MegaPRS in Math

Tuesday, January 23, 2024

Improved genetic prediction of complex traits from individual-level data or summary statistics Nature Communications

Method

Suppose n individuals and m snps, X (size n*m), Xj column contains genotypes for SNP j, Y denotes phenotype.

Xj and Y been standardized, N(0,1), the error term is also N(0,1)

Consider the prediction of X on Y, by linear regression

$$\mathrm{E}[\mathbf{Y}] = \mathbf{X}_1 eta_1 + \mathbf{X}_2 eta_2 + \ldots + \mathbf{X}_{\mathrm{m}} eta_m = \mathbf{X} oldsymbol{eta}$$
 (1)

β is the effect size of SNP j, and since Xj and Y are standardized, so we have $h_i^2 = β_i^2$

Heritability

$$h^2 = \frac{Var(X\beta)}{Var(Y)}$$

The heritability model takes form:

$$E[h_j^2] = a_{j1}\tau_1 + a_{j2}\tau_2 + \ldots + a_{jK}\tau_K$$
 (2)

where the ajk are pre-specified SNP annotations, while the parameters τk are estimated from the data.

So if we take $h^2 = \tau_1 I_j (f_j (1 - f_j)^{0.75})$, then the variance of β_j is $\tau_1 I_j (f_j (1 - f_j)^{0.75}) \times h^2$, by SumHer

$$\beta_i \sim N(0, \tau_1 I_i (f_i (1 - f_i))^{0.75} \times h^2)$$

$$\hat{Y} = \sqrt{h^2} X \beta + \sqrt{1 - h^2} \, \epsilon$$

Calculation of heritability

Suppose I have X and Y as individual data, we can calculate h2 by the following formulas:

- 1. $r > X^{jY}/n$, this is the correlation between X and Y
- 2. $S = n \frac{r^2}{1-r^2}$, this is the chi-square test statistics for SNP j.

For SumHer, it calculates τ by the following formula:

$$\mathrm{E}[S_j] pprox 1 + n \Sigma_l c_{jl}^2 (a_{l1} au_1 + a_{l2} au_2 + \ldots + a_{lK} au_K)$$
 (3)

- a. S was calculated by step 2. C_{il}^2 is taken from the correlation matrix of SNPs j and l.
- b. We can take a linear regression of S and Correlation, and the coefficient is τ 4. $h^2 = \tau I_j (f(1-f))^{0.75}$, Where I is the LD matrix, and f is the MAF.

Suppose we are using Summary Statistics instead of individual data, the first step will be updated: We have genotype data and Z-score.

$$S = Z^2$$

we can skip calculating the correlation between X and Y and directly get $S = Z^2$.

Prediction Model for β

Y in fact is based on X β and ϵ , and ϵ is normally distributed.

$$Y \sim N(X\beta, \sigma_{\epsilon}^2)$$

We have h^2 already, so we need to estimate β . The newest methods estimate β by using Bayes Inference. Different methods would have different prior distributions.

4. Three Gaussian Distributions + Point Mass

LDAK-BayesR-Predict and LDAK-BayesR-SS use a mixture of a point mass at zero and three Gaussian distributions, $\beta_j \sim \pi_1 \, \delta_0 + \pi_2 \, \text{N}(0, sE[h^2_j]/100) + \pi_3 \, \text{N}(0, sE[h^2_j]/100) + \pi_4 \, \text{N}(0, sE[h^2_j])$, where $\pi_1 + \pi_2 + \pi_3 + \pi_4 = 1$ and $s = (\pi_2/100 + \pi_3/10 + \pi_4)^{-1}$.

Calculation for β

Assuming we have $\hat{\beta}$ from Summary Statistics ($\beta = nZ$) as P($\hat{\beta}$), and we get the prior distribution of β as P(β)

For Bayesian Inference:

$$P\big(\beta\big|\boldsymbol{\hat{\beta}}\big) = \frac{P\big(\boldsymbol{\hat{\beta}}\big|\beta\big)P(\boldsymbol{\beta})}{P(\boldsymbol{\hat{\beta}})}$$

$$Posterior = \frac{MLE \times Prior}{Observe}$$

So we need to calculate the MLE of β and $\hat{\beta}$, for example by Gradient Descent MLE, while these methods are

$$\frac{\text{MLE Prior}}{\text{Observe}}$$

So we need to calculate the MLE of β and $\hat{\beta}$, for example by Gradient Descent MLE, while these methods are slow in general. And posterior has no closed form, so it's not feasible to compute $P(\beta|\hat{\beta})$ directly.

Using Variational Bayes

Our goal becomes to find a distribution $q(\beta)$ that approximates the posterior distribution $P(\beta|\hat{\beta})$

■ Variational Bayes (VB): L is KL divergence

$$L(q(z), p(z|x)) = \mathsf{KL}(q(z)||p(z|x))$$

$$\begin{aligned} \text{KL}(\mathbf{q}(\boldsymbol{\beta})|\left|P(\boldsymbol{\beta}|\hat{\boldsymbol{\beta}})\right) &= \int \mathbf{q}(\boldsymbol{\beta})\log\frac{\mathbf{q}(\boldsymbol{\beta})}{P(\boldsymbol{\beta}|\hat{\boldsymbol{\beta}})}d\boldsymbol{\beta} \\ &= \int \mathbf{q}(\boldsymbol{\beta})\log\frac{\mathbf{q}(\boldsymbol{\beta})P(\hat{\boldsymbol{\beta}})}{P(\boldsymbol{\beta},\hat{\boldsymbol{\beta}})}d\boldsymbol{\beta} \\ &= -\int \mathbf{q}(\boldsymbol{\beta})\log\frac{\mathbf{P}(\boldsymbol{\beta},\hat{\boldsymbol{\beta}})}{\mathbf{q}(\boldsymbol{\beta})}d\boldsymbol{\beta} + \log\tilde{P}(\hat{\boldsymbol{\beta}}) \end{aligned}$$

The first part is called ELBO (evidence lower bound), and since we need to minimize KL divergence, we can drop the second term $logP(\hat{\beta})$.

$$q(\beta) = \text{argmax} \left(\text{ELBO} \big(q(\beta) \big) \right)$$

And $q(\beta)$ is the distribution of β that we need.

Prediction

We have β and h^2 , and we have the genotype data, we can then calculate PRS score:

$$\hat{Y} = \sqrt{h^2} X \beta + \sqrt{1 - h^2} \, \epsilon$$

Discussion

About β

If we standardize X and Y into N(0,1), then β will be N(0,1)

$$Z = \beta/SE(\beta) = \sqrt{n}\beta$$
 and $SE(\beta) = 1/\sqrt{n}$

Because $SE = SD/\sqrt{n}$

Steps of MegaPRS

Correlation Matrix and High LD matrix

Date I
MegaPLS each step, with input and output.
- calculation of high-ld and correlation matrix.
I. (Conclation Matrix (X / X / X / X / X / X / X / X / X / X
Input, vandomlig pick 5000 sope with bim/bed/fam.
ind 1 0 1 2 0 1 2
n ind 2 0 1 2 1 0 2 ind 5000 0 0 1 2 1 0
ind store oo 1 2 10
The same of the sa
Daladation: Pearson's correlation's coefficient.
- 7- Julie 52 52 from M.
· SNP; and SNP;
$\sum_{k=1}^{n} (\chi_{k} - \bar{\chi}_{i})(\chi_{k} - \bar{\chi}_{j})$
[Εκοι (Xki - Xi) = Ek=1(Xkj - Xj)
3 Output: mxm matrix.

Dale.
- Predution Model.
1 Input: Summary statistice
- wor matories
LD matorix .
model bayest.
- 1 00000 Lt 78889 5 Lmagor
@ Preduting by Bayest, h2.
Stallwork
$L^2 = Z_1 I_3 (f_3 (1 - f_3))^{\alpha + \zeta}.$
1 -1 /. (, -1).
$1; = E1; / N, f; = Ef; / N.$ and Z_1 is set to be $0.1, 0.3, 0.5$.
and Zi is set to be 0.1, 0.3, 0.5.
$\Rightarrow h^2, h^2, h^2, h^2, h^2, h^2, h^2, h^2,$
3) Preduting by Layer, B.
Priot: B; ~ Z, 80 + Z, N(0. 52h;]/w) + Z, N(0, 52h;]/g + Z4N(0, 52h;])
7,+22+24+24=1-, 5=(22/10+24)-1
can be replicated => 2t malely
and \$2,23,24 take from (0,0.01,0.05,0.1,0.2) can be replicated => 35 models.
=> 35 x 3 = 105 models.