

Europäisches Patentamt European Patent Office Office européen des brevets

EP 0 901 991 A2

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 17.03.1999 Bulletin 1999/11
- A 17 (4 1797) (4 1797) (51) Int. CL⁶; C03C 17/245, C03C 17/34 e de la la marca de decidada a la combiente de la combiente de
- (21) Application number: 98116216.7
- (22) Date of filing: 27.08.1998
- (84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE **Designated Extension States:** AL LT LV MK RO SI
- (30) Priority: 29.08.1997 JP 233689/97
- (71) Applicant: Central Glass Company, Limited Ube-shi, Yamaquchi-ken 755-0001 (JP)
- (72) Inventors:
 - Inoue, Motoharu Research Inst. for Ind. Techno. of Matsusaka-shi, Mie 515-0001 (JP)
 - · Waseda, Ryuta Research Instit. for Ind. Techno. of Matsusaka-shi, Mie 515-0001 (JP)
- (74) Representative: Schmidt, Christian et al Manitz, Finsterwald & Partner GbR, Robert-Koch-Strasse 1 80538 München (DE)

(54)Photocatalytic glass pane and method for producing same

The invention relates to a photocatalytic glass pane including a glass substrate and at least one layer formed on at least one major surface of the glass substrate. The at least one layer has an outermost layer made of a photocatalytic titanium oxide. The outermost layer is prepared by a chemical vapor deposition. The titanium oxide is such that an X-ray diffraction chart of the titanium oxide has at least a first peak when a spacing between adjacent crystallographic planes of the titanium oxide is 3.5 angstroms and a second peak when a spacing between adjacent crystallographic planes of the titanium oxide is 1.9 angstroms and that the second peak has a height that is at least one-tenth of a height of the first peak. The glass pane is high in photocatalytic activity. The invention further relates to a method for producing the photocatalytic glass pane. This method has the sequential steps of (a) providing a gas mixture comprising a vapor of an organic titanium compound and an oxygen gas; and (b) bringing the gas mixture into contact with the glass substrate that is under a heated condition, thereby to form the outermost layer on the glass substrate. The glass pane can easily be produced by the method with high efficiency and low cost.

a. 11 人名英格兰

医二甲烷 精明电影的影响 化氯

Description

BACKGROUND OF THE INVENTION

[0001] The present invention relates to a photocatalytic glass pane having a photocatalytic titanium oxide layer formed on a glass substrate thereof and a method for producing the glass pane: [0002] Hitherto, titanium oxide films have been used for providing substrates (e.g. of glass, ceramics and resins) with reflection of heat rays and the like, abrasion resistance, heat resistance; Weather resistance and chemical resistance, 40 - 77 due to their superior characteristics such as high refractive index, high hardness, heat resistance and chemical resistance. Furthermore, much attention has been drawn in recent years to the photocatalytic activity of titanium oxide to oximost gradience by the datively decompose organic contaminants. 1983.6 [0003] There are several ways to form a titanium oxide film on a substrate. For example, in a spraying method, a titanium compound solution is sprayed onto a substrate and then pyrolyzed to form thereon a titanium oxide film. In a solgel process; a titania precursor sol is applied to a substrate, and then the resultant precursory film is heated to form thereon a titanium oxide film. In a chemical vapor deposition (CVD), a vapor of an organic titanium compound is brought into contact with a substrate that is under a heated condition, thereby to form thereon a titanium oxide film by pyrolysis. [0004] Japanese Patent Second Publications JP-B-1-30771 and JP-B-57-47137 disclose methods for producing heat reflective glass panes. In each of these methods, a particular titarium compound solution is sprayed onto a heated glass substrate, thereby to form thereon a titanium oxide film by pyrolysis. Japanese Patent First Publication JP-A-9-59041 discloses an antifogging coating composition containing therein semiconductor photocatalyst particles that are most preferably titania particles. This composition is a dispersion in which (1) a silicone precursor or amorphous silica precursor and (2) semiconductor photocatalyst particles are uniformly dispersed in a solvent. JP-A-9-920 discloses a titanium oxide film that is sufficient in transparency. This film is formed on a substrate by spraying an ethanol solution containing 20 wt% of di-iso-propoxybis(acetylacetonato)titanium.

SUMMARY OF THE INVENTION

Programme and the second section of the second

[0005] It is an object of the present invention to provide a photocatalytic glass pane that is high in photocatalytic activity and superior in optical and physical characteristics such as heat reflection.

[0006] It is another object of the present invention to easily produce such a photocatalytic glass pane with high efficiency and low cost by forming at least one layer on at least one major surface of a glass substrate, while maintaining transparency, flatness and smoothness of the glass substrate.

[0007] According to the present invention, there is provided a photocatalytic glass pane comprising a glass substrate; and at least one layer formed on at least one major surface of the glass substrate. The at least one layer has an outermost layer made of a photocatalytic titanium oxide. The outermost layer is prepared by chemical vapor deposition. The titanium oxide is such that an X-ray diffraction chart (pattern) of the titanium oxide has at least a first peak when a spacing between adjacent crystallographic planes (i.e.; an interplaner spacing) of the titanium oxide is 3.5 angstroms (A) and a second peak when a spacing between adjacent crystallographic planes of the titanium oxide is 1.9 angstroms and that the second peak has a height that is at least one-tenth of a height of the first peak. As is commonly known, the peak height represents the intensity (I) of the diffracted X-rays (see Figs. 2-3). The glass pane is high in photocatalytic activity and superior in optical and physical characteristics such as heat reflection.

[0008] According to the present invention, there is provided a method for producing the above-mentioned photocatalytic glass pane. This method comprises the sequential steps of (a) providing a gas mixture comprising a vapor of an organic titanium compound and an oxygen gas; and (b) bringing the gas mixture into contact with the glass substrate that is under a heated condition, thereby to form the outermoot tayer on the glass substrate. The organic titanium compound may be titanium alkoxide selected from titanium tetrain propoxide, titanium tetramethoxide, titanium tetraethoxide, and titanium monochlorotrialkoxide. The gas mixture may further comprise nitrogen gas. The glass pane can easily be produced by the method with high efficiency and low costs while the glass substrate is maintained in transparency, flatness and smachness and smachness and smachness and smachness and smachness.

BRIEF DESCRIPTION OF THE DRAMINGS (AND A PER A 2014) AND THE CONTROL OF A 2014 AND A 201

[0009]

Fig. 1 is a schematic side sectional-view showing a float-glass-production line equipped with a nozzle for forming a titanium oxide film on a glass plate by CVD; and excide sensitive of the control of

if the Hambir's elections become great at a accord souling of NS inequires between adjacent (cloud in

് ന് പ്രത്യായ പ്രത്യായ അവരെ പ്രത്യായ അവരെ ക്യാന്ത്രയുടെ വര്യായിലെ വര്യായ വിശ്യായിരുന്നു. വിശ്യായിരുന്ന് വര്യായ ഇന് പ്രത്യായ വിശ്യായ അവരെ പ്രത്യായില് പ്രത്യായിരുന്നു. ഇത് പ്രത്യായ പ്രത്യായിരുന്നു വര്യായ പ്രത്യായിരുന്നു. ഇ പ്രത്യായ പ്രത്യായിരുന്നു പ്രത്യായ അവരെ അവരെ അവര്യായിരുന്നു. വിശ്യായ പ്രത്യായ വിശ്യായ വിശ്യായിരുന്നു. വിശ്യായം

Fig. 3 is an X-ray diffraction chart of an anatase-type titanium oxide powder that is adherent to a glass substrate by a bonding agent.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

er er er er er er The security of a grown of the con-[0010] In the invention, the outermost layer (i.e., a titanium oxide film) of the photocatalytic glass pane may be subjected to an X-ray diffraction analysis with CuK of X gays produced by an output voltage of \$10.60 kV and an electric current of 100-1,000 mA, a scanning speed of up to 10 degrees per minute, a diverging slit's opening angle of 1/2 degrees. and a scattering slit's opening angle of 1/2 degrees/art north, who who have not as more earlies as a spekeral death [0011] As mentioned above, the gas mixture comprising a vapor of an organic titanium compound may be brought into contact with a heated glass substrate (e.g., soda-lime float glass plate), during a float glass production (see Fig. 1). In other words, the outermost titanium oxide layer may be formed on a glass substrate by CVD, particularly under normal pressure (atmospheric pressure). With this, it becomes possible to make the photocatalytic glass pane of the invention to have good transparency, flatness and smoothness; which are inherent in glass itself. It is preferable to conduct the above-mentioned step (b) at a temperature not higher than 750°C. If the temperature is higher than 750°C, the glass substrate may be deformed during the step (b). Furthermore, the outermost layer may have cracks and/or wrinkles on its surface. As is seen from Fig. 1, the step (b) may be conducted in a float glass production line 1. In this line 1, a heated glass substrate 2 from a tin bath 3 is allowed to enter into an annealing chamber 4. It is optional to dispose a nozzle 5, which has a discharge slit 6 for discharging the gas mixture of the step (a) and exhaust slits 7 for exhausting the gas mixture, in the vicinity of the entrance of the annealing chamber 4, as illustrated. In fact, it is preferable to dispose the nozzle 5 in a region of the production line 1 that is at least 5 m downstream from the end top roller in order to conduct [0012] In the gas mixture of the above-mentioned step (a), it is preferable that the vapor of the organic titanium compound has a partial pressure of from 0.1 to 10 kPa, more preferably from 1 to 5 kPa, and that the oxygen gas has a partial pressure of from 3 to 40 kPa, more preferably from 10 to 36 kPa. With this, it becomes possible to obtain an anatase-type titanium oxide film that is superior in photocatalytic activity and strength. It is preferable to make the partial pressure of the oxygen gas higher in the preferable range, in order to provide the gas mixture with an oxidative atmosphere. With this, it becomes possible to produce the titanium oxide more effectively. If the oxygen concentration of the gas mixture is too high, the gas mixture may become inflammable to increase the fire risk. The steam contained in the gas mixture may accelerate the polycondensation of the organic titanium compound. This may interfere with pyrolysis of the organic titanium compound. Furthermore, scales may occur by the presence of the steam, during the introduction of the gas mixture into the nozzle for discharging the gas mixture. Thus, the partial pressure of the steam contained in the gas mixture is preferably not higher than 0.1 kPa, more preferably not higher than 0.01 kPa. In fact, it is the most preferable that the gas mixture does not contain steam. 1.0 [0013] Even if the temperature of the glass substrate is lower than 300°C, it is possible to form the outermost titanium oxide layer on the glass substrate. In this case, however, adhesion of the outermost layer to the glass substrate may become insufficient. Still furthermore, the X-ray diffraction chart of the obtained titanium oxide may not have clear peaks, and thus the titanium oxide may become insufficient in photocatalytic activity. Thus, the outermost titanium oxide layer is formed on a glass substrate heated preferably at a temperature of at least 300°C, more preferably at least 350°C, still more preferably 400-600°C: In particular, if the outermost layer of an anatase-type titanium oxide is formed on a glass substrate of at least 500°C, the outermost layer becomes substantially high in photocatalytic activity. In this case, if the thickness of the outermost layer; which is directly formed on a soda-lime glass substrate, is at least 50nm, it becomes possible to maintain the photocatalytic activity of the tithrium oxide. In other words, alkali components, particularly sodium ions, do not interfere with the photocatalytic activity of the titanium exide, and thus it is not necessary to provide an interlayer (barrier) between the glass substrate and the outermost layer. If the thickness of the outermost layer is greater than 300nm, the outermost layer becomes conscisuous in iridescence and thus may not be revorable in appearances നാര ഉറടന്നു നാനും ഒരു 1 നട്ടു വെട്ടുക്കാന ഒരു ശാന്ത്രം നാൻഡ് എന്ന വെൻത്ത വാള ഒന്ന് ക്രിയോട് 🕟 [0014] As mentioned above, the titanium oxide of the invention is characterized in that an X-ray diffraction that t (pat tern) of the titanium oxide has at least a first peak at a first spacing of 3.5 angstroms between adjacent arg [-"sgraphic planes of the titanium oxide and a second peak at a second spacing of 1.9 angstroms between adjacent crystallographic planes of the titanium oxide and that the second peak has a height that is at least one-tenth of a habit of the first peak (see Fig. 2). With this, the titanium oxide becomes substantially high in photocatalytic activity. The abovementioned first and second spacings respectively correspond to diffraction angles 20 of 25 and 48 degrees, as shown in Fig. 2. Furthermore, it is preferable that an X-ray diffraction chart of the titanium oxide has a third peak at a third spacing of 1.7 angstroms (28 : 55 degrees) and a fourth peak at a fourth epacing of 1.5 angstroms (28 : 63 degrees), as shown by the X-ray diffraction pattern [A] of Fig. 2. As mentioned above, the second peak has a height that is at least

one-tenth of the height of the first peak. We assume that this means a good balance between the first peak in a direction of Miller indices 101 and the second peak in a direction of Miller indices 200 to make the titanium coids high in photo-

: ::

Programme Programme

400 May 200 1 2 8 1 6 2 2

ខាន់ ស្រាម្នងស្រាមិត្តកាលដូចការសាធាសម្រាប់ សមាធិសា

William Burearth and the least to the

catalytic activity.

[0015] In the invention, it is optional to provide at least one first interlayer having an intermediate refractive index of 1.55-2.0 and/or at least one second interlayer having a high refractive index of 2.6-2.9, between the glass substrate and the outermost titanium oxide layer. In fact, the first and second interlayers may be laminated alternately. The first interlayer is made of for example, aluminum oxide, tin oxide, indium oxide, zinc oxide or silicon oxycarbide, and the second interlayer contains as a main component thereof at least one metal oxide selected from chromium oxides, iron oxides, cobalt oxides and copper oxides. It is preferable to adjust the refractive index and thickness of the first or second interlayer such that the reflectance and excitation purity of the outermost layer are lowered by the interference of the reflected light from the first or second interlayer.

[0016] In the invention, it is optional that the at least one layer, having the outermost titanium oxide layer, is formed on one major surface of the glass substrate, and a reflective metal layer is formed on the other major surface of the glass substrate. With this, the obtained glass pane can be used as an antifogging mirror [0017] The following nonlimitative examples are illustrative of the present invention.

5 EXAMPLE 1

[0018] An outermost titanium oxide layer was directly formed on a glass substrate 2 by using a float glass production line 1 of Fig. 1, as follows. The glass substrate 2, having a thickness of 3 mm and a width of 3.6 m, was allowed to flow continuously at a speed of 8 m per minute in the production line 1. A nozzle 5, made of stainless steel, for forming the outermost layer on the glass substrate 2 was disposed 1.5 m downstream from an exit partition wall 8 of a tin bath 3. In fact, the nozzle 5 was disposed, at a height of 15 mm above the glass substrate 2, in the inside of an annealing chamber 4 and in the vicinity of the entrance of an annealing chamber 4, as illustrated. At the position of the nozzle 5, the temperature of the glass substrate's surface was found to be 570-580°C by the measurement with a radiation thermometer. The temperature of the bottom surface of the nozzle 5 was adjusted to be in a range of 200-220°C by allowing a beat carrying oil of 180°C to flow continuously through the interior of the nozzle 5. As shown in Fig. 1, the nozzle 5 was symmetrical about an axis of symmetry that is perpendicular to the direction of the flow of the glass substrate 2 in the production line 1. In fact, the nozzle 5 had a discharge slit 6 for discharging the gas mixture at a middle portion of the nozzle 5, and exhaust slits 7 for exhausting the gas mixture at both sides of the discharge slit 6. Each of the discharge and exhaust slits 6, 7 extends 3.2 m in a direction perpendicular to the direction of the flow of the glass substrate 2. The distance between the exhaust slits 7, 7 in the direction of the flow of the glass substrate 2 was 600 mm. A region between the exhaust slits 7, 7 was provided for forming the outermost layer on the glass substrate 2. [0019] Separately, the gas mixture was prepared, as follows. At first, titanium tetraisopropoxide, preliminarily heated at 100°C, was atomized or sprayed at a rate of 240 g per minute into a hermetic stainless-steel container of a double wall structure, while a nitrogen gas, preliminarily heated at 180°C, was introduced as a carrier or atomizing gas into the container at a rate of 200 nL per minute. Then, the titanium tetraisopropoxide in the container was totally turned into a vapor by heat of the container having a double wall's void space filled with a heat carrying oil of 180°C. A mixture of titanium tetraisopropoxide (gas) and nitrogen gas was allowed to flow through a pipe from the container and then was mixed with an air preliminarily heated at 180%C and having a flow rate of 300nL per minute. The resultant ges mixture was lead to the discharge slit 6; while it was maintained at 180°C. Then, the resultant gas mixture was blown upon the glass substrate 2 from the discharge slit 6, thereby to form a titanium oxide film on the glass substrate 2 by pyrolysis under normal pressure. Each of the nitrogen and air of the resultant gas mixture was -60°C in dew point. The calculated partial pressures of the oxygen, titanium compound, and steam were about 12kPa, about 4kPa and 0.001kPa; respectively. The retractive index and thickness of the titanium oxide film were respectively found to be 2.38 and 135nm, from the results of the spectral reflectance of the titanium oxide film. The titanium oxide film was subjected to all X-ray diffraction analysis with CuK α X-rays produced by an output voltage of 50kV and an electric current of 200mA, incident angles starting from 2 degrees, a scanning speed of 5 degrees minute, a diverging slit angle of 1/2 degrees, and a scattering slit angle of 1/2 degrees. The result of the X-ray r ution analysis is shown by an X-ray diffraction pattern 🔗 🔗 [A] of Fig.:2a;This.pattern was found to have first, second other auctourth peaks at specings between adjacent divisal. lographic planes;ofuthe;titanjum oxide loft3.5;4:9;4:7/and/4:5 annothersizThese spacings; correspond to diffrection to the content of the con angles 20 of 25/r48/r55 and 63 degrees respectively, as shown in Fig. 2: The relative heights of the first, subond, third and fourth-peaks were respectively.872, filland 1,(as)shown in Fig. 2.4 in comparison with the X-ray diffraction pattern of the Fig. 3 of Referential Example; in which a commercial anatase-type titanium oxide powdor was bonded to a glass hulder . . . by a bonding agent (i.e., starch), it is assumed that the first, second; third and fourth peaks of the X-ray diffraction paterns. tern [A] of Fig. 2 are diffraction lines generated by the titanium exides adjacent crystallographic planes 101, 200, 211 and 204, respectively, In fact, each numeral of three figures in purenthesis of Fig. 3 is Miller indices. The titanium oxide film of Referential Example had a white color and thus was not transparent: Furthermore, the titanium oxide powder of Referential Example comes off easily, and thus the titanium oxide film of Referential Example is substantially different from that of the inventionable of the creating of the read recommendation below the continuous and the conti

[0020] In Example 1, the obtained glass pane having the titanium oxide film formed on the glass substrate was subjected to an abrasion resistance test. In this test, the titanium oxide film was abraded 200 times by a Taber abraser defined in Japanese Industrial Standard (JIS),R 3212. The transmittance after the abrasion resistance test was about 3.2% higher than that before this test. This means that the titanium oxide film was bonded to the glass substrate with a high bonding strength.

[0021] The photocatalytic activity of the obtained glass pane having widths of 100mm was determined as follows. At first, the glass pane was immersed in an oleic acid solution; and then withdrawn therefrom at a speed of 1.2mm per second. After that, water was dropped onto the titansum oxide film, and then the contact angle of water drop thereon was measured. The result of this was about 30 degrees. Then, the titanium oxide film was irradiated for 3 hr with ultraviolet rays using an ultraviolet lamp having an intensity of 0.5mW/cm². Then, the contact angle of water drop was measured again, and the result was 8 degrees. This means that toleic acid was decomposed during the ultraviolet irradiation, and thus the titanium oxide film's surface became hydrophilic:

[0022] The obtained glass pane had a reflectance from the titanium oxide film of 35%, a dominant wavelength of 440nm, an excitation purity of 21%, and a transmittance of 62%.

[0023] The calculated rate for forming the titanium oxide film is as follows:

(FilmThickness 135nm) × (Glass Substrate Moving Speed 8m/min.) + (Film Width 600mm) = 1.8 μm/min.

[0024] The calculated efficiency for forming the titanium oxide film is as follows:

\(\tilde{\text{Film: Thickness 135nm}\) \times \(\text{(Film Area 3.2m} \times 8m\)/min. \(\tilde{\text{KiO}}_2\) Density 3.84) + 1,000 + \(\text{TiO}_2\) Molecular Weight 80)

entropies and the second section of the section o

+ (Ti Alkoxide Supply Rate 240g/min) + (Ti alkoxide Molecular Weight 284) = 19.6%.

EXAMPLE 2

25

The type of digital [0025] In this example, Example 1 was repeated except in that the supply rate of titanium tetraisopropoxide was 100 g/min in place of 240 g/min and that the position of the nozzle 5 was 40m downstream from the exit partition wall 8 of the tin bath 3. The temperature of the glass substrate 2 at the position of the nozzle 5 was in a range of 390-400°C. The calculated partial pressures of the titanium compound, oxygen and steam of the gas mixture were 1.3kPa, 12kPa and 0.001kPa, respectively. The obtained titanium oxide film formed on the glass substrate was found to have a refractive index of 2.35 and a thickness of 45 nm. The obtained glass pane was found to have a visible light reflectance from the coated side of 30%, a dominant wavelength of 440nm, and an excitation purity of 15%. The result of the X-ray diffraction analysis is shown by an X-ray diffraction pattern [B] of Fig. 2. This pattern was found to have first and second peaks at spacings between adjacent crystallographic planes of the titanium oxide of 3.5 and 1.9 angstroms where the diffraction angles 20 are respectively 25 and 48 degrees. The relative heights of the first and second peaks were respectively 10 and 3, as shown in Fig. 2. The calculated rate and efficiency for forming the titarium oxide film on the glass substrate were 0.6 µm/min and 15.7%, respectively. The glass pane was subjected to the same photocatalytic activity test as that of Example 1, except in that the ultraviolet irradiation time was 10hr. After this test, the contact angle of water drop was found to be 16 degrees. The second secon

activities of the companies of the major of the section of the common of

EXAMPLE 3

45

[0026] Idn this axample, a float glass production line that separate 1 was used except in that another nozzle, which is similar to the nozzle 5 in construction, was disposed in the law 1 by of the nozzle 5 such that the another nozzle was interposed betwoen the nozzle 5 and the tin bath 3. The another nozzle was used for forming an aluminum exide interlayer on a gines substrate in fact, aluminum acetylaceterapto, NACEM aluminum of Nippon Chemical industrial Co., Ltd., was transported through an stainless steel pine having an internal digmeter of 9 mm, a rate of 280 /g/min by a device for quantitatively supplying powder, together with an air at a rate of 700 nt/min. This stainless steel pine had a colled portion of 12 m immersed in a heat carrying oil bath of 220°C. After passing through the coiled portion, the aluminum acetylacetonato turned into a vapor. The thus obtained mixture of the aluminum acetylacetonato and the air was blown upon the glass substrate from a discharge slit of the another nozzle, thereby to form an aluminum oxide film on the glass substrate. This film was confirmed to be an aluminum oxide film having a thickness of about 70 nm by Auger electron spectroscopy, although X-ray diffraction lines of this film were not found. The aluminum oxide film was found to have a reflectance from the coated aide of 9.5%, a refractive index of 1.61, and a thickness of 67 nm2000 6 pt 2000.

by using the nozzle 5 adjacent to the another nozzle. The obtained glass pane was found to have a visible light reflectance from the coated side of 14%, a dominant wavelength of 500nm, and an excitation purity of 3.5%. Thus, the reflected light from the coated side became more neutral as compared with those of Examples 1-2 by the provision of ... the aluminum oxide interlayer having an intermediate refractive index. The result of the X-ray diffraction analysis of the titanium oxide film was almost the same as that of Example 2. The glass pane was subjected to a photocatalytic activity test that is similar to that of Example 1. In fact, the ultraviolet irradiation times were 3 hr and 10 hr. After 3 hr, the contact 😁 👵 angle of water-drop was found to be 3 degrees. After 10 hr, it was found to be 1 degree. in competitive bouth a to petition

THE PROPERTY OF THE PROPERTY AND ASSESSMENT

and the state of the state of

and the second second second

signs (Sectional) regiseration and the control of the control of section with a

The first states of the

na kaominina minaka ili

EXAMPLE:4 storic bar generally out the consense several edition and the trade of the consense services and the kyre, within a leurymiethum eat skielige ann, crimaise kamasinua a en latur sterretar er ea treat eil an athain

10

[0028] .: In:this example, Example 1 was repeated except in that the air preliminarily having a flow rate of 300nL per minute was replaced with a mixture of an air and an oxygen each having a flow rate of 150 nL/min. The calculated par- 🔆 tial pressures of the oxygen, titanium compound and steam of the gas mixture were about 36kPa, about 4kPa and about 0.001kPa, respectively.

[0029] The titanium oxide film was found to have a refractive index of 2.38 and a thickness of 140nm, based on the spectral reflectance of the coated side of the glass pane. The X-ray diffraction pattern of the titanium oxide film was found to have first, second, third and fourth peaks at spacings between adjacent crystallographic planes of the titanium oxide of 3.5, 1.9, 1.6 and 1.4 angstroms where the diffraction angles 20 are respectively 25, 48, 55 and 63 degrees. The relative heights of the first, second, third and fourth peaks were respectively 8, 3, 1 and 1. The result of the abrasion resistance test, the increase in transmittance, was about 3.0%. The photocatalytic activity test was conducted in the same manner as that of Example 2. After 10hr of this test, the contact angle of water drop was 3 degrees. The obtained glass pane was found to have a visible light reflectance from the coated side of 35%, a dominant wavelength of 440nm, an excitation purity of 21%, and a transmittance of 62%. Aug to the West play of the

Maria Carlos States EXAMPLE 5

[0030] In this example, Example 1 was repeated except in that the supply rate of titanium tetraisopropoxide was 40 g/min in place of 240 g/min and that the mixture of titanium tetraisopropoxide (gas) and nitrogen gas was mixed with a nitrogen gas having a dew point of -30°C and a flow rate of 1,000nL/min, together with the air having a flow rate of 300 nL/min. The calculated partial pressures of the titanium compound, oxygen, and steam of the gas mixture were about 0.25kPa, 4kPa and 0.04kPa, respectively. , g

[0031] The titanium oxide film was found to have a refractive index of 2.37 and a thickness of 20nm, based on the spectral reflectance of the coated side of the glass pane. The obtained glass pane was found to have a visible light reflectance from the coated side of 18%, a dominant wavelength of 430nm, and an excitation purity of 19%. The X-ray diffraction pattern of the titanium oxide film was found to have first and second peaks at spacings between adjacent crystallographic planes of the titanium oxide of 3.5 and 1.9 angstroms where the diffraction angles 20 are respectively 🚟 25 and 48 degrees. The relative heights of the first and second peaks were respectively 9 and 1. The result of the abrasion resistance test, the increase in transmittance, was about 3.0%. The rates and efficiency for forming the titanium oxide film on the glass substrate were 0.27 µm/min and 17.4%, respectively. The photocatalytic activity test was conducted in the same manner as that of Example 2. After 10hr of this test, the contact angle of water drop was 10 degrees. in the resolution for these effections will be an in and its colour made of the interest in in the resolution.

COMPARATIVE EXAMPLE, 1.1 page of lagger results based selected the series only effect in the form of the control of the contro

[0032] In this example, Example 2 was repeated except in that the position of the nozzle 5 was 70m downstream from the exit partition wall 8 of the tin bath:3 and that the amount of camin the gas mixture was adjusted to have a partial pressure of 0.5kPagThe temperature of the glacs substrate sur into at the position of the nozzle was 260°C affine titanium oxide film was found to have seriffor tive index of 2.28 and a makness of 20nm, be sed on the spectral reflectance of the coated side of the glass pane. In the abrasion resistance test, the titanium oxir of film exfoliated from the glass substrate by #0 no bions of the Taher above. The regult of the X-ray diffraction and least of the titanium oxide film is ... shown by the X-ray diffraction particen [C] of Fig. 2. If it at, the X-ray diffraction pattern was found to have only one peak at a spacing between adjacent crystr llographic planes of thettianium oxide of 3.5 angstroms where the diffraction angle 🐇 20 is 25 degrees. The photocatalytic activity test was conducted in the same manner as that of Example 2. After 10hr of this test, the contact angle of viater drop with 31 degrees. It is assumed that the titanium oxide film was insufficient in compactness and too low in refractive index, since the glass substrate surface temperature was too low. Furthermore, it was found that the titanium oxide film was insufficient in crystallinity and thus in photocatalytic activity. It should be noted that scales of titanium oxide and titanium hydroxide accumulated on the device for forming the titanium oxide film. and thus 30 minutes after the start of the CVD of the titanium oxide many streaks occurred on the titanium oxide film in a direction along the incovernant of the glass substrate, art have two whether bias dianeters in the property of the grass substrate, art have two whether bias dianeters in the property of the property of the grass substrate, are the property of the grass of the grass substrate, and the property of the grass substrate, are the property of the grass of th

The second second second State of the State of the State

COMPARATIVE EXAMPLE 2

[0033] In this example, Example 1 was repeated except in that the titanium tetraisopropoxide was replaced with titanium tetraethoxide and that the supply rates of the titanium tetraethoxide and the air were 300g/min and 20nL/min, in place of 240g/min and 300nL/min, respectively. The partial pressures of the oxygen, titanium compound and steam of the gas mixture were 1.8kPa, 13kPa and 0.001kPastespectively. The titanium oxide film was found to have a refractive index of 2.51 and a thickness of 42nm, based on the spectral reflectance of the coated side of the glass pane. The photocatalytic activity test was conducted in the same manner as that of Example 2. After 10hr of this test, the contact angle of water drop was 29 degrees. It is assumed that the titanium oxide film was insufficient in crystallinity and photocata. lytic activity, since the partial pressure of the titanium compound vapor was too high and the partial pressure of the oxygen was too low. Making a comparison between the results of Examples 1-5 and the results of Comparative Example 2, titanium ethoxide may be inferior to titanium isopropoxide in obtainment of photocatalytic activity: 1997 1997 as 9 1997 1997 and the state of the medical particles of the state of the contract of

COMPARATIVE EXAMPLE 3

[0034] In this comparative example, Example 1 was repeated except in that a methylene chloride solution containing 20 wt% of titanium diisopropoxybisacetylacetonato; T-50 (trade name) of Nippon Soda Co., Ltd., was sprayed onto the glass substrate at a rate of 2,500 g/min, thereby to form a titanium oxide film on the glass substrate by pyrolysis. In fact, the methylene chloride solution was sprayed from a spraying device under a liquid pressure of 90 kg/cm2 at a level 250mm higher than the glass substrate surface, while a nozzle of the spraying device was reciprocated at a speed of 2 m/s, in a direction perpendicular to that of the movement of the glass substrate, with an amplitude of 2.5 m.-Furthermore, a space for conducting the spraying was enclosed by a chamber, and the atmosphere of the chamber was exhausted at a rate of 15,000 nm³ per hour. the waterwitten and the

and the second

and the factor of

The Transport to be necessarily to

[0035] The obtained titanium oxide film was found to have a refractive index of 2.29 and a thickness of 42nm, based on the spectral reflectance of the coated side of the glass pane. The X-ray diffraction pattern of the titanium oxide film was found to have only first and second peaks at spacings between adjacent crystallographic planes of the titanium oxide of 3.5 angstroms and 1.9 angstroms where the diffraction angles 20 are 25 and 48 degrees, respectively. The height of the second peak was one-twelfth of that of the first peak. The glass pane was subjected to the abrasion resistance test. In this test, the increase of transmittance after 200 rotations of the Taber abraser was 6.6%. This means that the titanium oxide film was insufficient in adhesion strength: The glass pane did not have a high photocatalytic activity as those of Examples 1-5. Thus, it is assumed that the titanium oxide film of Comparative Example 3 is substantially lower in crystallinity than those of Examples 1-5.

[0036] The entire disclosure of Japanese Patent Application No. 9-233689 filed on August 29, 1997, including specification, claims, drawings and summary, is incorporated herein by reference in its entirety.

.

Claims -

40

Survey was sport to me A photocatalytic glass pane comprising:

varies form of the control of the co

ा के अपने जिल्लाहर

17 As

a glass substrate; and six vito agma por medical

at least one layer formed on at least one major surface of said glass substrate, said at least one layer having an outermost layer made of a photocatalytic titanium oxide, said outermost layer being prepared by a chemical vapor deposition.

wherein-said titanium oxide is such that an X-ray diffraction chart of said titanium oxide has at least a first peak when a spacing between adjacent crystallographic planes of said titanium oxide is 3.5 angstroms and a second peak when a spacing between adjacent crystallogo, hic planes of said titalium exide is 1.9 angstroms and that said second peak has a height that is at least one neith of a height of said first peak. makers and the construction of the contained test the Bearism oxide film eath earliest from the glass

- 2. A glass panelaccording to claim 🌬 herein/said X-ray diffraction chart of said titonium oxide further have third peak when a spacing between adjacent crystallographic planes of said titaniam oxide is 1.7 angetroms and a fourth yeak when a spacing between adjacent crystallographic planes of said titanium oxide is 4.5 angstrome. And the control of the contro with sally. Six formulas to two partners, single and missaplication as the incommon long to the angle of the
- A glass pane according to claim 4, wherein said X-ray diffraction chart of said titanium oxide is obtained by allowing Kα X-rays from a copper target to impinge against said outermost layer. ed Dieta a fill viry das day esperimenta i la socialitate vandiasiem e fill diagnite. Fill och en fill e en e
- A glass pane according to claim 1, wherein said titarium oxide is of an anatase type: and started them, the efficient beautious aske the vestin social migresia and a Ground Color of the color of g
- A glass pane according to claim 1, wherein said outermost layer has a thickness that is not greater than 300 nm.

- 6. A glass pane according to claim 1, wherein said at least one layer further has an interlayer interposed between said glass substrate and said outermost layer, said interlayer having a refractive index of from 2.6 to 2.9 and comprising at least one metal oxide selected from the group consisting of chromium oxides, iron oxides, cobalt oxides and copper oxides.
- 7. A glass pane according to claim 1, wherein said at least one layer further has an interlayer interposed between said glass substrate and said outermost layer, said interlayer having a refractive index of from 1.55 to 2.0 and comprise up ing at least one compound selected from the group consisting of aluminum oxides, tin oxides, indium oxides, zinc oxides and silicon oxycarbides a beginning at least one compound selected from the group consisting of aluminum oxides, tin oxides, indium oxides, zinc oxides and silicon oxycarbides a beginning at least one compound selected from the group consisting of aluminum oxides, tin oxides, indium oxides, zinc oxides and silicon oxycarbides are selected from the group consisting of aluminum oxides, tin oxides, indium oxides, zinc oxides and silicon oxycarbides are selected from the group consisting of aluminum oxides, tin oxides, indium oxides, zinc oxides and selected from the group consisting of aluminum oxides, tin oxides, indium oxides, zinc oxides and selected from the group consisting of aluminum oxides, tin oxides, indium oxides, zinc oxides and selected from the group consisting of aluminum oxides, tin oxides, indium oxides, zinc oxides and selected from the group consisting of aluminum oxides, tin oxides, indium oxides, zinc oxides and selected from the group consisting of aluminum oxides, tin oxides, indium oxides, zinc oxides and selected from the group consisting oxides.

ties a pripale a vijir ni no peguaž era lie sijalnis (okoeka zmorapeki til noveki til i italib jediki til kilib 1904).

Calbridge and the plant process has a first for the contract of the process of the contract of

Committee to the state of the s

- 8. A glass pane according to claim 1, wherein said chemical vapor deposition is conducted by a method comprising the sequential steps of excellent places as some or the conducted by a method comprising the sequential steps of excellent places as some or the conducted by a method comprising the sequential steps of excellent places as some or the conducted by a method comprising the sequential steps of excellent places as some or the conducted by a method comprising the sequential steps of excellent places are sequentially steps of excellent places.
 - (a) providing a gas mixture comprising a vapor of an organic titanium compound and an oxygen gas; and(b) bringing said gas mixture into contact with said glass substrate that is under a heated condition, thereby to form said outermost layer on said glass substrate.
- 9. A glass pane according to claim 8, wherein said gas mixture further comprises a nitrogen gas.
- 20 10. A glass pane according to claim 9, wherein said vapor of said organic titanium compound has a partial pressure of from 0.1 to 10 kPa, and said oxygen gas has a partial pressure of from 3 to 40 kPa.

are new and the first one of the majority of the transfer and experience of the first field of the first of the

11. A glass pane according to claim 8, wherein said gas mixture is free of a steam.

the production of the restriction of the court of a last to

10

35

40

- 12. A glass pane according to claim 1, wherein said at least one layer is formed on one major surface of said glass substrate, and a reflective metal layer is formed on the other major surface of said glass substrate, so that said glass pane is usable as an antifogging mirror.
- 13. A method for producing a photocatalytic glass pane, said photocatalytic glass pane comprising a glass substrate; and at least one layer formed on at least one major surface of said glass substrate, said at least one layer having an outermost layer made of a photocatalytic titanium oxide, said outermost layer being prepared by a chemical vapor deposition, wherein said titanium oxide is such that an X-ray diffraction chart of said titanium oxide has at least a first peak when a spacing between adjacent crystallographic planes of said titanium oxide is 3.5 angstroms and a second peak when a spacing between adjacent crystallographic planes of said titanium oxide is 1.9 angstroms and that said second peak has a height that is at least one-tenth of a height of said first peak, said method comprising the sequential steps of:
 - (a) providing a gas mixture comprising a vapor of an organic titanium compound and an oxygen gas; and (b) bringing said gas mixture into contact with said glass substrate that is under a heated condition, thereby to
 - form said outermost layer on said glass substrate.
- 14. A method according to claim 13, wherein said gas mixture further comprises a nitrogen gas.
- 15. A method according to claim 13, wherein said vapor of said organic titanium compound has a first partial pressure of from 0.1 to 10 kPa, and said oxygen gas has a second partial pressure of from 3 to 40 kPa.
 - 16. A method according to claim 15, wherein said first partial pressure is from 1 to 5 kPa, and said second partial pressure is from 10 to 36 kPa.
- 50 17. A method according to claim 13, wherein said gas mixture is free of a steam.
 - 18. A method according to claim 13, wherein the step (b) is conducted at a temperature not higher than 750°C.
 - 19. A method according to claim 13, wherein said glass substrate is heated at a temperature not lower than 300°C.
 - 20. A method according to claim 19, wherein said temperature of said glass substrate is from 400 to 600°C.
 - 21. A method according to claim 20, wherein said temperature of said glass substrate is from 500 to 600°C.

- 22. A method according to claim 13, wherein, prior to the step (b), an interlayer is formed on said glass substrate, said interlayer having a refractive index of 2.6-2.9 and comprising at least one metal oxide selected from the group consisting of chromium oxides, iron oxides, cobalt oxides and copper oxides.
- 23. A method according to claim 13, wherein, prior to the step (b), an interlayer is formed on said glass substrate, said interlayer having a refractive index of from 1.55 to 2.0 and comprising at least one metal oxide selected from the group consisting of aluminum oxides; tin oxides, indium oxides, and zinc oxides.
 - 24. A method according to claim 13, wherein, prior to the step (b), an interlayer is formed on said glass substrate, said: a interlayer having a refractive index of from 1.55 to 2.0 and comprising silicon oxycarbide.

the state of the second state of the second state of the second s

Burgari Same granda in Laurence de la companya de la control de la companya della c

In the control of the c

n in Berlinger (2015) in his two in legal experiments but to be the Berlin in his planter, as it is not the second of the second

han advance to the condition of the second

THE WAR CONTRACTOR OF THE PARTY OF THE PARTY OF

25. A method according to claim 13, wherein said organic titanium compound is a titanium alkoxide: 1000 (100) (1000) (1000) (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1000 (1

10

20

30

35

40

50

am agy with the second To the consistence of the constant of the

- 26. A method according to claim 25, wherein said titanium alkoxide is at least one selected from the group consisting of titanium tetraisopropoxide, titanium tetramethoxide, titanium tetraethoxide, and titanium monochlorotrialkoxide.
 - 27. A method according to claim 22, wherein said interlayer is formed by bringing a gas mixture into contact with said glass substrate, said gas mixture comprising a vapor of at least one compound of at least one metal selected from the group consisting of chromium, iron, cobalt and copper.
 - 28. A method according to claim 27, wherein said at least one compound is at least one acetylacetonato of said at least one metal.
 - 29. A method according to claim 23, wherein said interlayer is formed by bringing a gas mixture into contact with said glass substrate, said gas mixture comprising a vapor of at least one compound of at least one metal selected from the group consisting of aluminum, tin, indium and zinc.
 - 30. A method according to claim 29, wherein said at least one compound is at least one acetylacetonato of said at least one metal.
 - 31. A method according to claim 24, said interlayer is formed by bringing a gas mixture into contact with said glass substrate, said gas mixture comprising silane gas, an ethylenic hydrocarbon gas and carbon dioxide.

And the Board of the Control of the

FIG.2

FIG.3

Europäisches Patentamt

European Patent Office

Office européen des brevets

) **EP**

EP 0 901 991 A3

(12)

EUROPEAN PATENT APPLICATION

- (88) Date of publication A3: 17.05.2000 Bulletin 2000/20
- (43) Date of publication A2: 17.03.1999 Bulletin 1999/11
- (21) Application number: 98116216.7
- (22) Date of filing: 27.08.1998
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: 29.08.1997 JP 23368997
- (71) Applicant: Central Glass Company, Limited Ube-shi, Yamaguchl-ken 755-0001 (JP)

(61) Int CI.4: CU3C 17/245, CU3C 17/34

(72) Inventors:

omet brack

- Inoue, Motoharu Research Inst. for Ind. Techno. of Matsusaka-shi, Mie 515-0001 (JP)
- Waseda, Ryuta Research Instit. for Ind. Techno. of Matsusaka-shl, Mie 515-0001 (JP)
- (74) Representative:
 Schmidt, Christian et al
 Manitz, Finsterwald & Partner GbR,
 Robert-Koch-Strasse 1
 80538 München (DE)

(54) Photocatalytic glass pane and method for producing same

The invention relates to a photocatalytic glass pane including a glass substrate and at least one layer formed on at least one major surface of the glass substrate. The at least one layer has an outermost layer made of a photocatalytic titanium oxide. The outermost layer is prepared by a chemical vapor deposition. The titanium oxide is such that an X-ray diffraction chart of the titanium oxide has at least a first peak when a spacing between adjacent crystallographic planes of the tita- -c(k) , c(k)nium oxide is 3.5 angstroms and a second peak when a spacing between adjacent crystallographic planes of the titanium oxide is 1.9 angstroms and that the second peak has a height that is at least one-tenth of a height of the first peak. The glass pane is high in photocatalytic activity. The invention further relates to a method for producing the photocatalytic glass pane. This method. has the sequential steps of (a) providing a gas mixture comprising a-vapor-of-an organic titanium-compoundusually an alkoxide and an oxygen gas; and (b) bringing the gas mixture into contact with the glass substrate that is under a heated condition, thereby to form the outermost layer on the glass substrate. The glass pane can easily be produced by the method with high efficiency. and low cost. The invention also relates to multiple layer systems including the above photocatalytic titanium. oxide (usually anatase) coating and an interlayer. The further interlayer coatings being other oxides or possibly silicon oxy carbide with refractive indices ranging either

from 1.55 to 2.0 or 2.6 to 2.9. These are generally also prepared by vapour deposition usually from the acety-lacetonate. The invention also relates to nonfogging mirrors, whereby the other major surface of the pane is coated with a reflective metal layer.

EUROPEAN SEARCH REPORT And the second of the second

Application Number

EP 98 11 6216

ategory	Citation of document with in			Relevant	CLASSIFICATION OF THE APPLICATION (Int.CI.6)	
	of relevant passa			to claim	. t. 18	1710
	KAMATA, KIICHIRO ET of TiO2 films by a method"	1-31	C03C17/245	s prioryA		
	JOURNAL OF MATERIAL no. 9, 1990, pages CHAPMAN AND HALL.,	316-319, XP00088150	9		22 e 🔍 e 43	12.00
	* the whole documen	t *			1	r
	EP 0 911 300 A (CEN 28 April 1999 (1999	TRAL GLASS CO LTD) -04-28)		1-5,8,9, 11,13,	The State Desired State States	1.
				14, 17-19, 25,26	i	
	* examples 2,5 *					
	US 4 536 241 A (LOG ET AL) 20 August 19 * column 3, line 12	85 (1985-08-20)	5 M	1-31	to a second of the second of t	1
ı	US 4 504 522 A (KAI 12 March 1985 (1985 * column 3, line 12	-03-12)	AL)	1-31	TECHNICAL FIELDS SEARCHED (Int.Cl.6)	 -
V * *	US 5 262 199 A (DES 16 November 1993 (1 * the whole documen	U SESHU ET AL) 993-11-16)		1-31		
4	US 4 980 203 A (DABOSI FRANCIS J P ET AL 25 December 1990 (1990-12-25) * the whole document *			1-31		
4	DE 35 12 825 A (STI HAERTEREI T) 16 Oct	ober 1986 (1986-10	-16)	1-31		
	V 110 111012 23341101	-/	4.5.3	Six on Other	governance introduce in The complete production for the Book in American in the 2005 to	
			$\frac{\partial W}{\partial x}$	specialities stem so to	त्यु त्राच्या साम्यस्य प्राप्त हो। १०१४ मेरा सम्बद्धाः स्थापना स्थापना १० इस्ट्रेस्ट्रिको जिल्लासम्बद्धाः	1 11
	The present search report has	been drawn up for all claims		1	cheve fay to apple of the	
	Place of search	Date of completion of the	search		Examiner	#
	MUNICH	15 Narch 20	00	Son	iann. K	
Y · na	PATEGORY OF UTIEU LOCUMENTS rtirularly relevant if taken alone rtirularly relevant if combined with anot	E: earlier	or principle	unciching the	Invention	

EUROPEAN SEARCH REPORT AR A ME

Application Number EP 98 11 6216)

ategory	Citation of document with indication of relevant passages	on, where appropriate,	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.C1.6)
 :	CHEMICAL ABSTRACTS, vo 29 September: 1997 (199)	7-09-29)	1-31	,
- 1	Columbus, Ohio, US; abstract no. 179839,			
- :	abstract no. 179839.	and the second second		
· ; [TANAKA, NORIO ET AL:	Preferential		
1	orientation of titanium	n dioxide	.1	
1	polycrystalline films	sing atmospheric		
:	CVD technique."			
	XP002133118			
		35771 277	1	
	* abstract *	(1007) 10F(1H V)		
1	& J. CERAM. SOC. JPN.	(1997), 105(3061),	:	
- 1	551-554,			
1				
	CHEMICAL ABSTRACTS, vo	1. 112, no. 10,	1-31	
	5 March 1990 (1990-03-0	95) ""		
	Columbus, Ohio, US;	e a gr		
ì	abstract no. 82730, KAMATA, KIICHIRO ET AL			·
·	KAMATA, KIICHIRO ET AL	: "Synthesis of		
	titanium dioxide films	by laser chemical:		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	vapor deposition (CVD)	# .	,	
	XP002133119	•		TECHNICAL FIELDS
	* abstract *			SEARCHED (Int.CI.6)
•	& NIPPON SERAMIKKUSU K	VOVAT CAVILLITSII		
	RONBUNSHI (1989), 97(1	2), 1534-6,		
,	KOMIYAMA H. ET AL.: " precipitation aided CV of ceramic films"	- Particle D for rapid growth	1-31	
:	PROCEEDINGS OF THE ELE SOCIETY, August 1987 (1 1119-1128, XP000881749	CTROCHEMICAL 987-08), pages		
	NEW YORK,NY, US		j	
	* the whole document *		1	
			1	
			1	
;		•		
:			1	
:				
1			1	
i			I	
i	The present search report has been	drawn up for all claims		
i	Place of search	Date of completion of the search	1	Examiner
:	MUNICH	15 March 2000	Son	nann, K
X:par	ATEGORY OF CITED DOCUMENTS tioularly relevant if taken alone tioularly relevant if oornbined with another	T : theory or princip E : earlier patent do after the filing do	ournent, but publi	shed on, or

3

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 98 11 6216

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP fits or ...

The European Patent Office is in no way liable for these particulars which are merchy given for the purpose of information.

15-03-2000

	Patent document ed in search repo		Publication : date .		Patent family member(s)	3/25	, Publi	cation ste
EP	0911300	Α	28-04-1999	JP JP:-	11130468 11180733	A A	18-0 06-0	5-1 7-1
US	4536241	Α	20-08-1985	NONE				
US	4504522	Α	12-03-1985	NONE				
US	5262199	Α,,	16-11-1993	WO	9321358	A	28-10	0-1
US	4980203	A	25-12-1990	FR AT DE EP JP	2633642 94221 68908973 0349044 2097675	T :	05-0 15-09 14-1(03-0) 10-04	9-1: 9-1: 1-1:
DE	3512825	A	16-10-1986	WO EP	8606105 0224495		23-10 10-06)-19 5-19
	i							• - - •
						•		•
•			•	·				
	•						· · ·	
				٠. :				
						:		
			· :		•			
: .		. %	Annual To show	eng engan Santa ang	to Arent Vielgijn Rijev		· · · · · ·	:
				195 %, 18 1 Care a 18 1 7			· · · ·	
			ficial Journal of the Sure	1 17532 974.0. 1 11 1				1. 1. ja 1. ja