

# **MULTI-POINT CONSTRAINTS**

Formulation of rigid body elements

Samson Mano

saminnx@gmail.com

https://sites.google.com/site/samsoninfinite/ https://github.com/Samson-Mano

#### What is a Multipoint Constraint?

Multi-Point Constraints (MPCs) in finite element analysis encompass a unique category of elements designed to establish constraint relationships between multiple nodes. A single-point constraints sets a single degree of freedom to a known value (often zero) while a multipoint constraint (MPC) imposes a relationship among two or more degree of freedoms. These elements serve as an important tool for representing fundamental interactions, such as rigid and distributed connections within a structural system. The most common MPCs are, the RBE2 elements (kinematic couplings) and RBE3 elements (distributed couplings). In finite element analysis, MPCs rank as one of the most frequently used elements, in all sorts of engineering problems.

In my professional experience, the incorporation of MPCs has become nearly ubiquitous in finite element problem-solving, making them the fourth most prevalent finite element type, following shell, beam, and solid elements. Despite their widespread application, it is noteworthy that the detailed formulation of these multipoint constraints is often inadequately covered in mainstream textbooks. This document aims to bridge this gap by delving into the theoretical underpinnings and mathematical formulations of MPCs, shedding light on a critical aspect of finite element analysis.

#### **Implementation**

The schematics of MPCs application is presented in the below figure (IFEM Couse Carlos A Felippa).



# Example 1: Master – Slave MPC

#### Consider the below truss- model with MPCs.



| Element stiffness matrix                                                                                                                                                                                          |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $[K_e] = [L^T][k][L]$                                                                                                                                                                                             |     |
|                                                                                                                                                                                                                   |     |
| The direction cosines,                                                                                                                                                                                            |     |
| $l = \frac{x_2 - x_1}{l_e}, m = \frac{y_2 - y_1}{l_e}$                                                                                                                                                            |     |
| Direction cosine transformation matrix,                                                                                                                                                                           |     |
| $[L] = \begin{bmatrix} l & m & 0 & 0 \\ 0 & 0 & l & m \end{bmatrix}$                                                                                                                                              |     |
| Element stiffness matrix                                                                                                                                                                                          |     |
| $[K_e] = [L^T][k][L] = \frac{EA}{l_e} \begin{bmatrix} l & 0 \\ m & 0 \\ 0 & l \\ 0 & m \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} l & m & 0 & 0 \\ 0 & 0 & l & m \end{bmatrix}$ | 1.0 |
| For element 1, $l = 1$ , $m = 0$                                                                                                                                                                                  |     |

| $[K_e] = \frac{EA}{l_e} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$                                                                                                                                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $[K_e] = k_1 \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$                                                                                                                                                                                                                             |  |
| For element 2, $l = -0.8, m = 0.6$ $[K_e] = \frac{EA}{1250} \begin{bmatrix} -0.8 & 0 \\ 0.6 & 0 \\ 0 & -0.8 \\ 0 & 0.6 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} -0.8 & 0.6 & 0 & 0 \\ 0 & 0 & -0.8 & 0.6 \end{bmatrix}$                                                                                |  |
| $[K_e] = k_2 \begin{bmatrix} 0.64 & -0.48 & -0.64 & 0.48 \\ -0.48 & 0.36 & 0.48 & -0.36 \\ -0.64 & 0.48 & 0.64 & -0.48 \\ 0.48 & -0.36 & -0.48 & 0.36 \end{bmatrix}$                                                                                                                                                                       |  |
| Global stiffness matrix $ [K_g] = \begin{bmatrix} k_1 & 0 & -k_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -k_1 & 0 & k_1 + 0.64k_2 & -0.48k_2 & -0.64k_2 & 0.48k_2 \\ 0 & 0 & -0.48k_2 & 0.36k_2 & 0.48k_2 & -0.36k_2 \\ 0 & 0 & -0.64k_2 & 0.48k_2 & 0.64k_2 & -0.48k_2 \\ 0 & 0 & 0.48k_2 & -0.36k_2 & -0.48k_2 & 0.36k_2 \end{bmatrix} $ |  |
| $[u] = \begin{bmatrix} u_{1x} \\ u_{1y} \\ u_{2x} \\ u_{2y} \\ u_{3x} \\ u_{3y} \end{bmatrix}$                                                                                                                                                                                                                                             |  |

| $[F] = \begin{bmatrix} f_{1x} \\ f_{1y} \\ f_{2x} \\ f_{2y} \\ f_{3x} \\ f_{3y} \end{bmatrix} = \begin{bmatrix} 0.0 \\ 0.0 \\ 0.0 \\ -100 \\ 0.0 \\ 0.0 \end{bmatrix}$                                                                                                                                                                                                                                            |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| The unmodified stiffness equation is given by                                                                                                                                                                                                                                                                                                                                                                     |     |
| [K][u] = [F]                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0 |
| The idea behind applying the Multi Point Constraint by master – slave method is to establish a relationship between the displacements of selected nodes in the model, designating one set of nodes as "master" and another set as "slave." The master nodes dictate the behavior of the slave nodes through a transformation matrix, ensuring that the displacements are consistent with the imposed constraints. |     |
| In this example, Node 2 and Node 1 are rigidly connected through Rigid Element 1, resulting in an equal x displacement between them.                                                                                                                                                                                                                                                                              |     |
| $[u] = [T][\hat{u}]$                                                                                                                                                                                                                                                                                                                                                                                              | 3.0 |
| Applying the transformation matrix to the transfer the x displacement through rigid element 1 gives                                                                                                                                                                                                                                                                                                               |     |
| $\begin{bmatrix} u_{1x} \\ u_{1y} \\ u_{2x} \\ u_{2y} \\ u_{3x} \\ u_{3y} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_{1x} \\ u_{1y} \\ u_{2y} \\ u_{3x} \\ u_{3y} \end{bmatrix}$                                                                                  |     |
| Substituting Eqn 3.0 in the global stiffness equation Eqn 2.0 gives                                                                                                                                                                                                                                                                                                                                               |     |
| $[K][T][\hat{u}] = [F]$                                                                                                                                                                                                                                                                                                                                                                                           |     |
| Pre multiply by [T] transpose to make the matrices size consistent throughout the stiffness equation gives,                                                                                                                                                                                                                                                                                                       | 4.0 |
| $[T^T][K][T][\hat{u}] = [T^T][F]$                                                                                                                                                                                                                                                                                                                                                                                 | 4.0 |
| Now the modified stiffness equation is given by,                                                                                                                                                                                                                                                                                                                                                                  |     |

| $[\widehat{K}][\widehat{u}] = [\widehat{F}]$                                                                                                                                                                                                                               |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Modified stiffness $\widehat{K}$ matrix                                                                                                                                                                                                                                    |   |
| $ \left[\widehat{K}\right] = \begin{bmatrix} 0.64k_2 & 0 & -0.48k_2 & -0.64k_2 & 0.48k_2 \\ 0 & 0 & 0 & 0 & 0 \\ -0.48k_2 & 0 & 0.36k_2 & 0.48k_2 & -0.36k_2 \\ -0.64k_2 & 0 & 0.48k_2 & 0.64k_2 & -0.48k_2 \\ 0.48k_2 & 0 & -0.36k_2 & -0.48k_2 & 0.36k_2 \end{bmatrix} $ |   |
| Modified force $\hat{F}$ matrix                                                                                                                                                                                                                                            | 1 |
| $[\hat{F}] = \begin{bmatrix} 0.0\\0.0\\-100\\0.0\\0.0 \end{bmatrix}$                                                                                                                                                                                                       |   |
| Solving the stiffness matrix gives us (unit is mm)                                                                                                                                                                                                                         |   |
| $[\hat{u}] = \begin{bmatrix} 0.0\\ 0.0\\ -2.605795\\ 0.0\\ 0.0 \end{bmatrix}$                                                                                                                                                                                              |   |
|                                                                                                                                                                                                                                                                            |   |
|                                                                                                                                                                                                                                                                            | 1 |

The rigid element model is equivalent to having a roller support restricting  $\boldsymbol{x}$  translation as shown in the below.



If the inclined element is rigid, then finding a suitable transformation matrix is more difficult. Implementation of this method is also not easy.

### Example 2: Penalty MPC

#### Inclined rigid element.



| In this example the global unmodified stiffness equation is the same as the previous. |  |
|---------------------------------------------------------------------------------------|--|
| Global stiffness matrix                                                               |  |

| $ [K_g] = \begin{bmatrix} k_1 & 0 & -k_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -k_1 & 0 & k_1 + 0.64w & -0.48w & -0.64w & 0.48w \\ 0 & 0 & -0.48w & 0.36w & 0.48w & -0.36w \\ 0 & 0 & -0.64w & 0.48w & 0.64w & -0.48w \\ 0 & 0 & 0.48w & -0.36w & -0.48w & 0.36w \end{bmatrix} $ | 1.0          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| $[u] = \begin{bmatrix} u_{1x} \\ u_{1y} \\ u_{2x} \\ u_{2y} \\ u_{3x} \\ u_{3y} \end{bmatrix}$                                                                                                                                                                                     |              |
| In the above stiffness equation w is infinity because element 2 is by definition, rigid. In application, making w a very large number reduces the constraint violation between the rigidly connected node but increases the solution error.                                        |              |
| After applying the boundary conditions, $\begin{bmatrix} k_1+0.64w & -0.48w \\ -0.48w & 0.36w \end{bmatrix} \begin{bmatrix} u_{2x} \\ u_{2y} \end{bmatrix} = \begin{bmatrix} 0.0 \\ -100 \end{bmatrix}$                                                                            | 2.0          |
| $k_1 = \frac{EA}{l_e} = 133.25  KN/mm$                                                                                                                                                                                                                                             |              |
| Solving the above equation gives                                                                                                                                                                                                                                                   |              |
| $\begin{bmatrix} (133.25 + 0.64w) u_{2x} - 0.48w u_{2y} \\ -0.48w u_{2x} + 0.36w u_{2y} \end{bmatrix} = \begin{bmatrix} 0.0 \\ -100 \end{bmatrix}$                                                                                                                                 |              |
| $(133.25 + 0.64w) u_{2x} - 0.48w u_{2y} = 0.0$ $-0.48w u_{2x} + 0.36w u_{2y} = -100$                                                                                                                                                                                               | 3.0 &<br>4.0 |
| Solving manually gives the results as                                                                                                                                                                                                                                              |              |
| $u_{2x} = -1.000625  mm$                                                                                                                                                                                                                                                           |              |
| $u_{2y} = -1.334167 \ mm$                                                                                                                                                                                                                                                          |              |

But when implementing in computers, w needs to have some value, the following table shows various values for w (max(k) \* alpha) and the results of  $u_{2y}$  compared to exact value

| alpha                   | 10       | 102      | 103         | 104        | 105         | 106      | 107      |
|-------------------------|----------|----------|-------------|------------|-------------|----------|----------|
| $u_{2y}$                | 1.542631 | 1.355014 | 1.336251824 | 1.33437565 | 1.334188034 | 1.334169 | 1.334167 |
| u <sub>2y</sub> - exact | 0.208464 | 0.020847 | 0.002084824 | 0.00020865 | 2.10342E-05 | 2.27E-06 | 3.96E-07 |
| % Error                 | 15.62502 | 1.562514 | 0.1562641   | 0.01563908 | 0.001576578 | 0.00017  | 2.97E-05 |



The stiffness matrix approaches singularity as w approaches infinity. For  $w>10^{16}$  the computer will not be able to distinguish K from singularity matrix when using standard low-level programming languages. For the above example a value of  $10^8$  yields a solution with error of order  $10^{-8}.$ 

# Example 3.1: Lagrange Multiplier MPC

# Inclined rigid element.



|                                                                     | In this example the global unmodified stiffness equation is the same as the previous.                                     |                                               |                                                   |                                                   |                                                                                                                                                               |     |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Global stif                                                         | fness equation                                                                                                            | 0                                             | 0                                                 | 0 7                                               | $\begin{bmatrix} u_{1x} \end{bmatrix} \begin{bmatrix} f_{1x} \end{bmatrix}$                                                                                   |     |
| $\begin{bmatrix} 0 & 0 \\ -k_1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ | $ \begin{array}{cccc} 0 & -k_1 \\ 0 & 0 \\ 0 & k_1 + 0.64k_2 \\ 0 & -0.48k_2 \\ 0 & -0.64k_2 \\ 0 & 0.48k_2 \end{array} $ | $0$ $-0.48k_2$ $0.36k_2$ $0.48k_2$ $-0.36k_2$ | $0 \\ -0.64k_2 \\ 0.48k_2 \\ 0.64k_2 \\ -0.48k_2$ | $0 \\ 0.48k_2 \\ -0.36k_2 \\ -0.48k_2 \\ 0.36k_2$ | $\begin{bmatrix} u_{1y} \\ u_{2x} \\ u_{2y} \\ u_{3x} \\ u_{3y} \end{bmatrix} = \begin{bmatrix} f_{1y} \\ f_{2x} \\ f_{2y} \\ f_{3x} \\ f_{3y} \end{bmatrix}$ | 1.0 |
|                                                                     | element facilitate es the following $u_{2x}l$ -                                                                           | expression                                    |                                                   | J                                                 | ngth is equal                                                                                                                                                 |     |
| The below                                                           | picture shows v                                                                                                           | vhy the abo                                   | ove express                                       | sion is valid                                     | d                                                                                                                                                             |     |



Appending the constraints to the global stiffness equation gives,  $\begin{bmatrix} k_1 & 0 & -k_1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ -k_1 & 0 & k_1 + 0.64k_2 & -0.48k_2 & -0.64k_2 & 0.48k_2 \\ 0 & 0 & -0.48k_2 & 0.36k_2 & 0.48k_2 & -0.36k_2 \\ 0 & 0 & -0.64k_2 & 0.48k_2 & 0.64k_2 & -0.48k_2 \\ 0 & 0 & 0.48k_2 & -0.36k_2 & -0.48k_2 & 0.36k_2 \\ 0 & 0 & 1 & m & -l & -m \end{bmatrix} \begin{bmatrix} u_{1x} \\ u_{1y} \\ u_{2x} \\ u_{3y} \\ u_{3y} \end{bmatrix} = \begin{bmatrix} f_{1x} \\ f_{1y} \\ f_{2x} \\ u_{2y} \\ f_{3x} \\ f_{3y} \\ 0 \end{bmatrix}$  For element 2, l = -0.8, m = 0.6  $\begin{bmatrix} k_1 & 0 & -k_1 & 0 & 0 & 0 \\ -k_1 & 0 & k_1 + 0.64k_2 & -0.48k_2 & -0.64k_2 & 0.48k_2 \\ 0 & 0 & -0.48k_2 & 0.36k_2 & 0.48k_2 & -0.36k_2 \\ 0 & 0 & -0.48k_2 & 0.36k_2 & -0.48k_2 & -0.36k_2 \\ 0 & 0 & -0.64k_2 & 0.48k_2 & -0.48k_2 & 0.36k_2 \\ 0 & 0 & 0.48k_2 & -0.36k_2 & -0.48k_2 & 0.36k_2 \\ 0 & 0 & -0.8 & 0.6 & 0.8 & -0.6 \end{bmatrix} \begin{bmatrix} u_{1x} \\ f_{1y} \\ u_{2x} \\ u_{2y} \\ u_{3x} \\ u_{3y} \end{bmatrix} = \begin{bmatrix} f_{1x} \\ f_{1y} \\ f_{2x} \\ f_{2y} \\ f_{3x} \\ f_{3y} \end{bmatrix}$ Below is the lagrange multiplier-augmented system. Its coefficient matrix, which is symmetric, is called the bordered stiffness matrix. The process

| adjunction.                                                                             | s appended to                                                                                                                                                               |                                                               |                                                                                                              |                                                                                            |                                                                                                                                                                             |     |
|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $\begin{bmatrix} k_1 & 0 \\ 0 & 0 \\ -k_1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ | $-k_{1}$ $0$ $k_{1} + 0.64k_{2}$ $-0.48k_{2}$ $-0.64k_{2}$ $0.48k_{2}$ $-0.8$ $\begin{bmatrix} f_{1x} \\ f_{1y} \\ f_{2x} \\ f_{2y} \\ f_{3x} \\ f_{3y} \\ 0 \end{bmatrix}$ | $0 \\ 0 \\ -0.48k_2 \\ 0.36k_2 \\ 0.48k_2 \\ -0.36k_2 \\ 0.6$ | $0 \\ 0 \\ -0.64k_2 \\ 0.48k_2 \\ 0.64k_2 \\ -0.48k_2 \\ 0.8$                                                | $0 \\ 0.48k_2 \\ -0.36k_2 \\ -0.48k_2 \\ 0.36k_2 \\ -0.6$                                  | $\begin{bmatrix} 0 \\ 0 \\ -0.8 \\ 0.6 \\ 0.8 \\ -0.6 \\ 0 \end{bmatrix} \begin{bmatrix} u_{1x} \\ u_{1y} \\ u_{2x} \\ u_{2y} \\ u_{3x} \\ u_{3y} \\ \lambda \end{bmatrix}$ | 4.0 |
| MPC – Lagra<br>bordered eq                                                              | inge Multiplier<br>Juation is,                                                                                                                                              | method m $\begin{bmatrix} K & C^T \\ C & 0 \end{bmatrix}$     |                                                                                                              | augmented                                                                                  | system,                                                                                                                                                                     | 5.0 |
| The global s                                                                            | ystem equation                                                                                                                                                              | n and matr                                                    | ix form of N                                                                                                 | MPC equation                                                                               | ons is of the                                                                                                                                                               |     |
|                                                                                         |                                                                                                                                                                             | [K][U]                                                        | = [F]                                                                                                        |                                                                                            |                                                                                                                                                                             | 6.0 |
|                                                                                         |                                                                                                                                                                             | [C][U] —                                                      | [Q] = 0                                                                                                      |                                                                                            |                                                                                                                                                                             |     |
| Applying the                                                                            | e essential bou                                                                                                                                                             | ndary cond                                                    | lition to bo                                                                                                 | rdered equ                                                                                 | ation is,                                                                                                                                                                   |     |
|                                                                                         | $\begin{bmatrix} k_1 + 0.64k_2 \\ -0.48k_2 \\ -0.8 \end{bmatrix}$                                                                                                           | $-0.48k_2$ $0.36k_2$ $0.6$                                    | $\begin{bmatrix} -0.8 \\ 0.6 \\ 0.0 \end{bmatrix} \begin{bmatrix} u_{23} \\ u_{23} \\ \lambda \end{bmatrix}$ | $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0.0 \\ -100 \\ 0 \end{bmatrix}$    | 0.0                                                                                                                                                                         |     |
|                                                                                         | matrix equati                                                                                                                                                               |                                                               | ie of k1 is a                                                                                                | ı known qu                                                                                 | antity and k2                                                                                                                                                               |     |
|                                                                                         | 2  or  w = 1000                                                                                                                                                             |                                                               | = 133250                                                                                                     |                                                                                            |                                                                                                                                                                             |     |
| [133.25 +                                                                               | - 0.64(133250)<br>8(133250)<br>0.8                                                                                                                                          | 0.26(1                                                        | 133250)                                                                                                      | $\begin{bmatrix} -0.8 \\ 0.6 \end{bmatrix} \begin{bmatrix} u_{2x} \\ u_{2x} \end{bmatrix}$ | $\begin{bmatrix} 0.0 \\ 100.0 \end{bmatrix}$                                                                                                                                | 9.0 |

| The result is very precise. $ \begin{bmatrix} u_{2x} \\ u_{2y} \\ \lambda \end{bmatrix} = \begin{bmatrix} -1.00062539 \\ -1.33416718 \\ -166.6666667 \end{bmatrix} $ | 10.0 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                                                                                                                                                                      |      |
|                                                                                                                                                                      |      |

Example 3.2: Lagrange Multiplier MPC

### Inclined rigid element.



| Element stiffness matrix                                             |  |
|----------------------------------------------------------------------|--|
| $[K_e] = [L^T][k][L]$                                                |  |
| The direction cosines,                                               |  |
| $l=rac{x_2-x_1}{l_e}$ , $m=rac{y_2-y_1}{l_e}$                      |  |
| Direction cosine transformation matrix,                              |  |
| $[L] = \begin{bmatrix} l & m & 0 & 0 \\ 0 & 0 & l & m \end{bmatrix}$ |  |

| Element stiffness matrix                                                                                                                                                                                                                                                                                                                                                                |                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| $[K_e] = [L^T][k][L] = \frac{EA}{l_e} \begin{bmatrix} l & 0 \\ m & 0 \\ 0 & l \\ 0 & m \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} l & m & 0 & 0 \\ 0 & 0 & l & r \end{bmatrix}$                                                                                                                                                                       | $\begin{bmatrix} 0 \\ n \end{bmatrix}$ 1.0 |
| For element 1, $l = 1, m = 0$                                                                                                                                                                                                                                                                                                                                                           |                                            |
| $[K_e] = \frac{EA}{l_e} \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$                                                                                                                                                                                     |                                            |
| $[K_e] = k_1 \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                          | 2.0                                        |
| For element 2, $l = -0.894427191$ , $m = 0.447213595$                                                                                                                                                                                                                                                                                                                                   |                                            |
| $[K_e] = \frac{EA}{l_e} \begin{bmatrix} -0.894427191 & 0\\ 0.447213595 & 0\\ 0 & -0.894427191 \\ 0 & 0.447213595 \end{bmatrix} \begin{bmatrix} 1 & -1\\ -1 & 1 \\ 0 & 0 & -0.894427191 \\ 0 & 0 & -0.894427191 \end{bmatrix} \begin{bmatrix} 1 & -1\\ -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$                                                                                                | ]<br><sub>3595</sub> ]                     |
| $[K_e] = k_2 \begin{bmatrix} 0.8 & -0.4 & -0.8 & 0.4 \\ -0.4 & 0.2 & 0.4 & -0.2 \\ -0.8 & 0.4 & 0.8 & -0.4 \\ 0.4 & -0.2 & -0.4 & 0.2 \end{bmatrix}$                                                                                                                                                                                                                                    | 3.0                                        |
| For element 3, $l = -0.447213595$ , $m = -0.894427191$                                                                                                                                                                                                                                                                                                                                  |                                            |
| $[K_e] = \frac{EA}{l_e} \begin{bmatrix} -0.447213595 & 0 \\ -0.894427191 & 0 \\ 0 & -0.447213595 \\ 0 & -0.894427191 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ $\begin{bmatrix} -0.447213595 & -0.894427191 & 0 & 0 \\ 0 & 0 & -0.447213595 & -0.894427191 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 & 0 \\ 0 & 0 & -0.447213595 & -0.894427191 \end{bmatrix}$ | ]<br><sub>127191</sub> ]                   |

| $[K_e] = k_3 \begin{bmatrix} 0.2 & 0.4 & -0.2 & -0.4 \\ 0.4 & 0.8 & -0.4 & -0.8 \\ -0.2 & -0.4 & 0.2 & 0.4 \\ -0.4 & -0.8 & 0.4 & 0.8 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.0 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Global stiffness matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| $ \begin{bmatrix} K_g \end{bmatrix} \\ = \begin{bmatrix} k_1 + 0.2k_3 & 0.4k_3 & -k_1 & 0 & -0.2k_3 & -0.4k_3 \\ 0.4k_3 & 0.8k_3 & 0 & 0 & -0.4k_3 & -0.8k_3 \\ -k_1 & 0 & k_1 + 0.8k_2 & -0.4k_2 & -0.8k_2 & 0.4k_2 \\ 0 & 0 & -0.4k_2 & 0.2k_2 & 0.4k_2 & -0.2k_2 \\ -0.2k_3 & -0.4k_3 & -0.8k_2 & 0.4k_2 & 0.8k_2 + 0.2k_3 & -0.4k_2 + 0.4k_3 \\ -0.4k_3 & -0.8k_3 & 0.4k_2 & -0.2k_2 & -0.4k_2 + 0.4k_3 & 0.2k_2 + 0.8k_3 \end{bmatrix} $                                                                                                                                                                                                                                                                              | 5.0 |
| Appending the constraints to the global stiffness equation gives,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| $\begin{bmatrix} k_1 + 0.2k_3 & 0.4k_3 & -k_1 & 0 & -0.2k_3 & -0.4k_3 \\ 0.4k_3 & 0.8k_3 & 0 & 0 & -0.4k_3 & -0.8k_3 \\ -k_1 & 0 & k_1 + 0.8k_2 & -0.4k_2 & -0.8k_2 & 0.4k_2 \\ 0 & 0 & -0.4k_2 & 0.2k_2 & 0.4k_2 & -0.2k_2 \\ -0.2k_3 & -0.4k_3 & -0.8k_2 & 0.4k_2 & 0.8k_2 + 0.2k_3 & -0.4k_2 + 0.4k_3 \\ 0 & 0 & -0.8k_3 & 0.4k_2 & -0.2k_2 & -0.4k_2 + 0.4k_3 & 0.2k_2 + 0.8k_3 \\ 0 & 0 & -0.89442719 & 0.44721359 & 0.89442719 & -0.44721359 \\ -0.44721359 & -0.89442719 & 0 & 0 & 0.44721359 & 0.89442719 \end{bmatrix} \begin{bmatrix} u_{1x} \\ u_{1y} \\ u_{2x} \\ u_{2y} \\ u_{3x} \\ u_{3y} \end{bmatrix} = \begin{bmatrix} f_{1x} \\ f_{1y} \\ f_{2x} \\ f_{2y} \\ f_{3x} \\ f_{3y} \\ 0 \\ 0 \end{bmatrix}$ | 6.0 |
| Adjunction process: Lagrange multiplier augmented bordered stiffness matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |

|          | $\begin{bmatrix} k_1 + 0.2k_3 & -0.4k_3 & -k_1 & 0 & -0.2k_3 & 0.4k_3 & 0 & -0.44721359 \\ -0.4k_3 & 0.8k_3 & 0 & 0 & 0.4k_3 & -0.8k_3 & 0 & -0.89442719 \\ -0.4k_1 & 0 & k_1 + 0.8k_2 & -0.4k_2 & -0.8k_2 & 0.4k_2 & -0.89442719 & 0 \\ 0 & 0 & -0.4k_2 & 0.2k_2 & 0.4k_2 & -0.2k_2 & 0.44721359 & 0 \\ -0.2k_3 & 0.4k_3 & -0.8k_2 & 0.4k_2 & 0.8k_2 + 0.2k_3 & -0.4k_2 - 0.4k_3 & 0.89442719 & 0.44721359 \\ 0 & 0 & -0.8k_3 & 0.4k_2 & -0.2k_2 & -0.4k_2 - 0.4k_3 & 0.2k_2 + 0.8k_3 & -0.44721359 & 0.89442719 \\ 0 & 0 & -0.89442719 & 0.44721359 & 0.89442719 & -0.44721359 & 0 & 0 \\ -0.44721359 & -0.89442719 & 0 & 0 & 0.44721359 & 0.89442719 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_{1x} \\ u_{1y} \\ u_{2x} \\ u_{2y} \\ u_{2y} \\ u_{3y} \\ \lambda_1 \\ \lambda_2 \end{bmatrix}$ |     |  |  |  |  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
|          | After applying the essential boundary condition. The matrix reduces to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |  |  |  |  |
|          | $\begin{bmatrix} k_1 + 0.8k_2 & -0.8k_2 & 0.4k_2 & -0.89442719 & 0 \\ -0.8k_2 & 0.8k_2 + 0.2k_3 & -0.4k_2 + 0.4k_3 & 0.89442719 & 0.44721359 \\ 0.4k_2 & -0.4k_2 + 0.4k_3 & 0.2k_2 + 0.8k_3 & -0.44721359 & 0.89442719 \\ -0.89442719 & 0.89442719 & -0.44721359 & 0 & 0 \\ 0 & 0.44721359 & 0.89442719 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_{2x} \\ u_{3x} \\ u_{3y} \\ \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 0.0 \\ 0.0 \\ -100.0 \\ 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                     | 7.0 |  |  |  |  |
|          | Applying the stiffness values $k_1 = 133.25$ , $k_2$ , $k_3 = w = \max(k) * 1000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |  |  |  |  |
|          | $\begin{bmatrix} 133.25 + 0.8(133250) & -0.8(133250) & 0.4(133250) & -0.89442719 & 0 \\ -0.8(133250) & 0.8(133250) + 0.2(133250) & -0.4(133250) + 0.4(133250) & 0.89442719 & 0.44721359 \\ 0.4(133250) & -0.4(133250) + 0.4(133250) & 0.2(133250) + 0.8(133250) & -0.44721359 & 0.89442719 \\ -0.89442719 & 0.89442719 & -0.44721359 & 0 & 0 & 0 \\ 0 & 0.44721359 & 0.89442719 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_{2x} \\ u_{3x} \\ u_{3y} \\ \lambda_1 \\ \lambda_2 \end{bmatrix}$ $= \begin{bmatrix} 0.0 \\ 0.0 \\ -100.0 \\ 0 \\ 0 \end{bmatrix}$                                                                                                                                                                                                                                  |     |  |  |  |  |
|          | $\begin{bmatrix} 1066133.25 & -1066000 & 533000 & -0.89442719 & 0 \\ -1066000 & 1332500 & 0.0 & 0.89442719 & 0.44721359 \\ 533000 & 0.0 & 1332500 & -0.44721359 & 0.89442719 \\ -0.89442719 & 0.89442719 & -0.44721359 & 0 & 0 \\ 0 & 0.44721359 & 0.89442719 & 0 & 0 \end{bmatrix} \begin{bmatrix} u_{2x} \\ u_{3x} \\ u_{3y} \\ \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 0.0 \\ 0.0 \\ -100.0 \\ 0 \\ 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                          |     |  |  |  |  |
| $\vdash$ | Solving the above equation gives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |  |  |  |  |
|          | $\begin{bmatrix} u_{2x} \\ u_{3x} \\ u_{3y} \\ \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 0.300187617261 \\ 0.240150093755 \\ -0.120075047012 \\ 44.721359549992 \\ -89.442559099983 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.0 |  |  |  |  |





| Exact solution is given by,                                                           |     |
|---------------------------------------------------------------------------------------|-----|
| $k_1 u_{2x} = F_x$                                                                    |     |
| $133.25 u_{2x} = 40$                                                                  |     |
| $u_{2x} = 0.300187617$                                                                | 1.0 |
| Rigid element 2                                                                       |     |
| $l_2 u_{2x} + m_2 u_{2y} = l_2 u_{3x} + m_2 u_{3y}$                                   |     |
| $-0.894427191u_{2x} + 0.4472135955u_{2y}$ $= -0.894427191u_{3x} + 0.4472135955u_{3y}$ |     |
| Substituting $u_{2x}$ and $u_{2y} = 0.0$                                              |     |
| $-0.894427191u_{3x} + 0.4472135955u_{3y} = -0.268495967279524$                        | 2.0 |
| Rigid element 3                                                                       |     |
| $l_3 u_{3x} + m_3 u_{3y} = l_3 u_{1x} + m_3 u_{1y}$                                   |     |
|                                                                                       |     |

| $-0.4472135955u_{3x} - 0.894427191u_{3y}$       |     |
|-------------------------------------------------|-----|
| $= -0.4472135955u_{1x} - 0.894427191u_{1y}$     |     |
|                                                 |     |
| Substituting $u_{1x} = 0.0$ and $u_{1y} = 0.0$  |     |
| $-0.4472135955u_{3x} - 0.894427191u_{3y} = 0.0$ | 3.0 |
| Solving eqn 2.0 and 3.0                         |     |
| $u_{3x} = 0.240150093$                          |     |
| $u_{3y} = -0.12007504$                          |     |
|                                                 |     |



### Generalized Eigen Value problem – Lagrange multiplier MPC

Below is the free vibration generalized eigen value problem of a dynamic system without damping.

| Generalized eigen value problem of mass – spr                                                                                                                                                                                                                                                                                                                                           | ring system                                                                                                     |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                              |  |
| $[K][\phi] = [\omega^2][M][\phi]$                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |  |
| MPC – Lagrange Multiplier method, multiplier – augmented system, bordered equation is,                                                                                                                                                                                                                                                                                                  |                                                                                                                 |  |
| $\begin{bmatrix} [K] & [C^T] \\ [C] & [0] \end{bmatrix} \begin{bmatrix} [\phi] \\ [\lambda] \end{bmatrix} = [\omega^2] \left( \begin{bmatrix} [M] \\ [0] \end{bmatrix} \right)$                                                                                                                                                                                                         | $\begin{bmatrix} [0] \\ [0] \end{bmatrix} \begin{bmatrix} [\phi] \\ [\lambda] \end{bmatrix}$                    |  |
| $\left(\begin{bmatrix} \begin{bmatrix} K \end{bmatrix} & \begin{bmatrix} C^T \end{bmatrix} \\ \begin{bmatrix} C \end{bmatrix} & \begin{bmatrix} 0 \end{bmatrix} \end{bmatrix} - \begin{bmatrix} \omega^2 \end{bmatrix} \begin{bmatrix} M \end{bmatrix} & \begin{bmatrix} 0 \end{bmatrix}$                                                                                               |                                                                                                                 |  |
| The solution to the eigen value problem defined in eqn 2 is complicated by the presence of many null elements in the involved matrices. We can use change of variables to overcome this difficulty.                                                                                                                                                                                     |                                                                                                                 |  |
| $[\phi^*] = [M]^{1/2}[\phi]$                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |  |
| $[\lambda^*] = (1/Lv)[\lambda]$                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |  |
| where $[M]^{1/2}$ is the square root of                                                                                                                                                                                                                                                                                                                                                 | of mass matrix                                                                                                  |  |
| Lv is a large value                                                                                                                                                                                                                                                                                                                                                                     | e                                                                                                               |  |
| Change of variable                                                                                                                                                                                                                                                                                                                                                                      | $\left[\begin{bmatrix} [\phi] \\ [\lambda] \end{bmatrix}\right] $ 3.0                                           |  |
| $ \begin{bmatrix} [\phi] \\ [\lambda] \end{bmatrix} = \begin{bmatrix} [M]^{-1/2} & [0] \\ [0] & [Lv] \end{bmatrix} $                                                                                                                                                                                                                                                                    | $\begin{bmatrix} [\phi^*] \\ [\lambda^*] \end{bmatrix}$ 4.0                                                     |  |
| Substitute the eqn 4.0 in eqn 2.0                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |  |
| $\left(\begin{bmatrix} \begin{bmatrix} K \end{bmatrix} & \begin{bmatrix} C^T \end{bmatrix} \\ \begin{bmatrix} C \end{bmatrix} & \begin{bmatrix} 0 \end{bmatrix} \end{bmatrix} - \begin{bmatrix} \omega^2 \end{bmatrix} \begin{bmatrix} M \end{bmatrix}$ | $\begin{bmatrix} 1/2 & [0] \\ [Lv] \end{bmatrix} \begin{bmatrix} [\phi^*] \\ [\lambda^*] \end{bmatrix} = 0$ 5.0 |  |
|                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |  |

| Pre-multiply the eqn 5.0, by the below                                                                                                                                                                                                                                                                                                           |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| $\begin{bmatrix} [M]^{-1/2} & [0] \\ [0] & [Lv] \end{bmatrix}$                                                                                                                                                                                                                                                                                   |     |
| $\begin{bmatrix} [M]^{-1/2} & [0] \\ [0] & [Lv] \end{bmatrix} \begin{pmatrix} [[K] & [C^T] \\ [C] & [0] \end{bmatrix} - [\omega^2] \begin{bmatrix} [M] & [0] \\ [0] & [0] \end{bmatrix} \end{pmatrix} \begin{bmatrix} [M]^{-1/2} & [0] \\ [0] & [Lv] \end{bmatrix} \begin{bmatrix} [\phi^*] \\ [\lambda^*] \end{bmatrix} = 0$                    | 6.0 |
| On a side note, Is the following expression valid?                                                                                                                                                                                                                                                                                               |     |
| $\lim_{x \to \infty} \left( \frac{1}{x^2} \right) = 0$                                                                                                                                                                                                                                                                                           |     |
| Then,                                                                                                                                                                                                                                                                                                                                            |     |
| if $Lv \to \infty$ then, $\frac{1}{Lv^2}[I] = [0]$                                                                                                                                                                                                                                                                                               |     |
| Substitute eqn 7.0 in eqn 6.0 Mass matrix null lower block.                                                                                                                                                                                                                                                                                      |     |
| $ \begin{bmatrix} [M]^{-1/2} & [0] \\ [0] & [Lv] \end{bmatrix} \begin{pmatrix} [K] & [C^T] \\ [C] & [0] \end{bmatrix} \\ - [\omega^2] \begin{bmatrix} [M] & [0] \\ [0] & \frac{1}{Lv^2} [I] \end{bmatrix} \end{pmatrix} \begin{bmatrix} [M]^{-1/2} & [0] \\ [0] & [Lv] \end{bmatrix} \begin{bmatrix} [\phi^*] \\ [\lambda^*] \end{bmatrix} = 0 $ |     |
| Simplifying the above equation gives the below standard eigen value problem.                                                                                                                                                                                                                                                                     |     |
| $ \left( \begin{bmatrix} [M]^{-1/2}[K][M]^{-1/2} & Lv[M]^{-1/2}[C^T] \\ Lv[C][M]^{-1/2} & [0] \end{bmatrix} - [\omega^2] \begin{bmatrix} [I] & [0] \\ [0] & [I] \end{bmatrix} \right) \begin{bmatrix} [\phi^*] \\ [\lambda^*] \end{bmatrix} = 0 $                                                                                                | 8.0 |
|                                                                                                                                                                                                                                                                                                                                                  |     |
|                                                                                                                                                                                                                                                                                                                                                  |     |
|                                                                                                                                                                                                                                                                                                                                                  |     |