CHAPTER - 08

ORGANIC CHEMISTRY - SOME BASIC PRINCIPLES AND TECHNIQUES - PART I NOMENCLATURE AND ISOMERISM IN ORGANIC COMPOUNDS

SYNOPSIS

Nomenclature of Organic Compounds Nomenclature of Hydrocarbons

Rule 1: Longest Chain Rule

Select the longest continuous chain of carbon atoms as the parent chain. If some carbon - carbon multiple bond is present, the parent chain must contain the carbon atoms involved in it. The no. of carbon atoms in the parent chain determines the word 'root'. The carbon atoms which are not included in the parent chain are considered as alkyl substituents and are names as prefixes.

Prefix : methyl Prefix : ethyl, methyl Word root : hept Word root : but P. Suffix : ene P. Suffix : ene

If two equally long chains are possible, the chain with maximum no. of side chains is selected as parent chain. For eg.

$$\begin{array}{c} CH_{3} \\ CH_{3} - CH_{2} - CH - CH - CH_{3} \\ \\ CH - CH_{3} \\ \\ CH_{3} \end{array} \qquad \begin{array}{c} CH_{3} \\ \\ CH_{3} - CH_{2} - CH - C - CH_{3} \\ \\ \\ CH_{3} - CH_{3} \\ \\ \\ CH_{3} \end{array}$$

Correct

Three side chains

Wrong Two side chains

Rule 2: Lowest No. or lowest Sum Rule

2-methyl butane and Not 3-methyl butane

2, 2, 4 - trimethyl pentane and not

2, 4, 4 - trimethyl pentane

2, 7, 8 - trimethyl decane and not 3, 4, 9 - tri methyl decane

In case of unsaturated hydro carbons, the carbon atoms involved in the multiple bond should get the lowest possible number. For eg.

$$\begin{array}{cccc}
1 & 2 & 3 & 4 \\
CH_3 & -CH & -CH & = CH_2 \\
& & & & \\
& & & & \\
CH_3 & & & & \\
\end{array}$$

3-methyl but-1-ene (correct)

2-methyl but-3-ene (wrong)

Rule 3: Use of Prefixes Di, Tri etc.

2, 3 - Dimethyl pentane

eg.
$$CH_3$$
 CH_3 CH_3 CH_2 CH_3 CH_2 CH_3 CH_3 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_6 CH_7 CH_8 $CH_$

3, 3 - Dimethyl pentane

Rule 4: Alphabetical arrangement of Prefixes:

eg.
$$CH_3$$
 CH_3 CH_3 CH_4 CH_5 CH_5

3-ethyl - 2 - methyl pentane

3-ethyl - 2, 3 dimethyl pentane

Naming different alkyl substituents at the equivalent positions

3-ethyl - 4 - methyl hexane

Rule 5: Naming the complex alkyl substituent

eg.
$$\overset{9}{\text{CH}_3}$$
 — $\overset{8}{\text{CH}_2}$ — $\overset{7}{\text{CH}}$ — $\overset{6}{\text{CH}_2}$ — $\overset{5}{\text{CH}_2}$ — $\overset{4}{\text{CH}}$ — $\overset{3}{\text{CH}_2}$ — $\overset{2}{\text{CH}_3}$ — $\overset{2}{\text{CH}$

2, 2, 7 trimethyl - 4 - (1-methyl propyl) nonane

$$\begin{array}{c} 1 \\ 1 \\ \text{CH}_{3} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{3} \\ \text{CH}_{3} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} - \text{CH}_{2} \\ \text{CH}_{3} - \text{CH}_{3} \\ \text{CH}_{3} - \text{CH}_{3} \\ \end{array}$$

4 - (1, 1 - dimethyl ethyl) - 3 - ethyl - 4, 7 - dimethyl decane

The numerical prefixes bis, tris, tetrakis, pentakis etc. are used to indicate a multiplicity of substituted substituents. The name of the substituted substituent is enclosed in parenthesis.

For eg.
$$CH_2Cl$$
 CH_2Cl CH

$$\begin{array}{c} CH_3 \\ CH_3 \\ CH_3 \\ CH_2 \\ CH_2 \\ CH_2 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array} \begin{array}{c} 2\text{-methyl - 3, 3-bis (1-methyl ethyl) hexane} \\ 2\text{-methyl - 3, 3-bis (1-methyl ethyl) hexane} \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \\ CH_3 \end{array}$$

Nomenclature of compounds having one functional group

Rule 1: Longest chain rule

Select the longest continuous chain of the carbon atoms as parent chain. The selected chain must include the carbon atoms involved in the functional groups like -COOH, -CHO, -CN etc. or those which carry the functional groups like -OH, -NH₂, -Cl, -NO₂ etc. The number of carbon atoms in parent chain decides the word root.

Rule 2: Lowest No. rule

The carbon atoms of the parent chain are numbered in such a way so that the carbon atom of the functional group gets the lowest possible number. In case the functional group does not have the carbon atom, then the carbon atom of the parent chain attached to the functional groups should get the lowest possible number.

Eg.
$$\overset{7}{\text{CH}_3}$$
 — $\overset{6}{\overset{}_{\text{CH}_2}}$ — $\overset{5}{\overset{}_{\text{CH}}}$ — $\overset{4}{\overset{}_{\text{CH}}}$ — $\overset{3}{\overset{}_{\text{CH}}}$ — $\overset{2}{\overset{}_{\text{CHO}}}$ — $\overset{1}{\overset{}_{\text{CHO}}}$

5 - ethyl hept - 3 - enal

$$\overset{3}{\text{CH}_3} = \overset{2}{\text{CH}} = \overset{1}{\text{CH}_2} = \text{OH}$$
 $\overset{2}{\text{CH}_3} = \overset{2}{\text{CH}_3} = \overset{1}{\text{CH}_2} = \overset{2}{\text{CH}_3} = \overset{2$

$$^{4}_{CH_{3}}$$
 $\overset{3}{\longrightarrow}^{2}_{CH}$ $\overset{1}{\longrightarrow}^{0}_{CH}$ $\overset{O}{\longrightarrow}^{O}_{CH}$ But - 2 - en - 1 - oic acid

$$CH_3$$
 CH_3
 CH_3

$$\begin{array}{c} CH_3 & O \\ 2 & 1 \parallel \\ CH_2 = C & -C & -OC_2H_5 & \text{Ethyl - 2 - methyl prop-2-enoate} \\ \\ CH_3 & CH_3 & \\ CH_3 & -CH & -CH & -CH_2NH_2 & 2, 3 - Dimethyl butan - 1 - amine \\ 4 & 3 & 2 & 1 \\ \end{array}$$

Naming the compounds with more than one similar functional groups.

Pentane - 1, 2, 4, 5 - tetra carboxylic acid

The carboxyl groups which are not directly linked to the principal chain are expressed by carboxy alkyl prefixes.

$$^{6}_{\text{CH}_{3}}$$
— $^{5}_{\text{CH}}$ $^{4}_{\text{CH}_{2}}$ $^{3}_{\text{CH}}$ $^{2}_{\text{CH}}$ $^{1}_{\text{CH}_{2}}$ —СООН $^{1}_{\text{CH}_{2}}$ СООН

3-(carboxy methyl) hexane - 1, 2, 6 - tri carboxylic acid

Naming the compounds with two or more different functional groups

If the molecule contains more than one dissimilar functional groups, the parent chain must contain maximum possible numbers of functional groups. The numbering of the parent chain is done in such a way so that the functional group of higher priority gets the lower number. The order of priority of various groups for the sake of numbering is, carboxylic acid > Sulphonic acid > acid anhydride > esters > acid chlorides > amides > nitriles, iso cyanides > aldehydes > Ketones > alcohols > amines > alkenes, alkynes > halo, nitro, alkoxy > alkyl

The functional group which gets priority is treated as principal functional group and is indicated by the 2° suffix. One the other hand, the other functional group in the compound are considered as substituents and are indicated by suitable prefixes. The prefixes for such functional groups have been given as:

Functional Group	Prefix	Functional Group	Prefix
-OH	Hydroxy	-соон	carboxy
-CN	Cyano	-COOR	carbalkoxy
-NC	Isocyano	-COCI	chloroformyl
-CHO	formyl	-CONH ₂	carbamoyl
-SH	mercapto	-NH ₂	amino
-SR	Alkyl thio	>CO	keto

Isomerism

The phenomenon of existence of two or more compounds possessing the same molecular formula but different physical and chemical properties is knon as isomerism

There are two main types of isomerism

- i) Structural isomerism
- ii) Stereo isomerism
- i) Structural isomerism: When the isomerism is due to the difference in the arrangment of atoms with in the molecule, the phenomenon is called structural isomerism

Some typical examples of different types of structural isomerism are given below

i) Chain isomerism or nuclear isomerism.

Chain isomers differ in the order in which the carbon atoms are bonded to each other

ii) Position isomerism

In this the position of substituents or functional groups are different

iii) Functional isomerism

Functional isomers have the same molecular formula but different functional groups

iv) Tautomerism

It is a special type of functional isomerism in which the isomers are in dynamic equilibrium with each other. Tautomerism arises due to the migration of a proton from one polyvalent atom to the other with in the molecule

v) Metamerism

This type of isomerism is due to the unequal distribution of carbon atoms on either side of the functional group

vi) Ring chain isomerism: If one isomer has open chain structure and the other has cyclic structure, then isomers are known as ring chain isomers

PART-I (JEE MAIN)

SECTION-I- Straight objective type questions

- 1. Which of the following is aromatic heterocyclic compound?
 - 1) Benzene
- 2) Tetrahydrofuran
- 3) Pyrrole
- 4) Phenol
- 2. Choose the option that shows the correct order of decreasing priority for functional groups
 - 1) -COOH, -COCl, -CHO, -OH, -NH2
 - 2) -NH2, -OH, -CHO, -COCl, -COOH
 - 3) -COOH, -CHO, -COCl, -OH, -NH2,
 - 4) -COCl, -COOH, -NH2, -CHO, -OH
- 3. The correct structure of 2-methylcyclohex-2-en-1-ol is

OH
$$CH_3$$
 OH CH_3 OH CH_3 OH CH_3 OH

4. **Assertion (A)** : IUPAC name of
$$CH_3$$
— CH — O — CH_2 — CH_2 — CH_3 is 2-ethoxy-2-methylpropane CH_3

Reason (R): In IUPAC nomenclature, ether is regarded as a hydrocarbon derivative in which a hydrogen atom is replaced with –OR or –OAr group.

In the light of the above statements choose the correct option

- 1) A is wrong but R is correct
- 2) A is correct but R is wrong
- 3) Both A and R are corect and R is the correct explanation of A
- 4) Both A and R are wrong
- The correct IUPAC name of the following compound is:

- 1) 5-chloro-4-methyl-1-nitrobenzene
- 2) 2-methyl-5-nitro-1-chlorobenzene
- 3) 3-chloro-4-methyl-1-nitrobenzene
- 4) 2-chloro-1-methyl-4-nitrobenzene

6. The correct IUPAC name of the following compound is

$$O_2N$$
 O_2N
 O_2N

- 1) 2-nitro-4-hydroxymethyl-5-amino benzaldehyde
- 2) 3-amino-4-hydroxymethyl-5-nitrobenzaldehyde
- 3) 5-amino-4-hydroxymethyl-2-nitrobenzaldehyde
- 4) 4-amino-2-formyl-5-hydroxymethyl nitrobenzene
- 7. The IUPAC name of the following compound is

- 1) 2, 5-dimethyl-5-carboxyhex-3-enal
- 3) 2, 5-dimethyl-6-oxohex-3-enoic acid
- 2) 2, 5-dimethyl-6-carboxyhex-3-enal
- 4) 6-formyl-2-methylhex-3-enoic acid

8. Match list I with list II

List - I (common name) List - II (IUPAC name)

- i) Catechol
- ii) o-Cresol
- iii) Anisole
- iv) Vanillin
- v) Mesityl oxide
- 1) i -T, ii-R, iii-P, iv Q, v-S
- 2) i-T, ii-R, iii-Q, iv-S, v-P
- 3) i-R, ii-T, iii-P, iv-Q, v-S
- 4) i-R, ii-T, iii-Q, iv-S, v-P

- P) methoxy benzene
- Q) 4-hydroxy-3-methoxybenzaldehyde
- R) benzene-1,2-diol
- S) 4-methylpent-3-en-2-one
- T) 2-methylphenol

9. Identify the incorrectly matched pair

1) 2-methylpropan-2-ol: 3° alcohol

2) Ethylidene chloride: gem-dihalide

3) N,N - dimethyl methanamine: 3° amine

4) Propan-2-amine: 2° amine

- The IUPAC name of allylamine and CH₂ CH CH₂ are
 I
 I
 CN
 CN
 - 1) prop-1-en-2-amine and propane-1,2,3-tricarbonitrile
 - 2) prop-2-en-1-amine and 3-cyano-1,5-pentanedinitrile
 - 3) prop-1-en-2-amine and 3 cyano 1, 5-pentanedinitrile
 - 4) prop-2-en-1-amine and propane-1,2,3-tricarbonitrile

SECTION-II - Numerical Type Questions

- 11. Total number of structural isomers for C₆H₁₄ and C₇H₁₆ is ——
- The total number of stereoisomers possible for a compound of the molecular formula CH₃ - CH = CH - CH(OH) - Me is _____
- The total number of chiral compound/s from the following is ______

- 14. How many monochloroderivatves (including stereoisomers) are possible for 2-methylpentane?
- 15. How many optically active stereoisomers are possible for butane-2,3-diol?

PART-II (JEE ADVANCED)

Section-III - Only one option correct type

16. IUPAC name of the compound
$$CH_3$$
 — C — CH_2 — C — CH_3

- A) Methoxybutan-2,4-dione
- B) Methyl-3-oxobutanoate
- C) 3-oxomethylbutanoate
- D) 2-oxomethylbutanoate

- A) 3-ethyl-1,1-dimethylcyclohexane and 1-ethyl-3-methylcyclohexane
- B) 3-ethyl-1, 1-dimethylcyclohexane and 1-methyl-3-ethylcyclohexane
- C) 1-ethyl-3,3-dimethylcyclohexane and 1-ethyl-3-methylcyclohexane
- D) 1-ethyl-3,3-dimethylcyclohexane and 1-methyl-3-ethylcyclohexane

- A) geometrical isomerism only
- B) optical isomerism only
- C) both geometrical and optical isomerism
- D) Neither geometrical nor optical isomerism
- 19. Which of the following compounds exhibits stereoisomerism?
 - A) 2-methylbut-1-ene

B) 3-methylbut-1-yne

C) 3-methylbutanoic acid

- D) But-2-enoic acid
- 20. Which of the following compounds can show geometrical isomerism?

21. The following two structures are

- A) Enantiomers
- B) Diastereomers
- C) Identical
- D) Meso forms

22. Statement-I: Meso tartaric acid is optically inactive

Statement-II: Mesotartaric acid has two chiral centres

- A) Statement-I is incorrect and Statement-II is correct
- B) Both Statement-I and Statement-II are correct
- C) Both Statement-I and Statement-II are incorrect
- D) Statement-I is correct and Statement-II is incorrect

Section IV - One or more option correct type

23. Tautomerism is exhibited by

24. The correct statement(s) concerning the structures E, F and G is (are)

$$H_3C$$
 CH_3 CH_3

- A) E, F, and G are resonance structure
- B) E, F and E, G are tautomers
- C) F and G are geometrical isomers
- D) F and G are diastereomers

25. The correct statement(s) about the compound given below is (are)

- A) the compound is optically active
- B) the compound possesses centre of symmetry
- C) the compound possesses plane of symmetry
- D) the compound is optically inactive

- 26. The correct statement(s) about the compound $H_3C(HO)HC-CH=CH-CH(OH)CH_3(\mathbf{X})$ is/are
 - A) The total number of stereoisomers possible for X is 6
 - B) The total number of diastereomers possible for X is 3
 - C) If the stereochemistry about the double bond in X is trans, the number of enantiomers possible for X is 4
 - D) If the stereochemistry about the double bond in X is cis, the number of enantiomers possible for X is 2.
- In the Newman projection for 2, 2-dimethylbutane 27.

X and Y can respectively be

- (A) H and H

- (B) H and C_2H_s (C) C_2H_s and H (D) CH_s and CH_s
- Which of the given statement(s) about N, O, P and Q with respect to M is (are) correct? 28.

- (A) M and N are non-mirror image stereoisomers
- (B) M and O are identical
- (C) M and P are enantiomers
- (D) M and Q are identical

Section V - Numerical type questions

- 29. The total number of cyclic and acyclic isomers (including stereoisomers) possible for a compound with molecular formula C₅H₁₀ is ——
- Number of geometrical isomers possible for the following compound is ----30.

$$CH_3 - CH = C - C = CH - CH_3$$
Br Cl

31. How many of the following functional groups is/are always treated as prefix substituent(s) according to IUPAC system of nomenclature?

Section-VI - Matrix match type

32. Match the following

Column-I

I) Hydrocarbon with only 1° H atoms

- II) Hydrocarbon with no 3°C atom(s)
- III) Lactone
- IV) Lactam
- A) I-P, II Q, III- R, IV S
- C) I-S, II-R, III-P, IV-Q

Column-II

- B) I-Q, II P, III -S, IV R
- D) I-Q, II-PQ, III S, IV R

33. Match the following

Column I

I)
$$\text{CH}_3$$
 — C — O — C_2H_5 and C_2H_5 — C — O — CH_3

- II) $CH_3 CH_2 C = CH$ and $CH_3 C = C CH_3$
- III) CH_3 —CH— NH_2 and CH_3 - CH_2 - CH_2 - NH_2
- IV-) CH₃ CH₂ OH and (CH₃)₂O
- A) I Q, II Q, III R, IV P
- C) I P, II -Q, III Q, IV S

- Column II
- P) Metamers
- Q) Positions isomers
- R) Chain isomers
- S) Functional group isomers
- B) I P, II P, III Q, IV S
- D) I-P, II Q, III R, IV S