Problema A

Áreas (areas)

Dentro de las materias básicas de ingeniería, tenemos el calculo de áreas entre curvas. En este caso tendremos que calcular el área comprendida entre una parábola y el eje X.

Por ejemplo sea la parábola $x^2 - 4$ para el rango [-3, 3]:

En ese caso las áreas son:

$$A_1 = \left| \int_{-3}^{-2} (x^2 - 4) \cdot dx \right| = \frac{7}{3}$$

$$A_2 = \left| \int_{-2}^{2} (x^2 - 4) \cdot dx \right| = \frac{32}{3}$$

$$A_3 = \left| \int_2^3 (x^2 - 4) \cdot dx \right| = \frac{7}{3}$$

Por tanto el área pedida sera $A_1 + A_2 + A_3 = \frac{46}{3}$

Note que existen casos donde la función puede no presentar raíces en el rango, $x^2 + 4 \cdot x - 5$ en el rango [-3,0]

$$A = \left| \int_{-3}^{0} (x^2 + 4\dot{x} - 5) \cdot dx \right| = \frac{24}{1}$$

Entrada

La primera línea contiene un número entero t ($1 \le t \le 5000$), indicando el número de casos de prueba. Siguen t líneas, una por cada caso de prueba.

Cada caso contiene 5 enteros A,B,C,L,R ($-10^4 \le A,B,C,L,R \le 10^4$) que son los coeficientes de la ecuación $A \cdot x^2 + B \cdot x + C = 0$ y el rango [L,R] donde evaluar la función. Se garantiza que $L \le R$ y que en caso de existir intersección con el eje de la X, estas intersecciones ocurrirán en valores enteros. Además $A \ne 0$.

Salida

Por cada caso imprima una linea con el área solicitada en la forma p/q donde se garantiza que p y q son números enteros tal que GCD(p,q)=1.

Ejemplos de entrada	Ejemplos de salida
3	46/3
1 0 -4 -3 3	23/3
1 0 -4 0 3	24/1
1 4 -5 -3 0	