$\mathbf{C}\mathrm{S}4124$ Homework #2 Solution

3

4

If the alphabet is infinite, a DFSA **can** have infinite computation. However, it **cannot** if the alphabet is finite.

2.1.3

(a)

(b)

(c)

(d)

(e)

2.1.5 (a) (i)

(ii)

(iii)

(iv)

(b) Define a deterministic 2-tape finite automaton to be a sextuple $(K_1, K_2, \Sigma, \delta, s, F)$, where

 K_1 and K_2 are finite and disjoint sets of states,

 Σ is an alphabet,

 $s \in K_1 \cup K_2$ is the initial state,

 $F \subseteq K_1 \cup K_2$ is the set of final states,

 δ is a function from $(K_1 \cup K_2) \times \Sigma$ to $(K_1 \cup K_2)$

A configuration for such a machine is an ordered triple (q, w_1, w_2) , where $q \in K_1 \cup K_2$ is the current state, $w_1 \in \Sigma^*$ is the remaining input on the first tape, and $w_2 \in \Sigma^*$ is the remaining input on the second tape.

We define the relation $(q, w_1, w_2) \vdash_M (q', w'_1, w'_2)$ to hold between two states when the machine can pass from the first to the second in a single move. Formally, this means that either

- $q \in K_1, w_1 = \sigma w_1', and \ w_2 = w_2', \text{ where } \delta(q, \sigma) = q', \text{ or }$
- $q \in K_2, w_1 = w'_1, and \ w_2 = \sigma w'_2, \text{ where } \delta(q, \sigma) = q'.$

We define \vdash_M^* to be the reflexive transitive closure of \vdash .

We say that M accepts an ordered pair of strings $(w_1, w_2), w_1, w_2 \in \Sigma^*$, if $(s, w_1, w_2) \vdash_M^* (q, e, e)$ for some $q \in F$.

Finally, if $L \subseteq \Sigma^* \times \Sigma^*$ is a set of ordered pairs of strings, we say that M accepts L if M accepts (u, w) if and only if $(u, w) \in L$.

2.2.9 (a)

(b)

