Sentiment Analysis of Amazon reviews

Edo Spigel Emmerich Capstone Sprint 2

Why reviews?

Consumers are choosing online platforms over traditional retail.

Drive sales

Build trust

Provide insights

How can we use machine learning to understand the contents of reviews?

Utilise Natural Language Processing to analyse the sentiment of reviews.

Compare sentiment analysis results with star ratings to **find discrepancies**.

The Data

Column name	Datatype	Measures
overall	float	Overall star rating of review
verified	boolean	Whether the review has been verified as real or not.
reviewTime	object	Time of review
reviewerID	object	Unique ID of reviewer
asin	object	Product metadata
style	object	Product metadata
reviewerName	object	Name of reviewer
reviewText	object	Textual contents of review
summary	object	Textual summary of review
unixReviewTime	int64	Time of review since Unix Epoch on January 1st, 1970
vote	object	Count of usefulness vote
image	object	Image of product reviewed

Review Star rating

Product and reviewer metadata

Text review and summary

Extra information

Oh9ne Ohone

stormtrooper stormtrouper

> ccover stornger

TF-IDF Vectorization

	tfidf
had	0.493562
little	0.493562
tiny	0.493562
house	0.398203
mouse	0.235185
the	0.235185
ate	0.000000

Top words from logistic regression

Top Positive Words

love great perfect excel perfectli

Top Negative Words

return
broke
wast
didnt
doesnt

Guess: Positive

Guess: Positive

Overall: 2/5

Actual: Negative

Contribution

love: 1.53

wish: 0.56

pretti: 0.25

use: 0.074

doesnt: 0.036

return: 0.033

didnt: 0.031

dont: 0.029

broke: 0.029

month: 0.024

Confidence:

0.58

Logistic regression performs well! Not great at predicting positive reviews

Decision Tree doesn't do as well okay with positive reviews, awful at negative

Random forest has best performance but still struggles with negative reviews

Next steps: Pre-processing

spaCy for better text preprocessing

Text embeddings and neural network

