Jacobs University Bremen

Electric motors

Induction motors

Automation CO23-320203

Electric motor family

Electric motor's equations

The essential physics of a motor

$$\|\boldsymbol{\tau}\| = K_{\phi} \, \phi \, I$$

$$e = K_{\phi} \, \phi \, \omega$$

$$K_{\phi} \triangleq \frac{DL}{\Delta}$$

Torque is proportional to the current and the applied flux!

Induced Back-EMF is proportional to the angular-speed and the applied flux!

Brushed DC Motor

The basic principle

 Replace the fixed stator magnet by an electromagnet

www.explainthatstuff.com

The general diagram:

$$V_f(t) = L_f \frac{dI_f}{dt} + R_f I_f$$

$$V_a(t) = L_a \frac{dI_a}{dt} + R_a I_a + e$$
$$e = K_\phi \phi \omega$$
$$\tau = K_\phi \phi I_a$$

• The general diagram:

• The coupling between the two parts is through flux ϕ

$$\phi \propto I_f$$

$$e = K_{\phi} \phi \omega = K I_f \omega$$

$$\tau = K_{\phi} \phi I_a = K I_f I_a$$

The general diagram:

• The coupling between the two parts is through flux ϕ $\phi \propto I_f$ at steady state:

$$e = K_{\phi} \phi \omega = K I_{f} \omega$$
 $e = K_{\phi} \phi \omega = V_{a} - R_{a} I_{a}$

$$\tau = K_{\phi} \, \phi \, I_a = K \, I_f \, I_a \qquad \qquad I_a = \frac{\tau}{K_{\phi}}$$

Spring 2019

• At steady state:

$$e = K_{\phi}\phi \omega = V_a - R_a I_a$$

$$I_a = \frac{\tau}{K_{\phi}\phi}$$

$$\tau = \frac{K_{\phi}\phi}{R_a}(V_a - K_{\phi}\phi\omega)$$

No-load speed $\omega = \frac{V_a}{K_\phi \phi}$

Rough approximation of real motor's behavior

Real life load:

(Constant V_a)

AC Motor

 It's a clear advantage to have a motor working with AC current as most homes have a 230V 50 Hz / 120V 60 Hz AC installation at home!

AC Motor

 What if we replace the rotor by a passive device?

AC Motor

Let's start with a magnet

Two Phase Motor

Working principle of AC motors https://www.youtube.com/watch?v=qbNpONXRvj8

Induction Motor

- Insight from Faraday's law which led us to the quantification of back EMF: the coils of the rotor in operation produce EMF
 - If they are allowed to produce current, they can also generate magnetic field
- What happens if we put a loop of wire in the rotor?
 - In a changing field, a current will flow and it will create a magnetic field which will oppose the change of sensed magnetic field
 - The rotor will "break" with respect to the outside magnetic field

Induction Motor

- If the outside field moves, the rotor will be entrained by it and will move, too
- If it matches movement w.r.t. the external field, it will perceive stationary magnetic field. Thus, it will no longer induce current.

Practical induction motor

- The conducting bars of the rotors interconnected (electrically) by the end rings
- The rotor is additionally filled in by soft steel laminated core to amplify the magnetic field strength

Practical induction motor

An industrial three phase AC induction motor

How does an Induction Motor work? https://www.youtube.com/watch?v=AQqyGNOP_3o

Three phase systems

Advantages of three phase solution:

Why 3 Phase AC instead of Single Phase??? https://www.youtube.com/watch?v=quABfe4Ev3s

Shaded Pole Induction Motor

- Most of home AC installations are one phase only how can induction motors operate in such conditions?
- Example: shaded pole motor
 - Extreme simplicity
 - Gives your fridge and AC electric fans their longevity

Shaded Pole Motor https://www.youtube.com/watch?v=MyEnwJ1Lazg

Single Phase Induction Motor

Another mechanism common in household applications:

Single Phase Induction Motor, How it works? https://www.youtube.com/watch?v=awrUxv7B-a8