Assignment 1

Due date: 2 October 2024

TA: 薛凱駿, 楊承霖, 吳奇軒 (ECG 706)

1. (30%) Horner's rule is a strategy for evaluating a polynomial

$$A(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

at point x_0 using a minimum number of multiplications. This rule is:

$$A(x_0) = (\cdot((a_n x_0 + a_{n-1})x_0 + \dots + a_1)x_0 + a_0)$$

Write a C program to evaluate a polynomial using Horner's rule.

2. (30%) Ackerman's function A(m, n) is defined as:

$$A(m,n) = \begin{cases} n+1 & \text{, if } m = 0 \\ A(m-1,1) & \text{, if } n = 0 \\ A(m-1,A(m,n-1)) & \text{, otherwise.} \end{cases}$$

This function grows very quickly for small values of m and n. Write a recursive (15%) and iterative (15%) versions of this function.

1

3. (20%) Show that the following statements are correct.

a.
$$5n^2 - 6n = \Theta(n^2)$$
.

b.
$$N! = O(n^n)$$
.

c.
$$2n^2 + n \log n = \Theta(n^2)$$
.

$$\mathrm{d.}\ \sum_{i=0}^n i^2 = \Theta(n^3).$$

4. (20%) Show that the following statements are incorrect.

a.
$$10n^2 + 9 = O(n)$$
.

b.
$$n^2 \log n = \Theta(n^2)$$
.