МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ І СПОРТУ УКРАЇНИ

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО"

КАФЕДРА КОНСТРУЮВАННЯ ЕОА

3BIT

з лабораторної роботи №7 по курсу «Основи теорії кіл -2» на тему «Одинарний коливальний контур»

Виконав:

студент гр. ДК-82

Сопіра Р. Я.

Перевірив:

доцент

Короткий €. В.

ПОСЛІДОВНИЙ КОЛИВАЛЬНИЙ КОНТУР

Мал. 1 Послідовний коливальний контур

Використані номінальні значення елементів:

$$L = 1 \text{ M}\Gamma\text{H},$$
 $R_H = 100 \text{ kOm},$

$$C = 150 \text{ н}\Phi,$$
 $C_H = 250 \text{ н}\Phi$

1. Частота резонансу:
$$f_0 = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{10^{-3}\cdot150\cdot10^{-9}}} = 12995(\Gamma y)$$

2. Залежність U_к(**f**):

Мал. 1.1

Бачимо, що розрахована частота збігається з частотою в симуляції.

Мал. 1.2 Послідовний контур з включеним Rн

Залежність $\mathbf{U}_{\kappa}(\mathbf{f})$ та $\mathbf{U}'_{\kappa}(\mathbf{f})$ при включеному $\mathbf{R}_{H} = 100 \ \kappa \mathbf{O}_{M}$:

Мал. 1.3

Внаслідок включення резистора в навантаження, максимум кривої $U_{\kappa}(\mathbf{f})$ змістився вниз, що свідчить про погіршення добротності контуру через збільшення смуги пропускання. У даному випадку резистор навантаження розсіює частину енергії коливального контура у тепло.

Мал.1.4 Послідовний контур з включеним Сн Залежність $\mathbf{U}_{\kappa}(\mathbf{f})$ та $\mathbf{U}''_{\kappa}(\mathbf{f})$ при включеному $\mathbf{Ch} = 250 \; \mathbf{h}\Phi$:

Мал.1.5

Внаслідок включення конденсатора в навантаження, максимум кривої $\mathbf{U}_{\kappa}(\mathbf{f})$ змістився вправо через зміну еквівалентної ємності коливального контура, що в свою чергу змінило його резонансну частоту.

Розрахунки

Контур на мал. 1:

Хвильовий опір:
$$\lambda = \sqrt{\frac{L}{C}} = \sqrt{\frac{10^{-3}}{150 \cdot 10^{-9}}} = 81.6497 (Ом)$$

Смуга пропускання:
$$\Delta f = f_2 - f_1 = 13001 - 12976 = 25(\Gamma y)$$

Добротність:
$$Q = \frac{f_0}{\Delta f} = \frac{12995}{25} = 520$$

Також якщо:

$$dB=20 lg(\frac{U_o}{U_i})$$
 ra $Q=\frac{U_{om}}{U_i}$, ro $Q=10^{\frac{dB}{20}}$

Що дає змогу дуже приблизно оцінювати добротність використовуючи

максимум $\mathbf{U}_{\kappa}(\mathbf{f})$: $Q=10^{\frac{58}{20}}=794$

Хвильовий опір:
$$\lambda = \sqrt{\frac{L}{C}} = \sqrt{\frac{10^{-3}}{150 \cdot 10^{-9}}} = 81.6497 (Ом)$$

Контур на мал. 1.2:

Смуга пропускання: $\Delta f = f_2 - f_1 = 13002 - 12975 = 27(\Gamma y)$

Добротність:

$$Q = \frac{f_0}{\Delta f} = \frac{12995}{27} = 481$$

$$Q=10^{\frac{56}{20}}=630$$

Хвильовий опір: $\lambda = \sqrt{\frac{L}{C}} = \sqrt{\frac{10^{-3}}{150 \cdot 10^{-9}}} = 81.6497 (Ом)$

Контур на мал. 1.4:

Еквівалентна ємність:
$$C_e = \frac{CC_{\scriptscriptstyle H}}{C + C_{\scriptscriptstyle H}} = \frac{150 \cdot 250}{150 + 250} = 93.75 ({\scriptstyle H}\Phi)$$

Частота резонансу:
$$f_0 = \frac{1}{2\pi\sqrt{LC_e}} = \frac{1}{2\pi\cdot\sqrt{10^{-3}\cdot93.75\cdot10^{-9}}} = 16437(\Gamma y)$$

Смуга пропускання:
$$\Delta f = f_2 - f_1 = 16455 - 16429 = 26(\Gamma y)$$

Добротність:

$$Q = \frac{f_0}{\Delta f} = \frac{16437}{26} = 632$$

$$Q=10^{\frac{64}{20}}=1585$$

Хвильовий опір:
$$\lambda = \sqrt{\frac{L}{C_e}} = \sqrt{\frac{10^{-3}}{93.75 \cdot 10^{-9}}} = 103.2796 (Ом)$$

ПАРАЛЕЛЬНИЙ КОЛИВАЛЬНИЙ КОНТУР

Мал. 2 Паралельний коливальний контур

Використані номінальні значення елементів:

 $R_i = 1 \text{ MOM},$

 $L = 1 \text{ M}\Gamma\text{H},$

 $C = 150 \text{ н}\Phi$

1. Частота резонансу:
$$f_0 = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{10^{-3}\cdot150\cdot10^{-9}}} = 12995(\Gamma y)$$

2. Залежності $U_{\kappa}(\mathbf{f})$ та $I_{\kappa}(\mathbf{f})$:

Мал. 2.1

Мал. 2.2