LIQUID

ความไม่เป็นระเบียบ (entropy) เพิ่มขึ้น

แก๊ส: เคลื่อนที่ตลอดเวลา มีแรงกระทำต่อกันน้อย

ของเหลว: เคลื่อนที่ได้ ไหลได้ มีแรงกระทำต่อกันมาก

ของแข็ง: เคลื่อนที่ไม่ได้ มีแรงกระทำต่อกันมากกว่าของเหลว

Table 1 สมบัติทั่วไปของแก๊ส ของเหลวและของแข็ง

สถานะ	แก๊ส	ของเหลว	ของแข็ง
ปริมาตร	ไม่แน่นอน เท่ากับภาชนะ	แน่นอน	แน่นอน
รูปร่าง	เหมือนภาชนะ	เหมือนภาชนะ	แน่นอน
ความหนาแน่น	ต่ำ	สูง	สูง
ความสามารถ ในการถูกบีบ	ถูกบีบได้ง่าย	ถูกบีบได้ เล็กน้อย	ไม่สามารถถูก บีบได้
การเคลื่อนที่ ของโมเลกุล	มีอิสระในการ เคลื่อนที่สูง	เคลื่อนที่ไปมา ได้	ไม่เคลื่อนที่ แต่ สั่นสะเทือนได้

แรงดึงดูดระหว่างโมเลกุล (Intermolecular Forces)

Intermolecular forces

แรงระหว่างโมเลกุลมีผลต่อสมบัติทางกายภาพเช่น สถานะ จุดเดือด และ จุดหลอมเหลว

Intramolecular forces

แรงยึดเหนี่ยวภายในโมเลกุลหรือระหว่างอะตอมมีผลต่อ ความเสถียรของโมเลกุล

Intramolecular forces จะมากกว่า Intermolecular forces

ระเหยน้ำ 1 โมล ที่ จุดเดือด => 41 kJ แยก O-H 2 พันธะ ในน้ำ 1 โมล => 930 kJ

Intermolecular Forces

van der Waals forces

- 1. แรงใดโพล-ใดโพล (Dipole-dipole)
- 2. แรงใดโพล-ใดโพลเหนี่ยวนำ (Dipole-induced dipole)
- 3. แรงลอนดอนดิสเพอร์ชัน (London-dispersion)

Ion-dipole forces

Hydrogen bonding

แรงไดโพล-ไดโพล (Dipole-Dipole Forces)

- 🗲 แรงดึงดูดระหว่างโมเลกุลที่มีขั้วโมเลกุลที่มีค่าใดโพลโมเมนท์
- แรงทางไฟฟ้าสถิตอธิบายโดยกฎของคูลอมบ์
- ตัวอย่างโมเลกุลมีขั้วเช่น HCI, HBr, HI, H₂S, H₂O, C₆H₁₂O₆
 ,CH₃COOH

แรงใดโพล-ใดโพล มีความแรงประมาณ 1% ของแรงดึงดูด จากพันธะใอออนิกและพันธะโควาเลนท์

Dipole-Dipole Interactions

(a) Interaction of two polar molecules.

(b) Interaction of many dipoles moleules

Fig 1 แรงยึดเหนี่ยวระหว่างโมเลกุลที่มีขั้ว จะหันขั้วชนิดต่างกันเข้าหัน

แรงไอออน-ไดโพล (Ion-dipole Forces)

- 🕨 แรงทางไฟฟ้าสถิต ไม่ใช่ van der Waal forces
- 🗲 แรงระหว่างใอออน (บวก หรือ ลบ) กับโมเลกุลมีขั้ว
- ความแรงขึ้นกับประจุและขนาดใอออนกับขนาดของ ใดโพลโมเมนท์และขนาดโมเลกุล

Fig 2 แรงไอออนไดโพลของจากการละลาย NaCl ในน้ำ

แรงดิสเพอร์ชัน (Dispersion Forces)

- 🗲 แรงระหว่างอะตอมเดี่ยวหรือระหว่างโมเลกุลไม่มีมีขั้ว
- > มีใดโพลเหนี่ยวนำ (Induced dipole) เกิดขึ้นซึ่งเกิดจาก การกระจายอิเล็กตรอนไม่สม่ำเสมอในอะตอม/โมเลกุลไม่มีขั้ว

อนุภาคทุกชนิดจะมี dispersion forces (London forces) เกิดจาก

- ⇒ instantaneous dipole-induced dipole
- ⇒ ion-induced dipole
- ⇒ dipole-induced dipole

>Related to polarizability
(ความสามารถในการกระจาย e⁻)

Fig 3 การเลี้ยวเบนของลำน้ำ จากบิวเรตจากการเหนี่ยวนำ ของประจุบนแท่งยาง ebonite

Fig 4 แรงเหนี่ยวนำที่เกิดกับฮีเลียม (α) การกระจายสม่ำเสมอ

(b) ถูกเหนี่ยวนำด้วยใอออนบวก และ (c) ถูกเหนี่ยวนำด้วยโมเลกุลมีขั้ว

ไดโพลเหนี่ยวนำ (Induced dipole) นอกจากจะขึ้นกับขนาด ใอออนและความแรงของใดโพลแล้วยังขึ้นกับโพลาไรซาบิลิตี (Polarizability) ของอะตอมหรือโมเลกุลไม่มีขั้วด้วย

- ✓ Polarizability ความยากง่ายของอิเล็กตรอนในอะตอมหรือ โมเลกุลไม่มีขั้วที่จะถูกเหนี่ยวนำ
- ✓ อิเล็กตรอนไม่ถูกยึดอย่างแน่นหนาโดยนิวเคลียส จะถูกโพลาไรซ์ได้ง่าย
- ✔ Fritz London (1930) เสนอว่าความแรงของดิสเพอร์ชันเป็นสัดส่วน โดยตรงกับค่า polarizability ของอะตอมหรือโมเลกุล

He มี 2 อิเล็กตรอนอยู่ใน 15 orbital ถูกยึดไว้ค่อนข้างแข็งแรง จึงมี ค่า polarizibility น้อย แรงดิสเพอร์ชันน้อย จุดเดือดต่ำ (4.2 K)

Fig 5 แรงใดโพลเหนี่ยวนำที่เกิดขึ้นชั่วขณะกับแก๊สไม่มีขั้ว (He) ในสภาพควบแน่น

Table 2 จุดหลอมเหลวของสารประกอบไม่มีขั้วที่ขึ้นกับ Dispersion force

MELTING	
POINT	
(°C)	
-182.5	
-150.0	
- 23.0	
90.0	
171.0	

Ex.1 จงบอกชนิดของ intermolecular forces ต่อไปนี้

(ก) HBr กับ H2S dipole-dipole forces, dispersion forces

(ข) Cl₂ กับ CBr₄ dispersion forces

(ค) I₂ กับ NO₃- ion-induced dipole forces, dispersion forces

(ง) NH₃ กับ C₆H₆ dipole-induced dipole forces, dispersion forces

พันธะไฮโดรเจน (The Hydrogen bond)

- > H-bond เป็นแรงยึดเหนื่ยวไดโพล-ไดโพลชนิดพิเศษ
- พบในโมเลกุลเมื่อ H เกิดพันธะที่มีขั้ว เช่น N-H,O-H, F-H (F, O,
- N มี electronegativity สูง)
- ≽ พลังงานเฉลี่ยของ H-bond อาจสูงถึง 40 kJ/mol
- 🗲 แนวพันธะส่วนใหญ่เป็นเส้นตรง ที่อาจเบี่ยงเบนไปไม่เกิน 30 °
 - (A H - - B H)
- > H-bond มีผลต่อจุดเดือด
- 🗲 สารประกอบไฮโดรเจนของหมู่เดียวกันจุดเดือดมากขึ้นเมื่อ

MW เพิ่มขึ้น (T_b: HCkHBr<HI) เนื่องจากแรง van der Waals

Hydrogen Bonding in HF and NH₃

- ิ สารประกอบไฮโดรเจนของหมู่ 5A, 6A, 7A คาบ 2 เนื่องจาก H-bonding (T_b : H_2O > HF > NH $_3$)
- ► ความแรงของ H-bond : H-F > H-O > H-N
- > ความแรงของ H-bond ขึ้นอยู่กับแรงยึดเหนี่ยวแบบคูลอมบ์ ระหว่าง lone-pair electrons ของ electronegative atom กับ นิวเคลียสของ H
- > จุดเดือดขึ้นอยู่กับความแรงและจำนวน H-bond ต่อ 1
 โมเลกุล (HF มี 2 H-bond, H₂O มี 4 H-bond)

CH₃CH₂OH

CH2OHCH2OH

CH2OHCHOHCH2OH

Fig 6 พันธะไฮโดรเจนที่เกิดกับสารต่างๆ

ความแรงของ H-bond มีผลต่อจุดเดือด

Hydrogen Bonding in Water

around a molecule

in the solid

in the liquid

Fig 7 จุดเดือดของสารประกอบไฮไดรด์ของชาตุหมู่ 4A, 5A, 6A และ 7A

สมบัติของของเหลว (Properties of Liquids)

ของเหลวมีแรงยึดเหนี่ยวระหว่างโมเลกุล มีปริมาตรที่ค่อนข้าง แน่นอน และรูปร่างขึ้นกับภาชนะ และยังมีสมบัติอื่นต่างจากแก็สและ ของแข็ง แรงตึงผิว

(Surface tension)

- โมเลกุลภายในของเหลวถูกดึงทุกทิศทางเนื่องจากแรงยึดเหนี่ยว ระหว่างโมเลกุล โมเลกุลที่ด้านบนถูกดึงลงโดยโมเลกุลที่อยู่ด้านล่าง
- 🗲 แรงดึงดูดที่ผิวของของเหลวคือแรงดึงผิว
- แรงตึงผิวเป็นปริมาณของพลังงานที่ใช้ในการเพิ่มหรือยืดพื้นที่ผิว ต่อหนึ่งหน่วยพื้นที่

Fig 8 แรงยึดเหนี่ยวระหว่างโมเลกุลที่ผิวและภายในของเหลว

Intermolecular forces มาก => Surface tension มาก

อุณหภูมิของของเหลว ถ้าอุณหภูมิของเหลวเพิ่มขึ้น แต่ละโมเลกุลมีพลังงานจลน์เพิ่มขึ้น แรงดึงดูดระหว่างโมเลกุลน้อยลง จะทำให้แรงตึงผิวน้อยลง

การเกิดหยดน้ำบนผิวรถยนต์หรือบนผิวแอปเปิล H₂O มีขั้ว ส่วน wax ไม่มีขั้ว เกิดแรงยึด เหนี่ยวได้น้อยมาก แต่น้ำมีแรงยึดเหนี่ยวระหว่างกันเองมากน้ำจึงรวมตัวเป็นหยดเพื่อให้มี พื้นที่ผิวสัมผัสน้อยที่สุด

Surface tension

Capillary Action: Cohesion vs. Adhesion

Cohesion (cohesive force) : แรงระหว่างโมเลกุลที่เหมือนกัน

Adhesion (adhesion force) : แรงระหว่างโมเลกุลที่ต่างกัน

น้ำกูกดึงขึ้นในหลอดแก้ว
=> adhesion > cohesion
ปรอทกูกดึงลงใน
หลอดแก้ว => cohesion >
adhesion

Fig 9 (a) เมื่อแอดฮีซันระหว่างแก้วกับน้ำมากกว่าโคฮีซันระหว่างน้ำ และ (b) เมื่อโคฮีซันระหว่างปรอทมากกว่าแอดฮีซันระหว่างปรอทกับแก้ว

ความดันไอ (Vapor Pressure)

ความดันใอของของเหลวเกิดจากโมเลกุลของใอของเหลวชน ผนังภาชนะ และในขณะเดียวกับที่เกิดการระเหยในภาชนะปิดนั้นจะ เกิดการควบแน่นด้วยเพราะไอของเหลว ที่อยู่ติดผิวหน้าของเหลวถูก ดึงดูดโดยโมเลกุลที่ยังไม่ระเหย ไอของเหลวก็จะกลับไปเป็นของเหลว ตามเดิมได้

เมื่ออัตราการระเหยเท่ากับอัตราการควบแน่น ความดันใอที่วัดใด้ เรียกว่า ความดันใอสมดุล (equilibrium vapor pressure) เรียกสั้นๆ ว่าความดันใอ

Manometer

ปัจจัยที่มีผลต่อความดันใอ

- 1. แรงดึงดูดระหว่างโมเลกุลของของเหลว ถ้าสารที่มีแรงดึงดูด ระหว่างโมเลกุลมากความดันไอจะต่ำ เพราะโอกาสที่โมเลกุลจะ ชนะแรงดึงดูดกลายเป็นไอนั้นยาก
- 2. อุณหภูมิ ถ้าอุณหภูมิของระบบสูง ย่อมทำให้โมเลกุลของสาร มีพลังงานจลน์สูงขึ้นโอกาสที่จะระเหยกลายเป็นไอมีมากขึ้น ความดันไอก็จะเพิ่มขึ้น
- 3. สารชนิดเดียวกันที่อุณหภูมิเท่ากันย่อมมีความดันไอเท่ากัน เสมอไม่ว่าสารนั้นจะมีปริมาณมากหรือน้อยกว่ากัน นั่นคือ ความดันไอไม่ขึ้นอยู่กับปริมาตรของสาร
- 4. ความดันไอจะเกิดขึ้นที่ภาวะสมดุลเท่านั้น ดังนั้นต้องพิจารณา ในระบบปิดเสมอ

สารที่มีแรงยึดเหนี่ยวสูงจะมีความดันไอต่ำ แต่มีจุดเดือดสูง

การเดือด (Boiling)

การเดือดจะเกิดขึ้นได้เมื่อ ความดันใอของของเหลวมีค่า เท่ากับความดันบรรยากาศ อุณหภูมิขณะที่ของเหลวเดือด เรียกว่า จุดเดือด

จุดเดือด หมายถึง อุณหภูมิที่ความดันไอของของเหลวเท่ากับความดันบรรยากาศ

จุดเดือดของของเหลวใด ๆ ที่ความดัน 1 บรรยากาศ เรียกว่า จุดเดือดปกติ

ความหนืด (Viscosity)

- ➤ เป็นการวัดความต้านทานการใหลของของเหลว (N s/m²)
- ความหนืดมากสารเคลื่อนที่ได้ช้า
- ≽ ความหนืดลดลงเมื่ออุณหภูมิสูงขึ้น
- ส่วนใหญ่สารที่มีแรงยึดเหนี่ยวระหว่างโมเลกุลสูงจะความ หนืดสูง

ความหนืด : Glycerol > H₂O > Ethyl ether (1.49 > 1.01 x 10⁻³ > 2.33 x 10⁻⁴) ผลเนื่องจากพันธะไฮโดรเจน

Table 3 ความหนืดของของเหลวบางชนิดที่ 20 °C

Liquid	Viscosity (N s/m ²)	
Acetone (C ₃ H ₆ O)	3.16 x 10 ⁻⁴	
Benzene (C ₆ H ₆)	6.25 x 10 ⁻⁴	
Carbon tetrachloride (CCI ₄)	9.69 x 10 ⁻⁴	
Ethanol (C ₂ H ₅ OH)	1.20 x 10 ⁻³	
Diethyl ether (C ₂ H ₅ OC ₂ H ₅)	2.33 x 10 ⁻⁴	
Glycerol (C ₃ H ₈ O ₃)	1.49	
Mercury (Hg)	1.55 x 10 ⁻³	
Water (H ₂ O)	1.01 x 10 ⁻³	
Blood	4 x 10 ⁻³	

สารที่มีแรงยึดเหนี่ยวสูง

Ethylene glycol > water > ethyl alcohol

จุดเดือดสูง

Ethylene glycol > water > ethyl alcohol แรงตึงผิว

Ethylene glycol > water > ethyl alcohol ความหนืด

Ethylene glycol > water > ethyl alcohol ความดันไอ

ethyl alcohol > water > Ethylene glycol

โครงสร้างและสมบัติของน้ำ (The Structure and Properties of Water)

- >น้ำมีความร้อนจำเพาะสูง (ดูดความร้อนหรือคายความร้อนได้มาก โดยที่อุณหภูมิเปลี่ยนเล็กน้อยน้ำในมหาสมุทรช่วยบรรเทาอุณหภูมิ อากาศ ดูดซับความร้อนในหน้าร้อน และให้ความร้อนในหน้าหนาว) > พันธะไฮโดรเจนทำให้เกิดโครงร่าง 3 มิติ (ที่ O เกิด 2 covalent bonds กับ 2 H + 2 hydrogen bonds กับ 2 H ของโมเลกุลอื่น พันธะไฮโดรเจนในน้ำแข็งทำให้เกิดโครงร่าง 3 มิติ ที่มีระเบียบมาก ทำให้เกิดปริมาตรว่างเปล่าในโครงสร้าง ทำให้น้ำแข็งมีความหนาแน่น น้อยกว่าน้ำ (จำนวน โมเลกุลต่อหนึ่งหน่วยปริมาตรของน้ำมี มากกว่าของน้ำแข็ง)
 - น้ำแข็งเบากว่าน้ำ ซึ่งต่างจากสารอื่นที่ของแข็งจะหนักกว่าของเหลว

Fig 10 โครงสร้างสามมิติของน้ำแข็ง

Fig 11 ความหนาแน่นของ H_2O ที่อุณหภูมิต่างๆ

2 กระบวนการที่เกี่ยวข้องกับผลของอุณหภูมิ

(1) การแทรกตัวของโมเลกุลอิสระในโครงร่าง 3 มิติ

น้ำเกิดการขยายตัว ปริมาตรเพิ่มขึ้น d ลดลง

(2) การขยายตัวเนื่องจากความร้อน

โมเลกุลจำนวนมากหลุดจาก H-bond แทรกตัวในช่องว่าง d น้ำเพิ่มขึ้น

0-4 °C: การแทรกตัว (1) มีอิทธิพล มากว่าการขยายตัว (2) เมื่อ เพิ่ม T ⇒ density เพิ่ม

> 4 ° C: การขยายตัว (2) มีอิทธิพลมา กว่าการแทรกตัว (1) เมื่อ เพิ่ม T => density ลด

ที่ 4 °C : H₂O มีความหนาแน่นสูงสุด = 1.00 g/cm³ ที่ 0 °C : H₂O มีความหนาแน่น = 0.92 g/cm³