(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-176578

(43)公開日 平成8年(1996)7月9日

(51) Int.Cl.6 識別記号 庁内整理番号 FΙ 技術表示箇所

C 1 0 M 169/00 // (C 1 0 M 169/00

107:02

105:18

115:08

審査請求 未請求 請求項の数4 OL (全 9 頁) 最終頁に続く

(71)出願人 000102692 (21)出願番号 特願平6-324506

平成6年(1994)12月27日

エヌティエヌ株式会社

大阪府大阪市西区京町堀1丁目3番17号

(72)発明者 南 政美

桑名市藤が丘5丁目605番地

(72)発明者 佐藤 則秀

三重県桑名郡多度町大字上之郷110番地

(74)代理人 弁理士 鎌田 文二 (外2名)

(54) 【発明の名称】 転がり軸受封入用グリース組成物

(57)【要約】

(22)出願日

【目的】 転がり軸受封入用グリースを、高温耐久性 (長寿命性)に極めて優れた性質を有し、しかも冷時異 音の発生を抑えて高温から低温まで広い温度範囲に亘っ て密封軸受の静粛性を保ち、防錆性を発揮するものとす る。

【構成】 ポリαオレフィン油とアルキルジフェニルエ ーテル油を0.2~0.8:0.2~0.8の重量比で 配合した基油に、増稠剤としてジイソシアネートとモノ アミンを反応させて得られる脂環族ジウレア化合物を5 ~40重量%を配合し、極圧剤として、ジチオリン酸塩 を必須成分とし、ジチオカルバミン酸塩もしくはリン酸 エステルのそれぞれ単独または両者混合したものを添加 した転がり軸受封入用グリースとする。または、前記極 圧剤に代えて、ジチオリン酸亜鉛、ジチオリン酸モリブ デンおよびジチオリン酸鉛から選ばれる2種以上のジチ オリン酸塩を添加したグリースとする。さらには、防錆 剤としてスルホン酸塩及びエステル化合物を配合した軸 受封入用グリース組成物とする。

【特許請求の範囲】

【請求項1】 ポリαオレフィン油とアルキルジフェニ ルエーテル油を0.2~0.8:0.2~0.8の重量 比で配合した基油に、増稠剤として脂環族ジウレア化合 物を5~40重量%を配合すると共に、極圧剤として、 ジチオリン酸塩を必須成分とし、さらにジチオカルバミ ン酸塩もしくはリン酸エステルのそれぞれ単独または両 者混合したものを添加してなる転がり軸受封入用グリー ス組成物。

【請求項2】 ジチオカルバミン酸塩が、ジチオカルバ 10 ある。 ミン酸亜鉛またはジチオカルバミン酸モリブデンである 請求項1記載の転がり軸受封入用グリース組成物。

【請求項3】 ポリαオレフィン油とアルキルジフェニ ルエーテル油を0.2~0.8:0.2~0.8の重量 比で配合した基油に、増稠剤として脂環族ジウレア化合 物を5~40重量%を配合すると共に、極圧剤としてジ チオリン酸亜鉛、ジチオリン酸モリブデンおよびジチオ リン酸鉛から選ばれる2種以上のジチオリン酸塩を添加 してなる転がり軸受封入用グリース組成物。

【請求項4】 請求項1~3のいずれか1項に記載の軸 受封入用グリースに防錆剤を添加してなる転がり軸受封 入用グリース組成物。

【発明の詳細な説明】

[0001]

【産業上の利用分野】この発明は、自動車用のアイドラ プーリ、テンションプーリ等の電装部品その他の補機用 の密封転がり軸受を潤滑する転がり軸受封入用グリース 組成物に関する。

[0002]

【従来の技術】近年、自動車の小型化、軽量化の要求に 伴い、その電装部品や補機部品の小型化、軽量化が図ら れているが、その一方で、装置の性能自体には高出力・ 高効率化の要求が増大し、小型化の要求に伴って生じる 出力の低下を高速回転することで補う手法が採られてい

【0003】具体的には、回転軸に駆動力を伝達するプ ーリをできるだけ小型化すること、および伝達効率の低 下を防ぐために、プーリに伝導ベルトの係合溝を多数連 成し、更にベルトのテンションを高くする等の手段が採 用されている。その為、プーリを支持する軸受は、高速 回転しかつ高荷重が加わることになる。

【0004】上記したグリース封入軸受においては、軸 受自体の疲労による寿命より、潤滑性能の劣化によるグ リースの寿命の方が短く、そのため、このような電装部 品および補機用軸受に使用されていた従来のグリース は、主に高温耐久性の良いものが選ばれ、その組成は例 えば基油として鉱油、合成炭化水素、ポリオールエステ ル油、アルキルジフェニルエーテル油、シリコーン油、 フッ素油を用い、増稠剤としてリチウム石鹸、リチウム コンプレックス、ポリウレア、フッ素樹脂を用いたもの 50 であった。

[0005]

【発明が解決しようとする課題】しかし、上記高温耐久 性のあるグリースは密封軸受に封入すると、寒冷地での 低温下の始動時に異音(以下、冷時異音という。)が発 生し、静粛性を保つことができないという問題点があ

【0006】また、自動車用の軸受内には泥水等の水分 が浸入し易いため、軸受内部の防錆性を考慮する必要も

【0007】また、本願の出願人は、先の出願に係る特 開平5-140576において、ポリαオレフィン油と アルキルジフェニルエーテル油を0.5~0.9:0. 1~0.5の重量比で配合した基油に、増稠剤として脂 環族ジウレア化合物を5~40重量%を配合した軸受封 入用のグリース組成物が開示したが、このものには高温 耐久性の点でさらに改良されるべき余地があった。

【0008】そこで、この発明は、高温耐久性(長寿命 性) に極めて優れた性質を有し、しかも冷時異音の発生 を抑えて高温から低温まで広い温度範囲に亘って密封軸 受の静粛性を保つと共に、軸受の防錆性をも考慮したグ リースとすることを課題としている。

[0009]

【課題を解決するための手段】上記の課題を解決するた めに、この発明においては、ポリαオレフィン油とアル キルジフェニルエーテル油を0.2~0.8:0.2~ 0.8の重量比で配合した基油に、増稠剤として脂環族 ジウレア化合物を5~40重量%を配合すると共に、極 圧剤として、ジチオリン酸塩を必須成分とし、さらにジ チオカルバミン酸塩もしくはリン酸エステルのそれぞれ 単独または両者混合したものを添加した転がり軸受封入 用グリース組成物としたのである。

【0010】または、ポリαオレフィン油とアルキルジ フェニルエーテル油を0.2~0.8:0.2~0.8 の重量比で配合した基油に、増稠剤として脂環族ジウレ ア化合物を5~40重量%を配合すると共に、極圧剤と してジチオリン酸亜鉛、ジチオリン酸モリブデンおよび ジチオリン酸鉛から選ばれる2種以上のジチオリン酸塩 を添加した転がり軸受封入用グリース組成物としたので ある。

【0011】また、上記の転がり軸受封入用グリースに 防錆剤を添加した転がり軸受封入用グリース組成物とし たのである。

【0012】この発明に用いるポリαオレフィン油は、 αオレフィンを低重合し、その末端二重結合に水素を添 加した構造であり、下記の化1の式に示すものを例示す ることができる。

[0013]

【化1】

2

40

【0014】また、この発明に用いるアルキルジフェニ ルエーテル油は、ジフェニルエーテル1モルと炭素数1 $0\sim22$ の α オレフィン $1\sim3$ モルの付加反応によって 得られるものであるが、αオレフィンの炭素数および使 用モル数によってその性状は異なる。

【0015】この発明の基油におけるポリαオレフィン 油とアルキルジフェニルエーテル油との配合重量比は、 0.2~0.8:0.2~0.8である。なぜなら、こ*

0 $R_1 - NHCNH - R_2 - NHCNH - R_3$

(式中、R₂は炭素数7~13の芳香族炭化水素基、R₁及びR₃はシク ロヘキシル基または炭素数8~20のアルキル基を示し、R」またはR3 の少なくとも一方がシクロヘキシル基)

【0018】化2の式におけるR1 を形成するジイソシ アネートとしては、4,4'ージフェニルメタンジイソ シアネート、トリレンジイソシアネートなどが挙げられ る。化2の式中、R2、R3を形成するモノアミンとし てはシクロヘキシルアミン、ステアリルアミン、セチル アミン、ラウリルアミンなどが挙げられる。

【0019】このような脂環族ジウレア化合物の前記基 油に対する添加量は、5~40重量%である。なぜな ら、5重量%未満の少量のジウレア化合物を添加して得 たグリースは、粘性の乏しい液状となり、40重量%を 越える多量では固体状となって、軸受封入用グリースの 性状として不適となるからである。

【0020】この発明では、低温条件でのグリースの潤 滑性能を考慮して、前述のように基油粘度を極力小さく し、高温耐久性、すなわち耐熱時のグリース寿命を改良 するために、通常、高荷重の摩擦面での油膜破壊を防止 する所定の極圧剤を採用することによって補っている。

【 0 0 2 1 】 この場合に有効な所定の極圧剤として、ジ チオリン酸塩を必須成分とし、さらにジチオカルバミン 酸塩もしくはリン酸エステルのそれぞれ単独または両者 混合したものか、またはジチオリン酸亜鉛、ジチオリン 酸モリブデンおよびジチオリン酸鉛から選ばれる2種以 上のジチオリン酸塩を採用する。

【0022】ジチオリン酸塩またはジチオカルバミン酸 塩の塩としては、いずれも亜鉛、モリブデンまたは鉛を 採用できる。具体的には、いずれも炭素鎖としてアルキ ル基またはアリル基をもった、ジチオリン酸亜鉛(ジン クジチオフォスフェイト、以下、Zn-DTPと略記す る。)、ジチオリン酸モリブデン(モリブデンジチオフ ォスフェイト、以下、Mo-DTPと略記する。)、ジ チオリン酸鉛(以下、Pb-DTPと略記する。)、ジ※50 性が充分に向上し、高温で長寿命のグリースになる。

*のような範囲であれば、基油粘度(例えば、40℃での 動粘度:cSt)がほぼ58cSt前後(55~60c St)といった小さい値を示して好ましく、ポリαオレ フィン油が上記範囲未満では、低温下での所期した性能 が劣るようになり、また上記範囲を越えると、耐熱性が 充分に得られなくなって好ましくないからである。

4

【0016】つぎに、この発明において増稠剤として使 用される脂環族ジウレア化合物は、下記の化2の式で示 されるものであり、このものはジイソシアネートとモノ 10 アミンの反応によって得られる。

[0017] 【化2】

20※チオカルバミン酸亜鉛(ジンクジチオカーバメート、以 下、Zn-DTCと略記する。)、ジチオカルバミン酸 モリブデン(モリブデンジチオカーバメート、以下、M o-DTCと略記する。)が例示できる。

【0023】また、この発明で用いる通常、極圧剤とし て用いられるリン酸エステルは、リン酸トリクレジル (以下、TCPと略記する。)、トリフェニルフォスフ ェイトであり、これらはトルエンまたはベンゼンを出発 材料として合成される周知の合成化合物である。

【0024】以上述べた各種の極圧剤は、グリース組成 物の全体量の0.1~10重量%程度配合して好ましい 結果を得ている。

【0025】次に、この発明に用いる防錆剤としては、 スルホン酸塩とエステル化合物を併用して好ましい結果 を得ている。錆止め性に優れたスルホン酸塩の具体例と しては、アンモニウムスルホネート、バリウムスルホネ ートなどが挙げられる。前記したエステル化合物として は、コハク酸ハーフエステルが挙げられる。これら防錆 剤の添加量は、通常、O.1~5重量%程度が効率的で 好ましい。

【0026】

【作用】この発明の転がり軸受封入用グリース組成物 は、その基油をアルキルジフェニルエーテル油とポリα オレフィン油を所定の割合で配合した混成油とすること で基油粘度が小さくなって、低温条件での潤滑性に優 れ、かつ耐熱性についても優れた基油となる。また、こ のような基油に添加される増稠剤として、熱安定性、酸 化安定性、付着性が、リチウム石鹸やナトリウム石鹸な どの金属石鹸より優れた脂環族ジウレア化合物を使用 し、さらに、所定の極圧剤を添加したことによって耐熱

【 0 0 2 7 】また、上記組成物に対してスルホン酸塩及びエステル化合物を添加して防錆性が顕著である。

[0028]

【実施例】

〔実施例1および2〕ポリ α オレフィン油とアルキルジフェニルエーテル油の混成油からなる基油を表1に示す配合割合で調製し、 $1 \mod 1004$, 4' -ジフェニルメタンジイソシアネートを表1に示す基油(重量%)の半量に溶かした液に、残りの半量の基油に $2 \mod 100$ で $20 \mod 100$ で 2

【0029】このグリースに、酸化防止剤としてフェノチアジンを0.5重量%を加えて100~120℃で10分間撹拌し、その後冷却して、表1に示す極圧剤および防錆剤の所定量をそれぞれ添加混合してから、三本ロールで均質化してグリースを得た。

【0030】このグリースの稠度、滴点、高温耐久試験、冷時異音の測定および錆防止性試験を行ない、その 20 結果を表1に併記した。

【0031】**①**稠 度: JIS K2220 5.3 により測定した。

【0032**】②**滴 点:グリースが融解して自重で落下し始める温度(℃)をグリース類滴点試験方法JIS K2220 5.4により測定した。

【0033】3高温耐久試験:軸受6204にグリース

を封入し、鉄製の非接触型シールを両側面に備え付け、これを軸受運転装置に装着し、雰囲気温度を150℃に保ち、ラジアル荷重67N、アキシャル荷重67Nの条件下毎分10000回転の速度で内輪を回転し、軸受内グリースが劣化したことによって軸受の回転トルクが過大になり、この主軸の回転を駆動している電動機の入力電流が制限電流を超過して電動機が停止するまでの時間を寿命とした。

6

【0034】④冷時異音測定:軸受6203にグリースを封入し、ゴム製の接触シールを両側面に備え付け、その軸受をハウジングにセットし、それを-40℃の低温槽に入れ、充分冷却させた後、室温に設置された軸受装置に取り付け、アキシャル荷重1.96Nの条件下で毎分2000回転の速度で内輪を回転させ、聴覚による異常音(冷時異音)の発生の有無を調べた。

【0035】⑤防錆試験: ASTM D 1743の錆試験法をさらに厳しくした方法を採用した。すなわち、円錐ころ軸受30204に、試料グリースを1.9~2.1g封入して、アキシャル荷重を98N加えて毎分1800回転で1分間慣らし運転した。次に、1%食塩水中に10秒間浸漬した。この軸受をデシケータに入れて40℃で48時間放置した後、発錆状況を調べた。発錆状況は外輪レースを周方向に32等分し、これらのうち錆のあった区間を数え、n=4回の平均を錆評点とした。

[0036]

【表1】

_			
1	٦		
,			

番号			実	施	例
材料または試験項目		1	2	3	
基油組	ポ!	Jαオレフィン油 (重量比)	0. 2	0.2	0.2
私成重量		レキルジフェニル -テル油 (重量比)	0. 8	0.8	0.8
匙	4 ()℃で動粘度(cSt)	58. 1	58. 1	58.1
配	基油		87. 5	87.5	87. 5
PC	増稠剤(脂環族シウレア)		10	10	15
合	酸化防止剤(フェ/チアラン)		0. 5	0.5	0.5
eleni	極	Mo-DTP	0. 5	0.5	0.5
割	圧	Zn-DTP		0.5	_
合	剤	Mo-DTC			0.5
(重量%)	リン哲	gエステル(TCP)	0. 5		
	防錆	アンモニウムスルオネート	0. 5	0.5	0.5
	剤	コハケ酸ハーフェステル	0. 5	0.5	0.5
₽	Ħ	度	290	290	288
ħ	滴 点 (°C)		255	252	258
高流	高温耐久試験 寿命時間;h		>4000	>4000	>4000
冷	冷時異音発生の有無		無	無	無
鏩	錆防止試験(n=4)で6錆評点		2	0	1

【0037】〔比較例1~3〕表2に示すように、前記 所定の配合割合を越え、ポリαオレフィン油(90重量 %) とアルキルジフェニルエーテル (10重量%) を混 合したものを基油とし、増稠剤に脂環族ジウレアを用い たグリースを比較例1とした。ボリー α ーオレフィン油 (80重量%) とアルキルジフェニルエーテル油 (20 重量%)を混合したものを基油とし、増稠剤に芳香族ジ*40 【表2】

*ウレアを採用したグリースを比較例2とした。また、増 稠剤に芳香族ジウレアを採用し、基油をアルキルジフェ ニルエーテル油の単独成分としたグリースを比較例3と して、実施例と全く同様の試験①~⑤を行い、その結果 を表2中に併記した。

[0038]

9			11		10
番号 材料 または試験項目		比	較	例	
		1	2	3	
基油組	ポリαオレフィン油 (重量比)		0.9	0. 2	0
成重量比)	アルキルジフェニル エーテル油 (重量比)		0. 1	0. 8	1
	4 0°Cで動粘度 (cSt)		52.5	72. 3	123. 0
配	基油		77.5	74. 5	74. 5
' '	増	脂環族ジウレア	20		
合 割 合 (重量	稠剤	芳香族ジウレア		23	23
	酸化	と防止剤(フェ/チアシン)	0.5	0.5	0.5
	Mo-DTP		0.5	0.5	0.5
	リン酸エステル(TCP)		0.5	0. 5	0. 5
多()	防錆	アンモニウムスルホネート	0.5	0. 5	0.5
	剤	コハク酸ハーフエステル	0. 5	0. 5	0.5
稠 度		275	300	260	
滴 点 (°C)		>260	240	>260	
高温耐久試験 寿命時間;h		560	2100	>4000	
冷時異音発生の有無		無	有	有	
					

【0039】〔比較例4~6〕表3に示すように、実地例1と全く同じ基油、増稠剤を用い、同じ酸化防止剤を添加したグリースに、ジチオリン酸モリブデン(Mo-DTP)、ジチオカルバミン酸モリブデン(Mo-DTC)、リン酸トリクレジル(TCP)の中から、いずれか1つのみを1重量%添加したグリースを比較例4~6*

錆防止試験(n=4)で頻評点

*とした。

【0040】これらに対して、実施例と全く同様の試験 ①~⑤を行い、その結果を表3中に併記した。

[0041]

【表3】

	1				12
++*		番号	比	較	例
材料または試験項目		4	5	6	
基油组	ポリαオレフィン油 (重量比)		0. 2	0. 2	0.2
組成重点	アルキルジフェニル エーテル油 (重量比)		0. 8	0. 8	0.8
量比	4 0°Cで動粘度 (cSt)		58. 1	58. 1	58. 1
	基油		87. 5	87. 5	87. 5
配	増稠剤(脂環族ラウレア)		10	10	10
合	酸化防止剤(フェ/チアラン)		0. 5	0. 5	0.5
割	極圧剤	Mo-DTP	1. 0		
合		Mo-DTC		1. 0	_
重量	リン酸エステル(TCP)			_	1. 0
8%	防錆剤	アンモニウムスルホネート	0. 5	0. 5	0.5
		コハナ酸ハーフェステル	0. 5	0. 5	0.5
看	稠 度		282	283	290
滴 点 (°C)		255	256	253	
高温耐久試験 寿命時間;h		1560	1780	1350	
冷時異音発生の有無		無	無	無	
錆防止試験(n=4)で6錆評点		錆防止試験(n=4)で頻評点 1		1	1

【0042】〔比較例7~9〕表4に示すように、実地例1と全く同じ基油、増稠剤を用い、同じ酸化防止剤と同じ極圧剤を添加したグリースに、それぞれアンモニウムスルホネート、バリウムスルホネートまたはコハク酸ハーフエステルのいずれかを1重量%添加したグリース*

*を比較例7~9とした。

【0043】これらに対して、実施例と全く同様の試験 ①~⑤を行い、その結果を表4中に併記した。

[0044]

【表4】

_ 1314						
++*	7	番号	比	較	例	
材料または試験項目		7	8	9		
基油組	ポリαオレフィン油 (重量比)		0. 2	0. 2	0. 2	
和成重量	アルキルジフェニル エーテル油 (重量比)		0. 8	0.8	0.8	
匙	4 ()°Cで動粘度 (cSt)	58. 1	58. 1	58. 1	
配	基油		87. 5	87. 5	87. 5	
 숌	増稠剤(脂環族シウレア)		10	10	10	
П	酸化防止剤(フェ/チアシン)		0.5	0.5	0.5	
割	極圧剤:Mo-DTP		0. 5	0.5	0.5	
	リン酸エステル(TCP)		0.5	0.5	0.5	
合	防	アンモニウムスルホネート	1. 0			
(重量	錆	ハリウムスルホネート			1. 0	
風%	剤	コハケ 酸ハ ーフェステル		1. 0	_	
₽	稠 度		278	276	276	
滴 点 (°C)		256	258	256		
高温	高温耐久試験 寿命時間;h		960	1120	480	
冷	冷時異音発生の有無		無	無	無	
錆	方止言	式験(n=4)で6請評点	18	28	2	

【0045】表2の試験結果から明らかなように、ポリ α オレフィン油とアルキルジフェニルエーテル油の配合割合が、前記所定の範囲外の比較例1と比較例3は、高温耐久性に劣るか、または冷時異音が発生した。比較例2は、基油組成は所定の範囲内であるが、増稠剤に芳香族ジウレアを用いており、冷時異音が発生した。

【0046】表3の結果から明らかなように、極圧剤として、DTP、DTCまたはリン酸エステルのいずれか 40 1種のみを配合した比較例4~6は、いずれも高温耐久性が充分に改善できなかった。

【0047】表4の結果から明らかなように、防錆剤としてスルホネート塩またはエステル化合物のいずれか1種のみを採用した比較例7~9は、防錆性に劣っているか、または防錆性を満足しても高温耐久性に劣っていた。

【0048】一方、表1の結果からも明らかなように、 を判 基油組成を所定配合割合とし、増稠剤として脂環族ジウ 軸受 レア化合物を用い、さらに極圧剤の所定の添加条件を満*50 る。

*足する実施例1~3は、いずれも高温耐久性が4000時間以上であるという優れた性質を示し、さらに冷時異音の発生もなかった。

【0049】また、これら実施例は、スルホン酸塩とエステル化合物を併用することによって、前記優れた高温耐久性を低下させることなく、顕著な防錆効果を奏するものであった。

40 【0050】

【効果】この発明は、以上説明したように、基油としてアルキルジフェニルエーテル油とポリαオレフィン油を所定の割合で配合し粘度を極力小さくした混成基油を採用し、かつ増稠剤として耐熱性に優れた脂環族ジウレア化合物を使用し、さらに、所定の極圧剤を採用した転がり軸受封入用グリースとしたので、高温耐久性(長寿命性)に極めて優れた性質を有し、しかも冷時異音の発生を抑えて、高温から低温まで広い温度範囲に亘って密封軸受の静粛性を保つことができグリースとなる利点がある

【0051】また、このようなグリースに防錆剤を添加 したものは、上記利点に加えて防錆性も顕著に現れるの で、このようなグリースを封入した転がり軸受の長寿命 化に大きく貢献でき、産業上の利用価値が極めて高いも のであるといえる。

16

フロントページの続き

(51) Int. Cl. 6 識別記号 庁内整理番号 F I 技術表示箇所

C 1 O M 137:10

135:18)

C 1 0 N 30:08

30:12

40:02

50:10