Overview of Sampling Theory: Estimation

Sampling Distribution

- Consider the probability distribution of a statistic $T(Y_1, Y_2, \ldots, Y_n)$ over repeated sampling. This probability distribution is called the sampling distribution of T.
- Let's consider the sample mean Y. We know that for a population its mean μ is fixed and unknown. But the sample mean \bar{Y} won't be the same for all different possible samples that can be drawn from the population. Although the characteristics of \bar{Y} can be theoretically derived over samples by its probability distribution. This probability distribution of \bar{Y} is called the sampling distribution of the statistic i.e. sample mean \bar{Y} .

Example

Example 1: Consider a population consisting of only four numbers 1, 2, 3 and 4 with 30% 1's, 40% 2's, 20% 3's and the remaining 10% 4's. That is the probability distribution in the population may be expressed in terms of the p.m.f. $p_Y(y)$ of the population random variable Y as follows:

y	1	2	3	4
$p_Y(y)$	0.3	0.4	0.2	0.1

Now consider drawing a random sample of size 2 from this population and the three statistics $\overline{Y} = (Y_1 + Y_2)/2$, $s_2^2 = 1/2 \sum_{i=1}^2 (Y_i - \overline{Y})^2$ and $s_1^2 = \sum_{i=1}^2 (Y_i - \overline{Y})^2$, where Y_1 and Y_2 are the two observations. The sampling distributions of these three statistics can be figured out by considering all possible samples of size 2 that can be drawn from this population, the corresponding probabilities of drawing each such sample, and the values of each of the statistics for every such sample

Example

Possible Samples	{1,1}	{1,2}	{1,3}	{1,4}	{2,2}	{2,3}	{2,4}	{3,3}	$\{3,4\}$	{4,4}
Probability	0.09	0.24	0.12	0.06	0.16	0.16	0.08	0.04	0.04	0.01
\overline{Y}	1	1.5	2	2.5	2	2.5	3	3	3.5	4
s_2^2	0	0.25	1	2.25	0	0.25	1	0	0.25	0
s_1^2	0	0.5	2	4.5	0	0.5	2	0	0.5	0

Sampling Distribution of the Sample Mean \overline{Y}

\overline{y}		1.5					
$p_{\overline{Y}}(\overline{y})$	0.09	0.24	0.28	0.22	0.12	0.04	0.01

Sampling Distribution of s_1^2

s_2^2	0	0.5	2	$\overline{4.5}$	
prob.	0.30	0.44	0.20	0.06	

Sampling Distribution of s_2^2

s_2^2	0	0.25	1	2.25
prob.	0.30	0.44	0.20	0.06

Estimation

- Suppose population pdf $f(y/\theta)$ (or pmf $p(y/\theta)$)
- Random Sample: n i.i.d observations Y_1, Y_2, \ldots, Y_n from population random variable Y
- How to estimate population parameter θ ?

Point and Interval Estimation

Point Estimation:

We need a single valued estimator of θ

Interval Estimation:

We need an interval of values which is supposed to contain the true unknown value of θ

Ref: Fundamentals of Statistics, Vol 1 by Gun, Gupta, Dasgupta

Point Estimation of Parameters

- Let θ be an unknown parameter of the distribution of a random variable Y.
- Want to estimate θ on the basis of a random sample Y_1, Y_2, \ldots, Y_n .
- Using a particular statistic T where T is itself a random variable.
- T is the estimator of θ . Value of T obtained from a given sample is its estimate.
- We want T to be a good estimator. The difference $|T \theta|$ should be as small as possible.

How "Good" your estimator is?

In point estimation how to decide the nature of a "good" estimator?

• The kind of properties, characteristics or behavior a reasonable estimator should possess. What are the desirable criteria for "good" estimators.

Ref: Fundamentals of Statistics, Vol 1 by Gun, Gupta, Dasgupta

Unbiasedness

- Goodness can be defined in many ways.
- T is an estimator of θ and T has a sampling distribution
- What if the sampling distribution of T has a central tendency towards θ ?
- A statistic T is called unbiased if $E(T) = \theta$.
- $E(T) \theta = b(\theta)$, where $b(\theta)$ is the bias of T.

MVUE

- Minimum variance property: The sampling distribution of estimator T should also have a small dispersion
- Among all unbiased estimators, T should have the smallest variance.
- $Var(T) \leq Var(T')$ where T' is any other unbiased estimator
- A statistic T following these conditions is called MVUE

Example

- Random Sample: n observations Y_1, Y_2, \ldots, Y_n from population random variable Y having mean μ .
- Sample mean: $\bar{Y}=Y_1+Y_2+\ldots+Y_n$

• E(
$$\bar{Y}$$
) = $\frac{E(Y_1) + E(Y_2) + \ldots + E(Y_n)}{n}$ = $\frac{n\mu}{n}$ = μ , hence \bar{Y} is an unbiased estimator of

• Suppose further that the observations are i.i.d and the population is normal with mean μ and variance σ^2 . Here it can be shown that \bar{Y} has the least variance among all unbiased estimators of μ . Hence, in this case, \bar{Y} is MVUE of μ