Bank Marketing

The data is related with direct marketing campaigns (phone calls) of a Portuguese banking institution. The classification goal is to build a model that predicts if the client will subscribe a term deposit (variable y).

We will first find which features are relevant towards predicting y and then create a logistic regression model and evaluate its accuracy (we do not want overfitting or underfitting)

Dataset found at: http://archive.ics.uci.edu/ml/datasets/Bank+Marketing)

(http://archive.ics.uci.edu/ml/datasets/Bank+Marketing)

NOTE: CSV file was converted from text to columns using Excel before starting, raw data from website is not clean

```
In [2]: #take a look at the data
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model
import statsmodels.api as sm
from sklearn.linear_model import LogisticRegression

data = pd.read_csv('bank-full.csv')
data.head()
```

Out[2]:

	age	job	marital	education	default	balance	housing	loan	contact	day	mont
0	58	management	married	tertiary	no	2143	yes	no	unknown	5	ma
1	44	technician	single	secondary	no	29	yes	no	unknown	5	ma
2	33	entrepreneur	married	secondary	no	2	yes	yes	unknown	5	ma
3	47	blue-collar	married	unknown	no	1506	yes	no	unknown	5	ma
4	33	unknown	single	unknown	no	1	no	no	unknown	5	mε

```
In [3]:
         #checking for null data
         data.isnull().sum()
Out[3]: age
                       0
         job
         marital
                       0
         education
                       0
                       0
         default
         balance
                       0
         housing
         loan
         contact
                       0
                       0
         day
                       0
         month
         duration
                       0
         campaign
         pdays
         previous
                       0
         poutcome
                       0
                       0
         dtype: int64
         #how many clients subscribe to a term deposit
In [4]:
         data['y'].value counts()
Out[4]: no
                39922
                 5289
         Name: y, dtype: int64
```

^^^ only 13.2% (5289/39922) of clients subscribes to a term deposit

What continous features are predictors for y?

Our goal is to examine which features most strongly associate with purchasing y

```
data.groupby('y').mean()
In [5]:
Out[5]:
                             balance
                                           day
                                                  duration campaign
                                                                        pdays previous
                    age
            У
               40.838986
                        1303.714969 15.892290
                                               221.182806
                                                                    36.421372 0.502154
                                                           2.846350
                                                           2.141047 68.702968 1.170354
           yes 41.670070 1804.267915 15.158253 537.294574
```

^^^ we can see that the features where the mean changes according to y values are:

'balance' (current financial balance on clients account)

'duration' (last contact duration, in seconds (numeric))

'pdays' (number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)

'previous' (number of contacts performed before this campaign and for this client (numeric))

What categorical features are predictors for y?

We will examine a number of features using graphs against y

```
In [6]: #examining which job titles ara associated with purchasing y
    pd.crosstab(data.job,data.y).plot(kind='bar')
    plt.title('Job Title & Y Purchases')
    plt.xlabel('Job')
    plt.ylabel('Y Purchase')
```

Out[6]: Text(0, 0.5, 'Y Purchase')


```
In [7]: #examining which marital status are associated with purchasing y
    pd.crosstab(data.marital,data.y).plot(kind='bar')
    plt.title('Marital Status & Y Purchases')
    plt.xlabel('Marital Status')
    plt.ylabel('Y Purchase')
```

Out[7]: Text(0, 0.5, 'Y Purchase')


```
In [8]: #examining which education level is associated with purchasing y
    pd.crosstab(data.education,data.y).plot(kind='bar')
    plt.title('Education & Y Purchases')
    plt.xlabel('Education Status')
    plt.ylabel('Y Purchase')
```

Out[8]: Text(0, 0.5, 'Y Purchase')


```
In [9]: #examining whether housing is associated with purchasing y
    pd.crosstab(data.housing,data.y).plot(kind='bar')
    plt.title('Housing & Y Purchases')
    plt.xlabel('Housing Status')
    plt.ylabel('Y Purchase')
```

Out[9]: Text(0, 0.5, 'Y Purchase')


```
In [10]: #examining whether months is associated with purchasing y
    pd.crosstab(data.month,data.y).plot(kind='bar')
    plt.title('Month & Y Purchases')
    plt.xlabel('Month')
    plt.ylabel('Y Purchase')
```

```
Out[10]: Text(0, 0.5, 'Y Purchase')
```


Creating test and training sets

Since our graphs do not show any clear relationship between the categorical features and y, we will focus only on the binary features 'balance', 'duration', 'pdays', 'previous'

```
In [11]: from sklearn.model_selection import train_test_split

#Only selecting significant features
features = ['balance', 'duration', 'pdays', 'previous']
X = data[features]
y = data['y']

#Setting test and training data
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 0)
```

Logistic Regression

```
In [12]: from sklearn.linear_model import LogisticRegression
    logreg = LogisticRegression()

#fitting train data into model
    logreg.fit(X_train, y_train)
    print('Accuracy of Logistic regression classifier on training set: {:.
    2f}'
        .format(logreg.score(X_train, y_train)))

#fitting test data into model
    print('Accuracy of Logistic regression classifier on test set: {:.2f}'
        .format(logreg.score(X_test, y_test)))
```

/opt/anaconda3/lib/python3.7/site-packages/sklearn/linear_model/logi
stic.py:432: FutureWarning: Default solver will be changed to 'lbfgs
' in 0.22. Specify a solver to silence this warning.
FutureWarning)

Accuracy of Logistic regression classifier on training set: 0.89 Accuracy of Logistic regression classifier on test set: 0.89

```
In [29]: #evaluating predictions from model
    predictions = logreg.predict(X_test)
    from sklearn.metrics import classification_report
    print(classification_report(y_test,predictions))
```

	precision	recall	f1-score	support
no yes	0.90 0.58	0.98 0.16	0.94 0.25	9978 1325
accuracy			0.89	11303
macro avg	0.74	0.57	0.59	11303
weighted avg	0.86	0.89	0.86	11303

^^^A weighted average accuracy of 86%, not bad

```
In [31]: #confusion metrics to measure Accuracy and error rates
    from sklearn.metrics import confusion_matrix
    print(confusion_matrix(y_test, predictions))
```

```
[[9824 154]
[1115 210]]
```

From our confusion matrix we conclude that:

True positive: 9824

True negative: 210

False positive: 154

False negative: 1115

Accuracy = (TP+TN)/total

Accuracy = (9824+210)/11303 ~ 89%

Error Rate = (FP+FN)/total

Error rate = (154+1115)/11303 ~11%