INDOOR NAVIGATION

Service for indoor navigation on forums and exhibitions

Technology Planning and RoadmappingFinal presentation

Course instructor: Alessandro Aliakbargolkar

Student: Timur Chikichev

2020, 06

Structure

1. Introduction

Background / Context

Objectives

- 2. Approach (How?)
- 3. Results
- 4. Validation
- 5. Conclusions & Lessons Learnt from TPR:F/TPR:A
- 6. References

Background / Context

Indoor navigation solutions is a wide range of products and services. While "indoor routing" functionality that guides people through the buildings is important, there are lots of services which support it, such as content management system, mobile and web applications, indoor and outdoor localization, social networks, data analytics and many others.

Why do we need indoor navigation and positioning?

- Convenience of global Geo-services
- GPS reception problems inside buildings

One of understandable example of such kind of products is a Google Maps, which is scaled to work inside the buildings.

Office/business venue

Shopping center/mall/

Public venue

Sports venue

13%

22%

22%

18%

Objectives

There are several important points in this scientific area to assist in:

- Taking decision of technology / product choice
- Understanding physical limits with a feasible model of technology
- Understand Timeline and Market scenarios
- Landscape of technology with literature and patent review

Approach

indoor, building

positioning, localisation, tracking, location

magnetic, fingerprint

WiFi, RSSE, trilateration, iBeacon, RSSI

BLE, Bluetooth

no hardware, wireless

accuracy, precision, latency, cost

exhibition, shop, retail, customer

Figures of merit

Technology FOM's

Figure of merit	Units	Description							
cost hardware, software	f(USD/sqm)	cost or hardware rent to provide coverage of needed area with normal operating accuracy							
accuracy	m	accuracy of localization, difference between real position and measurements							
range	m	Not important factor, complexity and scalability are affected by this factor. Not representative, because of different types of implementation. Excluded from FOM's							
additional requirements	USD; year	If yes, product is not applicable until they are not solved. Not implemented into model, technologies with additional requirements are mot mapped. (Infrastructure Requirements, Impacts and Notes)							
Scalability	low/med/high	range of scalability, important factor to consider in strategy choice							
Complexity	low/med/high	range of complexity, important factor to consider in strategy choice							
Robustness		additional information of what affect the performance of technology							

Product FOM's

Figure of merit	Units	Description
development time	month	time to develop the product based on technology with specified accuracy
accuracy	m	accuracy of localization, RMS error between real position and measurements

Technology comparison

IPS Technology	Accuracy, m	Scalability	Complexity	Туре
Geomagnetic	2	Low	Low	fingerprinting
Photo	1-10	Low	High	camera
Barcodes	1-10	Medium	Low	camera
Video, AR	1-10	Low	High	camera
Bluetooth Low Energy (BLE)	1-3	High	Medium	Radio
RFID, Active	1-10	Medium	Medium	Radio
RFID, Passive	1-10	Medium	Medium	Radio
Wi-Fi	5-10	High	Medium	Radio
Ultra Wide Band (UWB)	0.15-0.5	Low	Medium	Radio
Zigbee	3-5	Low	Low	Radio
FM	2-4	Low	Low	
Lighting-Based – Infrared LED	0.15-3	Low	Low	Lighting
Lighting-Based – Visible LED	0.3-3	Low	Low	Lighting
Audible	0.5	Low	Low	sonic
Ultrasound	0.05-0.25	Low	Medium	sonic
Inertial		Low	Low	supplementary
Pressure				supplementary
GPS	6-10	Low	High	supplementary 7

Technological limits

3 types: radio (distance), image (angle), fingerprinting (position)

Radio (multilateration, distance measurement), fingerprinting: noise level, wave reflections, sensor errors are main limitations.

Because of noise, the technology limit can't be reached, only on frequencies where is no external noise, wave reflections - scanning error depends on geometry of signal way.

Image based: accuracy/precision of localisation depends on camera angle resolution. Because trilateration with camera is not possible, error is a linear function of range.

Technology comparison

Technical Approach	Dev.time, month	RMS error, m
2.4GHz Phase Offset	60	0.72
WiFi+Modulated LEDs	12	2.04
2.4GHz Time-of-Flight	72	2.03
Ultrasonic Time-of-Flight	24	2.09
IR/Radio Time-of-Flight	18	2.35
2.4GHz Time-of-Flight	5	2.58
WiFi+Bluetooth+IMU	24	2.72
Modulated Magnetic Signals	24	3.83
SDR Time-of-Flight	4	3.87
Modulated Magnetic Signals	90	3.96
2.4GHz Phase Offset	24	4.04
WiFi+Sound Time-of-Flight	12	8.91
Steerable Antennas ToF	12	10.22
Bayesian Filter + WiFi Fingerprinting	96	1.56
WiFi+IMU Fingerprinting + Neural Network	36	1.96

RMS error vs. dev.time

dev.time

Lymberopoulos, Dimitrios & Liu et Al (2015). A Realistic Evaluation and Comparison of Indoor Location Technologies: Experiences and Lessons Learned. 10.1145/2737095.2737726.

Technology Strategy Vision

- Merge of indoor and outdoor positioning systems
- Privacy and security in IPS development
- Crowd-source mapping
- Zero-hardware systems
- "China Crisis Ebbs, But Tracking Apps Are Going Strong"- Chinese competitors
- Indoor Location of E911 Mobile Callers USA market
- Physical web IOT, connected devices, IPS using existing infrastructure

Deliver the product in least development time, reach average accuracy.

Timeline

Intellectual Property

TOTAL

	Univ Beijing	Here Global	MAPS	Tile	Navteq	REALTIMET ECH	TeleNav	Private owner	Next 398	TOTAL
indoor navigation	459	258	3	6	10	5	64	41	492	1597
Unrelated	568	778	32	27	27	31	124	0	42	<u>24</u> 45

System Architecture

System Architecture

- Server based systems can be provided by an external vendor buying a service
- Server based systems are enough cost effective to be used (development of server platforms in 2020 is enough to not care about signal processing on the local devices)
- Mobile device based are harder in development and support
- Mobile device based systems may not require external server and can be run locally stable work with no internet connection
- Once operating, mobile device based are cheaper, because no server support and rent needed costs are on user side. Important for scalability (if one million of users will use system, some
 additional traffic management will be required)
- Emergency help services shall not depend on internet connection broadcast systems, mobile device used as transmitter - mobile device initiated systems
- In some cases network initiated positioning can be useful. For example, if ultrasound waves are
 used for positioning, sound transmission will happen over short periods of time defined by network,
 this will reduce level of noise.

Location aware content example by ILA

System Architecture

Technical feasibility

Log-distance path loss model is formally expressed as:

$$PL = P_{Tx_{dBm}} - P_{Rx_{dBm}} = PL_0 + 10\gamma \, \log_{10} rac{d}{d_0} + X_g,$$
 where

P L is the total <u>path loss</u> measured in <u>Decibel</u> (dB) The free-space path loss (FSPL) formula:

$$FSPL(dB) = 20 \log_{10}(d) + 20 \log_{10}(f) + 92.45$$

Bluetooth	
Specification	Bluetooth 4.0+
	2.402GHz -
Frequency	2.480GHz
	4 to -20dBm
Transmit Power	With 9 Options
Receiver	
Sensitivity	-96dBm

For BLE, we the normal conditions are as in figure above: with normal operating range of 30m, transmitter power in [4 DBm, -20 DBm] range, receiver sensitivity in range of -40 DBm, -60DBm.

Financial valuation

e:	\$K												
		Y1		- 1		Y	2		Y3				
	q1	q2	q3	q4	q1	q2	q3	q4	q1	q2	q3	q4	
MANAGEMENT													
wages	4	7	7	7	14	14	18	18	18	18	18	18	
office			1	2	3	3	3	3	3	3	3	3	
ENGINEERING													
system programming	0	1	2	3	3	3	3	3	3	5	5	5	
web platform	0	3	6	6	8	8	8	8	8	5	5	5	
hardware implementation	1	1	2	3	3	3	3	3	3	5	5	5	
DRM	0	0	2	2	2	2	2	2	2	2	2	2	
INTEGRATION AND SUPPOR	RT												
fees							2	2	3	3	3	3	
maintenance	0	0	4	4	4	4	6	6	6	6	6	6	
modifications	0	0	0	0	2	2	4	4	4	4	4	4	
MARKETING													
conferences	4	4	4	4	12	8	8	8	8	8	8	8	
trials	0	5	5	6	8	10	15	22	31	44	63	90	
web	1	1	3	3	3	3	5	5	7	7	7	7	
COSTS	-10	-22	-36	-40	-62	-60	-77	-84	-96	-110	-129	-156	
SALES		10	20	30	30	50	80	90	105	128	164	21	
FREE CASH FLOW	-10	-12	-16	-10	-32	-10	103	6	9	18	35	61	
cum fcf		-22	-38	-48	-80	-90	14	20	29	47	82	143	
investment needed						100							

Financial valuation

Customer acquisition cost diagram

Value at risk gain curve

Positioning

IndoorAtlas	Android or iOS SDK, MapCreator2 for Android mobile application	 Geomagnetic fingerprint maps Pedestrian Dead Reckoning with gyroscope and accelerometer (IMU sensors) Wi-Fi signals Bluetooth beacons Barometric height information
Navigine	Mobile app on iOS/Android.,web-interface/API	BLEWi-FiUWB
Indoo.rs	SDK-free Indoor Positioning with the Location Based Engine- based on REST-API	 iBeacons Sensor Fusion SLAM Engine™ technology
WRLD	Android SDK and iOS SDK and API	 Bluetooth beacons receiver antenna arrays WiFi short-range radio Ultra Wideband
INFSoft	The SDK is available for android and iOS as an HTML5 plugin. Also they use of frameworks such as PhoneGap or Xamarirn is possible.	 Wifi BLE Beacons UWB RFID camera systems

		Products																
	P1	Mapsted na	avigatio	n delu	xe								Produ	ıcts				
	P2	HERE Indo	or Pos	itioning	(SDK 8	& radio	mappe	r)					curren					
	P3	IndoorAtlas											+	1	Τ,	1,	future	
	P4	VisioGlobe	indoor	naviga	ition							Markets	p1	p2	p3	p4	p5	
	P5	Google VPS				svstem)					positioning	Х	Х	х	Х	х	
		1 3	- (*****			- , ,	'					marketing	х		х		х	
la da												analytics			х	x	x	
\vdash	sensors																	
\vdash	GSM / 3G / 4G (Tech	nologies	s													
	compass, magn	etic fields	T1	T2	Т3	T4	T5	Т6	T7	Т8	Т9	Processes						
Т3	Wi-Fi		x	x	x	1	1.0	1.0	1	x	х	geofencing			x		- _x	
T4	Bluetooth		<u> </u>	Х						Х							- ^	
	accelerometer, g	gyroscope,			Х	Х		Х			Х	asset tracking			х	х	-	
	pedometer		x	х	x	x	x		x	x		human real-time positioning	x	x	x	x	x	
	UWB antennas			х	Х	Х						queue management			х	х	1	
T7	Barometer				х		х	х	х		х	Sensor Fusion SLAM			x		1	
T8	Camera		x	x	X	x	x	x	x	Х		map creation	x	х	x	x	x	
T9	RFID, NFC, QR code					<u> </u>	Î	Î	T	^		Product phase	<u> </u>	^	1^	<u> </u>	<u> </u>	
			-									-					+	
	+	mature	_			x						Research	_		x	x	×	
	<u> </u>	growth	_		x		x	x		x		Development	×	x	x	x	x	
		emerging		x								Delivery			x	x		
		declining	x						x		x	Support	x	x	x	x	21	

Validation

The tech background is validated by comparison of scientific publications and analysis of the existing solutions.

The business model was sequentially developed to satisfy four fits model.

Expert validation. (IndoorAtlas expert interview, customer interview)

- 1. W. Sakpere, M. A. Oshin, and N. Mlitwa, "A state-of-the-art survey of indoor positioning and navigation systems and technologies," South African Computer Journal, vol. 29, pp. 145–197, 2017.
- 2. M. Kjærgaard, "Indoor positioning with radio location fingerprinting," 04 2010.
- 3. R. F. Brena, J. P. Garc´ıa-V´azquez, C. E. Galv´an-Tejada, D. Muˇnoz-Rodriguez, C. Vargas-Rosales, and J. Fang-meyer, "Evolution of indoor positioning technologies: A survey," Journal of Sensors, Mar 2017.
- 4. Infsoft, "Indoor positioning and services white paper," 2019.
- 5. R. Bernard, "Indoor positioning systems," Security Industry Association, 2017.
- 6. IndoorAtlas / Vanson Bourne, "A 2016 global research report on the indoor positioning market," p. 6, 2016.
- 7. B. Li, T. Gallagher, C. Rizos, and A. Dempster, "Using geomagnetic field for indoor positioning," Journal of Applied Geodesy, vol. 7, 11 2013.
- 8. I. Alliance, "ILA system architecture release 1.0," openmobile alliance.
- 9. Indoor navigation market review by iBecom, June 4 2015
- 10. Geofencing market guide, Justin Croxton, Sept 26 2019
- 11. Thaljaoui, A., Val, T., Nasri, N., & Brulin, D. (2015). *BLE localization using RSSI measurements and iRingLA. 2015 IEEE International Conference on Industrial Technology (ICIT)*. doi:10.1109/icit.2015.7125418

Conclusions & Lessons Learnt from TPR:F/TPR:A

The indoor navigation product strategy tool is in development now.

It was proven to be viable by customer discovery process and by revenue model & calculation.

However in order to succeed this idea requires:

- to be accurate proved to be possible but requires lot of engineering
- to be convenient depends on the way of realization and would require continuous improvements
- the acceptance of the market segment, which shall be accurately chosen
- complexity of either software or hardware

References

- 1. S. Walden, "The "indoor generation" and the health risks of spending more time inside," 05 2018.
- 2. R. Mautz, "Indoor positioning technologies," 2012.
- 3. W. Sakpere, M. A. Oshin, and N. Mlitwa, "A state-of-the-art survey of indoor positioning and navigation systems and technologies," South African Computer Journal, vol. 29, pp. 145–197, 2017.
- 4. M. Kjærgaard, "Indoor positioning with radio location fingerprinting," 04 2010.
- 5. R. F. Brena, J. P. Garc´ıa-V´azquez, C. E. Galv´an-Tejada, D. Muˇnoz-Rodriguez, C. Vargas-Rosales, and J. Fang-meyer, "Evolution of indoor positioning technologies: A survey," Journal of Sensors, Mar 2017.
- 6. Infsoft, "Indoor positioning and services white paper," 2019.
- 7. R. Bernard, "Indoor positioning systems," Security Industry Association, 2017.
- 8. IndoorAtlas / Vanson Bourne, "A 2016 global research report on the indoor positioning market," p. 6, 2016.
- 9. B. Li, T. Gallagher, C. Rizos, and A. Dempster, "Using geomagnetic field for indoor positioning," Journal of Applied Geodesy, vol. 7, 11 2013.
- 10. L. Hou, Y. Li, Y. Zhuang, B. Zhou, G. Tsai, Y. Luo, and N. El-Sheimy, "Orientation-aided stochastic magnetic matching for indoor localization," IEEE Sensors Journal,vol. 20, no. 2, pp. 1003–1010, 2020.
- 11. I. Alliance, "ILA system architecture release 1.0," openmobile alliance.
- 12. Indoor navigation market review by iBecom, June 4 2015
- 13. Geofencing market guide, Justin Croxton, Sept 26 2019
- 14. Thaljaoui, A., Val, T., Nasri, N., & Brulin, D. (2015). *BLE localization using RSSI measurements and iRingLA. 2015 IEEE International Conference on Industrial Technology (ICIT)*. doi:10.1109/icit.2015.7125418
- 15. Lymberopoulos, Dimitrios & Liu et Al (2015). A Realistic Evaluation and Comparison of Indoor Location Technologies: Experiences and Lessons Learned. 10.1145/2737095.2737726.

Thanks!

Timur Chikichev: timur.chikichev@skoltech.ru http://indoor-expo.ddns.net

