	PART – B (5 × 10 = 50 Marks) Answer ALL Questions	Marks	BL	со	
26. a.i.	Determine the orbit eccentricity of a satellite moving in an elliptical orbit having semi-major axis equal to 16000 km, if the difference between apogee and perigee is 25000 km, and the earth radius is 6360 km.	4	3	1	
ii.	Explain the information required to determine the antenna look angles for GEO satellite with neat diagram.	6	3	, 1 , , , , , , , , , , , , , , , , , ,	
b.i.	(OR) The orbital period of a satellite is 650 minutes. Determine the semi-major axis of the elliptical orbit.	4	3	1	
ii.	Explain the effect of non-spherical earth.	6	3	1	
27. a.	Drive the link power budget equation for the EIRP-losses and explain each term in it.	10	4	2	
b.	(OR) Explain the effects of rain on satellite communication with N-S and E-W manures.	10	3	2	
28. a.	How the altitude of satellite is controlled? Explain in detail with classification.	10	3	3	
	(OR)				
b.	How do the TT & C subsystem perform abroad the space craft?	10	3	3	
29. a.	Derive the downlink analysis of FDMA for K carries which share the output power equally, and each requires a bandwidth B, with respect to carrier to noise ratio.	10	4	4	
	(OR)				
b.	Drive the expression for the maximum number of channels that can be estimated in a CDMA system and what are its advantages.	10	4	4	
30. a.	With neat diagram, describe the video compression process used in MPEG-2.	10	3	5	
	(OR)				
b.	With neat block diagram explain the operation of home receiver indoor unit.	10	3	5	

Marks BL CO PO

3

29NF6&7/18ECE223T Page 4 of 4

Reg. No.			
reg. 1101			

B.Tech. DEGREE EXAMINATION, NOVEMBER 2022

Sixth and Seventh Semester

18ECE223T – SATELLITE COMMUNICATION AND BROADCASTING

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note:	
(i)	Part - A should be answered in OMR sheet within first 40 minutes and OMR sheet should be hande
()	over to hall invigilator at the end of 40 th minute.
(ii)	Part - B should be answered in answer booklet.

Time: 2½ Hours						Max. Marks: 75						
			$PART - A (25 \times 1 = 2)$	25 N	Marks)	Marks	BL	CO	PO			
			Answer ALL Que									
	1.	If th	e orbit is in circular form, then its e			1	1	1	1			
					e < 0							
		` /		D)	e=1							
	2.	Fron	n Kepler's law, it states that for equ	ual	time intervals, satellite sweep out	1	1	1	1			
		(A)	Unequal (B)	Equal							
		. /	1		More							
	3.		point where the orbit crosses the chis known as			1	2	1	1			
		(A)			Descending node							
		(C)	Line to apsides (D)	Line of nodes							
	4.	The the s	sun appears as an extremely noisy ignal from the satellite and this eff	ect	is termed as	1	1	1	1			
		(A)			Sub satellite							
		(C)	Satellite (D)	Sun transit outage							
	5.	to fr	versal time in the normal form of hactional days as			1	2	1	1			
			$UT_{days} = \frac{1}{24} \left(hours \times \frac{minutes}{60} + \frac{se}{60} \right)$									
			$UT_{days} = \frac{1}{24} \left(hours + \frac{minutes}{60} \times \frac{se}{60} \right)$									
		(C)	$UT_{days} = \frac{1}{24} \left(hours \times \frac{minutes}{60} \times \frac{se}{60} \right)$	360	$\left(\frac{ads}{0}\right)$							
8		(D)	$UT_{days} = \frac{1}{24} \left(hours + \frac{minutes}{60} + \frac{se}{60} \right)$	eco:	$\left(\frac{nds}{00}\right)$							
	6	The	satellite orbit close to the earth is _			1	1	2	3			
	٠.			B)	Perigee							
				D)	Zenith							

7	. The overall noise temperature T _e , absolut F are related as		1	2	2	3		16.	used by all users for all time.	1	1	4	3
	(A) $T_e = T(F-1)$ (B)	$T_e = F(T-1)$							(A) FDMA (B) TDMA				
	(C) $T = T_e(F-1)$ (D)	$T_e = (T)(F)$							(C) CDMA (D) LDMA				
8	. The relationship between $\begin{bmatrix} BO \end{bmatrix}_i$ and $\begin{bmatrix} BO \end{bmatrix}$.0	1	2	2	3		17.	A form of CDMA, where a digital code is used to continually change the frequency of the carrier is	1	1	4	4
	(A) $[BO]_o = [BO]_i - 10dB$ (B)	$[BO]_o = [BO]_i - 6dB$							(A) Frequency hopping (B) Spread spectrum				
	(C) $[BO]_o = [BO]_i - 5dB$ (D)	$[BO]_o = [BO]_i - 15dB$					41		(C) Store and forward (D) SPADE				
9	. The effective noise temperature of the rain	is given by	1	1	2	3		18.	In FDMA technique, the voice band channels are assigned on "as needed"	1	2	4	4
		$T_{rain} = T_a [1 + A]$							basis (A) PAMA (B) SSMA	-			
									(A) PAMA (B) SSMA (C) CDMA (D) DAMA				
	(C) $T_{rain} = T_a \left[1 - \frac{1}{4} \right]$ (D)	$T_{rain} = T_a \left[1 + \frac{1}{A} \right]$							(C) CDINIT (D) DAWA				
10	. A satellite link is operating at 14 GHz ha	. "」	1	2	2	4		19.	The multiple earth stations share a satellite on the same frequencies using technique.	1	1	4	4
10.	and free space loss 207 dB. The atmosp		-	-	-				(A) Frequency reuse (B) Multiplexing				
	antenna pointing loss is 0.5 dB depolarization								(C) Mixing (D) Frequency hopping				
	total line loss for clear sky condition?							20	701 (11) 1 100 (10) (11)	1	2	1	2
		210.5 dB						20.	The satellite sends different information signals using vertical/horizontal	1	2	4	3
	(C) 219.5 dB (D)	220.5 dB							electromagnetic polarization is(A) Multiple coverage across (B) Dual polarization				
11	Le a serie etablica i CEO a dell'es de col		1	1	3	1			(C) Spatial separation (D) Spread spectrum				
11.	In a spin stabilized GEO satellite, the spin(A) Perpendicular to the orbital (B)		1	1	J	1			() I - P				
	plane	in the plane of the oroit						21.	For DBS TV transmission the downlink frequency is about	1	1	5	7
	(C) Inclined at 45° at the orbital (D)	Inclined at 6° to the orbit plane							(A) 14 GHz (B) 10 GHz				
	plane	morniou ar o to mo oron plane							(C) 6 GHz (D) 12 GHz				
10	The smallest band that C C1 14		1	1	3	2		22.	The type of modulation is used in DBS is	1	1	5	7
12.	The available bandwidth of a C-band trans	-	1	1	3	3			(A) FM (B) AM				
	• • • • • • • • • • • • • • • • • • • •	500 MHz 1000 MHz							(C) PCM (D) DPCM				
	(C) 330 MHZ (D)	1000 WH12								,	2	_	•
13.	The satellite in which the antenna is mo	ounted on a despun platform is	1	2	3	1		23.	Moving Picture Express Group (MPEG-2) is designed for high-quality DVD with a data rate of	Ţ	2	5	2
	(A) Geostationary satellite (B)	Sun synchronous satellite	120						(A) 3 to 6 Mbps (B) 4 to 6 Mbps				
		3-axis body stabilized satellite							(C) 5 to 6 Mbps (D) Only 6 Mbps				
14	The satellite altitude may be altered alon	og normal to the orbital plane is	1	2	3	1		24.	The minimum and maximum orbital spacing for satellite is	1	1	5	7
17,	called as	ig normal to the orbital plane is			ŭ.				(A) 2° and 10° (B) 10° and 18°				
		Pitch axis							(C) 2° and 9° (D) 12° and 19°				
		Spin axis						0.5		1	2	_	7
								25.	Generally the VAST network is operated in		2	5	,
15.	The isotropic power gain for a paraboloid is	lal antenna in antenna subsystem	1	1	3	1			(A) FDMA (B) TDMA (C) CDMA (D) SDMA				
	$(A) \qquad (\pi D^2) \qquad (B)$	$(\pi\lambda^2)$.*				
	$G = \eta \left(\frac{hD}{\lambda} \right)$	$G = \eta \left(\frac{hh}{D} \right)$											
	(C) $(\pi D)^2$ (D)	(πD)											
	$G = \eta \left(\frac{\pi D}{2}\right)^{-1}$	$G = \eta \left(\frac{\pi D}{\lambda^2} \right)$							•				
	(N.)	(<i>l</i> ,) .							·				