	Proofs Worksheet (Higher) Mark Scheme			
1(a)	4(2x-3) - 2(2x+9) = 8x - 12 - 4x - 18	[1] Expanding brackets		
	$= 8x - 4x - 12 - 18$ $\equiv 4x - 30$	[1] Grouping similar terms		
1(b)	$(n-1)^2 - (n-2)^2$ $(n^2 - 2n + 1) - (n^2 - 4n + 4)$	[1] Expanding brackets		
	$= n^2 - n^2 - 2n + 4n + 1 - 4$ $= 2n - 3$	[1] Grouping similar terms		
1(c)	(n+2)(n+2) - 3(n+4) = $n^2 + 2n + 2n + 4 - 3n - 12$	[1] Expanding brackets		
	$= n^2 + n - 12 + 4$ $\equiv (n+4)(n-3) + 4$	[1] Grouping similar terms		
1(d)	$=3(n^2+2n-3)-3+3n$	[1] Expanding brackets		
	$= 3n^2 + 9n - 12$ $\equiv (3n - 3)(n + 4)$	[1] Grouping and cancelling similar terms		
2(a)	$=3n^2+9n+n+3-3n^2-7n$	[1] Expanding brackets		
	= 3n + 3 $= 3(n+1)$	[1] Grouping and cancelling similar terms		
2(b)	$n^2 + 6n + 9 - 3n - 4$	[1] Expanding brackets		
	$= n^2 + 3n + 5$ $(n-3)^2 - (2n+1)$	[1] Grouping and cancelling similar terms		
2(c)	$= n^2 - 6n + 9 - 2n - 1$	[1] Expanding brackets		
	$= n^2 - 8n + 8$ = $(n-4)^2 - 8$	[1] Grouping and cancelling similar terms		
3(a)	$2n \times 2m = 4nm$	[1] Let n and m be any integers so that 2n and 2m are both even numbers.		
	= 2(2nm) which is even	[1] Answer as required		
3(b)	(2n+1)(2m+1) = 4nm + 2n + 2m + 1	[1] Let n and m be any integers so that 2n+1 and 2m+1 are both odd numbers.		
	= 2(2nm + n + m) + 1 which is odd	[1] Answer as required		
3(c)	$(2n+1)(2n+3)(2n+5)$ $= (4n^2 + 2n + 6n + 3)(2n+5)$	[1] Creation of correct algebraic expression		
_	$(4n^2 + 2n + 6n + 3)(2n + 5)$ $= 8n^3 + 36n^2 + 46n + 15$	[1] Expanding brackets		
	$= 2(4n^3 + 18n^2 + 23n + 7) + 1$ simplifies to $2(n) + 1$	[1] Factorising to show its always odd		

4(a)	(2n+1) + (2m+1) + (2p+1)	[1] Creation of correct algebraic expression		
	= 2(n + m + p + 1) + 1 = 2(x) + 1	[1] Factorising to show its always odd		
4(b)	$(2n+1)^2 + (2m+1)^2 = 4n^2 + 4n + 1 + 4m^2 + 4m + 1$	[1] Creation of correct algebraic expression and expanding brackets		
	$2(2n^2 + 2m^2 + 2n + 2m + 1)$	[1] Factorising to show its always odd		
4(c)	$(n+1)^2 - n^2 = n^2 + 2n + 1 - n^2$	[1] Creation of correct algebraic expression and expanding brackets		
	= 2n + 1	[1] Simplifying to final answer		
5(a)	$= n^2 + 3n + 3n + 9 + 3n - n^2 - 3n - 12$	[1] Expanding brackets		
	= 6n - 3 $= 3(2n - 1)$	[1] Grouping similar terms		
5(b)	If a number is n , then the next number is $n+1$ The sum is therefore $n+n+1=2n+1$	[1] Demonstration of logic		
	By definition, $2n$ is even, and so $2n + 1$ must be odd.	[1] Final explanation		
5(c)	$(5n)^2 + (5n+5)^2 = 25n^2 + 25n^2 + 25n + 25n + 25$	[1] Expanding brackets		
	$= 50n^2 + 50n + 25$	[1] Grouping similar terms		
6(a)	2n + (2n + 2) + (2n + 4)	[1] Expanding brackets		
	= 6n + 6 = 6(n+1)	[1] Grouping similar terms and factorisation to show it is divisible by 6		
6(b)	$= 16n^2 + 16n + 4 - 4n^2 - 8n - 4$	[1] Expanding brackets		
	$= 12n^2 + 8n = 4(3n^2 + 2n)$	[1] Grouping similar terms and factorisation to show multiple of 4		
6(c)	$=4n^2+12n+9-4n^2+12n-9$	[1] Expanding brackets		
	= 24n = 8(3n)	[1] Grouping similar terms and factorisation to show multiple of 8		
7(a)	$(2n)^2 + (2n+2)^2$	[1] Creation of correct algebraic expression		
	$=4n^2+4n^2+8n+4$	[1] Expanding brackets		
	$= 4(2n^2 + 2n + 1)$	[1] Grouping similar terms and factorisation to show multiple of 4		

Turn over ▶

7(b)	$(n+1)^2 - n^2 = n^2 + 2n + 1 - n^2$						[1] Creation of correct algebraic expression		
			= 2	[1] Accept same proof with $2n-1$					
8(a)	$7x - (2x + 3)(x + 2) = 7x - (2x^{2} + 4x + 3x + 6)$ $= -2x^{2} - 6 = -(2x^{2} + 6)$					[1] Expanding brackets and grouping similar terms			
		:	= -(2	$x^2 + \epsilon$	[1] Factorisation				
	is always positive that the answer i		-	[1] Suitable explanation of logic					
8(b)	Changing the +3 negative number then be made po	r whe	n expa	nding	[1]				
9(a)	$= (7 \times 2)$) ²⁰ - ((7×3)	[1] Changing of powers					
		= 7($7^{19} \times 7$	$2^2 - 7$	× 3 ²)		[1] Factorisation with 7 taken out		
	A factor of 7 ca divisible by 7, an			[1] Suitable explanation of logic					
9(b)	3 ⁶⁰ is always on numbers. Also 2 odd numbers, i.e	25 is 0	odd. S	o the c	[1] Suitable explanation of logic				
	$3^{60} - 25$ is goin divisible by 2, so				[1] Suitable explanation of logic				
10(a)						Т			
		1	2 3	4	5				
			12 1		15				
			22 2		25		[1] Any example shown		
			32 33 42 43		35 45		[1] ray ordaniple ellering		
	Consider the nev								
	(44 –	33) ×	< (43 –						
10(b)	Taking the top lo			as n, t	n n+1				
			$n) \times (n+10)$	[1] [1] [1] n+10 n+11					