IIA Project: Audio Modem

Transmission: Impossible (Team 2)
Ben Domb | Sophie Langdon | Aman Vernekar

Copyright: Paramount Pictures Corporation

Photo credits:

Dr Jossy Sayir (with permission): https://www.robinson.cam.ac.uk/people/dr-jossy-sayir
Mission Impossible Poster: https://m.media-amazon.com/images/l/71-sziO1OsL. AC UF894,1000 QL80 .jpg
WhatsApp profile photos obtained with permission from Ben Domb, Sophie Langdon, Aman Vernekar

System overview

Figure 1: A flowchart showing a system overview for the audio modem

- 1. Initial estimation using the matched filter
- 2. Re-synchronisation using the cyclic shift property

Synchronisation

Figure 2: Representation of 10%-90% re-synchronisation method, showing before (left) and after (right).

Black vertical lines indicate 10% and 90% points in the graph on the left

- 1. Initial estimation using the matched filter
- 2. Re-synchronisation using the cyclic shift property
- 3. Direct optimisation with known OFDM symbol(s)
- 4. Hybrid approach

Synchronisation

Figure 3: Bit error rates calculated for different synchronisation estimates. The vertical line is at the minimum

Recording length using two chirps

Figure 4: Using start and end chirps for detecting length of data

Static channel estimation

Dynamic channel estimation & phase compensation

Results

0% Error!

- Phone to laptop: 6KB, 12 seconds
- Speaker to laptop: 57KB, 1:20 minutes