Neutrino Physics and Requirements to Accelerators

Yifang Wang
Institute of high energy physics
IPAC'13, May 17, 2013

Neutrinos around us

Astrophysics

Geology

 $\Phi_{\nu} = 340 \times 10^{6} \nu / \text{day}$ Human body

Cosmology

Nuclear physics

Particle physics

2011-10-19

Neutrino industry

EXONO

Neutrino physics: problems and methods

Current & Future Neutrino Experiments (selected)

- Basic properties of neutrinos
 - Magnetic moments: Texono, GEMMA, ...
 - Absolute mass: Katrin, Mare, Project 8, ...
- Neutrino oscillations & sterile neutrinos
 - Atmospheric neutrinos(θ_{23}): SuperK, INO, HyperK, PINGU, ...
 - · mass hierarchy...
 - Solar neutrinos(θ_{12}): SuperK, Borexino, LENA...
 - Solar & astrophysics
 - Reactor neutrinos(θ_{13}): Daya Bay, Double CHOOZ, Reno, DYBII...
 - mass hierarchy, sterile neutrinos,...
 - Accelerator neutrinos(θ_{23} , θ_{13}): MINOS,T2K,NOVA,LBNE, HyperK, LBNO...
 - mass hierarchy, sterile neutrinos, δ, ...
- Neutrino astronomy & applications
 - Supernova → with solar/atmospheric/reactor neutrinos
 - Geo-neutrinos → with solar/reactor neutrinos
 - High energy neutrino astronomy(Icecube, Antares, KM3,...)

Neutrino Oscillation

If the neutrino mass eigenstate is different from that of the weak interaction, neutrinos can oscillate: from one type to another during the flight:

Oscillation matrix for 3 generations:
$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} \mathbf{V_{e1}} & \mathbf{V_{e2}} & \mathbf{V_{e3}} \\ \mathbf{V_{\mu 1}} & \mathbf{V_{\mu 2}} & \mathbf{V_{\mu 3}} \\ \mathbf{V_{\tau 1}} & \mathbf{V_{\tau 2}} & \mathbf{V_{\tau 3}} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- \triangleright Known parameters: θ_{23} , θ_{12} , $|\Delta M^2_{23}|$, ΔM^2_{12} ,
- \triangleright Recent progress: θ_{13}
- \triangleright Unknown parameters: mass hierarchy(ΔM^2_{23}), CP phase δ

θ_{12} and ΔM^2_{12}

- First evidence in 60's-80's by Homestake
 - Solar v_e disappearance
- Well established by SNO using solar neutrinos in 2000:
 - \Rightarrow Disappeared solar v_e actually become $v_{\mu}+v_{\tau}$
- Confirmed by KamLAND using reactor neutrinos in 2001
 - Reactor $\overline{V_e}$ disappearance & θ_{12} and ΔM^2_{12} well determined
- **Current measurements:**

$$\tan^2 \theta_{12} = 0.436^{+0.029}_{-0.025}$$

 $\Delta m_{21}^2 = 7.53^{+0.18}_{-0.18} \times 10^{-5} \,\text{eV}^2$

- **Issues now:**
 - Mostly solar related
- **Future experiments**
 - **DYBII**(reactor)

ArXiv: 1303.4667

θ_{23} and ΔM^2_{23}

- First evidence in 80's by Kamiokande and IMB
 - \Rightarrow Atmospheric neutrinos v_u disappearance
- Well established by SuperKamiokande in 1998
 - \Rightarrow Atmospheric neutrinos v_e disappearance(as a function of L/E)
- Confirmed by accelerator experiments
 - \Rightarrow Beam v_{μ} disappearance(K2K, T2K, MINOS...)
 - \Rightarrow v_{τ} appeared in v_{μ} beam (OPERA)
- Current measurements:

$$|\Delta m^2| = (2.41^{+0.09}_{-0.10}) \times 10^{-3} \,\text{eV}^2$$

 $\sin^2(2\theta) = 0.950^{+0.035}_{-0.036}$

- Issues now:
 - \Rightarrow Sign of ΔM^2_{23}
 - \Rightarrow Is θ_{23} maximal?
- Future experiments
 - **NOVA, INO, HyperK...**

θ_{13} and ΔM^2_{13}

- First evidence of non-zero
 θ₁₃ in 2011 by T2K, MINOS
 and Double Chooz
- Well established non-zero
 θ₁₃ by Daya Bay using reactor neutrinos in 2012
- Confirmed afterwards by RENO, Double Chooz and T2K
- Precision:
 - ⇒ 13% **→** 4% in 5 years
- Future experiments
 - **⇒** None

ΔM_{13}^2 not independent:

$$\Delta m_{31}^2 = \Delta m_{32}^2 + \Delta m_{21}^2$$

$${\rm NH}: \ |\Delta m^2_{31}| \ = \ |\Delta m^2_{32}| + |\Delta m^2_{21}|$$

IH:
$$|\Delta m_{31}^2| = |\Delta m_{32}^2| - |\Delta m_{21}^2|$$

Daya Bay: θ_{13} is determined

RPCs

Sin²2θ₁₃=0.089±0.010±0.005 7.7 σ for non-zero θ_{13}

F.P. An et al., Phys. Rev. Lett. 108, (2012) 171803; Chin. Phys.C 37(2013) 011001

RENO, Double Chooz & T2K confirmed the results at 3-5 σ

Neutrino physics in the Future

Mass hierarchy

Thanks to the large θ_{13}

- **⇒** By reactor neutrinos: **DBYII**
- **⇒** By atmospheric neutrinos: INO, HyperK, PINGU
- **⇒** By Long baseline accelerator neutrinos: HyperK, LBNE, LBNO,...

CP phase

- **⇒** By atmospheric neutrinos: HyperK
- ⇒ By Long/medium baseline accelerator neutrinos: HyperK, LBNE, LBNO,...

Sterile neutrinos

- **⇒** Radioactive sources: CeLAND, SoX,...
- ⇒ By reactor neutrinos: Nucifer, Stereo, Solid ...
- ⇒ By short baseline accelerator neutrinos: MicroBoone, IsoDAR, Icarus/Nessie, nuSTORM...

2013/5/17

Mass Hierarchy by reactors: DYBII

	Daya Bay	Huizhou	Lufeng	Yangjiang	Taishan
Status	running	planned	approved	Construction	construction
power/GW	17.4	17.4	17.4	17.4	18.4

Sterile neutrinos

Yangjiang:17.4 GW

Physics reach of DYBII

	current	Our precision
Δm_{12}^2	3%	0.6%
Δm_{23}^2	5%	0.6%
$\sin^2\theta_{12}$	6%	0.7%
$\sin^2\theta_{23}$	20%	N/A
$\sin^2\theta_{13}$	14% → 4%	~ 15%

For 6 years, taking into account all uncertainties and with the help of $\Delta m^2_{\mu\mu}$ from T2K and Nova, sensitivity can reach 4σ

2013/5/17

HyperK for Mass Hierarchy & CP

Future Accelerator Neutrino Experiments

	Beam power(MW)	Baseline (km)	Detector	Start time
NOVA	0.7	810	14 kt Iron calorimeter	2015
HyperK	0.75	295	560 kt Water Cerenkov	~ 2022
LBNE	0.7 → 2.3	1300	10 kt→ 35kt Liquid Ar TPC	~ 2022 → ?
LBNO	0.75 → 2.0	2300	20 kt LAr TPC + 35 kt MIND	?

LBNE & project-X

- From Fermilab Main injector(& its upgrade) to Homestake(1300 km)
- **Program in phases:**

beam power: 0.7-2.3 MW

LAr TPC mass: 10 -35 kt

LBNO

- From CERN SPS(& its upgrade) to Pyhäsalmi(Finland)
- Beam power: 0.7MW → 2.0 MW
- Baseline of 2300 km: better MH sensitivity than that of LBNE
- Overburden is ~1400m, good for many other physics

From A. Rubbia, talk at NeuTel 2013

The CN2PY beam

- Phase 1 : use the proton beam extracted beam from SPS
 - 400 GeV, max 7.0 10¹³ protons every 6 sec, 750 kW beam power
- Phase 2 : use the proton beam from the new HP-PS

First phase: ICARUS+NESSIE

- Beam from SPS: as an initial phase of the neutrino physics program at CERN
- Two types of detector for background rejection:
 - NESSIE: magnetized Iron calorimeter
 - ICARUS: Liquid Ar TPC
- Key parameters:
 - Near site @ 300m
 - NESSIE mass=840t
 - ICARUS mass= 119t
 - Far site @ 1600
 - NESSIE mass=1515t
 - ICARUS mass= 476t
- Physics: sterile neutrinos

Sterile neutrinos

- Sterile neutrinos as the partner of active neutrinos, may exist and oscillate with their active partners.
- Theoretical motivation: various extension of SM
- Experimental "hints": LSND: v_e in v_μ beam; MiniBooNE: v_e in v_μ beam; Reactor: v_e deficit; Gallex: v_e deficit
- Global fit with severe tensions
- Not favored by cosmological bounds (PLANCK) but there are ways out
- Solution: experiments
 - Radioactive sources(or):
 - CeLAND(¹⁴⁴Ce in KamLAND), SoX(⁵¹Cr in Borexino),...
 - Reactors
 - Nucifer, Stereo, Solid,...
 - Accelerator beams
 - IsoDAR, MicroBoone, Icarus/Nessie, nuSTORM...

IsoDAR

- A proton beam on ${}^{9}\text{Be} \rightarrow \text{n} \rightarrow \text{n} + {}^{7}\text{Li} \rightarrow {}^{8}\text{Li} \rightarrow \overline{\text{v}_{e}}$
- Site may be at KamLAND or SNO
- Phased program of DAEδALUS:

DAEδALUS

- Multiple superconducting Cyclotrons to produce muon neutrinos from π decays at rest
- Look for $\overline{\nu_{\mu}} \to \overline{\nu}_e$ oscillation with a L/E dependence to measure the CP phase δ

nuSTORM

- A 3.8 GeV muon storage ring + Minos-like detector to solve sterile neutrino problem, proposed at Fermilab
- A phased program for neutrino factory

Neutrino Factory

- Neutrinos from muon decays for θ_{13} , MH & CP
- Typical parameters:
 - ~10 GeV muon beam
 - $~10^{21} \, \text{V/year}$
 - ~4 MW power
 - ~2000 km baseline
 - 0.1 1.0 Mt detector
- Technology is far from mature. Global efforts:
 - Proton driver → also
 needed by super-beams
 - Target → MERIT
 - Cooling → MICE
 - Muon acceleration →EMMA
- Also a pre-stage for muon collider

Where are we heading for?

- Neutrino factory is a dream machine for θ_{13} , MH & CP
 - Long Baseline, high energy & high power → expensive
- Previously discussed beta-beams are similar
- Since θ_{13} is known, and MH will likely be determined by DYBII/ HyperK/LBNE/LBNO, we need only a machine to determine CP
- What is the best machine if HyperK/LBNE/LBNO did not find CP?

How low is the best for CP?

- Below in-elastic threshold: ~ 300 MeV → baseline = 150 km
- Such a threshold is similar for CC/NC & v/vbar
- Although we loose statistics due to the lower cross section, but we have less systematics by being π^0 free

Europe efforts: Super-beams(pi)

- CERN HP-SPL
 - 4.5 GeV proton driver, 4 MW power
 - Baseline: 130 km to Frejus
- European Neutron Spallation Source at Lund (ESS)
 - 2.5 GeV, 5 MW Superconduction Linac
 - Baseline: 260 km up; 540 km Garpenberg Mine ?
- Possible detector: 440 kt fiducial mass MEMPHYS
- Neutrinos from π decays suffer from backgrounds

Efforts in IHEP: DYBIII

- A proton LINAC for ADS is now under development in China
- If R&D is successful, a CW Linac based ~15 MW proton driver can be used for neutrino beams

 Shoot towards the Daya Bay II detector? (150 km from CSNS site to DYBII)

Neutrinos from the muon decay

Issues (common to many proposals)

- Proton accelerators
 - High power CW machine, easier?
 - Challenges in RFQ and low- β superconducting cavities
 - Extremely low beam loss
- Target
 - Thermal load & radiation damage
- Superconducting solenoids
 - Some experience in low power case, but...
 - High heat load from radiation (kW level)
 - Radiation damage
- Muon beam transport and decay channel
 - Very large acceptance (>15000 mm-mrad)
 - Bunch rotation by superconducting cavities (100 MV)
- Detector
 - Flavor sensitive; Charge sensitive; NC/CC sensitive MIND or water w/ Gd ?

Summary

- Neutrinos are important in our universe
- Significant progress in the past
- Great prospects in the future
- (Accelerator + target + magnet) play a vital role: but a lot of technical challenges in front of us
- We need your help and let's work together to discover the neutrino CP phase δ

Thanks 谢谢