

Inductive and Unsupervised Representation Learning on Graph Structured Objects

Lichen Wang¹, Bo Zong², Qianqian Ma³, Wei Cheng², Jingchao Ni², Wenchao Yu², Yanchi Liu², Dongjin Song², Haifeng Chen², Yun Fu¹

¹Northeastern University ²NEC Laboratories America ³Boston University

Problem Setting

Input:

Graph with node attributes and edge attributes

Output:

Graph representation as a vector

Concept of Graph Representation Learning

Why Inductive and Unsupervised are Important?

Graph objects have a wide range of potential applications [1]:

- Social Network
 - Facebook, Twitter, WhatsApp
- Finance
 - Credit card fraud, Money laundry
- Logistics Industry:
 - eBay, Amazon, FedEx

Problems:

- Not enough labeled samples
- Learned model should be generalized to unseen data

Fake Social Account

Credit Fraud

Computer Hack

Challenges

- Existing approaches are in transductive setting
 - Difficult to handle unseen graphs
- Reconstruction-based approach
 - How similar of two graphs?
 - Graph Isomorphism is hard and rigid
 - Computational costly

We proposed a framework that addresses the practical need for graph representation learning in real-life applications

Isomorphism test is a necessary but hard and computational cost in graph representation learning

The proposed Framework: SEED (1)

SEED: Sampling, Encoding, and Embedding Distributions

- Sampling: Random walk-based subgraph sampling from the input graph
 - Difficult to directly get whole graph representations
 - Could be easier to obtain representations for walks
- Encoding: Subgraph encoding via earliest visiting time
 - Make the process efficient and the representations effective

The proposed Framework: SEED (2)

SEED: Sampling, Encoding, and Embedding Distributions

Embedding Distributions:

We encode a vector distribution into a single vector, which should preserve the similarity between vector distributions.

- Each input graph is reduced into a set of vectors, each of which is the representation for a sampled subgraph.
- Given that we have sampled a sufficient number of subgraphs, if two input graphs are similar, their vector distributions should be similar

Sampling & Encoding

WEAVE: Random Walk with EArliest Visit timE).

- Random walk (RW) in graphs
- Revisit information: earliest visiting time
- Advantages:
 - RW: easy to reconstruct, but no loop info preserved
 - RW + revisit: easy to reconstruct with loop info
 - RW with revisit contains more structural info

Encoding results of Vanilla random walk and WEAVE. WEAVE could distinguish the difference of the two graphs.

Embedding Distribution

- Insight: Walk distribution representation similarity ⇒ graph similarity
- Theoretical: as proved, distribution $R_{\mathcal{G}} = R_{\mathcal{H}}$ if graph \mathcal{G} and \mathcal{H} are isomorphic
- Option 1: Identity kernel
 - We assume $r_{\mathcal{A}} \sim N(\mu_1, I)$ and $r_{\mathcal{H}} \sim N(\mu_2, I)$, it is simple but surprisingly effective.

$$\hat{\mu}_{\mathcal{G}} = \frac{1}{s} \sum_{i=1}^{s} \mathbf{z}_{i} \qquad \qquad \hat{\mu}_{\mathcal{H}} = \frac{1}{s} \sum_{i=1}^{s} \mathbf{h}_{i}$$

Option 2: Commonly adopted kernels

$$\hat{\mu}_{\mathcal{G}}' = \frac{1}{s} \sum_{i=1}^{s} \hat{\phi}(\mathbf{z}_i; \theta_m) \quad \hat{\mu}_{\mathcal{H}}' = \frac{1}{s} \sum_{i=1}^{s} \hat{\phi}(\mathbf{h}_i; \theta_m) \quad D(P_{\mathcal{G}}, P_{\mathcal{H}}) = \|\hat{\mu}_{\mathcal{G}}' - \hat{\mu}_{\mathcal{H}}'\|_2^2$$

Theoretical Insights

Theorem: Given graphs g and \mathcal{H} , distribution $R_g = R_{\mathcal{H}}$ if graph g and \mathcal{H} are isomorphic The theorem holds for the situations:

- Graphs without any attributes
- Graphs with node attributes
- Graphs with node and edge attributes

Experiments (1)

- Seven graph datasets
- Two down-stream tasks:
 - Clustering
 - Classification
- Our approach obtains the highest performance.
 - Up to 10% improvements

G		D	Methods	SAGE	GIN	GMN	SEED	SAGE	GIN	GMN	SEED
Setting		Datasets	Metric	Node Feature Excluded			Node Feature Included				
		Dezzer	ACC	0.3853	0.4913	0.4924	0.4927	0.3840	0.4930	0.4808	0.4810
			NMI	0.0079	0.0958	0.0726	0.1277	0.0003	0.0893	0.0651	0.0566
		MUTAG	ACC	0.6649	0.4997	0.4990	0.8014	0.6649	0.4963	0.4910	0.7260
	Clustering		NMI	0.0150	0.0946	0.0825	0.3214	0.0070	0.0933	0.0917	0.1567
		NCI1	ACC	0.5098	0.5221	0.5022	0.5510	0.5070	0.5204	0.5005	0.5441
			NMI	0.0003	0.0015	0.0034	0.0073	0.0002	0.0013	0.0042	0.0089
Cluste		PROTEINS	ACC	0.5657	0.5957	0.5966	0.5957	0.5657	0.5957	0.5957	0.5957
Clusic			NMI	0.0013	0.0038	0.0117	0.0518	0.0004	0.0034	0.0067	0.0689
		COLLAB	ACC	0.5208	0.5458	0.5173	0.5973	-	-	-	-
			NMI	0.0025	0.0729	0.0193	0.2108	-	-	-	-
		IMDB-BINARY	ACC	0.5069	0.6202	0.5010	0.5776	-	-	-	-
			NMI	0.0002	0.0459	0.0093	0.0241	-	-	-	-
		IMDB-MULTI	ACC	0.3550	3607	0.3348	0.3816	-	-	-	-
5			NMI	0.0019	0.0185	0.0112	0.0214	-	-	-	-
	Classification	Dezzer	ACC	0.3775	0.5094	0.5427	0.6327	0.3754	0.5270	0.5627	0.7451
		MUTAG	ACC	0.6778	0.6778	0.6889	0.8112	0.6889	0.6778	0.6889	0.8222
		NCI1	ACC	0.5410	0.5571	0.5123	0.6105	0.5328	0.5231	0.5133	0.6151
Classific		PROTEINS	ACC	0.6846	0.7387	0.6216	0.7207	0.7027	0.7207	0.6357	0.7462
		COLLAB	ACC	0.5650	0.6170	0.5460	0.6720	-	-	-	-
		IMDB-BINARY	ACC	0.5400	0.7310	0.5140	0.7660	-	-	-	-
		IMDB-MULTI	ACC	0.3866	0.3843	0.3478	0.4466	-	-	-	-

Clustering & Classification Performance

Experiments (2)

How parameters impact the output quality?

- Subgraph extraction with different sampling number and walk length.
 - Quantitative performance
 - t-SNE[1] visualization

Summary

 More sampling number and walk length could improve the learned representation quality

Sampling	Classification	Clustering		
Number	Accuracy	ACC	NMI	
25	0.6832	0.6649	0.0031	
50	0.6778	0.6649	0.0005	
100	0.7778	0.6649	0.0537	
150	0.7889	0.6968	0.1081	
200	0.7778	0.7633	0.2100	
300	0.7833	0.7502	0.1995	
400	0.8389	0.7628	0.1928	
800	0.8111	0.7660	0.1940	

	Walk	Classification	Clustering			
_	Length	Accuracy	ACC	NMI		
	5	0.7278	0.6649	0.0534		
	10	0.7778	0.7633	0.2100		
	15	0.8167	0.7723	0.2495		
	20	0.8778	0.8245	0.3351		
	25	0.8722	0.8218	0.3380		
_	30	0.8743	0.8285	0.3321		

Classification & clustering performance

t-SNE visualization with different sampling numbers

t-SNE visualization with different work length

Thank you!

Welcome to contact: wanglichenxj@gmail.com for questions