Lecture 11: Maximum Entropy

- Maximum entropy principle
- Maximum entropy distribution
- Applications

Berger's Burger

Item	Price	Calories
Burger	\$1	1000
Chicken	\$2	600
Fish	\$3	400
Tofu	\$8	200

- ullet A graduate student's daily average meal cost =\$2.5
- What is the frequency that each item being ordered?

•
$$p(B) + p(C) + p(F) + p(T) = 1$$

•
$$\$1p(B) + \$2p(C) + \$3p(F) + \$8p(T) = \$2.5$$

• Still cannot determine the frequencies uniquely ...

Maximum entropy principle

- Maximum entropy principle arose in statistical mechanics
- If nothing is known about a distribution except that it belongs to a certain class
- Distribution with the largest entropy should be chosen as the default
- Motivation:
 - Maximizing entropy minimizes the amount of prior information built into the distribution
 - Many physical systems tend to move towards maximal entropy configurations over time

Physics

 Temperature of a gas corresponds to the average kinetic energy of the molecules in the gas

$$\sum_{i} p_i \frac{1}{2} v_i^2 m_i$$

- Distribution of velocities in the gas at a given temperature
- this distribution is the maximum entropy distribution under the temperature constraint: Maxwell-Boltzmann distribution
- corresponds to the macrostate that has the most micro states

Formulation

Maximize entropy

$$H(p) = -\sum_{i=1}^{n} p_i \log p_i$$

Subject to

$$p_i \ge 0 \tag{1}$$

$$\sum_{i=1}^{n} p_i = 1 \tag{2}$$

$$\sum_{i=1}^{n} p_i r_{ij} = \alpha_j, \text{ for } 1 \le j \le m$$
(3)

Maximum entropy distribution

Form Lagrangian

$$J(p) = -\sum_{i=1}^{n} p_i \log p_i + \lambda_0 \left(\sum_{i=1}^{n} p_i - 1 \right) + \sum_{j=1}^{m} \lambda_j \left(\sum_{i=1}^{n} p_i r_{ij} - \alpha_j \right)$$

- Take derivative with respect to p_i : $-1 \log p_i + \lambda_0 + \sum_{j=1}^m \lambda_j r_{ij}$
- ullet Set this to 0, and solution is $maximum\ entropy\ distribution$

$$p_i^* = \frac{e^{\sum_{j=1}^m \lambda_j r_{ij}}}{e^{1-\lambda_0}}$$

• $\lambda_0, \lambda_1, \dots, \lambda_m$ are chosen such that $\sum_i p_i^* = 1$, and $\sum_i p_i^* r_{ij} = \alpha_j$.

Burger's problem

•
$$p^*(B)=e^{\lambda_0-1+\lambda_1}$$
, $p^*(C)=e^{\lambda_0-1+2\lambda_1}$, $p^*(F)=e^{\lambda_0-1+3\lambda_1}$, $p^*(T)=e^{\lambda_0-1+8\lambda_1}$

•
$$p(B) + p(C) + p(F) + p(T) = 1$$

•
$$p(B) + 2p(C) + 3p(F) + 8p(T) = 2.5$$

• Solution: $\lambda_0 = 1.2371$, $\lambda_1 = 0.2586$

ltem	p^*
Berger	0.3546
Chicken	0.2964
Fish	0.2478
Tofu	0.1011

Dice, no constraint

- Let $\mathcal{X} = \{1, 2, 3, 4, 5, 6\}$
- No other constraint
- Maximum entropy distribution is uniform distribution

$$p_i = 1/6$$

Dice, with constraint

- This example was used by Boltzmann
- ullet Suppose n dices are thrown on the table
- ullet The total number of spots showing is nlpha
- What is the proportion of the dice are showing face $i, i = 1, 2, \dots, 6$?

- Assume n_i dice show face i
- There are $\binom{n}{n_1,\dots,n_6}$ possible configurations
- This is a macrostate indexed by (n_1, \ldots, n_6) with $\binom{n}{n_1, \ldots, n_6}$ microstates, each having probability $1/6^n$.
- Constraint: $\sum_{i=1}^{6} i n_i = n \alpha$.
- Using maximum entropy solution, we find

$$p_i^* = e^{\lambda i} / \sum_{i=1}^6 e^{\lambda i}.$$

Maximum entropy classifier

- In some fields of machine learning, multinomial logic model is refer to as a maximum entropy classier
- Minimizes the amount of prior information built into the distribution
- X_i : feature vector, β_k : vector of weights for outcome k, Y_k : random outcome, $k=1,\ldots,K$
- Takes the form

$$p(Y_i = k) = \frac{e^{\beta_k^\top X_i}}{1 + \sum_{\ell=1}^{K-1} e^{\beta_\ell^\top X_i}}, \quad k = 1, \dots, K-1.$$

Maximum entropy spectrum estimation

ullet Given a stationary zero-mean stochastic process $\{X_i\}$

$$R(k) = EX_i X_{i+k}$$

- ullet Goal: to learn the structure of the process, want to estimate R(k) from samples of the process
- Challenge: estimate for low values of k are based on large number of samples estimate for high values of k are based on small number of samples
- Should we set low value R(k) to 0?
- Burg: replace them with maximum entropy estimates

Summary

- Maximizing entropy minimizes the amount of prior information built into unknown distribution
- Maximum entropy distribution can be found explicitly

$$p_i^* = \frac{e^{\sum_{j=1}^m \lambda_j r_{ij}}}{e^{1-\lambda_0}}$$

Maximum entropy principle widely used