FIT3139 Assignment 1 Q 2

By Ian Tongs May 7, 2020

Part A:

Question: Steady-state solution

Answer: In steady-state we know that $x_{x+1} = x_t = x^*$. Thus we can show that:

$$x^* = mx^* + c$$
$$(1 - m)x^* = c$$
$$\therefore x^* = \frac{c}{1 - m}$$

It is worth noting that when m = 1, there exists no steady-states or every point is a steady-state. Therefore a full answer for the steady state solution would be:

If $m \neq 1$, a steady-state equilibrium exists for x such that:

$$x^* = \frac{c}{1 - m}$$

If m=0 and c=0, steady-state equilibria exist at every point in the domain.

If m=0 and $c\neq 0$, $x^*=x^*+c$, so no steady-state equilibria exist.

Part B:

Question: Explicit solution

Answer: Expansion of the function to x_0 gives:

$$x_{t} = mx_{t-1} + c$$

$$= m(mx_{t-2} + c) + c = m^{2}x_{t-2} + mc + c$$

$$= m^{2}(mx_{t-3} + c) + mc + c = m^{3}x_{t-3} + m^{2}c + mc + c$$
...
$$\therefore x_{t} = m^{t}x_{0} + \sum_{i=1}^{t} m^{i-1} \cdot c$$

To put this formally, we get an explicit solution of:

$$x_t = \begin{cases} x_0 & \text{if } t = 0\\ m^t x_0 + \sum_{i=1}^t m^{i-1} \cdot c & \text{else} \end{cases}$$

Part C:

Question: Cobwebs and behaviours

Answer:

Case 1:

Note: Cobwebbing is in Blue

Absolute value of m less than 1:

 $x_0 = 35$

For this case, every point in the domain converges to the equilibrium. This is because the derivative is |f'(x)| = |m| < 1 and according to information provided in the tutorials, this makes the equilibrium $x^* = \frac{c}{1-m}$ locally stable. Hence, this case is convergent across its entire domain to x^* , the steady-state.

Case 2:

Absolute value of m greater than 1:

 $x_0=2$ For this case, with the exception of the input $x_0=x^*$ where x^* is the steady-state solution, all inputs diverge. Unlike Case 1, |f'(x)|=|m|>1 so x^* is not locally stable, so only the input $x_0=x^*=\frac{c}{1-m}$ does not diverge.

Case 3:

 $x_0 = 15$ For this case, every input is an equilibrium, so the system is universally stable for all inputs.

Case 4:

 $x_0=15$ This system has no equilibriums, and therefore all inputs x_0 will diverge to $+\infty$ if c>0 or $-\infty$ if c<0

Case 5:

 $x_0 = 6$ This system is similar to Case 2 in that only the input $x_0 = x^* = \frac{c}{2}$ converges. All other inputs fail to converge as they oscillate between x_0 and $-x_0$.

Part D:

Question: Linearisation and stability conditions

Answer: If we take the Taylor Series expansion of f(x) around x^* and truncate it at the 2nd derivative term we get:

$$f(x_t) \approx f(x^*) + f'(x^*) \cdot (x_t - x^*) + R_n$$

We can use this to find the linearisation of the system as such:

$$x_{t+1} = f(x^*) + f'(x^*) \cdot (x_t - x^*)$$

= $f'(x^*) \cdot x_t + (f(x^*) - f'(x^*)x^*)$
 $\therefore x_{t+1} = m \cdot x_t + c$

where $m = f'(x^*)$ and $c = f(x^*) - f'(x^*)x^*$.

From Part C, we know of one scenario where x^* is locally stable in this form, that being Case 1. In this case we have that |m| < 1. Hence, for our given scenario, we require that:

$$f'(x^*) \in (-1,1)$$

for local stability.