The program <u>ml powerlaw bh cmd.out</u> is based on the fortran code <u>ml powerlaw bh cmd.f90</u>. This program calculates magnification maps for a bimodal microlensing mass distribution: stars + primordial black holes (PBHs), and it can be run on the command line of a Linux OS. You only need to enter the program name and eight optional parameters:

\$./ml powerlaw bh cmd.out $[\kappa]$ $[\gamma]$ $[f_{\text{sdm}}]$ [N] [P] $[F_{\text{pbh}}]$ $[\alpha]$

The meaning of these parameters is ($M_{\rm star}$ is the mean stellar mass):

- convergence $[\kappa]$
- shear strength $[\gamma]$
- mass fraction in smoothly distributed matter (SDM): [$f_{
 m sdm}$] = $\kappa_{
 m sdm}/\kappa$
- map size in Einstein radii on each side $[N] \times R_{E} (M_{star})$
- number of pixels on each side [P]
- PBH fraction of microlenses: [$F_{\rm pbh}$] = $\kappa_{\rm pbh}/(\kappa_{\rm star}+\kappa_{\rm pbh})$
- PBH relative mass in logarithmic scale: $[r_{\rm pbh}] = \log{(M_{\rm pbh}/M_{\rm star})}$
- power-law index of the star mass function [α], where $N(M) \propto M^{-\alpha}$ with $r = M_{\rm max}/M_{\rm min} = 50$
- NOTE: all PBHs have the same mass $M_{
 m pbh}$

It is also possible to see their names by typing
\$./ml_powerlaw_bh_cmd.out -h

The derived magnification map (file map1.bin) can be seen with the additional python program $map\ view\ conv.py$

\$ python map view conv.py

Maps are obtained for point-like sources, so this additional program also allow you to convolve with a Gaussian brightness profile $I(R) \propto \exp\left(-R^2/2R_{\rm s}^2\right)$. In the example, $R_{\rm s} = 100$ pixels.