Základy kombinatorické a výpočetní geometrie 2.série, školní část

Pavel Mikuláš (Lord) 5.10.2020

Příklad 1

Najděte šest navzájem různých konvexních množin C_1, \ldots, C_6 v rovině takových, že průnik každé trojice z C_1, \ldots, C_6 obsahuje polopřímku, ale průnik všech C_1, \ldots, C_6 polopřímku neobsahuje.

Nalézt 4 takové množiny je snadné, pouze vezmeme všechny uzavřené poloprostory určené osami v \mathbb{R}^2 . To jsou množiny:

$$C_1 = \{(x,y)|x \in \mathbb{R}, y \ge 0\}$$
 horní polorovina
 $C_2 = \{(x,y)|x \in \mathbb{R}, y \le 0\}$ dolní polorovina
 $C_3 = \{(x,y)|x \ge 0, y \in \mathbb{R}\}$ pravá polorovina
 $C_4 = \{(x,y)|x \le 0, y \in \mathbb{R}\}$ levá polorovina

Poloroviny jsou konvexní množiny. Průnik každých 2 těchto množin je buď jedna z os, nebo jeden z kvadrantů včetně hraničních přímek. Další polorovina poté buď osu rozdělí na dvě polopřímky s níž jednou bude v průniku, nebo se dotýká kvadrantu vzniklého průnikem a má s kvadrantem společnou jednu z hraničních polopřímek. Průnikem všech 4 množin je poté pouze jediný bod a to počátek.

K těmto množinám poté doplníme 2 další konvexní množiny, a to tak, abychom zachovali vlastnosti průniků C_1, \ldots, C_4 . Přidáme tedy triviální množinu $\mathbb{R}^2 = C_5$ a konvexní obal os x a y tedy množinu:

$$C_6 = M = conv(\{(x, y) | x \in \mathbb{R}, y = 0\} \cup \{(x, y) | x = 0, y \in \mathbb{R}\})$$

Z obrázku je vidět, že tyto dvě množiny jsou různé. Tedy pokud uvážíme jakékoliv 2 body x_1 a x_2 na ose x a 2 body y_1 a y_2 na ose y, budeme vždy schopni nalézt bod b, který neleží v $conv(\{x_1, x_2, y_1, y_2\})$.

Zároveň vidíme, že C_5 i C_6 v sobě obsahují všechny polopřímky vedoucí z počátku po osách x nebo y. Což jsou přesně ty polopřímky, které jsou v průniku trojic C_1, \ldots, C_4 a zároveň $C_1 \cap \cdots \cap C_6 = \{(0,0)\}.$

Příklad 2

Zvolíme soubor $\mathcal{C} = \{C_1, \dots, C_5\}$ 5ti obdélníků následovně:

Vidíme, že pro každou trojici obdélníků vždy vybereme 2 sousedící obdélníky, tedy budeme mít dvojici s neprázdným průnikem. Takto zvolené obdélníky mají tedy (3,2)-vlastnost. Barevné body na obrázku znázorňují "špendlíkování", tedy výběr takových bodů, že každý obdélník obsahuje aspoň jeden bod z množiny "špendlíků" $X = \{(2,2),(2,4),(3,3)\}$. Velikost množiny X je rovna 3. Nahlédneme, že velikost X je minimální, protože bod může vždy ležet v průniku maximálně 2 obdélníků a obdélníků máme 5, takže potřebujeme minimálně 3 body na pokrytí všech obdélníků. Tedy *špendlíkovost* $s(\mathcal{C}) = 3$.

1 Příklad 3

Množiny M_1 (červeně) a M_2 (modře).

Oranžově způsoby, jak rozdělit M_1 na dvě množiny se stejným počtem prvků. Zeleně způsoby, jak rozdělit M_2 na dvě množiny se stejným počtem prvků. Černě dělící nadrovina z věty o sendviči v původním znění.

Vidíme, že v otevřených poloprostorech určených černou dělící nadrovinou rozdělující M_1 a M_2 jsou pro M_2 různé počty bodů. Vidíme zároveň, že i jakákoliv rotace dělící nadroviny nám splnění podmínky pro stejný počet bodů v každém poloprostoru nezajistí. Pokud bychom se pokusili rozdělit M_1 a M_2 pomocí nějaké dělící nadroviny rozdělující M_2 na otevřené poloprostory se stejným počtem bodů, budou body M_1 vždy všechny ležet v jednom z poloprostorů určených danou nadrovinou. Tedy neexistuje žádná dělící nadrovina h taková, že by M_1 a M_2 rozdělila tak, aby v každém otevřeném poloprostoru určeném nadrovinou h ležel stejný počet bodů z M_1 a z M_2 .