

Este roteiro está baseado no roteiro de laboratório elaborado pela Prof.ª Elisabete Nakoneczny Moraes.

LAB 6 - OPERAÇÃO DO TJB COMO CHAVE

1. Objetivos:

Verificar e identificar as características de funcionamento do TJB como chave na região de sorte e saturação pelo uso de sensor Reed Switch para ativação de um led.

- Identificar os terminais e tipo do TJB pelo uso do MD com a função teste de semicondutor
- Identificar como as fontes de alimentação polarizam as junções BE e BC.
- Constatar as intensidades das tensões VBE, VCE e VCB para a operação em saturação e em corte.

Material:

Laboratório	A ser providenciado pela equipe
01 Fonte de tensão CC variável	02 Transistor bipolar BC 337 ou similar
02 Multímetro digital (MD)	01 Reed Switch ou ampola reed
01 Matriz de contatos	01 Resistor de 1 kΩ ¼ W ou ½ W
Pares de pontas de prova	01 Resistor de 10 kΩ ¼ W ou ½ W
banana-jacaré	
Pares de ponta de prova banana-	01 led, cor a escolher
banana	
Jumpers	Ímã (de geladeira)

2. Reconhecimento e inspeção dos componentes:

2.1. Com o auxílio do multímetro digital (MD), função teste de semicondutor, identifique o tipo e os terminais do transistor.

Modelo do TBJ							
MULTÍMETRO DIGITAL							
Terminal +	Terminal + Terminal -						
1	2						
1	3						
2	1						
2	3						
3	1						
3	2						

Tabela 1: medidas nos terminais do TJB usando o MD função teste semicondutor.

ELT74E LAB 6 - TJB COMO CHAVE

2.2. Usando a função teste semicondutor do MD, identifique os terminais de	o iea:
--	--------

$$Vj = \underline{\hspace{1cm}}$$

2.3. Meça os resistores e anote os valores:

$$R1k =$$

$$R10k =$$

3. Circuito 1: CARGA EM SÉRIE COM O TERMINAL DE COLETOR

Figura 1: Circuito 1 contendo sensor magnético para ativação de carga (diodo led) em série com o terminal de coletor. Fonte: (MORAES, 2023)

- 3.1. Monte o circuito da Figura 1 usando os valores do descritos na atividade do moodle.
- **3.2.** Na Tabela 2 transcreva do pre-lab (ou calcule) os valores teóricos do circuito 1 na situação **SEM** campo magnético.
- 3.3. Meça as grandezas da Tabela 2.
- 3.4. Com base nos valores medidos calcule as correntes do transistor.

Item	VBE (V)	VCE (V)	VCB (V)	VRbase (V)	VRcoletor (V)	VLED (V)	IB (mA)	IC (mA)	IE (mA)
Teórico									
Experimental							-	-	-
Baseado no experimental	-	-	-	-	-	-			

Tabela 2. Grandezas relativas às medidas da montagem do circuito 1 sem campo magnético

- 3.5. Na Tabela 3 transcreva do pre-lab (ou calcule) os valores teóricos do circuito 1 na situação **COM** campo magnético.
- 3.6. Meça as grandezas da Tabela 3.
- 3.7. Com base nos valores medidos calcule as correntes do transistor.

ELT74E 2/4 LAB 6 - TJB COMO CHAVE

Item	VBE (V)	VCE (V)	VCB (V)	VRbase (V)	VRcoletor (V)	VLED (V)	IB (mA)	IC (mA)	IE (mA)
Teórico									
Experimental							-	-	-
Baseado no experimental	-	-	-	-	-	-			

Tabela 3. Grandezas relativas às medidas da montagem do circuito 1 com campo magnético

3.8. Na situação que o transistor tem corrente (chave fechada) calcule os valores $\beta = \frac{I_C}{I_B}$ e $\alpha = \frac{I_C}{I_E}$, escreva os valores teóricos e experimentais na Tabela 4

Item	β	α
Teórico		
Baseado no experimental		

Tabela 4. Beta e Alfa do circuito 1 funcionando como chave fechada

4. Circuito 2: CARGA EM PARALELO COM O TERMINAL DE COLETOR e EMISSOR

Figura 2: Circuito 2 contendo sensor magnético para ativação de carga (diodo led) em paralelo com o terminal de coletor e emissor. Fonte: (MORAES, 2023)

- 4.1. Monte o circuito da Figura 2 usando os valores do descritos na atividade do moodle.
- 4.2. Na Tabela 5 transcreva do pre-lab (ou calcule) os valores teóricos do circuito 2 na situação **SEM** campo magnético.
- 4.3. Meça as grandezas da Tabela 5.

ELT74E 3/4 LAB 6 - TJB COMO CHAVE

4.4. Com base nos valores medidos calcule as correntes do transistor.

Item	VBE (V)	VCE (V)	VCB (V)	VRbase (V)	VRcoletor (V)	VLED (V)	IB (mA)	IC (mA)	IE (mA)
Teórico									
Experimental							-	-	-
Baseado no experimental	-	-	-	-	-	-			

Tabela 5. Grandezas relativas às medidas da montagem do circuito 2 sem campo magnético

- **4.5.** Na Tabela 6 transcreva do pre-lab (ou calcule) os valores teóricos do circuito 2 na situação **COM** campo magnético.
- **4.6.** Meça as grandezas da Tabela 6.
- 4.7. Com base nos valores medidos calcule as correntes do transistor.

Item	VBE (V)	VCE (V)	VCB (V)	VRbase (V)	VRcoletor (V)	VLED (V)	IB (mA)	IC (mA)	IE (mA)
Teórico									
Experimental							-	-	-
Baseado no experimental	-	-	-	-	-	-			

Tabela 6. Grandezas relativas às medidas da montagem do circuito 2 com campo magnético

4.8. Na situação que o transistor tem corrente (chave fechada) calcule os valores $\beta = \frac{I_C}{I_B}$ e $\alpha = \frac{I_C}{I_E}$, escreva os valores teóricos e experimentais na Tabela 7

Item	β	α
Teórico		
Baseado no experimental		

Tabela 7. Beta e Alfa do circuito 2 funcionando como chave fechada

4.9. Apresente seus cálculos, conclusões e resultados (Checkpoint).

Referencias

MORAES, E. N.; ROTEIROS PARA AS PRÁTICAS ELETRÔNICA. Curitiba. 2023

ELT74E 4/4 LAB 6 - TJB COMO CHAVE