Лабораторная работа № 4

Задание.

Бинарные отношения δ, τ, ρ на универсуме $U = \{1, 2, 3, 4\}$ даны следующим образом: бинарное отношение δ дано своей матрицей, а бинарные отношения τ, ρ заданы перечислением своих кортежей.

Найти бинарные отношения — результаты следующих операций:

1)
$$\beta_1 = \delta \cap \tau$$
; 2) $\beta_2 = \delta \setminus \tau$; 3) $\beta_3 = (\delta \cap \tau) \oplus \rho$;
4) $\beta_4 = \tau^{-1}$; 5) $\beta_5 = \tau \circ \rho$.

Составить алгоритм и написать программу, выполняющие данные операции над бинарными отношениями.

Индивидуальное задание по вариантам.

В-т	δ, au, ho	В-т	δ, au, ho
1	$M(\delta) = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$ $\tau = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 1, 3 \rangle, \langle 4, 2 \rangle\}$ $\rho = \{\langle 1, 2 \rangle, \langle 1, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 1 \rangle\}$	2	$M(\delta) = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$ $\tau = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 1, 3 \rangle, \langle 4, 2 \rangle\}$ $\rho = \{\langle 1, 2 \rangle, \langle 1, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 1 \rangle\}$
3	$M(\delta) = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$ $\tau = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 1, 4 \rangle, \langle 4, 2 \rangle\}$ $\rho = \{\langle 1, 2 \rangle, \langle 1, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 1 \rangle\}$	4	$M(\delta) = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$ $\tau = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 1, 4 \rangle, \langle 4, 2 \rangle\}$ $\rho = \{\langle 1, 2 \rangle, \langle 1, 4 \rangle, \langle 3, 1 \rangle, \langle 4, 1 \rangle\}$
5	$M(\delta) = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$ $\tau = \{\langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 1, 3 \rangle, \langle 4, 2 \rangle\}$ $\rho = \{\langle 1, 2 \rangle, \langle 1, 4 \rangle, \langle 3, 1 \rangle, \langle 4, 1 \rangle\}$	6	$M(\delta) = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$ $\tau = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 1, 4 \rangle, \langle 4, 2 \rangle\}$ $\rho = \{\langle 2, 2 \rangle, \langle 1, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 1 \rangle\}$

7	$M(\delta) = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$ $\tau = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 1, 4 \rangle, \langle 4, 2 \rangle\}$ $\rho = \{\langle 2, 2 \rangle, \langle 1, 4 \rangle, \langle 3, 1 \rangle, \langle 4, 1 \rangle\}$	8	$M(\delta) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{pmatrix}$ $\tau = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 1, 4 \rangle, \langle 4, 2 \rangle\}$ $\rho = \{\langle 2, 2 \rangle, \langle 1, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 1 \rangle\}$
9	$M(\delta) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix}$ $\tau = \{\langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 1, 4 \rangle, \langle 4, 2 \rangle\}$ $\rho = \{\langle 2, 2 \rangle, \langle 1, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 1 \rangle\}$	10	$M(\delta) = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{pmatrix}$ $\tau = \{\langle 1, 2 \rangle, \langle 1, 3 \rangle, \langle 1, 4 \rangle, \langle 4, 2 \rangle\}$ $\rho = \{\langle 2, 2 \rangle, \langle 1, 4 \rangle, \langle 3, 4 \rangle, \langle 4, 1 \rangle\}$