Algorytmiczna teoria grafów Klasyczne kolorowanie wierzchołków i krawędzi grafu

dr Hanna Furmańczyk

13 stycznia 2017

Definicja

Pokolorowaniem wierzchołków grafu G=(V,E) k kolorami nazywamy funkcję $c:V\to\{1,2,\ldots,k\}$ taką, że $c(u)\neq c(v)$ dla każdej krawędzi $\{u,v\}\in E$. Najmniejsze takie k, dla którego instnieje k-pokolorowanie grafu G nazywamy liczbą chromatyczną oznaczamy przez $\chi(G)$.

Definicja

Pokolorowaniem wierzchołków grafu G=(V,E) k kolorami nazywamy funkcję $c:V\to\{1,2,\ldots,k\}$ taką, że $c(u)\neq c(v)$ dla każdej krawędzi $\{u,v\}\in E$. Najmniejsze takie k, dla którego instnieje k-pokolorowanie grafu G nazywamy liczbą chromatyczną oznaczamy przez $\chi(G)$.

Przykład, zastosowania - tablica

Twierdzenie

Problem k-kolorowania grafu G jest NP-trudnym dla $k \geq 3$.

Twierdzenie

Problem k-kolorowania grafu G jest NP-trudnym dla $k \geq 3$.

redukcja z problemu 3-SAT

Twierdzenie

Problem k-kolorowania grafu G jest NP-trudnym dla $k \geq 3$.

redukcja z problemu 3-SAT

Wielomianowe algorytmy przybliżone, heurystyki, algorytmy wykładnicze.

Dane wejściowe: spójny graf G = (V, E).

Dane wyjściowe: 2-pokolorowanie G lub informacja, że takie pokolorowanie nie istnieje.

• weź dowolny wierzchołek v, c(v) := 1

Dane wejściowe: spójny graf G = (V, E).

- weź dowolny wierzchołek v, c(v) := 1
- powtarzaj aż do skutku:

Dane wejściowe: spójny graf G = (V, E).

- weź dowolny wierzchołek v, c(v) := 1
- powtarzaj aż do skutku:
 - weź wszystkie niepokolorowane wierzchołki sąsiednie do wierzchołków kolorowanych w poprzedniej iteracji

Dane wejściowe: spójny graf G = (V, E).

- weź dowolny wierzchołek v, c(v) := 1
- powtarzaj aż do skutku:
 - weź wszystkie niepokolorowane wierzchołki sąsiednie do wierzchołków kolorowanych w poprzedniej iteracji
 - jeżeli wśród nich żadne dwa nie są połączone krawędzią, to pokoloruj je kolorem innym niż w poprzedniej iteracji

Dane wejściowe: spójny graf G = (V, E).

- weź dowolny wierzchołek v, c(v) := 1
- powtarzaj aż do skutku:
 - weź wszystkie niepokolorowane wierzchołki sąsiednie do wierzchołków kolorowanych w poprzedniej iteracji
 - jeżeli wśród nich żadne dwa nie są połączone krawędzią, to pokoloruj je kolorem innym niż w poprzedniej iteracji
 - w przeciwnym przypadku, 2-pokolorowanie grafu G nie istnieje.

Dane wejściowe: spójny graf G = (V, E).

Dane wyjściowe: 2-pokolorowanie G lub informacja, że takie pokolorowanie nie istnieje.

- weź dowolny wierzchołek v, c(v) := 1
- powtarzaj aż do skutku:
 - weź wszystkie niepokolorowane wierzchołki sąsiednie do wierzchołków kolorowanych w poprzedniej iteracji
 - jeżeli wśród nich żadne dwa nie są połączone krawędzią, to pokoloruj je kolorem innym niż w poprzedniej iteracji
 - w przeciwnym przypadku, 2-pokolorowanie grafu G nie istnieje.

Przykład

 $\chi(G)=2$ wtedy i tylko wtedy, gdy G jest niepustym grafem dwudzielnym (spójnym lub nie).

 $\chi(G)=2$ wtedy i tylko wtedy, gdy G jest niepustym grafem dwudzielnym (spójnym lub nie).

Obserwacja

 $\chi(G)=1$ wtedy i tylko wtedy, gdy G jest grafem pustym (bez żadnej krawędzi).

 $\chi(G)=2$ wtedy i tylko wtedy, gdy G jest niepustym grafem dwudzielnym (spójnym lub nie).

Obserwacja

 $\chi(G)=1$ wtedy i tylko wtedy, gdy G jest grafem pustym (bez żadnej krawędzi).

Kiedy $\chi(G) = 3$?

Problem trudny. Znane są niektóre klasy grafów 3-chromatycznych

 $\chi(G)=2$ wtedy i tylko wtedy, gdy G jest niepustym grafem dwudzielnym (spójnym lub nie).

Obserwacja

 $\chi(G)=1$ wtedy i tylko wtedy, gdy G jest grafem pustym (bez żadnej krawędzi).

Kiedy $\chi(G) = 3$?

Problem trudny. Znane są niektóre klasy grafów 3-chromatycznych np. nieparzyste cykle, graf Petersena, koła W_n , gdzie n jest parzyste, ...

Algorytm z nawrotami - złożoność wykładnicza

Dane wejściowe: graf G = (V, E), liczba nat. k.

Dane wyjściowe: pokolorowanie wierzchołków $G\ k$ kolorami lub

informacja, że takie pokolorowanie nie istnieje.

• dla każdego $v \in V$: c(v) := 0 (0 oznacza *brak koloru*)

- dla każdego $v \in V$: c(v) := 0 (0 oznacza brak koloru)
- włóż pierwszy wierzchołek na stos

- dla każdego $v \in V$: c(v) := 0 (0 oznacza brak koloru)
- włóż pierwszy wierzchołek na stos
- dopóki stos nie jest pusty, wykonuj:

- dla każdego $v \in V$: c(v) := 0 (0 oznacza *brak koloru*)
- włóż pierwszy wierzchołek na stos
- dopóki stos nie jest pusty, wykonuj:
 - u wierzchołek na wierzchu stosu
 - próbujemy przypisać do u kolor (spośród $\{1,\ldots,k\}$), który:

- dla każdego $v \in V$: c(v) := 0 (0 oznacza *brak koloru*)
- włóż pierwszy wierzchołek na stos
- dopóki stos nie jest pusty, wykonuj:
 - *u* wierzchołek na wierzchu stosu
 - próbujemy przypisać do u kolor (spośród $\{1,\ldots,k\}$), który:
 - ullet jest większy od obecnego koloru c(u)
 - nie koliduje z kolorami wierzchołków ze stosu

- dla każdego $v \in V$: c(v) := 0 (0 oznacza *brak koloru*)
- włóż pierwszy wierzchołek na stos
- dopóki stos nie jest pusty, wykonuj:
 - *u* wierzchołek na wierzchu stosu
 - próbujemy przypisać do u kolor (spośród $\{1,\ldots,k\}$), który:
 - ullet jest większy od obecnego koloru c(u)
 - nie koliduje z kolorami wierzchołków ze stosu
 - jeżeli uda się pokolorować, to:

- dla każdego $v \in V$: c(v) := 0 (0 oznacza *brak koloru*)
- włóż pierwszy wierzchołek na stos
- dopóki stos nie jest pusty, wykonuj:
 - u wierzchołek na wierzchu stosu
 - próbujemy przypisać do u kolor (spośród $\{1,\ldots,k\}$), który:
 - ullet jest większy od obecnego koloru c(u)
 - nie koliduje z kolorami wierzchołków ze stosu
 - jeżeli uda się pokolorować, to:
 - sprawdzamy, czy pokolorowano już wszystkie wierzchołki
 - jeżeli 'tak', to 'koniec'
 - jeżeli 'nie', to wkładamy kolejny wierzchołek na stos

- dla każdego $v \in V$: c(v) := 0 (0 oznacza *brak koloru*)
- włóż pierwszy wierzchołek na stos
- dopóki stos nie jest pusty, wykonuj:
 - *u* wierzchołek na wierzchu stosu
 - próbujemy przypisać do u kolor (spośród $\{1,\ldots,k\}$), który:
 - ullet jest większy od obecnego koloru c(u)
 - nie koliduje z kolorami wierzchołków ze stosu
 - jeżeli uda się pokolorować, to:
 - sprawdzamy, czy pokolorowano już wszystkie wierzchołki
 - jeżeli 'tak', to 'koniec'
 - jeżeli 'nie', to wkładamy kolejny wierzchołek na stos
 - jeżeli nie uda się pokolorować u, to zdejmujemy u ze stosu, c(u) := 0

- dla każdego $v \in V$: c(v) := 0 (0 oznacza *brak koloru*)
- włóż pierwszy wierzchołek na stos
- dopóki stos nie jest pusty, wykonuj:
 - u wierzchołek na wierzchu stosu
 - próbujemy przypisać do u kolor (spośród $\{1,\ldots,k\}$), który:
 - ullet jest większy od obecnego koloru c(u)
 - nie koliduje z kolorami wierzchołków ze stosu
 - jeżeli uda się pokolorować, to:
 - sprawdzamy, czy pokolorowano już wszystkie wierzchołki
 - jeżeli 'tak', to 'koniec'
 - jeżeli 'nie', to wkładamy kolejny wierzchołek na stos
 - jeżeli nie uda się pokolorować u, to zdejmujemy u ze stosu, c(u) := 0
- jeżeli stos jest pusty i nie znaleziono pokolorowania, to nie istnieje pokolorowanie G k kolorami.

- dla każdego $v \in V$: c(v) := 0 (0 oznacza *brak koloru*)
- włóż pierwszy wierzchołek na stos
- dopóki stos nie jest pusty, wykonuj:
 - u wierzchołek na wierzchu stosu
 - próbujemy przypisać do u kolor (spośród $\{1,\ldots,k\}$), który:
 - ullet jest większy od obecnego koloru c(u)
 - nie koliduje z kolorami wierzchołków ze stosu
 - jeżeli uda się pokolorować, to:
 - sprawdzamy, czy pokolorowano już wszystkie wierzchołki
 - jeżeli 'tak', to 'koniec'
 - jeżeli 'nie', to wkładamy kolejny wierzchołek na stos
 - jeżeli nie uda się pokolorować u, to zdejmujemy u ze stosu, c(u) := 0
- jeżeli stos jest pusty i nie znaleziono pokolorowania, to nie istnieje pokolorowanie G k kolorami.

Heurystyki

slajdy - prof. Dereniowski pp.8-17

$$1 \leq \chi(G) \leq n$$

$$1 \leq \chi(G) \leq n$$

Definicja

Kliką w grafie G=(V,E) nazywamy taki podzbiór $V'\subseteq V$, że $u,v\in V'\to \{u,v\}$ in E. Pojęcie kliki utożsamia się często z podgrafem opartym na takim podzbiorze wierzchołków. Klikę V' w grafie G nz maksymalną, jeżeli nie istnieje żadna klika V'' taka, że $V'\subset V''$. Liczbą klikową $\omega(G)$ nz rozmiar największej maksymalnej kliki w G.

$$1 \leq \chi(G) \leq n$$

Definicja

Kliką w grafie G=(V,E) nazywamy taki podzbiór $V'\subseteq V$, że $u,v\in V'\to \{u,v\}$ in E. Pojęcie kliki utożsamia się często z podgrafem opartym na takim podzbiorze wierzchołków. Klikę V' w grafie G nz maksymalną, jeżeli nie istnieje żadna klika V'' taka, że $V'\subset V''$. Liczbą klikową $\omega(G)$ nz rozmiar największej maksymalnej kliki w G.

$$\omega(G) \leq \chi(G)$$

$$\omega(G) \leq \chi(G)$$

- oszacowanie niedokładne różnica $\chi(G) \omega(G)$ może być dowolnie duża grafy Mycielskiego
- wyznaczenie $\omega(G)$ problem NP-trudny

Grafy Mycielskiego

Definicja

Niech G bdzie grafem o n wierzchołkach: $v_0, v_1, \ldots, v_{n-1}$. Grafem Mycielskiego $\mu(G)$ zawiera graf G jako izomorficzny podgraf oraz n+1 dodatkowych wierzchołków: u_i odpowiadające wierzchołkom v_i oraz wierzchoşek w. Każdy wierzchołek u_i jest połączony krawędzią z wierzchołkiem w tak, że tworzą one razem podgraf K_{n+1} (gwiazda). Dodatkowo, dla każdej krawędzi v_iv_j w ramach konstrukcji dodawane są krawędzie u_iv_j oraz v_iu_j . Dla grafu G o n wierzchołkach i m krawędziach powstaje graf $\mu(G)$ o 2n+1 wierzchołkach i 3m+n krawędziach.

Grafy Mycielskiego - przykład

$$\omega(\mathit{C}_5) = \omega(\mu(\mathit{C}_5)) = 2$$
 $\chi(\mathit{C}_5) = 3$ i $\chi(\mu(\mathit{C}_5)) = 4$ - graf Grötzscha

Twierdzenie

Każdy graf G jest $(\Delta(G)+1)$ -kolorowalny, tzn. $\chi(G) \leq \Delta(G)+1$.

Dowód

patrz tablica

Twierdzenie

Każdy graf G jest $(\Delta(G)+1)$ -kolorowalny, tzn. $\chi(G) \leq \Delta(G)+1$.

Dowód

patrz tablica

Twierdzenie

[Brooks 1941] G - graf z $\Delta(G) \geq 3$, $G \neq C_{2k+1}, K_n$

$$\chi(G) \leq \Delta(G)$$

Kolorowanie krawędzi

Definicja

Mówimy, że graf G jest k-barwny krawędziowo, jeżeli jego krawędzie można pokolorować k kolorami w taki sposób, że żadne dwie krawędzie sąsiednie nie mają tego samego koloru. Najmniejsze k, dla którego istnieje k-pokolorowanie krawędzi grafu G nazywamy indeksem chromatycznym grafu G, $\chi'(G)$.

Kolorowanie krawędzi

Definicja

Mówimy, że graf G jest k-barwny krawędziowo, jeżeli jego krawędzie można pokolorować k kolorami w taki sposób, że żadne dwie krawędzie sąsiednie nie mają tego samego koloru. Najmniejsze k, dla którego istnieje k-pokolorowanie krawędzi grafu G nazywamy indeksem chromatycznym grafu G, $\chi'(G)$.

$$\chi'(G) \geq \Delta(G)$$

Kolorowanie krawędzi

Definicja

Mówimy, że graf G jest k-barwny krawędziowo, jeżeli jego krawędzie można pokolorować k kolorami w taki sposób, że żadne dwie krawędzie sąsiednie nie mają tego samego koloru. Najmniejsze k, dla którego istnieje k-pokolorowanie krawędzi grafu G nazywamy indeksem chromatycznym grafu G, $\chi'(G)$.

$$\chi'(G) \geq \Delta(G)$$

Twierdzenie Vizinga, 1964

$$\Delta(G) \le \chi'(G) \le \Delta(G) + 1$$

Obliczenie indeksu chromatycznego (w przypadku ogólnym) jest probleme NP-trudnym.

Obliczenie indeksu chromatycznego (w przypadku ogólnym) jest probleme NP-trudnym.

Definicja

Graf G nazywamy klasy 1, jeżeli $\chi'(G) = \Delta(G)$. Analogicznie, graf G nazywamy klasy 2, jeżeli $\chi'(G) = \Delta(G) + 1$.

Obliczenie indeksu chromatycznego (w przypadku ogólnym) jest probleme NP-trudnym.

Definicja

Graf G nazywamy *klasy* 1, jeżeli $\chi'(G) = \Delta(G)$. Analogicznie, graf G nazywamy *klasy* 2, jeżeli $\chi'(G) = \Delta(G) + 1$.

Przykłady grafów klasy 1

grafu dwudzielne, pełne K_{2k} , koła

Obliczenie indeksu chromatycznego (w przypadku ogólnym) jest probleme NP-trudnym.

Definicja

Graf G nazywamy klasy 1, jeżeli $\chi'(G) = \Delta(G)$. Analogicznie, graf G nazywamy klasy 2, jeżeli $\chi'(G) = \Delta(G) + 1$.

Przykłady grafów klasy 1

grafu dwudzielne, pełne K_{2k} , koła

Przykłady grafów klasy 2

znacznie mniej niż grafów klasy 1; cykle nieparzyste, grafy pełne K_{2k+1}

Kolorowanie krawędzi vs kolorowanie wierzchołków

Definicja

Graf krawędziowy (ang. line graph) grafu G to taki graf L(G), którego zbiorem wierzchołków jest zbiór krawędzi grafu G: V(L(G)) = E(G), natomiast zbiorem krawędzi E(L(G)) jest zbiór par elementów zbioru E(G).

$$\chi'(G) = \chi(L(G))$$

$$\chi'(G) = \chi(L(G))$$

Pytanie

Czy dany graf jest grafem krawędziowym jakiegoś grafu, oraz czy każdy graf jest grafem krawędziowym jakiegoś grafu?

Pytanie

Czy dany graf jest grafem krawędziowym jakiegoś grafu, oraz czy każdy graf jest grafem krawędziowym jakiegoś grafu?

Twierdzenie, Beineke 1968

Graf jest grafem krawędziowym jakiegoś grafu wtedy i tylko wtedy, gdy nie zawiera żadnego z dziewięciu wymienionych grafów:

Heurystyki - kolorowanie krawędzi

slajdy prof. Dereniowskiego - str. 22-25