

FIG. 1A

GCTGGTGGCTGGTGGTATTGGCTGGCTTTGGACAAACATGGCTGGTTTACTGGGT
 L V L V V F V A L L L D N M L F T V V
 850 870 890
 GGTGCCAATTGTGCCAACCTTCCCTATATGACATGGAGTTCAAAGAAGTCATCTCTCTCT
 V P I V P T F L Y D M E F K E V I S S L
 910 930 950
 GCACCTGGGCAATGCCGGAAAGTCCACATGCCCTCGCCTCTGCCCTTCCACCAT
 H L G H A G S S P H A L A S P A F S T L
 970 990 1010
 CTTCTCTTCTTCAACAACAAACACCGGGCTGTGAAGAAAGCGTACTAGTGGAAATAGC
 F S F F N N T V A V E E S V P S G I A
 1030 1050 1070
 ATGGATGAATGCACTGCCAGCACCATCCCACCTCCAGCCACTGAAGCCATCTCAGCTCA
 W M N D T A S T I P P A T E A I S A H
 1090 11130 1130
 TAAAAAAACAACACTGGCTTGCAAGGCACAGGGTTCTGGAGGAAGAGACTACCCGGGTGGGT
 K N N C L Q G T G F L E E T T R V G V
 1150 1170 1190
 TCTGTTGCTTCAAAGGCTGTGATGCAACTCTGGTCAACCCATTGGGGCCCTCTCAC
 L F A S K A V M Q L L V N P F V G P L T
 1210 1230 1250
 CAACAGGATTGGATATCATATCCCCATGTTGGCTGGTTTATCATGGTTTCTCCAC
 N R I G Y H I P M F A G F V I M F L S T
 1270 1290 1310
 AGTTATGTTGGCTTTCTGGGACCTATACTCTACTCTACTCTACTCTACTCTCAAGG
 V M F A F S G T Y T L F V A R T L Q G
 1330 1350 1370

FIG. 1B

CATTGGATCTTCAATTTCATCTGGAGGTCTTGGAAATGCTGGCCAGTGTCTACACTGA
 I G S S F S S V A G L G M L A S V Y T D
 1390 1430
 TGACCATGAGAGGACGAGGCCATGGGAACACTGCTCTGGGGGCTGGCTTGGGGTTGCT
 D H E R G R A M G T A L G L A L G L L
 1410 1450 1470 1490
 GGTGGGAGCTCCCTTGGAAAGTGTAAATGTACCGAGTTGGAAAGTCTGCACCCCTCCT
 V G A P F G S V M Y E F V G K S A P F L
 1510 1530 1550
 CATCCTGGCTTCCGGCAACTGGATGGGACACTCCAGCTTGCATCCTACAGCCTC
 I L A F L A L L D G A L Q L C I L Q P S
 1570 1590 1610
 CAAAGTCTCCTGAGAGTGCCAAGGGACTCCCTCTTATGCTTCTCAAAGACCTTA
 K V S P E S A K G T P L F M L L K D P Y
 1630 1650 1670
 CATCCTGGGGCTGCAGGGTCCATCTGCTTGCACACATGGGGTGGCCATCCTGGAGCC
 I L V A G S I C F A N M G V A I L E P
 1690 1710 1730
 CACACTGCCATCTGGATGCGACCATGTGCTCCCCAACAGTGGCAGCTGGGCTAGC
 T L P I W M Q T M C S P K W Q L G L A
 1750 1770 1790
 TTTCTTGCCTGCCAGTGTGCCTACCTCATGGACCAAACCTCTTGGTGTGGCCAA
 F L P A S V S Y L I G T N L F G V L A N
 1810 1830 1850
 CAAGATGGGTGGCTGGCTATGGCTTCCCTAAATCGGATGCTGGTAGTACCACTTGCT
 K M G R W L C S L I G M L V V G T S L L
 1870 1890 1910
 CTGTGTCCTGGCTCACAAAATTGGTCTCATGGCCCAATGCAGGGCTTGGCCT

FIG. 1C

C V P L A H K N F G L I G P N A G L G L
 1930 1950 1970
 TNCCATAGGCATGGGAATCTTCTATGATGCCCATCATGGGCACCTGGGATCCACG
 X I G M V E S S M M P I M G H L V D P R
 1990 2010 2030
 CCACACCTCGGTGTATGGGAGTGTCCACGCCATCGCTGATGTGGCTTTTGCATGGGCTT
 H T S V Y G S V H A I A D V A F C M G F
 2050 2070 2090
 TGCTATAGGCTATTCTGAGTCAGGACTGGGACATGGAGACCCGGATGTATCAACCCAGAA
 A I G Y S E S G L P H G 0 P D V S T Q K
 2110 2130 2150
 ACCTCTCCCTGGACCACTGACCATGGCTGACCCACGGCTCAGTGGCTCAAAACCTCTG
 P L P W T S H H G *
 2170 2190 2210
 CCTGGGATCTTCTCCCTTCCCATGGACACTGTCCCTGATACTCTCTCACCTGTGT
 2230 2250 2270
 AACTTGTAGCTCTTCMCTATGCCCTGGGCCAGTGGCCATCTTTATGGGAAGACA
 2290 2310 2330
 GAGTGTGACCTYYCCGGCTGCTGTGAGGTGATTAAACTTGAGCTGTGACGGGGTCTG
 2350 2370 2390
 CAAGGGGTGACTCATTGYATAGAGGTGGTAGTGAGTAATGTGCCCTGAAACAGTGGGG
 2410 2430 2450
 TGACTGACAAGGCCTCTTTAATCTGTTGCTGATTTCTCTGGCATAGCCCCAACAGATCG
 2470 2490 2510
 GAAGAGTGTACCCCTTTACCTTACCGTGTCTTCCGGGTTTCCCCAGCCGAGTT

FIG. 1D

2530	GAGAAAATGTTCTAGGATTGCTTGTGCCAAATGCCAGCKTGAAGAGTTWGGTATGKT	2550
2590	TTTTCTNCCATTATTATTWACTAAAGTGAATGATTACTGTGGYTAATCTA	2610
2650	GAGCTGCTAAAAGGGCTTTACCCCTCAGTGAAGAGTGTCTCTATTINCATWATCTTCA	2670
2710	AAACMGGAGCCCCATTCTCTGGGGAGTTATNGACATCCTGACCNCCTGTGT	2730
2770	NTNCCTACCTNTACTGAACCTCTTAGACTCTNAGAAATAAAAGTAGAAGAAAGACAGAAA	2790
2830	AATTAACGTGATTAGACCCAAAGATTCTATGGAAAGAAGTTAAAAGAAACTGCCTGGAAAT	2850
	CCCTC	2870
2570		
2630		
2690		
2750		
2810		

FIG. 1

Homology Alignment between HATBG78 and the Rat Amine Transporter

1	MLRPILDAPQRLLKEGRASRSQLVLVVFVALLLDMMFTVWPIVPTFLY ...: : : ...: ... 1	50
51	DMEFKEVISSLHLGHAGSSPHALASPASTIFSSFFNNNTVAEEESVPSGI 1	100
51	ATEFKDSNSSLHRGPSVSSQQALTSPAFSTIFSSFFONTTTVEEHVPPFRV 1	100
101	AWMNDTASTIPPPATEAISAHKNNCLQGTGFLEETTRVGVLFASKAVMQ 101	150
101	TW...TNGTIPPPPTEASSVPKNNCLQGIEFLLEENVRIGIILFASKALMQ 1	147
151	LLVNPFGPLTNRIGYHIMFAGFVIMFLSTMFAFGSTYTLFVARTLQ 151	200
148	LLVNPFGPLTNRIGYHIMFVGFMIMFLSTMFAFGSTYALLFVARTLQ 1	197
201	GIGSSFSSVAGLGMLASVYTDHERGRAMGTALGGLAGLGLVGAPFGSVM 201	250
198	GIGSSFSSVAGLGMLASVYTDYERGRAMGIALGGLAGLGLVGAPFGSVM 198	247

FIG. 2A

251 YEFVGKSAPFLILIAFLALLDGAQLCILQPSKVSPEAKGTPLFMLLKDP 300
 ||||| . ||||| . ||||| . ||||| . ||||| . ||||| . ||||| . ||||| . ||||| .
 248 YEFVGKSSPFLILIAFLALLDGAQLCILWPSKVSPEAMGTSLLTLKDP 297

301 YILVAAGSICFAMMGVAILEPTLPIWMMQTMCSPKWQLGLAFLPASVSYL 350
 302 |||||:|||||:|||||:|||||:|||||:|||||:|||||:|||||:|||||:|||||:
 298 YILVAAGSICLAMMGVAILEPTLPIWMMQTMCSPWEQQLGLAFLPASVAYL 347

351 IGTNLFGVLANKMGRWLCSLIGMIVVGTSSLCCVPLAHKNFGLTPGNAGLIG 400
 ||||| ||||| ||||| :|:
 348 IGTNLFGVLANKMGRWLCSLVMVAVGISLCCVPLAHNIFGLIGPNAGLIG 397

401 LXIGMVESSMMPIMGHLVDPRHTSVYGSVHAIADVAFCMGFIAIGYSESGL 450
 :
 398 FAIGMVDSLMPIMGYLVDLRHTSVYGSVYAIADVAFCVGFIAGPSTGGV 447

FIG. 2B