One sided matching - object allocation mechanisms Quick necap of social choice 1etting

- · Agents have types $\theta_i \in \Theta_i$: private to agents
- · Set of outcomes X
- · Social choice function maps a type profile to an outcome

 $f: \ominus \rightarrow X$

example: types are preferences over candidates (voting) $\theta_i = a > b > c > d$.

The voting rule collects the preferences and selects a candidate. X = A: Set of candidates. In a voting setting, any preference order over the candidates is plausible, and therefore difficult to design truthful mechanisms.

7hm (Gibbard - Sattenth waite)

If IAI, 3 and vate preferences are unrestricted total orders, every onto and truthful social choice function must be dictatorial.

Restricted preferences and positive results

- Single-peaked preferences, mechanisms with transfers etc
- Another setting without money: object allocation mechanisms one sided matching.

(11-2) Setting of one sided matching

- · M = {a,,..., and finite set of objects
- \cdot N = $\{1, ..., n\}$ set of agents, $m \geq n$.
- · objects are houses, jobs, projects, positions,
- · Each agent has a linear order over the objects
 - -linear order: Ri of agent i complète: Ya, b & M either a Rib on b Ria transitive: if a Rib and bric = a Ric. anti-symmetric: if a Rib and b Ria = a = b.

we will denote such linear orders with Pi

 $(P_1, P_2, ..., P_n)$ is a preference profile . M: set of all possible linear ds orders over M. $P_{i}(k,S)$ is the k-th top attended object that belongs to SCM.

Departure from the classic G-S setting:

The preferences are over objects and not over alternatives.

Alternative in this setting is a matching / assignment of the objects to the agents.

A jeasible matching is a mapping a: N -> M injective : distinct objects are allocated to distinct agents

set of alternatives A: collection of such mappings object j assigned/matched to i. $a(i) = j \in M$

Why is this a restricted domain?

- There cannot exist any preference profile where certain atternatives can have both permutations e.g. let a and b be two alternatives/matchings where player i gets the same object. He is indifferent between the alternatives, hence \$P_i\$ s.t. a P_i b on b P_i a.
- Good news: G-S theorem does not hold anymone
- expect to have non-trivial truthful mechanisms.

Example! An SCF $f: M^n \to A$. Define a fixed priority (serial dictatorship) mechanism.

A priority is a bijective mapping $\sigma: N \to N$

The mechanism: every agent in the order of picks her favorite object from the leftover list.

$$a(\sigma(i)) = P_{\sigma(i)}(1, N \setminus \{a(\sigma(i), ..., a(\sigma(i-i))\})$$

$$i = 1, ..., n$$

$$\alpha(\sigma(o)) = \phi.$$

f(P) = a.

Remarks:

- A generalization of dictatorship
- Easy to see that this is strategy proof

Defn: An SCF f: Mⁿ → A is strategyproof (house alloc. model)

if $f(P_i,P_i)(i)$ P_i $f(P_i',P_i)(i)$ $\forall P_i \in M \ \forall P_i \in M^{n-1} \ \forall i \in N.$

- also, this is efficient in the following sense.

Defn: An SCF is efficient (house allocation model) if for all preference profiles P and all matchings a, if there exists another matching a' $\neq a$ N.t. either a'(i) P_i a(i) on a'(i)=a(i) \forall i \in N, then $f(P) \neq a$.

Phoposition: Every fixed priority SCF is strategyproof and efficient.

Pf: Let σ be any fixed priority. f^{σ} is the SCF Tix as agant i, $\sigma^{+}(i) = \{j \in \mathbb{N} : \sigma(j) < \sigma(i)\}$ set of play agants having higher priority than i. Being truthful agent i gets $P_{i}(I, M, M^{\sigma(T_{i})})$ $M^{\sigma^{+}(i)}$ — set of objects assigned to $\sigma^{+}(i)$. By deviating, agant i cannot get any better since $M^{\sigma^{+}(i)}$ nemains fixed.

Esticiency: Suppose of f'' is not efficient. $\exists P \land A.t. f'(P) = \alpha \cdot \exists \alpha' \neq \alpha \land A.t.$ $\alpha'(i) P_i \alpha(i)$ on $\alpha'(i) = \alpha(i) \forall i \in \mathbb{N}$. Consider the first $j \land A.t. \alpha'(j) P_j \alpha(j)$. Since all before this were some $\alpha'(j)$ was now available to j — contradiction \square

(1-5)

However there are / SCFs that are not necessarily serial dictators.

Ex: $N = \{1, 2, 3\}$ $M = \{a_1, a_2, a_3\}$

The preference order changes depending on the top choice of a specific player.

 $\sigma = \{(1, 2, 3) \mid \forall P_1(1) = a_1 \}$ $\{(2, 1, 3) \mid \forall P_1(1) \neq a_1 \}$

Thuthful: For a fixed priority, this is strategyproof, now 2 and 3 cmust change the priority, therefore it is strategyproof for them. Player 1 can, if $P_1(1) = a_1$: she gets a_1

if $P_1(1) \neq a_1 \Rightarrow P_1(1) \in \{a_2, a_3\}$, The only way she can change the priority is by reporting a_1 as $P_1(1)$, but then she gets a_1 - Which is at most her second choice. If she reported truthfully, she could get either top ore second choice — hence this is stretegyproof for agent 1 too.

Efficiency: similar argument as before.

For a given priority, the outcome is always efficient.

Top-trading cycle with fixed endowments

A different mechanism (actually a class of mechanisms) that is truthful and has other nice properties.

Assume m=n for simplicity. Initialization: Each agent is endowed with a house Suppose there are 6 agents as and are endowed with $a^{**}: a^{*}(1)=a_1$, $a^{*}(2)=a_3$, $a^{**}(3)=a_2$, $a^{**}(4)=a_4$, $a^{**}(5)=5$

 $a^*(6) = a_6$

P,	92	P ₃	P4	Ps	P6
az	93	۹۱	92	a ₂	R ₁
۹۱	a 2	ay	a	a,	a ₃
92	a	a3	a5	ab	a_2
a 4	a5	a2	ay	ay	ay
95	9	as	az	95	a ₆
a	a ₆	as	ag	a ₃	a 5

Initial graph of the TTC