Gallardo Marie Note: 9/20 (score total : 9/20)

+87/1/52+

QCM THLR 4

	Nom et prénom, lisibles :
	Callardo 00 1 1 2 3 4 5 6 7 18 19
	1
/2	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « × » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. I'ai lu les instructions et mon sujet est complet: les 2 entêtes sont +87/1/xx+···+87/2/xx+.
	Q.2 Le langage $\{ \boxtimes^n \triangle^n \mid \forall n \in \mathbb{N} \}$ est
/2	☐ fini ☐ vide ■ non reconnaissable par automate fini ☐ rationnel
	Q.3 Le langage $\{a^n b^m \mid \forall n, m \in \mathbb{N}\}$ est
/2	☐ non reconnaissable par automate
	Q.4 Un automate fini qui a des transitions spontanées
/2	\square accepte ε \square n'accepte pas ε \square est déterministe \boxtimes n'est pas déterministe
/2	 Q.5 Un langage quelconque □ peut n'être inclus dans aucun langage dénoté par une expression rationnelle □ n'est pas nécessairement dénombrable ≅ est toujours inclus (⊆) dans un langage rationnel □ peut avoir une intersection non vide avec son complémentaire Q.6 Si un automate de n états accepte aⁿ, alors il accepte
1/2	
	Q.7 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:
1/2	\square L_2 est rationnel $\textcircled{\textbf{B}}$ L_1, L_2 sont rationnels \boxtimes L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ \square L_1 est rationnel
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
/2	\square Il n'existe pas. \square $\frac{n(n+1)(n+2)(n+3)}{4}$ $\not\sqsubseteq$ 2^n \square 4^n
	Q.9 Déterminiser cet automate. $\xrightarrow{a,b} \xrightarrow{a} \xrightarrow{b}$

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

 \square $Det(T(Det(T(Det(\mathcal{A})))))$ \Box $T(Det(T(Det(\mathscr{A}))))$ 2/2 \bigcirc Det(T(Det(T(\mathcal{A}))))

- \Box $T(Det(T(Det(T(\mathcal{A})))))$
- Fin de l'épreuve.

-1/2