Alumno:	DNI:

Fundamentos Lógicos de la Programación

Ingeniería Informática de Sistemas (Grupo A) Septiembre (08/09/10)

$\tilde{\mathrm{Senalar}}$

curso/grupo		В
Ingeniería Informática		
Sistemas		
Gestión		

RESPUESTAS A LAS PREGUNTAS DEL TEST

	(A)	(B)	C)	(D)
Pregunta 01				•
Pregunta 02			•	
Pregunta 03	•			
Pregunta 04				•
Pregunta 05	•			
Pregunta 06	•			
Pregunta 07	•			
Pregunta 08				•
Pregunta 09		•		
Pregunta 10	•			

08 de Septiembre de 2010

- Preg. Test 1 ¿Cuál de las siguientes afirmaciones es ciertas?
 - a) Por el algoritmo de Davis-Putnam sabemos que $\{a \lor b \lor \neg c, \neg a \lor c, \neg b \lor c, a \lor c\}$ es satisfacible si, y sólo si, lo es $\{\neg a \lor c, a \lor c\}$.
 - b) Por el algoritmo de Davis-Putnam sabemos que $\{a \lor b \lor \neg c \lor d, \neg a \lor \neg c \lor d, b \lor \neg d, b \lor c \lor d, a \lor \neg d\}$ es satisfacible si, y sólo si, los conjuntos $\{b,a\}$ y $\{a \lor \neg b \lor \neg c, \neg a \lor \neg c, b \lor c\}$ son satisfacibles.
 - c) Por el algoritmo de Davis-Putnam sabemos que $\{\neg a \lor c \lor d, \neg a \lor b \lor \neg c, \neg b \lor d, a \lor b \lor d\}$ es insatisfacible si, y sólo si, los conjuntos $\{c \lor \neg d, b \lor \neg c, \neg b \lor d\}$ y $\{\neg b \lor d, b \lor d, \neg b \lor c\}$ son insatisfacibles.
 - d) Por el algoritmo de Davis-Putnam sabemos que $\{a \lor b \lor c, \neg a \lor b \lor c, \neg b \lor \neg c, \neg b\}$ es insatisfacible si, y sólo si, lo es $\{a \lor c, \neg a \lor c\}$.
- **Preg. Test 2** De los siguientes grupos de fórmulas proposicionales, ¿cuál satisface que $v(\alpha) \cdot v(\beta) = 1 + v(\gamma)$ para cualquier asignación v?
 - a) $\alpha = a, \beta = \neg b, \gamma = a \vee \neg b.$
 - b) $\alpha = a \vee \neg b, \beta = b \leftrightarrow c, \gamma = a \rightarrow c.$
 - c) $\alpha = a \to (\neg b \lor c), \beta = \neg c \to (a \land b), \gamma = \neg c.$
 - $d) \ \alpha = a \to \neg b, \, \beta = \neg a \wedge b, \, \gamma = a \to b.$
- Preg. Test 3 ¿Cuál de las siguientes fórmulas es una tautología?
 - $a) \ ((\neg \alpha \lor \neg \beta) \land (\gamma \to \alpha) \land (\delta \to \beta)) \to (\neg \gamma \lor \neg \delta)$
 - b) $((\neg \alpha \lor \beta) \land (\beta \lor \neg \gamma)) \rightarrow (\beta \lor \gamma)$
 - $c) (\alpha \wedge \beta) \vee (\neg \alpha \vee \beta)$
 - $d) (\alpha \wedge \gamma) \vee \neg \gamma$

Preg. Test 4 Dada la fórmula:

$$\varphi = p(x) \to \forall x (p(x) \lor \neg p(f(x)))$$

señalar bajo cuál de las siguientes interpretaciones $\langle \mathbf{A}, s \rangle$ es verdadera φ :

a)
$$\begin{cases} A = \mathbb{Z}, \\ (f)^{\mathbf{A}}(x) = x + 1, \\ (p)^{\mathbf{A}} = \{x : x \in \mathbb{Z}, x \text{ es PAR}\}, \\ s(x) = 2. \end{cases}$$
b)
$$\begin{cases} A = \mathbb{Z}_4, \\ (f)^{\mathbf{A}}(x) = x + 1 \pmod{4}, \\ (p)^{\mathbf{A}} = \{0, 1, 3\}, \\ s(x) = 1. \end{cases}$$
c)
$$\begin{cases} A = \mathbb{Z}, \\ (f)^{\mathbf{A}}(x) = x + 1, \\ (p)^{\mathbf{A}} = \{x : x \in \mathbb{Z}, x \text{ es IMPAR}\}, \\ s(x) = 1. \end{cases}$$
d)
$$\begin{cases} A = \mathbb{Z}_4, \\ (f)^{\mathbf{A}}(x) = x + 1 \pmod{4}, \\ (p)^{\mathbf{A}} = \{0, 1, 3\}, \\ s(x) = 2. \end{cases}$$

- Preg. Test 5 ¿Cuál de los siguientes pares de literales es unificable?
 - a) $\langle r(f(h(z), a), g(h(a)), z), r(f(u, y), z, g(x)) \rangle$
 - b) $\langle r(f(h(z),a),f(x,y),z),r(f(u,a),z,x)\rangle$
 - c) $\langle r(f(y), g(x), z), r(f(u), z, x) \rangle$
 - d) $\langle r(f(y), g(x), z), r(f(u), z, x) \rangle$

Preg. Test 6 Señala la afirmación que sea cierta.

- $a) \models \exists y \forall x r(x, y) \rightarrow \forall x \exists y r(x, y).$
- $b) \models \exists x (p(x) \to q(x)) \to (\exists x p(x) \to \forall x q(x))$
- $c) \models \forall x \exists y r(x, y) \rightarrow \exists y \forall x r(x, y).$
- $d) \models \exists x (p(x) \to q(x)) \to (\forall x p(x) \to \forall x q(x))$
- **Preg. Test 7** Si Γ es un conjunto de proposiciones y $\Gamma \models \neg(a \to b) \to (\neg c \to \neg d)$, entonces ¿cuál de las siguientes afirmaciones es cierta?
 - a) $\Gamma, \neg(a \to b) \models d \to c$
 - b) $\Gamma, \neg(a \to b), \neg d \models \neg c$
 - c) $\Gamma, \neg c \to \neg d \models \neg (a \to b)$
 - $d) \Gamma, \neg(a \rightarrow b), \neg c \models d$

- **Preg. Test 8** ¿Cuál de las siguientes fórmulas es equivalente a la fórmula $\forall x (\forall x r(x, y) \rightarrow \exists y r(x, f(y)))$?:
 - a) $\forall x \exists w \exists y (r(w, y) \rightarrow r(x, f(y))).$
 - b) $\forall x \forall z (r(x,y) \rightarrow r(x,f(z))).$
 - c) $\forall x \exists y (r(x, z) \rightarrow r(x, f(y))).$
 - $d) \ \forall x \exists w (r(w, y) \rightarrow r(x, f(w))).$
- **Preg. Test 9** Para los literales p(x, u, f(a)) y p(y, g(w), x), ¿Cuál de las siguientes afirmaciones es cierta?:
 - a) la sustitución (y|f(a))(u|g(b))(x|y) es un unificador principal.
 - b) la sustitución (y|f(a))(u|g(w))(x|y) es un unificador principal.
 - c) la sustitución (y|f(a))(u|g(w))(x|f(a)) es un unificador, pero no es un unificador principal.
 - d) no son unificables.
- **Preg. Test 10** Dado un lenguaje de primer orden, supongamos que tenemos un conjunto Σ formado únicamente por cláusulas de Horn de dicho lenguaje. ¿Cuál de las siguientes afirmaciones es verdadera?:
 - a) Σ es satisfacible.
 - b) Σ es insatisfacible.
 - c) Es posible encontrar una refutación lineal-input de Σ usando como cláusula raíz, la cláusula negativa.
 - d) Con las condiciones que enumera el enunciado sobre Σ , no es suficiente para determinar si Σ es satisfacible o insatisfacible.

clave: 1d, 2c, 3a, 4d, 5a, 6a, 7a, 8d, 9b, 10a.

Preguntas para desarrollar (deben contestarse dos de entre las tres)¹

- Preg. 1 Demuestra que el conjunto formado por las siguientes cláusulas es insatisfacible:
 - $S(x, f(x)) \vee V(x) \vee \neg E(x),$
 - $C(f(x)) \vee V(x) \vee \neg E(x),$
 - P(a)
 - \blacksquare E(a),
 - $P(y) \vee \neg S(a, y),$
 - $\blacksquare \neg V(x) \lor \neg P(x),$
 - $\neg P(x) \lor \neg C(x).$

Utiliza para ello resolución lineal input ordenada.

Preg. 2 Demostrar que la siguiente fórmula es a la vez satisfacible y refutable:

$$\neg \exists x \forall y (p(x,y) \to p(x,x)) \land \forall x \forall y \forall z (\neg p(x,z) \to (p(x,y) \to \neg p(y,z)))$$

- Preg. 3 Considerar las siguientes fórmulas de primer orden:
 - $\bullet \xi_1 = \forall x P(x) \to \forall x \forall y \exists z (S(x, f(x, y), z) \to \forall u R(x, y, z, u))$
 - $\bullet \xi_2 = \neg \exists x \exists y ((P(x) \lor T(x)) \to \forall x (Q(x) \land N(x,y)))$
 - $\xi_3 = \forall x \forall y \forall z ((N(x, g(y)) \to Q(z)) \lor \exists z (T(z) \to \forall z S(x, y, h(z))))$
 - $\bullet \xi_4 = \forall x \forall y \forall w ((\exists z M(z, w) \land \exists u S(x, u, h(z))) \rightarrow \exists v N(y, v))$
 - $\bullet \psi = \neg (\exists x \forall y (\forall z S(x, y, z) \to \exists u M(u, y)) \land \forall y (T(y) \to \exists x N(x, y)))$

y transformar el problema:

$$\xi_1, \xi_2, \xi_3, \xi_4 \models \psi$$

en un problema equivalente consistente en estudiar la insatisfacibilidad de un cierto conjunto de cláusulas por determinar en el ejercicio. No se pide ahora estudiar si es o no insatisfacible dicho conjunto de cláusulas.

08 de Septiembre de 2010 3

¹Si se entregase desarrollo de las tres, se eliminará la que merezca la puntuación más alta.