

OpenShift Architecture

As Part of OpenShift Architecture Workshop

Functional overview

OPENSHIFT CONTAINER PLATFORM | Architectural Overview

OpenShift and Kubernetes core concepts

a container is the smallest compute unit

containers are created from container images

container images are stored in an image registry

an image repository contains all versions of an image in the image registry

containers are wrapped in pods which are units of deployment and management

ReplicationControllers & ReplicaSets ensure a specified number of pods are running at any given time

Deployments and DeploymentConfigurations define how to roll out new versions of Pods

a daemonset ensures that all (or some) nodes run a copy of a pod

configmaps allow you to decouple configuration artifacts from image content

secrets provide a mechanism to hold sensitive information such as passwords

services provide internal load-balancing and service discovery across pods

apps can talk to each other via services

routes make services accessible to clients outside the environment via real-world urls

projects isolate apps across environments, teams, groups and departments

OpenShift 4 Architecture

your choice of infrastructure

COMPUTE NETWORK STORAGE

workers run workloads

masters are the control plane

everything runs in pods

state of everything

core kubernetes components

core OpenShift components

internal and support infrastructure services

run on all hosts

integrated image registry

cluster monitoring

log aggregation

integrated routing

dev and ops via web, cli, API, and IDE

OpenShift lifecycle, installation & upgrades

OpenShift 4 Installation

Two new paradigms for deploying clusters

Installation Paradigms

OPENSHIFT CONTAINER PLATFORM

Full Stack Automated

Simplified opinionated "Best Practices" for cluster provisioning

Fully automated installation and updates including host container OS.

Red Hat
Enterprise Linux
CoreOS

Pre-existing Infrastructure

Customer managed resources & infrastructure provisioning

Plug into existing DNS and security boundaries

HOSTED OPENSHIFT

Azure Red Hat OpenShift

Deploy directly from the Azure console. Jointly managed by Red Hat and Microsoft Azure engineers.

OpenShift Dedicated

Get a powerful cluster, fully Managed by Red Hat engineers and support.

Full-stack Automated Installation

Pre-existing Infrastructure Installation

Comparison of Paradigms

Full Stack Automation

Pre-existing Infrastructure

Build Network	Installer	User	
Setup Load Balancers	Installer	User	
Configure DNS	Installer	User	
Hardware/VM Provisioning	Installer	User	
OS Installation	Installer	User	
Generate Ignition Configs	Installer	Installer	
OS Support	Installer: RHEL CoreOS	User: RHEL CoreOS + RHEL 7	
Node Provisioning / Autoscaling	Yes	Only for providers with OpenShift Machine API support	

OpenShift 4 Lifecycle

Supported paths for upgrades and migrations

Support Timelines

New model

Release based, not date based. Rolling three release window for support.

The overall 4 series will be supported for at least three years

- Minimum two years full support (likely more)
- One year maintenance past the end of full support

EUS release planned

Supported for 14 months of critical bug and critical security fixes instead of the normal 5 months. If you stay on the EUS for its entire life, you must use the application migration tooling to move to a new cluster

Upgrades vs. Migrations

OTA Upgrades

Works between two minor releases in a serial manner.

Happy path = migrate through each version

On a regular cadence, migrate to the next supported version.

Optional path = migration tooling

If you fall more than two releases behind, you must use the application migration tooling to move to a new cluster.

Current minor release

Full support for all bugs and security issues 1 month full support overlap with next release to aid migrations

Previous minor release

Fixes for critical bugs and security issues for 5 months

Operations and infrastructure deep dive

Red Hat Enterprise Linux CoreOS

The OpenShift operating system

Red Hat Enterprise Linux

RED	HAT®			
FN7	FRPF	RISE	LINU	JX®

RED HAT® ENTERPRISE LINUX CoreOS

General Purpose OS

Immutable container host

BENEFITS

- 10+ year enterprise life cycle
- Industry standard security
- High performance on any infrastructure
- Customizable and compatible with wide ecosystem of partner solutions
- Self-managing, over-the-air updates
- Immutable and tightly integrated with OpenShift
- Host isolation is enforced via Containers
- Optimized performance on popular infrastructure

WHEN TO USE

When customization and integration with additional solutions is required

When cloud-native, hands-free operations are a top priority

Immutable Operating System

Red Hat Enterprise Linux CoreOS is versioned with OpenShift

CoreOS is tested and shipped in conjunction with the platform. Red Hat runs thousands of tests against these configurations.

Red Hat Enterprise Linux CoreOS is managed by the cluster

The Operating system is operated as part of the cluster, with the config for components managed by Machine Config Operator:

- CRI-O config
- Kubelet config
- Authorized registries
- SSH config

RHEL CoreOS admins are responsible for:

Nothing. 😃 🙌

A lightweight, OCI-compliant container runtime

Minimal and Secure Architecture Optimized for Kubernetes Runs any OCI-compliant image (including docker)

CRI-O Support in OpenShift

CRI-O tracks and versions identical to Kubernetes, simplifying support permutations

OpenShift 4.0 CRI-0 1.12 Kubernetes 1.12 CRI-0 1.13 OpenShift 4.1 Kubernetes 1.13 OpenShift 4.2 CRI-0 1.14 Kubernetes 1.14

podman

A docker-compatible CLI

for containers

- Remote management API via Varlink
- Image/container tagging
- Advanced namespace isolation

buildah

Secure & flexible OCI container builds

- Integrated into OCP build pods
- Performance improvements for knative enablement
- Image signing improvements

OpenShift 4 installation

Installer and
user-provisioned
infrastructure, bootstrap,
and more

OpenShift Bootstrap Process: Self-Managed Kubernetes

How to boot a self-managed cluster:

- OpenShift 4 is unique in that management extends all the way down to the operating system
- Every machine boots with a configuration that references resources hosted in the cluster it joins, enabling cluster to manage itself
- Downside is that every machine looking to join the cluster is waiting on the cluster to be created
- Dependency loop is broken using a bootstrap machine, which acts as a temporary control plane whose sole purpose is bringing up the permanent control plane nodes
- Permanent control plane nodes get booted and join the cluster leveraging the control plane on the bootstrap machine
- Once the pivot to the permanent control plane takes place, the remaining worker nodes can be booted and join the cluster

Bootstrapping process step by step:

- 1. Bootstrap machine boots and starts hosting the remote resources required for master machines to boot.
- 2. Master machines fetch the remote resources from the bootstrap machine and finish booting.
- 3. Master machines use the bootstrap node to form an etcd cluster.
- 4. Bootstrap node starts a temporary Kubernetes control plane using the newly-created etcd cluster.
- 5. Temporary control plane schedules the production control plane to the master machines.
- 6. Temporary control plane shuts down, yielding to the production control plane.
- 7. Bootstrap node injects OpenShift-specific components into the newly formed control plane.
- 8. Installer then tears down the bootstrap node or if user-provisioned, this needs to be performed by the administrator.

How everything deployed comes under management

Masters (Special)

- Terraform provisions initial masters*
- Machine API adopts existing masters post-provision
- Each master is a standalone Machine object
- Termination protection (avoid self-destruction)

Workers

- Each Machine Pool corresponds to Machine Set
- Optionally autoscale (min,max) and health check (replace if not ready > X minutes)

Multi-AZ

- MachineSets scoped to single AZ
- Installer stripes N machine sets across AZs by default
- Post-install best effort balance via cluster autoscaler

OpenShift 4 Cluster Management

Powered by Operators,
OpenShift 4 automates
many cluster
management activities

Over-the-air updates

Release Payload Info

Cloud API

OpenShift Security

Features, mechanisms and processes for container and platform isolation

CONTROL

Application Security **Container Content**

CI/CD Pipeline

Container Registry

Deployment Policies

DEFENDInfrastructure

Container Platform

Container Host Multi-tenancy

Network Isolation

Storage

Audit & Logging

API Management

EXTEND

Security Ecosystem

Extended Depth of Protection

Feature Transfer (upstream)

Feature Development (joint)

Certificates and Certificate Management

- OpenShift provides its own internal CA
- Certificates are used to provide secure connections to
 - master (APIs) and nodes
 - Ingress controller and registry
 - etcd
- Certificate rotation is automated
- Optionally configure external endpoints to use custom certificates

Service Certificates

Identity and Access Management

Fine-Grained RBAC

- Project scope & cluster scope available
- Matches request attributes (verb,object,etc)
- If no roles match, request is denied (deny by default)
- Operator- and user-level roles are defined by default
- Custom roles are supported

Figure 12 - Authorization Relationships

OpenShift Monitoring

An integrated cluster monitoring and alerting stack

OpenShift Cluster Monitoring

Metrics collection and storage via Prometheus, an open-source monitoring system time series database.

Alerting/notification via Prometheus' Alertmanager, an open-source tool that handles alerts send by Prometheus.

Metrics visualization via Grafana, the leading metrics visualization technology.

OpenShift Logging

An integrated solution for exploring and corroborating application logs

Observability via log exploration and corroboration with EFK

Components

- Elasticsearch: a search and analytics engine to store logs
- Fluentd: gathers logs and sends to Elasticsearch.
- Kibana: A web UI for Elasticsearch.

Access control

- Cluster administrators can view all logs
- Users can only view logs for their projects

Ability to forward logs elsewhere

o External elasticsearch, Splunk, etc

OPENSHIFT LOGGING | Operator & Operand Relationships

Log data flow in OpenShift

Log data flow in OpenShift

Persistent Storage

Connecting real-world storage to your containers to enable stateful applications

A broad spectrum of static and dynamic storage endpoints

PV Consumption

Static Storage Provisioning

Dynamic Storage Provisioning

Build and Deploy Container Images

Tools and automation
that makes developers
productive quickly

DEPLOY YOUR SOURCE CODE

DEPLOY YOUR APP BINARY

DEPLOY YOUR CONTAINER IMAGE

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make Red Hat a trusted adviser to the Fortune 500.

- in linkedin.com/company/red-hat
- youtube.com/user/RedHatVideos
- f facebook.com/redhatinc
- twitter.com/RedHat

