MAT 1375, Classwork7, Fall2024

ıD:	Name:				
1. Definition of Polynomial function of	of degree $oldsymbol{n}$ in	one variable:			
A	in one variable is a function f of the form				
$f(x) = a_n x^n +$	$a_{n-1}x^{n-1} + \cdots$	$\cdots + a_2 x^2 + a$	$_{1}x^{1}+a_{0},$		
for some constants a_0 , a_1 , \cdots , a_n , where	ere≠ () and n is a no	on-negative integer. The		
numbers a_0 , a_1 , \cdots , a_n are called					
The number a_n , the coefficient of the variable to the highest power, is called the					
	and $oldsymbol{n}$ is the $_$		of the polynomial.		

2. The **End Behavior of the polynomials** and the **Leading Coefficient Test**:

As x goes to ∞ or $-\infty$, the graph of polynomial function

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x^1 + a_0, \quad (a_n \neq 0)$$

either rises or falls eventually. Here, we can conclude this into the following table

n is an odd number		$\it n$ is an even number		
$a_n < 0$	$a_n > 0$	$a_n < 0$		
(,)	(,)	(,)		
	$a_n < 0$	$a_n < 0$ $a_n > 0$		

3. A	or	or	of a polynomial	f(x) is a number c so that		
f(c) =	f(c) = Each real root/zero/solution of the polynomial $f(x)$ appears as an					
	of the	e graph of $f(x)$. (Here	`real' means not a c	omplex number)		
4. Multipli	city of the roo	ot and x-Intercepts:				
Let $f(x) =$	$(x-r)^k$ wh	ere r is the	_ of f and this root	repeats times. We		
call r a roo	t with	k.				
Even Multiplicity (k is even)		Odd Multiplicity (k is odd)				
The graph	1	the x -axis and	The graph	the x -axis at the		
		at the root r .	$\operatorname{root} r.$			
The gra	aph tends to f	flatten out near the ro	ots with multiplicity	greater than		
_		nomial Functions: If function of degree <i>n</i>	, then the graph of <i>f</i>	has at most		
turning poi	ints.					
6. The esse	ential part for	drawing a complete g	raph of f :			
whe	n appro oots (which a	aches) re intercepts) wit	h the Multiplicities	v the function behaves		
_		he values by computin				
		or rational functions in	• •			
• Turn	ing points wi	th Extrema (that is all ₋	and)		