11/29/2006.	Final Project: due 12/13 3 PM.
	$u = \begin{pmatrix} u_1 \\ \vdots \\ u_m \end{pmatrix} \qquad f(u) = \begin{pmatrix} f_1(u_1, -\dots u_m) \\ \vdots \\ f_m(u_1, -\dots u_m) \end{pmatrix}$
5.0%	Hyperbolic !
	f(a) = $\begin{cases} \frac{\partial f_1}{\partial u_1}, & \frac{\partial f_2}{\partial u_2} & \frac{\partial f_3}{\partial u_3} \\ \end{cases}$ complete set of signmentors
	$\frac{2f_{m}}{8u_{i}} \cdot \frac{2f_{m}}{2u_{i}}$ $\frac{2f_{m}}{8u_{i}} \cdot \frac{2f_{m}}{2u_{m}}$ $2f$
	e-vectors r, r, r, r, independent coluenn Vectors.
	$R = (r_1 - r_m)$ $R^{-1} = $
left eigenvertre	$dif'(u) = \lambda i di$
	(last class Ut + Aux = 0) scalar case
1.0	Finite volume
l'g	hee are given \$11; } — @ lack greed pt cell ang is
	$\frac{d\bar{u}_{j}}{dt} + \frac{1}{4x} \int \left[\hat{f}\left(\bar{u}_{j+\frac{1}{2}}, u_{j+\frac{1}{2}}^{\dagger}\right) - \hat{f}\left(\bar{u}_{j-\frac{1}{2}}, u_{j-\frac{1}{2}}^{\dagger}\right) \right]$

	We do not know exact solution so we don't know anything about the solution but when you compute nurrenical solution books good.
<i>(</i> i)	for so do
(2)	$\{u_j\}$ $\{u_{j+\frac{1}{2}}\}$
(i)	J(u-, u+) are called (or obtained from) (apx) hiemann bolvers.
	$\begin{cases} u_t + f(u)_x = 0 \\ 1 + you \ ear \ get \ the \ exact \ xolution, \\ (u(x,0) = \begin{cases} u^- & 2 < 0 \end{cases} \qquad u(x,t) = V(X_t) \ just \ like \ sealar \ case. \end{cases}$
	then the flux $f(u,u^+) = f(v(0)) + 6$ odernov schence.
*	suce sometimes you can't fred exact solution in $V(0)$.
(iia)	
	If doen't matter for linear case : eigenvalue are const. but in Theo case f'(a) depends on a => Rigenvalues ligenvectors will be different for diff jt's location.
	At $\alpha_{j+\frac{1}{2}}$ find a reference vector,
	$\tilde{u}_{j+\frac{1}{2}}\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$
	b) hoe ang. (good éceause de n alive)
	$f(\bar{\alpha}_{j+1}) - f(\bar{\alpha}_{j}) = f'(\bar{\alpha}_{j+1})(\bar{\alpha}_{j+1} - \bar{\alpha}_{j})$
	if you can find . night, not exist a documuled

. R, R-1 1= based on $f'(\tilde{u}_{j+\frac{1}{2}})$ THERE FORMULAE averages which the local ch For each jat costly to do for all. so prozen @ J+ & then do for i. neconstruction on each component of \$ vij iid SAME AS THE SUB ROUTINE : Record the reconstruction This procedure is meaningful if non linear beconsuction $N_i = R^{-1} \overline{u}_{i, i=j, j+1}$ $V_{j+\frac{1}{2}} = \frac{1}{2} \left(\vec{V_j} + \vec{V_{j+1}} \right), \quad \vec{u_{j+\frac{1}{2}}} = R \left(\frac{1}{2} \left(\vec{V_j} + \vec{V_{j+1}} \right) \right)$ $= \frac{1}{2} \left(R \vec{V_j} + R \vec{V_{j+1}} \right)$ = 1 [ūj + ūj+1]

