

UAS Project - Elektronika Daya

LOCALLY ROOTED,
GLOBALLY RESPECTED

Hannan Nur Muhammad

21/475215/TK/52449

Program Studi Teknik Elektro

Departemen Teknik Elektro dan

Teknologi Informasi

Fakultas Teknik

Universitas Gadjah Mada

Specification Buck Converter

Input Voltage : 48 Volt

Output voltage : 12 Volt

Switching Frequency: 100 kHz

Output Power : $12V \times 6A = 72$ Watt

Current Ripple : 0.01 A

Voltage Ripple : 0.02 V

Determine L Value

Rumus L dapat ditentukan dengan cara

$$L = \frac{(V_{in} - V_{out}). D}{\Delta I_L. fs}$$

$$L = \frac{(48 - 12).\ 0,417}{0,01.\ 100.000}$$

$$L = 0.015$$

$$L = 15 mH$$

$$V_{in} = Tegangan Input$$
 $V_{out} = Tegangan Output$
 $D = Duty Cycle$
 $\Delta I_L = Ripple Arus$
 $f_s = Frekuensi Switching$

Determine C Value

Rumus L dapat ditentukan dengan cara

$$C = rac{\Delta I_L}{8 \cdot f_s \cdot \Delta V_{out}}$$
 $C = Nilai \, Kapasitor$
 $C = rac{0.01}{8 \cdot 100.000 \cdot 0.02}$ $f_s = Frekuensi \, Switching$
 $C = 625 \, pF$ $\Delta V_{out} = Ripple \, Tegangan$

Rangkaian Buck Converter Open Loop

Hasil Output Tegangan

Hasil Ripple Tegangan

Hasil Ripple Arus

Rangkaian Buck Converter Close Loop

Hasil Output Tegangan

Hasil Ripple Tegangan

Hasil Ripple Arus

PV Module Configuration dan Rating

Vdc = 800 dengan 16 PV dirangkai seri bertegangan 50V per PV untuk mencapai Vdc=800

$$I_{PV} = rac{P_n}{V_{dc}}$$
 $I_{PV} = rac{130000}{800}$ $I_{PV} = 162.5 \ A$

L Value

Pehitungan L

$$\Delta i_L = \frac{0.1 \cdot P_{n\sqrt[3]{2}}}{3V_{ph}} = 20 A$$

$$V_{dc} = \frac{2\sqrt{2}}{m_i \cdot \sqrt{3} \cdot V_L} = 800 \ V$$

$$L_1 = rac{V_{dc}}{8 \cdot fsw \; . \; \Delta i_L} = 500 \; \mu H$$

Link Github

https://github.com/hannannm/UAS_Elektronika_Daya_475215

Rangkaian Inverter

Hasil Output Tegangan

Hasil Output Arus

"Dreams are for weaving, Wonders are waiting to start"

