Math 324: Linear Algebra Section 4.5: Dimension

Mckenzie West

Last Updated: December 29, 2023

Last Time.

- Basis

Today.

- Dimension

Theorem 4.11.

If a vector space V has a basis with n vectors then every basis for V has n vectors.

Exercise 1.

Fill details into this terse proof of Theorem 4.11.

Proof.

Let $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$ be a basis for the vector space V. Let $T = \{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_m\}$ be another basis for V.

- (a) Since S is a basis and T is linearly independent, by Theorem 4.10 we must have $m \le n$.
- (b) Similarly $n \leq m$.

Therefore, m = n, as desired.

4

Exercise 2.

How many vectors must a basis for each of the following have?

- (a) \mathbb{R}^2
- (b) \mathbb{R}^3
- (c) \mathbb{R}^n
- (d) P_2
- (e) P_n
- (f) $M_{2,2}$
- (g) $M_{m,n}$

Definition.

If the vector space V has a basis with n elements, then we say that the dimension of V is n, denoted $\dim(V) = n$.

The vector space consisting of only the zero vector is said to have dimension 0.

Exercise 3.

What is the dimension of each of the following vector spaces?

- (a) \mathbb{R}^2
- (b) \mathbb{R}^3
- (c) \mathbb{R}^n
- (d) P_2
- (e) P_n
- (f) $M_{2,2}$
- (g) $M_{m,n}$

Example.

Consider the subspace $W = \{(a+b, a-b, 3*a) : a, b \in \mathbb{R}\}$ of \mathbb{R}^3 . A basis for this space is $S = \{(1,1,3), (1,-1,0)\}$ because every vector in W can be written as a combination of these two

$$(a+b, a-b, 3a) = a(1,1,3) + b(1,-1,0),$$

and the set S is linearly independent. (How would you check independence?)

Thus W is 2-dimensional.

Exercise 4.

- (a) Find a basis for the subspace $W = \{(t, 2t) : t \in \mathbb{R}\}$ of \mathbb{R}^2 . What is dim(W)?
- (b) Find a basis for the subspace $W = \{(a, b, b, b) : a, b \in \mathbb{R}\}$ of \mathbb{R}^4 . What is dim(W)?

Brain Break.

If you have a tattoo, what does it mean to you? If you don't, what tattoo would you get?

This lion is on my foot. It is the mascot for St. Olaf College, where I got my undergraduate degree.

Theorem 4.12.

Let V be a vector space of dimension n.

- **1.** If $S = {\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}}$ is a linearly independent set of n vectors in V, then S is a basis for V.
- **2.** If $S = {\vec{v_1}, \vec{v_2}, \dots, \vec{v_n}}$ has *n* vectors and spans *V*, then *S* is a basis for *V*.

Exercise 5.

Discuss this Theorem in the context of $V = \mathbb{R}^3$.

If $S = {\vec{v_1}, \vec{v_2}, \vec{v_3}}$ is a linearly independent set, why does S also span \mathbb{R}^3 ?

If $S = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ spans \mathbb{R}^3 , why is it also linearly independent?

Theorem: Pruning.

Let $S = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_k\}$ be a spanning set of a vector space V. Then there is a subset T of S that is a basis for V.

Exercise 6.

Consider the set $S = \{(1,2,4), (1,3,5), (2,5,9), (0,1,3), (0,2,6)\}$. Find a subset of S that is a basis for \mathbb{R}^3 .