Tarea 3

ALUMNO: JORGE EDUARDO BRAVO SOTO

Rol: 202103004-2

Profesor: Alexander Quaas

CLASE: MAT125

1. Pregunta 1

1.1. Parte A

Demostraci'on. Sean K_1 y K_2 subconjuntos de $\mathbb R$ compactos, por el teorema de Heine-Borel un subconjunto de $\mathbb R$ es compacto si y solo si es acotado y cerrado, demostraremos $K_1 \cup K_2$ es cerrado y acotado.

Recordemos de las clases de topología que la unión finita de conjuntos cerrados es cerrada, por lo tanto $K_1 \cup K_2$ es cerrado pues es una unión finita. Dado que K_1 y K_2 son acotados existen M_1 y M_2 tal que son cotas de K_1 y K_2 respectivamente, sea $M = \max\{M_1, M_2\}$ entonces $x \in (K_1 \cup K_2) \Rightarrow x \leqslant M$. Dado que la unión es cerrada y acotado, por Heine-Borel es compacto.

1.2. Parte B

Demostración. Sean $(K_n)_{n\in\mathbb{N}}$ una familia de conjuntos compactos, entonces por Heine-Borel cada uno de ellos es cerrado y acotado de esto sigue que $\bigcap_{n\in\mathbb{N}} K_n$ es cerrado pues la intersección arbitraria de cerrados es cerrado. Luego $x\in\bigcap_{n\in\mathbb{N}} K_n \Rightarrow x\in K_1 \Rightarrow x\leqslant M$ pues K_1 es acotado. Por Heine-Borel $\bigcap_{n\in\mathbb{N}} K_n$ es compacto pues es cerrado y acotado. QUOD BRAT

2. Pregunta 2

2.1. Parte A

Demostración. Supongamos que lím $_{x\to a}$ $f(x)=+\infty$ y $0<|x-a|<\delta_g \Rightarrow M\leqslant g(x)\Rightarrow -M\geqslant -g(x)$

Sea A > 0 entonces existe δ_1 tal que

$$0 < |x - \alpha| < \delta_1 \Rightarrow f(x) > máx\{1, A - M\}$$

luego tomamos $\delta = \min\{\delta_1 \delta_q\}$ de esto sigue que

$$0 < |x - \alpha| < \delta \Rightarrow f(x) > máx\{1, A - M\} \geqslant A - M \geqslant A - g(x)$$

De las desigualdades sigue que

$$0 < |x - \alpha| < \delta \Rightarrow f(x) > A - g(x)$$

por lo tanto tenemos que

$$0 < |x - a| < \delta \Rightarrow f(x) + g(x) > A$$

Por definición obtenemos que $\lim_{x\to a} (f(x) + g(x)) = +\infty$

2.2. Parte B

Demostración. Supongamos que $\lim_{x\to a} f(x) = +\infty$ y que existe delta tal que $0 < |x-a| < \delta_g \Rightarrow g(x) > c$, para algún c positivo. Sea A > 0 dado, entonces por hipótesis existe δ_1 tal que

$$0 < |x - a| < \delta_1 \Rightarrow f(x) > \frac{A}{c}$$

Sea $\delta = \min\{\delta_q, \delta_1\}$ de este sigue que

$$0 < |x - a| < \delta_1 \le \delta \Rightarrow f(x) > \frac{A}{c} \Rightarrow f(x)c > A$$

pues c es positivo

y también tenemos que $0<|x-a|<\delta_g\leqslant\delta$ por lo que g(x)>c entonces obtenemos

$$0 < |x - a| < \delta \Rightarrow f(x)g(x) > f(x)c > A$$

Por definición $\lim_{x\to a} f(x)g(x) = +\infty$

QUOD ERAT DEM■

2.3. Parte C

Demostración. Sea g(x) una función tal que $\lim_{x\to a} g(x)=0$ y existe un $\delta_g>0$ tal que si $|x-a|<\delta_g \Rightarrow g(x)>0$, sea f(x) una función tal que existe δ_f tal que si $|x-a|<\delta_f \Rightarrow f(x)>c>0$, para algún c positivo. Luego sea A>0 dado. Sea $\delta=\min\{\{\delta_f,\delta_q,\delta_1\}\}$ donde δ_1 es aquel que cumple

$$|x-\alpha| < \delta_1 \Rightarrow |g(x)-0| < \frac{c}{A}$$

el cual existe pues el límite de x tendiendo a α de g(x) es 0 y c>0 al igual que A>0. Luego notar que si $|x-\alpha|<\delta_g \Rightarrow |g(x)|=g(x)$ pues g es positivo en esa vecindad de α . De esto sigue que

$$|x-\alpha| < \delta \Rightarrow g(x) < \frac{c}{A} \Rightarrow \frac{1}{g(x)} > \frac{A}{c} \Rightarrow \frac{c}{g(x)} > A$$

pero

$$|x - a| < \delta_f \leqslant \delta \Rightarrow f(x) > c$$

por lo tanto se sigue que

$$|x - a| < \delta \Rightarrow \frac{f(x)}{g(x)} > \frac{c}{g(x)} > A$$

Por definición $\lim_{x\to a} \frac{f(x)}{g(x)} = +\infty$

QUOD ERAT DEM■

2.4. Parte D

Demostración. Sea g(x) una función tal que $\lim_{x\to a} g(x) = +\infty$ y sea f(x) una función acotada en una vecindad de radio δ_f de α , es decir que existe M>0 tal que $0<|x-\alpha|<\delta_f\Rightarrow |f(x)|\leqslant M$. Sea $\epsilon>0$ dado, entonces existe δ_1 tal que

$$0 < |x - \alpha| < \delta_1 \implies g(x) > \frac{M}{\epsilon} > 0$$

dado que el límite de g(x), x tendiendo a a es infinito y ϵ , M son positivos. De esto sigue que $0 < |x - a| < \delta_1 \Rightarrow g(x) = |g(x)|$

Sea $\delta = \min(\{\delta_1, \delta_f\})$ luego tenemos que

$$0 < |x - a| < \delta \ \Rightarrow \ |g(x)| = g(x) > \frac{M}{\varepsilon} \ \Rightarrow \ |\frac{1}{g(x)}| < \frac{\varepsilon}{M} \ \Rightarrow \ |\frac{M}{g(x)}| < \varepsilon$$

pero dado que $0 < |x - a| < \delta_f \leqslant \delta \Rightarrow |f(x)| \leqslant M$ sigue que

$$0 < |x - a| < \delta \implies |\frac{f(x)}{g(x)}| \leqslant |\frac{M}{g(x)}| < \epsilon \implies |\frac{f(x)}{g(x)} - 0| < \epsilon$$

Por definición $\lim_{x\to a} \frac{f(x)}{g(x)} = 0$

QUOD ERAT DEM■

3. Pregunta 3

Demostración. Sea f, g: $X \to \mathbb{R}$ funciones, se define $f \lor g: X \to \mathbb{R}$ y $f \land g: X \to \mathbb{R}$ tal que $(f \lor g)(x) = máx\{f(x), g(x)\}$ y $(f \land g)(x) = mín\{f(x), g(x)\}$, demostraremos que si f y g son continuas en a entonces $f \lor g$ y $f \land g$ también lo son.

Procederemos por casos, dado $\varepsilon > 0$, supongamos que $f(\alpha) = g(\alpha)$ luego $(f \vee g)(\alpha) = f(\alpha) = g(\alpha)$ y $(f \wedge g)(\alpha) = f(\alpha) = g(\alpha)$ dado que f y g son continuas en α se tiene que existen $\delta_1 > 0$ y $\delta_2 > 0$ tal que

$$|x - a| < \delta_1 \Rightarrow |f(x) - f(a)| < \varepsilon$$

 $|x - a| < \delta_2 \Rightarrow |g(x) - g(a)| < \varepsilon$

Tomemos $\delta = \min\{\delta_1, \delta_2\}$ luego sigue que

$$|x - a| < \delta \Rightarrow |(f \lor g)(x) - (f \lor g)(a)| < \varepsilon$$

$$|x - a| < \delta \Rightarrow |(f \land g)(x) - (f \land g)(a)| < \varepsilon$$

Pues $(f \land g)(x) = f(x)$ o $(f \land g)(x) = g(x)$ (respectivamente para la otra función) y $(f \land g)(a) = f(a) = g(a)$ (respectivamente para la otra función) por lo tanto se tienen las desigualdades pues $|f(x) - f(a)| < \epsilon \land |g(x) - g(a)| < \epsilon$ si x esta en la vecindad de radio δ . por lo tanto si f(a) = g(a) las funciones son continuas en a, procederemos ahora con el siguiente caso.

Supongamos, sin pérdida de generalidad, que f(a) < g(a), luego $(f \vee g)(a) = g(a)$ y $(f \wedge g)(a) = f(a)$. Por teorema visto en clases y dado que f y g son continuas existe δ_1 tal que se cumpla que

$$|x - a| < \delta_1 \implies f(x) < g(x)$$

dado que f es continua en a existe δ_2 tal que

$$|x - a| < \delta_2 \Rightarrow |f(x) - f(a)| < \varepsilon$$

y dado que g es continua en α existe δ_3 tal que

$$|x - a| < \delta_3 \Rightarrow |g(x) - g(a)| < \varepsilon$$

luego tomemos $\delta_{\vee}=\min\{\delta_1,\delta_3\}$ y $\delta_{\wedge}=\min\{\delta_1,\delta_2\}$ de esto sigue que

$$\begin{aligned} |x - a| &< \delta_{\vee} \Rightarrow |(f \vee g)(x) - (f \vee g)(a)| = |g(x) - g(a)| < \varepsilon \\ |x - a| &< \delta_{\wedge} \Rightarrow |(f \wedge g)(x) - (f \wedge g)(a)| = |f(x) - f(a)| < \varepsilon \end{aligned}$$

Por lo tanto las funciones $f \lor g$ y $f \land g$ son continuas en a pues $\lim_{x \to a} (f \lor g)(x) = (f \lor g)(a)$ y $\lim_{x \to a} (f \land g)(x) = (f \land g)(a)$ por definición.

QUOD BRAT DEMM

4. Pregunta 4

4.1. Parte A

Demostración. (\Rightarrow) Sea $f: A \to \mathbb{R}$, $A \subset \mathbb{R}$ abierto y f continua en A. Demostraremos que $\{x \in A; f(x) < c\}$ y $\{x \in A; f(x) > c\}$ son abiertos para todo $c \in \mathbb{R}$.

Considere $a \in \{x \in A; f(x) < c\}$, dado que f es continua en A y en particular en a tenemos

$$\lim_{x \to a} f(x) = f(a) < c$$

Por lo tanto, por teorema visto en clases, existe un $\delta > 0$ tal que

$$|x - a| < \delta \implies f(x) < c$$

De esto sigue que

$$x \in (a - \delta, a + \delta) \iff |x - a| < \delta \implies f(x) < c \implies x \in \{x \in A; f(x) < c\}$$

Escrito de otra forma tenemos que $(a - \delta, a + \delta) \subset \{x \in A; f(x) < c\}$, por definición entonces $\{x \in A; f(x) < c\}$ abierto. El resultado para $\{x \in A; f(x) > c\}$ es totalmente análogo.

 (\Leftarrow) Procederemos por contradicción. Sea $f:A\to\mathbb{R}$ una función de un conjunto abierto en \mathbb{R} , luego tenemos que $\{x\in A; f(x)< c\}$ abierto y $\{x\in A; f(x)> c\}$, para todo $c\in\mathbb{R}$ y que f no es continua en A, por lo tanto existe un punto $a\in A$ donde existe una vecindad de radio δ_1 donde la función está definida, pues A es abierto tal que

$$\exists \varepsilon_0 > 0, \forall \delta > 0, |x - \alpha| < \delta \land |f(x) - f(\alpha)| \geqslant \delta_0 \tag{1}$$

Considere los conjuntos

$$\Omega_1 = \{x \in A; f(x) < f(a) + \epsilon_0\}$$
 $\Omega_2 = \{x \in A; f(x) > f(a) - \epsilon_0\}$

Donde ε_0 es el de (1), notar entonces que $\alpha \in \Omega_1$ y $\alpha \in \Omega_2$ pues $\varepsilon_0 > 0$. Luego dado que Ω_1 y Ω_2 son abierto tenemos que existen vecindades centradas en α tal que

$$\begin{aligned} |x-\alpha| &< \delta_2 \Rightarrow x \in \Omega_1 = \{x \in A; f(x) < f(\alpha) + \epsilon_0\} \Rightarrow f(x) < f(\alpha) + \epsilon_0 \Rightarrow f(x) - f(\alpha) < \epsilon_0 \\ |x-\alpha| &< \delta_3 \Rightarrow x \in \Omega_2 = \{x \in A; f(x) > f(\alpha) - \epsilon_0\} \Rightarrow f(x) > f(\alpha) - \epsilon_0 \Rightarrow -\epsilon_0 < f(x) - f(\alpha) \end{aligned}$$

Por transitividad entonces tenemos que

$$|x - \alpha| < \delta_2 \Rightarrow f(x) - f(\alpha) < \varepsilon_0$$

 $|x - \alpha| < \delta_3 \Rightarrow -\varepsilon_0 < f(x) - f(\alpha)$

Sea $\delta = \min(\{\delta_1, \delta_2, \delta_3\})$ se tienen todas las desigualdades anteriores y que f está definida en la vecindad de radio δ de esto sigue que

$$|x - a| < \delta \Rightarrow -\varepsilon_0 < f(x) - f(a) < \varepsilon_0 \Rightarrow |f(x) - f(a)| < \varepsilon_0$$

De (1) sigue la contradicción pues se supuso que para todo $\delta > 0$, $|x-a| < \delta \land |f(x)-f(a)| \geqslant \epsilon_0$ pero nosotros demostramos que si $|x-a| < \delta \Rightarrow |f(x)-f(a)| < \epsilon_0$, una contradicción.

4.2. Parte B

Demostración. (⇒) Sea f: F → \mathbb{R} , F ⊂ \mathbb{R} cerrado y f continua en F. Demostraremos que $\{x \in F; f(x) \le c\}$ y $\{x \in F; f(x) \ge c\}$ son cerrados. Lo demostraremos usando la caracterización de cerrados mediante sucesiones. Sea c arbitrario y $(x_n)_{n \in \mathbb{N}} \subset \{x \in a; f(x) \le c\}$ una sucesión

arbitraria tal que $\lim_{n\to\infty} x_n = a$, demostraremos que $a \in \{x \in F; f(x) \le c\}$. Notar que $a \in F$ pues F es cerrado, por lo tanto f(a) esta bien definido. Luego dado que la función es continua tenemos lo siguiente.

$$f(\alpha) = \lim_{x \to \alpha} f(x) = \lim_{n \to \infty} f(x_n)$$

Pero por los teoremas de orden de límite, dado que

$$x_n \in \{x \in F; f(x) \leqslant c\} \Rightarrow f(x_n) \leqslant c \Rightarrow \lim_{n \to \infty} f(x_n) \leqslant c$$

Por lo tanto tenemos que

$$f(a) = \lim_{n \to \infty} f(x_n) \leqslant c$$

Por lo tanto $a \in \{x \in F; f(x) \le c\}$ pues $f(a) \le c$. Por caracterización de conjuntos cerrados, dado que toda sucesión convergente converge a un punto en el conjunto, el conjunto $\{x \in F; f(x) \le c\}$ es cerrado. Análogamente para el otro conjunto.

(\Leftarrow) Procederemos por contradiccion, Suponga que $f: F \to \mathbb{R}$ tal que F es cerrado y f es no continua, Suponga tambien que $\{x \in F; f(x) \geqslant c\}$ es cerrado para todo $c \in \mathbb{R}$ al igual que $\{x \in F; f(x) \leqslant c\}$. Luego dado que f es no continua en F tenemos que existe $a \in F$ tal que lo siguiente se cumpla

$$\exists \varepsilon_0 > 0, \forall \delta > 0, |x - a| < \delta \land |f(x) - f(a)| \geqslant \delta_0 \tag{2}$$

Definimos la siguiente sucesion, $x_n=x$ tal que $|x-\alpha|<\frac{1}{n} \wedge |f(x)-f(\alpha)|\geqslant \epsilon_0$, estos x existen pues f es no continua. Notemos que $(x_n)_{n\in\mathbb{N}}\to \alpha$. Por la construccion de esta sucesion tenemos que $f(x_n)\geqslant f(\alpha)+\epsilon_0$ o $f(x_n)\leqslant f(\alpha)-\epsilon_0$. Por lo se cumple que existe una subsucesion x_{n_k} tal que $f(x_{n_k})\geqslant f(\alpha)+\epsilon_0$ o (no excluyente) existe una subsucesion (x_{n_k}) tal que $f(x_{n_k})\leqslant f(\alpha)-\epsilon_0$.

Supongamos lo primero es decir, existe (x_{n_k}) tal que $f(x_{n_k}) \ge f(\alpha) + \varepsilon_0$ Luego notemos que $x_{n_k} \in \{x \in F; f(x) \ge f(\alpha) + \varepsilon_0\}$ por hipotesis este conjunto es cerrado y notar que $\alpha \notin \{x \in F; f(x) \ge f(\alpha) + \varepsilon_0\}$ pues ε_0 es positivo. Pero $(x_{n_k}) \subset \{x \in F; f(x) \ge f(\alpha) + \varepsilon_0\}$ y $(x_{n_k}) \to \alpha$ pues es una subsucesion de la sucesion inicial. Pero $\{x \in F; f(x) \ge f(\alpha) + \varepsilon_0\}$ es cerrado por hipotesis y (x_{n_k}) es una sucesion convergente en este por lo tanto su limite esta en $\{x \in F; f(x) \ge f(\alpha) + \varepsilon_0\}$ pero esta converge a α . Por lo tanto una contradiccion pues $x \in \{x \in F; f(x) \ge f(\alpha) + \varepsilon_0\} \land x \notin \{x \in F; f(x) \ge f(\alpha) + \varepsilon_0\}$. El otro caso es totalmente analogo solamente que consideramos $\{x \in F; f(x) \le f(\alpha) - \varepsilon_0\}$.

De esto sigue la contradiccion pues no puede pasar ninguno de los 2 casos.

QUOD ERAT DEM■