7 General-purpose and alternate-function I/Os (GPIOs and AFIOs)

Low-density value line devices are STM32F100xx microcontrollers where the flash memory density ranges between 16 and 32 Kbytes.

Medium-density value line devices are STM32F100xx microcontrollers where the flash memory density ranges between 64 and 128 Kbytes.

High-density value line devices are STM32F100xx microcontrollers where the flash memory density ranges between 256 and 512 Kbytes.

This section applies to the whole STM32F100xx family, unless otherwise specified.

7.1 GPIO functional description

Each of the general-purpose I/O ports has two 32-bit configuration registers (GPIOx_CRL, GPIOx_CRH), two 32-bit data registers (GPIOx_IDR, GPIOx_ODR), a 32-bit set/reset register (GPIOx_BSRR), a 16-bit reset register (GPIOx_BRR) and a 32-bit locking register (GPIOx_LCKR).

Subject to the specific hardware characteristics of each I/O port listed in the *datasheet*, each port bit of the General Purpose IO (GPIO) Ports, can be individually configured by software in several modes:

- Input floating
- Input pull-up
- Input-pull-down
- Analog
- Output open-drain
- Output push-pull
- Alternate function push-pull
- Alternate function open-drain

Each I/O port bit is freely programmable, however the I/O port registers have to be accessed as 32-bit words (half-word or byte accesses are not allowed). The purpose of the GPIOx_BSRR and GPIOx_BRR registers is to allow atomic read/modify accesses to any of the GPIO registers. This way, there is no risk that an IRQ occurs between the read and the modify access.

Figure 11 shows the basic structure of an I/O Port bit.

Figure 11. Basic structure of a standard I/O port bit

1. V_{DD_FT} is a potential specific to 5-Volt tolerant I/Os, and different from V_{DD} .

PxODR Configuration mode CNF₁ CNF₀ MODE1 MODE0 register Push-pull 0 0 or 1 General purpose 01 0 output 1 Open-drain 0 or 1 10 11 Push-pull 0 Don't care Alternate Function 1 see Table 17 output 1 Open-drain Don't care Analog 0 Don't care 0 Input floating 1 Don't care 00 Input Input pull-down 0 1 0 Input pull-up 1

Table 16. Port bit configuration table

Table 17. Output MODE bits

MODE[1:0]	Meaning
00	Reserved
01	Maximum output speed 10 MHz
10	Maximum output speed 2 MHz
11	Maximum output speed 50 MHz

7.1.1 General-purpose I/O (GPIO)

During and just after reset, the alternate functions are not active and the I/O ports are configured in Input Floating mode (CNFx[1:0]=01b, MODEx[1:0]=00b).

The JTAG pins are in input PU/PD after reset:

PA15: JTDI in PU PA14: JTCK in PD PA13: JTMS in PU PB4: NJTRST in PU

When configured as output, the value written to the Output Data register (GPIOx_ODR) is output on the I/O pin. It is possible to use the output driver in Push-Pull mode or Open-Drain mode (only the N-MOS is activated when outputting 0).

The Input Data register (GPIOx_IDR) captures the data present on the I/O pin at every APB2 clock cycle.

All GPIO pins have an internal weak pull-up and weak pull-down that can be activated or not when configured as input.

7.1.2 Atomic bit set or reset

There is no need for the software to disable interrupts when programming the GPIOx_ODR at bit level: it is possible to modify only one or several bits in a single atomic APB2 write access. This is achieved by programming to '1' the Bit Set/Reset register (GPIOx_BSRR, or

for reset only GPIOx_BRR) to select the bits to modify. The unselected bits will not be modified.

7.1.3 External interrupt/wakeup lines

All ports have external interrupt capability. To use external interrupt lines, the port must be configured in input mode. For more information on external interrupts, refer to Section 8.2: External interrupt/event controller (EXTI) and Section 8.2.3: Wakeup event management.

7.1.4 Alternate functions (AF)

It is necessary to program the Port Bit Configuration register before using a default alternate function.

For alternate function inputs, the port must be configured in Input mode (floating, pull-up or pull-down) and the input pin must be driven externally.

Note:

It is also possible to emulate the AFI input pin by software by programming the GPIO controller. In this case, the port should be configured in Alternate Function Output mode. And obviously, the corresponding port should not be driven externally as it will be driven by the software using the GPIO controller.

- For alternate function outputs, the port must be configured in Alternate Function Output mode (Push-Pull or Open-Drain).
- For bidirectional Alternate Functions, the port bit must be configured in Alternate Function Output mode (Push-Pull or Open-Drain). In this case the input driver is configured in input floating mode

If a port bit is configured as Alternate Function Output, this disconnects the output register and connects the pin to the output signal of an on-chip peripheral.

If software configures a GPIO pin as Alternate Function Output, but peripheral is not activated, its output is not specified.

7.1.5 Software remapping of I/O alternate functions

To optimize the number of peripheral I/O functions for different device packages, it is possible to remap some alternate functions to some other pins. This is achieved by software, by programming the corresponding registers (refer to *AFIO registers*. In that case, the alternate functions are no longer mapped to their original assignations.

7.1.6 GPIO locking mechanism

The locking mechanism allows the IO configuration to be frozen. When the LOCK sequence has been applied on a port bit, it is no longer possible to modify the value of the port bit until the next reset.

105/709

7.1.7 Input configuration

When the I/O Port is programmed as Input:

- The Output Buffer is disabled
- The Schmitt Trigger Input is activated
- The weak pull-up and pull-down resistors are activated or not depending on input configuration (pull-up, pull-down or floating):
- The data present on the I/O pin is sampled into the Input Data register every APB2 clock cycle
- A read access to the Input Data register obtains the I/O State.

Figure 13 shows the Input Configuration of the I/O Port bit.

1. $V_{DD\ FT}$ is a potential specific to 5-Volt tolerant I/Os, and different from V_{DD} .

7.1.8 Output configuration

When the I/O Port is programmed as Output:

- The Output Buffer is enabled:
 - Open Drain mode: A "0" in the Output register activates the N-MOS while a "1" in the Output register leaves the port in Hi-Z (the P-MOS is never activated)
 - Push-Pull mode: A "0" in the Output register activates the N-MOS while a "1" in the Output register activates the P-MOS
- The Schmitt Trigger Input is activated.
- The weak pull-up and pull-down resistors are disabled.
- The data present on the I/O pin is sampled into the Input Data register every APB2 clock cycle
- A read access to the Input Data register gets the I/O state in open drain mode
- A read access to the Output Data register gets the last written value in Push-Pull mode

Figure 14 shows the Output configuration of the I/O Port bit.

Figure 14. Output configuration

1. $V_{DD\ FT}$ is a potential specific to 5-Volt tolerant I/Os, and different from V_{DD} .

7.1.9 Alternate function configuration

When the I/O Port is programmed as Alternate Function:

- The Output Buffer is turned on in Open Drain or Push-Pull configuration
- The Output Buffer is driven by the signal coming from the peripheral (alternate function out)
- The Schmitt Trigger Input is activated
- The weak pull-up and pull-down resistors are disabled.
- The data present on the I/O pin is sampled into the Input Data register every APB2 clock cycle
- A read access to the Input Data register gets the I/O state in open drain mode
- A read access to the Output Data register gets the last written value in Push-Pull mode

Figure 15 shows the Alternate Function Configuration of the I/O Port bit. Also, refer to *Section 7.4: AFIO registers* for further information.

A set of Alternate Function I/O registers allows the user to remap some alternate functions to different pins. Refer to Section 7.3: Alternate function I/O and debug configuration (AFIO).

Figure 15. Alternate function configuration

1. $V_{DD\ FT}$ is a potential specific to 5-Volt tolerant I/Os, and different from V_{DD} .

7.1.10 Analog configuration

When the I/O Port is programmed as Analog configuration:

- The Output Buffer is disabled.
- The Schmitt Trigger Input is de-activated providing zero consumption for every analog value of the I/O pin. The output of the Schmitt Trigger is forced to a constant value (0).
- The weak pull-up and pull-down resistors are disabled.
- Read access to the Input Data register gets the value "0".

Figure 16 shows the high impedance-analog configuration of the I/O Port bit.

47/

Figure 16. High impedance-analog configuration

7.1.11 GPIO configurations for device peripherals

Table 18 to Table 27 give the GPIO configurations of the device peripherals.

Table 18. Advanced timer TIM1

TIM1 pinout	Configuration	GPIO configuration
TIM1 CHx	Input capture channel x	Input floating
TIIVIT_CLIX	Output compare channel x	Alternate function push-pull
TIM1_CHxN	Complementary output channel x	Alternate function push-pull
TIM1_BKIN	Break input	Input floating
TIM1_ETR	External trigger timer input	Input floating

Table 19. General-purpose timers TIM2/3/4/5

TIM2/3/4/5 pinout	Configuration	GPIO configuration
TIM2/3/4/5 CHx	Input capture channel x	Input floating
1 11V12/3/4/3_C1 1X	Output compare channel x	Alternate function push-pull
TIM2/3/4/5_ETR	External trigger timer input	Input floating

Table 20. General-purpose timers TIM15/16/17

TIM15/16/17 pinout	Configuration	GPIO configuration
TIM15/16/17 CHx	Input capture channel x	Input floating
111W113/10/17_C11X	Output compare channel x	Alternate function push-pull
TIM15/16/17_CHxN	Complementary output channel x	Alternate function push-pull

Table 20. General-purpose timers TIM15/16/17

TIM15/16/17 pinout	Configuration	GPIO configuration
TIM15/16/17_BKIN	Break input	Input floating
TIM15/16/17_ETR	External trigger timer input	Input floating

Table 21. General-purpose timers TIM12/13/14

TIM12/13/14 pinout	Configuration	GPIO configuration
TIM12/13/14 CHx	Input capture channel x	Input floating
	Output compare channel x	Alternate function push-pull

Table 22. USARTs

USART pinout	Configuration	GPIO configuration
USARTx TX ⁽¹⁾	Full duplex	Alternate function push-pull
USARTX_TX**	Half duplex synchronous mode	Alternate function push-pull
USARTx RX	Full duplex	Input floating / Input pull-up
USAKTX_KX	Half duplex synchronous mode	Not used. Can be used as a general IO
USARTx_CK	Synchronous mode	Alternate function push-pull
USARTx_RTS	Hardware flow control	Alternate function push-pull
USARTx_CTS	Hardware flow control	Input floating/ Input pull-up

^{1.} The USART_TX pin can also be configured as alternate function open drain.

Table 23. SPI

SPI pinout	Configuration	GPIO configuration
SDIV SCK	Master	Alternate function push-pull
SPIx_SCK	Slave	Input floating
	Full duplex / master	Alternate function push-pull
SPIx MOSI	Full duplex / slave	Input floating / Input pull-up
SFIX_IVIOSI	Simplex bidirectional data wire / master	Alternate function push-pull
	Simplex bidirectional data wire/ slave	Not used. Can be used as a GPIO
	Full duplex / master	Input floating / Input pull-up
	Full duplex / slave (point to point)	Alternate function push-pull
	Full duplex / slave (multi-slave)	Alternate function open drain
SPIx_MISO	Simplex bidirectional data wire / master	Not used. Can be used as a GPIO
	Simplex bidirectional data wire/ slave (point to point)	Alternate function push-pull
	Simplex bidirectional data wire/ slave (multi-slave)	Alternate function open drain

RM0041 Rev 6 110/709

Table 23. SPI (continued)

SPI pinout	Configuration	GPIO configuration
	Hardware master /slave	Input floating/ Input pull-up / Input pull-down
SPIx_NSS	Hardware master/ NSS output enabled	Alternate function push-pull
	Software	Not used. Can be used as a GPIO

Table 24. CEC

CEC pinout	Configuration	GPIO configuration
CEC	CEC line	Alternate function open drain

Table 25. I2C

I2C pinout	Configuration	GPIO configuration
I2Cx_SCL	I2C clock	Alternate function open drain
I2Cx_SDA	I2C Data I/O	Alternate function open drain

The GPIO configuration of the ADC inputs should be analog.

Figure 17. ADC / DAC

ADC/DAC pin	GPIO configuration
ADC/DAC	Analog

Table 26. FSMC

FSMC pinout	GPIO configuration
FSMC_A[25:0] FSMC_D[15:0]	Alternate function push-pull
FSMC_CK	Alternate function push-pull
FSMC_NOE FSMC_NWE	Alternate function push-pull
FSMC_NE[4:1]	Alternate function push-pull
FSMC_NWAIT	Input floating/ Input pull-up
FSMC_NL FSMC_NBL[1:0]	Alternate function push-pull

111/709

Table 27. Other IOs

Pins	Alternate function	GPIO configuration
TAMPER-RTC pin	RTC output	Forced by hardware when configuring the
IAWII EIX-IXTO PIII	Tamper event input	BKP_CR and BKP_RTCCR registers
МСО	Clock output	Alternate function push-pull
EXTI input lines	External input interrupts	Input floating / input pull-up / input pull-down

7.2 GPIO registers

Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

7.2.1 Port configuration register low (GPIOx_CRL) (x=A..G)

Address offset: 0x00

Reset value: 0x4444 4444

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF	7[1:0]	MODE	E7[1:0]	CNF	6[1:0]	MODE	E6[1:0]	CNF	5[1:0]	MODE	5[1:0]	CNF	4[1:0]	MODE	E4[1:0]
rw	rw	rw	rw												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF	3[1:0]	MODE	E3[1:0]	CNF	2[1:0]	MODE	E2[1:0]	CNF	1[1:0]	MODE	E1[1:0]	CNF	0[1:0]	MODE	E0[1:0]
rw	rw	rw	rw												

Bits 31:30, 27:26, **CNFy[1:0]:** Port x configuration bits (y= 0 .. 7)

23:22, 19:18, 15:14, These bits are written by software to configure the corresponding I/O port.

11:10, 7:6, 3:2 Refer to *Table 16: Port bit configuration table*.

In input mode (MODE[1:0]=00):

00: Analog mode

01: Floating input (reset state)

10: Input with pull-up / pull-down

11: Reserved

In output mode (MODE[1:0] \geq 00):

00: General purpose output push-pull

01: General purpose output Open-drain

10: Alternate function output Push-pull

11: Alternate function output Open-drain

Bits 29:28, 25:24, **MODEy[1:0]:** Port x mode bits (y= 0 .. 7)

21:20, 17:16, 13:12,

These bits are written by software to configure the corresponding I/O port.

9:8, 5:4, 1:0 Refer to *Table 16: Port bit configuration table*.

00: Input mode (reset state)

01: Output mode, max speed 10 MHz.

10: Output mode, max speed 2 MHz.

11: Output mode, max speed 50 MHz.

RM0041 Rev 6 113/709

7.2.2 Port configuration register high (GPIOx_CRH) (x=A..G)

Address offset: 0x04

Reset value: 0x4444 4444

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
CNF1	5[1:0]	MODE	15[1:0]	CNF1	4[1:0]	MODE	14[1:0]	CNF1	3[1:0]	MODE	13[1:0]	CNF1	2[1:0]	MODE	12[1:0]
rw	rw	rw	rw												
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CNF1	1[1:0]	MODE	11[1:0]	CNF1	0[1:0]	MODE	10[1:0]	CNF	9[1:0]	MODE	9[1:0]	CNF	8[1:0]	MODE	E8[1:0]
rw	rw	rw	rw												

Bits 31:30, 27:26, **CNFy[1:0]:** Port x configuration bits (y= 8 .. 15)

23:22, 19:18, 15:14, These bits are written by software to configure the corresponding I/O port.

11:10, 7:6, 3:2 Refer to *Table 16: Port bit configuration table*.

In input mode (MODE[1:0]=00):

00: Analog mode

01: Floating input (reset state)10: Input with pull-up / pull-down

11: Reserved

In output mode (MODE[1:0] > 00):

00: General purpose output push-pull

01: General purpose output Open-drain

10: Alternate function output Push-pull

11: Alternate function output Open-drain

Bits 29:28, 25:24, **MODEy[1:0]:** Port x mode bits (y= 8 .. 15)

21:20, 17:16, 13:12,

9:8, 5:4, 1:0

These bits are written by software to configure the corresponding I/O port.

Refer to Table 16: Port bit configuration table.

00: Input mode (reset state)

01: Output mode, max speed 10 MHz.10: Output mode, max speed 2 MHz.11: Output mode, max speed 50 MHz.

7.2.3 Port input data register (GPIOx_IDR) (x=A..G)

Address offset: 0x08h

Reset value: 0x0000 XXXX

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
IDR15	IDR14	IDR13	IDR12	IDR11	IDR10	IDR9	IDR8	IDR7	IDR6	IDR5	IDR4	IDR3	IDR2	IDR1	IDR0
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **IDRy:** Port input data (y= 0 .. 15)

These bits are read only and can be accessed in Word mode only. They contain the input value of the corresponding I/O port.

7.2.4 Port output data register (GPIOx_ODR) (x=A..G)

Address offset: 0x0C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ODR15	ODR14	ODR13	ODR12	ODR11	ODR10	ODR9	ODR8	ODR7	ODR6	ODR5	ODR4	ODR3	ODR2	ODR1	ODR0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 **ODRy:** Port output data (y= 0 .. 15)

These bits can be read and written by software and can be accessed in Word mode only.

Note: For atomic bit set/reset, the ODR bits can be individually set and cleared by writing to the GPIOx_BSRR register (x = A .. E).

7.2.5 Port bit set/reset register (GPIOx_BSRR) (x=A..G)

Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	w	w	w	w	w	w	w	w	w	w	w	w	w	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
15 BS15	14 BS14	13 BS13	12 BS12	11 BS11	10 BS10	9 BS9	8 BS8	7 BS7	6 BS6	5 BS5	4 BS4	3 BS3	2 BS2	1 BS1	0 BS0

Bits 31:16 **BRy:** Port x Reset *bit y (y= 0 .. 15)*

These bits are write-only and can be accessed in Word mode only.

- 0: No action on the corresponding ODRx bit
- 1: Reset the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 **BSy:** Port x *Set bit y (y= 0 .. 15)*

These bits are write-only and can be accessed in Word mode only.

- 0: No action on the corresponding ODRx bit
- 1: Set the corresponding ODRx bit

RM0041 Rev 6 115/709

7.2.6 Port bit reset register (GPIOx_BRR) (x=A..G)

Address offset: 0x14

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	rved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
BR15	BR14	BR13	BR12	BR11	BR10	BR9	BR8	BR7	BR6	BR5	BR4	BR3	BR2	BR1	BR0
w	w	W	W	W	W	W	W	W	W	W	W	W	W	W	w

Bits 31:16 Reserved

Bits 15:0 **BRy:** Port x Reset bit y (y= 0 .. 15)

These bits are write-only and can be accessed in Word mode only.

0: No action on the corresponding ODRx bit

1: Reset the corresponding ODRx bit

7.2.7 Port configuration lock register (GPIOx_LCKR) (x=A..G)

This register is used to lock the configuration of the port bits when a correct write sequence is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the LOCK sequence has been applied on a port bit it is no longer possible to modify the value of the port bit until the next reset.

Each lock bit freezes the corresponding 4 bits of the control register (CRL, CRH).

Address offset: 0x18

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Reserved								LCKK
						Г	reserveu								rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
LCK15	LCK14	LCK13	LCK12	LCK11	LCK10	LCK9	LCK8	LCK7	LCK6	LCK5	LCK4	LCK3	LCK2	LCK1	LCK0
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:17 Reserved

Bit 16 LCKK[16]: Lock key

This bit can be read anytime. It can only be modified using the Lock Key Writing Sequence.

0: Port configuration lock key not active

1: Port configuration lock key active. GPIOx_LCKR register is locked until the next reset.

LOCK key writing sequence:

Write 1

Write 0

Write 1

Read 0

Read 1 (this read is optional but confirms that the lock is active)

Note: During the LOCK Key Writing sequence, the value of LCK[15:0] must not change.

Any error in the lock sequence will abort the lock.

Bits 15:0 **LCKy:** Port x Lock bit y (y= 0 .. 15)

These bits are read write but can only be written when the LCKK bit is 0.

0: Port configuration not locked

1: Port configuration locked.

7.3 Alternate function I/O and debug configuration (AFIO)

To optimize the number of peripherals available for the 64-pin or the 100-pin or the 144-pin package, it is possible to remap some alternate functions to some other pins. This is achieved by software, by programming the *AF remap and debug I/O configuration register (AFIO_MAPR)*. In this case, the alternate functions are no longer mapped to their original assignations.

7.3.1 Using OSC32_IN/OSC32_OUT pins as GPIO ports PC14/PC15

The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general-purpose I/O PC14 and PC15, respectively, when the LSE oscillator is off. The LSE has priority over the GP IOs function.

Note:

The PC14/PC15 GPIO functionality is lost when the 1.8 V domain is powered off (by entering standby mode) or when the backup domain is supplied by V_{BAT} (V_{DD} no more supplied). In this case the IOs are set in analog mode.

Refer to the note on IO usage restrictions in Section 4.1.2: Battery backup domain.

7.3.2 Using OSC IN/OSC OUT pins as GPIO ports PD0/PD1

The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose I/O PD0/PD1 by programming the PD01_REMAP bit in the *AF remap and debug I/O configuration register (AFIO_MAPR)*.

This remap is available only on 48- and 64-pin packages (PD0 and PD1 are available on 100-pin and 144-pin packages, no need for remapping).

Note:

The external interrupt/event function is not remapped. PD0 and PD1 cannot be used for external interrupt/event generation on 48- and 64-pin packages.

RM0041 Rev 6 117/709

7.3.3 JTAG/SWD alternate function remapping

The debug interface signals are mapped on the GPIO ports as shown in Table 28.

Table 28. Debug interface signals

Alternate function	GPIO port
JTMS / SWDIO	PA13
JTCK / SWCLK	PA14
JTDI	PA15
JTDO / TRACESWO	PB3
NJTRST	PB4
TRACECK	PE2
TRACED0	PE3
TRACED1	PE4
TRACED2	PE5
TRACED3	PE6

To optimize the number of free GPIOs during debugging, this mapping can be configured in different ways by programming the SWJ_CFG[1:0] bits in the *AF remap and debug I/O configuration register (AFIO_MAPR)*. Refer to *Table 29*.

Table 29. Debug port mapping

			SWJ	I/O pin a	ssigned	
SWJ_CFG [2:0]	Available debug ports	PA13 / JTMS/ SWDIO	PA14 / JTCK/S WCLK	PA15 / JTDI	PB3/JTDO/ TRACE SWO	PB4/ NJTRST
000	Full SWJ (JTAG-DP + SW-DP) (Reset state)	Х	Х	Х	Х	х
001	Full SWJ (JTAG-DP + SW-DP) but without NJTRST	Х	Х	Х	х	Free
010	JTAG-DP Disabled and SW-DP Enabled	Х	Х	Free	Free ⁽¹⁾	Free
100	JTAG-DP Disabled and SW-DP Disabled	Free	Free	Free	Free	Free
Other	Forbidden	-	-	-	-	-

^{1.} Released only if not using asynchronous trace.

7.3.4 Timer alternate function remapping

Timer 4 channels 1 to 4 can be remapped from Port B to Port D. Other timer remapping possibilities are listed in *Table 35* to *Table 37*. Refer to *AF remap and debug I/O configuration register (AFIO_MAPR)*.

Table 30. TIM5 alternate function remapping⁽¹⁾

Alternate function	TIM5CH4_IREMAP = 0	TIM5CH4_IREMAP = 1
TIM5_CH4		LSI internal clock is connected to TIM5_CH4 input for calibration purpose.

^{1.} Remap available only for high-density value line devices.

Table 31. TIM12 remapping⁽¹⁾

Alternate function	TIM12_REMAP = 0	TIM12_REMAP = 1
TIM12_CH1	PC4	PB12
TIM12_CH2	PC5	PB13

Refer to the AF remap and debug I/O configuration register Section 7.4.7: AF remap and debug I/O configuration register (AFIO_MAPR2). Remap available only for high-density value line devices.

Table 32. TIM13 remapping⁽¹⁾

Alternate function	TIM13_REMAP = 0	TIM13_REMAP = 1
TIM13_CH1	PC8	PB0

Refer to the AF remap and debug I/O configuration register Section 7.4.7: AF remap and debug I/O configuration register (AFIO_MAPR2). Remap available only for high-density value line devices.

Table 33. TIM14 remapping⁽¹⁾

Alternate function	TIM14_REMAP = 0	TIM14_REMAP = 1
TIM14_CH1	PC9	PB1

Refer to the AF remap and debug I/O configuration register Section 7.4.7: AF remap and debug I/O configuration register (AFIO_MAPR2). Remap available only for high-density value line devices.

Table 34. TIM4 alternate function remapping

Alternate function	TIM4_REMAP = 0	TIM4_REMAP = 1 ⁽¹⁾
TIM4_CH1	PB6	PD12
TIM4_CH2	PB7	PD13
TIM4_CH3	PB8	PD14
TIM4_CH4	PB9	PD15

^{1.} Remap available only for 100-pin and for 144-pin package.

Table 35. TIM3 alternate function remapping

Alternate function	TIM3_REMAP[1:0] = "00" (no remap)	TIM3_REMAP[1:0] = "10" (partial remap)	TIM3_REMAP[1:0] = "11" (full remap) ⁽¹⁾
TIM3_CH1	PA6	PB4	PC6
TIM3_CH2	PA7	PB5	PC7
TIM3_CH3	PB0		PC8
TIM3_CH4	PB1		PC9

RM0041 Rev 6 119/709

1. Remap available only for 64-pin, 100-pin and 144-pin packages.

Table 36. TIM2 alternate function remapping

Alternate function	TIM2_REMAP [1:0] = "00" (no remap)	TIM2_REMAP [1:0] = "01" (partial remap)	TIM2_REMAP [1:0] = "10" (partial remap)	TIM2_REMAP [1:0] = "11" (full remap)
TIM2_CH1_ETR ⁽¹⁾	PA0	PA15	PA0	PA15
TIM2_CH2	PA1	PB3	PA1	PB3
TIM2_CH3	PA2		PB	10
TIM2_CH4	PA3		PB	11

TIM_CH1 and TIM_ETR share the same pin but cannot be used at the same time (which is why we have this notation: TIM2_CH1_ETR).

Table 37. TIM1 alternate function remapping

Alternate functions mapping	TIM1_REMAP[1:0] = "00" (no remap)	TIM1_REMAP[1:0] = "01" (partial remap)	TIM1_REMAP[1:0] = "11" (full remap) ⁽¹⁾	
TIM1_ETR	PA	12	PE7	
TIM1_CH1	P/	8	PE9	
TIM1_CH2	P/	49	PE11	
TIM1_CH3	PA10		PE13	
TIM1_CH4	PA11		PE14	
TIM1_BKIN	PB12	PA6	PE15	
TIM1_CH1N	PB13	PA7	PE8	
TIM1_CH2N	PB14 ²⁾	PB0	PE10	
TIM1_CH3N	PB15 ⁽²⁾	PB1	PE12	

^{1.} Remap available only for 100-pin and 144-pin packages.

Table 38. TIM1 DMA remapping⁽¹⁾

DMA requests	TIM1_DMA_REMAP = 0	TIM1_DMA_REMAP = 1
TIM1_CH1 DMA request	Mapped on DMA1 Channel2	Mapped on DMA1 Channel6
TIM1_CH2 DMA request	Mapped on DMA1 Channel3	Mapped on DMA1 Channel6

Refer to the AF remap and debug I/O configuration register Section 7.4.7: AF remap and debug I/O configuration register (AFIO_MAPR2).

Table 39. TIM15 remapping⁽¹⁾

Alternate function	TIM15_REMAP = 0	TIM15_REMAP = 1
TIM15_CH1	PA2	PB14
TIM15_CH2	PA3	PB15

Refer to the AF remap and debug I/O configuration register Section 7.4.7: AF remap and debug I/O configuration register (AFIO_MAPR2).

Table 40. TIM16 remapping⁽¹⁾

Alternate function	TIM16_REMAP = 0	TIM16_REMAP = 1
TIM16_CH1	PB8	PA6

Refer to the AF remap and debug I/O configuration register Section 7.4.7: AF remap and debug I/O configuration register (AFIO_MAPR2).

Table 41. TIM17 remapping⁽¹⁾

Alternate function	TIM17_REMAP = 0	TIM17_REMAP = 1
TIM17_CH1	PB9	PA7

Refer to the AF remap and debug I/O configuration register Section 7.4.7: AF remap and debug I/O configuration register (AFIO_MAPR2).

7.3.5 USART alternate function remapping

Refer to AF remap and debug I/O configuration register (AFIO_MAPR).

Table 42. USART3 remapping

Alternate function	USART3_REMAP[1:0] = "00" (no remap)	USART3_REMAP[1:0] = "01" (partial remap) (1)	USART3_REMAP[1:0] = "11" (full remap) (2)
USART3_TX	PB10	PC10	PD8
USART3_RX	PB11	PC11	PD9
USART3_CK	PB12	PC12	PD10
USART3_CTS	PB13		PD11
USART3_RTS	Р	PB14	

^{1.} Remap available only for 64-pin, 100-pin and 144-pin packages

Table 43. USART2 remapping

Alternate functions	USART2_REMAP = 0	USART2_REMAP = 1 ⁽¹⁾
USART2_CTS	PA0	PD3
USART2_RTS	PA1	PD4
USART2_TX	PA2	PD5
USART2_RX	PA3	PD6
USART2_CK	PA4	PD7

^{1.} Remap available only for 100-pin and 144-pin packages.

Table 44. USART1 remapping

Alternate function	USART1_REMAP = 0	USART1_REMAP = 1
USART1_TX	PA9	PB6
USART1_RX	PA10	PB7

RM0041 Rev 6 121/709

^{2.} Remap available only for 100-pin and 144-pin packages.

7.3.6 I2C1 alternate function remapping

Refer to AF remap and debug I/O configuration register (AFIO_MAPR)

Table 45. I2C1 remapping

Alternate function	I2C1_REMAP = 0	I2C1_REMAP = 1
I2C1_SCL	PB6	PB8
I2C1_SDA	PB7	PB9

7.3.7 SPI1 alternate function remapping

Refer to AF remap and debug I/O configuration register (AFIO_MAPR)

Table 46. SPI1 remapping

Alternate function	SPI1_REMAP = 0	SPI1_REMAP = 1
SPI1_NSS	PA4	PA15
SPI1_SCK	PA5	PB3
SPI1_MISO	PA6	PB4
SPI1_MOSI	PA7	PB5

7.3.8 CEC remap

Refer to Section 7.4.7: AF remap and debug I/O configuration register (AFIO_MAPR2).

Table 47. CEC remapping

Alternate function	CEC_REMAP = 0	CEC_REMAP = 1
CEC	PB8	PB10

7.4 AFIO registers

Refer to Section 1.1 on page 32 for a list of abbreviations used in register descriptions.

Note:

To read/write the AFIO_EVCR, AFIO_MAPR, AFIO_MAPR2 and AFIO_EXTICRX registers, the AFIO clock should first be enabled. Refer to APB2 peripheral clock enable register (RCC_APB2ENR).

The peripheral registers have to be accessed by words (32-bit).

7.4.1 Event control register (AFIO_EVCR)

Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			Rese	ar rod				EVOE	ı	PORT[2:0]		PIN	[3:0]	
			Rese	rived				rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:8 Reserved

Bit 7 EVOE: Event output enable

Set and cleared by software. When set the EVENTOUT Cortex[®] output is connected to the I/O selected by the PORT[2:0] and PIN[3:0] bits.

Bits 3:0 **PIN[3:0]:** Pin selection (x = A .. E)

Set and cleared by software. Select the pin used to output the Cortex[®] EVENTOUT signal.

0000: Px0 selected 0001: Px1 selected 0010: Px2 selected 0011: Px3 selected

...

1111: Px15 selected

RM0041 Rev 6 123/709

7.4.2 AF remap and debug I/O configuration register (AFIO_MAPR)

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	F	Reserve	d		SW	J_CFG[2:0]				Rese	rved			TIM5CH4 _IREMAP
					w	w	w								rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
PD01_ REMAP	Rese	erved	TIM4_ REMAP	_	REMAP :0]	_	REMAP :0]	_	REMAP :0]		ART3_ IAP[1:0]	USART2_ REMAP	USART1_ REMAP	I2C1_ REMAP	SPI1_ REMAP
rw			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:27 Reserved

Bits 26:24 SWJ_CFG[2:0]: Serial wire JTAG configuration

These bits are write-only (when read, the value is undefined). They are used to configure the SWJ and trace alternate function I/Os. The SWJ (Serial Wire JTAG) supports JTAG or SWD access to the Cortex[®] debug port. The default state after reset is SWJ ON without trace. This allows JTAG or SW mode to be enabled by sending a specific sequence on the JTMS / JTCK pin.

000: Full SWJ (JTAG-DP + SW-DP): Reset State

001: Full SWJ (JTAG-DP + SW-DP) but without NJTRST

010: JTAG-DP Disabled and SW-DP Enabled 100: JTAG-DP Disabled and SW-DP Disabled

Other combinations: no effect

Bits 23:17 Reserved.

Bit 15 PD01_REMAP: Port D0/Port D1 mapping on OSC IN/OSC OUT

This bit is set and cleared by software. It controls the mapping of PD0 and PD1 GPIO functionality. When the HSE oscillator is not used (application running on internal 8 MHz RC) PD0 and PD1 can be mapped on OSC_IN and OSC_OUT. This is available only on 48- and 64-pin packages (PD0 and PD1 are available on 100-pin packages, no need for remapping).

0: No remapping of PD0 and PD1

1: PD0 remapped on OSC IN, PD1 remapped on OSC OUT,

Bits 14:13 Reserved.

Bit 12 TIM4_REMAP: TIM4 remapping

This bit is set and cleared by software. It controls the mapping of TIM4 channels 1 to 4 onto the GPIO ports.

0: No remap (TIM4 CH1/PB6, TIM4 CH2/PB7, TIM4 CH3/PB8, TIM4 CH4/PB9)

1: Full remap (TIM4_CH1/PD12, TIM4_CH2/PD13, TIM4_CH3/PD14, TIM4_CH4/PD15)

Note: TIM4 ETR on PE0 is not re-mapped.

Bits 11:10 TIM3_REMAP[1:0]: TIM3 remapping

These bits are set and cleared by software. They control the mapping of TIM3 channels 1 to 4 on the GPIO ports.

00: No remap (CH1/PA6, CH2/PA7, CH3/PB0, CH4/PB1)

01: Not used

10: Partial remap (CH1/PB4, CH2/PB5, CH3/PB0, CH4/PB1)

11: Full remap (CH1/PC6, CH2/PC7, CH3/PC8, CH4/PC9)

Note: TIM3_ETR on PE0 is not re-mapped.

Bits 9:8 TIM2_REMAP[1:0]: TIM2 remapping

These bits are set and cleared by software. They control the mapping of TIM2 channels 1 to 4 and external trigger (ETR) on the GPIO ports.

00: No remap (CH1/ETR/PA0, CH2/PA1, CH3/PA2, CH4/PA3)

01: Partial remap (CH1/ETR/PA15, CH2/PB3, CH3/PA2, CH4/PA3)

10: Partial remap (CH1/ETR/PA0, CH2/PA1, CH3/PB10, CH4/PB11)

11: Full remap (CH1/ETR/PA15, CH2/PB3, CH3/PB10, CH4/PB11)

Bits 7:6 TIM1_REMAP[1:0]: TIM1 remapping

These bits are set and cleared by software. They control the mapping of TIM1 channels 1 to 4, 1N to 3N, external trigger (ETR) and Break input (BKIN) on the GPIO ports.

00: No remap (ETR/PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11, BKIN/PB12, CH1N/PB13, CH2N/PB14, CH3N/PB15)

01: Partial remap (ETR/PA12, CH1/PA8, CH2/PA9, CH3/PA10, CH4/PA11, BKIN/PA6, CH1N/PA7, CH2N/PB0, CH3N/PB1)

10: not used

11: Full remap (ETR/PE7, CH1/PE9, CH2/PE11, CH3/PE13, CH4/PE14, BKIN/PE15, CH1N/PE8, CH2N/PE10, CH3N/PE12)

Bits 5:4 USART3 REMAP[1:0]: USART3 remapping

These bits are set and cleared by software. They control the mapping of USART3 CTS, RTS,CK,TX and RX alternate functions on the GPIO ports.

00: No remap (TX/PB10, RX/PB11, CK/PB12, CTS/PB13, RTS/PB14)

01: Partial remap (TX/PC10, RX/PC11, CK/PC12, CTS/PB13, RTS/PB14)

10: not used

11: Full remap (TX/PD8, RX/PD9, CK/PD10, CTS/PD11, RTS/PD12)

Bit 3 USART2_REMAP: USART2 remapping

This bit is set and cleared by software. It controls the mapping of USART2 CTS, RTS,CK,TX and RX alternate functions on the GPIO ports.

0: No remap (CTS/PA0, RTS/PA1, TX/PA2, RX/PA3, CK/PA4)

1: Remap (CTS/PD3, RTS/PD4, TX/PD5, RX/PD6, CK/PD7)

Bit 2 USART1_REMAP: USART1 remapping

This bit is set and cleared by software. It controls the mapping of USART1 TX and RX alternate functions on the GPIO ports.

0: No remap (TX/PA9, RX/PA10)

1: Remap (TX/PB6, RX/PB7)

Bit 1 I2C1 REMAP: I2C1 remapping

This bit is set and cleared by software. It controls the mapping of I2C1 SCL and SDA alternate functions on the GPIO ports.

0: No remap (SCL/PB6, SDA/PB7)

1: Remap (SCL/PB8, SDA/PB9)

Bit 0 SPI1 REMAP: SPI1 remapping

This bit is set and cleared by software. It controls the mapping of SPI1 NSS, SCK, MISO, MOSI alternate functions on the GPIO ports.

0: No remap (NSS/PA4, SCK/PA5, MISO/PA6, MOSI/PA7)

1: Remap (NSS/PA15, SCK/PB3, MISO/PB4, MOSI/PB5)

RM0041 Rev 6 125/709

7.4.3 External interrupt configuration register 1 (AFIO_EXTICR1)

Address offset: 0x08 Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EXTI3[3:0] EXTI2[3:0]						EXTI1[3:0] EXTI0[3:0]						0[3:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved

Bits 15:0 **EXTIx[3:0]**: EXTI x configuration (x= 0 to 3)

These bits are written by software to select the source input for EXTIx external interrupt.

Refer to Section 8.2.5: External interrupt/event line mapping

0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin

7.4.4 External interrupt configuration register 2 (AFIO_EXTICR2)

Address offset: 0x0C Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EXTI7[3:0] EXTI6[3:0]							EXTI	5[3:0]			EXT	4[3:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved

Bits 15:0 **EXTIx[3:0]:** EXTI x configuration (x= 4 to 7)

These bits are written by software to select the source input for EXTIx external interrupt.

0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin

7.4.5 External interrupt configuration register 3 (AFIO_EXTICR3)

Address offset: 0x10 Reset value: 0x0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								Rese	erved							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ī	EXTI11[3:0] EXTI10[3:0]							EXTI	9[3:0]			EXTI	8[3:0]			
	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved

Bits 15:0 **EXTIx[3:0]**: EXTI x configuration (x= 8 to 11)

These bits are written by software to select the source input for EXTIx external interrupt.

0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin

7.4.6 External interrupt configuration register 4 (AFIO_EXTICR4)

Address offset: 0x14 Reset value: 0x0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Rese	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	EXTI1	5[3:0]			EXTI1	14[3:0]			EXTI1	3[3:0]			EXTI1	2[3:0]	
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved

Bits 15:0 **EXTIx[3:0]**: EXTI x configuration (x= 12 to 15)

These bits are written by software to select the source input for EXTIx external interrupt.

0000: PA[x] pin 0001: PB[x] pin 0010: PC[x] pin 0011: PD[x] pin 0100: PE[x] pin 0101: PF[x] pin 0110: PG[x] pin

4

RM0041 Rev 6 127/709

7.4.7 AF remap and debug I/O configuration register (AFIO MAPR2)

Address offset: 0x1C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	erved							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Re	eserved	MISC REM AP	TIM12_ REMA P	TIM67_ DAC_ DMA_ REMA P	FSM C_NA DV	TIM14_ REMA P	TIM13_ REMA P		Reserved		TIM1_ DMA_ REMAP	CEC_ REMA P	TIM17_ REMA P	TIM16_ REMA P	TIM15_ REMA P
		rw	rw	rw	rw	rw	rw				rw	rw	rw	rw	rw

Bits 31:14 Reserved.

Bit 13 MISC REMAP: Miscellaneous features remapping.

This bit is set and cleared by software. It controls miscellaneous features

The DMA2 channel 5 interrupt position in the vector table

The timer selection for DAC trigger 3 (TSEL[2:0] = 011, for more details refer to the DAC CR register).

0: DMA2 channel 5 interrupt is mapped with DMA2 channel 4 at position 59, TIM5 TRGO event is selected as DAC Trigger 3, TIM5 triggers TIM1/3.

1: DMA2 channel 5 interrupt is mapped separately at position 60 and TIM15 TRGO event is selected as DAC Trigger 3, TIM15 triggers TIM1/3.

Note: This bit is available only in high density value line devices.

Bit 12 TIM12_REMAP: TIM12 remapping

This bit is set and cleared by software. It controls the mapping of the TIM12 CH1 and TIM12 CH2 alternate function onto the GPIO ports.

0: No remap (CH1/PC4, CH2/PC5)

1: Remap (CH1/PB12, CH2/PB13)

Note: This bit is available only in high density value line devices.

Bit 11 TIM76_DAC_DMA_REMAP: TIM67 DAC DMA remapping

This bit is set and cleared by software. It controls the mapping of the TIM6_DAC1 and TIM7_DAC2 DMA requests onto the DMA1 channels.

0: No remap (TIM6 DAC1 DMA request/DMA2 Channel3, TIM7 DAC2 DMA request/DMA2 Channel4)

1: Remap (TIM6_DAC1 DMA request/DMA1 Channel3, TIM7_DAC2 DMA request/DMA1 Channel4)

Bit 10 FSMC NADV: NADV connect/disconnect

This bit is set and cleared by software. It controls the use of the optional FSMC NADV

0: The NADV signal is connected to the output (default)

1: The NADV signal is not connected. The I/O pin can be used by another peripheral.

Note: This bit is available only in high density value line devices.

Bit 9 TIM14 REMAP: TIM14 remapping

This bit is set and cleared by software. It controls the mapping of the TIM14_CH1 alternate function onto the GPIO ports.

0: No remap (PC9)

1: Remap (PB1)

Bit 8 TIM13_REMAP: TIM13 remapping

This bit is set and cleared by software. It controls the mapping of the TIM13_CH1 alternate function onto the GPIO ports.

- 0: No remap (PC8)
- 1: Remap (PB0)

Bits 7:5 Reserved.

Bit 4 TIM1 DMA REMAP: TIM1 DMA remapping

This bit is set and cleared by software. It controls the mapping of the TIM1 channel 1 and channel 2 DMA requests onto the DMA1 channels.

- 0: No remap (TIM1_CH1 DMA request/DMA1 Channel2, TIM1_CH2 DMA request/DMA1 Channel3)
- 1: Remap (TIM1_CH1 DMA request/DMA1 Channel6, TIM1_CH2 DMA request/DMA1 Channel6)

Bit 3 CEC_REMAP: CEC remapping

This bit is set and cleared by software. It controls the mapping of the alternate functions of the CEC line onto the GPIO ports.

- 0: No remap (CEC/PB8)
- 1: Remap (CEC/PB10)

Bit 2 TIM17_REMAP: TIM17 remapping

This bit is set and cleared by software. It controls the mapping of the alternate functions of TIM17 channel 1 onto the GPIO ports.

- 0: No remap (CH1/PB9)
- 1: Remap (CH1/PA7)

Bit 1 TIM16_REMAP: TIM16 remapping

This bit is set and cleared by software. It controls the mapping of the alternate functions of TIM16 channel 1 onto the GPIO ports.

- 0: No remap (CH1/PB8)
- 1: Remap (CH1/PA6)

Bit 0 TIM15_REMAP: TIM15 remapping

This bit is set and cleared by software. It controls the mapping of the alternate functions of TIM15 channels 1 and 2 onto the GPIO ports.

- 0: No remap (CH1/PA2, CH2/PA3)
- 1: Remap (CH1/PB14, CH2/PB15)

RM0041 Rev 6 129/709

7.5 GPIO and AFIO register maps

The following tables give the GPIO and AFIO register map and the reset values.

Refer to Table 1 on page 37 and Table 2 on page 38 for the register boundary addresses.

Table 48. GPIO register map and reset values

		_					_	-		_			· J			πα			_					_									
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	æ	7	9	5	4	က	2	-	0
	GPIOx	CNF MODE CN																	DDE														
0x00	_CRL																	0 I:0]															
	Reset value																-	0															
	GPIOx	CI	NF	MC	DDE	С	NF	MC	DE	CN	١F	МО	DE	CI	NF	MC	DE	CI	VF	MC	OD	C	VF	MC	DE	C	NF	М	OD	С	NF		ODE
0x04	_CRH		15 15 14 [1:0] [1:0] [1:0]				14 [1:0]		13 [1:0]		13 [1:0]		1		1		1		E:			10 [1:0]		10 [1:0]		9 [1:0]		9		8 [1:0]		8	
	Reset value	0	_	0	1 0	0	.0]	ι.	.uj I 0	0	.0]	0 1	.uj 0	[1: 0	.U]	[1: 0	0	0	:0]	[1: 0	.uj T 0	0	.0]	0	.uj I 0	0	.0]	[1 0	.vj I 0	0	.0]	0	1:0]
	GPIOx		<u> </u>	<u> </u>	<u> </u>	Ľ	L'			Ľ	_ '		Ü	Ü		Ů		Ŭ	<u>'</u>	Ů	Ů	Ü	<u>'</u>	Ů		<u> </u>	<u> </u>	Ŭ	Ü	Ü	'	Ü	Ŭ
0x08	_IDR								Rese	erved	t														ID	Ry							
	Reset value																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GPIOx																		•				•	•	OE	DRy							
0x0C	_ODR								Rese	erved	t															,							
	Reset value GPIOx																	0	0	0	0	U	U	0	U	U	U	0	0	U	U	U	0
0x10	_BSRR								BR[15:0]														E	3SR	[15:0	0]						
	Reset value	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GPIOx								_				1												BRI	15:0	1						1
0x14	_BRR								Rese	erved	t																,						
	Reset value																	0	0	0	U	0	0	0	0	0	0	0	0	0	0	0	0
0x18	GPIOx _LCKR							Re	eserv	ed							LCKK							I	LCK	[15:0	0]						
	Reset value																<u> </u>	0	0	1 0	10	0	0	1 0	1 0	10	0	1 0	1 0	1 0	10	0	0
																	-	-				-				-			-	-	-	1	

Table 49. AFIO register map and reset values

											_		LCI		•																	
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	41	91	15	14	13	12	7 7	6	8	7	9	2	4	က	2	Į.	0
0x00	AFIO_EVCR												Re	serv	/ed											EVOE	PC	ORT 0]	[2:	PI	N[3	:0]
	Reset value																									0	0	0	0	0	0	0
0x04	AFIO_MAPR		Reserved					SWJ_ FG[2:0] Reserved									TIM5CH4_IREMAP	PD01_REMAP	Reserved		I IM4_KEMAP	TIM3_REMAP[1:0]	TIM2 REMAPI1-01	[O:1] WINTER 7 7 1 1 1 1 1 1 1 1	TIM1 RFMAP[1:0]		USART3 REMAP[1:0]		USART2_REMAP	USART1_REMAP		SPI1_REMAP
	Reset value						0	0	0								0	0			0	0 0	0	0	0	0	0	0	0	0	0	0

Table 49. AFIO register map and reset values (continued)

															`																		
Offset	Register	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	6	8	7	9	2	4	ო	2	1	0
0x08	AFIO_EXTICR1							F	Rese	erve	d							E	XTI	13[3:	0]	E	XTI	2[3:	:0]	Е	XTI	1[3:	0]	E	XTI	0[3:	0]
	Reset value		<u> </u>														0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x0C	AFIO_EXTICR2		Reserved													Е	XTI	17[3:	0]	Е	XTI	6[3:	:0]	EXTI5[3:0]				Е	4[3:	0]			
	Reset value																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x10	AFIO_EXTICR3		Reserved													E	XTI	11[3	:0]	E	ΧΤΙ΄	10[3	3:0]	Е	XTI	9[3:	0]	Е	XTI	8[3:	0]		
	Reset value	1														0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
0x14	AFIO_EXTICR4		Reserved														E.	XTI	15[3	:0]	E	ΧΤΙ΄	14[3	3:0]	E	EXTI13[3:			E	KTI1	2[3	:0]	
	Reset value																0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0x1C	AFIO_MAPR2		Reserved															MISC	TIM12_REMA	TIM67_I		Ī	TIM13_REMAP		Res		AIIT				TIM15_REMAP		
	Reset value																			0	0	0	0	0	0				0	0	0	0	0

RM0041 Rev 6 131/709