Automatic Construction and Natural-Language Description of Nonparametric Regression Models

James Robert Lloyd¹, David Duvenaud¹, Roger Grosse²,

Joshua Tenenbaum², Zoubin Ghahramani¹

1: Department of Engineering, University of Cambridge, UK 2: Massachusetts Institute of Technology, USA

A SYSTEM FOR AUTOMATIC DATA ANALYSIS

AN ENTIRELY AUTOMATIC ANALYSIS

Four additive components have been identified in the data

A linearly increasing function

A smooth function

An approximately periodic function with a period of 1.0 years with linearly increasing amplitude

Uncorelated noise with linearly increasing standard deviation

NATURAL LANGUAGE DESCRIPTIONS OF MODELS

Compositionally constructed statistical models

Compositionally constructed natural-language descriptions

DEFINING A LANGUAGE OF MODELS

We can use Gaussian processes to place priors on functions and perform a Bayesian regression analysis

We can use Gaussian processes to place priors on functions and perform a Bayesian regression analysis

We can use Gaussian processes to place priors on functions and perform a Bayesian regression analysis

We can use Gaussian processes to place priors on functions and perform a Bayesian regression analysis

We can use Gaussian processes to place priors on functions and perform a Bayesian regression analysis

We can use Gaussian processes to place priors on functions and perform a Bayesian regression analysis

We can use Gaussian processes to place priors on functions and perform a Bayesian regression analysis

THE ATOMS OF OUR LANGUAGE

Five base kernels

Encoding for the following types of functions

THE COMPOSITION RULES OF OUR LANGUAGE

▶ Two main operations: addition, multiplication

AUTOMATIC TRANSLATION OF MODELS

SUMS OF KERNELS ARE SUMS OF FUNCTIONS

If $f_1 \sim GP(0, k_1)$ and independently $f_2 \sim GP(0, k_2)$ then

$$f_1 + f_2 \sim \text{GP}(0, \frac{k_1}{k_1} + \frac{k_2}{k_2})$$

e.g.

We can therefore describe each component separately

PRODUCTS OF KERNELS

On their own, each kernel is described by a standard noun phrase

PRODUCTS OF KERNELS - SE

$$\underbrace{SE}_{approximately} \times \underbrace{PER}_{periodic function}$$

Multiplication by SE removes long range correlations from a model since SE(x, x') decreases monotonically to 0 as |x - x'| increases.

PRODUCTS OF KERNELS - LIN

$$\underbrace{SE}_{\text{approximately}} imes \underbrace{PER}_{\text{periodic function}} imes \underbrace{LIN}_{\text{with linearly growing amplitude}}$$

Multiplication by LIN is equivalent to multiplying the function being modeled by a linear function. If $f(x) \sim \text{GP}(0, k)$, then $xf(x) \sim \text{GP}(0, k \times \text{LIN})$. This causes the standard deviation of the model to vary linearly without affecting the correlation.

PRODUCTS OF KERNELS - CHANGEPOINTS

$$\underbrace{\text{SE}}_{\text{approximately}} \times \underbrace{\text{PER}}_{\text{periodic function}} \times \underbrace{\text{LIN}}_{\text{with linearly growing amplitude}} \times \underbrace{\boldsymbol{\sigma}}_{\text{until 1700}}$$

Multiplication by σ is equivalent to multiplying the function being modeled by a sigmoid.

NOUN PHRASE AND POSTMODIFIER FORMS

Kernel	Noun phrase	Postmodifier phrase
WN	uncorrelated noise	n/a
C	constant	n/a
SE	smooth function	whose shape changes smoothly
PER	periodic function	modulated by a periodic function
Lin	linear function	with linearly varying amplitude
$\prod_k \operatorname{Lin}^{(k)}$	polynomial	with polynomially varying amplitude
$\prod_{k}^{k} \boldsymbol{\sigma}^{(k)}$	n/a	which applies until / from [changepoint]

AUTOMATICALLY GENERATED REPORTS

This component is constant.

This component is constant. This component applies from 1643 until 1716.

This component is a smooth function with a typical lengthscale of 23.1 years. This component applies until 1643 and from 1716 onwards.

This component is approximately periodic with a period of 10.8 years. Across periods the shape of this function varies smoothly with a typical lengthscale of 36.9 years. The shape of this function within each period is very smooth and resembles a sinusoid. This component applies until 1643 and from 1716 onwards.

VISIT OUR WEBSITE - TRY OUR DEMO

www.automaticstatistician.com