Архитектурный документ. Ядро PySATL

Михаил Михайлов, Леонид Елкин $13~{\rm сентябр} \ 2025~{\rm r}.$

Оглавление

1	Введение	2
	1.1 Назначение системы	2
	1.2 Область применимости	2
	1.3 Общие сведения о системе	2
2	Глоссарий	3
3	Заинтересованные лица	10
4	Ключевые требования, определяющие архитектуру	11
5	Избранные архитектурные точки зрения 5.1 Контекст	12 12

Раздел 1 -

Введение

1.1. Назначение системы

Вычислительное ядро проекта PySATL предназначено для представления и обработки вероятностных распределений в программной форме. Ядро предоставляет средства для задания распределений и их семейств, выполнения операций над ними и построения более сложных структур путём функциональных и алгебраических преобразований.

Система поддерживает задание как конкретных распределений с определёнными параметрами, так и абстрактных семейств, из которых могут быть получены конкретные экземпляры. Кроме того, предусмотрена возможность определения пользовательских распределений и преобразований, расширяющих базовые возможности.

Ядро служит универсальной основой для статистических и вероятностных вычислений в рамках проекта PySATL и может использоваться другими подсистемами при построении моделей.

1.2. Область применимости

Вычислительное ядро **core** используется во всех подсистемах проекта PySATL, где требуется работа с распределениями вероятностей. Оно предназначено как для непосредственного вычисления характеристик распределений (например, плотности, функции распределения, квантилей), так и для построения и трансформации более сложных моделей на их основе.

Ядро может быть использовано:

- при определении конкретных распределений, используемых в анализе данных;
- для задания пользовательских распределений, комбинации распределений и создания новых семейств;
- при трансформации распределений через функциональные отображения;
- в задачах символьной или численной обработки распределений.

Вне проекта PySATL ядро может быть применимо в любых системах, где необходима гибкая и расширяемая работа с вероятностными распределениями, особенно в контексте численных симуляций, статистического моделирования и прикладного машинного обучения.

1.3. Общие сведения о системе

Ядро представляет собой модульную систему, реализованную на языке Python, предназначенную для работы с вероятностными распределениями, их семействами и преобразованиями. Архитектура системы построена на разделении функциональности между независимыми компонентами, каждый из которых отвечает за определённый класс задач.

Компоненты взаимодействуют друг с другом через чётко определённые интерфейсы. Такая организация позволяет изолировать ответственность отдельных частей системы, обеспечивать гибкость при расширении функциональности и облегчать сопровождение кода.

Некоторые интерфейсы, предоставляемые одним модулем, используются другими модулями для построения более сложных вычислений или абстракций. Это позволяет комбинировать базовые элементы в составные структуры и формировать цепочки преобразований.

Проект спроектирован таким образом, чтобы допускать расширение без модификации существующих компонентов, в соответствии с принципами модульности и открытости/закрытости. Это обеспечивает стабильную основу для развития ядра и его интеграции с другими частями проекта PySATL.

Раздел 2 -

Глоссарий

Основным понятиям в статистике и стохастическом моделировании является распределения случайной величины или, более общо, распределения случайного объекта (далее, под случайной величиной понимается любой случайный объект, реализации которого не обязательно суть вещественные числа) [18]. Ниже изложены основные теоретические сведения касающиеся случайных величин, а также задач в которых они возникают, в соответствии с монографиями [37] и [39].

Случайные величины и способы их задания

Для случайной величины ξ , принимающей значения в некотором пространстве \mathcal{X} , её распределением называется (см. [39]) вероятностная мера $\mathbb{P}_{\xi}(\cdot)$ на \mathcal{X} , такая что $\mathbb{P}_{\xi}(A)$ есть вероятность того что реализация ξ попадет в множество $A \subset \mathcal{X}^1$. Как правило (см. [37]), выделяют следующие виды случайных величин

- Дискретные случайные величины. В этом случае \mathcal{X} представляет собой некоторое дискретное (конечное или счетное) множество. Например число выпадений монеты орлом при нескольких бросках (биномиальное распределение); уровень образования у случайно выбранного человека (категориальное распределение); случайная величина которая принимает одно значение (вырожденное распределение);
- Одномерные непрерывные случайные величины². В этом случае $\mathcal{X} = \mathbb{R}$ или $\mathcal{X} \subset \mathbb{R}$ ненулевой меры. Такие величины используются для описания случайных времен, расстояний и т.д. Согласно [18] наиболее важными представителями являются: равномерное распределение $\mathcal{U}(a;b)$, нормальное распределение $\mathcal{N}(\mu,\sigma^2)$ и экспоненциальное распределение $\mathrm{Exp}(\lambda)$;
- Многомерные непрерывные случайные величины. В этом случае $\mathcal{X} \subseteq \mathbb{R}^d$, ненулевой меры. Во много многомерные случайные величины являются аналогами одномерных непрерывных случайных величин, однако решение стандартных задач, таких как моделирование или вычисление числовых характеристик затруднено из-за проклятия размерности [7].

Отдельное направление статистики работает с данными о направлении (англ. directional data), в связи с этим часто можно также отдельно выделить следующую категорию случайных величин.

• Случайные геометрические примитивы (англ. geometrical random primitives). Примерами таких случайных величин служат случайные углы или случайные матрицы симметрий. Согласно [29], геометрической случайной величиной называется случайная величина принимающая значения на замкнутой и ограниченной поверхности в евклидовом пространстве (более общо—компактном Римановом многообразии).

С точки зрения ПО, работа с распределением, как с вероятностной мерой, является неудобной, так как компьютер не может работать с произвольными множествами. Однако, как правило, с распределением можно связать некоторую функцию, которая полностью определяет распределение. Так, чтобы идентифицировать распределение дискретной случайной величины, достаточно знать функцию вероятности, определяемую равенством (pmf).

$$f_{\xi}(x) = \mathbb{P}_{\xi}(\{x\})$$
, т.е. вероятность того что $\xi = x, \ x \in \mathcal{X}$ (pmf)

Если на пространстве возможных значений \mathcal{X} задана некоторая мера μ , плотностью распределения \mathbb{P}_{ξ} относительно μ называется³ такая функция $f_{\xi}(x) \colon \mathcal{X} \to \mathbb{R}$, что выполнено тождество (pdf):

$$\mathbb{P}_{\xi}(A) = \int_{A} f_{\xi}(x) \, d\mu \tag{pdf}$$

В случае если μ это считающая мера, плотность f_{ξ} определяется равенством (pmf), в случае если $\mu=m_{\rm Leb}$, говорят просто о плотности непрерывной случайной величины/случайного вектора.

¹Строго говоря, \mathcal{X} должно быть снабжено некоторой σ -алгеброй \mathcal{F} , и \mathbb{P}_{ξ} должна быть определена только для $A \in \mathcal{F}$. Иначе говоря, тройка $(\mathcal{X}, \mathcal{F}, \mathbb{P}_{\xi})$ должна образовывать вероятностное пространство.

²Здесь и далее под непрерывными случайными величинами подразумеваются абсолютно-непрерывные случайные величины, т.е. распределение которых имеет плотность относительно меры Лебега

³Условия существования плотности описываются теоремой Радона-Никодима, см. например [21]

Несмотря на то что плотность распределения полностью его характеризует, для того чтобы вычислять вероятности $\mathbb{P}_{\xi}(A)$ необходимо производить интегрирование (или суммирование), поэтому для некоторых задач представление распределения в виде плотности является неудобным. В частности, если ξ — случайная величина (дискретная или непрерывная) принимающие значения из \mathbb{R}^d , довольно часто приходится смотреть на вероятность попадания в некоторую ячейку $\langle \mathbf{a}; \mathbf{b} \rangle$. Под ячейкой подразумевается множество:

$$\langle \mathbf{a}; \mathbf{b} \rangle = \left\{ \begin{pmatrix} c_1 \\ \vdots \\ c_d \end{pmatrix} \in \mathbb{R}^d \middle| a_1 < c_1 \le b_1, \cdots, a_d < c_d \le b_d \right\}$$

Для доступа к таким вероятностям эффективнее работать с *функцией распределения случайной величины*, определяемой равенством (cdf).

$$F_{\xi}(\mathbf{x}) = \mathbb{P}_{\xi}(\langle -\infty; \mathbf{x} \rangle) \tag{cdf}$$

В этом случае $\mathbb{P}_{\xi}(\langle a;b\rangle)$ выражается через значения $F_{\xi}(\cdot)$ с помощью формулы включения-исключения [37].

С понятием функции распределения тесно связано понятие квантильной функции. Для случайной величины ξ со значениями из \mathbb{R} , её квантильная функция определяется равенством (ppf) (подробно о различных определениях см. в обзоре [20]).

$$\omega_{\xi}(p) = \inf_{u} \{ F_{\xi}(u) \ge p \} \tag{ppf}$$

Такое определение гарантирует, что случайная величина $\omega_{\xi}(U), U \sim \mathcal{U}[0;1]$ имеет такое же распределение как и сама величина ξ . В случае когда $F_{\xi}(\cdot)$ строго возрастает на всей области определения, квантильная функция является обратной функцией $\omega_{\xi}(\cdot) = F_{\xi}^{-1}(\cdot)$. Отдельно следует отметить что существуют обобщения понятия квантильной функции на случай случайных величин со значениями из \mathbb{R}^d [12], однако для их вычисления необходимо решать уравнения в частных производных [10].

Существуют и другие функциональные характеристики распределения, многие из которых приходят из анализа выживаемости [17]. Функцией выживаемости называется функция определяемая равенством (sdf).

$$S_{\xi}(\mathbf{x}) = 1 - F_{\xi}(\mathbf{x}) \tag{sdf}$$

Для случайных величин со значениями из \mathbb{R} , функцией интенсивности отказов и кумулятивной функцией интенсивности отказов называются функции определяемые равенствами (hrdf) и (chdf) соответственно.

$$h_{\xi}(x) = -\frac{S'_{\xi}(x)}{S_{\xi}(x)}; \tag{hrdf}$$

$$H_{\xi}(x) = -\ln(S_{\xi}(x)); \tag{chdf}$$

Однако, некоторые распределения, например α -устойчивые распределения [37], не допускают явного задания с помощью плотности или функции распределения, однако допускают задания с помощью так называемых *интегральных* npeofpasoganuй. Такие распределения все чаще возникают в современных моделях стохастического анализа, (см. например [4]). В случае случайной величины ξ со значениями из \mathbb{R} , её

• Характеристической функцией ξ называется преобразование Фурье, определяемое равенством (cf).

$$\varphi_{\xi}(u) = \int_{\mathbb{R}} \exp(itu) \mathbb{P}_{\xi}(dt), \quad u \in \mathbb{R}$$
(cf)

• Момент-производящей функцией называется преобразование определяемое равенством (mgf).

$$M_{\xi}(u) = \int_{\mathbb{R}} \exp(tu) \mathbb{P}_{\xi}(dt), \quad u \in \mathbb{R}$$
 (mgf)

Характеристическая функция всегда существует и полностью определяет распределение случайной величины [39]. В свою очередь, момент-производящая функция существует не всегда, но в тех случаях когда существует, также однозначно характеризует распределение. В случае когда ξ принимает только неотрицательные значения, определены также преобразование Лапласа и преобразование Меллина, задаваемые равенствами (lt) и (mt) соответственно.

$$\mathcal{L}_{\xi}(u) = \int_{\mathbb{R}_{+}} \exp(-tu) \mathbb{P}_{\xi}(dt), \quad u \in \mathbb{R}_{+}$$
 (lt)

$$\mathcal{M}_{\xi}(u) = \int_{\mathbb{R}_{+}} t^{u} \mathbb{P}_{\xi}(dt), \quad u \in \mathbb{R}_{+}$$
 (mt)

Эти преобразования также однозначно характеризуют распределение ξ [37], [11]. В случае если ξ многомерная случайная величина, также определяется характеристическая функция (см. [39]), преобразования (mgf), (lt), (mt) в некоторых ситуациях допускают обобщение на многомерный случай, см. например [2].

На рис. 2.1 схематично изображены основные способы задания непрерывных вероятностных распределений, и связь между ними. В связи с тем что в теории многомерных квантилей нет результатов напрямую выражающих квантильные функции через плотности или интегральные преобразования, переходы которые имеют место быть только в одномерном случае, изображены пунктирными стрелками.

Рис. 2.1: Способы задания непрерывных распределений

Замечение. Плотность и функция распределения непрерывной случайной величины со значениями в \mathbb{R}^d связаны соотношениями

 $f_{\xi}(\mathbf{x}) = \frac{\partial F_{\xi}}{\partial x_1 \cdots \partial x_d}(\mathbf{x}) \quad F_{\xi}(\mathbf{x}) = \int_{\langle -\infty; \mathbf{x} \rangle} f_{\xi}(\mathbf{t}) \, d\mathbf{t}$ (2.1)

Формулы обращения для интегральных преобразований представлены в [39], [11]. Отдельно стоит отметить, что в работе [34] показано как можно вычислять квантильную функцию по плотности распределения и наоборот, не прибегая к вычислению функции распределения. Этот подход может оказаться полезным при работе с достаточно сложными плотностями.

Семейства вероятностных распределений

В задачах статистики, как правило, оперируют не с одним каким-то конкретным распределением, а с набором распределений, из которого надо выбрать наиболее подходящее, или проверить какую-то гипотезу. Более строго, параметрическим семейством распределений называется некоторое множество $\{\mathbb{P}_{\theta}\}_{\theta \in \Theta}$ распределений, зависящих от скалярного или векторного параметра θ , Θ — множество возможных значений параметра [38].

Для любого распределения \mathbb{P}_{ξ} случайной величины ξ определено семейство локации и масштаба, т.е. семейство распределений всех аффинных преобразований величины ξ :

$$loc + scale \cdot \xi \sim \mathbb{P}^{\xi}_{(loc, scale);}$$
 (loc-scale-family)

где параметры loc, scale $\in \mathbb{R}$ для вещественнозначных случайных величин, и loc $\in \mathbb{R}^d$, scale $\in \mathbb{R}^{d \times d}$ для векторозначных случайных величин. Примером такого семейства является семейство нормальных распределений $\mathcal{N}(\mu, \sigma)$, определяемых равенством (normal-family).

$$\mu + \sigma \cdot \xi$$
, $\xi \sim \mathcal{N}(0, 1)$, r.e. $f_{\xi}(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$ (normal-family)

Более общим понятием является понятие семейства замкнутого относительно действия группы, см. [23] и [28].

Другим, в некотором смысле ортогональным, понятием является понятие экспоненциального семейства распределений [3]. Параметрическое семейство распределений $\{\mathbb{P}_{\theta}\}_{\theta\in\Theta}$ относится к экспоненциальному типу, если плотности (или функции вероятностей) которых можно записать в виде (exp-family) ⁴.

$$f(\mathbf{x}|\theta) = \exp(\langle \mathbf{T}(\mathbf{x}), \overrightarrow{\eta}(\theta) \rangle + A(\mathbf{x}) + D(\theta))$$
 (exp-family)

Многие распространенные семейства распределений являются экспоненциальными, см. [27] . Для моделей относящихся к экспоненциальным семействам существует богатая теория оценивания параметров [23]. Большой список параметрических семейств и связывающие их соотношения представлены в [22].

Приведенные выше семейства интересны с точки зрения теоретической статистики. С точки зрения прикладной статистики, интерес представляют распределения, которые допускают гибкость в плане оценивания параметров: так, для нормального распределения два параметра не только локацию и масштаб, но и всю форму распределения, причем такое поведение присуще не только нормальному распределению. Для того чтобы решить эту проблему, было предложено несколько гибких семейств распределений, среди которых широко распространены семейство распределений Пирсона [8] и металогическое семейство [16].

Отдельно стоит отметить, что многие параметрические семейства зачастую имеют несколько параметризаций, каждая из которых может быть удобна в том или ином контексте, например в работе [30] приведены четыре параметризации для обобщенного гиперболического распределения. Множество других различных параметризаций для одних и тех же семейств собраны в базе проекта ProbOnto [35].

 $^{^4}$ При этом требуется чтобы множество точек **x**, в которых плотность отлична от 0, не зависело от параметра θ

Преобразования случайных величин

Во многих моделях распределения могут быть составлены из более простых распределений с помощью различных методов. В [3] отмечается что, в контексте статистического вывода, любая модель для данных может рассматриваться как вероятностное распределение. Существует множество комбинировать и преобразовывать вероятностные распределения, интересная практическая реализация этого взгляда доступна в библиотеке Pomegranate, [32]. Ниже рассмотрены основные способы для непрерывных вещественнозначных случайных величин, большинство которых относят к теории алгебры случайных величин, см. [33].

• $A \phi \phi$ инное преобразование. Если случайная величина ξ имеет распределение с функцией плотности $f_{\xi}(x)$, то плотность её линейного преобразования $a\xi + b$ описывается равенством (aff-tr);

$$f_{a+b\xi}(y) = \frac{1}{|a|} f_{\xi}\left(\frac{y-b}{a}\right), \quad a \neq 0.$$
 (aff-tr)

• Биективное преобразование. Плотность распределения случайной величины $g(\xi)$, где g — строго монотонная функция, определяется через обратную функцию $g^{-1}(y)$ с помощью равенства (bij-tr).

$$f_{g(\xi)}(y) = f_{\xi}(g^{-1}(y)) \cdot \left| \frac{d}{dy} g^{-1}(y) \right|.$$
 (bij-tr)

Уравнение (aff-tr) является частным случаем (bij-tr). Для немонотонных функций распределение вычисляется с использованием разбиения на участки монотонности;

• Распределение суммы независимых случайных величин Если случайные величины ξ_1 и ξ_2 независимы⁵, то плотность суммы $\xi_1 + \xi_2$ вычисляется с помощью свёртки (sum-rv).

$$(f_{\xi_1} \oplus f_{\xi_2})(z) = \int_{\mathbb{R}} f_{\xi_1}(x) f_{\xi_2}(z - x) \ dx.$$
 (sum-rv)

• Распределение произведения независимых случайных величин. Для независимых случайных величин ξ_1 и ξ_2 , плотность их произведения $\xi_1 \cdot \xi_2$ задается с помощью мультипликативной свертки (prod-rv).

$$(f_{\xi_1} \odot f_{\xi_2})(z) = \int_{\mathbb{R}} \frac{1}{|x|} f_{\xi_1}(x) f_{\xi_2}\left(\frac{z}{x}\right) dx.$$
 (prod-rv)

Другие две важные операции возникают при работе со случайными векторами — маргинализация (взятие проекции) и вычисление порядковых статистик. Умение вычислять такие преобразования позволяет получать точные оценки качества в некоторых моделях статистического вывода.

• Проекции. Для случайного вектора $\xi = (\xi_1, \xi_2, \dots, \xi_d)$ (с возможно зависимыми компонентами) с функцией распределения $F_{\xi}(\mathbf{x})$, функция распределения случайного подвектора $(\xi_{i_1}, \dots, \xi_{i_k})$, описывается пределом (proj-tr)

$$F_{\Pr(\xi; i_1, \dots, i_k)}(x_{i_1}, \dots, x_{i_k}) = \lim_{\substack{x_i \to +\infty \\ i \neq i_1, \dots, i_k}} F_{\xi}(x_1, \dots, x_d)$$
 (proj-tr)

• Длины и углы. Как правило, под случайными вектором понимается случайный элемент \mathbb{R}^d представимый своими координатами. Однако, в некоторых ситуациях (см. например [13]) куда удобнее оперировать со сферическими или другими координатами. В этом случае работает многомерный аналог формулы (bij-tr).

Отдельно стоит отметить что важную роль играют порядковые статистики (см. [24]). Если компоненты случайного вектора $\xi = (\xi_1, \xi_2, \dots, \xi_d)$ независимы и одинаково распределены с плотностью распределения f(x) и функцией распределения F(x), то их порядковые статистики $\xi_{(1:d)} \leq \xi_{(2:d)} \leq \dots \leq \xi_{(n)}$ имеют плотности, описываемые равенством (ord-stat).

$$f_{\xi_{(k)}}(x) = \frac{n!}{(k-1)!(n-k)!} [F(x)]^{k-1} [1 - F(x)]^{n-k} f(x).$$
 (ord-stat)

Помимо трансформации одного распределения в другое и алгебраических операций над распределениями, еще одним способом образования сложного распределения из нескольких простых является образование *смесей*. Смеси используется для построения сложных вероятностных моделей, в которых присутствуют скрытые параметры и широко применяются в кластерном анализе и для изучения ядерных оценок плотности. Можно выделить два класса смесей; дискретные и непрерывные.

 $^{^5}$ Т.е. $\mathbb{P}(\xi_1 \in B_1 \text{ и } \xi_2 \in B_2) = \mathbb{P}(\xi_1 \in B_1) \cdot \mathbb{P}(\xi_2 \in B_2)$ верно для всех $B_1, B_2 \subset \mathbb{R}$, являющихся борелевскими

• Дискретная смесъ. Под дискретной смесью подразумевают комбинацию конечного числа распределений, каждое из которых взвешено определённым коэффициентом. Функция распределения дискретной смеси случайных величин ξ_1, \ldots, ξ_n с весами $\vec{w} = (w_1, \ldots, w_n)$ задаётся равенством (dmix);

$$F_{\min(\vec{w};\xi)}(x) = \sum_{i=1}^{n} w_i F_{\xi_i}(x), \quad \sum_{i=1}^{n} w_i = 1$$
 (dmix)

• Непрерывная смесь является непрерывным аналогом дискретной смеси. Пусть $F(x \mid \theta)$ семейство плотностей, зависящее от параметра $\theta \in \Theta \subset \mathbb{R}^n$. Если на Θ задано некоторое распределение параметров с плотностью $\omega(\theta)$, непрерывная смесь плотностей $F(x \mid \theta)$ определяется равенством (cmix)

$$F_{\min(\omega; F_{\xi}(\cdot|\theta))}(x) = \int_{\Theta} F_{\xi}(x \mid \theta) \cdot w(\theta) \, d\theta, \tag{cmix}$$

В данном случае параметр θ рассматривается как случайная величина с заданным распределением.

Общая теория смесей в абстрактном случае и конкретные примеры приведены в работе [6].

В приложениях часто возникают понятия цензурированных и урезанных распределений [9]. Для распределения \mathbb{P}_{ξ} случайной величины ξ принимающей вещественные значения, урезанным называется условное распределение, определяемое равенством (truncated-dist).

$$\mathbb{P}_{\text{Truncated}(\xi,L,R)}(B) = \frac{\mathbb{P}_{\xi}([L;R] \cap B)}{\mathbb{P}_{\xi}([L;R])}$$
 (truncated-dist)

Распределение (truncated-dist) это условное распределение ξ если априори известно, что значение ξ лежит в отрезке [L;R]. В свою очередь, цензурированным на отрезке [L;R] распределением называется распределение случайной величины, определяемой равенством (censored-dist).

. Censored
$$(\xi, L, R) = \begin{cases} L & \xi < L \\ \xi & L \le \xi \le R \\ R & R < \xi \end{cases}$$
 (censored-dist)

Такие распределения часто возникают в задачах регрессионного анализа, см. [5].

Числовые характеристики вероятностных распределений

Для анализа моделей важную роль играют не только функциональные, но и числовые характеристики распределений. Согласно [9], [36], для случайной величины ξ со значениями из $\mathbb R$ можно выделить следующие характеристики.

- Меры центральной тенденции, описывающие, вокруг какого значения сконцентрированы реализации случайной величины.
 - *Математическое ожидание*. Для случайной величины ξ , её математическое ожидание определяется равенством (mean);

$$\mathbb{E}[\xi] = \int_{\mathbb{R}} x \mathbb{P}_{\xi}(dx) \tag{mean}$$

— Meduaha. Для случайной величины ξ , её медиана определяется как множество всех значений m, таких что $F_{\xi}(m) = \frac{1}{2}$, иначе говоря, медиана определяется равенством (med).

$$\operatorname{Med}[\xi] = F_{\xi}^{-1}(\frac{1}{2}) \tag{med}$$

В некоторых случаях, в качестве медианы берут какое-то конкретное значение из множества $F_{\xi}^{-1}(\frac{1}{2})$, такое значение называется точной медианой [36];

- *Мода*. Для случайной величины ξ её мода определяется равенством (mode)

$$\operatorname{Mode}[\xi] = \operatorname{argmax}_{\mathbb{R}} f_{\xi}(x)$$
 (mode)

где $f_{\xi}(x)$ это функция вероятности, если ξ — дискретная случайная величина, и плотность, если ξ непрерывная случайная величина.

• Меры разброса (иногда меры рассеивания) указывают на склонность величины отклоняться от своего центрального значения.

— Дисперсия и среднеквадратичное отклонение определяются равенствами (std) и (std) соответственно;

$$\mathbb{D}[\xi] = \mathbb{E}[(\xi - \mathbb{E}[\xi])^2]; \tag{var}$$

$$\operatorname{std}[\xi] = \sqrt{\mathbb{D}[\xi]} \tag{std}$$

— *Среднее абсолютное отклонение* определяются равенством (mad).

$$\operatorname{mad}[\xi] = \mathbb{E}[|\xi - \mathbb{E}[\xi]|] \tag{mad}$$

— *Межквартильный размах* определяется равенством (iqr).

$$IQR[\xi] = \omega_{\xi}(0.75) - \omega_{\xi}(0.25) \tag{iqr}$$

- Меры скоса—мера асимметрии распределения относительно среднего значения.
 - Коэффициент скоса определяется равенством (skew);

$$\operatorname{skew}[\xi] = \frac{\mathbb{E}\left[(\xi - \mathbb{E}[\xi])^3 \right]}{\operatorname{std}^3[\xi]}$$
 (skew)

- Коэффициент скоса Пирсона определяется равенством (pskew);

$$Skew^{P}[\xi] = \frac{\mathbb{E}[\xi] - Med[\xi]}{mad[\xi]}$$
 (pskew)

Обобщенный коэффициент скоса Грюневельда определяется равенством (pskew).

$$\gamma(u) = \frac{\omega_{\xi}(1-u) + \omega_{\xi}(u) - 2\omega_{\xi}(\frac{1}{2})}{\omega_{\xi}(u) - \omega_{\xi}(1-u)} \quad \frac{1}{2} < u < 1$$
 (qskew)

- Меры эксцесса и тяжести хвостов
 - Коэффициент эксцесса измеряет степень остроты вершины распределения и определяется равенством (kurt).

$$\operatorname{kurt}[\xi] = \frac{\mathbb{E}\left[(\xi - \mathbb{E}[\xi])^4\right]}{\operatorname{std}^4[\xi]} - 3 \tag{kurt}$$

— *Квантильный коэффициент эксцесса* является квантильным аналогом стандартного коэффициента эксцесса [31] и определяется равенством (qkurt);

$$\kappa(u, v) = \frac{\omega_{\xi}(1 - u) - \omega_{\xi}(u)}{\omega_{\xi}(v) - \omega_{\xi}(v)}, \quad 0 < u < v < \frac{1}{2}$$
 (qkurt)

— Экспонента хвоста определяется для распределений, функция выживания которых убывает согласно степенному закону, как число α при котором верна асимптотическая эквивалентность (tail-idx).

$$S_{\xi}(x) \sim x^{-\alpha}, \quad x \to \infty.$$
 (tail-idx)

В общей ситуации отдельно определяется индекс для левого хвоста и для правого хвоста.

Также, для случайной величины ξ и натурального числа $n \in \mathbb{N}$ определены моменты, центральные моменты (m_n и μ_n соответственно в равенстве (moment)), абсолютные моменты, абсолютные центральные моменты (v_n и v_n в равенстве (abs-moment)) и факториальные моменты (κ_n в равенстве (fact-moment)) порядка n. На основе этих характеристик можно производить оценку параметров распределения.

$$m_n = \mathbb{E}[\xi^n]$$
 $\mu_n = \mathbb{E}[(\xi - \mathbb{E}[\xi])^n]$ (moment)

$$v_n = \mathbb{E}[|\xi|^k],$$
 $v_n = \mathbb{E}[|\xi - \mathbb{E}[\xi]|^n]$ (abs-moment)

$$\kappa_n = \mathbb{E}[\xi(\xi - 1)(\xi - 2)\dots(\xi - n + 1)]$$
 (fact-moment)

Обобщением моментов являются так называемые L-моменты [15] и их квантильные аналоги LQ-моменты [26].

Другое семейство числовых характеристик приходит из области теории информации, см. например монографию [19]. Далее, подразумевается что ξ необязательно вещественнозначная случайная величина, со значениями из некоторого пространства \mathcal{X} и под плотностью подразумевается плотность в смысле (pdf).

• Энтропия распределения с плотностью p относительно меры μ определяется равенством (entr)

$$H_r(p) = -\int_{\mathcal{X}} p(x) \log_r p(x) d\mu \tag{entr}$$

• Kpocc-энтропия из распределения с плотностью p в распределение с плотностью q определяется равенством (entr)

$$CE_r(p||q) = -\int_{\mathcal{X}} q(x) \log_r p(x) d\mu$$
 (cross-enrt)

• KL-дивергенция является мерой расхождения между двумя распределениями с плотностями p и q и определятся равенством (kl-div)

$$\mathcal{D}(p||q) = -\int_{\mathcal{X}} q(x) \log_r \frac{p(x)}{q(x)} d\mu$$
 (kl-div)

Методы из теории информации активно применяются в статистике, см. например [1]. В частности, зачастую рассматривают обобщенный вариант КL-дивергенции — f-дивергенцию, которая определяется для любой выпуклой функции $f: \mathbb{R}_+ \to \mathbb{R}$ равенством (f-div).

$$\mathcal{D}_f(p||q) = \int_{\mathbb{R}} q(x) f\left(\frac{p(x)}{q(x)}\right) dx$$
 (f-div)

С информационными характеристиками тесно связана информация Фишера. Для параметрического семейства плотностей $f(x;\theta), \theta \in \Theta \subseteq \mathbb{R}$, информация Фишера это функция от параметра, задаваемая равенством (FI).

$$\mathcal{I}(\theta) = \mathbb{E}\left[\left(\frac{\partial}{\partial \theta} \log f_{\xi}(x;\theta)\right)^{2}\right]$$
 (FI)

Способы моделирования вероятностных распределений

Для вычисления метрик качества и моделирования поведения вероятностных систем необходимо уметь производить стохастическое моделирование случайных величин. Согласно [14], для генерации выборок можно выделить три основных метода:

- *Метод обратного преобразования*, который базируется на том факте, что для случайной величины ξ с квантильной функцией $\omega_{\xi}(p)$, распределение случайной величины $\omega_{\xi}(U), U \sim \mathcal{U}(0; 1)$ будет совпадать с распределением ξ .
- *Метод декомпозиции*, который используется для генерации выборок из смешанных распределений. Общая идея заключается в том, что сначала генерируется значение параметра (например номер кластера), а затем уже случайная величина при условии зафиксированного значения параметра.
- *Memod omбора (rejection sampling)*, который используют когда предыдущие два метода не могут быть использованы. Этот метод значительно медленнее предыдущих и при его использовании возникает много нюансов, но для его использования необходим доступ только к плотности распределения.

При этом дискретные распределения требуют отдельного рассмотрения. Существуют также методы основанные на методе отбора, для генерации выборок из распределений заданных с помощью интегральных преобразований. При этом, нередки ситуации, плотность распределения $f_{\xi}(x)$ известна только с точностью до нормализующей константы или если требуется производить генерацию в сложных или многомерных пространствах. Для таких случаев разработаны методы на основе марковских цепей Монте-Карло (МСМС). Суть метода заключается в том, что на пространстве реализаций надо завести некоторое случайное блуждание, которое в пределе будет давать желанное распределение, детали см. например в книге [25].

Примеры вероятностных моделей в PySATL

В заключение этого раздела отметим, что поддержка работы с представленными ранее объектами является необходимой для PySATL в рамках существующих и будущих проектов. Пакет MPEst⁶ использует различные числовые характеристики, такие как L-моменты для оценок параметров в моделях смеси.

Пакет NMVMEstimation⁷ занимается специальными видами непрерывных смесей и использует различные интегральные преобразования. Библиотека Experiment⁸ использует базовые характеристики распределений для оценок мощностей статистических тестов методом Монте-Карло. С помощью арифметики распределений можно будет получать точные распределения статистик используемых при проверке гипотез В ближайшем будущем планируется начать разработку библиотек для регрессионного анализа и оценки параметров, где также широко потребуется использование различных свойств и характеристик распределений.

 $^{^6}_{ t https://github.com/PySATL/MPEst}$

⁷https://github.com/PySATL/PySATL_NMVM_Module

⁸https://github.com/PySATL/pysatl-experiment

– Раздел 3 –

Заинтересованные лица

Разлел 4

Ключевые требования, определяющие архитектуру

Разлел 5

Избранные архитектурные точки зрения

5.1. Контекст

TBD

Список литературы

- [1] Shun-ichi Amari. Information geometry and its applications. T. 194. Springer, 2016.
- [2] Irina A Antipova. «Inversion of multidimensional Mellin transforms». B: Russian Mathematical Surveys 62.5 (2007), c. 977.
- [3] Ole Barndorff-Nielsen. Information and exponential families: in statistical theory. John Wiley & Sons, 2014.
- [4] Ole E Barndorff-Nielsen, Fred Espen Benth, Almut ED Veraart и др. Ambit stochastics. T. 88. Springer, 2018.
- [5] Richard Breen. Regression models: Censored, sample selected, or truncated data. 111. Sage, 1996.
- [6] Satish Chandra. «On the Mixtures of Probability Distributions». B: Scandinavian Journal of Statistics 4.3 (1977), c. 105—112.
- [7] David L Donoho и др. «High-dimensional data analysis: The curses and blessings of dimensionality». B: AMS math challenges lecture 1.2000 (2000), с. 32.
- [8] William Palin Elderton и Norman Lloyd Johnson. «Systems of frequency curves». В: (No Title) (1969).
- [9] Felix Famoye. Continuous univariate distributions, volume 1. 1995.
- [10] Alessio Figalli. «On the continuity of center-outward distribution and quantile functions». B: Nonlinear Analysis 177 (2018), c. 413—421.
- [11] Janos Galambos и Italo Simonelli. Products of random variables: applications to problems of physics and to arithmetical functions. CRC press, 2004.
- [12] Marc Hallin и Dimitri Konen. «Multivariate Quantiles: Geometric and Measure-Transportation-Based Contours». В: Applications of Optimal Transport to Economics and Related Topics. Springer, 2024, с. 61—78.
- [13] Daniel Hernandez-Stumpfhauser, F. Jay Breidt u Mark J. van der Woerd. «The General Projected Normal Distribution of Arbitrary Dimension: Modeling and Bayesian Inference». B: Bayesian Analysis 12.1 (2017), c. 113—133.
- [14] Wolfgang Hörmann, Josef Leydold и Gerhard Derflinger. Automatic nonuniform random variate generation. Springer Science & Business Media, 2013.
- [15] JRM Hosking. «L-moments». B: Wiley StatsRef: Statistics Reference Online (2014), c. 1—8.
- [16] Thomas W Keelin. «The metalog distributions». B: Decision Analysis 13.4 (2016), c. 243—277.
- [17] David G Kleinbaum и Mitchel Klein. Survival analysis a self-learning text. Springer, 1996.
- [18] Donald E Knuth. The Art of Computer Programming: Seminumerical Algorithms, Volume 2. Addison-Wesley Professional, 2014.
- [19] Solomon Kullback. Information theory and statistics. Courier Corporation, 1997.
- [20] Arnaud de La Fortelle. «A study on generalized inverses and increasing functions Part I: generalized inverses». working paper or preprint. ABR. 2015.
- [21] Nicolas Lanchier. Stochastic modeling. Springer, 2017.
- [22] Lawrence M Leemis и др. «Univariate probability distributions». B: Computational Probability Applications (2017), с. 133—147.
- [23] Erich L Lehmann и George Casella. Theory of point estimation. Springer Science & Business Media, 2006.
- [24] Erich Leo Lehmann и др. «Statistical methods based on ranks». B: Nonparametrics. San Francisco, CA, Holden-Day 2 (1975).
- [25] Faming Liang, Chuanhai Liu и Raymond Carroll. Advanced Markov chain Monte Carlo methods: learning from past samples. John Wiley & Sons, 2011.
- [26] Govind S Mudholkar и Alan D Hutson. «LQ-moments: Analogs of L-moments». B: Journal of Statistical Planning and Inference 71.1-2 (1998), с. 191—208.

- [27] Frank Nielsen и Vincent Garcia. «Statistical exponential families: A digest with flash cards». B: arXiv preprint arXiv:0911.4863 (2009).
- [28] Luigi Pace u Alessandra Salvan. Principles of statistical inference: from a Neo-Fisherian perspective. T. 4. World scientific, 1997.
- [29] Xavier Pennec. «Probabilities and statistics on Riemannian manifolds: Basic tools for geometric measurements.» B: NSIP. T. 3. 1999, c. 194—198.
- [30] Karsten Prause и др. «The generalized hyperbolic model: Estimation, financial derivatives, and risk measures». Дис. ... док. Citeseer, 1999.
- [31] David Ruppert. «What is kurtosis? An influence function approach». B: The American Statistician 41.1 (1987), c. 1—5.
- [32] Jacob Schreiber. «Pomegranate: fast and flexible probabilistic modeling in python». B: Journal of Machine Learning Research 18.164 (2018), c. 1—6.
- [33] Melvin Dale Springer. The algebra of random variables. New York: Wiley, 1979.
- [34] György Steinbrecher и William T Shaw. «Quantile mechanics». В: European journal of applied mathematics 19.2 (2008), с. 87—112.
- [35] Maciej J Swat, Pierre Grenon и Sarala Wimalaratne. «ProbOnto: ontology and knowledge base of probability distributions». В: *Bioinformatics* 32.17 (2016), с. 2719—2721.
- [36] Herbert Weisberg. Central tendency and variability. 83. Sage, 1992.
- [37] Вильям Феллер. Введение в теорию вероятностей и ее приложения. Рипол Классик, 2013.
- [38] Наталья Исааковна Чернова. Математическая статистика. Новосибирский гос. ун-т, 2007.
- [39] Альберт Николаевич Ширяев. Вероятность. МЦНМО, 2007.