

Observational Techniques in Astrophysics Exercise 1 23.09.2014

Lia Sartori

If you are taking Adam's class...

* Do NOT set ur_setup as default

```
ur_setup(){
    eval'path-to-home-directory/.ureka/ur_setup -sh $*' &> /dev/null
}
ur_forget(){
    eval'path-to-home-directory/.ureka/ur_forget -sh $*' &> /dev/null
}
ur_setup &> /dev/null
```

* Install python from MacPorts following Adam's notes

Problem 1: Conversion Vega - AB magnitude

$$\begin{split} m_{\text{Vega}} &= -2.5 \log \frac{\int d\nu \, f_{\nu} R_{\nu} / \nu}{\int d\nu \, f_{\nu}^{\text{Vega}} R_{\nu} / \nu} \\ m_{\text{AB}} &= -2.5 \log \frac{\int d\nu \, f_{\nu} R_{\nu} / \nu}{\int d\nu \, R_{\nu} / \nu} - 48.6 \end{split}$$

- * Zeropoint AB magnitude: $f_{\nu} = 3.63 \times 10^{-20} \ {\rm erg \ s^{-1} \ cm^{-2} \ Hz^{-1}}$
- * AB magnitude of Vega in V-band = 0

Problem 1: Conversion Vega - AB magnitude

Problem 2: Stellar mass function

$$\Phi(M) dM = e^{-M/M^*} \left[\phi_1^* \left(\frac{M}{M^*} \right)^{\alpha_1} + \phi_2^* \left(\frac{M}{M^*} \right)^{\alpha_2} \right] \frac{dM}{M^*}$$

- * Local stellar mass function from Baldry et al. (2012)
- * data are binned in log scale ---- dM = log(10) * M
- * from scipy.optimize import curve_fit