Movies: Relationship between revenue and budget

A story told in data

<mark>10m \$</mark>

<mark>110m \$</mark>

<mark>250m \$</mark>

Movie budgets: A grant for success?

Data Cleaning

Python packages

```
import pandas as pd
import numpy as np
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
import statsmodels.api as sm
from scipy.stats import pearsonr
import scipy
```


Reading the csv file

```
df = pd.read_csv("tmdb_movies_data.csv")
df
```


Columns

df.describe

• 10866 rows and 21 columns

df.columns

• Shows the 21 columns that are present

df.drop([...],axis=1,inpalce=True)

- Drops the unecessary columsna
 - + Leaves us with budget, revenue, release_year, budget_adj, and revneue_adj

df.dtype

• Tells us that each column is either a float64 or int64

- After removing the necessary columns, we check the data frame
- Budget and revenue columns contains a lot of 0s

	budget	revenue	release_year	budget_adj	revenue_adj	
0	0	29355203	2015	0.0	2.700677e+07	
1	0	22354572	2015	0.0	2.056620e+07	
2	0	45895	2015	0.0	4.222338e+04	
3	0	0	2015	0.0	0.000000e+00	
4	0	0	2015	0.0	0.000000e+00	
10861	270000000	391081192	2006	292050672.7	4.230205e+08	
10862	280000000	1405035767	2015	257599886.7	1.292632e+09	
10863	300000000	961000000	2007	315500574.8	1.010654e+09	
10864	380000000	1021683000	2011	368371256.2	9.904175e+08	
10865	425000000	11087569	2010	425000000.0	1.108757e+07	
10866 rows × 5 columns						

Removing data points

df = df.replace([np.inf, -np.inf, 0], np.nan)

• Replace infinities and zeros with nan values

df = df.dropna(axis = 0)

• Drop all nan values

df

• Shows us the data frame to ensure we haven't messed up

str Check

- Function to go through data points and remove rows which contain str values
 - + This is done by converting them to nan values and deleting all nan values
- Once everything is done, the word success is printed
- *This is not necessary but adds another layer of safety

```
def str_check(column):
  for i in range(1, len(df.budget)):
   if df.loc(i,) == str:
     df.replace(df.id(i), np.nan)
     df.dropna(how='all', axis=0)
    else:
     return print("success")
def column list():
  dict column = {
     1:"id", 2:"budget", 3:"revenue", 4:"release year", 5:"budget adj", 6:"revenue adj"
  for i in range (1,6):
   str_check(dict_column[i])
    return
column_list()
success
```

Data Analysis / Visualization

Scatterplot (REV. and Year)

```
plt.scatter(df['release_year'],
    df['revenue_adj'], marker='p', s=10)

plt.title('Revenue Vs Year',
    fontsize=14)

plt.xlabel('Release Year',
    fontsize=14)

plt.ylabel('Revenue', fontsize=14)

plt.show()
```


Scatterplot (REV. and Budget)

```
plt.scatter(df['budget_adj'],
df['revenue_adj'], marker='o', s=1)
plt.title('Revenue Vs Budget',
fontsize=14)
plt.xlabel('Budget', fontsize=14)
plt.ylabel('Revenue', fontsize=14)
plt.xlim(0, 2 * (10**8))
```


Correlations

```
corr = df.corr()
corr

figure = plt.figure(figsize=(5,5))
sns.heatmap(corr, cmap="coolwarm",
annot=True, fmt="0.2f")
```


Statistical table

```
x = df["budget_adj"]
y = df["revenue_adj"]

x2 = sm.add_constant(x)
est = sm.OLS(y,x2)
est2 = est.fit()
print(est2.summary())
```

OLS Regression Results								
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	revenue_adj OLS Least Squares Tue, 29 Nov 2022 16:03:08 3855 3853 1 nonrobust	F-stati Prob (F	squared:	c):	0.325 0.325 1859. 0.00 -78693. 1.574e+05			
COE	ef std err	t	P> t	[0.025	0.975]			
const 1.532e+6 budget_adj 2.753		3.812 3.114	0.000	7.44e+06 2.626	2.32e+07 2.877			
Omnibus: Prob(Omnibus): Skew: Kurtosis:	3688.968 0.000 4.433 42.953	Durbin- Jarque- Prob(JB Cond. N	Bera (JB):):	:	1.830 269025.645 0.00 8.85e+07			

Revenue_adj = $1.532 * 10^7 + 2.7514 * Budget_adj$

Plotting the Ordinary Least Squared

Regression

```
params = np.polyfit(xs, ys, deg=2)
line_fit = np.polyval(params, xs)
plt.plot(xs, line_fit, label="Fit
function", color= "violet")
plt.scatter(df['budget_adj'],
df['revenue_adj'], marker='o', s=5,
label="Scatter Plot")

plt.legend()
plt.show()
```


Conclusion

- A third of all change can be attributed to Budget!
 - + 1\$ of Budget yields on average 2.75\$ more Revenue
- Limitations: We could **not** distinguish budget spent on marketing / operations.
 - + **Production** budget
- Further Research Possibilities: Genres
 - + Mainstream movies much more likely to gain an audience by spending 100 mil. \$ on exploding horses and making TikToks about it.

Conclusion

OLS Regression Results										
Dep. Variable:	revenue_adj	R-squared:	0.325							
Model:	OLS	Adj. R-squared:	0.325							
Method:	Least Squares	F-statistic:	1859.							
Date:	Tue, 29 Nov 2022	Prob (F-statistic):	0.00							
Time:	16:03:08	Log-Likelihood:	-78693.							
No. Observations:	3855	AIC:	1.574e+05							
Df Residuals:	3853	BIC:	1.574e+05							
Df Model:	1									
Covariance Type: nonrobust										
coe	f std err	t P> t	[0.025 0.975]							
		3.812 0.000 7.								
budget_adj 2.751	4 0.064 43	3.114 0.000	2.626 2.877							
Omnibus:	3688.968	Durbin-Watson:	1.830							
Prob(Omnibus):	0.000	Jarque-Bera (JB):	269025.645							
Skew:	4.433	Prob(JB):	0.00							
Kurtosis:	42.953	Cond. No.	8.85e+07							

