Contents

	6.6	Rectifiable Curves	3
7	\mathbf{Seq}	uence and series of function	3
	7.1	Uniformly Convergence	4
	7.2	Uniform Convergence and Continuity	4
	7.3	Uniform Convergence and Integration	5
	7.4	Uniform Convergence and Differentiation	5
	7.5	Equicontinuous of Families of Functions	6
	7.6	The Stone-Weiertrass Theorem	8
	7.7	Continuous Nowhere Differentiable Functions	9
8	Son	ne Special Functions	10
	8.1	Power Series	10
	8.2	Fourier Series	14
	8.3	The Gamma Function	19
	8.4	A Probabilistic Proof of the Weierstrass Theorem	22
	8.5	Stone's Generalization of the Weierstrass Theorem	24
9	Functions of Several Variables		
	9.1	Linear Transformations	28
	9.2	Differentiation	30
	9.3	The Contraction Principle	34
	9.4	The Inverse Function Theorem	35
	9.5	The Implicit Function Theorem	36
	9.6	The Rank Theorem	39
	9.7	Determinants	40
	9.8	Derivatives of Higher Order	41
	9.9	Differentiation of Integrals	43

Analysis Summary

lin150117

Theorem 6.5.1. Suppose $f, g: [a, w) \to \mathbb{R}$, $f, g \in \mathcal{R}$ on [a, b] for $\forall b \in [a, w)$. Suppose the improper integral $\int_a^w f(x) dx$ and $\int_a^w g(x) dx$ are defined. Then

- a) if $f \in \mathcal{R}([a, w])$, the values of $\int_a^w f(x) dx$ are the same as a proper or improper integral
- b) $\forall \lambda_1, \lambda_2 \in \mathbb{R}$, $\lambda_1 f + \lambda_2 g$ is integrable in the improper sense on [a, w) and $\int_a^w \lambda_1 f + \lambda_2 g \, dx = \lambda_1 \int_a^w f(x) \, dx + \lambda_2 \int_a^w g(x) \, dx$
- c) $\forall c \in [a, w),$ $\int_{a}^{w} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{w} f(x) dx$
- d) if $\varphi: [A, U) \to [a, w)$ is strictly increasing continuous function with $\varphi(A) = a$ and $\varphi(y) \to w$ as $y \to U, y \in [A, U)$, and $\varphi' \in (R)$ on [A, B] for $\forall B \in [A, U)$, Then $f(\varphi)\varphi'$ is integrable in the improper sense on [A, U) and

$$\int_{a}^{w} f(x) dx = \int_{A}^{U} f(\varphi(y)) \varphi'(y) dy$$

e) Newton-Leibniz formula is similiar to improper integral

Theorem 6.5.2 (Abel-Dirichlet test For the convergence of an integral). Let $f, g: [A, w) \to \mathbb{R}, f \in \mathcal{R}$ on [a, b], $g \in \mathcal{R}$ on [a, b], $\forall b \in [a, w)$. Suppose that g is monotonic, Then $\int_a^w fg \, dx$ converges if one of the following pairs of conditions holds:

$$\begin{cases} 1) & \int_{a}^{w} f(x) dx & converges \\ 2) & g & bounded on [a, w) \end{cases}$$

or

$$\begin{cases} 1') & F(b) = \int_a^b f(x) \, \mathrm{d}x & \text{is bounded on } [a, w) \\ 2') & \lim_{x \to \infty} g(x) = 0 \end{cases}$$

6.6 Rectifiable Curves

Definition 6.6.1. A continuous mapping $\gamma:[a,b]\to\mathbb{R}^k$ is called a <u>curve</u> in \mathbb{R}^k .

If γ is one to one.gamma is called an <u>arc</u>.

If $\gamma(a) = \gamma(b)$, γ is said to be a <u>closed curve</u>

For a partition $P = \{x_0 = a, x_1, x_2, \dots, x_n = b\}$, we define

$$\Lambda(P,\gamma) := \sum_{i=1}^{n} |\gamma(x_i) - \gamma(x_{i-1})|$$

We define the legth of γ as

$$\Lambda(\gamma) := \sup_{P} \Lambda(P,\gamma)$$

If $\Lambda(\gamma) < \infty$, we say that γ is <u>rectifiable</u>.

Theorem 6.6.1. If γ' is continuous on [a,b], then γ is rectifiable and

$$\Lambda(\gamma) = \int_a^b |\gamma'(t)| \, \mathrm{d}t$$

Remark 1. Let $\phi : [c,d] \to [a,b]$ be continuous bijection. Let $\gamma_2 := \gamma_1(\phi(t))$, $t \in [c,d]$. Then γ_2 is rectifiable iff γ_1 is. and γ_2 and γ_1 have the same lenth.

7 Sequence and series of function

We say that a sequence of functions $\{f_n\}_{n\in\mathbb{N}}$ converges to f pointwise on E if the sequence of numbers $f_n(x)$ converges for each $x\in E$

Then we can define a function f by

$$f(x) := \lim_{n \to \infty} f_n(x), \quad x \in E$$

f is called the limit function of f_n .

Similarly, if $\sum f_n(x)$ converges for each $x \in E$, and if we define

$$f(x) = \sum_{n=1}^{\infty} f_n(x), \quad x \in E$$

the function f is called the sum of the series of $\sum f_n$

7.1 Uniformly Convergence

Theorem 7.1.1. We define $M_n := \sup_{x \in E} |f_n(x) - f(x)|$. Then $f_n \to f$ uniformly on E iff $M_n \to 0$ as $n \to \infty$.

Theorem 7.1.2 (Cauchy criterion for uniform convergence). The sequence of functions $\{f_n\}$, defined on E, converges uniformly on E iff for $\forall \epsilon > 0, \exists N \in \mathbb{N}$ s.t.

$$|f_n(x) - f_m(x)| < \epsilon, \quad \forall x \in E, \forall n, m \geqslant N$$

Theorem 7.1.3 (Weiersress M-test). Suppose $\{f_n\}$ is a sequence of functions defined on E, and Suppose

$$|f_n(x)| \leq M_n, \, \forall x \in E, \forall n \in \mathbb{N}$$

The $\sum f_n$ converges uniformly on E if $\sum M_n$ converges;

7.2 Uniform Convergence and Continuity

Theorem 7.2.1. Suppose $f_n \to f$ uniformly on E in a metric space. Let x be a limit point of E and Suppose that $\lim_{t\to x} f_n(t) = A_n, \forall n \in \mathbb{N}$. Then $\{A_n\}$ converges, and

$$\lim_{t \to x} f(t) = \lim_{n \to \infty} A_n$$

i.e.

$$\lim_{t \to x} \lim_{n \to \infty} f_n(t) = \lim_{n \to \infty} \lim_{t \to x} f_n(t)$$

Theorem 7.2.2. If $\{f_n\}$ is a sequence of continuous functions on E, and if $f_n \to f$ uniformly on E, then f is continuous on E

Example 1. Let $f_n(x) = nx(1-x)^n$, $x \in [0,1]$, Then we can know the convergence is not uniformly with the previous theorem.

Theorem 7.2.3. Suppose K is compact, and

- (a) $\{f_n\}$ is a sequence of continuous functions on K.
- (b) $\{f_n\}$ converges pointwise to a continuous function f on K.

(c) $f_n(x) \ge f_{n+1}(x), \forall x \in K, n \in \mathbb{N}.$

Then $f_n \to f$ uniformly on K.

Example 2. The compactness is really needed here.

 $f_n(x) = \frac{1}{nx+1}, x \in (0,1)$, $f_n(x) \downarrow 0$. But the convergence is not uniform since $f(\frac{1}{n}) = \frac{1}{2}$

Let X be a metric space, and let $\mathscr{C}(X)$ denote the set of all complex-valued, continuous, bounded functions with domain X. We associate each $f \in \mathscr{C}(X)$ its supremum norm as

$$||f|| := \sup_{x \in X} |f(x)|$$

It is easy to check it's a well-defined norm. And we define d(f,g) = ||f-g||

Theorem 7.2.4. The metric d makes $\mathcal{C}(X)$ into a complete metric space.

7.3 Uniform Convergence and Integration

Theorem 7.3.1. Let α be increasing on [a,b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a,b] for $n \in \mathbb{N}$, and suppose $f_n \to f$ uniformly on [a,b]. Then $f \in \mathcal{R}(\alpha)$ on [a,b], and

$$\int_{a}^{b} f \, d\alpha = \int_{a}^{b} \lim_{n \to \infty} f_n \, d\alpha = \lim_{n \to \infty} \int_{a}^{b} f_n \, d\alpha$$

Corollary 1. If $f_n \in \mathcal{R}(\alpha)$ on [a,b] and $\sum_{j=1}^n f_j(x)$ converges uniformly on [a,b] to f, then

$$\int_{a}^{b} f \, d\alpha = \sum_{j=1}^{\infty} \int_{a}^{b} f_{j} \, d\alpha$$

7.4 Uniform Convergence and Differentiation

Theorem 7.4.1. Suppose $\{f_n\}$ is a sequence of differentiable functions on [a,b], and $\{f_n(x)\}$ convergence for some $x_0 \in [a,b]$. If $\{f'_n\}$ convergence uniformly on [a,b] then $\{f_n\}$ converges uniformly on [a,b], to a function f, and

$$f'(x) = \frac{d}{dx} \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \frac{d}{dx} f_n(x) = \lim_{n \to \infty} f'_n(x)$$

Proof. $\forall \epsilon > 0$, choose $N \in \mathbb{N}$ s.t.

$$\begin{cases} |f_n(x_0) - f_m(x_0)| < \epsilon, \, \forall n, m \geqslant N \\ |f'_n(t) - f'_m(t)| < \epsilon, \, \forall n, m \geqslant N \end{cases}$$

MVT implies that exists ξ between t and x, such that

$$|f_n(x) - f_m(x) - (f_n(t) - f_m(t))| = |f_n'(\xi) - f_m'(\xi)| |t - x| < \epsilon |x - t| < \epsilon (b - a)$$
 (*)

$$\Rightarrow f_n(x) - f_m(x) \le |f_n(x) - f_m(x) - (f_n(x_0) - f_m(x_0))| + |f_n(x_0) - f_m(x_0)| < \epsilon(b-a) + \epsilon, \quad \forall x \in [a, b], \forall n, m, \in N$$

 $\Rightarrow \{f_n\}$ converges uniformly on [a, b].

Define $f(x) := \lim_{n \to \infty} f_n(x), \forall x \in [a, b].$

For fixed $x \in [a, b]$, define $g_n(t) := \frac{f_n(t) - f_n(x)}{t - x}$, $g(t) = \frac{f(t) - f(x)}{t - x}$, $\forall t \in [a, b], t \neq x$

$$(*) \Rightarrow |g_n(t) - g_m(t)| < \epsilon, \forall t \in [a, b], t \neq x, \forall n, m \geqslant N$$

$$\Rightarrow \{g_n\} \text{ converges uniformly on } [a, b] - \{x\}$$

$$(2)$$

Note that $\lim_{t\to x} g_n(t) = f'_n(x)$.

1st theorem in 7.2 implies

$$f'(x) = \lim_{t \to x} g(t) = \lim_{t \to x} \lim_{n \to \infty} g_n(t) = \lim_{n \to \infty} \lim_{t \to x} g_n(t) = \lim_{n \to \infty} f'_n(x)$$

7.5 Equicontinuous of Families of Functions

We say that $\{f_n\}$ is <u>pointwise bounded</u> on E if the sequence $\{f_n(x)\}$ is bounded for each $x \in E$.

We say that $\{f_n\}$ is uniformly bounded on E if there exists $M \in \mathbb{R}$ s.t.

$$|f_n(x)| \leq M, \forall x \in E, \forall n \in \mathbb{N}$$

Example 3. Let $f_n(x) = \frac{x^2}{x^2 + (1 - nx)^2}$, $x \in [0, 1]$, $n \in \mathbb{N}$, then $\{f_n\}$ is uniformly bounded on [0, 1], but no subsequence of it can converge uniformly on [0, 1].

A family \mathscr{F} of complex-values functions f defined on E in a metric space X is said to be equicontinuous on E if $\forall \epsilon > 0, \exists \delta > 0$ s.t.

$$|f(x) - f(y)| < \epsilon, \forall x, y \in E \quad with \quad d(x, y) < \delta, \forall f \in \mathscr{F}$$

Remark 2. Each member of an equicontinuous family is uniformly continuous

Theorem 7.5.1. If $\{f_n\}$ is a pointwise bounded sequence of complex functions on a countable set E, then $\{F_n\}$ has a subsequence $\{f_{n_k}\}$ such that $\{f_{n_k}(x)\}$ converges for $\forall x \in E$.

Proof. Let $E := \{x_i : i \in \mathbb{N}\}$. Consider the array $\{f_{ij}\}$ such that $\lim_{j \to \infty} f_{nj}(x_n)$ exists for each $n \in \mathbb{N}$ and $\{f_{(i+1)j}\}$ is the subsequence of $\{f_{ij}\}$ then consider the diagonal of the array f_{11}, f_{22}, \cdots .

We have
$$\lim_{j\to\infty} f_{jj}(x_i)$$
 exists for each $x_i\in E$

Theorem 7.5.2. If K is a compact metric space, and if $f_n \in \mathcal{C}(K)$ for $\forall n \in \mathbb{N}$, and $\{f_n\}$ converges uniformly on K, then $\{f_n\}$ is equicontinuous on K

Theorem 7.5.3 (Arzela-Ascoli Theorem). If K is compact, $f_n \in \mathcal{C}(K)$ for $\forall n \in \mathbb{N}$, and $\{f_n\}$ is pointwise bounded and equicontinuous on K. Then

- (a) $\{f_n\}$ is uniformly bounded on K
- (b) $\{f_n\}$ contains a uniformly convergent subsequence

Proof. $\forall \epsilon > 0, \{f_n\}$ equicontinuous $\Rightarrow \exists \delta > 0 \text{ s.t.}$

$$|f_n(x) - f_n(y)| < \epsilon, \quad \forall x \in K, \forall y \in N_\delta(x), \forall n \in \mathbb{N}$$
 (*)

$$K \subset \bigcup_{x \in K} N_{\delta}(x) \xrightarrow{\underline{Kcompact}} \exists x_1, \cdots, x_n, K \subset \bigcup_{j=1}^m N_{\delta}(x_j)$$

$$\Rightarrow \forall t \in K, \exists x_j \text{ with } j \in \{1, 2, \cdots, m\} \text{ s.t. } t \in N_{\delta}(x_j),$$
and thus $|f_n(t) - f_n(x_j)| < \epsilon, \forall n \in \mathbb{N}.$

$$\Rightarrow \sup_{t \in K, n \in \mathbb{N}} |f_n(t)| \leq \sup_{1 \leq j \leq m} \sup_{n \in \mathbb{N}} |f_n(x_j)| + \epsilon < \infty \text{ since } \{f_n\} \text{ is pointwise bounded}$$

$$\Rightarrow \{f_n\} \text{ is uniformly bounded on } K$$

Let E be a countable dense subset of K (see Exercise 25 of Chapter 2)

The first theorem in this section $\Rightarrow \{f_n\}$ has a subsequence $\{f_{n_k}\}$ s.t. $\{f_{n_k}(x)\}$ converges for $\forall x \in E$.

E is dense in $K\Rightarrow K\subset\bigcup_{x\in E}N_{\delta}(x)\xrightarrow{Kcompact}\exists x_1,\cdots,x_m\in E \text{ s.t. }K\subset\bigcup_{j=1}^mN_{\delta}(x_j).$ We define $g_k:=f_{n_k}.$ Then $\{g_k(x)\}$ converges for $\forall x\in E\Rightarrow\exists N\in\mathbb{N} \text{ s.t.}$

$$|g_p(x_j) - g_q(x_j)| < \epsilon \quad \forall p \geqslant N, q \geqslant N, j \in \{1, 2 \cdots, m\}$$

For $\forall t \in K, \exists j_0 \in \{1, 2, \cdots, m\} \text{ s.t. } t \in N_{\delta}(x_{j_0}) \xrightarrow{(*)}$

$$|g_p(t) - g_p(x_{i_0})| < \epsilon \quad \text{for } \forall p \in \mathbb{N}$$

 $\Rightarrow |g_p(t) - g_q(t)| \leqslant |g_p(t) - g_p(x_{j_0})| + |g_p(x_{j_0}) - g_q(x_{j_0})| + |g_q(x_{j_0}) - g_q(t)| < 3\epsilon, \forall p \geqslant N, q \geqslant N, \forall t \in K$ $\Rightarrow \{g_k\} = \{f_{n_k}\} \text{ converges uniformly on } K.$

7.6 The Stone-Weiertrass Theorem

Theorem 7.6.1. If f is a continuous complex function on [a,b], there exists a sequence of polynomials $\{P_n\}$ such that

$$\lim_{n\to\infty} P_n(x) = f(x) \text{ uniformly on } [a,b]$$

Proof. WLOG, let [a, b] = [0, 1], f(0) = f(1) = 0. And f(x) = 0, $\forall x \in \mathbb{R} \setminus [0, 1] \Rightarrow f$ is uniformly continuous on \mathbb{R} .

$$Q_n(x) := c_n(1-x^2)^n, x \in [-1,1]$$

where c_n satisfies $\int_{-1}^{1} Q_n(x) dx = 1, \forall n \in \mathbb{N}$.

$$\int_{-1}^{1} (1 - x^2)^n \, \mathrm{d}x = 2 \int_{0}^{1} (1 - x^2)^n \, \mathrm{d}x \geqslant 2 \int_{0}^{\frac{1}{\sqrt{n}}} (1 - x^2)^n \, \mathrm{d}x \geqslant 2 \int_{0}^{\frac{1}{\sqrt{n}}} (1 - nx^2) \, \mathrm{d}x = \frac{4}{3\sqrt{n}} > \frac{1}{\sqrt{n}}, n \in \mathbb{N}$$

$$\Rightarrow c_n < \sqrt{n}, n \in \mathbb{N}.$$

$$\Rightarrow$$
 For $\forall \delta \in (0,1), Q_n(x) \leqslant \sqrt{n}(1-\delta^2)^n, \forall x \text{ with } |x| \in [\delta,1].$

$$\Rightarrow Q_n(x) \to 0$$
 uniformly in $[-1, -\delta] \cup [\delta, 1]$

Let
$$P_n(x) := \int_{-1}^1 f(x+t)Q_n(t) dt, x \in [0,1]$$

Then $P_n(x) = \int_{-x}^{1-x} f(x+t)Q_n(t) dt = \int_0^1 f(t)Q(t-x) dt$ is a polynomial in x, which is real if f is real.

 $\forall \epsilon > 0, \, \exists \delta \in (0,1) \text{ s.t. } |f(y) - f(x)| < \frac{\epsilon}{2} \text{ whenever } |y - x| < \delta.$

Then

$$|P_n(x) - f(x)| = |\int_{-1}^1 f(x+t)Q_n(t) dt - \int_{-1}^1 f(x)Q_n(x) dt|$$

$$\leq \int_{-1}^1 |f(x+t) - f(x)|Q_n(t) dt$$

$$\leq 2M \int_{-1}^{-\delta} Q_n(t) dt + \frac{\epsilon}{2} \int_{-\delta}^{\delta} Q_n(t) dt + 2M \int_{\delta}^1 Q_n(t) dt \qquad (M := \sup|f(x)|)$$

$$\leq 4M\sqrt{n}(1-\delta^2)^n + \frac{\epsilon}{2}$$

$$< \epsilon \text{ for all large } n$$

 $\Rightarrow P_n \to f$ uniformly on [0,1].

7.7 Continuous Nowhere Differentiable Functions

Theorem 7.7.1. There exists a real continuous function on \mathbb{R} , which is nowhere differentiable.

Proof. Let $\varphi(x) := |x|, x \in [-1, 1].$

Extend φ to all $x \in \mathbb{R}$ by $\varphi(x+2) = \varphi(x), x \in \mathbb{R}$.

Then $|\varphi(x) - \varphi(y)| \leq |x - y|, \forall x, y \in \mathbb{R}$ (*).

Define
$$f(x) := \sum_{n=0}^{\infty} (\frac{3}{4})^n \varphi(4^n x), x \in \mathbb{R}.$$

 $||\phi(x)||\leqslant 1 \xrightarrow{M-text}$ the last series converges uniformly on $\mathbb{R} \xrightarrow{Thm7.2.2} f$ is con-

tinuous on \mathbb{R}

Fix $x \in \mathbb{R}$, choose

$$\delta_m := \begin{cases} \frac{1}{2} 4^{-m}, & [4^m x, 4^m (x + \frac{1}{2} 4^{-m})] \cap \mathbb{Z} = \phi \\ -\frac{1}{2} 4^{-m}, & (4^m (x - \frac{1}{2} 4^{-m}), 4^m x) \cap \mathbb{Z} = \phi \end{cases}$$

Now Define

$$\gamma_n := \frac{\phi(4^n(x+\delta_m)) - \phi(4^n x)}{\delta_m}, n \in \mathbb{N}$$

Then $\gamma_n = 0$ if n > m (since $4^n \delta_m \in 2\mathbb{Z}$), and $|\gamma_n| \leq 4^n$ if $0 \leq n \leq m$ by (*), and $|\gamma_m| = 4^m$.

$$\Rightarrow \left| \frac{f(x + \delta_m) - f(x)}{\delta_m} \right| = \left| \sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n \gamma_n \right|$$

$$= \left| \sum_{n=0}^{m} \left(\frac{3}{4}\right)^n \gamma_n \right|$$

$$\geqslant \left(\frac{3}{4}\right)^m \left| \gamma_m \right| - \sum_{n=0}^{m-1} \left(\frac{3}{4}\right)^n \left| \gamma_n \right|$$

$$\geqslant 3^m - \sum_{n=0}^{m-1} 3^n$$

$$= \frac{3^m + 1}{2} \to \infty \quad as \ m \to \infty.$$

Note that $\delta_m \to 0$ as $m \to 0$, \Rightarrow f is not differentiable at x.

8 Some Special Functions

8.1 Power Series

Functions which are represented by power series, i.e. $f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n$, are called analytic functions.

We shall restrict to real values of x.

WLOG, we shall often take a = 0.

Theorem 8.1.1. Suppose the series $\sum_{n=0}^{\infty} c_n x^n (**)$. converges for |x| < R, and define $f(x) := \sum_{n=0}^{\infty} c_n x^n$, |x| < R. Then (**) converges uniformly on $[-R + \epsilon, R - \epsilon]$ for $\forall \epsilon > 0$. f is continuous and differentiable on (-R, R) and

$$f'(x) = \sum_{n=1}^{\infty} nc_n x^{n-1}, |x| < R$$
 (***)

Proof. Fix $\epsilon \in (0, R)$, we have $|c_n x^n| \leq |c_n (R - \epsilon)^n| \quad \forall |x| < R - \epsilon$. By the root test, each power series converges absolutely in the interior of its interval of convergence, i.e. $|\sum |c_n (R - \epsilon)^n|$ converges.

M-test \Rightarrow (**) converges uniformly on $[-R + \epsilon, R - \epsilon]$.

 $\lim_{n\to\infty}\sqrt[n]{n}=1\Rightarrow \limsup_{n\to\infty}(n|c_n|)^{\frac{1}{n}}=\limsup_{n\to\infty}(|c_n|)^{\frac{1}{n}}\Rightarrow \text{ the series (**) and (***)}$ have the same interval of convergence.

 \Rightarrow (***) converges uniformly on $[-R + \epsilon, R - \epsilon]$.

theorem 7.4.1 tells us (***) holds if $|x| < R - \epsilon$,

 \Rightarrow (* * *) holds for $\forall |x| < R$ since ϵ is arbitrary.

f is continuous because it is differentiable.

Corollary 2. Under the hypotheres of the previous theorem, f has derivatives of all orders in (-R, R):

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)c_n x^{n-k}$$

In particular, $f^{(k)}(0) = k!c_k$.

Example 4. Let $f(x) = e^{-\frac{1}{x^2}}, x \neq 0$, f(0) = 0. Then $f^{(k)}(0) = 0$ fir $\forall k \in \mathbb{N}$. So f cannot be expanded in a power series about x = 0.

Theorem 8.1.2 (Abel's theorem). Let $f(x) := \sum_{n=0}^{\infty} c_n x^n, x \in (-1,1)$, and suppose $\sum c_n$ converges. Then $\lim_{x\to 1^-} f(x) = \sum_{n=0}^{\infty} c_n$.

Proof. Let $A_n := \sum_{k=0}^n c_k, n \in \mathbb{N}$, and $A_{-1} = 0$. Then

$$\sum_{n=0}^{m} c_n x^n = \sum_{n=0}^{m} (A_n - A_{n-1}) x^n = (1-x) \sum_{n=0}^{m} A_n x^n + A_m x^{m+1}$$

$$\xrightarrow{m\to\infty} f(x) = (1-x)\sum_{n=0}^{\infty} A_n x^n, |x| < 1.$$

Suppose $A := \lim_{n \to \infty} A_n \Rightarrow \text{Fix } \epsilon > 0, \exists N \in \mathbb{N}, \text{ s.t. } |A_n - A| < \frac{\epsilon}{2}, \forall n \geqslant N.$

$$\Rightarrow |f(x) - A| = |(1 - x) \sum_{n=0}^{\infty} A_n x^n - (1 - x) \sum_{n=0}^{\infty} A x^n|$$

$$= |(1 - x) \sum_{n=0}^{\infty} (A_n - A) x^n|$$

$$\leq |1 - x| \sum_{n=0}^{N} |A_n - A| |x|^n + |1 - x| \frac{\epsilon}{2} \sum_{n=N}^{\infty} |x|^n$$

$$\leq |1 - x| \sum_{n=0}^{N} |A_n - A| |x|^n + \frac{\epsilon}{2} \frac{|1 - x|}{1 - |x|}, |x| < 1$$

$$< \epsilon \quad \text{for some } \delta > 0 \text{ and } \forall x \in (1 - \delta, 1)$$

$$\Rightarrow \lim_{x \to 1^{-}} f(x) = \sum_{n=0}^{\infty} c_n$$

As an application, we prove:

Theorem 8.1.3. If the series $\sum a_n, \sum b_n, \sum c_n$ converge to A, B, C, and if $c_n = a_0b_n + a_1b_{n-1} + \cdots + a_nb_0$, then C = AB.

Proof. Let $f(x) := \sum_{n=0}^{\infty} a_n x^n$, $g(x) := \sum_{n=0}^{\infty} b_n x^n$, $h(x) := \sum_{n=0}^{\infty} c_n x^n$, $x \in [0,1]$. These series converge absolutely if $x \in [0,1)$ \Rightarrow

$$f(x)\cdots g(x) = g(x), \quad x \in [0,1)$$

The previous theorem
$$\Rightarrow \lim_{x\to 1^-} f(x) = A, \lim_{x\to 1^-} g(x) = B, \lim_{x\to 1^-} h(x) = C$$

 $\Rightarrow AB = C$

Theorem 8.1.4 (Fubini's theorem for infinite series). Given a double sequence $\{a_{ij}\}, i, j \in \mathbb{N}$. Suppose that

$$\sum_{j=1}^{\infty} |a_{ij}| = b_i, \forall i \in \mathbb{N} \ and \ \sum_{i=1}^{\infty} b_i \ converges$$

Then

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{ij}$$

Proof. Let $E := \{x_0, x_1, x_2, \dots\}$ and suppose $\lim_{n \to \infty} x_n = x_0$. Define

$$f_i(x_0) := \sum_{j=1}^{\infty} a_{ij}, \ \forall i \in \mathbb{N} \qquad f_i(x_n) := \sum_{j=1}^{n} a_{ij}, \ \forall i, j \in \mathbb{N}, \qquad g(x) := \sum_{i=1}^{\infty} f_i(x), \ \forall x \in E$$

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} < \infty \Rightarrow f_i \text{ is continuous at } x_0, \ \forall i \in \mathbb{N}.$$

$$|f_i(x)| \leq b_i, \ \forall x \in E \xrightarrow{M-test} \sum_{i=1}^{\infty} f_i(x) \text{ converges uniformly on } E$$

use 1st theorem in 7.2 we know that g is continuous at x_0 .

$$\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{ij} = \sum_{i=1}^{\infty} f_i(x_0) = g(x_0)$$

$$= \lim_{n \to \infty} g(x_n)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{\infty} f_i(x_n)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{\infty} \sum_{j=1}^{n} a_{ij}$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{\infty} a_{ij}$$

Theorem 8.1.5. Suppose $f(x) = \sum_{n=0}^{\infty} c_n x^n$ and the series converges in |x| < R. If $a \in (-R, R)$, then f can be expanded in a power series about x = a which converges in |x - a| < R - |a|, and $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$, |x - a| < R - |a| Proof.

$$f(x) = \sum_{n=0}^{\infty} c_n [(x-a) + a]^n$$

$$= \sum_{n=0}^{\infty} c_n \sum_{k=0}^n \binom{n}{k} a^{n-k} (x-a)^k$$

$$= \sum_{k=0}^{\infty} \sum_{n=k}^{\infty} \binom{n}{k} c_n a^{n-k} (x-a)^k \quad \text{(previous theorem)}$$

$$= \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k \quad \text{(Corollary in this section)}$$

Theorem 8.1.6. Suppose the series $\sum a_n x^n$ and $\sum b_n x^n$ converge in (-R, R). Let E be the set of all x in (-R, R) s.t. $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n$. If E has a limit point in (-R, R), then $a_n = b_n$ for $\forall n \in N \cup \{0\}$. Hence E = (-R, R).

Proof. Claim. Let A be a subset of a metric space X and X is connected. If A is both open and closed, then $A = \phi$ or A = X. (Cause $X = A \cup A^c$) Let $f(x) := \sum_{n=0}^{\infty} (a_n - b_n)x^n$, $x \in (-R, R)$. Then $E := \{x \in (-R, R) : f(x) = 0\}$

1st theorem in §8.1 implies f is continuous in $(-R,R) \Rightarrow E$ is closed (relative to (-R,R))

We prove in Homework 1 that E' is closed. We will prove E' is open. Then with the claim we know E = E' = (-R, R).

Let $x_0 \in E'$, the previous theorem \Rightarrow

$$f(x) = \sum_{n=0}^{\infty} d_n (x - x_0)^n, \quad |x - x_0| < R - |x_0|$$

We Claim that $d_n = 0$ for $\forall n \in \mathbb{N} \cup \{0\}$. Otherwise, let k be smallest nonnegative integer s.t. $d_k \neq 0$. Then $f(x) = (x-x_0)^k g(x)$, where $g(x) = \sum_{m=0}^{\infty} d_{m+k} (x-x_0)^m$ 1st theorem in 8.1 implies g is continuous at x_0 , and $g(x_0) = d_k \neq 0$.

$$\Rightarrow \exists \delta > 0 \text{ s.t. } g(x) \neq 0, \forall x \in (x_0 - \delta, x_0 + \delta)$$

$$\Rightarrow f(x) \neq 0 \text{ for } \forall x \in (x_0 - \delta, x_0 + \delta) \setminus \{x_0\}$$

 $\Rightarrow x_0 \notin E'$, which is not correct.

That way, we can know f(x) = 0, whenever $|x - x_0| < R - |x_0|$. So there exists a NBHD of x_0 is contained by E'. Then E' is open.

Remark 3. The proof use the continuity of power series functions.

8.2 Fourier Series

A trigonometric polynomial is a finite sum of the form

$$f(x) = a_0 + \sum_{n=1}^{N} (a_n \cos nx + b_n \sin nx), \quad \forall x \in \mathbb{R}$$

where $a_0, a_1, \dots, a_N, b_1, \dots, b_N \in \mathbb{C}$. Equivalently,

$$f(x) = \sum_{n=-N}^{N} c_n e^{inx}, \quad x \in \mathbb{R}$$
 (*)

with $a_0 = c_0, a_n = c_n + c_{-n}, b_n = c_n - c_{-n}$.

It is easy to see

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{inx} dx = \begin{cases} 1, & n = 0 \\ 0, & n \in \mathbb{Z} \setminus \{0\} \end{cases}$$
$$\Rightarrow c_m = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-imx} dx, \qquad m = -N, -N+1, \dots, N \qquad (**)$$

Remark 4. f is real $\Leftrightarrow f(x) = \overline{f(x)} \Leftrightarrow \sum_{n=-N}^{N} c_n e^{inx} = \sum_{n=-N}^{N} \overline{c_n} e^{-inx} \Leftrightarrow \sum_{n=-N}^{N} (c_n - \overline{c_{-n}}) e^{inx} = 0 \Leftrightarrow c_n = \overline{c_{-n}} \text{ for } \forall n = 0, 1, \dots, N.$

A trigonometric series is a series of the form

$$\sum_{n=-\infty}^{\infty} c_n e^{inx}, \quad x \in \mathbb{R}$$
 (***)

whose Nth partial sum is defined to be (*).

If $f \in \mathcal{R}$ on $[-\pi, \pi]$, the numbers $c_m, m \in \mathbb{Z}$ defined by (**) are called <u>Fourier coefficients</u> of f, and the series (***) formed with these coefficients is called the <u>Fourier series</u> of f.

Let $\{\phi_n\}_{n\in\mathbb{N}}$ be a sequence of complex functions on [a,b] s.t.

$$\int_{a}^{b} \phi_{n}(x) \overline{\phi_{m}(x)} \, \mathrm{d}x = 0, \quad \forall n \neq m$$

Then $\{\phi_n\}$ is said to be an <u>orthogonal system of functions</u> on [a,b]. If, in addition, $\int_a^b |\phi_n(x)|^2 dx = 1$, then it is called <u>orthonormal</u>

Example 5. $\{\frac{1}{\sqrt{2\pi}}e^{inx}\}_{n\in\mathbb{Z}}$ form an orthonormal system on $[-\pi,\pi]$.

If $\{\phi_n\}$ is orthonormal on [a,b] and if

$$c_n = \int_a^b f(t) \overline{\phi_n(t)} \, \mathrm{d}t, \quad \forall n \in \mathbb{N}$$

We called c_n the nth Fourier coefficients of f relative to $\{\phi_n\}$, we write

$$f(x) \sim \sum_{n=1}^{\infty} c_n \phi_n(x)$$

and call this series the Fourier series of f relative to $\{\phi_n\}$.

Theorem 8.2.1. Let $\{\phi_n\}$ be orthonormal on [a,b]. Let $S_n(x) = \sum_{m=1}^n c_m \phi_m(x)$ be the nth partial sum of the Fourier series of f with $f \in \mathcal{R}$ on [a,b], and Suppose

$$t_n(x) = \sum_{m=1}^n d_m \phi_m(x)$$

Then $\int_a^b |f - S_n|^2 dx \leqslant \int_a^b |f - t_n|^2 dx$. and equality holds iff $d_m = c_m, m \in \mathbb{N}, \forall m \in \mathbb{N}, m \leqslant N$

Remark 5. The theorem says, among all functions t_n , s_n gives the best possible mean square approximation to f.

Proof.

$$\int_{a}^{b} |f - t_{n}|^{2} dx = \int_{a}^{b} |f|^{2} dx + \int_{a}^{b} |t_{n}|^{2} dx - \int_{a}^{b} f \overline{t_{n}} dx - \int_{a}^{b} \overline{f} t_{n} dx
= \int_{a}^{b} |f|^{2} dx + \sum_{m=1}^{n} \sum_{j=1}^{n} \int_{a}^{b} d_{m} \phi_{m} \overline{d_{j} \phi_{j}} dx - \sum_{m=1}^{n} \overline{d_{m}} \int_{a}^{b} f \overline{\phi_{m}} dx - \sum_{m=1}^{n} d_{m} \int_{a}^{b} \overline{f} \phi_{m} dx
= \int_{a}^{b} |f|^{2} dx + \sum_{m=1}^{n} |d_{m}|^{2} - \sum_{m=1}^{n} (\overline{d_{m}} c_{m} + d_{m} \overline{c_{m}})
= \int_{a}^{b} |f|^{2} dx - \sum_{m=1}^{n} |c_{m}|^{2} + \sum_{m=1}^{n} |d_{m} - c_{m}|^{2}. \qquad (\Box)$$

which is minimized if and only if $d_m = c_m, m = 1, \dots, n$.

Let $d_m = c_m$ in (\square) , we get

$$\int_{a}^{b} |S_{n}|^{2} dx = \sum_{n=1}^{b} |c_{m}|^{2} = \int_{a}^{b} |f|^{2} dx - \int_{a}^{b} |f - S_{n}|^{2} dx \le \int_{a}^{b} |f|^{2} dx \quad (\Box\Box)$$

Setting $n \to \infty$ in the last inequality, we obtain

Theorem 8.2.2 (Bessel's inequality). If $\{\phi_n\}$ is orthonormal on [a,b] and $f \in \mathcal{R}$ on [a,b], and if

$$f(x) \sim \sum_{n=1}^{\infty} c_n \phi_n(x)$$

Then

$$\sum_{n=1}^{\infty} |c_n|^2 \leqslant \int_a^b |f(x)|^2 \, \mathrm{d}x$$

In particular, $\lim_{n\to\infty} c_n = 0$.

For the rest of the section, we only consider the trigonometric system. For $f \in \mathcal{R}$ on $[-\pi, \pi]$ and has period 2π . Then the orthonormal system is $\{\frac{1}{\sqrt{2\pi}}e^{inx}\}_{n\in\mathbb{Z}}$.

$$(\Box\Box) \Rightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} |S_n|^2 dx = \sum_{m=-n}^{n} |c_n|^2 \leqslant \frac{1}{2\pi} \int_{-\pi}^{\pi} |f|^2 dx$$
 (\triangle)

We define the Dirichlet Kernel

$$D_N(x) := \sum_{n=-N}^{N} e^{inx} = \frac{e^{-iNx} - e^{i(N+1)x}}{1 - e^i x} = \frac{\sin\left(N + \frac{1}{2}\right)x}{\sin\frac{x}{2}}$$

Then

$$S_N(x) = \sum_{n=-N}^{N} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int} dt e^{inx}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)D_N(x-t) dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t)D_N(t) dt \qquad (\Box\Box\Box)$$

Theorem 8.2.3. If, for some x, $\exists \delta > 0$ and $M < \infty$ s.t.

$$|f(x+t) - f(x)| \le M|t|, \, \forall t \in (-\delta, \delta)$$

then $\lim_{N\to\infty} S_N(x) = f(x)$.

Proof. Define

$$g(t) := \begin{cases} \frac{f(x-t) - f(t)}{\sin \frac{t}{2}}, & 0 < |t| \leqslant \pi \\ 0, & t = 0 \end{cases}$$

By the definition of D_N , $\frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(t) dt = 1$

$$(\Box\Box\Box) \Rightarrow 2\pi (S_N(x) - f(x)) = \int_{-\pi}^{\pi} [f(x - t) - f(x)] D_N(t) dt$$

$$= \int_{-\pi}^{\pi} g(t) \sin[(N + \frac{1}{2})t] dt$$

$$= \int_{-\pi}^{\pi} [g(t) \cos \frac{t}{2}] \sin Nt dt + \int_{-\pi}^{\pi} [g(t) \sin \frac{t}{2}] \cos Nt dt$$

$$|f(x + t) - f(x)| \leqslant M|t| \Rightarrow \limsup_{t \to 0} |g(t)| \leqslant \limsup_{t \to 0} \frac{M|t|}{|\sin \frac{t}{2}|} = 2M$$

$$|f(x+t) - f(x)| \leqslant M|t| \Rightarrow \limsup_{t \to 0} |g(t)| \leqslant \limsup_{t \to 0} \frac{M|t|}{|\sin \frac{t}{2}|} = 2M$$
$$\Rightarrow g(t)\cos(\frac{t}{2}) \quad and \quad g(t)\sin(\frac{t}{2}) \in \mathscr{R} \quad on \quad [-\pi, \pi]$$

Bessel'inequality

$$\Rightarrow \lim_{N \to \infty} \int_{-\pi}^{\pi} h(t) \sin(Nt) dt = \lim_{N \to \infty} \int_{-\pi}^{\pi} h(t) \cos(Nt) dt = 0, \forall h \in \mathscr{R} \text{ on } [-\pi, \pi]$$

$$\Rightarrow \lim_{N \to \infty} S_N(x) = f(x)$$

Corollary 3. (1) If f(x) = 0 for $\forall x \in (a,b)$, then $\lim_{N \to \infty} S_N(x) = 0$ for $\forall x \in (a,b)$.

(2) If
$$f(t) = g(t)$$
 for $\forall t$ in some NBHD of x , then $S_N(f;x) - S_N(g;x) = S_N(f-g;x) \to 0$ as $N \to \infty$

Theorem 8.2.4. If f is continuous (with period 2π) and if $\epsilon > 0$, then there is a trigonometric polynomial P s.t. $|P(x) - f(x)| < \epsilon$ for $\forall x \in \mathbb{R}$.

The proof is given by homework.

Theorem 8.2.5 (Parseval's theorem). Suppose f and g are Riemann-integrable on $[-\pi, \pi]$ with period 2π , and

$$f(x) \sim \sum_{n=-\infty}^{\infty} c_n e^{inx}, \qquad g(x) \sim \sum_{n=-\infty}^{\infty} d_n e^{inx}$$

Then

a)
$$\lim_{N \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x) - S_N(f; x)| dx = 0$$
,

b)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx = \sum_{n=-\infty}^{\infty} c_n \overline{d_n},$$

c)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx = \sum_{n=-\infty}^{\infty} |c_n|^2$$

Proof. Fix $\epsilon > 0$, EX5 of HW7 $\Rightarrow \exists$ a continuous 2π -periodic function h s.t.

$$||f - h||_2 := \left[\int_{-\pi}^{\pi} |f(x) - h(x)|^2 dx \right] < \epsilon$$

The previous theorem $\Rightarrow \exists$ trigonometric polynomial P s.t. |h(x) - P(x)| <

$$\frac{\epsilon}{\sqrt{2\pi}}, \forall x \in \mathbb{R}$$

$$\Rightarrow ||h - P||_2 < \epsilon$$

Suppose P has degree N_0 , the 1st theorem in this section $\Rightarrow ||h - S_N(h)||_2 \le ||h - P||_2 < \epsilon, \forall N \geqslant N_0$.

$$\begin{split} (\triangle) &\Rightarrow ||S_N(h) - S_N(f)||_2 = ||S_N(h - f)||_2 \leqslant ||h - f||_2 < \epsilon \\ &\Rightarrow ||f - S_N(f)||_2 \leqslant ||f - h||_2 + ||h - S_N(h)||_2 + ||S_N(h) - S_N(f)||_2 < 3\epsilon, \, \forall N \geqslant N_0 \\ &\Rightarrow \lim_{N \to \infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} |f - S_N(f)|^2 \, \mathrm{d}x = 0 \qquad \qquad (\star) \\ &\frac{1}{2\pi} \int_{-\pi}^{\pi} S_N(f) \overline{g} \, \mathrm{d}x = \sum_{n = -N}^{N} c_n \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{inx} \overline{g(x)} \, \mathrm{d}x = \sum_{n = -N}^{N} c_n \overline{d_n} \\ &\Rightarrow \left| \int_{-\pi}^{\pi} f \overline{g} \, \mathrm{d}x - \int_{-\pi}^{\pi} S_N(f) \overline{g} \, \mathrm{d}x \right| \leqslant \int_{-\pi}^{\pi} |f - S_N(f)| \cdot |g| \, \mathrm{d}x \\ &\stackrel{C-S}{\leqslant} \left[\int_{-\pi}^{\pi} |f - S_N(f)|^2 \, \mathrm{d}x \cdot \int_{-\pi}^{\pi} |g|^2 \, \mathrm{d}x \right]^{\frac{1}{2}} \\ &\to 0 \text{ as } N \to \infty \text{ by } (\star) \\ &\Rightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} \, \mathrm{d}x = \frac{1}{2\pi} \lim_{N \to \infty} \int_{-\pi}^{\pi} S_N(f) \overline{g} \, \mathrm{d}x = \sum_{n = -\infty}^{\infty} c_n \overline{d_n}. \end{split}$$
 Setting $f = g$, we get $\frac{1}{2\pi} \int_{-\pi}^{\pi} |f|^2 \, \mathrm{d}x = \sum_{n = -\infty}^{\infty} |c_n|^2$

8.3 The Gamma Function

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} \, \mathrm{d}t, \ x \in (0, \infty)$$

Note that the integral converges for $x \in (0, \infty)$.

Theorem 8.3.1. (a) $\Gamma(x+1) = x\Gamma(x), x \in (0, \infty)$

- (b) $\Gamma(n+1) = n!, n \in \mathbb{N}$
- (c) $\ln \Gamma$ is convex on $(0, \infty)$.

Proof. We only prove (c)

Let $p \in (1, \infty)$ and $\frac{1}{p} + \frac{1}{q} = 1$. Then

$$\begin{split} \Gamma(\frac{x}{p} + \frac{y}{q}) &= \int_0^\infty t^{\frac{x}{p} + \frac{y}{q} - 1} e^{-t} \, \mathrm{d}t \\ &= \int_0^\infty (t^{\frac{x}{p} - \frac{1}{p}} e^{-\frac{t}{p}}) (t^{\frac{y}{q} - \frac{1}{q}} e^{-\frac{t}{q}}) \, \mathrm{d}x \\ &\leqslant [\Gamma(x)]^{\frac{1}{p}} [\Gamma(y)]^{\frac{1}{q}} \ \ \text{(Holder's inequality)} \\ &\Rightarrow \ln \Gamma \ \text{is convex on} \ \ (0, \infty). \end{split}$$

Theorem 8.3.2. If $f:(0,\infty)\to(0,\infty)$ satisfies:

- (a) $f(x+1) = x f(x), \forall x \in (0,\infty)$
- (b) f(1)=1
- (c) $\ln f$ is convex on $(0, \infty)$

then $f(x) = \Gamma(x)$

Proof. Γ satisfies (a), (b) and (c). So it is enough to prove that f(x) is unique determined by (a), (b) and (c) for $\forall x > 0$.

Actually, it's enough to prove this for $\forall x \in (0,1)$ as we use (a) and (b). Let $\varphi(x) = \ln f(x), \ x > 0$

$$\varphi \text{ convex } \Rightarrow \ln n = \frac{\varphi(n+1) - \varphi(n)}{(n+1) - n} \leqslant \frac{\varphi(n+1+x) - \varphi(n+1)}{(n+1+x) - (n+1)} \leqslant \frac{\varphi(n+2) - \varphi(n+1)}{(n+2) - (n+1)} = \ln (n+1)$$

$$\Rightarrow \varphi(x) = \lim_{n \to \infty} \ln \left[\frac{n! n^x}{x(x+1) \cdots (x+n)} \right]$$

$$\Rightarrow \varphi(x) \text{ is unique determined on } (0,1)$$

Corollary 4.
$$\Gamma(x) = \lim_{n \to \infty} \ln\left[\frac{n!n^x}{x(x+1)\cdots(x+n)}\right], x > 0$$

Theorem 8.3.3.
$$B(x,y) := \int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}, \ \forall x,y > 0$$

Proof. Fix
$$y > 0$$
, $b(1, y) = \int_0^1 (1 - t)^{y-1} dt = \frac{1}{y}$, and

$$B(\frac{x_1}{p} + \frac{x_2}{q}, y) \stackrel{Holder}{\leqslant} [B(x_1, y)]^{\frac{1}{p}} [B(x_2, y)]^{\frac{1}{q}}, \quad \forall x_1, x_2 > 0, \frac{1}{p} + \frac{1}{q} = 1, p > 1$$

$$\Rightarrow \ln B(\cdot, y)$$
 is convex on $(0, \infty)$

$$B(x+1,y) = \int_0^1 (\frac{t}{1-t})^x (1-t)^{x+y-1} dt \xrightarrow{I.B.P} B(x,y), \quad \forall x > 0$$

 $\Rightarrow f(x) := \frac{\Gamma(x+y)}{\Gamma(y)} B(x,y)$ satisfies (a), (b) and (c) of the previous theorem

$$\Rightarrow f(x) = \Gamma(x), \forall x > 0$$

Some applications:

1) If we set $t = \sin^2 \theta$ in the beta function, we get

$$2\int_0^{\frac{\pi}{2}} \sin^{2x-1}\theta \cos^{2x-1}\theta d\theta = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}, \, \forall x, y > 0$$

Let
$$x = y = \frac{1}{2} \Rightarrow \Gamma(\frac{1}{2}) = \sqrt{\pi}$$

2)
$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \xrightarrow{t=s^2} 2 \int_0^\infty s^{2x-1} e^{-s^2} ds, \ x > 0$$

Setting $x = \frac{1}{2} \Rightarrow \int_0^\infty e^{-s^2} ds = \frac{\sqrt{\pi}}{2}$

3) The 2nd theorem in this section \Rightarrow Duplication formula.

$$\Gamma(x) = \frac{2^{x-1}}{\sqrt{\pi}} \Gamma(\frac{x}{2}) \Gamma(\frac{x+1}{2})$$

Stirling formula. $\lim_{x\to\infty} \frac{\Gamma(x+1)}{(\frac{x}{e})^x \sqrt{2\pi x}} = 1$

Proof.

$$\Gamma(x+1) = \int_0^\infty t^x e^{-t} dt \xrightarrow{t=x(1+u)} \int_{-1}^\infty e^{-x(1+u)} x du = x^{x+1} e^{-x} \int_{-1}^\infty [(1+u)e^{-u}]^x du, \ x > 0$$

We define
$$h(u)$$
 s.t. $h(0) = 1$, and $(1+u)e^{-u} = e^{-\frac{u^2}{2}h(u)}, u \in (-1, \infty), u \neq 0$

$$\Rightarrow h(u) = \frac{2}{u^2} [u - \ln(1+u)], \ \forall u \in (-1, \infty), u \neq 0$$
$$\Rightarrow h'(u) = 2u^{-3} [2\ln(1+u) - u - \frac{u}{1+u}] < 0, \ \forall u \in (-1, \infty) \qquad (h'(0) = 0)$$

 \Rightarrow h is continuous, h(u) decrease strictly from ∞ to 0 as u increases from -1 to ∞

$$(\Box) \Rightarrow \Gamma(x+1) = x^{x+1}e^{-x} \int_{-1}^{1} e^{-\frac{u^2x}{2}h(u)} du \xrightarrow{u=s\sqrt{\frac{2}{x}}} x^x e^{-x} \sqrt{2x} \int_{-\sqrt{\frac{x}{2}}}^{\infty} \psi_x(s) ds, \, \forall x > 0$$

$$(\Box)$$

where

$$\psi_x(s) := \begin{cases} e^{-s^2 h(s\sqrt{\frac{2}{x}})}, & -\sqrt{\frac{x}{2}} < s < \infty \\ 0, & s \leqslant -\sqrt{\frac{x}{2}} \end{cases}$$

It is easy to check:

- ① \forall fixed $s \in \mathbb{R}$, $\lim_{x \to \infty} \psi_x(s) = e^{-s^2}$.
- (2) $\psi_x(s) \to e^{-s^2}$ uniformly on [-M, M] as $x \to \infty$ for $\forall M \in \mathbb{R}$.
- ③ If s < 0, then $0 \le \psi_x(s) \le e^{-s^2}$, $\forall x > 0$.
- 4 If s > 0, then $0 \leqslant \psi_x(s) \leqslant \psi_1(s), \forall x > 1$.

⑤
$$\int_0^\infty \psi_1(s) \, \mathrm{d}s = \int_0^\infty e^{-s^2 h(s\sqrt{2})} \, \mathrm{d}s = \int_0^\infty (1 + s\sqrt{2}) e^{-\sqrt{2}s} \, \mathrm{d}s < \infty$$

EX6 on HW8 $\Rightarrow \lim_{x \to \infty} \int_{-\infty}^{\infty} \psi_x(s) ds = \int_{-\infty}^{\infty} e^{-s^2} ds = \sqrt{\pi}.$

$$(\Box\Box) \Rightarrow \lim_{x \to \infty} \frac{\Gamma(x+1)}{\left(\frac{x}{a}\right)^x \sqrt{2\pi x}} = 1$$

8.4 A Probabilistic Proof of the Weierstrass Theorem

Theorem 8.4.1. If $f:[0,1] \to \mathbb{R}$ is continuous, there exists a sequence of polynomials $\{P_n\}$ such that

$$\lim_{n\to\infty} P_n(x) = f(x) \text{ uniformly on } [0,1]$$

Ingredients: $X \stackrel{d}{=}$ binomial distribution with parameter $n \in \mathbb{N}$ and $x \in [0, 1]$ $X = X_1 + \cdots + X_n$ where X_j 's are independent and $\mathbb{P}(X_j = 1) = x = 1 - \mathbb{P}(X_j = 0)$

Then
$$\mathbb{P}(X=j) = \binom{n}{j} x^j (1-x)^{n-j}, 0 \leqslant j \leqslant n.$$

 \Rightarrow mean of X : $\mathbb{E}X := \sum_{j=0}^n j \mathbb{P}(X=j) = nx$
and variance of X : $Var(X) := \mathbb{E}(X - \mathbb{E}X)^2 = nx(1-x).$

Markov's Inequality: Y is a random with $Y \ge 0$, then $\mathbb{P}(Y \ge a) \le \frac{\mathbb{E}Y}{a}$ for a > 0

Proof. $F_Y(y) := \mathbb{P}(Y \leqslant y)$, then

$$\mathbb{E}Y = \int_0^\infty y \, \mathrm{d}F_Y(y) \geqslant \int_a^\infty \, \mathrm{d}F_Y(y) \geqslant a \int_a^\infty \, \mathrm{d}F_Y(y) = a \mathbb{P}(Y \geqslant a) \qquad \Box$$

Thus

$$\mathbb{P}(|X - \mathbb{E}X| \geqslant k\sqrt{Var(X)}) = \mathbb{P}(|X - \mathbb{E}X|^2 \geqslant k^2 Var(X)) \leqslant \frac{\mathbb{E}|X - \mathbb{E}X|^2}{k^2 Var(X)} = \frac{1}{k^2}$$

This is usually called *Chebyshev'inequality*.

Proof. Let $Y_n := f(\frac{X}{n}), n \in \mathbb{N}$.

Then

$$\mathbb{E}Y = \mathbb{E}f(\frac{X}{n}) = \sum_{j=0}^{n} f(\frac{j}{n}) \mathbb{P}(X=j) = \sum_{j=0}^{n} f(\frac{j}{n}) \binom{n}{j} x^{j} (1-x)^{n-j} := B_{n}(f,x)$$

 B_n is called Bernstein polynomial.

We will prove $B_n \to f$ uniformly on [0,1] as $n \to \infty$.

Let
$$M := \sup_{0 \leqslant x \leqslant 1} |f(x)|$$

f is continuous on $[0,1] \Rightarrow \forall \epsilon > 0, \ \exists \delta > 0 \text{ s.t. } |f(x) - f(y)| < \frac{\epsilon}{2}, \ \forall |x - y| < \delta.$

We choose $K \in \mathbb{N}$ s.t. $\frac{2M}{k^2} < 2\epsilon$, and choose $N \in \mathbb{N}$ s.t. $\frac{K}{2\sqrt{N}} < \delta$. Then

$$|B_{n}(f;x) - f(x)| = \left| \sum_{j=0}^{n} \left[f\left(\frac{j}{n}\right) - f(x) \right] \binom{n}{j} x^{j} (1-x)^{n-j} \right|$$

$$\leqslant \sum_{j=0}^{n} \left| f\left(\frac{j}{n}\right) - f(x) \right| \binom{n}{j} x^{j} (1-x)^{n-j}$$

$$< \sum_{\left|\frac{j}{n} - x\right| < \frac{k}{2\sqrt{n}}} \left| f\left(\frac{j}{n}\right) - f(x) \right| \binom{n}{j} x^{j} (1-x)^{n-j}$$

$$+ \sum_{\left|\frac{j}{n} - x\right| \geqslant \frac{k}{2\sqrt{n}}} \left| f\left(\frac{j}{n}\right) - f(x) \right| \binom{n}{j} x^{j} (1-x)^{n-j}$$

$$< \frac{\epsilon}{2} \sum_{j=0}^{n} \binom{n}{j} x^{j} (1-x)^{n-j} + 2M \cdot \mathbb{P}(\left|\frac{X}{n} - x\right| \geqslant \frac{k}{2\sqrt{n}})$$

$$\mathbb{P}(\left|\frac{X}{n} - x\right| \geqslant \frac{k}{2\sqrt{n}}) = \mathbb{P}(\left|X - nx\right| \geqslant \frac{k\sqrt{n}}{2}) \leqslant \mathbb{P}(\left|X - nx\right| \geqslant k\sqrt{nx(1-x)}) \leqslant \frac{1}{k^{2}}$$

$$\Rightarrow \left|B_{n}(f;x) - f(x)\right| < \frac{\epsilon}{2} + 2M \cdot \frac{1}{k^{2}} < \epsilon, \quad \forall x \in [0,1], \forall n \geqslant N$$

$$\Rightarrow B_{n}(f;x) \Rightarrow f(x) \text{ on } [0,1] \text{ as } n \to \infty$$

8.5 Stone's Generalization of the Weierstrass Theorem

Corollary 5 (of the Weierstrass theorem). For every interval [-a, a] there is a sequence of real polynomials P_n s.t.

$$P_n(0) = 0$$
 and $\lim_{n \to \infty} P_n(x) = |x|$ uniformly on $[-a, a]$

A family \mathscr{A} of complex functions defined on a set E is said to be an algebra if

- (i) $f + q \in \mathscr{A}$
- (ii) $fg \in \mathscr{A}$
- (iii) $cf \in \mathscr{A}$ for $\forall f, g \in \mathscr{A}$

If (iii) only holds for $c \in \mathbb{R}$, the \mathscr{A} is an algebra of real functions.

 \mathscr{A} is said to be <u>uniformly closed</u> if: $f_n \in \mathscr{A}$ and $f_n \rightrightarrows f$ on $E \Rightarrow f \in \mathscr{A}$.

Let $\mathscr B$ be the set of all functions which are limits of uniformly convergent sequence of members of $\mathscr A$. i.e. $\mathscr B=\mathscr A\cup\mathscr A'$ with $d(f,g):=||f-g||=\sup_{x\in E}|f(x)-g(x)|$. Then $\mathscr B$ is called the <u>uniform closure</u> of $\mathscr A$.

Example 6. The set of all polynomials is an algebra.

Weierstrass theorem \Leftrightarrow the set of continuous functions on [a,b] = the uniform closure of the set of polynomials on [a,b].

Theorem 8.5.1. Let \mathscr{B} be the uniform closure of an algebra \mathscr{A} of bounded functions. Then \mathscr{B} is a uniformly closed algebra.

Let \mathscr{A} be a family of functions on E. \mathscr{A} is said to be <u>separate points</u> on E if $\forall x_1 \neq x_2 \in E, \exists f \in \mathscr{A}, f(x_1) \neq f(x_2)$

We say that $\mathscr A$ vanishes at no point of $\forall x \in E, \exists g \in \mathscr A \text{ s.t. } g(x) \neq 0.$

Theorem 8.5.2. Suppose \mathscr{A} is an algebra of functions on E, separate points on E, and vanishes at no point of E. Suppose $x_1 \neq x_2 \in E$ and C_1, C_2 are constants $(C_1, C_2 \in \mathbb{R} \text{ if } \mathscr{A})$ is a real algebra. Then $\exists f \in \mathscr{A} \text{ s.t.}$

$$f(x_1) = C_1, \quad f(x_2) = C_2$$

Proof. $\exists g, h, k \in \mathscr{A}$ s.t.

$$g(x_1) \neq g(x_2), h(x_1) \neq 0, k(x_2) \neq 0$$

Let
$$u(x) := g(x)k(x) - g(x_1)k(x)$$
, $v(x) := g(x)h(x) - g(x_2)h(x)$, $x \in E$

$$\Rightarrow u \in \mathscr{A} \text{ and } v \in \mathscr{A}, u(x_1) = v(x_2) = 0, \quad u(x_2) \neq 0, v(x_1) \neq 0$$

$$\Rightarrow f(x) := \frac{C_1 v(x)}{v(x_1)} + \frac{Cu(x)}{u(x_2)}, x \in E \text{ satisfies } f(x_1) = C_1, f(x_2) = C_2 \qquad \Box$$

Theorem 8.5.3 (Stone-Weierstrass Theorem). Let $\mathscr A$ be an algebra of real continuous functions on a compact set K. If $\mathscr A$ separates points on K and if $\mathscr A$ vanished at no point of K, then the uniform closure $\mathscr B$ of $\mathscr A$ consists of all real continuous functions on K.

Proof. Claim 1. If $f \in \mathcal{B}$, then $|f| \in \mathcal{B}$.

Let $a := \sup_{x \in K} |f(x)|$

For $\forall \epsilon > 0$, the corollary of this section $\Rightarrow \exists c_1, \dots, c_n \in \mathbb{R}$ s.t.

$$\left|\sum_{j=1}^{n} c_{j} y^{j} - |y|\right| < \epsilon, \quad \forall y \in [-a, a] \tag{*}$$

The first theorem in this section $\Rightarrow \mathscr{B}$ is an algebra $\Rightarrow g := \sum_{j=1}^{n} c_j f^j \in \mathscr{B}$.

$$(*) \Rightarrow |g(x) - |f(x)|| < \epsilon, \quad \forall x \in K.$$

 \mathscr{B} is uniformly closed $\Rightarrow |f| \in \mathscr{B}$

Claim 2. $f \in \mathcal{B}, g \in \mathcal{B} \Rightarrow \max(f,g) \in \mathcal{B} \text{ and } \min(f,g) \in \mathcal{B}$

This follows from Claim 1 and

 $\forall x \in K$.

$$\begin{cases} \max(f,g) = \frac{f+g}{2} + \frac{|f-g|}{2} \\ \min(f,g) = \frac{f+g}{2} - \frac{|f-g|}{2} \end{cases}$$

Claim 3. $\forall f: K \to \mathbb{R}$ continuous, $\forall x \in K, \forall \epsilon > 0, \exists g_x \in \mathscr{B}$ s.t.

$$g_x(x) = f(x),$$
 $g_x(t) > f(t) - \epsilon, \forall t \in K$

 $\forall y \in K$, the previous theorem $\Rightarrow \exists h_y \in \mathscr{A} \subset \mathscr{B}$ s.t. $h_y(x) = f(x), h_y(y) = f(y)$. h_y continuous $\Rightarrow J_y := \{t \in K : h_y(t) > f(t) - \epsilon\}$ is open and containing x and y

$$\Rightarrow K \subset \bigcup_{y \in K \setminus \{x\}} J_y \xrightarrow{K \ compact} \exists y_1, \cdots, y_n \ \text{s.t.} \ K \subset \bigcup_{j=1}^n J_{y_j}$$
 Let $g_x := \max(h_{y_1}, \cdots, h_{y_n})$. Then $g_x(t) > f(t) - \epsilon, \ \forall t \in K, \ g_x(x) = f(x)$ Claim 4. $\forall f : K \to \mathbb{R}$ continuous, $\forall \epsilon > 0, \ \exists h \in \mathscr{B} \ \text{s.t.} \ |h(x) - f(x)| < \epsilon,$

For $\forall x \in K$, let g_x be function constructed in Claim 3.

 g_x and f continuous $\Rightarrow V_x := \{t \in K : g_x(t) < f(x) + \epsilon\}$ is open and containing x.

$$\Rightarrow K \subset \bigcup_{x \in K} V_x \xrightarrow{K \ compact} \exists x_1, \cdots, x_n \text{ s.t. } K \subset \bigcup_{j=1}^n V_{x_j}.$$
Let $h := min(g_{x_1}, \cdots, g_{x_n})$. Then $h(t) < f(t) + \epsilon, \forall t \in K$.

Claim $2 \Rightarrow h \in \mathcal{B}$.

Example 7. Let $K: \{z \in \mathbb{C} : |z| = 1\}$ be the unit circle, and let \mathscr{A} be the algebra of all functions of the form $f(e^{i\theta}) = \sum_{n=0}^{N} c_n e^{in\theta}, \theta \in [0, 2\pi)$

Then \mathscr{A} separates points on K and vanishes at no point of K by considering the function $f(e^{i\theta}) = e^{i\theta}$. For $\forall f \in \mathscr{A}$, we have

$$\int_0^{2\pi} f(e^{i\theta})e^{i\theta} \, \mathrm{d}\theta = 0$$

Let \mathscr{B} be the uniform closure of \mathscr{A} . Then $\exists f_n \in \mathscr{A}, f_n \rightrightarrows g$, for $g \in \mathscr{B}$. Thus $\int_0^{2\pi} g(e^{i\theta})e^{i\theta} d\theta = 0$ for $g \in \mathscr{B}$.

 \Rightarrow the continuous function $h(e^{i\theta}) = e^{-i\theta} \notin \mathcal{B}$.

So for complex algebra, we need an extra condition: $\mathscr A$ is self-adjoint, if

$$\forall f \in \mathscr{A}, \, \overline{f} \in \mathscr{A} \text{ where } \overline{f}(x) = \overline{f(x)}$$

Theorem 8.5.4. Suppose \mathscr{A} is a self-adjoint algebra of complex continuous functions on a compact set K. If \mathscr{A} separates points on K and if \mathscr{A} vanished at no point of K, then the uniform closure \mathscr{B} of \mathscr{A} consists of all complex continuous functions on K.

Proof. Let $\mathscr{A}_{\mathbb{R}}$ be the set of all real functions on K which belong to \mathscr{A} .

$$\forall f\in\mathscr{A}\Rightarrow f=u+iv \text{ where } u \text{ and } v \text{ are real.}$$

$$\Rightarrow u=\frac{1}{2}(f+\overline{f})\in\mathscr{A}_{\mathbb{R}} \text{ since } \mathscr{A} \text{ is self-adjoint.}$$

Easy to check that $\mathscr{A}_{\mathbb{R}}$ separates points on K with Theorem 8.5.2.

 $\forall x_0 \in K \Rightarrow \exists g \in \mathscr{A} \text{ s.t. } g(x_0) \neq 0. \text{ Let } f(x) = \overline{g(x)}g(x), x \in K. \Rightarrow f(x_0) \neq 0$ and $f(x) \in \mathscr{A}_{\mathbb{R}}$.

 $\Rightarrow \mathscr{A}_{\mathbb{R}}$ vanishes at no point of K The Stone-Weierstrass $\Rightarrow \forall$ continuous $f: K \to \mathbb{R}$ lies in the uniform closure of $\mathscr{A}_{\mathbb{R}} \Rightarrow f \in \mathscr{B}$.

So for \forall continuous $g: K \to \mathbb{C}$, $\operatorname{Re} g$, $\operatorname{Im} g \in \mathscr{B}$. $\Rightarrow g \in \mathscr{B}$.

9 Functions of Several Variables

9.1 Linear Transformations

A nonempty set $X \subset \mathbb{R}^n$ is a vector space if $c_1\vec{x} + c_2\vec{y} \in X$ for $\forall \vec{x}, \vec{y} \in X$ and $\forall c_1, c_2 \in \mathbb{R}$.

Note that if $B = \{\vec{x_1}, \dots, \vec{x_r}\}$ is a basis of X, then $\forall \vec{x} \in X$ has a unique representation of the form $\vec{x} = \sum_{j=1}^r c_j \vec{x_j}$. The numbers c_1, c_2, \dots, c_r are called coordinates of \vec{x} w.r.t. B.

We called $\{\vec{e_1}, \vec{e_2}, \dots, \vec{e_n}\}$ the <u>standard basis</u> of \mathbb{R}^n , where $\vec{e_j} = (0, \dots, 1, \dots, 0)$.

Theorem 9.1.1. Let $r \in \mathbb{N}$. If a vector space X is spanned by a set of r vectors, then dim $X \leq r$.

Theorem 9.1.2. Suppose X is a vector space, and dim X = n. Then

- (a) A set E of n vectors in X spans X iff E is independent.
- (b) X has a basis, and every basis consists of n vectors.
- (c) If $1 \le r \le n$ and $\{\vec{y_1}, \vec{y_2}, \dots, \vec{y_r}\}$ is a independent set in X, then X has a basis contained $\{\vec{y_1}, \dots, \vec{y_r}\}$.

A mapping $A: X \to Y$ is said to be a <u>linear transformations</u> (or linear operator) if $A(\lambda_1 \vec{x_1} + \lambda_2 \vec{x_2}) = \lambda_1 A(\vec{x_1}) + \lambda_2 A(\vec{x_2}), \forall \vec{x_1}, \vec{x_2} \in X, \forall \lambda_1, \lambda_2 \in \mathbb{R}$.

If A is a linear operator on X satisfying one-to-one and maps X onto X, we say that A is invertible.

Theorem 9.1.3. A linear operator A on a finite-dimensional vector space X is 1-1 iff the range of A is all of X.

Let L(X,Y) be the set of all linear transformations of the vector space X into the vector space Y. We usually write L(X) for L(X,Y).

If $A_1, A_2 \in L(X, Y)$, we define

$$(c_1A_1 + c_2A_2)\vec{x} := c_1A_1\vec{x} + c_2A_2\vec{x}$$

If X, Y, Z are vector spaces, and if $A \in L(X, Y)$ and $B \in L(Y, Z)$, we define their product BA by

$$(BA)\vec{x} := B(A\vec{x}), \, \forall \vec{x} \in X$$

For $\forall A \in L(\mathbb{R}^n, \mathbb{R}^m)$, we define the norm ||A|| of A by

$$||A|| := \sup_{\vec{x}: |\vec{x}| \leqslant 1} |A\vec{x}|$$

Theorem 9.1.4. (a) If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, then A is uniformly continuous and thus $||A|| < \infty$.

- (b) If $A, B \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $c \in \mathbb{R}$, then $||A + B|| \leq ||A|| + ||B||, ||cA|| = |c| \cdot ||A||$. Hence, $L(\mathbb{R}^n, \mathbb{R}^m)$ is a metric space with d(A, B) := ||A B||
- (c) If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $B \in L(\mathbb{R}^m, \mathbb{R}^k)$, then $||BA|| \le ||B|| \cdot ||A||$

Theorem 9.1.5. Let Ω be the set of all invertible linear operator on \mathbb{R}

- (a) If $A \in \Omega, B \in L(\mathbb{R}^n)$ and $||B A|| \cdot ||A^{-1}|| < 1$, then $B \in \Omega$.
- (b) Ω is an open subset of $L(\mathbb{R}^n)$, and the mapping $\Omega \to \Omega, A \mapsto A^{-1}$ is continuous
- (a) just use the 3rd theorem.

Suppose $\{\vec{x_1}, \dots, \vec{x_n}\}$ is a basis of X, $\{\vec{y_1}, \dots, \vec{y_m}\}$ is a basis of Y. Then $\forall A \in L(X,Y)$ determines a set of numbers a_{ij} s.t.

$$A\vec{x_j} = \sum_{i=1}^{m} a_{ij}\vec{y_i}, \qquad 1 \leqslant j \leqslant n \tag{*}$$

It is convenient to visulize these numbers on an $m \times n$ matrix:

$$[A] = [a_{ij}]$$

Then we find that there is a natural 1-1 correspondence between L(X,Y) and the set of all $m \times n$ real matrices

and
$$[BA] = [B] \cdot [A]$$

Suppose $\{x_i\}$ and $\{y_i\}$ are standard basis of \mathbb{R}^n and \mathbb{R}^m . Then

$$|A\vec{x}|^2 \leqslant |\vec{x}|^2 \sum_{i=1}^m (\sum_{j=1}^n a_{ij})$$

$$\Rightarrow ||A|| \leqslant (\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij})^{\frac{1}{2}}$$

So we just proved

Theorem 9.1.6. If S is a metric space and a_{11}, \dots, a_{mn} are real continuous functions on S, and if, for $\forall p \in S$, A_p is the linear transformation of \mathbb{R}^n into \mathbb{R}^m whose matrix has entries $a_{ij}(p)$, then mapping $S \to L(\mathbb{R}^n, \mathbb{R}^m)$, $p \mapsto A_p$ is continuous

9.2 Differentiation

Suppose E is an open set in \mathbb{R}^n , $f: E \to \mathbb{R}^m$, and $\vec{x} \in E$. If there is an $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ such that

$$\lim_{\vec{h} \to \vec{0}} \frac{|f(\vec{x} + \vec{h}) - f(\vec{x}) - A\vec{h}|}{|\vec{h}|} = 0 \tag{*}$$

then we say that f is <u>differentiable</u> at \vec{x} , and we write $f'(\vec{x}) = A$.

If f is differentiable at each $\vec{x} \in E$, we say f is differentiable in E.

Theorem 9.2.1. In the above definition, if (*) holds for A_1 and A_2 , then $A_1 = A_2$.

Proof. Easy to know:

$$\lim_{\vec{h}\to 0} \frac{|A_1\vec{h} - A_2\vec{h}|}{|\vec{h}|} = 0 \Rightarrow A_1 = A_2$$

Remark 6. (a) (*) can be rewritten in the form

$$f(\vec{x} + \vec{h}) - f(\vec{x}) = f'(\vec{x})\vec{h} + r(\vec{h})$$
 (**)

where the remainder $r(\vec{h})$ satisfies $\lim_{\vec{h} \to \vec{0}} \frac{|r(\vec{h})|}{|\vec{h}|} = 0$

- (b) The derivative defined by (*) or (**) is often called the <u>differential</u> of f at \vec{x} , or the <u>total derivative</u> of f at \vec{x} .
- (c) $(**) \Rightarrow f$ is continuous at any point where f is differentiable.

(d) If f is differentiable in E, then f' is a function which maps E into $L(\mathbb{R}^n, \mathbb{R}^m)$.

Example 8. If $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ and $\vec{x} \in \mathbb{R}^n$, then $A'(\vec{x}) = A$.

Theorem 9.2.2 (chain rule). Suppose $E \subset \mathbb{R}^n$ open, $f : E \to \mathbb{R}^m$, f is differentiable at $\vec{x_0} \in E$, g maps an open set containing f(E) into \mathbb{R}^k , and g is differentiable at $f(\vec{x_0})$, Then the mapping $F : E \to \mathbb{R}^k$, $\vec{x} \mapsto g(f(\vec{x}))$ is differentiable at $\vec{x_0}$ and

$$F'(\vec{x_0}) = g'(f(\vec{x_0}))f'(\vec{x_0})$$

Let $\{e_1, \vec{v}, \vec{e_n}\}$ and $\{\vec{u_1}, \cdots, \vec{u_m}\}$ be the standard bases of \mathbb{R}^n and \mathbb{R}^m .

For $\forall f: E \to \mathbb{R}^m$, the components of f are the real functions f_1, \dots, f_m defined by $f_i(\vec{x}) := f(\vec{x}) \cdot \vec{u_i}, \ 1 \leq i \leq m$.

For $\vec{x} \in E$, $1 \leq i \leq m, 1 \leq j \leq n$, we define

$$\frac{\partial f_i}{\partial x_j}(\vec{x}) := \lim_{t \to 0} \frac{f_i(\vec{x} + t\vec{e_j}) - f_i(\vec{x})}{t}$$

provided the limit exists. $\frac{\partial f_i}{\partial x_j}$ is the derivative of f_i w.r.t x_j . Keeping the other variables fixed. $\frac{\partial f_i}{\partial x_j}$ is called a <u>partial derivative</u>.

Theorem 9.2.3. Suppose $f: E \to \mathbb{E}^m$, and f is differentiable at $\vec{x} \in E$. Then the partial derivatives $\frac{\partial f_i}{\partial x_j}$ exist, and

$$f'(\vec{x})(\vec{e_j}) = \sum_{i=1}^{m} \frac{\partial f_i}{\partial x_j}(\vec{x})\vec{u_i} \tag{*}$$

Proof. f is differentiable at $\vec{x_0} \Rightarrow \lim_{h \to \vec{0}} \frac{|f(\vec{x} + \vec{h}) - f(\vec{x}) - f'(\vec{x})\vec{h}|}{|\vec{h}|} = 0$

$$\begin{split} &\Rightarrow \lim_{t\to 0} \frac{|f(\vec{x}+t\vec{e_j})-f(\vec{x})-f'(\vec{x})t\vec{e_j}|}{t} = 0 \\ &\Rightarrow \lim_{t\to 0} \frac{|f_i(\vec{x}+t\vec{e_j})-f_i(\vec{x})-tf'(\vec{x})\vec{e_j}\cdot\vec{u_i}|}{t} = 0 \\ &\Rightarrow \frac{\partial f_i}{\partial x_j}(\vec{x}) = \lim_{t\to 0} \frac{f_i(\vec{x}+t\vec{e_j})-f_i(\vec{x})}{t} = f'(x)(\vec{e_j})\cdot\vec{u_i} \end{split}$$

Remark 7. (a) Let $[f'(\vec{x})]$ be the matrix which represents $f'(\vec{x})$ w.r.t. our standard bases. Then

$$[f'(\vec{x})] = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\vec{x}) & \cdots & \frac{\partial f_1}{\partial x_m}(\vec{x}) \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1}(\vec{x}) & \cdots & \frac{\partial f_n}{\partial x_m}(\vec{x}) \end{pmatrix}$$

(b) If
$$\vec{h} = \sum_{j=1}^{n} h_j \vec{e_j} \in \mathbb{R}^n$$
, then $(\star) \Rightarrow f'(\vec{x}) \vec{h} = [f'(\vec{x})] \begin{pmatrix} h_1 \\ h_2 \\ \vdots \\ h_n \end{pmatrix}$

Let $\gamma:(a,b)\to E$ be differentiable in (a,b), and $f:E\to\mathbb{R}$ be differentiable in E. Define $g(t)=f(\gamma(t))$.

Chain rule $\Rightarrow g'(t) = f'(\gamma(t))\gamma'(t), t \in (a, b).$

w.r.t. the standard basis
$$\{\vec{e_i}, \cdots, \vec{e_n}\}$$
 of \mathbb{R}^n , $[\gamma'(t)] = \begin{pmatrix} \gamma_1'(t) \\ \gamma_2'(t) \\ \vdots \\ \gamma_n'(t) \end{pmatrix}$

For
$$\forall \vec{x} \in E$$
, $[f'(\vec{x})] = \left(\frac{\partial f}{\partial x_1}(\vec{x}), \dots, \frac{\partial f}{\partial x_n}(\vec{x})\right)$

$$\Rightarrow g'(t) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\gamma(t))\gamma_i'(t) \tag{\triangle}$$

The gradient of f at $\vec{x} \in E$ is defined by $\nabla f(\vec{x}) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\vec{x}) \vec{e_i}$.

So (\triangle) can be written in the form

$$g'(t) = \nabla f(\gamma(t)) \cdot \gamma'(t) \tag{\triangle\triangle}$$

Fix an $\vec{x} \in E$, Let $\vec{u} \in \mathbb{R}^n$ be a unit vector, and specialize γ s.t. $\gamma(t) = \vec{x} + t\vec{u}$, $t \in \mathbb{R}$. Then $\gamma'(t) = \vec{u}$ for $\forall t \in \mathbb{R}$. $(\triangle \triangle) \Rightarrow g'(0) = \nabla f(\vec{x})\vec{u}$.

$$\Rightarrow \lim_{t \to 0} \frac{f(\vec{x} + t\vec{u}) - f(\vec{x})}{t} = \lim_{t \to 0} \frac{g(t) - g(0)}{t} = \nabla f(\vec{x})\vec{u} \tag{\triangle\triangle\triangle}$$

The limit $\lim_{t\to 0} \frac{f(\vec{x}+t\vec{u})-f(\vec{x})}{t}$ is called the <u>directional derivative</u> of f at \vec{x} , in the direction of the unit vector \vec{u} , and may be denoted by $\nabla_{\vec{u}} f(\vec{x})$ or $D_{\vec{u}} f(\vec{x})$ If $\vec{u} = \sum_{i=1}^{n} u_i \vec{e_i}$, $\Rightarrow \nabla_{\vec{u}} f(\vec{x}) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(\vec{x}) u_i$

Theorem 9.2.4. Suppose $f: E \to \mathbb{R}^m$ is differentiable in E where $E \subset \mathbb{R}^n$ is convex and open, and $\exists M \in \mathbb{R} \text{ s.t. } ||f'(x)|| \leq M, \forall \vec{x} \in E$. Then

$$|f(\vec{b}) - f(\vec{a})| \leqslant M|\vec{b} - \vec{a}|, \, \forall \vec{a}, \vec{b} \in E$$

Proof. Define $\gamma(t) = (1-t)\vec{a} + t\vec{b}$

 $E \text{ is convex} \Rightarrow \gamma(t) \in E \text{ for } \forall t \in [0, 1].$

Let $g(t) = f(\gamma(t))$.

Then $g'(t) = f'(\gamma(t))\gamma'(t) = f'(\gamma(t))(\vec{b} - \vec{a})$

$$\Rightarrow |g'(t)| \leqslant ||f'(\gamma(t))|| \cdot |\vec{b} - \vec{a}| \leqslant M \cdot |\vec{b} - \vec{a}|, \forall t \in [0, 1].$$

The last theorem in §5.4 (Weak MVT for vector-valued functions) \Rightarrow

$$|g(1) - g(0)| \leqslant M|\vec{b} - \vec{a}|.$$

Corollary 6. If, in addition, $f'(\vec{x}) = 0$ for $\forall \vec{x} \in E$, then f is constant.

A differentiable mapping $f: E \to \mathbb{R}^m$ is continuously differentiable in E if $f': E \to L(\mathbb{R}^n, \mathbb{R}^m)$ is continuous.

If so, we say that f is a \mathscr{C}' -mapping or that $f \in \mathscr{C}'(E)$.

Theorem 9.2.5. Suppose $f: E \to \mathbb{R}^m$ where $E \subset \mathbb{R}^n$ is open. Then $f \in \mathscr{C}'(E)$ iff $\frac{\partial f}{\partial x_i}$ exists and are continuous on E for $1 \le i \le m, 1 \le j \le n$.

Proof. '
$$\Rightarrow$$
' Recall $||f'(\vec{y}) - f'(\vec{x})|| = \sup_{|\vec{z}|=1} |[f'(\vec{y}) - f'(\vec{x})]\vec{z}|$

We already proved in the 3rd theorem that $\frac{\partial f}{\partial x_i}$ exist.

Taking $\vec{z} = \vec{e_j}$, we get

$$||f'(\vec{y}) - f'(\vec{x})|| \ge |[f'(\vec{y}) - f'(\vec{x})]\vec{e_j}| = \left\{ \sum_{i=1}^m \left[\frac{\partial f_i}{\partial x_j} (\vec{y}) - \frac{\partial f_i}{\partial x_j} (\vec{x}) \right]^2 \right\}^{\frac{1}{2}} \ge |\frac{\partial f_i}{\partial x_j} (\vec{y}) - \frac{\partial f_i}{\partial x_j} (\vec{x})|$$

 $\Rightarrow \frac{\partial f_i}{\partial x_j}$ is continuous on E for $\forall i \leqslant m, 1 \leqslant j \leqslant n$

 $' \Leftarrow'$ It is enough to prove:

$$\forall \vec{x} \in E, \lim_{\vec{h} \to \vec{0}} \frac{|f(\vec{x} + \vec{h}) - f(\vec{x}) - f'(\vec{x})\vec{h}|}{|\vec{h}|} = 0 \tag{*}$$

Where

$$[f'(\vec{x})] = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(\vec{x}) & \cdots & \frac{\partial f_1}{\partial x_m}(\vec{x}) \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1}(\vec{x}) & \cdots & \frac{\partial f_n}{\partial x_m}(\vec{x}) \end{pmatrix}$$

Note that the continuity of f' in E follows the last theorem in 9.1.

(*) follows if we can prove it for each component.

We now fix i.

 $\frac{\partial f_i}{\partial x_j}$ are continuous at $\vec{x} \Rightarrow \forall \epsilon > 0, \exists r > 0$ s.t.

$$\left| \frac{\partial f_i}{\partial x_j}(\vec{y}) - \frac{\partial f_i}{\partial x_j}(\vec{x}) \right| < \frac{\epsilon}{n}, \forall |\vec{y} - \vec{x}| < r, 1 \leqslant j \leqslant n \tag{**}$$

Ther

$$|f_{i}(\vec{x} + \vec{h}) - f_{i}(\vec{x}) - \sum_{j=1}^{n} \frac{\partial f_{i}}{\partial x_{j}}(\vec{x})h_{j}| \leqslant \sum_{t=1}^{n} |f_{i}(\vec{x} + \sum_{j=1}^{t} h_{j}\vec{e_{j}}) - f_{i}(\vec{x} + \sum_{j=1}^{t-1} h_{j}\vec{e_{j}}) - \frac{\partial f_{i}}{\partial x_{t}}(\vec{x})h_{t}|$$

$$\frac{MVT}{} \sum_{t=1}^{n} \left| \frac{\partial f_{i}}{\partial x_{t}}(\vec{x} + \sum_{j=1}^{t-1} h_{j}\vec{e_{j}} + \theta_{t}h_{t}\vec{e_{t}}) \cdot h_{n} - \frac{\partial f_{i}}{\partial x_{t}}(\vec{x})h_{t} \right|$$

$$\stackrel{(**)}{\leqslant} \frac{\epsilon}{n} [\sum_{t=1}^{n} |h_{t}|]$$

$$\leqslant \epsilon |h|$$

9.3 The Contraction Principle

Let X be a metric space with metric d. If $\varphi: X \to X$ and $\exists c \in [0,1)$ s.t.

$$d(\varphi(x), \varphi(y)) \leq c d(x, y), \quad \forall x, y \in X$$

then φ is said to be a <u>contraction</u> of X into X.

Theorem 9.3.1 (Banach fixed point theorem). If X is a complete metric space, and if φ is a contraction of X into X, then there exists one and only one $x \in X$ s.t. $\varphi(x) = x$.

Proof. The proof is given in Mid-exam.

9.4 The Inverse Function Theorem

Theorem 9.4.1 (the inverse function theorem). Suppose $E \subset \mathbb{R}^n$ is open, and $f: E \to \mathbb{R}^n$, $f \in \mathscr{C}'(E)$, $f'(\vec{a})$ is invertible for some $\vec{a} \in E$, and $\vec{b} = f(\vec{a})$. Then

- (a) \exists open sets $U, V \subset \mathbb{R}^n$ s.t. $\vec{a} \in U, \vec{b} \in V, f : U \to V$ is 1-1 and onto.
- (b) if g is the inverse of f, defined on V by $g(f(\vec{x})) = \vec{x}$, $\forall \vec{x} \in V$, then $g \in \mathscr{C}'(V)$.

Remark 8. The theorem says: the system of n equation:

$$y_i = f_i(x_1, \cdots, x_n), \quad 1 \leqslant i \leqslant n$$

can be solved for x_1, \dots, x_n in terms of y_1, \dots, y_n , if we restrict \vec{x} and \vec{y} to small enough NBHDs of \vec{a} and \vec{b} .

Proof. Let $A := f'(\vec{a})$, and choose λ s.t.

$$2\lambda ||A^{-1}|| = 1 \tag{*}$$

f' is continuous at $\vec{a} \Rightarrow \exists$ open ball $U \subset E$ centered at \vec{a} s.t.

$$||f'(\vec{x}) - A|| < \lambda, \quad \forall \vec{x} \in U \tag{**}$$

For each $\vec{y} \in \mathbb{R}^n$, we define a function φ by

$$\varphi(\vec{x}) = \vec{x} + A^{-1}(\vec{y} - f(\vec{x})), \quad \forall \vec{x} \in E$$
 (***)

Then $f(\vec{x}) = \vec{y}$ iff \vec{x} is a fixed point of φ . And

$$\varphi'(\vec{x}) = I - A^{-1}f'(\vec{x}) = A^{-1}(A - f'(\vec{x}))$$

$$(*)(**) \Rightarrow ||\varphi(\vec{x})|| < \frac{1}{2}, \quad \forall \vec{x} \in U$$

4th theorem in $9.2 \Rightarrow$

$$|\varphi(\vec{x_1}) - \varphi(\vec{x_2})| \le \frac{1}{2} |\vec{x_1} - \vec{x_2}|, \, \forall \vec{x_1}, \vec{x_2} \in U$$
 (****)

The uniqueness part of the fixed point theorem $\Rightarrow \varphi$ has at most one fixed point in U.

 $\Rightarrow f(\vec{x}) = \vec{y}$ for at most one $\vec{x} \in U \Rightarrow f$ is 1-1 in U.

Let V := f(U) and pick $\vec{y_0} \in V$. Then $\vec{y_0} = f(\vec{x_0})$ for some $\vec{x_0} \in U$.

Let $B := N_r(\vec{x_0})$ with r > 0 s.t. $\overline{B} \subset U$

For $\forall \vec{y} \in \mathbb{R}$ with $|\vec{y} - \vec{y_0}| < \lambda r$, we will prove $\vec{y} \in V$ (Thus V is open).

$$|\varphi(\vec{x_0}) - \vec{x_0}| \stackrel{\text{(***)}}{=} |A^{-1}(\vec{y} - f(\vec{x_0}))| = |A^{-1}(\vec{y} - \vec{y_0})| < ||A^{-1}|| \lambda r \stackrel{\text{(*)}}{=} \frac{r}{2}$$

For $\forall \vec{x} \in \overline{B}$, $|\varphi(x) - \vec{x_0}| \leq |\varphi(\vec{x}) - \varphi(\vec{x_0})| + |\varphi(\vec{x_0}) - \vec{x_0}| \stackrel{(****)}{\leq} \frac{1}{2} |\vec{x} - \vec{x_0}| + \frac{r}{2} \leq r$. $\Rightarrow \varphi(\vec{x}) \in B \Rightarrow \varphi$ is a contraction of \overline{B} into \overline{B} .

The fixed point theorem $\Rightarrow \varphi$ has a fixed point $\Rightarrow \vec{y} \in f(\overline{B}) \subset f(U) = V$ Now let $\vec{y} \in V$ and $\vec{y} + \vec{k} \in V$.

$$\Rightarrow \exists \vec{x} \in U, \vec{x} + \vec{h} \in U \text{ s.t. } \vec{y} = f(\vec{x}), \vec{y} + \vec{k} = f(\vec{x} + \vec{h})$$
$$(***) \Rightarrow \varphi(\vec{x} + \vec{h}) - \varphi(\vec{x}) = \vec{h} - A^{-1}\vec{k}$$

$$(****) \Rightarrow |\vec{h} - A^{-1}\vec{k}| < \frac{1}{2}|\vec{h}|$$

$$\Rightarrow |A^{-1}\vec{k}| \geqslant |\vec{h}| - |\vec{h} - A^{-1}\vec{k}| > \frac{1}{2}|\vec{h}|$$

$$\Rightarrow |\vec{h}| \leqslant 2|A^{-1}\vec{k}| \leqslant 2||A^{-1}|| \cdot ||\vec{k}|| = \lambda^{-1}|\vec{k}| \qquad (\Box)$$

With Theorem 9.1.5, $f'(\vec{x})$ has an inverse, say T.

$$\Rightarrow \frac{|g(\vec{y} + \vec{k}) - g(\vec{y}) - T\vec{k}|}{|\vec{k}|} \stackrel{(\square)}{\leqslant} \frac{||T||}{\lambda} \cdot \frac{|f(\vec{x} + \vec{h}) - f(\vec{x}) - f'(\vec{x})\vec{h}|}{|\vec{h}|} \qquad (\square\square)$$

$$\Rightarrow g'(\vec{y}) = T$$
 is continuous in V with 5th theorem in section 9.1.

An immediate consequence of part (a) of the previous theorem is

Theorem 9.4.2. If $f: E \to \mathbb{R}^n$ and $f \in \mathscr{C}'(E)$, and $f'(\vec{x})$ is invertible for $\forall \vec{x} \in E$, then f(W) is an open subset of \mathbb{R}^n for every open set $W \subset E$. i.e. f is an open mapping of E into \mathbb{R}^n .

9.5 The Implicit Function Theorem

If $\vec{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ and $\vec{y} = (y_1, \dots, y_m) \in \mathbb{R}^m$, we write (\vec{x}, \vec{y}) for the point

$$(x_1,\cdots,x_n,y_1,\cdots,y_m)\in\mathbb{R}^{n+m}$$

 $\forall A \in L(\mathbb{R}^{n+m}, \mathbb{R}^n)$ can be split into two linear tranformations A_x and A_y , defined by

$$A_x\vec{h}:=A(\vec{h},0),\,A_y\vec{k}=A(0,\vec{k}),\,\forall\vec{h}\in\mathbb{R}^n,k\in\mathbb{R}^m$$

Then $A_x \in L(\mathbb{R}^n)$, $A_Y \in L(\mathbb{R}^m, \mathbb{R}^n)$, and

$$A(\vec{h}, \vec{k}) = A_x \vec{h} + A_y \vec{k} \tag{*}$$

Theorem 9.5.1. If $A \in L(\mathbb{R}^{n+m}, \mathbb{R}^n)$ and if A_x is invertible, then for $\forall \vec{k} \in \mathbb{R}^m$, $\exists \ a \ unique \ \vec{h} \in \mathbb{R}^n \ s.t. \ A(\vec{h}, \vec{k}) = \vec{0}$. This \vec{h} can be computed from \vec{k} by

$$\vec{h} = -(A_x)^{-1} A_u \vec{k}$$

Theorem 9.5.2 (the implicit function theorem). Let f be a \mathscr{C}' -mapping of an open set $E \subset \mathbb{R}^{n+m}$ into \mathbb{R}^n s.t. $f(\vec{a}, \vec{b}) = \vec{0}$ for some $(\vec{a}, \vec{b}) \in E$. Let $A := f'(\vec{a}, \vec{b})$ and assume that A_x is invertible. Then \exists open sets $U \subset \mathbb{R}^{n+m}$ and $W \subset \mathbb{R}^m$, with $(\vec{a}, \vec{b}) \in U$ and $\vec{b} \in W$, having the following property.

For $\forall \vec{y} \in W$, \exists a unit \vec{x} s.t. $(\vec{x}, \vec{y}) \in U$ and $f(\vec{x}, \vec{y}) = \vec{0}$. If this \vec{x} is defined to be $g(\vec{y})$; then $g \in \mathscr{C}'(W)$, $g(\vec{b}) = \vec{a}$ and $g'(\vec{b}) = -(A_x)^{-1}A_y$

Remark 9.

$$f(\vec{x}, \vec{y}) = \vec{0} \Leftrightarrow \begin{cases} f_1(\vec{x}, \vec{y}) = \vec{0} \\ f_2(\vec{x}, \vec{y}) = \vec{0} \\ \vdots \\ f_n(\vec{x}, \vec{y}) = \vec{0} \end{cases} \tag{\Box}$$

 $A_x \text{ is invertible} \Leftrightarrow \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \cdots & \frac{\partial f_1}{\partial x_n}(x) \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1}(x) & \cdots & \frac{\partial f_n}{\partial x_n}(x) \end{pmatrix} \text{ evaluated at } (\vec{a}, \vec{b}) \text{ is invertible}$

If (\Box) holds when $\vec{x} = \vec{a}$ and $\vec{y} = \vec{b}$, the theorem say that (\Box) can be solved for x_1, \dots, x_n in terms of y_1, \dots, y_m , for $\forall \vec{y}$ in a NBHD of \vec{b} , and that these solutions are continuously differentiable functions of \vec{y} .

Proof. Define F by $F(\vec{x}, \vec{y}) = (f(\vec{x}, \vec{y}), \vec{y}), \forall (\vec{x}, \vec{y}) \in E$.

Then F is a \mathscr{C}' -mapping of E into \mathbb{R}^{n+m} . We will prove $F'(\vec{a}, \vec{b})$ is invertible.

 $\Rightarrow F'(\vec{a}, \vec{b}) \in L(\mathbb{R}^{n+m})$ which maps (\vec{h}, \vec{k}) to $(A(\vec{h}, \vec{k}), \vec{k})$.

And $(A(\vec{h}, \vec{k}), \vec{k}) = \vec{0} \Rightarrow \vec{h} = \vec{k} = \vec{0}$ with the previous theorem.

Then $F'(\vec{a}, \vec{b})$ is 1-1 \Rightarrow $F'(\vec{a}, \vec{b})$ is invertible.

The inverse function theorem applied to $F \Rightarrow \exists$ open sets $U, V \subset \mathbb{R}^{n+m}$ with $(\vec{a}, \vec{b}) \in U, (\vec{0}, \vec{b}) \in V$ s.t. $F: U \to V$ is 1-1 and onto

Define $W:=\{\vec{y}\in\mathbb{R}^m:(\vec{0},\vec{y})\in V\}$. Then $\vec{b}\in W.$ V is open $\Rightarrow W$ is open.

For $\forall \vec{y} \in W$, $(\vec{0}, \vec{y}) = F(\vec{x}, \vec{y})$ for some $(\vec{x}, \vec{y}) \in U$.

Suppose that with the same \vec{y} , $\exists (\vec{x'}, \vec{y}) \in U$ s.t. $f(\vec{x'}, \vec{y}) = \vec{0}$ which means $F(\vec{x'}, \vec{y}) = F(\vec{x}, \vec{y}) = \vec{0}$ with contraction to that F is 1-1.

For the second part of the theorem, for $\forall \vec{y} \in W$, define $g(\vec{y})$ s.t.

$$(g(\vec{y}), \vec{y}) \in U \text{ and } f(g(\vec{y}), \vec{y}) = \vec{0}$$
 ($\Box\Box$)

Then

$$F(g(\vec{y}), \vec{y}) = (\vec{0}, \vec{y}), \forall \vec{y} \in W \tag{***}$$

Let $G:W\to U$ be the inverse of F, then the inverse function $\Rightarrow G\in\mathscr{C}'(V)$.

$$(***) \Rightarrow (g(\vec{y}), \vec{y}) = G(0, \vec{y}), \forall \vec{y} \in W$$

 $\Rightarrow g \in \mathscr{C}'(W)$ since $G \in \mathscr{C}'(V)$. Now to compute $g'(\vec{b})$, define $\Phi(\vec{y}) := (g(\vec{y}), \vec{y}), \forall \vec{y} \in W$.

Then $\Phi'(\vec{y})\vec{k} = (g'(\vec{y})\vec{k}, \vec{k})$, for $\forall \vec{y} \in W, \vec{k} \in \mathbb{R}^m$.

$$f(\Phi(\vec{y})) = \vec{0}, \forall \vec{y} \in W \Rightarrow f'(\Phi(\vec{y}))\Phi'(\vec{y}) = 0.$$

$$\Phi(\vec{b}) = (\vec{a}, \vec{b}) \text{ and } f'(\Phi(\vec{b})) = A \Rightarrow A\Phi'(\vec{b}) = 0.$$

i.e.

$$A_x g'(\vec{b})\vec{k} + A_y \vec{k} = \vec{0}, \forall \vec{k} \in \mathbb{R}^m \tag{\triangle}$$

.

With
$$A_x$$
 is invertible we know that $g'(\vec{b}) = -A_x^{-1}A_y$

Remark 10. $(\triangle) \Leftrightarrow$

$$\sum_{j=1}^{n} \frac{\partial f_i}{\partial x_j} (\vec{a}, \vec{b}) \frac{\partial g_j}{\partial y_k} (\vec{b}) = -\frac{\partial f_i}{\partial y_k} (\vec{a}, \vec{b}), \quad 1 \leqslant i \leqslant n, 1 \leqslant k \leqslant m$$

Example 9. Take n=2, m=3, and consider the mapping $f: \mathbb{R}^5 \to \mathbb{R}^2$ given by

$$\begin{cases} f_1(x_1, x_2, y_1, y_2, y_3) = 2e^{x_1} + x_2y_1 - 4y_2 + 3\\ f_2(x_1, x_2, y_1, y_2, y_3) = x_2\cos(x_1) - 6x_1 + 2y_1 - y_3 \end{cases}$$

 $\vec{a} = (0,1), \vec{b} = (3,2,7), \text{ then } f(\vec{a},\vec{b}) = \vec{0}.$ We can use the previous theorem there

9.6 The Rank Theorem

For $\forall A \in L(X,Y)$, the null space of A, $\mathcal{N}(A)$ is the set of all $\vec{x} \in X$ s.t. $A\vec{x} = \vec{0}$. It is clear that $\mathcal{N}(A)$ is a vector space in X.

The range of A, $\mathcal{R}(A)$, is a vector space in Y.

The rank of A is the dimension of $\mathcal{R}(A)$.

An operator $P \in L(X)$ is said to be a projection in X if $P^2 = P$.

- **Proposition 1.** (a) If P is a projection in X, then every $\vec{x} \in X$ has a unique representation of the form $\vec{x} = \vec{x_1} + \vec{x_2}$.

 where $x_1 \in \mathcal{P}, \vec{x_2} \in \mathcal{N}(P)$.
 - (b) If X is finite dimensional vector space and X_1 is a vector space in X, then \exists a projection in X with $\mathcal{R}(P) = X$.
- (c) The level sets of F in U are the images under H of the flat level sets of Φ in V. They are "(n-r)-dimension surface" in U since $\dim \mathcal{N}(A) = n-r$.

Theorem 9.6.1 (The rank theorem). Suppose $m, n, r \in \mathbb{N} \cup 0$, $m \geq r, n \geq r$. F is \mathscr{C}' -mapping of an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , and $F'(\vec{x})$ has rank r for $\forall \vec{x} \in E$. Fix $\vec{a} \in E$, and let $A := F'(\vec{a})$. Let $Y_1 = \mathscr{R}(A)$, P be a projection in \mathbb{R}^m whose range is $Y_1, Y_2 := \mathscr{N}(P)$. Then \exists open sets U and V in \mathbb{R}^n , with $\vec{a} \in U, U \subset E$, and \exists 1-1 \mathscr{C}' -mapping H of V onto U (whose inverse is also of class \mathscr{C}') s.t.

$$F(H(\vec{x})) = A\vec{x} + \varphi(A\vec{x}), \, \forall \vec{x} \in V \tag{*}$$

where φ is a \mathscr{C}' -mapping of the open set $A(V) \subset Y_1$ into Y_2 .

Remark 11.

- (a) If $\vec{y} \in F(U)$ then $\vec{y} = F(H(\vec{x}))$ for some $\vec{x} \in V$.
 - $(\star) \Rightarrow P\vec{y} = A\vec{x}$
 - $\Rightarrow \vec{y} = P\vec{y} + \varphi(P\vec{y}), \forall \vec{y} \in F(U)$
 - $\Rightarrow P$ restricted to F(U) is 1-1 mapping of F(U) onto A(V).
 - $\Rightarrow F(U)$ is an "r-dimensional surface" with precisely one point "over" each point of A(V)
- (b) If $\Phi(\vec{x}) = F(H(\vec{x}))$, $(\star) \Rightarrow$ the level set of Φ are precisely the level set of A in V. There are "flat" since they are intersections with V of translates of the vector space $\mathcal{N}(A)$

9.7 Determinants

If (j_1, \dots, j_n) is an ordered *n*-tuple of integers. Define

$$s(j_1, \cdots, j_n) := \prod_{p < q} sgn(j_q - j_p) \tag{*}$$

Where

$$sgn(x) \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases}$$

Let [A] be the matrix of a linear operator A on \mathbb{R}^n , relative to the standard basis $\{\vec{e_1}, \dots, \vec{e_n}\}$, with entries a(i,j) in the ith row and jth column. The determinant of [A] is defined by

$$det[A] := \sum s(j_1, \dots, j_n)a(1, j_1) \dots a(n, j_n)$$
 (**)

where the sum is over all ordered *n*-tuples of integers (j_1, \dots, j_n) with $1, \leq j_r \leq n$.

The column vectors $\vec{x_j}$ of A are

$$\vec{x_j} = \sum_{i=1}^n a(i,j)\vec{e_i}, \quad 1 \leqslant j \leqslant n \tag{***}$$

$$det(\vec{x_1}, \cdots, \vec{x_n}) = det[A]$$

Theorem 9.7.1. (a) det(I) = 1

- (b) det is a linear function of each column vector $\vec{x_j}$ if the others are fixed.
- (c) If $[A]_1$ is obtained from [A] by interchanging two columns $det[A]_1 = -det[A]$.
- (d) If [A] has two equal columns, then det[A] = 0

Theorem 9.7.2. If [A] and [B] are $n \times n$ matrices, then det([B][A]) = det[B] det[A]

Theorem 9.7.3. A linear operator A on \mathbb{R}^n is invertible iff $\det[A] \neq 0$.

Remark 12. Suppose $\{\vec{e_1}, \dots, \vec{e_n}\}$ and $\{\vec{u_1}, \dots, \vec{u_n}\}$ are bases in \mathbb{R}^n . $\forall A \in L(\mathbb{R}^n)$ determinant of matrices [A] and $[A]_u$ is the same.

If $f: E \to \mathbb{R}^n$ is differentiable at $\vec{x} \in E$, the determinant of the linear operator $f'(\vec{x})$ is called the <u>Jacobian of f at \vec{x} </u>. In symbols $J_f(\vec{x}) = \det f'(\vec{x})$. If $(y_1, \dots, y_n) = f(x_1, \dots, x_n)$, we also use the notation $\frac{\partial (y_1, \dots, y_n)}{\partial (x_1, \dots, x_n)}$ for $J_f(\vec{x})$.

9.8 Derivatives of Higher Order

Suppose $f: E \to \mathbb{R}$ has partial derivatives $\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}$. If the functions $\frac{\partial f}{\partial x_j}$ are also differentiable, then <u>second-order</u> partial derivative of f are defined by

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial}{\partial x_i} \left(\frac{\partial f}{\partial x_j}\right), \quad i, j = 1, 2, \cdots, n$$

If all these functions $\frac{\partial^2 f}{\partial x_i \partial x_j}$ are continuous in E, we say that f is of class \mathscr{C}'' in E, or that $f \in \mathscr{C}''(E)$.

A mapping $f: E \to \mathbb{R}^m$ is said to be of class \mathscr{C}'' if each component of f is of class \mathscr{C}'' .

WLOG. We state the next two theorems for real functions of two variables.

Theorem 9.8.1. Suppose $E \subset \mathbb{R}^2$, $f: E \to \mathbb{R}$, and $\frac{\partial f}{\partial x_i}$ and $\frac{\partial^2 f}{\partial x_i \partial x_j}$ exists at each point in E. Suppose $Q \subset E$ is a closed rectangle with vertices (a,b), (a+h,b), (a,b+k), (a+h,b+k) where $h \neq 0$, $k \neq 0$, write

$$\Delta(f,Q) := f(a+h,b+k) - f(a+h,b) - f(a,b+k) + f(a,b)$$

Then \exists a point (x,y) in the interior of Q s.t. $\Delta(f,Q) = hk \frac{\partial^2 f}{\partial x_2 \partial x_1}(x,y)$

Proof. Define u(t) := f(t, b + k) - f(t, b). Then

$$\begin{split} \Delta(f,Q) &= u(a+h) - u(a) \xrightarrow{\underline{MVT}} hu'(x) \quad \text{where x is between a and $a+h$} \\ &= h[\frac{\partial f}{\partial x_1}(x,b+k) - \frac{\partial f}{\partial x_1}(x,b)] \\ &\stackrel{MVT}{=} hk \frac{\partial^2 f}{\partial x_2 \partial x_1}(x,y) \quad \text{where y is between b and $b+k$} \end{split}$$

Theorem 9.8.2. Suppose $f: E \to \mathbb{R}$, $\frac{\partial^2 f}{\partial x_2 \partial x_1} \frac{\partial f}{\partial x_2}$ and $\frac{\partial f}{\partial x_1}$ exist at each point of E, and $\frac{\partial^2 f}{\partial x_2 \partial x_1}$ is continuous at $(a,b) \in E$. Then $\frac{\partial^2 f}{\partial x_1 \partial x_2}$ exists at (a,b) and

$$\frac{\partial^2 f}{\partial x_1 \partial x_2}(a, b) = \frac{\partial^2 f}{\partial x_2 \partial x_1}$$

Corollary 7. If $f \in \mathscr{C}''(E)$, then $\frac{\partial^2 f}{\partial x_2 \partial x_1} = \frac{\partial^2 f}{\partial x_1 \partial x_2}$ on E.

Proof. Let $A:=\frac{\partial^2 f}{\partial x_2\partial x_1}(a,b)$. For $\forall \epsilon>0$, we may choose |h| and |k| small s.t.

$$\left| A - \frac{\partial^2 f}{\partial x_2 \partial x_1}(x, y) \right| < \epsilon \quad \forall (x, y) \in Q$$

The previous theorem $\Rightarrow \left| \frac{\Delta(f,Q)}{hk} - A \right| < \epsilon$ i.e.

$$\left| \frac{f(a+h,b+k) - f(a+h,b) - f(a,b+k) + f(a,b)}{hk} - A \right| < \epsilon$$

Fix $h \neq 0$, and let $k \to 0$, then

$$\left| \frac{\frac{\partial f}{\partial x_2}(a+h,b) - \frac{\partial f}{\partial x_2}(a,b)}{h} - A \right| \leqslant \epsilon$$

Let
$$h \to 0, \epsilon \to 0, \Rightarrow \frac{\partial^2 f}{\partial x_1 \partial x_2}(a, b) = A$$

remark. The proof focus on the range of $\Delta(f, Q)$.

9.9 Differentiation of Integrals

In this section, we study: under what conditions on φ can one prove that

$$\frac{d}{dt} \int_{a}^{b} \varphi(x,t) \, \mathrm{d}x = \int_{a}^{b} \frac{\partial \varphi}{\partial t}(x,t) \, \mathrm{d}x$$

Theorem 9.9.1. Suppose

- (a) $\varphi(x,t)$ is defined for $a \leqslant x \leqslant b, c \leqslant t \leqslant d$;
- (b) α is increasing on [a,b];
- (c) $\varphi(\cdot,t) \in \mathcal{R}(\alpha)$ for $\forall t \in [c,d]$.
- (d) $\exists s \in (c,d) \text{ s.t. } \text{ for } \forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } |\frac{\partial \varphi}{\partial t}(x,t) \frac{\partial \varphi}{\partial t}(x,s)| < \epsilon, \forall x \in [a,b], t \in N_{\delta}(s)$

Define $f(t) := \int_a^b \varphi(x,t) \, d\alpha(x)$. Then $\frac{\partial \varphi}{\partial t}(\cdot,s) \in \mathcal{R}(\alpha)$, f'(s) exists, and

$$f'(s) := \int_a^b \frac{\partial \varphi}{\partial t}(x, s) \, \mathrm{d}\alpha(x)$$

Proof. Define

$$\psi(x,t) := \frac{\varphi(x,t) - \varphi(x,s)}{t-s}, \quad 0 < |t-s| < \delta$$

$$MVT \Rightarrow \psi(x,t) = \frac{\partial \varphi}{\partial t}(x,u(x,t)), \quad \text{where } u(x,t) \text{ is between } t \text{ and } s$$

$$(d) \Rightarrow |\psi(x,t) - \frac{\partial \varphi}{\partial t}(x,s)| < \epsilon \tag{\triangle}$$

Note that

$$\frac{f(t) - f(s)}{t - s} = \int_{a}^{b} \psi(x, t) \, d\alpha(x) \tag{\triangle\triangle}$$

$$\begin{split} (\triangle) &\Rightarrow \psi(\cdot,t) \to \frac{\partial \varphi}{\partial t}(\cdot,s) \text{ uniformly on } [a,b] \text{ as } t \to s. \ (\triangle\triangle) \text{ and the theorem} \\ &\text{in } \S 7.3 \Rightarrow \frac{\partial \varphi}{\partial t}(\cdot,s) \in \mathscr{R}(\alpha), \ f'(s) \text{ exists, and} \end{split}$$

$$f'(s) := \int_a^b \frac{\partial \varphi}{\partial t}(x, s) \, \mathrm{d}\alpha(x)$$

Remark 13. One may prove analogues of the previous theorem with $(-\infty, \infty)$ in place of [a, b].