Datum: 12.10.2022	SPŠ CHOMUTOV	Třída: A4
Číslo úlohy : 4	Impulzně řízený zdroj	Vaněček Adam

Zadání:

Změřte závislost vstupního a výstupního napětí, určete účinnost zdroje a naměřte průběhy napětí v různých částech zdroje.

Schéma zapojení:

Pozn. Konce transformátoru jsou označeny \cdot

Použité přístroje:

Název	Označení	Parametry	Ev. Číslo
Zdroj	U	0-36V/2A	LE2 1031
Miliampérmetr	mA_1	0-600mA <u>_</u> <u>∩</u> <u>•</u> <u></u> \$	LE2 2294/9
Miliampérmetr	mA_2	0-600mA <u> </u>	LE2 2241/8
Voltmetr	V ₁	0-600V	LE2 2256/3
Voltmetr	V_2	0-600V	LE2 412/8
Reostat	R ₁	3900 Ω / 0,16Α	LE2 471
Reostat	R_z	1200 Ω / 0,63A	LE1 373
Tranzistor	T	NPN KD 501	-
Transformátor	Tr	600 : 600	-
Tlumivka	L	L = 4H	-
Sada diod	D	KY 701F	-
Sada kondenzátorů	С	1 μF ÷ 1000 μF	14
Generátor	G	SDG 1020, 20Mhz	LE 5078
Osciloskop	Osc	Rigol DS 1052E, 50Mhz	LE 5064

Teorie:

Základním principem a současně podstatnou odlišností impulsní regulace od regulace klasické je její spojitost. Výstupní napětí U_S je tedy stabilizováno zásahy výkonového regulačního členu pouze v určitých časově omezených intervalech T_a. U spojitého lineárního regulátoru ovládá odchylka výstupního napětí od jmenovité velikosti (k*U_S - U_{ref}) spojitě a proporcionálně okamžitý "odpor" výkonového regulačního členu tak, aby výstupní napětí U_S bylo konstantní. Z toho vyplívá velká poměrná výkonová ztráta na regulačním členu a malá účinnost. U impulsní regulace pracuje regulační prvek (tranzistor) jako řízený spínač. Proud jím tedy prochází jen po určitý interval pracovního cyklu. Výkonová ztráta je tedy výrazně nižší.

Výhody impulsně regulovaných zdrojů:

- 1) Velká energetická účinnost
- 2) Velké výstupní výkony
- 3) Výhodné konstrukční parametry

Nevýhody impulsně regulovaných zdrojů:

- 1) Kmitočtové rušení
- 2) Dynamické parametry

Postup:

- 1) Zapojíme obvod dle schématu
- 2) Nastavíme generátor na požadované hodnoty (2KHz, obdélníkový signál, posunutí offsetu)
- 3) Nastavíme zdroj tak, abychom dosáhli 24V při nejvyšší možné střídě (nejdříve zjistíme nejvyšší možnou výchylku střídy, poté na zdroji doladíme na 24V)
- 4) Nastavujeme střídu a odečítáme z měřících přístrojů
- 5) Hodnoty zapisujeme, vypočítáme výkony a účinnost a sestrojíme graf
- 6) Nastavíme střídu na hodnotu 50% a připojíme Ch2 osciloskopu na:
 - a) bázi spínacího tranzistoru
 - b) kolektor tranzistoru
 - c) výstup transformátoru
 - d) nárazový kondenzátor
 - e) zátěž
- 7) Ukládáme naměřené obrazce na osciloskopu

<u>Tabulka naměřených hodnot:</u>

Střída (%)	U ₁ (V)	I ₁ (mA)	U ₂ (V)	I ₂ (mA)	P ₁ (mW)	P ₂ (mW)	η (%)
20	14	1,7	3,6	3,0	23,8	10,6	44,62
25	14	2,6	4,8	3,9	35,7	18,5	51,76
30	14	3,7	5,8	4,7	51,8	27,3	52,63
35	14	5,2	6,9	5,7	72,1	39,0	54,07
40	14	7,6	8,7	7,0	106,4	60,9	57,24
45	14	10,4	10,3	8,4	145,6	86,5	59,42
50	14	14,4	12,2	9,8	201,6	119,6	59,31
55	14	19,4	14,0	11,2	271,6	156,8	57,73
60	14	28,0	17,0	13,8	392,0	234,6	59,85
65	14	19,0	19,6	15,8	266,0	309,7	116,42
70	14	53,0	22,4	18,0	742,0	403,2	54,34
75	14	70,0	23,8	19,0	980,0	452,2	46,14
76	14	74,0	24,0	19,2	1036,0	460,8	44,48
80	14	82,0	22,2	17,8	1148,0	395,2	34,42

Grafy:

a) Zapojení CH2 osciloskopu na bázi tranzistoru

Můžeme si všimnout, že báze po vypnutí zůstává ještě chvíli otevřená. To je způsobeno indukčností z transformátoru. (Červeně Ube).

b) Zapojení CH2 osciloskopu na kolektor tranzistoru

Napětí na tranzistoru odpovídá dvojnásobku napětí zdroje. Z důvodu indukování napětí ze sekundáru do primáru, které se přičítá k napětí zdroje. (Červeně Uce). c) Zapojení CH2 osciloskopu na výstup transformátoru

Napětí je střídavé. Vidíme zde správné zfázování zdroje.

d) Zapojení CH2 osciloskopu na nárazový kondenzátor

Zde je průběh napětí na nárazovém kondenzátoru, na kterém je částečně vyfiltrované napětí výstupu.

e) Zapojení CH2 osciloskopu na zátěž

Časový průběh výstupního napětí. Je vidět, že napětí je kompletně vyhlazeno.

Příklad výpočtu:

$$P_1 = U_1 * I_1 = 14 * 1,7 = 23.8 \, mW$$

 $\eta = \frac{P_2}{P_1} * 100 = \frac{10.6}{23.8} * 100 = 44.62 \%$

<u>Závěr:</u>
Při měření jsem změřil závislost výstupního napětí na střídě, závislost účinnosti na střídě a průběhy napětí v různých částech obvodu. Z grafu vyplývá, že účinnost je největší okolo 50% střídy.