Comentarios Lenguaje Semántica Conjuntos Adecuados Consecuencia Semántica Cómo seguimos

Lógica Proposicional

Lógica y Computabilidad

Departamento de Computación - FCEyN - UBA

Segundo Cuatrimestre de 2020

Contenido

- Comentarios
- 2 Lenguaje
- Semántica
- 4 Conjuntos Adecuados
- **5** Consecuencia Semántica
- 6 Cómo seguimos

Comentarios

¿Qué es una lógica?

Es un **sistema** compuesto por un lenguaje, axiomas y reglas de inferencia y una semántica formal.

- Lógica proposicional (o de orden cero),
- lógica de predicados (o de primer orden),
- lógica modal,
- lógica intuicionista,
- lógica cuántica,
- Cálculo Lambda,
- etc.

Comentarios

(a) Crisipo de Solos $(\sim 250 \text{ a.C.})$

(b) Jan Łukasiewicz (1923)

Lenguaje de la Lógica Proposicional

El lenguaje \mathcal{L} de la lógica proposicional consiste de los siguientes símbolos:

$$p \mid \neg \rightarrow ()$$

Definimos el conjunto de las variables proposicionales como

$$PROP = \{ p, p|, p||, ... \}$$

= $\{ p_0, p_1, p_2, ... \}$
= $\{ p, q, r, ... \}$

donde las últimas dos igualdades son notación.

Lenguaje de la Lógica Proposicional

Decimos que una palabra $\alpha \in \mathcal{L}^*$ es **fórmula** si satisface una de las siguientes condiciones:

- $\alpha \in PROP$,
- $\alpha = \neg \beta \text{ con } \beta \text{ fórmula,}$
- $\alpha = (\beta \rightarrow \gamma) \text{ con } \beta \text{ y } \gamma \text{ fórmulas.}$

Llamamos FORM al conjunto de todas las fórmulas.

Lenguaje - Ejercicio

Ejercicio

Demostrar que si α es una fórmula, entonces tiene la misma cantidad de paréntesis derechos que de paréntesis izquierdos.

Resolución:

Sean $I(\alpha)$ y $r(\alpha)$ la cantidad de paréntesis izquierdos y derechos de α respectivamente. Hacemos la demostración por inducción estructural.

Lenguaje - Ejercicio (Caso Base)

Ejercicio

Demostrar que si α es una fórmula, entonces tiene la misma cantidad de paréntesis derechos que de paréntesis izquierdos.

Caso Base: $\alpha \in PROP$.

 $I(\alpha) = r(\alpha) = 0$, y la proposición se verifica.

Lenguaje - Ejercicio (Caso inductivo)

Ejercicio

Demostrar que si α es una fórmula, entonces tiene la misma cantidad de paréntesis derechos que de paréntesis izquierdos.

Caso Inductivo: Supongamos que α y β verifican la proposición. Vamos a demostrar que tanto $(\alpha \to \beta)$ como $\neg \alpha$ la verifican: $\neg \alpha$ la satisface pues

$$I(\neg \alpha) = I(\alpha) = r(\alpha) = r(\neg \alpha)$$

Y $(\alpha \to \beta)$ también ya que

$$I((\alpha \to \beta)) = I(\alpha) + I(\beta) + 1 = r(\alpha) + r(\beta) + 1 = r((\alpha \to \beta)).$$

Lenguaje - Ejercicio (cont.)

Ejercicio

Demostrar que si α es una fórmula, entonces tiene la misma cantidad de paréntesis derechos que de paréntesis izquierdos.

Como valen los casos base e inductivo, luego la propiedad vale para toda $\alpha \in FORM$. \square

Semántica - Definiciones importantes

Una **valuación** es una función $v : PROP \rightarrow \{0,1\}.$

Definimos inductivamente el "valor de verdad de la fórmula α bajo ν " de la siguiente manera:

- si $\alpha \in PROP$ entonces $v \models \alpha \iff v(\alpha) = 1$,
- si $\alpha = \neg \beta$ entonces $v \models \alpha \iff v \not\models \beta$,
- si $\alpha = (\beta \to \gamma)$ entonces $v \models \alpha \iff v \models \gamma \text{ o } v \not\models \beta$.

Importante: v es una función definida sobre *variables*, no sobre fórmulas.

Semántica - Definiciones importantes

Definición

Decimos que $\alpha \in FORM$ es:

- TAUTOLOGÍA si $v \models \alpha$ para toda $v \in VAL$,
- CONTRADICCIÓN si $v \not\models \alpha$ para toda $v \in VAL$,
- CONTINGENCIA si existen valuaciones v_1 y v_2 tales que $v_1 \models \alpha$ pero $v_2 \not\models \alpha$.

Semántica - Ejercicio 1

Ejercicio

Decidir si las siguientes fórmulas son tautologías, contradicciones o contingencias.

Resolución. Vamos a usar tablas de verdad.

Semántica - Ejercicio 1

- **1** $(p \rightarrow q)$ Contingencia.
- **2** $\neg (p \rightarrow q)$ Contingencia.
- $(((p \land q) \to r) \to (p \to r))$ Contingencia.
- $(((p \rightarrow q) \rightarrow p) \rightarrow p)$ Tautología.
- $(((p \rightarrow q) \land (r \rightarrow q)) \rightarrow (p \lor r \rightarrow q))$ Tautología.

Semántica - Ejercicio 2

Ejercicio

Sea $\phi \in FORM$ una contradicción y $\alpha \in FORM$. Se define α_{ϕ} como la fórmula que se obtiene al reemplazar todas las variables proposicionales en α por ϕ . Probar que α_{ϕ} es una contradicción o una tautología.

Resolución:

Demostramos usamos inducción estructural.

Semántica - Ejercicio 2 (Caso Base)

Ejercicio

Sea $\phi \in FORM$ una contradicción y $\alpha \in FORM$. Se define α_{ϕ} como la fórmula que se obtiene al reemplazar todas las variables proposicionales en α por ϕ . Probar que α_{ϕ} es una contradicción o una tautología.

Caso Base: $\alpha = q$ para alguna $q \in PROP$. $\alpha_{\phi} = \phi$, que es una contradicción.

Semántica - Ejercicio 2 (Caso inductivo)

Ejercicio

Sea $\phi \in FORM$ una contradicción y $\alpha \in FORM$. Se define α_{ϕ} como la fórmula que se obtiene al reemplazar todas las variables proposicionales en α por ϕ . Probar que α_{ϕ} es una contradicción o una tautología.

Caso Inductivo: supongamos que la proposición vale para α y para β , probemos que vale tanto para $(\alpha \to \beta)$ como para $\neg \alpha$. Para empezar, observemos que $(\alpha \to \beta)_{\phi} = (\alpha_{\phi} \to \beta_{\phi})$ y que $(\neg \alpha)_{\phi} = \neg \alpha_{\phi}$. Tenemos que ver que esas dos fórmulas son o bien tautologías o contradicciones, suponiendo que α y β son tautologías o contradicciones. La tabla que sigue presenta todas las posibilidades.

Semántica - Ejercicio 2 (Caso inductivo)

Caso Inductivo:

α_{ϕ}	β_{ϕ}	$(\alpha_{\phi} \rightarrow \beta_{\phi})$	$\neg \alpha_{\phi}$
Τ	Т	Т	
Т	C	С	
С	T	Т	т
C	C	Т	'

Semántica - Ejercicio 2 (cont.)

Ejercicio

Sea $\phi \in FORM$ una contradicción y $\alpha \in FORM$. Se define α_{ϕ} como la fórmula que se obtiene al reemplazar todas las variables proposicionales en α por ϕ . Probar que α_{ϕ} es una contradicción o una tautología.

Como valen los casos base e inductivo, luego la propiedad vale para toda $\alpha \in FORM$. \square

Conjuntos Adecuados

Una función booleana es una función $f:\{0,1\}^n \to \{0,1\}$, donde n es algún número natural. Las funciones booleanas son una manera de formalizar matemáticamente la idea de tabla de verdad.

Por ejemplo, tener la función booleana $f(a, b) = a \times b$ es lo mismo que tener la tabla:

a	b	f(a,b)
0	0	0
0	1	0
1	0	0
1	1	1

Esta tabla coincide con la tabla de verdad de la fórmula $(a \wedge b)$.

Conjuntos Adecuados

De la misma manera, la función booleana $g(a, b) = \max(a, b)$ se corresponde con la tabla:

а	b	g(a,b)
0	0	0
0	1	1
1	0	1
1	1	1

que coincide con la tabla de verdad de la fórmula $(a \lor b)$. Para cualquier función booleana (es decir, para cualquier tabla de verdad) existe una fórmula del lenguaje proposicional asociada a ella?

Comentarios Lenguaje Semántica Conjuntos Adecuados Consecuencia Semántica Cómo seguimos

Definición

Decimos que un conjunto de conectivos es **adecuado** si, dada cualquier función booleana f, podemos escribir una fórmula que use sólo esos conectivos y cuya tabla de verdad se corresponda con la tabla de f.

Proposición

El conjunto de conectivos $\{\land, \lor, \neg\}$ *es adecuado.*

Demostración:

Sea una función booleana cualquiera, $f:\{0,1\}^n \to \{0,1\}$. Buscamos una fórmula α que se escriba usando sólo conjunciones, disyunciones y negaciones, cuya tabla de verdad se corresponda con la tabla de f. Si f es la función constantemente igual a 0, definimos la fórmula $\alpha=(p_0 \land \neg p_0)$.

Si no, llamemos $E=\{\overline{d}\in\{0,1\}^n\mid f(\overline{d})=1\}$ al conjunto de las tuplas $\overline{d}=(d_1,\ldots,d_n)$ sobre las cuales f vale uno. Dado $s\in\{0,1\}$, definimos

$$p_i^s = \begin{cases} p_i & \text{si } s = 1\\ \neg p_i & \text{si } s = 0 \end{cases}$$

y, dada $\overline{d} \in E$, definimos $\alpha_{\overline{d}} = \bigwedge_{i=1}^n p_i^{d_i}$ Finalmente, la fórmula

$$\alpha = \bigvee_{\overline{d} \in E} \alpha_{\overline{d}}$$

es lo que buscamos.

Ejercicio

Decidir si los siguientes conjuntos de conectivos son adecuados o no.

- $\{\land, \lnot\}$

Resolución.

- $\{\land, \lor, \rightarrow, \neg\}$: sí, pues contiene a $\{\land, \lor, \neg\}$, que vimos que es adecuado.
- ② $\{\rightarrow, \neg\}$: sí, podemos escribir tanto \land como \lor usando \rightarrow y \neg . Por lo tanto, este conjunto es equivalente a tener $\{\land, \lor, \rightarrow\}$.
- ③ $\{\land, \neg\}$: sí, porque podemos escribir → usando \land y \neg . Como $\{\neg, \rightarrow\}$ es adecuado, $\{\neg, \land\}$ también lo es.
- ¶ (∧, →): no lo es. Para probarlo, tenemos que mostrar que existe alguna función booleana que no se corresponde con ninguna fórmula que podamos escribir usando sólo la conjunción y la implicación.

Proposición

Si $\alpha \in FORM(\land, \rightarrow)$ y v es una valuación que hace verdaderas a todas las variables proposicionales, entonces $v \models \alpha$.

Resolución. ¡TAREA! (Sale por inducción en
$$\alpha$$
)

Esta proposición nos dice que cuando las variables proposicionales son verdaderas, la fórmula también lo es.

¿Conocemos una función booleana cuyo resultado es 0 y sus entradas valen 1?

¡Sí! Por ejemplo,
$$f: \{0,1\} \rightarrow \{0,1\}$$
, $f(x) = 1 - x$.

No existe $\alpha \in \mathsf{FORM}(\land, \rightarrow)$ equivalente a f, por lo que el conjunto $\{\land, \rightarrow\}$ no es adecuado.

Consecuencia Semántica

Definición

Si $\Gamma \subseteq FORM$, decimos que v satisface a Γ si $v \models \alpha$ para toda $\alpha \in \Gamma$. A esto lo notaremos $v \models \Gamma$. Un conjunto de fórmulas Γ será satisfacible si existe una valuación v tal que $v \models \Gamma$.

Definición

Si $\Gamma \subseteq FORM$, decimos que las hipótesis Γ implican semánticamente a α (y lo notamos $\Gamma \models \alpha$) si toda valuación v que satisface a las hipótesis Γ tambien satisface a la conclusión α . En otras palabras: decimos que $\Gamma \models \alpha$ si vale que todas las valuaciones que satisfacen a Γ también satisfacen a Γ . Llamamos $con(\Gamma) = \{\alpha \mid \Gamma \models \alpha\}$ al conjunto de todas las fórmulas que son consecuencia semántica de Γ .

Ejercicio

Sean Γ_1 y Γ_2 satisfacibles. Decidir si los siguientes conjuntos son satisfacibles o no:

- Ø: Es satisfacible pues cualquier valuación satisface al conjunto vacío.
- $\{p_9\}$: Es satisfacible: cualquier valuación v tal que $v \models p_9$ lo satisface.
- FORM: El conjunto de todas las fórmulas no es satisfacible, pues si existiera $v \models \text{FORM}$ en particular $v \models p_0$ y $v \models \neg p_0$, lo cual es imposible.

Ejercicio

Sean Γ_1 y Γ_2 satisfacibles. Decidir si los siguientes conjuntos son satisfacibles o no:

- Γ₁ ∪ Γ₂: No es satisfacible en general. Por ejemplo, si tomamos Γ₁ = {p₀} y Γ₂ = {¬p₀} entonces la unión no es satisfacible pero ambos conjuntos lo son.
- $\Gamma_1 \cap \Gamma_2$: Es satisfacible pues $\Gamma_1 \cap \Gamma_2 \subseteq \Gamma_1$. Cualquier valuación que satisface a Γ_1 también satisface al conjunto más pequeño.

Ejercicio

Decidir si las siguientes afirmaciones son verdaderas o falsas:

- $\{p_1\} \models p_2$: Falso, pues cualquier valuación que cumpla $v \models (p_1 \land \neg p_2)$ satisface las hipótesis sin satisfacer la conclusión.
- $con(\emptyset) = TAUT = \{ \alpha \in FORM \mid \alpha \text{ es tautología} \}$: Verdadero. Para probarlo, es suficiente probar que $\alpha \in con(\emptyset) \iff \alpha$ es tautología. Pero eso es cierto porque $\emptyset \models \alpha$ es equivalente a decir que toda valuación satisface a α , pues toda valuación satisface a \emptyset .
- $\emptyset \models (p_3 \land p_7)$: Falso: las únicas consecuencias del vacío son las tautologías. Ver ítem previo.

Ejercicio

Decidir si las siguientes afirmaciones son verdaderas o falsas:

- $\emptyset \models (p_5 \lor \neg p_5)$: Verdadero, pues esa fórmula es una tautología. Ver segundo ítem.
- FORM $\models (p_1 \land \neg p_1)$: Verdadero, porque (entre otros motivos) tanto p_1 como $\neg p_1$ pertenecen a FORM.
- Si Γ es satisfacible, entonces $con(\Gamma)$ también: Verdadero. Si Γ es satisfacible, existe $v \models \Gamma$. La misma valuación satisface a $con(\Gamma)$.

Observación

Del ítem 2 del ejercicio anterior, sabemos que $con(\emptyset) = TAUT$, y como toda valuación satisface al conjunto vacío (y por ende, a TAUT), podemos afirmar que las tautologías están contenidas en las consecuencias semánticas de cualquier conjunto.

Ejercicio

Un conjunto de fórmulas Γ se dice **independiente** si para toda $\varphi \in \Gamma$, $\varphi \notin con(\Gamma \setminus \{\varphi\})$.

Sea $\Gamma \subseteq FORM$ independiente. Demostrar que para todo $\Gamma_0 \subset \Gamma$ finito y no vacío $\{\bigwedge_{\varphi \in \Gamma_0} \varphi\}$ es independiente.

Resolución: Sea Γ_0 finito. Por definición de conjunto independiente, queremos probar que $\bigwedge_{\varphi \in \Gamma_0} \varphi \not\in con(\emptyset)$, que es equivalente (por obs. del ejercicio anterior) a probar que $\bigwedge_{\varphi \in \Gamma_0} \varphi$ no es una tautología.

Alcanza con que exista una valuación v tal que $v \not\models \varphi$ para algún $\varphi \in \Gamma_0$, pues entonces $v \not\models \bigwedge_{\varphi \in \Gamma_0} \varphi$. Procedemos por el absurdo.

Definición

Un conjunto de fórmulas Γ se dice **independiente** si para toda $\varphi \in \Gamma$, $\varphi \notin con(\Gamma \setminus \{\varphi\})$.

Supongamos que para toda $v \in \mathit{VAL}$, $v \models \varphi$ para toda $\varphi \in \Gamma_0$. Entonces, todas las $\varphi \in \Gamma_0$ son tautologías, y, por la observación previa, están contenidas en las consecuencias de cualquier conjunto. Luego, si elegimos alguna $\varphi \in \Gamma_0$, tenemos que $\varphi \in \mathit{con}(\Gamma \setminus \{\varphi\})$, lo cual es **absurdo** pues Γ era independiente.

Cómo seguimos

- Ya pueden hacer toda la Práctica 4.
- La semana que viene (viernes 06/11) tendremos la clase práctica de Sistemas Deductivos y Compacidad. También estará dividida en una parte asincrónica y otra sincrónica.