Generalized Linear Mixed Models (GLMM)

A step closer to actually analyzing ecological data

By: Zoë Zilz & Sam Sambado

Agenda

- Where does GLMM fit in GLAMM?
- What's cool about GLMM
- Some math about GLMM
- Why tred cautiously using GLMMs
- R examples!

The statistical journey of GLAMM

Why use GLMMs?

- Combines tools you know (GLMs & LMMs)
 - Follow similar steps used in mixed modelling
 - It's a linear mixed model with Gaussian distribution
- Most ecological data is non-normal with random effects
- Common to understand random variation in space & time or among individuals
- However, challenging to estimate parameters & have statistical inference

Underlying mathematics in GLMMs

- Conditional vs. unconditional distributions
- Likelihood function for GLMMs
- How is it calculated
- You know most of this already

Linear mixed model:
Yij =
$$\alpha$$
+Xi × β +Zi ×bi +ai + ϵ ij

Conditional Distributions

Poisson conditional

- 1. Conditional on the random effects b_i , the counts Y_{ij} are assumed to be **Poisson distributed** with mean $\mu_{ij}|b_i$
 - mean and variance of Y_{ij} : $E(Y_{ij}|b_i) = var(Y_{ij}|b_i)$.
- 2. The relationship between the conditional mean and the explanatory variables is determined by the **log link**: $log(\mu|b_i)=\alpha+X_i\times\beta+Z_i\times b_i$.
- 3. The **random effects** *bi* are assumed to be **normally distributed** with mean 0

*** specification of conditional distribution & random term unlike ordinary Poisson GLM***

Binomial conditional

- Conditional on the random effects bi, the presence and absence data Yij are assumed to be binomial distributed with probability pij|bi.
 - Mean: E(Yij|bi) = pij|bi
 - $\quad \forall \text{Var} : (Yij|bi) = pij|bi \times (1 pij|bi)$
- 2. The relationship between the conditional mean and the explanatory variables is determined by the **logistic link** $logit(pij|bi) = \alpha + Xi \times \beta + Zi \times bi$.
- 3. The **random effects** *bi* are assumed to be **normally distributed** with mean 0

Maximum likelihood

- For GLM, ML is specified & deviates with respect to parameters are calculated & set to 0
- For GLMM, parameters may not be calculated or contain a deviance & AIC
 - Some packages & methods can, but interpret with care

$$L(\beta, D) = \prod_{i} \int f(Y_{ij}|b_i) \times f(b_i)db_i$$

- Option: use numerical integration techniques & replace integral by a summation (i.e. Gaussian quadrature)
 - High computational burden

Proceed with caution.

311/537 (58%) GLMM analyses used inappropriately (Bolker 2009)

- Pitfalls of estimation, particularly with PQL
 - Poisson : < 5 counts/treatment
 - Binomial: < 5 # of successes/failures for each observation

GLMM touches on controversial stat issues

Null hypothesis testing, validity of stepwise regression, use of Bayesian stats

Estimation of parameters

- Fixed-effect parameters
 - o (i.e. effects of covariates, differences among treatments & interactions)
- Random-effect parameters
 - (i.e. sd of random effects)
- To find ML estimates for GLMM, integrate likelihoods over all possible values of random effects
 - Penalized quasilikelihood (PQL), Laplace approximations, Gauss-Hermite quadrature (GHQ), MCMC algorithms

Inference for GLMMs

3 types of inference: hypothesis testing, model comparison, & Bayesian approaches

- Hypothesis testing: frequentists test statistics for expected distributions
 - Wald Z, chi-square (without overdispersion)
 - Wald t, F tests (with overdispersion)
- Model selection: compares fits of candidate models for predictions
 - Estimate magnitude of differences between models
 - AIC & IC
- Bayesian: general scope, yet different route
 - MCMC provides confidence intervals for fixed & random effects
 - BIC and DIC (weaker assumptions)

A more helpful table on inference.

Table I. Techniques for GLMM inferences,	their advantages and disadvanta	ges and the software packa	ges that implement them
		good and a control of the control	3

Method	Advantages	Disadvantages	Software
Wald tests (Z , χ^2 , t , F)	Widely available, flexible, OK for	Boundary issues; poor for random effects; t and	GLIMMIX, NLMIXED (SAS),
	quasilikelihood (QL)	F require residual df	glmmPQL (R)
Likelihood ratio test	Better than Wald tests for random	Bad for fixed effects without large sample	NLMIXED (SAS), Ime4 (R)
	effects	sizes; boundary effects; inappropriate for QL	
Information criteria	Avoids stepwise procedures; provides	Boundary effects; no p value; requires residual	GLIMMIX, NLMIXED (SAS),
	model weights and averaging; QAIC	df estimate for AIC _c	Ime4 (R)
	applies to overdispersed data		
Deviance information	Automatically penalizes model	Requires MCMC sampling	WinBUGS
criterion	complexity		

Decision tree for GLMM fitting & inference

Data normal? Yes No Yes Crossed random effects Data transformable to or unbalanced design? normality, transformations OK No Yes No Poisson [mean<5],binomial [(Np,N(1-p))<5],binary? REML: F tests classical ANOVA: F tests No Overdispersion? > 3 random effects? Yes Yes No No PQL: Wald Z PQL: Wald t Laplace or GHQ MCMC, MCEM or χ^2 , AIC or F. QAIC [31] Random effect Fixed effect **REML**: restricted maximum likelihood LR test Overdispersion? **PQL:** penalized quasilikelihood **GHQ:** Gauss-Hermite quadrature Yes MCMC: Markov chain Monte Carlo LR: likelihood ratio Wald Zor Wald t χ^2 , AIC or F. QAIC TRENDS in Ecology & Evolution

Bolker 2009

Create a full model

- 1. Specify fixed & random effects
- 2. Choose error distribution & link function
- 3. Graphical checking
- 4. Fit fixed-effects GLMs to full data set & within each level of random factors
- 5. Fit the full GLMM
- 6. Recheck assumptions

Zoë (& June) are going to go over some code & graphical tricks!

