Combo 9

July 2, 2024

Defina "I es una instrucción de S^{Σ} " 1

Una instruccion basica de S^{Σ} es una palabra de $(\Sigma \cup \Sigma_p)^*$ la cual es de alguna de las siguientes formas

```
N\bar{k} \leftarrow N\bar{k} + 1
N\bar{k} \leftarrow N\bar{k}\dot{-}1
N\bar{k} \leftarrow N\bar{n}
N\bar{k} \leftarrow 0
P\bar{k} \leftarrow P\bar{k}.a
P\bar{k} \leftarrow {}^{\frown}P\bar{k}
\mathbf{P}\bar{k} \leftarrow \mathbf{P}\bar{n}
\mathbf{P}\bar{k} \leftarrow \varepsilon
IF N\bar{k} \neq 0 GOTO L\bar{n}
IF P\bar{k} BEGINS a GOTO L\bar{n}
GOTO L\bar{n}
SKIP
```

donde $a \in \Sigma$ y $k, n \in \mathbb{N}$. Una instruccion de \mathcal{S}^{Σ} es ya sea una instruccion basica de \mathcal{S}^{Σ} o una palabra de la forma αI , donde $\alpha \in \{L\bar{n} : n \in \mathbb{N}\}\ y I$ es una instruccion basica de \mathcal{S}^{Σ} .

2 Defina " \mathcal{P} es un programa de S^{Σ} "

Un $programa\ de\ \mathcal{S}^\Sigma$ es una palabra de la forma

$$I_1I_2...I_n$$

donde $n \geq 1, I_1, ..., I_n \in \operatorname{Ins}^{\Sigma}$ y ademas se cumple la siguiente propiedad, llamada la ley de los GOTO,

(G) Para cada $i\in\{1,...,n\}$, si GOTOL \bar{m} es un tramo final de I_i , entonces existe $j\in\{1,...,n\}$ tal que I_j tiene label L \bar{m}

3 Defina $I_i^{\mathcal{P}}$

Definimos $I_i^{\mathcal{P}} \in Ins^{\Sigma} \cup \{\varepsilon\}$ como la *i*-ésima instrucción de \mathcal{P} . En caso que i = 0 o $i > n(\mathcal{P})$, se define

$$I_i^{\mathcal{P}} = \varepsilon$$

Luego, entonces, $\mathcal{P} = I_1^{\mathcal{P}}...I_{n(\mathcal{P})}^{\mathcal{P}}$

4 Defina $n(\mathcal{P})$

Definimos $n(\mathcal{P}) \in \omega$ como la cantidad de instrucciones del programa \mathcal{P} .

5 Defina Bas

La funcion $Bas: \operatorname{Ins}^{\Sigma} \to (\Sigma \cup \Sigma_p)^*$, está dada por

$$Bas(I) = \left\{ \begin{array}{ll} J & \quad \text{si I es de la forma $\mathbb{L}\bar{k}J$ con $J \in \mathrm{Ins}^{\Sigma}$} \\ I & \quad \text{caso contrario} \end{array} \right.$$