Put this file in the same directory as your python script. Change the name of the file in the next line to test your code.

TEST SEQ CLASS

Make instance of Seq called 's' and test methods

```
In [2]: s=Seg(" gATATAGGACCTTTaGGACCAC ","my_gene","H.sapiens")
        s.print record()
        s.make kmers()
        a=s.kmers
        H.sapiens my_gene: GATATAGGACCTTTAGGACCAC
In [3]: t=Seq(" AGAGAGAGTGTTGT", 'gene2', 'D')
In [4]: t.print_record()
        t.make_kmers()
        b=t.kmers
        out=set(a) & set(b)
        D gene2: AGAGAGAGTGTTGT
In [5]: print(s)
        print(s.gene)
        print(s.species)
        GATATAGGACCTTTAGGACCAC
        my gene
        H.sapiens
In [6]: s.make kmers(5)
        print(s.kmers)
        ['GAT', 'ATA', 'TAT', 'ATA', 'TAG', 'AGG', 'GGA', 'GAC', 'ACC', 'CCT', 'CTT', 'TTT', 'TTA', 'TAG', 'AGG', 'GGA', 'G
        AC', 'ACC', 'CCA', 'CAC', 'GATAT', 'ATATA', 'TATAG', 'ATAGG', 'TAGGA', 'AGGAC', 'GGACC', 'GACCT', 'ACCTT', 'CCTTT',
        'CTTTA', 'TTTAG', 'TTAGG', 'TAGGA', 'AGGAC', 'GGACC', 'GACCA', 'ACCAC']
In [7]: print(s.fasta())
        >H.sapiens my_gene
        GATATAGGACCTTTAGGACCAC
```

TEST DNA CLASS ¶

Make instance of DNA called 'd' and test methods

```
In [51]: d=DNA(" -tcaaaGCGGCGGATCTCCCaaatga\n","my_dna","D.terebrans","AX5667")
         d.print_info()
         AX5667 D.terebrans my_dna: NTCAAAGCGGCGGATCTCCCAAATGA
In [52]: print(d)
         print(d.analysis())
         print(d.fasta())
         NTCAAAGCGGCGGATCTCCCAAATGA
         13
         >D.terebrans my dna
         NTCAAAGCGGCGGATCTCCCAAATGA
In [53]: rc=d.reverse_complement()
         print(rc)
         TCATTTGGGAGATCCGCCGCTTTGAN
In [54]: all_6_frames=d.six_frames()
         print(all 6 frames)
         ('NTCAAAGCGGCGGATCTCCCAAATGA', 'TCAAAGCGGCGGATCTCCCAAATGA', 'CAAAGCGGCGGATCTCCCAAATGA', 'TCATTTGGGAGATCCGCCGCTTTGAN
         ', 'CATTTGGGAGATCCGCCGCTTTGAN', 'ATTTGGGAGATCCGCCGCTTTGAN')
```

TEST RNA CLASS

>G.gallus my_rna

GNAUAUAGGACCUUUAGGACCAC

Make instance of RNA called 'r' and test methods

In [38]: r=RNA(" g?ATATAGGACCtttaGGACCAC ","my_rna","G.gallus","R5990999")

```
r.print_info()
         print(r)
         R5990999 G.gallus my_rna: GNAUAUAGGACCUUUAGGACCAC
         GNAUAUAGGACCUUUAGGACCAC
In [39]: r.make_codons()
         print(r.codons)
         ['GNA', 'UAU', 'AGG', 'ACC', 'UUU', 'AGG', 'ACC']
In [40]: print(r.translate())
         XYRTFRT
In [41]: print(r.fasta())
```

TEST Protein CLASS

Make instance of Protein called 'p' and test methods

```
In [42]: p=Protein(" WCVALKKKCCYhhhhh-yyyrsQ\t","my_prot","D.melanogaster","56008009")
         print(p)
         WCVALKKKCCYHHHHHXYYYRS0
In [43]: print(p.fasta())
         >D.melanogaster my_prot
         WCVALKKKCCYHHHHHXYYYRSQ
In [44]: print(p.kmers)
         []
In [45]: p.kmers=[]
         p.make kmers(5)
         print(p.kmers)
         ['WCVAL', 'CVALK', 'VALKK', 'ALKKK', 'LKKKC', 'KKKCC', 'KKCCY', 'KCCYH', 'CCYHH', 'CYHHH', 'YHHHHH', 'HHHHX
         ', 'HHHXY', 'HHXYY', 'HXYYY', 'XYYYR', 'YYYRS', 'YYRSQ']
In [46]: testp=Protein('VIKING', 'test', 'unknown', 999)
In [47]: print(testp)
         VIKING
In [48]: testp.make_kmers(2)
         print(testp.kmers)
         ['VI', 'IK', 'KI', 'IN', 'NG']
In [49]: x=testp.total_hydro()
         print(x)
```

732.8699999999999

In [50]: m=testp.mol_weight()
print(m)

5.39999999999999