Chassical probability distribution PCL (X)

The disescel probability density for a particle moving with velocity $v(x) = \frac{dx}{dt}$ can be obtained by computing the average value of a function of the position coordinate $\angle f(x)$ during time. T

$$\langle t \infty \rangle = \frac{1}{1} \int_{1}^{0} f(x(t)) dt$$

but we can write $dx = \frac{dx}{dt} \cdot dt$ then

where
$$P_{CL}(x) = \frac{1}{L} \int_{0}^{T} \frac{f(x(t))}{dx} dx = \int_{0}^{X_{0}} \frac{f(x)}{dx} dx$$

where $P_{CL}(x) = \frac{1}{L} \int_{0}^{T} \frac{f(x(t))}{dx} dx = \int_{0}^{X_{0}} \frac{f(x)}{dx} dx$

Notice that if V(x) is constant such that $x_0 = VT$ then

PCL = 1 i.e. every position between 0 and x_0 is

Requally likely.