M 431: Assignment 12

Nathan Stouffer

Page 139 — Problem 3

Problem. Let p be an odd prime and let $1+1/2+\cdots+1/(p-1)=a/b$ where $a,b\in\mathbb{Z}$. Show that $p\mid a$. *Proof.*

Page 150 — Problem 3

Problem. In example 3, show that $M = \{x(2+i) \mid x \in R\}$ is a maximal ideal of R.

Proof.

Page 150 — Problem 4

Problem. In Example 3, show that $R/M \cong \mathbb{Z}_5$.

Proof.

Page 150 — Problem 5

Problem. In Example 3, show that $R/I \cong \mathbb{Z}_5 \oplus \mathbb{Z}_5$.

Proof.

Page 163 — Problem 1

Problem. If F is a field, show that the only invertible elements in F[x] are the nonzero elements of F.

Proof.

Page 163 — Problem 3

Find the greatest common divisor of the following polynomials over \mathbb{Q} , the field of rational Problem. numbers.

(a)
$$x^3 - 6x + 7$$
 and $x + 4$

(b)
$$x^2 - 1$$
 and $2x^7 - 4x^5 + 2$

(c)
$$3x^2 + 1$$
 and $x^6 + x^4 + x + 1$

(a)
$$x^3 - 6x + 7$$
 and $x + 4$
(b) $x^2 - 1$ and $2x^7 - 4x^5 + 2$
(c) $3x^2 + 1$ and $x^6 + x^4 + x + 1$
(d) $x^3 - 1$ and $x^7 - x^4 + x^3 - 1$

Proof.