Treball de Fi de Màster

Màster Universitari en Enginyeria Industrial

Disseny, programació i implementació d'un robot de dibuix amb Arduino

Annexos

Autor: Josep Maria Martí i Elias Director: Manel Velasco Garcia

Convocatòria: Juny 2017

Escola Tècnica Superior d'Enginyeria Industrial de Barcelona

Índex

Ín	dex		ii
\mathbf{A}		grames creats	1
	A.1	Python	1
		A.1.1 RobotMoveBT.py	1
		A.1.2 Draw.py	8
		A.1.3 AppTFM.py	13
	A.2		19
			19
В	Plài	nols de les peces	23
	B.1	Xassís	24
	B.2	Guia del retolador	25
	В.3	Mecanisme d'elevació del retolador	26
	B.4	Roda boja davantera	27
	B.5	Roda motriu	28
	B.6	Tubs auxiliars	29

Apèndix A

Programes creats

A.1 Python

A.1.1 RobotMoveBT.py

```
import math, serial, time
arduino=serial.Serial('COM4', 9600)
time.sleep(0.1)
StepsVolta=1600
VelocitatMax=200
x0 = 0.0
y0 = 0.0
#posicio[2];
pasdreta=0; #posicio absoluta del motor dret en pasos
pasesquerra=0; #posicio absoluta del motor dret en pasos
DiamRoda=51.9; #diametre de la roda en mm
RadiRoda=DiamRoda/2.0; #radi de la roda en mm
d=122.0/2.0; #distancia en mm entre el centre de l'eix (punt del boli) i les
                                       rodes
distDreta=61.8
distEsquerra=61.9
angle=0.0; #angle entre punt de la circumferencia en radians
{\tt arc=0.0}; #arc de circumferencia que s'ha de recorre en mm
pas= math.pi *DiamRoda/StepsVolta; #mm recorreguts per pas del motor
direccio0=math.pi/2; #angle inicial del robot a 90 graus
tempsLectura=0.01; #temps per llegir l'Arduino
def G00(x1,y1):
  global x0
  global y0
```

```
global pasdreta
  global pasesquerra
  global distancia
  global pas
  global direccio0
  dx = x1 - x0;
  dy = y1 - y0;
  distancia = math.sqrt(dx*dx + dy*dy);
  steps=round(distancia/pas);
  if (dx != 0):
    direccio = math.atan(dy/dx);
    if (dx < 0 \text{ and } dy >= 0):
      direccio = direccio + math.pi;
    elif (dx < 0 \text{ and } dy < 0):
      direccio = direccio - math.pi
    apuntar(direccio);
    print (direccio)
  else:
    if (dy > 0):
      direccio = math.pi/2.0;
    elif (dy<0):</pre>
      direccio = -math.pi/2.0;
    else:
      direccio=direccio0
    apuntar(direccio);
  direccio0=direccio
  pasdreta=pasdreta+steps;
  pasesquerra=pasesquerra+steps;
  x0=x1;
  y0=y1;
  text='0'+','+str(pasdreta)+','+str(pasesquerra)+','
  arduino.write(text)
  robot=1
  while robot==1:
   if arduino.inWaiting()>0:
      st=arduino.readline().strip()
      time.sleep(tempsLectura)
      if st=='Ready':
        robot=0
  return
def G01(x1,y1):
 global x0
  global y0
  global pasdreta
  global pasesquerra
  global distancia
  global pas
  dx = x1 - x0;
```

```
dy = y1 - y0;
  distancia = math.sqrt(dx*dx + dy*dy);
  steps=round(distancia/pas);
  pasdreta=pasdreta+steps;
  pasesquerra=pasesquerra+steps;
  x0=x1;
  y0=y1;
  text='1'+','+str(pasdreta)+','+str(pasesquerra)+','
  arduino.write(text)
  robot=1
  while robot == 1:
    if arduino.inWaiting()>0:
      st=arduino.readline().strip()
      time.sleep(tempsLectura)
      if st=='Ready':
        robot=0
  return
def G02(x1,y1,xC,yC,direccio1):
  global x0
  global y0
  global pasdreta
  global pasesquerra
  global distancia
  global pas
  global direccio0
  RadiGirC=math.sqrt(xC*xC+yC*yC)
  xC=xC+x0;
  yC = yC + yO;
  x0=x0-xC;
  y0 = y0 - yC;
  x1=x1-xC;
  y1 = y1 - yC;
  angle0=math.atan2(y0,x0)
  angle1=math.atan2(y1,x1)
  angle=angle0-angle1
  if angle<0:</pre>
    angle=2*math.pi+angle
  distanciaD = angle * (RadiGirC-distDreta);
  distanciaE = angle * (RadiGirC+distEsquerra);
  stepsD=round(distanciaD/pas);
  stepsE=round(distanciaE/pas);
  pasdreta=pasdreta+stepsD;
  pasesquerra=pasesquerra+stepsE;
  x0=x1+xC;
  y0=y1+yC;
  direccio0=direccio1;
  text='1'+','+str(pasdreta)+','+str(pasesquerra)+','
  arduino.write(text)
```

```
robot=1
 while robot == 1:
   if arduino.inWaiting()>0:
      st=arduino.readline().strip()
      time.sleep(tempsLectura)
      if st=='Ready':
        robot=0
  return
def G03(x1,y1,xC,yC,direccio1):
  global x0
  global y0
 global pasdreta
  global pasesquerra
  global distancia
  global pas
  global direccio0
  {\tt RadiGirC=math.sqrt(xC*xC+yC*yC)}
 xC=xC+x0;
 yC = yC + yO;
 x0=x0-xC;
 y0 = y0 - yC;
  x1=x1-xC;
 y1 = y1 - yC;
  angle0=math.atan2(y0,x0)
  angle1=math.atan2(y1,x1)
  angle=angle1-angle0
  if angle<0:</pre>
    angle=2*math.pi+angle
  distanciaD = angle * (RadiGirC+distDreta);
  distanciaE = angle * (RadiGirC-distEsquerra);
  stepsD=round(distanciaD/pas);
  stepsE=round(distanciaE/pas);
  pasdreta=pasdreta+stepsD;
  pasesquerra=pasesquerra+stepsE;
 x0=x1+xC;
  y0 = y1 + yC;
  direccio0=direccio1;
  text='1'+','+str(pasdreta)+','+str(pasesquerra)+','
  arduino.write(text)
  robot=1
  while robot == 1:
   if arduino.inWaiting()>0:
      st=arduino.readline().strip()
      time.sleep(tempsLectura)
      if st == 'Ready':
        robot=0
  return
```

```
def apuntar(direccio1):
  global pasdreta
  global pasesquerra
  global distancia
  global pas
  global direccio0
  gir=direccio0-direccio1;
  absgir=abs(gir);
  if (absgir > math.pi):
    if (gir<0):</pre>
      gir= 2.0 * math.pi + gir;
      gir = -2.0 * math.pi + gir;
  distancia=gir*d;
  steps = distancia / pas
  pasdreta=pasdreta-steps;
  pasesquerra=pasesquerra+steps;
  direccio0=direccio1;
  text='0'+','+str(pasdreta)+','+str(pasesquerra)+','
  arduino.write(text)
  robot=1
  while robot == 1:
    if arduino.inWaiting()>0:
      st=arduino.readline().strip()
      time.sleep(tempsLectura)
      if st == 'Ready':
        robot=0
  return
def GCodeFile(oldfile, newfile):
  oldfile=open(oldfile, 'r')
  newfile=open(newfile, 'w')
  oldfile=oldfile.readlines()
  for linia in oldfile:
    linia=linia.strip()
    linia=linia.split()
    if linia!=[]:
     if linia[0] == 'G00' and linia[1][0] == 'X':
        x=float(linia[1][1:])
        y=float(linia[2][1:])
        G00(x,y)
        newfile.write('G00('+linia[1][1:]+', '+linia[2][1:]+');\n')
      elif linia[0] == 'G01' and linia[1][0] == 'X':
        x=float(linia[1][1:])
        y=float(linia[2][1:])
        G01(x,y)
        newfile.write('G01('+linia[1][1:]+', '+linia[2][1:]+');\n')
```

```
elif linia[0] == 'G01' and linia[1][0] == 'A':
                       angle=float(linia[1][1:])
                       angle=angle-((2.0*math.pi)*(angle//(2.0*math.pi)))
                       apuntar(angle)
                       newfile.write('apuntar('+linia[1][1:]+');\n')
                 elif linia[0] == 'G02':
                       x1=float(linia[1][1:])
                       y1=float(linia[2][1:])
                       xc=float(linia[4][1:])
                       yc=float(linia[5][1:])
                       angle=float(linia[-1][1:])
                       angle=angle-((2.0*math.pi)*(angle//(2.0*math.pi)))
                       G02(x1,y1,xc,yc,angle)
                       newfile.write('G02('+linia[1][1:]+', '+linia[2][1:]+', '+linia[4][1:]+', '+linia[4
                                                                                                             ', '+linia[5][1:]+', '+linia[-1][1:]+')
                 elif linia[0] == 'G03':
                       x1=float(linia[1][1:])
                       y1=float(linia[2][1:])
                       xc=float(linia[4][1:])
                       yc=float(linia[5][1:])
                       angle=float(linia[-1][1:])
                       angle=angle-((2.0*math.pi)*(angle//(2.0*math.pi)))
                       G03(x1,y1,xc,yc,angle)
                       newfile.write('G03('+linia[1][1:]+', '+linia[2][1:]+', '+linia[4][1:]+
                                                                                                             ', '+linia[5][1:]+', '+linia[-1][1:]+')
                                                                                                             ;\n')
                 else:
                       pass
            else:
                 pass
      newfile.close()
def GCode(fitxer):
      fitxer=open(fitxer, 'r')
      fitxer=fitxer.readlines()
      for linia in fitxer:
          linia=linia.strip()
          linia=linia.split()
           if linia!=[]:
                 if linia[0] == 'GOO' and linia[1][0] == 'X':
                      x=float(linia[1][1:])
                       y=float(linia[2][1:])
                       G00(x,y)
```

```
elif linia[0] == 'G01' and linia[1][0] == 'X':
    x=float(linia[1][1:])
    y=float(linia[2][1:])
    G01(x,y)
  elif linia[0] == 'G01' and linia[1][0] == 'A':
    angle=float(linia[1][1:])
    angle=angle-((2.0*math.pi)*(angle//(2.0*math.pi)))
    apuntar(angle)
  elif linia[0] == 'G02':
    x1=float(linia[1][1:])
    y1=float(linia[2][1:])
    xc=float(linia[4][1:])
    yc=float(linia[5][1:])
    angle=float(linia[-1][1:])
    angle=angle-((2.0*math.pi)*(angle//(2.0*math.pi)))
    G02(x1,y1,xc,yc,angle)
  elif linia[0] == 'G03':
    x1=float(linia[1][1:])
    y1=float(linia[2][1:])
    xc=float(linia[4][1:])
    yc=float(linia[5][1:])
    angle=float(linia[-1][1:])
    angle=angle-((2.0*math.pi)*(angle//(2.0*math.pi)))
    G03(x1,y1,xc,yc,angle)
  else:
    pass
else:
 pass
```

A.1.2 Draw.py

```
import turtle
import math
import RobotMoveBT
moviments=[]
def cercle(t,R,angle):
 t.circle(R,angle)
def recta(t,x,y):
 t.pendown()
 t.goto(x,y)
def rectaup(t,x,y):
 t.penup()
 t.goto(x,y)
def dibuixApuntar(t,angle):
 t.setheading(angle)
 ordre=['apuntar',angle]
 moviments.append(ordre)
def dibuixG00(t,x1,y1):
 t.penup()
  (x0,y0)=t.pos()
 dx = x1 - x0;
  dy = y1 - y0
 if (dx != 0):
    direccio = math.atan(dy/dx);
   if (dx < 0 \text{ and } dy >= 0):
      direccio = direccio + math.pi;
    elif (dx < 0 \text{ and } dy < 0):
      direccio = direccio - math.pi
    t.setheading(direccio);
  else:
   if (dy > 0):
      direccio = math.pi/2.0;
    elif (dy<0):</pre>
      direccio = -math.pi/2.0;
      direccio=t.heading()
    t.setheading(direccio);
  t.goto(x1,y1)
  ordre=['G00',x1,y1]
  moviments.append(ordre)
  return
```

```
def dibuixG01(t,x1,y1):
  t.pendown()
  (x0,y0)=t.pos()
  dx = x1 - x0;
  dy = y1 - y0
  if (dx != 0):
    direccio = math.atan(dy/dx);
    if (dx < 0 \text{ and } dy >= 0):
      direccio = direccio + math.pi;
    elif (dx < 0 \text{ and } dy < 0):
      direccio = direccio - math.pi
    t.setheading(direccio);
  else:
    if (dy > 0):
      direccio = math.pi/2.0;
    elif (dy<0):</pre>
      direccio = -math.pi/2.0;
    else:
      direccio=t.heading()
    t.setheading(direccio);
  t.goto(x1,y1)
  ordre=['apuntar',direccio]
  moviments.append(ordre)
  ordre=['G01',x1,y1]
  moviments.append(ordre)
  return
def dibuixG02(t,x1,y1,xC,yC,angle):
  t.pendown()
  radi=math.sqrt(xC*xC + yC*yC)
  (x0,y0)=t.pos()
  xC=xC+x0;
  yC = yC + yO;
  x0=x0-xC;
  y0 = y0 - yC;
  x1=x1-xC;
  y1=y1-yC;
  angle0=math.atan2(y0,x0)
  angle1=math.atan2(y1,x1)
  angle=angle0-angle1
  if angle<0:</pre>
    angle=2*math.pi+angle
  t.circle(-radi,angle)
  ordre=['GO2',x1,y1,xC,yC,t.heading()]
  moviments.append(ordre)
  return
def dibuixG03(t,x1,y1,xC,yC,angle):
```

```
t.pendown()
  radi=math.sqrt(xC*xC + yC*yC)
  (x0,y0)=t.pos()
  xC=xC+x0;
  yC = yC + yO;
  x0=x0-xC;
  y0 = y0 - yC;
  x1=x1-xC;
  y1 = y1 - yC;
  angle0=math.atan2(y0,x0)
  angle1=math.atan2(y1,x1)
  angle=angle1-angle0
 if angle<0:</pre>
    angle=2*math.pi+angle
 t.circle(radi,angle)
  ordre=['G03',x1,y1,xC,yC,t.heading()]
  moviments.append(ordre)
 return
def afegir(t,val):
  moviments.append(val)
  return
def desfer(t):
  t.undo()
 if moviments [-1][0] == 'G01':
    del moviments[-1]
   del moviments[-1]
 else:
    del moviments[-1]
 return
def previsualitzaFitxer(t,fitxer):
  fitxer=open(fitxer, 'r')
  fitxer=fitxer.readlines()
 for linia in fitxer:
    linia=linia.strip()
    linia=linia.split()
    if linia!=[]:
      if linia[0] == 'G00' and linia[1][0] == 'X':
        x=float(linia[1][1:])
        y=float(linia[2][1:])
        dibuixG00(t,x,y)
      elif linia[0] == 'GO1' and linia[1][0] == 'X':
        x=float(linia[1][1:])
        y=float(linia[2][1:])
```

```
dibuixG01(t,x,y)
      elif linia[0] == 'G01' and linia[1][0] == 'A':
        angle=float(linia[1][1:])
        angle=angle-((2.0*math.pi)*(angle//(2.0*math.pi)))
        dibuixApuntar(t,angle)
      elif linia[0] == 'GO2':
        x1=float(linia[1][1:])
        y1=float(linia[2][1:])
        xc=float(linia[4][1:])
        yc=float(linia[5][1:])
        angle=float(linia[-1][1:])
        angle=angle-((2.0*math.pi)*(angle//(2.0*math.pi)))
        dibuixG02(t,x1,y1,xc,yc,angle)
      elif linia[0] == 'G03':
        x1=float(linia[1][1:])
        y1=float(linia[2][1:])
        xc=float(linia[4][1:])
        yc=float(linia[5][1:])
        angle=float(linia[-1][1:])
        angle=angle-((2.0*math.pi)*(angle//(2.0*math.pi)))
        dibuixG03(t,x1,y1,xc,yc,angle)
      else:
        pass
    else:
      pass
  return
def reset():
  t.reset()
  return
def representaLlist():
  for i in moviments:
    if i[0] == 'G00':
      dibuixG00(i[1],i[2])
    elif i[0] == 'G01':
      dibuixG01(i[1],i[2])
    elif i[0] == 'G02':
      dibuixG02(i[1],i[2],i[3],i[4],i[5])
    elif i[0] == 'G03':
      dibuixG03(i[1],i[2],i[3],i[4],i[5])
```

```
elif i[0] == 'apuntar':
      dibuixApuntar(i[1])
    else:
      pass
 return
def dibuixaLlista():
  import RobotMoveBT
 for i in moviments:
    if i[0] == 'G00':
      RobotMoveBT.G00(i[1],i[2])
    elif i[0] == 'G01':
      RobotMoveBT.G01(i[1],i[2])
    elif i[0] == 'G02':
      RobotMoveBT.G02(i[1],i[2],i[3],i[4],i[5])
    elif i[0] == 'G03':
      RobotMoveBT.G03(i[1],i[2],i[3],i[4],i[5])
    elif i[0] == 'apuntar':
      RobotMoveBT.apuntar(i[1])
    else:
      pass
  return
```

A.1.3 AppTFM.py

```
import math
import Tkinter as tk
import ttk
import turtle
import Draw
import RobotMoveBT
LARGE_FONT= ("Verdana", 12)
class TFM(tk.Tk):
  def __init__(self, *args, **kwargs):
    tk.Tk.__init__(self, *args, **kwargs)
    tk.Tk.wm_title(self, "TFM Josep Marti")
    container = tk.Frame(self)
    container.pack(side="top", fill="both", expand = True)
    container.grid_rowconfigure(0, weight=1)
    container.grid_columnconfigure(0, weight=1)
    self.frames = {}
    for F in (StartPage, Inkscape, Manual):
      frame = F(container, self)
      self.frames[F] = frame
      frame.grid(row=0, column=0, sticky="nsew")
    self.show_frame(StartPage)
  def show_frame(self, cont):
    frame = self.frames[cont]
    frame.tkraise()
class StartPage(tk.Frame):
  def __init__(self, parent, controller):
```

```
tk.Frame.__init__(self,parent)
    label = tk.Label(self, text="Com vols dibuixar?", font=LARGE_FONT)
    label.pack(pady=10,padx=10)
    button = ttk.Button(self, text="Importar archiu GCode creat per Inkscape",
    command=lambda: controller.show_frame(Inkscape))
    button.pack(pady=10,padx=10)
    button2 = ttk.Button(self, text="Realitzar un dibuix pas a pas",
    command=lambda: controller.show_frame(Manual))
    button2.pack(pady=5,padx=5)
class Inkscape(tk.Frame):
  def __init__(self, parent, controller):
  nomfitxer=tk.StringVar(None)
  tk.Frame.__init__(self, parent)
  label = tk.Label(self, text="Importar archiu des de Inkscape", font=
                                      LARGE_FONT).pack(pady=10,padx=10)
  label2=tk.Label(self, text='Nom del fitxer:').pack()
  fitxer=tk.Entry(self, textvariable=nomfitxer).pack(pady=10,padx=10)
  button1 = ttk.Button(self, text="Dibuixar",command=lambda:Dibuixa(self)).
                                      pack(pady=10,padx=10)
  button2 = ttk.Button(self, text="Previsualitzar",command=lambda:Preview(self
                                      )).pack(pady=10,padx=10)
  button3 = ttk.Button(self, text="Tornar a l\'inici",command=lambda: back(
                                      self)).pack(pady=10,padx=10)
  canvas = tk.Canvas(self, width=500, height=500)
  canvas.pack(pady=10,padx=10)
  turtle1 = turtle.RawTurtle(canvas)
  turtle1.shape("turtle")
  turtle1.setheading(90)
  turtle1.radians()
  def Dibuixa(self):
    nom=nomfitxer.get()
```

```
RobotMoveBT.GCode(nom)
  def Preview(self):
   nom=nomfitxer.get()
   Draw.previsualitzaFitxer(turtle1, nom)
  def back(self):
   turtle1.reset()
    turtle1.setheading(math.pi/2.0)
    controller.show_frame(StartPage)
class Manual(tk.Frame):
  def __init__(self, parent, controller):
   tk.Frame.__init__(self, parent)
   label0=tk.Label(self, text=' ').grid(row=0,column=0)
   label = tk.Label(self, text="Pas a pas", font=LARGE_FONT).grid(row=1,
                                      column=2)
                                         ').grid(row=3,column=0)
    label1=tk.Label(self, text='
    ordre=tk.StringVar()
    ordre.set(None)
    G00X=tk.DoubleVar()
    G00Y=tk.DoubleVar()
    G01X=tk.DoubleVar()
    G01Y=tk.DoubleVar()
    G02X=tk.DoubleVar()
    G02Y=tk.DoubleVar()
    G02I=tk.DoubleVar()
    G02J=tk.DoubleVar()
    G02A=tk.DoubleVar()
    G03X=tk.DoubleVar()
    G03Y=tk.DoubleVar()
    G03I=tk.DoubleVar()
    G03J=tk.DoubleVar()
    GO3A=tk.DoubleVar()
    RA=tk.DoubleVar()
    checkBox2Graus=tk.BooleanVar()
    checkBox3Graus=tk.BooleanVar()
    checkBoxGraus=tk.BooleanVar()
```

```
radioG=tk.Radiobutton(self, text='Linia recta de posicionament (G00): ',
                                  value='G00', variable= ordre).grid(row=3
                                  ,column=0)
labelG00X=tk.Label(self, text='X =').grid(row=3,column=2)
entryG00X=tk.Entry(self, textvariable= G00X, width=8).grid(row=3,column=3)
labelG00Y=tk.Label(self, text='Y =').grid(row=3,column=5)
entryG00Y=tk.Entry(self, textvariable=G00Y, width=8).grid(row=3,column=6)
#G01
radioG=tk.Radiobutton(self,text='Linia recta (G01): ', value='G01',
                                  variable=ordre).grid(row=5,column=0)
labelG01X=tk.Label(self, text='X =').grid(row=5,column=2)
entryG01X=tk.Entry(self, textvariable=G01X, width=8).grid(row=5,column=3)
labelG01Y=tk.Label(self, text='Y =').grid(row=5,column=5)
entryG01Y=tk.Entry(self, textvariable=G01Y, width=8).grid(row=5,column=6)
#G02
radioG=tk.Radiobutton(self,text='Arc en sentit horari (G02): ', value='G02
                                  ', variable=ordre).grid(row=7,column=0)
labelGO2X=tk.Label(self, text='X =').grid(row=7,column=2)
entryG02X=tk.Entry(self, textvariable=G02X, width=8).grid(row=7,column=3)
labelG02Y=tk.Label(self, text='Y =').grid(row=7,column=5)
entryG02Y=tk.Entry(self, textvariable=G02Y, width=8).grid(row=7,column=6)
labelG02I=tk.Label(self, text='I =').grid(row=7,column=8)
entryG02I=tk.Entry(self, textvariable=G02I, width=8).grid(row=7,column=9)
labelG02J=tk.Label(self, text='J =').grid(row=7,column=11)
entryG02J=tk.Entry(self, textvariable=G02J, width=8).grid(row=7,column=12)
labelGO2A=tk.Label(self, text='Orientacio =').grid(row=7,column=14)
entryG02A=tk.Entry(self, textvariable=G02A, width=8).grid(row=7,column=15)
#G03
{\tt radioG=tk.Radiobutton(self,text='Arc\ en\ sentit\ horari\ (GO3):\ ',\ value='GO3}
                                  ', variable=ordre).grid(row=9,column=0)
labelGO3X=tk.Label(self, text='X =').grid(row=9,column=2)
```

#G00

```
entryGO3X=tk.Entry(self, textvariable=GO3X, width=8).grid(row=9,column=3)
labelGO3Y=tk.Label(self, text='Y =').grid(row=9,column=5)
entryG03Y=tk.Entry(self, textvariable=G03Y, width=8).grid(row=9,column=6)
labelG03I=tk.Label(self, text='I =').grid(row=9,column=8)
entryG03I=tk.Entry(self, textvariable=G03I, width=8).grid(row=9,column=9)
labelG03J=tk.Label(self, text='J =').grid(row=9,column=11)
entryG03J=tk.Entry(self, textvariable=G03J, width=8).grid(row=9,column=12)
labelGO3A=tk.Label(self, text='Orientacio =').grid(row=9,column=14)
entryG03A=tk.Entry(self, textvariable=G03A, width=8).grid(row=9,column=15)
#Rotacio
radioG=tk.Radiobutton(self,text='Rotacio: ', value='apuntar', variable=
                                  ordre).grid(row=11,column=0)
labelRA=tk.Label(self, text='Orientacio =').grid(row=11,column=2)
entryRA=tk.Entry(self, textvariable=RA, width=8).grid(row=11,column=3)
checkBox1=tk.Checkbutton(self, variable=checkBoxGraus, text="Orientacio en
                                   graus").grid(row=11, column=5)
#Botons
buttonDibuixar=tk.Button(self, text='Dibuixar', fg='blue', command=lambda:
                                  Dibuixar(self)).grid(row=20,column=7)
buttonVeure=tk.Button(self, text='Veure', fg='blue', command=lambda: Veure
                                  (self)).grid(row=20,column=3)
buttonUndo=tk.Button(self, text='Desfer', fg='blue', command=lambda: undo(
                                  self)).grid(row=20,column=5)
buttonTorna=tk.Button(self, text='Tornar a l\'inici', fg='blue', command=
                                  lambda:back(self)).grid(row=20,column=9)
canvas = tk.Canvas(self, width=500, height=500)
canvas.grid(row=25,column=1,columnspan=12)
turtle1 = turtle.RawTurtle(canvas)
turtle1.shape("turtle")
turtle1.setheading(90)
turtle1.radians()
label1=tk.Label(self, text='
                                     ').grid(row=11,column=5)
def Dibuixar(self):
```

```
Draw.dibuixaLlista()
def Veure(self):
  print ordre.get()
  tria=ordre.get()
  if tria == 'GOO':
    x = GOOX.get()
    y=G00Y.get()
    Draw.dibuixG00(turtle1,x,y)
  elif tria == 'G01':
    x=G01X.get()
    y=G01Y.get()
    Draw.dibuixG01(turtle1,x,y)
  elif tria == 'G02':
    x = G02X.get()
    y=G02Y.get()
    i=G02I.get()
    j = G02J.get()
    angle=G02A.get()
    graus=checkBox1.get()
    if graus == True:
      angle= (angle*math.pi)/180
    print (x, y, i , j, angle)
    Draw.dibuixG02(turtle1,x,y,i,j,angle)
  elif tria == 'G03':
    x=G03X.get()
    y=G03Y.get()
    i=G03I.get()
    j = GO3J.get()
    angle=G03A.get()
    graus=checkBox1.get()
    if graus == True:
      angle = (angle * math.pi)/180
    Draw.dibuixG03(turtle1,x,y,i,j,angle)
  elif tria == 'apuntar':
    angle=RA.get()
    graus=checkBox1.get()
    if graus == True:
      angle= (angle*math.pi)/180
    else:
      pass
    Draw.dibuixapuntar(turtle1, angle)
  else:
```

```
def undo(self):
    Draw.desfer(turtle1)

def back(self):
    turtle1.reset()
    turtle1.setheading(math.pi/2.0)
    controller.show_frame(StartPage)

app = TFM()
app.mainloop()
```

A.2 Arduino

A.2.1 Robot.ino

```
#include <AccelStepper.h>
#include < MultiStepper.h>
#include <Servo.h>
#include <SoftwareSerial.h>
Software Serial blue tooth (10,11);
Servo boli;
int up=0;
int down=50;
AccelStepper RodaDreta(1,9,8);
AccelStepper RodaEsquerra(1,13,12);
MultiStepper Robot;
int VelocitatMax=500;
long posicio[2];
int pasdreta=0; //posicio absoluta del motor dret en pasos
int pasesquerra=0; //posicio absoluta del motor dret en pasos
int text[3];
int cnt=0;
boolean Rebut = false;
```

```
void setup() {
  bluetooth.begin(9600);
  pinMode(2, OUIPUI); //microstepping off
  pinMode(3,OUIPUT);
  digitalWrite (2, HIGH);
  digitalWrite(3,HIGH);
  pinMode(4, OUIPUT);
  pinMode (5, OUIPUT);
  digitalWrite (4, HIGH);
  digitalWrite(5,HIGH);
  boli.attach(6);
  boli.write(0);
  Robot.addStepper(RodaDreta);
  Robot.addStepper(RodaEsquerra);
  RodaDreta.setMaxSpeed(VelocitatMax);
  RodaEsquerra.setMaxSpeed(VelocitatMax);
}
void loop() {
  getSerialData();
  delay(1);
  processData();
}
void getSerialData(){
  if (bluetooth.available() > 0) {
    String x = bluetooth.readString();
    String buff="";
    for (int i=0; i< x.length(); i++){
      String caracter="";
      caracter=caracter+x[i];
      if (caracter!=","){
        buff=buff+x[i];
      else {
        int y=buff.toInt();
        text[cnt]=y;
        buff="";
        if (cnt < 3) {
          cnt+=1;
```

```
if (cnt=3){
           cnt=0;
         }
       }
     }
    Rebut{=}t\,r\,u\,e\;;
    delay(1);
}
void processData(){
  if (Rebut=true){
     if\ (text\ [0]{==}0\ and\ boli.read\ ()\ !{=}up)\ \{
       boli.write(up);
       delay(300);
    }
     else\ if\ (text\,[\,0]{=}{=}1\ and\ boli.read\,(\,)\,!{=}down)\,\{
       boli.write(down);
       delay(300);
    }
     posicio[0]=-text[1];
     posicio[1]=text[2];
    Robot.moveTo(posicio);
    Robot.runSpeedToPosition();
    bluetooth.println("Ready");
    Rebut=false;
  }
}
```

Apèndix B

Plànols de les peces

- **B.1** Xassís
- B.2 Guia del retolador
- B.3 Mecanisme d'elevació del retolador
- B.4 Roda boja davantera
- B.5 Roda motriu
- **B.6** Tubs auxiliars

