In what follows, we fix an abelian group A. We assume the reader is familiar with the basic theory of modules over not-necessarily-commutative rings.

Definition 0.1. An A-graded abelian group is an abelian group B along with a subgroup $B_a \leq B$ for each $a \in A$ such that the canonical map

$$\bigoplus_{a\in A} B_a \to B$$

sending $(x_a)_{a\in A}$ to $\sum_{a\in A} x_a$ is an isomorphism. Given two A-graded abelian groups B and C, a homomorphism $f: B \to C$ is a homomorphism of A-graded abelian groups, or just an A-graded homomorphism, if it preserves the grading, i.e., if it restricts to a map $B_a \to C_a$ for all $a \in A$.

We denote the category of A-graded abelian groups and A-graded homomorphisms between them by $\mathbf{Ab}(A)$

It is easy to see that an A-graded abelian group B is generated by its homogeneous elements, that is, nonzero elements $x \in B$ such that there exists some $a \in A$ with $x \in B_a$.

Remark 0.2. Clearly the condition that the canonical map $\bigoplus_{a \in A} B_a \to B$ is an isomorphism requires that $B_a \cap B_b = 0$ if $a \neq b$. In particular, given a homogeneous element $x \in B$, there exists precisely one $a \in A$ such that $x \in B_a$. We call this a the degree of x, and we write |x| = a.

Definition 0.3. An A-graded ring is a ring R such that its underlying abelian group R is A-graded and the multiplication map $R \times R \to R$ restricts to $R_a \times R_b \to R_{a+b}$ for all $a, b \in A$. A morphism of A-graded rings is a ring homomorphism whose underlying homomorphism of abelian groups is A-graded.

Explicitly, given an A-graded ring R and homogeneous elements $x, y \in R$, we must have |xy| = |x| + |y|. For example, given some field k, the ring R = k[x, y] is \mathbb{Z}^2 -graded, where given $(n, m) \in \mathbb{Z}^2$, $R_{n,m}$ is the subgroup of those monomials of the form ax^ny^m for some $a \in k$.

Definition 0.4. Let R be an A-graded ring. A left A-graded R-module M is a left R-module M such that M is an A-graded abelian group and the action map $R \times M \to M$ restricts to a map $R_a \times M_b \to M_{a+b}$ for all $a, b \in A$. Right A-graded R-modules are defined similarly. Finally, an A-graded R-bimodule is an A-graded abelian group M which has the structure of both an A-graded left and right R-module such that given $r, s \in R$ and $m \in M$, $r \cdot (m \cdot s) = (r \cdot m) \cdot s$.

Morphisms between A-graded R-modules are precisely A-graded R-module homomorphisms. We write R-**Mod**(A) for the category of left A-graded R-modules and **Mod**-R(A) for the category of right A-graded R-modules.

Remark 0.5. It is straightforward to see that an A-graded abelian group is equivalently an A-graded \mathbb{Z} -module, where here we are considering \mathbb{Z} as an A-graded ring concentrated in degree 0. Thus any result below about A-graded modules applies equally to A-graded abelian groups.

Remark 0.6. We often will denote an A-graded R-module M by M_* . Given some $a \in A$, we can define the shifted A-graded abelian group M_{*+a} whose b^{th} component is M_{b+a} .

Definition 0.7. More generally, given two A-graded R-modules M and N and some $d \in A$, an R-module homomorphism $f: M \to N$ is an A-graded homomorphism of degree d if it restricts to a map $M_a \to N_{a+d}$ for all $a \in A$. Thus, an A-graded homomorphism of degree d from M

to N is equivalently an A-graded homomorphism $M_* \to N_{*+d}$ or an A-graded homomorphism $M_{*-d} \to N$. Given some $a \in A$ and left (resp. right) R-modules M and N, we will write

$$\operatorname{Hom}_R^d(M, N) = \operatorname{Hom}_R(M_*, N_{*+d}) = \operatorname{Hom}_R(M_{*-d}, N_*)$$

to denote the set of A-graded homomorphisms of degree d from M to N, and simply

$$\operatorname{Hom}_R(M,N)$$

to denote the set of degree-0 A-graded homomorphisms from M to N. Clearly A-graded homomorphisms may be added and subtracted, so these are further abelian groups. Thus we have an A-graded abelian group

$$\operatorname{Hom}_{R}^{*}(M, N).$$

Unless stated otherwise, an "A-graded homomorphism" will always refer to an A-graded homomorphism of degree 0.

Oftentimes when constructing A-graded rings, we do so only by defining the product of homogeneous elements, like so:

Lemma 0.8. Suppose we have an A-graded abelian group R, a distinguished element $1 \in R_0$, and \mathbb{Z} -bilinear maps $m_{a,b} : R_a \times R_b \to R_{a+b}$ for all $a, b \in A$. Further suppose that for all $x \in R_a$, $y \in R_b$, and $z \in R_c$, we have

$$m_{a+b,c}(m_{a,b}(x,y),z) = m_{a,b+c}(x,m_{b,c}(y,z))$$
 and $m_{a,0}(x,1) = m_{0,a}(1,x) = x$.

Then there exists a unique multiplication map $m: R \times R \to R$ which endows R with the structure of an A-graded ring and restricts to $m_{a,b}$ for all $a,b \in A$.

Proof. Given $r, s \in R$, since $R \cong \bigoplus_{a \in A} R_a$, we may uniquely decompose r and s into homogeneous elements as $r = \sum_{a \in A} r_a$ and $s = \sum_{a \in A} s_a$ with each $r_a, s_a \in R_a$ such that only finitely many of the r_a 's and s_a 's are nonzero. Then in order to define a distributive product $R \times R \to R$ which restricts to $m_{a,b}: R_a \times R_b \to R_{a+b}$, note we *must* define

$$r \cdot s = \left(\sum_{a \in A} r_a\right) \cdot \left(\sum_{b \in A} s_b\right) = \sum_{a,b \in A} r_a \cdot s_b = \sum_{a,b \in A} m_{a,b}(r_a, s_b).$$

Thus, we have shown uniqueness. It remains to show this product actually gives R the structure of a ring. First we claim that the sum on the right is actually finite. Note there exists only finitely many nonzero r_a 's and s_b 's, and if $s_b = 0$ then

$$m_{a,b}(r_a,0) = m_{a,b}(r_a,0+0) \stackrel{(*)}{=} m_{a,b}(r_a,0) + m_{a,b}(r_a,0) \implies m_{a,b}(r_a,0) = 0,$$

where (*) follows from bilinearity of $m_{a,b}$. A similar argument yields that $m_{a,b}(0,s_b)=0$ for all $a,b \in A$. Hence indeed $m_{a,b}(r_a,s_b)$ is zero for all but finitely many pairs $(a,b) \in A^2$, as desired. Observe that in particular

$$(r \cdot s)_a = \sum_{b+c=a} m_{b,c}(r_b, s_c) = \sum_{b \in A} m_{b,a-b}(r_b, s_{a-b}) = \sum_{c \in A} m_{a-c,c}(r_{a-c}, s_c).$$

Now we claim this multiplication is associative. Given $t = \sum_{a \in A} t_a \in R$, we have

$$\begin{split} (r \cdot s) \cdot t &= \sum_{a,b \in A} m_{a,b} ((r \cdot s)_a, t_b) \\ &= \sum_{a,b \in A} m_{a,b} \left(\sum_{c \in A} m_{a-c,c} (r_{a-c}, s_c), t_b \right) \\ &\stackrel{(1)}{=} \sum_{a,b,c \in A} m_{a,b} (m_{a-c,c} (r_{a-c}, s_c), t_b) \\ &\stackrel{(2)}{=} \sum_{a,b,c \in A} m_{c,a+b-c} (r_c, m_{a-c,b} (s_{a-c}, t_b)) \\ &\stackrel{(3)}{=} \sum_{a,b,c \in A} m_{a,c} (r_a, m_{b,c-b} (s_b, t_{c-b})) \\ &\stackrel{(1)}{=} \sum_{a,c \in A} m_{a,c} \left(r_a, \sum_{b \in A} m_{b,c-b} (s_b, t_{c-b}) \right) \\ &= \sum_{a,c \in A} m_{a,c} (r_a, (s \cdot t)_c) = r \cdot (s \cdot t), \end{split}$$

where each occurrence of (1) follows by bilinearity of the $m_{a,b}$'s, each occurrence of (2) is associativity of the $m_{a,b}$'s, and (3) is obtained by re-indexing by re-defining a := c, b := a - c, and c := a + b - c. Next, we wish to show that the distinguished element $1 \in R_0$ is a unit with respect to this multiplication. Indeed, we have

$$1 \cdot r \stackrel{(1)}{=} \sum_{a \in A} m_{0,a} (1, r_a) \stackrel{(2)}{=} \sum_{a \in A} r_a = r \quad \text{and} \quad r \cdot 1 \stackrel{(1)}{=} \sum_{a \in A} m_{a,0} (r_a, 1) \stackrel{(2)}{=} \sum_{a \in A} r_a = r,$$

where (1) follows by the fact that $m_{a,b}(0,-) = m_{a,b}(-,0) = 0$, which we have shown above, and (2) follows by unitality of the $m_{0,a}$'s and $m_{0,a}$'s, respectively. Finally, we wish to show that this product is distributive. Indeed, we have

$$\begin{split} r\cdot(s+t) &= \sum_{a,b\in A} m_{a,b}(r_a,(s+t)_b) \\ &= \sum_{a,b\in A} m_{a,b}(r_a,s_b+t_b) \\ &\stackrel{(*)}{=} \sum_{a,b\in A} m_{a,b}(r_a,s_b) + \sum_{a,b\in A} m_{a,b}(r_a,t_b) = (r\cdot s) + (r\cdot t), \end{split}$$

where (*) follows by bilinearity of $m_{a,b}$. An entirely analogous argument yields that $(r+s) \cdot t = (r \cdot t) + (s \cdot t)$.

Similarly, when defining A-graded modules, we will only define the action maps for homogeneous elements:

Lemma 0.9. Let R be an A-graded ring, M an A-graded abelian group, and suppose there exists \mathbb{Z} -bilinear maps $\kappa_{a,b}: R_a \times M_b \to M_{a+b}$ for all $a,b \in A$. Further suppose that for all $r \in R_a$, $r' \in R_b$, and $m \in M_c$ that

$$\kappa_{a+b,c}(r \cdot r', m) = \kappa_{a,b+c}(r, \kappa_{b,c}(r', m))$$
 and $\kappa_{0,c}(1, m) = m$.

Then there is a unique map $\kappa : R \times M \to M$ which endows M with the structure of a left A-graded R-module and restricts to $\kappa_{a,b}$ for all $a,b \in A$.

On the other hand, suppose there exists \mathbb{Z} -bilinear maps $\kappa_{a,b}: M_a \times R_b \to M_{a+b}$ for all $a,b \in A$. Further suppose that for all $r \in R_a$, $r' \in R_b$, and $m \in M_c$ that

$$\kappa_{c,a+b}(m,r\cdot r') = \kappa_{c+a,b}(\kappa_{c,a}(m,r),r')$$
 and $\kappa_{c,0}(m,1) = m$.

Then there is a unique map $\kappa: M \times R \to M$ which endows M with the structure of a right A-graded R-module and restricts to $\kappa_{a,b}$ for all $a,b \in A$.

Finally, if we have maps $\lambda_{a,b}: R_a \times M_b \to M_{a+b}$ and $\rho_{a,b}: M_a \times R_b \to M_{a+b}$ satisfying all of the above conditions, and if we further have that

$$\lambda_{a,b+c}(r,\rho_{b,c}(x,s)) = \rho_{a+b,c}(\lambda_{a,b}(r,x),s)$$

for all $r \in R_a$, $x \in M_b$, and $s \in R_c$, then the left and right A-graded R-module structures induced on M by the λ 's and ρ 's give M the structure of an A-graded R-bimodule.

Proof. We show the left module case, as the right module case is entirely analogous. Supposing for each $a, b \in A$ we have a map $\kappa_{a,b} : R_a \times M_b \to M_{a+b}$ satisfying the above conditions, in order to extend these to a map $R \times M \to M$, by additivity we *must* define

$$\kappa: R \times M \to M$$

to be the map sending $r = \sum_a r_a$ and $m = \sum_a m_a$ to $\sum_{a,b \in A} \kappa_{a,b}(r_a, m_b)$. Now, we need to check that for all $r, s \in R$, $x, y \in M$ that

- (1) $r \cdot (x+y) = r \cdot x + r \cdot y$
- $(2) (r+s) \cdot x = r \cdot x + s \cdot x$
- (3) $(rs) \cdot x = r \cdot (s \cdot x)$
- (4) $1 \cdot x = x$,

where above we are written $-\cdot$ for $\kappa(-,-)$. To see the first, note

$$\begin{split} \kappa(r,x+y) &= \sum_{a,b \in A} \kappa_{a,b}(r_a,(x+y)_b) \\ &= \sum_{a,b \in A} \kappa_{a,b}(r_a,x_b+y_b) \\ &= \sum_{a,b \in A} (\kappa_{a,b}(r_a,x_b) + \kappa_{a,b}(r_a,y_b)) \\ &= \sum_{a,b \in A} \kappa_{a,b}(r_a,x_b) + \sum_{a,b \in A} \kappa_{a,b}(r_a,y_b) \\ &= \kappa(r,x) + \kappa(r,y). \end{split}$$

To see the second, note

$$\begin{split} \kappa(r+s,x) &= \sum_{a,b \in A} \kappa_{a,b}((r+s)_a,x_b) \\ &= \sum_{a,b \in A} \kappa_{a,b}(r_a+s_a,x_b) \\ &= \sum_{a,b \in A} (\kappa_{a,b}(r_a,x_b) + \kappa_{a,b}(s_a,x_b)) \\ &= \sum_{a,b \in A} \kappa_{a,b}(r_a,x_b) + \sum_{a,b \in A} \kappa_{a,b}(s_a,x_b) \\ &= \kappa(r,x) + \kappa(s,x). \end{split}$$

To see the third, note

$$\begin{split} \kappa(rs,x) &= \sum_{a,b \in A} \kappa_{a,b}((rs)_a,x_b) \\ &= \sum_{a,b \in A} \kappa_{a,b} \left(\sum_{c \in A} r_c s_{a-c}, x_b \right) \\ &= \sum_{a,b,c \in A} \kappa_{a,b}(r_c s_{a-c},x_b) \\ &= \sum_{a,b,c \in A} \kappa_{a,b}(r_c,\kappa_{a-c,b}(s_{a-c},x_b)) \\ &= \sum_{a,b,c \in A} \kappa_{a,b}(r_c,\kappa_{a-c,b}(s_{a-c},x_b)) \end{split}$$

FINISH

When working with A-graded rings and modules, we will often freely use the above propositions without comment.

Recall that given a ring R, a left (resp. right) module P is projective if, for all diagrams of R-module homomorphisms of the form

$$P \xrightarrow{f} N$$

with g an epimorphism, there exists a lift $h:P\to M$ satisfying $g\circ h=f$

$$P \xrightarrow{f} N$$

$$M$$

$$\downarrow g$$

$$\downarrow g$$

$$\downarrow g$$

$$\downarrow N$$

(Note h is not required to be unique.)

Definition 0.10. Let R be an A-graded ring, and let P be a left (resp. right) A-graded R-module. Then P is a graded projective module if, for all diagrams of A-graded R-module homomorphisms of the form

$$P \xrightarrow{f} N$$

$$\downarrow g$$

$$N$$

with g an epimorphism, there exists an A-graded homomorphism $h: P \to M$ satisfying $g \circ h = f$.

$$P \xrightarrow{f} N$$

$$M$$

$$\downarrow g$$

$$\downarrow g$$

$$\downarrow g$$

$$N$$

(Note h is not required to be unique.)

Lemma 0.11. Given an A-graded ring R and two left (resp. right) A-graded R-modules M and N, their direct sum $M \oplus N$ is naturally a left (resp. right) A-graded R-module group by defining

$$(M \oplus N)_a := M_a \oplus N_a.$$

Proof. The canonical map $\bigoplus_{a \in A} (M_a \oplus N_a) \to M \oplus N$ factors as

$$\bigoplus_{a \in A} (M_a \oplus N_a) \xrightarrow{\cong} \bigoplus_{a \in A} M_a \oplus \bigoplus_{a \in A} N_a \xrightarrow{\cong} M \oplus N.$$

Lemma 0.12. Let R be an A-graded ring, and let M be an A-graded left (resp. right) R-module. Then for all $d \in A$, the evaluation map

$$\operatorname{ev}_1: \operatorname{Hom}_R^d(R, M) \to M_d$$

$$\varphi \mapsto \varphi(1)$$

is an isomorphism of abelian groups.

Proof. We consider the case that M is a left A-graded R-module, as showing it when M is a right module is entirely analogous. First of all, this map is clearly a homomorphism, as given degree d A-graded homomorphisms $\varphi, \psi: R \to M$, we have

$$ev_1(\varphi + \psi) = (\varphi + \psi)(1) = \varphi(1) + \psi(1) = ev_1(\varphi) + ev_1(\psi).$$

Now, to see it is surjective, let $m \in M_d$, and define $\varphi_m : R \to M$ to send $r \mapsto r \cdot m$. First of all, φ_m is a module homomorphism, as given $r, s \in R$,

$$\varphi_m(r+s) = (r+s) \cdot m = r \cdot m + s \cdot m = \varphi_m(r) + \varphi_m(s)$$
 and $\varphi_m(r \cdot s) = r \cdot s \cdot m = r \cdot \varphi_m(s)$.

Furthermore, it is clearly A-graded of degree d, as given a homogeneous element $r \in R_a$ for some $a \in A$, we have $\varphi_m(r) = r \cdot m \in R_{a+d}$, since m is homogeneous of degree d. Finally, clearly

$$\operatorname{ev}_1(\varphi_m) = \varphi_m(1) = 1 \cdot m = m,$$

so indeed ev₁ is surjective. On the other hand, to see it is injective, suppose we are given $\varphi, \psi \in \operatorname{Hom}_R^d(R, M)$ such that $\varphi(1) = \psi(1)$. Then given $r \in R$, we must have

$$\varphi(r) = \varphi(r \cdot 1) = r \cdot \varphi(1) = r \cdot \psi(1) = \psi(r \cdot 1) = \psi(r),$$

so φ and ψ are exactly the same map. Thus, ev₁ is injective, as desired.

0.1. A-graded submodules and quotient modules. In what follows, fix an A-graded ring R. We will simply say "A-graded R-module" when we are freely considering either left or right A-graded R-modules.

Definition 0.13. Let M be an A-graded R-module. Then an A-graded R-submodule is an A-graded R-module N which is a subset of M and for which the inclusion $N \hookrightarrow M$ is an A-graded homomorphism of R-modules. Equivalently, it is a submodule N for which the canonical map

$$\bigoplus_{a \in A} N \cap M_a \to N$$

is an isomorphism.

Lemma 0.14. Let M be an A-graded R-module. Then an R-submodule $N \leq M$ is an A-graded submodule if and only if it is generated as an R-module by homogeneous elements of M.

Proof. If $N \leq M$ is a A-graded submodule, it is generated by the set of all its homogeneous elements, which are also homogeneous elements in M, by definition.

Conversely, suppose $N \leq M$ is a submodule which is generated by homogeneous elements of M. Then define $N_a := N \cap M_a$, and consider the canonical map

$$\Phi: \bigoplus_{a\in A} N_a \to N.$$

First of all, it is surjective, as each generator of N belongs to some N_a , by definition. To see it is injective, consider the following commutative diagram:

$$\bigoplus_{a \in A} N_a \longleftrightarrow \bigoplus_{a \in A} M_a$$

$$\downarrow \cong$$

$$N \longleftrightarrow M$$

Since Φ composes with an injection to get an injection, clearly Φ must be injective itself. We have the desired result.

Proposition 0.15. Given two left (resp. right) A-graded R-modules M and N and an A-graded R-module homomorphism $\varphi: M \to N$ (of possibly nonzero degree), the kernel and images of φ are A-graded submodules of M and N, respectively.

Proof. First recall that a degree d A-graded homomorphism $M \to N$ is simply an A-graded homomorphism $M_* \to N_{*+d}$, so it suffices to consider the case φ is of degree 0. Next, note that since the forgetful functor from R-modules to abelian groups preserves kernels and images, it suffices to consider the case that φ is a homomorphism of A-graded abelian groups. Finally, by Lemma 0.14, it suffices to show that $\ker \varphi$ and $\operatorname{im} \varphi$ are generated by homogeneous elements of M and N, respectively.

Note that by the universal property of the coproduct in **Ab**, the data of an A-graded homomorphism of abelian groups $\varphi: M \to N$ is precisely the data of an A-indexed collection of abelian group homomorphisms $\varphi_a: M_a \to N_a$, in which case the following diagram commutes:

$$\bigoplus_{a} M_{a} \xrightarrow{\bigoplus_{a} \varphi_{a}} \bigoplus_{a} N_{a}$$

$$\stackrel{\cong}{=} \bigvee_{M} \xrightarrow{\varphi} N$$

Finally, the desired result follows by the purely formal fact that taking images and kernels commutes with arbitrary direct sums. \Box

Proposition 0.16. Given two left (resp. right) A-graded R-modules M and N, an A-graded submodule $K \leq N$, and an A-graded R-module homomorphism $\varphi : M \to N$ (of possibly nonzero degree), the submodule $\varphi^{-1}(K)$ of M is A-graded.

Proof. Recall that a degree d A-graded homomorphism $M \to N$ is simply an A-graded homomorphism $M_* \to N_{*+d}$, so it suffices to consider the case φ is of degree 0. Now, let $x \in L := \varphi^{-1}(K)$. As an element of M, we may uniquely write $x = \sum_{a \in A} x_a$ where each $x_a \in M_a$. Similarly, if we set $y := \varphi(x)$, then we may uniquely write $y = \sum_{a \in A} y_a$ where each $y_a \in N_a$. Then since K is an A-graded submodule of N and $y \in K$, by definition, we have that $y_a \in K$ for each a. Finally, note that

$$\sum_{a \in A} y_a = y = \varphi(x) = \sum_{a \in A} \varphi(x_a),$$

so that $\varphi(x_a) = y_a \in K$ for all $a \in A$, so that $x_a \in L$ for all $a \in A$. Thus we have shown that each element in L can be written as a sum of homogeneous elements in M, as desired. \square

Proposition 0.17. Given an A-graded R-module M and an A-graded subgroup $N \leq M$, the quotient M/N is canonically A-graded by defining $(M/N)_a$ to be the subgroup generated by cosets represented by homogeneous elements of degree a in M. Furthermore, the canonical maps $M_a/N_a \to (M/N)_a$ taking a coset $m + N_a$ to m + N are isomorphisms.

Proof. Consider the canonical map

$$\Phi: \bigoplus_a (M/N)_a \to M/N.$$

First of all, surjectivity of Φ follows by commutativity of the following diagram:

$$\bigoplus_{a} M_{a} \xrightarrow{\cong} M$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\bigoplus_{a} (M/N)_{a} \xrightarrow{\Phi} M/N$$

where the vertical left map sends a generator $m \in M_a$ to the coset m + N in $(M/N)_a \subseteq M/N$. To see Φ is injective, suppose we are given some element $(m_a + N)_{a \in A}$ in $\bigoplus_a (M/C)_a$ such that $\sum_{a \in A} (m_a + N) = 0$ in M/N. Thus $\sum_{a \in A} m_a \in N$, and since N is A-graded this implies that each m_a belongs to $N \cap M_a = N_a$, so that in particular $m_a + N$ is zero in $(M/N)_a \subseteq M/N$, so that $(m_a + N)_{a \in A} = 0$ in $\bigoplus_a (M/N)_a$, as desired.

It remains to show that the canonical map

$$\varphi_a: M_a/N_a \to (M/N)_a$$

is an isomorphism. It is clearly surjective, as $(M/N)_a$ is generated by elements m+N for $m\in M_a$, and these elements make up precisely the image of φ_a . Thus φ_a hits every generator of $(M/N)_a$, so φ_a is surjective. On the other hand, suppose we are given some $m\in M_a$ such that $\varphi(m+N_a)=m+N=0$. Thus $m\in N$, and $m\in M_a$, so that $m\in M_a\cap N=N_a$, meaning $m+N_a=0$ in M_a/N_a , as desired.

0.2. **Tensor product of** A-graded modules. Recall that given a ring R, a left R-module M, a right R-module N, and an abelian group A, an R-balanced map $\varphi: M \times N \to B$ is one which satisifies

$$\varphi(m, n + n') = \varphi(m, n) + \varphi(m, n')$$
$$\varphi(m + m', n) = \varphi(m, n) + \varphi(m', n)$$
$$\varphi(m \cdot r, n) = \varphi(m, r \cdot n).$$

for all $m, m' \in M$, $n, n' \in N$, and $r \in R$. Then the tensor product $M \otimes_R N$ is the universal abelian group equipped with an R-balanced map $\otimes: M \times N \to M \otimes_R N$ such that for every abelian group B and every R-balanced map $\varphi: M \times N \to B$, there is a unique group homomorphism $\widetilde{\varphi}: M \otimes_R N \to B$ such that $\widetilde{f} \circ \otimes = f$. We call elements in the image of $\otimes: M \times N \to M \otimes_R N$ pure tensors. It is a standard fact that $M \otimes_R N$ is generated as an abelian group by its pure tensors.

Definition 0.18. Suppose we have a right A-graded R-module M, a left A-graded R-module N, and an A-graded abelian group B. Then an A-graded R-balanced map $\varphi: M \times N \to B$ is an R-balanced map which restricts to $M_a \times N_b \to B_{a+b}$ for all $a, b \in A$.

Proposition 0.19. Suppose we have a right A-graded R-module M and a left A-graded R-module N. Then the tensor product

$$M \otimes_R N$$

is naturally an A-graded abelian group by defining $(M \otimes_R N)_a$ to be the subgroup generated by homogeneous pure tensors $m \otimes n$ with $m \in M_b$ and $n \in N_c$ such that b+c=a. Furthermore, if either M (resp. N) is an A-graded bimodule, then this decomposition makes $M \otimes_R N$ into a left (resp. right) A-graded R-module. In particular, if both M and N are R-bimodules, then $M \otimes_R N$ is an R-bimodule.

Proof. By definition, since M and N are A-graded abelian groups, they are generated (as abelian groups) by their homogeneous elements. Thus it follows that $M \otimes_R N$ is generated by homogeneous pure tensors, that is, elements of the form $m \otimes n$ with $m \in M$ and $n \in N$ homogeneous. Now, given a homogeneous pure tensor $m \otimes n$, we define its degree by the formula $|m \otimes n| := |m| + |n|$. It follows this formula is well-defined by checking that given homogeneous elements $m \in M$, $n \in N$, and $r \in R$ that

$$|(m \cdot r) \otimes n| = |m \cdot r| + |n| = |m| + |r| + |n| = |m| + |r \cdot n| = |m \otimes (r \cdot n)|.$$

Thus, we may define $(M \otimes_R N)_a$ to be the subgroup of $M \otimes_R N$ generated by those pure homogeneous tensors of degree a. Now, consider the map

$$\Psi: M \times N \to \bigoplus_{a \in A} (M \otimes_R N)_a$$

 $\Psi: M\times N\to \bigoplus_{a\in A}(M\otimes_R N)_a$ which takes a pair $(m,n)=\sum_{a\in A}(m_a,n_a)$ to the element $\Psi(m,n)$ whose $a^{\rm th}$ component is

$$(\Psi(m,n))_a := \sum_{b+c=a} m_b \otimes n_c.$$

It is straightforward to see that this map is R-balanced, in the sense that it is additive in each argument and $\Psi(m \cdot r, n) = \Psi(m, r \cdot n)$ for all $m \in M$, $n \in N$, and $r \in R$. Thus by the universal property of $M \otimes_R N$, we get a homomorphism of abelian groups $\widetilde{\Psi} : M \otimes_R N \to \bigoplus_{a \in A} (M \otimes_R N)_a$ lifting Ψ along the canonical map $M \times N \to M \otimes_R N$. Now, also consider the canonical map

$$\Phi: \bigoplus_{a\in A} (M\otimes_R N)_a \to M\otimes_R N.$$

We would like to show Ψ and Φ are inverses of eah other. Since Ψ and Φ are both homomorphisms, it suffices to show this on generators. Let $m \otimes n$ be a homogeneous pure tensor with $m = m_a \in M_a$ and $n = n_b \in N_b$. Then we have

$$\Phi(\widetilde{\Psi}(m \otimes n)) = \Phi\left(\bigoplus_{c \in A} \sum_{b + c = c} m_b \otimes n_c\right) \stackrel{(*)}{=} \Phi(m \otimes n) = m \otimes n,$$

and

$$\widetilde{\Psi}(\Phi(m \otimes n)) = \widetilde{\Psi}(m \otimes n) = \bigoplus_{a \in A} \sum_{b+c=a} m_b \otimes n_c \stackrel{(*)}{=} m \otimes n,$$

where both occurrences of (*) follow by the fact that $m_b \otimes n_c = 0$ unless b = c = a, in which case $m_a \otimes n_a = m \otimes n$. Thus since Φ is an isomorphism, $M \otimes_R N$ is indeed an A-graded abelian group, as desired.

Now, suppose that M is an A-graded R-bimodule, so there exists left and right A-graded actions of R on M such that given $r, s \in R$ and $m \in M$ we have $r \cdot (m \cdot s) = (r \cdot m) \cdot s$. Then we would like to show that given a left A-graded R-module N that $M \otimes_R N$ is canonically a left A-graded R-module. Indeed, define the action of R on $M \otimes_R N$ on pure tensors by the formula

$$r \cdot (m \otimes n) = (r \cdot m) \otimes n.$$

First of all, clearly this map is A-graded, as if $r \in R_a$, $m \in M_b$, and $n \in N_c$ then $(r \cdot m) \otimes n$, by definition, has degree $|r \cdot m| + |n| = |r| + |m| + |n|$ (the last equality follows since the left action of R on M is A-graded). In order to show the above map defines a left module structure, it suffices to show that given pure tensors $m \otimes n, m' \otimes n' \in M \otimes_R N$ and elements $r, r' \in R$ that

- (1) $r \cdot (m \otimes n + m' \otimes n') = r \cdot (m \otimes n) + r \cdot (m' \otimes n'),$
- (2) $(r+r') \cdot (m \otimes n) = r \cdot (m \otimes n) + r' \cdot (m' \otimes n')$,
- (3) $(rr') \cdot (m \otimes n) = r \cdot (r' \cdot (m \otimes n))$, and

$$(4) 1 \cdot (m \otimes n) = m \otimes n.$$

Axiom (1) holds by definition. To see (2), note that by the fact that R acts on M on the left that

$$(r+r')\cdot (m\otimes n)=((r+r')\cdot m)\otimes n=(r\cdot m+r'\cdot m)\otimes n=r\cdot m\otimes n+r'\cdot m\otimes n.$$

That (3) and (4) hold follows similarly by the fact that $(rr') \cdot m = r \cdot (r' \cdot m)$ and $1 \cdot m = m$.

Conversely, if N is an A-graded R-bimodule, then showing $M \otimes_R N$ is canonically a right A-graded R-module via the rule

$$(m \otimes n) \cdot r = m \otimes (n \cdot r)$$

is entirely analogous.

Finally, if both M and N are R-bimodules, then by what we have shown, $M \otimes_R N$ is both a left and right R-module. To see these coincide to give $M \otimes_R N$ an R-bimodule structure, note that given $m \in M$, $n \in N$, and $r, r' \in R$ that

$$(r \cdot (m \otimes n)) \cdot r' = ((r \cdot m) \otimes n) \cdot r' = (r \cdot m) \otimes (n \cdot r') = r \cdot (m \otimes (n \cdot r')) = r \cdot ((m \otimes n) \cdot r'). \quad \Box$$

Lemma 0.20. Let R be an A-graded ring, B an A-graded abelian group, M a right A-graded R-module, and N a left A-graded R-module. Further suppose we are given a map $\varphi_{a,b}: M_a \times N_b \to B_{a+b}$ for all $a,b \in A$ which commutes with addition in each argument, and such that for all $m \in M_a$, $n \in N_b$, and $r \in R_c$ that

$$\varphi_{a+b,c}(m \cdot r, n) = \varphi_{a,b+c}(m, r \cdot n).$$

Then there is a unique A-graded R-balanced map $\varphi: M \times N \to B$ which restricts to $\varphi_{a,b}$ for all $a,b \in A$, and furthermore, the induced homorphism $\widetilde{\varphi}: M \otimes_R N \to B$ is an A-graded homomorphism of abelian groups.

 \neg Proof.

0.3. A-graded categories.

Definition 0.21. An A-graded category is an **Ab**-enriched category \mathcal{C} along with, for each $a \in A$, **Ab**-enriched functors

$$\Sigma^a \cdot \mathcal{C} \to \mathcal{C}$$

and natural isomorphisms $\lambda: \Sigma^0 \cong \mathrm{Id}_{\mathbb{C}}$ and $\phi_{a,b}: \Sigma^{a+b} \cong \Sigma^a \Sigma^b$ such that for all $a,b,c \in A$, the following diagrams in $\mathrm{End}(\mathbb{C})$ commute:

Example 0.22. Given an A-graded ring R, the category of left A-graded R-modules and degree-preserving module homomorphisms between them is canonically an A-graded category, with shift functors Σ^a taking an A-graded left R-module M to the shifted module M_{*-a} . It is clear we have strict equalities $\Sigma^0 = \text{Id}_{\mathbb{C}}$ and $\Sigma^a \Sigma^b = \Sigma^{a+b}$.

Example 0.23. Given a tensor-triangulated category $(\mathcal{SH}, \otimes, S, \Sigma, \mathcal{D})$ (??) with sub-Picard grading $(A, \mathbf{1}, \{S^a\}, \{\phi_{a,b}\})$ (??), \mathcal{SH} is canonically an A-graded category, with shift functors $\Sigma^a := S^a \otimes -$, and natural isomorphisms

$$\lambda: \Sigma^0 X = S^0 \otimes X = S \otimes X \xrightarrow{\cong} X$$

and

$$\phi_{a,b}: \Sigma^{a+b}X = S^{a+b} \otimes X \xrightarrow{\phi_{a,b} \otimes X} (S^a \otimes S^b) \otimes X \cong S^a \otimes (S^b \otimes X) = \Sigma^a \Sigma^b X.$$

Proposition 0.24. Given an A-graded category \mathbb{C} , the shift functors Σ^{-a} and Σ^{a} canonically form an adjoint auto-equivalence of \mathbb{C} , with unit and counit

$$\eta^a : \operatorname{Id}_{\mathfrak{C}} \xrightarrow{\lambda^{-1}} \Sigma^0 \xrightarrow{\phi_{a,-a}} \Sigma^a \Sigma^{-a} \quad and \quad \varepsilon^a : \Sigma^{-a} \Sigma^a \xrightarrow{\phi_{-a,a}^{-1}} \Sigma^0 \xrightarrow{\lambda} \operatorname{Id}_{\mathfrak{C}}.$$

Proof. Clearly η^a and ε^a are natural isomorphisms, so Σ^{-a} and Σ^a form an auto-equivalence of \mathcal{C} . To see that they further form an *adjoint* auto-equivalence, it suffices to show that they satisfy the following zig-zag identities:

Since ε^a and η^a are natural isomorphisms, it further suffices to show that one of these is satisfied (see [1, Lemma 3.2]). We will show the left diagram commutes. Unravelling definitions, it becomes

Clearly this diagram commutes, by the coherence conditions for λ and the $\phi_{a,b}$'s in Definition 0.21.

Proposition 0.25. Given an A-graded category \mathfrak{C} , we can form a new $\mathbf{Ab}(A)$ -enriched category \mathfrak{C}^* with the same objects as \mathfrak{C} , and whose hom-sets are the A-graded abelian groups $\mathfrak{C}^*(X,Y) := \bigoplus_{a \in A} \mathfrak{C}^a(X,Y)$ defined by

$$\mathcal{C}^a(X,Y) := \mathcal{C}(\Sigma^a X, Y).$$

Composition is induced by the graded maps

$$\mathcal{C}^a(Y,Z) \times \mathcal{C}^b(X,Y) \to \mathcal{C}^{a+b}(X,Z)$$

Sending $g: \Sigma^a Y \to Z$ and $f: \Sigma^b X \to Y$ to the composition

$$g \circ f : \Sigma^{a+b} X \xrightarrow{\phi_{a,b}} \Sigma^a \Sigma^b X \xrightarrow{\Sigma^a f} \Sigma^a Y \xrightarrow{g} Z,$$

and the identity in $\mathfrak{C}^*(X,X)$ is given by $\lambda_X: \Sigma^0 X \to X$ in $\mathfrak{C}(\Sigma^0 X,X) = \mathfrak{C}^0(X,X) \subseteq \mathfrak{C}^*(X,X)$.

Proof. By Lemma 0.20, in order to show composition map be realized as an A-graded homomorphism

$$\mathcal{C}^*(Y,Z) \otimes_{\mathbb{Z}} \mathcal{C}^*(X,Y) \to \mathcal{C}(X,Z),$$

it suffices to show that for all $g, g' \in \mathcal{C}^a(Y, Z)$ and $f, f' \in \mathcal{C}^b(X, Y)$ that $(g+g') \circ f = (g \circ f) + (g \circ f')$ and $g \circ (f+f') = (g \circ f) + (g \circ f')$ (where here $-\circ-$ denotes the composition defined above). These

follow by bilinearity of composition in \mathcal{C} (since \mathcal{C} is **Ab**-enriched) and the fact that $\Sigma^a : \mathcal{C} \to \mathcal{C}$ is an **Ab**-enriched functor:

$$\begin{split} (g+g') \circ f &:= (g+g') \circ \Sigma^a f \circ (\phi_{a,b})_X \\ &= (g \circ \Sigma^a f \circ (\phi_{a,b})_X) + (g' \circ \Sigma^a f \circ (\phi_{a,b})_X) \\ &= (g \circ f) + (g' \circ f) \end{split}$$

and

$$g \circ (f + f') := g \circ \Sigma^{a} (f + f') \circ (\phi_{a,b})_{X}$$

$$= g \circ (\Sigma^{a} f + \Sigma^{a} f') \circ (\phi_{a,b})_{X}$$

$$= (g \circ \Sigma^{a} f \circ (\phi_{a,b})_{X}) + (g \circ \Sigma^{a} f' \circ (\phi_{a,b})_{X})$$

$$= (g \circ f) + (g \circ f').$$

Thus, we have a well-defined composition map. We need to show it is associative and unital with respect to λ_X . To see associativity, let $h \in \mathcal{C}^a(Z,W)$, $g \in \mathcal{C}^b(Y,Z)$, and $f \in \mathcal{C}^c(X,Y)$, and consider the following diagram:

The top composition is $h \circ (g \circ f)$, while the bottom composition is $(h \circ g) \circ f$. The left triangle commutes by coherence for the ϕ 's (Definition 0.21), and the right triangle commutes by naturality of $\phi_{a,b}$. Thus composition is associative, as desired. Now, to see unitality, consider the following diagram:

The left composition is $\lambda_Y \circ f$, while the right composition is $f \circ \lambda_X$. The rightmost triangle commutes by coherence for the ϕ 's (Definition 0.21), as does the top left triangle. The leftmost triangle commutes by naturality of λ . Finally, the remaining two regions commute by definition. Thus we have $\lambda_Y \circ f = f \circ \lambda_X = f$, so that $\lambda_X = \mathrm{id}_X$ in \mathfrak{C}^* , as desired.

Proposition 0.26. Given an A-graded category \mathbb{C} and some $a \in A$, there is a canonical **Ab**enriched inclusion $\iota_{\mathbb{C}} : \mathbb{C} \hookrightarrow \mathbb{C}^*$ which is the identity on objects, and sends $f \in \mathbb{C}(X,Y)$ to the composition

$$\Sigma^0 X \xrightarrow{\lambda_X} X \xrightarrow{f} Y$$

in
$$\mathcal{C}(\Sigma^0 X, Y) = \mathcal{C}^0(X, Y) \subseteq \mathcal{C}^*(X, Y)$$
.

Proof. We need to show that $\iota_{\mathcal{C}}$ preserves identities, compositions, and addition of morphisms. The former is clear, as $\iota_{\mathcal{C}}(\mathrm{id}_X)$ is the composition

$$\Sigma^0 X \xrightarrow{\lambda_X} X \xrightarrow{\mathrm{id}_X} X$$

so that $\iota_{\mathcal{C}}(\mathrm{id}_X) = \lambda_X$, as desired. To see it preserves composition, let $f: X \to Y$ and $g: Y \to Z$ in \mathcal{C} , and consider the following diagram:

$$\begin{array}{c|c}
\Sigma^{0}X & \xrightarrow{\lambda_{X}} & X \\
\downarrow^{\phi_{0,0}} & \downarrow^{f} \\
\Sigma^{0}\Sigma^{0}X & \xrightarrow{\Sigma^{0}\lambda_{X}} & \Sigma^{0}X & \xrightarrow{\Sigma^{0}f} & \Sigma^{0}Y & \xrightarrow{\lambda_{Y}} & Y & \xrightarrow{g} & Z
\end{array}$$

The top composition is $\iota_{\mathcal{C}}(g \circ f)$, while the bottom composition is $\iota_{\mathcal{C}}(g) \circ \iota_{\mathcal{C}}(f)$. The left triangle commutes by coherence for the ϕ 's, while the right trapezoid commutes by naturality of λ . Thus, $\iota_{\mathcal{C}}$ preserves composition, as desired. Finally, it is clear that $\iota_{\mathcal{C}}$ preserves addition, as given $f, g \in \mathcal{C}(X,Y)$ we have

$$\iota_{\mathcal{C}}(f+g) = (f+g) \circ \lambda_X = (f \circ \lambda_X) + (g \circ \lambda_X) = \iota_{\mathcal{C}}(f) + \iota_{\mathcal{C}}(g),$$

where the middle equality follows by bilinearity of addition of morphisms in \mathcal{C} , and the fact that addition of morphisms in \mathcal{C}^* is defined to be addition of the underlying morphisms in \mathcal{C} .

Definition 0.27. Given two A-graded categories \mathcal{C} and \mathcal{D} , a lax A-graded functor from \mathcal{C} to \mathcal{D} is the data of an **Ab**-enriched functor $F:\mathcal{C}\to\mathcal{D}$ along with natural isomorphisms $t_X^a:F\circ\Sigma^a\cong\Sigma^a\circ F$ for each $a\in A$.

If, in addition, the maps t_X^a make the following diagrams commute for all X in \mathcal{SH} and $a, b \in A$, we say F is a *strict* A-graded functor:

$$F\Sigma^{0} \xrightarrow{t^{0}} \Sigma^{0}F \qquad F\Sigma^{a+b} \xrightarrow{F\phi_{a,b}} F\Sigma^{a}\Sigma^{b} \xrightarrow{t^{a}\Sigma^{b}} \Sigma^{a}F\Sigma^{b}$$

$$\downarrow^{\lambda F} \qquad \downarrow^{\alpha^{a+b}} \qquad \downarrow^{\Sigma^{a}t^{b}}$$

$$F \qquad \Sigma^{a+b}F \xrightarrow{\phi_{a,b}F} \Sigma^{a}\Sigma^{b}F$$

Proposition 0.28. Given a lax A-graded functor $F: \mathcal{C} \to \mathcal{D}$ between two A-graded categories, for each pair of objects X and Y in \mathcal{C} , there is a unique A-graded homomorphism

$$F^*: \mathcal{C}^*(X,Y) \to \mathcal{D}^*(F(X),F(Y))$$

such that the following diagram commutes for all $f: \Sigma^a X \to Y$ in $\mathfrak{C}^a(X,Y)$:

$$F(\Sigma^{a}X)$$

$$t_{X}^{a}\downarrow \qquad F(f)$$

$$\Sigma^{a}F(X) \xrightarrow{F^{*}(f)} F(Y)$$

Furthermore, given X and Y in C, the map $F^*: C^*(X,Y) \to D^*(F(X),F(Y))$ is injective (resp. surjective) if and only if $F: C(\Sigma^a X,Y) \to D^*(F(\Sigma^a X),F(Y))$ is injective (resp. surjective) for all $a \in C$.

Proof. Given a homogeneous element $f \in \mathcal{C}^a(X,Y)$, we must define

$$F^*(f) := F(f) \circ (t_X^a)^{-1}.$$

In this way, for each $a \in A$ we have assignments

$$F^a: \mathcal{C}^a(X,Y) \to \mathcal{D}^a(F(X),F(Y)).$$

Note that each of these maps F^a are further homomorphisms of abelian groups, as given $f, g : \Sigma^a X \to Y$, we have

$$\begin{split} F^a(f+g) &= F(f+g) \circ (t_X^a)^{-1} \\ &= (F(f) + F(g)) \circ (t_X^a)^{-1} \\ &= (F(f) \circ (t_X^a)^{-1}) + (F(g) \circ (t_X^a)^{-1}) \\ &= F^a(f) + F^a(g). \end{split}$$

Thus, by the universal property of the coproduct of abelian groups, for each X and Y in \mathcal{C} , the maps $F^a: \mathcal{C}^a(X,Y) \to \mathcal{D}^a(F(X),F(Y))$ extend uniquely to an A-graded homomorphism

$$F^*: \mathcal{C}^*(X,Y) \to \mathcal{D}^*(F(X),F(Y)).$$

We have made no choices so far, and we have fully determined F^* and shown it satisfies the desired properties, so that in particular we have shown uniqueness holds in the desired sense.

Note that F^* can equivalently be characterized as the unique A-graded homomorphism such that its restriction $F^a: \mathcal{C}^a(X,Y) \to \mathcal{D}^a(F(X),F(Y))$ makes the following diagram commute for all X,Y in \mathcal{C} and $a \in A$:

If $F: \mathcal{C}(\Sigma^a X,Y) \to \mathcal{D}(F(\Sigma^a X),F(Y))$ is injective (resp. surjective) for all $a \in A$, it clearly follows that F^a is injective (resp. surjective) for all $a \in A$, since the vertical maps in the above diagram are isomorphisms. Thus, if further follows that $F^* = \bigoplus_{a \in A} F_a$ is injective (resp. surjective), as desired. On the other hand, suppose that $F^* : \mathcal{C}^*(X,Y) \to \mathcal{D}^*(F(X),F(Y))$ is injective (resp. surjective) for some X and Y in \mathcal{C} . Then in particular, it follows that $F^a: \mathcal{C}^a(X,Y) \to \mathcal{D}^a(F(X),F(Y))$ is injective (resp. surjective). Then looking at the same diagram, we have that $F: \mathcal{C}(\Sigma^a X,Y) \to \mathcal{D}(F(\Sigma^a X),F(Y))$ is injective (resp. surjective) for all $a \in A$, as desired. \square

Lemma 0.29. Let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{E}$ be two lax A-graded functors between A-graded categories, with structure maps $t^a: F\Sigma^a \cong \Sigma^a F$ and $s^a: G\Sigma^a \cong \Sigma^a G$, respectively. Note that $G \circ F$ is a also a lax A-graded functor with structure map

$$GF\Sigma^a \xrightarrow{Gt^a} G\Sigma^a F \xrightarrow{s^a F} \Sigma^a GF.$$

Then we have $F^* \circ G^* = (G \circ F)^*$.

Proof. Let $f: \Sigma^a X \to Y$ in $\mathcal{C}^a(X,Y)$, and consider the following diagram in \mathcal{E} :

The top inner triangle commutes by the uniqueness property of F^* and functoriality of G. Furthermore, by the uniqueness property of G^* , we know that $G^*(F^*(f))$ for the dashed line is the unique arrow which makes the bottom inner triangle commute. Finally, by the uniqueness property of $G \circ F$, we know that $(G \circ F)^*(f)$ for the dashed line is the unique arrow which makes the outside triangle commute. Hence, we know that $(G \circ F)^*(f) = G^*(F * (f))$ for all $f \in \mathcal{C}^a(X,Y)$. It follows that $(G \circ F)^*$ and $G^* \circ F^*$ agree on the entirety of $\mathcal{C}^*(X,Y)$, as they are both homomorphisms of abelian groups.

Proposition 0.30. Let C and D be A-graded categories, and suppose we have a strict A-graded functor $F: C \to D$. Then there is an Ab(A)-enriched functor

$$F^*: \mathcal{C}^* \to \mathcal{D}^*$$

which makes the following diagram commute

$$\begin{array}{ccc}
\mathbb{C} & \xrightarrow{F} & \mathbb{D} \\
\iota_{\mathbb{C}} & & & \downarrow_{\iota_{\mathbb{D}}} \\
\mathbb{C}^* & \xrightarrow{F^*} & \mathbb{D}^*
\end{array}$$

(see Proposition 0.26 for the definition of the vertical functors) and is given on hom-sets by the maps

$$F^*: \mathcal{C}^*(X,Y) \to \mathcal{D}^*(F(X),F(Y))$$

constructed in Proposition 0.28, so that in particular F^* is faithful (resp. full) if and only if F is, and given two composable strict A-graded functors F and G, $(G \circ F)^* = G^* \circ F^*$ (Lemma 0.29).

Proof. We need to show that F^* is a functor, i.e., that it preserves identities and composition of morphisms. To see the former, note that given $X \in \mathcal{C}$, $F_*(\lambda_X)$ is the composition

$$F(\lambda_X) \circ (t_X^0)^{-1} = \lambda_{F(X)} = \lambda_{F^*(X)},$$

where the first equality follows since F is an A-graded functor (see the first diagram in Definition 0.27). Now, to see F^* preserves composition, since it acts via homomorphisms, it suffices to show it preserves composition of homogeneous elements. To that end, let $g \in \mathcal{C}^a(Y, Z)$ and $f \in \mathcal{C}^b(X, Y)$, and consider the following diagram in \mathcal{D} :

The bottom composition is $F^*(g) \circ' F^*(f) := F^*(g) \circ \Sigma^a F^*(f) \circ (\phi_{a,b})_{F(X)}$, while the top composition is $F^*(g \circ' f) := F(g \circ' f) \circ (t_X^a)^{-1}$. The top trapezoid commutes by coherence for the t^a 's, since F is an A-graded functor (see the second diagram in Definition 0.27). The leftmost and bottom triangles commute by how we have constructed F^* . The rightmost trapezoid commutes by functoriality of F, since $g \circ' f$ is defined to be $(\phi_{a,b})_X \circ \Sigma^a f \circ g$. Finally, the middle oddly-shaped quadrilateral commutes by naturality of t^a .