서강대학교 컴퓨터공학과

재미있는 컴퓨터공학실험2

11季計 当五

김도영, 윤준서, 이규형

목차

01 플립플롭(SR, D, JK, T)

02 클럭, 래치

03 트리거 엣지, 마스터 슬레이브

플립플롭이란?

1bi+를 기억할 수 있는 순서회로, 피드백

내부의 상태값에 따라 출력이 발생하는 논리회로

작동 방식에 따라 SR, D, JK, T 타입

전기 신호가 지속적으로 공급되어야만 정보를 유지할 수 있는 휘발성 메모리

플립 플롭이 여러 개 모여있는 장치가 레지스터

RS Flip-Flop

Figure 6.16 *SR* flip flop state diagram.

Map 6.1 SR flip flop behavioral map.

Table 6.5 SR flip flop behavioral tables.

S	R	q	q^{\star}	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	
1	1	0	_	not
1	1	1	_	allowe

S	R	q*	
0	0	q	
0	1	Ô	
1	0	1	
1	1	_	not allowed

R	S	Q(t+1) (다음 상태)
0	0	현재 상태 유지
0	1	Q(t+1)을 1로 Set
1	0	Q(t+1) 0로 Reset
1	1	오류가 난다.

$$q^* = S + R'q$$

Set을 뜻하는 S가 활성화 상태이면 Q(++1)을 1로 Set Reset을 뜻하는 R이 활성화 되면 Q(++1)을 0으로 Reset R, S, 둘 다 활성화되어 1의 값을 갖는 경우, 오류 발생 위의 오류를 보완하는 것이 JK Flip-Flop

RS Flip-Flop² schematic

Ⅱ드백이란?

게이트의 출력이 다시 다른 게이트의 입력으로 들어오는 것

JK Flip-Flop

Figure 6.20 *JK* flip flop state diagram.

Map 6.2 *JK* flip flop behavioral map.

Table 6.7 *JK* flip flop behavioral tables.

\boldsymbol{J}	K	q	q^{\star}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

J	K	q^{\star}
0	0	q
0	1	$q \\ 0$
1	0	1
1	1	q'

J(S)	K(R)	Q(t+1) (다음 상태)		
0	0	Q(t) 현재 상태 유지		
0	1	0 Q(t+1)을 0으로 Rese		
1	0	1 Q(t+1)을 1로 Set		
1	1	Q'(t)	반전, 토글	

$$q^* = Jq' + K'q$$

RS Flip-Flop에서 S, R 값이 모두 1을 갖는 경우 오류 보완 Reset을 뜻하는 K가 활성화 되면 Q(++1)을 0으로 Reset Set을 뜻하는 J가 활성화 되면 Q(++1)을 1로 Set J와 K가 모두 1이면 Q(++1)은 반전된 상태, 토글 토글(+oggle): 클럭 신호마다 현재 상태와 반대 상태

JK Flip-Flop² schematic

클리어(clear) 신호는 플립플롭이나 가운터 같은 디지털 회 로를 초기 상태로 리셋하는 역할, 클럭의 의존 여부에 따라 동기 클리어 비동기 클리어로 나뉜다.

D Flip-Flop

Figure 6.9 *D* flip flop state diagram.

Figure 6.8 *D* flip flop diagrams.

D	Q(t)	Q(t+1)
0	0	0
0	1	0
1	0	1
1	1	1

Table 6.3 The *D* flip flop behavioral tables.

D	q	q^{\star}
0	0	0
0	1	0
1	0	1
1	1	1

D	q^{\star}
0	0
1	1

입력 값을 그대로 출력하는 Flip-Flop

이전 출력에 상관 없이 입력에 따라 출력값이 결정됨

D는 Data와 Delay의 약자로 신호를 지연시키는 역할

클럭이 활성화될 때만 새로운 D값이 Q에 반영

Reset, Set 값 대신 D와 D'을 연결함

D Flip-Flop² schematic

Figure 6.18 *T* flip flop state diagram.

The behavioral equation is

$$q^* = T \oplus q$$

Т	Q(t)	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

Table 6.6 T flip flop behavioral tables.

T	q	q^{\star}
0	0	0
0	1	1
1	0	1
1	1	0

T q[★]
 0 q
 1 q'

T Flip-Flop의 T는 Toggle(반전)의 뜻을 가짐 T가 0이면 이전 값을 유지하고, T가 1이면 토글 XOR게이트와 동일한 효과

T Flip-Flop² schematic

클릭(Clock)

IHS

· High와 Low가 주기적으로 등장하는 파형 신호

• 순차 논리 회로의 연산 시간을 맞추는 기준

· CPU의 처리 속도를 담당

· High로 시작해서 Low로 끝나는 한 번의 주기

클릭(Clock)

• 클럭의 주기 = 1 / 주파수

• 주기와 실제 작동 시간 사이의 효율성

• Duty cycle = 주기에 따른 High의 시간의 비율

• High와 Low의 전환 지점 Edge

Duty Cycle(%) =
$$\frac{T_{on}}{T_{on} + T_{off}} \cdot 100$$
$$= \frac{T_{on}}{T_{total}} \cdot 100$$

래치(Latch)

- · 두 개의 출력 상태 중 하나의 상태를 가지며, 그 출력을 바꿀 수 있게 만드는 하나 이상의 입력을 가지는 기억 소자
- 이전 출력을 현재 입력으로 가짐
- 클럭을 사용하지 않음 (비동기식)
- 두 개의 출력이 서로 보수 관계

SR Latch

• gated SR Latch

D Latch

SR Latch

S	R	Q	ŷ	상태
0	0	0	0	set
0	0	1	1	set
0	1	0	1	reset
1	0	1	0	reset
1	1	NA	NA	NA

SR Latch

gated SR Latch

E	5	R	Q	Q'	상태
0	0	0	이전	이전	set
1	0	0	이전	이전	set
1	0	1	0	1	reset
1	1	0	1	0	reset
1	1	1	NA	NA	NA

gated SR Latch

D Latch

E	D	Q	Q'	상태
0	0	이전	이전	set
0	1	이전	이전	set
1	0	0	1	reset
1	1	1	0	reset

D Latch

래치의 활용

• 레지스터의 기본 구성 요소

• RAM, 메모리 셀의 기본 구성 요소

• 데이터 버퍼

• 시스템 데이터 저장

Level Trigger

- · Trigger(트리거): 상태 변화를 촉발하는 기동신호
- · Level Trigger: 논리 상태가 High이거나 Low일 때만 입력 데이터를 받아들임
- Level Trigger 중
 논리 상태가 High일 때를 트리거로 인식하는 것
 ->high level trigger

논리 상태가 Low일 때를 트리거로 인식하는 것 -> low level trigger

Edge Trigger

Positive Edge Trigger

Negative Edge Trigger

- · Edge Trigger: 클럭 천이(클럭 에지)에서만 입력 데이터를 받아들임
- Edge Trigger 중
 상승 에지를 트리거로 인식하는 것
 -> 상승(또는 positive) 에지 트리거

하강 에지를 트리거로 인식하는 것 -> 하강(또는 negative) 에지 트리거

Comparison of triggers

Level Trigger

High level trigger라고 가정

SR 出力

S	R	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	X

Comparison of triggers

SR 플립플롭

S	R	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	X

Master-Slave structure

JK master slave flip flops

- · 마스터-슬레이브: 두 개의 플립플롭 혹은 래치를 직렬로 연결하여 안정성과 정확성을 높이는 구조
- 첫 번째 플립플롭이 마스터, 두 번째 플립플롭이 슬레이브.
- · 클럭 신호가 하이로 바뀌면, ->마스터 플립플롭은 입력을 받아들임. ->슬레이브 플립플롭은 이전의 값을 유지.
- · 클럭 신호가 로우로 바뀌면 ->마스터 플립플롭이 상태를 유지. ->슬레이브 플립플롭은 마스터의 출력을 받아들여 자신의 출력을 변경.

Examples of Master-Slave

Using D flip flops

Using JK flip flops

Racing in JK flip flop

Truth Table

J	K	Q _N	Q _{N+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

JK플립플롭은 출력이 보수가 된 다음에도 Clock Pulse가 계속 남아있게 되면, 다시 보수가 되면서 출력이 불안정하게 요동치는 문제점이 발생한다.

JK master slave flip flop

Truth Table

J	K	Q _N	Q _{N+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Setup time & Hold time

- Setup time: 상승(혹은 하강) 에지 전 출력을 유지하기 위한 최소 시간
- Hold time: 상승(혹은 하강) 에지 후 출력을 유지하기 위한 최소 시간
- · 구성 요소에 의해 결정되며, 데이터와 클럭이 오류를 출력하는 최소 시간을 측정하여 결정한다.

Setup time & Hold time

Setup time & Hold time

Solution to time violation

- · 클럭 주파수 감소 ->성능 저하
- · clock buffer: 버퍼를 이용해 클락에 delay를 주어 타이밍을 맞춘다

Solution to time violation

· register retiming 게이트를 다음 시스템으로 이동

 time stealing delay가 조금 있는 클럭을 두 번째 플립플롭에 연결

참고문헌

Marcovitz, Alan B. Introduction to Logic Design. 3rd ed., Pearson, 2010.