

Michele Leone

PhD candidate, 3rd year.

Thesis submission: October 2020

Advisor: Marco Masseroli

Identification, semantic annotation and comparison of chromatin regulatory states combinations in multiple biological conditions

Relevant publications/submissions:

- **Leone M**., Galeota E., Ceri S, Masseroli M., Pelizzola M. Identification, semantic annotation and comparison of chromatin regulatory states combinations in multiple biological conditions. Soon to be submitted to Bioinformatics journal.
- Cannizzaro G. & Leone M., Bernasconi A., Canakoglu A, Carman M.J. Automated Integration of Genomics Metadata with Sequence-to-Sequence Models. Soon to be submitted to ECML-PKDD 2020 Conference.
- **Leone M.**, Galvani M., Masseroli M. De novo sequence-based method for ncRPIprediction using structural information. BIBE2019: 19th IEEE International Conference on Bioinformatics and Bioengineering; October 28-30, 2019; Athens, GR.
- Martano G., **Leone M**., D'Oro P., Matafora V., Cattaneo A., Masseroli M., Bachi A. SMfinder: Small Molecules Finder for Metabolomics and Lipidomics analysis. **Analytical Chemistry** (submitted).

Biological Background: Chromatin Organization

Biological Background: Chromatin State

Project Goal

Create an efficient **computational method** able to extend the concept of chromatin states, and create a framework that starting from a set of functional elements:

- Integrate and take advantage of the valuable and numerous, but **heterogeneous**, data publicly available in well-known big data repositories.
- Process them to make them comparable and homogeneously characterized
- Identify **altered chromatin states** in presence of various pathologies, compared to the state of each specific tissue in healthy patients.
- Generate combinations of chromatin states of many cell types, using not only well-categorized data specifically produced for a specific purpose through costly and time-consuming experiments.
- Bi-clustering of regions and samples, identification of genome clusters and Gene-set enrichment analysis

Project Pipeline

Overcome heterogeneity of processing data: Cistrome

Identify a set of genomic features that can accurately characterize chromatin states and cover a wide range of tissues/conditions

Factor	Туре	Functional association
H3k4me3	Histone Mark	Active Promoters
H3K4me1	Histone Mark	Active Enhancers
H3K27ac	Histone Mark	Active Promoters and enhancers
H3K27me3	Histone Mark	Inactive chromatin
H3K36me3	Histone Mark	Active transcribed gene bodies
CTCF	Transcription Factor	Transcriptional regulation
POLR2A	Transcription Factor	Synthesize mRNA in eukaryotes
MYC	Transcription Factor	Activate expression of many pro-proliferative genes

Data Extraction and Processing

Data-driven analysis

Thank You for your attention