UFAZ-L1-Electrostatics

Part 3: Gauss theorem

Statement:

$$\iint \vec{E}. \, \vec{dS} = \frac{Q_{int}}{\epsilon_0}$$

Exercise 1: Infinite charged wire

Remember the expression of the electric field at a distance z of an infinite wire having an uniform lineic electric charge distribution $\lambda > 0$.

Recover this result using the symmetries and the Gauss theorem.

Exercise 2: Infinite charged plane

Remember the expression of the electric field at a distance z of an infinite plane having an uniform surface electric charge distribution $\sigma > 0$.

Recover this result using the symmetries and the Gauss theorem.

Exercise 3: Infinite charged cylinder

- 1) We consider an infinite cylinder of radius R having a uniform volumic charge density ρ . Using Gauss theorem determine the value of the electric field at a distance z from the axis of the cylinder for z < R and then for z > R. Deduce in each case the electric potential V.
- 2) We assume now that the infinite cylinder has a uniform charge distribution σ only on its surface. Determine the expression of the electric field and the electric potential inside and outside the cylinder respectively for z < R and then for z > R

Exercise 4 : Charged Sphere

- 1) We consider a sphere of radius R having a uniform volumic charge density ρ . Using Gauss theorem determine the value of the electric field at a distance r from the sphere center for r < R and then for r > R. Deduce in each case the electric potential V.
- 2) We assume now that the sphere has a uniform charge distribution σ only on its surface. Determine the expression of the electric field and the electric potential inside and outside the sphere respectively for z < R and then for z > R.

Part 4: Some applications

Exercise 1: Electric potential and electric field in the dipolar approximation

We consider a dipole made of charges +q and -q separated by a distance a. In a two dimension Cartesian system Oxy, the negative charge -q is located at position N (-a/2; 0) and the positive charge q at position "P (a/2; 0).

- 1) What is the expression of the electric potential at a point M of coordinates M(x,y)?
- 2) Show that $\|\overrightarrow{PM}\| = \sqrt{PO^2 + OM^2 + 2\overrightarrow{PO} \cdot \overrightarrow{OM}}$ and deduce the expression of $\|\overrightarrow{NM}\|$.

3) The dipolar moment is defined as $\vec{p} = q \vec{N} \vec{P}$ and we note $\vec{OM} = \vec{r}$. We work within the dipolar approximation assuming that the distance of observation r is large compared to the size of the dipole a: $a \ll r$. By performing a Taylor development at first order in a/r, show that the electric potential V(r), at a distance r can be approximated to the following expression:

$$V(r) = \frac{1}{4\pi\epsilon_0} \frac{\vec{p}.\vec{r}}{r^3}$$

4) Calculate the expression of the electric field using $\vec{E} = -\vec{\nabla} V$. What is the difference between the field lines of a dipole in the dipolar approximation and an usual dipole?

One may use for that exercise:

- Taylor development of $(1+x)^{\alpha}$ at first order: $(1+x)^{\alpha} \approx 1 + \alpha x$
- Gradient operator in polar coordinates: $\vec{\nabla} f(r,\theta) = \frac{\partial f(r,\theta)}{\partial r} \vec{e_r} + \frac{1}{r} \frac{\partial f(r,\theta)}{\partial \theta} \vec{e_\theta}$