

MA 5106 Introduction to Fourier Analysis

Notes By: Aryaman Maithani

Lecture 1 (06-01-2021)

reliminaries

Rectangle in \mathbb{R}^d : $R = [a_1, b_1] \times \times [a_1, b_2]$. dosed

Cube in \mathbb{R}^d : $Q = [a_1, b_1] \times \cdots \times [a_d, b_d]$ where b, -a, = ... = bd - ad.

Volume of R IR = TT (bi - ai)

Exterior measure of E GRd:

 $m_{*}(E) = \inf \left\{ \sum_{i=1}^{\infty} |Q_{i}| : E \subset \bigcup_{i=1}^{\infty} Q_{i}, Q_{i} \text{ are cubes} \right\}$

Observations:

- (1) Any singleton has exterior measure O.
- (2) Exterior measure of any (closed/open) rectangles is equal to its volume
- $(3) \quad \mathsf{M}_{\mathsf{k}}(\mathsf{R}^{\mathsf{a}}) = \infty.$
- (4) M_* (Cantor set) = 0.

Properties:

(1) $E \subseteq F \Rightarrow m_{k}(F) \leq m_{k}(F)$

(2) $m_{x} \left(\bigcup_{j=1}^{\infty} E_{j} \right) \leq \sum_{j=1}^{\infty} m_{x} \left(E_{j} \right) \left(\begin{array}{c} \text{equality needn'} + \\ \text{hold even if disjoint} \end{array} \right)$

Measurable set

Def? A set $E \subseteq \mathbb{R}^d$ is called (Lebesgue) measurable if for every E > 0, \exists an open set O with $O \supseteq E$ s.t. $m_*(O \mid E) = 0$.

If ECRd is measurable, then (Lebesgue) measure of E is denoted by m(F) and defined as M(E) = M*(E)

Example of measurable sets

- (1) May open set is measurable.
 - (2) E s.t. $m_{x}(E) = 0 \Rightarrow E$ is measurable
- (3) Countable union of measurable set are measurable.
- (4) Complement of a meas. set is meas.
- (5) Any closed set Any countable intersection of near sets.

The measurable sets. $m\left(\bigcup_{i=1}^{\infty} E_i\right) = \sum_{i=1}^{\infty} m(E_i).$

m(Eth) = m(E) + measurable E SIRd, + h EIRd

(Eth := { yth | y E E})
"Eth is also measurable" is implicit. Similar for next ones.

(3) m(cE) = cd m(E) (>0

- If is measurable and $P:R\to R$ is measurable, then pof is measurable.
- (3) If {fn}n is a sequence of measurable functions, then
 the functions
 Sup fn, inf fn, limsup fn, liminf fn.

are all measurable.

- (4) Limit of a sequence of measurable functions is measurable.
- (5) If f, g are measurable, then so one $f \pm g$, $f \cdot g$.

Characteristic function. Let E ERD.

Define

V-(~~) .- (1 : 1 $\chi_{\varepsilon}(x) := \begin{cases} 1 & \text{if } x \in \varepsilon \\ 0 & \text{if } x \notin \varepsilon \end{cases}$ VE is a measurable f" => E is measurable. Note $f^{-1}([-\infty, \alpha]) = \begin{cases} E^{c} : & o < \alpha \leq 1 \\ \mathbb{R}^{d} : & j < \alpha \end{cases}$ Thus, XE is a meen for EDE is mean EDE is. f: Rd -> R is said to be A function simple if $f = \sum_{k=1}^{N} a_k \chi_{E_k}$ ($a_k \in IR$ constants) Thm. Let f be a non-negative measurable function on 18th.
Then, Jan increasing seq. of non-neg simple functions for \$100 kg/k lim $Y_K = f$ pointwise. $\left(\phi_{\kappa}(n) \leq \phi_{\kappa+1}(n) + \lambda\right)$

Integration

(1) Let f be a simple function.

$$f = \sum_{k=1}^{N} a_k \chi_{\bar{\xi}_k}$$
, (Ek measurable $lm(\bar{\xi}_k) < \infty$)

$$\int_{\mathbb{R}^d} f := \sum_{k=1}^n Q_k M(E_k).$$

$$\int_{E} f := \int_{\mathbb{R}^{d}} f \cdot \chi_{E} \qquad (E \subseteq \mathbb{R}^{d} \text{ is measurable})$$
this is defined earlier
note $f \cdot \chi_{E}$ is measurable and $\geqslant 0$.

Def.
$$f > 0$$
 is integrable if $\int_{\mathbb{R}^d} f < \infty$.

Now, if
$$f: \mathbb{R}^d \to \mathbb{R}$$
 is any function, we can write
$$f(n) = f^+(n) - f^-(n)$$

$$f^{\dagger}(n) := \max \{f(n), 0\}, f^{\dagger}(n) := \max \{-f(n), 0\}.$$

Note that $f^{\dagger}, f^{\dagger} \ge 0.$

Def.
$$f$$
 is integrable if $\int_{\mathbb{R}^d} |f| < \infty$ and

Can be extended
$$\int_{\mathbb{R}^d} f(t) = f(t) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(t) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} f(t) = \int$$

Example. Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be defined as

Then, f is not Riemann integrable on [011]. However,

Thm. Let f be Riemann integrable on [a, b]. Then, f is measurable and both the integrals (Riemann & Lebesgue) coincide.

Lecture 2 (08-01-2021)

08 January 2021 09:24

Recap. f >0

1.
$$f = \leq a; x_{E_i}$$
, then $\int_{\mathbb{R}^d} f := \leq a; m(E_i)$

2.
$$m (supp f) < \infty$$
, then $\exists \{\psi_n\} \text{ simple } s + \psi_n \longrightarrow f \text{ a.e.}$

(f bounded)

$$\int f := \lim_{n \to \infty} \int \psi_n$$

Red

 $f \to \infty$

3. If
$$dx := \sup \left\{ \int_{\mathbb{R}^d} g : 0 \le g \le f \& m(\sup g) < \infty \right\}$$

ROPERTIES.

2.
$$f \cap f = \beta$$
 and f, f measurable, then
$$\int f = \int f + \int f$$

f.
$$f > 0$$
 and $\int_{\mathbb{R}^d} f = 0 \Rightarrow f = 0$ a.e.

If
$$f = 0$$
 are, then $\int f = 0$.

5.
$$\int |f| < \infty \Rightarrow |f| < \infty \text{ a.e.}$$

$$\mathbb{R}^d$$

Suppose
$$fn \longrightarrow f$$
 pointwise.

$$\lim_{n\to\infty} \int_{\infty} f_n = \int_{\infty} f$$

Thm. (Monotone Convergence Theorem)

Let f(x), be a sequence of non-negative measurable functions, converging pointwise to f and $f_n = f_{n+1}$.

Then

$$\lim_{n\to\infty} \int f_n = \int f.$$

Thm. (Dominated Convergence Theorem)

Let $\{f_n\}_n$ be a sequence of measurable functions such that $f_n \longrightarrow f$ a.e.

Assume further that $\frac{1}{3}$ an integrable function $\frac{1}{3}$ s.t. $\frac{1}{3}$

Then,
$$\lim_{n\to\infty} \int_{\mathbb{R}^d} f_n = \int_{\mathbb{R}^d} f.$$

$$\overline{\prod_{R^{A}}} \cdot \int_{\mathbb{R}^{A}} f(x-h) dx = \int_{\mathbb{R}^{A}} f(x) dx$$

$$\int_{\mathbb{R}^d} f(-x) \, dx = \int_{\mathbb{R}^d} f(x) \, dx$$

$$\int_{\mathbb{R}^{4}} f(x) dx = \frac{1}{c^{d}} \int_{\mathbb{R}^{d}} f(x) dx ; c > 0$$

Thon. (Fubini's Theorem)

(a) Let f be a non-negative measurable function on

$$\mathbb{R}^{d_1} \times \mathbb{R}^{d_2} = \mathbb{R}^{d_1+d_2}$$

Then,

$$\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f(\gamma, y) d\gamma \right) dy = \int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_2}} f(\gamma, y) d\gamma \right) d\gamma$$

(b) Let f be integrable on $\mathbb{R}^{d_1+d_2}$ (i.e., $\int_{\infty}^{d_1+d_2} (f) < \infty$).

Then, $\int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_1}} f(x, y) dx \right) dy = \int_{\mathbb{R}^{d_2}} \left(\int_{\mathbb{R}^{d_2}} f(x, y) dy \right) dx$

```
To use (6), we need to check if JIFI < 00. However,
```

since If 1 > 0, we can compute the above integral using (a).

$$\underbrace{\text{Def}^*}_{\text{I}} \cdot \angle^{\text{P}}(\Omega) = \begin{cases} f: \Omega \to C \mid f \text{ is meas. and } \int_{\text{Rd}} |f|^{\text{P}} < \infty \end{cases}.$$

(i)
$$\|x\| = 0 \iff x = 0$$

Any Ms is a metric space with dx(2, y) = 11x - y11.

.
$$||f||_{P} = 0 \Rightarrow \int |f|^{P} = 0 \Rightarrow |f|^{P} = 0 \text{ a.e.}$$

$$f = 0 \text{ a.e.}$$

Hot necessarily 0

In fact,
$$L^{p}(S^{2})$$
 is actually classes of functions where $f \sim g \Leftrightarrow f = g \text{ a.e.}$

Then, $L^{p}(R^{a})$ is an NLS.

.
$$\mathcal{L}^{a}(\mathbb{R}^{d}) := \begin{cases} f \colon \mathbb{R}^{d} \to \mathcal{L} & \text{meas. } f^{h} \text{ which are bounded a.e.} \end{cases}$$

$$\|f\|_{\infty} := \text{ess sup } |f|$$

$$\therefore |f(a)| \leq \|f\|_{\infty} \quad \text{-a.e.}$$

. L^q (
$$\mathbb{R}^d$$
) is a Banach space for $1 \le p \le \infty$.

Thm. (Hólder's Theorem)

If
$$g \parallel_1 \le \|f\|_p \|g\|_q$$
 where $p + q = 1$.

 $(p > 1, p = 0 \Rightarrow \frac{1}{p} > 0)$

where q satisfies
$$\frac{1}{p} + \frac{1}{q} = 1$$
.

Convolution

Def. Let f, g be integrable functions on \mathbb{R}^d $(f, g \in L^1(\mathbb{R}^d))$. Then, convolution of f and g is defined as $(f*g)(x) := \int_{\mathbb{R}^d} f(y) g(x-y) dy.$

Q. Does RHS escist? Yes, for almost every & ERd.

Prof. Note S (fly) 1 /g (2-y) 1 dy) dn

Rd Rd Rd (fly) 1 /g (2-y) 1 dy) dn

= \int \int \left(y) \left(g) \left(g) \left(d) \dy

= \int |f(y)| \left(g(n-y)|dn) dy

Rd | \text{fraulation}

= \int \left(f(y))\left(\int \left|g(n)\left|dn\right) dy

= | SIFI | SIGN | SINCE FAFL'

 $\Rightarrow \chi \mapsto \int_{\mathbb{R}^d} |f(n)| |g(x-y)| dy$ is finite a.e.

```
Thus, (f*g)(x) exists for almost every a.
```

Thn. Let
$$p \in [i, \infty)$$
. If $f \in L^p(\mathbb{R}^d)$ and $g \in L^1(\mathbb{R}^d)$, then
$$f * g \in L^p(\mathbb{R}^d)$$
 and
$$\mathbb{I} f * g \mathbb{I} = \mathbb{I} f \mathbb{I} p \mathbb{I$$

$$\frac{\int f(y) g(x-y) dy}{\mathbb{R}^d} \qquad \qquad y \mapsto x-z$$

$$= \int_{\mathbb{R}^d} f(x-z) g(z) dz$$

$$= (g * f)(\pi)$$

· Convolution can be defined on any measurable group (6, .).

```
· (f+g) *h = f *h + g *h
           Now, supp f = \frac{1}{2} x : f(n) \neq 0.
  Thm. Let C_c(\mathbb{R}^d) be the set of func f: \mathbb{R}^d \to \mathbb{C}
                                 with compact support.
         66. Cc (Rd) c LP (Rd). well, technically LP is equiv. classes but note that if cont.

froof. f \in Cc(R^q) from are equal are, then
             \Rightarrow \int ||f||^{p} = \int ||f||^{p} \leq ||f||_{\infty} \int_{A} = ||f||_{\infty} \operatorname{m}(\operatorname{supp} f) < \infty.

RA

supp f

supp f
Thm. I ((CIRd) is dense in LI(IRd).
        2. C_e^{\infty}(\mathbb{R}^d) is dense in L^p(\mathbb{R}^d).
             Sin f. differentiable
Def! (Approximate identity in L'(Rd))
          A sequence {kn}, in L'(Rª) is called approximate
         identity for L'(Rd) if
           (1) Kn = 0 Yn EN
           (2) \int k_n = 1 \forall n \in N
           (3) For any δ >0,

\lim_{n \to \infty} \int_{\mathbb{R}^{2}} K_{n} = 0.
```

Let $\{k_i\}_n$ be an approximate identity for $L'(R^a)$. Let $f \in L'(R^a)$.

```
f * K_n \longrightarrow f in L' as n \longrightarrow \infty.
                         lim || f * kn - f|| = 0.
Remark. (L'(Rd), *) does not have an identity.

That is, 
\exists g \in L'(R^d) \quad \forall f \in L'(R^d) \quad (f * g = f.)

          We prove the theorem in the next class. Before that, we have the following lemma.
          (Lemma) Let f \in L'(\mathbb{R}^d). Then, the map y \mapsto T_y f is a continuous function \mathbb{R}^d \to L'(\mathbb{R}^d), where
                                    T_y f(n) := f(n-y).
             That is, for any 6>0, 7 5 >0 s.t. |14,-42|1,<8 => |Ty, f-Ty, f1|< E.
           Proof. Let g E Co(Rd). Then
                      11 Ty, g - Ty, 9/1, = ] | Ty, g (n) - Ty, g (n) | dx
                                                 = \int_{\mathbb{R}^d} |g(x-y_1) - g(x-y_2)| dx
                                                 = \int_{\Omega} |g(n+y_2-y_1) - g(n)| dn
                                      = \int_{0}^{\infty} |g(x + y_2 - y_1) - g(x)| dx 
          g is continuous, can choose \delta > 0 s.t.
||y_1 - y_2|| < \delta \implies |q(x + y_1 - y_1) - q(y_1)| < \epsilon ||y_1 - y_2|| < \delta
```

→ < € if ||y, -y, || < δ.

Now, use the fact that $C_c(\mathbb{R}^d)$ is dense in $L'(\mathbb{R}^d)$. Note the following to conclude:

11 Ty, f - Ty2f 11, \(\) | Ty, f - Ty, gll, + | Ty, g - Ty2gll, + | Ty2g-Ty4l,

= 11 Ty, (f-g)11 + 11 Ty, g - Ty, g)1+ 11 Ty, (g-f)11

= || f - g || + ||Tg, g - Ty, g || + || f - g ||

Can be made (E.