

n-manifolds

A topological space $\mathcal M$ with the property that each point has a neighborhood that is homeomorphic to an open subset of $\mathbb R^n$.

> Homeomorphic: exists continuous and bijective function.

Key idea

Examples

Manifold with boundary

Orientable manifolds

Orientable manifolds

Vector field of normals

Non-orientable manifolds

Non-orientable manifolds

Genus: $\frac{1}{2} \times$ the maximal number of closed simple curves that do not disconnect the manifold.

Informally, the number of "donut holes".

Figure: Topological classification for surfaces with boundaries (g, b).

Polygonol mesh

- \rightarrow Vertices: v_0, v_1, \dots, v_{n-1}
- > Edges: $\{(v_0, v_1), ..., (v_{n-1}, v_0)\}$
- > Face: Planar

A finite set M = (V, E, F) is a polygonal mesh:

The intersection of two polygons in M is either empty, a vertex, or an edge.

A finite set M = (V, E, F) is a polygonal mesh:

- The intersection of two polygons in M is either empty, a vertex, or an edge.
- \triangleright Every edge E_i belongs to at least one polygon.

A finite set M = (V, E, F) is a polygonal mesh:

- The intersection of two polygons in M is either empty, a vertex, or an edge.
- \triangleright Every edge E_i belongs to at least one polygon.
- \triangleright Each face F_i defines a face of the polygonal mesh.

A finite set M = (V, E, F) is a polygonal mesh:

- The intersection of two polygons in M is either empty, a vertex, or an edge.
- \triangleright Every edge E_i belongs to at least one polygon.
- \triangleright Each face F_i defines a face of the polygonal mesh.

Vertex degree or valence: #incident edges

Vertex degree or valence: #incident edges

- Vertex degree or valence: #incident edges
- Boundary: the set of all edges that belong to only one polygon.
 - Closed loops
 - Empty

Orientability (anticlockwise)

- > Face $f_0 = \{v_0, v_1, v_2, v_3\}$
- > Face $f_1 = \{v_0, v_3, v_4, v_5\}$
- $Edge f_0 \supset (v_3, v_0) \leftrightarrow (v_0, v_3) \subset f_1$

Euler-Poincaré Formula

For orientable manifold meshes:

$$n_V - n_E + n_F = 2(c - g) + b = \chi(M)$$

- g: genus
- *b*: # boundary loops

$$\chi=2(1-0)+0$$

$$\chi=2(1-1)+2$$

Euler-Poincaré Formula

For orientable manifold meshes:

$$n_V - n_E + n_F \approx 0$$

- Specially for triangular meshes:
 - $n_F \approx 2 \times n_V$
 - $n_E \approx 3 \times n_V$
 - Average vertex valence is 6

Regularity

Regular VS quasi regular

Regularity

Regular VS quasi regular

Data structures for mesh

What should be stored?

- Geometry: 3D coordinates
- > Attributes
 - Normal, color, texture coordinates
 - Per vertex, face, edge Vertices
- Connectivity: adjacency relationships

What should be supported?

- Geometry queries
 - What are the vertices of face f_0 ?
 - Is vertex v_0 adjacent to vertex v_1 ?
 - Which faces are adjacent to face f_1 ?
- Modifications
 - Remove/add a vertex/face
 - Vertex split, edge collapse

Neighborhood Relations

> All possible neighborhood relationships:

Vertex – Vertex

Vertex – Edge VE & EV

Vertex – FaceVF & FV

• Edge – Edge EE

• Edge – Face EF & FE

• Face – Face FF

File format(obj)

List of geometric vertices, with (x,y,z) coordinates

v 0.123 0.234 0.345

• • •

Polygon face element (see below)

f 1 2 3 4

f 1 4 5 6

File format(off)

OFF # Line 1

vertex_count face_count edge_count # Line 2

x y z # One line for each vertex

• • •

40123# One line for each polygon face

 $40345 # n v_0 v_1 \dots v_{n-1}$, vertex id from 0

Data structure – indexed face set

- > Storage
 - · Vertex: position
 - Face: vertex indices
 - 12 bytes per vertex (single precision)
 - $n \times 4$ bytes per face (n-polygon)
- > Only vertices info of faces (FV)

Vertices								
v0	x0	y0	z0					
v1	x1	y1	z1					
v2	x2	y2	z2					
v3	x 3	у3	z3					
v4	x4	y4	z4					
v5	x5	у5	z5					
v6	х6	у6	z6					
•••	•••	•••	•••					

Polygons								
f0	v0	v1	v2	v3				
f1	v0	v3	v4	v5				
f2	v0	v5	v6					
	•••							

- \rightarrow Vertices $V = \{0,1,2,3,4,5,6,7\}$
- > Edges $E = \{0,1,2,3,4,5,6,7,8,9,10,11\}$

		0	1	2	3	4	5	6	7	8	9	10	11
	0	(-1)	0									0	0 7
	1	1	0			57						0	0
	2	0	0				4.6					0	0
M_1 =	= 3	0	0					- 3				0	0
	4	0	-1									0	-1
	5	0	1									-1	0
	6	0	0									1	0
	7	0	0									0	1


```
Faces F = \{0,1,2,3,4,5\}
(front, back, top, bottom, left, right)
```

 \rightarrow Edges $E = \{0,1,2,3,4,5,6,7,8,9,10,11\}$

- \triangleright Edge Vertex $M_1: n_{\rm E} \times n_V$, Face Edge $M_2: n_F \times n_E$
- Face Vertex $M_{21} = abs(M_2) \times abs(M_1): n_F \times n_V$

- > Edge Vertex $M_1: n_{\rm E} \times n_V$, Face Edge $M_2: n_F \times n_E$
- Face Face $M_{2T} = abs(M_2) \times abs(M_2^T)$: $n_F \times n_F$
- Vertex Vertex $M_{T1} = abs(M_1^T) \times abs(M_1): n_V \times n_V$

> ...

- \rightarrow Neighbor query: M_1 , M_2 , M_1^T , M_2^T
- Order info (clockwise & anticlockwise) lost!
 - 1-ring faces
 - 1-ring vertices

- > Halfedge
 - Origin vertex index
 - Incident face index
 - Next, prev, opposite halfedge indices
- Vertex : outgoing halfedge index
- Face : adjacent halfedge index

- > 1 ring vertices traversal (clockwise)
 - Start at vertex (outgoing halfedge)

- > 1 ring vertices traversal (clockwise)
 - Start at vertex (outgoing halfedge)
 - Opposite halfedge (origin vertex)

- 1 ring vertices traversal (clockwise)
 - Start at vertex (outgoing halfedge)
 - Opposite halfedge (origin vertex)
 - Next halfedge

- > 1 ring vertices traversal (clockwise)
 - Start at vertex (outgoing halfedge)
 - Opposite halfedge (origin vertex)
 - Next halfedge
 - Opposite halfedge (origin vertex)

- > 1 ring vertices traversal (clockwise)
 - Start at vertex (outgoing halfedge)
 - Opposite halfedge (origin vertex)
 - Next halfedge
 - Opposite halfedge (origin vertex)

•

