le

Evaluating Models

Plan for Class

- ☐ Learning curve + overfitting recap
- ☐ Validation and cross validation
- ☐ Accuracy and beyond
- ☐ Confusion matrix
- ☐ ROC curve

Learning Curve

Overfitting

Validation

Cross Validation

Cross Validation

```
In [20]: #Loading train and test data
         train set x orig, train set y, test set x orig, test set y, classes=load datase
         #Lets get some basic data about our image numpy arrays
         m train = train set x orig.shape[0]
         m test = test set x orig.shape[0]
         num px = train set x orig.shape[1]
         print("Number of training examples: m train = " + str(m train))
         print("Number of test examples: m test = " + str(m test))
         print("Height/Width of each image: num px = " + str(num px))
         print("Each image is of size: ("+ str(num px) + ", " + str(num px) + ", 3)"
         print("train set x shape: " + str(train set x orig.shape))
         print("train set y shape: " + str(train set y.shape))
         print("test set x shape : " + str(test set x orig.shape))
         print("test set y shape: "+ str(test set y.shape))
         Number of training examples: m train = 209
         Number of test examples: m test = 50
         Height/Width of each image: num px = 64
         Each image is of size: (64, 64, 3)
         train set x shape: (209, 64, 64, 3)
         train set y shape: (1, 209)
         test set x shape : (50, 64, 64, 3)
         test set y shape: (1, 50)
```

Cross Validation

```
In [22]: # We flatten the numpy array from (num px, num px, 3)
         # to (num px*num px*3, 1) this will make it easier for us so that each
         # image in one numpy array column
         train set x flatten=train set x orig.reshape(train set x orig.shape[0],-1).T
         test set x flatten=test set x orig.reshape(test set x orig.shape[0],\vdash1).T
         print("train set x flatten shape: " + str(train set x flatten.shape))
         print("train set y shape: " + str(train set y.shape))
         print("test set x flatten shape: "+ str(test set x flatten.shape))
         print("test set y shape: "+ str(test set y.shape))
         #Standardize the dataset for images by dividing each by 255
         train set x = train set x flatten/255
         test set x = \text{test set } x \text{ flatten/255}
         train set x flatten shape: (12288, 209)
         train set y shape: (1, 209)
         test set x flatten shape: (12288, 50)
         test set y shape: (1, 50)
```

Accuracy

So far our analysis has been focused on accuracy:

$$accuracy = \frac{\#\ correct\ classifications}{\#\ classifications}$$

Confusion Matrix

Real life	'not cat'	'cat'
Not Cat (D = 0)	© True negative	X Type I error (False positive)
Cat (D = 1)	X Type II error (False negative)	Control of the contro

Confusion Matrix

Real life	'don't lend'	'lend'
Not default (D = 0)	© True negative	X Type I error (False positive) α
defualt (D = 1)	X Type II error (False negative) β	Control True positive

Example – Lending Club

Identifying a default

True Negative

Default
Non default

Test Result

False Negative

Default

True Positive

Default

False Positive

Default

Moving the Threshold to the right

Default

Moving the Threshold to the left

Default

ROC curve

ROC analysis

ROC = Receiver Operating Characteristic

- Started in electronic signal detection theory (1940s 1950s)
- Used extensively for radar signal analysis
- Has become very popular in biomedical applications, particularly radiology and imaging
- Used in machine learning applications to assess classifiers
- Used in many business applications
- Can be used to compare tests/procedures

ROC curve comparison

Confusion Matrix

Best Test:

Tune Positive Rate O W False Positive Rate M 1000%

The distributions don't overlap at all

Worst test:

The distributions overlap completely

Confusion Matrix

Default