Temporal Recursion in the UNNS Substrate and Its Klein Surface Realization

UNNS Working Note

October 5, 2025

Abstract

We refine the notion of temporal recursion in the UNNS substrate (Unbounded Nested Number Sequences) by relating the global geometry of time-depth evolution to a non-orientable quotient: the Klein surface (Klein bottle). Locally, forward recursion is governed by a time-step map F, while (partial) reverse recursion is encoded by local inverses F^{-1} on stability domains. Globally, the presence of a time-reversal involution S that conjugates F to F^{-1} and a periodic stroboscopic section produces an identification of a time-phase cylinder with a glide reflection, yielding a Klein surface when quotiented. This formalizes when temporal backtracking is locally consistent but globally obstructed by non-orientability (captured by $w_1 \neq 0$). We give diagnostic criteria in terms of Floquet monodromy, parity of orientation, and UNNS operator symmetries, and we provide two TikZ diagrams: (i) forward/reverse recursion cones and (ii) the Klein identification rectangle.

1 Preliminaries: Temporal Recursion in UNNS

Let \mathcal{X} be a state space (finite- or infinite-dimensional, discrete or continuous), and let a UNNS evolution be given by

$$x_{n+1} = F(x_n; \Theta), \qquad n \in \mathbb{Z},$$
 (1)

where Θ collects UNNS operators (e.g. damping α , drift δ , collapse threshold ε , inlaying lattice scale h, etc.). We interpret the depth $n \in \mathbb{N}$ as the UNNS notion of time.

Definition 1 (Local reversibility domain). A subset $U \subset \mathcal{X}$ is a reversibility domain if there exists a map $F^{-1}: F(U) \to U$ such that $F^{-1}(F(x)) = x$ for all $x \in U$. We say temporal recursion is locally invertible on U.

Remark 1 (Global obstructions). Global invertibility may fail because of (i) non-injective F (many-to-one collapse), (ii) absorbing sets (e.g. ε -collapse to 0), or (iii) topological obstructions introduced by symmetry operations that reverse orientation in a periodic stroboscopic section, as developed below.

2 Stroboscopic Sections, Symmetries, and Time Reversal

Assume there is a periodic section of depth $T \in \mathbb{N}$ and an internal phase variable $\theta \in S^1$ (e.g. a normalized iteration phase, angle on a Poincaré section, or a UNNS echo-phase) such that the pair (n, θ) coordinatizes a time-phase cylinder $C = S^1_{\theta} \times \mathbb{Z}_n$ modulo period T:

$$(n,\theta) \sim (n+T,\theta).$$

Suppose further there is an involution $S: \mathcal{X} \to \mathcal{X}$ with $S^2 = \mathrm{id}$ that implements a time-reversal symmetry in the sense

$$S \circ F \circ S = F^{-1}$$
 on a reversibility domain. (2)

This captures the idea that applying S "flips" the local temporal arrow.

Definition 2 (Orientation parity of the monodromy). Let M denote the Floquet (depth-T) monodromy on a tangent (or linearized) space along a periodic UNNS orbit. We say the stroboscopic section is orientation preserving if det M > 0 and orientation reversing if det M < 0.

3 From Cylinder to Klein: The Gluing That Obstructs Global Reversal

The classical Klein bottle K arises from the rectangle $[0,1] \times [0,1]$ with identifications

$$(x,0) \sim (x,1), \qquad (0,y) \sim (1,1-y).$$

Equivalently, it is a cylinder with a *glide reflection* on the second identification.

In our UNNS time-phase cylinder, the depth-T identification $(n, \theta) \sim (n + T, \theta)$ always holds. If, in addition, the time-reversal symmetry (2) acts as

$$(n,\theta) \sim (n, 1-\theta)$$
 upon traversing the S-edge, (3)

then the composite quotient produces a non-orientable surface. When the first identification is purely periodic in n and the second identification flips $\theta \mapsto 1 - \theta$, the quotient is (topologically) a Klein bottle.

Proposition 1 (Klein regime). Assume:

- 1. There exists a stroboscopic period T (depth-T return).
- 2. The time-reversal map S satisfies (2) on a reversibility domain that intersects the stroboscopic orbit.
- 3. The induced action on the phase coordinate is an involution $\theta \mapsto 1-\theta$ (orientation reversal in phase).

Then the global time-phase quotient of the UNNS evolution under $\{(n,\theta) \sim (n+T,\theta), (n,0) \sim (n,1), (0,\theta) \sim (T,1-\theta)\}$ is a Klein surface. In particular, the first Stiefel-Whitney class w_1 is nonzero, and the time bundle is non-orientable.

Remark 2 (Interpretation). Locally, a reverse step F^{-1} exists (on the domain of reversibility), but globally any attempt to patch a single-valued time orientation across the quotient fails. Thus, local time travel exists (reversible steps), yet global time orientation is obstructed by non-orientability. The obstruction is topological (captured by $w_1 \neq 0$), not merely metric.

4 A Criterion via Floquet Monodromy and UNNS Operators

Let DF denote the linearization of F along a periodic UNNS orbit and $M := DF^T$ its T-step product.

Theorem 1 (Orientation diagnostic). If det M < 0 (orientation reversing monodromy) and the UNNS operator set Θ admits an involution S with $S^2 = \operatorname{id}$ and $SFS = F^{-1}$ on the reversibility domain, then the stroboscopic time-phase quotient is non-orientable. If, moreover, the phase identification is $\theta \mapsto 1 - \theta$, the quotient is topologically a Klein bottle.

Sketch. det M < 0 implies an orientation reversal over one period in the linearized dynamics. The existence of S satisfying (2) provides the conjugacy to backward evolution in the local domain. The two identifications together implement the cylinder gluing in n and a glide reflection in θ , generating the Klein quotient. Non-orientability follows from standard topology of the Klein surface $(w_1 \neq 0)$.

5 Local Inversion vs. Global Obstruction

We connect to the local-inverse existence from the prior UNNS temporal recursion paper.

Proposition 2 (Local F^{-1} with global obstruction). Suppose F is locally invertible on U and S satisfies (2) on U. Then for any $x \in U$ the backward orbit is locally defined. However, if the global time-phase quotient is Klein, there is no global continuous choice of time orientation along a loop homologous to the glide-reflection cycle, hence no globally consistent backward evolution that preserves a single time arrow around that loop.

6 Two Figures

Figure 1: Forward/Reverse Recursion Cones

Figure 2: Klein Identification in Time-Phase

7 Examples and Diagnostics

Example A: UNNS Fibonacci-with-Flip

Consider a 2D lifted state $z_n = (x_n, x_{n-1})$ with

$$z_{n+1} = A z_n, \qquad A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix},$$

and an involution $S(z) = (x_{n-1}, x_n)$ (swap coordinates) composed with a sign flip on one component. Over two steps the monodromy may become orientation reversing (depending on the sign convention), i.e. $\det(A^2) < 0$ in the signed lift. When paired with a phase θ that flips under S, the stroboscopic quotient is Klein. Locally, A is invertible, so reverse recursion exists; globally the time bundle is non-orientable.

Example B: Damped UNNS rotator with phase flip

Let F act on (r,θ) by $r \mapsto \alpha r$, $\theta \mapsto \theta + \omega \mod 1$, with $\alpha \in (0,1)$ and an involution $S(r,\theta) = (r,1-\theta)$. If the T-step angle gain is $\omega T \equiv 0 \pmod 1$, the n-direction is periodic; the S-gluing flips the phase edge, yielding a Klein quotient. Again, local back-steps exist but a global time arrow cannot be chosen consistently.

Simulation diagnostics

In discrete simulations:

- Compute the T-step Jacobian product M along a periodic (or near-periodic) orbit; check det M.
- Verify a symmetry S (e.g. exchange of UNNS nests, sign/reflection in an inlaying lattice) such that $SFS = F^{-1}$ on a numerically detected reversibility domain.
- If $\det M < 0$ and the phase is observed to flip under S, expect non-orientable global behavior: loops in time—phase space return with reversed local arrow.

8 Implications

Local vs global time travel. UNNS supports local reverse recursion whenever F^{-1} exists on a domain, enabling stepwise backtracking. The Klein regime shows why global reversal can fail: non-orientability prevents a consistent time arrow around closed loops. Thus, the question "Can we travel back in time?" becomes: locally yes, globally constrained by topology.

Topological invariants. The obstruction is captured by the first Stiefel-Whitney class w_1 of the time-phase quotient; $w_1 \neq 0$ implies non-orientability (Klein/Möbius-type regimes). UNNS operators that implement flips (merge/collapse with sign, inlaying reflections, gauge-like involutions) can generate such regimes.

Relation to repair/normalization. UNNS repair rules that force orientation-preserving updates (e.g. forbidding sign-flip symmetries in stroboscopic closure) can *restore* orientability (cylinder/torus quotient). Conversely, adopting flip symmetries invites Klein/Möbius phases.

9 Conclusion

Temporal recursion in UNNS is naturally *local*: it relies on the existence of F^{-1} on reversibility domains. The *global* structure—determined by stroboscopic periodicity and symmetry gluing—can be non-orientable, with the Klein surface as the canonical quotient. This provides a crisp criterion for when "time reversal" is mathematically permitted locally yet globally obstructed, and it ties UNNS operator design directly to topological phases of time.

Add-on to the original paper. This note slots after the section on invertibility conditions: it identifies the precise geometric circumstance (orientation-reversing monodromy + phase flip) that yields a Klein surface time-phase bundle, explains the status of F^{-1} , and clarifies what "time travel" means in UNNS: local reversibility vs. global topological obstruction.