13. Maximum Satisfiability

Satisfiability problems essentially involve solving CNF formulas

$$(x_1 ee x_2 ee x_3) \wedge (x_1 ee ar{x}_2 ee x_5) \wedge \dots$$

MAXSAT: Given a set of m clauses over n-variables, determine the max number of clauses that can be satisfied.

Randomized Algorithm to solve MAXSAT

We set each variable x_i to T or F with equal probability

Theorem - Given any m clauses, there is a truth assignment for the variables that satisfies at least $\frac{m}{2}$ clauses.

Proof -

We define Z_i , $1 \le i \le m$ which indicates if the clause has been satisfied or not.

$$Z_i = egin{cases} 1 & ext{if clause } i ext{ is satisfied} \ 0 & ext{otherwise} \end{cases}$$

Given that we randomly assign each variable x_i a value,

$$\mathbb{P}[Z_i=1]=1-2^{-k}$$

Given there are k literals in clause i (there's only 1 assignment of the k literals which would result in $Z_i=0$).

Since we know $k \geq 1$, we know $\mathbb{P}[Z_i = 1] \geq \frac{1}{2}$.

Calculating expected number of satisfied clauses,

$$\mathbb{E}\left[\sum_{i=1}^m Z_i
ight] = \sum_{i=1}^m \mathbb{E}[Z_i] \geq rac{m}{2}$$

Now, we find the probability that the actual number of clauses is less than the expected value. Using a technique called *reverse markov*.

$$\mathbb{P}[Z < \mathbb{E}[Z]] = \mathbb{P}[m-Z > m - \mathbb{E}[Z]] < rac{\mathbb{E}[m-Z]}{m-\mathbb{E}[Z]} = 1$$

Hence, there's a non-zero chance that the actual number of clauses satisfied is greater than the expected value, directly implying

$$\mathbb{P}\left[Z \geq \frac{m}{2}\right] \neq 0$$

Hence proved.

This type of proof is known as **Probabilistic Method**, where you show the existence of an object by showing it has a non-zero probability of occurring when chosen randomly.

Performance Ratio

Given an instance I, let $m_*(I)$ be the maximum number of clauses that can be satisfied. Let $m_A(I)$ be the number of clauses satisfiable by algorithm A.

We define the performance ratio of A to be defined as follows

$$\operatorname{PerfRatio}(\operatorname{A}) = \inf_I rac{m_A(I)}{m_*(I)}$$

If $\operatorname{PerfRatio}(A) = \alpha$, then A is an α -approximation algorithm. The randomized algorithm discusses above is a $\frac{1}{2}$ -approximation algorithm.

The approximation factor of our algorithm can be improved if we are allowed to assume that every clause has at least 2 literals, giving us a $\frac{3}{4}$ -approximation algorithm.

LP Relaxations & Randomized Rounding

Forming an Integer Program for MAXSAT

We define variable $z_j \ orall j \in [m]$

$$z_j = egin{cases} 1 & ext{if clause } j ext{ is satisfied} \ 0 & ext{otherwise} \end{cases}$$

define variable $y_i \ orall i \in [n]$

$$y_i = egin{cases} 1 & ext{if } x_i ext{ is True} \ 0 & ext{otherwise} \end{cases}$$

and C_j^+ as the set of literals that appear unnegated in clause j, while C_j^- is the set of literals that appear negated in clause j.

We want to maximize

$$\sum_{j=1}^m z_j$$

Subject to constraints

1. y_i and $z_j \in \{0,1\} \ orall i \in [n], orall j \in [m].$

2.
$$\sum_{i \in C_j^+} y_i + \sum_{i' \in C_j^-} (1-y_{i'}) \geq z_j \ orall j \in [m]$$

Relaxing Integer Constraints

Solving an Integer Programming problem can take exponential time, as opposed to LP, which can take polynomial time, hence we relax the integer constraints on y_i, z_j , updating the first constraint to

1.
$$y_i$$
 and $z_i \in [0,1] \ \forall i \in [n], \forall j \in [m]$

The LP will then provide us the solutions \hat{y}_i , \hat{z}_j such that $\sum_{j=1}^m z_j \leq \sum_{j=1}^m \hat{z}_j$ (the LP has essentially more solutions to work with, so it's best case will be greater than or equal to the integer constraints case).

Randomized Rounding

Given \hat{y}_i, \hat{z}_j , we perform randomized rounding on them to obtain y_i, z_j

$$y_i = egin{cases} 1 & ext{w.p } \hat{y}_i \ 0 & ext{otherwise} \end{cases}$$

$$z_j = egin{cases} 1 & ext{w.p } \hat{z}_j \ 0 & ext{otherwise} \end{cases}$$

Lemma - Let clause C_j have k literals, The probability that C_j is satisfied by randomized rounding is $\geq \beta_k \hat{z}_j$ where $\beta_k = 1 - (1 - \frac{1}{k})^k$

Proof -

Since we are working with one clause, we just assume nothing is negated for

simplicity, i.e

$$C_i = x_1 \lor x_2 \lor \cdots \lor x_k$$

From the linear program, we know that $\sum\limits_{i=1}^k \hat{y}_i \geq \hat{z}_j$

For the clause to not be satisfied, all \hat{y}_i should've been rounded down to 0, and we need to compute the probability of that not occurring.

$$egin{aligned} \mathbb{P}[C_j ext{ is satisfied}] &= 1 - \prod_{i=1}^k (1 - \hat{y}_i) \ &\geq 1 - \left[rac{\sum_{i=1}^k (1 - \hat{y}_i)}{k}
ight]^k & ext{ (AM-GM Inequality)} \ &\geq 1 - \left[rac{k - \hat{z}_j}{k}
ight]^k & \left(\sum_{i=1}^k \hat{y}_i \geq z_j
ight) \ &= 1 - \left(1 - rac{\hat{z}_j}{k}
ight)^k \ &\geq \left[1 - \left(1 - rac{1}{k}
ight)^k
ight] \hat{z}_j \ &= eta_k \hat{z}_j \end{aligned}$$

The last step makes use of the claim that when $f(x)=1-(1-\frac{x}{k})^k$ and $g(x)=\beta x$, then $f(x)\geq g(x)\ \forall x\in [0,1].$