Tempo a disposizione: 2:30 ore

1) Algebra relazionale (3 punti totali):

Date le seguenti relazioni:

si scrivano in algebra relazionale le seguenti interrogazioni:

1.1) [1 **p.**] I codici dei viaggi dei furgoni della sede di Modena in cui c'è stata almeno una tappa intermedia dopo la metà del viaggio, e il viaggio era di almeno 700 km

1.2) [2 p.] Le targhe dei furgoni che non hanno mai fatto una tappa intermedia in viaggi di meno di 400 km

SQL (5 punti totali)

Con riferimento al DB dell'esercizio 1, si scrivano in SQL le seguenti interrogazioni:

2.1) [2 p.] Per ogni fascia di chilometri totali (0-399,400-799, ecc.) si determini la targa del furgone che ha effettuato più viaggi in quella fascia, e si ordini il risultato per fascia

2.2) [3 **p.**] Considerando solo i viaggi con almeno una tappa intermedia, si determini per ogni viaggio la lunghezza massima di una tappa

```
WITH LUNGHEZZA_TAPPE (IDV, Lung) AS (
  SELECT TP.IDV, TA.Km - TP.Km
  FROM TAPPE TP, TAPPE TA WHERE TP.IDV = TA.IDV
  AND TP.Num = TA.Num - 1 -- tappe consecutive
  AND EXISTS ( SELECT *
                               -- viaggio con sosta intermedia
                  FROM TAPPE T
                  WHERE T.IDV = TP.IDV
                  AND
                        T.Num > 1 )
SELECT LT.*
FROM LUNGHEZZA_TAPPE LT
WHERE LT.Lung >= ALL ( SELECT LT1.Lung
                       FROM LUNGHEZZA_TAPPE LT1
                       WHERE LT1.IDV = LT.IDV
                                                 );
-- La c.t.e. determina la lunghezza delle tappe di ciascun viaggio che ha
-- almeno una tappa intermedia (Num > 1)
```

3) Progettazione concettuale (6 punti)

L'istituto di vigilanza Tranquillo 24h (T24H) assicura il controllo a distanza di qualsiasi impianto d'allarme installato. T24H mantiene per ogni impianto d'allarme i dati del modello (ogni modello ha una marca, un nome e un codice univoco per quella marca), la data d'installazione e altri dettagli. Viene ovviamente registrato il tipo di edificio (abitazione in condominio, villa, capannone, ecc., scelto da un elenco predefinito), l'indirizzo, il nome del cliente e uno o più recapiti telefonici (un cliente può essere titolare di più sistemi di allarme). In caso di allarme ricevuto, l'operatore della T24H registra data e ora e contatta il cliente per ulteriori informazioni. Sulla base di quanto appurato, T24H può avviare un intervento inviando una pattuglia, oppure inoltrare la richiesta ai Vigili del Fuoco e/o alle Forze dell'Ordine. Nel caso di intervento si registrano la targa dell'auto di pattuglia inviata e i dipendenti a bordo dell'auto (ogni dipendente ha un codice, nome, cognome e un numero di telefono).

Commenti:

- Gli attributi di SENZA INTERVENTO non possono essere entrambi nulli (vincolo at-lst-1).
- La gerarchia è parziale perché la decisione di cosa fare avviene successivamente alla registrazione dell'allarme ricevuto.

E3

id: K3

<u>K3</u>

D

′R3

1-1

0-N

E1

id: K1

<u>K1</u>

Α

В

0-N

4) Progettazione logica (6 punti totali)

Dato lo schema concettuale in figura e considerando che:

- a) tutti gli attributi sono di tipo INT;
- b) le entità E1 ed E2 vengono tradotte insieme;
- c) nessuna associazione viene tradotta separatamente;
- d) un'istanza di E3 non è mai associata a un'istanza di E1 che partecipa all'associazione R2 dal ramo 0-N;
- **4.1**) [3 p.] Si progettino gli opportuni schemi relazionali e si definiscano tali schemi in DB2 (sul database SIT_STUD) mediante un file di script denominato SCHEMI.txt (o SCHEMI.sql)

```
CREATE TABLE E1 (
     INT NOT NULL PRIMARY KEY,
K1
A
      INT NOT NULL,
В
      INT NOT NULL,
K1R1 INT NOT NULL REFERENCES E1,
     SMALLINT NOT NULL CHECK (TIPO IN (1,2)),
                                                   -- 2: istanza anche di E2
      INT.
K1R2 INT REFERENCES E1.
CONSTRAINT E2 CHECK ((TIPO = 1 AND C IS NULL AND K1R2 IS NULL) OR
                       (TIPO = 2 AND C IS NOT NULL AND K1R2 IS NOT NULL))
                                                                               );
CREATE TABLE E3 (
     INT NOT NULL PRIMARY KEY,
K3
D
      INT NOT NULL,
K1R3 INT REFERENCES E1,
      INT,
CONSTRAINT R3 CHECK ((E IS NULL AND K1R3 IS NULL) OR
                       (E IS NOT NULL AND K1R3 IS NOT NULL))
                                                                        );
```

4.2) [3 p.] Per i vincoli non esprimibili a livello di schema si predispongano opportuni **trigger che evitino inserimenti di singole tuple non corrette**, definiti in un file TRIGGER.txt (o TRIGGER.sql) e usando se necessario il simbolo '@' per terminare gli statement SQL (altrimenti ';')

```
CREATE TRIGGER R1
BEFORE INSERT ON E1
REFERENCING NEW AS N
FOR EACH ROW
WHEN ( NOT EXISTS ( SELECT *
                     FROM E1
                     WHERE N.K1R1 = E1.K1
                     AND
                             E1.TIPO = 2 ))
SIGNAL SQLSTATE '70001' ('L''istanza di E1 deve referenziare un"istanza di E2!');
-- Il vincolo può essere violato inserendo in E1 o in E3; i trigger confrontano comunque i valori di 2 foreign key
CREATE TRIGGER PUNTO D E1
BEFORE INSERT ON E1
REFERENCING NEW AS N
FOR EACH ROW
WHEN (EXISTS (SELECT * FROM E3 WHERE N.K1R2 = E3.K1R3) )
SIGNAL SQLSTATE '70002' ('L''istanza di E1 referenziata da N.K1R2 partecipa all''associazione R3!');
CREATE TRIGGER PUNTO D E3
BEFORE INSERT ON E3
REFERENCING NEW AS N
FOR EACH ROW
WHEN (EXISTS (SELECT * FROM E1 WHERE N.K1R3 = E1.K1R2)
SIGNAL SQLSTATE '70003' ('L"istanza di E1 referenziata da N.K1R2 partecipa all"associazione R2 lato 0-N!');
```