Game Theory & Networks

(an incredibly brief overview)

Andrew Smith ECS 253/MAE 289 May 10th, 2016 **Game theory** can help us answer important questions for scenarios where:

players/agents (nodes) are autonomous and selfish, and

player's connections (edges) directly affect their utility.

• **Players:** *N* players {1,...,*N*}; correspond to nodes in the network.

- **Players:** *N* players {1,...,*N*}; correspond to nodes in the network.
- Actions: A actions {1,...,A}^N; the set of actions each player can take.
 (e.g.: cooperate or defect from Prisoner's Dilemma)

- **Players:** *N* players {1,...,*N*}; correspond to nodes in the network.
- Actions: A actions {1,...,A}^N; the set of actions each player can take.
 (e.g.: cooperate or defect from Prisoner's Dilemma)
- **Strategy**: $S = \{s_1,...,s_N\}$; a possible outcome for each player.

- **Players:** *N* players {1,...,*N*}; correspond to nodes in the network.
- Actions: A actions {1,...,A}^N; the set of actions each player can take.
 (e.g.: cooperate or defect from Prisoner's Dilemma)
- **Strategy**: $S = \{s_1,...,s_N\}$; a possible outcome for each player.
 - Pure strategies correspond to a choice of exactly one action per player (discrete).
 - Mixed strategies correspond to a distribution over the action space for each player (continuous).

- **Players:** *N* players {1,...,*N*}; correspond to nodes in the network.
- Actions: A actions {1,...,A}^N; the set of actions each player can take.
 (e.g.: cooperate or defect from Prisoner's Dilemma)
- **Strategy**: $S = \{s_1, ..., s_N\}$; a possible outcome for each player.
 - Pure strategies correspond to a choice of exactly one action per player (discrete).
 - Mixed strategies correspond to a distribution over the action space for each player (continuous).
- **Utility**: $U_i(S) \forall i \in N$; how much benefit a player i gets from strategy S.

Nash Equilibrium

Pure-strategy Nash equilibrium: A *pure strategy* for each player, such that, given the strategy of the other players, no player would do better playing a different strategy.

Prisoner's Dilemma

Nash Equilibrium

Mixed-strategy Nash equilibrium: A *mixed strategy* for each player, such that, given the strategy of the other players, no player would do better by changing their strategy.

 Player 2 chooses swerve with probability p and straight with probability 1-p.

- Player 2 chooses swerve with probability p and straight with probability 1-p.
- Player 2 wishes to make Player 1 indifferent about what strategy to choose

- Player 2 chooses swerve with probability p and straight with probability 1-p.
- Player 2 wishes to make Player 1 indifferent about what strategy to choose

```
u_1(Swerve) = u_1(Straight)

0*p + -1*(1-p) = 1*p + -10*(1-p)

p-1=11p-10

p=9/10
```


 Now, Player 1 must also randomize (making Player 2 indifferent)

$$u_2(Swerve) = u_2(Straight)$$

 $0*q + -1*(1-q) = 1*q + -10*(1-q)$
 $q-1=11q-10$
 $q=9/10$

- Now, Player 1 must also randomize (making Player 2 indifferent)
- Mixed-strategy Nash equilibria= (9/10,1/10),(9/10,1/10)

Network Formation Games

How do networks form given selfish, utility-driven players?

Social networks, supply networks, power grids, etc.

Network Formation Games

How reliable or efficient is information routing given a network structure (and selfish players)?

Packet routing, traffic flow,information dissemination

Network Formation Games

Equilibria in "Routing Games" can usually be illustrated by Pigou's Principle

Routing Games

How reliable or efficient is routing flow given a network structure (and selfish players)?

Packet routing, traffic flow,information dissemination

Network Formation Games

How do opinions/ideas/ diseases spread in a network?

Epidemic spread, voting, technology adaptation

Routing Games

Routing Games

- **Scenario:** *N* <u>players</u> would like to increase their utility by creating edges with each other (but not if it's too costly!)

- **Scenario:** *N* <u>players</u> would like to increase their utility by creating edges with each other (but not if it's too costly!).
 - Edges can only be created if they are *mutually desired*.

- Scenario: N <u>players</u> would like to increase their utility by creating edges with each other (but not if it's too costly!).
 - Edges can only be created if they are *mutually desired*.

Actions for player *i* (for all i): {don't build edge,build edge}^N

- Scenario: N <u>players</u> would like to increase their utility by creating edges with each other (but not if it's too costly!).
 - Edges can only be created if they are *mutually desired*.

Actions for player *i* (for all i): {don't build edge,build edge}^N

Question: What networks emerge in Nash equilibria?

0 (

0 0

4 players/nodes (N=4);
 empty network

0

O

0

- 4 players/nodes (N=4); empty network
- Does any *one* player want to deviate from the current strategy?

0 0

 \circ

- 4 players/nodes (N=4); empty network
- Does any one player want to deviate from the current strategy?
 - No! -- They couldn't if they tried.
- Mutual edge creation makes
 Nash equilibria less interesting...

O C

O C

- A network is pairwise stable if there is no other network configuration such that:
 - Any two pairs of nodes wishes to add an edge, and...
 - Any one node wishes to remove an edge.
- Now, we care about the utilities of players.

Symmetric Connections Model

Distance-based utility function

$$u_i = b(\ell_{ij}) - d_i c$$

$$b(\ell_{ij}) =$$
some function on the shortest path between player i and player j .

A game with 4 players/nodes

Jackson, M.O., 2005. A survey of network formation models: stability and efficiency. *Group Formation in Economics: Networks, Clubs, and Coalitions.*

Symmetric Connections Model

Distance-based utility function

$$u_i = b(\ell_{ij}) - d_i c$$

 $b(\ell_{ij}) = \text{some function on the shortest path between player } i \text{ and player } j.$

 d_i = total degree of player i.

We will assume $b(k) = \Box^k (for \Box < 1)$

A game with 4 players/nodes

$$u_i = \Box + \Box^2 - C$$
 $u_j = \Box + \Box - \Box$
2C
 $u_i = \Box + \Box^2 - \Box$

Pairwise Stability in Symmetric Connections Model

A complete network!

Pairwise Stability in Symmetric Connections Model

c < b(1) - b(2)

A complete network!

b(1) - b(2) < c < b(1)

A star! (and possibly others)

Pairwise Stability in Symmetric Connections Model

A complete network!

A star! (and possibly others)

Efficient Solutions in Symmetric Connections Model

Consider the case when cost is relatively high...

A game with 4 players/nodes

b(1) < c

The empty network! Each player gets nothing!

Efficient Solutions in Symmetric Connections Model

Consider the case when cost is relatively high...

• A *path* through all nodes is better for everyone!

A game with 4 players/nodes

Efficient Solutions in Symmetric Connections Model

Consider the case when cost is relatively high...

- A path through all nodes is better for everyone!
- **Efficient** solutions maximize the sum of all players' utility

A game with 4 players/nodes

Solution concepts in network games

Other solutions (besides NE) can also be desired:

 <u>Efficient strategy</u>: maximizes the sum of players' utility

Source:

https://en.wikipedia.org/wiki/Strategic_Network_Formation

Solution concepts in network games

Other solutions (besides NE) can also be desired:

- <u>Efficient strategy</u>: maximizes the sum of players' utility
- Pareto optimal (or pareto efficient): network such that there is no other network g' where:
 u_i(g') >= u_i(g) for all i and u_i(g') > u_i(g) for at least 1 i.

Source:

https://en.wikipedia.org/wiki/Strategic_Network_Formation

Opinion Dynamics via "the Majority Game"

Majority Game:

- N players/nodes
- $\bullet \quad A = \{A,B\}$
- The set of neighbors of player i who believe A: N_i(A)

Opinion Dynamics via "the Majority Game"

Majority Game:

- N players/nodes
- $\bullet \quad A = \{A,B\}$
- The set of neighbors of player i who believe A: N_i(A)
- Majority utility function:
 - o If $|\mathbf{N}_{i}(\mathbf{A})| > \frac{1}{2} * deg(i)$, $u_{i}(A) > u_{i}(B)$
 - Otherwise, u_i(B) > u_i(A)

Opinion Dynamics via "the Majority Game"

Majority Game:

- N players/nodes
- $\bullet \quad A = \{A,B\}$
- The set of neighbors of player i who believe A: N_i(A)
- Majority utility function:
 - o If $|\mathbf{N}_{i}(\mathbf{A})| > \frac{1}{2} * deg(i)$, $u_{i}(A) > u_{i}(B)$
 - \circ Otherwise, $u_i(B) > u_i(A)$

 Nash equilibrium: When no player wishes to change their belief, given the other players' beliefs.

 Nash equilibrium: When no player wishes to change their belief, given the other players' beliefs.

This is not a Nash equilibrium!

- Nash equilibrium: When no player wishes to change their belief, given the other players' beliefs.
- Generally, every player choosing A and every player choosing B is a NE.
 - But there can be others...

This IS a Nash equilibrium!

The initial configuration matters: flipping everyone's opinion is also stable!

(source: Jackson, M., **Games on Networks**, Handbook of Game Theory, Vol. 4, 2014.)

Extensions of "the Majority Game"

• **Coordination games:** Highest utility is gained by coordinating with neighbors; miscoordination incurs a cost. What thresholds and

	A	В
A	(b,b)	(-c,0)
В	(0,-c)	(0,0)

- **Stability analysis of equilibria:** Which equilibria are most stable to a player "changing their mind"?
- Resources:
 - Jackson, M.O. and Zenou, Y., 2014. **Games on networks**. *Handbook of game theory*,.
 - Kearns, M., 2007. Graphical Games. Algorithmic Game Theory.

Final notes

- Many network-based games can be modeled as evolutionary processes:
 - Network formation: Start with an initial network, and add/remove edges until no player wishes to deviate (NE found).
 - Opinion dynamics: Seed beliefs randomly (or empirically), and update players' beliefs until no player wishes to change their belief (NE found).

- Algorithmic Game Theory, Noam Nisan, Tim Roughgarden et. al
- Social and Economic Networks, Matthew Jackson.