Optimization Issues in Nonlinear **Model Predictive Control**

Matthew J. Tenny

September 28, 1999

Contents

- Nonlinear Model Predictive Control
- Process Model
- Controller Formulation
- Suboptimal Control
- Optimization Strategies
- Terminal Region Calculation
- Initial Feasible Sequence Determination
- Closed Loop Objective Improvement
- Sample Problem and Results
- Conclusions and Future Work

Nonlinear Model

Continuous Time:

$$\dot{x} = f(x, u)
y = g(x)$$

Discrete Time:

$$x_{k+1} = F(x_k, u_k)$$
$$y_k = G(x_k)$$

with the constraints

$$x, x_k \in \mathbf{X}$$
 and $u, u_k \in \mathbf{U}$

origin. variables such that the steady states occur at the We also require the states and inputs to be deviation

Linearized Model

We can linearize our model (origin) to yield the following forms: about the steady state

Continuous Time:

$$\dot{x} = Ax + Bu$$

Where

$$A = \frac{\partial f}{\partial x}(\mathbf{0}, \mathbf{0})$$
 and $B = \frac{\partial f}{\partial u}(\mathbf{0}, \mathbf{0})$

Discrete Time:

This model can be discretized to the form

$$x_{k+1} = \widetilde{A}x_k + \widetilde{B}u_k$$

using a discretization time Δt .

Model Predictive Control Formulation

Infinite Horizon:

$$\min_{u^{N}} \Phi_{k} = \sum_{j=0}^{\infty} (y_{k+j}^{T} Q y_{k+j} + u_{k+j}^{T} R u_{k+j} + \frac{1}{2} A u_{k+j}^{T} A u_{k+j} + \frac{1}{2} A u_{k+j}^{T} A u_{$$

Finite Horizon:

$$\min_{u^{N}} \Phi_{k} = \sum_{j=0}^{N} (y_{k+j}^{T} Q y_{k+j} + u_{k+j}^{T} R u_{k+j} + \frac{1}{2} A u_{k+j} + \frac{1}{$$

with the additional constraint

$$x_N = 0$$

Challenges of Standard MPC Scheme

- function is not always fast or reliable. Computation of a global optimum for the cost
- optimization problem. The endpoint stability constraint complicates the
- algorithm from making progress. Poor initial guesses may prevent optimization

Proposed Solution: Terminal Region

Figure approach (horizon length = 6). <u>...</u> Feasible predicted state horizon for suboptimal

requiring the final state to be at the origin, we be stabilized by a linear control law. require the final state to be in this region, ${f W}.$ Calculate the region around the origin that can Instead of

Proposed Solution: Suboptimal MPC

- that decrease the cost function from its prior value moves, we settle for a feasible sequence of moves Rather than finding the optimal sequence of control
- performed off-line to increase speed of performance. Most of the computation to determine the endpoint region and the initial control sequence can be

Suboptimal MPC:

$$\min_{u^{N}} \Phi_{k} = \sum_{j=0}^{N-1} (y_{k+j}^{T} Q y_{k+j} + u_{k+j}^{T} R u_{k+j} + \frac{1}{2} A u_{k+j}^{T} S \Delta u_{k+j}) + x_{N}^{T} P x_{N}$$

with the additional constraint

$$x_N \in W_{\alpha}$$

alculation of the W Region

one half the linear stage cost. region **W** under the linear control law Kx by at least We require that we improve at all points x in our

The desired neighborhood is defined as:

$$W_{\alpha} := \{x | x^T P x \le \alpha\}$$

where

$$W_{\alpha} \subset \mathbf{X}, \quad KW_{\alpha} \subset \mathbf{U}.$$

Define

$$V(x) = (1/2)x^T P x \qquad \text{and} \qquad F_K(x) = F(x, Kx)$$

We choose α such that

$$\max_{x \in W_{\alpha}} \{ V(F_K(x)) - V(x) + (1/4)x^T[Q + K^T R K]x \} \le 0$$

Largest Possible Starting α_0

The largest ellipse $x^TPx \leq \alpha_0$ that satisfies the constraints and is contained entirely within the feasible region is calculated.

Reformulating the Optimization **Problem**

In W_{α} . largest lpha for which the inequality is satisfied everywhere We reformulate the optimization problem to locate the

smallest α for which the left side is equal to zero. We therefore seek the critical value of α , i.e., the

This is done by:

- first removing the trivial solution at the origin,
- squaring the function, to make it a minimization,
- and center. rescaling the problem to drive solutions to the

Reformulating the Optimization Problem

the new α by: We now choose the initial guess $x_0 \in W_{lpha_0}$ and define

$$\overline{x} = \arg\min \quad \left(\frac{V(F_K(x)) - V(x) + (1/4)x^T[Q + K^TRK]x}{(1/2)x^T[Q + K^TRK]x}\right)^2 \mu + x^T P x$$

$$\alpha = \overline{x}^T P \overline{x}$$

where μ is "large."

value of α . Now, the smallest of these values must be found by a global optimization scheme. If μ is chosen appropriately, \overline{x} will be a local critical

Geometric Character of the Optimization Problem

Decreasing to the Final

as a starting point for optimization, yielding a local we shrink α . We then repeat the process. minimum. If this point is within a smaller ellipse, then A random point is selected within the ellipse. It is used

Initial Feasible Control

- moves Guess a horizon length N and an initial set of control
- Repeat until converged:
- Generate states with nonlinear process model.
- model. Approximate model with time varying linear
- model. (QP) Minimize objective function subject to linear
- Perform line search in direction of solution.
- this attempt and Kx for the additional controls repeat with a longer horizon, using initial guess from If final state is in terminal region, end. Otherwise,

Closed Loop Operation

At each sample time:

- linesearch in the SQP direction. The objective function is decreased by performing a
- one move. The first control is injected and the horizon is shifted
- The final move is guessed to be Kx_{N-1} .
- The process repeats.

Sample Problem

state: undergoing reaction A o B at an unstable steady Seborg ¹ for a continuously stirred tank reactor (CSTR) We adapt the simple model presented by Henson and

$$\dot{C}_A = \frac{q}{V} (C_{Af} - C_A) - k_0 \exp\left(-\frac{E}{RT}\right) C_A$$

$$\dot{T} = \frac{q}{V} (T_f - T) + \frac{(-\Delta H)}{\rho C_p} k_0 \exp\left(-\frac{E}{RT}\right) C_A$$

$$+ \frac{UA}{V\rho C_p} (T_c - T)$$

The steady state operating conditions are as follows:

$$T = 350K$$

$$C_A = 0.5M$$

$$T_C = 300K$$

Hall PTR, Upper Saddle River, New Jersey, 1997. ¹M. A. Henson and D. E. Seborg. *Nonlinear Process Control.* Prentice

W Regions Around Other Steady States

Controlling to a Steady State

Linear Vs. Nonlinear Control

Conclusions

- for calculating the terminal region. Established an implementable algorithmic framework
- approach to reach the terminal region. Developed a numerically tractable optimization
- control. Demonstrated control performance superior to linear

Future Work

- control. Handle integrated disturbance models for offset-free
- Incorporate state estimation as part of the feedback.
- constraint vs. horizon extension. Analyze terminal constraint enforcement as م

Acknowledgment

support. Argonne National Labs for his continued input and We gratefully acknowledge Dr. Stephen J. Wright of

