

Pilot Moodle-DWH

Ein Pilot-DWH in der Oracle Cloud

Technische Umsetzung vom Bucket bis zum Dashboard

Dr. Andrea Kennel, fhnw

Dr. Andrea Kennel

Consultant

Dozentin für Datenbanken
Coach für Project Management
Fachhochschule Nordwestschweiz
Brugg/Windisch, Schweiz

andrea.kennel@fhnw.ch andrea@infokennel.ch www.infokennel.ch

Ø O

 Daten digitaler Prüfungen
 B. Szczyrba, M. Wiemer & .
 108 (H 3.9). Berlin: DUZ Aus: Scheidig, F. & Schweinberger, K. (2022). Assessment Analytics – Causwerten. In B. Berendt, A. Fleischmann, G. Salmhofer, N. Schaper, B. Wildt (Hrsg.), Neues Handbuch Hochschullehre. Ergänzungsband Nr. 10

Beispiel Zeiteinsatz

Antworten-Rückblick						
Schritt	Zeit	Aktion	Status	Punkte		
1	18. April 2024, 13:59:09	Begonnen	Bisher nicht beantwortet			
2	18. April 2024, 14:00:59	Gespeichert: Diese Antwort ist die zweite falsche Antwort und ist mit -40% gewichtet	Antwort gespeichert			
3	18. April 2024, 14:01:37	Gespeichert: Diese Antwort ist die erste falsche Antwort und ist mit -60% gewichtet	Antwort gespeichert			
4	18. April 2024, 14:11:07	Versuch beendet	Falsch	-6,00		

Schritt	Zeit	Aktion	Status	Punkte
1	18. April 2024, 13:59:09	Begonnen	Bisher nicht beantwortet	
2	18. April 2024, 14:10:58	Gespeichert: Test Text zum identifizieren	Antwort gespeichert	
3	18. April 2024, 14:11:07	Versuch beendet	Vollständig	

Beispiel Zeiteinsatz

Übersicht

Von Moodle ins Bucket

Plugin

moodle

Bucket

Von Moodle ins Bucket mit PHP-Funktion curl_exec


```
// PUT to a Pre-Authenticated Requests enabled Oracle Object Storage Bucket.
$url = $DB->get field('report datawarehouse bkends', 'url', ['id' => $backendid]);
// Initiate cURL object.
$curl = curl init();
// Set your URL.
curl setopt ($curl, CURLOPT URL, $url . $filename);
// Indicate your protocol.
curl setopt($curl, CURLOPT PROTOCOLS, CURLPROTO HTTPS);
// Set HTTP method to PUT.
curl setopt($curl, CURLOPT PUT, 1);
// Indicate the file you want to upload.
curl setopt($curl, CURLOPT INFILE, fopen($tempfolder . '/' . $filename, 'rb'));
// Execute.
curl exec($curl);
```


Datenschutz

User ist doppelt anonymisiert

1. In Moodle User anonymisieren

Plugin

2. Nur Hash exportieren

```
SELECT
...
(SELECT MD5(username) FROM mdl_user WHERE id = qzat.userid) AS "qzatuserid",
...
```


Vom Bucket in die Stage mit DBMS_CLOUD.COPY_DATA

```
v_full_path VARCHAR2(2000) := p_bucket_path || p_file_name;
— DECLARE
  l TABLE NAME
                      DBMS_QUOTED_ID := '"DATA_VERSION_BACH"';
                      DBMS_QUOTED_ID := '"OBJ_STORE CRED"';
 l_CREDENTIAL_NAME
 l_FILE_URI_LIST
                      CLOB := v full path;
 l FIELD LIST
                      CLOB :=
     "SOURCESYSTEM"
                                      CHAR (4000)
                                      CHAR (4000)
    ,"AUTHORIZEDUSERS"
    ,"QUESTIONID"
                                      CHAR
```


Cleansing Staging

Das Datenmodell der Quelle

Lad Cleansing Staging

Das Modell in der Cleansing

Von der Stage in die Cleansing

```
INSERT INTO MD_CLEANSING.quiz (
    load_id,
    sourcesystem,
    quiz_id,
    authorizedusers,
    quiz_name,
    quiz_grade)

SELECT DISTINCT
    p_load_id load_id,
    sourcesystem,
    quizid quiz_id,
    authorizedusers,
    quizname quiz_name,
    quizgrade quiz_grade
FROM MD_STAGING.data_view d;
```

```
INSERT INTO MD_CLEANSING.guestion_attempt_step_data (
    load id,
    sourcesystem,
   authorizedusers,
   question_attempt_step_data_id,
   question_attempt_step_id,
   step data name,
    step data value)
SELECT DISTINCT
 p load id load id,
  sourcesystem sourcesystem,
  authorizedusers authorizedusers,
  questionattemptstepdataid question attempt step data id,
 qastepid question_attempt_step_id,
  questionattemptstepdataname step data name,
 questionattemptstepdatavalue step_data_value
FROM MD_STAGING.data_view
WHERE questionattemptstepdataid IS NOT NULL;
```


Lad Cleansing

Das Modell im Core

Lade-Prozes CORE

Das Modell im Core

Das Modell im Core

ade-Prozes CORE

Das Modell im Core

Von der Cleansing ins Core

1. HUB füllen

H_Question

Künstlicher Schlüssel für HUB

h_question_sid

Quellschlüssel

question_id

load_id

Lade-Prozes CORE Cleansing

Von der Cleansing ins Core

2. Satelliten zu HUB füllen

S_Question_info

Fremdschlüssel auf HUB via Quellschlüssel finden

h_question_sid

```
h.h_question_sid,
cl.question_type,cl.question_name,
cl.question_text

FROM MD_CLEANSING.question cl INNER JOIN
H_Question h ON (cl.question_id = h.question_id

AND cl.load_id = h.load_id);
```


Von der Cleansing ins Core

3. Link zwischen HUB füllen

Künstlicher Schlüssel für Link

Beide Fremdschlüssel auf HUB via Quellschlüssel finden L_Question_Question_Answer

I_question_question_answer_sid

h_question_sid h_question_answer_sid

Lade-Prozes CORE Cleansing

Views für einfacheren Zugriff auf Core

Views für einfacheren Zugriff auf Core

Views für einfacheren Zugriff auf Core

Dashboard versus APEX

Dashboard versus APEX

Dashboard versus APEX

- Studis nutzen
 R und Shiny Dashboard
- Daten direkt aus Core
- Datenanalyse mit R sehr flexibel
- Studis kennen R
- Via REST nach Dashboard

- APEX als Bestandteil der Cloud
- Daten in Mart
- Struktur muss vorher definiert werden
- Alles SQL
- Keine externe Schnittstelle

e-Prozess MART CORE

Erste Marts

Vom Core in die Marts

e-Prozess MART

Vom Core in die Marts

```
INSERT INTO MD MART.DM F Question Submission Time Segment
SELECT
 MD ID Question,
 quiz attempt user hash MD ID Candidate,
 time prev start time,
 createdunixtime end_time, time spent duration, load id
FROM (
 SELECT
   d q.MD ID Question,
   qa.quiz attempt user hash, ...
   LAG(step.createdunixtime, 1, 0) OVER (PARTITION BY qa.QUIZ ATTEMPT USER HASH
     ORDER BY step.createdunixtime) AS time prev,
   step.createdunixtime -
     LAG(step.createdunixtime, 1, 0) OVER (PARTITION BY qa.QUIZ ATTEMPT USER HASH
        ORDER BY step.createdunixtime) AS time spent
 FROM md core.V QUESTION ATTEMPT qa JOIN
   MD CORE.V QUESTION ATTEMPT STEP step
     ON qa.H QUESTION ATTEMPT SID = step.H QUESTION ATTEMPT SID JOIN
   MD MART.DM D Question d q ON d q.QU MD BK question id = q.question id AND d q.QZ MD BK load id = q.load id
 WHERE qa.load id = this load id)
```


e-Prozess MART CORE

Erste Marts

Vom Core in die Marts

```
INSERT INTO MD_MART.DM_F_Question_Submission_Result
SELECT
   ts.MD_ID_Question MD_ID_Question,
   ts.MD_ID_Candidate MD_ID_Candidate,
   MIN(ts.start_time) attempt_start_time,
   SUM(duration) duration,
   COUNT(ts.md_id_question) number_of_visits,
   load_id load_id
FROM md_mart.dm_f_question_submission_time_segment ts
WHERE load_id = this_load_id
GROUP BY md_id_candidate, md_id_question, load_id;
```


In APEX

Overview

Erste Erweiterung: kprime und mtf

Problem:

Benötigen andere Daten aus anderen Quelltabellen

- 1. Mehrere Versionen von Daten
- 2. Staging neue Tabelle
- 3. Cleansing: Tabellen mit mehr Attributen
- 4. Core: Neue Satelliten
- 5. Mart: weitere Marts

Wie kann man das am einfachsten anpacken

- 1. Mehrere Versionen von Daten 1. Attribute können NULL sein
- 2. Staging neue Tabelle
- 3. Cleansing: Tabellen mit mehr Attributen
- 4. Core: Neue Satelliten
- 5. Mart: weitere Marts

- 1. Mehrere Versionen von Daten
- 2. Staging neue Tabelle
- 3. Cleansing: Tabellen mit mehr Attributen
- 4. Core: Neue Satelliten
- 5. Mart: weitere Marts

2. In Staging sind immer nur Daten vom aktuellen Load

Je Version eine Tabelle

View, die alle Tabellen mit UNION zusammenführt

Code Versionsabhängig

- 1. Mehrere Versionen von Daten
- 2. Staging neue Tabelle
- 3. Cleansing: Tabellen mit mehr Attributen
- 4. Core: Neue Satelliten
- 5. Mart: weitere Marts

3. In Cleansing sind immer nur Daten vom aktuellen Load

Tabellen bekommen mehr Attribute

Neue Tabellen

Code Versionsabhängig

- 1. Mehrere Versionen von Daten 4. Core erweiterbar, da Data Vault
- 2. Staging neue Tabelle
- 3. Cleansing: Tabellen mit mehr Attributen
- 4. Core: Neue Satelliten
- 5. Mart: weitere Marts

Flexible Lösungen

- 1. View für Staging
- 2. Daten in Cleansing immer löschen
- 3. Core als Data Vault
- 4. Views auf Core
- 5. IF (NOT) EXISTS in Skripten

Was kommt als nächstes?

- 1. Auswertung Multiple Choice
- 2. Weitere Fragetypen
- 3. Quiz umsetzen
- 4. Mehr als eine Prüfung exportieren

Übersicht

Fazit

- 1. Pilot bringt Mehrwert
- 2. Einfach ausbaubar
- 3. Klare Konzepte sind flexibel

Dr. Andrea Kennel

Blogbeitrag auf Hochschulforum Digitalisierung:

https://hochschulforumdigitalisierung.de/learninganalytics-ermöglichen

andrea.kennel@fhnw.ch
andrea@infokennel.ch
www.infokennel.ch