HMMT February 2015

Saturday 21 February 2015

Algebra

1. Let Q be a polynomial

$$Q(x) = a_0 + a_1 x + \dots + a_n x^n,$$

where a_0, \ldots, a_n are nonnegative integers. Given that Q(1) = 4 and Q(5) = 152, find Q(6).

Answer: 254 Since each a_i is a nonnegative integer, $152 = Q(5) \equiv a_0 \pmod{5}$ and $Q(1) = 4 \implies a_i \le 4$ for each i. Thus, $a_0 = 2$. Also, since $5^4 > 152 = Q(5)$, $a_4, a_5, \ldots, a_n = 0$.

Now we simply need to solve the system of equations

$$5a_1 + 5^2 a_2^2 + 5^3 a_3^3 = 150$$
$$a_1 + a_2 + a_3 = 2$$

to get

$$a_2 + 6a_3 = 7.$$

Since a_2 and a_3 are nonnegative integers, $a_2 = 1$, $a_3 = 1$, and $a_1 = 0$. Therefore, $Q(6) = 6^3 + 6^2 + 2 = 254$.

2. The fraction $\frac{1}{2015}$ has a unique "(restricted) partial fraction decomposition" of the form

$$\frac{1}{2015} = \frac{a}{5} + \frac{b}{13} + \frac{c}{31},$$

where a, b, c are integers with $0 \le a < 5$ and $0 \le b < 13$. Find a + b.

Answer: 14 This is equivalent to $1 = 13 \cdot 31a + 5 \cdot 31b + 5 \cdot 13c$. Taking modulo 5 gives $1 \equiv 3 \cdot 1a \pmod{5}$, so $a \equiv 2 \pmod{5}$. Taking modulo 13 gives $1 \equiv 5 \cdot 5b = 25b \equiv -b \pmod{13}$, so $b \equiv 12 \pmod{13}$. The size constraints on a, b give a = 2, b = 12, so a + b = 14.

Remark. This problem illustrates the analogy between polynomials and integers, with prime powers (here $5^1, 13^1, 31^1$) taking the role of powers of irreducible polynomials (such as $(x-1)^1$ or $(x^2+1)^3$, when working with polynomials over the real numbers).

Remark. The "partial fraction decomposition" needs to be restricted since it's only unique "modulo 1". Abstractly, the abelian group (or \mathbb{Z} -module) \mathbb{Q}/\mathbb{Z} has a "prime power direct sum decomposition" (more or less equivalent to Bezout's identity, or the Chinese remainder theorem), but \mathbb{Q} itself (as an abelian group under addition) does not.

You may wonder whether there's a similar "prime power decomposition" of \mathbb{Q} that accounts not just for addition, but also for multiplication (i.e. the full ring structure of the rationals). In some sense, the "adeles/ideles" serve this purpose, but it's not as clean as the partial fraction decomposition (for additive structure alone)—in fact, the subtlety of adeles/ideles reflects much of the difficulty in number theory!

3. Let p be a real number and $c \neq 0$ an integer such that

$$c - 0.1 < x^p \left(\frac{1 - (1+x)^{10}}{1 + (1+x)^{10}} \right) < c + 0.1$$

for all (positive) real numbers x with $0 < x < 10^{-100}$. (The exact value 10^{-100} is not important. You could replace it with any "sufficiently small number".)

Find the ordered pair (p, c).

¹Note that this does actually have integer solutions by Bezout's identity, as $gcd(13 \cdot 31, 5 \cdot 31, 5 \cdot 13) = 1$.

Answer: (-1,-5) This is essentially a problem about limits, but phrased concretely in terms of "small numbers" (like 0.1 and 10^{-100}).

We are essentially studying the rational function $f(x) := \frac{1 - (1 + x)^{10}}{1 + (1 + x)^{10}} = \frac{-10x + O(x^2)}{2 + O(x)}$, where the "big-O" notation simply make precise the notion of "error terms".²

Intuitively, $f(x) \approx \frac{-10x}{2} = -5x$ for "small nonzero x". (We could easily make this more precise if we wanted to, by specifying the error terms more carefully, but it's not so important.) So $g(x) := x^p f(x) \approx -5x^{p+1}$ for "small nonzero x".

- If p+1>0, g will approach 0 ("get very small") as x approaches 0 (often denoted $x\to 0$), so there's no way it can stay above the lower bound c-0.1 for all small nonzero x.
- If p+1 < 0, g will approach $-\infty$ ("get very large in the negative direction") as $x \to 0$, so there's no way it can stay below the upper bound c+0.1 for all small nonzero x.
- If p + 1 = 0, $g \approx -5$ becomes approximately constant as $x \to 0$. Since c is an **integer**, we must have c = -5 (as -5 is the only integer within 0.1 of -5).

Remark. Why does (p,c)=(-1,-5) actually satisfy the inequality? This is where the 10^{-100} kicks in: for such small values of x, the "error" |g(x)-(-5)| of the approximation $g\approx -5$ does actually lie within the permitted threshold of ± 0.1 . (You can easily work out the details yourself, if you're interested. It's something you might want to work out once or twice in your life, but rational functions are "well-behaved" enough that we can usually rely on our intuition in these kinds of scenarios.)

- 4. Compute the number of sequences of integers (a_1, \ldots, a_{200}) such that the following conditions hold.
 - $0 \le a_1 < a_2 < \dots < a_{200} \le 202$.
 - There exists a positive integer N with the following property: for every index $i \in \{1, ..., 200\}$ there exists an index $j \in \{1, ..., 200\}$ such that $a_i + a_j N$ is divisible by 203.

Answer: 20503 Let m := 203 be an integer not divisible by 3. We'll show the answer for general such m is $m \lceil \frac{m-1}{2} \rceil$.

Let x, y, z be the three excluded residues. Then N works if and only if $\{x, y, z\} \equiv \{N - x, N - y, N - z\}$ (mod m). Since x, y, z (mod m) has opposite orientation as N - x, N - y, N - z (mod m), this is equivalent to x, y, z forming an arithmetic progression (in some order) modulo m centered at one of x, y, z (or algebraically, one of $N \equiv 2x \equiv y + z$, $N \equiv 2y \equiv z + x$, $N \equiv 2z \equiv x + y$ holds, respectively).

Since $3 \nmid m$, it's impossible for more than one of these congruences to hold (or else x, y, z would have to be equally spaced modulo m, i.e. $x-y\equiv y-z\equiv z-x$). So the number of distinct 3-sets corresponding to arithmetic progressions is $m\lceil \frac{m-1}{2} \rceil$ (choose a center and a difference, noting that $\pm d$ give the same arithmetic progression). Since our specific m=203 is odd this gives $m\frac{m-1}{2}=203\cdot 101=20503$.

Remark. This problem is a discrete analog of certain so-called Frieze patterns. (See also Chapter 6, Exercise 5.8 of Artin's *Algebra* textbook.)

5. Let a, b, c be positive real numbers such that a+b+c=10 and ab+bc+ca=25. Let $m=\min\{ab,bc,ca\}$. Find the largest possible value of m.

Answer: $\boxed{\frac{25}{9}}$ Without loss of generality, we assume that $c \ge b \ge a$. We see that $3c \ge a+b+c=10$. Therefore, $c \ge \frac{10}{3}$.

²For instance, the $O(x^2)$ refers to a function bounded by $C|x|^2$ for some positive constant C, whenever x is close enough to 0 (and as the 10^{-100} suggests, that's all we care about).

Since

$$0 \le (a - b)^{2}$$

$$= (a + b)^{2} - 4ab$$

$$= (10 - c)^{2} - 4(25 - c(a + b))$$

$$= (10 - c)^{2} - 4(25 - c(10 - c))$$

$$= c(20 - 3c),$$

we obtain $c \leq \frac{20}{3}$. Consider $m = \min\{ab, bc, ca\} = ab$, as $bc \geq ca \geq ab$. We compute $ab = 25 - c(a+b) = 25 - c(10-c) = (c-5)^2$. Since $\frac{10}{3} \leq c \leq \frac{20}{3}$, we get that $ab \leq \frac{25}{9}$. Therefore, $m \leq \frac{25}{9}$ in all cases and the equality can be obtained when $(a,b,c) = (\frac{5}{3},\frac{5}{3},\frac{20}{3})$.

6. Let a, b, c, d, e be nonnegative integers such that $625a + 250b + 100c + 40d + 16e = 15^3$. What is the maximum possible value of a + b + c + d + e?

Answer: $\lfloor 153 \rfloor$ The intuition is that as much should be in e as possible. But divisibility obstructions like $16 \nmid 15^3$ are in our way. However, the way the coefficients $5^4 > 5^3 \cdot 2 > \cdots$ are set up, we can at least easily avoid having a, b, c, d too large (speifically, ≥ 2). This is formalized below.

First, we observe that $(a_1, a_2, a_3, a_4, a_5) = (5, 1, 0, 0, 0)$ is a solution. Then given a solution, replacing (a_i, a_{i+1}) with $(a_i - 2, a_{i+1} + 5)$, where $1 \le i \le 4$, also yields a solution. Given a solution, it turns out all solutions can be achieved by some combination of these swaps (or inverses of these swaps).

Thus, to optimize the sum, we want $(a, b, c, d) \in \{0, 1\}^4$, since in this situation, there would be no way to make swaps to increase the sum. So the sequence of swaps looks like $(5, 1, 0, 0, 0) \rightarrow (1, 11, 0, 0, 0) \rightarrow (1, 1, 1, 60, 0) \rightarrow (1, 1, 1, 0, 150)$, yielding a sum of 1 + 1 + 1 + 0 + 150 = 153.

Why is this optimal? Suppose (a, b, c, d, e) maximizes a + b + c + d + e. Then $a, b, c, d \le 1$, or else we could use a replacement $(a_i, a_{i+1}) \to (a_i - 2, a_{i+1} + 5)$ to strictly increase the sum. But modulo 2 forces a odd, so a = 1. Subtracting off and continuing in this manner³ shows that we must have b = 1, then c = 1, then d = 0, and finally e = 150.

Remark. The answer is coincidentally obtained by dropping the exponent of 15³ into the one's place.

- 7. Suppose (a_1, a_2, a_3, a_4) is a 4-term sequence of real numbers satisfying the following two conditions:
 - $a_3 = a_2 + a_1$ and $a_4 = a_3 + a_2$;
 - there exist real numbers a, b, c such that

$$an^2 + bn + c = \cos(a_n)$$

for all $n \in \{1, 2, 3, 4\}$.

Compute the maximum possible value of

$$\cos(a_1) - \cos(a_4)$$

over all such sequences (a_1, a_2, a_3, a_4) .

Answer: $\left[-9+3\sqrt{13}\right]$ Let $f(n)=\cos a_n$ and m=1. The second ("quadratic interpolation") condition on f(m), f(m+1), f(m+2), f(m+3) is equivalent to having a vanishing third finite difference

$$f(m+3) - 3f(m+2) + 3f(m+1) - f(m) = 0.$$

 $^{^3}$ This is analogous to the "number theoretic" proof of the uniqueness of the base 2 expansion of a nonnegative integer.

This is equivalent to

$$f(m+3) - f(m) = 3 [f(m+2) - f(m+1)]$$

$$\iff \cos(a_{m+3}) - \cos(a_m) = 3 (\cos(a_{m+2}) - \cos(a_{m+1}))$$

$$= -6 \sin\left(\frac{a_{m+2} + a_{m+1}}{2}\right) \sin\left(\frac{a_{m+2} - a_{m+1}}{2}\right)$$

$$= -6 \sin\left(\frac{a_{m+3}}{2}\right) \sin\left(\frac{a_m}{2}\right).$$

Set $x = \sin\left(\frac{a_{m+3}}{2}\right)$ and $y = \sin\left(\frac{a_m}{2}\right)$. Then the above rearranges to

$$(1-2x^2) - (1-2y^2) = -6xy \iff x^2 - y^2 = 3xy.$$

Solving gives $y = x \frac{-3 \pm \sqrt{13}}{2}$. The expression we are trying to maximize is $2(x^2 - y^2) = 6xy$, so we want x, y to have the same sign; thus $y = x \frac{-3 \pm \sqrt{13}}{2}$.

Then $|y| \le |x|$, so since $|x|, |y| \le 1$, to maximize 6xy we can simply set x = 1, for a maximal value of $6 \cdot \frac{-3 + \sqrt{13}}{2} = -9 + 3\sqrt{13}$.

- 8. Find the number of ordered pairs of integers $(a, b) \in \{1, 2, ..., 35\}^2$ (not necessarily distinct) such that ax + b is a "quadratic residue modulo $x^2 + 1$ and 35", i.e. there exists a polynomial f(x) with integer coefficients such that either of the following **equivalent** conditions holds:
 - there exist polynomials P, Q with integer coefficients such that $f(x)^2 (ax + b) = (x^2 + 1)P(x) + 35Q(x)$:
 - or more conceptually, the remainder when (the polynomial) $f(x)^2 (ax + b)$ is divided by (the polynomial) $x^2 + 1$ is a polynomial with (integer) coefficients all divisible by 35.

Answer: 225 By the Chinese remainder theorem, we want the product of the answers modulo 5 and modulo 7 (i.e. when 35 is replaced by 5 and 7, respectively).

First we do the **modulo** 7 case. Since $x^2 + 1$ is irreducible modulo 7 (or more conceptually, in $\mathbb{F}_7[x]$), exactly half of the nonzero residues modulo $x^2 + 1$ and 7 (or just modulo $x^2 + \overline{1}$ if we're working in $\mathbb{F}_7[x]$) are quadratic residues, i.e. our answer is $1 + \frac{7^2 - 1}{2} = 25$ (where we add back one for the zero polynomial).

Now we do the **modulo** 5 case. Since $x^2 + 1$ factors as (x + 2)(x - 2) modulo 5 (or more conceptually, in $\mathbb{F}_5[x]$), by the **polynomial** Chinese remainder theorem modulo $x^2 + \overline{1}$ (working in $\mathbb{F}_5[x]$), we want the product of the number of **polynomial** quadratic residues modulo $x \pm \overline{2}$. By centering/evaluating polynomials at $\mp \overline{2}$ accordingly, the polynomial squares modulo these linear polynomials are just those reducing to **integer** squares modulo 5. So we have an answer of $(1 + \frac{5-1}{2})^2 = 9$ in this case.

Our final answer is thus $25 \cdot 9 = 225$.

Remark. This problem illustrates the analogy between integers and polynomials (specifically here, polynomials over the *finite field* of integers modulo 5 or 7), with $x^2 + 1 \pmod{7}$ or $x \pm 2 \pmod{5}$ taking the role of a prime number. Indeed, just as in the integer case, we expect exactly **half** of the (coprime) residues to be (coprime, esp. nonzero) quadratic residues.

9. Let $N=30^{2015}$. Find the number of ordered 4-tuples of integers $(A,B,C,D) \in \{1,2,\ldots,N\}^4$ (not necessarily distinct) such that for every integer n, $An^3 + Bn^2 + 2Cn + D$ is divisible by N.

Answer: 24 Note that $n^0 = \binom{n}{0}$, $n^1 = \binom{n}{1}$, $n^2 = 2\binom{n}{2} + \binom{n}{1}$, $n^3 = 6\binom{n}{3} + 6\binom{n}{2} + \binom{n}{1}$ (generally see http://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind). Thus the polynomial rewrites as

$$6A\binom{n}{3} + (6A + 2B)\binom{n}{2} + (A + B + 2C)\binom{n}{1} + D\binom{n}{0},$$

⁴This is more explicit than necessary. By the same reasoning as in the previous paragraph, we can abstractly count $1 + \frac{5^1 - 1}{2}$ quadratic residues modulo $x \pm \overline{2}$ (irreducible polynomials in $\mathbb{F}_5[x]$) each (and then multiply/square to get the answer for $x^2 + \overline{1}$).

which by the classification of integer-valued polynomials is divisible by N always if and only if 6A, 6A + 2B, A + B + 2C, D are always divisible by N.

We can eliminate B and (trivially) D from the system: it's equivalent to the system $6A \equiv 0 \pmod{N}$, $4A-4C \equiv 0 \pmod{N}$, $B \equiv -A-2C \pmod{N}$, $D \equiv 0 \pmod{N}$. So we want 1^2 times the number of (A,C) with $A \equiv 0 \pmod{N/6}$, $C \equiv A \pmod{N/4}$. So there are N/(N/6) = 6 choices for A, and then given such a choice of A there are A0 there are A1 choices for A2. So we have A2 solutions total.

10. Find all ordered 4-tuples of integers (a, b, c, d) (not necessarily distinct) satisfying the following system of equations:

$$a^{2} - b^{2} - c^{2} - d^{2} = c - b - 2$$

$$2ab = a - d - 32$$

$$2ac = 28 - a - d$$

$$2ad = b + c + 31.$$

Answer: (5, -3, 2, 3) We first give two systematic solutions using standard manipulations and divisibility conditions (with some casework), and then a third solution using quaternionic number theory (not very practical, so mostly for your cultural benefit).

Solution 1. Subtract the second equation from the third to get a(c-b+1)=30. Add the second and third to get 2a(b+c)=-4-2d. Substitute into the fourth to get

$$2a(2ad-31) = -4 - 2d \iff a(31-2ad) = 2+d \iff d = \frac{31a-2}{2a^2+1}$$

which in particular gives $a \not\equiv 1 \pmod 3$. Then plugging in a factor of 30 for a gives us the system of equations b+c=2ad-31 and c-b+1=30/a in b,c. Here, observe that b+c is odd, so c-b+1 is even. Thus a must be odd (and from earlier $a\not\equiv 1 \pmod 3$), so $a\in\{-1,\pm 3,5,\pm 15\}$. Manually checking these, we see that the only possibilities we need to check are (a,d)=(5,3),(-1,-11),(-3,-5), corresponding to (b,c)=(-3,2),(11,-20),(5,-6). Then check the three candidates against first condition $a^2-b^2-c^2-d^2=c-b-2$ to find our only solution (a,b,c,d)=(5,-3,2,3).

Solution 2. Here's an alternative casework solution. From 2ad = b + c + 31, we have that b + c is odd. So, b and c has different parity. Thus, $b^2 + c^2 \equiv 1 \pmod{4}$. Plugging this into the first equation, we get that a and d also have the same parity.

So,
$$a^2 - b^2 - c^2 - d^2 \equiv -1 \pmod{4}$$
. Thus, $c - b - 2 \equiv -1 \pmod{4}$. So, $c \equiv b + 1 \pmod{4}$.

From taking modulo a in the second and third equation, we have $a \mid d+32$ and $a \mid 28-d$. So, $a \mid 60$.

Now, if a is even, let a = 2k and d = 2m. Plugging this in the second and third equation, we get 2kc = 14 - k - m and 2kb = k - m - 16. So, k(c - b) = 15 - k.

We can see that $k \neq 0$. Therefore, $c - b = \frac{15 - k}{k} = \frac{15}{k} - 1$.

But $c - b \equiv 1 \pmod{4}$. So, $\frac{15}{k} - 1 \equiv 1 \pmod{4}$, or $\frac{15}{k} \equiv 2 \pmod{4}$ which leads to a contradiction.

So, a is odd. And we have $a \mid 60$. So, $a \mid 15$. This gives us 8 easy possibilities to check...

Solution 3. The left hand sides clue us in to the fact that this problem is secretly about quaternions. Indeed, we see that letting z = a + bi + cj + dk gives

$$(z - i + j)z = -2 - 32i + 28j + 31k.$$

Taking norms gives $N(z-i+j)N(z)=2^2+32^2+28^2+31^2=2773=47\cdot 59$. By the triangle inequality, N(z), N(z-i+j) aren't too far apart, so they must be 47,59 (in some order).

Thus z, z - i + j are Hurwitz primes.⁵ We rely on the following foundational lemma in quaternion number theory:

⁵For the purposes of quaternion number theory, it's simpler to work in the Hurwitz quaternions $\mathbb{H} = \langle i, j, k, \frac{1+i+j+k}{2} \rangle_{\mathbb{Z}}$, which has a left- (or right-) division algorithm, left- (resp. right-) Euclidean algorithm, is a left- (resp. right-) principal ideal domain, etc. There's no corresponding division algorithms when we're working with the Lipschitz quaternions, i.e. those with integer coordinates.

Lemma. Let $p \in \mathbb{Z}$ be an integer prime, and A a Hurwitz quaternion. If $p \mid N(A)$, then the $\mathbb{H}A + \mathbb{H}p$ (a left ideal, hence principal) has all element norms divisible by p, hence is nontrivial. (So it's either $\mathbb{H}p$ or of the form $\mathbb{H}P$ for some Hurwitz prime P.)

In our case, it will suffice to apply the lemma for A = -2 - 32i + 28j + 31k at primes p = 47 and q = 59 to get factorizations (unique up to suitable left/right unit multiplication) A = QP and A = P'Q' (respectively), with P, P' Hurwitz primes of norm p, and Q, Q' Hurwitz primes of norm q. Indeed, these factorizations come from $\mathbb{H}A + \mathbb{H}p = \mathbb{H}P$ and $\mathbb{H}A + \mathbb{H}q = \mathbb{H}Q'$.

We compute by the Euclidean algorithm:

$$\begin{split} \mathbb{H}A + \mathbb{H}(47) &= \mathbb{H}(-2 - 32i + 28j + 31k) + \mathbb{H}(47) \\ &= \mathbb{H}(-2 + 15i - 19j - 16k) + \mathbb{H}(47) \\ &= \left[\mathbb{H}(47 \cdot 18) + \mathbb{H}(47)(-2 - 15i + 19j + 16k)\right] \frac{-2 + 15i - 19j - 16k}{47 \cdot 18} \\ &= \left[\mathbb{H}18 + \mathbb{H}(-2 + 3i + j - 2k)\right] \frac{-2 + 15i - 19j - 16k}{18} \\ &= \mathbb{H}(-2 + 3i + j - 2k) \frac{-2 + 15i - 19j - 16k}{18} \\ &= \mathbb{H}\frac{-54 - 90i + 54j - 36k}{18} \\ &= \mathbb{H}(-3 - 5i + 3j - 2k). \end{split}$$

Thus⁶ there's a unit⁷ ϵ such that $P = \epsilon(-3 - 5i + 3j - 2k)$.

Similarly, to get P', we compute

$$\begin{split} A\mathbb{H} + 47\mathbb{H} &= (-2 - 32i + 28j + 31k)\mathbb{H} + 47\mathbb{H} \\ &= (-2 + 15i - 19j - 16k)\mathbb{H} + 47\mathbb{H} \\ &= \frac{-2 + 15i - 19j - 16k}{47 \cdot 18} [(47 \cdot 18)\mathbb{H} + 47(-2 - 15i + 19j + 16k)\mathbb{H}] \\ &= \frac{-2 + 15i - 19j - 16k}{18} [18\mathbb{H} + (-2 + 3i + j - 2k)\mathbb{H}] \\ &= \frac{-2 + 15i - 19j - 16k}{18} (-2 + 3i + j - 2k)\mathbb{H} \\ &= \frac{-54 + 18i + 18j + 108k}{18} \mathbb{H} \\ &= (-3 + i + j + 6k)\mathbb{H}, \end{split}$$

so there's a unit ϵ' with $P' = (-3 + i + j + 6k)\epsilon'$.

Finally, we have either $z = \epsilon(-3 - 5i + 3j - 2k)$ for some ϵ , or $z - i + j = (-3 + i + j + 6k)\epsilon'$ for some ϵ' . Checking the 24 + 24 cases (many of which don't have integer coefficients, and can be ruled out immediately) gives z = iP = 5 - 3i + 2j + 3k as the only possibility.

Remark. We have presented the most conceptual proof possible. It's also possible to directly compute based on the norms only, and do some casework. For example, since $47 \equiv 3 \pmod{4}$, it's easy to check the only ways to write it as a sum of four squares are $(\pm 5)^2 + (\pm 3)^2 + (\pm 3)^2 + (\pm 2)^2$ and $(\pm 3)^2 + (\pm 1)^2 + (\pm 1)^2 + (\pm 6)^2$.

Remark. For a systematic treatment of quaternions (including the number theory used above), one good resource is *On Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry* by John H. Conway and Derek A. Smith. A more focused treatment is the expository paper *Factorization of Hurwitz Quaternions* by Boyd Coan and Cherng-tiao Perng.

For an example of interesting research in this rather exotic area, see the *Metacommutation of Hurwitz* primes paper by Henry Cohn and Abhinav Kumar.

⁶Hidden computations: we've used $47 \cdot \overline{18 = 846} = 2^2 + 15^2 + 19^2 + 16^2$, and 18 = N(-2 + 3i + j - 2k).

⁷i.e. one of $\pm 1, \pm i, \pm j, \pm k, \frac{\pm 1 \pm i \pm j \pm k}{2}$