Department of Physics and Astronomy University of Heidelberg

Deep Q Learning Bomberman

Martina Sonja Zündel Benjamin Raach Henrik Ruh

WS 18/19

This report has been written by Martina Sonja Zündel, Benjamin Raach, and Henrik Ruh as a part of the Fundamentals of Machine Learning course given by Prof. Köthe.

٨	hstract
\boldsymbol{A}	DSLFACL

Abstract.

1 Notes

tasks:

- write up
- think about how to perform a stagewise learning process
- reward system
- net architecture
- which loss criterion?
- which optimization algorithm?
- improve epsilon greedy implementation

 change of epsilon value as fct of number of rounds
- saving the model
- implement gpu ability
- implement terminal step learning
- perform learning
- \bullet code master script
- analyse agent decisions
- analyse learning progress
- cleaning up code commenting
 - log messages

2 Results

2.1 learning scheme

- phase 1: no coins, no crates, no enemies
 - learn by reward to perform/ not perform a single action
 - learn to make a valid step (up, down, left, right) for the first action independent of the starting position
 - learn to make further non-invalid actions
- coins, no crates, no enemies
 - reward selecting coins
 - reward selecting coins in short time
- phase 2: coins, crates, no enemies
 - learn to make valid actions despite crates
 - reward destroying crates (without dying)
 - learn destroying crates to select coins
- phase 3: coins, crates, enemies
 - learn to avoid getting killed
 - learn to kill opponents
 - world dominance

2.2 Phase 1

effect of reward: empty map, no enemies, only coins: rewarding bombs -¿ after 100 training round, agent spams bombs penalizing bombs -¿ after 100 training round, agent goes always to the left penalizing invalid actions -¿ after 100 training round, agent goes always to the left -¿ after 1000 training round, agent goes always to UP