Examen - Métodos Numéricos

14 de diciembre de 2013

Número de prueba	APELLIDO, Nombre	Cédula de identidad

Problema 1 - Ecuaciones no lineales (40 puntos)

Sea $g: I \to \mathbb{R}$ una función con derivada continua, tal que |g'(x)| < 1 para todo x dentro del intervalo compacto I.

Consideremos la sucesión $x_{n+1} = g(x_n)$, con $x_0 \in I$.

Supongamos además que existe $\alpha \in I$ tal que $g(\alpha) = \alpha$.

- a) Probar los siguientes postulados:
 - i. $x_n \in I, \forall n \in \mathbb{N}$.
 - ii. $x_n \to \alpha$.
 - iii. Si $\beta = g(\beta) \in I$ entonces $\beta = \alpha$.
- b) Enunciar el Teorema de Órdenes para métodos iterativos generales (MIG).
- c) Sea $f : \mathbb{R} \to \mathbb{R}$ de clase C^2 , tal que $f(\alpha) = \alpha$, $|f'(\alpha)| \neq 1$ y $f''(\alpha) \neq 0$. Para hallar α se propone el siguiente método:

(M):
$$\begin{cases} x_0 \in \mathbb{R} \\ x_{n+1} = x_n + a(x_n - f(x_n)) + b(x_n^2 - f(x_n)^2) \end{cases}$$

Elegir a y b para que el método M sea convergente y tenga orden máximo.

d) Comparar M con el método de Newton-Raphson.

Problema 2 - Interpolación (30 puntos)

- a) Enunciar y demostrar el Teorema de acotación del error por interpolación polinómica.
- b) Explicar el método de interpolación de Lagrange.
- c) Expresar el polinomio interpolante de Lagrange de la función $f:[0,1] \to \mathbb{R}$ tal que $f(x) = sen(\pi x)$, por los cinco puntos con abscisas $x_i = \frac{i}{4}$, $i \in \{0, \dots, 4\}$.
- d) Acotar uniformemente el error cometido.
- e) Proponer una sucesión de polinomios que converge uniformemente a f. Sugerencia: considerar para cada natural n el polinomio interpolante por las abscisas i/n, $i \in \{0, 1, ..., n\}$.

Problema 3 - Ecuaciones diferenciales (30 puntos)

- a) Enunciar el Problema de Valores Iniciales (PVI).
- b) Definir los métodos de Trapecio y Euler hacia adelante.
- c) Definir el Problema Test, y hallar la región de estabilidad para ambos métodos.
- d) Definir la extrapolación de Richardson, y explicar su uso para mejorar el error de truncamiento en ambos métodos.

Fundamentar detalladamente cada respuesta.