# Samenvatting Statistiek

Bert De Saffel

2017-2018

# Inhoudsopgave

| I  | Herhaling Wiskunde A                                   | 2         |
|----|--------------------------------------------------------|-----------|
| 1  | Onbepaalde Integralen                                  | 3         |
|    | 1.1 Substitutiemethode                                 | . 3       |
|    | 1.1.1 Voorbeeld 1                                      | . 3       |
|    | 1.1.2 Voorbeeld 2                                      |           |
|    | 1.2 Partieële integratie                               |           |
|    | 1.2.1 Voorbeeld 1                                      |           |
|    | 1.2.2 Voorbeeld 2                                      |           |
|    | 1.2.3 Voorbeeld 3                                      |           |
|    | 1.2.4 voorbeeld 4                                      |           |
|    |                                                        |           |
| II | Wiskunde B                                             | 6         |
| 2  | Differentiaalvergelijking                              | 7         |
|    | 2.1 Definities                                         | . 7       |
|    | 2.2 Soorten oplossingen                                | . 8       |
|    | 2.3 Bepalen van een DVG                                | . 10      |
| 3  | Laplacetransformatie                                   | 13        |
|    | 3.1 De Heaviside functie                               | . 13      |
|    | 3.2 De Dirac delta-'functie'                           | . 14      |
|    | 3.3 Causale functie                                    | . 14      |
|    | 3.4 Exponentiële orde                                  | . 15      |
|    | 3.5 De Laplacetransformatie                            | . 16      |
|    | 3.5.1 Opmerkingen                                      | . 16      |
|    | 3.5.2 Laplacegetransformeerde van enkele basisfuncties | . 17      |
|    | 3.5.3 Translatie naar rechts                           | . 19      |
|    | 3.5.4 Dempingsfunctie                                  | . 20      |
| II | Oefeningen                                             | 22        |
| 4  | Differentiaalvergelijkingen                            | 23        |
|    |                                                        |           |
| 5  | Laplacetransformatie                                   | <b>25</b> |

# $\begin{array}{c} {\bf Deel~I} \\ {\bf Herhaling~Wiskunde~A} \end{array}$

#### Hoofdstuk 1

# Onbepaalde Integralen

#### 1.1 Substitutiemethode

#### 1.1.1 Voorbeeld 1

$$\int \frac{t-1}{t^2+4} dt = \int \frac{t}{t^2+4} dt - \int \frac{dt}{t^2+4}$$

$$\text{stel } u = t^2+4$$

$$\text{dan } du = 2t dt \to dt = \frac{du}{2t}$$

$$\Rightarrow \int \frac{t}{2tu} du - \frac{1}{2} \arctan \frac{t}{2}$$

$$= \frac{1}{2} \int \frac{du}{u} - \frac{1}{2} \arctan \frac{t}{2}$$

$$= \frac{1}{2} \ln u - \frac{1}{2} \arctan \frac{t}{2}$$

$$= \frac{1}{2} \ln t^2 + 4 - \frac{1}{2} \arctan \frac{t}{2} + C$$

#### 1.1.2 Voorbeeld 2

$$\int \frac{dy}{e^y + 4e^{-y}} = \int \frac{e^y}{(e^y)^2 + 4} dy$$

$$\text{stel } u = e^y$$

$$\text{dan } du = e^y dy \to dy = \frac{du}{e^y}$$

$$\Rightarrow \int \frac{e^y}{e^y (u^2 + 4)} du$$

$$= \int \frac{du}{u^2 + 4}$$

$$= \frac{1}{2} \arctan \frac{u}{2}$$

$$= \frac{1}{2} \arctan \frac{e^y}{2} + C$$

#### 1.2 Partieële integratie

$$\int u \ dv = uv - \int v \ du$$

#### 1.2.1 Voorbeeld 1

$$\int \ln(x)dx = \int 1 \cdot \ln(x)dx$$

$$\operatorname{stel} u = \ln(x) \text{ en } v = \int dx$$

$$\operatorname{dan} du = \frac{1}{x}dx \text{ en } v = x$$

$$\Rightarrow x \ln(x) - \int x \cdot \frac{1}{x}dx$$

$$= x \ln(x) - \int dx$$

$$= x \ln(x) - x + C$$

#### 1.2.2 Voorbeeld 2

$$\int \frac{x+1}{\cos^2(x)} dx$$

$$\operatorname{stel} u = x+1 \text{ en } v = \int \frac{1}{\cos^2(x)} dx$$

$$\operatorname{dan} du = dx \text{ en } v = \tan(x)$$

$$\Rightarrow (x+1)\tan(x) - \int \tan(x) dx$$

$$= (x+1)\tan(x) + \ln|\cos(x)| + C$$

#### 1.2.3 Voorbeeld 3

$$\int e^{-x} \sin(2x)$$

$$\operatorname{stel} u = \sin(2x) \text{ en } v = \int e^{-x} dx$$

$$\operatorname{dan} du = 2\cos(2x) dx \text{ en } v = -e^{-x}$$

$$\Rightarrow = -e^{-x} \sin(2x) + 2 \int e^{-x} \cos(2x) dx$$

$$\operatorname{stel} u = \cos(2x) \text{ en } v = \int e^{-x} dx$$

$$\operatorname{dan} du = -2\sin(2x) dx \text{ en } v = -e^{-x}$$

$$\Rightarrow -e^{-x} \sin(2x) + 2 \left[ -e^{-x} \cos(2x) - 2 \int e^{-x} \sin(2x) dx \right]$$

$$= -e^{-x} \sin(2x) - 2e^{-x} \cos(2x) - 4 \int e^{-x} \sin(2x) dx$$

Dus

$$\int e^{-x} \sin(2x) = -e^{-x} \sin(2x) - 2e^{-x} \cos(2x) - 4 \int e^{-x} \sin(2x) dx$$

$$\Leftrightarrow 5 \int e^{-x} \sin(2x) = -e^{-x} [\sin(2x) + 2\cos(2x)]$$

$$\Leftrightarrow \int e^{-x} \sin(2x) = \frac{-e^{-x} [\sin(2x) + 2\cos(2x)]}{5}$$

#### 1.2.4 voorbeeld 4

$$\int \sin^4(\theta)d\theta = \int (\sin^2(\theta))^2 d\theta$$

$$= \int \left(\frac{1 - \cos(2\theta)}{2}\right)^2 d\theta$$

$$= \int \left(\frac{1}{4} - \frac{\cos(2\theta)}{2} + \frac{\cos^2(2\theta)}{4}\right) d\theta$$

$$= \int \frac{1}{4} d\theta - \int \frac{\cos(2\theta)}{2} d\theta + \int \frac{\cos^2(2\theta)}{4} d\theta$$

$$= \frac{\theta}{4} - \frac{\sin(2\theta)}{4} + \frac{\sin(4\theta) + 4\theta}{32}$$

$$= \frac{12\theta - 8\sin(2\theta) + \sin(4\theta)}{32} + C$$

# Deel II Wiskunde B

### Hoofdstuk 2

# Differentiaalvergelijking

#### 2.1 Definities

De algemene definitie is:

$$F(x, y, y', y'', ..., y^{(n)}) = 0$$

waarbij:

- ullet  $\mathbf{x}$  een veranderlijke is.
- $\bullet$  y een functie van x is.
- er minstens één afgeleide van y is.

Voorbeeld: Differentiaalvergelijking

$$x + y + y' = 0$$

Een differentiaalvergelijking heeft een **orde** en een **graad** 

- ullet Orde: Dit is de orde van de hoogste afgeleide dat voorkomt, dus n.
- Graad: De graad r bestaat niet altijd maar is wel altijd een strik positief geheel getal. De graad is de macht die behoort tot de afgeleide met de grootste orde.  $y^{(n)^r}$

Voorbeeld: Orde en graad

| Differentiaalvergelijking                                       | Orde | Graad |
|-----------------------------------------------------------------|------|-------|
| $y - 2y^3 = yx$                                                 | 2    | 1     |
| $1 + (y'')^4 + 2y' + x(y''')^2 = \sin(x)$                       | 3    | 2     |
| (x-1)(y'') - xy' + y = 0                                        | 2    | 1     |
| $e^{s} \frac{d^{3}s}{dt^{3}} + (\frac{ds^{2}}{dt^{2}})^{3} = 0$ | 3    | 1     |
| $xy' + e^{y'} + y'' = 1$                                        | 1    | /     |
| $\sin\sqrt{y'} = x + 2$                                         | 1    | /     |
| $\rightarrow y' = \arcsin^2(x+2)$                               | 1    | 1     |
| $\sin y' = xy'^2$                                               | 1    | /     |
| $\rightarrow y' = \arcsin(xy'^2)$                               | 1    | /     |
| $y'^3 + \frac{x}{y''} + y'' = 1$                                | 2    | ?     |
| $\to y'^3 y'' + x + (y'')^2 = 1$                                | 2    | 2     |

#### 2.2 Soorten oplossingen

Tijdens het oplossen van een differentiaalvergelijking van de n-de orde worden drie oplossingen onderscheden:

- 1. De **Algemene oplossing (AO)**: Verzameling van functies zodat de differentiaalvergelijking klopt. De algemene oplossing bevat n onafhankelijke constanten. Deze constanten zijn getallen en geen functies.
- 2. De **Particuliere oplossing (PO)**: Dit is één van de krommen van de AO en is afhankelijk van de beginvoorwaarden van het probleem.
- 3. De **Singuliere oplossing (SO)**: Een oplossing die niet voldoet aan de AO maar wel een oplossing is voor de DVG.

Voorbeeld: Onafhankelijke variabelen:

| AO                                | Onafh. C | Orde DVG |
|-----------------------------------|----------|----------|
| $y = C_1 + C_2 x$                 | 2        | 2        |
| $y = C_1 - C_1^2 x$               | 1        | 1        |
| $y = C_1(C_2 + C_3 e^x)$          | ?        | ?        |
| $\to C_1 C_2 + C_1 C_3 e^x$       | ?        | ?        |
| $\rightarrow a + be^x$            | 2        | 2        |
| $y = C_1 + \ln(C_2 x)$            | ?        | ?        |
| $\to y = C_1 + \ln(C_2) + \ln(x)$ | ?        | ?        |
| $\to y = a + \ln(x)$              | 1        | 1        |

Voorbeeld: Oef 1 AO en PO

Gegeven een differentiaalvergelijking: y'' + y = 0

- 1. Toon aan dat  $y = a\sin(x) + b\cos(x)$  de AO is.
- 2. Geef enkele PO's.

Oplossing:

1.

$$y = a\sin(x) + b\cos(x)$$
$$y' = a\cos(x) - b\sin(x)$$
$$y'' = -a\sin(x) - b\cos(x)$$

Hieruit volgt:

$$y'' + y = 0$$

$$-a\sin(x) - b\cos(x) + \sin(x) + b\cos(x) = 0$$

$$\to \text{Het is een oplossing}$$

De differentiaalvergelijking heeft orde 2. De y-vergelijking bevat 2 onafhankelijke constanten en de y-vergelijking is een oplossing. Hierdoor is y de AO van de differentiaalvergelijking.

2. Enkele PO's:

$$y = 0$$
$$y = \sqrt{2}\sin(x)$$
$$y = \sin(x) + \cos(x)$$

Voorbeeld: Oef 2 AO en PO

Gegeven een differentiaalvergelijking:  $y'^2 - yy' + e^x$ 

- 1. Geef de orde en graad.
- 2. Is  $y = \frac{1}{C} + Ce^x$  de AO?
- 3. Wat voor soort oplossing is  $y = 2\sqrt{e^x}$

Oplossing:

- 1. De orde is 1 en de graad is 2.
- 2.

$$y' = Ce^{x}$$

$$\rightarrow C^{2}(e^{x})^{2} - (\frac{1}{C} + Ce^{x})Ce^{x} + e^{x} = 0$$

$$\Leftrightarrow C^{2}e^{2x} - e^{x} - C^{2}e^{2x} + e^{x} = 0$$

$$\Leftrightarrow C^{2}e^{2x} - e^{x} - C^{2}e^{2x} + e^{x} = 0$$

$$\Leftrightarrow 0 = 0$$

 $\rightarrow$  Het is een oplossing

 $Orde\ DVG = 1 = Onafhankelijke\ constanten\ van\ y$ 

3.

$$y' = 2 \cdot \frac{1}{2\sqrt{e^x}} \cdot e^x = \sqrt{e^x}$$

$$\rightarrow y'^2 - yy' + e^x$$

$$\Leftrightarrow (\sqrt{e^x})^2 - 2\sqrt{e^x} \cdot \sqrt{e^x} + e^x = 0$$

$$\Leftrightarrow e^x - 2e^x + e^x = 0$$

$$\Leftrightarrow 0 = 0$$

Dit is een singuliere oplossing aangezien y niet overeenkomt met de AO, maar wel voldoet aan de DVG.

#### 2.3 Bepalen van een DVG

Indien een AO gegeven is met n onafhankelijke constanten:

- 1. Controleer of de constanten werkelijk onafhankelijk zijn.
- 2. Leid de AO n maal af.
- 3. Elimineer de n constanten van de n+1 bekomen vergelijkingen. De laatste vergelijking moet zeker gebruikt worden.
- 4. Controleer of de DVG van orde n is.

Voorbeeld: Oef 1 bepalen van een DVG De algemene oplossing is

$$y = C_1 + C_2 x$$

- 1. Er zijn 2 onafhankelijke constanten.
- 2. Er moet 2 keer afgeleid worden:

$$\begin{cases} y = C_1 + C_2 x \\ y' = C_2 \\ y'' = 0 \end{cases}$$

- 3. De constanten zijn al geëlimineerd.
- 4. De DVG is y'' = 0 en heeft orde 2.

Voorbeeld: Oef 2 bepalen van een DVG

Bepaal de DVG van:

$$y = C_1 + C_2 e^{-x} + C_3 e^{3x}$$

- 1. Er zijn 3 onafhankelijke constanten.
- 2. Er moet 3 maal afgeleid worden.

$$\begin{cases} y = C_1 + C_2 e^{-x} + C_3 e^{3x} \\ y' = -C_2 e^{-x} + 3C_3 e^{3x} \\ y'' = C_2 e^{-x} + 9C_3 e^{3x} \\ y''' = -C_2 e^{-x} + 27C_3 e^{3x} \end{cases}$$

3. Tel de 1ste afgeleide op met de 2de afgeleide en tel de 2de afgeleide op met de 3rde afgeleide

$$\begin{cases} y + y'' &= 3C_3e^{3x} + 9C_3e^{3x} = 12C_3e^{3x} \\ y'' + y''' &= 9C_3e^{3x} + 27C_3e^{3x} = 36C_3e^{3x} \end{cases}$$

Vermenigvuldig de 1ste vergelijking met 3 en trek hiervan de 2de vergelijking af.

$$3(y + y'') - y'' - y''' = 3(12C_3e^{3x}) - 36C_3e^{3x} = 0$$
$$\rightarrow y''' - 2y'' - 3y' = 0$$

4. De orde van deze DVG is 3

Voorbeeld: Oef 3 bepalen van een DVG Bepaal de DVG van alle cirkels met middelpunt y = -x.

1. Eerst moet de AO gevonden worden. Het middelpunt van elke cirkel kan gegeven worden met m(a, -a). Hieruit volgt de algemene vergelijking van een cirkel:

$$(x-a)^2 + (y+a)^2 = R^2$$

Er zijn 2 onafhankelijke constanten (a en R).

2. Er moet  ${\mathcal Z}$  maal (impliciet) afgeleid worden.

$$\begin{cases} (x-a)^2 + (y+a)^2 = R^2 \\ \frac{dy}{dx} : (x-a) + y'(y+a) = 0 \\ \frac{d^2y}{dx^2} : 1 + y''(y+a) + y'^2 = 0 \end{cases}$$

3. Vorm  $\frac{dy}{dx}$  om naar a:

$$a = \frac{-x - yy'}{y' - 1}$$

Substitueer deze a in  $\frac{d^2y}{dx^2}$ :

$$1 + y''(y + (\frac{-x - yy'}{y' - 1})) + y'^{2} = 0$$

$$\to 1 + y''(y + (\frac{x + yy'}{-y' + 1})) + y'^{2} = 0$$

$$\to y''(x + y) - y'^{3} + y'^{2} - y' + 1 = 0$$

4. Orde van de DVG = 2 = Aantal onafhankelijke constanten.

#### Hoofdstuk 3

## Laplacetransformatie

#### 3.1 De Heaviside functie

De Heaviside functie heeft als voorschrift:

$$H(t-a) = \begin{cases} 0 & t < a \\ 1 & t > a \end{cases}$$

Voorbeeld: Teken over x = [-3, 4] de functie  $y = 2H(t+2) - tH(t) + (t+t^2)H(t-2)$ Er zijn veranderingen bij t = -2, t = 0 en t = 2.

$$\begin{array}{lll} 2 \cdot (0) - t \cdot (0) + (t + t^2) \cdot (0) = 0 & & t < -2 \\ 2 \cdot (1) - t \cdot (0) + (t + t^2) \cdot (0) = 2 & & -2 < t < 0 \\ 2 \cdot (1) - t \cdot (1) + (t + t^2) \cdot (0) = 2 - t & & 0 < t < 2 \\ 2 \cdot (1) - t \cdot (1) + (t + t^2) \cdot (1) = 2 + t^2 & t > 2 \end{array} \label{eq:continuous_problem}$$

Voorbeeld: Schrijf met behulp van de Heaviside functie de stuksgewijze continue functie:

$$f(t) = \begin{cases} e^t & t < 2\\ 1 - e^t & 2 < t < 3\\ t^2 & 3 < t < 5\\ t - 25 & t > 5 \end{cases}$$

$$f(t) = e^{t} + H(t-2)(-e^{t} + 1 - e^{t}) + H(t-3)(-1 + e^{t} + t^{2}) + H(t-5)(-t^{2} + t - 25)$$
  
=  $e^{t} + (1 - 2e^{t})H(t-2) + (t^{2} + e^{t} - 1)H(t-3) - (t^{2} - t + 25)H(t-5)$ 

#### 3.2 De Dirac delta-'functie'

De Dirac delta-functie heeft als voorschrift:

$$\begin{cases} \delta(t-a) = 0 & t \neq a \\ \int_{a-\epsilon_1}^{a+\epsilon_2} \delta(t-a) \ dt = 1 & \forall \epsilon_1, \epsilon_2 > 0 \end{cases}$$

De meetkundige betekenis: We nemen de limiet van  $\delta^a_{\epsilon_1,\epsilon_2}(t)$  voor  $\epsilon_1,\epsilon_2\to 0$ 

$$\delta_{\epsilon_1, \epsilon_2}^a(t) = \begin{cases} 0 & \forall t < a - \epsilon_1 \text{ of } t > a + \epsilon_2 \\ \frac{1}{\epsilon_1 + \epsilon_2} & \forall \in ]a - \epsilon_1, a + \epsilon_2[ \end{cases}$$

Het nut van de dirac functie is om bepaalde integralen op te lossen. Meer bepaald de integralen van de vorm:

$$\int_0^{+\infty} f(t)\delta(t-a) dt = f(a)$$

De ondergrens 0 mag ook vervangen worden door  $-\infty$  aangezien elke functie causaal is binnen het domein van Laplace.

De afgeleide van de Heaveiside functie is gelijk aan de delta functie:

$$\frac{d}{dt}H(t-a) = \delta(t-a)$$

Voorbeeld:

$$\int_0^{+\infty} (2\sin t - 1)\delta(t - \frac{3\pi}{2}) dt$$

In dit geval is  $f(t) = (2\sin t - 1)$  en  $\delta(t - a) = \delta(t - \frac{3\pi}{2})$  We kunnen dus makkelijk deze integraal oplossen door gebruik te maken van de definitie:

$$\int_0^{+\infty} f(t)\delta(t-a) dt = \int_0^{+\infty} (2\sin t - 1)\delta(t - \frac{3\pi}{2}) dt$$

$$= f(\frac{3\pi}{2}) - 1$$

$$= 2\sin\left(\frac{3\pi}{2}\right) - 1$$

$$= -2 - 1$$

$$= -3$$

#### 3.3 Causale functie

Een causale functie is een functie f waarvoor f(t) = 0 voor elke t < 0. Om een willekeurige functie causaal te maken voeg je de Heaviside functie achteraan toe.

$$f(t) \to f(t)H(t)$$

Dit zorgt ervoor dat voor elke t < 0 dat f(t) = 0. De afspraak is dat deze Heaviside functie nu achter elke functie komt zonder dat we deze nog schrijven. Elke functie is vanaf nu dus causaal.

Voorbeeld: Teken de causale functie f(t) gedefinieerd als: -2 indien t < 1 en 2 als t > 1. Schrijf ze ook met behulp van de Heaviside functie

De functie kan omschreven worden als:

$$f(t) = \begin{cases} 0 & t < 0 \\ -2 & 0 < t < 1 \\ 2 & t > 1 \end{cases}$$

Omgevormd met de Heaviside-functie:

$$f(t) = H(t)(-0 + (-2)) + H(t - 1)(-2 + 2)$$
  
= -2H(t) + 4H(t - 1)

Tekening: \_TODO: graph

#### 3.4 Exponentiële orde

Een functie is van exponentiële orde indien  $\exists M, a \in R \text{ zodat } |f(t)| < Me^{at}, \forall t > N$  en met a het minimum van de waarden waarvoor dit geldt. Indien waar is f(t) van exponentiële orde a. Soms is het gemakkelijker te bewijzen via:

$$\lim_{t\to +\infty}\frac{|f(t)|}{e^{at}}\in R$$

Voorbeeld: Bepaal de exponentiële orde van  $\sin t$ 

$$|\sin t| \le 1$$
  
 $\Leftrightarrow |\sin t| < 1.1 \text{ (willekeurige waarde)}$   
 $\Leftrightarrow |\sin t| < 1.1e^{at}$ 

Hieruit kan afgeleid worden dat a = 0 en de exponentiële orde is dus ook 0.

Voorbeeld: Bepaal de exponentiële orde van  $(1+2t)e^{-t}$ Bij deze opgave maken we gebruik van de limietstelling.

$$\lim_{t \to +\infty} \frac{|f(t)|}{e^{at}} = \lim_{t \to +\infty} \frac{|(1+2t)e^{-t}|}{e^{at}}$$

$$= \lim_{t \to +\infty} \frac{(1+2t)e^{-t}}{e^{at}}$$

$$= \lim_{t \to +\infty} \frac{1+2t}{e^{at}e^{t}}$$

$$= \lim_{t \to +\infty} \frac{1+2t}{e^{t(a+1)}}$$

We moeten een onderscheid maak tussen 2 gevallen:

- $a+1 < 0 \rightarrow e^{-\infty} = 0 \rightarrow \frac{+\infty}{0} \rightarrow \text{ onbepauld}$
- $a+1>0 \rightarrow e^{+\infty}=\infty \rightarrow \frac{+\infty}{+\infty} \rightarrow \text{ L'Hopital}$

We maken enkel gebruik van het tweede geval en passen dus L'hopital toe.

$$\lim_{t \to +\infty} \frac{1+2t}{e^{t(a+1)}} = \lim_{t \to +\infty} \frac{2}{e^{t(a+1)}(a+1)}$$
$$= \frac{2}{+\infty} = 0 \in R$$

Aangezien het een reëele uitkomst is kan a uit de uitdrukking a + 1 > 0 afgeleid worden.

$$\forall a, a > -1$$

De exponentiële orde is dus -1.

#### 3.5 De Laplacetransformatie

Definitie: Stel f(t) causuaal dan is de laplacetransformatie van f(t) een functie die een complex getal s afbeeldt op

$$\mathcal{L}{f(t)}(s) = F(s) = \int_0^{+\infty} f(t)e^{-st} dt, s \in \mathbb{C}$$

Een voorbeeld uit het formularium:

$$\mathcal{L}\{\sin t\}(s) = \frac{1}{1+s^2}$$

De letter s kan eender welk complex getal zijn:

$$\mathcal{L}\{\sin t\}(2) = \frac{1}{1+4}$$

Indien er een imaginaire eenheid is verandert de definitie minimaal:

$$\mathcal{L}\{\sin t\}(3+2j) = \int_0^{+\infty} |f(t)e^{-st}| dt$$

Het argument tussen de |...| is NIET de absolute waarde, maar de MODULUS van het complexe getal, te berekenen via  $\sqrt{x^2 + y^2}$  indien het complexe getal gedefinieerd wordt als s = x + yj (wat vanaf nu als definitie gebruikt wordt voor een complex getal).

#### 3.5.1 Opmerkingen

1.

$$|f(t)e^{-st}| = |f(t)|e^{-xt}, \ s = x + yj$$

want

$$|f(t)e^{-st}| = |f(t)e^{-(x+yj)t}|$$

$$= |f(t)| \cdot |e^{-(xt+yjt)}|$$

$$= |f(t)| \cdot |e^{-xt} \cdot e^{-yjt}|$$

$$= |f(t)| \cdot |e^{-xt}| \cdot |e^{-yjt}|$$

$$= |f(t)| \cdot e^{-xt} \cdot |\cos(-yt) + j\sin(-yt)|$$

$$= |f(t)|e^{-xt} \sqrt{\cos^2(-yt) + \sin^2(-yt)}$$

$$= |f(t)|e^{-xt}$$

2.

$$\mathcal{L}\{af(t) + bg(t)\}(s) = a\mathcal{L}\{f(t)\}(s) + b\mathcal{L}\{g(t)\}(s)$$

De Laplace van een som is gelijk aan de som van een Laplace.

#### 3.5.2 Laplacegetransformeerde van enkele basisfuncties

•

$$\mathcal{L}\lbrace e^{at}\rbrace(s) = \frac{1}{s-a}$$

Bewijs:

$$\mathcal{L}\lbrace e^{at}\rbrace(s) = \int_0^{+\infty} e^{at} e^{-st} dt$$

$$= \int_0^{+\infty} e^{t(a-s)} dt$$

$$= \frac{e^t a - s}{a - s} \Big|_0^{+\infty}$$

$$= \frac{1}{a - s} \left( \lim_{t \to +\infty} e^{t(a-s)} - 1 \right)$$

Uitwerking van de limiet:

$$\begin{split} \lim_{t \to +\infty} e^{t(a-s)} &= \lim_{t \to +\infty} |e^{at-st}| \\ &= \lim_{t \to +\infty} |e^{at-(x+yj)t}| \\ &= \lim_{t \to +\infty} |e^{at-xt} \cdot e^{-yjt}| \\ &= \lim_{t \to +\infty} |e^{at-xt}| \cdot |e^{-yjt}| \\ &= \lim_{t \to +\infty} |e^{at-xt}| \cdot |\cos(-yt) + j\sin(-yt)| \\ &= \lim_{t \to +\infty} |e^{at-xt}| \cdot \sqrt{\cos^2(-yt) + \sin^2(-yt)} \\ &= \lim_{t \to +\infty} e^{at-xt} = e^{-\infty} = 0 \end{split}$$

Deze uitkomst in de oorspronkelijke vergelijking steken:

$$\frac{1}{a-s}(0-1) = \frac{1}{s-a}$$

$$\mathcal{L}\{\sin \omega t\}(s) = \frac{\omega}{\omega^2 + s^2}$$
 en  $\mathcal{L}\{\cos \omega t\}(s) = \frac{s}{\omega^2 + s^2}$ 

Bewijs: We vertrekken van de uitkomst van vorig bewijs. Beschouw a = wj

$$\mathcal{L}\lbrace e^{wjt}\rbrace(s) = \frac{1}{s - wj}$$

$$= \frac{1}{s - wj} \cdot \frac{s + wj}{s + wj}$$

$$= \frac{s + wj}{s^2 + w^2}$$

$$= \mathcal{L}\lbrace \cos(\omega t) + j\sin(\omega t)\rbrace(s)$$

$$= \mathcal{L}\lbrace \cos(\omega t)\rbrace(s) + \mathcal{L}\lbrace j\sin(\omega t)\rbrace(s)$$

$$= \frac{s}{s^2 + w^2} + \frac{w}{s^2 + w^2}j$$

dus

$$\mathcal{L}\{\cos \omega t\}(s) = \frac{s}{\omega^2 + s^2}$$
 en  $\mathcal{L}\{\sin \omega t\}(s) = \frac{\omega}{\omega^2 + s^2}$ 

$$\mathcal{L}\{\delta(t)\}(s) = 1$$

Bewijs:

$$\mathcal{L}\{\delta(t)\}(s) = \mathcal{L}\{\delta(t-0)\}(s)$$

$$= \int_0^{+\infty} \delta(t-0)e^{-st} dt$$

$$= f(0) = e^{-s \cdot 0} = e^0 = 1$$

Voorbeeld: Bepaal het laplacebeeld van  $\cos(2t-1)$ 

$$\mathcal{L}\{\cos(2t-1)\}(s) = \mathcal{L}\{\cos(2t)\cos(1) + \sin(2t)\sin(1)\}(s)$$

$$= \cos(1)\mathcal{L}\{\cos 2t\}(s) + \sin(1)\mathcal{L}\{\sin 2t\}(s)$$

$$= \cos(1)\frac{s}{s^2+4} + \sin(1)\frac{2}{s^2+4}$$

$$= \frac{s\cos(1)}{s^2+4} + \frac{2\sin(1)}{s^2+4}$$

Voorbeeld: Bepaal het laplacebeeld van  $\sinh(4t) - 3\cos(\frac{t}{3})$ 

$$\mathcal{L}\left\{ \sinh(4t) - 3\cos\left(\frac{t}{3}\right) \right\}(s) = \mathcal{L}\left\{ \frac{e^{4t} - e^{-4t}}{2} - 3\cos\left(\frac{t}{3}\right) \right\}(s)$$

$$= \mathcal{L}\left\{ \frac{e^{4t} - e^{-4t}}{2} \right\}(s) - 3\mathcal{L}\left\{ \cos\left(\frac{t}{3}\right) \right\}(s)$$

$$= \frac{1}{2} \left(\frac{1}{s - 4} - \frac{1}{s + 4}\right) - 3\frac{s}{s^2 + \frac{1}{9}}$$

$$= \frac{1}{2} \left(\frac{1}{s - 4} - \frac{1}{s + 4}\right) - \frac{27s}{9s^2 + 1}$$

Voorbeeld: Bepaal het laplacebeeld van  $\delta(t-\frac{\pi}{2})\cos(4t)e^{2t}$ 

$$\mathcal{L}\left\{\delta\left(t - \frac{\pi}{2}\right)\cos(4t)e^{2t}\right\}(s) = \int_0^{+\infty} \cos(4t)e^{2t}\delta\left(t - \frac{\pi}{2}\right)e^{-st} dt$$

$$= f\left(\frac{\pi}{2}\right)$$

$$= \cos\left(4 \cdot \frac{\pi}{2}\right)e^{2 \cdot \frac{\pi}{2}}e^{-s \cdot \frac{\pi}{2}}$$

$$= \cos(2\pi)e^{\pi}e^{-\frac{s\pi}{2}}$$

$$= e^{\pi}e^{-\frac{s\pi}{2}}$$

#### 3.5.3 Translatie naar rechts

Een translatiebeweging naar rechts wordt gedefinieerd als

$$\mathcal{L}\{f(t-a)H(t-a)\}(s) = e^{-as}F(s) \qquad a > 0$$

Bewijs:

$$\mathcal{L}\{f(t-a)H(t-a)\}(s) = \int_0^{+\infty} f(t-a)H(t-a)e^{-st} dt$$

$$= \int_0^a f(t-a)H(t-a)e^{-st} dt + \int_a^{+\infty} f(t-a)H(t-a)e^{-st} dt$$

$$= 0 + \int_a^{+\infty} f(t-a)H(t-a)e^{-st} dt$$

$$= \int_a^{+\infty} f(t-a)H(t-a)e^{-st} dt$$
stel  $u = t - a$ 
dan  $du = dt$ 

$$= \int_0^{+\infty} f(u)e^{-s(u+a)} du$$

$$= \int_0^{+\infty} f(u)e^{-su}e^{-sa} du$$

$$= e^{-sa} \int_0^{+\infty} f(u)e^{-su} du$$

$$= e^{-sa} \mathcal{L}\{f(t)\}(s)$$

$$= e^{-as}F(s)$$

Voorbeeld: Bepaal het laplacebeeld van  $f(t) = (t^2 - 1)H(t - 1) - \sin(3t)H(t - \pi)$ 

$$\mathcal{L}\{f(t)\} = \mathcal{L}\{(t^2 - 1)H(t - 1)\}(s) - \mathcal{L}\{\sin(3t)H(t - \pi)\}(s)$$

We werken beide laplacetransformaties afzonderlijk uit:

$$\mathcal{L}\{(t^2 - 1)H(t - 1)\}(s) = \mathcal{L}\{[(t - 1)^2 + 2(t - 1)]H(t - 1)\}(s)$$

$$= e^{-as}\mathcal{L}\{t^2 + 2t\}(s)$$

$$= e^{-s}\left(\frac{2!}{s^3} + 2\frac{1!}{s^2}\right)$$

$$= e^{-s}\left(\frac{2}{s^3} + \frac{2}{s^2}\right)$$

$$= e^{-s}\left(\frac{2(1+s)}{s^3}\right)$$

$$\mathcal{L}\{\sin(3t)H(t-\pi)\}(s) = \mathcal{L}\{-\sin(3(t-\pi))H(t-\pi)\}(s)$$

$$= -e^{-\pi s}\mathcal{L}\{\sin(3t)\}(s)$$

$$= -e^{-\pi s}\frac{3}{s^2 + 9}$$

$$= -\frac{3e^{-\pi s}}{s^2 + 9}$$

Het resultaat wordt:

$$\mathcal{L}{f(t)} = \mathcal{L}{\{(t^2 - 1)H(t - 1)\}(s) - \mathcal{L}{\{\sin(3t)H(t - \pi)\}(s)}}$$

$$= e^{-s} \left(\frac{2(1+s)}{s^3}\right) - \left(-\frac{3e^{-\pi s}}{s^2 + 9}\right)$$

$$= e^{-s} \left(\frac{2(1+s)}{s^3}\right) + \frac{3e^{-\pi s}}{s^2 + 9}$$

#### 3.5.4 Dempingsfunctie

De dempingsfunctie heeft als voorschrift

$$\mathcal{L}\lbrace e^{-at}f(t)\rbrace(s) = F(s+a)$$

Voorbeeld: Bepaal het laplacebeeld van  $f(t) = t(t^3 - 1)^2 e^{-t} + \sin(\sqrt{3}t)e^{2t}$ 

$$\mathcal{L}\{f(t)\}(s) = \mathcal{L}\{t(t^3 - 1)^2 e^{-t}\}(s) + \mathcal{L}\{\sin(\sqrt{3}t)e^{2t}\}(s)$$

Ook hier beschouwen we beide laplacetransformaties apart.

$$\mathcal{L}\{t(t^3 - 1)^2 e^{-t}\}(s) = \mathcal{L}\{(t^7 - 2t^4 + t)e^{-t}\}(s)$$

$$= \mathcal{L}\{t^7 - 2t^4 + t\}(s + 1)$$

$$= \frac{7!}{(s+1)^8} - \frac{2 \cdot 4!}{(s+1)^5} + \frac{1!}{(s+1)^2}$$

$$= \frac{7!}{(s+1)^8} - \frac{48}{(s+1)^5} + \frac{1}{s^2 + 2s + 1}$$

$$\mathcal{L}\{\sin(\sqrt{3}t)e^{2t}\}(s) = \mathcal{L}\{\sin(\sqrt{3}t)\}(s-2)$$

$$= \frac{\sqrt{3}}{(s-2)^2 + 3}$$

$$= \frac{\sqrt{3}}{s^2 - 2s + 7}$$

Het resultaat wordt:

$$\mathcal{L}{f(t)}(s) = \mathcal{L}{t(t^3 - 1)^2 e^{-t}}(s) + \mathcal{L}{\sin(\sqrt{3}t)e^{2t}}(s)$$
$$= \frac{7!}{(s+1)^8} - \frac{48}{(s+1)^5} + \frac{1}{s^2 + 2s + 1} + \frac{\sqrt{3}}{s^2 - 2s + 7}$$

#### 3.5.5 Schaalwijziging

De schaalwijzig wordt gedefinieerd als:

$$\mathcal{L}\{f(at)\}(s) = \frac{1}{a}F(\frac{s}{a})$$

Bewijs:

$$\mathcal{L}{f(at)}(s) = \int_0^{+\infty} f(at)e^{-st} dt$$

$$\text{stel } u = at$$

$$\text{dan } du = adt$$

$$= \int_0^{+\infty} f(u)e^{-s\frac{u}{a}} \frac{du}{a}$$

$$= \frac{1}{a} \int_0^{+\infty} f(u)e^{-\frac{s}{a}u} du$$

$$= \frac{1}{a} \mathcal{L}{f(u)}(\frac{s}{a})$$

$$= \frac{1}{a} F(\frac{s}{a})$$

Voorbeeld: Gegeven  $\mathcal{L}\{\sin t\}(s) = \frac{1}{s^2+1}$ . Bepaal  $\mathcal{L}\{\sin \omega t\}(s)$ 

$$\mathcal{L}{f(\omega t)}(s) = \mathcal{L}{\sin \omega t}(s)$$

$$= \frac{1}{\omega} \mathcal{L}{\sin t}(\frac{s}{\omega})$$

$$= \frac{1}{\omega} \frac{1}{\frac{s^2}{\omega^2} + 1}$$

$$= \frac{\omega}{\omega^2(\frac{s^2}{\omega^2} + 1)}$$

$$= \frac{\omega}{s^2 + w^2}$$

#### 3.5.6 Laplacegetransformeerde van f'(t)

Definitie:

$$\mathcal{L}\left\{\frac{df(t)}{dt}\right\}(s) = sF(s) - f(0^+), \forall s \in \mathbb{C}, Re(s) > a$$

Voorbeeld: Gegeven  $\mathcal{L}\{\sin \omega t\}(s) = \frac{\omega}{s^2 + w^2}$ . Bepaal  $\mathcal{L}\{\cos \omega t\}(s)$ .

$$\mathcal{L}\{\cos \omega t\}(s) = \mathcal{L}\left\{\frac{d[\sin \omega t]}{dt}\right\}(s)$$

$$= s\mathcal{L}\{\sin \omega t\}(s) - \sin \omega \cdot 0$$

$$= s\frac{\omega}{s^2 + w^2}$$

$$\mathcal{L}\{\omega \cos \omega t\}(s) = s\frac{\omega}{s^2 + w^2}$$

$$\Leftrightarrow \omega \mathcal{L}\{\cos \omega t\}(s) = \omega \frac{s}{s^2 + w^2}$$

$$\Leftrightarrow \mathcal{L}\{\cos \omega t\}(s) = \frac{s}{s^2 + w^2}$$

#### 3.5.7 Laplacegetransformeerde van f"(t)

Definitie:

$$\mathcal{L}\{f^{(n)}(t)\}(s) = s^n F(s) - s^{n-1} f(0^+) - s^{n-2} f'(0^+) - \dots - s f^{(n-2)}(0^+) - f^{(n-1)}(0^+)$$

Voorbeeld: Gegeven  $g(t) = te^{-t}$ , bepaal  $\mathcal{L}\{g''(t)\}(s)$ 

$$\mathcal{L}\{g''(t)\}(s) = \mathcal{L}\left\{\frac{d^2g}{dt^2}\right\}(s)$$

$$= s^2G(s) - sg(0^+) - g'(t)$$

$$\text{met } G(s) = \mathcal{L}\{te^{-t}\}(s)$$

$$= \mathcal{L}\{t\}(s+1)$$

$$= \frac{1}{(s+1)^2}$$

$$\text{en } g'(t) = -te^{-t} + e^{-t}$$

$$= e^{-t}(1-t)$$

$$\Rightarrow s^2G(s) - sg(0^+) - g'(0) = s^2\frac{1}{(s+1)^2} - s \cdot 0 - 1$$

$$= \frac{-2s-1}{(s+1)^2}$$

#### 3.5.8 Laplacegetransformeerde van tnf(t)

Definitie:

$$\mathcal{L}\lbrace t^n f(t)\rbrace(s) = (-1)^n \frac{d^n F(s)}{ds^n}$$

Bewijs:

$$F(s) = \int_0^{+\infty} f(t)e^{-st} dt$$

$$\frac{dF}{ds} = \int_0^{+\infty} -tf(t)e^{-st} dt$$

$$= -\int_0^{+\infty} tf(t)e^{-st} dt$$

$$= -\mathcal{L}\{tf(t)\}(s)$$

$$\frac{d^2F}{ds^2} = -\int_0^{+\infty} (-t)tf(t)e^{-st} dt$$

$$= \int_0^{+\infty} t^2f(t)e^{-st} dt$$

$$= \mathcal{L}\{t^2f(t)\}(s)$$

Voorbeeld: Bepaal  $\mathcal{L}\{t\sin t - t^3e^{-t}\}(s)$ 

$$\mathcal{L}\{t \sin t - t^{3}e^{-t}\}(s) = \mathcal{L}\{t \sin t\}(s) - \mathcal{L}\{t^{3}e^{-t}\}(s)$$

$$*)\mathcal{L}\{t \sin t\}(s) = (-1)^{1} \frac{d\mathcal{L}\{\sin t\}(s)}{ds}$$

$$= -\frac{d(\frac{1}{1+s^{2}})}{ds}$$

$$= -\left(\frac{-2s}{(1+s^{2})^{2}}\right)$$

$$= \frac{2s}{(1+s^{2})^{2}}$$

$$**)\mathcal{L}\{t^{3}e^{-t}\}(s) = (-1)^{3} \frac{d^{3}\mathcal{L}\{e^{-t}\}(s)}{ds^{3}}$$

$$= -\frac{d^{3}\mathcal{L}\{e^{-t}\}}{ds^{3}}$$

$$= -\frac{d^{3}[(s+1)]}{ds^{3}}$$

$$= -\frac{d^{3}[(s+1)^{-1}]}{ds^{3}}$$

$$\frac{dF}{ds} = -(s+1)^{-2}$$

$$\frac{d^{2}F}{ds^{2}} = 2(s+1)^{-3}$$

$$\frac{d^{3}F}{ds^{3}} = -6(s+1)^{-4}$$

$$\Rightarrow -\frac{d^{3}[(s+1)^{-1}]}{ds^{3}} = -(-6(s+1)^{-4}$$

$$= \frac{6}{(s+1)^{4}}$$

$$* - ** = \frac{2s}{(1+s^{2})^{2}} - \frac{6}{(s+1)^{4}}$$

## 3.5.9 Laplacegetransformeerde van $\int_0^t f(u) \ du$

# Deel III Oefeningen

#### Hoofdstuk 4

# Differentiaalvergelijkingen

Bepaal de DVG van

- 1.  $y = C_1 x + C_2$
- 2. de cirkels met hun middelpunt op de x-as
- 3. de raaklijnen aan  $K: y = x^2$

#### Oplossing

1. De vergelijking  $y = C_1x + C_2$  heeft 2 onafhankelijke constanten. Er moet dus 2 keer afgeleid worden.

$$y' = C_1$$
$$y'' = 0$$

De differentiaalvergelijking is y'' = 0

2. Het middelpunt op de x-as kan gedefinieerd worden als  $m \in x - as \Rightarrow m(C_1, 0)$ . De straal wordt gedefinieerd als  $C_2$ . De vergelijking van een cirkel wordt dan:

$$\Gamma: (x - C_1)^2 + y^2 = C_2^2$$

Er zijn 2 onafhankelijke constanten. Er moet dus 2 keer (impliciet) afgeleid worden.

$$\frac{dy}{dx}: 2(x-C_1) + 2yy' = 0$$

$$\frac{d^2y}{dx^2}: 2 + 2(y'y' + yy'') = 0$$

De 2de afgeleide bevat geen constanten meer dus de differentiaalvergelijking wordt:

$$yy'' + (y')^2 + 1 = 0$$

3. De raaklijn wordt gegeven door :  $R: y-y'p=y'_p(x-x_p)$ Stel  $p\in K$  en  $x_p=C$ :

$$\Rightarrow y_p = (x_p)^2 = C^2$$
$$\Rightarrow p(C, C^2)$$

De richtingscoëfficient  $y_p'$  wordt gegeven door

$$y' = 2x \Rightarrow y'_p = 2C$$

De formule van de raaklijn kan worden ingevuld:

$$R: (y - C^2) = 2C(x - C)$$

Deze vergelijking bevat slechts 1 constante en moet dus 1 maal afgeleid worden.

$$y' = 2C \Leftrightarrow C = \frac{y'}{2}$$

Substitueer C in de formule van de raaklijn:

$$y - \left(\frac{y'}{2}\right)^2 = y'\left(\frac{y'}{2}\right)\left(x - \frac{y'}{2}\right)$$
  

$$\Leftrightarrow 4y - y'^2 = 4xy' - 2y'^2$$
  

$$\Leftrightarrow y'^2 - 4y'x + 4y = 0$$

is de differentiaalvergelijking.

#### Hoofdstuk 5

# Laplacetransformatie

#### 5.1 De Heaviside functie

Gegeven

$$g(t) = \begin{cases} 0 & t < 0 \\ t & 0 < t < \frac{\pi}{2} \\ \sin t & \frac{\pi}{2} < t < \pi \\ 0 & t > \pi \end{cases}$$

Druk g(t) uit a.d.h.v. de Heaviside functie en maak een tekening. Oplossing

$$g(t) = H(t)(-0+t) + H(t-\frac{\pi}{2})(-t+\sin t) + H(t-\pi)(-\sin t + 0)$$

$$= H(t)t + H(t-\frac{\pi}{2})(\sin t - t) + H(t-\pi)(-\sin t)$$

$$= H(t)t + H(t-\frac{\pi}{2})(\sin t - t) - H(t-\pi)\sin t$$



Gegeven de grafiek van de functie h(t). Bepaal het voorschrift van h(t) en druk uit a.d.h.v. de Heaviside functie.



#### Oplossing

De functie kan geschreven worden als:

$$h(t) = \begin{cases} 0 & t < 0 \\ 1 & 0 < t < 1 \\ 2 - t & 1 < t < 2 \\ 0 & t > 2 \end{cases}$$

Hieruit volgt gemakkelijk de Heaviside versie hiervan:

$$h(t) = H(t)(-0+1) + H(t-1)(-1+(2-t)) + H(t-2)(-(2-t)+0)$$
  
=  $H(t) + H(t-1)(1-t) + H(t-2)(t-2)$ 

Teken de functie  $f(t) = 1 + H(t-1)(e^t - 1) + H(t-2)(2 - e^t)$ Oplossing

$$f(t) = \begin{cases} 1 & t < 1 \\ e^t & 0 < t < 1 \\ 2 & 1 < t < 2 \end{cases}$$



#### 5.2 Functies van de exponentiële orde

Geef de exponentiële orde van  $f(t) = te^{-2t}$ 

Oplossing

$$\lim_{t \to +\infty} \frac{|te^{-2t}|}{e^{\alpha t}} = \lim_{t \to +\infty} \frac{te^{-2t}}{e^{\alpha t}}$$

$$= \lim_{t \to +\infty} \frac{t}{e^{\alpha t}e^{2t}}$$

$$= \lim_{t \to +\infty} \frac{t}{e^{t(\alpha+2)}}$$

$$\stackrel{H}{=} \lim_{t \to +\infty} \frac{1}{e^{t(\alpha+2)}(\alpha+2)} \quad \text{voor } \alpha+2 > 0$$

$$= 0 \in \mathbb{R}$$

Dus

$$\alpha + 2 > 0$$

$$\Leftrightarrow \alpha > -2$$

De exponentiële orde is -2.

Geef de exponentiële orde van  $f(t) = 6e^{3t}$ 

Oplossing

$$\lim_{t \to +\infty} \frac{|6e^{3t}|}{e^{\alpha t}} = \lim_{t \to +\infty} \frac{6e^{3t}}{e^{\alpha t}}$$
$$= 6 \lim_{t \to +\infty} e^{t(3-\alpha)}$$

Indien  $3 - \alpha < 0$  dan wordt de limiet 0. De exponentiële orde is dus 3.

#### 5.3 Laplacebeeld

Bepaal het Laplacebeeld van volgende functies:

$$f(t) = 3e^{2t} + t^2 - 5\cos 2t + 4\sin 3t$$

Oplossing

$$\mathcal{L}\left\{3e^{2t} + t^2 - 5\cos 2t + 4\sin 3t\right\}(s) = \frac{3}{s-2} + \frac{2}{s^3} - \frac{5s}{s^2+4} + \frac{12}{s^2+9}$$

$$f(t) = (1 + e^{-4t})^2$$

Oplossing

$$\mathcal{L}\{(1+e^{-4t})^2\}(s) = \mathcal{L}\{1+2e^{-4t}+e^{-8t}\}(s)$$
$$= \frac{1}{s} + \frac{2}{s+4} + \frac{1}{s+8}$$

$$f(t) = \sin^2 t$$

Oplossing

$$\mathcal{L}\{\sin^2 t\}(s) = \mathcal{L}\{\frac{1-\cos 2t}{2}\}(s)$$
$$= \frac{1}{2}\mathcal{L}\{1-\cos 2t\}$$
$$= \frac{1}{2}\left[\frac{1}{s} - \frac{s}{s^2 + 4}\right]$$

$$f(t) = t^2 \delta(t - 2)$$

Oplossing

$$\mathcal{L}\{t^2\delta(t-2)\}(s) = \int_0^{+\infty} t^2\delta(t-2)e^{-st} dt$$
$$= [t^2e^{-st}]_{t=2}$$
$$= 4e^{-2s}$$

$$f(t) = (t-1)H(t-1)$$

Oplossing

$$\mathcal{L}\{(t-1)H(t-1)\}(s) = e^{-s}\mathcal{L}\{u\}(s)$$
$$= \frac{e^{-s}}{s^2}$$

$$f(t) = t^2 H(t-1)$$

Oplossing

$$\mathcal{L}\lbrace t^{2}H(t-1)\rbrace(s) = \mathcal{L}\lbrace [(t-1)+1]^{2}H(t-1)\rbrace(s)$$

$$= \mathcal{L}\lbrace (t-1)^{2} + 2(t-1) + 1)H(t-1)\rbrace(s)$$

$$= e^{-s}\mathcal{L}\lbrace u^{2} + 2u + 1\rbrace$$

$$= e^{-s}\left(\frac{2}{s^{3}} + \frac{2}{s} + \frac{1}{s}\right)$$

$$f(t) = t^2 H(t-1)$$

Oplossing

$$\mathcal{L}\{t^{2}H(t-1)\}(s) = \mathcal{L}\{[(t-1)+1]^{2}H(t-1)\}(s)$$

$$= \mathcal{L}\{(t-1)^{2} + 2(t-1) + 1)H(t-1)\}(s)$$

$$= e^{-s}\mathcal{L}\{u^{2} + 2u + 1\}$$

$$= e^{-s}\left(\frac{2}{s^{3}} + \frac{2}{s} + \frac{1}{s}\right)$$

$$f(t) = \sin(t)H(t-2)$$

Oplossing

$$\mathcal{L}\{\sin(t)H(t-2)\}(s) = \mathcal{L}\{\sin((t-2)+2)H(t-2)\}(s)$$

$$= \mathcal{L}\{[\sin(t-2)\cos(2) + \cos(t-2)\sin(2)]H(t-2)\}(s)$$

$$= \mathcal{L}\{[\sin(t-2)\cos(2) + \cos(t-2)\sin(2)]H(t-2)\}(s)$$

$$= e^{-2s}[\cos(2)\mathcal{L}\{\sin(u)\} + \sin(2)\mathcal{L}\{\cos(u)\}(s)]$$

$$= e^{-2s}\left(\frac{\cos(2)}{s^2+1} + \frac{\sin(2)s}{s^2+1}\right)$$

$$f(t) = t^2 e^{-2t}$$

Oplossing

$$\mathcal{L}\{t^2 e^{-2t}\}(s) = \mathcal{L}\{t^2\}(s+2)$$
$$= \frac{2}{s+2)^3}$$