

CUBESATS, A MISSÃO NANOSATC-BR E ALÉM

Danilo Pallamin de Almeida - INPE Dr. Otávio Durão - INPE Marcelo Essado - EMSISTI

Curso de Inverno; INPE; Jul. 2018.

O que são CubeSats?

- Histórico
 - Stanford Bob Twiggs e CalPoly, El Bispo, CA
 - Padrão surge em 1999 como referência de design
 - Primeiro lançamento 2003
 - Padrão − cubo com 10cm de aresta e ~1kg de massa
 - CubeSat design specification (CDS); rev. 13 (2013)
 - Proposta inicial formação prática de RH
 - Alunos de Pós passando pelo desenvolvimento completo de um satélite

CubeSat – padrão

Class	Mass (kg)
Large satellite	>1000
Medium	500 to
satellite	1000
Mini satellite	100 to 500
Micro satellite	10 to 100
Nano satellite	1 to 10
Pico satellite	0.1 to 1
Femto satellite	<0.1

Cubesat Size Comparison

Padrão 1U

Lançamento de Nanosatélites

Usos de CubeSats

CubeSats Each Year by Mission Type

Formatos de CubeSats

CubeSats X Satélites Tradicionais

- Baixos custos, prazos, equipes
- Uso extensivo de COTS
- Otimização de Testes
- Requisitos Flexíveis
- Tolerância a riscos
- Baixa confiabilidade

- Modelo de Engenharia
- Modelo de Vôo

- Altos custos, prazos, equipes
- Componentes Space-Grade
- Série extensa de testes
- Requisitos rigorosos
- Aversão a riscos
- Alta confiabilidade

- Modelo de Engenharia
- Modelo Estrutural
- Modelo Térmico
- Modelo Radioelétrico
- Modelo de Qualificação
- Modelo de Vôo

Success Rate

421 cubesats lançados no período 2005 - 2015

R. Leonardi, SERFA2016, outubro 2016, São José dos Campos

Why fly CubeSats?

- "Nothing teaches systems engineering like, well, doing systems engineering."
- Dedicated "simple" science missions
- New tech validation
- Fast development
- High Risk High Reward

Lançamento

- Carona
- Baixo custo; em torno de US\$100.000 por U p/ LEO
- Lançamento terciário em foguetes
- Lançado pela ISS
 - □ Levadas como cargo (SpaceX)

Interface com o lançador

PSLV

Ta, mas e o Brasil?

- INPE/UFSM NanosatC-Br1 (1U, lançamento 19 de Junho de 2014) e NanosatC-Br2 (2U, 2019)
- INPE/UFRN Conasat (8U, missão SCD)
- ITASAT 6U (Pronto p/ lançamento)
- AESP-14 ITA lançado em 2015
- SERPENS UnB; 2015
- UbatubaSat Jan/2017
- Garatéa Airvantis/USP São Carlos
 - Garatéa-L Missão Lunar 6U 2022
- INPE/NASA SPORT 6U
- AKAER Câmera 3U

NanosatC-Br1

- Cooperação INPE/CRS e UFSM
- Objetivos
 - Missão científica magnetômetro; medidas do campo magnético na AMAS
 - Missão tecnológica testes de CI's projetados no Brasil para uso espacial (resistentes à radiação – pioneiros)
 - FPGA com software tolerante a falha e driver on/off
 - Acadêmicos formação de alunos de graduação e pós
- · Compra da plataforma e estação; e desenvolvimento da carga útil, AIT e operação.
- Imersão do INPE e Brasil em tecnologias cubesat-related

NanosatC-Br1: plataforma

NanosatC-Br1: cargas úteis

- Magnetômetro XEN1210, 2x2x4 mm., 3 eixos + eletrônica
- Projeto SMDH
 - Projeto com proteção à radiação; pioneiro no país
 - Demanda do INPE/DEA/PMM

FPGA

- UFRGS Lab. Informática
- Resistência à radiação por software tolerante a falha; pioneiro no país; testado em solo no IEAv. para dose acumulada.
- Componente industrial

Placa de carga útil do NanosatC-Br1

NanosatC-Br1 - Integração

Testes: vibração e vácuo/térmica

NanosatC-Br1: Lançamento - DNEPR

Lançamento

Resultados Científicos - AMAS

NanosatC-BR2

- Continuação do programa NanosatC-BR
- Desenvolvimento da Missão e Software pelo INPE
- 3 Cargas úteis físicas
 - Sistema de Determinação de Atitude Tolerante à Falhas (SDATF) -UFACB/UFMG
 - □ Sonda de Langmuir INPE
 - □ Experimento MIPS SMDH/UFRGS
- 2 Cargas úteis de software
 - Controle de Atitude (B-dot)
 - Exp. Radioamador

NanosatC-BR2

NCBR2: Bus + Cargas úteis

Modelos?

Modelos (timed automata)

Mini-estágio

Além da minha agradável companhia:

- Simular OBC + SLP com Arduino
 - Validação de Modelos
 - Interface I2C
 - □ Programação em C
- Coletar dados do magnetômetro
 - Análise e implementação de Datasheet
 - Interface SPI
 - Programação em C

CONASAT

CONASAT: EM + payload

SPORT

Scintillation Prediction Observation Research Task

Equatorial ionization anomalies

Plasma Bubbles

"why bubbles develop and rise to various altitudes at different times in different regions and latitude?"

Kil, Hyosub, et al. "Coincident equatorial bubble detection by TIMED/GUVI and ROCSAT-1." Geophysical research letters 31.3 (2004).

Garatéa-L (Iniciativa privada)

And beyond...

MarCO (NASA)

LightSail (Planetary Society)

Muito Obrigado!

- Mais infos acessem:
 - inpe.br/crs/nanosat/
 - garatea.space
 - nanosats.eu
 - www.jpl.nasa.gov/cubesat/missions/
 - www.planetary.org/

danilo.pallamin@inpe.br