Отчет по лабораторной работе №320

Дифракций Фраунгофера

Выполнили студенты 420 группы Понур К.А., Сарафанов Ф.Г., Сидоров Д.А.

Содержание

1	События и их вероятности	
1	Элементы комбинаторики. Схемы шансов	
	1.1 Эксперименты выбора шариков	
	1.2 Схема шансов без возвращения и с учетом порядка	
	1.3 Схема шансов без возвращения и без учёта порядка	
	1.4 Схема шансов с возвращением и с учётом порядка	
	1.5 Схема шансов с возвращением и без учёта порядка	
	1.6 Элементы комбинаторики. Схемы шансов	
2	События, операции над ними и σ -алгебры событий	
3	Вероятность и её свойства	
4	Способы задания и подсчёта вероятности	
	4.1 Экспериментальное нахождение вероятности	
	4.2 Вероятность на конечном пространстве	
	4.3 Классическая вероятность	
	4.4 Вероятность на счётном пространстве	
	4.5 Геометрическая вероятность	
5	Независимые события	
6	Условная вероятность	
7	Формула полной вероятности и формулы Байеса	
8	Биномиальное распределение	
9	k-номинальное распределение	
10	Гипергеометрическое распрделение	
II	Теория случайных величин	
11	Случайные величины	
12	Абсолютно непрерывные случайные величины	
13	Функции Хевисайда и Дирака	
14	Функции одной случайной величины	
15	Случайные векторы и их распределения	
16	Функции от двух случайных величин	

17 Математическое ожидание	6
18 Дисперсия	6
19 Числовые характеристики зависимости случайных величин	6
III Законы больших чисел	6
20 Неравенство Бьенеме–Чебышёва и неравенство Маркова	6
21 Последовательности случайных величин	6
22 Законы больших чисел	6
23 Предельные теоремы для биномиального распределения	6
24 Характеристические функции	6
25 Вычисление характеристических функций	6
26 Центральная предельная теорема	6
27 Сферическое, ξ^2 -распределение и распределение Стьюдента	6
28 Цепи Маркова	6

Теорема 0.1. Пусть у нас есть два множества, построим.... (текст теоремы)

Лемма 0.1. kek=lol

Исторические сведения

Возникновение теории вероятностей как науки относят к средним векам, когда появилась возможность и возникла необходимость изучения математи- ческими методами азартных игр (таких как орлянка, кости, рулетка). Самые ранние работы учёных в области теории вероятностей относятся к XVII ве- ку. Первоначально её основные понятия не имели строго математического описания. Задачи, из которых позже выросла теория вероятностей представ- ляли набор некоторых эмпирических фактов о свойствах реальных событий, которые формулировались с помощью наглядных описаний. Исследуя прогнозирование выигрыша при бросании костей в письмах друг другу, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности. Ре- шением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был и методику решения изобрёл самосто- ятельно. Его статья, в которой он ввёл основные понятия теории вероятно- стей (понятие вероятности как величину шанса; математическое ожидание для дискретных случаев в виде цены шанса). В своей статье он использует (не сформулированные ещё в явном виде) теоремы сложения и умножения вероятностей. Статья была опубликована в печатном виде на двадцать лет раньше (1657 г.) издания писем Паскаля и Ферма (1679 г.). Важный вклад в теорию вероятностей внёс Якоб Бернулли, он дал до- казательство закона больших чисел в простейшем случае независимых ис- пытаний. В первой половине XIX века теория вероятностей начинает приме- няться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы. Во второй половине XIX века основной вклад внесли русские учёные П. Л. Чебышёв, А. А. Марков и А. М. Ляпунов. В это вре- мя были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова. Современный вид теория веро- ятностей получила благодаря аксиоматике, предложенной Андреем Никола- евичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из раз- делов математики.

Википедия, Статья "Теория вероятностей".

Часть I

События и их вероятности

1. Элементы комбинаторики. Схемы шансов

В этом параграфе мы подсчитываем число элементарных событий или, проще говоря, исходов, шансев, которые могут возникать в результате эксперимента. Например, при подбрасывании монеты могут произойти 2 исхода, при подбрасывании игрального кубика могут произойти 6 исходов, при извлечении карты из колоды в 54 листа могут произойти 53 исхода. Такие подсчёты изучают в разделе математики, называемом комбинаторикой. Пусть A и B — два непересекающихся конечных множества с числом элементов m и n соответственно. Очевидны следующие две леммы.

Лемма 1.1. (о сумме). Число шансов выбрать один элемент либо из A либо из B, m.e. из объединения $A \cup B$, равно m + n.

Пемма 1.2. (о произведении). Число шансов выбрать пару элементов, один из A, а другой из B, равно mn, m.e. числу элементов в декартовом произведении $A \times B$.

Непосредственным обобщением предыдущей леммы является следующая теорема.

Теорема 1.1. Пусть A_2, A_2, \ldots, A_k — конечные непересекающиеся множества, имеющие n_1, n_2, \ldots, n_k элементов соответственно. Выберем из каждого множества по одному элементу. Тогда общее число способов, которыми можно осуществить такой выбор, равно $n_1 n_2 \ldots n_k$.

Доказательство.

Ясно, что число способов такого выбора равно числу точек (элементов) в декартовом произведении $A_1 \times A_2 \times \dots A_k$, т.е. равно $n_1 \cdot n_2 \dots n_k$.

1.1. Эксперименты выбора шариков

Рассмотрим ящик, содержащий п одинаковых шариков, на которых написаны числа $1, 2, \ldots, n$. Эксперимент состоит в том, что из ящика, не глядя, по одному вынимают k шариков, где $k \le n$. Обозначим через $(n1, n2, \ldots, nk)$ упорядоченный набор чисел, где n1 — номер 1-го вынутого шарика, n2 — номер 2-го шарика, k — номер k номер

Сколько имеется различных способов вынуть из ящика к шариков? На этот вопрос нельзя дать однозначный ответ, потому что такой эксперимент определён неоднозначно. Во-первых, не определено, возвращают ли извлеченный шарик обратно в ящик. Вовторых, не определено, какие наборы номеров считать различными и какие наборы считать одинаковыми. Рассмотрим следующие возможные условия проведения эксперимента. 1. Эксперимент с возвращением. Каждый извлечённый шарик возвраща- ется в ящик. В этом случае в наборе могут появляться одинаковые номера. Напри- мер, при выборе трёх шариков из ящика, содержащего пять шариков с номерами 1, 2, 3, 4 и 5, могут появиться наборы (3,3,5), (1,2,4) и (4,2,1). 2. Эксперимент без возвращений. Извлечённые шарики в ящик не воз- вращаются. В этом случае в наборе не могут встречаться одинаковые номера. В рассмотренном выше примере набор (3, 3, 5) не может появиться, а наборы (1, 2, 4) и (4, 2, 1) могут. Опишем теперь, какие наборы номеров мы будем считать различными. Существуют ровно две возможности. 1. Эксперимент с учётом порядка. Два набора номеров считаются раз- личными, если они отличаются либо составом, либо порядком. В рассмотренном выше примере все наборы (3, 3, 5), (1, 2, 4) и (4, 2, 1) считаются различными. 2. Эксперимент без учёта порядка. Два набора номеров считаются раз- личными, если они отличаются только составом. В рассмотренном выше примере наборы (1, 2, 4) и (4, 2, 1)доставляют одно и тот же элементарное событие, а набор (3, 3, 5) — другое. Подсчитаем теперь, сколько получится различных исходов для каждого из четырёх экспериментов. Заметим, что в литературе такие эксперименты часто называют схемами выбора или схемами шансов. Схема шансов — это условия (с возвратом или без, какие наборы различны и т.д.), при которых проводится эксперимент.

- 1.2. Схема шансов без возвращения и с учетом порядка
- 1.3. Схема шансов без возвращения и без учёта порядка
- 1.4. Схема шансов с возвращением и с учётом порядка
- 1.5. Схема шансов с возвращением и без учёта порядка
- 1.6. Элементы комбинаторики. Схемы шансов
- 2. События, операции над ними и σ -алгебры событий
- 3. Вероятность и её свойства
- 4. Способы задания и подсчёта вероятности
- 4.1. Экспериментальное нахождение вероятности
- 4.2. Вероятность на конечном пространстве
- 4.3. Классическая вероятность
- 4.4. Вероятность на счётном пространстве
- 4.5. Геометрическая вероятность
- 5. Независимые события
- 6. Условная вероятность
- 7. Формула полной вероятности и формулы Байеса

6

- 8. Биномиальное распределение
- 9. *k*-номинальное распределение
- 10. Гипергеометрическое распрделение

Часть II