Реализация модели для обнаружения сгенерированных текстов

1 Постановка задачи

В последние годы широкое распространение получили крупные языковые модели, способные генерировать тексты, трудноотличимые от написанных человеком. Такие модели могут быть использованы не только для полезных задач, но и для создания фейковых новостей, спама, пропаганды и других видов недобросовестного контента. В связи с этим возникает практическая задача: обнаружение сгенерированных текстов.

В рамках данной работы задача формулируется как задача бинарной классификации: по входному тексту необходимо определить, был ли он написан человеком (Human) или сгенерирован одной из языковых моделей (Non-Human). В качестве эмбеддингов используется предобученная модель DeepPavlov/rubert-base-cased, после чего классификатор обучается на признаковом пространстве.

2 Используемый набор данных и их подготовка

Для обучения и оценки модели используется датасет RuATD 2022, предназначенный для задачи детектирования искусственно сгенерированных текстов на русском языке. Он содержит тексты, сгенерированные различными языковыми моделями (например, ruGPT3, mT5, ruT5, M-BART и др.), а также тексты, написанные человеком (Human). Подготовка данных включает следующие этапы:

- Загрузка и чтение CSV-файлов: используются два файла train.csv (обучающая выборка) и val.csv (валидационная выборка). Каждая строка содержит идентификатор (Id), текст (Text) и исходный класс (Class).
- Преобразование меток для бинарной классификации. Все тексты с меткой Нитап получают значение метки 0, отражающее тексты, написанные человеком. Все остальные классы (генерированные моделями) объединяются в метку 1, что позволяет свести задачу к

бинарной классификации и сосредоточиться на выявлении «нечеловеческих» текстов.

- Токенизация и векторизация. Для каждого текста выполняется токенизация с использованием модели rubert-base-cased. Далее тексты подаются в модель, где для каждого токена вычисляется скрытое представление. Затем эмбеддинг всего текста формируется методом mean pooling усреднением векторов по всем токенам с учётом маски внимания (attention mask).
- Сохранение признаков. Полученные эмбеддинги (векторы размерности 768) и соответствующие метки сохраняются в формате
 .pt (бинарные файлы библиотеки torch) для последующего использования на этапе обучения модели классификации.

Такой подход позволяет получить компактное, фиксированной размерности представление для каждого текста, подходящее для подачи в любую классическую модель машинного обучения.

```
Id,Text,Class

2,Kak насчёт ещё одного раунда?,OPUS-MT

8,"К декабрю 1943 года старший лейтенант Николай Сириченко командовал истребительно-противотанковой батареей 45-миллиметровых ор
24,Соловьев рассказал о просмотре в эфире одного выпуска шоу с Малаховым и Корчевниковым.,ruGPT3-Large
47,"Доброе утро, девочки и мальчики",mT5-Small
56,В октябре 2005 — докладчица на Европейском Конвенте Открытого ПО организованного O'Reilly Media в Амстердаме.,M2M-100
63,"Также большая проблема состоит в том, что мы не можем быть уверены на 100%. В этом плане у нас есть очень большой потенциал.
— Что касается вашего отношения к ""СуперФакту"" и других проектов?— Мы с вами уже говорили об этой теме несколько лет назад...
70,"Половину субъектов бизнес-сообщества, представляют предприниматели, занятые в сфере торговли.",Нитап
```

Рисунок 1 – демонстрация разметки набора данных

3 Использование предобученной модели DeepPavlov/rubert-basecased

Для извлечения признаков из текстов используется предобученная трансформерная модель DeepPavlov/rubert-base-cased, основанная на архитектуре BERT и адаптированная под русский язык. Данная модель обучена на больших русскоязычных корпусах, что делает её хорошо подходящей для понимания и представления текстов на русском языке.

Модель rubert-base-cased реализует механизм само-внимания (self-attention), позволяющий учитывать контекст слов в пределах всего предложе-

ния. На выходе модель формирует векторные представления для каждого токена. Для получения одного вектора на весь текст используется агрегация по токенам с помощью mean pooling — усреднение скрытых состояний по токенам с учётом их значимости, заданной маской внимания. Достоинствами использования данной модели можно назвать:

- Поддержку кириллического алфавита и морфологии русского языка;
- Глубокое представление семантики текста, подходящее для задач классификации;
- Отсутствие необходимости дополнительного обучения модели: она используется как функция преобразования текста в вектор признаков.

Таким образом, rubert-base-cased выступает в качестве эмбеддингового блока, обеспечивая качественное и устойчивое представление текстов для последующего обучения модели классификации.

3.4 Обучение модели

Для классификации текстов на сгенерированные искусственным интеллектом и написанные человеком была реализована глубокая нейросетевая модель на основе полносвязного многослойного перцептрона (MLP). Архитектура модели реализована с использованием библиотеки РуТогсh и представлена в виде класса DeepMLClassifier:

Листинг 1 – класс DeepMLClassifier

Модель принимает на вход эмбеддинги размерностью 768, полученные предварительно (например, с помощью BERT-подобной модели). Далее данные проходят через серию линейных слоёв с функцией активации ReLU и регуляризацией в виде Dropout (с вероятностью отключения нейронов 0.4). Последний слой возвращает логиты для двух классов: "человеческий текст" и "сгенерированный ИИ".

Обучение проводилось на 30 эпохах, с использованием кросс-энтропийной функции потерь (CrossEntropyLoss) и оптимизатора Adam. Процесс обучения сопровождался валидацией модели на отложенной выборке. Ниже представлены примеры логов из процесса обучения:

[EPOCH 1/30] Train loss: 0.4611 Val loss: 0.4185 Val acc: 0.8046 Time: 33.4 sec
[EPOCH 2/30] Train loss: 0.4189 Val loss: 0.3966 Val acc: 0.8085 Time: 50.9 sec
[EPOCH 3/30] Train loss: 0.4013 Val loss: 0.3860 Val acc: 0.8224 Time: 30.9 sec
[EPOCH 4/30] Train loss: 0.3899 Val loss: 0.3809 Val acc: 0.8144 Time: 31.0 sec
[EPOCH 5/30] Train loss: 0.3777 Val loss: 0.3863 Val acc: 0.8219 Time: 31.3 sec
[EPOCH 6/30] Train loss: 0.3704 Val loss: 0.3825 Val acc: 0.8258 Time: 50.8 sec
[EPOCH 7/30] Train loss: 0.3600 Val loss: 0.3780 Val acc: 0.8233 Time: 84.3 sec
[EPOCH 8/30] Train loss: 0.3518 Val loss: 0.3820 Val acc: 0.8220 Time: 82.5 sec
[EPOCH 9/30] Train loss: 0.3439 Val loss: 0.3785 Val acc: 0.8196 Time: 81.0 sec
[EPOCH 10/30] Train loss: 0.3359 Val loss: 0.3888 Val acc: 0.8246 Time: 48.4 sec
[EPOCH 11/30] Train loss: 0.3290 Val loss: 0.3808 Val acc: 0.8230 Time: 33.0 sec
[EPOCH 12/30] Train loss: 0.3213 Val loss: 0.3866 Val acc: 0.8206 Time: 49.1 sec
[EPOCH 13/30] Train loss: 0.3128 Val loss: 0.3979 Val acc: 0.8242 Time: 90.7 sec
[EPOCH 14/30] Train loss: 0.3050 Val loss: 0.3948 Val acc: 0.8239 Time: 96.3 sec
[EPOCH 15/30] Train loss: 0.3004 Val loss: 0.4194 Val acc: 0.8282 Time: 100.9 sec
[EPOCH 16/30] Train loss: 0.2940 Val loss: 0.4005 Val acc: 0.8240 Time: 107.3 sec
[EPOCH 17/30] Train loss: 0.2878 Val loss: 0.4023 Val acc: 0.8236 Time: 113.4 sec
[EPOCH 18/30] Train loss: 0.2803 Val loss: 0.4044 Val acc: 0.8242 Time: 118.7 sec
[EPOCH 19/30] Train loss: 0.2741 Val loss: 0.4068 Val acc: 0.8192 Time: 122.5 sec
[EPOCH 20/30] Train loss: 0.2681 Val loss: 0.4500 Val acc: 0.8216 Time: 114.9 sec
[EPOCH 21/30] Train loss: 0.2640 Val loss: 0.4166 Val acc: 0.8181 Time: 114.6 sec
[EPOCH 22/30] Train loss: 0.2583 Val loss: 0.4519 Val acc: 0.8191 Time: 114.2 sec
[EPOCH 23/30] Train loss: 0.2546 Val loss: 0.4751 Val acc: 0.8222 Time: 114.1 sec
[EPOCH 24/30] Train loss: 0.2493 Val loss: 0.4639 Val acc: 0.8224 Time: 128.7 sec
[EPOCH 25/30] Train loss: 0.2442 Val loss: 0.4376 Val acc: 0.8180 Time: 81.2 sec
[EPOCH 26/30] Train loss: 0.2393 Val loss: 0.5187 Val acc: 0.8240 Time: 38.6 sec
[EPOCH 27/30] Train loss: 0.2365 Val loss: 0.4290 Val acc: 0.8187 Time: 39.1 sec
[EPOCH 28/30] Train loss: 0.2300 Val loss: 0.4586 Val acc: 0.8193 Time: 39.2 sec
[EPOCH 29/30] Train loss: 0.2291 Val loss: 0.4864 Val acc: 0.8192 Time: 40.0 sec
[EPOCH 30/30] Train loss: 0.2233 Val loss: 0.5160 Val acc: 0.8179 Time: 54.6 sec
[INFO] Модель сохранена в saved_model.pt

Рисунок 2 – демонстрация логов при обучении

Из логов видно, что в течение первых 10 эпох наблюдается стабильное уменьшение функции потерь и рост точности. Начиная примерно с 15–20 эпохи модель начинает переобучаться: несмотря на снижение тренировочной ошибки, валидационная ошибка увеличивается. Тем не менее, точность на валидации сохраняется на высоком уровне (~82%).

Финальная модель была сохранена на диск в файл saved_model.pt и использовалась для итоговой оценки качества.

5 Оценка качества модели

Для финальной оценки модели использовалась тестовая выборка размером 21 511 объектов. Классы представлены неравномерно:

- Человеческие тексты: 8 524 объекта;
- Сгенерированные ИИ: 12 987 объектов.

[INFO] WTOFOR	ая оценка мо	дели:		
	precision	recall	f1-score	support
Human	0.76	0.80	0.78	8524
AI	0.86	0.83	0.85	12987
accuracy			0.82	21511
macro avg	0.81	0.81	0.81	21511
weighted avg	0.82	0.82	0.82	21511

Рисунок 3 – демонстрация итоговой оценки

Общая точность модели составила 0.82 (82%). Дополнительно были рассчитаны усреднённые показатели:

- Macro average: precision = 0.81, recall = 0.81, F1 = 0.81
- Weighted average: precision = 0.82, recall = 0.82, F1 = 0.82

Эти метрики показывают, что модель хорошо различает оба класса, несмотря на дисбаланс данных. Особенно высокие значения precision и recall для класса "AI" (0.86 и 0.83 соответственно) указывают на способность модели эффективно определять сгенерированные тексты.

6 Сохранение и использование модели

После завершения обучения классификационной нейросети модель сохраняется в файл saved_model.pt. Это позволяет исключить необходимость повторного обучения при каждом запуске, обеспечить воспроизводимость результатов и упростить переносимость модели между средами. Сохранение выполняется с использованием средств библиотеки РуТогсh, которая предоставляет компактное и удобное средство сохранения весов нейронной сети в формате .pt. Для демонстрации работы модели и возможности её практического применения было разработано простое веб-приложение на основе микрофреймворка Flask. Его задачей является организация пользовательского интерфейса для анализа текстов, поданных на вход, и визуализация результата — вероятности того, что текст сгенерирован искусственным интеллектом.

После запуска сервера Flask пользователь может открыть страницу по адресу http://127.0.0.1:5000. Интерфейс позволяет ввести произвольный текст и отправить его на обработку. Далее выполняются следующие шаги:

- Токенизация текста с использованием того же токенизатора, что применялся на этапе обучения.
- Преобразование текста в эмбеддинги с помощью модели RuBERT.
- Классификация с помощью заранее обученного MLP, загруженного из saved model.pt.
- Отображение результата пользователю показывается вероятность того, что текст был сгенерирован ИИ.

Рисунок 4 – диаграмма активности

Этот подход обеспечивает полноценную интеграцию модели в интерактивную среду и демонстрирует её применение в условиях, приближенных к реальным. Благодаря отделению этапов обучения и инференса достигается высокая гибкость, масштабируемость и простота использования.

Рисунок 5 – демонстрация работы приложения