

Artificial Intelligence for developers

8 weekend per diventare Machine Learning Specialist

Natural Language Processing

Maurizio Atzori Università degli Studi di Cagliari atzori@unica.it

February 9-10, 2024

Temptative (outline) of the course

- Intro on AI, ML and NLP
- Text Processing
- Words and Corpora
- Lexical similarity
- Language Modeling
- Text Classification
- Semantic similarity
- Knowledge Graphs
- Intro to Large Language Models

Regular Expressions

Text Processing

Regular expressions

A formal language for specifying text strings How can we search for any of these?

- woodchuck
- woodchucks
- Woodchuck
- Woodchucks

Regular Expressions: Disjunctions

Letters inside square brackets []

Pattern	Matches
[wW]oodchuck	Woodchuck, woodchuck
[1234567890]	Any digit

Ranges [A-Z]

Pattern	Matches	
[A-Z]	An upper case letter	Drenched Blossoms
[a-z]	A lower case letter	my beans were impatient
[0-9]	A single digit	Chapter $1:$ Down the Rabbit Hole

Regular Expressions: Negation in Disjunction

Negations [^Ss]

Carat means negation only when first in []

Pattern	Matches	
[^A-Z]	Not an upper case letter	O <u>y</u> fn pripetchik
[^Ss]	Neither 'S' nor 's'	<pre>I have no exquisite reason"</pre>
[^e^]	Neither e nor ^	Look here
a^b	The pattern a carat b	Look up <u>a^b</u> now

Regular Expressions: More Disjunction

Woodchuck is another name for groundhog! The pipe | for disjunction

Pattern	Matches
groundhog woodchuck	woodchuck
yours mine	yours
a b c	= [abc]
[gG]roundhog [Ww]oodchuck	Woodchuck

Regular Expressions: ? *+.

Pattern	Matches		23-48-55
colou?r	Optional previous char	<u>color</u> <u>colour</u>	
oo*h!	0 or more of previous char	oh! ooh! oooh!	
o+h!	1 or more of previous char	oh! ooh! oooh!	Stephen C Kleene
baa+		<u>baa</u> <u>baaaa</u> <u>baaaaa</u>	Kleene *, Kleene +
beg.n		begin begun began beg3n	

Regular Expressions: Anchors ^ \$

Pattern	Matches
^[A-Z]	Palo Alto
^[^A-Za-z]	<pre>1 "Hello"</pre>
\.\$	The end.
.\$	The end? The end!

Example

Find me all instances of the word "the" in a text.

the

Misses capitalized examples

[tT]he

Incorrectly returns other or theology

```
[^a-zA-Z][tT]he[^a-zA-Z]
```

Errors

The process we just went through was based on fixing two kinds of errors:

 Matching strings that we should not have matched (there, then, other)

False positives (Type I errors)

 Not matching things that we should have matched (The)

False negatives (Type II errors)

Errors cont.

In NLP we are always dealing with these kinds of errors.

Reducing the error rate for an application often involves two antagonistic efforts:

- Increasing accuracy or precision (minimizing false positives)
- Increasing coverage or recall (minimizing false negatives).

Summary

Regular expressions play a surprisingly large role

- Sophisticated sequences of regular expressions are often the first model for any text processing text
 For hard tasks, we use machine learning classifiers
 - But regular expressions are still used for preprocessing, or as features in the classifiers
 - Can be very useful in capturing generalizations

Regular Expressions

Text Processing

Substitutions and ELIZA

Text Processing

Substitutions

Substitution in Python and UNIX commands:

```
s/regexp1/pattern/
e.g.:
s/colour/color/
```

Capture Groups

- Say we want to put angles around all numbers:
 the 35 boxes → the <35> boxes
- Use parens () to "capture" a pattern into a numbered register (1, 2, 3...)
- Use $\1$ to refer to the contents of the register $\1 / ([0-9]+)/< 1>$

Capture groups: multiple registers

```
/the (.*)er they (.*), the \ler we \2/
Matches

the faster they ran, the faster we ran
the better they behave, the better we behave
```

But not the faster they ran, the faster we behave

But suppose we don't want to capture?

Parentheses have a double function: grouping terms, and capturing

Non-capturing groups: add a ?: after paren:

```
/(?:some|a few) (people|cats) like some \1/
matches
```

o some cats like some cats

but not

some cats like some some

Lookahead assertions

(?= pattern) is true if pattern matches, but is zero-width; doesn't advance character pointer (?! pattern) true if a pattern does not match How to match, at the beginning of a line, any single word that doesn't start with "Volcano": /^(?!Volcano)[A-Za-z]+/

Simple Application: ELIZA

Early NLP system that imitated a Rogerian psychotherapist

Joseph Weizenbaum, 1966.

Uses pattern matching to match, e.g.,:

"I need X"
and translates them into, e.g.

• "What would it mean to you if you got X?

Simple Application: ELIZA

Men are all alike.

IN WHAT WAY

They're always bugging us about something or other. CAN YOU THINK OF A SPECIFIC

EXAMPLE

Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED

How ELIZA works

```
s/.* I'M (depressed|sad) .*/I AM SORRY TO HEAR YOU
ARE \1/
s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU
ARE \1/
s/.* all .*/IN WHAT WAY?/
s/.* always .*/CAN YOU THINK OF A SPECIFIC
EXAMPLE?/
```


Substitutions and ELIZA

Text Processing

Exercise on Regex