(Incorporating IS: 1911-1967)
(Reaffirmed 1997)
Edition 3.1
(1997-12)

Indian Standard

CODE OF PRACTICE FOR DESIGN LOADS (OTHER THAN EARTHQUAKE) FOR BUILDINGS AND STRUCTURES

PART 1 DEAD LOADS — UNIT WEIGHTS OF BUILDING MATERIALS AND STORED MATERIALS

(Second Revision)

(Incorporating Amendment No. 1)

UDC 624.042:006.76

© BIS 2002

BUREAU OF INDIAN STANDARDS MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI 110002

CONTENTS

		PAGE
0.	FOREWORD	3
1.	SCOPE	4
2.	BUILDING MATERIALS	4
TA	ABLE 1 Unit Weight of Building Materials	
	1. Acoustical material	4
	2. Aggregate, coarse	$\overline{4}$
	3. Aggregate, fine	4
	4. Aggregate, organic	4
	5. Asbestos	4
	6. Asbestos cement building pipes	4
	7. Asbestos cement gutters	5
	8. Asbestos cement pressure pipes	5
	9. Asbestos cement sheeting	5
	10. Bitumen	5
	11. Blocks	5
	12. Boards	5
	13. Bricks	6
	14. Brick chips and broken bricks	6
	15. Brick dust (SURKHI)	6
	16. Cast iron, manhole covers	7
	17. Cast iron, manhole frames	7
	18. Cast iron pipes 19. Cement	7 7
	20. Cement concrete, plain	7
	21. Cement concrete, prani 21. Cement concrete, prestressed	8
	22. Cement concrete, reinforced	8
	23. Cement concrete pipes	8
	24. Cement mortar	8
	25. Cement plaster	8
	26. Cork	8
	27. Expanded metal	8
	28. Felt, bituminous for waterproofing and damp-proofing	9
	29. Foam slag, foundry pumice	9
	30. Glass	9
	31. Gutters, asbestos cement	9
	32. Gypsum	9
	33. Iron	9
	34. Lime	9
	35. Linoleum	10
	36. Masonry brick	10
	37. Masonry, stone	10
	38. Mastic asphalt	10
	39. Metal sheeting, protected	10
	40. Mortar	10
	41. Pipes 42. Plaster	11
	42. Plaster 43. Sheeting	16 16
	44. Slagwool	17
	11. 0145 11 001	11

	PAGE
45. Soils and gravels	17
46. Steel sections	17
47. Stone	25
48. Tar, coal	25
49. Thermal insulation	25
50. Terra cotta	26
51. Terrazzo	26
52. Tiles	26
53. Timber	26
54. Water	28
55. Wood-wool building slabs	28
3. Building Parts and Components	
TABLE 2 Unit Weights of Building Parts or Components	
1. Ceilings	29
2. Cement concrete, plain	29
3. Cement concrete, reinforced	29
4. Damp-proofing	29
5. Earth filling	29
6. Finishing	29
7. Flooring	29
8. Roofing	30
9. Walling	31
4. Store and Miscellaneous Materials	31
APPENDIX A Unit Weights of Store and Miscellaneous Materials	S
1. Agricultural and food products	32
2. Chemicals and allied materials	33
3. Fuels	33
4. Manures	34
5. Metals and alloys	34
6. Miscellaneous materials	36
7. Ores	37
8. Textiles, paper and allied materials	37

Indian Standard

CODE OF PRACTICE FOR DESIGN LOADS (OTHER THAN EARTHQUAKE) FOR BUILDINGS AND STRUCTURES

PART 1 DEAD LOADS — UNIT WEIGHTS OF BUILDING MATERIALS AND STORED MATERIALS

(Second Revision)

0. FOREWORD

0.1 This Indian Standard (Part 1) (Second Revision) was adopted by the Bureau of Indian Standards on 30 October 1987, after the draft finalized by the Structural Safety Sectional Committee had been approved by the Civil Engineering Division Council.

0.2 A building has to perform many functions satisfactorily. Amongst these functions are the utility of the building for the intended use and occupancy, structural safety, fire safety; and compliance with hygienic, sanitation, ventilation and daylight standards. The design of the building is dependent upon the minimum requirements prescribed for each of the above functions. The minimum requirements pertaining to the structural safety of buildings are being covered in this code by way of laying down minimum design loads which have to be assumed for dead loads, imposed loads, snow loads and other external loads, the structure would be required to bear. Strict conformity to loading standards recommended in this code, it is hoped, will not only ensure the structural safety of the buildings which are being designed and constructed in the country and thereby reduce the hazards to life and property caused by unsafe structures, but also eliminate the wastage caused by assuming unnecessarily heavy loadings.

0.3 This Indian Standard code of practice was first published in 1957 for the guidance of civil engineers, designers and architects associated with planning and design of buildings. It included the provisions for the basic design loads (dead loads, live loads, wind loads and seismic loads) to be assumed in the design of buildings. In its first revision in 1964, the wind pressure provisions were modified on the basis of studies of wind phenomenon and its effect on structures. undertaken by the special committee consultation with the Indian Meteorological Department. In addition to this, new clauses on wind loads for butterfly type structures were included; wind pressure coefficients for sheeted roofs both curved and sloping, were modified; seismic load provisions were deleted (separate code having been prepared) and metric system of weights and measurements was adopted.

0.3.1 With the increased adoption of the code, a number of comments were received on provisions on live load values adopted for different occupancies. Simultaneously, live load surveys have been carried out in America and Canada to arrive at realistic live loads based on actual determination of loading (movable and immovable) in different occupancies. Keeping this in view and other developments in the field of wind engineering, the Sectional Committee responsible for the preparation of the standard has decided to prepare the second revision in the following five parts:

Part 1 Dead loads

Part 2 Imposed loads

Part 3 Wind loads

Part 4 Snow loads

Part 5 Special loads and loads

combinations

Earthquake load is covered in a separate standard, namely IS: 1893-1984* which should

0.4 This standard deals with dead loads to be assumed in the design of buildings and same is given in the form of unit weight of materials. The unit weight of other materials that are likely to be stored in a building are also included for the purpose of load calculations due to stored materials.

be considered along with the above loads.

0.4.1 This standard incorporates IS: 1911† published in 1967. The unit weight of materials incorporated in this standard are based on information available through published Indian Standards and various other publications.

0.4.2 This edition 3.1 incorporates Amendment No. 1 (December 1997). Side bar indicates modification of the text as the result of incorporation of the amendment.

0.4.3 The values given in this standard have been rounded off in accordance with IS: 2 - 1960‡.

^{*}Criteria for earthquake resistanT design of structures ($third\ revision$).

 $[\]dagger S chedule$ of unit weights of building materials (first $\mathit{revision}$).

 $[\]ddagger Rules$ for rounding off numerical values (revised).

1. SCOPE

- **1.1** This code (Part 1) covers unit weight/mass of materials, and parts or components in a building that apply to the determination of dead loads in the design of buildings.
- **1.1.1** The unit weight/mass of materials that are likely to be stored in a building are also specified for the purpose of load calculations along with angles of internal friction as appropriate.

(see under 41 'Pipes' in this table)

*Also used for filling purposes.

NOTE 1 — Table 1 gives the unit weight mass of individual building materials in alphabetical order; Table 2 covers the unit weight mass of parts or components of a building; and Appendix A gives unit weight mass of stored materials.

2. BUILDING MATERIALS

2.1 The unit weight/mass of materials used in building construction are specified in Table 1.

	TABLE 1	UNIT WEIGHT OF	BUILDING MATERIALS		
	MATERIAL	NOMINAL SIZE OR THICKNESS	SS		
		mm	kN	kg	per
	(1)	(2)	(3)	(4)	(5)
1.	Acoustical Material				
	Eelgrass Glass fibre Hair Mineral wool Slag wool Cork	10 10 10 10 —	5.70×10^{-3} to 7.65×10^{-3} 3.80×10^{-3} 19.10×10^{-3} 13.45×10^{-3} 2.65 2.35	0.58 to 0.78 0.39 1.95 1.37 270 240	m ² ,, ,, m ³ ,,
2.	Aggregate, Coarse				
	Broken stone ballast: Dry, well-shaken Perfectly wet Shingles, 3 to 38 mm Broken bricks:	_ _ _	15.70 to 18.35 18.85 to 21.95 14.35	1 600 to 1 870 1 920 to 2 240 1 460	"
	Fine Coarse Foam slag (foundry pumice) Cinder*	_ _ _ _	14.20 9.90 6.85 7.85	1 450 1 010 700 800	;; ;;
3.	Aggregate, Fine				
	Sand: Dry, clean River Wet Brick dust (SURKHI)	_ _ _ _	15.10 to 15.70 18.05 17.25 to 19.60 9.90	1 540 to 1 600 1 840 1 760 to 2 000 1 010	" " "
4.	Aggregate, Organic				
	Saw dust, loose Peat:	_	1.55	160	,,
	Dry Sandy, compact Wet, compact		5.50 to 6.30 7.85 13.35	560 to 640 800 1 360	" "
5.	Asbestos				
	Felt Fibres:	10	0.145	15	m^2
	Pressed Sprayed		9.40 0.02	960 2	$\begin{array}{c} \rm m^3 \\ \rm m^2 \end{array}$
	Natural Raw		29.80 5.90 to 8.85	3 040 600 to 900	m ³
6.	Asbestos Cement Building Pipes				

 $^{(\} Continued\)$

TABLE 1	IINIT WEIGHT	OF BUILDING MATERIALS	— Contd

	MATERIAL	NOMINAL SIZE OR THICKNESS	WEIG	HT/MASS	
		mm	kN	kg	per
	(1)	(2)	(3)	(4)	(5)
7.	Asbestos Cement Gutters [see IS : 1626 (Part 2)-1980*]				
	Boundry wall gutters:				
	$400 \times 150 \times 250 \text{ mm}$ $450 \times 150 \times 300 \text{ mm}$ $300 \times 150 \times 225 \text{ mm}$ $275 \times 125 \times 175 \text{ mm}$	12.5 12.5 12.5 10.0	0.16 0.16 0.13 0.085	16.0 16.0 13.0 8.5	m ,, ,,
	Valley gutters:				
	$900 \times 200 \times 225 \text{ mm}$ $600 \times 150 \times 225 \text{ mm}$ $450 \times 125 \times 150 \text{ mm}$ $400 \times 125 \times 250 \text{ mm}$	12.5 12.5 12.5 12.5	0.245 0.160 0.145 0.130	24.8 16.1 14.6 13.2	" " " "
	Half round gutters:				
	150 mm 250 mm 300 mm	9.5 9.5 9.5	0.043 0.079 0.087	4.4 8.1 8.9	" "
8.	Asbestos Cement Pressure Pipes				
	(see under 41 'Pipes' in this table)				
9.	Asbestos Cement Sheeting (See IS: 459-1970†)				
	Corrugated (pitch = 146 mm) Semi-corrugated (pitch = 340 mm) Plain	6 6 5	0.118 to 0.130 0.118 to 0.127 0.09	12.0 to 13.3 12.0 to 13.0 9.16	m^2
10.	Bitumen	_	0.102	10.40	m^3
11.	Blocks				
	Lime-based solid blocks (see IS: 3115-1978‡) Hollow (open and closed cavity concrete blocks)	_	8.65 to 12.55	880 to 1 280	,,
	[see IS : 2185 (Part 1)-1979§] Grade A	_	1.41	144	,,
	(load bearing) Grade B	_	1.41 to 0.94	144 to 96	,,
	(load bearing) Grade C	_	1.41 to 0.94	144 to 96	,,
	(non-load bearing) Solid concrete blocks	_	17.65	1 800	,,
12.	Boards				
	Cork boards:				
	Compressed Ordinary Fibre building boards (see IS: 1658-1977)	10 10	0.04 0.02	4 2	m^2
	Medium hardboard	$\left\{\begin{array}{c} 6 \\ 8 \\ 10 \\ 12 \end{array}\right.$	0.028 to 0.047 0.038 to 0.063 0.047 to 0.078 0.056 to 0.095	2.88 to 4.80 3.84 to 6.40 4.80 to 8.00 5.76 to 9.60	" " "

^{*}Specification for as bestos cement building pipes and pipe fittings, gutters and gutter fittings and roofing fittings: Part 2 Gutters and gutter fittings ($first\ revision$).

 $[\]dagger$ Specification for unreinforced corrugated and semi-corrugated asbestos cement sheets ($second\ revision$).

[‡]Specification for lime based block (first revision).

[§]Specification for concrete masonry units: Part 1 Hollow and solid concrete blocks (second revision).

^{||}Specification for fibre hardboards ($second\ revision$).

TABLE 1 LINIT WEIGHT OF BUILDING MATERIALS — Contd.

MATERIAL	NOMINAL SIZE OR THICKNESS	WEIGHT/MASS		
	or Thickness mm	kN	kg	per
(1)	(2)	(3)	(4)	(5)
Standard hardboard	$\left\{\begin{array}{c}3\\4\\5\end{array}\right.$	0.024 to 0.035 0.031 to 0.047 0.039 to 0.059	2.40 to 3.60 3.20 to 4.80 4.00 to 6.00	m ³ ,,
Tempered hardboard	$\left\{\begin{array}{c} 6\\9\\9\end{array}\right.$	0.047 to 0.071 0.071 to 0.106	4.80 to 7.20 7.20 to 10.80	"
Fire insulation board (see IS: 3348-1965*) Fibre insulation board, ordinary	9 12 18	$0.035 \\ 0.047 \\ 0.071$	$3.6 \\ 4.8 \\ 7.2$	"
or flame-retardant type, bitumen-bounded fibre insulation board	25	0.098	10.0	"
Gypsum plaster boards ($see~{\rm IS}: 2095\text{-}1982\dagger$)	$\left\{\begin{array}{c} 9.5 \\ 12.5 \\ 15 \end{array}\right.$	0.069 to 0.098 0.093 to 0.147 0.110 to 0.154	7.0 to 10.0 9.5 to 15.0 11.25 to 15.75	" "
Insulating board (fibre) Laminated board (fibre)	12 6	$0.034 \\ 0.034$	3.5 3.5	"
Wood particle boards (see IS: 3087-1985‡)				
Designation:				
FPSI	_	4.90 to 8.85	500 to 900	m^3
FPTH	_	4.90 to 8.85	500 to 900	,,
XPSO	_	4.90 to 8.85	500 to 900	,,
XPTU	_	4.90 to 8.85	500 to 900	,,
Wood particle boards for insulation purposes (see IS: 3129-1985§)	_	3.90	400	,,
$\begin{array}{c} \mbox{High density wood particle boards} \\ (\mbox{\it see } \mbox{IS}: 3478\text{-}1966 \) \end{array}$				
Type 1, Grade A	_	0.117	12	m^2
Type 1, Grade B	_	0.088	9	,,
Type 2, Grade A	_	0.117	12	,,
Type 2, Grade B	_	0.088	9	,,

NOTE 1 — Density of medium hardboard varies from 350 to 800 kg/m³.

13. Bricks

14.

Common burnt clay bricks (see IS : 1077-1987¶)	_	15.70 to 18.85	1 600 to 1 920	m^3
Engineering bricks Heavy duty bricks (see IS : 2180-1985**)	_	21.20 24.50	$2\ 160 \\ 2\ 500$	"
Pressed bricks Refractory bricks Sand cement bricks	_	17.25 to 18.05 17.25 to 19.60	1 760 to 1 840 1 760 to 2 000 1 840	"
Sand lime bricks	_	18.05 20.40	2 080	"
· Brick Chips and Broken Bricks (see under 2 'Broken bricks' in this tab	le)			

9.90

1 010

15. Brick Dust (SURKHI)

 $(\ Continued\)$

NOTE 2 — Density of normal hardboard varies from 800 to 1 200 kg/m³.

NOTE 3 — Density of tempered hardboard varies according to treatment. The actual value may be had from the manufacturers.

NOTE 4 — All the three types of hardboards are manufactured to width of 1.2 m.

^{*}Specification for fibre insulation boards.

[†]Specification for gypsum plaster boards (first revision).

[‡]Specification for wood particle boards (medium density) for general purposes (first revision).

[§]Specification for low density particle boards (first revision).

^{||}Specification for high density wood particle boards.

[¶]Specification for common burnt clay building bricks (fourth revision).

^{**}Specification for heavy-duty burnt clay building bricks (second revision).

TABLE 1 UNIT WEIGHT OF BUILDING MATERIALS — Contd

	TABLE I UNII W	EIGHT OF BUILD	ING MATERIALS —	Conta	
	MATERIAL	NOMINAL SIZE OR THICKNESS	V	VEIGHT/MASS	
		mm	kN	kg	per
	(1)	(2)	(3)	(4)	(5)
16.	Cast Iron, Manhole Covers (see IS: 1726*)				
	Double triangular (HD)	500	1.16	118	Cover
	Circular (HD)	560 500	1.37 1.16	140 118	,,
	Circular (MD)	560 500	$1.37 \\ 0.57$	140 58	,,
	Circular (MD)	560	0.63	64	,,
	Rectangular (MD) Rectangular (LD) :	_	0.78	80	,,
	Single seal (Pattern 1)	_	0.23	23	,,
	(Pattern 2) Double seal	_	$0.15 \\ 0.28$	$\begin{array}{c} 15 \\ 29 \end{array}$	"
	Square (LD):				,,
	Single seal	455	0.13	13	,,
	Double seal	$610 \\ 455$	$0.25 \\ 0.23$	$\begin{array}{c} 26 \\ 23 \end{array}$,,
	Bousie Sour	610	0.36	37	,,
17.	Cast Iron, Manhole Frames (see IS: 1726*)				
	Double triangular (HD)	500	1.09	111	Frame
	Circular (HD)	600 500	1.13 0.83	115 85	,,
	Circular (IID)	560	1.06	108	,,
	Circular (MD)	500	0.57	58	,,
	Rectangular (MD)	560	$0.63 \\ 0.63$	64 64	,,
	Rectangular (LD):	_	0.05	04	,,
	Single seal (Pattern 1)	_	0.15	15	,,
	(Pattern 2)	_	0.10	10	,,
	Double seal Square (LD) :	_	0.23	23	,,
	Single seal	455	0.07	7	,,
	Double seal	610	0.13	13	,,
	Double seal	455 610	$0.15 \\ 0.18$	15 18	"
18.	Cast Iron Pipes (see under 41 'Pipes' in this table)				"
19.	Cement (see IS : 269-1976†)				
	Ordinary and aluminous Rapid-hardening	_	14.10 12.55	1 440 1 280	m ³
20.	Cement Concrete, Plain				
	Aerated	_	7.45	760	,,
	No-fines, with heavy aggregate	_	15.70 to 18.80	1 600 to 1 920	,,
	No-fines, with light aggregate	_	8.65 to 12.55	880 to 1 280	,,
	With burnt clay aggregate With expanded clay aggregate	_	17.25 to 21.20 9.40 to 16.50	1 760 to 2 160 960 to 1 680	,,
	With clinker aggregate	_	12.55 to 17.25	1 280 to 1 760	,,
	With pumice aggregate	_	5.50 to 11.00	560 to 1 120	,,
	With sand and gravel or crushed natural stone aggregate	_	22.00 to 23.50	2 240 to 2 400	,,
	With saw dust	_	6.30 to 16.50	640 to 1 680	,,
	With foamed slag aggregate	_	9.40 to 18.05	960 to 1 840	,,
		1.0			

(Continued)

^{*}Specification for cast iron manhole covers and frames. †Specification for ordinary and low heat Portland cement ($third\ revision$).

TARLE 1	UNIT WEIGHT	OF BUILDING	MATERIALS _	. Contd

	MATE		NOMINAL SIZE	WEIGHT/MASS		
			OR THICKNESS	I-NT	1	
	(1)	mm (2)	kN (3)	kg (4)	per (5)
01			(2)			
21.	Cement Concrete, Proceedings to Is		_	23.50	2 400	m^3
22.	Cement Concrete, R	einforced				
	With sand and grav stone aggregate:	rel or crushed natura	al			
	With 1 percent s		_	22.75 to 24.20	2 310 to 2 470	,,
	With 2 percent s With 5 percent s		_	23.25 to 24.80 24.80 to 26.50	2 370 to 2 530 2 530 to 2 700	,,
23.	Cement Concrete Pi			21.00 to 20.00	2 000 10 2 100	,,
24.	Cement Mortar	- 	_	20.40	2 080	
	Cement Plaster		_	20.40	2 080	,,
			_			,,
	Cork		_	2.35	240	,,
27.	Expanded Metal (conforming to I	S:412-1975†)				
	Reference No.	Size of Mesh,	Nominal			
		SWM	LWM			
		mm	mm			9
	1	100	250	0.030	3.08	m^2
	$\frac{2}{3}$	100	250	0.024	2.47	,,
	5 4	100 75	$\begin{array}{c} 250 \\ 200 \end{array}$	$0.016 \\ 0.042$	$1.60 \\ 4.28$,,
	5	75	200	0.042	3.29	,,
	6	75	200	0.021	2.14	,,
	7	40	115	0.080	8.02	"
	8	40	115	0.060	6.17	,,
	9	40	75	0.060	6.17	,,
	10	40	75	0.028	2.85	,,
	11	40	115	0.039	4.01	,,
	12	40	75	0.039	4.01	,,
	13	40	115	0.020	2.04	,,
	14	40	75	0.020	2.04	,,
	15	25	75 75	0.054	5.53	,,
	16 17	$\begin{array}{c} 25 \\ 25 \end{array}$	75 75	0.038	$3.93 \\ 2.81$,,
	18	$\frac{25}{25}$	75 75	$0.028 \\ 0.021$	$\frac{2.81}{2.19}$,,
	19	20	60	0.021	7.15	,,
	20	20	50	0.070	7.15	"
	21	20	60	0.050	5.09	
	$\frac{21}{22}$	20	50	0.050	5.09	,,
	23	20	60	0.036	3.63	"
	24	20	50	0.036	3.63	,,
	25	20	60	0.021	2.18	,,
	26	20	50	0.021	2.18	,,
	27	12.5	50	0.050	5.04	,,
	28	12.5	40	0.050	5.04	,,
	29	12.5	50 50	0.040	4.00	,,
	30	12.5	50	0.030	3.13	,,
	31	12.5	40	0.030	3.13	,,
	32	12.5	50	0.025	2.50	,,
	$\frac{33}{34}$	$\frac{12.5}{10}$	$\begin{array}{c} 40 \\ 40 \end{array}$	0.025	2.50	,,
	34 35	10 10	40 40	$0.050 \\ 0.035$	$5.98 \\ 3.59$,,
	36	10	40	0.035	2.87	,,
	50	10	TU	0.020	4.01	"

^{*}Code of practice for prestressed concrete ($\mathit{first\ revision}$).

 $[\]dagger \text{Specification}$ for expanded metal steel sheets for general purposes (second revision).

TARIF 1	UNIT WEIGHT	OF BILL DING	MATERIALS	Contd

$oldsymbol{ ext{M}}$ ATERIAL		NOMINAL SIZE OR THICKNESS	WEIGHT/MASS		
		mm	kN	kg	per
(1)		(2)	(3)	(4)	(5)
Reference No.	Size of Mesh	, Nominal			
	SWM mm	LWM mm			
37 38 39 40 41 42 43 44 28. Felt, Bituminous for Damp-proofing (see IS: 1322-19		28.5 28.5 28.5 25 25 25 20 15	0.050 0.028 0.020 0.074 0.048 0.038 0.050	5.19 2.81 2.09 7.55 4.88 3.90 5.01 4.28	m ² ,, ,, ,, ,, ,, ,, ,, ,,
Fibre base: Type 1 (Underla Type 2 (Self-finis		_	8.34×10^{-3}	0.85	"
Grade 1 Grade 2 Hessian base:	silva 1010).	Ξ	$21.48 \times 10^{-3} \\ 30.21 \times 10^{-3}$	2.19 3.08	"
Type 3 (Self finis Grade 1 Grade 2	shed felt):	=	$21.87 \times 10^{-3} \\ 35.70 \times 10^{-3}$	2.23 3.64	"

Note 1 — The weight of untreated based shall be taken as in the dry condition.

Note 2 — The weights given above are indicative of the total weight of ingredients used in the manufacture of felt and not of the ingredients determined from a physical analysis of the finished material.

29.	Foam Slag, Foundry Pumice	_	6.85	700	m^3
30.	Glass (see IS : 2835-1977†)				
	Sheet	$\left\{ \begin{array}{l} 2.0 \\ 2.5 \\ 3.0 \\ 4.0 \\ 5.0 \\ 5.5 \\ 6.5 \end{array} \right.$	0.049 0.062 0.074 0.098 0.123 0.134 0.167	5.0 6.3 7.5 10.0 12.5 13.7 17.0	;; ;; ;; ;;
31.	Gutters, Asbestos Cement (see under 7 'Asbestos cement gutter' in this table)				
32.	Gypsum				
	Gypsum mortar Gypsum powder	=	11.75 13.89 to 17.25	1 200 1 410 to 1 760	m ³
33.	Iron				
	Pig Gray, cast White, cast Wrought	_ _ _	70.60 68.95 to 69.90 74.30 to 75.70 75.50	7 200 7 030 to 7 130 7 580 to 7 720 7 700	;; ;; ;;
34.	Lime				
	Lime concrete with burnt clay aggregate	_	18.80	1 920	,,

^{*}Specification for bitumen felts for waterproofing and damp-proofing ($third\ revision$).

 $[\]dagger {\bf Specification}$ for flat transparent sheet glass ($second\ revision$).

	TABLE 1 UNIT V	WEIGHT OF BUIL	DING MATERIALS –	- Contd	
	MATERIAL	NOMINAL SIZE OR THICKNESS	WEIGHT/MASS		
		mm	kN	kg	per
	(1)	(2)	(3)	(4)	(5)
	Lime mortar Lime plaster Lime stone in lumps, uncalcined Lime, unslaked, freshly burnt in pieces Lime slaked, fresh Lime slaked, after 10 days Lime, unslaked (KANKAR) Lime, slaked (KANKAR)		15.70 to 18.05 17.25 12.55 to 14.10 8.60 to 10.20 5.70 to 6.30 7.85 11.55 10.00	1 600 to 1 840 1 760 1 280 to 1 440 880 to 1 040 580 to 640 800 1 180 1 020	m ³ ,, ,, ,, ,, ,, ,, ,, ,, ,,
35.	Linoleum~(~see~IS:653-1980*~)				
	Sheets and tiles	$\left\{\begin{array}{l} 4.4\\ 3.2\\ 2.0\\ 1.6 \end{array}\right.$	0.056 9 0.040 2 0.026 5 0.021 5	5.8 4.1 1.7 2.2	m ² ,, ,,
36.	Masonry, Brick				
	Common burnt clay bricks Engineering bricks Glazed bricks Pressed bricks	_ _ _	18.85 23.55 20.40 22.00	1 920 2 400 2 080 2 240	m ³
37.	Masonry, Stone				
	Cast Dry rubble Granite ashlar Granite rubble Lime stone ashlar Marble dressed Sand stone		22.55 20.40 25.90 23.55 25.10 26.50 22.00	2 300 2 080 2 640 2 400 2 560 2 700 2 240	;; ;; ;; ;;
38.	$Mastic\ Asphalt$	10	0.215	22	m^2
39.	Metal sheeting, Protected Galvanized Stee Sheets and Plain (see IS: 277-1985†)	l 1.60	0.131	13.31	
	Class 1	$\begin{cases} 1.26 \\ 1.00 \\ 0.80 \\ 0.63 \end{cases}$	0.104 0.084 0.069 0.056	10.56 8.60 7.03 5.70	" " " " " "
	Class 2	$\left\{\begin{array}{l} 1.60\\ 1.25\\ 1.00\\ 0.80\\ 0.63 \end{array}\right.$	0.129 0.102 0.083 0.067 0.054	13.16 10.41 8.45 6.88 5.55	;; ;; ;;
	Class 3	$\left\{\begin{array}{l} 1.60\\ 1.25\\ 1.00\\ 0.80\\ 0.63 \end{array}\right.$	0.128 0.101 0.081 0.066 0.053	13.01 10.26 8.30 6.73 5.40	;; ;; ;;
	Class 4	$\left\{\begin{array}{l} 1.60\\ 1.25\\ 1.00\\ 0.80\\ 0.63 \end{array}\right.$	0.127 0.100 0.081 0.065 0.052	12.94 10.19 8.22 6.66 5.32	;; ;; ;; ;;
40.	Mortar				
	Cement Gypsum Lime		20.40 11.80 15.70 to 18.05	2 080 1 200 1 600 to 1 840	m ³ ,,

^{*}Specification for linoleum sheets and tiles ($second\ revision$).

 $(\ Continued\)$

 $[\]dagger Specification \ for \ galvanized \ steel \ sheets \ (plain \ and \ corrugated) \ (\ \textit{fourth revision} \).$

MATERIAL (1)	NOMINAL SIZE OR THICKNESS mm		EIGHT/MASS	
(1)		I-NI		
(1)		KIN	kg	pe
	(2)	(3)	(4)	(5
Pipes				
	50	0.032 to 0.034	3.3 to 3.5	m
	60	0.032 to 0.043	3.3 to 4.4	,,
Asbestos cement pipes	80	0.051 to 0.054	5.2 to 5.5	,,
[see IS : 1626 (Part) 1-1980*]	90 100	0.052 to 0.060 0.058 to 0.065	5.3 to 6.1 5.9 to 6.6	,
	125	0.038 to 0.003	7.3 to 8.8	,
	150	0.086 to 0.108	8.8 to 11.0	,
	[50	0.056	5.7	
	80	0.067	6.8	,
	100	0.090	9.2	,
Asbestos cement pressure pipes	125	0.139	14.2	,
(see IS : 1592-1980†)	150	0.175	17.8	,
	200	0.264	26.9	,
	250	0.380	38.8	,
	[300	0.539	55	;
Cast iron Pipes:				
Rainwater pipes (see IS: 1230-1979‡)				
	[550	0.073	7.5	pi
Standard overall length 1.8 m with	75	0.108	11.0	
socket	{ 100	0.137	14.0	
Societies	125	0.196	20.0	
	150	0.255	26.0	
	$\begin{bmatrix} 50 \\ 2 \end{bmatrix}$	0.064	6.5	
Standard overall length 1.5 m with	75	0.093	9.5	
socket	100	0.123	12.5	;
	$\begin{bmatrix} 125 \\ 150 \end{bmatrix}$	$0.172 \\ 0.230$	$17.5 \\ 23.5$;
Pressure pipes for water, gas and sewage: a) Centrifugally cast (see IS: 1536-1976§) i) Socket and spigot pipes: Barrel:				
Burron	ſ 80	1.144	14.7	r
	100	0.182	18.6	
	125	0.237	24.2	
	150	0.295	30.1	
	200	0.432	44.0	
	250	0.582	59.3	
Class LA	300	0.750	76.5	
	350 400	0.944	96.3	
	450	1.146 1.383	116.9 141.0	
	500	1.620	165.2	
	600	2.156	219.8	
	700	2.778	283.2	
	750	3.111	317.2	
	[80	0.157	16.0	
	100	0.201	20.5	,
	125	0.259	26.4	;
	150	0.326	33.2	:
	200	$0.472 \\ 0.637$	$48.1 \\ 65.0$	
Class A	< 950			
Class A	{ 250 300	0.824	84.0	
Class A	300 350	0.824 1.030	$84.0 \\ 105.0$,
Class A	300	0.837 0.824 1.030 1.262 1.530	84.0	, , ,

^{*}Specification for as bestos cement buildings pipes and pipe fittings, gutters and gutter fittings and roofing fittings: Part 1 Pipes and pipe fittings ($first\ revision$).

[†]Specification for asbestos cement pressure pipes (second revision).

[‡]Specification for cast iron rainwater pipes and fittings (second revision).

[§]Specification for centrifugally cast (spun) iron pressure pipes for water, gas and sewage (second revision).

		LDING MATERIAL		
MATERIAL	NOMINAL SIZE		WEIGHT/MASS	
	OR THICKNESS mm	kN	kg	per
(1)	(2)	(3)	(4)	(5)
	ſ 6 00	2.367	241.4	m
Class A	{ 700	3.056	311.6	,,
	750	3.422	348.9	,,
	[80	0.172	17.3	,,
	100	0.216	22.0	,,
	125	0.281	28.7	,,
	150	0.352	35.9	,,
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.511 \\ 0.692$	$52.1 \\ 70.6$,,
	300	0.896	91.4	,,
Class B	350	1.122	114.5	,,
	400	1.368	139.5	,,
	450	1.657	169.0	,,
	500	1.929	196.7	,,
	600 700	$2.578 \\ 3.317$	$262.9 \\ 338.2$,,
	750	3.733	380.6	,,
	[80	0.054	5.5	Socket
	100	0.069	7.1	
	125	0.090	9.2	,,
	150	0.113	11.5	,,
	200	0.165	16.8	,,
	250	0.225	22.9	,,
Sockets for Class LA, Class A and Class B barrels		0.292	29.8	,,
Class B parreis	350 400	$0.368 \\ 0.454$	$37.5 \\ 46.3$,,
	450	0.549	56.0	,,
	500	0.647	66.0	,,
	600	0.876	89.3	,,
	700 750	$1.145 \\ 1.292$	$116.8 \\ 131.7$,,
ii) Flanged pipe with screwed flanges: Barrel: Class A	80 to 300	Samo as for contrib	fugally cast socket and s	,, enigot ninos
Class A	80 10 300	Class A	lugally cast socket allu i	spigot pipes,
Class B	80 to 300		fugally cast socket and s	spigot pipes,
	80	0.042	4.3	Flange
	100	0.049	5.0	,,
Flanges for Class A and Class B	$\begin{array}{c c} 125 \\ 150 \end{array}$	$0.065 \\ 0.080$	$6.6 \\ 8.2$,,
barrels	200	0.000	11.4	,,
	250	0.144	14.7	"
	300	0.182	18.6	,,
b) Vertically cast socket and spigot pipes (see IS : 1537-1976*) Barrel:				
	80	Same as for centrif Class A	fugally cast socket and s	spigot pipes,
	$\left\{\begin{array}{c} \text{to} \\ 750 \end{array}\right\}$			
	750 J 800	3.82	389	m
Class A	750 J 800 900	3.82 4.65	474	,,
Class A	750 J 800 900 1 000	3.82 4.65 5.59	474 570	"
Class A	750 J 800 900	3.82 4.65	474	" "
Class A	750 J 800 900 1 000 1 100	3.82 4.65 5.59 6.59	474 570 672	;; ;; ;;
Class A	750 800 900 1 000 1 100 1 200 1 500 80 to	3.82 4.65 5.59 6.59 7.67 11.98	474 570 672 783	;; ;; ;;
Class A	750 J 800 900 1 000 1 100 1 200 1 500	3.82 4.65 5.59 6.59 7.67 11.98 Same as for centrif	474 570 672 783 1 222	;; ;; ;;
	750 J 800 900 1 000 1 100 1 200 1 500 80 to 750 J 800 900	3.82 4.65 5.59 6.59 7.67 11.98 Same as for centrif Class B 4.15 5.07	474 570 672 783 1 222 fugally cast socket and s 423 516	" " spigot pipes,
Class A	750 J 800 900 1 000 1 100 1 200 1 500 80 to 750 J 800 900 1 000	3.82 4.65 5.59 6.59 7.67 11.98 Same as for centrif Class B 4.15 5.07 6.07	474 570 672 783 1 222 fugally cast socket and s 423 516 619	" " spigot pipes, m
	750 800 900 1 000 1 100 1 500 80 to 750 800 900 1 100 1 100 1 100 1 100	3.82 4.65 5.59 6.59 7.67 11.98 Same as for centrif Class B 4.15 5.07 6.07 7.23	474 570 672 783 1 222 fugally cast socket and s 423 516 619 739	" " spigot pipes, m "
	750 J 800 900 1 000 1 100 1 200 1 500 80 to 750 J 800 900 1 000	3.82 4.65 5.59 6.59 7.67 11.98 Same as for centrif Class B 4.15 5.07 6.07	474 570 672 783 1 222 fugally cast socket and s 423 516 619	", ", ", spigot pipes, m ", ",

^{*}Specification for vertically cast iron pressure pipes for water, gas and sewage ($\it first\ revision$).

 $(\ Continued\)$

MATERIAL	NOMINAL SIZE	V	VEIGHT/MASS	
MITEIMIE	OR THICKNESS mm			
		kN	kg	per
(1)	(2)	(3)	(4)	(5)
	$ \left\{\begin{array}{c} 80 \\ \text{to} \\ 750 \end{array}\right\} $	Same as for centrifu Class A and Clas	gally cast socket and spiss B	got pipes,
	800	1.45	147	Socke
Socket for Class A and Class B	₹ 900	1.79	182	,,
barrels	1 000	2.18	222	,,
	1 100	2.60	265	,,
	1 200	3.07	313	,,
	1 500	4.91	501	,,
c) Sand cast (flanged pipes): Barrel:				
	80]	Cama as for contribu	mally agat applyat and ani	ant ninna
	to }		gally cast socket and spi	got pipes,
CI.	750	Class A		
Class A	800]			_
	to }		ly cast socket and spigot	pipes,
	1 500	Class A		
	[80]			
	1	Same as for centrifu	gally cast socket and spi	got pipes
	$\left\{\begin{array}{c} \text{to} \\ 750 \end{array}\right\}$	Class B		
Class B	₹ -			
	800	Same as for vertical	ly cast socket and spigot	pipes.
	to }	Class B	, r r r r	F F /
	l 1 500 J			
	_[80	0.036	3.7	Flang
	100	0.041	4.2	,,
	125	0.052	5.3	,,
	150	0.066	6.7	,,
	200	0.091	9.3	,,
	250	0.117	12.0	,,
	300	0.145	14.8	,,
	350	0.186	19.4	,,
	400	0.229	23.4	,,
Flanges for Class A and Class B	450	0.250	26.5	,,
Barrels	500	0.315	32.1	,,
	600	0.431	44.0	
	700	0.587	59.9	,,
	750	0.685	69.8	,,
	800	0.792	80.8	,,
	900	0.928	94.6	,,
	1 000	1.18	120.0	,,
	1 100	1.38	139.0	,,
	1 200	1.70	173.0	,,
	1 500	2.71	276.2	,,
Concrete pipes (see IS : 458-1971*)	1 500	2.11	210.2	,,
	[80	0.19	19	m
	100	0.22	22	,,
	150	0.30	31	,,
Class NP1 (unreinforced non-pressure	250	0.40	41	,,
pipes)	300	0.69	70	,,
	350	0.84	86	,,
	400	0.95	97	,,
	450	1.17	119	,,
	ſ 80	0.196	20	
	100	0.235	$\frac{20}{24}$,,
	150	0.324	33	,,
	250	0.510	52	,,
	300	0.736	75	,,
	350	0.736	$\frac{75}{92}$,,
Class NP2 (reinforced concrete, light				,,
duty, non-pressure pipes)	400	1.02	104	,,
* * *	450	1.26	128	,,
	500	1.38	141	,,
	600	1.89	193	,,
	700	2.19	223	,,
			907	
	800	$2.81 \\ 3.51$	$\begin{array}{c} 287 \\ 358 \end{array}$,,

^{*}Specification for concrete pipes (with and without reinforcement) ($second\ revision$).

TABLE 1 UNIT W	EIGHT OF BUIL	DING MATERIA	ALS — Contd	
MATERIAL	NOMINAL SIZE OR THICKNESS		WEIGHT/MASS	
	mm	kN	kg	per
(1)	(2)	(3)	(4)	(5)
	[1 000	4.30	438	m
	1 100	5.15	525	
Class NP2 (reinforced concrete, light	1 200	6.09	620	,,
duty, non-pressure pipes)	1 400	8.18	834	,,
	1 600	9.93	1 013	,,
	1 800	12.58	1 283	,,
	[350	2.35	240	
	400	2.63	269	,,
	450	2.91	297	,,
	500	3.19	325	,,
Class NP3 (reinforced concrete, heavy	600	4.02	410	,,
duty, non-pressure pipes)	{ 700	4.61	470	,,
duty, non pressure pipes,	800	5.92	604	,,
	900	7.39	754	,,
	1 000	8.13	829	,,
	1 100	10.34	1 054	,,
	l 1 200	11.18	1 140	,,
	[80	0.196	20	,,
	100	0.235	24	,,
	150	0.324	33	,,
	250	0.510	52	,,
	300	0.736	75	,,
	350	0.902	92	,,
Class P1 (reinforced concrete pressure	400 450	$1.02 \\ 1.26$	104 128	,,
pipes safe for 20 MPa pressure	500	1.38	141	,,
tests)	600	1.89	193	,,
	700	2.19	223	,,
	800	2.81	287	,,
	900	3.51	358	,,
	1 000	4.30	437	,,
	1 100	5.15	525	,,
	1 200	6.09	620	,,
	r 80	0.196	20	
	100	0.235	$\frac{26}{24}$,,
	150	0.324	33	,,
	250	0.608	63	,,
Class P2 (reinforced concrete pressure	300	1.01	103	,,
pipes safe for 40 MPa pressure tests)		1.31	134	,,
	400	1.67	170	,,
	450	1.84	188	,,
	500 600	$\frac{1.56}{3.20}$	$\frac{261}{326}$,,
				,,
	[80	0.196	20	,,
	100	0.235	24	,,
Class P3 (reinforced concrete pressure	150	0.324	33	,,
pipes safe for 60 MPa pressure tests)	$\begin{cases} 250 \\ 200 \end{cases}$	0.736	75 117	,,
	300 350	$1.15 \\ 1.65$	117 168	,,
	400	2.04	204	,,
Lead pipes [see IS: 404 (Part 1)-1977*] (service and distribution pipes to be laid underground):	(400	2.04	204	,,
3	[10	0.010	1 07	
	$\begin{bmatrix} 10 \\ 15 \end{bmatrix}$	$0.018 \\ 0.031$	1.87 3.13	,,
	20	0.031 0.042	4.24	,,
For working pressure 40 MPa	$\begin{cases} 20 \\ 25 \end{cases}$	0.042	6.11	,,
	32	0.074	7.50	,,
	40	0.091	9.28	,,
	50	0.142	14.45	,,

^{*}Specification for lead pipes: Part 1 For other than chemical purposes ($second\ revision$).

TABLE 1 UNI	T WEIGHT OF BUILDIN	G MATERIALS —	· Contd	
MATERIAL	NOMINAL SIZE OR	WE	CIGHT/MASS	
	THICKNESS mm	kN	kg	per
(1)	(2)	(3)	(4)	(5)
	c 10	0.022	2.26	
	15	0.022	3.83	m
T 1: T0.14D) 20	0.050	5.11	,,
For working pressure 70 MPa	$\begin{cases} -5 \\ 25 \end{cases}$	0.069	7.03	,,
	32	0.126	12.80	,,
	40	0.175	17.82	,,
For working pressure 100 MPa	10	0.029	2.96	,,
	15	0.048	4.88	,,
	20	0.067	6.86	,,
	(see Note below) 25	0.105	10.75	
	(see Note below)	0.105	10.75	,,
Service pipes to be fixed or laid about ground:	ove			
-	r 10	0.014	1.45	,,
	15	0.021	2.15	,,
	20	0.027	2.74	,,
For working pressure 40 MPa	{ 25	0.036	3.67	,,
	32	0.059	6.00	,,
	$\begin{bmatrix} 40 \\ 50 \end{bmatrix}$	$0.091 \\ 0.142$	$9.28 \\ 14.45$,,
				,,
	$\begin{bmatrix} 10 \\ -7 \end{bmatrix}$	0.018	1.81	,,
	$\begin{array}{c} 15 \\ 20 \end{array}$	0.024	2.47	,,
For working pressure 70 MPa	$\begin{cases} 20 \\ 25 \end{cases}$	0.030 0.069	$\frac{3.11}{7.03}$,,
	$\begin{vmatrix} 25 \\ 32 \end{vmatrix}$	0.126	12.80	,,
	40	0.175	17.82	,,
For working pressure 100 MPa	10	0.029	2.96	
For working pressure 100 MT a	15	0.048	4.88	,,
	20	0.067	6.86	"
	(see Note below)			
	25	0.105	10.75	,,
	(see Note below)			
Cold water distribution pipes to be fixed or laid above ground:				
	r 10	0.014	1.45	
	15	0.014 0.021	$\frac{1.45}{2.15}$,,
	20	0.027	$\frac{2.75}{2.74}$,,
For working pressure 25 MPa	{ 25	0.036	3.67	,,
	32	0.048	4.85	,,
	40	0.067	6.79	,,
	50	0.084	8.53	,,
	_[10	0.014	1.45	,,
	15	0.021	2.15	,,
E	20	0.027	2.74	,,
For working pressure 40 MPa	$\left\{\begin{array}{c} 25\\ 32 \end{array}\right.$	$0.036 \\ 0.059$	$\frac{3.67}{6.00}$,,
	40	0.091	9.29	,,
	50	0.142	14.45	,,
Hot water distribution pipes to be fixed or laid above ground:				,,
	_[10	0.015	1.50	,,
	15	0.023	2.34	,,
	20	0.031	3.13	,,
For working pressure 20 MPa	$\begin{cases} 25 \\ 29 \end{cases}$	0.041	4.13	,,
	32 40	$0.062 \\ 0.082$	$6.30 \\ 8.38$,,
	$\begin{bmatrix} 40 \\ 50 \end{bmatrix}$	0.082 0.142	8.38 14.45	,,
	30	J.174	17.70	,,

 $\ensuremath{\mathsf{NOTE}}$ — The maximum working pressure for these sizes is 90 MPa.

MATERIAL	Moreover Crep			
	NOMINAL SIZE		WEIGHT/MASS	
	OR THICKNESS mm	kN	kg	per
(1)	(2)	(3)	_	(5)
				m
	15	0.027	2.34	,,
For working pressure 35 MPa	{ 20	0.045	4.56	,,
				,,
				,,
				,,
				,,
ventuation pipes				,,
				,,
				,,
Flushing and warning pipes				,,
	40	0.039	3.95	,,
	l 50	0.049	5.07	,,
as pipes:				
	₁ 10	0.008	0.81	,,
	15	0.017	1.70	,,
		0.025	2.60	,,
Heavy weight gas pipes				,,
				,,
				,,
				,,
				,,
				,,
Light weight gas pipes	$\left\{\begin{array}{c} -5 \\ 25 \end{array}\right.$	0.029	2.99	,,
	32	0.037	3.74	,,
				,,
		0.058	5.87	,,
	I	0.137	14	,,
				,,
				,,
			42	,,
Stoneware, salt-glazed pipes	250		52	,,
(see IS : 651-1980*)	300	0.775	79	,,
	350	0.980	100	,,
	1			,,
				,,
				,,
Maatan		2.00	-10	,,
		20.40	2 080	m^3
	_			
Acoustic	10	0.078	8	$ m^2 $
Anhydrite	10	0.206	21	,,
Barium sulphate	10	0.284	29	,,
				,,
	10	0.186	19	,,
heeting' in this table)				
Glass (see under 30 'Glass' in this table)				
	1	0.007	0.7	,,
Plywood	I			
	Soil, waste, and soil and waste ventilation pipes Flushing and warning pipes Gas pipes: Heavy weight gas pipes Light weight gas pipes Stoneware, salt-glazed pipes (see IS: 651-1980*)	10	mm kN (2) (3) (3)	mm

 $(\ Continued\)$

*Specification for salt-glazed stoneware pipes and fittings ($\it fourth\ revision$).

TABLE 1		UNIT WEIGHT OF BUIL	DING MATERIALS -	- Contd	
	MATERIAL	NOMINAL SIZE	WEIGHT/MASS		
		$\begin{array}{c} \text{OR THICKNESS} \\ \text{mm} \end{array}$	kN	kg	per
	(1)	(2)	(3)	(4)	(5)
44.	Slagwool	_	2.65	270	m^3
45.	Soils and Gravels				
	Aluvial ground, undisturbed	_	15.69	1 600	,,
	Broken stone ballast:				,,
	Dry, well-shaken	_	15.70 to 18.35	1 600 to 1 870	,,
	Perfectly wet	_	18.85 to 21.95	1 920 to 2 240	,,
	Chalk	_	15.70 to 18.85	1 600 to 1 920	,,
	Clay:		24.0%	2.240	
	China, compact	_	21.95	2 240	,,
	Clay fills:		10.00	1.040	
	Dry, lumps Dry, compact	_	10.20 14.10	$1\ 040 \\ 1\ 440$,,
	Damp, compact	_	17.25	1 760	,,
	Wet, compact	_	20.40	2 080	,,
	Undisturbed	_	18.85	1 920	,,
	Undisturbed, gravelly	_	20.40	2 080	,,
	Earth:				
	Dry	_	13.85 to 18.05	1 410 to 1 840	,,
	Moist	_	15.70 to 19.60	1 600 to 2 000	,,
	Gravel:				
	Loose	_	15.70	1 600 1 920 to 2 160	,,
	Rammed	_	18.85 to 21.20		,,
	Kaolin, compact Loam:	_	25.50	2 600	,,
	Dry, loose	_	11.75	1 200	
	Dry, compact	_	15.70	1 600	,,
	Wet, compact	_	18.85	1 920	,,
	Loess, dry	_	14.10	1 440	,,
	Marl, compact	_	17.25 to 18.85	1 760 to 1 920	,,
	Mud, river, wet	_	17.25 to 18.85	1 760 to 1 920	,,
	Peat:				
	Dry	_	5.50 to 6.30	560 to 640	,,
	Sandy, compact	_	7.85	800	,,
	Wet, compact Rip-rap	_	13.35 12.55 to 14.10	1 360 1 280 to 1 440	,,
	Sand:	_	12.55 to 14.10	1 200 to 1 440	,,
	Dry, clean	_	15.10 to 15.70	1 540 to 1 600	
	River	_	18.05	1 840	,,
	Wet	_	17.25 to 19.60	1 760 to 2 000	,,
	Shingles:				
	Aggregate 3 to 38 mm	_	13.75	1 400	,,
	Fine sand:				
	Dry	_	15.70	$\frac{1600}{2080}$,,
	Saturated	_	20.40		,,
	Silt, wet	_	17.25 to 18.85	1 760 to 1 920	,,
46.	Steel Sections Hot rolled [see IS : 808 (Part 1)-19	978*]			
	Beams — Designation		0.110		
	MB 100	_	0.113	11.5	m
	MB 125 MB 150	-	$0.131 \\ 0.147$	$13.4 \\ 15.0$,,
	MB 150 MB 175	_	0.147	19.5	,,
	MB 200	_	0.249	25.4	,,
	MB 225	_	0.306	31.2	,,

*Dimensions for hot-rolled steel sections: Part 1 MB series (beams) ($second\ revision$).

TABLE 1 UNIT	WEIGHT OF BUIL	DING MATERIALS	S — Contd	
MATERIAL	NOMINAL SIZE		WEIGHT/MASS	
	$\operatorname*{OR}_{\mathbf{mm}}^{\mathbf{THICKNESS}}$	kN	kg	per
(1)	(2)	(3)	(4)	(5)
, ,	(2)	(0)	(4)	(0)
Beams — Designation			a= a	
MB 250	_	0.365	37.3	m
MB 300	_	0.452	46.1	,,
MB 350 MB 400	_	$0.514 \\ 0.604$	$52.4 \\ 61.6$,,
MB 450	_	0.710	72.4	,,
MB 500		0.852	86.9	"
MB 550	_	1.00	104	,,
MB 600	_	1.21	123	"
Columns — Designation [see IS: 808 (Part 2)-1978*]				"
SC 100	_	0.196	20.0	
SC 120	_	0.257	26.2	,,
SC 140	_	0.327	33.3	"
SC 160	_	0.411	41.9	,,
SC 180	_	0.495	50.5	,,
SC 200	_	0.591	60.3	,,
SC~220	_	0.690	70.4	,,
SC 250	_	0.839	85.6	,,
Channels — Designation [see IS : 808 (Part 3)-1979†]				
Medium weight channel sections with sloping flanges				
MC 75	_	0.070	7.14	,,
MC 100	_	0.098	10.0	,,
MC 125	_	0.165	16.8	,,
MC 150	_	0.192	19.6	,,
MC 175	_	0.219	22.3	,,
MC 200	_	0.256	26.1	,,
MC 225	_	0.300	30.6	,,
MC 250	_	0.356	36.3	,,
MC 300 MC 350	_	$0.419 \\ 0.491$	$42.7 \\ 50.1$	"
MC 400	_	0.491	90.1	,,
Medium weight channel sections with parallel flanges (see Note below)	_			
MCP 75		0.070	7.14	
MCF 75 MCP 100	_	0.070	9.56	,,
MCP 125		0.128	13.1	,,
MCP 150	_	0.165	16.8	,,
MCP 175	_	0.192	19.6	,,
MCP 200	_	0.219	22.3	"
MCP 225	_	0.256	26.1	,,
MCP 250	_	0.300	30.6	"
MCP 300	_	0.356	36.3	,,
MCP 350	_	0.419	42.7	,,
MCP 400	_	0.491	50.1	,,
Equal leg angles — Size [see IS: 808 (Part 5)-1976‡]				"
TGA 0000	3.0	0.009	0.9	m
ISA 2020	4.0	0.011	1.1	,,
	[3.0	0.011	1.1	
ISA 2525	4.0	0.011	1.4	,,
1011 2020	5.0	0.014	1.8	,,
	[3.0	0.014	1.4	,,
ISA 3030	$\begin{cases} 3.0 \\ 4.0 \end{cases}$	0.014	1.4	,,
1011 0000	5.0	0.022	2.2	"

NOTE — These sections are steel in the developmental stage and may be available subject to agreement with the manufacturer.

^{*}Dimensions for hot-rolled steel sections: Part 2 Columns — SC series ($second\ revision$).

[†]Dimensions for hot-rolled steel sections: Part 3 Channels, MC and MPC series (second revision).

 $[\]ddagger \text{Dimensions}$ for hot-rolled steel sections: Part 5 Equal leg angles ($second\ revision$).

MATERIAL		NIT WEIGHT OF BUILDI	WEIGHT/MASS		
MATERIAL		NOMINAL SIZE OR THICKNESS			
		OR THICKNESS mm	kN	kg	pe
(1)		(2)	(3)	(4)	(5
		[3.0	0.016	1.6	m
ISA 3535		4.0	0.021	2.1	,,
1011 0000		5.0	0.026	2.6	,,
		[6.0	0.029	3.0	,,
		∫ 3.0	0.018	1.8	,,
ISA 4050		₹ 4.0	0.024	2.4	,,
1011 1000		5.0	0.029	3.0	,;
		6.0	0.034	3.5	,;
		3.0	0.021	2.1	,
ISA 4545		₹ 4.0	0.027	2.7	,
1011 1010		5.0	0.033	3.4	,
		6.0	0.039	4.0	,
		[3.0	0.023	2.3	,
ISA 5050		4.0	0.029	3.0	,
1571 5050		5.0	0.037	3.8	,
		l 6.0	0.044	4.5	,
		5.0	0.040	4.1	,
ISA 5555		6.0	0.048	4.9	,
100 DOD		8.0	0.063	6.4	,
		10.0	0.077	7.9	,
		5.0	0.044	4.5	,
ISA 6060		} 6.0	0.053	5.4	,
15A 0000		8.0	0.069	7.0	,
		10.0	0.084	8.6	:
		[5.0	0.048	4.9	,
ISA 6565		J 6.0	0.057	5.8	,
15A 6969		8.0	0.076	7.7	,
		10.0	0.092	9.4	,
		5.0	0.052	5.3	,
TC 4 7070		6.0	0.062	6.3	
ISA 7070		8.0	0.081	8.3	
		10.0	0.100	10.2	,
		5.0	0.056	5.7	,
TO A TETT		6.0	0.067	6.8	,
ISA 7575		8.0	0.087	8.9	,
		10.0	0.108	11.0	,
		[6.0	0.072	7.3	,
TC A 0000		8.0	0.094	9.6	
ISA 8080		10.0	0.116	11.8	•
		12.0	0.137	14.0	,
		6.0	0.080	8.2	
Ta		8.0	0.106	10.8	:
ISA 9090		10.0	0.131	13.4	:
		12.0	0.155	15.8	:
		6.0	0.090	9.2	
TO 1 400101		8.0	0.119	12.1	:
ISA 100100		10.0	0.146	14.9	:
		12.0	0.174	17.7	:
		[8.0	0.131	13.4	
		10.0	0.163	16.6	:
ISA 110110		12.0	0.193	19.7	:
		16.0	0.252	25.7	:
		[8.0	0.156	15.9	:
		10.0	0.193	19.7	,
ISA 130130		12.0	0.193	23.5	,
		16.0	0.301	30.7	:
					,
		$ \begin{bmatrix} 10.0 \\ 12.0 \end{bmatrix} $	0.225	$22.9 \\ 27.3$,
ISA 150150		16.0	$0.268 \\ 0.351$	27.3 35.8	,
		$\begin{bmatrix} 16.0 \\ 20.0 \end{bmatrix}$	0.351 0.432	35.8 44.1	,
					,
		12.0	0.362	36.9	,
ISA 200200		16.0	0.476	48.5	,
		20.0	0.588	60.0 73.9	,
		25.0	0.725	13.9	,

IS: 875 (Part 1) - 1987

TABLE 1	UNIT WEIGHT OF BUILDI	NG MATERIALS —	Contd	
MATERIAL	NOMINAL SIZE		HT/MASS	
WHILL	OR THICKNESS mm	kN		
(1)	(2)	(3)	kg (4)	per (5)
Unequal leg angles — Size	(2)	(3)	(4)	(0)
[see IS : 808 (Part 6)-1976*]				
[000 10 . 000 (1 410 0) 10 0]	[3.0	0.011	1.1	m
ISA 3020	{ 4.0	0.014	1.4	,,
	5.0	0.018	1.8	,,
	3.0	0.015	1.5	,,
ISA 4025	4.0	0.019	1.9	,,
	5.0	$0.024 \\ 0.027$	$\frac{2.4}{2.8}$,,
	3.0	0.027	1.7	,,
TG 4 4700	4.0	0.022	2.2	,,
ISA 4530	5.0	0.027	2.8	,,
	l 6.0	0.032	3.3	,,
	[3.0	0.018	1.8	,,
ISA 5030	4.0	0.024	1.8	,,
	5.0	$0.029 \\ 0.034$	$\frac{3.0}{3.5}$,,
	5.0	0.034	3.7	,,
ISA 6040	$\begin{cases} 6.0 \\ 6.0 \end{cases}$	0.036	3.7 4.4	,,
1571 0040	8.0	0.057	5.8	,,
	[5.0	0.040	4.1	,,
ISA 6545	{ 6.0	0.048	4.9	,,
	8.0	0.063	6.4	,,
	5.0	0.042	4.3	,,
ISA 7045	6.0	0.051	5.2	,,
	8.0 10.0	$0.066 \\ 0.081$	6.7 8.3	,,
	[5.0	0.046	4.7	,,
	6.0	0.055	5.6	,,
ISA 7550	8.0	0.073	7.4	,,
	10.0	0.088	9.0	,,
	[5.0	0.048	4.9	,,
ISA 8050	{ 6.0	0.058	5.9	,,
	8.0	0.076	7.7	,,
	10.0 6.0	$0.092 \\ 0.067$	9.4 6.8	,,
	8.0	0.087	8.9	,,
ISA 9060	10.0	0.108	11.0	,,
	12.0	0.128	13.0	,,
	6.0	0.074	7.5	,,
ISA 10065	{ 8.0	0.087	9.9	,,
	l 10.0	0.120	12.2	,,
	6.0	0.078	8.0	,,
ISA 10075	8.0 10.0	$0.103 \\ 0.127$	$10.5 \\ 13.0$,,
	12.0	0.151	15.4	,,
	6.0	0.090	9.2	,,
ISA 12571	{ 8.0	0.119	12.1	,,
	l 10.0	0.146	14.9	,,
	6.0	0.099	10.1	,,
ISA 12595	8.0	0.131	13.4	,,
	10.0	0.162	16.5	,,
	l 12.0 ∫ 8.0	$0.193 \\ 0.134$	19.7	,,
ISA 15075	$\begin{cases} 8.0 \\ 10.0 \end{cases}$	0.134 0.167	13.7 17.2	,,
1011 10010	12.0	0.198	20.2	,,
	[8.0	0.160	16.3	,,
TGA 150115	J 10.0	0.197	20.1	,,
ISA 150115	12.0	0.235	24.0	,,
	16.0	0.308	31.4	,,
ICA 900100	$\int 10.0$	0.225	22.9	,,
ISA 200100	$ \left\{ \begin{array}{l} 12.0 \\ 16.0 \end{array} \right. $	$0.268 \\ 0.351$	$27.3 \\ 35.8$,,
	[10.0	0.001	00.0	,,

^{*}Dimensions of hot-rolled steel sections: Part 6 Unequal leg angles ($second\ revision$).

 $(\ Continued\)$

TABLE 1 U	INIT WEIGHT OF BUILD	NG MATERIALS — C	Contd	
MATERIAL	NOMINAL SIZE	W	EIGHT/MASS	
	OR THICKNESS ${ m mm}$	kN	kg	per
(1)	(2)	(3)	(4)	(5)
	[10.0	0.264	26.9	m
ISA 200150	J 12.0	0.315	32.1	,,
ISA 200150	16.0	0.414	42.2	,,
	20.0	0.510	52.0	,,
Cold formed light gauge structural sections (see IS : 811-1965*) :	steel			
Light gauge sections — angles \$	Size:			
	3.15	0.047	4.81	
100 × 100	4.0	0.060	6.07	,,
	[2.5	0.030	3.05	,,
80×80	{ 3.15	0.037	3.82	,,
	[4.0	0.047	4.82	,,
	$\int_{0}^{\infty} 2.0$	0.018	1.82	,,
60×60	2.5	0.022	2.26	,,
	$\begin{vmatrix} 3.15 \\ 4.0 \end{vmatrix}$	$0.028 \\ 0.035$	2.83 3.56	,,
	[1.6	0.012	1.21	,,
	2.0	0.012	1.51	,,
50×50	$\left\{ egin{array}{l} 2.5 \end{array} ight.$	0.018	1.87	,,
	3.15	0.023	2.34	,,
	l 4.0	0.029	2.93	,,
	$\begin{bmatrix} 1.2 \\ 1.6 \end{bmatrix}$	0.007	0.75	,,
40×40	$ \begin{cases} 1.6 \\ 2.0 \end{cases} $	$0.009 \\ 0.012$	$0.96 \\ 1.19$,,
10 / 10	2.5	0.012	1.48	,,
	l 3.15	0.018	1.84	,,
	∫ 1.2	0.005	0.56	,,
30×30	1.6	0.007	0.71	,,
33 33	$\begin{array}{c} 2.0 \\ 2.5 \end{array}$	$0.009 \\ 0.010$	$0.88 \\ 1.08$,,
				,,
20×20	$\begin{cases} 1.2 \\ 1.6 \end{cases}$	$0.004 \\ 0.005$	$0.36 \\ 0.46$,,
20 × 20	2.0	0.006	0.56	,,
Channels without lips Size:	-			
100 × 100	∫ 3.15	0.070	7.15	,,
100 × 100	4.0	0.088	9.01	,,
	$\begin{bmatrix} 2.5 \\ 2.5 \end{bmatrix}$	0.044	4.52	,,
80 × 80	$\left\{\begin{array}{c} 3.15 \\ 4.0 \end{array}\right.$	$0.056 \\ 0.070$	$5.66 \\ 7.12$,,
	[2.0	0.026	2.69	,,
	$\begin{array}{c} 2.0 \\ 2.5 \end{array}$	0.033	3.35	,,
60×60	3.15	0.041	4.18	,,
	4.0	0.051	5.24	,,
	[1.6	0.018	1.79	,,
50 50	2.0	0.022	2.23	,,
50×50	$\left\{\begin{array}{c} 2.5\\ 3.15 \end{array}\right.$	$0.027 \\ 0.034$	$2.76 \\ 3.44$,,
	4.0	0.042	4.30	,,
	[1.25	0.011	1.12	,,
	1.6	0.014	1.42	,,
40×40	$\begin{cases} 2.0 \\ 2.5 \end{cases}$	0.017	1.75	,,
	$\begin{bmatrix} 2.5 \\ 3.15 \end{bmatrix}$	$0.021 \\ 0.026$	$2.17 \\ 2.70$,,
	[1.21	0.008	0.82	,,
00 00	1.6	0.008	1.04	,,
30×30	2.0	0.013	1.28	,,
	2.5	0.015	1.58	,,

^{*}Specification for cold formed light gauge structural steel sections ($\it revised$).

 $(\ Continued\)$

TABLE 1	UNIT WEIGHT OF BUILDI	NG MATERIALS —	Contd	
MATERIAL	NOMINAL SIZE OR THICKNESS	W	/EIGHT/MASS	
	mm	kN	kg	per
(1)	(2)	(3)	(4)	(5)
Channels without lips Size:	. ,	\-,'	` ,	\-,'
chamicis without lips side.	1.25	0.005	0.53	m
20×20	1.6	0.007	0.66	,,
	2.0	0.008	0.81	,,
	[2.00	0.045	4.58	,,
200×50	2.50	0.056	5.70	,,
	$\begin{pmatrix} 3.15 \\ 4.00 \end{pmatrix}$	0.070 0.088	7.14 9.01	"
				,,
	$\begin{bmatrix} 2.00 \\ 2.50 \end{bmatrix}$	$0.042 \\ 0.052$	4.27 5.31	"
180×50	3.15	0.065	6.65	,,
	4.00	0.082	8.38	,,
	[2.00	0.039	3.95	,,
160×50	{ 2.50	0.048	4.92	,,
	[3.15	0.060	6.16	,,
	1.60	0.026	2.67	,,
140×40	$\begin{cases} 2.00 \\ 2.50 \end{cases}$	$0.033 \\ 0.041$	3.33 4.13	"
	3.15	0.051	5.17	,,
	[1.60	0.024	2.42	
120×40	2.00	0.030	3.01	,,
	2.50	0.037	3.74	,,
	[1.25	0.017	1.70	,,
100×40	1.60	0.021	2.17	,,
100 X 10	2.00	0.026	2.70	,,
	[2.50	0.033	3.35	"
	$\begin{bmatrix} 1.25 \\ 1.60 \end{bmatrix}$	$0.013 \\ 0.016$	1.31 1.67	,,
80 × 30	2.00	0.020	2.07	"
	2.50	0.025	2.56	,,
	[1.25	0.011	1.12	,,
60×30	{ 1.60	0.014	1.42	,,
	[2.00	0.017	1.75	"
T 0 00	$\begin{bmatrix} 1.25 \end{bmatrix}$	0.010	1.02	,,
50×30	$\left\{ egin{array}{l} 1.60 \ 2.00 \end{array} \right.$	$0.013 \\ 0.016$	1.29 1.60	,,
	[2.00	0.016	1.00	"
Channels with lips Size:				
	2.00	0.051	5.24	,,
100×100	$\begin{cases} 2.50 \\ 3.15 \end{cases}$	$0.063 \\ 0.082$	6.50 8.36	,,
	4.00	0.103	10.48	,,
	[1.60	0.033	3.33	
80 × 80	2.00	0.041	4.14	"
80 x 80	2.50	0.052	5.32	,,
	(3.15	0.065	6.62	,,
	1.25	0.019	1.94	,,
60×60	$\begin{cases} 1.60 \\ 2.00 \end{cases}$	$0.024 \\ 0.031$	$2.45 \\ 3.20$	"
	2.50	0.031	3.95	,,
	[1.25	0.016	1.64	
50×50	₹ 1.60	0.020	2.08	"
	2.00	0.025	2.57	,,
	[1.25	0.013	1.35	,,
40×40	₹ 1.60	0.017	1.70	,,
	[2.00	0.020	2.09	,,
30×30	$\begin{cases} 1.25 \\ 1.25 \end{cases}$	0.009	0.95	,,
	1.60	0.012	1.20	,,
			(Continued)

TABLE 1	UNIT WEIGHT OF BUILDI	NG MATERIALS —	Contd	
MATERIAL	Nominal Size		WEIGHT/MASS	
	OR THICKNESS mm	kN	kg	per
(1)	(2)	(3)	(4)	(5)
Channels with lips Size:				
•	[1.60	0.047	4.84	m
	2.00	0.059	6.02	,,
200×80	2.50	0.075	7.67	,,
	$\begin{bmatrix} 3.15 \\ 4.00 \end{bmatrix}$	$0.094 \\ 0.118$	$9.59 \\ 12.05$,,
	[1.60	0.045	4.59	,,
	2.00	0.045	5.71	,,
180×80	$\begin{cases} 2.50 \\ 2.50 \end{cases}$	0.071	7.28	,,
	3.15	0.089	9.10	,,
	l 4.00	0.112	11.42	,,
	1.60	0.043	4.34	,,
160×80	$\begin{cases} 2.00 \\ 2.50 \end{cases}$	$0.053 \\ 0.068$	5.39 6.89	,,
100 × 80	3.15	0.084	8.60	,,
	4.00	0.106	10.79	,,
	[1.60	0.038	3.84	,,
	2.00	0.047	4.76	,,
140×70	{ 2.50	0.058	5.91	,,
	$\begin{bmatrix} 3.15 \\ 4.00 \end{bmatrix}$	$0.075 \\ 0.094$	7.61 9.54	,,
	[1.25	0.025	$\frac{9.54}{2.52}$,,
	1.60	0.025	$\frac{2.52}{3.21}$,,
120×60	{ 2.00	0.041	4.14	,,
	2.50	0.050	5.12	,,
	3.15	0.063	6.38	,,
	1.25	0.021	2.13	,,
100×50	$\begin{cases} 1.60 \\ 2.00 \end{cases}$	$0.027 \\ 0.033$	$2.71 \\ 3.35$,,
	2.50	0.035 0.043	3.33 4.34	,,
	1.25	0.017	1.74	,,
80×40	1.60	0.022	2.20	,,
	l 2.00	0.027	2.72	,,
60×30	∫ 1.25	0.012	1.25	,,
00 × 30	1.60	0.015	1.57	,,
50×30	$\int 1.25$	0.011	1.15	,,
	1.60	0.014	1.45	,,
Hat sections Size:				
100 100	$\begin{bmatrix} 2.50 \\ 2.15 \end{bmatrix}$	0.068	6.89	,,
100×100	$\left\{\begin{array}{l}3.15\\4.00\end{array}\right.$	$0.089 \\ 0.115$	9.05 11.73	,,
	[2.00	0.043	4.39	,,
80 × 80	2.50	0.056	5.71	,,
	3.15	0.072	7.36	,,
	[1.60	0.026	2.63	,,
60×60	{ 2.00	0.034	3.45	,,
	[2.50	0.043	4.34	,,
50×50	1.60	0.022	2.25	,,
	2.00	0.028	2.88	,,
40×40	1.25 1.60	$0.013 \\ 0.018$	1.36 1.83	,,
	[1.60	0.034	3.51	,,
100×50	$\begin{cases} 1.00 \\ 2.00 \end{cases}$	0.034	4.45	,,
	2.50	0.054	5.51	,,
	[1.25	0.021	2.15	,,
80×40	{ 1.60	0.028	2.83	,,
	[2.00	0.034	3.51	,,
60×30	1.25	0.016	1.64	,,
	1.60	0.020	2.08	,,
50×25	1.25	0.013	1.35	,,
100×150	3.15	0.101	10.28	,,
	4.00	0.134	13.68	,,
				(Continued)

MATERIAL ON THINCKNESS (AT 1997) (1) (2) (3) (3) (4) (5) (6) (7) (10) (10) (10) (10) (10) (10) (10) (10	TABLE 1	1 UNIT WEIGHT OF BUILDI	NG MATERIALS —	Contd	
Hat sections Size: S0 × 120	MATERIAL		WEIG	HT/MASS	
Hat sections Size: S0 × 120		$\mathop{\mathrm{OR}}_{\mathbf{mm}}^{\mathbf{THICKNESS}}$	kN	kg	per
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1)				-
So x 120	Hat sections Size:				
60 × 90	80 × 120				m
60 × 90	00 X 120	,			,,
4.00	60 × 90				
$\begin{array}{c} 50 \times 75 \\ \\ 50 \times 75 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	00 × 30				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		[2.00	0.033	3.37	
## Au × 60	50×75		0.043		
A0 × 60		· ·			,,
Rectangular box sections Size: 200 × 100 180 × 90 1.60 1.60 0.072 7.35 1.60 1.60 0.0990 9.16 1.60 1.60 0.065 6.60 1.60 0.081 8.22 1.60 × 80 1.60 0.057 5.85 1.200 0.081 1.200 0.081 1.200 1.200 0.081 1.25 1.25 1.200 0.062 1.34 1.20 × 60 1.25 1.25 0.022 1.23 1.25 0.022 1.23 1.26 60 × 30 1.25 0.022 1.23 1.25 0.028 2.83 1.26 60 × 30 1.25 0.016 1.60 0.028 2.83 1.25 0.022 2.23 0.05 80 × 40 1.25 0.022 2.23 0.06 50 × 30 1.25 0.016 1.60 0.028 2.83 0.06 1.25 0.016 1.64 1.60 0.020 2.08 0.018 Square box section Size: 200 × 200 2.00 0.121 1.230 1.60 0.018 1.83 1.83 1.80 1.60 0.097 9.86 1.60 0.018 1.83 1.83 1.84 1.60 0.087 8.86 1.60 0.087 8.86 1.60 0.087 1.60 0.087 8.86 1.60 0.087 1.60 0.098 1.098 1.098 1.098 1.098 1.098 1.098 1.098 1.098 1.00 1.0098	40 × 60				
Rectangular box sections Size: 200 × 100 180 × 90 1.60 1.60 0.065 6.60 1.60 0.081 8.22 1.60 × 0.081 1.82 1.60 × 0.085 1.60 × 0.085 1.60 × 0.087 1.82 1.60 × 0.057 1.85 1.60 × 0.057 1.85 1.60 × 0.057 1.85 1.80 × 100 1.80 × 00 1.80	40 × 00				
160	Rectangular box sections Si	ze:			
180 x 90	200 × 100				,,
180 × 90	200 × 100	}			,,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	180×90	3			,,
100 × 80		Ĺ			,,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	160×80				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	140 70	ŗ			
120 × 60	140 × 70	<u>]</u> 2.00	0.062	6.34	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120×60	`			,,
100 x 50		Č			,,
$\begin{array}{c} 80 \times 40 \\ 1.25 \\ 1.60 \\ 0.028 \\ 2.83 \\ 3. \\ 60 \times 30 \\ 1.25 \\ 1.60 \\ 0.020 \\ 2.08 \\ 3. \\ 3. \\ 50 \times 30 \\ 1.25 \\ 1.60 \\ 0.020 \\ 2.08 \\ 3. \\ 3. \\ 50 \times 30 \\ 1.25 \\ 1.60 \\ 0.020 \\ 2.08 \\ 3. \\ 3. \\ 50 \times 30 \\ 1.25 \\ 1.60 \\ 0.014 \\ 1.44 \\ 1.44 \\ 3. \\ 3. \\ 80 \times 80 \\ 1.20 \\ 1.60 \\ 0.087 \\ 2.00 \\ 0.0121 \\ 1.230 \\ 3. \\ 3. \\ 3. \\ 3. \\ 3. \\ 3. \\ 3. \\ $	100×50				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		}			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80×40	3			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	60 × 30	3			,,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 / 00	Ĺ			,,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50×30				
$\begin{array}{c} 200 \times 200 & \begin{cases} 1.60 & 0.097 & 9.86 & \\ 2.00 & 0.121 & 12.30 & \\ 1.80 \times 180 & \begin{cases} 1.60 & 0.087 & 8.86 & \\ 2.00 & 0.108 & 11.04 & \\ 1.60 & 0.764 & 77.85 & \\ 2.00 & 0.996 & 9.79 & \\ 1.40 \times 140 & \begin{cases} 1.60 & 0.067 & 6.85 & \\ 2.00 & 0.084 & 8.53 & \\ 2.00 & 0.084 & 8.53 & \\ 2.00 & 0.084 & 8.53 & \\ 1.20 \times 120 & \begin{cases} 1.60 & 0.057 & 5.85 & \\ 2.00 & 0.071 & 7.28 & \\ 2.00 & 0.071 & 7.28 & \\ 2.00 & 0.071 & 7.28 & \\ 1.60 & 0.047 & 4.84 & \\ 80 \times 80 & \begin{cases} 1.25 & 0.037 & 3.80 & \\ 1.60 & 0.047 & 4.84 & \\ 1.60 & 0.038 & 3.84 & \\ 1.60 & 0.038 & 3.84 & \\ 1.60 & 0.022 & 2.23 & \\ 1.60 & 0.022 & 2.23 & \\ 1.60 & 0.023 & 2.33 & \\ \\ 1.81 & 1.84 & \\ 1.81 & 1.84 & \\ 1.81 & 1.84 & \\ 1.81 & 1.84 & \\ 1.81 & 1.84 & \\ 1.81 & 1.81$	Square box section Size:	[1.00	0.010	1.00	,,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	•	1 60	0.097	9.86	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	200×200				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	180 × 180				,,
$\begin{array}{c} 160 \times 160 \\ 140 \times 140 \\ 140 \times 140 \\ \end{array} \begin{array}{c} 2.00 \\ 1.60 \\ 2.00 \\ \end{array} \begin{array}{c} 0.067 \\ 0.067 \\ \end{array} \begin{array}{c} 6.85 \\ 0.0084 \\ \end{array} \begin{array}{c} 0.084 \\ 0.057 \\ \end{array} \begin{array}{c} 0.085 \\ 0.0084 \\ \end{array} \begin{array}{c} 0.0084 \\ 0.085 \\ \end{array} \begin{array}{c} 0.0087 \\ 0.0087 \\ 0.0087 \\ \end{array} \begin{array}{c} 0.0087 \\ 0.0087 \\ 0.0087 \\ 0.0087 \\ \end{array} \begin{array}{c} 0.0087 \\ 0.0087 \\ 0.0087 \\ 0.0087 \\ 0.0087 \\ 0.0087 \\ \end{array} \begin{array}{c} 0.0087 \\ $	100 × 100	i.			,,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	160×160	3			,,
$\begin{array}{c} 140 \times 140 \\ 120 \times 120 \\ \end{array} \begin{array}{c} 2.00 \\ \end{array} \begin{array}{c} 0.084 \\ \end{array} \begin{array}{c} 8.53 \\ \end{array} \begin{array}{c} 0.057 \\ \end{array} \begin{array}{c} 5.85 \\ \end{array} \begin{array}{c} 0.0071 \\ \end{array} \begin{array}{c} 0.057 \\ \end{array} \begin{array}{c} $		7			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	140×140				,,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	190 - 190	č			,,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120 × 120	ř			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100×100				,,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ē			,,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80 × 80				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00 00	ř			
Table Tabl	60 × 60				
Rolled steel tee bars (see IS : 1173-1978*) Designation ISNT 20	50 × 50				,,
ISNT 20	Rolled steel tee bars (see IS : 1		0.023	2.33	,,
ISNT 30 — 0.014 1.4 " ISNT 40 — 0.034 3.5 " ISNT 50 — 0.044 4.5 " ISNT 60 — 0.053 5.4 " ISNT 80 — 0.094 9.6 " ISNT 100 — 0.147 15.0 " ISNT 150 — 0.223 22.8			0.000	0.0	
ISNT 40 — 0.034 3.5 " ISNT 50 — 0.044 4.5 " ISNT 60 — 0.053 5.4 " ISNT 80 — 0.094 9.6 " ISNT 100 — 0.147 15.0 " ISNT 150 — 0.223 22.8		_			
ISNT 50 — 0.044 4.5 ,, ISNT 60 — 0.053 5.4 ,, ISNT 80 — 0.094 9.6 ,, ISNT 100 — 0.147 15.0 ,, ISNT 150 — 0.223 22.8	ISNT 40	-	0.034	3.5	
ISNT 80 — 0.094 9.6 ,, ISNT 100 — 0.147 15.0 ,, ISNT 150 — 0.223 22.8		_			
ISNT 100 — 0.147 15.0 ,,		_			
ISNT 150 0.999 99.8	ISNT 100	_	0.147	15.0	
	ISNT 150	_	0.223	22.8	

^{*}Specification for hot-rolled and slit steel tee bars ($second\ revision$).

MATERIAL NOMINAL SIZE OR THICKNESS kN kg kg	
Min	
Designation ISHT 75	per
ISHT 75	(5)
ISHT 100	
ISHT 125	m
ISHT 150	,,
ISST 150	,,
ISST 200	,,
ISST 250	,,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,,
Steel sheet piling sections (see IS: 2314-1963*) — Designation — ISPS 1 021 Z — 0.483 49.25 ISPS 1 625 U — 0.641 65.37 ISPS 2 222 U — 0.811 82.70 ISPS 100 F — 0.541 55.20 47. Stone Agate — 25.50 2 600 Aggregate — 15.70 to 18.85 1 600 to 1 920 Basalt — 27.95 to 29.05 2 850 to 2 960 Cast — 21.95 2 240 Chalk — 21.50 2 190 Dolomite — 28.25 2 880 Emery — 39.25 4 000	,,
(see IS: 2314-1963*) — Designation — ISPS 1 021 Z — 0.483 49.25 ISPS 1 625 U — 0.641 65.37 ISPS 2 222 U — 0.811 82.70 ISPS 100 F — 0.541 55.20 47. Stone — 25.50 2 600 Aggregate — 15.70 to 18.85 1 600 to 1 920 Basalt — 27.95 to 29.05 2 850 to 2 960 Cast — 21.95 2 240 Chalk — 21.50 2 190 Dolomite — 28.25 2 880 Emery — 39.25 4 000	,,
Designation — ISPS 1 021 Z — 0.483 49.25 ISPS 1 625 U — 0.641 65.37 ISPS 2 222 U — 0.811 82.70 ISPS 100 F — 0.541 55.20 47. Stone Agate — 25.50 2 600 Aggregate — 15.70 to 18.85 1 600 to 1 920 Basalt — 27.95 to 29.05 2 850 to 2 960 Cast — 21.95 2 240 Chalk — 21.50 2 190 Dolomite — 28.25 2 880 Emery — 39.25 4 000	
ISPS 1 021 Z — 0.483 49.25 ISPS 1 625 U — 0.641 65.37 ISPS 2 222 U — 0.811 82.70 ISPS 100 F — 0.541 55.20 47. Stone — 25.50 2 600 Aggregate — 15.70 to 18.85 1 600 to 1 920 Basalt — 27.95 to 29.05 2 850 to 2 960 Cast — 21.95 2 240 Chalk — 21.50 2 190 Dolomite — 28.25 2 880 Emery — 39.25 4 000	
ISPS 2 222 U — 0.811 82.70 ISPS 100 F — 0.541 55.20 47. Stone Agate — 25.50 2 600 Aggregate — 15.70 to 18.85 1 600 to 1 920 Basalt — 27.95 to 29.05 2 850 to 2 960 Cast — 21.95 2 240 Chalk — 21.50 2 190 Dolomite — 28.25 2 880 Emery — 39.25 4 000	,,
ISPS 100 F — 0.541 55.20 47. Stone — 25.50 2 600 Aggregate — 15.70 to 18.85 1 600 to 1 920 Basalt — 27.95 to 29.05 2 850 to 2 960 Cast — 21.95 2 240 Chalk — 21.50 2 190 Dolomite — 28.25 2 880 Emery — 39.25 4 000	,,
Agate — 25.50 2 600 Aggregate — 15.70 to 18.85 1 600 to 1 920 Basalt — 27.95 to 29.05 2 850 to 2 960 Cast — 21.95 2 240 Chalk — 21.50 2 190 Dolomite — 28.25 2 880 Emery — 39.25 4 000	,,
Aggregate — 15.70 to 18.85 1 600 to 1 920 Basalt — 27.95 to 29.05 2 850 to 2 960 Cast — 21.95 2 240 Chalk — 21.50 2 190 Dolomite — 28.25 2 880 Emery — 39.25 4 000	
Basalt — 27.95 to 29.05 2 850 to 2 960 Cast — 21.95 2 240 Chalk — 21.50 2 190 Dolomite — 28.25 2 880 Emery — 39.25 4 000	m^3
Cast — 21.95 2 240 Chalk — 21.50 2 190 Dolomite — 28.25 2 880 Emery — 39.25 4 000	,,
Chalk — 21.50 2 190 Dolomite — 28.25 2 880 Emery — 39.25 4 000	,,
Emery — 39.25 4 000	,,
	,,
	,,
Gneiss — 23.55 to 26.40 2 400 to 2 690	,,
Granite — 25.90 to 27.45 2 640 to 2 800 Gravel:	,,
Loose — 15.70 1 600	,,
Moderately rammed, dry — 18.85 1 920	,,
Green stone — 28.25 2 880 Gypsum — 21.95 to 23.55 2 240 to 2 400	,,
Laterite — 20.40 to 23.55 2 240 to 2 400	,,
Lime stone — 23.55 to 25.90 2 400 to 2 640	,,
Marble — 26.70 2 720 Pumice — 7.85 to 11.00 800 to 1 120	,,
Quartz rock — 7.65 to 11.00 800 to 1 120 Quartz rock — 25.90 2 640	,,
Sand stone — 21.95 to 23.54 2 240 to 2 400	,,
Slate — 27.45 2 800 Soap stone — 26.45 2 700	,,
48. <i>Tar</i> , <i>Coal</i>	,,
Crude (see IS : 212-1983†) — 9.90 1 010	,,
Naphtha, light (see IS : 213-1968‡) — 9.90 1 010	,,
Naphtha, heavy — 9.90 1 010 Road tar (see IS : 215-1961§) — 9.90 1 010	,,
Pitch (see IS : 216-1961) — 9.90 1 010	,,
49. Thermal Insulation	
Unbonded glass wool — 12.75 to 23.55 1 300 to 2 400	,,
Unbonded glass rock and slag wool — 11.30 to 19.60 1 150 to 2 000 Expanded polystyrene — 1.45 to 2.95 150 to 300	,,
Cellular concrete	,,
Grade A Up to 29.40 Up to 3 000	,,
Grade B — 29.50 to 39.20 3 010 to 4 000 Grade C — 39.30 to 49.00 4 010 to 5 000	,,
Performed calcium silicate insulation (for — 19.60 to 34.30 2 000 to 3 500	,,
temperature up to 650° C)	

^{*}Specification for steel sheet piling sections.

 $[\]label{eq:second_revision} \begin{tabular}{ll} \dagger Specification for crude coal tar for general use ($second revision). \\ \sharp Specification for coal-based naphtha ($first revision). \\ \end{tabular}$

[§]Specification for road tar (revised).

^{||}Specification for coal tar pitch (revised).

		NIT WEIGHT OF BUIL			
	MATERIAL	NOMINAL SIZE	WEIGHT/MASS		
		OR THICKNESS mm	kN	kg	per
	(1)	(2)	(3)	(4)	(5)
50 7	Terra Cotta	(2)	18.35 to 23.25	1 870 to 2 370	m^3
		_	10.55 to 25.25	1 010 t0 2 310	Ш
51. <i>T</i>	Terrazzo				
F	Paving	10	0.24	24	m^2
	Cast partitions	40	0.93	95	,,
52. <i>T</i>					
			0.00 +- 0.02	94- 9	m:1.
IV	Mangalore pattern	_	0.02 to 0.03	2 to 3	Tile
т.	(see IS : 654-1972*)	99×99	0.013	1.35	m^2
Г	Polystyrene wall tiles (see IS : 3463-1966†)	148.5×148.5	0.013	1.35	
		140.0 × 140.0	0.015	1.55	,,
3. <i>T</i>	Timber				
Γ	Typical Indian timbers				
	(see IS : 399-1963‡)				0
	Aglaia	_	8.34	850	m^3
	Aini	_	5.83	595	,,
	Alder	_	3.63	370	,,
	Amari	_	6.13	625	,,
	Amla	_	7.85	800	,,
	Amra	_	4.41	450	,,
	Anjan	_	8.33	850	,,
	Arjun	_	7.99	815	,,
	Ash	_	7.06	720	,,
	Axlewood	_	8.82	900	,,
	Babul	_	7.70	785	,,
	Baen	_	7.70	785	,,
	Bahera	_	7.99	815	,,
	Bakota	_	4.21	430	,,
	Balasu	_	7.55	770	,,
	Ballagi	_	11.13	1 135	,,
	Banati	_	4.41	450	,,
	Benteak	_	6.62	675	,,
	Ber	_	6.91	705	,,
	Bhendi	_	7.55	770	,,
	Bijasal	_	7.85	800	,,
	Birch	_	6.13	625	,,
	Black chuglam	_	7.85	800	,,
	Black locust	_	8.34	850	,,
	Blue gum	_	8.34	850	,,
	Blue pine	_	5.05	515	,,
	Bola	_	6.42	655	,,
	Bonsum	_	5.20	530	,,
	Bullet wood	_	8.78	895	,,
	Casuarina	_	8.34	850	,,
	Cettis	_	6.42	655	,,
	Champ	_	4.85	495	,,
	Chaplash	_	5.05	515	,,
	Chatian	_	4.07	415	,,
	Chikrassy	_	6.62	675	,,
	Chilauni	_	6.42	655	,,
	Chilla	_	7.85	800	,,
	Chir	_	5.64	575	,,
	Chuglam:				,,
	Black	_	7.85	800	
	White (silver grey-wood)	_	6.91	705	,,
	Cinnamon	_	6.42	655	,,
	Cypress	_	5.05	515	
	Debdaru	_	6.28	640	,,
	Deodar	_	5.35	545	,,
	Devdam	_	7.06	720	,,
	Dhaman:				,,
	Grewia tiliofolia	_	7.70	785	
	Grewia vestita	_	7.40	755	,,
	Dhup	_	6.42	655	,,

^{*}Specification for clay roofing tiles, Mangalore pattern ($second\ revision$).

 $(\ Continued\)$

 $[\]dagger Specification$ for polystyrene wall tiles.

 $[\]ddagger \text{Classification of commercial timbers}$ and their zonal distribution (revised).

TABLE 1 UNIT WEIGHT OF BUILDING MATERIALS — Contd					
MATERIAL		NOMINAL SIZE	WEIG	HT/MASS	
		OR THICKNESS mm	kN	kg	per
(1)		(2)	(3)	(4)	(5)
Dudhi		_	5.49	560	m^3
Ebony		_	8.19	835	,,
Elm		_	5.20	530	,,
Eucalyptus		_	8.33	850	,,
Figs Fir		_	$4.56 \\ 4.14$	$\frac{465}{450}$,,
Frash		_	6.62	675	,,
Gamari		_	5.05	515	,,
Gardenia		_	7.40	755	,,
Garuga		_	5.98	610	,,
Geon		_	4.07	415	,,
Gluta Gokul		_	$7.06 \\ 4.07$	$720 \\ 415$,,
Grewia sp.		<u> </u>	$\frac{4.07}{7.55}$	770	,,
Gurjan		_	7.70	785	"
Gutel		_	4.41	450	,,
Haldu		_	6.62	675	,,
Hathipaila		_	5.84	595	,,
Hiwar		_	7.70	785	,,
Hollock Hollong		_	5.98	610	,,
Hollong Hoom		_	$7.21 \\ 7.21$	735 735	,,
Horse chestnut			5.05	515	,,
Imli		_	8.97	915	,,
Indian Chestnut		_	6.28	640	,,
Indian Hemlock		_	3.92	400	,,
Indian Oak		_	8.48	865	,,
Indian Olive		_	10.35	1 065	,,
Irul Jack		_	8.33 5.83	850 595	,,
Jack Jaman		_	$\frac{5.83}{7.70}$	595 785	,,
Jarul		_	6.13	625	,,
Jathikai		_	5.05	515	,,
Jhingan		_	5.63	575	,,
Jutili		_	7.85	800	,,
Kadam		_	4.85	495	,,
Kail Kaim		_	5.05	515	,,
Kambli		_	$6.42 \\ 4.07$	$655 \\ 415$,,
Kanchan			6.62	675	,,
Kanjuj		_	5.84	595	,,
Karada		_	8.34	850	,,
Karal		_	7.99	815	,,
Karani		_	6.28	640	,,
Karar Kardahi		_	5.34	545	,,
Karimgotta		_	$9.27 \\ 3.92$	$\frac{945}{400}$,,
Kasi		<u> </u>	5.83	595	,,
Kasum		_	10.84	1 105	,,
Kathal		_	5.85	595	,,
Keora		_	6.13	625	,,
Khair		_	9.90	1 010	,,
Khasipine		_	5.05	515	,,
Kindal Kokko		_	$7.55 \\ 6.28$	770 640	,,
Kongoo		<u> </u>	9.76	995	,,
Kuchla		_	8.63	880	"
Kumbi		_	7.70	785	,,
Kurchi		_	5.20	530	,,
Kurung		_	9.76	995	,,
Kusum		_	11.28	1 150	,,
Kuthan Lakooch		_	$4.71 \\ 6.28$	480 640	,,
Lakoocn Lambapatti		_	$\frac{6.28}{5.34}$	545	,,
Lampati		<u> </u>	5.05	515	,,
Laurel		_	8.33	850	,,
Lendi		_	7.40	755	,,
Machilus:					**
Gamblei		_	5.05	515	,,
Macrantha Mahazukh		_	5.20	530 415	,,
Maharukh		_	4.07	415	,, ,,
				(Continued

TABLE 1 U	NIT WEIGHT OF BUILDI			
MATERIAL	NOMINAL SIZE	WEIGH	HT/MASS	
	$\begin{array}{c} \text{OR THICKNESS} \\ \text{mm} \end{array}$	kN	kg	ре
(1)	(2)	(3)	(4)	(5
Mahogany		6.62	675	m
Mahua	_	8.97	915	,
Maina	_	5.64	575	,
Makai	_	3.14	320	,
Malabar neem	_	4.41	450	,
Mango	_	6.77	690	,
Maniawga	_	7.40	755	,
Maple	_	5.64	575	,
Mesua	_	9.76	995	,
Milla Mokha	_	$9.12 \\ 7.99$	930 815	,
Mulberry	_	6.62	675	,
Mullilam	_	7.21	735	,
Mundani		6.77	690	,
Murtenga		7.70	785	,
Myrabolan		9.27	945	,
Narikel	<u> </u>	5.49	560	,
Nedunar		5.05	515	,
Oak	<u> </u>	8.48	865	,
Padauk	_	7.06	720	,
Padri	<u> </u>	7.06	720	,
Palang	<u> </u>	5.98	610	,
Pali	_	6.28	640	,
Papita	_	3.28	335	,
Parrotia	_	8.48	865	,
Persian lilac	_	5.84	595	,
Piney	_	6.13	625	,
Ping	_	8.97	915	,
Pinus insignis	_	6.13	625	,
Pipli	_	5.83	595	,
Pitraj	_	6.77	690	,
Poon		6.42	655	,
Poplar	<u> </u>	4.41	450	,
Pula	_	3.78	385	,
Pyinma	_	5.98	610	,
Rajbrikh	_	8.48	865	,
Red sanders	_	10.84	1 105	,
Rohini	<u> </u>	11.33	1 155	,
Rosewood (black wood)	_	8.19	835	,
Rudrak	<u> </u>	4.71	480	,
Sal	_	8.48	865	,
Salai	_	5.64	575	,
Sandal wood	_	8.97	915	,
Sandan	_	8.34	850	,
Satin wood	_	9.41	960	,
Saykaranji	_	7.40	755	,
Seleng	_	4.85	495	,
Semul	_	3.78	385	,
Silver oak	_		0.40	,
Siris	_	$6.28 \\ 3.92$	640 400	,
Kala-siris	_	$\frac{3.92}{7.21}$	400 735	,
Safed-siris	_	6.28	640	,
Saled-siris Sisso	_	6.28 7.70	785	,
Spruce	_	4.71	480	,
Spruce Suji	_	$\frac{4.71}{2.65}$	270	,
Sundri	_	9.41	960	,
Talauma	_	5.64	575	,
Tanaku	_	2.99	305	,
	_			,
Teak Toon	_	6.28	640 515	,
Udal	_	5.05	515 255	,
	-	2.50	255	,
Upas Uriam	-	3.14	320	,
	-	7.40	755	,
Vakai	_	9.41	960	,
Vellapine	_	5.83	595 575	,
Walnut	_	5.64	575	,
White bombwe	_	5.98	610	,
White cedar		7.06	720	,
White chuglam (silver grey-wood		6.91	705	,
White dhup	_	4.22	430	,
Yon OTE — The unit of timbers correspo	— and to average unit weight of	8.33 typical Indian timbers	850 at 12 percent moist	ire con
Water				
Fresh	_	9.81	1 000	n
Salt	_	10.05	$1\ 025$,
	10	0.059	6	
Wood-Wool Building Slabs	10	0.000	U	,

3. BUILDING PARTS AND COMPONENTS

3.1 The unit weights of building parts or components are specified in Table 2.

	TABLE 2 UNIT WEIG	HTS OF BUIL	DING PARTS OR COM	PONENTS	
		Nominal Size or Thickness	WE	CIGHT/MASS	
		mm	kN	kg	pe
l.	Ceilings				
	Plaster on tile or concrete	1.3 cm	0.25	25	m
	Plaster on wood lath	$2.5~\mathrm{cm}$	0.39	40	,,
	Suspended metal lath and cement plaster	$2.5~\mathrm{cm}$	0.74	75	,,
	Suspended metal lath and gypsum plaster	2.5 cm	0.49	50	,,
2.	Cement Concrete, Plain (see 20 'Cement concentrate, plain' in Table 1)				
3.	Cement Concrete, Reinforced (see 21 'Cement concrete, reinforced' in Table 1)			
1.	Damp-Proofing (see 28 'Felt bituminous for waterproofing and damp proofing' in Table 1)				
5.	Earth Filling (see 45 'Soils and gravels' in Table 1)				
6.	Finishing (see also 'Floor finishes' given under 7 'Flooring' and 8 'Roofing' in Table 1)				
	Aluminium foil	_	← N	Vegligible ————	
	Plaster:				
	Acoustic	10	0.08	8	m
	Anhydrite	10	0.21	21	,,
	Barium sulphate	10	0.28	29	,,
	Fibrous	10 10	0.09 0.19	9 19	,,
	Gypsum or lime Hydraulic lime or cement	10	0.19	23	,,
	Plaster ceiling on wire netting	10	0.26	25 27	,,
	NOTE — When wood or metal lathing is used, add	<u> </u>	0.26	6	"
7.	Flooring				
	Asphalt flooring	10	0.22	22	,,
	NOTE — For macadam finish, add	10	0.26	27	,,
	Compressed cork	10	0.04	4	,,
	Floors, structural:	[100	1 45	150	
	Hollow clay blocks including	100	1.47	150	,,
	reinforcement and mortar jointing between blocks, but excluding any	125 150	1.67 1.86	170 190	,,
	concrete topping	175	2.16	$\frac{190}{220}$,,
	concrete topping	200	2.55	260	,,
	Note — Add extra for concrete topping				
	Hollow clay blocks including	100	1.18	120	,,
	reinforcement and concrete ribs	115	1.27	130	,,
	between blocks, but excluding any	125	1.37	140	,,
	concrete topping	140	1.47	150	,,
		150	1.57	160	,,
		175	1.76	180	,,
		200	1.96	200	,,

\mathbf{M} ATERIAL	NOMINAL SIZE	WEIGHT/MASS		
THE STATE OF THE S	OR THICKNESS			
	mm	kN	kg	pe
Hollow concrete units including	100	1.67	170	m ²
any concrete topping necessary	125	1.96	200	
for constructional purposes	150	2.16	220	,,
for constructional purposes)	2.35	240	,,
	175			,,
	200	2.65	270	,,
	l 230	3.14	320	,,
Floors, wood:	ſ			
Hard wood	22	0.16	16	,,
11414 11004	28	0.20	20.5	,
	[22	0.11	11	,;
Soft wood	{ 28	0.13	13.5	,,
Weight of mastic used in laying wood block flooring	_	0.015	1.5	,,
NOTE — All thicknesses are 'finished t	hicknesses'.			
Floor finishes:	10.57	0.10 + 0.0	10.4.00	
Clay floor tiles (see IS: 1478-1969*)	$12.5 ext{ to} \\ 25.4$	0.10 to 0.2	10 to 20	,;
NOTE — This weight is 'as laid' but excludes screeding.				
Magnesium oxychloride:				
Normal type (saw dust filler)	10	0.142	14.5	
Heavy duty type (mineral filler)	10	0.216	22	,
Parquet flooring	10	0.210 0.08 to 0.12	8 to 12	,
				,
Rubber ($see~\mathrm{IS}:809\text{-}1970\dagger$)	$\begin{bmatrix} 3.2 \\ 4.9 \end{bmatrix}$	0.048 to 0.062	4.9 to 6.3	,
	4.8	0.070 to 0.09	7.1 to 9.5	,
m (11 1 / 1 1 1	[6.4	0.093 to 0.130	9.5 to 13.2	m
Terra cotta, filled 'as laid'		5.54 to 7.06	570 to 720	m
Terrazzo paving 'as laid'	10	0.23	24	m
Roofing				
Asbestos cement sheeting				
(see 'Asbestos cement sheeting' in Tab	le 1).			
Allahabad tiles (single) including battens	-	0.83	85	,
(see Note below)				
Allahabad tiles (double) including	_	1.67	170	,;
battens (see Note below)				
Country tiles (single) with battens	_	0.69	70	,;
(see Note below)				
Country tiles (double) with battens	_	1.18	120	,
(see Note below)				,
Mangalore tiles with battens	_	0.64	65	
(see Note below)		0.01	00	,
Mangalore tiles bedded in mortar over		1.08	110	
flat tiles (see Note below)	_	1.00	110	,
		0.78	90	
Mangalore tiles with flat tiles	_	0.78	80	,;
(see Note below)	[a = a			
Copper sheet roofing including laps and	0.56	0.08	8	,
rolls	0.72	0.10	10	,
Flat Roofs:				
Clay tiles hollow (see 7 'Flooring' in this table)				
Concrete hollow precast (see 7				
'Flooring' in this table)				
Galvanized iron sheeting (see 39				
'Metal sheeting, protected' in				
Table 1)				
Glazed Roofing:				
Glazing with aluminium alloy bars for	6.4	0.19	19.5	,
spans up to 3 m				
Glazing with lead-covered steel bars	6.4	0.25 to 0.28	26 to 29	,
at 0.6 m centres				
States on battens	_	0.34 to 0.49	35 to 50	,
Thatch with battens		0.34 to 0.49	35 to 50	,

NOTE — Weights acting vertically on horizontal projection to be multiplied by cosine of roof angle to obtain weights normal to the roof surface.

^{*}Specification for clay flooring tiles ($\mathit{first\ revision}$).

 $[\]dagger Specification \ for \ rubber \ flooring \ materials \ for \ general \ purposes \ (\textit{first revision }).$

TABLE 2 UNIT WEIGHTS OF BUILDING PARTS OR COMPONENTS — Contd

MATERIAL	NOMINAL SIZE OR THICKNESS	WEIGH	WEIGHT/MASS		
	mm	kN	kg	per	
Roof finishes: Bitumen mecadam Felt roofing (see 28 'Felt, bituminous for water-proofing and damp-proofing' in Table 1)	10 10	0.22 0.008	$\frac{22}{0.8}$	$_{,,}^{m^2}$	
Glass silk, quilted Lead sheet Mortar screeding	$0.5 \\ 0.8 \\ 10$	$0.05 \\ 0.07 \\ 0.21$	$5\\7\\21$	" "	
. Walling (IS: 6072-1971*)					
Autoclaved reinforced cellular concrete wall slabs Class A Class B Class C Class D Class E Brick masonry (see 36 'Masonry, brick' in Table 1) Concrete blocks (see 11 'Block' in Table 1) Stone masonry (see 37 'Masonry, stone' in Table 1)		8.35 to 9.80 7.35 to 8.35 6.35 to 7.35 5.40 to 6.35 4.40 to 5.40	850 to 1 000 750 to 850 650 to 750 550 to 650 450 to 550	m ³ ,, ,, ,,	
Partitions: Brick wall Cinder concrete Galvanized iron sheet Hollow glass block (bricks) Hollow blocks per 200 mm of thickness: Ballast or stone concrete Clay Clinker concrete Coke breeze concrete Diatomaceous earth Gypsum Pumice concrete Slag concrete, foamed Lath and plaster Solid blocks per 20 mm of thickness: Ballast or stone Clinker concrete Coke breeze concrete	100 75 — 100 20 20 20 20 20 20 20 20 20 20 20 20	1.91 1.13 0.15 0.88 0.201 0.201 0.220 9.176 0.093 0.137 0.177 0.196 0.186 0.392 0.451 0.300 0.221 0.221 0.250	195 115 15 90 20.5 20.5 22.5 18 9.5 14 18 20 19 40 46 30.5 22.5 22.5 22.5 22.5	m ² ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	
Terrazzo cast partitions Timber studding plastered	40 —	0.230 0.932 9.981	95 100	"	

NOTE — For unit weight of fixtures and fittings required to buildings including builder's hardware, reference may be made to appropriate Indian Standards.

4. STORE AND MISCELLANEOUS MATERIALS

9.

4.1 Units weights of store and miscellaneous

materials intended for dead load calculations and other general purposes are given in Appendix A.

^{*}Specification for autoclaved reinforced cellular concrete wall slabs.

APPENDIX A

[Clauses 1.1.1 (Note) and 4.1]

UNIT WEIGHTS OF STORE AND MISCELLANEOUS MATERIALS

Material	WEIGHT/MASS		ANGLE OF
	kN/m ³	kg/m ³	FRICTION, DEGREES
1. Agricultural and Food Products			
Butter	8.45	860	_
Coffee in bags	5.50	560	_
Drinks in bottles, in boxes	7.35	750	_
Eggs, packed	2.95	300	_
Eats, oil	5.80	590	_
Fish meal	4.90	500	45
Flour in sacks up to 1 m height	2.20 to 5.90	225 to 600	_
Forage (bales)	1.25	125	_
Fruits	3.45	350	_
Grains:			
Barley	6.75	690	27
Corn, shelled	7.55	770	$\frac{-1}{27}$
Flax seed	7.35	750	30
Oats	5.30	540	30
Rice	6.55	670	33
Soyabeans	7.35	750	30
Wheat	8.15	830	28
Wheat flour	6.85	700	30
Grain sheaves up to 4 m stack height	0.98	100	30
Grain sheaves over 4 m stack height	1.45	150	30
Grass and clover	3.45	350	_
Hay:			
Compressed	1.65	170	
Loose up to about 3 m stack height	0.69	70	
Honey	14.10	1 440	
Hops:	14.10	1 110	
In sacks	1.65	170	_
In cylindrical hop bins	4.60	470	_
Sewn up or compressed in cylindrical shape in hop cloth	2.85	290	_
Malt:			
Crushed	3.90	400	20
Germinated	1.85	190	
	7.05	720	
Meat and meat products Milk			_
Molasses	$10.05 \\ 4.40$	$1\ 025 \ 450$	_
	5.40	550 550	
Onion in bags Oil cakes, crushed	5.80	590 590	0
Potatoes	7.05	720	30
Preserves (tins in cases)	4.90 to 7.85	500 to 800	
Salt:	4.50 to 1.05	300 to 300	_
	7.05	720	
Bags Bulk	$7.05 \\ 9.40$	960	30
Seeds:			
Heaps	4.90 to 7.85	500 to 800	25
Sacks	3.90 to 6.85	400 to 700	_
Straw and chaff:			
Loose up to about 3 m stack height Compressed	$0.45 \\ 1.65$	$\begin{array}{c} 45 \\ 170 \end{array}$	
Sugar:			
Crystal	7.35	750	30
Cube sugar in boxes	7.85	800	_
Sugar beet, pressed out	7.85	800	_
Tobacco bundles	3.45	350	_
Vinegar	10.40	1 080	_

MATERIAL	Weigh	Weight/Mass	
	kN/m ³	kg/m ³	FRICTION, DEGREES
2. Chemicals and Allied Materials			
Acid, hydrochloric	11.75	1 200	_
Acid, nitric 91%	14.80	1 510	_
Acid, sulphuric 87%	17.55	1 790	_
Alcohol	7.65	780	_
Alum, pearl, in barrel	5.20	530	_
Ammonia, liquid	8.85	900	_
Ammonium chloride, crystalline	8.15	830	30-40
Ammonium nitrate	7.05 to 9.80	720 to 1 000	$\frac{25}{32-45}$
Ammonium sulphate Beeswax	7.05 to 9.00 9.40	720 to 920 960	52-45
Benzole	8.90	910	_
Benzene hexachloride	8.75	890	45
Bicarbonate of soda	6.40	650	30
Bone	18.65	1 900	_
Borax	17.15	1 750	_
Calcite	26.50	$2\ 700$	_
Camphor	9.70	990	_
Carbon disulphide	12.75	1 300	_
Casein	13.25	1 350	_
Caustic soda Creosole	13.85 10.50	$egin{array}{c} 1\ 410 \ 1\ 070 \end{array}$	_
Dicalcium phosphate	6.65	6.80	<u> </u>
Disodium phosphate	3.90 to 4.80	400 to 490	30-45
Iodine	48.55	4 950	
Oils in bottles or barrels	5.70 to 8.90	580 to 910	_
Oil, linseed:			
In barrels	5.70	580	_
In drums	7.05	720	_
Oil, turpentine	8.50	865	_
Paints	9.40	960	_
Paraffin wax	7.85 to 9.40	800 to 960	_
Petroleum Phosphorus	$9.90 \\ 17.85$	1 010 1 820	_
Plastics:			
Cellulose acetate	12.25 to 13.35	1 250 to 1 360	_
Cellulose nitrate	13.25 to 15.70	1 350 to 1 600	_
Methyl methacrylate	11.60	1 185	_
Phenol formaldehyde Polystryrene	$12.55 \\ 10.40$	1 280 1 060	_
Polyvinyl chloride (Perspex)	11.75 to 13.25	1 200 to 1 350	
Resin bonded sheet	12.85 to 13.55	1 310 to 1 380	_
Urea formaldehyde	13.25 to 13.55	1 350 to 1 380	_
Potash	14.40	1 470	_
Potassium	8.65	880	_
Potassium nitrate	9.90	1 010	_
Red lead, dry	20.70	2 110	_
Red lead, paste Rosin in barrels	$87.30 \\ 6.75$	8 900 690	_
Rubber:	3.1. 3		
Raw	8.90 to 9.40	910 to 960	_
Vulcanized	8.90 to 9.10	910 to 930	_
Saltpetre	9.91	1 010	_
Sodium silicate in barrels	8.35	850	_
Sulphur	20.10	2 050	_
Talc	27.45	2 800	_
Varnishes	9.40	960	_
Vitriol, blue, in barrels	7.05	720	_
3. Fuels			
Brown coal	6.85	700	_
Brown coal briquettes heaped	7.85	800	35

Material	WEIGHT/MASS		Angle of
	kN/m ³	kg/m ³	FRICTION, DEGREES
Brown coal briquettes, stacked Charcoal	12.75 2.95	1 300 300	_
Coal:			
Untreated, mine-moist In washeries Dust All other sorts	9.80 11.75 6.85 8.35	1 000 1 200 700 850	35 0 25 35
Coke:			
Furnace or gas Brown coal, low-temperature Hard, raw coal Hard, raw coal, mine-damp Diesel oil Firewood, chopped Petrol Wood in chips Wood shavings, loose Wood shavings, shaken down	4.90 9.80 8.35 9.80 9.40 3.90 6.75 1.95 1.45 2.45	500 1 000 850 1 000 960 400 690 200 150 250	35 35 35 35 0 45 0 45 35
4. Manures			
Animal manures: Loosely heaped Stacked dung, up to about 2.5 m stack height Artificial manures	11.75 17.65 11.75	1 200 1 800 1 200	45 45 24.30
5. Metals and Alloys			
Aluminium Cast Wrought Sheet per mm of thickness per m ²	25.30 to 26.60 25.90 to 27.45 0.028	2 580 to 2 710 2 640 to 2 800 2.8	_ _ _
Antimony, pure:			
Amorphous Solid	60.90 65.70	6 210 6 700	_
Bismuth:			
Liquid Solid	98.07 95.02 to 97.09	10 000 9 690 to 9 900	_
Cadmium:			
Cast Wrought Calcium Chromium	83.75 to 84.05 85.03 15.60 63.95 to 66.00	8 540 to 8 570 8 670 1 590 6 520 to 6 730	_ _ _ _
Cobalt:			
Cast Wrought	83.25 to 85.10 88.45	8 490 to 8 680 9 020	_
Copper:			
Cast Wrought Sheet per mm of thickness	86.20 to 87.65 86.70 to 87.65 0.09	8 790 to 8 940 8 840 to 8 940 8.7	_ _ _
Gold:			
Cast Wrought	188.75 to 189.55 189.55	19 250 to 19 330 19 330	
Iron:			
Pig Grey, cast White, cast Wrought	70.60 68.95 to 69.90 74.35 to 75.70 75.50	7 200 7 030 to 7 130 7 580 to 7 720 7 700	_ _ _ _

${f M}$ ATERIAL	WEIGHT/MASS		ANGLE OF	
	kN/m ³	kg/m ³	FRICTION, DEGREES	
Lead:				
Cast	111.20	11 340	_	
Liquid	105.00	10 710	_	
Wrought	111.40	11 360	_	
Sheet per mm of thickness	0.11	11	_ _ _ _ _	
Magnesium	16.45 to 17.15	1 680 to 1 750	_	
Manganese Mercury	72.55 133.35	7 400 13 600	_	
Nickel	81.20 to 87.20	8 280 to 8 890	_	
Platinum	210.25	21 440	_	
Silver:				
Cast	102.0 to 102.85	10 400 to 10 490	_	
Liquid	93.15	9 500	_	
Wrought	103.35 to 103.55	10 540 to 10 560	_	
Sodium:				
Liquid	9.10	930	_	
Solid	9.30	950	_	
Tungsten	188.30	19 200	_	
Uranium	180.45	18 400	_	
Zinc:				
Cast	68.95 to 70.20	7 030 to 7 160	_	
${ m Wrought}$	70.50	7 190	_	
Sheet per mm of thickness	0.07	7	_	
Alloys:				
Aluminium and copper				
Aluminium 10%, copper 90%	75.40	7 690	_	
Aluminium 5%, copper 95%	82.00	8 360	_	
Aluminium 3%, copper 97% Aluminium 91%, zinc 9%	$85.10 \\ 27.45$	8 680 2 800	_	
Babbit metal (tin 90%, lead 5%, copper 5%)	71.70	7 310	_	
Wood's metal (bismuth 50%, lead 25%,	95.00	9 690	_	
cadmium 12.5%, tin 12.5%)				
Brasses:				
Muntz metal (copper 60%, zinc 40%)	80.60	8 220	_	
Red (copper 90%, zinc 10%)	84.25	8 590	_	
White (copper 50%, zinc 50%)	80.30	8 190	_	
Yellow (copper 70%, zinc 30%):				
Cast	82.75	8 440	_	
Drawn	85.10	8 680	_	
Rolled	83.85	8 550	_	
Bronzes:				
Bell metal (copper 80%, tin 20%)	85.60	8 730	_	
Gun metal (copper 90%, tin 10%) Cadmium and tin	86.10	8 780 7 600	_	
	75.40	7 690	_	
German Silver:				
Copper 52%, zinc 26%, nickel 22%	82.75	8 440	_	
Copper 59%, zinc 30%, nickel 11%	81.70	8 330	_	
Copper 63%, zinc 30%, nickel 7%	81.40	8 300	_	
Gold and Copper:				
Gold 98%, copper 2%	184.75	18 840	_	
Gold 90%, copper 10%	168.20	17 150	_	

MATERIAL	WEIGHT/MASS		ANGLE OF	
,	kN/m ³	kg/m ³	FRICTION, DEGREES	
Lead and Tin:				
Lead 87.5%, tin 12.5% Lead 30.5%, tin 69.5% Monel metal, cast (nickel 70%, copper 30%)	103.85 81.10 87.00	10 590 8 270 8 870	_ _ _	
Steel:				
Cast	77.00	7 850	_	
Wrought mild Black plate per mm of thickness	76.80 0.08	7 830 8	_ _	
Steel sections ($see~46$ 'Steel sections' in Table 1)				
6. Miscellaneous Materials				
Aggregate, coarse Ashes, coal, dry, 12 mm and under Ashes, coal, dry, 75 mm and under Ashes, coal, wet, 12 mm and under Ashes, coal, wet, 75 mm and under Ashes, coal, wet, 75 mm and under Ashes, coal, wet, 75 mm and under Ashalt, crushed, 12 mm and under Ammonium nitrate, prills Bone Books and files, stacked Calcium ammonium nitrate Copper sulphate, ground Chalk Chinaware, earthenware, stacked (including cavities) Clinker, furnace, clean Diammonium phosphate Double salt (ammonium sulphate nitrate) Filling cabinets and cupboards with contents, in records offices, libraries, archives Flue dust, boiler house, dry	10.80 to 15.70 5.50 to 6.30 5.50 to 6.30 7.05 to 7.85 7.05 to 7.85 7.05 3.55 to 8.35 18.65 8.35 9.80 11.75 21.95 10.80 7.85 7.85 to 8.50 7.05 to 9.30 5.90 5.50 to 7.05	1 100 to 1 600 560 to 645 560 to 645 720 to 800 720 to 800 720 360 to 850 1 900 851 1 000 1 200 2 240 1 100 800 800 to 865 720 to 950 600 560 to 720	30 40 38 52 50 30-45 27 — 28 30 — 30 29 34 —	
Fly ash, pulverised Glass:	5.50 to 7.05	560 to 720	_	
Glass, solid Wool In sheets Glue Gypsum, calcined, 12 mm and under Gypsum, calcined, powdered Gypsum, raw, 25 mm and under Hides	23.50 to 26.70 0.16 to 1.18 25.50 12.55 8.60 to 9.40 9.40 to 12.55 14.10 to 15.70	2 400 to 2 720 16 to 120 2 600 1 280 889 to 960 960 to 1 280 1 440 to 1 600		
$\left. egin{array}{l} \operatorname{Dry} \\ \operatorname{Salted} \end{array} ight. i$	8.65	880	_	
Ice Leather put in rows Lime, ground, 3 mm and under Lime, hydrated, 3 mm and under Lime, hydrated, pulverized Lime pebble Limestone, agricultural, 3 mm and under Limestone, crushed Limestone dust Magnesite, caustic, in powder form Magnesite, sinter and magnesite, granular Phosphate, rock, pulverized Phosphate rock Phosphate sand Potassium carbonate Potassium chloride, pellets Potassium sulphate	8.90 7.85 9.40 6.30 5.00 to 6.30 8.25 to 8.75 10.60 13.30 to 14.10 8.65 to 14.90 7.85 19.60 9.40 11.75 to 13.35 14.10 to 15.70 7.95 18.85 to 20.40 4.85 6.55 to 7.45	910 800 960 640 510 to 640 840 to 890 1 080 1 355 to 1 440 880 to 1 520 800 2 000 960 1 200 to 1 360 1 440 to 1 600 810 1 920 to 2 080 495 670 to 760	$\begin{array}{c}$	
Potassium sulphate Pyrites, pellets	6.55 to 7.45 18.85 to 20.40	670 to 760 1 920 to 2 080	$\frac{45}{30-45}$	

MATERIAL	WEIGHT/MASS		ANGLE OF	
	kN/m ³	kg/m ³	FRICTION, DEGREES	
Pumice Rubbish:	5.80 to 9.90	590 to 1 010	_	
Building General Salt, common, dry, coarse Salt, common, dry, fine Salt cake, dry, coarse Salt cake, dry, pulverized Sand, bank, damp Sand, bank, dry Sand, silica, dry Saw dust, loose Silica gel Soda ash, heavy Soda ash, light Sodium nitrate, granular Sulphur, crushed, 12 mm and under Sulphur, 76 mm and under Sulphur, powdered Single superphosphate (S.S.P.), granulated Slag, furnace, crushed	13.80 6.30 6.30 to 10.00 11.00 to 12.55 13.35 11.20 to 13.35 17.25 to 20.40 14.10 to 17.25 14.10 to 15.70 1.57 4.40 8.65 to 10.20 4.70 to 6.00 11.00 to 12.55 7.85 to 8.25 8.65 to 13.35 7.85 to 9.40 7.65 to 8.25 14.90	1 410 645 640 to 1 020 1 120 to 1 280 1 360 1 140 to 1 360 1 760 to 2 080 1 440 to 1 760 1 440 to 1 600 160 450 880 to 1 040 480 to 610 1 120 to 1 280 800 to 840 880 to 1 360 800 to 960 780 to 840 1 520	30-45 30-45 30-35 45 30 30-35 30 30-45 37 24 35-45 32 30-45 37 35	
Steel goods: Cylinders, usually stored for carbonic acid, etc Sheets, railway rails, etc, usually stored Trisodium phosphate Triple superphosphate Turf Urea, prills	13.80 44.00 9.40 7.85 to 8.65 2.85 to 5.70 6.40	1 410 4 490 960 800 to 880 2 910 to 5 810 650	30-45 30-45 23-26	
7. Ores				
Antimony Ferrous sulphide Ferrous sulphide ore waste after roasting Iron ore, compact storing Magnesium ore	29.80 26.50 13.85 29.80 19.60	3 040 2 700 1 400 3 040 2 000	= =	
8. Textiles, Paper and Allied Materials				
Cellulose in bundles Cotton, compressed Flax, piled and compressed in bales Furs Jute in bundles Paper:	7.35 12.75 2.95 8.90 6.85	750 1 300 300 910 700	=======================================	
In bundles and rolls Newspapers in bundles Put in rows Thread in bundles Wood, compressed	6.85 3.90 10.80 4.90 12.75	700 400 1 100 500 1 300	= = =	

Bureau of Indian Standards

BIS is a statutory institution established under the *Bureau of Indian Standards Act*, 1986 to promote harmonious development of the activities of standardization, marking and quality certification of goods and attending to connected matters in the country.

Copyright

BIS has the copyright of all its publications. No part of these publications may be reproduced in any form without the prior permission in writing of BIS. This does not preclude the free use, in the course of implementing the standard, of necessary details, such as symbols and sizes, type or grade designations. Enquiries relating to copyright be addressed to the Director (Publications), BIS.

Review of Indian Standards

Amendments are issued to standards as the need arises on the basis of comments. Standards are also reviewed periodically; a standard along with amendments is reaffirmed when such review indicates that no changes are needed; if the review indicates that changes are needed, it is taken up for revision. Users of Indian Standards should ascertain that they are in possession of the latest amendments or edition by referring to the latest issue of 'BIS Catalogue' and 'Standards: Monthly Additions'.

This Indian Standard has been developed by Technical Committee: CED 37

Amendments Issued Since Publication

Amend No.	Date of Issue	
Amd. No. 1	December 1997	

BUREAU OF INDIAN STANDARDS

Headquarters:

Ticadquariers.	
Manak Bhavan, 9 Bahadur Shah Zafar Marg, New Delhi 110002. Telephones: 323 01 31, 323 33 75, 323 94 02	Telegrams: Manaksanstha (Common to all offices)
Regional Offices:	Telephone
Central : Manak Bhavan, 9 Bahadur Shah Zafar Marg NEW DELHI 110002	$\left\{\begin{array}{l} 323\ 76\ 17 \\ 323\ 38\ 41 \end{array}\right.$
Eastern : 1/14 C. I. T. Scheme VII M, V. I. P. Road, Kankurgachi KOLKATA 700054	$\left\{\begin{array}{l} 337\ 84\ 99,\ 337\ 85\ 61\\ 337\ 86\ 26,\ 337\ 91\ 20 \end{array}\right.$
Northern: SCO 335-336, Sector 34-A, CHANDIGARH 160022	$\left\{ \begin{matrix} 60 \ 38 \ 43 \\ 60 \ 20 \ 25 \end{matrix} \right.$
Southern: C. I. T. Campus, IV Cross Road, CHENNAI 600113	$\left\{\begin{array}{l} 235\ 02\ 16,\ 235\ 04\ 42\\ 235\ 15\ 19,\ 235\ 23\ 15 \end{array}\right.$
Western : Manakalaya, E9 MIDC, Marol, Andheri (East) MUMBAI 400093	$\left\{\begin{array}{l} 832\ 92\ 95,\ 832\ 78\ 58\\ 832\ 78\ 91,\ 832\ 78\ 92 \end{array}\right.$

 $Branches: AHMEDABAD.\ BANGALORE.\ BHOPAL.\ BHUBANESHWAR.\ COIMBATORE.$

FARIDABAD. GHAZIABAD. GUWAHATI. HYDERABAD. JAIPUR. KANPUR. LUCKNOW. NAGPUR. NALAGARH. PATNA. PUNE. RAJKOT. THIRUVANANTHAPURAM.

VISHAKHAPATNAM.