Künstliche Intelligenz

Prof. Dr. Dirk Krechel
Hochschule RheinMain

*****Inhalte

- Einführung
- Symbolische Verfahren, Logik
 - Aussagenlogik, Prädikatenlogik
 - Horn Logik, Prolog
- Suchen und Bewerten
 - Problemlösen durch Suche
 - Uninformierte Suche
 - Heuristische Suche
 - Spielbäume

*Suchen - Begriffsbildung

Suchproblem

- Zustandsraum S = $\{s_1, ..., s_n\}$, Menge von Zuständen
- Operatoren (Zustandsübergange) als partielle Funktionen o: S → S
 - Ein Operator o führt einen Zustand s_i in einen Zustand s_i wenn o(s_i) = s_i
- Initialzustand s₁∈S, Startzustand
- Zielbeschreibung G: $S \rightarrow Bool$, Ziel ist mit s erreicht wenn G(s) gilt
 - Alternativ Menge von Zielzuständen S_G angeben

Pfade

- Ein Pfad p ist eine geordnete Operatorenfolge <o₁,...,o_n>
- Hintereinanderausführung: $p(s_i) = s_i$ gdw $o_n(o_{n-1}(...o_1(s_i)...)) = s_i$
- Zustand s_j ist *erreichbar* von s_i falls ein Pfad p von s_i nach s_j existiert

Pfadkosten g(p)

- Meist Summe der einzelnen Operatoren $g(\langle o_1,...,o_n \rangle) = g(o_1)+...+g(o_n)$
- Kosten können von besuchten Zuständen abhängen
- Kosten können uniform sein, Pfadkosten = Länge des Pfades

*Suchproblem und Lösung

- Ein Suchproblem besteht aus
 - Zustandsmenge S
 - Ein Initialzustand S₁
 - Zielbeschreibung G
 - Operatorenmenge O
 - Pfadkostenfunktion g
- Eine Lösung eines Suchproblems ist
 - ein Pfad p, der den
 Initialzustand S₁ in
 einen Zustand s_G ∈S_G überführt,
 der die Zielbedingung erfüllt
- Lösungskosten einer Lösung ist
 - der Wert der Pfadkostenfunktion von S_I nach s_G

$$S = \{s_1, s_2, s_4, s_4, s_5, s_6, s_7\}$$

 $S_1 = s_1$
 $S_G = \{s_6\}$
 $s_G = s_6$
Lösung $p = \langle o_{12}, o_{25}, o_{54}, o_{46} \rangle$
Uniforme Kosten: $\forall i,j$: $g(o_{ij}) = 1$
 $g(p) = 4$

Uninformierte Suche

- Suchen: Finde Pfad vom Startzustand zu einem Zielzustand
- Ansatz: Systematische Suche im Zustandsraum
 - Beginne beim Initialzustand (Vorwärtsgerichtete Suche)
 - Bestimme Nachfolgezustände
 - Mögliche Operatoren anwenden bis Zustand, der Zielbedingung erfüllt, erreicht
 - Suchstrategie
 - Bestimmt die Reihenfolge, in der Nachfolgezustände betrachtet werden
 - Uniformiert
 - Kein Verwenden von zusätzliches Bereichswissen
- Rahmenbedingungen
 - Vollständigkeit?: Wenn eine Lösung existiert, dann wird sie gefunden
 - Optimalität?: Finde die "beste" Lösung, zum Beispiel geringste Kosten
 - Technische Rahmenbedingungen
 - Zeitkomplexität: Wie lange dauert es?
 - Speicherkomplexität: Wie viele Zustände muss ich gleichzeitig halten?

Universeller Suchalgorithmus

- Warteschlange
 - Blätter, noch abzuarbeitende Knoten
 - Meist deque, double ended queue
- Solange noch Knoten abzuarbeiten
 - Hole Knoten aus Queue
 - Expandiere Knoten

```
def search((start, expand, strategy,
is_goal)
  queue = [start]
  reached = [start]
  while queue:
    state = queue.pop()
    if is_goal(state):
      return state # eine Lösung
    reached.push(state)
    ex = expand(state, ops)
    newex = [s for s in ex if ex not in reached]
    queue = strategy(queue, newex)
  return None # keine Lösung
```

- Alle möglichen Nachfolger durch Menge von Operatoren
- Vermeide Wiederholungen
- Füge nur noch nicht erreichte Knoten hinzu
 - · Vermeide Endlosschleifen in der Berechnung
- Strategie Art des Hinzufügens an Warteschlange
 - Ans Ende (gegenüber der Stelle an der rausgeholt wird), Breitensuche
 - An den Anfang (an der Stelle an der rausgeholt wird), Tiefensuche

* Breitensuche

Strategie

- Erst alle Knoten einer
 Tiefe, dann das
 nächsttiefere Level
- Reihenfolge:1,2,3,4,5,6....

- Reihenfolge innerhalb der Tiefe kann variiert werden, z. B. 1, 4,3,2, 11, 10, ...
- Umsetzung: Einfügen der neuen Knoten ans Ende der Warteschlange

Eigenschaften

def breadthfirst(queue, nodes): return queue+nodes

- Vollständige Strategie, Optimalität bei uniformen Pfadkosten
- Aufwand: Annahme fester Verzweigungsgrad b (Anzahl Nachfolger)

Beispiel: b=10, 100 Byte/Knoten,
 1000 Knoten pro Sekunde

Tiefe	Knoten	Zeit	Speicher
4	11.111	11 s	1 MB
8	10 ⁸	31h	11 GB
10	1010	128d	1 TB
12	1012	35y	111 TB
14	1014	3500y	11 PB

→ Uniforme Kostensuche

Strategie

- Expandiere Knoten mit geringsten Kosten in Warteschlange
 - Ersetzte Warteschlange durch Prioritätswarteschlange oder

- Füge Knoten nach Kosten aufsteigend sortiert ein
- Sinnvoll, wenn Kosten je Schritt unterschiedlich sind, zum Beispiel Routenplanung
- Eigenschaften
 - Vollständige Strategie
 - Optimalität bei positiven Pfadkosten
 - Beachte, dass erst aufgehört wird, wenn Zielzustand aus Queue kommt, und nicht gleich wenn er in der Menge der expandierten Knoten ist
 - Aufwand wie bei Breitensuche:
 Zeitkomplexität O(b^d)
 Speicherkomplexität O(b^d)

Uniforme Kostensuche – Beispiel

- Zustandsraum mit Kosten je Operatoranwendunge
 - 5 Zustände: S, A, B, C, G
 - Startzustand S
 - 7ielzustand G

Start

10

Ziel

5

В

5

15

S

* Tiefensuche

Strategie

 Immer den zuletzt hinzugefügten Knoten zuerst

> Erst in die Tiefe, nur bei Misserfolg in die Breite Tiefe 3

- Reihenfolge: 1,2,5,6,7,3,8,9,4,
 - Reihenfolge innerhalb der Tiefe kann variiert werden, z. B. 1,4,11,10,2,7, ...
- Umsetzung: Einfügen der neuen Knoten an Anfang der Warteschlange

Eigenschaften

- Nicht vollständig bei unendlichen Suchbäumen
 - Kann in unendlichem Pfad stecken bleiben
 - Häufig effektiv, wenn es viele Lösungen gibt
- Keine Optimalität
- Aufwand:
 Zeitkomplexität O(b^d)
 Speicherkomplexität O(d*b), viel besser als Breitensuche

> Beschränkte Tiefensuche

 Idee: Abschneiden des Suchbaums bei Erreichen einer bestimmten Tiefe t

- Falls Lösung bis Tiefe t
 Existiert, dann wird diese gefunden
- Speicherkomplexität bleibt mit O(b*t) gering!
- Keine Optimalität
- Implementierung: Tiefe mitführen, ab Tiefe t nicht mehr in Warteschlange
- Iterative Tiefensuche (iterative deepending)
 - Beschränkte Tiefensuche schrittweise mit höherer Tiefe wiederholen.
 - Kombination der Vorteile von Tiefensuche und Breitensuche
 - Vollständig und optimal bei uniformen Kosten
 - Entgegen der Intuition nicht signifikant mehr Rechenaufwand, gleiche Zeitkomplexität O(bd)
 - Geringer Speicherbedarf O(d*b)
 - Gut geeignet f
 ür große Suchr
 äume ohne Tiefenbeschr
 änkung

★ Bidirektionale Breitensuche

• Idee: Gleichzeitig suchen

- Suche beginnt sowohl vom
 Startzustand als auch vom
 Zielzustand (wenn der eindeutig ist)
- Ende ist erreicht, wenn sich zwei
 Suchzweige in der Mitte treffen

Voraussetzung

Operatoren müssen umkehrbar sein,
 Vorgängerzustände sind zu bestimmen für Gesamtlösung

Umsetzung

 Terminierungsbedingung aufwendiger: Test ob Knoten schon im anderen Suchbaum enthalten

Eigenschaften

- Wenn b in beide Richtungen gleich ist, dann
 Zeitkomplexität: O(b^{d/2}), Speicherkomplexität: O(b^{d/2})
- Vollständigkeit und Optimalität bei uniformen Pfadkosten

Quelle: Artificial Intelligence, Russel, Norvig

★ Vorwärtssuche versus Rückwärtssuche

- Suchrichtung
 - Statt von Start zu Ziel kann man auch von Ziel zu Start suchen
 - Frage der Modellierung
- Voraussetzung
 - Umkehrung der Operatoren muss möglich sein
 - Definition von Umkehroperatoren (o⁻¹)
- Welche Richtung wählen?
 - Problemabhängig
 - Falls unterschiedlilcher Verwzeigungsgrad, dann meist geringerer Verzweigungsgrad vorteilhaft
- Beispiel
 - s₁ nach s₈Verzweigungsgrad 4
 - s₈ nach s₁Verzweigungsgrad 2

→ Uninformierte Suchverfahren – Vergleich

Kriterium	Breiten- suche	Uniforme Kostensuche	Tiefen- suche	Iterative Tiefensuche		Bidirektionale Breitensuche
Zeit	O(b ^d)	O(bd)	O(b ^m)	O(b ^d)	O(b ^t)	O(b ^{d/2})
Speicher	O(bd)	O(bd)	O(b*m)	O(b*d)	O(b*t)	O(b ^{d/2})
Optimalität	ja¹	ja	nein	ja¹	Nein	ja¹
Vollständig- keit	ja	ja	nein	ja	ja, wenn td	ja

b = Verzweigungsgrad

d = Tiefe der Lösung

m = Maximale Tiefe

des Suchbaums

t = Tiefenlimit MaxTiefe

¹ nur bei uniformen Kosten

*****Inhalte

- Einführung
- Symbolische Verfahren, Logik
 - Aussagenlogik, Prädikatenlogik
 - Horn Logik, Prolog
- Suchen und Bewerten
 - Problemlösen durch Suche
 - Uninformierte Suche
 - Heuristische Suche
 - Spielbäume

Heuristische Suche, Bestensuche

Problem

- Uninformierte Suche generiert blind Zustände und testet, keine problemspezifischen Strategien
- Häufig sehr lange Laufzeiten
- Lösung Heuristische Suche mit Vorwissen
 - Vorwissen hilft bei der Steuerung, generiere gute Zustände
 - Vermeide Sackgassen, effizientere Suche

Heuristische Suche, Bestensuche

Verfahren – Bestensuche

- Auswahl zu expandierender Knoten bisher nach Pfadkosten
 - Breitensuche: geringste Gesamtkosten bis zum aktuellen Knoten zuerst
 - Tiefensuche: höchste Gesamtkosten bis zum aktuellen Knoten zuerst
- Bestensuche statt Fakt ab Start; Heuristik bis Ziel
 - Heuristikfunktion (geschätze Kosten bis Ziel) ist Vorwissen
- Greedy-Suche
 - Wähle Knoten zur Expansion mit geringsten geschätzen Kosten bis Ziel
- A*-Suche
 - Wähle Knoten zur Exp. mit geringsten geschätzten Gesamtkosten bis Ziel

Heuristik, Schätzfunktion

- Schätzfunktion/Heuristik h(s): S → Q
 - Berechnet für jeden Knoten einen Schätzwert der Kosten bis zum Ziel
 - Schätzwert: genaue Kosten nicht bekannt (warum sonst Suchen?)
 - Optimistisch (unter) oder pessimistisch (über tatsächlichen Kosten)
 - Für alle s: h(s) > 0; für Zielknoten z: h(z) = 0
 - Meist kann eine optimistische Schätzfunktion angegeben werden

*Heuristik, Schätzfunktion

Beispiel: Problem zur Routenfindung

 Heuristikfunktion ist Entfernung Luftlinienentfernung Neamt zu Bucharest in Luftlinie 87 Zerind Arad 366 151 **Bucharest** 0 lasi Craiova 160 Kosten ist Arad 🗖 140 Dobreta 242 92 **Eforie** 161 Sibiu **Fagaras** 99 **Fagaras** 178 Länge 118 Giurgiu 77 80 Hirsova 151 des Iasi 226 Rimnicu Vilcea **Timisoara** Lugoj 244 142 Mehadia 241 gewichteten 211 Neamt Pitesti 234 97 Lugoi Oradea 380 98 Pitesti 98 Pfads 85 Hirsova Rimnicu Vilcea 146 193 101 Urziceni Mehadia Sibiu 253 86 Timisoara **138** 329 Optimistisch Bucharest Urziceni 80 120 Dobreta I Vaslui 199 Zerind 374

Craiova

☐ Giurgiu

Eforie

★Gierige (Greedy) Suche

- Bewertungsfunktion, Heuristik
 - Geschätzte Kosten bis zum Ziel
- Umsetzung Bestensuche
 - Prioritätswarteschlange statt Wartschlange
 - Ergebnis der Kostenfunktion als Wert

★Gierige (Greedy) Suche

- Beispiel Routenplanung
 - Nicht optimal, 450 statt418
 - Gesamtkosten werden nicht betrachtet

Zerind

- Wenige Knoten expandiert
- Achtung, Beispiel Iasi Arad
 nach Fagaras
 - Doppelte Zustände weiter möglich
 - Erreichte Zustände merken und ausschließen

★Gierige Suche – Bewertung

- Greedy Search, ähnlich zu Tiefensuche
 - Häufig wird tiefster Pfad weiter verfolgt,
 außer bei Sackgassen oder falschen Richtungen
 - Auswahl anderer Pfad/Knoten möglich, wenn jede mögliche Auswahl ein Rückschritt ist
 - Nicht optimal
 - Unvollständig, wenn mehrfaches Erreichen der Zustände nicht eliminiert wird
 - Zeitkomplexität: O(b^m)
- Anders als Tiefensuche
 - Speicherkomplexität: O(b^m)
 da alle Knoten im Speicher verbleiben müssen
 - Zeit- und Speicherbedarf kann meist durch gute Schätzfunktion stark reduziert werden
- Verbleibendes Problem: Optimalität
 - Ok für Online-Probleme (Zustandsraum nicht sichtbar/planbar)

★A*-Suche

Bewertungsfunktion, Heuristik

- Bisherige Kosten [g(s)] + geschätzte Kosten bis zum Ziel [h(s)]
- f(s) = g(s) + h(s), für alle s: f(s), h(s) = 0
- h(s) wie bei gieriger Suche
- Optimalität falls h optimistisch, also h(s) immer kleiner gleich Kosten optimaler Pfad von s zu Ziel;

Umsetzung

- Prioritätswarteschlange
- f(s) als Wert

Beispiel Routenplanung

- Optimal 418
- Gesamtkosten werden betrachtet
- Wenige Knoten expandiert

A-Suche – Bewertung

- A*-Suche, ähnlich Breitensuche
 - Nach aktuellem Wissen kürzester Pfad expandieren
 - Auswahl anderer
 Pfad/Knoten möglich,
 - Optimal, wenn Heuristik-Anteil immer unterschätzt
 - Vollständig, auch bei mehrfachem Erreichen der Zustände (wegen Anteil Kostenfunktion zurückgelegte Strecke)
 - Endlicher Zustandsraum oder diskrete Kostenfunktion vorausgesetzt
 - Zeitkomplexität: O(b^m)
 - Speicherkomplexität: O(b^m), bleibt im schlechtesten Fall schlecht
 - Zeit- und Speicherbedarf kann meist durch gute Schätzfunktion stark reduziert werden
- Das Standard Suchverfahren

⊁Optimalität A*

- Behauptung: A* ist optimal
 - Das heißt A* findet einen Pfad mit minimalen
 Pfadkosten K vom Startknoten s zu einem Zielknoten z
- Beweis: Widerspruch
 - Annahme: A* ist nicht optimal
 - Dann findet A* einen Zielknoten z' (z=z' ist möglich) auf einem Pfad ungleich dem optimalen Pfad, also mit größeren Pfadkosten K' > K
 - Sei n der erste Knoten ungleich z, dessen Pfadkosten größer als K ist und der expandiert wird
 - Der Knoten muss existieren, da z' ja auf dem suboptimalen Pfad expandiert wurde, damit größer und ein Kandidat ist
 - Alle Knoten in x inklusive z auf dem optimalen Pfad werden nicht expandiert, da nach Annahme z' als Lösung identifiziert wird
 - Für alle Knoten x auf dem kürzeren Pfad gilt nun
 - $f(x) = g(x) + h(x) \le f(z)$, da h unterschätzt
 - Aber f(z) < f(n) nach Annahme und $f(n) \le f(z')$, also $f(x) < f(n) \le f(z')$
 - Wenn aber f(x) < f(n), dann wird jeder Knoten x auf dem optimalen Pfad vor n expandiert - Widerspruch

z'

Informiertheit einer Heuristikfunktion

Ziel

- Bewertung einer Heuristikfunktion
- Wann liefert eine Heuristikfunktion eine bessere (schnellere) Suche?

Definition: Dominierung

- Gegeben seien zwei unterschätzende (zulässige) Heuristiken h₁ und h₂
- Wir sagen h_1 dominiert h_2 wenn für alle x ∈ S gilt $h_1(x) \ge h_2(x)$

Satz: Monontonie

Wenn die Heuristik h₁ die Heuristik h₂ dominiert, dann wird jeder Knoten, der durch die A*
 Suche unter Verwendung von h₁ expandiert wird
 auch durch die A* Suche unter Verwendung von h₂ expandiert

Folgerung

- A* arbeitet mit h₁ keineswegs langsamer als mit h₂, aber eventuell
 viel viel schneller, da weniger Knoten expandiert werden könnten
- h₁ heißt auch besser informiert als h₂
- Bei mehreren zulässigen Heuristikfunktionen können wir für eine dominierende Heuristik für jeden Knoten das Maximum verwenden

Heuristiken – Beispiel für 8-Puzzle

- Eigenschaften 8-Puzzle
 - Verzweigungsfaktor b≅3; in Ecke 2, Rand 3, Mitte 4
 - Durchschnittliche Lösungslänge 20
 - Erschöpfend 3²⁰; doppelte weg 9!/2 = 181.440 Zustände
- Heuristik h₁: Anzahl Kacheln falsch
 - Im Startzustand zum Beispiel 7
 - 1+1+1+1+1+1+0+1=7
- Heuristik h₂: Entfernung Kacheln von Zielposition
 - Summe der Manhattan-Distanzen
 - Im Startzustand zum Beipiel 18
 - 2+3+3+2+4+2+0+2=18
 - h2 dominiert h1
- Vergleich Experiment; Russel, Norvig
 - Lösungslänge 14, Tiefensuche* > 3 Millionen,
 A* (h1) 539, A* (h2) 113 Knoten
 - Lösungslänge 24, Tiefensuche* ?, A* (h1) 39135, A*(h2) 1641 Knoten

5	4	
6	1	8
7	3	2

Startzustand

1	2	3
8		4
7	6	5

Zielzustand

Speicherbegrenzte A-Suche

Problem

- Speicherverbrauch, da alle nicht expandierten Knoten noch im Speicher gehalten werden müssen (Verhalten Breitensuche)
- Lösungsansatz Iterative Deepening, IDA*
 - Statt Begrenzen auf Suchtiefe Begrenzen auf maximale Kosten f
 - Schrittweises Erhöhen der maximalen Kosten auf den kleinsten Wert, der im vorherigen Lauf aufgrund der Größe nicht betrachtet wurde
 - Optimalität bleibt erhalten, diskrete Kostenfunktion
 - Speicherbedarf abhängig von maximaler Tiefe bei gegebener Kostengrenze
 - Problem: Viele kleine Vergrößerungen maximaler Kosten; Lösung durch größere Sprünge bei Verzicht Optimalität

Speicherbegrenzte A-Suche

- Lösungsansatz Simplified Memory Bounded, SMA*
 - Angabe einer maximalen Speichergröße für die Prioritätswarteschlange
 - Löschen der schlechteren Knoten (hoher f-Wert) wenn Queue voll
 - Optimal und vollständig, wenn flachster Lösungsweg in Queue passt
 - Ansonsten beste Lösung, die der vorhandene Speicher zulässt

*****Inhalte

- Einführung
- Symbolische Verfahren, Logik
 - Aussagenlogik, Prädikatenlogik
 - Horn Logik, Prolog
- Suchen und Bewerten
 - Problemlösen durch Suche
 - Uninformierte Suche
 - Heuristische Suche
 - Lokale Suche
 - Spielbäume

XSpielbäume

Problem

- Mehrere Agenten agieren,
 Aktion ändert Welt
 (für andere Agenten)
- Adversariale Suchräume, Spiele
- Meist zwei Spieler, abwechselnd ziehen

Lösung

- Suchbäume
- Heuristiken
- Ansätze, Verfahren
 - Minimax, Alpha-Beta-Kürzung
 - Bewertungsfunktionen für Spiele,
 Suchbaumbeschränkungen
 - Zufallselemente, ExpectMinimax
 - Ansätze hochwertiger Spielverfahren

*****Spiele

- Mehrere Spieler
 - Zweispieler
 - Mehrspieler
- Nullsummenspiele
 - Einer gewinnt, der andere verliert
 - (Kooperatives Verhalten ab drei Spielern möglich)
- Information
 - Vollständige
 - Unvollständige
 Information
 über aktuellen Zustand
- Ablauf
 - Deterministisch
 - Zufallselemente

Information

*

Deterministisch, Zwei-Spieler, Nullsumme

Spieldefinition

- Zwei Spieler, Min und Max
- (Zustandsraum als mögliche Brettpositionen)
- Abwechselnd ziehen (Verändern der Position) von Min und Max
- Ausgangszustand: Brettposition plus "Wer ist am Zug"
- Nachfolgerfunktion:
 - Abbildung Position x Zug auf Menge von Positionen
 - Zug ist Menge gültiger Züge für jeden Spieler am Zug
- Endetest: Ist Spiel vorbei?, Endzustände
- Nutzenfunktion: Bewertung bei Spielende

Beispiel: Tic-Tac-Toe

- 9! Zustände (1. Zug 9 Möglichkeiten, 2. Zug 8, ...)
 realisitisch weniger, da vorher Endzustand erreicht
- Nachfolgerfunktion: Wähle freie Position und markiere mit eigenem Zeichen
- Endetest: Drei gleiche Zeichen in Spalte, Zeile oder Diagonale oder voll
- Nutzenfunktion: 1 (Sieg), 0 (Unentschieden), -1 (Niederlage)

★Optimale Strategie - Minimax

Voraussetzung

 Zwei perfekte Spieler, die Spiel bis Ende vollständig durchschauen

Mini-Beispiel

- Genau zwei Züge,
 Max beginnt
- Max hat größte Bewertung, Min kleinste als Ziel

- Vollständige Durchdringung des Spiels möglich

- Wenn Max A1 zieht und Min A11, dann hat Max den Wert 3,
- Wenn Max A1 zieht und Min A12, dann hat Max den Wert 12, ...

Minimax-Algorithmus

- Nach A1, würde Min A₁₁ wählen; Nach A₂ Min A₂₁; Nach A₃ Min A₃₃
- Für Max ist das der Wert des Zugs A₁, A₂, A₃ respektive
- Max wählt A₁
- Allgemein: Eine Ebene maximieren, dann minimieren,

Max

Max

Min

Max

*Minimax-Algorithmus

- Minimax-Algorithmus
 - Bewerte am Ende
 - Ansonsten f
 ür alle Nachfolger
 - Berechne Wert des nächsten Layers
 - Vertausche dabei min/max
- Eigenschaften
 - Vollständig für endliche Bäume bzw. endliche Gewinnstrategien
 - Optimal nur gegen perfekten Gegner
 - Zeitkomplexität: O(b^m), b Verzweigungsfaktor, m maximale Tiefe
 - Speicherkomplexität: O(bm), Tiefensuche
- Problem Zeitkomplexität
 - Beispiel Schach:
 b ≈ 35, m ≈ 100, normalerweise nicht mehr praktisch lösbar
 - Ansatz: Nicht jeden Pfad verfolgen

```
def minimax(start, expand, evaluate,
    m=max):
    if evaluate(start) != None:
        return evaluate(start), start
    n_m = min if m == max else max
    layer = []
    for n in expand(start):
        val,_ = minimax(n, expand, evaluate, n_m)
        layer.append((val, n))
    return m(layer)
```

*Mehrspieler-Spiele

- Mehrspieler Spiele
 - Halma, Mensch-Ärgere-Dich-Nicht, ...
- Anpassung Minimax
 - Jeder Knoten im Suchbaum erhält Vektor mit einem Eintrag je Spieler
 - In einem Drei-Spieler Spiel mit Spielern A, B, C den Vektor (v_Δ, v_R, v_C)
 - Für Endzustände repräsentiert jeder Wert den Wert des Ergebnisses für den jeweiligen Spieler
 - Nur ein Wert in Zwei-Spieler Spielen, Wert des anderen ist Gegenteil
 - Auswahl bei "perfektem" Spieler durch Maximieren auf der Ebene, bei der er oder sie am Zug ist
- Besonderheiten Mehrspieler Allianzen
 - Spiel mit drei Gegnern, einer ist überlegen
 - Allianzen sind sinnvoll. Schwächere haben nur eine Chance, wenn mit Allianz Stärkere besiegt werden
 - Passiert automatisch bei vollständig durchschauten Spiel

Alpha-Beta-Kürzung

- Ziel
 - Teilbäume Knoten nicht bearbeiten
 - Gleiches Ergebnis wie Minimax
- Verfahren: Alpha-Beta-Kürzung
 - Berechne Untergrenze α (max-Ebene)
 - Berechne Obergrenzen darunter (min)
 - Sobald Obergrenze kleinergleich
 Untergrenze: Abschneiden (cutoff)
 - Umgekehrt (min/max) mit β
- Beispiel
 - Nach Evaluation von A_{1*} weiß Max,
 dass mindestens 3 erreicht werden kann
 - Wenn jetzt bei A₂ und dann A₂₁ bestenfalls 2 herauskommt, dann muss A₂
 nicht weiter expandiert werden
 - Bei A₃ muss weiter evaluiert werden

*Alpha-Beta-Kürzung – Umsetzung

- Abwechselnd maximieren, dann minimieren
- alpha: maximieren
 - Check Ende, nur evaluieren
 - Für alle Nachfolger
 - · Bewerte, Aufruf beta
 - Wenn cutoff, dann abbrechen;
 Wert egal, wird verworfen
 - Ansonsten kontinuierlich Maximum bestimmen
 - Falls durchlaufen, dann maximales Ergebnis zurück
- Effekt auf Laufzeit
 - Abhängig von Reihenfolge Expansion der Knoten
 - Im Idealfall (auf einer Ebene immer gleich richtig geraten) halber Verzweigungsgrad, O(b^{m/2})

def alphabeta(start, expand, evaluate):
 return alpha(start, expand, evaluate, None, None)

```
def alpha(s, expand, evaluate, a, b):
  if evaluate(s) != None:
    return (evaluate(s), s)
  an = None
  for n in expand(s):
    v,_ = beta(n,expand,evaluate,a,b)
    if b != None and v > b: # cutoff
    return v, n # wird verworfen
    if a == None or v > a:
        a, an = v, n
    return a, an
```

```
def beta(s, expand, evaluate, a, b):
  if evaluate(s) != None:
    return (evaluate(s), s)
  bn = None
  for n in expand(s):
    v,_ = alpha(n,expand,evaluate,a,b)
    if a != None and v < a: # cutoff
    return v, n # wird verworfen
    if b == None or v < b:
        b, bn = v, n
  return b, bn</pre>
```

+ Einschränkungen Suchbaum

- Suchraum meist zu groß
 - Auch mit Alpha-Beta-Reduktion
 - Meist feste Zeitvorgabe, die nicht überschritten werden, ein Zug muss nach einer gewissen Zeit gemacht werden
- Suchraum beschränken
 - Kein Durchschauen bis zum Ende, keine perfekte Evaluation
 - Bewertungsungsfunktion statt perfekte Evaluation
 - Berechnen einer relativen Zahl, die Spielzustand aus eigener Sicht bewertet
 - Meist Summe von einzelnen Features
 - Heuristik, wie bei informierter Suche
 - Abschneiden (Cutoff) von Zweigen
 - Anhand von Heuristiken
 - z.B. schlechtester Wert bisher
 - Zustandsbibliotheken
- Verzicht auf richtigen Zug

*Bewertungsfunktion

- Bewertung eines Zustands
 - Unsicherheit aufgrund beschränkter Systemressourcen
 - Bewertungsfunktion meist gewichtete Summe von zu extrahierenden Bewertungen von Einzelfeatures
- Beispiel: Schach
 - Bewertung anhand der Anzahl und Wertigkeit (Punkte) der Figuren

Alternativer
Ansatz
Dame,
maschinelles
Lernen

1

Gewichtung anhand Erfahrung beim Schachspiel

- Gute Gewinnchancen, bei >1 Vorteil, fast sicherer Sieg bei >3 Vorteil
- Andere "Features" können in (Milli-)Punkte umgerechnet werden
 - "Gute Bauernstruktur", "Sicherheit des Königs", ...
- Achtung nur eine Heuristik
 - Sinnlos inmitten einer festen Austausch-Zugfolge
 - Summieren bedeutet, dass die Features unabhängig voneinander sind (?)
 - Gewichtung über Spieldauer gleich, aber z.B. Springerpaar im Endspiel mehr als doppelt so viel wert wie ein einzelner Springer

*Suchbaum beschneiden

- Abbrechen der Tiefensuche
 - Statt Test auf Endzustand Test auf abbrechen/beenden
 - Bei Endzuständen wird natürlich auch abgebrochen
- Verschiedene Ansätze
 - Feste maximale Tiefe
 - Iterative Tiefensuche mit Zeitlimit
- Verbesserungen
 - Nur in Ruhephasen im Spiel (nicht mitten in einer Zugtauschfolge, die typischerweise tief aber nicht breit sind) abbrechen
 - Horizonteffekte vermeiden (Zustände, bei denen ein schlechter Zug unausweichlich ist, aber die Suche präferiert diese Entscheidung hinter den Suchhorizont zu schieben)
 - "Hoffnungslose" oder symmetrische Züge nicht beachten

*Beispiel – Schach

Bewertung

- Voller Satz Figuren ist 8+2*5+4*3+9 = 39
- Schwarz:Es fehlt Bauer und Springer,35
- Weiss:Es fehlt Bauer,38
- Und es sieht nicht so gut aus für Schwarz ...

• Schachprogramme

- ca. 1 Million Knoten pro Sekunde, ca. 200 Millionen Knoten pro Zug
- Statt Minimax (ca. 6 Halbzüge) mit Alpha-Beta-Kürzung ca. 10 Halbzüge
- Viel Engineering und Tuning
 - Aktuell ca. 14 Halbzüge
 - Umfangreiche Eröffnungs- und Endspielbibliotheken

Zufallselemente – Expectiminimax

- Spiele mit Zufallselementen
 - Zum Beispiel Würfelspiele wie Backgammon
 - Nicht mehr deterministisch
 - Die Anzahl und Art der zulässigen Züge wird durch Zufall bestimmt
- Einführung von Zufallsknoten
 - Statt Max gefolgt von Min, Max, Min ...
 Max, Zufall, Min, Zufall, Max, Zufall, Min ...
 - Ein Zufallsknoten auf der Zufallsebene für jedes mögliche Ergebnis
 - Mit Einzelwahrscheinlichkeiten gewichteter Gesamtwert der Zufallsebene (Erwartungswert)
 - Verfahren: Expectiminimax

X Zufallselemente – Suchraumbegrenzung

- Techniken Suchraumbegrenzung
 - Vorhandene Techniken mit Anpassung einsetzbar
 - Achtung: Bewertungsfunktion muss linear dem tatsächlichen relativen Wert des Zustands entsprechen
 - Bei Minimax war es reine Entscheidungsfunktion (egal ob 1, 2 oder 1, 10)
 - Alpha-Beta-Kürzung:
 - Nicht einfach möglich, keine "wahrscheinliche" Zugfolge
 - Einführung von Intervallen (Werte ≤ 10)

>Unbekannte Informationen

- Unbekannte Information
 - Nicht alle relevanten Informationen sind bekannt
 - Kann behandelt werden wie zufällige Information
 - Beispiel: Kartenspiele (Skat, ...)
 - Wissen/Wahrscheinlichkeiten über Karten der Gegener ändert sich. Es wird eine Farbe nicht bekannt, ein Stich nicht gemacht, ...
 - Informationen, die bekannt sind zur Entscheidungsfindung nutzen
 - Expectiminimax mit gewichtetem Mittelwert aller möglichen Situationen
- Beispiel: Wegekreuzung/Entscheidungsbaum
 - Max will Gold nicht Geld aber nicht sterben
 - Max kann sich an jedem Knoten entscheiden ob links oder rechts
 - Wenn Baum bekannt, dann dreimal rechts
 - Wenn Baum nur bekannt bis Level von Knoten C, dann?
 - Normale Menschen gehen links und nehmen Geld

