Teoría de Lenguajes

Sabrina Gisele Silvero

Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

2do cuatrimestre 2023

¿Por qué estudiamos lo que estudiamos?

¿Por qué estudiamos lo que estudiamos?

• La clase pasada vimos símbolos, alfabetos, cadenas y lenguajes

- La clase pasada vimos símbolos, alfabetos, cadenas y lenguajes
- Hoy vamos a ver una máquina abstracta que nos permite *reconocer* lenguajes: los **autómatas finitos**

- La clase pasada vimos símbolos, alfabetos, cadenas y lenguajes
- Hoy vamos a ver una máquina abstracta que nos permite reconocer lenguajes: los autómatas finitos
- Estos reconocen exactamente una clase de lenguajes en particular: los lenguajes regulares

Jerarquía de Chomsky

- La clase pasada vimos símbolos, alfabetos, cadenas y lenguajes
- Hoy vamos a ver una máquina abstracta que nos permite reconocer lenguajes: los autómatas finitos
- Estos reconocen exactamente una clase de lenguajes en particular: los lenguajes regulares

Jerarquía de Chomsky

 Consumen cadenas símbolo por símbolo y mantienen un estado interno.

$$L_1 = \{ \alpha \mid \alpha \in \{0,1\}^* \text{ y } |\alpha|_0 \text{ es par } \}$$

$$L_1 = \{ \alpha \mid \alpha \in \{0,1\}^* \text{ y } |\alpha|_0 \text{ es par } \}$$

Cadenas sobre $\Sigma=\{0,1\}$ con cantidad par de ceros.

Ejemplos de cadenas:

$$L_1 = \{ \alpha \mid \alpha \in \{0,1\}^* \text{ y } |\alpha|_0 \text{ es par } \}$$

Cadenas sobre $\Sigma = \{0,1\}$ con cantidad par de ceros.

Ejemplos de cadenas:

- Que pertenecen: 1, 00, 010, 00100010
- Que no pertenecen: 0, 10010, 1110

$$L_1 = \{ \alpha \mid \alpha \in \{0,1\}^* \text{ y } |\alpha|_0 \text{ es par } \}$$

Cadenas sobre $\Sigma = \{0,1\}$ con cantidad par de ceros.

Ejemplos de cadenas:

- Que pertenecen: 1, 00, 010, 00100010
- Que no pertenecen: 0, 10010, 1110

El autómata A_1 que reconoce L_1 es,

$$L_1 = \{ \alpha \mid \alpha \in \{0,1\}^* \text{ y } |\alpha|_0 \text{ es par } \}$$

Cadenas sobre $\Sigma = \{0,1\}$ con cantidad par de ceros.

Ejemplos de cadenas:

- Que pertenecen: 1, 00, 010, 00100010
- Que no pertenecen: 0, 10010, 1110

El autómata A_1 que reconoce L_1 es,

Definición de autómatas finitos

Un AFD es una tupla de la forma

$$A = \langle Q, \Sigma, \delta, q_0, F \rangle,$$

donde:

- Q es un conjunto de estados
- Σ es el alfabeto
- $\delta: Q \times \Sigma \rightarrow Q$ es la función de transición
- q₀ es el estado inicial
- $F \subseteq Q$ es el conjunto de estados finales

Volviendo al ejemplo

La tupla que describe a A_1 es

$$\mathcal{A}_1 = \langle \{q_p, q_i\}, \{0, 1\}, \delta, \stackrel{\text{inicial}}{q_p}, \{\stackrel{F}{q_p}\} \rangle$$

y antes dimos una representación pictórica de δ , que más formalmente está dada por la siguiente tabla

$$\begin{array}{c|c|c|c} \delta & 0 & 1 \\ \hline q_p & q_i & q_p \\ \hline q_i & q_p & q_i \end{array}$$

La tupla y los parciales

Para los ejercicios alcanza con el dibujo para especificar δ , no es necesario que escriban la tabla. Pero, en especial en los **parciales**,

La tupla y los parciales

Para los ejercicios alcanza con el dibujo para especificar δ , no es necesario que escriban la tabla. Pero, en especial en los **parciales**,

¡No olviden escribir la tupla!

La tupla y los parciales

Para los ejercicios alcanza con el dibujo para especificar δ , no es necesario que escriban la tabla. Pero, en especial en los **parciales**,

¡No olviden escribir la tupla!

¿Cómo formalizamos que un autómata acepte una cadena? 1

 Vamos a definir configuraciones instantáneas, una tupla² compuesta por el estado actual y lo que resta de consumir de la cadena.
 Representan una foto del proceso de reconocimiento de una cadena en un instante dado.

¹El formalismo que usamos en la práctica es distinto que el de la teórica

²En TLeng nos encantan las tuplas ;)

¿Cómo formalizamos que un autómata acepte una cadena? 1

- Vamos a definir configuraciones instantáneas, una tupla² compuesta por el estado actual y lo que resta de consumir de la cadena.
 Representan una foto del proceso de reconocimiento de una cadena en un instante dado.
- Luego, el autómata va a transicionar entre configuraciones a medida que consume la cadena.

¹El formalismo que usamos en la práctica es distinto que el de la teórica

²En TLeng nos encantan las tuplas ;)

¿Cómo formalizamos que un autómata acepte una cadena? 1

- Vamos a definir configuraciones instantáneas, una tupla² compuesta por el estado actual y lo que resta de consumir de la cadena.
 Representan una foto del proceso de reconocimiento de una cadena en un instante dado.
- Luego, el autómata va a transicionar entre configuraciones a medida que consume la cadena.

¹El formalismo que usamos en la práctica es distinto que el de la teórica

²En TLeng nos encantan las tuplas ;)

¿Cómo formalizamos que un autómata acepte una cadena? 1

- Vamos a definir configuraciones instantáneas, una tupla² compuesta por el estado actual y lo que resta de consumir de la cadena.
 Representan una foto del proceso de reconocimiento de una cadena en un instante dado.
- Luego, el autómata va a *transicionar* entre configuraciones a medida que consume la cadena.

Ejemplo:

¹El formalismo que usamos en la práctica es distinto que el de la teórica

²En TLeng nos encantan las tuplas ;)

Dado $A = \langle Q, \Sigma, \delta, q_0, F \rangle$, definimos:

$$(q, \alpha) \in Q \times \Sigma^*$$

donde q es el estado actual y α es lo que resta por consumir de la cadena de entrada.

Relación de transición entre configuraciones

Dado $A = \langle Q, \Sigma, \delta, q_0, F \rangle$, definimos:

$$(q_i, a.\alpha) \vdash_{\mathcal{A}} (q_j, \alpha) \iff \delta(q_i, a) = q_j$$

Cuando está claro cual es el autómata, podemos omitirlo y usar \vdash en lugar de \vdash_A

Pertenencia al lenguaje

$$\alpha \in L(A) \iff \exists q_f \in F \mid (q_0, \alpha) \vdash_A^* (q_f, \lambda)$$

 α pertenece al lenguaje aceptado si partiendo de la configuración inicial (q_0, α) se puede consumir toda la cadena llegando a un estado final. Es decir, llegar a la configuración (q_f, λ) con $q_f \in F$.

Recordatorio

Recordemos que \vdash^* es la clausura de Kleene de la relación \vdash . Es decir, aplicarla cero o más veces. ¿Cuando necesitamos aplicarla cero veces?

Pertenencia al lenguaje

$$\alpha \in L(A) \iff \exists q_f \in F \mid (q_0, \alpha) \vdash_A^* (q_f, \lambda)$$

 α pertenece al lenguaje aceptado si partiendo de la configuración inicial (q_0, α) se puede consumir toda la cadena llegando a un estado final. Es decir, llegar a la configuración (q_f, λ) con $q_f \in F$.

Recordatorio

Recordemos que \vdash^* es la clausura de Kleene de la relación \vdash . Es decir, aplicarla cero o más veces. ¿Cuando necesitamos aplicarla cero veces? Cuando la entrada es λ , que sería aceptada solo si el estado inicial también es final.

Seguimientos de cadenas

•
$$(q_p, 010) \vdash_{A_1} (q_i, 10) \vdash_{A_1} (q_i, 0) \vdash_{A_1} (q_p, \lambda) \checkmark$$

•
$$(q_{p}, 101) \vdash_{A_{1}} (q_{p}, 01) \vdash_{A_{1}} (q_{i}, 1) \vdash_{A_{1}} (q_{i}, \lambda) X$$

Cadenas sobre $\Sigma=\{0,1\}$ que comienzan con 01.

$$L_2 = \{01\alpha \mid \alpha \in \{0,1\}^*\}$$

¿Qué tenemos que recordar?

Cadenas sobre $\Sigma=\{0,1\}$ que comienzan con 01.

$$L_2 = \{01\alpha \mid \alpha \in \{0, 1\}^*\}$$

¿Qué tenemos que recordar? Si vimos un 0 y luego un 1

Cadenas sobre $\Sigma = \{0,1\}$ que comienzan con 01.

$$L_2 = \{01\alpha \mid \alpha \in \{0,1\}^*\}$$

¿Qué tenemos que recordar? Si vimos un 0 y luego un 1 Proponemos el siguiente autómata A_2 para L_2 ,

¿Qué problema tiene?

Cadenas sobre $\Sigma = \{0,1\}$ que comienzan con 01.

$$L_2 = \{01\alpha \mid \alpha \in \{0,1\}^*\}$$

¿Qué tenemos que recordar? Si vimos un 0 y luego un 1 Proponemos el siguiente autómata A_2 para L_2 ,

¿Qué problema tiene? ¡La función de transición está incompleta!

δ	0	1
q_0	q_1	?
q_1	?	q ₂
q_2	q_2	q_2

Ejercicio 2 - Estado trampa

Para que el autómata quede bien definido, vamos a completarlo con un **estado trampa** (o de *error*), al que van todas las transiciones no definidas y cicla sobre sí mismo con todos los símbolos del alfabeto

Cadenas sobre
$$\Sigma=\{0,1\}$$
 que terminan con 01.
$$\mathcal{L}_3=\{\alpha 01\mid \alpha\in\{0,1\}^*\}$$

Cadenas sobre $\Sigma = \{0, 1\}$ que terminan con 01.

$$L_3 = \{ \alpha 01 \mid \alpha \in \{0, 1\}^* \}$$

 A_3 :

Significado intuitivo de cada estado:

- q₀: "La cadena termina en 1*"
- q₁: "La cadena termina en 0+"
- q₂: "La cadena termina en 01"

Ejercicio 3 - Alternativa

El lenguaje L_3 es muy parecido a L_2 , pero el autómata se ve más complicado. Nos gustaría que el formalismo nos permita expresar algo como "Puede venir cualquier cadena, siempre y cuando termine con 01".

Ejercicio 3 - Alternativa

El lenguaje L_3 es muy parecido a L_2 , pero el autómata se ve más complicado. Nos gustaría que el formalismo nos permita expresar algo como "Puede venir cualquier cadena, siempre y cuando termine con 01". Proponemos A_3' ,

Pero

Ejercicio 3 - Alternativa

El lenguaje L_3 es muy parecido a L_2 , pero el autómata se ve más complicado. Nos gustaría que el formalismo nos permita expresar algo como "Puede venir cualquier cadena, siempre y cuando termine con 01". Proponemos A_3' ,

Pero no cuadra con la definición que vimos antes, $\delta(q_0, 0)$ tiene más de una opción: q_0 y q_1 . ¡No es determinístico!

$AFND-\lambda$

Los autómatas que veníamos viendo hasta ahora eran **determinísticos**, en cada momento tenían una sola acción posible. A'_3 es un autómata finito **no determinístico**, que en cada paso puede tener más de una alternativa para elegir.

 $^{^3}$ No confundir con la cadena λ , es una notación

$AFND-\lambda$

Los autómatas que veníamos viendo hasta ahora eran **determinísticos**, en cada momento tenían una sola acción posible. A_3' es un autómata finito **no determinístico**, que en cada paso puede tener más de una alternativa para elegir. Al igual que los AFDs, son una tupla $A=\langle Q, \Sigma, \delta, q_0, F \rangle$ pero cambia la función de transición:

$$\delta: Q \times (\Sigma \cup \lambda) \rightarrow P(Q)$$

- En lugar de un solo estado, devuelve un conjunto
- Además de transiciones por un símbolo de la entrada, podemos transicionar 3 por λ sin consumir ningún símbolo

 $^{^3}$ No confundir con la cadena λ , es una notación

$AFND-\lambda$

Los autómatas que veníamos viendo hasta ahora eran **determinísticos**, en cada momento tenían una sola acción posible. A_3' es un autómata finito **no determinístico**, que en cada paso puede tener más de una alternativa para elegir. Al igual que los AFDs, son una tupla $A=\langle Q, \Sigma, \delta, q_0, F \rangle$ pero cambia la función de transición:

$$\delta: Q \times (\Sigma \cup \lambda) \rightarrow P(Q)$$

- En lugar de un solo estado, devuelve un conjunto
- Además de transiciones por un símbolo de la entrada, podemos transicionar 3 por λ sin consumir ningún símbolo

Diferencia con bibliografía

En la teórica y bibliografía van a ver que se diferencia entre AFNDs con y sin transiciones λ (a veces llamadas ϵ), pero para nosotros va a ser lo mismo.

 $^{^3}$ No confundir con la cadena λ , es una notación

Ejercico 3 - Alternativa

La tupla que describe a A_3' es

$$A_3' = \langle \{q_0, q_1, q_2\}, \{0, 1\}, \delta, q_0, \{q_2\} \rangle$$

donde δ está dada por la siguiente tabla,

δ	0	1	λ
q_0	$\{q_0,q_1\}$	$\{q_0\}$	Ø
q_1	Ø	$\{q_2\}$	Ø
q_2	Ø	Ø	Ø

AFNDs no hacen trampa

δ	0	1	λ
q_0	$\{q_0,q_1\}$	$\{q_0\}$	Ø
q_1	Ø	{q ₂ }	Ø
q_2	Ø	Ø	Ø

Trampas en AFNDs

Observen que en AFNDs no es necesario completar con un estado trampa. La imagen de δ son los conjuntos y asumimos que si una transición no está en el dibujo, va a \emptyset

Relación ⊢ y lenguaje

Las configuraciones instantáneas son las mismas que para AFDs, ¿pero cómo es la relación entre ellas?

Relación ⊢ y lenguaje

Las configuraciones instantáneas son las mismas que para AFDs, ¿pero cómo es la relación entre ellas? Hay dos casos: consumiendo un símbolo o por λ

Relación de transición entre configuraciones

$$(q_i, a.\alpha) \vdash_{\mathcal{A}} (q_j, \alpha) \iff q_j \in \delta(q_i, a)$$

 $(q_i, \alpha) \vdash_{\mathcal{A}} (q_j, \alpha) \iff q_j \in \delta(q_i, \lambda)$

La definición del lenguaje es idéntica

Lenguaje aceptado

$$\alpha \in L(A) \iff \exists q_f \in F \mid (q_0, \alpha) \vdash_A^* (q_f, \lambda)$$

Seguimientos

 A_3' :

Para la cadena $\alpha=101\in L_3$ tenemos dos caminos posibles

Seguimientos

*A*₃:

Para la cadena $\alpha = 101 \in L_3$ tenemos dos caminos posibles

- $(q_0, 101) \vdash_{A'_3} (q_0, 01) \vdash_{A'_3} (q_1, 1) \vdash_{A'_3} (q_2, \lambda) \checkmark$
- $(q_0, 101) \vdash_{A_3'} (q_0, 01) \vdash_{A_3'} (q_0, 1) \vdash_{A_3'} (q_0, \lambda)$ X

Por la definición de lenguaje aceptado, alcanza con que *exista al menos una* secuencia de configuraciones que lleve a un estado final consumiendo toda la cadena para que pertenezca al lenguaje. **No importa que otras secuencias no lleven a aceptar**.

Más seguimientos

 A_3' :

Para la cadena $\beta=010\notin L_3$ tenemos tres caminos posibles

Más seguimientos

*A*₃:

Para la cadena $\beta = 010 \notin L_3$ tenemos tres caminos posibles

•
$$(q_0,010) \vdash_{A_3'} (q_0,10) \vdash_{A_3'} (q_0,0) \vdash_{A_3'} (q_1,\lambda) X$$

 $(q_0,010) \vdash_{A_3'} (q_0,10) \vdash_{A_3'} (q_0,0) \vdash_{A_3'} (q_0,\lambda) X$

Consumen toda la cadena pero no llegan a un estado final

•
$$(q_0,010) \vdash_{A'_3} (q_1,10) \vdash_{A'_3} (q_2,0)$$
 X

Llega a un estado final pero no consume toda la cadena

Lenguaje aceptado

$$\alpha \in L(A) \iff \exists q_f \in F \mid (q_0, \alpha) \vdash_A^* (q_f, \lambda)$$

¡Hay que consumir toda la cadena!

Un autómata finito solo acepta una cadena si puede consumirla toda y terminar en un estado final. No alcanza solo con llegar a un estado final, tiene que consumir toda la cadena.

Esto suele generar confusión sobre todo con autómatas no determinísticos.

¿Nos tomamos un break?

 $L_4=L_1\cup L_3$. Con $L_1=$ cadenas que terminan en 01 y $L_3=$ cadenas con cantidad par de 0s. ¿Qué significa L_4 ?

 $L_4=L_1\cup L_3$. Con $L_1=$ cadenas que terminan en 01 y $L_3=$ cadenas con cantidad par de 0s. ¿Qué significa L_4 ? Cadenas que terminen en 01 ${\bf o}$ tengan cantidad par de 0s.

Pista:

 $L_4=L_1\cup L_3$. Con $L_1=$ cadenas que terminan en 01 y $L_3=$ cadenas con cantidad par de 0s. ¿Qué significa L_4 ? Cadenas que terminen en 01 ${\bf o}$ tengan cantidad par de 0s.

Pista: ¿se les ocurre alguna forma de resolverlo usando A_1 y A_3 ?

 $L_4=L_1\cup L_3$. Con $L_1=$ cadenas que terminan en 01 y $L_3=$ cadenas con cantidad par de 0s. ¿Qué significa L_4 ? Cadenas que terminen en 01 ${\bf o}$ tengan cantidad par de 0s.

Pista: ¿se les ocurre alguna forma de resolverlo usando A_1 y A_3 ?

$$A_4 = \langle \{q_i, q_0, q_1, p_0, p_1, p_2\}, \{0, 1\}, \delta, q_i, \{q_0, p_2\} \rangle$$

a. Con $L_2=$ cadenas que comienzan por 01, $L_2^c=$

a. Con L_2 = cadenas que comienzan por 01, L_2^c = cadenas que no comienzan por 01

Pista: ¿Cómo podemos usar A_2 ?

a. Con L_2 = cadenas que comienzan por 01, L_2^c = cadenas que no comienzan por 01

Pista: ¿Cómo podemos usar A_2 ? Invertimos los estados finales. Candidato con el $trampa\ implícito$:

Convención del trampa implícito

Vamos a tomar el estado trampa como implícito cuando un autómata sea determinístico (no haya más de una opción) pero tenga δ indefinida para algunas transiciones. Pero para esta transformación, no hay que olvidar agregarlo.

Pero

a. Con L_2 = cadenas que comienzan por 01, L_2^c = cadenas que no comienzan por 01

Pista: ¿Cómo podemos usar A_2 ? Invertimos los estados finales. Candidato con el $trampa\ implícito$:

Convención del trampa implícito

Vamos a tomar el estado trampa como implícito cuando un autómata sea determinístico (no haya más de una opción) pero tenga δ indefinida para algunas transiciones. Pero para esta transformación, no hay que olvidar agregarlo.

Pero $111 \notin L_2$ (no arranca con 01) y, ¡no la reconoce! **El autómata tiene que estar completo**, sino perdemos cadenas.

a. L_2^c = cadenas que no comienzan por 01

a. $L_3^c = \text{cadenas que no terminan con } 01$

a. L_3^c = cadenas que no terminan con 01

Candidato:

a. L_3^c = cadenas que no terminan con 01

Candidato:

¡No funciona! Aceptamos cadenas demás como 01 (en particular en este caso aceptamos Σ^*). Para cada cadena que aceptábamos, había caminos que no aceptaban. Entonces si invertimos los finales, esos caminos pueden pasar a ser de aceptación (excepto que se traben) y aceptamos cadenas que no deberíamos.

El autómata tiene que ser determinístico. Sino aceptamos cadenas demás.

b. $L_3^c = \text{cadenas que no terminan con } 01$

b. L_3^c = cadenas que no terminan con 01

Ejercicio 6 - Reversa

 $L_4^{\it r}$, con $L_4=L_1\cup L_3$, cadenas que terminan en 01 o tienen cantidad par de 0s

$$A_4 = \langle \{q_i, q_0, q_1, p_0, p_1, p_2\}, \{0, 1\}, \delta, q_i, \{q_0, p_2\} \rangle$$

Solución:

Ejercicio 6 - Reversa

 L_4^r , con $L_4=L_1\cup L_3$, cadenas que terminan en 01 o tienen cantidad par de 0s

$$A_4 = \langle \{q_i, q_0, q_1, p_0, p_1, p_2\}, \{0, 1\}, \delta, q_i, \{q_0, p_2\} \rangle$$

Solución: Ejecutamos el autómata al revés: damos vuelta las flechas e invertimos los finales e iniciales. Como no podemos tener más de un inicial, agregamos uno con transiciones λ

Ejercicio 6 - Reversa

Operaciones vistas

Unión

Dados A_1 y A_2 AFs, para obtener $L(A_1) \cup L(A_2)$ agregar un nuevo estado inicial con transiciones λ a los iniciales de A_1 y A_2 .

Complemento

Dado un AF**D** completo, invertir los finales: $F' = F \setminus Q$

Reversa

Dado un AFND- λ , obtener $A' = \langle Q', \Sigma, \delta', q'_0, F' \rangle$ tal que:

- $Q' = Q \cup \{q'_0\}$ (nuevo inicial)
- $\delta'(q_0', \lambda) = F$ (arrancar por los finales)
- $q_2 \in \delta'(q_1, a) \iff q_1 \in \delta(q_2, a)$ (dar vuelta flechas)
- $F' = \{q_0\}$ (terminar con iniciales)

Conclusiones

Vimos,

- AFDs, AFNDs y sus definiciones formales
- La importancia de que cada estado tenga un propósito claro
- Problemas que son más sencillos de resolver con AFNDs
- Algunos autómatas para operaciones entre lenguajes: Unión, complemento, reversa (más en la práctica)

Ya pueden hacer toda la Práctica 1 :D

¿Preguntas?

