

Лидеры цифровой трансформации

ГРОМКИЕ РЫБЫ

18. Алгоритм эффективной обработки спутниковых снимков российской орбитальной группировки

Мотивация

- Наша команда состоит из студента и аспиранта ННГУ им. Н.И. Лобачевского (Нижний Новгород);
- В 2025 году у университета появится свой спутник (<u>новость</u>), и мы решили погрузиться в работу со спутниковыми изображениями

Базовый алгоритм восстановления геопривязки

- Базовый алгоритм восстановления геопривязки:
 - Сжимаем подложку в 4 раза;
 - С помощью алгоритмов детектирования ключевых точек вычисляем преобразование гомографии для отображения патча на подложку;
 - С помощью преобразования гомографии находим пиксели подложки, соответствующие пикселям углов патча, и получаем их координаты в EPSG:32637 с помощью библиотеки rasterio
- Плюсы:
 - Быстрая обработка;
 - Малые ресурсы;
- Минусы:
 - Стандартные алгоритмы детекторов и дескрипторов ключевых точек плохо работают с разнородными данными;

Примеры привязки

•Примеры привязки

Развитие базовой идеи

• Из ТЗ и первой QA сессии мы подумали, что нужно привязать только одну подложку, что оказалось не так. На второй QA сессии сказали, что привязывать нужно уметь ко всем подложкам.

- Подходы к развитию базового алгоритма для привязки к другим подложкам:
 - Обучаемые алгоритмы детектирования и описания ключевых точек (<u>SuperGlue</u>);
 - Перенос стиля (<u>Style transfer</u>), чтобы SIFT дескриптор мог получал похожие дескрипторы для данных за разную дату.

Large Aerial Image Tie Point Matching in Real and Difficult Survey Areas via Deep Learning Method (paper)

Базовый алгоритм восстановления пикселей

- Базовый алгоритм нахождения и восстановления пикселей:
 - Считываем один слой;
 - Считаем медиану М по слою;
 - Делаем медианное сглаживание слоя;
 - Если в конкретном пикселе значение интенсивности отличается от «сглаженного» значения на М * коэф (1.1 1.5) в зависимости от слоя, то значит пиксель некорректный
 - Заменяем значение некорректного пикселя «сглаженным» значением
- Плюсы алгоритма:
 - Быстрая скорость работы;
 - Легкая реализация;
- Минусы:
 - Необходим подбор коэфициентов для формулы;

https://github.com/FenixFly/Ict24_hack

Telegram: @vasiliev_e

Вопросы

