$$\overline{X} = \frac{3+1+2+5+4+3+7+6+5}{9} = \frac{36}{9} = \frac{4}{9}$$
 $F = \frac{\frac{SSB}{m-1}}{\frac{SSW}{6}} = \frac{\frac{24}{2}}{\frac{6}{6}} = \frac{12}{12}$

$$F = \frac{SSB}{m-1} = \frac{24}{2} = 12$$

$$\boxed{SST} = (3-4)^2 + (1-4)^2 + (2-4)^2 + (5-4)^2 + (4-4)^2 + (3-4)^2 + (7-4)^2 + (6-4)^2 + (5-4)^2 = 30$$

$$SSB = 3(2-4)^{2} + 3(4-4)^{2} + 3(6-4)^{2} = 24$$

$$dF = m-1 = 3-1 = 2$$

$$\overline{X} = 2$$
 $\overline{X} = 4$ $\overline{X} = 6$

SST

$$\overline{X} = 2$$
 $\overline{X} = 4$ $\overline{X} = 6$
SSW = $(3-2)^2 + (1-2)^2 + (2-2)^2 + (5-4)^2 + (3-4)^2 + (4-4)^2 + (4-4)^2 + (5-6)^2 + (5-6)^2 = 2$
 $(7-6)^2 + (6-6)^2 + (5-6)^2 = 2$
 $(7-6)^2 + (7-6)^2 = 6$

$$dF = N - m = 9 - 3 = 6$$

Однофакторный дисперсионный анализ One-way ANOVA

Генотерапия позволяет корректировать работу дефективного гена, ответственного за развитие заболевания. В эксперименте сравнивалась эффективность четырех различных типов терапии. Результаты исследования представлены в таблице:

Терапия	Ν	Mx	SD
А	15	99,7	4,1
В	15	98,8	5,8
С	15	94,4	5,1
D	15	92,3	3,8

Результаты дисперсионного анализа:

dF=m-1

dF= N-m

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
★ Therapy	3	560.7	186.91	8.037	0.0002
★ Residuals	<u>(56)</u>	1302.3	23.25		

CCIAL

Строим график и интерпретируем результат

Удалось выявить статистически значимую взаимосвязь типа терапии с показателем уровня экспрессии гена (F(3, 56)=8,04, p<0,05)

