인공 지능과 기계 학습

박 경수 전주대학교 게임콘텐츠학과

서론

- 지능
 - 상황을 인식하고 판단하는 기능
 - 자연 지능 / 인공 지능
- 인공 지능
 - 지능을 구현한 컴퓨터 시스템
 - 논리 기반 시스템 / 데이터(경험) 기반 시스템
- 기계 학습
 - 기계가 경험을 통하여 스스로 배우는 알고리즘
 - 인공 지능 구현의 한 방법

목차

- 지도 학습
- 비지도 학습
- 강화 학습

지도 학습(supervised learning)

- 훈련 데이터로부터 함수를 유추
 - 출력을 알고 있는 데이터로 학습
 - 출력을 모르는 데이터의 출력을 유추

- 회귀(regression)
 - 우리 아이의 키는?
 - 투자의 손익

- 분류(classification)
 - 개, 고양이 판별
 - 글자 인식
 - 확률로 이해하고 회귀 문제로 접근

0	-	2		Ч					9
0	Ì	þ	47)	4	δ	6	1	S	
0	-	2	ტ	ፓ	5	S		8	9
0	-	N	M	4	5	6	7	8	9
0	/	2	ρ	4	5	G			9
0		9						8	9
3	1	2	3	J	3	6	1	8	9
0	/	Z	3	4	S	6	7		9
		7					7	8	9
0	1	2	Ŋ	4	5	6	7	8	ප

자료

• 실험이나 관측으로 얻은 자료

입력	X_1	X_2	• • •	X_n
출력	Y_1	Y_2	• • •	Y_n

- 자료에는 예측할 수 없는 다양한 잡음(noise)이 포함된다
 - 환경 요인, 측정 오차

- 입력 $X = (x_1, ..., x_p)$, 출력 $Y = (y_1, ..., y_q)$
- 예
 - 15세 자녀의 키
 - 입력: 엄마의 키, 아빠의 키, 가계 소득
 - 출력: 아들의 키
 - 내일의 날씨
 - 입력: 오늘의 온도, 습도, 바람의 속도, 바람의 방향
 - 출력: 내일 비가 올 확률
 - 숫자 인식
 - 입력: $p = 28 \times 28 = 784$ pixel의 색상
 - 출력: q = 10, (숫자가 0일 확률, ..., 숫자가 9일 확률)

학습의 목적

• 가정:

$$Y = f(X) + \alpha$$

- α: 잡음
- 목표:

f(X)의 근사식 $\hat{f}(X)$ 찾기

통계적 방법

- $\hat{f}(X)$ 의 형태를 추정
 - 일차 함수, 다항 함수, ...
- 최소 제곱법
 - 제곱 오차(squared error)

$$L = \sum_{i=1}^{N} \| Y_i - \hat{f}(X_i) \|^2$$

• 오차를 최소로 하는 $\hat{f}(X)$ 를 구한다

보기

$\boldsymbol{\mathcal{X}}$	0.08	0.13	•••	0.99
у	0.16	0.17	•••	0.66

- $\hat{f}(x) = ax + b$ 라 추정
- 오차의 제곱의 합 $L = (0.16 0.08a b)^2 + \dots + (0.66 0.99a b)^2$
- L을 최소로 하는 a와 b를 구한다

인공 신경망(artificial neural network)

• 신경망을 구성하여 학습

최소 제곱법의 인공 신경망 표현

	아빠의 $f(x_1)$	0.17	0.16	•••	0.18
	엄마의 키 (x_2)	0.15	0.16	•••	0.16
	가계 소득 (x_3)	0.30	0.45	•••	0.28
	아들의 키 (y_1)	0.18	0.17	•••	0.19
$\begin{pmatrix} x_1 \end{pmatrix}$	딸의 키 (y_2)	0.16	0.16	•••	0.17

아들의 키 $b=0, w_1=0.6, w_2=0.3, w_3=0.1$ 이라 하면 $0.17\cdot w_1+0.15\cdot w_2+0.30\cdot w_3=0.177$

오차: 0.003

단층 퍼셉트론 – 초기 모델

- w_i: 각 요소의 비중
- b: 상수항
- σ: 활성 함수
 - 비선형, 증가, 미분가능

아빠의 키 $(x_1) $	0.17	0.16	•••	0.18
엄마의 키 (x_2)	0.15	0.16	•••	0.16
가계 소득(x_3)	0.30	0.45	•••	0.28
아들의 키 (y_1)	0.18	0.17	•••	0.19
딸의 키 (y_2)	0.16	0.16	•••	0.17

아들의 키와 딸의 키

목표

• y_1 을 가장 잘 근사시키는 b와 w_i 는?

x_1	<i>x</i> ₁₁	<i>x</i> ₁₂	•••	x_{1n}
x_2	<i>x</i> ₂₁	x_{22}	•••	x_{2n}
x_3	<i>x</i> ₃₁	x_{32}	•••	x_{3n}
y_1	y ₁₁	y_{12}	•••	y_{1n}

- $\bullet \ \hat{y}_{1i} = \sigma(b + w_1 x_{1i} + w_2 x_{2i} + w_3 x_{3i})$
- 오차 $|y_{1i} \hat{y}_{1i}|$
- $L = \frac{1}{2} \sum_{i=1}^{n} (y_{1i} \hat{y}_{1i})^2$ 을 최소로 하는 b와 w_i

경사 하강법(gradient descent)

- 함수 f 의 극소점
- 알고리즘
 - $p \leftarrow p \lambda \cdot \nabla f(p)$ 를 반복
 - $\nabla f(p)$ 는 f의 그래디언트

그래디언트(gradient)

- 함수 $f: \mathbb{R}^n \to \mathbb{R}$
- 점 $x = (x_1, ..., x_n)$ 에서 f의 그래디언트

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right)$$

- 함수가 가장 빨리 증가하는 방향
- 보기:

$$f(x_1, x_2) = x_1^2 x_2$$

$$\nabla f(x_1, x_2) = (2x_1 x_2, x_1^2)$$

• 그래디언트 벡터

•
$$z = f(x, y)$$

- 경사 하강법
 - $p \leftarrow p \lambda \cdot \nabla f(p)$

단층 퍼셉트론

- 훈련 집합 $\{(X_1, Y_1), ..., (X_n, Y_n)\}$
- 변수 b, w₁, w₂, w₃
- 근사식 $\widehat{Y}_j = \sigma(b + \sum w_i x_{ij})$ $= \sigma(b + WX_i)$
- 오차의 제곱의 합 $\sum_{j} \| \sigma(b + \sum_{i} w_{i} x_{ij}) Y_{j} \|^{2}$
- 경사 하강법

다층 퍼셉트론

심층 학습(deep learning)

- 은닉층이 여럿인 신경망을 사용하는 기계 학습
- 다층 퍼셉트론을 포함한 다양한 층을 포함
- CNN, RNN

이미지 인식(분류)

- 합성곱 신경망(CNN, convolutional neural network)
 - 심층 학습
 - 합성곱(convolution)을 사용
 - 낮은 오류율

합성곱(convolution)

0	0	0
1	1	1
0	0	0

 0
 1
 0

 0
 1
 0

 0
 1
 0

수평선 찾기

수직선 찾기

1	0	0
0	1	0
0	0	1

 0
 0
 1

 0
 1
 0

 1
 0
 0

대각선 찾기

대각선 찾기

0.2	0.2	0.2	0.2	0.2
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

*

0.2	0	0	0	0
0.2	0	0	0	0
0.2	0	0	0	0
0.2	0	0	0	0
0.2	0	0	0	0

합성곱 신경망 (CNN, convolutional neural network)

• 합성곱에 의한 정보 추출 과정

MNIST

- NIST(National Institute of Standards and Technology)가 미국 우편번호에서 수집한 손글씨
 - 28 × 28 pixel
 - 훈련용 6만개
 - 검증용 1만개
- 분석 역사
 - 통계적 방법 99.48%(2007)
 - 인공 신경망 99.65%(2010)
 - 합섭곱 신경망 99.77%(2012)

0	/	2	_	-	7		1	8	9
0	-	J	47)	4	5	6	1	8	9
0	-	2	ტ	7	6	ی	ተ	8	9
0	_				5	J	7	_	-
0	\	2	φ	4	5	9		8	9
0	પ	3	ß	Ŧ	5	6	7	8	9
3	1	2	M	J	3	6	1	8	9
0	\	Z	ര	4	ያ	9	7	8	4
0	Ī				5		7	8	9
0	1	2	3	4	5	6	7	8	ප

MCDNN

- 합성곱 신경망
- 1x29x29-20C4-MP2-40C5-MP3-150N-10N DNN
 - 변수 개수 ≈ 18만

이미지 인식률

ILSVRC 우승 알고리즘 - 오류율(%)

RNN(recurrent neural network)

• 작곡, 소설

인공 신경망의 장단점

- 장점
 - 정확도가 높다
 - 스스로 학습한다.
- 단점
 - 너무 복잡하여 인간이 이해하기 어렵다
 - ResNet은 변수가 6천만개인 함수의 극소점을 찾는다
 - 오류가 있어도 이유를 알기 어렵다
 - 비용(하드웨어, 시간)이 너무 커서 접근이 어렵다
 - 이미 발표된 네트워크는 따라해 볼 수 있으나
 - 새로운 네트워크 개발에는 시간의 제약이 따른다

관련 분야

- 인공 신경망의 이해 및 설계
 - 미분, 벡터, 행렬, 확률, 통계
 - 컴퓨터 프로그래밍
- 인공 신경망을 이용한 자료 분석
 - 컴퓨터 프로그래밍
 - 약간의 수학적인 지식
 - 다양한 분야에서 이용되고 있음

인공 신경망의 문제들

- 네트워크의 이해
 - 구조 및 동작
- 인간의 개입을 최소화하는 자동화 알고리즘
 - 현재는 인간이 구조를 설계하고 컴퓨터는 계산만 한다
- 알고리즘의 진화
 - 성능이 좋은 알고리즘으로 스스로 진화

비지도 학습(unsupervised learning)

• 미지의 자료를 그룹으로 분류

강화 학습(reinforcement learning)

- 최적의 보상을 얻는 행동을 찾아가는 기계 학습 방법
 - Cart Pole
- 실제 경험이나 모의 실험으로 획득한 자료로 반복 학습
 - 올해는 밭에 무엇을 심을까?
 - 우산을 가지고 갈까?
 - 자동차는 어느 방향으로?
 - 어디에 돌을 놓을까?

격자 세계

• 이득이 가장 큰 방향은 어디인가?

+20			
	-5 ↑		
-5 ←	_	→ -5	
	_ ↓ _ -5		
			+30

행위자와 환경

- 행위자(agent)
 - 행동 주체
 - 각 상태에서 행동 선택
- 환경(environment)
 - 행위자의 행동에 대한 보상 제공
 - 행위자의 행동에 대하여 다음 상태 결정

변수

- 상태(state)
- 행동(action)
- 보상(reward)
 - 행동에 대한 보상

예

- 올해는 밭에 무엇을 심을까?
 - 상태 예상 강수량, 예상 기온, 가격
 - 행동 작물 선택
 - 보상 수확(소득) / 비용(손해)
- 어디에 돌을 놓을까?
 - 상태 돌이 놓인 위치
 - 행동 –
 - 보상 종료 후 승패
- 자동차는 어느 방향으로?

마르코프 결정 과정 (MDP, Markov decision process)

- 의사결정을 위한 수학적 모델
- 현 상태와 행동이 다음 상태와 보상을 결정
- $S_0 \xrightarrow{A_0} R_1$, $S_1 \xrightarrow{A_1} R_2$, $S_2 \longrightarrow$
 - S_t 상태
 - *A_t* 행동
 - R_t 보상

MDP

- S 상태의 집합
- # 행동의 집합
 - $\mathcal{A}(s)$ 상태 s에서 취할 수 있는 행동의 집합
- \mathcal{R} 보상의 집합
 - $\mathcal{R}(s,a)$ 상태 s에서 행동 a를 취했을 때 얻는 보상의 집합
- $p(s', r \mid s, a) = \Pr(S_t = s', R_t = r \mid S_{t-1} = s, A_{t-1} = a)$
 - 상태 s에서 행동 a를 취했을 때 상태 s'이 되고 보상 r을 얻을 확률

참고 대문자: 변수 소문자: 값

에피소드(episode)

• 행위자와 환경의 상호작용이 완료되는 과정

•
$$S_0 \xrightarrow{A_0} R_1$$
, $S_1 \xrightarrow{A_1} R_2$, $S_2 \xrightarrow{A_2} \cdots \xrightarrow{A_{T-1}} R_T$, S_T

반환(return)

- 각 타임 스텝에서 에피소드가 종료될 때까지 얻는 보상의 총합
- $G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-t-1} R_T$
 - γ 할인율(discount rate)
 - 미래에 얻을 이익을 현재 가치로 환산하기 위한 비율
 - $0 < \gamma \le 1$

격자 세계

• 에피소드

•
$$S_0 \xrightarrow{A_0} R_1$$
, $S_1 \xrightarrow{A_1} R_2$, $S_2 \xrightarrow{A_2} R_3$, $S_3 \xrightarrow{A_3} R_4$, S_4

- 할인율
 - $\gamma = 0.9$
- 반환

•
$$G_1 = ?$$

정리

- 상태, 행동, 보상, 에피소드, 반환, 할인율
- 확률적으로 결정되는 것들은 무엇인가?
- 올해는 밭에 무엇을 심을까?
 - 콩을 10개 심으면 몇 개의 싹이 틀까?
- 어디에 돌을 놓을까?
 - 전에 비슷한 상황이 있었는데 이번에도 결과가 같을까?

정책(policy)

- 행위자가 행동을 선택하는 방법
- $\pi(a|s) = \Pr(A_t = a \mid S_t = s)$
 - 상태 s에서 정책 π 를 취할 확률
- 예
 - 결정적 정책
 - $\pi(a|s) = 0 \text{ or } 1$
 - 랜덤 정책
 - $\pi(a|s)$ 가 균일

상태 가치 함수

- 상태 가치
 - 정책에 의하여 행동을 선택할 경우 각 상태의 가치
- 정책 π 에 대한 상태 가치 함수
 - $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s]$
 - 에피소드의 반환의 기댓값

격자 세계

• 랜덤 정책을 취할 때 각 상태의 가치

0	-14	-20	-22
-14	-18	-20	-20
-20	-20	-18	-14
-22	-20	-14	0

• 최적의 정책을 취할 때 각 상태의 가치

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

벨만 방정식(Bellman equation)

• 벨만 방정식

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

최적 가치 함수와 최적 정책

- 최적 가치 함수
 - 상태의 최대 가치
 - $v_*(s) = \max_{\pi} v_{\pi}(s)$
- 최적 정책
 - 가장 우수한 정책 π_*
 - $v_{\pi_*}(s) = v_*(s)$

$$\gamma = 1$$

최적 가치

0	-1	-2	-3
-1	-2	-3	-2
-2	-3	-2	-1
-3	-2	-1	0

Dynamic Programming

- 최적화 문제를 해결하는 것
 - 가장 우수한 정책 찾기
- 장점
 - 거의 정확한 값을 계산할 수 있다
- 단점
 - 모든 경우의 수를 생각해야 한다
 - 시간의 한계
 - 컴퓨터 메모리의 한계
 - 바둑에서 상태의 개수 ≈ 361!

몬테 카를로 방법 Monte Carlo Methods

- v_{π} 의 근삿값
 - 표본을 추출하여 평균으로 계산

 $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$ 모든 에피소드에 대한 반환의 평균을 계산

알파고

- 가치가 큰 수(행동)을 선택
- 모든 수를 시도해 볼 수는 없다
- 이길 확률이 높은 그림과 유사한 그림을 만드는 수들을 시도해 본다
 - 합성곱 신경망
- 역사
 - 알파고 리(2016)
 - 이세돌과 대국
 - 알파고 마스터(2017)
 - 프로기사와 대국에서 60연승
 - 알파고 제로(2017)
 - 기존 기보에 대한 지식없이 바둑 규칙만으로 스스로 발전

강화 학습의 현재

- 상태의 가치를 모두/정확히 알 수 없다
 - 상태가 너무 많다
- 어떤 행동을 시도해 볼 것인가?
 - 확률에 의하여 결정된다
 - 불확실성이 존재한다