

Universidade Tecnológica Federal do Paraná – UTFPR Bacharelado em Ciência da Computação

BCC32B – Elementos de Lógica Digital Prof. Rodrigo Hübner

Aula 05 – Mapeamento entre expressões e circuitos e entre expressões e tabela verdade.

Expressões boolenas

Todo circuito lógico executa uma expressão booleana

Exemplo: Obter a expressão do circuito abaixo

Expressões boolenas

Obtenha a expressão booleana a partir do circuito lógico

Exemplo - Solução

Expressões boolenas

Obtenha a expressão booleana a partir do circuito lógico

Expressão Final

$$S = \overline{(\overline{A}.B).(\overline{B.C}).(\overline{B+D})}$$

Obter Circuito Lógico a partir da Expressão

Método: Identificar as portas lógicas na expressão e desenhá-las com as respectivas ligações

Exemplo: obter o circuito que executa a expressão

$$S = (A + B) \cdot C \cdot (B + D)$$

Obter Circuito Lógico a partir da Expressão

Solução:

Circuito Obtido

Obter o circuito que executa a seguinte expressão booleana:

$$S = [(\overline{\overline{A} + B}) + (\overline{\overline{C} \cdot D})] \cdot \overline{D}$$

Exemplo - Solução

Obter os circuitos que executam as seguintes expressões booleanas:

$$S = \underbrace{\left[\left(\overline{\overline{A} + B}\right) + \left(\overline{\overline{C} \cdot D}\right)\right] \cdot \overline{D}}_{4}$$

Exemplo - Solução

Obter os circuitos que executam as seguintes expressões booleanas:

Obter a Tabela Verdade a partir da Expressão

Procedimentos:

- 1. Monta-se todas as combinações possíveis das entradas
- 2. Monta-se as colunas de cada parte da expressão com seus resultados
- 3. Monta-se a coluna de saída final (S)

Exemplo

Obter a TV a partir da expressão:

$$S = \overline{A} + B + A \cdot \overline{B} \cdot \overline{C}$$

Segue os três passos de montagem da tabela

A expressão pode ser vista como três termos, chamados de S₁,S₂ e S₃

$$S = \overline{A} + \underbrace{B}_{S_1} + \underbrace{A \cdot \overline{B} \cdot \overline{C}}_{S_3}$$

$$S = S_1 + S_2 + S_3$$

Exemplo

Obter a TV a partir da expressão:

Α	В	С	\overline{A}	\overline{B}	\overline{C}	$A.\overline{B}.\overline{C}$	S
0	0	0	1	1	1	0	1
0	0	1	1	1	0	0	1
0	1	0	1	0	1	0	1
0	1	1	1	0	0	0	1
1	0	0	0	1	1	1	1
1	0	1	0	1	0	0	0
1	1	0	0	0	1	0	1
1	1	1	0	0	0	0	1

$$S = \overline{A} + B + A \cdot \overline{B} \cdot \overline{C}$$

Saída da Expressão

Obter a tabela verdade para a seguinte expressão booleana:

$$S = A \cdot \overline{B} \cdot C + A \cdot \overline{D} + \overline{A} \cdot B \cdot D$$

Exemplo - Solução

Obter a tabela verdade para a expressão booleana:

$$S=A.\overline{B}.C+A.\overline{D}+\overline{A}.B.D$$

Α	В	С	D	\overline{A}	\overline{B}	$\overline{m{D}}$	$A.\overline{B}.C$	$A.\overline{D}$	$\overline{A}.B.D$	S
0	0	0	0	1	1	1	0	0	0	0
0	0	0	1	1	1	0	0	0	0	0
0	0	1	0	1	1	1	0	0	0	0
0	0	1	1	1	1	0	0	0	0	0
0	1	0	0	1	0	1	0	0	0	0
0	1	0	1	1	0	0	0	0	1	1
0	1	1	0	1	0	1	0	0	0	0
0	1	1	1	1	0	0	0	0	1	1
1	0	0	0	0	1	1	0	1	0	1
1	0	0	1	0	1	0	0	0	0	0
1	0	1	0	0	1	1	1	1	0	1
1	0	1	1	0	1	0	1	0	0	1
1	1	0	0	0	0	1	0	1	0	1
1	1	0	1	0	0	0	0	0	0	0
1	1	1	0	0	0	1	0	1	0	1
1	1	1	1	0	0	0	0	0	0	0

Obter a Expressão a partir da Tabela Verdade

Exemplo:

Obter a Expressão a partir da Tabela Verdade

Exemplo:

Obter a Expressão a partir da Tabela Verdade

Obter a expressão a partir da Tabela Verdade e fazer o diagrama do circuito correspondente:

Α	В	С	S
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Exemplo - Solução

Obter a expressão a partir da Tabela Verdade e fazer o diagrama do circuito correspondente:

Α	В	С	S	
0	0	0	1	$\longrightarrow S = \overline{A} \cdot \overline{B} \cdot \overline{C}$
0	0	1	0	
0	1	0	1	$\longrightarrow S = \overline{A} \cdot B \cdot \overline{C}$
0	1	1	0	$S = S_0 + S_2 + S_6 + S_7$
1	0	0	0	$\left(\begin{array}{c c} S - S_0 \cdot S_2 \cdot S_6 \cdot S_7 \end{array}\right)$
1	0	1	0	
1	1	0	1	$\longrightarrow S = A \cdot B \cdot \overline{C}$
1	1	1	1	$\longrightarrow S = A.B.C $ $S = \overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + A.B.\overline{C} + A.B.C$

Exemplo - Solução

Obter a expressão a partir da Tabela Verdade e fazer o diagrama do circuito correspondente:

Obter a Expressão a partir da Tabela Verdade

Exemplo:

	Α	В	S	
Caso 0:	0	0	1	So
Caso 1:	0	1	0	S ₁
Caso 2:	1	0	0	S ₂
Caso 3:	1	1	1	S ₃

Quando a expressão S é falsa?

Quando S = 0?

Obter a Expressão a partir da Tabela Verdade

Exemplo:

	Α	В	S	
Caso 0:	0	0	1	So
Caso 1:	0	1	0	S 1
Caso 2:	1	0	0	S ₂
Caso 3:	1	1	1	S ₃

Obter a Expressão a partir da Tabela Verdade

Mintermos e Maxtermos

• Dada uma tabela verdade que representa uma expressão:

Α	В	S
0	0	1
0	1	1
1	0	0
1	1	1

$$m_0 = \overline{A} \cdot \overline{B}$$
 $m_1 = \overline{A} \cdot B$
 $m_2 = A \cdot \overline{B}$
 $m_3 = A \cdot B$
 $f(A, B) = \overline{A} \cdot \overline{B} + \overline{A} \cdot B + A \cdot B$

Estes termos são fáceis de ser lembrados, pois cada índice corresponde ao valor decimal da palavra binária.

Mintermos e Maxtermos

• Dada uma tabela verdade que representa uma expressão:

x1	x2	f(x1,x2)
0	0	1
0	1	1
1	0	0
1	1	1

$$m_0 = \overline{X_1} \cdot \overline{X_2}$$

$$m_1 = \overline{X_1} \cdot X_2$$

$$m_2 = X_1 \cdot \overline{X_2}$$

$$m_3 = X_1 \cdot X_2$$

$$f(x_1, x_2) = \overline{X_1} \cdot \overline{X_2} + \overline{X_1} \cdot X_2 + X_1 \cdot X_2$$

Soma dos Produtos (SOP)

- Representação de uma função por meio da soma dos produtos → mintermos
- Exemplo:

$$\begin{split} f = & m_0.1 + m_1.1 + m_2.0 + m_3.1 \\ f = & m_0 + m_1 + m_3 \\ f(x_1, x_2) = & \overline{x_1}.\overline{x_2} + \overline{x_1}.x_2 + x_1.x_2 \\ f(x_1, x_2) = & \sum (m_0, m_1, m_3) \\ f(x_1, x_2) = & \sum m(0, 1, 3) \end{split}$$

x1	x2	f(x1,x2)
0	0	1
0	1	1
1	0	0
1	1	1

O símbolo de somatório (Σ) indica a operação OR aplicada ao mintermos listados dentro do parênteses.

Maxtermos

O princípio da dualidade sugere que se é possível sintetizar uma função f considerando as linhas da tabela verdade onde f=1, então também deve ser possível sintetizar f considerando a linhas onde f=0.

→ Maxtermos são o complemento dos mintermos.

$$M_i = \overline{m_i}$$

Maxtermos

Como um exemplo, considere o Maxtermo de três variáveis:

$$M_2 = \overline{A} \cdot B \cdot \overline{C} (Ex \cdot de \, 010)$$
 $M_2 = \overline{m_2}$
 $M_2 = \overline{\overline{A} \cdot B \cdot \overline{C}}$
 $M_2 = A + \overline{B} + C$

Produto das Somas (POS)

Representação de uma função por meio do produto das somas → maxtermos Exemplo:

$$\overline{f}(x_1, x_2) = m_2 = x_1 \overline{x_2}$$
 [onde $f = 0$]
$$\overline{\overline{f}}(x_1, x_2) = f = \overline{x_1} \overline{x_2}$$
 [DeMorgan, negando os dois termos]
$$f = \overline{x_1} + x_2$$

$$f = \overline{m_2} = M_2$$

$$f(x_1, x_2) = \prod (M_2)$$

 $f(x_1, x_2) = \prod M(2)$

x1	x2	f(x1,x2)
0	0	1
0	1	1
1	0	0
1	1	1

O símbolo de produtório (Π) indica a operação AND aplicada ao maxtermos listados dentro do parênteses.

Mintermos e Maxtermos

Dada uma tabela verdade que representa uma expressão:

x1	x2	f(x1,x2)	
0	0	1	$m_0 = \overline{X_1} \cdot \overline{X_2}$
0	1	1	$m_1 = \overline{X_1}.X_2$
1	0	0	$m_2 = x_1 . \overline{x_2}$
1	1	1	$m_3 = x_1.x_2$

$$f(x_{1}, x_{2}) = \sum m(0,1,3)$$

$$f(x_1, x_2) = \prod M(2)$$

Mintermos e Maxtermos

Linha	x1	x2	х3	Mintermo □	Maxtermo
0	0	0	0	$m_0 = \overline{X_1} \overline{X_2} \overline{X_3}$	$M_0 = X_1 + X_2 + X_3$
1	0	0	1	$m_1 = \overline{X_1} \overline{X_2} X_3$	$M_1 = X_1 + X_2 + \overline{X_3}$
2	0	1	0	$m_2 = \overline{X_1} X_2 \overline{X_3}$	$M_2 = X_1 + \overline{X_2} + X_3$
3	0	1	1	$m_3 = \overline{X_1} X_2 X_3$	$M_3 = X_1 + \overline{X_2} + \overline{X_3}$
4	1	0	0	$m_4 = X_1 \overline{X_2} \overline{X_3}$	$M_4 = \overline{X_1} + X_2 + X_3$
5	1	0	1	$m_5 = x_1 \overline{x_2} x_3$	$M_5 = \overline{X_1} + X_2 + \overline{X_3}$
6	1	1	0	$m_6 = x_1 x_2 \overline{x_3}$	$M_6 = \overline{X_1} + \overline{X_2} + X_3$
7	1	1	1	$m_7 = x_1 x_2 x_3$	$M_7 = \overline{X_1} + \overline{X_2} + \overline{X_3}$

• Escreva a expressão booleana que a função representa:

$$f(x_{1}, x_{2}, x_{3}) = \sum m(1,4,5,7)$$

$$f(x_{1}, x_{2}, x_{3}) = m_{1} + m_{4} + m_{5} + m_{7}$$

$$f(x_{1}, x_{2}, x_{3}) = \overline{x_{1}} \overline{x_{2}} x_{3} + x_{1} \overline{x_{2}} \overline{x_{3}} + x_{1} \overline{x_{2}} x_{3} + x_{1} x_{2} x_{3}$$

Considere a função:

$$f(x_{1}, x_{2}, x_{3}) = \sum m(2,3,4,6,7)$$

A expressão SOP é obtida usando-se os mintermos:

$$f(x_{1,}x_{2,}x_{3}) = m_{2} + m_{3} + m_{4} + m_{6} + m_{7}$$

$$f(x_{1,}x_{2,}x_{3}) = \overline{X_{1}}x_{2}\overline{X_{3}} + \overline{X_{1}}x_{2}x_{3} + x_{1}\overline{X_{2}}\overline{X_{3}} + x_{1}x_{2}\overline{X_{3}} + x_{1}x_{2}x_{3}$$

Esta expressão pode ser simplificada

$$f(x_{1}, x_{2}, x_{3}) = \overline{x_{1}} x_{2} (\overline{x_{3}} + x_{3}) + x_{1} (\overline{x_{2}} + x_{2}) \overline{x_{3}} + x_{1} x_{2} (\overline{x_{3}} + x_{3})$$

$$f(x_{1}, x_{2}, x_{3}) = \overline{x_{1}} x_{2} + x_{1} \overline{x_{3}} + x_{1} x_{2}$$

$$f(x_{1}, x_{2}, x_{3}) = (\overline{x_{1}} + x_{1}) x_{2} + x_{1} \overline{x_{3}}$$

$$f(x_{1}, x_{2}, x_{3}) = x_{2} + x_{1} \overline{x_{3}}$$

Considere a mesma função, especificado pelo produto de maxtermos:

$$f(x_1, x_2, x_3) = \prod M(0,1,5)$$

A expressão POS é derivada como:

$$f(x_{1,}x_{2,}x_{3}) = M_{0}.M_{1}.M_{5}$$

 $f(x_{1,}x_{2,}x_{3}) = (x_{1}+x_{2}+x_{3})(x_{1}+x_{2}+\overline{x_{3}})(\overline{x_{1}}+x_{2}+\overline{x_{3}})$

Esta expressão pode ser simplificada

$$\begin{split} f\left(X_{1},X_{2},X_{3}\right) &= \left(X_{1} + X_{2} + X_{3}\right)\left(X_{1} + X_{2} + \overline{X_{3}}\right)\left(X_{1} + X_{2} + \overline{X_{3}}\right)\left(\overline{X_{1}} + X_{2} + \overline{X_{3}}\right)\\ f\left(X_{1},X_{2},X_{3}\right) &= \left(\left(X_{1} + X_{2}\right) + X_{3}\right)\left(\left(X_{1} + X_{2}\right) + \overline{X_{3}}\right)\left(X_{1} + \left(X_{2} + \overline{X_{3}}\right)\right)\left(\overline{X_{1}} + \left(X_{2} + \overline{X_{3}}\right)\right)\\ f\left(X_{1},X_{2},X_{3}\right) &= \left(\left(X_{1} + X_{2}\right) + X_{3}\overline{X_{3}}\right)\left(X_{1}\overline{X_{1}} + \left(X_{2} + \overline{X_{3}}\right)\right)\\ f\left(X_{1},X_{2},X_{3}\right) &= \left(X_{1} + X_{2}\right)\left(X_{2} + \overline{X_{3}}\right) &= X_{1}X_{2} + X_{1}\overline{X_{3}} + X_{2}X_{2} + X_{2}\overline{X_{3}}\\ f\left(X_{1},X_{2},X_{3}\right) &= X_{1}X_{2} + X_{2} + X_{1}\overline{X_{3}} + X_{2}\overline{X_{3}} &= X_{2}\left(1 + X_{1} + \overline{X_{3}}\right) + X_{1}\overline{X_{3}}\\ f\left(X_{1},X_{2},X_{3}\right) &= X_{2}\left(1\right) + X_{1}\overline{X_{3}} &= X_{2} + X_{1}\overline{X_{3}} \end{split}$$

48

Até aqui:

- Obtemos a expressão booleana a partir do circuito
- Obtemos o circuito lógico a partir da expressão
- Obtemos a tabela verdade a partir da expressão
- Obtemos a expressão a partir da tabela verdade

Próxima Aula

• Equivalência entre portas lógicas