Les applications linéaires entre e.v.

M4 – Chapitre 2

Soient E, F des e. v. et $\varphi : E \to F \text{ une application linéaire}$

I. Définitions

$$\varphi$$
 est une application linéaire $\Leftrightarrow \begin{cases} \forall \ (u,u') \in E^2 & \varphi(u+u') = \varphi(u) + \varphi(u') \\ \forall \ (u,\alpha) \in E \times \mathbb{R} & \varphi(\alpha u) = \alpha \cdot \varphi(u) \end{cases}$

Exemples : Id, homothétie $(h_k(u)=ku)$, rotation $(R_{\alpha}(z)=ze^{i\alpha}=h_{e^{i\alpha}})$, projection vectorielle.

- $\mathcal{L}(E;F)$: ensemble des applications linéaires de $E \to F$
- $\mathcal{L}(E; E) = \operatorname{End}(E)$: ensemble des endomorphismes de $E \to E$

II. Noyau et image

1. Définitions

$$\operatorname{Im} \varphi = \{v \in F \mid \exists \ u \in E, \varphi(u) = v\} = \operatorname{Vect} (\varphi(e_1), ..., \varphi(e_n))$$

$$\operatorname{Ker} \varphi = \{u \in E \mid \varphi(u) = 0\}$$

$$\operatorname{rang} \varphi = \dim \operatorname{Im} \varphi$$

2. Propriétés

- Im φ s.e. v de F
- Ker φ s. e. v. de E
- φ surj. \Leftrightarrow Im $\varphi = F$
- φ inj. \Leftrightarrow Ker $\varphi = \{0\}$

III. Théorème du rang

$$\dim E = \dim \operatorname{Ker} \varphi + \dim \operatorname{Im} \varphi$$

- $\dim \operatorname{Im} \varphi \leq \dim E$
- $\varphi \in \text{End}(E)$ et φ injective ou surjective $\Rightarrow \varphi$ bijective

IV. Projecteurs

$$p$$
 est un projecteur $\Leftrightarrow p^2 = p$ $(p^2 = p \circ p)$

$$p(u) = u - \lambda v$$
 pour une projection parallèle à v