Nikhil Panse - IIT Guwahati

Importing text file and splitting it to create data variables

In [154]:

```
limport pandas as pd

2data = [line.strip() for line in open("train_set.txt", "r").readlines()]

3data = [{"LineNumber": line.split("~")[0], "Number": line.split("~")[1].split("IN 4data = pd.DataFrame(data)

5dftest = [line.strip() for line in open("public_test_set.txt", "r").readlines()]

6dftest = [{"LineNumber": line.split("~")[0], "Number": line.split("~")[1].split("7dftest = pd.DataFrame(dftest)

8dp = [line.strip() for line in open("private_test_set.txt", "r").readlines()]

9dp = [{"LineNumber": line.split("~")[0], "Number": line.split("~")[1].split("INF(10dp = pd.DataFrame(dp))
```

In [155]:

1 dft	est				
5	L5	"GET /v2/2019-09-10 meta_data.json HTTP/1.1"	62161	req-y5tj- ufwp- 34nme6- 6do12x	gs.api.openapi.compute.wsgi
6	L6	HTTP exception thrown: No entry found for any	13691	req- x52i0- 95ewzi- tnxuz	gs.openstack.wsgi.server
7	L7	"GET /v2/2019-09-12 meta_data.json HTTP/1.1"	25112	req- joh69- ydjr7v- rhezju- a7nq- rytxe8	gs.openapi.wsgi.server
8	L8	Instance spawned correctly	94733	req- vz2nx-	gs.api.openapi.compute.wsgi

Importing data as text file and separating by new lines.

Using Term Frequency- Inverse Document Frequency to understand word frequencies

```
In [180]:
```

```
with open('train_set.txt') as f:
    file = [line.rstrip('\n') for line in f]

from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(analyzer="word", max_features=125)
X = vectorizer.fit_transform(file)
from scipy.sparse import csr_matrix
X = csr_matrix.todense(X)
```

K Means clustering

```
In [190]:
```

```
1 from sklearn.cluster import KMeans
2 kmeans = KMeans(n_clusters=18, random_state=0).fit(X)
```

Public dataset

```
In [191]:
```

```
with open('public_test_set.txt') as f:
    test = [line.rstrip('\n') for line in f]
vectorizer = TfidfVectorizer(analyzer="word", max_features=125)

Xt = vectorizer.fit_transform(test)
Xt = csr_matrix.todense(Xt)
```

Clustering public dataset

```
In [192]:
```

```
1 d = {"LineNumber":dftest["LineNumber"].values, "Class":kmeans.predict(Xt)}
2 df = pd.DataFrame(d)
3 df.to_csv("public_test.csv", index=False)
4
```

Private Dataset

In [193]:

```
with open('private_test_set.txt') as f:
    testp = [line.rstrip('\n') for line in f]
vectorizer = TfidfVectorizer(analyzer="word", max_features=125)

Xp = vectorizer.fit_transform(testp)

Xp = csr_matrix.todense(Xp)

p = {"LineNumber":dp["LineNumber"].values, "Class":kmeans.predict(Xp)}

dp = pd.DataFrame(p)
dp.to_csv("private_test.csv", index=False)
```

```
In [ ]:
```

```
1
```