

Ant Colony Optimization

Yanmei Zheng

Outline

- @Introduction to Ant Colony Optimization (ACO)
- **Q**Ant Behavior
- **@**Stigmergy
- **@Pheromones**
- @Basic Algorithm
- @Example
- **Q**Advantages and Disadvantages
- **@**References

What is Ant Colony Optimization?

Ant Colony Optimization (ACO) is a population-based, general search technique for the solution of difficult combinatorial problems which is inspired by the pheromone trail laying behavior of real ant colonies.

Ant Colony Optimization

Ant System was developed by Marco Dorigo (Italy) in his PhD thesis in 1992.

Max-Min Ant System developed by Hoos and Stützle in 1996 Ant Colony was developed by Gambardella Dorigo in 1997

Ant Colony Optimization

- Proposed by Marco Dorigo in 1991
- Inspired in the behavior of real ants
- Multi-agent approach for solving complex combinatorial optimization problems
- Applications:
 - Traveling Salesman Problem Scheduling
 - Network Model Problem
 - Vehicle routing

Biological Inspiration

Pheromone trail following behavior

- In many ant species the visual perceptive faculty is only very rudimentarily developed
- Most communication among individuals is based on chemicals called pheromone
- A particular type in some ant species is *trail pheromone*, used for marking and following paths

collective trail laying / trail following behavior is the inspiring source of Ant Colony Optimization

Nest Obstacle Food

Nest Obstacle Food

Nest **Obstacle Food Pheromones**

Double bridge experiments

- laboratory colonies of *Iridomyrmex humilis*
- ants deposit pheromone while walking from food sources to nest and vice versa
- ants tend to choose, in probability, paths marked by strong pheromone concentrations

Experimental results

• equal length bridges: convergence to a single path

Experimental results

- equal length bridges: convergence to a single path
- different length paths: convergence to short path

- Ant behavior is stochastic
- The behavior is induced by indirect communication (pheromone paths) - Stigmergy
- Ants explore the search space
- Limited ability to sense local environment Act concurrently and
- independently
- High quality solutions emerge via global cooperation

Stigmergy

- Term coined by French biologist Pierre-Paul Grasse, means interaction through the environment
- Indirect communication via interaction with environment
- Agents respond to changes in the environment
- Allows simpler agents
- Decreases direct communication

Pheromones

- Ants lay pheromone trails while traveling
- Pheromones accumulate with multiple ants using a path This
- behavior leads to the appearance of shortest paths

Pheromones = **long-term memory** of an ant colony

- Pheromones evaporate
 - Avoids being trapped in local optima
 - ρ small \Rightarrow low evaporation \Rightarrow slow adaptation
 - ρ large \Rightarrow high evaporation \Rightarrow fast adaptation

Towards artificial ants

- Real ant colonies are solving shortest path problems
- Ant colony optimization takes elements from real ant behavior to solve more complex problems than real ants
- In ACO, artificial ants are stochastic solution construction procedures that probabilistically build solutions exploiting
 - (Artificial) *pheromone trails* which change dynamically at run time to reflect the agents' acquired search experience
 - Heuristic information on the problem instance being solved

ACO Algorithm

- Construct solutions
 - Explore the search space
 - Choose next step probabilistically according to the pheromone model
- Apply local search to constructed solutions (Optional)
- Update pheromones (add new + evaporate)

Travelling Salesman Problem

Stochastic solution construction

Stochastic solution construction

- Use memory to remember partial tours
- Being at a city i choose next city j probabilistically among feasible neighbors
- Probabilistic choice depends on pheromone trails and heuristic information $\eta_{ij} = 1/d_{ij}$
- "Usual" action choice rule at node

$$p_{ij}^k(t) = \frac{[\tau_{ij}(t)]^{\alpha} \cdot [\eta_{ij}]^{\beta}}{\sum_{l \in \mathcal{N}_i^k} [\tau_{il}(t)]^{\alpha} \cdot [\eta_{il}]^{\beta}} \qquad \text{if } j \in \mathcal{N}_i^k$$

Pheromone update

- Use positive feedback to reinforce components of good solutions
 - Better solutions give more feedback
- Use pheromone evaporation to avoid unlimited increase of pheromone trails and allow forgetting of bad choices
 - Pheromone evaporation $0 < \rho \le 1$

Pheromone update (2)

Example of pheromone update

$$\tau_{xy}(t+1) = \rho \tau_{xy}(t) + \Delta \tau_{xy}(t)$$

$$\Delta \tau_{xy}(t) = \sum_{k=1}^{m} \Delta \tau_{xy}^{k}(t)$$

 L_k : Tour length of ant k

m: Number of ants

The resulting algorithm is called Ant System

Ant System

- Ant System is the first ACO algorithm proposed in 1991 by Dorigo et al.
- encouraging initial results on TSP but inferior to state-of-the-art

Role of Ant System

- "proof of concept"
- stimulation of further research on algorithmic variants and new applications

Ant System: The algorithm

```
procedure Ant System for TSP
   Initialize pheromones
   while (termination condition not met) do
      for i=1 to n-1 do
         for k=1 to m do
            ApplyProbabilisticActionChoiceRule (M^k, \tau, \eta)
         end end
      GlobalPheromoneTrailUpdate
   end
end Ant System for TSP
```

Example: TSP

Example: TSP

$$\mathbf{p}(e_{1,j}) = \frac{\tau_{1,j}}{\tau_{1,2} + \tau_{1,3} + \tau_{1,4}} \qquad \mathbf{p}(e_{2,j}) = \frac{\tau_{2,j}}{\tau_{2,3} + \tau_{2,4}}$$

(a) First step of the solution construction.

$$\mathbf{p}(e_{2,j}) = \frac{\tau_{2,j}}{\tau_{2,3} + \tau_{2,4}}$$

(b) Second step of the solution construction.

(c) The complete solution after the final construction step.

ACO Algorithms: Overview

ACO algorithm	Authors	Year	TSP
Ant System	Dorigo, Maniezzo & Colorni	1991	yes
Elitist AS	Dorigo	1992	yes
Ant-Q	Gambardella & Dorigo	1995	yes
Ant Colony System	Dorigo & Gambardella	1996	yes
AS	Stützle & Hoos	1996	yes
Rank-based AS	Bullnheimer, Hartl & Strauss	1997	yes
ANTS	Maniezzo	1998	no
Best-Worst AS	Cordón, et al.	2000	yes
Hyper-cube ACO	Blum, Roli, Dorigo	2001	no

ACO applications: QAP

Design a keyboard layout!

- Distance: time for pressing two keys consecutively
- Flow: frequency of a letter given another letter
- Objective function: average writing time

Goal:

find a keyboard layout that minimizes the diverge writing $\lim_{i=1}^{d} \int_{j=1}^{d} dx^{j} dx^{j}$

time!

 ϕ_k is the letter assigned to the key

Advantages and Disadvantages

- Advantages
 - Can be used in dynamic applications
 - Positive Feedback leads to rapid discovery of good solutions
 - Distributed computation avoids premature convergence

Disadvantages

- Convergence is **guaranteed**, but **time** to convergence
- uncertain
 - Coding is not straightforward

Recent Trends in ACO

- Continued interest in applications
- New applications
 - Multi-objective optimization
 - Dynamic optimization problems
 - Stochastic optimization problems
- Increasing interest in theoretical issues
- Methodology for applying ACO

Conclusions

- Ant Colony Optimization is becoming a mature field
 - √ variety of algorithms available
 - ✓ many successful applications
 - ✓ theoretical results
 - ✓ dedicated workshops (ANTS'1998 2006) and journal special issues

ACO is the most successful technique of the wider field of Swarm Intelligence

References

- Dorigo M., Blum C., Ant colony optimization theory: A survey, Theoretical Computer Science, Volume 344, Issues 2-3, November 2005
- Blum C., Ant colony optimization: Introduction and recent trends, Physics of Life Reviews, Volume 2, Issue 4, December 2005
- Dorigo M., Stutzle T., Ant Colony Optimization, Ant Colony Optimization, MIT Press 2004

Thank you

End of
Ant Colony Optimization