Sequence Modeling Using Recurrent Neural Networks

Task I – Recurrent Neural Network Design

RNN Description

The architecture of the Recurrent Neural Network is a LSTM-RNN to learn long-term dependencies. The model has 4 Sequential layers. First layer is an embedding layer that maps the input to a 10-dimensional vector. The following 2 layers consists of 2 LSTM cells, in between is a dropout of 0.2 to prevent overfitting. Lastly is a dense layer that outputs the probability for each character i.e. amino acid using softmax.

Hyper-Parameters

A dropout layer of 0.2 to prevent overfitting is used. The loss used is the *categorical cross-entropy* because the problem is a multi-class problem. Number of epochs used is 60.

The table below shows the summary of the model.

Layer (type)	Output Shape	Param #				
embedding_1 (Embedding)	(None, 39, 10)	210				
lstm_2 (LSTM)	(None, 39, 150)	96600				
dropout_1 (Dropout)	(None, 39, 150)	0				
lstm_3 (LSTM)	(None, 100)	100400				
dense_1 (Dense)	(None, 21)	2121				

Task II- Language Models for Protein Sequences and Evaluation

Default keras weight values were used. The optimizer used is Adam as it makes use of momentum and can handle sparse gradients on noisy problems. The number of epochs used is 60 as anything greater than 60 does not give significant increase in accuracy.

Measuring Long-Term Dependency

No.	Input Sequence	Predicted Character
1	RVLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPE	T
2	MRLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPE	T
3	MVRSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPE	T
4	MVLREGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPE	T
5	MVLSRGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHPE	T
6	MVLSEREWQLVLHVWAKVEADVAGHGQDILIRLFKSHPE	T
7	MVLSEGRWQLVLHVWAKVEADVAGHGQDILIRLFKSHPE	T
8	MVLSEGERQLVLHVWAKVEADVAGHGQDILIRLFKSHPE	T
9	MVLSEGEWRLVLHVWAKVEADVAGHGQDILIRLFKSHPE	T
10	MVLSEGEWQRVLHVWAKVEADVAGHGQDILIRLFKSHPE	T
11	MVLSEGEWQLRLHVWAKVEADVAGHGQDILIRLFKSHPE	T
12	MVLSEGEWQLVRHVWAKVEADVAGHGQDILIRLFKSHPE	T
13	MVLSEGEWQLVLRVWAKVEADVAGHGQDILIRLFKSHPE	T
14	MVLSEGEWQLVLHRWAKVEADVAGHGQDILIRLFKSHPE	T
15	MVLSEGEWQLVLHVRAKVEADVAGHGQDILIRLFKSHPE	Q

The long term dependency of this model is 40 - 15 = 25, because after 15 generations, the prediction is incorrect.

Task III – Sequence Generation Techniques

1. Completing and Generating Sequences

Input	Result	Sequence (input + result)					
	"PPYTVVYFPVRGRCAA	PPYTVVYFPVRGRCAAL					
"	LRMLLADQGQSWKEEV	RMLLADQGQSWKEEVV					
	VTVETWQE"	TVETWQE					
		MVLSEGEWQL					
MVLSEGEWQL	VLSPADKTNVKAAWGK	VLSPADKTNVKAAWGK					
WVESEGEWQL	VGAHAGEYGAEALE	VGAHAGEYGAEALE					
		Y					
	KVFGRCELAAAMKRHG	MNIFEMLRIDEGLRL					
MNIFEMLRIDEGLRL	LDNYRGYSL	KVFGRCELAAAMKRHG					
	LDNTROTSL	LDNYRGYSL					
VLSEGEWQLVLHVWAK		VLSEGEWQLVLHVWAK					
VEADVAGHG	QLSALEAKGETPSAV	VEADVAGHGQLSALEA					
		KGETPSAV					
PPYTVVYFPVRGRCAAL		PPYTVVYFPVRGRCAAL					
RMLLADQGQSWKEEVV	EKKSI	RMLLADQGQSWKEEVV					
TV	EKKSI	TVEKKSI					
		I A DIVINOI					

2. K-Table

K																				
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19+
1	1	1	1	1	1	1	0	0	1	0	1	1	1	0	1	1	0	1	1	0
2	1	1	1	1	1	2	1	1	1	0	1	1	1	1	1	1	1	1	1	2
3	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	0
4	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1
5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
6	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1
7	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
9	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	1	1	1	1	0
10	2	2	1	1	2	1	1	1	1	0	0	1	1	1	1	1	1	1	1	0

3. 3-gram language model

3-gram Sequence Probability	
MVL 0.065359477	12418301
VLS 0.065359477	12418301
LSE 0.065359477	12418301
SEG 0.065359477	12418301
ESW 0.065359477	12418301
EWQ 0.065359477	12418301
WQL 0.065359477	12418301
QLV 0.065359477	12418301
LVL 0.065359477	12418301
VLH 0.065359477	12418301
LHV 0.065359477	12418301
HVW 0.065359477	12418301
VWA 0.065359477	12418301
WAK 0.065359477	12418301
AKV 0.065359477	12418301
KVE 0.065359477	12418301
EAD 0.065359477	12418301
ADV 0.065359477	12418301
DVA 0.065359477	12418301
VAG 0.065359477	12418301
DVA 0.065359477	12418301
VAG 0.065359477	12418301
HGQ 0.065359477	12418301
GQD 0.065359477	12418301
HGQ 0.065359477	12418301
GQD 0.087145969	49891068