Penalized Utility Estimators in Finance

David Puelz (UT Austin) Carlos M. Carvalho (UT Austin) P. Richard Hahn (Chicago Booth)

> SBIES 2016 April 30, 2016

Two problems

1. Investing: Among thousands of choices, which passive funds should I invest in?

Two problems

1. Investing: Among thousands of choices, which passive funds should I invest in?

2. Asset pricing: Which risk factors matter?

Two problems

1. Investing: Among thousands of choices, which passive funds should I invest in?

2. Asset pricing: Which risk factors matter?

How are these connected?

Statistics

An answer: Both can be studied using variable selection techniques from statistics.

How is variable selection (sparsifying) typically done?

⇒ Frequentist / Penalized likelihood: Forward/backward stepwise selection. LARS, LASSO, Group Lasso, Ridge.

⇒ Bayesian: Priors forcing irrelevant coefficients to zero.

How is variable selection (sparsifying) typically done?

⇒ Frequentist / Penalized likelihood: Forward/backward stepwise selection. LARS, LASSO, Group Lasso, Ridge.

Challenges: What stopping criterion? What penalty parameter (λ) ?

⇒ Bayesian: Priors forcing irrelevant coefficients to zero.

Challenges: Mixing inference with desire for sparsity. How should inclusion probabilities be interpreted / used?

Intelligently summarizing the posterior

We can overcome these challenges with a two-step approach.¹

¹ "Decoupling Shrinkage and Selection in Bayesian Linear Models." Hahn and Carvalho. Journal of the American Statistical Association, 2015.

Intelligently summarizing the posterior

We can overcome these challenges with a two-step approach.¹

Given a loss function dependent on parameters θ and action γ to be taken by the scientist:

$$\mathcal{L}(\gamma) = f(\gamma, \theta) + \lambda * \text{penalty}(\gamma).$$

¹ "Decoupling Shrinkage and Selection in Bayesian Linear Models." Hahn and Carvalho. Journal of the American Statistical Association, 2015.

Intelligently summarizing the posterior

We can overcome these challenges with a two-step approach.¹

Given a loss function dependent on parameters θ and action γ to be taken by the scientist:

$$\mathcal{L}(\gamma) = f(\gamma, \theta) + \lambda * \text{penalty}(\gamma).$$

- 1. Characterize uncertainty: $p(\theta|Data)$.
- 2. Optimize $\mathcal{L}(\gamma)$ integrated over this uncertainty.
- 2a. Examine solution path to choose level of sparsity.

¹ "Decoupling Shrinkage and Selection in Bayesian Linear Models." Hahn and Carvalho. Journal of the American Statistical Association, 2015.

The main results...

1. Build high Sharpe ratio, simple ETF portfolios.

ETF	IWR	RSP	IYR	IYW
weight	56%	21.5%	13.9%	8.6%
style	mid-cap	equal weight	real estate	tech

The main results...

1. Build high Sharpe ratio, simple ETF portfolios.

ETF	IWR	RSP	IYR	IYW
weight	56%	21.5%	13.9%	8.6%
style	mid-cap	equal weight	real estate	tech

2. Select risk factors for asset pricing.

The mean-variance setup

- Action: Portfolio weights w.
- ▶ Loss: Given future asset returns, \tilde{R} :

$$\mathcal{L}(w, \tilde{R}) = -\sum_{k=1}^{N} w_k \tilde{R}_k + \frac{1}{2} \sum_{k=1}^{N} \sum_{j=1}^{N} w_k w_j \tilde{R}_k \tilde{R}_j + \lambda \|w\|_1$$

► Goal: Maximize Sharpe ratio subject to finding a a sparse representation of w.

Where is the uncertainty?

- ▶ Assume future asset returns follow $\tilde{R} \sim \Pi(\mu, \Sigma)$.
- ▶ The parameters $\theta = (\mu, \Sigma)$ are uncertain, too!
- Our expected loss is derived by integrating over $p(\tilde{R}|\theta)$ followed by $p(\theta|R)$, the posterior distribution over θ .

Integrating over uncertainty

$$\mathcal{L}(w) = \mathbb{E}_{\theta} \mathbb{E}_{\tilde{R}|\theta} \left[-\sum_{k=1}^{N} w_k \tilde{R}_k + \frac{1}{2} \sum_{k=1}^{N} \sum_{j=1}^{N} w_k w_j \tilde{R}_k \tilde{R}_j + \lambda \|w\|_1 \right]$$

$$= \mathbb{E}_{\theta} \left[-w^T \mu + \frac{1}{2} w^T \Sigma w \right] + \lambda \|w\|_1$$

$$= -w^T \overline{\mu} + \frac{1}{2} w^T \overline{\Sigma} w + \lambda \|w\|_1.$$

The past returns R enter into our utility consideration by defining the posterior predictive distribution.

Formulating as a convex penalized optimization

Define $\overline{\Sigma} = LL^T$.

$$\mathcal{L}(w) = -w^{T} \overline{\mu} + \frac{1}{2} w^{T} \overline{\Sigma} w + \lambda \|w\|_{1}$$
$$= \frac{1}{2} \|L^{T} w - L^{-1} \overline{\mu}\|_{2}^{2} + \lambda \|w\|_{1}.$$

Now, we can solve the optimization using existing algorithms, such as lars of Efron et. al. (2004).

Application to ETF investing

▶ Data: Returns on 25 ETFs from 1992-2015.

▶ Model: Assume returns follow a latent factor model.

Question: Optimal portfolio of a small number of ETFs?

Posterior summary plot

ETF	IWR	RSP	IYR	IYW
weight	56%	21.5%	13.9%	8.6%
style	mid-cap	equal weight	real estate	tech

Find the smallest portfolio such that with probability 99% I give up less than (blank) in Sharpe ratio.

Which risk factors matter?

The Factor Zoo (Cochrane, 2011)

- Market
- ▶ Size
- Value
- ► Momentum
- Short and long term reversal
- ▶ Betting against β
- Direct profitability

- Dividend initiation
- ► Carry trade
- ▶ Liquidity
- ► Quality minus Junk
- ▶ Investment
- Leverage
- ▶ ...

The Factor Zoo (Cochrane, 2011)

- Market
- ▶ Size
- ▶ Value
- ► Momentum
- Short and long term reversal
- ▶ Betting against β
- Direct profitability

- Dividend initiation
- ► Carry trade
- ▶ Liquidity
- ► Quality minus Junk
- ► Investment
- Leverage
- ▶ ...

A loss function for determining important factors

- ▶ Test assets: R, Factors: $R = \gamma F + \epsilon$, $\epsilon \sim N(0, \Psi)$.
- ▶ Define loss by conditional likelihood, p(R|F).
- ▶ Goal: find a sparse representation of γ , where γ is a matrix relating R and F.

Integrating conditional likelihood over $p(\tilde{R}, \tilde{F}|\theta)$ and $p(\theta|R, F)$ gives another convex penalized objective function!

After integration, the loss function is:

$$\mathcal{L}(\gamma) = -\frac{1}{2} \left\| \left[\left[L^T \otimes \mathbb{I} \right] \mathrm{vec}(\gamma) - \mathrm{vec}(\mathit{f} L^{-1}) \right] \right\|_2^2 + \lambda \left\| \mathrm{vec}(\gamma) \right\|_1$$

where:

$$LL^{T} = \overline{\Sigma_{f}} + \Sigma_{\mu_{f}} + \overline{\mu_{f}} \overline{\mu_{f}}^{T}, \quad f = \overline{\beta} \overline{\Sigma_{f}} + \Sigma_{\mu_{f}\mu_{r}} + \overline{\mu_{r}} \overline{\mu_{f}}^{T}$$

Risk Factor Selection

- ► Test Assets: Fama-French 25 Portfolios and 30 Industry Portfolios from 1963-2015.
- ► Factors: 10 factors proposed in finance literature.

- ▶ Model p(R|F) with normal errors and conjugate g-priors.
- ▶ Model p(F) via gaussian linear latent factor model.²

Question: Which factors are most important for pricing?

²Taking advantage of compositional representation of the joint: p(R, F) = p(R|F)p(F)

Posterior summary plot

Model size here refers to nonzero entries of γ , or equivalently, edges of graph representing γ .

Factor selection graph

R: Fama-French 25 Portfolios, F: 10 factors

Factor selection graph

R: 30 Industry Portfolios, F: 10 factors

Another application: ETF selection

R: 100 Mutual funds, F: 25 ETFs

Concluding thoughts

- ► Passive investing and factor selection for asset pricing models approached using new variable selection technique.
- Utility functions can enforce inferential preferences that are not prior beliefs.
- ▶ Ideas presented are generalizable and *scalable*. There is more work to be done ..
- Thanks!