3.1 Решающее правило и разделяющая функция

Задачу распознавания образов и разделения их на классы не всегда можно решить, оценивая только расстояния между объектами. Тогда рекомендуется использовать математический аппарат в виде решающих правил и разделяющих функций. Они применяются совместно, при этом разделяющие функции определяют границы между классами, а решающие правила отвечают на вопрос, к какому классу относить тот или иной объект.

Любую задачу, связанную с классификацией образов, хотя бы в первом приближении, можно представить в виде разделения объектов на два класса. Поэтому сначала рассмотрим решающее правило и разделяющую функцию для двух классов.

Разделяющую функцию часто представляют в виде линейной суммы:

$$f(\bar{x}) = \omega_0 + \omega_1 x_1 + \omega_2 x_2 + \ldots + \omega_n x_n,$$

где ω_i — весовые коэффициенты, каждый из которых относится к определенной составляющей разделяющей функции. Для удобства записи вводится весовой коэффициент с нулевым индексом ω_0 . Это позволяет записать разделяющую функцию в более компактной форме:

$$f(\bar{x}_a) = \bar{\omega}\bar{x}_a,$$

где $x_a = \{1, x_1, x_2...x_n\}$ — вектор, в число составляющих которого входит дополнительно одна вещественная константа. Ее величину обычно принимают равной единице. Решающее правило d для двух классов c_1 и c_2 можно записать в виде:

$$d = egin{cases} c_1, & ext{если } f_i \geq 0 \ c_2, ext{в противном случае}. \end{cases}$$

Для случая N сепарабельных классов (N>2) решение о принадлежности объекта к определенному классу будет:

$$d = egin{cases} c_i$$
, если $f_i(ar{x}) = ar{\omega}_i ar{x}_a \geq 0$, , $ar{c}_i$, если $f_i(ar{x}) < 0$

где C – множество, состоящее из N классов. $C = \{c_1, c_2, \dots, c_N\}, c_i + \overline{c}_i = C$.

В процессе построения разделяющей функции основная задача заключается в том, чтобы найти весовые коэффициенты вида $\overline{\omega}_i = \{\omega_{0i}, \omega_{1i}...\}$ для каждого конкретного применения.

Задача классификации связана с нахождением функций f_i , обеспечивающих разделение пространства V на классы, отвечающие заданным требованиям, т.е. f_i : V-> $\Pi(V)$.

Процедура классификации состоит в том, чтобы для каждой области R_i найти разделяющую функцию $f_i(x)$, такую, что если

$$f_i(\bar{x}) > f_j(\bar{x}), \text{ To } \bar{x} \in R_i \, \forall j = 1, 2...N,$$

где N – общее количество областей.

3.2 Линейные разделяющие функции и решающие правила для произвольного количества классов

Предлагаемые методы работы с разделяющими функциями и решающими правилами используют процедуру контролируемого обучения. Следовательно, исходные данные состоят из обучающей и тестовой выборок. Главное отличие между ними заключается в том, что для всех обучающих объектов известны классы, которым они принадлежат. На основе обучающей выборки строятся разделяющие функции, которые затем применяются для классификации тестовой выборки. В данном разделе рассматриваются условия построения функций; решающие правила, связанные с ними, а также классификация тестовых объектов. Алгоритмы построения разделяющих функций будут изучаться в последующем материале.

Пусть существует M>2 разделяющих функций $d_k(x)=w_kx$, $k=1,2,\ldots,M$, таких, что если образ x принадлежит классу ω_i , то $d_i(x)>d_j(x)$ для всех $j\neq i$, что является решающим правилом для данной ситуации.

Граница между классами ω_i и ω_j определяется теми значениями вектора x, при которых выполняется равенство $d_i(x) = d_j(x)$. Поэтому при выводе уравнения разделяющей границы для классов ω_i и ω_j значения разделяющих функций $d_i(x)$ и $d_j(x)$ используются совместно.

Пример подобной ситуации для разделения объектов на три класса приведен на рисунке 1. Для образов, принадлежащих классу ω_1 , должны выполняться условия $d_1(x) > d_2(x)$, $d_1(x) > d_3(x)$.

В общем случае требуется, чтобы входящие в класс ω_i образы располагались в положительных зонах поверхностей $d_i(x)-d_j(x)=0,\ j=1,2,...M,\ i\neq j.$

Положительная зона границы $d_i(x) - d_j(x) = 0$ совпадает с отрицательной зоной границы $d_i(x) - d_i(x) = 0$.

Рисунок 1 — Разделение образов на три класса

Пусть на основе обучающих объектов каждого из трех классов были построены соответствующие им разделяющие функции, приведенные ниже:

$$d_1(x) = -x_1 + x_2,$$

 $d_2(x) = x_1 + x_2 - 1,$
 $d_3(x) = -x_2.$

Разделяющие границы для трех классов выглядят при этом так:

$$\begin{aligned} d_1(x) - d_2(x) &= -2x_1 + 1 = 0, \\ d_1(x) - d_3(x) &= -x_1 + 2x_2 = 0, \\ d_2(x) - d_3(x) &= x_1 + 2x_2 - 1 = 0. \end{aligned}$$

Для того чтобы определить область решений, соответствующую классу ω_1 , необходимо выделить часть плоскости, в которой выполняются неравенства $d_1(x) > d_2(x)$, $d_1(x) > d_3(x)$. Она совпадает с положительными зонами для прямых $-2x_1 + 1 = 0$ и $-x_1 + 2x_2 = 0$.

Область принятия решения о принадлежности образа классу ω_2 совпадает с положительными зонами для прямых $2x_1 - 1 = 0$ и $x_1 + 2x_2 - 1 = 0$.

Область, отвечающая классу ω_3 , определяется положительными зонами для прямых $x_1-2x_2=0$ и $-x_1-2x_2+1=0$.

Области трех классов показаны на рисунке 2.

Рисунок 2 — Области трех классов, построенные с помощью разделяющих функций

Прежде чем использовать построенные разделяющие функции для работы с тестовыми объектами, их рекомендуют проверить с помощью обучающих образов. Для этого необходимо подставить признаки каждого из них во все функции. Если они построены правильно, то максимальное значение для каждого обучающего образа будет получаться при его подстановке в функцию того класса, которому он принадлежит. Если хотя бы для одного обучающего образа не выполняются решающие правила, функции построены некорректно и их нельзя применять для тестовых объектов.

В качестве примера классификации тестового объекта рассмотрим обработку образа x = (1, 1). Подстановка координат (признаков) образа в построенные разделяющие функции дает следующие значения:

$$d_1(x) = 0$$
, $d_2(x) = 1$, $d_3(x) = -1$.

Поскольку $d_2(x) > d_j(x)$, j = 1,3, образ относится к классу ω_2 .

Положительной особенностью рассмотренных решающих правил для построения разделяющих функций является тот факт, что пространство областей классов (смотри рисунок 2) не содержит участков, в которых невозможно принять решение о классификации, что нередко случается в задачах распознавания образов. Поэтому при корректной обучающей выборке всегда можно построить разделяющие функции и классифицировать необходимые тестовые объекты.