1 Introduction

2 Preliminaries

First we must clarify a few frequently used definitions and results.

Definition 2.1. We call a set S a *semigroup* if it has an associative binary operation that sends a pair of elements $(a, b) \mapsto ab$ for all $a, b \in S$.

Definition 2.2. We call a semigroup S an *inverse semigroup* if for every $s \in S$, there exists a unique element $s^* \in S$ such that $s = ss^*s$ and $s^* = s^*ss^*$. We call s^* the *inverse* of s. If S contains a zero element, we call it an *inverse semigroup* with zero.

Definition 2.3. An element e of an inverse semigroup S is called an *idempotent* if $e = e^2$. Note that for all idempotents, $e = e^*$, and for all elements s in an inverse semigroup, ss^* and s^*s are idempotent. We denote the set of idempotents on S by E(S).

Remark 2.4. If S is an inverse semigroup, for $e, f \in E(S)$, ef = fe.

In other words, the idempotents of an inverse semigroup commute. (A proof of this can be found in Kyle's paper. cite this properly)

Definition 2.5. Let S be a set. A relation \leq on S is called a partial order if

- It is reflexive; $a \le a \quad \forall a \in S$
- It is antisymmetric; a < b and $b < a \implies a = b \quad \forall a, b \in S$
- It is transitive; $a \le b$ and $b \le c \implies a \le c \quad \forall a, b, c \in S$

A set S paired with a partial order is called a partially ordered set, or a poset.

3 The Tight Spectrum of an Inverse Semigroup

Now that we have a basic set of definitions in place, we can start to explore the set of idempotents on inverse semigroups. For this section, let S be an inverse semigroup with zero. We can define a partial order on E(S), saying that $e \leq f \iff e = ef$. This can be extended to the entire set S, but in this paper we are only concerned with idempotents. (mention it's a meet semilattice, point to ISG primer?)

Definition 3.1. A nonempty proper subset $\xi \subset E(S)$ is called a *filter* on S if

- 1. For $e, f \in \xi$, $ef \in \xi$
- 2. For $x \in \xi$, $e \in E(S)$, $x \le e \implies e \in \xi$

Subsets that only satisfy the first condition are called *prefilters*. We denote the set of filters on S by \hat{E}_0^S . An important remark is that the zero element of S is not contained inside any filters. If $0 \in \xi$, condition (2) would imply that $\xi = S$, which violates our definition. We can consider \hat{E}_0^S a subset of $\{0,1\}^{E(S)}$, and thus endow it with the product topology inherited from $\{0,1\}^{E(S)}$. Equivalently, let X, Y be finite subsets of E(S). Define $\mathcal{U}(X,Y) := \{\xi \in \hat{E}_0 \colon X \subseteq \xi \text{ and } Y \cap \xi = \emptyset\}$. Sets of the form $\mathcal{U}(X,Y)$ form a basis for the topology on the set of filters. With this topology, the topological space \hat{E}_0^S is called the *Exel spectrum* of S.

Definition 3.2. A filter $\eta \in \hat{E}_0$ is called an *ultrafilter* if it is maximal with respect to set inclusion. In other words, it is not contained inside another filter.

We define the subspace $\hat{E}_{\infty}^{S} := \{ \xi \in \hat{E}_{0}^{S} : \xi \text{ is an ultrafilter} \}$. Note that if the inverse semigroup is obvious, we need not superscript S when describing the spectrum.

Remark 3.3. For an ultrafilter $\eta \in \hat{E}_{\infty}$ and $e \in E(S)$, $e \notin \eta \implies ef = 0$ for some $f \in \eta$.

Theorem 3.4. Every filter is contained inside an ultrafilter.

Proof. Let $\xi \in \hat{E}_0$. To prove this, we hope to use Zorn's lemma. We define the set $\mathcal{P} := \{ \mathcal{F} \in \hat{E}_0 \colon \xi \subseteq \mathcal{F} \}$ and we order \mathcal{P} by set inclusion. Let $\mathcal{C} \subseteq \mathcal{P}$ be a chain. If we take $\mathcal{F} := \bigcup_{\zeta \in \mathcal{C}} \zeta$, it is clear that \mathcal{F} is an upper bound of \mathcal{C} and $\xi \subseteq \mathcal{F}$. To show that $\mathcal{F} \in \mathcal{P}$, we need only show that it is a filter. Suppose f, $g \in \mathcal{F}$. Then $f \in \zeta_1$, $g \in \zeta_2$ for some ζ_1 , $\zeta_2 \in \mathcal{C}$. Since \mathcal{C} is totally ordered, without loss of generality we assume $\zeta_1 \subseteq \zeta_2$. Then $f, g \in \zeta_2 \Longrightarrow fg \in \zeta_2 \subseteq \mathcal{F}$. So \mathcal{F} is a prefilter. Now suppose $f \in \mathcal{F}$, $e \in E(S)$ with $f \leq e$. Then $f \in \zeta$ for some $\zeta \in \mathcal{C}$, but since ζ is a filter, $e \in \zeta \subseteq \mathcal{F}$. So \mathcal{F} is upward closed, and hence a filter. By Zorn's lemma, there exists $\eta \in \mathcal{P}$ such that η is maximal with respect to set inclusion. This is our definition of an ultrafilter; we have shown that $\forall \xi \in \hat{E}_0$, $\exists \eta \in \hat{E}_{\infty}$ with $\xi \subseteq \eta$.

We can now begin to shift our focus towards the tight spectrum, which is the main topic of this section.

Definition 3.5. Let X, Y be finite subsets of E(S). We define

$$E^{X,Y} := \{e \in E(S) \colon e \leq x \; \forall x \in x \text{ and } ey = 0 \; \forall y \in Y\}$$

Definition 3.6. Given $\mathcal{E} \subseteq E(S)$, we call $Z \subseteq E(S)$ an outer cover of \mathcal{E} if $\forall e \in \mathcal{E}, \exists z \in Z \text{ with } ez \neq 0$. If is Z an outer cover of \mathcal{E} and $Z \subseteq \mathcal{E}$, we say Z is a cover of \mathcal{E} .

Lemma 3.7. Let X, Y be finite subsets of E(S), and let x = min(X). Then

(i)
$$E^{X,Y} = E^{\{x\},Y}$$

(ii)
$$\mathcal{U}(X,Y) = \mathcal{U}(\{x\},Y)$$

Proof. (i)

$$\begin{split} E^{X,Y} &= \{e \in E(S) \colon e \leq x \; \forall x \in x \text{ and } ey = 0 \; \forall y \in Y\} \\ &= \{e \in E(S) \colon e \leq \min(X) \text{ and } ey = 0 \; \forall y \in Y\} \\ &= E^{\{x\},Y} \end{split}$$

(ii) Since $\{x\} \subseteq X$, $\mathcal{U}(X,Y) \subseteq \mathcal{U}(\{x\},Y)$. Now suppose $\xi \in \mathcal{U}(\{x\},Y)$. For $\chi \in X$, $x \leq \chi \implies \chi \in \xi$. Thus $X \subseteq \xi$, so $\xi \in \mathcal{U}(X,Y)$. We have shown that $\mathcal{U}(X,Y)$ and $\mathcal{U}(\{x\},Y)$ are subsets of eachother, so they are equal.

When we are working with $\mathcal{U}(X,Y)$ and $E^{X,Y}$, this lemma allows us the freedom of only considering the case where X is a singleton set.

Definition 3.8. Let $\xi \in \hat{E}_0$. We say that ξ is a *tight filter* if for all finite subsets $X, Y \subseteq E(S)$ and for all finite covers Z of $E^{X,Y}, \xi \in \mathcal{U}(X,Y) \Longrightarrow Z \cap \xi \neq \emptyset$. We call the set of tight filters the *tight spectrum*, and denote it by \hat{E}^S_{tight} .

This definition may appear a bit contrived, but the next theorem hopes to hint at its significance.

Theorem 3.9. \hat{E}_{tight} is the closure of \hat{E}_{∞} in \hat{E}_{0} .

Proof.

4 Directed Graphs

Lemma 4.1. If $(\alpha, \alpha)(\beta, \beta) \neq 0$ and $|\alpha| = |\beta|$, then $\alpha = \beta$.

Proof. Without loss of generality, suppose α is a prefix of β . Then $\alpha = \beta \beta'$ for some β . But $|\alpha| = |\beta|$, so $|\beta'| = 0$, meaning $\beta' = s(\beta)$. Thus $\alpha = \beta s(\beta) = \beta$. \square

An immediate consequence of this is that for any given length, a filter contains at most one element corresponding to a path of that length. Furthermore, if ζ is a filter, and $(\alpha, \alpha) \in \zeta$ such that $|\alpha| = n$, we can restrict α to any length $0 \le m < n$ to produce a unique element of length m inside ζ .

Theorem 4.2.
$$\hat{E}_0 = \{ \xi_{\alpha} : \alpha \in E^* \} \cup \{ \eta_x : x \in E^{\infty} \}$$

Proof. First we show that ξ_{α} and η_x are filters. Let α be a finite path and let x be an infinite path. Consider (β,β) , $(\gamma,\gamma) \in \xi_{\alpha}$ with $|\beta| = m$, $|\gamma| = n$. Reading edges left to right, β contains the first m edges of α and γ contains the first n edges of α . Without loss of generality, assume $m \leq n$. We can extend β by the next n-m edges of α to produce γ . Thus β is a prefix of γ , so $(\beta,\beta)(\gamma,\gamma) = (\gamma,\gamma) \in \xi_{\alpha}$. A similar argument shows that η_x is closed under multiplication. So both ξ_{α} and η_x are prefilters on E(S(E)). Next, let $(\beta,\beta) \in \xi_{\alpha}$, and let $(\delta,\delta) \in E(S(E))$ so that $(\beta,\beta) \leq (\delta,\delta)$. Then $\beta = \delta\delta'$ for some $\delta' \in E^*$. Thus $\alpha = \beta\beta' = \delta\delta'\beta'$. Therefore δ is a prefix of α , so $(\delta,\delta) \in \xi_{\alpha}$.

Like before, a very similar argument works for η_x . So both ξ_α and η_x are filters. Going the other way, take a filter $\zeta \in \hat{E}_0$. We do this in cases.

Case 1. ζ is finite. Let (α, α) be the minimum element inside ζ . Since ζ is a filter, For $(\beta, \beta) \in E(S(E))$, $(\alpha, \alpha) \leq (\beta, \beta) \Longrightarrow (\beta, \beta) \in \zeta$. However, by the definition of the minimal element, $(\beta, \beta) \in \zeta \Longrightarrow (\alpha, \alpha) \leq (\beta, \beta)$. Thus $(\beta, \beta) \in \zeta$ if and only if $(\alpha, \alpha) \leq (\beta, \beta) \iff \beta$ is a prefix of α . So $\zeta = \xi_{\alpha}$.

Case 2. ζ is infinite. By the lemma above, we can get an idea of what elements of ζ look like. For each nonnegative integer, ζ contains precisely one element corresponding to a path of that length. Because we require nonzero product between elements, every path in the filter is a prefix of every longer path also contained inside the filter. All of this given, we can find an $x \in E^{\infty}$ such that every path inside ζ is a prefix of x. By the uniqueness of filter elements, it follows that $\zeta = \eta_x$.

We have shown that a nonempty subset $\zeta \subset E(S(E))$ is a filter if and only if it is of the form ξ_{α} or η_x . Thus $\hat{E}_0 = \{\xi_{\alpha} : \alpha \in E^*\} \cup \{\eta_x : x \in E^{\infty}\}$.

Now that we know what filters look like on the graph inverse semigroup, the task of identifying ultrafilters becomes much simpler.

Theorem 4.3.
$$\hat{E}_{\infty} = \{ \eta_x : x \in E^{\infty} \} \cup \{ \xi_{\alpha} : \alpha \in E^* \text{ and } |r^{-1}\{s(\alpha)\}| = 0 \}$$

Proof. We need only consider various kinds of filters, determining whether they are ultrafilters or not. We do this in cases.

Case 1. ξ_{α} , $|r^{-1}\{s(\alpha)\}| > 0$. Take $e \in E^1$ such that $r(e) = s(\alpha)$. It is clear that $\xi_{\alpha} \subset \xi_{\alpha e}$. So ξ_{α} is not an ultrafilter.

Case 2. ξ_{α} , $|r^{-1}\{s(\alpha)\}| = 0$. Suppose we can find $\zeta \in \hat{E}_0$ such that $\xi_{\alpha} \subset \zeta$. For $0 \leq i \leq |\alpha|$, ζ inherits its idempotent with the path corresponding to length i from ξ_{α} . So we can find an element $(\beta, \beta) \in \zeta$ with $|\beta| > |\alpha|$ and $(\alpha, \alpha)(\beta, \beta) \neq 0$. Thus $\beta = \alpha\alpha'$ for some $\alpha' \in E^*$. But no edges go to $s(\alpha)$, so we cannot construct α' with $r(\alpha') = s(\alpha)$. This is a contradiction, so ξ_{α} is an ultrafilter.

Case 3. η_x , $x \in E^{\infty}$. Suppose there exists $\zeta \in \hat{E}_0$ such that $\eta_x \subset \zeta$. Then we can find $(\beta, \beta) \in \zeta$ such that $(\beta, \beta) \notin \eta_x$. But η_x , as we showed before, contains an element z corresponding to a path of length $|\beta|$. As a superset of η_x , ζ also contains z. By the lemma at the start, it follows that $(\beta, \beta) = z \in \eta_x$, which is a contradiction. So η_x is an ultrafilter for all $x \in E^{\infty}$.

We have identified which filters are ultrafilters, showing that $\hat{E}_{\infty} = \{\xi_{\alpha} : \alpha \in E^* \text{ and } |r^{-1}\{s(\alpha)\}| = 0\} \cup \{\eta_x : x \in E^{\infty}\}.$

Theorem 4.4. Let E be a directed graph, and $\alpha \in E^*$ such that $|r^{-1}\{s(\alpha)\}| =$

 ∞ . Let $X,Y\subseteq_{fin} E(S(E))$, and Z be a finite cover of $E^{X,Y}$. If $\xi_{\alpha}\in\mathcal{U}(X,Y)$, then $\xi_{\alpha}\cap Z\neq\emptyset$.

Proof. Letting min(X) = (x, x),

$$E^{X,Y} = \{(xx', xx'): x' \in E^*, r(x') = s(x) \text{ and } (xx', xx')y = 0 \ \forall y \in Y\}$$

5 References