Computer Graphics (4731) Digital Media Fundamentals

Joshua Cuneo

WWW.PVPONLINE.COM

Vector

Closed Polyline

Open Polyline

Rasterization

Bitmap aka Raster Graphics

Pegboard Analogy

Pegboard Analogy

Resolution

Different sample size, same bit depth

 $500 \times 350 = 175,000$ pixels

Image Size

640 px

480 px

Frame Aspect Ratio

Frame Size

1920 px

1080 px

Frame Aspect Ratio

16

4/3 = 640/480

16/9 = 1920/1080

480i Frame height

Maintaining Aspect Ratios

- Aspect ratio R = Width/Height of world window
- What if world window and viewport have different aspect ratios?

• Two possible cases:

Aspect ratio R

Window

W/R

W

Viewport

Bit Depth

Same sample size, different quantization levels

24 colors

8 colors

4 colors

RGB Color

150 = 10010110

01100000 11101000 10010110

CMYK

RGB

RGB

CMYK

Additive

Subtractive

Screen (Additive)

Print (Subtractive)

Color Gamut

Color Blue Red Green

Color

- Intuitive
- Accurate
- Fast

Color

■ Intuitive

■ Accurate

■ Fast

HSV

Color

Color

255 255	255 255	255 255	0	0	255 255	255 255	255 255	255 255	255 255
255	255	255	255	255	255	255	255	255	255
255	255	0	0	0	0	255	255	255	255
255	255	0	0	0	0	255	255	255	255
255	255	255	255	255	255	255	255	255	255
255	0	255	0	0	255	0	255	255	255
255	0	0	0	0	0	0	255	255	255
255	255	0	255	255	0	255	255	255	255
255	255	0	0	0	0	255	255	255	255
255	255	0	0	0	0	255	255	255	255
255	255	255	255	255	255	255	255	255	255
255	255	255	0	0	255	255	255	255	255
255	255	255	0	0	255	255	255	255	255
255	255	255	255	255	255	255	255	255	255

```
1111 1111 . 1111 1111 . 1111 1111
1111 1111 . 1111 1111 . 1111 1111
1111 1111 . 1111 1111 . 1111 1111
0000 0000 . 0000 0000 . 1111 1111
0000 0000 . 0000 0000 . 1111 1111
1111 1111 . 1111 1111 . 1111 1111
1111 1111 . 1111 1111 . 1111 1111
1111 1111 . 1111 1111 . 1111 1111
1111 1111 . 1111 1111 . 1111 1111
1111 1111 . 1111 1111 . 1111 1111
1111 1111 . 1111 1111 . 1111 1111
1111 1111 . 1111 1111 . 1111 1111
0000 0000 . 0000 0000 . 1111 1111
0000 0000 . 0000 0000 . 1111 1111
0000 0000 . 0000 0000 . 1111 1111
0000 0000 . 0000 0000 . 1111 1111
1111 1111 . 1111 1111 . 1111 1111
1111 1111 . 1111 1111 . 1111 1111
1111 1111 . 1111 1111 . 1111 1111
1111 1111 . 1111 1111 . 1111 1111
```

1111 1111 . 1111 1111 . 1111 1111 0000 0000 . 0000 0000 . 1111 1111 1111 1111 . 0000 0000 . 0000 0000 0000 0000 . 0000 0000 . 1111 1111 0000 0000 . 0000 0000 . 1111 1111 1111 1111 . 0000 0000 . 0000 0000 0000 0000 . 0000 0000 . 1111 1111

Alpha Channel

RGB Color

150 = 10010110

01100000 11101000 10010110

Decimal

Base 10

100s 10s 1s

1 0 9

Binary

Base 2

4s 2s 1s

1 0 1

Hexadecimal

Base 16

256s 16s 1s

F 3 A

C 9 1100 1001

C9

RGB Color 255 96 = 01100000 60 232 = 11101000 **E8** 150 = 10010110 96 01100000 11101000 10010110 60E896

Indexed Image

 $8 \times 8 \times 1$ bit = 64 bits = 8 bytes

Color Palettes

Number of possible values = 2^(number of bits)

$$2^8 = 256$$

42 Bit Color

24 Bit Color