2024年度 数学AI 定期試験

(実施日: 2024年7月25日)

^得 100

2年 組 整理番号: 氏名: **解答例**

注意: 試験時間は100分です。間2以降は、最終的な答えがどこか分かるように解答すること。それに至る過程も採点対象です。採点者に伝わるように書いてください。

- **問1**. 次の空欄に当てはまる語句・数式を答えよ. ただし (2), (3) は, { } 内から適切なものを選び○で囲むこと. [3 点 × 4]
 - (1) 関数 f(x) が微分可能であるとき、f(x) の導関数 f'(x) は

$$f'(x) = \lim_{h \to 0}$$

$$\frac{f(x+h) - f(x)}{h}$$

と定義される. さらに f'(x) も微分可能であるとき, f'(x) の導関数を f(x) の第 2 次導関数といい, f''(x) などと表す.

- (2) 関数 f(x) が区間 I=(a,b) で 2 回微分可能であるとき,
 - $I \circ f'(x) > 0 \diamond b \Leftrightarrow f'(x)$
 - f(x) は I で単調に (a) {増加・減少} する;
 - I で f''(x)>0 ならば、 曲線 y=f(x) は I で $\boxed{\text{(b)} \{ 上・ \mathbb{r} \}}$ に凸である.
- (3) 関数 f(x) が x=a で微分可能なとき, f'(a)=0 であることは, f(x) が x=a で極値をとるための (c) {必要・十分・必要十分} 条件である.

問 2. 次の関数の高次導関数を求めよ. [3 点 × 5]

- (1) $y = 6x^4 + 7x^2 + 2x + 5$ の第 3 次導関数 $y' = 24x^3 + 14x + 2 , \quad y'' = 72x^2 + 14 , \quad \underline{y''' = 144x}_{//}$
- (2) $y = \log x$ の第 2 次導関数

$$y' = \frac{1}{x}$$
, $y'' = -\frac{1}{x^2}$

(3) $y = \cos 2x + \sin 2x$ の第 2 次導関数

$$y' = -2\sin 2x + 2\cos 2x$$
, $y'' = -4\cos 2x - 4\sin 2x$
= $-4(\cos 2x + \sin 2x)$

 $(4) y = x^2 \sin x \text{ の第 4 次導関数}$

ライプニッツの公式を用いて,

$$y^{(4)} = 0 + 0 + 6 \cdot 2(-\sin x) + 4 \cdot 2x(-\cos x) + 1 \cdot x^{2} \sin x$$
$$= \underbrace{(x^{2} - 12)\sin x - 8x\cos x}_{//}$$

(5) $y = e^{-x}$ の第 n 次導関数(ただし,n は正の整数)

$$(e^{-x})' = -e^{-x} \, \, \sharp \, \, \mathfrak{h} \, , \quad \underline{y^{(n)} = (-1)^n e^{-x}}$$

問3. 次の極限値を求めよ. [3点×2]

(1) $\lim_{x \to 0} \frac{1 - \cos x}{x^2}$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \frac{(1 - \cos x)'}{(x^2)'} = \lim_{x \to 0} \frac{\sin x}{2x}$$
$$= \frac{1}{2} \lim_{x \to 0} \frac{\sin x}{x} = \frac{1}{2}$$

- (別解) $\lim_{x \to 0} \frac{1 \cos x}{x^2} = \lim_{x \to 0} \frac{(1 \cos x)(1 + \cos x)}{x^2(1 + \cos x)}$ $= \lim_{x \to 0} \frac{1 \cos^2 x}{x^2(1 + \cos x)} = \lim_{x \to 0} \frac{\sin^2 x}{x^2} \cdot \frac{1}{1 + \cos x}$ $= 1^2 \cdot \frac{1}{2} = \frac{1}{2}$
- $(2) \lim_{x \to 1} \frac{2x+1}{2x^2} \qquad \lim_{x \to 1} \frac{2x+1}{2x^2} = \underbrace{\frac{3}{2}}_{//} \qquad \text{※ ロピタルの定理は使えない}.$
- **問 4**. 関数 $y = x^3 6x^2 + 9x$ $(0 \le x \le 4)$ について、次の各問に答えよ. [(1) 3 点, (2) 7 点]
- (1) y', y" をそれぞれ計算せよ.

$$y' = 3x^{2} - 12x + 9 = 3(x - 1)(x - 3)$$

$$y'' = 6x - 12 = 6(x - 2)$$

(2) 増減表をかき、極値と変曲点を求めよ.

x	0		1		2		3		4
y'		+	0	_	_	_	0	+	
y''		_	_	_	0	+	+	+	
\overline{y}	0	\rightarrow	4	\	2	\	0	1	4

極大値	4	(x =	1)	極小値	0	(x =	3)	変曲占	(2, 2)	

*

問5. $0 \le x \le \pi$ において, $\cos x \ge 1 - \frac{x^2}{2}$ を示せ.ただし, $0 < x < \pi$ で $x > \sin x$ であることは,証明せずに用いて良い. [10 点]

$$f(x) = \cos x - 1 + \frac{x^2}{2}$$
 $(0 \le x \le \pi)$ とおくと, $f(0) = 0$. また, $0 < x < \pi$ で

$$f'(x) = -\sin x + x > 0$$

であるから、次表を得る:

x	0		π
f'(x)		+	
f(x)	0	7	$\frac{\pi^2}{2}-2$

上表より、関数 f(x) の最小値は 0 であり、

$$f(x) = \cos x - 1 + \frac{x^2}{2} \ge 0$$
 \therefore $\cos x \ge 1 - \frac{x^2}{2}$.

問6. 関数 $y = xe^{-\frac{x^2}{2}}$ $(x \ge 0)$ について、次の各間に答えよ.

[(1) 3点, (2) 7点, (3) 5点]

(1) y', y" をそれぞれ計算せよ

$$y' = e^{-\frac{x^2}{2}} - x^2 e^{-\frac{x^2}{2}} = (1 - x^2) e^{-\frac{x^2}{2}} = \underbrace{(1 - x)(1 + x)e^{-\frac{x^2}{2}}}_{//}$$

$$y'' = -xe^{-\frac{x^2}{2}} - 2xe^{-\frac{x^2}{2}} + x^3 e^{-\frac{x^2}{2}} = x(x^2 - 3)e^{-\frac{x^2}{2}}$$

$$= \underbrace{x(x + \sqrt{3})(x - \sqrt{3})e^{-\frac{x^2}{2}}}_{//}$$

(2) 増減表をかき、極大値と変曲点を求めよ.

x	0		1		$\sqrt{3}$	
y'		+	0	_	_	_
y''		_	_	_	0	+
y	0	<i>\</i>	$\frac{1}{\sqrt{e}}$	→	$\sqrt{\frac{3}{e^3}}$	J

極大値	$\frac{1}{\sqrt{e}}$	(x = 1)	変曲点	$\left(\sqrt{3},\sqrt{rac{3}{e^3}} ight)$
-----	----------------------	---------	-----	--

(3) $\lim_{x\to\infty} xe^{-\frac{x^2}{2}}$ を求めよ (答えのみでよい). また, グラフの概形をかけ.

※ $\frac{1}{\sqrt{e}} \approx 0.6$, $\sqrt{\frac{3}{e^3}} \approx 0.4$, $\sqrt{3} \approx 1.7$ である。また, $y'\big|_{x=0} = 1$.

問7. 媒介変数 (パラメータ) t によって表される関数:

$$x = t^3 - 2t^2 + 1$$
, $y = t^2 - t$,

について, $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ をそれぞれ求めよ.ただし, $\frac{d^2y}{dx^2}=\frac{d}{dx}\left(\frac{dy}{dx}\right)$ に注意せよ. [10 点]

 $t \neq 0, \frac{4}{3}$ のとき,

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \underbrace{\frac{2t-1}{3t^2-4t}},$$

$$\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{dt}{dx}\frac{d}{dt}\left(\frac{dy}{dx}\right) = \underbrace{\frac{1}{\frac{dx}{dt}}}_{(3t^2-4t)^2}\frac{d}{dt}\left(\frac{dy}{dx}\right)$$

$$= \frac{1}{3t^2-4t} \cdot \frac{2(3t^2-4t)-(2t-1)(6t-4)}{(3t^2-4t)^2} = \underbrace{\frac{-2(3t^2-3t+2)}{(3t^2-4t)^3}}_{(3t^2-4t)^3}$$

問8. 円 $x^2 + y^2 = r^2$ 上の点 (x_0, y_0) における接線の傾きを求めよ. [5 点] 円 $x^2 + y^2 = r^2$ は、媒介変数 θ を用いて

$$x = r\cos\theta$$
, $y = r\sin\theta$

と表わされる。よって、 $y \neq 0$ のとき

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{r\cos\theta}{-r\sin\theta} = -\frac{x}{y}$$

であるから、求める接線の傾きは、

$$\left. \frac{dy}{dx} \right|_{(x,y)=(x_0,y_0)} = \underbrace{-\frac{x_0}{y_0}}_{,,,}.$$

(別解 1) $x^2 + y^2 = r^2$ を y について解くと, $y = \pm \sqrt{r^2 - x^2}$. よって y > 0 のとき,

$$\frac{dy}{dx} = -\frac{x}{\sqrt{r^2 - x^2}} = -\frac{x}{y} .$$

y<0 のときも同様に, $\frac{dy}{dx}=-\frac{x}{y}$ を得る. したがって,求める直線の傾きは・・・(以下同様)

(別解 2) 点 (x_0,y_0) を通る円の半径の傾きは, $\frac{y_0}{x_0}$ である.点 (x_0,y_0) における円の接線はこれに直交するので, $\frac{x_0}{y_0}$ (ただし $y_0 \neq 0$).

であるから、求める接線の傾きは・・・(以下同様)

問9. 関数 $y=x^2$ のグラフについて、次の各問に答えよ. [(1), (2) 3 点, (3) 6 点, (4) 5 点]

(1) 曲線 $y=x^2$ 上の点 (a,a^2) における接線の方程式を書け. $y-a^2=2a(x-a)_{_{''}}$

(2) 曲線 $y=x^2$ 上の点 (a,a^2) における法線の方程式を書け. $a\neq 0$ のとき, $y-a^2=-\frac{1}{2a}(x-a)$ a=0 のとき, x=0

(1) の直線は,

イ. 曲線 $y = x^2$ 上の点 (a, a^2) を通り,

ロ. 傾きが関数 $y=x^2$ の x=a における微分係数 2a に等しい

直線であるといえる、ここでは、次のような円を考えよう:

ハ. 点 (a, a^2) を通り、この点における接線が (1) であり、

ニ. さらにこの点での $\frac{d^2y}{dx^2}$ の値が関数 $y=x^2$ の x=a における第 2 次導 関数の値 2 に等しい。

この円は、曲線 $y=x^2$ の点 (a,a^2) における接触円と呼ばれる.

(3) この円の方程式を $(x-p)^2 + (y-q)^2 = r^2$ とおくと、条件ハ、ニは

$$(a-p)^2 + (a^2-q)^2 = r^2$$
 (1)

$$2(a-p) + 4a(a^2 - q) = 0$$
 ②

$$2 + 8a^2 + 4(a^2 - q) = 0 \qquad \dots$$
 3

と書ける. p, q, r を a を用いて表せ. ただし, r > 0 とする.

③
$$\sharp$$
 \flat , $q = 3a^2 + \frac{1}{2}$

これと②より、 $p=-4a^3$

以上と①より,
$$r = \sqrt{16a^6 + 12a^4 + 3a^2 + \frac{1}{4}} = \frac{1}{2}(4a^2 + 1)^{\frac{3}{2}}$$

(4) (2) の直線と曲線 $y=x^2$ 上の点 (b,b^2) における法線(ただし $b\neq a$, $b\neq 0$ とする)との交点の座標は

$$\left(-2ab(a+b), a^2 + ab + b^2 + \frac{1}{2}\right)$$

である. $b \rightarrow a$ の極限でこれが (p,q) となることを示せ. ただし, p,q は, (3) で求めたものである.

交点のx座標とy座標について、それぞれ極限を計算すると、

$$\lim_{b \to a} \left[-2ab(a+b) \right] = -4a^3 = p ,$$

$$\lim_{b \to a} \left[a^2 + ab + b^2 + \frac{1}{2} \right] = 3a^2 + \frac{1}{2} = q .$$

よって、 $b \rightarrow a$ の極限で

$$\left(-2ab(a+b), a^2 + ab + b^2 + \frac{1}{2}\right) \to (p,q)$$
.

さらに、交点 (p,q) と点 (a,a^2) との距離は r に等しいことが示される。この距離のことを曲率半径という。(4) のようにして求めた点 (p,q) を中心とする半径 r の円は、曲率円と呼ばれ、接触円と一致することが知られている。

なお、曲率 (curvature) は曲率半径の逆数で計算され、

曲率 次 ← ⇒ 曲率半径 ⊕ ← ⇒ "急カーブ"

曲率① ⇔ 曲率半径 ⇔ "緩やかなカーブ"

である.

問題は以上です.