

CFA 二级学习笔记

CFA Level 2 Learning Notes

作者: Ethan Wang

组织: 纽约大学

时间: February 28, 2020

版本: 0

鸣谢:特别感谢本笔记模板制作者: Elegant ETFX Program

目录

1	Introduction to Linear Regression			
	1.1	Linear Regression Introduction	1	
	1.2	ANOVA Table	1	
	1.3	Calculating R^2 and SEE \dots	2	

第一章 Introduction to Linear Regression

1.1 Linear Regression Introduction

一元回归模型应该看起来长这样:

$$\hat{Y}_i = \hat{b}_0 + \hat{b}_1 X_i + \epsilon_i, i = 1, \dots, n \tag{1.1}$$

其中,

 \hat{Y}_i (Predicted Value) 是对第 i 个因变量 (dependent variable) 的估计 \hat{b}_1 的置信区间是

$$\hat{Y} \pm (t_c \times s_f)$$

 t_c 是 two-tailed t-value 检验值,自由度 (degree of freedom) 是 n-2 $s_f = \mathrm{SEE}^2[1 + \frac{1}{n} + \frac{(X - \overline{X})^2}{(n-1)s_x^2}]$ 是 standard error of the forecast,一般题目中会给 s_x^2 是 variance of the independent variable

 \hat{X}_i 是对第 i 个自变量 (independent variable) 的估计

 $\hat{b}_1 = \text{COV}_{XY}/\delta_X^2$ 是模型的坡度,slope coefficient.

 \hat{b}_1 的置信区间是

$$\hat{b}_1 \pm (t_c \times s_{\hat{b}_1})$$

 t_c 是 two-tailed t-value 检验值,自由度 (degree of freedom) 是 n-2 所以检验 \hat{b}_1 用 $t_{b_1}=\frac{\hat{b}_1-b_1}{s_{\hat{b}_1}}$,并且拒绝 H_0 如果 $t>|t_{critical}|$

 $s_{\hat{b}_1} \not\equiv ext{standard error of regression coefficient}$

 $\hat{b}_0 = \overline{Y} - \hat{b}_1 \overline{X}$ 是模型的交点,intercept term.

1.2 ANOVA Table

首先,我们先看看 ANOVA Table 是什么样子的,再解释里面的各项是什么意思

表 1.1: ANOVA Table

Source of Variation	DoF (k)	Sum of Squares	Mean Sum of Squares
Regression (explained) Error (unexplained)	1 n - 2	RSS SSE	$\begin{aligned} & \text{MSR} = RSS/k = RSS \\ & \text{MSE} = \frac{SSE}{n-2} \end{aligned}$
Total	n - 1	SST	

1. DoF (Degree of freedom) 自由度

回归模型的自由度是自变量的个数,也就是 k;误差的自由度是(观测样本的个数) - (自变量个数) - 1,也就是 n-k-1

2. RSS (Regression sum of squares) 回归平方和 回归模型能够解释的因变量变化量

$$RSS = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2$$

3. SSE (Sum of squared errors) 残差平方和 回归模型不能够解释的因变量变化量

$$SSE = \sum_{i=1}^{n} (\hat{Y}_i - Y_i)^2$$

4. SST (Total Sum of squares) 总离差平方和 因变量的总变化量

$$SST = \sum_{i=1}^{n} (\overline{Y_i} - Y_i)^2$$

- 5. MSR (Mean regression sum of squares) 平均回归平方和
- 6. MSE (Mean squared error) 平均残差平方和

1.3 Calculating R^2 and SEE