Terms, Concepts, and Examples

• More than one quantifier may be necessary to capture the meaning of a statement. For example, "Everybody loves someone."

Two quantifiers are **nested** if one is within the scope of the other.

$$\forall x \exists y (x + y = 0)$$

• Here are some examples of translating quantified statements, you should be able to move in either direction. (symbols to words and word to symbols).

Use integers as the domain.

$\forall x \forall y (x + y = y + x)$	For all integers x and y , $x + y = y + x$.
$\forall x \exists y (x = -y)$	For all integers x , there exists an integer y
	such that $x = -y$.
$\forall x \forall y ((x > 0 \land y < 0) \implies xy < 0)$	For all integers x and y , if x is positive and y
	is negative, then xy is negative.
	OR The product of a positive integer and a negative
	integer is a negative integer.
$\forall x \forall y ((x > 0) \land (y > 0)) \implies x + y > 0)$	The sum of two positive integers is always positive.

• Determining truth values of nested quantifiers:

$\forall x \forall y P(x,y)$	$\forall x \exists y P(x,y)$
True when $P(x,y)$ is true for	True when for every x there is a y
every pair x, y .	for which $P(x,y)$ is true.
False when there is a pair x, y	False when there is an x
for which $P(x, y)$ is false.	such that $P(x, y)$ is false for all y .
$\exists x \forall y P(x,y)$	$\exists x \exists y P(x,y)$
True when there is an x	True when there is a pair x, y
such that $P(x,y)$ is true for all y	for which $P(x,y)$ is true.
False when for every x there is a y	False when $P(x,y)$ is false
for which $P(x, y)$ is false.	for every pair x, y .

Video Example of Nested Quantifiers

• The order of the quantifiers matters when the quantifiers are NOT the same.

Example: Compare the following sets of statements: Assume P(x, y) is the predicate x + y = 10.

$$\forall x \exists y P(x,y)$$

$$\exists y \forall x P(x,y)$$

Solution: These statements are NOT the same. $\forall x \exists y P(x,y)$ says for all integers, there exists an integer such that x+y=10. (So for instance, if x=7 y would be 3). This is a True statement.

1

While $\exists y \forall x P(x, y)$ says, there exists an integer y such that x + y = 10 for all integers x. This is a False statement since the integer y changes for each x we pick so we can't find just ONE y that works for any x.

Example: Assume P(x, y, z) is the predicate x + y = z.

 $\forall x \forall y \exists z P(x, y, z)$

 $\exists z \forall x \forall y P(x, y, z)$

Solution: Again these statements are NOT the same. In the first statement you pick any x and y you want and find a z that works for it. In the second statement you find one single z that works for ANY x and y you pick.

Video Example of Quantifier Order

Practice Problems

- 1. Let Q(x, y) be the statement xy = 0 If the domain for both variables consists of all integers, what are the truth values of the following statements?
 - (a) Q(0,3)
 - (b) Q(6,2)
 - (c) $\forall y Q(1, y)$
 - (d) $\exists x Q(x,4)$
 - (e) $\forall x \exists y Q(x, y)$
 - (f) $\exists x \forall y Q(x, y)$
 - (g) $\forall x \forall y Q(x, y)$
- 2. Let Q(x, y) be the statement "x has sent an e-mail message to y", where the domain for both x and y consists of all students in your class. Express each of these quantifications in English.
 - (a) $\exists x \exists y Q(x, y)$
 - (b) $\exists x \forall y Q(x, y)$
 - (c) $\exists y \forall x Q(x,y)$
 - (d) $\forall y \exists x Q(x, y)$
 - (e) $\forall x \forall y Q(x, y)$