Panel Data

w. Vicente Royuela Mora Universitat de Barcelona

Complementary course notes
Thor Donsby Noe *

November 21, 2018

^{*}Department of Economics, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen K, Denmark (e-mail: jwz766@alumni.ku.dk)

Contents

1	Introduction	3
2	Fixed Effects estimators	3
	2.1 Simultaneous equations models with exogenous explanatory variables	3
	2.2 The fixed effects model	3
	2.3 Within and between estimators	3
	2.4 Effects of group and time	3
3	Random effects estimator	3
	3.1 The random effects model	4
	3.2 The generalized least squares estimation	4
	3.3 Feasible Generalized Lest squares (unkown)	4
4	Fixed effects vs. random estimator	4
	4.1 The Breush Pagan test	4
	4.2 The Hausman test	4
	4.3 Long run vs. short run effects	5
5	Heteroskedasticity and autocorrelation in panel data	5
	5.1 Heteroskedasticity in FE model	5
	5.2 Heteroskedasticity in RE model	5
	5.3 Autocorrelation in the FE model	5
	5.4 Autocorrelation in the RE model	5
6	Incomplete/unbalanced panels	6
7	Dynamic panels	6
	7.1 GMM estimation	6

1 Introduction

Example macro panel data: Maddison, 2007, and IFS

- Formatting data
- Describtive statistics
- Graphs
- Maps

2 Fixed Effects estimators

2.1 Simultaneous equations models with exogenous explanatory variables

Four different models:

M1: $\alpha \neq$, $\beta \neq$. Estimation individual by individual (GLS).

M2: $\alpha = \beta = 1$. Equal constant terms and slopes (presence of homogeneity).

M3: $\alpha \neq$, $\beta =$. Equal slopes, different constant terms.

M4: $\alpha =$, $\beta \neq$. Equal constant terms, different slopes.

Choosing between them using

Test for Homogeneity:

- a. Estimate the extended/unrestricted model.
- b. Estimate the restricted model.

c. H_0 : Homogeneity (the unrestricted is not better than the restricted). Reject H_0 if the F-value is higher than the critical value of the F-distribution.

$$F = \frac{(SSR_R - SSR_{UR})/r}{SSR_{UR}/df}$$

In ML we maximize the probability. In OLS we don't care about the variance.

2.2 The fixed effects model

 α_i is a parameter capturing the individual effect (time-invariant!)

$$y_{it} = i\alpha_i + X_{it}\beta + \varepsilon_{it}$$

$$\Rightarrow y = \begin{bmatrix} i & X \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} + \varepsilon$$

Leasy Squares Dummy Variables (LSDV):

• FE model: All variables are withintransformed e.g the deviations from the mean.

Test the homogeneity analysis:

$$H_0: \alpha_1 = \alpha_2 = \cdots = \alpha_M$$

2.3 Within and between estimators

The overall variance: Weighted variation between the within-variance and between-variance.

2.4 Effects of group and time

3 RANDOM EFFECTS ESTIMATOR

- 3.1 The random effects model
- 3.2 The generalized least squares estimation
- 3.3 Feasible Generalized Lest squares (unkown)

4

4 Fixed effects vs. random estimator

- **FE allows for correlation** with y_{it} and has explanatory power.
- **RE doesn't allow for correlation** with y_{it} the effect is random. Nor does is allow for correlation with ε_{it} .

Check if there are individual effects;

- H_0 : $\alpha = 0$? poolability test / homogeneity test.
- $H_0: \sigma_{\xi}^2 = 0$? Breush-Pagan test.

	No endogeneity	Endogeneity
R.E.	Consist. & Efficient	Inconsistent
F.E.	Consist. but inefficient	Consist. but ineff.

Table 1: Endogeneity problems

4.1 The Breush Pagan test

4.2 The Hausman test

- FE β^{FE}
- FE β^{RE}
- $()\beta^{FE} \beta^{RE})$?

Problems:

- Hausman assumptions
- We cannot use "fixed" variables (no time variation).

The Mundlak estimation:

 \rightarrow Allows joint estimation F.E. / BE

- Diff(FE-BE) → estimate 'pseudo' Hausman test.
- → Allows for including 'fixed' variables (with no time-variation)

RE:

$$y_{it} + x_{it}\beta + \psi_i + \varepsilon_{it}$$

Mundlak regression:

Including both RE and BE.

$$y_{it} + (x_{it} - \bar{x}_i)\beta^w + \bar{x}_i\beta^b + \psi_i + \varepsilon_{it}$$

Is just an instrumental regression!

Standard errors are unreliable and R^2 is 4.3 Long run vs. short run effects lower.

- FE: We capture anything permanent for any individual in α_i
 - \rightarrow Get rid of anything permanent.
 - \rightarrow Good for controlling.
 - We don't know what the individual effects mean though!
- Mundlak: We 'only' capture anything permanent considered in $\bar{x_i}$

Increasing the data set (information)

• Hausman test: Is likely to find endogeneity though the difference in coefficients is very small.

Baltagi & Griffin (1984) "Short and Long Run Effects in Pooled Models".

- Betweeen est. \rightarrow LR effect.
- Within est. → SR effect.
- ullet OLS and RE o average of SR & LR effect.

Inequality and growth

- Positive in the SR
- Negative in the LR

5 HETEROSKEDASTICITY AND AUTOCORRELATION IN PANEL DATA

- Hausman test
- Non-spherical disturbances.
 - Heteroscedasticity
 - Correlation
 - Autocorrelation

Heteroscedasticity over time: σ_{ε}^2

5.3 Autocorrelation in the FE model

In eq. 5.1 it can be that

$$\varepsilon_{it} = V_{it} + \theta V_{it-1}$$

$$\rightarrow AR(1) \rightarrow \varepsilon_{it} = \rho_1 \varepsilon_{it-1} + v_{it}$$

Assumption: Everyone is homogenous in their autocorrelation parameter.

Consistency can come from either a high number of N or T.

5.1 Heteroskedasticity in FE model

$$y_{it} = \alpha_i + x_{it}\beta + \varepsilon_{it} \tag{5.1}$$

Heteroscedasticity over time: σ_{ε}^2

5.2 Heteroskedasticity in RE model

$$y_{it} = x_{it}\beta + \xi_i + \varepsilon_{it}$$
 (5.2)

Heteroscedasticity over individuals: σ_z^2

5.4 Autocorrelation in the RE model

We need to start with the FE estimation

- \rightarrow To get a consistent estimate of ρ .
- Proceed to estimate either a FE or RE model.

6 Incomplete/unbalanced panels

Incomplete panels are similar to heteroscedasticity issues.

- Some issues can be fixed with weighting observations.
- For some procedures we will need complete panels though.

7 DYNAMIC PANELS