ITAM - Métodos Estadísticos para C.Pol y R.I. Assignment 03

1. Es frecuente que a los auditores se les exija comparar el valor auditado (o de lista) de un artículo de inventario contra el valor en libros. Si una empresa está llevando su inventario y libros actualizados, debería haber una fuerte relación lineal entre dichos valores. Una empresa muestreó diez artículos de inventario y obtuvo los valores auditado y en libros que se dan en la tabla siguiente.

Artículo	Valor en libros (x_i)	Valor auditado (y_i)
1	9	10
2	14	12
3	7	9
4	29	27
6	45	47
7	109	112
8	40	36
9	238	241
10	60	59
11	170	167
12	1	250
13	30	780

Sección 1

- 1. Mediante el método de mínimos cuadrados encuentre los estimadores de los paramétros β_0 y β_1 . (Enuncie los supuestos que aplican).
- 2. Determine el valor de TSS, ESS, RSS \mathbb{R}^2 , \mathbb{R}^2 ajustada e interprete
- 3. Determine las varianzas de los estimadores $(\hat{\beta}_0 \text{ y } \hat{\beta}_1)$ y la covarianza $(\hat{\beta}_0 \text{ y } \hat{\beta}_1)$, determine $\hat{\sigma}^2$ y $\hat{\sigma}$ y qué concluye a partir de ello.
- 4. Realice una prueba de hipótesis para la correlación entre el valor en libros (x_i) y el valor auditado (y_i)
- 5. Realice una prueba de hipótesis para determinar si la β_0 y β_1 son significativas (solo con valor p)
- 6. Intervalo de confianza al 95% para β_0 y β_1
- 7. Prueba F
- 8. Predicción media cuando x=100. Intervalo de confianza para la predicción media cuando x*=100
- 9. Intervalo de confianza para la predicción individual cuando $x^* = 100$
- 10. Muestra el valor medio de los residuos es 0 ($\sum_{i} \hat{\epsilon}_{i} = 0$), x es ortogonal a residuo, \hat{y} es ortogonal al residuo

Sección 2 Dato atípico:

1. Elimina el dato atípico y vuelve a cálcular las betas $(\beta_0 \ y \ \beta_1)$

Sección 3

1. Aplica la prueba Jarque Bera para normalidad

Bibliografía Wackerly. (2008). Estadística Matemática con Aplicaciones (7.a ed.). Cengage Learning.

ITAM Page 1 of 1