FLOW

flow through network?

def Directed graph G=(V,E) is simple, { no isolated vertex no parallel edges.

Will allow antiparallel.

det Capacitated graph.

simple directed graph

w/edge capacity (Ce)eff, Ge & IN

Notation

for siteV, (s,t) flow in G is $f=(fe)e\in E$, $fe\in R_{20}$ $0 \le fe \le Ce$, $\forall e$. Def Conservation

$$f^{in}(v) = \sum_{e:u \to v} fe$$
 $f^{out}(v) = \sum_{e:v \to u} fe$

net flow: $\forall v \in V \setminus \{s, t\}, f(w) = 0$

value of flow: If = f(s)

arg max (f) flow Maxflow is compute

Example

If
$$a = \pi - 3$$
,
value of flow is $a = \pi - 3$

Cor max flow can be computed

Of Sketch: only finite # of integer flow.

Q efficiently? / DP?

| greedy?

Greedy?

idea: push along s-st path

Local max: one path a=>6=> d has capacity 2. So H=2 2-9

2 2 2

Global mox:

 $\frac{2}{\sqrt{1}} \frac{1}{2}$ (f l = 3.

we can also push backwards.

det

Gf =
$$(V^{\dagger}, E^{\dagger})$$
 residue graph

 $-V^{\dagger} = V$
 $-E^{\dagger} = \{e: e \in E, fe < Ca\} \leftarrow \text{forward eagly}$
 $U\{-e: e \in E, o < fe\} \leftarrow \text{backward eagly}$

Then residue capacity, $e \in Ef$, $(Cf)e = \begin{cases} Ce-fe > 0 & e tomand \\ f-e > 0 \end{cases}$ e become become f.

