

Erratum: ``Solvent Effects on Geminal H–H Couplings: A New Method for Determining Signs of Coupling Constants"

Stanford L. Smith and Richard H. Cox

Citation: The Journal of Chemical Physics 46, 2019 (1967); doi: 10.1063/1.1840993

View online: http://dx.doi.org/10.1063/1.1840993

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/46/5?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Sign of the Geminal C-O-C Spin-Coupling Constant

J. Chem. Phys. **55**, 984 (1971); 10.1063/1.1676174

Sign Determination of the Geminal Allenic Coupling Constant from Double Quantum Spectrum

J. Chem. Phys. 49, 1985 (1968); 10.1063/1.1670351

Solvent Effects on Geminal H-H Couplings: A New Method for Determining Signs of Coupling Constants

J. Chem. Phys. 45, 2848 (1966); 10.1063/1.1728037

Solvent Dependence of Geminal Phosphorus-Proton Coupling Constants in Benzylphosphonium Salts

J. Chem. Phys. 41, 2570 (1964); 10.1063/1.1726321

Sign of Geminal HH Coupling Constants in Methanes and the Effect of Substitution

J. Chem. Phys. 37, 3012 (1962); 10.1063/1.1733140

Erratum: "Thermal-Energy Ion-Neutral Reaction Rates. IV. Nitrogen-Ion Charge-Transfer Reactions with CO and CO₂"

[J. Chem. Phys. 44, 4537 (1966)]

F. C. Fehsenfeld, A. L. Schmeltekopf, and E. E. Ferguson

Institute for Telecommunication Sciences and Aeronomy Environmental Science Services Administration, Boulder, Colorado

WE have discovered that our data for the charge-transfer reactions of nitrogen ions with NO and CO were inadvertently interchanged. Table I on p. 4538 should read as shown.

Table I. Measured rate constants.

Reaction	Rate constant (cm³/sec) at 300°K	
$N^++CO_2\rightarrow CO_2^++N+0.75 \text{ eV}$	1.3×10-9	
$N_2^+ + CO_2 \rightarrow CO_2^+ + N_2 + 1.79 \text{ eV}$	9×10 ⁻¹⁰	
$N^++CO\rightarrow CO^++N+0.53 \text{ eV}$	5×10 ⁻¹⁰	
$N_2^+ + CO \rightarrow CO^+ + N_2 + 1.57 \text{ eV}$	7×10 ⁻¹¹	

The CO reactions listed in the original Table I actually referred to the NO reactions as follows:

$$N^{+}+NO\rightarrow NO^{+}+N$$
, $k=9\times 10^{-10} \text{ cm}^{3}/\text{sec}$

and

$$N_2^+ + NO \rightarrow NO^+ + N_2$$
, $k = 7 \times 10^{-10} \text{ cm}^3/\text{sec.}$

These NO charge-transfer reaction-rate-constant measurements agree well with our earlier measurements¹ (which gave 11% and 24% lower rate constants for N+ and N₂+, respectively). The value of the rate constant for the N₂++CO₂ charge transfer agrees with a recent measurement of Warneck² to within 10%. The N₂++CO reaction was measured using isotopic N₂. Both the 15 N¹5N and 15 N¹4N ions were measured, leading to the same rate constant.

We are indebted to Dr. Warneck for a discussion which led to our discovery of the above error.

Erratum: "Gaussian Wavefunctions for the 10-Electron Systems. III. OH-, H₂O, H₃O+"

[J. Chem. Phys. 43, 3550 (1965)]
J. W. Moskowitz

Chemistry Department, New York University Washington Square College, New York, New York

AND

M. C. HARRISON

The Courant Institute of Mathematical Sciences New York University, New York, New York

ON account of an error in one of the integral evaluation routines the computations for H_2O in the basis (95/31) and (53/31), for H_3O^+ in the basis (95/31), and for OH^- in the basis (95/31) are slightly in error. All other computations are correct as reported, in particular those containing d orbitals. A short table of corrected results is given below.

Table I. Total energy and dipole moment of $\rm H_2O$, $\rm H_3O^+$, and $\rm OH^-$ in a Gaussian basis. OH distance equals 1.8 a.u. Total energy and dipole moment in atomic units.

	Basis	HOH angle	Total energy	Dipole moment
H ₂ O	(95/31)	105°	-76.03308	0.9556
$\mathrm{H}_2\mathrm{O}$	(53/31)	105°	-75.59039	0.9035
H ₃ O+	(95/31)	120°	-76.32028	•••
H ₃ O+	(95/31)	118°06′	-76.32014	• • •
OH-	(95/31)	•••	-75.36669	0.5145

Erratum: "Solvent Effects on Geminal H-H Couplings: A New Method for Determining Signs of Coupling Constants"

[J. Chem. Phys. 45, 2848 (1966)]

STANFORD L. SMITH AND RICHARD H. COX

Department of Chemistry, University of Kentucky Lexington, Kentucky

IN Table III, p. 2852, the column headed J_{trans} should be headed J_{cis} ; that headed J_{cis} should be headed J_{trans} .

¹ P. D. Goldan, A. L. Schmeltekopf, F. C. Fehsenfeld, H. I. Schiff, and E. E. Ferguson, J. Chem. Phys. **44**, 4095 (1966).

² P. Warneck, GCA Tech. Rept. No. 66-13-N, GCA Technology Division, Bedford, Mass., July 1966.