TUTORIAL

In order to reproduce or write scripts and notebooks for ATLAS data analysis using ROOT and Python, you'll need to keep on the following instructions.

Requirements

- ROOT and TMVA.
- 2. Anaconda and Scikit-Learn, NumPy, Keras, Pandas, PyROOT, root_numpy, rootpy y matplotlib libraries, and metakernel.

Installation:

1. **ROOT**:

First of all you will need to instal some dependencies

Another optional dependencies

```
sudo apt-get install gfortran libssl-dev libpcre3-dev xlibmesa-glu-dev libglew1.5-dev libftgl-dev libmysqlclient-dev libfftw3-dev libcfitsio-dev graphviz-dev libavahi-compat-libdnssd-dev libldap2-dev python-dev libxml2-dev libkrb5-dev libgsl0-dev libgt4-dev
```

In order to use ROOT and Python 3, it's required to have Python 3 as your default Python version.

Create a new folder called *root*, and inside the new folder, clone the repository of ROOT with git

```
git clone http://github.com/root-project/root.git
```

Checkout to the branch of the desired ROOT version

git checkout -b <version> <version>

For example: git checkout -b v6-18-04 v6-18-04

Create a new folder inside root, called *root-v6-18-04*, depending on the version you downloaded. Go to *root-v6-18-04* and run

to build ROOT. Then, go to the build folder (root-v6-18-04), and run

to install ROOT. This will take a couple of hours. As last step, create the environment variables

On the terminal add the source

```
source /home/username/root/root-v6-18-04/bin/thisroot.sh
```

Now you can run ROOT by taping root on the terminal.

TMVA is included by default in ROOT installation. You can find ROOT build requirements in: https://root.cern.ch/build-prerequisites#ubuntu

2. Anaconda

Download the latest version of Anaconda from https://www.anaconda.com/download/, unzip the compressed file and run the bash file:

Once the installation has finished, you have to activate the installation:

All done! You can test the installation with:

Anaconda includes numpy, pandas, and matplotlib by default, but you'll have to install **scikit-learn**, **keras**, **pandas**, **rootpy**, **root_numpy** and **metakernel** packages. This can be done by running

For using pip (for python) or pip3 (for python 3), you'll need to install it

apt get install pip
apt get install pip3

Execution:

You can run jupyter notebook with ROOT kernel by executing: root --notebook in your terminal.

Connection to computational clusters

1) Write on your terminal for connecting to **Ixplus** (CERN cluster):

ssh <user_name>@lxplus.cern.ch

and for connecting to hpc (UTFSM cluster):

ssh <user_name>@ui.hpc.utfsm.cl

Enter your password and you will get connected.

2) Then, open a new file, name it .bashrc or bash login file and type the next lines

```
#export ROOTENV_NO_HOME=1
export
ATLAS_LOCAL_ROOT_BASE=/cvmfs/atlas.cern.ch/repo/ATLASLocalRootBase
alias setupATLAS='source
${ATLAS_LOCAL_ROOT_BASE}/user/atlasLocalSetup.sh'
```

3) In your home, create a directory called *WorkArea*, and inside create two more directories: *run* and *build*. Then, copy the test.tar.gz file from Edson's local and paste it on your WorkArea.

cp /user/e/edson/dihiggs/test.tar.gz your/WorkArea/

Untar the file

tar -zxvf test.tar.gz

Rename the folder of the test files

mv test source

4) Go to the build directory and run the following

```
cd ../build
setupATLAS
lsetup asetup
release=`cat ../source/CxAODBootstrap_VHbb/bootstrap/release.txt`
echo "release=$release"
asetup AnalysisBase,$release,here
cp CMakeLists.txt ../source
cmake ../source
cmake --build .
source x86_64-slc6-gcc62-opt/setup.sh
```

5) Execute from the run directory

hsg5framework

It will crash if you don't have data, so the next step will be to copy some simulated data from lxplus Cluster.

Useful tutorials

1. **ROOT**:

http://physics.bu.edu/neppsr/2007/TALKS-2007/ROOT Tutorial Bose.pdf.

2. BDT score:

http://software.icecube.wisc.edu/documentation/projects/pybdt/man_bdt_intro.html

3. Histogram Analysis:

https://cheatham1.gitbooks.io/get-started/content/the_display_histograms.html

4. TMVS User guide:

https://root.cern.ch/root/html/guides/tmva/TMVAUsersGuide.pdf

5. Multivariate Analysis Tutorial (complete sequence using TMVA)

https://agenda.infn.it/event/13733/contributions/20520/attachments/14642/16541/MV ATutorial.pdf

6. Keras Tutorial (using TMVA too)

https://github.com/stwunsch/iml_keras_workshop/blob/master/slides/slides_iml_keras_workshop.pdf

7. scikit-learn for TMVA Users

https://betatim.github.io/posts/sklearn-for-TMVA-users/