USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

III Semester B. E. Examinations April/May - 2023

Computer Science and Engineering

DISCRETE MATHEMATICS

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	How many 3-digit numbers can be formed by using the 6 digits	
		2, 3, 4, 5, 6, 8 if repetitions of digits are allowed?	02
	1.2	Find the value of n so that $2P(n,2) + 50 = P(2n,2)$	02
	1.3	In how many ways can we distribute 7 apples and 6 oranges among	
		4 children so that each child gets at least 1 apple?	02
	1.4	Find a_{12} if $a_{n+1}^2 = 5a_n^2$, where $a_n > 0$ for $n \ge 0$, given that $a_0 = 2$.	02
	1.5	Indicate how many rows are needed in the truth table for the	
		compound proposition $(p \lor \neg q) \leftrightarrow \{(\neg r \land s)\} \rightarrow t\}$	02
	1.6	Obtain a DFA to accept strings of a's and b's having 4 a's where	
		$\Sigma = \{a, b\}$	02
	1.7	Let $A = \{1, 2, 3, 4, 6\}$ and R be the relation on A defined by $(a, b) \in R$ if	
		and only if a is multiple of b . Write down R as a set of ordered pairs.	02
	1.8	Let $A = \{0,\pm 1,\pm 2,3\}$ consider the function $f: A \to R$, (where R is the	
		set of all real numbers) defined by $f(x) = x^3 - 2x^2 + 3x + 1$, $\forall x \in A$.	
		Find the range of f.	02
	1.9	Prove that $H = \{0, 2, 4\}$ is a subgroup of $(Z6, +)$	02
	1.10	A binary symmetric channel has probability $P = 0.05$ of incorrect	
		transmission. If the word $C = 011011101$ is transmitted. What is the	
		probability that single error occurs.	02

PART-B

2	a	Find the number of integer solutions of $x_1 + x_2 + x_3 + x_4 + x_5 = 30$	
		where $x_1 \ge 2, x_2 \ge 3, x_3 \ge 4, x_4 \ge 2, x_5 \ge 0$	05
	b	How many integers between 1 and 300 are	
		i) Divisible by at least one of 5, 6, 8?	
		ii) Divisible by none of 5, 6, 8?	06
	С	Find the number of permutations of the letters of the word	
		MASSASAUGA. In how many of these, all 4A's are together? How many	
		of them begin with S?	05

3	а	The number of virus affected files in a system is 1000 (to start with) and this increases 250% every 2 hrs. Use a recurrence relation to determine the number of virus affected files in the system after one day.	05
	b	Prove by mathematical induction, that	
		$1^2 + 3^2 + 5^2 + + (2n - 1)^2 = \frac{1}{3} n (2n - 1)(2n + 1)$ for all integers	
		$n \ge 1$.	06
	С	Test the validity of the given arguments $(\neg p \lor q) \rightarrow r, r \rightarrow (s \lor t)$,	
		$(\neg s \land \neg u, \neg u \longrightarrow \neg t \vdash p)$	05
		OR	
4	a	Prove that the following argument is valid.	
¬	а	$\forall x, [p(x) \lor q(x)]$	
		$\exists x, \neg p(x)$	
		$\forall x, [\neg q(x) \lor r(x)]$	
		$\forall x, [s(x) \to \neg r(x)]$	
		$\exists x, \neg s(x)$	05
	b	Solve the recurrence relation	03
	-	$a_n = 2 (a_{n-1} - a_{n-2}), \text{ for } n \ge 2$	
		given that $a_0 = 1$ and $a_1 = 2$	06
	С	Prove the following logical equivalence.	٥٢
		$p \to (q \to r) \Leftrightarrow (p \land q) \to r$	05
5	a	Obtain a <i>DFA</i> to accept the language	
		$L = \{ awa \epsilon t (a + b) * \}$	05
	b	Define the following:	
		i) DFA ii) Language of DFA	
		ii) Language of <i>DFA</i>iii) Extended transition function of <i>DFA</i>.	06
	С	Convert the following <i>NFA</i> shown in Fig 5c to its equivalent <i>DFA</i> :	
		· 60 · 60 · 60	
		0,1 (1) 0,1 (42)	
		0,	
		Fig 5c	05
		OR	
6	a	Convert the following \in -NFA shown in Fig 6a to DFA	
		$\rightarrow (\widehat{q_0}) \rightarrow (\widehat{q_2})$	
		€ CO €	
		a b c	
		Fig 6a	06
	b	Define the following:	
		i) NFAii) Extended transition function of ∈-NFA.	05
	С	Obtain a DFA to accept strings of a's and b's with at most	03
		2 consecutive <i>b's</i> .	05

77					
7	a	Let $A = B = C = R$, and $f: A \rightarrow B$ and $g: B \rightarrow C$ be defined by			
		$f(a) = 2a + 1$, $(b) = \frac{1}{3}b$, $\forall a \in A$, $\forall b \in B$. Compute gof and show that gof			
		is invertible. What is $(g \circ f)^{-1}$?			
	b	Let $A = \{1,2,3,4\}$ and $R = \{(1,1), (1,2), (2,3), (3,4)\},$			
		$S = \{(3,1), (4,4), (2,4), (1,4)\}$ be relations on A. Determine the relations			
		$R \circ S, S \circ R, R^2 \text{ and } S^2.$	05		
	С	Consider the Hasse diagram of a <i>Poset</i> (A, R) given in Fig 7c			
		Fig 7c If $B = \{c, d, e\}$ find: i) All upper bounds of B .			
		i) All upper bounds of B.ii) All lower bounds of B.			
		iii) The least upper bound of <i>B</i> .			
		iv) The greatest lower bound of B.	06		
		ii) The greatest lower bound of B.			
8	a	Let <i>G</i> be the set of all non-zero real numbers and let $a * b = \frac{1}{2}ab$. Show			
		that $(G,*)$ is an abelian group.	05		
	b	An encoding function $F: 7^2 \rightarrow 7^5$ is given by the generator matrix			
	D	An encoding function \in : $Z_2^2 \to Z_2^5$ is given by the generator matrix. $G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$			
		i) Determine all the code words. What can be said about the			
		error-detection capability of this code? What about its			
		error-correction capability?			
		ii) Find the associated parity check matrix H.	06		
		iii) Use <i>H</i> to decode the received words: 11101,11011	06		
	С	State and prove Lagrange's theorem.	05		