Continuidad y límites

2015-01-26 9:00

1 Funciones continuas

2 Límites

Continuidad

Definición (Continuidad en un punto)

Sean $A\subseteq\mathbb{C}$, $a\in A$ y $f\colon A\to\mathbb{C}$ una función. Decimos que f es continua en a si y solo si para cada $\epsilon>0$ existe $\delta>0$ tal que:

$$f(A \cap D(a, \delta)) \subseteq D(f(a), \epsilon).$$

Continuidad

Definición (Continuidad en un punto)

Sean $A\subseteq\mathbb{C}$, $a\in A$ y $f\colon A\to\mathbb{C}$ una función. Decimos que f es continua en a si y solo si para cada $\epsilon>0$ existe $\delta>0$ tal que:

$$f(A \cap D(a, \delta)) \subseteq D(f(a), \epsilon).$$

Decimos que $f: A \to \mathbb{C}$ es continua si es continua en a para todo $a \in A$.

Continuidad

Definición (Continuidad en un punto)

Sean $A\subseteq\mathbb{C}$, $a\in A$ y $f\colon A\to\mathbb{C}$ una función. Decimos que f es continua en a si y solo si para cada $\epsilon>0$ existe $\delta>0$ tal que:

$$f(A \cap D(a, \delta)) \subseteq D(f(a), \epsilon).$$

Decimos que $f: A \to \mathbb{C}$ es continua si es continua en a para todo $a \in A$.

Teorema

Sean $A \subseteq \mathbb{C}$, $a \in A$ y $f: A \to \mathbb{C}$ una función. Entonces f es continua en a si y solo si para toda sucesión z_n en A tal que $z_n \to a$, se tiene que $f(z_n) \to f(a)$.

Sean $f, g: A \to \mathbb{C}$ funciones continuas en $a \in A$. Entonces $cf, \Re f, \Im f, f + g$, fg son continuas en a. En particular si f, g son continuas, entonces cada una de las funciones listadas son continuas.

Sean $f, g: A \to \mathbb{C}$ funciones continuas en $a \in A$. Entonces $cf, \Re f, \Im f, f + g, fg$ son continuas en a. En particular si f, g son continuas, entonces cada una de las funciones listadas son continuas.

Teorema

Si $g(a) \neq 0$, entonces $\frac{f}{g}$ es continua en a. Si $g(a) \neq 0$ para todo $a \in A$, entonces $\frac{f}{g}$ es continua.

Sean $f: A \to \mathbb{C}$, $g: B \to \mathbb{C}$ funciones tales que $f(A) \subseteq B$. Si f es continua en $a \in A$ y g es continua en f(a), entonces $g \circ f$ es continua en a. En particular, si f y g son continuas, entonces $g \circ f$ es continua.

Sean $f: A \to \mathbb{C}$, $g: B \to \mathbb{C}$ funciones tales que $f(A) \subseteq B$. Si f es continua en $a \in A$ y g es continua en f(a), entonces $g \circ f$ es continua en a. En particular, si f y g son continuas, entonces $g \circ f$ es continua.

Teorema

Sea $U\subseteq\mathbb{C}$ abierto. Una función $f\colon U\to\mathbb{C}$ es continua si y solo si para todo abierto $V\subseteq\mathbb{C}$ se tiene que el conjunto

$$f^{-1}(V) = \{ z \in U \mid f(z) \in V \},\$$

es abierto.

Definición de límite

Dados $a \in \mathbb{C}$ y r > 0, denotaremos con $D^*(a, r)$ al conjunto $D(a, r) - \{a\}$.

Definición de límite

Dados $a \in \mathbb{C}$ y r > 0, denotaremos con $D^*(a, r)$ al conjunto $D(a, r) - \{a\}$.

Definición (Límite)

Sean $f:A\to\mathbb{C}$ una función y $a\in\mathbb{C}$ un punto de acumulación de A. Decimos que $c\in\mathbb{C}$ es <u>límite de f en a</u>, denotado $\lim_{z\to a} f(z)=c$, si para todo $\epsilon>0$ existe $\delta>0$ tal que:

$$f(A \cap D^*(a, \delta)) \subseteq D(c, \epsilon).$$

Relación con continuidad

Teorema

Sea $a \in A$ tal que a es punto de acumulación de A. Entonces $f: A \to \mathbb{C}$ es continua en a si y solo si $\lim_{z\to a} f(z) = f(a)$.

Sea a punto de acumulación de $A \in \mathbb{C}$. Entonces $f: A \to \mathbb{C}$ tiene límite c en a si y solo si para toda sucesión z_n en $A - \{a\}$ con límite a se tiene que $f(z_n)$ converge a c.

Sea a punto de acumulación de $A \in \mathbb{C}$. Entonces $f: A \to \mathbb{C}$ tiene límite c en a si y solo si para toda sucesión z_n en $A - \{a\}$ con límite a se tiene que $f(z_n)$ converge a c.

Teorema

Sea $A \subseteq \mathbb{C}$ y a un punto de acumulación de A. Sean $f,g:A \to \mathbb{C}$ funciones tales que $\lim_{z\to a} f(z) = l_1$ y $\lim_{z\to a} g(z) = l_2$. Entonces $cf,\Re f,\Im f,\overline f,f+g,fg$ tienen todas límite cuando $z\to a$, y su valor es $cl_1,\Re l_1$, $\Im l_1,\overline l_1,l_1+l_2$ y l_1l_2 , respectivamente. Si $l_2\neq 0$, entonces $\lim_{z\to a} \frac{f}{g}$ existe y es igual a $\frac{l_1}{l_2}$.