

Travel Review Ratings

Subject: Machine Learning

Presented By,

Rajaraman Ganesan – 251056279 (M.Eng)

Vatsal Shah – 251041322 (M.Eng)

Department of Electrical & Computer Engineering (M.Engg)

Objective & Goal **Dataset Overview** Visualization Approach Design Overview Machine Learning Results Model Future Work & Amazon SageMaker *QR Code

Objective & Goal

Understand the <u>process</u> & <u>difference</u> by applying algorithms with <u>custom models</u> and <u>pre-build libraries</u> in Python

Apply algorithm in most-demanded languages in the industry - **Python & R**

Compare process, results and time complexity

Use **Amazon SageMaker** - understand the flow

Objective & Goal **Dataset Overview** Visualization Approach Design Overview Machine Learning Results Model Future Work & Amazon SageMaker *QR Code

Dataset overview

- Travel planning has become one of important commercial use.
- Many tourists look for some places like malls, restaurants or vacation spots, etc. online in recent times.
- Online review plays a critical role in the tourism industry, which mainly offers services and focuses on customer satisfaction.

No Kaggle Kernels

Oriented: UCI Machine Learning Repository (Link) Attributes: 25

Tuples: 5456

Attribute 1: Unique user id

Attribute 2: Average ratings on churches

Attribute 3: Average ratings on resorts

Attribute 4: Average ratings on beaches

Attribute 5: Average ratings on parks

Attribute 6 : Average ratings on theatres Attribute 7: Average ratings on museums

Attribute 8: Average ratings on malls

Attribute 9: Average ratings on zoo

Attribute 10: Average ratings on restaurants

Attribute 11: Average ratings on pubs/bars Attribute 12: Average ratings on local services

Attribute 13: Average ratings on burger/pizza shops

Attribute 14: Average ratings on hotels/other

lodgings

Attribute 15: Average ratings on juice bars

Attribute 16: Average ratings on art galleries Attribute 17: Average ratings on dance clubs

Attribute 18: Average ratings on swimming pools

Attribute 19: Average ratings on gyms

Attribute 20: Average ratings on bakeries Attribute 21: Average ratings on beauty & spas

Attribute 22: Average ratings on cafes

Attribute 23: Average ratings on view points

Attribute 24: Average ratings on monuments

Attribute 25: Average ratings on gardens

In [9]: ▶ # Importing the dataset data = pd.read_csv('C:/train.csv') print(data.shape)

(5456, 25)

data.head()

Out[9]:

		User	Category 1	Category 2	Category 3	Category 4	Category 5	Category 6	Category 7	Category 8	Catego	
	0	User 1	0.0	0.0	3.63	3.65	5.0	2.92	5.0	2.35	2.0	
	1	User 2	0.0	0.0	3.63	3.65	5.0	2.92	5.0	2.64	2.0	
	2	User 3	0.0	0.0	3.63	3.63	5.0	2.92	5.0	2.64	2.0	
	3	User 4	0.0	0.5	3.63	3.63	5.0	2.92	5.0	2.35	2.0	
	4	User 5	0.0	0.0	3.63	3.63	5.0	2.92	5.0	2.64	2.0	

5 rows × 25 columns

ew Plots Session Build Debug Profile Tools Help

data ×																	
norts	Beaches	Parks :	Theatres	Museums :	Malls :	Zoo :	Restaurants	Pubs/Bars	Local Services	Burger/Pizza Shops	Hotels/Other Lodgings	Juice : Bars	Art : Galeries	Dance Clubs	Swimming Pools	Gyms	Bakeries
0.00	3.63	3.65	5.00	2.92	5.00	2.35	2.33	2.64	1.70	1.69	1.70	1.72	1.74	0.59	0.50	0.00	
0.00	3.63	3.65	5.00	2.92	5.00	2.64	2.33	2.65	1.70	1.69	1.70	1.72	1.74	0.59	0.50	0.00	
0.00	3.63	3.63	5.00	2.92	5.00	2.64	2.33	2.64	1.70	1.69	1.70	1.72	1.74	0.59	0.50	0.00	
0.50	3.63	3.63	5.00	2.92	5.00	2.35	2.33	2.64	1.73	1.69	1.70	1.72	1.74	0.59	0.50	0.00	
0.00	3.63	3.63	5.00	2.92	5.00	2.64	2.33	2.64	1.70	1.69	1.70	1.72	1.74	0.59	0.50	0.00	
0.00	3.63	3.63	5.00	2.92	5.00	2.63	2.33	2.65	1.71	1.69	1.69	1.72	1.74	0.59	0.50	0.00	
5.00	3.63	3.63	5.00	2.92	3.03	2.35	2.33	2.64	1.73	1.68	1.69	1.71	1.75	0.59	0.50	0.00	
5.00	3.63	3.63	5.00	2.92	5.00	2.63	2.33	2.64	1.70	1.68	1.69	1.71	1.74	0.60	0.50	0.00	
5.00	3.64	3.64	5.00	2.92	3.03	2.62	2.32	2.63	1.71	1.67	1.68	1.70	0.75	0.60	0.00	0.00	
5.00	3.64	3.64	5.00	2.92	5.00	2.35	2.32	2.63	1.69	1.67	1.67	1.70	0.74	0.59	0.00	0.00	
0.53	3.65	3.67	5.00	2.92	5.00	2.61	2.32	2.63	1.67	1.66	1.67	1.69	0.74	0.59	0.00	0.00	
0.53	3.65	3.68	5.00	2.93	5.00	2.61	2.31	2.62	1.67	1.65	1.66	1.68	0.73	0.58	0.00	0.00	
0.54	3.66	3.68	5.00	2.93	5.00	2.61	2.30	2.62	1.67	1.64	1.65	1.28	0.72	0.58	0.00	0.00	
0.54	3.66	3.67	5.00	2.93	5.00	2.32	2.30	5.00	1.65	1.64	1.65	1.27	0.76	0.62	0.00	0.00	
0.53	3.67	3.66	2.95	2.93	5.00	2.33	2.31	2.62	1.65	1.64	1.65	1.27	0.76	0.53	0.00	0.00	
0.52	3.69	3.66	2.95	2.93	5.00	2.98	2.31	2.33	1.65	1.64	1.64	1.27	0.76	0.53	0.00	0.00	
0.52	3.68	3.66	2.96	2.93	2.96	2.98	1.70	2.62	1.65	1.64	1.65	1.27	0.76	0.53	0.00	0.00	
0.53	3.69	3.66	2.95	2.93	2.95	3.00	1.70	2.62	1.65	1.64	1.65	1.27	0.76	0.53	0.00	0.00	
0.52	5.00	3.66	2.96	2.93	2.95	2.99	1.70	2.62	1.65	1.64	1.65	1.27	0.77	0.59	0.00	0.00	
5.00	3.70	3.66	2.95	2.93	2.94	2.99	1.70	2.62	1.65	1.64	1.65	1.27	0.81	0.59	0.00	0.00	
0.51	5.00	3.67	2.94	2.93	2.95	2.98	1.70	2.62	1.65	1.64	1.65	1.27	0.81	0.64	0.00	0.00	
5.00	5.00	3.66	2.94	2.93	2.94	3.00	1.70	2.31	1.65	1.64	1.64	1.27	0.81	0.62	0.00	0.00	
5.00	5.00	3.66	2.95	2.93	2.94	3.00	1.70	2.31	1.65	1.64	1.64	1.27	0.91	0.62	0.00	0.00	
0.51	5.00	3.66	2.95	2.94	2.95	2.97	1.71	2.31	1.65	1.64	1.64	1.27	1.69	0.68	0.00	0.00	
0.51	0.52	3.66	2.96	2.94	2.94	2.63	1.71	2.31	1.66	1.64	1.64	1.67	1.70	0.70	0.52	0.00	
0.52	0.52	3.66	2.95	2.94	2.94	2.96	1.71	2.31	1.66	1.64	1.64	1.66	1.76	0.69	0.53	0.00	
0.55	0.52	3.66	2.95	2.94	2.94	2.63	1.72	2.31	1.66	1.64	1.64	1.66	1.76	0.69	0.55	0.00	
0.51	5.00	3.67	2.95	2.94	2.94	2.63	1.71	2.31	1.66	1.64	1.64	1.66	1.76	0.69	0.55	0.00	
0.53	0.52	3.67	2.95	2.94	2.94	2.63	1.71	2.31	1.66	1.64	1.64	1.65	1.76	0.57	0.55	0.00	
0.53	0.52	3.67	2.96	2.94	2.94	2.63	1.71	2.31	1.66	1.64	1.64	1.65	1.76	0.57	0.56	0.00	

Objective & Goal **Dataset Overview** Visualization Approach Design Overview Machine Learning Results Model Future Work & Amazon SageMaker *QR Code

Process Design

Unsupervised learning approach

Don't have a preliminary info on output values

Explore data to find some intrinsic structures in them

Use of clustering algorithm technique like k-means algorithm.

Approach Design

Objective & Goal **Dataset Overview** Visualization Approach Design Overview Machine Learning Results Model Future Work & Amazon SageMaker *QR Code

Visualization Overview

Shows 24 categories reviewed by users with hist diagram

Continue...

Shows 24 categories reviewed by users with density diagram

Continue...

Shows 24 categories reviewed by users with box plot diagram

Objective & Goal **Dataset Overview** Visualization Approach Design Overview Machine Learning Results Model Future Work & Amazon SageMaker *QR Code

- Choose no: of clusters
- Initialization
- Assign cluster
- Move centroid
- Optimization
- Convergence

- Within-cluster sum of squares is a measure of the variability of the observations within each cluster
- Idea behind using elbow method to choose after which WSS is almost constant.

- Choose no: of clusters
- Initialization
- Assign cluster
- Move centroid
- Optimization
- Convergence

- Initialize k points, randomly
- Value of clusters are determined by elbow curve.

- Choose no: of clusters
- Initialization
- Assign cluster
- Move centroid
- Optimization
- Convergence

- Dist. between data points and centroid are computed.
- Based on min. Distance, data are divided into groups.

- Choose no: of clusters
- Initialization
- Assign cluster
- Move centroid
- Optimization
- Convergence

- Compute the mean of all three dots.
- Reposition blue, green, pink cluster centroid to this mean.

- Choose no: of clusters
- Initialization
- Assign cluster
- Move centroid
- Optimization
- Convergence

• Redo the above steps till cluster stop changing their positions.

- Choose no: of clusters
- Initialization
- Assign cluster
- Move centroid
- Optimization
- Convergence

• Divide the data points to clusters, once the algorithm converges.

Objective & Goal Approach Design Machine Learning Model

Dataset Overview

Visualization Overview

Results

Amazon SageMaker

Future Work & *QR Code

R - Library

- library (cluster) –Finding groups in data
- library (ggplot2)
 - o system for declaratively creating graphs
- library (factoextra)
 - Used to visualize clusters

Results - R

- Method to validate the number of clusters is the elbow method.
- Help finding the appropriate number of clusters in a dataset.
- Here, 3 clusters are suggested.

Continue...

- As it a multidimensional dataset, to visualize cluster plot PCA is used.
- Reduce the dimensionality of a data set consisting of many variables correlated with each other

Continue...

Silhouette Plot shows for each cluster:

- Each vertical line corresponds to an element.
- The average silhouette width

Results - Python

Plot along with random centroid

Assigning new centroid

(Screenshot taken during evaluation process)

Objective & Goal **Dataset Overview** Visualization Approach Design Overview Machine Learning Results Model Future Work & Amazon SageMaker *QR Code

Amazon SageMaker

ML Process on AWS

Amazon SageMaker

Pre-built notebook instances Build

Fully-managed hosting at scale

Highly-optimized machine learning algorithms

GLUON

Deploy

Deployment without engineering effort

Easier training with hyperparameter optimization

One-click training for ML, DL, and custom algorithms Train

Dashboard

Notebook instances

Instance in pending status

In Service

Jupyter Lab

Jupyter

Examples

On AWS

Objective & Goal **Dataset Overview** Visualization Approach Design Overview Machine Learning Results Model Future Work & Amazon SageMaker *QR Code

Technologies Used

Future work

QR Code

Access resources and source code

Resources:

- Getting started with Amazon SageMaker: <u>Link</u>
- Use the Amazon SageMaker SDK: Python: <u>Link</u>
- 'Evaluation of Partitioning Clustering Algorithms for Processing Social Media Data in Tourism domain', Shini Renjith, A. Sreekumar, M. Jathavedan, 2018 IEEE Recent Advances in Intelligent Computational Systems (RAICS) | December 06 - 08, 2018, Trivandrum Link
- 'Use and Impact of Online Travel Reviews', Markus Schuckert , Liu XianweiRob Law Link
- 'Hospitality and Tourism Online Reviews: Recent Trends and Future Directions', Ulrike Gretzel, Kyung-Hyan Yoo Link
- SageMaker Examples: <u>Link</u>
- Python vs R Comparison: <u>Link</u>
- Python Libraries: Link
- R Libraries : <u>Link</u>
- K-means Algorithm: Link

THANK YOU