Capitolo 1

Insiemi

Gli insiemi sono collezioni di oggetti detti elementi, in cui si prescinde dall'ordine e dalla ripetizione degli elementi.

Si dice $x \in A$ se l'elemento appartiene all'insieme altrimenti si usa $x \notin A$. L'insieme vuoto si indica con \emptyset mentre se due insiemi sono composti dagli stessi elementi si usa A = B.

Gli insiemi possono essere definiti in due maniere:

• Estensionale:si elencano gli elementi di un insieme

Esempio:

$$A = \{1, 2, 3\}$$

$$B = \{2, 4, 6\}$$

• Intensionale:si descrivono gli elementi che soddisfano una determinata proprietà

Esempio:

$$D = \{ x \in N | x < 100 \}$$

Dati due insiemi S e T si ha:

$$S \subset T = \{x | x \in S \Rightarrow x \in T \land S \neq T\}$$

$$S = T = \{x | x \in S \iff x \in T\}$$

$$S \subseteq T = \{x | S \subset Q \lor S = T\} \quad (1.1)$$

Si definisce *cardinalità* il numero degli elementi e si indica con |A|.

Due insiemi S e T si dicono equipotenti, indicato con $S \sim T$, se essi sono in corrispondenza univoca.

Gli insiemi numerici definiti nella Teoria degli insiemi sono i seguenti:

- N: Insieme dei numeri Naturali
- Z: insieme dei numeri interi
- ullet Q: insieme dei numeri razionali
- R: insieme dei numeri reali

• C: insieme dei numeri complessi

Gli insiemi $\mathbf{N},\mathbf{Z},\mathbf{Q}$ hanno la stessa cardinalità indicata con \aleph Gli insiemi \mathbf{R} e \mathbf{C} hanno la stessa cardinalità indicata con 2^\aleph

• Insieme Finito: Cercare Definizione

• Insieme Transfinito: Cercare Definizione

• Insieme Numerabile: Cercare Definizione

1.1 Unione ed Intersezione

L'unione di due insiemi $S \cup T$ è l'insieme formato degli elementi di S e degli elementi di T.

L'intersezione di due insiemi $S\cap T$ è l'insieme degli elementi presenti in tutti e due gli insiemi.

```
S \cup T = \{x | x \in S \lor x \in T\} S \cap T = \{x | x \in S \land x \in T\} Esempio: A = \{\text{"Rosso", "Arancio", "Giallo"}\} B = \{\text{"Verde", "Giallo", "Marrone"}\} A \cup B = \{\text{"Rosso", "Arancio", "Giallo", "Verde", "Marrone"}\} A \cap B = \{\text{"Giallo", "Unione e l'intersezione sono legate dalle proprietà distributive:}
```

1.
$$S_1 \cap (S_2 \cup S_3) = (S_1 \cap S_2) \cup (S_1 \cap S_3)$$

2.
$$S_1 \cup (S_2 \cap S_3) = (S_1 \cup S_2) \cap (S_1 \cup S_3)$$

1.2 Complementare

Dato un insieme U, detto Universo, si dice *complemento* di S, indicato con \bar{S} , la differenza di un sottoinsieme S di U rispetto ad U.

```
\begin{split} \bar{S} &= \{x | x \in U \land x \not\in S\} \\ \text{Esempio:} \\ U &= \{1, 2, 3, 4, 5, 6, 7\} \\ S &= \{2, 4, 6\} \\ \bar{S} &= \{1, 3, 5, 7\} \end{split}
```

1.3 Differenza di Insiemi

Dati 2 insiemi S e T chiamiamo S T l'insieme differenza costituito da tutti gli elementi di S che non sono elementi di T.

```
\begin{array}{ll} S \ T = x | x \in S \wedge x \not \in T \\ \text{Esempio:} \\ S = \{a,b,c,d,e\} & T = \{a,c,f,g,e,h\} \\ S \ T = \{b,d\} \end{array}
```

La differenza simmetrica di due insiemi S_1 e S_2 , indicata con $S_1 \triangle S_2$, è definita come $S_1 \triangle S_2 = (S_1 \backslash S_2) \cup (S_2 \backslash S_1)$

1.4 Insieme delle Parti

L'insieme delle Parti di un insieme S, indicato con $\wp S$, è l'insieme formato da tutti i sottoinsiemi dell'insieme S.

$$\wp S = \{X | X \subseteq S\}$$

3, 4 >, < 3, 5 >

Definizione: Se S è composto da $n \ge 0$ elementi, il numero di elementi di $\wp S$ è 2^n .

1.5 Prodotto Cartesiano

Dati 2 insiemi A e B, non necessariamente distinti, si definisce come Prodotto Cartesiano, indicato con AxB, l'insieme di tutte le coppie in cui il primo elemento appartiene ad A e il secondo elemento della coppia appartiene ad B.

Capitolo 2

Induzione

L'induzione è un importante strumento per la definizione di nuovi insiemi, come ad esempio l'insieme delle FBF(Formule ben Formate), e la dimostrazione di determinate proprietà di un insieme.

2.1 Principio di Induzione

Il principio di Induzione si utilizza per dimostrare la correttezza di determinate proprietà dell'insieme dei numeri Naturali.

Il principio di induzione viene definito nel seguente modo:

Data una proposizione P(x) valida per $\forall x \in N$ bisogna:

- 1. Caso Base: Verificare P(i) con i indicante i primi elementi della propo-
- 2. Passo Induttivo: Supposto P(x) vero bisogna verificare la verità di P(x+1)

Dimostrare tramite Induzione la formula
$$\sum_{i=0}^n i = \frac{n(n+1)}{2}$$

Dimostrazione
Base
$$n = 0$$

$$\sum_{i=0}^{0} i = \frac{0(0+1)}{2}$$

$$0 = 0 \text{ vero}$$

$$n(n+1)$$

Ipotesi Induttiva:
$$\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$$

Ipotesi Induttiva:
$$\sum_{i=0}^n i = \frac{n(n+1)}{2}$$
 Tesi Induttiva:
$$\sum_{i=0}^{n+1} i = \frac{(n+1)(n+2)}{2}$$

$$\sum_{i=0}^{n} +1i = \sum_{i=0}^{n} +(n+1)$$

$$= \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1) + 2(n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

Esempio:

Dimostrare tramite Induzione la formula $\sum_{i=1}^{n} 2i - 1 = n^2$

 ${\bf Dimostrazione}$

Base
$$n = 1$$
 $\sum_{i=1}^{1} 2i - 1 = 1^2$ $1 = 1$ è vero

Ipotesi Induttiva:
$$\sum_{i=1}^{n} 2i - 1 = n^2$$

Tesi Induttiva:
$$\sum_{i=1}^{n+1} 2i - 1 = (n+1)^2$$

$$\sum_{i=1}^{n+1} 2i - 1 = \sum_{i=1}^{n} 2i - 1 + 2(n+1) - 1$$
$$= n^2 + 2n + 1 = (n+1)^2$$

2.2 Definizione Induttiva

L'induzione permette anche di definire nuovi insiemi nel seguente modo:

- 1. si definisce un insieme di "oggetti base" appartenenti all'insieme.
- 2. si definisce un insieme di operazioni di costruzione che, applicate ad elementi dell'insieme, producono nuovi elementi dell'insieme.
- 3. nient'altro appartiene all'insieme definito.

Esempio:Definizione induttiva di numeri naturali

- 1. $0 \in N$
- 2. Se $x \in N$ allora $s(x) \in N$
- 3. Nient'altro appartiene ai numeri naturali

Capitolo 3

Logica Proposizionale

La logica è lo studio del ragionamento e dell'argomentazione e, in particolare, dei procedimenti inferenziali, rivolti a chiarire quali procedimenti di pensiero siano validi e quali no.

Vi sono molteplici tipologie di logiche, come ad esempio la logica classica e le logiche costruttive, tutte accomunate di essere composte da 3 elementi:

- Linguaggio:insieme di simboli utilizzati nella Logica per definire le cose
- Sintassi:insieme di regole che determina quali elementi appartengono o meno al linguaggio
- Semantica:permette di dare un significato alle formule del linguaggio e determinare se rappresentano o meno la verità.

Noi ci occupiamo della logica Classica che si compone in LOGICA PROPOSIZIONALE e logica predicativa.

La Logica proposizionale è un tipo di logica Classica che presenta come caratteristica quella di essere un linguaggio limitato in quanto si possono esprimere soltanto proposizioni senza avere la possibilità di estenderla a una classe di persone.

3.1 Linguaggio e Sintassi

Il linguaggio di una logica proposizionale è composto dai seguenti elementi:

- Variabili Proposizionali: P, Q, R...
- Connettivi Proposizionali: $\land, \lor, \neg, \Rightarrow, \iff$
- Simboli Ausiliari: (,)
- Costanti: T, F

La sintassi di un linguaggio è composta da una serie di formule ben formate(FBF) definite induttivamente nel seguente modo:

1. Le costanti e le variabili proposizionali $\in FBF$.

- 2. Se $A \in B \in FBF$ allora $(A \land B), (A \lor B), (\neg A), (A \Leftarrow B), (A \iff B), TA$ e FA sono delle formule ben formate.
- 3. nient'altro è una formula

Esempio:

 $(P \wedge Q) \in Fbf$ è una formula ben formata

 $(PQ \land R) \not\in Fbf$ in quanto non si rispetta la sintassi del linguaggio definita.

É possibile ridurre ed eliminare delle parentesi attraverso l'introduzione della precedenza tra gli operatori, che è definita come segue:

$$\neg, \land, \lor, \Rightarrow, \iff$$
.

In assenza di parentesi una formula va parentizzata privileggiando le sottoformule i cui connettivi principali hanno la precedenza più alta.

In caso di parità di precedenza vi è la convenzione di associare da destra a sinistra.

Esempio:

$$\neg A \land (\neg B \Rightarrow C) \lor D$$
 diventa $((\neg A) \land ((\neg B) \Rightarrow C) \lor D)$.

3.2 Semantica

La semantica di una logica consente di dare un significato alle formule del Linguaggio attraverso le tabelle di verità.

Si definisce v(T) = 1 e v(F) = 0 per cui 1 rappresenta la verità mentre lo 0 la falsità di una variabile, sotto formula e formula.

I connettivi della Logica Proposizionale hanno la seguente tabella di verità:

A	В	$A \wedge B$	$A \vee B$	$\neg A$	$A \Rightarrow B$	$A \iff B$
0	0	0	0	1	1	1
0	1	0	1	1	1	0
1	0	0	1	0	0	0
1	1	1	1	0	1	1

Una formula nella logica proposizionale può essere di tre diversi tipi:

- Tautologica: la formula è soddisfatta da qualsiasi valutazione della formula
- Soddisfacibile non Tautologica:la formula è soddisfatta da qualche valutazione della formula ma non da tutte
- Contaddizione: la formula non viene soddisfatta da qualsiasi valutazione della formula

Esempio:

Formula $A \wedge \neg A$ contraddizione

A	$\neg A$	$A \wedge \neg A$
0	1	0
1	0	0

Formula $Z = (A \wedge B) \vee C$ soddisfacibile non Tautologica

A	B	C	$A \wedge B$	$(A \wedge B) \vee C$
0	0	0	0	0
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	0
1	0	1	0	1
1	1	0	1	1
1	1	1	1	1

Formula $X = (A \wedge B) \Rightarrow (\neg A \wedge C)$ Soddisfacibile non tautologica

A	B	C	$\neg A$	$A \wedge B$	$\neg A \wedge C$	X
0	0	0	1	0	0	1
0	0	1	1	0	1	1
0	1	0	1	0	0	1
0	1	1	1	0	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	1	0	0
1	1	1	0	1	0	0

Formula $Y = \neg (A \land B) \iff (A \lor B \Rightarrow C)$ soddisfacibile non Tautologica

A	B	C	$A \wedge B$	$\neg(A \land B)$	$A \vee B$	$(A \lor B) \Rightarrow C$	Y
0	0	0	0	1	0	1	1
0	0	1	0	1	0	1	1
0	1	0	0	1	1	0	0
0	1	1	0	1	1	1	1
1	0	0	0	1	1	0	0
1	0	1	0	1	1	1	1
1	1	0	1	0	1	0	1
1	1	1	1	0	1	1	0

3.3 Sistema Deduttivo

Il sistema deduttivo è un metodo di calcolo che manipola proposizioni, senza la necessità di ricorrere ad altri aspetti della logica(nessuna necessità di ricorrere all'interpretazione).

Nella logica proposizionale, tramite i teoremi di completezza e correttezza, esiste una corrispondenza tra le formule derivanti dal sistema deduttivo e le formule verificabili tramite la semantica della logica.

I sistemi deduttivi della logica proposizionale sono i seguenti:

- SISTEMA DEDUTTIVO HILBERTIANO:non viene analizzato!!!
- Metodo dei Tableau
- RISOLUZIONE PROPOSIZIONALE:non viene analizzato!!!

(Da migliorare)(inserire definizione di dimostrazione e teorema) Una dimostrazione di una formula di una logica può venire tramite:

- Metodo diretto: Data un'ipotesi, attraverso una serie di passi si riesce a dimostrare la correttezza della Tesi
- Metodo per assurdo(non sempre accettato in tutte le logiche): Si nega la tesi ed attraverso una serie di passi si riesce a dimostrare la negazione delle ipotesi.

3.3.1 Tableau Proposizionali

Il metodo dei Tableau è stato introdotto da Hintikka e Beth alla fine degli anni '50 e poi ripresi successivamente da Smullyan.

I tableau sono degli alberi,la cui radice è l'enunciato in esame, e gli altri nodi sono costruiti attraverso l'applicazione di una serie di regole,fino ad arrivare alle formule atomiche come radici.

Le regole dei Tableau sono le seguenti:

$T \wedge$
$S, TA \wedge B$
$\overline{S, TA, TB}$
$T \vee$
$S, TA \vee B$
S, TA/S, TB
<u>T ¬</u>
$S, T \neg A$
S, FA
$T \Rightarrow$
$S, TA \Rightarrow B$
S, FA/S, TB
$\overline{T} \iff (da fare)$
$S, FA \wedge B$
$\frac{\frac{F \wedge}{S, FA \wedge B}}{S, FA/S, TB}$
S, FA/S, TB
$\frac{S, FA/S, TB}{\frac{F \vee}{S, FA \vee B}}$ $\frac{S, FA, FB}{S, FA, FB}$
$\frac{S, FA/S, TB}{\frac{F \vee}{S, FA \vee B}}$ $\frac{S, FA, FB}{S, FA, FB}$
$ \begin{array}{c c} \hline S, FA/S, TB \\ \hline F \lor \\ S, FA \lor B \\ \hline S, FA, FB \\ \hline F \neg \\ S, F \neg A \\ \hline S, T A \end{array} $
$ \begin{array}{c c} \hline S, FA/S, TB \\ \hline F \lor \\ S, FA \lor B \\ \hline S, FA, FB \\ \hline F \neg \\ S, F \neg A \\ \hline S, T A \end{array} $
$ \begin{array}{c c} \hline S, FA/S, TB \\ \hline F \lor \\ S, FA \lor B \\ \hline S, FA, FB \\ \hline F \neg \\ S, F \neg A \\ \hline S, T A \end{array} $
$ \begin{array}{c c} S, FA/S, TB \\ \hline F \lor \\ S, FA \lor B \\ \hline S, FA, FB \\ \hline F \neg \\ S, F \neg A \end{array} $
$ \begin{array}{c c} S, FA/S, TB \\ \hline F \lor \\ S, FA \lor B \\ \hline S, FA, FB \\ \hline F \neg \\ S, F \neg A \\ S, TA \\ \hline F \Rightarrow \\ S, FA \Rightarrow B \end{array} $

Il metodo dei Tableau è un metodo dei sistemi deduttivi, che permette attraverso l'applicazione di una serie di regole, di capire la tipologia della formula.

Tipologia	Fare Tableau per	Chiuso?	Aperto?
Teorema	$\neg A$	Si	No
Soddisfacibile	A	No	Si
Contradditoria	A	Si	No

Esempio: Formula: $\neg(A \lor B) \to (\neg A \land \neg B)$