05 Neural Networks

Recurrent Neural Networks (RNNs)

Example Application

Slot Filling

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Changsha

1-of-N encoding

How to represent each word as a vector?

1-of-N Encoding lexicon = {apple, bag, cat, dog, elephant}

The vector is lexicon size.	apple	= [1	0	0	0	0]
Each dimension corresponds	bag =	= [O	1	0	0	0]
to a word in the lexicon	cat =	= [0	0	1	0	0]
The dimension for the word is	dog =	=[0	0	0	1	0]
1, and others are 0	elephant :	0]=	0	0	0	1]

Beyond 1-of-N encoding

Dimension for "Other"

Word hashing

Example Application

Solving slot filling by Feedforward network?

Input: a word

(Each word is represented as a vector)

Output:

Probability distribution that the input word belonging to the slots

Changsha

Recurrent Neural Network (RNN)

 W_{xh}

 W_{xh}

Memory can be considered as another input.

$$\begin{cases} \boldsymbol{h}^t = f(\boldsymbol{W}_{xh}\boldsymbol{x}^t + \boldsymbol{W}_{hh}\boldsymbol{h}^{t-1} + \boldsymbol{b}_h) \\ \boldsymbol{y}^t = f(\boldsymbol{W}_{hy}\boldsymbol{h}^t + \boldsymbol{b}_y) \end{cases}$$

Input sequence:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots$$

Example

Output sequence: $\begin{bmatrix} 4 \\ 4 \end{bmatrix}$

Input sequence:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots$$

Example

Output sequence: $\begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 12 \\ 12 \end{bmatrix}$

Input sequence:
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} \dots$$

Example

Output sequence: $\begin{bmatrix} 4 \\ 4 \end{bmatrix} \begin{bmatrix} 12 \\ 12 \end{bmatrix} \begin{bmatrix} 32 \\ 32 \end{bmatrix}$

RNN

The same network is used again and again.

Probability of "arrive" in each slot

Probability of "Changsha" in each slot Probability of "on" in each slot

Of course it can be deep ...

Elman Network & Jordan Network

Bidirectional RNN

Learning Target

Learning

Unfortunately

 RNN-based network is not always easy to learn Real experiments on Language modeling

The error surface is rough.

Why?

$$w = 1 \qquad y^{1000} = 1 \qquad \text{Large} \\ w = 1.01 \qquad y^{1000} \approx 20000 \qquad DL/\partial w \qquad \text{Learning rate?}$$

$$w = 0.99 \qquad y^{1000} \approx 0 \qquad \text{small} \\ w = 0.01 \qquad y^{1000} \approx 0 \qquad DL/\partial w \qquad \text{Large} \\ w = 0.01 \qquad y^{1000} \approx 0 \qquad DL/\partial w \qquad DL/\partial w$$

Helpful Techniques

- Long Short-term Memory (LSTM)
 - Can deal with gradient vanishing (not gradient explode)
 - Memory and input are added
 - ➤ The influence never disappears unless forget gate is closed

No Gradient vanishing (If forget gate is opened.)

Gated Recurrent Unit (GRU): simpler than LSTM

Long Short-Term Memory (LSTM)

Original Network:

➤ Simply replace the neurons with LSTM

LSTM

LSTM

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

The first step in our LSTM is to decide what information we're going to throw away from the cell state. This decision is made by a sigmoid layer called the "forget gate layer." It looks at h_{t-1} and x_t , and outputs a number between 0 and 1 for each number in the cell state C_{t-1} . A 1 represents "completely keep this" while a 0 represents "completely get rid of this."

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

The next step is to decide what new information we're going to store in the cell state. This has two parts. First, a sigmoid layer called the "input gate layer" decides which values we'll update. Next, a tanh layer creates a vector of new candidate values, \widetilde{C}_t , that could be added to the state. In the next step, we'll combine these two to create an update to the state.

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

It's now time to update the old cell state, C_{t-1} , into the new cell state C_t . The previous steps already decided what to do, we just need to actually do it.

We multiply the old state by f_t , forgetting the things we decided to forget earlier.

Then we add $i_t * \widetilde{C}_t$. This is the new candidate values, scaled by how much we decided to update each state value.

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Finally, we need to decide what we're going to output. First, we run a sigmoid layer which decides what parts of the cell state we're going to output. Then, we put the cell state through tanh (to push the values to be between –1 and 1) and multiply it by the output of the sigmoid gate, so that we only output the parts we decided to.

LSTM

Extension: "peephole"

More Applications

Many to one

Input is a vector sequence, but output is only one vector

Many to one

Input is a vector sequence, but output is only one vector

- Both input and output are both sequences, <u>but the output</u> <u>is shorter.</u>
 - E.g. <u>Speech Recognition</u>

- Both input and output are both sequences, <u>but the output</u> <u>is shorter.</u>
- Connectionist Temporal Classification (CTC) [Alex Graves, ICML'06][Alex Graves, ICML'14][Hasim Sak, Interspeech'15][Jie Li, Interspeech'15][Andrew Senior, ASRU'15]

CTC: Training

Acoustic Features:

Label: 好棒

All possible alignments are considered as correct.

CTC: example

Graves, Alex, and Navdeep Jaitly. "Towards end-to-end speech recognition with recurrent neural networks." *Proceedings of the 31st International Conference on Machine Learning (ICML-14)*. 2014.

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. *Machine Translation* (machine learning→机器学习)

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. *Machine Translation* (machine learning→机器学习)

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. *Machine Translation* (machine learning→机器学习)

- Both input and output are both sequences <u>with different</u>
 <u>lengths</u>. → <u>Sequence to sequence learning</u>
 - E.g. <u>Machine Translation</u> (machine learning→机器学习)

(a) Machine translation alignment

(b) Speech translation alignment

Figure 1: Alignments performed by the attention model during training

Sequence-to-sequence Autoencoder -Text

 To understand the meaning of a word sequence, the order of the words can not be ignored.

white blood cells destroying an infection

exactly the same bag-of-word

an infection destroying white blood cells

negative

Sequence-to-sequence Autoencoder -Text

Li, Jiwei, Minh-Thang Luong, and Dan Jurafsky. "A hierarchical neural autoencoder for paragraphs and documents." *arXiv preprint arXiv:1506.01057*(2015).

Sequence-to-sequence Autoencoder -Text

Li, Jiwei, Minh-Thang Luong, and Dan Jurafsky. "A hierarchical neural autoencoder for paragraphs and documents." *arXiv preprint arXiv:1506.01057*(2015).

Sequence-to-sequence Autoencoder -Speech

Sequence-to-sequence Autoencoder -Speech

Sequence-to-sequence Autoencoder -Speech

Visualizing embedding vectors of the words

Example: Chat-bot

电视影集 (~40,000 sentences)、美国总统大选辩论

Example: Video Caption Generation

Example: Image Caption Generation

Input an image, but output a sequence of words

Attention-based Model

Attention-based Model

Attention-based Model v2

Neural Turing Machine

Reading Comprehension

Reading Comprehension

End-To-End Memory Networks. S. Sukhbaatar, A. Szlam, J. Weston, R. Fergus. NIPS, 2015.

The position of reading head:

Story (16: basic induction)	Support	Hop 1	Hop 2	Hop 3
Brian is a frog.	yes	0.00	0.98	0.00
Lily is gray.		0.07	0.00	0.00
Brian is yellow.	yes	0.07	0.00	1.00
Julius is green.		0.06	0.00	0.00
Greg is a frog.	yes	0.76	0.02	0.00
What color is Greg? Answer: yellow	Prediction: yellow			

Visual Question Answering

source: http://visualqa.org/

Visual Question Answering

To Learn More

- The Unreasonable Effectiveness of Recurrent Neural Networks
 - http://karpathy.github.io/2015/05/21/rnneffectiveness/
- Understanding LSTM Networks
 - http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Acknowledgement

Reference and thanks to:

National Taiwan University ML2020 Course:

Machine Learning

https://speech.ee.ntu.edu.tw/~hylee/ml/2020-spring.php

Understanding LSTM Networks

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Wikipedia

https://en.wikipedia.org/wiki/Long_short-term_memory