Prédire la variété d'un iris

Christophe Viroulaud

Première - NSI

Prédire la variété d'un iris

Présentation graphique des informations

Algorithme kNN

résentation

Construction de l'algorithme

Sommaire

- 1. Problématique
- 2 Utiliser les données
- 3. Algorithme kNN

Prédire la variété d'un iris

Problématique

Utiliser les données

Présentation graphique des informations

Fredire la variei

Algorithme kNN

résentation

Construction de l'algorithm

Prédire la variété d'un iris

Problématique

Utiliser les données Présentation graphique des informations

Prédire la variét

Algorithme kNN

Présentation

Construction de l'algorithe Implémentation

En 1936, le biologiste *Ronald Fisher* a rassemblé les mesures de trois espèces d'iris.

Iris versicolor

Iris virginica

Prédire la variété d'un iris

Problématique

Utiliser les données

Présentation graphique de informations

Prédire la varié

agontinii kiv

résentation

struction de l'algorith

Comment prédire une information nouvelle à partir de données brutes ?

Sommaire

- 1. Problématique
- 2. Utiliser les données
- 2.1 Présentation graphique des informations
- 2.2 Prédire la variéte
- 3. Algorithme kNN

Prédire la variété d'un iris

Problématique

Utiliser les données

Présentation graphique des informations

i redire la variete

Algorithme kNN

résentation

Construction de l'algorithm

Présentation graphique des informations

FIGURE 1 – Variétés d'iris en fonction de leurs mesures

Prédire la variété d'un iris

Problématique

Utiliser les données

Présentation graphique des informations

Prédire la vari

Algorithme kNN

résentation

Sommaire

- 1. Problématique
- 2. Utiliser les données
- 2.1 Présentation graphique des informations
- 2.2 Prédire la variété
- 3. Algorithme kNN

Prédire la variété d'un iris

Problématique

Utiliser les données

Presentation graphique des informations

Prédire la variété

Algorithme kNN

ésentation

Construction de l'algorithme

Prédire la variété

Activité 1:

1. Déterminer la variété des iris suivants :

D CCCI IIIIICI	ia vai			Jaivaile
longueur	1	6	5.1	2.5
largeur	0.5	2.5	1.55	0.85

2. Proposer une méthode pour effectuer un choix dans les cas ambigus.

Prédire la variété d'un iris

Problèmatique

Présentation graphique des

Prédire la variété

Algorithme kNN

Construction de l'algorithme

Avant de regarder la correction

- Prendre le temps de réfléchir,
- Analyser les messages d'erreur,
- ► Demander au professeur.

Prédire la variété d'un iris

Problèmatique

Jtiliser les données Présentation graphique des informations

Prédire la variété

Algorithme kNN

résentation

Correction

longueur	1	6	5.1	2.5
largeur	0.5	2.5	1.55	0.85
variété	setosa	virginica	ambigu	ambigu

Prédire la variété d'un iris

Problématique

Utiliser les données
Présentation graphique des

Prédire la variété

Algorithme kNN

ésentation

Sommaire

- 1. Problématique
- 2 Utiliser les donnée

3. Algorithme kNN

- 3.1 Présentation
- 3.2 Construction de l'algorithme
- 3.3 Implémentation

Prédire la variété d'un iris

Problematique

Utiliser les données

Présentation graphique de informations

Prédire la variété

Algorithme kNN

Présentation

Construction de l'algorithme

Méthode des k plus proches voisins

Pour déterminer la variété d'un iris inconnu :

regarder la variété d'un nombre k de voisins,

Prédire la variété

Problématique

Utiliser les données Présentation graphique des informations

A Louis Loui

Présentation

Méthode des k plus proches voisins

Pour déterminer la variété d'un iris inconnu :

regarder la variété d'un nombre k de voisins,

▶ attribuer à la fleur inconnue, la variété la plus présente parmi ses k voisins.

Prédire la variété

Problématique

Jtiliser les données Présentation graphique des informations

Algorithme kNN

Présentation

Choix de k

Figure 2 – Détermination de l'iris (5.05, 1.5) pour k=3

Prédire la variété d'un iris

Problématique

Utiliser les données Présentation graphique des informations

Algorithme kNN

Présentation

Choix de k

Figure 3 – Détermination de l'iris (5.05, 1.5) pour k = 7

Prédire la variété d'un iris

Problématique

Utiliser les données Présentation graphique des informations

Algorithme kNN

Présentation

Complément

L'algorithme *kNN* est une méthode d'apprentissage *supervisé* : l'algorithme reçoit un ensemble de données déjà étiquetées sur lequel il va pouvoir s'entraîner et définir un modèle de prédiction.

Prédire la variété d'un iris

Problèmatique

Jtiliser les données Présentation graphique des informations

Algorithme kNN

Présentation

Sommaire

- 1. Problématique
- 2 Utiliser les données
- 3. Algorithme kNN
- 3.1 Présentation
- 3.2 Construction de l'algorithme
- 3.3 Implémentation

Prédire la variété d'un iris

1 Toblematique

Utiliser les données

Présentation graphique des

Prédire la variété

Algorithme kNN

Construction de l'algorithme

Calcul de la distance

Le plus naturel ici est de prendre la distance à vol d'oiseau ou plus formellement la distance euclidienne.

$$d = \sqrt{(x_A - x_B)^2 + (y_A - y_B)^2}$$

FIGURE 4 – distance euclidienne

Prédire la variété d'un iris

Problématique

tiliser les données Présentation graphique des informations

Prédire la variéte

Algorithme kiVIV

Calcul de la distance

$$d = |x_A - x_B| + |y_A - y_B|$$

FIGURE 5 – distance de Manhattan

Prédire la variété d'un iris

Problématiqu

Jtiliser les données Présentation graphique des informations

Algorithme kNN

Construction de l'algorithme

Activité 2 : Écrire en langage naturel, l'algorithme kNN.

Prédire la variété d'un iris

Problematique

Présentation graphique des informations

Présentation

Construction de l'algorithme

Avant de regarder la correction

- ► Prendre le temps de réfléchir,
- Analyser les messages d'erreur,
- Demander au professeur.

Prédire la variété d'un iris

Problématique

Utiliser les données
Présentation graphique des informations

Algorithme kNN

- ► Charger les données dans le programme.
- Choisir k.
- ► Stocker les mesures de la fleur inconnue.
- Calculer la distance euclidienne entre la fleur inconnue et tous les autres iris.
- Sélectionner les k plus proches iris (en distance) de la fleur inconnue.
- Affecter la variété majoritaire des k plus proches iris (en distance) à la fleur inconnue.

Sommaire

- 1 Problématique
- 2 Utiliser les donnée
- 3. Algorithme kNN
- 3.1 Présentation
- 3.2 Construction de l'algorithme
- 3.3 Implémentation

Prédire la variété d'un iris

Problematique

Otiliser les données Présentation graphique des

Prédire la variété

Algorithme kNN

ésentation

Construction de l'algorithm

Prédire la variété d'un iris

Problematique

Présentation graphique des informations

Algorithmo kNN

résentation

Construction de l'algorithme Implémentation

Pour charger les données on utilisera la bibliothèque csv.

Activité 3:

- 1. Télécharger le dossier compressé *iris.zip* sur le site https://cviroulaud.github.io
- 2. Ouvrir le fichier *data-iris.csv* avec un tableur pour observer les données.
- 3. Ouvrir le fichier iris-eleve.py.

Prédire la variété d'un iris

Problematique

Présentation graphique des informations

rredire la variete

Algorithme kNI - .

onstruction de l'algorithm

Avant de regarder la correction

- Prendre le temps de réfléchir,
- Analyser les messages d'erreur,
- ► Demander au professeur.

Prédire la variété d'un iris

Problématique

Jtiliser les données Présentation graphique des informations

Algorithme kNN

Présentation

Correction

petal_length	petal_width	species
1.4	0.2	setosa
1.4	0.2	setosa
1.3	0.2	setosa

Prédire la variété d'un iris

Problématique

Jtiliser les données Présentation graphique des informations

Algorithme kNN

ésentation

Prédire la variété d'un iris

Activité 3:

- 4. Compléter la fonction *charger_donnees* en utilisant les informations du fichier *csv*.
- Compléter la fonction distance qui calcule le carré de la distance euclidienne entre deux points du plan.
- 6. Compléter la fonction calculer_distances.
- Compléter enfin la fonction trouver_variete. Le dictionnaire compteur_voisins compte le nombre d'apparitions de chaque variété parmi les k voisins.

Problématique

Présentation graphique des informations

rredire la varieu

Algorithme kNN

Présentation

Avant de regarder la correction

- Prendre le temps de réfléchir,
- ► Analyser les messages d'erreur,
- Demander au professeur.

Prédire la variété d'un iris

Problèmatique

Jtiliser les données Présentation graphique des informations

Algorithme kNN

Présentation

11

return dico_varietes

```
def charger_donnees(nom_fichier: str) -> dict:
 1
       fichier = open(nom fichier)
       data iris = csv.DictReader(fichier, delimiter=",")
 3
       dico varietes = {"setosa": [], "versicolor": [], "virginica":
        \{ \}
 5
       # Pour chaque ligne de données
       for iris in data iris:
 6
           # Stocke la longueur et la largeur sous forme de tuple
        de flottants
           dico_varietes[iris["species"]].append(
              (float(iris["petal length"]), float(iris["petal width"
 9
        1)))
        fichier.close()
10
```

Problématique

tiliser les données résentation graphique des formations

écontation

Correction

Prédire la variété d'un iris

Problématique

Présentation graphique des informations

Prédire la variét

Algorithme kNN

ésentation

Construction de l'algorithme

```
def distance(connu: tuple, inconnu: tuple) -> float:
    return (connu[0]-inconnu[0])**2+(connu[1]-inconnu[1])
    **2
```

2

5

8

9

```
def calculer_distances(donnees: dict, inconnu: tuple) -> list:
       distances = []
       for nom, mesures in donnees.items():
           for iris in mesures:
              d = distance(iris, inconnu)
              distances.append((nom, d))
       # trie les iris en fonction de la distance
       distances.sort(key=lambda fleur: fleur[1])
       return distances
10
```

3

5

6

9 10 11

12

13

14

15

16

17

18

. . .-

esentation

```
def trouver_variete(k: int, distances: list) -> str:
   # compte le nombre d'occurences de chaque variété
   compteur\_voisins = \{\}
   for i in range(k):
      nom = distances[i][0]
      if nom in compteur_voisins:
         compteur\_voisins[nom] += 1
      else.
         compteur\_voisins[nom] = 1
   # recherche la variété avec la plus grande valeur dans
   compteur voisins
   maxi = 0
   nom maxi = 0
   for nom, quantite in compteur voisins.items():
      if quantite > maxi:
         maxi = quantite
         nom maxi = nom
   return nom maxi
```

Activité 3:

- 8. Tester la fonction avec k=3 puis k=7, puis pour les autres iris de l'activité 1.
- 9. Pour les plus avancés : Modifier le code pour tester un ensemble de 10 iris inconnus. De plus chaque iris déterminé sera ajouté au dictionnaire varietes afin d'augmenter l'apprentissage de l'algorithme.

Prédire la variété d'un iris

Problematique

Utiliser les données
Présentation graphique des informations

Algorithma kN

résentation onstruction de l'algorithme

Avant de regarder la correction

- ► Prendre le temps de réfléchir,
- ► Analyser les messages d'erreur,
- Demander au professeur.

Prédire la variété d'un iris

Problèmatique

Jtiliser les données Présentation graphique des informations

Algorithme kNN

Présentation

Correction

```
k = 3
cible = (5.1, 1.55)

varietes = charger_donnees("data-iris.csv")
distances_cible = calculer_distances(varietes, cible)
variete = trouver_variete(k, distances_cible)

print("La variété est ", variete)
```

Prédire la variété d'un iris

Problèmatique

Jtiliser les données Présentation graphique des informations

ósontation

onstruction de l'algorithme

résentation

Construction de l'algorithm

```
k = 3
    cibles = [(1,0.5),(6,2.5),(5.1, 1.55),(2.5,0.85),(3,2),
            (6.1.2),(2.1.1),(3.2.1.5),(3.5.2.5),(4.1)
 4
    varietes = charger_donnees("data-iris.csv")
 5
    for iris_inconnu in cibles:
       # trouve la variété
       distances cible = calculer distances(varietes,
 8
        iris inconnu)
9
       variete = trouver variete(k, distances cible)
        print(f"La variété de {iris_inconnu} est {variete}.")
10
        # ajout de cible au dictionnaire des données
11
       varietes[variete].append(iris inconnu)
12
```

Code complet

Le code complet est accessible ici.

Prédire la variété d'un iris

Problématique

Utiliser les données

Présentation graphique des informations

Algorithme kNN

résentation

Construction de l'algorithm