

# 3° ANNEE TRONC COMMUN de MATHEMATIQUES MATHEMATIQUES GENERALES ALGEBRE LINEAIRE TD

Ne pas s'ennuyer. Apprendre à faire des choses.

# Espaces vectoriels, sous espaces vectoriels, familles libres, familles génératrices et bases d'un sous espace vectoriel, changement de base, applications linéaires

# Dans ce TD1, on n'utilise pas la notion de matrice.

#### Exercice 1

 $\mathbb{R}^3$  est l'ensemble des triplets de réels.

C'est un  $\mathbb{R}$  espace vectoriel de dimension 3 dont la base canonique est ((1,0,0),(0,1,0),(0,0,1))

Les familles suivantes de  $\mathbb{R}^3$  sont-elles libres ? Génératrices de  $\mathbb{R}^3$  ? Des bases de  $\mathbb{R}^3$  ?

- (a) ((1,1,1), (0,1,1), (0,0,1))
- (b) ((1,1,1),(0,0,0))
- (c) ((1,1,1),(1,2,1),(0,1,0))
- (d) ((1,0,1),(0,1,1),(1,1,0),(1,1,1))

#### **Exercice 2**

 $\mathbb{R}^3$  est l'ensemble des triplets de réels.

C'est un  $\mathbb{R}$  espace vectoriel de dimension 3 dont la base canonique est ((1,0,0),(0,1,0),(0,0,1))

- 1) Montrer que les vecteurs  $u_1 = (0,1,1), u_2 = (1,0,1)$  et  $u_3 = (1,1,0)$  forment une base de  $\mathbb{R}^3$
- 2) Trouver les coordonnées du vecteur u = (1,1,1) dans cette base.

#### Exercice 3

Dans  $\mathbb{R}^4$  on considère l'ensemble E des vecteurs  $(x_1, x_2, x_3, x_4)$  tels que  $x_1 + x_2 + x_3 + x_4 = 0$ Expliquer le plus simplement possible pourquoi l'ensemble E est un sous espace vectoriel de  $\mathbb{R}^4$ , en donner la dimension et une base.

#### **Exercice 4**

Soient:

E un  $\mathbb{R}$  espace vectoriel de dimension 3

$$B = (e_1, e_2, e_3)$$
 une base de E

$$e_1' = e_1 + e_2 + e_3$$

$$e_2' = e_1 + e_2$$
  $e_3' = 2e_1$ 

$$e_3' = 2e_1$$

- 1) Montrer que  $B' = (e_1', e_2', e_3')$  est une base de E
- 2) Déterminer les composantes du vecteur  $u = 2e_1' e_2' + e_3'$  dans la base B
- 3) Déterminer les composantes du vecteur  $v = 11e_1 + e_2 + 3e_3$  dans la base B'

#### Exercice 5

Soient:

E un  $\mathbb{R}$  espace vectoriel de dimension 3

 $B = (e_1, e_2, e_3)$  une base de E

f l'endomorphisme de E (c'est-à-dire l'application linéaire de E dans E) défini par :

$$f(e_1) = e_1 + e_2 + e_3$$

$$f(e_2) = 2e_1 + 3e_2$$

$$f(e_3) = -e_1 - 3e_3$$

- 1) Déterminer  $f(e_1 2e_2 + e_3)$
- 2) Déterminer Ker(f) (une base et sa dimension).
- 3) Déterminer Im(f) (une base et sa dimension).

Remarque : comment pouvait-on déduire la dimension de Im(f) de la question 2)?

## Exercice 6

Soient:

E un  $\mathbb{R}$  espace vectoriel de dimension 3

 $B = (e_1, e_2, e_3)$  une base de E

$$e_1' = e_1 + 2e_2 + 3e_3$$

$$e_2' = e_1 + e_2$$

$$e_3' = e_2 + e_3$$

f l'endomorphisme de E (c'est-à-dire l'application linéaire de E dans E) défini par :

$$f(e_1) = 2e_1 + e_2 - e_3$$

$$f(e_2) = e_1 + 2e_2$$

$$f(e_3) = e_1 - e_2 - e_3$$

- 1) Montrer que  $B' = (e_1', e_2', e_3')$  est une base de E
- 2) Déterminer les images par f des vecteurs de B' (on donnera leurs composantes dans B').

#### **Exercices supplémentaires**

#### Exercice 7

Soient:

E un  $\mathbb{R}$  espace vectoriel de dimension 3 et  $B_E = (e_1, e_2, e_3)$  une base de E F un  $\mathbb{R}$  espace vectoriel de dimension 2 et  $B_F = (f_1, f_2)$  une base de F g l'application linéaire de E dans F définie par :  $g(e_1) = f_1 + f_2$   $g(e_2) = 2f_1 + 3f_2$ 

$$g(e_1) = f_1 + f_2$$
  
 $g(e_2) = 2f_1 + 3f_2$   
 $g(e_3) = -f_1 - 3f_3$ 

- 1) Déterminer  $g(e_1 + 2e_2 3e_3)$
- 2) Déterminer Im(f) de manière immédiate et en déduire la dimension de Ker(f)
- 3) Déterminer une base de Ker(f)

#### **Exercice 8**

Les ensembles suivants sont-ils des sous espaces vectoriels du  $\mathbb R$  espace vectoriel  $\mathbb R^3$  ?

$$A_{1} = \{(x, y, 0) / x \text{ et } y \in \mathbb{R}\}$$

$$A_{2} = \{(x, y, z) \in \mathbb{R}^{3} / x + y + z = 0\}$$

$$A_{3} = \{(x, y, z) \in \mathbb{R}^{3} / x + y + z = 1\}$$

$$A_{4} = \{(x, y, z) \in \mathbb{R}^{3} / x^{2} + y^{2} = z^{2}\}$$

$$A_{5} = \{(x, y, z) \in \mathbb{R}^{3} / 3 x = 2y + 5z\}$$

#### Exercice 9

Soient F et G les sous espaces vectoriels de  $\mathbb{R}^3$  définis par :

$$F = \{(x, y, z) \in \mathbb{R}^3 / x - 2y + z = 0\}$$
  
$$G = \{(x, y, z) \in \mathbb{R}^3 / 2x - y + 2z = 0\}$$

- 1) Donner une base de F, une base de G et leurs dimensions.
- 2) Donner une base de  $F \cap G$  et sa dimension.

#### Exercice 10

Soient F et G les sous espaces vectoriels de  $\mathbb{R}^4$  définis par :

$$F = \{(a, b, c, d) \in \mathbb{R}^4 / b - 2c + d = 0\}$$
  

$$G = \{(a, b, c, d) \in \mathbb{R}^4 / a = d \text{ et } b = 2c\}$$

- 1) Donner une base de F, une base de G et leurs dimensions.
- 2) Donner une base de  $F \cap G$  et sa dimension.

### Exercice 11

On considère la partie F de  $\mathbb{R}^4$  définie par :  $F = \{(x, y, z, t) \in \mathbb{R}^4 / x + y = 0 \text{ et } x + z = 0\}$ 

- 1) Donner une base de F.
- 2) Compléter la base trouvée en une base de  $\mathbb{R}^4$
- 3) On pose  $u_1 = (1,1,1,1)$ ,  $u_2 = (1,2,3,4)$  et  $u_3 = (-1,0,-1,0)$ . La famille  $(u_1,u_2,u_3)$  est-elle libre?
- 4) Soit G l'espace vectoriel engendré par les vecteurs  $u_1, u_2$  et  $u_3$ . Quelle est la dimension de G?
- 5) Donner une base de  $F \cap G$

# **TD2** Matrices

## Exercice 1: produits matriciels: possibles ou pas, pas souvent commutatifs, binôme de Newton

# Exercice 2 : déterminants

Calculer les déterminants suivants :

$$\begin{vmatrix} 2 & 5 \\ 3 & 6 \end{vmatrix} \qquad \begin{vmatrix} 1 & 3 & 1 \\ 0 & -1 & 4 \\ 0 & 0 & 5 \end{vmatrix} \qquad \begin{vmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ 1 & 0 & -2 \end{vmatrix} \qquad \begin{vmatrix} 1 & 0 & 3 \\ 2 & 0 & 4 \\ 3 & -1 & 1 \end{vmatrix}$$

## Exercice 3: inverse d'une matrice

Calculer les inverses des matrices suivantes :

$$A = \begin{pmatrix} 1 & 1 \\ 3 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 1 \\ 1 & -2 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & -2 & 1 \\ 1 & 1 & 1 \\ 1 & -2 & 2 \end{pmatrix}$$

## Exercice 4 : systèmes linéaires : interprétation géométrique et méthode du pivot de Gauss

Pour chaque système linéaire :

- interpréter chaque équation du système linéaire comme l'équation d'un sous espace affine (de quelle dimension ?) d'un  $\mathbb{R}$  espace affine  $E_0$  de dimension n (avec n qui vaut ?).
- interpréter le système linéaire, dans le cas où il aurait un ensemble de solutions non vide, comme un système d'équations d'un sous espace affine  $F_0$  de  $E_0$
- résoudre le système linéaire par la méthode du pivot de Gauss et en déduire, dans le cas où il a un ensemble de solutions non vide :

la dimension de  $F_0$ 

un point de  $F_0$ 

une base de F (où F est le sous espace vectoriel de E associé à  $F_0$  où E est le  $\mathbb{R}$  espace vectoriel associé à  $E_0$ ). Remarque : une base de F s'il y a lieu (« s'il y a lieu » ? Pourquoi ?).

1) 
$$\begin{cases} x + y + 2z = 5 \\ x - y - z = 1 \\ x + z = 3 \end{cases}$$

2) 
$$\begin{cases} 2x + y - 2z = 4\\ x + 2y + 2z = 1\\ 3x + 3y = 5 \end{cases}$$

3) 
$$\begin{cases} 2x + 4y - 4z + t = 0\\ 3x + 6y + z - 2t = -7\\ -x + y + 2z + 3t = 4\\ x + y - 4z + t = 2 \end{cases}$$

## **Exercices supplémentaires**

## Exercice 5: astuce pour calculer l'inverse d'une matrice

Soit 
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$
. Calculer  $A^3 - A$ , en déduire que A est inversible puis calculer  $A^{-1}$ 

3

# **TD3** Espaces vectoriels et utilisation des matrices

#### Exercice 1 : la formule X = PX'

On reprend l'exercice 4 du TD1 mais on le résout avec des méthodes utilisant les matrices. Soient:

E un  $\mathbb{R}$  espace vectoriel de dimension 3

 $B = (e_1, e_2, e_3)$  une base de E

$$e_1' = e_1 + e_2 + e_3$$

$$e_2' = e_1 + e_2 e_3' = 2e_1$$

$$e_3' = 2e_1$$

1) Indiquer la matrice de passage P de B à  $B' = (e_1', e_2', e_3')$ 

Montrer que  $B' = (e_1', e_2', e_3')$  est une base de E:

- a) en calculant le déterminant de P.
- b) en appliquant la méthode du pivot de Gauss à la matrice P.
- 2) Indiquer la colonne U' des composantes du vecteur  $u = 2e_1' e_2' + e_3'$  dans la base B'En déduire la colonne U des composantes de u dans la base B.
- 3) Indiquer la colonne V des composantes du vecteur  $v = 11e_1 + e_2 + 3e_3$  dans la base B En déduire la colonne V' des composantes de v dans la base B'Indication: inversion de matrice...

#### Exercice 2 : la formule Y = AX

On reprend l'exercice 5 du TD1 mais on le résout avec des méthodes utilisant les matrices. Soient:

E un  $\mathbb{R}$  espace vectoriel de dimension 3

 $B = (e_1, e_2, e_3)$  une base de E

f l'endomorphisme de E (c'est-à-dire l'application linéaire de E dans E) défini par :

$$f(e_1) = e_1 + e_2 + e_3$$

$$f(e_2) = 2e_1 + 3e_2$$

$$f(e_3) = -e_1 - 3e_3$$

1) Indiquer  $A = M_B(f)$  (c'est-à-dire la matrice de l'endomorphisme f dans la base B).

Indiquer la colonne X des composantes du vecteur  $x = e_1 - 2e_2 + e_3$  dans la base B.

Déterminer alors la colonne Y des composantes du vecteur  $y = f(e_1 - 2e_2 + e_3)$  dans la base B.

- 2) Déterminer Ker(A) (une base et sa dimension) en appliquant la méthode du pivot de Gauss à la matrice A. Retraduction : donner une base et la dimension de Ker(f)
- 3) Déduire de la question 2) la dimension de Im(f) (c'est-à-dire la dimension de Im(A)).

Déterminer une base de Im(A) par simple lecture de la matrice A.

Retraduction : donner une base de Im(f)

# Exercice 3: la formule $A' = P^{-1}AP$

On reprend l'exercice 6 du TD1 mais on le résout avec des méthodes utilisant les matrices. Soient:

E un  $\mathbb{R}$  espace vectoriel de dimension 3

 $B = (e_1, e_2, e_3)$  une base de E

$$\rho_{1}' - \rho_{1} + 2\rho_{2} + 3\rho_{3}$$

$$e_2' = e_1 + e_2$$

$$e_3' = e_2 + e_3$$

 $e_1'=e_1+2e_2+3e_3$   $e_2'=e_1+e_2$   $e_3'=e_2+e_3$  f l'endomorphisme de E (c'est-à-dire l'application linéaire de E dans E) défini par :

$$f(e_1) = 2e_1 + e_2 - e_3$$

$$f(e_2) = e_1 + 2e_2$$

$$f(e_3) = e_1 - e_2 - e_3$$

- 1) Donner la matrice de passage P de B à  $B' = (e_1', e_2', e_3')$  et montrer que  $B' = (e_1', e_2', e_3')$  est une base de E.
- 2) Indiquer  $A = M_B(f)$  (c'est-à-dire la matrice de l'endomorphisme f dans la base B).

Par inversion d'une matrice puis en effectuant un produit de matrices, déterminer  $A' = M_{R'}(f)$  (c'est-à-dire la matrice de l'endomorphisme f dans la base B').

Indiquer alors les images par f des vecteurs de B' (on donnera leurs composantes dans B').

# TD4 Diagonalisation ou trigonalisation de matrices carrées

## Exercice 1 : Diagonalisabilité et CNS sur la dimension des sous espaces propres

Pour chacune des matrices A suivantes :

- 1) Déterminer le polynôme caractéristique PC<sub>A</sub>
- 2) Montrer que A est diagonalisable ou pas en déterminant la dimension de ses sous espaces propres clés.
- 3) Si A est diagonalisable, expliciter une diagonalisée A' de A.
- 4) Déterminer une base de chaque sous espace propre de A
- 5) Si A est diagonalisable alors diagonaliser A (c'est-à-dire déterminer une matrice inversible P telle que  $A' = P^{-1}AP$ )

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & -4 \\ 4 & 1 & -4 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

$$A = \begin{pmatrix} 4 & 1 & 2 \\ -1 & 1 & -1 \\ -2 & -1 & 0 \end{pmatrix}$$

$$A = \begin{pmatrix} -2 & 1 & 2 \\ -5 & 4 & 2 \\ -10 & 2 & 7 \end{pmatrix}$$

$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 6 \\ 0 & 3 & 5 \\ 0 & 0 & 3 \end{pmatrix}$$

## Exercice 2:

Dans le cas où A est diagonalisable, détermination de la puissance  $k^\circ$  de A par changement de base (méthode nécessitant le calcul de  $P^{-1}$ )

Soient b un complexe non nul, a un complexe et  $A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$ 

1) Montrer que A est diagonalisable en déterminant la dimension de ses sous espaces propres clés.

5

- 2) Déterminer une matrice diagonale A' et une matrice inversible P telles que  $A = PA'P^{-1}$
- 3) Calculer  $P^{-1}$  puis  $A^k$ ,  $\forall k \in N$

#### Exercice 3:

Dans le cas où A est diagonalisable, résolution du système différentiel  $\frac{dX}{dt} = AX$  par changement de base (méthode ne nécessitant pas le calcul de  $P^{-1}$ )

$$A = \begin{pmatrix} 1 & 0 & 4 & 0 \\ 0 & 1 & 0 & 4 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

- 1) Montrer que A est diagonalisable en déterminant la dimension de ses sous espaces propres clés.
- 2) Déterminer une matrice diagonale A' et une matrice inversible P telles que  $A' = P^{-1}AP$
- 3) Déterminer la solution générale du système différentiel  $\frac{dX}{dt} = AX$

# Exercice 4: trigonalisation de matrices

Montrer que 
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 2 \end{pmatrix}$$
 n'est pas diagonalisable et est semblable à  $A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ 

## **Exercices supplémentaires**

#### Exercice 5: vrai ou faux?

- 1) Soit A une matrice carrée. Si A est diagonalisable alors  $A^2$  est diagonalisable.
- 2) Soit A une matrice carrée. Si  $A^2$  est diagonalisable alors A est diagonalisable.
- 3) La somme de deux matrices diagonalisables est diagonalisable.

## Exercice 6 : diagonalisation de matrices

1) Chacune des matrices  $A_k$  suivantes est-elle diagonalisable?

Si oui alors diagonaliser  $A_k$  (c'est-à-dire déterminer une matrice  $A_k$  diagonale et une matrice  $P_k$  inversible telles que  $A_k$  =  $P_k^{-1}A_kP_k$ ).

$$A_1 = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix} \qquad A_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix} \qquad A_3 = \begin{pmatrix} 0 & 0 & 4 \\ 1 & 0 & -8 \\ 0 & 1 & 5 \end{pmatrix}$$

2) Expliquer sans calcul pourquoi la matrice  $M = \begin{pmatrix} \pi & 1 & 2 \\ 0 & \pi & 3 \\ 0 & 0 & \pi \end{pmatrix}$  n'est pas diagonalisable.

# Exercice 7 : calcul d'une puissance n° d'une matrice carrée

1) Montrer que  $A = \begin{pmatrix} 3 & 0 & -1 \\ 2 & 4 & 2 \\ -1 & 0 & 3 \end{pmatrix}$  est diagonalisable et la diagonaliser (c'est-à-dire déterminer une matrice A' diagonale et une matrice P inversible telles que  $A' = P^{-1}AP$ ).

6

2) En déduire la matrice  $A^n$ ,  $\forall n \in \mathbb{N}$