ELEMENTS OF METRIC GEAR TECHNOLOGY Table of Contents

			Page
SECTIO		INTRODUCTION TO METRIC GEARS	329
1.1		tric Gears With American Inch Gears	329
	1.1.1	Comparison of Basic Racks	329
	1.1.2	Metric ISO Basic Rack	329
1.0	1.1.3	Comparison of Gear Calculation Equations	330
1.2	Metric Standards W		330
	1.2.1	ISO Standards	330
1.0	1.2.2	Foreign Metric Standards	330
1.3	1.3.1	andards In This Text	330 330
	1.3.2	Application of JIS Standards Symbols	333
	1.3.3	Terminology	334
CECTIO	1.3.4	Conversion	335
SECTIO		INTRODUCTION TO GEAR TECHNOLOGY	335 336
	Basic Geometry Of		
	The Law Of Gearing		336
2.3	The Involute Curve	3	336
	Pitch Circles		337
	Pitch And Module	~	337
	Module Sizes And S		337
2.7	Gear Types And Ax		339
	2.7.1	Parallel Axes Gears	340
	2.7.2	Intersecting Axes Gears	340
	2.7.3	Nonparallel and Nonintersecting Axes Gears	340
	2.7.4	Other Special Gears	341
SECTIO		DETAILS OF INVOLUTE GEARING	341
3.1	Pressure Angle	10	341
3.2	Proper Meshing Ar		341
0.0	3.2.1	Contact Ratio	342
3.3 SECTIO	The Involute Funct	SPUR GEAR CALCULATIONS	$\begin{array}{c} 342 \\ 342 \end{array}$
4.1			342
4.1	Standard Spur Ger		342
	The Generating Of	A Spur Gear	343 343
4.3	Undercutting		
4.4	Enlarged Pinions		344
4.5	Profile Shifting		344
4.6	Profile Shifted Spu		345
4.7	Rack And Spur Ge		346
SECTION		INTERNAL GEARS	346
	Internal Gear Calcu		346
	Interference In Inte		347
5.3 SECTIO	Internal Gear With	Small Differences In Numbers Of Teeth HELICAL GEARS	348
	Generation Of The		349 349
			349
6.3	Fundamentals Of H		
	Equivalent Spur Ge		350
	Helical Gear Pressu		350
		mal Plane Geometry	350
	Helical Tooth Propo		350
	Parallel Shaft Helica		350
	Helical Gear Contac		351
6.9	Design Consideration		351
	6.9.1	Involute Interference	351
	6.9.2	Normal vs. Radial Module (Pitch)	351
6.10	Helical Gear Calcui	IATIONS Normal System Helical Coor	351
	6.10.1	Normal System Helical Gear	351
	6.10.2	Radial System Helical Gear	352
	6.10.3	Sunderland Double Helical Gear	352
	6.10.4	Helical Rack	352
SECTION		SCREW GEAR OR CROSSED HELICAL GEAR MESHES	354
7.1	Features	Holiv Angle and Hands	$\frac{354}{254}$
	7.1.1	Helix Angle and Hands	354
	7.1.2	Module	354
	7.1.3	Center Distance	354
	7.1.4	Velocity Ratio	354

7.2	Screw Gear Calculations	354
7.3	Axial Thrust Of Helical Gears	355
SECTIO		356
8.1	Development And Geometry Of Bevel Gears	356
8.2	Bevel Gear Tooth Proportions	356
8.3	Velocity Ratio	357
8.4	Forms Of Bevel Teeth	357
8.5	Bevel Gear Calculations	357
	8.5.1 Gleason Straight Bevel Gears	358
	8.5.2 Standard Straight Bevel Gears	358
	8.5.3 Gleason Spiral Bevel Gears	358
	8.5.4 Gleason Zerol Spiral Bevel Gears	361
SECTIO	ON 9 WORM MESH	361
9.1	Worm Mesh Geometry	362
5.1	9.1.1 Worm Tooth Proportions	362
	•	
	9.1.2 Number of Threads	362
	9.1.3 Pitch Diameters, Lead and Lead Angle	362
	9.1.4 Center Distance	362
9.2	Cylindrical Worm Gear Calculations	362
	9.2.1 Axial Module Worm Gears	363
	9.2.2 Normal Module System Worm Gears	363
9.3	Crowning Of The Worm Gear Tooth	363
9.4	Self-Locking Of Worm Mesh	365
SECTIO	ON 10 TOOTH THI CKNESS	366
10.1	Chordal Thickness Measurement	366
	10.1.1 Spur Gears	366
	10.1.2 Spur Racks and Helical Racks	366
	10.1.3 Helical Gears	366
		366
	10.1.5 Worms and Worm Gears	366
10.2	Span Measurement Of Teeth	366
	10.2.1 Spur and Internal Gears	366
	10.2.2 Helical Gears	366
10.3	Over Pin (Ball) Measurement	370
10.0	10.3.1 Spur Gears	370
	10.3.2 Spur Racks and Helical Racks	371
	10.3.3 Internal Gears	371
	10.3.4 Helical Gears	371
	10.3.5 Three Wire Method of Worm Measurement	371
10.4	Over Pins Measurements For Fine Pitch Gears With Specific Numbers Of Teeth	371
SECTIO	ON 11 CONTACT RATIO	382
	Radial Contact Ratio Of Spur And Helical Gears, ea	
11.1		382
11.2	Contact Ratio Of Bevel Gears, e _a	382
11.3	Contact Ratio For Nonparallel And Nonintersecting Axes Pairs, e	382
11.4		383
	Axial (Overlap) Contact Ratio, e _b	
SECTIO		383
12.1	Tooth Tip Relief	383
12.2	Crowning And Side Relieving	384
12.3	Topping And Semitopping	384
SECTIO		384
13.1		
13.1	Single-Stage Gear Train	384
10.0	13.1.1 Types of Single-Stage Gear Trains	384
13.2	Two-Stage Gear Train	385
13.3	Planetary Gear System	385
	13.3.1 Relationship Among the Gears in a Planetary Gear System	385
	13.3.2 Speed Ratio of Planetary Gear System	386
13.4	Constrained Gear System	386
SECTIO	ON 14 BACKLASH	387
14.1	Definition Of Backlash	387
14.2	Backlash Relationships	388
	14.2.1 Backlash of a Spur Gear Mesh	389
	14.2.2 Backlash of Helical Gear Mesh	389
	14.2.3 Backlash of Straight Bevel Gear Mesh	389
	14.2.4 Backlash of a Spiral Bevel Gear Mesh	389
	14.2.5 Backlash of Worm Gear Mesh	390
149		390
14.3	Tooth Thickness And Backlash	390
14.4	Gear Train And Backlash	390

408

408

412

411

17.2.15 Safety Factor for Pitting. SH

Bending Strength Of Bevel Gears

17.3

17.2.16 Allowable Hertz Stress, σ H lim

17.2.17 Example of Surface Stress Calculation

	17.3.1	Conversion Formulas	412	
	17.3.2	Bending Strength Equations	412	
	17.3.3	Determination of Factors in Bending Strength Equations	412	
		17.3.3.A Tooth Width, b(mm)	412	
		17.3.3.B Tooth Profile Factor, Y _F	412	
		17.3.3.C Load Distribution Factor, Ye	413	
		17.3.3.D Spiral Angle Factor, Y _β	415	
		17.3.3.E Cutter Diameter Effect Factor, Y _C	415	
		17.3.3.F Life Factor, K _L	415	
		17.3.3.G Dimension Factor of Root Bending Stress, KFX	415	
		17.3.3.H Tooth Flank Load Distribution Factor, K _M	415	
		17.3.3.1 Dynamic Load Factor, KV	415	
		17.3.3.J Overload Factor, KO	415	
		17.3.3.K Reliability Factor, KR	415	
		17.3.3.L Allowable Bending Stress at Root, σ _{Flim}	415	
	17.3.4	Examples of Bevel Gear Bending Strength Calculations	416	
17.4	Surface	e Strength Of Bevel Gears		416
	17.4.1	Basic Conversion Formulas		416
	1742	Surface Strength Equations		416

	17.4.3	Determination of Factors in Surface Strength Equations		417
		17.4.3.A Tooth Width, b (mm)	417	
		17.4.3.B Zone Factor, Z _H	417	
		17.4.3.C Material Factor, Z _M	417	
		17.4.3.D Contact Ratio Factor, Z_{ϵ}	417	
		17.4.3.E Spiral Angle Factor, Z _β	417	
		17.4.3.F Life Factor, K _{HL}	417	
			417	
		17.4.3.G Lubricant Factor, Z _L		
		17.4.3.H Surface Roughness Factor, Z _H	417	
		17.4.3.I Sliding Speed Factor, Z _V	417	
		17.4.3.J Hardness Ratio Factor, Z _W	417	
		17.4.3.K Dimension Factor, KHX	417	
		17.4.3.L Tooth Flank Load Distribution Factor, KHB	418	
		17.4.3.M Dynamic Load Factor, Ky	418	
		17.4.3.N Overload Factor, KO	418	
		17.4.3.0 Reliability Factor, C _R	418	
	17 4 4	17.4.3.P Allowable Hertz Stress, s _{Hlim}	418	410
17.5	17.4.4 Strongth	Examples of Bevel Gear Surface Strength Calculations of Worm Gearing		418 419
17.5	17.5.1	Basic Formulas		419
		Torque, Tangential Force and Efficiency		419
	17.5.3	Friction Coefficient, m		419
	17.5.4	Surface Strength of Worm Gearing Mesh		420
	17.5.5	Determination of Factors in Worm Gear Surface Strength Equations		420
		17.5.5.A Tooth Width of Worm Gear, b ₂ (mm)	420	
		17.5.5.B Zone Factor, Z	420	
		17.5.5.C Sliding Speed Factor, K _V	421	
		17.5.5.D Rotating Speed Factor, K _n	421	
		17.5.5.E Lubricant Factor, Z _L	421	
		17.5.5.F Lubrication Factor, Z _M	422	
		17.5.5.G Surface Roughness Factor, Z _R	422	
		17.5.5.H Contact Factor, K_C	422	
		17.5.5.1 Starting Factor, K _S	422	
		17.5.5.J Time Factor, K _h	422	
		17.5.5.K Allowable Stress Factor, S _{clim}	422	
CECETON 1	17.5.6	Examples of Worm Mesh Strength Calculation		423
SECTION 1 18.1		DESÍGN OF PLASTIC GEARS Considerations Of Plastic Coaring		424 424
18.2		Considerations Of Plastic Gearing es Of Plastic Gear Materials		424 424
18.3		Of Pressure Angles And Modules		429
18.4		of Plastic Spur Gears		430
10.1	18.4.1	Bending Strength of Spur Gears		430
	18.4.2	Surface Strength of Plastic Spur Gears		431
	18.4.3	Bending Strength of Plastic Bevel Gears		432
	18.4.4	Bending Strength of Plastic Worm Gears		432
10.5	18.4.5	Strength of Plastic Keyway		432
18.5	Effect Of	f Part Shrinkage On Plastic Gear Design		432
18.6	18.6.1	Jse Of Plastic Gears Backlash		433 433
	18.6.2	Environment and Tolerances		434
	18.6.3	Avoiding Stress Concentration		434
	18.6.4	Metal Inserts		434
	18.6.5	Attachment of Plastic Gears to Shafts		434
	18.6.6	Lubrication		434
	18.6.7	Molded vs. Cut Plastic Gears		435
40 ~	18.6.8	Elimination of Gear Noise		435
18.7		onstruction EFATURES OF TOOTH SUREACE CONTACT		435
SECTION 1 19.1		FEATURES OF TOOTH SURFACE CONTACT Contact Of Spur And Helical Meshes		438 439
19.2		Contact Of Spur And Hencal Mesnes		439
20.2	19.2.1	The Offset Error of Shaft Alignment		439
	19.2.2	The Shaft Angle Error of Gear Box		439
	19.2.3	Mounting Distance Error		439
19.3		Contact Of Worm And Worm Gear		440
	19.3.1	Shaft Angle Error		440
	19.3.2 19.3.3	Center Distance Error		440 440
SECTION 2		Mounting Distance Error LUBRICATION OF GEARS		440 440
20.1		s Of Lubrication		440

Catalog Q410

	20.1.1	Grease Lubrication	441
	20.1.2	Splash Lubrication	441
	20.1.3	Forced-Circulation Lubrication	441
20.2	Gear Lı	ubricants	441
	20.2.1	Viscosity of Lubricant	441
	20.2.2	Selection of Lubricant	441
SECTION	21	GEAR NOISE	444
REFEREN	CES AND	LITERATURE OF GENERAL INTEREST	445

ELEMENTS OF METRIC GEAR TECHNOLOGY

Gears are some of the most important elements used in machinery. There are few mechanical devices that do not have the need to transmit power and motion between rotating shafts. Gears not only do this most satisfactorily, but can do so with uniform motion and reliability. In addition, they span the entire range of applications from large to small. To summarize:

- 1.
- Gears offer positive transmission of power.
 Gears range in size from small miniature instrument installations, that measure in only several millimeters in diameter, to huge powerful gears in turbine drives that are several meters in diameter.
- Gears can provide position transmission with very high angular or linear accuracy; such as used in servomechanisms and military equipment.
 Gears can couple power and motion between shafts
- 4. whose axes are parallel. intersecting or skew.
 Gear designs are standardized in accordance with size and shape which provides for widespread
- 5. interchangeability.

This technical manual is written as an aid for the designer who is a beginner or only superficially knowledgeable about gearing. It provides fundamental theoretical and practical information. Admittedly, it is not Intended for experts.

Those who wish to obtain further information and special details should refer to the reference list at the end of this text and other literature on mechanical machinery and components.

SECTION 1 INTRODUCTION TO METRIC GEARS

This technical section is dedicated to details of metric gearing because of its increasing importance. Currently, much gearing in the united States is still based upon the inch system. However, with most of the world metricated, the use of metric gearing in the United States is definitely on the increase, and inevitably at some future date it will be the exclusive system.

It should be appreciated that in the United States there is a growing amount of metric gearing due to increasing machinery and other equipment imports. This is particularly true of manufacturing equipment. such as printing presses, paper machines and machine tools. Automobiles are another major example, and one that impacts tens of millions of individuals. Further spread of metric gearing is inevitable since the world that surrounds the United States is rapidly approaching complete conformance. England and Canada, once bastions of the inch system, are well down the road of metrication, leaving the United States as the only significant exception.

Thus, it becomes prudent for engineers and designers to not only become familiar with metric gears, but also to incorporate them in their designs. Certainly, for export products it is imperative; and for domestic products it is a serious consideration. The U.S. Government, and in particular the military, is increasingly insisting upon metric based equipment designs.

Recognizing that most engineers and designers have been reared tan environment of heavy use of the inch system and that the amount of literature about metric gears is limited, we are offering this technical gear section as an aid to understanding and use of metric gears. In the following pages, metric gear standards are introduced along with information about interchangeability and non-interchangeability. Although gear theory is the same for both the inch and metric systems, the formulae hr metric

1.1 Comparison Of Metric Gears With American Inch Gears

1.1.1 Comparison of Basic Racks

In all modern gear systems, the rack is the basis for tooth design and manufacturing tooling. Thus, the similarities and differences between the two systems can be put into proper perspective with comparison of the metric and inch basic racks.

In both systems, the basic rack is normalized for a unit size. For the metric rack it is 1 module, and for the inch rack it is 1 diametral pitch.

1.1.2 Metric ISO Basic Rack

The standard ISO metric rack is detailed in Figure 1-1. It is now the accepted standard for the international community, it having eliminated a number of minor differences that existed between the earlier versions of Japanese. German and Russian modules. For comparison, the standard inch rack is detailed in Figure 1-2. Note that there are many similarities. The principal factors are the same for both racks. Both are normalized for unity; that is, the metric rack is specified in terms of 1 module, and the inch rack in terms of 1 diametral pitch.

Fig. 1-1 The Basic Metric Rack From ISO 53 Normalized For Module 1

h_a=Addendum h_f=Dedendum c=Clearance r=Working
Depth
h=Whole Depth
p=CircularPitch

r_f=Root Radius s=Circular Tooth Thickness a = Pressure Angle

Fig. 1-2 The Basic Inch Diametral Pitch Rack Normalized For 1 Diametral Pitch

From the normalized metric rack, corresponding dimensions for any module are obtained by multiplying each rack dimension by the value of the specific module m. The major tooth parameters are defined by the standard, as: gearing take on a different set of symbols. These equations are fully defined in the metric system. The coverage is $\frac{1}{2}$ thorough and complete with the intention that this be a source for all information about gearing with definition in a metric format.

Tooth Form:

Pressure Angle:

Straight-sided full depth, forming the basis of a family of full depth interchangeable gears.

A 20° pressure angle, which conforms to worldwide acceptance of this as the

most versatile pressure angle.

Catalog Q410

Addendum:

This is equal to the module m, which is

similar to the inch value that becomes 1/p. Dedendum:

This is 1.25 m; again similar to the inch rack most pertinent standards is given in Table 1-1.

value.

Root Radius: The metric rack value is slightly greater than

the American inch rack value.

A maximum value is specified. This is a Tip Radius:

does not specify a rounding.

1.1.3 Comparison of Gear Calculation Equations

Most gear equations that are used for diametral pitch inch gears are equally applicable to metric gears if the module m is substituted for diametral pitch. However, there are exceptions when it is necessary to use dedicated metric equations. Thus, to avoid confusion and errors, it is most effective to work entirely with and within the metric system.

1.2 Metric Standards Worldwide

1.2.1 ISO Standards

Metric standards have been coordinated and standardized by the

International Standards Organization (ISO). A listing of the

1.2.2 Foreign Metric Standards

Most major industrialized countries have been using metric deviation from the American inch rack which gears for a long time and consequently had developed their own standards prior to the establishment of ISO and SI units. In general, they are very similar to the ISO standards. The key foreign metric standards are listed in Table 1-2 for reference.

1.3 Japanese Metric Standards In This Text

1.3.1 Application of JIS Standards

Japanese Industrial Standards (JIS) define numerous engineering subjects including gearing. The originals are generated in Japanese, but they are translated and published in English by the Japanese Standards Association.

Considering that many metric gears are produced in Japan, the JIS standards may apply. These essentially conform to all aspects of tin ISO standards.

Table 1-1 ISO Metric Gearing Standards

ISO 53:1974	Cylindrical gears for general and heavy engineering - Basic rack	
ISO 54 1977	Cylindrical gears for general and heavy engineering - Modules and diametral pitches	
ISO 677:1976	Straight bevel gears for general and heavy engineering - Basic rack	
ISO 678:1976	Straight bevel gears for general and heavy engineering - Modules and diametral pitches	
ISO 701 : 1976	International gear notation - symbols for geometrical data	
ISO 1122-1:1983	Glossary of gear terms - Part 1: Geometrical definitions	
ISO 1328: 1975	Parallel involute gears - ISO system of accuracy	
ISO 1340: 1976	Cylindrical gears Information to be given to the manufacturer by the purchaser in order to obtain the gear required	
Straight bevel gears - Information to be given to the manufacturer by the purchaser in order to obtain the gear required		
ISO 2203:1973	3: 1973 Technical drawings - Conventional representation of gears	
ISO 2490: 1975 single-start solid (monobloc) gear hobs with axial keyway, 1 to 20 module 1 to 20 diametral pitch - Nominal dimensions		
Addendum modification of the teeth of cylindrical gears for speed-reducing speed-increasing gear pairs		
H5O 4468: 1982	Gear hobs - Single-start - Accuracy requirements	
ISO 8579-1:1993	Acceptance code for gears - Part 1: Determination of airborne sound power levels emitted by gear units	
ISO 8579-2:1993	Acceptance code for gears - Part 2: Determination of mechanical vibrations of gear units during acceptance testing	
ISO/TR10064-1:1992	Cylindrical gears - Code of inspection practice - Part 1: Inspection of corresponding flanks of gear teeth	

Table 1-2 Foreign Metric Gear Standards

	AUSTRALIA
AS B 62 1965 AS B 66 1969 AS B 214 1966 AS B 217 1966 AS 1637	Bevel gears Worm gears (inch series) Geometrical dimensions for worm gears - Units Glossary for gearing International gear notation symbols for geometric data (similar to ISO 701)

		FRANCE	
NF F23-001	1972		
NF E23-002	1972	Classomy of vyours groups	
NF E23-005	1965	Cooring Symbols (similar to ISO 701)	
NF E23-006	1967	Tolerances for spur gears with involute teeth (similar to ISO 1328)	
NF E23-011	1972	Cylindrical gears for general and heavy engineering-Basic rack and modules	
NF E25-011	(similar to ISO 467 and ISO 53)	Continued	
NF E23-012	1972	Cylindrical gears - Information to be given to the manufacturer by the	Continued
111 220 012	10.2	producer	on following
NFL 32-611	1955	Calculating spur gears to NF L 32-610	page

Table 1-2 (Cont.) Foreign Metric Gear Standards

	Table 1-2 (Cont.) Foreign Metric Gear Standards
	GERMANY - DIN (Deutsches Institut für Normung)
DIN 37	12.61
DIN 780 Pt 1	05.77
DIN 780 Pt 2	Conventional and simplified representation of gears and gear pairs [4] Series of modules for gears - Modules for spur gears [4]
DIN 007	Sories of modules for goars Modules for cylindrical worm goar
DIN 867	transmissions [4]
DIN 868	Basic rack tooth profiles for involute teeth of cylindrical gears for general
BIV 600	and heavy engineering [5]
DIN 3961	General definitions and specification factors for gears. gear pairs and gear
DIN 3962Pt 1	08.78 trains [11] 08.78 Tolerances for cylindrical gear teeth - Bases [8]
DIN 0000 D. 0	Toloropos for cylindrical goar teeth Toloropos for deviations of individual
DIN 3962 Pt 2	08.78 parameters [11]
DIN 3962 Pt 3	08.78 Tolerances for cylindrical gear teeth-Tolerances for tooth trace deviations
DIV 3302 1 t 3	[[4]
DIN 3963	Tolerances for cylindrical gear teeth-Tolerances for pitch-span deviations [4] Tolerances for cylindrical gear teeth-Tolerances for working deviations [11]
L	
DIN 3964	for cylindrical gears [4] Tolorancing of boyol goars Basic concent [5]
DIN 3965 Pt 1	Tolerancing of bevel gears-Basic concept [5]
DIN 3965 Pt 2	OR RELATIONS OF DEVELOPERANCES for individual parameters [11]
BII	Tolerancing of bevel gears-Tolerances for tangential composite errors [11]
DIN 3965 Pt 3	08.86 Tolerancing of bevel gears-Tolerances for shaft angle errors and axes intersection point deviations [5]
DIN 3965 Pt 4	08.86 Information on gear teeth in drawings-Information on involute teeth for cylindrical gears [7]
DIN 3966 Pt 1	Information on gear teeth in drawings-Information on straight bevel gear
DIN 3300 I C 1	Information on gear teeth in drawings-Information on straight bevel gear teeth [6]
DIN 3966 Pt 2	System of gear fits-Backlash, tooth thickness allowances, tooth thickness
	08.78 System of gear fits-backlash, tooth thickness allowances, tooth thickness tolerances-Principles [12]
DIN 3967	08.78
DIN 2070 Dt 1	11.74
DIN 3970 Pt 1	11.74
DIN 3970 Pt 2	11.74
DIN 3971	07.80
	Master gears for checking spur gears-Gear blank and tooth system [8]
DIN 3972	02.52 Master gears for checking spur gears-Receiving arbors [4]
DIN 3975	Definitions and parameters for bevel gears and bevel gear pairs [12] 10.76 Reference profiles of gear-cutting tools fit involute tooth systems according
DIN 3973	to DIN 867 [4]
DIN 3976	11.80 Terms and definitions for cylindrical worm gears with shaft angle 90° [9]
	Cylindrical worms-Dimensions, correlation of shaft center distances and
DIN 3977	02.81 gear ratios of worm gear drives [6]
DIM 2070	Measuring element diameters for the radial or diametral dimension for
DIN 3978 DIN 3979	08.76 testing tooth thickness of cylindrical gears [8] 07.79 Helix angles for cylindrical gear teeth [5]
BIN 3373	Tooth damage on gear trains-Designation, characteristics, causes (11)
DIN 3993 P11	08.81 Geometrical design of cylindrical internal involute gear pairs - Basic rules
	[17)
DIN 3993 Pt 2	08.81 Geometrical design of cylindrical internal involute gear pairs-Diagrams for
	geometrical limits of internal gear-pinion matings [15]
DIN 3993 Pt 3	Geometrical design of cylindrical internal involute gear pairs-Diagrams for 08.81 the determination of addendum modification coefficients [15]
	Geometrical design of cylindrical internal involute gear pairs-Diagrams for
	limits of internal gear-pinion type cutter matings [10]
DIN 3993 Pt 4	08.81 Denominations on gear and gear pairs - Alphabetical index of equivalent
	terms [10]
DIN 3998	Denominations on gears and gear pairs-General definitions [11) 09.76 Denominations on gears and gear pairs-Cylindrical gears and gear pairs
Suppl 1	[11]
DIN 3998 Pt 1	09.76 Denominations on gears and gear pairs-Bevel and hypoid gears and gear
	pairs [9]
DIN 3998 Pt 2	09.76 Denominations on gears and gear pairs-Worm gear pairs[8]
DIN 3006 pt 3	Spur gear drives for fine mechanics-Scope, definitions, principal design
DIN 3998 Pt 3	09.76 data, classification [7] Spur gear drives for fine mechanics-Gear fit selection, tolerances,
DIN 3998 Pt 4	09.76 allowances [9]
DIN 58405 Pt 1	05.72 Spur gear drives for fine mechanics-Indication in drawings, examples for
	calculation [12]

DIN 58405 Pt 2		ur gear drives for fine mechanics-Tables [15] chnical Drawings - Conventional representation of gears
DIN 58405 Pt 3	05.72	· · · · · · · · · · · · · · · · · · ·
DIN 58405 Pt 4 DIN ISO 2203	05.72 06.76	

NOTES:

- Standards available in English from: ANSI, 1430 Broadway, New York, 10018; or Beuth Verlag GmbH. Burggrafenstrasse 6, D-10772 Berlin, Germany; or Global Engineering Documents. Inverness Way East, Englewood, CO 80112-5704
 Above data was taken from: DIN Catalogue of Technical Rules 1994. Supplement, Volume 3, Translations

Table 1-2 (Cont.) Foreign Metric Gear Standards

	ITALY]
UNI 3521	1954 1954 Gearing - Module series	
UNI 3522 UNI 4430	Gearing - Basic rack Spur gear - Order information for straight and bevel gear	
UNI 4760 UNI 6586	1969 I Gearing - Glossary and geometrical definitions Modules and diametral pitches of cylindrical and straight bevel gears for	
	general and heavy engineering (corresponds to ISO 54 and 678) Basic rack of cylindrical gears for standard engineering (corresponds to ISO	
UNI 6587	1969 Basic rack of cylindrical gears for standard engineering (corresponds to ISO 53) Basic rack of cylindrical gears for standard engineering (corresponds to ISO 53)	
UNI 6588	(corresponds to ISO 677)	Continued on
UNI 6773	1970 ISO 701)	following page

Table 1-2 (Cont.) Foreign Metric Gear Standards

JAPAN - JIS (Japanese Industrial Standards)		
B 0003		Drawing office practice for gears
B 0102		Glossary of gear terms
B 1701		Involute gear tooth profile and dimensions
B 1702		Accuracy for spur and helical gears
B 1703		Backlash for spur and helical gears
B 1704		Accuracy for bevel gears
B 1705		Backlash for bevel gears
B 1721	1973	Shapes and dimensions of spur gears for general engineering
B 1722		Shape and dimensions of helical gears for general use
B 1723		Dimensions of cylindrical worm gears
B 1741		Tooth contact marking of gears
B 1751		Master cylindrical gears
B 1752	1989	Methods of measurement of spur and helical gears
B 1753		Measuring method of noise of gears
B 4350	1991	Gear cutter tooth profile and dimensions
B 4351	1985	Straight bevel gear generating cutters
B 4354	1988	Single thread hobs
B 4355	1988	Single thread fine pitch hobs
B 4356	1985	Pinion type cutters
B 4357	1988	Rotary gear shaving cutters
B 4358	1991	Rack type cutters
NOTE:		

Standards available in English from: ANSI, 1430 Broadway, New York, NY 10018; or International Standardization Cooperation Center. Japanese Standards Association, 4-1-24 Akasaka, Minato-ku, Tokyo 107

Table 1-2 (Cont.) Foreign Metric Gear Standards				
		UNITED KINGDOM - BSI (British Standards Institute)		
BS 235	1972			
BS 436 Pt 1	1987			
BS 436 Pt 2	1984	Specification of gears for electric traction		
BS 436 Pt 3	1986	Spur and helical gears - Basic rack form, pitches and accuracy (diametral pitch series) Spur and helical gears - Basic rack form, modules and accuracy (1 to 50 metric module) (Parts 1 & 2 related but not equivalent with ISO 53, 54, 1328, 1340 & 1341)Spur gear and helical gears-Method for calculation of contact and root bending stresses, limitations for metallic		
BS 721 Pt 1	1984	involute gears (Related but not equivalent with ISO/DIS 6336/1, 2 & 3)		
BS 721 Pt 2	1983	Specification for worm gearing - Imperial units		
BS 978 Pt 1	1984	Specification for worm gearing - Metric units		
BS 978 Pt 2	1984	Specification for fine pitch gears - Involute spur and helical gears		
BS 978 Pt 3	1984	Specification for fine pitch gears - Cycloidal type gears		
BS 978 Pt 4	1965	Specification for fine pitch gears - Bevel gears		
BS 1807	1981	Specification for fine pitch gears - Hobs and cutters		
BS 2007	1983	Specification for marine propulsion gears and similar drives: metric module		
BS 2062 Pt 1	1985	Specification for circular gear shaving cutters, 1 to 8 metric module, accuracy requirements Specification for gear hobs - Hobs for general purpose: 1 to 20 d.p., inclusive Specification for gear hobs - Hobs for gears for turbine reduction and similar drives		
BS 2062 Pt 2	1985	Specification for rotary form relieved gear cutters - Diametral pitch Specification for rotary relieved gear cutters - Metric module		
BS 2518 Pt 1	1983	Glossary for gears - Geometrical definitions		
BS 2518 Pt 2	1983	Glossary for gears - Notation (symbols for geometrical data for use in gear rotation)		
BS 2519 Pt 1	1976	Specification for rack type gear cutters		
BS 2519 Pt 2	1976	Specification for dimensions of worm gear units		
		Specification for master gears - Spur and helical gears (metric module)		
BS 2697	1976	Dimensions of spur and helical geared motor units (metric series) Fine pitch gears (metric module) Involute spur and helical gears		
BS 3027	1968	Fine pitch gears (metric module) - Involute spur and helical gears Fine pitch gears (metric module) - Hobs and syttems		
BS 3696 Pt 1	1984	Fine pitch gears (metric module) - Hobs and cutters		
BS 4517	1984	Specifications for general purpose, metric module gear hobs		
BS 4582 Pt 1	1984	Specifications for pinion type cutters for spur gears-1 to 8 metric module		
BS 4582 Pt 2	1986	Specification for nonmetallic spur gears		
BS 5221	1987			
BS 5246	1984			
BS 6168	1987			

Standards available from: ANSI, 1430 Broadway, New York, NY 10018; or BSI, Linford Wood, Milton Keynes MK146LE, United Kingdom

1.3.2 Symbols

Gear parameters are defined by a set of standardized symbols that are defined in JIS B 0121 (1983). These are reproduced in Table 1-3.

The JIS symbols are consistent with the equations given in this text and are consistent with JIS standards. Most differ from typical American symbols, which can be confusing to the first time metric user. To assist, Table 1-4 is offered as a cross list.

Table 1-3A The Linear Dimensions And Circular Dimensions

Table 1-5A III			
Terms	Symbols		
Center Distance	a		
Circular Pitch (General)	P		
Standard Circular Pitch	P		
Radial Circular Pitch	Pt		
Circular Pitch			
Perpendicular to Tooth	Pn		
Axial Pitch	Px		
Normal Pitch	Pb		
Radial Normal Pitch	Pbt		
Normal Pitch			
Perpendicular to Tooth	Pbn		
Whole Depth	h		
Addendum	ha		
Dedendum	hf		
Caliper Tooth Height	h		
Working Depth	h' hw		
Tooth Thickness (general)	s		
Circular Tooth Thickness	s		
base Circle Circular			
Tooth Thickness	$ $ $S_{\mathbf{b}}$		
Chordal Tooth Thickness	S		
Span Measurement	W		
Root Width	e		
Top Clearance	С		
Circular Backlash	jt		
Normal Backlash	jn		
Blank Width	b		
Working Face Width	b' bw		
* Those terms and symbols are specific to IIS Standard			

Terms	Symbols
Lead	$P_{\mathbf{Z}}$
Contact Length	ga
Contact Length of Approach	gf
Contact Length of Recess	g_{α}
Contact Length of Overlap	gβ
Diameter (General)	d
Standard Pitch Diameter	d
Working Pitch Diameter	d'_dw
Outside Diameter	da
Base Diameter	d _b
Root Diameter	$d_{\mathbf{f}}$
Radius (General)	r
Standard Pitch Radius	r
Working Pitch Radius	r' rw
Outside Radius	ra
Base Radius	$ $ $r_{\rm b}$
Root Radius	r _f
Radius Curvature	р
Cone Distance (General)	R
Cone Distance	Re
Mean Cone Distance	Rm
Inner Cone Disatance	Ri
Back Cone Distance	Rv
Mounting Distance	*A
Offset Distance	*E

* These terms and symbols are specific to JIS Standard

Table 1-3B Angular Dimensions

Terms	Symbols
Pressure Angle (General)	α
Standard Pressure Angle	α
Working Pressure Angle	α' or αw
Cutter Pressure Angle	α_0
Radial Pressure Angle	α_{t}
Pressure Angle Normal to Tooth	αn
Axial Pressure Angle	αχ
Helix Angle (General)	β
Standard Pitch Cylinder Helix Angle	β
Outside Cylinder Helix Angle	βa
Base Cylinder Helix Angle	βb
Lead Angle (General)	γ
Standard Pitch Cylinder Lead Angle	γ
Outside Cylinder Lead Angle	γa
Base Cylinder Lead Angle	γb

Terms	Symbols
Shaft Angle	Σ
Cone Angle (General)	δ
Pitch Cone Angle	δ
Outside Cone Angle	δa
Root Cone Angle	δt
Addendum Angle	θα
Dedendum Angle	θ f
Radial Contact Angle	φa
Overlap Contact Angles	φb
Overall Contact Angle	φr
Angular Pitch of Crown	τ
Involute Function	inv α

Table 1-3C Size Numbers, Ratios & Speed Terms

Table 1-3C Size Numbers, Radios & Speed Terms				
Terms	Symbols	Terms	Symbols	
Number of Teeth	Z	Contact Ratio	ε	
Equivalent SpurGear Number Of Teeth	ZV	Radial Contact Ratio	εα	
Number Of Threads in Worm	zw	Overlap Contact Ratio	εβ	
Number of Teeth in pinion	zl	Total Contact Ratio	εγ	
Number of Teeth Ratio	u	Specific Slide	*σ	
Speed Ratio	i	Angular Speed	ω	
Module	m	Linear or Tangential Speed	v	
Radial Module	mt	Revolutions per Minute	n	
Normal Module	mn	Coefficient of Profile Shift	x	
Axial Module	mx	Coefficient of Center Distance Increase	l v	

Continued on following page

NOTE: The term "Radial" is used to denote parameters in the plane of rotation perpendicular to the axis.

Table 1-3D Accuracy/Error Terms

Terms	Symbols	Terms	Symbols
Single Pitch Error Pitch Variation Partial Accumulating Error (Over Integral k teeth)	fpt *fu or fpu Fpk Fp	Normal Pitch Error Involute Profile Error Runout Error Lead Error	fpb ff Fr Fr Fb
Total Accumulated Pitch Error	l Lh		,

^{*}These terms and symbols are specific to JIS Standards
Table 1-4 Equivalence of American and Japanese Symbols

American Symbol Japanese Symbol	Table 1-4 Equivalence of American and Japanese Symbols					
Symbol	American	Japanese	NI I - t		-	
B J backlash, linear measure along pitch circle backlash, linear measure along pitch circle backlash, linear measure along line-of-action backlash in arc minutes C C a center distance center distance operating pressure angle operating center distance operating center distance operating center distance operating operating center distance operating center	Symbol		Nomenciature			Nomenclature
BLA jt backlash, linear measure along pitch circle BLA jt backlash, linear measure along line-of-action line-of-action BLA jt backlash, linear measure along line-of-action BLA ph ph ph base pitch diameter linear distance change in center dist		i		Symbol		romenetatare
BLA Jit backlash, linear measure along Pd Pdn Pn gear diametral pitch horsepower, transmitted pitch diameter pitch diame		J		Nv	Z_{v}	
aB jn backlash in arc minutes C a center distance CC Δa change in center distance CS CS da change in center distance CS Ta base circle radius, pinion To the file tradius CS Δa change in center distance CS Ta base circle radius, pinion To the file tradius CS Δa change in center distance CS Rb Ta base circle radius chance CS Ta base circle	Bra	4.		Pd	P	
aB	LA	Jt	backlash, linear measure along			
C AC a center distance change in center distance change in center distance change in center distance R break operating center distance pitch radius, gear or general use general use general use general use general use general use base circle radius, gear outside radius pitch radius, gear outside radius outside rad					- 11	
AC Co C] Jn				
Co Cstd aw operating center distance standard standar		a		R	r	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Δa	change in center distance			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		a _w	operating center distance	R _b	r _b	
D d db base circle diameter base circle adius, ginion base circle adius, pinion base circle adius, pinion base circle adius, pinion base circle adius, pinion circle adius, pini		''	standard center distance	Ro	r _a	base circle radius, gear
Db da base circle diameter	D	d	pitch diameter			outside radius, gear
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D _b		base circle diameter		S	testing radius
DR df face width b face width b factor, general beam tooth strength lewis factor, diametral pitch mesh velocity ratio a dedendum			outside diameter			
F k k factor, general			root diameter			
F K K K I L L length general; also lead of worm measurement over-pins number of teeth, usually gear number of teeth for no undercutting number of teeth, pinion nw zw number of threads in worm Pa Pa Px Px Pb Pb Pc Pr C Pcm Pn normal circular pitch pitch radius, pinion ror t to toth thickness, and for summer of teads of the pitch radius, pinion t t S S toth thickness, and for summer of teeth, pinion addendum dedendum dedend			face width		li	
L	l r	լ Մ Խ	factor, general	I		
M N z number of teeth, usually gear Nc zc critical number of teeth for no undercutting ht mp ε contact ratio number of threads in worm Pa Pa Px Pb Pb Pc Pc Pr Circular pitch Pc Pc Pr Circular pitch Pr rb rb rb rf fillet radius ro ra voluside radius, pinion ro ra outside radius, pinion ro ra critical number of teeth, usually dd dd pitch diameter, pinion clearance pitch dd dd pitch diameter, for over-pins measurement eccentricity hw working depth hw working depth Lewis factor, circular pitch pitch angle, bevel gear rotation angle, general lead angle, worm gearing mean value gear stage velocity ratio pressure angle helix angle (bb=base helix angle) angular velocity involute function						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L L	L		b	l	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			measurement over-pins			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_				
Nc	N	Z		dw	d _p	
$\begin{array}{ c c c c c c } \hline NC & ZC & & & & & & & & & & & & & & & & &$.,				_	
$\begin{array}{ c c c c c c } ht & h & whole depth \\ mp & r & z1 \\ Pa & Px \\ Pc & Pc \\ Pcm & r \\ rb & rb \\ rf & ro \\ ro \\ t & S \\ \end{array} \begin{array}{ c c c c c } ht & whole depth \\ contact ratio \\ number of teeth, pinion \\ number of threads in worm \\ axial pitch \\ ph & ph \\ ph & ph \\ ph & ph & ph \\ ph & ph &$	l Nc	zc				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		١,		hk	hw	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				yc		Lewis factor circular nitch
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				γ	δ	nitch angle hevel gear
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	n			θ		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				λ	γ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				μ μ	·	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				v		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				φ	α	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pcm				l .	
rf rf ra outside radius, pinion angular velocity tooth thickness, and for a fillet radius outside radius, pinion angular velocity involute function						holiv andle (hh-hase heliv
ro ra outside radius, pinion angular velocity tooth thickness, and for involute function				<u> </u>	"	angle (bb-base field
$\frac{10}{t}$ tooth thickness, and for $\frac{0}{t}$ involute function	rf					angle, bw = operating neils angle)
t S cooth thickness, and for	ro	ra	tooth thickness, and for	ω		involute function
general use, for tolerance	t	S			invo	involute function
			general use, for tolerance		11110	Į.

1.3.3 Terminology

Terms used in metric gearing are identical or are parallel to those used for inch gearing. The one major exception is that metric gears are based upon the module, which for reference may be considered as the inversion of a metric unit diametral pitch.

Terminology will be appropriately introduced and defined throughout the text.

There are some terminology difficulties with a few of the descriptive words used by the Japanese JIS standards when translated into English.

One particular example is the Japanese use of the term "radial" to describe measures such as what Americans term circular pitch. This also crops up with contact ratio. What Americans refer to as contact ratio in the plane of rotation, the Japanese equivalent is called "radial contact ratio". This can be both confusing and annoying. Therefore, since this technical section is being used outside Japan, and the American term is more realistically descriptive, in this text we will use the American term "circular" where it is meaningful. However, the applicable Japanese symbol will be used. Other examples of giving preference to the American terminology will be identified where it occurs.