assignment 1

January 9, 2022

1 MSDS 422 Assignment 1

The dependent variable of interest is house prices in Ames, Iowa ('SalePrice')

1.1 Data preparation

```
[1]: import pandas as pd
     import matplotlib.pyplot as plt
[2]: #import data
     train = pd.read csv('train.csv')
     test = pd.read_csv('test.csv')
[3]:
    train.head()
[3]:
                                    LotFrontage
             MSSubClass MSZoning
                                                  LotArea Street Alley LotShape
     0
         1
                      60
                               RL
                                            65.0
                                                     8450
                                                             Pave
                                                                     NaN
                                                                               Reg
         2
                      20
     1
                               RL
                                            80.0
                                                     9600
                                                             Pave
                                                                     NaN
                                                                               Reg
     2
         3
                      60
                               RL
                                            68.0
                                                     11250
                                                             Pave
                                                                     NaN
                                                                               IR1
     3
                                                             Pave
         4
                      70
                               RL
                                            60.0
                                                     9550
                                                                     NaN
                                                                               IR1
                      60
                               RL
                                            84.0
                                                     14260
                                                             Pave
                                                                     NaN
                                                                               IR1
       LandContour Utilities
                                ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold
     0
                Lvl
                        AllPub
                                           0
                                                NaN
                                                       NaN
                                                                    NaN
                                                                               0
                                                                               0
     1
                Lvl
                        AllPub
                                          0
                                                NaN
                                                       NaN
                                                                    NaN
                                                                                      5
     2
                        AllPub
                                                                    NaN
                                                                               0
                                                                                       9
                Lvl
                                                NaN
                                                       NaN
     3
                Lvl
                        AllPub
                                          0
                                                NaN
                                                       NaN
                                                                    NaN
                                                                               0
                                                                                      2
                Lvl
                        AllPub
                                                NaN
                                                       NaN
                                                                    NaN
                                                                               0
                                                                                     12
       YrSold
                SaleType
                           SaleCondition SalePrice
         2008
                                   Normal
                                               208500
     0
                       WD
     1
         2007
                       WD
                                   Normal
                                               181500
     2
         2008
                       WD
                                   Normal
                                               223500
     3
                                  Abnorml
         2006
                       WD
                                               140000
         2008
                       WD
                                   Normal
                                               250000
```

[5 rows x 81 columns]

[4]: train.tail()

[4]:		Id	MSSubCl:	ass MSZo	ning	LotFront	ıge	LotArea	Street	Alley	LotShape	\
	1455	1456		60	RL	6:	2.0	7917	Pave	NaN	Reg	
	1456	1457		20	RL	8	5.0	13175	Pave	NaN	Reg	
	1457	1458		70	RL	60	6.0	9042	Pave	NaN	Reg	
	1458	1459		20	RL	68	3.0	9717	Pave	NaN	Reg	
	1459	1460		20	RL	7	5.0	9937	Pave	NaN	Reg	
		LandCo	ntour Ut:	ilities	Po	olArea Po	olQC	Fence N	liscFeat	ture Mi	iscVal \	
	1455		Lvl	AllPub	•••	0	NaN	NaN		NaN	0	
	1456		Lvl	AllPub	•••	0	NaN	${\tt MnPrv}$		NaN	0	
	1457		Lvl	AllPub		0	NaN	GdPrv	S	Shed	2500	
	1458		Lvl	AllPub	•••	0	NaN	NaN		NaN	0	
	1459		Lvl	AllPub	•••	0	NaN	NaN		NaN	0	
		MoSold	YrSold	SaleTyp	e Sa	leConditi	on S	SalePrice	9			
	1455	8	2007	W.		Norma		175000)			
	1456	2	2010	W	D	Norma	al	210000)			
	1457	5	2010	W	D	Norma	al	266500)			
	1458	4	2010	W	D	Norma		142125				
	1459	6	2008	W:		Norma		147500				
	1 100	O	2000	VV.		NOTIN	~-	141000	,			

[5 rows x 81 columns]

[5]: train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object

13	Condition1	1460	non-null	object
14	Condition2	1460	non-null	object
15	BldgType	1460	non-null	object
16	HouseStyle	1460	non-null	object
17	OverallQual	1460	non-null	int64
18	OverallCond	1460	non-null	int64
19	YearBuilt	1460	non-null	int64
20	YearRemodAdd	1460	non-null	int64
21	RoofStyle	1460	non-null	object
22	RoofMatl	1460	non-null	object
23	Exterior1st	1460	non-null	object
24	Exterior2nd	1460	non-null	object
25	MasVnrType	1452	non-null	object
26	MasVnrArea	1452	non-null	float64
27	ExterQual	1460	non-null	object
28	ExterCond	1460	non-null	object
29	Foundation	1460	non-null	object
30	BsmtQual	1423	non-null	object
31	BsmtCond	1423	non-null	object
32	BsmtExposure	1422	non-null	object
33	BsmtFinType1	1423	non-null	object
34	BsmtFinSF1	1460	non-null	int64
35	BsmtFinType2	1422	non-null	object
36	BsmtFinSF2	1460	non-null	int64
37	BsmtUnfSF	1460	non-null	int64
38	TotalBsmtSF	1460	non-null	int64
39	Heating	1460	non-null	object
40	HeatingQC	1460	non-null	object
41	CentralAir	1460		object
42	Electrical	1459		object
43	1stFlrSF	1460	non-null	int64
44	2ndFlrSF	1460	non-null	int64
45	LowQualFinSF	1460	non-null	int64
46	GrLivArea	1460	non-null	int64
47	BsmtFullBath	1460	non-null	int64
48	BsmtHalfBath	1460		int64
49	FullBath	1460		int64
50	HalfBath	1460		int64
51	BedroomAbvGr	1460		int64
52	KitchenAbvGr	1460		int64
53	KitchenQual	1460		object
54	TotRmsAbvGrd	1460	non-null	int64
55	Functional	1460	non-null	object
56	Fireplaces	1460	non-null	int64
57	FireplaceQu		non-null	object
58	GarageType	1379	non-null	object
59	GarageYrBlt	1379	non-null	float64
60	GarageFinish	1379	non-null	object

```
GarageCars
 61
                    1460 non-null
                                     int64
 62
    GarageArea
                    1460 non-null
                                     int64
    GarageQual
 63
                    1379 non-null
                                     object
 64
    GarageCond
                    1379 non-null
                                     object
    PavedDrive
 65
                    1460 non-null
                                     object
 66
    WoodDeckSF
                    1460 non-null
                                     int64
 67
    OpenPorchSF
                    1460 non-null
                                     int64
                    1460 non-null
    EnclosedPorch
                                     int64
    3SsnPorch
                    1460 non-null
                                     int64
 70
    ScreenPorch
                    1460 non-null
                                     int64
71 PoolArea
                    1460 non-null
                                     int64
 72
    PoolQC
                    7 non-null
                                     object
 73
    Fence
                    281 non-null
                                     object
 74
    MiscFeature
                    54 non-null
                                     object
 75
    MiscVal
                    1460 non-null
                                     int64
 76
    MoSold
                    1460 non-null
                                     int64
 77
    YrSold
                    1460 non-null
                                     int64
 78
    SaleType
                    1460 non-null
                                     object
 79
    SaleCondition 1460 non-null
                                     object
    SalePrice
                    1460 non-null
                                     int64
dtypes: float64(3), int64(35), object(43)
```

memory usage: 924.0+ KB

[6]: train.describe()

[6]:		Id	MSSubClass	LotFrontage	LotArea	OverallQual	\
	count	1460.000000	1460.000000	1201.000000	1460.000000	1460.000000	
	mean	730.500000	56.897260	70.049958	10516.828082	6.099315	
	std	421.610009	42.300571	24.284752	9981.264932	1.382997	
	min	1.000000	20.000000	21.000000	1300.000000	1.000000	
	25%	365.750000	20.000000	59.000000	7553.500000	5.000000	
	50%	730.500000	50.000000	69.000000	9478.500000	6.000000	
	75%	1095.250000	70.000000	80.000000	11601.500000	7.000000	
	max	1460.000000	190.000000	313.000000	215245.000000	10.000000	
		OverallCond	YearBuilt	${\tt YearRemodAdd}$	MasVnrArea	BsmtFinSF1	\
	count	1460.000000	1460.000000	1460.000000	1452.000000	1460.000000	
	mean	5.575342	1971.267808	1984.865753	103.685262	443.639726	
	std	1.112799	30.202904	20.645407	181.066207	456.098091	
	min	1.000000	1872.000000	1950.000000	0.000000	0.000000	
	25%	5.000000	1954.000000	1967.000000	0.000000	0.000000	
	50%	5.000000	1973.000000	1994.000000	0.000000	383.500000	
	75%	6.000000	2000.000000	2004.000000	166.000000	712.250000	
	max	9.000000	2010.000000	2010.000000	1600.000000	5644.000000	
		WoodDeckSF	OpenPorchSF	EnclosedPorch	3SsnPorch	ScreenPorch	\
	count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	

mean	94.244521	46.660274	21.954110	3.409589	15.060959
std	125.338794	66.256028	61.119149	29.317331	55.757415
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.000000	25.000000	0.000000	0.000000	0.000000
75%	168.000000	68.000000	0.000000	0.000000	0.000000
max	857.000000	547.000000	552.000000	508.000000	480.000000
	PoolArea	MiscVal	MoSold	YrSold	SalePrice
count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000
mean	2.758904	43.489041	6.321918	2007.815753	180921.195890
std	40.177307	496.123024	2.703626	1.328095	79442.502883
min	0.000000	0.000000	1.000000	2006.000000	34900.000000
25%	0.000000	0.000000	5.000000	2007.000000	129975.000000
50%	0.000000	0.000000	6.000000	2008.000000	163000.000000
75%	0.000000	0.000000	8.000000	2009.000000	214000.000000
max	738.000000	15500.000000	12.000000	2010.000000	755000.000000

[8 rows x 38 columns]

```
[7]: train.shape
```

[7]: (1460, 81)

```
[8]: #no need for ID (arbitrary number)
train = train.drop(labels = 'Id',axis=1)
```

```
[9]: #distributions
train.hist(bins=50, figsize=(30,25))
plt.show()
```


1. Provide appropriate descriptive statistics and visualizations to help understand the marginal distribution of the dependent variable.

```
[10]: #code
train["SalePrice"].describe()
```

```
[10]: count
                 1460.000000
               180921.195890
      mean
                79442.502883
      std
                34900.000000
      min
      25%
               129975.000000
      50%
               163000.000000
      75%
               214000.000000
               755000.000000
      max
      Name: SalePrice, dtype: float64
```

The average sale price from this data set is 180,921. Sale prices range from 129,975 to 755,000 with a median value of 163,000.

```
[11]: fig, ax = plt.subplots()
    train["SalePrice"].hist(bins=50)
    plt.xlabel('Sale Price ($)')
    plt.ylabel('Counts')
    plt.title('Histogram of Sale Prices')
```

[11]: Text(0.5, 1.0, 'Histogram of Sale Prices')


```
[12]: fig, ax = plt.subplots()
  plt.boxplot(train["SalePrice"], vert=False)
  plt.xlabel('Sale Price ($)')
  plt.title('Boxplot of Sale Prices')

#high end of boxplot
  214000 + 1.5*(214000 - 129975)
```

[12]: 340037.5

The histogram and boxplot above show that SalePrice is skewed to the right. Outliers may range from any SalePrice greater than $\sim 340{,}000$

2. Investigate missing data and outliers.

```
[13]: #outliers
plt.figure(figsize = (140,20))
train.loc[:, train.columns!='SalePrice'].boxplot()
```

[13]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd8c4d18100>


```
[14]: #outliers
plt.figure(figsize = (140,20))
train.loc[:, ~train.columns.isin(['SalePrice', 'LotArea'])].boxplot()
```

[14]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd8c7552760>

SalePrice and LotArea have values with magnitudes greater than other independent variables. When looking at other variables, many of their boxplots indicate several outliers.

```
[15]: #missing data
train.isnull().sum()[train.isnull().sum()>0]
```

[15]:	LotFrontage	259
	Alley	1369
	${ t MasVnrType}$	8
	MasVnrArea	8
	BsmtQual	37
	BsmtCond	37
	BsmtExposure	38
	BsmtFinType1	37
	BsmtFinType2	38
	Electrical	1
	FireplaceQu	690
	GarageType	81
	GarageYrBlt	81
	${\tt GarageFinish}$	81
	GarageQual	81
	GarageCond	81
	PoolQC	1453
	Fence	1179
	MiscFeature	1406
	dtvpe: int64	

The variables above have numerous outliers. Of which, Alley, PoolQC, Fence, and MiscFeature have over 1000 null values relative to the 1460 total records.

```
[16]: #dupes
train.duplicated().sum()
```

[16]: 0

There are no duplicate rows in the dataset.

3. Investigate at least three potential predictors of the dependent variable and provide appropriate graphs / statistics to demonstrate the relationships.

```
[17]: #correlation matrix
      train.corr().style.background_gradient(cmap='coolwarm').set_precision(2)
[17]: <pandas.io.formats.style.Styler at 0x7fd8cb2ccd30>
[18]: #highest correlations with SalePrice
      train.corr()['SalePrice'].sort_values(ascending=False)
[18]: SalePrice
                       1.000000
      OverallQual
                       0.790982
      GrLivArea
                       0.708624
      GarageCars
                       0.640409
      GarageArea
                       0.623431
      TotalBsmtSF
                       0.613581
      1stFlrSF
                       0.605852
      FullBath
                       0.560664
      TotRmsAbvGrd
                       0.533723
      YearBuilt
                       0.522897
      YearRemodAdd
                       0.507101
      GarageYrBlt
                       0.486362
      MasVnrArea
                       0.477493
      Fireplaces
                       0.466929
      BsmtFinSF1
                       0.386420
      LotFrontage
                       0.351799
      WoodDeckSF
                       0.324413
      2ndFlrSF
                       0.319334
      OpenPorchSF
                       0.315856
      HalfBath
                       0.284108
      LotArea
                       0.263843
      BsmtFullBath
                       0.227122
      BsmtUnfSF
                       0.214479
      BedroomAbvGr
                       0.168213
      ScreenPorch
                       0.111447
      PoolArea
                       0.092404
      MoSold
                       0.046432
      3SsnPorch
                       0.044584
      BsmtFinSF2
                      -0.011378
      BsmtHalfBath
                      -0.016844
      MiscVal
                      -0.021190
     {\tt LowQualFinSF}
                      -0.025606
      YrSold
                      -0.028923
      OverallCond
                      -0.077856
      MSSubClass
                      -0.084284
      EnclosedPorch
                      -0.128578
      KitchenAbvGr
                      -0.135907
      Name: SalePrice, dtype: float64
```

The top 3 variables with the highest correlation with SalePrice are OverallQual (0.790982), GrLivArea (0.708624) and GarageCars (0.640409). All 3 have a positive correlation.

```
[19]: from sklearn.metrics import mean_squared_error from sklearn import datasets, linear_model from scipy import stats
```

```
[20]: lm_oq = linear_model.LinearRegression()
lm_oq.fit(train[['SalePrice']], train['OverallQual'])
x_oq = lm_oq.predict(train[['SalePrice']])
rmse_oq = mean_squared_error(train['OverallQual'], x_oq, squared=False)

plt.scatter(train['OverallQual'], train['SalePrice'], color='blue')
plt.plot(x_oq, train['SalePrice'], color='maroon', linewidth=1)
plt.ylabel('Sale Price ($)')
plt.xlabel('Overall material and finish quality')
plt.title('SalePrice vs OverallQual Regression')

print("RMSE:", rmse_oq)
```

RMSE: 0.8458826841860243


```
[21]: lm_gla = linear_model.LinearRegression()
lm_gla.fit(train[['SalePrice']], train['GrLivArea'])
```

```
x_gla = lm_gla.predict(train[['SalePrice']])
rmse_gla = mean_squared_error(train['GrLivArea'], x_gla, squared=False)

plt.scatter(train['GrLivArea'], train['SalePrice'], color='blue')
plt.plot(x_gla, train['SalePrice'], color='maroon', linewidth=1)
plt.ylabel('Sale Price ($)')
plt.xlabel('Above-ground living area (sqft)')
plt.title('SalePrice vs GrLivArea Regression')

print("RMSE:", rmse_gla)
```

RMSE: 370.6445090657199


```
[22]: lm_gc = linear_model.LinearRegression()
lm_gc.fit(train[['SalePrice']], train['GarageCars'])
x_gc = lm_gc.predict(train[['SalePrice']])
rmse_gc = mean_squared_error(train['GarageCars'], x_gc, squared=False)

plt.scatter(train['GarageCars'], train['SalePrice'], color='blue')
plt.plot(x_gc, train['SalePrice'], color='maroon', linewidth=1)
plt.ylabel('Sale Price ($)')
plt.xlabel('Size of garage (car capacity)')
plt.title('SalePrice vs GarageCars Regression')
```

```
print("RMSE:", rmse_gc)
```

RMSE: 0.573766659729406

The best predictors based on RMSE from lowest to highest are GarageCars (0.57), OverallQual (0.84), GrLivArea (370.64). GarageCars has the lowest RMSE which makes it the best predictor of the 3 tested above.

4. Engage in feature creation by splitting, merging, or otherwise generating a new predictor.

```
[23]: #Average Overall Condition and Quality train['OverallCondQual'] = (train['OverallCond'] + train['OverallQual'])/2
```

This predictor may remove the need to include both Condition and Quality into a model if they are highly correlated.

```
[24]: # Combine total finished basement sq ft with above ground train['total_FinSqft'] = train['TotalBsmtSF'] + train['GrLivArea']
```

This predictor may remove the need to include both above and below square footage if they are highly correlated.

```
[25]: # Years to sell since last remodel
train['YearsToSell'] = train['YrSold'] - train['YearRemodAdd']
```

This predictor may provide insight on how long it took to sell a property since its last remodel.

```
[26]: train.head()
```

26]:	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotSha	pe \
C		_	65.0	8450	Pave	NaN	_	eg
1	. 20	RL	80.0	9600	Pave	NaN	Re	eg
2	2 60	RL	68.0	11250	Pave	NaN	I	R1
3	3 70	RL	60.0	9550	Pave	NaN	I	R1
4	60	RL	84.0	14260	Pave	NaN	II	R1
	LandContour	Utilities	LotConfig	MiscFeat	ture Mis	scVal	MoSold '	YrSold
C	Lvl	AllPub	Inside	•	NaN	0	2	2008
1	Lvl	AllPub	FR2	•	NaN	0	5	2007
2	Lvl	AllPub	Inside		NaN	0	9	2008
3	B Lvl	AllPub	Corner		NaN	0	2	2006
4	Lvl	AllPub	FR2		NaN	0	12	2008
	SaleType Sa	leCondition	SalePrice	Overall(CondQual	l tot	al_FinS	qft \
C) WD	Normal	208500		6.0)	2	566
1	. WD	Normal	181500		7.0)	2	524
2	2 WD	Normal	223500		6.0)	2	706
3	B WD	Abnorml	140000		6.0)	24	473
4	ł WD	Normal	250000		6.5	5	.3:	343

YearsToSell

```
0 5
1 31
2 6
3 36
4 8
```

[5 rows x 83 columns]

5. Using the dependent variable, perform both min-max and standard scaling in Python.

```
[27]: #min-max scaling
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
train_minmax = train.copy()

numeric_cols = train_minmax._get_numeric_data().columns
train_minmax[numeric_cols] = scaler.fit_transform(train_minmax[numeric_cols])
```

train_minmax[numeric_cols].head() [27]: MSSubClass LotFrontage LotArea OverallQual OverallCond YearBuilt 0.235294 0.150685 0.033420 0.666667 0.500 0.949275 1 0.000000 0.202055 0.038795 0.555556 0.875 0.753623 2 0.500 0.235294 0.160959 0.046507 0.666667 0.934783 3 0.294118 0.133562 0.038561 0.666667 0.500 0.311594 4 0.235294 0.215753 0.060576 0.500 0.777778 0.927536 YearRemodAdd MasVnrArea BsmtFinSF1 BsmtFinSF2 3SsnPorch \ 0 0.12250 0.0 0.0 0.883333 0.125089 1 0.433333 0.00000 0.173281 0.0 0.0 2 0.866667 0.10125 0.086109 0.0 0.0 3 0.333333 0.00000 0.038271 0.0 0.0 4 0.833333 0.21875 0.116052 0.0 0.0 ScreenPorch PoolArea MiscVal MoSold YrSold SalePrice \ 0 0.0 0.0 0.0 0.090909 0.50 0.241078 1 0.0 0.0 0.0 0.363636 0.25 0.203583 2 0.0 0.0 0.0 0.727273 0.50 0.261908 3 0.0 0.0 0.0 0.090909 0.00 0.145952 4 0.0 0.0 0.0 1.000000 0.50 0.298709 OverallCondQual total_FinSqft YearsToSell 0 0.588235 0.195481 0.098361 1 0.705882 0.191802 0.524590 0.114754 0.588235 0.207742 3 0.588235 0.187336 0.606557 0.647059 0.263531 0.147541 [5 rows x 40 columns] [28]: #standard scaling from sklearn.preprocessing import StandardScaler from scipy.stats import zscore std_scaler = StandardScaler() train std = train.copy() numeric_cols = train_std._get_numeric_data().columns train_std[numeric_cols] = std_scaler.fit_transform(train_minmax[numeric_cols]) train_std[numeric_cols].head() [28]: MSSubClass LotFrontage OverallQual OverallCond YearBuilt \ ${ t LotArea}$

```
0
     0.073375
                 -0.208034 -0.207142
                                          0.651479
                                                       -0.517200
                                                                   1.050994
1
    -0.872563
                  0.409895 -0.091886
                                         -0.071836
                                                        2.179628
                                                                   0.156734
2
     0.073375
                 -0.084449 0.073480
                                          0.651479
                                                       -0.517200
                                                                   0.984752
3
     0.309859
                 -0.414011 -0.096897
                                          0.651479
                                                       -0.517200
                                                                  -1.863632
```

```
4
     0.073375
                   0.574676
                             0.375148
                                           1.374795
                                                        -0.517200
                                                                     0.951632
   YearRemodAdd
                  MasVnrArea
                              BsmtFinSF1
                                           BsmtFinSF2
                                                           3SsnPorch
0
       0.878668
                    0.510015
                                 0.575425
                                            -0.288653
                                                           -0.116339
1
      -0.429577
                   -0.572835
                                            -0.288653
                                 1.171992
                                                           -0.116339
2
       0.830215
                    0.322174
                                0.092907
                                            -0.288653
                                                           -0.116339
3
      -0.720298
                   -0.572835
                               -0.499274
                                            -0.288653
                                                           -0.116339
4
       0.733308
                    1.360826
                                 0.463568
                                            -0.288653
                                                           -0.116339
   ScreenPorch PoolArea
                            MiscVal
                                        MoSold
                                                           SalePrice
                                                  YrSold
0
     -0.270208 -0.068692 -0.087688 -1.599111
                                                0.138777
                                                            0.347273
1
     -0.270208 -0.068692 -0.087688 -0.489110 -0.614439
                                                            0.007288
2
     -0.270208 -0.068692 -0.087688
                                      0.990891
                                                0.138777
                                                            0.536154
3
     -0.270208 -0.068692 -0.087688 -1.599111 -1.367655
                                                           -0.515281
4
     -0.270208 -0.068692 -0.087688
                                      2.100892 0.138777
                                                            0.869843
   OverallCondQual
                     total_FinSqft
                                     YearsToSell
0
          0.192175
                         -0.008372
                                       -0.869941
1
          1.373547
                         -0.059386
                                        0.390141
2
          0.192175
                                       -0.821476
                          0.161672
3
          0.192175
                         -0.121330
                                        0.632464
4
          0.782861
                          0.935372
                                       -0.724547
```

[5 rows x 40 columns]

When using machine learning, models are typically used to tell the distance between data. By scaling using either min-max or standard, we can normalize and/or standardize the data before going into certain analyses or algorithms that require it.

[]: