

deeplearning.ai

deeplearning.ai

Object Detection

Object localization

Image classification

Image classification

Image classification

Image classification

Image classification

Classification with localization

"Ca

Detection

1 object

Image classification

Car"

Classification with localization

"Ca

Detection

- 1 pedestrian
- 2 car <
- 3 motorcycle <
- 4 background

(0,0)

- 1 pedestrian
- 2 car =
- 3 motorcycle <
- 4 background

- 2 car =
- 3 motorcycle <
- 4 background

- 1 pedestrian
- 2 car
- 3 motorcycle
- 4 background

```
1 - pedestrian
2 - car
3 - motorcycle
4 - background ←
```

- 1 pedestrian 2 car 3 motorcycle

 - 4 background \leftarrow

1 - pedestrian
2 - car <
3 - motorcycle
4 - background <

1 - pedestrian
2 - car <3 - motorcycle

4 - background \leftarrow

- 1 pedestrian
- 2 car <
- 3 motorcycle
- 4 background

$$\begin{cases}
\left(\frac{1}{3},\frac{1}{3}\right)^{2} + \left(\frac{1}{3},\frac{1}{3}\right)^{2} \\
+ \dots + \left(\frac{1}{3},\frac{1}{3}\right)^{2} & \text{if } y_{1}=1
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3},\frac{1}{3}\right)^{2} + \left(\frac{1}{3},\frac{1}{3}\right)^{2} \\
+ \dots + \left(\frac{1}{3},\frac{1}{3}\right)^{2} & \text{if } y_{1}=1
\end{cases}$$

$$\begin{cases}
y = b_{1} \\
b_{2} \\
b_{3} \\
b_{4} \\
c_{1} \\
c_{2}
\end{cases}$$

Need to output b_x , b_y , b_h , b_w , class label (1-4)

Andrew Ng

- 1 pedestrian
- 2 car <
- 3 motorcycle
- 4 background \leftarrow

$$\begin{cases}
\left(\frac{1}{3},\frac{1}{3}\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
+ \dots + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} & \text{if } y_{1} = 1 \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} & \text{if } y_{1} = 0
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} \\
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{1}{3}z\right)^{2} + \left(\frac{1}{3}z - \frac{1}{3}z\right)^{2}
\end{cases}$$

$$\begin{cases}
\left(\frac{1}{3}z - \frac{$$

Need to output b_x , b_y , b_h , b_w , class label (1-4)

Andrew Ng

- 1 pedestrian
- 2 car <
- 3 motorcycle
- 4 background \leftarrow

$$\begin{cases}
(\hat{y}_{1},y)^{2} + (\hat{y}_{2}-y_{2})^{2} \\
+ \dots + (\hat{y}_{8}-y_{8})^{2} & \text{if } y_{1}=1 \\
(\hat{y}_{1}-y_{1})^{2} & \text{if } y_{1}=0
\end{cases}$$

Need to output b_x , b_y , b_h , b_w , class label (1-4)

Andrew Ng