ESC103

Vector

Vector Algebra

Vector: direction(tip-tail)+magnitude+unit (2D/3D) Scalar: sign+magnitude+unit

1.Addition: (parallelogram rule, head/tip-to-tail rule) $\vec{v} + \vec{w} = \begin{vmatrix} a \\ b \end{vmatrix} + \begin{vmatrix} c \\ d \end{vmatrix} = \begin{vmatrix} a+c \\ b+d \end{vmatrix}$

>Property of Addition: commutative v+w=w+v associative (v+w)+z=v+(w+z)

Negative: Given v, there is some u that satisfies v+u=0. we will denote this particular u by (-v)

2. Subtraction: $\vec{v} - \vec{w} = \vec{v} + (-\vec{w}) = \begin{bmatrix} a - c \\ b - d \end{bmatrix}$

3.Scalar Multiplication/Product: $k\vec{v} = \begin{bmatrix} ka \\ kb \end{bmatrix}$

If 2 vectors are multiples of each other, they are parallel. u=tv

Magnitude of a vector: Euclidean Norm 2D $|\vec{v}| = \sqrt{a^2 + b^2}$ 3D $|\vec{v}| = \sqrt{a^2 + b^2 + c^2}$

Triangle Inequality: $|\vec{v} + \vec{w}| \le |\vec{v}| + |\vec{w}|$

3D $\vec{v} \cdot \vec{w} = ac + bd + cf$ $\vec{v} \cdot \vec{w} = vw \cos \theta$ **4.Dot/Scalar Product:** 2D $\vec{v} \cdot \vec{w} = ac + bd$

 $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + ... + a_n b_n$ dot product is the scalar

lkul=lkllul lul=0 <==>u=0

I.Property of Dot Product: ① v·v=a²+b²=lvl² ②distributive u·(v+w)=u·v+u·w ③commutative u·v=v·u (ku)·v=k(u·v) not associative ⑤ 0·a=0

II. Geometric Interpretation: (cosine law) θ: smaller angle between v&w (less than 180°)

 $v \cdot w < 0$ iff $\theta \in (\pi/2, \pi]$ $v \cdot w = 0$ iff $\theta = \pi/2$ (v w perpendicular) $\vec{v} \cdot \vec{w} = |\vec{v}| |\vec{w}| \cos \theta$ v·w>0 iff θ∈[0,π/2)

v·w can be + or - v·w=v·lprojection of w on vl

*Orthogonality: For two non-zero vectors v & w, iff v·w=0, v and w is orthogonal.

Zero vector is perpendicular to every vector.

III.Projection:

①scalar projection of w onto v $comp_{\vec{v}}(\vec{w}) = \frac{\vec{w} \cdot \vec{v}}{|\vec{v}|}$ ②vector projection of w onto v $proj_{\vec{v}}(\vec{w}) = \frac{\vec{w} \cdot \vec{v}}{|\vec{v}|^2} \cdot \vec{v} = \frac{\vec{w} \cdot \vec{v}}{|\vec{v}|} \cdot \frac{\vec{v}}{|\vec{v}|}$

Proof:

IV.Inner Product:(abstract scalar field)

 $\vec{v} \times \vec{w} = \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & b & c \\ d & e & f \end{pmatrix} = \hat{i} \begin{vmatrix} b & c \\ e & f \end{vmatrix} - \hat{j} \begin{vmatrix} a & c \\ d & f \end{vmatrix} + \hat{k} \begin{vmatrix} a & b \\ d & e \end{vmatrix} = \begin{bmatrix} bf - ec \\ -af + dc \\ ae - bd \end{bmatrix}$

5.Cross/Vector Product:

 $\vec{v} \times \vec{w} = \vec{a}_n | vw \sin \theta |$

 $\vec{v} \times \vec{w} = \vec{a}_n |vw\sin\theta| \quad \text{a}_n: \text{ right-hand rule}$ cross product is the vector $\vec{a} \times \vec{b} = \left\langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \right\rangle \quad \text{(only defined for vectors in R3)}$

uxv orthogonal to both u & v.

Two vectors pointing same direction, there are infinite number of vectors orthogonal to them.

I.Property of Cross Product: 1) anti-commutative uxv=-vxu 2)k(uxv)=(ku)xv=ux(kv) 3) distributive $u\times(v+w)=u\times v+u\times w$ $(u+v)\times w=u\times w+v\times w$

(4)u×0=0×u=0 5)not associative u×(v×w)≠(u×v)×w

Right Hand Rule: direction of uxv

14 fingers pointing at the first vector(u) then curl to the second(v), thumb points to their cross product.

2)index-v, middle-u, thumb-u×v

II.Geometric Interpretation:(Lagrange's identity) angle between 2 vectors θ $|\vec{v} \times \vec{w}| = |\vec{v}| |\vec{w}| \sin \theta$

 $|u \times v|^2 = |u|^2|v|^2 - (u \cdot v)^2 = |u|^2|v|^2 - |u|^2|v|^2 \cos 2\theta = |u|^2|v|^2 \sin 2\theta$ so, luxvl=lullvlsinθ

*Parallel: For two non-zero vectors v & w, iff vxw=0, v and w is parallel.

III. 1) Area of parallelogram determined by u and v is length of cross product uxv

Area of Parallelogram=height×base=lullvlsinθ (two sides u & v, height=lvlsinθ)

2 Volume of parallelepiped determined by u,v,w is absolute value of scalar triple product Volume of Parallelepiped=height×area of base=lu·(v×w)l

Scalar Triple Product $u \cdot (v \times w) = w \cdot (u \times v) = v(w \times u) = -u \cdot (w \times v) = -w \cdot (v \times u) = -v(u \times w)$

Vector Triple Product(Lagrange Formula/back-cab rule) u×(v×w)=v(u·w)-w(u·v)

6. Division by a vector is not defined.

Lines & Planes

Vector Equation of a line: $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + t\vec{d}$ $\vec{P} = \vec{P}_0 + t\vec{d}$

 $P_0(x_0,y_0,z_0)$ known point on the line d: direction vector

Vector Equation of a plane: $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x_0 \\ y_0 \\ z_0 \end{bmatrix} + t\vec{d_1} + s\vec{d_2} \qquad \vec{P} = \vec{P_0} + t\vec{d_1} + s\vec{d_2} \qquad \text{d1\&d2 not parallel}$

Scalar Equation of a plane: $a(x-x_0) + b(y-y_0) + c(z-z_0) = 0$ $ax + by + cz = ax_0 + by_0 + cz_0$

 $\vec{n} = \vec{d}_1 \times \vec{d}_2 = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$ $\overrightarrow{P_0P} = \begin{bmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{bmatrix}$ and $\overrightarrow{P_0P} \cdot \vec{n} = 0$ n: normal vector

P arbitrary point in space, Q arbitrary point on plane, R projection of P on

Distance from Point to Plane:
$$|\overrightarrow{RP}| = \frac{|\overrightarrow{n} \cdot QP|}{|\overrightarrow{n}|}$$

 $\overrightarrow{RP} = proj_{\vec{n}}(\overrightarrow{QP}) = \frac{\vec{n} \cdot \overrightarrow{QP}}{|\vec{n}|^2} \cdot \vec{n} = \frac{\vec{n} \cdot \overrightarrow{QP}}{|\vec{n}|} \cdot \frac{\vec{n}}{|\vec{n}|}$

Distance from Point to Line:
$$|\overrightarrow{RP}| = \frac{|\overrightarrow{QP} \times \overrightarrow{d}|}{|\overrightarrow{d}|}$$

Distance between 2 points: $\overrightarrow{P_1P_2} = \overrightarrow{OP_2} - \overrightarrow{OP_1}$

$$|\overrightarrow{RS}| = proj_{\vec{d}_1 \times \vec{d}_2}(\overrightarrow{PQ}) = \frac{|(\vec{d}_1 \times \vec{d}_2) \cdot \overrightarrow{PQ}|}{|\vec{d}_1 \times \vec{d}_2|}$$

Distance between 2 lines:

How we see/draw: central projection parallel projection orthogonal projection

Matrix

m×n Matrix m rows n columns
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} a_{ij} \end{bmatrix}$$
 where i=1,...m and j=1,...n

A vector is a matrix with only one column. (all vectors are inherently column vectors)

- 1.Addition:
- 2. Scalar Multiplication:

3.Multiplication: ${}^{n}A^{m}\times{}^{m}B^{p} = {}^{n}C^{p}$ inner dimensions must match $c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$

Properties: A(B+C)=AB+AC (AB)C=A(BC) AB≠BA

Linear Transformation: a function that maps a vector to a vector with properties, L(kv)=kL(v) and

L(u+v)=L(u)+L(v)

identity transformation: I(u)=u zero transformation: O(u)=0

Composition of two transformation: linear transformation C as A followed by B,C(u)=B(A(u))

Mc=Mb·Ma

4.Inverse and Determinant: C=AB then C-1=B-1A-1

M-1M=1 $M^{-1} = \frac{1}{ad-bc} \begin{vmatrix} d & -b \\ -c & a \end{vmatrix}$ determinant IMI or det(M)=ad-bc when IMI=0, no inverse

5.Transpose: C=AB then C^T=B^TA^T

Note that for scalar $\alpha^T = \alpha$

6.Partitioned Matrices:

Let A be m×n and $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$ where B is m₁×n₁, E is m₂×n₂, C is m₁×n₂, D is m₂×n₁ and m₁+m₂=m and n₁+n₂=n

Let A be a square, non-singular matrix of order m, partition A as $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ where A11 and A22 are

 $\text{nonsingular, then } A^{-1} = \left[\begin{array}{ccc} \left(A_{11} - A_{12}A_{22}^{-1}A_{21}\right)^{-1} & -A_{11}^{-1}A_{12}\left(A_{22} - A_{21}A_{11}^{-1}A_{12}\right)^{-1} \\ -A_{22}^{-1}A_{21}\left(A_{11} - A_{12}A_{22}^{-1}A_{21}\right)^{-1} & \left(A_{22} - A_{21}A_{11}^{-1}A_{12}\right)^{-1} \end{array} \right]$

7.Matrix Differentiation: (Jacobian)

y=Ψ(x) where y is an m-element vector and x is an n-element vector: $\frac{\partial y}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_3} & \dots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \dots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & & \vdots \\ \frac{\partial y_m}{\partial x_1} & \frac{\partial y_m}{\partial x_2} & \dots & \frac{\partial y_m}{\partial x_n} \end{bmatrix}$

If y=Ax, then $\partial y/\partial x=A$

Let scalar $\alpha = y^T A x$, then $\partial \alpha / \partial x = y^T A$ and $\partial \alpha / \partial y = x^T A^T$.

Proof: (1) Define $w^T = v^T A$, then $\alpha = w^T x$, with definition of Jacobian, $\partial \alpha / \partial x = w^T = v^T A$ (2) Since α is scalar, $\alpha = \alpha^T = x^T A^T y$, then $\partial \alpha / \partial y = \alpha^T / \partial y = x^T A^T y$.

Quadratic Form of scalar $\alpha = x^T A x$ where x is n×1 A is n×n and A not depend on x, then $\frac{\partial \alpha}{\partial x} = x^T (A + A^T)$

Proof:

Reduced Normal Form(RNF)

A matrix is in RNF if: the first non-zero entry in each row is a 1; the other entries in the columns containing these leading 1's are zero; the leading 1's move to the right as we move down the rows; any zero rows are collected at the bottom.

Elementary Operations--Gaussian Elimination Intercharge two equations (two rows of augmented matrix) Multiply one equation(row) by a non-zero constant Add a multiple of one equation to another equation(row)

Elementary Matrices: we can associate matrices with three elementary operations.

A linear system:

1)Consistent System: inverse

i) Unique Solution(every variable in RNF is a leading variable)

ii) Infinite Solution(at least one free variable)

Rank: number of leading 1's

Solutions to AX=b with m equations and n variables(total number of variables), if rank is r(number of leading variables), the number of free variables is n-r (number of free variables).

Homogeneous System: AX=0 trivial solution X=0

②Inconsistent System: No solution least square problem

error vector $\vec{E} = \overline{A}\vec{x} - \overline{b} = \begin{bmatrix} e_1 \\ e_2 \\ . \\ . \\ e_m \end{bmatrix}$ (when AX \neq B) $||\vec{E}|| = \sqrt{e_1^2 + ...e_m^2}$

Normal Equations: $\overline{A}^T(\overline{b} - \overline{A}\vec{x}) = \vec{0}$ $\overline{A}^T\overline{b} - \overline{A}^T\overline{A}\vec{x} = 0$ $\overline{A}^T\overline{b} = \overline{A}^T\overline{A}\vec{x}$

least squares solution $\vec{x} = (\overline{A}^T \overline{A})^{-1} \overline{A}^T \overline{b}$

Curve Fitting

Curve Fitting: take a set of points and fit a function to those points

Interpolation: take a curve fi and construct new, related points on the curve

Extrapolation: Take a curve, extend the graph to generate new data points i.e. new data point outside the original data interval

Vector Space

[Definition: Vector Space]

A vector space V over a field Γ of elements $\{\alpha, \beta, \gamma...\}$, called scalars, is a set of elements $\{u, v, w...\}$, called vectors, such that the following axioms are satisfied:

1) There exists an operation of vector addition, denoted u+v, such that for all $u,v,w \in V$:

(AI)-Closure: u+v ∈V

(AII)-Associativity: (u+v)+w=u+(v+w)

(AIII)-Zero: There exists a zero or null vector 0 ∈V such that v+0=v. Note: v+0 not 0+v

(AIV)-Negative: There exists an negative $-v \in V$ such that v+(-v)=0.

②There exists an operation of scalar multiplication, denoted αv , such that for all $u,v \in V$ and $\alpha,\beta \in R$:

(MI)-Closure: $\alpha v \in V$

(MII)-Associativity: $\alpha(\beta v) = (\alpha \beta)v$

(MIII)-Distributivity: a)under scalar addition: $\alpha v + \beta v = (\alpha + \beta)v$

b)under vector addition: $\alpha v + \alpha u = \alpha(v + u)$

(MIV)-Unitary: For the identity element $1 \in R\Gamma$ such that 1u=u.

[Proposition: I] For every $u, -u \in V, -u+u=0$ [Proposition: II] For every $u \in V, 0+u=u$

[Theorem: Cancellation Theorem] If u+w=v+w then u=v for any u,v,w ∈V

[Proposition: III] Let $u \in V$. Then: 1. the zero vector $0 \in V$ is unique

2. the negative -u of u is unique

3. -(-u)=u

[Definition: Subtraction/Difference]

If $u,v \in V$, then the subtraction of v from u, denoted by u-v is u-v=u+(-v)

[Proposition: IV Commutativity] For $u,v \in V$, u+v=v+u

[Proposition: V Properties of Zero] For all $v \in V$ and all $\alpha \in \Gamma$, 1.v0=0 2.0v=0 3.If αv =0, then either α =0 or v=0. [Proposition: VI] For all $v \in V$ and all $\alpha \in R\Gamma$, $(-\alpha)v$ =- (αv) = $\alpha(-v)$

Note: (-1)v=-v. Used to calculating the negative of v.

[Space of Column] ${}^{n}R$ [Space of matrices] ${}^{n}R^{m}$ (all $n \times m$ matrices over the field \mathbb{R})

[Space of Function] $F(X) = \{f \mid f: X \rightarrow R\}$ R^2 : ordered pairs

Proof: "only one" "uniquely"

Suppose another one exists, then find contradiction or prove these two are same.

Subspace

[Definition: Subspace]

A subset U of a vector space V is a subspace of V if and only if U is itself a vector space over the same field with the same vector addition and scalar multiplication of V

[Theorem: I Subspace Test]

Let $\mathscr U$ be a subset of a vector space V.Then U is a subspace of V, over the same field Γ with the same vector addition and scalar multiplication as V, if and only if for all $u,v \in V$ and all $\alpha \in R$:

(SI)-Zero: There exists a zero or null vector 0∈U

(SII)-Closure under vector addition: u+v ∈U

(SIII)-Closure under scalar multiplication: $\alpha u \in U$

[Image Space] (image/range of A) $A \in mRn$ im $A=\{y \mid y=Ax, x\in nR\} \subset mR$

[Null Space] (solution space of A) $A \in mRn$ null $A = \{x \mid Ax = 0, x \in nR\} \subset nR$

(the set of all solutions to the homogeneous system)

[Subspace of Function] $U = \{f \mid f(0) = 0\} \subset F[0,1]$

If V is any vector space, zero subspace {0} and V are subspaces of V.

Any subspace of Rn other than {0} or the vector space itself Rn is called proper subspace.

Planes and Lines through the origin in R3 are all subspaces of R3.

Eigenspace: $E\lambda(A)=\{X \text{ in } Rn \mid AX=\lambda X\}$

A vector X is in $E\lambda(A)$ if and only if $(\lambda I-A)X=0$. $E\lambda(A)=null(\lambda I-A)$

 $E\lambda(A)$ is called eigenspace of A corresponding to λ . λ is an eigenvalue of A if $E\lambda(A) \neq \{0\}$.

the nonzero vectors in $E\lambda(A)$ are called the eigenvectors of A corresponding to λ .

Spanning Set

[Definition: Linear Combination]

A vector $v \in V$ is a linear combination of $\{v1,v2...vn\} \subset V$ if and only if it can be written as $v = \sum \lambda j v j = \lambda 1 v 1 + ...$

 $+\lambda nvn$ for some $\lambda j \in \Gamma$.

[Definition: Spanning Set]

The span of $\{v1,v2...vn\} \subset V$, denoted span $\{v1,v2...vn\}$ is

span $\{v_1, v_2...v_n\}=\{v \mid v=\sum \lambda j v j, \forall \lambda j \in \Gamma\}$

[Proposition: I]

The span of $\{v1, v2...vn\} \subset V$ is a subspace of the vector space V.

Theorem: Let U=span {v1,v2...vn} in Rn.Then,

1.U is a subspace of Rn containing each vi.

2.If W is a subspace of Rn and each vi is in W, then U ⊆ W.

Proof: two span is equal: $span\{v_1,v_2,v_3\} = span\{u_1,u_2,u_3\}$

First,Prove span $\{v_1,v_2,v_3\} \subseteq span\{u_1,u_2,u_3\} >> v_1,v_2,v_3 \in span\{u_1,u_2,u_3\}$

Then,Prove span $\{u_1,u_2,u_3\} \subseteq span\{v_1,v_2,v_3\} >> u_1,u_2,u_3 \in span\{v_1,v_2,v_3\}$

If $a_1, a_2...a_k$ are nonzero scalars, show that $span\{a_1v_1, a_2v_2...a_nv_n\} = span\{v_1, v_2...v_n\}$.

Proof: ①Since aivi is in span{vi} for each i.

Let U=span $\{v_1, v_2...v_n\}$ in \mathbb{R}^n . Then, 1U is a subspace of \mathbb{R}^n containing each v_i . 2 If W is a subspace of \mathbb{R}^n and each v_i is in W, then $U \subseteq W$.

Theorem above shows that span{aivi}⊆span{vi}.

Since vi=(1/ai)(aivi) is in span{aivi}, we get span{vi}⊆span{aivi}.

 \emptyset is the basis for $\{0\}$ span $\emptyset = \{0\}$ span $\{0\} = ?$

Linear Independence

[Definition: Linear Independence]

A set of vectors {v1,v2...vn} in a vector space V is linearly independent if and only if

 $\sum \lambda j v j = \lambda 1 v 1 + ... + \lambda n v n = 0$ implies that all $\lambda j = 0$.

(trivial linear combination--every coefficients zero)

(The only way to express the zero vector as a linear combination of the vectors in the set is to have all coefficients be zero)

[Proposition: I]

If $\{v_1,v_2...v_n\} \in V$ is linearly independent and $v=\sum \lambda |v|$ for all $v\in V$, then $\lambda |v|$ are uniquely determined.

[Theorem: Minimal Spanning Set]

Let $\{v1, v2...vn\} \in V$, a vector space. For every vk(k=1...n),

 $span\{v1...vk-1,vk+1...vn\} \subseteq span\{v1...vn\}$ if and only if $\{v1,v2...vn\}$ is linearly independent.

[Corollary:] Prove by Contraposition

Let $\{v1,v2...vn\} \subset V$, a vector space. For at least one vk $(1 \le k \le n)$, span $\{v1...vk-1,vk+1...vn\} = span\{v1...vn\}$ if and only if $\{v1,v2...vn\}$ is linearly dependent.

[Theorem: Fundamental Theorem of Linear Algebra] Prove by Contraposition

Let V be a vector space spanned by n vectors. If a set of m vectors from V is linearly independent, then m≤n.

If $v\neq 0$ in V, then $\{v\}$ is an independent set.

Proof:let tv=0.If t \neq 0 then v=1v=(1/t)(tv)=(1/t)0=0,contrary to assumption.So t=0.

Proof of Fundamental Theorem Page267

Bases

[Definition: Basis]

A set of vector {e1,e2...en} ∈V is a basis for the vector space V if and only if

①{e1,e2...en} is linearly independent and ② {e1,e2...en} spans V (generation)

[Theorem: Invariance Theorem]

Every basis for a given vector space contains the same number of vectors

[Definition: Dimension]

The dimension of a vector space V, denoted dim V, is the number of vectors in any of its bases.

[Proposition: II]

Let V be a finite-dimensional vector space with dim V=n. Then

- 1.A linearly independent set of vectors in V can at most contain n vectors.
- 2.A spanning set for V must at least contain n vectors.

Example:

Matrix: dim ⁿR^m=n*m polynomial: dim **P**n=n+1 standard basis{1,x,x2,x3...xn}

By convention, dim{0}=0 >>a basis containing no vectors

({0} is not linearly independent, Zero vector does not belong to any independent set.)

The space Mmn has dimension mn, and one basis consists of all m×n matrices with exactly one entry equal to 1 and all other entries equal to 0.--Standard Basis of Mmn.

Existence of Bases

A vector space V is called finite dimensional if it is spanned by a finite set of vectors.

We regard the zero vector space {0} as finite dimensional (it has an empty basis).

[Theorem: IV] Prove by Contraposition (Contradiction)

Let $\{v1,v2...vn\} \subset V$ be linearly independent. Then for a vector $v \in V$, $\{v,v1,v2...vn\}$ is linearly independent if and only if $v \neq \text{span} \{v1,v2...vn\}$

[Theorem: V:Existence of Bases] Prove by Construction

Let V be a vector space spanned by a finite set of vectors. Then every linearly independent set of vectors in V can be extended to a basis for V.

[Theorem: VI]

Let U and W be subspaces of a finite-dimensional vector space V.It follows that

1. U is finite-dimensional and dim $U \le \dim V$.

2.If U ⊆ W. then dim U ≤ dim W

3.If $U \subseteq W$, and dim $U = \dim W$, then U = W

[Theorem: VII] Prove by Construction

Any spanning set for a vector space V contains a basis for V.

[Theorem: VIII]

Let V be a vector space and dim V=n.Then

1. Any set $\{v1, v2...vn\} \subset V$ that is linearly independent is a basis for V.

2. Any set $\{v1, v2...vn\} \subset V$ that spans V is a basis for V.

Rephrase:

Let V (V≠{0} needed?) be a finite dimensional vector space. Then:

1--V. Any independent set in V can be enlarged(by adding vectors) to a basis of V.

2.--VII. Any spanning set for V can be cut down(by deleting vectors) to a basis of V.

Let V be a vector space, and let $\{v_1, v_2...v_n\}$ be a set of vectors in V, where dim V=n. Then:

 $\{v_1,v_2...v_n\}$ is independent if and only if $\{v_1,v_2...v_n\}$ spans V.

No set of more than n vectors in V can be independent && No set of fewer than n vectors in V can span V.

span $\{\emptyset\}=\{0\}$

symmetric matrix

[b a]

[a c]

V={0} only have one subspace

If U∩W=U, and dim U=dim W, then U=W.

(U∩W=U, U is a subspace of W, dimU=dim W, so U=W)

Dimension&Rank

[Definition: Pivot] A column in rref(A) which contains a leading one has a corresponding column in A, called

a pivot column of A [Definition: Basis]

[Definition: Rank] Number of leading ones in rref(A) [Definition: Nullity] Number of columns of A - rank(A)

[Definition: Dimension]

[Theorem: The Pivot Theorem] ①The Pivot columns of a matrix are linearly independent.

②A non-Pivot column of A is a linear combination of the pivot columns of A.

[Lemma: 1] Let B invertible and v1,...vp independent, then Bv1,...Bvp are independent.

Rank(A)+Nullity(A)=column dimension of A

[Theorem:] The number of independent rows of a matrix equals the number of independent columns. rank(A)=rank(AT)

Proof that $\operatorname{rank}(A) = \operatorname{rank}(A^T)$. Let S denote the set of all linear combinations of the rows of A. Then S is a subspace, known as the row space of A. A frame sequence from A to $\operatorname{rref}(A)$ consists of combination, swap and multiply operations on the rows of A. Therefore, each nonzero row of $\operatorname{rref}(A)$ is a linear combination of the rows of A. Because these rows are independent and span S, then they are a basis for S. The size of the basis is $\operatorname{rank}(A)$.

The prive theorem applied to A^T implies that each vector in S is a linear combination of the pivot columns of A^T . Because the pivot columns of A^T are independent and span S, then they are a basis for S. The size of the basis is $\operatorname{rank}(A^T)$.

The two competing bases for S have sizes $\operatorname{rank}(A)$ and $\operatorname{rank}(A^T)$, respectively. But the size of a basis is unique, called the dimension of the subspace S, hence the equality $\operatorname{Proof}(A^T)$.

[Theorem: Pivot Method] Let A be the augmented matrix of v1,...vk. Let the leading ones in rref(A) occur in columns i1,...ip. Then a largest independent subset of k vectors v1,...vk is the set vi1,vi2...vip.

Row & Column space

1.Null Space: kernel(A)=nullspace(A) = {x: Ax=0}

compute rref(A), write out general solution x to Ax=0, where free variables are assigned parameter names t1,...tk. Report the basis for nullspace(A) as the list $\partial t1x,...\partial tkx$

2.Column Space: $image(A) = colspace(A) = \{y: y = Ax \text{ for some } x\}$

compute rref(A), identify pivot columns i1...ik. Report the basis for colspace(A) as the list of columns i1...ik 3.Row Space: rowspace(A)=colspace(AT)={w: w = ATy for some y}

compute rref(AT), identify pivot columns j1...jk of AT. Report the basis for rowspace(A) as the list of rows j1...jk of A

compute rref(A), rowspace(A) has a different basis consisting of the list of nonzero rows of rref(A)

[Theorem: Dimension] Number of elements in a basis

nullity(A)=dim(nullspace(A))=dim(kernel(A))

rank(A) = dim(colspace(A)) = dim(image(A)) = dim(rowspace(A)) = dim(kernel(AT))

Eigen Value Problem

Ax=b $\underline{x}'=Ax$ $A\in R^n$ $\underline{x}\in R^n$ $\underline{x}\in R^n$

1. Characteristic Polynomial/Eigen polynomial/Eigen Equation: (of \underline{A}) $C_A(\lambda) = det(\lambda 1 - \underline{A})$

Eigen Problem: Ap= λp find λ such that Ap= λp or $(\lambda 1-A)p=0$

2. Eigen Space: ε_{λ} =null($\lambda \underline{1}$ - \underline{A}) = { $\underline{p} \in {}^{n}R$ | $\underline{A}\underline{p} = \lambda \underline{p}$ }

Eigen Vector: \underline{p} is called eigen vector Eigen Matrix: $\underline{p}=[\underline{p_1},\underline{p_2},..\underline{p_n}]\in {}^{n}R^{n}$

3. Multiplicity: Let $\underline{A} \in {}^nR^n$, with eigenvalues $\lambda_i(i=1,2...r)$, If $C_{\underline{A}}(\lambda) = (\lambda - \lambda_1)^{n1} \ (\lambda - \lambda_2)^{n2}...(\lambda - \lambda_r)^{nr}$ For λ_i algebraic

multiplicity is n_i and geometric multiplicity is m_i =dim($\epsilon_{\lambda i}$).

Recall: Dimension--number of vectors in any bases of a vector space.

Base-linear independent+span

①Multiplicity Theorem: Let λ be eigenvalue of $\underline{A} \in {}^{n}R^{n}$,

then 1≤m≤n, where m is geometric multiplicity and n is algebraic multiplicity.

If n=1, then m=n=1.

②Diagonalization Test: Let $A \in {}^{n}R^{n}$, with distinct eigenvalues $\lambda_{i}(i=1,2...r)$,

A is diagonalizable iff the algebraic and geometric multiplicity are same for all λ_i . ($n_i=m_i$)

$$\dot{x}_1 = 4x_1 + x_3$$

$$\dot{x}_2 = 2x_1 + 3x_2 + 2x_3$$

$$\dot{x}_3 = x_1 + 4x_3$$

1. Cast differential equation in matrix form
$$\underline{\mathbf{x}'} = \mathbf{A}\mathbf{x}$$
 $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ $A = \begin{bmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{bmatrix}$ $x_0 = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$

2. Eigen Value of the System:
$$\det(\lambda I - A) = \det(A - \lambda I) = \det\begin{bmatrix} 4 - \lambda & 0 & 1 \\ 2 & 3 - \lambda & 2 \\ 1 & 0 & 4 - \lambda \end{bmatrix}$$

Eigen Equation: $C(\lambda) = det(\lambda 1 - \underline{A}) = (\lambda - 3)^2(\lambda - 5) = 0$

Eigen Value : λ_1 =3 (repeated eigenvalue once again) λ_2 =5

3. Basis for each eigen space (eigenvectors):

②similarly, For
$$\lambda_2=5$$
, $\overline{5\underline{1}-\underline{A}}=\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix}$ $p=p_3\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ eigen space $\varepsilon_{\lambda=5}=span\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$

Basis for
$$\lambda_1 = 3$$
, $E_{\lambda=3} = \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\} = \{p_1, p_2\}$ for $\lambda_2 = 5$, $E_{\lambda=5} = \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \right\} = \{p_3\}$

4. Why A is diagonalizable:

For $\lambda_1=3$, $m_1=dim\epsilon_{\lambda=3}=2=n_1$ For $\lambda_2=5$, multiplicity theorem gives $m_2=n_2=1$

5. Unique Solution to the system subject to/given the initial conditions $x_1(0)=0$, $x_2(0)=2$, $x_3(0)=2$

The unique solution to the system of linear differential equation x'=Ax is $x(t)=C_1e^{3t}p_1+C_2e^{3t}p_2+C_3e^{5t}p_3$

where
$$\eta_0 = \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix}$$
 is the solution to $\underline{p}\underline{z} = \underline{x_0} = \begin{bmatrix} 0 \\ 2 \\ 2 \end{bmatrix}$ so $z_1 + z_3 = 0$
 $z_2 + z_3 = 0$
 $z_3 + z_3 = 2$
 $z_2 + z_3 = 2$
 $z_3 + z_3 = 2$
Solution $z_1 + z_2 = 1$
 $z_2 + z_3 = 2$
 $z_3 + z_3 = 2$

$$\eta_0 = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix}
\text{Solution } \mathbf{x}(t) = 0e^{3t}\mathbf{p}_1 - 1e^{3t}\mathbf{p}_2 - 1e^{5t}\mathbf{p}_3 = \begin{bmatrix} -e^{3t} + e^{5t} \\ 2e^{5t} \\ e^{3t} + e^{5t} \end{bmatrix}$$

Column j of the nxn identity matrix In is denoted Ej and called the jth coordinate vector in Rn and the set {E1,E2...En} is called the standard basis of Rn.

Let U and W be subspace of .

Intersection $U \cap W = \{X \text{ in } Rn \mid X \text{ belongs to both } U \text{ and } W \}$ Sum U+W = {X in Rn | X is a sum of a vector in U and a vector in W }

linear combination/independence

A linear combination vanishes if it equals the zero vector.

A linear combination is trivial if every coefficient is zero.

Standard Basis {E1,E2...Ek} of is independent.

A set of vectors in Rn is linearly dependent if some nontrivial linear combination vanishes.