

Laboratório de Física I - Turma ZOO B

Mariana Cosseti Dalfior¹; Sarah Venancio Severo²; Sofia de Oliveira Pessanha².

¹Graduanda em Ciências da Computação

²Graduanda em Zootecnia

RELATÓRIO DA PRÁTICA - MOVIMENTO RETILÍNEO UNIFORMEMENTE VARIADO

Campos dos Goytacazes/RJ 23 de maio de 2022

1. INTRODUÇÃO

O mundo está sempre em movimento, mesmo objetos que aparentam estar parados estão em movimento devido a um referencial, como a rotação da Terra. A comparação e classificação do movimento é chamada de cinemática.

Galileu Galilei descobriu em 1904 a lei do movimento uniformemente variável, que consistia em dizer que a velocidade da queda de um corpo irá crescer uniformemente com o tempo.

O experimento realizado é de grande importância para que tenha entendimento dessa teoria. Sendo o objetivo desse experimento familiarização com o uso de tabelas e gráficos na análise das relações entre as grandezas medidas. Sendo assim, realizamos o experimento do Movimento Retilíneo Uniformemente Variado (MRUV).

2. OBJETIVOS

- Observar o MRUV
- Construir o gráfico posição versus tempo ao quadrado
- Fazer o ajuste linear dos dados
- Calcular a aceleração móvel

3. MODELO TEÓRICO

Quando o movimento de um corpo é ao longo de uma reta e observa-se que para intervalos de tempos iguais, a velocidade varia uniformemente, diz-se que o corpo está em MRUV.

O movimento retilíneo uniformemente variado será aquele que segue uma trajetória retilínea e irá apresentar uma velocidade variável com a aceleração diferente de zero e constante.

Neste experimento foi necessário a realização de alguns cálculos, utilizando as seguintes fórmulas:

Cálculo da média: Me = $(t_1 + t_2 + t_3 + t_4 + t_5) \div 5$

Cálculo do erro das médias: $\sigma = \sqrt{\frac{\Sigma = 1(ti-t)^2}{n-1}}, ~\Delta t = \sqrt{\frac{\sigma}{\sqrt{n}}}$

Cálculo da aceleração: por meio do gráfico da posição em função de t², Sendo:

4. PROCEDIMENTOS EXPERIMENTAIS

4.1. MATERIAIS E INSTRUMENTO

- Trilho de ar Pasco
- Compressor Pasco
- Conjunto Fotogate Pasco
- Carrinho de metal
- Pesos

4.2. PROCEDIMENTOS E MÉTODOS

- Elevar uma das extremidades do trilho para formar um plano inclina
- Colocar o Fotogate que dispara o cronômetro imediatamente após o carrinho. Manter esse fotogate sempre na mesma posição. Observar que o carrinho será liberado do repouso.
- Para cada posição x, repetir 5 vezes a medida do tempo t
- Preencher Tabela 2 calculando o valor médio do tempo e o erro associado.
- Efetuar vários lançamentos, cada vez afastando de 10cm o Fotogate que interrompe a contagem.
- Pesar o carrinho e anotar na Tabela 2. Em seguida, aumentar a massa do carrinho e repetir os itens anteriores, preenchendo a Tabela 3.

5. RESULTADO

Tabela 1: Posição e erro do fotogate com display

$x_o \text{ (cm)}$ 19,72 $\Delta x \text{ (cm)}$ $\pm 0,1$
--

abela 2: Res	ultados das i	medidas para	$Massa_1 = 1$	179g			
x (cm)	t ₁ (s)	t ₂ (s)	t ₃ (s)	t_4 (s)	t ₅ (s)	\bar{t} (s)	$\Delta ar{t}$ (s)
29,72	0,7859	0,7747	0,7706	0,7639	0,7633	0,7717	0,0090
39,72	1,0901	1,0929	1,0904	1,0939	1,0921	1,0919	0,0016
49,72	1,3485	1,3471	1,3486	1,3474	1,3484	1,3480	0,0006
59,72	1,6099	1,5960	1,5937	1,5944	1,5935	1,5975	0,0070
69,72	1,7936	1,7939	1,7982	1,7931	1,8039	1,7965	0,0046
79,72	1,9684	1,9664	1,9675	1,9679	1,9724	1,9825	0,0023
89,72	2,1255	2,1224	2,1220	2,1275	2,1383	2,1271	0,0066
	2,3013	2,2857	2,2892	2,0954	2,3055	2,2954	0,0082
109.77	2,4268	2,4277	2,4334	2,4381	2,4355	2,4319	0,0049
119,72	2,5697	2,5696	8,5759	2,5694	9,5755	2,5720	0,0034

- → Para realizar esse lançamento foi utilizado uma massa = 179g e em cada posição x(cm), realizou-se 5 lançamentos e calculou-se a média do tempo de cada posição e calculou-se o erro da média, foi utilizado as fórmulas:
- Me = $(t_1 + t_2 + t_3 + t_4 + t_5) \div 5$

•
$$\sigma = \sqrt{\frac{\Sigma = 1(ti - t)^2}{n - 1}}, \quad \Delta t = \sqrt{\frac{\sigma}{\sqrt{n}}}$$

1)	1 (-)		1			771	47/1
x (cm)	t_1 (s)	t ₂ (s)	t ₃ (s)	t ₄ (s)	t ₅ (s)	\bar{t} (s)	$\Delta \bar{t}$ (s)
29,72	0,7770	0,7816	0.7744	0,7734	0,7779	0,7769	0,003
39,72	1,1094	1,1090	1,1112	1,1068	1,3338	1,4096	0,0000
49,72	1,3940	1,3933	1,3960	1,3987	1,4001	1,3964	0,0020
59,72	1,6146	1,6001	1,5967	1,6020	1,6064	1,6040	0,0069
69,72	1,8112	1,7925	1,8211	1,8128	1,8093	1,8094	0,0104
79,72	1,9744	1,9933	1,9710	1,9650	1,9686		
89,72	2,1331	2,1311	2,1258	2,1280	2,1314	2,4299	0,0029
	2,3928	2,3023	2,3093	2,3185	2,2896	2,3025	
109,72		2,4266	2, 43 43		2,4472	2,4334	
		2,5633	2,5534	2.5862	2,5691	2,5669	10,0124

→ Para a realização da tabela 3 foi feito o mesmo método da tabela 2, porém com massa igual a 279g

6. ANÁLISE DOS RESULTADOS E DISCUSSÃO

Para realização da tabela 4 foi transcrito as posições x(cm) tanto para a $massa_1$, quanto para a $massa_2$, e o valor do tempo médio e calculou-se o quadrado do tempo médio $(t)^2$.

$Massa_1 =$	179a		$Massa_2 = 279 \mathrm{g}$			
x(cm)	$ ar{t}(s) ^0$	$(\bar{t})^2(s^2)$	x(cm)	$\bar{t}(s)$	$(\bar{t})^2(s^2)$	
29,72	0,7717	0,5955	29,72	0,7769	0,603	
39,72	1,0919	1,1922	39,72	1,1096	1,2312	
49,72	1,3480	1,8171	49,72	1,3964	1,9499	
59,72	1,5975	2,5520	59,72	1,6040	2,5728	
69,72	1,7965	3,2274	69,72	1,8094	3,2739	
79,72	1,9825	3,9303	79,72	1,9745	3,8986	
89,72	2,1271	4,5245	89,72	2,1299	4,5364	
99,72	2,2954	5,2689	99,72	2,3025	5,3015	
109,72	2,4319	5,9141	109,72	2,4334	5,9214	
119,72	2,57,20	6,6152	119.72	2,5669	6,5889	

A partir desses dados, foi feito o gráfico 1 da posição em função do tempo (t²)

Gráfico 1: posição em função do tempo²

Gráfico 2: posição em função do tempo² e cálculo da aceleração

- → Aplicando a equação do mruv, temos que: $S = So + Vot + \frac{1}{2}at^2 \rightarrow$ $S = So + \frac{1}{2}am$, sendo m = t². Nisso temos uma equação de primeiro grau, em que $\frac{a}{2}$ é o coeficiente angular, logo temos: $tg\theta = \frac{a}{2} \rightarrow a = 2tg\theta \rightarrow a = 2\frac{co}{ca}$
- → O cálculo da aceleração foi feito então através das medidas do gráfico 2, ficando igual a: $a=2\frac{89,72-59,72}{4.5245-2.5520} \rightarrow a=2\times15,21=30,42 \text{ cm/s}^2$

No experimento foi possível observar que há apenas 2 forças atuando sobre o carrinho, sendo elas a força peso e a força normal.

Observou-se também que as massas não interferiu no movimento, pois a fórmula decomposta do MRUV ($S = So + \frac{1}{2}am$) despreza a massa, e quando chegamos ao resultado no momento de fazer o gráfico, não foi encontrado discrepância entre os pontos das mesmas posições.

Para que seja feito o cálculo da aceleração em plano inclinado, é necessário antes saber quais são as forças atuantes e encontrar a força resultante, fazendo a decomposição da força peso em dois planos (x e y). Dessa forma, as componentes igual a Py, paralelo ao plano e Px perpendicular ao plano.

Para encontrar então a aceleração nesse plano, desconsiderando o atrito, irá ser utilizado as relações trigonométricas do triângulo retângulo: $Px = Psen\theta$ e $Py = Pcos\theta$. Então, de acordo com a 2ª Lei de Newton, temos que: F = m.a Sendo,

F= força; m= massa; a= aceleração Logo, $Px=m\times a\to Psen\theta=mxa\to m\times g\times sen\theta=m\times a\to a=g\times sen\theta$

Então, consegue-se observar que a fórmula da aceleração do plano inclinado desconsiderando o atrito e a massa é: $a = g \times sen\theta$

7. CONCLUSÃO

Dessa forma, podemos concluir que o movimento retilíneo uniformemente variado que segue uma trajetória retilínea e apresenta uma velocidade variável quando sua a aceleração é diferente de zero. Sendo desprezado a massa do carrinho e o atrito com o plano.

8. REFERÊNCIAS

SOARES, P. A. T.; FERRARO, N. G.; JUNIOR, F. R. Os fundamentos da Física I. **Editora Moderna**, 9ed, 2007.

Whalker, Jearl. Fundamentos de física: Mecânica. Edição 8. LTC Editora, 2008