

Millimeter wave: An excursion in a new radio interface for 5G

Alain Mourad

Cambridge Wireless, London 03 February 2015

Creating the Living Network

NTERDIGITAL.

Outline

5G radio interface outlook

Millimeter wave – A new interface

Few Takeaways

5G: the evolution to the smarter living network

5G radio interface: initial requirements & enablers

Global consensus emerging on initial requirements and enabling concepts [ITU-R] ...

100 Mbps 50 to 100 5 to 15 10 to 50 1 to 10 1 ms TBps/Km² times 4G to 1 Gbps Gbps times 4G User experienced Peak data rate Area traffic Spectral efficiency **Energy efficiency** Latency data rate capacity Small cell Ultra fast Spectrum sharing densification processing Ultra fast Spectrum Massive extension switching multiplexing **Multi-RAT Ultra fast** Interference throughput coordination cooperation

© 2014 InterDigital, Inc. All rights reserved.

5G radio interface: technology trends

Advanced waveforms and multiple access

- More flexible waveforms than pure OFDM (e.g. RBF-OFDM; FBMC; etc.)
- Non-orthogonal multiple access (NOMA)
- Broader set of modulation and coding schemes

Advanced antenna and multi-site technologies

- 3D-beamforming and MU-MIMO
- Active Antenna System (AAS)
- Massive MIMO
- Network MIMO (Adv. CoMP)

Novel duplexing schemes

- Joint TDD-FDD operation
- Dynamic TDD
- Single channel full duplexing

New and flexible spectrum usage

Our focus next

- New large spectrum at mmW frequencies
- Carrier Aggregation of discontinuous bands
- Dual band split user and control planes
- Joint multi-RATs management
- Cognitive techniques (Spectrum Sensing)

Advanced interference coordination and cancellation techniques

Flexible functional split (virtualization / cloudification)

Flexible backhauling and joint optimization with access

5G radio interface: development timeline

NTER DIGITAL.

Millimeter Wave A new radio interface for 5G

mmWave: the bandwidth

Abundant Millimeter Wave Spectrum can provide fiber-like capacity (multi-Gbps data rates)

Band	Available Bandwidth (GHz)
LMDS	1.3
(27.5-28.35 GHz, 29.1-29.25 GHz, and 31- 31.3 GHz)	
39 GHz Band	1.4
(38.6-40 GHz)	
37/42 GHz Bands	2.1
(37.0-38.6 GHz and 42.0-42.5 GHz)	
60 GHz Bands	14.0
(57-64 GHz and 64-71 GHz)	
70/80 GHz Bands	10.0
(71-76 GHz, 81-86 GHz)	
24 GHz Bands	0.4
(24.25-24.45 GHz and 25.05-25.25 GHz)	

- Industry attention for exclusive licensing
- Need to deal with incumbents (e.g. FSS)
 - Industry attention on 60
 GHz upper part & E-band
 - All options on the table for spectrum licensing
 - Global harmonization possible

mmWave: the range

~ 20 dB free space path loss attenuation compared to below < 6 GHz + additional gaseous (Water Vapor / Oxygen) attenuation → Inherently short range → Enables X factor of densification

Few Kilometers in outdoor LOS

Target in 5G

→ 100-200m
outdoor
→ 10-50m
indoor

Few meters in indoor NLOS

mmWave: the beam

2-3 degrees beam width → array of antennas for wide angular coverage & multiple simultaneous beams/links @low interference → Enables high multiplexing gain

Electronically steerable phased array antennas to enable dynamic (re)configuration for guaranteed link reliability (in particular in mobile scenarios)

Small form factor (thanks to small antenna aperture and short interantenna distance) enabling the support of large number of antennas at the TX and RX

mmWave: the capacity

$(20 \times 10 \times 5) = 1000 \times capacity increase$

Wide contiguous X 20 Throughput gain bandwidth Short range and narrow X 10 Densification gain beams Multiple simultaneous **X** 5 Multiplexing gain links in the same band

mmWave: the network

2020

Full mmH Architecture 2023

mmWave: the backhaul

InterDigital has high data rate (>1 Gbps), mesh backhaul solution that provides a self-healing, plug-n-play, low cost solution

- System-oriented approach to develop future small cell platform
 - Wireless backhaul is an enabler
 - Extend to cloud based management, edge caching and other services
- Low Cost & High Capacity
 - Leverage high volume WiGig baseband
 - Phased Array steerability reduces installation cost
 - > 1 Gbps over 150m+
- Scalable system for outdoor small cell deployment
 - New sites can be added without having to re-align antenna pointing at old sites
 - 1Gbps per channel links provide ample near term capacity, with future expansion to all four 2GHz unlicensed channels

mmWave: the access

Options for Network Integration

3GPP

- mB underlay integrated with RAN architecture, with no Core Network impact
- Tight interworking at lower-layers between new mmWave RAT and evolved LTE RAN
- Control plane functions provided by eNB and data capacity provided by local mB
- mB joint access and backhaul design

802.11 (Wi-Fi)

- Interfaces with Core Network using standards based WLAN/3GPP interworking
- Mesh extension of existing mmWave MAC/PHY
- Shared mB equipment for backhaul and access
- Multi-band (2.4/5/60 GHz) support for enhanced coverage

mB = Millimeter Wave Base station; mBA = mB Aggregator

15

mmWave: ongoing development efforts

Research

Europe

- H2020 5G PPP
- Ongoing FP7 (e.g. MiWaves)
- 5G centers (e.g. Surrey; Dresden)

Asia

- Japan AHG 2020 and beyond
- Korea 5G Forum
- China IMT2020 promotion group

Americas

- Universities (e.g. NYU; Stanford)
- Intel SRA;
 Qualcomm Inst.

Regulation

International

- WP5D feasibility study above 6 GHz
- WRC'19 agenda setting at WRC'15

FCC (USA)

Notice of Inquiry for above 24 GHz

OFCOM (UK)

• Call for Inputs for above 6 GHz

Standards

IEEE 802.11

• NG60 study group

ETSI

• mWT ISG (V & E bands for BH)

3GPP

• Yet to come

NTERDIGITAL.

Few Takeaways

Few Takeaways

- 5G radio interface will need to respond to very challenging and diverse requirements, and is therefore expected to include 2 or more complementary technologies (< and > 6 GHz).
- •5G mmW spectrum will include more than one band (e.g. LMDS, V, E bands) with both licensed and unlicensed regimes.
- •5G mmW technologies will cover both segments of the small cell network, namely the backhaul and access.
- •There is still room for lot of innovations in particular for the mobile access and its joint optimization with the backhaul.

Come and see our mmW backhaul demo at MWC'15 (stand 7A721)

微信扫描以下二维码,免费加入【5G 俱乐部】,还赠送整套:5G 前沿、NB-lo T、4G+(Vol.TE)资料。

