Post-processing of results

Øystein A. Haaland

Post-processing of results

- Genome-wide and candidate gene analyses often result in very much output
- Not obvious how this should be handled
- This session covers the following strategies
 - p-value adjusting
 - Per comparison error rate
 - Family-wise error rate
 - False discovery rate
 - Ploting
 - QQ-plot
 - Volcano plot
 - Manhattan plot
 - Regional plot

Normally we reject H0 if $p_i < \alpha = 0.05$

What if the number of tests is very large?

```
Test 1: H_0^1 vs. H_1^1 \Rightarrow p_1

Test 2: H_0^2 vs. H_1^2 \Rightarrow p_2

: : : : : : : : : Test N: H_0^N vs. H_1^N \Rightarrow p_N
```

Keep H_0 Reject H_0 Sum H_0 true N_{00} N_{01} N_0 The truth H_0 false N_{11} N_1 N_{10} Sum N n_0 n_1

Result of test

Number of correct results: $N_{00}+N_{11}$

Number of incorrect results: $N_{10}+N_{01}$

Result of test

		Keep H_0	Reject H_0	Sum
The truth	H_0 true	N_{00}	N_{01}	N_0
	H_0 false	N_{10}	N_{11}	N_1
	Sum	n_0	n_1	N

Number of correct results: $N_{00}+N_{11}$

Number of incorrect results: $N_{10}+N_{01}$

We know: N, n_0 , n_1

Unknown: N_0 , N_1 , N_{00} , N_{01} , N_{10} , N_{11}

Rejecting HO

- 1. Per comparison error rate (PCER)
 - Control type I error rate (false positive rate) for a single test.
 - Type I error rate: N_{01}/N_0
 - Marginal test: Reject H_0^i if $p_i < \alpha$
 - Ignoring multiple testing
 - Too liberal when N is large (rejects H0 far too often: $N_0 \times \alpha$)
 - $N_0 = 100000 \Rightarrow N_{01} \approx N_0 \times \alpha = 100000 \times 0.05 = 5000$ false positives

Result of test

 H_0 true

 H_0 false

Sum

The truth

Keep H_0 Reject H_0 Sum

 $egin{array}{c|ccccc} N_{00} & N_{01} & N_{0} \\ \hline N_{10} & N_{11} & N_{1} \\ \hline n_{0} & n_{1} & N \\ \hline \end{array}$

Rejecting HO

- 2. Familywise error rate (FWER)
 - Control overall probability of type I errors (false positives)
 - Probability of «at least one type I error» < α
 - $P(N_{01} > 0) < \alpha$

Rejecting HO

- 2. Familywise error rate (FWER)
 - Control overall probability of type I errors
 - Probability of «at least one type I error» < α
 - $P(N_{01} > 0) < \alpha$
 - Bonferroni: Reject H_0^i if $p_i < \frac{\alpha}{N}$
 - Sidak: Reject H_0^i if $p_i < 1 (1 \alpha)^{1/N}$
 - Too conservative when N is large (keeps H0 far too often)
 - $N = 100000 \Rightarrow \text{reject H0 only if } p < \frac{0.05}{100000} = 0.0000005$

Result of test

Keep H_0 Reject H_0 Sum N_{01} H_0 true N_{00} N_0 The truth H_0 false N_{10} N_{11} N_1 N Sum n_1 n_0

Rejecting HO

- 3. False discovery rate (FDR)
 - Focuses only on tests where H0 was rejected (N_{01} and N_{11})
 - Expected proportion of rejections that are false rejections

$$- E\left[\frac{N_{01}}{N_{01}+N_{11}}\right] < q$$

Result of test

Rejecting HO

3. False discovery rate (FDR)

- Focuses only on tests where H0 was rejected (N_{01} and N_{11})
- Expected proportion of rejections that are false rejections

$$- E\left[\frac{N_{01}}{N_{01}+N_{11}}\right] < q$$

- q-values:
 - Transform p-values to q-values
 - Example: Among the tests where q < 0.1, we expect a proportion of 90% to be true positives. Among the tests where q < 0.2, we expect a proportion of 80% to be true positives.
 - Storey & Tibshirani (2003) Statistical significance for genomewide studies. PNAS

Back to R!

Result of test

Sum

 N_0

 N_1

N

Manhattan plot

Zoom out to get an overview of where on the genome low p-values are prevalent

- X-axis: Chromosome and position on chromosome
- Y-axis: -log10(p-value)

Right:

Example from analyses looking for gene-environment effects on the risk of facial clefts. SNPs with p-values less than 0.00001 are colored blue.

Manhattan plot

Zoom out to get an overview of where on the genome low p-values are prevalent

- X-axis: Chromosome and position on chromosome
- Y-axis: -log10(p-value)

Right:

Example from analyses looking for gene-environment effects on the risk of facial clefts. SNPs with p-values less than 0.00001 are colored blue.

Regional plot

Zoom back in to get more detail on the areas of interest

- X-axis:

 Position on chromosome
 Genes
 Recombination rate at position
- Y-axis: -log10(p-value)Recombination rate

Right:

Regional plot for rs4243412 (blue). Linkage disequilibrium with rs4243412 is indicated by colors (red, orange, yellow, white). Light blue lines indicate recombination rate.

Thank you for your attention!

