Introduction

Wei-Mei Chen

Department of Electronic Engineering
National Taiwan University of Science and Technology

Data Structures

Data Structures

Niklus Wirth

```
Algorithms + Data structures = Programs
```

- Textbook:
 Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed,

 Fundamentals of Data Structures in C
- Grade:

• Assignments: 40%

Midterm Exam: 20%

• Final Exam: 20%

• Participation: 20%

Schedules

- Basic Concepts
- Arrays and Structures
- Stacks and Queues
- Lists
- Trees
- Graphs
- Sorting

Assignments

- Cover
- 2 Contents (numbers of pages)
- Problem, Definition, and Details (methodology and explanation)
- Code
- Results
- Discussion and Conclusion

Fibonacci Sequence

$$f_n = \left\{ \begin{array}{ll} 0 & \text{if } n=0 \\ 1 & \text{if } n=1 \\ f_{n-2} + f_{n-1} & \text{else} \end{array} \right. \quad \text{defined recursively!}$$

 $0, 1, 1, 2, 3, 5, 8, 13, 21, \dots$

divide-and-conquer approach

Fibonacci Sequence I

```
int fib1(int n) {
   if (n<=1)
     return n;
   else return fib1(n-1)+fib1(n-2);</pre>
```

n	# of Terms
0	1
1	1
2	3
3	5
4	9
5	15
6	25

If n is a power of 2

Fibonacci Sequence II

```
int fib2(int n) {
    int i;
    int f[n+1]=0;
    if (n>0) {
        f[1]=1;
        for(i=2; i<=n; i++)
            f[i]=f[i-1]+f[i-2];
        };
    ;;
    return f[n];
}</pre>
```

Recompute the same value ⇒ Save it in an array

Linear Time: O(n)

fib1 vs. fib2

Assume that one term can be computed in 10^{-9} sec.

 $1 \text{ ns} = 10^{-9} \text{ sec}$ and $1 \mu \text{s} = 10^{-6} \text{ sec}$

n	$2^{n/2}$	Execution Time by fib2	Execution Time by fib1
40	1048576	41 ns	1048μ s
60	1.1×10^{9}	61 ns	1 s
80	1.1×10^{12}	81 ns	18 min
100	1.1×10^{15}	101 ns	13 days
120	1.2×10^{18}	121 ns	36 years
160	1.2×10^{24}	161 ns	3.8×10^7 years
200	1.3×10^{30}	201 ns	4×10^{13} years