Замечание. При выполнении лабораторной работы обязательно использовать отдельные модули.

Варианты заданий

Вариант 1

Формула:
$$Z = 10 \cdot A \cdot \sum_{K=2}^{10} Y_K + 5 \cdot B \cdot \sum_{K=4}^{20} Y_K + \frac{2 \cdot C}{\sum\limits_{K=3}^{15} Y_K}$$
;

функция:
$$Y_K = a \cdot \frac{A \cdot K + B \cdot K^2}{A + B^2 + C^2}$$
,

где
$$a = 1, A = 5, B = 5, C = 2$$
.

Расчет сумм в формуле и расчет Y_K должны быть оформлены в виде отдельных функций.

Вариант 2

Формула:
$$x = \sum_{k=1}^{m} \phi_k - (1/m) \cdot \left(\sum_{k=2}^{m} 4.5 \cdot \phi_k\right)^2$$
, $m = 4$;

функция:
$$\varphi_k = a \cdot \frac{e^{3 \cdot k}}{k+b} + \frac{\ln(10 \cdot (a+k))}{\sqrt{k+a}}$$
,

где
$$a = 3, b = 5$$
.

Расчет сумм в формуле и расчет ϕ_k должны быть оформлены в виде отдельных функций.

Вариант 3

Формула:
$$x_{cp} = (1/n) \cdot \sum_{i=1}^{n} x_i$$
, $n = 4$

функция:
$$x_i = i^2 \cdot \sin(i)$$
.

Расчет суммы в формуле и расчет x_i должны быть оформлены в виде отдельных функций.

Вариант 4

Формула:
$$Z = \sin\left(\sum_{K=3}^{10} Y_K\right) + B \cdot \cos\left(\sum_{K=6}^{20} Y_K\right) + \frac{C}{\sum\limits_{K=11}^{30} Y_K}$$
;

функция:
$$Y_K = b \cdot \frac{\ln(10 \cdot (A \cdot K + C))}{\sqrt{K + A + B}}$$
,

где
$$b=1, A=0, B=9, C=1.$$

Расчет сумм в формуле и расчет Y_K должны быть оформлены в виде отдельных функций.

Вариант 5

Формула:
$$m = \left((1/n) \cdot \sum_{i=1}^{n} x_i \right)^2 - \sum_{i=1}^{n} x_i$$
, $n = 5$;

функция: $x_i = \cos(i) + 2 \cdot i$.

Расчет сумм в формуле и расчет x_i должны быть оформлены в виде отдельных функций.

Вариант 6

Формула:
$$r = \frac{\left(\sum\limits_{i=1}^{n} x_i\right)^2 - \frac{1}{n} \cdot \sum\limits_{i=3}^{n} x_i}{\sqrt{(n-2) \cdot \sum\limits_{i=4}^{n} x_i}}, \ n = 8;$$

функция:
$$x_i = b \cdot \frac{\lg(7.2+i)}{2} + \sqrt{i+a+b}$$
,

где
$$a = 4, b = 2$$
.

Расчет сумм в формуле и расчет x_i должны быть оформлены в виде отдельных функций.

Вариант 7

Формула:
$$p = \left(\sum_{i=1}^{4} \lg(y_i)\right)^2 - \frac{1}{20} \cdot \sum_{i=5}^{10} \lg(y_i) + \frac{2}{\sqrt{\frac{1}{6} \cdot \sum_{i=6}^{12} \lg(y_i)}};$$

функция:
$$y_i = (i+b) \cdot \sqrt{\frac{i^2 + a}{i+b+2}}$$
,

где
$$a = 15, b = 21.$$

Расчет сумм в формуле и расчет y_i должны быть оформлены в виде отдельных функций.

Вариант 8

Формула:
$$Z = \left(\sum_{K=3}^{10} 0.1 \cdot Y_K\right)^2 + \frac{3}{\sum\limits_{K=1}^{5} 0.5 \cdot Y_K} + \sum\limits_{K=4}^{15} C \cdot Y_K$$
;

функция:
$$Y_K = \frac{a \cdot K^2 + A}{B + C + 1}$$
,

где
$$a = 1$$
, $A = 2$, $B = 2$, $C = 2$.

Расчет сумм в формуле и расчет Y_K должны быть оформлены в виде отдельных функций.

Вариант 9

Формула:
$$S = 10 \cdot \sum_{i=5}^{10} (x_i \cdot \lg(y_i)) + \left(\sum_{i=2}^{7} (x_i \cdot \lg(y_i))\right)^2 - \frac{2}{\sum_{i=3}^{5} (5 \cdot x_i \cdot \lg(y_i))};$$

функция:
$$x_i = 2 \cdot i + \sqrt{\frac{c}{b+c}}$$
, $y_i = i \cdot \sqrt{c+5 \cdot b}$,

где
$$c = 5, b = 11$$
.

Расчет сумм в формуле и расчет значений x_i , y_i должны быть оформлены в виде отдельных функций.

Вариант 10

Формула:
$$P = \left(\sum_{i=4}^{11} x_i\right)^2 + 0.6 \cdot \sum_{i=2}^7 y_i + \sqrt{\sum_{i=6}^{10} 0.2 \cdot x_i + \sum_{i=3}^5 y_i}$$
;

функции:
$$x_i = \sqrt{\frac{i^2 + a + c}{b \cdot i^2 + i \cdot c + a}}$$
, $y_i = a \cdot \ln(b \cdot i + c) + b \cdot i^2$,

где
$$a = 2, c = 4, b = 12$$
.

Расчет сумм в формуле и расчет значений x_i , и расчет значений y_i должны быть оформлены в виде отдельных функций.

Вариант 11

Формула:
$$Z = \frac{\sum\limits_{K=9}^{20} 0.1 \cdot Y_K}{2} + B \cdot \left(\sum\limits_{K=2}^{5} \frac{Y_K}{8}\right)^2 + \frac{C}{\sum\limits_{K=5}^{15} \frac{Y_K}{1.5}};$$

функция:
$$Y_K = \frac{a \cdot \ln(A \cdot K + C)}{K}$$
,

где
$$a = 1, A = 2, B = 3, C = 2.$$

Расчет сумм в формуле и расчет Y_K должны быть оформлены в виде отдельных функций.

Вариант 12

Формула:
$$H = \sum_{i=4}^{11} x_i \cdot \sum_{i=3}^{5} y_i + 3.2 \cdot \sum_{i=8}^{12} y_i + \left(\sum_{i=11}^{18} x_i\right)^2$$
;

функции:
$$x_i = \frac{a \cdot i^2 + i \cdot c + b}{i^2 + b + c}$$
, $y_i = 0.2 \cdot b + c \cdot i$,

где
$$a = 1, c = 3, b = 2$$
.

Расчет сумм в формуле и расчет значений x_i , и расчет значений y_i должны быть оформлены в виде отдельных функций.

Вариант 13

Формула:
$$F = \sum_{i=2}^{8} z_i + 0.9 \cdot \sum_{i=1}^{3} y_i + \left(6.9 \cdot \sum_{i=4}^{9} y_i\right) / \left(\sum_{i=1}^{7} z_i\right)^2$$
;

функции:
$$z_i = a \cdot i^2 + \ln(b + c \cdot i), \ y_i = \sqrt{\frac{7}{i^2 + b}},$$

где
$$a = 2, c = 5, b = 1$$
.

Расчет сумм в формуле и расчет значений z_i , и расчет значений y_i должны быть оформлены в виде отдельных функций.

Вариант 14

Формула:
$$Z = A \cdot \ln \left(\sum_{K=1}^{5} 0.2 \cdot Y_K \right) + B \cdot \sum_{K=3}^{15} Y_K + \frac{C}{\sum\limits_{K=4}^{10} 15 \cdot Y_K}$$
;

функция:
$$Y_K = a \cdot \frac{(K^2 + B \cdot K)}{A \cdot K^2 + C \cdot K + B}$$
,

где
$$a = 1$$
, $A = 1.5$, $B = 2$, $C = 3$

Расчет сумм в формуле и расчет Y_K должны быть оформлены в виде отдельных функций.

Вариант № 15*

Вычислить значение функции:

$$P = 10 * \prod_{t=1}^{3} z(t) + 7 * \prod_{t=4}^{8} z(t) + \sum_{t=2}^{4} y(t) - 5 * \sum_{t=3}^{7} y(t), \text{ где } z(t) = t+2; \text{ } y(t) = t^2 - 3.$$

Вычисления \prod - произведение, \sum , z(t), y(t) оформить в виде функций.

Вариант № 16*

Вычислить значение $a = \sum_{u=7}^{14} b_u - \prod_{u=3}^{15} (25 + b_u)$, где $b_u = 8/u$. Вычисления

 \prod - произведение, \sum , b(u) оформить в виде функций.