Elements Of Data Science - S2022

Week 3: Pandas, Data Exploration and Visualization

2/1/2022

TODOs

- **Read** Selections from PDSH Chapter 3
- **Read** Selections from PDSH Chapter 4
- (Optional) Seaborn Tutorial https://seaborn.pydata.org/tutorial.html
- Complete Week 3 Quiz
- HW1 out this week, includes questions on Hypothesis Testing

TODAY

- Pandas
- Data Exploration
- Visualization in Python

Environment Setup

```
In [1]:
```

import numpy as np

Intro to Pandas

Pandas is an open source, BSD-licensed library providing:

- high-performance, easy-to-use data structures and
- data analysis tools

In [2]:

usually imported using the alias 'pd'
import pandas as pd

- Primary datastructures:
 - **Series**: 1D array with a flexible index
 - **Dataframe**: 2D matrix with flexible index and column names

Pandas Series

• 1D array of data (any numpy datatype) plus an associated **index** array

```
In [3]:
s = pd.Series(np.random.rand(4))
Out[3]:
0 0.472418
1 0.924422
2 0.033124
3 0.441399
dtype: float64
In [4]:
# return the values of the series
s.values
Out[4]:
array([0.47241843, 0.9244225, 0.03312375, 0.44139
901])
```

```
In [5]:
# return the index of the series
s.index
```

Out[5]:

Pandas Series Cont.

• index is flexible, can be anything hashable (integers, strings, ...)

```
In [6]:
# create Series from array and set index
s = pd.Series([1,2,3],index=['a','b','c'],name='Example_Series')
Out[6]:
 a
 b
 Name: Example_Series, dtype: int64
In [7]:
s['a']
Out[7]:
In [8]:
s[['b','c']]
```

```
out[8]:

b    2
c    3
Name: Example_Series, dtype: int64
```

Pandas Series Cont.

accessing other Series attributes

```
In [9]:
Out[9]:
 a
Name: Example_Series, dtype: int64
In [10]:
print(f'{s.index = :}')
print(f'{s.values = :}')
print(f'{s.name} = :>20s}')
print(f'{s.dtype = :}')
print(f'{s.shape = :}')
'{:>20s}'.format(s.name)
s.index = Index(['a', 'b', 'c'], dtype='object')
 s.values = [1 2 3]
                          Example_Series
 s.name
```

Pandas Series Cont.

```
In [11]:
# Can create series with index from a dictionary
s = pd.Series({'a':1,'b':2,'c':3,'d':4})
Out[11]:
 a
 b 2
 dtype: int64
In [12]:
print(f'{s.index = :}')
print(f'{s.values = :}')
s.index = Index(['a', 'b', 'c', 'd'], dtype='obje
 ct')
 s.values = [1 2 3 4]
```

Pandas DataFrame

- tabular datastructure
- each column a single datatype
- contains both row and column indices
- single column == Series

Pandas DataFrame Cont.

```
In [13]:
df = pd.DataFrame({'Year':[2017,2018,2018,2019],
                  'Class_Name':['A','A','B','A'],
                  'Measure1':[2.1,3.0,2.4,1.9]
                 })
In [14]:
df
Out[14]:
       Year Class_Name Measure1
0 2017
                     2.1
                     3.0
1 2018
2 2018
                     2.4
                     1.9
3 2019
In [15]:
print(df)
```

Year Class_Name Measure1 2017 A 2.1

0

1	2018	Α	3.0
2	2018	В	2.4
3	2019	Α	1.9

In [16]:

display(df)

	Year	Class_Name	Measure1
0	2017	Α	2.1
1	2018	Α	3.0
2	2018	В	2.4
3	2019	А	1.9

Pandas DataFrame Cont.

```
In [17]:
data = [[2017, 'A', 2.1],
        [2018, 'A', 3.0],
        [2018, 'B', 2.4],
        [2019, 'A', 1.9]]
In [18]:
df = pd.DataFrame(data,
                 columns=['Year','Class_Name','Measure1'],
                 index=['001','002','003','004'])
df.shape
Out[18]:
 (4, 3)
In [19]:
df
Out[19]:
         Year Class_Name Measure1
    2017
                        2.1
001
    2018
                        3.0
                        2.4
    2018
                  В
```

 Year
 Class_Name
 Measure1

 004
 2019
 A
 1.9

Pandas Attributes

• Get shape of DataFrame : shape

```
In [20]:
df.shape # rows, columns
Out[20]:
 (4, 3)
• Get index values : index
In [21]:
df.index
Out[21]:
Index(['001', '002', '003', '004'], dtype='objec
t')
• Get column values : columns
```

In [22]:

df.columns

```
Out[22]:
```

```
Index(['Year', 'Class_Name', 'Measure1'], dtype='o
bject')
```

Pandas Indexing/Selection

```
Select by label:
• .loc[]
In [23]:
df.loc['001']
Out[23]:
 Year
                    2017
 Class_Name
 Measure1
                     2.1
 Name: 001, dtype: object
In [24]:
df.loc['001','Measure1']
```

2.1

Out[24]:

Pandas Indexing/Selection Cont.

```
Select by position:
```

```
• .iloc[]
In [25]:
df.iloc[0]
Out[25]:
Year
                   2017
Class_Name
Measure1
                    2.1
Name: 001, dtype: object
In [26]:
df.iloc[0,2]
Out[26]:
```

2.1

Pandas Indexing/Selection Cont.

Selecting multiple rows/columns: use list (fancy indexing)

```
In [27]:
df.loc[['002','004']]
Out[27]:
         Year Class Name Measure1
   2018
                       3.0
002
004 2019
                       1.9
In [28]:
df.loc[['002','004'],['Year','Measure1']]
Out[28]:
        Year Measure1
    2018
              3.0
   2019
```

Pandas Slicing

```
In [29]:
# Get Last two rows
df.iloc[-2:]
Out[29]:
         Year Class_Name Measure1
   2018
                       2.4
   2019
                       1.9
In [30]:
# Get first two rows and first two columns
df.iloc[:2,:2]
Out[30]:
         Year Class Name
    2017
002 2018
```

NOTE: .iloc is **exclusive** (start:end+1)

Pandas Slicing Cont.

Can also slice using labels:

```
In [31]:
df.loc['002':'004']
Out[31]:
        Year Class_Name Measure1
   2018
                      3.0
002
   2018
                      2.4
   2019
                      1.9
In [32]:
df.loc['002':'004',:'Class_Name']
Out[32]:
        Year Class_Name
   2018
   2018
   2019
```

NOTE: .loc is inclusive

Pandas Slicing Cont.

How to indicate all rows or all columns? :

```
In [33]:
df.loc[:,'Measure1']
Out[33]:
001 2.1
002 3.0
003 2.4
004 1.9
Name: Measure1, dtype: float64
In [34]:
df.iloc[2:,:]
Out[34]:
      Year Class Name Measure1
  2018
               2.4
               1.9
  2019
```

Pandas Indexing Cont.

Shortcut for indexing:

```
In [35]:
df['Class_Name']
Out[35]:
001
           Α
002 A
003
004
Name: Class_Name, dtype: object
In [36]:
# can use dot notation if there is no space in label
df.Class_Name
Out[36]:
001
002
           В
003
```

004 A

Name: Class_Name, dtype: object

Panda Selection Chaining

Get 'Year' and 'Measure1' for first 3 rows:

For records '001' and '003' get last two columns

Panda Selection Chaining Cont.

For record '001' get last two columns?:

```
In [39]:
```

```
# reduce the amount of error information printed
%xmode Minimal
```

Exception reporting mode: Minimal

```
In [40]:
```

```
# Note: add 'raises-exception' tag to cell to continue running after exception
df.loc['001'].iloc[:,-2:] # row with label '001', then all rows, last two columns?
```

IndexingError: Too many indexers

```
In [41]:
```

```
df.loc['001']
```

Out[41]:

```
Year 2017
Class_Name A
```

```
Measure1 2.1
Name: 001, dtype: object
```

```
In [42]:
```

```
df.loc['001'].iloc[-2:] # row with label '001', last two elements of Series
```

Out[42]:

Class_Name A

Measure1 2.1

Name: 001, dtype: object

Pandas head and tail

Get a quick view of the first or last rows in a DataFrame

In [43]:

df.head() # first 5 rows by default

Out[43]:

	Year	Class_Name	Measure1
001	2017	Α	2.1
002	2018	Α	3.0
003	2018	В	2.4
004	2019	А	1.9

In [44]:

df.tail(2) # only print last 2 rows

Out[44]:

	Year	Class_Name	Measure1
003	2018	В	2.4
004	2019	Α	1.9

Pandas Boolean Mask

```
In [45]:
# Which rows have Class Name of 'A'?
df.loc[:,'Class Name'] == 'A'
Out[45]:
 001
              True
 002 True
 003
            False
 004
              True
 Name: Class_Name, dtype: bool
In [46]:
# Get all data for rows with with Class_Name 'A'
df.loc[df.Class_Name == 'A']
Out[46]:
       Year Class_Name Measure1
  2017
                  2.1
001
002 2018
                  3.0
   2019
                   1.9
004
```

```
In [47]:
# Get Measure1 for all records for Class_Name 'A'
df.loc[df.Class_Name == 'A', 'Measure1']
Out[47]:
```

001 2.1002 3.0004 1.9

Name: Measure1, dtype: float64

Pandas Boolean Mask Cont.

Get all records for class 'A' before 2019

Get all records in a set of years:

```
In [49]:

df.loc[df.Year.isin([2017,2019])]

Out[49]:

Year Class_Name Measure1

001 2017 A 2.1

004 2019 A 1.9
```

Pandas Selection Review

- .loc[]
- .iloc[]
- Fancy Indexing
- Slicing
- Chaining
- head and tail
- Boolean Mask

Pandas Sorting

```
In [50]:
df.sort_values(by=['Measure1']).head(3)
Out[50]:
         Year Class_Name Measure1
                       1.9
    2019
                       2.1
    2017
001
    2018
                 В
                       2.4
003
In [51]:
df.sort_values(by=['Measure1'],ascending=False).head(3)
Out[51]:
         Year Class Name Measure1
    2018
                       3.0
002
                       2.4
    2018
003
    2017
                       2.1
```

```
In [52]:
```

```
df.sort_values(by=['Year','Measure1']).head(3)
```

Out[52]:

	Year	Class_Name	Measure1
001	2017	Α	2.1
003	2018	В	2.4
002	2018	Α	3.0

Exploratory Data Analysis

For a new set of data, would like to know:

- amount of data (rows, columns)
- range (min, max)
- counts of discrete values
- central tendencies (mean, median)
- dispersion or spread (variance, IQR)
- skew
- covariance and correlation ...

Yellowcab Dataset

- Records of Yellowcab Taxi trips from January 2017
- more info: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Loading Datasets from CSV (Comma Separated Values)

- columns separated by delimiter, eg. comma, tab (\t), pipe (|)
- one row per record, observation
- often, strings quoted
- often, first row contains column headings
- often, comment rows starting with #

In [53]:

```
!head ../data/yellowcab\_demo\_withday categories.csv
```

A sample of yellocab taxi trip data from Jan 201

pickup_datetime,dropoff_datetime,trip_distance,far e_amount,tip_amount,payment_type,day_of_week,is_we ekend

```
2017-01-05 14:49:04,2017-01-05 14:53:53,0.89,5.5, 1.26,Credit card,3,True
```

2017-01-15 01:07:22,2017-01-15 01:26:47,2.7,14.0, 0.0, Cash, 6, False

2017-01-29 09:55:00,2017-01-29 10:04:43,1.41,8.0, 0.0, Cash, 6, False

2017-01-10 05:40:12,2017-01-10 05:42:22,0.4,4.0,0. 0,Cash,1,True

2017-01-06 17:02:48,2017-01-06 17:16:10,2.3,11.0, 0.0, Cash, 4, True

2017-01-14 19:03:14,2017-01-14 19:08:41,0.8,5.5,,C redit card,5,True

2017-01-06 18:51:52,2017-01-06 18:55:45,0.2,4.5,0.0, Cash,4,True

2017-01-04 20:47:30,2017-01-04 21:01:24,2.68,11.

5,,Credit card,2,True

Loading Datasets with Pandas

In [54]:

In [55]:

```
# display first 5 rows
df.head(5)
```

Out[55]:

	pickup_datetime	dropoff_datetime	trip_distance	fare_amount	tip_amount	payment_type	day_of_week	is_weekend
0	2017-01-05 14:49:04	2017-01-05 14:53:53	0.89	5.5	1.26	Credit card	3	True
1	2017-01-15 01:07:22	2017-01-15 01:26:47	2.70	14.0	0.00	Cash	6	False
2	2017-01-29 09:55:00	2017-01-29 10:04:43	1.41	8.0	0.00	Cash	6	False
3	2017-01-10 05:40:12	2017-01-10 05:42:22	0.40	4.0	0.00	Cash	1	True

	pickup_datetime	dropoff_datetime	trip_distance	fare_amount	tip_amount	payment_type	day_of_week	is_weekend	
4	2017-01-06	2017-01-06	2.30	11 ∩	0.00	Cash 4	Л	Truo	
-	17:02:48	17:16:10	2.30	11.0	0.00	Cash	4	Irue	

Get Size of Dataset

```
In [56]:
df.shape
Out[56]:
 (1000, 8)
In [57]:
# number of rows
f'{df.shape[0]} rows'
Out[57]:
 '1000 rows'
In [58]:
# number of columns
f'{df.shape[1]} columns'
Out[58]:
 '8 columns'
In [59]:
'number of rows: {}, number of columns: {}'.format(*df.shape)
```

Out[59]:

'number of rows: 1000, number of columns: 8'

Aside: Argument Unpacking with *

- * in when calling a function unpacks an iterable, passing each value as an argument
- want format(2,8) instead of the format((2,8))

```
In [60]:
    df.shape
Out[60]:
      (1000, 8)

In [61]:
# call .format((2,8))
    'number of rows: {}, number of columns: {}'.format(df.shape)
```

IndexError: Replacement index 1 out of range for p
ositional args tuple

```
In [62]:
# call .format(2,8)
'number of rows: {}, number of columns: {}'.format(*df.shape)
Out[62]:
```

'number of rows: 1000, number of columns: 8'

What are the column names?

```
In [63]:
df.columns
Out[63]:
Index(['pickup_datetime', 'dropoff_datetime', 'tri
p distance', 'fare amount',
         'tip amount', 'payment type', 'day of wee
k', 'is weekend'],
       dtype='object')
In [64]:
df.columns.values
Out[64]:
array(['pickup_datetime', 'dropoff datetime', 'tri
p distance',
         'fare_amount', 'tip_amount', 'payment_typ
e', 'day of week',
         'is weekend'], dtype=object)
```

```
In [65]:

df.columns.tolist()

Out[65]:
```

```
['pickup_datetime',
  'dropoff_datetime',
  'trip_distance',
  'fare_amount',
  'tip_amount',
  'payment_type',
  'day_of_week',
  'is_weekend']
```

What are the column datatypes?

```
In [66]:
df.dtypes
Out[66]:
                       datetime64[ns]
pickup_datetime
dropoff_datetime
                       datetime64[ns]
trip distance
                               float64
fare amount
                               float64
tip_amount
                                float64
                                 object
payment_type
day of week
                                  int64
is_weekend
                                   bool
dtype: object
In [67]:
```

pandas.core.series.Series

type(df.dtypes)

Out[67]:

Get Summary Info for DataFrame

6

```
In [68]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
     Column
                        Non-Null Count
                                         Dtype
                                         datetime64
     pickup datetime 1000 non-null
 0
[ns]
     dropoff datetime
                        1000 non-null
                                         datetime64
[ns]
                                         float64
     trip_distance
                        1000 non-null
 2
                                         float64
 3
     fare amount
                        1000 non-null
                                         float64
 4
     tip amount
                        910 non-null
 5
                                         object
     payment type
                        1000 non-null
     day of week
                                         int64
```

1000 non-null

```
7 is_weekend 1000 non-null bool dtypes: bool(1), datetime64[ns](2), float64(3), in t64(1), object(1) memory usage: 55.8+ KB
```

- number of rows
- number of columns
- column names, number of filled values, datatypes
- number of each datatype seen
- size of dataset in memory

Variable (Observation) Types

- **Numeric** (eg. weight, temperature)
 - usually has a zero value
 - describes magnitude
- Categorical (eg. class, variety)
 - usually a finite set
 - no order
- Ordinal (eg. Likert scale, education level, etc.)
 - usually a finite set
 - has order
 - usually missing zero
 - difference between levels may not be the same

Numeric: Data Ranges

```
In [69]:
df.trip_distance.min()
Out[69]:
0.0
In [70]:
df.trip_distance.max()
Out[70]:
 32.77
In [71]:
df.min(numeric_only=True)
Out[71]:
trip_distance
                              0.0
fare_amount
                              2.5
tip_amount
                              0.0
day_of_week
                                  0
```

is_weekend False

dtype: object

In [72]:

df.max(numeric_only=True)

Out[72]:

trip_distance	32.77
fare_amount	88.0
tip_amount	22.7
day_of_week	6
is_weekend	True
dtype: object	

Numeric: Central Tendency with Mean

• Sample Mean

$$\overline{X} = \frac{1}{n} \sum X_i$$

In [73]:

```
df.fare_amount.mean()
```

Out[73]:

12.4426

```
In [74]:
```

```
print(f'{df.fare_amount.mean() = :0.2f}')
```

- Mean is sensitive to *outliers*
- Outlier: a data point that differs significantly from other observations
 - data error
 - effect of heavy tailed distribution?

Numeric: Central Tendency with Median

- Median
 - Divides sorted dataset into two equal sizes
 - 50% of the data is less than or equal to the median

```
In [75]:
```

```
df.fare_amount.median()
```

Out[75]:

9.0

- Median is robust to outliers
- **Robust:** Not affected by outliers

Numeric: Quantiles/Percentiles

- Quantile: cut point for splitting distribution
- **Percentile:** x% of data is less than or equal to the xth percentile

```
In [76]:
df.fare_amount.quantile(.95) # 95% of the data is less than or equal to x?
Out[76]:
 33.5
In [77]:
df.fare_amount.quantile([.05,.95]) # 90% of the data is between 4 and 33.5
Out[77]:
 0.05
         4.0
 0.95 33.5
 Name: fare_amount, dtype: float64
In [78]:
df.fare_amount.quantile([0,.25,.5,.75,1]) # Quartiles: 25% of data is between each pair
Out[78]:
```

```
0.00
0.50
0.50
0.75
14.0
1.00
88.0
```

Name: fare_amount, dtype: float64

Numeric: Spread with Variance

• Sample Variance

$$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$$

In [79]:

df.fare_amount.var().round(3)

Out[79]:

116.809

but this is in dollars²!

Numeric: Spread with Standard Deviation

• Sample Standard Deviation

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}}$$

```
In [80]:
```

```
df.fare_amount.std().round(3)
```

Out[80]:

10.808

- Back in original scale of dollars
- Sensitive to outliers

Numeric: Exploring Spread with IQR

- Quartiles
 - ~25% of data is ≤ first quartile, 25th percentile
 - ~50% of data is ≤ second quartile, 50th percentile (Median)
 - ~75% of data is ≤ third quartile, 75th percentile
- Can find quartiles with: pandas quantile or numpy percentile
- Interquartile Range (IQR)
 - (third quartile first quartile) or (75th percentile 25th percentile)

```
In [81]:

df.fare_amount.quantile(.75) - df.fare_amount.quantile(.25)

Out[81]:

7.5
```

/ · J

• IQR is robust to outliers

Numeric: Exploring Distribution with Skew

Skewness

- measures assymetry of distribution around mean
- indicates tail to left (neg) or right (pos)
- skew will lead to difference between median and mean

```
In [82]:
```

```
df.fare_amount.skew()
```

Out[82]:

2.882730031010152

Easier to understand with a plot...

Numeric Summary Stats with .describe

In [83]:

df.describe()

Out[83]:

	trip_distance	fare_amount	tip_amount	day_of_week
count	1000.000000	1000.000000	910.000000	1000.000000
mean	2.880010	12.442600	1.766275	2.987000
std	3.678534	10.807802	2.315507	2.043773
min	0.000000	2.500000	0.000000	0.000000
25%	0.950000	6.500000	0.000000	1.000000
50%	1.565000	9.000000	1.350000	3.000000
75%	3.100000	14.000000	2.460000	5.000000
max	32.770000	88.000000	22.700000	6.000000

Applying Functions to Groups of Data

mean

median

```
In [84]:
df.groupby('payment type')
Out[84]:
 <pandas.core.groupby.generic.DataFrameGroupBy obje</pre>
 ct at 0x7f40577e6d00>
In [85]:
df.groupby('payment_type').mean()
Out[85]:
             trip distance
                                                      day of week
                            fare amount
                                         tip amount
                                                                   is weekend
payment_type
         2.732209
                      11.856716
                                    0.000000
                                                 2.898507
                                                              0.847761
                      12.761086
                                                 3.039216
         2.961870
                                     2.683322
                                                              0.850679
 Credit card
         0.500000
                        5.000000
                                    0.000000
                                                 0.500000
                                                               1.000000
  No charge
In [86]:
# applying multiple aggregation functions
df.groupby('payment_type')['trip_distance'].agg(['mean','median'])
Out[86]:
```

payment_type	mean	median	
payment_type Cash	2.732209	1.37	
	<i>L.13LL03</i>	1.57	
Credit card	2.961870	1.70	
No charge	0.500000	0.50	

In [87]:

df[df.payment_type.isin(['Cash','Credit card'])].groupby(['payment_type','is_weekend']).trip_distance.agg(['mean','median'])

Out[87]:

		mean	median
payment_type	is_weekend		
Cash	False	3.507059	2.10
	True	2.593063	1.28
Credit card	False	3.304646	1.74
	True	2.901702	1.70

Aside: Dealing with long chains

• long chains may not be visible in notebooks

Out[89]:

		mean	median
payment_type	is_weekend		
Cash	False	3.507059	2.10
	True	2.593063	1.28
Credit card	False	3.304646	1.74
	True	2.901702	1.70

In [90]:

```
# wrap in parentheses
(df[df.payment_type.isin(['Cash','Credit card'])]
.groupby(['payment_type','is_weekend'])
```

```
.trip_distance.agg(['mean','median'])
)
```

Out[90]:

		mean	median
payment_type	is_weekend		
Cash	False	3.507059	2.10
	True	2.593063	1.28
Credit card	False	3.304646	1.74
	True	2.901702	1.70

Visualizations in Python

- plotting with matplotlib.pyplot
- plotting with pandas
- plotting with seaborn
- need interactive plots? plotly

Matplotlib.pyplot

```
In [91]:
```

import matplotlib.pyplot as plt
%matplotlib inline

In [92]:

plt.scatter(df.trip_distance,df.fare_amount)

Out[92]:

<matplotlib.collections.PathCollection at 0x7f409f
77b8e0>

In [93]:

plt.scatter(df.trip_distance,df.fare_amount);

Matplotlib Axes

```
In [94]:
```


Matplotlib: Subplots, Figure and Axis

In [95]:

```
fig,ax = plt.subplots(1,2,figsize=(12,4))
ax[0].scatter(df.trip_distance,df.fare_amount,marker='x',color='blue')
ax[1].scatter(df.trip_distance,df.tip_amount,color='red');
ax[0].set_xlabel('trip_distance')
ax[1].set_xlabel('trip_distance')
ax[0].set_ylabel('fare_amount'), ax[1].set_ylabel('tip_amount')
ax[0].set_title('trip_distance vs fare_amount')
ax[1].set_title('trip_distance vs tip_amount')
fig.suptitle('Yellowcab Taxi Features');
```


Plotting via Pandas

```
In [96]:
```

```
ax = df.plot.scatter(x='trip_distance',y='fare_amount');
ax.set_ylabel('fare')
ax.set_title('trip_distance vs fare_amount');
```


Univariate Distribution: Histogram

```
In [97]:
```

```
df.fare_amount.plot.hist();
```


In [98]:

```
ax = df.fare_amount.plot.hist(bins=100)
ax.set_xlabel('fare_amount');
```


Univariate Distribution: Histogram

In [99]:

```
fig,ax = plt.subplots(1,1,figsize=(12,6));

df.fare_amount.plot.hist(bins=100, ax=ax);
ax.set_xlabel('fare_amount (dollars))');

# add a vertical line
ax.axvline(df.fare_amount.mean(),color='r');
#ax.vlines(df.fare_amount.mean(),*ax.get_ylim(),color='r');

# add some text
ax.text(df.fare_amount.mean()+1,ax.get_ylim()[1]*.75,'mean');
```


Subplots with Pandas

In [100]:

```
fig,ax = plt.subplots(1,2,figsize=(16,4))
df[df.pickup_datetime.dt.hour < 12].fare_amount.plot.hist(bins=100,ax=ax[0]);
ax[0].set_xlabel('fare_amount (dollars)');
ax[0].set_title('Trips Before Noon');
df[df.pickup_datetime.dt.hour >= 12].fare_amount.plot.hist(bins=100,ax=ax[1]);
ax[1].set_xlabel('fare_amount (seconds)');
ax[1].set_title('Trips After Noon');
```


Sharing Axes

In [101]:

```
fig,ax = plt.subplots(1,2,figsize=(16,4), sharey=True)

df[df.pickup_datetime.dt.hour < 12].fare_amount.plot.hist(bins=100,ax=ax[0]);
ax[0].set_xlabel('fare_amount (dollars)');
ax[0].set_title('Trips Before Noon');
df[df.pickup_datetime.dt.hour >= 12].fare_amount.plot.hist(bins=100,ax=ax[1]);
ax[1].set_xlabel('fare_amount (seconds)');
ax[1].set_title('Trips After Noon');
```


Plotting with Seaborn

- Python data visualization library
- Based on matplotlib.
- It provides a high-level interface for drawing attractive and informative statistical graphics.

In [102]:

```
import seaborn as sns
sns.__version__
```

Out[102]:

'0.11.2'

Univariate Distribution with Seaborn Histplot

```
In [103]:
```

```
fig,ax = plt.subplots(1,1,figsize=(6,3))
sns.histplot(x='fare_amount',data=df,ax=ax);
```


In [104]:

```
fig,ax = plt.subplots(1,1,figsize=(6,3))
sns.histplot(x=df.fare_amount,ax=ax);
```


Univariate Distribution with Seaborn Histplot Cont.

```
In [105]:
```

```
fig,ax = plt.subplots(1,1,figsize=(6,4))
# many other parameters to play with
sns.histplot(x='fare_amount',data=df,ax=ax,kde=True,stat='percent');
```


Aside: KDE

Seaborn Styles

```
In [106]:
```

```
# for a single plot using a context
with sns.axes_style('whitegrid'):
    sns.histplot(x=df.fare_amount);
```



```
In [107]:
```

```
# set style globally
sns.set_style('darkgrid')
```

```
In [108]:
```

```
sns.histplot(x=df.fare_amount);
```


Univariate Distributions: Boxplot

```
In [109]:
```

```
fig,ax = plt.subplots(1,1,figsize=(12,8))
sns.boxplot(x=df.fare_amount,ax=ax);
```


Univariate Distributions: Boxplot

```
In [110]:
```

```
fig,ax = plt.subplots(1,1,figsize=(6,4))
sns.boxplot(x=df.fare_amount,ax=ax);
```


- first quartile
- second quartile (Median)
- third quartile
- whiskers (usually 1.5*IQR)
- outliers

Combining Plots with Subplots

```
In [111]:
```

```
fig,ax = plt.subplots(2,1,figsize=(10,10), sharex=True)
sns.histplot(x=df.fare_amount, ax=ax[0]);
sns.boxplot(x=df.fare_amount, ax=ax[1]);
```


Other Univariate Distribution Visualizations

In [112]:

```
fig,ax = plt.subplots(1,3,figsize=(20,6))
sns.stripplot(x='fare_amount',data=df[:200],ax=ax[0])
sns.violinplot(x='fare_amount',data=df,ax=ax[1])
sns.swarmplot(x='fare_amount',data=df[:200],ax=ax[2]);
```


Bivariate: Evaluating Correlation

- Correlation: the degree to which two variables are linearly related
- Pearson Correlation Coefficient: $\rho_{XY} = \frac{\text{cov}(X,Y)}{\sigma_X \sigma_Y}$
- Sample Correlation: $r = \frac{\sum (x_i \overline{x})(y_i \overline{y})}{(n-1)s_x s_y}$
- Takes values between:
 - -1 (highly negatively correlated)
 - 0 (not correlated)
 - 1 (highly positively correlated)

```
In [113]:
```

```
df.trip_distance.corr(df.fare_amount)
```

Out[113]:

0.948701076897808

```
In [114]:
```

```
from scipy.stats import pearsonr
r,p = pearsonr(df.trip_distance, df.fare_amount)
r,p
```

```
Out[114]:
```

(0.9487010768978079, 0.0)

Pearson Correlation

</center>

Bivariate: Scatterplot

```
In [115]:
```

```
sns.scatterplot(x='trip_distance',y='fare_amount',data=df);
```


In [116]:

```
sns.scatterplot(x='trip_distance',y='fare_amount',data=df,alpha=0.2);
```


Bivariate: Add Regression Line

```
In [117]:
```

```
fig,ax = plt.subplots(1,1,figsize=(12,8))
sns.regplot(x='trip_distance',y='fare_amount',data=df,ax=ax);
```


Bivariate: Joint Plot

```
In [118]:
```

```
sns.jointplot(x='trip_distance',y='fare_amount',data=df,alpha=0.5);
```


Bivariate: Joint Plot with KDE

```
In [119]:
```


Comparing Multiple Variables with pairplot

```
In [120]:
```

```
sns.pairplot(df[['trip_distance','fare_amount','tip_amount']]);
```


Categorical Variables: Frequency

```
In [121]:
df.payment type.value counts()
Out[121]:
Credit card
                  663
Cash
                     335
No charge
Name: payment_type, dtype: int64
In [122]:
df.payment type.value counts(normalize=True)
Out[122]:
Credit card 0.663
                  0.335
Cash
No charge
             0.002
Name: payment_type, dtype: float64
In [123]:
sns.countplot(x=df.payment_type);
```


Plotting Numeric and Categorical

```
In [124]:
```

```
fig,ax = plt.subplots(1,1,figsize=(12,8))
sns.barplot(x='payment_type',y='fare_amount',data=df,estimator=np.mean,ci=95);
ax.set_ylabel('mean fare_amount');
```


Plotting with Hue

In [125]:

Same Axis, Multiple Plots with Seaborn

In [126]:

```
fig,ax = plt.subplots(1,1,figsize=(12,6))
sns.histplot(x=df[df.pickup_datetime.dt.hour < 12].tip_amount, label='before noon',color='blue',ax=ax);
sns.histplot(x=df[df.pickup_datetime.dt.hour >= 12].tip_amount, label='after noon',color='orange',ax=ax);
plt.legend(loc='best');
```


Data Exploration and Viz Review

- central tendencies: mean, median
- spread: variance, std deviation, IQR
- correlation: pearson correlation coefficient
- plotting real valued variables: histogram, scatter, regplot
- plotting categorical variables: count, bar
- plotting interactions: jointplot, pairplot

