Computer Boot Process

HRM

August 21, 2025

Table of contents

Co	omputer Boot Process: Essential Guide
	Table of Contents
	Overview
	Boot Process Steps
	Step 1: Firmware Initialization
	Step 2: POST and Boot Device Detection
	Step 3: Bootloader Execution
	Step 4: Operating System Loading
	Partition Styles vs File Systems
	Partition Styles
	File Systems
	Boot Process Summary
	Frequently Asked Questions
	Q1: What's the difference between BIOS and UEFI?
	Q2: What's the difference between partition style and file system?
	Q3: Can I dual boot multiple operating systems?
	Resources
	Video Tutorials

Computer Boot Process: Essential Guide

Table of Contents

- 1. Overview
- 2. Boot Process Steps
- 3. Partition Styles vs File Systems
- 4. Boot Process Summary
- 5. Frequently Asked Questions
- 6. Resources

Overview

The computer boot process transforms your computer from powered-off state to a fully operational system. This guide covers the essential steps and concepts needed to understand how computers start.

Boot Process Steps

Step 1: Firmware Initialization

When you press the power button:

- CPU executes the first program BIOS/UEFI
 - **BIOS** (Basic Input/Output System) Legacy firmware (used in old computers)
 - **UEFI** (Unified Extensible Firmware Interface) Modern firmware

Step 2: POST and Boot Device Detection

POST (Power-On Self Test):

- Tests CPU, RAM, and storage devices
- Validates hardware components

Boot Device Selection:

- Reads **Boot Order** from firmware settings
- GPT drives: Looks for EFI System Partition
- MBR drives: Checks Master Boot Record in first sector

Step 3: Bootloader Execution

Common Bootloaders:

Linux or Window bootloader, both can scan and start any OS windows or linux.

- Linux: GRUB2, LILO, systemd-boot - Windows: Windows Boot Manager

Bootloader Tasks:

- Scans partitions for installed operating systems
- Presents boot menu (if multiple OS found)
- Loads selected OS kernel into memory

Step 4: Operating System Loading

Linux OS Boot:

- 1. Kernel loads and initializes hardware
- 2. **systemd** starts (modern init system)
- 3. System services launch
- 4. User login interface appears

Windows OS Boot:

- 1. NT Kernel (ntoskrnl.exe) loads
- 2. Hardware Abstraction Layer initializes
- 3. Registry and system drivers load
- 4. Session Manager starts Windows subsystems
- 5. Windows Logon presents login interface

Partition Styles vs File Systems

Partition Styles

Partition styles define how a drive is divided into sections:

Feature	MBR	GPT
Max Partitions	4 primary OR 3 primary $+ 1$ extended	128 primary
Max Storage Boot Support	2 TB BIOS only	18+ exabytes BIOS + UEFI

File Systems

File systems determine how data is stored within partitions:

File System	OS	Use Case
NTFS	Windows	System drives, large files
FAT32	Cross-platform	USB drives, compatibility
$\mathbf{ext4}$	Linux	Linux system drives
APFS	macOS	macOS system drives

Boot Process Summary

Phase	Component	Purpose
1	Firmware (BIOS/UEFI)	Hardware initialization
2	POST	Hardware verification
3	Bootloader	OS selection and loading
4	OS Kernel	System initialization

Frequently Asked Questions

Q1: What's the difference between BIOS and UEFI?

Feature	BIOS	UEFI
Interface	Text-only	Graphical possible
Storage Support	2 TB max	No practical limit
Security	Basic	Secure Boot
Speed	Slower	Faster

Q2: What's the difference between partition style and file system?

Partition Style: Defines how the drive is divided (MBR vs GPT) File System: Defines how files are stored within each partition (NTFS, ext4, etc.)

Q3: Can I dual boot multiple operating systems?

Yes, by:

- $\bullet\,$ Installing each OS on separate partitions
- Using a bootloader that detects all systems
- Selecting which OS to boot at startup

Resources

${\bf Video~Tutorials}$

- Boot Process (English)
- Boot Process (Hindi)
- Windows Partitions (Hindi)