

Table des matières

	0.1	Tablea 0.1.1 0.1.2	Tableau de variation simple	9			
1				11			
2				13			
3				15			
4				17			
5				19			
6	Log	a		21			
O	6.1		numériques tion et modes de génération				
	0.1	6.1.1	Analogie avec une fonction classique				
		6.1.1	Définition				
		6.1.2	Modes de générations d'une suite				
		6.1.4	Calculer les termes d'une suite avec la calculatrice				
		6.1.4	Représentation graphique de suites	26			
	6.2		arithmétiques				
	0.2	6.2.1	Définition	29			
		6.2.2	Propriétés	30			
		6.2.3	Sommes des termes consécutifs d'une suite arithmétique	30			
	6.3	1					
		6.3.1	Approche				
		6.3.2	Définition				
		6.3.3	Formules explicites	33			
		6.3.4	Somme des termes consécutifs d'une suite géométrique	34			
	6.4	Variat	tions d'une suite	37			
		6.4.1	Étude d'un exemple	37			
		6.4.2	Définitions	37			
		6.4.3	Méthodes pour démontrer les variations d'une suite	37			
		6.4.4	Variations des suites arithmétiques et suites géométriques	38			
	6.5	Notion	n de limite de suite	40			
		6.5.1	Suite convergente	40			
		6.5.2	Suite divergente	40			

7	Trig	Trigonométrie 4					
	7.1	Cercle	trigonométrique et radians	. 46			
		7.1.1	Cercle trigonométrique	. 46			
		7.1.2	Le radian	. 47			
	7.2	Repéra	age sur le cercle trigonométrique	. 49			
		7.2.1	Enroulement de la droite des réels sur le cercle				
		7.2.2	Enroulement des nombres réels remarquables				
	7.3	Cosinu	us et sinus d'un réel				
		7.3.1	Définition				
		7.3.2	Propriétés				
		7.3.3	Cosinus et sinus d'angles remarquables				
		7.3.4	Cosinus et sinus d'angles associés				
		7.3.5	Lien avec le cosinus et sinus d'un triangle rectangle				
		7.3.6	Et avec la calculatrice?				
	7.4	,	ons trigonométrique				
	7.5	_	ion de la fonction exponentielle				
	1.0		Définition				
		7.5.2	Propriété				
		7.5.2 $7.5.3$	Propriétés algébriques				
		7.5.3	Une nouvelle notation				
	7.6						
	7.0	7.6.1	de la fonction exponentielle				
			Signe de la fonction exponentielle				
		7.6.2	Sens de variation de la fonction exponentielle				
		7.6.3	Représentation graphique				
		7.6.4	Dérivée de la fonction g définie par $g(x) = exp(ax + b)$. 64			
8	Les	variabl	les aléatoires	67			
	8.1	Variab	le aléatoire	. 68			
		8.1.1	Notion de variable aléatoire	. 68			
		8.1.2	Variable aléatoire	. 68			
		8.1.3	Loi de probabilité d'une variable aléatoire				
	8.2	Espéra	ance, variance et écart-type d'une variable aléatoire				
		8.2.1	Définitions				
		8.2.2	Propriété				
			1				
9		-	scalaire	75			
	9.1		ères expressions du produit scalaire				
		9.1.1	Définition				
		9.1.2	Cas particulier de vecteurs colinéaires	. 77			
		9.1.3	Expression du produit scalaire avec le projeté orthogonal	. 77			
	9.2	Proprié	été du produit scalaire	. 80			
		9.2.1	Produit scalaire et orthogonalité	. 80			
		9.2.2	règles de calculs	. 80			
		9.2.3	Carré scalaire	. 81			
		9.2.4	Identités remarquables	. 81			
	9.3	Autres	expressions du produits scalaire	. 83			
		9.3.1	Expression analytique du produit scalaire	. 83			
		9.3.2	Expression du produit scalaire à partir des normes	. 83			

Boîte à outils

0.0.1 Papier millimétré

0.1

Tableau de signes

Spé Maths 1ère - JB Duthoit

x	$-\infty$ $-\sqrt{2}$ -1 1 $\sqrt{2}$ 2 $+\infty$
$\begin{array}{ c c } x^2 - \\ 3x + 2 \end{array}$	+ + + 0 - 0 +
$\frac{\ln(x^2 - 1)}{1}$	+ 0 - - 0 + +
E(x)	+ 0 - 0 +

0.1.1 Tableau de variation simple

0.1.2 Programme Python

```
1  a = "0"
2  b = a + 1
3  for i in range(5):
4  b = b +1 #commanetairesz
```

Les suites numériques

$\boldsymbol{\alpha}$				٠		
So	m	m	ล	1	r	e

Somman	C		
6.1	Défi	nition et modes de génération	22
	6.1.1	Analogie avec une fonction classique	22
	6.1.2	Définition	22
	6.1.3	Modes de générations d'une suite	22
	6.1.4	Calculer les termes d'une suite avec la calculatrice	25
	6.1.5	Représentation graphique de suites	26
6.2	6.2 Suites arithmétiques		
	6.2.1	Définition	29
	6.2.2	Propriétés	30
	6.2.3	Sommes des termes consécutifs d'une suite arithmétique	30
6.3	Suite	e géométrique	32
	6.3.1	Approche	32
	6.3.2	Définition	32
	6.3.3	Formules explicites	33
	6.3.4	Somme des termes consécutifs d'une suite géométrique	34
6.4	6.4 Variations d'une suite		
	6.4.1	Étude d'un exemple	37
	6.4.2	Définitions	37
	6.4.3	Méthodes pour démontrer les variations d'une suite	37
	6.4.4	Variations des suites arithmétiques et suites géométriques	38
6.5	\mathbf{Noti}	on de limite de suite	40
	6.5.1	Suite convergente	40
	6.5.2	Suite divergente	40

6.1

Définition et modes de génération

SPÉ MATHS 1ÈRE - JB DUTHOIT

6.1.1 Analogie avec une fonction classique

6.1.2 Définition

Définition 6.1

Soit $n_0 \in \mathbb{N}$.

Une **suite numérique** est une fonction définie pour tout entier $n \ge n_0$ et à valeurs réelles. Pour chaque $n \ge n_0$, on associe le nombre réel noté u_n .

La suite est notée u ou (u_n) .

Remarque

- u_n est un réel; on dit que c'est le **terme** de la suite (u_n) de rang n.
- (u_n) est la suite.

Remarque

C'est la faute classiques des lycéens débutants : La lettre n est à la fois utilisée comme indice des termes de la suite et comme valeur dans les formules.

Voici un exemple pour mieux comprendre : en rouge le n en indice et en vert le n utilisée comme "valeurs" :

 $u_{n+1} = n \times u_n + 11n$ Ainsi, si on remplace n par 51, on obtient $u_{52} = 51 \times u_{51} + 11 \times 51$.

6.1.3 Modes de générations d'une suite

Par une formule explicite

Ici, le terme de la suite u_n est défini directement en fonction de n, et uniquement en fonction de n.

 $lue{}$ On dit que (u_n) est définie par une **formule explicite**.

Exemple

la suite u_n définie pour tout $n \in \mathbb{N}$ par $u_n = n^2 - 1$ est une suite explicite.

Savoir-Faire 6.1

SAVOIR CALCULER LES PREMIERS TERMES

Pour chaque exemple, on pourra calculer les 5 premiers termes :

- On considère la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = n^2 1$.
- On considère la suite (v_n) définie pour tout $n \ge 6$ par $v_n = \frac{1}{n-5}$.
- On considère la suite (w_n) définie pour tout $n \ge 1$ par $w_n = \sqrt{n-1}$.
- On considère la suite (z_n) définie pour tout $n \in \mathbb{N}$ par $z_n = 2^n$.

Remarque

Comment reconnaître une suite explicite? Dans le cas d'une suite explicite, on peut calculer directement n'importe quel terme en remplaçant n par l'entier souhaité.

Par une formule récurrente

Ici, le terme u_n de la suite se définit par rapport au(x) terme(s) précédent(s). \square On parle de *suite récurrente*.

Exemple

La suite w_n définie par $w_0 = 1$ et $w_{n+1} = 2 \times w_n + 5$ est une suite définie par récurrence.

Savoir-Faire 6.2

SAVOIR CALCULER LES PREMIERS TERMES D'UNE SUITE DÉFINIE PAR RÉCURRENCE Pour chaque exemple, on pourra calculer les 5 premiers termes :

- Soit la suite (u_n) définie par $u_0 = 1$ et $u_{n+1} = u_n + 2$.
- Soit la suite (v_n) définie par $v_0 = 1$ et $v_1 = 1$ et pour tout $n \ge 2$, $v_{n+2} = v_{n+1} + v_n$.
- Soit la suite (w_n) définie par $w_0 = 1$ et $w_{n+1} = 2 \times w_n + 5$.
- Soit la suite (z_n) définie par $z_0 = 1$ et $z_{n+1} = 2 \times z_n + n$.

Remarque

Dans le cas d'une suite récurrente, on ne peut <u>pas</u> calculer <u>directement</u> n'importe quel terme : pour calculer u_{100} , on a besoin de u_{99} par exemple... et ainsi de suite jusqu'au premier terme.

Par un algorithme

Ici, c'est un algorithme qui va être à l'origine de la construction de la suite.

Exemple

Voici un premier programme en Python:

```
1 def suite1(n):
2    return -2*n**2-2*n+7
```

- La suite définie par ce programme est-elle explicite, récurrente? Quelle est cette suite?
- Calculer les 5 premiers termes (à la main, puis vérifier avec python).

Et voici un second programme, toujours en Python:

```
def suite1(n):

a = 5

for i in range(n):

a = 2 * a + 5

return a
```

- La suite définie par ce programme est-elle explicite, récurrente? Quelle est cette suite?
- Calculer les 5 premiers termes (à la main, puis vérifier avec python).

Savoir-Faire 6.3

SAVOIR CALCULER LES PREMIERS TERMES D'UNE SUITE (RÉCURRENTE OU EXPLICITE) EN UTILISANT PYTHON

Utiliser les exemples faits en classe pour s'entraı̂ner à programmer en Python des suites explicites et récurrentes (avec boucle for et/ou while).

Bien évidemment, s'entraîner davantage avec les suites récurrentes, plus difficiles à programmer.

Par une situation géométrique

On part d'un triangle rectangle en A_1 OA_1A_2 tel que $OA_1 = A_1A_2 = 1$. On pose $u_1 = A_1A_2$. Pour tout n > 1, en tournant toujours dans le sens positif, on construit le triangle OA_nA_{n+1} comme suit : il est rectangle en A_n , et $A_{n+1} = 1$.

Pour n > 0, on pose $u_n = A_n A_{n+1}$

- Calculer les 5 premiers termes de cette suite.
- Conjecturer la formule explicite de cette suite.

♡Défi!

On considère la suite définie par :

$$\begin{cases} u_0 = 3 \\ u_{n+1} = \begin{cases} 3 \times u_n & \text{si n est pair} \\ u_n - 2 & \text{si n est impair} \end{cases}$$

- 1. Calculer les 6 premiers termes (ce n'est pas ça le défi!)
- 2. Calculer la somme des 43 premiers termes! $(u_0 \text{ compris})$

6.1.4 Calculer les termes d'une suite avec la calculatrice

- Il faut d'abord passer en mode **suite** : Mode puis choisir **suite** ou **séquence**. Ensuite, il faut quitter avec 2nde puis quitter.
- Appuyer ensuite sur la touche f(x).
- Pour les suites explicites :
 - On entre **nMin=0** si la suite est définie à partir de 0.
 - On entre ensuite l'expression de la suite en fonction de n: pour afficher n, il suffit de taper sur la touche X, T, θ, n .

- Pour afficher les termes, il suffit de faire 2nde puis table. (Il faudra peut être régler la table pour ne faire apparaître que les valeurs positives de n.
- Exemple avec $u_n = 2n + 1$: f(x), nMin=0, 2, \times , X, T, θ, n , +, 1, 2nde et table.

• Pour les suites récurrentes :

- On entre **nMin=0** si la suite est définie à partir de 0.
- On entre $\mathbf{u}(\mathbf{nMin})$ la valeur de la suite pour \mathbf{nMin}
- Il reste ensuite à donner l'expression de la suite. Attention sur TI, il faudra rentrer u_n en fonction de u_{n-1} (et non pas u_{n+1} en fonction de u_n !) Le terme u_{n-1} se trouve en appuyant sur 2nde puis sur 7, puis $\sqrt{X,T,\theta,n}$, puis $\sqrt{1}$ et on ferme la parenthèse avec $\sqrt{1}$.
- Pour afficher les termes, il suffit de faire $\boxed{2nde}$ puis \boxed{table} .

Savoir-Faire 6.4

SAVOIR UTILISER LA CALCULATRICE POUR CALCULER DES TERMES (SUITES RÉCURRENTES ET EXPLICITES)

Substitution Selection Selectio

Utiliser les exemples déjà étudiés pour les vérifier à la calculatrice.

6.1.5 Représentation graphique de suites

Sur une droite graduée

C'est tout simple : on trace une droite graduée, et on place dessus les valeurs de $u_0, u_1, u_2...$

Suite (u_n) définie par $u_n = 2n - 1$

Dans un repère

C'est tout simple aussi : on trace place les points de coordonnées $(0, u_0), (1, u_1), (2, u_2)...$

Suite (u_n) définie par $u_n = 2n - 1$

Suite (u_n) définie par $u_n = f(n)$

Cas des suites récurrentes du type $u_{n+1} = f(u_n)$

Bien sûr, on peut représenter cette suite en utilisant l'un des deux procédés précédents. Mais dans le cas d'une suite récurrente, il y a une méthode qui se base sur la courbe représentative de la fonction f.

Attention, cette méthode fonctionne uniquement avec les suites récurrentes du type $u_{n+1} = f(u_n)$. L'idée est de construire les termes à l'aide de la courbe C_f et la droite d'équation y = x.

- On commence par placer u_0 sur l'axe des abscisses
- On construit u_1 sur l'axe des ordonnées en utilisant le courbe C_f et le fait que $u_1 = f(u_0)$.
- On construit u_1 sur l'axe des abscisses en utilisant la droite d'équation y = x.
- On a donc u_1 sur l'axe des abscisses, et on peut réitérer le procédé pour u_2 , u_3 ...autant de fois que nécessaire.

Suite (u_n) définie par $u_{n+1} = f(u_n)$

Savoir-Faire 6.5

Savoir représenter une suite définie par $u_{n+1} = f(u_n)$

Soit u_n une suite définie par $u_0 = 0$ et $u_{n+1} = \sqrt{3u_n + 4}$ et soit (v_n) une suite définie

par $v_0 = \frac{1}{2}$ et $v_{n+1} = \frac{1+v_n}{v_n}$. Déterminer la fonction f et g telles que $u_{n+1} = f(u_n)$ et $v_{n+1} = g(v_n)$. Représenter ensuite ces deux suites (deux graphiques différents) en utilisant la méthode précédente. Pour vérification, on pourra faire les calculs à la main des premiers termes (ou avec la calculatrice) et s'assurer que les valeurs trouvées graphiquement soient en cohérence avec les valeurs calculées.

6.2

Suites arithmétiques

SPÉ MATHS 1ÈRE - JB DUTHOIT

6.2.1 Définition

une suite arithmétique, c'est exactement ça!

Définition 6.2

Une suite (u_n) est une **suite arithmétique** s'il existe un réel r, appelé **raison** de la suite, tel que pour tout $n \in \mathbb{N}$, on ait $u_{n+1} = u_n + r$.

Exemple

- La suite (u_n) définie par $u_0 = -2$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + 3$ est la suite arithmétique de raison r = 3 et de premier terme $u_0 = -2$.
- La suite (v_n) définie par $v_0 = 3$ et pour tout $n \in \mathbb{N}$, $v_{n+1} = v_n 0, 5$ est la suite arithmétique de raison r = -0, 5 et de premier terme $v_0 = 3$.

Savoir-Faire 6.6

SAVOIR MONTRER QU'UNE SUITE EST UNE SUITE ARITHMÉTIQUE Dans chaque cas, dire si la suite est une suite arithmétique, et préciser éventuellement sa raison :

- Soit (u_n) définie par $u_0 = -2$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n 5$
- Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = 5n 3$.
- Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = 5 2n$
- Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_n = 5n^2$

6.2.2 Propriétés

Propriété 6. 1

Soit (u_n) une suite arithmétique de raison r.

- Pour tout $n \in \mathbb{N}$, $u_n = u_0 + nr$.
- Pour tout $n \in \mathbb{N}$, $u_n = u_1 + (n-1)r$.
- Pour tout $n \in \mathbb{N}$ et $p \in \mathbb{N}$, $u_n = u_p + (n-p)r$.

Savoir-Faire 6.7

SAVOIR UTILISER LES FORMULES EXPLICITES DES SUITES ARITHMÉTIQUES Exemple :

- Soit (u_n) est une suite arithmétique de premier terme $u_0 = 10$ et de raison 3. Déterminer u_{1000} .
- Soit (u_n) est une suite arithmétique de premier terme $u_7 = 10$ et de raison 5. Déterminer u_{1000} .
- Soit (u_n) est une suite arithmétique avec $u_{11} = 11$ et $u_{15} = 23$. Déterminer u_0 et r.
- Soit (u_n) est une suite arithmétique avec $u_7 = 23$ et $u_{25} = 50$. Déterminer u_0 et r.

Substitution Selection Selectio

Choisir deux nombres r et u_0 . Calculer deux termes distincts en considérant que la suite est arithmétique (par exemple u_{117} et u_{215}). A partir de u_{117} et u_{215} , retrouver r et u_0 .

6.2.3 Sommes des termes consécutifs d'une suite arithmétique

Carl Gauss

Nous sommes dans les années 1780, en ce qui est aujourd'hui l'Allemagne. M. Büttner est instituteur. Ses élèves étant ce jour-là quelque peu dissipé, il leur demande d'additionner les nombres de 1 à 100, espérant bien obtenir un peu de calme.

Seulement voilà, à peine quelques instants plus tard, alors que tous devraient être en train de plancher pour encore un moment sur le problème, l'un deux (Carl Gauss) prétend avoir le résultat : 5050...

Propriété 6. 2

Soit (u_n) une suite arithmétique. Somme des termes conséctifs = $\frac{nb\ de\ termes \times (1er\ terme\ +\ dernier\ terme)}{2}$

Savoir-Faire 6.8

SAVOIR CALCULER LA SOMME DES TERMES CONSÉCUTIFS D'UNE SUITE ARITHMÉTIQUE Exemple : Calculer la somme des nombres impairs inférieurs à 100.

Substitution Security Substitution Secu

Voici quelques exercices corrigés

- On considère une suite arithmétique telle que $u_7=-9$ et $u_{25}=-45$. Calculer la somme $S=u_7+\ldots+u_{25}$. Rép : -513
- On considère une suite arithmétique telle que $u_8 = -19$ et $S = u_8 + ... + u_{32} = -1075$. Déterminer la raison r de cette suite. Rép : r= -2.
- On considère une suite arithmétique telle que $u_3 = -17$ et $S = u_3 + ... + u_{32} = -2250$. Déterminer la raison r de cette suite. Rép : r = -4.
- On considère une suite arithmétique telle que $u_6=19$ et $u_{29}=111$.Calculer la somme $S=u_6+\ldots+u_{29}$.Rép : 1560.
- On considère une suite arithmétique telle que $u_5 = -10$ et $u_{20} = -40$. Calculer la somme $S = u_5 + ... + u_{20}$. Rép : -400.
- Déterminer l'entier n tel que 16 + 17 + ... + n = 5875. Rép : 109.
- Calculer la somme suivante, sachant que les termes de cette somme sont les termes d'une suite arithmétique. S = -76 81 + ... 251. Rép : -5886

6.3

Suite géométrique

Spé Maths 1ère - JB Duthoit

6.3.1 Approche

Pliages d'une feuille de papier...

L'idée est d'évaluer l'épaisseur obtenue après avoir plié une feuille de papier plusieurs fois en deux. L'épaisseur du papier à lettres est de 0,1 mm.

Quelle est l'épaisseur obtenue après 3 pliages? Et après 10,23 pliages?

6.3.2 Définition

une suite géométrique, c'est exactement ça!

Définition 6.3

On dit qu'une suite (u_n) est une **suite géométrique** si pour tout $n \in \mathbb{N}$, on a $u_{n+1} = q \times u_n$, où q est un réel.

q est appelé **raison** de la suite géométrique (u_n) .

Exemple

- 2;4;8;16 est une suite géométrique de raison 2.
- 2;-6,18 est une suite géométrique de raison -3

Savoir-Faire 6.9

SAVOIR DÉMONTRER QU'UNE SUITE EST UNE SUITE GÉOMÉTRIQUE OU NON.

Exemple: Les suites suivantes sont-elles des suites géométriques?

- Soit le suite (u_n) définie pour tout entier naturel n par $u_n = 3n$
- Soit le suite (u_n) définie pour tout entier naturel n par $u_n = 3n + 1$.
- Soit le suite (u_n) définie pour tout entier naturel n par $u_n = 3n^2$
- Soit le suite (u_n) définie pour tout entier naturel n par $u_n = 3 \times 2^n$

6.3.3 Formules explicites

∠ Démonstration 6.1

Calcul du terme général d'une suite géométrique.

Calcul du terme général d'une suite geometrique. Soit (u_n) une suite géométrique de premier terme u_0 et de raison q. Montrer que $u_n = u_0 \times q^n$.

Propriété 6. 3

- Soit (u_n) une suite géométrique de premier terme u_0 et de raison q. Alors, pour tout $n \in \mathbb{N}$, on a $u_n = u_0 \times q^n$.
- Soit (u_n) une suite géométrique de premier terme u_1 et de raison q. Alors, pour tout $n \in \mathbb{N}$, on a $u_n = u_1 \times q^{n-1}$.
- Généralisation Soit p un entier naturel. Soit (u_n) une suite géométrique de premier terme u_p et de raison q. Alors, pour tout $n \in \mathbb{N}$, on a $u_n = u_p \times q^{n-p}$.

Savoir-Faire 6.10

SAVOIR UTILISER LES FORMULES EXPLICITES AVEC LES SUITES GÉOMÉTRIQUES. Exemple :

- Soit u la suite géométrique de raison q=3 et de premier terme $u_0=4$. Calculer u_7 . Rép : 8748
- Soit u la suite géométrique de raison $q=\frac{1}{2}$ telle que $u_6=512$. Calculer u_9 . Rép : 64.
- Soit (u_n) la suite géométrique définie par q=5 et $u_0=10$. Exprimer u_n en fonction de n.
- Soit (u_n) la suite géométrique de premier terme u_0 et de raison q, telle que $u_4 = 48$ et $u_7 = 384$. Calculer u_0 et q.

Substitution Selection Selectio

- Soit (u_n) la suite géométrique de premier terme u_0 et de raison q, telle que $u_4 = 324$ et $u_7 = -8748$. Calculer u_0 et q. (Réponse : $u_0 = 4$ et q = -3)
- Soit (u_n) la suite géométrique la suite géométrique de premier terme u_0 et de raison q, telle que $u_2 = 0.5$ et $u_5 = 0.0625$. Calculer u_0 et q.(Réponse $:u_0 = 2$ et q = 0.5)
- Soit (u_n) la suite géométrique la suite géométrique de premier terme u_1 et de raison q, telle que $u_5 = 2048$ et $u_7 = 32768$. Calculer u_1 et q, en sachant que q < 0. (Réponse $: u_1 = 8$ et q = -4)
- Soit (u_n) la suite géométrique la suite géométrique la suite géométrique de premier terme u_1 et de raison q, telle que $u_5 = -32$ et $u_9 = -512$. Calculer u_1 et q, en sachant que q > 0.(Réponse : $u_1 = -2$ et q = 2)

6.3.4 Somme des termes consécutifs d'une suite géométrique

✓Démonstration 6.2

 $\$ Démonstration : calcul de $1+q+q^2+\ldots+q^n$:

Propriété 6. 4

Soit (u_n) une suite géométrique de raison q, avec $q \neq 1$.

Somme des termes conséctifs = $(1er\ terme) \times \frac{1-q^{nb\ de\ termes}}{1-q}$

∢SG et somme des termes

SAVOIR CALCULER LA SOMME DES TERMES CONSÉCUTIFS D'UNE SUITE GÉOMÉTRIQUE EXEMPLES :

- Calculer $S = 1 + 2 + 4 + 8 + \dots + 256$
- Calculer $S' = 1 + 3 + 9 + \dots + 2187$

Substitution Security Substitution Secu

Voici quelques exercices corrigés

- On considère la suite géométrique de raison -2 telle que $u_7=-256$. Calculer $S=u_7+\ldots+u_{14}$. Rép : 21760
- On considère la suite géométrique de raison 1 telle que $u_2=-4$. Calculer $S=u_2+\ldots+u_9$. Rép : -32
- On considère une suite géométrique de raison 3 telle que $u_2=-72$. Calculer $S=u_2+\ldots+u_{11}$.Rép : -2125728
- Calculer la somme S telle que $S=1+3+3^2+\ldots+3^{13}$. Rép : 2391484
- Calculer $S = 7 + 14 + 28 + \ldots + 114688$. Rép : 229369

♡Défi!

Écrire une fonction Python nommée defi2 qui :

- a pour paramètres 4 nombres :
 - q (réel, qui correspond à la raison de la SG)
 - u_0 (réel, premier terme)
 - p1 (entier)
 - p2 (entier, strictement supérieur à p1)
- renvoie la somme u_p1+...+u_p2, en considérant que la suite est une suite géométrique.

Pour tester la fonction, on vérifiera par exemple que l'appel de defi2(3,1,0,13) renvoie 2391484.

Savoir-Faire 6.12

SAVOIR UTILISER LES SUITES GÉOMÉTRIQUES POUR ÉTUDIER LES ÉVOLUTIONS SUCCESSIVES À TAUX CONSTANT

Rappels de la classe de seconde :

Lien entre pourcentage d'évolution et coefficient multiplicateur :

- Augmenter une valeur de t % revient à la multiplier par $1 + \frac{t}{100}$
- Diminuer une valeur de t % revient à la multiplier par $1 \frac{t}{100}$
- $1 + \frac{t}{100}$ et $1 \frac{t}{100}$ sont appelés les coefficients multiplicateurs.

Exemple 1:

On place une somme de 5000 euros sur un compte rémunéré à 3 % par an (intérêts composés).

- Quelle est la somme au bout de 1 an?
- au bout de 10 ans?
- Au bout de combien de temps la somme aura-t-elle doublée? triplée?

Exemple 2:

Corriger ce présentateur télé!

Erreur dans le JT de France 2

Cliquez ici pour voir la vidéo du JT de France 2..

Variations d'une suite

SPÉ MATHS 1ÈRE - JB DUTHOIT

6.4.1 Étude d'un exemple

Étudier les variations de la suite (u_n) définie par $u_n = (n-3)^2$.

6.4.2 Définitions

Définition 6.4

Soit $k \in \mathbb{N}$.

- Dire qu'une suite (u_n) est croissante pour $n \ge k$ signifie que pour tout entier $n \ge k$, $u_{n+1} \ge u_n$.
- Dire qu'une suite (u_n) est décroissante pour $n \ge k$ signifie que pour tout entier $n \ge k$, $u_{n+1} \le u_n$.

6.4.3 Méthodes pour démontrer les variations d'une suite

Méthode de la différence

- On calcule $u_{n+1} u_n$.
- On étudie le signe de $u_{n+1} u_n$
- - Si, à partir d'un certain rang, $u_{n+1} u_n \ge 0$, alors la suite est croissante à partir de ce rang.
 - Si, à partir d'un certain rang, $u_{n+1} u_n \le 0$, alors la suite est décroissante à partir de ce rang.

Méthode du quotient

⚠ Cette méthode ne fonctionne que si tous les termes de la suite sont strictement positifs.

- On calcule $\frac{u_{n+1}}{u_n}$.
- On compare $\frac{u_{n+1}}{u_n}$ à 1.
- Si, à partir d'un certain rang, $\frac{u_{n+1}}{u_n} \ge 1$ alors la suite (u_n) est croissante à partir de ce rang.
 - Si, à partir d'un certain rang, $\frac{u_{n+1}}{u_n} \leq 1$ alors la suite (u_n) est décroissante à partir de ce rang.

Méthode en utilisant les variations de f pour une suite du type $u_n=f(n)$

On utilise pour cela la propriété suivante :

Variation de fonction et de suite

Soit $k \in \mathbb{N}$.

Soit (u_n) une suite définie par $u_n = f(n)$ où f est une fonction définie sur $[0; +\infty[$.

- si f est une fonction croissante sur $[k; +\infty[$, alors (u_n) est croissante pour $n \ge k$.
- si f est une fonction décroissante sur $[k; +\infty[$, alors (u_n) est décroissante pour $n \ge k$.

La méthode consiste donc à :

- Étudier les variation de la fonction f sur $[0; +\infty[$.
- Trouver un intervalle du type $[k; +\infty[$ (avec $k \in \mathbb{N}$) où la fonction f est monotone.
- Conclure, en utilisant la propriété précédente, quant aux variations de la suite (u_n) .

Savoir-Faire 6.13

SAVOIR DÉMONTRER LES VARIATIONS D'UNE SUITE.

- 1. Méthode 1 : Étudier les variations de la suite (u_n) définie par $u_n = (n+2)^2$.
- 2. Méthode 2 : Étudier les variations de la suite (u_n) définie par $u_n = \frac{5}{2^n}$.
- 3. Méthode 3 : Étudier les variations de la suite (u_n) définie par $u_n = n^2 3n + 1$.

Se m'entraîne seul(e) Seul(e)

Étudier les variations des suites (u_n) définie par :

- 1. $u_n = 2n^2 3n + 1$. Rép : u_0 est strictement croissante pour $n \geq 1$.
- 2. $u_n = \frac{3^n}{2^{n-1}}$. Rép : (u_n) est strictement croissante.
- 3. $u_n = n^3 n^2 + n$. Rép : (u_n) est strictement croissante.
- 4. $u_n = \frac{n-3}{2n+1}$ Rép : (u_n) est strictement croissante.

6.4.4 Variations des suites arithmétiques et suites géométriques Suites arithmétiques

Propriété 6. 6

Soit (u_n) une suite arithmétique de raison r.

- si r = 0 alors la suite (u_n) est strictement constante.
- si r > 0 alors la suite (u_n) est strictement croissante.
- si r < 0 alors la suite (u_n) est strictement décroissante.

∠Démonstration 6.3

 \gt Démonstration évidente en utilisant la méthode de la différence, car $u_{n+1} - u_n = r$.

Exemple

- r = 3 et $u_0 = 2$:
- r = -2 et $u_0 = 5$:

Suites géométriques

Propriété 6. 7

Soit (u_n) une suite géométrique de raison q et de premier terme $u_0 \neq 0$.

- si q = 0 ou q = 1 alors la suite (u_n) est constante (au pire à partir du second terme).
- si q > 1 alors :
 - si $u_0 > 0$ alors la suite (u_n) est strictement croissante.
 - si $u_0 < 0$ alors la suite (u_n) est strictement décroissante.
- si 0 < q < 1 alors :
 - si $u_0 > 0$ alors la suite (u_n) est strictement décroissante.
 - si $u_0 < 0$ alors la suite (u_n) est strictement croissante.
- si q < 0 alors la suite (u_n) n'est pas monotone.

Exemple

- q = 3 et $u_0 = 2$:
- q = 3 et $u_0 = -2$:
- q = 0.5 et $u_0 = 2$:
- q = 0.5 et $u_0 = -2$:
- q = -3 et $u_0 = 1$:

Notion de limite de suite

SPÉ MATHS 1ÈRE - JB DUTHOIT

6.5.1 Suite convergente

Exemple

On considère la suite (u_n) définie par $u_n = 1 + \frac{3}{n+1}$. Que devient u_n si n prend des "grandes" valeurs?

On observe que les termes de la suite (u_n) semblent se rapprocher de 1, et donc on peut penser que $\lim_{n\to+\infty} u_n = 1$.

On peut d'ailleurs renforcer ce sentiment de façon numérique, en utilisant la calculatrice par exemple, afin de représenter la suite (u_n) .

Représentation de la suite (u_n) définie par $u_n = 1 + \frac{3}{n+1}$

Définition 6.5

Une suite (u_n) a pour limite un réel l quand n tend vers $+\infty$ si les termes u_n deviennent aussi proches que l'on veut de l dès que n est suffisamment grand.

On dit que la (u_n) converge vers l et on note $\lim_{n\to+\infty}u_n=l$.

6.5.2 Suite divergente

Définition 6.6

Une suite divergente est une suite qui ne converge pas.

La suite (u_n) définie par $u_n = (-1)^n$ est divergente.

Définition 6.7

Une suite (u_n) a pour limite $+\infty$ quand n tend vers $+\infty$ si les termes u_n deviennent aussi grands que l'on veut dès que n est suffisamment grand.

On dit que la (u_n) diverge vers $+\infty$ et on note $\lim_{n\to+\infty} u_n = +\infty$.

Exemple

On considère la suite (u_n) définie par $u_n = n^2$. En utilisant la calculatrice (par exemple), on observe que les termes de la suite semblent être de plus en plus grands, et on peut donc +penser que $\lim_{n\to+\infty} u_n = +\infty$.

Définition 6.8

Une suite (u_n) a pour limite $-\infty$ quand n tend vers $+\infty$ si les termes u_n deviennent aussi petits ^a que l'on veut dès que n est suffisamment grand.

On dit que la (u_n) diverge vers $-\infty$ et on note $\lim_{n\to+\infty} u_n = -\infty$.

a. petits ne signifie pas proche de zéro, mais négatifs et grands en valeur absolue!

Exemple

On considère la suite (u_n) définie par $u_n = n^2$. En utilisant la calculatrice (par exemple), on observe que les termes de la suite semblent être de plus en plus grands, et on peut donc +penser que $\lim_{n\to+\infty} u_n = +\infty$.

Savoir-Faire 6.14

SAVOIR CONJECTURER UNE LIMITE DE SUITE Conjecturer, en utilisant la calculatrice, les limites des suites suivantes :

- (u_n) la suite définie par $u_n = \frac{1}{n}$.
- (u_n) la suite définie par $u_n = -n^3$.
- (u_n) la suite définie par $u_n = 1 + \frac{3}{1+n}$.

Paradoxe de Zénon

On supposera dans la suite que le projectile est lancé avec suffisamment de force pour qu'il puisse atteindre sa cible, et que la direction est correcte aussi; le raisonnement précédent (BD) tient toujours!! Il est basé sur le fait que la distance entre le projectile et le prof ne sera jamais nulle.

Et pourtant, en toute logique, le projectile a dû atteindre sa cible, car :

• Observons la tête du prof!

• On l'a dit, le projectile est lancé avec assez de force, et l'élève est supposé adroit pour ne pas rater la tête du prof!

Alors, que se passe-t-il?

On prendra dans la suite d=1

L'idée est donc de considérer la somme infinie $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$

Le paradoxe vient de cette idée intuitive -fausse- : "Puisque il faut ajouter une infinité de longueurs, alors la distance ne sera jamais réalisée entièrement ".

Ici, on ajoute une infinité de longueurs qui deviennent infiniment proches de zéro. La question est de savoir si cette somme infinie va (un jour) être égale (exactement) à d (distance initiale)

Supposons pour cela la suite (Il fallait s'y attendre!) u_j tel que u_n représente la longueur parcourue par le projectile à la n-ième étape.

On a donc
$$u_1 = \frac{1}{2}$$
, $u_2 = \frac{1}{4}$, $u_3 = \frac{1}{8}$...etc...

On peut ainsi considérer la somme S_n définie par $S_n = u_1 + u_2 + u_3 \dots + u_n$

- 1. Exprimer S_n en fonction de n
- 2. Étudier la limite de (S_n) quand n tend vers $+\infty$.
- 3. La suite (S_n) est-elle convergente? divergente?

On vient de démontrer que $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots = 1!$ (et c'est bien un "=", pas une valeur approchée!!!)

Le projectile va donc bien parcourir la distance initiale, et atteindra bien le pauvre professeur!

Chapitre 7

Trigonométrie

α					•	
•	α	n	m	2	ır	Ω
. ,						•

Somman	lе		
7.1	Cer	cle trigonométrique et radians	46
	7.1.1	Cercle trigonométrique	46
	7.1.2	Le radian	47
7.2	Rep	érage sur le cercle trigonométrique	49
	7.2.1	Enroulement de la droite des réels sur le cercle	49
	7.2.2	Enroulement des nombres réels remarquables	51
7.3	Cos	inus et sinus d'un réel	52
	7.3.1	Définition	52
	7.3.2	Propriétés	52
	7.3.3	Cosinus et sinus d'angles remarquables	53
	7.3.4	Cosinus et sinus d'angles associés	54
	7.3.5	Lien avec le cosinus et sinus d'un triangle rectangle	54
	7.3.6	Et avec la calculatrice?	54
7.4	Équ	ations trigonométrique	56
7.5	Défi	inition de la fonction exponentielle	58
	7.5.1	Définition	58
	7.5.2	Propriété	59
	7.5.3	Propriétés algébriques	59
	7.5.4	Une nouvelle notation	60
7.6	Étu	de de la fonction exponentielle	63
	7.6.1	Signe de la fonction exponentielle	63
	7.6.2	Sens de variation de la fonction exponentielle	63
	7.6.3	Représentation graphique	64
	7.6.4	Dérivée de la fonction g définie par $g(x) = exp(ax + b) \dots \dots$	64

Cercle trigonométrique et radians

Spé Maths 1ère - JB Duthoit

7.1.1 Cercle trigonométrique

Plan orienté

Définition 7.9

Le plan est dit *orienté* lorsque l'on choisit un sens positif de rotation. Par convention, dans le plan, on choisit comme sens positif LE SENS INVERSE DES AIGUILLES D'UNE MONTRE!

Ce sens est appelé sens trigonométrique.

Le sens trigonométrique

Cercle trigonométrique

Définition 7.10

Dans le plan muni d'un repère orthonormé (O, \vec{i}, \vec{j}) et orienté, le **cercle trigonométrique** est le cercle de centre O et de rayon 1.

Cercle trigonométrique

7.1.2 Le radian

Définition 7.11

La mesure en *radian* (rad) d'un angle est égale à la longueur de l'arc du cercle trigonométrique qu'il intercepte.

$En \ particulier:$

1 radian

- Approche

Calculer \widehat{AB} :

Propriété 7.8

On a la conversion suivante : une angle de $\frac{\pi}{2}$ radian correspond à un angle de 90°.

Exercice 7.1

Compléter le tableau suivant :

Radians	0	$\frac{\pi}{2}$	π	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	1	$\frac{2\pi}{3}$	$\frac{\pi}{180}$
degrés	0	90							

Tableau de conversion

Savoir-Faire 7.15

Savoir convertir des degrés en radians et inversement

- Soit α un angle qui mesure 15°. Calculer la mesure de cet angle en radians.
- Soit α un angle qui mesure $\frac{5\pi}{6}$. Calculer la mesure de cet angle en degrés.

Repérage sur le cercle trigonométrique

SPÉ MATHS 1ÈRE - JB DUTHOIT

7.2.1 Enroulement de la droite des réels sur le cercle

Enroulement de la droite des réels

Propriété 7. 9

l Chaque réel de la droite vient s'appliquer sur un point M unique du cercle C.

Propriété 7. 10

Propriété réciproque :

Si un réel a de la droite d se retrouve en M sur le cercle trigonométrique après enroulement de la droite des réels sur le cercle trigonométrique, alors les réels ... $a-4\pi,a-2\pi,a,a+2\pi,a+4\pi,a+6\pi...$ se retrouvent aussi en M après l'enroulement.

Propriété 7. 11

Parmi tous ces réels qui se trouvent en M après enroulement, un seul appartient à l'intervalle $]-\pi;\pi].$

- Approche

l'objectif est de placer $\frac{\pi}{3}$ sur le cercle trigonométrique.

Considérons un triangle TUV équilatéral de coté 1, et soit W milieu de [UV].

Calculer TW et l'angle \widehat{TUV} .

On en déduit donc une manière de construire $\frac{\pi}{6}$ à la règle est au compas :

On procède de la même façon pour les angles $\frac{\pi}{4}$ et $\frac{\pi}{3}$.

7.2.2 Enroulement des nombres réels remarquables

Nombres remarquables à connaître par $\, ullet \,$

Savoir-Faire 7.16

SAVOIR PLACER UN POINT SUR LE CERCLE TRIGONOMÉTRIQUE

On considère le cercle trigonométrique C.

Placer sur ce cercle les points A,B,C,D images, par enroulement de la droite des réels, des réels suivants :

- 1. $\frac{9\pi}{4}$
- 2. $\frac{-13\pi}{6}$
- 3. $\frac{-135\pi}{4}$
- 4. $\frac{561\pi}{2}$
- 5. $\frac{562\pi}{3}$

Cosinus et sinus d'un réel

Spé Maths 1ère - JB Duthoit

7.3.1 Définition

Soit x un réel. L'objectif est de déterminer le cosinus et le sinus de ce nombre réel. Après enroulement de la droite des réels sur le cercle trigonométrique, le nombre x se retrouve en un point M.

Définition 7.12

On considère un nombre x ayant pour point image M sur le cercle trigonométrique.

- Le **cosinus de** x, noté cos(x), est l'abscisse de M dans le repère $(O; \vec{i}; \vec{j})$.
- Le **sinus de** x, noté sin(x), est l'ordonnée de M dans le repère $(O; \vec{i}; \vec{j})$.

7.3.2 Propriétés

Propriété 7. 12

Pour tout nombre réel x,

- $-1 \le cos(x) \le 1$
- $-1 \le sin(x) \le 1$
- $cos(x + 2k\pi) = cos(x)$ avec $k \in \mathbb{Z}$
- $sin(x + 2k\pi) = sin(x)$ avec $k \in \mathbb{Z}$
- $cos^2(x) + sin^2(x) = 1$

Savoir-Faire 7.17

SAVOIR CALCULER UN COSINUS CONNAISSANT UN SINUS ET INVERSEMENT Exemple :

- 1. Soit x un réel appartenant à $\left[\frac{\pi}{2};\pi\right]$ avec $\sin(x)=0.4$. Calculer $\cos(x)$
- 2. On sait que $cos(\frac{\pi}{5}) = \frac{\sqrt{5}+1}{4}$. Calculer $sin(\frac{\pi}{5})$.

7.3.3 Cosinus et sinus d'angles remarquables

Cercle trigo et valeurs remarquables de sinus et cosinus

Savoir-Faire 7.18

Savoir calculer le cosinus ou le sinus d'un réel Déterminer le cosinus et le sinus (on appelle cela les $\it lignes trigonom\'eteriques$) de :

- 1. $\frac{217\pi}{2}$
- 2. $\frac{-212\pi}{3}$
- 3. 12345π
- 4. $\frac{133\pi}{6}$

7.3.4 Cosinus et sinus d'angles associés

cosinus et sinus d'angles associés

Savoir-Faire 7.19

Savoir déterminer, par lecture du cercle trigo, les cosinus et sinus des angles associés à \boldsymbol{x}

Exercice 7.2

On considère que $\sin\left(\frac{\pi}{10}\right) = \frac{\sqrt{5} - 1}{2}$.

- 1. Calculer $\cos\left(\frac{\pi}{10}\right)$.
- 2. En déduire :
 - a) $\cos\left(-\frac{\pi}{10}\right)$
 - b) $\cos\left(\frac{9\pi}{10}\right)$
 - c) $sin\left(\frac{2\pi}{5}\right)$
 - d) $sin\left(\frac{3\pi}{5}\right)$
 - e) $cos\left(\frac{11\pi}{10}\right)$

7.3.5 Lien avec le cosinus et sinus d'un triangle rectangle

7.3.6 Et avec la calculatrice?

rightharpoonup arccos(a) renvoie l'angle compris entre 0 et π et dont le cosinus vaut a.

rightharpoonup arcsin(a) renvoie l'angle compris entre $-\frac{\pi}{2}$ et $\frac{\pi}{2}$ et dont le sinus vaut a.

Équations trigonométrique

Spé Maths 1ère - JB Duthoit

Savoir-Faire 7.20

SAVOIR RÉSOUDRE, PAR LECTURE DU CERCLE TRIGO, DES ÉQUATIONS ET DES INÉQUATIONS TRIGONOMÉTRIQUES SIMPLES

- 1. Résoudre dans $]-\pi;\pi]$ l'équation $sin(x)=-\frac{1}{2}$.
- 2. Résoudre dans $]0;2\pi]$ l'équation $cos(x) = -\frac{\sqrt{3}}{2}$.
- 3. Résoudre dans $]0;2\pi]$ l'inéquation $sin(x)\geq \frac{\sqrt{2}}{2}.$
- 4. Résoudre dans $]-\pi;\pi]$ l'équation $cos(x) \leq -\frac{\sqrt{3}}{2}$.
- 5. Résoudre dans] $-\pi;\pi$] l'équation $sin(x) \leq -\frac{1}{2}$.

La fonction exponnetielle

Sommaire

7.1	Cerc	ele trigonométrique et radians	46
	7.1.1	Cercle trigonométrique	46
	7.1.2	Le radian	47
7.2	Rep	érage sur le cercle trigonométrique	49
	7.2.1	Enroulement de la droite des réels sur le cercle	49
	7.2.2	Enroulement des nombres réels remarquables	51
7.3	Cosi	nus et sinus d'un réel	52
	7.3.1	Définition	52
	7.3.2	Propriétés	52
	7.3.3	Cosinus et sinus d'angles remarquables	53
	7.3.4	Cosinus et sinus d'angles associés	54
	7.3.5	Lien avec le cosinus et sinus d'un triangle rectangle	54
	7.3.6	Et avec la calculatrice?	54
7.4	Équa	ations trigonométrique	56
7.5	Défi	nition de la fonction exponentielle	58
	7.5.1	Définition	58
	7.5.2	Propriété	59
	7.5.3	Propriétés algébriques	59
	7.5.4	Une nouvelle notation	60
7.6	Étuc	le de la fonction exponentielle	63
	7.6.1	Signe de la fonction exponentielle	63
	7.6.2	Sens de variation de la fonction exponentielle	63
	7.6.3	Représentation graphique	64
	7.6.4	Dérivée de la fonction g définie par $g(x) = \exp(ax + b)$	64

Définition de la fonction exponentielle

SPÉ MATHS 1ÈRE - JB DUTHOIT

Histoire

C'est le mathématicien suisse Leonhard Euler (1707-1783) utilisa pour la première fois la notation e . La première apparition de la lettre « e » pour désigner la base du logarithme népérien date de 1728, dans un manuscrit d'Euler qui le définit comme le nombre dont le logarithme est l'unité et qui se sert des tables de Vlacq pour l'évaluer à 2,7182817.

Euler

Histoire

La forme prise par un fil pesant flexible entre deux point fixe est appelée une "chaînette". C'est une courbe de fonction qui fait intervenir la fonction exponentielle!

câble EDF, fils de soie tissés par une araignée...

7.5.1 Définition

Approche

On cherche à résoudre une équation différentielle, c'est à dire une équation qui met en relation une fonction avec sa dérivée.

On va s'intéresser ici à la (il y en a qu'une seule) fonction (elle existe) telle que :

- Pour tout réel $x \in \mathbb{R}$, f(x) = f'(x)
- f(0) = 1

Définition

Propriété 7. 13

Il existe une et une seule fonction f dérivable sur $\mathbb R$ telle que :

- f(0) = 1
- f' = f

Définition 7.13

Cette fonction est appelée **fonction exponentielle** et est notée exp. Ainsi, pour tout $x \in \mathbb{R}$, on a :

- exp(0) = 1
- exp'(x) = exp(x)

7.5.2 Propriété

Propriété 7. 14

Pour tout réel x, on a $exp(-x) \times exp(x) = 1$

Exemple

- exp(5) =
- exp(-8) ==

Conséquence 7.15

Pour tout $x \in \mathbb{R}$, $exp(x) \neq 0$

7.5.3 Propriétés algébriques

Propriété 7. 16

Pour tous réels x et y, et pour tout entier relatif n, on a :

- $exp(-x) = \frac{1}{exp(x)}$
- $exp(x+y) = exp(x) \times exp(y)$
- $exp(x y) = \frac{exp(x)}{exp(y)}$
- $exp(nx) = (exp(x))^n$

Exemple

- exp(-5) =
- exp(8) = exp(5+3) =
- exp(4) = exp(6-2) =
- $exp(40) = exp(4 \times 10) =$

Savoir-Faire 7.21

SAVOIR MANIPULER LES PROPRIÉTÉS ALGÉBRIQUES

- 1. Soit x un réel. Simplifier les expressions suivantes :
 - a) $A = exp(4x) \times exp(-2x+1)$

b)
$$B = \frac{(exp(x+1))^2}{exp(3x-4)}$$

2. Montrer que pour tout réel x, on a :

$$\frac{1 - exp(-x)}{1 + exp(-x)} = \frac{exp(x) - 1}{exp(x) + 1}$$

• Exercice 7.3

Démontrer les égalités suivantes :

1.
$$(exp(x) + 1)(exp(x) - 1) = exp(2x) - 1$$

2.
$$\frac{exp(x) - exp(-x)}{exp(x) + exp(-x)} = \frac{1 - exp(-2x)}{1 + exp(-2x)}$$

7.5.4 Une nouvelle notation

Les propriétés algébriques vues précédemment (7.5.3) nous permettent de constater que les formules sont analogues aux règles de calcul sur les puissances.

On introduit donc une nouvelle notation : $exp(x) = e^x$

Le nombre e

Avec la nouvelle notation, on a donc $exp(1) = e^1 = e$.

Définition 7.14

L'image de 1 par la fonction exponentielle est notée e.

Les propriétés algébriques

Propriété 7. 17

Pour tous réels x et y, et pour tout entier relatif n, on a :

$$\bullet \quad e^{-x} = \frac{1}{e^x}$$

$$\bullet \quad e^{x+y} = e^x \times e^y$$

$$\bullet \ e^{x-y} = \frac{e^x}{e^y}$$

•
$$e^{nx} = (e^x)^n$$

Exercice 7.4

Exprimer en fonction de e^5 les nombres suivants :

1.
$$e^3 \times e^2$$

2.
$$e^{-5}$$

3.
$$e^{15}$$

4.
$$e^{-10}$$

Exercice 7.5

Développer

1.
$$(e^x - 2)^2$$

2.
$$(e^x + 1)^2$$

3.
$$(e^x - 3)(e^x + 3)$$

Exercice 7.6

Factoriser:

1.
$$10e^x - 5xe^x$$

2.
$$2xe^{-x} + 3e^{-x}$$

3.
$$9e^{2x} - 6e^x + 1$$

4.
$$e^{2x} - 16$$

$$5 e^{6x} - 25$$

Exercice 7.7

Démontrer les égalités suivantes :

1.
$$(e^x + 1)^2 = e^{2x} + 2e^x + 1$$

2.
$$\frac{e^x - 1}{e^x + 1} = \frac{1 - e^{-x}}{1 + e^{-x}}$$

3.
$$e^{x^2+1}e^{x-1} = e^{x^2+x}$$

4.
$$e^{1-x} \times e^{3x-2} = \frac{1}{e}e^{2x}$$

5.
$$(e^x - e^{-x})^2 = e^{2x} + \frac{1}{e^{2x}} - 2$$

Lien avec les suites géométriques

Approche

Imaginons une quantité qui vaut 1 initialement et qui double chaque heure.

On a donc $u_0 = 1$, $u_1 = 2$, $u_2 = 4$...

La suite (u_n) est géométrique, par construction.

- Donner la formule explicite de la suite (u_n) .
- Déterminer à tâtons, et le plus précisément possible la valeur approchée de a tel que $e^a=2$

Il est donc maintenant possible d'avoir une estimation de la quantité au bout de 2.5 heures, ce qui n'était pas possible avec les suites!

Ce passage du "discret" au "continu" grâce à la fonction exponentielle permet de modéliser de nombreuses évolutions dans des domaines variés, comme le calcul d'intérêts, la dilution d'une solution, la décroissance radioactive...etc...

Propriété 7. 18

Pour tout réel a, la suite (u_n) définie par $u_n = e^{na}$ est une suite géométrique.

Exemple

la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = e^{2n}$ est une suite géométrique.

 $u_1 =$

 $u_2 =$

 $u_3 =$

∠Démonstration 7.4

Soit a un réel. Montrer que la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = e^{an}$ est une suite géométrique dont on précisera la raison.

Étude de la fonction exponentielle

Spé Maths 1ère - JB Duthoit

7.6.1 Signe de la fonction exponentielle

Propriété 7. 19

La fonction exponentielle est strictement positive sur \mathbb{R} . Ainsi, pour tout réel $x \in \mathbb{R}$, on a $e^x > 0$.

∠Démonstration 7.5

Montrer que pour tout réel $x \in \mathbb{R}$, on a $e^x > 0$.

7.6.2 Sens de variation de la fonction exponentielle

Propriété 7. 20

La fonction exponentielle est strictement croissante sur \mathbb{R} .

x	$-\infty$ $+\infty$
$f(x) = e^x$	

∠Démonstration 7.6

Montrer que la fonction exponentielle est strictement croissante sur \mathbb{R} .

Remarque

La fonction exponentielle est de croissance très rapide, d'où l'expression courante de "croissance exponentielle".

Savoir-Faire 7.22

SAVOIR RÉSOUDRE DES ÉQUATIONS ET INÉQUATIONS AVEC LA FONCTION EXPONENTIELLE

Résoudre dans \mathbb{R}

1.
$$e^{3x} = e^{5x+2}$$

2.
$$e^{x+1} > e^{5x}$$

3.
$$e^{7x-1} \le e^x$$

4.
$$e^{x+1} = 1$$

5.
$$e^x > 1$$

6.
$$e^{x+3} < 0$$

7.
$$-2e^{x+2} > -2e^{-5}$$

8.
$$e-x-e < 0$$

7.6.3 Représentation graphique

-2 3 -1 0 1 2 4 tableau de valeurs : 0.02 0.05 0.14 0.37 2.72 7.39 20.09 54.60

Courbe représentative de la fonction exponentielle :

Remarque

- La courbe C_f passe par les points de coordonnées (0,1) et (1,e).
- La courbe C_f est situé au dessus de l'axe des abscisses, et ne le coupe jamais.

7.6.4 Dérivée de la fonction g définie par g(x) = exp(ax + b)

Propriété 7. 21

Soient a et b deux réels.

La fonction f définie sur \mathbb{R} par $f(x) = e^{ax+b}$ est dérivable sur \mathbb{R} , et pour tout réel $x \in \mathbb{R}$, on a $f'(x) = a \times e^{ax+b}$.

Exemple

Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{2x+1}$. Calculer f'(x)

Savoir-Faire 7.23

SAVOIR ÉTUDIER UNE FONCTION COMPORTANT UNE EXPONENTIELLE

- 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{2x} 2x$.
 - a) Calculer f'(x)
 - b) Étudier les variations de la fonction f.
 - c) En déduire le signe de f sur \mathbb{R} .
 - d) Déterminer une équation de la tangente \mathscr{D} à C_f passant par le point de la courbe d'abscisse $\frac{1}{2}$.
 - e) La droite $\mathcal D$ passe-t-elle par l'origine du repère?
 - f) Vérifier les résultats précédents à l'aide de la calculatrice.
- 2. Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{1 + e^x}$.
 - a) Calculer f'(x)
 - b) Étudier les variations de la fonction f.
 - c) Déterminer une équation de la tangente \mathcal{D} à C_f passant par le point de la courbe d'abscisse 0.
 - d) Vérifier les résultats précédents à l'aide de la calculatrice.
- 3. Soit f la fonction définie sur \mathbb{R} par $f(x) = (x+1)e^x$.
 - a) Étudier les variations de la fonction f.
 - b) Vérifier les résultats précédents à l'aide de la calculatrice.

Chapitre 8

Les variables aléatoires

Sommair	e		
8.1	Vari	iable aléatoire	68
	8.1.1	Notion de variable aléatoire	68
	8.1.2	Variable aléatoire	68
	8.1.3	Loi de probabilité d'une variable aléatoire	69
8.2	\mathbf{Esp}	érance, variance et écart-type d'une variable aléatoire	72
	8.2.1	Définitions	72
	8.2.2	Propriété	73

Variable aléatoire

SPÉ MATHS 1ÈRE - JB DUTHOIT

Notion de variable aléatoire 8.1.1

Dans la suite, on considère une expérience aléatoire associé à un univers Ω fini sur lequel on a défini une loi de probabilité p.

-6-découvrir la notion de variable aléatoire

On tire une carte d'un jeu de 32 cartes. Si la carte obtenue est un as, on gagne 3 euros, si c'est une figure, on gagne 2 euros et sinon on perd deux 3 euros. Au brouillon, déterminer les différentes valeurs de gain possible.

Composition d'un jeu de 32 cartes

Variable aléatoire 8.1.2

Définition 8.15

Une *variable aléatoire* X est une fonction définie sur Ω et à valeur dans $\mathbb R$, qui à tout élément de Ω fait correspondre un nombre réel.

Remarque

- Comme Ω est fini, l'ensemble des valeurs prises par X est fini également.
- On nomme en général les variables aléatoires avec une lettre majuscule, par exemple X, Y ou Z.
- Soit a un nombre réel. On note :
 - $-\ \{X=a\}$ l'événement "la variable aléatoire X prend la valeur a.
 - $-\{X\geq a\}$ l'événement "la variable aléatoire X prend la valeur supérieure ou égale à a.
 - $-\{X < a\}$ l'événement "la variable aléatoire X prend la valeur strictement inférieure à a.

8.1.3 Loi de probabilité d'une variable aléatoire

Définition 8.16

Soit X une variable aléatoire définie sur Ω . Définir la **loi de probabilité de** X, c'est associer à chaque valeur prise par X sa probabilité. Autrement dit, en notant $x_1, x_2, x_3...x_n$ les valeurs prises par X, c'est donner les valeurs des probabilités $P(X = x_i)$ pour tout entier i, où $1 \le i \le n$. En général , on présente les résultats dans un tableau :

Valeurs prises par X	x_1	x_2	 x_n
$p(X=x_i)$	p_1	p_2	 p_n

Savoir-Faire 8.24

Savoir déterminer une loi de probabilité

On tire une carte dans un jeu de 32 cartes. Si la carte tirée est un as, on gagne 3 jetons. Si c'est un cœur, on gagne 2 jetons. Pour toutes les autres cartes, on perd un jeton. Éventuellement, les gains se cumulent. On appelle X la variable aléatoire égale au gain en jetons. Déterminer la loi de probabilité de X. Méthode :

- Il faut bien identifier les différentes valeurs que peut prendre X
- Il faut ensuite déterminer la probabilité de chacune des valeurs que peut prendre X (On peut utiliser un tableau, un arbre...)

Savoir-Faire 8.25

SAVOIR SIMULER UNE VARIABLE ALÉATOIRE AVEC PYTHON

On reprend le problème précédent, et on désire simuler avec Python la variable aléatoire égale au gain obtenu en tirant la carte. On commence par chercher à simuler le tirage d'une carte :

```
from random import *
val = ['as','r','d','v','10','9','8','7'] # on créé le jeu de carte
coul = ['coeur','carreau','trefle','pique']
def tirage():
    a = randint(...,...)
    b = randint(...,...)
    return (val[a],coul[b])
```

Simuler ensuite la variable aléatoire :

```
def gain():
    carte_tiree = tirage()
    gain = ...
    if carte_tiree[0] == 'as':
        gain += ...
    if carte_tiree[1] == 'coeur':
        gain += ...
    if carte_tiree[0] ...... and carte_tiree[1] ......
    return gain
```

Exercice 8.8

On considère deux dés cubiques bien équilibrés, numérotés de 1 à 6.

On lance ces deux dés.

On note X la variable aléatoire égale à la somme obtenue.

Déterminer la loi de probabilité de X.

Exercice 8.9

On considère deux dés cubiques bien équilibrés, numérotés de 1 à 6.

On lance ces deux dés.

On note Y la variable aléatoire égale au maximum des deux dès.

Déterminer la loi de probabilité de Y.

Exercice 8.10

On considère une urne dans laquelle sont placés 13 cartons de même forme, indiscernables au toucher.

```
Sur chaque carton, on a écrit respectivement [tu], [es], [le], [i], [de], [aimer], [car], [sans], [toi], [ma], [vie], [est], [amer].
```

On tire au hasard un carton de l'urne.

X est la variable aléatoire égale au nombre de consonnes notées sur le carton.

Déterminer la loi de probabilité de X.

Exercice 8.11

Au début d'un concert, on distribue au hasard un billet de loterie à chacun des 120 spectateurs. Parmi les 120 billets distribués :

- 3 donnent droit à 4 places gratuites au prochain concert.
- 6 donnent droit à 2 places gratuites pour le prochain concert.
- 42 donnent droit à 1 place gratuite pour le prochain concert.

• Les autres billets ne donnent droit a rien :-(

Soit X la variable aléatoire égale au nombre de places gratuites au prochain concert.

- 1. Décrire les événements $\{X = 1\}$ et $\{X \le 2\}$.
- 2. Déterminer p(X = 4)
- 3. Donner la loi de probabilité de X.

Exercice 8.12

On lance deux fois de suite une pièce truquée. Lors de chaque lancer, la probabilité que "face" apparaisse est égale à $\frac{2}{3}$.

Soit X la variable aléatoire qui, à chaque lancer de deux pièces, associe le nombre de "face".

Déterminer la loi de probabilité de X.

Exercice 8.13

Pour une promotion commerciale, un magasin offre un billet de loterie à tous les acheteurs d'un appareil électroménager.

Les 500 billets sont numérotées de 001 à 500 et ils sont tous distribués.

A la fin de la promotion, on effectue un tirage au sort :

- Le numéro 397 gagne 5000 \in .
- Les autres numéros se terminant par 97 gagnent chacun 1000 €.
- Les 45 autres numéros se terminant par 7 gagnent chacun 7 €.

Après l'achat d'un appareil, une personne tire un billet au hasard.

On désigne par X la variable aléatoire qui, au numéro de ce billet, associe le gain correspondant, en euros. Déterminer la loi de probabilité de X.

Espérance, variance et écart-type d'une variable aléatoire.

Spé Maths 1ère - JB Duthoit

- Découvrir l'espérance mathématique

Utiliser le programme python précédent pour construire une fonction Python qui simule 100 000 tirages de cartes et qui retourne le gain moyen obtenu.

```
def gain moyen():
   g = ...
    for i in range (...):
        gain partie = gain()
        g = ...
    return ...
```

L'espérance mathématique d'une variable aléatoire correspond à ce gain moyen.

8.2.1 **Définitions**

On considère dans ce paragraphe la variable aléatoire X dont la loi de probabilité est donnée par:

Valeurs prises par X	x_1	x_2	 x_n
$p(X=x_i)$	p_1	p_2	 p_n

Définition 8.17

L'espérance de X est le nombre réel noté E(X) défini par :

$$E(X) = p_1 x_1 + p_2 x_2 + \dots + p_n x_n$$

Savoir-Faire 8.26

SAVOIR CALCULER L'ESPÉRANCE D'UNE VARIABLE ALÉATOIRE On reprend le problème du SF1 : calculer l'espérance mathématique de X.

Remarque

- Lorsque X est une variable aléatoire qui correspond au gain algébrique d'une partie à un jeu, E(X) est le gain moyen que l'on peut espérer sur un grand nombre de parties.
- Un jeu est $\acute{e}quitable$ si l'espérance de la variable aléatoire donnant le gain algébrique est nulle.

Définition 8.18

La **variance** de X est le nombre réel noté V(X) définie par

$$V(X) = p_1(x_1 - E(X))^2 + p_2(x_2 - E(X))^2 + \dots + p_n(x_n - E(X))^2$$

Définition 8.19

L'écart-type de X est le nombre réel noté $\sigma(X)$ défini par $\sigma(X) = \sqrt{V(X)}$

Remarque

- L'écart-type sert pour se donner une idée de la répartition des valeurs prises par une variable aléatoire autour de son espérance.
- Plus l'écart-type est grand, plus les valeurs prises par la variable sont "éloignés" de l'espérance.
- Plus l'écart-type est proche de zéro, plus les valeurs prises par la variables sont resserrées autour de l'espérance.

8.2.2 Propriété

Propriété 8. 22

| On a $V(X) = p_1 x_1^2 + p_2 x_2^2 + \dots + p_n x_n^2 - (E(X))^2$

Savoir-Faire 8.27

SAVOIR CALCULER L'ÉCART-TYPE D'UNE VARIABLE ALÉATOIRE On reprend le problème du SF1. Calculer l'écart-type de X de deux façons différentes.

8.2.	ESPÉRANCE,	VARIANCE ET ÉC	CART-TYPE D'UN	E VARIABLE ALÉ	ATOIR £ 020-2021

Chapitre 9

Le produit scalaire

Sommaire

~ OIIIII	•		
9.1	Prer	nières expressions du produit scalaire	7 6
	9.1.1	Définition	76
	9.1.2	Cas particulier de vecteurs colinéaires	77
	9.1.3	Expression du produit scalaire avec le projeté orthogonal	77
9.2	Prop	priété du produit scalaire	80
	9.2.1	Produit scalaire et orthogonalité	80
	9.2.2	règles de calculs	80
	9.2.3	Carré scalaire	81
	9.2.4	Identités remarquables	81
9.3	Autı	res expressions du produits scalaire	83
	9.3.1	Expression analytique du produit scalaire	83
	9.3.2	Expression du produit scalaire à partir des normes	83

9.1

Premières expressions du produit scalaire

SPÉ MATHS 1ÈRE - JB DUTHOIT

Histoire

La notion de produit scalaire est apparue pour les besoins de la physique.

Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809; 1877).

Il fut baptisé produit scalaire par William Hamilton en 1853.

9.1.1 Définition

Définition 9.20

Le produit scalaire d'un vecteur \vec{u} par un vecteur \vec{v} est le nombre réel noté $\vec{u}.\vec{v},$ défini par :

- $\vec{u} \cdot \vec{v} = 0$ si $\vec{u} = \vec{0}$ ou si $\vec{v} = \vec{0}$.
- $\vec{u}.\vec{v} = \overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times cos(\widehat{BAC})$, en posant $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$.

Remarque

Le produit scalaire $\vec{u}.\vec{v}$ est indépendant des représentants des vecteurs \vec{u} et \vec{v} . On peut donc choisir des vecteurs de même origine.

Exercice 9.14

Calculer le produit scalaire $\overrightarrow{AB}.\overrightarrow{AC}$ en sachant que AB = AC = BC = 1.

Exercice 9.15

Calculer le produit scalaire $\overrightarrow{AB}.\overrightarrow{AC}$ en utilisant les données de la figure suivante :

9.1.2 Cas particulier de vecteurs colinéaires

Propriété 9. 23

- si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires et de même sens, alors $\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC$.
- si \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires et de sens opposés, alors $\overrightarrow{AB}.\overrightarrow{AC} = -AB \times AC$.

Exercice 9.16

Soient A,B et C trois points alignés tels que $B \in [AC]$ et AB = 4 et BC = 1. Calculer $\overrightarrow{AB}.\overrightarrow{AC},\overrightarrow{AB}.\overrightarrow{AB}$ et $\overrightarrow{BC}.\overrightarrow{BA}$.

9.1.3 Expression du produit scalaire avec le projeté orthogonal

Propriété 9. 24

Pour tous vecteurs non nuls $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$, on considère le point C' projeté orthogonal de C sur la droite (AB).

On a alors $\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AC'}$

Exercice 9.17

Soit ABC un triangle et soit H le pied de la hauteur issue de C. On sait également que AH=5, AB=3 et B appartient au segment [AH].

 \bullet Calculer $\overrightarrow{AB}.\overrightarrow{AC}$

Savoir-Faire 9.28

Savoir choisir la forme adaptée pour calculer un produit scalaire Quand cela est possible, calculer le produit scalaire $\overrightarrow{AB}.\overrightarrow{AC}$ dans chacune des situations ci-dessous.

Pas d'inquiétude! Il sera possible de calculer tous ces produits scalaires...un peu de patience!

Exercice 9.18

On considère le carré ABCD de coté a.

On note ${\cal O}$ le point d'intersection de ses diagonales.

Calculer, en fonction de a, les produits scalaires suivants :

- $\overrightarrow{AB}.\overrightarrow{AO}$
- $\overrightarrow{AB}.\overrightarrow{CD}$
- $\overrightarrow{AC}.\overrightarrow{AD}$
- $\overrightarrow{AB}.\overrightarrow{OD}$

Savoir-Faire 9.29

Savoir utiliser le produit scalaire pour calculer un angle ou une distance ABC est le triangle ci-dessous avec AB=3 et AC=4. H est le pied de la hauteur issue de C, et AH=2.5

- 1. Calculer $\overrightarrow{AB}.\overrightarrow{AC}$
- 2. En déduire la mesure de α , mesure de l'angle \widehat{BAC} arrondie au degré près.

9.2

Propriété du produit scalaire

SPÉ MATHS 1ÈRE - JB DUTHOIT

9.2.1 Produit scalaire et orthogonalité

Définition 9.21

- Dire que deux vecteurs $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ sont orthogonaux signifie que les droites (AB) et (AC) sont perpendiculaires.
- Par convention, le vecteur nul $\vec{0}$ est orthogonal à tout vecteur.

Propriété 9. 25

Pour tous vecteurs \vec{u} et \vec{v} , \vec{u} est orthogonal à \vec{v} équivaut à $\vec{u}.\vec{v}=0$

^Démonstration 9.7

Dans le cas où $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$ sont non nuls, montrons que \vec{u} est orthogonal à \vec{v} équivaut à $\vec{u}.\vec{v} = 0$.

9.2.2 règles de calculs

Propriété 9. 26

Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} , pour tout nombre réel λ :

- 1. $\vec{u}.\vec{v} = \vec{v}.\vec{u}$
- 2. $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w}$
- 3. $(\vec{u} + \vec{v}).\vec{w} = \vec{u}.\vec{w} + \vec{v}.\vec{w}$
- 4. $\vec{u}.(\lambda \vec{v}) = \lambda \times (\vec{u}.\vec{v})$
- 5. $(\lambda \vec{u}) \cdot \vec{v} = \lambda \times (\vec{u} \cdot \vec{v})$

Exemple

 $\vec{u}.(2\vec{v} - 3\vec{w}) =$

Savoir-Faire 9.30

SAVOIR UTILISER LA RELATION DE CHASLES POUR CALCULER UN PRODUIT SCALAIRE ABCD est le trapèze rectangle ci-dessous avec AB=5 et AD=2 et CD=3. Calculer $\overrightarrow{AC}.\overrightarrow{DB}$

Carré scalaire 9.2.3

Définition 9.22

Le carré scalaire d'un vecteur \vec{u} , noté \vec{u}^2 , est le produit scalaire $\vec{u}.\vec{u}$.

Conséquence 9.27

- Pour tout vecteur \vec{u} , $\vec{u}^2 = ||\vec{u}||^2$.
- Pour tous points A et B, $\overrightarrow{AB}^2 = \left\| \overrightarrow{AB} \right\|^2 = AB^2$

9.2.4 Identités remarquables

Propriété 9. 28

Pour tous vecteurs \vec{u} et \vec{v} :

- $(\vec{u} + \vec{v})^2 = \vec{u}^2 + 2\vec{u}.\vec{v} + \vec{v}^2$ $(\vec{u} \vec{v})^2 = \vec{u}^2 2\vec{u}.\vec{v} + \vec{v}^2$ $(\vec{u} + \vec{v})(\vec{u} \vec{v}) = \vec{u}^2 \vec{v}^2$

∠Démonstration 9.8

Démontrer les 3 identités remarquables.

Savoir-Faire 9.31

SAVOIR DÉMONTRER L'ORTHOGONALITÉ DE DEUX VECTEURS - MÉTHODE 1 ABCD est le rectangle ci-dessous avec AB=5 et BC=2. E et F sont les points tels que $\overrightarrow{AE} = \frac{1}{5}\overrightarrow{AB}$ et $\overrightarrow{DF} = \frac{4}{5}\overrightarrow{DC}$. Monter que (AF) et (DE) sont perpendiculaires.

9.3

Autres expressions du produits scalaire

SPÉ MATHS 1ÈRE - JB DUTHOIT

9.3.1 Expression analytique du produit scalaire

Propriété 9. 29

Dans une base <u>orthonormée</u> (\vec{i}, \vec{j}) , si $\vec{u}(x; y)$ et $\vec{v}(x'; y')$, alors $\vec{u} \cdot \vec{v} = xx' + yy'$

Exemple

On considère deux vecteurs $\vec{u}(-5;2)$ et $\vec{v}(1;4)$ dans une base orthonormée (\vec{i},\vec{j}) du plan. Calculer $\vec{u}.\vec{v}$

Conséquence 9.30

Dans une base <u>orthonormée</u> (\vec{i}, \vec{j}) , et si $\vec{u}(x; y)$ et $\vec{v}(x'; y')$, alors : \vec{u} et \vec{v} orthogonaux équivaut à xx' + yy' = 0

Propriété 9. 31

Dans une base <u>orthonormée</u> (\vec{i}, \vec{j}) , et si $\vec{u}(x; y)$, alors $||\vec{u}|| = \sqrt{x^2 + y^2}$

Exemple

On considère deux vecteurs $\vec{u}(5;7)$ et $\vec{v}(-5;4)$ dans une base orthonormée (\vec{i},\vec{j}) du plan. Calculer $\|\vec{u}\|$ et $\|\vec{v}\|$

Savoir-Faire 9.32

SAVOIR DÉMONTRER L'ORTHOGONALITÉ DE DEUX VECTEURS - MÉTHODE 2 , AVEC DES COORDONNÉES

ABCD est le rectangle ci-dessous avec AB=5 et BC=2.

E et F sont les points tels que $\overrightarrow{AE} = \frac{1}{5}\overrightarrow{AB}$ et $\overrightarrow{DF} = \frac{4}{5}\overrightarrow{DC}$.

Monter que (AF) et (DE) sont perpendiculaires.

9.3.2 Expression du produit scalaire à partir des normes

∠ Démonstration 9.9

On souhaite déterminer une expression de $\vec{u}.\vec{v}$ en fonction des normes. Pour cela, on peut développer $\|\vec{u} - \vec{v}\|^2$ et $\|\vec{u} + \vec{v}\|^2$, et ensuite isoler $\vec{u}.\vec{v}$ pour en déduire les formules recherchées.

Propriété 9. 32

Pour tous vecteurs \vec{u} et \vec{v} , on a :

•
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{u} - \vec{v}\|^2)$$

• $\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)$

•
$$\vec{u} \cdot \vec{v} = \frac{1}{2} (\|\vec{u} + \vec{v}\|^2 - \|\vec{u}\|^2 - \|\vec{v}\|^2)$$

Index

Ecart-type de X, 71 Espérance mathématique de X, 70

Loi de probabilité de X, $67\,$

Variable aléatoire, 66 Variance de X, 71 INDEX 2020-2021