CS 231 course note

Chenxuan Wei

 $\mathrm{May}\ 2022$

Contents

1	Fundamentals 4					
	1.1	Specificying a problem	4			
	1.2	Types of data	5			
	1.3	Type of problem	6			
	1.4	Paradigms	7			
2	Order notation					
	2.1	Running time	8			
	2.2	Categories	9			
	2.3	Order notation	10			
3	Algorithm analysis 11					
	3.1	Pseudocode	11			
	3.2	Analysis	12			
	3.3	Exhaustive search	13			
4	Greedy approach 14					
	4.1	Greedy approach	14			
	4.2	Paths	15			
	4.3	MST	16			
5	Divide and conquer 17					
	5.1	Twenty questions	17			
	5.2	Design	18			
	5.3	Interation method	19			
	5.4	Master method	20			
	5.5	Substitution	21			
6	Dyanmic programming 22					
	6.1	Matrix-chain multiplication	22			
	6.2	Dynamic programming	23			
	6.3	Matrix-chain revisted	24			
	6.4	Longest common subsequence	25			
7	Hardness of problems 26					
	7.1	Complexity	26			
	7.2	Decition Trees	27			
	7.3	Twenty question	28			
	7.4	Reductions	29			
	7.5	NP	30			
	7.6	NP-hardness	31			
	7.7	Backtracking	32			
	7.8	Branch-and-hound	33			

8	Compromising on correctness				
	8.1	Approximation	3		
	8.2	Heuristics	3		
9	Che	enging the rules	3		
	9.1	Special instances	3		
	9.2	Las Vegas algorithms	3		
	9.3	Monte Carlo algorithms	3		
	9.4	Online	3		
	Mo	re to explore	4		
	10.1	Other models of computation	4		

1 Fundamentals

1.1 Specificying a problem

- 1. Problem
 - Input specification: show type of input
 - Output specification: show how this is related to output
- 2. Recipe
 - Make the problem general
 - From the input
 - From the output
- 3. instance

of a problem is a specifica data that satisidies the input specification

4. Solution

to an instance of a problem satisifies the output specification

1.2 Types of data

- 1. Grids
 - a 2 demetional sequence (start from 0 like a array)
- 2. Tree Terms
 - leaf: node with no child
 - internal node: node that is not a leaf
 - siblings: nodes with the same parent
 - subtree: atree within a tree consisting oa a node and all it's descendants
- 3. Graph
 - a tree without a root
- 4. Data for degining problems with size input
 - Numbers: constant
 - String: n = length
 - Sets: n = number of element in set
 - Sequences: n = length
 - Grids: r = number of row, c = number of columns
 - Trees: n = number of nodes
 - Graphs: n = number of vertices: m = number of edges

Output

- Ordering of data items
- Categorization of data items
- Subset of data items

1.3 Type of problem

5. Optimization Problem

Constructive: find optimal solution evaluation: find optimal value

6. Decision problem a problem that answer yes/no to a question

7. Search problem find a feasible solution that satisified a consition

8. Counting and enumeration problems counting: number of solution that satisified a condition emueration problem: all solution satisified a condition

1.4 Paradigms

- 1. Exhaustive search
 - Sketch
 - Generate all possiblities
 - Extract infomation
 - Determine the solution
 - \bullet checklist
 - Definition of set of possiblities
 - process for generating all possibilities or next possibility
 - Definition of information to extract
 - Porcess for extracting information
 - $-\,$ process for forming the solution from all

2 Order notation

2.1 Running time

1. Average case:

the value of f(k) is the sum over all instance I of size k of the probability of I multiplied by the running time of the algorithm on instance I

2. Best case

the best possible running time in terms of **k**

3. Worst case

the worst possible running time

2.2 Categories

1. notation

only have 1, logn, n, n^2 , 2^n simple function: only have one term with no coefficient log is base 2 only look at domenant term

2. Recipe

use a simple function, remove all constant, only have dominant term

3. Different notation

• θ : upper/lower bound

• O: upper bound

• ω : lower bound

2.3 Order notation

- 1. formal definition of O()
 - f(n) is in O(g(n)) if there is a real constant c>0 and constant $n_0\geq 1$ such that

$$f(n) \le cg(n), \forall n \ge n_0$$

- 2. formal definition for $\Omega()$
 - f(n) is in $\omega(g(n))$ if there is a real constant c>0 and constant $n_0\geq 1$ such that

$$f(n) \ge cg(n), \forall n \ge n_0$$

- 3. formal definition for $\theta()$
 - f(n) is in $\omega(g(n))$ if there is a real constant $c_1, c_2 > 0$ and constant $n_0 \ge 1$ such that

$$c_2g(n) \ge f(n) \ge c_1g(n), \forall n \ge n_0$$

3 Algorithm analysis

3.1 Pseudocode

- 1. Grammer
 - Variable capitalized, function all capital
 - $\bullet\,$ Simple python list operation is allowed
 - slice of [a:b] can be used
 - \bullet use append(L, 4) for use function
 - $\bullet\,$ reserved words are bold
 - \bullet Assignment use < -
 - \bullet "for each .. in" for for loop

3.2 Analysis

- 1. Constant time operation
 - Assignment
 - use a variable
 - using an arithmetic or boolean operation or a comparison
 - $\bullet\,$ Moving to another line in the program
 - Returning a value using return
- 2. Recipe for worst-case running time
 - Break each block into blocks
 - Determine a bound on each block individually
 - Retain all dominant costs
 - Use θ if all costs are expressed in θ or use O

3.3 Exhaustive search

- 1. Algorithm
 - Identify an exhausitive search
 - Create a ES algorithm
 - Analyze the run time
 - Implement it

4 Greedy approach

4.1 Greedy approach

- 1. Paradigm: greedy algorithms
 - (a) Sketch
 - ullet Process data
 - Loop to build up the solution step by step Use information to make decision make updates to information
 - (b) Checklist
 - Process for preprocessing data
 - Definition of steps needed to bulid a solution
 - Definition of information to be used for a decision
 - Definition of criteria for a decision
 - Process for making updates to information

4.2 Paths

- 1. Dijkstra's algorithm
 - \bullet Input
 - K: the set of vertices such that cheapest paths from s are known
 - U: the set of vertices not in K
 - special(v) for all $v \in U$, the cheapest cost of a special path from s to v using only vertices in K

\bullet Process

- find the chpeast udge in $\operatorname{cut}(K)$: the set of edge such a end is in K, another is in U
- add to K, repeat

4.3 MST

1. Spanning tree a tree connecting all vertices in a connected graph

2. MST

Input: a connected graph G with positive edge weights Output: a subset A of E(G) that forms a tree all of V(G)

3. Optimal substructure Property a problem satisified this when a optimal solution to an instance of a problem can be formed from optimal solution of a smaller instance

4. Greedy choice property: a greedy algorithm satisfies this property when a optimal solution consistent with each greedy choice made

5 Divide and conquer

5.1 Twenty questions

1. Recursive at least a base case and a recursive case

5.2 Design

- 1. Paradiam divide-and-conquer:
 - Sketch
 - Solve base case directly
 - Deivide into smaller instances
 - Conquer recursive cases using recursive calls
 - combine results on smaller instances
 - checklist
 - Definition of smaller instances
 - definition of base cases
 - Process for dividing the instance

5.3 Interation method

1. How to use it First, converge T(n) = T(n-k) + C then find a k that can change T(n-k) to base case sub k into first equation then only n let in RHS

5.4 Master method

```
1. Master method in form of T(n) = aT(n//b) + f(n) let \mathbf{x} = n^{\log_b a} compare \mathbf{f}(\mathbf{n}) and \mathbf{x} use which one is bigger, if equal, T(n) \in \theta(x \log n)
```

5.5 Substitution

- 1. Guess a upper boudn for T(n)
- 2. subsiteu guess T on smaller values
- 3. simplify the right hand side to prove the bound
- 4. check that the bound holds for the base cases

6 Dyanmic programming

6.1 Matrix-chain multiplication

1. Definition of Problem

Input: a sequence of interger d_i

Output: A parenthesization of the matrices M_0 to minimize the number

of multplication

6.2 Dynamic programming

1. Sketch

- Create a table
- Loop over table entries fill in base casese fill in non-base cases
- get solution

2. Checklist

- Definition of solution in term of solutions to smaller instances
- Definition of information to store in each table entry
- Definition of basecases and there values
- Definition of the shape of the table or tables need to store the solution to the smaller instances
- Process for get the solution from table

6.3 Matrix-chain revisted

- 1. Optimal substructure recipe
 - Using the optimal solution O for an arbitrary instance I, construc one or more smaller instances
 - Decompose O into pieces
 - \bullet Show that if any piece O' is not an optimal solution for a smaller instance I'
- 2. shape of the grid
 - triangle may occur when i < j or M[i, j] = M[j, i]
 - ullet we may use smaller demension if the entries depend on only a few rows
- 3. Order of evaluation check the formula, if there is a i+ or j+, we can't use increate in value of that

6.4 Longest common subsequence

1. The question

Input Sequence X and Y

Output: A sequence Z that is a subsequence of both X and Y and maxi-

mum length

7 Hardness of problems

7.1 Complexity

- 1. Upper and lower bound upper bound of O(f(n)) on a problem means there is an algorithm correctly solving the problem that worst case running thime is O(f(n)) lower bound $\omega(g(n))$ on a problem means any problem that correctly solve the problem must use $\omega(g(n))$ as worst case
- 2. Polynomial size $\sum c_i n^i$
- 3. Complexity class P
 P conain decision problems only
 it incluse all **Polynimial-time algorightm**if a problem is tractable if it is in P

7.2 Decition Trees

- 1. Key operation is a type of step that can be used to represent the other types of steps
- 2. Comparison-based algorithm is when key operation is a comparison step
- 3. Decision trees
 A Model of computation for comparision-based algorithms
- 4. Information theory lower bound/decision tree lower bound A tree of height H have at most 2^h leavs if a problem have l possible outputs, then any comparison=based algotithm have worst case $\omega(logl)$

7.3 Twenty question

1. adversary

A way to get the worst case input answer questions to keep the set of possibilities as big as possible

2. Strategy

a procedure that produces an answer to each question by the algorithm

- the answer is consistent with previously-given answers,
- there is at least one input consistent with all the answers given,
- there are no limits on time to compute an answer, and
- there are no limits on amount of extra information to store

but there is no knowledge of the algorithm or future question

3. Recipe

- (a) Specify an adversary strategy
- (b) Determine a number of steps T that any correct algorithm must take
- (c) Show that after T-1 steps of any algorithm, there will be at least two inputs consistent with the answers given by the adversary, and that they yield different outputs.

7.4 Reductions

1. Definition

Problem A can be reduce to b if we can solve A using a algorithm for B at most a polynomial number of time and at most polynomial extra time We say A is reducible to B

2. Equivalent

if they are both reduceble to each other, then they are equivalent

7.5 NP

- 1. polynomial-time verification algorithm for decision problem is a polynomial-time algorithm that has 2 input a instance of the problem and extra information produce yes if the input is yes-instance
- NP is a class of decision porblem that can be verified in polynomial time
- 3. Recipe for membership in NP
 - Give a certificate for each yes-instance and show that its size is at most polynomial.
 - Give a verification algorithm and show that its worst-case running time is at most polynomial.
 - Show that the algorithm answers "Yes" for any yes-instance and its certificate.
 - Show that the algorithm is not fooled by false certificates for any no-instances.

7.6 NP-hardness

- 1. NP hard $\label{eq: equation of the control of$
- 2. NP complete if Y is in Np and it is NP hard, it is complete
- 3. Cecipe for NP complete
 - Prove Z is in NP.
 - Select Y that is known to be NP-complete.
 - Give an algorithm to compute a function f mapping each instance of Y to an instance of Z (it needn't map to all of Z)
 - Prove that if x is a yes-instance for Y then f(x) is a yes-instance for Z.
 - ullet Prove that if f(x) is a yes-instance for Z then x is a yes-instance for Y.
 - Prove that the algorithm computing f runs in at most polynomial time.

Compromising on time

7.7 Backtracking

1. Partial solution

A partial solution represent a set of all solution that consistent a smiliar part of information extending a partical solution: is the process to divide groups to form a

larget partial solution if possible

2. Canadidate

A partial solution is a canadidate if is in the correct form to be a solution or witness

- 3. Paradigm: Backtracking's sketch
 - Start with the initial partial solution at the root
 - Initialize extra information
 - At the current node:
 - Stop if the partial solution is a candidate
 - Stop if the partical solution cannot be extended
 - Recursively process each child
 - update the extra information
 - update output
 - Backtrack
- 4. Paradigm: Backtracking's checklist
 - Definition of a partial solution
 - Definition of a partial solution at the root
 - Definition of extra information
 - Process for the root
 - Process for a non-root
 - Process for determining that a partial solution is a candidate
 - Process for determining that a partial solution cannot be extended
 - Process for extending a partial solution
 - Process for updating the extra information
 - Process for determining the output

7.8 Branch-and-bound

- 1. Paradigm: Branch and bound's sketch
 - Start with the initial partial solution at the root
 - Initialize extra information
 - At the current node:
 - Stop if the partial solution is a candidate
 - Stop if the partial solution cannot be extended
 - Stop if the bound is worse than the best-so-far
 - Recursively process each child in order
 - Update the extra information
 - Update the output
 - Backtrack

2. Checklist

- Definition of partial solution
- Definition of partial solution at the root
- Definition of extra information
- Definition of a bounding function
- Process for the root
- Process for a non-root
- Process for determining that a partial solution is a candidate
- Process for determining that a partial solution cannot be extended
- Process for extending a partial solution
- Process for updating the extra information
- Process for determining the output

8 Compromising on correctness

8.1 Approximation

- 1. Proving the algorithm is not correct
 - Choose a instance **x**
 - show that x is an instance of the problem the algorithm is supposed to solve
 - show that produce y
 - find a z that z is better than y
- 2. Approximation algorithm

is an algorithm for optimization problems with guarrantess a approximate solution will be produces $\,$

3. Ratio bound R(n)

let A be approximate solution, O be optimal solution, $\max(A/O,\,O/A) \leq R(n)$

- 4. Disproving raio bound
 - Choose a instance x
 - \bullet show that x is an instance of the problem the algorithm is supposed to slove
 - show max(A/O, O/A) > R(n)

if ratio bound is $\theta(f(n), \text{ show } \max(A/O, O/A) > g(n), g(n) \notin \theta(f(n))$

5. Complexity class APX

the set of problem that have constant ratio bound

8.2 Heuristics

1. Hill climibing

is to start with a feasible solurion and keep make small imporve ments until no improvement can be made

9 Chenging the rules

9.1 Special instances

- 1. pseudo-polynomial time Polynomial time in the largest integer in the input
- 2. Weakly Np-complete if there is a known pseudo-polynomial algorithm that solve the problem
- 3. Strong NP-complete if it can be proved that it can not solved by a pseudo-polynomial time algorithm unless P=NP

9.2 Las Vegas algorithms

1. Algorithm

Guaranteed to give the correct answer in expected polynomial time

$9.3 \quad \hbox{Monte Carlo algorithms}$

1. Algorithm

Guaranteed to give a answer in poly time, with high probability to give a correct answer

9.4 Online

- 1. offline algorithm start conputation after get all inputs
- 2. online algorithm start computation before get all inputs
- 3. Competitive ratios
 When using online algorithm, we have a ratio c
 if the cost is at most c times the cost of the best offline algorithm for any
 input

- 10 More to explore
- 10.1 Other models of computation