## SML 2025, Winter, Quiz 2, Dur. 1 hr 10 mins. Marks 9.5

[CO3] Q1 Consider the following 8 data points in a two-dimensional feature space, labeled into three classes: X, Y, and Z.

| Index                | Feature 1 | Feature 2 | Class          |  |
|----------------------|-----------|-----------|----------------|--|
| Α.                   | 3.        | 7         | X              |  |
| В,                   | 2 •       | 8         | X              |  |
| C,                   | 7         | 2         | Y .            |  |
| D                    | 8         | 1         | Y ~            |  |
| E                    | 6         | 3         | Υ .            |  |
| $\mathbf{F}_{\cdot}$ | 7         | 7         | Z -            |  |
| $\mathbf{G}$         | 5.        | 8         | $\mathbf{Z}$   |  |
| H                    | 6         | 6         | $\mathbf{Z}$ . |  |

Perform a single split using the condition:

Feature  $1 \le 5.5$ 

Evaluate Gini index for left node, right node and total Gini index. [2]

[CO3] Q2. Consider a two-dimensional dataset with 6 data points as shown below:

| Ŧ ,   |       |       |     | 1 |     |   |
|-------|-------|-------|-----|---|-----|---|
| Index | $x_1$ | $x_2$ | y   |   |     |   |
| A     | 1     | .5 '  | +1  |   |     |   |
| B     | 1     | .3    | +1. | - |     |   |
| C     | 2     | 2.8   | -1  |   |     |   |
| D     | 3     | 1     | -1. |   |     |   |
| E     | 3     | 3     | -1. |   | 0-  | , |
| F     | 3     | 2     | -1. |   | 1.2 |   |
| F'    | 3     | 2/    | -1. |   | 1.3 |   |



Figure 1: Illustration of the data

In the first iteration of AdaBoost.M1, the selected weak classifier  $h_1(x)$  is a vertical split defined as:

 $h_1(x) = \begin{cases} +1, & \text{if } x_1 \le 2.5 \\ -1, & \text{if } x_1 > 2.5 \end{cases}$ 

Find  $h_2(x)$  using the boosting algorithm. Consider 2 splits only at  $x_2 = 1.5$  and at  $x_2 = 2.5$ . You need to evaluate which cut is better. In ease there is an equal proportion of samples from the classes in a region, then the decision would be the opposite sign of the other region. [3]

of -1. Find the boosted classifier f(x) using the  $h_1(x)$  and  $h_2(x)$ . Note f(x) should give value of +1 of -1. Find the value of f(x) when  $x = [1.5, 4]^{\top}$ . [1.5]

[CO1] Q3. Consider the regression model without noise y = f(x). Consider a train dataset D used to obtain predictor  $\hat{f}(x)$ . The error decomposition can be written in the form of bias and variance. Now suppose the regression model is  $y = f(x) + \eta$ , where  $\eta \sim \mathcal{N}(0, \sigma^2)$ . Find the error decomposition for this model in terms of bias, variance and  $\sigma^2$ . [3]

E(f(x)-f(x))=f(x)+21)sdé = 2 wi I (yi this lx)