Seminár 31

Téma

Geometria – stredové, obvodové, úsekové uhly, tetivové štvoruholníky

Ciele

Úlohy a riešenia

(DOPLNIŤ komentáre.)

Úloha 31.1. [B-65-I-5-D1] Daná je tetiva AB kružnice k so stredom v bode S. Na úsečke AB zvoľ me bod M a priesečník kružnice opísanej trojuholníku AMS s kružnicou k označme C. Dokážte, že uhly MCS a MBS sú zhodné.

 $\mathbf{Rie \check{s}enie^*}$. Stačí využiť rovnosť uhlov v rovnoramennom trojuholníku ABS a obvodové uhly nad MS v kružnici opísanej trojuholníku AMS.

Úloha 31.2. [B-66-II-3] V rovine sú dané kružnice k a l, ktoré sa pretínajú v bodoch E a F. Dotyčnica ku kružnici l zostrojená v bode E pretína kružnicu k v bode H ($H \neq E$). Na oblúku EH kružnice k, ktorý neobsahuje bod F, zvoľme bod C ($E \neq C \neq H$) a priesečník priamky CE s kružnicou l označme D ($D \neq E$). Dokážte, že trojuholníky DEF a CHF sú podobné.

Riešenie*. Z rovnosti obvodových uhlov nad tetivou HF kružnice k vyplýva $|\angle HCF| = |\angle HEF|$. Uhol HEF je zároveň úsekovým uhlom prislúchajúcim tetive EF kružnice l, ktorý je však zhodný s obvodovým uhlom EDF (doplniť (obr. 1)). Celkovo tak platí

$$|\angle HCF| = |\angle HEF| = |\angle EDF|. \tag{1}$$

(DOPLNIŤ Obr. 1)

Vzhľadom na to, že CEFH je tetivový štvoruholník, je jeho vnútorný uhol pri vrchole H zhodný s vonkajším uhlom pri jeho protiľahlom vrchole E. Platí teda

$$|\angle CHF| = |\angle DEF|. \quad (2)$$

Z rovností ((1) a (2)) vyplýva na základe vety uu podobnosť trojuholníkov DEF a CHF. Tým je dôkaz hotový.

Úloha 31.3. [B-65-II-2] Daná je úsečka AB, jej stred C a vnútri úsečky AB bod D. Kružnice k(C, |BC|) a m(B, |BD|) sa pretínajú v bodoch E a F. Zdôvodnite, prečo je polpriamka FD osou uhla AFE.

Riešenie*. Kružnica k je Tálesovou kružnicou nad priemerom AB, takže trojuholník ABF je pravouhlý s pravým uhlom pri vrchole F. Inými slovami, priamka AF je kolmá

(DOPLNIŤ Obr. 1)

na polomer BF kružnice m, a preto sa priamka AF dotýka kružnice m v bode F ((obr. 1)). Z rovnosti úsekového uhla zovretého tetivou DF s dotyčnicou AF a obvodového uhla nad tou istou tetivou máme (ako už je vyznačené na obrázku)

$$|\angle AFD| = |\angle DEF|.$$

Zo súmernosti úsečky EF podľa osi AB tak vyplýva

$$|\measuredangle AFD| = |\measuredangle DEF| = |\measuredangle DFE|,$$

čo znamená, že FD je osou uhla AFE.

Iné riešenie*. Označme β veľkosť uhla ABF a dopočítajme veľkosti uhlov DFE a AFE. Trojuholník DBF je rovnoramenný, lebo jeho ramená BD a BF sú polomery kružnice m, preto

$$|\angle DFB| = \frac{1}{2}(180^{\circ} - \beta) = 90^{\circ} - \frac{\beta}{2}.$$

Keďže podobne aj trojuholník EBF je rovnoramenný s osou BD, platí

$$|\angle EFB| = 90^{\circ} - beta.$$

Spojením oboch predchádzajúcich rovností tak dostávame

$$|\angle DFE| = |\angle DFB| - |\angle EFB| = \frac{\beta}{2}.$$

Z vlastností Tálesovej kružnice k nad priemerom AB vieme, že uhol AFB je pravý. Pritom jeho časť uhol EFB má, ako sme už zistili, veľkosť $90^{\circ} - \beta$, takže jeho druhá časť, uhol AFE, má veľkosť β , čo je presne dvojnásobok veľkosti uhla DFE. Tým sme dokázali, že priamka FD je osou uhla AFE.

Iné riešenie*. Nad oblúkom AE kružnice k sa zhodujú uhly ABE a AFE ((obr. 2)). Oblúku DE kružnice m prislúcha obvodový uhol DFE a stredový uhol DBE. Spolu tak dostávame

$$|\angle DFE| = \frac{1}{2}|\angle DBE| = \frac{1}{2}|\angle ABE| = \frac{1}{2}|\angle AFE|,$$

čo dokazuje, že FD je osou uhla AFE.

(DOPLNIŤ Obr. 2)

Úloha 31.4. [B-65-I-5] Vrcholy konvexného šesťuholníka ABCDEF ležia na kružnici, pričom |AB| = |CD|. Úsečky AE a CF sa pretínajú v bode G a úsečky BE a DF sa pretínajú v bode H. Dokážte, že úsečky GH, AD a BC sú navzájom rovnobežné.

Riešenie*. Najskôr ukážeme, že $AD \parallel BC$. Keďže |AB| = |CD|, sú obvodové uhly nad tetivami AB a CD kružnice opísanej šesťuholníku ABCDEF zhodné ((obr. 3)), teda $|\angle ADB| = |\angle DBC|$; to sú však striedavé uhly priečky BD priamok AD a BC, preto $AD \parallel BC$. Ostáva ukázať, že $GH \parallel AD$. Využitím zhodných obvodových uhlov nad tetivami

(DOPLNIŤ Obr.3)

AB a CD pri vrcholoch E a F dostávame

$$|\angle GEH| = |\angle AEB| = |\angle CFD| = |\angle GFH|,$$

čo znamená, že body E, F, G a H ležia na jednej kružnici, pretože vrcholy zhodných uhlov GEH a GFH ležia v rovnakej polrovine s hraničnou priamkou GH. Z toho vyplýva, že uhly EFH a EGH nad jej tetivou EH sú zhodné. To spolu so zhodnosťou uhlov EFD a EAD nad tetivou ED pôvodnej kružnice ((obr. 3)) vedie na zhodnosť súhlasných uhlov EGH a EAD priečky AE priamok GH a AD, ktoré sú teda naozaj rovnobežné. Tým je tvrdenie úlohy dokázané.

Úloha 31.5. [B-58-I-5] Trojuholníku ABC je opísaná kružnica k. Os strany AB pretne kružnicu k v bode K, ktorý leží v polrovine opačnej k polrovine ABC. Osi strán AC a BC pretnú priamku CK postupne v bodoch P a Q. Dokážte, že trojuholníky AKP a KBQ sú zhodné.

Riešenie*. Označme α, β, γ zvyčajným spôsobom veľkosti vnútorných uhlov trojuholníka ABC (doplniť (obr. 4)). Bod K leží na osi úsečky AB, preto |AK| = |KB|. Trojuholník AKB je rovnoramenný so základňou AB, jeho vnútorné uhly pri vrcholoch A a B sú

(DOPLNIŤ Obr. 4)

teda zhodné. Podľa vety o obvodových uhloch sú zhodné aj uhly BCK a BAK, resp.ACK a ABK, preto sú zhodné aj uhly BCK a ACK. Polpriamka CK je teda osou uhla ACB:

$$|\angle ACK| = |\angle BCK| = \frac{\gamma}{2}.$$

Keďže bod P leží na osi strany AC, je trojuholník ACP rovnoramenný a jeho vnútorné uhly pri základni AC majú veľkosť $\frac{1}{2}\gamma$, takže jeho vonkajší uhol APK pri vrchole P má veľkosť $\frac{1}{2}\gamma+\frac{1}{2}\gamma=\gamma$. Rovnako z rovnoramenného trojuholníka BCQ odvodíme, že aj veľkosť uhla BQK je γ . Podľa vety o obvodových uhloch sú zhodné uhly ABC a AKC, teda uhol AKC (čiže uhol AKP) má veľkosť β a – celkom analogicky – uhol BKQ má veľkosť α .

V každom z trojuholníkov AKP a BKQ už poznáme veľkosti dvoch vnútorných uhlov $(\beta, \gamma, \text{resp.} \alpha, \gamma)$, takže vidíme, že zostávajúce uhly KAP a KBQ majú veľkosti α , resp. β .

Z predošlého vyplýva, že trojuholníky AKP a KBQ sú zhodné podľa vety usu, lebo majú zhodné strany AK a KB aj obe dvojice k nim priľahlých vnútorných uhlov.

K uvedenému postupu dodajme, že výpočet uhlov KAP a KBQ cez uhly APK a BQK možno obísť takto: zhodnosť uhlov KAP a BAC (resp. KBQ a ABC) vyplýva zo zhodnosti uhlov KAB a PAC (resp. KBA a QBC).

Domáca práca