ECE 65: Components & Circuits Lab

Lecture 16

CMOS NAND gates

Reference notes: sections 4.4

Sedra & Smith (7th Ed): sections 5.1.8, 14.3

Saharnaz Baghdadchi

Course map

5. Metal Oxide Semiconductor Field Effect Transistor (MOSFET)

CMOS NAND Gate

Truth Table

$$v_1 = 0$$
 $v_2 = 0$:

$$v_o = V_{DD}$$

$$v_1 = 0$$

$$v_1 = 0$$
 $v_2 = V_{DD}$:

$$v_o = V_{DD}$$

$$v_1 = V_{DD}$$
 $v_2 = 0$:

$$v_o = V_{DD}$$

$$v_1 = V_{DD}$$
 $v_2 = V_{DD}$:

$$v_o = 0$$

GS1-KVL:
$$v_{GS1} = v_1$$

GS2-KVL:
$$v_2 = v_{GS2} + v_{DS1}$$

$$\rightarrow v_{GS2} = v_2 - v_{DS1}$$

GS3-KVL:
$$V_{DD} = v_{SG3} + v_1$$

$$\rightarrow v_{SG3} = V_{DD} - v_1$$

GS4-KVL:
$$V_{DD} = v_{SG4} + v_2$$

$$\rightarrow v_{SG4} = V_{DD} - v_2$$

DS-KVL:
$$V_{DD} = v_{SD4} + v_{DS2} + v_{DS1}$$

$$v_{SD3} = v_{SD4}$$

KCL:
$$i_{D1} = i_{D2} = i_{D3} + i_{D4}$$

$$v_o = v_{DS1} + v_{DS2}$$

 $v_o = V_{DD} - v_{SD4} = V_{DD} - v_{SD3}$

Case 1:
$$v_1 = V_{DD} \& v_2 = 0$$

$$\Rightarrow Q_i \text{ is } oN, i_{D_i} = 0, V_{DS_i} = 0$$

$$V_{SG_3} = V_{DD} - V_1 = 0 < |V_{tp}| \longrightarrow Q_3 \text{ off } \longrightarrow i_{D_3} = 0$$

$$V_{SG4} = V_{DD} - V_2 = V_{DD} > |V_{tp}| \longrightarrow Q_4 is oN$$

$$i_{D_3+i_{D_4}=i_{D_2}} \longrightarrow i_{D_4=0}, \ Q_4 \text{ is in Triode mode}, \ V_{SD_4=0}$$

$$V_0 = V_{DD} - V_{SD_4} = V_{DD}$$

Case 1: $v_1 = V_{DD} \& v_2 = 0$

Lecture 16 reading quiz

In the following two-input CMOS NAND gate, find the state of Q1 and Q4 when $v_1 = 0 \& v_2 = 0$, and when $v_1 = 0 \& v_2 = V_{DD}$.

Case 2:
$$v_1 = 0 \& v_2 = 0$$

$$V_1 = V_{GS_1} = 0 \longrightarrow Q$$
, is of, $iD_1 = 0$

G52 KVL:

$$V_{GS_2} = V_2 - V_{DS_1} = -V_{DS_1} < V_{tn} \longrightarrow Q_2 \text{ is off }, i_{D_2} = 0$$

For 23:

$$V_{SG_3} = V_{DD} - V_1 = V_{DD} > |V_{tp}| \longrightarrow Q_3 \text{ is on, } i_{D_3} = 0 \longrightarrow V_{SD_3} = 0$$

$$V_{SG_3} = V_{DD} - V_1 = V_{DD} > |V_{tp}| \longrightarrow Q_3 \text{ is on, } i_{D_3} = 0 \longrightarrow V_{SD_3} = 0$$

For Q_4 :

 $SG_4 \text{ kVL}$:

$$V_{SG_4} = V_{DD} - V_2 = V_{DD} > |V_{tP}| \longrightarrow Q_4 \text{ is on } , \quad \dot{o}_4 = 0 \longrightarrow V_{SD_4} = 0$$

Case 2:
$$v_1 = 0 \& v_2 = 0$$

$$i_{0_2}-0$$
 $\longrightarrow O_2$ is in triode and , $v_{0S_2}=0$

be cause
$$V_0 = V_{DD} \longrightarrow V_{DS_1} = V_{DD}$$

GS2 KVL:

$$V_{GS_2} = V_2 - V_{DS_1} = 0 - V_{DD} = -V_{DD} < V_{tn} \longrightarrow Assumption we not correct $\longrightarrow \partial_Z \text{ is all}$$$

Case 2: $v_1 = 0 \& v_2 = 0$

Case 3:
$$v_1 = 0 \& v_2 = V_{DD}$$

$$V_{GS_2} = V_2 - V_{DS_1} = V_{DD} - V_{DS_1}$$

$$i_{D_2} = i_{D_1} = 0$$

$$V_{SG_3} = V_{DD} - V_1 = V_{DD} > |V_{tp}| \longrightarrow Q_3 \text{ is on , because } i_{D_3} = 0 \longrightarrow Q_3 \text{ is in triode}$$

$$V_{SG_4} = V_{DD} - V_2 = V_{DD} - V_{DD} = 0 \quad \angle |V_{tp}| \longrightarrow Q_4 \quad \text{is} \quad d \longrightarrow i_{D_4} = 0$$

$$k(L: i_{0_3} + i_{0_4} = i_{0_2} = i_{0_1} = 0 \longrightarrow i_{0_3} = 0$$

Case 3:
$$v_1 = 0 \& v_2 = V_{DD}$$

$$V_{SD_3} = 0 \longrightarrow V_0 = V_{DD}$$

$$V_{GS_2} = V_2 - V_{DS_1} = V_{DD} = V_{DD} = 0 < V_{+n} \longrightarrow Q_2 \text{ is } M.$$

Case 3:
$$v_1 = 0 \& v_2 = V_{DD}$$

Case 4:
$$v_1 = V_{DD} \& v_2 = V_{DD}$$

$$V_1 = V_{GS_1} = V_{DD} > V_{tn}$$
 $\longrightarrow Q_1 \text{ is in triode}$
 $V_{DS_1} = 0$
 $V_{GS_2} = V_2 - V_{DS_1} = V_{DD} - V_{DS_1} \longrightarrow Q_2 \text{ ison and in triode}$
 $V_{DS_2} = 0$

$$V_{5G_3} = V_{S_3} - V_{G_3} = V_{00} - V_{00} = 0 \longrightarrow O_3 \text{ is } A \longrightarrow O_3 = 0$$

$$V_0 = V_0 S_1 + V_0 S_2 = 0$$
 $\longrightarrow V_0 = 0$

Supplementary Discussion question 1.

Sketch a three input NAND gate using CMOS technology.

Supplementary Discussion question 2

Sketch a three input NOR gate using CMOS technology.

