

TI Precision Labs – ADCs

Presented by Alex Smith Prepared by Dale Li

Back-to-Back Zener Diode on ADC Input

Absolute Maximum Ratings	MIN	MAX	UNIT
Analog input voltage to AGND	-15	+15	V
Input current	-10	+10	mA

Solution 1: Protection with Internal Back-to-Back Zener Diode

ADS8588S Abs Maximum Ratings:

Parameter	Min	Max	Unit
V_{in_Abs}	-15	+15	V
I _{in_Abs}	-10	+10	mA

Select Rflt (±40V EOS):

$$R_{flt} \ge \frac{40V - 15V}{10mA} \ge 2.5 \text{ k}\Omega$$

Select $R_{fit} = 3k\Omega$ in this example.

A simple resister in series with input limits the current to ADC.

Back-to-Back Zener diode Protection on Device – Hardware Performance

(Rflt=3kΩ, Cflt=1nF, ADS8588S at 200ksps maximum sampling rate)

Performance without external diode Measured on ADS8588SEVM (200ksps):

Parameter	Min Typ		Max	Unit
SNR	91	92		dB
THD		-110	-95	dB

Measured with 3kΩ Rfilt:

SNR = 92.2dB

THD = -109.7dB

(Tested on ADS8588SEVM)

THD vs Source Impedance (R_{flt}+R_g) with ADS8588S

Source: ADS8588S Datasheet.

- Nonlinear capacitance associated with input clamp on device causes the degradation with external resistors.
- The larger value resistor(Rflt):
 - Smaller current to ADC.
 - Small package size and less Power dissipation.
 - Less risk for continuous EOS.

But can lead to worse THD:

- \rightarrow 3k Ω -> -109.7dB THD
- \rightarrow 15k Ω -> -98.9dB THD
- \geq 24.9k Ω -> -95.1dB THD

(ADS8588S-200ksps EVM board with 1kHz sinewave input).

Note: Continuously turning on internal diode may affect device's lifetime.

Wrong Protection for ADC with SCR-Based Input

- Do not use this solution because an EOS signal may trigger a Latch-up.
- An external diode is needed to protect the ADC.

Solution 2: External TVS Diode Protection

TVS Diode V-I Curve

Set V_R ≥ V_{in} Maximum voltage of normal input signal

Note: leakage current I_R is specified at V_R

Bidirectional
TVS
İ

Symbol	Parameter
V_{BR}	Breakdown voltage
V_R	Stand-off voltage
V_{C}	Clamping voltage
V_{F}	Forward voltage drop
I_{BR}	Breakdown Current @ V _{BR}
I_R	Reverse Leakage @ V _R
I _F	Forward Current @ V _F
I_{PP}	Peak Pulse current @ V _c

Set V_R and V_{BR} to select TVS diode

Set $V_R \ge V_{in}$ Maximum voltage of normal input signal. Set $V_{BR} < V_{in \ Abs}$ Absolute maximum input range of ADC.

ADS8588S Data Sheet

Absolute Maximum Ratings								
Parameter		MIN	ТҮР	MAX	UNIT			
Analog Input to AGND (V _{in_Abs})		-15		+15	V			
Normal Input Signal (Range Pin=1, TA = -40°C to +125°C)								
AIN_nP Signal (V _{in})		-10		+10	V			

TVS Diode Specifications

	Part Number	MFG	Reverse Standoff Voltage(V _R)	Breakdown Voltage (V _{BR})		Clamping Voltage	Reverse Leakage	Breakdown Current	Peak pulse Current	Peak Power Dissipation
				Min	Max	Max (V _c)	$(I_R@V_R)$	(I _{BR} @V _{BR})	(I _{PP})	(P _{PP})
	SMCJ10CA	Bourns	10V	11.1	12.3	17V	5uA	1mA	88.3A	1500W

Choose Rp to limit power in Rp and TVS

Part	MFG	Reverse Standoff Voltage(V _R)	Breakdown Voltage (V _{BR})		Clamping Voltage	Reverse Leakage	Breakdown Current	Peak pulse Current	Peak Power Dissipation	Steady State Power Dissipation
Number			Min	Max	Max (V _C @I _{PP})	Max (I _R @V _R)	(I _{BR} @V _{BR})	(I _{PP})	(P _{PP})	(P _{PP})
SMCJ10CA	Bourns	10V	11.1	12.3	17V	5uA	1mA	88.3A	1500W	5.0W

1	$R_P \ge \frac{(V_{in_AbsMax} - V_{BRmin})^2}{P_{RPmax}} = \frac{(40V - 11.1V)^2}{1W} = 835\Omega \ (choose \ 1k\Omega)$
2	$I_{max} = \frac{V_{in_AbsMax} - V_{BRmin}}{R_P} = \frac{40V - 11.1V}{1k\Omega} = 28.9mA$
3	$P_{TVSmax} = I_{max} \cdot V_C = (28.9mA)(17V) = 491.3mW$

Selecting R_{flt} for Abs Ratings to Prevent damage

Par	Parameters known:								
1	V _{in_Abs} (ADC)	±15V							
2	I _{in_Abs} (ADC)	$\pm 10 mA$							
3	V _{C_Max} (TVS)	17 <i>V</i>							
4	I _{PP} (TVS)	88.3A							
Sel	Select R _{flt} :								
1	R _{flt}	$R_{flt} \ge \frac{(17 - 15)V}{10mA}$ $\ge 200\Omega$							
2	Select R _{flt} =1kΩ								

External TVS (SMCJ10CA) – Hardware Performance

(TVS - SMCJ10CA, Rp=1k Ω , RfIt=1k Ω , CfIt=1nF, ADS8588S at 200ksps sampling rate)

Performance without external diode Measured on ADS8588SEVM (200ksps):

Parameter	Min	Тур	Max	Unit
SNR	91	92		dB
THD		-110	-95	dB

Measured with TVS:

SNR = 92.3dB

THD = -69.6dB

Capacitance Variation Causes Worse THD

• Capacitor(C_T) is viewed as a capacitor(frequency) controlled resistor with a 1/Zc variation in impedance as capacitor(frequency) value variation.

TVS Diodes

TVS Diodes: Electrical Characteristics and Performance Measurement Result

Part Numbers	MFG St	Reverse Standoff			Clamping Voltage	Capacitance Variation	Reverse Leakage	Breakdo wn	Peak pulse	Measured THD	Peak Power Dissipation
		Voltage (V _R)	Min	Max	Max (V _c)	(C _T) **	Max (I _R @V _R)	Current (I _{BR} @V _{BR})	Current (I _{PP})	(dB)	(P _{PP})
SMCJ10CA	Bourns	10V	11.1	12.3	17V	2.3nF - >10nF*	5uA	1mA	88.3A	- 69.6	1500W
SMA6J10A	TSM	10V	11.1	12.3	15.7V	200~400pF	5uA	1mA	38.2A	- 79.5	600W
PGSMAJ10C A	TSM	10V	11.1	12.3	17V	80~160pF	5uA	1mA	23.5A	- 81.8	400W

^{*} The datasheet does not directly show the capacitance at 0V, it is much larger than 10nF regarding the trend.

Note: the ADS8588S specified typical THD = -110dB

^{**} These are estimated value from the capacitance curve in the datasheet.

Thanks for your time! Please try the quiz.

- 1. For the circuit below, what is the power dissipated in RP for a continuous 53V overstress input voltage?
 - a. 0.4W
 - b. 0.6W
 - c. 0.8W
 - d. 1.0W

- 2. (T/F) A current limiting resistor can be used as input protection in devices with an internal Back-to-Back Zener ESD cell.
 - a. True
 - b. False
- 3. (T/F) A current limiting resistor can be used as input protection in devices with an internal SCR type ESD cell.
 - a. True
 - b. False

- 4. What is the main performance limitation caused by using a series resistor with a TVS diode?
 - a. The nonlinear diode capacitance and series resistance create distortion
 - b. Noise caused by the series resistance reduces SNR.
 - c. Temperature drift from the input resistance effects gain error
 - d. The circuit is more susceptible to RF noise
- 5. (T/F) A low capacitance TVS diode can be used to reduce THD.
 - a. True
 - b. False

- 6. A ±12V input range should be protected with what kind of TVS diode?
 - a. Bidirectional, with Breakdown = 12V
 - b. Unidirectional, with Breakdown = 12V
 - c. Bidirectional, with Stand-off = 12V
 - d. Unidirectional, with Stand-off = 12V

Thanks for your time!

© Copyright 2019 Texas Instruments Incorporated. All rights reserved.

TEXAS INSTRUMENTS