- 1. Let matrix \mathbf{B} defined as $\mathbf{B} = \begin{pmatrix} 1 & 5 & 0 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{pmatrix}$. Are the column vectors of \mathbf{B} linearly independent?
 - () Yes. (X) No.
- 2. Let matrix **B** defined as $\mathbf{B} = \begin{pmatrix} 1 & 5 & 0 \\ 1 & 0 & 5 \\ 1 & 0 & 5 \end{pmatrix}$. What is the rank of **B**? 2
- 3. Consider matrix A. Then, A is symmetric if:
 - () $A^{-1} = A$
 - $(X) \mathbf{A}^T = \mathbf{A}$
 - () $A^2 = A$
 - () none of the above.
- 4. Consider matrix **A**. Then, **A** is idempotent if... Select all that apply:
 - $[\]\ {\bf A}^{-1} = {\bf A}$
 - () $\mathbf{A}\mathbf{A}^T = \mathbf{A}$
 - $[X] A^2 = A$
 - () $\mathbf{A}^T = \mathbf{A}$
 - $[X] \mathbf{I} \mathbf{A} = 0$
- 5. Consider the design matrix $\mathbf{X}_{n \times p}$. Then, $(\mathbf{X}^T \mathbf{X})$ can be inverted when...

Select all that apply:

- [X] X is of full rank.
- () \mathbf{X} is of rank n.
- [X] **X** is of rank p.
- ()X is singular.
- [X] X's columns are linearly independent.
- 6. The normal equations from the least-squares estimation problem $X^{T}(y X\hat{\beta}) = 0$ imply that:
 - () All columns of matrix X are independent.
 - () All columns of matrix \mathbf{X} are orthogonal to the data vector \mathbf{y} .
 - (X) All columns of matrix X are orthogonal to the estimated residual vector \mathbf{r} .
 - () All columns of matrix **X** and vector **y** are independent.
- 7. Select all the statements that are TRUE. (There might be more than one statements:

[X]
$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T y$$

$$[X] \hat{\sigma}^2 = \frac{RSS}{R}$$

$$()\hat{\sigma}^2 = RSS$$

$$(\hat{\beta}^T \mathbf{X}^T y = 0$$

$$[\mathbf{X}] \ \hat{\beta}^T \mathbf{X}^T r = 0$$