Assignment No. 3

1. Find Node voltages using Node analysis:

2. Find Node voltages using nodal analysis:

3. Find Mesh currents using mesh analysis.

4. Find Mesh currents using mesh analysis.

5. Find

- a. node voltages using Node analysis
- b. mesh currents using mesh analysis:

6. Find

- a. node voltages using Node analysis
- b. mesh currents using mesh analysis:

7. Find voltage and energy of capacitor

8. Find the response v(t) of capacitor

9. The switch in the below circuit has been closed for a long time and is opened at t=0. Find the response 'v(t)' of the capacitor

10. The switch in the below circuit has been closed for a long time and is opened at t=0. Find the response 'v(t)' and current 'i(t)' in the following circuit

- 11. The switch in the below circuit has been closed for a long time and is opened at t=0. Find:
 - a) The initial value of V(t)
 - b) The time constant for t > 0
 - c) The numerical expression for V(t) after the switch has been opened

Answer: (a) 200 V;

- (b) 20 ms;
- (c) $200e^{-50t}$ V, $t \ge 0$;
- 12. Let Vc(0) = 60V. Determine Vc, Vx and i_0 for $t \ge 0$.

Answer: $60e^{-0.25t}$ V, $20e^{-0.25t}$ V, $-5e^{-0.25t}$ A.

13. The switch in the circuit has been closed for a long, and it is opened at t = 0. Find V(t) for $t \ge 0$. Calculate the initial energy stored in the capacitor.

Answer: $w_C(0)$ 2.25 J

$$v(t) = 15e^{-5t} \,\mathrm{V}$$

14. If the switch in the below circuit open at t = 0, find V(t) for $t \ge 0$ and also initial energy stored in the capacitor.

Answer: $8e^{-2t}$ V, 5.333 J.

15.

The switch in the circuit given below has been in position 'a' for a long time. At t = 0, the switch is moved to position 'b'.

- a) Find $V_o(t)$ for $t \ge 0$
- b) Find $i_o(t)$ for $t \ge 0^+$

Answer: $V_o(t) = -16 + 64 e^{-1000t} V$, $i_o(t) = 5.12 e^{-1000t} mA$ 16. The Op-Amp in the circuit is Ideal. Calculate v_0 if $v_a = 1.5v$ and $v_b = 0v$. If $v_b = 4.5v$, specify the range of v_a such that the amplifier does not saturate.

17. The Op-Amp in the circuit is ideal. Find v_o if $v_a=16v$, $v_b=12v$, $v_c=-6v$ and $v_d=10v$.

If all the voltage sources except v_b retain their values, specify the range of v_b such that Op-Amp operates with in linear region.

18. Find i_L in micro amps

- 19. The op amp of the following circuit is Ideal.
 - a) What op amp configuration is this?
 - b) Calculte Vo

20. The input to the following network is given below. Find and sketch v_o if $v_o(0) = 0$

