

UM61512A Series

64K X 8 BIT HIGH SPEED CMOS SRAM

Features

■ Single +5V power supply

■ Access times: 15/20/25ns (max.)

■ Current: Operating: 160mA (max.) Standby: 10mA (max.)

■ Full static operation, no clock or refreshing required

■ All inputs and outputs are directly TTL compatible

■ Common I/O using three-state output

Output enable and two chip enable inputs for easy application

■ Data retention voltage: 3V (min.)

Available in 32-pin SKINNY DIP, TSOP, SOP, SOJ and both 300/400 mil packages

General Description

The UM61512A is a low operating current 524,288-bit static random access memory organized as 65,536 words by 8 bits and operates on a single 5V power supply. It is built using UMC's high performance CMOS process.

Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures.

Two chip enable inputs are provided for POWER-DOWN and device enable and an output enable input is included for easy interfacing.

Data retention is guaranteed at a power supply voltage as low as 3V.

Pin Configurations

■ SKINNY/SOJ/SOP

■ TSOP (forward type)

Pin No.	Pin	Pin No.	Pin
	Name		Name
1	A11	17	A3
2	A9	18	A2
3	A8	19	A1
4	A13	20	A0
5	WE	21	I/O ₁
6	CE2	22	I/O ₂
7	A15	23	I/O ₃
8	VCC	24	GND
9	NC	25	I/O ₄
10	NC	26	I/O ₅
11	A14	27	I/O ₆
12	A12	28	I/O ₇
13	A7	29	I/O ₈
14	A6	30	CE1
15	A5	31	A10
16	A4	32	ŌĒ

Block Diagram

Pin Descriptions SKINNY/SOJ/SOP

Pin No.	Symbol	Description
1, 2	NC	No Connection
3 - 12, 23, 25 - 28, 31	A0 - A15	Address Inputs
13 - 15, 17 - 21	I/O1 - I/O8	Data Input/Outputs
16	GND	Ground
22	CE1	Chip Enable
24	ŌĒ	Output Enable
29	WE	Write Enable
30	CE2	Chip Enable
32	VCC	Power Supply

Pin Description TSOP

Pin No.	Symbol	Description
1 - 4, 7, 11 - 20, 31	A0 - A15	Address Inputs
5	WE	Write Enable
6	CE2	Chip Enable
8	VCC	Power Supply
9, 10	NC	No Connection
21 - 23, 25 - 29	I/O1 - I/O8	Data Input/Outputs
24	GND	Ground
30	CE1	Chip Enable
32	ŌĒ	Output Enable

Recommended DC Operating Condition $TA = 0^{\circ}C$ to $+70^{\circ}C$

Symbol	Parameter	Min.	Тур.	Max.	Unit
VCC	Supply Voltage	4.75	5.0	5.25	V
GND	Ground	0	0	0	V
Vih	Input High Voltage	2.2	3.5	VCC + 0.3	V
VIL	Input Low Voltage	-0.3	0	+0.8	V
CL	Output Load	-	-	30	pF
TTL	Output Load	-	-	1	-

Absolute Maximum Ratings*

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics (TA = 0° C to + 70° C, VCC = $5V \pm 5\%$, GND = 0V)

Symbol	Parameter	UM61512A-15/20/25		Unit	Conditions
		Min.	Max.		
Iu	Input Leakage Current	-	2	μΑ	Vin = GND to VCC
ILO	Output Leakage Current	-	2	μА	$\overline{\text{CE1}}$ = Vih or $\overline{\text{CE2}}$ = Vil or $\overline{\text{OE}}$ = Vih or $\overline{\text{WE}}$ = Vil Vivo = GND to VCC
lcc1 (1)	Dynamic Operating Current	-	160	mA	CE1 = VIL, CE2 = VIH II/O = 0 mA
lsв		-	30	mA	CE1 = VIH or CE2 = VIL
ls _B 1	Standby Power Supply Current	-	20	mA	$\overline{CE1} \ge VCC - 0.2V,$ $CE2 \ge VCC - 0.2V,$ $Vin \le 0.2V \text{ or } Vin \ge VCC - 0.2V$
ISB2		-	20	mA	$\overline{\text{CE1}} \le 0.2 \text{V}, \text{CE2} \le 0.2 \text{V}$ Vin $\le 0.2 \text{V}$ or Vin $\ge \text{VCC}$ - 0.2V
Vol	Output Low Voltage	-	0.4	V	loL = 8 mA
Voн	Output High Voltage	2.4	-	V	Іон = -4 mA

Note: 1. Icc1 is dependent on output loading, cycle rates, and Read/Write patterns.

Truth Table

Mode	CE1	CE2	ŌĒ	WE	I/O Operation	Supply Current
Standby	Н	Х	Х	Х	High Z	ISB, ISB1
	X	L	Х	Х	High Z	ISB, ISB2
Output Disable	L	Н	Н	Н	High Z	lcc1
Read	L	Н	L	Н	Douт	lcc1
Write	L	Н	Х	L	DIN	lcc1

Note: X = H or L

Capacitance (TA = 25° C, f = 1.0 MHz)

Symbol	Parameter	Min.	Max.	Unit	Conditions
Cin *	Input Capacitance		8	pF	Vin = 0V
Cı/o *	Input/Output Capacitance		10	pF	Vivo = 0V

^{*} These parameters are sampled and not 100% tested.

AC Characteristics (TA = 0° C to +70°C, VCC = 5V \pm 10%)

Symbol	Parameter		UM615	12A-15	UM615	12A-20	UM615	12A-25	Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
Read Cyc	le								
trc	Read Cycle Time		15	-	20	-	25	-	ns
taa	Address Access Time		-	15	-	20	-	25	ns
tace1	Chip Enable Access Time	CE1	-	15	-	20	-	25	ns
tace2		CE2	-	15	-	20	-	25	ns
toE	Output Enable to Output Valid		-	7	-	9	-	12	ns
tcLZ1	Chip Enable to Output in Low Z	CE1	5	-	5	-	5	-	ns
tcLZ2		CE2	5	-	5	*	5	-	ns
toLz	Output Enable to Output in Low Z	•	2	-	2	-	2	-	ns
tcHZ1	Chip Disable to Output in High Z	CE1	-	10	-	10	-	15	ns
tcHZ2		CE2	-	10	-	10	-	15	ns
tонz	Output Disable to Output in High Z		2	9	2	9	2	10	ns
tон	Output Hold from Address Change		3	-	5	-	5	-	ns

AC Characteristics (continued)

Symbol	Parameter	UM61512A-15		UM615	12A-20	UM61512A-25		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Write Cyc	Write Cycle							
twc	Write Cycle Time	15	20	20	25	25	-	ns
tcw	Chip Enable to End of Write	12	15	15	20	20	-	ns
tas	Address Setup Time of Write	0	0	0	0	0	-	ns
taw	Address Valid to End of Write	12	15	15	20	20	-	ns
twp	Write Pulse Width	9	-	11	-	-	-	ns
twr	Write Recovery Time	0	ı	0	ı	ı	-	ns
twnz	Write to Output in High Z	0	8	0	13	13	13	ns
tow	Data to Write Time Overlap	7	-	7	-		-	ns
tон	Data Hold from Write Time	0	-	0	-	-	-	ns
tow	Output Active from End of Write	5	-	5	-	-	-	ns

Notes: tcнz1, tcнz2, toнz and twнz are defined as the time at which the outputs achieve the open circuit condition and are not referred to output voltage levels.

Timing Waveforms

Read Cycle 1 1,2,4)

Read Cycle 2^{1,3,4,6)}

Read Cycle 3^{1,4,7,8)}

Read Cycle 4¹⁾

Notes: 1. $\overline{\text{WE}}$ is high for Read Cycle.

- 2. Device is continuously enabled $\overline{CE1} = V_{IL}$ and $CE2 = V_{IH}$.
- 3. Address valid prior to or coincident with $\overline{\text{CE1}}$ transition low.
- 4. $\overline{OE} = VIL$.
- 5. Transition is measured ± 500 mV from steady state. This parameter is sampled and not 100% tested.
- 6. CE2 is high.
- 7. $\overline{\text{CE1}}$ is low.
- 8. Address valid prior to or coincident with CE2 transition high.

Write Cycle 1⁶⁾ (Write Enable Controlled)

Write Cycle 2 (Chip Enable Controlled)

Notes: 1. tas is measured from the address valid to the beginning of Write.

- 2. A Write occurs during the overlap (t wp) of a low $\overline{\text{CE1}}$, a high CE2 and a low $\overline{\text{WE}}$.
- 3. twn is measured from the earliest of CE1 or WE going high or CE2 going low to the end of the Write cycle.
- 4. If the $\overline{\text{CE1}}$ low transition or the CE2 high transition occurs simultaneously with the $\overline{\text{WE}}$ low transition or after the $\overline{\text{WE}}$ transition, outputs remain in a high impedance state.
- 5. tcw is measured from the later of \overline{CE} going low or CE2 going high to the end of Write.
- 6. \overline{OE} is continuously low. ($\overline{OE} = V_{IL}$)
- 7. Transition is measured ±500mV from steady state. This parameter is sampled and not 100% tested.

AC Test Conditions

Input Pulse Levels	0V to 3.0V
Input Rise and Fall Time	5 ns
Input and Output Timing Reference Levels	1.5V
Output Load	See Figures 1 and 2

Figure 1.Output Load

Figure 2. Output Load for tclz1, tclz2, tolz, tcHz1, tcHz2, toHz, twHz, and tow

Data Retention Characteristics (T_A = 0° C to 70° C)

Symbol	Parameter	Min.	Max.	Unit	Conditions
Vdr1	VCC for Data Retention	3	5.25	V	CE1 ≥ VCC - 0.2V CE2 ≥ VCC - 0.2V or CE2 ≤ 0.2V
Vdr2		3	5.25	V	$\frac{\text{CE2} \le 0.2\text{V}}{\frac{\text{CE1}}{\text{CE1}} \ge \text{VCC} - 0.2\text{V}} \text{ or}$ $\frac{\text{CE1}}{\text{CE1}} \le 0.2\text{V}$
ICCDR1	Data Retention Current	-	5	mA	
ICCDR2		-	5	mA	$\begin{aligned} & \text{VCC} = 3.0\text{V} \\ & \text{CE2} \leq 0.2\text{V} \\ & \overline{\text{CE1}} \leq 0.2\text{V} \\ & \text{Vin} \geq \text{VCC} - 0.2\text{V or} \\ & \text{Vin} \leq 0.2\text{V} \end{aligned}$
tcdr	Chip Disable to Data Retention Time	0	-	ns	See Retention Waveform
tr	Operation Recovery Time	5	-	ms	

Low VCC Data Retention Waveform (2) (CE2 Controlled)

Ordering Information

Part No.	Access Time (ns)	Operating Current Max. (mA)	Standby Current Max. (mA)	Package
UM61512AK-15	15	160	10	32L SKINNY
UM61512AK-20	20	160	10	32L SKINNY
UM61512AS-15	15	160	10	32L SOJ (300 mil)
UM61512AS-20	20	160	10	32L SOJ (300 mil)
UM61512ASW-15	15	160	10	32L SOJ (400 mil)
UM61512ASW-20	20	160	10	32L SOJ (400 mil)
UM61512AM-25	25	160	10	32L SOP
UM61512AV-15	15	160	10	32L TSOP

SKINNY 32L Outline Dimensions

unit: inches/mm

Symbol	Dimensions in inches	Dimensions in mm
А	0.200 Max.	5.08 Max.
A1	0.015 Min.	0.38 Min.
A2	0.130; © 010	3.30; Ó 25
В	0.018 +0.004	0.46 +0.10
	-0.002	-0.05
B1	0.050 +0.004	1.27 +0.10
	-0.002	-0.05
С	0.010 +0.004	0.25 +0.10
	-0.002	-0.05
D	1.600 Typ. (1.620 Max.)	40.64 Typ. (41.15 Max.)
Е	0.310; Q 010	7.87; Ó .25
E1	0.288 Typ. (0.300 Max.)	7.32 Typ. (7.62 Max.)
e 1	0.100; Ó 007	2.54; Ó 18
L	0.130; © 010	3.30; Ó 25
£\	0° ~ 15°	0° ~ 15°
ел	0.355; Ó 035	9.02; Ó 89
S	0.059 Max.	1.50 Max.

- 1. The maximum value of dimension D includes end flash.
- Dimension E₁ does not include resin fins.
 Dimension S includes end flash.

SOJ 32/32LD (300mil BODY) Outline Dimensions

unit: inches/mm

Symbol	Dimensions in inches			Dime	nsions i	n mm
	Min.	Nom.	Max.	Min.	Nom.	Max.
Α	0128	0.132	0.140	3.25	3.35	3.56
A1	0.052	-	-	2.08	-	-
A2	0.095	0.100	0.105	2.41	2.54	2.67
b	0.016	0.018	0.020	0.41	0.46	0.51
b1	0.026	0.028	0.032	0.66	0.71	0.81
С	0.006	0.008	0.012	0.15	0.20	0.30
D	0.820	0.825	0.830	20.83	20.96	21.08
HE	0.330	0.335	0.340	8.39	8.51	8.63
Е	0.295	0.300	0.305	7.49	7.62	7.75
e 1	0.260	0.267	0.274	6.61	6.78	6.96
е	-	0.050	-	-	1.27	-
S	-	-	0.048	-	-	1.22
у	-	-	0.004	-	-	0.10

- 1. The maximum value of dimension D includes end flash.
- 2. Dimension E doesn't include resin fins.
 3. Dimension e₁ is for PC Board surface mount pad pitch design reference only.

 4. Dimension S includes end flash.

SOJ 32/32LD (400mil BODY) Outline Dimensions

unit: inches/mm

Symbol	Dimensions in inches			Dime	nsions i	n mm
	Min.	Nom.	Max.	Min.	Nom.	Max.
Α	0.131	0.138	0.145	3.35	3.51	3.68
A1	0.082	-	-	2.08	-	-
A2	0.105	0.110	0.115	2.67	2.79	2.91
b	0.016	0.018	0.020	0.41	0.46	0.51
b2	0.026	0.028	0.032	0.66	0.71	0.81
С	0.006	0.008	0.011	0.15	0.20	0.28
D	0.820	0.825	0.830	20.83	20.96	21.08
Е	0.435	0.440	0.445	11.05	11.18`	11.31
E1	0.395	0.400	0.405	10.03	10.16	10.29
E2	0.360	0.370	0.380	9.15	9.40	9.65
е	-	0.050	-	-	1.27	-
S	-	-	0.045	-	-	1.14
у	-	-	0.004	-	-	0.10

- 1. Dimension D includes end flash.
- 2. Dimension E doesn't include resin fins.
- 3. Dimension E₁ is for PC Board surface mount pad pitch design reference only.
 4. Dimension S includes end flash.

SOP (W.B.) 32L Outline Dimensions

unit: inches/mm

Symbol	Dimensions in inches	Dimensions in mm
Α	0.118 Max.	3.00 Max.
A1	0.004 Min.	0.10 Min.
A2	0.106; Ó 005	2.69; Ó 13
b	0.016 +0.004	0.41 +0.10
	-0.002	-0.05
С	0.008 +0.004	0.20 +0.10
	-0.002	-0.05
D	0.805 Typ. (0.820 Max.)	20.45 Typ. (20.83 Max.)
Е	0.445; © 010	11.30; Ó .25
е	0.050 ; Ó 006	1.27; Ó 15
e 1	0.525 NOM.	13.34 NOM.
HE	0.556; Ó 010	14.12; Ó 25
L	0.031; Ó 008	0.79; Ó 20
LE	0.055; Ó 008	1.40; Ó 20
S	0.044 Max.	1.12 Max.
у	0.004 Max.	0.10 Max.
θ	0° ~ 10°	0° ~ 10°

- 1. The maximum value of dimension D includes end flash.
- 2. Dimension E does not include resin fins.
- 3. Dimension e₁ is for PC Board surface mount pad pitch design reference only.
- 4. Dimension S includes end flash.

TSOP 32L TYPE I (8 X 20mm) Outline Dimensions

unit: inches/mm

Symbol	Dimensions in inches	Dimensions in mm
Α	0.047 Max.	1.20 Max.
A1	0.004; Ó 002	0.10; © 05
A2	0.039¡ Ó 002	1.00; Ó 05
b	0.008; Ó 001	0.20¡ Ó 03
С	0.006; Ó 001	0.15; Ó 02
D	0.724; Ó 004	18.40¦ Ó 10
Е	0.315; Ó 004	8.00; © 10
е	0.020 TYP.	0.50 TYP.
Нр	0.787; Ó 007	20.00; Ó 20
L	0.020; Ó 004	0.50; © 10
LE	0.031 TYP.	0.80 TYP.
S	0.0167 TYP.	0.425 TYP.
Υ	0.004 Max.	0.10 Max.
θ	0° ~ 6°	0° ~ 6°

- 1. The maximum value of dimension D includes end flash.
- 2. Dimension E does not include resin fins.
- 3. Dimension e₁ is for PC Board surface mount pad pitch design reference only.
- 4. Dimension S includes end flash.