Reproducible Research: Peer Assessment 1

Setting up the environment

```
library(tidyverse)
library(ggplot2)
library(lubridate)
library(tufte)
# Reduce precision (we're working with actual steps, after all) and disable
# scientific notation (for now)
options(digits=1)
# Big penalty to bias against switch to scientific notation
options(scipen=999)
# Default options for code chunks
knitr::opts_chunk$set(cache = TRUE,
                    warning = FALSE,
                    message = FALSE,
                    dpi = 300,
                    echo = TRUE,
                    out.width = '80%',
                    # dev = 'cairo_pdf',
                    fig.align = 'center')
knitr::opts_chunk$set(cache = TRUE, warning = FALSE, message = FALSE, dpi = 300)
# Convenience functions
# Convert interval code to time
id_to_time <- function(id) {</pre>
 id %>%
   as.character() %>%
   str_pad(width = 4,
           side = 'left',
           pad = "0") %>%
   readr::parse_time(format = '%H%M')
}
# Plot theme
my theme <- function(x) {</pre>
   theme(
   strip.text = element_text(size = 12, hjust = 0.5, face = "bold"),
   plot.title = element_text(hjust = 0.5, size = 16),
```

```
plot.subtitle = element_text(hjust = 0.5, face = "italic"),
    axis.title = element_text(size = 12),
    axis.text = element_text(size = 10),
    panel.spacing.x = unit(1, "cm")
)
```

Loading and preprocessing the data

```
odata <- read_csv('data/activity.csv')</pre>
```

Histogram of the total number of steps for each day

Mean and median number of steps per day:

```
# Mean/median values
day_mean <- mean(daily$total, na.rm = TRUE) %>% round()
day_median <- median(daily$total, na.rm = TRUE) %>% round()
```

Mean steps taken per day: **10766**Median steps taken per day: **10765**

What is the average daily activity pattern?

```
interval_means <- odata %>%
 group_by(interval) %>%
 summarize(mean = mean(steps, na.rm = TRUE)) %>%
 ungroup() %>%
 na.omit()
# Take the row with highest mean (interval with highest mean steps)
interval_max <- interval_means %>%
  slice_max(mean, n=1) %>%
  # Round the values.
  round()
interval_means %>%
 ggplot(aes(x = interval, y = mean)) +
  geom_line() +
 labs(x = "\nTime interval",
       y = "Mean steps taken per 5-min interval\n",
       title = "Mean steps taken per time interval") +
 my_theme()
```

Mean steps taken per time interval


```
# Convert interval code to time
interval_time <- id_to_time(interval_max$interval)</pre>
```

The above plot shows the number of steps taken, on average, during each 5-minute interval. During the study period, interval #835 was the one during which the most steps were taken-on average, 206. Interval #835 corresponds to 08:35:00.

Imputing missing values

Missing data points: 2304.

We will impute missing data with the mean value from the same intervals in remaining days. This is under the assumption that there are typical<- times of the day (e.g., 12 am through 6 am) where an individual is likely to be at rest. We use data.table which affords a good combination of execution speed and readability. Column imputed in the new dataframe (impdata) stores non-missing and imputed values.

Coding environment

Using data.table operations mostly as an exercise, but it should also be the fastest option.

```
# Loading for fast operation when imputing
library(data.table)

# For readability, create a "lambda" function which will go into the
# data.table statement
impute.mean <- function(var) replace(var, is.na(var), mean(var, na.rm = TRUE))
# Create data.table
impdata <-setDT(odata)</pre>
```

```
impdata[,
        imputed := impute.mean(steps),
        by = interval]
# On a copy of the data, group by day and sum daily steps
histdata <- impdata[,</pre>
                     .(total = sum(imputed)),
                     by = date]
# Plot histo
histdata %>%
  ggplot(aes(x = total)) +
  geom_histogram(binwidth = 2000) +
  labs(x = "\nNo. of daily steps",
       y = "No. of days",
       title = "Distribution of steps taken daily with imputed missing data"
       ) +
  my_theme()
```

Distribution of steps taken daily with imputed missing data

Are there differences in activity patterns between weekdays and weekends?

To answer this question, we will use imputed data and convert the dates to a "day-of-the-week" integer (i.e., Monday = 1, Tuesday = 2, etc...). We'll then plot the mean steps taken per 5-minute interval during weekdays and weekends.

```
# Get day-of-the-week and mark each row as "Weekdays" or "Weekends" (factor)
weekdata <- setDT(copy(impdata))
weekdata[, `:=`(day = as.integer(strftime(date, '%u')))]
weekdata[, `:=`(type = ifelse(day > 5, "Weekends", "Weekdays"))]
```

```
weekdata[, type := as.factor(type)]
# Time formatting function
time_label <- function(x) {strftime(x, '%H:%M')}</pre>
# Compute mean values for each 5 min-interval
weekdata[, `:=`(mean_steps = mean(imputed, na.rm = TRUE),
                time = id_to_time(interval)),
     by = .(interval, type)]
# Select columns we're interested in
cols = c('date', 'time', 'mean_steps')
# Aggregate for plotting
weekdata[, .SD[1L], by = .(interval, type), .SDcols = cols] %>%
ggplot(aes(x = time, y = mean_steps)) +
 geom_line() +
  facet_wrap(vars(type), labeller = label_value) +
  labs(x = "\nTime of day",
       y = "Steps taken",
       title = "Comparison of mean steps taken per interval, \n by weekday",
       subtitle = "Interval IDs converted to time") +
  scale_x_time(labels = time_label,
               breaks = scales::breaks_width('3 hours'),
               expand = expansion()) +
  mv theme() +
  theme(axis.text.x = element_text(size = 8))
```

Comparison of mean steps taken per interval, by weekday

Interval IDs converted to time

Time of day