Bridge Maintenance RL Project Idea

Punna Chowdhury, Jane Slagle, and Diana Krmzian

Table of contents

O1
Problem

Challenges facing bridge infrastructure

04Methodologies

Application of reinforcement learning methods

02 Proposal

Explain the concept of the project and proposal

05
Benefits & Results

Our goal is to reduce costs, prioritize repairs and allocate resources efficiently

03 Environment

Existing working environment

06 Q&A

Questions from the class

Problem

Challenges facing bridge infrastructure

221,800

of America's 623,147 bridges need repair, which span over 6,100 miles

Aging, Usage & Deterioration

Maintenance & Intervention

Inspection and Monitoring Accuracy

Proposal

Explain the concept of the project and proposal

Research Paper on Bridge Maintenance

Hierarchical reinforcement learning for transportation infrastructure maintenance planning by Zachary Hamida and James-A. Goulet

Background of the paper

- Adaptive decision-making
- Resource optimization
- Policy for long-term planning and cost savings

Project proposal

Hierarchical Decision-Making

Using RL methods to
breakdown bridge
maintenance planning into
different levels such as
focusing various aspects to
the bridge, with each level of
hierarchy

Reward for Prioritization

Assign rewards based on the urgency and condition of bridge components to prioritize critical tasks, such as cracks or deteriorated beams

Cost-Efficiency Simulation

Apply multiple maintenance scenarios to help the model learn to optimize resources over time. Through situations, the agent will select maintenance actions that minimizes costs

Existing working environment

Environment Provided on Github

https://github.com/CivML-PolyMtl/InfrastructuresPlanner/blob/main/infra_planner.py

Structure of the Environment:

Bridge Inspection and Deterioration Model

- Bridge (B) entire bridge system being monitored
- Categories (Ck) The bridge is divided into different categories (e.g., structural components, sections, or materials). The bridge is divided into different categories (e.g., structural components, sections, or materials)
- Inspection (ykt,p) inspection process generates observations or measurements that will observe wear, detect defects, or measurements of structural integrity
- Deterioration Model Uses inspection data to update the predicted condition for each element

Structure of the Environment, Cont'd:

Decision-Making Flow for Maintenance Actions

04 Methodologies

Application of reinforcement learning methods

Semi-Markov decision processes (SMDP)

- Model sequential decision making
- Handle actions over time intervals with varying duration
- Accommodate temporal flexibility

All leads to more realistic representation

Monte Carlo

 Simulate various maintenance policies over multiple scenarios to estimate long-term costs associated with different strategies

Helps evaluate effectiveness of maintenance plans without needing a complete model of the system

Deep RL

- Addresses complexity of large state-action spaces
- Provides scalable alternative to tabular Q-learning

Makes capable of generalizing from experiences, efficiently solving problems in complex environments → like bridge maintenance

Objectives

- Save money by planning our repairs better
- Fixing urgent issues when they need attention
- Manage large networks easily and efficiently

The Benefits

- Reduces disruptions by planning smarter repairs
- Provides clear, easy to understand policies
- Works well for large and complex systems
- Tracks damage to make fast decisions

HRL helps prevent costly breakdowns, improves safety and makes sure everything works well by fixing the most important things in a timely manner.

Performance of Different RL Agents

(a) Average performance based on 5 seeds for DQN and Dueling agents in learning the maintenance policy $\pi_{k=1}$ for a beam structural element.

(b) Two realizations for the optimal policy maps $\pi_{k=1}^*$ based on the DQN agent (left) and the Dueling agent (right), and according to the action space \mathcal{A}^e . The area within the red frame represents the predefined critical state region for the condition \tilde{x}_t and speed \tilde{x}_t .

Fig. 6. The training process of deep RL agents along with two realizations for the optimal policy π_{i-1}^* of a beam structural element.

Performance Results

- We compared the average performance using different agents to learn the best maintenance policy
- HRP demonstrated better long-term cost savings across multiple tests

Optimal Policy Maps:

- Maps show how agents select actions based on infrastructure condition and deterioration speed.
- The red highlighted region marks critical areas that need to be quickly handled.

Conclusion and Future Potential

Thank you!

Questions from the class