BAB 4

SUKU BANYAK

A Bentuk Umum

Bentuk umum suku banyak dalam variabel x yang berderajat n adalah:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

dengan: a_0 , a_1 , a_2 , ..., a_{n-1} , a_n adalah bilangan real $a_n \neq 0 \text{ dan } a_0 \text{ merupakan konstanta}$ $a_n \text{ adalah koefisien dari } x^n$ $a^{n-1} \text{ koefisien dari } x^{n-1}, \ldots, \text{ dan seterusnya}$

B Pembagian Suku Banyak

Suatu suku banyak f(x) berderajat m jika dibagi suku banyak P(x) berderajat n, hasilnya H(x) berderajat p dan mempunyai sisa S(x) berderajat r, sehingga dapat dituliskan:

$$f(x) = P(x) \cdot H(x) + S(x)$$

dengan: f(x) berderajat m

pembagi P(x) berderajat n, $n \le m$ hasil bagi H(x) berderajat p, $p \le n$ sisa bagi S(x) berderajat r, r < n-1

1. Pembagian Bersusun

Cara pembagian dengan cara ini dapat digunakan untuk mencari hasil bagi dan sisa pembagian dari pembagian suku banyak. Konsep cara pembagiannya sama seperti pembagian bersusun biasa.

Contoh:

1. Suku banyak $f(x) = x^3 + (a-3)x^2 + x - 2$ habis dibagi (x+1). Hasil bagi f(x) oleh (x-2) adalah

Pembahasan:

Karena suku banyak f(x) habis dibagi (x+1) maka f(-1) = 0

$$f(x) = x^3 + (a-3)x^2 + x - 2$$

$$f(x) = 0$$

$$f(-1) = 0$$

$$(-1)^{3} + (a-3)(-1)^{2} + (-1) - 2 = 0$$

$$-1 + (a-3)(1) - 1 - 2 = 0$$

$$-1 + a - 3 - 1 - 2 = 0$$

$$a - 7 = 0$$

$$a = 7$$

Sehingga suku banyak f(x) adalah

$$f(x) = x^3 + (a-3)x^2 + x - 2$$

= $x^3 + (7-3)x^2 + x - 2$
= $x^3 + 4x^2 + x - 2$

f(x) dibagi oleh (x-2) (dengan cara bersusun):

Jadi hasil baqi f(x) oleh (x-2) adalah $x^2+6x+13$

2. Metode Horner

Hal yang perlu diperhatikan pada metode Horner adalah penulisan koefisien suku banyak harus berturut-turut dari pangkat tertinggi ke pangkat rendah. Jika dari variabel berpangkat tersebut tidak memiliki koefisien, maka koefisiennya adalah 0. Untuk lebih memahaminya perhatikan contoh pembagian suku banyak berderajat 3 berikut ini.

Diketahui $f(x) = ax^3 + bx^2 + cx + d$, maka nilai f(x) untuk x = k adalah $f(k) = ak^3 + bk^2 + ck + d$

Jadi nilai suku banyak untuk x = k adalah $d + ck + bk^2 + ak^3$.

C Teorema Sisa

Jika suatu suku banyak f(x) dibagi oleh (x - k), maka akan diperoleh hasil bagi H(x) dan sisa pembagian S, yang mempunyai hubungan:

$$f(x) = (x - k) \cdot H(x) + S$$

Karena suku banyak pembagi yaitu (x - k) berderajat 1, maka sisa pembagi adalah S dengan maksimum derajat nol, yaitu sebuah konstanta. Sisa pembagian S dapat ditentukan dengan menggunakan teorema berikut:

- Jika suku banyak f(x) dibagi dengan (x k), maka sisanya adalah S = f(k)
- 2. Jika suku banyak f(x) dibagi dengan (ax b), maka sisanya adalah $S = f\left(\frac{b}{a}\right)$

3. Jika suku banyak f(x) dibagi (x - a)(x - b), maka sisanya adalah px + q dengan f(a) = pa + q dan f(b) = pb + q.

Contoh:

1. Jika suku banyak $2x^3 - kx^2 - x + 16$ dibagi x - 1 mempunyai sisa 10, maka nilai k adalah

Pembahasan:

Suku banyak $2x^3 - kx^2 - x + 16$ dibagi x - 1 mempunyai sisa 10. maka:

Ketika x = 1, suku banyaknya bernilai 10. Sehingga:

$$2.1^{3}-k.1^{2}-1+16=10$$

$$2-k-1+16=10$$

$$17-k=10$$

$$k=7$$

D Teorema Faktor

Jika suku banyak f(x) dibagi dengan (x – k) sisanya adalah 0, maka menurut teorema sisa:

$$f(x) = (x - k) \cdot H(x) + S$$

$$f(x) = (x - k) \cdot H(x) + f(k)$$
, jika $f(k) = 0$

$$f(x) = (x - k) \cdot H(x)$$

Jadi (x - k) adalah faktor dari f(x).

Bunyi teorema faktor:

Jika f(x) suatu suku banyak, maka (x - k) adalah faktor dari suku banyak f(x) jika dan hanya jika f(k) = 0.

Contoh:

1. Diketahui (x-2) dan (x-1) adalah faktor-faktor dari suku banyak $P(x) = x^3 + ax^2 - 13x + b$. Jika akar-akar persamaan suku banyak tersebut adalah x_1 , x_2 , dan x_3 untuk $x_1 > x_2 > x_3$, maka nilai $x_1 - x_2 - x_3 = \dots$

Pembahasan:

Teorema faktor:

Jika (x + a) merupakan faktor dari polinomial P(x), maka P(-a) = 0

(x-2) dan (x-1) adalah faktor-faktor dari suku banyak P $(x) = x^3 + ax^2 - 13x + b$, maka:

1)
$$P(2) = 0$$

 $\Rightarrow 2^3 + a \cdot 2^2 - 13 \cdot 2 + b = 0$
 $\Rightarrow 8 + 4a - 26 + b = 0$
 $\Rightarrow 4a + b = 18 ...(i)$

2)
$$P(1)=0$$

 $\Rightarrow 1^3 + a \cdot 1^2 - 13 \cdot 1 + b = 0$
 $\Rightarrow 1 + a - 13 + b = 0$
 $\Rightarrow a + b = 12 ...(ii)$

Dari persamaan (i) dan (ii), dengan metode eliminasi, diperoleh:

$$4a+b=18$$

$$\underline{a+b=12}_{a}$$

$$=6 \Rightarrow a=2$$

Sehingga, dari persamaan a + b = 12, diperoleh:

$$2 + b = 12 \Rightarrow b = 10$$

Polinomial P(x) adalah $x^3 + 2x^2 - 13x + 10$ Jika difaktorkan, diperoleh (x-2)(x-1)(x+5)

$$x_1 = 2$$
; $x_2 = 1$; $x_3 = -5$

Jadi, nilai dari $x_1 - x_2 - x_3 = 2 - 1 - (-5) = 6$

E Faktor Linear

Berikut ini cara untuk menentukan akar-akar persamaan suku banyak f(x) = 0, yaitu:

- Jika jumlah koefisien suku banyak sama dengan nol, maka x = 1 merupakan akar persamaan suku banyak.
- Jika koefisien pangkat ganjil dan pangkat genap sama, maka x = -1 merupakan akar persamaan suku banyak.
- 3. Jika langkah 1 dan 2 tidak terpenuhi, maka digunakan cara coba-coba yaitu dengan menentukan faktor dari suku tetapnya yang menyebabkan f(k) = 0.

F Akar-akar Persamaan Suku Banyak

1. Jika $f(x) = ax^3 + bx^2 + cx + d$, maka:

a.
$$x_1 + x_2 + x_3 = -\frac{b}{a}$$

b.
$$x_1 \cdot x_2 + x_1 \cdot x_3 + x_2 \cdot x_3 = \frac{c}{2}$$

c.
$$x_1 \cdot x_2 \cdot x_3 = -\frac{d}{a}$$

2. Jika $f(x) = ax^4 + bx^3 + cx^2 + dx + e$, maka:

a.
$$x_1 + x_2 + x_3 + x_4 = -\frac{b}{a}$$

b.
$$X_1 \cdot X_2 + X_1 \cdot X_3 + X_1 \cdot X_4 + X_2 \cdot X_3 + X_2 \cdot X_4 + X_3 \cdot X_4 = \frac{c}{a}$$

c.
$$x_1 \cdot x_2 \cdot x_3 + x_1 \cdot x_2 \cdot x_4 + x_2 \cdot x_3 \cdot x_4 + x_1 \cdot x_3 \cdot x_4 = -\frac{d}{2}$$

d.
$$x_1 \cdot x_2 \cdot x_3 \cdot x_4 = \frac{e}{a}$$

Contoh:

1. Jika $9, x_1$, dan x_2 merupakan tiga akar berbeda dari $x^3 - 6x^2 - ax + b = 0$ dengan b - a = 5, maka $x_1 + x_2 + x_1 \cdot x_2 = ...$

Pembahasan:

 $x^3 - 6x^2 - ax + b = 0$ mempunyai akar $9, x_1, dan x_2$ maka:

$$x_1 + x_2 + x_3 = -\frac{b}{a}$$

$$x_1 + x_2 + 9 = -\frac{-6}{1} = 6$$

$$x_1 + x_2 = 6 - 9 = -3$$

Karena 9 merupakan akar dari suku banyak maka:

$$x^3 - 6x^2 - ax + b = 0$$

$$9^3 - 6(9)^2 - a(9) + b = 0$$

 $729 - 486 - 9a + b = 0$

$$b = 9a - 243$$

Karena b-a=5 dan b=9a-243 maka:

$$b-a=5$$

$$(9a-243)-a=5$$

$$8a = 248$$

$$a = 31$$

Sehingga, b = 5 + a = 5 + 31 = 36Maka:

$$x_1 \cdot x_2 \cdot x_3 = -\frac{d}{d}$$

$$x_1 \cdot x_2 \cdot 9 = -\frac{b}{1}$$

$$x_1 \cdot x_2 \cdot 9 = -36$$

$$x_1 \cdot x_2 = -4$$

Jadi,
$$x_1 + x_2 + x_1 \cdot x_2 = (-3) + (-4) = -7$$

CONTOH SOAL DAN PEMBAHASAN

- 1. Sisa pembagian $Ax^{2016} Bx^{2015} + 3x 1$ oleh $x^2 1$ adalah x + 4. Nilai A + B adalah...
 - A. 7
- D. -3
- B. 3 C. 1
- E. -7

Pembahasan SMART:

Rumus pembagian suku banyak:	
$f(x)\Re p(x) h(x) s(x)$	
dengan:	
f(x) = yang dibagi	h(x) = hasil bagi
p(x) = pembagi	s(x) = sisa

Sisa pembagian $Ax^{2016}-Bx^{2015}+3x-1$ oleh x^2-1 adalah x+4 dapat ditulis:

$$Ax^{2016} - Bx^{2015} + 3x - 1 = (x^2 - 1) \cdot h(x) + (x + 4)$$

$$Ax^{2016} - Bx^{2015} + 3x - 1 = (x+1)(x-1) \cdot h(x) + (x+4)$$

Pembuat nol (x+1)(x-1) = 0 adalah x=-1 atau x=1

Sehingga, untuk x = -1 diperoleh:

$$A(-1)^{2016} - B(-1)^{2015} + 3(-1) - 1 = ((-1) + 4)$$

$$A+B-3-1=3$$

$$A + B - 4 = 3$$

$$A+B=7$$

Jawaban: A

- 2. Jika sisa pembagian f(x) oleh $x^3 + 2x + 3$ adalah $x^2 + 5$ dan sisa pembagian $x^2 f(x) + f^2(x)$ oleh $x^3 + 2x + 3$ adalah $ax^2 + bx + c$, maka nilai dari a + b + c adalah
 - A. -30
- D. 30
- B. -24
- E. 36
- C. 24

Pembahasan SMART:

Sisa pembagian f(x) oleh $x^3 + 2x + 3$

adalah $x^2 + 5$.

Misalkan $x^3 + 2x + 3 = P$, maka:

$$f(x) = P.Q + (x^2 + 5)$$

dengan:

P = pembagi

Q = hasil bagi

$$(x^2 + 5) = sisa$$

$$g(x) = x^2 f(x) + f^2(x)$$

$$=x^{2}(P.Q+(x^{2}+5))+(P.Q+(x^{2}+5))^{2}$$

=
$$PQ.x^2 + (x^2 + 5)x^2 + (PQ)^2 + 2PQ(x^2 + 5) + (x^2 + 5)^2$$

=
$$PQ.x^2 + (PQ)^2 + 2PQ(x^2 + 5) + (x^2 + 5)x^2 + (x^2 + 5)^2$$

=
$$PQ.x^2 + (PQ)^2 + 2PQ(x^2 + 5) + (x^4 + 5x^2) + (x^4 + 10x^2 + 25)$$

$$= PQ.x^{2} + (PQ)^{2} + 2PQ(x^{2} + 5) + (2x^{4} + 15x^{2} + 25)$$

Jika g(x) dibagi P

$$= \frac{PQ.x^2 + (PQ)^2 + 2PQ(x^2 + 5) + (2x^4 + 15x^2 + 25)}{P}$$

maka sisanya adalah sisa pembagian

$$= \frac{\left(2x^4 + 15x^2 + 25\right)}{P} = \frac{\left(2x^4 + 15x^2 + 25\right)}{x + 2x + 3}$$

$$\begin{array}{r}
 2x \\
 x^3 + 2x + 3\sqrt{2x^4 + 15x^2 + 25} \\
 2x^4 + 4x^2 + 6x \underline{}
 \end{array}$$

$$\frac{11x^2-6x+25}{11x^2-6x+25}$$

Artinya:

$$11x^2 - 6x + 25 = ax^2 + bx + c$$

$$\Rightarrow$$
 a = 11; b = -6; c = 25

$$\Rightarrow$$
 a+b+c=11-6+25=30

Jawaban: D

- 3. Diketahui suku banyak $g(x) = ax^2 bx (a + b)$ habis dibagi x 4 dan salah satu akar persamaan suku banyak f(x) = 0 adalah 4. f(x) dibagi g(x) sisanya ax + b 2, maka nilai a adalah
 - A. $\frac{6}{7}$
- D. -
- B. -
- E. $\frac{1}{7}$
- C. $\frac{2}{7}$

Pembahasan SMART:

Teorema sisa:

Sisa pembagian suku banyak f(x) oleh (x – a)

Diketahui:

 $g(x)=ax^2-bx-(a+b)$ habis dibagi x - 4, maka:

$$g(4) = 0 \Rightarrow a.4^{2} - b.4 - (a+b) = 0$$

 $\Rightarrow 16a - 4b - a - b = 0$
 $\Rightarrow 15a - 5b = 0$

$$\Rightarrow$$
 15a = 5b \Rightarrow 3a = b

Salah satu akar persamaan suku banyak f(x)=0 adalah 4. f(x) dibagi g(x) sisa ax+b-2

Maka,
$$\frac{f(x)}{g(x)}$$
 bersisa $ax+b-2$

Jika x = 4, maka sisa = 0

$$\Rightarrow a(4)+b-2=0$$

$$\Rightarrow$$
 4a+3a-2=0

$$\Rightarrow$$
 7a = 2 \Rightarrow a = $\frac{2}{7}$

Jawaban: D

- 4. Jika $x^4 + ax + (b-10)x^2 + 24x 15 = f(x)(x-1)$ dengan f(x) habis dibagi x-1, maka nilai b adalah
 - A. 8
- D. 2
- B. 6 C. 4
- 6 E. 1

Pembahasan SMART:

ingat! ingat!

Teorema Sisa:

Setiap suku banyak f(x) habis dibagi -(x-a), maka f(a) = 0.

Diketahui:

$$x^4 + ax^3 + (b-10)x^2 + 24x - 15 = f(x)(x-1)$$

$$\Rightarrow \frac{x^4 + ax^3 + (b-10)x^2 + 24x - 15}{(x-1)} = f(x)$$

Dengan cara Horner, maka:

Hasilnya adalah:

$$x^3 + (a+1)x^2 + (a+b-9)x + (a+b+15)$$

Dengan sisa a+b, dimana a+b=0 karena f(x) habis dibaqi (x-1).

Sehingga:

$$x^3 + (a+1)x^2 + (a+b-9)x + (a+b+15) = f(x)$$

karena f(x) habis dibagi (x - 1), maka:

(1) 0

$$\Rightarrow$$
 1³ + (a+1)1² + (a+b-9)1+(a+b+15)=f(1)

Ingat, bahwa nilai a+b=0

$$\Rightarrow 1+a+1+0-9+0+15=0$$

$$\Rightarrow a+8=0$$

$$\Rightarrow a = -8$$

Karena,
$$a+b=0 \Rightarrow -8+b=0 \Rightarrow b=8$$

Jawaban: A

- 5. Diketahui fungsi $g(x) = (x-1)^3 + (x+1)^2 + (x+2)$ dan f(x) = g(x+3). Jika f(x) dibagi $(x-1)^2$, maka sisanya adalah
 - A. 7x + 4
- D. 6x+4
- B. 7x
- E. 6x + 3
- C. 7x 4

Pembahasan SMART:

Fungsi f(x) diperoleh dengan menyubstitusikan nilai x+2 pada g(x), yaitu:

$$f(x) = g(x+3)$$

$$f(x) = ((x+3)-4)^3 + ((x+3)-2)^2 + ((x+3)-1)$$

$$f(x) = (x-1)^3 + (x+1)^2 + (x+2)$$

$$f(x) = x^3 - 2x^2 + 6x + 2$$

Untuk menentukan sisa pembagian f(x) oleh $(x-1)^2$ dapat menggunakan Teorema Sisa maupun pembagian dengan bagan, namun pada soal ini karena pembagi berderajat 2, maka lebih mudah jika membagi dengan menggunakan bagan, yaitu:

Jadi, sisanya adalah 7x.

Jawaban: B