#### 1

# NCERT 12.8 8

### EE23BTECH11054 - Sai Krishna Shanigarapu

### **Question 8**

Suppose that the electric field amplitude of an electromagnetic wave is  $E_0 = 120$ N/C and that its frequency is f = 50.0 MHz.

- (a) Determine,  $B_0, \omega, k$  and  $\lambda$
- (b) Find expressions for  ${\bf E}$  and  ${\bf B}$

#### Solution:

TABLE I Input Parameters

| Symbol                      | Description                   | value                   |
|-----------------------------|-------------------------------|-------------------------|
| f                           | frequency of source           | 50.0 MHz                |
| $E_0$                       | Electric field am-<br>plitude | 120 N/C                 |
| С                           | speed of light                | 3 x 10 <sup>8</sup> m/s |
| $\mathbf{e}_2,\mathbf{e}_3$ | Standard Basis vectors        | N/A                     |

TABLE II Formulae

| Symbol | Description                   | Formula                               |
|--------|-------------------------------|---------------------------------------|
| Е      | Electric<br>field vector      | $E_0\sin(kx-\omega t)\mathbf{e_2}$    |
| В      | Magnetic field vector         | $B_0 \sin(kx - \omega t)\mathbf{e_3}$ |
| $B_0$  | Magnetic<br>field<br>strength | $B_0 = \frac{E_0}{c}$                 |
| ω      | Angular<br>frequency          | $\omega = 2\pi f$                     |
| k      | Propagation constant          | $k = \frac{\omega}{c}$                |
| λ      | Wavelength                    | $\lambda = \frac{c}{f}$               |

# TABLE III OUTPUT PARAMETERS

| Symbol | Value                                             |  |
|--------|---------------------------------------------------|--|
| E      | $120\sin[1.05x - 3.1x10^8t]\mathbf{e_2}$          |  |
| В      | $(4x10^{-7})\sin[1.05x - 3.14x10^8t]\mathbf{e_3}$ |  |
| $B_0$  | 400nT                                             |  |
| ω      | 3.14 x 10 <sup>8</sup> m/s                        |  |
| k      | 1.05rad/s                                         |  |
| λ      | 6.0m                                              |  |

Fig. 1. Graph of  ${\bf E}$ 



Fig. 2. Graph of B

