TP Scilab 3: simulation de lois

Le fichier lois.sci est un résumé des fonctions construites dans le dernier TP. On donnera à chaque fois les paramètres nécessaires avant d'invoquer les fonctions.

Fonction	Loi modélisée	Valeurs		
normale(x)	$\mathcal{N}\left(\mu,\sigma^2 ight)$	\mathbb{R} (densité)		
geom(n)	$\mathcal{G}(p)$	$\{1:n\}$		
poisson(n)	$\mathcal{P}(\lambda)$	$\{0:n\}$		

1 Avec le générateur grand

Le générateur aléatoire grand permet d'obtenir un échantillon des lois usuelles, avec la syntaxe :

grand (lignes, colonnes, "loi", arguments)

Loi de probabilités		Paramètre	Arguments			
uniforme discrète	$\mathcal{U}\{m:n\}$	"uin"	Low	(= <i>m</i>)	High	(= <i>n</i>)
binomiale	$\mathcal{B}(n,p)$	"bin"	n	(= <i>n</i>)	p	(= p)
de Poisson	$\mathcal{P}(\lambda)$	"poi"	mu	$(=\lambda)$		
géométrique (de Pascal)	$\mathcal{G}(p)$	"geom"	p	(= <i>p</i>)		

Exercice 1 (Fonctions statistiques usuelles)

- 1. Obtenir un échantillon echBin de 100 valeurs de la loi binomiale $\mathcal{B}(10,\frac{3}{10})$. Tracer l'histogramme obtenu.
- 2. Quelle est la moyenne des valeurs de echBin? (help mean)
- 3. Quel est l'écart-type des valeurs de echBin?
- 4. Quelles sont les valeurs extrémales de echBin?

Exercice 2 (Confronter un histogramme à la distribution théorique)

- 1. Obtenir un échantillon echBin suffisant de la loi binomiale $\mathcal{B}(10, \frac{3}{10})$. Tracer l'histogramme obtenu.
- **2.** Tracer par dessus de cet histogramme la distribution théorique (commande binomial) En utilisant les fonctions du fichier lois.sci;
- **3.** mêmes questions pour les distributions $\mathcal{P}(5)$ et $\mathcal{G}\left(\frac{1}{2}\right)$

Exercice 3 (Approximation binomiale-normale: «TCL binomial»)

Pour $N \in \mathbb{N}$ assez grand, et $p \in]0;1[$ raisonnable :

- 1. Obtenir un échantillon echBin de 10^5 valeurs de la loi binomiale $\mathcal{B}(N,p)$. Tracer l'histogramme obtenu.
- **2.** Tracer la densité normale de même espérance et écart-type sur l'histogramme. Que constate-t-on?

2 Vérifications de simulations

Exercice 4 (Simulation directe de la loi géométrique)

- 1. Compléter le fichier simuGeom. sci pour simuler une valeur de la loi géométrique.
- 2. Écrire une fonction avec une boucle for pour construire un échantillon de taille N.
- 3. Vérifier la conformité de l'histogramme obtenu.

Exercice 5 (Stabilité de la loi de Poisson)

Vérifier empiriquement le résultat de stabilité connu : Si $X \hookrightarrow \mathcal{P}(a)$ $Y \hookrightarrow \mathcal{P}(a)$ sont indépendantes, alors $S = X + Y \hookrightarrow \mathcal{P}(a + b)$.

Détails de l'approche

- 1. Obtenir deux échantillons de lois de Poisson \mathcal{P} .
- **2.** Les sommer, et faire l'histogramme.
- 3. Comparer avec le résultat attendu.

Exercice 6 (Stabilité de la loi géométrique)

Vérifier empiriquement le résultat de stabilité connu :

Si $X \hookrightarrow \mathcal{G}(a)$ $Y \hookrightarrow \mathcal{G}(a)$ sont indépendantes, alors $I = \min(X,Y) \hookrightarrow \mathcal{G}(a+b-ab)$.

Détails de l'approche

- 1. Obtenir deux échantillons de lois géométrique \mathcal{G} .
- 2. Construire leur min, et faire l'histogramme. Confronter au résultat attendu.

Proposition 1 (Stabilité additive de la loi de Poisson)

Soient $X_1, ... X_n$ des variables aléatoires.

On suppose que $\triangleright \forall i \in [1,n]$, la v.a. X_i est de Poisson : $X_i \hookrightarrow \mathcal{P}(\lambda_i)$

▶ les $(X_i)_{i \in [\![1,n]\![\!]}$ sont mutuellement indépendantes.

Alors leur somme $S = X_1 + ... + X_n$ est une v.a. de Poisson : $S \hookrightarrow \mathcal{P}(\lambda_1 + ... + \lambda_n)$.

Exercice 7 (Opérations par colonnes, lignes)

(avec le fichier uneMatrice.sci)

- 1. Que retourne la fonction uneMatrice()?
- 2. Calculer la somme de toutes les valeurs de la matrice A obtenue.
- **3.** Que retournent les commandes sum(A, "r") et sum(A, "c")?

Application: stabilité de la loi de Poisson

- 1. Obtenir un échantillon de 5 lignes de loi de Poisson.
- 2. Sommer ligne-à-ligne cet échantillon.
- **3.** Confronter l'histogramme à la distribution.