Laboratório Nacional de Computação Científica Programa de Pós-Graduação em Modelagem Computacional

Meu título

João da Silva Souza

Petrópolis, RJ - Brasil Junho de 2016

João da Silva Souza

Meu título

Dissertação submetida ao corpo docente do Laboratório Nacional de Computação Científica como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências em Modelagem Computacional.

Laboratório Nacional de Computação Científica Programa de Pós-Graduação em Modelagem Computacional

Orientador(es): Pedro Costa dos Santos e José Oliveira Pereira

Petrópolis, RJ - Brasil Junho de 2016

XXXX

Souza, João da Silva

Meu título / João da Silva Souza. – Petrópolis, RJ - Brasil, Junho de 2016-23 p. : il. ; 30 cm.

Orientador(es): Pedro Costa dos Santos e José Oliveira Pereira

Dissertação (M.Sc.) – Laboratório Nacional de Computação Científica Programa de Pós-Graduação em Modelagem Computacional, Junho de 2016.

1. Palavra-chave1. 2. Palavra-chave2. 2. Palavra-chave3. I. dos Santos, Pedro Costa. II. LNCC/MCTIC. III. Título

CDD: XXX.XXX

João da Silva Souza

Meu título

Dissertação submetida ao corpo docente do Laboratório Nacional de Computação Científica como parte dos requisitos necessários para a obtenção do grau de Mestre em Ciências em Modelagem Computacional.

Aprovada por:

Prof. Pedro Costa dos Santos, D.Sc. (Presidente)

Prof. Minch Yoda, M.Sc.

Prof. Kendall E. Atkinson, Ph.D.

Prof. Isaac Newton

Prof. Alan Mathison Turing, Ph.D.

Petrópolis, RJ - Brasil Junho de 2016

Dedicatória

Pequeno texto destinado à prestação de homenagem ou dedicação do trabalho do autor.

Agradecimentos

O autor manifesta reconhecimentos às pessoas e instituições que colaboraram para a execução de seu trabalho.

Resumo

Segundo a ABNT (2003, 3.1-3.2), o resumo deve ressaltar o objetivo, o método, os resultados e as conclusões do documento. A ordem e a extensão destes itens dependem do tipo de resumo (informativo ou indicativo) e do tratamento que cada item recebe no documento original. O resumo deve ser precedido da referência do documento, com exceção do resumo inserido no próprio documento. (...) As palavras-chave devem figurar logo abaixo do resumo, antecedidas da expressão Palavras-chave:, separadas entre si por ponto e finalizadas também por ponto.

Palavras-chave: latex. abntex. editoração de texto.

Abstract

This is the english abstract.

 ${\bf Keywords: \ latex. \ abntex. \ text \ editoration.}$

Lista de figuras

Lista de tabelas

Lista de abreviaturas e siglas

ABNT Associação Brasileira de Normas Técnicas

abnTeX — ABsurdas Normas para TeX

Lista de símbolos

 Γ Letra grega Gama

 $\Lambda \qquad \qquad Lambda$

 \in Pertence

Sumário

1	Intr	Introdução											
	1.1	Desenvolvimento Racional de Fármacos Baseado em Estrutura	L5										
	1.2	Docking	15										
	1.3	Docking baseado em campos de força	15										
	1.4	Virtual Screening	15										
	1.5	Docking baseado em grade	15										
2	DockThor												
	2.1	Histórico	16										
	2.2	Implementação	16										
3	Con	nputação paralela	7										
	3.1	Escalabilidade	17										
	3.2	Arquitetura CPU	17										
	3.3	OpenMP	17										
	3.4	MPI	17										
	3.5	GPU	17										
		3.5.1 Arquitetura GPU	17										
4	Rev	isão bibliográfica Algoritmos evolutivos e Docking HPC 1	8										
5	Obj	etivos	9										
	5.1		19										
6	Metodologia												
	6.1	Princípio da localidade e acesso coalescente à memória: Struct of Array (SoA)	20										
	6.2	Grade DockThor em SoA	20										
	6.3	Steady State em SoA	20										
	6.4	Geracional	20										
	6.5	Geracional em GPU	20										
7	Res	ultados	!1										
	7.1	Speedup Grade	21										
		7.1.1 Speedup Grade com Sequencial AoS	21										
		7.1.2 Speedup Grade com Sequencial SoA	21										
		7.1.3 Speedup Grade com OpenMP	21										
		7.1.4 Speedup Grade com OpenCL	21										
	7.2	7.2 Acurácia SteadyState SoA											
	7.3	Speedup SteadyState SoA/AoS	21										
	7.4	Acurácia Geracional	21										
	7.5	5 Speedup Geracioal CPU											
	7.6	6 Speedup Geracioal GPU											

8	Conclusã	o e tra	abalho	s futu	ro		 	 					 		22
Re	eferências						 	 					 		23

1 Introdução

1.1 Desenvolvimento Racional de Fármacos Baseado em Estrutura

O Desenvolvimento racional de fármacos é uma metodologia que auxilia na diminuição do custo, tempo e do número de falhas que o desenvolvimento de um novo fármaco pode tomar.

- 1.2 Docking
- 1.3 Docking baseado em campos de força
- 1.4 Virtual Screening
- 1.5 Docking baseado em grade

2 DockThor

- 2.1 Histórico
- 2.2 Implementação

3 Computação paralela

- 3.1 Escalabilidade
- 3.2 Arquitetura CPU
- 3.3 OpenMP
- 3.4 MPI
- 3.5 GPU
- 3.5.1 Arquitetura GPU

4 Revisão bibliográfica Algoritmos evolutivos e Docking HPC

5 Objetivos

5.1 DockThor residente em GPU

6 Metodologia

- 6.1 Princípio da localidade e acesso coalescente à memória: Struct of Array (SoA)
- 6.2 Grade DockThor em SoA
- 6.3 Steady State em SoA
- 6.4 Geracional
- 6.5 Geracional em GPU

7 Resultados

- 7.1 Speedup Grade
- 7.1.1 Speedup Grade com Sequencial AoS
- 7.1.2 Speedup Grade com Sequencial SoA
- 7.1.3 Speedup Grade com OpenMP
- 7.1.4 Speedup Grade com OpenCL
- 7.2 Acurácia SteadyState SoA
- 7.3 Speedup SteadyState SoA/AoS
- 7.4 Acurácia Geracional
- 7.5 Speedup Geracioal CPU
- 7.6 Speedup Geracioal GPU

8 Conclusão e trabalhos futuro

Referências

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. $NBR\ 6028$: Resumo - apresentação. Rio de Janeiro, 2003. 2 p. Citado na página 7.