Assignment 5. Jithin D. George, No. 1622555

Due Friday, Feb. 16.

1. Write a code to solve Poisson's equation on the unit square with Dirichlet boundary conditions:

$$u_{xx} + u_{yy} = f(x, y), \quad 0 < x, y < 1$$

 $u(x, 0) = u(x, 1) = u(0, y) = u(1, y) = 1.$

Take $f(x,y) = x^2 + y^2$, and demonstrate numerically that your code achieves second order accuracy. [Note: If you do not know an analytic solution to a problem, one way to check the code is to solve the problem on a fine grid and pretend that the result is the exact solution, then solve on coarser grids and compare your answers to the fine grid solution. However, you must be sure to compare solution values corresponding to the same points in the domain.]

Solution:


```
import numpy as np
import matplotlib.pyplot as plt
N = 12
a = -4*np.ones(N)
b = np.ones(N-1)
c = np.ones(N)
I = np.eye(N)
def tridiag(a, b, c, k1=-1, k2=0, k3=1):
    return np.diag(a, k1) + np.diag(b, k2) + np.diag(c, k3)
T = tridiag(b,a,b)
S = np.diag(b, -1)+ np.diag(b, 1)
A = np.kron(I,T)+np.kron(S,I)
def f(i,N):
    h = 1/(N+1)
```

```
x = (i\%(N+1))*h
    g = int(i/N) if i\%N ==0 else int(i/N)+1
    x = (i - (g-1)*N)*h
    return x**2 + y**2
fvec = np.array([])
for i in range(1, N**2+1):
    fvec = np.append(fvec,f(i,N**2))
h = 1/(N+1)
i = 0
for row in A:
    fvec[i] = fvec[i] *(h**2) + sum(row)
    i+=1
fv = 6*(h**2)*fvec
x = np.linalg.solve(A, fvec)
xn = np.reshape(x,(N,N))
plt.imshow(xn)
print(np.linalg.norm(xn-x120[::10,::10], 2))
```

The infinity norm is used here. The solution at N = 120 is used as the 'accurate' solution.

N	Error
6	0.004582454
12	0.001215613
24	0.000276484

The order seems to be $O(h^2)$.

2. Now use the 9-point formula with the correction term described in Sec. 3.5 to solve the same problem as in the previous exercise. Again take $f(x,y) = x^2 + y^2$, and numerically test the order of accuracy of your code by solving on a fine grid, pretending that is the exact solution, and comparing coarser grid approximations to the corresponding values of the fine grid solution. Show what order of accuracy you achieve and try to explain why.

Solution:

```
import numpy as np
import matplotlib.pyplot as plt
N = 12
a = -20*np.ones(N)
b = 4*np.ones(N-1)
c = 4*np.ones(N)
d= np.ones(N-1)
I = np.eye(N)
def tridiag(a, b, c, k1=-1, k2=0, k3=1):
    return np.diag(a, k1) + np.diag(b, k2) + np.diag(c, k3)
T = tridiag(b,a,b)
```

```
R = tridiag(d,c,d)
S = tridiag(d,np.zeros(N),d)
A = np.kron(I,T)+np.kron(S,R)
def f(i,N):
    h = 1/(N+1)
    x = (i\%(N+1))*h
    g = int(i/N) if i\%N ==0 else int(i/N)+1
    y = g*h
    x = (i - (g-1)*N)*h
    return x**2 + y**2
fvec = np.array([])
for i in range(1, N**2+1):
    fvec = np.append(fvec, f(i, N**2)) + (h**2)/4
h = 1/(N+1)
i = 0
for row in A:
    fvec[i] = fvec[i] *6*(h**2) + sum(row)
fv = 6*(h**2)*fvec
x = np.linalg.solve(A, fvec)
xn = np.reshape(x,(N,N))
plt.imshow(xn)
print(np.linalg.norm(xn-x120[::10,::10], 2))
```

The infinity norm is used here. The solution at N=120 is used as the 'accurate' solution.

N	Error
6	5.10230545e-05
12	3.17394091e-06
24	1.99308866e-07

The order seems to be $O(h^4)$.

3. We have discussed using finite element methods to solve elliptic PDE's such as

$$\Delta u = f$$
 in Ω , $u = 0$ on $\partial \Omega$,

with *homogeneous* Dirichlet boundary conditions. How could you modify the procedure to solve the *inhomogeneous* Dirichlet problem:

$$\triangle u = f$$
 in Ω , $u = g$ on $\partial \Omega$,

where g is some given function? Derive the equations that you would need to solve to compute, say, a continuous piecewise bilinear approximation for this problem when Ω is the unit square $(0,1) \times (0,1)$.

Solution:

4. The key to efficiency in the chebfun package, which you used in a previous homework exercise, is the ability to rapidly translate between the values of a function at the Chebyshev points, $\cos(\pi j/n)$, $j=0,\ldots,n$, and the coefficients a_0,\ldots,a_n , in a Chebyshev expansion of the function's nth-degree polynomial interpolant: $p(x) = \sum_{j=0}^{n} a_j T_j(x)$, where $T_j(x) = \cos(j \arccos(x))$ is the jth degree Chebyshev polynomial. Knowing the coefficients a_0,\ldots,a_n , one can evaluate p at the Chebyshev points by evaluating the sums

$$p(\cos(k\pi/n)) = \sum_{j=0}^{n} a_j \cos(jk\pi/n), \quad k = 0, \dots, n.$$
 (1)

These sums are much like the real part of the sums in the FFT,

$$F_k = \sum_{j=0}^{n-1} e^{2\pi i j k/n} f_j, \quad k = 0, \dots, n-1,$$

but the argument of the cosine differs by a factor of 2 from the values that would make them equal. Explain how the FFT or a closely related procedure could be used to evaluate the sums in (1). To go in the other direction, and efficiently determine the coefficients a_0, \ldots, a_n from the function values $f(\cos(k\pi/n))$, what method would you use?

Solution:

$$2 * p(\cos(k\pi/n)) = 2 \sum_{j=0}^{n} a_j \cos(jk\pi/n)$$

$$= \sum_{j=0}^{n} a_j \cos(jk\pi/n) + \sum_{j=0}^{n} a_j \cos(jk\pi/n)$$

$$= \sum_{j=0}^{n} a_j \cos(jk\pi/n) + \sum_{j=0}^{n} a_j \cos((n+j)k\pi/n)$$

$$= \sum_{j=0}^{2n-1} a_j \cos(jk\pi/n) + a_0 + a_n \cos(k\pi)$$

$$= \sum_{j=0}^{2n-1} a_j \cos(jk\pi/n) + a_0 + a_n (-1)^k$$

$$= Re(\sum_{j=0}^{2n-1} a_j e^{jk\pi/n}) + a_0 + a_n (-1)^k$$

Thus,

$$p(\cos(k\pi/n)) = \frac{1}{2} \left(Re\left(\sum_{j=0}^{2n-1} a_j e^{jk\pi/n} \right) + a_0 + a_n (-1)^k \right)$$

The first term can be calculated using the FFT

$$p(k) = \frac{1}{2} \left(Re \left(\sum_{j=0}^{2n-1} a_j e^{jk\pi/n} \right) + a_0 + a_n (-1)^k \right)$$

$$\sum_{k=0}^{n} 2p(k) = \sum_{k=0}^{n} Re \left(\sum_{j=0}^{2n-1} a_j e^{jk\pi/n} \right) + \sum_{k=0}^{n} a_0 + \sum_{k=0}^{n} a_n (-1)^k$$

$$\sum_{k=0}^{n} 2p(k) = \sum_{k=0}^{n} Re \left(\sum_{j=0}^{2n-1} a_j e^{jk\pi/n} \right) + p(0) + p(n)$$

$$p(0) + \sum_{k=1}^{n-1} 2p(k) + p(n) = \sum_{k=0}^{n} \sum_{j=0}^{2n-1} a_j Re \left(e^{jk\pi/n} \right)$$

$$p(0) + \sum_{k=1}^{n-1} 2p(k) + p(n) = \sum_{j=0}^{2n-1} \sum_{k=0}^{n} a_j Re \left(e^{jk\pi/n} \right)$$

We can see that

$$p(0) = \sum_{j=0}^{2n-1} \sum_{k=0}^{n} a_j$$
$$p(n) = \sum_{j=0}^{2n-1} \sum_{k=0}^{n} a_j (-1)^n$$

This looks like values obtained after a DFT. Thus, taking the ifft of the vector (p(0), p(1),p(2), ...p(n-1), p(n), p(n-1),p(n-2),..., p(2),p(1)) can get you back the coefficients a_n