#Past Questions

Q. No. 5 -2021. Find the optimal solution for the following transportation problem using any methods.

1	2	1	4	30
3	3	2	1	50
4	2	5	9	20
20	40	30	9	

Solution:

Here Total Demand = 99 is less than Total Supply = 100. So We add a dummy demand constraint with 0 unit cost and with allocation 1.

Now. The modified table is

	D_1	D_2	D3	D4	Ddummy	Supply
<i>S</i> 1	1	2	1	4	0	30
S2	3	3	2	1	0	50
<i>S</i> 3	4	2	5	9	0	20
Demand	20	40	30	9	1	_

Obtaining Initial feasible solution using VAM

	D 1	D2	<i>D</i> 3	D4	Ddummy	Supply	Row Penalty
<i>S</i> 1	1 <mark>(20)</mark>	2	1(10)	4	0	30 10	1 1 0 1 1
S2	3	3(20)	2(20)	1(9)	0(1)	50 41 40	1 2 1 1 1 1
<i>S</i> 3	4	2(20)	5	9	0	20	2 2 2 3
Demand	20	40 20	3 0 20	9	1		
Column Penalty	2 2 2 	0 0 0 0 1	1 1 1 1	3 ↑	0 0 		

The minimum total transportation cost = $1 \times 20 + 1 \times 10 + 3 \times 20 + 2 \times 20 + 1 \times 9 + 0 \times 1 + 2 \times 20 = 179$

Here, the number of allocated cells = 7 is equal to m + n - 1 = 3 + 5 - 1 = 7 \therefore This solution is non-degenerate Optimality test using modi method...

Find ui and vj for all occupied cells(i,j), where cij=ui+vj

	<i>D</i> 1	D2	<i>D</i> 3	D4	Ddummy	ui
<i>S</i> 1	1 (20)	2	1 (10)	4	0	<i>u</i> 1=-1
<i>S</i> 2	3	3 (20)	2 (20)	1 (9)	0 (1)	<i>u</i> 2=0
S 3	4	2 (20)	5	9	0	<i>u</i> 3=-1
vj	v1=2	v2=3	v3=2	v4=1	v5=0	

Find dij for all unoccupied cells(i,j), where dij=cij-(ui+vj)

$$d_{12} = c_{12} - (u_1 + v_2) = 2 - (-1 + 3) = 0$$

$$d_{14} = c_{14} - (u_1 + v_4) = 4 - (-1 + 1) = 4$$

$$d_{15} = c_{15} - (u_1 + v_5) = 0 - (-1 + 0) = 1$$

$$d_{21} = c_{21} - (u_2 + v_1) = 3 - (0 + 2) = 1$$

$$d_{31} = c_{31} - (u_3 + v_1) = 4 - (-1 + 2) = 3$$

$$d_{33} = c_{33} - (u_3 + v_3) = 5 - (-1 + 2) = 4$$

$$d_{34} = c_{34} - (u_3 + v_4) = 9 - (-1 + 1) = 9$$

$$d_{35} = c_{35} - (u_3 + v_5) = 0 - (-1 + 0) = 1$$

	D 1	D2	<i>D</i> 3	D4	Ddummy	ui
<i>S</i> 1	1 (20)	2 [0]	1 (10)	4 [4]	0 [1]	<i>u</i> 1=-1
<i>S</i> 2	3 [1]	3 (20)	2 (20)	1 (9)	0 (1)	<i>u</i> 2=0
S 3	4 [3]	2 (20)	5 [4]	9 [9]	0 [1]	<i>u</i> 3=-1
vj	v1=2	v2=3	v3=2	v4=1	v5=0	

Since all *dij*≥0.So final optimal solution is arrived.

The minimum total transportation cost $=1\times20+1\times10+3\times20+2\times20+1\times9+0\times1+2\times20=179$

Q. Given the transportation framework, find the optimal transportation cost. – 2023

From↓ To→	А	В	С	Plant Capacity
W	40	80	80	55
X	160	-	160	25
Y	80	160	240	35
Requirement	35	45	35	115

1
AM
G Pathonist
4-1
El-2 Jeanni
1272 114
1
35 = 11200
n-1 = 3+3-1=5
- ()
having least
1)
es
mg 4 , + 4 = e"
cers
yotug)
= 40
= 40
2120
+160x2S
301 1

Q. Write Hungarian algorithm to solve the assignment problem. -2021/2023

Algorithm:

- 1. Check whether the problem is balanced or not. If not make it balanced by adding dummy rows/columns.
- 2. **Row reduction:** Subtract minimum value from each row.

- 3. **Column reduction:** Subtract minimum value from each column.
- 4. **Cover all zeros** with minimum number of horizontal/vertical lines.
 - Check no. of zero in 1st row, if there is only one zero make a box over it and draw a vertical line through the column and if there is more than one zero skip that row and go to next row.
 - Repeat this process to all the rows and column and draw lines accordingly(through column for row and through row for column) until all zeros are covered.
- 5. If number of lines(allocations) = number of rows/columns, **optimal assignment** found.
- 6. If not, adjust matrix:
 - o Subtract smallest uncovered value from uncovered elements.

Task 1

19

17

19

Add it to the elements covered twice.

Contractor

Α

В

С

o Repeat step 4.

Q. A city corporation has decided to carry out Maintenance work in the city. There are 4 tasks to be completed using 5 contractors. Which contractors should be assigned those tasks? Solve the assignment problem to get best result. -2023 long

Task 2

24

27

28

Task 3

29

30

31

Task 4

25 29

28

	D	20	12	28	29
	E	20	25	31	26
	Soin		mer / lea	il & sings	all there
Here,	no. of	-ows = 5 , r	10. 0-1 cold	mn = 4, s	o the problem
	As unba	lonced. To	make H ba	lonced we	add dummey
		Task (Task			
(Intractor	N 40 N	2 3 4			2 3 4 5
A	19 9	24 29 2	5 0	A 2 1	2 100
В	17 1 2/2	7 30 2	0 /0=00	B 0 1	5 2 4 0
· C	19 2	8 31 28	0 . 7 . 10	30 12 100 1	6 3 3
D	26 1	2 28 29	10/01	pt 01 3000 E	1 0 4
E	20 1000	5 31 21	0	F 3 3 1	31 31 L 4
	Since, man.	element of ed	ich row 13	o' so rou	reduction is
9.		ary 1			
Here,	no. of a	location = 4	no of row	1 = 5 , so t	he Solcetion is not
The state of the s	1 2		1 5	0 10 2	
A	2 12	1 0	A	4 2 1	0 0
B	10 15	2 4	+ = 9	10 11	1 1 4 1
C	2 15	2 2 1	0 c	1 121 2	1 1 12 10
D	3 0	0 4 0	D	1 10	100 5 12
E	2 12	2 0	ON E	2 11	1 10 d
6/10	2	~1	3	- Opti	mal
7	Not aptim	4	1.1	- Linn	Land Land Land

Optimal solution is

Contractor	Task	Cost
A	3	29
В	1	17
С	5	0
D	2	12
E	4	26
Total min.	84	

Q. Carew's machine shop has 4 machines on which 3 jobs have to be done. Each job can be assigned to one and only one machine. The cost(in Rs) of each job on each machine is given below:

	Machines				
Job	Р	Q	R	S	
Α	45	60	70	80	
В	20	32	42	47	
С	25	37	47	55	

Req: What are the job assignments which will minimize total cost?

	5012
fiere,	no. of rows = 3, no. of column = 4. so the given.
*	problem is unbulanced. To make of balance we add
	dummy row (Job (D)
	p & R s , 20w Reduction
A	45 60 70 80 P P P
3	20 32 42 97 7 A 10 15 25 35
C	25 37 47 55 3 0 12 22 27
D	0 0 0 0 0 0 12 22 30
	0 0 0
0_1	P @ R S - + not optimal
A	10 3 13 23 pp p 2 5
B	0 10 10 15 3 A 10 3 8 13 Here, -
c	0 0 10 18 B 0 10 5 Atternate Sola exists
D -	betwa Ball
7	not optimal D 2 10 0 2
1	

Optimal solution is

Optimical obtainers to					
Job	Machines	Cost			
A	Р	45			
В	Q	32			
С	R	47			
D S		0			
Tota	124				

11. Jack Evan owns several trucks used to haul crushed stone to road project iun the country. The road contractor for whom jack hauls, N Teer, has given jack this schedule for next week:

Project	Requirement per week	Plant	
A	-50	w	week
В	75	W	45
C	50	A V	60

Jack figures his cost from the crushing plant to each of the road projects to be these:

Cost information	(in	RS)	
	(***	1101	

To/From A B				
A	В	C		
4	8	3		
6	7	0		
8	2	5		
	A 4 6 8	A B 4 8 6 7 8 2		

Req: Compute Jack's optimal hauling schedule for next week and his transportation cost.

Solution:

Problem Table is

	A	В	C	Supply
W	4	8	3	45
X	6	7	9	60
Y	8	2	5	60
Demand	50	75	50	

Here Total Demand = 175 is greater than Total Supply = 165. So, We add a dummy supply constraint with 0 unit cost and with allocation 10. Now, The modified table is

	A	В	C	Supply
W	4	8	3	45
X	6	7	9	60
Y	8	2	5	60
Sdummy	0	0	0	10
Demand	50	75	50	

1. Obtaining Initial feasible solution using VAM

	A	В	C	Supply	Row Penalty
W	4	8	3 (45)	45	1 1 1
X	6(40)	7 (15)	9(5)	60	1 1 1
Y	8	2(60)	5	60	3 3
Sdummy	0(10)	0	0	10	0
Demand	50	75	50		
Column Penalty	4 2 2	2 5 1	3 2 6		

The minimum total transportation cost $=3\times45+6\times40+7\times15+9\times5+2\times60+0\times10=645$ Here, the number of allocated cells = 6 is equal to m + n - 1 = 4 + 3 - 1 = 6 \therefore This solution is non-degenerate

2. Optimality test using modi method...

Allocation Table is

	A	В	C	Supply
W	4	8	3 (45)	45
X	6 (40)	7 (15)	9 (5)	60
Y	8	2 (60)	5	60
Sdummy	0 (10)	0	0	10
Demand	50	75	50	

I. Find ui and vj for all occupied cells(i,j), where cij=ui+vj

	A	В	С	ui
W	4	8	3 (45)	<i>u</i> 1=-6
X	6 (40)	7 (15)	9 (5)	<i>u</i> 2=0
Y	8	2 (60)	5	<i>u</i> 3=-5
Sdummy	0 (10)	0	0	<i>u</i> 4=-6
vj	v1=6	v2=7	v3=9	

II. Find dij for all unoccupied cells(i,j), where dij=cij-(ui+vj)

$$d_{11} = c_{11} - (u_1 + v_1) = 4 - (-6 + 6) = 4$$

	A	В	С	ui
W	4 [4]	8 [7]	3 (45)	<i>u</i> 1=-6
X	6 (40)	7 (15)	9 (5)	<i>u</i> 2=0
Y	8 [7]	2 (60)	5 [1]	<i>u</i> 3=-5
Sdummy	0 (10)	0 [-1]	0 [-3]	<i>u</i> 4=-6
vj	v1=6	v2=7	v3=9	

$$d_{12} = c_{12} - (u_1 + v_2) = 8 - (-6 + 7) = 7$$

$$d_{31} = c_{31} - (u_3 + v_1) = 8 - (-5 + 6) = 7$$

$$d_{33} = c_{33} - (u_3 + v_3) = 5 - (-5 + 9) = 1$$

$$d_{42} = c_{42} - (u_4 + v_2) = 0 - (-6 + 7) = -1$$

$$d_{43} = c_{43} - (u_4 + v_3) = 0 - (-6 + 9) = -3$$

iii. Now choose the most negative value from all dij (opportunity cost) = d43 = [-3] and draw a closed path from SdummyC (cell(4,3)).

Closed path is $SdummyC \rightarrow SdummyA \rightarrow XA \rightarrow XC$

Closed path and plus/minus sign allocation...

	A	В	C	ui
W	4 [4]	8 [7]	3 (45)	<i>u</i> 1=-6
X	6 (40) (+)	7 (15)	9 (5) (-)	<i>u</i> 2=0
Y	8 [7]	2 (60)	5 [1]	<i>u</i> 3=-5
Sdummy	0 (10) (-)	0 [-1]	0 [-3] (+)	<i>u</i> 4=-6
vj	v1=6	v2=7	v3=9	

iv. Minimum allocated value among all negative position (-) on closed path = 5 Subtract 5 from all (-) and Add it to all (+)

	A	В	C
W	4	8	3 (45)
X	6 (45)	7 (15)	9
Y	8	2 (60)	5
Sdummy	0 (5)	0	0 (5)

- v. Repeat the step i-iv, until an optimal solution is obtained.
 - I. Find *ui* and *vj* for all occupied cells(i,j), where *cij=ui+vj*

	A	В	C	ui
W	4	8	3 (45)	<i>u</i> 1=-3
X	6 (45)	7 (15)	9	<i>u</i> 2=0
Y	8	2 (60)	5	<i>u</i> 3=-5
Sdummy	0 (5)	0	0 (5)	<i>u</i> 4=-6
vj	v1=6	v2=7	v3=6	

II. Find dij for all unoccupied cells(i,j),

where
$$dij=cij-(ui+vj)$$

	A	В	C	ui
W	4 [1]	8 [4]	3 (45)	<i>u</i> 1=-3
X	6 (45)	7 (15)	9 [3]	<i>u</i> 2=0
Y	8 [7]	2 (60)	5 [4]	<i>u</i> 3=-5
Sdummy	0 (5)	0 [-1]	0 (5)	<i>u</i> 4=-6
vj	v1=6	v2=7	v3=6	

$$d_{11} = c_{11} - (u_1 + v_1) = 4 - (-3 + 6) = 1$$

$$d_{12} = c_{12} - (u_1 + v_2) = 8 - (-3 + 7) = 4$$

$$d_{23} = c_{23} - (u_2 + v_3) = 9 - (0 + 6) = 3$$

$$d_{31} = c_{31} - (u_3 + v_1) = 8 - (-5 + 6) = 7$$

$$d_{33} = c_{33} - (u_3 + v_3) = 5 - (-5 + 6) = 4$$

$$d_{42} = c_{42} - (u_4 + v_2) = 0 - (-6 + 7) = -1$$

III. Again, $dij \le 0$ at cell (4,2) i.e. d42 = [-1]. So, draw a closed path from cell(4,2) SdummyB. Closed path is $SdummyB \rightarrow SdummyA \rightarrow XA \rightarrow XB$

	A	В	С	ui
W	4 [1]	8 [4]	3 (45)	<i>u</i> 1=-3
X	6 (45) (+)	7 (15) (-)	9 [3]	<i>u</i> 2=0
Y	8 [7]	2 (60)	5 [4]	<i>u</i> 3=-5
Sdummy	0 (5) (-)	0 [-1] (+)	0 (5)	<i>u</i> 4=-6
vj	v1=6	v2=7	v3=6	

IV. Minimum allocated value among all negative position (-) on closed path = 5Subtract 5 from all (-) and Add it to all (+)

	A	В	С	Supply
W	4	8	3 (45)	45
X	6 (50)	7 (10)	9	60
Y	8	2 (60)	5	60
Sdummy	0	0 (5)	0 (5)	10
Demand	50	75	50	

- v. Repeat the step i-iv, until an optimal solution is obtained.
- i. Find *ui* and *vj* for all occupied cells(i,j), where *cij=ui+vj*

	A	В	C	ui
W	4	8	3 (45)	<i>u</i> 1=3
X	6 (50)	7 (10)	9	<i>u</i> 2=7
Y	8	2 (60)	5	<i>u</i> 3=2
Sdummy	0	0 (5)	0 (5)	<i>u</i> 4=0
vj	v1=-1	v2=0	v3=0	

ii. Find dij for all unoccupied cells(i,j), where dij=cij-(ui+vj)

	A	В	C	Supply	иі
W	4 [2]	8 [5]	3 (45)	45	<i>u</i> 1=3
X	6 (50)	7 (10)	9 [2]	60	<i>u</i> 2=7
Y	8 [7]	2 (60)	5 [3]	60	<i>u</i> 3=2
Sdummy	0 [1]	0 (5)	0 (5)	10	<i>u</i> 4=0
Demand	50	75	50		
vj	v1=-1	v2=0	v3=0		

$$d_{11} = c_{11} - (u_1 + v_1) = 4 - (3 - 1) = 2$$

$$d_{12} = c_{12} - (u_1 + v_2) = 8 - (3 + 0) = 5$$

$$d_{23} = c_{23} - (u_2 + v_3) = 9 - (7 + 0) = 2$$

$$d_{31} = c_{31} - (u_3 + v_1) = 8 - (2 - 1) = 7$$

$$d_{33} = c_{33} - (u_3 + v_3) = 5 - (2 + 0) = 3$$

$$d_{41} = c_{41} - (u_4 + v_1) = 0 - (0 - 1) = 1$$

Since all $dij \ge 0$. So final optimal solution is arrived.

∴The minimum total transportation cost = $3\times45+6\times50+7\times10+2\times60+0\times5+0\times5=625$