Practice Set B: Paper 2 Mark scheme

SECTION A

1	a+4d=7, a+9d=81	M1A1	
	Solving: $a = -52.2$, $d = 14.8$	A1	
	$S_{20} = \frac{20}{2} \left(-104.4 + 19 \times 14.8 \right)$	(M1)	
	2	,	
	= 1768	A1	[5 marks]
2	Find the diagonal of the square base: $\sqrt{8.3^2 + 8.3^2}$	M1	[e mantoj
	Height = $\frac{\sqrt{8.3^2 + 8.3^2}}{2} \tan(89.8^\circ)$	M1	
	= 1681	A1	
	$= 1.7 \times 10^3 \text{ cm}$	A1	
			[4 marks]
3	mean = 131.9, SD = 7.41 Boundaries for outliers: mean \pm SD	A1 (M1)	
	= 117.1, 146.7	A1A1ft	
	147 is an outlier	A1	
4	At least one correct use of compound angle formula	M1	[5 marks]
7			
	Correct values of $\sin\left(\frac{\pi}{3}\right)$ and $\cos\left(\frac{\pi}{3}\right)$ used	A1	
	$I_{HS} = \frac{\left(\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x\right) - \left(\frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x\right)}{1 + \frac{\sqrt{3}}{2}\cos x}$	A1	
	LHS $\equiv \frac{\left(\frac{1}{2}\sin x + \frac{\sqrt{3}}{2}\cos x\right) - \left(\frac{1}{2}\sin x - \frac{\sqrt{3}}{2}\cos x\right)}{\left(\frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x\right) - \left(\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x\right)}$	Al	
	$\equiv \frac{\sqrt{3}\cos x}{-\sqrt{3}\sin x}$	A1	
	$\equiv -\cot x$	A1(AG)	
_	2 A , B		[5 marks]
5	$\frac{2}{x(x-1)} = \frac{A}{x} + \frac{B}{x-1}$	M1	
	2 = A(x-1) + Bx	M1	
	Using $x = 0$: $A = -2$ Using $x = 1$: $B = 2$ (both correct)	A1	
	$\int -\frac{2}{x} + \frac{2}{x-1} dx = -2 \ln x + 2 \ln(x-1) + c$	M1A1	
		WHAT	
	$=\ln\left(\frac{x-1}{x}\right)^2+c$	A1	
	,		[6 marks]
6	gradient = 3.024 normal gradient = $-\frac{1}{\text{their gradient}}$ [-0.3307]	(M1)	
	their gradient [-0.3307]	(M1)	
	y-coordinate = 3.392 Equation of normal: $y - 3.392 = -0.3307(x - 1.5)$	A1 A1	
	A: $y = 0$, B: $x = 0$ [$x_4 = 11.76$, $y_B = 3.888$]	(M1)	
	Area = 22.9	A1	<i>[6</i> 1.7
7	Differentiate implicitly: at least one term containing <i>y</i> correct	M1	[6 marks]
	6x + 2xy' + 2y - 2yy' = 0	A1	
	$y' = 0 \Rightarrow y = -3x$ Substitutes their conversion for a substitute survey.	M1	
	Substitutes their expression for x or y back into curve: $3x^2 + 2x(-3x) - (-3x)^2 + 24 = 0$	M1A1	
	$12x^2 = 24 \Rightarrow x = \pm\sqrt{2}$	A1	
	$(\sqrt{2}, -3\sqrt{2}), (-\sqrt{2}, 3\sqrt{2})$	A1	ra 1 -
			[7 marks]

8	Limits $\sqrt[3]{5}$, $\sqrt[3]{17}$ (seen in either part)	
	$x = \sqrt{y^3 - 1}$	
	$\int \sqrt{y^3 - 1} \mathrm{d}y $ M1	
	= 2.57 A1	
	Using x^2 M1	
	$\int \pi (y^3 - 1) dy$ = 24.9 M1	
		[7 marks]
9	nother root is $2 + i$. ,
	onsider sum of roots: $(x_i + i) + (2 - i) + x_3 = 7$ (allow -7) M1	
	= 3 A1	
	roduct of roots: $3(2+i)(2-i)$ M1	
	=-15 A1	[5 marks]
10	he rth term is	[5 marks]
	$C_r x^{2r} \left(\frac{1}{y}\right)^{n-r}$ (M1)	
	or constant term: $2r - (n - r) = 0$ (M1)	
	=3r A1	
	o need $(3r)C_r = 495$ (M1) sing GDC: $r = 4$ so $n = 12$	
		[5 marks]
	SECTION B	
_	72 – 11	
11	$i \frac{72 - \mu}{\sigma} = 0.8416$ M1	
	$72 - \mu = 0.8416\sigma$ A1	
	$\mu + 0.8416\sigma = 72 \tag{AG}$	
	$\frac{24-\mu}{\sigma_{1,645}} = \dots $ M1	
	-1.645 A1 $\mu - 1.645\sigma = 24$ A1	
	ii (From GDC) μ = 55.8, σ = 19.3 A1 $P(>48) = 0.657$	
		[7 marks]
	Use inverse normal with $p = 0.25$ or $p = 0.75$ $(Q_1 = 42.8 \text{ or } Q_3 = 68.8)$ M1	
	IQR = 26 (hours)	
		[2 marks]
	Use B(20, 0.656) (M1)	
	$1 - P(\leq 9) \tag{M1}$	
	= 0.953 A1	[3 marks]
	$\frac{P(>72)}{P(>48)}$ (M1)	[- ·····
	= 0.305	
	P(keep phone) = $1 - (0.05 \times 0.9 + 0.75 \times 0.2)$ (M1M1)	[2 marks]
	0.2	
	r (keep phone)	
		[4 marks]
	Total /	18 marks]
12	$\cos \theta = \frac{2^2 + 4^2 - 4^2}{2 \times 2 \times 4} [= 0.25] \tag{M1}$	
	$\sin \theta = \sqrt{\frac{15}{16}} \left[= 0.968 \right]$ M1	
	Area = $\frac{1}{2}(2 \times 4) \times \text{their sin } \theta$ M1	
	$= 3.87 \text{ [cm}^2]$	
		[4 marks]

- The third side is $10 3x \dots$ b
 - ... which must be positive.
- $(10 3x)^2 = x^2 + (2x)^2 2x(2x)\cos\theta$ $\cos\theta = \frac{60x 4x^2 100}{4x^2}$

$$=\frac{15x - x^2 - 15}{x^2}$$

ii

iii Need
$$-1 < \cos \theta < 1$$
 (allow \leq here)

Intersections at $x = \frac{5}{3}, \frac{5}{2}, 5$ So $\frac{5}{3} < x < \frac{5}{2}$

- State or use $\sin \theta = \sqrt{1 \cos^2 \theta}$ d State or use Area = $\frac{1}{2}x(2x)\sin\theta$
 - Sketch area as a function of x:

Α1

[2 marks] M1

A1(AG)

M1

A2

M1

Α1

Α1 [7 marks]

M1

M1

M1

Max area =
$$3.91 \text{ [cm}^2\text{]}$$

Use implicit differentiation

13 a

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\frac{\mathrm{d}y}{\mathrm{d}x} (x+y) - y \left(1 + \frac{\mathrm{d}y}{\mathrm{d}x}\right)}{(x+y)^2}$$

$$=\frac{x\frac{dy}{dx}-y}{(x+y)^2}$$

Substitute
$$\frac{dy}{dx} = \frac{y}{x+y}$$
:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\frac{xy}{x+y} - y}{(x+y)^2}$$

$$=\frac{xy-y(x+y)}{(x+y)^3}$$

$$-\frac{y^2}{(x+y)^3}$$

b
$$\frac{dy}{dx} = v + x \frac{dv}{dx}$$
$$v + x \frac{dv}{dx} = \frac{xv}{x + xv}$$

$$x\frac{\mathrm{d}v}{\mathrm{d}x} = \frac{v}{1+v} - v$$

$$= -\frac{v^2}{1+v}$$

c Separate variables:
$$\frac{1+v}{v^2} \frac{dv}{dx} = -\frac{1}{x}$$
 or equivalent
$$\int \frac{1+v}{v^2} dv = \int -\frac{1}{x} dx$$

$$-\frac{1}{v} + \ln v = -\ln x + c$$

Using
$$x = 1$$
, $y = 1$, $v = 1$: $-1 + 0 = 0 + c$

$$-\frac{1}{v} + \ln(xv) = -1$$
$$\frac{x}{y} = \ln y + 1$$

$$x = y(\ln y + 1)$$

[5 marks] Total [18 marks]

M1