

(IFCT0310) ADMINISTRACIÓN DE BASES DE DATOS

- Computadores para BBDD -

Sistemas de representación de la información en un computador

- Necesidad de representar la realidad que conocemos en una computadora para poder manipularla.
- La realidad es transformada en lo que llamamos "datos", y éstos deben ser almacenados de manera uniforme.
- Las computadoras están compuestas por un conjunto de dispositivos electrónicos interconectados, entre ellos, los semiconductores.
- El <u>transistor</u> es el semiconductor más importante en una computadora, ya que permite controlar el flujo de las cargas eléctricas como si de un interruptor se tratara.

¿Cómo puede un transistor ayudarnos a almacenar y manipular la información?

• En electrónica, la ciencia sobre la cual recae el diseño de computadoras, un transistor puede utilizarse para controlar el flujo de señales eléctricas, incluso retenerlas con la ayuda de otros semiconductores. Por lo general, una computadora trabaja con dispositivos que reconocen sólo dos estados:

- Estos estados los conocemos con el nombre de BIT (0=apagado/descargado , 1=encendido/cargado)
- Un bit es insuficiente, por este motivo, usamos <u>patrones de bits</u> para hacer combinaciones a la hora de representar la información:

$$0 = "A"$$

Representación de Pixeles

0 0 0 1 1 0 0 0

0 0 1 1 1 1 0 0

0 0 1 1 1 1 0 0

0 0 0 1 1 0 0 0

Representación Lineal

00011000 00111100 00111100 00011000

10ⁿ

Base: 10

Símbolos: 0,1,2,3,4,5,6,7,8,9

Siguiendo la formula:

$$N = A_n * B^n + A_{n-1} * B^{n-1} + ... + A_1 * B^1 + A_0 * B^0$$

La posición de cada digito en un numero decimal indica la magnitud de la cantidad representada y se le puede asignar un peso. Los pesos para los números enteros son potencias de 10, que aumentan de derecha a izquierda, comenzando por 10º = 1.

Sistema Hexadecimal

Este sistema da una forma mas compacta para representar los números binarios. Consta de 16 símbolos. Para indicar que el número se expresa en hexadecimal se suela colocar una H al final, 34AF₁₆ 34AF_H

Base: 16

Símbolos: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Aplicaciones:

(Rojo, Verde, Azul)

- Decimal (255,0,0)
- Binario (11111111,00000000,00000000)
- Hexadecimal (FF,00,00)

नन्तन्तन्त	000000	333333	666666	999999	ccccc	CCCC99	9999CC	666699
660000	663300	996633	003300	003333	003399	000066	330066	660066
990000	993300	CC9900	006600	336666	0033FF	000099	660099	990066
CC0000	CC3300	FFCC00	009900	006666	0066FF	0000CC	663399	CC0099
FF0000	FF3300	FFFF00	00CC00	009999	0099FF	0000FF	9900CC	FF0099
CC3333	FF6600	FFFF33	00FF00	00CCCC	00CCFF	3366FF	9933FF	FF00FF
FF6666	FF6633	FFFF66	66FF66	66CCCC	00FFFF	3399FF	9966FF	FF66FF
FF9999	FF9966	FFFF99	99FF99 _{hm}	66FFCC	99FFFF	66CCFF	9999FF	FF99FF
FFCCCC	FFCC99	FFFFCC	CCFFCC	99FFCC	CCFFFF	99CCFF	CCCCFF	FFCCFF

Decimal

25₁₀

Binario 10011,

Binario 1011,

$$N = A_n * B^n + A_{n-1} * B^{n-1} + ... + A_1 * B^1 + A_0 * B^0$$

Donde A_i son las distintas cifras del valor numérico e "i" su posición. B = 2

Decimal 11

Dado el número binario: "10112", encontrar el equivalente decimal.

Si desarrollamos el número dado como potencias de 2 tendremos:

$$1011_2 = 1.2^3 + 0.2^2 + 1.2^1 + 1.2^0 = 1.8 + 0.4 + 1.2 + 1.1 = 8 + 2 + 1 = 11_{10}$$

Decimal

4573₁₀

Hexadecimal

11DD₁₆

Hexadecimal	Decimal	Binario
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
А	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Regla general

