ML for Smart Monkeys

Amit Sethi Faculty member, IIT Bombay

ML is...

- The practice of automating the use of related data to estimate models that make useful predictions about new data, where the model is too complex for standard statistical analysis
- The practice of improve performance of a machine on a task using experience (Tom Mitchell), e.g.,
 - Improve accuracy of classification of images using labeled images
 - Improve win percentage on alpha-go using several simulated game move sequences and their results
 - Improve the Turing test confusion between human and machine for NLP Q&A using a large sample of text including Q&A

Sweet spot for ML

- Lots of structured data
- Explainability is not critic
- Prediction accuracy is the primary goal
- Underlying model is complex but stationary

ML model training and deployment

Training on past data

Prediction on future data

ML gives a model

• Elements of a model:

• Input x_i

• Function $f_{\theta}(x_i)$

• Utility of the model:

• Target output t_i

• Bring $f_{\theta}(x_i)$ close to t_i

• Minimize loss $L(t_i, f_{\theta}(x_i), \theta)$

Components of a Trained ML System

Mathematically speaking...

- Determine f such that $t_i = f(x_i)$ and g(T, X) is minimized for unseen set T and X pairs, where T is the ground truth that cannot be used
- Form of *f* is fixed, but some parameters can be tuned:
 - So, $y=f_{\theta}(x)$, where, x is observed, and y needs to be inferred
 - e.g. y = 1, if mx > c, y = 0 otherwise, so $\theta = (m,c)$
- Machine Learning is concerned with designing algorithms that learn "better" values of θ given "more" x (and t) for a given problem

ML life stages

Recipe for ML training

- Decide on the type of the ML problem
- Prepare data
- Shortlist ML frameworks
- Prepare training, validation, and test sets
- Train, validate, repeat
- Use test data only once

Broad types of ML problems

Output →	Categorical	Ordinal	Continuous
Supervised	Classification	Ranking	Regression
(Examples)	{Cats, dogs}	{Low, Med, High}	[-20,+10)
Unsupervised	Clustering		Dimension reduction

Preparing data

- Remove useless data
 - No variance
 - Falsely assumed to be available
- Reduce redundancy
 - Correlated
 - Pearson and Spearman

- Handle missing data
 - Impute, if sporadic
 - Drop, if too frequent
- Transform variables
 - Convert discrete to one-hot-bit
 - Normalize continuous variables

Examples of structure in the data

• Records

Product SKU	Price	Margin	Volume
A123ajkhdf	\$ 120	30%	1,000,000
B456ddsjh	\$200	10%	2,000,000

• Temporal order

Spatial order

Web of relationships

Some popular ML frameworks

	Classification	Regression	Clustering	Dimension reduction
Vector	Logistic regression	Linear regression	K-means, Fuzzy C-means,	PCA, k-PCA, LLE,
	SVM, RF, NN		DB-SCAN	ISOMAP
Series, text	RNN, LSTM, Transformer, 1-D CNN, HMM			
Images	2-D CNN, MRF			
Video, MRI	3-D CNN, CNN	+LSTM, MRF		

Model choice and rigorous validation are very important

Preparing data for training and validation

• Data splits:

- Training → Used to optimize the parameters (e.g. random 70%)
- Validation → Used to compare models (e.g. random 15%)
- Testing → One final check after multiple rounds of validation (e.g. random 15%)

• Cross-validation:

- K-folds: One fold for validation, K-1 folds for training
- Rotate folds K times
- Select framework (hyperparameters) best average performance
- Re-train best framework on entire data
- Test one final time on held-out data that was not a part of any fold

ML can fail to perform in deployment

- Lack of training diversity: data had limited confounders
 - Single speaker, author, camera, background, accent, ethnicity, etc.
 - Data imbalance between high-value rare and more common examples
- Proxy label leak during training:
 - E.g. Only speakers A and B provide emotion "anger," so ML confused their voice characteristics with "anger"
- Too much manual cleansing of training data
- Too little training data, and very complex models
- Concept drift: The assumptions behind training are no longer valid