### Introduction

This is not so much an instructional manual, but rather notes, tables, and examples for Python syntax. It was created by the author as an additional resource during training, meant to be distributed as a physical notebook. Participants (who favor the physical characteristics of dead tree material) could add their own notes, thoughts, and have a valuable reference of curated examples.

## **Running Python**

### Installation

To check if Python is installed, run the following from a terminal:

```
$ python3 --version
```

Otherwise, install Python 3 from the website <sup>1</sup>.

## **Invoking Python**

The Python executable will behave differently depending on the command line options you give it:

• Start the Python REPL:

```
$ python3
```

• Execute the file.py file:

```
$ python3 file.py
```

• Execute the file.py file, and drop into REPL with namespace of file.py:

```
$ python3 -i file.py
```

• Execute the json/tool.py module:

```
$ python3 -m json.tool
```

• Execute "print('hi')"

```
$ python3 -c "print('hi')"
```

### **REPL**

- Use the help function to read the documentation for a module/class/function. As a standalone invocation, you enter the help system and can explore various topics.
- Use the dir function to list contents of the namespace, or attributes of an object if you pass one in

#### Note

The majority of code in this book is written as if it were executed in a REPL. If you are typing it in, ignore the primary and secondary prompts (>>> and . . .).

# The Zen of Python

Run the following in an interpreter to get an Easter egg that describes some of the ethos behind Python. This is also codified in PEP 20:

```
>>> import this
The Zen of Python, by Tim Peters
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the
rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation
to guess.
There should be one -- and preferably only one--
obvious way to do it.
Although that way may not be obvious at first
unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a
bad idea.
If the implementation is easy to explain, it may
be a good idea.
Namespaces are one honking great idea -- let's
do more of those!
```

These might just seem like silly one liners, but there is a lot of wisdom packed in here. It is good for Python programmers to review these every once in a while and see if these hold true for their code. (Or to justify their code reviews)

# **Built-in Types**

### **Variables**

Python variables are like cattle tags, they point to objects (which can be classes, instances, modules, or functions), but variables are not the objects. You can reuse variable names for different object types (though you probably shouldn't):

```
>>> a = 400  # a points to an integer
>>> a = '400'  # a now points to a string
```

#### Note

The # character denotes the start of a comment. There are no multi-line comments, though most editors with Python support can comment out a region.

The figure that follows illustrates how everything is an object in Python and variables just point to them.

# Rebinding Variables



Old Object is Garbage Collected

Illustration of reusing the same variable

## **Numbers**

Python includes three types of numeric literals: *integers*, *floats*, and *complex numbers*. Python 3.6 adds the ability to use underscores to improve readability (PEP 515).

### Number types

| Туре             | Example |
|------------------|---------|
| Integer          | 14      |
| Integer (Hex)    | 0xe     |
| Integer (Octal)  | 0016    |
| Integer (Binary) | 0b1110  |
| Float            | 14.0    |
| Float            | 1.4el   |
| Complex          | 14+0j   |
| Underscore       | 1_000   |

There are many built-in functions for manipulating numbers ie. abs, min, max, ceil. Also see the math, random, and statistics modules in the standard library.

### Number magic methods

| Operation   | Provided By | Result                            |
|-------------|-------------|-----------------------------------|
| abs(num)    | abs         | Absolute value of num             |
| num + num2  | add         | Addition                          |
| bool(num)   | bool        | Boolean conversion                |
| num == num2 | eq          | Equality                          |
| float(num)  | float       | Float conversion                  |
| num // num2 | floordiv    | Integer division                  |
| num >= num2 | ge          | Greater or equal                  |
| num > num2  | gt          | Greater than                      |
| int(num)    | int         | Integer conversion                |
| num <= num2 | le          | Less or equal                     |
| num < num2  | lt          | Less than                         |
| num % num2  | mod         | Modulus                           |
| num * num2  | mul         | Multiplication                    |
| num != num2 | ne          | Not equal                         |
| -num        | neg         | Negative                          |
| +num        | pos         | Positive                          |
| num ** num2 | pow         | Power                             |
| round(num)  | round       | Round                             |
| numsizeof() | sizeof      | Bytes for internal representation |

| str(num)        | str     | String conversion |
|-----------------|---------|-------------------|
| num - num2      | sub     | Subtraction       |
| num / num2      | truediv | Float division    |
| math.trunc(num) | trunc   | Truncation        |

### Integer specific methods and operations

| Operation        | Provided By | Result                   |
|------------------|-------------|--------------------------|
| num & num2       | and         | Bitwise and              |
| math.ceil(num)   | ceil        | Ceiling                  |
| math.floor(num)  | floor       | Floor                    |
| ~num             | invert      | Bitwise inverse          |
| num << num2      | lshift      | Left shift               |
| num   num2       | or          | Bitwise or               |
| num >> num2      | rshift      | Right shift              |
| num ^ num2       | xor         | Bitwise xor              |
| num.bit_length() | bit_length  | Number of bits necessary |

### Float specific methods and operations

| Operation            | Result                   |
|----------------------|--------------------------|
| f.as_integer_ratio() | Returns num, denom tuple |
| f.is_integer()       | Boolean if whole number  |

# **Strings**

Python 3 strings hold unicode data. Python has a few ways to represent strings. There is also a bytes type (PEP 3137):

### String types

| Type        | Example                |  |
|-------------|------------------------|--|
| String      | "hello\tthere"         |  |
| String      | 'hello'                |  |
| String      | '''He said, "hello"''' |  |
| Raw string  | r'hello\tthere'        |  |
| Byte string | b'hello'               |  |

### String operations

| Operation  | Provided By | Result               |
|------------|-------------|----------------------|
| s + s2     | add         | String concatenation |
| "foo" in s | contains    | Membership           |

| s == s2        | eq      | Equality                          |
|----------------|---------|-----------------------------------|
| s >= s2        | ge      | Greater or equal                  |
| s[0]           | getitem | Index operation                   |
| s > s2         | gt      | Greater                           |
| s <= s2        | le      | Less than or equal                |
| len(s)         | len     | Length                            |
| s < s2         | lt      | Less than                         |
| s % (1, 'foo') | mod     | Formatting                        |
| s * 3          | mul     | Repetition                        |
| s != s2        | ne      | Not equal                         |
| repr(s)        | repr    | Programmer friendly string        |
| ssizeof()      | sizeof  | Bytes for internal representation |
| str(s)         | str     | User friendly string              |

### String methods

| Operation                      | Result                                              |  |
|--------------------------------|-----------------------------------------------------|--|
| s.capitalize()                 | Capitalizes a string                                |  |
| s.casefold()                   | Lowercase in a unicode compliant manner             |  |
| s.center(w, [char])            | Center a string in w spaces with char (default " ") |  |
| s.count(sub, [start, [end]])   | Count sub in s between start and end                |  |
| s.encode(encoding, errors= 'st | r                                                   |  |
| s.endswith(sub)                | Check for a suffix                                  |  |
| s.expandtabs( tabsize=8)       | Replaces tabs with spaces                           |  |
| s.find(sub, [start, [end]])    | Find substring or return -1                         |  |
| s.format(*args, **kw)          | Format string                                       |  |
| s.format_map( mapping)         | Format strings with a mapping                       |  |
| s.index(sub, [start, [end]])   | Find substring or raise ValueError                  |  |
| s.isalnum()                    | Boolean if alphanumeric                             |  |
| s.isalpha()                    | Boolean if alphabetic                               |  |
| s.isdecimal()                  | Boolean if decimal                                  |  |
| s.isdigit()                    | Boolean if digit                                    |  |
| s.isidentifier()               | Boolean if valid identifier                         |  |
| s.islower()                    | Boolean if lowercase                                |  |
| s.isnumeric()                  | Boolean if numeric                                  |  |
| s.isprintable()                | Boolean if printable                                |  |
| s.isspace()                    | Boolean if whitespace                               |  |
| s.istitle()                    | Boolean if titlecased                               |  |
| s.isupper()                    | Boolean if uppercased                               |  |

| s.join(iterable)              | Return a string inserted between sequence                                  |  |  |
|-------------------------------|----------------------------------------------------------------------------|--|--|
| s.ljust(w, [char])            | Left justify in w spaces with char (default ' ')                           |  |  |
| s.lower()                     | Lowercase                                                                  |  |  |
| s.lstrip([chars])             | Left strip chars (default spacing).                                        |  |  |
| s.partition(sub)              | Split string at first occurrence of substring, return (before, sub, after) |  |  |
| s.replace(old, new, [count])  | Replace substring with new string                                          |  |  |
| s.rfind(sub, [start, [end]])  | Find rightmost substring or return -1                                      |  |  |
| s.rindex(sub, [start, [end]]) | Find rightmost substring or raise ValueError                               |  |  |
| s.rjust(w, [char)             | Right justify in w spaces with char (default " ")                          |  |  |
| s.rpartition(sub)             | Rightmost partition                                                        |  |  |
| s.rsplit([sep, [maxsplit=-1]) | Rightmost split by sep (defaults to whitespace)                            |  |  |
| s.rstrip([chars])             | Right strip                                                                |  |  |
| s.split([sep, [maxsplit=-1]]) | Split a string into sequence around substring                              |  |  |
| s.splitlines( keepends=False) | Break string at line boundaries                                            |  |  |
| s.startswith( prefix, [start, | €check for prefix                                                          |  |  |
| s.strip([chars])              | Remove leading and trailing whitespace (default) or chars                  |  |  |
| s.swapcase()                  | Swap casing of string                                                      |  |  |
| s.title()                     | Titlecase string                                                           |  |  |
| s.translate(table)            | Use a translation table to replace strings                                 |  |  |
| s.upper()                     | Uppercase                                                                  |  |  |
| s.zfill(width)                | Left fill with 0 so string fills width (no truncation)                     |  |  |

## Lists

Lists are ordered mutable sequences:

```
>>> people = ['Paul', 'John', 'George']
>>> people.append('Ringo')
```

The in operator is useful for checking membership on sequences:

```
>>> 'Yoko' in people
False
```

If we need the index number during iteration, the <code>enumerate</code> function gives us a tuple of index, item pairs:

```
>>> for i, name in enumerate(people, 1):
... print('{} - {}'.format(i, name))
1 - Paul
2 - John
3 - George
4 - Ringo
```

We can do index operations on most sequences:

```
>>> people[0]
'Paul'
>>> people[-1] # len(people) - 1
'Ringo'
```

We can also do *slicing* operations on most sequences:

```
>>> people[1:2]
['John']
>>> people[:1]  # Implcit start at 0
['Paul']
>>> people[1:]  # Implcit end at len(people)
['John', 'George', 'Ringo']
>>> people[::2]  # Take every other item
['Paul', 'George']
>>> people[::-1]  # Reverse sequence
['Ringo', 'George', 'John', 'Paul']
```

### **List Operations**

| Operation       | Provided By | Result                                                |
|-----------------|-------------|-------------------------------------------------------|
| 1 + 12          | add         | List concatenation (see .extend)                      |
| "name" in l     | contains    | Membership                                            |
| del l[idx]      | del         | Remove item at index idx (see .pop)                   |
| 1 == 12         | eq          | Equality                                              |
| "{}".format(1)  | format      | String format of list                                 |
| 1 >= 12         | ge          | Greater or equal. Compares items in lists from left   |
| l[idx]          | getitem     | Index operation                                       |
| 1 > 12          | gt          | Greater. Compares items in lists from left            |
| No hash         | hash        | Set to None to ensure you can't insert in dictionary  |
| 1 += 12         | iadd        | Augmented (mutates 1) concatenation                   |
| 1 *= 3          | imul        | Augmented (mutates 1) repetition                      |
| for thing in 1: | iter        | Iteration                                             |
| 1 <= 12         | le          | Less than or equal. Compares items in lists from left |
| len(1)          | len         | Length                                                |
| 1 < 12          | lt          | Less than. Compares items in lists from left          |
| 1 * 2           | mul         | Repetition                                            |
| 1 != 12         | ne          | Not equal                                             |
| repr(1)         | repr        | Programmer friendly string                            |
| reversed(1)     | reversed    | Reverse                                               |

| foo * 1        | rmul    | Called if foo doesn't implementmul |
|----------------|---------|------------------------------------|
| l[idx] = 'bar' | setitem | Index operation to set value       |
| 1sizeof()      | sizeof  | Bytes for internal representation  |
| str(1)         | str     | User friendly string               |

#### List Methods

| Operation                                | Result                                              |
|------------------------------------------|-----------------------------------------------------|
| 1.append(item)                           | Append item to end                                  |
| l.clear()                                | Empty list (mutates 1)                              |
| 1.copy()                                 | Shallow copy                                        |
| 1.count(thing)                           | Number of occurrences of thing                      |
| 1.extend(12)                             | List concatenation (mutates 1)                      |
| l.index(thing)                           | Index of thing else ValueError                      |
| <pre>1.insert(idx, bar)</pre>            | Insert bar at index idx                             |
| 1.pop([idx])                             | Remove last item or item at idx                     |
| 1.remove(bar)                            | Remove first instance of bar else ValueError        |
| l.reverse()                              | Reverse (mutates 1)                                 |
| <pre>l.sort([key=], reverse=False)</pre> | In-place sort, by optional key function (mutates 1) |

### **Dictionaries**

Dictionaries are mutable mappings of keys to values. Keys must be hashable, but values can be any object:

```
>>> instruments = {'Paul': 'Bass',
... 'John': 'Guitar'}

>>> instruments['George'] = 'Guitar'
>>> 'Ringo' in instruments
False

>>> for name in instruments:
... print('{} - {}'.format(name,
... instruments[name]))
Paul - Bass
John - Guitar
George - Guitar
```

### Magic Dictionary Methods

| Operation  | Provided By | Result     |
|------------|-------------|------------|
| key in d   | contains    | Membership |
| del d[key] | delitem     | Delete key |

| d == d2        | eq      | Equality. Dicts are equal or not equal |
|----------------|---------|----------------------------------------|
| "{}".format(d) | format  | String format of dict                  |
| d[key]         | getitem | Get value for key (see .get)           |
| for key in d:  | iter    | Iteration over keys                    |
| len(d)         | len     | Length                                 |
| d != d2        | ne      | Not equal                              |
| repr(d)        | repr    | Programmer friendly string             |
| d[key] = value | setitem | Set value for key                      |
| dsizeof()      | sizeof  | Bytes for internal representation      |

#### **Dictionary Methods**

| Operation                    | Result                                                                    |
|------------------------------|---------------------------------------------------------------------------|
| d.clear()                    | Remove all items (mutates d)                                              |
| d.copy()                     | Shallow copy                                                              |
| d.fromkeys(iter, value=None) | Create dict from iterable with values set to value                        |
| d.get(key, [default])        | Get value for key or return default (None)                                |
| d.items()                    | View of (key, value) pairs                                                |
| d.keys()                     | View of keys                                                              |
| d.pop(key, [default])        | Return value for key or default (KeyError if not set)                     |
| d.popitem()                  | Return arbitrary (key, value) tuple. KeyError if empty                    |
| d.setdefault(k, [default])   | Does d.get(k, default). If k missing, sets to default                     |
| d.update(d2)                 | Mutate d with values of d2 (dictionary or iterable of (key, value) pairs) |
| d.values()                   | View of values                                                            |

# **Tuples**

Tuples are immutable sequences. Typically they are used to store *record* type data:

```
>>> member = ('Paul', 'Bass', 1942)
>>> member2 = ('Ringo', 'Drums', 1940)
```

Note that parentheses aren't usually required:

```
>>> row = 1, 'Fred'  # 2 item tuple

>>> row2 = (2, 'Bob')  # 2 item tuple

>>> row3 = ('Bill')  # String!

>>> row4 = ('Bill',)  # 1 item tuple

>>> row5 = 'Bill',  # 1 item tuple

>>> row6 = ()  # Empty tuple
```

Named tuples can be used in place of normal tuples and allow context (or names) to be added to positional members. The syntax for creating them is a little different because we are dynamically creating a class first (hence the capitalized variable):

```
>>> from collections import namedtuple
>>> Member = namedtuple('Member',
... 'name, instrument, birth_year')
>>> member3 = Member('George', 'Guitar', 1943)
```

We can access members by position or name (name allows us to be more explicit):

```
>>> member3[0]
'George'
>>> member3.name
'George'
```

#### **Tuple Methods**

| Operation       | Provided | Result                                                |
|-----------------|----------|-------------------------------------------------------|
| t + t2          | add      | Tuple concatenation                                   |
| "name" in t     | contains | Membership                                            |
| t == t2         | eq       | Equality                                              |
| "{}".format(t)  | format   | String format of tuple                                |
| t >= t2         | ge       | Greater or equal. Compares items in tuple from left   |
| t[idx]          | getitem  | Index operation                                       |
| t > 12          | gt       | Greater. Compares items in tuple from left            |
| hash(t)         | hash     | For set/dict insertion                                |
| for thing in t: | iter     | Iteration                                             |
| t <= t2         | le       | Less than or equal. Compares items in tuple from left |
| len(1)          | len      | Length                                                |
| t < t2          | lt       | Less than. Compares items in tuple from left          |
| t * 2           | mul      | Repetition                                            |
| t != 12         | ne       | Not equal                                             |
| repr(t)         | repr     | Programmer friendly string                            |
| foo * t         | rmul     | Called if foo doesn't implementmul                    |
| 1sizeof()       | sizeof   | Bytes for internal representation                     |
| str(l)          | str      | User friendly string                                  |

### **Tuple Methods**

| Uperation Result | Operation | Result |
|------------------|-----------|--------|
|------------------|-----------|--------|

| t.count(item)  | Count of item                  |
|----------------|--------------------------------|
| t.index(thing) | Index of thing else ValueError |

#### Sets

A set is a mutable unordered collection that cannot contain duplicates. Sets are used to remove duplicates and test for membership:

```
>>> digits = [0, 1, 1, 2, 3, 4, 5, 6,
... 7, 8, 9]
>>> digit_set = set(digits) # remove extra 1
>>> 9 in digit_set
True
```

Sets are useful because they provide set operations, such as union (|), intersection (&), difference (-), and xor (^):

```
>>> odd = {1, 3, 5, 7, 9}
>>> prime = set([2, 3, 5, 7])
>>> even = digit_set - odd
>>> even
{0, 2, 4, 6, 8}

>>> prime & even # in intersection
{2}

>>> odd | even # in both
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

>>> even ^ prime # not in both
{0, 3, 4, 5, 6, 7, 8}
```

#### Note

There is no literal syntax for an empty set. You need to use:

```
>>> empty = set()
```

#### Set Methods

| Operation      | Provided By | Result                                |
|----------------|-------------|---------------------------------------|
| s & s2         | and         | Set intersection (see .intersection)  |
| "name" in s    | contains    | Membership                            |
| s == s2        | eq          | Equality. Sets are equal or not equal |
| "{}".format(s) | format      | String format of set                  |
| s >= s2        | ge          | s in s2 (see .issuperset)             |

| s > s2          | gt     | Greater. Always False`                                        |
|-----------------|--------|---------------------------------------------------------------|
| No hash         | hash   | Set to None to ensure you can't insert in dictionary          |
| s &= s2         | iand   | Augmented (mutates s) intersection (see .intersection_update) |
| s  = s2         | ior    | Augmented (mutates s) union (see .update)                     |
| s -= s2         | isub   | Augmented (mutates s) difference (see .difference_update)     |
| for thing in s: | iter   | Iteration                                                     |
| s ^= s2         | ixor   | Augmented (mutates s) xor (see .symmetric_difference_update)  |
| s <= s2         | le     | s2 in s (see .issubset)                                       |
| len(s)          | len    | Length                                                        |
| s < s2          | lt     | Less than. Always False                                       |
| s != s2         | ne     | Not equal                                                     |
| s   s2          | or     | Set union (see .union)                                        |
| foo & s         | rand   | Called if foo doesn't implementand                            |
| repr(s)         | repr   | Programmer friendly string                                    |
| foo   s         | ror    | Called if foo doesn't implementor                             |
| foo - s         | rsub   | Called if foo doesn't implementsub                            |
| foo ^ s         | rxor   | Called if foo doesn't implementxor                            |
| ssizeof()       | sizeof | Bytes for internal representation                             |
| str(s)          | str    | User friendly string                                          |
| s - s2          | sub    | Set difference (see .difference)                              |
| s ^ s2          | xor    | Set xor (see .symmetric_difference)                           |

### Set Methods

| Operation                 | Result                                                   |
|---------------------------|----------------------------------------------------------|
| s.add(item)               | Add item tos (mutatess)                                  |
| s.clear()                 | Remove elements from s (mutates s)                       |
| s.copy()                  | Shallow copy                                             |
| s.difference(s2)          | Return set with elements from s and not s2               |
| s.difference_update(s2)   | Remove s2 items from s (mutates s)                       |
| s.discard(item)           | Remove item from s (mutates s). No error on missing item |
| s.intersection(s2)        | Return set with elements from both sets                  |
| s.intersection_update(s2) | Update s with members of s2 (mutates s)                  |
| s.isdisjoint(s2)          | True is there is no intersection                         |
| s.issubset(s2)            | All elements of s in s2                                  |
| s.issuperset(s2)          | All elements of s2 in s2                                 |

| s.pop()                           | Remove arbitrary item from s (mutates s). KeyError on missing item |
|-----------------------------------|--------------------------------------------------------------------|
| s.remove(item)                    | Remove item from s (mutates s). KeyError on missing item           |
| s.symmetric_difference(s2)        | Return set with elements only in one of the sets                   |
| s.symmetric_difference_update(s2) | Update s with elements only in one of the sets (mutates s)         |
| s.union(s2)                       | Return all elements of both sets                                   |
| s.update(s2)                      | Update s with all elements of both sets (mutates s)                |

# **Built in Functions**

In the default namespace you have access to various callables:

### Built in callables

| Operation            | Result                                                                                                                                                             |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| abs(x)               | Absolute value protocol (call xabs())                                                                                                                              |
| all(seq)             | Boolean check if all items in seq are truthy                                                                                                                       |
| any(seq)             | Boolean check if at least one item in seq is truthy                                                                                                                |
| ascii(x)             | ASCII representation of object                                                                                                                                     |
| bin(i)               | String containing binary version of number (int(bin(i), 2) to reverse)                                                                                             |
| bool(x)              | Boolean protocol (call xbool())                                                                                                                                    |
| bytearray(x)         | Create a mutable bytearray from iterable of ints, text string, bytes, an integer, or pass nothing for an empty bytearray                                           |
| bytes(x)             | Create an immutable bytes from iterable of ints, text string, bytes, an integer, or pass nothing for an empty bytes                                                |
| callable(x)          | Boolean check if you can do x() (ie xcall exists)                                                                                                                  |
| chr(i)               | Convert integer codepoint to Unicode string (ord(chr(i)) to reverse)                                                                                               |
| @classmethod         | Use to decorate a method so you can invoke it on the class                                                                                                         |
| compile(source, f n  | accempited on to code (fname used for error, mode is exec: module, single: statement, eval: expression). Can run eval(code) on expression, exec(code) on statement |
| complex(i, y)        | Create complex number                                                                                                                                              |
| copyright            | Python copyright string                                                                                                                                            |
| credits              | Python credits string                                                                                                                                              |
| delattr(obj, attr    | Remove attribute from obj (del obj.attr)                                                                                                                           |
| <pre>dict([x])</pre> | Create a dictionary from a mapping, iterable of k,v tuples, named parameters, or pass nothing for an empty dictionary                                              |
| dir([obj])           | List attributes of obj, or names in current namespace if no obj provided                                                                                           |
| divmod(num, denom    | Return tuple pair of num//denom and num%denom                                                                                                                      |
| enumerate(seq, [s t  | சூர்யி iterator of index, item tuple pairs. Index begins at start or 0 (default)                                                                                   |

| eval(source, glob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------|
| Exit Python interpreter and return code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              | · · · · · · · · · · · · · · · · · · ·                                                 |
| filter([function] , seq)  float(x) Convert string or number to float (call xfloat())  format(obj, fmt) Format protocol (call objformat(fmt))  frozenset([seq]) Create frozenset from seq (empty if missing)  getattr(obj, attr) Get attribute from obj (obj.attr)  globals() Return mutable dictionary with current global variables  hasattr(obj, attr) Check if attribute on obj (obj.attr doesn't throw AttributeError)  hash(x) Hash value protocol for object (call xhash())  help([x]) Start interactive help (if no x), or print documentation for x  bex(i) String containing hexadecimal version of number (int(hex(i), 16) to reverse)  id(x) Identity of x  input([prompt]) Read string from standard input  int(x, [base=10]) Create integer from number or string  isinstance(obj, c labolean_checkeif obj is an instance or subclass of class_or_tuple  issubclass(cls, c labolean_checkeif obj is an instance or subclass of class_or_tuple  iter(seq) Iteration protocol (call seqiter())  len(seq) Number of items in sequence  license() Display Python licenses  list([seq]) Convert seq to list (empty if missing)  nap(function, *seq qualifunction(item) for item in seqs (if single sequence) or function(seqs[01]01, seqs[1]01)  max(seq, *, [defa u lReturn maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  memoryview(obj) Create memoryview from obj  min(seq, *, [defa u lReturn maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  next(iter, [defau l'Return misimum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  next(iter, [defau l'Return misimum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  next(iter, [defau l'Return maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters. |                              | alkunsperceo(statement string or result of compile) with globals and locals           |
| function is missing)  float(x)  Convert string or number to float (call xfloat())  format(obj, fmt)  frozenset([seq])  Get attribute frozenset from seq (empty if missing)  getattr(obj, attr  globals()  Return mutable dictionary with current global variables  hasattr(obj, attr  Check if attribute on obj (obj.attr)  hash(x)  Hash value protocol for object (call xhash())  help([x])  Start interactive help (if no x), or print documentation for x  bex(i)  String containing hexadecimal version of number (int(hex(i), 16) to reverse)  id(x)  id(x)  identity of x  input([prompt])  Read string from standard input  int(x, [base=10])  isinstance(obj, c  issubclass(cls, c  iter(seq)  literation protocol (call seqiter())  len(seq)  Number of items in sequence  license()  Display Python licenses  list([seq])  Convert seq to list (empty if missing)  max(seq, *, [defa u  latturi maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  memoryview(obj)  Create memoryview from obj  min(seq, *, [defa u  Return invalimum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  Return invalimum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  next(iter, [defau u  Get next item from iteration protocol (call iternext()), if default provide return instead of raising StopIteration  object  String containing octal version of number (int(oct(i), 8) to reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | exit(code)                   | Exit Python interpreter and return code                                               |
| format(obj, fmt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | • •                                                                                   |
| frozenset([seq])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | float(x)                     | Convert string or number to float (call xfloat())                                     |
| getattr(obj, attr globals() Return mutable dictionary with current global variables hasattr(obj, attr Check if attribute on obj (obj.attr doesn't throw AttributeError) hash(x) Hash value protocol for object (call xhash_()) help([x]) Start interactive help (if no x), or print documentation for x hex(i) String containing hexadecimal version of number (int(hex(i), 16) to reverse) id(x) lidentity of x input([prompt]) Read string from standard input int(x, [base=10]) Create integer from number or string isinstance(obj, c Boolean thedelf obj is an instance or subclass of class_or_tuple iter(seq) lteration protocol (call seqiter()) len(seq) Number of items in sequence license() Display Python licenses list([seq]) Convert seq to list (empty if missing)  convert seq to list (empty if missing)  map(function, *se qsOall function(item) for item in seqs (if single sequence) or function(seqs[0][0], seqs[1][0])  max(seq, *, [defa uRdturn inaximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  memoryview(obj) Create memoryview from obj  min(seq, *, [defa uRdturn inaximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  next(iter, [defau uRdturn initionum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  next(iter, [defau uRdturn initionum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  next(iter, [defau uRdturn initionum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  next(iter, [defau uRdturn initionum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.                                                                                                                                                      | format(obj, fmt)             | Format protocol (call objformat(fmt))                                                 |
| Return mutable dictionary with current global variables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <pre>frozenset([seq])</pre>  | Create frozenset from seq (empty if missing)                                          |
| hasattr(obj, attr   Check if attribute on obj (obj.attr doesn't throw AttributeError) hash(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | getattr(obj, attr            | ) Get attribute from obj (obj.attr)                                                   |
| hash(x)       Hash value protocol for object (call xhash_())         help([x])       Start interactive help (if no x), or print documentation for x         hex(i)       String containing hexadecimal version of number (int(hex(i), 16) to reverse)         id(x)       Identity of x         input([prompt])       Read string from standard input         int(x, [base=10])       Create integer from number or string         isinstance(obj, c       Boolean_theckelf obj is an instance or subclass of class_or_tuple         issubclass(cls, c       Boolean_theckelf obj is an instance or subclass of class_or_tuple         iter(seq)       Iteration protocol (call seqiter_())         len(seq)       Number of items in sequence         license()       Display Python licenses         list([seq])       Convert seq to list (empty if missing)         locals()       Return dictionary of local attributes (unlike globals, not guaranteed to update namespace when mutated)         map(function, *se       accultion(item) for item in seqs (if single sequence) or function(seqs[0][0], seqs[1][0])         max(seq, *, [defa       "Return[maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.         memoryview(obj)       Create memoryview from obj         min(seq, *, [defa       "Return[miximum value from seq. default (value if empty seq) and key (function to determine magnitude) are key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | globals()                    | Return mutable dictionary with current global variables                               |
| help([x])         Start interactive help (if no x), or print documentation for x           hex(i)         String containing hexadecimal version of number (int(hex(i), 16) to reverse)           id(x)         Identity of x           input([prompt])         Read string from standard input           int(x, [base=10])         Create integer from number or string           isinstance(obj, c         Boolean_thedlef obj is an instance or subclass of class_or_tuple           issubclass(cls, c         Boolean_thedlef obj is an instance or subclass of class_or_tuple           iter(seq)         Iteration protocol (call seqiter_())           len(seq)         Number of items in sequence           license()         Display Python licenses           list([seq])         Convert seq to list (empty if missing)           locals()         Return dictionary of local attributes (unlike globals, not guaranteed to update namespace when mutated)           map(function, *se         accumulation(item) for item in seqs (if single sequence) or function(seqs[0][0], seqs[1][0])           max(seq, *, [defa         "Return[maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.           memoryview(obj)         Create memoryview from obj           min(seq, *, [defa         "Return[maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.           <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hasattr(obj, attr            | Check if attribute on obj (obj.attr doesn't throw AttributeError)                     |
| String containing hexadecimal version of number (int(hex(i), 16) to reverse)  id(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hash(x)                      | Hash value protocol for object (call xhash())                                         |
| reverse)  id(x) Identity of x  input([prompt]) Read string from standard input  int(x, [base=10]) Create integer from number or string  isinstance(obj, c   Boolean thedeif obj is an instance or subclass of class_or_tuple  issubclass(cls, c   Boolean thedeif cls is the class or derived from class_or_tuple  iter(seq) Iteration protocol (call seqiter())  len(seq) Number of items in sequence  license() Display Python licenses  list([seq]) Convert seq to list (empty if missing)  locals() Return dictionary of local attributes (unlike globals, not guaranteed to update namespace when mutated)  map(function, *se qQall function(item) for item in seqs (if single sequence) or function(seqs[0][0], seqs[1][0])  max(seq, *, [defa ulRdturr(maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  memoryview(obj) Create memoryview from obj  min(seq, *, [defa ulRdturr(maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  next(iter, [defau tlGet next item from iteration protocol (call iternext()), if default provide return instead of raising StopIteration  object Root base type  oct(i) String containing octal version of number (int(oct(i), 8) to reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | help([x])                    | Start interactive help (if no $\mathbf{x}$ ), or print documentation for $\mathbf{x}$ |
| input([prompt]) Read string from standard input  int(x, [base=10]) Create integer from number or string  isinstance(obj, c Boolean thede obj is an instance or subclass of class_or_tuple  issubclass(cls, c Boolean thede obj is an instance or subclass of class_or_tuple  iter(seq) Iteration protocol (call seqiter())  len(seq) Number of items in sequence  license() Display Python licenses  Convert seq to list (empty if missing)  locals() Return dictionary of local attributes (unlike globals, not guaranteed to update namespace when mutated)  map(function, *se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | hex(i)                       |                                                                                       |
| int(x, [base=10])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | id(x)                        | Identity of x                                                                         |
| isinstance(obj, c Baolean_theoleif obj is an instance or subclass of class_or_tuple issubclass(cls, c Baolean_theoleif cls is the class or derived from class_or_tuple iter(seq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>input([prompt])</pre>   | Read string from standard input                                                       |
| issubclass(cls, c   Boolean checkeif cls is the class or derived from class_or_tuple   iter(seq)   Iteration protocol (call seqiter())  len(seq)   Number of items in sequence   license()   Display Python licenses   list([seq])   Convert seq to list (empty if missing)   locals()   Return dictionary of local attributes (unlike globals, not guaranteed to update namespace when mutated)   map(function, *seq Goall function(item) for item in seqs (if single sequence) or function(seqs[0][0], seqs[1][0])   max(seq, *, [defa unit Return maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.   memoryview(obj)   Create memoryview from obj   min(seq, *, [defa unit Return maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.   next(iter, [defau unit tiget next item from iteration protocol (call iternext()), if default provide return instead of raising StopIteration   object   Root base type   oct(i)   String containing octal version of number (int(oct(i), 8) to reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | int(x, [base=10])            | Create integer from number or string                                                  |
| Iteration protocol (call seqiter())  len(seq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | isinstance(obj, c            | lascolean the deif obj is an instance or subclass of class_or_tuple                   |
| Number of items in sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | issubclass(cls, c            | lascolean_thedleif cls is the class or derived from class_or_tuple                    |
| Display Python licenses  List([seq]) Convert seq to list (empty if missing)  Return dictionary of local attributes (unlike globals, not guaranteed to update namespace when mutated)  map(function, *se qQall function(item) for item in seqs (if single sequence) or function(seqs[0][0], seqs[1][0])  max(seq, *, [defa uReturn maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  memoryview(obj) Create memoryview from obj  min(seq, *, [defa uReturn mainimum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  next(iter, [defau uReturn mainimum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  next(iter, [defau utget next item from iteration protocol (call iternext()), if default provide return instead of raising StopIteration  object Root base type  oct(i) String containing octal version of number (int(oct(i), 8) to reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iter(seq)                    | Iteration protocol (call seqiter())                                                   |
| Convert seq to list (empty if missing)  Return dictionary of local attributes (unlike globals, not guaranteed to update namespace when mutated)  map(function, *se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | len(seq)                     | Number of items in sequence                                                           |
| Return dictionary of local attributes (unlike globals, not guaranteed to update namespace when mutated)  map(function, *se qQall function(item) for item in seqs (if single sequence) or function(seqs[0][0], seqs[1][0])  max(seq, *, [defa ulReturn maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  memoryview(obj)  Create memoryview from obj  min(seq, *, [defa ulReturn maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  next(iter, [defau teget next item from iteration protocol (call iternext()), if default provide return instead of raising StopIteration  object  Root base type  oct(i)  String containing octal version of number (int(oct(i), 8) to reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | license()                    | Display Python licenses                                                               |
| update namespace when mutated)  map(function, *se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | list([seq])                  | Convert seq to list (empty if missing)                                                |
| function(seqs[0][0], seqs[1][0])  max(seq, *, [defa ulReturn[maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  memoryview(obj)  Create memoryview from obj  min(seq, *, [defa ulReturn[maximum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  next(iter, [defau ltGet next item from iteration protocol (call iternext()), if default provide return instead of raising StopIteration  object  Root base type  oct(i)  String containing octal version of number (int(oct(i), 8) to reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | locals()                     | · · · · · · · · · · · · · · · · · · ·                                                 |
| (function to determine magnitude) are keyword parameters.  memoryview(obj)  Create memoryview from obj  min(seq, *, [defa ulReturn minimum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  next(iter, [defau ltGet next item from iteration protocol (call iternext()), if default provide return instead of raising StopIteration  object  Root base type  oct(i)  String containing octal version of number (int(oct(i), 8) to reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <pre>map(function, *se</pre> |                                                                                       |
| min(seq, *, [defa ulReturn[kminimum value from seq. default (value if empty seq) and key (function to determine magnitude) are keyword parameters.  next(iter, [defau tiget next item from iteration protocol (call iternext()), if default provide return instead of raising StopIteration  object Root base type  oct(i) String containing octal version of number (int(oct(i), 8) to reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>max(seq, *, [defa</pre> |                                                                                       |
| (function to determine magnitude) are keyword parameters.  next(iter, [defau tGet next item from iteration protocol (call iternext()), if default provide return instead of raising StopIteration  object Root base type  oct(i) String containing octal version of number (int(oct(i), 8) to reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | memoryview(obj)              | Create memoryview from obj                                                            |
| provide return instead of raising StopIteration  object Root base type  oct(i) String containing octal version of number (int(oct(i), 8) to reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | min(seq, *, [defa            |                                                                                       |
| oct(i) String containing octal version of number (int(oct(i), 8) to reverse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | next(iter, [defau            |                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | object                       | Root base type                                                                        |
| open(filename, [m o <b>@pen aéile</b> oding],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oct(i)                       | String containing octal version of number (int(oct(i), 8) to reverse)                 |
| [errors])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | φα <b>θρεη &amp;file</b> oding],                                                      |

| ord(s)                                 | Convert Unicode string to integer codepoint (chr(ord(s)) to reverse)                              |  |
|----------------------------------------|---------------------------------------------------------------------------------------------------|--|
| <pre>pow(num, exp, [z]</pre>           | Power protocol (call numpow(exp, z)) (num ** exp or num ** exp % z)                               |  |
| <pre>print(val, [val2 ys.stdout)</pre> | . Print valueseto=file. Printobrotocol,(cālilive=ls_str_())                                       |  |
| @property                              | Decorator to turn a method into an attribute                                                      |  |
| quit()                                 | Quit interpreter                                                                                  |  |
| range([start], st                      | Returnage object that iterates from start (default 0) to stop - 1, by step increments (default 1) |  |
| repr(x)                                | Representation protocol (call xrepr())                                                            |  |
| reversed(seq)                          | Reverse iterator                                                                                  |  |
| round(num, [ndigi                      | sRound to ndigits protocol (call numround())                                                      |  |
| set([seq])                             | Create set from seq (empty if missing)                                                            |  |
| setattr(obj, attr                      | Setlaxtribute on obj (obj.attr = val)                                                             |  |
| slice([start], st                      | բ <b>Create</b> epl¢e object                                                                      |  |
| sorted(seq, * [ke ] =False])           | -Storted list in aseanding order (use key function to customize sort property)                    |  |
| @staticmethod                          | Use to decorate a method so you can invoke it on the class or instance                            |  |
| str(obj)                               | Create string (call objstr())                                                                     |  |
| str(bytes, [encod :                    | ாடூreate etringrifcom bytes (errors defaults to strict)                                           |  |
| <pre>sum(seq, [start=0</pre>           | )Sum values from seq (use start as initial value)                                                 |  |
| super()                                | Get access to superclass                                                                          |  |
| tuple([seq])                           | Convert seq to tuple (empty if missing)                                                           |  |
| type(name, bases,                      | Greate a new type of name, with base classes bases, and attributes dict                           |  |
| type(obj)                              | Return type of obj                                                                                |  |
| vars([obj])                            | Return objdict or locals() if missing                                                             |  |
| zip(seq1, [seq2,                       | Return iterable of tuples of (seq1[0], seq2[0]), (seq1[1], seq2[1]), until shortest sequence      |  |

## Unicode

Python 3 represents strings as Unicode. We can *encode* strings to a series of bytes such as UTF-8. If we have bytes, we can *decode* them to a Unicode string:

```
>>> x_sq = 'x²'
>>> x_sq.encode('utf-8')
b'x\xc2\xb2'
>>> utf8_bytes = b'x\xc2\xb2'
>>> utf8_bytes.decode('utf-8')
'x²'
```

If you have the unicode glyph, you can use that directly. Alternatively, you can enter a code point using  $\u$  followed by the 16-bit hex value xxxx. For larger code points, use  $\U$  followed by xxxxxxxxx. If you

have the Unicode name (obtained by consulting tables at unicode.org), you can use the  $\N$  syntax. The following are equivalent:

```
>>> result = 'x2'
>>> result = 'x\u00b2'
>>> result = 'x\N{SUPERSCRIPT TWO}'
```

# **Unicode Encoding & Decoding**



Image illustrating encoding a Unicode string to a byte representation. In this case, we convert to UTF-8. There are other byte encodings for this string. If we have a UTF-8 byte string, we can decode it into a Unicode string. Note that we should be explicit about the decoding as there are potentially other encodings that we could decode to that might give use erroneous data, or mojibake.

## String Formatting

Most modern Python code uses the .format method (PEP 3101) to create strings from other parts. The format method uses  $\{\}$  as a placeholder.

Inside of the placeholder we can provide different specifiers:

- { 0 } reference first positional argument
- { } reference implicit positional argument
- {result} reference keyword argument
- {bike.tire} reference attribute of argument
- {names[0]} reference first element of argument

```
>>> person = {'name': 'Paul',
... 'instrument': 'Bass'}
>>> inst = person['instrument']

>>> print("Name: {} plays: {}".format(
```

```
... person['name'], inst))
Name: Paul plays: Bass
```

or:

You can also use f-strings in Python 3.6 (see PEP 498):

```
>>> print(f'Name: {person["name"]} plays: {inst}')
Name: Paul plays: Bass
```

F-strings inspect variables that are available and allow you to inline methods, or attributes from those variables.

## **Conversion Flags**

You can provide a *conversion flag* inside the placeholder.

- !s Call str() on argument
- !r Call repr() on argument
- !a Call ascii() on argument

```
>>> class Cat:
... def __init__(self, name):
            self.name = name
      def __format__(self, data):
. . .
           return "Format"
. . .
      return "Format def __str__(self):
. . .
           return "Str"
. . .
       def __repr__(self):
. . .
            return "Repr"
>>> cat = Cat("Fred")
>>> print("{} {!s} {!a} {!r}".format(cat, cat, cat,
          cat))
Format Str Repr Repr
```

# **Format Specification**

You can provide a format specification following a colon. The grammar for format specification is as follows:

```
[[fill]align][sign][#][0][width][grouping_option]
[.precision][type]
```

The following table lists the field meanings.

| Field | Meaning                   |
|-------|---------------------------|
| fill  | Fills in space with align |

| align           | <-left align, >-right align, ^-center align, =-put padding after sign              |
|-----------------|------------------------------------------------------------------------------------|
| sign            | +-for all number,only negative, space-leading space for positive, sign on negative |
| #               | Prefix integers. Ob-binary, 0o-octal, 0x-hex                                       |
| 0               | Enable zero padding                                                                |
| width           | Minimum field width                                                                |
| grouping_option | , -Use comma for thousands separator,Use underscore for thousands separator        |
| .precision      | Digits after period (floats). Max string length (non-numerics)                     |
| type            | s-string format (default) see Integer and Float charts                             |

The tables below lists the various options we have for formatting integer and floating point numbers.

| Integer Types | Meaning                                  |
|---------------|------------------------------------------|
| b             | binary                                   |
| С             | character - convert to unicode character |
| d             | decimal (default)                        |
| n             | decimal with locale specific separators  |
| 0             | octal                                    |
| x             | hex (lower-case)                         |
| х             | hex (upper-case)                         |

| Float Types | Meaning                                                               |
|-------------|-----------------------------------------------------------------------|
| e/E         | Exponent. Lower/upper-case e                                          |
| f           | Fixed point                                                           |
| g/G         | General. Fixed with exponent for large, and small numbers (g default) |
| n           | g with locale specific separators                                     |
| ફ           | Percentage (multiplies by 100)                                        |

## Some format Examples

```
>>> "Name: {:*^12}".format("Ringo")
'Name: ***Ringo****'
```

Next, we format a percentage using a width of 10, one decimal place and the sign before the width padding. = is the *align* field, 10.1 are the *width* and *precision* fields, and % is the *float type*, which converts the number to a percentage:

```
>>> "Percent: {:=10.1%}".format(-44/100)
'Percent: - 44.0%'
```

Below is a binary and a hex conversion. The *integer type* field is set to b and x respectively:

```
>>> "Binary: {:#b}".format(12)
'Binary: 0b1100'

>>> "Hex: {:#x}".format(12)
'Hex: 0xc'
```

# **Files**

The open function will take a file path and mode as input and return a file handle. There are various modes to open a file, depending on the content and your needs. If you open the file in binary mode, you will get bytes out. In text mode you will get strings back:

#### File Modes

| Mode  | Meaning                                             |
|-------|-----------------------------------------------------|
| 'r'   | Read text file (default)                            |
| ' W ' | Write text file (truncates if exists)               |
| 'x'   | Write text file, throw FileExistsError if exists.   |
| 'a'   | Append to text file (write to end)                  |
| 'rb'  | Read binary file                                    |
| 'wb'  | Write binary (truncate)                             |
| 'w+b' | Open binary file for reading and writing            |
| 'xb'  | Write binary file, throw FileExistsError if exists. |
| 'ab'  | Append to binary file (write to end)                |

## **Writing Files**

We use a context manager with a file to ensure that the file is closed when the context block exits.

```
>>> with open('/tmp/names.txt', 'w') as fout:
... fout.write('Paul\r\nJohn\n')
... fout.writelines(['Ringo\n', 'George\n'])
```

## **Reading Files**

With an opened text file, you can iterate over the lines. This saves memory as the lines are read in as needed:

```
>>> with open('/tmp/names.txt') as fin:
... for line in fin:
... print(repr(line))
'Paul\n'
'John\n'
'Ringo\n'
'George\n'
```

| Operation                | Result                                                                                                                  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------|
| fiter()                  | Support iteration                                                                                                       |
| fnext()                  | Return next item of iteration (line in text)                                                                            |
| frepr()                  | Implementation for repr(f)                                                                                              |
| f.buffer                 | File buffer                                                                                                             |
| f.close()                | Close file                                                                                                              |
| f.closed                 | Is closed                                                                                                               |
| f.detach()               | Detach file buffer from file                                                                                            |
| f.encoding               | The encoding of the file (default is locale.getpreferredencoding())                                                     |
| f.errors                 | Error mode of encoding ('strict' default)                                                                               |
| f.fileno()               | Return file descriptor                                                                                                  |
| f.flush()                | Write file buffer                                                                                                       |
| f.isatty()               | Is interactive file                                                                                                     |
| f.linebuffering          | Buffered by lines                                                                                                       |
| f.name                   | Name of file                                                                                                            |
| f.newlines               | End of line characters encountered (tuple or string)                                                                    |
| f.read( size=-1)         | Read size characters (-1 is whole file)                                                                                 |
| f.readable()             | Is opened for reading                                                                                                   |
| f.readline( size=-1)     | Read size characters from line (-1 is whole line)                                                                       |
| f.readlines( hint=-1)    | Read bytes less than ${\tt hint}$ characters of lines from file (-1 is all file)                                        |
| f.seek(cookie, whence= 0 | Change stream location to cookie bytes (may be negative) offset from whence (0 - start, 1 - current position, 2 - end). |
| f.seekable()             | File supports random access                                                                                             |
| f.tell()                 | Current stream location                                                                                                 |
| f.truncate( pos=None)    | Truncate file to pos bytes                                                                                              |
| f.writeable()            | File supports writing                                                                                                   |
| f.write(text)            | Write text to file                                                                                                      |
| f.writelines( lines)     | Write lines to file (provide newlines if you want them)                                                                 |

# **Functions**

# **Defining functions**

Functions may take input, do some processing, and return output. You can provide a docstring directly following the name and parameters of the function:

```
>>> def add_numbers(x, y):
...     """ add_numbers sums up x and y
...
...     Arguments:
```

```
... x -- object that supports addition
... y -- object that supports addition
... """
... return x + y
```

#### Note

We use whitespace to specify a block in Python. We typically indent following a colon. PEP 8 recommends using 4 spaces. Don't mix tabs and spaces.

We can create anonymous functions using the lambda statement. Because they only allow an expression following the colon, it is somewhat crippled in functionality. They are commonly used as a key argument to sorted, min, or max:

```
>>> add = lambda x, y: x + y
>>> add(4, 5)
9
```

Functions can have *default* arguments. Be careful with mutable types here, as the default is bound to the function when the function is created, not when it is called:

```
>>> def add_n(x, n=42):
... return x + n

>>> add_n(10)
52
>>> add_n(3, -10)
-7
```

Functions can support variable positional arguments:

```
>>> def add_many(*args):
...     result = 0
...     for arg in args:
...         result += arg
...     return result

>>> add_many()
0
>>> add_many(1)
1
>>> add_many(42, 3.14)
45.14
```

Functions can support variable keyword arguments:

```
>>> def add_kwargs(**kwargs):
...    result = 0
...    for key in kwargs:
...    result += kwargs[key]
```

```
... return result
>>> add_kwargs(x=1, y=2, z=3)
6
>>> add_kwargs()
0
>>> add_kwargs(4)
Traceback (most recent call last):
...
TypeError: add_kwargs() takes 0 positional arguments
but 1 was given
```

You can indicate the end of positional parameters by using a single \*. This gives you keyword only parameters (PEP 3102):

```
>>> def add_points(*, x1=0, y1=0, x2=0, y2=0):
... return x1 + x2, y1 + y2

>>> add_points(x1=1, y1=1, x2=3, y2=4)
(4, 5)

>>> add_points(1, 1, 3, 4)
Traceback (most recent call last):
...
TypeError: add_points() takes 0 positional arguments
but 4 were given
```

## **Calling Functions**

You can also use \* and \*\* to unpack sequence and dictionary arguments:

```
>>> def add_all(*args, **kwargs):
...     """Add all arguments"""
...     result = 0
...     for num in args + tuple(kwargs.values()):
...         result += num
...     return result

>>> sizes = (2, 4.5)
>>> named_sizes = {"this": 3, "that": 1}
```

The following two examples are the equivalent:

```
>>> add_all(*sizes)
6.5
>>> add_all(sizes[0], sizes[1])
6.5
```

The following two examples are the equivalent:

```
>>> add_all(**named_sizes)
4
>>> add_all(this=3, that=1)
4
```

You can also combine \* and \*\* on invocation:

```
>>> add_all(*sizes, **named_sizes)
10.5
```

You can get help on a function that has a docstring by using help:

```
>>> help(add_all)
Help on function add_all in module __main__:
add_all(*args, **kwargs)
   Add all arguments
```

## **Classes**

Python supports object oriented programming but doesn't require you to create classes. You can use the built-in data structures to great effect. Here's a class for a simple bike. The class attribute, num\_passengers, is shared for all instances of Bike. The instance attributes, size and ratio, are unique to each instance:

```
>>> class Bike:
    ''' Represents a bike '''
        num_passengers = 1  # class attribute
. . .
. . .
        def __init__(self, wheel_size,
. . .
                     gear_ratio):
. . .
            ''' Create a bike specifying the
. . .
            wheel size, and gear ratio '''
            # instance attributes
. . .
            self.size = wheel_size
. . .
            self.ratio = gear_ratio
. . .
. . .
        def gear_inches(self):
. . .
            return self.ratio * self.size
```

We can call the constructor (\_\_init\_\_), by invoking the class name. Note that self is the instance, but Python passes that around for us automatically:

```
>>> bike = Bike(26, 34/13)
>>> print(bike.gear_inches())
68.0
```

We can access both class attributes and instance attributes on the instance:

```
>>> bike.num_passengers
1
```

```
>>> bike.size
26
```

If an attribute is not found on the instance, Python will then look for it on the class, it will look through the parent classes to continue to try and find it. If the lookup is unsuccessful, an AttributeError is raised.

### **Subclasses**

To subclass a class, simply place the parent class name in parentheses following the class name in the declaration. We can call the super function to gain access to parent methods:

```
>>> class Tandem(Bike):
        num_passengers = 2
. . .
        def __init__(self, wheel_size, rings, cogs):
. . .
             self.rings = rings
. . .
             self.cogs = cogs
. . .
             ratio = rings[0] / cogs[0]
. . .
             super().__init__(wheel_size, ratio)
        def shift(self, ring_idx, cog_idx):
. . .
             self.ratio = self.rings[ring_idx] \
. . .
                  / self.cogs[cog_idx]
. . .
```

#### Note

In the above example, we used a  $\setminus$  to indicate that the line continued on the following line. This is usually required unless there is an implicit line continuation with an opening brace that hasn't been closed ((, [, or {)}.

The instance of the subclass can call methods that are defined on its class or the parent class:

```
>>> tan = Tandem(26, [42, 36], [24, 20, 15, 11])
>>> tan.shift(1, -1)
>>> tan.gear_inches()
85.09090909091
```

### **Class Methods and Static Methods**

The classmethod decorator is used to create methods that you can invoke directly on the class. This allows us to create alternate constructors. Note that the implicit first argument is the class, commonly named cls (as class is a keyword and will error out):

```
>>> INCHES_PER_METER = 39.37

>>> class MountainBike(Bike):
... @classmethod
... def from_metric(cls, size_meters, ratio):
... return cls(size_meters *
```

```
INCHES_PER_METER,
ratio)

>>> mtn = MountainBike.from_metric(.559, 38/11)
>>> mtn.gear_inches()
76.0270490909091
```

### Note

In the above example, we had an implicit line continuation without a backslash, because there was a ( on the line.

The staticmethod decorator lets you attach functions to a class. (I don't like them, just use a function). Note that they don't get an implicit first argument. It can be called on the instance or the class:

```
>>> class Recumbent(Bike):
...    @staticmethod
...    def is_fast():
...        return True

>>> Recumbent.is_fast()
True

>>> lawnchair = Recumbent(20, 4)
>>> lawnchair.is_fast()
True
```

## **Properties**

If you want to have actions occur under the covers on attribute access, you can use properties to do that:

```
>>> class Person:
... def __init__(self, name):
             self._name = name
. . .
... @property
... def name(self):
... if self. name
         if self._name == 'Richard':
                  return 'Ringo'
. . .
             return self._name
. . .
. . .
     @name.setter
. . .
         def name(self, value):
. . .
             self._name = value
. . .
. . .
         @name.deleter
. . .
         def name(self):
. . .
             del self._name
```

Rather than calling the .name() method, we access the attribute:

```
>>> p = Person('Richard')
>>> p.name
'Ringo'
>>> p.name = 'Fred'
```

# Looping

You can loop over objects in a sequence:

```
>>> names = ['John', 'Paul', 'Ringo']
>>> for name in names:
... print(name)
John
Paul
Ringo
```

The break statement will pop you out of a loop:

```
>>> for name in names:
... if name == 'Paul':
... break
... print(name)
John
```

The continue statement skips over the body of the loop and continues at the next item of iteration:

```
>>> for name in names:
... if name == 'Paul':
... continue
... print(name)
John
Ringo
```

You can use the else statement to indicate that every item was looped over, and a break was never encountered:

```
>>> for name in names:
...     if name == 'George':
...         break
... else:
...     raise ValueError("No Georges")
Traceback (most recent call last):
         ...
ValueError: No Georges
```

Don't loop over index values (range(len(names))). Use enumerate:

```
>>> for i, name in enumerate(names, 1):
... print("{}. {}".format(i, name))
1. John
2. Paul
3. Ringo
```

### while Loops

You can use while loops to create loops as well. If it is an infinite loop, you can break out of it:

```
>>> done = False
>>> while not done:
...  # some work
... done = True
```

#### **Iteration Protocol**

To make an iterator implement \_\_iter\_\_ and \_\_next\_\_:

```
>>> class fib:
        def __init__(self, limit=None):
. . .
             self.val1 = 1
. . .
             self.val2 = 1
. . .
            self.limit = limit
. . .
. . .
      def __iter__(self):
            return self
. . .
. . .
      def __next__(self):
. . .
            val = self.val1
. . .
            self.val1 = self.val2
. . .
           self.val2 = val + self.val1
. . .
            if self.limit is not None and \
                 val < self.limit:</pre>
. . .
                 return val
. . .
            raise StopIteration
. . .
```

Use the iterator in a loop:

```
>>> e = fib(6)
>>> for val in e:
...    print(val)
1
1
2
3
5
```

Unrolling the protocol:

```
>>> e = fib(6)
>>> it = iter(e)  # calls e.__iter__()
>>> next(it)  # calls it.__next__()
1
>>> next(it)
1
>>> next(it)
2
>>> next(it)
3
```

```
>>> next(it)
5
>>> next(it)
Traceback (most recent call last):
    ...
StopIteration
```

## **Conditionals**

Python has an if statement with zero or more elif statements, and an optional else statement at the end. In Python, the word elif is Dutch for *else if*:

```
>>> grade = 72
>>> def letter_grade(grade):
... if grade > 90:
           return 'A'
. . .
    elif grade > 80:
. . .
           return 'B'
. . .
... elif grade > 70:
           return 'C'
. . .
       else:
. . .
          return 'D'
. . .
>>> letter_grade(grade)
'C'
```

Python supports the following tests: >, >=, <, <=, ==, and !=. For boolean operators use and, or, and not (&, |, and ^ are the bitwise operators).

Note that Python also supports range comparisons:

```
>>> x = 4
>>> if 3 < x < 5:
... print("Four!")
Four!
```

Python does not have a switch statement, often dictionaries are used to support a similar construct:

```
>>> def add(x, y):
...    return x + y

>>> def sub(x, y):
...    return x - y

>>> ops = {'+': add, '-': sub}

>>> op = '+'
>>> a = 2
>>> b = 3
>>> ops[op](a, b)
5
```

### **Truthiness**

You can define the  $\_bool\_\_$  method to teach your classes how to act in a boolean context. If that doesn't exists, Python will use  $\_len\_\_$ , and finally default to True.

The following table lists *truthy* and *falsey* values:

| Truthy           | Falsey             |
|------------------|--------------------|
| True             | False              |
| Most objects     | None               |
| 1                | 0                  |
| 3.2              | 0.0                |
| [1, 2]           | [] (empty list)    |
| {'a': 1, 'b': 2} | {} (empty dict)    |
| 'string'         | " " (empty string) |
| 'False'          |                    |
| '0'              |                    |

# **Exceptions**

Python can catch one or more exceptions (PEP 3110). You can provide a chain of different exceptions to catch if you want to react differently. A few hints:

- Try to keep the block of the try statement down to the code that throws exceptions
- Be specific about the exceptions that you catch
- If you want to inspect the exception, use as to create a variable to point to it

If you use a bare raise inside of an except block, Python's traceback will point back to the location of the original exception, rather than where it is raised from.

```
>>> def avg(seq):
       try:
           result = sum(seq) / len(seq)
. . .
       except ZeroDivisionError as e:
. . .
           return None
       except Exception:
. . .
           raise
. . .
       return result
>>> avg([1, 2, 4])
2.3333333333333335
>>> avg([]) is None
True
>>> avg('matt')
Traceback (most recent call last):
TypeError: unsupported operand type(s) for +: 'int'
and 'str'
```

## **Raising Exceptions**

You can raise an exception using the raise statement (PEP 3109):

```
>>> def bad_code(x):
... raise ValueError('Bad code')

>>> bad_code(1)
Traceback (most recent call last):
...
ValueError: Bad code
```

### **Decorators**

A decorator (PEP 318) allows us to insert logic before and after a function is called. You can define a decorator with a function that takes a function as input and returns a function as output. Here is the identity decorator:

```
>>> def identity(func):
... return func
```

We can decorate a function with it like this:

```
>>> @identity
... def add(x, y):
... return x + y
```

A more useful decorator can inject logic before and after calling the original function. To do this we create a function inside of the function and return that:

Above, we use print functions to illustrate before/after behavior, otherwise this is very similar to identity decorator.

There is a special syntax for applying the decorator. We put @ before the decorator name and place that on a line directly above the function we wish to decorate. Using the @verbose line before a function declaration is syntactic sugar for re-assigning the variable pointing to the function to the result of calling the decorator with the function passed into it:

```
>>> @verbose
... def sub(x, y):
... return x - y
```

This could also be written as, sub = verbose(sub). Note that our decorated function will still call our original function, but add in some print statements:

```
>>> sub(5, 4)
Calling with:(5, 4) {}
Result:1
1
```

#### **Parameterized Decorators**

Because we can use closures to create functions, we can use closures to create decorators as well. This is very similar to our decorator above, but now we make a function that will return a decorator. Based on the inputs to that function, we can control (or parameterize) the behavior of the decorator:

```
>>> def verbose_level(level):
       def verbose(func):
. . .
            @functools.wraps(func)
            def inner(*args, **kwargs):
                 for i in range(level): # parameterized!
. . .
                     print("Calling with:{} {}".format(
. . .
                           args, kwargs))
. . .
                 res = func(*args, **kwargs)
. . .
                print("Result:{}".format(res))
. . .
                return res
. . .
            return inner
        return verbose
. . .
```

When you decorate with parameterized decorators, the decoration looks differently, because we need to invoke the function to create a decorator:

```
>>> @verbose_level(2)
... def div(x, y):
... return x/y
>>> div(1, 5)
Calling with:(1, 5) {}
Calling with:(1, 5) {}
Result:0.2
0.2
```

## **Class Decorators and Metaclasses**

Python allows you to dynamically create and modify classes. Class decorators and metaclasses are two ways to do this.

### **Class Decorators**

You can decorate a class definition with a *class decorator* (PEP 3129). It is a function that takes a class as input and returns a class.

```
>>> def add_chirp(cls):
...     'Class decorator to add speak method'
...     def chirp(self):
...         return "CHIRP"
...     cls.speak = chirp
...     return cls
...
```

```
>>> @add_chirp
... class Bird:
... pass

>>> b = Bird()
>>> print(b.speak())
CHIRP
```

## Creating Classes with type

You can use type to determine the type of an object, but you can also provide the name, parents, and attributes map, and it will return a class.

```
>>> def howl(self):
... return "HOWL"

>>> parents = ()
>>> attrs_map = {'speak': howl}
>>> F = type('F', parents, attrs_map)

>>> f = F()
>>> print(f.speak())
HOWL
```

### **Metaclasses with Functions**

In the class definition you can specify a metaclass (PEP 3115), which can be a function or a class. Here is an example of a function that can alter the class.

```
>>> def meta(name, parents, attrs_map):
...     def bark(self):
...     return "WOOF!"
...     attrs_map['speak'] = bark
...     return type(name, parents, attrs_map)

>>> class Dog(metaclass=meta):
...     pass

>>> d = Dog()
>>> print(d.speak())
WOOF!
```

### **Metaclasses with Classes**

You can define a class decorator and use either \_\_new\_\_ or \_\_init\_\_. Typically most use \_\_new\_\_ as it can alter attributes like \_\_slots\_\_.

```
>>> class CatMeta(type): # Needs to subclass type
... def __new__(cls, name, parents, attrs_map):
... # cls is CatMeta
... # res is the class we are creating
... res = super().__new__(cls, name,
... parents, attrs_map)
```

```
def meow(self):
                return "MEOW"
. . .
            res.speak = meow
. . .
            return res
        def __init__(cls, name, parents, attrs_map):
. . .
             super().__init__(name, parents, attrs_map)
. . .
>>> class Cat(metaclass=CatMeta):
       pass
. . .
>>> c = Cat()
>>> print(c.speak())
MEOW
```

### **Generators**

Generators (PEP 255) are functions that suspend their state as you iterate over the results of them. Each yield statement returns the next item of iteration and then *freezes* the state of the function. When iteration is resumed, the function continues from the point it was frozen. Note, that the result of calling the function is a generator:

```
>>> def fib_gen():
... val1, val2 = 1, 1
... while 1:
... yield val1
... val1, val2 = val2, (val1+val2)
```

We can simulate iteration by using the iteration protocol:

```
>>> gen = fib_gen()
>>> gen_iter = iter(gen)
>>> next(gen_iter)
1
>>> next(gen_iter)
1
>>> next(gen_iter)
2
>>> next(gen_iter)
3
```

## Coroutines

The asyncio library (PEP 3153) provides asynchronous I/O in Python 3. We use async def to define a coroutine function (see PEP 492). The result of calling this is a coroutine object. Inside a coroutine we can use var = await future to suspend the coroutine and wait for future to return. We can also await another coroutine. A coroutine object may be created but isn't run until an event loop is running:

```
>>> import asyncio
>>> async def greeting():
... print("Here they are!")
>>> co = greeting()
```

```
>>> co # Not running
<coroutine object greeting at 0x1087dcba0>

>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(co)
Here they are!
>>> loop.close()
```

To return an object, use an asyncio. Future:

```
>>> async def compute(future):
... print("Starting...")
      # Simulate IO...
      res = await answer()
. . .
      future.set_result(res)
. . .
>>> async def answer():
... await asyncio.sleep(1)
      return 42
>>> f = asyncio.Future()
>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(compute(f))
>>> loop.close()
>>> f.result()
42
```

#### Note

await and async are *soft keywords* in Python 3.6. You will get a warning if you use them for variable names. In Python 3.7, they will be reserved keywords.

#### Note

For backwards compatibility in Python 3.4:

- await can be replaced with yield from
- async def can be replaced with a function decorated with @asyncio.coroutine

# **Asynchronous Generators**

Python 3.6 adds asynchronous generators (PEP 525). You can use the yield statement in an async def function:

```
>>> async def fib():
... v1, v2 = 1, 1
```

```
while True:
             # similate io
. . .
             await asyncio.sleep(1)
. . .
             yield v1
             v1, v2 = v2, v1+v2
              if v1 > 5:
. . .
                  break
. . .
>>> async def get_results():
      async for num in fib():
. . .
           print(num)
. . .
>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(get_results())
1 # sleeps for 1 sec before each print
1
2.
3
>>> loop.close()
```

# Comprehensions

Comprehension constructs allow us to combine the functional ideas behind map and filter into an easy to read, single line of code. When you see code that is aggregating into a list (or dict, set, or generator), you can replace it with a list comprehension (or dict, set comprehension, or generator expression). Here is an example of the code smell:

```
>>> nums = range(10)
>>> result = []
>>> for num in nums:
...     if num % 2 == 0:  # filter
...         result.append(num*num)  # map
```

This can be specified with a list comprehension (PEP 202):

```
>>> result = [num*num for num in nums
... if num % 2 == 0]
```

To construct a list comprehension:

 Assign the result (result) to brackets. The brackets signal to the reader of the code that a list will be returned:

```
result = [ ]
```

• Place the *for* loop construct inside the brackets. No colons are necessary:

```
result = [for num in nums]
```

• Insert any operations that filter the accumulation after the for loop:

```
result = [for num in nums if num % 2 == 0]
```

• Insert the accumulated object (num\*num) at the front directly following the left bracket. Insert parentheses around the object if it is a tuple:

```
result = [num*num for num in nums
   if num % 2 == 0]
```

## **Set Comprehensions**

If you replace the [ with {, you will get a set comprehension (PEP 274) instead of a list comprehension:

```
>>> {num*num for num in nums if num % 2 == 0} {0, 64, 4, 36, 16}
```

## **Dict Comprehensions**

If you replace the [ with {, and separate the key and value with a colon, you will get a dictionary comprehension (PEP 274):

```
>>> {num:num*num for num in nums if num % 2 == 0} {0: 0, 2: 4, 4: 16, 6: 36, 8: 64}
```

#### Note

In Python 3.6, dictionaries are now ordered by key entry. Hence the ordering above.

## **Generator Expressions**

If you replace the [ with (, you will get a generator instead of a list. This is called a *generator expression* (PEP 289):

```
>>> (num*num for num in nums if num % 2 == 0)
<generator object <genexpr> at 0x10a6f8780>
```

## **Asynchronous Comprehensions**

Python 3.6 (PEP 530) gives us asynchronous comprehensions. You can add async following what you are collecting to make it asynchronous. If you had the following code:

```
>>> async def process(aiter):
...    result = []
...    async for num in aiter:
...    if num % 2 == 0: # filter
...        result.append(num*num) # map
```

You could replace it with:

```
>>> async def process(aiter):
... result = [num*num async for num in aiter
... if num % 2 == 0]
```

## **Context Managers**

If you find code where you need to make sure something happens before *and* after a block, a context manager (PEP 343) is a convenient way to enforce that. Another code smell that indicates you could be using a context manager is a try/finally block.

Context managers can be created with functions or classes.

If we were writing a Python module to write TeX, we might do something like this to ensure that the environments are closed properly:

```
>>> def start(env):
... return '\begin{{{}}}'.format(env)
>>> def end(env):
        return '\\end{{{}}}'.format(env)
>>> def may_error():
... import random
      if random.random() < .5:</pre>
. . .
           return 'content'
. . .
      raise ValueError('Problem')
>>> out = []
>>> out.append(start('center'))
>>> try:
... out.append(may_error())
... except ValueError:
     pass
. . .
... finally:
       out.append(end('center'))
```

This code can use a context manager to be a little cleaner.

## **Function Based Context Managers**

To create a context manager with a function, decorate with contextlib.contextmanager, and yield where you want to insert your block:

Our code looks better now, and there will always be a closing tag:

```
>>> out = []
>>> with env('center', out):
... out.append(may_error())

>>> out
['\\begin{center}', 'content', '\\end{center}']
```

## **Class Based Context Managers**

To create a class based context manager, implement the \_\_enter\_\_ and \_\_exit\_\_ methods:

```
>>> class env:
       def __init__(self, name, content):
            self.name = name
            self.content = content
. . .
. . .
        def __enter__(self):
            self.content.append('\\begin{{{}}}'.format(
                 self.name))
. . .
        def __exit__(self, type, value, tb):
. . .
            # if error in block, t, v, & tb
. . .
            # have non None values
. . .
            # return True to hide exception
            self.content.append('\\end{{{}}}'.format(
                 self.name))
            return True
. . .
```

The code looks the same as using the function based context manager:

```
>>> out = []
>>> with env('center', out):
... out.append(may_error())

>>> out # may_error had an issue
['\\begin{center}', '\\end{center}']
```

## **Context objects**

Some context managers create objects that we can use while inside of the context. The open context manager returns a file object:

```
with open('/tmp/test.txt') as fin:
    # muck around with fin
```

To create an object in a function based context manager, simply yield the object. In a class based context manager, return the object in the \_\_enter\_\_ method.

## **Type Annotations**

Python 3.6 (PEP 483 and 484) allows you to provide types for input and output of functions. They can be used to:

- Allow 3rd party libraries such as mypy <sup>2</sup> to run static typing
- Assist editors with type inference
- Aid developers in understanding code

Types can be expressed as:

- Built-in classes
- Third party classes
- Abstract Base Classes
- Types found in the types module
- User-defined classes

A basic example:

```
>>> def add(x: int, y: int) -> float:
... return x + y

>>> add(2, 3)
5
```

Note that Python does not do type checking, you need to use something like mypy:

```
>>> add("foo", "bar")
'foobar'
```

You can also specify the types of variables with a comment:

```
>>> from typing import Dict
>>> ages = {} # type: Dict[str, int]
```

# The typing Module

This module allows you to provide hints for:

- Callback functions
- · Generic containers
- The Any type

To designate a class or function to not type check its annotations, use the @typing.no\_type\_check decorator.

## **Type Checking**

Python 3.6 provides no support for type checking. You will need to install a tool like mypy:

```
$ pip install mypy
$ python3 -m mypy script.py
```

# Scripts, Packages, and Modules

### **Scripts**

A script is a Python file that you invoke python on. Typically there is a line near the bottom that looks like this:

```
if __name__ == '__main__':
    # execute something
```

This test allows you to change the code path when you execute the code versus when you import the code. The \_\_name\_\_ attribute of a module is set to '\_\_main\_\_' when you execute that module. Otherwise, if you import the module, it will be the name of the module (without .py).

#### **Modules**

Modules are files that end in .py. According to PEP 8, we lowercase the module name and don't put underscores between the words in them. Any module found in the PYTHONPATH environment variable or the sys.path list, can be imported.

## **Packages**

A directory that has a file named \_\_init\_\_.py in it is a package. A package can have modules in it as well as sub packages. The package should be found in PYTHONPATH or sys.path to be imported. An example might look like this:

```
packagename/
   __init__.py
   module1.py
   module2.py
   subpackage/
   __init__.py
```

The  $\__{init}_{py}$  module can be empty or can import code from other modules in the package to remove nesting in import statements.

## **Importing**

You can import a package or a module:

```
import packagename
import packagename.module1
```

Assume there is a  $\mathtt{fib}$  function in  $\mathtt{module1}$ . You have access to everything in the namespace of the module you imported:

```
import packagename.module1
packagename.module1.fib()
```

To use this you will need to use the fully qualified name, packagename.module1.fib. If you only want to import the fib use the from variant:

```
from packagename.module1 import fib
fib()
```

You can also rename imports using as:

```
from packagename.module1 import fib as package_fib
package_fib()
```

### **Environments**

Python 3 includes the venv module for creating a sandbox for your project or a *virtual environment*. To create an environment on Unix systems, run:

```
$ python3 -m venv /path/to/env
```

On Windows, run:

```
c:\>c:\Python36\python -m venv c:\path\to\env
```

To enter or activate the environment on Unix, run:

```
$ source /path/to/env/bin/activate
```

On Windows, run:

```
c:\>c:\path\to\env\Scripts\activate.bat
```

Your prompt should have the name of the active virtual environment in parentheses. To *deactivate* an environment on both platforms, just run the following:

```
(env) $ deactivate
```

## **Installing Packages**

You should now have a pip executable, that will install a package from PyPI <sup>3</sup> into your virtual environment:

```
(env) $ pip install django
```

To uninstall a package run:

```
(env) $ pip uninstall django
```

If you are having issues installing a package, you might want to look into alternative Python distributions such as Anaconda <sup>4</sup> that have prepackaged many harder to install packages.

http://python.org
http://mypy-lang.org/
https://pypi.python.org/pypi
https://docs.continuum.io/anaconda/