Compatibility between kernel SMM and SVM

Miaoyan Wang, May 18, 2020

Theorem 0.1 (Compatibility with classical SVM). Let $X \in \mathbb{R}^d$ denote a column vector and $X^* = \begin{bmatrix} 0 & X^T \\ X & 0 \end{bmatrix} \in \mathbb{R}^{(d+1)\times(d+1)}$ be the symmetrized matrix. Then, under our proposed column-wise kernels, the SMM classifier trained on X^* equals the SVM classifier trained on X.

Remark 1. The decision boundaries generated by two classifiers are the same, but the optimal objective value may not be the same.

Proof. We prove the following stronger result.

(**Set-up**.) Let $X \in \mathbb{R}^{m \times n}$ be the original matrix feature,

$$X = \begin{bmatrix} | & | & | & | \\ | x_1 & x_2 & \vdots & x_n \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} - & y_1^T & - \\ - & y_2^T & - \\ - & \cdots & - \\ - & y_m^T & - \end{bmatrix},$$

where x_i and y_j^T denotes the *i*-th column and *j*-th row of the matrix X, respectively. Let $X^* \in \mathbb{R}^{(m+n)\times(m+n)}$ be the symmetrized matrix feature. Based on the assumption (of sufficiently valid kernels), the feature mapping h is applied to matrix X^* in a column-wise fashion; that is,

where, without a little abuse of notation, we have used $h(x_i)$ and $h(y_i^T)$ to denote the non-zero coordinates in the image vector $h((0, \dots, 0, x_i^T))$ and $h((y_j^T, 0, \dots, 0))$, respectively.

(Conclusion.) Assume the set of elements in C contains all elements in A. Then, the classifier trained on X equals to the classifier trained on X^* .

(**Proof of the above conclusion.**). Because the elements in C contains all elements in A, we re-arange the elements in C into a possibly larger matrix:

$$C = \begin{bmatrix} 0 & A^T \\ D & 0 \end{bmatrix}. \tag{2}$$

Such reshaping is possible by, for example, setting $D = \text{diag}(\{C\}/\{A\})$. (The choice of D is non-important.) To prove the equivalence between X- and X^* -trained classifiers, it suffices to prove the equivalence between

$$h(X^*) = \begin{bmatrix} 0 & 0 & A \\ 0 & A^T & 0 \\ D & 0 & 0 \end{bmatrix}, \text{ and } h(X) = \begin{bmatrix} 0 & A^T \\ D & 0 \end{bmatrix} \text{ (c.f. (1) and (2))}.$$

Now we apply the same proof techniques as in 051820_SMMK_modification.pdf. Specifically, consider the primal problems with $h(X^*)$ and h(X). The relevant linear predictors are

$$\langle B^*, \ h(X^*) \rangle = \left\langle \begin{bmatrix} 0 & 0 & B_3^* \\ 0 & B_2^* & 0 \\ B_1^* & 0 & 0 \end{bmatrix}, \ \begin{bmatrix} 0 & 0 & A \\ 0 & A^T & 0 \\ D & 0 & 0 \end{bmatrix} \right\rangle, \quad \text{and} \quad \langle B, \ X \rangle = \left\langle \begin{bmatrix} 0 & B_2 \\ B_1 & 0 \end{bmatrix}, \ \begin{bmatrix} 0 & A^T \\ D & 0 \end{bmatrix} \right\rangle.$$

The optimizations are

$$(P1) \quad \min_{B_1^*, B_2^*, B_3^*} \|B_1^*\|_F^2 + \|B_2^*\|_F^2 + \|B_3^*\|_F^2 + C \sum_i \xi_i,$$
s.t. where $\langle B^*, h(X^*) \rangle = \langle B_1^*, D \rangle + \langle B_2^*, A^T \rangle + \langle B_3^{*T}, A \rangle$

$$= \langle B_1^*, D \rangle + \langle B_2^{*T} + B_3^*, A \rangle,$$

and

(P2)
$$\min_{B_1, B_2} ||B_1||_F^2 + ||B_2||_F^2 + C \sum_i \xi_i,$$

s.t. ... where $\langle B, h(X) \rangle = \langle B_1, D \rangle + \langle B_2, A \rangle.$

It is easy to see that the optimal solution to (P1) is achieved at $B_2^* = B_3^{*T}$ because

$$||B_2^*||_F^2 + ||B_3^*||_F^2 \ge \frac{1}{2}||B_2^* + B_3^*||_F = \frac{1}{2}||B_2||_F^2,$$

where the equality holds when $B_2^{*T} = B_3^*$. Moreover, under this choice, the optimal objective values

$$(P1) \min_{B_1^*, B_2^*} \|B_1\|_F + \frac{1}{2} \|B_2\|_F^2 + C \sum_i \xi_i, \quad (P2) \min_{B_1, B_2} \|B_1\|_F + \|B_2\|_F^2 + C \sum_i \xi_i,$$

are not necessarily equal unless $B_1 = 0$.