Math To Remember

Jonas Münch

July 26, 2017

Contents

1	Gauß-Funktion	2
2	Satz von Bayes	2
3	Ableitungsregeln	2
4	Integrationsregeln	3
5	Jacobi-Matrix	3
6	Gradient, Divergenz, Laplace-Operator	3
7	Strukturtensor	4
8	Hesse-Matrix	4
9	Mapping	4
10	Rotation mit Quaternionen	4
11	Rotationsmatrizen	4
12	Kreuzproduktmatrix	5
13	Vektormultiplikation	5
14	Kovarianzmatrix	5
15	Hauptkomponentenanalyse (PCA)	6
16	Ebene durch Punkte (Plane fitting)	6
17	Homografie	6

18 SVD (Singulärwertzerlegung)	6
19 Eigenwerte 2x2 Matrix	7
20 Koordinatentransformation	7
21 Taylor-Approximation	8
22 Fourier-Transformation	8
23 Entropie	9

1 Gauß-Funktion

$$G_{\sigma,\mu}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Multidimensional Mit der Kovarianzmatrix Σ und dem Erwartungswertvektor μ im n-dimensionalen:

$$G_{\mathbf{\Sigma},\boldsymbol{\mu}}(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^n \mathrm{det}(\mathbf{\Sigma})}} \mathrm{exp}\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^\mathrm{T} \mathbf{\Sigma}^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$

 $(x - \mu)^T \Sigma^{-1}(x - \mu)$ ist hierbei die *Mahalanobis-Distanz* und gibt die quadratische statistische Distanz von x zu μ an.

2 Satz von Bayes

$$P(B|A) = \frac{P(B) \cdot P(A|B)}{P(A)}$$

3 Ableitungsregeln

Produktregel

$$f(x) = g(x) \cdot h(x)$$

$$f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$$

Quotientenregel

$$f(x) = \frac{g(x)}{h(x)}$$
$$f'(x) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{h(x)^2}$$

Kettenregel

$$f(x) = g((h(x)))$$

$$f'(x) = g'(h(x)) \cdot h'(x)$$

4 Integrationsregeln

Partielle Integration / Produktintegration

$$\int_a^b f'(x) \cdot g(x) dx = [f(x) \cdot g(x)]_a^b - \int_a^b f(x) \cdot g'(x) dx$$
$$= f(b) \cdot g(b) - f(a) \cdot g(a) - \int_a^b f(x) \cdot g'(x) dx$$

5 Jacobi-Matrix

Für eine Funktion $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ gibt die Jacobi-Matrix (Auch Ableitungsmatrix genannt)

$$\boldsymbol{J}_{f}(x) = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}} \end{pmatrix}$$

die ersten partiellen Ableitungen an.

6 Gradient, Divergenz, Laplace-Operator

Gradient

$$f: \mathbb{R}^2 \mapsto \mathbb{R}$$

$$\nabla f(x, y) = \begin{pmatrix} \frac{\partial f(x, y)}{\partial x} \\ \frac{\partial f(x, y)}{\partial y} \end{pmatrix}$$

Divergenz

$$f: \mathbb{R}^2 \mapsto \mathbb{R}^2(\text{Vektorfeld})$$
$$\nabla f(x, y) = \frac{\partial f_x(x, y)}{\partial x} + \frac{\partial_y f(x, y)}{\partial y}$$

Laplace Operator

$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$\nabla^2 = \triangle f(x, y) = \begin{pmatrix} \frac{\partial^2 f(x, y)}{\partial x^2} \\ \frac{\partial^2 f(x, y)}{\partial y^2} \end{pmatrix}$$

7 Strukturtensor

Der Strukturtensor bildet sich aus dem Gradienten ∇

$$J_0(\nabla_{\varphi}) := \nabla \varphi \cdot \nabla \varphi^{\mathrm{T}}$$

Seine Eigenvektoren/-werte haben folgende Eigenschaften:

$$\mathbf{v}_1 \parallel \nabla \varphi$$
 $\lambda_1 = \lVert \nabla \varphi \rVert^2$ $\mathbf{v}_2 \perp \nabla \varphi$ $\lambda_2 = 0$

8 Hesse-Matrix

Für eine Funktion $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ werden die zweiten partiellen ableitungen mit der Hesse-Matrix angegeben. Hier das Beispiel für 2D:

$$m{H}_f(im{x}) = \left(egin{array}{ccc} rac{\partial^2 f}{\partial x_1 \partial x_1} & rac{\partial^2 f}{\partial x_1 \partial x_2} \ rac{\partial^2 f}{\partial x_1 \partial x_2} & rac{\partial^2 f}{\partial x_2 \partial x_2} \end{array}
ight)$$

9 Mapping

Folgende Funktion bildet einen Wert v von $[a_{in}, b_{in}]$ auf $[a_{out}, b_{out}]$ ab.

$$map(v, a_{in}, b_{in}, a_{out}, b_{out}) = \frac{(v - a_{in})}{(b_{in} - a_{in})} \cdot (b_{out} - a_{out}) + a_{out}$$

10 Rotation mit Quaternionen

Wird ein Punkt p als Quaternion p^q ausgedrückt, so kann er mit dem Rotationsquaternion r rotiert werden.

$$r = \left(\cos\left(\frac{\theta}{2}\right), \sin\left(\frac{\theta}{2}\right) \cdot \boldsymbol{u}^{\mathrm{T}}\right) \qquad \text{mit } \boldsymbol{u}^{\mathrm{T}} \text{: rot.-Achse, } \boldsymbol{\theta} \text{: rot.-Winkel}$$
$$\boldsymbol{p}^{q} = \left(0, \boldsymbol{p}^{\mathrm{T}}\right) \qquad \qquad 0 \text{: arbitrary scalar factor}$$
$$\boldsymbol{p}^{q}_{\mathrm{rot}} = r \cdot \boldsymbol{p}^{q} \cdot \bar{r} \qquad \qquad \bar{r} = w - xi - yj - zk \text{(konjugiertes Quaternion)}$$

11 Rotationsmatrizen

2D

$$\mathbf{R} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

3D

$$\boldsymbol{R}_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}, \boldsymbol{R}_{y} = \begin{pmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{pmatrix}, \quad \boldsymbol{R}_{z} = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

12 Kreuzproduktmatrix

Das Kreuzprodukt zweier Vektoren $\boldsymbol{v} \times \boldsymbol{w}$ kann durch die Kreuzproduktmatrix $[\boldsymbol{v}]_{\times}$ dargestellt werden.

$$\begin{aligned} \boldsymbol{v} \times \boldsymbol{w} &= [\boldsymbol{v}]_{\times} \boldsymbol{w} \\ \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \times \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} &= \begin{pmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix} \qquad = \begin{pmatrix} -v_3 w_2 + v_2 w_3 \\ v_3 w_1 - v_1 w_3 \\ -v_2 w_1 + v_1 w_2 \end{pmatrix}$$

13 Vektormultiplikation

$$\begin{aligned} \boldsymbol{a}^{\mathrm{T}}\boldsymbol{a} &= a \\ &= a_{1}^{2} + a_{2}^{2} + a_{3}^{2} \\ \boldsymbol{a}\boldsymbol{a}^{\mathrm{T}} &= \boldsymbol{M} \end{aligned} \tag{Skalarprodukt}$$

$$= \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} (a_{1}, a_{2}, a_{3}) = \begin{pmatrix} a_{1}^{2} & a_{1}a_{2} & a_{1}a_{3} \\ a_{1}a_{2} & a_{2}^{2} & a_{2}a_{3} \\ a_{1}a_{3} & a_{2}a_{3} & a_{3}^{3} \end{pmatrix}$$

14 Kovarianzmatrix

$$m{\mu} = rac{1}{n} \sum_{i=0}^n m{x}_i$$
 Erwartungswert $m{\Sigma}(m{x}) = rac{1}{n} \sum_{i=0}^n (m{x}_i - m{\mu}) (m{x}_i - m{\mu})^{\mathrm{T}}$ Kovarianzmatrix

Eigenwerte Wird die Kovarianzmatrix in ihre Eigenwerte λ_i und Eigenvektoren e_i zerlegt,

$$\Sigma e_i = \lambda_i e_i$$

so sind die

- ullet Eigenvektoren e_i die Achsen des aufgespannten Ellipsoids
- Eigenwerte λ_i proportional zur Länge der Achsen

15 Hauptkomponentenanalyse (PCA)

16 Ebene durch Punkte (Plane fitting)

Um eine Ebene mit minimalem quadratischem Fehler durch eine Menge von Punkten zu legen, wird die Matrix $\boldsymbol{A} = (\boldsymbol{p}_1 \boldsymbol{p}_2 \dots \boldsymbol{p}_n)^{\mathrm{T}}$ mit $n \geq 3$ zentrierten Punkten $\boldsymbol{p}_i := \boldsymbol{p}_i - \boldsymbol{\mu}$ aufgestellt. Die Singulärwertzerlegung $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}$ wird angewandt, sodass die Ebene von den ersten beiden Spaltenvektoren der Matrix \boldsymbol{U} aufgespannt wird und der dritte Spaltenvektor die Normale darstellt.

Alternativ kann die Matrix A mit den projektiven Punkten \tilde{p}_i aufgestellt werden. Nun bildet der Spaltenvektor aus V, der zum kleinsten Singulärwert gehört, die Normale der Ebene.

17 Homografie

Siehe BV3 Vorlesungsfolien Kapitel 10

18 SVD (Singulärwertzerlegung)

Jede Matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$ kann in

$$A = U\Sigma V^{\mathrm{T}}$$

zerlegt werden, wobei

• $U \in \mathbb{R}^{n \times n}$ und $V \in \mathbb{R}^{m \times m}$ orthogonal

•
$$\Sigma \in \mathbb{R}^{n \times m} = \begin{pmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & \sigma_{min(m,n)} \end{pmatrix}$$

• σ_i sind die Singulärwerte $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_{\min(m,n)} \geq 0$

Die SVD kann für viele Probleme der linearen Algebra genutzt werden. Hier einige Eigenschaften:

- Rang von \mathbf{A} : rank(\mathbf{A}) = $\#\{\sigma_i > 0\}$
- Kern von \boldsymbol{A} (Nullraum): Aufgespannt von den Spaltenvektoren \boldsymbol{v}_i von \boldsymbol{V} deren $\sigma_i=0$

•

• TODO

19 Eigenwerte 2x2 Matrix

Die Eigenwerte einer 2×2-Matrix $\mathbf{A}=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ können in einer geschlossenen Form berechnet werden:

$$Av = \lambda v$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \lambda \begin{pmatrix} u \\ v \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}$$

$$\begin{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = 0$$

$$\vdots$$

$$\lambda^2 - \operatorname{sp}(\mathbf{A})\lambda + \det(\mathbf{A}) = 0$$

$$\lambda_{1/2} = \frac{1}{2} \left(\operatorname{sp}(\mathbf{A}) \pm \sqrt{\operatorname{sp}(\mathbf{A})^2 - 4\det(\mathbf{A})} \right)$$

Die Eigenvektoren lassen sich dann folgendermaßen bestimmen:

$$(\boldsymbol{A} - \lambda_{1/2} \boldsymbol{I}) \cdot \boldsymbol{x} = \boldsymbol{0}$$

20 Koordinatentransformation

Seien

C Koordinatensystem

E Koordinatensystem, gegeben in C

 e_i Basisvektoren von E, gegeben in C

 \boldsymbol{p} Punkt $\boldsymbol{p}_C, \boldsymbol{p}_E = (x_1, \dots, x_n)^{\mathrm{T}}$

so kann \boldsymbol{p} einem Basiswechsel unterzogen werden:

$$m{p}_E = \left(egin{array}{c} \langle m{e}_1, m{p}_C
angle \\ \langle m{e}_n, m{p}_C
angle \end{array}
ight)$$
 Skalarprodukt $m{p}_E = \left(egin{array}{c} m{e}_1^{\mathrm{T}} \\ dots \\ m{e}_n^{\mathrm{T}} \end{array}
ight) \cdot m{p}_C$ (Basisvektoren als Zeilen)

$$m{p}_C = x_{1,E} \cdot m{e}_1 + \dots + x_{n,E} \cdot m{e}_n$$
 Linear
kombination $m{p}_C = \left(\begin{array}{ccc} m{e}_1 & \dots & m{e}_n \end{array} \right) \cdot m{p}_E$ (Basis
vektoren als Spalten)

21 Taylor-Approximation

A k times differentiable function can be approximated by polynomials.

$$Tf(x,a) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$
$$= f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \frac{f'''(a)}{6} (x-a)^3 + \dots$$

22 Fourier-Transformation

Jede periodische Funktion

$$f(x) = f(x+T), T = 2\pi$$

kann in sin und cos Funktionen zerlegt werden.

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx)$$

Die Koeffizienten können mit

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) dx$$

$$a_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(x) dx$$

$$b_k = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(x) dx$$

bestimmt werden.

In Complexen Zahlen ausgedrückt:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-2\pi i ux} dux$$

Inverse Fourier Transformation

$$f(x) = \int_{-\infty}^{\infty} F(u)e^{2\pi ixu} du$$

 ${\it 2D-Fourier-Transformation}$

$$FT_2(f)(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y)e^{-2\pi i(xu+yv)} dxdy$$

23 Entropie

$$H = -\sum_{i=0}^{N} p_i \cdot \ln(p_i)$$