Curso: Engenharia de Computação

Arquitetura de Computadores

Prof. Clayton J A Silva, MSc clayton.silva@professores.ibmec.edu.br

IAS - a máquina de von Neumman Referência para as arquiteturas modernas

Gargalos: limitações de performance

Quais são os elementos das arquiteturas modernas?

Elementos do sistema de computação

- Memória
- Barramento
- Processadores
- Dispositivos de Entrada/Saída

Elementos do sistema de computação

- Memória
- Barramento
- Processadores
- Dispositivos de Entrada/Saída

Pirâmide de Hierarquia do <u>sistema</u> de memória

Hierarquia do sistema de memória

- SSD (Solid State Drive) NVMe, SSD SATA
- HDD (discos rígidos)
- CD-ROM, DVDs, fitas magnéticas

Hierarquia do sistema de memória

 Memória principal: RAM, usada para armazenar dados temporários para aplicativos em execução. Memória de trabalho.

 Cache (dividida em L1, L2, L3): memória intermediária, cada vez maior e um pouco mais lenta conforme se desce do L1 para o L3.

Hierarquia do sistema de memória

 Registradores: usada para armazenar instruções imediatas e dados no processador.

Pirâmide de Hierarquia do sistema de memória

- Parâmetros de desempenho
 - Capacidade de armazenamento de bits
 - Velocidade
 - Custo

 Capacidade de armazenamento: quantidade total de bits ou bytes (B) armazenados em cada elemento, medidos normalmente em múltiplos binários: K, M, G ou T, por exemplo.

$$1 \text{ KB} = 2^{10} \text{ B} = 1024 \times 8 \text{ bits}$$

$$1 \text{ MB} = 2^{20} \text{ B} = 1024 \times 1024 \times 8 \text{ bits}$$

. . .

Velocidade

- Ciclo de memória (latência) representa o tempo decorrido entre duas operações sucessivas de acesso à memória, seja para leitura ou escrita.
- O ciclo de memória compreende o tempo de acesso mais o tempo necessário para a realização de outras operações do sistema, logo

$$t_C = t_A + t_S$$

- Tempo de acesso (ou tempo de resposta) representa o tempo que a memória gasta para disponibilizar um dado após o endereço ser disponibilizado e ser requisitado pelo processador.
- Vazão representa a taxa de bits em uma operação entre o processador e a memória. Depende da largura do barramento.

- Características tecnológicas
 - Tipo de acesso ao dado
 - Volatilidade do dado
 - Refresh do dado
 - Sincronismo do controle
 - Material construtivo
 - Leitura/Escrita

1. Acesso aleatório aos dados x sequencial aos dados armazenados

Acesso Randômico (aleatório): Tempo de acesso igual para todas as células. Não há necessidade de ler outras posições antes de acessar uma célula.

Acesso sequencial: Existem tecnologias em que o acesso a uma célula requer uma sucessão preliminar de posições antes de acessar a posição de interesse.

2. Volatilidade x não volatilidade do armazenamento sem alimentação

Memórias voláteis mantêm os dados armazenados somente se houver alimentação elétrica.

Memórias **não voláteis** mantêm os dados armazenados **mesmo na ausência de alimentação** elétrica.

3. Necessidade de recarga (*refresh*) dos dados armazenados

Memórias estáticas - o dado permanece armazenado uma vez carregado.

Memórias dinâmicas - para o dado se manter armazenado é necessário periodicamente uma recarga (refresh).

4. Controle sincronizado ou não

Memórias assíncronas - o dado é disponibilizado para leitura mediante um sinal de controle do processador

Memórias síncronas - a operação acompanha a velocidade do *clock* do sistema, sem a necessidade de sinal de controle.

- 5. Material de construção
 - A construção dos dispositivos de memória pode ser feita com semicondutores.
 - São duas tecnologias muito utilizadas: MOS, semicondutor de óxido metálico e CMOS, semicondutor de óxido complementar.
 - Além disso, podem ser construídas com meios magnéticos e meios ópticos.

Evolução das características tecnológicas de memória

Aplicações típicas das memórias ROM (Read Only Memory)

- Firmware: inicialização de máquinas, hardware+software
- Bootloader: inicialização do sistema operacional
- Tabelas de dados
- Conversores de códigos
- Geradores de funções
- Armazenamento auxiliar

Características tecnológicas de memória por camada do sistema de memória

Camada de Memória	Tipo de Acesso ao Dado	Volatilidade do Dado	Refresh do Dado	Sincronismo do Controle	Material Construtivo	Leitura/Escrita
Registradores	Acesso direto (CPU)	Volátil	Não necessário	Assíncrono	Circuitos lógicos	Leitura/Escrita
Cache (L1, L2, L3)	Acesso direto (CPU)	Volátil	Não necessário	Sincronizado	SRAM	Leitura/Escrita
Memória Primária (RAM)	Acesso aleatório	Volátil	Necessário (DRAM)	Sincronizado	DRAM (capacitores e transistores)	Leitura/Escrita
Memória Secundária (HD)	Acesso sequencial	Não volátil	Não necessário	Assíncrono	Eletromecânico (Disco magnético)	Leitura/Escrita
Memória Secundária (SSD)	Acesso aleatório	Não volátil	Não necessário	Assíncrono	Memória Flash (NAND)	Leitura/Escrita
Memória Secundária (Fita Magnética)	Acesso sequencial	Não volátil	Não necessário	Assíncrono	Material magnético	Leitura/Escrita

Parâmetros de performance <u>por camada</u> do sistema de memória

	Dispositivo de Armazenamento	Tempo de Acesso Típico (ns)	Capacidade Típica (MB)	Custo por MB (USD)
1	Registradores	1	0.001	0.5
2	Cache L1	2	0.125	0.25
3	Cache L2	5	1.0	0.1
4	Cache L3	10	8.0	0.05
5	Memória RAM	100	16000.0	0.003
6	Memória Flash	50000	512000.0	0.0002
7	HD	5000000	1000000.0	3e-05
8	SSD SATA	50000	1000000.0	0.0001
9	SSD M.2	10000	1000000.0	0.0002

Comparação SSD

Atributo	Exemplo (SATA)	Exemplo (PCIe/NVMe)
Formato Físico	2.5 polegadas	M.2 PCle (Samsung 970 EVO)
Barramento	SATA III (600 MB/s)	PCle 3.0/4.0 (3.500 - 7.000 MB/s)
Protocolo	AHCI	NVMe
Memória	TLC NAND (Samsung 860 EVO)	TLC NAND (Samsung 970 EVO)
Consumo	Baixo (2-5 watts)	Moderado (5-8 watts)
Durabilidade	300 TBW	600 TBW

Principais Fabricantes de SSDs:

- Samsung: Líder de mercado com as linhas EVO (860 EVO, 970 EVO Plus) e PRO.
- Crucial: Oferece SSDs populares e acessíveis, como o MX500 e P1.
- Western Digital (WD): Linha WD Blue (SATA) e WD Black (NVMe).
- Kingston: Oferece SSDs como o A400 (SATA) e KC2500 (NVMe).
- Intel: Conhecida pela linha Optane e SSDs de alto desempenho para empresas e servidores.

Características tecnológicas de outros tipos de memória <u>não classificadas</u> nas camadas do sistema de memória

Camada de Memória	Tipo de Acesso ao Dado	Volatilidade do Dado	Refresh do Dado	Sincronismo do Controle	Material Construtivo	Leitura/Escrita
ROM (Memória Somente Leitura)	Acesso aleatório	Não volátil	Não necessário	Assíncrono	Circuitos lógicos	Leitura apenas
EPROM (Programmable ROM)	Acesso aleatório	Não volátil	Não necessário	Assíncrono	Semicondutores (UV Erasable)	Leitura/Escrita (limitada)
EEPROM	Acesso aleatório	Não volátil	Não necessário	Assíncrono	Semicondutores	Leitura/Escrita (limitada)
Flash ROM	Acesso aleatório	Não volátil	Não necessário	Assíncrono	Memória Flash NAND	Leitura/Escrita (limitada)
Memórias Embarcadas (MCU)	Acesso direto	Não volátil	Não necessário	Sincronizado ou Assíncrono	ROM/EEPROM/Flash	Leitura/Escrita (limitada)

Memória Primária

Memória Primária

- Armazena programas (sequência de instruções) e dados.
- Os programas executados pela CPU contemplam um conjunto de instruções no nível do set de instruções do processador.
- Assim como as instruções do programa, os dados operados pela CPU também ocupam um endereço da MP.

P	IN NAMES
A0-A9	Address Input
W	Write Enable
s	Chip Select
1/01-1/04	Data Input/Output
Vcc	Power (+5 V)
V _{SS}	Ground

Memória Motorola MCM2114 de 4096 bits (a) Pinagem (b) Identificação dos pinos

4-bits de dados

10-bits de **endereçamento** (*adress*)

	<i>101</i>	102	103	104
0				
1				
2				
3				
4				
• • •				
1024				

Memória cache

Memória Cache

- Memória rápida, porém média/baixa capacidade de armazenamento
- Armazena palavras da MP localmente próximas física ou temporalmente
- Princípio da localidade: espacial ou temporal

Organização da cache

Cache L1

- Diretamente embutida no núcleo da CPU.
- Tamanho: tipicamente, entre 16 KB e 128 KB por núcleo de CPU.
- Velocidade: tipicamente, 1 a 3 ciclos de clock.
- Tecnologia: SRAM (Static Random-Access Memory).
- Aplicação: armazenar instruções e dados que o núcleo da CPU precisa acessar de forma imediata e frequente.
- Dividida em Cache L1 de dados (L1D), para armazenar dados usados frequentemente; Cache L1 de instruções (L1I), para armazenar instruções de programa frequentemente usadas.
- Aplicação típica: operações intensivas da CPU.

Cache L2

- Pode ser dedicada a cada núcleo da CPU ou compartilhada entre vários núcleos, dependendo da arquitetura do processador.
- Tamanho: tipicamente, entre 256 KB e 2 MB por núcleo.
- Velocidade: tipicamente, de 5 a 12 ciclos de clock.
- Tecnologia: SRAM (Static RAM).
- Aplicação: armazenamento de trechos do programa armazenado que são usados frequentemente e localmente próximos.

Cache L3

- Em muitos processadores modernos, a cache L3 é compartilhada entre todos os núcleos da CPU.
- Tamanho: tipicamente, entre 2 MB e 64 MB, dependendo do processador (em processadores de servidores, pode ser ainda maior).
- Velocidade: tipicamente, de 10 a 30 ciclos de clock.
- Material: SRAM.
- Aplicação: armazena dados que não cabem na cache L2, servindo como uma "reserva" para dados acessados com menos frequência; ajuda a melhorar a comunicação entre núcleos da CPU em operações multithread, pois os núcleos podem compartilhar dados via L3.

Organização da cache

Operações típicas:

- Leitura em memória
- Escrita em memória

Barramento

(b) Memória principal

controle da cache em leitura de dados

mapeamento de dados MP-cache

- A cache, em qualquer nível, mantém uma cópia de parte dos dados da MP
- Mapeamento de dados: como os endereços da MP se relacionam com as linhas de armazenamento da cópia dos dados na cache
- Existem três técnicas de mapeamento:
 - mapeamento direto;
 - mapeamento totalmente associativo; e
 - mapeamento associativo por conjunto.

mapeamento direto MP-cache

- No mapeamento direto, o relacionamento é predefinido de linhas de cache da MP com os blocos da MP.
- O controlador de cache possui uma tabela que estabelece a associação.

Linha da Cache	Bloco(s) Mapeado(s) da Memória Principal (MP)
0	0, C, 2C, 3C,, (n-1)C
1	1, C+1, 2C+1, 3C+1,, (n-1)C+1
2	2, C+2, 2C+2, 3C+2,, (n-1)C+2
C-1	C-1, 2C-1, 3C-1,, nC-1

mapeamento direto MP-cache

- Uma vez que tenha ocorrido uma falta, é necessário buscar o dado na memória e substituir os dados da linha de cache que deve armazenar o bloco da MP de acordo com a tabela.
- Decodificação do Endereço

Endereço de MP => Bloco =>Tag = Bloco + Palavra no Bloco

Organização da cache – mapeamento direto

	Linha	Tag			Bloco								Endereço	Mer	nória P	rimária		
	0												0x0				В0	
=2	1												0x1					
													0x2				B1	
	-K-2	alavra	s no	r link	a/hla	200							0x3				<i>D</i> 1	
- K =2 palavras por linha/bloco - M =8 blocos, C =2 linhas - $M/C = n = 4$ blocos mapeados em cada linha						0x4				B2								
						0x5				52								
						0x6		$\perp \perp \perp$		B3								
					0x7													
Tabela de Associação (Mapeamento)						0x8		\perp		B4								
	BO BO	,B4,B6		'A		1 1 1 1 1 1 1 1 1 1	4111		,				0x9					
	DU, D2	,04,00		,0									0xA				B5	
	B1,B3	,B5,B7	<u> </u>	7									0xB		\perp			
					0xC		\perp		B6									
													0xD		$\perp \perp$			
													0xE				B7	
				0xF					M=8									

	Linha	Tag	Bloco															
	0																	
C=2	1																	

Organização da cache

Tá	ag	Endoroco
Linha	Palavra	Endereço
0	0	0x0
0	1	0x1
1	0	0x2
1	1	0x3
0	0	0x4
0	1	0x5
1	0	0x6
1	1	0x7
0	0	0x8
0	1	0x9
1	0	0xA
1	1	0xB
0	0	0xC
0	1	0xD
1	0	0xE
1	1	0xF

M=8

mapeamento associativo MP-cache

- No mapeamento associativo, o relacionamento não é predefinido de linhas de cache da MP com os blocos da MP.
- Qualquer bloco da MP pode ocupar qualquer linha da cache.
- Uma vez que tenha ocorrido uma falta, é necessário buscar o dado na memória e substituir os dados de uma das linhas de cache que armazena o bloco da MP.
- Podem ser utilizados algoritmos de substituição específicos.

mapeamento associativo MP-cache técnicas de substituição de dados na cache

- FIFO First-In-First-Out, em que o bloco que ocupa uma linha cujos dados foram os primeiros a ser inseridos são aqueles a ser substituídos;
- ➤ LRU Least Recently Used, em que o bloco que há mais tempo ocupa uma linha e não é acessado deve ser substituído.

mapeamento associativo por conjunto MP-cache

Memória cache — conjunto v – 1

k linha

controle da cache na escrita de dados

ibmec.br

Linhas de cache 0

Linhas de cache 1

Linhas de cache 2

Linhas de cache 3

Linhas de cache 4

Linhas de cache 5

Algoritmo de controle de funcionamento da cache para **escrita** de dados na MP:

Atualização imediata por escrita direta (write through)

controle da cache na escrita de dados

ibmec.br

Algoritmo de controle de funcionamento da cache para **escrita** de dados na MP:

 Atualizar depois, por escrita retroativa ou retardada se a linha de cache precisar ser descartada (write back ou write deferred)

Linhas de cache 5

Linhas de cache 4

Desempenho do sistema de memória com cache

- CPU busca dados primeiro na memória cache
- k acessos a uma palavra em um intervalo de tempo com a referência 1 vez à MP
- Como avaliar:
 - $c = t_A$ da cache
 - $m = t_A \text{ da MP}$
 - taxa de acerto (h), h = (k-1)/k = 1 1/k
 - tempo médio de acesso (t_M) ,

$$t_M = \frac{c.(k-1) + m}{k} = c.h + \frac{1}{k}.m = c.h + (1-h).m$$

Elementos do sistema de computação

Memória

- Barramento
- Processadores
- Dispositivos de Entrada/Saída

Interconexão dos elementos do sistema computacional

- Um barramento é um caminho de comunicação que conecta dois ou mais dispositivos.
- Uma característica-chave de um barramento é que ele é um meio de transmissão compartilhado. Se dois dispositivos transmitem durante o mesmo período de tempo, seus sinais serão sobrepostos e ficarão distorcidos. Assim, somente um dispositivo de cada vez pode transmitir com sucesso.
- Tipicamente, um barramento consiste em múltiplos caminhos de comunicação, ou linhas.

Interconexão dos elementos do sistema computacional Sistema de barramento

- Características
 - Funcionalidade
 - Largura
 - Hierarquia localização (internos x externos)
 - Arbitragem de barramento
 - Sincronismo do controle

Estrutura de interconexão dos elementos do sistema computacional

Funcionalidade do barramento

Classificação dos barramentos

- Quanto à **funcionalidade**: transportar dados, endereços ou sinais de controle

Largura de barramento

- A largura do barramento é o parâmetro de projeto mais óbvio.
- Quanto mais linhas de endereço tiver um barramento, mais memória a CPU pode endereçar diretamente.
- Problema: barramentos largos precisam de mais fios do que os estreitos, ocupam mais espaço físico, precisam de conectores maiores.
- Todos esses fatores encarecem o barramento e, por isso, há um compromisso entre tamanho máximo de memória e custo do sistema.

Largura de barramento

- Para contornar o problema de barramentos muito largos, às vezes os projetistas optam por um barramento multiplexado.
- No início de uma operação de barramento, as linhas são usadas para o endereço. Mais tarde, são usadas para dados.
- Multiplexar as linhas reduz a largura (e o custo) do barramento, mas resulta em um sistema mais lento.

Hierarquia do sistema de barramento

Controlador do barramento

Protocolos de barramento

- Regras que definem a comunicação entre os elementos do sistema computacional
- Controlador de barramento Mediador da comunicação, responsável pela implementação do protocolo
- Alguns dispositivos ligados a um barramento são ativos e podem iniciar transferências no barramento. Outros são passivos e esperam requisições.
- ativos são mestres (master); os passivos são denominados escravos (slaves).

Mestre	Escravo	Exemplo
CPU	Memória	Buscar instruções e dados
CPU	Dispositivo de E/S	Iniciar transferência de dados
CPU	Coprocessador	CPU que passa instruções para o coprocessador
Dispositivo de E/S	Memória	DMA (acesso direto à memória)
Coprocessador	CPU	Coprocessador que busca operandos na CPU

Arbitragem de barramento

- Parece que somente a CPU pode ser mestre de barramento. Chips de E/S e coprocessadores podem se tornar mestres de barramento para ler e escrever na memória e também para causar interrupções.
- Se dois dispositivos quiserem transferir dados? Mecanismo de arbitragem de barramento.
- Arbitragem centralizada x descentralizada.

Arbitragem centralizada

Arbitragem descentralizada

Sincronismo de barramento

- Barramentos podem ser divididos em duas categorias distintas, dependendo de seu clock: síncrono x assíncrono.
- O barramento síncrono tem uma linha comandada por um sinal de clock.
- O barramento assíncrono não tem um clock mestre.
 Há uma série de eventos sequenciados.
- Barramento assíncrono é de mais complexa implementação eletrônica.

Barramento síncrono

A CPU fica em espera um número de ciclos de clock até que a leitura/escrita possa ser realizada

Master requisita a operação

Relógio do barramento: estabelece a referência temporal nas transferências de dados no barramento

Padrões de barramento

- Barramento ISA (Industry Standard Architecture): 8 bits (16 bits), clock de 8,33 MHz
- Barramento PCI (Peripheral Component Interconnect): 32 bits e clock de 33 MHz
- Barramento AGP (Accelerated Graphics Port):
 - AGP 1.0: 32 bits, 66 MHz; AGP 2.0 ...
- PCI-X (Peripheral Component Interconnect Extended)

PCI-X (Peripheral Component Interconnect Extended)

Specifications	x1	x2	Lanes ×4	x8	x16
2.5 GT/s (PCle 1.x +)	500 MB/S	1 GB/S	2 GB/S	4 GB/S	8 GB/S
5.0 GT/s (PCle 2.x +)	1 GB/S	2 GB/S	4 GB/S	8 GB/S	16 GB/S
8.0 GT/s (PCIe 3.x +)	2 GB/S	4 GB/S	8 GB/S	16 GB/S	32 GB/S
16.0 GT/s (PCle 4.x +)	4 GB/S	8 GB/S	16 GB/S	32 GB/S	64 GB/S
32.0 GT/s (PCle 5.x +)	8 GB/S	16 GB/S	32 GB/S	64 GB/S	128 GB/S
64.0 GT/s (PCle 6.x +)	16 GB/S	32 GB/S	64 GB/S	128 GB/S	256 GB/S
128.0 GT/s (PCle 7.x +)	32 GB/S	64 GB/S	128 GB/S	256 GB/S	512 GB/S

PCI-X (Peripheral Component Interconnect Extended)

IBMEC.BR

- f)/IBMEC
- in IBMEC
- @IBMEC_OFICIAL
- @@IBMEC

