Kapitel 4

Stetigkeit

4.1 Grenzwerte von Funktionen

Sei $\Omega \subset \mathbb{R}^d$ eine Teilmenge und $f: \Omega \to \mathbb{R}^n$ eine Abbildung.

Definition 4.1

f hat an der Stelle $x_0 \in \mathbb{R}^d$ den Grenzwert a, falls für jede Folge $(x_k)_{k \in \mathbb{N}}$ in Ω mit $x_k \to x_0 \ (k \to \infty)$ gilt $f(x_k) \to a$.

Wir schreiben: $\lim_{x\to x_0} f(x) = a$

Bemerkung: x_0 muss nicht im Definitionsbereich von f sein.

Definition 4.2

 $f:\Omega\to\mathbb{R}^d$ heisst stetig an der Stelle $x_0\in\Omega,$ falls:

- 1. f an der Stelle x_0 definiert ist,
- 2. $\lim_{x\to x_0} f(x)$ existiert, und
- 3. $\lim_{x \to x_0} f(x) = f(x_0)$.

Definition 4.2'

Die Abbildung $f: \Omega \to \mathbb{R}^n$ ist im Punkt $x_0 \in \Omega$ stetig, falls für jede gegen x_0 konvergierende Folge $(x_n)_{n\geq 1}$ in Ω , die Folge $(f(x_n))_{n\geq 1}$ zum Grenzwert $f(x_0)$ konvergiert, d.h.

$$\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n)$$

Anders gesagt:

- Grenzwerte von Folgen werden von stetigen Funktionen nicht verändert.
- Stetige Funktionen erhalten Grenzwerte von Folgen.

Definition 4.2"

Die Abbildung $f: \Omega \to \mathbb{R}^n$ ist auf Ω stetig (oder einfach stetig, wenn der Kontext klar ist), falls f in jedem Punkt $x \in \Omega$ stetig ist.

Beispiele

Mittels den Resultaten aus dem dritten Kapitel haben wir wichtige Beispiele von stetigen Funktionen.

• Diese Funktion ist auf ganz $\mathbb{R} \times \mathbb{R}$ stetig:

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$

 $(a,b) \mapsto (a+b)$

(Seien (a_n) , (b_n) Folgen mit $a = \lim a_n$, $b = \lim b_n$. Dann ist die Folge $(a_n + b_n)$ konvergent, und $\lim a_n + b_n = a + b$, nach Satz 3.8)

• Diese Funktion ist auf ganz $\mathbb{R} \times \mathbb{R}$ stetig:

$$f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
$$(a,b) \mapsto ab$$

• Diese Funktion ist auf $\mathbb{R} \times \mathbb{R}^x$ stetig:

$$f: \mathbb{R} \times \mathbb{R}^x \to \mathbb{R}$$
$$(a,b) \mapsto a/b$$

isst die wirklich so?

• Aus wiederholter Anwendung von 1. und 2. ergibt sich die polynomielle Funktion:

Sei
$$n \ge 0, a_0, \dots, a_n \in \mathbb{R} : p(x) := a_0 + a_1 x + \dots + a_n x^n$$

Die polynomielle Funktion ist stetig auf ganz \mathbb{R} .

• Die folgenden beiden Abbildungen sind stetig auf ihrem Definitionsbereich.

$$(a,b) \mapsto (a+b)$$
 $(\lambda,a) \mapsto \lambda a$

- Die folgenden Abbildungen sind stetig.
- Die folgenden Funktionen sind auf [...] stetig:

$$\mathbb{R}^d \to \mathbb{R}$$

$$x \mapsto ||x||$$

$$z \mapsto |z|$$

• Die charakteristische Funktion von Q:

Sei
$$f(x) = \mathcal{X}_{\mathbb{Q}} = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Sei $x \in \mathbb{R} \setminus \mathbb{Q}$ fest mit $(x_k) \in \mathbb{Q}, x_k \to x$. Dann ist $f(x_k) = \mathcal{X}(x_k) = 1 \to 0 = \mathcal{X}(x)$. (Zu $x \in \mathbb{R} \setminus \mathbb{Q}$ sei x_k die an der k-ten Nachkommastelle abgebrochene Dezimaldarstellung von x. Dann gilt $x_k \in \mathbb{Q} \ \forall k \in \mathbb{N} \ \text{und} \ x_k \to x_1$.)

• Sei

f ist in x=1 nicht stetig, weil f an der Stelle x=1 nicht definiert ist. In diesem Beispiel ist die Funktion f nicht stetig, aber sie ist eigentlich eine "gute" Funktion.

Does that really say gute?

no ozlem number.

Definition (Struwe 4.1.3 (ii))

 $\Omega\subset\mathbb{R}^d, f:\Omega\to\mathbb{R}^n, x_0\in\mathbb{R}^d\backslash\mathbb{Q} \text{ so dass } \exists (x_k)\in\Omega \text{ mit } \lim x_k=x_0.$

Dann ist f an der Stelle x_0 stetig ergänzbar, falls $a = \lim f(x_k)$ existiert. In diesem Fall setzen wir

$$f(x_0) = a$$

Die durch $f(x_0) = a$ ergänzte Funktion f ist offenbar stetig an der Stelle x_0 .

offenbar \rightarrow offensichtlich?

• Diese stückweise konstante Funktion ist stetig an jeder Stelle $x_0 \neq 0$. Sie ist jedoch für $a \neq b$ an der Stelle $x_0 = 0$ nicht stetig ergänzbar. (Struwe Beispiel 4.1.3 (vii))

$$f: \mathbb{R}^x \to \mathbb{R}$$

$$f(x) = \begin{cases} a & \text{falls } x < 0 \\ b & \text{falls } x > 0 \end{cases}$$

• Sei $f:(a,b)\to\mathbb{R}$ monoton wachsend, d.h. $\forall x,y\in(a,b)$ mit $x\leq y$ folgt $f(x)\leq f(y)$. Sei ausserdem $x_0\in(a,b)$. Dann existieren die links- und rechtsseitigen Grenzwerte

$$f(x_0^+) := \lim_{\substack{x \to x_0 \\ x > x_0 \\ x \downarrow x_0}} f(x), \qquad f(x_0^-) := \lim_{\substack{x \to x_0 \\ x < x_0 \\ x \uparrow x_0}} f(x)$$

und f ist stetig an der Stelle x_0 genau dann, wenn $f(x_0^-) = f(x_0^+) = f(x_0)$.

Beweis

Wir behaupten, dass für jede Folge $(y_n)_{n\geq 1}$ mit $\{y_n: n\geq 1\}\subset (a,x_0)$ und $\lim y_n=x_0$ die Folge $(f(y_n))_{n\geq 1}$ kovergent und der linksseitige Limes $l_-(x_0)$ unabhängig von der Wahl der Folge ist.

$$l_{-}(x_{0}) := \text{linkseitiges Limes} = \lim_{\begin{subarray}{c} x \to x_{0} \\ x < x_{0} \end{subarray}} f(x)$$

Wir betrachten zuächst die "spezielle" Folge $x_n=(x_0-\frac{1}{n})_{n\geq r}$. Hier ist r so gewählt, dass $x_0-\frac{1}{r}\geq a$.

Dann ist $(f(x_0 - \frac{1}{n}))_{n \ge r}$ monoton wachsend $(x_0 - \frac{1}{n+1} > x_0 - \frac{1}{n})$ und f monoton wachsend) und $(f(x_0 - \frac{1}{n}))_{n \ge r}$ beschränkt (f(a) < [...] < f(b)).

Sei
$$l_- := \lim_{n \to \infty} f(x_0 - \frac{1}{n})$$

Wir möchten zeigen, dass für jede $(y_n) \subset (a, x_0)$ mit $\lim y_n = x_0 \lim f(y_n)$ existiert und $\lim f(y_n) = l_{-}$.

Da es für jedes $x < x_0$ ein n gibt, mit $x \le x_0 - \frac{1}{n}$, folgt

$$f(x) \le f(x_0 - \frac{1}{n} \le l_-$$

Sei nun $(y_n)_{n\geq 1}$ beliebig in (a,x_0) mit $\lim y_n=x_0$. Sei $\varepsilon>0, \ (y_n< x_0)$ und $n_0(\varepsilon)$ mit

$$l_{-} - \varepsilon < f(x_0 - \frac{1}{n}) \le l_{-} \quad \forall n > n_0(\varepsilon)$$

Insbesondere

$$l_{-} - \varepsilon < f(x_0 - \frac{1}{n_0(\varepsilon)}) \le l_{-}$$

$$IV-4$$

ssing in source matel p134week8sem1

oder = l.?

Sei jetzt $n_1(\varepsilon) = n_1(n_0(\varepsilon)) > 0$, so dass

$$x_{n_0(\varepsilon)} = x_0 - \frac{1}{n_0(\varepsilon)} < y_n < x_0 = \lim_{n \to \infty} x_n \quad \forall n \ge n_1(\varepsilon)$$

$$((y_n) < (a, x_0), \lim y_n = x_0)$$

Da f monoton ist, folgt

$$l_{-} - \varepsilon < f(x_0 - \frac{1}{n_0(\varepsilon)}) \le f(y_n) \le l_{-} = \lim f(x_n)$$

Insbesondere $\lim f(y_n) = l_-$.

Der Beweis für L_+ verläuft ganz analog.

Nun zur Stetigkeit: Es gilt immer

$$l_{-}(x_0) \le f(x_0) \le l_{+}(x_0)$$

Falls $l_{-}(x_0) < l_{+}(x_0)$, sei $(t_n)_{n \geq 1}$ wie folgt definiert:

$$t_n = \begin{cases} x_0 - \frac{1}{n} & n \text{ gerade} \\ x_0 + \frac{1}{n} & n \text{ ungerade} \end{cases}$$

Dann gilt $\lim t_n = x_0$. Aber $f(t_{2n+1}) - f(t_n) \ge l_+(x_0) - l_+(x_0) > 0$, woraus folgt dest $(f(t_n))_{n \ge 1}$ —dest? p 135 bottom nicht konvergent.

Falls $l_{-}(x_0) = l_{+}(x_0)$ folgt die Stetigkeit sofort.

Satz 4.3

Sei $f:(a,b)\to\mathbb{R}$ monoton wachsend. Dann ist die Menge der Unstetigkeitspunkte von f entweder endlich oder abzählbar.

Beweis

Sei $U(f) = \{x \in (a,b) : f \text{ ist nicht stetig an } x\}$. Dann ist $\forall x \in U(f), \quad l_-(x) < l_+(x) \text{ und wir wählen ein } g(x) \in ??n(l_-(x), l_+(x))$. Falls $x_1 < x_2$ in U(f), folgt $l_+(x_1) < l_-(x_2)$ und somit unreadable.. p136 mid $g(x_1) < g(x_2)$. Damit ist $g: U(f) \to ??$ injektiv.

Stetigkeit verträgt sich gut mit den üblichen Operationen auf Funktionen.

same unreadable character

Satz 4.4

Seien $f, g: \Omega \to \mathbb{R}^n$ und $x_0 \in \Omega$. Falls f und g in x_0 stetig sind, so sind es auch f + g und $\alpha f, \alpha \in \mathbb{R}$.

Korollar 4.5

Falls f, g auf Ω stetig sind, so sind es auch f + g und αf .

Definition 4.6

$$C(\Omega, \mathbb{R})$$

bezeichnet die Menge der stetigen Abbildungen $f:\Omega\to\mathbb{R}.$ Nach Korollar 4.5 ist es ein Vektorraum.

Satz 4.7

Seien $f: \Omega \to \mathbb{R}^n$, $\Omega \subset \mathbb{R}^d$ und $g: \Gamma \to \mathbb{R}^n$ mit $f(\Omega) \subset \Gamma$ und $x_0 \in \Omega$, $y_0 = f(x_0) \subset \Gamma$. Falls f in x_0 und g in y_0 stetig sind, folgt, dass $g \circ f: \Omega \to \mathbb{R}^n$ in x_0 stetig ist.

Beweis

Sei $(t_n)_{n\geq 1}$ in Ω mit $\lim t_n = x_0$. Da f stetig ist, $\lim f(t_n) = f(x_0) = y_0$, und aus der Stetigkeit von g folgt, dass

$$\lim_{n \to \infty} g(f(t_n)) = g(y_0) = (g \circ f)(x_0)$$

Korollar 4.8

Falls $f: \Omega \to \mathbb{R}^d$, $f(\Omega) \subset \Gamma$ und $g: \Gamma \to \mathbb{R}^m$, auf Ω bzw auf Γ stetig sind, so folgt, dass $g \circ f: \Omega \to \mathbb{R}^m$ auf Ω stetig ist.

4.2 Stetige Funktionen

In diesem Abschnitt behandeln wir die erste der fundamentalen Eigenschaften von stetigen Funktionen, nämlich, dass eine auf einem endlichen Intervall [a, b] (Endpunkte eingeschlossen) stetige Funktion immer ein Maximum und Minimum besitzt. Dies verallgemeinern wir dann auf Abbildungen von $\Omega \subseteq \mathbb{R}^d$ nach $\mathbb{R}n$, wobei Ω eine spezielle Eigenschaft haben muss (Kompaktheit).

Satz 4.9

Seien $-\infty < a \le b < \infty$ und $f:[a,b] \to \mathbb{R}$ stetig. Dann ist f([a,b]) in \mathbb{R} beschränkt und es gibt $c_-,c_+\in[a,b]$ mit

$$f(c_{+}) = \sup \{f(x) : x \in [a, b]\}$$

$$f(c_{-}) = \inf \{f(x) : x \in [a, b]\}$$

d.h. Supremum und Infimum werden angenommen.

Beweis

1. f([a,b]) ist nach oben beschränkt (Indirekter Beweis)

Falls nicht, so gibt es $\forall n \in \mathbb{N}$ ein $t_t \in [a, b]$ mit $f(t_n) \ge n$. $(t_n)_{n \ge 1}$ ist beschränkt, nach Bolzano-Weierstrass. Sei $(t_{l(n)})$ eine konvergente Teilfolge mit

 $\lim t_{l(n)} = x.$

Dann ist $x \in [a, b]$, da $a \le t_n \le b$

(Satz: (a_n) , (b_n) konvergente Folgen mit $\lim a_n = a$, $\lim b_n = b$. Falls $a_n \leq b_n$, folgt $a \leq b$.) Aus der Stetigkeit von f folgt: $\lim_{n\to\infty} f(t_n) = f(x)$. Insbesondere ist $f(t_{l(n)})$ beschränkt, was im Widerspruch zu $f(t_{l(n)}) \geq l(n)$ steht.

 $\implies f$ ist nach oben beschränkt.

2. f ist nach unten beschränkt (analog)

Sei M:= Sup $\{f(x):x\in [a,b]\}$, welches als Folge von 1. existiert. Sei für jedes $n\geq 1$ $x_n\in [a,b]$ mit

$$M - \frac{1}{n} < f(x) \le M \qquad (*)$$

 $(M - \frac{1}{n} \text{ ist kein Supremum} \implies \exists x_n \text{ mit } M - \frac{1}{n} < f(x_n))$

3. $(x_n) \subset [a,b]$ beschränkt.

Sei nach Bolzano-Weierstrass $(x_{l(n)})_{n\geq 1}$ eine konvergente Teilfolge mit Limes c_+ . Aus der Stetigkeit von f folgt:

$$f(c_+) = \lim_{n \to \infty} f(x_{l(n)})$$

Aus (*) folgt

$$\lim_{n \to \infty} f(x_{l(n)}) = M$$

d.h. $\exists c_+ \in [a, b]$ mit

$$f(c_+) = \lim f(x_{l(n)}) = M$$

4. Infimum ist ähnlich.

Bemerkung

Satz 4.9 kann man als eine Eigenschaft des Intervalls [a,b] auffassen. Sie gilt zum Beispiel nicht für (0,1] wie das Beispiel der auf (0,1] stetigen Funktion $f(x)=\frac{1}{x}$ zeigt.

Die grundlegende Eigenschaft ist Kompaktheit.

Definition 4.10

Eine Teilmenge $K \subset \mathbb{R}^d$ heisst kompakt, falls jede Folge $(x_n)_{n\geq 1}$ von Punkten aus K einen Häufungspunkt $in\ K$ besitzt, d.h. falls jede Folge in K eine $in\ K$ konvergierende Teilfolge hat.

Beispiel

- 1. (0,1] ist nicht kompakt: $(\frac{1}{n})_{n\geq 1}\subset (0,1]$ konvergiert gegen $0\notin (0,1]$.
- 2. [a,b] ist kompakt. Sei $(t_n)_{n\geq 1}$ eine Folge mit $a\leq t_n\leq b$. (t_n) ist beschränkt, nach Bolzano-Weierstrass sei $(t_{l(n)})$ eine konvergente Teilfolge mit Limes l. Dann folgt aus $a\leq t_n\leq b$. $(t_{l(n)})$ $\forall n\geq 1$, dass

$$a \leq \lim t_{l(n)} \leq b$$

D.h. $l \in [a, b]$.

Lemma 4.11

Falls $K \subset \mathbb{R}^d$ kompakt ist, ist es beschränkt und besitzt zudem ein Minimum und Maximum.

Beweis

Sonst gibt es zu jedem $n \ge 1, n \in \mathbb{N}$ ein $x_n \in K$ mit $||x_n|| \ge n$. Dann kann aber $(x_n)_{n \ge 1}$ keine konvergente Teilfolge besitzen: $(|x_{l(n)}| > l(n))$.

 $\implies K$ ist beschränkt.

Sei $s := \operatorname{Sup}\, K.$ Dann gibt es $\forall n \geq 1, k_n \in K$ mit

$$s - \frac{1}{n} < k_n \le s$$

Insbesondere gilt $\lim k_n = s$. Da K kompakt ist, hat k_n eine in K konvergierende Teilfolge. Daraus folgt, dass $s \in K$.

Beispiel

 $S^d := \{x \in \mathbb{R}^{d+1} : ||x|| = 1\}, \text{ die d-dimensionale Sphäre, ist kompakt.}$

Beweis

Sei $(x_n)_{n\geq 1}\subset S^d$, dann ist diese Folge offensichtlich beschränkt, besitzt sie (nach Bolzano-Weierstrass) eine konvergente Teilfolge $(x_{l(n)})_{n\geq 1}$. Sei $p\in\mathbb{R}^{d+1}$ deren Limes. Da die Funktion $f(x):=\|x\|$ stetig ist, folgt

$$||p|| = f(p) \stackrel{\text{defn}}{=} f(\lim x_{l(n)}) \stackrel{f \text{ stetig}}{=} \lim f(x_{l(n)}) = 1$$

$$\implies p \in S^d$$

Die Verallgemeinerung von Satz 4.9 ist

Satz 4.12

- 1. Sei $K \subset \mathbb{R}^d$ kompakt und $f: K \to \mathbb{R}^n$ eine stetige Abbildung. Dann ist $f(K) \subseteq \mathbb{R}^n$ eine kompakte Teilmenge.
- 2. f nimmt ihr Supremum und Infimum an, d.h. es gibt $c_-, c_+ \in K$ mit

$$f(x_{-}) \le f(x) \le f(x_{+}) \quad \forall x \in K$$

Beweis

1. Sei $(y_n)_{n\geq 1}$ eine beliebige Folge in f(K). Wir müssen zeigen, dass es eine konvergente Teilfolge mit Limes in f(K) gibt. Sei $(x_n) \in K$ mit

$$f(x_n) = y_n, n \ge 1$$

Dann ist $(x_n)_{n\geq 1}$ eine Folge in K. Da K kompakt ist, gibt es $p\in K$ und $(x_{l(n)})$, eine konvergente Teilfolge mit $\lim x_{l(n)}=p$.

Aus der Stetigkeit von f folgt

$$f(p) = f(\lim x_n) \stackrel{f \text{ stetig}}{=} \lim f(x_{l(n)}) = \lim y_{l(n)}$$

D.h. $y_{l(n)}$ ist eine Teilfolge von y_n mit Limes $f(p) \in K$.

 $\implies f(K)$ ist kompakt.

2. Da f(K) kompakt ist, (nach 1.), ist f(K) beschränkt, und besitzt zudem ein Minimum und Maximum (nach Lemma 4.11).

$$\Rightarrow \exists y_+, y_- \in f(K), \text{ mit } y_+ = \text{Sup } f(K)$$

$$y_- = \text{Inf } f(K)$$

$$\exists c_+, c_- \in K, \text{ mit } y_+ = f(c_+)$$

$$y_- = f(c_-)$$

4.3 Norm auf \mathbb{R}^d

Der Distanzbegriff auf \mathbb{R}^d kommt vom Skalarprodukt. Es gibt interessante, andere Arten einen Distanzbegriff einzuführen, nämlich mit dem Begriff der Norm.

In the source notes, the is 4.4, but there is no 4.3 that I can find...

Definition 4.13

Eine Norm auf \mathbb{R}^d ist eine Abbildung

$$\|.\|: \mathbb{R}^d \to \mathbb{R}$$

mit den folgenden Eigenschaften:

1. Definitheit: $||x|| \ge 0$ mit Gleichheit genau dann wenn x = 0.

2. Positive Homogenität: $\|\alpha x\| = |\alpha| \|x\| \quad \forall \alpha \in \mathbb{R}, \forall x \in \mathbb{R}^d$

3. Dreiecks-Ungleichung: $||x+y|| \le ||x|| + ||y|| \quad \forall x,y \in \mathbb{R}^d$

Beispiel 4.14

1.

$$||x||_2 = \left(\sum_{i=1}^d |x_i|\right)^{\frac{1}{2}} \qquad x = (x_1, \dots, x_d)$$

kommt vom Skalarprodukt.

2. Für $1 \le p < \infty$ sei

$$||x||_p := \Big(\sum_{i=1}^d |x_i^p|\Big)^{\frac{1}{p}}$$

 $\text{ und } \left\|x\right\|_{\infty} = \max\left\{\left|x_i\right| : 1 \leq i \leq d\right\}, \, \text{dann sind } \left\|.\right\|_p, 1 \leq p \leq \infty \text{ Normen auf } \mathbb{R}^d.$

Zwischen diesen verschiedenen Normen haben wir die folgenden Verhältnisse:

$$||x||_{\infty} = \max |x_i| \le ||x||_p = \sqrt[d]{\sum_{i=1}^d |x_i|^p} \le d||x||_{\infty}$$
 (*)

Bild von $||x||_1 = \sum_{i=1}^d |x_i| \le 1$

$$\|x\|_2 = \sqrt{\sum x_i^2} \le 1$$

 $\max_{i} \{|x_i|\} = ||x||_{\infty} \le 1$

Definition 4.15

Zwei Normen $\|.\|^{(1)}, \|.\|^{(2)}$ auf \mathbb{R}^d heissen äquivalent, falls es $c_1, c_2 > 0$ gibt, mit

$$c_1 ||x||^{(1)} \le ||x||^{(2)} \le c_2 ||x||^{(1)} \quad \forall x \in \mathbb{R}^d$$

Bemerkung: Sei $C = \max\{C_2, \frac{1}{C_1}\}$, dann gilt $(\frac{1}{C})||x||^{(1)} \le ||x||^{(2)} \le C||x||^{(1)}$

Beispiel

Die Normen $\left\|.\right\|_p \quad 1 \leq p \leq \infty$ sind wegen (*) äquivalent.

Bemerkung 4.16

Äquivalente Normen definieren dieselben "offenen Mengen" via Distanzfunktion.

Beweis

Für die Normkugeln

$$B_r^{(1)}(x_0) := \{x : ||x - x_0||^{(1)} < r\}$$

marked as skip? p152 week 9 sem1

gilt mit $c_1 ||x||^1 \le ||x||^2 \le c_2 ||x||^1$

$$B_{rc_1}^{(1)}(x_0) \subset B_r^{(2)}(x_0) \subset B_{c_2r}(x_0)$$

$$IV-11$$

 $\implies x_0 \in \Omega$ innerer Punkt von Ω bezüglich $\|.\|^2 \iff x_0 \in \Omega$ innerer Punkt von Ω bezüglich $\|.\|^1$

Auf \mathbb{R}^d haben wir

Satz 4.17

Je zwei Normen auf \mathbb{R}^d sind äquivalent.

Beweis

Es genügt zu zeigen, dass eine beliebige Norm $\|.\|$ zu $\|.\|_2$ äquivalent ist. Seien $x = \sum x_i e_i$, $y = \sum y_i e_i$. Dann ist

$$||x - y|| = \left\| \sum_{i=1}^{d} (x_i - y_i)e_i \right\| \le \sum_{i=1}^{d} |x_i - y_i| ||e_i|| \le ||x - y|| \underbrace{\sum_{i=1}^{d} ||e_i||}_{:=C}$$

$$\le C' ||x - y||_2$$

yout imperfect, but rd to make better..

Also folgt, dass $\mathbb{R}^d \to \mathbb{R}$ $x \mapsto ||x||$ stetig ist.

Da $S^{d-1} = \{x \in \mathbb{R}^d : \|x\|_2 = 1\}$ kompakt ist, folgt, dass es $c_+, c_- \in S^{d-1}$ gibt, mit $k_- := \|c_-\| \le \|x\| \le \|c_+\| := k_+ \ \forall x \in S^{d-1}$. Da $c_0 \ne 0$ folgt $k_- > 0$. Sei $x \neq 0$ allgemein $(C_- \in S^{d-1})$, dann ist $y := \frac{x}{\|x\|_2} \in S^{d-1}$ also $k_- \leq \left\| \frac{x}{\|x\|_2} \right\| < k_+$, woraus

$$||x||_2 \le ||x|| \le k_+ ||x||_2$$

folgt.

$\varepsilon - \delta$ Kriterium für Stetigkeit

Wir haben das folgende Kriterium für Stetigkeit an der Stelle x_0 :

Satz 4.18

Sei $f: \Omega \to \mathbb{R}^n$, $\Omega \subset \mathbb{R}^d$ eine Abbildung, $x_0 \in \Omega$. Folgende Eigenschaften sind äquivalent:

- 1. f ist stetig an der Stelle x_0 . D.h. für jede gegen x_0 konvergierende Folge $(x_n) \subset \Omega$ konvergiert die Folge $f(x_n)$ gegen
- 2. Für jedes $\varepsilon > 0$ gibt es $\delta > 0$, so dass für alle $x \in \Omega$ mit $|x x_0| < \delta$ gilt:

$$|\delta(x) - \delta(x_0)| < \varepsilon$$

$$\forall \varepsilon > 0 \; \exists \delta > 0 : \forall x \in \Omega, ||x - x_0|| < \delta \implies ||\delta(x) - \delta(x_0)|| < \varepsilon$$

$$IV - 12$$

53 week9 sem1

in source notes. at to do?

Beweis 4.18

 $(1) \Rightarrow (2)$ (Indirekt)

Wir nehmen also an, dass (2) nicht gilt, d.h. es gibt $\varepsilon > 0$, so dass für jedes $\delta > 0$ einem Punkt x_{δ} gibt mit

$$||x_{\delta} - x_{0}|| < \delta \text{ und } ||f(x_{\delta}) - f(x_{0})|| > \varepsilon$$

$$\begin{pmatrix} \neg (\forall \varepsilon > 0, \exists \delta > 0, \forall x \in \Omega : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon) \\ = (\exists \varepsilon > 0, \forall \delta > 0, \exists x \in \Omega : |x - x_0| < \delta \not\Rightarrow |f(x) - f(x_0)| < \varepsilon) \\ \text{d.h.} \\ \exists \varepsilon > 0, \forall \delta > 0, \exists x_\delta \in \Omega : |x_\delta - x_0| < \delta \text{ und } |f(x) - f(x_0)| > \varepsilon \end{pmatrix}$$

Sei $\varepsilon > 0$. Wir wählen jetzt $\delta_n = \frac{1}{n}$, dann gibt es $x_n := (x_{\delta_n})_{n \in \mathbb{N}}$, eine Folge in Ω , mit $\lim x_n = x_0$. Aber die Folge $(f(x_n))$ kann offensichtlich nicht gegen $f(x_0)$ konvergieren (Da $|f(x_n) - f(x_0)| > \varepsilon$), d.h. f ist nicht stetig in x_0 .

(2) \Rightarrow (1) Sei $(x_n)_{n\geq 1}$ eine Folge in Ω mit Grenzwert x_0 . Wir möchten zeigen, dass $f(x_n) \rightarrow f(x_0)$. Sei $\varepsilon > 0$, nach (2) sei $\delta_{\varepsilon} > 0$, so dass $\forall x \in \Omega$ mit

$$|x - x_0| < \delta_{\varepsilon} \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Da $\lim_{n\to\infty} x_n = x_0$, gibt es $N \ge 1$, so dass

$$||x_n - x_0|| < \delta \quad \forall n \ge N_\delta$$

(Hier hängt N von δ und also im Endeffekt von ε ab). Aus (2) folgt

$$||f(x_n) - f(x_0)|| < \varepsilon \quad \forall n \ge N_{\delta}$$

Dies zeigt $\lim f(x_n) = f(x_0)$

Beispiel

1. $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 8. Dann f ist stetig auf \mathbb{R} . Sei $\varepsilon > 0$, sei $x_0 \in \mathbb{R}$

$$|f(x) - f(x_0)| = |(3x + 8) - (3x_0 + 8)| = 3|(x - x_0)| \quad \forall x \in \mathbb{R}$$

Sei $\varepsilon > 0$. Wenn wir $\delta = \frac{\varepsilon}{3}$ wählen, dann _

week9p156-1

CAN'T READ,
$$|x - x_0| < \delta_{\varepsilon} = \frac{\varepsilon}{3} \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

In diesem Beispiel hängt δ nur von ε ab. Das nächste Beispiel zeigt, dass δ nicht nur von ε , sondern auch von x_0 abhängen kann.

2.

$$f:(0,\infty)\to(0,\infty)$$
 $x\to\frac{1}{x}$

$$IV-13$$

ist stetig auf $(0, \infty)$. Sei $x_0 \in (0, \infty)$

$$|f(x) - f(x_0)| = \left| \frac{1}{x} - \frac{1}{x_0} \right| = \left| \frac{x_0 - x}{x \cdot x_0} \right|$$

$$|x - x_0| < \delta \Rightarrow -\delta < x - x_0 < \delta \Rightarrow x > x_0 - \delta$$

$$|f(x) - f(x_0)| = \frac{|x_0 - x|}{|x||x_0|} < \frac{|x - x_0|}{|x_0||x_0 - \delta|}$$

Sei $\delta < \frac{x_0}{2}$, dann folgt

$$\delta < \frac{x_0}{2} \Rightarrow x_0 - \delta > x_0 - \frac{x_0}{2} > \frac{x_0}{2}$$
$$|f(x) - f(x_0)| < \frac{|x_0 - x|}{|x||x_0 - \delta|} \le \frac{|x - x_0| \cdot 2}{|x_0|^2} \le \frac{2\delta}{|x_0|}$$

Sei

$$\delta_{\varepsilon;x_0} = \min\left\{\frac{x_0}{2}, \frac{\varepsilon|x_0|^2}{2}\right\}$$

Dann

$$|f(x) - f(x_0)| < \frac{\varepsilon |x_0|^2}{2} \cdot \frac{2}{|x_0|^2} = \varepsilon$$

4.5 Zwischenwertsatz

Satz 4.19

Seien a < b in \mathbb{R} und $f : [a, b] \to \mathbb{R}$ eine stetige Funktion, mit $f(a) \le f(b)$ (oder $f(a) \ge f(b)$). Dann gibt es zu jedem $y \in [f(a), f(b)]$ ein $x \in [a, b]$ mit f(x) = y.

Beweis

Die Idee ist einfach. Wir benutzen ein Approximationsverfahren (In diesem Fall ein Bisektionsverfahren). Wir definieren zwei monotone Folgen

$$a = a_1 \le a_2 \le \dots \le b_2 \le b_1 = b$$

mit $a_n \nearrow$, $b_n \searrow$, $\lim a_n = \lim b_n = c$ und

$$f\left(a_{n}\right) < y \le f\left(b_{n}\right)$$

Dann folgt aus der Stetigkeit von ff, dass

$$\lim f(a_n) = \lim f(b_n) = f(c) = y$$

<u>Fall 1:</u>

Falls $f\left(\frac{a+b}{2}\right) \ge y$, setzen wir:

$$a_2 = a$$
$$b_2 = \frac{a+b}{2}$$

Falls $f\left(\frac{a+b}{2}\right) < y$, setzen wir:

$$a_2 = \frac{a+b}{2}$$
$$b_2 = b_1$$

Auf jeden Fall gibt es

- 1. $a_1 \le a_2 < b_2 \le b_1$
- 2. $(b_2 a_2) = \frac{1}{2}(b_1 a_1)$
- 3. $f(a_2) < y \le f(b_2)$

Wir iterieren jetzt dieses Verfahren. Wir nehmen an, dass wir Folgen nach (k-1)-Schnitten definiert haben

- 1. $a_1 \le a_2 \le a_3 \cdots \le a_k < b_k \le b_{k-1} \cdots \le b_1$
- 2. $(b_k a_k) = \frac{1}{2^{k-1}} (b_1 a_1)$
- 3. $f(a_k) < y \le f(b_k)$

Nun unterscheiden wir wieder zwei Fälle

<u>Fall 1:</u>

$$f\left(\frac{a_k + b_k}{2}\right) \ge y$$

dann definieren wir $a_{k+1}=a_k$ und $b_{k+1}=\frac{a_k+b_k}{2}$

Fall 2:

$$f\left(\frac{a_k + b_k}{2}\right) < y$$

dann definieren wir $a_{k+1} = \frac{a_k + b_k}{2}$ und $b_{k+1} = b_k$. Dann ist immer

$$IV-15$$

1. $a_k \le a_{k+1} < b_{k+1} \le b_k$

2.
$$b_{k+1} - a_{k+1} = \frac{1}{2} (b_k - a_k) = \frac{1}{2^k} |b_1 - a_1|$$

3.
$$f(a_{k+1}) < y \le f(b_{k+1})$$

Nach dem Prinzip der vollständigen Induktion erhalten wir zwei Folgen $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$, die die Eigenschaften 1., 2. und 3. erfüllen. (a_n) , (b_n) sind monoton und beschränkt \Rightarrow gibt es

$$\overline{a} = \lim a_k \le \overline{b} = \lim b_k$$

Wegen 2.

$$\lim |a_k - b_k| = \lim \left| \frac{b_1 - a_1}{2^k} \right| = 0$$

d.h. $\lim a_k = \lim b_k$. Sei $c \in [a, b]$ dieser Wert. Aus stetigkeit von f folgt

$$f(c) = \lim f(a_n) = \lim f(b_n)$$

Aus 3. folgt

$$f(a_n) < y \Rightarrow f(c) \le y$$

 $g \le f(b_n) \Rightarrow y \le f(c)$

also f(c) = y.

Korollar 4.20

1. Sei

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_0$$

ein Polynom mit reellen Koeffizienten, so dass $a_n \neq 0$ und n ungerade ist. Dann besitzt p mindestens eine reelle Nullstelle.

Beweis

Sei

$$q(x) = \frac{p(x)}{a_n}$$

$$= x^n + \frac{a_{n-1}}{a_n} \cdot x^{n-1} + \dots + \frac{a_0}{a_n}$$

$$= x^n \left[1 + \frac{a_{n-1}}{a_n} \cdot \frac{1}{x} + \dots + \frac{a_0}{a_n} \cdot \frac{1}{x^n} \right]$$

Dann

$$\lim_{x \to \infty} \frac{1}{x^5} = 0$$

$$IV-16$$

Folgt insbesondere, dass es c > 0 gibt so dass für $|x| \ge c$

$$1 + \frac{a_{n-1}}{a_n} \cdot \frac{1}{x} + \ldots + \frac{a_0}{a_n} \cdot \frac{1}{x^n} \ge \frac{1}{2}$$

Folglich ist:

$$q(c) \geq c^n \frac{1}{2} > 0$$

$$(n = \text{ungerade}) \qquad \qquad q(-c) \leq -c^n \frac{1}{2} < 0$$

Also gibt $x_0 \in [-c, c]$ mit $q(x_0) = 0$

2. Eine reelle 3×3 Matrix besitzt immer einen reellen Eigenwert.

Satz 4.21

Sei $f:[a,b] \to \mathbb{R}$ stetig, streng monoton wachsend (d.h. x < y = f(x) < f(y)). Dann ist

$$Bild(f) = [c, d] = [f(a), f(b)]$$

 $f:[a,b]\to [c,d]$ ist bijektiv und $f^{-1}:[c,d]\to [a,b]$ ist stetig.

Beweis

1. f streng monoton wachsend, d.h. falls $x \neq y$, dann ist $f(x) \neq f(y) \Rightarrow f$ Injektive.

Zwischenwertsatz $\Rightarrow f$ surjektiv. c = f(a) < f(b) = d, Sei $y \in [c, d]$, ZWS $\Rightarrow \exists x \in (a, b)$ mit $f(x) = y \Rightarrow$ ist bijektiv.

2. f^{-1} ist stetig: Sei $y \in [c, d]$ und sei $(y_0) \in [c, d]$ eine Folge mit $\lim y_n = y_0$. f bijektiv, $\exists x_n$, $x_0 = f^{-1}(y_0)$, (x_n) beschränkt. Sei $f^{-1}(y_{l(n)})$ eine beliebige konvergente Teilfolge und x deren Grenzwert

$$\lim f^{-1} \left(y_{l(n)} \right) = x$$

$$f \text{ stetig } \Rightarrow \lim f \left(f^{-1} \left(y_{l(n)} \right) \right) = f \left(f^{-1} \left(y_{l(n)} \right) \right) = f(x)$$

aber

$$\lim f\left(f^{-1}\left(y_{l(n)}\right)\right) = \lim y_{l(n)}$$

 $\Rightarrow \lim y_{l(n)} = f(x), y_n \text{ ist aber auch konvergent}$

 $\Rightarrow \lim y_{(n)} = f(x)$, aber $\lim y_n = y_0$

 $\Rightarrow y_0 = f(x) \Rightarrow x = f^{-1}(y_0) = x_0$

 \Rightarrow Jede Teilfolge von (x_0) hat denselben Häufungspunkt x_0 .

 \Rightarrow $\limsup x_n = x_0 = \liminf x_n$, also $\lim f^{-1}(y_n) = \lim x_n = x_0 = f^{-1}(y_0) \Rightarrow f$ stetig

Korollar 4.22

Sei $f:(a,b)\to\mathbb{R}$ stetig und streng monoton wachsend mit monotonem Limes

$$-\infty < c := \lim_{x \downarrow a} f\left(x\right) < \lim_{x \uparrow b} f\left(x\right) =: d < \infty$$

dann ist $f:(a,b)\to(c,d)$ bijektiv und f^{-1} ist stetig.

Korollar 4.22

Sei $n \in \mathbb{N}$. Die Potenzfunktion $f(x) = x^n$ ist auf ganz \mathbb{R} stetig. Sie ist auf $(0, \infty)$ streng monoton wachsend mit Bild $(0, \infty)$. Die Umkehrfunktion

$$(0,\infty) \to (0,\infty)$$
$$x \to \sqrt[n]{x}$$

ist stetig.

Beweis

$$y^{n} - x^{n} = (y - x) \underbrace{(y^{n-1} + y^{n-2}x + \dots + x^{n-1})}_{>0}$$

Für $0 < x,y < \infty, \ y^{n-1} + y^{n-2}x + \dots x^{n-1} > 0$. Also folgt $x < y \Rightarrow x^n < y^n$, d.h. f streng monoton wachsend

Satz 4.23

Die Funktion $\exp : \mathbb{R} \to \mathbb{R}$ ist stetig, streng monoton wachsend mit

$$Bild(exp) = exp(\mathbb{R}) = (0, \infty)$$

Definition 4.24

Die Umkehrfunktion von exp: $\mathbb{R} \to (0, \infty)$ wird mit $\log : (0, \infty) \to \mathbb{R}$ bezeichnet

Dann

Korollar 4.25

 $\log:(0,\infty)\to\mathbb{R}$ hat folgende Eigenschaften

- 1. ist strikt monoton wachsend und stetig
- $2. \log(1) = 0$
- 3. $\log(x \cdot y) = \log(x) + \log(y)$

Beweis Satz 4.23

$$\exp(x) = 1 + x + \frac{x^2}{2!} + \dots$$

ist absolut konvergent auf ganz \mathbb{R}

1.

$$\exp(x) = \exp\left(\frac{x}{2} + \frac{x}{2}\right) = \left(\exp\left(\frac{x}{2}\right)\right)^2 \ge 0$$

2. Falls $x \ge 0$, ist

$$\exp(x) > 1 > 0$$
 $(\exp(x) = 1 \Leftrightarrow x = 0)$

3. Wegen

$$\exp(x) = \frac{1}{\exp(-x)} \neq 0$$
$$\exp(x) > 0 \quad \forall x \in \mathbb{R}$$

d.h.

$$\exp\left(\mathbb{R}\right)\subset\left(0,\infty\right)$$

4.

$$\exp(y) - \exp(x) = \exp(x) [\exp(y - x) - 1]$$

Falls x < y, so ist $\exp(y - x) > 1$ und somit $\exp(y) > \exp(x)$ (da $\exp(x) > 0$), d.h. exp ist streng monoton wachsend.

5. Zur Stetigkeit: Sei $x = x_0 + h$, 0 < h < 1

$$\exp(x) - \exp(x_0) = \exp(x_0)(\exp(h) - 1)$$

da

$$|\exp(h) - 1| = \left| \sum_{k=1}^{\infty} \frac{h^k}{k!} \right| \le \left| \sum_{k=1}^{\infty} |h^k| \right| = \frac{|h|}{1 - |h|} \to 0$$

Also für $x = x_0 + h \to x_0$, $\exp(x) - (x_0) \to 0$ und die Funktion exp ist stetig

$$\exp(x) \to \infty (x \to \infty)$$
 und $\exp(x) \to 0 (x \to -\infty)$

do 3 and 4 belong together?? in your notes you gave number 3 to two different ones, page $166\ \mathrm{bottom}$

$$\exp(\log(x)) = x$$

$$\exp(\log(x) + \log(y)) = \exp(\log(x)) \cdot \exp(\log(x))$$

$$= xy$$

$$\Rightarrow \boxed{\log(x) + \log(y) = \log(xy)}$$

IV-19

4.6 Gleichmässige Stetigkeit

Sei $f: \Omega \to \mathbb{R}$ eine stetige Funktion auf Ω , d.h.

$$\forall x_0 \in \Omega, \forall \varepsilon > 0, \exists \delta > 0, \forall x \in \mathbb{R} : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

$$\left(\begin{array}{l} f \text{ ist nicht stetig auf} \\ \Omega \Leftrightarrow \exists x_{0} \in \Omega, \exists \varepsilon > 0, \forall > 0, \exists \in \Omega : |x - x_{0}| < \delta \text{ und } |f(x) - f(x_{0})| \geq \varepsilon \end{array} \right)$$

Definition 4.24

Gleichmässig stetig:

 $f:\Omega\to\mathbb{R}^n$ heisst gleichmässig stetig, falls für jedes $\varepsilon>0$ es ein $\delta>0$ gibt, so dass $\forall x,x_0\in\Omega$

$$||x - x_0|| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Stetig:

 $\forall x_0 \in \omega, \forall \varepsilon > 0, \exists \delta_{x_0,\varepsilon} > 0, \forall x \in \Omega$:

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Gleich stetig:

 $\forall \varepsilon > 0, \, \exists \delta_{\varepsilon} > 0, \, \forall x, x_0 \in \Omega$:

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

Stetig: δ ist abhängig von ε und x_0 .

Gleichmässig stetig: δ ist abhängig von ε , aber unabhängig von x_0 .

Beispiel 4.25

I) $\exp : \mathbb{R} \to \mathbb{R}$ ist nicht gleichmässig stetig

$$|\exp(x) - \exp(x_0)| = |\exp(x - x_0) - 1| \exp(x_0)$$

Falls $x - x_0 = \pm \delta$, $\delta \neq 0$ und $x_0 \to \infty$ dann

$$|\exp(x) - \exp(x_0)| \to \infty$$

II)

$$f(x): \mathbb{R} \to \mathbb{R}$$
$$x \to 2x + 5$$

Dann ist f gleichmässig stetig

Beweis

Sei $\varepsilon > 0, x_0, x \in \mathbb{R}$. Dann

$$|f(x) - f(x_0)| = |2x + 5 - 2x_0 + 5| = 2|x - x_0|$$

 \Rightarrow Wenn wir $\delta = \frac{\varepsilon}{2}$ wählen, dann

$$|x - x_0| < \frac{\varepsilon}{2} \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

III)

$$f: \Omega \to \Omega$$
 $\Omega = (0, \infty)$
 $x \to x^2$

f ist stetig, aber nicht gleichmässig stetig.

i) f stetig: Sei $x_0 \in \mathbb{R}, \varepsilon > 0$

$$|f(x) - f(x_0)| = |x^2 - x_0^2| = |(x - x_0)(x + x_0)|$$

Sei $|x-x_0| < \varepsilon < 1.$ Dann, $x < x_0 + 1 := a.$ Dann $x, x_0 + 1 < a$

$$|x^2 - x_0^2| = |x - x_0||x + x_0| < 2a|x - x_0|$$

Wenn wir $\delta = \min \left(1, \frac{\varepsilon}{2a}\right)$ wählen, dann

$$|x-x_0^2| < 2a|x-x_a| \le \varepsilon$$

Bemerkung

f ist abhängig von ε , und a ist $x_0 + 1$ abhängig von x_0 .

ii) f ist nicht gleichmässig stetig, d.h.

$$\exists \varepsilon > 0, \forall \delta > 0, \exists x_0 \in \Omega, \exists x \in \Omega : |x - x_0| < \delta \text{ und } |x^2 - x_0^2| \ge \varepsilon$$

Sei $\varepsilon=1,\,\delta>0,\,x_0=\frac{1}{\delta}$ und $x=x_0+\frac{\delta}{2}.$ Dann $|x-x_0|<\frac{\delta}{2}<\delta$ aber

$$|x^2 - x_0^2| = \left| \left(\frac{1}{\delta} + \frac{\delta}{2} \right)^2 - \frac{1}{\delta^2} \right| = 1 + \frac{\delta^2}{4} > 1 = \varepsilon$$

IV)

$$f: \Omega \to \Omega$$
 $\Omega = [0, 4]$
 $x \to x^2$

Dann ist f gleichmässig stetig

Beweis

Sei $\varepsilon > 0$ gegeben. Sei $x_0, x \in \Omega = [0,4], \ 0 \le x, x_0 \le 4 \Rightarrow 0 \le x + x_0 \le 8$

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| = |x^2 - x_0^2|$$

= $|x - x_0||x + x_0| \le (4 + 4) \delta$

Sei $\delta = \frac{\varepsilon}{8}$, dann

$$|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon$$

V)

$$f:(0,\infty)\to(0,\infty)$$

 $x\to\sqrt{x}$

ist gleichmässig stetig auf $(0, \infty)$

Beweis

Ask for beweis! page 172 bottom

Wir haben gesehen, dass

$$f:(0,\infty)\to(0,\infty)$$

 $r\to r^2$

nicht gleichmässig stetig ist, aber

$$f: [0,4] \to [0,4]$$
$$x \to x^2$$

ist gleichmässig stetig. Was ist der Unterschied? [0,4] ist kompakt, $(0,\infty)$ nicht.

Satz 4.26

Sei $K \subset \mathbb{R}^d$ kompakt und $f: K \to \mathbb{R}^n$ stetig. Dann ist f gleichmässig stetig.

Beweis (Indirekt)

Sonst gibt es $\varepsilon > 0$, so dass für jedes $\delta > 0$ Punkte $x, y \in k$ gibt mit

$$||x - y|| < \delta \qquad |f(x) - f(y)| > \varepsilon$$

$$IV - 22$$

Sei $\forall k \geq 1$, mit $\delta = \frac{1}{k}$, ein Paar (x_k, y_k) gewählt, so dass

$$|x_k - y_k| < \frac{1}{k} \text{ und } |f(x_k) - f(y_k)| > \varepsilon$$

Da k kompakt ist, gibt es eine konvergente Teilfolge $x_{l(k)} \to z$. Aus $|x_k - y_k| < \frac{1}{k}$ folgt dass $y_{l(k)} \to z$. Sei nun k_0 so dass

$$\left\| f\left(x_{l(k_0)}\right) - f\left(z\right) \right\| < \frac{\varepsilon}{2} \quad \forall k > k_0$$

Dann folgt $\forall k > k_0$:

$$\left\| f\left(y_{l(k_{0})}\right) - f\left(z\right) \right\| \ge \left| \underbrace{f\left(y_{l(k)}\right) - f\left(x_{l(k)}\right)}_{>\varepsilon} \right| - \left| \underbrace{f\left(x_{l(k)}\right) - f\left(z\right)}_{<\varepsilon/2} \right| \ge \frac{\varepsilon}{2}$$

4.7 Punktweise und Gleichmässige Konvergenz

Sei $\Omega \subset \mathbb{R}^d$, $f, f_k : \Omega \to \mathbb{R}^n$

Definition 4.28

 $(f_k)_{k \geq 1}$ konvergiert punktweise gegen f, falls $\forall x \in \Omega$

$$\lim_{k \to \infty} f_k(x) = f(x)$$

 $\forall x \in \Omega, \forall \varepsilon > 0, \exists k_{\varepsilon,x} \text{ s.d. } |f_k(x) - f(x)| < \varepsilon, \forall k > k_{\varepsilon,x}.$ Es stellt sich die Frage, ob f stetig ist, falls alle $(f_k)_{k \geq 1}$ stetig sind.

Beispiel 4.30

Sei $f_k:[0,1]\to\mathbb{R}, f_k(x)=x^k, k\geq 1$. Dann gilt

$$0 \le x < 1 : \lim_{k \to \infty} x^k = 0$$
$$x = 1 : \lim_{x \to \infty} x^k = 1$$

Also konvergiert (f_k) punktweise gegen

$$f(x) = \begin{cases} 0 & 0 \le x < 1\\ 1 & x = 1 \end{cases}$$

Insbesondere ist f(x) nicht stetig.

Beispiel

$$f_n(x) = \frac{nx^2 + 1}{nx + 1}, \Omega = [0, 1]$$

$$\lim_{n \to \infty} \frac{nx^2 + 1}{nx + 1} = \lim_{n \to \infty} \frac{x^2 + \frac{1}{n}}{x + \frac{1}{n}} = \frac{x^2}{x} = x$$

 $f_n(x) \to f(x) = x$ und f(x) = x ist stetig

$$|f_n(x) - x| = \left| \frac{nx^2 + 1}{nx + 1} - x \right| = \left| \frac{1 - x}{nx + 1} \right| \le \frac{1 + |x|}{|nx + 1|} \le \frac{3}{1 + n}$$

Da $x \in [1,2], \, |nx+1| \geq n+1$ und $1+|x| \leq 3$

$$\frac{3}{1+n} \le \varepsilon \Rightarrow \frac{3}{\varepsilon} - 1 \le n$$

d.h. $\forall \varepsilon > 0$, $\exists N_{\varepsilon}$ s.d. für $n > N_{\varepsilon} = \frac{3}{\varepsilon} - 1$

$$|f_n(x) - x| < \varepsilon \quad \forall x \in [1, 2]$$

 N_{ε} hängt nur von ε ab und nicht von $x \in [1, 2]$.

Definition 4.29

 $\left(f_{k}\right)$ konvergiert gleichmässig gegen f, falls

$$\sup_{x \in \Omega} \|f_k(x) - f(x)\| \to 0, k \to \infty$$

d-h- $\forall \varepsilon > 0, \exists k_{\varepsilon}, \text{ so dass } \forall k > k_{\varepsilon}$

$$\forall x \in \Omega : ||f_k(x) - f(x)|| < \varepsilon$$

Beispiel 4.30

Seien $(a_k)_{k\geq 1}\in\mathbb{C}$

$$p(z) := \sum_{k=0}^{\infty} a_k z^k$$

mit Konvergenzradius

$$\rho := \frac{1}{\limsup \sqrt[k]{a_k}} \le \infty$$

Sei $\rho > 0$, und $0 \le r < \rho$. Dann konvergiert die Folge

$$p_n(z) := \sum_{k=0}^{\infty} a_k z^k$$

gleichmässig auf $\overline{B_r(0)}$ gegen p(z)

Beweis

Sei $z \in \overline{B_r(0)}$ und $r < s < \rho$

$$|p(z) - p_n(z)| = \left| \sum_{k=n+1}^{\infty} a_k z^k \right|$$

$$\leq \sum_{s \in B_r(0)} \sum_{n+1}^{\infty} |a_n| r^k$$

$$= \sum_{k=n+1}^{\infty} (a_k) \left| \frac{r}{s} \right|^k s^k$$

$$\stackrel{(*)}{\leq} \left(\frac{r}{s} \right)^{n+1} \sum_{n+1}^{\infty} |a_k| s^k$$

$$\leq \left(\frac{r}{s} \right)^{n+1} C_s$$

wobei

$$C_s := \sum_{0}^{\infty} |a_k| s^k < \infty$$

$$\Rightarrow |p(z) - p_n(z)| \underset{n \to \infty}{\to} 0$$

 $_{
m mit}$

$$\left|\frac{r}{s}\right| < 1, k > n + 1 \Rightarrow \left(\frac{r}{s}\right)^k < \left(\frac{r}{s}\right)^{n+1}$$

Die Bedeutung dieses Konvergenzbegriffs ist

Satz 4.31

Seien $f_k: \Omega \to \mathbb{R}^n$ stetig und $f: \Omega \to \mathbb{R}$, so dass f_k gleichmässig gegen f konvergiert. Dann ist f stetig.

Korollar 4.32

Potenzreihen sind stetig im Inneren ihres Konvergenzkreises.

Beweis

Folgt aus Satz 4.31 und Beispiel 4.30

Beweis 4.31

Sei $x_0 \in \Omega$, und $(x_n)_{n>1}$ eine Folge in Ω mit Grenzwert x_0 . Sei $\varepsilon > 0$. Wir wählen ein k, so dass

$$\sup_{x \in \Omega} |f_k(x) - f(x)| < \varepsilon$$

Da f_k stetig ist, sei nun $N \geq 1$ mit

$$|f_k(x_n) - f_k(x)| \le \varepsilon \quad \forall n > N$$

Dann gilt

$$||f(x_n) - f(x_0)|| = |f(x_n) - f_k(x_n) + f_k(x_n) + f_k(x_0) - f_k(x_0) - f(x_0)|$$

$$\leq |f(x_n) - f_k(x_n)| + |f_k(x_n) - f_k(x_0)| + |f_k(x_0) - f(x_0)|$$

$$< 3\varepsilon$$

Eine natürliche Frage ist, was sind die "einfachsten" Funktionen, mit denen man alle stetigen Funktionen gleichmässig approximieren kann?

Es gibt einen sehr allgemeines Satz von Stone - Weierstrass, der insbesondere ein Kriterium für Funktionen auf kompakten Teilmengen von \mathbb{R}^d gibt.

Satz von Weierstrass

Mann kann jede stetige Funktion auf einem kompakten Intervall durch Polynome approximieren.

Ein explizites Approximationsverfahren für auf [0,1] stetige Funktionen mittels Polynomen wurde von S.Bernstein gefunden (1911). Sei

$$B_{i,n}(x) = \binom{n}{i} x^i (1-x)^{n-i}, 0 \le i \le n$$

IV-26

Dieses Polynom bildet ein Basis für den Vektorraum der Polynomen von Grad = n. Sei $f:[0,1]\to\mathbb{R},$ dann ist

$$B_{n}(f)(x) := \sum_{i=0}^{n} B_{i,n}(x) f\left(\frac{i}{n}\right)$$

Satz (Bernstein)

Sei $f:[0,1]\to\mathbb{R}$ stetig. Dann konvergiert die Folge $B_n\left(f\right)(x)_{n\geq 1}$ gleichmässig gegen f.

Mit den Bernstein-Polynomen kann man eine Bezierkurve n-ten Gerades zu gegebenen n+1 Bezierpunkten P_0,\ldots,P_n definieren. Die Bezierkurve stellt ein wichtiges Werkzeug in der Vektorgrafik dar.

Can't read word, page 182 middle

Seien z.B. P_0, \ldots, P_n n-Kontrollpunkte in der Ebene. Dann ist die parametrische Kurve

$$t \to \sum_{i=1}^{n} B_{i,n}(t) P_i$$

die Bezierkurve. Diese Kurve liegt immer in der konvexen Hülle des Kontrollpolygons.