

1.8V, Micro-Power, Precision, RRIO, CMOS Zero-Drift Operational Amplifier with Comparator and Voltage Reference

GENERAL DESCRIPTION

The SGM8606 is a low power, high precision CMOS operational amplifier, integrated with one comparator and one low drift voltage reference. The device can operate from 1.8V to 5.5V single supply or from $\pm 0.9V$ to $\pm 2.75V$ dual power supplies, while consuming only $20\mu A$ quiescent current. The amplifier supports rail-to-rail input and output operation. Its input common mode voltage range is 100mV beyond the rails, and the output swings within 14mV of the rails. The device is suitable for low voltage operation, such as battery-powered applications.

The amplifier features high impedance inputs, a $50\mu V$ maximum input offset voltage and zero-drift over time and temperature. It is designed to provide optimal performance in low voltage and low power systems. These specifications make the device appropriate for a wide range of applications requiring high precision, such as driving ADCs without reducing differential linearity.

The comparator's input common mode voltage range is 200mV beyond the rails and the integrated voltage reference provides precise threshold in application.

The internal 1.2V series voltage reference features a low $42\mu\text{V/°C}$ drift. It is stable for capacitive load up to 10nF, and can provide output current up to 2mA (TYP).

The SGM8606 fits in a tiny package with low power. It is well suited for mobile phones and handheld electronic applications.

The SGM8606 is available in a Green TDFN-3×3-10L package. It is rated over the -40°C to +85°C temperature range.

FEATURES

• Quiescent Current: 20µA (TYP)

Supply Voltage Range: 1.8V to 5.5V

• -40°C to +85°C Operating Temperature Range

• Available in a Green TDFN-3×3-10L Package

AMPLIFIER

Low Offset Voltage: 50µV (MAX)

• Low 0.1Hz to 10Hz Noise: 2μV_{P-P}

• Integrated RFI Filter

• Single-Supply Operation

• Rail-to-Rail Input and Output

COMPARATOR

 Comparator Push-Pull Output Current Drive: 18mA (TYP) at V_S = 5V

• Comparator Rail-to-Rail Input

VOLTAGE REFERENCE

- 1.2V Voltage Reference
- Low 42µV/°C Drift
- 2mA Output Drive Ability

APPLICATIONS

Temperature Measurements
Medical Instrumentation
Battery-Powered Instruments
IR Receivers
Alarm and Monitoring Circuits

1.8V, Micro-Power, Precision, RRIO, CMOS Zero-Drift SGM8606 Operational Amplifier with Comparator and Voltage Reference

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKING OPTION
SGM8606	TDFN-3×3-10L	-40°C to +85°C	SGM8606YTD10G/TR	SGM 8606D XXXXX	Tape and Reel, 4000

MARKING INFORMATION

NOTE: XXXXX = Date Code and Vendor Code.

Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If you have additional comments or questions, please contact your SGMICRO representative directly.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	6V
V _{IN} Differential	±(+Vs - (-Vs))
Voltage at I/O Pins	$(-V_S)$ - 0.3V to $(+V_S)$ + 0.3V
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10s	s)+260°C
ESD Susceptibility	
HBM	4000V
MM	400V
CDM	1000V

RECOMMENDED OPERATING CONDITIONS

Specified Voltage Range	1.8V to 5.5V
Operating Temperature Range	40°C to +85°C

OVERSTRESS CAUTION

Stresses beyond those listed in Absolute Maximum Ratings may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect reliability. Functional operation of the device at any conditions beyond those indicated in the Recommended Operating Conditions section is not implied.

ESD SENSITIVITY CAUTION

This integrated circuit can be damaged if ESD protections are not considered carefully. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

DISCLAIMER

SG Micro Corp reserves the right to make any change in circuit design, or specifications without prior notice.

PIN CONFIGURATION

FUNCTIONAL BLOCK DIAGRAM

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	-INA	Negative Input of Amplifier.
2	+INA	Positive Input of Amplifier.
3	-INC	Negative Input of Comparator.
4	VREF	1.2V Voltage Reference Output.
5	+INC	Positive Input of Comparator.
6	VOUTC	Output of Comparator. Push-Pull output.
7	-Vs	Negative Supply. Always connect this pin to ground for single power supply application.
8	+Vs	Positive Power Supply.
9	NC	No Connection.
10	VOUTA	Output of Amplifier.
Exposed Pad	_	Exposed Paddle. Must be connected to -Vs or left floating.

1.8V, Micro-Power, Precision, RRIO, CMOS Zero-Drift SGM8606 Operational Amplifier with Comparator and Voltage Reference

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Power Supply						
Power Supply Range	Vs		1.8		5.5	V
Quiaccent Current		I _{OUT} = 0		20	37	
Quiescent Current	IQ	-40°C ≤ T _A ≤ +85°C			48	μA

Operational Amplifier Only

(At T_A = +25°C, V_S = 5V, V_{CM} = + $V_S/2$, V_{OUT} = + $V_S/2$, and R_L = 10k Ω to + $V_S/2$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Characteristics			<u>'</u>		•	•	
James to Office to Vielland	.,	V _S = 5V		22	50	.,	
Input Offset Voltage	V _{os}	-40°C ≤ T _A ≤ +85°C			83	μV	
Input Offset Voltage Drift	ΔV _{OS} /ΔT	-40°C ≤ T _A ≤ +85°C		0.08		μV/°C	
Input Bias Current	I _B			130		pА	
Input Common Mode Voltage Range	V _{CM}		(-V _S) - 0.1		(+V _S) + 0.1	V	
	01.100	$(-V_S) - 0.1V < V_{CM} < (+V_S) + 0.1V$	89	100			
Common Mode Rejection Ratio	CMRR	-40°C ≤ T _A ≤ +85°C	85			dB	
		$(-V_S) + 0.1V < V_{OUT} < (+V_S) - 0.1V, R_L = 10k\Omega$	95	121		dB	
Open-Loop Voltage Gain	A _{OL}	-40°C ≤ T _A ≤ +85°C	94				
Input Impedance			I		-	ı	
Differential				10 ⁹		Ω	
Common Mode				10 ⁹		Ω	
Output Characteristics			•		•		
Outrot Vallage Outro from Dall		$R_L = 10k\Omega$		14	25	mV	
Output Voltage Swing from Rail		-40°C ≤ T _A ≤ +85°C			27		
Short-Circuit Current	I _{SC}	V _S = 5V		60		mA	
Open-Loop Output Impedance		f = 350kHz, I _{OUT} = 0		1		kΩ	
Power Supply						•	
Specified Voltage Range	Vs		1.8		5.5	V	
D 0 1 D : " D "	0000	V _S = 1.8V to 5.5V		4	20		
Power Supply Rejection Ratio	PSRR	-40°C ≤ T _A ≤ +85°C			25	μV/V	
Turn-On Time		V _S = 5V		220		μs	
Dynamic Performance						•	
Gain-Bandwidth Product	GBP	C _L = 100pF		350		kHz	
Slew Rate	SR	G = +1		0.18		V/µs	
Noise		•	· · · · · ·		•	•	
Input Voltage Noise		f = 0.1Hz to 10Hz		2		μV _{P-P}	

ELECTRICAL CHARACTERISTICS (continued)

Comparator and Voltage Reference (V_S = 1.8V)

(At $T_A = +25^{\circ}C$, $+V_S = 1.8V$, $-V_S = 0V$, $V_{CM} = +V_S/2$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS			
lound Offe et Velte ve		V _{CM} = 0V		0.5	3	>/			
Input Offset Voltage	Vos	V _{CM} = 1.8V		0.5	0.5 3 mV				
Input Offset Average Drift				2		μV/°C			
Common Mode Rejection Ratio	CMRR	V _{CM} = 0V to 1.8V	55	68		dB			
Power Supply Rejection Ratio	PSRR	V _S = 1.8V to 5.5V, V _{CM} = 0V	74	102		dB			
Power Supply Ramp-Up Rate (1)			5			V/s			
Large-Signal Voltage Gain	A _{VO}			100		dB			
Output Suina High		I _{OUT} = 1mA	1.412	1.525		V			
Output Swing High	V _{OH}	I _{OUT} = 1mA, -40°C ≤ T _A ≤ +85°C	1.330			7			
Output Swing Low	V	I _{OUT} = -1mA		173	249	m)/			
Output Swing Low	V _{OL}	$I_{OUT} = -1 \text{mA}, -40^{\circ}\text{C} \le T_{A} \le +85^{\circ}\text{C}$			347	mV			
	Іоит	Source	1.15	2		mA			
Outrout Command		Source, -40°C ≤ T _A ≤ +85°C	1.0						
Output Current		Sink		-3.5	-2.0				
		Sink, -40°C ≤ T _A ≤ +85°C			-1.4	1			
Donor and the Dalace (High to Love)		Overdrive = 10mV		11.7					
Propagation Delay (High to Low)		Overdrive = 100mV		5.6		μs			
Draw a matical Dalay (Layu ta Liinh)		Overdrive = 10mV		24.2					
Propagation Delay (Low to High)		Overdrive = 100mV		14.7		μs			
Diag Time		Overdrive = 10mV, $C_L = 30pF$, $R_L = 1M\Omega$: 1ΜΩ 168						
Rise Time	t _{RISE}	Overdrive = 100mV, $C_L = 30pF$, $R_L = 1M\Omega$		174		ns			
Fall Time		Overdrive = 10mV, C_L = 30pF, R_L = 1M Ω		75					
Fall Time	t _{FALL}	Overdrive = 100mV, $C_L = 30pF$, $R_L = 1M\Omega$		50		ns			
Noise of V _{REF}		f = 0.1Hz to 10Hz		0.3		mV _{P-P}			
Voltage Reference				•		·			
Reference Voltage	V_{REF}	I _{REF} = 0mA	1.176	1.200	1.224	V			
Reference Voltage Drift				42		μV/°C			
Reference Output Current (Source)				2		mA			

NOTE: 1. If the power supply ramp-up rate is lower than 5V/s, the reference voltage output is not guaranteed to start up.

ELECTRICAL CHARACTERISTICS (continued)

Comparator and Voltage Reference ($V_S = 5V$)

(At $T_A = +25^{\circ}C$, $+V_S = 5V$, $-V_S = 0V$, $V_{CM} = +V_S/2$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS				
land Official Vallage		V _{CM} = 0V		0.5	3	>/				
Input Offset Voltage	V _{os}	V _{CM} = 5V		0.5	3	mV				
Input Offset Average Drift				2		μV/°C				
Common Mode Rejection Ratio	CMRR	V _{CM} = 0V to 5V	63	76		dB				
Power Supply Rejection Ratio	PSRR	V _S = 1.8V to 5.5V, V _{CM} = 0V	74	102		dB				
Power Supply Ramp-Up Rate (1)			5			V/s				
Large-Signal Voltage Gain	A_{VO}			110		dB				
Output Suing High		I _{OUT} = 1mA	4.874	4.904		V				
Output Swing High	V _{OH}	I _{OUT} = 1mA, -40°C ≤ T _A ≤ +85°C	4.855			7				
Output Swing Low	V	I _{OUT} = -1mA		106	140					
Output Swing Low	V_{OL}	I _{OUT} = -1mA, -40°C ≤ T _A ≤ +85°C			154	mV				
		Source	14.0	18		mA				
	Іоит	Source, -40°C ≤ T _A ≤ +85°C	10.5							
Output Current		Sink		-18	-15.5					
		Sink, -40°C ≤ T _A ≤ +85°C			-12.5					
Description Delay (High to Low)		Overdrive = 10mV		12.7						
Propagation Delay (High to Low)		Overdrive = 100mV		5.6		μs				
Dranagation Daloy (Law to High)		Overdrive = 10mV		38.1						
Propagation Delay (Low to High)		Overdrive = 100mV		29.5		μs				
Dia Tima		Overdrive = 10mV, $C_L = 30pF$, $R_L = 1M\Omega$		39						
Rise Time	t _{RISE}	Overdrive = 100mV, $C_L = 30pF$, $R_L = 1M\Omega$		40		ns				
Fall Time		Overdrive = 10mV, $C_L = 30pF$, $R_L = 1M\Omega$		33						
Fall Time	t _{FALL}	Overdrive = 100mV, $C_L = 30pF$, $R_L = 1M\Omega$		30		ns				
Noise of V _{REF}		f = 0.1Hz to 10Hz		0.32		mV _{P-P}				
Voltage Reference										
Reference Voltage	V_{REF}	I _{REF} = 0mA	1.176	1.200	1.224	V				
Reference Voltage Drift				41		μV/°C				
Reference Output Current (Source)				2		mA				

NOTE: 1. If the power supply ramp-up rate is lower than 5V/s, the reference voltage output is not guaranteed to start up.

TYPICAL PERFORMANCE CHARACTERISTICS

Operational Amplifier Only

At $T_A = +25^{\circ}C$, $V_S = 5V$, and $C_L = 0$ pF, unless otherwise noted.

Operational Amplifier Only (continued)

At $T_A = +25^{\circ}C$, $V_S = 5V$, and $C_L = 0$ pF, unless otherwise noted.

Comparator Only

Comparator Only (continued)

Offset Voltage (mV)

Comparator Only (continued)

Comparator Only (continued)

1.8V, Micro-Power, Precision, RRIO, CMOS Zero-Drift SGM8606 Operational Amplifier with Comparator and Voltage Reference

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Original (DECEMBER 2015) to REV.A	Page
Changed from product preview to production data	All

PACKAGE OUTLINE DIMENSIONS TDFN-3×3-10L

TOP VIEW

RECOMMENDED LAND PATTERN (Unit: mm)

Symbol	-	nsions meters	Dimensions In Inches		
	MIN	MAX	MIN	MAX	
Α	0.700	0.800	0.028	0.031	
A1	0.000	0.050	0.000	0.002	
A2	0.203	REF	0.008	REF	
D	2.900	3.100	0.114	0.122	
D1	2.300	2.600	0.091	0.103	
E	2.900	3.100	0.114	0.122	
E1	1.500	1.800	0.059	0.071	
k	0.200	MIN	0.008 MIN		
b	0.180	0.300	0.007	0.012	
е	0.500) TYP	0.020	TYP	
L	0.300	0.500	0.012	0.020	

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
TDFN-3×3-10L	13"	12.4	3.35	3.35	1.13	4.0	8.0	2.0	12.0	Q1

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton
13"	386	280	370	5