Para realizar o TESTE GLOBAL, responda às perguntas 1 - 6 Para realizar o 2º TESTE, responda às perguntas 3 - 8

- 1. Sejam G um grupo e $H = \{(x, x) : x \in G\}$.
 - (a) Mostre que H é subgrupo do produto direto $G \times G$.
 - (b) Mostre que $H \triangleleft G \times G$ se e só se G é abeliano.
 - (c) Para $G = \mathbb{Z}_6$, determine um elemento de H que tenha ordem 3.
 - (d) Para $G = \mathbb{Z}_3$, mostre que H é cíclico.
- 2. Um grupo G diz-se simples se não admite subgrupos diferentes de $\{1_G\}$ e de G.

Sejam G um grupo simples, G' um grupo e $\varphi:G\to G'$ um morfismo de grupos não constante. Mostre que G' admite um subgrupo isomorfo a G.

- 3. Seja $\sigma=\left(\begin{array}{cccccc}1&2&3&4&5&6&7\\4&a&1&3&b&c&d\end{array}\right)$ uma permutação de S_7 .
 - (a) Considere a = 2, b = 7, c = 5 e d = 6.
 - i. Mostre que σ é uma permutação par.
 - ii. Determine σ^{16} .
 - iii. Existe $\tau \in S_7$ tal que $o(\tau \sigma) = 8$? Justifique.
 - (b) Dê exemplo, ou justifique que não é possível, de valores de a,b,c e d de tal modo que σ tenha ordem 12.
- 4. Sejam A um anel comutativo com identidade e $a \in A$.
 - (a) Mostre que $R_a = \{x \in A : xa = 0_A\}$ é um ideal de A.
 - (b) Mostre que o ideal é próprio se e só se $a \neq 0_A$.
 - (c) Determine R_a se:
 - i. A é domínio de integridade e $a \neq 0_A$;
 - ii. $A = \mathbb{Z}_{12}$ e $a = [2]_{12}$.
- 5. Sejam A um anel não nulo com identidade 1_A e $\varphi: \mathbb{Z} \to A$ a aplicação definida por $\varphi(n) = n1_A$, para todo $n \in \mathbb{Z}$.
 - (a) Mostre que φ é um morfismo de anéis.
 - (b) Determine $Nuc\varphi$ se:
 - i. $o(1_A) = \infty$;
 - ii. $A = \mathbb{Z}_6$.

- 6. Considere o domínio de integridade $\mathbb{Z}[\sqrt{-7}].$
 - (a) Determine o conjunto das unidades de $\mathbb{Z}[\sqrt{-7}]$.
 - (b) Mostre que $1+\sqrt{-7}$ é irredutível em $\mathbb{Z}[\sqrt{-7}].$
 - (c) Mostre que $1+\sqrt{-7}$ não é um elemento primo em $\mathbb{Z}[\sqrt{-7}].$
 - (d) Determine $[1+\sqrt{-7},4]$.
- 7. Sejam K um corpo, A um anel não nulo com identidade e $\alpha:K\to A$ um homomorfismo de anéis tal que $\alpha(1_K)=1_A$. Mostre que existe um subanel de A isomorfo a K.
- 8. Seja A um anel comutativo com característica 3. Mostre que:
 - (a) $(a+b)^3 = a^3 + b^3$;
 - (b) $B = \{a \in A : a^3 = a\}$ é um subanel de A.