Power Sources for Irrigation Pumping

George Abernathy, Prof. Emeritus
Civil Engineering Dept.
NMSU

Power Plants Available

- Spark Ignition Engines
 - Vapor fueled w/ LP or Natural Gas
- Electric Motors
 - AC, 3 Phase, Vertical, Hollow Shaft
 - AC, 1 Phase, Submersible or Centrifugal
 - DC, For Photovoltaic Systems
- Diesel Engines
 - Diesel Fuel
 - Possible dual fueled

Spark Ignition Engines

Advantages

- Burns natural gas, the cheapest fuel
- Relatively easy to service
- Variable pump flow rate

Disadvantages

- Wears with time
- Can be noisy
- Requires considerable service

Large Electric Units

Advantages

- Easy to operate
- Very low maintenance
- Very long life
- Can be dual-fueled with IC engines

Disadvantages

- Requires 3-phase power lines
- May be expensive to install
- Single speed of operation
- Can be damaged by Lightning

Diesel Engines

Advantages

- More efficient than spark ignition engines
- May have longer life
- May be able to use dual-fuel

Disadvantages

- Heavier and more expensive than SI engines
- Fire hazard from stored fuel on site

Cost of fuels

Natural Gas (MCF)

- 1045 BTU/FT3 X 1,000 X (12.6/14.7) X 0.20 = 179,000 BTU
- -Cost = \$7.50

LP Gas (Gal)

- 97,000 BTU/Gal X 0.20 = 19,000 BTU/ Gal
- -179,000 / 19,000 = 9.4 Gal
- Cost = 9.4 Gal X \$2.50 = \$23.17

Diesel (Gal)

- 137,000 BTU/Gal X 0.30 = 41,000 BTU/Gal
- -179,000 / 41,000 = 4.53 Gals
- Cost = 4.53 Gal X \$4.00 = \$17.40

Cost of fuels (cont)

- Electric (KWH)
 - 1 KWH = 3,415 BTU X 0.90 = 3,074 BTU/KWH
 - -179,000 / 3,074 = 58.2 KWH
- Small System (< 7.5 HP, Summer)
 - Cost = 58.2 X \$0.12 = \$7.00
- Large System (Summer, 24 Hr., 7 Day Average)
 - Cost = 58.2 X 0.13 = \$7.57
- All Systems Plus \$240/ Year

Sizing Power Units

- Determine pump speed and power required
 - Normal pump speed is 1750 or 3500
 - Power from pump curves
 - For IC Engines, determine gear head ratio
- All power units must be larger than required
 - For Electric motors, the next size up
 - For IC engines, 15 to 20 percent higher

Horsepower Calculation

•	Pump Requirement	54.0 Hp
	- Shaft Friction	1.1 Hp
	- Thrust bearing	3.0 Hp
•	Total for Electric Drive	58.1 Hp
	– Gear Head Loss (1.0 %)	0.6 Нр
•	Total for IC Engines	58.7 Hp
	 Oversize for wear (16 %) 	8.8 Нр
•	Total Rating for IC Engines	67.5 Нр
•	Altitude Adjustment (14.7/12.6)	78.8 Нр

IC Engine Options

- Industrial Engines
 - Self contained, fuel and power connections only
 - Expensive
- Automotive engines adapted for pumping
 - No wasted power on radiator fan
 - Requires a cooling coil in pumped water stream
 - Safeties on oil pressure and water temp only
 - Relatively inexpensive

GM Powertrain takes its expertise in designing outstanding Vortec truck and SUV engines and leverages it to make sophisticated yet extremely durable industrial engines.

Applications

Industrial, Agriculture Construction & Oilfield

- Pumps Irrigation, Industrial, Hydraulic Sludge and Trash
- Compressors –
 Natural Gas and Air
- Generators –
 Prime Power, Standby and Co-Gen
- Industrial Drives –
 Forklifts, Manlifts,
 Street Sweepers,
 Wood Chippers,
 Chillers and Fans
- Oil and Gas
 Production –
 Gas Compressors, Pump Jacks, Vapor Recovery
- Wind Machines
- Numerous Re-Power & Custom Applications

Vortec™ 4.3L 6 Cylinder – 262 Cubic Inches

Available Factory

Vortec[™] 4.3L 6 Cylinder – 262 Cubic Inches

Specifications and Materials

- Type: 90° 4.3L V6
- Displacement: 262 cld (4294 cc)
- Compression Ratio: 9.4:1
- Valve Configuration:
 Overhead /Pushrod Actuated
- Valve Lifters: Hydraulic Roller
- Bore x Stroke: 4.00 x 3.48 in (101.60 x 88.39 mm)
- Main Bearing Caps:
 2-Bolt
- Balance Method: External
- Intake Manifold: Two-barrel
- Firing Order: 1-6-5-4-3-2

Power and torque values provided by Buck's Engines per SAE1349. Actual power levels may vary depending on fuel selection and quality, calibration, application, altitude and ambient air temperatures.

Vortec[™] 5.7L 8 Cylinder – 350 Cubic Inches

Power and torque values provided by Buck's Engines per SAE1349. Actual power levels may vary depending on fuel selection and quality, calibration, application, altitude and ambient air temperatures.

Specifications and Materials

- Type: 90° 5.7L V8
- Displacement:
 350 cld (5736 cc)
- Compression Ratio: 9.4:1
- Valve Configuration: Overhead /Pushrod Actuated
- Valve Lifters: Hydraulic Roller
- Bore x Stroke: 4.00 x 3.48 in (101.60 x 88.39 mm)
- Main Bearing Caps:
 2-Bolt
- Balance Method: External
- Intake Manifold:
 Four-barrel
- Firing Order:

Gear Head Selection

- 4.3 Liter Engine
 - 2,400 RPM......4:3 Gear head
 - List Price = \$6,975
- 5.7 Liter Engine
 - 1,700 RPM.....1:1 Gear head
 - List Price = \$7,675

Figure 4. Effect of air-fuel ratio and spark timing on the maximum power of a 4.8L engine with 8:1 compression ratio fueled with natural gas.

SPARK ADV. OBTDC

Figure 5. Effect of air-fuel ratio and spark timing on the efficiency of a 4.8L spark ignition engine with 8:1 compression ratio fueled with natural gas.

TABLE 1. MAXIMIZING THE EFFICIENCY OF VAPOR FUELED ENGINES

ENGINE	10	COMP.		SPARK TIMING					
		RATIO	187	300 BTDC		88	400 BTDC		
		18)		MAX POWER	EFF.		MAX	EFF.	
	JE	N 200		KW/L	%	a Markasa a ma	POWER KW/L	%	
4.8L		8:1		8.71	20.8		8.82	21.5	
4.1L		9:1		10.60	23.4		10.12	21.9	

Runs selected with air-fuel ratios greater than $18:1\ \mathrm{But}$ less than 22:1.

Conclusions

- Natural gas is most economical fuel
 - If available, electrical power is also economical
- New IC engines must be matched to the load
 - 80 85 percent of capacity
 - SI engines should be tuned for maximum efficiency
 - Low air-fuel ratio
 - Early spark timing
 - Keep engine in reasonable condition
- Be prepared for higher fuel prices
 - World competition for HC fuels
 - Natural Gas supply appears stable
 - Atmospheric CO2 remediation will be necessary