ALGORITMOS GENÉTICOS

GUSTAVO DI DOMÊNICO

O trabalho consiste em resolver o problema de um viajante (denominado Fanático) que deseja assistir a maior quantidade de jogos possível através da implementação de um algoritmo genético. Utilizando a tabela de jogos da copa do mundo, o programa deve mostrar o melhor caminho entre as cidades sedes que possibilite o menor investimento do viajante, ou seja, a menor rota possível entre todas as cidades.

A solução foi desenvolvida o framework GAF (http://johnnewcombe.net/gaf) para a plataforma .NET que consiste em um núcleo de um algoritmo genético onde pode-se definer as características de execução:

- **1. Composição do cromossomo:** cada cromossomo é representado por um número de 1 a 4 que representa qual dos jogos o viajante irá assistir.
- 2. População inicial: fora gerado randomicamente uma população de 1000 indivíduos.
- 3. Elitismo: apenas o melhor indivíduo avança para a próxima etapa.
- 4. Mutação: o parâmetro de mutação foi calibrado para dois cenários: 1% e 5%.
- 5. Crossover: o parâmetro de crossover foi calibrado para dois cenários: 80% e 90%.
- 6. **Função de fitness:** a função de fitness é inversamente proporcional a distância total que se encontra no cromossomo. Quanto maior a distância, menor será o resultado da função de fitness.

Em ambos os cenários a solução ideal, segundo o algoritmo, é uma distância de 13.866 km, com a única diferença que no primeiro cenário ela convergiu na **décima** geração em media, enquanto que no segundo cenário a conversão ocorreu por volta da **décima quinta** geração. Segundo o resultado, a melhor rota para ser visitada dentre todas as possibilidades é:

Data	Cidade	Jogo	Distância Acumulada
13/6	Salvador	Espanha x Holanda	0
14/6	Belo Horizonte	Colômbia x Grécia	964
15/6	Rio de Janeiro	Argentina x Bósnia	1398
16/6	Curitiba	Irã x Nigéria	2073
17/6	Belo Horizonte	Bélgica x Argélia	3077
18/6	Rio de Janeiro	Espanha x Chile	3511
19/6	São Paulo	Uruguai x Inglaterra	3868
20/6	Curitiba	Honduras x Equador	4206
21/6	Belo Horizonte	Argentina x Irã	5210
22/6	Rio de Janeiro	Bélgica x Rússia	5644
23/6	São Paulo	Holanda x Chile	6001
24/6	Belo Horizonte	Costa Rica x Inglaterra	6490
25/6	Rio de Janeiro	Equador x França	6924
26/6	São Paulo	Coréia do Sul x Bélgica	7281
28/6	Belo Horizonte		7770
29/6	Recife		9831
30/7	Brasília	To be determined	11488
1/7	São Paulo		12361
4/7	Rio de Janeiro		12718
5/7	Brasília		13866

É evidente na tabela anterior que estamos considerando que estamos partindo Salvador, mas podemos considerer a partida do primeiro jogo, do dia 12/6; basta adicionar a distância de São Paulo a Salvador. Finalmente o algoritmo não está considerando os últimos dias de jogos, pois apenas existirá um jogo por dia e logicamente o viajante tem condições de assistir todos eles. Novamente apenas é necessário adicionar as distâncias para as cidades dos jogos finais.

Na tabela abaixo temos o resumo dos jogos por seleção que foram vistos, bem como a seleção brasileira evidenciada. Adicionalmente podemos perceber que a seleção mais assistida foi a Bélgica, então podemos presumir que o viajante (Fanático) seja de origem belga.

Seleção	Jogos
Brasil	1
Croácia	1
Espanha	2
Holanda	2
Colômbia	1
Grécia	1
Argentina	2
Bósnia	1
Irã	2
Nigéria	1
Bélgica	3
Argélia	1
Chile	2
Uruguai	1
Inglaterra	2
Honduras	1
Equador	2
Rússia	1
Costa Rica	1
França	1
Coréia do Sul	1

Levando em conta que a melhor solução foi encontrada logo nas primeiras gerações, eu acredito que o emprego do algoritmo genético para solucionar o problema foi excelente. Se analisarmos o problema, percebemos que existe uma semelhança ao problema NP-completo do caixeiro viajante e é sabido que para obter a melhor solução para essa classe de problema, teríamos que testar todas as combinações possíveis. Outra abordagem seria utilizar um algoritmo guloso, A* por exemplo, que juntamente com uma heurística poderia dar uma solução aproximada da melhor possível.