ARMY PUBLIC SCHOOL JANGLOT WORKSHEET OF CHEMICAL KINETICS(M.M=20)

1.What is the rate law for acid hydrolysis of an ester such	as CH₃COOC₂H₅ in aqueous solution?
a) k [CH₃COOC₂H₅]	(1)
b) k [CH ₃ COOC ₂ H ₅] [H ₂ O]	
-\\Lightarrow\colon\colo	

c) k [CH₃COOC₂H₅]²

d) k

2.How many times will the rate of the elementary reaction $3X + Y \rightarrow X_2Y$ change if the concentration of the substance X is doubled and that of Y is halved?

a) $r_2 = 4.5r_1$ (1)

(1)

b) $r_2 = 5r_1$

c) $r_2 = 2r_1$

d) $r_2 = 4r_1$

3. Assertion: The decomposition of gaseous ammonia on a hot platinum surface is a zero order reaction at high pressure. (1)

For a zero order reaction the rate of reaction is independent of initial concentration.

4.. Assertion (A): Rate of reaction normally increases by a factor of 2 to 3 for every 10° rise in temperature.

Reason (R): Increase of temperature increases the number of collisions .

(2)

5..Derive an integrated rate law expression for first order reaction.

(2)

6. How will you differentiate order of reaction and molecularity of reaction?

(2)

- 7. A first order reaction is 20% complete in 20 minutes. Calculate the time taken for the reaction to go to 80% completion.(2)
- 8. The rate constant for a zero order reaction is 0.0030 mol l-1 s-1. How long will it take for the initial concentration of the reactant to fall from 0.10M to 0.075M? (2)
- 9. For the reaction 2NO(g)+Cl2(g)→2NOCl(g) the following data were collected.

All the measurements were taken at 263K:

(3)

Experiment No.	Initial [NO] (M)	Initial [Cl ₂] (M)	Initial rate of disappearance of CI2 (M/min)
1	0.15	0.15	0.60
2	0.15	0.30	1.20
3	0.30	0.15	2.40
4	0.25	0.25	?

- (a) Write the expression for rate law.
- (b) Calculate the value of rate constant and specify its units.
- (c) What is the intitial rate of disappearance of Cl2 in exp. 4?