Esercizi di analisi

Francesco Florian, Ilaria Fontana, Ariel Aldo Giovanni Lanza, Luca Marconato

5 novembre $2016\,$

Indice

1	Esercizi sugli anelli	3
2	Esercizi sugli ideali	5
3	Intergrali	6
4	Metriche e submisure	6

1 Esercizi sugli anelli

We start with a lemma.

Lemma 1. Every open set $A \subseteq \mathbb{R}$ can be written as a countable union of open intervals.

Dimostrazione. First, we remind what a base for a topology is. Let (X, τ) be a topological space. A base for τ is a set $A \subseteq \tau$ such that

$$\forall T \in \tau \ \forall x \in T \ \exists A(x,T) \in \mathcal{A} \ x \in A \subseteq T.$$

If $T \in \tau$, using the notation of the previous definition, then we have that

$$T = \bigcup_{x \in T} A(x, T).$$

In other words a base for τ is a subset \mathcal{A} of τ such that every set of τ can be written as an union of elements in \mathcal{A} .

Now, given any open set T of \mathbb{R} and given $x \in \mathbb{R}$ by definition exists an open interval contained in T and containing x. It is easy to find an open interval with rational endpoints which contains x and which is contained in T. This shows that the set

$$\{ | a, b [: a, b \in \mathbb{Q} \}$$

is a base of the Euclidean topology. Since the base is countable, this proves that every open set of \mathbb{R} can be written as a countable union of open intervals.

Esercizio 1 (2016-10-10). *Let us show that*

$$\operatorname{Bor} \mathbb{R} = \sigma\left(\{ \mid a, b \mid : a, b \in \mathbb{R} \}\right) = \sigma\left(\{ \mid a, b \mid : a, b \in \mathbb{R} \}\right) \tag{1a}$$

$$= \sigma(\{|a,b|: a,b \in \mathbb{Q}\}) = \sigma(\mathfrak{E}_i) \tag{1b}$$

where

- 1. $\mathfrak{E}_1 := \{] a, +\infty [: a \in \mathbb{R}\};$
- 2. $\mathfrak{E}_2 := \{ [a, +\infty [: a \in \mathbb{R}] \};$
- 3. $\mathfrak{E}_3 := \{] + \infty, a[: a \in \mathbb{R}\};$
- 4. $\mathfrak{E}_4 := \{] + \infty, a] : a \in \mathbb{R}\};$

Dimostrazione. Let us call $\sigma(\mathfrak{A}_1)$, $\sigma(\mathfrak{A}_2)$, $\sigma(\mathfrak{A}_3)$ the three σ -ring that appear in the statement of this exercise that still do not have a name. First, let us observe that the various σ rings we deal with are not only σ -rings but also σ -algebras. In fact for each of them \mathbb{R} can be written as a countable union of its elements.

In order to prove the various equalities $\sigma(\mathfrak{M}) = \sigma(\mathfrak{N})$ we will first prove that $\mathfrak{M} \subseteq \mathfrak{N}$, thus obtaining $\sigma(\mathfrak{M}) \subseteq \sigma(\mathfrak{N})$ and the then we will prove that $\mathfrak{N} \subseteq \sigma(\mathfrak{M})$ concluding the proof.

Since the set of all open intervals is a subset of the family of the open sets, considering the generated σ -rings, we obtain that $\sigma(\mathfrak{A}_1) \subseteq \operatorname{Bor} R$. The other inclusion follows from the lemma we have seen before this exercise, which states that every open set can be written as a numerable union of open intervals. $\sigma(\mathfrak{A}_1) = \sigma(\mathfrak{A}_2)$ because every open interval can be written as the complementary of a closed set and vice versa. Let us now prove that $\sigma(\mathfrak{A}_2) = \sigma(\mathfrak{A}_3)$. The key point is to notice that every [a,b] can be written as the countable intersection $\bigcap \{] a - \frac{1}{n}, b] \}$,

that every]a, b] can be written as the countable union $\bigcup \{[a + \frac{1}{n}, b]\}$, and to remember that a σ -algebra contains all the countable unions and countable intersections.

Clearly $\sigma(\mathfrak{E}_1) = \sigma(\mathfrak{E}_4)$ and $\sigma(\mathfrak{E}_2) = \sigma(\mathfrak{E}_3)$, because every element of each first set is the complementary of an element of each second set, and vice versa. The inclusion $\sigma(\mathfrak{E}_1) \subseteq \sigma(\mathfrak{A}_1)$ follows by the fact that $]a, +\infty[$ can be written as $]a, a+2[\cup \bigcup]a+n, a+n+2[$. Also the other inclusion is true because $]a, b[=]a, +\infty[\cap \bigcup]b-\frac{1}{a}, +\infty[$.

other inclusion is true because $]a, b[=]a, +\infty [\cap \bigcup]b - \frac{1}{n}, +\infty [$. It remains to prove that $\sigma(\mathfrak{E}_1) = \sigma(\mathfrak{E}_2)$. This can be done observing that $]a, +\infty [=\bigcup [a+\frac{1}{n},+\infty [$ and that $[a,+\infty [=\bigcap]a-\frac{1}{n},+\infty [$. The exercise is completed.

Esercizio 2 (2016-10-10). Let us show that the Borel set Bor $\overline{\mathbb{R}}$ coincides with the sets

$$\mathfrak{S} \coloneqq \{B \cup A \colon B \in \operatorname{Bor} \mathbb{R}, \ A \subseteq \{-\infty, +\infty\}\}\$$

and also with the set

$$\sigma(\mathfrak{B}) := \sigma\left(\left\{\left[a, +\infty\right] : a \in \mathbb{R}\right\} \cup \left\{\left[-\infty, +\infty\right]\right\}\right).$$

Dimostrazione. First we are going to prove that $\mathfrak{S} = \sigma(\mathfrak{B})$. The inclusion (\supseteq) easily follows from the fact that every set in \mathfrak{B} belongs, by definition, also to \mathfrak{S} . In order to prove the other inclusion we will first prove that $\mathcal{B} \subseteq \sigma(\mathfrak{B})$, and the we will prove the same for $\{-\infty, +\infty\}$. From the previous exercise, if we prove that $\mathfrak{E}_2 \subseteq \sigma(\mathfrak{B})$, since $\mathcal{B} = \sigma(\mathfrak{E}_2)$, we obtain that $\mathcal{B} \subseteq \sigma(\mathfrak{B})$. It is sufficient to prove that $\{+\infty\} \in \mathfrak{B}$ since we know that

$$\{[a, +\infty] \cup \{+\infty\} : a \in \mathbb{R}\} \subseteq \mathfrak{B}.$$

For this purpose let us write

$$\{+\infty\} = \bigcap_{n \in \mathbb{N}} [n, +\infty].$$

It remains to prove that $\{-\infty\} \in \mathfrak{B}$. This is proved by the following:

$$\{-\infty\} = [-\infty, +\infty] \setminus \bigcup_{n \in \mathbb{N}} [a, +\infty],$$

which is the difference of an element of \mathfrak{B} and a countable union of elements of \mathfrak{B} .

Let us now prove that $\operatorname{Bor} \mathbb{R}$ coincides with the other two sets. First we will prove that $\operatorname{Bor} \overline{\mathbb{R}} \subseteq \mathfrak{S}$. In order to do this we remind who the open sets of $\overline{\mathbb{R}}$ are: if A is an open set of $\overline{\mathbb{R}}$ then $A \cap \mathbb{R}$ is an open set of \mathbb{R} and if $-\infty$ (respectively $+\infty$) is contained in A, then exists $a \in \mathbb{R}$ such that $[-\infty, a[\subseteq A \text{ (respectively }]a, +\infty] \subseteq A)$. Since all the open sets of $\overline{\mathbb{R}}$ are clearly contained in \mathfrak{S} , the inclusion we want to prove follows.

Let us now prove that $\sigma(\mathfrak{B}) \subseteq \operatorname{Bor} \overline{\mathbb{R}}$. This is obvious since the sets of \mathfrak{B} are all open sets of $\overline{\mathbb{R}}$ and so the sigma-ring they generate is contained in $\operatorname{Bor} \overline{\mathbb{R}}$.

Esercizio 3 (2016-10-10). Sia $\emptyset \neq \mathfrak{E}_0 \subseteq \mathbb{P}(X)$ e per $\alpha \in \mathrm{Ord}$ sia

$$\mathfrak{E}_{\alpha} := \left\{ \bigcup_{n \in \mathbb{N}} \left(A_n \setminus B_n \colon A_n, B_n \in \bigcup_{\beta < \alpha} \mathfrak{E}_{\beta} \right) \right\}. \tag{2}$$

Dimostrare allora che $\sigma(\mathfrak{E}_0) = \bigcup_{\alpha < \omega_1} \mathfrak{E}_{\alpha}$.

Dimostrazione. Dimostriamo le due inclusioni.

⊇ Si può dimostrare utilizzando il principio di induzione transfinita, nella forma

$$P(0) \land \forall \alpha > 0 (\forall \beta < \alpha P(\beta) \implies P(\alpha)) \implies \forall \alpha P(\alpha)$$

sulla proposizione $\sigma(\mathfrak{E}_0) \supseteq \mathfrak{E}_{\alpha}$.

- $\alpha = 0$ Vero per definizione di $(\sigma$ -)anello generato.
- $\alpha > 0$ Per ipotesi induttiva $\sigma(\mathfrak{E}_0) \supseteq \mathfrak{E}_{\beta} \, \forall \beta < \alpha$, quindi $\sigma(\mathfrak{E}_0) \supseteq \bigcup_{\beta < \alpha} \mathfrak{E}_{\beta}$. Ma $\sigma(\mathfrak{E}_0)$ è chiuso per differenza e unione numerabile, quindi date due successioni $A_n, B_n \in \bigcup_{\beta < \alpha} \mathfrak{E}_{\beta}$, abbiamo che $\forall n \in \mathbb{N} \, C_n = A_n \setminus B_n \in \sigma(\mathfrak{E}_0)$, e $\bigcup_{n \in \mathbb{N}} C_n \in \sigma(\mathfrak{E}_0)$. Per ipotesi un generico elemento di \mathfrak{E}_{α} si scrive in questa forma, e dunque $\sigma(\mathfrak{E}_0) \supseteq \mathfrak{E}_{\alpha}$.

Allora $\sigma(\mathfrak{E}_0)$ contiene ogni \mathfrak{E}_{α} , e quindi anche la loro unione.

 \subseteq Basta dimostrare che $S \coloneqq \bigcup_{\alpha < \omega_1} \mathfrak{E}_{\alpha}$ è un anello.

Differenza Siano $A, B \in S$; allora $\exists \alpha_1, \alpha_2 < \omega_1 \colon A \in \mathfrak{E}_{\alpha_1}, B \in \mathfrak{E}_{\alpha_2}$, e sia $\alpha = \min\{\alpha_1, \alpha_2\}$. allora per ipotesi $A \setminus B \in \mathfrak{E}_{\alpha+1}$, con $\alpha + 1 < \omega_1$, perché ω_1 non è un successore.

Unione Sia $(A_n)_{n\in\mathbb{N}}$ una successione si elementi di S, $B_n=\emptyset \,\forall n\in\mathbb{N}$, e sia α_n il più piccolo ordinale per cui $A_n\in\mathfrak{E}_{\alpha_n}$. Dato che $\mathrm{Cof}(\omega_1)>\aleph_0$ $\alpha=\bigcup_{n\in\mathbb{N}}\alpha_n<\omega_1$, e dunque per ipotesi $\bigcup_{n\in\mathbb{N}}A_n\in\mathfrak{E}_{\alpha}\subseteq S$

Abbiamo anche dimostrato che da $\lambda = \omega_1$ in poi la successione $\bigcup_{\alpha < \lambda} \mathfrak{E}_{\alpha}$ è stazionaria.

2 Esercizi sugli ideali

Esercizio 4 (13/10/2016). Sia $\mathfrak N$ un ideale di un anello $\mathfrak A$.

- 1. Descrivere l'insieme algebra (\mathfrak{N}) .
- 2. Dimostrare ceh se $\mathfrak N$ è un σ -ideale in $\mathfrak A$ e se $\mathfrak M$ è un σ -anello allora algebra($\mathfrak M$) è in realtà una σ -algebra.

Dimostrazione.

Esercizio 5 (13/10/2016). $Sia \emptyset \neq \mathfrak{E} \subseteq \mathbb{P}X \ e \ sia \emptyset \neq A \subseteq X$. $Allora \ \sigma(\mathfrak{E} \cap A) = \sigma(\mathfrak{E}) \cap A$ avendo definito $\mathfrak{E} \cap A := \{E \cap A : E \in \mathfrak{E}\}.$

- 1. Descrivere l'insieme algebra (\mathfrak{N}) .
- 2. Dimostrare ce
h se $\mathfrak N$ è un σ -ideale in $\mathfrak A$ e se $\mathfrak M$ è un σ -anello allora algebra
($\mathfrak M$) è in realtà una σ -algebra.

Dimostrazione. Assegnato a Gaetano.

Esercizio 6 (13/10/2016). Sia $\emptyset \in \mathfrak{N} \subseteq \mathfrak{A}$ algebra in $\mathbb{P}(X)$ con $X \notin \mathfrak{N}$. Definiamo la funzione $\nu(\cot)$ ponendo

$$\nu(A) \coloneqq \begin{cases} 0 & se \ A \in \mathfrak{N} \\ +\infty & se \ A \in \mathfrak{A} \setminus \mathfrak{N}. \end{cases}$$

Mostrare che ν è finitamente additiva se e solo se \mathfrak{N} è un ideale.

Dimostrazione. Assegnato a Barbetta.

3 Intergrali

4 Metriche e submisure

Esercizio 7 (2016-10-20-1). Sia $\mathfrak A$ un anello, $\eta: \mathfrak A \to [0, +\infty]$ una submisura. Sia come al solito $\mathfrak N(\eta) = \{A \in \mathfrak A: \eta(A) = 0\}$. Dimostrare che

- 1. Se $\mathfrak{N}(\eta)$ è un ideale di \mathfrak{A} e η è una σ -submisura, allora \mathfrak{N} è un σ -ideale.
- 2. Se $A, B \in \mathfrak{A}$ e $A \cap B \in \mathfrak{N}(\eta)$, allora $\eta(A) = \eta(A \cap N) = \eta(B)$.
- 3. Se $A \in \mathfrak{A}$, $N \in \mathfrak{N}(\eta)$, allora $\eta(A) = \eta(A \cup N) = \eta(A\Delta N) = \eta(A \setminus N)$

Dimostrazione.

Esercizio 8 (2016-10-20-2). Sia $\mathfrak{A} \subseteq \mathbb{P}(X)$ un σ -anello, $\mu \colon \mathfrak{A} \to [0, +\infty]$ una misura σ -additiva. Sia $\mathfrak{N} := \{N \colon \exists A \in \mathfrak{A}, N \subseteq A, A \in \mathfrak{N}(\mu)\}.$

- 1. Dimostrare che \mathfrak{N} è un σ -ideale in $\mathbb{P}(X)$.
- 2. Sia $\mathfrak{L} := \text{anello}(\mathfrak{A} \cup \mathfrak{N})$. Dimostrare che $\mathfrak{L} = \{A \Delta N : A \in \mathfrak{A}, N \in \mathfrak{N}\} = \{A \sqcup N : A \in \mathfrak{A}, N \in \mathfrak{N}\}$

Dimostrazione. 1. Sia $\hat{N} \subseteq N \in \mathfrak{N}$; per ipotesi $\exists A \in \mathfrak{A} : N \subseteq A, \, \mu(A) = 0$, ma allora anche $\hat{N} \subseteq A$, e quindi $\hat{N} \in \mathfrak{N}$.

Sia ora $(N_n)_{n\in\mathbb{N}}$ una successione di elementi di \mathfrak{N} ; per ipotesi $\forall n\exists A_n\in\mathfrak{A}: \mu(A_n)=0,\ N_n\in A_n$; allora $\bigcup_{n\in\mathbb{N}}N_n\subseteq\bigcup_{n\in\mathbb{N}}A_n$ e per la σ -additività di μ , $\mu(\bigcup_{n\in\mathbb{N}}A_n)\leq\sum_{n\in\mathbb{N}}\mu(A_n)=0$ e quindi per definizione $\bigcup_{n\in\mathbb{N}}N_n\in\mathfrak{N}$.

2. Poniamo

$$\mathfrak{U} \coloneqq \{A\Delta N \colon A \in \mathfrak{A}, N \in \mathfrak{N}\}$$
$$\mathfrak{T} \coloneqq \{A \sqcup N \colon A \in \mathfrak{A}, N \in \mathfrak{N}\}$$

Mostriamo che $\mathfrak{U} = \mathfrak{T}$ Siano $A \in \mathfrak{A}, N \in \mathfrak{N}$.

 \subseteq Consideriamo $A\Delta N = (A \setminus N) \sqcup (N \setminus A)$. Per ipotesi $\exists C \in \mathfrak{A}$ di misura nulla tale che $N \subseteq C$. Sia $B = A \cap C$; allora

$$B \in \mathfrak{N}, B \in \mathfrak{A}, \mu(B) = 0;$$

inoltre

$$A \setminus N = (A \setminus B) \sqcup (B \setminus N).$$

Allora abbiamo

$$A\Delta N = (A \setminus B) \sqcup (B \setminus N) \sqcup (N \setminus A)$$

dove $A \setminus B \in \mathfrak{A}$ e $(B \setminus N) \sqcup (N \setminus A) \in \mathfrak{N}$, e dunque $A \Delta N \in \mathfrak{T}$.

 \supseteq Sia ora $A \cap N = \emptyset$. Allora $A \sqcup N = A\Delta N$ e la tesi è provata.

Mostriamo ora $\mathfrak{U} = \mathfrak{L}$.

⊇ È vero perché per definizione ogni anello è chiuso per differenza simmetrica.

 \subseteq Basta mostrare che \mathfrak{U} è un anello e che contiene $\mathfrak{A} \cup \mathfrak{N}$; $\mathfrak{A} \subseteq \mathfrak{U}$ perché ogni elemento A di \mathfrak{A} si scrive come $A\Delta\emptyset$, e analogamente $\mathfrak{N} \subseteq \mathfrak{U}$ Perché ogni elemento N di \mathfrak{N} si scrive come $N\Delta\emptyset$.

Per provare che $\mathfrak U$ è un anello mostriamo che $\mathfrak T$ è chiuso per unione disgiunta e differenza.

- \sqcup Siano $A \sqcup N$, $A_1 \sqcup N_1 \in \mathfrak{U}$ disgiunti; allora $(A \sqcup N) \sqcup (A_1 \sqcup N_1) = (A \sqcup A_1) \sqcup (N \sqcup N_1) \in \mathfrak{U}$, perché l'unione è associativa e commutativa.
- \ Mostriamo la differenza di due elementi di $\mathfrak{T} = \mathfrak{U}$ appartiene a \mathfrak{U} . Siano $A \sqcup N$, $A_1 \sqcup N_1 \in \mathfrak{U}$; allora $(A \sqcup N) \setminus (A_1 \sqcup N_1) = (A \setminus A_1 \setminus N_1) \sqcup (N \setminus A_1 \setminus N_1)$. Ma il secondo insieme dell'unione è un sottoinsieme di N, e quindi appartiene all'ideale $\mathfrak{N} \subseteq \mathfrak{U}$.

Inoltre sia $N_1 \subseteq B \in \mathfrak{A}, \mu(B) = 0$ contenuto in $A \setminus A_1$. $A \setminus A_1 \setminus N_1 = A \setminus A_1 \setminus B \sqcup B \setminus N_1$ dove e quindi il primo insieme dell'unione appartiene ad \mathfrak{U} .

Dato che abbiamo già dimostrato che $\mathfrak U$ è chiuso per unioni disgiunte, è chiuso anche per differenza. \Box

Esercizio 9 (27/10/2016). Definiamo $\overline{\mu}(A\Delta N) := \mu(A) \, \forall A \in \mathfrak{A}, N \in \mathbb{N}$. Dimostrare che $\overline{\mu}$ è ben definita, σ -additiva, completa e che $\overline{\mu} \mid_{\mathfrak{A}} = \mu$.

Nota 1. La misura $\overline{\mu}$ così definita si dice completamento di μ .

Dimostrazione. Definiamo $\mathfrak{U} := \{A\Delta N \colon A \in \mathfrak{A}, N \in \mathfrak{N}\}$. Gli ultimi due punti sono ovvi prendendo $A = \emptyset$ e $N = \emptyset$ rispettivamente. Dimostriamo quindi i primi due.

- Dimostriamo che $\overline{\mu}$ è ben definita. Sia $A_1 \Delta N_1 = A_2 \Delta N_2$, con $A_1, A_2 \in \mathfrak{A}$; $N_1, N_2 \in \mathfrak{N}$. Allora $\exists B_1, B_2 \in \mathfrak{A}$: $\mu(B_1) = \mu(B_2) = 0$, $N_1 \subseteq B_1, N_2 \subseteq B_2$. Quindi $A_1 \subseteq A_2 \cup B_1 \cup B_2$ e per l'additività della misura $\mu(A_1) \leq \mu(A_2) + \mu(B_1) + \mu(B_2) = \mu(A_2)$; allo stesso modo anche $\mu(A_2) \leq \mu(A_1)$ e quindi $\mu(A_1) = \mu(A_2)$.
- Per dimostrare la σ -additività utilizziamo l'esercizio precedente: dati A, N come nelle ipotesi, $\exists \overline{A} \in \mathfrak{A}; \overline{N} \in \mathfrak{N}: A\Delta N = \overline{A} \sqcup \overline{N}$. Inoltre, per la buona definizione di $\overline{\mu}$, e poiché $\overline{A} \sqcup \overline{N} = \overline{A}\Delta \overline{N}$, abbiamo che $\mu(A) = \mu(\overline{A})$. Sia quindi $(A_k\Delta N_k)_{k\in\mathbb{N}}$ una successione di elementi disgiunti in \mathfrak{U} . Dato che \mathfrak{N} è un σ -anello $\exists \hat{A}: \mu(\hat{A}) = 0, \bigcup_{k\in\mathbb{N}} N_k \subseteq \hat{A}$. Inoltre detti $\hat{A}_k := A_k \setminus \hat{A}$, si ha $\mu(A_k) = \mu(\hat{A}_k)$.

$$\overline{\mu}\left(\bigsqcup_{k\in\mathbb{N}} (A_k \Delta N_k)\right) = \overline{\mu}\left(\bigsqcup_{k\in\mathbb{N}} \left(\overline{A}_k \sqcup \overline{N}_k\right)\right) =
= \overline{\mu}\left(\bigsqcup_{k\in\mathbb{N}} \left(\hat{A}_k \sqcup \left(\overline{N}_k \cup \hat{A}\right)\right)\right) =
= \overline{\mu}\left(\hat{A} \sqcup \bigsqcup_{k\in\mathbb{N}} \hat{A}_k\right) =
= \mu\left(\bigsqcup_{k\in\mathbb{N}} \hat{A}_k\right) = \sum_{k\in\mathbb{N}} \mu\left(\hat{A}_k\right) = \sum_{k\in\mathbb{N}} \mu\left(A_k\right) =
= \sum_{k\in\mathbb{N}} \overline{\mu}\left(A_k \Delta N_k\right)$$

che è la σ -additività.