Reporte Final: Sistema de Detección y Clasificación de Actividades Humanas en Tiempo Real

Integrantes:

Jhonatan Castaño Ibarra - A00375798

Andrés Pino - A00156800

(Proyecto Final - Inteligencia Artificial 1)

ii. Abstract

Este proyecto presenta el desarrollo de un sistema integral para la detección y clasificación de actividades humanas en tiempo real, utilizando la librería MediaPipe para la estimación de pose y algoritmos de aprendizaje automático para la clasificación. El sistema identifica seis actividades específicas: caminar hacia la cámara, caminar alejándose, girar 90 grados, girar 180 grados, sentarse y ponerse de pie. Se implementó un pipeline completo desde la extracción de características hasta la implementación en tiempo real, logrando una precisión aproximada del 69.46% con un modelo de Regresión Logística.

iii. Introduction

El Reconocimiento de Actividades Humanas (HAR) es un área de creciente interés en la Inteligencia Artificial. Tiene aplicaciones en videovigilancia, salud, interacción humano-computadora y deportes. El proyecto se centra en seis actividades básicas y busca una solución práctica con recursos modestos en tiempo real, usando MediaPipe para extraer información esquelética. El objetivo es detectar y clasificar las actividades en tiempo real a través de una interfaz gráfica.

iv. Theory

MediaPipe Pose permite extraer 33 puntos clave del cuerpo humano. Estos landmarks se normalizan para ser independientes de la posición en la imagen. A partir de estos landmarks se calculan características como coordenadas, ángulos articulares, distancias y velocidades. Estas características se utilizan como entrada para modelos supervisados de aprendizaje automático, como Regresión Logística, Random Forest y SVM, que asignan la actividad a cada muestra.

v. Methodology

El flujo de trabajo siguió estos pasos: definición de actividades, grabación de videos, extracción de características con MediaPipe, almacenamiento de datos, análisis exploratorio, entrenamiento de modelos (Random Forest, SVM, Logistic Regression, etc.), evaluación y selección del mejor modelo, implementación de la GUI con PyQt5 para la clasificación en tiempo real y automatización del pipeline.

vi. Results

El modelo de Regresión Logística obtuvo un Accuracy de 69.46%. Otros modelos evaluados incluyen Random Forest, SVM, Gradient Boosting, KNN y XGBoost, con desempeños inferiores. Las métricas se evaluaron con un conjunto de prueba de 1849 muestras y 101 características.

vii. Results Analysis

El modelo más simple, Regresión Logística, superó a modelos más complejos, posiblemente por la separabilidad de las características. Un Accuracy de 69.46% es aceptable pero con margen de error. Se sugiere revisar la matriz de confusión y mejorar el dataset para mejorar la generalización.

viii. Conclusions and Future Work

Se desarrolló un sistema de detección y clasificación de actividades humanas en tiempo real con precisión moderada. Se recomienda ampliar el dataset, explorar técnicas de aumento de datos, y evaluar modelos más complejos como redes neuronales. También se sugiere analizar errores y mejorar la robustez ante variaciones en las condiciones de grabación.

ix. Bibliographic References

- [1] Google, 'MediaPipe Solutions,' Google AI. [Online]. Available: https://ai.google.dev/edge/mediapipe/solutions/guide. [Accessed: 04 June 2025].
- [2] OpenCV Team, 'OpenCV Library,' OpenCV.org. [Online]. Available: https://opencv.org/. [Accessed: 04 June 2025].
- [3] Scikit-learn Developers, 'scikit-learn: Machine Learning in Python,' scikit-learn.org. [Online]. Available: https://scikit-learn.org/. [Accessed: 04 June 2025].
- [4] Riverbank Computing, 'PyQt5,' Python Package Index. [Online]. Available: https://pypi.org/project/PyQt5/. [Accessed: 04 June 2025].