

Agents and Multi-Agent Systems

Multi-Agent Decision Making
Mechanism Design

2023/2024

Mechanism Design

- Mechanism design is the strategic version of social choice theory
 - Also known as implementation theory, or inverse game theory
 - Assumes that agents will behave so as to maximize their individual (private) payoffs
- It addresses the design of effective protocols for multi-agent systems
 - What game design might give rise to certain desired behaviors, even when agent preferences are unknown?
 - We want to select a mechanism whose equilibria have desirable properties
- Typical application: *auction theory*

Auctions

- Auctions are mechanisms used to reach agreements on how to allocate scarce resources to agents
 - Paintings in auction houses
 - Items in B2B, B2C or C2C e-commerce (e.g. eBay)
 - Mineral resources or water exploitation rights
 - Electromagnetic spectrum usage rights
 - Ad space in search engines
 - **–** ...
- In general, resources are scarce and are desired by more than one agent
- Auctions allow allocating resources efficiently to those that value them the most

Auction Elements

- Participants: one <u>auctioneer</u> and a collection of <u>bidders</u>
- Values: private value vs public/common value
 - A 'typical' dollar bill is worth exactly \$1 for everyone (a common value)
 - The last dollar bill spent by John Lennon may have different private valuations
 - Correlated value: depends partly on private factors, partly on other agents' valuations
 - E.g. bidding for an item to sell it later
- The auctioneer chooses an appropriate auction protocol
- Bidders use bidding strategies

Auction Protocols

- Winner determination: who gets the good and at what price?
 - first-price vs second-price
- Bid disclosure: are bids known to other agents?
 - open cry vs sealed-bid
- Bidders: who bids?
 - single-sided vs two-sided
- Bidding mechanism: how many rounds?
 - one-shot vs ascending/descending

Auctions for Single Items

- English auctions
 - first-price, open cry, ascending
 - Auctioneer starts with a reservation price
 - Bidders must bid more (subject to a minimum bid change) than the current highest bid, which is public
 - Good is allocated to the highest bidder when no agent is willing to raise

- Dominant strategy: bid a small amount more than the current highest bid until bid price reaches private evaluation
- What if the value of the good is uncertain?
 - Winner's curse: no other agent has valued the item as high

Auctions for Single Items

- Dutch auctions
 - open cry, descending
 - Auctioneer starts with an artificially high price
 - Auctioneer lowers the price by some amount, until some bidder takes it

- Japanese auctions
 - open cry, ascending
 - Auctioneer starts with a reservation price
 - Auctioneer increases the price by some amount
 - In each round, bidders choose to be 'in' or 'out' (for good)
 - When a single bidder is 'in', it gets the item for the current price

Auctions for Single Items

- First-price sealed-bid auctions
 - one-shot
 - Best strategy: bid less (how much less?) than true valuation, given that it would be enough to bid slightly more than the second highest bid
- Vickrey auctions
 - second-price, sealed-bid
 - Price to pay by highest bidder is the second highest bid

Canadian-American economist, 1914-1996

- Dominant strategy: bid true valuation (the mechanism is incentive compatible)
 - If bid more, risk paying more than private valuation
 - If bid less, lower chances of winning
 - In case of win, amount is not affected by own bid
- Vickrey auctions are not prone to strategic manipulation

Combinatorial Auctions

Many goods: identical (multiunit) or different (combinatorial)

$$Z = \{z_1, \dots, z_m\}$$

• Bidders have preferences over possible *bundles* of goods

$$v_i: 2^Z \longrightarrow \mathbb{R}$$

- Usually, these valuation functions are non-additive
 - substituability
 - complementarity
- Bidders bid on bundles of goods ("all or nothing")

Non-Additive Valuation Functions

• v_i exhibits substitutability if there exist two sets of goods $Z_1, Z_2 \subseteq Z$, such that

$$Z_1 \cap Z_2 = \emptyset$$
 and
$$v_i(Z_1 \cup Z_2) < v_i(Z_1) + v_i(Z_2)$$

- Valuation function v_i is *subadditive*: combined value is lower than sum
- Partial substitutes

- Strict substitutes: combined value is the same as one of the goods
 - E.g., multiple units of the same good

Non-Additive Valuation Functions

• v_i exhibits **complementarity** if there exist two sets of goods $Z_1, Z_2 \subseteq Z$, such that

$$Z_1 \cap Z_2 = \emptyset$$
 and
$$v_i(Z_1 \cup Z_2) > v_i(Z_1) + v_i(Z_2)$$

- Valuation function v_i is *superadditive*: combined value is higher than sum

Winner Determination in Combinatorial Auctions

- An outcome of a combinatorial auction is an allocation of (some of) the goods being auctioned among the agents
 - An **allocation** is a list of sets $Z_1,\ldots,Z_n\subseteq Z$, one for each agent, such that for all $i\neq j$ we have

 $Z_i \cap Z_j = \emptyset$ (no good is allocated to more than one agent)

- Winner determination problem: what properties should be satisfied?
 - Social welfare maximization:

$$\max_{(Z_1,\dots,Z_n)} \sum_{i=1}^n v_i(Z_i)$$

- a NP-hard combinatorial optimization problem
- but we only know the *declared* valuations $\widehat{v}_i(Z_i)$

Example

Bidder 1	Bidder 2	Bidder 3		
$v_1(x,y) = 100$	$v_2(x) = 75$	$v_3(y) = 40$		
$v_1(x) = v_1(y) = 0$	$v_2(x,y) = v_2(y) = 0$	$v_3(x,y) = v_3(x) = 0$		

•
$$\max_{(Z_1, Z_2, Z_3)} \sum_{i=1}^3 \hat{v}_i(Z_i) = 115$$
, with $(Z_1, Z_2, Z_3) = (\emptyset, \{x\}, \{y\})$

- Charging winners for their bids:
 - If agents 1 and 2 bid truthfully, agent 3 is better off declaring, for example, $\hat{v}_3(y)=26$
 - → Not incentive compatible

Vickrey-Clarke-Groves (VCG)

- If truth-telling is rational, then we will know the *true* valuations $v_i(Z_i)$, and can thus use them to maximize social welfare
- Given a set \hat{v} of declared preferences: $\chi(\hat{v}) = \underset{(Z_1,...,Z_n)}{\arg \max} \sum_i \hat{v}_i(Z_i)$, in a VCG mechanism payment by i contains two components:
 - Every other agent's utility for the choice that would have been made had i not participated: $\sum_{j\neq i} \hat{v}_j(\chi(\hat{v}_{-i}))$
 - Each agent is made to pay his *social cost* a 'compensation' for the other agents
 - Every other agent's utility for the mechanism's choice: $\sum_{j\neq i} \hat{v}_j(\chi(\hat{v}))$

Vickrey-Clarke-Groves (VCG)

Payment by i:

$$\wp_i = \sum_{j \neq i} \hat{v}_j (\chi(\hat{v}_{-i})) - \sum_{j \neq i} \hat{v}_j (\chi(\hat{v}))$$

- ightarrow VCG is incentive compatible: payment does not depend on declaration \widehat{v}_i
- VCG is a generalization of the Vickrey auction
 - If there is a single good:
 - $\sum_{j\neq i} \hat{v}_j(\chi(\hat{v}_{-i}))$ is the valuation of the second highest bidder (the only one that would benefit from i not participating)
 - $\sum_{i\neq i} \hat{v}_i (\chi(\hat{v}))$ is equal to 0, since no other agent gets the single good
 - Thus, \wp_i is the second highest bid

Vickrey-Clarke-Groves (VCG)

Bidder 1	Bidder 2	Bidder 3		
$v_1(x,y) = 100$	$v_2(x) = 75$	$v_3(y) = 40$		
$v_1(x) = v_1(y) = 0$	$v_2(x, y) = v_2(y) = 0$	$v_3(x, y) = v_3(x) = 0$		

$$Z_1 = \emptyset$$
 $Z_2 = \{x\}$ $Z_3 = \{y\}$
$$\wp_1 = 0$$
 $\wp_2 = 100 - 40 = 60$ $\wp_3 = 100 - 75 = 25$

• If, for example, $\hat{v}_3(y) = 26$, agent 3 would still pay 25 (although agent 2 would pay more)

Two-sided Auctions

Many buyers and sellers bidding simultaneously in the same auction
 Typical example: stock market

Double Auction

- Agents bid as many times as they want: price and quantity to buy/sell
- Bids are put in an order book
- Continuous double auction (CDA): match bids in order book as soon as a new bid is received
- Call market, trade is attempted at predefined intervals (clearing):
 - sell/buy bids are ranked in ascending/descending order and then matched
- Clearing price is somewhere within the bid-ask spread (buy and sell bids)

Two-sided Auctions

Call market example

before	Sell:	5@\$1	3@\$2	6@\$4	2@\$6	4@\$9	
	Buy:	6@\$9	4@\$5	6@\$4	3@\$3	5@\$2	2@\$1
				\downarrow			
	after	Sell:	2@\$6	4@\$9			
	anei	Buy:		3@\$3	5@\$2	2@\$1	

Further Reading

- Wooldridge, M. (2009). An Introduction to MultiAgent Systems, 2nd ed.,
 John Wiley & Sons: Chap. 14
- Shoham, Y. and Leyton-Brown, K. (2008). *Multiagent systems: Algorithmic, Game-Theoretic, and Logical Foundations*. Cambridge University Press: Chap. 10-11