9.1.1 对弧长的曲线积分 9.1.2 对坐标的曲线积分

基础过关

一、填空题

1. 设
$$L: y = -\sqrt{1-x^2}$$
, 则 $\int_L (x^2 + y^2) ds =$ ______.

2. 设
$$L$$
 为 圆 周 $x^2 + y^2 = a^2(a > 0)$, 则 $\oint_L (x^2 + y^2) ds = ______;$

$$\oint_I y^2 ds =$$
______; $\oint_I (2x^2 + 3y^2) ds =$ ______.

3. 读
$$L$$
 为 $x^2 + y^2 = 1(y \ge 0)$,则 $\int_L e^{x^2 + y^2} \arctan \sqrt{x^2 + y^2} ds =$ ______.

4.
$$\Im \Gamma \supset \begin{cases} x^2 + y^2 + z^2 = 8 \\ z = 2 \end{cases}$$
, $\Im \oint_{\Gamma} \frac{\mathrm{d}s}{x^2 + y^2 + z^2} = \underline{\qquad}$.

6. 设
$$\Gamma$$
 是从点 $(1,1,1)$ 到点 $(2,3,4)$ 的一段直线,则 $\int_{\Gamma} x dx + y dy + (x+y-1) dz = _______.$

二、计算曲线积分 $I = \oint_L x ds$,其中 L 为由直线 y = x 及抛物线 $y = x^2$ 所围成的区域的整个边 界.

三、计算曲线积分
$$I = \oint_I \sqrt{x^2 + y^2} ds$$
, 其中

1.
$$L$$
为圆周 $x^2 + y^2 = 4x$

1.
$$L$$
为圆周 $x^2 + y^2 = 4x$; 2. L 为区域 $D: 0 \le y \le x \le \sqrt{2 - y^2}$ 的边界.

四、计算曲线积分 $I=\int_{\Gamma}\frac{1}{x^2+y^2+z^2}\mathrm{d}s$,其中 Γ 为曲线 $\begin{cases} x=\mathrm{e}^t\cos t\\ y=\mathrm{e}^t\sin t & \mathrm{上相应于}\,t\,\mathrm{从}\,0\,\mathrm{变到}\\ z=\mathrm{e}^t \end{cases}$ 2的一段弧.

五、计算曲线积分 $I = \int_L (x^2 - 2xy) dx + (y^2 - 2xy) dy$, 其中L是抛物线 $y = x^2$ 上从点 $\begin{pmatrix} -1,1 \end{pmatrix}$ 到点 $\begin{pmatrix} 1,1 \end{pmatrix}$ 的一段弧.

六、计算曲线积分 $I = \int_L (x^2 - y^2) dx + xy dy$, $L \curlywedge O(0,0)$ 到 A(1,1)

- 1. L的方程为 $y = x^5$;
- 2. L的方程为 $y = \sqrt{2x x^2}$;
- 3. L是从 O 沿 y = -x 经 B(-1,1) 再沿 $y = \sqrt{2-x^2}$ 到点 A.

七、计算曲线积分 $I = \int_L (x^2 + y^2) dx + 2xy dy$, 其中L分别为:

- 1. $y = 1 |1 x| \, \text{id} \, O(0,0) \, \text{se} \, A(1,1) \, \text{gian} \, B(2,0) \, \text{ohfs};$
- 2. 沿圆周 $(x-1)^2 + y^2 = 1$ 的上半部分从O(0,0)到B(2,0)的一段弧.

 $\int_{\Gamma} xyz dx + yz dy + xz dz$. 化为对弧长的曲线积分.

能力提升

一、设 C 是椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, 其周长为 l, 计算 $\oint_C (bx + ay + 1)^2 ds$.

二、计算 $\int_{\Gamma} x^2 yz ds$, 其中 Γ 为折线 ABCD, 其中点 A, B, C, D 的坐标依次为 (0,0,0),(0,0,2),(1,0,2),(1,3,2).

三、曲线 C 是由 $x^2 + y^2 + z^2 = 1$ 及x + y + z = 0 相交而成,求 $\int_C xy ds$.

看去为逆时针方向,计算曲线积分 $\int_L xz dx + x dy + \frac{y^2}{2} dz$.

五、设 $u(x,y)=x^2-xy+y^2$, L 为抛物线 $y=x^2$ 自原点至点 A(1,1) 的有向弧段,n 为 L 的 切向量顺时针旋转 $\frac{\pi}{2}$ 所得的法向量, $\frac{\partial u}{\partial n}$ 为函数 u 沿法向量 n 的方向导数,计算 $I=\int_L \frac{\partial u}{\partial n} \mathrm{d}s.$

延伸探究

- 一、设空间曲面 S 是以曲线 C : $\begin{cases} (x-2)^2+2y^2=1, \\ z=2 \end{cases}$ 为准线,母线平行于向量 l=(1,0,1) 的柱 z=2
- (2) 设空间曲面 S 与球面 $x^2+y^2+z^2=1$ 的交在半空间 z>0 的部分记为空间曲线 Γ ,计算对弧长的曲线积分 $I=\int_{\Gamma}x\mathrm{d}s$.