Universidad de la República - Facultad de Ingeniería - IMERL Matemática Discreta 2, semipresencial

Solución cuarta prueba (segundo parcial) - 1 de diciembre de 2016.

Ejercicio 1. (15 puntos) (Ejercicio 1 del segundo parcial del curso semipresencial de 2015)

- a. Probar que 2 es raíz primitiva módulo 53.
- **b.** Hallar todos los $x \in \mathbb{Z}$ tales que $x^{19} \equiv 32 \pmod{53}$.
- c. Archibaldo y Baldomero quieren pactar una clave común empleando el protocolo Diffie-Hellman. Para ésto fijan el primo p=53 y la raíz primitiva g=2. Archibaldo selecciona el número m=28 y le remite el número 49 a Baldomero. Éste selecciona el número n=5. ¿Cuál es la clave común k que acordaron Archibaldo y Baldomero?

Solución Ejercicio 1:

a. Observemos primero que $52=2^2\cdot 13$. Por lo tanto, si queremos probar que 2 es raíz primitva módulo 53, debemos probar que $2^{\frac{52}{p}}\not\equiv 1 \pmod{53}$, para todo p primo, con p|52. O sea debemos calcular 2^4 y 2^{26} .

n	$2^n \pmod{53}$
0	1 (mód 53)
1	$2 \pmod{53}$
2	$4 \pmod{53}$
3	8 (mód 53)
4	$16 \mod 53$
5	$32 \pmod{53}$
6	11 (mód 53)
7	$22 \pmod{53}$
8	44 (mód 53)
9	$35 \pmod{53}$
10	$17 \pmod{53}$
11	$34 \pmod{53}$
12	15 (mód 53)
13	$30 \pmod{53}$
14	7 (mód 53)
15	$14 \pmod{53}$
:	:

Luego $2^{26}=2^{13}\times 2^{13}\equiv 900\pmod{53}\equiv -1\pmod{53}.$ Entonces 2 es raíz primitiva módulo 53.

- b. Como $32=2^5$ la ecuación a resolver se transforma en: $x^{19}\equiv 2^5 \pmod{53}$. Por otro lado, como 2 es raíz primitva módulo 53, entonces para todo $x\in\mathbb{Z}$ existe $0\le t(x)\le 52$ tal que $x=2^{t(x)}$. Luego la ecuación a resolver se transforma en: $2^{t(x)^{19}}\equiv 2^5 \pmod{53}$. Nuevamente como 2 es raíz primitiva, la ecuación anterior es equivalente a: $19\cdot t(x)\equiv 5\pmod{52}$. Esto último a su vez es equivalente a $t(x)\equiv 3\pmod{52}$. Luego $x=2^3\pmod{53}$, o sea $x=8+53\cdot z$, con $z\in\mathbb{Z}$.
- c. Archibaldo toma m=28 y le envía $2^{28}\equiv 49\pmod{53}$ a Baldomero. Éste toma m=5 y le envía $49^5\pmod{53}$ a Archibaldo. O sea, $49^5\equiv (-4)^5\pmod{53}=-2^{10}\pmod{53}\equiv -17\pmod{53}$ (mód 53) $\equiv 36\pmod{53}$. O sea que la clave común acrodada es k=36.

Ejercicio 2. (20 puntos)

- a. Calcular el número de raíces primitivas en U(29).
- b. Encontrar todas las raíces primitivas de U(29). (Sugerencia: Calcular 2^n (mód 29), para todo $0 \le n \le 14$, para faciitar los cálculos posteriores.)
- c. Ordenar en forma creciente las raíces primitivas halladas en el ítem anterior: $r_1 \leq r_2 \leq r_3 \leq r_4 \leq r_5 \leq \dots$ Luego escribir la secuencia: $r_1r_50r_9r_3r_1r_7$. Finalmente traducir usando la numeración de los símbolos:

I	A I	В	С	D	Е	F	G	Н	Ι	J	K	L	М	N	Ñ	0	Р	Q	R	S	Т	U	٧	W	Х	Y	Z	_
() [1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27

d. Utilizando el método de Vigenère **decodificar** el siguiente texto, usando la palabra clave hallada en el ítem anterior:

$OZ_LPTSOKMS_BUCBRSNCG$

Solución Ejercicio 2:

- a. El número de raíces primitvas en U(n) (si hay) es $\varphi(\varphi(n))$, siendo φ la función de Euler. En este caso $\varphi(29)=28$, pues 29 es primo. Luego $\varphi(28)=\varphi(4\times7)=\varphi(4)\cdot\varphi(7)=2\cdot6=12$. Entonces el número de raíces primitvas en U(29) es 12.
- **b.** Para encontrar todas las raíces primitivas calculamos los valores sugeridos en la letra del ejercicio, en la siguiente tabla:

n	$2^n \pmod{29}$
0	1 (mód 29)
1	$2 \pmod{29}$
2	$4 \pmod{29}$
3	$8~ m m\acute{o}d29$
4	16 (mód 29)
5	$3~\mathrm{m\'od}29$
6	$6 \pmod{29}$
7	12 (mód 29)
8	24 (mód 29)
9	$19 \text{ m}\acute{ ext{o}}d29$
10	9 (mód 29)
11	$18 \text{ m}\acute{ ext{o}}d29$
12	7 (mód 29)
13	$14 \text{ m}\acute{ ext{o}}d29$
14	$-1 \pmod{29}$
:	:
•	•

Luego se concluyen varias cosas de la tabla anterior:

- Por un lado $2^{14} \not\equiv 1 \pmod{29}$ y también se verifica: $2^4 \not\equiv 1 \pmod{29}$. Entonces o(2) = 28, concluyendo que 2 es raíz primitiva en U(29).
- Como 2 es raíz primitiva, entonces 2^s (mód 29) es raíz primitiva para todo $s \in \mathbb{N}$ tal que mcd(s, 28) = 1. Entonces las que están marcadas en "negrita" en la tabla son también raíces primitivas. Así que tenemos hasta ahora las siguientes raíces primitivas: 2, 3, 8, 14, 18 y 19.

- Por último puede observarse que -2, -3, -8, -14, -18 y -19 son raíces primitivas de U(29). O sea, 27, 26, 21, 15, 11 y 10 son raíces primitivas de U(29). Sugerimos tres caminos para probar la última afirmación.
 - Completar la tabla anterior hasta n = 28.
 - Probar teóricamente que si a es raíz primitva en U(29) entonces (-a) también.
 - Hacer las cuentas a mano en cada caso.
- c. Por lo tanto las raíces primitivas, ordenadas en forma creciente son:

$$2 \le 3 \le 8 \le 10 \le 11 \le 14 \le 15 \le 18 \le 19 \le 21 \le 26 \le 27.$$

La palabra clave es: CLASICO (sería CLÁSICO).

d. Por último decodificando el mensaje oculto

$$OZ_LPTSOKMS_BUCBRSNCG$$

utilizando Vigenère, obtenemos el mensaje:

$NO_TIREN_MAS_GARRAFAS$

Ejercicio 3. (10 puntos) Describir el "Método de Fermat" de ataque al RSA, y demostrar la validez del algoritmo planteado.

Solución Ejercicio 3

Ver los apuntes de Teórico, Capítulo 5, ítem 5.3.4, Método de Fermat de ataque al RSA.