Permit Numbers 3855B and PSDTX876

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Emission	Source	Air Contaminant	<u>Emission</u>	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
F-P01	VCM Production Fugitives (4)	VOC HCI VCM CI ₂	0.89 0.14 0.68 0.01	3.88 0.60 3.00 0.05
F-P-13D	"D" Oxy-Chlorination Reactor Process Fugitives (4)	VOC HCl	0.21 0.08	0.90 0.35
F-P03B	Chlorine Unloading Fugitives (4	l) Cl ₂	0.06	0.27
IND103	Cracking Furnace 103 (95 MMBTU/Hour)	PM ₁₀ SO ₂ NO _x CO VOC	0.71 0.06 3.33 1.71 0.51	2.45 0.22 11.50 5.91 1.76
IND104	Cracking Furnace 104 (95 MMBTU/Hour)	PM ₁₀ SO ₂ NO _x CO VOC	0.71 0.06 15.11 1.24 0.51	2.45 0.22 47.30 3.90 1.76
IND105	Cracking Furnace 105 (95 MMBTU/Hour)	PM_{10} SO_2 NO_x CO VOC	0.71 0.06 15.11 1.24 0.51	2.45 0.22 47.30 3.90 1.76

Emission	Source	Air Contaminant	<u>Emissior</u> lb/hr	n Rates * TPY**
Point No. (1)	Name (2)	Name (3)	ID/III	<u>IPT</u>
IND106	Cracking Furnace 106 (95 MMBTU/Hour)	$PM_{10} \\ SO_2$	0.71 0.06	2.45 0.22
		NO _x	15.11	47.30
		CO	1.24	3.90
		VOC	0.51	1.76
IND107	Cracking Furnace 107	PM_{10}	0.71	2.35
	(95 MMBTU/Hour)	SO ₂	0.06	0.21
		NO _x	5.32	17.50
		CO	1.33	3.90
		VOC	0.51	1.70
IND108	Cracking Furnace 108	PM_{10}	0.71	2.35
	(95 MMBTU/Hour)	SO_2	0.06	0.21
		NO_x	5.32	17.50
		CO	1.33	3.90
		VOC	0.51	1.70
IND101A	Incinerator A Scrubber	VOC	2.00	8.80
		NO_x	9.18	26.79
		CO	2.21	9.43
		CO (5)	50.00	
		SO ₂	0.10	0.40
		PM_{10}	2.00	8.80
		HCl	2.08	8.83
			4.00	17.50
		VCM	0.05	0.22
IND101B	Incinerator B Scrubber	VOC	2.00	8.80
		NO _x	9.18	26.79
		CO	2.21	9.43
		CO (5)	50.00	
		SO_2	0.10	0.40
		PM_{10}	2.00	8.80
		HCI	2.08	8.83
		Cl_2	4.00	17.50
		VCM	0.05	0.22
CYC-1	Decoking Cyclone	СО	43.80	3.20

Emission	Source	Air Contaminant		Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**	
EEDC-SUMP	East EDC Tank Farm Sump	EDC	<0.01	<0.01	
EDCTF-SUMP	West EDC Tank Farm Sump	EDC	<0.01	<0.01	
IM-SUMP	Intermediate Sump	EDC	<0.01	<0.01	
LTC SUMP	LTC Sump	EDC	<0.01	<0.01	
NO1-SUMP	No. 1 Sump	EDC	<0.01	<0.01	
NO2-SUMP	No. 2 Sump	EDC	<0.01	<0.01	
COXY-SUMP	C-Oxy Sump	EDC	<0.01	<0.01	
EOXY-SUMP	E-Oxy Sump	EDC	<0.01	<0.01	
HYDRO-SUMP	Hydroblast Pad Sump	EDC	<0.01	<0.01	
HYDRO-WEIR	Hydroblast Pad Weir	EDC VCM	0.14 0.07	0.62 0.31	
WW-1	Wastewater Treatment	EDC CHCl₃	0.17 0.35	0.42 0.87	
LAB-SUMP	Lab Sump	EDC	0.05	0.21	
DEGREASER	Parts Degreaser	VOC	0.08	0.24	
FB-6473	LOPS Tank	VOC	0.08	0.03	
GT-1	Gasoline Storage Tank	Gasoline	44.23	1.13	
DT-1-FWP	Diesel Storage Tank	Diesel	0.01	<0.01	
DT-2-FWP DT-3-FWP	Diesel Storage Tank Diesel Storage Tank	Diesel Diesel	0.01 0.01	<0.01 <0.01	
DT-4-FWP	Diesel Storage Tank	Diesel	0.01	<0.01	

Emission	Source	Air Contaminant	Emission Rates *	
Point No. (1)	Name (2)	Name (3)	lb/hr	TPY**
DT-5-FWP	Diesel Storage Tank	Diesel	0.01	<0.01
DT-6-UTIL	Diesel Storage Tank	Diesel	0.01	<0.01
DT-7-EG	Diesel Storage Tank	Diesel	0.01	<0.01
FA-4605	10 percent Hydrochloric Acid Ta	ank HCI	0.10	<0.01
FA-4609	10 percent Hydrochloric Acid Ta	ank HCI	0.10	<0.01
FA-4610	10 percent Hydrochloric Acid Ta	ank HCI	0.10	<0.01
FA-3204	10 percent Ethylene Glycol Tan	k EG	0.10	<0.01
FB-6404	Sodium Hydroxide Tank	NaOH	0.49	0.07
FB-6480	Sodium Hydroxide Tank	NaOH	0.20	0.03
FB-6470	Solvent Storage Tank	VOC	25.74	0.96
COOLTWR	Cooling Tower	PM Cl ₂	<0.01 0.91	<0.01 4.00
COOLTWR-2	East Cooling Tower	PM Cl ₂	<0.01 0.91	<0.01 4.00

(1)	Emission from plot	-	nt identification - either specific equipment designation or emission point number
(2)	•		source name. For fugitive sources use area name or fugitive source name.
	VOC		volatile organic compounds as defined in Title 30 Texas Administrative Code §
(3)	VOC	_	101.1
	HCI		
			hydrogen chloride
	VCM	-	vinyl chloride monomer
	Cl ₂	-	chlorine
	PM	-	particulate matter, suspended in the atmosphere, including PM ₁₀ .
	PM_{10}	-	particulate matter less than 10 microns in diameter. Where PM is not listed, it shall
be			
			assumed that no PM greater than 10 microns is emitted.
	SO_2	-	sulfur dioxide
	NO_x	-	total oxides of nitrogen
	CO	-	carbon monoxide
	EDC	-	ethylene dichloride
	CHCL ₃	-	chloroform
	NaOH		
	EG	-	ethylene glycol
(4)	Emission	rate	is an estimate and compliance is demonstrated by meeting the requirements of the
•			ecial conditions and permit application representations.
(5)		•	operations only. Emissions from these emission point numbers are only from these
(0)	permitted		· · · · · · · · · · · · · · · · · · ·
	pormittou	iacoi	
*	Emission	rate	s are based on and the facilities are limited by the following maximum operating
	schedule		o are based on and the lasmites are inflicted by the following maximum operating
	JULICUUIC		

____Hrs/day ____Days/week ____Weeks/year or <u>8,760</u>Hrs/year

Compliance with annual emission limits is based on a rolling 12-month period.

Dated April 29, 2010