We claim:

- 1. A process for producing crystalline Form I of cabergoline, which process comprises the preparation of toluene solvate Form X of cabergoline and its conversion into crystalline Form I of cabergoline.
- 2. A process according to claim 1 in which the preparation of toluene solvate form X comprises dissolving cabergoline in a suitable amount of toluene, cooling and stirring the resulting solution, quenching the resultant gel with cold heptane or hexane, collecting the resulting solvate form X of cabergoline having the XRD powder pattern of Figure 1 and converting the solvate form X into cabergoline Form I by storage at room temperature and/or by drying.

5

10

15

20

25

30

- 3. A process according to claim 2 in which the suitable amount of toluene is from 2.5 to 4.0 g of toluene per gram of cabergoline.
- 4. A process according to claim 2 in which the suitable amount of toluene is about 3.5 g of toluene per gram of cabergoline.
- 5. A process according to claim 2 in which cabergoline used as starting material is an oil, a crystalline form or mixture thereof.
- 6. A process according to claim 2 in which the solution of cabergoline in toluene is cooled to a temperature below -10 °C and stirred overnight.
- 7. A process according to claims 2 to 6 in which the resultant gel is quenched with cold heptane.
- 8. A process according to claim 7, in which the cold heptane is added to the gel in an amount of from 10 to 20 g of heptane for each gram of cabergoline.
- 9. A process according to claim 2 in which the final drying is carried out by heating the solids of the solvate form X, reducing the ambient pressure surrounding the solids, or combinations thereof.
- 10. A process according to claim 2 characterized in that the de-solvation and the drying steps are combined.
 - 11. Solvate form X of cabergoline having the XRD powder pattern of Figure 1.
- 12. Solvate form X of cabergoline having the distinctive peaks in the powder X-ray diffraction shown in the following table I:

Angle Intensity	Intensity	Intensity
2θ	Cps X 1000	%
7.988	6899	100.00
10.937	837	11.97
12.067	477	6.82
14.927	2213	31.66
17.162	2603	37.25

Angle Intensity	Intensity	Intensity
2θ	Cps X 1000	%
17.320	3163	, 45.26
19.938	855	12.22
21.075	2720	38.92
23.892	1371	19.61
26.779	1086	15.54

- 13. A process for producing solvate form X of cabergoline as defined in claim 11 or 12, which process comprises dissolving cabergoline in a suitable amount of toluene, cooling the resulting solution and stirring it under agitation, quenching the resultant gel with cold heptane or hexane, and collecting the resulting solvate form X of cabergoline.
- 14. A process according to claim 13 in which the resultant gel is quenched with cold heptane.

5

15. A process according to claim 14 in which the amount cold heptane added for quenching the gel is from 10 to 20 g for each gram of cabergoline.