6.3. Il paradigma greedy

Esercizi con procedimento di soluzione

Esercizio 1.

Sia data la seguente distribuzione di simboli, con le relative occorrenze:

Si determini un codice di Huffman ottimo.

SOLUZIONE

Come primo passo si inseriscono in una coda a priorità (usando uno heap), ottenendo il nuovo vettore:

Si estraggono i due elementi con frequenza minore (indicati in grigio), si effettua la loro fusione in un albero la cui radice ha come frequenza la somma delle frequenze (21) e si inserisce nella coda la struttura ottenuta:

Si compie una nuova estrazione, ottenendo il nodo j ed il nodo radice dell'albero ig, si crea un nuovo albero con frequenza alla radice pari a 41 (20+21) e si inserisce nuovamente nello heap:

Il processo è essenzialmente una iterazione, e si riportano i vari passi intermedi per confronto, indicando in grigio i nodi estratti.

Infine si ottiene un albero le cui foglie sono i simboli da codificare. La distanza delle foglie dalla radice, come già accennato, è in correlazione con la frequenza; si nota infatti che i simboli con frequenza minore sono a distanza maggiore.

L'ultimo passo dell'algoritmo è l'assegnazione dei singoli bit. Per ottenere questo obbiettivo si assegnano dei bit agli archi dell'albero. Preso un nodo, si assegna 1 al ramo destro e 0 al ramo sinistro (o viceversa).

Si legge la sequenza di bit assegnato ad un codice partendo dalla radice. Il nuovo set di codici a lunghezza variabile è:

Simbolo	Codice	l_i
f	100	3
g	00000	5
h	001	3
i	00001	5
j	0001	4
k	01	2
1	101	3
m	11	2

Esercizi con soluzione

Esercizio 1.

Si determini un codice di Huffman ottimo per i seguenti caratteri con le frequenze specificate:

Simbolo	f_i
A	1
В	1
C	2
D	3
E	5
F	8
G	13
Н	21

SOLUZIONE

{A: 0000001, B: 0000000, C: 000001, D: 00001, E: 0001, F: 001, G: 01, H: 1}

Esercizio 2.

Si determini un codice di Huffman ottimo per i seguenti caratteri con le frequenze specificate:

Simbolo	f_i
A	5
В	8
C	2
D	6
E	5
F	4
G	13
Н	9

SOLUZIONE

{A: 110, B: 001, C: 1001, D: 101, E: 111, F: 1000, G: 01, H: 000 }

Esercizio 3.

Si determini un codice di Huffman ottimo per i seguenti caratteri con le frequenze specificate:

Simbolo	f_i
A	8
В	5
C	6
D	2
E	4
F	5
G	9
Н	13

SOLUZIONE

{A: 001, B: 111, C: 101, D: 1001, E: 1000, F: 110, G:000, H:01}

Esercizio 4.

Si determini un codice di Huffman ottimo per i seguenti caratteri con le frequenze specificate:

Simbolo	f_i
A	50
В	17
C	60
D	40
E	48
F	15
G	39
Н	33
Soluzi	ONE

{A: 000, B: 1010, C: 11, D: 010, E: 001, F: 1011, G:011, H:100}

Esercizio 5.

Si determini un codice di Huffman ottimo per i seguenti caratteri con le frequenze specificate:

Simbolo	f_i
A	80
В	50
C	60
D	20
E	40
F	45
G	90
Н	10

SOLUZIONE

{A: 11, B: 010, C: 001, D: 00010, F: 011, G: 10, H: 00011, E: 0000}