Задание 1. Возьмите матрицы A и B из таблицы 1 в соответствии с вашим вариантом и рассмотрите систему

$$\dot{x} = Ax + Bu$$
.

Выполните следующие шаги и приведите в отчёте результаты всех вычислений, схемы моделирования, графики и выводы:

- \bullet Найдите собственные числа матрицы A и определите управляемость каждого из них. Сделайте вывод об управляемости и стабилизируемости системы.
- Постройте схему моделирования системы $\dot{x} = Ax + Bu$ с регулятором u = Kx.
- Для каждого желаемого спектра матрицы A + BK из таблицы 1:
 - Найдите соответствующую матрицу регулятора K.
 - Выполните компьютерное моделирование и постройте графики x(t) и u(t) замкнутой системы при начальных условиях $x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.
- Сделайте выводы.

Задание 2. Возьмите матрицы A и C из таблицы 2 в соответствии c вашим вариантом и рассмотрите систему

$$\dot{x} = Ax, \quad y = Cx.$$

Выполните следующие шаги и приведите в отчёте результаты всех вычислений, схемы моделирования, графики и выводы:

- \bullet Найдите собственные числа матрицы A и определите наблюдаемость каждого из них. Сделайте вывод о наблюдаемости и обнаруживаемости системы.
- Постройте схему моделирования системы $\dot{x} = Ax$, y = Cx с наблюдателем состояния $\dot{\hat{x}} = A\hat{x} + L(C\hat{x} y)$.
- Для каждого желаемого спектра матрицы A + LC из таблицы 2:
 - Найдите соответствующую матрицу наблюдателя L.
 - Выполните моделирование с начальными условиями $x(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ и $\hat{x}(0) = \begin{bmatrix} 2 & 0 & 0 & -1 \end{bmatrix}^T$. Постройте сравнительные графики x(t) и $\hat{x}(t)$, а также график ошибки наблюдателя $e(t) = x(t) \hat{x}(t)$.
- Сделайте выводы.

Задание 3. Возьмите матрицы A, B, C из таблицы 3 в соответствии с вашим вариантом и рассмотрите систему

 $\begin{cases} \dot{x} = Ax + Bu, \\ y = Cx. \end{cases}$

Выполните следующие шаги и приведите в отчёте результаты всех вычислений, схемы моделирования, графики и выводы:

- ullet Найдите собственные числа матрицы A. Определите управляемость и наблюдаемость каждого из них. Сделайте вывод об управляемости, наблюдаемости, стабилизируемости и обнаруживаемости системы.
- Постройте схему моделирования приведённой системы с регулятором, состоящим из наблюдателя состояния $\dot{\hat{x}} = A\hat{x} + Bu + L(C\hat{x} y)$ и закона управления $u = K\hat{x}$.
- Задайтесь желаемыми спектрами матриц A+BK и A+LC такими, чтобы замкнутая система была устойчива. Найдите соответствующие матрицы K и L.
- Задайтесь начальными условиями и выполните моделирование. Постройте графики x(t), $\hat{x}(t)$, y(t), $\hat{y}(t) = C\hat{x}(t)$, u(t) и $e(t) = x(t) \hat{x}(t)$.
- Сделайте выводы.

Таблица 1: Исходные данные для задания 1

Номер варианта	Матрица <i>А</i> Матрица <i>В</i>		Желаемые спектры $\sigma(A+BK)$	
Вариант 1	$A = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & -4 & 5 \end{bmatrix}$	$B = \begin{bmatrix} 0 \\ 4 \\ 0 \\ 2 \end{bmatrix}$		
Вариант 2	$A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & -3 & 1 \end{bmatrix}$	$B = \begin{bmatrix} 0 \\ 5 \\ 0 \\ 2 \end{bmatrix}$		
Вариант 3	$A = \begin{bmatrix} -3 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & -3 & 4 \end{bmatrix}$	$B = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 3 \end{bmatrix}$		
Вариант 4	$A = \begin{bmatrix} -4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & -5 & 2 \end{bmatrix}$	$B = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 8 \end{bmatrix}$		
Вариант 5	$A = \begin{bmatrix} -5 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 8 & 6 \\ 0 & 0 & -6 & 8 \end{bmatrix}$	$B = \begin{bmatrix} 0 \\ 2 \\ 0 \\ 1 \end{bmatrix}$		
Вариант 6	$A = \begin{bmatrix} -6 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 9 & 5 \\ 0 & 0 & -5 & 9 \end{bmatrix}$	$B = \begin{bmatrix} 0 \\ 5 \\ 0 \\ 1 \end{bmatrix}$		
Вариант 7	$A = \begin{bmatrix} -7 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 7 \\ 0 & 0 & -7 & 2 \end{bmatrix}$	$B = \begin{bmatrix} 0 \\ 7 \\ 0 \\ 6 \end{bmatrix}$		

Таблица 1: Исходные данные для задания 1

Номер варианта	Матрица <i>А</i> Матрица <i>В</i>		Желаемые спектры $\sigma(A+BK)$	
Вариант 8	$A = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & -4 & 3 \end{bmatrix}$	$B = \begin{bmatrix} 0 \\ 5 \\ 0 \\ 6 \end{bmatrix}$		
Вариант 9	$A = \begin{bmatrix} -2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & -3 & 4 \end{bmatrix}$	$B = \begin{bmatrix} 0 \\ 2 \\ 0 \\ 5 \end{bmatrix}$		
Вариант 10	$A = \begin{bmatrix} -3 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & -3 & 3 \end{bmatrix}$	$B = \begin{bmatrix} 0 \\ 7 \\ 0 \\ 1 \end{bmatrix}$		
Вариант 11	$A = \begin{bmatrix} -4 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & -5 & 1 \end{bmatrix}$	$B = \begin{bmatrix} 0 \\ 2 \\ 0 \\ 9 \end{bmatrix}$		
Вариант 12	$A = \begin{bmatrix} -5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & -6 & 2 \end{bmatrix}$	$B = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 3 \end{bmatrix}$		
Вариант 13	$A = \begin{bmatrix} -6 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & -5 & 2 \end{bmatrix}$	$B = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \end{bmatrix}$		
Вариант 14	$A = \begin{bmatrix} -7 & 0 & 0 & 0 \\ 0 & 7 & 0 & 0 \\ 0 & 0 & 4 & 7 \\ 0 & 0 & -7 & 4 \end{bmatrix}$	$B = \begin{bmatrix} 0 \\ 3 \\ 0 \\ 2 \end{bmatrix}$		

Таблица 2: Исходные данные для задания 2

Номер варианта	Матрица <i>А</i>	Матрица <i>С</i>	Желаемые спектры $\sigma(A+LC)$
Вариант 1	$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & -3 & 0 \end{bmatrix}$	$C^T = \begin{bmatrix} 0 \\ 2 \\ 3 \\ 0 \end{bmatrix}$	
Вариант 2	$A = \begin{bmatrix} 0 & 2 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & -4 & 0 \end{bmatrix}$	$C^T = \begin{bmatrix} 0 \\ 3 \\ 2 \\ 0 \end{bmatrix}$	
Вариант 3	$A = \begin{bmatrix} 0 & 5 & 0 & 0 \\ -5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$	$C^T = \begin{bmatrix} 0 \\ 9 \\ 1 \\ 0 \end{bmatrix}$	
Вариант 4	$A = \begin{bmatrix} 0 & 3 & 0 & 0 \\ -3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & -4 & 0 \end{bmatrix}$	$C^T = \begin{bmatrix} 0 \\ 5 \\ 9 \\ 0 \end{bmatrix}$	
Вариант 5	$A = \begin{bmatrix} 0 & 2 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & -7 & 0 \end{bmatrix}$	$C^T = \begin{bmatrix} 0 \\ 1 \\ 6 \\ 0 \end{bmatrix}$	
Вариант 6	$A = \begin{bmatrix} 0 & 7 & 0 & 0 \\ -7 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$	$C^T = \begin{bmatrix} 0 \\ 5 \\ 5 \\ 0 \end{bmatrix}$	
Вариант 7	$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 8 \\ 0 & 0 & -8 & 0 \end{bmatrix}$	$C^T = \begin{bmatrix} 0 \\ 4 \\ 1 \\ 0 \end{bmatrix}$	

Таблица 2: Исходные данные для задания 2

Номер варианта	Матрица <i>А</i>	Матрица <i>С</i>	Желаемые спектры $\sigma(A+LC)$
Вариант 8	$A = \begin{bmatrix} 0 & 3 & 0 & 0 \\ -3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$	$C^T = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 3 \end{bmatrix}$	
Вариант 9	$A = \begin{bmatrix} 0 & 4 & 0 & 0 \\ -4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{bmatrix}$	$C^T = \begin{bmatrix} 3 \\ 0 \\ 0 \\ 2 \end{bmatrix}$	
Вариант 10	$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & -5 & 0 \end{bmatrix}$	$C^T = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 9 \end{bmatrix}$	
Вариант 11	$A = \begin{bmatrix} 0 & 4 & 0 & 0 \\ -4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & -3 & 0 \end{bmatrix}$	$C^T = \begin{bmatrix} 5 \\ 0 \\ 0 \\ 9 \end{bmatrix}$	
Вариант 12	$A = \begin{bmatrix} 0 & 7 & 0 & 0 \\ -7 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{bmatrix}$	$C^T = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 6 \end{bmatrix}$	
Вариант 13	$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 7 \\ 0 & 0 & -7 & 0 \end{bmatrix}$	$C^T = \begin{bmatrix} 5 \\ 0 \\ 0 \\ 5 \end{bmatrix}$	
Вариант 14	$A = \begin{bmatrix} 0 & 8 & 0 & 0 \\ -8 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix}$	$C^T = \begin{bmatrix} 4 \\ 0 \\ 0 \\ 1 \end{bmatrix}$	

Таблица 3: Исходные данные для задания 3

Номер варианта	Матрица А	Матрица <i>В</i>	Матрица С
Вариант 1	$A = \begin{bmatrix} 4 & -2 & 0 & 6 \\ -2 & 4 & -6 & 0 \\ 0 & -6 & 4 & 2 \\ 6 & 0 & 2 & 4 \end{bmatrix}$	$B = \begin{bmatrix} 5 \\ 7 \\ 1 \\ 9 \end{bmatrix}$	$C = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 2 & 0 & 2 \end{bmatrix}$
Вариант 2	$A = \begin{bmatrix} 2 & 0 & -4 & 2 \\ 0 & 2 & -2 & 4 \\ -4 & -2 & 2 & 0 \\ 2 & 4 & 0 & 2 \end{bmatrix}$	$B = \begin{bmatrix} 8 \\ 6 \\ 4 \\ 2 \end{bmatrix}$	$C = \begin{bmatrix} 2 & 0 & 0 & 2 \\ -1 & 1 & 1 & 1 \end{bmatrix}$
Вариант 3	$A = \begin{bmatrix} 3 & -3 & -5 & 7 \\ -3 & 3 & -7 & 5 \\ -5 & -7 & 3 & 3 \\ 7 & 5 & 3 & 3 \end{bmatrix}$	$B = \begin{bmatrix} 7 \\ 5 \\ 13 \\ 17 \end{bmatrix}$	$C = \begin{bmatrix} 1 & -1 & 1 & 1 \\ -1 & 3 & 1 & 3 \end{bmatrix}$
Вариант 4	$A = \begin{bmatrix} 5 & -7 & -5 & 1 \\ -7 & 5 & -1 & 5 \\ -5 & -1 & 5 & 7 \\ 1 & 5 & 7 & 5 \end{bmatrix}$	$B = \begin{bmatrix} 5 \\ 7 \\ 1 \\ 9 \end{bmatrix}$	$C = \begin{bmatrix} 0 & 0 & 2 & 2 \\ 1 & 1 & -1 & 1 \end{bmatrix}$
Вариант 5	$A = \begin{bmatrix} 5 & -9 & -7 & 1 \\ -9 & 5 & -1 & 7 \\ -7 & -1 & 5 & 9 \\ 1 & 7 & 9 & 5 \end{bmatrix}$	$B = \begin{bmatrix} 3 \\ 3 \\ 1 \\ 3 \end{bmatrix}$	$C = \begin{bmatrix} 2 & -2 & 2 & 2 \\ -2 & 4 & 2 & 4 \end{bmatrix}$
Вариант 6	$A = \begin{bmatrix} 5 & -5 & -9 & 3 \\ -5 & 5 & -3 & 9 \\ -9 & -3 & 5 & 5 \\ 3 & 9 & 5 & 5 \end{bmatrix}$	$B = \begin{bmatrix} 1 \\ 9 \\ 7 \\ 5 \end{bmatrix}$	$C = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 0 & 4 & 0 & 4 \end{bmatrix}$
Вариант 7	$A = \begin{bmatrix} 2 & 0 & -4 & 2 \\ 0 & 2 & -2 & 4 \\ -4 & -2 & 2 & 0 \\ 2 & 4 & 0 & 2 \end{bmatrix}$	$B = \begin{bmatrix} 2\\4\\6\\8 \end{bmatrix}$	$C = \begin{bmatrix} -2 & 2 & 2 & 2 \\ 2 & 0 & 0 & 2 \end{bmatrix}$

Таблица 3: Исходные данные для задания 3

Номер варианта	Матрица А	Матрица В	Матрица С
Вариант 8	$A = \begin{bmatrix} 3 & -11 & -7 & 5 \\ -11 & 3 & -5 & 7 \\ -7 & -5 & 3 & 11 \\ 5 & 7 & 11 & 3 \end{bmatrix}$	$B = \begin{bmatrix} 2\\4\\2\\4 \end{bmatrix}$	$C = \begin{bmatrix} 2 & -2 & 2 & 2 \\ 2 & 4 & -2 & 4 \end{bmatrix}$
Вариант 9	$A = \begin{bmatrix} 5 & -7 & -5 & 1 \\ -7 & 5 & -1 & 5 \\ -5 & -1 & 5 & 7 \\ 1 & 5 & 7 & 5 \end{bmatrix}$	$B = \begin{bmatrix} 14\\10\\6\\2 \end{bmatrix}$	$C = \begin{bmatrix} 1 & -1 & 3 & 3 \\ 2 & 2 & -2 & 2 \end{bmatrix}$
Вариант 10	$A = \begin{bmatrix} 4 & -2 & 0 & 6 \\ -2 & 4 & -6 & 0 \\ 0 & -6 & 4 & 2 \\ 6 & 0 & 2 & 4 \end{bmatrix}$	$B = \begin{bmatrix} 11 \\ -1 \\ 7 \\ 9 \end{bmatrix}$	$C = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 3 & -1 & 3 \end{bmatrix}$
Вариант 11	$A = \begin{bmatrix} 5 & -5 & -9 & 3 \\ -5 & 5 & -3 & 9 \\ -9 & -3 & 5 & 5 \\ 3 & 9 & 5 & 5 \end{bmatrix}$	$B = \begin{bmatrix} 2 \\ 6 \\ 6 \\ 2 \end{bmatrix}$	$C = \begin{bmatrix} 1 & -1 & 1 & 1 \\ 1 & 3 & -1 & 3 \end{bmatrix}$
Вариант 12	$A = \begin{bmatrix} 3 & -3 & -5 & 7 \\ -3 & 3 & -7 & 5 \\ -5 & -7 & 3 & 3 \\ 7 & 5 & 3 & 3 \end{bmatrix}$	$B = \begin{bmatrix} 16\\12\\12\\12\\12 \end{bmatrix}$	$C = \begin{bmatrix} 3 & -1 & 1 & 3 \\ -2 & 2 & 2 & 2 \end{bmatrix}$
Вариант 13	$A = \begin{bmatrix} 3 & -11 & -7 & 5 \\ -11 & 3 & -5 & 7 \\ -7 & -5 & 3 & 11 \\ 5 & 7 & 11 & 3 \end{bmatrix}$	$B = \begin{bmatrix} 4\\4\\2\\2 \end{bmatrix}$	$C = \begin{bmatrix} -3 & 3 & 7 & 7 \\ 2 & 2 & -2 & 2 \end{bmatrix}$
Вариант 14	$A = \begin{bmatrix} 5 & -9 & -7 & 1 \\ -9 & 5 & -1 & 7 \\ -7 & -1 & 5 & 9 \\ 1 & 7 & 9 & 5 \end{bmatrix}$	$B = \begin{bmatrix} 1 \\ 5 \\ 3 \\ 5 \end{bmatrix}$	$C = \begin{bmatrix} -2 & 8 & 2 & 8 \\ 2 & -2 & 2 & 2 \end{bmatrix}$