Sistemi baza podataka

XML model podataka

XML Schema jezik i XML baze podataka

Sadržaj

- Motivacija
- XML model podataka
- DTD i XML Schema
- XML baze podataka
- Upitni jezici
- XML SUBP

- Internet aplikacije i aplikacije za elektronsku trgovinu
 - višeslojne K/S arhitekture
 - nude web interfejse
 - pristup informacijama smeštenim u jednu ili više baza podataka
 - putem web stranice
 - specifikacija i formatiranje podataka putem HTML-a
 eng. HyperText Markup Language
 - uobičajeno zahtevaju značajnu razmenu podataka između različitih sistema
 - npr. B2B, B2C

Problem

- HTML nije pogodan za specifikaciju strukturiranih podataka dobijenih iz BP
 - pogodan je za specifikaciju web dokumenata
 - predefinisan skup tagova
 - nije proširiv od strane korisnika

Jedan pristup rešavanju problema

- Extensible Markup Language (XML)
 - danas široko zastupljen u praksi
 - prikazivanje strukturiranih podataka
 - razmenu podataka putem web-a
 - nastaje iz jezika Standard Generalized Markup Language (ISO 8879:1986 SGML)

- Extensible Markup Language (XML)
 - nastaje 1998. godine
 - specifikacija strukture i semantike podataka
 - XML Schema Language
 - mogućnost slobodnog kreiranja tagova
 - podržava kreiranje specifikacija na nivou apstrakcije logičkih struktura obeležja
 - XML Language
 - specificira logičke strukture podataka
 - » instance logičkih struktura obeležja, opisanih putem XML Schema specifikacija

- Extensible Markup Language (XML)
 - specifikacija prezentacionog formata XML struktura
 - Extensible Stylesheet Language (XSL)
 - XSL Formatting Objects (XSL-FO)
 - mogućnost automatskih transformacija XML struktura
 - XSL Transformations (XSLT)

Sadržaj

- Motivacija
- XML model podataka
- DTD i XML Schema
- XML baze podataka
- Upitni jezici
- XML SUBP

Tipovi podataka prema strukturi

- strukturirani podaci
- nestrukturirani podaci
- polustrukturirani podaci

Tipovi podataka prema strukturi

- strukturirani podaci
 - postoji šema koja definiše format podataka
 - striktno zadovoljavaju predefinisani format
 - u praksi, očekuje se da takva šema bude razrađena do potrebnog stepena detaljnosti
 - primer
 - podaci u relacionoj bazi podataka
 - » sve torke imaju isti format

Tipovi podataka prema strukturi

- nestrukturirani podaci

- (A) može postojati šema koja definiše format podataka
 - tipovi podataka su, međutim, često "preširoki"
 - » nedovoljno detaljni sa stanovišta semantike podataka
- (B) ne postoji ni šema koja definiše format podataka
 - ne postoji nikakav ugrađeni format kojeg podaci prate
 - » moguće je da postoji nekakav eksterni format koji opisuje semantiku podataka, ali on ne pripada strukturi

primeri

- tekstualni ili multimedijalni dokumenti
 - podaci su nestrukturirani sa stanovišta sistema za njihovo skladištenje
- HTML dokument
 - tagovi određuju formatiranje ali ne i značenje

Tipovi podataka prema strukturi

- polustrukturirani podaci
 - imaju definisanu strukturu ali postoje i odstupanja
 - atributi mogu da postoje
 - » u svim entitetima
 - » samo u nekim entitetima
 - prikazuju se, često, putem grafova i stabala
- moguće je definisati šemu
 - koja specificira moguće elemente koji učestvuju u strukturi
 - mogu ali ne moraju svi da postoje

Primer polustrukturiranih podataka

XML dokument

- centralni koncept XML jezika
- konstruiše se pomoću dva osnovna koncepta

element

- glavni gradivni element XML dokumenta
- opisuje se pomoću početnog i krajnjeg taga (oznake)
- moguće napraviti hijerarhiju elemenata

atribut

- karakteristika koja detaljnije opisuje element i reprezentuje njegovu semantiku
- upotreba atributa ne mora uvek odgovarati upotrebi atributa u relacionom modelu podataka
 - » u XML dokumentima za opis podataka koji se čuvaju u elementima koriste se atributi

Primer

- projekti kompanije
- svaki projekat sadrži
 - naziv projekta
 - šifru projekta
 - lokaciju kompanije
 - šifru departmana
 - radnike koji rade na projektu
- svaki radnik sadrži
 - jedinstveni matični broj građanina
 - ime i/ili prezime radnika
 - broj radnih časova na projektu


```
<?xml version= "1.0" standalone="yes"?>
<Projekti>
 <Projekat>
      <Naziv>ProjekatX</Naziv>
      <Sifra>1</Sifra>
       <Lokacija>Novi Sad</Lokacija>
      <Departman>5</Departman>
      <Radnik>
            <JMBG>123456789</JMBG>
            <Pre><Prezime>Petrovic</Prezime>
            <Brc>32.5</Brc>
      </Radnik>
      <Radnik>
            <JMBG>453453453</JMBG>
            <Ime>Petar
            <Brc>20.0</Brc>
      </Radnik>
 </Projekat >
</Projekti>
```


Element

- složení element
 - konstruisan pomoću drugih elemenata
 - hijerarhija elemenata
- primitivni (prosti) element
 - sadrži atomične vrednosti
- glavne razlike između XML-a i HTML-a
 - nazivi elemenata
 - u XML dokumentu reprezentuju semantiku
 - u HTML dokumentu definišu isključivo način prezentacije podataka
 - specifikacija elemenata
 - sadržana je u XML šema dokumentu i korisnički definisana
 - u HTML jeziku, svi elementi su unapred definisani

Atribut

- najčešće se koristi za opis podataka smeštenih u elementima
 - slično atributima u HTML-u
 - za razliku od atributa u bazama podataka koji sadrže same vrednosti
- može da ima istu ulogu kao i atribut u BP
 - kada nije od velikog značaja da XML dokumenti budu čitljivi od strane ljudi

Atribut

- može kao vrednosti da sadrži osnovne ili dodatne podatke koje ne sadrži sam element
- tri pristupa strukturiranja podataka
 - svi podaci se pridružuju direktno elementu
 - svi podaci se pridružuju isključivo atributima elementa
 - neki ("osnovni") podaci se pridružuju elementu, a ostali ("dodatni") atributima elementa
- različiti kriterijumi mogu uticati na izbor pristupa koji se može smatrati odgovarajućim u datoj situaciji
 - u literaturi, treći ("hibridni") pristup često se ne preporučuje
 - u prvom pristupu, izuzetak je da se reference ka drugim elementima XML dokumenta iskazuju putem atributa

Tipovi XML dokumenata

- XML dokumenti za opis podataka
- XML dokumenti za opis realnih dokumenata
- Hibridni XML dokumenti

Tipovi XML dokumenata

- tip dokumenta nije uvek lako prepoznati
- definisanjem tipa dokumenata definiše se način skladištenja podataka

XML dokumenti za opis podataka

- eng. data-centric XML documents
- koriste se za razmenu podataka
 - namenjeni pretežno računarskoj obradi
- visoka granulacija elemenata, čije vrednosti su
 - preuzete iz baze podataka
 - dobijene iz spoljašnjeg izvora
 - npr. merenja ili eksperimenti
- strukturirani ili polustrukturirani dokumenti
 - u zavisnosti od postojanja XML šeme
- najčešće se čuvaju u relacionim bazama podataka

Primer

```
<Letovi>
   <Prevoznik>ABC Airways</Prevoznik>
   <Mesto_polaska>Beograd</Mesto_polaska>
   <Odrediste>Sarajevo</Odrediste>
   <Let>
     <Polazak>09:15</Polazak>
     <Dolazak>10:00</Dolazak>
   </Let>
   <let>
     <Polazak>11:15</Polazak>
     <Dolazak>12:00</Dolazak>
   </Let>
   <Let>
     <Polazak>13:15</Polazak>
     <Dolazak>14:00</Dolazak>
   </Let>
 </Letovi>
```


XML dokumenti za opis podataka

mogu obuhvatati i manje granulirane elemente

XML Model podataka

- ne ide se uvek do nivoa atomičnih podataka
- mogu sadržati i tekst izvan elemenata
 - ista struktura sadržaja u svim dokumentima
 - mogu se napraviti iz drugih XML dokumenata koji opisuju podatke

Primer

XML dokumenti za opis realnih dokumenata

- eng. document-centric XML documents
- sadrže veliku količinu teksta
 - namenjeni ljudima
 - npr. radovi ili knjige
- najčešće nestrukturirani dokumenti
 - većina nestrukturiranih elemenata
 - niska granulacija
- obično nastaju izvan baze podataka
 - npr. pdf, rtf, ili sgml dokumenti
 - koji su konvertovani u XML
- čuvaju se u XML bazama podataka

Primer

```
<Proizvod>
 <Uvod>
      The <Naziv_proizvoda>Turkey Wrench</ Naziv_proizvoda > from <Proizvodjac>Full
      Fabrication Labs, Inc.
Proizvodjac> is <Sazetak>like a monkey wrench,
      but not as big.</Sazetak>
 </Uvod>
 <Opis>
      The turkey wrench, which comes in <i>both right- and left-
      handed versions (skyhook optional)</i>, is made of the <b>finest
      stainless steel</b>. The Readi-grip rubberized handle quickly adapts
      to your hands, even in the greasiest situations. Adjustment is
      possible through a variety of custom dials.
 </Opis>
</Projzvod>
```


Hibridni XML dokumenti

- eng. hybrid-centric XML documents
- jedan deo dokumenta je strogo strukturiran, dok je drugi slabo strukturiran ili potpuno nestrukturiran
- mogu biti opisani XML šemom

XML Model podataka

- šema baze podataka predstavlja model tipa stabla
- analogija s hijerarhijskim modelom podataka

Struktura XML šeme BP

- listovi predstavljaju proste elemente
- neterminalni čvorovi su složeni elementi
 - ne postoji ograničenje dubine hijerarhije

Sadržaj

- Motivacija
- XML model podataka
- DTD i XML Schema
- XML baze podataka
- Upitni jezici
- XML SUBP

Dobro formiran XML dokument

- počinje XML deklaracijom
- zadovoljava sintaksna ograničenja modela podataka
 - jedan korenski element
 - svaki element mora imati otvarajući i zatvarajući tag

Dobro formiran XML dokument

- može biti procesiran od strane generičkog procesora XML dokumenata
 - obezbeđuje navigaciju po stablu elemenata
 - parsiranje obavlja Simple API for XML (SAX)
 - » prilikom susretanja svakog otvarajućeg i zatvarajućeg taga SAX obaveštava program za procesiranje dokumenta
 - » eng. callback
 - kreira internu reprezentaciju stabla u memoriji
 - najčešće u formi tzv. Document Object Model-a (DOM)

Dobro formiran XML dokument

- ne zahteva postojanje šeme
 - ne postoji predefinisani skup elemenata koji se mogu pojaviti u dokumentu
 - dozvoljava autoru dokumenta širu slobodu u definisanju elemenata
 - onemogućava automatsku interpretaciju značenja podataka u dokumentu

Validan XML dokument

- dobro formiran XML dokument
- koji zadovoljava šemu
 - struktura elemenata u XML dokumentu mora da prati specifikaciju strukture definisane u posebnom dokumentu
- jezici za specifikaciju strukture XML dokumenta
 - XML Document Type Definition (DTD)
 - XML Schema

Document Type Definition (DTD)

- deo osnovnog XML standarda
- obično se čuva odvojeno od XML dokumenata
 - poseban dokument sa ekstenzijom .dtd
- opisuje format XML dokumenta
 - definiše elemente i atribute
 - njihova imena i tagove
 - definiše tip sadržaja elemenata i atributa

Primer

```
<!DOCTYPE Projekti [
    <!ELEMENT Projekti (Projekat+)>
    <!ELEMENT Projekat (Naziv, Sifra, Lokacija, Departman?, Radnici)</p>
         <!ATTLIST Projekat
         Projld ID #REQUIRED>
    >
    <!ELEMENT Naziv (#PCDATA)>
    <!ELEMENT Sifra (#PCDATA)</pre>
    <!ELEMENT Lokacija (#PCDATA)>
    <!ELEMENT Departman (#PCDATA)>
    <!ELEMENT Radnici (Radnik*)>
    <!ELEMENT Radnik (JMBG, Prezime?, Ime?, Brc)>
    <!ELEMENT JMBG (#PCDATA)>
    <!ELEMENT Prezime (#PCDATA)>
    <!ELEMENT Ime (#PCDATA)>
    <!ELEMENT Brc (#PCDATA)>
] >
```


DTD dokument

- provera validnosti XML dokumenta vrši se u odnosu na DTD dokument
 - ime DTD dokumenta se navodi u zaglavlju
 - standalone atribut definiše da li se dokument proverava u odnosu DTD dokument
 - ukoliko je njegova vrednost "no" dokument se proverava

```
<?xml version="1.0" standalone="no"?>
```

<!DOCTYPE Projekti SYSTEM "projekti.dtd">

Mane DTD-a

- skromne mogućnosti u definisanju tipova podataka
 - samo 10 tipova podataka
- sintaksa drugačija od XML-a
 - zahteva postojanje posebnih procesora dokumenata
- svi XML dokumenti moraju da poseduju elemente baš u onom redosledu u kom su definisani u DTD dokumentu
 - nije moguće specificirati broj elemenata bez specifikacije njihovog redosleda
- nije moguća specifikacija ograničenja vezanih za skladištenje podataka u BP

XML Schema

- jezik za opis strukture XML dokumenata
 - de facto standard
 - poštuje ista sintaksna pravila kao XML
 - može se koristiti isti procesor dokumenata
- uvođenjem XML Schema jezika imamo dve vrste dokumenata
 - XML schema dokument
 - opis strukture
 - XML dokument
 - sadrži vrednosti
 - struktura zadovoljava pravila navedena u XML schema dokumentu
 - » ukoliko on postoji

XML Schema

- zasnovan na modelu tipa stabla
 - elementi i atributi su glavni strukturalni koncepti
- dodatni koncepti preuzeti su iz relacionog i objektnog modela
 - ključevi, reference i identifikatori

XML Schema

- XML Schema dokument može da obuhvata
 - opis šeme i XML prostore imena
 - anotacije
 - elemente šeme
 - tipove elemenata
 - integritet šeme

Opis XML šeme i XML prostori imena

- specifikacija elemenata za opis XML šeme
 - svakom specifikacijom korišćene šeme specificira se XML prostor imena
 - sprečava koliziju elemenata sa istim imenom
 - » definiše skup elemenata koji imaju isti prefiks
 - jedan tip dokumenta može uključivati elemente iz više prostora imena
 - jedan element može biti korišćen u više tipova dokumenata
 - svakom prostoru imena dodeljuje se skraćeno ime
 - koristi se kao prefiks za elemente iz te šeme

Opis XML šeme i XML prostori imena

```
<?xml version="1.0" encoding="UTF-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
...
</xsd:schema>
```


Anotacija

- specifikacija komentara i opisa XML schema dokumenta
 - xsd:documentation
 - specifikacija komentara namenjenog ljudima
 - atribut xml:lang specificira korišćeni jezik u samom XML dokumentu
 - xsd:appinfo
 - specifikacija komentara namenjenog aplikacijama

Anotacija

Element šeme

- služi za definisanje elementa koji može biti korišćen u XML dokumentima
 - jedan korenski element
 - atribut name specificira ime elementa u XML dokumentu
 - između otvarajućeg i zatvarajućeg taga navodi se struktura elementa
- elementi prvog reda su elementi koji se nalaze neposredno ispod korenskog elementa u hijerarhiji elemenata

Tip podatka u elementu

- definiše se putem type atributa
 - ukoliko je navedena vrednost
 - struktura elementa definiše se nezavisno od samog elementa
 - ukoliko nije navedena vrednost
 - struktura elementa navodi se u okviru samog elementa
 - obično xsd:complexType
 - » složeni element
 - atributi minOccurs i maxOccurs
 - definišu minimalan i maksimalan broj ponavljanja datog elementa
 - podrazumevana vrednost je jedan

Kompleksni element

- definiše se putem xsd:complexType elementa
 - sadrži podelemente
 - uređena ili neuređena lista elemenata
 - navodi se broj mogućih ponavljanja svakog elementa

Kompleksni atributi

takođe se definišu putem xsd:complexType elementa


```
<xsd:element name="projekti">
   <xsd:complexType>
       <xsd:sequence>
           <xsd:element name="departman" type="Departman"</p>
           minOccurs="0" maxOccurs= "unbounded" />
           <xsd:element name="radnik" type="Radnik" minOccurs="0"</pre>
           maxOccurs= "unbounded">
                <xsd:unique name="izdržavanilmeUnique">
                    <xsd:selector xpath="radniklzdrzava" />
                    <xsd:field xpath="izdrzavanilme" />
                </xsd:unique>
           </xsd:element>
           <xsd:element name="projekat" type="Projekat" minOccurs="0"</p>
           maxOccurs="unbounded" />
       </xsd:sequence>
   </xsd:complexType> ...
<xsd:element/>
```



```
<xsd:complexType name="Radnik">
   <xsd:sequence>
       <xsd:element name="radniklme" type="lme" />
       <xsd:element name="radnikJMBG" type="xsd:string" />
       <xsd:element name="radnikPol" type="xsd:string" />
       <xsd:element name="radnikPlata" type="xsd:unsignedInt" />
       <xsd:element name="radnikDatumRodjenja" type="xsd:date" />
       <xsd:element name="radnikDepartmanSifra" type="xsd:string" />
       <xsd:element name="radnikSefJMBG" type="xsd:string" />
       <xsd:element name="radnikAdresa" type="Adresa" />
       <xsd:element name="radnikRadiNa" type="RadiNa" minOccurs="1"</p>
                maxOccurs="unbounded" />
       <xsd:element name="radniklzdrzava" type="lzdrzavani"</p>
                         minOccurs="0" maxOccurs="unbounded" />
   </xsd:sequence>
</xsd:complexType>
```



```
<xsd:complexType name="lzdrzavani">
   <xsd:sequence>
       <xsd:element name="izdrzavanilme" type="xsd:string" />
       <xsd:element name="izdrzavaniPol" type="xsd:string" />
       <xsd:element name="izdrzavaniDatumRodjenja" type="xsd:date" />
       <xsd:element name="izdrzavaniOdnosSaRadnikom" type="xsd:string" />
   </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Adresa">
   <xsd:sequence>
       <xsd:element name="broj" type="xsd:string" />
       <xsd:element name="ulica" type="xsd:string" />
       <xsd:element name="grad" type="xsd:string" />
       <xsd:element name="drzava" type="xsd:string" />
   </xsd:sequence>
</xsd:complexType>
```



```
<xsd:complexType name="RadProj">
   <xsd:sequence>
       <xsd:element name="radnikJMBG" type="xsd:string" />
       <xsd:element name="brc" type="xsd:float" />
   </xsd:sequence>
</xsd:complexType>
<xsd:complexType name="RadiNa">
   <xsd:sequence>
       <xsd:element name="projekatSifra" type="xsd:string" />
       <xsd:element name="brc" type="xsd:float" />
   </xsd:sequence>
</xsd:complexType>
```


Integritet podataka

- moguće je definisati
 - ograničenje jedinstvenosti
 - jedinstvena vrednost elementa
 - » na nivou XML dokumenta
 - može imati nedostajuću (null) vrednost
 - xsd:unique element šeme
 - » definiše elemente koji imaju jedinstvene vrednosti
 - » podelement: xsd:selector
 - » definiše tip elementa na koji se primenjuje ograničenje
 - » time, definiše opseg ograničenja
 - » podelement: xsd:field
 - » polje unutar tipa na koje se primenjuje ograničenje
 - » polje čija je vrednost jedinstvena

Integritet podataka

- moguće je definisati
 - primarni ključ
 - uvek postoji
 - » minimalni kardinalitet je veći od 0
 - » minOccurs > 0
 - ne može imati nedostajuću (null) vrednost
 - » nillable="false"
 - element xsd:key
 - » sadrži podelemente xsd:selector i xsd:field

Integritet podataka

- moguće je definisati
 - oganičenja referencijalnog integriteta
 - referencira prethodno definisani primarni ključ
 - » broj i tip polja u referenci na ključ mora odgovarati broju i tipu polja u ključu
 - element xsd:keyref
 - » atribut refer
 - » vrednost je ime primarnog ključa kojeg referenciramo
 - » xsd:selector
 - » referencirajući tip
 - » xsd:field
 - » polje koje predstavlja strani ključ


```
<xsd:key name="projekatSifraKey">
   <xsd:selector xpath="projekat" />
   <xsd:field xpath="projekatSifra"/>
</xsd:key>
<xsd:key name="departmanSifraKey">
   <xsd:selector xpath="departman"/>
   <xsd:field xpath="departmanSifra" />
</xsd:key>
<xsd:key name="radnikJMBGKey">
   <xsd:selector xpath="radik" />
   <xsd:field xpath="radnikJMBG" />
</xsd:key>
```



```
<xsd:keyref name="departmanRukJMBGKeyRef"</pre>
        refer="radnikJMBGKey">
   <xsd:selector xpath="departman"/>
   <xsd:field xpath="departmanRukJMBG" />
</xsd:keyref>
<xsd:keyref name="radnikDepartmanSifraKeyRef"</pre>
        refer="departmanSifraKey">
   <xsd:selector xpath="radnik" />
   <xsd:field xpath="radnikDepartmanSifra" />
</xsd:keyref>
<xsd:keyref name="radnikSefJMBGKeyRef"</pre>
        refer="radnikJMBGKey">
   <xsd:selector xpath="radnik" />
   <xsd:field xpath="radnikSefJMBG" />
</xsd:keyref>
```



```
<xsd:keyref name="projekatDepartmanSifraKeyRef"</pre>
        refer="departmanSifraKey">
   <xsd:selector xpath="projekat"/>
   <xsd:field xpath="projekatDepartmanSifra"/>
</xsd:keyref>
<xsd:keyref name="projekatRadProjJMBGKeyRef"</p>
        refer="radnikJMBGKey">
   <xsd:selector xpath="projekat/projekatRadProj" />
   <xsd:field xpath="JMBG" />
</xsd:keyref>
<xsd:keyref name="radnikRadiNaProjektuSifraKeyRef"</p>
        refer="projekatSifraKey">
   <xsd:selector xpath="radnik/radnikRadiNa" />
   <xsd:field xpath="projekatSifra"/>
</xsd:keyref>
```

Sadržaj

- Motivacija
- XML model podataka
- DTD i XML Schema
- XML baze podataka
- Upitni jezici
- XML SUBP

Pristupi skladištenju XML dokumenata

- skladištenje XML dokumenata u tekstualnom obliku
- skladištenje sadržaja XML elemenata u bazama podataka
- skladištenje XML dokumenata u specijalizovanim XML bazama podataka

- Skladištenje XML dokumenata u tekstualnom obliku
- Skladištenje XML dokumenata u specijalizovanim XML BP
- Skladištenje sadržaja XML elemenata u specijalizovanim XML BP

Skladištenje XML dokumenata u tekstualnom obliku

- ovaj pristup koristi se
 - kada SUBP ima poseban modul za procesiranje dokumenata
 - kada XML dokument nema definisanu šemu
 - za XML dokumente za opis realnih dokumenata
- XML dokument se skladišti u tekstualnom ili BLOB polju
 - u relacionim, objektno-relacionim i objektnim bazama podataka

Skladištenje sadržaja XML elemenata u bazama podataka

- ovaj pristup koristi se
 - za XML dokumente koji imaju definisanu šemu
- svi dokumenti imaju istu strukturu
 - predstavljaju strukturirane podatke
- kreiranje relacione ili objektne šeme baze podataka
 - zahteva specifikaciju mapiranja između šeme baze podataka i šeme XML dokumenta
 - u internom modulu SUBP-a
 - u posebnom međusloju između baze podataka i aplikacije
 - podaci iz elemenata XML dokumenta se skladište u obliku torki ili objekata

- Mapiranje XML šeme na relacionu šemu baze podataka
 - mapiranje obuhvata
 - elemente
 - atribute
 - tekst
 - ignorišu se
 - entiteti
 - CDATA sekcije
 - komentari
 - procesne instrukcije
 - redosled elemenata

- Mapiranje XML šeme na relacionu šemu baze podataka
 - snimanje sadržaja dokumenta u BP i njegovo ponovno čitanje iz BP u opštem slučaju neće dati isti dokument
 - usled ignorisanja pojedinih delova dokumenta prilikom mapiranja
 - tipovi mapiranja
 - mapiranje zasnovano na tabelama
 - objektno-relaciono mapiranje

- Mapiranje XML dokumenata zasnovano na tabelama
 - struktura XML dokumenata mora imati oblik

```
<database>
  <row>
       <column1>...</column1>
       <column2>...</column2>
    </row>
    <row> ... </row>
   ... 
</database>
```


- Mapiranje XML dokumenata zasnovano na tabelama
 - u slučaju jedne tabele struktura XML dokumenta ima oblik

Mapiranje XML dokumenata zasnovano na tabelama

- moguće je definisati da li se kolona iz relacione BP mapira na element ili na atribut
- meta-podaci mogu biti uključeni u zaglavlje dokumenta ili kao atributi elemenata tabele ili kolone

Mapiranje XML dokumenata zasnovano na tabelama

- pojam tabele u mapiranju
 - nije nužno ekvivalentan pojmu tabele u relacionoj BP
 - BP -> XML
 - pojam tabele obuhvata bilo koji rezultujući skup
 - » dobijen kao rezultat upita
 - XML -> BP
 - pojam tabele obuhvata tabelu ili pogled baze podataka

- Mapiranje XML dokumenata zasnovano na tabelama
 - koristi se prilikom serijalizacije podataka iz relacione baze podataka
 - prilikom transfera podataka između dva RSUBP-a
 - koriste ga pojedine aplikacije srednjeg sloja za razmenu podataka između XML dokumenata i relacione baze podataka
 - mana ovog mapiranja
 - XML dokumenti moraju da zadovoljavaju prethodno definisani format

- Objektno-relaciono mapiranje XML dokumenata
 - postoje dve faze
 - XML model -> objektni model
 - objektni model -> relacioni model

Objektno-relaciono mapiranje XML dokumenata

- XML model -> objektni model
 - podaci iz XML dokumenta se interno u maperima predstavljaju kao stablo objekata
 - složeni tipovi u XML dokumentima predstavljaju se pomoću klasa
 - prosti tipovi u XML dokumentima predstavljaju se pomoću skalara
- objektni model dobijen prilikom mapiranja nije predstavljen pomoću DOM-a
 - DOM ima istu strukturu za svaki XML dokument
 - objektni model dobijen mapiranjem razlikuje se za dokumente sa različitom šemom

Objektno-relaciono mapiranje XML dokumenata

- objektni model -> relacioni model
 - mapira se pomoću tradicionalnih objektno/relacionih mapera
 - klase -> tabele
 - skalari -> kolone
 - kompozitni objekti -> strani ključevi ka drugim tabelama

Primer modela XML dokumenta

Primer DOM modela XML dokumenta

Primer mapiranja XML elemenata na klase

Primer mapiranja XML elemenata na klase

```
class Projekat {
    String projekatNaziv;
    String projekatSifra;
    String projekatLokacija;
    String projekatDepartmanSifra;
    RadProj [ ] projekatRadProj;
}
```

Sadržaj

- Skladištenje XML dokumenata u tekstualnom obliku
- Skladištenje XML dokumenata u specijalizovanim XML BP
- Skladištenje sadržaja XML elemenata u specijalizovanim XML BP

- Skladištenje XML dokumenata u specijalizovanim XML bazama podataka
 - XML baze podataka
 - eng. Native XML databases
 - namenjene isključivo za skladištenje XML dokumenata
 - zasnovane na XML modelu podataka
 - u potpunosti čuvaju strukturu dokumenata
 - mogu skladištiti
 - sadržaj XML dokumenata
 - » retko se koristi ovaj tip skladištenja
 - » obično se takvi dokumenti mapiraju na relacione BP
 - XML dokumente
 - » često skladišteni u XML bazi podataka

- definiše logički model XML dokumenta
 - dokumentima rukuje prema tom modelu
 - model obuhvata elemente, atribute, tekst i redosled
 - primeri ovakvih modela: XPath model, XML infoset itd.
- XML dokument je osnovna logička jedinica skladištenja
 - u relacionim bazama to je torka u tabeli
 - upiti ili ažuriranje mogu da obuhvate samo deo dokumenta

- ne mora da poseduje sopstveni (specifični) model za fizičko skladištenje podataka
 - može se oslanjati na relacionu, hijerarhijsku, OO bazu, ili na indeksirane datoteke

XML SUBP podržavaju

- kolekcije dokumenata
- upitne jezike
- ažuriranje sadržaja
- transakcije, zaključavanje i konkurentno izvršavanje
- programski pristup (API)
- očuvanje izvorne strukture dokumenta
- skladištenje podataka van baze podataka
- indeksiranje
- skladištenje spoljašnjih entiteta
- normalizaciju
- ograničenje referencijalnog integriteta

- kolekcije dokumenata
 - podržava grupisanje dokumenata u imenovane kolekcije, po nekom svojstvu
 - slično tabelama u relacionim BP
 - moguća hijerarhija kolekcija

- upitni jezici
 - XPath
 - sa proširenjima za upravljanje kolekcijama dokumenata
 - XQuery
 - W3C standard
 - još uvek nije prihvaćen od strane svih XML SUBP

- ažuriranje sadržaja
 - može se izvršiti na više načina
 - ažuriranje celokupnog sadržaja dokumenta
 - ažuriranje dela sadržaja dokumenta
- jezici za ažuriranje sadržaja
 - XUpdate
 - koristi XPath za odabir elemenata
 - podržava operacije dodavanja, modifikacije i brisanja podataka
 - prošireni XQuery

- transakcije, zaključavanje i konkurentno izvršavanje
 - pojam transakcije je isti kao i u drugim SUBP
 - najmanja jedinica obrade podataka
 - skoro svi XML SUBP podržavaju koncept transakcije
 - nivoi zaključavanja
 - nivo celog dokumenta
 - » često slučaj u XML bazama podataka
 - » usporava konkurentan rad
 - nivo čvora (elementa) u dokumentu
 - » implementacija ove vrste zaključavanja zahteva zaključavanje nadređenih elemenata, od datog do korena
 - » javlja se problem eksplozije zaključavanja sadržaja

- programski pristup
 - eng. Application Programming Interfaces (APIs)
 - ne postoji opšti standard
 - svi XML SUBP imaju svoje API-je
 - definicija metoda za pristup, upite i pretragu metapodataka
 - dva API-ja nezavisna od proizvođača XML SUBP
 - XML:DB API
 - » nezavisan od programskog jezika
 - » koristi XPath
 - JSR 225: XQuery API for Java (XQJ)
 - » zasnovan na JDBC-u
 - » koristi XQuery

- očuvanje izvorne strukture dokumenta
 - eng. round-tripping
 - očuvava se izvorna struktura dokumenta, upisana u BP, pri kasnijim čitanjima iz BP
 - praktično, dokument ostaje identičan i po strukturi, a ne samo po sadržaju, pod uslovom da nije u međuvremenu bio menjan
 - vrlo bitno kod XML dokumenata koji opisuju realne dokumente

- skladištenje podataka van baze podataka
 - omogućava skladištenje i referenciranje elemenata koji se ne nalaze u samoj XML bazi podataka
 - npr. nalaze se u relacionoj BP
 - moguće ažuriranje udaljenih podataka posredstvom dokumenata koji se nalaze u XML bazi podataka

- indeksiranje
 - tipovi indeksa
 - indeksi zasnovani na vrednostima
 - » indeksiraju vrednosti elemenata i atributa
 - » npr. pronađi sve elemente i atribute koji imaju vrednost Vladimir
 - indeksi zasnovani na strukturi
 - » indeksiraju lokacije elemenata i atributa
 - » npr. *pronađi sve radnike*
 - indeksi zasnovani na tekstu
 - » indeksiraju tokene (reči) u vrednostima elemenata i atributa
 - » npr. pronađi sve projekte čije ime sadrži reč 'Projekat'
 - kombinovani indeksi

- skladištenje spoljašnjih entiteta
 - skladištenje elemenata koji nisu deo dokumenta
 - predstavljaju elemente koji se pozivaju iz dokumenta
 - » npr. poziv web servisa za vremensku prognozu
 - » skladištenje takvog dokumenta nije primereno
 - » dinamički sadržaj dokumenta menja se često
 - » npr. refernce na druge dokumente koje čine poglavlja skladištenog dokumenta
 - » skladištenje takvog dokumenta može biti pogodno

XML SUBP

normalizacija

- cilj: svaki podatak pojavljuje se tačno jednom
 - pri skladištenju celih dokumenata normalizacija može biti primenjena za uštedu prostora
 - » ukoliko se sadržaji dokumenata preklapaju u većoj meri
- problem: XML podržava elemente sa više vrednosti
 - kod relacionih baza to ne zadovoljava 1NF
 - normalizacija se ne može vršiti na isti način kao u relacionim
 BP
- ne postoji formalan pristup normalizaciji
 - pojam normalizacije ne odgovara pojmu normalizacije u relacionom modelu podataka

- ograničenje referencijalnog integriteta
 - obezbeđuje da pokazivači u XML dokumentima referenciraju validne dokumente ili njihove delove
 - zahteva se validnost i internih i eksternih pokazivača
 - pokazivači mogu biti u obliku
 - ID/IDREF atributi
 - key/keyref elementi
 - XLink-ovi

Arhitektura XML baze podataka

- tipovi arhitektura
 - XML baze podataka zasnovane na tekstu
 - XML baze podataka zasnovane na modelima

- Arhitektura XML baze podataka
 - XML baze podataka zasnovane na tekstu
 - skladišti XML u obliku teksta
 - koristi indekse zasnovane na tekstu
 - za brz pristup i izvršavanje upita
 - jedan pristup disku za indeks + jedan pristup za dokument
 - sporije vraća hijerarhije elemenata

- Arhitektura XML baze podataka
 - XML baze podataka zasnovane na modelu
 - formira i skladišti interni model XML dokumenta
 - npr. DOM model
 - sporije vraćanje celog dokumenta
 - dokument mora da se sastavi od delova, iz internog modela
 - potencijalno brže vraćanje hijerarhije elemenata

- Skladištenje XML dokumenata u tekstualnom obliku
- Skladištenje XML dokumenata u specijalizovanim XML BP
- Skladištenje sadržaja XML elemenata u specijalizovanim XML BP

- Skladištenje sadržaja XML dokumenata u XML bazi podataka
 - pogodno ukoliko je dokument polustrukturiran
 - nije moguće izvršiti objektno-relaciono mapiranje

(

XML baze podataka

Skladištenje sadržaja XML dokumenata u XML bazi podataka

- prednosti
 - potencijalno veća brzina vraćanja željenih podataka
 - zbog snimanja podataka jednog dokumenta u uzastopne memorijske lokacije
 - nema primene operacije spajanja za vraćanje jednog snimljenog dokumenta
 - mogućnost korišćenja XML upitnih jezika

mane

- manja brzina za vraćanje podataka koji nisu snimljeni kao jedinstven dokument
- rezultat upita može biti jedino XML dokument

Sadržaj

- Motivacija
- XML model podataka
- DTD i XML Schema
- XML baze podataka
- Upitni jezici
- XML SUBP

it

Upitni jezici

- Tipovi upitnih jezika koji vraćaju rezultat u XML sintaksi
 - upitni jezik zasnovan na šablonu
 - upitni jezik zasnovan na SQL-u
 - XML upitni jezici

- eng. template-based query language
- većina upita nad relacionom bazom koja vraća XML strukturu zasnovana je na šablonu
- ne postoji predefinisano mapiranje između XML šeme i šeme baze podataka
 - SQL naredbe su ugrađene u šablon
 - poseban softver izvršava upit i konstruiše rezultujući XML dokument


```
<?xml version="1.0" encoding="UTF-8"?>
<InformacijeLetovi>
   <Uvod>Sledeći letovi su dostupni:</Uvod>
   <SelectStmt>SELECT Prevoznik, BrLeta, Polazak, Dolazak
                FROM Letovi</SelectStmt>
   <le>t>
       <Pre><Prevoznik>$Prevoznik</Prevoznik>
       <BrLeta>$BrLeta</BrLeta>
       <Polazak>$Polazak</Polazak>
       <Dolazak>$Dolazak</Dolazak>
   </Let>
   <Zakljucak>Srećan put.</Zakljucak>
InformacijeLetovi>
```



```
<?xml version="1.0" encoding="UTF-8"?>
<InformacijeLetovi>
   <Uvod>Sledeći letovi su dostupni:</Uvod>
   <le>t>
       <Pre><Prevoznik>ABC Airways</Prevoznik>
       <BrLeta>S425</BrLeta>
       <Polazak>11:15</Polazak>
       <Dolazak>12:00</Dolazak>
   </Let>
   <Zakljucak>Srećan put.</Zakljucak>
InformacijeLetovi>
```


- fleksibilan
 - postavljanje vraćenih vrednosti na bilo koje mesto u dokumentu
 - uključujući parametrizovanje narednih SELECT naredbi u istom šablonu
 - mogućnost korišćenja petlji i uslovnih izraza
 - definisanje varijabli i funkcija
 - parametrizovanje SELECT upita HTTP parametrima
- koriste se isključivo pri transferu podataka iz relacione baze u XML dokument
 - za suprotan smer se koristi mapiranje zasnovano na tabelama

Upitni jezik zasnovan na SQL-u

- koristi modifikovane SQL naredbe
 - čiji rezultat ima XML sintaksu
- SQL/XML standard
 - 2003. godine
 - uvodi XML tip podataka
 - uvodi XML funkcije

Upitni jezik zasnovan na SQL-u

```
SELECT XMLELEMENT(NAME "Narudzbenica",
```

XMLATTRIBUTES(Narudzbenica.NSifra AS NSifra),

XMLELEMENT(NAME "Datum", Narudzbenica.Datum),

XMLELEMENT(NAME "Klijent", Narudzbenica.Klijent))

AS xmldocument

FROM Narudzbenica

XML upitni jezici

- mogu da se koriste nad bilo kojim XML dokumentom
 - ne samo nad podacima u bazi podataka
- mogu da se koriste i nad relacionim bazama podataka
 - samo ukoliko su dokumenti modelovani kao XML
 - upiti nad virtuelnim XML dokumentima
- XML upitni jezici
 - XPath
 - XQuery

- namenjen za selekciju jednog ili više čvorova u XML dokumentu
- vraćeni elementi moraju da zadovoljavaju definisani
 Xpath izraz
 - zasnovan na konceptu navigacije kroz stablo dokumenta

- osnovni deo XPath izraza je čvor
- čvor može da bude
 - element
 - atribut
 - tekst
 - imenski prostor
 - procesna instrukcija
 - komentar
 - dokument čvor

- navigacija kroz stablo dokumenta
 - dokument čvor
 - početni čvor svakog dokumenta
 - korenski element dokumenta
 - dete dokument čvora
 - roditeljski čvor
 - čvor koji se nalazi na prvom višem hijerarhijskom nivou u odnosu na drugi čvor
 - » direktno nadređen tom čvoru
 - roditeljski čvor može da ima nula, jedno ili više dece

- navigacija kroz stablo dokumenta
 - dete čvor
 - čvor koji se nalazi na prvom nižem hijerarhijskom nivou u odnosu na drugi čvor
 - » direktno podređen tom čvoru
 - dete čvor ima tačno jednog roditelja
 - čvorovi rođaci
 - čvorovi koji imaju istog roditelja
 - čvor predak
 - bilo koji čvor na višem hijerarhijskom nivou
 - » do koga vodi put preko grana stabla
 - čvor potomak
 - bilo koji čvor na nižem hijerarhijskom nivou
 - » do koga vodi put preko grana stabla

- trenutno obrađivani čvor naziva se tekući čvor
 - u odnosu na njega se kreće stablom
 - dokument čvor je inicijalni tekući čvor

- separator "/" odvaja korake u navigaciji po stablu
 - formirajući XPath putanju
 - primer: /korak/korak
- korak putanje sastoji se od
 - ose kretanja
 - u odnosu na tekući čvor
 - naziva čvora
 - nula ili više predikata
 - ograničenja vrednosti traženog čvora
- sintaksa koraka
 - osa::naziv[predikat]

- osa kretanja predstavlja se punim ili skraćenim nazivom
 - self:: ili .
 - parent:: ili ...
 - descendant:: ili //
 - attribute ili @
 - child:: podrazumeva se, ako se ništa ne napiše

- zamenski karakteri
 - eng. wildcards
 - * zamenjuje bilo koji element
 - @* zamenjuje bilo koji atribut
 - node() zamenjuje bilo koji čvor bilo kog tipa
- poseduje operatore koji se mogu koristiti u XPath izrazima
- poseduje ugrađene fukcije

Operator	Opis	Primer	Povratna vrednost
I	Unija dva skupa čvorova	//projekat //radnik	Skup čvorova sa svim projektima i radnicima
+	Sabiranje	6 + 4	10
-	Oduzimanje	6 - 4	2
*	Množenje	6 * 4	24
div	Deljenje	8 div 4	2
mod	Ostatak pri deljenju	5 mod 2	1
=	Jednako	cena=9.80	true ukoliko je cena = 9.80 inače false
!=	Nejednako	cena!=9.80	true ukoliko je cena != 9.80 inače false
<	Manje	cena<9.80	true ukoliko je cena < 9.80 inače false
<=	Manje ili jednako	cena<=9.80	true ukoliko je cena <= 9.80 inače false
>	Veće	cena>9.80	true ukoliko je cena > 9.80 inače false
>=	Veće ili jednako	cena>=9.80	true ukoliko je cena >= 9.80 inače false
or	Disjunkcija	cena=9.80 or cena=9.70	true ukoliko je cena = 9.80 ili cena=9.70, inače false
and	Konjukcija	cena>9.00 and cena<9.90	true ukoliko je cena > 9.00 ili cena<9.90, inače false

XPath primeri

```
/projekti
/projekti/departman
//radnik [plata>70000]/Ime
//projekat/*
//projekat [@*]
```


XQuery

- ekvivalent SQL-u
- koristi XPath za selekciju dela strukture nad kojom se realizuje operacija
- standardni upitni jezik za XML
 - dizajniran za upite nad XML podacima
 - ne samo nad XML dokumentima
 - može se koristiti nad bazama podataka koje podatke čuvaju u XML obliku

XQuery

tipičan oblik XQuery upita naziva se FLWOR izraz

FOR <povezivanje varijabli sa pojedinačnim čvorovima>

LET <povezivanje varijabli sa vrednostima>

WHERE

ORDER BY <čvorovi>

RETURN <specifikacija rezultata upita>

XQuery

- klauzule FLWOR upita
 - FOR klauzula
 - može se pojavii nula ili više puta
 - dodeljuje varijabli jedan po jedan element iz sekvence
 - » sekvenca je povratna vrednost izraza putanje
 - LET klauzula
 - može se pojaviti nula ili više puta
 - dodeljuje varijabli jednu vrednost do kraja izvršenja upita
 - WHERE klauzula
 - može se pojaviti nula ili jedan put
 - definiše dodatni uslov nad selekcijom elemenata
 - ORDER klauzula
 - može se pojaviti nula ili jedan put
 - definiše red u kojem su rezultati vraćeni
 - RETURN klauzula
 - mora se pojaviti tačno jednom
 - definiše izgled vraćenog XML dokumenta

XQuery

- varijable definisane u FOR i LET klauzuli mogu da se koriste u ostatku izraza
 - varijable imaju oblik \$ime_varijable

XQuery primer

Prikazati sve radnike koji rade na projektu sa šifrom 5 više od 20 radnih časova.

```
LET $d := doc("projekti.xml")

FOR $x IN $d/projekti/projekat[projekatSifra=5]/projekatRadProj,
$y IN $d/projekti/radnik

WHERE $x/brc gt 20.0 AND $y.JMBG = $x.JMBG

RETURN <res> $y/radnikIme/ime, $y/radnikIme/prezime,
$x/brc </res>
```


XQuery primer

Prikazati sve radnike koji zarađuju više od 70000 dinara.

FOR \$x IN doc("projekti.xml")//radnik[radnikPlata gt 70000]/radnikIme RETURN <res> \$x/ime, \$x/prezime </res>

XQuery primer

Prikazati sve radnike koji zarađuju više od 70000 dinara. Sortirati po rastucem redosledu plate radnika.

FOR \$x IN doc("projekti.xml")/projekti/radnik
WHERE \$x/radnikPlata gt 70000
ORDER BY \$x/radnikPlata ascending
RETURN <res> \$x/radnikIme/ime, \$x/radnikIme/prezime </res>

XML model podataka

Sadržaj

- Motivacija
- XML model podataka
- DTD i XML Schema
- XML baze podataka
- Upitni jezici
- XML SUBP

XML SUBP

eXist

- 2000. godina
- XML SUBP
 - open source
 - kompletno zasnovan na XML tehnologiji
- podržava XQuery i XPath upitne jezike
- direktan programski pristup
 - ne zahteva posrednike za pristup iz programskog koda

XML SUBP

Sedna

- 2006. godina
- XML SUBP
 - open source
- podržava XQuery upitni jezike
- pristupa čvorovima XML dokumenta direktno preko pokazivača
 - čuvaju se u internim strukturama
 - veoma brz pristup čvorovima

XML SUBP

BaseX

- 2007. godina
- XML SUBP
 - mala veličina
 - procesor XQuery izraza
 - nezavisna od platforme
- podržava XQuery i XPath upitne jezike
- podržava vizuelizaciju skladištenih XML dokumenata

Reference

- Elmasri R, Navathe S B, "Fundamentals of Database Systems", Šesto izdranje, Addison-Wesley, SAD, 2011
 - poglavlje 26
- XML baze podataka
 - http://www.rpbourret.com/xml/XMLAndDatabases.htm

Pitanja i komentari

- Motivacija
- XML model podataka
- DTD i XML Schema
- XML baze podataka
- Upitni jezici
- XML SUBP

XML model podataka

XML Schema jezik i XML baze podataka