Γ Ц Φ О. 9 КЛАСС. 2014/15.

15	 На гладкой наклонной плоскости, составляющей с горизонтом угол α = 30°, расположен массивный клин (см. рис.). На верхней горизонтальной поверхности клина лежит маленькая легкая шайба. Клин отпускают, и он начинает свободно соскальзывать вниз. 1. Определите величину и направление ускорения движения шайбы относительно наклонной плоскости. 2. Как выглядит движение шайбы в системе отсчета, связанной с клином? Масса шайбы много меньше массы клина. Трением пренебречь.
16	Три одинаковых бревна, имеющих форму цилиндра, сложены так, как показано на рисунке. Какие минимальные коэффициенты трения бревен друг по другу и бревен по земле необходимы для того, чтобы система оставалась в покое?
18	На примусе, расходующем $\mu=0.1$ кг бензина в час, стоит котелок, в котором находится $m=1$ кг воды. График зависимости тепловой мощности P , выделяемой в окружающую среду, от времени приведен на рисунке. Постройте график зависимости температуры воды в котелке от времени. Теплоемкость котелка $C=800~\rm{Дж/°C}$, удельная теплоемкость воды $c_0=4200~\rm{Дж/(кr.°C)}$. Удельная теплота сгорания бензина $q=43~\rm{M/m/kr}$. Начальная температура воды $T=20~\rm{C}$. Принять, что в любой момент времени температура котелка и воды совпадают.
20	Любознательный школьник разобрал нагревательный прибор. Оказалось, что схема прибора очень проста (см. рисунок). Школьник вынул все резисторы из схемы и обнаружил, что их сопротивления составляют $R_1=1$ Ом, $R_2=1$ Ом, $R_3=2$ Ом, $R_4=3$ Ом, $R_5=5$ Ом. Но он забыл, какой резистор на каком месте располагается в схеме. Помогите ему собрать прибор по старой схеме таким образом, чтобы его мощность была максимальной. Нагреватель работает от постоянного напряжения.
21	Тело роняют над плитой на высоте h от нее. Плита движется вертикально вверх со скоростью u . Определите время между двумя последовательными ударами тела о плиту. Удары абсолютно упругие.
22	Утюг устроен следующим образом: его нагреватель выключается, если температура утюга становится больше некоторой температуры t_2 , и включается, как только его температура падает ниже t_1 (эти температуры неизвестны). Если включенный утюг стоит с открытой металлической поверхностью, его нагреватель работает в среднем $k=1/4$ всего времени. При этом мощность теплоотдачи можно считать постоянной. Если утюгом начинают гладить, то промежуток времени между последовательными моментами включения нагревателя становится в $n=4/3$ раза меньше. В этом случае мощность теплоотдачи также остается постоянной. Какую часть времени он работает в среднем во втором случае?