	å
	Se de
	ě
	Here
The state of the s	400
	1000
The state of the s	
	ĕ
	Š
	1000
	3
	Ē
	á
	3
	į
	2000
	S.
그는 그리고 하는 그리고 하는 그는 그는 그는 그리고 하는 것이 없는 사람들이 가장하는 것이 하는 사람들이 없는 것을 하는 것을 했다.	C
이 사고 되는 경험을 하는 이 점을 모두 있다. 그림 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은 사람들은	
	0.0
	S
	58.0
는 이번 보는 보고 있는 것이 되었다. 그런 것이 되었다면 보고 있다면 되었다면 되었다면 하는 것이 되었다면 되었다면 되었다면 되었다면 되었다면 되었다면 보고 있다면 되었다면 되었다면 보고 있다면 보다 	
	5
	100
	188
	Sep.
	200
	Sec.
	1000
	Table 1
	9
	and the
	Elega
	16.00
	HILL
	STATE
	THE PERSON
	THE REAL PROPERTY.
	5225
	Z S. C.
	THE
	2480
	THE
	ø

DISCUSIVING HIBRARY
N. DUATE SCHOOL
MONTENE. JA 93943-5101

ACTIVATED CARBON CLOTH REGENERATION with ELECTRICAL RESISTANCE HEATING

BY

BRETT A. COVINGTON

B.M.E., Auburn University at Auburn, Alabama, 1987

INDEPENDENT STUDY

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Environmental Engineering in Civil Engineering in the Graduate College of the University if Illinois at Urbana-Champaign, 1994

Urbana, Illinois

TK0515 C756 863 C.1

ABSTRACT

Activated carbon cloth (ACC) was tested to evaluate its ability to maintain physical adsorption properties over an extended series of adsorption/desorption cycles.

Adsorption consisted of saturation with a volatile organic compound (VOC). Benzene and acetone were selected as the test VOCs due to their commonality in indoor air and potential threat to human health. Desorption of these VOCs was achieved through direct electrical resistance heating (DERH) regeneration using an alternating current to increase bulk ACC temperature to 140°C. The heat generated was due to the resistive property of the ACC's fibers (resistivity of 1-2 •10⁻² Ω•cm).

ACC-20 (specific surface area of 1610 m²/g and effective micropore volume of 0.636 cm²/g) was selected for this work due to its high adsorption capacity for benzene above concentrations of 200 ppmv.

The ACC-20 was tested by three similar methods. The first method involved DERH for two 6 hour periods with property evaluation after each period. The second method combined benzene saturation with DERH regeneration while the third combined acetone saturation with DERH regeneration. Both the second and the third methods were carried out for 50 adsorption/desorption cycles with property evaluation after every ten cycles.

Adsorption properties were measured by Brunauer, Emmett, and Teller (BET) nitrogen isotherms. The isotherm data were converted into specific surface area and effective micropore volume by use of the BET equation and the Dubinin Radushkevich

(DR) equation, Harkins Jura (HJ) equation, and single point method respectively. Changes in the adsorption properties of the ACC-20 were 2.2 % for BET specific surface area and 2.4 % for HJ effective micropore volume for the 12 hour DERH heated sample, 2.6 % for BET specific surface area and 3.1 % for HJ effective micropore volume for the 50 cycle benzene saturated sample, and 3.9 % for BET specific surface area and 3.8 % for single point effective micropore volume for the 50 cycle acetone saturated sample. All of these values were within the experimental error of 5.5% for BET specific surface area and 8.4 % for HJ effective micropore volume.

In addition, the purity of the VOCs was determined not degraded during the regeneration of ACC-20 by DERH.

A scaled-up estimate for an indoor air filtration system indicated that regeneration costs could be \$1450/yr for an air stream with a constant 100 ppbv benzene concentration and a flow of 57m³/min.

TABLE OF CONTENTS

nap	ter		
1	1.1 1.2	Manufacture of Activated Carbon Cloth	2
2	Ads 2.1 2.2 2.3	orption Theory. Adsorption and Desorption Isotherms. BET Surface Area Model. Micropore Volume Equations 2.3.1 The Dubinin-Radushkevich (DR) Equation. 3.2.2 The Harkins Jura (HJ) statistical thickness plot	6 8
3	Exp 3.1 3.2	erimental Equipment and Procedures Experimental Equipment for Saturation and Regeneration Experimental Procedure 3.2.1 Method of Saturation and Electrical Regeneration 3.2.2 Method of ACC Physical Characterization 3.2.3 Measurement of VOC Vapor Purity during Regeneration Quality Control Procedures	12 12 12 14 15
4	Exp 4.1 4.2 4.3 4.4 4.5	erimental Results and Discussion. Experimental Results and Sensitivity of Measurements. Estimation of Error in Isotherm Measurements. VOC Purity and Contamination Produced during Electrical Regeneration. Electrical Resistance and Power Requirements Economical Estimation of DERH Regeneration.	18 21 21 21
5	5.1	Conclusions and Recommendations	24
6	Ref	erences	26
Та	bles	and Figures	28
ΔΕ	PEN	DIX A	43

TABLES

	Resistive properties of carbon fibers, metal conductors, and insulators Physical Constants of VOCs	
	Comparison of surface area and micropore volume for electrically	
12	heated ACC-20	30
4.2	saturated/electrically regenerated ACC-20	30
4.3	Comparison of surface area and micropore volume for acetone	
1 1	saturated/electrically regenerated ACC-20	31
4.4	Comparison of surface area and micropore volume from N ₂ adsorption onto untreated ACC-20, quality assurance test summary	31
	FIGURES	
2.1	Type I isotherm	32
3.1	Activated carbon cloth electrical regeneration apparatus	33
	Rotameter calibration curve, low flow	
	Variac 3PN1010 calibration	
4.1	Nitrogen isotherm for electrically heated ACC-20	35
	Nitrogen isotherm for benzene treated ACC-20	
	Nitrogen isotherm for acetone treated ACC-20	
	Harkins-Jura statistical thickness plot for 20 cycle acetone treated ACC-20.	
4.6	Current requirements for a 4.5 cm x 4.5 cm ACC-20 sample	40
	Electrical resistance of a 4.5 cm x 4.5 cm ACC-20 sample	
48	Electrical power requirements for a 4.5 cm x 4.5 cm ACC-20 sample	42

1 Introduction and Research Objectives

This research contributes to the development of a new technology for gas stream removal of volatile organic compounds (VOCs) by applying the principles of activated carbon adsorption coupled with cryogenic vapor recovery. Overall, activated carbon cloth (ACC) will be placed in a fixed bed arrangement with built in electrodes for direct electrical resistance heating (DERH) using alternating current across the ACC.

This work evaluates the effect of repetitive DERH on a single layer of activated carbon cloth attached to electrodes in a glass reactivation cell was studied. The concept of adsorption capacity regeneration by DERH first presented by Economy and Lin (1974) was extended here to evaluate the cloth's physical adsorption properties over a series of adsorption/desorption cycles. ACC was saturated with a VOC and then regenerated through DERH. The properties used to quantify the material's adsorption durability after a specific number of VOC saturation/DERH regeneration cycles were specific surface area and effective micropore volume. The power requirements to achieve complete regeneration of the sample activated carbon cloth were measured to aid in the determination of the cost effectiveness of DERH as opposed to regeneration through steam or heated gas. Furthermore, the desorbed vapor released during all regeneration was sampled to determine the purity of the VOC for recycling in an industrial process (e.g., spray paint booths, bulk fuel transfer, or part cleaning solvents).

This research is significant due to increased needs to remove indoor air contaminants, such as VOCs, because long exposure times are believed to have

serious negative health effects (Sterling, 1984 and Tancrede, 1987). Additionally, industries which emit VOCs to the atmosphere as a result of manufacturing processes will soon require new methods of control when the EPA promulgates the emission standards for the 189 hazardous air pollutants (HAPs), many of which are VOCs, listed in the Clean Air Act Amendment of 1990.

1.1 Manufacture of Activated Carbon Cloth

ACC is a cloth woven from carbon fibers then carbonized and activated through controlled oxidation heat treatment. The carbon cloth used in this research is woven from cured phenolic-aldehyde fibers made by acid-catalyzed cross-linking of melt-spun novolac resin with formaldehyde. The curing process renders the fibers both infusible and insoluble. The cloth is then carbonized and activated through a one step process in a steam or carbon dioxide atmosphere at 800° - 900°C. Surface areas produced from activation of this cloth can approach 3000 m²/g (Hayes 1981). The phenolic ACC was developed and patented by the Carborundum Company in the early 1970s through the work of Economy et al. (Hayes 1981). The final ACC material was produced and donated to perform this research by American Kynol, Inc. a subsidiary of Nippon Kynol, Inc.

1.2 Physical and Chemical Properties of Activated Carbon Cloth

A micropore is defined as having a pore width, w, less than 20 Å (Dubinin, 1960).

This definition is accepted as convention by the International Union of Pure and

Applied Chemistry (Bansal, Donnet and Stockli, 1988). The pores formed during activation of the carbon cloth are hypothesized to be elongated and slit shaped with a half width between 5 and 14 Å (Economy and Lin, 1974), making these activated carbons almost entirely microporous. This is significantly different from granular activated carbon which is thought to have branched pores, with micropores mainly inside of a larger pore structure. The location of the micropores on the surface of the fibers allows for highly rapid adsorption and desorption (Hayes, 1981). This characteristic along with the structure of the woven cloth allow for *in situ* DERH at a moderate temperature of 140°C (Cal, 1993). The ACC selected for these tests was ACC-5092-20 (henceforth denoted as ACC-20). ACC-20 has a BET specific surface area of 1610 m²/g, as determined by nitrogen (N₂) adsorption at 77°C, and an effective micropore volume of 0.636 cm³/g, determined using five different reference vapors at 25°C (Foster 1992).

The electrical properties of the ACC-20 is important for the use of DERH. A moderate electrical resistance is needed to make a good resistance heater. Materials with extremely high resistances like glass or rubber will not conduct a sufficient amount of electricity for heating to occur. Conductive materials (i.e., copper and aluminum) produce very little heat due to the low resistance to current flow. In general carbon fibers (non-activated) have high resistances and in some cases can be used in insulating composite materials. However, carbon fibers may also be treated to become conductors with a resistivity as low as cooper. Fibers are intercalated with alkali metals like potassium and cesium, nitric acid, and halogens through high temperature heat

treatment in a N₂ atmosphere to form highly oriented pyrolitic graphite (HOPG) within the fiber. From Table 1.1 the low resistances of pan and mesophase pitch fibers are observed after intercalation at heat treatment temperatures (HTT) (Donnet and Bansal, 1990).

Activation of carbon fibers results in a decrease in resistivity from that of cured novoloid fibers but still has a higher resistivity than the HTT fibers (Hayes, 1993). From Table 1.1 the resistivity of the fibers can be compared to typical conductors and insulators

1.3 Physical and Chemical Properties of Volatile Organic Compounds

As defined by Lewis (1989) a VOC is an organic compound with a vapor pressure, P_o , greater than 10^{-2} kPa. This is a practical definition since compounds with higher P_o values are typically found at concentrations above 0.1 µg/m³. This concentration allows for greater ease of detection than semivolatile organic compounds (SVOC) with 10^{-2} kPa > P_o > 10^{-8} kPa and concentrations in the ng/m³ to pg/m³ range (Nriagu, 1992). Benzene and acetone were selected as test VOCs for this research in keeping with previous work done by Fuerman (1992), Foster (1992), Cal (1993), and Graf (1994). The properties of these two VOC's which are important to this research are listed in Table 1.2.

2 Adsorption Theory

The adsorption properties of porous activated carbon have been observed since 1777 (Greg and Sing, 1982). By early this century adsorption was relatively well defined. In 1916 Langmuir published his monolayer equilibrium adsorption model and stated that charcoals were understood to be truly porous. He furthermore postulated that charcoals had cross linkage between long chain carbon molecules consisting primarily of carbon atoms. The high carbon content is a result of the majority of hydrogen and oxygen being driven off of the lignin precursor during the carbonization and activation processes.

This section discusses several methods of characterizing porous materials (specifically microporous activated carbon) which have been developed from Langmuir's time to the present day. The methods are employed in this paper to characterize ACC-20 by adsorption characteristics, and include, the adsorption isotherm, the specific surface area, and the effective micropore volume.

2.1 The Adsorption and Desorption Isotherms

Adsorption and desorption isotherms are plots of the measured number of moles (n), or volume or mass of a gas (adsorbate) adsorbed by one gram of solid material (adsorbent) as a function of the relative pressure of the adsorptive gas ,P/P_o. P is the partial pressure and P_o is the saturation vapor pressure of the adsorbate. An adsorbent's pore size is defined by the shape of its adsorption isotherm. There are five types of isotherms as defined by the Brunauer, Deming, Deming, and Teller (BDDT)

(1940) classification. The ACC-20 used in this work was previously determined to be an almost entirely microporous solid material (Foster, 1992). For microporous solid materials the adsorption isotherm will have the characteristic shape of a Type I isotherm as found in Figure 2.1. Plotting n versus P/P_o produces an isotherm without the characteristic slightly sloping straight line at P/P_o between 0.25 and 0.95 then the material is not completely microporous.

2.2 The BET Surface Area Model

Building upon Langmuir's (1916) model for equilibrium monolayer adsorption

Brunauer, Emmett, and Teller theory (BET, 1938) develops a model for multilayered adsorption. The Langmuir equation may be simplified from its original version to read:

$$\frac{v}{v_m} = \frac{BP}{1 + BP} \tag{2.1}$$

where ν is the adsorption phase volume adsorbed per gram of adsorbent; $\nu_{\rm m}$ is the volume required to cover one gram with a monolayer of adsorbate; B is an empirical constant; and P is the partial pressure of the adsorptive. Expanding this equation through a summation of multiple layers the BET equilibrium equation is determined:

$$\frac{v}{v_m} = \frac{c(P/P_o)}{(1 - P/P_o)(1 - P/P_o + c(P/P_o))}$$
(2.2)

where c is typically taken to be

$$C = e^{(q_1 - q_L)/RT} (2.3)$$

and q_1 is the heat of adsorption of the first layer; q_L is the heat of liquefaction for the subsequent layers; R is the ideal gas constant; and T is the absolute temperature (Brunauer, Emmett, and Teller, 1938).

To determine specific surface area using the BET model equation 2.2 is linearized.

$$\frac{1}{v((P_o/P)-1)} = \frac{1}{v_m c} \cdot \frac{c-1}{v_m c} \left(\frac{P}{P_o}\right)$$
 (2.4)

After measurement of ν and P/P_o from 0.01 to 0.25 (Foster, 1992) a plot is constructed from equation (2.4) of $1/[\nu(P_o/P-1)]$ versus P/P_o. The slope, (c-1)/ ν_m c, and intercept, $1/\nu_m$ c, are determined through a least squares curve fit (Greg and Sing, 1982). These values are then used to calculate ν_m and c:

$$v_{m} = \frac{1}{v_{m}c} + \frac{c-1}{v_{m}c}$$
 (2.5)

$$c = \frac{v_m}{\left[1/\left(v_m c\right)\right]} \tag{2.6}$$

Now the surface area, A_{BET} is calculated using a control volume approach:

$$A_{BET} = \frac{a_m N_A V_m}{(22,414 \text{ cm}^3 (STP)) (10^{20} \text{ Å}^2/\text{m}^2)}$$
 (2.7)

where a_m is the cross sectional area occupied by one molecule of adsorbate an N_A is Avagadros number. For nitrogen, a_m is taken to be 16.2 Å² (Greg and Sing, 1982).

2.3 Micropore Volume Equations

Quantification of effective micropore volume can be characterized with several different equations applied to the N₂ adsorption isotherm data. Methods of estimating the micropore volume include the Dubinin Radushkevich (DR) equation (Dubinin, 1989), the Harkins and Jura (HJ) statistical thickness plot (Harkins and Jura, 1943, Lowell and Shields, 1984) and a single point volume adsorbed value.

2.3.1 The Dubinin Radushkevich (DR) Equation

The DR equation was developed with Dubinin's theory of the volume filling of micropores (TVFM) and is best applied as a model when using benzene or some other VOC as a reference vapor (adsorptive). Dubinin (1988) demonstrated that as a reference vapor, N_2 at 77° K is not equivalent to benzene at 293° K. Further, benzene was shown to be more appropriate for characterization of a material's adsorption properties and microporous structure. With this caveat in mind the DR equation is used only to calculate the effective micropore volume from the measured values for the volume adsorbed and the relative pressure of N_2 and is not used to model the ACC-20 adsorption characteristics for VOCs.

The DR equation is

$$W = W_o \exp \left[\left(\frac{A}{\beta E_o} \right)^2 \right]$$
 (2.8)

where W is the volume of the adsorbate adsorbed by one gram of the carbon; W_o is the total micropore volume available to the adsorbate; A is the differential molar work or the negative of the Gibbs free energy; β is the similarity coefficient, or the affinity factor, of the standard vapor to the reference vapor (benzene); and E_o is the characteristic adsorption energy. For N_2 , β = 0.34 (Bansal et al., 1988). The differential molar work, A, calculated as:

$$A = -\Delta G = RT \ln \left(\frac{P_o}{P} \right) \tag{2.9}$$

E₀ is inversely related to the slit-pore half width, x₀:

$$k = x_o E_o \tag{2.10}$$

such that a constant structural factor, k, of 12.0 kJnm/mol is assumed to determine x_o (Dubinin, 1989).

The linearized DR Equation:

$$\ln (W) = \ln (W_o) - \left(\frac{1}{\beta E_o}\right)^2 A^2$$
 (2.11)

is used to plot In(W) against A^2 for a range of P/P_o of 0.001 to 0.500 where W_o and x_o are determined from the slope and intercept respectively.

2.3.2 The Harkins Jura (HJ) statistical thickness plot

The concept of plotting the statistical thickness was originally proposed by Lippens and de Boer (1965) as a method of testing superposability of isotherms to standard isotherms (Lowell and Shields, 1984). Based on the so-called t-curve, a plot of the standard isotherm is produced where the statistical thickness, t, of the adsorbed film, rather than P/P_o , is the independent variable and the dependent variable is the volume adsorbed V_a . The thickness is related to the number of molecular layers, n_a/n_m (or V_a/V_m) expressed as:

$$\frac{n_a}{n_m} = \frac{V_a}{V_m} = \frac{t}{\sigma} \tag{2.12}$$

where t is the average total thickness of all layers adsorbed and σ is the thickness of one layer (σ = 3.54 Å for N₂ at 77° K, assuming hexagonal close packing).

The empirical HJ equation is given as:

$$\log (P_o/P) = B + \frac{A}{V_a^2}$$
 (2.13)

where A and B are empirical constants with A related to the thickness and the volume of a monolayer and V_a is the volume adsorbed (Harkins and Jura, 1944). This model is modified to calculate a thickness:

$$t = \left[\frac{13.99}{(0.034) - \log(P_o/P)} \right]^{1/2}$$
 (2.14)

where 13.99 and 0.034 are empirical constants (De Boer et al., 1965). By plotting V_a against t for $P/P_o = 0.001$ to 0.7 and performing a least squares linear curve fit to the values that fit a line on the level part of the isotherm. The values selected here to best fit the Type I isotherm were for t from 0.45 to 0.70. The external surface area and micropore volume are then determined from the slope and intercept of the fitted line respectively (Micromeritics, 1987).

3 Experimental Equipment and Procedures

3.1 Experimental Equipment for Saturation and Regeneration

The intent of this experimental study is to determine the effects of repetitive heating of ACC by the application of an alternating current across the cloth to remove benzene and acetone. The effect of DERH is to be defined as any change in the adsorption properties of the cloth through changes in the micropore surface area and volume.

The experimental apparatus, Figure 3.1, centers around a glass test cell that is 40 cm long and 1.7 liters in volume with two opposing aluminum electrodes that act to support the cloth sample as well as provide electrical connections. A variable AC voltage transformer (variac), model W10MT3, provides a potential difference across the sample and current is monitored by a Fluke 77 multimeter. The bulk temperature of the cloth is monitored by a type K thermocouple detected by a digital multimeter (Omega 881C). Laboratory grade N₂ (99.95 % pure) is used to purge air and contaminants from the test cell. The exhaust gases are vented to the atmosphere via 280 lpm (10 cfm) lab venthood.

3.2 Experimental Procedure

3.2.1 Method of Saturation and Electrical Regeneration

ACCs are saturated with VOC and then regenerated through direct electrical resistance heating to complete one saturation/regeneration cycle. To determine the

durability of the cloth's adsorption properties it is necessary to run an extended number of test cycles. This section provides a detailed explanation of how this process is conducted.

ACC samples are first analyzed on a Micromeritics™ ASAP 2400 surface area analyzer, as described in section 3.2.2, to determine baseline surface areas and pore volumes prior to saturation or regeneration treatment. Prior to and between experiments ACC samples are stored in airtight bottles purged with N₂ to minimize adsorption of water vapor or contaminants.

An ACC sample is loaded into the test cell by attaching it to the electrodes and reassembling the cell. An evaporation dish containing liquid VOC (benzene or acetone) is placed into the test cell downstream of the sample. During placement the evaporation dish the cell is purged with N_2 at a minimum gas flow rate of 3 lpm. After reassembly purging is continued for a total time of 3.5 minutes. The time and flow rate for purging are estimated to provide 99.93 percent removal of air from the cell assuming that complete mixing occurs in its 1.7 liter volume. The nitrogen flow is then shutoff, the exhaust port capped and the sample is allowed to adsorb the VOC for twenty minutes at witch point it is estimated that saturation is reached at room temperature (21°C). The sample is now considered saturated with VOC and the cell is prepared for DERH regeneration. Prior to DERH the evaporation dish containing the liquid VOC is removed from the test cell while purging the cell with nitrogen to prevent air from entering the test cell. During this purging it is likely that some of the VOC will desorb from the cloth as the vapor pressure in the cell is decreased by nitrogen

ventilation.

The cell is reassembled and purging continues for a total time of 3.5 minutes, then the electrical leads are attached to the electrodes with the Fluke 77 multimeter in series with the sample to measure current. N_2 flow is set at 0.5 lpm and the sample is regenerated by electrical heating at a bulk sample temperature of 140°C \pm 10°C for 20 minutes. This will require a voltage between 8 and 12 volts and a current between 0.7 and 1.1 amperes for a typical sample of 100 to 150 mg.

This procedure is repeated for ten cycles and then the ACC sample is analyzed on the ASAP 2400 to obtain measurements the specific surface area and the effective micropore volume. The samples are analyzed at 0, 10, 20, 30, and 50 cycles to measure for changes to the physical adsorption properties of the fibers in the cloth.

3.2.2 Method of ACC Physical Characterization

The MicromeriticsTM ASAP 2400 surface area analyzer is a automated, multiport, N₂ BET isotherm measurement instrument. It has 12 degas stations and 6 analysis stations to allow for a high sample throughput. Analysis is controlled by an IBM AT computer with the ASAP 2400 version 3.01 software. The N₂ data measured are volume adsorbed or desorbed, partial pressure and saturation pressure. From the data the software can generate plots and calculate values for isotherms, surface area, total pore volume, and micropore surface area and volume. The calculations use the analysis methods of Langmuir (1916), BET (Brunauer, Emmett, and Teller, 1938), HJ (Harkins and Jura, 1943) and others.

To test an ACC sample it is loaded into a clean dry analysis tube (Prior to loading the sample the tube is weighed on a Mettler AE260 analytical balance with a sensitivity of 0.1 mg, to determine its mass). With the sample placed inside, the tube is loaded onto one of the degas stations. Degassing is carried out at 50 torrs absolute pressure and 140°C until desorption of gases from the sample is no longer detectable. The degas process takes between 12 and 48 hours depending on the compound adsorbed.

When the ACC has completed degassing the sample will be able to maintain a vacuum below 30 torrs with less than a 5 torrs change over a 2 minute test period. In unloading the tube is charged with N_2 before it is removed from the degas station. After cooling to room temperature the sample is reweighed on the analytical balance and the difference in mass from the tube is taken to be the ACC sample mass. Now the sample is ready for N_2 adsorption/desorption analysis.

The ASAP 2400 measures N_2 adsorption/desorption at 77.25°K (boiling point of nitrogen), this requires the dewar below the analysis station to be filled with liquid N_2 . The sample tube is loaded onto the analysis port and the sample run conditions are programmed into the computer with the sample mass. After analysis the data and calculated values may be stored on electronic media for later retrieval.

3.2.3 Measurement of VOC Vapor Purity during Regeneration

To recycle a VOC desorbed from a fixed bed it is necessary to maintain VOC purity in the capture process. In this part of the experiment it is determined if the VOC, here benzene or acetone, is contaminated or altered by electrical regeneration. Equipment

used includes the glass test cell apparatus, a Hewett-Packard gas chromatograph (GC) series HP5890, and a gas tight syringe.

Prior to testing the sample mass required to adsorb a quantity of benzene that would be detectible by the GC is calculated. By assuming that benzene behaves as an ideal gas, the ideal gas law, $PV_{gas} = nRT$, is used with $\rho = m/V_{ads}$ to write a relationship between the adsorbed volume, V_{ads} and the volume the adsorbent would occupy as a gas, V_{gas} , at some temperature, is written as:

$$\frac{V_{ads}}{V_{gas}} = \frac{PMW}{\rho RT} \tag{3.1}$$

where P is the partial pressure of the gas, MW is the molecular weight, and p is the density of the adsorbed benzene. The GC has a minimum detection limit of 50 ppmv so a minimum desired concentration level is arbitrarily selected at 200 ppmv. The micropore volume for the ACC-20 is 0.653 cc/g when using benzene (Foster 1992). From equation 3.1 and these two values the minimum required sample size is calculated to be 2.2 mg. Since the typical sample size used for the saturation/regeneration experiment is larger than 100 mg the GC will have no difficulty in detecting and testing benzene purity.

The sample is saturated and regenerated in the same method as described in section 3.2.1. One exception to this is no N_2 flow during regeneration. After reassembling and purging the test cell the N_2 flow is shutoff and the exhaust port is capped. Prior to regeneration a sample of the test cell gas is drawn with a gas tight syringe. Analysis of the gas sample with the GC determines initial VOC concentration.

During regeneration the test cell gas is sampled at two minute intervals and analyze to determine VOC concentration and composition.

3.3 Quality Control Procedures

The rotameter used to determine the purge nitrogen gas flow rate was calibrated by using a 1000 ml bubble meter. The calibration curve produced by the bubble meter is linear by least squares curve fit (Figure 3.2). This linear relationship is used to convert the rotameter values into liters per minute (lpm) of gas flow.

The variac voltage was calibrated by using a separate sample in the test cell and the Fluke 77 multimeter in parallel with the sample circuit. Test voltages on the variac ranged between 0 and 15 volts. This range provided sufficient heating for a typical sample of 100 to 150 mg. The calibration curve for the W10MT3 variac, General Radio Co. is shown in Figure 3.3 is utilized to adjust the voltage given by the variac to the actual voltage. The 3PN1010 variac was used on a few of the acetone regeneration cycles, the calibration curve for this variac is given in Figure 3.4.

4 Experimental Results and Discussion

This section provides the experimentally determined values which characterize the ACC-20 as it is exposed to numerous adsorption/desorption cycles through VOC saturation followed by DERH. Those values include the BET specific surface area, DR, HJ and single point effective micropore volumes. All values are calculated from the BET adsorption isotherm with N_2 as the standard vapor. Error experienced in analyzing was determined by repetitive testing of a single sample without cyclical treatment or DERH.

4.1 Experimental Results

The ASAP 2400 recorded N₂ adsorbed and desorbed at relative pressure from 0.001 to 1.0 to produce the adsorption and desorption isotherms. Three ACC-20 samples were analyzed on the ASAP 2400. Each sample was initially analyzed to establish baseline values for the specific surface area and effective micropore volumes. The first sample did not undergo VOC saturation. The ACC-20 was heated by DERH for two six hour periods with analysis after each period. The second sample of ACC-20 was cycled by saturation with benzene and regeneration by DERH. The third sample of ACC-20 was cycled by saturation with acetone and regeneration by DERH. Both the second and third samples were subjected to 50 adsorption/desorption cycles with analysis after every 10 cycles.

The N_2 adsorption and desorption isotherms in Figures 4.1 to 4.3 are standard Type I isotherms and clearly define this ACC-20 as microporous (Greg and Sing,

1985). The variation between the isotherms produced before treatment and those produced after exposure to an alternating current (AC) is less than 7 %. The AC power is supplied at 1.67 amps and 11 volts to heat the sample at 140°C for periods of 6 hours . Figure 4.2 and Figure 4.3 for benzene and acetone cycled ACC-20 respectively indicate similar results to the electrically heated ACC-20. Each figure shows the adsorption and desorption isotherms for the baseline and after samples were exposed to 50 saturation/regeneration cycles. A slight increase in the volume adsorbed at 12 hours and 50 cycles may be noted in these figures. However, the increase is small and below a measurable significance.

The DR effective micropore volume was determined by a plot of the natural logarithm of N_2 volume adsorbed, ln(W), against the square of the differential molar work, A^2 , calculated from the measured relative pressure of N_2 . As seen in Figure 4.4, the isotherm data for the 20 cycle acetone treatment is graphed on a DR plot. A least squares linear curve fit provides a value of -0.0220 for $ln(W_o)$, which results in a W_o of 389.9 cm³/g for the adsorption capacity of N_2 gas or an effective micropore volume of 0.6031cm³/g.

As an alternative method of calculating the micropore volume a HJ statistical thickness plot (t-plot) is generated. Figure 4.5 provides a t-plot of 20 cycle acetone saturation/DERH regeneration and indicates the volume of N_2 gas adsorbed is 366.15 cm³/g or a effective micropore volume 0.566 cm³/g. Also, the single point effective micropore volume is measured at a P/P_o of 0.95. For a completely microporous material like the ACC the values measured are close to those calculated with the DR

and HJ equations. Tables A.1 to A.13 provide the data measured and results calculated in determining the micropore volumes for each 6 hour heat treatment or 10 cycle sample.

When the ACC-20 is heated to 140°C for extended times using DERH the material does not show any appreciable change in specific surface area or effective micropore volume. Table 4.1 compares these properties after 0, 6, & 12 hours of heating time. The percent difference (Δ %) is taken as the change from the properties found at the 0 hour as a baseline. The ACC-20 sample is shown to have increased in BET specific surface area by only 2.2 % while the largest effective micropore volume increase is seen by the HJ equation at 2.4 %.

Table 4.2 gives calculated adsorption values for the 0 to 50 cycles of benzene saturation with DERH regeneration. A 40 cycle analysis was not performed due to the lack of significant change between 0 and 30 cycles. Samples were not cycled beyond 50 cycles due to the manual effort and time required in each saturation/regeneration cycle and a three day per sample BET analysis period.

The combination of benzene saturation with DERH regeneration is shown not to significantly effect the adsorption capacity of the ACC-20 as determined by its affinity for N₂ adsorption at 77.25°K. The largest changes are an increase in the BET specific surface area by 7.7 % and the HJ effective micropore volume by 8.49 %, which occur after 20 cycles. This variation is considered small when compared to error values of more than 10 % reported by Dubinin (1989) and Cal (1993). Likewise the cycles of acetone saturation with DERH regeneration have similar results with surface area

increasing by 3.9 % and single point effective micropore volume increasing by 3.8 % as listed in Table 4.3.

4.2 Estimation of Error in Isotherm Measurements

To determine the accuracy provided by the ASAP 2400 when measuring the microporous ACC-20 samples, a clean unused ACC sample was tested three times sequentially to check for the repeatability of measured results. An average value and standard deviation were calculated along with each runs variation from the initial value and is provided in Figure 4.4. This sample was found to have the highest variation with an 8.4 % increase of the HJ effective micropore volume in the third test.

4.3 VOC Purity and Contamination Produced during Electrical Regeneration

The 123.5 mg ACC-20 sample used for the benzene cycle test was regenerated and then saturated with benzene. In the next regeneration gas samples (10 cm³ each) were drawn out of the test cell and injected into the GC as outlined in section 3.2.3. A single peak for benzene was produced with a concentration near 5% by volume and no impurities were found. A similar experiment on the 131 mg ACC-20 acetone sample produce a single peak for acetone with no impurities found.

4.4 Electrical Resistance and Power Requirement

The electrical current and voltage were measured over a temperature range of 23° to 300°C for a 4.5 cm x 4.5 cm square sample of ACC-20 oriented with the cloths

primary weave in the direction of current flow. Figure 4.6 shows the relation between current and temperature which was determined to be linear over this temperature range. Using ohms law the resistance of the ACC-20, plotted as a function of temperature in figure 4.7, was found to have an asymptotic decline from 50° to 270°C. However, it is not understood why the resistance briefly increases before reaching 50°C. This decrease in resistance of the bulk cloth over increasing temperatures is similar to the decrease in resistivity found on pristine PAN and pitch fibers by Lee, et al. (Donnet and Bansal, 1990).

The power required to achieve heating of the cloth was calculated from the measured values of the root mean square voltage, V_{RMS} , and current, I_{RMS} , with the assumption that the phase angle, θ , between the voltage and the current was 0° (Power = $V_{\text{RMS}}I_{\text{RMS}}\cos\theta$). Thereby a worst case estimation of power consumed is provided. The power requirements in Figure 4.8 indicate a linear relationship to temperature when a single sheet of ACC-20 is heated by DERH..

4.5 Economical Estimation of DERH Regeneration

Using the power requirements calculated for the 4.5 cm X 4.5 cm square sample of ACC-20, Graf's (1994) filter mass requirements of 1.36 Kg for ACC-10 in a full-scale filtration estimate for 57 m³/min (2,000 cfm) indoor air ventilation and a 2/1 relationship of low concentration adsorption capacities between ACC-10 and ACC-20 (Foster, 1992) an estimation of energy costs is made for a full-scale filtration system. The energy required per regeneration is calculated from a constant power requirement of 35

W over an estimated 30 minutes for a 400 mg sample. By assuming an energy price of \$0.08/kWhr and a regeneration interval of 2.4 days the energy cost would be \$1450/year. This cost seems to be slightly high considering that a ventilation rate of 57 m³/min (2,000 cfm) will only provide ten air changes per hour to a 223 m² (2,400 ft²) building

It is important to notice that this is strictly the cost to heat the filter and does not include the cost for preheating N_2 , or energy to run additional fans and damper motors. This cost could vary significantly for a fixed bed when taking into account the possibility of increased conductance due to bed configuration, nonlinear power/temperature relationships or the cooling effect of a N_2 flow through the ACC. Further, the power requirement was based on heating the ACC-20 while suspended in a glass test cell surrounded by 1.7 liters of N_2 gas. Therefore, it is anticipated that convection heat transfer in the cell was significant and that the power requirements to produce the same temperatures in a fixed bed with preheated nitrogen flow could be substantially lower.

5 Conclusions and Recommendations

5.1 Conclusions

The activated carbon cloth (ACC-20) displays a high level of durability by maintaining adsorption characteristics at relatively constant values for up to 50 adsorption/desorption cycles, with VOC adsorbate saturation and direct electrical resistance heating (DERH) regeneration at a temperature of 140 ± 10°C. The BET specific surface area and effective micropore volume remain within 8 % of the baseline values measured before cyclic testing. The DERH current and power requirements for suspended sheet ACC-20 have increasing linear relationships with the desorption temperature, while the bulk sample resistance decreases with increasing desorption temperatures above 60°C. Scaled up estimations of power requirements and energy costs indicate that DERH could be costly for removal of low concentration VOCs in an indoor air environment when the VOC concentration is a constant 100 ppbv of benzene, regeneration is required every 2.4 days, and there are 10 air changes per hour. The benzene and acetone adsorbed by the ACC-20 were tested for purity during regeneration by DERH. It was determined that these two VOCs do not breakdown and are not contaminated by the carbon cloth.

5.2 Recommendations

Quantifying the ACC-20 adsorption characteristics by measurement of the effective micropore volume would be more appropriately determined by using the actual test

VOC or an approved reference vapor (benzene) in a total gas analyzer or a gravimetric balance apparatus (Cal, 1993). This will allow the Dubinin-Radushkevich equation to be applied as a model to various VOCs using affinity coefficients, β. Additionally this would be a better determination of the ACC's ability to regain an original adsorption capacity for the particular contaminant.

Kinetic studies of regeneration times and power requirements should be performed on a pilot scale fixed bed adsorption system to accurately determine the feasibility and economics of applying DERH as the method of *in situ* regeneration as opposed to regeneration by heated gas or steam.

Stability and purity measurements for other VOCs (acetaldehyde, methylethyl ketone, toluene, etc.), found in indoor and industrial air streams, need to be made to determine wide spread application of this regeneration method.

6.0 References

Avallone, E.A. and Baumeister, T., *Marks' Standard Handbook for Mechanical Engineers*, McGraw-Hill, Inc. New York, 1987, 15-1 to 15-29

Bansal, R.C., Donnet, J-B., and Stockli, F., *Active Carbon*, Marcel Dekker, Inc., New York, 1988

Brunauer, S., Emmett, P.H., and Teller, E., J.Amer. Chem. Soc., 60, 1938, 309

Brunauer, S., Deming, L.S., Deming, W.S., and Teller, E., J.Amer. Chem. Soc., 62, 1940, 1723

Cal, M.P., Adsorption and Experimental Verification of the Adsorption of Volatile Organic Compounds onto Activated Carbon Fibers, Master's Thesis, Univ. of Illinois-Urbana, 1993

de Boer, J.H et al., J. of Colloid and Interface Sci. 21, 1966, 415-434

Donnet, J-B. and Bansal, R.C., Carbon Fibers, 2nd ed, Marcel Dekker, Inc., New York, 1990

Dubinin, M.M., Zhur. Phys. Chem. 34, 1960, 959; Chem Rev. 60, 1960, 235

Dubinin, M.M., Carbon, 27, no.3 1989, 457-467

Dubinin, M.M., Polyakov, N.S., and Kataeva, L.I. Carbon, 29, nos.4/5 1991, 481-488

Economy, J. and Lin R.Y., J. Mater. Sci. 6, 1971, 1151

Economy, J. and Lin R.Y., Appl. Polymer Symp. 29, 1976, 199-211

Fuerman, B.G., Adsorption of Indoor Organic Gases Onto Activated Carbon Fibers, Master's Theses, Univ. of Illinois-Urbana, 1992

Graf, O. W., Analysis of Breakthrough Times of Volatile Organic Compounds for Activated Carbon Fibers in Packed Beds, Master's Thesis, Univ. of Illinois-Urbana, 1994

Gregg, S.J., Sing, K.S.W., Adsorption, Surface Area and Porosity, 2nd ed., Academic Press, London, 1982

Hayes, J.S., Kirk-Othmer: Encyclopedia of Chemical Technology, 16, 3rd ed, 1981,

125-138

Hayes, J.S., Direct communication with American Kynol Inc., April, 20 1993

Langmuir, I.J., Amer. Chem. Soc. 38, 1916, 2221

Lewis, R. G., J. Chin. Chem. Soc. 36, 1989, 261-277

Lide, D. R., Ed. Handbook of Chemistry and Physics, 73 ed.; CRC, Boca Raton, 1993.

Lin R.Y. and Economy, J., Appl. Polymer Symp. 21, 1973, 143

Lowell, S. and Shields, *Powder Surface area and Porosity*, Chapman and Hall, London 1984

Nrigau, J.O., Ed. *Gaseous Pollutants, Characterization and Cycling*, John Wiley & Sons, Inc., New York, 1992, 338-339

Sterling, D. A., *Indoor Air and Human Health*, Proceedings of the 7th Life Sciences Symposium, Knoxville, TN, 1984

Tancrede, M., Wilson R., Zeise L., Crouch E.A., Atmospheric Environment, 21, no. 10, 1987, 2187-2205

Tables and Figures

Table 1.1 Resistive properties of carbon fibers, metal conductors, and insulators

Phenolic Based	Resistivity	Conducting Metals ^c	Resistivity
Carbon Fibers ^a	(Ω-cm)		(μΩ-cm)
cured novolac	10 ¹⁵ -10 ¹⁶	copper	1.724
carbon HTT @ 800°C	1-3 x 10 ⁻⁴	aluminum	2.828
carbon HTT @ 2000°C	1-2 x 10 ⁻⁴	iron wire	97.8
ACC (1500m²/g)	1-2 x 10 ⁻²		
ACC (2000m²/g)	1-3 x 10 ⁻³		
Other HTT	Resistivity	Insulating Materials ^c	Resistivity
Carbon Fibers ^b	(μΩ-cm)		(MΩ-cm)
PAN	830	Bakelite	5-30 x 10 ¹¹
mesophase pitch	400	glass	17 x 10 ⁹
vapor grown	77	polyvinyl chloride	10 ¹¹ -10 ¹⁵

a. Hayes (1993), b. Donnet and Bansal (1990), c. Avallone and Baumeister (1987)

Table 1.2 Physical properties of VOCs (Lide 1993)

Compound	Molecular weight (g/gmol)	Boiling Point (°C)	Liquid Density at 298°K (g/cm³)	Vapor Pressure at 298°K (kPa)
benzene	78.11	80.1	0.8765	12.77
acetone	58.06	56.2	0.7899	30.61

Table 4.1 Comparison of surface area and micropore volume for electricaly treated ACC-20

				DR		2		single point	
Number of	Sample	BET		micropore		micropore		micropore	
cycles	Mass	Surface area		volume		volume		volume	
	(mg)	(m^2/g)	% dif	(cc/g)	% dif	(cc/g)	% dif	(cc/g)	% dif
0	129.1	1319.5	%0.0	0.6166	%0.0	0.5795	%0.0	0.6234	%0.0
9	127.4	1304.2	1.2%	0.6088	1.3%	0.5733	1.1%	0.6157	1.2%
12	120.3	1349.0	2.5%	0.6265	1.6%	0.5931	2.4%	0.6374	2.3%

Table 4.2 Comparison of surface area and micropore volume for benzene treated ACC-20

				DR		2		single point	
Number of	Sample	BET		micropore		micropore		micropore	
cycles	Mass	Surface area		volume		volume		volume	
	(mg)	(m^2/g)	% dif	(cc/g)	% dif	(cc/g)	% dif	(cc/g)	% dif
0	133	1309.2	%0.0	0.6121	%0.0	0.5744	%0.0	0.6202	%0.0
10	131.4	1404.9	7.3%	0.6558	7.1%	0.6223	8.3%	0.6587	6.2%
20	125.2	1409.4	7.7%	0.6574	7.4%	0.6228	8.4%	0.6635	7.0%
30	122.8	1310.5	0.1%	0.6115	0.1%	0.5777	%9.0	0.6149	%6.0
50	123.5	1343.4	2.6%	0.6254	2.2%	0.5923	3.1%	0.6326	2.0%

Table 4.3 Comparison of surface area and micropore volume for acetone treated ACC-20

				DR		3		single point	
Number of	Sample	BET		micropore		micropore		micropore	
cycles	Mass	Surface area		volume		volume		volume	
	(mg)	(m^2/g)	% dif	(ac/g)	% dif	(cc/g)	% dif	(cc/g)	% dif
0	140.4	1298.6	%0.0	0.6078	%0.0	0.5726	%0.0	0.6140	%0.0
10	133.5	1312.2	1.0%	0.6121	0.7%	0.5800	1.3%	0.6146	0.1%
20	134.7	1290.2	%9.0	0.6031	0.8%	0.5664	1.1%	0.6084	%6.0
30	131.4	1319.3	1.6%	0.6168	1.5%	0.5770	0.8%	0.6140	%0.0
20	131.1	1349.0	3.9%	0.6265	3.1%	0.5916	3.3%	0.6374	3.8%

Table 4.4. Compairison of surface area and micropore volume from N₂ adsorption onto untreated ACC-20, quality assurance test summary

				DR		로		single point	
QA test	Sample	BET		micropore		micropore		micropore	
sample	Mass	Surface area		volume		volume		volume	
	(mg)	(m^2/g)	% dif	(cc/g)	% dif	(cc/g)	% dif	(cc/g)	% dif
-	84.7	1201.8	%0.0	0.6121	%0.0	0.5744	%0.0	0.6202	%0.0
2	106.9	1231.8	2.5%	0.6558	7.1%	0.6223	8.3%	0.6587	6.2%
က	108.2	1136.2	2.5%	0.6574	7.4%	0.6228	8.4%	0.6635	7.0%
average		1189.9		0.6418		0.6065		0.6475	
std. deviation		39.9		0.0210		0.0227		0.0194	

Figure 3.1 Activated carbon cloth electrical regeneration apparatus

Figure 3.2 Rotometer calibration curve, low flow

Figure 3.3 Variac W10MT3 Calibration

y = 0.9662x + 0.0611
R² = 0.9952

5 10 15 20
Variac (volts)

Figure 3.4 Variac 3PN1010 Calibration

20

15

(solts)
5

0

5

Variac (volts)

10

15

Variac (volts)

Figure 4.1 Nitrogen isotherm for electrically heated ACC-20

Figure 4.2 Nitrogen isotherms for benzene treated ACC-20 → ads 50 cyc --- des 50 cyc → des 0 cyc --- ads 0 cyc 0.8 Relative Pressure, P/Po 0.4 0.2 400 -450 250 W (دداو, N₂ gas) % % 300

Figure 4.3 Nitrogen isotherms for acetone treated ACC-20

16 4 y = -0.0220x + 5.9659Figure 4.4 Dubinin-Radushkevich plot for 20 cycle acetone $R^2 = 0.9996$ treated ACC-20 5.65 + 5.75 5.95 5.9 5.7 9

APPENDIX A

Experimental Data and Calculations

P.P.E. W (cc/g STP gas) A² (k./lmol)² In (W) I(Angstrom) 0.0029 298.9251 14.1195 5.7002 K 12.0000 kJ-nm/g-mole 0.0049 312.8724 11.6983 5.7456 F 7.73500 kJ-nm/g-mole 0.0079 322.9587 9.6905 5.7972 R 0.0083 kJg-mole-K 0.0079 322.9587 9.8090 5.7972 R 0.0083 kJg-mole-K 0.0079 322.9587 9.8090 5.7972 R 0.0083 kJg-mole-K 0.0079 320.8644 4.9537 5.8829 D 0.0083 kJg-mole-K 0.0079 380.406 2.5356 5.946 C.0000 D-R equation results 0.0071 381.680 2.784 4.5372 Mg-R 0.0099 0.1771 387.9185 1.2392 5.9608 A.5977 R 0.9985 0.1771 387.9185 1.0226 5.944 4.3772 R 0.9989 0.2013 391.5883 0.7939 5.967 4.6911 Wo <td< th=""><th>Table A .1.</th><th>Table A .1. Micropore volume calculations from N₂ adsorption onto ACC-20, baseline heating</th><th>calculations</th><th>from N₂ a</th><th>cropore volume calculations from N₂ adsorption onto A</th><th>ACC-20, baseline</th><th>heating</th></td<>	Table A .1.	Table A .1. Micropore volume calculations from N ₂ adsorption onto ACC-20, baseline heating	calculations	from N ₂ a	cropore volume calculations from N ₂ adsorption onto A	ACC-20, baseline	heating
298.9251 14,1195 5.7002 K 312.8724 11.6983 5.7458 B 323.9587 9.6915 5.7806 T 329.3827 8.8090 5.7972 R 358.644 4.9537 5.8829 D 369.4262 3.7264 5.9120 C(ads/gas) 6.37264 2.6356 5.9349 C(ads/gas) 6.381.6808 2.1132 5.946 S1946 C(ads/gas) 6.387.9185 1.2392 5.9608 R 387.9185 1.2392 5.9608 R 389.337 1.0626 5.9644 4.3772 R 390.5075 0.9180 5.9727 4.8503 E ₀ 3391.5883 0.7939 5.9702 4.6911 W ₀ (ads) 392.5487 0.6893 5.9727 4.8503 E ₀ 390.5075 0.3050 5.9845 6.0536 intersept 397.2421 0.2652 5.9845 6.0536 intersept 397.2421 0.2652 5.9845 6.0536 intersept 397.2421 0.2652 5.9868 6.4486 R 398.577	P/P _o	W (cc/g STP gas)	A ² (kJ/mol) ²	In (W)	t(Angstrom)		
312.8724 11.6983 5.7458 β 323.9587 9.6915 5.7806 T 329.3827 8.8090 5.7972 R 358.8644 4.9537 5.8829 n 369.4262 3.7264 5.9120 C(ads/gas) 378.0094 2.6356 5.9349 C(ads/gas) 381.6808 2.1132 5.946 Intersept 381.6808 1.7557 5.9512 Slope 387.9185 1.2392 5.9608 R² 389.377 1.0626 5.9674 4.5323 W₀ 399.5075 0.9180 5.9674 4.5323 W₀ 399.5075 0.9180 5.9749 5.0116 x 394.8575 0.6893 5.9727 4.8503 E₀ 396.095 0.3505 5.9817 5.6790 H-Jec 396.7072 0.2055 5.9868 6.4486 R 397.6791 0.2005 5.9868 6.4486 R 399.3608 5.9868 6.4486 W₀ 399.3608 5.9868 6.4486 <td>0.0029</td> <td>298.9251</td> <td>14.1195</td> <td>5.7002</td> <td></td> <td>エ</td> <td>12.0000 kJ-nm/g-mole</td>	0.0029	298.9251	14.1195	5.7002		エ	12.0000 kJ-nm/g-mole
323.9587 9.6915 5.7806 T 329.3827 8.8090 5.7972 R 358.8644 4.9537 5.8829 n 369.4262 3.7264 5.9120 C(ads/gas) 378.0094 2.6356 5.9349 C(ads/gas) 381.6808 2.1132 5.9446 Slope 386.327 1.4565 5.9567 Intersept 386.327 1.6266 5.9644 4.3772 R 387.9185 1.2392 5.9644 4.3772 R 389.337 1.0626 5.9644 4.3772 R 390.5075 0.9180 5.9674 4.5323 Wo. 391.5883 0.7939 5.9749 5.0116 x 392.5487 0.6893 5.9749 5.0116 x 394.8575 0.4598 5.9855 5.329 H-Jec 396.095 0.3050 5.9845 6.0536 Intersept 397.6791 0.2005 5.9868 6.4486 R 398.3608 6.2477 R Wo. 399.3608	0.0049	312.8724	11.6983	5.7458		~	0.3400
329.3827 8.8090 5.7972 R 358.8644 4.9537 5.8829 n 369.4262 3.7264 5.9120 C(ads/gas) 378.0094 2.6356 5.9349 D-R ec 381.6808 2.1132 5.9446 Slope 386.327 1.4565 5.9567 Intersept 386.327 1.4565 5.9608 R² 387.9185 1.2392 5.9644 4.3772 R 389.337 1.0626 5.9674 4.5323 W₀ 390.5075 0.9180 5.9674 4.5323 W₀ 391.5883 0.7939 5.9749 4.6911 W₀ R 392.5487 0.6893 5.9749 5.0116 x 394.8575 0.4598 5.9785 5.329 H-J ec 396.095 0.3505 5.9845 6.0536 intersept 397.6791 0.2005 5.9866 6.2477 R² 398.5777 6.6660 W₀ 399.3608 6.4486 R 7.1274 W₀ (ads) <td>0.0079</td> <td>323.9587</td> <td>9.6915</td> <td>5.7806</td> <td></td> <td>⊢</td> <td>77.3500 ° K</td>	0.0079	323.9587	9.6915	5.7806		⊢	77.3500 ° K
358.8644 4.9537 5.8829 n 369.4262 3.7264 5.9120 C(ads/gas) 378.0094 2.6356 5.9349 D-R ec 384.1987 1.7557 5.9446 slope 384.1987 1.7557 5.9512 slope 386.327 1.4565 5.9567 mintersept 387.9185 1.2392 5.9644 4.3772 R 389.337 1.0626 5.9674 4.5323 Wo 390.5075 0.9180 5.9674 4.5323 Wo 391.5883 0.7939 5.9727 4.8503 Eo 392.5487 0.6893 5.9749 5.0116 x 394.8575 0.4598 5.9785 5.3329 H-J ec 396.095 0.3505 5.9845 6.0536 intersept 397.6721 0.2052 5.9845 6.0536 intersept 398.156 0.2005 5.9868 6.4486 R 399.3608 5.9868 6.4486 R 399.3608 5.9868 6.4486 R <t< td=""><td>0.0099</td><td>329.3827</td><td>8.8090</td><td>5.7972</td><td></td><td>œ</td><td>0.0083 kJ/g-mole-K</td></t<>	0.0099	329.3827	8.8090	5.7972		œ	0.0083 kJ/g-mole-K
369,4262 3.7264 5.9120 C(ads/gas) 378,0094 2.6356 5.9349 D-R ec 381,6808 2.1132 5.9446 Slope 384,1987 1,7557 5.9512 slope 386,327 1,4565 5.9644 4.3772 R 387,9185 1,2392 5.9608 R² 389,337 1,0626 5.9644 4.3772 R 390,5075 0.9180 5.9674 4.5323 Wo 391,5883 0.7939 5.9727 4.6911 Wo A 392,5487 0.6893 5.9727 4.6911 Wo A 393,4418 0.5998 5.9749 5.0116 x 394,8575 0.4598 5.9785 5.329 H-J ec 396,7072 0.3050 5.9845 6.0536 intersept 397,2421 0.2652 5.9845 6.0536 Wo 398,5717 0.2005 5.9868 6.4486 R 399,3608 5.9868 6.4486 Wo 399,3608 6.6660 Wo <	0.0314	358.8644	4.9537	5.8829		u	2.0000
378.0094 2.6356 5.9349 381.6808 2.1132 5.9446 384.1987 1.7557 5.9512 386.327 1.4565 5.9567 387.9185 1.2392 5.9608 389.337 1.0626 5.9644 4.3772 R 390.5075 0.9180 5.9674 4.5323 Wo 391.5883 0.7939 5.9702 4.6911 Wo (ads) 392.5487 0.6893 5.9727 4.8503 Eo 393.4418 0.5998 5.9749 5.0116 x 394.8575 0.4598 5.9785 5.3329 396.095 0.3505 5.9817 5.6790 Intersept 397.2421 0.2652 5.9845 6.0536 intersept 397.6791 0.2308 5.9856 6.2477 R ² 398.5717 6.6660 Wo 399.3608 5.9868 6.4486 R 398.5717 6.6660 Wo 403.0132	0.0497	369.4262	3.7264	5.9120		C(ads/gas)	646.4962
381.6808 2.1132 5.9446 D-R ec 384.1987 1.7557 5.9512 slope 386.327 1.4565 5.9567 intersept 387.9185 1.2392 5.9608 R 389.337 1.0626 5.9674 4.3772 R 390.5075 0.9180 5.9674 4.5323 Wo 391.5883 0.7939 5.9702 4.6911 Wo (ads) 392.5487 0.6893 5.9727 4.8503 Eo 394.8575 0.4598 5.9727 4.8503 Eo 394.8575 0.4598 5.9785 5.3329 H-J ec 396.095 0.3505 5.9817 5.6790 H-J ec 397.2421 0.2652 5.9856 6.2477 R 398.156 0.2005 5.9866 6.4486 R 398.5717 6.6660 Wo 403.0132 7.1274 Wo (ads)	0.0801	378.0094	2.6356	5.9349			
384.1987 1.7557 5.9512 slope 386.327 1.4565 5.9667 intersept 387.9185 1.2392 5.9608 R² 389.337 1.0626 5.9674 4.3772 R 390.5075 0.9180 5.9674 4.5323 W₀ 391.5883 0.7939 5.9702 4.6911 W₀ 392.5487 0.6893 5.9727 4.8503 E₀ 393.4418 0.5998 5.9749 5.0116 x 394.8575 0.4598 5.9785 5.3329 H-Jec 396.095 0.3505 5.9817 5.6790 H-Jec 396.7072 0.3050 5.9845 6.0536 intersept 397.6791 0.2005 5.9868 6.4486 R 398.5717 6.6660 W₀ 399.3608 7.1274 W₀ (ads)	0.1043	381.6808	2.1132	5.9446		D-R	equation results
386.327 1.4565 5.9567 intersept 387.9185 1.2392 5.9608 R² 389.337 1.0626 5.9644 4.3772 R 390.5075 0.9180 5.9674 4.5323 W₀ 391.5883 0.7939 5.9702 4.6911 W₀ (ads) 392.5487 0.6893 5.9727 4.8503 E₀ 394.8575 0.4598 5.9749 5.0116 x 394.8575 0.4598 5.9785 5.3329 H-J ec 396.095 0.3505 5.9817 5.6790 H-J ec 396.7072 0.3050 5.9826 6.0536 intersept 397.2421 0.2652 5.9845 6.0536 intersept 398.156 0.2005 5.9868 6.4486 R 398.5717 6.6660 W₀ 399.3608 7.1274 W₀ (ads)	0.1274	384.1987	1.7557	5.9512		slope	-0.0209 (kJ/mol) ²
387.9185 1.2392 5.9608 R 389.337 1.0626 5.9644 4.3772 R 390.5075 0.9180 5.9674 4.5323 Wo 391.5883 0.7939 5.9702 4.6911 Wo, (ads) 392.5487 0.6893 5.9727 4.8503 Eo 393.4418 0.5998 5.9727 4.8503 Eo 394.8575 0.4598 5.9785 5.3329 H-J ec 396.095 0.3505 5.9817 5.6790 Intersept 397.2421 0.2652 5.9845 6.0536 Intersept 397.2421 0.2005 5.9868 6.4486 R 398.5777 6.6660 Wo, (ads) 399.3608 7.1274 Wo, (ads)	0.1531	386.327	1.4565	5.9567		intersept	5.9881 (kJ/mol) ²
389.37 1.0626 5.9644 4.3772 R 390.5075 0.9180 5.9674 4.5323 Wo 391.5883 0.7939 5.9702 4.6911 Wo (ads) 392.5487 0.6893 5.9727 4.8503 Eo 393.4418 0.5998 5.9749 5.0116 x 394.8575 0.4598 5.9785 5.3329 H-Jec 396.095 0.3505 5.9817 5.6790 H-Jec 396.7072 0.3050 5.9845 6.0536 intersept 397.2421 0.2652 5.9845 6.0536 intersept 398.156 0.2005 5.9868 6.4486 R 398.5717 6.6660 Wo 399.3608 7.1274 Wo (ads)	0.1771	387.9185	1.2392	5.9608		\mathbb{R}^2	0.9989
390.5075 0.9180 5.9674 4.5323 Wo 391.5883 0.7939 5.9702 4.6911 Wo (ads) 392.5487 0.6893 5.9727 4.8503 Eo 393.4418 0.5998 5.9749 5.0116 x 394.8575 0.4598 5.9785 5.3329 H-J ec 396.095 0.3505 5.9817 5.6790 H-J ec 396.7072 0.3050 5.9832 5.8633 slope 397.2421 0.2652 5.9845 6.0536 intersept 397.6791 0.2308 5.9868 6.4486 R 398.156 0.2005 5.9868 6.4486 R 398.5717 6.6660 Wo 399.3608 7.1274 Wo, (ads)	0.2013	389.337	1.0626	5.9644	4.3772	œ	0.9995
391.5883 0.7939 5.9702 4.6911 Wo, (ads) 392.5487 0.6893 5.9727 4.8503 E _o 2 393.4418 0.5998 5.9749 5.0116 x 394.8575 0.4598 5.9785 5.3329	0.2254	390.5075	0.9180	5.9674	4.5323	W°	398.6369 cc/g (N ₂ gas)
392.5487 0.6893 5.9727 4.8503 Eo 2 393.4418 0.5998 5.9749 5.0116 x 394.8575 0.4598 5.9785 5.3329 H-J eque 396.095 0.3505 5.9817 5.6790 H-J eque 396.7072 0.3050 5.9832 5.8633 slope 397.2421 0.2652 5.9845 6.0536 intersept 37 397.6791 0.2308 5.9868 6.4486 R 398.156 0.2005 5.9868 6.4486 R 399.3608 7.1274 Wo, (ads) 403.0132 Wo, (ads)	0.2502	391.5883	0.7939	5.9702	4.6911	W _o (ads)	0.6166 cc/g (N ₂ ads)
393.4418 0.5998 5.9749 5.0116 x 394.8575 0.4598 5.9785 5.3329 H-J eque 396.095 0.3505 5.9817 5.6790 H-J eque 396.7072 0.3050 5.9832 5.8633 slope 397.2421 0.2652 5.9845 6.0536 intersept 37 397.6791 0.2308 5.9856 6.2477 R R 398.156 0.2005 5.9868 6.4486 R R 399.3608 7.1274 Wo, (ads) Single 403.0132 Wo, (ads) Wo, (ads)	0.275	392.5487	0.6893	5.9727	4.8503	ъ°	20.3631 kJ/mol
394.8575 0.4598 5.9785 5.3329 H-J eque 396.095 0.3505 5.9817 5.6790 H-J eque 396.095 0.3050 5.9832 5.8633 slope 397.2421 0.2652 5.9845 6.0536 intersept 37 397.6791 0.2308 5.9868 6.4486 R 398.156 0.2005 5.9868 6.4486 R 398.5717 6.6660 Wo 37 399.3608 7.1274 Wo (ads)	0.2999	393.4418	0.5998	5.9749	5.0116	×	0.5893 nm
396.095 0.3505 5.9817 5.6790 H-J eque 396.7072 0.3050 5.9832 5.8633 slope 397.2421 0.2652 5.9845 6.0536 intersept 37 397.6791 0.2308 5.9868 6.2477 R ² 398.156 0.2005 5.9868 6.4486 R R 3798.5717 6.6660 W _o 37 7.1274 W _o (ads) Single Singl	0.3484	394.8575	0.4598	5.9785	5.3329		
396.7072 0.3050 5.9832 5.8633 slope 397.2421 0.2652 5.9845 6.0536 intersept 37 397.6791 0.2308 5.9856 6.2477 R 398.156 0.2005 5.9868 6.4486 R 398.5717 6.6660 Wo 37 399.3608 7.1274 Wo (ads) Single 403.0132 Wo (ads)	0.3983	396.095	0.3505	5.9817	5.6790	L-H	equation results
397.2421 0.2652 5.9845 6.0536 intersept 37 397.6791 0.2308 5.9856 6.2477 R ² 398.156 0.2005 5.9868 6.4486 R 398.5717 6.6660 W _o 37 399.3608 7.1274 W _o (ads) 403.0132 Single	0.4237	396.7072	0.3050	5.9832	5.8633	slope	3.6484 cc/gA
397.6791 0.2308 5.9856 6.2477 R ² 398.156 0.2005 5.9868 6.4486 R 398.5717 6.6660 W _o 37 399.3608 7.1274 W _o (ads) 8ingle	0.449	397.2421	0.2652	5.9845	6.0536	intersept	374.6301 cc/g (N ₂ gas)
398.156 0.2005 5.9868 6.4486 R 398.5717 6.6660 W _o 37 399.3608 7.1274 W _o (ads) 403.0132 Single	0.4738	397.6791	0.2308	5.9856	6.2477	\mathbb{R}^2	0.9531
399.3608 W _o 37 399.3608 T.1274 W _o (ads) 403.0132 Single	0.4984	398.156	0.2005	5.9868	6.4486	œ	0.9763
399.3608 7.1274 W _o (ads) Single 403.0132 W _o (ads)	0.5238	398.5717			0999.9	W°	374.6301 cc/g (N ₂ gas)
Sing) 403.0132 Wo, (ads)	0.5736	399.3608			7.1274	W _o (ads)	0.5795 cc/g (N ₂ ads)
403.0132 W _o (ads)							Single Point
	0.9491	403.0132				W _o (ads)	0.6234 cc/g (N ₂ ads)

ating		12.0000 kJ-nm/g-mole	0.3400	77.3500 ° K	0.0083 kJ/g-mole-K	2.0000	646.4962		D-R equation results	-0.0210 (kJ/mol) ²	5.9753 (kJ/mol) ²	0.9989	0.9995	393.5708 cc/g (N ₂ gas)	0.6088 cc/g (N ₂ ads)	20.2843 kJ/mol	0.5916 nm		H-J equation results	3.4388 cc/gA	370.6454 cc/g (N ₂ gas)	0.9538	0.9766	370.6454 cc/g (N ₂ gas)	0.5733 cc/g (N ₂ ads)		Single Point	0.6157 cc/g (N ₂ ads)
CC-20, 6 hours he		¥	~	⊢	œ	c	C(ads/gas)		D-f	elope	intersept	Σ_2	œ	W°	W _o (ads)	п	×		ŕ	slope	intersept	\mathbb{A}^2	٣	Š	W _o (ads)			W _o (ads)
dsorption onto AC	t(Angstrom)												4.3747	4.5317	4.6899	4.8490	5.0116	5.3335	5.6804	5.8655	6.0544	6.2525	6.4503	6.6634	6.8876	7.1274		
rom N ₂ a	In (W)	5.6862	5.7344	5.7696	5.7834	5.8684	5.8981	5.9218	5.9314	5.9382	5.9438	5.9481	5.9516	5.9546	5.9574	5.9599	5.9621	5.9656	5.9686	5.9700	5.9713	5.9726	5.9736					
calculations f	A ² (kJ/mol) ²	14.1195	11.4383	9.5429	8.8090	5.0091	3.7515	2.6409	2.1258	1.7624	1.4626	1.2457	1.0653	0.9185	0.7948	0.6900	0.5998	0.4595	0.3501	0.3045	0.2650	0.2300	0.2003					
Table A.2. Micropore volume calculations from N2 adsorption onto ACC-20, 6 hours heating	W (cc/g STP gas)	294.7783	309.3126	320.3971	324.8708	353.6885	364.3482	373.0650	376.6842	379.2552	381.3820	383.0159	384.3727	385.5286	386.6146	387.5707	388.4079	389.7796	390.9755	391,4874	391.9963	392.5223	392.9232	393.3301	393.7274	394.1174		398.0175
Table A.2.	P/P _o	0.0029	0.0052	0.0082	0.0099	0.0308	0.0492	0.0799	0.1036	0.1269	0.1525	0.1763	0.2009	0.2253	0.2500	0.2748	0.2999	0.3485	0.3985	0.4240	0.4491	0.4744	0.4986	0.5235	0.5484	0.5736		0.9490

W (cc/g STP gas) A² (kJ/mol)² In (W) ((Angstrom) 296.9070 19.7340 5.6934 K 324.4502 11.4383 5.7821 F 334.4142 9.5917 5.8124 T 398.554 8.7707 5.8270 R 366.5445 5.0653 5.9043 n 378.2935 3.6820 5.9357 C(ads/gas) 6 386.7069 2.6149 5.9577 C(ads/gas) 6 389.359 2.1477 5.9660 Slope Slope 394.7607 1.4667 5.9738 Slope Slope 395.47607 1.4667 5.9859 4.3688 R R 396.423 1.0712 5.9859 4.5298 Wo, (ads) 4 400.1014 0.7966 5.9917 4.6873 Wo, (ads) A 401.0534 0.6008 5.9941 4.8478 Eo A 401.9184 0.6015 5.9962 5.0083 X A <th>Table A. 3</th> <th>. Micropore volume</th> <th>calculations</th> <th>from N₂ a</th> <th>Table A. 3. Micropore volume calculations from N₂ adsorption onto ACC-20, 12 hours heating</th> <th>20, 12 hours hea</th> <th>ating</th>	Table A. 3	. Micropore volume	calculations	from N ₂ a	Table A. 3. Micropore volume calculations from N ₂ adsorption onto ACC-20, 12 hours heating	20, 12 hours hea	ating
296.9070 19.7340 5.6934 K 324.4502 11.4383 5.7821 β 334.4142 9.5917 5.8124 T 39.3551 8.7707 5.8270 R 366.5945 5.0563 5.9043 n 378.2935 3.6820 5.9357 C(ads/gas) 6. 389.9359 2.1477 5.9660 S.9357 C(ads/gas) 6. 399.3077890 1.7163 5.9783 intersept R 399.0179 0.9202 5.9890 4.5298 W₀ (ads) 40.1014 0.7966 5.9917 4.6873 W₀ (ads) 40.10534 0.6018 5.9962 5.0083 x 40.3773 0.4610 5.9999 5.3295	P/P _o	W (cc/g STP gas)	A ² (kJ/mol) ²	(W) ul	t(Angstrom)		
324,4502 11,4383 5.7821 B T T T T 339,3551 8.7707 5.8124 B T T T T T 339,3551 8.7707 5.8124 B T T T T T T 365.5945 5.0563 5.9043 D C(ads/gas) 64	0.0010	296.9070	19.7340	5.6934		エ	12.0000 kJ-nm/g-mole
334,4142 9,5917 5,8124 T 7 7 339,3551 8,7707 5,8270 R 8 8,7707 5,8270 R 8 8,7707 5,8270 R 8 8,7707 5,8270 R 8 8,7069 2,6149 5,9577 C(ads/gas) 644 386,7069 2,6149 5,9577 S960 2,1477 5,9660 S10pe	0.0052	324.4502	11.4383	5.7821		β	0.3400
339.3551 339.3551 366.5945 5.0563 5.9043 7R.2935 3.6820 5.9357 386.7069 2.6149 5.9577 389.9359 2.1477 5.9660 392.9947 1.7163 5.9738 394.7607 1.4667 5.9859 4.5288 Wo, (ads) 400.1014 0.7966 5.9977 4.6873 400.404512 0.3056 6.0044 5.8604 5.804 5.9062 5.0888 4.5088	0.0081	334.4142	9.5917	5.8124		_	77.3500 ° K
366.5945 5.0563 5.9043 n 378.2935 3.6820 5.9357 C(ads/gas) 64 386.7069 2.6149 5.9577 C(ads/gas) 64 389.9359 2.1477 5.9660 D-R eque 392.9947 1.7163 5.9738 intersept - 394.7607 1.4667 5.9783 intersept - 394.7607 1.4667 5.9859 4.3688 R 397.7890 1.0712 5.9859 4.5298 Wo 40 400.1014 0.9202 5.9890 4.5298 Wo 40 401.0534 0.6008 5.9941 4.8478 Eo 2 401.0534 0.6015 5.9962 5.0083 x 401.9184 0.6015 5.9962 5.0083 x 401.924 0.6016 5.9999 5.3295 X 404.6512 0.3514 6.0030 5.6754 H-J eque 405.2153 0.2002 6.0080 6.4511 R 406.6892 0.2002 6.0080 6.4511	0.0100	339.3551	8.7707	5.8270		œ	0.0083 kJ/g-mole-K
378.2935 3.6820 5.9357 C(ads/gas) 64 386.7069 2.6149 5.9577 D-R eque 389.9359 2.1477 5.9660 D-R eque 392.9947 1.7163 5.9738 Slope 394.7607 1.4667 5.9783 Slope 394.7607 1.4667 5.9825 4.3688 R 395.77890 1.0712 5.9859 4.5298 Wo, 440 400.1014 0.7966 5.9969 4.5298 Wo, (ads) 401.0534 0.6908 5.9941 4.8478 Eo 2 401.0534 0.6015 5.9962 5.0083 x 401.9184 0.6015 5.9969 5.3295 H-J equa 405.2153 0.3056 6.0044 5.8604 Slope 405.2153 0.2056 6.0057 6.0498 intersept 38 406.2805 0.2002 6.0080 6.4511 R 407.5718 6.8886 Wo, (ads) 407.942 7.1265 Single	0.0303	366.5945	5.0563	5.9043		u	2.0000
386.7069 2.6149 5.9577 389.9359 2.1477 5.9660 392.9947 1.7163 5.9738 394.7607 1.4667 5.9783 396.4423 1.2409 5.9825 397.7890 1.0712 5.9859 4.3688 R 400.1014 0.7966 5.9917 4.6873 Wo, (ads) 401.0534 0.6015 5.9999 5.3295 404.6512 0.3514 6.0030 5.6754 R 405.7219 0.2659 6.0067 6.0498 intersept 38 406.885 0.2002 6.0080 6.2437 R 407.1017 6.8886 Wo, (ads) 407.5718 6.8886 Wo, (ads) 5.9877 6.8886 Wo, (ads) 5.9878 1.2409 6.05080 6.2437 R 6.8886 Wo, (ads) 5.9878 1.2409 6.0659 6.0655 Wo, (ads) 6.8886 Wo, (ads) 5.9878 1.2409 6.0800 6.2437 R 6.8886 Wo, (ads) 5.9880 Wo, (ads) 5.9879 1.2406 5.9899 6.2659 Wo, (ads) 6.8886 Wo, (ads) 5.9878 1.2409 6.0890 6.0890 6.2437 R 6.8886 Wo, (ads) 5.9878 1.265 8.0890 6.0890 6.2437 R 6.8886 Wo, (ads)	0.0506	378.2935	3.6820	5.9357		C(ads/gas)	646.4962
389.9359 2.1477 5.9660 392.9947 1.7163 5.9738 394.7607 1.4667 5.9783 396.4423 1.2409 5.9825 396.74800 1.0712 5.9859 4.3688 R 399.0179 0.9202 5.9890 4.5298 Wo (ads) 400.1014 0.7966 5.9917 4.6873 Wo (ads) 401.0534 0.6015 5.9962 5.0083 x 401.9184 0.6015 5.9999 5.3295 404.6512 0.3514 6.0030 5.6754 Slope 405.2153 0.3056 6.0044 5.8604 intersept 38 406.2805 0.2002 6.0080 6.4511 R 407.1017 6.6625 Wo (ads) 407.9422 7.1265 Singl	6080.0	386.7069	2.6149	5.9577			
392.9947 1.7163 5.9738 slope 394.7607 1.4667 5.9783 intersept 396.4423 1.2409 5.9825 R ² 396.4423 1.2409 5.9825 R ² 397.7890 1.0712 5.9859 4.3688 R 399.0179 0.9202 5.9890 4.5298 W ₀ 400 400.1014 0.7966 5.9917 4.6873 W ₀ (ads) 401.0534 0.6908 5.9941 4.8478 E ₀ 2 401.9184 0.6015 5.9962 5.0083 x 403.3773 0.4610 5.9962 5.0083 x 403.3773 0.4610 5.9969 5.3295 404.6512 0.3514 6.0030 5.6754 Intersept 38 405.2153 0.2056 6.0044 5.8604 intersept 38 406.2805 0.2002 6.0080 6.4511 R 407.1017 6.6625 W ₀ (ads) 407.9422 C.2002 6.0080 6.4511 R 6.0030 6.4511 R 6.00	0.1024	389.9359	2.1477	5.9660		D-R	equation results
394.7607 1.4667 5.9783 intersept 396.4423 1.2409 5.9825 396.4423 1.2409 5.9825 397.7890 1.0712 5.9859 4.3688 R 399.0179 0.9202 5.9890 4.5298 Wo, (ads) 401.0534 0.6908 5.9941 4.8478 Eo. 2 401.9184 0.6015 5.9962 5.0083 x 401.9184 0.6015 5.9962 5.0083 x 403.3773 0.4610 5.9999 5.3295 404.6512 0.3514 6.0030 5.6754 Intersept 38 406.2805 0.2056 6.0057 6.0498 intersept 38 406.2805 0.2014 6.0070 6.2437 R ² 406.6892 0.2002 6.0080 6.4511 R 407.1017 6.6625 Wo, (ads) 407.5718 6.8886 Wo, (ads) 5.9983 5.9889 Wo, (ads) 5.9984	0.1304	392.9947	1.7163	5.9738		slope	-0.0176 (kJ/mol) ²
396.4423 1.2409 5.9825 R 397.7890 1.0712 5.9859 4.3688 R 400.1014 0.9202 5.9890 4.5298 Wo (ads) 401.0534 0.6908 5.9941 4.8478 Eo 2 401.0184 0.6015 5.9962 5.0083 x 401.9184 0.6015 5.9969 5.3295 x 403.3773 0.4610 5.9999 5.3295 x 404.6512 0.3514 6.0030 5.6754 H-J equal 405.7219 0.2056 6.0044 5.8604 intersept 38 405.7219 0.2059 6.0057 6.0498 intersept 38 406.6892 0.2002 6.0080 6.4511 R 407.1017 6.8886 Wo (ads) 407.9422 7.1265 Singl	0.1521	394.7607	1.4667	5.9783		intersept	6.0039 (kJ/mol) ²
397.7890 1.0712 5.9859 4.3688 R 399.0179 0.9202 5.9890 4.5298 W ₀ 400 400.1014 0.7966 5.9917 4.6873 W ₀ (ads) 401.0534 0.6908 5.9941 4.8478 E ₀ 2 401.9184 0.6015 5.9962 5.0083 × 403.3773 0.4610 5.9999 5.3295	0.1769	396.4423	1.2409	5.9825		\mathbb{R}^2	0.9801
399.0179 0.9202 5.9890 4.5298 W ₀ 40 400.1014 0.7966 5.9917 4.6873 W ₀ (ads) 401.0534 0.6908 5.9941 4.8478 E ₀ 2 401.9184 0.6015 5.9962 5.0083 x 403.3773 0.4610 5.9999 5.3295 x 404.6512 0.3514 6.0030 5.6754 H-Jequa 405.2153 0.3056 6.0044 5.8604 intersept 38 406.2805 0.2314 6.0057 6.0498 intersept 38 406.2805 0.2002 6.0080 6.4511 R 407.1017 6.6625 W ₀ 37 407.5718 6.8886 W ₀ (ads) 5.9941 4.6529 W ₀ 4.698 6.8886 W ₀ (ads) 5.9941 4.8478 E ₀ 2 5.9962 5.0080 6.4511 R 6.0070 6.2437 R ² 6.8886 W ₀ (ads) 5.9942 7.1265 Singl	0.2000	397.7890	1.0712	5.9859	4.3688	œ	0.9900
400.1014 0.7966 5.9917 4.6873 Wo, (ads) 401.0534 0.6908 5.9941 4.8478 Eo 2 401.0534 0.6015 5.9962 5.0083 x 401.9184 0.6015 5.9999 5.3295 x 403.3773 0.4610 5.9999 5.3295 x 404.6512 0.3514 6.0030 5.6754 H-J equal Slope 405.7219 0.2659 6.0044 5.8604 slope 406.2805 0.2314 6.0057 6.0498 intersept 38 406.6892 0.2002 6.0080 6.4511 R 407.1017 6.6625 Wo (ads) 407.942 7.1265 Single	0.2250	399.0179	0.9202	5.9890	4.5298	W°	405.0225 cc/g (N ₂ gas)
401.0534 0.6908 5.9941 4.8478 Eo 2 401.9184 0.6015 5.9962 5.0083 x 403.3773 0.4610 5.9999 5.3295 x 404.6512 0.3514 6.0030 5.6754 H-J equal Slope 405.2153 0.3056 6.0044 5.8604 slope 405.7219 0.2659 6.0057 6.0498 intersept 38 406.6892 0.2314 6.0070 6.2437 R 407.1017 6.6625 0.0080 6.4511 R 407.5718 6.8886 Wo, (ads) 407.9422 7.1265 Single	0.2496	400.1014	0.7966	5.9917	4.6873	W _o (ads)	0.6265 cc/g (N ₂ ads)
401.9184 0.6015 5.9962 5.0083 x 403.3773 0.4610 5.9999 5.3295 H-J equal 404.6512 0.3514 6.0030 5.6754 H-J equal 405.2153 0.3056 6.0044 5.8604 slope 405.7219 0.2659 6.0057 6.0498 intersept 38 406.2805 0.2314 6.0070 6.2437 R 407.1017 6.6625 Wo 6.6625 407.5718 6.8886 Wo 37 407.9422 7.1265 MA (ads)	0.2746	401.0534	0.6908	5.9941	4.8478	யீ	22.1919 kJ/mol
403.3773 0.4610 5.9999 5.3295 404.6512 0.3514 6.0030 5.6754 H-J equal 405.2153 0.3056 6.0044 5.8604 Slope 405.7219 0.2659 6.0057 6.0498 intersept 38 406.2805 0.2314 6.0070 6.2437 R R 406.6892 0.2002 6.0080 6.4511 R R 407.1017 6.6625 Wo 37 407.5718 6.8886 Wo (ads) 407.9422 7.1265 Single	0.2994	401.9184	0.6015	5.9962	5.0083	×	0.5407 nm
404.6512 0.3514 6.0030 5.6754 H-J equal H-J e	0.3479	403.3773	0.4610	5.9999	5.3295		
405.2153 0.3056 6.0044 5.8604 slope 405.7219 0.2659 6.0057 6.0498 intersept 38 406.2805 0.2314 6.0070 6.2437 R 406.6892 0.2002 6.0080 6.4511 R 407.1017 6.6625 Wo 37 407.5718 6.8886 Wo (ads) 407.9422 7.1265 Single	0.3978	404.6512	0.3514	6.0030	5.6754	P-H	equation results
405.7219 0.2659 6.0057 6.0498 intersept 38 406.2805 0.2314 6.0070 6.2437 R² 406.6892 0.2002 6.0080 6.4511 R 407.1017 6.6625 VVo 37 407.5718 6.8886 VVo (ads) 407.9422 7.1265 Singl	0.4233	405.2153	0.3056	6.0044	5.8604	slope	3.5915 cc/gA
406.2805 0.2314 6.0070 6.2437 R² 406.6892 0.2002 6.0080 6.4511 R 407.1017 6.6625 W₀ 37 407.5718 6.8886 W₀ (ads) 407.9422 7.1265 Single	0.4485	405.7219	0.2659	6.0057	6.0498	intersept	383.4346 cc/g (N ₂ gas)
406.6892 0.2002 6.0080 6.4511 R 407.1017 6.6625 Wo 37 407.5718 6.8886 Wo (ads) 407.9422 7.1265 Single	0.4733	406.2805	0.2314	0.000.9	6.2437	\mathbb{R}^2	0.9554
407.1017 6.6625 W _o 37 407.5718 6.8886 W _o (ads) 7.1265 Singl	0.4987	406.6892	0.2002	0800.9	6.4511	œ	0.9774
407.5718 6.8886 W _o (ads) 407.9422 7.1265 Singl	0.5234	407.1017			6.6625	W°	370.6454 cc/g (N ₂ gas)
407.9422 7.1265 Singl	0.5485	407.5718			6.8886	W _o (ads)	0.5931 cc/g (N ₂ ads)
Sing)	0.5735	407.9422			7.1265		
412 0034 W (ade)							Single Point
412.0304	0.9487	412.0934				W _o (ads)	0.6374 cc/g (N ₂ ads)

Table A .4	Table A.4. Micropore volume calculations from N ₂ adsorption onto ACC-20, baseline benzene sample	e calculations	from N ₂	adsorption onto	ACC-20, baseline	benzene sample
P/P。	W (cc/g STP gas)	A ² (kJ/mol) ²	In (W)	t(Angstrom)		
0.0029	293.5053	14.1195	5.6819		不	12.0000 kJ-nm/g-mole
0.0054	310.2515	11.2748	5.7374		5	0.3400
0.0086	322.1501	9.3546	5.7750		⊢	77.3500 ° K
0.0099	325.8454	8.8090	5.7864		œ	0.0083 kJ/g-mole-K
0.0317	355.4565	4.9265	5.8734		t t	2.0000
0.0507	366.3762	3.6771	5.9037		C(ads/gas)	646.4962
0.0803	374.6712	2.6304	5.9260			
0.1025	378.1296	2.1459	5.9352		D-R	D-R equation results
0.1306	381.1726	1.7137	5.9433		slope	-0.0216 (kJ/mol) ²
0.1526	383.0772	1.4616	5.9482		intersept	5.9807 (kJ/mol) ²
0.1771	384.6884	1.2392	5.9524		\mathbb{R}^2	0.9993
0.2005	386.0285	1.0679	5.9559	4.3721	œ	9666.0
0.225	387.2596	0.9202	5.9591	4.5298	W°	395.7239 cc/g (N ₂ gas)
0.2497	388.3639	0.7962	5.9619	4.6879	W _o (ads)	0.6121 cc/g (N ₂ ads)
0.2747	389.363	0.6904	5.9645	4.8484	щ	20.0322 kJ/mol
0.2998	390.251	0.6001	5.9668	5.01(×	0.5990 nm
0.351	391.8636	0.4533	5.9709	5.3505		
0.3983	393.0618	0.3505	5.9740	5.6790	TH.	H-J equation results
0.4233	393.7086	0.3056	5.9756	5.8604	slope	3.6805 cc/gA
0.449	394.2352	0.2652	5.9769	6.0536	intersept	371.3165 cc/g (N ₂ gas)
0.4822	394.9005	0.2200	5.9786	6.3153	\mathbb{R}^2	0.9541
0.4998	395.201	0.1989	5.9794	6.4603	œ	0.9768
0.5232	395.6764			6.6608	w°	371.3165 cc/g (N ₂ gas)
0.5486	396.0557			6.8895	W _o (ads)	0.5744 cc/g (N ₂ ads)
0.5817	396.6292			7.2076		
						Single Point
0.9491	400.9805				W _o (ads)	0.6202 cc/g (N ₂ ads)

able A.5. Micropore volume calculations from N ₂ adsorption onto ACC-20, 10 cycle benzene sample	cc/g STP gas) A² (kJ/mol)² In (W) t(Angstrom)	296.3017 17.4853 5.6914 K 12.0000 kJ-nm/g-mole	334.62 11.6983 5.8130 B 0.3400	347.4861 9.6915 5.8507 T 77.3500 ° K	352.847 8.8478 5.8660 R 0.0083 kJ/g-mole-K	382.5004 5.1046 5.9467 n 2.0000	394.4688 3.7465 5.9775 C(ads/gas) 646.4962	403.2012 2.6514 5.9994	407.0459 2.1114 6.0089 D-R equation results	409.5736 1.7544 6.0151 slope -0.0204 (kJ/mol) ²	411.6284 1.4575 6.0201 intersept 6.0497 (kJ/mol) ²	413.135 1.2425 6.0238 R ² 0.9996	414.4763 1.0646 6.0270 4.3753 R 0.9998	415.5517 0.9180 6.0296 4.5323 W _o 423.9777 cc/g (N ₂ gas)	416.5501 0.7934 6.0320 4.6918 W _o (ads) 0.6558 cc/g (N ₂ ads)	417.4245 0.6896 6.0341 4.8497 E _o 20.5829 kJ/mol	418.2288 0.5998 6.0360 5.0116 x 0.5830 nm	419.5064 0.4595 6.0391 5.3335	420.5877 0.3505 6.0417 5.6790 H-J equation results	421.089 0.3048 6.0428 5.8640 slope 3.0757 cc/gA	421.5661 0.2652 6.0440 6.0536 intersept 402.3151 cc/g (N ₂ gas)	421.9328 0.2304 6.0448 6.2501 R ² 0.9399	422.2898 0.2002 6.0457 6.4511 R 0.9695	422.5773 6.6678 W _o 402.3151 cc/g (N ₂ gas)	422.8762 6.8913 W _o (ads) 0.6223 cc/g (N ₂ ads)	423.1349 7.1304	tuiod alonis	The contract of the contract o
Micropore volum	W (cc/g STP gas)	296.3017	334.62	347.4861	352.847	382.5004	394.4688	403.2012	407.0459	409.5736	411.6284	413.135	414.4763	415.5517	416.5501	417.4245	418.2288	419.5064	420.5877	421.089	421.5661	421.9328	422.2898	422.5773	422.8762	423.1349		
Table A .5.	P/P _o	0.0015	0.0049	0.0079	0.0098	0.0298	0.0493	0.0795	0.1044	0.1275	0.153	0.1767	0.201	0.2254	0.2503	0.2749	0.2999	0.3485	0.3983	0.4238	0.449	0.4741	0.4987	0.524	0.5488	0.5739		

le A .b.	. Micropore volum	e calculations	from N ₂ a	Fable A .6. Micropore volume calculations from N ₂ adsorption onto ACC-20, 20 cycle benzene sample	ACC-20, 20 cycle	benzene sample
P/P _o	W (cc/g STP gas)	A ² (kJ/mol) ²	In (W)	t(Angstrom)		
0.0019	314.165	16.2371	5.7499		×	12.0000 kJ-nm/g-mole
0.005	339.0513	11.6096	5.8262		~	0.3400
0.0079	350.2253	9.6915	5.8586		⊢	77.3500 ° K
0.0102	356.482	8.6954	5.8763		œ	0.0083 kJ/g-mole-K
0.0306	384.7122	5.0279	5.9525		u	2.0000
0.0507	396.4112	3.6771	5.9825		C(ads/gas)	646.4962
0.0812	404.8499	2.6072	6.0035			
0.1022	408.0977	2.1514	6.0115		D-R	D-R equation results
0.1304	411.1798	1.7163	6.0190		slope	-0.0193 (kJ/mol) ²
0.1522	412.9701	1.4657	6.0234		intersept	6.0521 (kJ/mol) ²
0.1768	414.571	1.2417	6.0272		\mathbb{R}^2	0.9982
0.2002	415.9024	1.0699	6.0305	4.3701	œ	0.9991
0.2247	417.154	0.9218	6.0335	4.5278	w°	425.0156 cc/g (N ₂ gas)
0.2494	418.2605	0.7975	6.0361	4.6860	W _o (ads)	0.6574 cc/g (N ₂ ads)
0.2745	419.2226	0.6912	6.0384	4.8471	யீ	21.1912 kJ/mol
0.2993	420.1485	0.6018	6.0406	5.0076	×	0.5663 nm
0.348	421.5276	0.4608	6.0439	5.3302		
0.3976	422.6813	0.3518	6.0466	5.6740	TH.	H-J equation results
0.4231	423.1939	0.3060	6.0478	5.8589	slope	3.3722 cc/gA
0.4482	423.6812	0.2663	6.0490	6.0475	intersept	402.6539 cc/g (N ₂ gas)
0.4737	424.0618	0.2309	6.0499	6.2469	\mathbf{R}^2	0.9406
0.498	424.6143	0.2010	6.0512	6.4453	œ	0.9698
0.5241	424.8816			6.6687	°	402.6539 cc/g (N ₂ gas)
0.5556	425.2709			6.9547	W _o (ads)	0.6228 cc/g (N ₂ ads)
0.5734	425.6227			7.1255		
						Single Point
0.9497	428.9682				W _o (ads)	0.6635 cc/g (N ₂ ads)

P/P _o W (cc/g STP gas) A ² (kJ/mol) ² In (W) t(Angstrom)	A ² (kJ/mol) ²	In (W)	t(Angstrom)		
•	15.4862	2.6507		¥	12.0000 kJ-nm/g-mole
	11.6983	5.7274		β	0.3400
	9.7426	5.7666		-	77.3500 ° K
	8.6954	5.7866		œ	0.0083 kJ/g-mole-K
	5.1241	5.8688		C	2.0000
	3.7465	5.9023		C(ads/gas)	646.4962
	2.6514	5.9260			
. 4	2.1313	5.9360		D-R	D-R equation results
_	.7638	5.9430		slope	-0.0215 (kJ/mol) ²
_	.4626	5.9485		intersept	5.9797 (kJ/mol) ²
_	.2465	5.9526		\mathbb{R}^2	0.9994
←	.0673	5.9560	4.3727	œ	0.9997
0	0.9202	5.9589	4.5298	w°	395.3314 cc/g (N ₂ gas)
0	0.7957	5.9615	4.6886	W _o (ads)	0.6115 cc/g (N ₂ ads)
0	0.6904	5.9638	4.8484	ů	20.0442 kJ/mol
0	0.6011	5.9657	5.0089	×	0.5987 nm
0	0.4600	5.9691	5.3322		
0	0.3508	5.9719	5.6775	TH	H-J equation results
0	0.3056	5.9733	5.8604	slope	3.1657 cc/gA
0	0.2659	5.9743	6.0498	intersept	373.5034 cc/g (N ₂ gas)
	0.2315	5.9752	6.2429	\mathbb{R}^2	0.9480
_	0.2007	5.9763	6.4478	œ	0.9736
			6.6625	w°	373.5034 cc/g (N ₂ gas)
			6.8867	W_o (ads)	0.5777 cc/g (N ₂ ads)
			7.1235		
					Single Point
				W _o (ads)	0.6149 cc/q (N ₂ ads)

acetone sample		12.0000 kJ-nm/g-mole	0.3400	77.3500 ° K	0.0083 kJ/g-mole-K	2.0000	646.4962		D-R equation results	-0.0220 (kJ/mol) ²	5.9736 (kJ/mol) ²	0.9994	0.9997	392.9223 cc/g (N ₂ gas)	0.6078 cc/g (N ₂ ads)	19.8343 kJ/mol	0.6050 nm		H-J equation results	3.3440 cc/gA	370.1742 cc/g (N ₂ gas)	0.9675	0.9836	370.1742 cc/g (N ₂ gas)	0.5726 cc/g (N ₂ ads)	Single Point	0.6140 cc/g (N ₂ ads)
ACC-20, baseline		~	В	-	œ	С	C(ads/g)		D-R	slope	intersept	\mathbb{R}^2	œ	°M	W_o (ads)	ш̈́	×		Γ-H	slope	intersept	\mathbb{R}^2	œ	°M	W _o (ads)		W _o (ads)
volume calculations from N ₂ adsorption onto ACC-20, baseline acetone sample	t(Angstrom)												4.5330	4.6892	4.8503	5.0116	5.3322	5.6790	5.9250	6.0552	6.3194	6.4587	6.6722	6.8904	7.1265		
from N ₂ a	In (W)	5.7357	5.7599	5.7785	5.8664	5.8966	5.9190	5.9279	5.9360	5.9408	5.9450	5.9484	5.9516	5.9543	5.9567	5.9589	5.9624	5.9656	5.9676	5.9685	5.9701	5.9710	5.9722				
calculations 1	A ² (kJ/mol) ²	10.8956	9.6915	8.7328	4.8908	3.6626	2.6047	2.1422	1.7060	1.4565	1.2344	1.0673	0.9175	0.7952	0.6893	0.5998	0.4600	0.3505	0.2913	0.2649	0.2194	0.1992	0.1722				
able A .9. Micropore volume	W (cc/g STP gas)	309.7176	317.3193	323.2725	352.9846	363.7821	372.0367	375.3724	378.4274	380.229	381.8386	383.1553	384.35	385.42	386.3459	387.1705	388.556	389.7744	390.5662	390.9103	391.561	391.8922	392.3656	392.7825	393.1872		396.9561
Table A .9.	P/P。	0.0059	0.0079	0.0101	0.0321	0.051	0.0813	0.1027	0.1312	0.1531	0.1777	0.2006	0.2255	0.2499	0.275	0.2999	0.3483	0.3983	0.432	0.4492	0.4827	0.4996	0.5245	0.5487	0.5735		0.9492

able A .1	Table A .10. Micropore volun	re volume calculations from N $_2$ adsorption onto ACC-20, 10 cycle acetone sample	S ITOILI N2	adsorption ones		م مورد در مسالات
P/P _o	W (cc/g STP gas)	A ² (kJ/mol) ²	In (W)	t(Angstrom)		
0.0021	285.6296	15.7225	5.6547		エ	12.0000 kJ-nm/g-mole
0.0049	307.5003	11.6983	5.7285		8	0.3400
0.0079	319.3986	9.6915	5.7664		 	77.3500 ° K
0.0098	324.7705	8.8478	5.7831		œ	0.0083 kJ/g-mole-K
0.0306	355.0817	5.0279	5.8723		u	2.0000
0.049	366.2679	3.7617	5.9034		C(ads/g)	646.4962
0.0796	375.3073	2.6487	5.9277			
0.1039	379.1813	2.1204	5.9380		D-R	D-R equation results
0.1273	381.7807	1.7571	5.9448		slope	-0.0214 (kJ/mol) ²
0.1531	383.8612	1.4565	5.9503		intersept	5.9807 (kJ/mol) ²
0.1767	385.3345	1.2425	5.9541		\mathbb{R}^2	0.9985
0.2011	386.702	1.0640	5.9577	4.3760	œ	0.9993
0.2254	387.764	0.9180	5.9604	4.5323	w°	395.7171 cc/g (N ₂ gas)
0.2503	388.7658	0.7934	5.9630	4.6918	W _o (ads)	0.6121 cc/g (N ₂ ads)
0.2751	389.6628	0.6889	5.9653	4.8510	யீ	20.1274 kJ/mol
0.3001	390.4412	0.5991	5.9673	5.0129	×	0.5962 nm
0.3487	391,7033	0.4590	5.9705	5.3349		
0.3988	392.7459	0.3495	5.9732	5.6825	7-H	H-J equation results
0.4241	393.2293	0.3043	5.9744	5.8663	slope	2.9829 cc/gA
0.4493	393.6436	0.2647	5.9754	6.0560	intersept	374.9699 cc/g (N ₂ gas)
0.4739	393.9785	0.2306	5.9763	6.2485	\mathbb{R}^2	0.9351
0.4987	394.2956	0.2002	5.9771	6.4511	œ	0.9670
0.5238	394.6061			0999'9	W°	374.9699 cc/g (N ₂ gas)
0.5489	394.8931			6.8923	W _o (ads)	0.5800 cc/g (N ₂ ads)
0.5739	395.1563			7.1304		
						Single Point
0.9495	397.363				W _o (ads)	0.6146 cc/q (N, ads)

Table A .1	Table A .11. Micropore volume calculations from N ₂ adsorption onto ACC-20, 20 cycle acetone sample	ne calculation:	s from N ₂	adsorption onto	ACC-20, 20 cycl	e acetone sample
P/P _o	W (cc/g STP gas)	A ² (kJ/mol) ²	In (W)	t(Angstrom)		
0.0028	285.8095	14.2896	5.6553		×	12.0000 kJ-nm/g-mole
0.005	301.5122	11.6096	5.7088		β	0.3400
0.008	314,467	9.6412	5.7509		⊢	77.3500 ° K
0.0099	320.6661	8.8090	5.7704		œ	0.0083 kJ/g-mole-K
0.0335	351.4872	4.7701	5.8622		u	2.0000
0.05	360.6077	3.7115	5.8878		C(ads/g)	646.4962
0.08	369.1331	2.6382	5.9112			
0.1038	372.8271	2.1222	5.9211		D-F	D-R equation results
0.1271	375.3821	1.7597	5.9279		slope	-0.0220 (kJ/mol) ²
0.1536	377.4925	1.4515	5.9336		intersept	5.9659 (kJ/mot) ²
0.1769	379.0497	1.2409	5.9377		\mathbb{A}^2	9666.0
0.2007	380.4018	1.0666	5.9412	4.3734	œ	0.9998
0.225	381.562	0.9202	5.9443	4.5298	W°	389.8929 cc/g (N ₂ gas)
0.25	382.5635	0.7948	5.9469	4.6899	W_o (ads)	0.6031 cc/g (N ₂ ads)
0.2748	383.4436	0.6900	5.9492	4.8490	யீ	19.8448 kJ/mol
0.2997	384.2554	0.6005	5.9513	5.0102	×	0.6047 nm
0.3483	385,6823	0.4600	5.9550	5.3322		
0.3986	386.8272	0.3499	5.9580	5.6811	Ţ	H-J equation results
0.4236	387,3307	0.3051	5.9593	5.8626	slope	3.5176 cc/gA
0.449	387.8468	0.2652	5.9606	6.0536	intersept	366.1503 cc/g (N ₂ gas)
0.4741	388.2743	0.2304	5.9617	6.2501	\mathbb{R}^2	0.9598
0.499	388.7075	0.1998	5.9628	6.4536	œ	0.9797
0.5243	389.1168			6.6704	W°	366.1503 cc/g (N ₂ gas)
0.5493	389.5006			0968.9	W _o (ads)	0.5664 cc/g (N ₂ ads)
0.5744	389.8263					
						Single Point
0.949	393.3257				W _o (ads)	0.6084 cc/g (N ₂ ads)

acetone sample		12.0000 kJ-nm/g-mole	0.3400	77.3500 ° K	0.0083 kJ/g-mole-K	2.0000	646.4962		D-R equation results	-0.0217 (kJ/mol) ²	5.9883 (kJ/mol) ²	0.9983	0.9991	398.7329 cc/g (N ₂ gas)	0.6168 cc/g (N ₂ ads)	19.9463 kJ/mol	0.6016 nm		H-J equation results	3.9457 cc/gA	373.0249 cc/g (N ₂ gas)	0.9655	0.9826	373.0249 cc/g (N ₂ gas)	0.5770 cc/g (N ₂ ads)		Single Point	0.6140 cc/g (N ₂ ads)
re volume calculations from N ₂ adsorption onto ACC-20, 30 cycle acetone sample		×	~	⊢	œ	Ľ	C(ads/g)		D-R	slope	intersept	\mathbb{R}^2	œ	°×	W _o (ads)	ш̈	×		P-H	slope	intersept	\mathbb{R}^2	œ	W°	W _o (ads)			W _o (ads)
adsorption onto	t(Angstrom)												4.3734	4.5336	4.6905	4.8510	5.0116	5.3335	5.6783	5.8633	6.0536	6.2493	6.4536	6.6652	6.8904			
from N ₂	In (W)	5.6468	5.7308	5.7705	5.7872	5.8780	5.9109	5.9335	5.9428	5.9511	5.9560	5.9604	5.9639	5.9671	5.9698	5.9724	5.9747	5.9783	5.9817	5.9834	5.9848	5.9861	5.9873					
e calculations	A ² (kJ/mol) ²	16.2371	11.6983	9.6412	8.8478	4.9905	3.6674	2.6252	2.1459	1.7150	1,4585	1.2360	1.0666	0.9169	0.7943	0.6889	0.5998	0.4595	0.3506	0.3050	0.2652	0.2305	0.1998					
Table A .12. Micropore volum	Jas)	283.3898	308.2291	320.6945	326.089	357.0866	369.0362	377.4717	381.0048	384.1593	386.0513	387.759	389.1232	390.3569	391.4387	392.432	393.3322	394.7857	396.1305	396.7733	397.3339	397.8468	398.3563	398.8278	399.2301	399.6756		396.9561
Table A .12	P/P _o	0.0019	0.0049	0.008	0.0098	0.031	0.0509	0.0805	0.1025	0.1305	0.1529	0.1775	0.2007	0.2256	0.2501	0.2751	0.2999	0.3485	0.3982	0.4237	0.449	0.474	0.499	0.5237	0.5487	0.5735		0.9492

re volume calculations from N ₂ adsorption onto ACC-20, 50 cycle acetone sample	P gas) A² (kJ/mol)² In (W) t(Angstrom)	7 19.7340 5.6934 K 12.0000 kJ-nm/g-mole	11.4383 5.7821 B	42 9,5917 5.8124 T 77.3500 ° K	51 8.7707 5.8270 R 0.0083 kJ/g-mole-K	45 5.0563 5.9043 n 2.0000	35 3.6820 5.9357 C(ads/g) 646.4962	39 2.6149 5.9577	59 2.1477 5.9660 D-R equation results	47 1.7163 5.9738 slope -0.0176 (kJ/mol) ²	37 1.4667 5.9783 intersept 6.0039 (kJ/mol) ²	23 1.2409 5.9825 R ² 0.9801	9 1.0712 5.9859 4.3688 R 0.9900	79 0.9202 5.9890 4.5298 W _o 405.0225 cc/g (N ₂ gas)	14 0.7966 5.9917 4.6873 W _o (ads) 0.6265 cc/g (N ₂ ads)	34 0.6908 5.9941 4.8478 E _o 22.1919 kJ/mol	34 0.6015 5.9962 5.0083 × 0.5407 nm	73 0.4610 5.9999 5.3295	12 0.3514 6.0030 5.6754 H-J equation results	53 0.3056 6.0044 5.8604 slope 3.7844 cc/gA	19 0.2659 6.0057 6.0498 intersept 382.4406 cc/g (N ₂ gas)	35 0.2314 6.0070 6.2437 R ² 0.9616	92 0.2002 6.0080 6.4511 R 0.9806	6.6625 W _o 382.4406 cc/g (N ₂ gas)	6.8886 W _o (ads) 0.5916 cc/g (N ₂ ads)		Single Point	W _o (ads) 0.6374 cc/g (N ₂ ads)
ropore volume calculations	gas)	296.907 19.7340	324.4502 11.4383	334.4142 9.5917	339.3551 8.7707	366.5945 5.0563	378.2935 3.6820	386.7069 2.6149	389.9359 2.1477	392.9947 1.7163	394.7607 1.4667	396.4423 1.2409	397.789 1.0712	399.0179 0.9202	400.1014 0.7966	401.0534 0.6908	401.9184 0.6015	403.3773 0.4610	404.6512 0.3514	405.2153 0.3056	405.7219 0.2659	406.2805 0.2314	406.6892 0.2002	407.1017	407.5718	407.9422		412.0934
Table A .13. Micropor	P/P _o W (0.001	0.0052	0.0081	0.01	0.0303	0.0506	0.0809	0.1024	0.1304	0.1521	0.1769	0.2	0.225	0.2496	0.2746	0.2994	0.3479	0.3978	0.4233	0.4485	0.4733	0.4987	0.5234	0.5485	0.5735		0.9487

Table A.	Table A .14. Micropore volume	calculations	from N ₂ ad	volume calculations from N ₂ adsorption onto untreated ACC-20, QA test 1	reated ACC-20,	2A test 1
P/P _o	W (cc/g STP gas)	A ² (kJ/mol) ²	In (W)	t(Angstrom)		
0.003	273.0971	13.9561	5.6098		~	12.0000 kJ-nm/g-mole
0.0051	286.2762	11.5230	5.6570		5	0.3400
0.008	296.4607	9.6412	5.6919		-	77.3500 ° K
0.01	301.7907	8.7707	5.7097		~	0.0083 kJ/g-mole-K
0.0314	327.1285	4.9537	5.7904		u	2.0000
0.0495		3.7364	5.8167		C(ads/gas)	646.4962
0.0822		2.5819	5.8394			
0.102	346.2742	2.1551	5.8472		D-R	D-R equation results
0.126	348.8352	1.7746	5.8546	3.8710	slope	-0.0209 (kJ/mol) ²
0.1504	350.9134	1.4843	5.8605	4.0409	intersept	5.8962 (kJ/mol) ²
0.1755	352.7164	1.2523	5.8657	4.2089	\mathbb{R}^2	0.9975
0.2001	354.2203	1.0706	5.8699	4.3695	œ	0.9988
0.225	355.5901	0.9202	5.8738	4.5298	W°	363.6711 cc/g (N ₂ gas)
0.2497	356.8617	0.7962	5.8773	4.6879	W _o (ads)	0.5625 cc/g (N ₂ ads)
0.2746	357.9971	0.6908	5.8805	4.8478	ъ°	20.3276 kJ/mol
0.2996	358.9944	0.6008	5.8833	5.0096	×	0.5903 nm
0.3481	360.7807	0.4605	5.8883	5.3308		
0.3982	362.4851	0.3506	5.8930	5.6783	T-H	H-J equation results
0.4237	363.2137	0.3050	5.8950	5.8633	slope	4.7640 cc/gA
0.4486	363.8337	0.2658	5.8967	90509	intersept	334.6149 cc/g (N ₂ gas)
0.4734	364.5548	0.2313	5.8987	6.2445	\mathbb{R}^2	0.9733
0.4988	365.1532	0.2001	5.9003	6.4520	œ	0.9866
0.5233	365.8008			6.6617	°M	334.6149 cc/g (N ₂ gas)
0.5485	366.442			6.8886	W _o (ads)	0.5176 cc/g (N ₂ ads)
0.5733	367.0093					
						Single Point
0.9491	374.4317				W _o (ads)	0.5792 cc/g (N ₂ ads)

QA test 2		12.0000 kJ-nm/g-mole	0.3400	77.3500 ° K	0.0083 kJ/g-mole-K	2.0000	646.4962		D-R equation results	-0.0179 (kJ/mol) ²	5.9164 (kJ/mol) ²	0.9959	0.9979	371.0914 cc/g (N ₂ gas)	0.5740 cc/g (N ₂ ads)	21.9553 kJ/mol	0.5466 nm		H-J equation results	3.2322 cc/gA	350.6766 cc/g (N ₂ gas)	0.9550	0.9773	370.6454 cc/g (N ₂ gas)	0.5424 cc/g (N ₂ ads)		Single Point	0.5818 cc/g (N ₂ ads)
ntreated ACC-20,	300000000000000000000000000000000000000	×	~	⊢	œ	U	C(ads/gas)		D-R	slope	intersept	\mathbb{R}^2	œ	W°	W _o (ads)	யீ	×		Γ-H	slope	intersept	\mathbb{R}^2	œ	W°	W _o (ads)			W _o (ads)
dsorption onto ur	t(Angstrom)												4.3688	4.5291	4.6886	4.8490	5.0089	5.3322	5.6783	5.8648	6.0536	6.2493	6.4528	6.6652	6.8876	7.1284		
from N ₂ a	In (W)	5.6305	5.7007	5.7332	5.7482	5.8276	5.8495	5.8689	5.8765	5.8838	5.8884	5.8925	5.8960	5.8991	5.9017	5.9042	5.9064	5.9098	5.9128	5.9142	5.9156	5.9168	5.9179					
ne calculations	A ² (kJ/mol) ²	16.8186	11.6983	9.6915	8.8478	4.7785	3.6869	2.6047	2.1625	1.7293	1.4780	1.2465	1.0712	0.9207	0.7957	0069.0	0.6011	0.4600	0.3506	0.3046	0.2652	0.2305	0.2000					
Fable A.15. Micropore volume calculations from N₂ adsorption onto untreated ACC-20, QA test 2	W (cc/g STP gas)	278.8065	299.0854	308,9667	313.6133	339.5479	347.0493	353.8719	356,5523	359.1837	360,8303	362.3106	363,5621	364.7033	365.6729	366.5721	367.3648	368.6247	369.7494	370.2744	370.7654	371.2127	371.6354	372.0000	372.3865	372.7413		376.1484
Table A .1	P/P _o	0.0017	0.0049	0.0079	0.0098	0.0334	0.0505	0.0813	0.1016	0.1294	0.1510	0.1762	0.2000	0.2249	0.2498	0.2748	0.2995	0.3483	0.3982	0.4239	0.4490	0.4740	0.4989	0.5237	0.5484	0.5737		0.9490

QA test 3		12.0000 kJ-nm/g-mole	0.3400	77.3500 ° K	0.0083 kJ/g-mole-K	2.0000	646.4962		D-R equation results	-0.0197 (kJ/mol) ²	5.8378 (kJ/mol) ²	0.9971	0.9985	343.0183 cc/g (N ₂ gas)	0.5306 cc/g (N ₂ ads)	20.9605 kJ/mol	0.5725 nm		H-J equation results	2.7811 cc/gA	324.8401 cc/g (N ₂ gas)	0.8953	0.9462	370.6454 cc/g (N ₂ gas)	0.5025 cc/g (N ₂ ads)	Single Point	0.6095 cc/g (N ₂ ads)
ntreated ACC-20,		¥	8	⊢	œ	_	C(ads/gas)			slope	intersept	\mathbb{R}^2	œ	, M	W _o (ads)	щ	×		Ŧ	slope	intersept	\mathbb{R}^2	œ	W°	W _o (ads)		W _o (ads)
Table A .16. Micropore volume calculations from N ₂ adsorption onto untreated ACC-20, QA test 3	t(Angstrom)												4.3714	4.5298	4.6892	4.8484	5.0102	5.3335	5.6797	5.8655	6.0544	6.2509	6.6687	6.8969	7.1265		
from N ₂	In (W)	5.5208	5.6048	5.6412	5.6546	5.7349	5.7640	5.7858	5.7945	5.8010	5.8063	5.8106	5.8142	5.8200	5.8224	5.8246	5.8282	5.8314	5.8328	5.8342	5.8355	5.8378	5.8388				
ne calculations	A ² (kJ/mol) ²	16.8186	11.6096	9.5429	8.8478	5.0851	3.7415	2.6252	2.1331	1.7678	1.4749	1.2514	1.0686	0.9202	0.7952	0.6904	0.6005	0.4595	0.3503	0.3045	0.2650	0.2302	0.1726				
6. Micropore volun	W (cc/g STP gas)	249.8243	271.7249	281.7896	285.5970	309.4900	318.6287	325.6343	328.4917	330.6142	332.3829	333.8188	335.0253	336,9553	337.7682	338.5110	339.7413	340.8325	341.3165	341.7932	342.2440	342.6073	343.0177	343.3539	343,6810		394.0711
Table A.1	P/P _o	0.0017	0.0050	0.0082	0.0098	0.0300	0.0494	0.0805	0.1032	0.1265	0.1513	0.1756	0.2004	0.2250	0.2499	0.2747	0.2997	0.3485	0.3984	0.4240	0.4491	0.4742	0.5241	0.5494	0.5735		0.9487

	The state of the s		
'. BET surface area	from N2 adsorpt	ion onto ACC-2	0, baseline heating
W (cc/g STP gas)	1/[W(P _o /P - 1)]		
369.4262	1.4157E-04	slope	3.335E-03 g/cc N ₂ gas
378.0094	2.3035E-04	intersept	-3.586E-05 g/cc N₂ gas
381.6808	3.0509E-04	R^2	0.9977
384.1987	3.8001E-04	С	-91.9993
386.327	4.6794E-04	V_M	303.1138 cc/g N ₂ gas
387.9185	5.5479E-04	Surface Area	1319.3255 m ² /g
389.337	6.4734E-04		
Constants			
16.2	angstrom ²		
6.02214E+23	molecules/mole		
22414	cm ³ /mole		
	W (cc/g STP gas) 369.4262 378.0094 381.6808 384.1987 386.327 387.9185 389.337 Constants 16.2 6.02214E+23	W (cc/g STP gas) 1/[W(Po /P - 1)] 369.4262 1.4157E-04 378.0094 2.3035E-04 381.6808 3.0509E-04 384.1987 3.8001E-04 386.327 4.6794E-04 387.9185 5.5479E-04 389.337 6.4734E-04	369.4262 1.4157E-04 slope 378.0094 2.3035E-04 intersept 381.6808 3.0509E-04 R ² 384.1987 3.8001E-04 C 386.327 4.6794E-04 V _M 387.9185 5.5479E-04 Surface Area 389.337 6.4734E-04 Constants 16.2 angstrom ² 6.02214E+23 molecules/mole

Table A .18	B. BET surface area	from N2 adsorpt	ion onto ACC-2	0, 6 hours heating
P/P _o	W (cc/g STP gas)	1/[W(P _o /P - 1)]		
0.0492	364.3482	1.4202E-04	slope	3.374E-03 g/cc N ₂ gas
0.0799	373.065	2.3277E-04	intersept	-3.580E-05 g/cc N ₂ gas
0.1036	376.6842	3.0682E-04	R^2	0.9977
0.1269	379.2552	3.8324E-04	С	-93.2380
0.1525	381.382	4.7181E-04	V_{M}	299.5990 cc/g N ₂ gas
0.1763	383.0159	5.5881E-04	Surface Area	1304.0272 m ² /g
0.2009	384.3727	6.5407E-04		
	Constants			
CSA of N ₂	16.2	angstrom ²		
N _A	6.02214E+23	molecules/mole		
Molar Vol	22414	cm³/mole		

Table A .19	Table A .19. BET surface area from N2 adsorption onto ACC-20, 12 hours heating					
P/P _o	W (cc/g STP gas)	1/[W(P _o /P - 1)]				
0.0506	378.2935	1.4089E-04	slope	3.262E-03 g/cc N ₂ gas		
0.0809	386.7069	2.2762E-04	intersept	-3.522E-05 g/cc N ₂ gas		
0.1024	389.9359	2.9257E-04	R^2	0.9978		
0.1304	392.9947	3.8157E-04	С	-91.6304		
0.1521	394.7607	4.5441E-04	V_{M}	309.8821 cc/g N ₂ gas		
0.1769	396.4423	5.4212E-04	Surface Area	1348.7849 m ² /g		
0.2	397.789	6.2847E-04				
	Constants		_			
CSA of N ₂	CSA of N ₂ 16.2 angstrom ²					
N_A	6.02214E+23 molecules/mole					
Molar Vol	22414	cm ³ /mole 60				

Table A .20	. BET surface area	from N2 adsorp	tion onto ACC	-20, baseline benzene
P/P _o	W (cc/g STP gas)	1/[W(P _o /P - 1)]		
0.0507	366.3762	1.4577E-04	slope	3.361E-03 g/cc N₂ gas
0.0803	374.6712	2.3303E-04	intersept	-3.595E-05 g/cc N₂ gas
0.1025	378.1296	3.0203E-04	R^2	0.9978
0.1306	381.1726	3.9410E-04	С	-92.4933
0.1526	383.0772	4.7009E-04	V_M	300.7452 cc/g N ₂ gas
0.1771	384.6884	5.5945E-04	Surface Area	1309.0160 m ² /g
0.2005	386.0285	6.4965E-04		
Constants				
CSA of N ₂	16.2 angstrom ²			
N _A	6.02214E+23	molecules/mole		
Molar Vol	22414	cm³/mole		

Table A .21	Table A .21. BET surface area from N2 adsorption onto ACC-20, 10 cycle benzene					
P/P _o	W (cc/g STP gas)	1/[W(P _o /P - 1)]				
0.0493	394.4688	1.3146E-04	slope	3.132E-03 g/cc N₂ gas		
0.0795	403.2012	2.1420E-04	inter s ept	-3.401E-05 g/cc N₂ gas		
0.1044	407.0459	2.8638E-04	R^2	0.9976		
0.1275	409.5736	3.5679E-04	С	-91.0902		
0.153	411.6284	4.3884E-04	V_{M}	322.7496 cc/g N ₂ gas		
0.1767	413.135	5.1950E-04	Surface Area	1404.7917 m ² /g		
0.201	414.4763	6.0695E-04				
	Constants					
CSA of N ₂	16.2	angstrom ²				
NA	6.02214E+23 molecules/mole					
Molar Vol	22414	22414 cm³/mole				

Table A .22	Table A .22. BET surface area from N2 adsorption onto ACC-20, 20 cycle benzene					
P/P _o	W (cc/g STP gas)	1/[W(P _o /P - 1)]				
0.0507	396.4112	1.3473E-04	slope	3.123E-03	g/cc N₂ gas	
0.0812	404.8499	2.1829E-04	intersept	-3.425E-05	g/cc N₂ gas	
0.1022	408.0977	2.7894E-04	R^2	0.9977		
0.1304	411.1798	3.6469E-04	С	-90.1796		
0.1522	412.9701	4.3471E-04	V_{M}	323.7546	cc/g N ₂ gas	
0.1768	414.571	5.1806E-04	Surface Area	1409.1660	m²/g	
0.2002	415.9024	6.0185E-04				
	Constants					
CSA of N ₂ 16.2 angstrom ²						
NA	6.02214E+23 molecules/mole					
Molar Vol	22414	cm ³ /mole				

<u> </u>					
Table A .2	BET surface area	from N2 adsor	ption onto AC	C-20, 30 cyc	le benzene
P/P _o	W (cc/g STP gas)	$1/[W(P_{\circ}/P - 1)]$			
0.0493	365.8821	1.4173E-04	slope	3.357E-03	g/cc N ₂ gas
0.0795	374.6696	2.3051E-04	intersept	-3.554E-05	g/cc N ₂ gas
0.1033	378.4284	3.0442E-04	R^2	0.9976	
0.1268	381.0627	3.8107E-04	С	-93.4657	
0.1525	383.1676	4.6961E-04	V_M	301.0307	cc/g N ₂ gas
0.1762	384.7342	5.5593E-04	Surface Area	1310.2588	m ² /g
0.2006	386.0447	6.5002E-04			
	Constants				
CSA of N ₂	CSA of N ₂ 16.2 angstrom ²				
NA	6.02214E+23	6.02214E+23 molecules/mole			
Molar Vol	22414	cm ³ /mole			

Table A .24	I. BET surface area	from N2 adsor	ption onto AC	C-20, 50 cyc	le benzene
P/P _o	W (cc/g STP gas)	$1/[W(P_{\circ}/P - 1)]$			
0.0496	376.4741	1.3862E-04	slope	3.276E-03	g/cc N ₂ gas
0.0802	385.004	2.2647E-04	intersept	-3.529E-05	g/cc N ₂ gas
0.1036	388.5827	2.9742E-04	R^2	0.9977	
0.1269	391.0577	3.7167E-04	С	-91.8226	- 2
0.1522	393.1372	4.5664E-04	V_{M}	308.6057	cc/g N ₂ gas
0.1758	394.7336	5.4036E-04	Surface Area	1343.2294	m ² /g
0.2006	396.0985	6.3352E-04			
	Constants				
CSA of N ₂ 16.2 angstrom ²					
NA	6.02214E+23	molecules/mole			
Molar Vol	22414	cm³/mole			

Table A .25	able A .25. BET surface area from N2 adsorption onto ACC-20, baseline acetone					
P/P _o	W (cc/g STP gas)	1/[W(P _o /P - 1)]				
0.051	363.7821	1.4773E-04	slope	3.389E-03 g/cc N ₂ gas		
0.0813	372.0367	2.3787E-04	intersept	-3.655E-05 g/cc N₂ gas		
0.1027	375.3724	3.0491E-04	R^2	0.9978		
0.1312	378.4274	3.9905E-04	С	-91.7121		
0.1531	380.229	4.7544E-04	V_{M}	298.3127 cc/g N ₂ gas		
0.1777	381.8386	5.6595E-04	Surface Area	1298.4285 m²/g		
0.2006	383.1553	6.5493E-04				
	Constants					
CSA of N ₂	CSA of N ₂ 16.2 angstrom ²					
N _A	6.02214E+23 molecules/mole					
Molar Vol	22414	cm³/mole	<u>-1 </u>			

Table A .26	Table A .26. BET surface area from N2 adsorption onto ACC-20, 10 cycle acetone					
P/P _o	W (cc/g STP gas)	1/[W(P _o /P - 1)]				
0.049	366.2679	1.4067E-04	slope	3.353E-03 g/cc N ₂ gas		
0.0796	375.3073	2.3044E-04	intersept	-3.553E-05 g/cc N ₂ gas		
0.1039	379.1813	3.0578E-04	R^2	0.9976		
0.1273	381.7807	3.8208E-04	С	-93.3606		
0.1531	383.8612	4.7094E-04	V_{M}	301.4286 cc/g N ₂ gas		
0.1767	385.3345	5.5698E-04	Surface Area	1311.9907 m²/g	1	
0.2011	386.702	6.5094E-04				
	Constants					
CSA of N ₂ 16.2 angstrom ²				Į.		
NA	6.02214E+23	molecules/mole				
Molar Vol	22414	cm ³ /mole				

Table A 27	BET surface area	from N2 adsorp	tion onto ACC	-20, 20 cycle acetone
P/P _o	W (cc/g STP gas)	1/[W(P _o /P - 1)]		
0.05	360.6077	1.4595E-04	slope	3.410E-03 g/cc N ₂ gas
0.08	369.1331	2.3557E-04	intersept	-3.637E-05 g/cc N ₂ gas
0.1038	372.8271	3.1066E-04	R^2	0.9977
0.1271	375.3821	3.8789E-04	С	-92.7702
0.1536	377.4925	4.8074E-04	V_{M}	296.3761 cc/g N ₂ gas
0.1769	379.0497	5.6699E-04	Surface Area	1289.9992 m²/g
0.2007	380.4018	6.6008E-04		
	Constants			
CSA of N ₂	CSA of N ₂ 16.2 angstrom ²			
NA	6.02214E+23	molecules/mole		
Molar Vol	22414	cm ³ /mole		
		63		

Table A .28	3. BET surface area	from N2 adsor	ption onto AC	C-20, 30 cyc	le acetone
P/P _o	W (cc/g STP gas)	$1/[W(P_o/P - 1)]$			
0.0509	369.0362	1.4532E-04	slope	3.335E-03	g/cc N ₂ gas
0.0805	377.4717	2.3193E-04	intersept	-3.568E-05	g/cc N ₂ gas
0.1025	381.0048	2.9975E-04	\mathbb{R}^2	0.9978	
0.1305	384.1593	3.9069E-04	С	-92.4858	
0.1529	386.0513	4.6755E-04	V_{M}	303.0595	cc/g N ₂ gas
0.1775	387.759	5.5655E-04	Surface Area	1319.0890	m²/g
0.2007	389.1232	6.4528E-04			
Constants					
CSA of N ₂	16.2 angstrom ²				
N _A	6.02214E+23 molecules/mole				
Molar Vol	22414 cm ³ /mole				

Table A .29	BET surface area	from N2 adsor	ption onto AC	C-20, 50 cycle benzene
P/P _o	W (cc/g STP gas)	$1/[W(P_o/P - 1)]$		
0.0506	378.2935	1.4089E-04	slope	3.262E-03 g/cc N ₂ gas
0.0809	386.7069	2.2762E-04	intersept	-3.522E-05 g/cc N ₂ gas
0.1024	389.9359	2.9257E-04	R^2	0.9978
0.1304	392.9947	3.8157E-04	С	-91.6304
0.1521	394.7607	4.5441E-04	V_{M}	309.8821 cc/g N ₂ gas
0.1769	396.4423	5.4212E-04	Surface Area	1348.7849 m ² /g
0.2	397.789	6.2847E-04		
	Constants			
CSA of N ₂	CSA of N ₂ 16.2 angstrom ²			
N _A	6.02214E+23 molecules/mole			
Molar Vol	22414	cm³/mole		

Table A .30). BET surface area	from N2 adsorp	tion onto untre	ated ACC-20,	QA test 1
P/P _o	W (cc/g STP gas)	1/[W(P _o /P - 1)]			
0.0495	335.8676	1.5505E-04	slope	3.660E-03	g/cc N ₂ gas
0.0822	343.5775	2.6067E-04	intersept	-3.867E-05	g/cc N ₂ gas
0.102	346.2742	3.2802E-04	R^2	0.9978	
0.126	348.8352	4.1327E-04	С	-93.6471	
0.1504	350.9134	5.0447E-04	V_{M}	276.1216	cc/g N ₂ gas
0.1755	352.7164	6.0348E-04	Surface Area	1201.8398	m²/g
0.2001	354.2203	7.0622E-04			
	Constants		_		
CSA of N ₂	CSA of N ₂ 16.2 angstrom				
N _A	6.02214E+23 molecules/mole				
Molar Vol	22414	cm³/mole			

Table A .31. BET surface area from N2 adsorption onto untreated ACC-20, QA test 2								
P/P _o	W (cc/g STP gas)	1/[W(P _o /P - 1)]						
0.0505	347.0493	1.5325E-04	slope	3.573E-03 g/cc N ₂ ga	s			
0.0813	353.8719	2.5008E-04	intersept	-3.923E-05 g/cc N ₂ ga	s			
0.1016	356.5523	3.1718E-04	R^2	0.9978				
0.1294	359.1837	4.1381E-04	С	-90.0738	ш			
0.1510	360.8303	4.9291E-04	V _M	282.9982 cc/g N ₂ ga	s			
0.1762	362.3106	5.9034E-04	Surface Area	1231.7709 m ² /g				
0.2000	363.5621	6.8764E-04						
Constants								
CSA of N ₂	16.2 angstrom							
NA	6.02214E+23 molecules/mole							
Molar Vol	22414 cm ³ /mole							

Table A .32. BET surface area from N2 adsorption onto untreated ACC-20, QA test 3								
P/P _o	W (cc/g STP gas)	1/[W(P _o /P - 1)]						
0.0494	318.6287	1.6310E-04	slope	3.873E-03 g/cc N ₂ ga	as			
0.0805	325.6343	2.6885E-04	intersept	-4.167E-05 g/cc N ₂ ga	as			
0.1032	328.4917	3.5032E-04	R^2	0.9977				
0.1265	330.6142	4.3803E-04	С	-91.9240				
0.1513	332.3829	5.3635E-04	V_{M}	261.0403 cc/g N ₂ ga	as			
0.1756	333.8188	6.3808E-04	Surface Area	1136.1973 m ² /g				
0.2004	335.0253	7.4808E-04						
	Constants							
CSA of N ₂	16.2	16.2 angstrom						
NA	6.02214E+23	6.02214E+23 molecules/mole						
Molar Vol	22414	22414 cm ³ /mole						

GAYLORD S

3 2768 00314248 0