Group:A/B/C		No (in list)	Student ID		Full Name (Surname, Name)			
В			e20200447		Nang Sreynich		07	

Use the indicated method to approximate the solutions to the initial-value problems

$$y' = t^{-2}(\sin 2t - 2ty), \ 1 \le t \le 2, \ y(1) = 2, \ h = 0.1;$$

actual solution

$$y(t) = \frac{1}{2}t^{-2}(4 + \cos 2 - \cos 2t),$$

and compare the results to the actual values.

- 1. Runge-Kutta third-order method.
- 2. Heun's third-order method.
- 3. Ralston's third-order method.
- 4. Third-order Strong Stability Preserving Runge-Kutta.

	t	exact	y_Midpoint3	e_Midpoint3	y_Heun3	e_Heun3	y_Ralston3	e_Ralston3	y_SSPRK3	e_SSPRK3
0	1	1.881251608	2	0.118748392	2	0.118748392	2	0.118748392	2	0.118748392
1	1.1	1.625974172	1.723999664	0.098025492	1.723941286	0.097967114	1.723999664	0.098025492	1.724064	0.098089828
2	1.2	1.417968783	1.500271762	0.082302979	1.500189935	0.082221152	1.500271762	0.082302979	1.50036299	0.082394208
3	1.3	1.243563649	1.313651633	0.070087984	1.313562824	0.069999175	1.313651633	0.070087984	1.313751978	0.070188329
4	1.4	1.094025184	1.154432629	0.060407446	1.154344647	0.060319463	1.154432629	0.060407446	1.154533547	0.060508363
5	1.5	0.963633083	1.01623761	0.052604526	1.016154038	0.052520954	1.01623761	0.052604526	1.016335062	0.052701979
6	1.6	0.848564679	0.894787254	0.046222575	0.894709561	0.046144883	0.894787254	0.046222575	0.89487946	0.046314782
7	1.7	0.746220514	0.787156513	0.040935999	0.7870851	0.040864586	0.787156513	0.040935999	0.787242836	0.041022322
8	1.8	0.654801666	0.69130918	0.036507514	0.691243911	0.036442246	0.69130918	0.036507514	0.691389558	0.036587892
9	1.9	0.573036578	0.605797428	0.03276085	0.605737913	0.032701335	0.605797428	0.03276085	0.605872081	0.032835504
10	2	0.5	0.529562825	0.029562825	0.529508565	0.029508565	0.529562825	0.029562825	0.5296321	0.0296321

```
from collections.abc import Callable
from typing import Literal
from typing import Optional
import pandas as pd
import numpy as np
def RungeKutta3(f: Callable[[float, float], float],
               t_span: list,
               y_init: float,
               n: int,
               method: Optional[Literal['Midpoint3', 'Heun3', 'Ralston3', 'SSPR3']] = 'Heun3'
                ) -> pd.DataFrame:
    (a, b) = t_span
   h = (b-a) / n
   t = np.linspace(start=a, stop=b, num=n+1, dtype=np.float64)
   y = np.full_like(a=t, fill_value=np.nan, dtype=np.float64)
   y[0] = y_init
   if method == 'Heun3':
       c = np.array(object=[0, 1/3, 2/3], dtype=np.float64)
       a = np.array(object=[[0, 0, 0],
                            [1/3, 0, 0],
                            [0, 2/3, 0]],
                            dtype=np.float64)
       b = np.array(object=[1/4, 0, 3/4], dtype=np.float64)
       c = np.array(object=[0, 1/2, 1], dtype=np.float64)
       a = np.array(object=[[0, 0, 0],
                            [1/2, 0, 0],
                            [-1, 2, 0]],
                            dtype=np.float64)
       b = np.array(object=[1/6, 2/3, 1/6], dtype=np.float64)
   elif method == 'SSPRK3':
       c = np.array([0, 1/2, 1], dtype=np.float64)
       a = np.array([[0, 0, 0], [1/2, 0, 0], [-1, 2, 0]], dtype=np.float64)
       b = np.array([1/6, 2/3, 1/6], dtype=np.float64)
   else:
       c = np.array(object=[0, 1/2, 3/4], dtype=np.float64)
       a = np.array(object=[[0, 0, 0],
                            [1/2, 0, 0],
                            [0, 3/4, 0]],
                            dtype=np.float64)
       b = np.array(object=[2/9, 1/3, 4/9], dtype=np.float64)
   for i in range(0, n):
       k1 = f(t[i], y[i])
       k2 = f(t[i] + c[1]*h , y[i] + h*(a[1][0]*k1))
       k3 = f(t[i] + c[2]*h , y[i] + h*(a[2][0]*k1 + a[2][1]*k2))
       y[i+1] = y[i] + h*(b[0]*k1 + b[1]*k2 + b[2]*k3)
    df = pd.DataFrame(data={'t': t,'y': y})
   return df
```

```
if __name__ == '__main__':
   from math import sin, cos
   def f(t:float, y: float) -> float:
       return t**(-2)*(sin(2*t) - 2*t*y)
   def y(t: float) -> float:
       return 0.5*t**(-2)*(4 + cos(4) - cos(2*t))
   t_{span} = [1.0, 2.0]
   y_init = 2.0
   n = 10
   methods = ['Midpoint3', 'Heun3', 'Ralston3', 'SSPRK3']
   t = np.linspace(start=t_span[0], stop=t_span[1], num=n+1, dtype=np.float64)
   df = pd.DataFrame(data={'t': t})
   df['exact'] = df['t'].apply(func=y)
   for method in methods:
       dfi = RungeKutta3(f=f, t_span=t_span, y_init=y_init, n=n, method=method)
       df[f'y_{method}'] = dfi['y']
       df[f'e_{method}'] = abs(df['exact'] - df[f'y_{method}'])
   print(df)
   df.to_excel('HW07.xlsx')
```

Use the Runge-Kutta-Fehlberg method with tolerance $TOL = 10^{-6}$, hmax = 0.5, and hmin = 0.05 to approximate the solutions to the following initial-value problems. Compare the results to the actual values.

1.
$$y' = y/t - (y/t)^2$$
, $1 \le t \le 4$, $y(1) = 1$; actual solution $y(t) = t/(1 + \ln t)$.

t	Approx	Actual	Error	
1	1	1	0	
1.1120017	1.005279551	1.005279497	5.3985E-08	
1.1751459	1.011842386	1.011842333	5.3076E-08	
1.2432463	1.020957449	1.020957397	5.222E-08	
1.3218061	1.033469233	1.033469181	5.1684E-08	
1.4141522	1.050219495	1.050219444	5.1572E-08	
1.5241774	1.072265833	1.072265781	5.1986E-08	
1.6571461	1.101022907	1.101022854	5.3041E-08	
1.8204535	1.138434074	1.138434019	5.4845E-08	
2.0247792	1.187233082	1.187233025	5.7435E-08	
2.2860293	1.251373401	1.25137334	6.0583E-08	
2.6288072	1.336774452	1.336774389	6.326E-08	
3.0930705	1.452715827	1.452715765	6.2112E-08	
3.5930705	1.576594747	1.576594685	6.2286E-08	
4	1.6762392	1.676239137	6.3625E-08	

2.
$$y' = (2 + 2t^3)y^3 - ty$$
, $0 \le t \le 2$, $y(0) = 1/3$;
actual solution $y(t) = (3 + 2t^2 + 6e^{t^2})^{-1/2}$.

t	Approx	Actual	Error	
0	0.333333333	0.333333333	0	
0.193430327	0.342039189	0.327849911	0.014189277	
0.335273277	0.340902366	0.317202547	0.023699819	
0.495442667	0.33212877	0.299339378	0.032789392	
0.859809707	0.288399382	0.242215144	0.046184239	
1.17000644	0.234896549	0.184665576	0.050230973	
1.435737915	0.183644851	0.135754099	0.047890752	
1.687862313	0.134861249	0.094361353	0.040499896	
1.849032492	0.105884576	0.07197103	0.033913546	
1.995549252	0.082328456	0.054817835	0.027510621	
2	0.081662984	0.054345507	0.027317478	

```
from _collections_abc import Callable
import pandas as pd
import numpy as np
def RungekuttaFehlberg (f: Callable [[float, float], float],
                        t_span: list or tuple,
                        y_init: float,
                        hmax: float,
                        hmin: float) -> pd.DataFrame:
    (a, b) = t_span
    t = a
    y = y_{init}
    h = hmax
    t_list = []
   y_list = []
   h_list = []
    err_list = []
    def runge_kutta_step(t, y, h):
        k1 = h*f(t, y)
        k4 = h * f(t + 12 * h/13, y + 1932 * k1 / 2197 - 7200 * k2/2197 + 7296 * k3/2197)
        k5= h * f(t + h, y + 439 *k1 / 216 - 8*k2 + 3680* k3 / 513 - 845 *k4 / 4104)
        k6= h * f(t + h / 2, y - 8 * k1/ 27 + 2 * k2 - 3544 * k3 / 2565 + 1859*k4 / 4104 - 11* k5 / 40)
        y_new = y + 25 *k1 / 216 + 1408* k3 / 2565 +2197 *k4 / 4104 - k5 / 5
        y_hat = y + 16 *k1 / 135 + 6656 * k3 / 12825 + 28561*k4 / 56430 - 9 * k5 / 50 + 2 * k6 / 55
        return y_new, y_hat
    delta = 0
    while t < b:
       if t + h > b:
            h = b - t
        y_new, y_hat= runge_kutta_step(t, y, h)
        R = abs(y_hat - y_new)
        if R <= TOL:</pre>
            t_list.append(t)
            y_list.append(y_new)
            h_list.append(h)
            err_list.append(R)
            y = y_new
            delta = 0.84* (TOL / R) *0.25
            delta= max(min(delta, 4), 0.1)
        if R == 0.0:
            h=hmax
        else:
            h = delta * h
            h = max(min(h, hmax), hmin)
    df = pd.DataFrame (data={"t": t_list, "y": y_list, "error": err_list, "h": h_list})
    return df
```

```
1  if __name__ == "__main__":
2   import math
3   def f(t, y): return (2+2*(t(3)))*y**(3) - t*y
4   t_span= [0, 2]
5   y_init = 1/3
6   TOL = 1e-6
7   hmax = 0.5
8   hmin = 0.05
9   df = RungekuttaFehlberg (f=f, t_span=t_span, y_init=y_init, TOL=TOL, hmax=hmax, hmin=hmin)
10   def y(t: float) -> float:
11      return (3 + 2 * t**(2) + 6 * math.exp(t**2)) ** (-1 / 2)
12   df ["exact"] = df ["t"].apply(func=y)
13   df ["error"] = abs(df["exact"] - df ["y"])
14   print(df)
```