- 1 Choosing priors in Bayesian ecological models by simulating from the prior predictive distri-
- 2 bution
- ³ Jeff S. Wesner and Justin P.F. Pomeranz
- ⁴ University of South Dakota, Department of Biology, Vermillion, SD 57069
- 5 Jeff.Wesner@usd.edu

6 Abstract

Bayesian data analysis is increasingly used in ecology, but prior specification remains focused on choosing non-informative priors (e.g., flat or vague priors). One barrier to choosing more informative priors is that priors must be specified on model parameters (e.g., intercepts, slopes, sigmas), but prior knowledge often exists on the level of the response variable. This is particularly true for com-10 mon models in ecology, like generalized linear mixed models that have a link function and poten-11 tially dozens of parameters, each of which needs a prior distribution. We suggest that this difficulty 12 can be overcome by simulating from the prior predictive distribution and visualizing the results on 13 the scale of the response variable. In doing so, some common choices for non-informative priors on parameters can easily be seen to produce biologically impossible values of response variables. 15 Such implications of prior choices are difficult to foresee without visualization. We demonstrate a workflow for prior selection using simulation and visualization with two ecological examples 17 (predator-prey body sizes and spider responses to food competition). This approach is not new, but its adoption by ecologists will help to better incorporate prior information in ecological models, 19 thereby maximizing one of the benefits of Bayesian data analysis.

21 Keywords: Bayesian, prior predictive distribution, GLMM, simulation

2 Introduction

The distinguishing feature between Bayesian and non-Bayesian statistics is that Bayesian statis-23 tics treats unknown parameters as random variables governed by a probability distribution, while 24 non-Bayesian statistics treats unknown parameters as fixed and unknown quantities (Ellison 2004, Hobbs and Hooten 2015). A common misconception is that only Bayesian statistics incorporates prior information. However, non-Bayesian methods can and often do incorporate prior informa-27 tion, either informally in the choices of likelihoods and model structures, or formally as penalized likelihood or hierarchical modeling (Hobbs and Hooten 2015, Morris et al. 2015). While prior information is not unique to Bayesian models, it is required of them. For example, in a simple linear regression of the form $y \sim \text{Normal}(\alpha + \beta x, \sigma)$, the intercept α , slope β , and 31 standard deviation σ are unknown parameters that each need a prior probability distribution. There are differing opinions and philosophies on the best practices for choosing priors (Lindley 1961, Edwards et al. 1963, Morris et al. 2015, Wolf et al. 2017, Gelman et al. 2017, Lemoine 2019, Banner et al. 2020). In ecology, a common practice is to assign so-called non-informative priors that effectively assign equal probability to all possible values using either uniform or diffuse normal priors with large variances (Lemoine 2019). These priors allow Bayesian inference to proceed (i.e., 37 produce a posterior distribution), but with presumably limited influence of the priors (Lemoine 2019). Reasons for using non-informative priors are varied but are at least in part driven by a desire to avoid the appearance of subjectivity and/or a reliance on default settings in popular software (Gelman and Hennig 2017, Banner et al. 2020). There are several arguments against this approach. First, "noninformative" is a misnomer. All proper priors influence the posterior distribution to some extent (Hobbs and Hooten 2015). As a result, a prior cannot just be assumed as non-informative based on default settings or a wide variance (Seaman III et al. 2012). Its implications for the model should be checked just like any other subjective assumption in data analysis, whether Bayesian or not (Gelman et al. 2017, Banner et al. 2020). Second, adhering to non-informative priors removes