Simmetrie #GAL

Definizione(simmetria rispetto a un sottospazio affine):

sia
$$S = P_0 + H \subseteq R^n$$
 sottospazio affine

la funzione
$$\partial_{S}$$
: R^{n} -

$$>R^n$$
 definita da $\partial_S(p) = p - 2\pi_{H^{\perp}}(p-p_0)$

(caso speciale S =
$$\{p_0\}$$
 => H = $\{\underline{0}\}$ => $\partial_S(p)$ = $2p_0$ - p)

∂_S è detta

simmetria rispetto a S

Una quadrica Q è simmetrica rispetto a S se $\partial_{S}(Q) = Q$ cioè: $\underline{x} \in Q <=>$ $\partial_{\mathsf{C}}(\underline{\mathsf{x}}) \in \mathsf{Q}$

Definizione(simmetrie di quadriche a centro):

$$Q: \underline{x}^{t} A \underline{x} + 2 \underline{b}^{t} \underline{x} + c = 0$$

$$Q: \underline{x}^t A \underline{x} + 2\underline{b}^t \underline{x} + c = 0 \qquad \qquad v_0 \in \mathbb{R}^n \text{ un centro } (Av_0 = -\underline{b}) \qquad \quad \{u_1, \, ..., \, u_n\}$$

base ortonormale di ${\ensuremath{\mathsf{R}}}^{\ensuremath{\mathsf{n}}}$ di autovettori di A

 $S = (\underline{u_1}, ..., \underline{u_n})$ cambio coordinate $\underline{x} = S\underline{z} + v_0$ trasforma l'equazione in forma canonica metrica

$$x_1 z_1^2 + ... + x_n z_n^2 + c^4$$

$$x_1 z_1^2 + ... + x_n z_n^2 + c'$$
 dove $x_1, ..., x_n = \text{autovalori di A e c' = c +}$

<u>b</u>^tv∩

Nuove coordinate	Vecchie coordinate
Origine $\underline{z} = \underline{0}$	Centro $\underline{\mathbf{x}} = \underline{\mathbf{v}_0}$
Retta z _i Span(<u>e</u> i)	Retta <u>v₀</u> + Span(<u>u</u> _i)
Piani z _i , z _j Span(e _i ,e _j)	Piano v ₀ + Span <u>(u_i,</u> u _j)

 $(z_1, ..., z_n) \in Q \iff (\pm z_1, ..., \pm z_n) \in Q$ (perché equazione = somma di quadrati z;²)

- => Q è simmetrica rispetto alle rette delle coordinate z_1 , ..., z_n e ai piani delle coordinate z_i, z_i
 - => nelle vecchie coordinate Q è simmetrica rispetto a:
 - Rette di simmetria: v_0 + Span (u_i)
 - Piani di simmetria: $v_0 + Span(u_i, u_i)$

Definizione:

un vertice di una quadrica senza centro Q è un punto $v_0 \in Q \cap A(Q)$

Osservazione:

le traslazioni effettuate nella classificazione metrica spostano l'origine sul vertice $\underline{x} = v_0^- < -> \underline{w} = \underline{0}$

Osservazione:

 $\underline{v_0}$ esiste sempre, cioè $Q \cap A(Q) \neq \underline{0}$

Definizione(simmetrie di quadriche senza centro):

nelle nuove coordinate l'equazione di Q : $\times_1 w_1^2 + ... + \times_s w_s^2 + 2||\underline{b}'||$

$$*w_{s+1} = 0$$

simmetrie di Q:
$$(w_1, ..., w_n) \in Q \iff (\pm w_1, ..., \pm w_n) \in Q$$

nelle vecchie coordinate Q è simmetrica rispetto ai sottospazi affini determinati da asse A(Q) + autovettori

$$A(Q) + Span(u_i)$$

$$A(Q) + Span(u_i, u_i)$$

Definizione(simmetrie di rotazione in R³):

Supponiamo $x_1 = x_2 \neq 0$ forme canoniche metriche:

- Con centro:
$$\times_1 z_1^2 + \times_2 z_2^2 + \times_3 z_3^2 + c' = 0 \Rightarrow$$
 dividendo per $\times_1 = \times_2$
 $\neq 0 \Rightarrow z_1^2 + z_2^2 = d + \mu^* z_3^2$ per qualche $d, \mu \in \mathbb{R}$

- Senza centro:
$$\lambda_1 z_1^2 + \lambda_2 z_2^2 + 2||\underline{b}'||^* z_3 = 0 \Rightarrow \text{dividendo per } \lambda_1 = \lambda_2$$

 $\neq 0 \Rightarrow z_1^2 + z_2^2 = \mu^* z_3$ per qualche $\mu \in \mathbb{R}$

Q è una quadrica di rotazione, per ogni piano ∂ ($z_3 = k$ (perpendicolare ad asse z_3))

=> la curva Q
$$\cap \partial$$
 $z_1^2 + z_2^2 = costante = k' è {circonferenza se k' > 0;} punto se k' = 0; $\underline{0}$ se k' < 0}$

Definizione (asse di rotazione):

retta
$$z_3 = Span(e_3)$$
 (nuove coordinate)

retta
$$z_3 = \underline{v_0} + \text{Span}(\underline{u_3})$$
 (vecchie coordinate) ($\underline{v_0}$ (centro/

vertice);
$$u_3$$
 (autovettore relativo a $x_3 \neq x_1 = x_2$))

Si può verificare: Q quadrica di rotazione <=> A ha un autovalore \neq 0 con molteplicità \geq 2

Osservazione:

se
$$x_1 = x_2 = x_3 \neq 0 \implies \text{rk(A)} = 3 \text{ (centro)}$$

equazione:
$$x_1 z_1^2 + x_2 z_2^2 + x_3 z_3^2 + c' = 0 \implies z_1^2 + z_2^2 + z_3^2 = k \hat{e}$$

{sfera se k > 0; punto se k = 0; 0 se k < 0}