

1.1. Ejercicios

Definición 1.1.1

Una **conectiva booleana** *n*-aria es una función $B: \{T, F\}^n \to \{T, F\}.$

Observación 1.1.1

La idea de la función anterior es que se codifique una tabla de verdad.

Ejercicio 1.1.1

Considere la conectiva booleana dada por:

$$B(T,T,T) = F,$$
 $B(F,T,T) = F,$
 $B(T,T,F) = F,$ $B(F,T,F) = T,$
 $B(T,F,T) = F,$ $B(F,F,T) = T,$
 $B(T,F,F) = T,$ $B(F,F,F) = T,$

escriba una fórmula bien formada, utilizando el conjunto de conectivas $\{\neg, \land, \lor\}$ que realice esta función booleana.

Solución:

Sea $B: \{T, F\}^3 \to \{T, F\}$ dada por:

$$B(p_1,p_2,p_3) = (p_1 \land \neg p_2 \land \neg p_3) \lor (\neg p_1 \land p_2 \land \neg p_3) \lor (\neg p_1 \land \neg p_2 \land p_3) \lor (\neg p_1 \land \neg p_2 \land \neg p_3)$$

se verifica rápidamente que ésta función B satiface lo deseado.

Ejercicio 1.1.2

Muestre que el conjunto de conectivas $\{\bot, \Rightarrow\}$ es completo (donde \bot es la conectiva 0-aria con valor constante F).

Demostración:

Basta con ver que si φ y ψ son fórmulas, entonces $\neg \varphi$ y $\varphi \Rightarrow \psi$ se pueden expresar con conectivas $\{\bot, \Rightarrow\}$.

En efecto, ya se tiene la implicación. Veamos que:

$$\neg\varphi\equiv\perp\Rightarrow\varphi$$

para un modelo m se tiene que:

$$\begin{array}{c|cccc} \varphi & \bot & \bot \Rightarrow \varphi & \neg \varphi \\ \hline T & F & F & F \\ F & F & T & T \end{array}$$

es decir, que en cualquier caso $\overline{m}(\neg \varphi) = \overline{m}(\bot \Rightarrow \varphi)$. Se sigue entonces la equivalencia. Como $\{\neg, \Rightarrow\}$ es un conjunto completo de conectivas, también lo debe ser pues $\{\bot, \Rightarrow\}$.

1

Ejercicio 1.1.3

Reescriba las siguientes fórmulas en notación polaca a notación usual:

a.
$$\neg \neg \Rightarrow \lor \land p_3p_8 \neg p_{10} \neg \lor p_1p_5$$
.

b.
$$\wedge \neg \Rightarrow p_3 \vee p_4 p_1 \iff \vee \neg p_{10} \iff p_{15} p_{18} q$$
.

Solución:

Veamos que

- 1. $\neg \neg \Rightarrow \lor \land p_3p_8 \neg p_{10} \neg \lor p_1p_5 \equiv \neg \neg (((p_3 \land p_8) \lor \neg p_{10}) \Rightarrow \neg (p_1 \lor p_5)).$
- $2. \land \neg \Rightarrow p_3 \lor p_4 p_1 \iff \lor \neg p_{10} \iff p_{15} p_{18} q \equiv (\neg (p_3 \Rightarrow (p_4 \lor p_1))) \land ((\neg p_{10} \lor (p_{15} \iff p_{18})) \iff q).$

3. $\wedge \Rightarrow p_3 \wedge p_2 p_1 \neg \vee \wedge p_4 p_5 \neg p_{10} \equiv (p_3 \Rightarrow (p_2 \vee p_1)) \wedge \neg ((p_4 \wedge p_5) \vee \neg p_1 0)$.

Ejercicio 1.1.4

Demuestre que toda fórmula bien formada (en el formato de clase, es decir, en notación polaca) en la que no aparezca el símbolo ¬ debe tener longitud impar.

Demostración:

Procederemos por inducción del número de implicaciones \Rightarrow , digamos n, en la cadena de la fórmula φ .

- Si n=0, entonces $\varphi\equiv p_1$, siendo p_1 una variable. Luego la longitud de φ es 1 que es impar.
- Si n=1, entonces $\varphi \equiv \Rightarrow p_1p_2$, siendo p_1 y p_2 variables. Luego la longitud de φ es 3 que es impar.
- Suponga que existe un $n \in \mathbb{N}$ tal que para todo $k \in [0, n]$ se cumple que toda FBF que no contenga a ¬ y con una cantidad de implicaciones k tiene longitud impar.

Sea φ una fórmula bien formada que no contenga ¬ y que tiene n+1 implicaciones, es decir que es de la forma:

$$\varphi \equiv \Rightarrow \psi_1 \psi_2$$

donde ψ_1, ψ_2 son FBF. Como φ tiene n+1 implicaciones, entonces debe suceder que ψ_1 y ψ_2 contengan entre 0 y n implicaciones. Por hipótesis de inducción, tanto ψ_1 como ψ_2 tienen longitud impar, luego φ tiene longitud la suma de estos dos impares (que es un par) más 1 (la primera implicación). Por tanto, φ tiene longitud impar.

Por inducción se sigue el resultado.

Ejercicio 1.1.5

Sea φ una fórmula bien formada. Sea c la cantidad de veces que aparece el símbolo \Rightarrow en la fórmula φ , y sea s la cantidad de veces que aparecen variables en la fórmula φ (en donde, si alguna variable aparece varias veces, se cuentan cada una de sus apariciones por separado). Demuestre que

$$s = c + 1$$

Demostración:

Ejercicio 1.1.6

Sea φ una fórmula bien formada, y suponga que todos los símbolos de la variable que aparecen en φ se encuentran entre $p_1, ..., p_n$. Supóngase que m, m' son dos modelos que satisfacen $m(p_i) = m'(p_i)$ para todo $i \in [1, n]$. Demuestre que

$$\overline{m}(\varphi) = \overline{m}'(\varphi)$$

Demostración:

Ejercicio 1.1.7

Demuestre o refute