Learning Optimal Control Policies with Ordinary Differential Equations

Federico Berto

Lab Seminar

Background: Continuous-depth Framework

Continuous-depth (time) framework

Analyze and develop models bridging the gap between dynamical system theory and deep learning

```
deep learning ⇒ dynamical systems dynamical systems ⇒ deep learning
```

Differential equations are everywhere: physics, engineering, sciences.

A Review on Neural ODEs

Neural ODE: a Core Primitive

We seek the deep limit of neural networks

 \Rightarrow The input-output map is realized by the flow of an ODE¹

Neural ODE [Sonoda, et al. 2017, Chen et al., 2018]

By noticing that the latent dynamics of a ResNet

$$\mathbf{z}_{s+1} = \mathbf{z}_s + f_{\theta_s}(\mathbf{z}_s)$$

resemble the Euler discretization

$$\frac{\mathbf{z}_{s+1} - \mathbf{z}_s}{\Delta s} \approx \frac{d\mathbf{z}}{ds} = f_{\theta_s}(\mathbf{z}_s) \quad (\Delta s = 1)$$

of the ODF

$$\begin{aligned} \frac{\mathrm{d}\mathbf{z}}{\mathrm{d}s} &= f_{\theta_s}(s,\mathbf{z}(s)) \\ \mathbf{z}(0) &= \mathbf{x} \end{aligned} \quad s \in \mathcal{S} \subset \mathbb{R}$$

¹Ordinary Differential Equation SYSTEM INTELLIGENCE LAB

Neural ODEs vs ResNets

Inference Model

$$\widehat{\hat{\mathbf{y}}} = \mathbf{x} + \int_0^S f_{\theta}(s, \mathbf{z}(s)) \, \mathrm{d}s$$

A General Neural ODE Formulation

Neural Ordinary Differential Equation

$$\begin{cases} \dot{\mathbf{z}}(s) = f_{\theta(s)}(s, \mathbf{x}, \mathbf{z}(s)) \\ \mathbf{z}(0) = h_{x}(\mathbf{x}) \end{cases} s \in \mathcal{S} \\ \hat{\mathbf{y}}(s) = h_{y}(\mathbf{z}(s)) \end{cases} \begin{cases} \text{Input} & \mathbf{x} & \mathbb{R}^{n_{x}} \\ \text{Output} & \hat{\mathbf{y}} & \mathbb{R}^{n_{y}} \\ \text{(Hidden) State} & \mathbf{z} & \mathbb{R}^{n_{z}} \\ \text{Parameters} & \theta(s) & \mathbb{R}^{n_{\theta}} \\ \text{Neural Vector Field} & f_{\theta(s)} & \mathbb{R}^{n_{z}} \\ \text{Input Network} & h_{x} & \mathbb{R}^{n_{x}} \rightarrow \mathbb{R}^{n_{z}} \\ \text{Output Network} & h_{y} & \mathbb{R}^{n_{z}} \rightarrow \mathbb{R}^{n_{y}} \end{cases}$$

where f_{θ} , h_x , h_y are generally neural networks.

Inference of general Neural ODEs

$$\hat{\mathbf{y}}(S) = h_y \left(h_x(\mathbf{x}) + \int_0^{S_x^*} f_{\theta(s)}(s, \mathbf{x}, \mathbf{z}(s)) ds \right)$$

An Optimal Control Perspective to Training

Loss Function

$$\ell(\theta, \mathbf{x}) := \underbrace{L(\mathbf{z}(S))}^{\text{Terminal Loss}} + \underbrace{\int_{0}^{S} l(s, \mathbf{z}(s)) ds}_{\text{Integral Loss}}$$

The training can be then cast into the optimal control problem

$$\begin{aligned} \min_{\theta \in \mathcal{W}} & & \mathbb{E}_{\mathbf{x}} \left[\ell(\theta, \mathbf{x}) \right] \\ \text{subject to} & & \dot{\mathbf{z}}(s) = f_{\theta(s)} \left(s, \mathbf{x}, \mathbf{z}(s) \right) & s \in \mathcal{S} \\ & & & \mathbf{z}(0) = h_{\mathcal{X}}(\mathbf{x}) \\ & & & \hat{\mathbf{y}}(s) = h_{\mathcal{Y}}(\mathbf{z}(s)) \end{aligned}$$

which we wish to solve via stochastic gradient descent.

Computing Gradients

Two options:

- backpropagate trough the discrete steps of the solver
- backpropagate through the solution of the ODE

Can we compute gradients in closed-form?

Adjoint Method - Intuition

To retrieve the gradient, we have to "unroll" the integral

 \Rightarrow solve an other differential equation backward in ${\mathcal S}$

Generalized Adjoint: Finite-Dimensional Case

Let θ be constant in s [Chen T.Q. et al., 2018]

Proposition: Generalized Adjoint Gradients

Consider the loss function
$$\ell = L(\mathbf{z}(S)) + \int_{S} l(s, \mathbf{z}(s)) ds$$
. Then,

$$\frac{\mathrm{d}\ell}{\mathrm{d}\theta} = \int_{\mathcal{S}} \mathbf{a}^{\top}(s) \frac{\partial f_{\theta}}{\partial \theta} \mathrm{d}s \quad \text{where } \mathbf{a}(s) \text{ satisfies}$$

$$\frac{\mathrm{d}\ell}{\mathrm{d}\theta} = \int_{\mathcal{S}} \mathbf{a}^{\top}(s) \frac{\partial f_{\theta}}{\partial \theta} \, \mathrm{d}s \quad \text{where } \mathbf{a}(s) \text{ satisfies} \quad \begin{bmatrix} \dot{\mathbf{a}}^{\top}(s) = -\mathbf{a}^{\top}(s) \frac{\partial f_{\theta}}{\partial \mathbf{z}} - \frac{\partial l}{\partial \mathbf{z}} \\ \mathbf{a}^{\top}(S) = \frac{\partial L}{\partial \mathbf{z}(S)} \end{bmatrix}$$

- This is the exact gradient:
- We do not need to store activations $\Rightarrow \mathcal{O}(1)$ memory efficiency

What about for a general class of $\theta(s)$?

²Massaroli, Poli et al., Dissecting Neural ODEs, NeurIPS 2020 SYSTEM INTELLIGENCE LAB

Motivation

Why bother with the framework?

Advantages

O(1) memory gradients Learning and Control Cheap Normalizing Flows Uncertainty Estimation Stability and Constraints

Disadvantages

Expressivity limitations
Compute requirements
Novelty
Different tricks

Less accessible

Hypersolvers for Neural ODEs

Solving the Differential Equation

Solving differential equations is **costly**. Can be an issue for deployment.

Can we do better?

Yes. Analyze interplay between numerical solvers and Neural ODE.³ Ties in with pretraining strategies (NLP) and compression techniques.

Hot area at the moment. Regularization techniques ⁴also help by controlling the stiffness of learned ODEs, but they are <u>not</u> applicable in general.

³Poli, Massaroli et al., Hypersolvers: Toward Fast Continuous-Depth Models, NeurIPS 2020

⁴Finlay et al., How to train your neural ODE: the world of Jacobian and kinetic regularization, ICML 2020. Kelly et al., Learning Differential Equations that are Fast to Solve, NeurIPS2020

Quick Refresher on Explicit ODE Solvers

Iterate to solve:

$$\mathbf{z}_{k+1} = \mathbf{z}_k + \epsilon \psi(s_k, \mathbf{x}, \mathbf{z}_k)$$

- lacktriangle ODE solvers differ in how the map ψ is designed
- Higher–order (explicit) solvers compute ψ iteratively in p steps (p denotes the order of the solver)

[example] p-th order Runge-Kutta method:

$$\begin{split} &\mathbf{r}_i = f_{\theta(s_k)}(s_k + \mathbf{c}_i \epsilon, \ \mathbf{x}, \ \mathbf{z}_k + \tilde{\mathbf{z}}_k^i) & i = 1, \dots, p \\ &\tilde{\mathbf{z}}_k^i = \epsilon \sum_{j=1}^p \mathbf{a}_{ij} \mathbf{r}_j & i = 1, \dots, p \\ &\psi = \sum_{j=1}^p \mathbf{b}_j \mathbf{r}_j \end{split}$$

where $\mathbf{a} \in \mathbb{R}^{p \times p}$, $\mathbf{b} \in \mathbb{R}^p$, $\mathbf{c} \in \mathbb{R}^p$ fully characterize the method

Hypersolvers: main idea

Consider a pth order explicit ODE solver.

Discretized Neural ODE Solution

$$\begin{cases} \mathbf{z}_{k+1} = \mathbf{z}_k + \epsilon \psi(s_k, \mathbf{x}, \mathbf{z}_k) \\ \mathbf{z}_0 = h_X(\mathbf{x}) & k = 0, 1, \dots, K-1 \\ \hat{\mathbf{y}}_k = h_Y(\mathbf{z}_k) \end{cases}$$

 ϵ : step size, ψ : solver's step.

Hypersolver

hypersolver net

$$\mathbf{z}_{k+1} = \mathbf{z}_k + \underbrace{\epsilon \psi(s_k, \mathbf{x}, \mathbf{z}_k)}_{\text{base solver step}} + \epsilon^{p+1} \underbrace{g_{\omega}(\epsilon, s_k, \mathbf{x}, \mathbf{z}_k)}_{g_{\omega}(\epsilon, s_k, \mathbf{x}, \mathbf{z}_k)}$$

Improvement on Solver Error

Given some nominal trajectories $\{(s_k, \mathbf{z}(s_k))\}_k$, consider the residual

$$\mathcal{R}_k = \frac{1}{\epsilon^{p+1}} \left[\mathbf{z}(s_{k+1}) - \mathbf{z}(s_k) - \epsilon \psi(\mathbf{x}, s_k, \mathbf{z}(s_k)) \right]$$

Residual Training

Consider also the loss function

$$\ell = \frac{1}{K} \sum_{k=0}^{K-1} \|\mathcal{R}(s_k, \mathbf{z}(s_k), \mathbf{z}(s_{k+1})) - g_{\omega}(\epsilon, \mathbf{x}, s_k, \mathbf{z}(s_k))\|_2$$

We have that.

$$\forall k \ \|\mathcal{R}_k - g_\omega\|_2 \le \mathcal{O}(\delta) \Rightarrow e_k = \mathcal{O}(\delta \epsilon^{p+1})$$

At training, may use a lower–order solver to achieve the same accuracy! ⇒ Accelerate inference of Neural ODEs

Hypersolvers and Optimal Control

Hypersolvers for Optimal Control

Key points:

- We need accurate trajectories for training a controller
- If the optimization is done online it is even more crucial to speed up the simulation

⇒ Hypersolvers are helpful to obtain Pareto-optimal forward simulations!

We need to train the hypersolver on a reasonable set of the explored state-space and introduce the control input as an important feature

Training Hypersolvers for Controlled Systems

Residual Training for Controlled Systems

The control value u becomes an important input for the hypersolver

$$\ell = \frac{1}{K} \sum_{k=0}^{K-1} \left\| R\left(t_{k}, x(t_{k}), x(t_{k+1})\right) - g_{\omega}\left(t_{k}, x(t_{k}), \dot{x}(t_{k}), u(t_{k})\right) \right\|_{2}$$

Direct Optimal Control

Direct Optimal Control

We want to obtain a control policy by *directly* optimizing the cost function over the complete trajectories

$$\min_{u} \quad J_{u}$$
subject to
$$\dot{x}(t) = f(t, x(t), u(t))$$

$$x \in \mathbb{X}; \ u \in \mathbb{U}$$

where u is the control policy and cost function J is

$$J_{u} = x^{\top}(t_{f})\mathbf{P}x(t_{f}) + \int_{t_{0}}^{t_{f}} \left[x^{\top}(t)\mathbf{Q}x(t) + u^{\top}(t)\mathbf{R}u(t)\right] dt$$

⇒ Hypersolvers make the simulation of whole trajectories more accurate and efficient compared to classical solvers!

Model Predictive Control

Model Predictive Control (MPC)

The following optimization problem is solved *online* at each time step:

$$\min_{u} \quad \sum_{i=1}^{I} J_{u}(x(t_{i}))$$
subject to
$$\dot{x}(t) = f(t, x(t), u(t))$$

$$x \in \mathbb{X}; \ u \in \mathbb{U}$$

u: control policy; T: receding horizon in which future trajectories are

predicted

Accelerating Model Predictive Control

MPC is an online optimization algorithm, it is even more crucial to obtain fast and accurate trajectory predictions

Results on a quadcopter model (17 states and 4 control variables)

Multi-stage Hypersolvers

If the dynamic model does not match perfectly the real one, we can use an additional first-order term to correct the vector field while the second-order term can be used to further improve accuracy

Multi-stage HyperEuler Step $x_{k+1} = x_k + \epsilon f(t_k, x_k, u_k)$ $+ \epsilon^2$ $g'_w(t_k, x_k, u_k)$ $+ \epsilon^2$ $g'_w(t_k, x_k, u_k)$ 2nd order residual approximator

Training Multiple Stages

If the *nominal* system model is unknown, we can not know what the residual directly: we can train directly on the known nominal trajectories

Training multi-stage hypersolvers

$$\ell = \frac{1}{K} \sum_{k=0}^{K-1} MSE(x(t_{k+1}), x_{k+1})$$

where $x(t_{k+1})$ is obtained by the real (nominal) system and x_{k+1} is one step of the Multi-stage HyperEuler

Extra: torchdyn

The new torchdyn 1.0 is out! Check it out at https://github.com/DiffEqML/torchdyn

PyTorch library dedicated to neural differential equations and implicit models. Maintained by DiffEqML.

Thank you for your Attention!