การหาแนวโน้มของตลาดหุ้น S&P 500

ปริญญา อบอุ่น

ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเกษตรศาสตร์

บทคัดย่อ

โครงงานนี้นำเสนอระบบหาแนวโน้มของตลาดหุ้นดัชนี S&P 500 โดยใช้เทคนิคการประมวลผลสัญญาณ ดิจิทัล ได้แก่ เส้นค่าเฉลี่ยเคลื่อนที่ (Simple Moving Average: SMA) เส้นค่าเฉลี่ยเคลื่อนที่แบบเอ็กซ์โพเนน เชียล (Exponential Moving Average: EMA) และโมเดล Auto-Regressive Integrated Moving Average (ARIMA) สำหรับการพยากรณ์ทิศทางตลาด การศึกษานี้ใช้ข้อมูลราคาปิดรายวันของดัชนี S&P 500 ตั้งแต่ปี 2015-2025 จำนวน 2,516 จุด โดยข้อมูลผ่านการทดสอบคุณสมบัติ Stationarity ด้วย Augmented Dickey-Fuller (ADF) และ Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test และหาค่าพารามิเตอร์ที่ เหมาะสมด้วยวิธี Grid Search จำนวน 1,000,000 combinations (1000 × 1000)

จากการทดลองพบว่าวิธี EMA Crossover ที่ใช้ EMA(101) ตัดกับ EMA(465) ให้ประสิทธิภาพสูงสุด โดยมีค่า Accuracy 55.68% และ Precision 55.70% รองลงมาคือการใช้ EMA(420) ตัดกับ SMA(484) ที่ให้ค่า Accuracy 55.66% และ Precision 56.19% ส่วนโมเดล ARIMA(2,0,2) ให้ค่า Accuracy 53.56% และ Precision 55.64% ทั้งสามวิธีมีประสิทธิภาพสูงกว่าการทำนายแบบสุ่มอย่างมีนัยสำคัญ (ประมาณ 3.5-5.7% สูงกว่า baseline 50%) ผลการศึกษานี้แสดงให้เห็นถึงความเป็นไปได้ในการประยุกต์ใช้หลักการทางการ ประมวลผลสัญญาณดิจิทัลเพื่อสร้าง Technical Indicator ที่มีประสิทธิภาพในการวิเคราะห์ตลาดหุ้น

Abstract

This project presents a trend analysis system for the S&P 500 stock market index using digital signal processing techniques, including Simple Moving Average (SMA), Exponential Moving Average (EMA), and Auto-Regressive Integrated Moving Average (ARIMA) model for market direction forecasting. The study utilizes daily closing price data of the S&P 500 index from 2015 to 2025, comprising 2,516 data points. The data underwent stationarity testing using Augmented Dickey-Fuller (ADF) and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests, with optimal parameters determined through Grid Search of 1,000,000 combinations (1000 \times 1000).

Experimental results demonstrate that the EMA Crossover strategy using EMA(101) \times EMA(465) achieves the highest performance with 55.68% accuracy and 55.70% precision, followed by EMA(420) \times SMA(484) with 55.66% accuracy and 56.19% precision. The ARIMA(2,0,2) model yields 53.56% accuracy and 55.64% precision. All three methods significantly outperform random prediction (approximately 3.5-5.7% above the 50% baseline), demonstrating the feasibility of applying digital signal processing principles to develop effective technical indicators for stock market analysis.

1 บทน้ำ

1.1 ที่มาและความสำคัญ

ในสถานการณ์ปัจจุบันโลกนั้นได้เจอกับการ เปลี่ยนแปลงโดยการมีมาตราการจากนโยบายการ เงินที่ผ่อนคลายเชิงระบบ (Quantitative Easing) ของธนาคารกลางทั่วโลกทำให้เกิดการขยายตัวของ ปริมาณเงินในระบบหรือที่เรียกว่าเงินเฟ้อ โดยข้อมูล จาก Federal Reserve แสดงให้เห็นว่าปริมาณเงิน M2 เพิ่มขึ้นอย่างมากมาย

ดังนั้นถ้าอยากให้ความสามารถในการจับจ่าย ใช้สอยได้เท่าเดิมเราต้องเอาเงินของเราไปลงทนเพื่อที่ จะทำให้เงินของเรางอกเงย

โครงงานชิ้นนี้จะพัฒนาและวิเคราะห์โดยใช้ ความรู้ทางด้าน Digital signal processing เพื่อ สร้างตัวชี้วัด (indicator) ที่สามารถตรวจวัดการ เปลี่ยนแปลงของตลาด

1.2 วัตถุประสงค์

- 1. พัฒนาระบบวิเคราะห์แนวโน้มของตลาดหุ้น S&P 500 โดยใช้เทคนิค Moving Average Crossover และ statistical model (ARIMA)
- 2. สร้าง Technical Indicator ที่มีความแม่นยำ มากกว่าการสุ่ม (50%) โดยต้องมากกว่าแบบมี นัยสำคัญ
- 3. วิเคราะห์คุณสมบัติของ stationarity ของข้อมูล S&P 500 index ด้วย ADF และ KPSS test

1.3 ขอบเขต

โครงงานนี้มีขอบเขตดังต่อไปนี้ :

- 1. ขอบเขตด้านปฏิบัติ
- ใช้ข้อมูลราคาปิดของกราฟรายวัน (daily) ของ S&P 500 index (^GSPC) จาก Yahoo Finance
- ช่วงเวลา: 1 มกราคม 2015 ถึง 1 มกราคม 2025 (เป็นระยะเวลา 10 ปี)
- จำนวนจุดข้อมูล: 2,516 observations
- ประเภทข้อมูล: ราคาปิด (close price) ในรูป แบบ time series ที่สัญญานเป็น nonstationary
- 2. ขอบเขตด้านวิธีการ

- Technical analysis: ศึกษาแค่ Moving average indicator (SMA และ EMA)
- Optimization: Grid Search 1000x1000 (1,000,000 combination)
- Evaluation: เน้นความแม่นย้ำ accuracy ไม่รวม profit/loss
- 3. ขอบเขตด้านการทดสอบ
- ทดสอบประสิทธิภาพด้วย rolling window prediction (one-step ahead)
- ใช้ entire dataset ไม่มีการแบ่ง train / test

2 ทฤษฎีที่นำเสนอ

2.1 ทฤษฎีที่เกี่ยวข้อง (Theoretical Background)

2.1.1 เส้นค่าเฉลี่ยเคลื่อนที่ (Moving average)

นิยาม Moving average (MA) เป็นตัวกรองแบบ Finite Impulse Response (FIR) ที่ใช้ในทางด้าน Digital Signal Processing โดยตัว Moving Average (MA) ทำหน้าที่เป็น Low-pass Filter เพื่อ ลดความถี่สูงของสัญญานรบกวน (high-frequency noise) และทำให้เห็นแนวโน้มพื้นฐาน (underlying trend) ของอนุกรมเวลา

โดยทำการเฉลี่ยค่าล่าสุดในหน้าต่างขนาด n

$$\mathrm{MA}_w(t) = \left(\frac{1}{w}\right) \sum_{i=t-w+1}^t x_i$$

โดยที่:

- ullet $\mathrm{MA}_w(t)$ คือ ค่าเฉลี่ยเคลื่อนที่ (Moving average) ณ เวลาที่ด้วยขนาดหน้าต่าง w
- $oldsymbol{\cdot}$ w คือ ขนาดหน้าต่าง
- x_i คือค่าที่เวลา i
- $oldsymbol{\cdot}$ t คือ เวลาปัจจุบัน

คุณสมบัติทางคณิตศาสตร์ (Mathematical Properties):

- Linear Time-Invariant(LTI) System: MA เป็น ระบบ LTI ที่มีคุณสมบัติ causality และ stability
- 2. Phase Delay: ทำให้เกิด phase delay เท่ากับ $\frac{w-1}{2}$ samples
- 3. Smoothing Factor: ระดับการปรับเรียบผกผัน กับ $m{w}$

Implement: ใน rust ระบบใช้ module sma.rs ที่ implement โดยใช้ O(n) สำหรับการคำนวณ

การใช้ MA ช่วยลดความผันผวนของสัญญานและ ช่วยให้มองเห็นแนวโน้มที่ชัดเจนยิ่งขึ้นแม้ว่าหุ้นนั้นจะ แกว่งมากก็ตาม

2.1.2 เส้นค่าเฉลี่ยเคลื่อนที่แบบเอ็กซ์ โพเนนเชียล (Exponential moving average)

นิยาม Exponential Moving Average (EMA) เป็น ตัวกรองแบบ Infinite Impulse Response (IIR) ที่ ให้น้ำหนักแบบ exponential decaying กับข้อมูล ในอดีต ทำให้มีการตอบสนอง (response) ที่รวดเร็ว กว่า MA

$$\begin{split} \mathrm{EMA}_w(t) &= \alpha x_t + \mathrm{EMA}_{\text{t-1}}(1 - \\ \alpha) \end{split}$$

โดยที่:

- $\alpha = \frac{S}{1 + \mathrm{Davs}}$ = smoothing factor
- $oldsymbol{\cdot}$ S = smoothing constant (ใช้ค่า 2 ใน โปรเจคนี้)
- Days = จำนวน periods (windows)
- x_t = ค่าปัจจุบัน
- ullet EMA_{t-1} = ค่า EMA ก่อนหน้า

คุณสมบัติทางศาสตร์ (Mathematical Properties):

1. Memory Effect: EMA มี infinite memory แต่ให้น้ำหนักลดแบบ exponential: $w_k = lpha (1-lpha)^k$

- 2. Effective WIndow: หน้าต่างทำให้เกิด phase delay เท่ากับ $rac{2}{lpha}-1$ periods
- 3. Lag Reduction: มี lag น้อยกว่า SMA เท่ากัย $rac{w-1}{2}$ periods

Implementation: ema.rs ใช้ interative approach ด้วย time complexity O(n) และ space complexity O(1)

จะเป็นสูตรที่ตอบสนองต่อการเปลี่ยนแปลงของ ข้อมูลได้เร็วกว่าจะช่วยบอก trend (แนวโน้ม) ของ ตลาดได้เร็วกว่าแบบเคือ MA

2.1.3 Auto-Regressive Integrated Moving Average

ARIMA คือโมเดลสำหรับวิเคราะห์อนุกรมเวลา โดย รวมองค์ประกอบของการถดถอยอัตโนมัติ (Auto-Regressive) และค่าเฉลี่ยเคลื่อนที่ (Mean Average) เข้าด้วยกัน พร้อมกับการทำให้ข้อมูลเป็น สถิติก่อนด้วยการหาค่าต่าง (differencing) จำนวน d ครั้ง โมเดล ARIMA สามารถเขียนเป็น:

$$\begin{array}{l} Y_t = c + \sum_{i=1}^p \Phi_i Y_{t-i} + \varepsilon_t + \\ \sum_{j=1}^q \Theta_j \varepsilon_{t-j} \end{array}$$

เลือก parameter โดยการ โดยที่:

- Y_t = ค่าที่สังเกต ณ เวลา t (หลัง differencing)
- c = ค่าคงที่ (drift term)
- Φ_i = สัมประสิทธิ์ Auto-Regressive(AR) ที่ lag i ($|\Phi_i| < 1$ สำหรับ stationarity)
- Θ_j = สัมประสิทธิ์ Moving-average (MA) ที่ lag j ($\left|\Theta_j\right|$ < 1 สำหรับ invertibility)
- $arepsilon_t$ = white noise error term \sim $N(0,\sigma^2)$
- L = lag Operator ($L^k \cdot Y_t = Y_{t-k}$)

การระบุ Parameters (model Identification):

- 1. Differencing Order (d):
 - ใช้ Augmented Dickey-Fuller (ADF) test
 - KPSS test สำหรับ trend stationarity

- 2. AR Order (p) ผ่าน PACF:
 - ใช้ OLS regression
 - Cut-off criterion: $|{
 m PACF}(K)| < rac{1.96}{\sqrt{n}}$
- 3. MA Order (q) ผ่าน ACF:
 - ใช้ FFT-base Compute สำหรับงาน efficiency
 - Autcorrelation function ที่ lag k

2.1.4 การแปลงฟูเรียร์แบบเร็ว (Fast Fourier Transform)

เป็น algorithm ที่ optimal ที่สุดในเวลานี้สำหรับ การคำนวณ Discrete Fourier Transform (DFT):

$$X[k] = \sum_{n=0}^{N-1} \left(x[n]*e^{rac{-j2\pi kn}{N}}
ight)$$
การนำมาประยุกต์:

- 1. Spectral Density Estimation
- 2. ACF via Wiener-Khinchin Theorem
- 3. Periodicity Detection

2.2 การประเมินประสิทธิภาพของระบบ

1. Accuracy (ความถูกต้องโดยรวม):

$$Accuracy = \frac{TP + TN}{Total}$$

2. Precision (ความแม่นย้า):

$$Precision = \frac{TP}{TP + FP}$$

2.3 วิธีการแก้ปัญหา

2.3.1 โครงสร้างระบบ (System

Architecture)

src/module/

— data

— eval.rs

— indicator

— model

mod.rs

— plot

├─ util

- workflow.rs

Design Principles:

- 1. ประสิทธิภาพของระบบ (Performance)
- 2. ความแม่นยำ (Accuracy)
- 3. ความทนทาน (Robustness)
- 4. การทำซ้ำได้ (Reproducibility):

2.3.1 Algorithm Implementation Details

EMA Crossover Strategy:

- Fast Ema (period สั้น) ตัดบน Slow Ema (period ยาว) = Buy Signal
- Zero-padding สำหรับ boundary conditions
- Time Complexity: O(n) per prediction

ARIMA (Auto-Regressive integrate moving average):

- 1. Stationnary testing -> ADF/KPSS test
- Parameter Selection -> PADF/ACF analysis
- 3. Model fitting -> CSS optimization
- 4. Rolling Prediction -> One-step ahead forecasts
- 5. Performance Evaluation -> Directional accuracy

3 ผลการทดลอง

การทดสอบใช้ข้อมูลของหุ้น S&P 500 Index (^GSPC) จาก Yahoo Finance ระหว่างวันที่ 1 มกราคม 2015 ถึง 1 มกราคม 2025 ทั้งหมดคือ 2,516 จุดรายวัน (daily) โดยใช้ตัวแปรคือราคาปิด ของวันนั้น

ข้อมูลทั้งหมดที่เป็นความต่างของข้อมูลวันนี้และเมื่อ วาน (log return) จะถูกนำไปใช้ใน ARIMA เพื่อการ พยากรณ์ว่าจะขึ้นหรือลงวันพรุ่งนี้ที่ (T+1) โดยต้อง นำไปทดสอบเพื่อหา parameter คือ ค่า d ว่าเท่า กับเท่าไร ถ้าเป็น stationary จะให้ค่า d = 0 ถ้าไม่ ใช่ stationary จะให้ค่า d = 1

ผลการทดสอบ Stationarity (Diff)

- * ADF Test (Diff): t=-41.160 < -3.460 (ค่าวิกฤต 1%) \Longrightarrow Stationary
- KPSS Test (Diff): 0.175 < 0.739 (ค่าวิกฤต 1%) \Longrightarrow Level-stationary

สรุป:ผลการทดสอบ ADF แสดงค่า t-statistic ที่ต่ำ กว่าค่าวิกฤตอย่างมีนัยสำคัญ (p < 0.01) ทำให้ ปฏิเสธสมมติฐานหลักของ unit root ได้ ขณะที่ KPSS test ไม่สามารถปฏิเสธสมมติฐานหลักของ stationarity ได้ แสดงว่าข้อมูลมีคุณสมบัติ stationary เหมาะสมสำหรับการใช้งาน

จากผลดังตารางเราจะให้ค่า d = 0 เป็น stationary จะเรียกว่า ARMA(p,q)

การเลือกพารามิเตอร์ของโมเดล

การวิเคราะห์ Partial Autocorrelation Function (PACF) ด้วยวิธี Levinson-Durbin และ OLS regression ให้ผลสอดคล้องกันที่ p=1 โดยใช้ เกณฑ์ cutoff ที่ระดับความเชื่อมั่น 95% ($\pm \frac{1.96}{\sqrt{n}}=\pm 0.0391$)

การหาค่า MA Order (q) ด้วย ACF

การวิเคราะห์ Autocorrelation Function ด้วย FFT-based algorithm แสดงผลดังนี้:

- First-drop criterion: q=2
- Largest significant lag: q=10

จะพิจารณาเลือกใช้ first drop

3.4.1 Grid Search Optimization

จะทำการค้นหาค่าที่ดีที่สุด (accuracy) สูงสุดด้วย การทดสอบ 1000 x 1000 ของ ema/sma period ได้ผลดังนี้

ผลลัพธ์สรุป (Top)

- Best: EMA(101) × EMA(465) —
 Accuracy 55.68%, Precision 55.70%.
- รองลงมา: EMA(420) x SMA(484) —
 Accuracy 55.66%, Precision 56.19%
- อ้างอิงเชิงสถิติ: ARIMA(2,0,2) —
 Accuracy 53.56%, Precision 55.64%.

4 การวิเคราะห์และสรุปผล

- 1. ประสิทธิภาพของ technical indicator: ด้วยใช้ วิธี EMA crossover จะได้ประสิทธิภาพที่ EMA(101) x EMA(465) ได้ผลลัพธ์ที่ดีที่สุดโดย วัดจากความแม่นยำ accuracy คือ 55.68% และ precision ที่ 55.70%
- 2. ข้อจำกัดของ ARIMA: ตลาดหุ้นเป็น non linear และ deterministic ทำให้ ARIMA ไม่สามารถ ประมาณค่าได้แม่นยำมาก โดยในการทดลองนี้ ใกล้เคียงกับ moving average crossover

โครงงานนี้แสดงให้เห็นการประยุกต์โดยใช้เทคนิค ทาง digital signal processing เพื่อสร้าง trend indicator ที่มีประสิทธิภาพเหนือกว่าการสุ่มแบบ โยนเหรียญอย่างมีนัยสำคัญที่ประมาณ 6%

5 กิตติกรรมประกาศ

โครงงานฉบับนี้สำเร็จลุล่วงไปได้ด้วยดี ขอกราบขอบ พระคุณ อาจารย์ ดร.กิตติผล โหราพงษ์ ที่ให้คำ แนะนำ คำปรึกษา และข้อเสนอแนะอันมีค่าตลอด เวลาการทำโครงงาน

และขอขอบคุณเพื่อนๆที่คอยให้กำลังใจและ สนับสนุน

หากโครงงานฉบับนี้มีข้อบกพร่องประการใด ผู้จัดทำ ขออภัยมา ณ ที่นี้ และยินดีรับฟังข้อเสนอแนะเพื่อไป ปรับปรุงแก้ไขต่อไป

6 เอกสารอ้างอิง

[1] Algorithmic-Oriented Digital Signal Processing for Computer Engineers 01204496, "บท 5: การประมวลผลสัญญาณปรับได้

- (Adaptive Signal Processing)," lecture notes, [in Thai].
- [2] Anthropic, "Claude AI [Large language model]," Sep. 2025. [Online]. Available: https://www.anthropic.com/claude
- [3] P. S. R. Diniz, Signal Processing and Machine Learning Theory. Academic Press, 2024.
- [4] G. Gundersen, "Returns and Log Returns," Sep. 2022. [Online]. Available: https://gregorygundersen.com/blog/2022/02/ 06/log-returns/
- [5] OpenAI, "ChatGPT [Large language model]," Sep. 2025. [Online]. Available: https://chatgpt.com
- [6] S. Prabhakaran, "Time Series Analysis in Python A Comprehensive Guide with Examples," MachineLearningPlus (ML+), Feb. 13, 2019. [Online]. Available: https://www.machinelearningplus.com/time-series/time-series-analysis-python/
- [7] The Rust Project Developers, The Rustdoc Book. [Online]. Available: https://doc.rust-lang.org/rustdoc/. [Accessed: Sep. 2025].
- [8] Machine Learning Plus, "ARIMA Model Time Series Forecasting in Python," 2025. [Online]. Available: https://www.machinelear ningplus.com/time-series/arima-model-time-series-forecasting-python/. [Accessed: Sep. 2025].
- [9] Federal Reserve Bank of St. Louis, "M2 Money Stock (WM2NS)," FRED Economic Data. [Online]. Available: https://fred.

- stlouisfed.org/series/WM2NS. [Accessed: Sep. 2025].
- [10] Wikipedia, "Autoregressive integrated moving average," 2025. [Online]. Available: https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average. [Accessed: Sep. 2025].
- [11] Wikipedia, "Autoregressive moving-average model," 2025. [Online]. Available: https://en.wikipedia.org/wiki/Autoregressive_moving-average_model. [Accessed: Sep. 2025].
- [12] GeeksforGeeks, "ARMA Time Series Model," 2025. [Online]. Available: https://www.geeksforgeeks.org/data-science/armatime-series-model/. [Accessed: Sep. 2025].
- [13] M. Halls-Moore, "Autoregressive Moving Average (ARMA) p, q Models for Time Series Analysis Part 1," QuantStart. [Online]. Available: https://www.quantstart.com/articles/Autoregressive-Moving-Average-ARMA-p-q-Models-for-Time-Series-Analysis-Part-1/. [Accessed: Sep. 2025].