Calculus - chapter 49 - Differhability. Chaun Rule.

$$\Delta z = f(x + \Delta x, y + \Delta y) - f(x,y)$$

$$dz = \frac{2z}{6x}\Delta x + \frac{2z}{6y}\Delta y = f_{x}(x,y)\Delta z + f_{y}(x,y)\Delta y \quad (*)$$

Note if
$$Z = f(x,y) = x$$
 then $\frac{\partial z}{\partial x} = 1$, $\frac{\partial z}{\partial y} = 0$ and $dz = \Delta x$; $dx = \Delta x$

Similarly dy = My, hence (x) becomes

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = f_{x}(x,y) dx + f_{y}(x,y) dy.$$

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz$$

$$= \int x(x,y,z) + (y(x,y,z) + \int x(x,y,z).$$

$$\frac{\partial z}{\partial \alpha} = \cos y - 4\alpha$$
, $\frac{\partial z}{\partial y} = -\alpha \sin \alpha$ i. $dz = (\cos y - 4\alpha)d\alpha - (\alpha \sin y)dy$.

$$\Delta z = fx(a,b) \Delta x + fy(a,b) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

and
$$\lim_{(\Delta x, \Delta y) \to (0,0)} \in I = \lim_{(\Delta x, \Delta y) \to (0,0)} = 0.$$

Normaly written
$$\Delta z = dz + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$
.

Theorem :

: xample:

Then f is differentiable in A.

$$z = f(\alpha_1 y) = \sqrt{9 - \chi^2 - y^2}$$
, $f\alpha = \frac{-x}{\sqrt{9 - \chi^2 - y^2}}$ and $fy = \frac{-y}{\sqrt{9 - \chi^2 - y^2}}$

35 Ax = 0.03, Ay = 0.01,
$$dz = f_x(1,2) \Delta x + f_y(1,2) \Delta y = \frac{1}{2}(0.03) + \frac{2}{2}(0.01) = -0.02$$

Let
$$z = f(x,y)$$
, $\alpha = g(t)$ and $y = h(t)$, then $z = f(g(t), h(t))$ and $\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$.

Anod: Let
$$\Delta z = \frac{2}{2} \frac{2}{2} \Delta x + \frac{2}{2} \frac{2}{2} \Delta y + \epsilon, \Delta x + \epsilon_z \Delta y$$

Then $\Delta z = \frac{2}{2} \frac{2}{2} \frac{2}{2} + \frac{2}{2} \frac{2}{2} \frac{2}{2} + \epsilon, \Delta x + \epsilon_z \Delta y$

Let DE -30:

chain Bule:

sample:
Let
$$z = xy + sin x$$
, $x = t^2$, $y = cost$.

$$\frac{2z}{2z} = y + \cos x \quad \frac{2z}{2y} = z \quad \frac{2z}{2t} = 2t \quad \frac{2y}{2t} = -\sinh t$$

As function of t, z=t2cost + sin(t2).

$$\frac{dz}{dt} = (y + \cos x) 2t + x(-\sin t) = (\cos t + \cos(t^2)) 2t - t^2 \sinh t.$$

where
$$(2 \rightarrow 2)$$
: $Z = f(x,y)$, $x = g(b,s)$, $y = h(t,s)$, then $z = f(g(t,s),h(t,s))$

example:
$$z = e^{\alpha} siny$$
, $\alpha = ts^2$, $y = t+2s$

$$\frac{\partial z}{\partial x} = e^x \sin y$$
, $\frac{\partial x}{\partial t} = s^2$, $\frac{\partial z}{\partial y} = e^x \cos y$, $\frac{\partial y}{\partial t} = 1$.

$$\frac{\partial z}{\partial z} = -\frac{Fx}{Fz} \quad \text{and} \quad \frac{\partial z}{\partial y} = -\frac{Fy}{Fz}.$$

$$xy+yz^3+xz=0$$

$$8ir \propto F_2 = xy + 3yz^2$$

$$\frac{\partial z}{\partial x} = -\frac{y+z}{x+3y^2^2}, \quad \frac{\partial z}{\partial y} = -\frac{x+z^3}{x+3yz^2}$$