3D Object Modeling (SENG 463 - Game Programming)

Dr.Çağatay ÜNDEĞER

Research and Innovation Director SimBT Inc.

e-mail:

<u>cagatay.undeger@simbt.com.tr</u> <u>cagatay@undeger.com</u>

Outline

- 3D Objects
- Raw Data Types
- 3D Object Representations
 - Surface models
 - Solid models
 - High-Level Structures

Our Goal

- To learn data structures to represent 3D objects in games and simulations
 - Surface Representations
 - Volumetric Representations

 How can this simple object be represented in a computer?

- Is representing this object similar to the previous one an effective way?
- Highly smooth curves...

- How about this one?
- A volumetric body, but just its outer surface is shown, not interior data required...

- How about these ones?
- Has soft and hard tissue...
- Has different densities...
- Has Interrior data...

- What about this one?
- Composed of different geometric parts / shapes...
- An engineering model...

And this one?

- How about these?
- A deformable body...
- Animation integration...

3D Object Representations

- Raw Data (Sensors)
 - Point cloud
 - Range image
 - Polygon soup
 - **–** ...
- Surfaces
 - Mesh
 - Subdivision
 - Parametric
 - Implicit

- Solids
 - Voxels
 - BSP Tree
 - Cell Complex
- High-Level Structures
 - CSG
 - Constraint blocks
 - Generative model
 - Skeleton
 - Sweep model
 - Scene graph

Raw Data (Sensor Data)

- Point cloud
- Range Images
- Polygon Soup

• ...

Point Cloud

- Unstructured set of point samples
- Accuirred with range finders (Lidar, etc.),
 3D scanners, computer vision (SLAM, etc.)

Point Cloud

Collecting lidar data

Range Image

- Set of 3D points that maps to pixels of a depth image
- From range scanners, stereo cameras, etc.

Range (depth) image

Range Image

- A kind of more structured point cloud
- Generating surfaces from 3d point clouds

Polygon Soup

- Unstructures set of polygons or unconnected lines of polygons
- Mostly created with interactive modeling techniques so not very organized

Surface Objects

- Mesh
- Subdivision
- Parametric
- Implicit

Mesh

- Connected set of polygons (usually triangles)
- 3D Modellers frequently use quad surfaces
- May include multiple level of Detail (LOD)

Subdivision Surface

- Consists of a coarse mesh and subdivision rule
- Generates smooth surfaces with refinements

Parametric Surface

- Bezier / spline surface patches
- Defined with a parametric equation

Implicit Surface

 Many smooth and deformable objects are difficult or inefficient to represent with basic primitives, even with bezier/spline surfaces.

 Field functions with control points, line segments and/or polygonally bounded planes are used to define

shapes in space.

$$D(r) = a e^{-b r^2}$$

$$D(r) = \begin{cases} a (1 - \frac{3 r^2}{b^2}) & 0 \le r \le b/3 \\ \frac{3 a}{2} (1 - \frac{r}{b})^2 & b/3 \le r \le b \\ 0 & b \le r \end{cases}$$

$$D(r) = \begin{cases} a (1 - \frac{4 r^6}{9 b^6} + \frac{17 r^4}{9 b^4} - \frac{22 r^2}{9 b^2}) \\ 0 & 0 \end{cases}$$

Solid Objects

- Voxels
- BSP Tree
- Cell Complex

Voxels

- Uniform 3D grid of volumetric samples (Voxels)
- Mostly acquired from CT, MRI, etc.

Voxels Worlds

• 3D environments / worlds generated with voxels

BSP Tree

- Binary space partition with labeled solid cells
- Constructed from polygonal representations

Cell Complex

- A topological space, an arrangement of polyhedral cells with adjacent cells linked and solid cells labeled
- e.g. Adjacency graph of BSP leaf cells

Topology of 3D Representations

- There are many different types of 3D representations
- Mesh representation is the most common one

High-Level Structures

- Using primitives we can form complex structures
- CSG (Constructive Solid Geometry)
- Constraint blocks
- Generative model
- Skeleton
- Sweep model
- Scene graph

CSG (Constructive Solid Geometry)

 Hierarchy of boolean set operators (union, difference, subtraction, intersection) applied to simple shapes

Constraint Blocks

 Set of simple shapes with geometric constraints / parameters

Debevec et al.

Generative Model

 Hierarchy of modification operators on a shape

Skeleton

 A set of connected bone structures deforming shape of a 3D model

SGI

Sweep Model

 A 3d model generated by sweeping a surface along a trajectory

Scene Graph

- A general data structure commonly used by computer games
- A scene graph is a tree data structure with nodes and objects usually located at leafs.

Scene Graph

- Each node contains transformation matrices that define their position in 3D space;
- These transformation matrices are generated using:
 - local position, rotation, and scale values
 - Applying parent transformations one by one, you can reach a world transformation.

Scene Graph

 A sample Unity scene graph

SENG 463