Embeddings

Andrey Gusev 171

Discrete representation

- Discrete representation
- One-Hot representation

- Discrete representation
- One-Hot representation

```
motel [0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]<sup>T</sup>
hotel [0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] = 0
```

- Discrete representation
- One-Hot representation

```
motel [00000000010000] thotel [0000000100000] = 0
```

Distributional similarity based representations

- Discrete representation
- One-Hot representation

```
motel [000000000010000] 
hotel [00000001000000] = 0
```

Distributional similarity based representations

```
linguistics =
```

0.286 0.792 -0.177 -0.107 0.109 -0.542 0.349 0.271

- Discrete representation
- One-Hot representation

```
motel [000000000010000] 
hotel [00000001000000] = 0
```

Distributional similarity based representations

linguistics =

government debt problems turning into banking crises as has happened in saying that Europe needs unified banking regulation to replace the hodgepodge

These words will represent banking 7

0.286 0.792 -0.177 -0.107 0.109 -0.542 0.349 0.271

- 1. Skip-gram (SG)
- 2. Continuous Bag of Words (CDOW)

- 1. Skip-gram (SG)
- 2. Continuous Bag of Words (CDOW)

- 1. Skip-gram (SG)
- 2. Continuous Bag of Words (CBOW)

- 1. Skip-gram (SG)
- 2. Continuous Bag of Words (CDOW)

Creating data for word2vec

Objective function: Maximize the probability of any context word given the current center word.

$$J'(\theta) = \prod_{t=1}^{T} \prod_{-m \leqslant j \leqslant m} \Pr(w_{t+j}|w_t; \theta)$$

$$J(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{-m \le j \le m} \log \Pr(w_{t+j}|w_t; \theta)$$

Where theta represents all variables we will optimize.

Skip-gram

Skip-gram

We try to predict surrounding words in a window of radius *m* of every word.

$$\Pr(w_o|w_c) = \frac{\exp(u_o^T v_c)}{\sum_{w=1}^{V} \exp(u_w^T v_c)} \qquad \theta = \begin{bmatrix} v_a \\ \vdots \\ v_{zebra} \\ u_{aardark} \\ u_a \\ \vdots \\ u_{zebra} \end{bmatrix}$$

Where *o* is the outside word index, *c* is the center word index. Softmax using the outside word to obtain probability of the center word.

word2vec improves
objective function by 20
putting similar words 10
nearby in space.

Other technique

2 options: windows and full document

Other technique

- 2 options: windows and full document
- Window: Similar to word2vec, use window around each word to capture both syntactic and semantic information.

Other technique

- 2 options: windows and full document
- Window: Similar to word2vec, use window around each word to capture both syntactic and semantic information.
- Word-document co-occurrence matrix will give general topics leading to "Latent Semantic Analysis".

Co-occurrence matrix example

Corpus: I enjoy flying. I like NLP. I like deep learning.

		I	like	enjoy	deep	learning	NLP	flying	•
	I	0	2	1	0	0	0	0	0]
X =	like	2	0	0	1	0	1	0	0
	enjoy	1	0	0	0	0	0	1	0
	deep	0	1	0	0	1	0	0	0
	learning	0	0	0	1	0	0	0	1
	NLP	0	1	0	0	0	0	0	1
	flying	0	0	1	0	0	0	0	1
	18	0	0	0	0	1	1	1	0

 Idea: store "most" of the important information in a fixed, small number of dimensions: a dense vector.

- Idea: store "most" of the important information in a fixed, small number of dimensions: a dense vector.
- Usually 25-1000 dimensions, similar to word2vec.

- Idea: store "most" of the important information in a fixed, small number of dimensions: a dense vector.
- Usually 25-1000 dimensions, similar to word2vec.
- How to reduce the dimensionality?

- Idea: store "most" of the important information in a fixed, small number of dimensions: a dense vector.
- Usually 25-1000 dimensions, similar to word2vec.
- How to reduce the dimensionality? SVD!

Dimensionality reduction of co-occurrence matrix

Singular value decomposition of co-occurrence matrix X:

Problems with SVD

Computational cost scales quadratically for n x m matrix: O(mn²)

Problems with SVD

- Computational cost scales quadratically for n x m matrix: O(mn²)
- Bad for millions of words or documents.

Problems with SVD

- Computational cost scales quadratically for n x m matrix: O(mn²)
- Bad for millions of words or documents.
- Hard to incorporate new words or documents.

GloVe

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$
$$f(x) = \begin{cases} 100 & 3/4 \\ (x/x_{\text{max}})^{\alpha} & \text{if } x < x_{\text{max}} \\ 1 & \text{otherwise} \end{cases}$$

Figure 1: Weighting function f with $\alpha = 3/4$.

- Combining the best of both techniques.
- Fast training.
- Scalable to huge corpora.
- Good performance even with small corpus and small vectors.

GloVe visualisation

GloVe visualisation

Other fun embedding analogies

Expression	Nearest token		
Paris - France + Italy	Rome		
bigger - big + cold	colder		
sushi - Japan + Germany	bratwurst		
Cu - copper + gold	Au		
Windows - Microsoft + Google	Android		
Montreal Canadiens - Montreal + Toronto	Toronto Maple Leafs		

fastText

- Starts with word representations that are averaged into text representation and feed them to a linear classifier (multinomial logistic regression).
- Text representation as a hidden state that can be shared among features and classes.
- Uses a bag of n-grams to maintain efficiency without losing accuracy. No explicit use of word order.
- Softmax layer to obtain a probability distribution over pre-defined classes.

fastText

- Hierarchial Softmax: Based on Huffman Coding Tree Used to reduce computational complexity O(kh) to O(hlog(k)), where k is the number of classes and h is dimension of text representation.
- Uses hashing trick to maintain fast and memory efficient mapping of the n-grams.
- It is written in C++ and supports multiprocessing during training.

ELMo representations are:

- Contextual: The representation for each word depends on the entire context in which it is used.
- Deep: The word representations combine all layers of a deep pre-trained neural network.
- Character based: ELMo representations are purely character based, allowing the network to use morphological clues to form robust representations for out-of-vocabulary tokens unseen in training.

Embedding of "stick" in "Let's stick to" - Step #2

Вопросы

- 1. Опишите принцип обучения эмбеддингов Continuous Bag Of Words.
- 2. На каких данных обучается Skip-gram? Что подается модели на вход и что ожидается на выходе при обучении?
- 3. В чем заключается техника Latent Semantic Analysis? Какие проблемы есть у этой техники?