Matematica Discreta Compito 3

1.) Quanti soluzioni ha il sistema lineare dato da

a.)
$$\begin{pmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 1 & 1 & 5 & 1 \end{pmatrix}$$
 b.) $\begin{pmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 1 & 3 \end{pmatrix}$ c.) $\begin{pmatrix} 1 & 4 & 0 \\ 1 & 2 & 0 \end{pmatrix}$

b.)
$$\begin{pmatrix} 0 & 1 & 0 & 2 \\ 1 & 0 & 1 & 3 \end{pmatrix}$$

c.)
$$\begin{pmatrix} 1 & 4 & 0 \\ 1 & 2 & 0 \end{pmatrix}$$

2.) Trovare, usando il metodo di eliminazione di Gauss-Jordan, tutti gli valori di a tale che il sistema

$$\begin{cases} x_1 + x_2 - 2x_3 = 2 & \text{a.) non ha soluzioni.} \\ x_1 + 2x_2 + x_3 = 3 & \text{b.) ha un unico soluzione.} \\ x_1 + x_2 + (a^2 - 6)x_3 = a & \text{c.) ha infinite soluzioni.} \end{cases}$$

$$x_1 + 2x_2 + x_3 = 3$$

 $x_1 + x_2 + (a^2 - 6)x_2 = a$

3.) Trovare, usando il metodo di eliminazione di Gauss-Jordan, tutti gli valori di a tale che il sistema

$$\begin{cases} x_2 + x_3 + x_4 = 1 \\ x_1 + 2x_2 + 3x_3 + (a^2 + 2)x_4 = a \end{cases}$$

4.) Trovare, usando il metodo di eliminazione di Gauss-Jordan, tutti gli valori di a tale che il sistema

$$\begin{cases} x_1 + x_2 + 2x_3 + 2x_4 = 1 & \text{a.) non ha soluzioni.} \\ x_2 + x_3 + x_4 = 1 & \text{b.) ha un unico soluzione.} \\ x_1 + 2x_2 + (a^2 - 1)x_3 + 4x_4 = a + 2 & \text{c.) ha infinite soluzioni.} \\ x_1 + x_3 + (a + 1)x_4 = 2 - a \end{cases}$$

5.) Calcolare il rango delle matrice dati:

c.)
$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

6.) Calcolare, se è possibile,

a.)
$$\begin{pmatrix} 3 & 1 \\ 6 & -2 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$
 b.) $\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ 3 \end{pmatrix}$ c.) $\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

b.)
$$\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

c.)
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

d.)
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

e.)
$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

d.)
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 e.) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ f.) $\begin{pmatrix} 1 & 1 & -1 \\ -5 & 1 & 1 \\ 1 & -5 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

7.) In
$$\mathbb{R}^4$$
 consideriamo i vettori $\vec{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$, $\vec{v}_2 = \begin{pmatrix} 4 \\ 1 \\ -2 \\ 3 \end{pmatrix}$, $\vec{v}_3 = \begin{pmatrix} 1 \\ 2 \\ 6 \\ -5 \end{pmatrix}$ e $\vec{v}_4 = \begin{pmatrix} -2 \\ 3 \\ -1 \\ 2 \end{pmatrix}$.

Quali vettori sono una combinazione lineare di $\vec{v}_1, \vec{v}_2, \vec{v}_3$ e \vec{v}_4 ?

a.)
$$\begin{pmatrix} 3 \\ 6 \\ 3 \\ 0 \end{pmatrix}$$

b.)
$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

a.)
$$\begin{pmatrix} 3 \\ 6 \\ 3 \\ 0 \end{pmatrix}$$
 b.) $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ c.) $\begin{pmatrix} 3 \\ 6 \\ -2 \\ 5 \end{pmatrix}$ d.) $\begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$.

$$d.) \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

8.) Consideriamo il sistema lineare $A\vec{x} = \vec{b}$ e il sistema lineare omogeneo associato $A\vec{x} = \vec{0}$.

a.) Dimostare che se
$$\vec{x}_1$$
 e \vec{x}_2 sono soluzioni di $A\vec{x} = \vec{b}$, allora $\vec{x}_2 - \vec{x}_1$ è una soluzione di $A\vec{x} = \vec{0}$.

b.) Dimostare che se
$$\vec{x}_1$$
 è una soluzione di $A\vec{x} = \vec{b}$ e \vec{x}_2 è una soluzione di $A\vec{x} = \vec{0}$, allora $\vec{x}_1 + \vec{x}_2$ è una soluzione di $A\vec{x} = \vec{b}$.

c.) Dimostare che se
$$\vec{x}_1$$
 e \vec{x}_2 sono soluzioni di $A\vec{x}=\vec{0}$, allora $\vec{x}_1+\vec{x}_2$ è una soluzione di $A\vec{x}=\vec{0}$.

d.) Dimostare che se
$$k \in \mathbb{R}$$
 e \vec{x}_1 è una soluzione di $A\vec{x} = \vec{0}$, allora $k\vec{x}_1$ è una soluzione di $A\vec{x} = \vec{0}$.