NFAs and Closure

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

18 January 2024

Outline

NFAs

Subset Construction

3 Proving Closure Properties using NFAs

Nondeterministic Finite-state Automata (NFAs)

- Allows multiple start states.
- Allows more than one transition from a state on a given letter.

Non-deterministic transitions

• A word is accepted if there is some path on it from a start to a final state.

Example NFAs

Example NFAs

Exercise

Exercise

Give an NFA for the language of strings over $\{a, b\}$ in which the 3rd-last letter is a b.

NFA definition

We can mathematically define an NFA over an alphabet A to be a structure of the form:

$$A = (Q, S, \Delta, F)$$
, where

- Q is a finite set of states.
- $S \subseteq Q$ is the set of start states,
- $\Delta: (Q \times A) \rightarrow 2^Q$, and
- $F \subseteq Q$ is the set of final states.

Define relation $p \stackrel{w}{\rightarrow} q$ which says there is a path from state p to state q labelled w.

- $p \stackrel{\epsilon}{\rightarrow} p$
- $p \stackrel{ua}{\to} q$ iff there exists $r \in Q$ such that $p \stackrel{u}{\to} r$ and $q \in \Delta(r, a)$.

NFA to DFA conversion: Subset Construction

Example: How do we determinize this NFA?

NFA to DFA conversion: Subset Construction

Formal construction:

Let $\mathcal{B} = (Q, S, \Delta, F)$ be an NFA over alphabet A.

Construct a DFA

$$\mathcal{A}=(2^Q,S,\delta,G),$$

where

• for any set of states $X \subseteq Q$, δ is given by

$$\delta(X, a) = \{ q \in Q \mid \exists p \in X \text{ with } q \in \Delta(p, a) \}.$$

•
$$G = \{X \subseteq Q \mid X \cap F \neq \emptyset\}.$$

NFA to DFA conversion: Subset Construction

Correctness: To prove that $L(\mathcal{B}) = L(\mathcal{A})$.

Argue that the transition function δ of the subset automaton satisfies the property:

$$\widehat{\delta}(X, w) = \{ q \mid \exists p \in X : p \stackrel{w}{\rightarrow}^* q \}.$$

Closure under concatenation and Kleene iteration

Concatenation of languages:

$$L \cdot M = \{u \cdot v \mid u \in L, \ v \in M\}.$$

Kleene iteration of a language:

$$L^* = \{\epsilon\} \cup L \cup L^2 \cup L^3 \cup \cdots,$$

where

$$L^n = L \cdot L \cdots L \ (n \text{ times}).$$

= $\{w_1 \cdots w_n \mid \text{ each } w_i \in L\}.$