จำนวนฐานสองไขว้ข้าม (skew binary number)

Eugene Myers นักวิทยาศาสตร์ในสาย bioinformatics ได้นำเสนอ **จำนวนฐานสองไขว้ข้าม** (Skew binary number) ในปี 1983 ซึ่งสามารถถูกนำไปประยุกต์ในงานทางด้านการจัดการข้อมูลแบบฮีป (heap) ช่วยให้การเพิ่ม ข้อมูลเข้าไปในระบบมีประสิทธิภาพมากขึ้น

บทนิยาม skew binary number คือ จำนวนเต็มที่มีค่ามากกว่าหรือเท่ากับ 0 ใด ๆ ที่สามารถถูกเขียนได้ในรูปแบบ คล้ายกับเลขฐานสอง คือ ทุก ๆ หลัก (digit) อาจจะเป็นเลขศูนย์ "0" หรือ เลขหนึ่ง "1" แต่ว่า skew binary number สามารถมีเลขสอง "2" ปรากฏอยู่ได้ไม่เกิน 1 ตัว แต่ต้องอยู่ในหลักที่สำคัญน้อย หรือกล่าวคร่าว ๆ คือ เมื่อเขียนจำนวน skew binary number แล้ว จะไม่เห็นเลข "1" อยู่ด้านซ้ายมือของเลข "2" และค่าประจำหลัก ของแต่ละหลักที่ i คือ 2^i-1 เช่น

skew binary number	คำนวณค่า
0	$0(2^1-1)=0$
1	$1(2^1-1)=1$
2	$2(2^1-1)=2$
10	$1(2^2-1)+0(2^1-1)=3$
11	$1(2^2-1)+1(2^1-1)=4$
12	$1(2^2-1)+2(2^1-1)=5$
20	$2(2^2-1)+0(2^1-1)=6$
100	$1(2^3-1)+0(2^2-1)+0(2^1-1)=7$
101	$1(2^3-1)+0(2^2-1)+1(2^1-1)=8$
102	$1(2^3-1)+0(2^2-1)+2(2^1-1)=9$
110	$1(2^3-1)+1(2^2-1)+0(2^1-1)=10$
111	$1(2^3-1)+1(2^2-1)+1(2^1-1)=11$
112	$1(2^3-1)+1(2^2-1)+2(2^1-1)=12$
120	$1(2^3-1)+2(2^2-1)+0(2^1-1)=13$
11200	$1(2^5-1)+1(2^4-1)+2(2^3-1)+0(2^2-1)+0(2^1-1)=60$
12000	$1(2^5-1)+2(2^4-1)+0(2^3-1)+0(2^2-1)+0(2^1-1)=61$
20000	$2(2^5-1)+0(2^4-1)+0(2^3-1)+0(2^2-1)+0(2^1-1)=62$

์ ทั้งนี้หากพิจารณา skew binary number ในรูปแบบของจำนวนหลักที่กำหนด เราสามารถเติมเลข "0" เพิ่มขึ้นทาง

ซ้ายมือในการแสดง skew binary number ก็ได้ โดยทำให้ค่าไม่เปลี่ยนแปลง เช่น skew binary number 5 หลักของ เลขต่อไปนี้คือ

จำนวน	skew binary number 5 หลัก
0	00000
1	00001
2	00002
3	00010
4	00011
10	00110
11	00111
12	00120
20	01012
30	02000
40	10102
50	11011
60	11200

ในฐานะโปรแกรมเมอร์มือฉมัง จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อสร้าง skew binary number ที่มีเลข "0" เลข "1" และ เลข "2" ปรากฏอยู่ โดยต้องมีเลข "0" และเลข "1" เป็นจำนวนตามที่กำหนด แล้วเรียงลำดับจาก น้อยไปหามาก จากนั้นแสดงค่าของ skew binary number ตัวที่ต้องการออกมาในเลขฐาน 10

Input

มี 1 บรรทัด ประกอบด้วยจำนวนเต็ม 3 จำนวน z,o และ n แต่ละจำนวนคั่นด้วยช่องว่าง " " เมื่อ z เป็นจำนวน ของเลข 0 และ o แทนจำนวนของเลข 1 ที่ต้องปรากฏโดย $1 \le z,o \le 10$ และ n คือลำดับของ skew binary number ตัวที่ต้องการให้แสดงค่าออกมาในเลขฐาน 10 โดย $1 \le n \le 500,000$

Output

มี 1 บรรทัด แสดงค่าของ skew binary number ตัวที่ต้องการออกมาในเลขฐาน 10 แต่ถ้าหากว่า ค่า n มีค่า มากกว่าจำนวน skew binary number ทั้งหมดที่สร้างได้ ให้แสดงว่า "NONE"

Example 1

Input 1

1 2 4

Output 1

28

Explanation

จำนวน skew binary number ที่มี "0" จำนวน 1 ตัว มี "1" จำนวน 2 ตัว และ มี "2" เรียงตามลำดับจากน้อยไป มาก มีดังนี้

- 1. 0112
- 2. 1012
- 3. 1102
- 4. 1120

และ skew binary number 1120 มีค่าเท่ากับ $1(2^4-1)+1(2^3-1)+2(2^2-1)+0(2^1-1)=28$

Example 2

Input 2

2 1 4

Output 2

17

Explanation

จำนวน skew binary number ที่มี "0" จำนวน 2 ตัว มี "1" จำนวน 1 ตัว และ มี "2" เรียงตามลำดับจากน้อยไป มาก มีดังนี้

- 1. 0012
- 2. 0102
- 3. 0120
- 4. 1002
- 5. 1020
- 6. 1200 และ skew binary number 1002 มีค่าเท่ากับ $1(2^4-1)+0(2^3-1)+0(2^2-1)+2(2^1-1)=17$

Example 3

Input 3

1 2 5

Output 3

NONE

Constraints

- $1 \le z, o \le 10$
- $1 \le n \le 500,000$

Subtasks

1. (100 คะแนน) ไม่มีเงื่อนไขเพิ่มเติม

Limits

Time limit: 1.0 secondsMemory limit: 256 MB

Author

- ผู้ออกโจทย์ : No One
- *** โจทย์เหล่านี้ออกมีจุดประสงค์ในการพัฒนาผู้มีความสนใจด้าน Competitive Programming อนุญาตให้ นำไปใช้ในด้านการศึกษาได้ หากมีข้อผิดพลาดหรือข้อสอบถาม สามารถติดต่อสอบถามผู้ออกโจทย์ได้ เพื่อ จะได้นำโจทย์ไปแก้ไขต่อไป ***