EC516 HW9 Solutions

Problem 9.1

(a)

$$X(e^{j\omega}) = e^{-j\frac{3}{2}\omega} \frac{\sin(2\omega)}{\sin(\omega/2)}$$

- (b) Zero-crossings of $X(e^{j\omega})$ in $-\pi \le \omega < \pi$ exist at $-\frac{\pi}{2}, -\pi, \frac{\pi}{2}$. These correspond to k=1, k=2, and k=3.
- (c) With the same logic, the zero crossings corresponds to $k=2,\,k=4,$ and k=6.
- (d) $(-1)^n = e^{j\pi n}$. Multiplying x[n] with $e^{j\pi n}$ will result in π frequency shift in the DTFT, as shown below.

k=0,1,2,3 of the 4-point DFT corresponds to DTFT at $\omega=0,\frac{\pi}{2},-\pi,-\frac{\pi}{2}$. Hence the 4-point DFT will look like below.

Problem 9.2

A(a) $Q[k]_{256} = Q\left(e^{j\frac{2\pi k}{256}}\right)$. Also $Q\left(e^{-j\frac{\pi}{2}}\right) = Q\left(e^{j\frac{3\pi}{2}}\right)$. Hence, $Q[k_0]_{128}$ becomes $Q\left(e^{-j\frac{\pi}{2}}\right)$ at $k_0 = 192$.

A(b) $R(e^{j\omega})=e^{j16\omega}Q(e^{j\omega})$. Therefore, $R(e^{j\omega})$ and $Q(e^{j\omega})$ have the same magnitude.

Assuming that q[n] = 0 for n < 0 and $n \ge 128$, then r[n] = 0 for n < 16 and $n \ge 144$. Since shifting does not cause the signal to go out of bounds of the DFT $(n < 0 \text{ or } n \ge 256)$, both DFT will have the same magnitude.