Backpropagation

Старое

Что мы уже знаем? Линейная регрессия

- Линейная регрессия позволяет аппроксимировать непрерывную случайную величину.
- Решает задачу регрессии.
- Линейную регрессию можно построить аналитическим путем, то есть найти наиболее оптимальное решение.
- Линейная регрессия в упрощенном виде это совокупность некоторого линейное преобразование (то есть частный случай отображения одного многомерного пространства в другое) и способа его нахождения
- Ошибку оцениваем с помощью MSE, MSE, R2

Что мы уже знаем? Логистическая регрессия

Логистическая регрессия (упрощенно) = линейная регрессия + сигмоида

Решает задачу классификации

Особенный критерий оценки (Binary Cross Entropy)

Что мы уже знаем? Многослойный персептрон

Многослойный персептрон (упрощенно) - сколько угодно **линейных преобразований** один на другом

Решает задачу XOR

Можно решать задачу классификации и регрессии

Постулируется, что он может решить **любую** задачу (где нет рекуррентной зависимости)

Новое

Методы поиска (суб) оптимального решения

Аналитические

- Обозреваем все данные разом (требовательность к ресурсам)
- Найдет оптимальное решение

Градиентные

- Можно смотреть на данные частями
- Найдет суб оптимальное решение

Что нужно для градиентных методов?

- Производная
 - Дифференцируемость (сложной функции)
- Критерий качества
 - MSE (слышали)
 - МАЕ(слышали)
 - Binary Cross Entropy (узнаем)
 - Cross Entropy (узнаем)
- Алгоритм
 - Как делать "шаги" в правильном направлении?

Производная

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ

Производная от функции в данной точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

ФИЗИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ

Это скорость изменения величины или процесса.

- График изменения расстояния от времени (Графики)
- График изменения скорости от времени (Графики)

Метод максимизации правдободобия

Вижу, что работает фонтан

- 1. Фонтан здесь работает каждый вечер
- 2. Фонтан включили специально для меня только сегодня

Критерий качества - функция потерь

- Regression
 - MSE
 - MAE
- Classification
 - Binary Cross Entropy
 - Cross Entropy

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$\text{MAE} = \frac{1}{n} \sum_{i=1}^{n} |x_i - x|$$

Classification: Uncertainty principle

	probabilities		probabilities
Dog	1.00	Dog	0.50
Cat	0.00	Cat	0.50
Fox	0.00	Fox	0.00
Elephant	0.00	Elephant	0.00
Lion	0.00	Lion	0.00
Mouse	0.00	Mouse	0.00
Bird	0.00	Bird	0.00
Pokémon	0.00	Pokémon	0.00
Fish	0.00	Fish	0.00
None	0.00	None	0.00

		After softmax	LABELS
	$P(Dog x_i)$	0.80	1.00
	$P(Cat x_i)$	0.03	0.00
	$P(Fox x_i)$	0.03	0.00
	$P(Elephant x_i)$	0.02	0.00
	$P(Lion x_i)$	0.01	0.00
	$P(Mouse x_i)$	0.00	0.00
MODEL	$P(Bird x_i)$	0.03	0.00
\rightarrow Parameters: $\boldsymbol{\theta}$	$P(Pokémon x_i)$	0.04	0.00
Parameters: U	$P(Fish x_i)$	0.01	0.00
	$P(None x_i)$	0.03	0.00

(Binary) Cross Entropy

Cross-entropy =
$$-\sum_{x} p(x) \cdot \log q(x)$$

Binary Cross-entropy =
$$-\left(p(x) \cdot \log q(x) + (1-p(x)) \cdot \log (1-q(x))\right)$$

This cancels out

if the target is 0

This cancels out

if the target is 1

Additional info: Why use cross entropy?

Оптимизация

Производная сложной функции

Частная производная

Найдите частные производные следующих функций:

1.
$$z = x^3 - 5axy + y^3$$

$$2. \quad z = \frac{x-y}{x+y}$$

3.
$$z = \frac{x}{y}$$

$$4. \quad z = \sqrt{x^2 - y^2}$$

5.
$$z = \ln(x + \sqrt{x^2 + y^2})$$

$$6. \quad u = (xy)^z$$

7.
$$z = \arctan \frac{y}{x}$$

$$\frac{\partial z}{\partial x} = 2$$

$$\frac{\partial z}{\partial y} = ?$$

Экзерсисы в тетрадке - домашка