Paper Review

Applied Energy 333 (2023) 120584

journal homepage: www.elsevier.com/locate/apenergy

Contents lists available at ScienceDirect

Applied Energy

A storage degradation model of Li-ion batteries to integrate ageing effects in the optimal management and design of an isolated microgrid

Pedro V.H. Seger a, Rémy Rigo-Mariani a, Pierre-Xavier Thivel b, Delphine Riu a

^b Université Grenoble Alpes, CNRS, Grenoble INP, G2Elab, F-38000 Grenoble, France
^b Université Grenoble Alpes, Université Sanote Mont Blanc, CNRS, Grenoble INP, LIPMI, F-38000 Grenoble, France

김상훈

shkim@ds.seoultech.ac.kr

Abstract

- Simplified model for estimating battery degradation
- Optimal second life battery SoH trajectory over 10 years is derived using dynamic programming

Motivation

- Existing degradation models are often complex and nonlinear, making their integration into optimization problems challenging
 - computational cost
- Previous studies have not addressed the long-term optimal operation of energy systems
 - not considering battery replacement

Framework

- 1. Simplified SoH Estimation
- 2. Dynamic Programming for Optimal SoH Trajectory

Applied Probability Lab. 4 / 14 se

Traditional SoH Estimation

- 1. Energe Management System (EMS) outputs profile soc_{th} (SoC values, Cycle depth, Current, etc)
- 2. Degradation (Δsoh) over the period T_h is calculated using the degradation model (f)
- 3. The soh^0 is updated with the Δsoh

Determining the update period (T_h)

- ullet When the update period T_h is set too large, degradation is underestimated
 - not adequately reflect the current state of soh
- If T_h is set too short, it underestimates
 - accumulated number of cycles is insufficient
- Updating on a monthly basis ($T_h = 1$ months) is optimal

Applied Probability Lab. 6 / 14 semin

Simplified SoH Estimation

- estimates the degradation using Mixed Integer Linear Programming (MILP) with two variables
 - soh_m^0 : soh updated at each time point (m)
 - \bullet $e_m^{\rm exch}$: the charged/discharged energy during the period (m-1 ~ m)
- The two variables and the degradation amount show a linear relationship

Applied Probability Lab. 7 / 14 semi

Long-term optimal SoH trajectory

• Considering battery replacement over a 10-year usage period (above) results in lower total operating costs

Applied Probability Lab. 8 / 14 semir

Dynamic Programming for Optimal SoH Trajectory

$$c^*(x_j) = \min_{i \in predecessors} (c^*(x_i) + t(x_i, x_j))$$

Pseudo code of the adapted dynamic programming.

Algorithm
for year y in 1 to N ^y :
for all x_j at year y:
initialize $c^*(x_i) = \infty$
for all x_i at year y-1:
if $c^*(x_i) + t(x_i, x_j) < c^*(x_j)$:
$c^*(x_i) \leftarrow c^*(x_i) + t(x_{i,} x_i)$
update optimal predecessor of x_i
if SoH at $x_i = 60 \%$ - replacement opportunity
$x_k = \text{state with SoH at 80 } \% \text{ at year } y$
if $c^{\pm}(x_i) + c^{rep} < c^{\pm}(x_k)$
$c^*(x_i) \leftarrow c^*(x_i) + t(x_i, x_i)$
update optimal predecessor of x_k

- DP is used to calculate the optimal soh path over the 10-year period
 - x_i : SoH level at the end of the year i
 - $c^*(x_i)$: optimal cost of state x_i
 - $t(x_i, x_j)$: transition cost
 - c^{rep} : cost of replacing battery

Optimal SoH Trajectory

- when the replacement cost is high, the SoH path is as shown on the left
- when the replacement cost is low, the SoH path is as shown on the right

Applied Probability Lab. 10 / 14 sen

Optimal SoH Trajectory of Isolated Microgrid

 optimal SoH path obtained using dynamic programming for a system with solar panels and batteries

Results

	Baseline	2nd life no degradation	2nd life degradation
$p^{p\nu R}$ (kW)	0	200	200
esR (kW/kWh)	0	350	300
capex	0	575 k€	550 k€
opex	1,603 k€	211 k€	311 k€
replacement	N.A.	N.A.	90 k€
TOTAL	1,603 k€	786 k€	951 k€

- 50% reduction in costs compared to the baseline (power is supplied solely by a generator)
- prevents underestimating the total cost by 20%, where degradation is neglected

Limitations

- assumes the same power load and solar generation profiles every year
- does not consider time-varying electricity/battery prices

"Thank you for listening"