

<u>Gameboard</u>

Maths Calculus Differential Equations

Integrating Factors 2

Integrating Factors 2

Pre-Uni Maths for Sciences L2.2

Find the general solution of the differential equation

$$xrac{\mathrm{d}y}{\mathrm{d}x}+(a+x)y=\mathrm{e}^{-x}.$$

Find the general solution for y as a function of x.

The following symbols may be useful: a, c, e, k, x, y

Created for isaacphysics.org by Julia Riley

<u> Home</u> <u>Gameboard</u>

Maths Calculus

Differential Equations

RC Circuit (Integrating Factors)

RC Circuit (Integrating Factors)

Pre-Uni Maths for Sciences L2.5

A circuit consists of a capacitor C, a resistor R and a switch in series with a battery of emf V_0 . The switch is initially open and the capacitor is uncharged. At t=0 the switch is closed. The equation for the charge q on the capacitor as a function of time t after the switch is closed is

$$Rrac{\mathrm{d}q}{\mathrm{d}t}+rac{q}{C}=V_0$$
 .

Find how the charge on the capacitor varies with time t given that q = 0 at t = 0.

Find the equation for the charge q on the capacitor as a function of time t.

The following symbols may be useful: C, R, V_0 , e, q, t

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 41 - 1st & 2nd Order

<u>Differential Equations</u>

<u>Gameboard</u>

Maths

2nd Order Homogeneous 1

2nd Order Homogeneous 1

The variables x and y satisfy the differential equation

$$rac{\mathrm{d}^2 y}{\mathrm{d}x^2} + 2rac{\mathrm{d}y}{\mathrm{d}x} - 15 = 0$$

Find the solution of the equation given that when x=0, y=5 and $\frac{\mathrm{d}y}{\mathrm{d}x}=-1$.

The following symbols may be useful: e, x, y

Created for isaacphysics.org by Matthew Rihan

Gameboard:

STEM SMART Double Maths 41 - 1st & 2nd Order

<u>Differential Equations</u>

<u>Gameboard</u>

Maths

2nd Order Homogeneous 2

2nd Order Homogeneous 2

The variables z and t satisfy the differential equation

$$4rac{\mathrm{d}^2z}{\mathrm{d}t^2}+12rac{\mathrm{d}z}{\mathrm{d}t}+9=0$$

Find the solution of the equation given that when t=0, z=4 and $\frac{\mathrm{d}z}{\mathrm{d}t}=1$.

The following symbols may be useful: e, t, z

Created for isaacphysics.org by Matthew Rihan

Gameboard:

STEM SMART Double Maths 41 - 1st & 2nd Order

<u>Differential Equations</u>

<u>Gameboard</u>

Maths Calculus

Differential Equations

Mass on Spring (2nd Order)

Mass on Spring (2nd Order)

Pre-Uni Maths for Sciences L3.6

A mass m on a spring is subjected to a damping force. The equation describing its displacement x from its equilibrium position as a function of time t is

$$m\frac{\mathrm{d}^2x}{\mathrm{d}t^2} = -kx - b\frac{\mathrm{d}x}{\mathrm{d}t},$$

where -kx is the force from the spring and $-b\frac{\mathrm{d}x}{\mathrm{d}t}$ is the force due to damping. The damping coefficient b is related to the spring constant k by $k=\frac{4b^2}{25m}$. Find an expression for the subsequent motion of the mass given that x=0 and $\frac{\mathrm{d}x}{\mathrm{d}t}=V$ at t=0.

Find the equation describing the subsequent motion of the mass given that x=0 and $\frac{dx}{dt}=V$ at t=0. Give your answer in terms of the constants b, m, and V.

The following symbols may be useful: V, b, e, m, t, x

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 41 - 1st & 2nd Order

Differential Equations

<u>Gameboard</u>

Maths

Calculus Differential Equations

Damped Pendulum (2nd Order)

Further A University

P P P

Damped Pendulum (2nd Order)

Pre-Uni Maths for Sciences L3.3

The equation describing the displacement x of the bob of a damped pendulum from its equilibrium position is given by

$$rac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\omega_0^2 x - 2\gamma rac{\mathrm{d}x}{\mathrm{d}t}$$

where ω_0 is the angular frequency of undamped oscillations of the pendulum and γ is related to the damping. Assuming $\omega_0 > \gamma$ find an equation for x at time t given that x = X and $\frac{\mathrm{d}x}{\mathrm{d}t} = 0$ at t = 0. (You will find it helpful to define a new constant ω_1 such that $\omega_1^2 = \omega_0^2 - \gamma^2$.)

Find an equation for x at time t given that x=X and $\dfrac{\mathrm{d}x}{\mathrm{d}t}=0$ at t=0.

The following symbols may be useful: X, e, gamma, omega_1, t, x

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 41 - 1st & 2nd Order

<u>Differential Equations</u>

<u>Gameboard</u>

Maths

Calculus

Differential Equations

Second Order Differential Equation 2

Second Order Differential Equation 2

Further A University
P P P P P P

Pre-Uni Maths for Sciences L3.2

Find the solution of the equation

$$rac{\mathrm{d}^2 p}{\mathrm{d}q^2} - 4 rac{\mathrm{d}p}{\mathrm{d}q} + 3p = 3q - 1$$

given that p=2 and $rac{\mathrm{d}p}{\mathrm{d}q}=-1$ when q=0.

Find the solution of the equation.

The following symbols may be useful: e, p, q

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 41 - 1st & 2nd Order

Differential Equations

<u>Gameboard</u>

Maths

Calculus

Differential Equations

Forced Oscillator (2nd Order)

Forced Oscillator (2nd Order)

Pre-Uni Maths for Sciences L3.4

The equation of motion of a forced oscillator is given by

$$rac{\mathrm{d}^2 z}{\mathrm{d}t^2} + \omega_0^2 z = Z_0 \sin(\omega_1 t)$$

Given that $\omega_0
eq \omega_1$ find the solution for z given that z=0 and $\frac{\mathrm{d}z}{\mathrm{d}t}=0$ at t=0.

Find the solution for z given that z=0 and $\frac{\mathrm{d}z}{\mathrm{d}t}=0$ at t=0.

The following symbols may be useful: Z_0, omega_0, omega_1, t, z

Created for isaacphysics.org by Julia Riley

Gameboard:

STEM SMART Double Maths 41 - 1st & 2nd Order

<u>Differential Equations</u>

<u>Gameboard</u>

Maths

Differential Equations: General Applications 2i

Differential Equations: General Applications 2i

During an industrial process substance X is converted into substance Z. Some of the substance X goes through an intermediate phase, and is converted into substance Y, before being converted into substance Z. The situation is modelled by

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 0.3x - 0.2y$$
 and $\frac{\mathrm{d}z}{\mathrm{d}t} = 0.2y + 0.1x$

where x, y and z are the amounts in kg of X, Y and Z at time t hours after the process starts.

Initially there is $10 \,\mathrm{kg}$ of substance X and nothing of substances Y and Z. The amount of substance X decreases exponentially. The initial rate of decrease is $4 \,\mathrm{kg} \,\mathrm{hour}^{-1}$.

Part A Expression for x

Find an expression for x.

The following symbols may be useful: e, t

Part B	$\mathrm{d}x$	1	$\mathrm{d}y$	上	$\mathrm{d}z$
Part D	$\overline{\mathrm{d}t}$	\top	$\overline{\mathrm{d}t}$	\top	$\overline{\mathrm{d}t}$

Show that $rac{\mathrm{d}x}{\mathrm{d}t}+rac{\mathrm{d}y}{\mathrm{d}t}+rac{\mathrm{d}z}{\mathrm{d}t}=k$ where k is a constant.

State the value of k.

Comment on this result in the context of the industrial process.

	The total	amount of	fall throc	cubetancee	increases	throughout the	nrocece
	THE WA	annount	ı alı tillet	Substantes	IIIUIEases	unoudnout une	, DIOCESS.

The total	l amount d	of all thre	e substances	is consta	ant throughou	it the process

The total amount of all	three cubetoness is		~~~~~
The idial amount of all	intee substances is ze	ero intouanoui ine i	orocess
ino total amount of an		no anoagnoat ale p	0.0000

	The total amount of a	I three	substances	decreases	throughout	the process
--	-----------------------	---------	------------	-----------	------------	-------------

${\bf Part \ C} \qquad {\bf Expression \ for \ } y$

Find an expression for y in terms of t.

The following symbols may be useful: e, t

Determine the maximum amount of substance \boldsymbol{Y} present during the process.

Part E $\hspace{1.5cm}$ Time to produce $9~\mathrm{kg}$ of substance Z

How long does it take to produce $9\,\mathrm{kg}$ of substance Z? Give your answer to 3 significant figures.

Adapted with permission from UCLES, A Level, Sample Paper 2017, Paper Y541, Question 11.