DEUTSCHLAND

₍₁₎ DE 3121421 C2

DEUTSCHES PATENTAMT 21) Aktenzeichen:

P 31 21 421.5-16

② Anmeldetag: 43 Offenlegungstag: 29. 5.81 22. 4.82

Veröffentlichungstag

der Patenterteilung:

9. 8.90

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

3 Unionspriorität: 3

③

29.05.80 SE 8004003

10.12.80 SE 8008652

73 Patentinhaber:

PLM AB, Malmö, SE

(4) Vertreter:

Delfs, K., Dipl.-Ing., 2000 Hamburg; Moll, W., Dipl.-Phys. Dr.rer.nat., 8000 München; Mengdehl, U., Dipl.-Chem. Dr.rer.nat.; Niebuhr, H., Dipl.-Phys. Dr.phil.habil., Pat.-Anwalte, 2000 Hamburg

② Erfinder:

Nilsson, Torsten Claes, Löddeköpinge, SE

(56) Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DE-OS 27 17 307

(54) Verfahren zur Herstellung eines Behälters aus Kunststoff

Beschreibung

Die Erfindung betrifft ein Verfahren zur Herstellung eines mit wenigstens einer Schicht aus Abschirmwerkstoff versehenen Behälters aus einem Rohling aus thermoplastischem Kunststoff, vorzugsweise aus Polyāthylenterephthalat, bei dem die Abschirmschicht auf einen Vorformling aus dem Kunststoff aufgebracht, der Formling axial gestreckt und zu dem Behälter umgeformt wird.

Es ist bekannt, Behälter aus thermoplastischen Kunststoffen herzustellen, die dem inneren Druck widerstehen können, der z. B. bei der Aufbewahrung von kohlesäurehaltigen Getränken, insbesondere Getränken wie Limonaden und Bier. auftritt. Bei Verwendung von z. B. 15 Polyāthylenterephthalat, im weiteren PET genannt, ist es möglich, die Behälter mit relativ dünnen Wänden herzustellen.

Derart dünnwandige PET-Behälter besitzen jedocir im gewissen Ausmaß eine Gasdurchlässigkeit für z. B. 20 Kohlendioxid. Sauerstoff aus der Umgebung, ebenso wie Licht, können ebenfalls die Wände durchdringen. Diese Umstände haben nachteilige Einwirkung auf den Geschmack des Behälterinhalts.

In vielen Anwendungsfällen besteht deshalb häufig 25 der Wunsch, daß der Behälter eine Abschirmschicht aufweist, die nur in geringem Ausmaß einen Durchlaß von Gasen oder Licht erlaubt. Es gibt eine Reihe bekannter, verschiedener Verfahren, Behälter mit solchen Schichten zu versehen. Beispiele hierfür sind die 30 Auftragung einer Schutzschicht beim fertigen Behälter, die Koextrusion eines Werkstoffes, bei dem eine Schicht einen Schutzwerkstoff enthalt, oder die Auftragung einer inneren oder außeren Schutzschicht beim Vorsormling.

Insbesondere bei der Technik gemäß der eingangs genannten Art, den Vorformling mit einer oder mehreren Schutzschichten zu versehen (DE-OS 27 17 307). treten Schwierigkeiten dadurch auf, daß jede Schutzter stark an Dicke abnimmt. Wenn, wie bei PET, sowohl in axialer als auch in Umfangsrichtung z. B. eine Rekkung um das Dreifache erfolgt, so wird die Dicke der Abschirmschicht auf ein Neuntel reduziert, wobei auch die ganze Behälterobersläche gleichmäßig bedeckt, wenn sie ursprünglich zu dünn war.

Die Verwendung einer genügend dicken und zusammenhängenden Schutzschicht ist jedoch in vielen Anwendungsfällen notwendig, so daß eine Reihe von Ver- 50 fahren entwickelt worden ist, bei denen eine Schutzschicht von erforderlicher Dicke vor Umformen des Vorformlings in den Behälter auf dem Vorformling aufgetragen wird. Bei einem dieser Verfahren wird die Schutzschicht mehrfach aufgetragen, z. B. durch wieder- 55 hoites Eintauchen mit evil. dazwischenliegendem Trocknen, bei einem anderen Verfahren ist die Flüssigkeit, in die der Vorsormling eingetaucht wird, relativ zähflussig, wahrend bei einem weiteren Verfahren ein nach dem Trocknen ein geeignetes, filmbildendes Poly-

Eine häufig verwendete Schutzschicht (DE-OS 27 17 307) wird als Polyvinylidenchlorid (PVDC) in Wasser dispergiert aufgetragen. Nach dem Auftragen wird 65 die Mischung bei relativ niedriger Temperatur getrocknet, um eine unerwünschte Hautbildung auf der Überfläche der Mischung zu verhindern, die sonst das Trock-

nen erschweren würde, d. h. den Wasserabgang von der Schicht unterhalb der Oberfläche der Mischung. Wenn eine dicke Schutzschicht gefordert ist, erfolgt das Auftragen der Schutzschicht in mehreren Etappen, wobei jede neu hinzugekommene Schicht auf oben beschriebene Weise getrocknet wird.

Alle die bekannten Verfahren haben den Nachteil, daß sie sehr langsam und aufwendig sind, so daß sie sich für die Massenproduktion von Behältern nicht eignen.

Die Aufgabe der Erfindung besteht in der Schaffung des Verfahrens, bei dem die Dicke der Abschirmschicht beim Auftragen auf den Behälterwerkstoff verringert werden kann, ohne daß die Gefahr des Zerreißens der Schicht beim Umformen zum Behälter besteht.

D'e erfindungsgemäße Lösung besteht darin, daß das Aufbringen des Abschirmwerkstoffs nach axialem Strecken des Vorformlings erfolgt.

Da der Vorformling beim PET bereits in der Axialrichtung um das ca. 3fache gestreckt ist, wird er und damit auch die Abschirmschicht bei der Umformung zum Behälter in der Dicke lediglich nur auf höchstes ca. ein Drittel reduziert.

Vor dem Umformen des Formlings in den fertigen Behälter wird der Werkstoff im Formling auf eine geeignete Formungstemperatur erwärmt. Gemäß der Erfindung läßt man in bestimmten Anwendungsbeispielen dieses Erwarmen den Haztungsvorgang der aufgetragenen Abschirmschicht und das damit zusammenhängende Binden zwischen dem Werkstoff des gestreckten Vorformlings und dem Werkstoff, der die Abschirmschicht bildet, abschließen. Die Dickenverminderung der Abschirmschicht des Vorformlings, die durch die Erfindung möglich ist, erleichtert ein derartiges Verfah-

Weiterbildungen des erfindungsgemäßen Verfahrens sind Gegenstand der Patentansprüche.

So kann die Aufbringung der Abschirmschicht oder Abschirmschichten durch Eintauchen in eine Lösung erfolgen, die den Abschirmwerkstoff exhalt. Die Abschicht beim Umformen des Vorformlings in den Behäl- 40 schirmschicht kann aber auch aufgespritzt oder mit anderen bekannten Verfahren aufgebracht werden. Das axiale Strecken des Vorformlings kann mittels eines Zielrings, aber auch durch andere Mittel erfolgen.

Gemäß einer Ausführungsform entsteht der Vordie Gefahr besteht, daß die Schicht aufreißt und nicht 45 formling durch Anbringen eines inneren Teilformlings in einem äußeren Teilvorformling, wobei der äußere Durchmesser des inneren Teilformlings nur in geringem Umfang unter dem inneren Durchmesser des äußeren Teilvorformlings liegt. Die Abschirmschicht wird auf der äußeren Oberfläche des inneren Teilformlings und/ oder der inneren Oberfläche des äußeren Teilvorformlings aufgetragen, bevor die beiden Teilvorformlinge zum zusammengesetzten Formling zusammengeführt werden.

Die Anwendung von einem Teilformling und einem Teilvorformling, die einen zusammengesetzten Fofmling bilden, bei dem die Abschirmschicht zwischen dem Teilformling und dem Teilvorformling liegt, erbringt u. a. die Vorteile, daß bei gefülltem Behälter der Inhalt koagulierender Werkstoff und eine Wasserdispersion 60 nicht in direkte Berührung mit der Abschirmschicht des Behälters kommt und der Abschirmwerkstoff durch den Einschluß zwischen der äußeren und inneren Behälterwand keine Möglichkeit hat, sich von einer Behältersläche zu lösen. Es hat sich gezeigt, daß insbesondere dann, wenn die Abschirmschicht als Beschichtung der äußeren Behälterobersläche ausgeführt ist, bei Aufbewahrung kohlensäurehaltiger Getränke Kohlendioxid die Behälterwand durchdringt, wodurch sich die Abschirmschicht von der Außenoberstäche der Behälterwand lösen kann. Der Einschluß zwischen den beiden Behälterteilwänden, der durch Anwendung der Erfindung erzielt wird, verhindert ein Lösen der Abschirmschicht von der Behälterwand.

Man kann erfindungsgemäß Teilformling und Teilvorformling mit Abschirmschichten versehen, wobei die eine Schicht das Durchdringen von Gasen und die andere das Durchdringen von Licht verhindern, oder wobei die eine Schicht das Durchdringen von Sauerstoff und 10 die andere das Durchdringen von Kohlendioxid verhindern. Vorzugsweise wird hierbei die Sauerstoffabschirmschicht beim äußeren Teilvorformling aufgetragen

Man kann erfindungsgemäß auch Teilformling oder Teilvorformling, und hierbei vorzugsweise den inneren Teilformling, mit zwei oder mehreren Abschirmschichten aufeinander versehen. Dadurch, daß die Abschirmschichten beim Erwärmen des zusammengesetzten Teilvorformlings und dessen anschließendem Umformen in den Bebälter ein gutes Anliegen gegen und einen sicheren Einschluß zwischen den Werkstofischichten erhalten, wird die Funktion der Abschirmschichten gewährleistet.

Erfindungsgemäß kann auch der axial gestreckte und 25 mit der Abschirmschicht beschichtete Vorformling als ein Teilformling verwendet werden, der zusammen mit einem oder mehreren Teilvorformlingen, bei denen noch keine axiale Streckung stattgefunden hat, den zusammengesetzten Formling bildet. Die genannte Kom- 30 bination findet insbesondere dann Anwendung, wenn einer oder einige der Teilvorformlinge aus einem Werkstoff bestehen, die nicht bei relativ niedriger Temperatur gestreckt werden können, d.h. Temperaturen im oder unterhalb vom Bereich der Glasumwandlungsem- 35 Abb. 3e. peratur (TG). In manchen Fällen ist es notwendig, solchen Werkstoff zu verwenden, um eine Werkstoffschicht zu erhalten, die dem geformten Behälter die erforderlichen Eigenschaften in bezug auf Gasdurchlässigkeit, Lichtdurchlässigkeit, Reaktion mit der Umge- 40 bungsatmosphäre oder im Behälter aufbewahrtem Füllgut usw. zu verleihen, und die nicht allein durch Auftragen einer Abschirmschicht auf den Oberstäcnen der jeweiligen Teilformlinge oder Teilvorformlinge erzielt werden können.

Es besteht auch die Möglichkeit, die äußere Oberstäche eines der inneren Teilformlinge oder Teilvorsormlinge mit einem Ausdruck und/oder Dekor zu versehen. Die Gestaltung des Ausdruckes und/oder des Dekors wird hierbei aus die Strækung des Werkstofses abgestimmt, die beim anschließenden Umsormen des Formlings in den Behälter stattsindet.

Vorzugsweise wird der Werkstoff im Teilformling bzw. in den Teilvorformlingen in axialer Richtung bei einer Temperatur in der Nähe von oder in dem Bereich 55 der Glasumwandlungstemperatur (TG) gestreckt. Hierbei wird der Werkstoff durch ein mechanisches Verfahren gestreckt, bei dem die Vorformlinge wenigstens einen Ziehring durchlausen, der die Wanddicke der Vorformlinge und somit auch die äußeren Durchmesser der 60 Vorsormlinge reduziert. Ein derartiges Streckungsverfahren ist in dem schwedischen Patentantrag 80 04 003-3 beschrieben. Durch die mechanische Orientierung läßt sich somit einfach ein Außendurchmesser bei dem inneren Teilformling erzielen, der ex- 65 akt auf den Innendurchmesser des äußeren Teilvorformlings abgestimmt its ebenso wie auf die Maßveränderungen, die sich durch das Auftragen der Abschirmschicht bei den Teilformlingen und Teilvorformlingen ergeben.

In der Technik ist eine große Anzahl von Werkstoffen vom Typ Polyester oder Polyamid mit gleichartigen Eigenschaften bekannt. Die Erfindung ist als solche völlig oder teilweise auch für diese Werkstoffe anwendbar, wobei die Dickenreduktionen und Temperaturen auf die spezifischen Bedingungen für den jeweiligen Werkstoff anzupassen sind. Beispiele für Werkstoffe, bei denen die Erfindung nach obiger Anpassung anwendbar ist, sind Polyhexamethylen-Adipamid, Polycaprolactam, Polyhexamethylen-Sebacamid, Polyāthylen-2,6- und 1,5-Naphthalat, Polytetramethylen-1,2-Dioxybensoat und Copolymere von Äthylenterephthalat, Äthylenisophthalat und andere, ähnliche Polymere.

Eine Beschreibung der Erfindung erfolgt anhand der Zeichnung. Es zeigt

Abb. 1 einen Längsschnitt durch einen Vorformling,

schichten beim Erwärmen des zusammengesetzten Teilvorsormlings und dessen anschließendem Umformen in 20 streckten Vorsormling mit einer äußeren Abschirmden Bebälter ein gutes Anliegen gegen und einen siche-

> Abb. 2b einen Längsschnitt durch einen axial gestreckten Vorformling mit einer inneren Abschirmschicht,

> Abb. 3a, b einen Längsschnitt durch Vorformlinge, die für anschließendes axiales Strecken vorgesehen sind,

Abb. 3c, d einen Längsschnitt durch axial gestreckte Teilformlinge bzw. Teilvorformlinge mit äußerer Abschirmschicht (Abb. 3c) und innerer Abschirmschicht (Abb. 3d),

Abb. 3e einen Längsschnitt durch einen aus Teilformling und Teilvorformling gemäß Abb. 3c, d zusammengesetzten Formling,

Abb. 3f eine Teilvergrößerung des Bereiches A in Abb. 3e.

In den Abb. 1-2 erkennt man einen Rohling, der nach axialem Strecken einen axial gestreckten Vorformling 11a oder einen axial gestreckten Vorformling 11b mit einem Bodenteil aus ungestreckten Weckstoff gebildet hat. Der Werkstoff im Rohling 10 ist amorph. Für das Umformen des Rohlings in den axial gestreckten Vorformling 11 wird der zylindrische Teil des Rohlings durch ein Streckungsverfahren bei gleichzeitigem Vermindern der Wanddicke verlängert. Dies erfolgt dadurch, daß der Rohling 10 einen oder mehrere Ziehringe durchläuft, deren innerer Durchmesser den Durchmesser des Rohlings vor dem Durchlaufen unterschreitet.

Um den axial gestreckten Vorformling gemäß Abb. 2a auszubilden, wird das genannte Streckungsverfahren dadurch ergänzt, daß auch der Werkstoff im Bodenteil des Vorformlings gestreckt wird. In Abb. 2b ist der gestreckte Vorformling mit einer inneren Abschirmschickt 12b beschichtet, während in Abb. 2a der gestreckte Vorformling mit einer äußeren Abschirmschicht 12u beschichtet ist.

In den Abb. 3a-f ist eine Ausführungsform dargestellt, bei der zwei Rohlinge 10a bzw. 10b so aufeinander abgestimmt sind, daß sie nach axialer Streckung die gestreckten Vorformlinge 13a, b von solcher Abmessung bilden, daß diese ineinanderpassen. Nach Einführen des kleineren Vorformlings (Teilformling 13a) in del größeren Vorformling (Teilvorformling 13b) bilden die beiden einen zusammengesetzten Formling 15. Der kleinere Teilformling 13a ist in den Abbildungen mit einer äußeren Abschirmschicht 14a und der größere Teilvorformling 13b mit einer inneren Abschirmschicht 14b versehen. Auf diese Weise entsteht bei dem zusammenge-

STORE THE PROPERTY OF THE PARTY OF THE PARTY

setzten Formling im Übergang zwischen den Teilformling und Teilvorformling ein Bereich, der aus den beiden Abschirmschichten 14a, b besteht. In Abb. 3f sind die Abschirmschichten mit übertriebener Dicke dargestellt.

Der Werkstoff in Teilformling 11a und Teilvorformling 11b bzw. im zusammengesetzten Formling 15 wird auf die Formungstemperatur erwärmt, wonach der Formling in den Behälter umgeformt wird. Es ist selbstverständlich möglich, vor Umformen des jeweiligen Formlings in den Behälter den Mündungsteil des Formlings mit den erforderlichen Verschlußanordnungen für den zukünftigen Behälter, z. B. Gewinde, zu versehen. Auf gleiche Weise ist es möglich, von Vorformlingen auszugehen, die vor dem axialen Strecken mit solchen

Verschlußanordnungen ausgeführt sind.

Bei der Herstellung eines axial gestreckten Vorformlings (11, 13, 15) aus PET geht man von einem rohrförmigen Rohling (10) aus. Die Kristallisation des Werkstoffes ist weniger als 10% und vorzugsweise als 5%. In einem oder mehreren aufeinanderfolgenden Vorgängen 20 wird die Werkstoffdicke des Rohlings auf ca. 1/3 der ursprünglichen Dicke reduziert. Die Reduktion erfolgt entweder über die gesamte Länge des Vorformlings oder in einem oder mehreren Abschnitten des Vorsormlings. Ein Ziehring wird hierbei verwendet, dessen inne- 25 rer Umfang auf den äußeren Umfang des Rohlings auf solche Weise abgestimmt ist, daß der Ziehring beim Verschieben in Axialrichtung des Rohlings eine Reduktion der Werkstoffdicke bewirkt. Der Werkstoff hat hierbei unmittelbar vor der Reduktion der Dicke eine 30 Temperatur, die unter den oder im Bereich der Glasumwandlungstemperatur (TG) liegt und vorzugsweise die Glasumwandlungstemperatur mit maximal 15°C unterschreitet. Auch wenn sich die technische Wirkung bei einer wesentlich niedrigeren Temperatur einstellt, ist es 35 von Vorteil, mit einer Ausgangstemperatur zu arbeiten. die in der Nähe der Glasumwandlungstemperatur (TG) liegt, z. B. 1 bis 3°C unter der Glasumwandlungstemperatur, da diese Ausgangstemperatur beim Werkstoff eine hohe Geschwindigkeit beim Verschieben des Zieh- 40 rings ermöglicht. In gewissen Anwendungsbeispielen wirkt der Ziehring mit einem inneren Formungsorgan zusammen, daß im Inneren des Rohlings angeordnet wird, wobei das innere Formungsorgan eine äußere Begrenzung ausweist, die auf die innere Begrenzungsfläche 45 des Vorformlings angepaßt ist. Bei anderen Anwendungsbeispielen wird lediglich das innere Formungsorgan verwendet. Beim Verschieben des Ziehrings und/ oder inneren Formungsorgans in Axialrichtung des Rohlings reduziert sich die Werkstoffdicke im Rohling 50 bei Kontakt mit dem Ziehring und/oder Formungsorgan. Während des Umformungsvorgangs bildet sich eine Übergangszone zwischen Werkstoff der ursprünglichen Dicke und Werkstoff der reduzierten Dicke, wobei sich diese Übergangszone nach und nach in Axialrich- 55 tung des Rohlings verschiebt. Der Werkstoff in der Übergangszone wird während des Umformungsvorgangs durch Warmeableitung auf den Ziehring und/ oder das im Inneren des rohrförmigen Rohlings angeordnete Organ bei einer Temperatur gehalten, die in der 60 Nähe der Glasumwandlungstemperatur (TG) liegt. In gewissen Anwendungsfällen darf der Werkstoff in der Übergangszone jedoch eine Temperatur annehmen, die die Glasumwandlungstemperatur (TG) mit höchstens 30°C und vorzugsweise höchstens 15°C übersteigt. In 65 gewissen Anwendungsfällen wird der Werkstoff im Bereich neben der Übergangszone unmittelbar nach Reduktion der Dicke des Werkstoffes auf eine Temperatur

abgekühlt, die unter der Glasumwandlungstemperatur (TG) liegt.

Es wird ein axial gestreckter Vorsormling (11, 13, 15) hergestellt, der Werkstoff aus in der Hauptsache monoaxialer Orientierung und von reduzierter Wanddicke ausweist, und bei dem, im Verhältnis zu dem entsprechenden Werkstoff beim Rohling, der äußere Umfang abgenommen und/oder der innere Umfang zugenommen hat.

Normalerweise darf die Kristallisation bei einem axial gestreckten Vorsormling einen Höchstwert von ca. 30% annehmen. Vorzugsweise läßt man jedoch die Kristallisation einen Wert im Bereich 10-25% annehmen, wobei die durch die monoaxiale Orientierung ausgetretene

Kristallisation maximal ca. 17% beträgt.

Obige Beschreibung basiert auf der Annahme, daß die Reduktion der Werkstoffdicke bis zum endgültigen Wert in einem einzigen Reduktionsschritt erfolgt. Es kann jedoch auch mit einer Anzahl aufeinanderfolgender Reduktionsschritte die Werkstoffdicke vermindert werden, um in einem letzten Schritt die Werkstoffdicke beim PET auf ca. ¹/₃ der ursprünglichen zu bringen. Der Ziehring bzw. die Ziehringe bestehen hierbei aus einer Anzahl von Teilringen für die nacheinander stattfindende, schrittweise Reduktion der Werkstoffdicke. Die in diesem Absatz beschriebene Ausführungsform findet vorzugsweise dann Anwendung, wenn der Werkstoff des Rohlings große Wanddicke aufweist und/oder bei hohen Vorschubgeschwindigkeiten der Ziehringe.

Patentansprüche

1. Verfahren zur Herstellung eines mit wenigstens einer Schicht aus Abschirmwerkstoff versehenen Behälters aus einem Rohling aus thermoplastischem Kunststoff, vorzugsweise aus Polyäthylenterephthalat, bei dem die Abschirmschicht auf einen Vorformling aus dem Kunststoff aufgebracht, der Formling axial gestreckt und zu dem Behälter umgeformt wird, dadurch gekennzeichnet, daß das Aufbringen des Abschirmwerkstoffes (12a, 12b, 14a, 14b) nach axialem Strecken des Vorformlings (11a, 11b, 13a, 13b)erfolgt.

2. Verfahren gemäß Patentanspruch I, dadurch gekennzeichnet, daß das Aufbringen des Abschirmwerkstoffes (12a, 12b, 14a, 14b) durch Eintauchen des Vorsormlings (11a, 11b, 13a, 13b) in eine Lösung oder in eine Dispersion, die den Abschirmwerkstoff enthält, erfolgt.

3. Verfahren gemäß Patentanspruch 1 oder 2, dadurch gekennzeichnet, daß das abschließende Erhärten des Abschirmwerkstoffes (12a, 12b, 14a, 14b) bei dem Erwärmen des Formlings vor dem Umformen in den Behälter erfolgt.

 Verfahren gemäß einem der Patentansprüche 1 bis 3, dadurch gekennzeichnet, daß das axiale Strekken des Vorformlings (11a, 11b, 13a, 13b) mittels

wenigstens eines Ziehrings erfolgt.

5. Verfahren gemäß einem der Patentansprüche 1 bis 4, dadurch gekennzeichnet, daß der Formling aus einem beschichteten und axial gestreckten Teilformling (13a) und zumindest einem Teilvorformling (13b) zusammengesetzt ist.

6. Verfahren gemäß Patentanspruch 5, dadurch gekennzeichnet, daß auch der Teilvorformling (13b) axial gestreckt und mit zumindest einer Abschirm-

schicht (14b) versehen ist.

7. Verfahren gemäß einem der Patentansprüche 5

oder 6, dadurch gekennzeichnet, daß die Abschirmschicht (14a, 14b) von dem Teilformling (13a) und dem Teilvorformling (13b) umgeben angeordnet ist.

Hierzu 2 Seite(n) Zeichnungen

ıć

5

in

Nummer:

DE 31 21 421 C2 B 29 C 49/22

Int. Cl.5:

Veröffentlichungstag: 9. August 1990

FIG 3f

008 132/82

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
C	□ BLACK BORDERS .
,	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
[☐ FADED TEXT OR DRAWING
[☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
[☐ SKEWED/SLANTED IMAGES
(☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
1	GRAY SCALE DOCUMENTS
. !	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTG