Response To Restriction Requirement Serial No. 10/581,175 Page -2-

In The Claims:

Please replace the previously presented claim set with the following replacement claim set:

1. (Currently Amended) A compound of formula I:

$$(R^{4})_{n}$$
 R^{2}
 R^{4}
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{4}

wherein:

Y is a single bond, C=O, C=S or $S(O)_m$ where m is 0, 1 or 2;

R¹ is hydrogen, optionally substituted alkyl, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl, aminocarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, optionally substituted heterocyclyloxy, cyano, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, formyl, optionally substituted heterocyclyl, optionally substituted alkylthio, NO or NR¹³R¹⁴ where R¹³ and R¹⁴ are independently hydrogen, COR¹⁵, optionally substituted alkyl, optionally substituted aryl, optionally substituted heterocyclyl or R¹³ and R¹⁴ together with the N atom to which they are attached form a group –N=C(R¹⁶)-NR¹⁷R¹⁸:

R¹⁵ is H, optionally substituted alkyl, optionally substituted alkoxy, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heteroaryloxy or NR¹⁹R²⁰;

R¹⁶, R¹⁷ and R¹⁸ are each independently H or lower alkyl;

R¹⁹ and R²⁰ are <u>each</u> independently optionally substituted alkyl, optionally substituted aryl or optionally substituted heteroaryl;

Response To Restriction Requirement Serial No. 10/581,175 Page -3-

R² and R³ are <u>each</u> independently hydrogen, halogen, cyano, optionally substituted alkyl, optionally substituted alkoxy or optionally substituted aryl;

each R⁴ is independently halogen, nitro, cyano, optionally substituted C₁₋₈ alkyl, optionally substituted C₂₋₆ alkenyl, optionally substituted C₂₋₆ alkynyl, optionally substituted alkoxycarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, optionally substituted alkylthio or R²¹R²²N where R²¹ and R²² are; each independently; hydrogen, C₁₋₈ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, C₃₋₇ cycloalkyl(C₁₋₄)alkyl, C₂₋₆ haloalkyl, C₁₋₆ alkoxy(C₁₋₆)alkyl, or C₁₋₆ alkoxycarbonyl or R²¹ and R²² together with the N atom to which they are attached form a five, six or seven-membered heterocyclic ring which may contain one or two further heteroatoms selected from O, N or S and which may be optionally substituted by one or two C₁₋₆ alkyl groups, or 2 adjacent groups R⁴ together with the carbon atoms to which they are attached form a 4, 5, 6, or 7 membered carbocyclic or heterocyclic ring which may be optionally substituted by halogen;

n is 0, 1, 2, 3 or 4;

R⁸ is optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted alkoxy, optionally substituted alkoxycarbonyl, optionally substituted alkylcarbonyl or optionally substituted alkenylcarbonyl;

 A_1 , A_2 , A_3 , A_4 , B_1 , B_2 , B_3 and B_4 are <u>each</u> independently hydrogen, halogen, hydroxy, cyano, optionally substituted C_{1-8} alkyl, optionally substituted C_{2-6} alkenyl, optionally substituted alkylcarbonyl, optionally substituted alkylcarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted dialkylaminocarbonyl, optionally substituted C_{3-7} cycloalkyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocyclyl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, optionally substituted alkylthio, optionally substituted arylthio or $R^{23}R^{24}N$ where R^{23} and R^{24} are, <u>each</u> independently, hydrogen, C_{1-8} alkyl, C_{3-7} cycloalkyl, C_{3-6} alkenyl, C_{3-6} alkenyl, C_{3-6} alkynyl, C_{3-7} cycloalkyl, C_{2-6} haloalkyl,

Response To Restriction Requirement Serial No. 10/581,175 Page -4-

 C_{1-6} alkoxy(C_{1-6})alkyl, or C_{1-6} alkoxycarbonyl or R^{23} and R^{24} together with the N atom to which they are attached form a five, six or seven-membered heterocyclic ring which may contain one or two further heteroatoms selected from O, N or S and which may be optionally substituted by one or two C_{1-6} alkyl groups,

or A₁ and A₂ together are =O, or A₃ and A₄ together are =O, or B₁ and B₂ together are =O, or B₃ and B₄ together are =O, or A₁ together with B₁ is a bond, or A₃ together with B₃ is a bond,

or A_1 together with A_2 form with the carbon to which they are bound a three- to sevenmembered ring, and may be saturated or unsaturated, and that may contain one or two hetero atoms selected from the group consisting of N, O and S, and which may be optionally substituted by one or two C_{1-6} alkyl groups;

or A_1 together with B_1 form with the carbon to which they are bound a three- to sevenmembered ring, and may be saturated or unsaturated, and that may contain one or two hetero atoms selected from the group consisting of N, O and S, and which may be optionally substituted by one or two C_{1-6} alkyl groups;

or B_1 together with B_2 form with the carbon to which they are bound a three- to sevenmembered ring, and may be saturated or unsaturated, and that may contain one or two hetero atoms selected from the group consisting of N, O and S, and which may be optionally substituted by one or two C_{1-6} alkyl groups;

or A_1 together with A_3 form a group -CH₂-, -CH=CH- or -CH₂CH₂; or B_1 together with B_3 form a group -CH₂-, -CH=CH- or -CH₂CH₂;

or salts or N-oxides thereof provided that when B_1 , B_2 , B_3 and B_4 are all H, either both A_1 and A_2 are different from H or both A_3 and A_4 are different from H.

2. (Original) A compound according to claim 1 wherein Y is a single bond or C=O.

Response To Restriction Requirement Serial No. 10/581,175 Page -5-

- 3. (Previously Presented) A compound according to claim 1 wherein R^2 and R^3 are each independently hydrogen, C_{1-6} alkyl, C_{1-6} haloalkyl, C_{1-6} alkoxy or cyano.
- 4. (Currently Amended) A compound according to claim 1 wherein R¹ is hydrogen, C₁₋₆ alkyl, C_{1-6} cyanoalkyl, C_{1-6} haloalkyl, C_{3-7} cycloalkyl(C_{1-4})alkyl, C_{1-6} alkoxy(C_{1-6})alkyl, heteroaryl(C_{1-6}) 6) alkyl (wherein the heteroaryl group may be optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy, C₁₋₆ haloalkoxy, C₁₋₆ alkylsulfonyl, C₁₋₆ alkylsulfinyl, C₁₋₆ alkylthio, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkylcarbonylamino, or arylcarbonyl, or two adjacent positions on the heteroaryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), aryl(C₁₋₆)alkyl (wherein the aryl group may be optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy, C₁₋₆ haloalkoxy, C₁₋₆ alkylsulfonyl, C₁₋₆ alkylsulfinyl, C₁₋₆ alkylthio, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkylcarbonylamino, or arylcarbonyl, or two adjacent positions on the aryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), C₁₋₆ alkylcarbonylamino(C₁₋₆)alkyl, aryl (which may be optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy, C₁₋₆ haloalkoxy, C₁₋₆ alkylsulfonyl, C₁₋₆ alkylsulfinyl, C₁₋₆ alkylthio, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkylcarbonylamino, or arylcarbonyl, or two adjacent positions on the aryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), heteroaryl (which may be optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy, C₁₋₆ haloalkoxy, C₁₋₆ alkylsulfonyl, C₁₋₆ alkylsulfinyl, C₁₋₆ alkylthio, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkylcarbonylamino, or arylcarbonyl, or two adjacent positions on the heteroaryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), C₁₋₆ alkoxy, C₁₋₆ haloalkoxy, phenoxy (wherein the phenyl group is optionally substituted by halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino), heteroaryloxy (optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy or C₁₋₆ haloalkoxy), heterocyclyloxy (optionally substituted by halo, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy or C₁₋₆ haloalkoxy), cyano, C₂₋₆ alkenyl, C₂₋₆ alkynyl, C₃₋₆ cycloalkyl, C₅₋₇ cycloalkenyl, heterocyclyl (optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy or C₁₋₆ haloalkoxy), C₁₋₆ alkylthio,

Response To Restriction Requirement Serial No. 10/581,175 Page -6-

C₁₋₆ haloalkylthio, or NR¹³R¹⁴ where R¹³ and R¹⁴ are independently hydrogen, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy(C₁₋₆)alkyl, phenyl (which may be optionally substituted by halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino, dialkylamino or C₁₋₄ alkoxycarbonyl), phenyl (C₁₋₆)alkyl (wherein the phenyl group may be optionally substituted by halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino, dialkylamino, C₁₋₆ alkylsulfonyl, or C₁₋₆ alkoxycarbonyl, or two adjacent positions on the phenyl ring may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen), heteroaryl (C₁₋₆)alkyl (wherein the heteroaryl group may be optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy, C₁₋₆ haloalkoxy, C₁₋₆ alkylsulfonyl, C₁₋₆ alkylsulfinyl, C₁₋₆ alkylthio, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkylcarbonylamino, or arylcarbonyl, or two adjacent positions on the heteroaryl system may be cyclised to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring, itself optionally substituted with halogen) or heteroaryl (which may be optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy, or C₁₋₆ haloalkoxy, C₁₋₄ alkoxycarbonyl C₁₋₆ alkylcarbonylamino, phenyloxycarbonylamino (wherein the phenyl group is optionally substituted by halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino), amino, C_{1-6} alkylamino or phenylamino (wherein the phenyl group is optionally substituted halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino)).

5. (Currently Amended) A compound according to claim 1 wherein each R⁴ is independently halogen, cyano, C₁₋₈ alkyl, C₁₋₈ haloalkyl, C₁₋₆ cyanoalkyl, C₁₋₆ alkoxy(C₁₋₆)alkyl, C₃₋₇ cycloalkyl(C_{1-6})alkyl, C_{5-6} cycloalkenyl(C_{1-6})alkyl, C_{3-6} alkenyloxy(C_{1-6})alkyl, alkynyloxy(C_{1-6})alkyl, aryloxy(C_{1-6})alkyl, C_{1-6} carboxyalkyl, C_{1-6} alkylcarbonyl(C_{1-6})alkyl, C_{2-6} $alkenylcarbonyl(C_{1\text{-}6})alkyl,\ C_{2\text{-}6}\ alkynylcarbonyl(C_{1\text{-}6})-alkyl,\ C_{1\text{-}6}\ alkoxycarbonyl(C_{1\text{-}6})alkyl,\ C_{3\text{-}6}$ alkenyloxycarbonyl(C_{1-6})alkyl, C_{3-6} alkynyloxycarbonyl(C_{1-6})alkyl, aryloxycarbonyl(C_{1-6})alkyl, alkylthio(C_{1-6})alkyl, C_{1-6} alkylsulfinyl(C_{1-6})alkyl, C_{1-6} C_{1-6} alkylsulfonyl(C_{1-6})alkyl, $aminocarbonyl(C_{1\text{--}6})alkyl, \quad C_{1\text{--}6} \quad alkylaminocarbonyl(C_{1\text{--}6})alkyl, \quad di(C_{1\text{--}6})alkylaminocarbonyl$ ₆)alkyl, phenyl(C_{1-4})alkyl (wherein the phenyl group is optionally substituted by halogen, C_{1-4} alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or Response To Restriction Requirement Serial No. 10/581,175 Page -7-

dialkylamino), heteroaryl (C_{1-4}) alkyl (wherein the heteroaryl group is optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy or C₁₋₆ haloalkoxy), heterocyclyl(C₁₋ 4) alkyl (wherein the heterocyclyl group is optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy or C₁₋₆ haloalkoxy), C₂₋₆ alkenyl, aminocarbonyl(C₂₋₆)alkenyl, C₁₋₆ alkylaminocarbonyl(C_{2-6})alkenyl, di(C_{1-6})alkylaminocarbonyl(C_{2-6})alkenyl, phenyl(C_{2-4})-alkenyl, (wherein the phenyl group is optionally substituted by halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino), C₂₋₆ alkynyl, trimethylsilyl(C_{2-6})alkynyl, aminocarbonyl(C_{2-6})alkynyl, C_{1-6} alkylaminocarbonyl(C_{2-6})alkynyl, C_{3-7} $di(C_{1-6})$ alkylaminocarbonyl(C_{2-6})alkynyl, C_{1-6} alkoxycarbonyl, cycloalkyl, halocycloalkyl. C_{3-7} cyanocycloalkyl, C_{1-3} alkyl(C₃₋₇)-cycloalkyl, C_{1-3} alkyl(C₃-7)halocycloalkyl,phenyl (optionally substituted by halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino), heteroaryl (optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy or C₁₋₆ haloalkoxy), or heterocyclyl (wherein the heterocyclyl group is optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy or C₁₋₆ haloalkoxy), or 2 adjacent groups R⁴ together with the carbon atoms to which they are attached form a 4, 5, 6 or 7 membered carbocylic or heterocyclic ring which may be optionally substituted by halogen, C₁₋₈ alkoxy, C₁₋₆ haloalkoxy, phenoxy (optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy or C₁₋₆ haloalkoxy), heteroaryloxy (optionally substituted by halo, nitro, cyano, C₁₋₆ alkyl, C₁₋₆ haloalkyl, C₁₋₆ alkoxy or C₁₋₆ haloalkoxy), C₁₋₈ alkylthio or R¹⁹R²⁰N where R¹⁹ and R²⁰ are; each independently, hydrogen, C₁₋₈ alkyl, C₃₋₇ cycloalkyl, C₃₋₆ alkenyl, C₃₋₆ alkynyl, C₂₋₆ haloalkyl, or C₁₋₆ alkoxycarbonyl, or R¹⁹ and R²⁰ together with the N atom to which they are attached form a five, six or seven-membered heterocyclic ring which may contain one or two further heteroatoms selected from O, N or S and which may be optionally substituted by one or two $C_{1\text{--}6}$ alkyl groups; and n is 0, 1, 2 or 3.

6. (Currently Amended) A compound according to claim 1 wherein R^8 is C_{1-10} alkyl, C_{1-10} haloalkyl, aryl(C_{1-6})alkyl (wherein the aryl group is optionally substituted by halogen, C_{1-4} alkyl, C_{1-4} alkoxy, C_{1-4} haloalkyl, C_{1-4} haloalkoxy, CN, NO_2 , aryl, heteroaryl, amino or dialkylamino), heteroaryl(C_{1-6})alkyl (wherein the heteroaryl group is optionally substituted by halogen, C_{1-4})

Response To Restriction Requirement

Serial No. 10/581,175

Page -8-

alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino), arylcarbonyl-(C₁₋₆)alkyl (wherein the aryl group may be optionally substituted by halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino, and the alkyl group may be optionally substituted by aryl), C₂₋₈ alkenyl, C_{2-8} haloalkenyl, aryl(C_{2-6})-alkenyl (wherein the aryl group is optionally substituted halogen, C_{1-4} alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino, or dialkylamino, or C₁₋₆ alkoxycarbonyl, or two adjacent substituents can cyclise to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring), heteroaryl(C₂₋₆)-alkenyl (wherein the heteroaryl group is optionally substituted halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino, or dialkylamino, or C₁₋₆ alkoxycarbonyl, or two adjacent substituents can cyclise to form a 5, 6 or 7 membered carbocyclic or heterocyclic ring), C₂₋₆ alkynyl, phenyl(C₂₋₆)alkynyl (wherein the phenyl group is optionally substituted by halogen, C₁₋₄ alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino), C₃₋₇ cycloalkyl, C₁₋₆ alkoxycarbonyl, C₁₋₆ alkylcarbonyl, C₁₋₆ haloalkylcarbonyl, or aryl(C_{2-6})alkenylcarbonyl (wherein the aryl group may be optionally substituted halogen, C_{1-4} alkyl, C₁₋₄ alkoxy, C₁₋₄ haloalkyl, C₁₋₄ haloalkoxy, CN, NO₂, aryl, heteroaryl, amino or dialkylamino), or $-C(R^{51})(R^{52})$ - $[CR^{53}=CR^{54}]z$ - R^{55} where z is 1 or 2, R^{51} and R^{52} are each independently H, halo or C₁₋₂ alkyl, R⁵³ and R⁵⁴ are each independently H, halogen, C₁₋₄ alkyl or C₁₋₄ haloalkyl, and R⁵⁵ is optionally substituted aryl or optionally substituted heteroaryl.

- 7. (Currently Amended) A compound according to claim 1 wherein A_1 , A_2 , A_3 , A_4 , B_1 , B_2 , B_3 and B_4 are <u>each</u> independently each hydrogen, halo, cyano, C_{1-3} alkyl, <u>or</u> hydroxy, or two groups attached to the same carbon atom together with the carbon atom form a carbonyl group.
- 8. (Original) A compound of formula (II)

Response To Restriction Requirement Serial No. 10/581,175 Page -9-

$$(R^{4})_{n} \xrightarrow{A_{2} A_{1} \atop B_{2} \atop N} \xrightarrow{R^{8} \atop A_{4} \atop A_{4} \atop N} \xrightarrow{A_{3} \atop A_{4} \atop A_{4} \atop N} \xrightarrow{A_{3} \atop A_{4} \atop A_{4} \atop N}$$

wherein Y, n, R¹, R², R³, R⁴, A₁, A₂, A₃, A₄, B₁, B₂, B₃ and B₄ are as defined in claim 1 and R⁸ is hydrogen or *tert*-butoxycarbonyl.

- 9. (Currently Amended) An insecticidal acaricidal and nematicidal composition comprising an insecticidally, acaricidally or nematicidally effective amount of a compound of formula I as defined in claim 1.
- 10. (Currently Amended) A method of combating and controlling insects, acarines, nematodes or molluscs which comprises applying to a pest, to a locus of a pest, or to a plant susceptible to attack by a pest an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a compound of formula I according to claim 1.
- 11. (New) A compound according to claim 1 wherein R¹ is optionally substituted alkyl, optionally substituted alkoxycarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted alkylaminocarbonyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted heteroaryloxy, optionally substituted heterocyclyloxy, cyano, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, formyl, optionally substituted heterocyclyl, optionally substituted alkylthio, NO or NR¹³R¹⁴.
- 12. (New) A compound according to claim 11 wherein Y is a single bond or C=O.

Response To Restriction Requirement

Serial No. 10/581,175

Page -10-

- 13. (New) A compound according to claim 12 wherein R^2 , R^3 , R^4 , A_1 , A_2 , A_3 , A_4 , B_1 , B_2 , B_3 and B_4 are each independently hydrogen, optionally substituted C_{1-8} alkyl, halo, optionally substituted alkoxy, or cyano.
- 14. (New) A compound according to claim 1 wherein R^2 , R^3 , R^4 , A_1 , A_2 , A_3 , A_4 , B_1 , B_2 , B_3 and B_4 are each independently hydrogen, optionally substituted C_{1-8} alkyl, halo, optionally substituted alkoxy, or cyano.
- 15. (New) A compound according to claim 1 wherein Y is C=O.
- 16. (New) A compound according to claim 11 wherein R^1 is pyridyl optionally substituted by halo, C_{1-3} alkyl or C_{1-3} haloalkyl.
- 17. (New) An insecticidal acaricidal and nematicidal composition comprising an insecticidally, acaricidally or nematicidally effective amount of a compound as defined in claim 11.
- 18. (New) An insecticidal acaricidal and nematicidal composition comprising an insecticidally, acaricidally or nematicidally effective amount of a compound as defined in claim 12.
- 19. (New) An insecticidal acaricidal and nematicidal composition comprising an insecticidally, acaricidally or nematicidally effective amount of a compound as defined in claim 13.