MC404: Organização de Computadores e Linguagem de Montagem 1ª Prova (15/04/2013)

Questão Valor Nota

	1	0,8	
Nome:	2	1,2	
	3	3,5	
RA:	4	2,0	
	5	2,5	
	Total	10.0	

Instruções: A duração da prova é de uma hora e quarenta minutos. Qualquer tentativa de fraude será punida com zero para todos os envolvidos.

Questão 1. (0,8 pontos)

Determine o **maior** e o **menor** valor que podem ser representados usando-se 10 *bits*. Mostre sua resposta na notação decimal.

Comple	emento de 2	Sinal e Magnitude		Complemento de 1		Sem Sinal	
Maior	Menor	Maior	Menor	Maior	Menor	Maior	Menor

Questão 2. (1,2 pontos) Preencha as lacunas em branco da tabela de acordo com a representação da coluna. Quando o número não puder ser representado no formato da coluna, preencha o espaço com o valor 101 1101

Decimal	Binário de 7 bits			
Decimal	Sem sinal	Complemento de 2	Sinal e Magnitude	
46				
	101 1010			
		100 0000		
			100 0110	

Figura 1: Organização detalhada do computador IAS

Questão 3. (3,5 pontos) Considere o seguinte mapa de memória, que descreve um programa do IAS em linguagem de máquina:

a) (2.0) Preencha a tabela a seguir com o valor dos registradores ao término do ciclo de busca da instrução à esquerda da palavra de memória no endereço 0x011? (Para sua referência, a Figura 1 mostra a organização detalhada do computador IAS.)

AC	MBR	IBR	IR	MAR	PC

b) (1.5) Substitua o conteúdo da memória no endereço 0x104 pelo valor "00 00 00 0x", onde xx corresponde aos dois últimos dígitos do seu RA. Por exemplo, para o RA 001387, o mapa de memória deve ser atualizado para:

104 00 00 00 00 87

Dada a modificação acima, preencha o tabela a seguir com o valor dos registradores ao término do **ciclo de execução** da instrução à esquerda da palavra de memória no endereço 0x014?

AC	MBR	IBR	IR	MAR

Questão 4. (2 pontos)

- a) O que é escrito no registrador PC quando uma instrução de salto incondicional (JUMP) é executada? De onde vem esse dado?
- b) Quando surgiu e como era o nome do primeiro microprocessador?
- c) Por que não é interessante usar a diretiva .align no meio da área de código?
- d) O que é a "Lei de Moore" e o que ela diz?
- e) O endereço do rótulo X no programa abaixo é _____

```
.org 0x0FF
   LOAD M(X)
   ADD M(vetor)
   STOR M(vetor)
.align 1
vetor:
   .wfill 0xC7, 000000001
X:
   .word 000000002
```

Questão 5. (2,5 pontos) Monte o programa abaixo e preencha a tabela abaixo com o mapa de memória gerado.

```
.set INICIO 0x100
.org INICIO
  STOR M(x1)
rotulo1:
 LSH
.align 1
rotulo2:
  SUB M(x2)
 LOAD M(rotulo1)
  JUMP M(cont)
.align 2
cont:
  LSH
 LOAD M(av)
  JUMP+ M(rotulo2)
.align 1
x1: .word 000000001
x2: .word 000000003
.align 2
av: .word 000000000
.align 2
vm: .word x2
```

Resposta (mapa de memória). Utilize a mesma convenção da questão 4, ou seja, cada linha deve conter o endereço com três dígitos hexadecimais e o valor da memória, separado em 5 bytes, cada um representado com dois dígitos hexadecimais. Preencha apenas as palavras de memória que foram geradas pelo montador. Palavras incompletas devem ser completadas com zero.

End.	Valor: 40 bits			
	1		I	

Conjunto de Instruções do Computador IAS

Tipo da Instrução	Código da operação	Representação Simbólica	Descrição
Transferência de Dados	00001010	LOAD MQ	Transfere o conteúdo do registrador MQ para o registrador AC
	00001001	${\rm LOAD~MQ,M(X)}$	Transfere o conteúdo da memória no endereço X para o registrador MQ
	00100001	STOR $M(X)$	Transfere o conteúdo do registrador AC para a memória no endereço X
	00000001	$\mathrm{LOAD}\ \mathrm{M}(\mathrm{X})$	Transfere o conteúdo da memória no endereço X para o registrador AC
	00000010	LOAD - M(X)	Transfere o negativo do valor armazenado no endereço X da memória para o registrador AC
	00000011	$\mathrm{LOAD}\ \mathrm{M}(\mathrm{X}) $	Transfere o absoluto do valor armazenado no endereço X da memória para o registrador AC
Salto incondicional	00001101	JUMP M(X,0:19)	Salta para a instrução da esquerda na palavra contida no endereço X da memória
meondicionar	00001110	JUMP M(X,20:39)	Salta para a instrução da direita na palavra contida no endereço X da memória
Salto condicional	00001111	JUMP+M(X,0:19)	Se o número no registrador AC for não negativo então salta para a instrução à esquerda da
	00010000	JUMP+M(X,20:39)	palavra contida no endereço X da memória Se o número no registrador AC for não negativo então salta para a instrução à direita da palavra contida no endereço X da memória
Aritmética	00000101	ADD M(X)	Soma o valor contido no endereço X da memória
	00000111	$\mathrm{ADD}\ \mathrm{M}(\mathrm{X}) $	com o valor em AC e coloca o resultado em AC Soma o absoluto do valor contido no endereço X da memória com o valor em AC e armazena o
	00000110	SUB M(X)	resultado em AC Subtrai o valor contido no endereço X da memória do valor em AC e coloca o resultado em AC
	00001000	SUB M(X)	Subtrai o absoluto do valor contido no endereço X da memória do valor em AC e armazena o
000	00001011	MUL M(X)	resultado em AC Multiplica o valor no endereço X da memória pelo valor em MQ e armazena o resultado em AC e MQ.
	00001100	DIV M(X)	AC contém os <i>bits</i> mais significativos do resultado Divide o valor em AC pelo valor no endereço X da
	00010100	LSH	memória. Coloca o quociente em MQ e o resto em AC Desloca os bits do registrador AC para a esquerda.
	00010101	RSH	Equivale à multiplicar o valor em AC por 2 Desloca os <i>bits</i> do registrador AC para a direita. Equivale à dividir o valor em AC por 2
Modificação	00010010	STOR M(X,8:19)	Move os 12 bits à direita de AC para o campo endereç
de endereço	00010011	STOR $M(X,28:39)$	da instrução à esquerda da palavra X na memória Move os 12 <i>bits</i> à direita de AC para o campo endereç da instrução à direita da palavra X na memória