Chapter 4: Consumer Behaviour

Introductory Microeconomics

Jacob Hazen

McGill University

October 21, 2025, jacobhazen1.github.io

1) Budget Line and Opportunity Set

Lisa has income 50. Pizzas cost 1 each and burritos cost 2 each.

- Write the budget constraint equation for pizzas Z and burritos B.
- Sketch the budget line and label both intercepts.
- Ompute the slope of the budget line. Explain what the slope represents economically.

Answers: 1) Budget Line and Opportunity Set

(a) Budget constraint:

$$Z + 2B = 50.$$

- **(b)** Intercepts: set $B=0 \Rightarrow Z=50$; set $Z=0 \Rightarrow B=25$.
- (c) Solve for B: $B = \frac{50-Z}{2} = 25 \frac{1}{2}Z$, so slope $= \frac{\Delta B}{\Delta Z} = -\frac{p_Z}{p_B} = -\frac{1}{2}$.
- \Rightarrow Economically, $-\frac{1}{2}$ is the market trade-off: 1 extra pizza costs giving up 0.5 burritos.

2) Affordable vs. Unaffordable Bundles

For each bundle (Z, B), determine if it is affordable. Show your calculation.

- **1** (20, 9)
- **2** (15, 25)
- **(10, 20)**

Answers: 2) Affordable vs. Unaffordable Bundles

Cost is Z + 2B.

- (20, 9): $20 + 2 \cdot 9 = 38 \le 50 \Rightarrow$ affordable.
- (15,25): $15 + 2 \cdot 25 = 65 > 50 \Rightarrow$ not affordable.
- (10,20): $10 + 2 \cdot 20 = 50 \le 50 \Rightarrow$ affordable (exactly on the line).

3) Comparative Statics: Income and Prices

- Income rises to 60 (prices unchanged). How does the budget line shift? Does the slope change? Why?
- ② Price of burritos falls to 1 (income 50, pizza price 1). What happens to:
 - The intercepts?
 - The slope?
- On a diagram, indicate the substitution and income effects conceptually.

Answers: 3) Comparative Statics

- (a) New constraint: Z+2B=60. Parallel outward shift (both intercepts increase). Slope unchanged at $-\frac{pz}{pB}=-\frac{1}{2}$ since relative prices unchanged.
- **(b)** With $p_B = 1$: Z + B = 50. Intercepts: Z = 50, B = 50. New slope $= -\frac{1}{1} = -1$.
- (c) Substitution: toward relatively cheaper burritos. Income: real purchasing power rises; if burritos are normal, buy more due to income effect as well.

4) Preferences: Axioms

For each statement, identify the property: completeness, transitivity, or "more is better."

- Lisa prefers bundle A = (3,2) to bundle B = (2,3).
- ② Lisa prefers A to B and B to C, therefore prefers A to C.
- Molding burritos fixed, Lisa prefers 4 pizzas to 3 pizzas.

Answers: 4) Preferences: Axioms

- Completeness (can rank any two bundles).
- Transitivity (consistent ordering).
- "More is better" (monotonicity).

5) Diminishing Marginal Utility

Lisa's total utility from pizzas:

Quantity	1	2	3	4	5
Total Utility	20	38	54	66	75

- Compute marginal utility for each additional pizza.
- Sketch total utility and marginal utility curves.
- Explain how the numbers show diminishing marginal utility.

Answers: 5) Diminishing Marginal Utility

(a) Marginal utility (MU):

- **(b)** TU is increasing and concave; MU is downward sloping.
- (c) MU falls as quantity rises \Rightarrow law of diminishing marginal utility.

6) Equalizing MU per Dollar

Lisa consumes pizzas (P) and burritos (B). Suppose:

$$MU_P=10, \quad p_P=1 \qquad \text{and} \qquad MU_B=20, \quad p_B=2.$$

- Compute marginal utility per dollar for each good.
- ② Is Lisa maximizing utility under the rule $\frac{MU_P}{p_P} = \frac{MU_B}{p_B}$?
- If not, how should she adjust her bundle to increase total utility?

Answers: 6) Equalizing MU per Dollar

(a)
$$\frac{MU_P}{p_P} = \frac{10}{1} = 10$$
; $\frac{MU_B}{p_B} = \frac{20}{2} = 10$.

- (b) Yes, the equality holds; she is at a MU-per-dollar optimum (given these MUs).
- (c) No adjustment needed (any move would lower total utility holding prices/MUs fixed).

7) Utility-Maximization Condition (Two Goods)

For goods X and Y:

$$MU_X = 20, \quad p_X = 2; \qquad MU_Y = 10, \quad p_Y = 1.$$

- Check whether $\frac{MU_X}{p_X} = \frac{MU_Y}{p_Y}$ holds.

Answers: 7) Utility-Maximization Condition

(a)
$$\frac{MU_X}{p_X} = \frac{20}{2} = 10$$
, $\frac{MU_Y}{p_Y} = \frac{10}{1} = 10 \Rightarrow \text{holds}$.

(b) At equality, the consumer is locally optimal; no reallocation improves total utility.

8) Income and Substitution Effects: Coffee

Coffee price falls by 10%.

- Describe the substitution effect.
- ② Describe the income effect if coffee is:
 - A normal good.
 - An inferior good.
- Which effect typically dominates for most goods? Explain briefly.

Answers: 8) Income and Substitution Effects

- (a) Substitution: coffee is relatively cheaper \Rightarrow substitute toward coffee and away from other goods.
- (b) Income effect: real purchasing power rises.

Normal coffee \Rightarrow buy more.

Inferior coffee \Rightarrow buy less (income effect opposes substitution).

(c) Typically the substitution effect is the primary driver; for normal goods both effects raise quantity demanded after a price fall.

9) Normal, Inferior, and Giffen Goods

- Give an example of a normal good where both effects increase quantity demanded after a price fall.
- ② Give an example of an inferior good where the income effect partially offsets the substitution effect.
- Oefine a Giffen good and explain how an upward-sloping demand curve can arise.

Answers: 9) Normal, Inferior, and Giffen Goods

- Normal: e.g., fresh produce, branded coffee. Price falls \Rightarrow substitution + income effects $\uparrow Q$.
- ② Inferior: e.g., instant noodles, store-brand staples. Price falls \Rightarrow substitution \uparrow but income effect \downarrow (net still usually \uparrow).
- Giffen: an inferior staple where the negative income effect outweighs substitution, so when price rises, quantity demanded rises (positively sloped demand).

10) Consumer Surplus: Milk

Willingness to pay (per glass) and market price p = 0.30:

Glass	1	2	3	4	5	6
WTP	3.00	1.50	1.00	0.80	0.60	0.50

- How many glasses will the consumer buy?
- 2 Compute total consumer surplus.
- Illustrate consumer surplus on a price-quantity diagram.

Answers: 10) Consumer Surplus: Milk

- (a) Buy all glasses with WTP $\geq p$. Here all 6 satisfy WTP $\geq 0.30 \Rightarrow$ buy 6.
- **(b)** Total CS:

$$\sum_{i=1}^{6} (\mathsf{WTP}_i - p) = (3.00 - 0.30) + (1.50 - 0.30) + (1.00 - 0.30) + (0.80 - 0.30) + (0.60 - 0.30) + (0.50 - 0.30) +$$

(c) Shade area between the individual demand steps (WTP schedule) and the horizontal line at p=0.30 for the first 6 units.

11) Paradox of Value

Explain why water (essential) is cheap while diamonds (non-essential) are expensive using:

- Total utility vs. marginal utility.
- The role of supply in determining market price.
- The purchase decision at the margin.

Answers: 11) Paradox of Value

- Water has high *total* utility but, due to plentiful supply, a low *marginal* value at the purchased quantity; price reflects marginal value.
- Diamonds are scarce, so marginal value is high at the purchased quantity; price is high even if total utility is lower.
- Consumers buy until marginal value equals price; prices depend on both demand and supply at the margin.

12) Luxury and Veblen Goods

- Define a *luxury good* and give one real-world example.
- ② Define a Veblen good and give one real-world example.
- Explain why a Veblen good can have an upward-sloping demand curve (status signaling).

Answers: 12) Luxury and Veblen Goods

- lacktriangle Luxury: income elasticity > 1. Example: high-end travel, designer clothing.
- Veblen: demand rises with price because price signals status. Example: certain luxury handbags or watches.
- ullet Higher price \Rightarrow stronger status signal \Rightarrow some consumers demand more, yielding an upward-sloping segment.