LOADING A PROGRAM FROM THE KEYBOARD

- 1. Touch 'NORMAL RESET' key
- 2. Clear keyboard register
- 3. Key-in the address of the first instruction
- 4. Touch the 'LOAD ADDR' key
- 5. Key-in the first instruction
- 6. Touch the 'LOAD STORE' key
- 7. Touch the 'INCR ADDR' key
- 8. Key-in the next instruction
- 9. Touch the 'LOAD STORE' key
- 10. If any more instructions, repeat from 7
- Load data stores in the same way (enter negative sign last)

RUNNING A PROGRAM

- 1. Touch 'NORMAL RESET' key
- 2. Clear keyboard register
- 3. Key-in the address of the first instruction
- 4. Touch the 'LOAD IAR' key
- 5. Touch the stage keys 'A'-'B'-'C' or 'RUN'
- 6. Machine will stop if
 - a) 'STOP' key is touched
 - b) An input or display instruction is obeyed
 - c) An overflow occurs or there is an invalid instruction

REASON FOR STOPPAGE	ACTION
'STOP' or stage keys touched	Touch 'A'-'B'-'C' or 'RUN'
Input instruction	Key-in required data and touch 'RUN'
Output instruction	To continue a program, touch 'RUN'
Overflow or invalid	Correct program and start
instruction	again

OBEYING INSTRUCTIONS FROM THE KEYBOARD

- 1. Touch 'KI RESET' key
- 2. Clear keyboard registe
- 3. Key-in one 8-digit or two 4-digit instructions
- 4. Touch 'A', 'B' or 'C' as required

If two 4-digit instructions are entered, they will be obeyed in sequence.

LAYOUT OF TV DISPLAY

Tape Recorder Computer (rear view) Mains To Tape Recorder (see Instructions) Junction Box AC Mairs (3-pia plus)

IBM UNITED KINGDOM LTD

EXPERIMENTAL

SCHOOLS COMPUTER

INSTRUCTION

CARD

NSTRUCTION CODES

RIEF OPERATING INSTRUCTIONS

BASIC INSTRUCTIONS (4 digits)

General Form a b c d

a b is the 2-digit function code

REGISTER INSTRUCTIONS

Register and digit		2R	2 Registers		
	egister number lecimal digit	c ar	nd d	are register numbers	
CODE	S	CO	DES		
a b 0 0 0 1 0 2 0 3 0 4 0 5	$(R_c) \leftarrow (R_c) - d$ $(R_c) \leftarrow d - (R_c)$ $(R_c) \leftarrow d$ INVALID CODE	1 1 1 1 1	1 2 3 4	$(R_c) \leftarrow (R_c) + (R_d)$ $(R_c) \leftarrow (R_c) - (R_d)$ $(R_c) \leftarrow (R_d) - (R_c)$ $(R_c) \leftarrow (R_d)$ $(R_c) \leftarrow (R_d)$ $(R_c) \leftarrow R H 6 \operatorname{dig}(R_d)$	
0 6 0 7 0 8 0 9	Test (R _c) for d Left shift (R _c) by d Right shift (R _c) by d INVALID CODE	1 1	6 7 8		
0 9	INVALID CODE		9	Display (Ra) & (Ra)	

Conditions for code 05

If the condition is fulfilled, then the CONTROL LATCH (CL) is set at 1, otherwise $\boldsymbol{0}$

Value of d	Condition
0	$(R_c) = 0$
1	$(R_c) > 0$
2	$(R_c) < 0$
3	L H dig $(R_c) = 0$
4	$R H dig(R_c) = 0$

SINGLE-ADDRESS INSTRUCTIONS

a determines the type of addressing b determines the function cd gives the 2-digit base address

CODES (For direct addressing)

a	b
2	0
2	1
2	2
2	3
2	4
2	5
2	6
2	7
2	8
2	9

Digit a	Type of addressing	True address
2	Direct	cd
3	7 (R3)	cd + (R3)
4	Modified (R4)	cd + (R4)
5) (R ₅)	cd + (R5)
6	Indirect	(cd)

THREE-ADDRESS INSTRUCTIONS (8 digits)

General form:

a b is the 2-digit function code

cd, ef, and gh are the three 2-digit addresses

CODES (For direct addressing)

		(1 of direct addressing)
a	Ь	
7	0	$(cd) \leftarrow (ef) + (gh)$
7	1	$(cd) \leftarrow (ef) - (gh)$
7	2	$(cd) \leftarrow (ef) \times (gh)$
7	3	$(cd) \leftarrow (ef) \div (gh)$
7	4	Branch to cd if (ef) = (gh)
7	5	Branch to cd if (ef) > (gh)
7	6	Branch to cd if $ (ef) > (gh) $
7	7	If $(gh) \neq 0$ branch to cd & store link address in ef.
7	8	Input to cd; display (ef) & (gh)
7	9	Display (cd), (ef), (gh)

The type of addressing is determined by the digit a:

Digit a	Type of addressing	True addresses
7	Direct	cd, ef, gh
8	Modified by (R ₃),	cd + (R3),
	$(R_4), (R_5)$	ef + (R4),
	respectively	gh + (R ₅)
9	Indirect	(cd), (ef), (gh)