武汉大学 2017-2018 第一学期高等数 B1 期末试题 A 解答

$$1、(9分) 求极限 \lim_{x \to \frac{\pi}{3}} \frac{\tan^3 x - 3\tan x}{\cos(x + \frac{\pi}{6})}.$$

解 原式 = 
$$\lim_{x \to \frac{\pi}{3}} \frac{\tan x (\tan x + \sqrt{3})(\tan x - \sqrt{3})}{\sin(\frac{\pi}{3} - x)} = \lim_{x \to \frac{\pi}{3}} \tan x (\tan x + \sqrt{3}) \cdot \lim_{x \to \frac{\pi}{3}} \frac{\tan x - \sqrt{3}}{\sin(\frac{\pi}{3} - x)}$$

$$= 6 \lim_{x \to \frac{\pi}{3}} \frac{\sin(x - \frac{\pi}{3})}{\cos x \cdot \cos \frac{\pi}{3} \cdot \sin(\frac{\pi}{3} - x)} = 6 \cdot \frac{(-1)}{\frac{1}{2} \cdot \frac{1}{2}} = -24 \qquad 9 \, \text{f}$$

$$2 \times (9 \text{ } )$$
 设函数  $y = y(x)$  由参数方程 
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$
 所确定,求 
$$\frac{d^2y}{dx^2}$$
.

解: 
$$\frac{dy}{dx} = \frac{a \sin t}{a(1-\cos t)} = \cot \frac{t}{2}$$
  $\frac{d^2y}{dx^2} = \frac{\left(\cot \frac{t}{2}\right)'}{a(1-\cos t)} = \frac{-\frac{1}{2}\csc^2 \frac{t}{2}}{a(1-\cos t)} = \frac{-\csc^2 \frac{t}{2}}{2a(1-\cos t)}$  9 分

3、(9分) 已知 
$$\int_0^y e^{t^2} dt + \int_0^{\sin x} \cos^2 t dt = 0$$
,求 $\frac{dy}{dx}$ .

解: 方程两边关于 
$$x$$
 求导得  $e^{y^2}y' + \cos^2\sin x \cdot \cos x = 0 \Rightarrow y' = -\frac{\cos^2\sin x \cdot \cos x}{e^{y^2}}$  9分

4、(8分) 设
$$a_n \neq 0$$
. 试用 $\varepsilon - N$  语言证明:  $\lim_{n \to \infty} a_n = 0$ 的充要条件是  $\lim_{n \to \infty} \frac{1}{a_n} = \infty$  。

证明:  $\Rightarrow$  : 由  $\lim_{n\to\infty} a_n = 0$  可知, $\forall \varepsilon > 0$ , ∃正整数N,使得  $\forall n > N$ ,有  $|a_n| < \varepsilon$ . 因

此 
$$\left| \frac{1}{a_n} \right| > \frac{1}{\varepsilon} = M$$
. 则  $\lim_{n \to \infty} \frac{1}{a_n} = \infty$  。

$$|a_n|$$
  $\varepsilon$   $a_n$   $a_n$   $e$ : 由  $\lim_{n\to\infty}\frac{1}{a_n}=\infty$  可知, $\forall M>0$ ,∃正整数 $N$ ,使得 $\forall n>N$ ,有 $\left|\frac{1}{a_n}\right|>M$ . 因此

$$|a_n| < \frac{1}{M} = \varepsilon$$
.  $\iiint_{n \to \infty} a_n = 0$ .

5、(9分)设
$$a > 0$$
,求 $\int_0^{+\infty} e^{-ax} \sin x dx$ .

解: 原式=
$$\left[e^{-ax}\left(-\frac{1}{1+a^2}\cos x - \frac{a}{1+a^2}\sin x\right)\right]_0^{+\infty} = \frac{1}{1+a^2}$$
 9分

6、(9分)根据以下导函数 y'=f'(x) 的图像:



填写关于函数 f(x) 的表格 (其中 f(0) = 0):

| 单增区间 | $(0,x_2),(x_4,x_6)$ | 上凸区间 | $(x_1, x_3)$        |
|------|---------------------|------|---------------------|
| 单减区间 | $(x_{2}, x_{4})$    | 下凸区间 | $(0,x_1),(x_3,x_6)$ |
| 极大值点 | $x_2$               | 极小值点 | $x_4$               |

画出函数 y = f(x) 的图像:



7、(9分)确定常数 
$$a,b$$
 , 使函数  $f(x) = \begin{cases} \frac{1}{x}(e^{2x}-1) & , x < 0 \\ a + \sin bx & , x \ge 0 \end{cases}$  处处可导。

解: 要使f(x)在x = 0可导,首先须在x = 0连续即 $\lim_{x \to 0} f(x) = f(0) = a$ 

即
$$a = \lim_{x \to 0^{-}} \frac{e^{2x} - 1}{x} = \lim_{x \to 0^{-}} \frac{2e^{2x}}{1} = 2$$
,要使 $f(x)$ 在 $x = 0$ 可导,须 $f'(0) = f'(0)$ 

$$\mathbb{E} \int_{-1}^{1} f'(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{\frac{1}{x} (e^{x} - 1) - 2}{x} = \lim_{x \to 0^{-}} \frac{e^{2x} - 1 - 2x}{x^{2}} = 2$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{2 + \sin bx - 2}{x} = b$$

则
$$a = b = 2$$
时,  $f(x)$ 在 $x = 0$ 可导, 从而处处可导。

8、(9分) 求由  $\arctan x \le y \le x, 0 \le x \le 1$  所确定的区域的面积。

解: 
$$s = \int_0^1 (x - \arctan x) dx = \left(\frac{x^2}{2} - x \arctan x\right) \Big|_0^1 + \int_0^1 \frac{x}{1 + x^2} dx$$

$$= \frac{1}{2} - \frac{\pi}{4} + \frac{1}{2} \ln(1 + x^2) \Big|_{0}^{1} = \frac{1}{2} - \frac{\pi}{4} + \frac{1}{2} \ln 2$$
 9 分

9、(8分) 设 $\int f(x)dx = x^2 + C$ , 求 $\int x f(1-x^2)dx$ .

10、(1)(4分) 求微分方程 y"-2y"+y'=0的通解:

(2)(4分) 写出微分方程 $y'' + y = \sin x - \cos 2x$ 的特解实形式。

解: (1) 特征方程为  $\lambda^3-2\lambda^2+\lambda=0$ ,因此特征根为  $\lambda_1=0,\lambda_2=\lambda_3=1$ ,因此方程的通解为  $y=C_1+C_2e^x+C_3xe^x$  4分

(2) 特征方程  $\lambda^2+1=0$ ,特征根为  $\lambda_{1,2}=\pm i$ ,所以非齐次方程的特解形式为



9分

 $y = x(A\cos x + B\sin x) + (C\cos 2x + D\sin 2x)$  4 分

11、(8 分) 求由曲线  $y = \sqrt{x}, x = 1, x = 2$  及 x 轴所围成的平面图形绕直线 x = -1 轴旋转而成的旋转体的体积。

解 建立新的坐标系, 原点 o' 在原坐标的坐标点 o'(-1,0) , 则由  $y=\sqrt{x'-1}, x'=2, x'=3$  及 x 轴所围成的区域绕 x'=0 旋转而成体积。

$$V_{x=-1} = 2\pi \int_{2}^{3} xy dx = 2\pi \int_{2}^{3} x\sqrt{x-1} dx \qquad \forall t = \sqrt{x-1}$$

$$= 2\pi \int_{1}^{\sqrt{2}} 2t^{2} (t^{2} + 1) dt = 4\pi \int_{1}^{\sqrt{2}} (t^{4} + t^{2}) dt$$

$$= 4\pi (\frac{1}{5}t^{5} + \frac{1}{3}t^{3}) \Big|_{1}^{\sqrt{2}} = \frac{8}{15}\pi (11\sqrt{2} - 4). \qquad 8$$

12、(5 分) 设函数 f(x) 在区间 [0,1] 上连续,且  $\int_0^1 f(t) dt = a \int_0^{\frac{1}{a}} e^{1-x^2} \left( \int_0^x f(t) dt \right) dx$  (其中 a > 1 为定常数)。证明至少存在一点  $\xi \in (0,1)$  使得  $f(\xi) = 2\xi \int_0^\xi f(x) dx$ .

证明: 
$$\Leftrightarrow F(x) = e^{1-x^2} \left( \int_0^x f(t) \, \mathrm{d} \, t \right)$$
, 则  $F'(x) = e^{1-x^2} \left[ -2x \left( \int_0^x f(t) \, \mathrm{d} \, t \right) + f(x) \right]$ 

且由积分中值定理有 $F(1) = \int_0^1 f(t) dt = a \int_0^{\frac{1}{a}} e^{1-x^2} \left( \int_0^x f(t) dt \right) dx$ 

$$=e^{1-y^2}\left(\int_0^y f(t) dt\right) = F(y) \quad y \in [0, \frac{1}{a}]$$

由罗尔定理知,至少存在一点 $\xi \in (y,1) \subset (0,1)$  使得 $F'(\xi) = 0$ 

即 
$$f(\xi) = 2\xi \int_0^{\xi} f(x) dx$$
 5 分