcal{M},A),N(\mathcal{M},B))$ in $\{(H(A|\rho),H(B|\rho))|\rho\}$ can be obtained by a POVM projecting onto ρ , i.e.,

$$\{\frac{1}{2}(\mathbb{1}+\boldsymbol{r}\cdot\boldsymbol{\sigma}),\,\frac{1}{2}(\mathbb{1}-\boldsymbol{r}\cdot\boldsymbol{\sigma})\}$$

- Let (u_1,v_1) and (u_2,v_2) be two points obtained by projections onto ρ_1 and ρ_2
- $\blacksquare \ \, \text{For any} \,\, q \in [0,1] \,\, \text{the POVM}$

$$\{rac{q}{2}(\mathbb{1}+oldsymbol{r}_1\cdotoldsymbol{\sigma}), rac{q}{2}(\mathbb{1}-oldsymbol{r}_1\cdotoldsymbol{\sigma}), rac{1-q}{2}(\mathbb{1}+oldsymbol{r}_2\cdotoldsymbol{\sigma}), rac{1-q}{2}(\mathbb{1}-oldsymbol{r}_2\cdotoldsymbol{\sigma})\}$$

gives

$$(N(\mathcal{M}, A), N(\mathcal{M}, B)) = q(u_1, v_1) + (1 - q)(u_2, v_2)$$

= $(qu_1 + (1 - q)u_2, qv_1 + (1 - q)v_2)$