0.1 Strukturtheorie zu Gruppen ("Einige Aussagen")

Sei im Weiteren M ein Monoid, G eine Gruppe und X eine Menge.

Definition 0.1 (Wirkung). Eine Abbildung

$$\lambda: M \times X \to X, (m, x) \mapsto m \cdot x := \lambda(m, x)$$

heißt Linkswirkung (left action, Linksoperation) von M auf X, wenn es gelten $\forall x \in X, m, m' \in M$:

- (i) Neutrales Element: $e \cdot x = x$
- (ii) Assoziativität: $m \cdot (m' \cdot x) = (m \cdot m') \cdot x$

Bezeichnung. Ist M eine Gruppe, so heißt λ auch Gruppenwirkung und X heißt Links-M-Menge.

Bemerkung. Analog kann man auch Rechtswirkungen

$$\rho: X \times M \to X, (x,m) \mapsto x \cdot m$$

definieren. (Axiome: $x \cdot e = c$ und $(x \cdot m) \cdot m' = x \cdot (m \cdot m')$)

Bemerkung (Übung). Jede Links-G-Wirkung kann man in eine Rechts-G-Wirkung überführen: zu $\lambda: G \times X \to X$ definiere $\rho: X \times G \to X$ durch

$$\rho(x,g) := \lambda(g^{-1},x) \iff x \cdot g := g^{-1} \cdot x$$

Proposition 0.2 (Alternative Beschreibung von Wirkungen).

(a) Sei $\lambda: G \times X \to X$ eine Linkswirkung, dann ist

$$\varphi: G \to \mathrm{Bij}(X), g \mapsto (\varphi_g: X \to X, x \mapsto gx)$$

ein wohl-definierter Gruppenhomomorphismus.

(b) $Sei\ \varphi: G \to Bij(X)\ ein\ Gruppenhomomorphismus,\ dann\ ist$

$$\lambda: G \times X \to X, (g, x) \mapsto \varphi(g)(x)$$

eine Linkswirkung von G auf X.

Beweis. (a) Für $g \in G$ sei $\varphi_g : X \to X, x \mapsto gx$, dann gelten: $\varphi_e : X \to X, x \mapsto ex = x$ ist id_X (Axiom (i)), und

$$(*) \quad \varphi_g \circ \varphi_{g'} = \varphi_{gg'}$$

denn $\forall x \in X$:

$$(\varphi_g \circ \varphi_{g'})(x) = \varphi_g(\varphi_{g'}(x)) = g(g'x) \stackrel{(ii)}{=} (gg')x = \varphi_{gg'}(x)$$

Damit folgen:

1. $\varphi_g \circ \varphi_{g^{-1}} = \underbrace{\varphi_e}_{\operatorname{id}_X} = \varphi_{g^{-1}} \circ \varphi_g \implies \varphi_g$ ist eine bijektive Abbildung mit Inverse $\varphi_{g^{-1}}$, d.h.

$$\varphi: G \to \operatorname{Bij}(X), g \mapsto \varphi_g$$

ist wohl-definiert.

2. φ ist ein Gruppenhomomorphismus: folgt aus (*) (Verknüpfung in Bij(X) ist die Verkettung von Abbildungen.)

(b) Übung.

Bemerkung. (a) Das Analogon von Proposition 2 gilt auch für Monoide. Die Linkewirkungen eines Monoids M auf X entsprechen Monoidhomomorphismen $M \to (\mathrm{Abb}(X,X),\mathrm{id}_X,\circ)$

(b) Eine Gruppe kann auch auf "Objekten" mit mehr Struktur als eine Menge wirken, z.B. auf eine Gruppe!

Beispiel. G wirkt auf eine Gruppe N heißt, man hat einen Gruppenhomomorphismus $G \to \operatorname{Aut}(N)$ (vgl. Lemma 1.56)

Definition 0.3 (Eigenschaften von Wirkungen). Sei $\lambda: G \times X \to X$ eine Linkswirkung von G auf X.

- (a) Die **Bahn** zu $x \in X$ ist $Gx = \{gx \mid g \in G\}$. Die Länge der Bahn zu x ist #Gx
- (b) λ ist transitiv $\iff \forall y, z \in X \exists g \in G : gy = z \stackrel{\ddot{\text{Ubung}}}{\iff} \forall y \in X : Gy = X \stackrel{\ddot{\text{Ubung}}}{\iff} \exists x \in X : Gx = X$
- (c) λ ist n-fach transitiv $(n \in \mathbb{N})$, wenn für alle Paare von n-Tupeln $(x_1, ..., x_n), (y_1, ..., y_n) \in X^n$ mit $\#\{x_1, ..., x_n\} = \#\{y_1, ..., y_n\}$ gilt $\exists g \in G : gx_i = y_i, \forall i$.
- (d) Die Wirkung heißt **treu**, wenn der induzierte Gruppenhomomorphismus $\varphi:G\to \mathrm{Bij}(X)$ (aus Proposition 2) injektiv ist

$$\overset{\text{Übung}}{\Longleftrightarrow} \forall g \in G \setminus \{e\}: \exists x \in X: \underbrace{gX \neq X}_{\varphi_g(x) \neq \operatorname{id}_X(x)}$$

Beispiel 0.4.

- 1. Ist V ein K-Vektoraum, so wirkt das Monoid $(K,1,\cdot)$ auf V durch Skalarmultiplikation $(\lambda,v)\mapsto \lambda v$
- 2. Die folgenden 3 Beispiele sind Linkswirkungen von $GL_n(K)$:
 - (i) $\mathrm{GL}_{\mathbf{n}}(K) \times K^n \to K^n, (g, v) \mapsto gv.$ (Übung: Es gibt die Bahnen $\{0\}, K^n \setminus \{0\}$)
 - (ii) Sei $\mathcal{B} = \{\text{geordnete Basen von } K^n\}$ und

$$GL_n(K) \times \mathcal{B} \to \mathcal{B}, (g, (b_1, ..., b_n)) \mapsto (gb_1, ..., gb_n)$$

die Wirkung ist treu und transitiv.

- (iii) $\operatorname{GL}_n(K) \times \operatorname{End}_K(K^n) \to \operatorname{End}_K(K^n), (A, B) \mapsto ABA^{-1}$ die Wirkung ist nicht treu $Z(\operatorname{GL}_n(K))$ wirkt trivial. (Übung: Bahnen stehen in Bijektion zu den Frobeniusnormalformen von Matrizen.)
- 3. $S_n \times \{1,...,n\} \rightarrow \{1,...,n\}, (\sigma,i) \mapsto \sigma(i)$ Wirkung ist treu und n-fach transitiv.
- 4. Abstrakte Beispiele: Sei $H \leq G$ eine Untergruppe.
 - (i) $\lambda: H \times G \to G, (h,g) \mapsto hg$. Die Bahnen sind die Mengen Hg, also die Rechtsnebenklassen zu H (treu?) Menge der Rechtsnebenklassen

$$H \hookrightarrow G := \{ Hg \mid g \in G \}$$

(ii) $\rho: G \times H \to G, (g,h) \mapsto gh$ Bahnen = Linksnebenklassen zu H und

$$G_{/H} = \{gH \mid g \in G\}$$

- (iii) $c: G \times G \to G, (g,g') \mapsto gg'g^{-1}$ ist eine Linkswirkung, denn der nach Proposition 2 zugehörige Gruppenhomomorphismus ist $c: G \to \operatorname{Aut}(G), g \mapsto c_g$.
- (iv) $G \times G/H \to G/H$, $(g, g'H) \mapsto gg'H$ Die Klassen gH heißen Linksnebenklassen wegen der Links-G-Wirkung auf ihnen.

Proposition 0.5. Sei X eine Links-G-Menge (zu der Wirkung $\lambda : G \times X \to X, (g, x), \mapsto gx$) definiere Relation \sim auf X durch

$$x \sim y \iff \exists g \in G : gx = y$$

dann gelten:

- (a) \sim ist eine Äquivalenzrelation.
- (b) Die Äquivalenzklasse zu $x \in X$ bezüglich \sim ist die Bahn Gx. Insbesondere ist X die disjunkte Vereinigung seiner Bahnen. (Ist $(x_i)_{i \in I}$ ein Repräsentantensystem der G-Bahnen, so gilt also $\#X = \sum_{i \in I} \#Gx$)

Beweis. (a) \sim ist eine Äquivalenzrelation: Prüfe

- \sim reflexiv: $ex = x \implies x \sim x$.
- ~ symmetrisch: Gelte $x \sim y$, d.h. $\exists g \in G : gx = y$, dann gilt $x = ex = g^{-1}(gx) = g^{-1}y \implies y \sim x$.
- \sim transitiv: Gelte $x \sim y$ und $y \sim z$, d.h. $\exists g, h' \in G : gx = y, g'y = z$

$$\implies (g'g)x = g'(gx) = g'y = z \implies x \sim z$$

(b) Sei $x \in X$, dann ist

$$\{y \in X \mid x \sim y\} = \{y \in X \mid \exists g \in G : y = gx\} = \{gx \mid g \in G\} = Gx.$$

Satz 0.6 (Satz von Cayley). Jede Gruppe G (jedes Monoid M) ist isomorph zu einer Untergruppe (einem Untermonoid) von $(Bij(G), id_G, \circ)$ (bzw. $(Abb(G, G), id_G, \circ)$).

Beweis. (Für Gruppen, Rest ist eine Übung) Definiere die Wirkung $\lambda G \times G \to G, (g,h) \mapsto gh$, dann erhalten wir den induzierten Gruppenhomomorphismus $\varphi: G \to \operatorname{Bij}(G)$, wir zeigen φ ist injektiv: Sei $g \in G \setminus \{e\}$, dann gilt $ge = g \neq e \Longrightarrow \operatorname{Wirkung}$ treu, also φ ist ein Gruppenmonomorphismus. D.h. G "ist" Untergruppe von $\operatorname{Bij}(G)$.

Definition 0.7 (Stabilisator). Sei X eine Links-G-Menge und $x \in X$, dann heißt

$$G_x := \operatorname{Stab}_G(x) := \{ g \in G \mid gx = x \}$$

Stabilisator von x (unter G). Warnung: $G_x \neq G \cdot x$.

Beispiel. Stab $_{S_n}(\{n\})=\{\sigma\in S_n\mid \sigma(n)=n\}\cong S_{n-1}$ mit der üblichen S_n -Wirkung auf $\{1,...,n\}$.

Übung. G-Wirkung auf einer Menge X ist treu

$$\iff \bigcap_{x \in X} \operatorname{Stab}_G(x) = \{e\}$$

Proposition 0.8. Sei X eine links-G-Menge, $x \in X, g \in G$, dann gilt

- (a) $\operatorname{Stab}_G(x) \leq G$ ist eine Untergruppe.
- (b) $\operatorname{Stab}_G(gx) = g \operatorname{Stab}_G(x)g^{-1}$

Beweis.

(a) $e \in \operatorname{Stab}_G(x)$, denn ex = x. Seien $\underbrace{g_1, g_2 \in \operatorname{Stab}_G(x)}_{\text{bedeutet } g_1x = x, g_2x = x}$, zu zeigen ist $g_1^{-1}g_2 \in \operatorname{Stab}_G(x)$

 $\operatorname{Stab}_G(x)$

$$\stackrel{g_1^{-1}}{\Longrightarrow} x = ex = g_1^{-1}g_1x = g^{-1}x$$

Damit gilt $(g_1^{-1} \cdot g_2^{-1})x = g_1^{-1}(g_2x) = g_1^{-1}x = x$

(b) Sei $h \in G$, dann:

$$h \in \operatorname{Stab}_{G}(gx) \iff hgx = gx \overset{g^{-1}}{\iff} g^{-1}hgx = x$$
 $\iff g^{-1}hg \in \operatorname{Stab}_{G}(x) \underset{\operatorname{Konj. mit}}{\iff} g h \in g \operatorname{Stab}_{G}(x)g^{-1}.$

Proposition 0.9 (Bahngleichung). Sei X eine links-G-Menge, $x \in X$, dann gilt:

- $\psi: {}^{G}/_{G_x} \to Gx, hG_x \mapsto hx$ ist wohl-definiert und eine Bijektion.
- Ist G endlich, so folgt $\#G \cdot x = [G:G_x]$.

Beweis.

• ψ injektiv und wohl definiert: Seien $q, h \in G$, dann

$$hx = gx \iff g^{-1}hx = x \iff g^{-1}h \in G_x \le G$$

 $\iff g^{-1}hG_x = G_x \iff hG_x = gG_x$

- ψ surjektiv nach Definition von $G \cdot x$.
- Aussage über Mächtigkeiten: ψ bijektiv \Longrightarrow # $^G\!\!/_{G_x} = \#G \cdot x.$

Bemerkung. Die Abbildung ψ ist ein Homomorphismus von links-G-Mengen (ein Isomorphismus!), G/G und $G \times x \subseteq X$ sind links-G-Mengen und ψ erfüllt:

$$\psi(g \cdot hG_x) = g \cdot \psi(hG_x)$$

(beides ist = $gx \cdot x$)

Definition 0.10. Sei X eine links-G-Menge,

- (a) Man sagt G operiert frei auf $X \iff \forall x \in X : G_x = \{e\}$
- (b) Die Menge der **Fixpunkte** der G-Wirkung ist

$$X^G := \{ x \in X \mid G_x = G \}$$

Beispiel. $GL_n(K)$ operiert frei auf der Menge der geordneten Basen von K^n .

Korollar 0.11. Sei X eine links-G-Menge. Sei $x_1, ..., x_n$ ein Repräsentantensystem der Bahnen der Länge ≥ 2 . Dann:

(a)
$$X = X^G \sqcup \bigsqcup_{i \in \{1,\dots,n\}} G \cdot x_i$$

(b)
$$\#X = \#X^G + \sum_{i \in \{1,...,n\}} \underbrace{[G:G_{x_i}]}_{=\#G:x}$$

Beweis. Aus Proposition 5 folgt (a), Lemma 9 gibt (b).

Anwendung. Sei X:=G. Sei die G-Wirkung durch Konjugation gegeben, d.h.

$$g \underbrace{\circ}_{\text{Wirk.}} h = ghg^{-1}$$

Die Bahnen unter dieser G-Wirkung heißen Konjugationsklassen. Die Konjugationsklasse zu $h \in G = X$ ist

$$G_h := \{ghg^{-1} \mid g \in G\}$$

Bahnen der Länge 1 sind Fixpunkte unter Konjugation mit allen $g \in G$

$$=\{h\in G\mid \forall g\in G: \underbrace{ghg^{-1}=h}_{gh=hg}\}=:Z(G)\text{ das Zentrum von }G$$

Stabilisator zu $h \in G$ (unter Konjugationswirkung)

$$= \{g \in G \mid ghg^{-1} = h\} = C_G(h)$$
 Zentralisator von h

Aus Korollar 11 ergibt sich nun:

Satz 0.12 (Klassengleichung). Sei G endlich. Ist $g_1, ..., g_n$ ein Repräsentantensystem der Konjugationsklassen der Länge ≥ 2 , so gilt:

$$\# \underbrace{G}_{X} = \# \underbrace{Z(G)}_{X^{G}} + \sum_{i=1}^{n} [G : \underbrace{C_{G}(g_{i})}_{C_{g}}]$$

Definition 0.13 (p-**Gruppe**). Sei p eine Primzahl, eine Gruppe G heißt p-Gruppe $\iff \# = p^m$ füe ein $m \in \mathbb{N}$

Beispiel.

$$\mathbb{Z}_{p^m} \text{ oder } U_3(\mathbb{F}_p) = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \middle| a, b, c \in \mathbb{F}_p \right\}$$

Korollar 0.14. Ist G eine p-Gruppe, so gilt p|#Z(G), $(d.h.\ Z(G)$ ist nicht-trivial und also eine p-Gruppe)

Beweis. Seien $g_1, ..., g_n$ wie im Satz 12. Dann gilt: $C_G(g_i) < G$ ist eine echte Untergruppe. (sonst $g_i = Z(G)$, ist ausgeschlossen)

$$\Longrightarrow_{\text{Lagrange}} [G: C_G(g_i)] \text{ teilt } \#G = p^m$$

ist ungleich 1!

$$\implies p[G: C_G(g_i)], \forall i \in \{1, ..., n\}$$

Klassengleichung modulo p:

$$\underbrace{0}_{\#G} \cong \#Z(G) + \sum_{i=1}^{n} \underbrace{0}_{[G:C_G(g_i)]} \mod p \implies p | \#Z(G).$$

Übung 0.15 (Satz von Cauchy). (?) Sei p eine Primzahl und G endlich, dann gilt:

$$p|\#G \implies \exists g \in G : \operatorname{ord}(g) = p.$$

 $(\implies \#G \text{ und } \#\exp(G) \text{ haben dieselben Primteiler})$

Idee: Verwende Induktion über #G und die Klassengleichung. In Induktionsschritt 2 Fälle:

- 1. $\exists H < G$ echte Untergruppe mit p | # H
- 2. $\neg \exists H < G$ echte Untergruppe mit p | # H

Im 2. Fall wende Klassengleichung mod p an!

0.2 Permutationsgruppen

Sei $n \in \mathbb{N}$, $S_n = \text{Bij}(\{1,...,n\})$, Notation für $\sigma \in S_n$, d.h. $\sigma: \{1,...,n\} \to \{1,...,n\}$ bijektiv ist

$$\begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

Dabei gilt: $(\sigma(1),...,\sigma(n))$ ist eine Permutation von $\{1,...,n\}$, d.h.

$$\#\{\sigma(1),...,\sigma(n)\}=n$$

Korollar 0.16. $\#S_n = n!$

Beweis. (Übung) Betrachte die möglichen "Wertetabellen" für Permutationen.

Definition 0.17. Für $\sigma, \tau \in S_n$ definiere

- (a) supp $(\sigma) = \text{Träger von } \sigma, \text{supp}(\sigma) := \{i \in \{1, ..., n\} \mid \sigma(i) \neq i\}$
- (b) σ und τ sind **disjunkt** \iff supp $(\sigma) \cap \text{supp}(\tau) = \emptyset$

Bemerkung. $supp(\sigma) = \emptyset \iff 0 = id$

Lemma 0.18 (Andere Interpretation des Trägers). Sei $\sigma \in S_n$, dann gilt für die Wirkung von $\langle \sigma \rangle$: supp $(\sigma) = Vereinigung der Bahnen von <math>\langle \sigma \rangle$ auf $\{1, ..., n\}$ der Länge ≥ 2 .

Beweis.

- "⊆": Sei $i \in \operatorname{supp}(\sigma) \Longrightarrow \sigma(i) \neq i \Longrightarrow \{i, \sigma(i), \sigma^2(i), ..., \sigma^m(i), ...\}$ ist Bahn von $\langle \sigma \rangle = \{\sigma^j \mid j \in \mathbb{N}_0\} = \{\operatorname{id}, \sigma, ..., \sigma^{r-1}\}$ der Länge ≥ 2 . für $r = \operatorname{ord}(\sigma)$.
- "\(\to \)": Sei $i \notin \text{supp}(\sigma) \implies \sigma(i) = i \implies \sigma^j(i) = i, \forall j \in \mathbb{N} \implies \text{Bahn}$ von i unter $\langle \sigma \rangle$ ist 1-elementig.

Korollar 0.19. Für $\sigma \in S_n$ gelten:

- (a) $i \in \text{supp}(\sigma) \iff \sigma(i) \in \text{supp}(\sigma)$
- (b) Auf jeder $\langle \sigma \rangle$ -Bahn (durch $i \in \{1,...,n\}$) wirkt σ als "zyklische Permutation", d.h.

$$i_n := i \longmapsto i_2 = \sigma(i) \longmapsto i_3 = \sigma^2(i) \longmapsto \cdots \longmapsto i_r = \sigma^{r-1}(i)$$

$$\underbrace{\sigma}_{(mit \#\{1\cdots n\}=r)}$$

Beweis. (a)

$$i \in \operatorname{supp}(\sigma) \implies \sigma(i) \neq i \underset{\sigma \text{ anwenden}}{\Longrightarrow} \sigma(\sigma(i)) \neq \sigma(i) \implies \sigma(i) \in \operatorname{supp}(\sigma)$$

Falls
$$\sigma(i) \in \text{supp}(\sigma)$$
, so gilt $\sigma(\sigma(i)) \neq \sigma(i) \Longrightarrow_{\sigma^{-1} \text{ anwenden}} \sigma(i) \neq i$

(b) Sei r die Länge der Bahn durch i unter $\langle \sigma \rangle$. Dann sind $i_{j+1} := \sigma^j(i), j = 0, ..., r-1$ paarweise verschieden. Sonst $\exists 0 \leq j_1 < j_2 \leq r-1$ mit $\sigma^{j_1}(i) = \sigma^{j_2}(i)$

$$\underset{\sigma^{-1} \text{ anwenden}}{\Longrightarrow} i = \sigma^{j_2 - j_1}(i) \quad (*)$$

 \implies Bahn durch i hat höchstens $j_2 - j_1 < r$ Elemente, die Bahn ist wegen (*)

$$= \{i, \sigma(i), ..., \sigma^{j_2 - j_1}(i)\}\$$

Und nun: Wiederholtes Anwenden von σ gibt den Zykel

$$i_1 \longmapsto i_2 \longmapsto \cdots \longmapsto i_r$$

Lemma 0.20. Sind $\sigma, \tau \in S_n$ disjunkt, so gilt $\sigma \tau = \tau \sigma$.

Beweis. Zeige $\sigma \circ \tau = \tau \circ \sigma$ als Abbildungen $\{1,...,n\} \to \{1,...,n\}$, sei $i \in \{1,...,n\}$

- Fall 1: $i \in \text{supp}(\sigma) \implies \sigma(i) \in \text{supp}(\sigma) \implies i, \sigma(i) \notin \text{supp}(\tau)$. Also $\tau(i) = i, \tau(\sigma(i)) = \sigma(i)$
- Fall 2: $i \in \text{supp}(\tau)$ analog zu Fall 1.
- Fall 3: $i \notin \operatorname{supp}(\sigma) \cup \operatorname{supp}(\tau) \implies \sigma(i) = i = \tau(i)$.

Also
$$\sigma(\tau(i)) = \sigma(i) = i = \tau(i) = \tau(\sigma(i)).$$

(Folge:
$$\sigma, \tau$$
 disjunkt $\implies \operatorname{ord}(\sigma\tau) = \operatorname{kgV}(\operatorname{ord}(\sigma), \operatorname{ord}(\tau))$)

Definition 0.21. Seien $i_1,...,i_r \in \{1,...,n\}$ paarweise verschieden. Der r-Zykel

$$(i_1 \ i_2 \ \cdots \ i_r)(j) = \begin{cases} j & j \notin \{i_1, ..., i_r\} \\ i_{s+1} & j = i_s \ (s \in \{1, ..., n\}) \\ i_1 & j = i_r \end{cases}$$

2-Zykel heißen **Transposition**. Konvention: (·) := $\mathrm{id}_{\{1,\dots,n\}}$ (leerer Zykel). Beachte:

- (i) $(i) = (\cdot)$ für $i \in \{1, ..., n\}$
- (ii) supp $(i_1 \ i_2 \ \cdots \ i_r) = \begin{cases} \{i_1, ..., i_r\} & r \geq 2 \\ \emptyset & r = 1 \end{cases}$
- (iii) $(i_1\ i_2\ \cdots\ i_r)=(i_r\ i_1\ i_2\ \cdots\ i_{r-1})$ (Notation ist nicht eindeutig, können Einträge zyklisch weiterschieben.) z.B.

$$(1\ 4\ 7) = (7\ 1\ 4) = (4\ 7\ 1) = 7$$

(iv)
$$ord(i_1 \cdots i_r) = r$$
, z.B. $ord(1\ 2) = 2$

Satz 0.22 (Zykeldarstellung von Permutationen). Sei $\sigma \in S_n$, seien $I_1, ..., I_t \subseteq \{1, ..., n\}$ die paarweise verschiedenen Bahnen von $\langle \sigma \rangle$ auf $\{1, ..., n\}$ der Länge ≥ 2 , dann:

- (a) Für $j \in \{1, ..., t\}$ $\exists ! Zykel \sigma_j \in S_n \ mit \ \mathrm{supp}(\sigma_j) = I_j, \ und \ \sigma_j|_{I_j} = \sigma|_{I_j}$
- (b) $\sigma = \sigma_1 \cdot ... \cdot \sigma_t$ und die σ_i kommutieren paarweise.
- (c) Die Darstellung in (b) ist eindeutig bis auf Permutation der Faktoren.
- (d) Für σ gilt: ord(σ) = kgV($\#I_j \mid j \in \{1, ..., t\}$)

Beweis. (a) Sei r_j die Länge von I_j . Sei $i_j \in I_j$, dann ist (vgl. Beweis von Korollar 19)

$$\sigma_j := (i_j, \sigma(i_j), \sigma^2(i_j), ..., \sigma^{r_j-1}(i_j) \in S_n$$

ein r_j -Zykel und $\sigma|_{I_j} = \sigma_j$

(b) Die (σ_j) kommutieren paarweise, denn deren Träger, die Mengen I_j , sind paarweise disjunkt.

Um $\sigma = \sigma_1 \cdot ... \cdot \sigma_t$ zu prüfen, wende beide Abbildungen an auf $i \in \{1, ..., n\}$.

- Fall $j \in \{1, ..., t\} : i \in J$
 - (*) Es gilt $\sigma_{j'}(i) = i$ für $j' \neq j$ (da $I_{j'} \cap I_j = \emptyset$)

$$\implies \sigma(i) = \sigma_j(i) \stackrel{(*)}{=} \left(\sigma_j \cdot \prod_{j' \neq j} \sigma_{j'}\right)(i)$$

$$\stackrel{\sigma_j \text{ kommutieren}}{=} (\sigma_1 \cdot \ldots \cdot \sigma_j \cdot \ldots \cdot \sigma_t)(i)$$

• Fall $0: i \in \{1,...,n\} \setminus \bigcup_{j \in \{1,...,t\}} I_j$. Dann: $\sigma(i) = i$ (1-elementige Bahn).

Da
$$i \notin I_j : \sigma_j(i) = i, \forall j \in \{1, \dots, t\}$$
. also $(\sigma_1 \cdot \dots \cdot \sigma_t)(i) = i = \sigma(i)$

(c) Es gelte $\sigma = \sigma'_1 \cdot \ldots \sigma'_{t'}$ mit paarweise disjunkten Zykeln $\sigma = \sigma'_1 \cdot \ldots \sigma'_{t'}$ der Länge ≥ 2 . Sei $I'_{j'} := \operatorname{supp}(\sigma'_{j'})$ für $j' \in \{1, \ldots, t'\}$. Dann:

$$\sigma|_{I'_{j'}} = \sigma'_{j'}|_{I'_{j'}}$$

 $\implies I'_{j'}$ ist Bahn von $\langle \sigma \rangle$ der Länge $\geq 2. \implies t'=t$ und nach Umindizieren der $I'_{j'}$ gelte

$$I'_j = I_j$$
 für $j \in \{1, \ldots, t\}$

$$\text{und } \sigma_j|_{I_j} = \sigma|_{I_j} = \sigma'_j|_{I_j} \underset{r_i = \#I_i\text{-Zykel}}{\overset{\sigma_j, \sigma'_j \text{ sind}}{\Longrightarrow}} \sigma_j = \sigma'j$$

(d) (
$$\ddot{\text{U}}$$
bung).

Beispiel 0.23.

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 8 & 4 & 1 & 6 & 3 & 7 \end{pmatrix} \in S_8$$

 $\implies \langle \sigma \rangle$ -Bahnen: $\{1, 2, 5\}, \{3, 8, 7\}, \{4\}, \{6\} \text{ und } \sigma = (1\ 2\ 5)(3\ 8\ 7)$

Definition 0.24 (Young-Diagramm/Partition). Sei $\sigma \in S_n$, seien $I_1, ..., I_t$ die Bahnen von $\langle \sigma \rangle$ (auch Bahnen der Länge 1), und gelte o.E. $\#I_1 \geq \#I_2 \geq \cdots \geq \#I_t$.

(a) Das Young-Diagramm zu σ ist das Diagramm der Form:

im obigen Beispiel 23

(b) Eine Partition von n ist ein Tupel $(n_1, ..., n_t)$ aus \mathbb{N} mit $n_1 \geq \cdots \geq n_t$ unt $n = n_1, + \cdots + n_t$. (Young-Diagramm: Möglichkeit eine Partition zu veranschaulichen z.B. ist $(\#I_1, ..., \#I_t)$ eine Partition von n)

Satz 0.25 (Übung).

(a) Seien $i_1, ..., i_r$ aus $\{1, ..., n\}$ paarweise verschiedene Elemente. Dann gilt $\forall \sigma \in S_n$:

$$\sigma \circ (i_1 \ i_2 \cdots \ i_r) \circ \sigma^{-1} = (\sigma(i_1) \ \sigma(i_2) \cdots \ \sigma(i_r))$$

(b) σ_1 und σ_2 aus S_n liegen in dieselben Konjugationsklasse \iff sie haben dasselbe Young-Diagramm.

Beispiel. S_5 hat 7 Youngdiagramme

also auch 7 Konjugationsklassen.

Definition (Signum-Funktion/Alternierende Gruppe). Sei sgn : $S_n \rightarrow \{\pm 1\}$ die Signum-Funktion aus der linearen Algebra. sgn ist eindeutig bestimmt durch:

- (i) sgn ist ein Gruppenhomomorphismus.
- (ii) $sgn(\tau) = -1$, für τ eine Transposition.

(jedes $\sigma \in S_n$ lässt sich schreiben als Produkt von Transpositionen) $A_n = \text{Kern}(\text{sgn}) = \text{die alternierende Gruppe auf } n$ Elementen

$$A_n = \{ \tau_1 \cdot \ldots \cdot \tau_{2m} \mid \tau_i \in S_n, \operatorname{sgn}(\tau) = -1, m \in \mathbb{N} \}$$

Proposition 0.26 (Formeln für sgn). (Übung)

- (a) Jeder r-Zykel σ ist ein Produkt von r-1 Transpositionen, und also gilt $\operatorname{sgn}(\sigma) = (-1)^{r-1}$
- (b) Hat σ die Zykeldarstellung $\sigma = \sigma_1 \cdot ... \cdot \sigma_t$ mit Zykellängen r_i (von σ_i), $i \in \{1, ..., t\}$, so gilt $\operatorname{sgn}(\sigma) = (-1)^{r_1 + \cdots + r_t t}$

Bemerkung. Man kann s
gn durch (b) bestimmen und kann dann nachprüfen: σ ist ein Gruppenhomomorphismus.

Lemma 0.27. Sei $C_3 = \{ \sigma \in A_n \mid \sigma \text{ ist } 3\text{-}Zykel \}$ und sei $C_{2,2} = \{ \sigma \in A_n \mid \sigma = \tau_1 \cdot \tau_2 \text{ mit } \tau_1, \tau_2 \text{ disjunkt.} \}$, dann

- (a) Für $n \geq 3$ gilt $A_n = \langle C_3 \rangle =: H_3$
- (b) Für $n \geq 5$ gilt $A_n = \langle C_{2,2} \rangle =: H_{2,2}$
- (c) Für $n \geq 5$ sind C_3 und $C_{2,2}$ A_n -Konjugationsklassen.

Beweis.

$$A_n = \{\underbrace{\tau_1 \cdot \dots \cdot \tau_{2m}}_{\text{gerade Anzahl}} \mid \tau_i \in S_n \text{ Transpositionen.} \}$$

- (a) Zeige: $\tau, \tau' \in H_3$ für τ, τ' beliebige Transpositionen in S_n
 - (i) $\tau = \tau'$: $\tau \cdot \tau' = \mathrm{id} = \sigma^3 \text{ für jeden 3-Zykel } \sigma \in H_3$
 - (ii) $\tau \neq \tau'$ und τ, τ' nicht disjunkt: also $\tau = (a\ b), \ \tau' = (b\ c)$ mit $\#\{a,b,c\} = 3, a,b,c \in \{1,\ldots,n\}$.

$$\tau\tau' = (a\ b\ c) = (a\ b)(b\ c)$$

$$a \leftarrow b \leftarrow c$$

$$c \leftarrow c \leftarrow b$$

$$b \leftarrow a \leftarrow a$$

(iii) $\tau \neq \tau'$ und τ, τ' disjunkt also $\tau = (a\ b), \tau' = (c\ d), \#\{a, b, c, d\} = 4, \{a, b, c, d\} \subseteq \{1, \dots, n\}.$

$$(a \ c \ b)(a \ c \ d) \stackrel{(\ddot{\mathbf{U}}\mathbf{bung})}{=} (a \ b)(c \ d)$$

- (b) Zeige $\tau \cdot \tau \in H_{2,2}$ für $\tau, \tau' \in S_n$ Transpositionen.
 - Fall (iii) trivial.
 - Fall (i) trivial

$$(\tau_1 \cdot \tau_2)(\tau_1 \cdot \tau_2) \in \langle C_{2,2} \rangle = H_{2,2}$$

• Fall (ii) $\tau = (a\ b), \tau' = (b\ c)$ (wie oben). Wegen $n \ge 5$, finde $d \ne e \in \{1, \ldots, n\} \setminus \{a, b, c\}$. Dann

$$\tau \cdot \tau' = ((a\ b)(d\ e))((b\ c)(d\ e))$$

(c) C_3 ist A_n -Konjugationsklasse.

Zu zeigen $(a\ b\ c)$ $(\{a,b,c\}\in\{1,\ldots,n\}\ 3$ elementig) ist konjugiert zu $(1\ 2\ 3)$. Wahle $\sigma\in S_n$ mit $\sigma(1)=a,\sigma(2)=b,\sigma(3)=c$.

$$\stackrel{\text{Satz 25}}{\Longrightarrow} \sigma(1\ 2\ 3)\sigma^{-1} (\underbrace{a}_{\sigma(1)} \underbrace{b}_{\sigma(2)} \underbrace{c}_{\sigma(3)})$$

Aber $sgn(\sigma)$ ist unklar +1, -1?

Beachte: (*) gilt auch für $\sigma(4\ 5)$ und: entweder gilt $\operatorname{sgn}(\sigma) = 1$ oder $\operatorname{sgn}(\sigma(4\ 5)) = 1 \implies (1\ 2\ 3) \in A_n$ konjugiert zu $(a\ b\ c)$

Für $C_{2,2}$: zu zeigen $(a\ b)(c\ d)\ A_n$ -konjugiert zu $(1\ 2)(3\ 4)$ für $\{a,b,c,d\}\subseteq\{1,\ldots,n\}$ 4-elementig.

Wähle $\sigma \in S_n$ mit $\sigma(1) = a, \sigma(2) = b, \sigma(3) = c, \sigma(4) = d$

$$\implies \sigma(1\ 2)(3\ 4)\sigma^{-1} \stackrel{(**)}{=} (a\ b)(c\ d)$$

und (*) gilt auch für $\sigma(1\ 2)$... etc. (Schließe wie für C_3 .)

Definition 0.28 (Einfache Gruppe). Eine Gruppe G heißt einfach $\iff \{e\}$ und G sind die einzigen Normalteiler von G. (d.h. G hat keine nicht-trivialen Normalteiler)

Satz 0.29. Für $n \geq 5$ ist A_n einfach.

Beweis. Sei $N \subseteq A_n$ ein Normalteiler und $\{e\} \subsetneq N$ und sei $\sigma \in N \setminus \{e\}$.

• n = 5:

- (*) Doppeltranspositionen bilden A_5 -Konjugationsklasse und erzeugen A_5 (Lemma 27). Falls Doppeltranspositionen in N, so folgt $N=A_5$.
- (**) 3-Zykel bilden A_5 -Konjugationsklasse und erzeugen A_5 (Lemma 27). Falls σ ein 3 $Zykel \implies N=A_5$.

Gelte
$$\sigma = 5$$
-Zykel = $(a\ b\ c\ d\ e)$. Nun: $N \ni \underbrace{(a\ b\ c)\sigma(a\ b\ c)^{-1}}_{\in N} \underbrace{\sigma}_{\in N} \overset{\text{Übung}}{=}$

 $(a \ b \ d)$ 3-Zykel

• n = 6: möglichen Youngdiagramme: (zu $\sigma \in A_6 \setminus \{e\}$)

(*) wurden schon im A_5 -Fall erklärt.

Sei also $\sigma^2 = (a b c)(d e f) \in N$, mit $\{a, \dots f\} = \{1, \dots, 6\}$. Sei $\tau = (a b c)$, berechne $\tau(\sigma)(\tau^{-1})$ (Satz 25)

$$\underbrace{\tau \sigma \tau^{-1}}_{\in N} \underbrace{\sigma}_{\in N} = (b \ d \ c)(a \ e \ f)(a \ c \ b)(e \ d \ f) \stackrel{\text{"Übung}}{=} (a \ b \ e \ c \ d) \in 5 - \text{Zykel}$$

wurde schon bei n = 5 geklärt.

- $n \geq 6$: o.E. (Permutation von 1,...,n) $\sigma(1) \neq 1$ Wähle $\{j,k\} \in \{1,...,n\} \setminus \{1,\sigma(1)\}$. Sei $\tau := (\sigma(1)\ j\ k) \implies \sigma^{-1}\tau\sigma\tau^{-1} \in N$ Dann:
 - (i) $\varphi := \tau \sigma \tau^{-1} \sigma^{-1} \in N$

(ii)
$$\varphi(\sigma(n)) = \tau \sigma \tau^{-1}(1) \stackrel{1 \notin \operatorname{supp}(\tau)}{\underset{1 \notin \operatorname{supp}(\tau^{-1})}{=}} \tau \sigma(1) = j \neq \sigma(1)$$
, also $\varphi \neq \operatorname{id}$.

(iii) $\#\operatorname{supp}(\varphi) \leq 6$, denn:

$$\varphi = \underbrace{\tau}_{3\text{-Zykel}} \cdot \underbrace{\sigma}_{3\text{-Zykel}} \underbrace{\tau^{-1}}_{3\text{-Zykel}} \underbrace{\sigma^{-1}}_{3\text{-Zykel}}$$

o.E:
$$supp(\varphi) \subseteq \{1, \ldots, 6\} \implies \varphi \in A_6 \setminus \{e\}$$

• Fälle $n \leq 6$: Nurmalteiler, der von φ erzeugt wird enthält 3-Zykel oder Doppeltransposition. Dann fertig wegen Lemma 27.

Bemerkung. Es gibt eine Klassifikation aller endlich einfachen Gruppen: Liste:

- $\mathbb{Z}_{(p)}, p \text{ prim}$
- $A_n, n \ge 5$
- endliche Gruppen vom Lie typ:
 - (i) $SL_n(K)/Z(SL_n(K))$ bis auf einige kleine #K sind einfach (endlich falls K endlich).
 - (ii) Weitere Untergruppen von $\mathrm{SL}_{\mathrm{n}},$ welche zu "linearen algebraischen Gruppen" korrespondieren.
- 26 weitere.

0.3 Sylow Theoreme

Satz 0.30 (Sylow I; nach Wieland). Sie G eine endliche Gruppe, p eine Primzahl, $k \in \mathbb{N}$ sodass $p^k | \#G$, sei

$$n_k := \#\{H \le G \mid \#H = p^k\}$$

Dann ist

$$n_k \equiv 1 \mod p$$

 $insbesondere \exists H \leq G \ mit \ \#H = p^k$

Übung (Vorbereitung). Sei peine Primzahl, $k\in\mathbb{N}_0, m\in\mathbb{N},$ dann:

$$\binom{mp^k}{p^k} = m \cdot u$$

wobei $\mathbb{N} \ni u \equiv 1 \mod p$.