# Exame de Álgebra

# Universidade de Brasília

Parte II Lucas Corrêa Lopes

Notas escritas para o Exame de Qualificação em Álgebra da Universidade de Brasília.

# GRUPOS LIVRES vs GRUPOS PROJETIVOS

# Sum<mark>ário</mark>

| capítulo 1 | Livres x Projetivos                              | Página 1. |
|------------|--------------------------------------------------|-----------|
| 1.1        | Grupos livres abstratos                          | 1         |
| 1.2        | A propriedade projetiva                          | 2         |
|            | Grupos profinitos livres                         |           |
| 1.4        | A propriedade $\mathcal{C}$ -projetiva           | 5         |
| 1.5        | O caso pro- <i>p</i>                             | 8         |
| 1.6        | Um prova de Nielsen-Schreier quando $X$ é finito | 8         |

# Capítulo 1

## Livres x Projetivos

### 1.1 Grupos livres abstratos

Vamos falar brevemente sobre a construção dos grupos livres abstratos.

**Definição 1.1.1.** Sejam X um conjunto não-vazio, F um grupo e  $\iota: X \to F$  um mapa. O par  $(F,\iota)$  é um *grupo livre* se satisfaz a seguinte **propriedade universal**: se  $g: X \to G$  é um homomorfismo num grupo G, existe um único homomorfismo  $\varphi: F \to G$  tal que  $\varphi\iota = g$ .

Isso significa que o diagrama



é comutativo.

A existência é provada de maneira puramente construtiva: dado um conjunto X e um conjunto

$$X^{-1}=\{x^{-1}:x\in X\},$$

isto é,  $X\cap X^{-1}=\varnothing$ , uma sequência finita de elementos de X é uma palavra (a palavra vazia, sem símbolos, é denotada por 1). Definimos uma relação de equivalência entre as palavras de X dizendo que as palavras v,w são equivalentes se podemos transformar v em w inserindo ou removendo elementos da forma  $xx^{-1}$  ou  $x^{-1}x$ . Uma palavra que não contém termos da forma  $xx^{-1}$  ou  $x^{-1}x$  é reduzida. É fácil verificar que cada classe de equivalência contém uma única palavra reduzida. Denotando por F o grupo de todas as palavras reduzidas com a operação de justaposição e definindo  $\iota: X \to F$  por  $\iota(x) = [x]$ , então  $(F, \iota)$  satisfaz a propriedade universal.

**Exercício**. Pesquise e descreva detalhadamente o processo acima para a construção de um grupo livre. Além disso, mostre que existe um único grupo livre em X, isto é, se  $F_1$  e  $F_2$  são livres em X, então  $F_1 \simeq F_2$ . Além disso, mostre que se |X| = |Y|, então F(X) e F(Y), os grupos livres em X e Y, são isomorfos.

### 1.2 A propriedade projetiva

**Definição 1.2.1.** Seja P um grupo. Dizemos que P é *projetivo* se satisfaz a seguinte **propriedade universal**: se  $\alpha:P\to H$  é um homomorfismo e  $\beta:G\to H$  um epimorfismo de grupos, existe um homomorfismo  $\gamma:P\to G$  tal que  $\beta\gamma=\alpha$ .

Isso significa que o diagrama



é comutativo.

**Teorema 1.2.2**. Um grupo F é livre se, e somente se, é projetivo.

Demonstração. Suponha que F seja livre e que seja dado o diagrama



onde  $\alpha$  é um homomorfismo de grupos e  $\beta$  um epimorfismo de grupos. Considere agora o diagrama



Seja T um transversal de  $\ker \beta$  em G. Então  $\beta_T: T \to H$  é uma bijeção admitindo uma inversa  $\tau: H \to T$ . Considere agora o diagrama



Pela propriedade universal dos grupos livres, existe um único homomorfismo  $\varphi: F \to G$  tal que o diagrama



em azul é comutativo. Assim,  $\beta \varphi = \alpha$ .

Suponha agora que F seja projetivo. Considere o diagrama



onde  $\beta: F(X) \to F$  é um epimorfismo de F(X) em F, onde F(X) é o grupo livre em X. Assim,  $\beta\gamma=\mathrm{id}_F$  e então  $\gamma$  é um monomorfismo. Considerando F um subgrupo de F(X), o Teorema de Nielsen-Schreier garante que F é livre.

O Teorema de Nielsen-Schreier não é um resultado trivial. Daremos uma prova em outro momento usando a Teoria de Bass-Serre.

### 1.3 Grupos profinitos livres

Consideraremos C uma variedade de grupos finitos fechada para extensões.

Se G é um grupo profinito. Um subconjunto S de G é 1-convergente se todo aberto de G contém quase todos os elementos de S, isto é, não contém apenas uma quantidade finita. Se  $\mu:X\to G$  é um mapa, então  $\mu$  é 1-convergente se  $\mu(X)$  é 1-convergente.

**Definição 1.3.1.** Sejam X um conjunto,  $F_{\mathcal{C}}(X)$  um grupo pro- $\mathcal{C}$  e  $\iota: X \to F_{\mathcal{C}}(X)$  um mapa 1-convergente. Dizemos que  $F_{\mathcal{C}}(X)$  (ou  $(F_{\mathcal{C}}(X), \iota)$ ) é um grupo pro- $\mathcal{C}$  livre restrito em X se satisfaz a seguinte **propriedade universal**: para cada grupo pro- $\mathcal{C}$  G e mapa 1-convergente  $g: X \to G$ , existe um único homomorfismo  $\varphi: F_{\mathcal{C}} \to G$  tal que  $\varphi\iota = g$ .

Isso siginifica que o diagrama



é comutativo.

Iremos nos referir a  $F_{\mathcal{C}}(X)$  simplesmente como grupo pro- $\mathcal{C}$  livre em X.

**Proposição 1.3.2.** Seja X um conjunto, então existe um único grupo pro-C livre em X.

 $\it Demonstração.$  Sejam  $\it X$  um conjunto e  $\it F^{abs}$  (mais especificamente,  $\it (F^{abs},\iota^{abs})$ ) o grupo livre abstrato em  $\it X$ . Considere

$$\mathcal{N} = \{ N \lhd F : F/N \in \mathcal{C}, |X - N| < \infty \},$$

F o completamento de  $F^{abs}$  com respeito a topologia determinada por  $\mathcal{N}$ ,  $f:F^{abs}\to F$  o mapa natural de  $F^{abs}$  no seu completamento e  $\iota=f\iota^{abs}$ . Se  $\pi_N:F\to F^{abs}/N$  é a projeção do limite inverso, então  $\iota(x)\in\ker\pi_N$  se, e somente se,  $x\in N$ , logo, a condição  $|X-N|<\infty$  garante que  $\ker\pi_N$  contém quase todos os elementos de  $\iota(X)$ , isto é,  $\iota$  é 1-convergente.

Sejam  $G \in C$ ,  $g: X \to G$  um mapa 1-convergente e considere o diagrama



que comuta pela propriedade universal dos grupos livres abstratos. Por construção, temos



Como g é 1-convergente, 1 contém quase todos os elementos de g(X), logo,  $g=\varphi^{abs}\iota^{abs}$  implica  $\ker \varphi^{abs}\in \mathcal{N}$ , ou seja,  $\varphi^{abs}$  é contínua. Pela propriedade universal do completamento, existe um único  $\varphi:F\to G$  tal que o diagrama



É imediato notar que  $\varphi$  é único.

A unicidade de F é mostrada de maneira similar ao caso abstrato aplicando a propriedade universal duas vezes (obviamente fica como **exercício**!).

Note que se X é finito, então a condição  $|X-N|<\infty$  é irrelevante, logo, o grupo pro- $\mathcal C$  livre num conjunto finito X é o completamento pro- $\mathcal C$  do grupo livre abstrato em X.

Na demonstração do resultado acima, usamos um grupo G em  $\mathcal C$  e não um grupo pro- $\mathcal C$  como a definição exige. Para justificar isso, suponha que a propriedade universal seja válida para grupos em C e  $g:X\to G$  seja um mapa contínuo num grupo pro- $\mathcal C$  G. Considere o diagrama comutativo



pela propriedade universal dos grupos livros com grupos em  $\mathcal{C}$ . Pela propriedade universal do limite inverso, existe um único  $\varphi$  tal que o diagrama



é comutativo.

### 1.4 A propriedade C-projetiva

**Definição 1.4.1.** Dizemos que um grupo pro- $\mathcal{C}$  P é  $\mathcal{C}$ -projetivo se satisfaz a seguinte propriedade universal: se  $\alpha:P\to H$  é um homomorfismo contínuo e  $\beta:G\to H$  um epimorfismo contínuo (onde H,G são grupos pro- $\mathcal{C}$ ), então existe um homomorfismo contínuo  $\gamma:P\to G$  tal que  $\beta\gamma=\alpha$ .

Isso significa que o diagrama



é comutativo.

**Teorema 1.4.2**. Um grupo pro-C livre é C-projetivo.

 ${\it Demonstração}.$  Seja F pro- ${\it C}$  livre e considere o diagrama



onde  $\alpha$  é um homomorfismo contínuo de grupos e  $\beta$  um epimorfismo contínuo de grupos. Considere agora o diagrama



Seja T um transversal de  $\ker \beta$  em G. Então  $\beta_T: T \to H$  é uma bijeção contínua admitindo uma inversa  $\tau: H \to T$ . Considere agora o diagrama



Note que se  $N \lhd_o G$ , então

$$\{x \in X : (\tau \alpha \iota)(x) \notin N\} = \{x \in X : \iota(x) \notin (\tau \alpha)^{-1}(N)\}$$

que é finito já que  $(\tau \alpha)^{-1}(N)$  é um aberto contendo 1 em G, ou seja,  $\tau \alpha \iota$  é 1-convergente. Pela propriedade universal dos grupos pro- $\mathcal C$  livres, existe um único homomorfismo  $\varphi:F\to G$  tal que o diagrama



em azul é comutativo. Assim,  $\beta \varphi = \alpha$ .

Se tentarmos usar a mesma ideia do caso abstrato, vamos para no seguinte ponto: suponha agora que F seja projetivo. Considere o diagrama



onde  $\beta: F_{\mathcal{C}}(X) \to F$  é um epimorfismo de  $F_{\mathcal{C}}(X)$  em F, onde  $F_{\mathcal{C}}(X)$  é o grupo livre em X. Assim,  $\beta\gamma=\mathrm{id}_F$  e então  $\gamma$  é um monomorfismo. Considerando F um subgrupo de  $F_{\mathcal{C}}(X)$ , o Teorema de Nielsen-Schreier garante que F é livre (falso!). O teorema de Nielsen-Schreier no caso pro- $\mathcal{C}$  não vale em geral!

**Exemplo 1.4.3.** Considere o grupo profinito livre  $\widehat{\mathbb{Z}}$ . Sabemos que

$$\widehat{\mathbb{Z}} \simeq \prod_p \mathbb{Z}_p.$$

Assim,  $\mathbb{Z}_p$  é um subgrupo pro-p fechado de  $\widehat{\mathbb{Z}}$  que não é profinito, logo, não é profinito livre.

Assim, o melhor que podemos dizer é que: um grupo  $\mathcal{C}$ -projetivo é um subgrupo fechado de um grupo pro- $\mathcal{C}$  livre

**Exemplo 1.4.4.** De fato, considere  $\pi = \{2, 3\}$ . Considere o diagrama



onde  $\alpha$  é um homomorfismo contínuo e  $\beta$  um epimorfismo contínuo de grupos pro- $\pi$ . Note que  $\alpha(\mathbb{Z}_2)$  é um 2-subgrupo de H e todo 2-Sylow de H é imagem de um 2-Sylow P de G. Assim,  $\alpha(\mathbb{Z}_2) \leqslant \beta(P)$  para algum 2-Sylow P de G. Se  $\mathbb{Z}_2 = \overline{\langle g \rangle}$ , então  $\alpha(g) = \beta(p)$  para algum  $p \in P$ . Defina  $\gamma: \mathbb{Z}_2 \to G$  por  $\gamma(g) = p$ . Assim,

$$(\beta \gamma)(g) = \beta(p) = \alpha(g),$$

logo,  $\mathbb{Z}_2$  é  $\pi$ -projetivo. Contudo,  $\mathbb{Z}_2$  não é pro- $\pi$  livre pois é impossível obter um homomorfismo contínuo levando g em  $1 \in \mathbb{Z}_3$ .

Assim,  $\mathbb{Z}_2$  é pro- $\pi$  projetivo mas não é pro- $\pi$  livre.

### 1.5 O caso pro-p

Seja  $\rho:P/\Phi(P)\to G/\Phi(G)$  um epimorfismo contínuo. Sejam  $\alpha:P\to P/\Phi(P)$  e  $\beta:G\to G/\Phi(G)$  os epimorfismos canônicos. Temos o diagrama



onde  $\varphi: P \to G$  existe pela propriedade projetiva de P. Como  $\beta \varphi = \rho \alpha$ , então

$$(\beta\varphi)(P) = \beta(\varphi(P)) = \varphi(P)\Phi(G)/\Phi(G)$$

е

$$(\rho\alpha)(P) = \rho(\alpha(P)) = \rho(P/\Phi(G)) = G/\Phi(G),$$

logo,

$$\varphi(P)\Phi(G)/\Phi(G) = G/\Phi(G),$$

isto é,  $\varphi(P)\Phi(G)=G$  e assim  $\varphi(P)=G$  (veja [Wil98, Proposição 2.5.1]). Se adicionalmente,  $\rho$  é um isomorfismo, então  $\varphi$  também será.

Se P é um grupo pro-p projetivo, então

$$P/\Phi(P) \simeq \prod_X \mathbb{Z}/p\mathbb{Z}.$$

Se F é o grupo pro-p livre em X, então

$$F/\Phi(F) \simeq \prod_X \mathbb{Z}/p\mathbb{Z}.$$

Pela observação anterior,  $F \simeq P$ .

Assim, um grupo F é pro-p livre se, e somente se, é p-projetivo.

**Exercício.** A demonstração de que projetivo implica livre no caso abstrato pode ser usada no caso pro-p? Isto é, o Teorema de Nielsen-Schreier vale para subgrupos fechados de grupos pro-p?

### 1.6 Um prova de Nielsen-Schreier quando X é finito

**Teorema 1.6.1** (Nielsen-Schreier versão pro- $\mathcal{C}$ ). Seja F um grupo pro- $\mathcal{C}$  livre no conjunto finito X. Se  $H \leq_o F$ , então H é pro- $\mathcal{C}$  livre.

Demonstração. Temos que  $\overline{F^{abs}}=F$  e  $H\cap F^{abs}$  é livre abstrato pelo Teorema de Nielsen-Schreier. Suponha que  $H\cap F^{abs}$  contenha um subgrupo normal N de  $F^{abs}$  com  $F^{abs}/N\in\mathcal{C}$ , então a topologia profinita em  $F^{abs}$  induz a topologia profinita plena em  $F^{abs}\cap H$  de modo que H é o completamento pro- $\mathcal{C}$  de  $F^{abs}\cap H$  e, portanto, livre. Note que

$$F - H = \bigcup_{M \lhd_o F} F - HM$$

com  $F/M \in \mathcal{C}$ . Uma vez que F-H é fechado em F, a compacidade nos dá

$$F - H = (F - HM_1) \cup \cdots \cup (F - HM_n) = F - \bigcap_{i=1}^{n} HM_i.$$

Então

$$H\left(\bigcap_{1}^{n} M_{i}\right) = \bigcap_{1}^{n} H M_{i} \subset H.$$

Tomando

$$K = \bigcap_{1}^{n} M_i,$$

então  $N=K\cap F^{abs}$  é o subgrupo procurado.

# Referências Bibliográficas

[Wil98] J. Wilson. *Profinite Groups,* volume 19. Oxford University Press, Nova lorque, 1 edition, 1998.