ACTOnco® + Report

PATIENT				
Identifier: 張*芳		Patient ID: ***18502		
Date of Birth: Jul **, 1955		Gender: Female		
Diagnosis: Lung small cell carcinom	a			
ORDERING PHYSICIAN				
Name: 陳志學醫師	Tel: 886-228712121			
Facility: 臺北榮總				
Address: 臺北市北投區石牌路二段 201 號				
SPECIMEN				
Specimen ID: S11390221	Type: FFPE tissue			
Date received: Jan 29, 2024 Lab ID: AA-24-00591 D/ID: NA				

ABOUT ACTORGO®4

The test is a next-generation sequencing (NGS)-based assay developed for efficient and comprehensive genomic profiling of cancers. This test interrogates coding regions of 440 genes associated with cancer treatment, prognosis and diagnosis. Genetic mutations detected by this test include small-scale mutations like single nucleotide variants (SNVs), small insertions and deletions (InDels) (≤ 15 nucleotides) and large-scale genomic alterations like copy number alterations (CNAs). The test also includes an RNA test, detecting fusion transcripts of 13 genes.

SUMMARY FOR ACTIONABLE VARIANTS

VARIANTS/BIOMARKERS WITH EVIDENCE OF CLINICAL SIGNIFICANCE

Genomic Probable Effects in Patient's Cancer Type			Probable Sensitive in Other	
Alterations/Biomarkers	Sensitive	Resistant	Cancer Types	
EGFR E746_A750del (Exon 19 deletion)	-	-	Afatinib, Dacomitinib, Erlotinib, Gefitinib, Osimertinib	
PIK3CA E545K	-	-	Alpelisib, Capivasertib, Everolimus	

VARIANTS/BIOMARKERS WITH POTENTIAL CLINICAL SIGNIFICANCE

Genomic Alterations/Biomarkers	Possibly Sensitive	Possibly Resistant
PIK3CA E545K	Temsirolimus, Trametinib, Lapatinib [†] , Trastuzumab [†]	-
RB1 H339fs	-	Abemaciclib, Palbociclib, Ribociclib
RB1 Heterozygous deletion	_	Abemaciclib, Palbociclib, Ribociclib

[†]Based on published evidence, this alteration may confer less benefit from the indicated drug.

Note:

- The above summary tables present genomic variants and biomarkers based on the three-tiered approach proposed by US FDA for reporting tumor profiling NGS testing. "Variants/biomarkers with evidence of clinical significance" refers to mutations that are widely recognized as standard-of-care biomarkers (FDA level 2/AMP tier 1). "Variants/biomarkers with potential clinical significance" refers to mutations that are not included in the standard of care but are informational for clinicians, which are commonly biomarkers used as inclusion criterial for clinical trials (FDA level 3/AMP tier 2).
- The therapeutic agents and possible effects to a given drug are based on mapping the variants/biomarkers with ACT Genomics clinical knowledge database. The mapping results only provide information for reference, but not medical recommendation.
- Please refer to corresponding sections for more detailed information about genomic alteration and clinical relevance listed above.

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 1 of 34

ACTOnco® + Report

TESTING RESULTS

VARIANT(S) WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

Gene	Amino Acid Change	Allele Frequency
CDKN1B	Splice acceptor	48.3%
EGFR	E746_A750del (Exon 19 deletion)	60.3%
PIK3CA	E545K	65.8%
RB1	H339fs	74.0%
TP53	R175H	88.1%

- Copy Number Alterations

Chromosome	Gene	Variation	Copy Number
Chr13	RB1	Heterozygous deletion	1
Chr7	KMT2C	Heterozygous deletion	1
Chr9	PTCH1	Heterozygous deletion	1

- Fusions

Fusion Gene & Exon	Transcript ID	
No fusion gene detected in this sample		

- Immune Checkpoint Inhibitor (ICI) Related Biomarkers

Biomarker	Results
Tumor Mutational Burden (TMB)	6.3 muts/Mb
Microsatellite Instability (MSI)	Microsatellite stable (MSS)

Note:

- Variant(s) enlisted in the SNV table may currently exhibit no relevance to treatment response prediction. Please refer to INTERPRETATION for more biological information and/or potential clinical impacts of the variants.
- Loss of heterozygosity (LOH) information was used to infer tumor cellularity. Copy number alteration in the tumor was determined based on 80% tumor purity.
- For more therapeutic agents which are possibly respond to heterozygous deletion of genes listed above, please refer to APPENDIX for more information.
- TMB was calculated by using the sequenced regions of ACTOnco®+ to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The threshold for high mutation load is set at ≥ 7.5 mutations per megabase. TMB, microsatellite status and gene copy number deletion cannot be determined if calculated tumor purity is < 30%.

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專樂醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 2 of 34

ACTOnco® + Report

SUPPLEMENTARY INFORMATION FOR THERAPEUTIC IMPLICATIONS TARGETED THERAPIES

Genomic Alterations	Therapies	Effect	
Level 3A			
EGFR E746_A750del	Afatinih Dagamitinih Fulatinih Cafitinih Osimontinih		
(Exon 19 deletion)	Afatinib, Dacomitinib, Erlotinib, Gefitinib, Osimertinib	sensitive	
PIK3CA E545K	Alpelisib, Capivasertib, Everolimus	sensitive	
Level 3B			
PIK3CA E545K	Temsirolimus	sensitive	
Level 4			
PIK3CA E545K	Trametinib	sensitive	
PIK3CA E545K	Lapatinib, Trastuzumab	less sensitive	
RB1 H339fs	Abemaciclib, Palbociclib, Ribociclib	resistant	
RB1 Heterozygous deletion	Abemaciclib, Palbociclib, Ribociclib	resistant	

Therapies associated with benefit or lack of benefit are based on biomarkers detected in this tumor and published evidence in professional guidelines or peer-reviewed journals.

Level	Description
1	FDA-recognized biomarkers predictive of response or resistance to FDA approved drugs in this indication
2	Standard care biomarkers (recommended by the NCCN guideline) predictive of response or resistance to FDA approved drugs in this indication
зА	Biomarkers predictive of response or resistance to therapies approved by the FDA or NCCN guideline in a different cancer type
3B	Biomarkers that serve as inclusion criteria for clinical trials (minimal supportive data required)
4	Biomarkers that show plausible therapeutic significance based on small studies, few case reports, or preclinical studies

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

行動器四幅床分于爾学貝爾至 音近市内湖區新湖二間345號3F Email: service@actgenomics.com T:+886-2-2795-3660 F:+886-2-2795-5016

AG4-QP4001-02(08) page 3 of 34

ACTOnco® + Report

IMMUNE CHECKPOINT INHIBITORS (ICIs)

No genomic alterations detected to confer sensitivity or lack of benefit to immune checkpoint therapies.

- Other Biomarkers with Potential Clinical Effects for ICIs

Genomic Alterations	Potential Clinical Effects
EGFR aberration	Likely associated with WORSE response to ICIs

Note: Tumor non-genomic factors, such as patient germline genetics, PDL1 expression, tumor microenvironment, epigenetic alterations or other factors not provided by this test may affect ICI response.

CHEMOTHERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
RB1				
H339fs	Cisplatin	Sensitive	Clinical	Bladder carcinoma
Heterozygous deletion				
RB1	FAC			
H339fs	T/FAC	Sensitive	Clinical	Breast cancer
Heterozygous deletion	taxane/doxorubicin			
TP53	Platinum- and taxane-	Less sensitive	Clinical	Ovarian cancer
R175H	based regimens	Less sensitive	Cillical	Ovarian cancer

HORMONAL THERAPIES

Genomic Alterations	Therapies	Effect	Level of Evidence	Cancer Type
RB1				
H339fs	Tamoxifen	Resistant	Clinical	Breast cancer
Heterozygous deletion				

OTHERS

No genomic alterations detected in this tumor predicted to confer sensitivity or lack of benefit to other therapies.

Note:

Therapeutic implications provided in the test are based solely on the panel of 440 genes sequenced. Therefore, alterations in genes not covered in this panel, epigenetic and post-transcriptional and post-translational factors may also determine a patient's response to therapies. In addition, several other patient-associated clinical factors, including but not limited to, prior lines of therapies received, dosage and combinations with other therapeutic agents, patient's cancer types, sub-types, and/or stages, may also determine the patient's clinical response to therapies.

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專樂醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

AG4-QP4001-02(08) page 4 of 34

Project ID: C24-M001-00289 Report No.: AA-24-00591 ONC

Date Reported: Feb 15, 2024

VARIANT INTERPRETATION

CDKN1B Splice acceptor

Biological Impact

The CDKN1B gene encodes cyclin-dependent kinase (CDK) inhibitor 1B, also called p27, which is a member of the Cip/Kip protein family. The p27 protein is ubiquitously expressed and located both in the nucleus and in the cytoplasm. Nuclear p27 functions as a tumor suppressor by controlling cell cycle progression from G1 to S phase, specifically by inhibiting the binding of cyclin A and E to CDK2[1]. It has been demonstrated that haploinsufficiency of CDKN1B contributed to leukemogenesis in T-cell prolymphocytic leukemia^[2].

CDKN1B c.476-1G>C is a variant located at the splice acceptor region, which may result in the exon skipping.

Therapeutic and prognostic relevance

Low CDKN1B levels due to increased protein degradation are prevalent in several different types of epithelial tumors and are commonly correlated with aggressive tumor growth and poor clinical outcome [3][4][5]. Loss of p27 expression is associated with poor prognosis in a variety of tumors, including pancreatic cancer^[6], colorectal cancer^[7], gastroenteropancreatic neuroendocrine tumors[8], and breast cancer[9].

In vitro data demonstrated that Src inhibitors could increase p27 stability and restore tamoxifen sensitivity in tamoxifenresistant breast cancer cells[10].

EGFR E746 A750del (Exon 19 deletion)

Biological Impact

The EGFR gene encodes for the Epidermal Growth Factor Receptor, a receptor tyrosine kinase which binds to its ligands, including Epidermal Growth Factor (EGF) and Transforming Growth Factor-alpha (TGF-alpha), activates downstream signaling pathways, including the canonical oncogenic MAPK and PI3K/AKT/mTOR signaling cascades[11]. Increased EGFR activity by mutations and/or amplification of the EGFR gene has been described in a wide range of cancers, such as lung, brain, colorectal and head and neck cancer^[12]. Mutations in the kinase domain of EGFR are commonly observed in non-small cell lung cancer (NSCLC), resulting in a constitutively activated form of the receptor [13]. On the other hand, in the brain and colorectal cancers, the most prevalent EGFR alteration is copy number amplification that results in receptor overexpression[14].

EGFR E746 A750del is located within the protein kinase domain of the EGFR protein, resulting in the deletion of five amino acids from amino acids 746 to 750 (UniProtKB)[15]. E746 A750del confers a gain of function to the EGFR protein, as demonstrated by increased EGFR kinase activity, activation of p44/42 MAPK and AKT, oncogenic transformation of the cells in vitro and promoting tumor growth in xenograft models[16][17][18].

EGFR exon 19 deletions are in-frame deletions of 9-24 nucleotides in exon 19 centred around codons 746-750 of the kinase domain of EGFR. The two most common EGFR alterations, L858R mutation and exon 19 deletions can result in constitutive activation of signal transduction pathways, leading to cell proliferation or anti-apoptosis without ligand binding^[19].

Therapeutic and prognostic relevance

There is accumulated clinical evidence suggested that patients with MDM2/MDM4 amplification or EGFR aberrations exhibited poor clinical outcome and demonstrated a significantly increased rate of tumor growth (hyper-progression) after receiving immune checkpoint (PD-1/PD-L1) inhibitors therapies[20](Annals of Oncology (2017) 28 (suppl 5): v403v427. 10.1093/annonc/mdx376).

EGFR mutation has been determined as an inclusion criteria for the trials examining afatinib efficacy in malignant

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 5 of 34

Project ID: C24-M001-00289 Report No.: AA-24-00591 ONC

Date Reported: Feb 15, 2024

glioma and pediatric tumors (NCT02423525, NCT02372006). In a retrospective study, treatment with gefitinib resulted in partial response in 7 patients and stable disease in 1 patient who are with lung adenocarcinoma harboring EGFR E746 A750del[21]. Preclinically, EGFR E746 A750del is sensitive to gefitinib, erlotinib, afatinib and osimertinib, demonstrated by the inhibition of EGFR signaling and cell proliferation in vitro[22][23][24].

The first- and second-generation EGFR-TKIs, including dacomitinib, erlotinib, gefitinib, and afatinib, have been approved by the U.S. FDA as first-line treatments for non-small cell lung cancer patients with EGFR exon 19 deletion or L858R mutation. Osimertinib, a third-generation EGFR-TKI, has also been approved by the U.S. FDA. It is indicated for adjuvant treatment or first-line treatment of metastatic NSCLC patients with EGFR exon 19 deletion or L858R mutation.

A phase III trial (NCT01774721) show that dacomitinib significantly improved PFS over gefitinib in first-line treatment of patients with EGFR-mutation-positive NSCLC[25]. Another phase III trial (NCT00949650) demonstrated that median PFS among lung cancer patients with exon 19 deletion or L858R EGFR mutation (n=308) was 13.6 months for afatinib and 6.9 months for chemotherapy[26]. Results from a double-blind, phase 3 trial further showed that osimertinib significantly demonstrated longer PFS than standard EGFR-TKIs (18.9 months vs. 10.2 months) in previously untreated EGFR mutation-positive (exon 19 deletion or L858R) advanced NSCLC[27].

PIK3CA E545K

Biological Impact

The PIK3CA gene encodes the catalytic subunit (p110α) of phosphatidylinositol 3-kinase (PI3K) that plays a key role in the PI3K/AKT signaling pathway and is involved in the regulation of cellular functions such as proliferation, metabolism and protein synthesis, angiogenesis and apoptosis. PIK3CA has long been described as an oncogene and the PIK3CA gene amplification, deletion, and mutations have been reported in a wide range of cancers, including colorectal, breast, brain, liver, ovarian, stomach and lung cancers[28][29][30][31]. Mutations located in the exon 9 that encodes the PI3K helical (like E542K, E545K) and the exon 20 that encodes the catalytic/kinase domain (like H1047R, H1047L, H1047Y) have been shown to result in the constitutively activated mutant, which could enhance downstream signaling and oncogenic transformation in vitro and in vivo[29][32][33][34].

The PIK3CA E545K/E542K is the second most prevalent activating mutations in breast cancer and are also highly recurrent in other cancer types.

Therapeutic and prognostic relevance

In a Phase II trial, a patient with head and neck squamous cell carcinoma harboring PIK3CA E545K demonstrated a partial response when treated with the combination of temsirolimus, carboplatin, and paclitaxel[35].

In a preclinical study, cells harbored different activating PIK3CA mutations (H1047R, E545K, G1049R, Q546K, N345K, H1047L, E542K) were significantly more sensitive to PIK3 pathway inhibitors (dactolisib, MK2206, alpelisib), and MEK1/2 inhibitor trametinib, compared to wild-type^[36]. According to ExteNET trial, PIK3CA activating mutation was not an appropriate predictive biomarker of response to neratinib in HER2-positive early breast cancer[37].

Alpelisib in combination with fulvestrant is FDA-approved for treating HR+, HER2-, PIK3CA-mutated, advanced breast cancer as detected by an FDA-approved test following progression on or after an endocrine-based regimen. FDA also approved capivasertib with fulvestrant for HR+, HER2-, locally advanced or metastatic breast cancer with one or more PIK3CA/AKT1/PTEN-alterations, as detected by an FDA-approved test, following progression on at least one endocrine-based regimen in the metastatic setting or recurrence on or within 12 months of completing adjuvant therapy.

In NCCN guidelines for breast cancer, alpelisib plus fulvestrant has been recommended for HR-positive/HER2-negative

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096. 行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 6 of 34

Project ID: C24-M001-00289 Report No.: AA-24-00591_ONC Date Reported: Feb 15, 2024

ACTOnco® + Report

breast cancer patients with PIK3CA activating mutation. Also, the NCCN guidelines for histiocytic neoplasms has recommended everolimus for patients with PIK3CA mutation.

PIK3CA mutation has been determined as an inclusion criterion for the trials evaluating everolimus, temsirolimus, and alpelisib efficacies in various types of solid tumors (NCT03805399, NCT03203525, NCT04251533).

Everolimus has shown clinical benefit when added to trastuzumab for patients with HER2-overexpressing metastatic breast cancer, particularly in those with PIK3CA mutations, PTEN loss, or hyperactive PI3K pathway^[38]. The addition of everolimus to trastuzumab plus vinorelbine has also prolonged PFS in patients with trastuzumab-resistant and taxane-pretreated, HER2-positive, advanced breast cancer. However, adverse events should be taken into consideration^[39]. Patients with PIK3CA mutations have shown a favorable response to mTOR inhibitors-containing monotherapy or in combination with doxorubicin and bevacizumab. Combining PI3K-targeted agents with endocrine therapy is suggested^{[40][41][42][43]}.

Hyperactivation of the PI3K signaling pathway is associated with resistance to endocrine and HER2-targeting therapies in advanced breast cancer patients^{[44][45][46][47]}. PIK3CA mutations also occur in 5% of EGFR-mutated lung cancers that developed resistance to EGFR TKI therapy^{[48][49]}.

In CRC patients, PIK3CA mutation and wild-type KRAS/BRAF showed fair responses to anti-EGFR therapies^[50]. PIK3CA mutations are significantly correlated with better recurrence-free survival in unsorted breast cancer patients, according to two meta-analyses involving five studies^{[51][52][53]}. However, in patients with advanced EGFR- or KRAS-mutant lung adenocarcinoma, a concurrent PIK3CA mutation is a poor prognostic factor^[54].

RB1 H339fs, Heterozygous deletion

Biological Impact

The Retinoblastoma (RB1) gene encodes a tumor suppressor that negatively regulates the cell cycle, cell division, and DNA replication^[55]. Loss-of-function RB1 could lead to unregulated cell division and growth, abrogation of multiple mechanisms that safeguard against cellular transformation, and tumorigenesis^[56]. RB1 has also been implicated as a haploinsufficient tumor suppressor with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions^{[57][58][59]}. Deletion or inactivating mutation of RB1 is found in a number of tumors, including lung, prostate, bladder, breast cancers and sarcomas. RB1 mutations are found in approximately half of all retinoblastoma cases^[60].

H339fs mutation results in a change in the amino acid sequence beginning at 339, likely to cause premature truncation of the functional RB1 protein (UniProtKB). This mutation is predicted to lead to a loss of RB1 protein function, despite not being characterized in the literature. Loss of the second wild-type allele resulted in the biallelic inactivation of the gene.

Therapeutic and prognostic relevance

A deleterious mutation in one or more of the three DNA repair genes ATM, RB1, and FANCC predicted pathologic response and better overall survival to cisplatin-based chemotherapy for muscle-invasive bladder cancer patients^[61]. High RB loss was found to be associated with improved pathologic clinical response in breast cancer patients treated with 5-fluorouracil/adriamycin/cytoxan (FAC), T/FAC, and Taxane/Adriamycin neoadjuvant therapy^[62].

Clinical and experimental data suggested that a non-functional retinoblastoma pathway is associated with resistance to tamoxifen in breast cancer^{[63][64]}.

Acquired RB1 mutations were found in hormone receptor positive breast cancer patients who developed resistance to

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096. 行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,講諮詢專樂醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 7 of 34

Project ID: C24-M001-00289 Report No.: AA-24-00591_ONC Date Reported: Feb 15, 2024

ACTOnco® + Report

palbociclib or ribociclib treatment^[65]. Preclinical data also showed that knockdown of RB1 would impair antitumor activity of CDK4/6 inhibitor, abemaciclib^[66].

Two large-scale genome-sequencing projects have identified a high prevalence of mutations in TP53 and RB1 in small cell lung cancer (SCLC)^{[67][68]}. Analyses of repeat biopsy samples from patients with EGFR-mutant adenocarcinoma that had transformed to the SCLC subtype have revealed that 100% of these patients have loss of RB1 and may be the alteration that induces this non-small-cell to small-cell transformation^{[64][69]}.

TP53 R175H

Biological Impact

TP53 encodes the p53 protein, a crucial tumor suppressor that orchestrates essential cellular processes including cell cycle arrest, senescence and apoptosis^[70]. TP53 is a proto-typical haploinsufficient gene, such that loss of a single copy of TP53 can result in tumor formation^[71].

The R175H is a hotspot mutation lies within the DNA binding domain of p53 and can be detected in various human cancers^[72]. This is a gain-of-function (GOF) mutant losing the wild-type tumor suppressor activity and with acquired new oncogenic activities that capable of contributing to malignant progression^[73]. Increased expression of TP53 R175H in endometrial cancer cells has been shown to increase the invasive phenotypes by activation of the EGFR/PI3K/AKT pathway^[74].

Therapeutic and prognostic relevance

Despite having a high mutation rate in cancers, there are currently no approved targeted therapies for TP53 mutations. A phase II trial demonstrated that Wee1 inhibitor (AZD1775) in combination with carboplatin was well tolerated and showed promising anti-tumor activity in TP53-mutated ovarian cancer refractory or resistant (< 3 months) to standard first-line therapy (NCT01164995)[75].

In a retrospective study (n=19), advanced sarcoma patients with TP53 loss-of-function mutations displayed improved progression-free survival (208 days versus 136 days) relative to patients with wild-type TP53 when treated with pazopanib^[76]. Results from another Phase I trial of advanced solid tumors (n=78) demonstrated that TP53 hotspot mutations are associated with better clinical response to the combination of pazopanib and vorinostat^[77].

Advanced solid tumor and colorectal cancer patients harboring a TP53 mutation have been shown to be more sensitive to bevacizumab when compared with patients harboring wild-type TP53^{[78][79][80]}. In a pilot trial (n=21), TP53-negative breast cancer patients demonstrated increased survival following treatment with bevacizumab in combination with chemotherapy agents, Adriamycin (doxorubicin) and Taxotere (docetaxel)^[81]. TP53 mutations were correlated with poor survival of advanced breast cancer patients receiving tamoxifen or primary chemotherapy^{[82][83]}. In a retrospective study of non-small cell lung cancer (NSCLC), TP53 mutations were associated with high expression of VEGF-A, the primary target of bevacizumab, offering a mechanistic explanation for why patients exhibit improved outcomes after bevacizumab treatment when their tumors harbor mutant TP53 versus wild-type TP53^[84].

TP53 oncomorphic mutations, including P151S, Y163C, R175H, L194R, Y220C, R248Q, R248W, R273C, R273H, R273L, and R282W have been shown to predict resistance to platinum- and taxane-based chemotherapy in advanced serous ovarian carcinoma patients^[95].

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專樂醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 8 of 34

Project ID: C24-M001-00289 Report No.: AA-24-00591 ONC

Date Reported: Feb 15, 2024

KMT2C Heterozygous deletion

Biological Impact

Lysine methyltransferase 2C (KMT2C) gene encodes the histone methyltransferase MLL3, which methylates lysine residue four on the tail of histone H3 (H3K4)[86] and regulates the gene expression during development and hematopoiesis[87][88][89]. KMT2C is ubiquitously expressed, and its function is essential for normal embryonal development and cell proliferation[90]. Genetic deletion of the region containing KMT2C is the most common chromosomal abnormality in acute myeloid leukemia[91][92], and KMT2C mutation has been reported in breast cancer, cutaneous squamous cell carcinoma, and leukemia[93][94][95][96][97]. KMT2C was implicated as a haploinsufficient gene with one copy loss may lead to weak protein expression and is insufficient to execute its original physiological functions[98]. Animal studies revealed that MLL3 haploinsufficiency enhances hematopoietic stem cells (HSCs) selfrenewal capacity and induces extensive division of HSCs (AACR; Cancer Res 2018;78(13 Suppl): Abstract nr 4996).

Therapeutic and prognostic relevance

Preclinical studies of cell lines and xenograft models demonstrated that cells with reduced KMT2C expression and activity are deficient in homologous recombination-mediated double-strand break DNA repair and therefore, are more sensitive to olaparib, a PARP1/2 inhibitor[99].

A meta-analysis indicated that low levels of KMT2C expression was associated with better overall survival in pancreatic ductal adenocarcinoma (PDAC) patients^[100]. However, another study of ER-positive breast cancer patients (n = 401) demonstrated that low KMT2C expression was associated with worse overall survival[101].

PTCH1 Heterozygous deletion

Biological Impact

The PTCH1 (protein patched homolog 1) gene encodes a multi-pass transmembrane receptor for sonic hedgehog (shh), a tumor suppressor that acts to repress shh signaling in the absence of ligand[102]. Inactivation of PTCH1 results in hedgehog ligand-independent activation of SMO, causing a downstream activation of the pathway and lead to the neoplastic growth^{[103][104]}. Recurrent PTCH1 mutations have been reported in sporadic basal cell carcinoma (BCCs) and medulloblastoma[105][106][107][108]. Germline PTCH1 mutations are associated with the nevoid basal cell carcinoma syndrome (NBCCS, Gorlin syndrome), predisposing patients to basal cell carcinoma and medulloblastoma^[106]. PTCH1 is a haploinsufficient tumor suppressor gene with one copy loss may be sufficient to promote tumor development in mice^{[103][109]}

Therapeutic and prognostic relevance

Vismodegib and sonidegib are small molecule inhibitors of SMO approved by the U.S. FDA for the treatment of patients with basal cell carcinoma[110][111][112][113]. A heavily pretreated patient with metastatic medulloblastoma harboring loss-ofheterozygosity and somatic mutation of PTCH1 showed rapid regression of the tumor after treated with vismodegib^[114]. Furthermore, a phase II study demonstrated that vismodegib treatment results in extended progression-free survival (PFS) in patients with loss-of-heterozygosity, SHH-driven medulloblastoma[115]. In the phase II MyPathway trial, three advanced solid tumors patients harboring PTCH1 loss-of-function mutations had partial responses to vismodegib treatment[116]. In a clinical study, two patients with Sonic Hedgehog (SHH) activated medulloblastoma harboring PTCH1 loss-of-function mutations demonstrated partial responses to sonidegib treatment[117].

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 9 of 34

ACTOnco® + Report

US FDA-APPROVED DRUG(S)

Afatinib (GILOTRIF)

Afatinib acts as an irreversible covalent inhibitor of the ErbB family of receptor tyrosine kinases, including epidermal growth factor receptor (EGFR) and erbB-2 (HER2). Afatinib is developed and marketed by Boehringer Ingelheim under the trade name GILOTRIF (United States) and GIOTRIF (Europe).

- FDA Approval Summary of Afatinib (GILOTRIF)

LUV L	Non-small cell lung carcinoma (Approved on 2016/04/15)
LUX-Lung 8 ^[118]	EGFR ex19del or L858R
NCT01523587	Afatinib vs. Erlotinib [PFS(M): 2.4 vs. 1.9]
0[119]	Non-small cell lung carcinoma (Approved on 2013/07/13)
LUX-Lung 3 ^[119]	EGFR ex19del or L858R
NCT00949650	Afatinib vs. Pemetrexed + cisplatin [PFS(M): 11.1 vs. 6.9]

Alpelisib (PIQRAY)

Alpelisib is an inhibitor of phosphatidylinositol-3-kinase (PI3K) with inhibitory activity predominantly against PI3K α . Gain-of-function mutations in the gene encoding the catalytic α -subunit of PI3K (PIK3CA) lead to activation of PI3K α and Akt-signaling, cellular transformation and the generation of tumors in in vitro and in vivo models. Alpelisib is developed and marketed by Novartis under the trade name PIQRAY.

- FDA Approval Summary of Alpelisib (PIQRAY)

SOLAR-1 ^[120] NCT02437318	001 40 4[120]	Hr-positive, her2-negative breast cancer (Approved on 2019/05/24)
	00=2.000	PIK3CA mutation
	NC102437318	Alpelisib plus fulvestrant vs. Placebo plus fulvestrant [PFS(M): 11 vs. 5.7]

Capivasertib (TRUQAP)

Capivasertib is developed and marketed by AstraZeneca Pharmaceuticals under the trade name TRUQAP.

- FDA Approval Summary of Capivasertib (TRUQAP)

CARKelle 204	Her2-receptor negative breast cancer (Approved on 2023/11/16)
CAPItello-291	PIK3CA/AKT1/PTEN-alterations
NCT04305496	Capivasertib + fulvestrant vs. Placebo + fulvestrant [investigator-assessed PFS(M): 7.3 vs. 3.1]

Dacomitinib (VIZIMPRO)

Dacomitinib is an oral kinase inhibitor that targets EGFR. Dacomitinib is developed and marketed by Pfizer under the trade name VIZIMPRO.

- FDA Approval Summary of Dacomitinib (VIZIMPRO)

ADCUED 4050[25]	Non-small cell lung carcinoma (Approved on 2018/09/27)	
ARCHER 1050 ^[25] NCT01774721	EGFR ex19del or L858R	
NC101//4/21	Dacomitinib vs. Gefitinib [PFS(M): 14.7 vs. 9.2]	

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 10 of 34

ACTOnco® + Report

Erlotinib (TARCEVA)

Erlotinib is a small molecule, reversible inhibitor of epidermal growth factor receptor (EGFR), a receptor tyrosine kinase. Erlotinib is developed by OSI Pharmaceuticals, Genentech and Roche, and marketed by Astellas Pharm Global Development under the trade name TARCEVA.

- FDA Approval Summary of Erlotinib (TARCEVA)

RELAY NCT02411448	Non-small cell lung carcinoma (Approved on 2020/05/29)
	EGFR ex19del or L858R
NC102411446	Erlotinib + ramucirumab vs. Erlotinib + placebo [PFS(M): 19.4 vs. 12.4]
EURTAC ^[121]	Non-small cell lung carcinoma (Approved on 2013/05/14)
	EGFR ex19del or L858R
NCT00446225	Erlotinib vs. Cisplatin + gemcitabine or cisplatin + docetaxel or carboplatin + gemcitabine or carboplatin + docetaxel [PFS(M): 10.4 vs. 5.2]
- • [122]	Pancreatic cancer (Approved on 2005/11/02)
PA.3 ^[122]	
NCT00026338	Gemcitabine vs. Placebo [OS(M): 6.5 vs. 6.0]

Everolimus (AFINITOR)

Everolimus, a derivative of sirolimus, works as an inhibitor of mammalian target of rapamycin complex 1 (mTORC1) and blocks mTORC1-mediated downstream signals for cell growth, proliferation, and survival. Everolimus is developed and marketed by Novartis under the trade name AFINITOR.

- FDA Approval Summary of Everolimus (AFINITOR)

RADIANT-4 ^[123]	Lung or gastrointestinal neuroendocrine tumor (Approved on 2016/02/26)	
	-	
NCT01524783	Everolimus vs. Placebo [PFS(M): 11 vs. 3.9]	
DOLEDO 0[124]	Breast cancer (Approved on 2012/07/20)	
BOLERO-2 ^[124]	ER+/HER2-	
NCT00863655	Everolimus + exemestane vs. Placebo + exemestane [PFS(M): 7.8 vs. 3.2]	
EXIST-2	Tuberous sclerosis complex (tsc)-associated renal angiomyolipoma (Approved on 2012/04/26)	
NCT00790400	-	
	Everolimus vs. Placebo [ORR(%): 41.8 vs. 0]	
(425)	Pancreatic neuroendocrine tumor (Approved on 2011/05/05)	
RADIANT-3 ^[125]	-	
NCT00510068	Everolimus vs. Placebo [PFS(M): 11 vs. 4.6]	
-14361	Subependymal giant cell astrocytoma (Approved on 2010/10/29)	
EXIST-1 ^[126]		
NCT00789828	Everolimus vs. Placebo [ORR(%): 35.0]	
DECODD 4[127]	Renal cell carcinoma (Approved on 2009/05/30)	
RECORD-1 ^[127]		
NCT00410124	Everolimus vs. Placebo [PFS(M): 4.9 vs. 1.9]	

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專樂醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

AG4-QP4001-02(08) page 11 of 34

Project ID: C24-M001-00289

Report No.: AA-24-00591_ONC Date Reported: Feb 15, 2024

Gefitinib (IRESSA)

Gefitinib is a small molecule inhibitor of epidermal growth factor receptor (EGFR), a receptor tyrosine kinase. Gefitinib is developed and marketed by AstraZeneca under the trade name IRESSA.

- FDA Approval Summary of Gefitinib (IRESSA)

IFUM ^[128]	Non-small cell lung carcinoma (Approved on 2015/07/13)
	EGFR ex19del or L858R
NCT01203917	Gefitinib [ORR(%): 50.0]

Niraparib (ZEJULA)

Niraparib is an oral, small molecule inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1 and -2 (PARP-1, -2). Niraparib is developed and marketed by Tesaro under the trade name ZEJULA.

- FDA Approval Summary of Niraparib (ZEJULA)

	Prostate cancer (Approved on 2023/08/11)	
MAGNITUDE	BRCA mutation	
NCT03748641	Niraparib and abiraterone acetate plus prednisone vs. placebo and abiraterone acetate plus prednisone [rPFS(M): 16.6 vs. 10.9]	
PRIMA	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2020/04/29)	
NCT02655016	-	
NC10203010	Niraparib vs. Placebo [PFS (overall population)(M): 13.8 vs. 8.2]	
NOVA[129]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/03/27)	
NOVA ^[129]		
NCT01847274	Niraparib vs. Placebo [PFS (overall population)(M): 11.3 vs. 4.7]	

Olaparib (LYNPARZA)

Olaparib is an oral, small molecule inhibitor of poly (ADP-ribose) polymerase-1, -2, and -3 (PARP-1, -2, -3). Olaparib is developed by KuDOS Pharmaceuticals and marketed by AstraZeneca under the trade name LYNPARZA.

- FDA Approval Summary of Olaparib (LYNPARZA)

	Prostate cancer (Approved on 2023/05/31)	
PROpel	BRCA mutation	
NCT03732820	Olaparib + abiraterone + prednisone vs. Placebo + abiraterone + prednisone [rPFS(M): not reached vs. 8]	
Oh mani A	Her2-negative high-risk early breast cancer (Approved on 2022/03/11)	
OlympiA	HER2-/gBRCA mutation	
NCT02032823	Olaparib vs. Placebo [invasive disease-free survival (IDFS)(M):]	
DD 05	Prostate cancer (Approved on 2020/05/19)	
PROfound ^[130]	HRR genes mutation	
NCT02987543	Olaparib vs. Enzalutamide or abiraterone acetate [PFS(M): 5.8 vs. 3.5]	
DAOL A 4[131]	Ovarian cancer (Approved on 2020/05/08)	
PAOLA-1 ^[131]	HRD+	
NCT02477644	Olaparib + bevacizumab vs. Placebo + bevacizumab [PFS(M): 37.2 vs. 17.7]	

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師・報告結果僅對此試驗件有效・

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 12 of 34

ACTOnco® + Report

POLO ^[132] NCT02184195	Pancreatic adenocarcinoma (Approved on 2019/12/27)	
	gBRCA mutation	
	Olaparib vs. Placebo [ORR(%): 23.0 vs. 12.0, PFS(M): 7.4 vs. 3.8]	
001 0 4[433]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/12/19)	
SOLO-1 ^[133]	gBRCA mutation or sBRCA mutation	
NCT01844986	Olaparib vs. Placebo [PFS(M): NR vs. 13.8]	
OlympiAD ^[134] NCT02000622	Breast cancer (Approved on 2018/02/06)	
	HER2-/gBRCA mutation	
	Olaparib vs. Chemotherapy [PFS(M): 7 vs. 4.2]	
SOLO-2/ENGOT-Ov21 ^[135]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)	
NCT01874353	gBRCA mutation	
NC101074333	Olaparib vs. Placebo [PFS(M): 19.1 vs. 5.5]	
044-0[136]	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2017/08/17)	
Study19 ^[136]	- /	
NCT00753545	Olaparib vs. Placebo [PFS(M): 8.4 vs. 4.8]	

Osimertinib (TAGRISSO)

Osimertinib is a third-generation tyrosine kinase inhibitor (TKI) for patients with tumors harboring EGFR T790M mutation. Osimertinib is developed and marketed by AstraZeneca under the trade name TAGRISSO.

- FDA Approval Summary of Osimertinib (TAGRISSO)

	Non-small cell lung carcinoma (Approved on 2020/12/18)
ADAURA NCT02511106	EGFR ex19del or L858R
	Osimertinib vs. Placebo + adjuvant chemotherapy [DFS(M): NR vs. 19.6]
FLAURA ^[27] NCT02296125	Non-small cell lung carcinoma (Approved on 2018/04/18)
	EGFR ex19del or L858R
	Osimertinib vs. Gefitinib or erlotinib [PFS(M): 18.9 vs. 10.2]
AURA3 ^[137] NCT02151981	Non-small cell lung carcinoma (Approved on 2017/03/30)
	EGFR T790M
	Osimertinib vs. Chemotherapy [PFS(M): 10.1 vs. 4.4]
AURA ^[138] NCT01802632	Non-small cell lung carcinoma (Approved on 2015/11/13)
	EGFR T790M
	Osimertinib [ORR(%): 59.0]

Rucaparib (RUBRACA)

Rucaparib is an inhibitor of the DNA repair enzyme poly (ADP-ribose) polymerase-1, -2 and -3 (PARP-1, -2, -3). Rucaparib is developed and marketed by Clovis Oncology under the trade name RUBRACA.

- FDA Approval Summary of Rucaparib (RUBRACA)

TDITONO	TRITONIO	Prostate cancer (Approved on 2020/05/15)	
	TRITON2 NCT02952534	gBRCA mutation or sBRCA mutation	
	NC102952534	Rucaparib [ORR(%): 44.0, DOR(M): NE]	

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專樂醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page **13** of **34**

ACTOnco® + Report

	Ovarian cancer, Fallopian tube cancer, Peritoneal carcinoma (Approved on 2018/04/06)
ARIEL3[139]	
NCT01968213	Rucaparib vs. Placebo [PFS (All)(M): 10.8 vs. 5.4, PFS (HRD)(M): 13.6 vs. 5.4, PFS
	(tBRCA)(M): 16.6 vs. 5.4]

Sonidegib (ODOMZO)

Sonidegib is a Hedgehog signaling pathway inhibitor by blocking its key component, smoothened (smo). Sonidegib is developed and marketed by Novartis under the trade name ODOMZO.

- FDA Approval Summary of Sonidegib (ODOMZO)

DOI T[112]	Basal cell carcinoma (Approved on 2015/07/24)
BOLT ^[112]	
NCT01327053	Sonidegib [ORR(%): 58.0]

Talazoparib (TALZENNA)

Talazoparib is an inhibitor of poly (ADP-ribose) polymerase (PARP) enzymes, including PARP1 and PARP2. Talazoparib is developed and marketed by Pfizer under the trade name TALZENNA.

- FDA Approval Summary of Talazoparib (TALZENNA)

TAL ADDO 0	Prostate cancer (Approved on 2023/06/20)
TALAPRO-2 NCT03395197	HRR genes mutation
NC103395197	Talazoparib + enzalutamide vs. Placebo + enzalutamide [rPFS(M): Not reached vs. 13.8]
54500 40 4 [140]	Breast cancer (Approved on 2018/10/16)
EMBRACA ^[140]	HER2-/gBRCA mutation
NCT01945775	Talazoparib vs. Chemotherapy [PFS(M): 8.6 vs. 5.6]

Temsirolimus (TORISEL)

Temsirolimus is a soluble ester of sirolimus (rapamycin, brand-name drug Rapamune) and functions as an inhibitor of mammalian target of rapamycin complex (mTORC). The inhibitory molecular mechanism is similar to Everolimus. Temsirolimus is developed by Wyeth Pharmaceuticals and marketed by Pfizer under the trade name TORISEL.

- FDA Approval Summary of Temsirolimus (TORISEL)

[141]	Renal cell carcinoma (Approved on 2007/05/30)
	-
NCT00065468	Temsirolimus vs. Ifn-α [OS(M): 10.9 vs. 7.3]

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專樂醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

AG4-QP4001-02(08) page 14 of 34

ACTOnco® + Report

Trametinib (MEKINIST)

Trametinib is an anti-cancer inhibitor which targets MEK1 and MEK2. Trametinib is developed and marketed by GlaxoSmithKline (GSK) under the trade name MEKINIST.

- FDA Approval Summary of Trametinib (MEKINIST)

CDRB436G2201	Low-grade glioma (Approved on 2023/03/09)					
	BRAF V600E					
NCT02684058	Dabrafenib + trametinib vs. Carboplatin + vincristine [ORR(%): 46.6 vs. 10.8]					
RF117019, NCI-MATCH,	Cancer (Approved on 2022/06/22)					
CTMT212X2101	BRAF V600E					
NCT02034110,						
NCT02465060,	Dabrafenib + trametinib [ORR(adult patients)(%): 41.0, ORR(pediatric patients)(%): 25.0]					
NCT02124772						
BRF117019 ^[142]	Anaplastic thyroid cancer (Approved on 2018/05/04)					
	BRAF V600E					
NCT02034110	Dabrafenib + trametinib [ORR(%): 61.0]					
BRF113928 ^[143]	Non-small cell lung cancer (Approved on 2017/06/22)					
NCT01336634	BRAF V600E					
NC101330034	Trametinib + dabrafenib vs. Dabrafenib [ORR(%): 63.0 vs. 27.0, DOR(M): 12.6 vs. 9.9]					
000001 4[144]	Melanoma (Approved on 2014/01/10)					
COMBI-d ^[144]	BRAF V600E/K					
NCT01584648	Trametinib + dabrafenib vs. Dabrafenib + placebo [PFS(M): 9.3 vs. 8.8]					
COMBI-v ^[145]	Melanoma (Approved on 2014/01/10)					
NCT01597908	BRAF V600E/K					
NO 10 1097 900	Dabrafenib + trametinib vs. Vemurafenib [OS(M): NR vs. 17.2]					
METDIC[146]	Melanoma (Approved on 2013/05/29)					
METRIC ^[146]	BRAF V600E/K					
NCT01245062	Trametinib vs. Dacarbazine or paclitaxel [PFS(M): 4.8 vs. 1.5]					

Vismodegib (ERIVEDGE)

Vismodegib is a cyclopamine-competitive antagonist and acts as a first-in-class Hedgehog signaling pathway inhibitor by blocking its key component smoothened (smo). Vismodegib is developed by Genentech and marketed by Roche under the trade name ERIVEDGE.

- FDA Approval Summary of Vismodegib (ERIVEDGE)

ERIVANCE BCC ^[110]	Basal cell carcinoma (Approved on 2012/01/30)
NCT00833417	Vismodegib [ORR (mBCC)(%): 30.3, ORR (laBCC)(%): 42.9]

D=day; W=week; M=month

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師・報告結果僅對此試驗件有效・

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

AG4-QP4001-02(08) page **15** of **34**

Project ID: C24-M001-00289 Report No.: AA-24-00591_ONC Date Reported: Feb 15, 2024

ACTOnco® + Report

ONGOING CLINICAL TRIALS

Trials were searched by applying filters: study status, patient's diagnosis, intervention, location and/or biomarker(s). Please visit https://clinicaltrials.gov to search and view for a complete list of open available and updated matched trials.

No trial has been found.

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page **16** of **34**

ACTOnco® + Report

SUPPLEMENTARY INFORMATION OF TESTING RESULTS DETAILED INFORMATION OF VARIANTS WITH CLINICAL RELEVANCE

- Single Nucleotide and Small InDel Variants

•							
Gene	Amino Acid Exon		cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
CDKN1B	Splice acceptor	-	c.476-1G>C	NM_004064	COSM5029099	48.3%	1010
EGFR	E746_A750del (Exon 19 deletion)	19	c.2236_2250del	NM_005228	COSM6225	60.3%	1198
PIK3CA	E545K	10	c.1633G>A	NM_006218	COSM763	65.8%	1185
RB1	H339fs	10	c.1016del	NM_000321	-	74.0%	104
TP53	R175H	5	c.524G>A	NM_000546	COSM10648	88.1%	623

- Copy Number Alterations

Observed copy number (CN) for each evaluated position is shown on the y-axis. Regions referred to as amplification or deletion are shown in color. Regions without significant changes are represented in gray.

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師・報告結果僅對此試驗件有效・

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

AG4-QP4001-02(08) page 17 of 34

ACTOnco® + Report

OTHER DETECTED VARIANTS

Gene	Amino Acid Change	Exon	cDNA Change	Accession Number	COSMIC ID	Allele Frequency	Coverage
ADAMTS18	Splice region	-	c.2032+5T>C	NM_199355	-	50.4%	760
ATRX	P2478A	35	c.7432C>G	NM_000489	-	7.5%	530
CDKN1B	E14Q	1	c.40G>C	NM_004064	-	46.2%	829
ESR1	G145S	1	c.433G>A	NM_000125	-	60.4%	432
FAT1	E1292K	5	c.3874G>A	NM_005245	-	42.1%	463
GATA1	R113L	3	c.338G>T	NM_002049	COSM4382973	92.4%	952
HSP90AA1	Splice region	-	c.1487-5C>A	NM_005348	-	52.1%	1899
KMT2C	H3578R	43	c.10733A>G	NM_170606	-	33.6%	402
MUC16	I14208V	76	c.42622A>G	NM_024690	COSM7276075	31.0%	1137
MUC16	T5718I	3	c.17153C>T	NM_024690	-	73.1%	487
PIK3C2G	G1086R	24	c.3256G>A	NM_004570	-	23.2%	1179
PIK3CA	D352H	5	c.1054G>C	NM_006218	-	70.9%	55
PRKDC	E1215Q	31	c.3643G>C	NM_006904	-	41.2%	51
ROS1	R1592C	29	c.4774C>T	NM_002944	COSM6768584	42.7%	1400
TAF1	G246E	6	c.737G>A	NM_138923	-	31.4%	1503
VEGFA	N321S	5	c.962A>G	NM_001025368	COSM6935311	42.1%	463

Note:

- This table enlists variants detected by the panel other than those with clinical relevance (reported in Testing Result section).

The clinical impact of a genetic variant is determined according to ACT Genomics in-house clinical knowledge database. A negative result does not necessarily indicate absence of biological effect on the tumor. Some variants listed here may possibly have preclinical data or may show potential clinical relevance in the future.

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專樂醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page **18** of **34**

Project ID: C24-M001-00289 Report No.: AA-24-00591_ONC Date Reported: Feb 15, 2024

ACTOnco® + Report

TEST DETAILS

SPECIMEN RECEIVED AND PATHOLOGY REVIEW

- Collection date: Jan 22, 2024
- Facility retrieved: 臺北榮總
- H&E-stained section No.: S11390221
- Collection site: Liver
- Examined by: Dr. Yeh-Han Wang
 - 1. The percentage of viable tumor cells in total cells in the whole slide (%): 80%
 - 2. The percentage of viable tumor cells in total cells in the encircled areas in the whole slide (%): 80%
 - 3. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the whole slide (%): 0%
 - 4. The percentage of necrotic cells (including necrotic tumor cells) in total cells in the encircled areas in the whole slide (%): 0%
 - 5. Additional comment: NA
- Manual macrodissection: Not performed
- The outline highlights the area of malignant neoplasm annotated by a pathologist.

RUN QC

Panel: ACTOnco[®]+

DNA test

- Mean Depth: 869x
- Target Base Coverage at 100x: 95%

RNA test

- Average unique RNA Start Sites per control GSP2: 154

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 19 of 34

Project ID: C24-M001-00289

Report No.: AA-24-00591_ONC Date Reported: Feb 15, 2024

LIMITATIONS

- 1. This test does not provide information of variant causality and does not detect variants in non-coding regions that could affect gene expression. This report does not report polymorphisms and we do not classify whether a mutation is germline or somatic. Variants identified by this assay were not subject to validation by Sanger or other technologies.
- 2. The possibility cannot be excluded that certain pathogenic variants detected by other sequencing tools may not be reported in the test because of technical limitation of bioinformatics algorithm or the NGS sequencing platform, e.g. low coverage.
- 3. This test has been designed to detect fusions in 13 genes sequenced. Therefore, fusion in genes not covered by this test would not be reported. For novel fusions detected in this test, Sanger sequencing confirmation is recommended if residue specimen is available.

NEXT-GENERATION SEQUENCING (NGS) METHODS

DNA test

Extracted genomic DNA was amplified using primers targeting coding exons of analyzed genes and subjected to library construction. Barcoded libraries were subsequently conjugated with sequencing beads by emulsion PCR and enriched using Ion Chef system. Sequencing was performed according to Ion Proton or Ion S5 sequencer protocol (Thermo Fisher Scientific).

Raw reads generated by the sequencer were mapped to the hg19 reference genome using the Ion Torrent Suite. Coverage depth was calculated using Torrent Coverage Analysis plug-in. Single nucleotide variants (SNVs) and short insertions/deletions (InDels) were identified using the Torrent Variant Caller plug-in. VEP (Variant Effect Predictor) was used to annotate every variant using databases from Clinvar, COSMIC and Genome Aggregation database. Variants with coverage \geq 20, allele frequency \geq 5% and actionable variants with allele frequency \geq 2% were retained. This test provides uniform coverage of the targeted regions, enabling target base coverage at $100x \geq 85\%$ with a mean coverage \geq 500x.

Variants reported in Genome Aggregation database with > 1% minor allele frequency (MAF) were considered as polymorphisms. ACT Genomics in-house database was used to determine technical errors. Clinically actionable and biologically significant variants were determined based on the published medical literature.

The copy number alterations (CNAs) were predicted as described below:

Amplicons with read counts in the lowest 5th percentile of all detectable amplicons and amplicons with a coefficient of variation ≥ 0.3 were removed. The remaining amplicons were normalized to correct the pool design bias. ONCOCNV (an established method for calculating copy number aberrations in amplicon sequencing data by Boeva et al., 2014) was applied for the normalization of total amplicon number, amplicon GC content, amplicon length, and technology-related biases, followed by segmenting the sample with a gene-aware model. The method was used as well for establishing the baseline of copy number variations.

Tumor mutational burden (TMB) was calculated by using the sequenced regions of ACTOnco $^{\otimes}$ + to estimate the number of somatic nonsynonymous mutations per megabase of all protein-coding genes (whole exome). The TMB calculation predicted somatic variants and applied a machine learning model with a cancer hotspot correction. TMB may be reported as "TMB-High", "TMB-Low" or "Cannot Be Determined". TMB-High corresponds to \geq 7.5 mutations per megabase (Muts/Mb); TMB-Low corresponds to \leq 7.5 Muts/Mb. TMB is reported as "Cannot Be Determined" if the tumor purity of the sample is \leq 30%.

Classification of microsatellite instability (MSI) status is determined by a machine learning prediction algorithm. The change of a number of repeats of different lengths from a pooled microsatellite stable (MSS) baseline in > 400 genomic loci are used as the features for the algorithm. The final output of the results is either microsatellite Stable (MSS) or microsatellite instability high (MSI-H).

RNA test

Extracted RNA was reverse-transcribed and subjected to library construction. Sequencing was performed according to lon Proton or lon S5 sequencer protocol (Thermo Fisher Scientific). To ensure sequencing quality for fusion variant analysis, the average unique RNA Start Sites (SS) per control Gene Specific Primer 2 (GSP 2) should be \geq 10.

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專樂醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 20 of 34

ACTOnco® + Report

The fusion analysis pipeline aligned sequenced reads to the human reference genome, identified regions that map to noncontiquous regions of the genome, applied filters to exclude probable false-positive events and, annotated previously characterized fusion events according to Quiver Gene Fusion Database, a curated database owned and maintained by ArcherDX. In general, samples with detectable fusions need to meet the following criteria: (1) Number of unique start sites (SS) for the GSP2 ≥ 3; (2) Number of supporting reads spanning the fusion junction ≥ 5; (3) Percentage of supporting reads spanning the fusion junction ≥ 10%; (4) Fusions annotated in Quiver Gene Fusion Database.

DATABASE USED

- Reference genome: Human genome sequence hg19
- COSMIC v.92
- Genome Aggregation database r2.1.1
- ClinVar (version 20210404)
- ACT Genomics in-house database
- Quiver Gene Fusion Database version 5.1.18

Variant Analysis:

醫檢師陳韻伃 博士 Yun-Yu Chen Ph.D. 檢字第 015647 號

Yun Yu Chen

Sign Off

醫檢師陳韻仔 博士 Yun-Yu Chen Ph.D. 檢字第 015647 號

Yun Yu Chen

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 21 of 34

ACTOnco® + Report

GENE LIST SNV & CNV

ABCB1*	ABCC2*	ABCG2*	ABL1	ABL2	ADAMTS1	ADAMTS13	ADAMTS15	ADAMTS16	ADAMTS18	ADAMTS6	ADAMTS9
ADAMTSL1	ADGRA2	ADH1C*	AKT1	AKT2	AKT3	ALDH1A1*	ALK	AMER1	APC	AR	ARAF
ARID1A	ARID1B	ARID2	ASXL1	ATM	ATR	ATRX	AURKA	AURKB	AXIN1	AXIN2	AXL
B2M	BAP1	BARD1	BCL10	BCL2*	BCL2L1	BCL2L2*	BCL6	BCL9	BCOR	BIRC2	BIRC3
BLM	BMPR1A	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1	BTG2*	BTK	BUB1B	CALR
CANX	CARD11	CASP8	CBFB	CBL	CCNA1	CCNA	CCNB1	CCNB2	CCNB3	CCND1	CCND2
CCND3	CCNE1	CCNE2	CCNH	CD19	CD274	CD58	CD70*	CD79A	CD79B	CDC73	CDH1
CDK1	CDK12	CDK2	CDK4	CDK5	CDK6	CDK7	CDK8	CDK9	CDKN1A	CDKN1B	CDKN2A
CDKN2B	CDKN2C	CEBPA*	CHEK1	CHEK2	CIC	CREBBP	CRKL	CRLF2	CSF1R	CTCF	CTLA4
CTNNA1	CTNNB1	CUL3	CYLD	CYP1A1*	CYP2B6*	CYP2C19*	CYP2C8*	CYP2D6	CYP2E1*	CYP3A4*	CYP3A5*
DAXX	DCUN1D1	DDR2	DICER1	DNMT3A	DOT1L	DPYD	DTX1	E2F3	EGFR	EP300	EPCAM
EPHA2	ЕРНА3	EPHA5	EPHA7	EPHB1	ERBB2	ERBB3	ERBB4	ERCC1	ERCC2	ERCC3	ERCC4
ERCC5	ERG	ESR1	ESR2	ETV1	ETV4	EZH2	FAM46C	FANCA	FANCC	FANCD2	FANCE
FANCF	FANCG	FANCL	FAS	FAT1	FBXW7	FCGR2B	FGF1*	FGF10	FGF14	FGF19*	FGF23
FGF3	FGF4*	FGF6	FGFR1	FGFR2	FGFR3	FGFR4	FH	FLCN	FLT1	FLT3	FLT4
FOXL2*	FOXP1	FRG1	FUBP1	GATA1	GATA2	GATA3	GNA11	GNA13	GNAQ	GNAS	GREM1
GRIN2A	GSK3B	GSTP1*	GSTT1*	HGF	HIF1A	HIST1H1C*	HIST1H1E*	HNF1A	HR	HRAS*	HSP90AA
HSP90AB1	HSPA4	HSPA5	IDH1	IDH2	IFNL3*	IGF1	IGF1R	IGF2	IKBKB	IKBKE	IKZF1
IL6	IL7R	INPP4B	INSR	IRF4	IRS1	IRS2*	JAK1	JAK2	JAK3	JUN*	KAT6A
KDM5A	KDM5C	KDM6A	KDR	KEAP1	KIT	KMT2A	КМТ2С	KMT2D	KRAS	LCK	LIG1
LIG3	LMO1	LRP1B	LYN	MALT1	MAP2K1	MAP2K2	MAP2K4	MAP3K1	MAP3K7	MAPK1	МАРК3
MAX	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1	MET	MITF	MLH1	MPL	MRE11
MSH2	MSH6	MTHFR*	MTOR	MUC16	MUC4	MUC6	МИТҮН	MYC	MYCL	MYCN	MYD88
NAT2*	NBN	NEFH	NF1	NF2	NFE2L2	NFKB1	NFKBIA	NKX2-1*	NOTCH1	NOTCH2	<i>NOTCH3</i>
NOTCH4	NPM1	NQ01*	NRAS	NSD1	NTRK1	NTRK2	NTRK3	PAK3	PALB2	PARP1	PAX5
PAX8	PBRM1	PDCD1	PDCD1LG2	PDGFRA	PDGFRB	PDIA3	PGF	PHOX2B*	PIK3C2B	PIK3C2G	PIK3C3
PIK3CA	PIK3CB	PIK3CD	PIK3CG	PIK3R1	PIK3R2	PIK3R3	PIM1	PMS1	PMS2	POLB	POLD1
POLE	PPARG	PPP2R1A	PRDM1	PRKAR1A	PRKCA	PRKCB	PRKCG	PRKCI	PRKCQ	PRKDC	PRKN
PSMB8	PSMB9	PSME1	PSME2	PSME3	PTCH1	PTEN	PTGS2	PTPN11	PTPRD	PTPRT	RAC1
RAD50	RAD51	RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10	RECQL4
REL	RET	RHOA	RICTOR	RNF43	ROS1	RPPH1	RPTOR	RUNX1	RUNX1T1	RXRA	SDHA
SDHB	SDHC	SDHD	SERPINB3	SERPINB4	SETD2	SF3B1	SGK1	SH2D1A*	SLC19A1*	SLC22A2*	SLCO1B1
SLCO1B3*	SMAD2	SMAD3	SMAD4	SMARCA4	SMARCB1	SMO	SOCS1*	SOX2*	SOX9	SPEN	SPOP
SRC	STAG2	STAT3	STK11	SUFU	SYK	SYNE1	TAF1	TAP1	TAP2	TAPBP	TBX3
TEK	TERT	TET1	TET2	TGFBR2	TMSB4X*	TNF	TNFAIP3	TNFRSF14	TNFSF11	TOP1	TP53
TPMT*	TSC1	TSC2	TSHR	TYMS	U2AF1	UBE2A*	UBE2K	UBR5	UGT1A1*	USH2A	VDR*
VEGFA	VEGFB	VHL	WT1	XIAP	XPO1	XRCC2	ZNF217				

^{*}Analysis of copy number alterations NOT available.

FUSION

ALK	BRAF	EGFR	FGFR1	FGFR2	FGFR3	MET	NRG1	NTRK1	NTRK2	NTRK3	RET	ROS1
-----	------	------	-------	-------	-------	-----	------	-------	-------	-------	-----	------

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page **22** of **34**

ACTOnco® + Report

APPENDIX

POSSIBLE THERAPEUTIC IMPLICATIONS FOR HETEROZYGOUS DELETION

Gene	Therapies	Possible effect
KMT2C	Niraparib, Olaparib, Rucaparib, Talazoparib	sensitive
PTCH1	Sonidegib, Vismodegib	sensitive

SIGNALING PATHWAYS AND MOLECULAR-TARGETED AGENTS

Receptor Tyrosine Kinase/Growth Factor Signalling

1: Gefitinib, Afatinib, Erlotinib, Osimertinib, Dacomitinib; 2: Afatinib

1: Sonidegib, Vismodegib

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師・報告結果僅對此試驗件有效・

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

AG4-QP4001-02(08) page 23 of 34

ACTOnco® + Report

1: Alpelisib; 2: Capivasertib; 3: Everolimus, Temsirolimus; 4: Trametinib

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page **24** of **34**

Project ID: C24-M001-00289 Report No.: AA-24-00591_ONC Date Reported: Feb 15, 2024

ACTOnco® + Report

DISCLAIMER

法律聲明

本檢驗報告僅提供專業醫療參考,結果需經專業醫師解釋及判讀。基因突變資訊非必具備藥物或治療有效性指標,反之亦然。本檢驗報告提供之用藥指引不聲明或保證其臨床有效性,反之亦然。本基因檢測方法係由本公司研究開發,已經過有效性測試。

本檢驗報告非經本公司許可,不得私自變造、塗改,或以任何方式作為廣告及其他宣傳之用途。

本公司於提供檢驗報告後,即已完成本次契約義務,後續之報告解釋、判讀及用藥、治療,應自行尋求相關專業醫師協助,若需將報告 移件其他醫師,本人應取得該醫師同意並填寫移件申請書,主動告知行動基因,行動基因僅能配合該醫師意願與時間提供醫師解說。

醫療決策需由醫師決定

任何治療與用藥需經由醫師在考慮病患所有健康狀況相關資訊包含健檢、其他檢測報告和病患意願後,依照該地區醫療照護標準由醫師獨立判斷。醫師不應僅依據單一報告結果(例如本檢測或本報告書內容)做決策。

基因突變與用藥資訊並非依照有效性排序

本報告中列出之生物標記變異與藥物資訊並非依照潛在治療有效性排序。

證據等級

藥物潛在臨床效益(或缺乏潛在臨床效益)的實證證據是依據至少一篇臨床療效個案報告或臨床前試驗做為評估。本公司盡力提供適時及 準確之資料,但由於醫學科技之發展日新月異,本公司不就本報告提供的資料是否為準確、適宜或最新作保證。

責任

本檢驗報告僅提供專業醫療參考,本公司及其員工不對任何由使用本報告之內容引起的直接、間接、特殊、連帶或衍生的損失或損害承擔責任。

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 25 of 34

ACTOnco® + Report

REFERENCE

- PMID: 18354415; 2008, Nat Rev Cancer;8(4):253-67
 The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy.
- PMID: 18073348; 2008, Blood; 111(4):2321-8
 Haploinsufficiency of CDKN1B contributes to leukemogenesis in T-cell prolymphocytic leukemia.
- PMID: 15573116; 2004, Nat Rev Cancer;4(12):948-55
 Regulation of the cytoskeleton: an oncogenic function for CDK inhibitors?
- PMID: 12507555; 2003, Semin Cancer Biol;13(1):41-7
 Deregulated degradation of the cdk inhibitor p27 and malignant transformation.
- PMID: 10699961; 2000, J Cell Physiol; 183(1):10-7
 Regulation of the cdk inhibitor p27 and its deregulation in cancer.
- PMID: 14707458; 2003, Oncology;65(4):371-7
 Loss of p27 expression is associated with poor prognosis in stage I-II pancreatic cancer.
- PMID: 17086168; 2007, Mod Pathol;20(1):15-22
 Loss of nuclear p27 (CDKN1B/KIP1) in colorectal cancer is correlated with microsatellite instability and CIMP.
- PMID: 25036575; 2014, Cancer Res Treat;46(4):383-92
 p27 Loss Is Associated with Poor Prognosis in Gastroenteropancreatic Neuroendocrine Tumors.
- PMID: 29715580; 2018, Ann Diagn Pathol;34():170-174
 Expression of p27 and c-Myc by immunohistochemistry in breast ductal cancers in African American women.
- PMID: 17254967; 2007, Cell;128(2):281-94
 p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2.
- 11. PMID: 18045542; 2007, Cell;131(5):1018 SnapShot: EGFR signaling pathway.
- PMID: 10880430; 2000, EMBO J;19(13):3159-67
 The ErbB signaling network: receptor heterodimerization in development and cancer.
- 13. PMID: 15329413; 2004, Proc Natl Acad Sci U S A;101(36):13306-11
 EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and
- PMID: 11426640; 2000, Oncogene; 19(56):6550-65
 The EGF receptor family as targets for cancer therapy.
- 15. PMID: 17318210; 2007, Nat Rev Cancer;7(3):169-81 Epidermal growth factor receptor mutations in lung cancer.
- 16. PMID: 16373402; 2006, FASEB J;20(2):311-3
 Dimerization and the signal transduction pathway of a small in-frame deletion in the epidermal growth factor receptor.
- 17. PMID: 16912195; 2006, Cancer Res;66(16):8163-71
 Kinetic analysis of epidermal growth factor receptor somatic mutant proteins shows increased sensitivity to the epidermal growth factor receptor tyrosine kinase inhibitor, erlotinib.
- PMID: 29533785; 2018, Cancer Cell;33(3):450-462.e10
 Systematic Functional Annotation of Somatic Mutations in Cancer.

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 26 of 34

ACTOnco® + Report

- PMID: 22263017; 2010, J Thorac Dis;2(1):48-51
 Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update.
- PMID: 28351930; 2017, Clin Cancer Res;23(15):4242-4250
 Hyperprogressors after Immunotherapy: Analysis of Genomic Alterations Associated with Accelerated Growth Rate.
- PMID: 18981003; 2008, Clin Cancer Res;14(21):7060-7
 Effects of erlotinib in EGFR mutated non-small cell lung cancers with resistance to gefitinib.
- 22. PMID: 29467275; 2018, Mol Cancer Ther;17(4):740-750
 Pharmacological and Structural Characterizations of Naquotinib, a Novel Third-Generation EGFR Tyrosine Kinase Inhibitor, in EGFR-Mutated Non-Small Cell Lung Cancer.
- 23. PMID: 31314158; 2019, FEBS Open Bio;9(10):1689-1704 Characterization of epidermal growth factor receptor (EGFR) P848L, an unusual EGFR variant present in lung cancer patients, in a murine Ba/F3 model.
- PMID: 33395611; 2021, Lung Cancer;152():135-142
 Extensive functional evaluation of exon 20 insertion mutations of EGFR.
- 25. PMID: 28958502; 2017, Lancet Oncol;18(11):1454-1466

 Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial.
- 26. PMID: 29653820; 2018, Clin Lung Cancer;19(4):e465-e479
 Afatinib as First-line Treatment of Older Patients With EGFR Mutation-Positive Non-Small-Cell Lung Cancer: Subgroup Analyses of the LUX-Lung 3, LUX-Lung 6, and LUX-Lung 7 Trials.
- PMID: 29151359; 2018, N Engl J Med;378(2):113-125
 Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer.
- PMID: 16449998; 2006, Br J Cancer;94(4):455-9
 Mutation of the PIK3CA oncogene in human cancers.
- PMID: 15016963; 2004, Science; 304(5670):554
 High frequency of mutations of the PIK3CA gene in human cancers.
- PMID: 12094235; 2002, Nat Rev Cancer;2(7):489-501
 The phosphatidylinositol 3-Kinase AKT pathway in human cancer.
- 31. PMID: 9916799; 1999, Nat Genet; 21(1):99-102
 PIK3CA is implicated as an oncogene in ovarian cancer.
- PMID: 16168105; 2005, Breast Cancer Res;7(5):R609-16
 Somatic mutation and gain of copy number of PIK3CA in human breast cancer.
- PMID: 16432179; 2006, Proc Natl Acad Sci U S A;103(5):1475-9
 Cancer-specific mutations in PIK3CA are oncogenic in vivo.
- PMID: 23411347; 2013, Trends Pharmacol Sci;34(3):149-53
 Novel approaches to inhibitor design for the p110β phosphoinositide 3-kinase.
- 35. PMID: 28961834; 2017, Ann Oncol;28(10):2533-2538

 A phase II study of temsirolimus added to low-dose weekly carboplatin and paclitaxel for patients with recurrent and/or metastatic (R/M) head and neck squamous cell carcinoma (HNSCC).
- PMID: 26627007; 2015, Cancer Res;75(24):5341-54
 Identification of Variant-Specific Functions of PIK3CA by Rapid Phenotyping of Rare Mutations.

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

行動拳囚儡床分寸需学員版至 台北市內別國新湖一路345%3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 27 of 34

Project ID: C24-M001-00289 Report No.: AA-24-00591 ONC

Date Reported: Feb 15, 2024

ACTOnco® + Report

- PMID: 30867034; 2019, Breast Cancer Res;21(1):39 37 PIK3CA alterations and benefit with neratinib: analysis from the randomized, double-blind, placebo-controlled, phase III ExteNET trial.
- PMID: 27091708; 2016, J Clin Oncol;34(18):2115-24 38. Molecular Alterations and Everolimus Efficacy in Human Epidermal Growth Factor Receptor 2-Overexpressing Metastatic Breast Cancers: Combined Exploratory Biomarker Analysis From BOLERO-1 and BOLERO-3.
- PMID: 24742739; 2014, Lancet Oncol;15(6):580-91 39 Everolimus for women with trastuzumab-resistant, HER2-positive, advanced breast cancer (BOLERO-3): a randomised, double-blind, placebo-controlled phase 3 trial.
- PMID: 24440717; 2014, Cell Rep;6(2):377-87 40 Assessing PIK3CA and PTEN in early-phase trials with PI3K/AKT/mTOR inhibitors.
- PMID: 25878190: 2015. Ann Oncol:26(7):1346-52 41 Inhibition of the phosphoinositide 3-kinase pathway for the treatment of patients with metastatic metaplastic breast cancer.
- 42. PMID: 22927482; 2012, Clin Cancer Res;18(20):5796-805 Phase I study of the antiangiogenic antibody bevacizumab and the mTOR/hypoxia-inducible factor inhibitor temsirolimus combined with liposomal doxorubicin: tolerance and biological activity.
- PMID: 21890452; 2011, Clin Cancer Res;17(21):6840-6 43 A phase I trial of liposomal doxorubicin, bevacizumab, and temsirolimus in patients with advanced gynecologic and breast malignancies.
- PMID: 29086897; 2018, Breast Cancer; 25(4): 392-401 44. Mechanism of resistance to endocrine therapy in breast cancer: the important role of PI3K/Akt/mTOR in estrogen receptor-positive, HER2negative breast cancer.
- 45. PMID: 30651399; 2019, Oncologist;24(3):305-312 Exploring Biomarkers of Phosphoinositide 3-Kinase Pathway Activation in the Treatment of Hormone Receptor Positive, Human Epidermal Growth Receptor 2 Negative Advanced Breast Cancer.
- PMID: 26920887; 2016, Clin Cancer Res;22(15):3755-63 46. Relationship between Tumor Biomarkers and Efficacy in EMILIA, a Phase III Study of Trastuzumab Emtansine in HER2-Positive Metastatic Breast Cancer.
- PMID: 27177864; 2016, Ann Oncol;27(8):1519-25 PIK3CA mutations are associated with reduced pathological complete response rates in primary HER2-positive breast cancer: pooled analysis of 967 patients from five prospective trials investigating lapatinib and trastuzumab.
- 48. PMID: 21430269; 2011, Sci Transl Med;3(75):75ra26 Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors.
- PMID: 16906227; 2006, J Clin Invest; 116(10):2695-706 Allelic dilution obscures detection of a biologically significant resistance mutation in EGFR-amplified lung cancer.
- 50. PMID: 25714871: 2015. Mol Cancer Res:13(6):1003-8 AKT1 E17K in Colorectal Carcinoma Is Associated with BRAF V600E but Not MSI-H Status: A Clinicopathologic Comparison to PIK3CA Helical and Kinase Domain Mutants.
- PMID: 24748804; 2014, Onco Targets Ther;7():543-52 51. PIK3CA mutations define favorable prognostic biomarkers in operable breast cancer: a systematic review and meta-analysis.
- 52. PMID: 25176561: 2014. Sci Rep:4():6255 Prognostic role of PIK3CA mutations and their association with hormone receptor expression in breast cancer: a meta-analysis.
- PMID: 26028978; 2015, Breast Cancer (Dove Med Press);7():111-23 53. PI3K mutations in breast cancer: prognostic and therapeutic implications.

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 28 of 34

ACTOnco® + Report

PMID: 26334752; 2015, J Thorac Oncol;10(12):1713-9 54

Impact of Concurrent PIK3CA Mutations on Response to EGFR Tyrosine Kinase Inhibition in EGFR-Mutant Lung Cancers and on Prognosis in Oncogene-Driven Lung Adenocarcinomas.

PMID: 22293180; 2012, J Clin Invest; 122(2):425-34

Understanding pRb: toward the necessary development of targeted treatments for retinoblastoma.

- PMID: 6320372; 1984, Science; 223(4640):1028-33 56
 - Retinoblastoma: clues to human oncogenesis.
- 57. PMID: 27308386; 2015, Mol Cell Oncol;2(1):e968069 Conditional haploinsufficiency of the retinoblastoma tumor suppressor gene.
- PMID: 23687339; 2013, Cancer Res;73(14):4247-55

Rb1 haploinsufficiency promotes telomere attrition and radiation-induced genomic instability.

59. PMID: 28169375; 2017, Sci Rep;7():42056

The Rb1 tumour suppressor gene modifies telomeric chromatin architecture by regulating TERRA expression.

60. PMID: 15884040; 2005, Hum Mutat; 25(6): 566-74

Sensitive multistep clinical molecular screening of 180 unrelated individuals with retinoblastoma detects 36 novel mutations in the RB1 gene.

PMID: 26238431; 2015, Eur Urol;68(6):959-67

Defects in DNA Repair Genes Predict Response to Neoadjuvant Cisplatin-based Chemotherapy in Muscle-invasive Bladder Cancer.

62. PMID: 22811582; 2012, Clin Cancer Res;18(18):5110-22

RB-pathway disruption is associated with improved response to neoadjuvant chemotherapy in breast cancer.

63. PMID: 21358261; 2011. Cell Cycle:10(6):956-62

A non-functional retinoblastoma tumor suppressor (RB) pathway in premenopausal breast cancer is associated with resistance to tamoxifen.

64. PMID: 17160137; 2007, J Clin Invest; 117(1):218-28

The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer.

PMID: 29236940; 2018, Ann Oncol;29(3):640-645 65.

Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer.

PMID: 29483214; 2018, Mol Cancer Ther;17(5):897-907 66.

Preclinical Activity of Abemaciclib Alone or in Combination with Antimitotic and Targeted Therapies in Breast Cancer.

67. PMID: 22941188; 2012, Nat Genet; 44(10):1104-10

Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer.

PMID: 22941189; 2012, Nat Genet;44(10):1111-6

Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer.

69. PMID: 25846096: 2015. Lancet Oncol:16(4):e165-72

Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin.

PMID: 24739573: 2014. Nat Rev Cancer:14(5):359-70 70.

Unravelling mechanisms of p53-mediated tumour suppression.

71. PMID: 21125671; 2011, J Pathol;223(2):137-46

Haplo-insufficiency: a driving force in cancer.

72. PMID: 20182602; 2010, Cold Spring Harb Perspect Biol;2(1):a001008

TP53 mutations in human cancers: origins, consequences, and clinical use.

PMID: 24651012: 2014 Cancer Cell:25(3):304-17 73

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 29 of 34

Project ID: C24-M001-00289 Report No.: AA-24-00591_ONC Date Reported: Feb 15, 2024

ACTOnco® + Report

Mutant p53 in cancer: new functions and therapeutic opportunities.

74. PMID: 19917135; 2009, Mol Cancer;8():103

Elevated expression of p53 gain-of-function mutation R175H in endometrial cancer cells can increase the invasive phenotypes by activation of the EGFR/PI3K/AKT pathway.

75. PMID: 27998224; 2016, J Clin Oncol;34(36):4354-4361

Phase II Study of WEE1 Inhibitor AZD1775 Plus Carboplatin in Patients With TP53-Mutated Ovarian Cancer Refractory or Resistant to First-Line Therapy Within 3 Months.

76. PMID: 26646755; 2016, Ann Oncol;27(3):539-43

TP53 mutational status is predictive of pazopanib response in advanced sarcomas.

77. PMID: 25669829; 2015, Ann Oncol;26(5):1012-1018

Phase I study of pazopanib and vorinostat: a therapeutic approach for inhibiting mutant p53-mediated angiogenesis and facilitating mutant p53 degradation.

78. PMID: 27466356; 2016, Mol Cancer Ther; 15(10):2475-2485

TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics.

79. PMID: 23670029; 2013, Oncotarget;4(5):705-14

P53 mutations in advanced cancers: clinical characteristics, outcomes, and correlation between progression-free survival and bevacizumab-containing therapy.

80. PMID: 17145525; 2006, Semin Oncol;33(5 Suppl 10):S8-14

Bevacizumab in combination with chemotherapy: first-line treatment of patients with metastatic colorectal cancer.

81. PMID: 21399868; 2011, Int J Oncol;38(5):1445-52

p53, HER2 and tumor cell apoptosis correlate with clinical outcome after neoadjuvant bevacizumab plus chemotherapy in breast cancer.

82. PMID: 20549698; 2011, Int J Cancer;128(8):1813-21

p53 status influences response to tamoxifen but not to fulvestrant in breast cancer cell lines.

83. PMID: 10786679; 2000, Cancer Res;60(8):2155-62

 $Complete \ sequencing \ of \ TP53 \ predicts \ poor \ response \ to \ systemic \ the rapy \ of \ advanced \ breast \ cancer.$

84. PMID: 25672981; 2015, Cancer Res;75(7):1187-90

VEGF-A Expression Correlates with TP53 Mutations in Non-Small Cell Lung Cancer: Implications for Antiangiogenesis Therapy.

85. PMID: 25385265; 2015, Int J Oncol;46(2):607-18

TP53 oncomorphic mutations predict resistance to platinum and taxane based standard chemotherapy in patients diagnosed with advanced serous ovarian carcinoma.

86. PMID: 25998713; 2015, Nat Rev Cancer;15(6):334-46

Hijacked in cancer: the KMT2 (MLL) family of methyltransferases.

87. PMID: 24081332; 2013, Mol Cell Biol;33(23):4745-54

The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers.

88. PMID: 23166019; 2012, Genes Dev;26(23):2604-20

Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian MII3/MII4.

89. PMID: 27926873; 2016, Cell Rep;17(10):2715-2723

FOXA1 Directs H3K4 Monomethylation at Enhancers via Recruitment of the Methyltransferase MLL3.

90. PMID: 17021013; 2006, Proc Natl Acad Sci U S A;103(42):15392-7

Coactivator as a target gene specificity determinant for histone H3 lysine 4 methyltransferases.

91. PMID: 11891048: 2002. Gene:284(1-2):73-81

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 (5.動其思維性以不關係應論學)

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

AG4-QP4001-02(08) page 30 of 34

Project ID: C24-M001-00289 Report No.: AA-24-00591_ONC Date Reported: Feb 15, 2024

ACTOnco® + Report

MLL3, a new human member of the TRX/MLL gene family, maps to 7q36, a chromosome region frequently deleted in myeloid leukaemia.

- 92. PMID: 22234698; 2012, Blood;119(10):e67-75
 High-resolution genomic profiling of adult and pediatric core-binding factor acute myeloid leukemia reveals new recurrent genomic alterations.
- 93. PMID: 25537518; 2015, Oncotarget;6(4):2466-82
 Genetic alterations of histone lysine methyltransferases and their significance in breast cancer.
- PMID: 25303977; 2014, Clin Cancer Res;20(24):6582-92
 Mutational landscape of aggressive cutaneous squamous cell carcinoma.
- PMID: 25151357; 2014, Nat Genet;46(10):1097-102
 Genetic landscape of esophageal squamous cell carcinoma.
- PMID: 28801450; 2017, Blood;130(14):1644-1648
 Genomic analysis of hairy cell leukemia identifies novel recurrent genetic alterations.
- 97. PMID: 25794446; 2015, Cancer Genet; 208(5):178-91
 The cancer COMPASS: navigating the functions of MLL complexes in cancer.
- PMID: 24794707; 2014, Cancer Cell;25(5):652-65
 MLL3 is a haploinsufficient 7q tumor suppressor in acute myeloid leukemia.
- PMID: 30665945; 2019, EMBO Rep;20(3):
 The lysine-specific methyltransferase KMT2C/MLL3 regulates DNA repair components in cancer.
- 100. PMID: 27280393; 2016, Cancer Res;76(16):4861-71 Reduced Expression of Histone Methyltransferases KMT2C and KMT2D Correlates with Improved Outcome in Pancreatic Ductal Adenocarcinoma.
- 101. PMID: 27986439; 2017, Clin Breast Cancer; 17(3):e135-e142 Expression Levels of KMT2C and SLC20A1 Identified by Information-theoretical Analysis Are Powerful Prognostic Biomarkers in Estrogen Receptor-positive Breast Cancer.
- PMID: 8906794; 1996, Nature;384(6605):176-9
 Biochemical evidence that patched is the Hedgehog receptor.
- PMID: 12016144; 2002, Carcinogenesis; 23(5):727-33
 Unbalanced overexpression of the mutant allele in murine Patched mutants.
- PMID: 11130178; 2000, Cell Mol Life Sci;57(12):1720-31
 Hedgehog signalling in cancer.
- 105. PMID: 8782823; 1996, Nat Genet;14(1):78-81 The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas.
- 106. PMID: 8658145; 1996, Science;272(5268):1668-71Human homolog of patched, a candidate gene for the basal cell nevus syndrome.
- PMID: 9422511; 1998, Nature; 391(6662):90-2
 Activating Smoothened mutations in sporadic basal-cell carcinoma.
- PMID: 22832583; 2012, Nature;488(7409):100-5
 Dissecting the genomic complexity underlying medulloblastoma.
- PMID: 10738305; 2000, Genes Chromosomes Cancer;28(1):77-81
 Evidence that haploinsufficiency of Ptch leads to medulloblastoma in mice.
- 110. PMID: 22670903; 2012, N Engl J Med;366(23):2171-9

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page **31** of **34**

Project ID: C24-M001-00289 Report No.: AA-24-00591_ONC Date Reported: Feb 15, 2024

ACTOnco® + Report

Efficacy and safety of vismodegib in advanced basal-cell carcinoma.

111. PMID: 28511673; 2017, BMC Cancer;17(1):332

Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma: final update of the pivotal ERIVANCE BCC study.

112. PMID: 25981810: 2015. Lancet Oncol:16(6):716-28

Treatment with two different doses of sonidegib in patients with locally advanced or metastatic basal cell carcinoma (BOLT): a multicentre, randomised, double-blind phase 2 trial.

113. PMID: 31545507; 2020, Br J Dermatol; 182(6):1369-1378

Long-term efficacy and safety of sonidegib in patients with advanced basal cell carcinoma: 42-month analysis of the phase II randomized, double-blind BOLT study.

114. PMID: 19726761; 2009, N Engl J Med;361(12):1173-8

Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449.

115. PMID: 26169613; 2015, J Clin Oncol;33(24):2646-54

Vismodegib Exerts Targeted Efficacy Against Recurrent Sonic Hedgehog-Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032.

116. PMID: 29320312; 2018, J Clin Oncol;36(6):536-542

Targeted Therapy for Advanced Solid Tumors on the Basis of Molecular Profiles: Results From MyPathway, an Open-Label, Phase IIa Multiple Basket Study.

117. PMID: 34409296; 2021, Neurooncol Adv;3(1):vdab097

Clinical and molecular analysis of smoothened inhibitors in Sonic Hedgehog medulloblastoma.

118. PMID: 26156651; 2015, Lancet Oncol;16(8):897-907

Afatinib versus erlotinib as second-line treatment of patients with advanced squamous cell carcinoma of the lung (LUX-Lung 8): an open-label randomised controlled phase 3 trial.

119. PMID: 23816960; 2013, J Clin Oncol;31(27):3327-34

Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations.

120. PMID: 31091374; 2019, N Engl J Med;380(20):1929-1940

Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer.

121. PMID: 22285168; 2012, Lancet Oncol;13(3):239-46

Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial.

122. PMID: 17452677; 2007, J Clin Oncol;25(15):1960-6

Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group.

123. PMID: 26703889; 2016, Lancet;387(10022):968-977

Everolimus for the treatment of advanced, non-functional neuroendocrine tumours of the lung or gastrointestinal tract (RADIANT-4): a randomised, placebo-controlled, phase 3 study.

124. PMID: 22149876; 2012, N Engl J Med;366(6):520-9

Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer.

125. PMID: 21306238; 2011, N Engl J Med;364(6):514-23

Everolimus for advanced pancreatic neuroendocrine tumors.

126. PMID: 23158522; 2013, Lancet;381(9861):125-32

Efficacy and safety of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis complex (EXIST-1): a multicentre, randomised, placebo-controlled phase 3 trial.

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 32 of 34

ACTOnco® + Report

- 127. PMID: 18653228; 2008, Lancet;372(9637):449-56
 Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial.
- 128. PMID: 24263064; 2014, Br J Cancer;110(1):55-62
 First-line gefitinib in Caucasian EGFR mutation-positive NSCLC patients: a phase-IV, open-label, single-arm study.
- 129. PMID: 27717299; 2016, N Engl J Med;375(22):2154-2164
 Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer.
- PMID: 32343890; 2020, N Engl J Med;382(22):2091-2102
 Olaparib for Metastatic Castration-Resistant Prostate Cancer.
- PMID: 31851799; 2019, N Engl J Med;381(25):2416-2428
 Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.
- PMID: 31157963; 2019, N Engl J Med;381(4):317-327
 Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer.
- PMID: 30345884; 2018, N Engl J Med;379(26):2495-2505
 Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer.
- PMID: 28578601; 2017, N Engl J Med;377(6):523-533
 Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation.
- 135. PMID: 28754483; 2017, Lancet Oncol;18(9):1274-1284
 Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial.
- 136. PMID: 27617661; 2016, Lancet Oncol;17(11):1579-1589

 Overall survival in patients with platinum-sensitive recurrent serous ovarian cancer receiving olaparib maintenance monotherapy: an updated analysis from a randomised, placebo-controlled, double-blind, phase 2 trial.
- PMID: 27959700; 2017, N Engl J Med;376(7):629-640
 Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer.
- 138. PMID: 25923549; 2015, N Engl J Med;372(18):1689-99 AZD9291 in EGFR inhibitor-resistant non-small-cell lung cancer.
- 139. PMID: 28916367; 2017, Lancet;390(10106):1949-1961
 Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
- PMID: 30110579; 2018, N Engl J Med;379(8):753-763
 Talazoparib in Patients with Advanced Breast Cancer and a Germline BRCA Mutation.
- 141. PMID: 17538086; 2007, N Engl J Med;356(22):2271-81 Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma.
- 142. PMID: 29072975; 2018, J Clin Oncol;36(1):7-13
 Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer.
- 143. PMID: 27080216; 2016, Lancet Oncol;17(5):642-50

 Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single-arm, multicentre, open-label, phase 2 trial.
- 144. PMID: 25265492; 2014, N Engl J Med;371(20):1877-88 Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma.
- PMID: 25399551; 2015, N Engl J Med;372(1):30-9
 Improved overall survival in melanoma with combined dabrafenib and trametinib.

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

Email: service@actgenomics.com T: +886-2-2795-3660 F: +886-2-2795-5016

AG4-QP4001-02(08) page 33 of 34

Project ID: C24-M001-00289 Report No.: AA-24-00591_ONC Date Reported: Feb 15, 2024

ACTOnco® + Report

146. PMID: 22663011; 2012, N Engl J Med;367(2):107-14 Improved survival with MEK inhibition in BRAF-mutated melanoma.

行動基因是美國病理學會認證實驗室,認證實驗室號碼: 9028096.

行動基因僅提供技術檢測服務及檢測報告,檢測結果之臨床解釋及相關醫療處置,請諮詢專業醫師。報告結果僅對此試驗件有效。 行動基因臨床分子醫學實驗室 台北市內湖區新湖二路345號3F

AG4-QP4001-02(08) page **34** of **34**