

Overview

p focus	on passive circuits us active circuits (later course
	- resistors, capacitors, inductors
D topics	1) Basics of circuit analysis (DC-only)
	2) Transient Analysis (DC + time varying)
	3) AC Analysis (complex frequency domain)

Lecture 1: Charge, Current, Voltage, Work Greneral
b time (s) & current (A) are SI units
$P = 10^{-15} 10^{-12} 10^{-9} 10^{-6} 10^{-3} 10^{-9} 10^{-9} 10^{-9}$
fpnum/kMG
nurrent and Charge
D 1 Ampere (A) = 1 second
0 1 electron's charge = -1.602 × 10-19 coulomb (c)
D current flows from positive terminal to negative
La electrons flow from negative to positive
+ electrons
Daverge current = averge charge moved through cross sectional area (Iaverge = AQ)
D instantaneous current = $i = \frac{din}{dt} = \frac{dig}{dt}$
D current has magnitude & direction
i = instantaneous current
Types of Current
p direct current (DC)
P alternating current (Ac)
0 both (AC + DC)

Lecture 2: Voltage, Power, Current

Voltage

D voltage is the work required to move an electron from point A to B

must be between two points

P work = Voltage · charge \rightarrow $V = \frac{W}{C}$ (Joules/current)

D voltage has value & polarity

P voltage is measured in parallel / current measured in series

y verified to measure in participation of measures in participation

Power

D power =
$$\frac{\text{work}}{\text{time}}$$
 (P: $\frac{W}{t}$) (Watt = $\frac{\text{Jowle}}{\text{Second}}$)

p voltmeter positive (red) should point to higher voltage

D power = voltage · current (P=VI=vi)

Efficency

D in a cascaded system: Now = N1 · N2 · N3

Lecture 3: Ohm's Law, KVL, KCL

Resistance

- D Certain materials impede the flow of current
- belectrons collide with other electrons, ions, impurities
- $o R = \stackrel{\vee}{\Box} : need voltage V to push current I through material$

4 Ohm's Law

- D resistors absorb energy
- o open circuit oos, short circuit os

Conductance

D conductance =
$$G = \frac{1}{R} = \frac{I}{V}$$

p unit: siemens = mho = sc

Specific Resistance

$$DR = PA = resistivity$$
 $Cross sectional area magnetic formula area magnetic resistivity $R^{-1}m^{-1}$$

Electric Symbol

- D resistor -ww-
- D capacity ---
- o inductor m +
- DC Voltage Source -111-
- D AC Voltage Source -
- Sideal voltage source can supply infinite current
- DC Current Source -
- DAC Current Source —
- Dependent Sources: current controlled current voltage controlled current

voltage controlled voltage Current controlled voltage

p ground — 11

t common ground —D

D chassis / frame -

Kirchoff's Laws D Voltage Law

- Egyp Vn = 0

- choose direction

D Current Law

- Ein = Zi.

- current in = current out

General Rules

D Voltage Sources in series can be combined additively

D current sources in parallel can be combined additively

p parallel components can be arranged in any order

Circuit

- Ohm's Law V= IR

- KCL Zienter = Ziout

- KVL Soop Vi = 0

- Voltage Divider

- Current Divider $i_1 = i_5 \frac{R_2}{R_1 + R_2}$

Lecture 4 Nodal & Mesh Analysis

Nodal A	Analysis	
D steps:		
,	3 select a reference node	
	3 label node voltages with variables V, , Vz,, VN-1	
	@ write KCL at (N-1) number of nodes	
	Lif voltage sources / dependent sources exist, may need more	
	(S) solve for V, , V2,, VN-1	
b supernode	e: if voltage source exists $\frac{V_1 + V_2 - V_2}{1 \cdot 1 \cdot 1}$ $V_1 - V_2 = V_3$	
Mesh And	alysis	
D steps:	O check if circuit is planar (can be drawn on flat surface/no wires c	(css)
	3 label mesh currents I1, I2,, IM	

13 may need to supermesh if current source exists

o supermesh: combine meshes that enclose the current source

Lo 1 less mesh, but new equation is = i, + i2

@ Solve for M currents

3 write KVL for M meshes

Lecture 5 Resistor Construction

Lecture 5 Res	istor Construction
Ideal Resistors	
P value fixed (±0% tolerance)	
p temperature 25°C	
Carbon Composition	
o general purpose	
D 5~20% tolerance	
0 1/8 ~2 W	
P 2.2 St ~ 20 MSL	
D reading - color > number	(<u>1</u>) 1
_ digit 1 , digit 2, muttiplier	(x10), tolerance
Carbon Film	Precision Metalwire
p general purpose	pprecision & high power
PI~10% tolerance	0.01~5% tolerance
Þ1/8 ~3 W	Þ 48 ~ 2500 W
D 1 Ω ~ 22 MΩ	₽ 0.01 SU ~ 200 kSU
Metal Film	Thick Film
D precision	D general purpose & precision
0 0.01~5% tolerance	0 0.1 ~20% tolerance
P 0.05 ~ 3 W	Þ 1/16 ω ~ 250 ω
P 0.01 & ~ 2 GD	> 0.01 so ~ 500 GW

Thin Film

D general purpose & precision

00.01 ~20% tolerance

0.01 2-10 (0.00 22.00

P 0.001 SC ~ 22 MSU

0 1/32 ~40 W

Generally, select resistor twice the maximum anticipated value

Lecture 6 Superposition

Degeneral approach: split problem into circuits and solve each individually 🔏

Superposition Theorem: in a linear network, the voltage across or the current

through any element may be calculated by adding algebraicly

the individual voltages or currents caused by independent sources

voltage source → short circuit

current source → open circuit

D never turn off dependent source 3

Ideas

- ▶ voltage source in series, current source in parallel
- > +ransformed circuits are not the same internally.

Lecture 8 Thevenin and Equivalents

General
Da linear network can be replaced by its Thevenin equivalent circuit
repeatedly apply source transformation to find Thevenin equivalent
S. (Irad)
Approach
O Disconnect load
® Find voltage across disconnected (Voc)
® Find equivalent resistance across disconnect (Req)
® Voc = VTH Req = RTH
2 Not 14 14 14 14
Vorton Equivalent Circuits
Da linear network can be replaced by its Norton equivalent circuit
o O replace load with short circuit
 ② find current in short circuit (Isc) ③ find equivalent resistance of network (Req)
(9) In = Isc Rn = Req
Q In . 125 1.0 - Ved
Lecture 9 Maximum Power Transfer
D real battery has Small resistance No. 3 W. D maximum power in load when RL=Rs
is (♦ 考 👇

Lecture 10 Capacitance

Lecture to Capacitance
Symbols
b resistor — W
o capacitor — -
b inductor — 1000—
Capacitor
pmost common: parallel plate capacitor
D with current in resistor, one plate becomes positively charged, the other
negative
negative +=
D Capacitor can "store" charge / energy
D capacitor can then discharge Stored energy
P discharge: $V = V_s \cdot e$
I=R=Re
P electric field:
$dS = \frac{V}{A} \rightarrow Q = EAE$
$\frac{1}{1-1} = -Q$ electric field lines $Q = CV$
$C = \frac{\mathcal{E}A}{d}$
P capacitance unit: $\frac{Q}{V} = \frac{\text{coulomb}}{\text{volt}} = \text{Farad} (F)$
P permittivity: E = Er.E.
Eo = permittivity of free space = 8.85 ×10 ⁻¹² C/Nm ²
Er = Material property -> vacuum = 1.0 air & 1.00059
P multiple-plate capacitor: $C = \frac{eA}{d}(n-1)$
D current \leftrightarrow voltage $i = C \cdot \frac{dv}{dt}$
$v = \frac{1}{c} \cdot \int i dt$
v energy stored in capacitor: $W = \frac{1}{2}CV^2$ (J)

D Series: $Ceq = \frac{1}{(|C_1 + |C_2 + |C_3 + ... + |C_n)}$ D parallel: $Ceq = C_1 + C_2 + ... + C_n$ D misc. characteristics: - capacitors are open circuits to DC Voltages

- voltages on real capacitors cannot change instantaneously

- capacitors do not dissipate energy

Lo only store or deliver energy

Lecture 10.5 Switches

Single pole single throw (SPST)	
D Schematic throw switch -	_o/ oo
	open closed
D Schematic momentary Switch	
	mormally open mormally closed

Single Pole Double Throw

D Schematic throw

Lecture 11: Inductors

Magnetic Field Induced by Current

right hand rule

at time t=0: D charge of capacitor is O (just closed)

D no potential difference across capacitor

D exists a current in circuit

D exists voltage over resistor

at time t=00: D no current flowing through circuit

D can find charge on apacitor using Q=CV

capacitors in series:
$$\frac{1}{C_7} = \frac{1}{C_1} + \frac{1}{C_2} + ... + \frac{1}{C_n}$$

VT= VR+Vc

= IR
$$+\frac{Q}{C}$$
 \Rightarrow Since voltage is constant, as Q increase, Capacitor has more voltage

to vi IV Q1 and resistor has less

through discharging $t \Rightarrow 00$ ($Q \Rightarrow 0$, $V_c \Rightarrow 0$, $I \Rightarrow 0$

capacitor charging

Lecture 13: RLC Circuits

Parallel RLC Derivation

KCL:
$$\overset{\vee}{R} + C \frac{dv}{dt} = i$$

$$\overset{\vee}{R} + C \frac{dv}{dt} = -\overset{\downarrow}{L} \int_{t_0}^{t} v dt + i(t_0)$$

use KCL:
$$\stackrel{\vee}{R} + C \frac{dv}{dt} = i$$

$$\stackrel{\vee}{R} + C \frac{dv}{dt} = - \stackrel{!}{L} \int_{t_0}^{t} v \, dt + i(t_0)$$

$$\stackrel{\vee}{R} + C \frac{dv}{dt} + \stackrel{!}{L} \int_{t_0}^{t} v \, dt - i(t_0) = 0$$

$$\stackrel{\vee}{derivortive} \stackrel{\vee}{v} + C \frac{d^2v}{dt^2} + \stackrel{!}{L} \cdot v = 0$$

derivative
$$\frac{1}{R} \frac{dV}{dt} + \frac{1}{L} \cdot V = 0$$

Solving RC Network
D analyze t=0": DC analysis to find Vc (Ic=0)
D analyze $t=0^+$: DC analysis to find Vc (Ic=0)
□ analyze t=∞: DC analysis to find Vc (C becomes voltage source)
D find RTH across C, T=RC
D V(t) = V(\omega) + [V(o+) - V(\omega)] e
D i(4) = I(0) + [I(0) - I(0)] e - 4/T
Solving RL Network
Donning NE your N