Categorical: Logistic regression 2

Table of contents

1	Goals 1.1 Goals	1 1
2	Review: Logistic regression 2.1 Logistic regression	2 2
3	Effects and confidence intervals 3.1 Confidence intervals	2 2
4	Model comparison 4.1 Model comparison	4
5	(Pseudo) R^2 measures $\dots \dots \dots$	7 7
6	A slight variation: Probit 6.1 Probit regression	13
7	Summary 7.1 Summary	14 14

1 Goals

1.1 Goals

1.1.1 Goals of this lecture

- More details about logistic regression
 - Dealing with coefficients and confidence intervals

- Comparing models
- $-R^2$ measures
- Probit regression: Related model for binary outcomes

2 Review: Logistic regression

2.1 Logistic regression

2.1.1 Logistic regression

- Generalized linear model (GLiM) for **binary** (0,1) outcomes
 - Outcome has a binomial distribution

 - Link function is $logit = ln\left(\frac{\hat{p}}{1-\hat{p}}\right)$ Three metrics to interpret: Probability, odds, logit
 - Nonlinear effects for probability and odds

3 Effects and confidence intervals

3.1 Confidence intervals

3.1.1 Review: Three forms of logistic regression

Probability:

$$\hat{p} = \frac{e^{(b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p)}}{1 + e^{(b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p)}}$$

Odds:

$$o\hat{d}ds = \frac{\hat{p}}{1 - \hat{p}} = e^{b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p}$$

Logit:

$$\ln\left(\frac{\hat{p}}{1-\hat{p}}\right) = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_p X_p$$

3.1.2 So...

• Which metric are confidence intervals in?

- And can we have confidence intervals in multiple metrics?

• This matters because "no effect" differs across the metrics

Odds: No effect = 1Logit: No effect = 0

3.1.3 Output from logistic regression

Call:

glm(formula = Acceptance ~ GPAc, family = binomial(link = "logit"),
 data = MedGPA)

Deviance Residuals:

Min 1Q Median 3Q Max -1.7805 -0.8522 0.4407 0.7819 2.0967

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.1736 0.3253 0.534 0.593488
GPAc 5.4542 1.5792 3.454 0.000553 ***

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 75.791 on 54 degrees of freedom Residual deviance: 56.839 on 53 degrees of freedom

AIC: 60.839

Number of Fisher Scoring iterations: 4

3.1.4 Confidence intervals for coefficients

	b	LowerCL	UpperCL
(Intercept)	0.174	-0.469	0.823
GPAc	5.454	2.696	8.966

• $logit = ln\left(\frac{\hat{p}}{1-\hat{p}}\right) = 0.174 + 5.454(GPAc)$

• Significant: Confidence interval doesn't include 0

- Logit: No effect =0

3.1.5 Confidence intervals for exp(coefficients)

	exp.b.	exp.LowerCL.	exp.UpperCL.
(Intercept)	1.19	0.625	2.278
GPAc	233.73	14.825	7829.246

• Each value is e raised to its power: e.g., $e^{b_0}=e^{0.174}=1.19$

 $\bullet \ \ o\hat{d}ds = \frac{\hat{p}}{1-\hat{p}} = e^{0.174 + 5.454(GPAc)}$

- Significant: Confidence interval doesn't include $1\,$

- Odds: No effect = 1

4 Model comparison

4.1 Model comparison

4.1.1 Why do we need model comparisons?

- General: Difference involves more than one predictor
 - $-X_1$ versus X_1, X_2 , interaction of X_1 and X_2
 - Adding several related predictors together
 - * Several subscales of a larger measure
 - * A set of several covariates
- Logistic regression-specific: Test of regression coefficients may not be reliable (Vaeth, 1985)
 - Especially when the coefficients are small

4.1.2 Testing effects in linear regression

- If you added a predictor, there were *two ways* to tell if that predictor was adding to the model:
 - Test of the regression coefficient (i.e., t-test)
 - R^2 for added prediction (i.e., R_{change}^2)
 - * F-test of R_{change}^2
 - * R_{change}^2 can also be used to test multiple predictors

4.1.3 Testing effects in logistic regression

- Wald tests of the regression coefficient may not be reliable
 - Wald tests: Estimate / standard error
 - z-tests, t-tests
- Analogue of the significance test for R^2_{change}
 - Likelihood ratio test (LR test)

4.1.4 A quick note on models

- Continuum of models, from the worst model to the best model
- Worst model
 - Null model
 - Intercept only model
 - 0 predictors
- Your model
 - The model you're considering
- Best model
 - Saturated model
 - Perfect model
 - n predictors

4.1.5 Likelihood ratio (LR) test

- Likelihood (i.e., from maximum likelihood estimation) of the model
 - Specifically, the **deviance**, which is $-2 \times log(likelihood)$
- What is **deviance**?
 - How far the model is from the perfect model
 - Kind of like $SS_{residual}$
- Difference in deviance between two models has a χ^2 distribution
 - How did we get from **ratio** to **difference**?

$$*\ log(x/y) = log(x) - log(y)$$

4.1.6 Likelihood ratio (LR) test

$$\chi^2 = deviance_{model1} - deviance_{model2}$$

- Model 1: simpler model (fewer predictors, worse fit)
- Model 2: more complex model (more predictors, better fit)
- **Degrees of freedom** = difference in number of parameters
 - Significant test: Model 1 is significantly worse than Model 2
 - NS test: Model 1 and 2 are not significantly different, so go with simpler one (Model 1)

4.1.7 LR test example

- Model 1: GPAc predicts Acceptance
 - Residual deviance = 56.839
- Model 2: GPAc and MCAT predict Acceptance
 - Residual deviance = 54.014
- Degrees of freedom = 1
 - 1 additional thing estimated in model 2
- Smaller deviance means closer to perfect model
 - But is it *significantly* closer?

4.1.8 LR test example

- $\chi^2(1) = 56.839 54.014 = 2.825$
 - Critical value for $\chi^2(1) = 3.841$
 - -2.825 < 3.86
 - * NS test
 - * Model 1 and model 2 are not significantly different, so go with the simpler one
 - * Use the model with just GPAc as a predictor

4.1.9 Nested models

- LR tests are only appropriate for nested models
 - Simpler model is contained in the more complex model
- Comparing two models with different sets of predictors
 - AIC or BIC
 - Lower is better

5 (Pseudo) R^2 measures

5.1 (Pseudo) \mathbb{R}^2 measures

5.1.1 What is R-squared again?

- In linear regression, R^2 is **ALL** of these things
 - Explanatory power of the model
 - Proportion of variance in outcome explained by predictor(s)
 - Squared correlation between observed outcome (Y) and predicted outcome (\hat{Y})
 - Always between 0 and 1 (proportion)
 - Always increases or stays the same with more predictors
 - Based on the sums of squares

5.1.2 What about for logistic regression?

- In logistic regression, R^2 could be
 - Explanatory power of the model: Still true because it's vague
 - Proportion of variance in outcome explained by predictor(s): Kind of, but not always mathematically true

- Squared correlation between observed outcome (Y) and predicted outcome (\hat{Y}) : This is one approach
- Always between 0 and 1 (proportion)
- Always increases or stays the same with more predictors
- Based on the sums of squares

5.1.3 Many measures that try to approximate R^2

- Why so many measures?
 - Logistic regression is estimated via maximum likelihood
 - * No sums of squares
 - Heteroskedasticity (in probability and odds metrics)
 - * But not in logit metric...
 - Base rate influences how all these things work
 - * Overall proportion of "events" in the sample

5.1.4 Many measures that try to approximate R^2

- Here are some of the best-behaved and most commonly-used
 - Squared correlation between predicted and observed values
 - Tjur
 - McFadden
 - * Adjusted McFadden
 - Cox-Snell
 - * Adjusted version: Nagelkerke
 - McKelvey Zavoina

5.1.5 Correlation between predicted and observed values

- Literally, the correlation between the observed (Y) values and the predicted (\hat{Y}) values
 - In the example, this value is 0.297
- Mathematically the same as Efron's \mathbb{R}^2

5.1.6 Tjur's R^2

- $\bullet \ \ R^2_{Tjur} = |mean(\hat{p}|Y=0) mean(\hat{p}|Y=1)|$
 - Average predicted probability of "not events" minus average predicted probability of "events"
 - Then take the absolute value
- In the example, this value is 0.302

5.1.7 Estimation

- GLiMs are estimated using maximum likelihood
 - Likelihood (L)
 - Log-likelihood (LL) = ln(likelihood)
 - Deviance = $-2 \times LL$
- For these \mathbb{R}^2 measures, we'll often compare the deviance for our model to the deviance for a **null model**
 - This is the *worst* possible model
 - No predictors

5.1.8 McFadden \mathbb{R}^2 (a.k.a. Likelihood ratio \mathbb{R}^2 , pseudo \mathbb{R}^2)

- $R_{McFadden}^2 = 1 \frac{LL_{model}}{LL_{mult}}$
- In the example, this value is 0.25
- Proportion of variance accounted for
 - Proportion of the way from null model to perfect model
- Adjusted version divides by the maximum possible value

5.1.9 Cox-Snell \mathbb{R}^2 (a.k.a. Generalized \mathbb{R}^2)

- $R_{Cox-Snell}^2 = 1 \left(\frac{L_{null}}{L_{model}}\right)^{2/N}$
- In the example, this value is 0.291
- Very influenced by base rate
 - Adjusted version divides by the maximum possible value
 - Nagelkerke

5.1.10 A quick note: Latent variable interpretation

- We've talked about logistic regression in terms of binary outcome
- Binary manifestation of a continuous variable
 - Agree / Disagree
 - * Continuum of agreement: Switch from disagree to agree
 - Medical diagnosis (e.g., hypertension)
 - * Continuous measure of blood pressure: \geq 120 cutoff
- Continuous latent variable underlying the binary observed one

5.1.11 Figure: Latent variable underlying the binary

5.1.12 Figure: Latent variable underlying the binary

5.1.13 Figure: Acceptance vs GPA

5.1.14 Latent variable

$$Y^* = b_0 + b_1 X_1 + e$$

- b_0 here has a different interpretation
 - Threshold or cut point, not intercept: Location of vertical line
 - Common in SEM for binary or ordered category outcom
- How does this help us?
 - Linear model with constant variance
 - $-e \sim \text{logistic}(0, \pi^2/3)$

5.1.15 McKelvey-Zavoina \mathbb{R}^2

- $R_{MZ}^2 = \frac{\sigma_{\hat{Y}}^2}{\sigma_{\hat{Y}}^2 + \frac{\pi^2}{3}}$
 - Where $\sigma_{\hat{V}}^2$ is the variance of the predicted logit scores
 - and $\pi^2/3$ is the **residual variance**
 - Interpreted as *proportion* of variance accounted for
- In the example, this value is 0.426

5.1.16 Which one to use?

- Some are recommended over others
 - McFadden (a.k.a. Likelihood ratio R^2 , Pseudo R^2) = 0.25
 - * Relatively invariant to base rate
 - * Also usable for other GLiMs
 - · Anything with a likelihood
 - McKelvey-Zavoina = 0.426
 - * Only applicable to logistic regression because it involves the residual variance for the logistic distribution of the errors

6 A slight variation: Probit

6.1 Probit regression

6.1.1 Probit regression

- Probit regression is an alternative to logistic regression
 - Probit link function
 - Binomial distribution
- "Probit" is the inverse normal distribution
 - Give it a probability, it returns the z-score for that probability
 - * probit(0.025) = -1.96
 - * probit(0.5) = 0
 - $*\ probit(0.975)=1.96$

6.1.2 Figure: Probit vs logit

6.1.3 Probit regression

• Often used in biological sciences

- Sometimes used in SEM
- Gives results that are very similar to logistic regression
- Based on the normal distribution, which is nice
 - But you lose the odds ratio interpretation from logistic
 - Must use probability metric

7 Summary

7.1 Summary

7.1.1 Summary of this week

- Logistic regression
 - Confidence intervals
 - * In different metrics
 - Comparing models
 - * e.g., model with GPA vs model with GPA and MCAT
 - Pseudo- R^2 measures
 - * Many options

7.1.2 Next week

- Extending this model to 3 or more outcome categories
 - Ordinal logistic regression for **ordered** categories
 - Multinomial logistic regression for unordered categories

7.1.3 Next few weeks

- Models for count outcomes
 - Poisson regression
 - Overdispersed Poisson regression
 - Negative binomial regression
 - Excess zeroes versions of these models