Comprobación de diseño, teniendo en cuenta pérdidas menores, mediante la ecuación de Hazen-Williams

EJEMPLO

Se desea conocer el caudal de agua (T = 20 °C) que puede ser conducido a través de una tubería de 200 mm de diámetro de PVC; si ésta se utiliza para conectar dos puntos separados por una distancia de 240 m, con una altura topográfica de 37 m a favor del flujo y un coeficiente global de pérdidas menores de 6.4 ¿cuál es el caudal si sólo se quiere utilizar dicha altura?

SOLUCIÓN:

Iniciamos Variables

```
Chw = 150; % Coeficiente de Hazen-Willians para una tubería de PVC

L = 240; % Longitud de la tubería en m

d = 0.2; % Diámetro de la tubería en m

H = 37; % Altura topográfica

Skm = 6.4; % Coeficiente global de pérdidas menores

error = 0.003; % Error considerado

g = 9.81; % gravedad
```

Para la 1ra iteración:

```
hf = H;
A = pi * d^2/4;
```

Utilizaremos las siguientes ecuaciones:

$$v = 0.849C_{HW} \frac{d^{0.63}}{2.395} \frac{H^{0.54}}{L^{0.54}}$$
$$\sum h_{m1} = \left(\sum k_m\right) \frac{v^2}{2g}$$
$$h_{f2} = H - \sum h_{m1}$$

Los resultados de la iteraciones los almacenaremos en las siguientes arreglos:

```
ha = []; % para las alturas
va = []; % para las velocidades
Qa = []; % para el caudal
Sha = []; % para las pérdidas menores
```

```
for i = 1:50

v = 0.849 * Chw * ((d)^0.63 * (hf)^0.54) / (2.395 * L^0.54);

Q = v * A;

Shm = Skm * v^2/(2 * g);
```

Resultados de las iteraciones:

```
T=array2table([ha;va;Qa;Sha]',"VariableNames",{'hf(m)','v(m/s)','Q(m3/s)','Shm(m)'})
```

 $T = 12 \times 4 \text{ table}$

	hf(m)	v(m/s)	Q(m3/s)	Shm(m)
1	37.0000	7.0284	0.2208	16.1137
2	20.8863	5.1612	0.1621	8.6894
3	28.3106	6.0825	0.1911	12.0682
4	24.9318	5.6790	0.1784	10.5204
5	26.4796	5.8668	0.1843	11.2275
6	25.7725	5.7817	0.1816	10.9040
7	26.0960	5.8207	0.1829	11.0519
8	25.9481	5.8029	0.1823	10.9843
9	26.0157	5.8111	0.1826	11.0152
10	25.9848	5.8073	0.1824	11.0011
11	25.9989	5.8090	0.1825	11.0075
12	25.9925	5.8083	0.1825	11.0046

Resultados finales:

```
fprintf("Velocidad: %4.2f m/s\nCaudal: %4.2f m3/s",v,Q);
```

Velocidad: 5.81 m/s Caudal: 0.18 m3/s

OBS: La velocidad es mayor a 3.00 m/s, por lo que los resultados no son confiables.