si4ul

Release 0.1.0

omori.y

CONTENTS:

1	si4ul.changepoint_si module	1
2	si4ul.kmeans_si module 2.1 si4ul.si.kmeans_si module	3
3	si4ul.segmentation_si module 3.1 si4ul.si.segmentation_si module	9 1(
Ру	ython Module Index	13
In	ndex	15

SI4UL.CHANGEPOINT_SI MODULE

si4ul.changepoint_si.optseg_si(x, sigma=1, beta=1.5)

computing valid p-values for optimal changepoint by Selective Inference using Dynamic Programming.

Parameters

- **x**(array-like of shape (point-num)) time series data.
- **sigma** (*float*) standard deviation in distribution of time series data.
- **beta** (*float*) regularization factor.

Returns changepoint list and p-values of each changepoint.

Return type (array-like of shape (changepoint-num), array-like of shape (changepoint-num))

Examples

```
>>> seg, p_list = changepoint_si.optseg_si(x)
>>> print(seg)
[25, 40, 59, 80, 100, 125, 140, 159, 180]
>>> print(p_list)
[6.439051311970013e-06, 5.451462826100586e-07, 3.589542368255502e-07, 7.

-74132481356728e-05, 0.11719543493338598, 6.4387982662212394e-06, 1.

-1776732917248327e-06, 3.589542368255725e-07, 1.8180641069769048e-09]
```

si4ul.changepoint_si.optseg_si_oc(x, sigma=1, beta=1.5)

computing valid p-values for optimal changepoint by over-comditioning Selective Inference.

Parameters

- **x** (array-like of shape (point-num)) time series data.
- **sigma** (*float*) standard deviation in distribution of time series data.
- **beta** (*float*) regularization factor.

Returns changepoint list and p-values of each changepoint.

Return type (array-like of shape (changepoint-num), array-like of shape (changepoint-num))

Examples

```
>>> seg, p_list = changepoint_si.optseg_si(x)
>>> print(seg)
[25, 40, 59, 75, 80, 100, 125, 140, 159, 175, 180]
>>> print(p_list)
[0.013528694810211626, 0.05567852225768205, 0.329173206633249, 0.36014111520463954,__
-0.4101971284236369, 0.6981932657047393, 0.16996861755494708, 0.3719537702838958,__
-0.3592986205789473, 0.36014111520464676, 0.1196678816881915]
```

si4ul.changepoint_si.plot_changepoint_detection(x, sg_results, p_value_list, alpha, underlying=None, segment_size=0, title='OptSeg-SI')

the result of optimal changepoint after SI.

Parameters

- **x**(array-like of shape (point-num)) time series data.
- **sg_results** (array-like of shape (changepoint-num)) changepoint list.
- p_value_list (array-like of shape (changepoint-num)) p-values of each changepoint.
- alpha (float) significance level.
- underlying (array-like of shape (true changepoint-num)) mean values of true segment.
- **segment_size** (*float*) true segment size.
- **title** (*string*) plot title.

SI4UL.KMEANS_SI MODULE

si4ul.kmeans_si.all_clusters_combination_test(obs_model, test_gene=None, sigma=1.0) post clustering inference for all cluster combinations. If test_gene is set, test is PCI_gene. otherwise, test is PCI_cluster.

Parameters

- **obs_model** (KMeans) reffer to document of KMeans.
- **test_gene** (*int*) feature to compare.
- **sigma** (*float*) standard deviation in distribution.

Returns matrix of test statistics, matrix of homotopy PCI p-value and matrix of naive p-value.

Return type (array-like of shape(3, cluster_num, cluster_num))

Examples

si4ul.kmeans_si.kmeans(X, n_clusters)

k-means clustering algorithm.

Parameters

- $X(array-like \ of \ shape \ (n, \ d)) data \ matrix.$
- **n_clusters** (*int*) number of cluster.

Returns reffer to document of KMeans.

Return type KMeans

Examples

```
>>> print(kmeans_si.kmeans(X, K))
<si4ul.si.kmeans_si.KMeans at 0x102aef700>
```

si4ul.kmeans_si.pci_cluster(obs_model, comparison_clusters, sigma=1.0, max_iter=1000, random_seed=0, z_max=20)

post clustering inference for test between clusters.

Parameters

- **obs_model** (KMeans) reffer to document of KMeans.
- comparison_clusters (array-like of shape(2)) set of clusters to compare.
- **sigma** (*float*) standard deviation in distribution.
- max_iter (int) upper limit count of iteration in k-means algorithm.
- random_seed (int) seed of random for determine initial cluster.
- **z_max** (*float*) upper limit of parameter z on test statisites vector.

Returns test statistics, homotopy PCI p-value and naive p-value.

Return type (float, float, float)

Examples

```
>>> print(kmeans_si.pci_cluster(obs_model, comparison_clusters))
(5.245204424402314, 0.018632573868904267, 1.0612270479959528e-06)
```

si4ul.kmeans_si.pci_gene(obs_model, comparison_clusters, test_gene, sigma=1.0, max_iter=1000, random_seed=0, z_max=20)

post clustering inference for test between clusters about a feature.

Parameters

- **obs_model** (KMeans) reffer to document of KMeans.
- comparison_clusters (array-like of shape(2)) set of clusters to compare.
- **sigma** (*float*) standard deviation in distribution.
- **test_gene** (*int*) feature to compare.
- max_iter (int) upper limit count of iteration in k-means algorithm.
- random_seed (int) seed of random for determine initial cluster.
- **z_max** (*float*) upper limit of parameter z on test statisites vector.

Returns test statistics, homotopy PCI p-value and naive p-value.

Return type (float, float, float)

Examples

```
>>> print(kmeans_si.pci_gene(obs_model, comparison_clusters, gene_id))
(0.26352301450242993, 0.4212956294190716, 0.20005529456703786)
```

si4ul.kmeans_si.plot_histogram(obs_model, comparison_clusters, test_gene, is_plot_norm=False) plot histogram of distribution per cluster using test.

Parameters

- **obs_model** (KMeans) reffer to document of KMeans.
- comparison_clusters (array-like of shape(2)) set of clusters to compare.
- **test_gene** (*int*) feature to plot.
- **is_plot_norm** (*bool*) whether plot normal distribution in background.
- si4ul.kmeans_si.plot_p_matrix(matrix, digit=3, alpha=0.05)

plot matrix of p-value that is calculated by each cluster combinations.

Parameters

- matrix (array-like of shape(cluster_num, cluster_num)) matrix of p-value.
- **digit** (*int*) digit number to display.
- alpha (float) significant level.
- si4ul.kmeans_si.plot_scatter(obs_model, comparison_clusters, show_dims) plot scatter data in inputted 2-dims per cluster using test.

Parameters

- **obs_model** (KMeans) reffer to document of KMeans.
- comparison_clusters (array-like of shape(2)) set of clusters to compare.
- **show_dims** (array-like of shape(2)) set of dims to show.
- si4ul.kmeans_si.plot_statistics_matrix(matrix, digit=3)

plot matrix of statistics that is calculated by each cluster combinations.

Parameters

- matrix(array-like of shape(cluster_num, cluster_num)) matrix of test statistics.
- **digit** (*int*) digit number to display.
- si4ul.kmeans_si.plot_violin(obs_model, test_gene) plot violin per cluster using test and other.

Parameters

- **obs_model** (KMeans) reffer to document of KMeans.
- **test_gene** (*int*) feature to plot.

2.1 si4ul.si.kmeans_si module

```
class si4ul.si.kmeans_si.KMeans(X, n_clusters, max_iter=1000, random_seed=0)
      Bases: object
      this class returns the results of k-means clustering, we can get from kmeans_si.kmeans(), other kmeans_si APIs
      need this object to input.
      cluster_centers_
           cluster center matrix.
               Type array-like of shape(n_clusters, d)
      count
           count of iteration in k-means algorithm.
               Type int
      labels_
           label vector that each data join.
               Type array-like of shape(n)
      label_num_list
           list of the number of data contained in the cluster.
               Type array-like of shape(n_clusters)
      max_iter
           upper limit count of iteration in k-means algorithm.
               Type int
      n_clusters
           number of cluster.
               Type int
      random seed
           seed of random for determine initial cluster.
                Type int
      X
           data matrix.
               Type array-like of shape(n, d)
```

Examples

(continues on next page)

(continued from previous page)

```
>>> kMeans.labels_
array([1, 2, 0, 1, 2, 2, 1, 2, 1, 2])
>>> kMeans.label_num_list
[1, 4, 5]
>>> kMeans.count
2
```

CHAPTER

THREE

SI4UL.SEGMENTATION_SI MODULE

```
si4ul.segmentation_si.plot_histogram(local_white) plot histogram of pixel values in input image.
```

Parameters local_white (LocalWhite) - segmetation object.

si4ul.segmentation_si.plot_histogram_region(local_white, display_statistics=False) plot histogram of pixel values per region.

Parameters local_white (LocalWhite) - segmetation object.

si4ul.segmentation_si.**psegi_thresholding**(*local_white*, *sigma=10*) post segmentation inference for local white segmentation.

Parameters

- **local_white** (LocalWhite) segmetation object.
- **sigma** (*float*) standard deviation in distribution of input image.

Returns test statisitics, PSegI p-value, naive p-value.

Return type (float, float, float)

Examples

```
>>> print(segmentation_si.psegi_thresholding(local_white)) (31.08397312484288, 0.08085241645874175, 0.0)
```

```
si4ul.segmentation_si.thresholding(image\_path, result\_dir\_path, window\_size=50, bias=1.1, is\_blur=True, ksize=(11, 11), sigma\_x=0, sigma\_y=0, is\_output\_regions=False)
```

local white segmentation algorithm. If bias is bigger than 1, algorithm can detect black object. If bias is smaller than 1, algorithm can detect white object.

Parameters

- $image_path(string)$ image path to segmentation.
- result_dir_path (string) directory to store the segmentation results.
- window_size (int) length of the side of the square in the nearest pixel range.
- bias (float) bias used in threshold determination. If it's bigger than 1, algorithm can detect black object. If it's smaller than 1, algorithm can detect white object.
- **isBlur** (*bool*) whether to use Gaussian smoothing for image preprocessing.
- **ksize** (*Tuple(int, int)*) the side of the convolution window for Gaussian smoothing.

- **sigma_x** (*float*) standard deviation of x-coordinate for Gaussian smoothing.
- **sigma_y** (*float*) standard deviation of y-coordinate for Gaussian smoothing.
- **is_output_regions** (*bool*) wheter to make images of each regions.

Returns reffer to document of LocalWhite.

Return type LocalWhite

Examples

```
>>> print(segmentation_si.thresholding('./image.jpg', './result/image_18')) <si4ul.si.segmentation_si.LocalWhite at 0x10e33efa0>
```

3.1 si4ul.si.segmentation_si module

Bases: object

this class returns the results of local white segmentation. we can get from segmentation_si.thresholding(). other segmentation_si APIs need this object to input.

bias

bias used in threshold determination. If it's bigger than 1, algorithm can detect black object. If it's smaller than 1, algorithm can detect white object.

Type float

image

input image of segmentation.

Type array-like of shape (image_height, image_width)

image_gaussian

image after Gaussian smoothing.

Type array-like of shape (image_height, image_width)

image_height

height of image.

Type int

image_original

image matrix read in from the input image.

Type array-like of shape (image_height, image_width)

image_path

image path to segmentation.

Type string

image_width

width of image.

Type int

result_dir_path

directory to store the segmentation results.

Type string

window_size

length of the side of the square in the nearest pixel range.

Type int

Examples

PYTHON MODULE INDEX

S

```
si4ul.changepoint_si,1
si4ul.kmeans_si,3
si4ul.segmentation_si,9
si4ul.si.kmeans_si,6
si4ul.si.segmentation_si,10
```

14 Python Module Index

INDEX

A	si4ul.si.kmeans_si,6		
all_clusters_combination_test() (in module	si4ul.si.segmentation_si, 10		
si4ul.kmeans_si), 3	N		
В	n_clusters (si4ul.si.kmeans_si.KMeans attribute), 6		
bias (si4ul.si.segmentation_si.LocalWhite attribute), 10	0		
C	optseg_si() (in module si4ul.changepoint_si), 1 optseg_si_oc() (in module si4ul.changepoint_si), 1		
cluster_centers_ (si4ul.si.kmeans_si.KMeans at- tribute), 6	P		
count (si4ul.si.kmeans_si.KMeans attribute), 6	pci_cluster() (in module si4ul.kmeans_si), 4		
1	<pre>pci_gene() (in module si4ul.kmeans_si), 4</pre>		
image (si4ul.si.segmentation_si.LocalWhite attribute), 10 image_gaussian (si4ul.si.segmentation_si.LocalWhite	<pre>plot_changepoint_detection() (in module</pre>		
attribute), 10 image_height (si4ul.si.segmentation_si.LocalWhite attribute), 10	<pre>plot_histogram() (in module si4ul.segmentation_si), 9 plot_histogram_region() (in module</pre>		
<pre>image_original (si4ul.si.segmentation_si.LocalWhite</pre>	<pre>si4ul.segmentation_si), 9 plot_p_matrix() (in module si4ul.kmeans_si), 5</pre>		
<pre>image_path (si4ul.si.segmentation_si.LocalWhite</pre>	<pre>plot_scatter() (in module si4ul.kmeans_si), 5 plot_statistics_matrix() (in module</pre>		
${\it image_width} \ \ (\it si4ul.si.segmentation_si.LocalWhite} \ \ \it{at-tribute}), 10$	<pre>si4ul.kmeans_si), 5 plot_violin() (in module si4ul.kmeans_si), 5 psegi_thresholding() (in module</pre>		
K	si4ul.segmentation_si), 9		
KMeans (class in si4ul.si.kmeans_si), 6	R		
kmeans() (in module si4ul.kmeans_si), 3	random_seed (si4ul.si.kmeans_si.KMeans attribute), 6		
L	$\verb"result_dir_path" (si 4ul. si. segmentation_si. Local White$		
${\tt label_num_list} \ (\textit{si4ul.si.kmeans_si.KMeans} \ \textit{attribute}),$	attribute), 10		
6	S		
labels_(si4ul.si.kmeans_si.KMeans attribute), 6 LocalWhite (class in si4ul.si.segmentation_si), 10	si4ul.changepoint_si module,1		
M	si4ul.kmeans_si		
max_iter(si4ul.si.kmeans_si.KMeans attribute), 6	<pre>module, 3 si4ul.segmentation_si</pre>		
module	module, 9		
<pre>si4ul.changepoint_si, 1 si4ul.kmeans_si, 3</pre>	si4ul.si.kmeans_si		
si4ul.segmentation si.9	module, 6		

```
si4ul.si.segmentation_si
    module, 10

T
thresholding() (in module si4ul.segmentation_si), 9

W
window_size (si4ul.si.segmentation_si.LocalWhite attribute), 11

X
X (si4ul.si.kmeans_si.KMeans attribute), 6
```

16 Index