MA 503: Homework 9

Dane Johnson

October 7, 2020

Proposition 8 (Chapter 2) Every open set of real numbers is the union of a countable collection of disjoint open intervals.

Proposition 5 Given any set A and $\epsilon > 0$, there is an open set \mathcal{O} such that $A \subset \mathcal{O}$ and $m^*(O) \leq m^*(A) + \epsilon$. There is a $G \in G_\delta$ such that $A \subset G$ and $m^*(A) = m^*(G)$.

Theorem 10 The collection \mathfrak{M} is a σ -algebra. Moreover, every set with outer measure zero is measurable.

Theorem 12 Every Borel set is measurable. In particular each open set and each closed set is measurable.

Proposition 14 Let (E_i) be a sequence of decreasing measurable sets, that is, a sequence with $E_{n+1} \subset E_n$ for each $n \in \mathbb{N}$. Let $m(E_1) < \infty$. Then,

$$m\left(\bigcap_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} m(E_n)$$
.

Proposition 15 Let E be a given set. The following five statements are equivalent.

- i. E is measurable.
- ii. Given $\epsilon > 0$ there is an open set $O \supset E$ such that $m^*(O \setminus E) < \epsilon$.
- iii. Given $\epsilon > 0$ there is a closed set $F \subset E$ such that $m^*(E \backslash F) < \epsilon$.
- iv. There is a $G \in G_{\delta}$ with $E \subset O$ such that $m^*(G \setminus E) = 0$.
- v. There is an $F \in F_{\sigma}$ with $F \subset E$ such that $m^*(E \backslash F) = 0$.

If $m^*(E) < \infty$, the above statements are equivalent to:

vi. Given $\epsilon > 0$, there is a finite union U of open intervals such that $m^*(U \triangle E) < \epsilon$.

Problem 13 Prove Proposition 15.

- (a) Assume for part (a) that $m^*(E) < \infty$.
- $(i) \implies (ii)$

Suppose E is measurable and let $\epsilon > 0$. By Proposition 5, since $E \subset \mathbb{R}$, there is an open set $O \supset E$ such that $m^*(O) \leq m^*(E) + \epsilon$. As we saw in the proof of this proposition, the inequality can be made strict if $m^*(E) < \infty$ (or just start with $m^*(O) \leq m^*(E) + \epsilon/2$). Then since E is measurable,

$$m^*(O) = m^*(O \cap E) + m^*(O \cap E^c)$$

$$= m^*(E) + m^*(O \setminus E)$$

$$\implies m^*(O \setminus E) = m^*(O) - m^*(E)$$

$$< m^*(E) + \epsilon - m^*(E)$$

$$= \epsilon.$$

However, there appears to be no reason to use the assumption that E is measurable. Since $E \subset O$, we can write O as a disjoint union $O = (O \setminus E) \cup E$ so that $m^*(O) < m^*(E) + \epsilon \implies m^*(O \setminus E) = 0$

 $m^*(O) - m^*(E) < \epsilon$. Note that $m^*(O) < \infty$ as $m^*(O) < m^*(E) + \epsilon < \infty$.

$$(ii) \implies (vi)$$

Assume (ii) holds and let $\epsilon > 0$. There exists an open set $O \supset E$ such that $m^*(O \setminus E) < \epsilon/2$. By Proposition 8 of Chapter 2, there is a disjoint collection of open intervals $\{I_n\}$ such that $O = \bigcup_{n=1}^{\infty} I_n$ (If the collection $\{I_n\}$ is actually finite, with say $\bigcup_{n=1}^p I_n = O$, set $I_n = \emptyset$ for n > p). Since $O \supset E$, $O = (O \setminus E) \bigcup E$ is a disjoint union and $m^*(O) = m^*(O \setminus E) + m^*(E) < \epsilon + m^*(E)$. This implies that $m^*(O) < \infty$.

$$\infty > m^* \left(\bigcup I_n \right) = \sum_{n=1}^{\infty} m^* (I_n) .$$

Since the series converges to a finite value, the nonnegative sequence of partial sums converges to 0. This implies that there is an N such that $\sum_{n=N}^{\infty} m^*(I_n) < \epsilon/2$. Let $U = \bigcup_{n=1}^{N} I_n$. From $E \subset O$ and $U \subset O$ it follows that

$$m^*(E \setminus U) \le m^*(O \setminus U) = m^*(O) - m^*(U) = \sum_{n=1}^{\infty} m^*(I_n) - \sum_{n=1}^{N} m^*(I_n) = \sum_{n=N}^{\infty} m^*(I_n) < \epsilon/2$$
.

Since $U \subset O$, $U \setminus E \subset O \setminus E$ and $m^*(U \setminus E) \leq m^*(O \setminus E) < \epsilon/2$. For the finite union of open intervals U.

$$m^*(U \triangle E) = m^*((U \backslash E) \cup (E \backslash U)) \le m^*(U \backslash E) + m^*(E \backslash U) < \epsilon/2 + \epsilon/2 = \epsilon$$
.

$$(vi) \implies (ii)$$

Assume (vi) holds and let $\epsilon > 0$. By Proposition 5, since E is a set of real numbers there is an open set O such that $m^*(O) < m^*(E) + \epsilon < \infty$ (again the inequality can always be made strict so long as $m^*(E) < \infty$). Then $m^*(O \setminus E) = m^*(O) - m^*(E) < \epsilon$. There appears to be no need to use (vi). If we want to explicitly involve (vi), consider that we can show (iv) \implies (i) and use (i) \implies (ii) to conclude that (iv) \implies (i). The strategy used in this case is then better described as (i) \implies (ii) \implies (vi) \implies (i).

Assume (iv) holds and let $A \subset \mathbb{R}$ and $\epsilon > 0$. As we have seen, it is always the case that $m^*(A) \leq m^*(A \cap E) + m^*(A \cap E^c)$. There is a finite union of open intervals U such that $m^*(U \triangle E) = m^*[(E \cap U^c) \cup (U \cap E^c)] < \epsilon/2$. As U is the union of open sets, U is open. By Theorem 12, U is measurable.

$$\begin{split} m^*(A\cap E) + m^*(A\cap E^c) \\ = \left[m^*(A\cap E\cap U) + m^*(A\cap E\cap U^c) \right] + \left[m^*(A\cap E^c\cap U) + m^*(A\cap E^c\cap U^c) \right] \\ \leq \left[m^*(A\cap U) + m^*(A\cap E\cap U^c) \right] + \left[m^*(A\cap E^c\cap U) + m^*(A\cap E^c\cap U^c) \right] \\ \leq \left[m^*(A\cap U) + m^*(E\cap U^c) \right] + \left[m^*(A\cap E^c\cap U) + m^*(A\cap E^c\cap U^c) \right] \\ \leq \left[m^*(A\cap U) + m^*(E\cap U^c) \right] + \left[m^*(E^c\cap U) + m^*(A\cap E^c\cap U^c) \right] \\ \leq \left[m^*(A\cap U) + m^*(E\cap U^c) \right] + \left[m^*(E^c\cap U) + m^*(A\cap U^c) \right] \\ = \left[m^*(A\cap U) + m^*(A\cap U^c) \right] + \left[m^*(E^c\cap U) + m^*(E\cap U^c) \right] \\ = m^*(A) + m^*(E\cap U) + m^*(E\cap U^c) \\ = m^*(A) + m^*(U\cap E^c) + m^*(E\cap U^c) \\ \leq m^*(A) + \epsilon \\ \Longrightarrow m^*(A\cap E) + m^*(A\cap E^c) \leq m^*(A) \quad \text{as ϵ was arbitrary}. \end{split}$$

The last inequality above follows from:

$$m^*(E \cap U^c) \le m^* \left[(E \cap U^c) \cup (U \cap E^c) \right] < \epsilon/2$$

$$m^*(U \cap E^c) \le m^* \left[(E \cap U^c) \cup (U \cap E^c) \right] < \epsilon/2$$

$$m^*(E \cap U^c) + m^*(U \cap E^c) < \epsilon$$
.

Therefore, (iv) implies that E is measurable. This (i) and so (ii) follows.

(b) Let E be a given set.

$(i) \implies (ii)$

Suppose E is measurable. By part (a), if $m^*(E) < \infty$ then (i) \Longrightarrow (ii). If instead $m^*(E) = \infty$, then E cannot be bounded. If $E \subset [-M, M]$ for some $M \in \mathbb{R}$ then the contradiction $\infty = m^*(E) \le 2M$ follows. Define $E_k = \{e \in E : |e| \le k\}$ for each $k \in \mathbb{N}$. Then (E_k) is an increasing sequence of sets. Each E_k is a bounded set of real numbers (or possibly empty) with $m^*(E_k) < \infty$. For each E_k there is by Proposition 5 an open set $O_k \supset E_k$ with $m^*(O_k) < m^*(E_k) + \epsilon/2^k < \infty \Longrightarrow m(O_k \setminus E_k) < \epsilon/2^k$. Set $O = \bigcup_{k=1}^{\infty} O_k$. Since $E \subset \mathbb{R}$, for any element $e \in E$ there is a k such that $|e| \le k$ and $e \in E_n \subset O_n \subset O$ for all $n \ge k$. So $E_k \uparrow E$ and $E \subset O$.

$$m^*(O \backslash E) = m^* \left((\bigcup_{k=1}^{\infty} O_k) \cap E) \right)$$

$$= m^* \left(\bigcup_{k=1}^{\infty} (O_k \cap E) \right)$$

$$\leq \sum_{k=1}^{\infty} m^* (O_k \cap E)$$

$$\leq \sum_{k=1}^{\infty} m^* (O_k \cap E_k) \quad (E_k \subset E \implies O_k \cap E \subset O_k \cap E_k)$$

$$< \sum_{k=1}^{\infty} \epsilon 2^{-k}$$

$$= \epsilon$$

Conclude that O is an open set with $O \supset E$ and $m^*(O \cap E) < \epsilon$.

$(ii) \implies (iv)$

For any $k \in \mathbb{N}$, there is an open set $O_k \supset E$ such that $m^*(O_k \setminus E) < 1/k$. Let $G = \bigcap_{k=1}^{\infty} O_k$. For any $N \in \mathbb{N}$,

$$\begin{split} m^*(G\backslash E) &= m^*\left(\left(\bigcap_{k=1}^\infty O_k\right)\cap E\right) \\ &\leq m^*\left(\left(\bigcap_{k=1}^N O_k\right)\cap E\right) \quad (\cap_{k=1}^\infty O_k\subset \cap_{k=1}^N O_k) \\ &\leq m^*(O_N\backslash E) \quad (\cap_{k=1}^N O_k\subset O_N) \\ &< 1/N \\ \implies m^*(G\backslash E) &= \lim_{N\to\infty} m^*(G\backslash E) \leq \lim_{N\to\infty} 1/N = 0 \;. \end{split}$$

Since $m^*(G\backslash E) \geq 0$ by definition of m^* , conclude that for the countable intersection of open sets $G \in G_\delta$, $m^*(G\backslash E) = 0$.

$$(iv) \implies (i)$$

Let $A \subset \mathbb{R}$ and by (iv) let $G \in G_{\delta}$ such that $m^*(G \setminus E) = 0$. Since \mathfrak{M} is a σ -algebra by Theorem 10, $G = \bigcap_{k=1}^{\infty} G_k = (\bigcup_{k=1}^{\infty} G_k^c)^c \in \mathfrak{M}$ using σ -algebra properties and the fact that each open set $G_k \in \mathfrak{M}$. As noted several times in this section, $m^*(A) \leq m^*(A \cap E) + m^*(A \cap E^c)$ whether or not E is measurable. For the reverse inequality,

$$\begin{split} m^*(A\cap E) + m^*(A\cap E^c) &= m^*(A\cap E) + m^*(A\cap E^c)\cap G) + m^*((A\cap E^c)\cap G^c) \\ &= m^*(A\cap E) + m^*(A\cap (E^c\cap G)) + m^*(A\cap (E^c\cap G^c)) \\ &= m^*(A\cap E) + m^*(A\cap (G\backslash E)) + m^*(A\cap G^c) \quad (E\subset G \implies G^c\subset E^c) \\ &\leq m^*(A\cap E) + m^*(G\backslash E) + m^*(A\cap G^c) \quad (A\cap (G\backslash E)\subset G\backslash E) \\ &= m^*(A\cap E) + 0 + m^*(A\cap G^c) \\ &\leq m^*(A\cap G) + m^*(A\cap G^c) \quad (A\cap E\subset A\cap G) \\ &= m^*(A) \quad (G \text{ is measurable}) \; . \end{split}$$

Therefore $m^*(A \cap E) + m^*(A \cap E^c) \leq m^*(A)$, from which we conclude that E is measurable.

- (c) Let E be a given set.
- $(i) \implies (iii)$

Assume that E is measurable. Then E^c is also measurable. By part (b), if (i) holds then (ii) holds as well so there is an open set $O \supset E^c$ such that $m^*(O \setminus E^c) < \epsilon$. But this means $\epsilon > m^*(O \cap (E^c)^c) = m^*(O \cap E)$. Since $E^c \subset O$, $O^c \subset E$. This gives a closed set, O^c , such that $O^c \subset E$ and $m^*(E \setminus O^c) = m^*(E \cap (O^c)^c) = m^*(E \cap O) < \epsilon$.

$$(iii) \implies (v)$$

For each $n \in \mathbb{N}$, there is by (iii) a closed set $F_n \subset E$ such that $m^*(E \setminus F_n) < 1/n$. Let $F = \bigcup_{n=1}^{\infty} F_n$. Then $F \in F_{\sigma}$ is also a closed set and for any $N \in \mathbb{N}$,

$$m^*(E \backslash F) = m^* \left[E \cap \left(\bigcup_{n=1}^{\infty} F_n \right)^c \right] = m^* \left[E \cap \left(\bigcap_{n=1}^{\infty} F_n^c \right) \right]$$

$$= m^* \left[\bigcap_{n=1}^{\infty} (E \cap F_n^c) \right]$$

$$\leq m^* \left[\bigcap_{n=1}^{N} (E \cap F_n^c) \right] \left(\bigcap_{n=1}^{\infty} F_n^c \subset \bigcap_{n=1}^{N} F_n^c \right)$$

$$\leq m^* (E \cap F_n^c) \left(\bigcap_{n=1}^{N} F_n^c \subset F_N^c \right)$$

$$= m^* (E \backslash F_N) < 1/N \implies m^* (E \backslash F) \le 0.$$

Since $m^*(E \setminus F) \ge 0$ by definition of m^* , conclude that $F \in F_{\sigma}$ satisfies the conditions of (v).

$$(v) \implies (i)$$

Let $F \in F_{\sigma}$ such that $F \subset E$ and $m^*(E \setminus F) = 0$. As the union of closed (and therefore measurable) sets, F is measurable. Let $A \subset \mathbb{R}$. Then $m^*(A) \leq m^*(A \cap E) + m^*(A \cap E^c)$. To show the reverse inequality,

$$\begin{split} m^*(A \cap E) + m^*(A \cap E^c) &= m^*((A \cap E) \cap F) + m^*((A \cap E) \cap F^c) + m^*(A \cap E^c) \\ &= m^*(A \cap (E \cap F)) + m^*(A \cap (E \setminus F)) + m^*(A \cap E^c) \\ &= m^*(A \cap F) + m^*(A \cap (E \setminus F)) + m^*(A \cap E^c) \\ &\leq m^*(A \cap F) + m^*(E \setminus F) + m^*(A \cap E^c) \\ &= m^*(A \cap F) + 0 + m^*(A \cap E^c) \\ &\leq m^*(A \cap F) + m^*(A \cap F^c) \\ &= m^*(A) \end{split}$$

Therefore, $m^*(A) = m^*(A \cap E) + m^*(A \cap E^c)$, which shows that E is measurable.

Definition A ternary expansion of $x \in [0,1]$ is a sequence (a_n) with $0 \le a_n < 3$ such that

$$x = \sum_{n=1}^{\infty} \frac{a_n}{3^n} \ .$$

Definition The **Cantor Ternary Set** C consists of all those real numbers [0,1] that have a ternary expansion (a_n) for which a_n is never 1 (if x has two ternary expansions, we put x in C if one of the expansions has no term equal to 1). The set C is closed and obtained by first removing (1/3, 2/3) from [0, 1], then removing (1/9, 2/9) from [0, 1/3] and (7/9, 8/9) from [2/3, 1], and so on. Using the definition of ternary expansion,

$$C = \left\{ \sum_{n=1}^{\infty} \frac{a_n}{3^n} : a_n \in \{0, 1, 2\} \right\}$$

Problem 14

(a) Prove that the Cantor Ternary Set has measure 0.

Define,

$$\begin{split} E_1 &= [0/3,1/3] \cup [2/3,3/3] \\ E_2 &= [0/9,1/9] \cup [2/9,3/9] \cup [6/9,7/9] \cup [8/9,9/9] \\ E_3 &= [0/27,1/27] \cup [2/27,3/27] \cup [6/27,7/27] \cup [8/27,9/27] \cup [18/27,19/27] \cup [20/27,21/27] \\ &\quad \cup [24/27,25/27] \cup [26/27,27/27] \\ &\quad \vdots \end{split}$$

Continue such that E_{n+1} is obtained by removing the open interval making up the middle third of each closed interval in the union forming E_n . Then $E_{n+1} \subset E_n$ for all n and each E_n is measurable as a union of closed intervals (which are measurable by Theorem 12). For each n, E_n is the union of 2^n closed intervals, each of length $(1/3)^n$. For each $n \geq 2$, E_n is obtained by removing 2^{n-1} open intervals each of length $(1/3)^n$ from E_{n-1} .

$$m^*(E_n) = m(E_n) = m([0,1]) - \sum_{k=1}^n \frac{2^{k-1}}{3^k}$$

$$= 1 - \sum_{k=1}^n \frac{2^{k-1}}{3^k}$$

$$= 1 - \sum_{k=1}^n \frac{1}{2} \left(\frac{2}{3}\right)^k$$

$$= 1 - \left(1 - \left(\frac{2}{3}\right)^n\right)$$

$$= \left(\frac{2}{3}\right)^n.$$

The sequence of measurable sets (E_n) is decreasing with $m(E_1) = 2/3 < \infty$. By Proposition 14:

$$m(C) = m\left(\bigcap_{i=1}^{\infty} E_i\right) = \lim_{n \to \infty} m(E_n) = \lim_{n \to \infty} \left(\frac{2}{3}\right)^n = 0.$$