DIPLOMADO EN BIG DATA PARA LA TOMA DE DECISIONES

Introducción al Modelamiento Estadístico

Parte 2: Métodos de Clasificación

2.1.- Introducción

2/86

Introducción

- Las técnicas de clasificación son formas de análisis de datos que pretenden generar modelos que describen un atributo discreto de interés.
- Estos modelos reciben el nombre de <u>clasificadores</u> y "predicen" clases discretas no ordenables.
- Ejemplos de aplicaciones:

Clasificacón

- categorización de textos (ej., spam).
- detección de fraudes (ej. firmas).
- visión de máquinas (ej., detección de rostros).
- segmentación de mercado (ej., tipos de clientes que responden a una promoción).
- bioinformática (ej., proteinas de acuerdo a su función).

Aleiandro Jara

3 / 86

Introducción

El proceso de clasificación consta de dos pasos:

1) Paso de aprendizaje: se construye el modelo basado en datos recopilados previamente (trainning data).

Introdución

Clasificacón Alejandro Jara 5 / 86

Introducción

El proceso de clasificación consta de dos pasos:

2) Paso de validación y clasificación: se determina la precisión del clasificador, y si es aceptable, se usa para predecir las clases de un conjunto de datos.

Introdución

Clasificacón Alejandro Jara 7 / 86

2.2.- MÉTODOS

2.2.1.- ÁRBOLES DE DECISIÓN

Árboles de Decisión: Definición

Definición

Un árbol de decisión es un diagrama de flujo, donde:

- o cada nodo interno representa una "pregunta" sobre un atributo,
- cada <u>rama</u> representa una respuesta a esa pregunta y
- o cada hoja o nodo terminal representa la clase de clasificación.

Clasificacón Alejandro Jara 10 / 86

Árboles de Decisión: Ejemplo

Identificación de personas de acuerdo a su apariencia.

	sex	mask	cape	tie	ears	smokes	class
	training data						
batman	male	yes	yes	no	yes	no	Good
robin	male	yes	yes	no	no	no	Good
alfred	male	no	no	yes	no	no	Good
penguin	male	no	no	yes	no	yes	Bad
catwoman	female	yes	no	no	yes	no	Bad
joker	male	no	no	no	no	no	Bad
	test data						
batgirl	female	yes	yes	no	yes	no	??
riddler	male	yes	no	no	no	no	??

Clasificacón Alejandro Jara 11 / 86

Árboles de Decisión: Ejemplo

Clasificacón Alejandro Jara 12 / 86

- ¿Cómo se construyen los árboles de decisión?
 - Elección de la regla en base a la cuál particionar los datos.
 - Dividir los datos en subconjuntos disjuntos utilizando la regla de partición.
 - Repetir en forma recursiva para cada subconjunto.
 - Parar cuando las hojas son (casi) "puras".

Clasificacón Alejandro Jara 13 / 86

¿Cómo se escoge la mejor regla de partición?

Clasificacón Alejandro Jara 15 / 86

- Una opción es escoger la regla que permita el mayor aumento en la "pureza" de los grupos.
- Entonces necesitamos una medida que cuantifique el nivel de 'impureza" en un grupo:

¿Qué atributo es más informativo?

17 / 86

Clasificacón Alejandro Jara

 Nos gustaría que la función que cuantifique el nivel de impureza se vea así (p = fracción de casos positivos):

- Medidas de impureza utilizadas usualmente:
 - Entropia: $-p \log(p) (1-p) \log(1-p)$.
 - Índice de Gini: p(1-p).

<ロト < 回 > < 巨 > < 巨 > く 巨 > く 巨 < り < ご

- Error de entrenamiento: proporción de los datos de entrenamiento incorrectamente clasificados.
- Error de prueba: proporción de los datos de prueba clasificados de forma incorrecta.

Clasificacón Alejandro Jara 19 / 86

Tamaño del árbol vs tipo de error:

(ロ) (레) (토) (토) (토) (연)(G

Clasificacón Alejandro Jara 20 / 86

- Los árboles deben se suficientemente grandes para ajustar los datos de entrenamiento.
- Sin embargo, árboles muy "complejos" pueden "sobreajustar" los datos de entrenamiento (capturando ruidos en los datos o patrones espurios) y clasificar mal registros futuros.

Clasificacón Alejandro Jara 21 / 86

- Los métodos de poda, pretenden solucionar el problema de sobreajuste.
- Un árbol podado tiende a ser más pequeño y menos complejo, por lo que es más comprensible.
- Existen 2 métodos de poda: pre-poda (controlan crecimiento del árbol antes de ajuste perfectamente los datos) y post-poda (permite ajuste perfecto y luego se poda).
- En la práctica se usan más las técnicas de post-poda, porque es difcil estimar con precisión cuando se debe detener el crecimiento del árbol.

- Los métodos de poda, pretenden solucionar el problema de sobreajuste.
- Un árbol podado tiende a ser más pequeño y menos complejo, por lo que es más comprensible.
- Existen 2 métodos de poda: pre-poda (controlan crecimiento del árbol antes de ajuste perfectamente los datos) y post-poda (permite ajuste perfecto y luego se poda).
- En la práctica se usan más las técnicas de post-poda, porque es difícil estimar con precisión cuando se debe detener el crecimiento del árbol.

Clasificacón Alejandro Jara 24 / 86

Árboles de Decisión: Ejemplo con Datos

- Se cuenta con información de 146 pacientes con cáncer de próstata en estado C.
- Médicamente es interesante estudiar si la enfermedad reaparece luego de la cirugía de remoción de la próstata y el intervalo de tiempo hasta que eso ocurra (si es que ocurre).
- Los datos se encuentran bajo el nombre de stagec de la librería rpart.
- Se aplican las funciones rpart, printcp y prune de la librería rpart.
- Lectura complementaria para detalles en archivo adjunto (ComplementaryReading2.pdf).

Clasificacón Alejandro Jara 25 / 86

Árboles de Decisión: Código R

```
library (rpart)
data(stagec)
head(stagec)
names (stagec)
progstat <- factor(stagec$pgstat, levels=0:1,
                              labels=c("No", "Proq"))
cfit <- rpart(progstat ~ age + eet + g2 + grade +
                   gleason + ploidy,
                   data=stagec, method='class')
print(cfit)
plot(cfit)
text(cfit)
printcp(cfit)
```

Clasificacón Alejandro Jara 26 / 86

Árboles de Decisión: Código R

```
pruned.tree <- prune(cfit,cp=0.06)
plot(pruned.tree)
text(pruned.tree)</pre>
```


2.2.2.- BAYES INGENUO

Bayes Ingenuo

- Predicen las probabilidades de pertenencia a clases.
- Están basados en el teorema de Bayes.
- Los clasificadores Bayesianos simples tienen rendimiento comparable con Árboles de Decisión.
- Han demostrado tener alta precisión y velocidad al aplicarse a grandes bases de datos.
- Asumen que el efecto del valor de un atributo en una clase dada es independiente de los valores de los otros atributos

 naive.

Clasificacón Alejandro Jara 29 / 86

Bayes Ingenuo: Teorema de Bayes

- Thomas Bayes: clérigo que trabajó en probabilidad y teoría de decisión durante el siglo XVIII.
- Sea X los atributos de una unidad, que en términos Bayesianos es considerada "evidencia", descrita por n atributos.
- Sea H alguna hipótesis sobre la clase de pertenencia de la unidad.
- Interesa determinar la probabilidad de H dado X, $P(H \mid X)$.
- Se busca determinar la probabilidad de que la unidad X pertenezca a la clase C, dado que conocemos la descripción de X.
- $P(H \mid X)$: probabilidad posterior o *a posteriori*.
- P(H): probabilidad previa o a priori.

Clasificacón Aleiandro Jara 30 / 86

Bayes Ingenuo: Teorema de Bayes

- P(H), $P(X \mid H)$ y P(X) pueden estimarse desde los datos.
- El teorema de Bayes nos entrega una forma de estimar la probabilidad posterior $P(H \mid \mathbf{X})$ en base a ellas.

Teorema de Bayes

$$P(H \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid H)P(H)}{P(\mathbf{X})}$$

Clasificacón Alejandro Jara 31 / 86

Bayes Ingenuo (naive Bayes): Algoritmo

• Suponga se quiere clasificar en una de m clases, C_1, C_2, \ldots, C_m , a una unidad representada por el vector de atributos

$$\boldsymbol{X}=(x_1,x_2,\ldots,x_n).$$

• El clasificador Bayesiano predice que la unidad pertenece a la clase C_i si

$$P(C_i \mid \boldsymbol{X}) > P(C_j \mid \boldsymbol{X}),$$

para $1 \le j \le m, j \ne i$.

• La clase C_i que maximiza $P(C_i \mid \mathbf{X})$ se llama máxima hipótesis posterior.

• Por el teorema de Bayes, $P(C_i \mid \mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$.

Clasificacón Aleiandro Jara 32 / 86

Bayes Ingenuo (naive Bayes): Algoritmo

- Por el teorema de Bayes, $P(C_i \mid \mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})} \propto P(\mathbf{X} \mid C_i)P(C_i)$.
- Si no se conocen las probabilidades a priori de las clases, comúnmen se asumen iguales $P(C_1) = P(C_2) = \ldots = P(C_m)$.
- Para el simplificar el cálculo de $P(X \mid C_i)$, se toma el supuesto "ingenuo" de independencia condicional dentro de las clases.
- Los atributos son condicionalmente independientes entre sí, dada la clase de la unidad, $P(\mathbf{X} \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$.

Bayes Ingenuo (naive Bayes): Algoritmo

- Para atributos discretos $P(x_k \mid C_i)$ es estimada por a proporción de unidades de la clase C_i que toman el valor x_k para ese atributo en la muestra de entrenamiento.
- Para atributos continuos se asume una distribución normal y se calcula $P(x_k \mid C_i) = \phi(x_k, \mu_{C_i}, \sigma_{C_i}^2)$, donde $\phi(\cdot a, b)$ es la densidad de la distribución normal con media a y varianza b, y μ_{C_i} y $\sigma_{C_i}^2$ corresponde a la media y varianza, respectivamente, del atributo para las unidades de la clase C_i en la muestra de entrenamiento.
- La corrección de Laplace se utiliza cuando existen ceros.

Clasificacón Alejandro Jara 34 / 8

Bayes Ingenuo (naive Bayes): Ejemplo

- El conjunto de datos HouseVotes84 incluidos en la libería mlbench contiene los registros de votación del Congreso de Estados Unidos en el año 1984.
- El conjunto de datos tiene la votación de 435 representantes para 16 temas claves discutidos en el congreso. El conjunto de datos también incluye la afiliación política del representante (demócrata o republicano).
- El objetivo del análisis es predecir la afiliación política (Class) del representante, en base a sus votaciones.
- Se usa función naiveBayes de la librería e1071.

Clasificacón Alejandro Jara 35 / 86

Bayes Ingenuo: Ejemplo

```
library (e1071)
data(HouseVotes84, package="mlbench")
names (HouseVotes84)
head (HouseVotes84)
model <- naiveBayes (Class~., data=HouseVotes84)
predict(model, HouseVotes84[1:10,])
predict (model, HouseVotes84[1:10,],type="raw")
pred <- predict(model, HouseVotes84)</pre>
table (pred, HouseVotes84$Class)
### Usando correcci\'on de Laplace ###
model2 <- naiveBayes(Class~., data=HouseVotes84, laplace=3)</pre>
pred2 <- predict(model2, HouseVotes84[,-1])</pre>
table (pred2, HouseVotes84$Class)
```

Clasificacón Alejandro Jara 36 / 86

2.2.3.- MÉTODO DE LOS *k*-VECINOS MÁS CERCANOS (K-NN)

Idea con un ejemplo:

Cuando se clasifica un email com spam o no, una estrategia es mirar los emails existentes que son similares al que está entrando, y ver si son spam o no. Ésta es la filosofía detrás de este algoritmo.

Clasificacón Alejandro Jara 38 / 86

- Fue descrito inicialmente en los años 50.
- El método es bastante intenso cuando se tienen bases de datos grandes.
- Ganó popularidad en los 60's cuando aumentó la potencia computacional.
- Es muy utilizado en el área de reconocimiento de patrones.

Clasificacón Alejandro Jara 39 / 86

- Estos clasificadores están basados en el aprendizaje por analogía, es decir, comparando una unidad de validación con unidades de entrenamiento que son similares a ella.
- Las unidades de entrenamiento son descritas por n atributos.
- Cada unidad representa un punto en el espacio n-dimensional.
- Cuando se tiene una unidad desconocida, el clasificador de k-NN busca el espacio de patrones para las k unidades de entrenamiento que están más cercanas a la unidad desconocida.
- Estas k unidades de entrenamiento son los k vecinos más cercanos de la unidad desconocida.

Clasificacón Alejandro Jara 40 / 86

k-NN: Definición de "cercanía"

• Se define en términos de una métrica, como la distancia Euclidiana. Si se tienen las unidades $\mathbf{X}_1 = (x_{11}, x_{12}, \dots, x_{1n})$ y $\mathbf{X}_2 = (x_{21}, x_{22}, \dots, x_{2n})$,

$$dist(\mathbf{X}_1, \mathbf{X}_2) = \sqrt{\sum_{i=1}^{n} (x_{1i} - x_{2i})^2}$$

Es conveniente normalizar los valores antes de calcular las distancias para prevenir que prevalezcan atributos con valores de mayor magnitud (e.j., ingreso v/s variable binaria).

Clasificacón Alejandro Jara 42 / 86

- Los clasificadores k-NN, clasifican la unidad desconocida de acuerdo a la clase más común entre los k vecinos más cercanos a ella.
- Si k = 1, la unidad se clasifica de acuerdo a la clase de la unidad de entrenamiento que esté más cercana.
- Este procedimiento también puede utilizarse para realizar predicciones numéricas, caso en el que el clasificador entrega el valor promedio de los valores correspondientes de los k vecinos cercanos a la unidad de validación.

Clasificacón Alejandro Jara 43 / 86

¿Qué ocurre si los atributos nominales?

En estos casos podemos utilizar medias de "distancia" apropiadas, por ejemplo, asignando un 1 si son diferentes y 0 si no.

¿Qué ocurre si hay valores faltantes?

Es decir, si el valor de un atributo A falta en la unidad X_1 , X_2 o en ambas.

En general, la implementación asume la mayor diferencia posible.

- Nominales: si falta uno o ambos valores, se toma el valor 1.
- Numérica: si faltan ambos valores, se toma el valor 1. Si falta uno solo y el otro está normalizado, se toma la diferencia como el máximo entre 1 - v' o v', donde v' es el valor normalizado.

4 □ > 4 □ > 4 □ > 4 □ >

44 / 86

Clasificacón Alejandro Jara 45 / 86

k-NN: ¿Cómo determinar el valor de k?

Experimentalmente:

- Se parte con k = 1 y datos de validación para estimar la tasa de error del clasificador.
- Se repite el proceso aumentando k en 1 vecino más.
- Se selecciona el valor de k que entrega la tasa de error mínima.

Clasificacón Alejandro Jara 48 / 86

k-NN: Ejemplo

- Base de datos iris: contiene datos de 50 muestras de cada una de 3 clases de flores de iris.
- Información sobre:
 - largo del sépalo en cm.
 - ancho del sépalo en cm.
 - largo del pétalo en cm.
 - ancho del pétalo en cm.
 - tipo: setosa, versicolour, virginica.
- Uso de función knn de librería class.

Clasificacón Alejandro Jara 49 / 86

k-NN: Ejemplo

```
data("iris")
library(class)
train <- rbind(iris3[1:25,,1], iris3[1:25,,2], iris3[1:25,,3])
test <- rbind(iris3[26:50,,1], iris3[26:50,,2], iris3[26:50,,3])

cl <- factor(c(rep("s",25), rep("c",25), rep("v",25)))
lazy<-knn(train, test, cl, k = 3, prob=TRUE)
print(lazy)
attributes(.Last.value)</pre>
```

Clasificacón Alejandro Jara 50 / 86

k-NN: Ejemplo

```
library(kknn)
data(iris)
m <- dim(iris)[1]
val <- sample(1:m, size = round(m/3), replace = FALSE,</pre>
              prob = rep(1/m, m))
iris.learn <- iris[-val,]
iris.valid <- iris[val,]
iris.kknn <- kknn(Species~., iris.learn, iris.valid, distance = 1,
                   kernel = "triangular")
summary (iris.kknn)
fit <- fitted(iris.kknn)
table(iris.valid$Species, fit)
pcol <- as.character(as.numeric(iris.valid$Species))</pre>
pairs(iris.valid[1:4], pch = pcol, col = c("green3", "red")
      [(iris.valid$Species != fit)+1])
```

Clasificacón Alejandro Jara 51 / 86

2.2.4.- MÉTODOS CONJUNTOS

Introducción

- Métodos conjuntos (ensemble methods).
- Modelo compuesto formado por una combinación de clasificadores.
- Los clasificadores individuales votan y la clase predicha se basa en la colección de votos.
- Estos métodos tienden a ser más exactos que los clasificadores que lo componen.

Clasificacón Alejandro Jara 53 / 86

Introducción

- Los clasificadores conjuntos combinan una serie de k clasificadores, M_1, M_2, \ldots, M_k con el objeto de crear un modelo de clasificación compuesto M*.
- Un conjunto de datos D se usa para crear k conjuntos de datos de trabajo D_1, D_2, \ldots, D_k , donde D_i (1 $\leq i \leq k-1$) se usa para generar el clasificador M_i .
- Dado un nuevo registro, cada clasificador entrega una clase predicha.
- El conjunto entrega su predicción basado en los votos de los clasificadores bases.

Introducción

Clasificacón Alejandro Jara 55 / 86

Introducción: (a) indivuales y (b) combinados

Clasificacón Alejandro Jara 56 / 86

2.2.4.1.- BAGGING

Bagging

La idea básica de este método puede ejemplificarse en base a un diagnóstico médico.

- Pedir más de una opinión y quedarse con el diagnóstico que ocurre más frecuentemente.
- El diagnóstico se basa en el voto de la mayoría, donde cada doctor entrega un voto.
- Una votación en base a un grupo más grande de especialistas puede ser más confiable que una basada en un grupo menor.
- Bagging = bootstrap aggregation.

< ロ > < 配 > ∢ 差 > ∢ 差 > 差 釣 へ ()

Clasificacón Alejandro Jara 58 / 86

Bagging: Algoritmo

Dado un conjunto *D*, de *d* unidades, el bagging funciona de la siguiente manera:

- Paso 1: Para la iteración i (i = 1, 2, ..., k), se muestrea un conjunto D_i de d unidades con reemplazo de las unidades originales D. Cada conjunto de datos de trabajo es una muestra bootstrap.
- Paso 2: Un modelo M_i es entrenado para cada conjunto de datos de trabajo D_i .
- Paso 3: Para clasificar una unidad desconocida X, cada M_i entrega su predicción, que cuenta como un voto.
- Paso 4: El clasificador conjunto, M*, cuenta los votos y asigna a X la clase con mayor votación.

Bagging

- Se puede aplicar también en el caso de predicción de variables continuas, tomando el valor promedio de cada predicción.
- Muchas veces tiene mayor precisión que un clasificador individual derivado de D.
- El aumento de precisión se produce porque el modelo compuesto reduce la varianza de los clasificadores individuales.

Clasificacón Alejandro Jara 60 / 86

Bagging: Ejemplo

- Función bagging de la liberaría adabag.
- Ajusta el algoritmo propuesto por Breiman en 1996 usando árboles de clasificación como clasificadores individuales.

Bagging: Ejemplo

```
library (adabag)
data("iris")
### Seleccion de datos de trabajo o entrenamiento.
### Se seleccionan 25 de cada especie.
train \leftarrow c(sample(1:50, 25),
                sample (51:100, 25),
                sample(101:150, 25))
### Bagging
iris.bagging <- bagging(Species ~ ., data = iris[train, ], mfinal = 10,</pre>
                         control = rpart.control(maxdepth = 1))
iris.bagging <- bagging(Species ~ ., data = iris[train, ], mfinal = 10)</pre>
iris.bagging$samples[.1]
### Prediccion
iris.predbagging <- predict.bagging(iris.bagging, newdata=iris[-train,])</pre>
iris.predbagging
```

Clasificacón Aleiandro Jara 62 / 86

2.2.4.2.- BOOSTING

Boosting - AdaBoost

La lógica del boosting es la siguiente:

- Suponga que tienen ciertos síntomas y en vez de consultar a un doctor, visita muchos.
- Suponga que asigna pesos al valor del diagnóstico de cada uno, en base a la precisión de diagnósticos previos que han hecho.
- El diagnóstico final es una combinación ponderada de los diagnósticos.

Clasificacón Alejandro Jara 64 / 86

Boosting - AdaBoost

- En boosting se asignan pesos a las unidades de entrenamiento.
- Se entrena iterativamente una serie de *k* clasificadores.
- Una vez que se ha entrenado el clasificador M_i , se actualizan los pesos de manera que el siguiente clasificador, M_{i+1} ponga más atención a las unidades de entrenamiento que fueron mal clasificadas por M_i .
- El clasificador final, M_* , combina los votos de cada clasificador individual, donde el peso del voto de cada clasificador es una función de su precisión.

Clasificacón Alejandro Jara 65 / 86

AdaBoost (Adaptative Boosting)

- Suponga que queremos aumentar la precisión de un método de aprendizaje.
- Se tiene un conjunto de datos *D*, de *d* unidades clasificadas,

$$(X_1, y_1), (X_2, y_2), \dots, (X_d, y_d)$$

donde y_i es la clase de la unidad X_i .

- Inicialmente, AdaBoost asigna un peso de 1/d a cada unidad de D.
- En la iteración i, las unidades de D son muestreadas para formar un conjunto de trabajo de tamaño d, D_i .
- La chance de ser seleccionada de cada unidad está determinada por su peso.

Clasificacón Alejandro Jara 66 / 86

4 D > 4 A > 4 B > 4 B > 9 Q P

AdaBoost (Adaptative Boosting)

- Se deriva un clasificador M_i y se calcula su error con utilizando D_i como datos de validación.
- Se ajustan los pesos de las unidades de entrenamiento de acuerdo a cómo fueron clasificadas:
 - mal clasificada ⇒ aumenta su peso.
 - bien clasificada \Longrightarrow disminuye su peso.

El peso de cada unidad refleja su dificultad de clasificación. A mayor peso, más veces ha sido clasificada incorrectamente.

 Estos pesos se utilizan para generar las muestras de entrenamiento para el siguiente clasificador.

Clasificacón Alejandro Jara 67 / 86

AdaBoost (Adaptative Boosting)

- La idea es centrarse más en las unidades con clasificación incorrecta en el paso anterior.
- Algunos clasificadores son mejores para clasificar unidades "difíciles" por lo que se construye una serie de clasificadores que se complementa.

Clasificacón Alejandro Jara 68 / 86

AdaBoost: Algoritmo

Input:

- D: datos con d unidades clasificadas.
- k: número de iteraciones (se genera un clasificador por iteración)

Output: modelo compuesto.

Paso 1: Inicializar el peso de cada unidad en 1/d.

Para cada iteración:

Paso 2: Muestrear D con reemplazo de acuerdo a los pesos para obtener D_i .

Paso 3: Usar D_i para derivar M_i .

Clasificacón Alejandro Jara 69 / 86

AdaBoost: Algoritmo

Paso 4: Calcular:

$$error(M_i) = \sum_{j=1}^{d} w_j \times err(\mathbf{X}_j)$$
 donde $err(\mathbf{X}_i)$ indica si la unidad \mathbf{X}_i fue mal clasificada.

- Paso 5: Si $error(M_i) > 0.5$, volver al paso 2.
- Paso 6 Para cada unidad en D_i bien clasificada, multiplicar su peso por $\frac{error(M_i)}{(1-error(M_i)}$.
- Paso 7 Actualizar los pesos y normalizarlos.

Clasificacón Alejandro Jara 70 / 86

AdaBoost

- Boosting asigna un peso a cada voto de los clasificadores, de acuerdo a su rendimiento.
- A menor tasa de error, más exacto, por lo tanto más vale su voto.
- El peso del voto del clasificador M_i es

$$log\left(\frac{1 - error(M_i)}{error(M_i)}\right)$$

- Para cada clase, c, se suman los pesos de cada clasificador que asignó la clase c a X.
- "Gana" la clase con la suma mayor y corresponde a la predicción para X.

Bagging vs Boosting

- Como boosting se focaliza en las unidades mal clasificadas, corre el riesgo de sobreajustar el modelo resultante a esos datos.
- Algunas veces el modelo resultante puede ser menos preciso que un modelo único para los mismos datos.
- Bagging es menos susceptible a un sobreajuste del modelo.
- Aunque ambos pueden mejorar significativamente la exactitud del modelo en comparación a un modelo único, boosting tiende a lograr mayor precisión.

Clasificacón Alejandro Jara 72 / 86

AdaBoost: Ejemplo

- Función boosting de la liberaría adabag.
- Implementa los algoritmos AdaBoost.M1 (Freund and Schapire, 1996) y SAMME (Zhu et al., 2009) usando árboles de desición como clasificadores individuales.

Clasificacón Alejandro Jara 73 / 86

Bagging: Ejemplo

```
library(rpart)
data(iris)
iris.adaboost <- boosting(Species~., data=iris, boos=TRUE, mfinal=10)</pre>
iris.adaboost <- boosting(Species ~ ., data = iris[train, ], mfinal = 10,</pre>
                             control = rpart.control(maxdepth = 1))
iris adaboost
barplot(iris.adaboost$imp[order(iris.adaboost$imp, decreasing = TRUE)],
         vlim = c(0, 100), main = "Variables Relative Importance",
         col = "lightblue")
table(iris.adaboost$class, iris$Species[train],
       dnn = c("Predicted Class", "Observed Class"))
1 - sum(iris.adaboost$class == iris$Species[train]) /
  length(iris$Species[train])
### Prediccion
iris.predboosting <- predict.boosting(iris.adaboost,</pre>
                                  newdata = iris[-train, ])
iris.predboosting
```

2.2.4.3.- RANDOM FOREST

Random Forest

- Es un método conjunto en el que los clasificadores individuales corresponden a árboles de decisión.
- Los árboles individuales se generan usando una selección aleatoria de atributos en cada nodo para determinar la división.
- Formalmente, cada árbol depende de los valores de un vector aleatorio bajo muestreo independientemente y con la misma distribución para todos los árboles del bosque.
- Durante la clasificación, cada árbol vota y la clase más popular "gana".
- Los random forests pueden construirse usando bagging en tándem con selección aleatoria de atributos.

Random Forest: Algoritmo

Input:

- D: datos con d unidades clasificadas.
- k: número de árboles de decisión a considerar.
- F: número de atributos a ser usados para determinar la división en cada nodo, donde F << A.

Output: modelo compuesto.

Para cada iteración i: (i = 1, ..., k)

- Paso 1: Muestrear los datos de entrenamiento D_i , de tamaño d con reemplazo desde D.
- Paso 2: M_i selecciona, aleatoriamente en cada nodo, F atributos como candidatos.
- Paso 3: Se construye el árbol de tamaño máximo (sin poda).

4 U P 4 UP P 4 E P 4 E P Y Y Y Y

Random Forest

- Random forests son comparables en precisión con AdaBoost, aunque más robustos frente a errores y outliers.
- El error de un "bosque" converge cuando el número de árboles en él es grande, por lo que no hay problema de sobreajuste.
- Su precisión depende de la fuerza de los árboles individuales y la dependencia que exista entre ellos.
- Es importante mantener la fuerza individual sin aumentar la correlación.

Clasificacón Alejandro Jara 78 / 86

Random Forest

- Random forests no son sensibles al número de atributos considerados para cada división.
- El uso de un solo atributo seleccionado aleatoriamente puede entregar buena precisión, la que usualmente es mejor que al usar varios atributos.
- El utilizar muchos menos atributos en cada división, los hacer muy eficientes en grandes bases de datos.

Clasificacón Alejandro Jara 79 / 86

AdaBoost: Ejemplo

- Función randomForest de la liberaría randomForest.
- Ilmplementa el algoritmo de random forests propuesto por Breima y Cutler para clasificación y regresión.

Clasificacón Alejandro Jara 80 / 86

Random Forest: Ejemplo

```
data("iris")
ind <- sample(2, nrow(iris), replace=TRUE, prob=c(0.7, 0.3))
trainData <- iris[ind==1,]
testData <- iris[ind==2,]
library(randomForest)
rf <- randomForest (Species ~ ., data=trainData, ntree=100,
                      proximity=TRUE)
print(rf)
summary (rf)
rf$votes
rf$oob.times
rf$predicted
# Comparar la prediccion con los datos originales, utilizando
# los datos de entrenamiento
table(predict(rf), trainData$Species)
```

Clasificacón Alejandro Jara 81 / 86

Random Forest: Ejemplo

```
# Comparar la prediccion con los datos originales, utilizando
# los datos de validacin
irisPred <- predict(rf, newdata=testData)
table(irisPred, testData$Species)</pre>
```

2.2.5.- OTROS MÉTODOS

Otros Métodos

- Support vector machines.
- Redes neuronales.
- Métodos Bayesianos noparamétricos.

2.3.- LECTURAS SUGERIDAS

Lecturas Sugeridas

- Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. 1984
 Classification and Regression Trees. Wadsworth and Brooks.
- Hastie, T., Tibshirani, R. and Friedman, J. 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.
- Mller, P., Quintana, F., Jara, A., and Hanson, T. E. 2015. Bayesian Nonparametric Data Analysis, Springer.
- Vapnik, V.N. 1998. Statistical Learning Theory. Wiley.

Clasificacón Alejandro Jara 86 / 86