Problema n° 816

Construir el triángulo cuyos datos son h_a,v_a, b+c. (v_a es la bisectriz interna del ángulo A)

Santamaría, J. (2017): Comunicación personal.

Solution proposée par Philippe Fondanaiche

AD et AH sont respectivement la bissectrice et la hauteur issues de A dans le triangle ABC. On pose AB =c, AC = b. D'où r = AH/(AB + AC) = h_a /(b + c) qui est donné par hypothèse. On désigne par $\alpha = \angle BAD = \angle CAD$ et $\alpha_0 = \angle HAD$. Comme h_a et v_a sont donnés, on déduit l'angle α_0 tel que $\cos(\alpha_0) = h_a$ / v_a

On a les relations:

 $AB = c = h_a/\cos(\alpha - \alpha_0)$ et $AC = b = h_a/\cos(\alpha + \alpha_0)$

D'où $(b+c)/h_a = 1/r = 1/\cos(\alpha + \alpha_0) + 1/\cos(\alpha - \alpha_0)$ qui aboutit à l'équation du second degré dont l'inconnue est $x = \cos(\alpha)$:

 $x^2 - 2r.\cos(\alpha_0).x - \sin^2(\alpha_0) = 0$ qui a pour discriminant $\Delta = r^2.\cos^2(\alpha_0) + \sin^2(\alpha_0)$.

On obtient la solution unique $x = cos(\alpha) = r.cos(\alpha_0) + \sqrt{\Delta}$ et $\alpha = Arccos(r.cos(\alpha_0) + \sqrt{\Delta})$

La construction du triangle ABC peut donc être faite à la règle et au compas:

On trace le point H quelconque sur l'axe des abscisses, puis AH perpendiculaire à cet axe. D'où le point D tel que AD est rayon du cercle de centre A et de rayon $v_a > h_a$. Comme la variable $\cos(\alpha)$ est solution d'une équation du second degré, on sait la construire à la règle et au compas. D'où l'angle α permettant de tracer les demi-droites AB et AC qui font l'angle α avec AD.