Attention Is All You Need

2017.6

Introduction

Background

• long short-term memory (LSTM)

Long Distance Dependency

• Recurrent neural networks(RNN)

Parallelization (Efficiency)

• ConvS2S(convolution) , ByteNet

Transformer

(rely entirely on

attention

mechanism)

Long Distance Dependency

Parallelization (Efficiency)

Flops (Parameters)

Background

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Application

NLP

- Sequence modeling(Seq2Seq)
- Transduction problems(Language modeling and Machine translation...)
- Question Answer, Dialog System or Chatbot, Classification, Augmentation
- (BERT 2018 : the sota modle in 11 NLP tasks!)

CV

- DETR(Object Detection)
- ViT(Classification)
- Super-Resolution

Model Architecture

Model Architecture—Self-Attention

Model Architecture—Self-Attention

The self-attention calculation in matrix form

or 4 boxes in the figure), and the q/k/v vectors (64, or 3 boxes in the figure)

Model Architecture—Self-Attention

```
import torch
    import torch.nn as nn
    import numpy as np
    author = "Yu-Hsiang Huang"
    class ScaledDotProductAttention(nn.Module):
        ''' Scaled Dot-Product Attention '
10
       def init (self, temperature, attn dropout=0.1):
           super(). init ()
11
                                            #temperature就是每个输入的embedding维度d的开根号
12
           self.temperature = temperature
           self.dropout = nn.Dropout(attn_dropout)
                                                    #为防止过拟合,每次随机丢弃0.1的数据点
13
                                             #对dim=2(对于a*b*c dim=0是a维度上归一 dim=1是每个b*c的列归一 dim
           self.softmax = nn.Softmax(dim=2)
14
15
       def forward(self, q, k, v, mask=None):
16
17
18
           attn = torch.bmm(q, k.transpose(1, 2))
19
           attn = attn / self.temperature
20
21
           if mask is not None:
               attn = attn.masked fill(mask, -np.inf) #mask为一个遮盖矩阵
22
23
24
           attn = self.softmax(attn)
                                     #输出经过dropout的一部分权重矩阵OK seg*seg
25
           attn = self.dropout(attn)
           output = torch.bmm(attn, v) #輸出seg*feature v
26
27
28
           return output, attn
```

Model Architecture—Multi-Head Attention(output)

Attention

Multi-head Attention

Model Architecture—Multi-Head Attention

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

Thinking Machines

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Model Architecture—Multi-Head Attention

```
class MultiHeadAttention(nn.Module):
   def __init _ (self, n_head, d_model, d k, d v, dropout=0.1): #d model == d feature * n heads
       super(). init ()
       self.n head = n head
       self.d k = d k
       self.d_v = d_v
       self.w qs = nn.Linear(d model, n head * d k)
       self.w ks = nn.Linear(d model, n head * d k)
       self.w_vs = nn.Linear(d_model, n_head * d_v)
       nn.init.normal_(self.w_qs.weight, mean=0, std=np.sqrt(2.0 / (d_model + d_k))) #要求三个矩阵初始化参数正态分布
       nn.init.normal (self.w ks.weight, mean=0, std=np.sqrt(2.0 / (d model + d k)))
       nn.init.normal_(self.w_vs.weight, mean=0, std=np.sqrt(2.0 / (d model + d v)))
       self.attention = ScaledDotProductAttention(temperature=np.power(d_k, 0.5)) #防止随着输出维数过大 点积过大
       self.layer norm = nn.LayerNorm(d model) #对每个样本维度长度是d model的维度(也就是feature维度)标准化
       self.fc = nn.Linear(n head * d v, d model) #初始化最后的矩阵的fc =d model * (n head * d v)(把multihead的feature数调回原始 在这里其实维数没变)
       nn.init.xavier normal (self.fc.weight)
       self.dropout = nn.Dropout(dropout)
   def forward(self, q, k, v, mask=None):
       d k, d v, n head = self.d k, self.d v, self.n head
       sz b, len q, = q.size() #?q不是没有传进来吗
       sz_b, len_k, _ = k.size()
       sz b, len v, = v.size()
       residual = q
       q = self.w qs(q).view(sz b, len q, n head, d k)
       k = self.w_ks(k).view(sz_b, len_k, n head, d k)
       v = self.w vs(v).view(sz b, len v, n head, d v)
       q = q.permute(2, 0, 1, 3).contiguous().view(-1, len q, d k) # (n*b) x lq x dk 没弄懂
       k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_k, d_k) # (n*b) x lk x dk
       v = v.permute(2, 0, 1, 3).contiguous().view(-1, len v, d v) # (n*b) x lv x dv
       mask = mask.repeat(n head, 1, 1) # (n*b) x .. x .. 没弄懂
       output, attn = self.attention(q, k, v, mask=mask)
       output = output.view(n head, sz b, len q, d v)
       output = output.permute(1, 2, 0, 3).contiguous().view(sz b, len q, -1) # b x lq x (n*dv)
       output = self.dropout(self.fc(output))
       output = self.layer norm(output + residual)
       return output, attn #输出seq*feature_v
```

Model Architecture

- Add & Norm
- Feed-Forward Networks
- Positional encoding
- Connect between encode and decode
- Masked Multi-Head Attention
- Softmax

Model Architecture

Model Architecture—FFN

$$FFN(x) = max(0, xW1 + b1)W2 + b2$$

```
class PositionwiseFeedForward(nn.Module):
       A two-feed-forward-layer module
    def __init__(self, d_in, d_hid, dropout=0.1):
        super(). init ()
        self.w_1 = nn.Conv1d(d_in, d_hid, 1) # position-wise
        self.w_2 = nn.Conv1d(d_hid, d_in, 1) # position-wise
        self.layer_norm = nn.LayerNorm(d_in)
        self.dropout = nn.Dropout(dropout)
    def forward(self, x):
        residual = x
        output = x.transpose(1, 2)
        output = self.w_2(F.relu(self.w_1(output)))
        output = output.transpose(1, 2)
        output = self.dropout(output)
        output = self.layer_norm(output + residual)
        return output
```

Model Architecture—Positional encoding

Model Architecture—Connection between encode&decode

Decoding time step: 1 2 3 4 5 6 OUTPUT Linear + Softmax **DECODER ENCODER ENCODER DECODER EMBEDDING** WITH TIME **SIGNAL EMBEDDINGS**

suis

INPUT

étudiant

Model Architecture—Position between encode&decode

Decoding time step: 1 2 3 4 5 6 OUTPUT Linear + Softmax Vencdec **ENCODERS DECODERS EMBEDDING** WITH TIME **SIGNAL EMBEDDINGS PREVIOUS** étudiant suis le **INPUT OUTPUTS**

Model Architecture—Position between encode&decode

$$Q = K = V = egin{bmatrix} s_1 \ s_2 \ s_3 \ s_4 \end{bmatrix} \qquad QK^T = egin{bmatrix} s_1 s_1^T & s_1 s_2^T & s_1 s_3^T & s_1 s_4^T \ s_2 s_1^T & s_2 s_2^T & s_2 s_3^T & s_2 s_4^T \ s_3 s_1^T & s_3 s_2^T & s_3 s_3^T & s_3 s_4^T \ s_4 s_1^T & s_4 s_2^T & s_4 s_3^T & s_4 s_4^T \end{bmatrix}$$

$$mask * QK^T = (QK^T)' = egin{bmatrix} s_1s_1^T & -\infty & -\infty & -\infty \ s_2s_1^T & s_2s_2^T & -\infty & -\infty \ s_3s_1^T & s_3s_2^T & s_3s_3^T & -\infty \ s_4s_1^T & s_4s_2^T & s_4s_3^T & s_4s_4^T \end{bmatrix}$$

$$out = soft \maxig((QK^T)' / \sqrt{4}ig) * V = egin{bmatrix} a_{11}s_1 & 0 & 0 & 0 \ a_{21}s_1 & a_{22}s_2 & 0 & 0 \ a_{31}s_1 & a_{32}s_2 & a_{33}s_3 & 0 \ a_{41}s_1 & a_{42}s_2 & a_{43}s_3 & a_{44}s_4 \end{bmatrix}$$

Model Architecture — Output

Since the model's parameters (weights) are all initialized randomly, the (untrained) model produces a probability distribution with arbitrary values for each cell/word. We can compare it with the actual output, then tweak all the model's weights using backpropagation to make the output closer to the desired output.

Model Architecture — Train & Validation

	N	d_{model}	$d_{ m ff}$	h	d_k	d_v	P_{drop}	ϵ_{ls}	train steps	PPL (dev)	BLEU (dev)	params ×10 ⁶
base	6	512	2048	8	64	64	0.1	0.1	100K	4.92	25.8	65
(A)				1	512	512				5.29	24.9	
				4	128	128				5.00	25.5	
				16	32	32				4.91	25.8	
				32	16	16				5.01	25.4	
(B)					16					5.16	25.1	58
					32					5.01	25.4	60
(C)	2									6.11	23.7	36
	4									5.19	25.3	50
	8									4.88	25.5	80
		256			32	32				5.75	24.5	28
		1024			128	128				4.66	26.0	168
			1024							5.12	25.4	53
			4096							4.75	26.2	90
(D)							0.0			5.77	24.6	
							0.2			4.95	25.5	
								0.0		4.67	25.3	
								0.2		5.47	25.7	
(E)	positional embedding instead of sinusoids								4.92	25.7		
big	6	1024	4096	16			0.3		300K	4.33	26.4	213

Thanks for listening.