CONCOURS CENTRALE SUPELEC 2023 MATHÉMATIQUES 1 - PC

Pierre-Paul TACHER

This document is published under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license. © ① ⑤ ②

1.

Soit $i \in [1, n]$. Comme $X \neq 0$, soit $k \in [1, n]$, $x_k > 0$.

$$(AX)_i = \sum_{j=1}^n a_{ij} x_j$$

$$\geqslant a_{ik} x_k > 0$$

On a montré $\forall i \in [1, n], (AX)_i > 0$, c'est à dire AX > 0. Ensuite,

$$(|AB|)_{ij} = \left| \sum_{k=1}^{n} a_{ik} b_{kj} \right|$$

$$\leqslant \sum_{k=1}^{n} |a_{ik}| |b_{kj}|$$

$$= (|A| |B|)_{ij}$$

ainsi $|AB| \leq |A| |B|$.

2.

Soit $(X,Y) \in (M_{n,1}(\mathbb{R}))^2$. L'inégalité de Cauchy-Schartz est:

$$|\langle X \mid Y \rangle| \leqslant ||X|| ||Y||$$

$$\Leftrightarrow \left| \sum_{i=1}^{n} x_i y_i \right| \leqslant \left(\sum_{i=1}^{n} x_i^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} y_j^2 \right)^{\frac{1}{2}}$$

On peut l'appliquer directement à $(Z, W) \in (M_{n,1}(\mathbb{R}))^2$, définis par:

$$Z = \begin{bmatrix} |z_1| \\ \vdots \\ |z_k| \\ \vdots \\ |z_n| \end{bmatrix}, W = \begin{bmatrix} |w_1| \\ \vdots \\ |w_k| \\ \vdots \\ |w_n| \end{bmatrix} \geqslant 0$$

$$\left| \sum_{i=1}^{n} |z_i| |w_i| \right| = \sum_{i=1}^{n} |z_i| |w_i| \le \left(\sum_{i=1}^{n} |z_i|^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} |w_j|^2 \right)^{\frac{1}{2}}$$

En posant z = a + ib, $(a, b) \in \mathbb{R}^2$,

$$|1+z|^2 = (1+|z|)^2$$

$$\Leftrightarrow 1+a^2+2a+b^2 = 1+a^2+b^2+2\sqrt{a^2+b^2}$$

$$\Leftrightarrow \qquad a = \sqrt{a^2+b^2}$$

$$\Leftrightarrow \qquad a \geqslant 0 \land a^2 = a^2+b^2$$

$$\Leftrightarrow \qquad a \geqslant 0 \land b = 0$$

$$\Leftrightarrow \qquad z \in \mathbb{R}^+$$

Soit maintenant $(z, z') \in \mathbb{C}^2$, $z \neq 0$.

$$|z + z'| = |z| + |z'|$$

$$\Leftrightarrow |z| \left| 1 + \frac{z'}{z} \right| = |z| \left(1 + \left| \frac{z'}{z} \right| \right)$$

$$\Leftrightarrow \left| 1 + \frac{z'}{z} \right| = 1 + \left| \frac{z'}{z} \right|$$

$$\Leftrightarrow \exists \alpha \in \mathbb{R}^+, \quad \frac{z'}{z} = \alpha$$

4.

Comme les z_i sont non tous nuls, quitte à renuméroter on peut supposer $z_1 \neq 0$. On a:

$$|z_n| + \left| \sum_{k=1}^{n-1} z_k \right| \geqslant \left| \sum_{k=1}^n z_k \right| = \sum_{k=1}^n |z_k|$$

$$\Leftrightarrow \left| \sum_{k=1}^{n-1} z_k \right| \geqslant \sum_{k=1}^{n-1} |z_k| \left(\geqslant \left| \sum_{k=1}^{n-1} z_k \right| \right)$$

Cela montre que l'égalité est réalisée dans la dernière inégalité. En réitérant, on a:

$$\forall m \in [1, n], \quad \left| \sum_{k=1}^{m} z_k \right| = \sum_{k=1}^{m} |z_k|$$

Posons, pour $k \in [1, n]$, $z_k = e^{i\theta_k} |z_k|$ avec $\theta_k \in \mathbb{R}$. L'égalité précédente pour m = 2 donne

$$\frac{z_2}{z_1} = \frac{|z_2|}{|z_1|} e^{i(\theta_2 - \theta_1)} \in \mathbb{R}^+$$

$$\Leftrightarrow z_2 = 0 \lor \theta_2 = \theta_1 \mod 2\pi$$

$$\Leftrightarrow \qquad z_2 = e^{i\theta_1} |z_2|$$

Mais en renumérotant les z_i , $i \ge 2$, on remarque que le raisonnement précédent donne aussi

$$\forall k \in [2, n], \quad |z_1 + z_k| = |z_1| + |z_k|$$

$$\Leftrightarrow \quad \forall k \in [2, n], \quad z_k = e^{i\theta_1} |z_k|$$

Le polynôme caractéristique de A est

$$\chi_A(X) = X^2 - \operatorname{Tr} AX + \det A$$

d'oû

$$\Delta = \text{Tr}^2 A - 4 \det A$$

= $(a+d)^2 A - 4(ad-bc)$
= $(a+d)^2 A - 4(ad-bc)$
= $(a-d)^2 + 4bc > 0$

6.

Comme $\Delta > 0$, χ_A a deux racines réelles distinctes que l'on note $\lambda < \mu$. χ_A est scindé sur \mathbb{R} à racines simples donc A est diagonalisable et, quitte à permuter les colonnes de P,

$$\exists P \in GL_n(\mathbb{R}), \quad A = P\underbrace{\begin{bmatrix} \mu & 0 \\ 0 & \lambda \end{bmatrix}}_{D} P^{-1}$$

7.

On a

$$\lambda + \mu = \operatorname{Tr} A$$
$$= a + d$$

Si $\lambda \geqslant 0$, $|\lambda| = \lambda < \mu$. Sinon,

$$-|\lambda| + \mu = a + d > 0$$

$$\Rightarrow |\lambda| < \mu$$

8.

Comme on a

$$A^{k} = P \begin{bmatrix} \mu & 0 \\ 0 & \lambda \end{bmatrix}^{k} P^{-1}$$
$$= P \begin{bmatrix} \mu^{k} & 0 \\ 0 & \lambda^{k} \end{bmatrix} P^{-1}$$

il est clair que

$$(A^k)$$
 CV $\Leftrightarrow (D^k)$ CV $\Leftrightarrow (\lambda, \mu) \in]-1, 1]^2$

Comme $|\lambda| < \mu \le 1$, si de plus $(-1 <)\mu < 1$, alors (A^k) converge vers la matrice nulle. Si $\mu = 1$,

$$\lim_{k \to +\infty} A^k = P \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} P^{-1}$$

qui est un projecteur de rang 1.

On remarque que

$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

est vecteur propre de B, associé à la valeur propre $1 - \alpha - \beta$.

$$\begin{bmatrix} \beta \\ \alpha \end{bmatrix}$$

est vecteur propre de B, associé à la valeur propre $1 \neq 1 - \alpha - \beta$. On a donc automatiquement $\mathbb{R}^2 = E_1 \oplus E_{1-\alpha-\beta}$ et B diagonalisable:

$$B = \begin{bmatrix} \beta & 1 \\ \alpha & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 - \alpha - \beta \end{bmatrix} \begin{bmatrix} \beta & 1 \\ \alpha & -1 \end{bmatrix}^{-1}$$

10.

On a $1-\alpha-\beta\in]-1,1[$, ainsi (D^k) converge, puis (B^k) converge et

$$\lim_{k \to +\infty} B^k = \begin{bmatrix} \beta & 1 \\ \alpha & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \beta & 1 \\ \alpha & -1 \end{bmatrix}^{-1}$$
$$= \Lambda$$

11.

N est une application de $M_n(\mathbb{C})$ dans \mathbb{R}^+ . Il n'y pas de difficulté à montrer que

$$\forall A \in M_n(\mathbb{C}) \quad \forall \lambda \in \mathbb{C}, \quad \|\lambda A\|_{\infty} = |\lambda| \|A\|_{\infty}$$

$$\forall A \in M_n(\mathbb{C}), \quad ||A||_{\infty} \geqslant 0$$

avec

$$||A||_{\infty} = 0$$

$$\Leftrightarrow A = 0$$

soit $i \in [1, n]$.

$$\sum_{j=1}^{n} |(A+B)_{ij}| = \sum_{j=1}^{n} (|a_{ij}| + |b_{ij}|)$$

$$= \sum_{j=1}^{n} |a_{ij}| + \sum_{j=1}^{n} |b_{ij}|$$

$$\leq ||A||_{\infty} + ||B||_{\infty}$$

Ce qui montre l'inégalité triangulaire $||A + B||_{\infty} \le ||A||_{\infty} + ||B||_{\infty}$.

Soit C = AB. Soit $i \in [1, n]$.

$$\sum_{j=1}^{n} |c_{ij}| = \sum_{j=1}^{n} \left| \sum_{k=1}^{n} a_{ik} b_{kj} \right|$$

$$\leqslant \sum_{j=1}^{n} \sum_{k=1}^{n} |a_{ik}| |b_{kj}|$$

$$= \sum_{k=1}^{n} |a_{ik}| \left(\sum_{j=1}^{n} |b_{kj}| \right)$$

$$\leqslant \sum_{k=1}^{n} |a_{ik}| \|B\|_{\infty}$$

$$= \|B\|_{\infty} \sum_{k=1}^{n} |a_{ik}|$$

$$\leqslant \|B\|_{\infty} \|A\|_{\infty}$$

Le résultat s'ensuit en prenant le max sur i.

12.

Soit C = AB.

$$||C||_{2}^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} \left| \sum_{k=1}^{n} a_{ik} b_{kj} \right|^{2}$$

$$\leq \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{k=1}^{n} |a_{ik}| |b_{kj}| \right)^{2} \qquad \text{(Inégalité triangulaire pour le module complexe)}$$

$$\leq \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\sum_{k=1}^{n} |a_{ik}|^{2} \right) \left(\sum_{k=1}^{n} |b_{kj}|^{2} \right) \qquad \text{(Cauchy-Schwartz)}$$

$$= \left(\sum_{i=1}^{n} \sum_{k=1}^{n} |a_{ik}|^{2} \right) \left(\sum_{j=1}^{n} \sum_{k=1}^{n} |b_{kj}|^{2} \right)$$

$$= ||A||_{2}^{2} ||B||_{2}^{2}$$

13.

Il n'y a pas de difficultés à montrer que ν est une norme en utilisant les propriétés de N. Puis,

$$\nu(AB) = N(S^{-1}ABS)$$

$$= N(S^{-1}A\underbrace{SS^{-1}}_{=I_n}BS)$$

$$\leq N(S^{-1}AS)N(S^{-1}BS)$$

$$= \nu(A)\nu(B)$$

Deux matrices semblables ont les mêmes polynômes caractéristiques, donc le même spectre et le même rayon spectral:

$$\chi_{S^{-1}AS}(X) = \det(S^{-1}AS - XI_n)$$

$$= \det(S^{-1}AS - XS^{-1}S)$$

$$= \det(S^{-1}(A - XI_n)S)$$

$$= \det(S^{-1}) \det(A - XI_n) \det(S)$$

$$= \frac{1}{\det(S)} \det(A - XI_n) \det(S)$$

$$= \det(A - XI_n)$$

$$= \chi_A(X)$$

$$\rho(S^{-1}AS) = \rho(A)$$

15.

 $A \in M_n(\mathbb{C})$ est trigonalisable car tout polynôme est scindé dans $\mathbb{C}[X]$.

$$\exists Q \in GL_n(\mathbb{C}), \quad A = Q \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & a_{nn} \end{bmatrix} Q^{-1}$$

$$\forall x \in \mathbb{R}, \quad \chi_A(x) = \det \begin{bmatrix} a_{11} - x & \dots & \dots & a_{1n} \\ 0 & a_{22} - x & \dots & a_{2n} \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & a_{nn} - x \end{bmatrix} Q$$
$$= \prod_{i=1}^n (a_{ii} - x)$$

montre que $\operatorname{sp}(A) = \{a_{11}, \dots, a_{nn}\}$ puis $\operatorname{sp}(A^k) = \{a_{11}^k, \dots, a_{nn}^k\}$. On en déduis que $\rho(A^k) = \rho(A)^k$

et
$$\operatorname{sp}(\alpha A) = \{\alpha a_{11}, \dots, \alpha a_{nn}\}$$

$$\rho(\alpha A) = |\alpha| \, \rho(A)$$

16.

Soit $\lambda \in \operatorname{sp}(A)$ tel que $\rho(A) = |\lambda|$. Soit U un vecteur propre de A associé à λ . Soit $H \in GL_n(\mathbb{C})$ définie par:

$$H = \left[U \middle| U \middle| \dots \middle| U \right]$$

la matrice dont les colonnes sont toutes identiques, égales à U. On a $AH = \lambda H$ donc

$$\begin{split} \rho(A)N(H) &= N(\lambda H) \\ &= N(AH) \\ &\leqslant N(A)N(H) \end{split}$$

et on peut conclure $\rho(A) \leq N(A)$ car N(H) > 0

17.

Il ne faut surtout pas ici revenir à a formule du produit mais plutôt manipuler les opérations élémentaires sur une matrice: soit

$$E_i = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \leftarrow \text{ligne } i$$

- (i) Multiplier à droite par E_i sélectionne la colonne i: $AE_i = C_i$. (ii) Multiplier à gauche par E_i^T sélectionne la ligne i: $E_i^TA = L_i$.

Multiplier la matrice T par la matrice diagonale D à droite revient ainsi à multiplier la colonne C_i par τ^{j-1} . Ensuite multiplier le résultat par D^{-1} à gauche revient à multiplier la ligne i par τ^{1-i} . on en déduis le résultat:

$$\forall (i,j) \in [1,n]^2, \quad (D_{\tau}^{-1}TD_{\tau})_{ij} = \tau^{j-i}t_{ij}$$

18.

soit $i \in [1, n]$. soit $\tau \in [0, 1]$. Soit $\epsilon > 0$.

$$\sum_{j=1}^{n} \left| (D_{\tau}^{-1} T D_{\tau})_{ij} \right| = \sum_{j=1}^{n} \tau^{j-i} |t_{ij}|$$

$$= \sum_{j=i}^{n} \tau^{j-i} |t_{ij}|$$

$$= |t_{ii}| + \sum_{j=i+1}^{n} \tau^{j-i} |t_{ij}|$$

$$= |t_{ii}| + \sum_{j=i+1}^{n-i} \tau^{j} |t_{i,i+j}|$$

soit $M = \max_{k>l} \{|t_{kl}|\}$

$$\sum_{j=1}^{n} \left| (D_{\tau}^{-1} T D_{\tau})_{ij} \right| \leq |t_{ii}| + M \sum_{j=1}^{n-i} \tau^{j}$$

$$\leq |t_{ii}| + M \sum_{j=1}^{n-1} \tau^{j}$$

$$\leq |t_{ii}| + M \underbrace{\sum_{j=1}^{n-1} \tau^{j}}_{\substack{\tau \to 0 \\ \tau \to 0}}$$

Si M=0, la matrice T est diagonale et

$$\forall \tau \in \mathbb{R}^{+*}, \quad \|D_{\tau}^{-1}TD_{\tau}\|_{\infty} = \rho(T)$$

Sinon, soit $\epsilon' = \frac{\epsilon}{M} > 0$.

$$\exists \eta > 0, \quad \forall \tau \in]0,1[, \quad |\tau| < \eta \Rightarrow \frac{\tau}{1-\tau} < \epsilon'$$

Mais alors:

$$\forall \tau \in]0, \eta[, \quad \sum_{j=1}^{n} \left| (D_{\tau}^{-1} T D_{\tau})_{ij} \right| \leqslant |t_{ii}| + M \frac{\epsilon}{M}$$
$$\leqslant \rho(T) + \epsilon$$

L'inégalité précédente étant valable pour tout $i \in [1, n]$, on obtient le résultat en prenant le max:

$$\forall \tau \in]0, \eta[, \quad ||D_{\tau}^{-1}TD_{\tau}||_{\infty} \leqslant \rho(T) + \epsilon$$

19.

Soit $Q \in GL_n(\mathbb{R})$ tel que $A = QTQ^{-1}$. Soit $\tau \in]0, \eta[$, fixé (en fonction de T et ϵ) d'après ce qui précède. La norme sous-multiplicative $\nu(.) = ||D_{\tau}^{-1}Q^{-1}.QD_{\tau}||_{\infty}$ vérifie:

$$\rho(A) \leqslant \nu(A) = \|D_{\tau}^{-1} Q^{-1} A Q D_{\tau}\|_{\infty} = \|D_{\tau}^{-1} T D_{\tau}\|_{\infty} \leqslant \rho(T) + \epsilon = \rho(A) + \epsilon$$

20.

Si $\rho(A) < 1$, on fixe $\epsilon = \frac{1-\rho(A)}{2} > 0$ de telle sorte que l'on aie: $\rho(A) < \rho(A) + \epsilon < 1$. En utilisant la norme construite d'après ce qui précéde (toutes les normes étant équivalentes en dimension finie),

$$\forall k \in \mathbb{N}, \quad \nu(A^k) \leqslant (\nu(A))^k$$

 $\leqslant (\rho(A) + \epsilon)^k$

ce qui montre que la suite (A^k) converge vers la matrice nulle.

Réciproquemment, si $\rho(A) \geqslant 1$,

$$\exists Q \in GL_n(\mathbb{C}), \quad A = Q \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & a_{nn} \end{bmatrix} Q^{-1}$$

$$\forall k \in \mathbb{N}, \quad A^k = Q \begin{bmatrix} a_{11}^k & \square & \dots & \dots & \square \\ 0 & a_{22}^k & \dots & \dots & \square \\ 0 & 0 & \ddots & & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & a_{nn}^k \end{bmatrix} Q^{-1}$$

Cette écriture montre que la suite (T^k) , et donc aussi la suite (A^k) , ne peut pas tendre vers la matrice nulle car un des éléments diagonaux ne tend pas vers 0.

21.

Toute matrice symétrique réelle est diagonalisable, en base orthonormale, et les espace propres sont orthogonaux deux à deux.

$$\exists Q \in O_n(\mathbb{R}) \quad \exists D \in M_n(\mathbb{R}) \text{ diagonale,} \quad A = QDQ^T$$

$$= Q \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} Q^T$$

22.

Si r était nul, cela voudrait dire que toutes les valeurs propres de A sont nulles, ou encore que A=0 car A est diagonalisable, ce qui n'est pas le cas. Donc r>0.

23.

$$X^{T}AX = X^{T}QDQ^{T}X$$

$$= (Q^{T}X)^{T}DQ^{T}X$$

$$= \sum_{j=1}^{n} \lambda_{i}y_{i}^{2}$$

$$\leq \mu \sum_{j=1}^{n} y_{i}^{2}$$

$$= \mu (Q^{T}X)^{T}(Q^{T}X)$$

$$= \mu X^{T} \underbrace{QQ^{T}}_{=I_{n}} X$$

$$= \mu X^{T}X$$

$$= \mu$$

où

$$Q^T X = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

24.

En reprenant le raisonnement et les notations de la question précédente, X unitaire,

$$X^{T}AX = \mu \Leftrightarrow \forall i \in [1, n], \quad \lambda_{i}y_{i}^{2} = \mu y_{i}^{2}$$

$$\Leftrightarrow \forall i \in [1, n], \quad y_{i} = 0 \lor \lambda_{i} = \mu$$

$$\Leftrightarrow (\forall i \in [1, n], \quad \lambda_{i} \neq \mu \Rightarrow y_{i} = 0)$$

Or Q^TX correspond aux coordonnées de X dans la base orthonormale de vecteurs propres de A e_1, e_2, \ldots, e_n et λ_i est la valeur propre associée à e_i . On a donc bien

$$X^{T}AX = \mu \Leftrightarrow (\forall i \in [1, n], \quad \lambda_{i} \neq \mu \Rightarrow y_{i} = 0)$$

$$\Leftrightarrow X \in E_{\mu} = \ker(A - \mu I_{n})$$

$$\Leftrightarrow X \in E_{\mu} = \ker(A - \mu I_{n}) \setminus \{0\}$$

la dernière équivalence venant du fait que X est unitaire.

25.

$$|X^{T}AX| = \left| \sum_{i,j} a_{ij} x_{i} x_{j} \right|$$

$$\leqslant \sum_{i,j} a_{ij} |x_{i}| |x_{j}| \qquad (a_{ij} \geqslant 0)$$

$$= |X|^{T} A |X|$$

$$\leqslant \mu$$

la dernière inégalité venant de ce qui précède car |X| est aussi unitaire.

26.

On applique le résultat précédent à X unitaire vecteur propre associé à λ :

$$\left| X^T A X \right| \leqslant \mu \Leftrightarrow \left| \lambda \right| X^T X \leqslant \mu$$
$$\Leftrightarrow \left| \lambda \right| \leqslant \mu$$

ce qui montre que $\rho(A) = \mu > 0$.

27.

D'après les résultats des questions 24 et 26, on a $X^TAX = \mu$, et on a l'égalité dans la question 25 i.e. $|X|^TA|X| = \mu$.

L'équivalence de 24, prise dans l'autre sens cette fois, nous permet d'en déduire que le vectuer unitaire |X| est un vecteur propre associé à μ .

Supposons $\exists i \in [1, n], x_i = 0$. Alors:

$$\sum_{k=1}^{n} a_{ik} |x_k| = \mu |x_i| = 0$$

$$\Rightarrow \forall k \in [1, n], \quad x_k = 0 \quad (\forall k \in [1, n], \quad a_{ik} > 0)$$

ce qui n'est pas. Donc |X| > 0.

28.

Soit $i \in [1, n]$. On a:

$$\sum_{k=1}^{n} a_{ik} |x_k| = \mu |x_i|$$

$$= |\mu x_i|$$

$$= \left| \sum_{k=1}^{n} a_{ik} x_k \right|$$

La question 4 nous permet de dire que les complexes non nuls $a_{ik}x_k$ ont tous même argument, ce qui revient à dire que les réels x_k sont tous de même signe. Donc

$$(|X| = X) \lor (|X| = -X)$$

29.

Soit X, Y deux vecteurs propres orthogonaux associés à λ , unitaires. |X|, |Y| sont strictement positifs et aussi,

$$\left|X\right|^{T}\left|Y\right| = \pm X^{T}Y = 0$$

D'après la question précédente. Or,

$$|X|^T |Y| = \sum_{k=1}^n |x_k| |y_k| > 0$$

Il y a contradiction.

On en déduis que $\dim(\ker(A - rI_n)) = 1$.

30.

Comme A est diagonalisable, l'ordre de multiplicité de r en tant que racine du polynôme caractéristique est égal à la dimension du sous espace propre, soit 1.

supposons que -r est valeur propre de A, et soit Y unitaire un vecteur propre associé à -r. On a:

$$\forall i \in [1, n], \quad -ry_i = \sum_{j=1}^n a_{ij} y_j \qquad \textcircled{1}$$
$$\Rightarrow \forall i \in [1, n], \quad r |y_i| \leqslant \sum_{j=1}^n a_{ij} |y_j|$$

On a |Y| unitaire, et

$$|Y|^T A |Y| = \sum_{i,j} a_{ij} |y_i| |y_j|$$

$$= \sum_{i=1}^n |y_i| \sum_{j=1}^n a_{ij} |y_j|$$

$$\geqslant r \sum_{i=1}^n |y_i|^2$$

$$= r$$

Mais d'après 23, on a aussi $|Y|^T A |Y| \le \mu$, donc $|Y|^T A |Y| = \mu$ et d'après 24, |Y| est un vecteur propre unitaire associé à r.

Mais alors, si on réécrit l'égalité ①:

$$\forall i \in [1, n], \quad -ry_i = \sum_{j=1}^n a_{ij} y_j$$

$$\Rightarrow \forall i \in [1, n], \quad \left| \sum_{j=1}^n a_{ij} y_j \right| = r |y_i|$$

$$\Leftrightarrow \forall i \in [1, n], \quad \left| \sum_{j=1}^n a_{ij} y_j \right| = \sum_{k=1}^n a_{ik} |y_k|$$

Mais encore d'après 4, chacune de ces n égalités implique que tous les y_k sont de même signe, donc $Y = \pm |Y|$, ce qui est impossible car $Y \notin \ker(A - rI_n)^1$.

31.

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

A est symétrique, positive (mais non strictement positive), $sp(A) = \{-1, 1\}$.

32.

On rappelle que $\rho(A^p) = \rho(A)^p = r^p$, puis d'aprés la question 29 appliquée à A^p , dim $(\ker(A^p - r^p I_n)) = 1$. Comme $\ker(A - r I_n) \subset \ker(A^p - r^p I_n)$, on a aussi dim $(\ker(A - r I_n)) = 1$, car r est valeur propre de A et donc $\ker(A - r I_n) = \ker(A^p - r^p I_n)$. La question 27 fournit un vecteur strictement positif X comme base.

33.

Si p impair, -r ne peux pas être valeur propre de A car sinon $(-r)^p = -r^p$ serait une valeur propre de A^p , ce qui n'est pas d'après 29.

Si p pair, soit Y un vecteur propre associé de A à -r. On a $X \perp Y$ et vect $(X,Y) \subset \ker(A^p - r^p I_n)$, impossible pour des raison de dimensions.

 $^{^{1}}$ cette solution ne semble pas être celle attendu par l'énoncé, qui suggère de déduire le résultat de l'ordre de multiplicité de r comme racine du polynome caractéristique. C'est la seule solution que j'ai trouvée pour l'instant.

soit $\lambda \in \mathbb{C}$ une valeur propre de A, et X un vecteur propre associé. Soit $i \in [1, n]$ tel que $|x_i| = \max_{j \in [1, n]} |x_j| > 0$.

$$(A - \lambda I_n)X = 0 \Rightarrow \sum_{\substack{k=1\\k \neq i}}^n a_{ik} x_k + (a_{ii} - \lambda)x_{ii}) = 0$$

$$\Rightarrow \qquad (a_{ii} - \lambda)x_{ii}) = -\sum_{\substack{k=1\\k \neq i}}^n a_{ik} x_k$$

$$\Rightarrow \qquad |a_{ii} - \lambda| |x_{ii}| \leqslant \sum_{\substack{k=1\\k \neq i}}^n |a_{ik}| |x_k|$$

$$\Leftrightarrow \qquad |a_{ii} - \lambda| \leqslant \sum_{\substack{k=1\\k \neq i}}^n |a_{ik}| \frac{|x_k|}{|x_{ii}|}$$

$$\Rightarrow \qquad |a_{ii} - \lambda| \leqslant \sum_{\substack{k=1\\k \neq i}}^n |a_{ik}|$$

35.

Comme dans la question 17, on a

$$(D^{-1}AD)_{ij} = \frac{x_j}{x_i}a_{ij}$$

On applique la question précédente à la matrice $C = D^{-1}AD$. Il suffit de remarquer que:

$$\forall i \in [1, n], \quad \sum_{\substack{k=1\\k \neq i}}^{n} |c_{ik}| = \sum_{\substack{k=1\\k \neq i}}^{n} \left| \frac{x_k}{x_i} \right| |a_{ik}|$$

$$\leq \sum_{\substack{k=1\\k \neq i}}^{n} \left| \frac{x_k}{x_i} \right| b_{ik}$$

$$= \frac{1}{x_i} \sum_{\substack{k=1\\k \neq i}}^{n} x_k b_{ik}$$

$$= \frac{1}{x_i} (\rho(B)x_i - b_{ii}x_i)$$

$$= \rho(B) - b_{ii}$$

Il suffit ensuite de remarquer que $c_{ii} = a_{ii}$ et que sp(C) = sp(A) pour conclure.