MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2.111J/18.435J/ESD.79 Quantum Computation

Problem 1. For the state $|\psi\rangle=\frac{1}{2^{n/2}}\sum_{x=0}^{2^n-1}(-1)^{f(x)}|x\rangle_1|g(x)\rangle_2$, where g(x) is a 1-1 function, find the partial trace $\rho_1\equiv tr_2(|\psi\rangle\langle\psi|)$ and calculate ${}^{\otimes n}\langle+|\rho_1|+\rangle^{\otimes n}$.

Solution:

$$|\psi\rangle\langle\psi| = \frac{1}{2^n} \sum_{x=0}^{2^n-1} \sum_{y=0}^{2^n-1} (-1)^{f(x)+f(y)} |x\rangle_1 \langle y| \otimes |g(x)\rangle_2 \langle g(y)|$$

Now, the fact that g(x) is a 1-1 function implies that for $x \neq y$, we have $g(x) \neq g(y)$, and therefore,

$$\langle g(x)|g(y)\rangle = \delta_{xy} = tr(|g(x)\rangle\langle g(y)|)$$

Using the above relation, we have

$$\begin{split} \rho_1 &\equiv tr_2(|\psi\rangle\langle\psi|) \\ &= \frac{1}{2^n} \sum_{x=0}^{2^n-1} \sum_{y=0}^{2^n-1} (-1)^{f(x)+f(y)} |x\rangle_1 \langle y| \otimes tr \left(|g(x)\rangle_2 \langle g(y)|\right) \\ &= \frac{1}{2^n} \sum_{x=0}^{2^n-1} \sum_{y=0}^{2^n-1} (-1)^{f(x)+f(y)} |x\rangle_1 \langle y| \delta_{xy} \\ &= \frac{1}{2^n} \sum_{x=0}^{2^n-1} (-1)^{f(x)+f(x)} |x\rangle_1 \langle x| \\ &= \frac{1}{2^n} \sum_{x=0}^{2^n-1} |x\rangle_1 \langle x| \\ &= I_1/2^n \,. \end{split}$$

Now, the probability of measuring $|+\rangle^{\otimes n}$ is as follows

$$\begin{split} tr(\rho_1 \,|\, + \rangle^{\otimes n} \,\, \otimes^n \,\, \langle + \,|\,) &=^{\otimes n} \,\, \left\langle + \,\big|\, \rho_1 \,\big|\, + \right\rangle^{\otimes n} \\ &= \frac{1}{2^n} \,\, ^{\otimes n} \! \left\langle + \,\big|\, I_1 \,\big|\, + \right\rangle^{\otimes n} \\ &= \frac{1}{2^n} \,. \end{split}$$

Problem 2. Find $H^{\otimes n}R_{\alpha}H^{\otimes n}$ and $H^{\otimes n}T_{\alpha}H^{\otimes n}$ in simpler terms, where

$$R_{\alpha} = \sum_{x=0}^{2^{n}-1} (-1)^{x \cdot \alpha} |x\rangle \langle x|$$

and

$$T_{\alpha} = \sum_{x=0}^{2^{n}-1} |x \oplus \alpha\rangle\langle x|.$$

Solution:

We know

$$H^{\otimes n} = \frac{1}{2^{n/2}} \sum_{a,b=0}^{2^n-1} (-1)^{a \cdot b} |b\rangle \langle a|$$

 \Rightarrow

$$H^{\otimes n}T_{\alpha}H^{\otimes n} = \frac{1}{2^{n}} \sum_{a,b=0}^{2^{n}-1} \sum_{c,d=0}^{2^{n}-1} \sum_{x=0}^{2^{n}-1} (-1)^{a \cdot b + c \cdot d} |c\rangle \langle d|x \oplus \alpha \rangle \langle x|b\rangle \langle a|$$

$$= \frac{1}{2^{n}} \sum_{a,b=0}^{2^{n}-1} \sum_{c,d=0}^{2^{n}-1} \sum_{x=0}^{2^{n}-1} (-1)^{a \cdot b + c \cdot d} |c\rangle \delta_{d,x \oplus \alpha} \delta_{xb} \langle a|$$

$$= \frac{1}{2^{n}} \sum_{a=0}^{2^{n}-1} \sum_{c=0}^{2^{n}-1} \sum_{x=0}^{2^{n}-1} (-1)^{a \cdot x + c \cdot (x \oplus \alpha)} |c\rangle \langle a|$$

$$= \frac{1}{2^{n}} \sum_{a=0}^{2^{n}-1} \sum_{c=0}^{2^{n}-1} (-1)^{c \cdot \alpha} |c\rangle \langle a| \sum_{x=0}^{2^{n}-1} (-1)^{a \cdot x + c \cdot x}$$

$$= \frac{1}{2^{n}} \sum_{a=0}^{2^{n}-1} \sum_{c=0}^{2^{n}-1} (-1)^{c \cdot \alpha} |c\rangle \langle a| 2^{n} \delta_{ac}$$

$$= \sum_{a=0}^{2^{n}-1} (-1)^{a \cdot \alpha} |a\rangle \langle a|$$

$$= R_{\alpha \cdot \bullet}$$

Now, using $H^{\otimes n} = (H^{\otimes n})^{-1}$, we have

$$H^{\otimes n}R_{\alpha}H^{\otimes n}=T_{\alpha}.$$

Hint:
$$\sum_{x=0}^{2^n-1} (-1)^{a \cdot x} = 2^n \delta(a)$$
.

Problem 3. Find $U_p R_p U_p^{\dagger}$ and $U_p T_p U_p^{\dagger}$ in simpler terms, where

$$R_p = \sum_{x=0}^{p-1} \exp(2\pi xi/p) |x\rangle\langle x|$$

$$T_p = \sum_{x=0}^{p-1} |x + 1 \mod p \rangle \langle x|$$

$$U_p = \frac{1}{\sqrt{p}} \sum_{x=0}^{p-1} \sum_{y=0}^{p-1} \exp(2\pi i x y / p) |y\rangle \langle x|$$

and p is a prime number.

Solution:

$$\begin{split} U_p T_\alpha U_p^\dagger &= \frac{1}{p} \sum_{a,b=0}^{p-1} \sum_{c,d=0}^{p-1} \sum_{x=0}^{p-1} \exp\left(2\pi i (cd-ab)/p\right) | c \rangle \langle d|x+1 \rangle \langle x|b \rangle \langle a|, \text{ addition mod } p \\ &= \frac{1}{p} \sum_{a,b=0}^{p-1} \sum_{c,d=0}^{p-1} \sum_{x=0}^{p-1} \exp\left(2\pi i (cd-ab)/p\right) | c \rangle \delta_{d,x+1} \delta_{xb} \langle a| \\ &= \frac{1}{p} \sum_{a=0}^{p-1} \sum_{c=0}^{p-1} \sum_{x=0}^{p-1} \exp\left(2\pi i (cx+c-ax)/p\right) | c \rangle \langle a| \\ &= \frac{1}{p} \sum_{a=0}^{p-1} \sum_{c=0}^{p-1} \exp\left(2\pi i c/p\right) | c \rangle \langle a| \sum_{x=0}^{p-1} \exp\left(2\pi i (cx-ax)/p\right) \\ &= \frac{1}{p} \sum_{a=0}^{p-1} \sum_{c=0}^{p-1} \exp\left(2\pi i c/p\right) | c \rangle \langle a| p \delta_{ac} \\ &= \sum_{a=0}^{p-1} \exp\left(2\pi i a/p\right) | a \rangle \langle a| \\ &= R_p \, . \end{split}$$

Similarly, you can show that

$$U_p^{\dagger} R_p U_p = T_p$$

and

$$U_p R_p U_p^{\dagger} = T_p^{\dagger}$$
 .

$$\textbf{Hint:} \ \sum_{x=0}^{p-1} \exp\left(2\pi i a x \, / \, p\right) = \begin{cases} p & a \equiv 0 \pmod{p} \\ \frac{\exp\left(2\pi i a \, / \, p\right) - 1}{\exp\left(2\pi i a \, / \, p\right) - 1} = 0 & \text{otherwise} \end{cases}, \text{ for } a \in \mathbb{Z} \, .$$

Problem 4. Show that $U_2 \otimes U_3 = PU_6P^{-1}$ where U_p is defined in Problem 3, and P is a permutation matrix (a matrix with only one nonzero element 1 in each row and column).

Solution: It can be seen that

$$U_2 \otimes U_3 = \frac{1}{\sqrt{2}} \begin{bmatrix} U_3 & U_3 \\ U_3 & -U_3 \end{bmatrix} = \frac{1}{\sqrt{6}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \omega^2 & \omega^4 & 1 & \omega^2 & \omega^4 \\ 1 & \omega^4 & \omega^2 & 1 & \omega^4 & \omega^2 \\ 1 & 1 & 1 & \omega^3 & \omega^3 & \omega^3 \\ 1 & \omega^2 & \omega^4 \omega^3 & \omega^5 & \omega \\ 1 & \omega^4 & \omega^2 \omega^3 & \omega & \omega^5 \end{bmatrix}$$

and

$$U_{6} = \frac{1}{\sqrt{6}} \begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^{2} & \omega^{3} & \omega^{4} & \omega^{5} \\ 1 & \omega^{2} & \omega^{4} & 1 & \omega^{2} & \omega^{4} \\ 1 & \omega^{3} & 1 & \omega^{3} & 1 & \omega^{3} \\ 1 & \omega^{4} & \omega^{2} & 1 & \omega^{4} & \omega^{2} \\ 1 & \omega^{5} & \omega^{4} & \omega^{3} & \omega^{2} & \omega \end{vmatrix}$$

where $\omega = \exp(2\pi i/6)$.

There is no such P that satisfies $U_2\otimes U_3=PU_6P^{-1}$. You can however find P_1 and P_2 such that $U_2\otimes U_3=P_1U_6P_2$. For instance,

$$P_1 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \text{ and } P_2 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Also, you can verify that $U_2 \otimes U_3^\dagger = P_1 U_6 P_1^{-1}$.