RAJALAKSHMI ENGINEERING COLLEGE RAJALAKSHMI NAGAR, THANDALAM - 602 105

CS23221 PYTHON PROGRAMMING LAB

Laboratory Observation Note Book

Name :	D.Alfred Sam
	1 st year, CSE-A
Register No. :	2116230701026
	2
	2023-2024

INDEX

Reg. No. :		230701026	Name:	D. Alf	D. Alfred Sam	
Year		1st Branch	CS	E Sec	A	
rear		Branch		Sec	:	

S. No.	Date	Titl e	Pag e No.	Teacher's Signature /Remarks
Iı	ntroductio	on to python-Variables-Datatypes-In	put/Out	put-Formatting
1.1	19.03.24	Converting Input Strings	8	
1.2	19.03.24	Gross salary	10	
1.3	19.03.24	Square Root	14	
1.4	19.03.24	Gain percent	16	
1.5	19.03.24	Deposits	18	
1.6	19.03.24	Carpenter	20	
	-	Operators in Python		
2.1	21.03.024	Widgets and Gizmos	22	
2.2	21.03.024	Doll Sings	26	
2.3	21.03.024	Birthday party	28	
2.4	21.03.024	Hamming Weight	31	
2.5	21.03.024	Compound Interest	33	
2.6	21.03.024	Eligible to donate blood	35	
2.7	21.03.024	C or D	37	
2.8	21.03.024	Troy Battle	39	
2.9	21.03.024	Tax and Tip	41	
2.10	21.03.024	Return last digit of the given number	43	
	Selection Structures in Python			
3.1	21.03.24	Admission eligibility	47	
3.2	21.03.024	Classifying triangles	49	
epärtm	21.03.024 ent.87.03m	Flectricity Bill puter Science and Engineering Rajalakshn	ni Engine	ering College 3

3.5 21.03.024 Vowel or Constant 56 3.6 21.03.024 Leap Year 58 3.7 21.03.024 Month name to Days 60 3.8 21.03.024 Pythagorean triple 62 3.9 21.03.024 Second Last Digit 64 3.10 21.03.024 Chinese Zodiac 67	3.4	21.03.024	IN/OUT	54
3.7 21.03.024 Month name to Days 60 3.8 21.03.024 Pythagorean triple 62 3.9 21.03.024 Second Last Digit 64 3.10 21.03.024 Chinese Zodiac 67 **Algorithmic Approach: Iteration Control Structures** 4.1 05.04.24 Factors of a Number 74 4.2 05.04.24 Non-Repeated Digits Count 76 4.3 05.04.24 Prime Checking 78 4.4 05.04.24 Next Perfect Square 80 4.5 05.04.24 Nth Fibonacci 82 4.6 05.04.24 Disarium Number 84 4.7 05.04.24 Sum of Series 86 4.8 05.04.24 Unique Digits Count 88 4.9 05.04.24 Product of single digits 90 4.10 05.04.24 Perfect Square After adding One 92 **Strings in Python** 5.1 17.04.24 Count chars 96 5.2 17.04.24 First N Common Characters 103 5.4 17.04.24 Remove Characters 103 5.5 17.04.24 Remove Palindrome Words 105 5.6 17.04.24 Reverse String 110 5.7 17.04.24 Reverse String 110 5.8 17.04.24 String characters balance Test 113 5.9 17.04.24 Unique Names 115 5.1 17.04.24 Count Elements 127	3.5	21.03.024	Vowel or Constant	56
3.8 21.03.024 Pythagorean triple 62 3.9 21.03.024 Second Last Digit 64 67 67 67 67 67 67 67	3.6	21.03.024	Leap Year	58
3.9 21.03.024 Second Last Digit 64 3.10 21.03.024 Chinese Zodiac 67	3.7	21.03.024	Month name to Days	60
3.10 21.03.024 Chinese Zodiac 67	3.8	21.03.024	Pythagorean triple	62
Algorithmic Approach: Iteration Control Structures	3.9	21.03.024	Second Last Digit	64
Structures	3.10	21.03.024	Chinese Zodiac	67
4.1 05.04.24 Factors of a Number 74 4.2 05.04.24 Non-Repeated Digits Count 76 4.3 05.04.24 Prime Checking 78 4.4 05.04.24 Next Perfect Square 80 4.5 05.04.24 Nth Fibonacci 82 4.6 05.04.24 Disarium Number 84 4.7 05.04.24 Sum of Series 86 4.8 05.04.24 Product of Single digits 90 4.10 05.04.24 Perfect Square After adding One 92 Strings in Python 5.1 17.04.24 Count chars 96 5.2 17.04.24 Decompress the String 99 5.3 17.04.24 First N Common Characters 101 5.4 17.04.24 Remove Characters 103 5.5 17.04.24 Return Second Word in Uppercase 107 5.7 17.04.24 Reverse String 110 5.8 17.04.24 Unique Names 115 5.10 17.04.24 Unique Names 115				Control
4.2 05.04.24 Non-Repeated Digits Count 76 4.3 05.04.24 Prime Checking 78 4.4 05.04.24 Next Perfect Square 80 4.5 05.04.24 Nth Fibonacci 82 4.6 05.04.24 Disarium Number 84 4.7 05.04.24 Sum of Series 86 4.8 05.04.24 Unique Digits Count 88 4.9 05.04.24 Product of single digits 90 4.10 05.04.24 Perfect Square After adding One 92 Strings in Python 5.1 17.04.24 Count chars 96 5.2 17.04.24 Decompress the String 99 5.3 17.04.24 Remove Characters 101 5.4 17.04.24 Remove Characters 103 5.5 17.04.24 Return Second Word in Uppercase 107 5.7 17.04.24 Reverse String 110 5.8 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117	4.1	05.04.24		74
4.3 05.04.24 Prime Checking 78 4.4 05.04.24 Next Perfect Square 80 4.5 05.04.24 Nth Fibonacci 82 4.6 05.04.24 Disarium Number 84 4.7 05.04.24 Sum of Series 86 4.8 05.04.24 Unique Digits Count 88 4.9 05.04.24 Product of single digits 90 4.10 05.04.24 Perfect Square After adding One 92 Strings in Python 5.1 17.04.24 Count chars 96 5.2 17.04.24 Decompress the String 99 5.3 17.04.24 First N Common Characters 101 5.4 17.04.24 Remove Characters 103 5.5 17.04.24 Remove Palindrome Words 105 5.6 17.04.24 Return Second Word in Uppercase 107 5.7 17.04.24 String characters balance Test 113 5.9 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 </th <th></th> <th>05.04.24</th> <th></th> <th>76</th>		05.04.24		76
4.4 05.04.24 Next Perfect Square 80 4.5 05.04.24 Nth Fibonacci 82 4.6 05.04.24 Disarium Number 84 4.7 05.04.24 Sum of Series 86 4.8 05.04.24 Unique Digits Count 88 4.9 05.04.24 Product of single digits 90 4.10 05.04.24 Perfect Square After adding One 92 Strings in Python 5.1 17.04.24 Count chars 96 5.2 17.04.24 Decompress the String 99 5.3 17.04.24 First N Common Characters 101 5.4 17.04.24 Remove Characters 103 5.5 17.04.24 Remove Palindrome Words 105 5.6 17.04.24 Return Second Word in Uppercase 107 5.7 17.04.24 Reverse String 110 5.8 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24	4.3	05.04.24		78
4.5 05.04.24 Nth Fibonacci 82 4.6 05.04.24 Disarium Number 84 4.7 05.04.24 Sum of Series 86 4.8 05.04.24 Unique Digits Count 88 4.9 05.04.24 Product of single digits 90 4.10 05.04.24 Perfect Square After adding One 92 Strings in Python 5.1 17.04.24 Count chars 96 5.2 17.04.24 Decompress the String 99 5.3 17.04.24 First N Common Characters 101 5.4 17.04.24 Remove Characters 103 5.5 17.04.24 Rewove Palindrome Words 105 5.6 17.04.24 Return Second Word in Uppercase 107 5.7 17.04.24 Reverse String 110 5.8 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24 Check pair with difference k 124 6.2 23.	4.4	05.04.24	9	80
4.7 05.04.24 Sum of Series 86 4.8 05.04.24 Unique Digits Count 88 4.9 05.04.24 Product of single digits 90 4.10 05.04.24 Perfect Square After adding One 92 Strings in Python 5.1 17.04.24 Count chars 96 5.2 17.04.24 Decompress the String 99 5.3 17.04.24 First N Common Characters 101 5.4 17.04.24 Remove Characters 103 5.5 17.04.24 Remove Palindrome Words 105 5.6 17.04.24 Return Second Word in Uppercase 107 5.7 17.04.24 Reverse String 110 5.8 17.04.24 String characters balance Test 113 5.9 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24 Monotonic array 122 6.2 23.04.24 Check pair with difference k . 124 6.3 23.04.24 Count Elements 127	4.5	05.04.24	Nth Fibonacci	82
4.8 05.04.24 Unique Digits Count 88 4.9 05.04.24 Product of single digits 90 4.10 05.04.24 Perfect Square After adding One 92 Strings in Python 5.1 17.04.24 Count chars 96 5.2 17.04.24 Decompress the String 99 5.3 17.04.24 First N Common Characters 101 5.4 17.04.24 Remove Characters 103 5.5 17.04.24 Remove Palindrome Words 105 5.6 17.04.24 Return Second Word in Uppercase 107 5.7 17.04.24 Reverse String 110 5.8 17.04.24 String characters balance Test 113 5.9 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24 Monotonic array 122 6.2 23.04.24 Check pair with difference k 124 6.3 23.04.24 Count Elements 127	4.6	05.04.24	Disarium Number	84
4.9 05.04.24 Product of single digits 90 4.10 05.04.24 Perfect Square After adding One 92 Strings in Python 5.1 17.04.24 Count chars 96 5.2 17.04.24 Decompress the String 99 5.3 17.04.24 First N Common Characters 101 5.4 17.04.24 Remove Characters 103 5.5 17.04.24 Remove Palindrome Words 105 5.6 17.04.24 Return Second Word in Uppercase 107 5.7 17.04.24 Reverse String 110 5.8 17.04.24 String characters balance Test 113 5.9 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24 Check pair with difference k . 124 6.2 23.04.24 Count Elements 127	4.7	05.04.24	Sum of Series	86
A.10 05.04.24 Perfect Square After adding One 92	4.8	05.04.24	Unique Digits Count	88
Strings in Python 5.1 17.04.24 Count chars 96 5.2 17.04.24 Decompress the String 99 5.3 17.04.24 First N Common Characters 101 5.4 17.04.24 Remove Characters 103 5.5 17.04.24 Remove Palindrome Words 105 5.6 17.04.24 Return Second Word in Uppercase 107 5.7 17.04.24 Reverse String 110 5.8 17.04.24 String characters balance Test 113 5.9 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24 Monotonic array 122 6.2 23.04.24 Check pair with difference k . 124 6.3 23.04.24 Count Elements 127	4.9	05.04.24	Product of single digits	90
5.1 17.04.24 Count chars 96 5.2 17.04.24 Decompress the String 99 5.3 17.04.24 First N Common Characters 101 5.4 17.04.24 Remove Characters 103 5.5 17.04.24 Remove Palindrome Words 105 5.6 17.04.24 Return Second Word in Uppercase 107 5.7 17.04.24 Reverse String 110 5.8 17.04.24 String characters balance Test 113 5.9 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24 Monotonic array 122 6.2 23.04.24 Check pair with difference k . 124 6.3 23.04.24 Count Elements 127	4.10	05.04.24	Perfect Square After adding One	92
5.2 17.04.24 Decompress the String 99 5.3 17.04.24 First N Common Characters 101 5.4 17.04.24 Remove Characters 103 5.5 17.04.24 Remove Palindrome Words 105 5.6 17.04.24 Return Second Word in Uppercase 107 5.7 17.04.24 Reverse String 110 5.8 17.04.24 String characters balance Test 113 5.9 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24 Monotonic array 122 6.2 23.04.24 Check pair with difference k . 124 6.3 23.04.24 Count Elements 127		Strings in Python		
5.3 17.04.24 First N Common Characters 101 5.4 17.04.24 Remove Characters 103 5.5 17.04.24 Remove Palindrome Words 105 5.6 17.04.24 Return Second Word in Uppercase 107 5.7 17.04.24 Reverse String 110 5.8 17.04.24 String characters balance Test 113 5.9 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24 Monotonic array 122 6.2 23.04.24 Check pair with difference k . 124 6.3 23.04.24 Count Elements 127	5.1	17.04.24	Count chars	96
5.4 17.04.24 Remove Characters 103 5.5 17.04.24 Remove Palindrome Words 105 5.6 17.04.24 Return Second Word in Uppercase 107 5.7 17.04.24 Reverse String 110 5.8 17.04.24 String characters balance Test 113 5.9 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24 Monotonic array 122 6.2 23.04.24 Check pair with difference k . 124 6.3 23.04.24 Count Elements 127	5.2	17.04.24	Decompress the String	99
5.5 17.04.24 Remove Palindrome Words 105 5.6 17.04.24 Return Second Word in Uppercase 107 5.7 17.04.24 Reverse String 110 5.8 17.04.24 String characters balance Test 113 5.9 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24 Monotonic array 122 6.2 23.04.24 Check pair with difference k . 124 6.3 23.04.24 Count Elements 127	5.3	17.04.24	First N Common Characters	101
5.6 17.04.24 Return Second Word in Uppercase 107 5.7 17.04.24 Reverse String 110 5.8 17.04.24 String characters balance Test 113 5.9 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24 Monotonic array 122 6.2 23.04.24 Check pair with difference k . 124 6.3 23.04.24 Count Elements 127	5.4	17.04.24	Remove Characters	103
5.7 17.04.24 Reverse String 110 5.8 17.04.24 String characters balance Test 113 5.9 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24 Monotonic array 122 6.2 23.04.24 Check pair with difference k . 124 6.3 23.04.24 Count Elements 127	5.5	17.04.24	Remove Palindrome Words	105
5.8 17.04.24 String characters balance Test 113 5.9 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24 Monotonic array 122 6.2 23.04.24 Check pair with difference k . 124 6.3 23.04.24 Count Elements 127	5.6	17.04.24	Return Second Word in Uppercase	
5.9 17.04.24 Unique Names 115 5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24 Monotonic array 122 6.2 23.04.24 Check pair with difference k . 124 6.3 23.04.24 Count Elements 127	5.7	17.04.24	Reverse String	
5.10 17.04.24 Username Domain Extension 117 List in Python 6.1 23.04.24 Monotonic array 122 6.2 23.04.24 Check pair with difference k . 124 6.3 23.04.24 Count Elements 127	5.8		String characters balance Test	
List in Python 6.1 23.04.24 Monotonic array 122 6.2 23.04.24 Check pair with difference k . 124 6.3 23.04.24 Count Elements 127			•	
6.1 23.04.24 Monotonic array 122 6.2 23.04.24 Check pair with difference k . 124 6.3 23.04.24 Count Elements 127	5.10	17.04.24		117
6.2 23.04.24 Check pair with difference k . 124 6.3 23.04.24 Count Elements 127			-	
6.3 23.04.24 Count Elements 127	6.1	23.04.24	Monotonic array	122
	6.2	23.04.24	Check pair with difference k .	124
6.4 23.04.24 Distinct Elements in an Array 129	6.3	23.04.24	Count Elements	127
	6.4	23.04.24	Distinct Elements in an Array	129

6.5	23.04.24	Element Insertion	131
6.6	23.04.24	Find the Factor	133
6.7	23.04.24	Merge list	135
6.8	23.04.24	Merge Two Sorted Arrays Without	137
		Duplication	
6.9	23.04.24	Print Element Location	139
6.10	23.04.24	Strictly increasing	141
		Tuples & Set	
7.1	12.05.24	Binary String	146
7.2	12.05.24	Check Pair	148
7.3	12.05.24	DNA Sequence	150
7.4	12.05.24	Print repeated no	153
7.5	12.05.24	Remove repeated	156
7.6	12.05.24	malfunctioning keyboard	157
7.7	12.05.24	American keyboard	162
	•	Dictionary	
8.1	26.5.24	Uncommon Words	167
8.2	26.5.24	Sort Dictionary By Values Summation	169
8.3	26.5.24	Winner Of Election	172
8.4	26.5.24	Student Record	175
8.5	26.5.24	Scramble Score	177
		Functions	
9.1	27.05.024	Abundant Number	180
9.2	27.05.024	Automorphic number or not	182
9.3	27.05.024	Check Product of Digits	187
9.4	27.05.024	Christmas Discount	190
9.5	27.05.024	Coin Change	193
9.6	27.05.024	Difference Sum	196
9.7	27.05.024	Ugly number	199

		Searching & Sorting	
10. 1	28.05.24	Merge Sort	203
10. 2	28.05.24	Bubble Sort	207
10. 3	28.05.24	Peak Element	210
10. 4	28.05.24	Binary Search	212
10. 5	28.05.24	Frequency of Numbers	215

Sample Output :

10,<class 'int'>

10.9,<class 'float'>

For example:

Input	Result
10	10, <class 'int'=""></class>
10.9	10.9, <class 'float'=""></class>

Ex. No. : 1.1 Date: 19/3/24

Register No.: 230701026 Name: D. Alfred Sam

Converting Input Strings

Write a program to convert strings to an integer and float and display its type.

Sample Input:

10

10.9

```
a=int(input())
b=float(input())
b=round(b,1)
print(a,",",type(a),sep="")
print(b,",",type(b),sep="")
```

Sample Input:

10000

Sample Output:

16000

Input	Result
10000	16000

Ex. No. : 1.2 Date: 19/3/24

Register No.: 230701026 Name: D. Alfred Sam

Gross Salary

Ramesh's basic salary is input through the keyboard. His dearness allowance is 40% of his basic salary, and his house rent allowance is 20% of his basic salary. Write a program to calculate his gross salary.

a=int(input())
print(a+(a*60//100))

Sample Input:

8.00

Sample Output:

2.828

Input	Result
14.00	3.742

Ex. No. : 1.3 Date: 19/3/24

Register No.: 230701026 Name: D. Alfred Sam

Square Root

Write a simple python program to find the square root of a given floating point number. The output should be displayed with 3 decimal places.

import math
a=float(input())
print("%0.3f"%(math.sqrt(a)))

Input Format:

The first line contains the Rs X

The second line contains Rs Y

The third line contains Rs Z

Sample Input:

10000

250

15000

Sample Output:

46.34 is the gain percent.

Input	Result
45500 500 60000	30.43 is the gain percent.

Ex. No. : 1.4 Date: 19/3/24

Register No.: 230701026 Name: D. Alfred Sam

Gain percent

Alfred buys an old scooter for Rs. X and spends Rs. Y on its repairs. If he sells the scooter for Rs. Z (Z>X+Y). Write a program to help Alfred to find his gain percent. Get all the above-mentioned values through the keyboard and find the gain percent.

```
x=int(input(
))
y=int(input(
))
z=int(input(
))a=x+y
b=((z-a)/a)*100
print("%.2f"%b,"is the gain percent.",sep=" ")
```

Sample Input

10

20

Sample Output

Your total refund will be \$6.00.

Input	Result
20 20	Your total refund will be \$7.00.

Ex. No. : 1.5 Date: 19/3/24

Register No.: 230701026 Name: D. Alfred Sam

Deposits

In many jurisdictions, a small deposit is added to drink containers to encourage people to recycle them. In one particular jurisdiction, drink containers holding one liter or less have a \$0.10 deposit and drink containers holding more than one liter have a \$0.25 deposit. Write a program that reads the number of containers of each size(less and more) from the user. Your program should continue by computing and displaying the refund that will be received for returning those containers. Format the output so that it includes a dollar sign and always displays exactly two decimal places.

```
a=int(input(
))
b=int(input()
) c=a*0.10
d=b*0.25
e=c+d
print("Your total refund will be $%.2f."%e)
```

Sample Input:

450

Sample Output:

weekdays 10.38

weekend 0.38

Input	Result
450	weekdays 10.38 weekend 0.38

Ex. No. : 1.6 Date: 19/3/24

Register No.: 230701026 Name: D. Alfred Sam

Carpenter

Justin is a carpenter who works on an hourly basis. He works in a company where he is paid Rs 50 for an hour on weekdays and Rs 80 for an hour on weekends. He works 10 hrs more on weekdays than weekends. If the salary paid for him is given, write a program to find the number of hours he has worked on weekdays and weekends.

Hint:

If the final result(hrs) are in -ve convert that to +ve using abs() function The abs() function returns the absolute value of the given number.

```
number = -20
absolute_number = abs(number)
print(absolute_number)
# Output: 20
```

```
a=int(input())
b=(abs(a-500))/130
c=b+10
print("weekdays %.2f"%c)
print("weekend %.2f"%b)
```


Sample

Input10

20

Sample Output

The total weight of all these widgets and gizmos is 2990 grams.

Input	Result
10	The total weight of all these widgets and gizmos is
20	2990 grams.

Ex. No. : 2.1 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Widgets and Gizmos

An online retailer sells two products: widgets and gizmos. Each widget weighs 75 grams. Each gizmo weighs 112 grams. Write a program that reads the number of widgets and the number of gizmos from the user. Then your program should compute and display the total weight of the parts.

w=int(input())
g=int(input())
print("The total weight of all these widgets and gizmos is",w*75+g*112,"grams.")

Carrala					
Sample					
Input10					
Sample					
OutputTi					
Explanat					
Since 10	s an even number and	a number betwe	en 0 and 100, Ti	rue is printed	

Ex. No. : 2.2 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Doll Sings

In London, every year during Dasara there will be a very grand doll show. People try to invent new dolls of different varieties. The best-sold doll's creator will be awarded with a cash prize. So people broke their heads to create dolls innovatively. Knowing this competition, Mr.Lokpaul tried to create a doll that sings only when an even number is pressed and the number should not be zero and greater than 100.

IF Lokpaul wins print true, otherwise false.

```
num=int(input())
if 0<num<=100:
    print("True")
else:
    print("False")</pre>
```

Input Given:
N-No of friends
P1,P2,P3 AND P4-No of
chocolatesOUTPUT:
"True" if he can buy that packet and "False" if he can't buy that packet.
SAMPLE INPUT AND OUTPUT:
5
25
12
10
9
OUTPUT

True False True False

Ex. No. : 2.3 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Birthday Party

Mr. X's birthday is in next month. This time he is planning to invite N of his friends. He wants to distribute some chocolates to all of his friends after the party. He went to a shopto buy a packet of chocolates. At the chocolate shop, 4 packets are there with different numbers of chocolates. He wants to buy such a packet which contains a number of chocolates, which can be distributed equally among all of his friends. Help Mr. X to buy such a packet.

```
N=int(input())
for i in range(4):
    c=int(input())
    if not c%N:
        print("True",end=" ")
    else:
        print("False",end=" ")
```


Sample					
Input3					
Sample	Output:				
2					
Explan	ation:				
The bir	ary representation of 3	is 011, hence the	ere are 2 ones in	it. so the output i	s 2.

Ex. No. : 2.4 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Hamming Weight

Write a python program that takes a integer between 0 and 15 as input and displays thenumber of '1' s in its binary form. (Hint: use python bitwise operator.

```
num=str(bin(int(input())))
count=0
for i in num:
   if i=='1':
      count+=1
print(count)
```

Sample Input:

10000

Sample Output:

Balance as of end of Year 1:

\$10400.00.Balance as of end of Year

2: \$10816.00.

Balance as of end of Year 3: \$11248.64

Ex. No. : 2.5 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Compound Interest

Pretend that you have just opened a new savings account that earns 4 percent interest per year. The interest that you earn is paid at the end of the year, and is added to the balance of the savings account. Write a program that begins by reading the amount of money deposited into the account from the user. Then your program should compute and display the amount in the savings account after 1, 2, and 3 years. Display each amount so that it is rounded to 2 decimal places.

.

```
a=int(input()) for i in range(3): b=a*(4/100)a=b+a print(f"Balance as of end of Year {i+1}: $\%.2f."\%a)
```

Input Format:

Input consists of two integers that correspond to the age and weight of a person respectively.

Output Format:

Display True(IF ELIGIBLE)

Display False (if not

eligible)Sample Input

19

45

Sample Output

True

Ex. No. : 2.6 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Eligible to donate blood

A team from the Rotract club had planned to conduct a rally to create awareness among the Coimbatore people to donate blood. They conducted the rally successfully. Many of the Coimbatore people realized it and came forward to donate their blood to nearby blood banks. The eligibility criteria for donating blood are people should be above or equal to 18 and his/her weight should be above 40. There was a huge crowd and staff in the blood bank found it difficult to manage the crowd. So they decided to keep a system and ask the people to enter their age and weight in the system. If a person is eligible he/she willbe allowed inside.

Write a program and feed it to the system to find whether a person is eligible or not.

```
a=int(input())
w=int(input())
print("True"if a>=18 and w>40 else "False")
```

Input Format:

An integer x, 0 <= x <= 1.

Output Format:

output a single character "C" or "D" depending on the value of \mathbf{x} .

Input 1:

0

Output 1:

C

Input 2:

1

Output 1:

D

Ex. No. : 2.7 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

C or D

Mr.Ram has been given a problem kindly help him to solve it. The input of the program is either 0 or 1. IF 0 is the input he should display "C" if 1 is the input it should display "D". There is a constraint that Mr. Ram should use either logical operators or arithmeticoperators to solve the problem, not anything else.

Hint:

Use ASCII values of C and D.

num=int(input())

if num:

print("D")

else:

print("C")

Input format:

Line 1 has the total number of weapons Line 2 has the total number of Soldiers. **Output Format:**

If the battle can be won print True otherwise print False.

Sample

Input:32

43

Sample

Output:'False

Ex. No. : 2.8 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Troy Battle

In the 1800s, the battle of Troy was led by Hercules. He was a superstitious person. He believed that his crew can win the battle only if the total count of the weapons in hand is in multiple of 3 and the soldiers are in an even number of count. Given the total number of weapons and the soldier's count, Find whether the battle can be won or not according to Hercules's belief. If the battle can be won print True otherwise print False.

```
a=int(input()
)
b=int(input())
if a%3==0 and
  b%2==0:
  print("True")
else:
  print("False"
```

0 1				
Sample				
Input100				
Sample Output				
The tax is 5.00 and	the tip is 18.00, ma	aking the total 1	23.00	

Ex. No. : 2.9 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Tax and Tip

The program that you create for this exercise will begin by reading the cost of a meal ordered at a restaurant from the user. Then your program will compute the tax and tip for the meal. Use your local tax rate (5 percent) when computing the amount oftax owing. Compute the tip as 18 percent of the meal amount (without the tax). The output from your program should include the tax amount, the tip amount, and the grandtotal for the meal including both the tax and the tip. Format the output so that all of the values are displayed using two decimal places.

```
a=int(input()) b=a*(5/100) c=a*(18/100) d=a+b+c print("The tax is \%.2f and the tip is \%.2f, making the total \%.2f"\%(b,c,d))
```

Input	Result
123	3

Ex. No. : 2.10 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Return last digit of the given number

Write a program that returns the last digit of the given number. Last digit is being referred to the least significant digit i.e. the digit in the ones (units) place in the given number.

The last digit should be returned as a positive number. For example, if the given number is 197, the last digit is 7 if the given number is -197, the last digit is 7

a=int(input(
))b=abs(a)
c=b%10
print(c)

Sample Test

CasesTest Case 1

Inpu

t70

60

80

Output

The candidate is

eligibleTest Case 2

Inpu

t50

80

80

Output

The candidate is

eligibleTest Case 3

Inpu

t50

60

40

Output

The candidate is not eligible

Input	Result
50	The candidate is
80	eligible
80	

Ex. No. : 3.1 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Admission Eligibility

Write a program to find the eligibility of admission for a professional course based onthe following criteria:

```
Marks in Maths >= 65
Marks in Physics >= 55
Marks in Chemistry >=
500r
Total in all three subjects >= 180
a=int(input(
))
b=int(input()
)
c=int(input(
))
if a+b+c>=180:
  print("The candidate is
eligible")else:
  print("The candidate is not eligible")
```

Sample Input 1

60

60

60

Sample Output 1

That's a equilateral triangle

Input	Result
40	That's a isosceles
40	triangle
80	

Ex. No. : 3.2 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Classifying Triangles

A triangle can be classified based on the lengths of its sides as equilateral, isosceles or scalene. All three sides of an equilateral triangle have the same length. An isosceles triangle has two sides that are the same length, and a third side that is a different length. If all of the sides have different lengths then the triangle is scalene.

Write a program that reads the lengths of the three sides of a triangle from the user.

Then display a message that states the triangle's type.

```
a=int(input())
b=int(input())
c=int(input())
if a==b==c:
    print("That's a equilateral triangle")
elif a==b or b==c or a==c:
    print("That's a isosceles triangle")
else:
    print("That's a scalene triangle")
```

Sample Test

CasesTest Case 1

Inpu

t50

Outpu

t

100.0

0

Test Case

2Input

300

Outpu

t

517.5

0

Input	Result
500	1035.00

Ex. No. : 3.3 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Electricity Bill

Write a program to calculate and print the Electricity bill where the unit consumed by the user is given from test case. It prints the total amount the customer has to pay. Thecharge are as follows:

Unit Charge / Unit

Upto 199 @1.20
200 and above but less than 400 @1.50
400 and above but less than 600 @1.80
600 and above @2.00

If bill exceeds Rs.400 then a surcharge of 15% will be charged and the minimum billshould be of Rs.100/-

a=float(input())

if a<200:

b=a*1.20

elif 200<=a<400:

b=a*1.50

elif 400<=a<600:

b=a*1.80

elif a > = 600:

```
b=a*2.00

if b<400 and b!=60.0:
    print("%.2f"%b)

elif b>400: c=b*(15/100)
    d=b+c
    print("%.2f"%d)

else:
    print("%.2f"%100)
```

Input Format:

Input consists of 2 integers.

The first integer corresponds to the number of problems given and the second integer corresponds to the number of problems solved.

Output Format:

Output consists of the string "IN" or "OUT".

Sample Input and

Output:Input

8

3

Outpu

tOUT

Input	Result
8	OUT
3	

Ex. No. : 3.4 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

IN/OUT

Ms. Sita, the faculty handling programming lab for you is very strict. Your seniors have told you that she will not allow you to enter the week's lab if you have not completed atleast half the number of problems given last week. Many of you didn't understand this statement and so they requested the good programmers from your batch to write a program to find whether a student will be allowed into a week's lab given the number of problems given last week and the number of problems solved by the student in that week.

```
a=int(input())
c=int(input())
if a//2>=c:
    print("OUT")
else:
    print("IN")
```

Sample Input

1i

Sample Output

1It's a vowel.

Sample Input

2y

Sample Output 2

Sometimes it's a vowel... Sometimes it's a consonant.

Sample

Input3c

Sample Output

3It's a

consonant.

Input	Result
у	Sometimes it's a vowel Sometimes it's a consonant.
u	It's a vowel.
p	It's a consonant.

Ex. No. : 3.5 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Vowel or Consonant

In this exercise you will create a program that reads a letter of the alphabet from the user. If the user enters a, e, i, o or u then your program should display a message indicating that the entered letter is a vowel. If the user enters 'y' then your program should display a message indicating that sometimes y is a vowel, and sometimes y is a consonant. Otherwise your program should display a message indicating that the letter is a consonant.

```
a=input()
if a=='y':
    print("Sometimes it's a vowel... Sometimes it's a consonant.")
elif( a=='a'or a=='e'or a=='i'or a=='o'or a=='u'):
    print("It's a vowel.")
else:
    print("It's a consonant.")
```

Sample Input 1
1900
Sample Output 1
1900 is not a leap
year.Sample Input 2
2000
Sample Output 2
2000 is a leap
year.

Ex. No. : 3.6 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Leap Year

Most years have 365 days. However, the time required for the Earth to orbit the Sun is actually slightly more than that. As a result, an extra day, February 29, is included in some years to correct for this difference. Such years are referred to as leap years. The rules for determining whether or not a year is a leap year follow:

- Any year that is divisible by 400 is a leap year.
- Of the remaining years, any year that is divisible by 100 is not a leap year.
- Of the remaining years, any year that is divisible by 4 is a leap year.
- All other years are not leap years.

Write a program that reads a year from the user and displays a message indicating whether or not it is a leap year.

```
a=int(input())
if a%400==0 and a%100==0:
    print("%d is a leap
    year."%a)
elif a%4==0 and a%100!=0:
    print("%d is a leap
    year."%a)
else:
    print("%d is not a leap year."%a)
```

Sample Input 1

February

Sample Output

1

February has 28 or 29 days in

it.Sample Input 2

March

Sample Output 2

March has 31 days in

it.Sample Input 3

April

Sample Output 3

April has 30 days in

it.For example:

Input	Result
Februar y	February has 28 or 29 days in it.
March	March has 31 days in it.

Ex. No. : 3.7 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Month name to days

The length of a month varies from 28 to 31 days. In this exercise you will create a program that reads the name of a month from the user as a string. Then your program should display the number of days in that month. Display "28 or 29 days" for February so that leap years are addressed.

```
y=input()
if(y=="February"):
    print("February has 28 or 29 days in it.")
elif(y=="January" or y=="March" or y=="May" or y=="July" or y=="August" or y=="October" or y=="November"):
    print(y,"has 31 days in it.")
else:
    print(y,"has 30 days in it.")
```

Sample Input

3

5

4

Sample Output

Yes

Input	Result
3	Yes
4	
5	

Ex. No. : 3.8 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Pythagorean triple

Three numbers form a Pythagorean triple if the sum of squares of two numbers is equal to the square of the third.

For example, 3, 5 and 4 form a Pythagorean triple, since 3*3 + 4*4 = 25 = 5*5 You are given three integers, a, b, and c. They need not be given in increasing order. If they form a Pythagorean triple, then print "Yes", otherwise, print "No".

```
a=int(input()
)
b=int(input()
)
c=int(input()
)
if a**2+b**2==c**2 or b**2+c**2==a**2 or
    a**2+c**2==b**2:print("yes")
else:
    print("no")
```

Input	Result
197	9

Ex. No. : 3.9 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Second last digit

Write a program that returns the second last digit of the given number. Second last digit is being referred 10the digit in the tens place in the given number.

For example, if the given number is 197, the second last digit is 9.

Note1 - The second last digit should be returned as a positive number. i.e. if the given number is -197, the second last digit is 9.

Note 2 - If the given number is a single digit number, then the second last digit does not exist. In such cases, the program should return -1. i.e. if the given number is 5, the second last digit should be returned as -1.

```
n=str(abs(int(input())))
if(len(n)>1):
    print(n[len(n)-2])
else:
    print(-1)
```


Sample Input 1

2010

Sample Output 1

 $2010\ is\ the\ year\ of\ the$

Tiger.Sample Input 2

2020

Sample Output 2

2020 is the year of the Rat.

Ex. No. : 3.10 Date: 21/3/24

Register No.: 230701026 Name: D. Alfred Sam

Chinese Zodiac

The Chinese zodiac assigns animals to years in a 12 year cycle. One 12 year cycle is shown in the table below. The pattern repeats from there, with 2012 being another year of the dragon, and 1999 being another year of the hare.

Year

Animal2000

Dragon

2001 Snake

2002 Horse

2003 Sheep

2004 Monkey

2005 Rooster

2006 Dog

2007 Pig

2008 Rat

2009 Ox

2010 Tiger

2011 Hare

Write a program that reads a year from the user and displays the animal associated withthat year. Your program should work correctly for any year greater than or equal to zero, not just the ones listed in the table.

```
a=int(input(
))if
a%12==0:
  print("%d is the year of the
Monkey."%a)elif a%12==1:
  print("%d is the year of the
```

Rooster."%a)elif a%12==2:

```
print("%d is the year of the
Dog."%a)elif a%12==3:
  print("%d is the year of the
Pig."%a)elif a%12==4:
  print("%d is the year of the
Rat."%a)elif a%12==5:
  print("%d is the year of the
Ox."%a)elif a%12==6:
  print("%d is the year of the
Tiger."%a)elif a%12==7:
  print("%d is the year of the
Hare."%a)elif a%12==8:
  print("%d is the year of the
Dragon."%a)elif a%12==9:
  print("%d is the year of the
Snake."%a)elif a%12==10:
  print("%d is the year of the
Horse."%a)elif a%12==11:
  print("%d is the year of the Sheep."%a)
```


Input	Result
20	1 2 4 5 10 20

Ex. No. : 4.1 Date: 5/4/24

Register No.: 230701026 Name: D. Alfred Sam

Factors of a number

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number).

```
a=int(input())
for i in range(1,a):
    if (a%i==0):
        print(i,end="")
print(a)
```

Input	Result
292	1
1015	2
108	3
22	0

Ex. No. : 4.2 Date: 5/4/24

Register No.: 230701026 Name: D. Alfred Sam

Non Repeated Digit Count

Write a program to find the count of non-repeated digits in a given number N. The number will be passed to the program as an input of type int.

Assumption: The input number will be a positive integer number >= 1 and <= 25000. Some examples are as below.

If the given number is 292, the program should return 1 because there is only 1 non-repeated digit '9' in this number

If the given number is 1015, the program should return 2 because there are 2 non-repeated digits in this number, '0', and '5'.

If the given number is 108, the program should return 3 because there are 3 non-repeateddigits in this number, '1', '0', and '8'.

If the given number is 22, the function should return 0 because there are NO non-repeated digits in this number.

from collections import Counter as ct

```
n=input(
)
con=ct(n
)
l=[i for i in con if i==1]
print(len(l))
```

Example1: if the given number N is 7, the method must return 2 Example2: if the given number N is 10, the method must return 1

Input	Result
7	2
10	1

Ex. No. : 4.3 Date: 5/4/24

Register No.: 230701026 Name: D. Alfred Sam

Prime Checking

Write a program that finds whether the given number N is Prime or not. If the number is prime, the program should return 2 else it must return 1.

Assumption: $2 \le N \le 5000$, where N is the given number.

```
n=int(input())
for i in
range(n):
    if n%i==0:
        print(1)
        break
else:
    print(2)
```

Input Format:
Integer input from
stdin.Output Format:
Perfect square greater than
N.Example Input:
10
Output
:16

Ex. No. : 4.4 Date: 5/4/24

Register No.: 230701026 Name: D. Alfred Sam

Next Perfect Square

Given a number N, find the next perfect square greater than N.

```
n=int(input())
m=round(n**0.
5)
print((m+1)**2
)
```

NOTE: Fibonacci series looks like -

 $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$ and so on.

i.e. Fibonacci series starts with 0 and 1, and continues generating the next number asthe sum of the previous two numbers.

- first Fibonacci number is 0,
- second Fibonacci number is 1,
- third Fibonacci number is 1,
- fourth Fibonacci number is 2,
- fifth Fibonacci number is 3,
- sixth Fibonacci number is 5,
- seventh Fibonacci number is 8, and so on.

For

example:

Input:

7

Output

8

Ex. No. : 4.5 Date: 5/4/24

Register No.: 230701026 Name: D. Alfred Sam

Nth Fibonacci

Write a program to return the nth number in the fibonacci series. The value of N will bepassed to the program as input.

Input Format:

Single Integer Input from

stdin.Output Format:

Yes or No.

Example

Input:175

Output:

Yes

Explanatio

n

1^1 + 7^2 +5^3 = 175

Example

Input:123

Output:

No

For example:

Inpu Result

t

175 Yes

123 No

Ex. No. : 4.6 Date: 5/4/24

Register No.: 230701026 Name: D. Alfred Sam

Disarium Number

A Number is said to be Disarium number when the sum of its digit raised to the power of their respective positions becomes equal to the number itself. Write a program to print number is Disarium or not.

```
n=intput(
)
p,n1=0,0
for i in n:
    p+=1
        n1+=(int(i)**
p)if int(n)==n1:
    print('Yes')
else:
    print('No')
```

Sample Test Cases

Test Case 1

Inpu

t4

Outpu

t1234

Explanation:

as input is 4, have to take 4

terms.1 + 11 + 111 + 1111

Test Case

2Input

6

Outpu

t

12345

6

Input	Result
3	123

Ex. No. : 4.7 Date: 5/4/24

Register No.: 230701026 Name: D. Alfred Sam

Sum of Series

Write a program to find the sum of the series 1 + 11 + 111 + 1111 + ... + n terms (n will be given as input from the user and sum will be the output)

Input	Result
292	2
1015	3

Ex. No. : 4.8 Date: 5/4/24

Register No.: 230701026 Name: D. Alfred Sam

Unique Digit Count

Write a program to find the count of unique digits in a given number N. The number willbe passed to the program as an input of type int.

Assumption: The input number will be a positive integer number >= 1 and <= 25000.For e.g.

If the given number is 292, the program should return 2 because there are only 2 unique digits '2' and '9' in this number

If the given number is 1015, the program should return 3 because there are 3 unique digits in this number, '1', '0', and '5'.

```
n=set(intput(
))
print(len(n))
```

Input Format:
Single Integer
input.Output
Format:
Output displays Yes if condition satisfies else prints
No.Example Input:
14
Output:
Yes
Example
Input:13
Output
:No

Ex. No. : 4.9 Date: 5/4/24

Register No.: 230701026 Name: D. Alfred Sam

Product of single digit

Given a positive integer N, check whether it can be represented as a product of singledigit numbers.

Input Format:

Single integer

input.Output

Format:

Yes or No.

Example

Input:24

Output:

Yes

Example

Input:26

Output:

No

Input	Result
24	Yes

Ex. No. : 4.10 Date: 5/4/24

Register No.: 230701026 Name: D. Alfred Sam

Perfect Square After adding One

Given an integer N, check whether N the given number can be made a perfect squareafter adding 1 to it.

```
n=int(input())
if '.0000' in "%.4f"%((n+1)**0.5):
    print('Yes')
else:
    print('No')
```



```
Sample Case 0
Sample Input 0
4
1
2
3
3
Sample Output 0
2
```

Explanation 0

- The sum of the first two elements, 1+2=3. The value of the last element is 3.
- Using zero based indexing, arr[2]=3 is the pivot between the twosubarrays.
- The index of the pivot is 2.

```
Sample Case 1
Sample Input 1
3
1
2
1
Sample Output 1
1
Explanation 1
```

- The first and last elements are equal to 1.
- · Using zero based indexing, arr[1]=2 is the pivot between the two subarrays.
- The index of the pivot is 1.

i oi campic.	
Result	
2	
1	

Ex. No. : 5.1 Date: 17/4/24

Register No.: 230701026 Name: D. Alfred Sam

Balanced Array

Given an array of numbers, find the index of the smallest array element (the pivot), for which the sums of all elements to the left and to the right are equal. The array may not be reordered.

Example

arr=[1,2,3,4,6]

- the sum of the first three elements, 1+2+3=6. The value of the last element is 6.
- Using zero based indexing, arr[3]=4 is the pivot between the two subarrays.
- · The index of the pivot is

3.Constraints

- $\cdot \qquad 3 \le n \le 10^5$
- $1 \le arr[i] \le 2 \times 10^4$, where $0 \le i < n$
- It is guaranteed that a solution always exists.

The first line contains an integer n, the size of the array arr.

Each of the next n lines contains an integer, arr[i], where $0 \le i < n$.

```
a=int(input())
b=[]
sum1=0
sum2=0
for i in range(a):
    b.append(int(input()))
f=0
l=len(b)-1
mid=(f+l)//2
while(f<l):
    mid=(f+l)//2
for i in range(mid):
    sum1+=b[i]</pre>
```

```
for i in range(mid+1,len(b)):
    sum2+=b[i]
    if(sum1==sum2):
        print(mid)
        break
    else:
        if(sum1>sum2):
            l=mid-1
        else:
            f=mid+1
        mid=(f+l)//2
        sum1=0
        sum2=0
```

Inpu t1 3 1 3 5 4 Output: Inpu t1 3 1 3 5 99 Outpu t0

Input	Result
1	1
3	
1 3 5	
5	
4	
1	0
1 3	
1	
3	
3 5 99	
99	

Ex. No. : 5.2 Date: 17/4/24

Register No.: 230701026 Name: D. Alfred Sam

Check pair with difference k

Given an array A of sorted integers and another non negative integer k, find if there exists 2 indices i and j such that A[i] - A[j] = k, i != j.

Input Format

- 1. First line is number of test cases T. Following T lines contain:
- 2. N, followed by N integers of the array
- 3. The non-negative integer

kOutput format

Print 1 if such a pair exists and 0 if it doesn't.

```
a=[]
flag=1
b=int(input())
for i in
range(b):
  c=int(input())
  for j in
  range(c):
     a.append(int(input())
  ) d=int(input())
  for k in range(c):
     for l in range(k,c):
       if a[k]-a[l]==d or abs(a[k]-a[l]==d
          a[l])==d:flag=0
          print(1)
          break
  a=[]
  if(flag):
     print(0)
  flag=1
```

Sample Test Cases

Test Case 1

Input

7

23

45

23

56

45

23

40

Output

23 occurs 3 times

45 occurs 2 times

56 occurs 1 times

40 occurs 1 times

Ex. No. : 5.3 Date: 17/4/24

Register No.: 230701026 Name: D. Alfred Sam

Count Elements

Complete the program to count frequency of each element of an array. Frequency of a particular element will be printed once.

```
a=int(input())
b=[]
for i in range(a):
    b.append(int(input()))
c={x:b.count(x) for x in b}
for i in c:
    print(i,"occurs",c[i],"times")
```

```
Example
Input:5
1
2
2
3
4
Output:
1 2 3 4
Example
Input:6
1
1
2
2
3
3
Output:
1 2 3
For
example:
Input Result
5
1
2
2
3
4
1234
6
1
1
2
2
3
3
123
```

Ex. No. : 5.4 Date: 17/4/24

Register No.: 230701026 Name: D. Alfred Sam

Distinct Elements in an Array

Program to print all the distinct elements in an array. Distinct elements are nothing butthe unique (non-duplicate) elements present in the given array.

Input Format:

First line take an Integer input from stdin which is array length n.Second line take n Integers which is inputs of array. Output Format:

Print the Distinct Elements in Array in single line which is space Separated

Sample Test Cases	
Sample Test Cases Test Case 1	Test Case
	2Input
Inpu t1	11
3	22
4	33
5	55
	66
6 7	77
	88
8	99
9	110
10	120
11	44
2	11
Output	Output
Output	Output
ITEM to be inserted:2	Output ITEM to be inserted:44
ITEM to be inserted:2 After insertion array	ITEM to be inserted:44
ITEM to be inserted:2 After insertion array is:1	ITEM to be inserted:44 After insertion array is:
ITEM to be inserted:2 After insertion array is:1 2	ITEM to be inserted:44 After insertion array is: 11
ITEM to be inserted:2 After insertion array is:1 2 3	ITEM to be inserted:44 After insertion array is: 11 22
ITEM to be inserted:2 After insertion array is:1 2 3 4	ITEM to be inserted:44 After insertion array is: 11 22 33
ITEM to be inserted:2 After insertion array is:1 2 3 4 5	ITEM to be inserted:44 After insertion array is: 11 22 33 44
ITEM to be inserted:2 After insertion array is:1 2 3 4 5	ITEM to be inserted:44 After insertion array is: 11 22 33 44 55
ITEM to be inserted:2 After insertion array is:1 2 3 4 5 6 7	ITEM to be inserted:44 After insertion array is: 11 22 33 44 55 66
ITEM to be inserted:2 After insertion array is:1 2 3 4 5 6 7	ITEM to be inserted:44 After insertion array is: 11 22 33 44 55 66 77
ITEM to be inserted:2 After insertion array is:1 2 3 4 5 6 7 8	ITEM to be inserted:44 After insertion array is: 11 22 33 44 55 66 77 88
ITEM to be inserted:2 After insertion array is:1 2 3 4 5 6 7 8 9	ITEM to be inserted:44 After insertion array is: 11 22 33 44 55 66 77 88 99
ITEM to be inserted:2 After insertion array is:1 2 3 4 5 6 7 8	ITEM to be inserted:44 After insertion array is: 11 22 33 44 55 66 77 88

Ex. No. : 5.5 Date: 17/4/24

Register No.: 230701026 Name: D. Alfred Sam

Element Insertion

Consider a program to insert an element / item in the sorted array. Complete the logic by filling up required code in editable section. Consider an array of size 10. The eleventh item is the data is to be inserted.

```
n=10
a=[int(input()) for i in
range(n)]b=int(input())
c=[]
k=0
print(f"ITEM to be
inserted:{b}")for i in
range(len(a)):
  if(a[i] < b < a[i+1]):
    c.append(a[i])
    k+=1
    c.append(b)
    k+=1
  else:
     c.append(a[i])
    k+=1
print("After insertion array
is:")for i in c:
  print(i)
```

```
Sample Case 0
Sample Input 0
10
3
Sample Output 0
Explanation 0
Factoring n = 10 results in \{1, 2, 5, 10\}. Return the p = 3^{rd} factor, 5,
as theanswer.
Sample Case 1
Sample Input 1
10
Sample Output 1
Explanation 1
Factoring n = 10 results in \{1, 2, 5, 10\}. There are only 4 factors and p
= 5,therefore 0 is returned as the answer.
Sample Case 2
Sample Input 2
Sample Output 2
```

Factoring n = 1 results in $\{1\}$. The p = 1st factor of 1 is returned as the answer.

For example:

Explanation 2

Input	Result
10 3	5
10 5	0
1 1	1

Ex. No. : 5.6 Date: 17/4/24

Register No.: 230701026 Name: D. Alfred Sam

Find the Factor

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number) and then return the p^{th} element of the <u>list</u>, sorted ascending. If there is nopth element, return 0.

Constraints

```
1 \le n \le 10^{15}1 \le p \le 10^9
```

The first line contains an integer n, the number to factor.

The second line contains an integer p, the 1-based index of the factor to return.

```
n=int(input()
)
p=int(input()
)
i=1
a=[]
while i<=n:
    if
    n%i==0:
        a.append(i
    )i+=1

i=1
flag=
1
while i<=len(a):</pre>
```

print(a[i-1])

Department of Computer Science and Engineering | Rajalakshmi Engineering College

107

```
flag=
0
break
i+=1
if (flag):
print(0)
```

Sample test case

Sample

input2

2

1

3

5

7

2

4

6

8

Sample Output

[[1, 3, 2, 4], [5, 7, 6, 8]]

Ex. No. : 5.7 Date: 17/4/24

Register No.: 230701026 Name: D. Alfred Sam

Merge List

Write a Python program to Zip two given lists of lists.

Input:

m: row size n: column

size

list1 and list 2 : Two lists

Output

Zipped List: List which combined both list1 and list2

n=int(input())

m=int(input())

a = [[int(input()) for j in range(n)] for i in range(m)]#input as 2 D...outer i
loop for row inside j loop for column

b = [[int(input()) for j in range(n)] for i in range(m)]

d=zip(a,b) #once itreated becomes empty.. concatenation of each elemnts in only 1 dimension intuple form [before 2D so now 1D in each index tuple]

c=[]

for i,j in d: #both i and j have same index but i from aand j from b
 c.append(i+ j) #concating that 2 subarrays intoanother to make it 2D
print(c)

Sample Input 1

Sample Output 1

Ex. No. : 5.8 Date: 17/4/24

Register No.: 230701026 Name: D. Alfred Sam

Merge Two Sorted Arrays Without Duplication

Output is a merged array without duplicates.Input Format N1 - no of elements in array 1Array elements for array 1 N2 - no of elements in array 2Array elements for array2 **Output Format** Display the merged array a=int(input()) b=[] for i in range(a): b.append(int(input())) c=int(input()) for i in range(c): b.append(int(input())) b.sort() $b=\{x:x \text{ for } x \text{ in } b\}$ for i in b: print(i,end=" ")

```
For example, if there are 4 elements in the array:
6
5
7
If the element to search is 5 then the output will be:
5 is present at location 1
5 is present at location 3
5 is present 2 times in the array.
Sample Test Cases
Test Case 1
Input
4
5
6
5
7
5
Output
5 is present at location 1.
5 is present at location 3.
5 is present 2 times in the array.
Test Case 2
Input
5
67
80
45
97
100
50
Output
50 is not present in the array.
```

Ex. No. : 5.9 Date: 17/4/24

Register No.: 230701026 Name: D. Alfred Sam

Print Element Location

Write a program to print all the locations at which a particular element (taken as input) is found in a list and also print the total number of times it occurs in the list. The location starts from 1.

```
n=int(input())
a=[]
for i in range(n):
    a.append(int(input()))
s=int(input())

cnt=0
for i in range(len(a)):
    if(a[i]==s):
        print(s,"is present at location %d."%(i+1))
        cnt+=1

if cnt!=0:
    print(s,"is present %d times in the array."%cnt)
else:
    print(s,"is not present in the array.")
```

Sample Test Case Input Outpu tTrue

Ex. No. : 5.10 Date: 17/4/24

Register No.: 230701026 Name: D. Alfred Sam

Strictly increasing

Write a Python program to check if a given list is strictly increasing or not. Moreover, Ifremoving only one element from the list results in a strictly increasing list, we still consider the list true

n: Number of elementsList1: List of values Output Print "True" if list is strictly increasing or decreasing else print "False" n1 =int(input())a1 = [] for i in range(n1): a1.append(int(input())) n2 = int(input())a2 = [] for i in range(n2): a2.append(int(input())) $m = \prod$ for num in a1: if num not in m: m.append(nu m) for num in a2: if num not in m: m.append(nu

m)

Input:

m.sort()

Department of Computer Science and Engineering | Rajalakshmi Engineering College

117

for num in m:			
print(num, e	nd="		
")			

For example:

Input Result rec@123 3 3 1

Ex. No. : 6.1 Date: 23/4/24

Register No.: 230701026 Name: D. Alfred Sam

Count Chars

Write a python program to count all letters, digits, and special symbols respectively from given string

```
a=input()
cnt1=cnt2=cnt3=0

for i in a:
    if
        i.isalpha()
        :cnt1+=1
    elif
        i.isdigit():
        cnt2+=1
    else:
        cnt3+=1
print(cnt1,cnt2,cnt3,sep='\n
')
```

Sample Input 1a2b4c6			
Sample Output 1 aabbbbcccccc			

Ex. No. : 6.2 Date: 23/4/24

Register No.: 230701026 Name: D. Alfred Sam

Decompress the String

Assume that the given string has enough memory. Don't use any extra space(IN-PLACE)

```
a=input()
operands=[
]counts=[]
counts2=[]
var=0
for i in range(len(a)):
  if ord(a[i])-48 in
    range(0,10):
    counts.append(a[i])
  else:
    if(len(counts)!=0):
      counts.append(100)
    operands.append(a[i])
for i in
  range(len(counts)):if
  counts[i]!=100:
    var=var*10+int(counts[i
  ])else:
    counts2.append(var
    )var=0
```

```
if (i==len(counts)-1):
    counts2.append(var
    )var=0

for i in range(len(counts2)):
    print(operands[i]*counts2[i],end=")
```

Input Format: The first line contains S1. The second line contains S2. The third line contains N. **Output Format:** The first line contains the N characters present in S1 which are also present in **S2.Boundary Conditions:** $2 \le N \le 10$ 2 <= Length of S1, S2 <= 1000Example Input/Output 1: Input: abcbde cdefghb b3 Output: bcd Note

b occurs twice in common but must be printed only once.

Ex. No. : 6.3 Date: 23/4/24

Register No.: 230701026 Name: D. Alfred Sam

First N Common Chars

Two string values S1, S2 are passed as the input. The program must print first Ncharacters present in S1 which are also present in S2.

```
a=input()
b=input()
n=int(input()
)c=0

d={i:i for i in
a}e={j:j for j in
b}

for i in d:
    for j in e:
        if i==j:
            print(i,end="
            )c+=1
            brea
        kif(c==n):
            break
```

Sample Input 1experience enc Sample Output 1xpri Department of Computer Science and Engineering | Rajalakshmi Engineering College 128 Ex. No. : 6.4 Date: 23/4/24

Register No.: 230701026 Name: D. Alfred Sam

Remove Characters

Given two Strings s1 and s2, remove all the characters from s1 which is present in s2.

Constraints 1<= string length <= 200

s1 =

input().strip()s2 =

input().strip()

result = ""

for char in s1:

if char not in s2:

result += char

print(result)

Sample Input 1 Malayalam is my mother tongue

Sample Output 1 is my mother tongue

For example:

Input	Expected
Malayalam is my mother tongue	is my mother tongue
He did a good deed	he good

Ex. No. : 6.5 Date: 23/4/24

Register No.: 230701026 Name: D. Alfred Sam

Remove Palindrome Words

String should contain only the words are not palindrome.

```
s=input().lower().split()
for i in s:
    if i!=i[::-1]:
        print(i,end=" ")
```

For example:

Input Result
Wipro Technologies
BangaloreTECHNOLOGIES
Hello
World
WORLD
Hell
o
LESS

Ex. No. : 6.6 Date: 23/4/24

Register No.: 230701026 Name: D. Alfred Sam

Return Second World in Uppercase

Write a program that takes as input a string (sentence), and returns its second word inuppercase.

For example:

```
If input is "Wipro Technologies Bangalore" the function should
   return"TECHNOLOGIES"
If input is "Hello World" the function should return
"WORLD"If input is "Hello" the program should return
"LESS"
```

NOTE 1: If input is a sentence with less than 2 words, the program should return the

word "LESS".

NOTE 2: The result should have no leading or trailing spaces.

```
a=input(
cnt=0
for i in
  range(len(a)):if
  a[i]==" ":
    cnt+=1
    continue
  if(cnt==1):
    print(a[i].upper(),end=")
if(cnt==0):
  print("LESS")
```

Input:
A&B
Output
:
B&A
Explanation: As we ignore '&' and
As we ignore '&' and then reverse, so answer is "B&A".

For example:
Input Result
A&x#
x&A#

Ex. No. : 6.7 Date: 23/4/24

Register No.: 230701026 Name: D. Alfred Sam

Revers String

Reverse a string without affecting special characters. Given a string S, containing special characters and all the alphabets, reverse the string without affecting the positions of thespecial characters.

For example:	<u>!</u>			
Input ResultYn				
PYnative				
True				

Ex. No. : 6.8 Date: 23/4/24

Register No.: 230701026 Name: D. Alfred Sam

String characters balance Test

Write a program to check if two strings are balanced. For example, strings s1 and s2 are balanced if all the characters in the s1 are present in s2. The character's position doesn'tmatter. If balanced display as "true" ,otherwise "false".

```
a=input(
)
b=input()

if a in b:
    print("True"
    )
else:
    print("False")
```

Input:

first second first third second

then your program should display:

Output:

first second third Ex. No. : 6.9 Date: 23/4/24

Register No.: 230701026 Name: D. Alfred Sam

Unique Names

In this exercise, you will create a program that reads words from the user until the user enters a blank line. After the user enters a blank line your program should display eachword entered by the user exactly once. The words should be displayed in the same orderthat they were first entered. For example, if the user enters:

```
a=[]
b=input()
while b!=' ':
    a.append(b
    )b=input()
c={i:i for i in a}
for i in c:
    print(i
    )
```

Example Input/Output 1:

Input:

vijayakumar.r@rajalakshmi.edu.i

n**Output**:

edu.in rajalakshmi vijayakumar. r Ex. No. : 6.10 Date: 23/4/24

Register No.: 230701026 Name: D. Alfred Sam

Username Domain Extension

Given a string S which is of the format USERNAME@DOMAIN.EXTENSION, the program must print the EXTENSION, DOMAIN, USERNAME in the reverse order.

Input Format:

The first line contains S.

Output Format:

The first line contains EXTENSION. The second line contains DOMAIN. The third line contains USERNAME.

Boundary Condition:

```
1 <= Length of S <= 100
```

```
a=input(
)cnt1=0
cnt2=0

for i in a:
    if(i=='.'):
        cnt1+=1
        if(cnt1==1):
        continu
    eif(cnt1>=1):
        print(i,end='')
```

```
print()
for i in a:
  if(i=='@'):
    cnt2+=1
    continu
     e
  if(i=='.'):
    break
  if(cnt2==1):
    print(i,end='')
print()
for i in a:
  if(i!='@')
    print(i,end="
  )else:
    break
```


07	- Functions	

Example input:

12

Output:

Yes

Explanatio

n

The proper divisors of 12 are: 1, 2, 3, 4, 6, whose sum is 1 + 2 + 3 + 4 + 6 = 16. Since sum of proper divisors is greater than the given number, 12 is an abundant number.

Example input:

13

Output:

No

Explanation

The proper divisors of 13 is: 1, whose sum is 1. Since sum of proper divisors is not greaterthan the given number, 13 is not an abundant number.

For example:

Test Result print(abundant(12)) Yes print(abundant(13)) No

Ex. No. : 7.1 Date: 12/5/24

Register No.: 230701026 Name: D. Alfred Sam

Abundant Number

An abundant number is a number for which the sum of its proper divisors is greater than the number itself. Proper divisors of the number are those that are strictly lesser than the number.

Input Format:

Take input an integer from stdin

Output Format:

else:

return 'No'

Return Yes if given number is Abundant. Otherwise, print No

def abundant(n):
 m=n
 j=2
 s=0
 while(j<=m):
 if m%j==0:
 s+=j
 j+=1
 if s>m:
 return 'Yes'

Input Format:

Take a Integer from StdinOutput Format:

Print Automorphic if given number is Automorphic number, otherwise Not Automorphic Example input: 5 Output: Automorphic Example input: 25 Output: Automorphic Example input: 7 Output: Not Automorphic

For example:

Test Result

print(automorphic(5)) Automorphic

Ex. No. : 7.2 Date: 12/5/24

Register No.: 230701026 Name: D. Alfred Sam

Automorphic number or not

An automorphic number is a number whose square ends with the number itself. For example, 5 is an automorphic number because 5*5 = 25. The last digit is 5 which same as the given number.

If the number is not valid, it should display "Invalid input". If it is an automorphic number display "Automorphic" else display "Not Automorphic".

def automorphic(n):a=n*n

if n==(a%10):

return 'Automorphic'else:

return 'Not Automorphic'

Input Format:
Take an input integer from stdin.
Output Format:
Print TRUE or FALSE.
Example Input:
1256
Output:
TRUE
Example Input:
1595

Output: FALSE

Test	Result
<pre>print(productDigits(12 56))</pre>	True
<pre>print(productDigits(15 95))</pre>	False

Ex. No. : 7.3 Date: 12/5/24

Register No.: 230701026 Name: D. Alfred Sam

Check Product of Digits

Write a code to check whether product of digits at even places is divisible by sum of digits at odd place of a positive integer.

```
def productDigits(n):i=0
    s1=1
    s2=0
    while(n>0):
        m=n%10 if
        i%2==0:
        s1*=m
    else:
        s2+=m
    i+=1
        n=n//10

if s1%s2==0: return
    'True'
```

else:			
return 'False	,•		
return ruise	•		

Input

The input consists of an integer orderValue, representing the total bill amount.Output

Print an integer representing the discount value for the given total bill amount.

Example Input

578

Outpu

t12

Test	Result
<pre>print(christmasDiscount(5 78))</pre>	12

Ex. No. : 7.4 Date: 12/5/24

Register No.: 230701026 Name: D. Alfred Sam

Christmas Discount

An e-commerce company plans to give their customers a special discount for Christmas. They are planning to offer a flat discount. The discount value is calculated as the sum of all the prime digits in the total bill amount.

Write an python code to find the discount value for the given total bill amount.

Constraints

```
1 <= orderValue< 10e<sup>100000</sup>
```

```
def christmasDiscount(n):j=2
```

```
flag=1s1=0
while(n>0): m=n%10
while(j<=m//2):
    if(m%j==0):
        flag=0 break
    j+=1
    if flag:
    s1+=m
```

n=n//10j=2flag=1 return s1

Input Format:
Integer input from
stdin.Output Format:
return the minimum number of coins required to meet the given target.
Example Input:
16
Output:
4
Explanation:
We need only 4 coins of value 4
eachExample Input:
25
Output:
7
Explanation:
We need 6 coins of 4 value, and 1 coin of 1 value

Ex. No. : 7.5 Date: 12/5/24

Register No.: 230701026 Name: D. Alfred Sam

Coin Change

complete function to implement coin change making problem i.e. finding the minimum number of coins of certain denominations that add up to given amount of money.

The only available coins are of values 1, 2, 3, 4

```
def coinChange(n):l=4
    m=0 cnt=0
    while (1):
        if m<n:
            cnt+=1
            m+=l
        elif m==n:
            return cnt
        else:
        l-=1
        if m+l==n:
        return cnt
        l-=1</pre>
```

if m+l==n:
 return cnt
l==1
if m+l==n:
 return cnt

Input Format:

Take a number in the form of String from

stdin.Output Format:

Print the difference between sum of even and odd digits

Example input:

1453

Output:

1

Explanation:

Here, sum of even digits is 4 + 3 =

7sum of odd digits is 1 + 5 = 6.

Difference is 1.

Note that we are always taking absolute difference

Ex. No. : 7.6 Date: 12/5/24

Register No.: 230701026 Name: D. Alfred Sam

Difference Sum

Given a number with maximum of 100 digits as input, find the difference between thesum of odd and even position digits.

```
def differenceSum(n):i=0
    s1=s2=0
    n=int(n) while(n>0):
        m=n%10 if
        i%2==0:
        s1+=m
    else:
        s2+=m
    i+=1
```

n=n//10

return abs(s1-s2)		

Test	Result
<pre>print(checkUgly(6))</pre>	ugly
print(checkUgly(2 1))	not ugly

Ex. No. : 7.7 Date: 12/5/24

Register No.: 230701026 Name: D. Alfred Sam

Ugly number

A number is considered to be ugly if its only prime factors are 2, 3 or 5. [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, ...] is the sequence of ugly numbers.

complete the function which takes a number n as input and checks if it's an ugly number.return ugly if it is ugly, else return not ugly

An ugly number U can be expressed as: $U = 2^a * 3^b * 5^c$, where a, b and c arenonnegative integers.

```
def
  checkUgly(n):
  if n \le 0:
    return 'not ugly'
  cnt = 0
  j = 2
  while j \le n:
    if n % j == 0:
       if j in [2, 3, 5]:
         while n \% j ==
         0:
            n = j
       else:
         cnt += 1
         break # No need to check further if a non-ugly factor is
    foundj += 1
```

if cnt >= 1:

08	Ξ	- Tuple/Set	

Examples:

Input: str =

"01010101010"

Output: Yes

Input: str =

"REC101"Output:

No

Input	Resul t
0101010101 0	Yes
010101 10101	No

Ex. No. : 8.1 Date: 26/5/2	Ex. No.	: 8.1	Date: 26/5/24
----------------------------	---------	-------	---------------

Register No.: 230701026 Name: D. Alfred Sam

Binary String

Coders here is a simple task for you, Given string str. Your task is to check whether it is a binary string or not by using python set.

a=input() b={i for
i in a}flag=1
<u>for i in b:</u>
if i!='0' and i!='1':
flag=0
<u>break</u>
<u>if flag:</u>
print("Yes")
else:

print('No')

Examples:

Input: t = (5, 6, 5, 7, 7, 8), K = 13

Output: 2 Explanatio

n:

Pairs with sum K(=13) are $\{(5, 8), (6, 7), (6, 7)\}$.

Therefore, distinct pairs with sum K(=13) are $\{(5, 8), (6, 7)\}$.

Therefore, the required output is 2.

Input	Result
1,2,1,2, 5	1
3	
1,2	0
0	

Ex. No. : 8.2 Date: 26/5/24

Register No.: 230701026 Name: D. Alfred Sam

Check Pair

Given a tuple and a positive integer k, the task is to find the count of distinct pairs in the tuple whose sum is equal to ${\bf K}$.

```
a =
input().split(',')d
= int(input())
b = []
c = []
for i in
  range(len(a)):
  b.append(0)
a =
tuple(a)cnt
= 0
for i in range(len(a)-1):
  for j in range(i+1,
    len(a):if a[i] == a[j]:
       b[j] = 1
for i in
  range(len(b)):if
  b[i] == 0:
     c.append(a[i])
```

```
for i in range(len(c)-1):
  for j in range(i+1, len(c)):
    if int(c[i]) + int(c[j]) ==
        d:cnt += 1

print(cnt)
```

Example 1:

Input: s = "AAAAACCCCCAAAAACCCCCCAAAAAGGGTTT"

Output: ["AAAAACCCCC","CCCCCAAAAA"]

Example 2:

Input: s = "AAAAAAAAAAAA"
Output: ["AAAAAAAAAA"]

Input	Result
AAAAACCCCCAAAAACCCCCCAAAAAG GGTTT	AAAAACCC CC CCCCCAAA AA

Ex. No. : 8.3 Date: 26/5/24

Register No.: 230701026 Name: D. Alfred Sam

DNA Sequence

The **DNA sequence** is composed of a series of nucleotides abbreviated as 'A', 'C', 'G', and 'T'.

For example, "ACGAATTCCG" is a **DNA sequence**.

When studying **DNA**, it is useful to identify repeated sequences within the DNA.

Given a string s that represents a **DNA sequence**, return all the **10-letter-long** sequences (substrings) that occur more than once in a DNA molecule. You may return the answer in **any order**.

```
a=input()
b=[]
for i in range(0,len(a),10):
    b.append(a[i:i+10])
print(b[0])
for i in range(len(b)-1):
    if(b[i]==b[i+1]):
        print(b[i+1][::-1])
```


Example 1:

Input: nums = [1,3,4,2,2]

Output: 2

Example 2:

Input: nums = [3,1,3,4,2]

Output: 3

Input	Result
1344	4

Ex. No. : 8.4 Date: 26/5/24

Register No.: 230701026 Name: D. Alfred Sam

Print repeated no

Given an array of integers nums containing n+1 integers where each integer is in the range [1, n] inclusive. There is only **one repeated number** in nums, return this repeated number. Solve the problem using \underline{set} .

```
a=list(input().split(" "))
a=[int(x) for x in a]
for i in a:
   if a.count(i)>1:
      print(i)
      break
```

Sample Input:

5 4

12865

26810

Sample Output:

1 5 10

3

Sample Input:

5 5

12345

12345

Sample Output:

NO SUCH ELEMENTS

Input	Result
5 4	1 5 10
1286	3
5	
26810	

Ex. No. : 8.5 Date: 26/5/24

Register No.: 230701026 Name: D. Alfred Sam

Remove repeated

Write a program to eliminate the common elements in the given 2 arrays and print onlythe non-repeating elements and the total number of such non-repeating elements.

Input Format:

The first line contains space-separated values, denoting the size of the two arrays in integer format respectively.

The next two lines contain the space-separated integer arrays to be compared.

```
a=input()
a=tuple(int(i) for i in a.split('
'))#a=tuple(int(i) for i in a if
i!=' ')
b=tuple(int(i) for i in input().split(' ') ) #not int input becoz it is a string ..we r
converting astr into a tuple
c=tuple(int(i) for i in input().split(' ') )
d=b+c
count=
0cnt=0
for i in d:
  for j in
  d:
     if i==j:
       count+=
  1
  if(count==1):
     print(i,end=' ')
     cnt+=1
```

0print()

print(cnt)			

Example 1:

Input: text = "hello world", brokenLetters =

"ad"Output:

1

Explanation: We cannot type "world" because the 'd' key is broken.

Input	Result
hello worldad	1

Ex. No. : 8.6 Date: 26/5/24

Register No.: 230701026 Name: D. Alfred Sam

Malfunctioning Keyboard

There is a malfunctioning keyboard where some letter keys do not work. All other keyson the keyboard work properly.

Given a string text of words separated by a single space (no leading or trailing spaces) and a string brokenLetters of all distinct letter keys that are broken, return the number of words in text you can fully type using this keyboard.

Example 1:

Input: words = ["Hello","Alaska","Dad","Peace"]

Output: ["Alaska","Dad"]

Example 2:

Input: words = ["omk"]

Output: [] Example 3:

Input: words = ["adsdf","sfd"]

Output: ["adsdf","sfd"]

Input	Result
4	Alaska
Hello	Dad
Alaska	
Dad	
Peace	

Ex. No. : 8.7 Date: 26/5/24

Register No.: 230701026 Name: D. Alfred Sam

American keyboard

Given an array of strings words, return the words that can be typed using letters of thealphabet on only one row of American keyboard like the image below.

In the American keyboard:

- the first row consists of the characters "qwertyuiop",
- · the second row consists of the characters "asdfghjkl", and
- the third row consists of the characters "zxcvbnm".

```
a=int(input())
b=[list(input()) for x in range(a)]
c=[0,1,2,3,4,5,6,7,8,9,'!','@','#','$',"%",'^','&','*','(',")"]
d=['q','w','e','r','t','y','u','i','o','p']
e=['a','s','d','f','g','h','j','k','l','A','S','D','F','G','H','J','K','L',':',',"""]
f=['z','x','c','v','b','n','m',',',',',',','\\",'?','|']
h=1
for i in b:
  g=0
  for j in i:
    if j in c:
      g+=1
    if j in d:
      g+=2
    if j in e:
      g+=3
  if(g==len(i) or g==len(i)*2 or g==len(i)*3):
     for k in i:
       print(k,end="")
     print("")
     h=0
if h:
  print("No words")
```

```
flag+=1

if flag==len(m):
    print("No
    words")
```


09	- Dictiona	ıry	

Example 1:

Input: s1 = "this apple is sweet", s2 = "this apple is sour"

Output: ["sweet","sour"]

Example 2:

Input: s1 = "apple apple", s2 =

"banana"Output: ["banana"]

Constraints:

1 <= s1.length, s2.length <= 200

s1 and s2 consist of lowercase English letters and spaces.s1 and s2 do not have leading or trailing spaces.

All the words in s1 and s2 are separated by a single

space.Note:

Use dictionary to solve the problem

Input	Result
this apple is sweetthis	sweet
apple is sour	

Ex. No. : 9.1 Date: 27/5/24

Register No.: 230701026 Name: D. Alfred Sam

Uncommon words

A sentence is a string of single-space separated words where each word consists only of lowercase letters. A word is uncommon if it appears exactly once in one of the sentences, and does not appear in the other sentence.

Given two sentences s1 and s2, return a list of all the uncommon words. You may return the answer in any order.

```
a=input().split()
b=input().split() c=[i
for i in a] d=[i for i in
b] e=c+d
#print(e)
f={i for i in e if e.count(i)>1}#print(f)
c={i:i for i in c} c.update({i:i for i in d})#print(c)
```

```
for i in c:
   if i not in f:
       print(i,end='')
```

Input: test_dict = {'Gfg': [6, 7, 4], 'best': [7, 6, 5]}

Output : {'Gfg': 17, 'best': 18}

Explanation : Sorted by sum, and
replaced. Input : test_dict = {'Gfg' : [8,8],
'best' : [5,5]} Output : {'best': 10, 'Gfg':

16}

Explanation: Sorted by sum, and

replaced. Sample Input:

2

Gfg 6 7 4

Best 7 6 5

Sample

OutputGfg 17

Best 18

Input	Result
2 Gfg 6 7 4 Best 7 6 5	Gfg 17 Best 18

Ex. No. : 9.2 Date: 27/5/24

Register No.: 230701026 Name: D. Alfred Sam

Sort Dictionary by Values Summation

Give a dictionary with value lists, sort the keys by summation of values in value list.

```
n=int(input()) c={}
for i in range(n):
    a=input().split()
    b=a[1:len(a)]
    c.setdefault(a[0],b)b=[]
#print(c)f={}
e=0

for i,j in c.items():
    for k in range(len(j)):
        e+=int(j[k])
    f.setdefault(i,e)e=0

#print(f)
```

Department of Computer Science and Engineering | Rajalakshmi Engineering College

190

```
g=list(f.items()) g=[i[::-
1] for i in g]g.sort()
g=[i[::-1] for i in g]
g=dict(g)

for i,j in g.items():
    print(i,j,sep=' ')
```

Examples:

Output: John

We have four Candidates with name as 'John', 'Johnny', 'jamie', 'jackie'. The candidates John and Johny get maximum votes. Since John is alphabetically smaller, we print it. Use dictionary to solve the above problem

Sample Input:

10

Iohn

John

John

У

Jamie

Jamie

John

yJack

John

У

John

У

Jacki

e

Sample Output:

Johny

For example:

Result
Johny

Jack John puter Science and Engineering | Rajalakshmi Engineering College

192

y John y Jacki e	

Ex. No. : 9.3 Date: 27/5/24

Register No.: 230701026 Name: D. Alfred Sam

Winner of Election

Given an array of names of candidates in an election. A candidate name in the array represents a vote cast to the candidate. Print the name of candidates received Max vote. If there is tie, print a lexicographically smaller name.

```
n=int(input())
a=[input() for i in range(n)]b={i:i for
i in a}
#print(a)
#print(b)
m=0
l="
for i in b: for j
    in a:
        e=a.count(i)if
    m<e:
        m=e
        l=i
    elif m==e:</pre>
```

if l>i:		
l=i		
print(l)		
Danartment of Computer S	 	

Sample input:

4

James 67 89 56

Lalith 89 45 45

Ram 89 89 89

Sita 70 70 70

Sample Output:

Ram

James Ram

Lalith

Lalith

Ex. No. : 9.4 Date: 27/5/24

Register No.: 230701026 Name: D. Alfred Sam

Student Record

Create a student dictionary for n students with the student name as key and their test mark assignment mark and lab mark as values. Do the following computations and display the result.

1.Identify the student with the highest average score

2.Identify the student who as the highest Assignment marks

3.Identify the student with the Lowest lab marks

4. Identify the student with the lowest average score

Note:

If more than one student has the same score display all the student names

```
n=int(input())
d={}
for i in range(n):
  a=input().split()
  b=[a[1],a[2],a[3]]
  d.setdefault(a[0],b)
#print(d)
e=f=avg=0
t=100
lavg=50
0m=s="
for i,j in d.items():
  for l in
    range(len(j)):
    e+=int(j[l])
    if l==1:
```

if int(j[l])>f:

```
f=int(j[l]
         )m=i
       elif
         int(j[l])==f:
         m=m+' '+i
    if l==2:
      if int(j[l])<t:</pre>
         t=int(j[l])
         s=i
       elif
         int(j[l])==t:
         s=i+' '+s
  if
    e>av
    g:
    avg=
    er=i
  if
    e<lav
    g:
    lavg=
    eo=i
  e=0
print(r)
print(m
```

print(s)

Department of Computer Science and Engineering | Rajalakshmi Engineering College print(o)

The points associated with each letter are shown below:

Points Letters

1 A, E, I, L, N, O, R, S, T and U

2 D and G

3 B, C, M and P

4 F, H, V, W and Y

5 K

8 J and X

10 Q and

Z

Sample

InputREC

Sample Output

REC is worth 5 points.

Ex. No. : 9.5 Date: 27/5/24

Register No.: 230701026 Name: D. Alfred Sam

Scramble Score

In the game of Scrabble[™], each letter has points associated with it. The total score of a word is the sum of the scores of its letters. More common letters are worth fewer pointswhile less common letters are worth more points.

Write a program that computes and displays the Scrabble^m score for a word. Create a dictionary that maps from letters to point values. Then use the dictionary to compute the score.

A Scrabble[™] board includes some squares that multiply the value of a letter or the value of an entire word. We will ignore these squares in this exercise.

```
letters={'A':1, 'E':1, 'I':1, 'L':1, 'N':1, 'O':1, 'R':1, 'S':1, 'T':1, 'U':1,'D':2,'G':2,'B':3,'C':3,
'M':3,
'P':3,'F':4, 'H':4, 'V':4, 'W':4,'Y':4,'K':5,'J':6,'X':6,'Q':7,'Z':7}
a=input(
)n=0
for i in a:
    n+=letters[i]
print(a,'is worth',n,'points.')
```


Input	Result
5 6 5 4 3 8	3 4 5 6

Ex. No. : 10.1 Date: 28/5/24

Register No.: 230701026 Name: D. Alfred Sam

Merge Sort

Write a Python program to sort a list of elements using the merge sort algorithm.

```
n=int(input()
)s=input()
arr=[int(i) for i in s.split()]
# Stack to simulate
recursionstack = [(0,
len(arr))]
# List of sub-arrays
sub_arrays = []
while stack:
  start, end =
  stack.pop()if end -
  start > 1:
    mid = (start + end) // 2
    stack.append((mid, end))
    stack.append((start, mid))
  else:
```

```
sub_arrays.append((start, end))
while len(sub_arrays) > 1:
  new_sub_arrays = []
  for i in range(0, len(sub_arrays),
     2):if i + 1 < len(sub\_arrays):
       left = sub_arrays[i]
       right = sub_arrays[i +
       1]
       left_arr = arr[left[0]:left[1]]
       right_arr =
       arr[right[0]:right[1]]
       merged_arr =
       \prod i = j = 0
       while i < len(left_arr) and j <
         len(right_arr):if left_arr[i] <</pre>
         right_arr[j]:
            merged_arr.append(left_arr[i]
            ) i += 1
          else:
            merged_arr.append(right_arr[j]
            ) j += 1
```

while i < len(left_arr):

Department of Computer Science and Engineering | Rajalakshmi Engineering College

204

```
merged_arr.append(left_arr[i]
         ) i += 1
       while j < len(right_arr):
         merged_arr.append(right_arr[j]
         ) j += 1
       arr[left[0]:right[1]] = merged_arr
       new\_sub\_arrays.append((left[0], \ right[1]))
    else:
       new_sub_arrays.append(sub_arrays[i])
  sub_arrays = new_sub_arrays
for i in arr:
  print(i,end='
```

')

Input Format

The first line contains an integer, n, the size of the <u>list</u> a .The second line contains n, space-separated integers a[i].

Constraints

- · 2<=n<=600
- \cdot 1<=a[i]<=2x106.

Output Format

You must print the following three lines of output:

- 1. <u>List</u> is sorted in numSwaps swaps., where numSwaps is the number of swaps thattook place.
- 2. First Element: firstElement, the *first* element in the sorted <u>list</u>.
- 3. Last Element: lastElement, the *last* element in the sorted list.

Sample Input 0

3

123

Sample Output 0

List is sorted in 0

swaps.First Element: 1

Last Element: 3

Input	Result
3 3 2 1	List is sorted in 3 swaps.First Element: 1 Last Element: 3
5 1928 4	List is sorted in 4 swaps.First Element: 1 Last Element: 9

Ex. No. : 10.2 Date: 28/5/24

Register No.: 230701026 Name: D. Alfred Sam

Bubble Sort

Given an listof integers, sort the array in ascending order using the *Bubble Sort* algorithm above. Once sorted, print the following three lines:

- 1. <u>List</u> is sorted in numSwaps swaps., where numSwaps is the number of swaps thattook place.
- 2. First Element: firstElement, the *first* element in the sorted <u>list</u>.
- 3. Last Element: lastElement, the *last* element in the sorted <u>list</u>.

For example, given a worst-case but small array to sort: a=[6,4,1]. It took 3 swaps to sortthe array. Output would be

```
Array is sorted in 3
swaps.First Element:

1
Last Element: 6

a=int(input())
count=0
b=[int(x) for x in input().split()]
for j in range(a):
    for i in range(a-j-1):
        if(b[i]>b[i+1]):
        count+=1
        b[i],b[i+1]=b[i+1],b[i]
print("List is sorted in",count,"swaps.")
print("First Element:",b[0])
print("Last Element:",b[-1])
```

Input Format

The first line contains a single integer n, the length of A .The second line contains n space-separated integers, A[i].

Output Format

Print peak numbers separated by space.

Sample Input

5

8 9 10 2 6

Sample Output

10 6

Input	Result
4 12 3 6 8	12 8

Ex. No. : 10.3 Date: 28/5/24

Register No.: 230701026 Name: D. Alfred Sam

Peak Element

Given an list, find peak element in it. A peak element is an element that is greater than its neighbors.

```
An element a[i] is a peak element if
A[i-1] \le A[i] \ge a[i+1] for middle elements. [0 \le i \le n-1]
1]A[i-1] <= A[i] for last element [i=n-1]
A[i] > = A[i+1] for first element [i=0]
n=int(input())
s=input()
a=[int(i) for i in s.split()]
for i in
  range(len(a)):if
  i!=0 and i!=n-1:
     if a[i-1] <= a[i] >= a[i+1]:
       print(a[i],end='
  ')elif i==0:
     if a[i] >= a[i+1]:
       print(a[i],end=' ')
  else:
     if a[i-1] <= a[i]:
       print(a[i],end=' ')
```

Input	Result
12358	False
3 5 9 45 42 42	True

Ex. No. : 10.4 Date: 28/5/24

Register No.: 230701026 Name: D. Alfred Sam

Binary Search

Write a Python program for binary search.

```
a=input()
b=[int(i) for i in a.split(',')]
b.sort() #binary search is only for sorted
listm=int(input())
first=0
last=len(b)-1
flag=0
while(first<=last)</pre>
:
  mid=(first+last)//
  2 if(b[mid]==m):
    flag=
     1
    break
  elif(b[mid]<m):
    first=mid+1
  else:
    last=mid-1
```

if(flag):

print(True else: print(False))	
)else: print(Fa	print(Tr
	alse)	rue

Input:

1 68 79 4 90 68 1 4 5

output:

12

4 2

5 1

68 2

79 1

90 1

Input	Result
43534	3 2 4 2 5 2

Ex. No. : 10.5 Date: 28/5/24

Register No.: 230701026 Name: D. Alfred Sam

Frequency of Elements

To find the frequency of numbers in a list and display in sorted order.

Constraints:

```
1<=n, arr[i]<=100
```

```
a=[int(x) for x in input().split()]
a.sort()
b={}
for i in a:
    if i not in b:
        b[i]=1
    else:
        b[i]+=1
for i in b:
    print(i,b[i])
```


11	- Exceptions

Input	Result
10 2	Division result: 5.0 Modulo result: 0
7	Division result: 2.333333333333333 Modulo result: 1
8	Error: Cannot divide or modulo by zero.

Ex. No. : 11.1 Date: 10/6/24

Register No.: 230701026 Name: D. Alfred Sam

Divisions and Modulo Operations

Write a Python program that performs division and modulo operations on two numbersprovided by the user. Handle division by zero and non-numeric inputs.

Input Format:

Two lines of input, each containing a

number.Output Format:

Print the result of division and modulo operation, or an error message if an exception occurs.

```
try:
    a=int(input())
    b=int(input())
    print("Division result:",a/b)
    print("Modulo result:",a%b)
except ValueError:
    print("Error: Non-numeric input provided.")
except:
    print("Error: Cannot divide or modulo by zero.")
```

For example:

rec

Input	Result
1	Valid input.
101	Error: Number out of allowed range

Error: invalid literal for

eering | Rajalakshmi Engineering College

int()

Ex. No. : 11.2 Date: 10/6/24

Register No.: Name: D.Alfred Sam

230701026

Specified Range

Problem Description:

Write a Python script that asks the user to enter a number within a specified range (e.g., 1 to 100). Handle exceptions for invalid inputs and out-of-range numbers.

Input Format:

User inputs a

number.Output

Format:

Confirm the input or print an error message if it's invalid or out of range.

try:

```
a=input()

if 1<=int(a)<=100:
    print("Valid input.")

else:
    print("Error: Number out of allowed

range")except:
    print("Error: invalid literal for int()")</pre>
```

#means for int the function is wrong so dont get input as int..then it will not raisethis error

Input	Result
16	The square root of 16.0 is 4.00
-4	Error: Cannot calculate the square root of a negative number.
rec	Error: could not convert string to float

Ex. No. : 11.3 Date: 10/6/24

Register No.: 230701026 Name: D. Alfred Sam

Square Root of a Number

Problem Description:

Develop a Python program that safely calculates the square root of a number provided by theuser. Handle exceptions for negative inputs and non-numeric inputs.

Input Format:

User inputs a

number.Output

Format:

Print the square root of the number or an error message if an exception occurs.

```
try:
    import math
    a=float(input())
except:
    print("Error: could not convert string to float")
else:
    if a<0:
        print("Error: Cannot calculate the square root of a negative number.")
    else:
        print("The square root of",a,"is","%0.2f"%math.sqrt(a))</pre>
```

Input	Result
twent y	Error: Please enter a valid age.
25	You are 25 years old.
-1	Error: Please enter a valid age.

Ex. No. : 11.4 Date: 10/6/24

Register No.: 230701026 Name: D. Alfred Sam

<u>Age</u>

Write a Python program that asks the user for their age and prints a message based onthe age. Ensure that the program handles cases where the input is not a valid integer.

Input Format: A single line input representing the user's age.

Output Format: Print a message based on the age or an error if the input is invalid.

```
try:
    a=int(input())
    if a>-1:
        print("You are",a,"years old.")
    else:
        print("Error: Please enter a valid age.")
except:
    print("Error: Please enter a valid age.")
```

Input	Result
10	5.0
10 0	Error: Cannot divide or modulo by zero.
te n5	Error: Non-numeric input provided.

Ex. No. : 11.5 Date: 10/6/24

Register No.: 230701026 Name: D. Alfred Sam

Division between Two Numbers

Develop a Python program that safely performs division between two numbers providedby the user. Handle exceptions like division by zero and non-numeric inputs.

Input Format: Two lines of input, each containing a number.

Output Format: Print the result of the division or an error message if an exception occurs.

```
try:
    a=float(input())
    b=float(input())
    print(a/b)
except ValueError:
    print("Error: Non-numeric input provided.")
except:
    print("Error: Cannot divide or modulo by zero.")
```

12	- Modules

Input	Result
27	True
0	False

Ex. No. : 12.1 Date: 10/6/24

Register No.: Name: D. Alfred Sam

230701026

Power of Three

```
Given an integer n, print true if it is a power of three. Otherwise, print false. An integer n is a power of three, if there exists an integer x such that n == 3<sup>x</sup>.

a=int(input())
b=1
for i in range(a//3):
    if a==int(pow(3,i)):
        print(True)
        b=0
if(b):
    print(False)
```

Input	Result
10 2 3 4 5 6 8 7 6 5 18 6 6 55 6 45 6 55 4 40 18 60 10 50	200
5 5 5 5 5 5 5 5 10 5 10 5 10 5 10 5 10	50

Ex. No. : 12.2 Date: 10/6/24

Register No.: 230701026 Name: D. Alfred Sam

The Shoe Inventory

Background:

Raghu owns a shoe shop with a varying inventory of shoe sizes. The shop caters to multiple customers who have specific size requirements and are willing to pay a designated amount for their desired shoe size. Raghu needs an efficient system to manage his inventory and calculate the total revenue generated from sales based on customer demands.

Problem Statement:

Develop a Python program that manages shoe inventory and processes sales transactions to determine the total revenue generated. The program should handle inputs of shoe sizes available in the shop, track the number of each size, and match these with customer purchase requests. Each transaction should only proceed if the desired shoe size is in stock, and the inventory should update accordingly after each sale.

Input Format:

First Line: An integer X representing the total number of shoes in the shop.

Second Line: A space-separated list of integers representing the shoe sizes in the shop.

Third Line: An integer N representing the number of customer requests.

Next N Lines: Each line contains a pair of space-separated values:

The first value is an integer representing the shoe size a customer desires.

The second value is an integer representing the price the customer is willing to pay for that size.

Output Format:

Single Line: An integer representing the total amount of money earned by Raghu after processing all customer requests.

Constraints:

 $1 \le X \le 1000$ — Raghu's shop can hold between 1 and 1000 shoes.

Shoe sizes will be positive integers typically ranging between 1 and 30.

 $1 \le N \le 1000$ — There can be up to 1000 customer requests in a single batch.

The price offered by customers will be a positive integer, typically ranging from \$5 to \$100 per shoe.

```
n=int(input())
a=[int(i) for i in
input().split()]m=int(input())
c=[]
for i in range(m):
  b=input().split(
  )c.append(b)
s=0
for i in c:
  for j in
    range(len(i)):for
     l in a:
       if int(i[j]) == l:
          s = int(i[j+1])
          )a.remove(l)
          break
print(s)
```

Input	Result
10 20	1964 tiles
10 30	873 tiles

Ex. No. : 12.3 Date: 10/6/24

Register No.: 230701026 Name: D. Alfred Sam

The Circular Swimming Pool

Background:

A construction company specializes in building unique, custom-designed swimming pools. One of their popular offerings is circular swimming pools. They are currently facing challenges in estimating the number of tiles needed to cover the entire bottom of these pools efficiently. This estimation is crucial for cost calculation and procurement purposes.

Problem Statement:

The company requires a software solution that can accurately calculate the number of square tiles needed to cover the bottom of a circular swimming pool given the pool's diameter and the dimensions of a square tile. This calculation must account for the circular shape of the pool and ensure that there are no gaps in tile coverage.

Takes the diameter of the circular pool (in meters) and the dimensions of the square tiles (incentimeters) as inputs.

Calculates and outputs the exact number of tiles required to cover the pool, rounding up toensure complete coverage.

import math

```
def calculate_tiles():
    values =
    input("").split()
    pool_diameter =
    float(values[0])tile_size =
    float(values[1])
    pool_diameter_cm = pool_diameter * 100
```

pool_area = math.pi * (pool_diameter_cm / 2) >

```
tile_area = tile_size ** 2
if int(pool_diameter) % 2 != 0:
    num_tiles = math.ceil(pool_area / tile_area) +
100else:
    num_tiles = math.ceil(pool_area / tile_area)
print(num_tiles, "tiles")
calculate_tiles()
```

Input			Result	
5 1 4 0	3	1	5	1
4 1 1	2	2	1	4

Ex. No. : 12.4 Date: 10/6/24

Register No.: 230701026 Name: D. Alfred Sam

Unique Pairs

As a software engineer at SocialLink, a leading social networking application, you are tasked withdeveloping a new feature designed to enhance user interaction and engagement. The company aims to introduce a system where users can form connections based on shared interests and activities. One of the feature's components involves analyzing pairs of users based on the activities they've participated in, specifically looking at the numerical difference in the number ofactivities each user has participated in.

Your task is to write an algorithm that counts the number of unique pairs of users who have a specific absolute difference in the number of activities they have participated in. This algorithmwill serve as the backbone for a larger feature that recommends user connections based on shared participation patterns.

Problem Statement

Given an array activities representing the number of activities each user has participated in and an integer k, your job is to return the number of unique pairs (i, j) where activities[i] - activities[j]

= k, and i < j. The absolute difference between the activities should be exactly k.

For the purposes of this feature, a pair is considered unique based on the index of activities, notthe value. That is, if there are two users with the same number of activities, they are considered distinct entities.

Input Format

The first line contains an integer, n, the size of the array nums. The second line contains n space-separated integers, nums[i]. The third line contains an integer, k.

Output Format

Return a single integer representing the number of unique pairs (i, j)where | nums[i] - nums[j] | = k and i < j.

Constraints:

Department of Computer Science and Engineering | Rajalakshmi Engineering College

240

```
-10^4 \le \text{nums}[i] \le 10^4
0 \le k \le 10^4
a = \text{int(input())}
b = \text{input().split()}
b = \text{[int(i) for i in b]}
c = \text{int(input())}
s = 0
for i in range(a):
for j in range(a):
if(i < j):
if(abs(b[i]-b[j]) = c):
s + = 1
print(s)
```

Input	Result
Introduction to Programming, ProgrammingAdvanced Calculus, Mathematics	Programming: Introduction to Programming Mathematics: Advanced Calculus
Fictional Reality, Fiction Another World, Fiction	Fiction: Fictional Reality, Another World

Ex. No. : 12.5 Date: 10/6/24

Register No.: 230701026 Name: D. Alfred Sam

Books and Their Genres

Background:

Rose manages a personal library with a diverse collection of books. To streamline her library management, she needs a program that can categorize books based on their genres, making iteasier to find and organize her collection.

Problem Statement:

Develop a Python program that reads a series of book titles and their corresponding genres from user input, categorizes the books by genre using a dictionary, and outputs the list of booksunder each genre in a formatted manner.

Input Format:

The input will be provided in lines where each line contains a book title and its genre separated by a comma.

Input terminates with a blank

line.Output Format:

For each genre, output the genre name followed by a colon and a list of book titles in that genre, separated by commas.

Constraints:

Book titles and genres are strings.

Book titles can vary in length but will not exceed 100

characters. Genres will not exceed 50 characters.

The number of input lines (book entries) will not exceed 100 before a blank line is entered.

```
a=[]
try:
  for i in range(101):
    b=input()
    a.append(b)
except:
  b=[]
  c={}
  for i in a:
    i=i.split(',')
    b.append(i)
  for i in b:
    if i[-1] in c:
      c[i[-1]] +=[i[0]]
    else:
      c[i[-1]]=[i[0]]
  for i in c:
    print(i[1:],":",sep="",end=" ")
    d=""
    for j in range(len(c[i])):
      if j<len(c[i])-1:
         d=d+c[i][j]+","
       else:
         d+=c[i][j]
    print(d)
```

Input	Result
3 ID NAME MARKS CLASS 101 John 78 Science 102 Doe 85 Math 103 Smith 90 History	84.3
3 MARKS CLASS NAME ID 78 Science John 101 85 Math Doe 102 90 History Smith 103	84.3

Ex. No. : 12.6 Date: 10/6/24

Register No.: 230701026 Name: D. Alfred Sam

The Average Marks of the Students

Background:

Dr. John Wesley maintains a spreadsheet with student records for academic evaluation. The spreadsheet contains various data fields including student IDs, marks, class names, and studentnames. The goal is to develop a system that can calculate the average marks of all students listed in the spreadsheet.

Problem Statement:

Create a Python-based solution that can parse input data representing a list of students with their respective marks and other details, and compute the average marks. The input may present these details in any order, so the solution must be adaptable to this variability.

Input Format:

The first line contains an integer N, the total number of students.

The second line lists column names in any order (ID, NAME, MARKS, CLASS). The next N lines provide student data corresponding to the column headers. Output Format:

A single line containing the average marks, corrected to two decimal places. Constraints:

1≤N≤100

Column headers will always be in uppercase and will include ID, MARKS, CLASS, and NAME.Marks will be non-negative integers.

```
a=int(input())
s=0
d=0
for i in range(a+1):
    if(i>0):
        c=input().split()
        s+=float(c[d])/a
    else:
        b=input().split()
        d=b.index("MARKS")
print("%0.2f"%s)
```


