

Project Summary Project Summary Project Summary Project Summary Project Summary Project Riverside in a two-stery, steel-formed, office building located in Lowell, MA, GLZ Design has anispred References and Regulations. Methods of Design and Analysis Reduces and Regulations and Requirements, and Requirements, and Requirements, and Requirements, and Requirements, and Requirements, and Repulsements, and Requirements, and Requirements,

Lateral Load Resisting Systems

Roof Design______
Connections ______
Schedule ______
Cost Estimate

DESIGN SUMMARY

were allowed in the design, reducing the project's final loading and displangems, and connections were designed. For quality assurance and control, all of the project's information, calculations, analysis and diversign sever further back desclar. The final results of this project can be found in this report. Calculations, analysis and Drawings are referred in its respective section on the report and can also be found at this reports approximate.

Design Criteria Design

BRACED FRAME

- Braced frame analyzed using the direct analysis method
- Developed braced frame model in SAP2000 using loading as shown
- Model reflected beam/column sizes determined from 30% design

BRACED FRAME

- Columns determined in 30%: W12x40
 - This section did not satisfy requirements for combined moment/bending
- Re-run calculation with WI2x50
 - Section satisfied requirements as seen below:

13.37 270.00 295.9		Eq A-8-1 Referenced Above	
270.00		-4	
	kip*ft	Referenced Above	
295.9		Referenced Abov	
	kips	Eq A-8-2	
355	kips	Referenced Abov	
0.83			
0.88		Eq H1-1a	
0.47		Eq H1-1b	
0.88	SECTION OK		
	0.83 0.88 0.47	355 kips 0.83 0.88	

BRACED FRAME

MOMENT FRAME

- Moment frame analyzed using the direct analysis method
- Developed moment frame model in SAP2000 using loading as shown
- Model reflected beam/column sizes determined from 30% design

MOMENT FRAME

- Deformed shape (Lateral translation):
- Deformed shape (No lateral translation)

MOMENT FRAME

- Columns determined in 30%: W8x40
 - · This section did not satisfy requirements for combined moment/bending
- Re-run calculation with W10X68
 - Section satisfied requirements as seen below:

Moment Required, Mr	261.96	kip*ft	Eq A-8-1	
Moment Capacity, M _c	320.00	kip*ft	Referenced Abov	
Axial Required, P.	99.8	kips	Eq A-8-2	
Axial Capacity, P _c	629.06	kips	Referenced Above	
Combined Forces Ineraction Equation				
P _c /P _c	0.16			
P _r /P _c >0.2	0.89		Eq H1-1a	
P./P.<0.2	0.90		Eq H1-1b	
Design Check	0.90	SECTION	OK	

MOMENT FRAME

- Level 2 Beams determined in 30%: W18x35
 - This section did not satisfy requirements for combined moment/bending
- Re-run calculation with W12x53
 - Section satisfied requirements as seen below:

Moment Required, Mr	239.01	kip*ft	Eq A-8-1
Moment Capacity, M _c	249.06	kip*ft	Referenced Above
Axial Required, P,	19.9	kips	Eq A-8-2
Axial Capacity, P _c	261.33	kips	Referenced Above
Combined Forms to combine Formston			
Combined Forces Ineraction Equation			
P _r /P _c	0.08		
P _r /P _c >0.2	0.93		Eq H1-1a
P _r /P _c <0.2	1.00		Eq H1-1b
Design Check	0.998	SECTION	OK

MOMENT FRAME

- Roof Level Beams determined in 30%: W12x19
 This section did not satisfy requirements for combined moment/bending
- Re-run calculation with W10x39
 Section satisfied requirements as seen below:

Moment Required, M,	77.18	kip*ft	Eq A-8-1	
Moment Capacity, Mc	136.34	kip*ft	Referenced Above	
Axial Required, P,	10.7	kips	Eq A-8-2	
Axial Capacity, P _c	122.80	kips	Referenced Abov	Æ
Combined Forces Ineraction Equation				
P _r /P _c	0.09			
P _r /P _c >0.2	0.59		Eq H1-1a	
P _r /P _c <0.2	0.61		Eq H1-1b	
Design Check	0.61	SECTION	OK	

MOMENT FRAME

· Final moment frame shown below:

FLOOR SYSTEM

- · Utilized composite design
- Floor System Specifications:
 - Total Slab Depth=5"
 - Normal weight concrete (145pcf)
 Camber=1"

 - # of Studs/beam=60
 - Stud diameter=3/4"
 - Stud Glashete
 Stud Length=4"
 Equally Spaced

 - · Temporary bracing required
 - 1.5VLR19 (Vulcraft) Metal Deck
 - Ribs perpendicular to beam

ROOF SYSTEM

- Open web steel joists with steel (W) girders
 Vulcraft 26KCS3 joists
- Metal Deck:Vulcraft B18 (3span)

- 36/3 fastener layout Support Fasteners: 5/8" puddle welds Side lap fasteners: (2) #10 tek screws
- Vertical and Lateral deflections under allowable limit

Gusset Plate Connection- 2nd Floor

Hanger Detail

Hanger Detail

- Hanger connection: WT12x96
 Connected to roof using 3/4" diameter A325 bolts
- Hanger member is constructed of two 1"x14" steel plates
 Treated as tension-only
 - members
- Connected to WT member by one horizontal row of (3) ¾" diameter A325

Moment Connection - Roof Level

- Girder: W10x39 Column: W10x68
- Mu = 77.18 k-ftVu = 35.73 k

Moment Connection - Roof Level

- Flange Plate: t= 0.5 in

- w = 8 in Connection 7/8" Dia A325 Bolts n = 2 rows
- # bolts per row = 4 (per flange)
 Gage = 6 in
 Flange Column Weld:

- Electrode: 70 ksi
 Complete Joint Penetration weld (CJP)
 - Length = 8 in
 Size = 0.5 in
- Double Angle Connection: L3.5x3x1/4
 Length = 8.5 in

 - Length = 8.5 in
 Weld to column
 Electrode: 70 ksi
 1 22 3in

 - Leg = 3in
 Weld size = 0.25 in

 - Bolt to girder

 3/4 dia STD hole A325 bolts

 # bolts = 3 bolts (spaced 3 in on center)

Moment Connection - 2nd Level

- · Girder: W12x53
- Column: W10x68
- Mu = 239.01 k-ft
- Vu = 78.22 k

Moment Connection - 2nd Level

- Flange Plate: t= 0.75 in
- w = 10 in
- Connection
 7/8" Dia A325 Bolts

 - n = 2 rows
 # bolts per row = 10 (per flange)
- Gage = 7 in
 Flange Column Weld:
- Electrode: 70 ksi Complete Joint Penetration weld (CJP)
- Length = 10 in
 Size = 0.5 in
 Double Angle Connection: L3.5x3x1/4
 Length = 11.5 in
 Weld to column
- - Electrode: 70 ksi Leg = 3inWeld size = 0.25 inBolt to girder
 - - %" dia STD hole A325 bolts
 # bolts = 4 bolts (spaced 3 in on center)

Shear Connection - Roof Level

- Use all <u>bolted</u> double angle connections
 - Pu = 295.97 k
 - n = 9 rows
 - 3/4 in diameter bolts
 - STD Hole Group A Threads in
 - t, Angle = 3/8 in
 # Spaces, N = 8

 - tw, Girder = 0.65 in
 - Gage = 2.5 in
 - Min edge dist = 1 in Length of leg bolted to Girder = 3.5
 - Length of leg bolted to Column = 4
 - Angle Length = 26 in
- (2) 4 x 3.5 x 3/8 x 2'-2" Angles Used

Shear Connection - Roof Level

ROOF LEVEL

LEVEL 2

- Use all <u>bolted</u> double angle connections
 - Pu = 71.46 k
 - n = 4 rows

 - 3/4 in diameter bolts
 STD Hole
 Group A
 Threads included

 - t, Angle = 1/4 in
 - # Spaces, N = 3
 - tw, Girder = 0.43 in Gage = 2.5 in

 - Min edge dist = 1 in Length of leg bolted to Girder = 3.5
 - Length of leg bolted to Column = 4
- Angle Length = 11 in
 (2) 4 x 3.5 x 1/4 x 11" Angles Used

Shear Connection - 2nd Level

- Use all <u>welded</u> double angle connections
- Pu = 39.11 k
- L = 6 in
- Weld A = 3/16 in
 Weld B = 5/16 in
- Angle used: (2) L3.5x3x1/4 angl

Shear Connection - 2nd Level

- Use all bolted double angle connections
 - Pu = 156.44 k
 n = 5 rows

 - 3/4 in diameter bolts
 - STD Hole Group A Threads in
 - t, Angle = 3/8 in
 # Spaces, N = 4

 - tw, Girder = 0.545 in
 - Gage = 2.5 in
 - Min edge dist = 1 in
 - Length of leg bolted to Girder = 3.5
 - Length of leg bolted to Column = 4
- Angle Length = 14 in
 (2) 4 x 3.5 x 3/8 x 1'-2" Angles Used

Cost Estimation

- · The cost of the project will be determined using R.S. Means Online
 Cost Estimating Tool.

 • Factors to consider
 - - · Material types

 - SizesQuantities (lengths, area, volume, weight etc.)
 - Location of project
 - Labor
- · The type of cost estimation will be an engineer's estimation
 - Determine reasonable price poir for this job

