LifLF – Théorie des langages formels Sylvain Brandel 2019 – 2020 sylvain.brandel@univ-lyon1.fr

CM 3

AUTOMATES À ÉTATS FINIS

Automates à états finis

- Automate ou Machine
 - Ang. Automaton / Machine
- Automates ou Machines
 - Ang. Automata / Machines ...
- Automates (à états) finis déterministes
 - Ang. Deterministic Finite Automata (DFA)
- Automates (à états) finis non déterministes
 - Ang. Nondeterministic Finite Automata (NFA)
- Automates à pile
 - Ang. Pushdown Automata (PDA)
- Machines de Turing
 - Ang. Turing Machines

Automates à états finis

- Exemple concret
 - Machine à café dans le hall du déambu
 - Barrière de péage du périph' (pas liber-t ...)
 - ...

- Simulation d'une machine très simple :
 - Mémorisation d'un état
 - Programme sous forme de graphe étiqueté indiquant les transitions possibles
- Cette machine lit un mot en entrée.
- Ce mot décrit une suite d'actions et progresse d'état en état
- Si le dernier état est un état acceptant et que le mot a été entièrement lu, on dit que le mot est accepté.
 - ⇒ Un automate permet de reconnaître un langage.

- Un état dépend uniquement
 - De l'état précédent
 - Du symbole lu

Un automate déterministe fini est le quintuplet

$$M = (K, \Sigma, \delta, s, F) où$$
:

- K : ensemble fini (non vide) d'états
- $-\Sigma$: alphabet (ensemble non vide de lettres)
- δ : fonction de transition : K × Σ → K $\delta(q, \sigma) = q'$ (q' : état de l'automate après avoir lu la lettre σ dans l'état q)
- s : état initial : s ∈ K
- F : ensemble des états finaux : F \subset K
- Si δ est une application, alors l'automate est complet

Exécution

La machine

- lit a (qui est ensuite oublié),
- passe dans l'état $\delta(s, a)$ et avance la tête de lecture,
- répète cette étape jusqu'à ce que tout le mot soit lu ou plus de transition applicable
- La partie déjà lue du mot ne peut pas influencer le comportement à venir de l'automate.
 - → d'où la notion de configuration

- Configuration
 - état dans lequel est l'automate
 - mot qui lui reste à lire (partie droite du mot initial)
- Formellement une configuration est un élément quelconque de $K \times \Sigma^*$.
- Exemple sur l'exemple précédent, la configuration est (q₂, cabaa).

- Le fonctionnement d'un automate est décrit par le passage d'une configuration C₁ à une configuration C₂
- C₂ est déterminée
 - en lisant un caractère,
 - et en appliquant la fonction de transition.
- Exemple
 - $(q_2, cabaa)$ \rightarrow $(q_3, abaa)$ $si \delta(q_2, c) = q_3$

- Un automate M détermine une relation binaire ├_M entre configurations définie par :
 - $\mid_{\mathsf{M}} \subset (\mathsf{K} \times \Sigma^*)^2$
 - $(q, w) \mid_M (q', w')$ ssi $\exists a \in \Sigma$ tel que w = aw' et $\delta(q, a) = q'$
- On dit alors que on passe de (q, w) à (q', w') en une étape.

• On note \vdash_{M} la fermeture transitive réflexive de \vdash_{M} :

(q, w)
$$\downarrow_{M}^{*}$$
 (q', w') signifie qu'on passe de (q, w) à (q', w') en zéro, une ou plusieurs étapes

- Un mot w est accepté par M
 ssi (s, w) ├_M* (q, ε), avec q ∈ F.
- Le langage accepté par M est l'ensemble de tous les mots acceptés par M.

Ce langage est noté L(M).

• Exemple M = $(K, \Sigma, \delta, s, F)$

• $L = (ab \cup aba)^*$

Automate déterministe non complet :

Automate déterministe complet :

- Remplacer la fonction \vdash_{M} (ou δ) par une relation.
- Une relation, c'est beaucoup plus général qu'une fonction.
 → on a ainsi une classe plus large d'automates.
 - ⇒ Dans un état donné, on pourra avoir :

• L = $(ab \cup aba)^*$

Automate non déterministe :

Un automate non déterministe fini est le quintuplet

$$M = (K, \Sigma, \Delta, s, F) où :$$

- K : ensemble fini (non vide) d'états
- $-\Sigma$: alphabet (ensemble non vide de lettres)
- Δ : relation de transition : K × Σ × K (q, σ, p) ∈ Δ : σ-transition (σ ∈ Σ)
- s: état initial: $s \in K$
- F : ensemble des états finaux : F ⊂ K

(hormis Δ , le reste est identique à la formulation déterministe)

- Remarque
 - − Δ peut-être définie comme une application K × Σ → P(K)

- Une configuration est un élément de $K \times \Sigma^*$.
- Un automate M détermine une relation binaire entre configurations qu'on note ├_M définie par :
 - $\mid_{\mathsf{M}} \subset (\mathsf{K} \times \Sigma^*)^2$
 - $(q, w) \vdash_M (q', w')$ ssi $\exists a \in \Sigma$ tel que w = aw' et $\delta(q, a) = q'$

- | est une relation et non plus une fonction (automates déterministes) :
 - pour une configuration (q, w), il peut y avoir plusieurs configurations (q', w') (ou aucune) tq (q, w) \downarrow_M (q', w')
- On note comme avant ├_M* la fermeture transitive réflexive de ├_M
- Un mot w est accepté par M ssi (s, w) ⊢_M* (q, ε) avec q ∈ F.
- L(M) est le langage de tous les mots acceptés par M.

- Ajout de transitions vides
 - Il est possible d'étiqueter une flèche par le symbole ε .
- Autre formulation encore plus intuitive (?) de l'automate précédent :

 Un automate non déterministe fini avec transitions spontanées est le quintuplet

$$M = (K, \Sigma, \Delta, s, F) où$$
:

- K : ensemble fini (non vide) d'états
- $-\Sigma$: alphabet (ensemble non vide de lettres)
- Δ : relation de transition : K × (Σ ∪ {ε}) × K (q, σ, p) ∈ Δ : σ-transition (σ ∈ Σ)
- s : état initial : s ∈ K
- F : ensemble des états finaux : F ⊂ K

(hormis la relation, le reste est identique à la formulation déterministe et à la formulation non déterministe)

- Si (q, ε, p) ∈ Δ : on a une ε-transition (transition spontanée)
 → On passe de q à p sans lire de symbole dans le mot courant.
- Une configuration est un élément de $K \times \Sigma^*$.
- M décrit une relation binaire entre configurations qu'on note \displaylim_{M} : $(q,w) \displaylim_{M} (q',w')$ ssi il existe un mot d'au plus une lettre $u \in \Sigma \cup \{\epsilon\}$ tq w = uw' et $(q,u,q') \in \Delta$

- | est une relation et non plus une fonction (automates déterministes) :
 - (q, ε) peut être en relation avec une autre configuration (après une ε -transition)
 - pour une configuration (q, w), il peut y avoir plusieurs configurations (q', w') (ou aucune) tq (q, w) \vdash_M (q', w')
- On note comme avant ├_M* la fermeture transitive réflexive de ├_M
- Un mot w est accepté par M ssi (s, w) ⊢_M* (q, ε) avec q ∈ F.
- L(M) est le langage de tous les mots acceptés par M.

Et maintenant ?

- Déterministe ou non déterministe ?
 - Même classe de langages reconnus
 - Donc équivalents
- Langages rationnels et langages reconnus par les automates finis ?
 - Même classe de langages
- Un langage est-il rationnel?
 - Preuve de rationalité
- Un automate est-il minimal?
 - Automate standard