DM номеwork 3 (12 февраля 2016 г.)

Tropin Andrew

e-mail: andrewtropin@gmail.com

qithub: abcdw

Problem 1.

Write negations for each of the following statements:

A - John is six feet tall

B - John weights at least 200 pounds

 $A \wedge B$ - John is six feet tall and he weighs at least 200 pounds

 $\sim (A \wedge B) = \sim A \vee \sim B$

John is not six feet tall or he don't weighs at least 200 pounds.

A - The bus was late

B - Tom's watch was slow

 $A \vee B$ - The bus was late or Tom's watch was slow

 $\sim (A \vee B) = \sim A \wedge \sim B$

The bus was not late and Tom's watch was not slow

Problem 2.										
$\mid p$		q	\sim	$p \mid$	$\sim p \vee q$		$\sim q$	$(\sim p \lor q) \to \sim q$		
	1	1	0		1		0	0		
$(\sim p \lor q) \to \sim q$	1	0	0		0		1	1		
	0	1	1 1		1		0	0		
	0	0	1		1	1 1		1		
			q	r	$\sim p$	~	$p \wedge q$	$\sim r$	$(\sim p \land q)$	$\rightarrow \sim r$
		1	1	1	0		0	0	1	
		1	1	0	0		0	1	1	
		1	0	1	0		0	0	1	
$(\sim p \land q) \rightarrow \sim$	$\sim r$	1	0	0	0		0	1	1	
		0	1	1	1	1		0	0	
	0	1	0	1		1	1	1		
			0	1	1		0	0	1	
		0	0	0	1		0	1	1	

Problem 3.

p: Grizzly bears have been seen in the area.

q: Hiking is safe on the trail.

r: Berries are ripe along the trail.

- Berries are ripe along the trail, but grizzly bears have not been seen in the area. $r \wedge \sim p$
- Grizzly bears have not been seen in the area and hiking on the trail is safe, but berries are ripe along the trail. $\sim p \wedge r \wedge r$
- If berries are ripe along the trail, hiking is safe if and only if grizzly bears have not been seen in the area. $r \to (q \leftrightarrow p)$

1 Tropin Andrew

e-mail: andrewtropin@gmail.com

github: abcdw

Problem 4.

• 101 1110, 010 0001 $10111110 \lor 0100001 = 11111111$ $1011110 \land 0100001 = 0000000$ $10111110 \oplus 0100001 = 11111111$

• 1111 0000, 1010 1010 $11110000 \lor 10101010 = 11111010$ $11110000 \land 10101010 = 10100000$

 $11110000 \oplus 10101010 = 01011010$

Problem 5.

Given any statement form, is it possible to find a logically equivalent form that uses only \sim and \wedge ?

Any logical formula can be represented in CNF with \sim , \wedge , \vee operators only. Using De Morgan's low you can remove all \vee operators.

Problem 6.

Disjunction is commutative.

p	q	$p \lor q$		p	q	$q \lor p$
1	1	1		1	1	1
1	0	1		1	0	1
0	1	1	ĺ	0	1	1
0	0	0	ÌÌ	0	0	0

p	9	,	$p \lor q$	$(p \lor q) \lor i$	p	q	,	$q \vee r$	$p \lor (q \lor r)$
1	1	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	0	1	1
1	0	1	1	1	1	0	1	1	1
1	0	0	1	1	1	0	0	1	1
0	1	1	1	1	0	1	1	1	1
0	1	0	1	1	0	1	0	0	1
0	0	1	0	1	0	0	1	1	1
$\overline{0}$	0	0	0	0	0	0	0	0	0

 $\begin{bmatrix} n & a & r & n \ \end{pmatrix} \begin{pmatrix} a & (n \) \ \end{pmatrix} \begin{pmatrix} r & n \ \end{pmatrix} \begin{pmatrix} a & r & a \ \end{pmatrix} \begin{pmatrix} r & n \ \end{pmatrix} \begin{pmatrix} a \ \end{pmatrix} \begin{pmatrix} r \ \end{pmatrix}$

Disjunction is associative.

Problem 7.

 $\sim (p \land q) \neq \sim p \land \sim q$

p	q	$p \wedge q$	$\sim (p \land q)$	p	q	$\sim p$	$\sim q$	$\sim p \wedge \sim q$
1	1	1	0	1	1	0	0	0
1	0	0	1	1	0	0	1	0
0	1	0	1	0	1	1	0	0
0	0	0	1	0	0	1	1	1

Tropin Andrew e-mail: andrewtropin@gmail.com

github: abcdw

	p	q	$p \wedge q$	$\sim (p \wedge q)$	p	q	$\sim p$	$\sim q$	$\sim p \lor \sim q$
	1	1	1	0	1	1	0	0	0
$\sim (p \land q) = \sim p \lor \sim q$	1	0	0	1	1	0	0	1	1
	0	1	0	1	0	1	1	0	1
	0	0	0	1	0	0	1	1	1

Problem 8.

Implication is logically equivalent to its contrapositive.

p	q	$p \rightarrow q$	p	q	$\sim q$	$\sim p$	$\sim q \rightarrow \sim p$
1	1	1	1	1	0	0	1
1	0	0	1	0	1	0	0
0	1	1	0	1	0	1	1
0	0	1	0	0	1	1	1

Converse is logically equivalent to the inverse.

p	q	$q \rightarrow p$	p	q	$\sim p$	$\sim q$	$\sim p \rightarrow \sim q$
1	1	1	1	1	0	0	1
1	0	1	1	0	0	1	1
0	1	0	0	1	1	0	0
0	0	1	0	0	1	1	1

 ${\bf Tropin~Andrew}$

e-mail: andrewtropin@gmail.com

github: abcdw