```
In [70]:
```

```
import glob
import math
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from mpl_toolkits import mplot3d
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.patches as mpatches
```

In [19]:

```
#Zipline Data Challenge: An Exploratory Analysis
#Conner Reinhardt
# Get data file names
path = '/Users/connerreinhardt/Google Drive/data scientist take-home'
filenames = glob.glob(path + "/*.csv")
flightfiles = filenames[:-1]
summaryfile = filenames[len(filenames)-1]
flight summary = pd.read csv(summaryfile)
# Gather all detailed flight data and classify them
dfs = []
for flightfile in flightfiles:
    addflight = pd.read csv(flightfile)
    addflight['flight number'] = flightfile[-9:-4]
    dfs.append(addflight)
# Concatenate all detail flight data into one DataFrame
flight detail = pd.concat(dfs, ignore index=True)
    #print(big frame[big frame['flight number']=='16962'])
# Create summary file DataFrame
```

In []:

In [37]:

Out[37]:
<matplotlib.axes. subplots.AxesSubplot at 0x112268e80>

In [21]:

```
# In the above we see a noteable negative correlations between launch_groundspee
d and air_temperature
# Let's start out exploratory analysis but observing this correlation
plt.scatter(flight_summary['launch_groundspeed'], flight_summary['air_temperatur
e'], alpha=0.5)
plt.title('air_temperature vs launch_groundspeed')
plt.xlabel('launch_groundspeed')
plt.ylabel('air_temperature')
plt.show()
```



```
In [22]:
```

```
# in the plot above we can see how the negative correlation may exist between th
ese variables is contigent
# on a small subset of flights that appear to have super low groundspeed
flight_summary.boxplot(column='launch_groundspeed')
plt.title('Launch groundspeed boxplot')
plt.show()
print(flight_summary['launch_groundspeed'].describe())
```


count 447.000000 30.112178 mean std 0.371296 min 27.548899 25% 29.926867 50% 30.097641 75% 30.282600 31.205293 max

Name: launch_groundspeed, dtype: float64

```
# From above we see an IQR of 0.356, so 1.5*IQR + 75th quantile is 30.816 and 25
th quantile - 1.5*IQR is 29.393
# We can visualize them below in red on the scatterplot and it becomes very appa
rent that there are only a few outlier
# flights that lead us to see a negative correlation between air temperature and
ground speed
lowgroundspeed = flight summary[flight summary['launch groundspeed']<=29.5]</pre>
normalgroundspeed = flight summary[(flight summary['launch groundspeed']>29.393)
                                   &(flight summary['launch groundspeed']<=30.81
6)]
highgroundspeed = flight summary[flight summary['launch groundspeed']>30.816]
plt.scatter(lowgroundspeed['launch groundspeed'], lowgroundspeed['air temperatur
e'], color='red', alpha=0.5)
plt.scatter(normalgroundspeed['launch_groundspeed'], normalgroundspeed['air_temp
erature'], color='blue', alpha=0.5)
plt.scatter(highgroundspeed['launch groundspeed'], highgroundspeed['air temperat
ure'], color='green', alpha=0.5)
plt.title('air_temperature vs launch groundspeed')
plt.xlabel('launch groundspeed')
plt.ylabel('air temperature')
plt.gca().legend(('low outliers', 'normal data', 'high outliers'))
plt.show()
```


In [24]:

In []:

In [25]:

We can see that there are 11 flights that are outliers with low groundspeed
print(lowgroundspeed[['flight_id','launch_groundspeed']])

	flight_id	launch_groundspeed
29	17016	29.133639
30	17019	29.392909
31	17020	29.391953
32	17022	29.190197
82	17122	29.387475
83	17123	29.209283
84	17124	28.375102
85	17125	28.670392
86	17126	28.441710
87	17128	27.548899
88	17130	27.692286

```
In [26]:
```

```
s flight 17151
print(flight summary[flight summary['launch groundspeed']==30.09764148541062])
     flight id air temperature battery serial number
                                                       body serial n
umber \
100
         17151
                          29.65
                                      15SPJJJ10022048
                                                       5773501328073
48254
         commit
                 launch airspeed launch groundspeed
                                                             launch
timestamp
          \
    5c504d9a16
                       33.814453
100
                                           30.097641
                                                      2018-09-12 12:
01:31 CAT
     preflight voltage rel humidity static pressure wind directio
  \
n
             32.193016
                           60.474992
                                          80474.68524
                                                           -39.40311
100
9
    wind magnitude wing_serial_number
           3.222529
                       15SPJJJ09052035
100
```

And if we want to look at the flight with the median groundspeed we realize it

In [27]:

```
# Let's examine one of flights, 17130, which has the lowest groundspeed of them
all
flight17130 = flight_detail[flight_detail['flight_number']=='17130']
# We can compare it to flight 17151, which has the median "normal" groundspeed a
s a control
flight17151 = flight_detail[flight_detail['flight_number']=='17151']
```

In [28]:

```
#Below we will plot both flights' groundspeeds against their vertical ascent to
try to uncover the differences
plt.plot(flight17130['seconds_since_launch'], flight17130['velocity_ground_mps']
         flight17130['seconds since launch'], -flight17130['position ned m[2]'])
plt.gca().legend(('ground velocity','vertical position'))
plt.title('"Low Groundspeed" Flight17130')
plt.xlabel('seconds_since_launch')
plt.ylabel('position ned')
plt.show()
plt.plot(flight17151['seconds since launch'], flight17151['velocity ground mps']
         flight17151['seconds since launch'], -flight17151['position ned m[2]'])
plt.gca().legend(('ground velocity','vertical position'))
plt.title('"Normal Groundspeed" Flight17151')
plt.xlabel('seconds_since_launch')
plt.ylabel('position ned')
plt.show()
```



```
# interestingly we see above two strange occurences @ 7.5s mark
# the normal flight appeared to take off in a mostly uniform ascent, with a blip
where the altitude jumped up
# and the low groundspeed flight seemingly also jumped at a point, going from a
slow ascent to a much faster one
# to examine the different jumps in the elevation above, lets repear the graphs
and see if their vertcal
# airspeeds match these jumps in elevation
plt.plot(flight17130['seconds since launch'], -flight17130['velocity ned mps[2]'
],
         flight17130['seconds since launch'], -flight17130['position ned m[2]'])
plt.gca().legend(('vertical velocity','vertical position'))
plt.title('"Low Groundspeed" Flight17130')
plt.xlabel('seconds since launch')
plt.ylabel('position ned')
plt.show()
plt.plot(flight17151['seconds since launch'], -flight17151['velocity ned mps[2]'
],
         flight17151['seconds since launch'], -flight17151['position ned m[2]'])
plt.gca().legend(('vertical velocity','vertical position'))
plt.title('"Normal Groundspeed" Flight17151')
plt.xlabel('seconds_since launch')
plt.ylabel('position ned')
plt.show()
```


In [30]:

```
# though we would expect to see a super high vertical velocity for both flights
around the 7.5s mark
# we end up not seeing a velocity that corresponds to the change in altitude
# this indicates that the altitude change may in fact be due to bad data
# in order to verify this claim, lets first plot all of the data for vertical po
sition of every flight and overlay it
flight_numbers = flight_summary['flight_id']
for flight in flight_numbers:
    currentflight = flight_detail[flight_detail['flight_number']==str(flight)]
    plt.plot(currentflight['seconds_since_launch'], -currentflight['position_ned
_m[2]'])
plt.title('"Normal Groundspeed" All Flights')
plt.xlabel('seconds_since_launch')
plt.ylabel('position_ned')
plt.show()
```


In [31]:

```
# what we see in the above chart is a very clear pattern of questionable elevati
on data around the 7.5s mark
# we also see some questionable jumps around what appears to be 12s, 12.5s, and
13s, though these are not nearly common
# to investigate, lets create a column that details the difference in postition
between two consecutive sensor readings
# "ascent vertical m"
flight_detail['ascent_vertical_m'] = -flight_detail['position_ned_m[2]'].diff()
# print(flight detail.head())
for flight in flight numbers:
    currentflight = flight detail[flight detail['flight number'] == str(flight)]
    plt.plot(currentflight['seconds_since_launch'], currentflight['ascent_vertic
al m'])
plt.title('"Elevation Jumps" of all Flights')
plt.xlabel('seconds since launch')
plt.ylabel('ascent vertical m')
plt.show()
```


In [33]:

```
# NOTE: because of the way the dataframe concats all flights, we see a massive d
ifference at the -5s mark since we
# jump from one flight to a new one
# below we will get rid of this
flight_detail.loc[flight_detail['seconds_since_launch']<0, 'ascent_vertical_m']
= 0
for flight in flight_numbers:
    currentflight = flight_detail[flight_detail['flight_number']==str(flight)]
    plt.plot(currentflight['seconds_since_launch'], currentflight['ascent_vertic
al_m'])
plt.title('"Elevation Jumps" of all Flights - FIXED')
plt.xlabel('seconds_since_launch')
plt.ylabel('ascent_vertical_m')
plt.show()</pre>
```


In [41]:

```
# Now that all that's left is true elevation difference data, we should analyze
the distribution of the "elevation jumps"
# which jumps are normal and which may indicate bad data?
print(flight_detail['ascent_vertical_m'].describe())
plt.hist(flight_detail['ascent_vertical_m'], bins=30, range=(-.05,.2))
plt.title('(zoomed in) distribution of "elevation jumps"')
plt.xlabel('elevation_jump_m')
plt.ylabel('number_of_records')
plt.show()
```

```
count
         447276.000000
               0.069634
mean
               0.168742
std
min
              -8.897973
25%
               0.00000
50%
               0.082765
75%
               0.101778
              15.159457
max
```

Name: ascent_vertical_m, dtype: float64

In [39]:

```
# above we see the summary statistics and the distribution of various jumps in e
levation appear to be normally
# distributed around a mean of 0.069m between readings (with 0 as an obvious spi
ke for when the drone has not taken off)
flight_detail.boxplot(column='ascent_vertical_m')
plt.title('boxplot of "elevation jumps"')
plt.show()
```


In [42]:

```
# when we do a boxplot, however, we quickly see that there are some VERY apparen
t outliers that extend WAY beyond
# the 1.5*IQR (0.152m) above and below the 25/75th (0/0.101) percentiles
# anything above 0.253m or below -0.152m would be technically considered an outl
ier (or non-plausible value in this case)
# below we will identify the outlier readings per flight based on these definiti
ons and explore WHEN they occur
# define if the ascent data is an outlier or not
flight_detail['outlier_ascent'] = (flight_detail['ascent_vertical_m']>0.253)|(fl
ight detail['ascent vertical m']<-0.152)</pre>
outlierdata = flight detail[flight detail['outlier ascent']]
print(outlierdata['seconds_since_launch'].describe())
plt.hist(outlierdata['seconds_since_launch'], bins=50, range=(0,12))
plt.title('seconds after launch of outlier "elevation jump" data')
plt.xlabel('seconds since launch')
plt.ylabel('number of outlier "elevation jumps"')
plt.show()
```

count	1039.000000
mean	7.728528
std	1.846161
min	0.219940
25%	7.117755
50%	7.897620
75%	7.937570
max	14.995430

Name: seconds_since_launch, dtype: float64


```
In [44]:
```

```
# And if we zoom in more we can see that the data is generally quite focused aro
und a single time interval
print(outlierdata['seconds_since_launch'].mode())
plt.hist(outlierdata['seconds_since_launch'], bins=50, range=(7.8,8))
plt.title('(zoomed in) seconds after launch of outlier "elevation jump" data')
plt.xlabel('seconds_since_launch')
plt.ylabel('number of outlier "elevation jumps"')
plt.show()
```

0 7.91759 1 7.93756 dtype: float64

(zoomed in) seconds after launch of outlier "elevation jump" data

In [45]:

Total elevation jump outliers: 1039 Elevation jump outliers in 7.8s-8s interval: 525

```
# lets now take the intraflight outlier data and summarize it on a per-flight sc
ale (for the summary data)
# number of outliers within interval and in total, as well as the avg magnitude
of outliers in interval (in meters)
flight summary['outlier inside interval'] = 0
flight summary['outlier total'] = 0
flight_summary['altitude at 7.8s'] = 0
for flight in flight numbers:
    # classifying an elevation jump as an outlier in 7.8s to 8s interval
    intervaloutliers = flight detail[(flight detail['flight_number']==str(flight
))
                                 &(flight detail['outlier ascent interval'])]
    totaloutliers = flight detail[(flight detail['flight number']==str(flight))
                                 &(flight detail['outlier ascent'])]
    # find the altitude right before the interval
    preintalt = flight detail[(flight_detail['flight_number']==str(flight))&
                              (flight detail['seconds since launch']>7.5)&(flight
t detail['seconds since launch']<7.8)]</pre>
    flight summary.loc[flight summary['flight id']==flight, 'altitude at 7.8s']
= -preintalt['position ned m[2]'].mean()
    # assigning the count of the total number of outliers (both within 7.8-8s in
terval and in total)
    flight summary.loc[flight summary['flight id']==flight, 'outlier inside inte
rval'] = len(intervaloutliers)
    flight summary.loc[flight summary['flight id']==flight, 'outlier inside inte
rval avg'] = intervaloutliers['ascent vertical m'].mean()
    flight summary.loc[flight summary['flight id']==flight, 'outlier total'] = 1
en(totaloutliers)
      print('flight',flight,"has ",len(intervaloutliers),intervaloutliers['ascen
#
t vertical_m'].mean(),
            "from 7.8 to 8s and", len(totaloutliers), "total")
#
```

```
# Next we can visualize on a summarize per flight basis how many what the flight
-by-flight number of outliers is within
# 7.8-8s interval and in total (across any moment of the flight)

flight_summary.boxplot(column='outlier_total')
plt.title('total "elevation jump" outliers per flight')
plt.show()
print(flight_summary['outlier_total'].describe())

flight_summary.boxplot(column='outlier_inside_interval')
plt.title('total "elevation jump" outliers per flight within 7.8s-8s interval')
plt.show()
print(flight_summary['outlier_inside_interval'].describe())

flight_summary.boxplot(column='outlier_inside_interval_avg')
plt.title('flight avg "elevation jump" outlier magnitude (m) 7.8s-8s interval')
plt.show()
print(flight_summary['outlier_inside_interval_avg'].describe())
```



```
447.000000
count
           2.324385
mean
std
           4.170138
min
           0.000000
25%
           1.000000
50%
           1.000000
75%
           2.000000
          37.000000
max
Name: outlier total, dtype: float64
```

total "elevation jump" outliers per flight within 7.8s-8s interval

447.000000 count 1.174497 mean std 0.479137 min 0.00000 25% 1.00000 50% 1.000000 75% 1.000000 max 4.000000

Name: outlier_inside_interval, dtype: float64

flight avg "elevation jump" outlier magnitude (m) 7.8s-8s interval

437.000000 count 4.208828 mean std 1.879451 min -3.72935725% 2.967751 50% 4.348419 75% 5.560566 8.624320 max

Name: outlier_inside_interval_avg, dtype: float64

```
In []:
In [52]:
# Let's conservatively classify a "good flight" as one with no outliers at all
```

flight summary['good flight'] = flight summary['outlier total']==0

In [53]:

outlier_total altitude_at_7.8s outlier_inside_interval_avg g ood_flight
142 0 44.446964 NaN
True

In [54]:

```
# Note that our exemplary flight took off with low wind on a high pressure day w
ith high groundspeed
# If we relax our definition slightly to only ensure that there are no outliers
in the 7.8-8s interval
# we are left with 10 flights, but as you can see they all contain noticeable gl
itches (just not within the interval)
flight summary['good flight interval'] = flight summary['outlier inside interval
' 1==0
# We can graph all flights with one or fewer outliers
flight summary good = flight summary[flight summary['good flight interval']]
good flight numbers = flight summary good['flight id']
for flight in good flight numbers:
    currentflight = flight detail[flight detail['flight number']==str(flight)]
    plt.plot(currentflight['seconds since launch'], -currentflight['position ned
_m[2]'])
plt.title('Elevation chart of flights that were valid through 7.8s-8s interval')
plt.xlabel('seconds since launch')
plt.ylabel('position ned')
plt.show()
```

Elevation chart of flights that were valid through 7.8s-8s interval


```
# Then relaxing even more to include all 436 other flights with noticeable eleva
tion glitches between 7.8s-8s
flight_summary['bad_flight_interval'] = flight_summary['outlier_inside_interval'
]>0
# We can graph all flights with one or fewer outliers
flight summary bad = flight summary[flight summary['bad_flight_interval']]
bad_flight_numbers = flight_summary_bad['flight_id']
for flight in bad flight numbers:
    currentflight = flight detail[flight detail['flight number'] == str(flight)]
    plt.plot(currentflight['seconds since launch'], -currentflight['position ned
_m[2]'])
plt.title('Elevation chart of flights that were invalid through 7.8s-8s interval
')
plt.xlabel('seconds since launch')
plt.ylabel('position_ned')
plt.show()
```

Elevation chart of flights that were invalid through 7.8s-8s interval


```
body serial number
                                0.048049
launch airspeed
                               -0.005504
launch groundspeed
                                0.004085
preflight voltage
                                0.031133
rel humidity
                               -0.066697
static pressure
                               -0.067083
wind_direction
                               -0.105269
wind magnitude
                               -0.044869
outlier inside interval
                               -0.497419
outlier_total
                               -0.291604
altitude at 7.8s
                               -0.091334
outlier inside interval avg
                                1.000000
good flight
                                     NaN
good flight interval
                                     NaN
bad flight interval
                                     NaN
Name: outlier inside interval avg, dtype: float64
```

In [64]:

We see that the two contributors with the largest magnitude appear to be air_t
emperature (positively correlated)
and wind direction (negatively correlated)
sns.regplot(flight_summary['air_temperature'], flight_summary['outlier_inside_in
terval_avg'])
below, we validate that there appears to be a statistically significant slight
positive correlation between air temp
and the magnitude of elevation jumps during the 7.8s-8s mark
warm temperatures are not necessarily the cause but serve as a slight predicto
r of larger jumps

Out[64]:
<matplotlib.axes. subplots.AxesSubplot at 0x111ae5470>

In [69]:

sns.regplot(flight_summary['altitude_at_7.8s'], flight_summary['outlier_inside_i
nterval_avg'], color='orange')
another slight predictor is the altitude of the plane at 7.8s - we see that lo
wer altitudes correlate with slightly
larger magnitude jumps in elevation data between the 7.8s-8s interval
we should take these findings with a grain of salt however as most of the 7.8s
elevation data is clustered around 42m
and we may have a supurilous correlation

Out[69]:
<matplotlib.axes. subplots.AxesSubplot at 0x13e0899e8>

In [66]:

sns.regplot(flight_summary['wind_direction'], flight_summary['outlier_inside_int
erval avg'], color='green')

the last potential predictor of the magnitude of the elevation jumps in the 7. 8s-8s interval is the wind direction

negative (westerly) winds appear to be correlated to higher elevation data jum ps

though again most of the data has negative wind direction, and therefore this may again be a spurulious correlation

due to the trailing outliers on the right

Out[66]:

<matplotlib.axes. subplots.AxesSubplot at 0x1429e6390>

In []:

Overall, we see that there is a pretty significant sensor error with elevation from our zipline drones

we understand from this analysis that out of 447 flights, only one of them (flight 17232) has exemplary

elevation data, and over 436 have major "elevation jumps" between the 7.8s-8s mark,

which may indicate a problem with our software or sensory readings.

There are a couple of weakly correlated factors, though my suggestion to the # engineering team is to use flight 17232 as an example and understand what diff ers between its setup and the other

436 flights which exhibited this error.

In []: