ÜBUNGEN ZUR VORLESUNG PARTIELLE DIFFERENTIALGLEICHUNGEN II

Blatt 10

Aufgabe 36. (6 Punkte)

Formuliere und beweise mit Hilfe der Mittelwerteigenschaft der Wärmeleitungsgleichung eine einfache Variante von Lemma 3.12.

Aufgabe 37. (4 Zusatzpunkte)

Gib einen einfacheren Beweis für Theorem 3.20 im Falle der Wärmeleitungsgleichung.

Aufgabe 38. (6 Punkte)

Formuliere und beweise unter Verwendung des zeitabhängigen Resultates eine zeitunabhängige Variante von Lemma 3.2.

Aufgabe 39. (4 Punkte)

Erfülle u die parabolische Differentialungleichung

$$L_0 u \equiv -\dot{u} + a^{ij} u_{ij} + b^i u_i \le f.$$

Setze $u_m:=\min\{u,m\}$ und $u_m^\varepsilon:=\rho_\varepsilon(u)$ mit ρ_ε wie in Aufgabe 35, Blatt 9.

- $\begin{array}{ll} \text{(i)} & \|u_m^\varepsilon u_m\|_{C^0} \longrightarrow 0 \text{ für } \varepsilon \searrow 0. \\ \text{(ii)} & L_0 u_m^\varepsilon \leq |f|. \end{array}$

Abgabe: Bis Dienstag, 23.01.2018, 10:00 Uhr, in die Mappe vor Büro F 402.