APROXIMAÇÃO GULOSA

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

Aproximação gulosa

Knapsack, TSP: problema de decisão = NP-completo

Knapsack, TSP: problema de otimização = NP-difícil

Algumas possibilidades:

- Busca exaustiva, backtracking, branch-and-bound
- Resolver "rapidamente" com algoritmos de aproximação
 - Quando uma solução "boa" é suficiente (não precisa ser a ótima)
 - Conceito de heurística

Exemplos de aproximação gulosa para TSP:

- Vizinho mais próximo
- Algoritmo baseado em MST

TSP: vizinho mais próximo¹

Vértice inicial: a

$$s_a = a - b - c - d - a$$
, tamanho = 10

Solução ótima

$$s^* = a - b - d - c - a$$
, tamanho = 8

Taxa de precisão: $r(s_a) = \frac{10}{8} = 1,25$

Mudando o peso de (a, d) para w:

$$r(s_a) = \frac{4+w}{8}$$

03/06/2019

¹ Fonte: A. Levitin. Introduction to the Design and Analysis of Algorithms. 2011. < --> < <u>6</u>

TSP: baseado em MST

De forma geral:

- Construa a MST do grafo
- 2 Faça um caminho na MST (registrando os vértices visitados) saindo e voltando para um mesmo vértice arbitrário
- Remova os vértices repetidos (exceto o inicial)

²Fonte: A. Levitin. Introduction to the Design and Analysis of Algorithms. 2011.

□ ▶

Bibliografia + leitura recomendada

Capítulo 12 (pp. 441–457) Anany Levitin.

Introduction to the Design and Analysis of Algorithms. 3a edição. Pearson. 2011.

APROXIMAÇÃO GULOSA

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

