妮可代数结构答案

En 土土

2023年3月26日

目录

1	集合	2
2	数论初步	5
3		31
4	二元关系	38
5	群论初步	39
6	商群	40
7	环和域	41
8	格和布尔代数	42

1 集合

1.1

- (1) 不相等.
- (2) 相等.
- (3) 相等.

1.2

证明.

$$\left\{ \begin{array}{l} A\subseteq B \Rightarrow \ \forall \ x\in A, \ x\in B. \\ \\ B\subset C \Rightarrow \left\{ \begin{array}{l} \forall \ x\in B, \ x\in C \\ \\ \exists \ x\in C, \ x\notin B \end{array} \right. \end{array} \right. \Rightarrow \left\{ \begin{array}{l} \forall \ x\in A, \ x\in C \\ \\ \exists \ x\in C, \ x\notin A \end{array} \right. \Rightarrow A\subset C.$$

1.3

- (1) 不成立.
- (2) 不成立.
- (3) 不成立.
- (4) 成立.
- (5) 成立.
- (6) 不成立.

1.4

- (1) 不成立.
- (2) 成立.
- (3) 成立.

1.5

证明.

(1)
$$A \cap (\overline{A} \cup B) = (A \cap \overline{A}) \cup (A \cap B) = \emptyset \cup (A \cap B) = A \cap B.$$

(2)
$$A \cup (A \cap B) = (A \cup A) \cap (A \cup B) = A \cap (A \cup B).$$

$$\begin{cases} A \subseteq A \cup (A \cap B) \\ A \supseteq A \cap (A \cup B) \end{cases} \Rightarrow A \cup (A \cap B) = A.$$

(3) (a)

$$\forall \ x \in \bigcap_{i} \overline{A_{i}} \ \Rightarrow x \notin \bigcap_{i} A_{i} \qquad \forall \ x \in \bigcup_{i} \overline{A_{i}} \ \Rightarrow \exists 1 \leq k \leq n, x \in \overline{A_{k}}$$

$$\Rightarrow \exists 1 \leq k \leq n, x \notin A_{k} \qquad \Rightarrow \exists 1 \leq k \leq n, x \notin A_{k}$$

$$\Rightarrow \exists 1 \leq k \leq n, x \in \overline{A_{k}} \qquad \Rightarrow x \notin \bigcap_{i} A_{i}$$

$$\Rightarrow x \in \bigcup_{i} \overline{A_{i}} \qquad \Rightarrow x \in \bigcap_{i} A_{i}$$

$$\Rightarrow \bigcap_{i} A_{i} \subseteq \bigcup_{i} \overline{A_{i}} \qquad \Rightarrow \bigcup_{i} \overline{A_{i}} \subseteq \bigcap_{i} A_{i}$$

即证 $\overline{\bigcap_i A_i} = \bigcup_i \overline{A_i}$.

(b)

$$\forall \ x \in \overline{\bigcup_{i} A_{i}} \ \Rightarrow x \notin \bigcup_{i} A_{i} \qquad \forall \ x \in \bigcap_{i} \overline{A_{i}} \ \Rightarrow \forall 1 \leq k \leq n, x \in \overline{A_{k}}$$

$$\Rightarrow \forall 1 \leq k \leq n, x \notin A_{k} \qquad \Rightarrow \forall 1 \leq k \leq n, x \notin A_{k}$$

$$\Rightarrow \forall 1 \leq k \leq n, x \notin \overline{A_{k}} \qquad \Rightarrow x \notin \bigcup_{i} A_{i}$$

$$\Rightarrow x \in \bigcap_{i} \overline{A_{i}} \qquad \Rightarrow x \in \overline{\bigcup_{i} A_{i}}$$

$$\Rightarrow \overline{\bigcup_{i} A_{i}} \subseteq \bigcap_{i} \overline{A_{i}} \qquad \Rightarrow \bigcap_{i} \overline{A_{i}} \subseteq \overline{\bigcup_{i} A_{i}}$$

即证 $\overline{\bigcup_i A_i} = \bigcap_i \overline{A_i}$.

1.6

证明.

(1) $B \subseteq C \Rightarrow \forall x \in B, x \in C$.

$$\forall x \in (A \cap B), x \in A \perp x \in B \implies x \in A \perp x \in C \implies x \in (A \cap C)$$

(2)

$$\begin{split} A \subseteq C, \ B \subseteq \ C \ \Leftrightarrow A \cup C = C, \ B \cup C = C \\ \Leftrightarrow \ (A \cup B) \cup C = A \cup (B \cup C) = A \cup C = C \\ \Leftrightarrow \ (A \cup B) \subseteq C. \end{split}$$

(3) 若 $|A \cup B| > |A| + |B|$, 则 $\exists x \in (A \cup B)$, 且 $x \notin A, x \notin B$, 矛盾. $|A \cup B| = |A| + |B| - |A \cap B|, |A \cup B| = |A| + |B|$ 当且仅当 $A \cap B = \phi$ 时.

1.7

- (1) 设所求集合为 E.
 - 1. (基础语句) 令 $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$,若 $x \in D$,则 $x \in E$.
 - 2. (归纳语句) 若 $x, y \in E$, 则 x 与 y 的连接 $\overline{xy} \in E$.
 - 3. (终结语句) $x \in E$,当且仅当 x 是由有限次 1,2 得到的.
- (2) 设所求集合为 E.
 - 1. (基础语句) 令 $D = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$,若 $x \in D$,则 $x \in E$, $x \in E$.
 - 2. (归纳语句) 若 x = a.b, $y = c.d \in E$, 则 $\overline{ac}.\overline{bd} \in E$.
 - 3. (终结语句) $x \in E$, 当且仅当 x 是由有限次 1,2 得到的.
- (3) 设所求集合为 E.
 - 1. (基础语句) 0, 10 ∈ E.
 - 2. (归纳语句) 若 $x = \overline{A0} \in E \ (x \neq 0)$, 则 $\overline{A00}$, $\overline{A10} \in E$.
 - 3. (终结语句) $x \in E$, 当且仅当 x 是由有限次 1,2 得到的.

2 数论初步

2.1

证明.

(1)
$$\forall x | a, x | b \begin{cases} x > 0 & \xrightarrow{a > 0, x | a} x \le a \\ x < 0 & \xrightarrow{a > 0} x < a \end{cases} \Rightarrow x < a \xrightarrow{a | a, a | b} (a, b) = a.$$

(2)
$$\begin{cases} (a,b)|(a,b),\ (a,b)|b \\ \forall \ x|(a,b),\ x|b,\ \bar{n}x \leq (a,b). \end{cases} \Rightarrow ((a,b),b) = (a,b).$$

2.2

证明.

(1) 不妨假设 $\exists n > 0, (n, n+1) = d > 1$

$$(n, n+1) = d \Rightarrow \exists x, y \in \mathbb{Z}, \ n = xd, n+1 = yd$$

 $\Rightarrow 1 = (n+1) - n = (y-x)d > 0$
 $\Rightarrow y > x, \ (y-x)d \ge d > 1$
 \Rightarrow 矛盾,假设不成立.

(2) 可取 (n,k), 证明如下

由推论 2.3, 取
$$x = 1$$
, $a = n$, $b = k$, 有 $(n, k) = (n, n + k)$.

2.3

(1) (314,159) = 1,有解。由辗转相除法

$$314 = 159 \cdot 1 + 155$$
$$159 = 155 \cdot 1 + 4$$
$$155 = 4 \cdot 38 + 3$$
$$4 = 3 \cdot 1 + 1$$

即

$$1 = 4 - 3 \cdot 1$$

$$= 4 - (155 - 4 \cdot 38) \cdot 1$$

$$= (159 - 155 \cdot 1) \cdot 39 - 155$$

$$= 159 \cdot 39 - 155 \cdot 40$$

$$= 159 \cdot 39 - (314 - 159 \cdot 1) \cdot 40$$

$$= 159 \cdot 79 - 314 \cdot 40.$$

 $\mathbb{P} x = -40, y = 79.$

(2) (3141,1592) = 1,有解。由辗转相除法

$$3141 = 1592 \cdot 1 + 1549$$

 $1592 = 1549 \cdot 1 + 43$
 $1549 = 43 \cdot 36 + 1$

即

$$1 = 1549 - 43 \cdot 36$$

$$= 1549 - (1592 - 1549 \cdot 1) \cdot 36$$

$$= 1549 \cdot 37 - 1592 \cdot 36$$

$$= (3141 - 1592 \cdot 1) \cdot 37 - 1592 \cdot 36$$

$$= 3141 \cdot 37 - 1592 \cdot 73.$$

 $\mathbb{P} x = 37, y = -73.$

2.4

证明.

(0)
$$n = 1, n^3 - n = 0$$
, $f(0) = 6 \cdot 0, 6 | (n^3 - n)$.

(1)
$$n=2, n^3-n=0$$
, $f = 6 - 1, 6 | (n^3-n)$.

(2) 假设 $n = k, k \in \mathbb{N}$ 时,有 $6|(k^3 - k)$,则 n = k + 1 时有

$$(k+1)^3 - (k+1) = k^3 + 3k^2 + 2k$$

= $(k^3 - k) + 3k(k+1)$

显然有 $6|(k^3-k)$, 下证 6|3k(k+1)

$$1^{\circ}$$
 $k = 1, 3k(k+1) = 6$,有 $6 = 6 \cdot 1, 6 \mid 3k(k+1) \mid$

 2° 若 6|3k(k+1),则

$$3(k+1)(k+2) = 3k(k+1) + 6(k+1) \implies 6|3(k+1)(k+2)|$$

即证

$$\forall k \in \mathbb{N} \ 6|3k(k+1) \implies 6|(k+1)^3 - (k+1)$$

综上, 即证

$$\forall n > 0, 6 | (n^3 - n).$$

2.5

证明.

$$\begin{cases} 3^4 \equiv 1 \pmod{10} & \Rightarrow 3^{4n} \equiv 1 \pmod{10} \\ & \Rightarrow 3^{m+4n} \equiv (-1) \pmod{10}. \end{cases}$$
$$10|(3^m+1) \qquad \Rightarrow 3^m \equiv (-1) \pmod{10}$$

即证

$$10|(3^{m+4n}+1)$$

2.6

(1)

$$2345 = 5 \cdot 7 \cdot 67$$

(2)

$$3456 = 2 \cdot 3 \cdot 3 \cdot 3$$

2.7

证明. 不妨假设 $\exists n > 0$, 使得 $n(n+1) = d^2$ 为平方数,则有

$$n^2 < n(n+1) = d^2 < (n+1)^2 \implies n < d < n+1$$

不存在相邻整数间的整数, d 不存在, 假设不成立, 即证.

2.8

证明. $n = 5! + 1 = 2 \cdot 3 \cdot 4 \cdot 5 + 1$.

(1)

$$n+1 = 2 \cdot 3 \cdot 4 \cdot 5 + 2 = 2 \cdot (3 \cdot 4 \cdot 5 + 1)$$

(2)

$$n+2=2\cdot 3\cdot 4\cdot 5+3=3\cdot (2\cdot 4\cdot 5+1)$$

(3)

$$n+3=2\cdot 3\cdot 4\cdot 5+4=4\cdot (2\cdot 3\cdot 5+1)$$

(4)

$$n+4=2\cdot 3\cdot 4\cdot 5+5=5\cdot (2\cdot 3\cdot 4+1)$$

2.9

(1) (1,1)=12, 方程有解, $x_0=0,y_0=2$ 为一组特解, 故通解为

$$\begin{cases} x = t & (t \in \mathbb{Z}) \\ y = 2 - t \end{cases}$$

(2) (2,1)=1 |2,方程有解, $x_0=0,y_0=2$ 为一组特解,故通解为

$$\begin{cases} x = t & (t \in \mathbb{Z}) \\ y = 2 - 2t \end{cases}$$

(3) (15,16) = 1|17,方程有解, $x_0 = -17, y_0 = 17$ 为一组特解,故通解为

$$\begin{cases} x = 16t - 17 & (t \in \mathbb{Z}) \\ y = 17 - 15t \end{cases}$$

2.10

(1) (6,-15) = 3|51,方程有解, $x_0 = 11, y_0 = 1$ 为一组特解,故通解为

$$\begin{cases} x = 11 - 5t & (t \in \mathbb{Z}) \\ y = 1 - 2t \end{cases}$$

又要求负整数解,故 $x,y<0,t\geq3$,即所以负整数解为

$$\begin{cases} x = 11 - 5t & (t \in \mathbb{Z}, t \ge 3) \\ y = 1 - 2t \end{cases}$$

(2) (6,15) = 3|51,方程有解, $x_0 = 6, y_0 = 1$ 为一组特解,故通解为

$$\begin{cases} x = 6 + 5t & (t \in \mathbb{Z}) \\ y = 1 - 2t \end{cases}$$

又要求负整数解,故x,y < 0, t 无解,即无负整数解.

2.11

必须要用 30 张

设需要 x 张 5 分, y 张 1 角, z = (30 - x - y) 张 2 角五分. 有

$$0.05x + 0.1y + 0.25(30 - x - y) = 5 \Leftrightarrow x + 2y + 5(30 - x - y) = 100$$
$$\Leftrightarrow 4x + 3y = 50$$

(4,3) = 1|50, 方程有解, $x_0 = 2, y_0 = 14$ 为一组特解, 故通解为

$$\begin{cases} x = 2 + 3t & (t \in \mathbb{Z}) \\ y = 14 - 4t \end{cases}$$

又 $x, y, z \in \mathbb{N}$,即

$$\begin{cases} 2+3t & \geq 0 \\ 14-4t & \geq 0 \xrightarrow{t \in \mathbb{Z}} t = 0, 1, 2, 3. \\ 14+t & \geq 0 \end{cases}$$

即有4种方案,记x张5分,y张1角,z张2角五分,则方案为

$$\begin{cases} x = 2 \\ y = 14 \\ z = 14 \end{cases} \begin{cases} x = 5 \\ y = 10 \\ z = 15 \end{cases} \begin{cases} x = 8 \\ y = 6 \\ z = 16 \end{cases} \begin{cases} x = 11 \\ y = 2 \\ z = 17 \end{cases}$$

不多于 30 张

即求 $a, b, c \in \mathbb{N}, 0.05a + 0.1b + 0.25c = 5$, 且 $a + b + c \le 30$. 即解

$$\begin{cases} a + 2b + 5c = 100 \\ (a + b + c) \le 30 \\ a, b, c \in \mathbb{N} \end{cases}$$

 $(1) \ c \le 13$

$$a + 2b + 5c < 2 \cdot (30 - c) + 5c = 3c + 60 \le 99 < 100$$
, π .

(2) c > 20

$$a + 2b + 5c > 5c > 100$$
, Ξ 解.

(3) 由 (1)(2) 可知 $14 \le c \le 20$

$$a + 2b = 100 - 5c$$
, $(1, 2) = 1|100 - 5c \Rightarrow$ 方程存在解.

又 a = 100 - 5c, b = 0 为一组特解, 故通解为

$$\begin{cases} a = 100 - 5c - 2t; \\ b = t. \ (t \in \mathbb{N}) \end{cases}$$

$$\begin{cases} a+b+c = 100 - 4k - t & \leq 30 \\ a = 100 - 5c - 2t & \geq 0 \end{cases} \Rightarrow \begin{cases} t \geq 70 - 4k \\ t \leq \left[\frac{100 - 5k}{2}\right] \end{cases}$$

即解的组数为

$$\begin{cases} \left[\frac{100 - 5k}{2} \right] - (70 - 4k) + 1; & (70 - 4k \ge 0) \\ \left[\frac{100 - 5k}{2} \right] + 1. & (70 - 4k < 0) \end{cases}$$

(a)
$$(c = 14)$$
 解的组数为 $\left[\frac{100 - 5 \times 14}{2}\right] - (70 - 4 \times 14) + 1 = 2$

(b)
$$(c = 15)$$
 解的组数为 $\left[\frac{100 - 5 \times 15}{2}\right] - (70 - 4 \times 15) + 1 = 3$

(c)
$$(c = 16)$$
 解的组数为 $\left[\frac{100 - 5 \times 16}{2}\right] - (70 - 4 \times 16) + 1 = 5$

(d)
$$(c = 17)$$
 解的组数为 $\left[\frac{100 - 5 \times 17}{2}\right] - (70 - 4 \times 17) + 1 = 6$

(e)
$$(c = 18)$$
 解的组数为 $\left[\frac{100 - 5 \times 18}{2}\right] + 1 = 6$
(f) $(c = 19)$ 解的组数为 $\left[\frac{100 - 5 \times 19}{2}\right] + 1 = 3$

(f)
$$(c = 19)$$
 解的组数为 $\left[\frac{100 - 5 \times 19}{2}\right] + 1 = 3$

(g)
$$(c=20)$$
 解的组数为 $\left[\frac{100-5\times20}{2}\right]+1=1$

即共有 2+3+5+6+6+3+1=26 种兑换方法.

2.12

设买了x个苹果,12-x个橘子,每个苹果y分钱,每个橘子y-3分钱,则有

$$\begin{cases} 0 \le 12 - x < x \\ xy + (12 - x)(y - 3) = 99 \end{cases} \Leftrightarrow \begin{cases} 6 < x \le 12 \\ x + 4y = 45 \end{cases}$$

(1,4) = 1|45,方程有解, $x_0 = 9, y_0 = 9$ 为一组特解,故通解为

$$\begin{cases} x = 9 + 4t & (t \in \mathbb{Z}) \\ y = 9 - t \end{cases}$$

又 6 < x < 12,即 t = 0,x = 9,12 - x = 3,买了 9 个苹果和 3 个橘子.

2.13

$$6k + 5 \equiv 6k + 1 \pmod{4}$$

又 $6k \equiv 6 \pmod{4}$,有

$$6k + 5 \equiv 7 \pmod{4}$$
$$\equiv 3 \pmod{4}$$

2.14

证明.

- (1) 分情况讨论 6k, 6k + 2, 6k + 3, 6k + 4 ($k \ge 1$) 即可,不再赘述.
- (2) 记素数为 p, p > 3.
 - (a) p < 6, 则 p = 5, 成立.
 - (b) p > 6, 有 (6, p) = 1, 故 p 属于 6 的缩系, 故 p 模 6 或与 1 或 5 同余.

2.15

证明.

不妨设这两个连续的立方数为 k^3 与 $(k+1)^3$.

$$(k+1)^3 - k^3 \equiv 3k^2 + 3k + 1 \pmod{3}$$

 $\equiv 1 \pmod{3}$

2.16

证明.

设该数为 $A = \overline{a_n a_{n-1} \dots a_1 a_0}$, 则

$$A = \sum_{i=0}^{i=n} a_i \cdot 10^i, \quad \sum_{i=0}^{i=n} a_i \equiv 0 \pmod{3}$$

又 $\forall k \in \mathbb{N}, 10^i \equiv 1 \pmod{3}$,故

$$A \equiv \sum_{i=0}^{i=n} a_i \cdot 10^i \pmod{3}$$
$$\equiv \sum_{i=0}^{i=n} a_i \pmod{3}$$
$$\equiv 0 \pmod{3}$$

2.17

证明.

(1)

$$10 \equiv -1 \pmod{11} \implies 10^k \equiv (-1)^k \pmod{11}$$

(2) 设数为 $A = \overline{a_n a_{n-1} \dots a_1 a_0}$,则

$$A \equiv 0 \pmod{11} \iff \sum_{i=0}^{n} (-1)^{i} \cdot a_{i} \equiv 0 \pmod{11}$$

即偶数位之和与奇数位之和的差能被 11 整除等价于该数也能被 11 整除.

2.18

(1)

$$2x \equiv 1 \pmod{17} \xrightarrow{(2,17)=1} x \equiv 9 \pmod{17}$$
$$\equiv 18 \pmod{17}$$

(2) (3,18) = 3|6, 故有 3 组解由 $x \equiv 2 \pmod{6}$ 得原方程解为

$$x \equiv 2 + 6t \pmod{18} \quad (0 \le t \le 2).$$

即

$$x \equiv 2, 8, 14 \pmod{18}$$
.

(3) (4,18) = 2|6,故有 2 组解解 $2x \equiv 3 \pmod{9}$

$$2x \equiv 3 \pmod{9} \xrightarrow{(2,9)=1} x \equiv 6 \pmod{9}.$$

即原方程解为

$$x \equiv 6 + 9t \pmod{18}$$
 $(t = 0, 1) \Rightarrow x \equiv 6, 15 \pmod{18}$.

(4) $3x \equiv 1 \pmod{17} \xrightarrow[\equiv 18 \pmod{17}]{(3,17)=1} x \equiv 6 \pmod{17}.$

2.19

(1) (2,3) = 1,有解。本题中

$$M = 2 \cdot 3 = 6, M_1 = 3, M_2 = 2.$$

由

$$\begin{cases} 3b_1 & \equiv 1 \pmod{2} \\ 2b_2 & \equiv 1 \pmod{3} \end{cases} \Rightarrow \begin{cases} b_1 & = 1 \\ b_2 & = 2 \end{cases}$$

从而

$$y = 3 \cdot 1 \cdot 1 + 2 \cdot 1 \cdot 2$$

= 7 $\Rightarrow y \equiv 1 \pmod{6}$.

(2) (41,26) = 1,有解。原式等价于

$$\begin{cases} x \equiv 31 \pmod{41} \\ x \equiv 7 \pmod{26} \end{cases}$$

本题中

$$M = 41 \cdot 26, M_1 = 26, M_2 = 41.$$

由

$$\begin{cases} 26b_1 & \equiv 1 \pmod{41} \\ 41b_2 & \equiv 1 \pmod{26} \end{cases} \Rightarrow \begin{cases} b_1 & = 30 \\ b_2 & = 7 \end{cases}$$

从而

$$y = 26 \cdot 31 \cdot 30 + 41 \cdot 7 \cdot 7$$

= 26819 $\Rightarrow y \equiv 605 \pmod{1066}$.

(3) (2,3) = (2,7) = (3,7) = 1,有解。本题中

$$M = 2 \cdot 3 \cdot 7 = 42, M_1 = 21, M_2 = 14, M_3 = 6.$$

由

$$\begin{cases} 21b_1 & \equiv 1 \pmod{2} \\ 14b_2 & \equiv 1 \pmod{3} \end{cases} \Rightarrow \begin{cases} b_1 & = 1 \\ b_2 & = 2 \\ b_3 & = 6 \end{cases}$$

从而

$$y = 21 \cdot 1 \cdot 1 + 14 \cdot 1 \cdot 2 + 6 \cdot 6 \cdot 6$$

= 265. $\Rightarrow y \equiv 13 \pmod{42}$.

(4) 原式等价于

$$\begin{cases} x \equiv 3 \pmod{5} \\ x \equiv 3 \pmod{7} \\ x \equiv 3 \pmod{11} \end{cases}$$

$$(5,7)=(5,11)=(7,11)=1$$
,有解。本题中

$$M = 5 \cdot 7 \cdot 11 = 385, M_1 = 77, M_2 = 55, M_3 = 35$$

由

$$\begin{cases} 77b_1 \equiv 1 \pmod{5} \\ 55b_2 \equiv 1 \pmod{7} \\ 35b_3 \equiv 1 \pmod{11} \end{cases} \Rightarrow \begin{cases} b_1 = 3 \\ b_2 = 6 \\ b_3 = 6 \end{cases}$$

从而

$$y = 77 \cdot 3 \cdot 3 + 55 \cdot 3 \cdot 6 + 35 \cdot 3 \cdot 6$$

= 2313.
$$\Rightarrow y \equiv 3 \pmod{385}.$$

2.20

设

$$\begin{cases}
3x \equiv m - 1 & \pmod{20} \\
5y \equiv m & \pmod{20} & (1 \le m \le 18) \\
7z \equiv m + 1 & \pmod{20}.
\end{cases}$$

则

$$\begin{cases} 3x = 20(m-1) + (m-1) \\ 5y = 20m + m \\ 7z = 20(m+1) + (m+1). \end{cases} \Rightarrow \begin{cases} x = 7m - 7 \\ y = \frac{21m}{5} \Rightarrow 5|m, m \in \{5, 10, 15\} \\ z = 3m + 3. \end{cases}$$

即

$$\begin{cases} x = 28 \\ y = 21 \\ z = 18; \end{cases} \begin{cases} x = 63 \\ y = 42 \\ z = 33; \end{cases} \begin{cases} x = 98 \\ y = 63 \\ z = 48. \end{cases}$$

2.21

由题意有

$$\begin{cases} n & \equiv 0 \pmod{2} \\ n+1 & \equiv 0 \pmod{3} \\ n+2 & \equiv 0 \pmod{4} \Leftrightarrow \\ n+3 & \equiv 0 \pmod{5} \\ n+4 & \equiv 0 \pmod{6} \end{cases} \begin{cases} n & \equiv 0 \pmod{2} \\ n & \equiv 2 \pmod{3} \\ n & \equiv 2 \pmod{4} \\ n & \equiv 2 \pmod{5} \\ n & \equiv 2 \pmod{6} \end{cases}$$

由 n=2 为一个特解,有模 [2,3,4,5,6]=60 唯一解

$$n \equiv 2 \pmod{60}$$

故所求最小整数 n(n > 2) 为

$$n = 62.$$

2.22

(1)
$$\phi(42) = \phi(2 \cdot 3 \cdot 7) = \phi(2) \cdot \phi(3) \cdot \phi(7) = 1 \cdot 2 \cdot 6 = 12.$$

(2)
$$\phi(420) = \phi(2^2 \cdot 3 \cdot 5 \cdot 7) = \phi(2^2) \cdot \phi(3) \cdot \phi(5) \cdot \phi(7) = 2 \cdot 2 \cdot 4 \cdot 6 = 96.$$

(3)
$$\phi(4200) = \phi(2^3 \cdot 3 \cdot 5^2 \cdot 7) = \phi(2^3) \cdot \phi(3) \cdot \phi(5^2) \cdot \phi(7) = 4 \cdot 2 \cdot 20 \cdot 6 = 960.$$

2.23

(1) 小于 18 且与 18 互素的正整数有

(2)
$$1 \cdot 5 \equiv 5 \pmod{18} \qquad 5 \cdot 5 \equiv 25 \pmod{18}$$
$$\equiv 7 \pmod{18}$$
$$7 \cdot 5 \equiv 35 \pmod{18} \qquad 11 \cdot 5 \equiv 55 \pmod{18}$$
$$\equiv 17 \pmod{18} \qquad \equiv 1 \pmod{18}$$
$$13 \cdot 5 \equiv 65 \pmod{18} \qquad 17 \cdot 5 \equiv 85 \pmod{18}$$
$$\equiv 11 \pmod{18} \qquad \equiv 13 \pmod{18}$$

仍为缩系,引理 2.1 成立.

2.24

设m,n有素数分解

$$m = m_1^{k_1} m_2^{k_2} \cdots m_x^{k_x} \cdot p^M, \quad n = n_1^{l_1} n_2^{l_2} \cdots n_y^{l_y} \cdot p^N$$

且

$$\forall 1 \le i \le x, 1 \le j \le y, 有 m_i \ne n_i.$$
 (m_i, n_i) 均为素数)

$$\begin{split} \phi(mn) &= \phi \left(p^{M+N} \cdot \prod_{i=1}^{x} m_{i}^{k_{i}} \cdot \prod_{j=1}^{y} n_{j}^{l_{j}} \right) \\ &= \phi(p^{M+N}) \cdot \prod_{i=1}^{x} \phi(m_{i}^{k_{i}}) \cdot \prod_{j=1}^{y} \phi(n_{j}^{l_{j}}) \\ &= p^{M+N} \cdot (1 - \frac{1}{p}) \cdot \prod_{i=1}^{x} m_{i}^{k_{i}} (1 - \frac{1}{m_{i}}) \cdot \prod_{j=1}^{y} n_{j}^{l_{j}} (1 - \frac{1}{n_{j}}) \\ &= mn \cdot (1 - \frac{1}{p}) \cdot \prod_{i=1}^{x} (1 - \frac{1}{m_{i}}) \cdot \prod_{j=1}^{y} (1 - \frac{1}{n_{j}}) \end{split}$$

$$\begin{split} \phi(m)\phi(n) &= \phi\left(p^{M} \cdot \prod_{i=1}^{x} m_{i}^{k_{i}}\right) \cdot \phi\left(p^{N} \cdot \prod_{j=1}^{y} n_{j}^{l_{j}}\right) \\ &= \phi(p^{M}) \cdot \phi(p^{N}) \cdot \prod_{i=1}^{x} \phi(m_{i}^{k_{i}}) \cdot \prod_{j=1}^{y} \phi(n_{j}^{l_{j}}) \\ &= p^{M} \cdot (1 - \frac{1}{p}) \cdot p^{N} \cdot (1 - \frac{1}{p}) \cdot \prod_{i=1}^{x} m_{i}^{k_{i}} (1 - \frac{1}{m_{i}}) \cdot \prod_{j=1}^{y} n_{j}^{l_{j}} (1 - \frac{1}{n_{j}}) \\ &= mn \cdot (1 - \frac{1}{p})^{2} \cdot \prod_{i=1}^{x} (1 - \frac{1}{m_{i}}) \cdot \prod_{j=1}^{y} (1 - \frac{1}{n_{j}}) \end{split}$$

即

$$\phi(m)\phi(n) = (1 - \frac{1}{p}) \cdot \phi(mn)$$

2.25

证明.

显然有 $n \ge 0$, 否则 $\phi(n) \ge 0 > n$, 问题无意义.

(1) 6|n 即 2|n,3|n,不妨记 n 有素数分解

$$n = 2^p \cdot 3^q \cdot n_1^{k_1} n_2^{k_2} \cdots n_N^{k_N}. \quad (p, q \ge 1)$$

则

$$\begin{split} \phi(n) &= \phi(2^p \cdot 3^q \cdot n_1^{k_1} n_2^{k_2} \cdots n_N^{k_N}) \\ &= \phi(2^p) \cdot \phi(3^q) \cdot \prod_{i=1}^N \phi(n_i^{k_i}) \\ &= n \cdot \left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{3}\right) \cdot \prod_{i=1}^N \left(1 - \frac{1}{n_i}\right) \\ &= \frac{n}{3} \cdot \prod_{i=1}^N \left(1 - \frac{1}{n_i}\right) \\ &\leq \frac{n}{3} \end{split}$$

即证,且当且仅当 N=0 时等号成立.

(2) 由 T14 可知

$$n-1 \equiv 5 \pmod{6}$$
; $n+1 \equiv 1 \pmod{6}$; $n \equiv 0 \pmod{6}$

即 6|n,由(1)即证.

2.26

(1)
$$\frac{3}{2}\phi(3) = \frac{3}{2} \cdot 2 = 3 = 1 + 2. \qquad \frac{4}{2}\phi(4) = \frac{4}{2} \cdot 2 = 4 = 1 + 3.$$
$$\frac{5}{2}\phi(5) = \frac{5}{2} \cdot 4 = 10 = 1 + 2 + 3 + 4. \qquad \frac{6}{2}\phi(6) = \frac{6}{2} \cdot 2 = 6 = 1 + 5.$$
$$\frac{7}{2}\phi(7) = \frac{7}{2} \cdot 6 = 21 = 1 + 2 + 3 + 4 + 5 + 6. \qquad \frac{8}{2}\phi(8) = \frac{8}{2} \cdot 4 = 16 = 1 + 3 + 5 + 7.$$

(2) 对于整数 $n \geq 3$, 缩系中所有数的和等于 $\frac{1}{2}n \cdot \phi(n)$. 即

$$\sum_{\substack{(d,n)=1\\1\leq d\leq n-1}} d = \frac{1}{2}\phi(n) \cdot n.$$

(3) 证明.

$$\forall \ 1 \leq d \leq n-1, \ (d,n)=1$$
,有 $(n-d,n)=1$,且 $d \neq n/2$,故

$$\sum_{\substack{(d,n)=1\\1\leq d\leq n-1}} d = \sum_{\substack{(d,n)=1\\1\leq d< n/2}} d + (n-d) = \frac{1}{2}n \cdot \phi(n)$$

2.27

$$314^{159} \equiv (7 \cdot 45 - 1)^{159} \pmod{7}$$

 $\equiv (-1)^{159} \pmod{7}$
 $\equiv (-1) \pmod{7}$
 $\equiv 6 \pmod{7}$

2.28

(1) 求末位即求模 10 余数

$$7^{355} \equiv (7^4)^{88} \cdot 7^3 \pmod{10}$$
$$\equiv (2400 + 1)^{88} \cdot (340 + 3) \pmod{10}$$
$$\equiv 3 \pmod{10}$$

即末位为 3. 用欧拉定理 $7^{\phi(10)} \equiv 1 \pmod{10}$ 亦可.

(2) 求末两位即求模 100 余数

$$7^{355} \equiv (7^4)^{88} \cdot 7^3 \pmod{100}$$
$$\equiv (2400 + 1)^{88} \cdot (300 + 43) \pmod{100}$$
$$\equiv 43 \pmod{100}$$

即末两位为 43. 用欧拉定理 $7^{\phi(100)} \equiv 1 \pmod{100}$ 亦可.

2.29

证明.

(1)

$$(k+1)^p - k^p \equiv 1 \pmod{p} \Leftrightarrow p \mid (k+1)^p - k^p - 1$$

 $\Leftrightarrow p \mid \sum_{i=1}^{p-1} C_p^i \cdot k^{p-i}$

有

$$C_p^i = \frac{p(p-1)\dots(p-i+1)}{i!} \in \mathbb{N}, \implies i! \mid p(p-1)\dots(p-i+1). \quad (1 \le i \le p-1)$$

又 \forall $1 \leq i \leq p-1$, (p,i)=1, 故 (p,i!)=1, 即

$$i! \mid (p-1)\dots(p-i+1) \implies \frac{(p-1)\dots(p-i+1)}{i!} \in \mathbb{N}, \ p \mid C_p^i.$$

故有

$$p \mid C_p^i \implies p \mid \sum_{i=1}^{p-1} C_p^i \cdot k^{p-i} \implies (k+1)^p - k^p \equiv 1 \pmod{p}.$$

(2) 对于任意素数 p 有 $p \nmid a$,则

$$a^{p} \equiv \sum_{k=0}^{a-1} ((k+1)^{p} - k^{p}) \pmod{p}$$
$$\equiv \sum_{k=0}^{a-1} 1 \pmod{p}$$
$$\equiv a \pmod{p}$$

又 $(a^p, a) = a, (p, a) = 1$,故有

$$a^{p-1} \equiv 1 \pmod{p}$$
.

2.30

证明.

(1)
$$\forall \ 1 \le k \le p-1, \ (k,p) = 1 \, \exists p \nmid k \ \Rightarrow \ k^{p-1} \equiv 1 \pmod{p}$$

故

$$\sum_{i=1}^{p-1} i^{p-1} \equiv \sum_{i=1}^{p-1} 1 \pmod{p}$$
$$\equiv p-1 \pmod{p}.$$
$$\equiv -1 \pmod{p}.$$

(2)

$$\forall \ 1 \le k \le p-1, \ (k,p) = 1 \, \exists p \mid k \Rightarrow k^{p-1} \equiv 1 \pmod{p}$$
$$\Rightarrow k^p \equiv k \pmod{p}$$

故

$$\sum_{i=1}^{p-1} i^{p-1} \equiv \sum_{i=1}^{p-1} i \pmod{p}$$
$$\equiv \frac{p(p-1)}{2} \pmod{p}$$
$$\equiv 0 \pmod{p}. \qquad (2|p-1)$$

2.31

$$d(42) = d(2 \cdot 3 \cdot 7) \qquad d(420) = d(2^{2} \cdot 3 \cdot 5 \cdot 7) \qquad d(4200) = d(2^{3} \cdot 3 \cdot 5^{2} \cdot 7)$$

$$= 2^{3} \qquad = 3 \cdot 2^{3} \qquad = 4 \cdot 3 \cdot 2^{2}$$

$$= 8. \qquad = 24. \qquad = 48.$$

$$\sigma(42) = \sigma(2 \cdot 3 \cdot 7) \qquad \qquad \sigma(420) = \sigma(2^2 \cdot 3 \cdot 5 \cdot 7)$$

$$= \frac{2^2 - 1}{2 - 1} \cdot \frac{3^2 - 1}{3 - 1} \cdot \frac{7^2 - 1}{7 - 1} \qquad \qquad = \frac{2^3 - 1}{2 - 1} \cdot \frac{3^2 - 1}{3 - 1} \cdot \frac{5^2 - 1}{5 - 1} \cdot \frac{7^2 - 1}{7 - 1}$$

$$= 96. \qquad \qquad = 1344.$$

$$\begin{split} \sigma(4200) &= \sigma(2^3 \cdot 3 \cdot 5^2 \cdot 7) \\ &= \frac{2^4 - 1}{2 - 1} \cdot \frac{3^2 - 1}{3 - 1} \cdot \frac{5^3 - 1}{5 - 1} \cdot \frac{7^2 - 1}{7 - 1} \\ &= 14880. \end{split}$$

2.32

不妨设 n 有素数分解

$$n = n_1^{k_1} n_2^{k_2} \cdots n_x^{k_x} \implies \sigma(n) = (k_1 + 1)(k_2 + 1) \dots (k_x + 1) = 60$$

又

$$\left[\log_2(10^4)\right] = 13 \implies k_1 + k_2 + \dots + k_x \le 13$$

$$n = 2^4 \cdot 3^2 \cdot 5 \cdot 7 = 5040 \qquad \vec{\boxtimes} \qquad n = 2^4 \cdot 5^2 \cdot 3 \cdot 7 = 8400$$

2.33

证明.

设 d_1, d_2, \ldots, d_k 为 n 的全部因子 (相同因子算两遍),则

$$\forall 1 \leq i \leq k, \exists ! 1 \leq j \leq k, d_j = n/d_i$$

不妨取一个排列使得 i+j=k+1.

$$\sum_{d|n} \frac{1}{d} = \frac{1}{n} \sum_{i=1}^{k} \frac{n}{d_i}$$

$$= \frac{1}{n} \sum_{i=1}^{k} d_{k+1-i}$$

$$= \frac{1}{n} \sum_{i=1}^{k} d_i$$

$$= \frac{1}{n} \sigma(n).$$

2.34

证明.

不妨记偶完全数为

$$n = 2^{p-1} \cdot (2^p - 1)$$
 $(p, 2^p - 1)$ 为素数)

由题意可得

$$2^{p-1} \cdot (2^p - 1) \equiv 6 \pmod{10}$$
 $\vec{\boxtimes}$ $2^{p-1} \cdot (2^p - 1) \equiv 8 \pmod{10}$

等价于

$$2^{p-2} \cdot (2^p - 1) \equiv 3 \pmod{5}$$
 或 $2^{p-2} \cdot (2^p - 1) \equiv 4 \pmod{5}$

$$\begin{cases} (2^{p-2}, 5) &= 1 \\ (2^p - 1, 5) &= 1 \end{cases} \Rightarrow \begin{cases} 2^{p-2} &\equiv a \pmod{5} & (a \in \{1, 2, 3, 4\}) \\ 2^p - 1 &\equiv b \pmod{5} & (b \in \{1, 2, 3, 4\}) \end{cases}$$

(1) $2^{p-2} \equiv 1 \pmod{5}$

$$2^{p} - 1 \equiv 2^{2} \cdot 1 - 1 \pmod{5} \qquad \Rightarrow \qquad 2^{p-2} \cdot (2^{p} - 1) \equiv 3 \cdot 1 \pmod{5}$$

$$\equiv 3 \pmod{5} \qquad \qquad \equiv 3 \pmod{5}$$

(2) $2^{p-2} \equiv 2 \pmod{5}$

$$2^{p} - 1 \equiv 2^{2} \cdot 2 - 1 \pmod{5}$$

$$\equiv 2 \pmod{5}$$

$$\equiv 2 \pmod{5}$$

$$2^{p-2} \cdot (2^{p} - 1) \equiv 2 \cdot 2 \pmod{5}$$

$$\equiv 4 \pmod{5}$$

(3) $2^{p-2} \equiv 3 \pmod{5}$

$$2^{p} - 1 \equiv 2^{2} \cdot 3 - 1 \pmod{5} \qquad \Rightarrow \qquad 2^{p-2} \cdot (2^{p} - 1) \equiv 3 \cdot 1 \pmod{5}$$

$$\equiv 1 \pmod{5} \qquad \qquad \equiv 3 \pmod{5}$$

(4) $2^{p-2} \equiv 4 \pmod{5}$

$$2^p - 1 \equiv 2^2 \cdot 4 - 1 \pmod{5}$$
 $\Rightarrow 0 \notin \{1, 2, 3, 4\},$ 该情况不存在.

综上,即证

$$2^{p-1} \cdot (2^p - 1) \equiv 6 \pmod{10}$$
 $\vec{\boxtimes}$ $2^{p-1} \cdot (2^p - 1) \equiv 8 \pmod{10}$

2.35

证明.

由题意可得

$$n = 2^{p-1} \cdot (2^p - 1)$$
 $(p, 2^p - 1)$ 为素数)

又
$$n > 6$$
, 故 $p > 2$, $2|p-1$, 不妨记 $p-1 = 2k$ $(k \in \mathbb{Z}^*)$, 有

$$n = 2^{2k} \cdot (2^{2k+1} - 1) = 4^k \cdot (2 \cdot 4^k - 1)$$

又

 $(1) \ 4^k \equiv 4 \pmod{9}$

 $(2) \ 4^k \equiv 7 \pmod{9}$

$$2 \cdot 4^k - 1 \equiv 2 \cdot 7 - 1 \pmod{9} \qquad \Rightarrow \qquad 4^k \cdot (2 \cdot 4^k - 1) \equiv 7 \cdot 4 \pmod{9}$$

$$\equiv 4 \pmod{9} \qquad \qquad \equiv 1 \pmod{9}$$

 $(3) \ 4^k \equiv 1 \pmod{9}$

$$2 \cdot 4^k - 1 \equiv 2 \cdot 1 - 1 \pmod{9} \qquad \Rightarrow \qquad 4^k \cdot (2 \cdot 4^k - 1) \equiv 1 \cdot 1 \pmod{9}$$

$$\equiv 1 \pmod{9} \qquad \qquad \equiv 1 \pmod{9}$$

综上,即证

$$n \equiv 1 \pmod{9}$$
.

2.36

证明.
$$\forall \ p, \ \sigma(p)=p+1, \ \phi(p)=p-1, \ d(p)=2, \ \ \tilde{\pi}$$

$$\sigma(p)=\phi(p)+d(p) \quad \Rightarrow \quad \sum_{p\leq x}\sigma(p)=\sum_{p\leq x}\phi(p)+\sum_{p\leq x}d(p).$$

2.37

$2^1 \equiv 2 \pmod{15}$	$7^1 \equiv 7 \pmod{15}$	$8^1 \equiv 8 \pmod{15}$
$2^2 \equiv 4 \pmod{15}$	$7^2 \equiv 4 \pmod{15}$	$8^2 \equiv 4 \pmod{15}$
$2^3 \equiv 8 \pmod{15}$	$7^3 \equiv 13 \pmod{15}$	$8^3 \equiv 2 \pmod{15}$
$2^4 \equiv 1 \pmod{15}$	$7^4 \equiv 1 \pmod{15}$	$8^4 \equiv 1 \pmod{15}$
因此,2模15的阶为4.	因此,7模15的阶为4.	因此,8模15的阶为4.
$4^1 \equiv 4 \pmod{15}$ $4^2 \equiv 1 \pmod{15}$ 因此, 4模15的阶为2.		$14^1 \equiv 14 \pmod{15}$ $14^2 \equiv 1 \pmod{15}$ 因此, 14 模15的阶为2.

2.38

(1) 2 为 29 的原根.

$$n = ind_2 \ k \iff 2^n \equiv k \pmod{29}$$

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14
n	0	1	5	2	22	6	12	3	10	23	25	7	18	13
k	15	16	17	18	19	20	21	22	23	24	25	26	27	28
n	27	4	21	11	9	24	17	26	20	8	16	19	15	14

(2) 由 2 为 29 的原根可知

$$ind_29 + ind_2x = ind_22 \pmod{28}$$

又由 (1) 得 $ind_29 = 10$, $ind_22 = 1$, 有

$$ind_2x = -9 \equiv 19 \pmod{28} \implies x \equiv 2^{19} \equiv 26 \pmod{29}.$$

(3) 由 2 为 29 的原根可知

$$9 \cdot ind_2 x = ind_2 2 \pmod{28}$$

又由 (1) 得 $ind_2 2 = 1$,有

$$9 \cdot ind_2 x = 1 \pmod{28} \Rightarrow ind_2 x \equiv 25 \pmod{28}$$

 $\Rightarrow x \equiv 11 \pmod{29}.$

2.39

证明.

不对,证明如下:

$$457^{911} \equiv 1 \pmod{10021} \Leftrightarrow \begin{cases} 457^{911} \equiv 1 \pmod{11} \\ 457^{911} \equiv 1 \pmod{911} \end{cases}$$

$$\begin{cases} 457^{10} & \equiv 1 \pmod{11} \\ 457^{910} & \equiv 1 \pmod{911} \end{cases} \Rightarrow \begin{cases} 457^{911} & \equiv 6 \pmod{11} \\ 457^{911} & \equiv 1457 \pmod{911} \end{cases}$$

故不对.

2.40

 $\phi(\phi(37)) = 12$, 即 37 有 12 个原根.

又 $2^{36} \equiv 1 \pmod{37}$,且

$$\begin{cases} 2^1 \equiv 2 \pmod{37}; & 2^2 \equiv 4 \pmod{37}; \\ 2^3 \equiv 8 \pmod{37}; & 2^4 \equiv 16 \pmod{37}; \\ 2^6 \equiv 27 \pmod{37}; & 2^9 \equiv 31 \pmod{37}; \\ 2^{12} \equiv 26 \pmod{37}; & 2^{18} \equiv 36 \pmod{37}; \end{cases} \Rightarrow 2 \text{ β} 37 \text{ \emptyset} \text{ \emptyset} \text{ \emptyset}.$$

由推论 2.7, 对于 $a=2^i$ ((i,36)=1), a 模 37 的阶为 36. 即原根集合为

$$\{\ x\mid 1\leq x\leq 36,\ x\equiv 2^i\pmod{37}\},\ \ \, \underline{\exists}\, i\in\{1,5,7,11,13,17,19,23,25,29,31,35\}$$

经计算

$$2^1 \equiv 2 \pmod{37}, \ 2^5 \equiv 32 \pmod{37}, \ 2^7 \equiv 17 \pmod{37}, \ 2^{11} \equiv 13 \pmod{37},$$
 $2^{13} \equiv 15 \pmod{37}, \ 2^{17} \equiv 18 \pmod{37}, \ 2^{19} \equiv 35 \pmod{37}, \ 2^{23} \equiv 5 \pmod{37},$ $2^{25} \equiv 20 \pmod{37}, \ 2^{29} \equiv 24 \pmod{37}, \ 2^{31} \equiv 22 \pmod{37}, \ 2^{35} \equiv 19 \pmod{37},$ 即 37 的原根集合为

$$\{2, 5, 13, 15, 17, 18, 19, 20, 22, 24, 32, 35\}$$

2.41

证明.

设 (-a) 模 q 的阶为 d.

$$q \mid (a^p + 1) \Rightarrow a^p \equiv -1 \pmod{q}$$

 $\Rightarrow -a^p \equiv 1 \pmod{q} \Rightarrow d \mid p, d = 1$ 或 p .
 $\Rightarrow (-a)^p \equiv 1 \pmod{q}$

(1) d = 1

$$-a \equiv 1 \pmod{q} \Rightarrow a+1 \equiv 0 \pmod{q}$$

 $\Rightarrow q \mid (a+1).$

(2) d = p

$$(-a)^p \equiv 1 \pmod{q} \Rightarrow p \mid \phi(q), p \mid (q-1)$$

 $\Rightarrow 2p \mid (q-1)$
 $\Rightarrow \exists k \in \mathbb{Z}, 2kp = q-1, q \mid (2kp+1)$

即证

$$q \mid (a+1)$$
 或 $q \mid (2kp+1)$ (k为某个整数).

2.42

证明.

6 的正因子为 1, 2, 3, 6,则 (a+1) 模 p 的阶为 6 等价于

$$\begin{cases} (a+1) \not\equiv 1 \pmod{p} & (a+1)^2 \not\equiv 1 \pmod{p} \\ (a+1)^3 \not\equiv 1 \pmod{p} & (a+1)^6 \equiv 1 \pmod{p} \end{cases}$$

(1) $(a,p) = 1 \quad \Rightarrow \quad (a+1) \not\equiv 1 \pmod{p} \quad \Rightarrow p \nmid (a-1).$

(2) 由 $a^3 \equiv 1 \pmod{p}$, $a \not\equiv 1 \pmod{p}$, $a^2 \not\equiv 1 \pmod{p}$, 得

$$a^3 - 1 = (a - 1)(a^2 + a + 1) \equiv 0 \pmod{p} \implies p \mid (a^2 + a + 1)$$

$$(a + 1)^2 = a^2 + 2a + 1 \equiv a \not\equiv 1 \pmod{p}.$$

(3) $(a+1)^3 \equiv a(a+1) \equiv -a^3 \equiv -1 \pmod{p}$.

$$(a+1)^6 \equiv 1 \pmod{p}.$$

即证 (a+1) 模 p 的阶为 6.

妮可

3

3.1

- (1) 不能构成映射, 如 $x_1 = 0$, 则 $x_2 = 0, 1, \ldots, 9$ 均满足.
- (2) 能构成映射, $\forall y_1 \in \mathbb{R}, \exists ! y_2 = y_1^2$.
- (3) 不能构成映射, 如 $y_1 = 1$, 则 $y_2 = \pm 1$ 均满足.

3.2

(1)

$$R_f = \{2, -2, 0\}$$

(2)

$$\begin{cases} |A| = 9 \\ |R_f| = 3 \end{cases} \Rightarrow n = 3^9.$$

3.3

(1) 满射

$$\forall y \in \mathbb{Z}^+, \exists x = \pm (y-1) \in \mathbb{Z}, f(x) = y.$$

(2) 既不是单射,又不是满射.值域为 $\{0,1,2\}\subseteq \mathbb{Z}\cup \{0\}$

$$\forall \ y \in \mathbb{Z} \cup \{0\} \left\{ \begin{array}{l} y \in \{0, 1, 2\}, \ \exists \ x = 3k + y(k \in \mathbb{Z}), \ f(x) = y. \\ \\ y \notin \{0, 1, 2\}, \ \forall \ x \in \mathbb{Z}, \ f(x) \neq y. \end{array} \right.$$

(3) f,g 均是双射.

$$\begin{cases} \forall \ y \in \mathbb{Z}, \ \exists ! \ x = y - 1 \in \mathbb{Z}, f(x) = y. \\ \forall \ y \in \mathbb{Z}, \ \exists ! \ x = y + 1 \in \mathbb{Z}, g(x) = y. \end{cases}$$

(4) 满射.

$$\forall y \in \{0,1\}, \exists x = 2k + y + 1(k \in \mathbb{Z}), f(x) = y.$$

(5) 既不是单射,又不是满射.

$$\begin{cases} \forall \ y \in \mathbb{Z}, \ y < -16, \ \forall \ x \in \mathbb{Z}, \ f(x) > y. \\ \exists \ y = -15, \ f(0) = f(-2) = y. \end{cases}$$

3.4

证明.

$$\begin{cases} f: A \times B \to B \times A, \ (a,b) \mapsto (b,a) \\ g: B \times A \to A \times B, \ (b,a) \mapsto (a,b) \end{cases}$$

则

$$f \circ g = I_{A \times B}, \quad g \circ f = I_{B \times A}, \quad g = f^{-1}.$$

即 f 为双射,即证 $|A \times B| = |B \times A|$.

3.5

证明.

(1)
$$\forall f(x) = \sum_{i=0}^{n} a_i \cdot x^i, \ \exists! \ g(x) = \sum_{i=1}^{n} i \cdot a_i \cdot x^{i-1}, \ \frac{d}{dx} f(x) = g(x). \ (a_i \in \mathbb{R})$$

值域为 R[x], 是满射不是双射.

$$\forall \ g(x) = \sum_{i=0}^{n} a_i \cdot x^i, \ \exists \ f(x) = a + \sum_{i=0}^{n} \frac{a_i}{i+1} \cdot x^{i+1}, \ \frac{d}{dx} f(x) = g(x). \ (a, a_i \in \mathbb{R})$$

(2)
$$\forall f(x) = \sum_{i=0}^{n} a_i \cdot x^i, \ \exists! \ g(x) = \sum_{i=0}^{n} \frac{a_i}{i+1} \cdot x^{i+1}, \ I(f(x)) = g(x). \ (a_i \in \mathbb{R})$$

值域为常数项为0的实系数多项式,既不是满射,也不是双射.

$$\forall g(x) = a \ (0 \neq a \in \mathbb{R}), \$$
若∃ $f(x) \in R[x],$ 满足 $I(f(x)) = g(x) = a \ I(f(x)) = g(x).$

则

$$a = g(x) = \int_0^x f(t) dt \xrightarrow{x=0} g(0) = \int_0^0 f(t) dt = 0 \neq a.$$

矛盾.

3.6

证明. $\forall (b_{i1}, b_{i2}, \ldots, b_{in}) \in S(B)$,

$$\exists ! \ f \in F, \ f : A \to B, \ a_i \mapsto b_{ij}$$
.满足 $g(f) = (b_{i1}, b_{i2}, \dots, b_{in}).$

即证 g 即是单射,又是满射,即 g 是从 F 到 S(B) 的双射.

$$|F| = |S(B)| = |B|^n = m^n.$$

3.7

证明.

- $(1) \ f(A \cup B) = f(A) \cup f(B)$
 - (a) $\forall y \in f(A \cup B), \exists x \in A \cup B, f(x) = y.$

$$\begin{cases} x \in A, y = f(x) \in f(A) \\ x \in B, y = f(x) \in f(B) \end{cases} \Rightarrow y \in f(A) \cup f(B) \Rightarrow f(A \cup B) \subseteq f(A) \cup f(B).$$

(b) $\forall y \in f(A) \cup f(B), y \in f(A)$ $\exists y \in f(B)$.

$$\begin{cases} y \in f(A), \exists \ x \in A, f(x) = y \\ y \in f(B), \exists \ x \in B, f(x) = y \end{cases} \Rightarrow y \in f(A \cup B) \Rightarrow f(A) \cup f(B) \subseteq f(A \cup B).$$

综上,即证

$$f(A \cup B) = f(A) \cup f(B).$$

(2) $f(A \cap B) \subseteq f(A) \cap f(B)$

$$\forall y \in f(A \cap B), \exists x \in A \cap B, f(x) = y.$$

由 $x \in A \cap B$ 有 $x \in A, x \in B$,即

$$\begin{cases} x \in A, \ y = f(x) \in f(A) \\ x \in B, \ y = f(x) \in f(B) \end{cases} \Rightarrow y \in f(A) \cap f(B) \Rightarrow f(A \cap B) \subseteq f(A) \cap f(B).$$

$$S = \mathbb{Z}, T = \{1\}, A = \{2k+1|k \in \mathbb{Z}\}, B = \{2k|k \in \mathbb{Z}\}$$

取 $f: S \to T, n \mapsto 1$,则

$$\begin{cases} f(A \cap B) = f(\phi) = \phi. \\ f(A) \cap f(B) = \{1\} \end{cases} \Rightarrow f(A \cap B) \neq f(A) \cap f(B).$$

3.8

(1) f 为单射: $f(\widetilde{A}) \subseteq \widetilde{f(A)}$.

$$\forall y \in f(\widetilde{A}) \subseteq S, \ \exists! \ x \in S \coprod x \in \widetilde{A}, \ f(x) = y.$$

有

$$\forall x \in A, \ f(x) \neq y, \ y \notin f(A) \Rightarrow y \in \widetilde{f(A)}.$$

即

$$\forall \; y \in f(\widetilde{A}) \subseteq S, \; y \in \widetilde{f(A)} \; \Rightarrow \; f(\widetilde{A}) \subseteq \widetilde{f(A)}.$$

(2) f 为满射: $\widetilde{f(A)} \subseteq f(\widetilde{A})$.

$$\forall y \in \widetilde{f(A)}, \ \exists \ x \in S, f(x) = y.$$

若 $x \in A$, $y = f(x) \in f(A)$, 矛盾. 故 $x \in \widetilde{A}$.

$$y = f(x) \in f(\widetilde{A}) \implies \widetilde{f(A)} \subseteq f(\widetilde{A}).$$

3.9

$$f \circ g = 3(3x+1) = 9x + 3.$$

(2)

$$f \circ q = 3$$

(3)

$$g \circ f = 3(3x) + 1 = 9x + 1.$$

(4)

$$g \circ h = 3(3x+2) + 1 = 9x + 7.$$

(5)

$$f \circ g \circ h = 3(3(3x+2)+1) = 27x+21.$$

3.10

证明.

先证 $g \circ f$ 是从 A 到 C 的映射.

$$\forall x \in A, \exists ! y = f(x) \in B, \exists ! z = g(y) \in C.$$

假设 $g \circ f$ 不是从 A 到 C 的单射,则等价于

$$\exists c \in C, \exists a_1, a_2 \in A, a_1 \neq a_2, g \circ f(a_1) = g \circ f(a_2) = c.$$

即

$$g(f(a_1)) = g(f(a_2)) = c \in C \xrightarrow{g} \exists ! \ b \in B, \ g(b) = c, \ f(a_1) = f(a_2) = b \in B.$$

又

$$f$$
为单射 $\Rightarrow \exists a \in A, f(a) = b.$

即 $a_1 = a_2 = a$, 矛盾, 即证 $g \circ f$ 是从 A 到 C 的单射.

3.11

会发生矛盾.

(1) 先证 g 为满射

若
$$\exists y \in S, \forall x \in S, g(x) \neq y,$$

(2) 再证 g 为单射

3.12

- (1)
- (2)

妮可

(3)

(4)

3.13

(1)

(2)

3.14

(1)

(2)

(3)

3.15

(1)

(2)

3.16

证明.

3.17

(1)

(2)

3.18

(1)

(2)

(3)

3.19

(1)

(2)

4 二元关系

5 群论初步

6 商群

7 环和域

8 格和布尔代数