University of Toronto- Time series club Lecture 1 Data visualization I

Lim, Kyuson

05/18/2022

Today's learning goals

► Apply data transformation and visualization tools to explore the data.

Explore the data

- Ask questions about the data.
- Looking for answers by visualizing, transforming, and modeling your data.
- ▶ Refine your questions and/or generate new questions.
- ► Some type of questions to ask
 - What type of variation occurs within the variables?
 - What type of covariation occurs between the variables?

Grammar of graphics

- ▶ Any plot as a combination of a data set, a geom, a set of mappings, a stat, a position adjustment, a coordinate system, and a faceting scheme.
 - Extend the plot by adding one or more additional layer.
 - Start with a dataset and then transform it into the information that you want to display.
- ggplot2 package in R for graphical data analysis.

Simple plots

- Questions on one variable distribution or frequency distribution or questions on association between two or more variables.
- Lot of information on plots make hard to read/follow.
- Need coordinate system to make plots.

Coordinate system

- Create a coordinate system where we can add layers.
 - ▶ We can be explicit about function and corresponding package.

ggplot2::ggplot()

Coordinate system (cont.)

▶ If we loaded the package already, we can use the function ggplot().

```
library(ggplot2)
ggplot()
```

Data

- Let's use a dataset.
 - mpg dataset in ggplot2 package.
 - mpg dataset contains 234 observations collected by the US Environmental Protection Agency on 38 models of cars.
- Load some packages for data transformation.

library(magrittr)
library(dplyr)

▶ Load the data into the working environment.

data(mpg)

- Open help page in RStudio. Read the description about the data.
- ▶ Or type in console ?mpg to open help page.

Scatter plots

- Question: do cars with big engines use more fuel than cars with small engines?
 - ► Visualization method scatter plots.

```
ggplot(data = mpg) +
  geom_point(mapping = aes(x = displ, y = hwy)) +
  ylab("highway miles per gallon") +
  xlab("engine displacement, in litres")
```


- Interpret the scatter plot.
 - ► What kind of association, any outliers, what is the range of variables?

Cars with big engines use more fuel.

Scatter plot with transformation

- Question: One group of points (highlighted in red) seems to fall outside of the linear trend. How can we explain these cars?
 - * Color the points (cars) corresponding to displ > 5 & hwy
 - > 21.

- ▶ One group of points (highlighted in red) seems to fall outside of the linear trend. How can we explain these cars?
 - ► Interpret the plot?
 - hybrids?
 - ► No answer?

- Question: how association between displ and hwy within each class of vehicle.
 - Add aesthetic visual property of the objects in your plot (size, the shape, or the color).

Aesthetic

► Color points in the scatter plot by class variable.

► Interpret the plot?

- Unusual points are two-seater cars.
 - ► Hybrids? (unlikely because they have large engines).
 - ► Sport cars? (large engines, but small bodies).
- Not only color attribute, we can use shape as well
 - Shape points by class variable.
 - class type of car.

Exercise: Look at the plot. What is wrong?

- Exercise solution
 - We didn't have enough different shapes to refer to different classes.
 - So we may need to specify it.

 By default, additional groups will go unplotted when you use the shape aesthetic.

Facets

- Question: how association between displ and hwy within each class of vehicle.
 - Facet the scatter plot by class variable.

- Try to facet the plot on the combination of two variables (drv and cyl).
 - drv the type of drive train, where f = front-wheel drive, r = rear wheel drive, 4 = 4wd.
 - cyl number of cylinders.

Geometric objects

- ► Use different geoms.
 - Draw a smooth line.

- ▶ Not every aesthetic works with every geom.
 - ▶ linetype by drv the type of drive train,

This separates the cars into three lines based on their drv value.

► Two geoms in one plot.

To understand variation of categorical variable?

Consider another dataset from ggplot package.

?diamonds

carat	cut	color	clarity	depth	table	price	X
0.23	ldeal	Е	SI2	61.5	55	326	3.95
0.21	Premium	E	SI1	59.8	61	326	3.89
0.23	Good	E	VS1	56.9	65	327	4.05
0.29	Premium	1	VS2	62.4	58	334	4.20
0.31	Good	J	SI2	63.3	58	335	4.34
0.24	Very Good	J	VVS2	62.8	57	336	3.94

diamonds data set is in ggplot2 package. This dataset contains prices and attributes of 53940 diamonds.

▶ What is the distribution of cut variable?

To understand variation of categorical variable - barplot

- ▶ Barplot height of the bars displays how many observations occurred with each value.
- cut is a categorical variable (in R, factor or character).

```
ggplot(data = diamonds) +
geom_bar(mapping = aes(x = cut))
```


Statistical transformations

- How barplot is created?
 - ▶ Make frequency chart, then plot frequency bar plot.
 - Make relative frequency chart, then plot relative frequency bar plot.

```
(fre table <- diamonds %>%
  group_by(cut) %>%
  summarise(n = n())
## # A tibble: 5 x 2
## cut
                 n
## <ord> <int>
## 1 Fair
             1610
## 2 Good
            4906
## 3 Very Good 12082
             13791
## 4 Premium
## 5 Ideal
             21551
```

To understand variation of continuous variable

▶ What is the distribution of carat variable?

To understand variation of continuous variable - histogram

► Histogram - divides the x-axis into equally spaced bins and then uses the height of a bar to display the number of observations that fall in each bin.

- ► Histogram sensitive to width of the intervals (in R, binwidth).
- ▶ Do we see outliers?
 - ▶ Use carat < 3.

Figure 1: binwidth = 0.5 and binwidth = 0.1

- ► A Simply Statistics blog by Jeff Leek, Roger Peng, and Rafa Irizarry on evidence-based data analysis point out the methods in R for computing number of bins.
 - ▶ R uses Sturges' formula¹ to find a bin width.
 - David Scott² derive integrated mean squared error-based optimal histogram bin width.

¹The Choice of a Class Interval [@sturges1926choice]

²On Optimal and Data-Based Histograms [@scott1979optimal]

Multiple histograms in the same plot

What is the distribution of carat within each cut type of diamond?

Multiple histograms in the same plot - Frequency polygone

- Displaying the counts with lines.
 - geom_freqpoly()
- Display frequency polygon of carat for different cuts of diamonds.
 - Use color for different cut of diamonds

Missing values

- If there is an unusual value
 - ▶ Drop the entire row (not recommended).
 - Replace the value with NA.
- ggplot2 will warn you about missing values (can suppress using na.rm = TRUE).
- Sometimes NA has meaning
 - ▶ In flights data, dept_time is NA if the flight was cancelled.
 - Create a new variable from it.
 - Then, plot cancelled and not-cancelled by time.

Example - frequency polygone with missing vlaues

- Caution: one category has more count than other. Hard to compare it.
- ▶ Resolve: Use density plot (right plot) count standardized so that the area under each frequency polygon is one.

Covariation

- Some questions to ask.
 - ► Could this pattern be due by random chance?
 - ▶ How can we describe the relationship implied by the pattern?
 - ► How strong is the relationship implied by the pattern?
 - What other variables might affect the relationship?
 - Does the relationship change if we look at individual subgroups of the data?

A categorical and continuous variable

▶ What is the diamond price distirbution by cut type?

A categorical and continuous variable - frequency polygon

Fair diamonds (the lowest quality) have the highest average price.

- Little hard to interpret shape depends on the binwidth.
 - Any other tools?

A categorical and continuous variable - boxplot

➤ A box, Whisker, 25th percentile, 50th percentile, 75th percentile, outliers

Counter intuitive finding that better quality diamonds are cheaper on average.

Is there any other variables determine the price?

A categorical and continuous variable - violine plot

- ➤ Violin plot similar to a box plot, includes rotated kernel density plot.
 - ► Kernel density plot nonparametric way of estimating the density of a random variable³
 - ► Violin plot can add a marker for the median and a box or marker showing the interquartile range

³A reference to my lecture slides

Human interpretation about patterns

► Magical thinking⁴: natural human inclination to over-interpret connections between random events .

⁴Theories of data analysis: From magical thinking through classical statistics [@thinking1985]

Two continuous variables - scatterplot

▶ Which plot shows the higher degree of association? (left/right)

Scatterplot

► Scale does change the perception of a viewer.

Two continuous variables - scatterplot

- ► Concern: overplot for large dataset .
 - For example microbiome data, neuro data (MRI), spatial transcriptomics data.
- Resolve
 - Add alpha aesthetic to the plot, but transparency can be challenging for very large datasets.

Two continuous variables (large dataset)

Two continuous variables (large dataset) - hex plots

- Association between mean and standard deviation of biomarkers in high-throughput data (thousands or millions of variables).
 - ▶ Use geom_hex().

Two continuous variables - geom_bin2d() and geom_hex()

- ▶ Divide the coordinate plane into 2d bins.
- Use a fill color to display how many points fall into each bin.

Two continuous variables - bin one continuous variable

- Now use the techniques for one continuous and categorical.
- ► For example, bin carat (by width 0.1), then boxplot of price for each bin.
 - ▶ Difficult to tell that each boxplot summarizes a different number of points.
 - Set the width of the boxplot proportional to the number of points with varwidth = TRUE.

Two continuous variables - bin one continuous variable

To understand variation of two continuous variables (any clusters?) - contour plot

- ► The geyser data set contains a total of 299 observations of eruption duration (in minutes) and waiting time (in minutes, for this eruption) for the Old Faithful geyser⁵.
- Available as geyser in MASS package.

⁵A look at some data on the Old Faithful geyser [@azzalini1990look]

Contour plot - identify patterns

- Observation three clusters.
- Suppose variation increases uncertainty, covariation reduces it so we can use one to predict the other.
- ➤ Causal if the covariation is due to a causal relationship (a special case), then we can use the value of one variable to control the value of the second.
 - Example, design of experiment.

Next

► See some R codes

Next lecture

► More on data visualization (categorical data, interactive plots, Shiny, networks, word cloud)

References