Amendments to the Claims

- 1. (Currently amended) A method of producing aluminium alloy sheet material, characterised in the following steps; which comprises:
 - continuous strip casting of a sheet at a predetermined solidification rate ensuring material microstructure exhibiting primary particles having average size below 1 micrometer², and
 - (cold) cold rolling of the strip cast sheet to an appropriate gauge with optionally intermediate annealing during the cold rolling.
- 2. (Currently amended) Method A method according to claim 1, characterised in that wherein the sheets are further annealed during cold rolling.
- (Currently amended) Method_A method according to claim 1,
 -characterised in that_wherein the alloy is cast to 4.5 mm thick strip and cold rolled to 0.58 mm followed by an intermediate annealing.
- 4. (Currently amended) Method_A method_according to claim 1,
 characterised_in_that_wherein the intermediate annealing was_is undertaken in an air
 furnace by heating from room temperature to 340°C at 30°C/hour and soaking at 340°C
 for 3 hours.
- 5. (Currently amended) Method according to claim 1 4, eharacterised in that wherein after eooling the soaking, the material is cooled from 340°C to 200°C at 50°C/hour, and the material was is cooled in air.
- 6. (Currently amended) Method A method according to claim 2,
 characterised in that wherein after annealing, the material was further cold rolled to 60 μm.

- 7. (Withdrawn) An aluminium alloy sheet,
 characterised in that
 its material microstructure exhibits primary particles having average size below 1
 micrometer².
- 8. (Withdrawn) Aluminium alloy sheet according to claim 7, characterised in that the primary particles are iron-enriched particles ensuring improved pitting corrosion resistance.
- 9. (Withdrawn) Aluminium alloy sheet according to claim 7, characterised in that at least one of the flat surfaces is coated with a reactive flux retaining coating capable of providing joints in a brazing process, where the flat surface at least partially is coated with a flux retaining composition comprising a synthetic resin based, as its main constituent, on methacrylate homopolymer or a methacrylate copolymer.
- (Withdrawn) Aluminium alloy sheet according to claim 7, characterised in that at least one of the flat surfaces is coated with a reactive flux or a normal flux to enable the sheet to be utilised as tube for clad fin in a heat exchanger.
- 11. (Withdrawn) Aluminium alloy sheet according to claim 7, characterised in that
 at least one of the flat surfaces is coated with Al-Si powders to enable the sheet to be utilised as header in a heat exchanger.
- 12. (Currently amended) Method A method according to claim 2, characterised in that wherein the alloy is cast to 4.5 mm thick strip and cold rolled to 0.58 mm followed by an intermediate annealing.

- 13. (Currently amended) Method_A method according to claim 2, eharacterised_in_that_wherein the intermediate annealing was_is_undertaken in an air furnace by heating from room temperature to 340°C at 30°C/hour and soaking at 340°C for 3 hours.
- 14. (Currently amended) Method-A method according to claim 3, characterised in that wherein the intermediate annealing was-is undertaken in an air furnace by heating from room temperature to 340°C at 30°C/hour and soaking at 340°C for 3 hours.
- 15. (Currently amended) Method_A method_according to claim-2_13,

 characterised in that—wherein after cooling—the soaking, the material is cooled from

 340°C to 200°C at 50°C/hour, and the material was—is cooled in air.
- 16. (Currently amended) Method_A method_according to claim-3_14,

 characterised_in_that_wherein after cooling_the soaking, the material is cooled_from

 340°C to 200°C at 50°C/hour, and the material was_is cooled in air.
- 17. (Cancelled)
- 18. (Currently amended) Method_A method_according to claim 3,

 characterised in that_wherein after annealing, the material was further cold rolled to 60

 μm.
- (Currently amended) Method_A method according to claim 4,
 characterised in that wherein after annealing, the material was further cold rolled to 60 μm.
- (Currently amended) Method A method according to claim 5,
 characterised in that wherein after annealing, the material was further cold rolled to 60 μm.

21. (New) A method according to claim 1, wherein the continuous strip casting is at a predetermined solidification rate in the range from 10² to 10³ °C/sec.