(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-197500 (P2000-197500A)

最終頁に続く

(43)公開日 平成12年7月18日(2000.7.18)

(51) Int.Cl.7	識別記号	FI	テーマコード(参考)
C 1 2 Q 1/48		C12Q 1/48	Z 2G045
A61P 29/00		A 6 1 K 31/00	629 4B024
37/06			637D 4B063
A 6 1 K 45/00		45/00	4 B 0 6 5
C12N 5/10		C12N 9/99	4 C 0 8 4
	客查請求	未請求 請求項の数12 OL	(全 25 頁) 最終頁に続く
(21)出願番号	特顧平 11-26803	(71)出顧人 000002956 田辺製薬株式	A #
(22)出顧日	平成11年2月4日(1999.2.4)		中央区道修町3丁目2番10号
(31)優先権主張番号	特題平10-26003	11-72-71-11-11-11-11-11-11-11-11-11-11-11-11-	西登美ヶ丘3丁目3番9号
(32)優先日	平成10年2月6日(1998.2.6)	(72)発明者 櫻井 宏明	四重天》在61日6号37
(33)優先権主張国	日本(JP)		すずかけ台4丁目6番地3番
(31)優先権主張番号	特 阿平 10-309316	館602号	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(32)優先日	平成10年10月30日(1998, 10, 30)	(72)発明者 ▲陰▼山 法	子
(33)優先権主張国	日本(JP)		石名坂町 1 -19-4-301
(, ps) to i make the	- · · · · · · · · · · · · · · · · · · ·	(74)代理人 100076923	
	•	弁理士 箕浦	繁夫

(54) 【発明の名称】 TAK1を擦的とするNF-κB活性化抑制薬及びその同定方法

(57)【要約】

【課題】 新しい伝達分子に焦点をあてたNF- κ B活性化抑制薬、自己免疫疾患などの治療薬・予防薬、及び、それらの新規な同定方法及びスクリーニング方法を提供する。

【解決手段】 TAK1($TGF-\beta$ アクチベーテッドキナーゼ1)の機能に対する被験物質の変調作用を検定する工程を含む、 $NF-\kappa$ B活性化抑制薬の同定方法又はスクリーニング方法。 $NF-\kappa$ B活性化経路における TAK1の機能に対する被験物質の変調作用を検定する工程を含む、自己免疫疾患又は炎症症状を呈する難治性疾患の治療薬及び/又は予防薬の同定方法又はスクリーニング方法。また、前記方法によって選択又は同定された新規な $NF-\kappa$ B活性化抑制薬、および、自己免疫疾患、炎症症状を呈する難治性疾患などの治療薬・予防薬。

【特許請求の範囲】

【請求項1】 TAK1 (TGF $-\beta$ アクチベーテッドキナーゼ1) の機能に対する被験物質の変調作用を検定する工程を含む、NF $-\kappa$ B活性化抑制薬の同定方法又はスクリーニング方法。

【請求項2】 被験物質の変調作用が、TAK1の機能を阻害又は抑制する作用である請求項1記載の方法。

【請求項3】 TAK1の機能が、(1)TAK1とTAK1結合蛋白質1との相互作用、(2)TAK1のプロテインキナーゼ活性、(3)細胞内のTAK1によるIKK複合体の活性化、及び(4)細胞内のTAK1により誘導されるNF $-\kappa$ B活性化から選択されるものである、請求項2記載の方法。

【請求項4】 TAK1の機能が、TAK1のプロテインキナーゼ活性である請求項2記載の方法。

【請求項5】 TAK1の機能が、細胞内のTAK1によるIKK複合体の活性化である請求項2記載の方法。

【請求項6】 TAK1とTAK1結合蛋白質1とを発 現増強させた試験用細胞を用い、試験用細胞を被験物質 と共存させる工程を含む請求項1記載の方法。

【請求項7】 NF $-\kappa$ B活性化抑制薬が同時に自己免疫疾患又は炎症症状を呈する難治性疾患の治療薬及び/ 又は予防薬である、請求項 $1\sim6$ のいずれか1項記載の方法。

【請求項8】 請求項 $1\sim6$ のいずれか1項記載の方法により、選択又は同定された、 $NF-\kappa$ B活性化抑制薬。

【請求項9】 $TAK1の機能を変調させる薬物を主成分とするNF-<math>\kappa$ B活性化抑制薬。

【請求項10】 NF-κ B活性化経路におけるTAK 1の機能に対する被験物質の変調作用を検定する工程を含む、自己免疫疾患又は炎症症状を呈する難治性疾患の治療薬及び/又は予防薬の同定方法又はスクリーニング方法。

【請求項11】 請求項10の方法により、選択又は同定された自己免疫疾患又は炎症症状を呈する難治性疾患の治療薬及び/又は予防薬。

【請求項12】 NF- κ B活性化経路におけるTAK 1の機能を阻害又は抑制する作用を有する薬物を主成分とする、自己免疫疾患又は炎症症状を呈する難治性疾患 40 の治療薬及び/又は予防薬。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、NF- κ B活性化 抑制薬、および自己免疫疾患、炎症症状を呈する難治性 疾患の治療薬・予防薬に関する。また、それらの新規な スクリーニング方法及び同定方法に関する。

[0002]

[0003]

【従来の技術】転写因子の一つとして知られるNF-κ 50

B (Nuclear Factor kappa B) は、炎症や免疫応答に関 与する種々の遺伝子の転写調節において重要な役割を果 たしている。通常、 $NF - \kappa B$ は、細胞質内では、制御 タンパク質であるI & Bと結合した不活性な複合体とし て存在しているが、細胞に一定の刺激が与えられると、 IR Bが修飾・分解を受け複合体からはずれることによ り活性化される。このように活性化されたNF-κB は、核内へ移行し、ゲノムDNA上の種々の遺伝子の上 流域 (エンハンサー領域) に存在する特異塩基配列 (約 10塩基からなるNF-κB結合配列)と結合して、遺伝 子の転写を活性化する。NF-κB結合配列は、免疫グ ロブリン遺伝子の他、 IL-1、腫瘍壊死因子等の炎症 性サイトカイン、インターフェロン、細胞接着因子等の 遺伝子の上流域にも存在し、NF-κBは、これら遺伝 子の発現誘導を介して、炎症や免疫応答に関っている。 【0004】NF-κBは、自己免疫疾患や炎症性疾患 の病態形成にも関っており、NF-kBの活性化抑制作 用を有する薬物は、自己免疫疾患(慢性関節リウマチ、 全身性エリテマトーデス、全身性強皮症、ベーチェット 病、結節性動脈周囲炎、潰瘍性大腸炎、糸球体腎炎な ど)、炎症症状を呈する難治性疾患(変形性関節症、ア テローム硬化症、乾癬、アトビー性皮膚炎など)、各種 ウイルス性疾患、エンドトキシンショック、敗血症、な どの疾患の治療及び予防に効果を示すことが知られてい る。そして、これら疾患の治療・予防薬開発のために、 新規なNF-κBの活性化抑制薬の探索研究が進められ ている(Koppら、Science、第265巻、第956頁、1994 年; Baeuerleら、Advances in Immunology 第65巻、 第111~137頁、1997年; 特開平7-291859; 特開平9-227561)。

【0005】従来のNF $-\kappa$ B活性化抑制薬の探索研究においては、薬物のスクリーニング方法あるいは同定方法としては、インビトロで細胞を刺激の存在下(もしくは非存在下)、被験薬物の存在下もしくは非存在下に培養し、NF $-\kappa$ Bの活性化を検出する方法が一般に用いられている。

【0006】しかしながら、細胞が一定の刺激(シグナル)を受けてから、NF- κ Bの活性化に至るまでのシグナル伝達経路には、プロテインキナーゼなどの各種伝達分子が関わる多くのステップの存在が考えられる。従って、より効率的な創薬研究のためには、主要な役割を果たす伝達分子を明らかにした上でそれらに焦点をしぼった新しい薬物スクリーニング方法を確立することが望まれる。しかし、NF- κ Bの活性化のメカニズムは、幾つかの伝達因子(TRAF2(TNF- α receptor associated factor 2)、MAPKKKの一つであるNIK(NF- κ B-inducing kinase)、I κ Bキナーゼ(IKK)、ユビキチン共役酵素、26Sプロテオソーム等)が同定されるなど、少しずつ解明されつつあるものの(Nikolaiら、Nature、第385巻、第540~544頁;Ma

niatis、Science、第278巻、第818~819頁、1997年;Ba euerleら、Advances in Immunology 第65巻、第111~137頁、1997年)、いまだ不明な点が多く、より進んだメカニズムの解明と新しい伝達分子に焦点をあてたスクリーニング方法が望まれていた。

【0007】一方、 $TGF-\beta P クチベーテッドキナーゼ1$ ($Transforming\ growth\ factor-\beta$ -activated kina se 1; TAK1とも称する)は、哺乳動物のMAPKKKK(mitogen-activated protein kinase kinase kinase e)の一つとして見出されたものである(Yamaguchiら、Science、第270巻、第2008~2011頁、1995年;特開平9-163990)。TAK1は、 $TGF-\beta$ (transforming growth factor- β)によって制御されるPAI-1プロモータを活性化する。また、その命名の由来ともなっているように $TGF-\beta$ によって活性化を受けることから、 $TGF-\beta$ スーパーファミリーのメンバーによるシグナルの細胞内伝達経路において作用していると考えられてきた。

【0008】また、TAK1は、TAK1結合蛋白質1 (TAK1 binding protein 1; TAB1とも称する)と結合 (相互作用) することにより活性な形となり、シグナル伝達経路においてMAPKKKとして機能することが知られている (Shibuyaら、Science、第272巻、第1179~1182頁、1996年)。しかしながら、TAK1とNFー κ B活性化との関連については何ら知られていなかった。

[0009]

【発明が解決しようとする課題】本発明の目的は、新しい伝達分子に焦点をあてた $NF-\kappa$ B活性化抑制薬の同定方法およびスクリーニング方法を提供することにある。また、自己免疫疾患、炎症症状を呈する難治性疾患などの治療薬・予防薬の新規な同定方法およびスクリーニング方法を提供することにある。

【0010】さらに、前記方法によって得られる新規な $NF-\kappa$ B活性化抑制薬、および自己免疫疾患、炎症症 状を呈する難治性疾患などの治療薬・予防薬を提供する ことにある。

[0011]

【課題を解決するための手段】本発明者らは、ヒトのTAK1cDNAの3つのアレル変異体(variant)を単離し、さらに、これらを用いた研究の中で、ヒトTAK1をTAB1と共に発現増強(over expression)させることにより、NF- κ Bの活性化が起こることを見出した。またTAK1は、TAB1と相互作用するとともに、IKK(1κ Bキナーゼ)複合体と相互作用しその活性化に関与すること、さらに、キナーゼ活性を失った変異型のTAK1は、NF- κ B活性化を阻害することを見出した。

【0012】 これらの知見から、TAK1が、NF-κ Bの活性化に至るシグナル伝達経路 (NF-κ B活性化 50 経路)の中の重要な伝達分子であり、TAK1の機能を抑制する薬物は $NF-\kappa$ Bの活性化抑制薬となり得ることを見出し、本発明を完成するに至った。

【0013】すなわち、本発明は、TAK1($TGF-\beta$ アクチベーテッドキナーゼ1)の機能に対する被験物質の変調作用を検定する工程を含む、 $NF-\kappa$ B活性化抑制薬の同定方法又はスクリーニング方法である。

【0014】また、NF-κB活性化経路におけるTAK1の機能に対する被験物質の変調作用を検定する工程を含む、自己免疫疾患又は炎症症状を呈する難治性疾患の治療薬及び/又は予防薬の同定方法又はスクリーニング方法である。

【0015】さらに、前記方法によって選択又は同定された新規な $NF-\kappa$ B活性化抑制薬、および、自己免疫疾患、炎症症状を呈する難治性疾患などの治療薬・予防薬である。

[0016]

【発明の実施の形態】本発明において用いるTAK1は、いずれの種由来のものであってもよく、例えばヒト、マウス、ラット、ウサギ、ブタ、イヌ、サル、モルモットなどの哺乳動物由来のものが挙げられる。これらのうち、ヒトの治療薬の研究開発に利用する上ではヒト由来のものを用いることが好ましい。

【0017】TAK1のcDNA配列およびアミノ酸配列はすでに報告されている(Genbank/EMBL データベース Accession No. D76446; Yamaguchiら、Science、第270巻、第2008~2011頁、1995年)。また、後記配列表の配列番号3、4及び5には、発明者らが新たに見出したヒトのTAK1cDNAの3つのアレル変異体(variant)のDNA配列及びそれらにコードされるTAK1のアミノ酸配列を示した。

【0018】前記の通り、発明者らが独自に見出した知見によれば、TAK1は、 $NF-\kappa$ B活性化経路において、主要な伝達分子として機能する。

【0019】 TAK1は、細胞内でTAB1(TAK1結合蛋白質1)と相互作用(結合)することによって活性化され、プロテインキナーゼ活性(MAPKKK活性)を示す活性型となるが、この相互作用により自己リン化とTAB1のリン酸化を生じる。また、TAK1は IKK複合体とも機能的に相互作用する。活性化された TAK1は、IKK複合体を活性化して、 $NF-\kappa$ B活性化経路における伝達分子としての機能を発揮し、 $NF-\kappa$ B活性化を誘導すると考えられる。

【0020】NF $-\kappa$ B活性化経路におけるTAK1の機能の模式図を図9に示した。

【0021】本発明においては、上記のようなTAK1の機能(特に $NF-\kappa$ Bの活性化経路における機能)に着目し、被験物質の作用(特に阻害又は抑制作用)を検定する。このような機能としては、より具体的には、例えば(1)TAK1とTAB1との相互作用(結合)、

(2) TAK1のプロテインキナーゼ活性、(3) 細胞内のTAK1によるIKK複合体の活性化、(4) 細胞内のTAK1により誘導される $NF-\kappa$ B活性化、などが挙げられる。これら機能に対する被験物質の作用を検定する方法を以下に述べる。

【0022】(1) TAK1とTAB1との相互作用 (結合)に対する作用の検定

例えば、TAK1とTAB1との結合を直接検出する方法、共免疫沈降法 (co-immunoprecipitation) 法により検出する方法、あるいは、ツーハイブリッドシステム (two-hybrid system) (米国特許第5283173、およびProc.Natl.Acad.Sci. USA、第88巻、第9578-9582頁、1991年) などの方法を用いることができる。

【0023】 TAK1とTAB1との結合を検出する際には、TAK1及びTAB1としてはそれらの全体を用いてもよいが、少なくとも両者の結合に関与する領域を含む部分ポリペプチドを用いてもよい。あるいは、それらに適当なタグ標識(グルタチオン-S-トランスフェラーゼ、 $6 \times His$ 、プロテインA、 β -ガラクトシダーゼ、マルトースーパインディングプロテイン、フラッグ抗原、Xpressing、HA抗原、<math>Myc抗原などの部分ポリペプチドなど)を付加した融合タンパク質を用いてもよい。

【0024】TAK1とTAB1との結合を直接検出する場合は、例えばRIなどで標識したTAK1(もしくはTAB1)を用い、TAB1(もしくはTAK1)に必要に応じて適当なタグ標識を付加した融合タンパク質との結合を、被験物質の存在下で直接的に検出する。

【0025】共免疫沈降法(co-immunoprecipitation)法による場合は、例えば、TAK1、TAB1、もしくはこれらに付加したタグ標識を認識する抗体を検出に用いる。まず、TAK1及びTAB1を発現している細胞から細胞溶解液を調製し、一方の蛋白質を認識する抗体を用いて細胞溶解液中のその蛋白質を免疫沈降させる。免疫沈降させた画分中に含まれるもう一方の蛋白質の存在を、免疫ブロッティング等の方法により検出することにより、細胞内での両蛋白質の相互作用(結合)を検出できる。

【0026】また、ツーハイブリッドシステムは、レポーター遺伝子の発現をマーカーとする方法である(米国特許第5283173、およびProc.Natl.Acad.Sci. USA、第88巻、第9578-9582頁、1991年)。

【0027】ツーハイブリッドシステムを利用する場合、具体的には例えば、(i) 転写因子の第一領域(DNA結合領域又は転写活性化領域)とTAK1からなる第一の融合蛋白質をコードする遺伝子、(ii) 転写因子の第二領域(転写活性化領域又はDNA結合領域)とTAB1からなる第二の融合蛋白質をコードする遺伝子、及び(ii) 転写因子のDNA結合領域が結合し得る応答配列およびその下流に連結されたレポーター遺 50

伝子、を含む試験用細胞を用い、これを被験物質と共存させてインキュベートし、レポーター遺伝子の発現を指標として、TAK1とTAB1の結合に対する被験物質の作用を検定する。被験物質がTAK1とTAB1の結合を阻害する場合には、被験物質の存在によってレポーター活性の減少が認められる。

【0028】第一及び第二の融合蛋白質をコードする遺伝子は通常の遺伝子組換え技術を用いて、設計し構築することができる。

【0029】宿主細胞は、例えば、酵母細胞、昆虫細胞及び哺乳動物細胞などが挙げられる。これらのうち、酵母細胞は培養が容易で迅速に実施できる上、外来遺伝子の導入など遺伝子組換え技術を適用するのが容易である点で有利である。

【0030】転写因子は、宿主細胞内で機能するものであればよく、例えば、酵母のGAL4蛋白質(Keegan ら、Science、第231巻、第699-704頁、1986年、Maら、Cell、第48巻、第847-853頁、1987年)、GCN4蛋白質(Hopeら、Cell、第46巻、第885-894頁、1986年)、ADR1蛋白質(Thukralら、Molecular and Cellular Biology、第9巻、第2360-2369頁、1989年)などが挙げられる。

【0031】応答配列は、転写因子に対応した応答配列を用いればよく、例えば、転写因子としてGAL4を用いる場合、応答配列としては、UASg(ガラクトース代謝遺伝子の上流域活性化部位:upstream activation site of galactose genes)と称されるGAL4特異的なDNA配列を用いることができる。

【0032】レポータ遺伝子も、特に限定されない。例えば、大腸菌由来の β – ガラクトシダーゼ遺伝子(1a c2)、バクテリアトランスポソン由来のクロラムフェニコールアセチルトランスフェラーゼ遺伝子(CA T)、ホタル由来のルシフェラーゼ遺伝子(Luc)等、安定でかつ活性の定量的測定が容易な酵素の遺伝子などを好適に用いることができる。

【0033】(2) TAK1のプロテインキナーゼ活性 に対する作用の検定

例えば、基質蛋白質を含む溶液に、TAK1及びTAB 1を含む溶液、及び、ATP(必要に応じてRIなどで 標識したもの)を含む溶液を添加し、被験物質の存在下 もしくは非存在下で酵素反応を行い、基質蛋白質へのリ ン酸の取込みなどを指標としてプロテインキナーゼ活性 を測定し、被験物質の作用を検定する。

【0034】 TAK1及びTAB1は、遺伝子組換え技術により適当な宿主細胞(酵母細胞、昆虫細胞及び哺乳動物細胞など)で発現させたもの等を用いることができる。また、TAK1のN末端領域がTAB1との結合に関与しており、N末端(N末端側22アミノ酸)が欠失したTAK1は、TAB1と結合しない場合にも活性型のシグナル伝達分子として作用することが知られている

(Yamaguchiら、Shibuyaら)ので、TAK1とTAB1の両者を用いる代わりに、N末端が欠失しTAB1非依存的に活性を示す活性変異型TAK1を用いてもよい。

【0035】基質蛋白質としては、TAK1自体、TAB1、もしくはそれらの部分ペプチドを用いることができる。また、IKK及びIKK複合体と機能的に相互作用する分子又はそれらの部分ペプチドもまた基質蛋白質として用いることができる。

【0036】この他、アフリカツメガエルのXMEK2(SEK1)(Shibuya6、Science、第272巻、第1179~1182頁、1996年)、ヒトMKK3(Derijard6、Science、第267巻、第682~685頁、1995年)、ヒトMKK6(MAPKK6)(Raingeaud6、Molecular and Cellular Biology、第16巻、第1247~1255頁、1996年; Moriguchi6、Journal of Biological Chemistry、第271巻、第13675~13679頁、1996年)などのMAPKK(mitogen activated protein kinase kinase)やそれらの部分ペプチドを基質として用いることもできる。基質としてMAPKKを用いる場合には、MAPKKの活性化(MAPK(mitogen activated protein kinase)に対するリン酸化活性の増大)を指標としてTAK1のプロテインキナーゼ活性を測定することもできる。

【0037】(3)細胞内のTAK1によるIKK複合 体活性化に対する作用の検定

例えば、TAK1(より詳細には活性型のTAK1)を発現増強(over expression)させた細胞を試験用細胞として用いる。このような試験用細胞としては、TAK1及びTAB1を共に発現増強した細胞が挙げられ、TAK1及びTAB1の発現用ベクターを適当な宿主細胞中に導入することにより得られる。或いは、N末端が欠失しTAB1非依存的に活性を示す活性変異型TAK1を発現増強させた細胞を用いてもよい。

【0038】前記試験用細胞を、例えば、被験物質の存在下又は非存在下に培養する。培養後の細胞から、IK K複合体を含む画分を免疫沈降などにより取得し、これを用いてIKKキナーゼ反応を行い、IKK複合体の活性化を測定して、被験物質の作用を検定する。

【0039】(4)細胞内のTAK1により誘導される NF- κ B活性化に対する作用の検定

例えば、前記(3)と同様、活性型TAK1の発現増強 細胞を試験用細胞として用い、これを被験物質の存在下 又は非存在下に培養する。NF-κB活性化をゲルシフトアッセイなどにより検出して、被験物質の作用を検定 する。

【0040】活性型TAK1の発現増強細胞は、コントロール細胞(ベクターのみを導入した細胞など)と比較するとシグナル伝達分子として働くTAK1の発現量が増加している。従って、TAK1に作用する被験薬物を選択したい場合の試験細胞として好適である。例えば、活性型TAK1を発現増強させた細胞及びコントロール 50

細胞の両者において、被験物質の存在により $NF-\kappa B$ 活性化抑制作用が認められた場合には、該被験物質の作用点はTAK1にある可能性が高いと判断される。

【0041】前記(1)~(4)の方法において、試験に用いる細胞としては、ヒトなどの哺乳動物由来の細胞株を好適に使用でき、例えば、ヒトHeLa細胞、ヒトJurkat細胞、ヒトTHP-1細胞、サルСОS-7細胞、チャイニーズハムスターСH〇細胞などが挙げられ、このうち、ヒトHeLa細胞、ヒトJurkat細胞、ヒトTHP-1細胞等が好ましい。

【0042】前記(1)~(4)の方法において、TAK1、TAB1、もしくはこれらの融合蛋白質などを発現増強させる場合、既知の配列情報と通常の遺伝子組換え技術を用いて行うことができる。

【0043】TAK1の配列情報は、前記の通りであり、TAB1のcDNA配列およびアミノ酸配列もまた報告されている(Genbank/EMBL データベース Accession No.U49928; Shibuyaら、Science、第272巻、第1179~1182頁、1996年)。TAB1は、いずれの種由来のものであってもよく、例えばヒト、マウス、ラット、ウサギ、ブタ、イヌ、サル、モルモットなどの哺乳動物由来のものが挙げられる。これらのうち、ヒトの治療薬の研究開発に利用する上ではヒト由来のものを用いることが好ましい。

【0044】TAK1、TAB1などのcDNAあるいは遺伝子は、既知のアミノ酸配列や塩基配列の情報などをもとに設計し合成したプライマーやプローブを用い、通常のPCR (Polymerase Chain Reaction) 法やRTーPCR法、あるいはDNAライブラリからのスクリーニングにより単離することができる。これらを適当なベクターに組み込んで発現用ベクターを構築できる。

【0045】ベクターとしては、適当なプロモーター (例えば、CMVプロモーター、SV40プロモーター、LTRプロモーター、エロンゲーション 1α プロモーター等)を含む動物細胞用のベクター (例えば、レトロウイルス系ベクター、パピローマウイルスベクター、ワクシニアウイルスベクター、SV40系ベクター等)を使用できる。

【0046】前記(1)~(4)のような検定方法により、TAK1の機能に対する阻害作用や抑制作用が認められた被験物質については、さらに $NF-\kappa$ B活性化に対する抑制作用を確認すればよい。あるいは、自己免疫疾患又は炎症症状を呈する難治性疾患の既知の病態モデル(in vitro又はin vivo)において治療及び/又は予防効果を確認すればよい。

【0047】NF-κB活性化は、既知のゲルシフトアッセイ法(Sakuraiら、Journal of Neurochemistry 第59巻、第2067~2075頁、1992年; Sakuraiら、Biochimic a Biophysica Acta、第1316巻、第132~138頁、1996年)、レポーターアッセイ法(Tanakaら、Journal of V

eterinary Medical Science、第59巻、第575-579頁、19 97年; EP-652290-A; 特開平7-291859; 特開平9-227561)等により調べることができる。

【0048】自己免疫疾患又は炎症症状を呈する難治性 疾患の既知の病態モデル (in vitro又はin vivo) とし ては、ヒトT細胞株 (Jurkat細胞) を用いるPHA誘発 IL-2産生モデル (Wacholtzら、Cell Immunology、 第135巻、第285-298頁、1991年)、ヒトマクロファージ 系細胞RAW264.7を用いるLPS+IFN-γ誘 発iNOs産生モデル (Xieら、Science、第256巻、第2 25-228頁、1992年)及びヒトHeLa細胞を用いるTN $F-\alpha$ 誘発 IL-6 産生モデル等のin vitroモデル、ラ ットアジュバント関節炎モデル (Connorら、European J ournal of Pharmacology、第273巻、第15-24頁、1995 年)、トリニトロベンゼンスルホン酸誘発大腸炎モデル (Kissら、European Journal of Pharmacology、第336 巻、第219-224頁、1997年)及びラット馬杉腎炎モデル (Sakuraiら、Biochimica BiophysicaActa、第1316巻、 第132~138頁、1996年)等のin vivoモデルなどが挙げ られる。

【0049】以下、実施例をもって本発明をさらに詳しく説明するが、これらの実施例は本発明を制限するものではない。

【 0 0 5 0 】なお、下記実施例において、各操作は特に明示がない限り、「モレキュラークローニング(Molecu lar Cloning)」(Sambrook, J., Fritsch, E.F.及びMa niatis, T. 著、Cold Spring Harbor Laboratory Press より1989年に発刊)に記載の方法により行うか、または、市販の試薬やキットを用いる場合には市販品の指示 30 書に従って使用した。

[0051]

【実施例】実施例1 ヒトTAK1及びTAB1のc DNA単離

(1) ヒトTAK1のcDNA単離 ヒト子宮けい癌由来細胞株HeLa(ATCC CCL 2)からポリ(A)RNAを調製した。これを鋳型と し、オリゴdTブライマーを用いて一本鎖cDNAを調 製した。

【0052】前記で得られた一本鎖cDNAを鋳型とし、PCR (polymerase chain reaction) 法により、ヒトTAK1のcDNA断片を取得した。PCRに用いるプライマーは、マウスTAK1のcDNA配列 (Genbank/EMBL データベース Accession No. D76446; Yamagu chiら、Science、第270巻、第2008~2011頁、1995年)を参考にして設計し、DNA合成機で合成した。センスプライマーとしては、制限酵素切断のための認識部位を含む配列(10塩基)及びマウスTAK1cDNAの翻訳開始コドンとその下流の配列(20塩基)からなる30マーの合成プライマー(後記配列表の配列番号1)を50

用い、アンチセンスプライマーとしては、制限酵素切断のための認識部位を含む配列 (10塩基)及びマウス T A K 1 c D N A の終止コドンとその上流の相補配列 (20塩基)からなる 30マーの合成プライマー (後記配列表の配列番号 2)を用いた。

10

【0053】前記PCRで得られた産物(約1.7kbのcDNA断片の混合物)をプローブとし、ヒト肺cDNAライブラリー(Clontech社製)をスクリーニングすることにより、2種のヒトTAK1の全コーディング領域を含むcDNA(hTAK1a-cDNA及びhTAK1b-cDNA)を取得した。

【0054】また、前記と同様にして調製したHeLaのmRNAを鋳型とし、RT-PCR (Reverse transcript - polymerase chain reaction) 法により、別途、ヒトTAK1の全コーディング領域を含むcDNA(hTAK1c-cDNA)を得た。プライマーとしては、前記と同様の合成プライマーを用いた。

【0055】得られた3種のcDNAについて、ダイデオキシ法により、そのDNA配列を決定した。各cDNAA(hTAK1a-cDNA、hTAK1b-cDNA及びhTAK1c-cDNA)について、そのコーディング領域を含む領域のDNA配列およびそれらにコードされるヒトTAK1(hTAK1a、hTAK1b及びhTAK1c)のアミノ酸配列を、後記配列表の配列番号 3、配列番号 4、及び配列番号 5 に示した。

【0056】 h T A K 1 a、 h T A K 1 b 及び h T A K 1 c の c D N A 配列は、マウス T A K 1 の c D N A 配列 と比較すると、コーディング領域における相同性は、各々91.7%、87.6% 及び86.8% であった。 【0057】 h T A K 1 a は、579 アミノ酸残基から

【0057】 NIAKIAは、579アミノ酸残基からなる。マウスTAK1と比較すると4アミノ酸の置換が見られ、アミノ酸配列における相同性は99.3%であった。

【0058】hTAK1bは、606アミノ酸残基からなり、hTAK1aと比較するとC末端側にスプライシング変異によって生じたと思われる27アミノ酸の挿入が見られる。また、hTAK1cは、567アミノ酸残基からなり、hTAK1aと比較すると、hTAK1bと同様C末端に27アミノ酸の挿入があり、さらにその下流(C末端側)に39アミノ酸の欠失が見られた。

【0059】3種のヒトTAK1およびマウスTAK1のアミノ酸配列の比較を、図1に示した。

【0060】なお、特開平9-163990の配列番号 5 に記載されたヒトT細胞株Jurkat由来のTAK1は、 h TAK1aのアミノ酸配列と比較すると、1アミノ酸の置換(第372番目のArg \rightarrow His)が見られ、アレル変異体と考えられる。

【0061】(2) ヒトTAB1のcDNA単離 前項(1)と同様にしてHeLaから調製したポリ

(A) RNAを鋳型とし、RT-PCRによりヒトTA

B1のcDNAを得た。プライマーは、報告されている

頁、1992年; Sakuraiら、Biochim. Biophys. Acta、 第1316巻、第132~138頁、1996年) 記載の方法に準じ て、以下のようにゲルシフトアッセイを行った。すなわ

12

ち、トランスフェクションの後、細胞を培養し24時間 後に細胞から核抽出液を調製した。

ヒトTAB1のcDNA配列 (Genbank/EMBL データベース Accession No.U49928; Shibuyaら、Science、第27 2巻、第1179~1182頁、1996年)を参考にして設計し、DNA合成機で合成した。センスプライマーとしては、制限酵素切断のための認識部位を含む配列 (10塩基)及びTAB1cDNAの翻訳開始コドンとその下流の配列 (20塩基)からなる30マーの合成プライマー(後記配列表の配列番号6)を用い、アンチセンスプライマーとしては、制限酵素切断のための認識部位を含む配列(10塩基)及びTAB1cDNAの終止コドンとその上流の相補配列 (20塩基)からなる30マーの合成プライマー(後記配列表の配列番号7)を用いた。

【0062】得られたcDNA断片についてDNA配列を決定し、既知のヒトTAB1の全コーディング領域を含んでいることを確認した。

【0063】実施例2 TAK1の発現を増強させた細胞におけるNF-κB活性化の検出

(1) ヒトTAK1の発現を増強させた細胞の取得前記実施例1の(1)において取得した3種のヒトTAK1cDNAを用い、そのコーディング領域を含む部分断片(hTAK1a-cDNAのEcoRI-NheI断片、hTAK1b-cDNAのEcoRI-NheI断片及びhTAK1c-cDNAのEcoRI-Xbal断片)の各々を、真核細胞発現用ベクタープラスミドpcDNA3.1(+)(Invitrogen社製)のEcoRI-XbaI切断部位に組込んで、TAK1発現用組換えプラスミドを作製した。

【0064】また、前記実施例1の(2)にて取得したヒトTAB1 c D N A を用い、そのコーディング領域を含む部分断片(HindIII-EcoRI断片)を、発現用ベクタープラスミドp c D N A 3.1 (+)のHindIII-EcoRI切断部位に組込んで、TAB1発現用組換えプラスミドを作製した。

【0065】前記TAK1発現用組換えプラスミドを、TAB1発現用組換えプラスミドと共に、もしくは単独で、HeLa細胞にトランスフェクション(一過性トランスフェクション; transient transfection)した。この時、トランスフェクションは、トランスフェクション用カチオン性リポソーム(商品名: LipofectAMINE、Life Technologies社製)を用いて行った。

【0066】かくしてTAK1発現増強細胞もしくはTAK1-TAB1共発現増強細胞を得た。これら細胞の培養は、10%ウシ胎児血清、ベニシリン(100単位/m1)及びストレプトマイシン($100 \mu g/m1$)を添加した高グルコース含有ダルベッコーイーグル培地(Gibco社製)中にて行った。

【0067】(2) ゲルシフトアッセイ 前項(1) で得られたTAK1発現増強細胞およびTA K1-TAB1共発現増強細胞を用い、文献(Sakurai ら、Journal of Neurochemistry 第59巻、第2067~2075 50 【0068】この核抽出液($5\mu_g$)とRI標識した検出用プローブとを結合緩衝液(20mMHEPES (pH7.9), 0.3mM EDTA, 0.2mM EGTA, 80mM NaC1, 10% グリセロール, $2\mu_g/ml$ poly[dI-dC])中、室温で30分間結合反応させた後、反応液についてポリアクリルアミドゲル電気泳動を行った。ゲルを減圧乾燥させた後、オートラジオグラフィーにてプローブと結合したNF- κ Bを検出した。また、コントロールとしては、構成的に発現している転写因子であるOct-1 (Octamer-1) (Verrijzerら、Genes and Development、第4巻、第1964-1974頁、1990年)を検出した。

【0069】検出用プローブは、 32 Pで標識した二本鎖の合成DNAを用いた。NF $-\kappa$ B検出用プローブの配列としては、HIVのLTR(Long Terminal Repeat)に存在するNF $-\kappa$ B結合配列と同様のものを用いた。また、Oct-1検出用プローブの配列としては、コンセンサス配列ACCTAAATを含むオリゴヌクレオチドを用いた。

【0070】前記のようにして、ゲルシフトアッセイによりNF $-\kappa$ Bの核移行を指標としてNF $-\kappa$ B活性化を調べた結果、図2に示した通り、ヒトTAK1 (hTAK1a、hTAK1b又はhTAK1c)をTAB1とともに発現増強させた場合には、NF $-\kappa$ Bの核への移行が見られ、NF $-\kappa$ Bの活性化が認められた。このような結果は、ヒトTAK1として、hTAK1a、hTAK1b及びhTAK1cのいずれを用いた場合にも認められたが、特にhTAK1bにおいて、NF $-\kappa$ Bの活性化が顕著であった。

【0071】一方、ヒトTAK1のみを発現増強させた 細胞においては、 $NF-\kappa$ Bの活性化が認められなかった。また、コントロール蛋白質として検出したOct-1は、TAK1及び/又はTAB1の発現増強には影響を受けず、恒常的に発現が見られた。

【0072】このように、ヒトTAK1の作用の増強に伴って、 $NF-\kappa$ Bの活性化が観察されたことから、TAK1は、 $NF-\kappa$ Bの活性化に至るまでのシグナル伝達経路において、伝達分子として主要な働きをしていることがわかった。

【0073】(3)レポーターアッセイ(ルシフェラーゼアッセイ)

田中らの文献 (Tanakaら、Journal of Veterinary Medical Science、第59巻、第575-579頁、1997年) 記載の方法に準じ、以下のようにしてレポーターアッセイ (ルシフェラーゼアッセイ) を行った。

【0074】まず、NF- κ B 結合配列 (GGGGACTTTC

C)を4個連結したオリゴヌクレオチドを ホタルルシフェラーゼ遺伝子 (Luc) の上流に組み込んで、レポータープラスミド (p(kB)4-Luc) を作製した。

【0075】次に、前項(1)記載の方法に準じ、TAK1発現用組換えプラスミドを、必要に応じてTAB1発現用組換えプラスミドと共に、HeLa細胞にトランスフェクション(一過性トランスフェクション; transient transfection)した。但、トランスフェクションに際しては、前記で得られたレポータープラスミド (p(kB)4-Luc)を共に用いた。

【0076】かくしてレポータープラスミド及びTAK 1発現用組換えプラスミド(及びTAB1発現用組換えプラスミド)を含むトランスフェクタントを得た。得られたトランスフェクタントを48時間培養した後、細胞を溶解して調製した抽出液について、ルシフェラーゼ活性を測定した。ルシフェラーゼ活性は、ルシフェラーゼアッセイキット、ピッカジーン(商品名、東洋インキ社製)及び化学発光測定装置(MicroLumant LB96P、ベルトールドジャバン株式会社製)を用いて測定した。

【0077】その結果、図3に示した通り、ヒトTAK 1(h Т A K 1 a、h T A K 1 b 又はh T A K 1 c)の みを発現増強させた細胞においては、ベクターのみを含む細胞と比較してルシフェラーゼ活性の増加(すなわち、N F - κ B の活性化)はほとんど認められなかった。しかし、ヒトTAK 1 をTAB 1 とともに発現増強させた細胞では、ベクターのみを含む細胞と比較して、ルシフェラーゼ活性の顕著な増加(すなわち、N F - κ B の活性化)が認められた。

【0078】このように、前記のゲルシフトアッセイ法と同様、レポーターアッセイ法(ルシフェラーゼアッセ 30 イ法)によっても、ヒトTAK1の作用の増強に伴って、NF $-\kappa$ Bの活性化が観察され、TAK1が伝達分子として主要な働きをしていることが確認された。

【0079】また、このようにTAK1発現増強細胞とコントロール細胞を用いるレポーターアッセイの系により、被験薬物のTAK1に対する作用と $NF-\kappa$ B活性化に対する作用を同時に検定することができると考えられる。

【0080】実施例3 ツーハイブリッドシステムを利用したTAK1とTAB1との結合検出系前記実施例1の(1)で得たヒトTAK1cDNAの翻訳領域を切り出し、これを、転写因子GAL4のDNA結合領域(GAL4の1から147番目のアミノ酸残基)をコードするDNAを含む発現ベクターpGBT9(Clontech社製、酵母two-hybridシステム用ベクター)のマルチクローニング部位に挿入する。これにより、GAL4のDNA結合領域とヒトTAK1との融合タンパク質を発現するためのプラスミドpGBT9-TAK1を得る。

【0081】前記実施例1の(2)で得たヒトTABc DNAの翻訳領域を切り出し、これを、GAL4の転写活性 50 化領域(GAL4の768から881番目のアミノ酸残基)をコードするDNAを含む発現ベクターpGAD424 (Clont ech社製、酵母two-hybridシステム用ベクター)のマルチクローニング部位に挿入する。これにより、GAL4の転写活性化部位とTAB1との融合蛋白質を発現するためのプラスミドpGAD424-TAB1を得る。

14

【0082】前記で得られる融合蛋白質発現プラスミド pGBT9-TAK1及びpGAD424-TAB1を宿主酵母細胞株SFY526

(Clontech社製)に導入する。細胞株SFY526は、GAL1と lacZの融合遺伝子が染色体に組込まれており、GAL4遺伝子の欠損変異を有している細胞株である(Bartelら、Bi o Techniques、第14巻、第920-924頁、1993年)。形質転換は、それぞれのプラスミドの選択マーカーであるトリプトファン及びロイシンを欠乏させた合成培地にて培養することにより選別を行って、両プラスミドが導入された形質転換株を得る。

【0083】前記で得られる酵母形質転換株を、液体培地で培養する。培養の際、培地中には、被験物質を添加(もしくは無添加)する。 $4\sim5$ 時間培養後、酵母菌体を遠心分離により回収し、 β -ガラクトシダーゼ活性を指標として、TAK1とTAB1の結合(相互作用)を検出する。

【0084】被験物質の添加によって、濃度依存的にβ-ガラクトシダーゼ活性の減少が認められた場合には、その被験物質には、TAK1とTAB1の結合を阻害する作用を有すると考えられる。

【0085】実施例4 TAK1のMAPKKK活性の 検出系

ヒトTAK1(又はN末端(22アミノ酸)が欠失したヒトTAK1)を、以下のようにして昆虫細胞の系で発現させ精製する。すなわち、前記実施例1の(1)で得たヒトTAK1cDNAの翻訳領域を用い、タグペプチド(6×His又はグルタチオンーS-トランスフェラーゼ)を付加するために設計した適切なDNA配列を含むバキュロウイルス発現ベクターpAcHLT又はpAcGHLT(ファーミンジェン社製)のマルチクローニング部位に挿入し、ヒトTAK1発現プラスミドを得る。得られたプラスミドを宿主昆虫細胞SF21に導入し得られた形質転換細胞を培養して、タグペプチドが付加されたヒトTAK1(又はN末端欠失ヒトTAK1)を発現させ、細胞抽出液から、付加したタグペプチドを利用するアフィニティークロマトグラフィーにより精製する。

【0086】また、前記と同様にして、ヒトTAB1を 昆虫細胞の系で発現させ精製する。

【0087】また、ヒトMKK3及びヒトMKK6を、以下のようにして発現させ精製する。まず、モリグチ (Moriguchi) らの方法 (Journal of Biological Chemistry、第271巻、第13675~13679頁、1996年)に準じ、ヒトMKK3に関する配列情報 (Genbank/EMBL データ

ベース Accession No.L36719; Derijardら、Science、 第267巻、第682~685頁、1995年)及びヒトMKK6に 関する配列情報 (Genbank/EMBL データベース Accessio n No.U39656およびU39657; Raingeaudら、Molecularand Cellular Biology、第16巻、第1247~1255頁、1996 年)をもとにプライマーを設計し、これらを用いるPC R法により、ヒトMKK3及びヒトMKK6の全翻訳領 域を含む c D N A、又は T A K 1 によってリン酸化され るアミノ酸残基近傍の配列を含む c D N A を取得する。 これらcDNAを用い、タグペプチド(6×His又は グルタチオン-S-トランスフェラーゼ)を付加するた めに設計した適切なDNA配列を含む大腸菌発現ベクタ -pQE-30 (QIAGEN社製) 又はpGEX-2 T (ファルマシア社製) のマルチクローニング部位に挿 入して、ヒトMKK3発現プラスミド及びヒトMKK6 発現プラスミドを得る。得られるプラスミドを宿主大腸 菌(JM109株など)に導入し得られた形質転換細胞 を培養して、タグペプチドが付加されたヒトMKK3及 びヒトMKK6を各々発現させ、細胞抽出液から、付加

【0088】前記で得られるヒトTAK1(又はN末端欠失ヒトTAK1)を必要に応じてヒトTAB1と組み合わせて酵素(MAPKKK)として用い、ヒトMKK3もしくはヒトMKK6を基質として用いて、被験物質の存在下又は非存在下で酵素反応を行う。基質蛋白質は予めプレート上に固相化して用い、反応は32 P又は33 P標識ATP100μMを含むトリス緩衝液(20mM Tris-HC1,pH7.5,2mM EGTA,10mM MgC12)中30℃にて行う。酵素反応後、プレートを洗浄した後シンチレーションカウンターにて32 P又は33 P標識ATPの取込みを測定してすることにより、酵素活性を測定し、被験物質による阻害の有無を判定する。

したタグペプチドを利用するアフィニティークロマトグ

ラフィーにより精製する。

【0089】実施例5 変異型TAK1を発現させた細胞における $NF-\kappa$ B活性化の抑制

以下のようにして、キナーゼ活性を欠く変異型TAK1(または野生型TAK1)を発現増強させた細胞を用い、 $NF-\kappa$ B活性化の有無を検出した。

【0090】(1) TAK1及びTAB1の発現ベクタ 一構築とトランスフェクション

ベクタープラスミド p F L A G - C M V 2 は、フラッグ 抗原のタグを付加した蛋白質を哺乳動物細胞中で発現させるためのベクターである。ヒト T A K 1 (ヒト T A K 1 a) の全長 c D N A を、p F L A G - C M V 2 (K o d a k 社製)の E c o R I - X b a I 制限酵素切断部位に組み込むことにより、フラッグ付加された野生型 T A K 1 (F l a g - T A K 1) の発現ベクターを得た。

【0091】また、変異導入用キット (QuickChange si te-directed mutagenesis kit; Stratagene社製) を用い、前記Flag-TAK1発現ベクターのTAK1翻 50

訳領域に変異導入して各種変異発現ベクターを取得し、塩基配列を決定した。かくしてフラッグ付加された変異型TAK1(Flag-TAK1K63W)の発現ベクターを得た。この発現ベクターにより発現される変異型

ターを得た。この発現ペクターにより発現される変異型 TAK1は、野生型TAK1の63番目のリジン残基が トリプトファン残基に置換されており、TAK1のキナ ーゼ活性を失っていた。

【0092】前記のフラッグ付加された野生型又は変異型TAK1(Flag-TAK1又はFlag-TAK1K63W)の発現ベクターを、単独あるいはTAB1発現ベクターとともにHeLa細胞にトランスフェクションし、一過性に発現させた。また、コントロールとして、TAK1発現ベクターにかえてベクターのみを用いた。トランスフェクションは、リポフェクトアミン試薬(Life Technologies社製)を用いて行い、TAB1の発現ベクターは前記実施例2(1)と同じものを用いた。

【0093】(2)ゲルシフトアッセイ

前記(1)で得た、フラッグ付加された変異型TAK1 (又は野生型TAK1)をTAB1とともに発現増強させた細胞を用い、実施例2(2)と同様にして、ゲルシフトアッセイを行った。

【0094】その結果、図4の(A)に示した通り、ベクターのみ導入した細胞と比較して、野生型TAK1(F1ag-TAK1)をTAB1とともに発現増強させた細胞において、NF $-\kappa$ Bの核移行が増強され、NF $-\kappa$ B活性化が認められた。しかし、キナーゼ活性を欠く変異型TAK1(F1ag-TAK1K63W)の場合は、TAB1とともに発現させてもNF $-\kappa$ Bの核移行は増強されなかった。

【0095】(3) レポーターアッセイ (ルシフェラーゼアッセイ)

前記(1)で得た、変異型TAK1(F1ag-TAK1 (F1ag-TAK1 (F1ag-TAK1 (F1ag-TAK1 (F1ag-TAK1) の発現ベクターをHeLa 細胞にトランスフェクションに用いる F1ag-TAK1 (F1ag-TAK1) のののは、F1ag-TAK1 (F1ag-TAK1) のののは、F1ag-TAK1 (F1ag-TAK1) のののは、F1ag-TAK1 (F1ag-TAK1) ののは、F1ag-TAK1 (F1ag-TAK1) ののは、F1ag-TAK1 (F1ag-TAK1) ののは、F1ag-TAK1 (F1ag-TAK1) のののは、F1ag-TAK1 (F1ag-TAK1) のののは、F1ag-TAK1 (F1ag-TAK1) のののは、F1ag-TAK1 (F1ag-TAK1) のののでは、F1ag-TAK1 (F1ag-TAK1) のののでは、F1ag-TAK1 (F1ag-TAK1) のの発現べりターの発現では、F1ag-TAK1 (F1ag-TAK1) のの発現べりターの発現では、F1ag-TAK1 (F1ag-TAK1) のの発現でりませ、F1ag-TAK1 (F1ag-TAK1) のの発現でしませ、F1ag-TAK1 (F1ag-TAK1) のの発現でしませ、F1ag-TAK1 (F1ag-TAK1) のの発現でもようには、F1ag-TAK1 (F1ag-TAK1) のの発現でしませ、F1ag-TAK1 (F1ag-TAK1) のののののでは、F1ag-TAK1 (F1ag-TAK1) ののののでは、F1ag-TAK1 (F1ag-TAK1) ののののでは、F1ag-TAK1 (F1ag-TAK1) のののでは、F1ag-TAK1 (F1ag-TAK1) ののでは、F1ag-TAK1 (F1ag-TAK1) ののでは、F1ag-

0 【0096】また、トランスフェクションの際には、実施例2の(3) で得たレポータープラスミド ($NF-\kappa$ B結合配列とホタルルシフェラーゼ遺伝子を含むp(kB) 4-Luc) を同時に加えてトランスフェクションした。

【0097】トランスフェクションの24時間後、培地中に $TNF-\alpha$ を最終濃度20ng/m1となるよう添加した(コントロールは $TNF-\alpha$ 無添加とした)。さらに、5時間培養後、実施例2の(3)と同様にして、細胞を溶解し、ルシフェラーゼ活性を測定した。

【0098】その結果を、図4(B)に示した(図中T

【0099】この結果から、キナーゼ活性を欠く変異型 TAK1は、細胞内で発現させることにより、 $NF-\kappa$ Bの活性化を抑制することがわかった。

【0100】このことは、前記(2)の結果と同様、NF- κ B活性化経路においてTAK1が主要な働きをする分子であることを裏付けるとともに、TAK1のキナーゼ活性やTAK1の活性化を阻害する薬物が、NF- κ Bの活性化を抑制することを強く裏付けるものである。

【0101】実施例6 細胞内におけるTAK1とTA B1の相互作用

以下のようにして、TAK1をTAB1とともに発現増強させた細胞を用い、免疫沈降法により細胞内における TAK1とTAB1の相互作用(結合)を検出した。

【0102】(1)細胞のトランスフェクション まず、実施例5と同様にして、フラッグ付加された野生型TAK1(Flag-TAK1)又は変異型TAK1 (Flag-TAK1K63W)の発現ベクターを、単独もしくはTAB1発現ベクターとともに、HeLa細胞にトランスフェクションした。

【0103】(2)免疫沈降および免疫プロッティングトランスフェクションの24時間後、細胞を回収し、以下のようにして細胞溶解液(celi lysate)を調製した。すなわち、細胞を、細胞溶解緩衝液(25mM HEPES(pH7.7)、0.3M NaCl、1.5mM MgCl2、0.2mM EDTA、0.1% Triton X-100、 $20mM\beta$ —glycerophosphate、0.1mM sodium orthovanadate、0.5mM PMSF、1mM DTT、 10μ g/ml aprotinin、 10μ g/ml leupeptine)を用いて溶解した後、3倍に希釈し、10分間氷冷した。遠心後、上清を分取し、これを細胞溶解液として以下の操作に用いた。

【0104】前記で得た細胞溶解液を、抗フラッグ抗体 (M5、コダック社製)とともに1.5時間氷冷インキュベートし、さらにプロテインGセファロース (Pharmaci 40 a社製)を添加し、4℃、1.5時間緩やかに混合して、免疫複合体をプロテインGセファロースピーズに吸着させた。このビーズを遠心により回収した後、洗浄用緩衝液 (20mM HEPES(pH7.7)、50mM NaCl、2.5mM MgC 12、0.1mM EDTA、0.05% Triton X-100)で5回洗浄し、これを免疫沈降画分として以下の操作に用いた。【0105】前記ビーズ (免疫沈降画分)をSDSーポリアクリルアミドゲル電気泳動に供した後、PVDF (polyvinylidene difluoride) 膜に転写し、免疫プロッティングを行って、免疫沈降画分中に存在するTAB 50

1及びTAK1を検出した。TAK1及びTAB1を検出するための抗体としては、抗TAK1抗体(M-17) (Santa Cruz Biothechnology社製)及び抗一TAB1抗体(N-19) (Santa Cruz Biothechnology社製)を各々用いた。

【0106】抗フラッグ免疫沈降画分の免疫ブロッティングの結果を図5に示した。上段は、抗TAB1抗体での検出結果、また下段は抗TAK1抗体での検出結果である。

【0107】図5に示した通り、野生型TAK1 (F1 ag-TAK1)を発現増強させた細胞の抗フラッグ免疫沈降画分中に、TAB1が共存していた。また、野生型にかえて変異型TAK1 (Flag-TAK1K63 W)を発現増強させた細胞においても同様に、免疫沈降画分中にTAB1が共存していた。

【0108】このように、TAB1はTAK1 (野生型及び変異型)と共免疫沈降されたことから、TAK1とTAB1は細胞内で相互作用していることがわかる。

【0109】また、野生型TAK1とTAB1は、共発 現させた場合に両者ともSDSーポリアクリルアミドゲ ル電気泳動での移動度がやや減少する傾向が見られた が、キナーゼ活性を有しない変異型TAK1の場合には このような移動度の減少は見られなかった。このような 移動度の減少は、両蛋白質が、機能的な相互作用により リン酸化を受けたことを反映していると考えられた。

【0110】(3)被験物質の作用の検定

前記(1)と同様にして、TAK1をTAB1とともに 発現増強させた細胞を得、これを被験物質の存在下又は 非存在下に培養する。培養後の細胞について、前記

(2) と同様にして免疫沈降法によりTAK1とTAB1の相互作用(結合)を検出する。被験物質の存在によって、TAK1とTAB1の共免疫沈降が減少するかどうかを判定することにより、その被験物質のTAK1とTAB1の相互作用(結合)に対する被験物質の作用を検定する。

【0111】実施例7 TAK1による自己リン酸化と TAB1リン酸化

以下のようにして、TAK1をTAB1とともに発現増強させた細胞から免疫沈降させたTAK1について、キナーゼアッセイを実施し、TAK1による自己リン酸化とTAB1のリン酸化を検出した。

【0112】 (1) 細胞のトランスフェクション及び免疫沈降

まず、実施例 5 と同様にして、フラッグ付加された野生型 TAK1 (Flag-TAK1) 又は変異型 TAK1 (Flag-TAK1K63W) の発現ベクターを、単独もしくは TAB1 発現ベクターとともに、HeLa細胞にトランスフェクションした。トランスフェクション 2 4時間後の細胞から、実施例 6 と同様にして細胞溶解液を調製し、抗フラッグ抗体による免疫沈降を行った。

【0113】(2)キナーゼアッセイ 前記で得た抗フラッグ免疫沈降画分を用い、以下のよう

前記で得た抗ファック免疫次降囲分を用い、以下のよっ にして、インビトロのキナーゼ反応を行った。

【0114】すなわち、免疫沈降画分を、 $30\mu1$ のキナーゼ緩衝液(20mM HEPES(pH7.6)、20mM MgCl2、2mM D TT、 20μ MATP、20mM β —glycerophosphate、20mM diso dium p-nitrophenylphosphate、0.1mM sodium orthovan adate、 3μ Ci[γ -32P]ATP)に加え、30°C、30分間 インキュベートした。反応終了後、反応液をSDSーポリアクリルアミドゲル電気泳動に供し、泳動後のゲルについてオートラジオグラフィーを実施した。

【0115】その結果、図6に示した通り、野生型TAK1(Flag-TAK1)とTAB1の両者を発現増強させた細胞の抗フラッグ免疫沈降画分では、TAK1のリン酸化(自己リン酸化)及びTAB1のリン酸化が認められた。しかし、野生型TAK1のみを発現増強させた細胞の免疫沈降画分では、TAK1及びTAB1のいずれのリン酸化も認められなかった。また、キナーゼ活性を欠く変異型TAK1については、TAB1と共に発現増強させた場合でもリン酸化は認められなかった。

【0116】これらのことから、TAK1はTAB1と 共存することにより活性化されて、TAK1の自己リン 酸化及びTAK1によるTAB1のリン酸化が起こると 考えられた。

【 0 1 1 7 】 実施例 8 細胞内における TAK 1 と I K K との相互作用

以下のようにして、TAK1をIKKとともに発現増強 させた細胞を用い、免疫沈降法により細胞内におけるT AK1とIKKとの相互作用(結合)を検出した。

【0118】(1) 細胞のトランスフェクションまず、ヒトIKKaおよびヒトIKKBの各cDNAを、ベクタープラスミドpcDNA3.1 (+) HisB(Invitrogen社製)に組込むことによりIKKの発現ベクターを取得した。ヒトIKKa(Genban k/EMBL accessionNo.AF012890; Cell、第90巻、第373-383頁、1997年)、およびヒトIKKa(Genbank/EMBL accession No.AF029684; Science、第278巻、第866-869頁、1997年)のcDNAは、ヒト単球由来細胞株(THP-1)のmRNAから逆転写PCR(Reverse tran scriptase-polymerase chain reaction)により取得したものを用いた。

【0119】これらIKK発現ベクター($IKK\alpha$ 発現ベクター及び $IKK\beta$ 発現ベクター)により、Xpressタグポリペプチドが付加された $IKK(Xpress-IKK\beta)$ を発現させることができる。

【0120】次に、実施例5と同様にして、フラッグ付加した野生型TAK1 (Flag-TAK1) の発現ベクターを、単独又はTAB1発現ベクターとともにHe La細胞にトランスフェクションした。この際、前記で 50 得た $IKK(Xpress-IKK\alpha$ または $Xpress-IKK\beta$) の発現ベクターも同時に添加(又は非添加) してトランスフェクションした。

【0121】(2)免疫沈降及び免疫ブロッティングトランスフェクションの24時間後の細胞から、実施例6と同様にして、細胞溶解液を調製、抗フラッグ抗体による免疫沈降を行った。免疫沈降画分及び細胞溶解液についてSDSーポリアクリルアミド電気泳動を行った後、免疫ブロッティングを行って、IKK及びTAK1を検出した。

【0122】 I KK ($Xpress-IKK\alpha及び\beta$) 及びTAK1を検出するための抗体としては、抗<math>Xpress抗体 (M-21) (Santa Cruz Biothechnology 社製)及び抗-TAK1抗体 (M-17) (Santa Cruz Biothechnology社製)を各々用いた。

【0123】抗フラッグ免疫沈降画分の免疫ブロッティングの結果を図7に示した。

【0124】上段は、抗フラッグ免疫沈降画分の抗Xpress抗体による検出結果、中段は、細胞溶解液の抗Xpress抗体による検出結果、また下段は、抗フラッグ免疫沈降画分の抗TAK1抗体による検出結果である。

【0125】図7に示した通り、TAK1(F1ag-TAK1)とIKK($Xpress-IKK\alpha$ 又は $Xpress-IKK\alpha$ 又は $Xpress-IKK\beta$)を発現増強させTAB1は発現増強させなかった細胞では、抗フラッグ免疫沈降画分中に IKKが検出された。このようにIKK($IKK\alpha$ 及び β)がTAK1と共免疫沈降されたことから、TAK1とIKK($IKK\alpha$ 及び β)は細胞内で相互作用していることがわかった。

【0126】しかし、TAK1、IKKとともにTAB1も発現増強させた細胞では、抗フラッグ免疫沈降画分中にIKKは検出されなかった。このことから、TAK1は、活性化されていない状態では細胞内でIKKと安定な結合を生じるが、TAB1により活性化された状態では、細胞内でのIKKとの結合との安定な結合が見られないと考えられた。

【0127】また、細胞溶解液の免疫抽出液の免疫プロッティングの結果、TAK1及びIKKとともにTAB1も発現増強させた細胞においては、IKK(IKK α 及び β)のSDS-ポリアクリルアミドゲル電気泳動での移動度がやや減少する傾向が認められた。一方、このような傾向は、TAB1を発現増強させなかった細胞においては見られなかった。

【0128】これらのことから、TAB1で活性化されたTAK1の存在によって、IKKの両サブユニット($IKK\alpha$ 及び β)は細胞内でリン酸化を受けるものと考えられた。すなわち、TAK1は、NIK(Regnier et al.,1997; Woronicz et al., 1997)と同様に、IKK(又はIKK複合体と機能的に相互作用する分子)を

リン酸化して、IKKのキナーゼ活性を促進することにより、 $NF - \kappa$ B活性化を誘導すると考えられる。

【0129】実施例9 TAK1によるIKK複合体の 活件化

以下のようにして、TAK1をTAB1とともに発現増強させた細胞から免疫沈降させたIKK複合体について、 $I\kappa$ Bを基質とするキナーゼ反応(IKKキナーゼアッセイ)を実施し、IKK複合体の活性化を検出した。

【 0 1 3 0 】 (1) 細胞のトランスフェクション及び免 10 疫沈降

まず、実施例 5 と同様にして、フラッグ付加された野生型 TAK1 (Flag-TAK1) 又は変異型 TAK1 (Flag-TAK1K63W) の発現ベクターを、単独もしくは TAB1 発現ベクターとともに、HeLa 細胞にトランスフェクションした。

【0132】トランスフェクションの24時間後の細胞から、実施例6と同様にして、細胞溶解液を調製し、免疫沈降を行った。但、免疫沈降に用いる抗体は、内在性IKK複合体を免疫沈降させるためには抗IKK α 抗体(H-744)(Santa Cruz Biotechnology社製)を用い、また外来性IKKの免疫沈降のためには抗Xpress抗体(M-21)(Santa Cruz Biotechnology社製)を用いた。用いた抗IKK α 抗体は、IKK α と同様IKK β も認識する。

【0133】(2) IKKキナーゼアッセイ 前記で得られた免疫沈降画分について、実施例 7 と同様 にして、インビトロのキナーゼ反応を行った。但、基質 として、組換え $I\kappa$ B (2.5μ g) を反応系に添加した。反応終了後、反応液をSDS-ポリアクリルアミド ゲル電気泳動に供し、泳動後のゲルについてオートラジ オグラフィーを実施した。

【0134】反応基質とする組換え $I \kappa$ Bとしては、G ST (グルタチオン-S-トランスフェラーゼ) の C 末端にヒト $I \kappa$ B α の第 1 から 54 番目までのアミノ酸残 40 基からなる部分ポリペプチドを連結した融合ペプチド (以下、 $GST-I \kappa$ B α 1-54) を用いた。

【0135】組換え $I \kappa$ Bは、大腸菌宿主に G S T-I κ B α 1-54の発現ベクターを導入した形質転換株の培養物から調製した。 G S T-I κ B α 1-54の発現ベクターは、ヒト I κ B α (Genbank/EMBL accession No. M69043; Cell、第65巻、第1281-1289頁、1991年)の c D N A のうち第 1 から 5 4 番目までのアミノ酸残基をコードする c D N A 部分を、ベクタープラスミド p G E X p C Pharmacia 社製)の B p m H p p q C D N M 部位

に挿入して作製した。

【0136】IKKキナーゼアッセイの結果を図8に示した。(A)は、内在性IKK複合体(抗IKKα抗体による免疫沈降画分)のキナーゼアッセイの結果であり、(B)は、外来性IKK(抗Xpress抗体による免疫沈降画分)のキナーゼアッセイの結果である。 【0137】図8(A)に示した通り、フラッグ付加した野生型TAK1(Flag-TAK1)およびTAB1を共に発現増強させた場合、内在性IKK複合体のIKKキナーゼ活性は顕著に増加した。一方、キナーゼ活性を欠く変異型TAK1(Flag-TAK1K63W)はIKK活性を促進しなかった。

22

【0139】これらの結果は、TAB1により活性化されたTAK1は、 $IKK\alpha$ 及び $IKK\beta$ を活性化することにより $NF-\kappa$ Bを活性化することを裏付ける。

【0140】(3)被験物質の作用の検定

前記と同様の系を用い、TAK1によるIKK複合体活性化に対する被験物質の作用を検定することができる。すなわち、TAK1をTAB1とともに発現増強した細胞を得、これを被験物質の存在下又は非存在下に培養する。培養後の細胞について、前記と同様にしてIKK複合体画分を免疫沈降させ、免疫沈降画分のIKKキナーゼ活性を測定して、被験物質の存在によりIKKキナーゼ活性が減少するかどうかを判定する。

[0141]

【発明の効果】本発明の方法は、新しい伝達分子に焦点をあてた $NF-\kappa$ B活性化抑制薬の同定方法およびスクリーニング方法となる。本発明によれば、TAK1に作用点を有する、新しいタイプの $NF-\kappa$ B活性化抑制薬を得ることができる。また、本発明の方法は、自己免疫疾患、炎症症状を呈する難治性疾患などの疾患の治療薬及び/又は予防薬の同定方法及びスクリーニング方法としても有用である。

【0142】本発明の方法により選択された薬物、あるいは同定された薬物は、作用点が明らかとなっているので、医薬品としての開発に有利である。

【0143】また、TAK1の機能を阻害又は抑制する作用を有する薬物は、新しいタイプのNF-κB活性化抑制薬となるほか、自己免疫疾患(慢性関節リウマチ、全身性エリテマトーデス、全身性強皮症、ベーチェット病、結節性動脈周囲炎、潰瘍性大腸炎、糸球体腎炎など)、炎症症状を呈する難治性疾患(変形性関節症、アテローム硬化症、乾癬、アトビー性皮膚炎など)、各種ウイルス性疾患、エンドトキシンショック、敗血症など

の疾患の治療薬及び/又は予防薬となる。

[0144]

【配列表】配列番号:1

配列の長さ:30 配列の型:核酸 鎖の数:一本鎖

トポロジー:直鎖状 配列の種類:他の核酸(合成プライマー)

配列

GGCCAGATCT ATGTCGACAG CCTCCGCCGC

【0145】配列番号:2

配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状

配列の種類:他の核酸(合成プライマー)

配列

GCGCAGATCT TCATGAAGTG CCTTGTCGTT

[0146]

配列番号:3

配列の長さ:2785 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状

トホロシー: 直頭状 配列の種類: cDNA to mRNA 配列

配列	
GGACACGGCT GTGGCCGCTG CCTCTACCCC CGCCACGGAT CGCCGGGTAG T.	AGGACTGCG 60
CGGCTCCAGG CTGAGGGTCG GTCCGGAGGC GGGTGGGCGC GGGTCTCACC C	GGATTGTCC 120
GGGTGGCACC GTTCCCGGCC CCACCGGGCG CCGCGAGGGA TC	162
ATG TCT ACA GCC TCT GCC GCC TCC TCC TCC TCC TCG TCT TCG	GCC 207
Met Ser Thr Ala Ser Ala Ala Ser Ser Ser Ser Ser Ser Ser	Ala
1 5 10	15
GGT GAG ATG ATC GAA GCC CCT TCC CAG GTC CTC AAC TTT GAA	GAG 252
Gly Glu Met Ile Glu Ala Pro Ser Gln Val Leu Asn Phe Glu	Glu
20 . 25	30
ATC GAC TAC AAG GAG ATC GAG GTG GAA GAG GTT GTT GGA AGA	GGA 297
Ile Asp Tyr Lys Glu Ile Glu Val Glu Glu Val Val Gly Arg	Gly
35 40	45
GCC TTT GGA GTT GTT TGC AAA GCT AAG TGG AGA GCA AAA GAT	
Ala Phe Gly Val Val Cys Lys Ala Lys Trp Arg Ala Lys Asp	Val
50 55	60
GCT ATT AAA CAA ATA GAA AGT GAA TCT GAG AGG AAA GCG TTT	ATT 387
Ala Ile Lys Gln Ile Glu Ser Glu Ser Glu Arg Lys Ala Phe	Ile
65 70	75
GTA GAG CTT CGG CAG TTA TCC CGT GTG AAC CAT CCT AAT ATT	
Val Glu Leu Arg Gln Leu Ser Arg Val Asn His Pro Asn Ile	Val
80 85	90
AAG CTT TAT GGA GCC TGC TTG AAT CCA GTG TGT CTT GTG ATG	
Lys Leu Tyr Gly Ala Cys Leu Asn Pro Val Cys Leu Val Met	Glu
	105
TAT GCT GAA GGG GGC TCT TTA TAT AAT GTG CTG CAT GGT GCT	GAA 522
Tyr Ala Clu Gly Gly Ser Leu Tyr Asn Val Leu His Gly Ala	Glu
	120
CCA TTG CCA TAT TAT ACT GCT GCC CAC GCA ATG AGT TGG TGT	TTA 567
Pro Leu Pro Tyr Tyr Thr Ala Ala His Ala Met Ser Trp Cys I	Leu
125 130	135

CAG TGT TCC CAA GGA GTG GCT TAT CTT CAC AGC ATG CAA CCC AAA

Gln Cys Ser Gln Gly Val Ala Tyr Leu His Ser Met Gln Pro Lys

								-	-							1 1 1 1 1 1
	2	5													26	
				140					145					150		
GCG	CTA	ATT	CAC		GAC	CTG	AAA	CCA		AAC	TTA	CTG	CTG			657
						Leu			_							
				155	•		•		160					165		
GCA	GGG	GGG	ACA	GTT	CTA	AAA	ATT	TGT	GAT	TTT	GGT	ACA	GCC	TGT		702
Ala	Gly	Gly	Thr	Val	Leu	Lys	He	Cys	Asp	Phe	Gly	Thr	Ala	Cys		
				170					175					180		
GAC	ATT	CAG	ACA	CAC	ATG	ACC	AAT	AAC	AAG	GGG	AGT	GCT	GCT	TGG		747
Asp	Ile	Gln	Thr	His	Met	Thr	Asn	Asn	Lys	Gly	Ser	Ala	Ala	Trp		
				185			٠		190					195		
						GAA										792
Met	Ala	Pro	Glu		Phe	Glu	Gly	Ser		Tyr	Ser	Glu	Lys	-		
	ото	TTO	100	200	сст	4 TT	4 Tra	отт	205	C1.1	0.00	4.774	100	210		007
						ATT										837
ASP	vai	rne	Ser	215	GIY	He	116	Leu	220	GIU	vai	He	1111	225		
ccc	ΔΔΔ	ccc	ттт		GAG	ATT	ССТ	GGC		CCT	TTC	CGA	ATC			882
						Ile										002
	_, _			230			3	3	235					240		
TGG	GCT	GTT	CAT	AAT	GGT	ACT	CGA	CCA	CCA	CTG	ATA	AAA	AAT	TTA		927
Trp	Ala	Val	His	Asn	Gly	Thr	Arg	Pro	Pro	Leu	Ile	Lys	Asn	Leu		
				245					250					255		
						CTG										972
Pro	Lys	Pro	Ile	Glu	Ser	Leu	Met	Thr	Arg	Cys	Trp	Ser	Lys	Asp		
				260					265					270		
						ATG										1017
Pro	5er	GIn	Arg		Ser	Met	Glu	Glu		Val	Lys	He	Met			
ር <mark>ል</mark> ር	TTC	ATC	ccc	275	ттт	CCA	CCA	CCA	280 CAT	CAC	CCA	ТТА	CAG	285 TAT		1062
						Pro										1002
0	Dou	Moc	8	290	1110	1.0	019		295	o.u		Dea	••••	300		
ССТ	TGT	CAG	TAT		GAT	GAA	GGA	CAG		AAC	TCT	GCC	ACC			1107
Pro	Cys	Gln	Tyr	Ser	Asp	Glu	Gly	Gln	Ser	Asn	Ser	Ala	Thr	Ser		
				305					310					315		
ACA	GGC	TCA	TTC	ATG	GAC	ATT	GCT	TCT	ACA	AAT	ACG	AGT	AAC	AAA		1152
Thr	Gly	Ser	Phe	Met	Asp	Ile	Ala	Ser	Thr	Asn	Thr	Ser	Asn	Lys		
				320					325					330		
						CAA										1197
Ser	Asp	Thr	Asn		Glu	Gln	Val	Pro		Thr	Asn	Asp	Thr			
	000	TTA		335		тто	тто		340	010	004			345		1040
						TTG										1242
LyS	Arg	Leu	GIU	350	Lys	Leu	Leu	Lys	355	GIN	міа	Lys	GIII	360		
AGT	GAA	тст	GGA		ТТА	AGC	TTG	GGA		TCC	CGT	GGG	AGC			1287
_		_				Ser										
			3	365				5	370			5		375		
GTG	GAG	AGC	TTG		CCA	ACC	TCT	GAG		AAG	AGG	ATG	AGT			1332
Val	Glu	Ser	Leu	Pro	Pro	Thr	Ser	Glu	Gly	Lys	Arg	Met	Ser	Ala		
				380					385			•		390		
GAC	ATG	TCT	GAA	ATA	GAA	GCT	AGG	ATC	GCC	GCA	ACC	ACA	GGC	AAC		1377

		_													
Asp	Met	Ser	Glu		Glu	Ala	Arg	Ile		Ala	Thr	Thr	Gly		
001	0.0	00.		395		maa	4 ma		400	a mo		0.00		405	
_	_	_						CAA							1422
Gly	Gln	Pro	Arg		Arg	Ser	He	Gln	•	Leu	Thr	Val	lhr	•	
101		ООТ	ООТ	410	0.00		LOT		415	TOO	, OT	000	LOT	420 ozo	1 407
								AGG							1467
Inr	Glu	Pro	Gly		Val	Ser	5er	Arg		Ser	Ser	Pro	Ser		
101	ATC	A TPT	ACT	425	TCA	004	001	100	430	C4.4		CCA	ACT	435	1610
								ACC							1512
Arg	Met	11e	Inr		Ser	Gly	Pro	Thr		Glu	Lys	Pro	Inr	_	
ACT	CAT	CCA	TCC	440	сст	CAT	CAT	TCC	445	CAT	ACC	AAT	CCA	450	1557
								TCC							1557
Sei	1115	110	пр	455	FIO	кър	кър	Ser		кър	HIII	ASII	Gry		
CAT	AAC.	TCC	ATC		ATC	ССТ	ТАТ	CTT	460	CTC	CAT	CAC	CAA	465	1602
								Leu							1002
кър	NOII	Sei	116	470	met	ніа	ıyı	Leu	475	Leu	кэр	1115	GIII	480	
CAG	ССТ	СТА	CCA		ፐርር	CCA	۸۸۲	TCC		CAA	тст	ATC	CCA		1647
	_	_		_	_	_		Ser	_		_				1047
0111	110	LCu	nia	485	oy5	110	non	OCI	490	01u	JCI	MCC	mu	495	
ттт	GAA	CAG	CAT		AAA	ATG	GCA	CÀA		TAT	ATG	AAA	стт		1692
								Gln							1002
				500				• • • • •	505	- , .		, -		510	
ACA	GAA	ATT	GCA		ТТА	TTA	CAG	AGA		CAA	GAA	CTA	GTT		1737
								Arg							
				515				٥	520			•		525	
GAA	CTG	GAC	CAG	GAT	GAA	AAG	GAC	CAG	CAA	AAT	ACA	TCT	CGC	CTG	1782
Glu	Leu	Asp	Gln	Asp	Glu	Lys	Asp	Gln	Gln	Asn	Thr	Ser	Arg	Leu	
				530					535					540	
GTA	CAG	GAA	CAT	AAA	AAG	CTT	TTA	GAT	GAA	AAC	AAA	AGC	CTT	TCT	1827
Val	Gln	Glu	His	Lys	Lys	Leu	Leu	Asp	Glu	Asn	Lys	Ser	Leu	Ser	
				545					550					555	
ACT	TAC	TAC	CAG	CAA	TGC	AAA	AAA	CAA	CTA	GAG	GTC	ATC	AGA	AGT	1872
Thr	Tyr	Tyr	Gln	Gln	Cys	Lys	Lys	Gln	Leu	Glu	Val	Ile	Arg	Ser	
				560					565					570	
CAG	CAG	CAG	AAA	CGA	CAA	GGC	ACT	TCA							1899
Gln	Gln	Gln	Lys	Arg	Gln	Gly	Thr	Ser							
				575				579							
														TTAAGGAAA	1959
														GAATGCCAAC	2019
														TGGACATACA	2079
														GCACTTTGC	2139
														GTGAAGGCTA "	
														CATTTTTTCA	2259
														ATATTAATA	2319
														ATTTAGAGT	2379
														AGGGCTTTG	2439
														TAAAGGTAA	2499
														TAAAATTTGA	2559
TTGT	GAT	ica 1	TGA	ACAA	AA T(GAA(TCAT	TTI	TTTT	TAA	GGAC	TAA	GA T	TTTTAATTC	2619

[0147]

702

TGT	GATT	GTG	IGTA	TGTG	TG T	I'GAA.	ACTG	I AA	AGCT	ITTA	TGA	CICI	AA'I'	ATTAATCTCT	2679
TAA	ATGA	AAT '	TAAA.	AGGC.	AA A	AGAA	CATG	A TT	GAGC'	TTAA	ATG.	ATCA'	TTT	CTTCCTGCAG	2739
TGA	TTCT	TGG .	ATTG	TTTT	CT C	ATGT.	ATTT(G AA	AAAA.	AAAA	AAA	AAA			2785
•															
配歹	番号	3:4	1												
配歹	りの長	きさ :	2 8	6 6	3										
配歹]の型	!:杉	酸												
鎖の)数:	二本	鎖												
トオ	ペロシ	·— :	直銷	狀											
配歹	りの種	類:	cDN/	A to	mRN	Ą									
配歹	J														
GGA	CACG	GCT (GTGG	CCGC	rg co	CTCT	ACCC	C CG(CCAC	GGAT	CGC	CGGG	ΓAG	TAGGACTGCG	60
CGG	CTCC	AGG (CTGA	GGGT	CG G	rccg(GAGG	C GG	GTGG	GCGC	GGG	rctc.	ACC	CGGATTGTCC	120
GGG	rggc/	ACC (GTTC	CCGG	CC C	CACC	GGGC	CC	GCGA	GGGA	TC				162
ATG	TCT	ACA	GCC	TCT	GCC	GCC	TCC	TCC	TCC	TCC	TCG	TCT	TCG	GCC	207
Met	Ser	Thr	Ala	Ser	Ala	Ala	Ser	Ser	Ser	Ser	Ser	Ser	Ser	Ala	
1				5					10					15	
GGT	${\sf GAG}$	ATG	ATC	${\sf GAA}$	GCC	CCT	TCC	CAG	GTC	CTC	AAC	TTT	GAA	GAG	252
Gly	Glu	Met	Ile	Glu	Ala	Pro	Ser	Gln	Val	Leu	Asn	Phe	Glu	Glu	
				20					25					30	
ATC	${\sf GAC}$	TAC	AAG	GAG	ATC	GAG	GTG	GAA	GAG	GTT	GTT	GGA	AGA	GGA	297
Ile	Asp	Tyr	Lys	Glu	Ile	Glu	Val	Glu	Glu	Val	Val	Gly	Arg	Gly	
				35					40					45	
GCC	TTT	GGA	GTT	GTT	TGC	AAA	GCT	AAG	TGG	AGA	GCA	AAA	GAT	GTT	342
Ala	Phe	Gly	Val	Val	Cys	Lys	Ala	Lys	Trp	Arg	Ala	Lys	Asp	Val	
				50					55					60	
GCT	ATT	AAA	CAA	ATA	GAA	AGT	GAA	TCT	GAG	AGG	AAA	GCG	TTT	ATT	387
Ala	Ile	Lys	Gln	Ile	Glu	Ser	$\hbox{\tt Glu}$	Ser	Glu	Arg	Lys	Ala	Phe	Ile	
				65					70					75	
GTA	GAG	CTT	CGG	CAG	TTA	TCC	CGT	GTG	AAC	CAT	CCT	AAT	ATT	GTA	432
Val	$\hbox{\tt Glu}$	Leu	Arg	Gln	Leu	Ser	Arg	Val	Asn	His	Pro	Asn	lle	Val	
				80					85					90	
AAG	CTT	TAT	GGA	GCC	TGC	TTG	AAT	CCA	GTG	TGT	CTT	GTG	ATG	GAA	477
Lys	Leu	Tyr	Gly	Ala	Cys	Leu	Asn	Pro	Val	Cys	Leu	Val	Met	Glu	
				95					100					105	
TAT	GCT	GAA	GGG	GGC	TCT	TTA	TAT	AAT	GTG	CTG	CAT	GGT	GCT	GAA	522
Tyr	Ala	$\hbox{\tt Glu}$	${\tt Gly}$	Gly	Ser	Leu	Tyr	Asn	Val	Leu	His	Gly	Ala	Glu	
				110					115					120	
CCA	TTG	CCA	TAT	TAT	ACT	GCT	GCC	CAC	GCA	ATG	AGT	TGG	TGT	TTA	567
Pro	Leu	Pro	Tyr	Tyr	Thr	Ala	Ala	His	Ala	Met	Ser	Trp	Cys	Leu	
				125					130					135	
CAG	TGT	TCC	CAA	GGA	GTG	GCT	TAT	CTT	CAC	AGC	ATG	CAA	CCC	AAA	612
Pro	Leu	Pro	Tyr	Tyr	Thr	Ala	Ala	His	Ala	Met	Ser	Trp	Cys	Leu	
				140					145					150	
GCG	CTA	ATT	CAC	AGG	GAC	CTG	AAA	CCA	CCA	AAC	TTA	CTG	CTG	GTT	657
Ala	Leu	Ile	His	Arg	Asp	Leu	Lys	Pro	Pro	Asn	Leu	Leu	Leu	Val	
				155	_				160					165	

GCA GGG GGG ACA GTT CTA AAA ATT TGT GAT TTT GGT ACA GCC TGT

Ala Gly Gly Thr Val Leu Lys Ile Cys Asp Phe Gly Thr Ala Cys

31			32
17	0	175	180
GAC ATT CAG ACA CA	C ATG ACC AAT A	C AAG GGG AGT GCT GCT	TGG 747
Asp Ile Gln Thr Hi	s Met Thr Asn As	n Lys Gly Ser Ala Ala	Trp
18	5	190	195
ATG GCA CCT GAA GT	T TTT GAA GGT AG	T AAT TAC AGT GAA AAA	TGT 792
Met Ala Pro Glu Va	l Phe Glu Gly Se	r Asn Tyr Ser Glu Lys	Cys
20	0	205	210
GAC GTC TTC AGC TG	G GGT ATT ATT C	T TGG GAA GTG ATA ACG	CGT 837
Asp Val Phe Ser Tr	p Gly Ile Ile Le	u Trp Clu Val Ile Thr	Arg
21		220	225
		C CCA GCT TTC CGA ATC	
		y Pro Ala Phe Arg Ile	
23		235	240
		A CCA CTG ATA AAA AAT o Pro Leu Ile Lys Asn	
11 p Ata vai ilis As		250	255
	-	T CGT TGT TGG TCT AAA	
		r Arg Cys Trp Ser Lys	
26		265	270
CCT TCC CAG CGC CC	T TCA ATG GAG GA	A ATT GTG AAA ATA ATG	ACT 1017
Pro Ser Gln Arg Pr	o Ser Met Glu Gl	u Ile Val Lys Ile Met	Thr
27	5	280	285
CAC TTG ATG CGG TA	C TTT CCA GGA GO	A GAT GAG CCA TTA CAG	TAT 1062
His Leu Met Arg Ty	r Phe Pro Gly Al	a Asp Glu Pro Leu Gln	Tyr
29		295	300
		G AGC AAC TCT GCC ACC	
		n Ser Asn Ser Ala Thr	
30		310 T ACA AAT ACG AGT AAC	315 AAA 1152
		r Thr Asn Thr Ser Asn	
32	•	325	330
		T GCC ACA AAT GAT ACT	
		o Ala Thr Asn Asp Thr	
33	5	340	345
AAG CGC TTA GAA TC	A AAA TTG TTG AA	A AAT CAG GCA AAG CAA	CAG 1242
Lys Arg Leu Glu Se	r Lys Leu Leu Ly	s Asn Gln Ala Lys Gln	Gln
35	0	355	360
AGT GAA TCT GGA CG	T TTA AGC TTG GO	A GCC TCC CGT GGG AGC	AGT 1287
•		y Ala Ser Arg Gly Ser	
36		370	375
		G GGC AAG AGG ATG AGT	
val Glu Ser Leu Pr		u Gly Lys Arg Met Ser 385	390
		C GCC GCA ACC ACA GCC	
		e Ala Ala Thr Thr Ala	
39	-	400	405
		A ACT GCT TCA TTT GGC	
		s Thr Ala Ser Phe Gly	
41		415	420
ATT CTG GAT GTC CC	T GAG ATC GTC AT	A TCA GGC AAC GGA CAG	CCA 1467

lle Leu Asp Val	Pro Glu Ile	Val lle Ser Gly	Asn Gly Gln Pro	
	425	430	435	
AGA CGT AGA TCC	ATC CAA GAC	TTG ACT GTA ACT	GGA ACA GAA CCT	1512
Arg Arg Arg Ser	Ile Gln Asp	Leu Thr Val Thr	Gly Thr Glu Pro	
	440	445	450	
GGT CAG GTG AGC	AGT AGG TCA	TCC AGT CCC AGT	GTC AGA ATG ATT	1557
Gly Gln Val Ser	Ser Arg Ser	Ser Ser Pro Ser	Val Arg Met Ile	
	455	460	465	
ACT ACC TCA GGA	CCA ACC TCA	GAA AAG CCA ACT	CGA AGT CAT CCA	1602
Thr Thr Ser Gly	Pro Thr Ser	Glu Lys Pro Thr	Arg Ser His Pro	
	470	475	480	
TGG ACC CCT GAT	GAT TCC ACA	GAT ACC AAT GGA	TCA GAT AAC TCC	1647
Trp Thr Pro Asp	Asp Ser Thr	Asp Thr Asn Gly	Ser Asp Asn Ser	
	485	490	495	
ATC CCA ATG GCT	TAT CTT ACA	CTG GAT CAC CAA	CTA CAG CCT CTA	1692
Ile Pro Met Ala	_	Leu Asp His Gln	Leu Gln Pro Leu	
	500	505	510	
		GAA TCT ATG GCA		1737
Ala Pro Cys Pro	Asn Ser Lys	Glu Ser Met Ala	Val Phe Glu Gln	
	515	520	525	
CAT TGT AAA ATG				1782
His Cys Lys Met		Tyr Met Lys Val		
	530	535	540	
GCA TTG TTA TTA				1827
Ala Leu Leu Leu				
	545	550	555	
CAG GAT GAA AAG		•		1872
Gln Asp Glu Lys	-	-		
	560	565	570	
CAT AAA AAG CTT				1917
·		Asn Lys Ser Leu		
	575	580	585	1002
CAG CAA TGC AAA				1962
Gln Gln Cys Lys	590	_	•	
AAA CGA CAA GGC		595	600	1000
				1980
Lys Arg Gln Gly	605 606			
		CAAAT ATCCAAACAA	AGACTTTTT TTTAAGGAAA	2040
			GGCGTGTTCT GAATGCCAAC	2100
			TTTCTCATGG TGGACATACA	2160
			TTGAATGAGC AGCACTTTGC	2220
			TGCTCATTGT GTGAAGGCTA	2280
			AAACAGCGTC CATTTTTCA	2340
			CTCATCTCAA AATATTAATA	2400
			GGCTATTATA AATTTAGAGT	2460
			ACTTCCGTGT AAGGGCTTTG	2520
			CGTAAAATAT GTAAAGGTAA	2580
			TTTGTTAGAC TAAAATTTGA	2640
			GGAGTAAAGA TTTTTAATTC	2700
TIGIONINCH IIGAA	CANAN IUUNA	CIONI IIIIIIIAA	GONGIANAGA IIIIIAAIIC	2100

[0148]

TGTGATTGTG TGTATGTGTG TTGAAACTGT AAAGCTTTTA TGACTCTAAT ATTAATCTCT 2760 TAAATGAAAT TAAAAGGCAA AAGAACATGA TTGAGCTTAA ATGATCATTT CTTCCTGCAG 2820 TGATTCTTGG ATTGTTTTCT CATGTATTTG AAAAAAAAA AAAAAA 2866 配列番号:5 配列の長さ:1704 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 配列 ATG TCT ACA GCC TCT GCC GCC TCC TCC TCC TCC TCG TCT TCG GCC 45 Met Ser Thr Ala Ser Ala Ala Ser Ser Ser Ser Ser Ser Ser Ala 5 10 15 GGT GAG ATG ATC GAA GCC CCT TCC CAG GTC CTC AAC TTT GAA GAG 90 Gly Glu Met Ile Glu Ala Pro Ser Gln Val Leu Asn Phe Glu Glu 20 25 ATC GAC TAC AAG GAG ATC GAG GTG GAA GAG GTT GTT GGA AGA GGA 135 Ile Asp Tyr Lys Glu Ile Glu Val Glu Glu Val Val Gly Arg Gly 35 GCC TTT GGA GTT GTT TGC AAA GCT AAG TGG AGA GCA AAA GAT GTT 180 Ala Phe Gly Val Val Cys Lys Ala Lys Trp Arg Ala Lys Asp Val GCT ATT AAA CAA ATA GAA AGT GAA TCT GAG AGG AAA GCG TTT ATT 225 Ala Ile Lys Gln Ile Glu Ser Glu Ser Glu Arg Lys Ala Phe Ile 65 70 GTA GAG CTT CGG CAG TTA TCC CGT GTG AAC CAT CCT AAT ATT GTA 270 Val Glu Leu Arg Gln Leu Ser Arg Val Asn His Pro Asn Ile Val AAG CTT TAT GGA GCC TGC TTG AAT CCA GTG TGT CTT GTG ATG GAA 315 Lys Leu Tyr Gly Ala Cys Leu Asn Pro Val Cys Leu Val Met Glu 95 100 105 TAT GCT GAA GGG GGC TCT TTA TAT AAT GTG CTG CAT GGT GCT GAA 360 Tyr Ala Glu Gly Gly Ser Leu Tyr Asn Val Leu His Gly Ala Glu 110 CCA TTG CCA TAT TAT ACT GCT GCC CAC GCA ATG AGT TGG TGT TTA 405 Pro Leu Pro Tyr Tyr Thr Ala Ala His Ala Met Ser Trp Cys Leu 130 CAG TGT TCC CAA GGA GTG GCT TAT CTT CAC AGC ATG CAA CCC AAA 450 Gln Cys Ser Gln Gly Val Ala Tyr Leu His Ser Met Gln Pro Lys 140 145 GCG CTA ATT CAC AGG GAC CTG AAA CCA CCA AAC TTA CTG CTG GTT 495 Ala Leu Ile His Arg Asp Leu Lys Pro Pro Asn Leu Leu Leu Val

160

540

585

GCA GGG GGG ACA GTT CTA AAA ATT TGT GAT TTT GGT ACA GCC TGT

Ala Gly Gly Thr Val Leu Lys Ile Cys Asp Phe Gly Thr Ala Cys

GAC ATT CAG ACA CAC ATG ACC AAT AAC AAG GGG AGT GCT GCT TGG

Asp Ile Gln Thr His Met Thr Asn Asn Lys Gly Ser Ala Ala Trp

155

170

				185					190					195	
ATG	GCA	CCT	GAA	GTT	TTT	GAA	GGT	AGT	AAT	TAC	AGT	GAA	AAA	TGT	630
Met	Ala	Pro	Glu	Val	Phe	Glu	Gly	Ser	Asn	Tyr	Ser	Glu	Lys	Cys	
				200					205					210	
		_	AGC												675
Asp	Val	Phe	Ser	-	Gly	He	He	Leu	-	Glu	Val	He	Thr		
				215					220					225	
			TTT												720
Arg	Lys	Pro	Phe		Glu	lle	Gly	Gly		Ala	Phe	Arg	He		
T00	ООТ	OTT.	O 4 T	230	ООТ	LOT	001	001	235	OTO	4.77.4			240	705
			CAT												765
irp	Ala	vai	His		ыу	Inr	Arg	Pro		Leu	He	Lys	Asn		
ርር ፕ	AAC	ccc	ATT	245	ACC	стс	ATC	ACT	250	тст	TCC	тст	A A A	255	910
			Ile												810
110	Lys	110	116	260	Sei	Leu	met	1111	265	cys	11 þ	Sei	Lys	270	
ССТ	TCC	CAG	CGC		TCA	ΔTC	CAC	CAA		стс	ΔΔΔ	ΔΤΔ	ATC		855
			Arg												000
			8	275	00.		0.4	0.4	280		2,5			285	
CAC	TTG	ATG	CGG		TTT	CCA	GGA	GCA		GAG	CCA	TTA	CAG		900
			Arg												
			Ü	290			,		295					300	
CCT	TGT	CAG	TAT	TCA	GAT	GAA	GGA	CAG	AGC	AAC	TCT	GCC	ACC	AGT	945
Pro	Cys	Gln	Tyr	Ser	Asp	Glu	Gly	Gln	Ser	Asn	Ser	Ala	Thr	Ser	
				305					310					315	
ACA	GGC	TCA	TTC	ATG	GAC	ATT	GCT	TCT	ACA	AAT	ACG	AGT	AAC	AAA	990
Thr	Gly	Ser	Phe	Met	Asp	Ile	Ala	Ser	Thr	Asn	Thr	Ser	Asn	Lys	
				320					325					330	
AGT	GAC	ACT	AAT	ATG	GAG	CAA	GTT	CCT	GCC	ACA	AAT	GAT	ACT	ATT	1035
Ser	Asp	Thr	Asn	Met	Glu	Gln	Val	Pro	Ala	Thr	Asn	Asp	Thr	Ile	
				335					340					345	
			GAA												1080
Lys	Arg	Leu	Glu		Lys	Leu	Leu	Lys		Gln	Ala	Lys	Gln		
		mam		350	mm.		mm o		355	maa.	000	000		360	
			GGA												1125
5er	Glu	Ser	Gly	_	Leu	5er	Leu	Gly		Ser	Arg	ыу	Ser		
СТС	CAC	ACC	TTG	365	CCA	ACC	тст	CAC	370	AAC	ACC	ATC	ACT	375	1170
			Leu												1170
vai	oru	Sei	Leu	380	110	1111	261	Giu	385	LyS	nı g	met	Sei	390	
GAC	ATG	TCT	GAA		GAA	ССТ	AGG	ATC		GCA	ACC	ACA	CCC		1215
			Glu												1210
пор	In C C	00.	014	395	0.4		8		400		••••	****		405	.i
TCC	AAG	CCT	AAA		GGC	CAC	CGT	AAA		GCT	TCA	TTT	GGC		1260
			Lys												٠
	,		,	410	,		J	•	415				,	420	
ATT	CTG	GAT	GTC	CCT	GAG	ATC	GTC	ATA	TCA	GGC	AAC	GGA	CAG		1305
			Val												
		-		425					430	-		-		435	
AGA	CGT	AGA	TCC	ATC	CAA	GAC	TTG	ACT	GTA	ACT	GGA	ACA	GAA	CCT	1350

4	1	1	J	
	•	٠		

Arg Arg Arg Ser Ile	Gln Asp Leu Thr	Val Thr Gly Thr Glu	Pro
440		445	450
GGT CAG GTG AGC AGT	AGG TCA TCC AGT	CCC AGT GTC AGA ATG	ATT 1395
Gly Gln Val Ser Ser	Arg Ser Ser Ser	Pro Ser Val Arg Met	Ile
455		460	465
ACT ACC TCA GGA CCA	ACC TCA GAA AAG	CCA ACT CGA AGT CAT	CCA 1440
Thr Thr Ser Gly Pro	Thr Ser Glu Lys	Pro Thr Arg Ser His	Pro
470		475	480
TGG ACC CCT GAT GAT	TCC ACA GAT ACC	AAT GGA TCA GAT AAC	TCC 1485
Trp Thr Pro Asp Asp S	Ser Thr Asp Thr	Asn Gly Ser Asp Asn	Ser
485		490	495
ATC CCA ATG GCT TAT (CTT ACA CTG GAT	CAC CAA CTA CAG CAA	GAA 1530
Ile Pro Met Ala Tyr I	Leu Thr Leu Asp	His Gln Leu Gln Gln	Glu
500		505	510
CTA GTT GCA GAA CTG (GAC CAG GAT GAA	AAG GAC CAG CAA AAT	ACA 1575
Leu Val Ala Glu Leu A	Asp Gln Asp Glu	Lys Asp Gln Gln Asn	Thr
515		520	525
TCT CGC CTG GTA CAG	GAA CAT AAA AAG	CTT TTA GAT GAA AAC	AAA 1620
Ser Arg Leu Val Gln (Glu His Lys Lys	Leu Leu Asp Glu Asn	Lys
530		535	540
GGC CTT TCT ACT TAC T	TAC CAG CAA TGC	AAA AAA CAA CTA GAG	GTC 1665
Gly Leu Ser Thr Tyr 7	Tyr Gln Gln Cys	Lys Lys Gln Leu Glu	Val
545		550	555
ATC AGA AGT CAG CAG	CAG AAA CGA CAA	GGC ACT TCA TGA	1704
Ile Arg Ser Gln Gln (Gln Lys Arg Gln	Gly Thr Ser	
560		565 567	

【0149】配列番号:6

配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状

配列の種類:他の核酸(合成プライマー)

配列

TTCCAAGCTT ATGGCGGCGC AGAGGAGGAG

【0150】配列番号:7

配列の長さ:30 配列の型:核酸 鎖の数:一本鎖 トポロジー:直鎖状

配列の種類:他の核酸(合成プライマー)

配列

TCCGGAATTC CTACGGTGCT GTCACCACGC

【図面の簡単な説明】

【図1】 マウスTAK1及び3種のヒトTAK1(hTAK1a、hTAK1b及びhTAK1c)のアミノ酸配列の比較を示す図。

【図2】 ヒトTAK1をTAB1とともに発現増強させた細胞のNFー κ B活性化(ゲルシフトアッセイにお 50

けるNF $-\kappa$ Bの核移行)を示す電気泳動の結果を示した図。

「図3】 ヒトTAK1をTAB1とともに発現増強させた細胞のNFー κ B活性化(レポーターアッセイにおけるルシフェラーゼ活性)を示した図。

【図4】 変異型ヒトTAK1を発現させた細胞におけるNF $-\kappa$ B活性化の抑制 (ゲルシフトアッセイ (A) 及びレポーターアッセイ (B) の結果)を示した図。

【図5】 ヒトTAK1を発現増強させた細胞から得たTAK1を含む免疫沈降画分の免疫ブロッティングの結果(細胞内でのTAK1とTAB1の相互作用)を示した図。

「図6】 ヒトTAK1を発現増強させた細胞から得た TAK1を含む免疫沈降画分のキナーゼアッセイの結果 (TAK1による自己リン酸化TAB1のリン酸化)を 示した図。

【図7】 ヒトTAK1を発現増強させた細胞から得た TAK1を含む免疫沈降画分および細胞溶解液の免疫ブロッティングの結果(細胞内でのTAK1とIKKの相 互作用)を示した図。

【図8】 ヒトTAK1を発現増強させた細胞から得た IKKを含む免疫沈降画分のIKKキナーゼアッセイの 結果(TAK1によるIKK複合体の活性化)を示した

能を示した模式図。

図。

【図9】 NF $-\kappa$ B活性化経路におけるTAK1の機

【図1】

	0	
mTAK1 :	MSTASAASSESSSASEMI BAPSQVLNFEBI DYKEIEVEEVVGRGAFGVVCKAKWRAKDV	60
hTAKla :	MSTASAASSSSSSAGEMI EAPSQVLNFEBIDYKEIEVEEVVORGAFGVVCKAKWRAKDV	60
hTAK1b :	MSTASAASSSSSSAGEMI EAPSQVLNFEEIDYKEIEVEEVVGRGAFGVVCKAKWRAKDV	60
hTAKIc :	MSTASAASSSSSSAGEMI EAPSQVLNFBEIDYKETEVEEVVGROAFGVVCRAKWRAKDV	60
	The state of the s	00
mTAK1 :	AIKQIESESERKAFIVELRQLSRVNHPNIVKLYGACLNPVCLVMEYABGGSLYNVLHGAE	120
hTAKla :	AIKQIESESERKAFIVELRQLSRVNHPNIVKLYGACINPVCLVMEYAEGGSLYNVLHGAE	120
hTAK1b :	AIKQIESESERKAPIVELRQLSRVNHPNIVKLYGACINPVCLVMEYABGGSLYNVLHGAE	
hTAK1c :	AIKQIESESERKAFIVELRQLSRVNHPNIVKLYGACLNPVCLVMEYAEGGSLYNVLHGAE	120
DIARIC :	YIVAIDSESERVALIASTIAATSKANULAIAKTIAAKTIAAACTANKAVEGGSTANATHGYE	120
mTAK1 :	PLFYYTAAHAMSWCLQCSQGVAYLHSMQPKALTHRDLKPPNLLLVAGGTVLKICDFGTAC	180
hTAKla :	PLPYYTAAHAMSWCLQCSQGVAYLHSMQPKALIHRDLKPPNLLLVAGGTVLKICDFGTAC	180
hTAK1b :	PLFYYTAAHAMSWCLQCSQGVAYLHSMQFKALIHRDLKFPNLLLVAGGTVLKICDFGTAC	
hTAK1c :	PLPYYTAAHAMSWCLQCSQGVAYLHSKQPKALIHRDLKPPNLLLVAGGTVLKICDFGTAC	180
HIARIC ;	EDELLIAMENDACENCESORAKI ENSKOPRACTIKETEN PANTETAN GOLAFKICDE CLUC	180
mTAX1 :	DIQTIPITINIKGSAAMAPEVFEGSNYSEKCDVFSWGIILWEVITREKPFDEIGOPAFRIM	240
hTAKla :	DIQTH*THNKGSAAMMAPEVFEGSNYSEKCDVFSWGIILWEVITREKPFDBIQGPAFRIM	240
hTAK1b :	DIQTHMTNNKGSAAWMAPIVFEGSNYSEKCDVFSWGIILWEVITRRKPFDEIGGPAFRIM	240
hTAK1c :	DIQUESTANKUSAAWMAPEVFEGSNYSEKCDVFSWCIILWEVITREEPFDBIGGPAFRIM	240
	CAN COMPANY OF THE CO	240
mTAK1 :	WAVHNGTRPPLIKNLPKPIESLMTRCWSKDPSQRPSMEEIVKIMTHLMRYPPGADEPLQY	300
hTAKla :	WAVHNOTEPPLIKNLPKPIESLNTRCWSKDPSORPSMEETVKIMTHLMRYPPOADEPLOY	300
hTAK1b :	WAVENGTRPPLIKNLPRPIESINTRCWSKDPSQRPSMEBIVRIMTHLMRYPPGADEPLQY	300
hTAKIc :	WAVINGTRPPLIKNLPKPIESLMTRCWSKDPSORPSMEETVKIMTHLMRYPPGADEPLOY	300
		300
mTAK1 :	PCQYSDEGQSNSATSTGSPMDIASTNTSNKSDTNMEQVPATNDTIKRLESKLLENQAKQQ	360
hTAKla :	PCQYSDEGQSNSATSTGSPNDIASTNTSNKSDINHEQVPATNDTIRRLESKLLKNQAKQQ	360
hTAKIb :	PCQYSDEGQSNSATSTGSFNDIASTNTSNKSDTNMEOVPATNDTIKRLESKLLKNOAKOO	360
hTAK1c :	PCQYSDEGQSNSATSTGSFMDIASTNTSNKSDTMMEQVPATWDTIKRLESKLLKNQAKQQ	360
	- of top of any to tank the part of the pa	300
mTAKl :	SESGRLSLGASRGSSVESLPPTSEGKRMSADMSEIEARINATA	403
hTAKla :	SESGRLSLGASRGSSVESLPPTSECKRMSADMSBIEARIAATT	403
hTAX1b :	SESGRLSLGASRGSSVESLPPTSEGKRMSADMSEIEARIAATTAYSKPKRGHRKTASFGN	420
hTAK1c :	SESCRLSLGAGRGSSVESLPPTSEGKRMSADMSEIEARIAATTAYSKPKRCHRKTASFCN	420
		420
mTAK1 :	GNGQPRRRSIQDLTVTGTEPGOVSSRSSSPSVRMITTSGPTSEKEARSHP	453
hTAKla :	GNGQPRRRSIQDLTVIGTEPGQVSSRSSPSVRMITTSGPTSEKPTRSHP	453
hTAK1b :	ILDVPEIVISGNGQPRRRSIQDLTVTGTEPGQVSSRSSSPSVRMITTSGPTSEKPTRSHP	480
	ILDVPEIVISCHCOPRRESIODLTVTGTEPGQV88RSS9PSVRMITTSGPTSEKPTRSHP	480
	 On the control of the c	
mTAK1 :	WTPDDSTDTNGSDNSIPMAYLTLDHQLQPLAPCPNSKESMAVFEQHCKMAQEYMXVQTEI	513
hTAKla :	wtpddstdtngsdnsipmayltldhqlqplapcphskesmavpeqhckmaqeymkvqtei	513
htaklb :	wtpddstdtngsdnsipmayl/tldhqlqplapcpnskesmavfeqhcmaqeymcvqtsi	540
hTAKlc:	WTPDDSTDTMGSDNSIPMAYLTLDHQLQ	508
	The second secon	
	ALLLQRKQELVAELDQDEKDQQNTSRLVQEHKKLLDENKSLSTYYQQCKKQLEVIRSQQQ	573
hTAKla :	ALLLORKQELVAZLDQDEKDQQNTSRLVQEHKKLLDENKSLSTYYQQCKKQLEVIRSQQQ	573
	ALLLQRXQELVAELDQDEKDQQNTSRLVQEHKKLLDENKSLSTYYQQCKKQLEVTRSQQQ	600
hTAK1c :	QELVAELDQDEKDQQNTSRLVQEHKKLLDENKSLSTYYQQCKKQLEVIRSDQQ	561
mTAK1 :	*P.OCTC	
	KRQGTS KROCTS	579
		579
	KRQGTS	606
hTAKLC :	KRQGTS	567

(mTAK1はマウスTAK1を表す。)

図3 TAK1を発現させた細胞における NF-kB活性化(レポーターアッセイ)

図7 TAK1とIKKの相互作用

上設:抗Flag 免疫沈降国分/抗 Xpress 抗体よるブロッティング 中段:観胞溶解液/抗 Xpress 抗体よるブロッティング 下段:抗 Flag 免疫沈降国分/抗 TAK1 抗体よるブロッティング

【図8】

(A)

図8 TAK1によるIKK複合体の活性化

【図9】

NFーκB活性化経路におけるTAK1の機能

(TRAF2: TMF- α receptor associated factor 2

IKK : I & B kinase

NIK: NF- &B inducing kinase
NEMO: NF- &B essential modulator IKAP: IKE complex associated protein)

フロントページの続き

(51) Int .C1 . ⁷		識別記号
C 1 2 N	9/99	
C 1 2 Q	1/02	
G 0 1 N	33/15	
	33/50	ZNA
	33/566	
// C12N	15/09	ZNA
C 1 2 Q	1/68	ZNA
(C 1 2 N	15/09	ZNA
C 1 2 R	1:91)	

(72) 発明者 長谷川 浩 大阪府大阪市淀川区三津屋中1丁目5番9

FΙ テーマコード(参考) C 1 2 Q 1/02 G 0 1 N 33/15 Z 33/50 ZNAP 33/566 C 1 2 Q ZNAA 1/68 C 1 2 N В 5/00 15/00 ZNAA

Fターム(参考) 2G045 AA40 CB01 DA20 FB03

4B024 AA01 AA11 CA01 CA11 DA06

DA12 EA04 HA08 HA11

4B063 QA01 QA05 QA18 QQ08 QQ22

QQ27 QQ42 QQ52 QQ91 QQ95

QR07 QR33 QR48 QR55 QR57

QR59 QR62 QR76 QR80 QS02

QS16 QS24 QS25 QX07

4B065 AA93Y AB01 CA44 CA46

4C084 AA17 ZB071 ZB072 ZB111

ZB112 ZC202