Lec 11 (MRI: B₁ field)

What do we see if we are sitting on the rotating frame?

B₁ is constant. B₀ vanishes.

What happens to magnetization in the rotating frame?

Bloch equations

- Used describe the time evolution of "magnetization"
- Phenomenological equations

Time derivative of a vector (A) in lab (fixed) frame

Describes motion of vector in the rotating frame.

Time-derivative of magnetization

$$DM/Dt = dM/dt - (\omega \times M) -----(1)$$

We have already seen
$$d\mathbf{M}/dt = (\gamma \mathbf{M} \times \mathbf{B})$$
 ----- (2) (Larmor equation)

From (1) and (2)

$$DM/Dt = \gamma(M \times B) - (\omega \times M)$$

$$\Rightarrow$$
 DM/Dt = γ (M x B) + (M x ω)

$$\boxed{\frac{\overrightarrow{DM}}{Dt} = \gamma \overrightarrow{M} \times \left(\overrightarrow{B} + \frac{\overrightarrow{\omega}}{\gamma}\right)} - \dots (3)$$

$$\frac{\overrightarrow{DM}}{\overrightarrow{Dt}} = \gamma \overrightarrow{M} \times \left(\overrightarrow{B} + \frac{\overrightarrow{\omega}}{\gamma} \right) - \cdots (3)$$

Here,
$$\overrightarrow{B} = B_1 \widehat{\boldsymbol{x}} + B_0 \widehat{\boldsymbol{z}}$$
 ---- (4)

We choose,
$$B_0 = -\frac{\omega}{\gamma}$$

What magnetic fields do we see if we are sitting on the rotating frame?

B₁ is constant.B₀ vanishes.

What happens to magnetization in rotating frame?

Magnetization (blue) precesses around B_1 with frequency γB_1 .

Tip angle (α)

- Tip angle (α): angle through which magnetization (M) is rotated by applying RF field.
- Depends on both B_1 and the duration of pulse (τ_{B1}) .

$$\alpha = \omega \tau_{B1} = 2\pi\gamma B_1 \tau_{B1}$$

$$=> \tau_{B1} = \alpha / (2\pi\gamma B_1)$$

For a typical MRI scenario, $B_1 = 10\mu T$, => $\tau \sim 0.5$ ms

Typical pulses

- $\pi/2$ pulse leads to maximum transverse component of magnetization
- π pulse rotates magnetization from + z to -z. No transverse component.

What happens when RF-field is turned off?

- Magnetization returns to its equilibrium position along z-axis.
- We are interested in <u>how</u> it returns to equilibrium.
- This is when we measure the MRI signal (i.e. after RF field is turned off).

Relaxation

Relaxation of magnetization is measured after B₁ is turned off

Apply relaxation behaviour to magnetization components.

$$\frac{dM_{z}}{dt} = -\frac{(M_{z} - M_{0})}{T_{1}}$$

$$\frac{dM_{x}}{dt} = -\frac{M_{x}}{T_{2}}$$

$$\frac{dM_{y}}{dt} = -\frac{M_{y}}{T_{2}}$$

- There are two relaxation times and they are different.
- Why is there no *Mo* in the equations for the transverse components?