Monash University
Faculty of Information Technology

Lecture 16 Decidability

Slides by David Albrecht (2011), modified by Graham Farr (2013).

FIT2014 Theory of Computation

Overview

- Decision problems
- Decidable problems and languages
- Deciders
- A Decidable Logic Theory
- Closure

Decision Problems

Input: an integerQuestion: Is it even?

Input: a string.Question: Is it a palindrome?

Input: an expression in propositional logic
 Question: Is it ever True?

Input: a graph G, and two vertices s and t
 Question: is there a path from s to t in G?

Input: a Java programQuestion: is it syntactically correct?

Decision Problems

- Input: a Finite Automaton
 Question: Does it define the empty language.
- Input: two Regular ExpressionsQuestion: Do they define the same language?
- Input: a Finite Automaton
 Question: Does it define an infinite language?
- Input: a Context Free Grammar
 Question: Does it define the empty language?
- Input: a Context Free Grammar
 Question: Does it generate an infinite language?
- Input: a Context Free Grammar and a string w Question: Can w be generated by the grammar?

Decision Problems

A decision problem is a problem where, for each input, the answer is **yes** or **no**.

Decision problem → language

{ YES-inputs}

Language → decision problem

• Input: a string

(over some alphabet, usually representing some object)

Question: Is the string in the Language?

Decidable Problems

- A decision problem is **decidable** if there is an algorithm that solves it.
 - i.e., correctly provides a **yes** or **no** answer in a **finite** number of steps.
- A language is **decidable** if there is an algorithm that solves its corresponding decision problem
 - i.e., correctly tells **whether or not** something is in the language, in a **finite** number of steps.

Decidable: synonyms

decidable

- = recursive
- = solvable

= computable

... sometimes, though "computable" has been used with other meanings too.

Encoding of Input

- The input and output for a Turing Machine is always a string.
- For any object, O, <O> will denote encoding of the object as a string.
- If we have several objects, $O_1,...,O_n$, $<\mathbf{O_1,...,O_n}>$ will denote their encoding into a single string.

Deciders

A **decider** is a Turing Machine that halts for any input over a given alphabet, and has two possible outputs - either a YES> or a <NO>.

Decidable Languages

A decidable language consists of all those inputs for a decider that halt with a **YES**>.

Examples:

- Regular Languages
- Context Free Languages
- anbnan

Testing Emptiness of Regular Languages

• Problem:

Given a Finite Automaton, decide whether the language it defines is empty.

- Let E be the set of A such that:
 - A is a Finite Automaton and
 - The language defined by A is empty.
- E is a decidable language.

Proof

Let T be the Turing Machine that implements the following algorithm:

- On input <**A**> where **A** is a Finite Automaton.
 - 1. Mark the start state of A.
 - 2. Repeat until no new states get marked:
 - Mark any state that has a transition coming into it from any state that is already marked.
 - 3. If no final state is marked, output **YES**>; otherwise output **NO**>.

Testing Equivalence of Regular Expressions

- Problem:
 - Given two regular expressions decide whether they define the same language.
- For a Regular expression R, let L(R) be the language defined by R.
- Let E be the set of {A,B} such that:
 - A and B are Regular expressions and
 - $^{\circ}$ L(A) = L(B).
- E is a decidable language.

Proof

Consider the Turing Machine that implements the following algorithm:

- On input **<A,B>** where **A** and **B** are Regular expressions.
 - 1. Construct a FA, **C**, that defines the language

$$(L(A) \cap L(B)) \cup (L(A) \cap L(B))$$

- Run the previous Turing Machine, T, on C.
- If the output **T** on **C**, is **YES**> output **YES**>, otherwise output **NO**>.

Testing Emptiness of Context Free Language

Problem:

For a given Context Free Grammar, decide whether the language it defines is empty.

- Let E be the set of A such that:
 - A is a Context Free Grammar and
 - The language defined by A is empty.
- E is a decidable language.

Proof

Let T be the Turing Machine that implements the following algorithm:

- On input <A> where A is a Context Free Grammar.
 - 1. Mark all the terminal symbols in A.
 - 2. Repeat until no new symbols get marked:
 - Mark any non-terminal X that has a production which has all the right-hand symbols marked.
 - 3. If start symbol is not marked, output **YES**>; otherwise output **<NO**>.

Some Decidable Problems

- Input: a Finite Automaton
 Question: Does it define the empty language.
- Input: two Regular ExpressionsQuestion: Do they define the same language?
- Input: a Finite Automaton
 Question: Does it define an infinite language?
- Input: a Context Free Grammar
 Question: Does it define the empty language?
- Input: a Context Free Grammar
 Question: Does it generate an infinite language?
- Input: a Context Free Grammar and a string w Question: Can w be generated by the grammar?

Language classes

Simple Logic Sentences

$$S \rightarrow \forall X S \mid \exists X S$$

 $S \rightarrow \neg S \mid (S \lor S) \mid (S \land S)$
 $S \rightarrow (T = T)$
 $T \rightarrow T + X \mid X$
 $X \rightarrow variable$

Universe of Natural Numbers

Consider the following sentences for natural numbers:

- $\forall x \exists y (x + x = y)$
- $\exists y \ \forall x \ (x + x = y)$
- $\forall x \exists y (y + y = x)$

Simple Logic Theory

The set of sentences which are generated by the following grammar that are true for Natural numbers is decidable.

$$S \rightarrow \forall X S \mid \exists X S$$

 $S \rightarrow \neg S \mid (S \lor S) \mid (S \land S)$
 $S \rightarrow (T = T)$
 $T \rightarrow T + X \mid X$
 $X \rightarrow variable$

Closure properties

If L is decidable, then L is decidable.

If L_1 and L_2 are decidable, then so are

- $\bullet L_1 \cup L_2$
- $\bullet L_1 \cap L_2$
- $\bullet L_1L_2$
-

Exercise:

Formulate and prove more closure results.

Revision

- Decision problems, relationship with languages
- What is a Decidable Problem?
- What is a Decidable Language?
- The connection between decidable problems and decidable languages.
- Examples of Decidable Problems.
- Closure properties

Reading:

Sipser, Section 4.1, pp. 190-201.

Preparation:

Sipser, Section 4.2, pp. 201-213, especially pp. 207-209.