Rank Deficiency and Ill-Conditioned Least Square Problems

Edward Kang

Abstract

In least squares problems, ill-conditioning happens when explanatory factors are correlated for regression problems. When there is a lot of correlation, we may have a rank deficiency problem. There are generally three approaches to solving rank deficiency problem: regularization, parameter subset selection, and principal components analysis. We are going to focus on the topic of the singular value decomposition.

Introduction

We always have to deal with rank-deficient matrices that are corrupted by noise. When our matrix comes from some kind of measurement that has uncertainty associated with it, it will be quite far from rank-deficient even if the underlying "true" matrix is rank-deficient.

SVD is a good tool for dealing with numerical rank issues, and we want to show that if a singular value is small then the norm could be large.

Definitions

Least squares problems are a special sort of minimization. Suppose $A \in R^{m \times n}$ and m > n. In general, we will not be able to exactly solve overdetermined equations Ax = b; the best we can do is to minimize the residual r = b - Ax. In least squares problems, we minimize the two-norm of the residual:

minimize
$$||Ax - b||_2^2$$

However, in regression problems, the columns of A correspond to explanatory factors and ill-conditioning happens when the explanatory factors are correlated. When there is a lot of correlation and the columns of A are truly linearly dependent, or when A is contaminated by enough noise that a moderate correlation seems dangerous, then we may declare that we have a rank-deficient problem.

The singular value decomposition (SVD) is important for solving least squares problems and for a variety of other approximation tasks in linear algebra. For $A \in \mathbb{R}^{m \times n2}$, we write

$$A = U\Sigma V^{T}$$

where $U \in R^{m \times m}$ and $V \in R^{n \times n}$ are orthogonal matrices and $\Sigma \in R^{m \times n}$ is diagonal. The diagonal matrix Σ has non-negative diagonal entries $\sigma 1 \geq \sigma 2 \geq \ldots \geq \sigma n \geq 0$. The σ are called the singular values of A.

If we substitute $A = U\Sigma V^T$ in the least squares residual norm formula, we can "factor out" U just as we pulled out the Q factor in QR decomposition

$$||Ax - b|| = ||U\Sigma V^T x - b|| = ||\Sigma \tilde{x} - \tilde{b}||$$
, where $\tilde{x} = V^T x$ and $\tilde{b} = U^T b$.

Where $\tilde{x} = V^T x$ and $\tilde{b} = U^T b$. Note that $||\tilde{x}|| = ||x||$ and $||\tilde{b}|| = ||b||$. If A has rank r, then singular values $\sigma r + 1, \ldots, \sigma n$ are all zero. In this case, there are many different solutions that minimize the residual — changing the values of $\tilde{x}r+1$ through $\tilde{x}n$ does not change the residual at all. One standard way to pick a unique solution is to choose the minimal norm solution to the problem, which corresponds to setting $\tilde{x}r+1 = \ldots = \tilde{x}n = 0$. In this case, the Moore-Penrose pseudoinverse is defined as

$$A^+ = V\Sigma^+ U^T$$

where $\Sigma^+ = \text{diag}(\sigma 1, \sigma 2, ..., \sigma r)$ and U and V consist of the first r left and right singular vectors. We solve the problem $Ax \approx b$ by writing $x = A^+b$.

Algorithm for Pseudoinverse

- 1. Perform a singular value decomposition $A = U\Sigma V^{T}$
- 2. Check for small singular values in $\Sigma\Sigma$. A common criterion is that anything less than $\|A\|\epsilon$ is small. Set those singular values to zero.
- 3. Form $\Sigma^+ = \text{diag}(\sigma 1, \sigma 2, ..., \sigma r)$. Reciprocating the nonzero singular values, and leave the zero ones untouched.
- 4. $A^+ = V\Sigma^+U^T$

Code for Checking Singular Values

```
[U,S,V] = svd(A); sigma = diag(S);
% compute exact data
xex = ones(n,1); bex = A*xex;
for i = 1:n-1
% data perturbation
deltad = (n-1)^(-i)*(0.5-rand(size(dex))).*dex;
d = dex+deltad;
% solution of perturbed linear least squares problem
w = U'*d;
x = V * (w(1:n) ./ sigma);
errx(i+1) = norm(x - xex); errd(i+1) = norm(deltad);
end
loglog(errd,errx,'*');
ylabel('||x^{ex} - x||_2'); xlabel('||\delta d||_2')
```

Numerical Examples

Suppose that the data d are $d=dex+\delta d$. Where δd represents the measurement error. Using the function $\underline{shaw.m}$ to generate the matrix and vector in the least squares problem, then compute the σ to see whether if a singular value small, the norm could be large.

A =

	1	2	3	4	5	6	7
1	4.5029e-07	4.4945e-05	6.4288e-04	0.0034	0.0089	0.0105	0.0024
2	4.4945e-05	3.3199e-04	0.0020	0.0071	0.0144	0.0131	0.0011
3	6.4288e-04	0.0020	0.0060	0.0140	0.0196	0.0100	9.6456e-04
4	0.0034	0.0071	0.0140	0.0211	0.0167	7.9076e-04	0.0284
5	0.0089	0.0144	0.0196	0.0167	0.0023	0.0172	0.1502
6	0.0105	0.0131	0.0100	7.9076e-04	0.0172	0.1423	0.4222
7	0.0024	0.0011	9.6456e-04	0.0284	0.1502	0.4222	0.7494
8	0.0047	0.0146	0.0537	0.1696	0.4095	0.7184	0.8863
9	0.0437	0.0861	0.1852	0.3743	0.6282	0.7997	0.7184
10	0.0966	0.1718	0.3045	0.4893	0.6435	0.6282	0.4095
11	0.1140	0.2001	0.3230	0.4488	0.4893	0.3743	0.1696
12	0.0866	0.1617	0.2541	0.3230	0.3045	0.1852	0.0537
13	0.0435	0.0979	0.1617	0.2001	0.1718	0.0861	0.0146
14	0.0113	0.0435	0.0866	0.1140	0.0966	0.0437	0.0047
	8	9	10	11	12	13	14
	0.0047	0.0437	0.0966	0.1140	0.0866	0.0435	0.0113
	0.0146	0.0861	0.1718	0.2001	0.1617	0.0979	0.0435
	0.0537	0.1852	0.3045	0.3230	0.2541	0.1617	0.0866
	0.0537 0.1696	0.1852 0.3743	0.3045 0.4893	0.3230 0.4488	0.2541 0.3230	0.1617 0.2001	0.0866 0.1140
:	0.1696	0.3743	0.4893	0.4488	0.3230	0.2001	0.1140
	0.1696 0.4095	0.3743 0.6282	0.4893 0.6435	0.4488 0.4893	0.3230 0.3045	0.2001 0.1718	0.1140 0.0966
	0.1696 0.4095 0.7184	0.3743 0.6282 0.7997	0.4893 0.6435 0.6282	0.4488 0.4893 0.3743	0.3230 0.3045 0.1852	0.2001 0.1718 0.0861	0.1140 0.0966 0.0437
	0.1696 0.4095 0.7184 0.8863	0.3743 0.6282 0.7997 0.7184	0.4893 0.6435 0.6282 0.4095	0.4488 0.4893 0.3743 0.1696	0.3230 0.3045 0.1852 0.0537	0.2001 0.1718 0.0861 0.0146	0.1140 0.0966 0.0437 0.0047 0.0024
	0.1696 0.4095 0.7184 0.8863 0.7494	0.3743 0.6282 0.7997 0.7184 0.4222	0.4893 0.6435 0.6282 0.4095 0.1502	0.4488 0.4893 0.3743 0.1696 0.0284	0.3230 0.3045 0.1852 0.0537 9.6456e-04	0.2001 0.1718 0.0861 0.0146 0.0011	0.1140 0.0966 0.0437 0.0047
	0.1696 0.4095 0.7184 0.8863 0.7494 0.4222	0.3743 0.6282 0.7997 0.7184 0.4222 0.1423	0.4893 0.6435 0.6282 0.4095 0.1502 0.0172	0.4488 0.4893 0.3743 0.1696 0.0284 7.9076e-04	0.3230 0.3045 0.1852 0.0537 9.6456e-04 0.0100	0.2001 0.1718 0.0861 0.0146 0.0011 0.0131	0.1140 0.0966 0.0437 0.0047 0.0024 0.0105 0.0089
	0.1696 0.4095 0.7184 0.8863 0.7494 0.4222 0.1502	0.3743 0.6282 0.7997 0.7184 0.4222 0.1423 0.0172	0.4893 0.6435 0.6282 0.4095 0.1502 0.0172 0.0023	0.4488 0.4893 0.3743 0.1696 0.0284 7.9076e-04 0.0167	0.3230 0.3045 0.1852 0.0537 9.6456e-04 0.0100 0.0196	0.2001 0.1718 0.0861 0.0146 0.0011 0.0131	0.1140 0.0966 0.0437 0.0047 0.0024 0.0105
	0.1696 0.4095 0.7184 0.8863 0.7494 0.4222 0.1502 0.0284	0.3743 0.6282 0.7997 0.7184 0.4222 0.1423 0.0172 7.9076e-04	0.4893 0.6435 0.6282 0.4095 0.1502 0.0172 0.0023 0.0167	0.4488 0.4893 0.3743 0.1696 0.0284 7.9076e-04 0.0167 0.0211	0.3230 0.3045 0.1852 0.0537 9.6456e-04 0.0100 0.0196 0.0140	0.2001 0.1718 0.0861 0.0146 0.0011 0.0131 0.0144 0.0071	0.1140 0.0966 0.0437 0.0047 0.0024 0.0105 0.0089

b =	$\mathbf{x} =$	For $n = 14$, $\sigma =$
0.6047	0.1592	2.993428170119102e+00
1.1012	0.3402	1.857061621960602e+00
1.8573	0.5946	1.034629824533204e+00
2.7718	0.8497	3.939756969825725e-01
3.4799	0.9926	5.887209995808784e-02
3.6127	0.9489	3.473468774152014e-02
3.2987	0.7538	2.467635507378432e-02
3.0062	0.5896	3.678806230766344e-03
2.8041	0.7980	9.088096029912202e-04
2.3948	1.5249	3.910056998180689e-05
1.7409	2.0342	1.682334949410932e-06
1.0905	1.5463	6.353708268792253e-07
0.6204	0.6478	9.547130253058336e-08
0.3373	0.1486	2.196890154043734e-09

The error for different value of different values of $\|\delta d\|$:

We see that small perturbations δd in the measurements can lead to large errors in the solution x of the linear least squares problem if the singular values of A are small.

Conclusion Remarks

SVD is a good tool for dealing with numerical rank issues. One standard way to pick a unique solution is to choose the minimal norm solution by Moore-Penrose pseudoinverse. In addition, we show that a small singular value could lead to large norm. A common criterion is that anything less than $\|A\| \in \mathbb{R}$ is small. Set those singular values to zero. However, pseudoinverse is a computationally expensive operation. For future study, we want to find a cheaper but also stable operation.

References

- "3. Methods for Rank-Deficient Problems." *Rank-Deficient and Discrete Ill-Posed Problems* (1998): 45-67. Web. 6 Mar.2016
- "Least Squares Problems." SpringerReference (n.d.): n. pag. Web. 6 Mar. 2017.
- "Linear Least-Squares Estimation: Fundamentals." *Advanced Kalman Filtering, Least-Squares and Modeling* (2011): 101-38. Web. 6 Mar. 2017.
- "QR Factorization, Singular Value Decomposition, and Projections." *Numerical Linear Algebra and Applications* (n.d.): 181-236. Web. 6 Mar. 2017