Projet d'Imagerie Numérique

SinGAN analysed with PatchMatch

Charbel-Raphaël Segerie, Hugo Laurençon

- 1. Introduction
 - a. SinGANb. PatchMatch
- 2. Analysis of Originality
 - a. Theory of originality in image creation
 - i. Motivations and Philosophy of Approach
 - ii. Choice of different metricsiii. Influence of the patch size
 - b. Analysis of originality : Visual Analysisc. Analysis of originality : Global Metrics
 - d. Analysis of the originality for different Generation Scales
 - Other experimentations
 - a. The SinGAN harmonization function
 - b. Super-Resolution and Animations

I. Introduction

SinGAN Network

SinGAN: Example

PatchMatch: Principle

II. Analysis of Originality

Theory of Originality: Motivations and Philosophy

- "originality" = "absence of copies"
- Relative / Absolute originality
- Which is the most original fake image from the reference of the original image?
- Why several metrics?
 - Goodhart's law: "when a metric becomes an objective, it ceases to be a good metric"
 - Validation

Theory of Originality: Metrics

We use the offset field calculated with PatchMatch

Global Metrics:

- NbSet : le nombre de zones de l'image avec un offset constant par morceau
- L2Norm : "L'intégrale des discontinuités de l'offset"
- AngleHistogramm : "Histogramme des angles de l'offset"

Local Metric:

MeanDotProduct : produit scalaire moyen des offsets normalisés par oiseau

Analysis of Originality: Visual Analysis

> Baseline Copy and Paste

Analysis of fake by manual copy-paste using patches of size 5

Analysis of Originality: Visual Analysis > SinGAN Generation

Analysis of fake generated with the SinGAN using patches of size 5

Analysis of Originality: Visual Analysis

> IPOL Inpainting: Non-Local Patch-Based Image Inpainting

Analysis of fake generated by inpainting using patches of size 5

Analysis of Originality: Global Metrics

Technique	PatchSize	L2Norm	L1Norm	NbSet
SinGan	5	15.85	12.80	9239
Inpainting	5	9.23	8.03	209
CopyPaste	5	11.48	9.28	245

Analysis of the originality for different Generation scales

Figure 7: Result of the analysis for different scales (normalized between 0 and 1).

Analysis of the originality for different Generation scales

Figure 8: Mean dot product results for different scales.

III. Complementary experiences

The SinGAN Harmonization function

> Orange square

The SinGAN Harmonization function

> Black square

(a) Image to harmonize

(e) GSS = 4

(b) GSS = 1

(f) GSS = 5

(c) GSS = 2

(g) GSS = 6

(d) GSS = 3

(h) GSS = 7

The SinGAN Harmonization function

> White square

(a) Image to harmonize

(e) GSS = 4

(b) GSS = 1

(f) GSS = 5

(c) GSS = 2

(g) GSS = 6

(d) GSS = 3

(h) GSS = 7

The SinGAN Harmonization function as denoiser

> Gaussian noise (std = 30)

Figure 13: Results of image denoising for a gaussian noise with $\sigma = 30$ using the Harmonization function of SinGAN for different scales. GSS: Generator starting scale.

The SinGAN Harmonization function as denoiser

> Salt and Pepper noise

Figure 14: Results of image denoising for a salt and pepper noise using the Harmonization function of SinGAN for different scales. GSS: Generator starting scale.

Annex

(b) Low resolution image upsampled naively

(c) High resolution image outputted by SinGAN