Algèbre Linéaire

Tissot

Semestre de printemps 2019

Corrigé 9

Valeurs propres : exercice 12

(a) Valeurs propres de f

Les valeurs propres de f sont les solutions de l'équation caractéristique de f:

$$\det (A - \lambda I_2) = 0 \quad \Leftrightarrow \quad \begin{vmatrix} 16 - \lambda & -12 \\ -12 & 9 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow$$
 $(16 - \lambda)(9 - \lambda) - 144 = \lambda^2 - 25\lambda + 0 = 0$

On en déduit les valeurs propres de f : $\lambda_1 = 0$ et $\lambda_2 = 25$.

• Sous-espace propre de f associé à la valeur propre $\lambda_1 = 0$

$$E\left(0\right) = \left\{ \vec{x} \in \mathbb{R}^2 \mid f\left(\vec{x}\right) = \vec{0} \right\}.$$

Résolvons l'équation $f(\vec{x}) = \vec{0}$.

$$\left(\begin{array}{cc} 16 & -12 \\ -12 & 9 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

$$\Leftrightarrow \begin{cases} 16x - 12y = 0 \\ -12x + 9y = 0 \end{cases} \Leftrightarrow 4x - 3y = 0 \Rightarrow \vec{u}_1 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$

Le sous-espace propre E(0) est la droite passant par l'origine et dirigée par le vecteur \vec{u}_1 .

• Sous-espace propre de f associé à la valeur propre $\lambda_2=25$

$$E(25) = \{ \vec{x} \in \mathbb{R}^2 \mid f(\vec{x}) = 25 \vec{x} \}.$$

Résolvons l'équation $f(\vec{x}) = 25\vec{x}$.

$$\begin{pmatrix} 16 & -12 \\ -12 & 9 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 25 \begin{pmatrix} x \\ y \end{pmatrix} \quad \Leftrightarrow \quad \begin{pmatrix} -9 & -12 \\ -12 & -16 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} -9x - 12y = 0 \\ -12x - 16y = 0 \end{cases} \Leftrightarrow 3x + 4y = 0 \Rightarrow \vec{u}_2 = \begin{pmatrix} 4 \\ -3 \end{pmatrix}.$$

Le sous-espace propre E(25) est la droite passant par l'origine et dirigée par le vecteur \vec{u}_2 .

Matrice de f dans une base propre

La matrice de f exprimée dans une base propre de f est une matrice diagonale constituée des valeurs propres associées aux vecteurs propres qui définissent la base. Relativement à la base propre $E' = (\vec{u}_1, \vec{u}_2)$, la matrice de f s'écrit :

$$A' = \begin{pmatrix} 0 & 0 \\ 0 & 25 \end{pmatrix} \qquad \text{car} \qquad \begin{cases} f(\vec{u}_1) = \vec{0} \\ f(\vec{u}_2) = 25 \vec{u}_2 \end{cases}$$

$$A' = \begin{pmatrix} 0 & 0 \\ 0 & 25 \end{pmatrix} = \begin{pmatrix} 25 & 0 \\ 0 & 25 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = A'_h \cdot A'_p \quad \Rightarrow \quad f = h \circ p \quad \text{car} :$$

 A'_h : matrice d'une homothétie h de rapport 25 et de centre O

 A_p' : matrice d'une projection sur E(25), parallèle à E(0) ($\perp E(25)$).

(b) Valeurs propres de f

Les valeurs propres de f sont les solutions de l'équation caractéristique de f:

$$\det (B - \lambda I_2) = 0 \quad \Leftrightarrow \quad \begin{vmatrix} -\lambda & -3 \\ -3 & -\lambda \end{vmatrix} = 0$$
$$\Leftrightarrow \quad (-\lambda)(-\lambda) - 9 = \lambda^2 - 9 = 0$$

On en déduit les valeurs propres de f : $\lambda_1 = 3$ et $\lambda_2 = -3$.

• Sous-espace propre de f associé à la valeur propre $\lambda_1 = 3$

$$E(3) = \{ \vec{x} \in \mathbb{R}^2 \mid f(\vec{x}) = 3\vec{x} \}.$$

Résolvons l'équation $f(\vec{x}) = 3\vec{x}$.

$$\begin{pmatrix} -3 & -3 \\ -3 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} -3x - 3y = 0 \\ -3x - 3y = 0 \end{cases} \Leftrightarrow x + y = 0 \Rightarrow \vec{u}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Le sous-espace propre E(3) est la droite passant par l'origine et dirigée par le vecteur \vec{u}_1 .

• Sous-espace propre de f associé à la valeur propre $\lambda_2 = -3$

$$E(-3) = \{ \vec{x} \in \mathbb{R}^2 \mid f(\vec{x}) = -3\vec{x} \}.$$

Résolvons l'équation $f(\vec{x}) = -3\vec{x}$.

$$\begin{pmatrix} 3 & -3 \\ -3 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} 3x - 3y = 0 \\ -3x + 3y = 0 \end{cases} \Leftrightarrow x - y = 0 \Rightarrow \vec{u}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Le sous-espace propre E(-3) est la droite passant par l'origine et dirigée par le vecteur \vec{u}_2 .

Matrice de f dans une base propre

La matrice de f exprimée dans une base propre de f est une matrice diagonale constituée des valeurs propres associées aux vecteurs propres qui définissent la base. Relativement à la base propre $E' = (\vec{u}_1, \vec{u}_2)$, la matrice de f s'écrit :

$$B' = \begin{pmatrix} 3 & 0 \\ 0 & -3 \end{pmatrix} \quad \text{car} \quad \begin{cases} f(\vec{u}_1) = +3\vec{u}_1 \\ f(\vec{u}_2) = -3\vec{u}_2 \end{cases}$$
$$B' = \begin{pmatrix} 3 & 0 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = B'_h \cdot B'_s \quad \Rightarrow \quad f = h \circ s \quad \text{car} :$$

 B_h^\prime : matrice d'une homothétie h de rapport 3 et de centre O

 B_s' : matrice d'une symétrie d'axe E(3), s est une symétrie orthogonale.

(c) Valeurs propres de f

Les valeurs propres de f sont les solutions de l'équation caractéristique de f:

$$\det(C - \lambda I_2) = 0 \quad \Leftrightarrow \quad \begin{vmatrix} 3 - \lambda & 0 \\ 1 & 2 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow \quad (3 - \lambda)(2 - \lambda) = 0$$

On en déduit les valeurs propres de f : $\lambda_1=2$ et $\lambda_2=3$.

• Sous-espace propre de f associé à la valeur propre $\lambda_1=2$

$$E\left(2\right) = \left\{ \, \vec{x} \in \mathbb{R}^2 \mid f\left(\, \vec{x}\,\right) = 2\,\vec{x} \, \right\} \, .$$

Résolvons l'équation $f(\vec{x}) = 2\vec{x}$.

$$\begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \quad x = 0 \quad \Rightarrow \quad \vec{u}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} : \text{axe Oy}$$

Le sous-espace propre E(2) est la droite passant par l'origine et dirigée par le vecteur \vec{u}_1 .

• Sous-espace propre de f associé à la valeur propre $\lambda_2 = 3$

$$E(3) = \left\{ \vec{x} \in \mathbb{R}^2 \mid f(\vec{x}) = 3\vec{x} \right\}.$$

Résolvons l'équation $f(\vec{x}) = 3\vec{x}$.

$$\begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \quad x - y = 0 \quad \Rightarrow \quad \vec{u}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Le sous-espace propre E(3) est la droite passant par l'origine et dirigée par le vecteur \vec{u}_2 .

Matrice de f dans une base propre

La matrice de f exprimée dans une base propre de f est une matrice diagonale constituée des valeurs propres associées aux vecteurs propres qui définissent la base. Relativement à la base propre $E' = (\vec{u}_1, \vec{u}_2)$, la matrice de f s'écrit :

$$C' = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} \quad \text{car} \quad \begin{cases} f(\vec{u}_1) = 2 \vec{u}_1 \\ f(\vec{u}_2) = 3 \vec{u}_2 \end{cases}$$

$$C' = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \frac{3}{2} \end{pmatrix} = C'_h \cdot C'_a \quad \Rightarrow \quad f = h \circ s \quad \text{car} :$$

 C_h^\prime : matrice d'une homothétie h de rapport 2 et de centre O

 C_a' : matrice d'une affinité d'axe E(2), de direction E(3) et de rapport $\lambda = \frac{3}{2}$.

Remarque: Cette décomposition n'est pas unique!

(d) Valeurs propres de f

Les valeurs propres de f sont les solutions de l'équation caractéristique de f:

$$\det(D - \lambda I_2) = 0 \quad \Leftrightarrow \quad \begin{vmatrix} 5 - \lambda & -2 \\ 4 & -1 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow \quad (5 - \lambda)(-1 - \lambda) + 8 = \lambda^2 - 4\lambda + 3 = 0$$

On en déduit les valeurs propres de f: $\lambda_1 = 1$ et $\lambda_2 = 3$.

• Sous-espace propre de f associé à la valeur propre $\lambda_1 = 1$

$$E(3) = \{ \vec{x} \in \mathbb{R}^2 \mid f(\vec{x}) = 1 \vec{x} \}.$$

Résolvons l'équation $f(\vec{x}) = \vec{x}$.

$$\begin{pmatrix} 4 & -2 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} 4x - 2y = 0 \\ 4x - 2y = 0 \end{cases} \Leftrightarrow 2x - y = 0 \Rightarrow \vec{u}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

Le sous-espace propre E(1) est la droite passant par l'origine et dirigée par le vecteur \vec{u}_1 .

• Sous-espace propre de f associé à la valeur propre $\lambda_2 = 3$

$$E(-3) = \{ \vec{x} \in \mathbb{R}^2 \mid f(\vec{x}) = 3\vec{x} \}.$$

Résolvons l'équation $f(\vec{x}) = 3\vec{x}$.

$$\begin{pmatrix} 2 & -2 \\ 4 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} 2x - 2y = 0 \\ 4x - 4y = 0 \end{cases} \Leftrightarrow x - y = 0 \Rightarrow \vec{u}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Le sous-espace propre E(3) est la droite passant par l'origine et dirigée par le vecteur \vec{u}_2 .

Matrice de f dans une base propre

La matrice de f exprimée dans une base propre de f est une matrice diagonale constituée des valeurs propres associées aux vecteurs propres qui définissent la base. Relativement à la base propre $E' = (\vec{u}_1, \vec{u}_2)$, la matrice de f s'écrit :

$$D' = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} \quad \text{car} \quad \begin{cases} f(\vec{u}_1) = 1 \vec{u}_1 \\ f(\vec{u}_2) = 3 \vec{u}_2 \end{cases}$$
$$D' = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix} = D'_a$$

 D'_a : matrice d'une affinité a d'axe E(1), de direction E(3) et de rapport $\lambda = 3$.

Valeurs propres : exercice 13

On va déterminer la matrice de f dans une base propre puis effectuer un changement de bases.

De même pour la symétrie car l'angle entre (O, \vec{e}_1) et son axe n'est pas un angle remarquable.

Attention, les bases propres de f et s ne sont pas les mêmes.

• L'affinité a pour axe la droite a: y = 0, de vecteur directeur $\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Elle a pour direction $\vec{v} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$ et le rapport est -5.

On en déduit les valeurs propres de f:

 $\lambda_1 = 1$, associé au sous espace propre $E_f(1) = (O, \vec{e}_1)$,

 $\lambda_2 = -5$, associé au sous espace propre $E_f(-5) = (O, \vec{v})$,

et la base propre $\mathcal{B}(\vec{e}_1, \vec{v})$.

Par rapport à cette base la matrice de f est donc la suivante :

$$M_f' = \left(\begin{array}{cc} 1 & 0 \\ 0 & -5 \end{array}\right) .$$

• On considère le changement de bases de la base canonique $\mathcal{B}(\vec{e}_1, \vec{e}_2)$ à $\mathcal{B}(\vec{e}_1, \vec{v})$, de matrice de passage

 $P = \left(\begin{array}{cc} 1 & -2 \\ 0 & 1 \end{array}\right).$

De la relation $M_f' = P^{-1} M_f P$, on en déduit la matrice de f par rapport à la base canonique.

$$M_f = P M_f' P^{-1} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -5 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 12 \\ 0 & -5 \end{pmatrix}$$

• La symétrie a pour axe la droite b: -2x + y = 0, de vecteur directeur $\vec{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Elle est orthogonale donc elle a pour direction $\vec{v} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.

Les valeurs propres de s sont :

 $\lambda_1 = 1$, associé au sous espace propre $E_s(1) = (O, \vec{b})$,

 $\lambda_2 = -1$, associé au sous espace propre $E_s(-1) = (O, \vec{v})$

et $\mathcal{B}(\vec{b}, \vec{v})$ est une base propre.

Par rapport à cette base la matrice de s est donc la suivante :

$$M_s' = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right).$$

• On considère le changement de bases de la base canonique $\mathcal{B}(\vec{e}_1,\vec{e}_2)$ à $\mathcal{B}(\vec{b},\vec{v})$, de matrice de passage

$$Q = \left(\begin{array}{cc} 1 & -2 \\ 2 & 1 \end{array}\right).$$

De la relation $M_s' = Q^{-1} M_s Q$, on en déduit la matrice de s par rapport à la base canonique.

$$M_s = Q M_s' Q^{-1} = \begin{pmatrix} 1 & -2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \frac{1}{5} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix}$$

• Les matrices M_f et M_s étant exprimées dans la base canonique, on en déduit la matrice de $g = s \circ f$ dans cette base.

$$M_g = M_s M_f = \frac{1}{5} \begin{pmatrix} -3 & 4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 12 \\ 0 & -5 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} -3 & -56 \\ 4 & 33 \end{pmatrix}$$

Pour déterminer la nature géométrique de q, on cherche la matrice de q dans une base propre.

• Les valeurs propres sont solutions de l'équation caractéristique de q:

$$p(\lambda) = \det(M_q - \lambda I_2) = 0$$

 $\Leftrightarrow \quad p(\lambda) = \lambda^2 - \operatorname{tr} M_g \, \lambda + \det M_g = \lambda^2 - 6\lambda + 5 = (\lambda - 1)(\lambda - 5) = 0$ On en déduit les deux valeurs propres de g et leur multiplicité :

$$\lambda_1 = 1$$
, $n_1 = 1$ et $\lambda_2 = 5$, $n_2 = 1$

Ces valeurs propres sont distinctes et de multiplicité 1, les sous espaces propres sont donc de dimension 1:q est diagonalisable.

• Sous espace propre associé à la valeur propre $\lambda_1 = 1$

$$E(1) = {\vec{x} \in \mathbb{R}^2 \mid g(\vec{x}) = \vec{x}}$$

Il faut résoudre l'équation $g(\vec{x}) = \vec{x} \Leftrightarrow M_q X = X$.

$$\frac{1}{5} \begin{pmatrix} -3 & -56 \\ 4 & 33 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow$$

$$\begin{cases} -3x - 56y = 5x \\ 4x + 33y = 5y \end{cases} \Leftrightarrow \begin{cases} -8x - 56y = 0 \\ 4x + 27y = 0 \end{cases} \Leftrightarrow x + 7y = 0$$

E(1) est une droite de vecteur directeur $\vec{u} = \begin{pmatrix} 7 \\ -1 \end{pmatrix}$.

• Sous espace propre associé à la valeur propre $\lambda_2 = 5$

$$E(5) = \{ \vec{x} \in \mathbb{R}^2 \mid g(\vec{x}) = 5 \, \vec{x} \, \}$$

Il faut résoudre l'équation $g(\vec{x}) = 5 \vec{x} \iff M_g X = 5 X$.

$$\frac{1}{5} \begin{pmatrix} -3 & -56 \\ 4 & 33 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 5 \begin{pmatrix} x \\ y \end{pmatrix} \Leftrightarrow$$

$$\begin{cases} -3x - 56y = 25x \\ 4x + 33y = 25y \end{cases} \Leftrightarrow \begin{cases} -28x - 56y = 0 \\ 4x + 8y = 0 \end{cases} \Leftrightarrow x + 2y = 0$$

E(5) est une droite de vecteur directeur $\vec{v} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$.

• On définit la base propre suivante, formée de vecteurs propres, $\mathcal{B}(\vec{u}, \vec{v})$. Par rapport à cette base, la matrice de q est diagonale :

$$M'_g = \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix} \quad \text{car} \quad \begin{cases} g(\vec{u}) = \vec{u} \\ g(\vec{v}) = 5 \vec{v} \end{cases}$$

On reconnaît la matrice d'une affinité d'axe la droite E(1): x + 7y = 0, de direction \vec{v} parallèle à E(5) et de rapport k=5.

Valeurs propres : exercice 15

(a) Matrice de
$$f: M = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix}$$

• Valeurs et sous-espaces propres propres de f

Les valeurs propres de f sont les solutions de l'équation caractéristique de f:

$$\det (A - \lambda I_3) = 0 \quad \Leftrightarrow \quad \begin{vmatrix} 1 - \lambda & 2 & 3 \\ 0 & 2 - \lambda & 3 \\ 0 & 0 & 3 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow$$
 $(1-\lambda)(2-\lambda)(3-\lambda)=0$

On en déduit les valeurs propres de f et leur multiplicité respective :

$$\lambda_1 = 1$$
, $n_1 = 1$ et $\lambda_2 = 2$, $n_2 = 1$ et $\lambda_3 = 3$, $n_3 = 1$.

Les trois valeurs propres étant distinctes, f est donc diagonalisable. Les sousespaces propres associés sont des droites.

• $E(1) = \{ \vec{x} \in \mathbb{R}^3 \mid f(\vec{x}) = \vec{x} \}$.

On résoud l'équation $f(\vec{x}) = \vec{x}$.

$$\left(\begin{array}{ccc} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} x \\ y \\ z \end{array}\right)$$

$$\Leftrightarrow \begin{cases} 2y + 3z = 0 & (1) \\ y + 3z = 0 & (2) \\ 2z = 0 & (3) \end{cases}$$

On constate que $(1) = 2(2) - \frac{3}{2}(3)$. Le système se réduit donc aux équations (2) et (3).

$$\begin{cases} y+3z=0 & (2) \\ 2z=0 & (3) \end{cases} \Leftrightarrow y=z \text{ et } x \text{ quelconque}$$

Le sous-espace propre E(1) est la droite passant par l'origine et dirigée par

le vecteur $\vec{u} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$

$$E(1)$$
: $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad \mu \in \mathbb{R}.$

 $\bullet \ E(2) = \{ \, \vec{x} \in \mathbb{R}^3 \mid f\left(\vec{x}\,\right) = \, 2\,\vec{x} \, \} \ .$

On résoud l'équation $f(\vec{x}) = 2\vec{x}$.

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} -x + 2y + 3z = 0 \\ 3z = 0 \\ z = 0 \end{cases} \Leftrightarrow \begin{cases} -x + 2y + 3z = 0 \\ z = 0 \end{cases}$$

Le sous-espace propre $E\left(2\right)$ est la droite passant par l'origine et dirigée par le vecteur \vec{v}

$$\vec{v} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ -1 & 2 & 3 \\ 0 & 0 & 1 \end{vmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix},$$

Le sous-espace propre E(2) est la droite passant par l'origine et dirigée par

le vecteur $\vec{v} = \begin{pmatrix} 2\\1\\0 \end{pmatrix}$

$$E(2):$$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mu \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}, \qquad \mu \in \mathbb{R}.$

• $E(3) = \{ \vec{x} \in \mathbb{R}^3 \mid f(\vec{x}) = 3\vec{x} \}$.

On résoud l'équation $f(\vec{x}) = 2\vec{x}$.

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3x \\ 3y \\ 3z \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} -2x + 2y + 3z = 0 \\ -y + 3z = 0 \\ 0x + 0y + 0z = 0 \end{cases} \Leftrightarrow \begin{cases} -x + 2y + 3z = 0 \\ -y + 3z = 0 \end{cases}$$

Le sous-espace propre E(3) est la droite passant par l'origine et dirigée par le vecteur \vec{w}

$$\vec{v} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} \times \begin{pmatrix} 0 \\ -1 \\ 3 \end{pmatrix} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ -1 & 2 & 3 \\ 0 & -1 & 3 \end{vmatrix} = \begin{pmatrix} 9 \\ 6 \\ 2 \end{pmatrix}$$

Le sous-espace propre E(3) est la droite passant par l'origine et dirigée par

le vecteur
$$\vec{w} = \begin{pmatrix} 9 \\ 6 \\ 2 \end{pmatrix}$$
.

$$E(3):$$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mu \begin{pmatrix} 9 \\ 6 \\ 2 \end{pmatrix}, \qquad \mu \in \mathbb{R}.$

Matrice de f dans une base propre

La matrice de f exprimée dans une base propre de f est une matrice diagonale constituée des valeurs propres associées aux vecteurs propres qui définissent la base. Relativement à la base propre $E' = (\vec{u}, \vec{v}, \vec{w})$, la matrice de f s'écrit :

$$A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \qquad \text{car} \qquad \begin{cases} f(\vec{u}) = 1 \vec{u} \\ f(\vec{v}) = 2 \vec{v} \\ f(\vec{w}) = 3 \vec{w} \end{cases}$$

Les colonnes de la matrice de passage P de la base E à la base E' sont constituées des composantes des nouveaux vecteurs de base \vec{u} , \vec{v} et \vec{w} exprimés dans l'ancienne base E.

$$P = (\vec{u}, \vec{v}, \vec{w})_E = \begin{pmatrix} 1 & 2 & 9 \\ 0 & 1 & 6 \\ 0 & 0 & 2 \end{pmatrix}.$$

On décompose f en deux affinités dont les axes sont des plans.

$$A' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix} = M_a M_b$$

 M_a est la matrice de l'affinité a de plan (O, \vec{u}, \vec{v}) , de direction \vec{w} et de rapport 3. M_b est la matrice de l'affinité b de plan (O, \vec{u}, \vec{w}) , de direction \vec{v} et de rapport 2. D'où : $f = a \circ b$.

Cette décomposition n'est pas unique.

(b) Matrice de
$$f: M = \begin{pmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4 \end{pmatrix}$$

\bullet Valeurs et sous-espaces propres propres de f

Les valeurs propres de f sont les solutions de l'équation caractéristique de f:

$$\det(A - \lambda I_3) = 0 \quad \Leftrightarrow \quad \begin{vmatrix} 1 - \lambda & -1 & 2 \\ 3 & -3 - \lambda & 6 \\ 2 & -2 & 34 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow \quad \lambda^2 (2 - \lambda) = 0$$

On en déduit les valeurs propres de f et leur multiplicité respective :

$$\lambda_1 = 0$$
, $n_1 = 2$ et $\lambda_2 = 2$, $n_2 = 1$.

Pour que f soit diagonalisable, il faut que le sous-espace associé à la valeur propre $\lambda_1 = 0$ soit un plan. On commence donc par déterminer E(0).

•
$$E(0) = \left\{ \vec{x} \in \mathbb{R}^3 \mid f(\vec{x}) = \vec{0} \right\}$$
.

On résoud l'équation $f(\vec{x}) = \vec{0}$.

$$\begin{pmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} x - y + 2z = 0 \\ 3x - 3y + 6z = 0 \\ 2x - 3y + 4z = 0 \end{cases} \Leftrightarrow x - y + 2z = 0$$

Le sous-espace propre $E\left(0\right)$ est un plan passant par l'origine, f est donc diagonalisable. On détermine deux vecteurs directeurs de ce plan :

$$\vec{u} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}$$
 et $\vec{v} = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$

• $E(2) = \{ \vec{x} \in \mathbb{R}^3 \mid f(\vec{x}) = 2\vec{x} \}$.

On résoud l'équation $f(\vec{x}) = 2\vec{x}$.

$$\begin{pmatrix} 1 & -1 & 2 \\ 3 & -3 & 6 \\ 2 & -2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}$$

$$\Leftrightarrow \begin{cases} -x - y + 2z = 0 & (1) \\ 3x - 5y + 6z = 0 & (2) \\ 2x - 2y + 2z = 0 & (3) \end{cases}$$

On constate que (1) = -(2) + 4(3). Le système se réduit donc aux équations de plans (1) et (3).

Le sous-espace propre E(2) est la droite passant par l'origine et dirigée par le vecteur \vec{w}

$$\vec{w} = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} \times \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ -1 & -1 & 2 \\ 1 & -1 & 1 \end{vmatrix} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix},$$

$$E(2):$$
 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \mu \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, \qquad \mu \in \mathbb{R}.$

Matrice de f dans une base propre

La matrice de f exprimée dans une base propre de f est une matrice diagonale constituée des valeurs propres associées aux vecteurs propres qui définissent la base.

Relativement à la base propre $E' = (\vec{u}, \vec{v}, \vec{w})$, la matrice de f s'écrit :

$$A' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \qquad \text{car} \qquad \begin{cases} f(\vec{u}) = 0 \, \vec{u} = \vec{0} \\ f(\vec{v}) = 0 \, \vec{v} = \vec{0} \\ f(\vec{w}) = 2 \, \vec{w} \end{cases}$$

Les colonnes de la matrice de passage P de la base E à la base E' sont constituées des composantes des nouveaux vecteurs de base \vec{u} , \vec{v} et \vec{w} exprimés dans l'ancienne base E.

$$P = (\vec{u}, \vec{v}, \vec{w})_E = \begin{pmatrix} 1 & 2 & 1 \\ -1 & 0 & 3 \\ -1 & -1 & 2 \end{pmatrix}.$$

$$A' = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = M_h M_p$$

 M_h est la matrice d'une homothétie h de centre O et de rapport 2.

 M_p est la matrice d'une projection p sur la droite (O, \vec{w}) , parallèlement au plan (O, \vec{u}, \vec{v}) .

D'où : $f = h \circ p$.

Cette décomposition n'est pas unique.

Valeurs propres : exercice 17

(a) Les valeurs propres sont les solutions de l'équation caractéristique de h:

$$\det(M - \lambda I_2) = 0.$$

Soit la matrice de h par rapport à la base canonique :

$$M = \begin{pmatrix} \alpha & 1 \\ \beta & 2 \end{pmatrix} \qquad \alpha, \beta \in \mathbb{R}$$

On détermine l'équation caractéristique de h:

$$p(\lambda) = \det(M - \lambda I_2) = \lambda^2 - \operatorname{tr} M \lambda + \det M = \lambda^2 - (\alpha + 2) \lambda + 2\alpha - \beta = 0.$$

Les valeurs propres de l'affinité h sont : $\lambda_1=1$ et $\lambda_2=-2$. D'où :

$$p(1) = 0 \iff 1 - (\alpha + 2) + 2\alpha - \beta = 0$$

$$p(-2) = 0 \iff 4 - (\alpha + 2)(-2) + 2\alpha - \beta = 0$$

Ainsi α et β sont les solutions du système :

$$\begin{cases} \alpha - \beta - 1 = 0 \\ 8 + 4\alpha - \beta = 0 \end{cases}$$

On obtient : $\alpha = -3$ et $\beta = -4$, d'où la matrice de h :

$$M = \left(\begin{array}{cc} -3 & 1\\ -4 & 2 \end{array}\right)$$

(b) Rappel:

Soit \vec{x} un vecteur propre associé à la valeur propre λ et g un endomorphisme tel que Im g et ker g sont linéairement indépendants. Alors :

$$\lambda = 0 \iff \vec{x} \in \ker g$$

$$\lambda \neq 0 \iff \vec{x} \in \operatorname{Im} g$$

• On commence par déterminer l'axe et la direction de h. L'axe de l'affinité est le sous espace vectoriel associé à la valeur propre $\lambda_1 = 1$. On calcule $E_h(1)$:

$$h(\vec{x}) = 1 \, \vec{x} \quad \Leftrightarrow \quad M \, X = X \quad \Leftrightarrow \quad \begin{pmatrix} -3 & 1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} \iff 4x - y = 0$$

L'axe est la droite d'équation 4x - y = 0, elle a pour vecteur directeur $\vec{u} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$.

La direction de l'affinité est parallèle au sous espace vectoriel associé à la valeur propre $\lambda_2 = -2$. On calcule $E_h(-2)$:

$$h(\vec{x}) = -2\vec{x} \iff MX = -2X \iff \begin{pmatrix} -3 & 1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -2x \\ -2y \end{pmatrix} \Leftrightarrow x - y = 0$$

La direction est donc parallèle au vecteur $\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

• Par hypothèse :

$$\operatorname{Im} g = (O, \vec{v}) = E_h(-2)$$
 et $\ker g = \operatorname{axe} \operatorname{de} \operatorname{l'affinit\acute{e}} = (O, \vec{u}) = E_h(1)$.

Ces deux droites ont des directions linéairement indépendantes, on peut donc appliquer le résultat donné dans l'aide.

C'est-à-dire g possède deux valeurs propres (distinctes), λ_1 et λ_2 et deux sous

espaces propres:

$$\lambda_1 = 0 \text{ et } E_g(0) = \ker g = (O, \vec{u})$$

$$\lambda_2 \neq 0 \text{ et } E_g(\lambda_2) = \operatorname{Im} g$$
Or:
$$\forall \vec{x} \in \operatorname{Im} g : (g - 3I_2)(\vec{x}) = \vec{0} \iff g(\vec{x}) = 3\vec{x} \iff \lambda_2 = 3 \text{ et } E_g(3) = \operatorname{Im} g = (O, \vec{v})$$

(c) Il faut s'assurer qu'il est possible de définir une base propre commune.

On a:

$$E_h(1) = E_g(0) = (O, \vec{u})$$
 et $E_h(-2) = E_g(3) = (O, \vec{v})$

Il est donc possible de définir une base propre commune à h et g . Elle est donnée par les vecteurs \vec{u} et \vec{v} .

Soit la base $\mathcal{B}'(\vec{u}, \vec{v})$. Alors par rapport à cette base :

$$M_h' = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix}$$
 et $M_g' = \begin{pmatrix} 0 & 0 \\ 0 & 3 \end{pmatrix}$

On peut donc calculer la matrice de l'application $l = h \circ g$ par rapport à \mathcal{B}' .

$$M'_l = M'_h \cdot M'_g = \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & -6 \end{pmatrix} = \begin{pmatrix} -6 & 0 \\ 0 & -6 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

L'endomorphisme l est composé d'une homothétie de centre O et rapport -6 avec une projection du plan sur la droite (O, \vec{v}) , de direction parallèle à \vec{u} .

Valeurs propres : exercice 18

On commence par tester si les vecteurs \vec{u} et \vec{v} sont des vecteurs propres en utilisant la définition : \vec{x} est un vecteur propre associé à la valeur propre λ si et seulement si $f(\vec{x}) = \lambda \vec{x}$.

Il faut éventuellement penser à annuler le produit scalaire.

$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$\vec{x} \longmapsto f(\vec{x}) = \vec{x} - 4 (\vec{u} \cdot \vec{v}) (\vec{x} \cdot \vec{u}) \vec{v}$$

Le polynôme caractéristique de f est de degré deux, il a au plus deux racines réelles λ_1 et λ_2 qui sont les valeurs propres de f, de sous espaces propres $E(\lambda_1)$ et $E(\lambda_2)$.

- \vec{u} est vecteur propre ssi $f(\vec{u}) = \lambda \vec{u}$ On calcule, en posant $\vec{u} \cdot \vec{v} = k$: $f(\vec{u}) = \vec{u} - 4k (\vec{u} \cdot \vec{u}) \vec{v} \neq \lambda \vec{u} \iff \vec{u} \text{ n'est pas un vecteur propre.}$
- \vec{v} est vecteur propre ssi $f(\vec{v}) = \lambda \vec{v}$

On calcule:

$$f(\vec{v}) = \vec{v} - 4k (\vec{v} \cdot \vec{u}) \vec{v} = \vec{v} - 4k^2 \vec{v} = (1 - 4k^2) \vec{v} = \lambda \vec{v}$$

 $\Leftrightarrow \vec{v}$ est un vecteur propre associé à la valeur propre $\lambda = 1 - 4k^2$

• Il faut déterminer si il y a un deuxième vecteur propre. On peut le trouver parmi les vecteurs qui annulent le produit scalaire $\vec{x} \cdot \vec{u}$.

Soit \vec{r} un vecteur perpendiculaire à \vec{u} . Les vecteurs \vec{r} et \vec{v} sont linéairement indépendants (car \vec{u} et \vec{v} ne sont pas perpendiculaires par hypothèse).

 \vec{r} est vecteur propre ssi $f(\vec{r}) = \lambda \vec{r}$

On calcule:

$$f(\vec{r}) = \vec{r} - 4k (\vec{r} \cdot \vec{u}) \vec{v} = \vec{r} - \vec{0} = 1 \vec{r} = \lambda \vec{r}$$

 $\Leftrightarrow \vec{r}$ est un vecteur propre associé à la valeur propre $\lambda = 1$

L'endomorphisme f possède deux valeurs propres : $\lambda_1 = 1$ et $\lambda_2 = 1 - 4k^2$.

Elles sont distinctes : $1-4k^2 \neq 1$ car $k \neq 0$ par hypothèse, et donc de multiplicité égale à 1. Les sous espaces propres sont de dimension 1 : ce sont des droites.

E(1) est la droite (O, \vec{r})

 $E(1-4k^2)$ est la droite (O,\vec{v})

Soit la base $\mathcal{B}(\vec{r}, \vec{v})$. C'est une base propre de f, on calcule la matrice M de f par rapport à cette base:

$$M = \begin{pmatrix} 1 & 0 \\ 0 & 1 - 4k^2 \end{pmatrix} \qquad k \in \mathbb{R}^*$$

Discussion de la nature géométrique de f en fonction du paramètre k.

Par rapport à $\mathcal{B}(\vec{r}, \vec{v})$:

$$M = \begin{pmatrix} 1 & 0 \\ 0 & 1 - 4k^2 \end{pmatrix} \qquad k \in \mathbb{R}^*$$

• Si
$$1-4k^2=-1 \Rightarrow k=\pm\frac{1}{2}$$
: $M=\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ f est une symétrie oblique de direction parallèle à \vec{v} et d'axe la droite (O,\vec{r}) .

• Si
$$1 - 4k^2 = 0 \implies k = \pm \frac{\sqrt{2}}{2}$$
: $M = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

f est une projection de direction parallèle à \vec{v} , sur la droite (O, \vec{r}) .

• Dans les autres cas, f est une affinité d'axe la droite (O, \vec{r}) , de direction \vec{v} et rapport $1-4k^2$.