Q1- Part A (Jaccard Coefficient)

```
def preprocessing(d):
    no_punc = []
    d_lower=d.lower()

    nltk_tokens = nltk.word_tokenize(d_lower)

    stop_words_removed = []
    for w in nltk_tokens:
        if w not in stop_words:
            stop_words_removed.append(w)

    new_words = []
    for x in stop_words_removed:
        if(x.isalnum() and x!=" "):
            new_words.append(x)

    return new_words
```

Preprocessing is being performed by removing stopwords, punctuations, converting to lower case as well as tokenization of sentences.

```
jaccard_score = []
for file_data in preprocessed_data:
   intersection = list(set(file_data) & set(preprocessed_query))
   union = list(set().union(file_data, preprocessed_query))
   js = len(intersection)/len(union)
   jaccard_score.append(js)
```

Jaccard score for each document is being calculated with respect to query entered by the user and is being stored in a list called jaccard_score list and in accordance with this list 5 documents with highest scores are printed as shown in below image.

```
i=0
for i in range(5):
    print(Z[i])

justify
footfun.hum
naivewiz.hum
lobquad.hum
roach.asc
```

Q1- Part A (TF-IDF Score)

```
def preprocessing(d):
    no_punc = []
    d_lower=d.lower()

    nltk_tokens = nltk.word_tokenize(d_lower)

    stop_words_removed = []
    for w in nltk_tokens:
        if w not in stop_words:
            stop_words_removed.append(w)

    new_words = []
    for x in stop_words_removed:
        if(x.isalnum() and x!=" "):
            new_words.append(x)
```

Preprocessing is being performed by removing stopwords, punctuations, converting to lower case as well as tokenization of sentences.

```
vocab_list = []
count = 0
for p in preprocessed_data :|
    i=0
    for i in range(len(p)):
        if not p[i] in vocab_list:
            count=count+1
            vocab_list.append(p[i])
print(count)
```

Generating a general vocabulary for all the words in the documents.

```
doc_freq_list = []
for v in vocab_list:
    counter = 0
    for p in preprocessed_data:
        if v in p:
            counter=counter+1

    doc_freq_list.append(counter) |
```

Creating a list which is taking into account number of docs in which a term is present

```
total_docs = len(file_names)
#i=0
for i in range(len(v_list)):|
   idf = math.log10(total_docs/(new_doc_freq_list[i]+1))
   #j=0
   for j in range(len(file_names)):
        tf_idf_matrix[j][i] = idf
```

Generation of IDF matrix which will be common for all weighing schemes

Method 1 (Binary Weighing Scheme):

```
tfid matrix with term weighing scheme (Binary)
for i in range(len(v_list)):
    word = v_list[i]
    for j in range(len(file_names)):|
        if word not in preprocessed_data[j]:
            tf_idf_matrix1[j][i] = 0
```

Pros:

1)Fast Method

2)Reduces Feature vector

Cons:

- 1) Does'nt weigh terms according to its importance.
- 2) Frequency of a term is not given importance.

Method 2(Raw Count)

```
# tfid matrix with term weighing scheme (Raw count)
for i in range(len(v_list)):
    word = v_list[i]
    for j in range(len(file_names)):|
        if word not in preprocessed_data[j]:
            tf_idf_matrix2[j][i] = 0
    else:
        tf_idf_matrix2[j][i] = tf_idf_matrix2[j][i] * preprocessed_data[j].count(word)
```

Pros:

1)It takes into account frequency of each term hence weighs it according to importance

Cons:

1) But sometimes it gives too much of importance to to a term which is part of query as its frequency is very high in the document.

Method 3(Term frequency)

```
# tfid matrix with term weighing scheme (Term frequency)
tf_idf_3 = tf_idf_2
for i in range(len(file_names)):
    doc_length = len(preprocessed_data[i])
    for j in range(len(v_list)):
        tf_idf_3[i][j] = tf_idf_3[i][j]/doc_length
```

Pros:

1) This scheme gives importance to length of document, documents which are small and contains query are favoured in order to tackle more frequency problem.

Cons:

Sometimes it gives undue advantage to those docs which are small but do not contain complete query compared to those docs which are very big but contain particular query.

Method 4(Log Normalization)

Pros:

1)It takes into account frequency of each term hence weighs it according to importance and normalizes it to small values.

2) Cons:

1) But sometimes it gives too much of importance to to a term which is part of query as its frequency is very high in the document.

Method 5(Double Normalization)

```
# tfid matrix with term weighing scheme (Double Normalization)
for i in range(len(v_list)):
    word = v_list[i]
    for j in range(len(file_names)):
        if word not in preprocessed_data[j]:|
            tf_idf_matrix5[j][i] = tf_idf_matrix5[j][i] * 0.5
    else:
        most_freq_word = mode(preprocessed_data[j])
        most_freq_count = preprocessed_data[j].count(most_freq_word)
        tf_idf_matrix5[j][i] = tf_idf_matrix5[j][i] * (0.5 + 0.5*(preprocessed_data[j].count(word)/most_freq_count))
```

Pros:

1) Here it penalizes the word which is having very high frequency, which helps not to give unnecessary importance to those words which are not required.

Cons:

1) But sometimes there comes an outlier when score of doc gets dependent on most frequently occurring term.

Ques2-

1. Considering only the queries with qid=4.

We have split query-url pairs and considered the one having qid==4.

```
for line in f:
    line_words = line.split()
    if line_words[1] == 'qid:4':
        doc_del.append(line_words)
    else:
        break
```

2. Finding the DCG of the whole Dataset

DCG of the whole dataset is calculated and the respective count is calculated.

```
dcgWD=[]
for i in range(len(doc_del)):
    dcgWD.append((float(doc_del[i][0]))/math.log(i+2,2))
```

```
1 dic

{0.9463946303571861: 1,
0.4627564263195183: 1,
0.455340497393906: 1,
0.4421294589150075: 1,
0.43620858397106305: 1,
0.4206198357143049: 1,
0.38685280723454163: 2,
0.3811028248535468: 1,
0.37840071903374006: 1,
0.3708980468307378: 1,
0.34753068574288: 1,
0.33858761519756286: 1,
```

This dictionary displayed the sorted values of dcg and their corresponding count.

To calculate the number of files possible with file rearranging the query-URL pairs in order of max DCG.

We have calculated the factorial of the count and got the below result:

```
1 ans
```

The answer is too huge because of the presence of a huge no. of qid=='0'.

3) i) Computing ndcg at 50.

```
for i in range(50):
    dcg50.append((float(doc_del2[i][0]))/math.log(i+2,2))
    #calculate idcg
    idcg50.append((float(doc_del[i][0]))/math.log(i+2,2))
    # summision of dcg
    totaldcg50 = totaldcg50 + dcg50[i]
    # summision of idcg
    totalidcg50 = totalidcg50 + idcg50[i]
    #calculate ndcg
    ndcg50=float(totaldcg50/(totalidcg50+1))
```

Result Obtained:

Ndcg at 50 = 0.35

```
sum of dcg is 7.19450227631398

sum of idcg is 19.407247618668023

ndcg at 50 is 0.3525464291290627
```

3) ii) Computing ndcg of the Whole DataSet:

```
for i in range(len(doc_del)):
    dcgWD.append((float(doc_del2[i][0]))/math.log(i+2,2))
    #calculate idcg
    idcgWD.append((float(doc_del[i][0]))/math.log(i+2,2))
    # summision of dcg
    totaldcgWD = totaldcgWD + dcgWD[i]
    # summision of idcg
    totalidcgWD = totalidcgWD + idcgWD[i]
    #calculate ndcg
    ndcgWD=float(totaldcgWD/(totalidcgWD+1))
print("dcg is",dcgWD)
```

The following Result is Obtained-Ndcg of the whole Dataset- 0.60

```
sum of dcg is 12.337484420604602

sum of idcg is 19.407247618668023

ndcg of whole dataset is 0.6045638613861181
```

4). Finding Total relevant documents

Total relevant Documents

```
1 t_relevant=0
2 for i in dual:
3    if(i[0]!=0):
4         t_relevant=t_relevant+1
1 t_relevant
```

```
recall=[]
rel_docs=[]
for line in f:
    line_words = line.split()
    if (line_words[0]!='0'):
        rel_docs.append(line_words[76].split(":")[1])
        recall.append(len(pr)/len(rel_docs))
```

Finding precision and recall of all the documents

```
1 rel ret=0
2 ret docs=1
3 precision=[]
4 recall=[]
5
6 for i in dual:
7
       recall.append(rel_ret/t_relevant)
       precision.append(rel_ret/ret_docs)
8
9
       if(i[0]==1):
           rel_ret=rel_ret+1
10
       ret docs=ret docs+1
11
12
```

```
plt.plot(recall, precision)
plt.xlabel('recall')
plt.ylabel('precision')
plt.show()
```


Q3. Naive Bayes Classifier

Preprocessing:

```
def preprocessing(d):
    no_punc = []
    d_lower=d.lower()

    nltk_tokens = nltk.word_tokenize(d_lower)

    nltk_tokens=remove_num(nltk_tokens)

    nltk_tokens = remove_punc(nltk_tokens)

    stop_words_removed = []
    for w in nltk_tokens:
        if w not in stop_words:
            stop_words_removed.append(w)

    new_words = []
    for x in stop_words_removed:
        if(x.isalnum() and x!=" "):
            new_words.append(x)

    return new_words
```

Removing stopwords, lowering tokens, removing punctuations, removing numbers

```
def get_data_from_paths(paths):
    data=[]
    for i in range(len(paths)):
        try:
            f = open(str(paths[i]) , encoding='utf8')
            var=f.read().replace('\n'," ")
            data.append(var)

        except Exception as e:
            f = open(str(paths[i]) , encoding='unicode_escape')
            var=f.read().replace('\n'," ")
            data.append(var)
        return data
```

```
data_from_file1 = get_data_from_paths(paths_for_file1)
data_from_file2 = get_data_from_paths(paths_for_file2)
data_from_file3 = get_data_from_paths(paths_for_file3)
data_from_file4 = get_data_from_paths(paths_for_file4)
data_from_file5 = get_data_from_paths(paths_for_file5)
```

Extraction of data is being done from paths of all files inside 5 folders

```
vocabulary = []
for data in all_data:
    for word in data:
        if word not in vocabulary:
            vocabulary.append(word)
```

Vocabulary generation is done here

```
class_freq_list=[]
for term in v_list:
    count = 0
    for file1 in data_from_file1_preprocessed:
        if term in file1:
            count=count+1
            break
    for file2 in data_from_file2_preprocessed:
        if term in file2:
            count=count+1
            break
   for file3 in data_from_file3_preprocessed:
        if term in file3:
            count=count+1
            break
   for file4 in data_from_file4_preprocessed:
        if term in file4:
            count=count+1
            break
    for file5 in data_from_file5_preprocessed:
        if term in file5:
            count=count+1
            break
    class_freq_list.append(count)
```

Calculation of number of classes in which a particular term occurs

```
#only entered ICF values of each term
for j in range(len(v_list)):|
    for i in range(5):
        tf_icf_matrix[i][j] = math.log10(5/class_f_list[j])
```

Calculation of ICF value being done in this section and entered in a matrix called tc_icf_matrix

```
for j in range(len(v_list)):
   count1 = 0
   for file1 in data_from_file1_preprocessed:
        count1 = count1 + file1.count(v_list[j])
   tf_matrix[0][j] = count1
   count2=0
   for file2 in data_from_file2_preprocessed:
        count2 = count2 + file2.count(v_list[j])
   tf_matrix[1][j] = count2
   count3=0
   for file3 in data_from_file3_preprocessed:
        count3 = count3 + file3.count(v_list[j])
   tf_matrix[2][j] = count3
   count4=0
   for file4 in data_from_file4_preprocessed:
        count4 = count4 + file4.count(v_list[j])
   tf_matrix[3][j] = count4
   count5=0
   for file5 in data_from_file5_preprocessed:
        count5 = count5 + file5.count(v_list[j])
   tf_{matrix}[4][j] = count5
```

Term frequency for each term in each class is calculated and stored in tf_matrix which will be multiplied with tc_icf_matrix matrix to get final tc_icf_matrix which will be used further

```
v_list1 = v_list
tc_icf_scores_for_class1=[]
for j in range(len(v_list)):
    tc_icf_scores_for_class1.append(tc_icf_mat[0][j])
v_list2 = v_list
tc_icf_scores_for_class2=[]
for j in range(len(v_list)):
    tc_icf_scores_for_class2.append(tc_icf_mat[1][j])
v_list3 = v_list
tc_icf_scores_for_class3=[]
for j in range(len(v_list)):
    tc_icf_scores_for_class3.append(tc_icf_mat[2][j])
v_list4 = v_list
tc_icf_scores_for_class4=[]
for j in range(len(v_list)):
    tc_icf_scores_for_class4.append(tc_icf_mat[3][j])
v_list5 = v_list
tc_icf_scores_for_class5=[]
for j in range(len(v_list)):
    tc_icf_scores_for_class5.append(tc_icf_mat[4][j])
#sorting vocab list wrt tc_icf_score
v_list1_new = [v_list1 for _,v_list1 in sorted(zip(tc_icf_scores_for_class1,v_list1))]
v_list2_new = [v_list2 for _,v_list2 in sorted(zip(tc_icf_scores_for_class2,v_list2))]
v_list3_new = [v_list3 for _,v_list3 in sorted(zip(tc_icf_scores_for_class3,v_list3))]
v_list4_new = [v_list4 for _,v_list4 in sorted(zip(tc_icf_scores_for_class4,v_list4))]
v_list5_new = [v_list5 for _,v_list5 in sorted(zip(tc_icf_scores_for_class5,v_list5))]
```

Tc_icf_scores for each class is extracted and on the basis of that vocab list is sorted for each class according to scores and union of all 5 vocabularies is done to get final vocabulary which will form features of our final feature matrix

```
for i in range(1000):
   for j in range(len(final_vocab_list)):
        if final_vocab_list[j] in all_data[i]:
            ind = v_list.index(final_vocab_list[j])
            feature_matrix[i][j] = tc_icf_mat[0][ind]
for i in range(1000,2000):
   for j in range(len(final_vocab_list)):
        if final_vocab_list[j] in all_data[i]:
            ind = v_list.index(final_vocab_list[j])
            feature_matrix[i][j] = tc_icf_mat[1][ind]
for i in range(2000,3000):
   for j in range(len(final_vocab_list)):
        if final_vocab_list[j] in all_data[i]:
            ind = v_list.index(final_vocab_list[j])
            feature_matrix[i][j] = tc_icf_mat[2][ind]
for i in range(3000,4000):
   for j in range(len(final_vocab_list)):
        if final_vocab_list[j] in all_data[i]:
            ind = v_list.index(final_vocab_list[j])
            feature_matrix[i][j] = tc_icf_mat[3][ind]
for i in range(4000,5000):
   for j in range(len(final_vocab_list)):
        if final_vocab_list[j] in all_data[i]:
            ind = v_list.index(final_vocab_list[j])
            feature_matrix[i][j] = tc_icf_mat[4][ind]
```

Creation of feature matrix is being done here which will be finally used in classification using Naïve bayes

```
class NBC():
    def prior_probability_calculation(self, features, target):
       self.prior = (features.groupby(target).apply(lambda x: len(x)) / self.rows).to_numpy()
       return self.prior
   def summary_calculation(self, features, target):
       self.mean = features.groupby(target).apply(np.mean).to_numpy()
        self.var = features.groupby(target).apply(np.var).to_numpy()
       return self.mean, self.var
   def prob_density_distri(self, index_of_class, x):
       mean = self.mean[index_of_class]
       var = self.var[index_of_class]
       var=var+2
       numerator = np.exp((-1/2)*((x-mean)**2) / (2 * var))
       denominator = np.sqrt(2 * np.pi * var)
       prob = numerator / denominator
       return prob
    def posterior_probability_calculation(self, x):
       posteriors = []
       for i in range(self.count):
           prior = np.log(self.prior[i])
           conditional = np.sum(np.log(self.prob_density_distri(i, x)))
            posterior = prior + conditional
            posteriors.append(posterior)
       return self.classes[np.argmax(posteriors)]
   def fit(self, features, target):
       self.classes = np.unique(target)
        self.count = len(self.classes)
       self.feature_nums = features.shape[1]
       self.rows = features.shape[0]
       self.summary_calculation(features, target)
       self.prior_probability_calculation(features, target)
   def predict(self, features):
       preds = [self.posterior_probability_calculation(f) for f in features.to_numpy()]
       return preds
```

Naïve Bayes implementation to classify text into 5 different classes