CALCULATING BIG-O EXPERIMENTALLY & MATHEMATICALLY

Paul Doliotis (*PhD*)
Adjunct Assistant Professor
Portland State University

Lecture Outline

- Find Duplicate Algorithm
 - A first analysis on time complexity
- Experimental Analysis
- Mathematical Analysis
 - Closed form runtime using sums
 - Asymptotic Analysis
 - Calculating Big-O

FIND DUPLICATE ALGORITHM

A first analysis on time complexity

- Let's discuss a problem that frequently arises when developing a web search engine.
- Every day, we have a list A of web pages that we have to visit.

- Let's discuss a problem that frequently arises when developing a web search engine.
- Every day, we have a list A of web pages that we have to visit.
 - What does "visiting" a web page mean?

- Let's discuss a problem that frequently arises when developing a web search engine.
- Every day, we have a list A of web pages that we have to visit.
 - "visiting" a web page means that our program has downloaded that web page and processed it, so that it can show up in search results.

- Let's discuss a problem that frequently arises when developing a web search engine.
- Every day, we have a list A of web pages that we have to visit.
 - "visiting" a web page means that our program has downloaded that web page and processed it, so that it can show up in search results.
- Question: are there any duplicate links in list A?

- Let's discuss a problem that frequently arises when developing a web search engine.
- Every day, we have a list A of web pages that we have to visit.
 - "visiting" a web page means that our program has downloaded that web page and processed it, so that it can show up in search results.
- Question: are there any duplicate links in list A?
- Why is this a useful question?

- Why is this a useful question?
 - Most times list A contains a great amount of duplicate links.

- Why is this a useful question?
 - Most times list A contains a great amount of duplicate links.
 - It is a **huge waste of resources** to revisit those links.

- Why is this a useful question?
 - Most times list A contains a great amount of duplicate links.
 - It is a huge waste of resources to revisit those links.
 - If we can find duplicate links eventually we can create a new list with unique entries.

■ Recap:

- A list A that contains strings representing webpages.
- List A can have duplicate entries.
- Define FindDuplicate(A), return true if there is a duplicate, false otherwise.
- Question: how do we compute FindDuplicate(A)?
- Any ideas?

```
Input: a length n array A of strings
Output: true if the array contains a duplicate, false otherwise
for i=1 to n:
         for j=1 to n:
              if (i != j) AND A[i] == A[j]
                   return true
return false
```

```
Input: a length n array A of strings
Output: true if the array contains a duplicate, false otherwise
for i=1 to n:
         for j=1 to n:
              if (i != j) AND A[i] == A[j]
                   return true
return false
```

What can we say about how fast this would run? How many comparisons?

- This algorithm will compare every item in the list against the entire list itself.
- The size of A is n, so we need n^2 comparisons

- This algorithm will compare every item in the list against the entire list itself.
- The size of A is n, so we need n^2 comparisons
- runtime function $f(n) \approx n^2$, with input variable n

- runtime function $f(n) \approx n^2$, with input variable n
- This is our first analysis of time complexity!

Will it always run all the way through?

- Will it always run all the way through?
- What if the first two elements are duplicates?

- Will it always run all the way through?
- What if the first two elements are duplicates? This is the <u>best case</u>.
 Constant running time.
 - Always the same regardless of input size n

- Will it always run all the way through?
- What if the first two elements are duplicates? This is the <u>best case</u>.
 Constant running time.
 - Always the same regardless of input size n
- What if the last two elements are duplicates?

- Will it always run all the way through?
- What if the first two elements are duplicates? This is the <u>best case</u>.
 Constant running time.
 - Always the same regardless of input size n
- What if the last two elements are duplicates? This is the worst case $\approx n^2$
 - Running time increases with n

- Will it always run all the way through?
- What if the first two elements are duplicates? This is the <u>best case</u>.
 Constant running time.
 - Always the same regardless of input size n
- What if the last two elements are duplicates? This is the worst case $\approx n^2$
 - Running time increases with *n*
- What about <u>average case</u> running time? Often difficult to determine but can be useful.

- Worst case complexity is what we will use mostly from now on.
- Easier to analyze
- Very useful as input n grows very large
- Asymptotic analysis

- What does all this mean in practice?
- We need n^2 comparisons in the worst case.
- Suppose A has 5 million items. We need to do 25 trillion comparisons.

- What does all this mean in practice?
- We need n^2 comparisons in the worst case.
- Suppose A has 5 million items. We need to do 25 trillion comparisons.
- On a computer that can do 1 billion comparisons per second

- What does all this mean in practice?
- We need n^2 comparisons in the worst case.
- Suppose A has 5 million items. We need to do 25 trillion comparisons.
- On a computer that can do 1 billion comparisons per second
 - This would take about 7 hours
 - This is very optimistic, in practice, it would be at least a few dozen hours

- Suppose A has 1 billion items. We need to do 1 quintillion comparisons.
- On a computer that can do 1 billion comparisons per second

- Suppose A has 1 billion items. We need to do 1 quintillion comparisons.
- On a computer that can do 1 billion comparisons per second
 - This would take 11574 days!
- Input size *n* grew only by 1000 but running time went from 7 hours to 11574 days!

- Suppose A has 1 billion items. We need to do 1 quintillion comparisons.
- On a computer that can do 1 billion comparisons per second
 - This would take 11574 days!
- Input size *n* grew only by 1000 but running time went from 7 hours to 11574 days!
 - CAN WE DO BETTER?

- Suppose A has 1 billion items. We need to do 1 quintillion comparisons.
- On a computer that can do 1 billion comparisons per second
 - This would take 11574 days!
- Input size *n* grew only by 1000 but running time went from 7 hours to 11574 days!
 - CAN WE DO BETTER?
 - Hint: sort list A

FindDuplicate(A) – Second Version

```
Input: a length n array A of strings
Output: true if the array contains a duplicate, false otherwise
sort A
for i=1 to n-1:
    if A[i] == A[i+1]
        return true
return false
```

FindDuplicate(A) – Second Version

```
Input: a length n array A of strings
Output: true if the array contains a duplicate, false otherwise
sort A
for i=1 to n-1:
    if A[i] == A[i+1]
        return true
return false
```

What can we say about its speed? What takes time?

FindDuplicate(A) – Second Version

```
Input: a length n array A of strings
Output: true if the array contains a duplicate, false otherwise
sort A
for i=1 to n-1:
     if A[i] == A[i+1]
        return true
return false
```

- What can we say about its speed? What takes time?
- We need to: sort A and execute the for loop.

FindDuplicate(A) – Second Version Speed

- We need to:
 - sort A
 - execute the for loop.
- How many calculations does it take to sort A?
 - We will learn that the number of calculations is proportional to $n^*\log(n)$

- We need to:
 - sort A
 - execute the for loop.
- How many calculations does it take to sort A?
 - We will learn that the number of calculations is proportional to $n^*\log(n)$
- How many iterations does the for loop take?
 - no more than *n*.

- We need to:
 - sort A
 - execute the for loop.
- How many calculations does it take to sort A?
 - We will learn that the number of calculations is proportional to $n^*\log(n)$
- How many iterations does the for loop take?
 - no more than *n*.
- Total iterations $n * (\log(n)+1) \approx n* \log(n)$, constants do not matter!

- Will it always run all the way through?
- What if the first two elements of sorted array are duplicates? This is the <u>best case</u>.
 - $\approx n^*\log(n) + 1$, we always have to sort the array
- What if the last two elements of sorted array are duplicates? This is the worst case
 - $= n*\log(n) + n$
- What about <u>average case</u> running time? Proportional to *n**log(*n*)

$$f_1(n) \approx n^2$$

$$f_2(n) \approx n * log(n)$$

- The worst case number of calculations is approximately n*log(n)
- Suppose A has 5 million items.
 - $\log(n)$ is 22.253
 - We need to do 111.27 million comparisons.

- The worst case number of calculations is approximately n*log(n)
- Suppose A has 5 million items.
 - $\log(n)$ is 22.253
 - We need to do 111.27 million comparisons.
- On a computer that can do 1 billion comparisons per second, this would take about 110 milliseconds

- The worst case number of calculations is approximately n*log(n)
- Suppose A has 5 million items.
 - $\log(n)$ is 22.253
 - We need to do 111.27 million comparisons.
- On a computer that can do 1 billion comparisons per second, this would take about 110 milliseconds
- Suppose A has 1 billion items. On a computer that can do 1 billion comparisons per second, this would take about 30 seconds

	Worst case running time for first version $\approx n^2$	Worst case running time for second version $\approx n*log(n)$
Input size $n = 5*10^6$	7 hours	110 milliseconds
Input size $n = 10^9$	11574 days	30 seconds

	Worst case running time for first version $\approx n^2$	Worst case running time for second version $\approx n*log(n)$
Input size $n = 5*10^6$	7 hours	110 milliseconds
Input size $n = 10^9$	11574 days	30 seconds

Running two alternative algorithms on the same data and comparing the running times can be a useful tool.

	Worst case running time for first version $\approx n^2$	Worst case running time for second version $\approx n*log(n)$
Input size $n = 5*10^6$	7 hours	110 milliseconds
Input size $n = 10^9$	11574 days	30 seconds

- Running two alternative algorithms on the same data and comparing the running times can be a useful tool.
- 1 second vs. one minute is an easy-to-notice difference

	Worst case running time for first version $\approx n^2$	Worst case running time for second version $\approx n*log(n)$
Input size $n = 5*10^6$	7 hours	110 milliseconds
Input size $n = 10^9$	11574 days	30 seconds

- Running two alternative algorithms on the same data and comparing the running times can be a useful tool.
- 1 second vs. one minute is an easy-to-notice difference
- However, sometimes this empirical analysis is not a good option.

	Worst case running time for first version $\approx n^2$	Worst case running time for second version $\approx n*log(n)$
Input size $n = 5*10^6$	7 hours	110 milliseconds
Input size $n = 10^9$	11574 days	30 seconds

- However, sometimes this empirical analysis is not a good option.
 - For example, if it would take days or weeks to run the programs

	Worst case running time for first version $\approx n^2$	Worst case running time for second version $\approx n*log(n)$
Input size $n = 5*10^6$	7 hours	110 milliseconds
Input size $n = 10^9$	11574 days	30 seconds

- However, sometimes this empirical analysis is not a good option.
 - For example, if it would take days or weeks to run the programs
 - When comparing running times of two implementations, we must make sure the comparison is fair. Same hardware and software environments must be used

EXPERIMENTAL ANALYSIS

• According to our time complexity analysis from the previous section, the brute-force implementation for FindDuplicate(A) requires n^2 comparisons.

- According to our time complexity analysis from the previous section, the brute-force implementation for FindDuplicate(A) requires n^2 comparisons.
- How accurately does this approximation represent the actual running time function?

- According to our time complexity analysis from the previous section, the brute-force implementation for FindDuplicate(A) requires n^2 comparisons.
- How accurately does this approximation represent the actual running time function?
- Can we experimentally come up with a more accurate representation for the running time function?

 Use curve fitting techniques to approximate the function (e.g., least squares fitting)

- Use curve fitting techniques to approximate the function (e.g., least squares fitting)
- $f_1(n) = c_1 * n^2 + c_2 * (n+1)$

 Use curve fitting techniques to approximate the function (e.g., least squares fitting)

$$f_1(n) = c_1 * n^2 + c_2 * (n+1)$$

■ How does this compare with time complexity $\approx n^2$ from the previous section?

- Plotting the functions can provide us quickly with some useful information
- As n grows very large the two functions have similar behavior
- Plotting functions is not an accurate scientific method
- Need for mathematical analysis

Experimental Analysis Conclusion

- However, experimental analysis is not always a good option.
 - For example, if it would take days or weeks to run the programs

Experimental Analysis Conclusion

- However, experimental analysis is not always a good option.
 - For example, if it would take days or weeks to run the programs
 - Collecting or generating the datasets can be challenging. Results may not be indicative of the running time on other inputs not included in the experiment.

Experimental Analysis Conclusion

- However, experimental analysis is not always a good option.
 - For example, if it would take days or weeks to run the programs
 - Collecting or generating the datasets can be challenging. Results may not be indicative of the running time on other inputs not included in the experiment.
 - Same hardware and software environments must be used
 - Implementations using different programming languages may tell us more about the difference between the languages than the difference between implementations.


```
Input: a length n array A of strings
Output: true if the array contains a duplicate, false otherwise
for i=1 to n:
         for j=1 to n:
              if (i != j) AND A[i] == A[j]
                   return true
return false
```

Measure input size

• find key quantity to measure the **size of the data** that determine the running time.

Measure input size

- find key quantity to measure the **size of the data** that determine the running time.
- Sometimes obvious: length of array *n*
- For graph problems can be nodes and edges

Identify Algorithm's basic operation

- Identify the important operations/instructions in the program
- Basic operation: the operation that uses the most runtime overall (typically, most expensive operation of innermost loop)

Identify Algorithm's basic operation

- integer comparison c_0
- Array access c_1
- Conditional c_2
- Loop c_l

```
Input: a length n array A of strings
Output: true if the array contains a duplicate, false otherwise
for i=1 to n:
         for j=1 to n:
              if (i != j) AND A[i] == A[j]
                   return true
return false
```

Identify Algorithm's basic operation

Sometimes more useful to clump operations:

$$c_{op} = 2 * c_0 + c_1 + \dots$$

Decide on a parameter (or parameters) for measuring the size of the input Identify the Algorithm's basic operation Determine if best, worst, and average case will be different Set up a sum representing the number of times the operation happens Find a closed form formula for the expression

Closed form runtime:

$$C_{\text{OUTERLOOP}} = C_l + \sum_{i=1}^{n} C_{INNERLOOP} = C_l + \sum_{i=1}^{n} (C_l + \sum_{j=1}^{n} C_{op})$$

$$= C_{op} * n^2 + C_l * (n + 1)$$

• We just proved mathematically that:

running time function
$$f_1(n) = C_{op} * n^2 + C_l * (n + 1)$$

• We just proved mathematically that:

```
running time function f_1(n) = C_{op} * n^2 + C_l * (n + 1)
```

■ Now lets prove that $f_1(n) \approx n^2$ or more formally $f_1(n) \in O(n^2)$

• When we analyze an algorithm, our goal is to find a function g(n), such that the running time of the algorithm is **proportional** to g(n).

- When we analyze an algorithm, our goal is to find a function g(n), such that the running time of the algorithm is **proportional** to g(n).
- Why proportional and not equal?

- When we analyze an algorithm, our goal is to find a function g(n), such that the running time of the algorithm is **proportional** to g(n).
- Why proportional and not equal?
- Because the actual running time is not a defining characteristic of an algorithm
 - Running time depends on programming language, actual implementation, compiler used, machine executing the code, ...

- There are some details that we would actually NOT want **g**(*n*)to include, because they can make a function unnecessarily complicated.
 - Constants, are not important!
 - Behavior fluctuations on small data.
- The Big-Oh notation, which we will see in a few slides, achieves that, and greatly simplifies algorithmic analysis.

Why Asymptotic Behavior Matters

 Asymptotic behavior: The behavior of a function as the input approaches infinity

Why Asymptotic Behavior Matters

Which of these functions works best asymptotically?

Why Asymptotic Behavior Matters

• f_3 seems to grow VERY slowly after a while. We do not care about small n

■ A function f(n) is said to be in O(g(n)) if there exist constants c and n_0 such that:

$$f(n) \le c * g(n)$$
, for all $n \ge n_0$

■ A function f(n) is said to be in O(g(n)) if there exist constants c and n_0 such that:

$$f(n) \le c * g(n)$$
, for all $n \ge n_0$

$$f(n) \le c * g(n)$$
, for all $n \ge n_0$

■ Typically, *f*(*n*) is the running time of an algorithm, in your favorite units, implementation, and machine. This can be a rather complicated function.

$$f(n) \le c * g(n)$$
, for all $n \ge n_0$

- Typically, f(n) is the running time of an algorithm, in your favorite units, implementation, and machine. This can be a rather complicated function.
- In algorithmic analysis, we try to find a g(n) that is simple, and such that $f(n) \in O(g(n))$

$$f(n) \le c * g(n)$$
, for all $n \ge n_0$

- The Big-Oh notation greatly simplifies the analysis task, by:
 - 1. <u>Ignoring constant factors</u>. How is this achieved?
 - By the C in the definition. We are free to choose ANY constant C we want, to make the formula work.
 - Thus, Big-Oh notation is independent of programming language, compiler, machine performance, and so on...

$$f(n) \le c * g(n)$$
, for all $n \ge n_0$

- The Big-Oh notation greatly simplifies the analysis task, by:
 - 2. <u>Ignoring behavior for small inputs</u>. How is this achieved?
 - By the N_0 in the implementation. If a finite number of values are not compatible with the formula, just ignore them.
 - Thus, big-Oh notation focuses on asymptotic behavior.

$$f(n) \le c * g(n)$$
, for all $n \ge n_0$

- The Big-Oh notation greatly simplifies the analysis task, by:
 - 3. Allowing us to describe complex running time behaviors of complex algorithms with simple functions, such as N, log N, N², 2^N, and so on.
 - Such simple functions are sufficient for answering many important questions, once you get used to Big-Oh notation.

Is Big-Oh Notation Always Enough?

■ NO! Big-Oh notation does not always tell us which of two algorithms is preferable.

Is Big-Oh Notation Always Enough?

- NO! Big-Oh notation does not always tell us which of two algorithms is preferable.
 - Example 1: if we know that the algorithm will only be applied to relatively small N, we may prefer a running time of N^2 over Nlog(N).
 - Example 2: even constant factors can be important. For many applications, we strongly prefer a running time of 3N over 1500N.

Is Big-Oh Notation Always Enough?

- NO! Big-Oh notation does not always tell us which of two algorithms is preferable.
 - Example 1: if we know that the algorithm will only be applied to relatively small N, we may prefer a running time of N^2 over Nlog(N).
 - Example 2: even constant factors can be important. For many applications, we strongly prefer a running time of 3N over 1500N.
- Big-Oh notation is not meant to tells us everything about running time.
- But, Big-Oh notation tells us a lot, and is often much easier to compute than actual running times.

• We have mathematically proven that:

$$f_1(n) = C_{op} * n^2 + C_l * (n+1)$$

■ How we prove that $f_1(n) \in O(n^2)$?

• We have mathematically proven that:

$$f_1(n) = C_{op} * n^2 + C_l * (n+1)$$

- How we prove that $f_1(n) \in O(n^2)$?
- This is where the Big-Oh definition comes into play. We can find an n_0 such that, for all $n > n_0$:

$$f_{1(n)} \le (C_{op} + 1) * n^2$$

• If you don't believe this, do the calculations for practice

- Another way to show correctness: as n goes to infinity, what is the limit of $f(n) / n^2$?
 - $C_{op} > 0$
 - This shows that the non-quadratic terms become negligible as *n* gets larger

- Another way to show correctness: as n goes to infinity, what is the limit of $f(n) / n^2$?
 - $C_{op} > 0$
 - This shows that the non-quadratic terms become negligible as *n* gets larger

Let f(n) and g(n) be two real function then, f(n)=O(g(n)) is equivalent to $\exists \ c\in\mathbb{R}: \lim_{n\to\infty} \frac{f(n)}{g(n)}=c$ where, $c\geqslant 0$

(Here c is finite or can be zero)

Properties of Big Oh:

For all constants c>0 and a>1, and monotonically increasing functions f(n):

$$f(n)^c$$
 is $O(a^{f(n)})$

- For example:
 - n^c is $O(a^n)$
 - n^{256} is $O(1.0001^n)$
 - $(\log_a n)^c$ is $O(a^{\log_a n})$, which is O(n).

More Properties of Big Oh:

■ O notation is additive (<u>rule of Sums</u>) If $f_1(n)$ is $O(g_1(n))$ and $f_2(n)$ is $O(g_2(n))$, then: ■ $f_1(n) + f_2(n)$ is $O(\max\{g_1(n), g_2(n)\})$

O notation is multiplicative (<u>rule of Products</u>)
 If f₁(n) is O(g₁(n)) and f₂(n) is O(g₂(n)), then:

 f₁(n) * f₂(n) is O(g₁(n) * g₂(n))

• O notation is transitive If f(n) is O(g(n)), and g(n) is O(h(n)), then f(n) is O(h(n)).

Omega (Ω) Notation

$$f(n) \in \Omega(n)$$

If f(n) is bounded below by some constant multiple of g(n)for all large n

Omega example

 $n^*(n-1)/2 \in \Omega(n^2)$

• $f(n) \ge c * g(n)$, for all $n \ge n_0$

Theta (Θ) Notation

$$f(n) \in \Theta(n)$$

If f(n) is bounded both above and below by some constant multiple of g(n)for all large n

Omega (Ω) and Theta (Θ) Notations

- If $f(n) \in O(g(n))$, then we also say that $g(n) \in \Omega(f(n))$.
- If $f(n) \in O(g(n))$ and $f(n) \in \Omega(g(n))$, then we say that $f(n) \in O(g(n))$.
- The Theta notation is clearly stricter than the Big-Oh notation:
 - We can say that $n^2 \in O(n^{100})$.
 - We cannot say that $n^2 \in \Theta(n^{100})$.
 - We can say that $2^{n+1} \in \Theta(2^n)$

Theta example

■ $2^{n+1} \in \Theta(2^n)$

• $f(n) \ge c_1 * g(n)$, for all $n \ge n_0$

AND

• $f(n) \le c_2 * g(n)$, for all $n \ge n_0$

Using Limits for Comparing Order of Growth

- $\lim_{n\to\infty}\frac{t(n)}{g(n)}=0$, implies that t(n) has a smaller order of growth than g(n)
- $\lim_{n\to\infty} \frac{t(n)}{g(n)} = c$, c > 0, implies that t(n) has the same order of growth as g(n)
- $\lim_{n\to\infty}\frac{t(n)}{g(n)}=\infty$, implies that t(n) has a larger order of growth than g(n)
- Note that the first two cases mean that: $t(n) \in O(g(n))$
- Note that the last two cases mean that: $t(n) \in \Omega(g(n))$
- Note that the second case means that: $t(n) \in \Theta(g(n))$

Using Limits - Comments

- The previous formulas relating limits to big-Oh notation show once again that big-Oh notation ignores:
 - constants
 - behavior for small values of N.
- How do we see that?
 - In the previous formulas, it is sufficient that the limit is equal to a constant.
 The value of the constant does not matter.
 - In the previous formulas, only **the limit at infinity** matters. This means that we can ignore behavior up to any finite value, if we need to.