Model Selection Al4003-Applied Machine Learning

Dr. Mohsin Kamal

Department of Electrical Engineering National University of Computer and Emerging Sciences, Lahore, Pakistan

- Debugging
- Evaluation
- 3 Model selection
- Diagnosing bias vs. variance
- Regularization and bias/variance
- Learning curves
- Deciding what to try next (revisited)

1 Debugging

Debugging

- 2 Evaluation
- 3 Model selection
- 4 Diagnosing bias vs. variance
- 5 Regularization and bias/variance
- 6 Learning curves
- 7 Deciding what to try next (revisited)

Debugging a learning algorithm:

Suppose you have implemented regularized linear regression to predict output.

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{m} \theta_j^2 \right]$$

However, when you test your hypothesis on a new set of data, you find that it makes unacceptably large errors in its predictions. What should you try next?

- Get more training examples
- Try smaller sets of features
- Try getting additional features
- Try adding polynomial features (x_1^2, x_2^2, x_1x_2) etc.)
- \blacksquare Try decreasing λ
- Try increasing λ

Machine learning diagnostic:

Diagnostic: A test that you can run to gain insight what is/isn't working with a learning algorithm, and gain guidance as to how best to improve its performance.

Diagnostics can take time to implement, but doing so can be a very good use of your time.

- Debugging

- Evaluation

Evaluating your hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Fails to generalize to new examples not in training set.

 x_1 = Size of the house

 $x_2 = No.$ of bedrooms

 $x_3 = No.$ of floors

 x_4 = Age of the house

÷

 $x_{100} = \text{Kitchen size}$

Evaluating your hypothesis

Dataset:

-	Size	Price	
Training set	2104	400	$(x^{(1)}, y^{(1)}) \ (x^{(2)}, y^{(2)})$
	1600	330	
	2400	369	
	1416	232	→
	3000	540	$(x^{(m)},y^{(m)})$
	1985	300	(- , , ,)
	1534	315	
Test	1427	199	$(x_{test}^{(1)}, y_{test}^{(1)})$
	1380	212	$\xrightarrow{(x_{test}, y_{test})} (x_{test}^{(2)}, y_{test}^{(2)})$
	1494	243	(wtest, Hest)
			$(x_{test}^{(m_{test})}, y_{test}^{(m_{test})})$

Training/testing procedure for linear regression

- Learn parameter θ from training data (minimizing training error $J(\theta)$)
- Compute test set error:

Debugaina

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

Training/testing procedure for logistic regression

- Learn parameter θ from training data
- Compute test set error:

$$J(heta) = -rac{1}{m_{test}}\sum_{i=1}^{m_{test}}y_{test}^{(i)}\log h_{ heta}(x_{test}^{(i)}) + (1-y_{test}^{(i)})\log(h_{ heta}(x_{test}^{(i)}))$$

- Misclassification error (0/1 misclassification error):
 - $err(h_{\theta}, y) = 1$ if $h_{\theta} > 0.5, y = 0$
 - $ightharpoonup err(h_{\theta}, y) = 1$ if $h_{\theta} < 0.5, y = 1$
 - \blacksquare err(h_{θ} , y) = 0 otherwise
 - Test error = $\frac{1}{m_{test}} \sum_{i=1}^{m_{test}} err(h_{\theta}(x_{test}^{(i)}, y_{test}^{(i)})$

- Model selection

Once parameters $\theta_0, \theta_1, \dots, \theta_4$ were fit to some set of data (training set), the error of the parameters as measured on that data (the training error $J(\theta)$) is likely to be lower than the actual generalization error.

Model selection

1
$$h_{\theta} = \theta_0 + \theta_1 x$$

2
$$h_{\theta} = \theta_0 + \theta_1 x + \theta_2 x^2$$

$$\begin{array}{ll}
3 & h_{\theta} = \theta_0 + \theta_1 x + \dots + \theta_3 x^3 \\
\vdots & & \end{array}$$

10
$$h_{\theta} = \theta_0 + \theta_1 x + \cdots + \theta_{10} x^{10}$$

Lets assume that we choose $\theta_0 + \cdots + \theta_5 x^5$ because it gives low value for $J_{train}(\theta)$

How well does the model generalize? Report test set error $J_{test}(\theta^{(5)}).$

Problem: $J_{test}(\theta^{(5)})$ is likely to be an optimistic estimate of generalization error, i.e., our extra parameter (d = degree of polynomial) is fit to test set.

Evaluating your hypothesis

Dataset:

Debugging

	Size	Price
	2104	400
T1-1	1600	330
Training set	2400	369
	1416	232
	3000	540
	1985	300
Cross validatio	1534	315
set	1427	199
Test	1380	212
set	1494	243

Train/validation/test error

Training error:

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross validation error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Test error:

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{\theta}(x_{test}^{(i)}) - y_{test}^{(i)})^2$$

Model selection

1
$$h_{\theta} = \theta_0 + \theta_1 x$$

2
$$h_{\theta} = \theta_0 + \theta_1 x + \theta_2 x^2$$

$$3 h_{\theta} = \theta_0 + \theta_1 x + \dots + \theta_3 x^3$$

10
$$h_{\theta} = \theta_0 + \theta_1 x + \cdots + \theta_{10} x^{10}$$

Let's assume that we get minimum cross validation error on polynomial order = 4

We pick $\theta_0 + \theta_1 x_1 + \cdots + \theta_4 x^4$

Estimate generalization error for test set $J_{test}(\theta^{(4)})$

- Diagnosing bias vs. variance

Bias/variance

Bias/variance

High bias (underfit)

"Just right"

High variance (overfit)

Bias/variance

Debugaina

Training error:

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Cross validation error:

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{\theta}(x_{cv}^{(i)}) - y_{cv}^{(i)})^2$$

Diagnosing bias vs. variance

Suppose your learning algorithm is performing less well than you were hoping. $(J_{cv}(\theta) \text{ or } J_{test}(\theta) \text{ is high.})$ Is it a bias problem or a variance problem?

Bias (underfit): $J_{train}(\theta)$ will be high $J_{cv}(\theta) \approx J_{train}(\theta)$

Variance (overfit): $J_{train}(\theta)$ will be low $J_{cv}(\theta) >> J_{train}(\theta)$

- Regularization and bias/variance

Model: $h_{\theta} = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$ $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{i=1}^{m} \theta_j^2$

Large λ High bias (underfit)

"Just right"

High variance (overfit)

Choosing the regularization parameter λ

$$egin{aligned} h_{ heta} &= heta_0 + heta_1 x + heta_2 x^2 + heta_3 x^3 + heta_4 x^4 \ J(heta) &= rac{1}{2m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)})^2 + rac{\lambda}{2m} \sum_{j=1}^m heta_j^2 \ J_{train}(heta) &= rac{1}{2m} \sum_{i=1}^m (h_{ heta}(x^{(i)}) - y^{(i)})^2 \ J_{cv}(heta) &= rac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{ heta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^2 \ J_{test}(heta) &= rac{1}{2m_{test}} \sum_{i=1}^{m_{test}} (h_{ heta}(x^{(i)}_{test}) - y^{(i)}_{test})^2 \end{aligned}$$

Choosing the regularization parameter λ

$$h_{\theta} = \theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \frac{\lambda}{2m} \sum_{i=1}^{m} \theta_j^2$$

- 1 Try: $\lambda = 0$
- 2 Try: $\lambda = 0.01$
- 3 Try: $\lambda = 0.02$
- 4 Trv: $\lambda = 0.04$
- 5 Trv: $\lambda = 0.08$

12 Try: $\lambda \approx 10$

For example $\theta^{(5)}$ gives low value for $J_{CV}(\theta^{(5)})$, then compute

$$J_{test}(\theta^{(5)})$$

- Debugging

- Learning curves

Learning curves

$$J_{train}(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$J_{train}(heta) = rac{1}{2m} \sum_{i=1}^{m} (h_{ heta}(x^{(i)}) - y^{(i)})^2 \ J_{cv}(heta) = rac{1}{2m_{cv}} \sum_{i=1}^{m_{cv}} (h_{ heta}(x^{(i)}_{cv}) - y^{(i)}_{cv})^2$$

High bias

Debugaina

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

High variance

Debugaina

If a learning algorithm is suffering from high variance, getting more training data is likely to help.

•00

- Deciding what to try next (revisited)

Debugging a learning algorithm:

Debuaaina

Suppose you have implemented regularized linear regression to predict housing prices. However, when you test your hypothesis in a new set of houses, you find that it makes unacceptably large errors in its prediction. What should you try next?

- Get more training examples → fixes high variance
- Try smaller sets of features → fixes high variance
- Try getting additional features → fixes high bias
- Try adding polynomial features $(x_1^2, x_2^2, x_1x_2 \text{ etc.}) \rightarrow \text{fixes}$ high bias
- Try decreasing $\lambda \rightarrow$ fixes high bias
- Try increasing $\lambda \rightarrow$ fixes high variance

Neural networks and overfitting

"Small" neural network (fewer parameters; more prone to underfitting)

Debugaina

Computationally cheaper

"Large" neural network (more parameters; more prone to overfitting)

Computationally more expensive. Use regularization (λ) to address overfitting.