

### Geometría Analítica

# 1 Cónicas: La parábola

**DEFINICIÓN** Una **parábola** es el conjunto de puntos en el plano que equidistan de un punto fijo F llamado **foco** y de una recta fija D llamada **directriz**. La recta que pasa por el foco y es perpendicular a la parábola se llama **eje** de la parábola. El punto medio del segmento de recta que pasa por el foco y es perpendicular a la directriz, se llama el **vértice** de la parábola.

Si escogemos los ejes coordenados para que el eje X coincida con el eje de la parábola y el vértice en el origen. (Ver figura)



Sea p>0, entonces el foco tiene coordenadas F(p,0) y la directriz es la gráfica de la ecuación x=-p. Sea P(x,y) un punto que no está en la directriz y sea M el pie de la perpendicular desde P a la directriz. Entonces P está en la parábola si y solo si

$$d(P,M) = d(P,F) \Longleftrightarrow \sqrt{(x-p)^2 + y^2} = |x+p|$$

Por lo tanto, P está en la parábola si y solo si

$$(x-p)^2 + y^2 = (x+p)^2 \iff y^2 = 4px$$
.

**TEOREMA 1** La gráfica de la ecuación  $y^2=4px$  es una parábola con las siguientes propiedades:

| Vértice | Foco   | Directriz |
|---------|--------|-----------|
| V(0, 0) | F(p,0) | x = -p    |

La parábola se abre a la derecha si p > 0 o la izquierda si p < 0.

SEMANA 11 Pág. 1 - 7



**TEOREMA 2** La gráfica de la ecuación  $x^2=4py$  es una parábola con las siguientes propiedades:

| Vértice | Foco   | Directriz |
|---------|--------|-----------|
| V(0,0)  | F(0,p) | y = -p    |

La parábola se abre hacia arriba si p > 0 o hacia abajo si p < 0.

**EJEMPLO 1** . Demuestre que las rectas  $my=m^2x+p$  y  $my+x=-pm^2$  se cortan sobre la directriz de la parábola  $y^2=4px$ .

**EJEMPLO 2** Hallar la ecuación de la parábola con vértice en el origen y directriz de ecuación y-5=0.

#### **DEFINICIÓN**

- 1. Todo segmento de recta que pasa por el foco y cuyos extremos son puntos de la curva, se llama cuerda focal.
- 2. La cuerda focal que es perpendicular al eje de la parábola, se llama lado recto de la parábola.



**PROPOSICIÓN 1** La longitud del lado recto de la parábola  $y^2 = 4px$  es  $\ell = |4p|$ .

**EJEMPLO 3** Una parábola con vértice en el origen y cuyo eje coincide con el eje X pasa por el punto de coordenadas (-2,4). Hallar la ecuación de la cónica, las coordenadas del foco, la ecuación de la directriz y la longitud del lado recto.

**EJEMPLO 4** . Encuentre el vértice, el foco, los puntos extremos del lado recto y la ecuación de la directriz de la parábola  $y^2 = -8x$ .

SEMANA 11 Pág. 2 - 7



#### **TEOREMA 3** (Ecuación de la parábola con vértice desplazado)

1. Una parábola de eje paralelo al eje X con su vértice en (h,k) y con p como distancia dirigida del vértice al foco, es la gráfica de la ecuación:

$$(y-k)^2 = 4p(x-h)$$
.

Si p>0 la parábola se abre hacia la derecha, si p<0 la parábola se abre hacia la izquierda

2. Si el eje de la parábola es paralelo al eje Y con su vértice en (h,k), entonces es la gráfica de la ecuación:

$$(x-h)^2 = 4p(y-k)$$
.

Si p>0 la parábola se abre hacia arriba, si p<0 la parábola se abre hacia abajo.

**EJEMPLO 5** Encontrar la ecuación de la parábola cuyo vértice está en (5, -2), y su foco está en el punto (5, -4).

# 2 Cónicas: La Elipse

**DEFINICIÓN** Una **elipse** es el lugar geométrico de los puntos en el plano que se mueven de manera que, la suma de sus distancias a dos puntos fijos del plano, se mantiene constante y mayor que la distancia entre estos dos puntos fijos. Lo puntos fijos  $F_1$  y  $F_2$  se llaman los **focos** de la elipse.

**TEOREMA 4** La elipse de focos  $F_1(c,0)$  y  $F_2(-c,0)$  en la cual 2a es la suma de las distancias de un punto de ella a ambos focos, es la gráfica de la ecuación:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 donde  $b^2 = a^2 - c^2$ .

La elipse de focos  $F_1(0,c)$  y  $F_2(0,-c)$  en la cual 2a es la suma de las distancias de un punto de ella a ambos focos, es la gráfica de

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \quad \text{donde } b^2 = a^2 - c^2 \,.$$

SEMANA 11 Pág. 3 - 7





Elementos de la elipse.

- a) La recta que pasa por los focos de la elipse se llama eje focal.
- b) Los puntos  $V_1$  y  $V_2$  en los que el eje focal intersecta a la elipse se llaman **vértices** de la elipse.
- c) El punto medio del segmento  $\overline{F_1F_2}$  se llama **centro** de la elipse.
- d) El segmento  $\overline{V_1V_2}$  se llama **eje mayor** de la elipse.
- e) El segmento de la recta  $\overline{B_1B_2}$  determinado por los puntos de intersección de la elipse con la recta perpendicular al eje focal que pasa por el centro, se llama **eje menor**.
- f) Los segmentos determinados por las intersecciones de la elipse con las rectas que pasan por los focos y son perpendiculares al eje focal se llaman **lados rectos** de la elipse.
- g) La **excentricidad** de la elipse se define como

$$e = \frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a}$$

el cual es menor que 1 ya que c < a.

EJEMPLO 6 . Construya la gráfica de la ecuación

$$16x^2 + 25y^2 = 400.$$

Determine focos, vértices, longitud de lados rectos y los valores de a, b y c.

**EJEMPLO 7** Determine la ecuación de la elipse cuyos vértices son los puntos (4,0) y (-4,0) y tiene focos en los puntos (3,0) y (-3,0).

**EJEMPLO 8** Una elipse tiene centro en el origen de un sistema de coordenadas y su eje mayor está en el eje X. Si uno de sus focos es el punto (3,0) y la excentricidad es  $\frac{1}{2}$ , determine

- 1. la ecuación de la elipse.
- 2. las coordenadas del otro foco.
- 3. la longitud de los lados rectos

SEMANA 11 Pág. 4 - 7



4. la longitud del eje mayor y la del eje menor.

#### **TEOREMA 5** (Ecuación de la elipse con centro desplazado)

La elipse con centro en (h,k) cuya distancia focal es 2c y cuyo eje mayor es horizontal y de longitud 2a es la gráfica de la ecuación

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \quad \text{donde } b^2 = a^2 - c^2 \,.$$

La elipse con centro en (h,k) cuya distancia focal es 2c y cuyo eje mayor es vertical y de longitud 2a es la gráfica de la ecuación

$$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1 \quad \text{donde } b^2 = a^2 - c^2 \, .$$

TEOREMA 6 La ecuación general de una elipse es

$$Ax^2 + Cy^2 + Dx + Ey + F = 0$$
, con  $AC > 0$  y  $A \neq C$ .

que puede ser una elipse, un punto o el conjunto vacío.

**EJEMPLO 9** . Determine las gráficas de las siguientes ecuaciones

a) 
$$25x^2 + 9y^2 + 150x - 36y + 36 = 0$$
 b)  $x^2 + 4y^2 - 2x - 8y + 5 = 0$ 

**EJEMPLO 10** Encontrar la ecuación de la elipse cuyos focos son  $F_1(5,0)$  y  $F_2(-5,0)$  y tal que la suma de las distancias de los puntos de ella a los focos sea 12.

**EJEMPLO 11** Un punto P(x,y) se mueve de tal forma que el producto de sus pendientes de las dos rectas que unen P con los puntos fijos (1,-2) y (5,6) es constante e igual a -2. Demuestre que dicho lugar geométrico es una elipse, indicando su centro.

## 3 Guía de Ejercicios

- 1. Muestre que si dos tangentes a la parábola  $y=x^2$  son perpendiculares, entonces su punto de intersección está en la recta directriz de la parábola.
- 2. Grafique la elipse de ecuación  $x^2 + 4y^2 6x 8y 3 = 0$  indicando las coordenadas de los focos y de los vértices. Si el punto medio de una cuerda de esta elipse es (5,2), determine la longitud de esta cuerda.
- 3. Dada la parábola  $(y-1)^2=4(x+1)$ . Determine k de modo que la recta y=2x+k.

SEMANA 11 Pág. 5 - 7



- a) corte a la parábola en dos puntos distintos.
- b) sea tangente a la parábola.
- 4. Determinar la ecuación de una elipse cuyos ejes son paralelos a los ejes coordenados, si uno de los extremos del eje mayor es el punto (3,-2), y los focos son los puntos (3,1) y (3,3).
- 5. Encuentre la ecuación de la parábola, determinada por los puntos que equidistan de (2,1) y del eje Y. Determine su vértice, foco y directriz.
- 6. Con referencia a la elipse  $x^2 + 3y^2 + 3x 4y 3 = 0$ . Hallar los valores de k para los cuales las rectas de la familia 5x + 2y + k = 0.
  - a) Cortan a la elipse en dos puntos distintos.
  - b) Son tangentes a la elipse.
  - c) No cortan a la elipse.
- 7. Encontrar la ecuación de la parábola cuyo vértice es el punto V(3,4) y su foco es el punto F(3,6).

R: 
$$x^2 - 6x - 8y + 41 = 0$$

8. Encuentre los puntos de intersección de la parábola:  $-y^2+6x+18=0$  y la circunferencia  $x^2+y^2-9=0$ .

R: 
$$(-3,0)$$

9. Encuentre la ecuación de la parábola vertical, que se abre hacia abajo y cuyo vértice es el centro de la circunferencia  $x^2+y^2-14y+40=0$ , tal que la distancia del vértice a la directriz es 6 unidades.

R: 
$$x^2 + 24y - 168 = 0$$

10. Un triángulo equilátero está inscrito en la parábola de ecuación  $y^2=4px$ , con un vértice en el origen. Encuentre la longitud del lado del triángulo.

R: 
$$8\sqrt{3p}$$
.

11. Determine las coordenadas de dos puntos de la parábola  $y=4x^2$  tal que y=1.

R: 
$$(\frac{1}{2}, 1)$$
,  $(-\frac{1}{2}, 1)$ .

12. Encontrar la ecuación de la elipse cuyos focos son F(1,1) y  $F_2(5,1)$  y cuyo diámetro focal mide 6 unidades.

R: 
$$5x^2 + 9y^2 - 30x - 18y + 9 = 0$$

13. Encontrar la ecuación de la elipse cuyos focos son (4,5) y (4,-1) y la distancia entre los vértices es 10.

R: 
$$\frac{(y-2)^2}{25} + \frac{(x-4)^2}{16} = 1$$

SEMANA 11 Pág. 6 - 7



14. Dada la elipse  $4x^2+9y^2-32x+54y+109=0$ , encuentre la ecuación de la circunferencia que tiene como centro el mismo que la elipse y como radio la mitad de la longitud del eje menor.

R: 
$$x^2 + y^2 - 8x + 6y + 24 = 0$$

15. Encuentre la ecuación de la parábola que tiene como vértice el centro de la elipse  $3x^2 + 2y^2 + 24x - 32y + 170 = 0$ , que abre hacia abajo y pasa por el punto de coordenadas (-2,0).

R: 
$$2x^2 + 16x + y + 24 = 0$$

- 16. Si k>0, demuestre que la ecuación  $3x^2+4y^2=k$ , representa una familia de elipses, cada una de las cuales tiene excentricidad  $\frac{1}{2}$ .
- 17. Determinar la ecuación e identificar el lugar geométrico de los puntos medios de las coordenadas de los puntos de la ecuación  $x^2 + y^2 = 9$ .

R: Elipse 
$$x^2 + 4y^2 = 9$$

SEMANA 11 Pág. 7 - 7