4: Regression II: Paneldata

 $\label{lem:videregaende} \mbox{Videregaende kvantitative metoder i studiet af politisk adfærd}$

Frederik Hjorth fh@ifs.ku.dk fghjorth.github.io @fghjorth

Institut for Statskundskab Københavns Universitet

27. september 2017

1 Opsamling

Opsamling

- 2 Motivation
- 3 Paneldata
- 4 Larsen et al. (2017): hjalp boligboblen Fogh?
- 5 Implementering i R
- 6 Kig fremad

Sidste gang:

- OLS intuition
- OLS formel form
- omitted variable bias
- læsning af OLS-output
- implementering i R

Implementering i R

Fagets opbygning

Blok 1

Gang	Tema	Litteratur	Case
1	Introduktion til R	Leeper (2016)	
2	R workshop + tidy data	Wickham (2014), Zhang (2017)	
3	Regression I: OLS brush-up	AP kap 3	Newman et al. (2015), Solt et al. (2017)
4	Regression II: Paneldata	AGS kap 4	Larsen et al. (2016)

Fagets opbygning

Blok 2

Opsamling

00000

5	Introduktion til kausal inferens	Hariri (2012), Samii (2016)	
6	Matching	Justesen & Klemmensen (2014)	Nall (2015)
Efterårsferie			
7	Eksperimenter I	AP kap 1, GG kap 1+2	Gerber, Green & Larimer (2008)
8	Eksperimenter II	GG kap 3+4+5	Gerber & Green (2000)
9	Instrumentvariable	AP kap 4	Lundborg et al. (2017)
10	Difference-in-differences	AP kap 5	Enos (2016)
11	Regressions diskontinuitets designs	AP kap 6	Eggers & Hainmueller (2009)

Fagets opbygning

Blok 3

12	Tekst som data	Grimmer & Stewart (2013), Benoit & Nulty (2016)	Baturo & Mikhaylov (2013)	
13	Scraping af data fra online-kilder	MRMN kap 9+14	Hjorth (2016)	
14	'Big data' og maskinlæring	Varian (2014), Montgomery & Olivella (2017)	Theocharis et al. (2016)	

PROFESSIONSHØJSKOLEN

Opsamling

0000

samiling Motivation Paneldata Larsen et al. (2017) Implementering i R Kig fremade 1000 • 0000000 00 0 0

Larsen et al. (2017): hjalp boligboblen Fogh?

Figur B Huspriser med og uden nye låneformer og fastfrosset eiendomsværdiskat

Anm: Kontrafaktiske forlob baseret på estimeret eftersporgseisrelation. Variabet forrentede lån antages forrat at slå igenomen i 1. kvartal 2000. I fravær af dinen fastforsee jeindomsværdiskat antages den i NONAS databank i mujertede ejendomsværdiskat antages den i NONAS databank i mujertede ejendomsværdiskat en der statte på den på den statte på den

Kilde: Danmarks Nationalbank.

Kig fremad

Data på bred form kan konverteres til lang form vha. gather() i dplyr-pakken

hvor

- key: navn på variabel der angiver variabelnavne fra bredt format
- value: navn på variabel der angiver værdier fra bredt format
- ...: intervallet af variable der skal 'stakkes'. fx. obs1992:obs1998

Opsamling

Eks.: bredt data med enhederne a, b og c og outcome y observeret i t2 og t2

unit	yt1	yt2
а	1	2
b	3	6
С	6	7

 \rightarrow hvordan skal data se ud på lang form?

Clustered standardfeil

- en normal, 'pooled' OLS tager ikke højde for at observationer ikke er uafhængige
- specifikt: observationer for samme enhed 'klumper sammen'
- konsekvensen er at standardfejlene underestimeres \rightarrow det er ikke godt!

Klassiske OLS-antagelser (jf. AGS boks 4.1):

- simpel tilfældig udvælgelse
- 2 linearitet
- ej perfekt multikollinearitet
- feilled ukorrelerede med X'er
- s varianshomogenitet
- 6 fravær af autokorrelation
- normalfordelte feilled
- \rightarrow hvilken trues i paneldata?

Notation i AGS (p. 127):

$$y_{it} = \beta_0 + \beta_1 x_{1it} + \ldots + \beta_k x_{kit} + \gamma_1 z_{1i} + \ldots + \gamma_j z_{ji} + u_i + e_{it}$$
 (1)

 u_i : uobserverede, tidsinvariante prediktorer \rightarrow med paneldata kan vi kontrollere for al confounding herfra!

Husk formlen fra sidste gang:

$$Y_i = \alpha + \rho s_i + \gamma A_i + e_i \tag{2}$$

Antag nu at vi observerer indkomst (Y_i) og uddannelse (s_i) over tid t:

$$Y_{it} = \alpha + \rho s_{it} + \gamma A_i + e_{it}$$
 (3)

NB: A; varierer her ikke med t. dvs. er tidsinvariant

Så længe A_i er tidsinvariant kan vi med paneldata estimere ρ uden bias uden at observere A_i :

$$Y_i = \alpha_i + \lambda_t + \rho s_i + e_i \tag{4}$$

- kaldes en 'fixed effects' (FE) model
- α_i = fixed effects for enheder \rightarrow opfanger *tidsinvariant uobserveret heterogenitet ml.* enheder
- $\lambda_t = \text{fixed effects for tid} \rightarrow \text{opfanger } enhedsinvariant \ uobserveret \ heterogenitet \ ml.$ tidsperioder
- ullet tilbageværende variation kun variationen 'inden for' enheder o FE-model kaldes også within-estimator

Omitted variable hias

Omitted variable bias

»most previous studies have relied on cross-sectional data (...). While such data are often the best at hand, they come with the risk of confounding a relationship between local housing prices and support for incumbents by structural economic differences (e.g. differences in industry composition) between local contexts. This is perhaps best exemplified by the strong urban-rural gradient in local economic conditions, which would likely confound any observed cross-sectional relationship with support for the sitting government. By using panel data, we can rule out confounding by such time-invariant structural differences between local contexts by using only within-precinct/within-individual variation in local housing prices by means of fixed effects. «

 Table 1: Estimated effects of housing prices on electoral support for governing parties.

	(1)	(2)	(3)	(4)
Δ housing price	0.104**	0.048**	0.053**	0.030**
	(0.008)	(0.007)	(0.008)	(0.007)
Unemployment rate				-1.904**
				(0.221)
Log(Median income)				-0.887**
				(0.064)
Year FE		√	√	√
Precinct FE			✓	✓
Observations	4199	4199	4199	4179
RMSE	8.405	6.749	5.715	5.325

Standard errors in parentheses

Opsamling

^{*} p < 0.05, ** p < 0.01

- LSDV FE-modeller kan implementeres med lm()
- clustered standardfejl kan implementeres med multiwayvcov-pakken

Næste gang:

- introduktion til kausal inferens
- Hariri (2012), Samii (2016)
- case-tekst: Eckles & Bakshy (kun til illustration)

Tak for i dag!