The lugrengian of (L) is:

for 3,00,0:

Hence:

起's all g: 31-> 生113112 至12

gir conver, différentiable: Jug) = 3 =>

Hence: 43, g(g) >, g(g+) = 生 いてい - vでい = - 生いてい

with for the enjugate of wrothulls. We know that: JA: yron of o if Hylla & I

Hence: min (allwll + ret Xw) = 0 for 11 2/1 lo & 1

me pane:

And: $||v||_{\mathcal{N}} \leq \lambda$ $c=s-\lambda 1 \leq vat X \leq \lambda 1$ This earlies consider con be written: A $\sigma \leq b$, with $b \in \mathbb{R}^{2n}$, $b=\lambda \binom{\lambda}{\lambda}$ and $A=\binom{\chi T}{\chi T} \in \mathbb{R}^{2n \times n}$

borner 20
$$\int d(x) = -\frac{2}{16} \log[-Au - b]_{1}$$

$$\int c(x) = \sqrt{2} \log[-Au - b]_{1}$$

In [50]:	<pre>import numpy as np import random from scipy.optimize import linprog import matplotlib.pyplot as plt from tqdm import tqdm seed_value = 42</pre>
In [51]:	Data def get_data(n, lasso_penality):
III [31].	<pre>X, y = np.random.randn(n,n), np.random.randn(n) Q, p = 1/2 * np.eye(n), y b = lasso_penality * np.ones(2*n) A = np.ones((2*n,n)) A[:n] = X.T</pre>
In [53]:	A[n:] = -X.T return X, y, Q, p, b, A #set the hyperparameters eps = 1e-6
	mu = 2 alpha = 0.5 beta = 0.9 n = 50 lasso_penality = 10
In [54]:	<pre># Generate the data np.random.seed(seed_value) random.seed(seed_value) X, y, Q, p, b, A = get_data(n, lasso_penality) v0 = np.zeros(n) print("v0 is feasible: ", (np.dot(A,v0) - b).all())</pre>
	vo is feasible: True Functions
In [55]:	<pre># utils def f(v,Q,p,A,b,t): barrier = np.dot(A,v) - b if (barrier > 0).any():</pre>
	<pre>return np.nan return t * (np.dot(v, np.dot(Q,v)) + np.dot(p, v)) - np.sum(np.log(-barrier)) def grad_(v,Q,p,A,b,t,barrier): return t * (2 * np.dot(Q,v) + p) - np.sum(A * barrier[:, np.newaxis], axis = 0) def hessian_(v,Q,p,A,b,t,barrier):</pre>
In [36]:	<pre>barrier2 = barrier ** 2 return t * 2 * Q - np.einsum('ij,j,jk->ik', -A.T, barrier2, A) def linesearch(v,Q,p,A,b,t,grad,direction,alpha=alpha,beta=beta): step = 1 #start t=1</pre>
	<pre>f_v, v_next = f(v,Q,p,A,b,t), v + step * direction value = alpha * np.dot(grad, direction) barrier, f_next = np.dot(A,v_next) - b, f(v_next,Q,p,A,b,t) while f_next >= f_v + step * value or (barrier > 0).any(): step *= beta</pre>
In [56]:	<pre>v_next = v + step * direction barrier, f_next = np.dot(A, v_next) - b, f(v_next, Q, p, A, b, t) return step def centering_step(Q, p, A, b, t, v0, eps, alpha, n_iter_barr):</pre>
	<pre>Implementation of Newton Method ''' v, list_v, n_iter = v0.copy(), [v0.copy()], 0 while True: #print("Newton iteration: ", n_iter)</pre>
	<pre>barrier = 1 / (np.dot(A,v) - b) grad = grad_(v,Q,p,A,b,t,barrier) hessian = hessian_(v,Q,p,A,b,t,barrier) direction = -np.linalg.pinv(hessian).dot(grad) lambd = -np.dot(grad.T, direction)</pre>
	<pre>if (lambd / 2) <= eps: break ### line search step= linesearch(v,Q,p,A,b,t,grad,direction,alpha,beta=beta) v += step * direction #update list_v.append(v)</pre>
In [57]:	<pre>n_iter += 1 return n_iter, list_v #get the last v by list_v[-1] def barr_method(Q,p,A,b,v0,eps, mu, alpha, t0): list_optimals, n_iter_barr = [], 0</pre>
	<pre>v, t = v0.copy(), t0 dic = {} while 2*Q.shape[0] / t >= eps: #print('Iteration barrier method: ', n_iter_barr) n_iter, v = centering_step(Q,p,A,b,t,v,eps, alpha, n_iter_barr)[0], centering_step(Q,p,A,b,t,v,eps, alpha, n_iter_barr)[1][-1]</pre>
	<pre>list_optimals.append(v.copy()) dual_gap = (2*Q.shape[0]) / t if t == t0: dic[dual_gap] = n_iter else: dic[dual_gap] = n_iter + list(dic.values())[-1] t = t * mu</pre>
	return list_optimals, dic Resolution
In [58]: In [60]:	optimals = barr_method(Q,p,A,b,v0,eps, mu, t0 = 1, alpha = alpha)
In [61]:	False -29.56714073986613 Comparison with scipy from scipy.optimize import minimize
111 [01].	<pre># Objective function: 1/2 * x^T * P * x + q^T * x</pre> # Inequality constraint: G * x <= h
	<pre># Bounds: lb <= x <= ub bounds = ((-5, 5), (-5, 5)) # Solve the QP problem result = minimize(fun=lambda x: x @ Q @ x + p @ x, x0=v0,</pre>
	<pre>jac = lambda x: 2 * Q @ x + p, method='SLSQP', constraints={'type': 'ineq', 'fun': lambda x: -(A @ x - b)}) # Print the result print(result)</pre>
	message: Optimization terminated successfully success: True status: 0 fun: -29.567140856849466
	nfev: 2 njev: 2 We found the same result for our optimization problem when using Scipy.
In [84]: In [85]:	$return \ np.dot(v, \ np.dot(Q, v)) + np.dot(p, \ v)$
	<pre>mus = [2, 15, 50, 100, 200] dic = {} for mu_ in tqdm(mus): list_vf = [] for ep in tqdm(eps): list_vf.append(barr_method(Q,p,A,b,v0,ep, mu = mu_, t0 = 1, alpha = alpha)[0][-1])</pre>
	dic[mu_] = list_vf 100%
In [86]:	100% 5/5 [00:04<00:00, 1.08it/s]
In [87]:	<pre>best_value = f0(v, Q, p) for mu_ in mus: values[mu_] = [f0(v, Q, p) - best_value for v in dic[mu_]] fig, axs = plt.subplots(2, figsize = (10,10))</pre>
	<pre>for mu_ in mus: axs[0].loglog(eps, values[mu_], label = f'mu = {mu_}') axs[0].set_title('Loglog plot') axs[0].set_xlabel('precision eps') axs[0].set_ylabel('error') axs[1].semilogy(eps, values[mu_], label = f'mu = {mu_}') axs[1].set_title('Semi-log plot')</pre>
Out[87]:	<pre>axs[1].set_xlabel('precision eps') axs[1].set_ylabel('error') axs[0].legend()</pre>
	10 ⁻³ 10 ⁻⁴
	10-5
	10^{-6} =
	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ precision eps Semi-log plot
	10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1}
	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ precision eps Semi-log plot
	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ Semi-log plot 10 ⁻¹ 10 ⁻² 10 ⁻³
	10 ⁻⁶ 10 ⁻⁵ 10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ precision eps Semi-log plot 10 ⁻¹ 10 ⁻³ 10 ⁻⁴ 10 ⁻⁵
In [91]:	Influence on w or
In [91]:	Influence on w Vf = dic[2][-1] for min mis[2:]; vf2 = dic[1:] vf2 = dic[1:]; vf2 = dic[1:] vf2 = d
	Influence on W Of dis[2][-1] yran dis[nus[1:] yrz = dis[nus[1:] yrz = dis[nus[1:] how become similarity: 0.00000000000000000000000000000000000
In [77]:	Influence on w Vr = do[2][-1] For vr = do[m] 10
In [77]:	Influence on w Vf = Jul 2
In [77]:	Influence on w Ver = dis(2[{-1}] To ver = dis(2[{-
In [77]:	Influence on w Influence on w
In [77]:	Influence on w Influence on w
In [77]:	13
In [77]:	Influence on w See section 1 10 10 10 10 10 10 10 10 10
In [77]: In [80]:	Influence on w Influence on w
In [77]: In [80]:	Influence on w Influence on w
In [77]: In [80]:	Influence on w ***Constraints** Supervision Supervisi
In [77]: In [80]: In [92]: In [94]:	Something like the state of the
In [77]: In [80]: In [92]:	Secret-log piles Manufacture on average and production of the control piles of the control
In [77]: In [80]: In [92]: In [94]:	Silvance contents of the process of
In [77]: In [80]: In [92]: In [94]:	Services of the services of th
In [77]: In [80]: In [92]: In [94]:	### A CONSTRUCTION OF THE PROPERTY OF THE PROP
In [77]: In [80]: In [92]: In [94]:	THE REPORT OF THE PROPERTY OF
In [77]: In [80]: In [92]: In [94]:	FINANCIA DE LA CARLO DE LA CAR
In [77]: In [80]: In [92]: In [94]:	Delinary or
In [77]: In [80]: In [92]: In [94]:	Methodology of the property of
In [77]: In [80]: In [92]: In [94]:	Discrete one of the control of the c
In [77]: In [80]: In [92]: In [94]:	Prince and a second sec
In [93]: In [94]: In [98]:	THE COLOR OF THE C
In [93]: In [94]: In [98]:	There are not as a second of the control of the con
In [93]: In [94]: In [98]:	THE SECREC OF TH
In [93]: In [94]: In [98]:	THE MATTER AT THE PARTY OF THE
In [93]: In [94]: In [98]:	The state of the s
In [93]: In [94]: In [98]:	Comparison in Co. The state of