《概率与统计》内容总结与习题:假设检验

课本例题、习题分类:

- 1. 单个正态总体均值的检验: §7.1例1-2, §7.2例1-2; 习题七7.1-7.4
- 2. 单个正态总体方差的检验: §7.2例3; 习题七7.5, 7.6
- 3. 两个正态总体的比较: §7.3例1-2; 习题七7.7-7.10
- 4. 总体分布的检验: §7.5例1-2; 习题七7.13-7.16

补充习题(本部分习题未涵盖本章的全部主要内容,仅为课本例题、习题的补 充):

1. 填空题:

- (1) 假设检验中的第一类错误是指 ______。
- (2) 假设检验中的第二类错误是指

2. 选择题

- (1) 假设检验的显著性水平是
 - - (A) 第一类错误的概率; (B) 第一类错误概率的上界;

 - (C) 第二类错误的概率; (D) 第二类错误概率的上界.
- (2) 设 X_1, X_2, \cdots, X_m 是取自正态总体 $N(\mu_1, \sigma_1^2)$ 的样本, Y_1, Y_2, \cdots, Y_n 取 自正态总体 $N(\mu_2, \sigma_2^2)$, 样本平均值分别为 \overline{X} 和 \overline{Y} , 样本方差分别 为 $S_1^2 \to S_2^2$, 则假设 $H_0: \mu_1 \leq \mu_2$ 使用t检验的前提条件是
 - (A) $\sigma_1^2 \le \sigma_2^2$; (B) $S_1^2 \le S_2^2$; (C) $\sigma_1^2 = \sigma_2^2$; (D) $S_1^2 = S_2^2$.

(3) 设 X_1, X_2, \dots, X_m 是取自正态总体 $N(\mu_1, \sigma_1^2)$ 的样本, Y_1, Y_2, \dots, Y_n 取自正态总体 $N(\mu_2, \sigma_2^2)$,样本平均值分别为 \overline{X} 和 \overline{Y} ,样本方差分别为 S_1^2 和 S_2^2 ,则检验假设 $H_0: \sigma_1^2 < \sigma_2^2$

(A) 使用 χ^2 检验;

(B) 要求 $\mu_1 = \mu_2$;

(C) 使用F检验;

- (D) 要求 $S_1^2 = S_2^2$.
- 3. 已知某炼铁厂的铁水含碳量服从正态分布 $N(4.55,0.108^2)$ 。 现测定了9炉铁水,其平均含碳量为4.484。如果估计方差没有变化,可否认为铁水平均含碳量仍为4.55($\alpha=0.05$)?
- 4. 某油品公司的桶装润滑油标定重量为10千克。商品检验部门从市场上随机抽取10桶, 称得它们的重量(单位:千克)分别为

10.2, 9.7, 10.1, 10.3, 10.1, 9.8, 9.9, 10.4, 10.3, 9.8.

假设每桶油实际重量服从正态分布。试在显著性水平 $\alpha = 0.01$ 下,检验该公司的桶装润滑油重量是否确为10千克?

- 5. 假设香烟中尼古丁含量服从正态分布,现从某牌香烟中随机抽取20支,其尼古丁含量的平均值 $\overline{X}=18.6$ 毫克,样本标准差S=2.4毫克。取显著性水平 $\alpha=0.01$,我们能否接受"该种香烟的尼古丁含量的均值 $\mu=18$ 毫克"的断言?
- 8.3 假设香烟中尼古丁含量服从正态分布,现从某牌香烟中随机抽取20支,其尼古丁含量的平均值 $\overline{X} = 18.6$ 毫克,对 $\sigma = 2.4$ 毫克和S = 2.4毫克两种情况,我们能否接受"该种香烟的尼古丁含量不超过 $\mu = 17.5$ 毫克"的断言(显著性水平 $\alpha = 0.01$)?
- 6. 某厂生产的瓶装纯净水要求标准差 $\sigma \le 0.02$ 升,现从超市上随机抽取20瓶这样的纯净水,发现它们所装水量的样本标准差S = 0.03升。假定瓶装纯净水装水量服从正态分布,试问在显著性水平 $\alpha = 0.05$ 下,我们能否认为它们达到了要求。

- 7. 比较A、B两种小麦品种蛋白质含量。随机抽取A种小麦10个样品,测得 $\overline{X} = 14.3$, $S_1^2 = 1.62$,随机抽取B种小麦5个样品,测得 $\overline{Y} = 11.7$, $S_2^2 = 0.14$ 。假定这两种小麦蛋白质含量都服从正态分布,试在 $\alpha = 0.01$ 水平下,作如下检验:
 - (a) 设两类总体具有相同方差, 检验两种小麦的蛋白质含量有无差异;
 - (b) 上述"两类总体具有相同方差"的假设是否合理?

假设检验方法总结:

1. 单个正态总体均值的检验

条件	单个正态总体,方差σ²已知		
原假设	$H_0: \mu = \mu_0$		
备择假设	$\mu < \mu_0$	$\mu \neq \mu_0$	$\mu > \mu_0$
统计量		$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	
拒绝域	$U \le -u_{\alpha}$	$ U \ge u_{\frac{\alpha}{2}}$	$U \ge u_{\alpha}$
条件	单个正态总体, 方差未知		
原假设	$H_0: \mu = \mu_0$		
备择假设	$\mu < \mu_0$	$\mu \neq \mu_0$	$\mu > \mu_0$
统计量		$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$	
拒绝域	$T \le -t_{n-1}(\alpha)$	$ T \ge t_{n-1}(\frac{\alpha}{2})$	$T \ge t_{n-1}(\alpha)$

2. 单个正态总体方差的检验

条件	单个正态总体,期望μ已知		
原假设	$H_0:\sigma^2=\sigma_0^2$		
备择假设	$\sigma^2 < \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$\sigma^2 > \sigma_0^2$
统计量	$\chi^2 = \frac{\sum_{i=1}^n (X_i - \mu)^2}{\sigma_0^2}$		
拒绝域	$\chi^2 \le \chi_n^2 (1 - \alpha)$	$\chi^2 \geq \chi_n^2(\frac{\alpha}{2}) $	$\chi^2 \ge \chi_n^2(\alpha)$

 条件	单个正态总体,期望未知		
原假设	$H_0: \sigma^2 = \sigma_0^2$		
备择假设	$\sigma^2 < \sigma_0^2$ $\sigma^2 eq \sigma_0^2$ $\sigma^2 > \sigma_0^2$		
统计量	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$		
拒绝域	$\chi^{2} \leq \chi^{2}_{n-1}(1-\alpha) \begin{vmatrix} \chi^{2} \geq \chi^{2}_{n-1}(\frac{\alpha}{2}) & \cancel{A} \\ \chi^{2} \leq \chi^{2}_{n-1}(1-\frac{\alpha}{2}) \end{vmatrix} \chi^{2} \geq \chi^{2}_{n-1}(\alpha)$		

3. 两个正态总体均值的比较

条件	两个正态总体,方差σ²,σ²已知		
原假设	$H_0: \mu_1 = \mu_2$		
备择假设	$\mu_1 < \mu_2$	$\mu_1 \neq \mu_2$	$\mu_1 > \mu_2$
统计量	$U = \frac{\overline{X} - \overline{Y}}{\sqrt{\sigma_1^2/m + \sigma_2^2/n}}$		
拒绝域	$U \le -u_{\alpha}$	$ U \ge u_{\frac{\alpha}{2}}$	$U \ge u_{\alpha}$
	·	·	

条件	两个正态总体,方差未知但相等		
原假设	$H_0: \mu_1 = \mu_2$		
备择假设	$\mu_1 < \mu_2$	$\mu_1 \neq \mu_2$	$\mu_1 > \mu_2$
统计量	$T = \frac{1}{\sqrt{\underline{(m^{-})}}}$	$\frac{\overline{X} - \overline{Y}}{\frac{-1)S_1^2 + (n-1)S_2^2}{m+n-2}} \cdot \sqrt{\frac{1}{m}}$	${+\frac{1}{n}}$
拒绝域	$T \le -t_{m+n-2}(\alpha)$	$ T \ge t_{m+n-2}(\frac{\alpha}{2})$	$T \ge t_{m+n-2}(\alpha)$

4. 两个正态总体方差的比较

 条件	两个正态总体,已知期望 μ_1,μ_2			
原假设	$H_0:\sigma_1^2=\sigma_2^2$			
备择假设	$\sigma_1^2 < \sigma_2^2$	$\sigma_1^2 eq \sigma_2^2$	$\sigma_1^2 > \sigma_2^2$	
统计量	$F = \frac{\sum_{i=1}^{m} (X_i - \mu_1)^2 / m}{\sum_{j=1}^{n} (Y_j - \mu_2)^2 / n}$			
拒绝域	$F \le F_{m,n}(1-\alpha)$	$F \geq F_{m,n}(\frac{\alpha}{2})$ 或 $F \leq F_{m,n}(1-\frac{\alpha}{2})$	$F \ge F_{m,n}(\alpha)$	
条件	两人	两个正态总体,期望未知		
原假设		$H_0:\sigma_1^2=\sigma_2^2$		
备择假设	$\sigma_1^2 < \sigma_2^2$	$\sigma_1^2 eq \sigma_2^2$	$\sigma_1^2 > \sigma_2^2$	
统计量	$F = \frac{S_1^2}{S_2^2}$			
拒绝域	$F \le F_{m-1,n-1}(1-\alpha)$	$F \geq F_{m-1,n-1}(\frac{\alpha}{2})$ 或 $F \leq$ $F_{m-1,n-1}(1-\frac{\alpha}{2})$	$F \ge F_{m-1,n-1}(\alpha)$	