NAME : ARPIT SAYARKAR Algorithamic Motion Planning A planning algorithm is called a "complete" planning algorithm if it can find a path from start configuration to the goal configuration if such a path exists or responds with a failure condition in case of infeasibility of a action while fixed to step the plan? I be A planning algorithm is called an optimal, in the sense that path 8: [0,17 -> Ofree such that

Y'= arg min & c(x(+)) 18(0) = 1 start & 8(1) = 1 good)

YET Ans & In terms of completeness the aby wave front planner will find a path from the goal to the start if such a path exists. This assumes the fact that the obstacles, start & goal are not dynamic and of poses of all obstacles are known. And thus it is a complete algo In sense of optimality, the wavefront planner is optimal in the sense of grid world (discritization) and could be sub-optimal in the continious domain. It is a kind of BFS (Breadth first search) assiging and manipulating

weights along the search. A Wavefriont algorithm satisfies the 3 conditions to) It provides a stage inden indicating current plan step 2) It moves over a cost function to an optimize awarent stage inden 3) It consists of a termination condition laction when it is time to stop the plan & fin the cost alter inde in Calle or marine prove 0.2 Attached as a color ptt quiver plot at the The parameters setete were selected were DSTAR = 8 3. Attraction gain = 10 M, Repulsive Gain = 100 Q = [1] 2] Since the start was closer to a the 1st obstacle, a large repulsive gain has had to chosen with varying Qt start values to account for the path generated to follow in between the obstacles Additionally, to prevent excess quadratic flow of attraction potential, a do was selected to be 8 units.

paralle or it is always

Using the additional heuristic as emplained above gave leads to following parameters

 $\gamma = [4, 4, 7, 7, 7, 7, 7, 7, 7]$ $Q^{\dagger} = [4, 4, 6, 0.1, 0.1, 0.1, 0.1, 0.1, 0.9]$ (entroid gain = [40, 60, 20, 50, 50, 50, 50, 50, 50]
Obs Radius = [5, 5, 7.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5]

Fach element of the above parameters con represent the parameters for the obstacles, i.e., the 1st element of M, O*, Centroid Gain, Obstacle Radius are used for the 1 st obstacle,

(ii) Post frougth generaled: Attached

Win Win	(iii) Lengths of the path generated: 64:32 units
	(iv) Absolutely NOT, I was not able to get the
	gradient descent to converge with classic potential fields and had to use additional
A THE RESIDENCE OF STREET, STR	heuristics thus changing Dx & Oi leads
	heuristics, thus changing 22 & Oi leads to different path length.
	En was sorry and all fo formal days
0.3	and the second the second to the second
Ans	[Workspace - 1]
	a) Attached
	b) Path length: 20 units
	c) since this is a districtized word space,
	and we basically calculate 11 norm as
	path lengths, path lengths remain the same
	with change in grid size are found to change for very
	Rine grid size of Probably I lound this to happen for grid size
	Woekspace - 2 and lens 0.05
	a) Attached
	b) Path length : 44 units
	b) Path length is 44 units c) Path lengths & services the change is respective of
	guid size because of 11 norm used for
	path length calculation and very fine guid size
	causes the change in results I hound that results of
	for grid size less than 0.05 units and less

Scanned with CamScanner

0.30)	The wavefront planner loss a better job navigating along the obstacles to reach goal when in comparison with gradient descent.
	along the obstacles to reach goal when in
,	comparison with gradient descent.
0.4	
A STATE OF THE PARTY OF THE PAR	Attached
8	
	· · · · · · · · · · · · · · · · · · ·
-	
	The second secon


```
Name: Arpit Savarkar
potential field.py
Implementation of the Potential Field
I would like to thank Professor Morteza Lahijanian and the fellow course mate Kedar More for
discussion during the Implementation of this code
,,,,,,
import numpy as np
from shapely geometry import Point, Polygon
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
import polytope as pc
from workspaces import config
WORKSPACE CONFIG = config()
# Global Flags
XLIMIN = -10
XLIMAX = 40
NUMS = 200
CENTROID GAIN = [40, 60, 20, 300, 60, 50, 50, 50, 50, 50]
OBS RADIUS = [5, 5, 7.5, 8, 3.5, 5.5, 5.5, 5.5, 5.5, 5.5]
def attractivePotential(state, ATTRACT GAIN, DSTARGOAL, q goal):
  Calculates the Attraction Potential based on the hyper parameters
  for each state
  PARAMETERS
  -----
  state: numpy array
  ATTRACT GAIN: Attraction Gain
  DSTARGOAL: Attraction distance over which the function is non-linear
  q_goal : Goal
```

distToGoal = np.hypot(state[0] - q goal[0], state[1] - q goal[1])

unroll for speed

gain = ATTRACT GAIN

```
if distToGoal <= dStarGoal:
     # Linear
     U att = 0.5 * gain * distToGoal ** 2
  else:
     # Non - Linear
     U att = dStarGoal * gain * distToGoal - 0.5 * gain * dStarGoal ** 2
  return U att
def repulsivePotential(state, obs, REPULSIVE GAIN, Q STAR):
  Repulsive Function
  PARAMETERS
  state: Current state of the point robot
  obs: List of Shapely. Geometry. MultiPolygon
  REPULSIVE GAIN: List of Gain for each obstacle
  Q STAR: List of repulsive distance gain, from obstacle
  obstacles = obs
  GAIN = REPULSIVE GAIN
  # To prevent shattering, sum of all obstacles
  U rep = 0
  for (obstacle, qStar, gn) in zip(obstacles, Q STAR, GAIN):
     # Distance to the obstacle
     distToObst = abs(obstacle.exterior.distance(Point(state)))
     # return NAN in case of collision with the obstacle
     if distToObst == 0:
       distToObst = np.nan
       U rep = 10
     elif Point(state).within(obstacle):
       # Inside Obstacle
       distToObst = np.nan
       U rep = 10
     else:
       # Inside Q Star
       if distToObst <= qStar:
          U rep += 0.5 * gn * (1 / distToObst - 1 / qStar) ** 2
       else:
         U rep += 0
  return U rep
def repulsivePotential2(state, obs):
  PARAMETERS
```

dStarGoal = DSTARGOAL

```
state: Current state of the point of the robot
  obs: List of Shapely. Geometry. MultiPolygon
  global OBS RADIUS
  global CENTROID GAIN
  obstacles = obs
  RAD = OBS RADIUS
  GAIN = CENTROID GAIN
  dist = []
  U rep = 0
  for (obstacle, gn, r) in zip(obstacles, GAIN, RAD):
    # return NAN, when on obstacle boundary
    distToObst = abs(obstacle.exterior.distance(Point(state)))
    if distToObst == 0:
       distToObst = np.nan
       U rep = 10
    elif Point(state).within(obstacle):
       # If inside obstacle
       distToObst = np.nan
       U rep = 10
    else:
       # Center of Mass/Gravity based
       cg = obstacle.centroid
       p = Point(state)
       # Elliptical Distance
       dist = np.hypot(p.x - cg.x, p.y - cg.y)
       if dist < r:
         U rep = gn/(dist**2)
         return U rep
       else:
         U rep = 0
  return U rep
def potential(state, obs, DSTARGOAL, ATTRACT GAIN, REPULSIVE GAIN, Q STAR, q goal):
  Total Potential for a state
  return (attractivePotential(state, ATTRACT GAIN, DSTARGOAL, q_goal) +\
     repulsivePotential(state, obs, REPULSIVE GAIN, Q STAR))
def potential large workspace(state, obs, DSTARGOAL, ATTRACT GAIN, REPULSIVE GAIN, Q STAR):
  Total Potential for a state including elliptical distance
  return (attractivePotential(state, ATTRACT GAIN, DSTARGOAL, q goal) +\
     repulsivePotential(state, obs, REPULSIVE GAIN, Q STAR) +\
        repulsivePotential2(state, obs))
def isCloseTo(state, q_goal, epsilon=0.25):
```

```
Returns true with within goal boundary
  PARAMETERS
  -----
  state: numpy array - current state of the point robot
  q goal: Goal
  ,,,,,,
  dist = np.linalg.norm(state-q_goal)
  return (dist <= epsilon)
def isAtGoal(state, q goal):
  Helper Function to check if the current state of the robot is at Goal
  closeToGoal = isCloseTo(state, q goal, epsilon=0.25)
  return closeToGoal
def calc potential field(q start, q goal, obs, NUMS, DSTARGOAL, ATTRACT GAIN, REPULSIVE GAIN, Q
STAR):
  Calculates the potential of the all the states in the grid
  PARAMETERS
  q start: Start position of the point robot
  q goal: Goal Position
  obs: List of Shapely. Geometry. MultiPolygon
  NUMS: Grid Size
  DSTARGOAL: Hyper parameter
  ATTRACT GAIN: Hyper Parameter
  REPULSIVE GAIN: Hyper Parameter
  Q STAR: Hyper parameter
  x coor = np.arange(XLIMIN, XLIMAX, 0.25)
  y coor = np.arange(XLIMIN, XLIMAX, 0.25)
  Y, X = np.meshgrid(x coor, y coor)
  nCoordsX = x coor.shape[0]
  nCoordsY = y coor.shape[0]
  U = np.zeros((nCoordsX, nCoordsY))
  points = []
  for i x, x in enumerate(x coor):
    for i y, y in enumerate(y coor):
       state = np.array([x, y])
       ptentl = potential(state, obs, DSTARGOAL, ATTRACT GAIN, REPULSIVE GAIN, Q STAR, q goal)
       U[i \ y, i \ x] = ptentl
       points.append((x, y))
```

```
# fig = plt.figure()
  \# ax = fig.gca(projection='3d')
  \# x \text{ len} = x \text{ coor.shape}[0]
  \# y len = y coor.shape[0]
  # ax.plot surface(X, Y, U)
  # plt.show()
  return U, points
def gradientDescent(x, y, obs, q start, q goal, DSTARGOAL, ATTRACT GAIN, REPULSIVE GAIN, Q STAR):
  Gradient Descent using the Potential Field generated at the top
  x: Numpy array of the possible x direction of the point robot
  y: Numpy array of the possible y direction of the point robot
  # Tolerance
  minimaTol = 1e-4
  # max iterations
  num iterations = 3000000
  # Calculates the Potential Field
  U, points = calc potential field(q start, q goal, obs, 0.25, DSTARGOAL, ATTRACT GAIN, REPULSIVE GA
IN, Q STAR)
  print("Entering Into Gradient Descent ")
  routes = []
  state = q start
  curr X, curr Y = 0.0
  # Appends the Route, state of the robot
  routes.append([currX, currY])
  # calculate the gradient on the CSpace grid
  dy, dx = np.gradient(U)
  # Part of gradient descent implementation
  dx values = dx.flatten(order='F')
  dv values = dv.flatten(order='F')
  # Gradeinte Desent Parameters
  iterCount = 0
  updateRate = 20
  # Gradeint Descent Implementation includes the
  while not isAtGoal(np.array([currX, currY]), q_goal):
     interp gradient = np.zeros((2, 1))
     curr X, curr Y = state
     # For Smooth Gradient Descent
     interp dx = griddata(points, dx values, (currX, currY), method='cubic')
     interp dy = griddata(points, dy values, (currX, currY), method='cubic')
```

```
interp gradient[0] = 0.005 * interp_dx
    interp gradient[1] = 0.005 * interp dy
    print('state: ', state, 'dx: ', interp dx, 'dy:', interp dy)
    # Data Logging
    shouldPrint = (iterCount % updateRate == 0)
    if shouldPrint:
       routes.append([round(currX[0], 1), round(currY[0], 1)])
    iterCount += 1
    # Updates the Status based on the gradeint
    state -= interp gradient
    curr X, curr Y = state
    routes.append([currX[0], currY[0]])
    # Failure Conditions
    hitObstacle = any([np.isnan(stateCoord[0])
                for stateCoord in state])
    atLocalMinima = ((np.linalg.norm(interp_gradient) < minimaTol) and
                not isAtGoal(np.array([currX, currY])))
    outOfIterations = iterCount >= num iterations
    if hitObstacle or atLocalMinima or outOfIterations:
       if(hitObstacle):
         print("Hit Obstacle")
       if(atLocalMinima):
         print("atLocalMinima")
       if(outOfIterations):
         print("outOfIterations")
       return False
  return routes
# Separate Functions had to be setup to implement used for the larger workspace
def calc potential field large workspace(q start, q goal, obs, NUMS, DSTARGOAL, ATTRACT GAIN, REPUL
SIVE GAIN, Q STAR):
  Calculates the potential of the all the states in the grid
  PARAMETERS
  q start: Start position of the point robot
  q goal: Goal Position
  obs: List of Shapely. Geometry. MultiPolygon
  NUMS: Grid Size
  DSTARGOAL: Hyper parameter
  ATTRACT GAIN: Hyper Parameter
  REPULSIVE GAIN: Hyper Parameter
  Q_STAR : Hyper parameter
  x coor = np.arange(XLIMIN, XLIMAX, 0.25)
  y coor = np.arange(XLIMIN, XLIMAX, 0.25)
  Y, X = np.meshgrid(x coor, y coor)
```

```
# potential = 0
  nCoordsX = len(x\_coor)
  nCoordsY = len(y coor)
  U = np.zeros((nCoordsX, nCoordsY))
  points = []
  for i x, x in enumerate(x coor):
    for i y, y in enumerate(y coor):
       state = np.array([x, y])
       ptentl = potential(state, obs, DSTARGOAL, ATTRACT GAIN, REPULSIVE GAIN, Q STAR, q goal)
       U[i \ y, i \ x] = ptentl
       points.append((x, y))
  fig = plt.figure()
  ax = fig.gca(projection='3d')
  x len = x coor.shape[0]
  y len = y coor.shape[0]
  ax.plot surface(X, Y, U)
  plt.show()
  return U, points
def gradientDescent field large workspace(x, y, obs, q start, q goal, DSTARGOAL, ATTRACT GAIN, REPULS
IVE GAIN, Q STAR):
  Gradient Descent using the Potential Field generated at the top
  x: Numpy array of the possible x direction of the point robot
  y: Numpy array of the possible y direction of the point robot
  # Tolerance
  minimaTol = 1e-4
  # max iterations
  num iterations = 3000000
  # robot = self.robot
  U, points = calc potential field large workspace(q start, q goal, obs, 0.25,\
     DSTARGOAL, ATTRACT GAIN, REPULSIVE GAIN, Q STAR)
  print("Entering Into Gradient Descent ")
  routes = []
  state = q start
  curr X, curr Y = 0.0
  # Appends the Route, state of the robot
  routes.append([currX, currY])
  # calculate the gradient on the CSpace grid
  dy, dx = np.gradient(U)
  dx values = dx.flatten(order='F')
  dy values = dy.flatten(order='F')
  # Initiation
```

```
iterCount = 0
  updateRate = 20
  while not isAtGoal(np.array([currX, currY]), q_goal):
     interp gradient = np.zeros((2, 1))
     curr X, curr Y = state
     # For Smooth Gradient Descent
     interp dx = griddata(points, dx values, (currX, currY), method='cubic')
     interp dy = griddata(points, dy values, (currX, currY), method='cubic')
     interp gradient[0] = 0.002 * interp dx
     interp gradient[1] = 0.002 * interp dy
     print('state: ', state, 'dx: ', interp dx, 'dy:', interp dy)
     # Data Logging
     shouldPrint = (iterCount % updateRate == 0)
     if shouldPrint:
       routes.append([round(currX[0], 1), round(currY[0], 1)])
     # Updates State
     iterCount += 1
     state -= interp gradient
     curr X, curr Y = state
     routes.append([currX[0], currY[0]])
     # Failure Conditon
     hitObstacle = any([np.isnan(stateCoord[0])
                 for stateCoord in state])
     atLocalMinima = ((np.linalg.norm(interp_gradient) < minimaTol) and
                 not isAtGoal(np.array([currX, currY])))
     outOfIterations = iterCount >= num iterations
     if hitObstacle or atLocalMinima or outOfIterations:
       if(hitObstacle):
          print("Hit Obstacle")
       if(atLocalMinima):
          print("atLocalMinima")
       if(outOfIterations):
          print("outOfIterations")
       return False
  return routes
def plotPotentialField():
  c = input("Enter '0' for 2-obstacle(config 1), '1' for 5-obstacle(config 2), '2' for 9-obstacle(config 3): ")
  c = int(c)
  if c==0:
     # routes = [[0, 0], [1.98959, -0.00197], [3.22019, -0.57861], [4.74161, -0.84644], [5.6343, -0.7471], 
     \# [5.74897, -0.60972], [5.70093, -0.33053], [5.81752, -0.13003], [6.07758, 0.17838], [6.65898, 0.32788], 
         [7.35296, 0.29694], [8.19067, 0.38579], [8.5821, 0.29594], [8.89755, 0.23071], [9.14425, 0.17859],
```

```
[9.48265, 0.10806], [9.59782, 0.08396], [9.68742, 0.0652]]
    DSTARGOAL = 8
    ATTRACT GAIN = 10
    REPULSIVE GAIN = [100,100]
    Q STAR = [2, 1]
    XLIMIN = -10
    XLIMAX = 40
    NUMS = 50
    obs = WORKSPACE CONFIG['WO3']
    q start = WORKSPACE CONFIG['start pos']
    q goal = WORKSPACE CONFIG['WO3 goal']
    q start = q start.tolist()
    q goal = q goal.tolist()
    U, points = calc potential field(q start, q goal, obs, NUMS, DSTARGOAL, ATTRACT GAIN, REPULSIVE
GAIN, Q STAR)
    x = np.arange(XLIMIN, XLIMAX, 0.25)
    y = np.arange(XLIMIN, XLIMAX, 0.25)
    routes = gradientDescent(x, y, obs, q start, q goal, DSTARGOAL, ATTRACT GAIN, REPULSIVE GAIN,
Q STAR)
    print("ROUTES")
    print(routes)
    potField = U
    fig = plt.figure()
    ax = fig.add subplot(111)
    xGrid = yGrid = NUMS
    x = np.arange(XLIMIN, XLIMAX, 0.25)
    y = np.arange(XLIMIN, XLIMAX, 0.25)
    dy, dx = np.gradient(potField)
    N = 50
    fig = plt.figure()
    ax = fig.add subplot(111)
    ax.set axisbelow(True)
    cs = ax.contourf(x, y, potField, N, alpha=0.7)
    plt.quiver(x, y, dx, dy, units='width')
    cbar = fig.colorbar(cs, ax=ax, orientation="vertical")
    cbar.ax.set ylabel('potential function value')
    for obst in obs:
       x,y = obst.exterior.xy
       plt.plot(x,y, color='black', linewidth=0.5)
    val x = [x[0] \text{ for } x \text{ in routes}]
    val y = [y[1] \text{ for } y \text{ in routes}]
    plt.plot(val x, val y, color='red', marker='*', linestyle='none', linewidth=1, markersize=0.2, label='Robot path')
    # plotting the start / end location of the robot
```

```
plt.plot(q start[0], q start[1],
           color='green', marker='o', linestyle='none',
           linewidth=2, markersize=1,
           label='Starting State')
    plt.plot(q_goal[0], q_goal[1],
           color='red', marker='x', linestyle='none',
           linewidth=4, markersize=4,
           label='Goal State')
    ax.set aspect('equal')
    ax.set xlim(-20, 40)
    ax.set ylim(-20, 40)
    fig = plt.gcf()
    fig.show()
    plt.show()
  elif c==1:
    \# routes = [[0, 0], [0.47, 0.47], [0.65, 0.65], [0.71, 0.64], [0.82, 0.62], [1.35, 0.56], [0.89, 0.61], [1.09, 0.59], [1.4]
3, 0.88], [1.93, 1.2], [2.27, 1.63], [3.26, 2.5], [4.04, 3.35], [4.88, 4.11], [4.98, 5.39], [5.42, 5.81], [6.17, 7.04], [7.56, 8.
12],[8.35, 8.73],[8.88, 9.14], [9.38, 9.52], [9.58, 9.67], [9.71, 9.78], [9.76, 9.82]]
    DSTARGOAL = 3
    ATTRACT GAIN = 9.2
    REPULSIVE GAIN = [2, 2, 2, 2, 2]
    Q STAR = [2.7, 0.5, 1.2, 1.2, 5]
    XLIMIN = -10
    XLIMAX = 40
    NUMS = 50
    obs = WORKSPACE CONFIG['WO1']
    q start = WORKSPACE CONFIG['start pos']
    q goal = WORKSPACE CONFIG['WO1 goal']
    q start = q start.tolist()
    q goal = q goal.tolist()
    U, points = calc potential field(q start, q goal, obs, NUMS, DSTARGOAL, ATTRACT GAIN, REPULSIVE
GAIN, Q STAR)
    x = np.arange(XLIMIN, XLIMAX, 0.25)
    y = np.arange(XLIMIN, XLIMAX, 0.25)
    routes = gradientDescent(x, y, obs, q start, q goal, DSTARGOAL, ATTRACT GAIN, REPULSIVE GAIN,
Q STAR)
    print("ROUTES")
    print(routes)
    potField = U
    fig = plt.figure()
    ax = fig.add subplot(111)
    xGrid = yGrid = NUMS
    x = np.arange(XLIMIN, XLIMAX, 0.25)
    y = np.arange(XLIMIN, XLIMAX, 0.25)
    dy, dx = np.gradient(potField)
```

```
N = 50
  fig = plt.figure()
  ax = fig.add subplot(111)
  ax.set axisbelow(True)
  cs = ax.contourf(x, y, potField, N, alpha=0.7)
  plt.quiver(x, y, dx, dy, units='width')
  cbar = fig.colorbar(cs, ax=ax, orientation="vertical")
  cbar.ax.set ylabel('potential function value')
  for obst in obs:
     x,y = obst.exterior.xy
     plt.plot(x,y, color='black', linewidth=0.5)
  val x = [x[0] \text{ for } x \text{ in routes}]
  val y = [y[1] \text{ for } y \text{ in routes}]
  plt.plot(val x, val y, color='red', marker='*', linestyle='none', linewidth=1, markersize=0.2, label='Robot path')
  # plotting the start / end location of the robot
  plt.plot(q start[0], q start[1],
          color='green', marker='o', linestyle='none',
          linewidth=2, markersize=1,
          label='Starting State')
  plt.plot(q goal[0], q goal[1],
          color='red', marker='x', linestyle='none',
          linewidth=4, markersize=4,
          label='Goal State')
  ax.set aspect('equal')
  ax.set xlim(-20, 40)
  ax.set ylim(-20, 40)
  fig = plt.gcf()
  fig.show()
  plt.show()
elif c==2:
  DSTARGOAL = 10 \#6
  ATTRACT GAIN = 0.1 \#5
  REPULSIVE GAIN = [2, 2, 7, 100, 7, 7, 7, 7, 5, 5]
  Q STAR = [4, 4, 6, 10, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1]
  XLIMIN = -10
  XLIMAX = 40
  NUMS = 40
  obs = WORKSPACE CONFIG['WO2']
  q start = WORKSPACE CONFIG['start pos']
```

q goal = WORKSPACE CONFIG['WO2 goal']

q_start = q_start.tolist()
q_goal = q_goal.tolist()

```
U, points = calc potential field large workspace(q start, q goal, obs, NUMS, DSTARGOAL,\
   ATTRACT GAIN, REPULSIVE GAIN, Q STAR)
x = np.arange(XLIMIN, XLIMAX, 0.25)
y = np.arange(XLIMIN, XLIMAX, 0.25)
routes = gradientDescent field large workspace(x, y, obs, q start, q goal,\
   DSTARGOAL, ATTRACT GAIN, REPULSIVE GAIN, Q STAR)
print("ROUTES")
print(routes)
potField = U
fig = plt.figure()
ax = fig.add subplot(111)
xGrid = yGrid = NUMS
x = np.arange(XLIMIN, XLIMAX, 0.25)
y = np.arange(XLIMIN, XLIMAX, 0.25)
dy, dx = np.gradient(potField)
N = 50
fig = plt.figure()
ax = fig.add subplot(111)
ax.set axisbelow(True)
cs = ax.contourf(x, y, potField, N, alpha=0.7)
plt.quiver(x, y, dx, dy, units='width')
cbar = fig.colorbar(cs, ax=ax, orientation="vertical")
cbar.ax.set ylabel('potential function value')
for obst in obs:
  x,y = obst.exterior.xy
  plt.plot(x,y, color='black', linewidth=0.5)
val x = [x[0] \text{ for } x \text{ in routes}]
val y = [y[1] \text{ for y in routes}]
plt.plot(val x, val y, color='red', marker='*', linestyle='none', linewidth=1, markersize=0.2, label='Robot path')
# plotting the start / end location of the robot
plt.plot(q start[0], q start[1],
       color='green', marker='o', linestyle='none',
       linewidth=2, markersize=1,
       label='Starting State')
plt.plot(q goal[0], q goal[1],
       color='red', marker='x', linestyle='none',
       linewidth=4, markersize=4,
       label='Goal State')
ax.set aspect('equal')
ax.set xlim(-20, 40)
```

```
ax.set ylim(-20, 40)
     fig = plt.gcf()
     fig.show()
     plt.show()
def main():
  Plots the Path and Vector of the Potential Gradient as a Color Plot
  # Fair Warning
  # Takes a ridiculous amount of time for gradient descent, additionally the gradient descent update had to be kept
  # Really low (alpha) for optimum results but at the expense of time (a lot of time, in hours)
  plotPotentialField()
if name == ' main ':
  main()
wavefront.py
Implementation of the Wave Front, brush fire Algorithm
I would like to thank Professor Morteza Lahijanian and the fellow course mate Kedar More for
discussion during the Implementation of this code
,,,,,,
import numpy as np
from math import pi
from shapely geometry import Point, Polygon, MultiPolygon, LineString
import matplotlib.pyplot as plt
from scipy.interpolate import griddata
from workspaces import config
WORKSPACE CONFIG = config()
# Simulation parameters
limit = 200
class Robot(object):
  This Class is helper class for plotting and mainipulating which keeps track the end points.
  @param - arm lengths : Array of the Lengths of each arm
  @param - motor angles : Current Angle of the Each Revolute Joint in the Global Frame
  def init (self, arm lengths, motor angles):
     # Initialization with a specific parameter
     self.arm lengths = np.array(arm lengths)
```

```
self.motor angles = np.array(motor angles)
     self.link end pts = [[0, 0], [0, 0], [0, 0]]
     # Find the Location of End Points of each Link
     for i in range(1, 3):
       # Follows Forward Kinematic Update Steps Analysis
       self.link end pts[i][0] = self.link end pts[i-1][0] + self.arm lengths[i-1] * \
          np.cos(np.sum(self.motor angles[:i]))
       self.link end pts[i][1] = self.link end pts[i-1][1] + self.arm lengths[i-1] * \
          np.sin(np.sum(self.motor angles[:i]))
     self.end effector = np.array(self.link end pts[2]).T
  def update joints(self, motor angles):
     Update the Location of the end points of the link, Based on Updates of the End points
     self.motor angles = motor angles
     # Forward Kinematic Update and storage of link length data
     for i in range(1, 3):
       self.link end pts[i][0] = self.link end pts[i-1][0] + self.arm lengths[i-1] * \
          np.cos(np.sum(self.motor angles[:i]))
       self.link end pts[i][1] = self.link end pts[i-1][1] + self.arm lengths[i-1] * \
          np.sin(np.sum(self.motor angles[:i]))
     self.end effector = np.array(self.link end pts[2]).T
def make grid(C xSpace, C ySpace, q goal, obs):
  Initialization of the Grid of specified Grid Size
  PARAMETERS
  C xSpace: Numpy Array of the Possible X locations
  C ySpace: Numpy Array of the Possible Y locations
  q goal: Goal Location
  obs: List of Shapely. Geometry. MultiPolygon
  gridX = len(C xSpace)
  gridY = len(C ySpace)
  # Initializing the Grid to 0
  grid=np.zeros((gridX,gridY))
  for i in range(gridX):
     for j in range(gridY):
       if (C \times Space[i] == q \cdot goal[0]) and (C \times Space[i] == q \cdot goal[1]):
          grid[i][j]=2
       for obstacle in obs:
          distToObst = abs(obstacle.exterior.distance(Point((C xSpace[i], C ySpace[i]))))
         if distToObst == 0:
            grid[i][j]=1
```

```
def boundary condition helper(grid, curr status num, i, j, gridX, gridY):
  Helper Function to update grid values based on the curr states of the grid value
  PARAMETERS
  -----
  grid: np.meshgrid
  curr status num: Current Grid Value
  i: X location
  i: Y location
  gridX: Length of the GRid X direction
  gridY: Length of the GRid Y direction
  # Helper Variables
  rows = [i+1, i-1]
  cols = [j+1, j-1]
  # Keeps it within bounds
  temp1 = rows[0] \% gridX
  temp2 = cols[0] \% gridY
  # For sanity check
  temp3 = max(rows[1],0)
  temp4 = max(cols[1],0)
  temp5 = curr\_status\_num + 1
  # Horizontal Facets
  if grid[temp1][j] == 0 and rows[0] < gridX:
    grid[rows[0]][j] = temp5
  if grid[temp3][j]==0 and rows[1]:
     grid[rows[1]][j] = temp5
  # Vertical Facets
  if grid[i][temp2] == 0 and cols[0] < gridY:
     grid[i][cols[0]] = temp5
  if grid[i][temp4] == 0 and cols[1]:
     grid[i][cols[1]] = temp5
  return grid
def grid update(grid,curr grid number, C xSpace, C ySpace, q start):
  Updates the grid Based on the current status of the grid
  PARAMETERS
  grid: np.meshgrid
  curr grid number: Current Value of the grid value
  C xSpace: Numpy Array of the Possible X locations
  C ySpace: Numpy Array of the Possible Y locations
  q_start : Start Location
  # Initialization
  gridX = len(C xSpace)
```

```
gridY = len(C ySpace)
  # O(n2) implementation to dig through all the grid values
  for i in range(gridX):
    for j in range(gridY):
       if grid[i][j]==curr grid number:
         # Success Condition
         if C xSpace[i] == q start[0][0] and C ySpace[j] == q start[1][0]:
            return grid, curr grid number
         else:
            # Continue Updating The Grid
            boundary condition helper(grid, curr grid number, i, j, gridX, gridY)
  return grid, None
def planning path(grid,curr grid number, C xSpace, C ySpace):
  Finds the Route Post the Grid Update
  PARAMETERS
  grid: np.meshgrid
  curr grid number: Current Grid Number
  C xSpace: Numpy Array of the Possible X locations
  C_ySpace : Numpy Array of the Possible Y locations
  # Initial Flag Setup
  flag=curr grid number+10
  # Finds the Start Location
  i=np.argwhere(C xSpace==0)[0][0]
  j=np.argwhere(C ySpace==0)[0][0]
  # Updates the Start for approprate flag
  # Also necessary to showcase output as
  # plt.imshow() is used
  grid[(i)][j]=flag
  # Begin Calculation
  distance=0
  # While not Goal is reached
  while curr grid number>2:
    status = False
    # Right
    if grid[(i+1)][j]==curr grid number-1:
       status = True
    elif grid[(i-1)][j]==curr grid number-1:
       i=1
       status = True
    # Top
```

```
elif grid[(i)][j+1]==curr grid number-1:
       i+=1
       status = True
     # Bottom
     elif grid[(i)][j-1]==curr_grid_number-1:
       i=1
       status = True
     # Update Appropriate Flags
     if status:
       # Grid size is 0.5
       distance+=0.25
       grid[(i)][j]=flag
       # Update the grid number
       curr grid number-=1
  return distance
# Manipulator
def manipulator cspace(C xSpace, C ySpace, q goal, obs):
  Gives the Grid of C Space Generated for a 2 link manipulator
  PARAMETERS
  C xSpace : Numpy Array of the Possible X locations
  C ySpace: Numpy Array of the Possible Y locations
  q goal: Goal Location
  obs: List of Shapely. Geometry. MultiPolygon
  # Initialization
  gridX = len(C xSpace)
  gridY = len(C ySpace)
  # Initialize with 0's
  grid=np.zeros((int(gridX),int(gridY)))
  # Setup for link length as 1
  arm lengths = [float(1.0), float(1.0)]
  # Begin Setup with motor angles to [0,0]
  motor angles = np.array([0] * 2)
  obstacles = obs
  temp = []
  temp_status = False
  plt.ion()
  plt.show(block=False)
  arm = Robot(arm lengths, motor angles)
  # Rotate through all the possible angles of the Link
  theta np array = np.radians(np.arange(0, 365, 5))
  for i in range(gridX):
     for j in range(gridY):
```

```
# Updates the Motor Joints for every 5 degree update
       arm.update joints([theta np array[i], theta np array[j]])
       link end pts = arm.link end pts
       collision detected = False
       # Checks if it intersects the obstacle
       for k in range(len(link end pts) - 1):
          for obstacle in obstacles:
            # Create a line segment
            line seg = [link end pts[k], link end pts[k+1]]
            line = LineString([link end pts[k], link end pts[k + 1]])
            collision detected = line.intersects(obstacle)
            if collision detected:
               break
         if collision detected:
            break
       # Updates it 1 if it intersects
       grid[i][j] = int(collision detected)
  # Hard Coding the goal location
  grid[36][0] = 2
  return grid
def boundary condition helper manipulator(grid, curr grid number, i, j, gridX, gridY):
  Helper Function to update grid values based on the curr states of the grid value
  PARAMETERS
  -----
  grid: np.meshgrid
  curr status num: Current Grid Value
  i: X location
  i: Y location
  gridX: Length of the GRid X direction
  gridY: Length of the GRid Y direction
  # Helper Variables
  rows = [i+1, i-1]
  cols = [j+1, j-1]
  # Keeps it within bounds of 0 and 360 degrees
  # Resets 360 to 0 degrees
  temp1 = (rows[0]) \% (gridX-1)
  temp2 = (rows[1]) \% (gridX-1)
  # For sanity check
  temp3 = (cols[0]) \% (gridY-1)
  temp4 = (cols[1]) \% (gridY-1)
  temp5 = curr grid number+1
  # Horizontal Facets
  if grid[temp1][j] == 0:
```

```
grid[temp1][j] = temp5
  if grid[temp2][j] == 0:
     grid[temp2][j] = temp5
  # Vertical Facets
  if grid[i][temp3] == 0:
     grid[i][temp3] = temp5
  if grid[i][temp4] == 0:
     grid[i][temp4] = temp5
  return grid
def grid update manipulator(grid, curr grid number, C xSpace, C ySpace, q start):
  Updates the grid Based on the current status of the grid
  PARAMETERS
  grid: np.meshgrid
  curr grid number: Current Value of the grid value
  C xSpace: Numpy Array of the Possible X locations
  C ySpace: Numpy Array of the Possible Y locations
  q_start : Start Location
  # Initialization
  gridX = len(C xSpace)
  gridY = len(C ySpace)
  # O(n2) implementation to dig through all the grid values
  for i in range(gridX):
     for j in range(gridY):
       if grid[i][j]==curr grid number:
          # Goal Condition
          if [round(C \times Space[i], 2), round(C \times Space[i], 2)] == [0.00, 0.00] \text{ or } \setminus
            [round(C \times Space[i], 2), round(C \times Space[j], 2)] == [6.28, 6.28]:
            return grid, curr grid number
          else:
            # Boundary Conditon
            grid = boundary condition helper manipulator(grid, curr grid number, i, j, gridX, gridY)
  plt.imshow(grid, origin = 'lower')
  plt.show()
  return grid, None
def planning path manipulator(grid, curr grid number, C xSpace, C ySpace):
  Finds the Route Post the Grid Update
  PARAMETERS
  grid: np.meshgrid
  curr grid number: Current Grid Number
  C xSpace: Numpy Array of the Possible X locations
  C_ySpace : Numpy Array of the Possible Y locations
```

```
# Val stores the Location
val = []
gridX = len(C \times Space)-1
gridY = len(C ySpace)-1
# Initial Flag Setup
flag = curr grid number + 10
# Start Location
i = 0
j = 0
# Updates the Start for approprate flag
# Also necessary to showcase output as
# plt.imshow() is used
grid[(i)][j]=flag
# Ready, Set, Go
distance=0
# While Goal is not reached
while curr grid number>2:
  status = False
  # Right
  if grid[(i+1) % gridX][j]==curr grid number-1:
     status = True
     i = (i+1) \% gridX
  # Left
  elif grid[(i-1) % gridX][j]==curr grid number-1:
     status = True
     i = (i-1) \% gridX
  # Top
  elif grid[(i)][(j+1) \% gridY]==curr grid number-1:
     status = True
    j = (j+1) \% gridY
  # Bottom
  elif grid[(i)][(j-1) % gridY]==curr_grid_number-1:
     status = True
    j = (j-1) \% gridY
  # Update Flags
  if(status):
     # In degrees
     distance += 5
     val.append([i, j])
     grid[(i)][j]=flag
     plt.imshow(grid, origin = 'lower')
     plt.show()
     # Update the grid number
```

```
curr grid number -= 1
  return distance, val
def forw K(motor angles):
  Function to Calculate the forward kinematics.
  pos x link1 = 0
  pos y link1 = 0
  pos x = 0
  pos y = 0
  # Simple logic gets the calculates the End Effector position
  # from the current motor angle and position
  for i in range(1, 3):
     pos x += 1.0 * np.cos(np.sum(motor angles[:i]))
     pos y += 1.0 * np.sin(np.sum(motor angles[:i]))
  pos x link1 += 1.0 * np.cos(np.sum(motor angles[:1]))
  pos y link1 += 1.0 * np.sin(np.sum(motor angles[:1]))
  # Transpose is necessary, for future updates
  return pos x link1, pos y link1, pos x, pos y
def manipulator plotter(val, obs, q goal):
  Helper Function to Plot the 2 link manipulator
  plt.figure(2)
  for idx, angle in enumerate(val):
     # Plots every 10 iteration
     if(idx \% 10 == 0):
       angle = np.asarray(angle)*5
       mtr angles = np.radians(angle)
       # Results from Forward Kinematics
       pos x link1, pos y link1, pos x link2, pos y link2 = forw K(mtr angles)
       plt.plot([0.0, pos x link1, pos x link2],
                 [0.0, pos y link1, pos y link2], 'c-')
       plt.plot(pos x link1, pos y link1, 'ko', markersize=2)
       plt.plot(pos x link2, pos y link2, 'ro')
       for obstacle in obs:
          plt.plot(*obstacle.exterior.xy)
  # Mark the goal Position
  plt.plot(q_goal[0],q_goal[1], 'rx')
  plt.xlim([-3, 3])
  plt.ylim([-3, 3])
  plt.draw()
  plt.pause(100)
```

```
plt.show()
def main():
  m1 = input("0 for non-manipulator, 1 or Manipulator: ")
  if(int(m1) == 0):
  ## Non- Manipulator
    cfg = input(" Enter 1 for config 1, 2 for config 2: ")
    cfg = int(cfg)
    if cfg == 1:
       XLIMIN = -10
       XLIMAX = 40
       YLIMIN = -20
       YLIMAX = 20
       obs = WORKSPACE CONFIG['WO1']
       q start = WORKSPACE CONFIG['start pos']
       q goal = WORKSPACE CONFIG['WO1 goal']
       q start = q start.tolist()
       q goal = q goal.tolist()
       C xSpace = np.arange(XLIMIN, XLIMAX, 0.25)
       C ySpace = np.arange(XLIMIN, XLIMAX, 0.25)
       grid = make_grid(C_xSpace, C_ySpace, q_goal, obs)
       fig,ax=plt.subplots()
       curr grid number=2
       while True:
         updated grid, val =grid update(grid,curr grid number, C xSpace, C ySpace, q start)
         if val is not None:
           # Success Condition
           grid,curr grid number=updated grid, val
           break
         else:
           # Continue to Update GRid
           grid=updated grid
           curr grid number=curr grid number+1
           pass
       dist=planning path(grid,curr grid number, C xSpace, C ySpace)
       print("Total distace of the path is:",dist)
       plt.imshow(grid, origin='lower')
       plt.show()
    elif cfg == 2:
       XLIMIN = -10
       XLIMAX = 40
       YLIMIN = -8
       YLIMAX = 8
       obs = WORKSPACE CONFIG['WO2']
       q start = WORKSPACE CONFIG['start pos']
       q goal = WORKSPACE CONFIG['WO2 goal']
       q start = q start.tolist()
       q goal = q goal.tolist()
```

```
C xSpace = np.arange(XLIMIN, XLIMAX, 0.25)
    C ySpace = np.arange(XLIMIN, XLIMAX, 0.25)
    grid = make grid(C xSpace, C ySpace, q goal, obs)
    fig.ax=plt.subplots()
    curr grid number=2
    while True:
       updated grid, val =grid update(grid,curr grid number, C xSpace, C ySpace, q start)
       if val is not None:
         # Success Condition
         grid,curr grid number=updated grid, val
         break
       else:
         # Continue to Update GRid
         grid=updated grid
         curr grid number=curr grid number+1
         pass
    dist=planning path(grid,curr grid number, C xSpace, C ySpace)
    print("Total distace of the path is:",dist)
    plt.imshow(grid.T, origin='lower')
    plt.show()
else:
  # Manipulator
  obs = WORKSPACE CONFIG['WO4']
  q start = WORKSPACE CONFIG['manip start pos']
  q goal = WORKSPACE CONFIG['manip goal pos']
  q start = q start.tolist()
  q goal = q goal.tolist()
  C xSpace = np.arange(0, 365, 5)
  C ySpace = np.arange(0, 365, 5)
  grid = manipulator cspace(C xSpace, C ySpace, q goal, obs)
  fig,ax = plt.subplots()
  curr grid number = 2
  while True:
    updated grid, val = grid update manipulator(grid, curr grid number, C xSpace, C ySpace, q start)
    if val is not None:
         # Success Condition
         grid,curr grid number=updated grid, val
         break
    else:
       # Continue to Update GRid
       grid=updated grid
       curr grid number=curr grid number+1
       pass
  dist, val = planning path manipulator(grid, curr grid number, C xSpace, C ySpace)
  # plt.pause(100)
  manipulator plotter(val, obs, q goal)
  print("Total distace of the path is:",dist)
```

```
plt.imshow(grid, origin = 'lower')
plt.show()

if __name__ == '__main__':
    main()
```