平面向量

1.	已知向量 $\vec{a} = (1, m), \vec{b} =$	$=(3,-2), \ \ \mathbb{H}\left(\overrightarrow{a}+\overrightarrow{b}\right)\perp \overline{b}$	ob, 则 m=		(
	(A) - 8	(B) -6	(C) 6	(D) 8		
2.	若向量 a,b,c 满足 $a \not b$ 且 $a \perp c$,则 $c \cdot (a + 2b) =$					
	(A) 4	(B) 3	(C) 2	(D) 0		
3.	若向量 a, b 满足: $ a = 1$	$(a+b)\perp a, (2a+b)\perp$	$oldsymbol{b},$ 则 $ig oldsymbol{b}ig =$	_	(,
	(A) 2	(B) $\sqrt{2}$	(C) 1	(D) $\frac{\sqrt{2}}{2}$		
4.	已知两个非零向量 a,b 满足 $ a+b = a-b $,则下面结论正确的是					,
	(A) $a \not\parallel b$		(B) $a \perp b$			
	(C) a = b		(D) $a + b = a - b$			
5.	若向量 $a = b$ 不共线, $a \cdot b \neq 0$, 且 $c = a - \left(\frac{a \cdot a}{a \cdot b}\right) \cdot b$, 则向量 $a = c$ 的夹角为					`
	(A) 0	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{2}$		
6.	设向量 \vec{a} , \vec{b} 满足 $\left \vec{a} + \vec{b} \right = \sqrt{10}$, $\left \vec{a} - \vec{b} \right = \sqrt{6}$,则 $\vec{a} \cdot \vec{b} =$					
	(A) 1	(B) 2	(C) 3	(D) 5		
7.	. 已知 O , A , B 是平面上的三个点,直线 AB 上有一点 C ,满足 $2\overrightarrow{AC}+\overrightarrow{CB}=0$,则 $\overrightarrow{OC}=$				()
	(A) $2\overrightarrow{OA} - \overrightarrow{OB}$		$(B) - \overrightarrow{OA} + 2\overrightarrow{OB}$			
	(C) $\frac{2}{3}\overrightarrow{OA} - \frac{1}{3}\overrightarrow{OB}$		$(D) - \frac{1}{3}\overrightarrow{OA} + \frac{2}{3}\overrightarrow{OB}$			
8.	设 D 为 $\triangle ABC$ 所在平面内一点, $\overrightarrow{BC} = 3\overrightarrow{CD}$,则					,
	$(A) \overrightarrow{AD} = -\frac{1}{3} \overrightarrow{AB} + \frac{4}{3} \overrightarrow{AC}$		(B) $\overrightarrow{AD} = \frac{1}{3}\overrightarrow{AB} - \frac{4}{3}\overrightarrow{AC}$			
	(C) $\overrightarrow{AD} = \frac{4}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$		(D) $\overrightarrow{AD} = \frac{4}{3}\overrightarrow{AB} - \frac{1}{3}\overrightarrow{AC}$			
9.	平面上 O, A, B 三点不共线,设 $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$, 则 $\triangle OAB$ 的面积等于)
	(A) $\sqrt{ \boldsymbol{a} ^2 \boldsymbol{b} ^2 - (\boldsymbol{a} \cdot \boldsymbol{b})^2}$		(B) $\sqrt{ \boldsymbol{a} ^2 \boldsymbol{b} ^2 + (\boldsymbol{a} \cdot \boldsymbol{b})^2}$			
	(C) $\frac{1}{2}\sqrt{ \boldsymbol{a} ^2 \boldsymbol{b} ^2-(\boldsymbol{a}\cdot\boldsymbol{b})^2}$	$\overline{2}$	(D) $\frac{1}{2}\sqrt{ \boldsymbol{a} ^2 \boldsymbol{b} ^2+(\boldsymbol{a}\cdot\boldsymbol{b})}$	$\overline{2}$		
10.	已知 $a = (\sqrt{3}, 1)$,若将向量 $-2a$ 绕坐标原点逆时针旋转 120° 得到向量 b ,则 b 的坐标为				(
	(A) $(0,4)$		$(B) \left(2\sqrt{3}, -2\right)$			
	(C) $\left(-2\sqrt{3},2\right)$		(D) $(2, -2\sqrt{3})$			
11.	设 m, n 是非零向量,则 "存在负数 λ ,使得 $m = \lambda n$ "是 " $m \cdot n < 0$ "的)
	(A) 充分而不必要条件		(B) 必要而不充分条件			

(D) 既不充分也不必要条件

(C) 充分必要条件

12.	设 \vec{a} , \vec{b} 是向量,则" $ \vec{a} $	$ \vec{b} = \vec{b} $ " $ \vec{a} + \vec{b} = \vec{b} $	$\left \overrightarrow{a} - \overrightarrow{b} \right $ "的		()	
	(A) 充分而不必要条件		(B) 必要而不充分条件				
	(C) 充分必要条件		(D) 既不充分也不必要多	条件			
13.	\vec{a} , \vec{b} 为非零向量," \vec{a} 」	\vec{b} "是"函数 $f(x) = (x\vec{a})$	$(x\vec{b}-\vec{a})$ 为一次喜	函数"的	()	
	(A) 充分而不必要条件		(B) 必要而不充分条件				
	(C) 充分必要条件		(D) 既不充分也不必要领	条件			
14.	设 \vec{a} , \vec{b} 是非零向量," \vec{a}	$ec{a}\cdotec{b}=\leftertec{a} ightert\leftertec{b} ightert$ "是" $ec{a}$ //	/ 🕏 " 的		()	
	(A) 充分而不必要条件		(B) 必要而不充分条件				
	(C) 充分必要条件		(D) 既不充分也不必要条件				
15.	设平面向量 \vec{a} , \vec{b} , \vec{c} 均	为非零向量,则" $\vec{a} \cdot (\vec{b})$	$(-\overrightarrow{c}) = 0$ "是" $\overrightarrow{b} = \overrightarrow{c}$ "	的	()	
	(A) 充分而不必要条件		(B) 必要而不充分条件				
	(C) 充分必要条件		(D) 既不充分也不必要条件				
16.	设 E, F 分别是正方形 A	. <i>BCD</i> 的边 <i>AB</i> , <i>BC</i> 上的点	\vec{A} , \vec{B} , $AE = \frac{1}{-AB}$, $BF = \frac{1}{-AB}$	$\frac{2}{-BC}$, 如果 \overrightarrow{EF} =	$= m\overrightarrow{AB}$	+	
	$n\overrightarrow{AC}(m,n$ 为实数),那么,		2	3	()	
	(A) $-\frac{1}{2}$	(B) 0	(C) $\frac{1}{2}$	(D) 1			
17.	已知三角形 $\triangle ABC$ 是边长为 1 的等边三角形,点 D , E 分别是边 AB , BC 的中点,连接 DE 并延长到点						
	F,使得 $DE = 2EF$,则	1	1	11	()	
	(A) $-\frac{5}{8}$	(B) $\frac{1}{8}$	(C) $\frac{1}{4}$	(D) $\frac{11}{8}$			
	已知菱形 \overrightarrow{ABCD} 的边长为 $\overrightarrow{AE} \cdot \overrightarrow{AF} = 1$, $\overrightarrow{CE} \cdot \overrightarrow{CF} =$	为 2 , $\angle BAD = 120^{\circ}$,点 E , $-\frac{2}{3}$,则 $\lambda + \mu =$	F 分别在边 BC, DC 上,	$BE = \lambda BC, DF = \beta$	μDC , β	若)	
	(A) $\frac{1}{2}$	(B) $\frac{2}{3}$	(C) $\frac{5}{6}$	(D) $\frac{7}{12}$			
19.	- 已知 △ <i>ABC</i> 和点 <i>M</i> 满足	$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 0$. 若存	在实数 m 使得 $\overrightarrow{AB}+\overrightarrow{AC}=$	$m\overrightarrow{AM}$ 成立,则 m	=()	
	(A) 2	(B) 3	(C) 4	(D) 5			
20.	已知 O 是 $\triangle ABC$ 所在平	面内一点, <i>D</i> 为 <i>BC</i> 边中点	\vec{A} , \vec{B} $2\vec{OA} + \vec{OB} + \vec{OC} =$	0. 那么	()	
	$(A) \overrightarrow{AO} = \overrightarrow{OD}$	(B) $\overrightarrow{AO} = 2\overrightarrow{OD}$	(C) $\overrightarrow{AO} = 3\overrightarrow{OD}$	(D) $2\overrightarrow{AO} = \overrightarrow{OD}$			
21.	在平行四边形 $ABCD$ 中, $\overrightarrow{AC} = a$, $\overrightarrow{BD} = b$,则 \overrightarrow{AF}	AC 与 BD 交于点 O, E 是 =	是线段 <i>OD</i> 的中点,AE 的]延长线与 <i>CD</i> 交于	三点 <i>F</i> . :	若	
	$(A) \frac{1}{4}a + \frac{1}{2}b$		$(B) \frac{1}{3}\boldsymbol{a} + \frac{2}{3}\boldsymbol{b}$				
	(C) $\frac{1}{2}a + \frac{1}{4}b$		$(D) \frac{3}{3}a + \frac{3}{3}b$				
22.	已知平面上三点 <i>A</i> , <i>B</i> , <i>C</i>	满足 $\left \overrightarrow{AB} \right = 6, \left \overrightarrow{AC} \right = 8,$	$\left \overrightarrow{BC} \right = 10, \ \ \bigcup \overrightarrow{AB} \cdot \overrightarrow{BC} + $	$\overrightarrow{BC} \cdot \overrightarrow{CA} + \overrightarrow{CA} \cdot \overrightarrow{AB} =$	=()	
	(A) 48	(B) -48	(C) 100	(D) -100			

23. 已知 e_1 , e_2 为平面上的单位向量, e_1 与 e_2 的起点均为坐标原点 O, e_1 与 e_2 的夹角为 $\frac{\pi}{3}$,平面区域 D

由所有满足 $\overrightarrow{OP} = \lambda e_1 + \mu e_2$ 的点 P 组成,其中 $\begin{cases} \lambda + \mu \leq 1, \\ \lambda \geq 0, \qquad \text{那么平面区域 } D \text{ 的面积为} \\ \mu \geq 0. \end{cases}$

(A) $\frac{1}{2}$

- (B) $\sqrt{3}$
- (C) $\frac{\sqrt{3}}{2}$
- $(D) \frac{\sqrt{3}}{4}$
- 24. 如图,在等腰梯形 ABCD 中,AB=8,BC=4,CD=4,点 P 在线段 AD 上运动,则 $\left|\overrightarrow{PA}+\overrightarrow{PB}\right|$ 的取值范围是
 - (A) $\left[6, 4 + 4\sqrt{3}\right]$
- $(B) \left[4\sqrt{2}, 8 \right]$

- (D) [6, 12]
- 25. 已知向量 \vec{a} , \vec{b} 满足 $|\vec{a}| = 1$, $\vec{b} = (2,1)$, 且 $\lambda \vec{a} + \vec{b} = \mathbf{0}$ ($\lambda \in \mathbf{R}$), 则 $|\lambda| = _____$.
- 26. 已知 A, B, C 是圆 O 上的三点,若 $\overrightarrow{AO} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right)$,则 \overrightarrow{AB} 与 \overrightarrow{AC} 的夹角为______.
- 27. 已知两个单位向量 \vec{a} , \vec{b} 的夹角为 60° , $\vec{c} = t\vec{a} + (1-t)\vec{b}$,若 $\vec{b} \cdot \vec{c} = 0$,则 $t = \underline{}$.
- 28. 平面向量 a = (1,2), b = (4,2), c = ma + b ($m \in \mathbb{R}$) 且 c = b 的夹角等于 c = b 的夹角,则 $m = \underline{\hspace{1cm}}$.
- 29. 已知点 P 在圆 $x^2 + y^2 = 1$ 上,点 A 的坐标为 (-2,0),O 为原点,则 $\overrightarrow{AO} \cdot \overrightarrow{AP}$ 的最大值为_____.
- 30. 已知单位向量 e_1 与 e_2 的夹角为 α ,且 $\cos \alpha = \frac{1}{3}$,向量 $a = 3e_1 2e_2$ 与 $b = 3e_1 e_2$ 的夹角为 β ,则 $\cos \beta = _____$.
- 32. 已知点 A(1,-1), B(3,0), C(2,1). 若平面区域 D 由所有满足 $\overrightarrow{AP} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$ $(1 \le \lambda \le 2, 0 \le \mu \le 1)$ 的点 P 组成,则 D 的面积为_____.
- 33. 已知正方形 ABCD 的边长为 1,点 E 是 AB 边上的动点,则 $\overrightarrow{DE} \cdot \overrightarrow{CB}$ 的值为_____; $\overrightarrow{DE} \cdot \overrightarrow{DC}$ 的最大值为_____.
- 34. 已知 M 为 $\triangle ABC$ 所在平面内的一点,且 $\overrightarrow{AM} = \frac{1}{4}\overrightarrow{AB} + n\overrightarrow{AC}$. 若点 M 在 $\triangle ABC$ 内部 (不含边界),则实数 n 的取值范围是______.
- 35. 已知向量序列: $a_1, a_2, a_3, \dots, a_n, \dots$ 满足如下条件: $|a_1| = 4 |d| = 2$, $2a_1 \cdot d = -1$ 且 $a_n a_{n-1} = d$ $(n = 3, 4, \dots)$. 若 $a_1 \cdot a_k = 0$, 则 $k = \underline{\qquad}$; $|a_1|$, $|a_2|$, $|a_3|$, \dots , $|a_n|$, \dots 中第 $\underline{\qquad}$ 项最小.
- 36. 如图, $\triangle AB_1C_1$, $\triangle C_1B_2C_2$, $\triangle C_2B_3C_3$ 是三个边长为 2 的等边三角形,且有一条边在同一直线上,边 B_3C_3 上有两个不同的点 P_1 , P_2 ,则 $\overrightarrow{AB_2} \cdot (\overrightarrow{AP_1} + \overrightarrow{AP_2}) =$ _____.

37. 向量 \vec{a} , \vec{b} , \vec{c} 在正方形网格中的位置如图所示,若 $\vec{c} = \lambda \vec{a} + \mu \vec{b}$ $(\lambda, \mu \in \mathbf{R})$,则 $\frac{\lambda}{\mu} = \underline{\qquad}$

38. 在 $\triangle ABC$ 中,点 M,N 满足 $\overrightarrow{AM} = 2\overrightarrow{MC}$, $\overrightarrow{BN} = \overrightarrow{NC}$. 若 $\overrightarrow{MN} = x\overrightarrow{AB} + y\overrightarrow{AC}$, 则 $x = \underline{\hspace{1cm}}$;

39. 如图,在平行四边形 ABCD 中, $AP\bot BD$,垂足为 P,且 AP=3,则 $\overrightarrow{AP}\cdot\overrightarrow{AC}=$ _____.

40. 给定两个长度为 1 的平面向量 \overrightarrow{OA} 和 \overrightarrow{OB} ,它们的夹角为 120°. 如图所示,点 C 在以 O 为圆心的圆弧 \widehat{AB} 上变动,若 $\overrightarrow{OC} = x\overrightarrow{OA} + y\overrightarrow{OB}$,其中 $x, y \in \mathbf{R}$,则 x + y 的最大值是_____.

41. 如图,半径为 $\sqrt{3}$ 的扇形 AOB 的圆心角为 120° ,点 C 在弧 AB 上,且 $\angle COB = 30^{\circ}$. 若 $\overrightarrow{OC} = \lambda \overrightarrow{OA} + \mu \overrightarrow{OB}$,则 $\lambda + \mu = \underline{\qquad}$.

42. 在梯形 ABCD 中, $AB /\!\!/ DC$, $AD \bot AB$, $AD = DC = \frac{1}{2}AB = 2$. 点 $N \not\in CD$ 边上的一动点,则 $\overrightarrow{AN} \cdot \overrightarrow{AB}$ 的最大值为______.

- 43. 如图,在直角梯形 ABCD中, $AB \parallel CD$, $AB \perp BC$,AB = 2,CD = 1,BC = a (a > 0),P 为线段 AD 上一个动点,设 $\overrightarrow{AP} = x\overrightarrow{AD}$, $\overrightarrow{PB} \cdot \overrightarrow{PC} = y$,对于函数 y = f(x),给出以下三个结论:
 - ① 当 a = 2 时,函数 f(x) 的值域为 [1,4];
 - ② $\forall a \in (0, +\infty)$,都有 f(1) = 1 成立;
 - ③ $\forall a \in (0, +\infty)$,函数 f(x) 的最大值都等于 4.

其中所有正确结论的序号是____.

