AP9T16GH/J

Pb Free Plating Product

N-CHANNEL ENHANCEMENT MODE

POWER MOSFET

- **▼** Low Gate Charge
- **▼** Capable of 2.5V gate drive
- **▼** Single Drive Requirement
- **▼** RoHS Compliant

$\begin{array}{ccc} \mathsf{BV}_{\mathsf{DSS}} & & \mathsf{20V} \\ \mathsf{R}_{\mathsf{DS(ON)}} & & \mathsf{25m}\,\Omega \\ \mathsf{I}_{\mathsf{D}} & & \mathsf{25A} \end{array}$

Description

The Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, ruggedized device design, ultra low on-resistance and cost-effectiveness.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	20	V
V_{GS}	Gate-Source Voltage	±16	V
I _D @T _C =25°ℂ	Continuous Drain Current, V _{GS} @ 4.5V	25	А
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 4.5V	16	А
I _{DM}	Pulsed Drain Current ¹	90	Α
P _D @T _C =25°C	Total Power Dissipation	25	W
	Linear Derating Factor	0.2	W/°C
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}\mathbb{C}$
	Operating Junction Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$

Thermal Data

Symbol	Parameter		Value	Units
Rthj-c	Thermal Resistance Junction-case	Max.	5	°C/W
Rthj-a	Thermal Resistance Junction-ambient	Max.	110	°C/W

AP9T16GH/J

Electrical Characteristics@T_j=25°C(unless otherwise specified)

	<u> </u>					
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	20	-	-	V
$\Delta \text{BV}_{\text{DSS}} / \Delta T_{j}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D =1mA	-	0.01	-	۷/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =4.5V, I _D =6A	-	-	25	$m\Omega$
		V _{GS} =2.5V, I _D =5.2A	-	-	40	$\mathbf{m}\Omega$
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	0.5	-	1.5	V
9 _{fs}	Forward Transconductance	V_{DS} =5V, I_D =18A	-	19	-	S
I _{DSS}	Drain-Source Leakage Current (T _j =25°C)	V _{DS} =20V, V _{GS} =0V	-	-	1	uA
	Drain-Source Leakage Current (T _j =150°C)	V _{DS} =16V ,V _{GS} =0V	-	-	25	uA
I _{GSS}	Gate-Source Leakage	V _{GS} =±16V	-	-	±100	nA
Q_g	Total Gate Charge ²	I _D =18A	-	10	16	nC
Q_{gs}	Gate-Source Charge	V _{DS} =16V	-	3	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =4.5V	-	5	-	nC
t _{d(on)}	Turn-on Delay Time ²	V _{DS} =10V	-	10	-	ns
t _r	Rise Time	I _D =18A	-	98	-	ns
$t_{d(off)}$	Turn-off Delay Time	$R_G=3.3\Omega, V_{GS}=5V$	-	18	-	ns
t _f	Fall Time	R_D =0.56 Ω	-	6	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	870	1390	pF
C _{oss}	Output Capacitance	V _{DS} =20V	-	160	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	120	-	pF
R_g	Gate Resistance	f=1.0MHz	-	1.38	-	Ω

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{SD}	Forward On Voltage ²	I _S =18A, V _{GS} =0V	-	-	1.3	٧
t _{rr}	Reverse Recovery Time ²	I _S =18A, V _{GS} =0V,	-	19	-	ns
Q_{rr}	Reverse Recovery Charge	dI/dt=100A/μs	-	10	-	nC

Notes:

- 1. Pulse width limited by safe operating area.
- 2.Pulse width \leq 300us , duty cycle \leq 2%.

Fig 1. Typical Output Characteristics

Fig 3. On-Resistance v.s. Gate Voltage

Fig 5. Forward Characteristic of Reverse Diode

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 6. Gate Threshold Voltage v.s.
Junction Temperature

Fig 7. Gate Charge Characteristics

Fig 8. Typical Capacitance Characteristics

Fig 9. Maximum Safe Operating Area

Fig 10. Effective Transient Thermal Impedance

Fig 11. Switching Time Waveform

Fig 12. Gate Charge Waveform