ÉCOLE POLYTECHNIQUE - ÉCOLES NORMALES SUPÉRIEURES

CONCOURS D'ADMISSION 2018

FILIÈRE MP

COMPOSITION DE MATHEMATIQUES – A – (XLCR)

(Durée : 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

* * *

Pour tous entiers $l, m \in \mathbb{N}^*$, on notera $\mathcal{M}_{l,m}(\mathbb{R})$ l'ensemble des matrices à coefficients réels ayant l lignes et m colonnes. Lorsque l=m, on notera $\mathcal{M}_l(\mathbb{R})$ l'ensemble des matrices carrées de taille $l \times l$. Par ailleurs :

- Pour toute matrice $A \in \mathcal{M}_{l,m}(\mathbb{R})$, on notera A^{T} la transposée de A.
- On notera $O_{l,m}$ la matrice nulle de $\mathscr{M}_{l,m}(\mathbb{R})$ dont tous les coefficients sont nuls. Lorsque $l=m,\ O_l$ désignera la matrice nulle et I_l la matrice identité de $\mathscr{M}_l(\mathbb{R})$.
- Pour toute famille $(a_i)_{1 \leq i \leq l}$ de réels, on notera diag (a_1, \ldots, a_l) la matrice diagonale de $\mathcal{M}_l(\mathbb{R})$ dont les coefficients diagonaux sont a_1, a_2, \ldots, a_l .
- Pour tous $A, B \in \mathcal{M}_{l,m}(\mathbb{R})$, on notera $\langle A, B \rangle_F = \operatorname{tr}(A^{\mathrm{T}}B)$ où $\operatorname{tr}(M)$ désigne la trace de M pour toute matrice carrée à coefficients dans \mathbb{R} et $\|A\|_F = \sqrt{\langle A, A \rangle_F}$. On pourra utiliser sans démonstration que $\langle \ , \ \rangle_F$ définit un produit scalaire sur $\mathcal{M}_{l,m}(\mathbb{R})$ et que $\mathcal{M}_{l,m}(\mathbb{R})$ muni de la norme $\| \ \|_F$ est un espace vectoriel normé de dimension lm.
- Pour toute matrice $A \in \mathcal{M}_{l,m}(\mathbb{R})$, on notera $\operatorname{rg}(A)$ le rang de la matrice A c'est-à-dire la dimension de l'image de A. On rappelle que $\operatorname{rg}(A^{\mathrm{T}}) = \operatorname{rg}(A)$.
- Pour tout $k \in \mathbb{N}$, on note $\mathscr{M}_{l,m}^k(\mathbb{R})$ l'ensemble des matrices $A \in \mathscr{M}_{l,m}(\mathbb{R})$ telles que $\operatorname{rg}(A) = k$.

Pour $p \in \mathbb{N}^*$, on munit \mathbb{R}^p de sa structure euclidienne canonique et pour tout vecteur $x \in \mathbb{R}^p$, on notera $||x||_2$ la norme euclidienne de x.

Préliminaire

Soient $n, p, q \in \mathbb{N}^*$ trois entiers strictement positifs. Soient $A, B \in \mathcal{M}_{n,p}(\mathbb{R})$ et $C \in \mathcal{M}_{p,q}(\mathbb{R})$.

- 1. Donner l'expression de $\langle A, B \rangle_F$ en fonction des coefficients de A et B.
- 2. Soit $u \in \mathbb{R}^p$. Montrer que $||Au||_2 \leqslant ||A||_F ||u||_2$.
- 3. Montrer que $||AC||_F \leqslant ||A||_F ||C||_F$.

Première partie

On considère trois entiers n, p et k strictement positifs tels que $\mathscr{M}^k_{n,p}(\mathbb{R})$ soit non vide. Soit A une matrice de $\mathscr{M}^k_{n,p}(\mathbb{R})$.

- 4. Montrer que $k \leqslant \min(n,p)$ et que pour tout $\lambda \in \mathbb{R}^*$, $\lambda A \in \mathscr{M}^k_{n,p}(\mathbb{R})$.
- 5. Soient $S = AA^{\mathrm{T}}$ et $\tilde{S} = A^{\mathrm{T}}A$.
 - (a) Vérifier que S est une matrice symétrique qui n'admet que des valeurs propres positives puis montrer que Im(A) = Im(S).
 - (b) Soit $u \in \mathbb{R}^n$ un vecteur propre de S pour une valeur propre $\lambda > 0$ et soit $v = A^{\mathrm{T}}u/\sqrt{\lambda} \in \mathbb{R}^p$. Montrer que v est un vecteur propre de \tilde{S} pour la valeur propre λ et $\|v\|_2 = \|u\|_2$.
- 6. (a) Montrer qu'il existe $U \in \mathscr{M}_{n,k}(\mathbb{R})$ et $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_k) \in \mathscr{M}_k(\mathbb{R})$ telles que $S = U\Lambda U^{\mathrm{T}}$ avec $\lambda_1 \geqslant \dots \geqslant \lambda_k > 0$ et $U^{\mathrm{T}}U = I_k$.
 - (b) Montrer que $\operatorname{Im}(S) = \operatorname{Im}(U)$ et que UU^{T} est la matrice de la projection orthogonale sur $\operatorname{Im}(U)$ dans \mathbb{R}^n .
 - (c) En posant $V = A^{\mathrm{T}}UD \in \mathscr{M}_{p,k}(\mathbb{R})$ où $D = \mathrm{diag}(1/\sqrt{\lambda_1}, \dots, 1/\sqrt{\lambda_k}) \in \mathscr{M}_k(\mathbb{R})$, montrer que $V^{\mathrm{T}}V = I_k$ et $\tilde{S} = V\Lambda V^{\mathrm{T}}$.
- 7. En déduire que

$$A = U\Sigma V^{\mathrm{T}} \,,$$

avec $\Sigma = \operatorname{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_k}).$

Deuxième partie

Dans cette partie, on s'intéresse à la meilleure approximation, pour la norme $\|\cdot\|_F$, d'une matrice de rang k par une matrice de rang fixé. Cette partie est indépendante des parties suivantes.

Soit $A \in \mathcal{M}_{n,p}^k(\mathbb{R})$ une matrice de rang k où n,p et k sont des entiers strictement positifs, $k \leq \min(n,p)$. On considère la décomposition $A = U\Sigma V^T$ construite dans la première partie. Soient $l \in \mathbb{N}^*$ et $\widetilde{V} \in \mathcal{M}_{p,l}(\mathbb{R})$ tels que l < k et $\widetilde{V}^T\widetilde{V} = I_l$. On note $(\widetilde{v}_1, \dots, \widetilde{v}_l) \in (\mathbb{R}^p)^l$ la famille des colonnes de \widetilde{V} et $(v_1, \dots, v_k) \in (\mathbb{R}^p)^k$ celle des colonnes de V.

- 8. (a) Vérifier que $\|A-A\widetilde{V}\widetilde{V}^{\rm T}\|_F^2=\|A\|_F^2-\|A\widetilde{V}\widetilde{V}^{\rm T}\|_F^2.$
 - (b) Montrer que

$$\|A\widetilde{V}\widetilde{V}^{\mathrm{T}}\|_F^2 = \sum_{h=1}^k \left(\lambda_h \sum_{m=1}^l \langle v_h, \widetilde{v}_m \rangle_2^2\right)$$

où $\langle \ , \ \rangle_2$ désigne le produit scalaire usuel sur \mathbb{R}^p .

- 9. On suppose ici que $\lambda_l > \lambda_{l+1}$.
 - (a) Pour tout $l+1 \leqslant i \leqslant k$ et tout $1 \leqslant j \leqslant l$, on pose $a_i = \sum_{m=1}^{l} \langle v_i, \tilde{v}_m \rangle_2^2$ et $b_j = 1 \sum_{m=1}^{l} \langle v_j, \tilde{v}_m \rangle_2^2$. Montrer que les (a_i) et (b_j) sont des réels positifs et que l'on a $\sum_{i=l+1}^{k} a_i \leqslant \sum_{j=1}^{l} b_j$.
 - (b) Montrer que $\|A\widetilde{V}\widetilde{V}^{\mathrm{T}}\|_F^2 \leqslant \sum_{h=1}^l \lambda_h$ et que l'on a l'égalité si et seulement si on a $\mathrm{Vect}(\{v_1,\ldots,v_l\}) = \mathrm{Im}(\widetilde{V})$ où $\mathrm{Vect}(X)$ désigne le sous-espace vectoriel engendré par $X \subset \mathbb{R}^p$.
 - (c) Soit $M \in \mathcal{M}_{n,p}^l(\mathbb{R})$. Montrer que $\|M A\|_F^2 \geqslant \sum_{h=l+1}^k \lambda_h$ avec égalité si et seulement si $M = U_* \Sigma_* V_*^{\mathrm{T}}$ où $\Sigma_* = \mathrm{diag}(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_l})$, U_* (resp. V_*) est la matrice formée des l premières colonnes de U (resp. de V).

Troisième partie

Soient p, k deux entiers strictement positifs et $V \in \mathcal{M}_{p,k}(\mathbb{R})$ tel que $V^{\mathrm{T}}V = I_k$. Pour tout $W \in \mathcal{M}_{p,k}(\mathbb{R})$, on note $M_{V,W}$ la matrice de $\mathcal{M}_{p+k}(\mathbb{R})$ définie par blocs par

$$M_{V,W} = \left(\begin{array}{cc} V & I_p \\ O_k & W^{\mathrm{T}} \end{array} \right) .$$

- 10. On suppose ici que $W^{\mathrm{T}}V$ est une matrice inversible.
 - (a) Montrer que $M_{V,W}$ est inversible. On notera son inverse $M_{V,W}^{-1}$.
 - (b) Montrer que l'orthogonal $\operatorname{Im}(W)^{\perp}$ de $\operatorname{Im}(W)$ et $\operatorname{Im}(V)$ sont deux sous-espaces supplémentaires dans \mathbb{R}^p i.e. $\operatorname{Im}(W)^{\perp} \oplus \operatorname{Im}(V) = \mathbb{R}^p$. Indication: On pourra commencer par vérifier que pour $z \in \mathbb{R}^p$, si $z \in \operatorname{Im}(W)^{\perp}$ alors $W^{\mathsf{T}}z = 0$.
 - (c) On définit la matrice

$$P_{V,W} = (V \ O_p) M_{V,W}^{-1} \left(\begin{array}{c} I_p \\ O_{k,p} \end{array} \right) \ .$$

Montrer que $P_{V,W}$ est la matrice de la projection sur $\operatorname{Im}(V)$ parallèlement à $\operatorname{Im}(W)^{\perp}$.

- 11. Soit $q \in \mathbb{N}^*$. Montrer que l'ensemble des matrices inversibles de $\mathcal{M}_q(\mathbb{R})$ est un ouvert et que l'application $M \mapsto M^{-1}$ est continue sur cet ouvert.
- 12. Montrer qu'il existe un voisinage $\mathscr V$ de V dans $\mathscr M_{p,k}(\mathbb R)$ tel que $W^{\mathrm T}V$ est inversible pour tout $W\in\mathscr V$ et l'application $W\mapsto P_{V,W}$ est continue de $\mathscr V$ dans $\mathscr M_p(\mathbb R)$.

Quatrième partie

Soient n, p et k trois entiers strictement positifs tels que $k \leq \min(n, p)$. On définit pour toute la suite l'espace vectoriel

$$\mathscr{E} = \mathscr{M}_{n,k}(\mathbb{R}) \times \mathscr{M}_{k}(\mathbb{R}) \times \mathscr{M}_{n,k}(\mathbb{R}).$$

Soient $A\in \mathscr{M}^k_{n,p}(\mathbb{R})$ une matrice de rang k et $(U,\Sigma,V)\in\mathscr{E}$ tels que

$$A = U\Sigma V^{\mathrm{T}}, \ U^{\mathrm{T}}U = V^{\mathrm{T}}V = I_k$$

et Σ diagonale à coefficients diagonaux strictement positifs (l'existence de (U, Σ, V) a été montrée dans la première partie).

- 13. Soient $(\overline{U}, \overline{\Sigma}, \overline{V}) \in \mathscr{E}$. On considère la courbe $\gamma : \mathbb{R} \to \mathscr{M}_{n,p}(\mathbb{R})$ définie par $\gamma(t) = (U + t\overline{U})(\Sigma + t\overline{\Sigma})(V + t\overline{V})^{\mathrm{T}}$.
 - (a) Montrer que les fonctions $t \mapsto \operatorname{rg}(U + t\overline{U})$, $t \mapsto \operatorname{rg}(\Sigma + t\overline{\Sigma})$ et $t \mapsto \operatorname{rg}(V + t\overline{V})$ sont constantes au voisinage de t = 0.
 - (b) En déduire que $\gamma(t) \in \mathscr{M}_{n,p}^k(\mathbb{R})$ au voisinage de t = 0.
 - (c) Montrer que γ est indéfiniment dérivable sur \mathbb{R} et donner l'expression de la dérivée $\gamma'(0)$ de γ en 0.
- 14. On note $T_A = \{ \overline{U}\Sigma V^{\mathrm{T}} + U\overline{\Sigma}V^{\mathrm{T}} + U\Sigma \overline{V}^{\mathrm{T}} \mid (\overline{U}, \overline{\Sigma}, \overline{V}) \in \mathscr{E}, \ \overline{U}^{\mathrm{T}}U = \overline{V}^{\mathrm{T}}V = O_k \}.$
 - (a) Vérifier que tous les éléments de T_A sont des vecteurs tangents à $\mathscr{M}_{n,p}^k(\mathbb{R})$ en A et que T_A est un sous-espace vectoriel de $\mathscr{M}_{n,p}(\mathbb{R})$ dont on donnera la dimension.
 - (b) Soit $N_A = \{ \overline{N} \in \mathcal{M}_{n,p}(\mathbb{R}) \mid \overline{N}^T U = O_{p,k}, \ \overline{N}V = O_{n,k} \}$. Montrer que N_A est le sous-espace orthogonal à T_A dans $\mathcal{M}_{n,p}(\mathbb{R})$ pour le produit scalaire $\langle \ , \ \rangle_F$.
- 15. Soit $\tilde{A} \in \mathcal{M}_{n,p}(\mathbb{R})$. On dit que \tilde{A} vérifie la condition (C) si

(C)
$$\operatorname{Im}(\tilde{A}VV^T) = \operatorname{Im}(\tilde{A}) \text{ et } \operatorname{Im}(\tilde{A}^TUU^T) = \operatorname{Im}(\tilde{A}^T).$$

(a) Montrer que si \tilde{A} vérifie la condition (C) alors $\operatorname{rg}(\tilde{A}) \leqslant k$ et

$$\operatorname{Im}(\tilde{A}^{\mathrm{T}}UU^{\mathrm{T}})^{\perp} = \ker(\tilde{A}).$$

- (b) Montrer qu'il existe $\epsilon > 0$ tel que pour tout $\tilde{A} \in \mathcal{M}_{n,p}^k(\mathbb{R})$, la matrice \tilde{A} vérifie la condition (C) dès que $\|\tilde{A} A\|_F \leq \epsilon$.
- 16. Soit $\phi: \mathcal{M}_{n,p}(\mathbb{R}) \to \mathcal{M}_{n,p}(\mathbb{R}) \times \mathcal{M}_{p,n}(\mathbb{R})$ définie par $\phi(\tilde{A}) = (\tilde{A}VV^{\mathrm{T}}, \tilde{A}^{\mathrm{T}}UU^{\mathrm{T}})$ pour tout $\tilde{A} \in \mathcal{M}_{n,p}(\mathbb{R})$.
 - (a) Identifier $\ker(\phi)$ en fonction de N_A introduit à la question (14b).
 - (b) On note $\pi_A : \mathcal{M}_{n,p}(\mathbb{R}) \to \mathcal{M}_{n,p}(\mathbb{R})$ la projection orthogonale sur T_A dans $\mathcal{M}_{n,p}(\mathbb{R})$. Montrer que $\phi = \phi \circ \pi_A$.
 - (c) Soit $\tilde{A} \in \mathcal{M}_{n,p}^k(\mathbb{R})$ vérifiant la condition (C). On note $W = \tilde{A}^T U U^T$. Montrer que si $P_{V,W}$ est la matrice de la projection sur $\operatorname{Im}(V)$ parallèlement à $\operatorname{Im}(W)^{\perp}$ alors

$$\tilde{A} = \tilde{A}VV^{\mathrm{T}}P_{V,W}.$$

17. En déduire qu'il existe $\epsilon > 0$ tel que la restriction de π_A à $\mathcal{M}_{n,p}^k(\mathbb{R}) \cap B(A,\epsilon)$ est injective où $B(A,\epsilon) = \{\tilde{A} \in \mathcal{M}_{n,p}(\mathbb{R}) \mid \|\tilde{A} - A\|_F < \epsilon \}$ est la boule ouverte de $\mathcal{M}_{n,p}(\mathbb{R})$ centrée en A et de rayon ϵ .

- 18. Soit ρ_A la projection orthogonale sur N_A dans $\mathcal{M}_{n,p}(\mathbb{R})$.
 - (a) Montrer pour tout $\tilde{A} \in \mathcal{M}_{n,p}(\mathbb{R})$, on a $\rho_A(\tilde{A}) = (I_n UU^T)\tilde{A}(I_p VV^T)$.
 - (b) Montrer que $\rho_A(AB) = 0$ pour tout $B \in \mathscr{M}_p(\mathbb{R})$.
 - Soit $\tilde{A} \in \mathscr{M}_{n,p}^k(\mathbb{R})$ vérifiant la condition (C).
 - (c) Montrer que si $W = \tilde{A}^{\mathrm{T}} U U^{\mathrm{T}}$

$$\rho_A(\tilde{A}) = (I_n - UU^{\mathrm{T}})(\tilde{A} - A)VV^{\mathrm{T}}(P_{V,W} - P_{V,V})(I_p - VV^{\mathrm{T}}).$$

- (d) En déduire que $\|\rho_A(\tilde{A})\|_F \leqslant \sqrt{(n-k)k(p-k)} \|\tilde{A}-A\|_F \|P_{V,W}-P_{V,V}\|_F$.
- 19. Montrer que T_A est exactement l'ensemble des vecteurs tangents à $\mathscr{M}^k_{n,p}(\mathbb{R})$ en A.