TEA010 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P01A, 14 jun 2021
Prof. Nelson Luís Dias

1	1
1	1
1	,

D I	- -	- / 11	.1 - /40	.1 - 📿	de Engenharia	A 1- 2 4 - 1		
i ieciara <i>i</i>	ane ceann a	romian i	ne etico <i>i</i>	na i iirea	ae Engennaria	- A mnientai an	reguizar ecta	nrava
DCCIAIO (auc sczui u	, courso i	uc cuca i	uv Cursv	ut Englimaria	Ampichiai av	i canzai cota	DIVIA

NOME: Assinatura: _____

1 [25] Considere o início de programa a seguir:

```
fruta = ["maçã", "laranja", "pera"]
peso = [ 2.00, 3.50, 4.70 ]
punit = [ 5.56, 1.90, 6.36 ]
```

Acima, peso contém o peso adquirido de cada fruta, e punit contém o preço unitário (preço por quilo) de cada fruta. Continue o programa de tal forma que ele imprima na tela uma tabela contendo: na $1^{\underline{a}}$ coluna o nome da fruta, na $2^{\underline{a}}$ coluna o peso adquirido da fruta, e na $3^{\underline{a}}$ coluna o preço total (preço unitário \times peso adquirido) pago pela quantidade adquirida da fruta. Note que, aqui, peso é o nome coloquial para massa.

```
fruta = ["maçã", "laranja", "pera"]
peso = [ 2.0, 3.5, 4.7]
punit = [ 5.56, 1.90, 6.36 ]
print(" fruta", " peso", "preço total");
for i in range(0,3):
    print( "%8s%8.2f%12.2f" % (fruta[i],peso[i],peso[i]*punit[i]));
```

2 [25] O que o programa abaixo imprime na tela?

```
from numpy import array
ival = array([317,43,32,991,-47,212,647])
n = len(ival)
imax = ival[0]
for k in range(1,n):
    if ival[k] > imax :
        imax = ival[k]
print("imax = ",imax)
```

SOLUÇÃO DA QUESTÃO:

991

 $\mathbf{3}$ [25] Considere a função f(x) definida pela integral

$$f(x) = \int_1^x \frac{e^{-u}}{u} du, \qquad x \in [1, \infty].$$

Utilizando o resultado clássico

$$e^y = \sum_{n=0}^{\infty} \frac{y^n}{n!},$$

expanda e^{-u} na integral, integre termo a termo, e obtenha uma expressão envolvendo uma soma infinita para f(x). **Atenção**: o termo n = 0 precisa ser tratado de forma diferente.

$$f(x) = \int_{1}^{x} \frac{1}{u} \sum_{n=0}^{\infty} \frac{(-1)^{n} u^{n}}{n!} du$$

$$= \sum_{n=0}^{\infty} \int_{1}^{x} \frac{(-1)^{n} u^{n-1}}{n!} du$$

$$= \int_{1}^{x} \frac{du}{u} + \sum_{n=1}^{\infty} \int_{1}^{x} \frac{(-1)^{n} u^{n-1}}{n!} du$$

$$= \int_{1}^{x} \frac{du}{u} + \sum_{n=1}^{\infty} \frac{(-1)^{n} u^{n}}{n \times n!} \Big|_{1}^{x}$$

$$= \ln(x) + \sum_{n=1}^{\infty} \frac{(-1)^{n} (x^{n} - 1)}{n \times n!} \blacksquare$$

$$I_e = \int_0^{\pi} \operatorname{sen}(x) \, \mathrm{d}x = 2.$$

Ajuste uma parábola, $y = ax^2 + bx + c$, a 3 pontos da função sen: (0,0), $(\pi/2,1)$ e $(\pi,0)$ (ou seja: obtenha a,b e c de tal forma que a parábola passe por esses pontos). Integre

$$I_n = \int_0^{\pi} \left[ax^2 + bx + c \right] \mathrm{d}x.$$

Quanto vale I_n ? (**depois** de integrar, calcule I_e manualmente, usando $\pi \approx 3,14$).

$$a = -\frac{4}{\pi^2},$$

$$b = \frac{4}{\pi},$$

$$c = 0;$$

$$\int_0^{\pi} [ax^2 + bx + c] dx = \frac{2\pi}{3} \approx 2,09 \blacksquare$$

TEA010 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P01B, 27 jun 2021

Prof. Nelson Luís Dias

0

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova.

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

 ${f 1}$ [25] A função midint abaixo calcula uma integral numérica I_n utilizando a fórmula "do ponto do meio":

Escreva o lado direito fórmula $I_n = \dots$ que o programa calcula, usando o símbolo de somatório \sum . O lado direito envolve $\Delta x = (b-a)/n$, o número de retângulos de integração n, os pontos x_0, x_1, \dots, x_n igualmente espaçados e a função a ser integrada f.

$$I_n = \Delta x \sum_{k=1}^n f((x_{i-1} + x_i)/2) \blacksquare$$

 $\mathbf{2}$ [25] A lei de Fourier para a transferência de calor pode ser escrita em uma dimensão (na direção z) na forma

$$q_z = \rho c_p \alpha \frac{\mathrm{d}T}{\mathrm{d}z},$$

onde q_z é o fluxo específico de calor (J s⁻¹ m⁻²), ρ (kg m⁻³) é a massa específica do meio, c_p (J kg⁻¹ K⁻¹) é o calor específico a pressão constante, α é a difusividade térmica, T (K) é a temperatura, e z (m) é a a posição na direção do fluxo. Acima, todas as unidades SI já estão dadas, exceto as de α . Obtenha as unidades SI de α , **justificando algebricamente seu procedimento**.

$$\begin{split} J \, s^{-1} \, m^{-2} &= kg \, m^{-3} J \, kg^{-1} \, K^{-1} [\alpha] K \, m^{-1}, \\ s^{-1} \, m^{-2} &= kg \, m^{-3} kg^{-1} \, K^{-1} [\alpha] K \, m^{-1}, \\ s^{-1} \, m^{-2} &= m^{-3} K^{-1} K [\alpha] m^{-1}, \\ s^{-1} \, m^{-2} &= [\alpha] m^{-4} \\ m^2 \, s^{-1} &= [\alpha] \, \blacksquare \end{split}$$

3 [25] A potência P de uma bomba depende da massa específica do fluido ρ , da velocidade angular do rotor ω , do diâmetro do rotor D e da vazão volumétrica Q (nota: $[Q] = L^3 T^{-1}$). Obtenha os dois grupos adimensionais que governam o problema, usando, obrigatoriamente, ρ , D e ω como variáveis comuns.

SOLUÇÃO DA QUESTÃO:

As dimensões das diversas variáveis são

O primeiro grupo adimensional é

$$\begin{split} \Pi_1 &= P \rho^a D^b \omega^c, \\ \llbracket \Pi_1 \rrbracket &= 1 = M L^2 T^{-3} \left[M L^{-3} \right]^a \left[L \right]^b \left[T^{-1} \right]^c \\ M^0 L^0 T^0 &= M^{1+a} L^{2-3a+b} T^{-3-c}, \\ a &= -1, \\ -3a+b &= -2, \\ -c &= 3, \\ a &= -1, \\ b &= -5, \\ c &= -3, \\ \Pi_1 &= P \rho^{-1} D^{-5} \omega^{-3} = \frac{P}{\rho D^5 \omega^3}. \end{split}$$

O segundo grupo adimensional é

$$\begin{split} \Pi_2 &= Q \rho^a D^b \omega^c, \\ \llbracket \Pi_2 \rrbracket &= 1 = \mathsf{L}^3 \mathsf{T}^{-1} \left[\mathsf{M} \mathsf{L}^{-3} \right]^a \left[L \right]^b \left[T^{-1} \right]^c \\ \mathsf{M}^0 \mathsf{L}^0 \mathsf{T}^0 &= \mathsf{M}^a \mathsf{L}^{3-3a+b} \mathsf{T}^{-1-c}, \\ a &= -0, \\ -3a+b &= -3, \\ -c &= 1, \\ a &= 0, \\ b &= -3, \\ c &= -1, \\ \Pi_2 &= Q D^{-3} \omega^{-1} = \frac{Q}{D^3 \omega} \blacksquare \end{split}$$

$$v = x(1, 1) + y(1, -1),$$

 $(7, 3) = x(1, 1) + y(1, -1),$
 $7 = x + y,$
 $3 = x - y,$
 $2x = 10,$
 $x = 5,$
 $y = 2$

TEA010 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P02A, 15 jul 2022

Prof. Nelson Luís Dias

1	1
l	J

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova.

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] A seguinte função escrita em Python,

```
def epp(i,j,k):
    if i==j or i==k or j==k :
        return 0
    if (i,j,k) == (1,2,3) or (i,j,k) == (3,1,2) or (i,j,k) == (2,3,1):
        return 1
    else :
        return -1
```

calcula uma quantidade definida neste curso. Que quantidade é essa? Cite **todas** as aplicações (dadas no curso) em que ela aparece.

SOLUÇÃO DA QUESTÃO:

epp calcula o símbolo de permutação ϵ_{ijk} . Ele é usado na definição e cálculo do produto vetorial e de determinantes de ordem 3.

2 [25] Atenção: este é um cenário simplificado com fins didáticos apenas. A vazão volumétrica Q em uma bacia hidrográfica após uma chuva de uma hora de duração depende do instante t após o início da chuva, da área A da bacia, da altura h de chuva, e da aceleração da gravidade g. Obtenha todos os parâmetros adimensionais que controlam o problema, escolhendo como variáveis comuns a área A e a aceleração da gravidade g.

SOLUÇÃO DA QUESTÃO:

Existem duas dimensões fundamentais: L e T. Portanto, esperamos 3 parâmetros adimensionais As dimensões das 5 variáveis envolvidas são

$$[Q] = L T^{-3},$$
 $[t] = T,$
 $[A] = L^{2},$
 $[h] = L,$
 $[q] = L T^{-2}.$

Os grupos adimensionais são:

$$\Pi_{1} = QA^{a}g^{b},$$

$$L^{0}T^{0} = L^{3}T^{-1}[L^{2}]^{a}[LT^{-2}]^{b},$$

$$3 + 2a + b = 0,$$

$$-1 - 2b = 0,$$

$$a = -5/4,$$

$$b = -1/2,$$

$$\Pi_{1} = \frac{Q}{A^{5/4}g^{1/2}};$$

$$\Pi_{2} = hA^{a}g^{b},$$

$$\Pi_2 = hA^a g^b,$$

$$L^0 T^0 = L[L^2]^a [LT^{-2}]^b,$$

$$1 + 2a + b = 0,$$

$$-2b = 0,$$

$$a = -1/2,$$

$$b = 0,$$

$$\Pi_2 = \frac{h}{A^{1/2}};$$

$$\Pi_{3} = tA^{a}g^{b},$$

$$L^{0}T^{0} = T[L^{2}]^{a}[LT^{-2}]^{b},$$

$$0 + 2a + b = 0,$$

$$1 - 2b = 0,$$

$$a = -1/4,$$

$$b = 1/2,$$

$$\Pi_{3} = \frac{tg^{1/2}}{A^{1/4}} \blacksquare$$

$$[u \times v] \cdot w - [w \times u] \cdot v.$$

Sugestão: Faça $[u \times v] \cdot w = \epsilon_{ijk} u_i v_j w_k$ e $[w \times u] \cdot v = \epsilon_{lmn} u_l v_m w_n$. Agora troque l, m, n por i, j e k (não necessariamente nesta ordem!) de tal forma que os índices de u, v e w coincidam nas duas expressões. Prossiga.

SOLUÇÃO DA QUESTÃO:

Havia um erro na sugestão, e a questão foi anulada. A sugestão correta teria sido:

Sugestão: Faça $[u \times v] \cdot w = \epsilon_{ijk} u_i v_j w_k$ e $[w \times u] \cdot v = \epsilon_{lmn} w_l u_m v_n$. Agora troque l, m, n por i, j e k (não necessariamente nesta ordem!) de tal forma que os índices de u, v e w coincidam nas duas expressões. Prossiga. Neste caso, a solução é:

$$\begin{aligned} [\boldsymbol{u} \times \boldsymbol{v}] \cdot \boldsymbol{w} - [\boldsymbol{w} \times \boldsymbol{u}] \cdot \boldsymbol{v} &= \epsilon_{ijk} u_i v_j w_k - \epsilon_{lmn} w_l u_m v_n \\ &= \epsilon_{ijk} u_i v_j w_k - \epsilon_{kij} w_k u_i v_j \\ &= \epsilon_{ijk} u_i v_j w_k - \epsilon_{kij} u_i v_j w_k \\ &= \epsilon_{ijk} u_i v_j w_k - \epsilon_{ijk} u_i v_j w_k = 0 \ \blacksquare \end{aligned}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 1 \\ 2 & 1 & 2 \end{bmatrix}.$$

$$\begin{vmatrix} 1 - \lambda & 2 & 1 \\ 1 & 3 - \lambda & 1 \\ 2 & 1 & 2 - \lambda \end{vmatrix} = 0$$

$$(1-\lambda)[(3-\lambda)(2-\lambda)-1] - 2[(2-\lambda)-2] + 1[1-2(3-\lambda)] = 0,$$

$$(1-\lambda)[6-3\lambda-2\lambda+\lambda^2-1] - 2[-\lambda] + [1-6+2\lambda] = 0,$$

$$(1-\lambda)[5-5\lambda+\lambda^2] + 2\lambda + 1 - 6 + 2\lambda = 0,$$

$$[5-5\lambda+\lambda^2-5\lambda+5\lambda^2-\lambda^3] + 4\lambda - 5 = 0,$$

$$-10\lambda+4\lambda+6\lambda^2-\lambda^3 = 0,$$

$$-6\lambda+6\lambda^2-\lambda^3 = 0,$$

$$\lambda[-6+6\lambda-\lambda^2] = 0.$$

Portanto $\lambda = 0$ é um dos autovalores. Resolvendo a equação quadrática entre colchetes, obtemos os outros dois:

$$\lambda = 3 \pm \sqrt{3}$$

TEA010 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P02B, 22 jul 2022

0

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova.

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

NÃO ESCREVA NA CARTEIRA.

Prof. Nelson Luís Dias

```
f 1 [25] Dado o programa a seguir escrito em Python,
```

```
#!/usr/bin/python3
from numpy import array
h = 0.1
                               # passo em x
x = [0.0]
                               # x inicial
y = [array([1.0,0.0])]
                               # y inicial
n = int(10/h)
                               # número de passos
def ff(x,y):
    return array([-y[0]+y[1],y[0]-y[1]])
def rk4(x,y,h,ff):
  k1 = h*ff(x,y)
   k2 = h*ff(x+h/2,y+k1/2)
   k3 = h*ff(x+h/2,y+k2/2)
   k4 = h*ff(x+h,y+k3)
  yn = y + k1/6.0 + k2/3.0 + k3/3.0 + k4/6.0
  return yn
for i in range(0,n):
                              # loop da solução numérica
  xn = (i+1)*h
   yn = rk4(x[i],y[i],h,ff)
   x.append(xn)
  y.append(yn)
fou = open('ruk.out','wt')
for i in range(0,n+1):
                              # imprime o arquivo de saída
   fou.write( '%12.6f %12.6f %12.6f\n' % (x[i],y[i][0],y[i][1]) )
fou.close()
```

qual é o problema que ele resolve? Escreva todas as equações que especificam completamente o problema.

$$\frac{\mathrm{d}}{\mathrm{d}x} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} -1 & +1 \\ +1 & -1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}, \qquad y_1(0) = 1, \qquad y_2(0) = 0 \blacksquare$$

$$[a \times [b \times c]]$$

em termos de produtos escalares entre pares de a,b e c, multiplicados por b e c.

SOLUÇÃO DA QUESTÃO:

Faça

$$b \times c = d$$
;

então,

$$a \times [b \times c] = a \times d = \epsilon_{ijk} a_i d_j e_k;$$

$$d = \underbrace{\epsilon_{lmj} b_l c_m}_{d_j} e_j;$$

$$a \times [b \times c] = \epsilon_{ijk} a_i \epsilon_{lmj} b_l c_m e_k$$

$$= \epsilon_{kij} \epsilon_{lmj} (a_i b_l c_m) e_k$$

$$= [\delta_{kl} \delta_{im} - \delta_{km} \delta_{il}] a_i b_l c_m e_k$$

$$= (a_i b_k c_i) e_k - (a_i b_i c_k) e_k$$

$$= (a_i c_i) b_k e_k - (a_i b_i) c_k e_k$$

$$= (a \cdot c) b - (a \cdot b) c \blacksquare$$

$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}.$$

$$\begin{vmatrix} 1 - \lambda & 2 \\ 1 & 1 - \lambda \end{vmatrix} = 0$$

$$(1 - \lambda)^{2} - 2 = 0,$$

$$1 - 2\lambda + \lambda^{2} - 2 = 0,$$

$$\lambda^{2} - 2\lambda - 1 = 0,$$

$$\lambda = \frac{2 \pm \sqrt{4 + 4}}{2} = 1 \pm \sqrt{2}.$$

Para $\lambda_1 = 1 + \sqrt{2}$, $v_1 = (x_1, x_2)$ é o autovalor associado a λ_1 e

$$x_1 + 2x_2 = (1 + \sqrt{2})x_1,$$

 $x_1 + x_2 = (1 + \sqrt{2})x_2,$

e ambas as equações produzem $x_1 = \sqrt{2}x_2$. Um possível autovetor é

$$v_1 = (\sqrt{2}, 1).$$

Para $\lambda_2=1-\sqrt{2},\,v_2=(x_1,x_2)$ é o autovalor associado a λ_2 e

$$x_1 + 2x_2 = (1 - \sqrt{2})x_1,$$

$$x_1 + x_2 = (1 - \sqrt{2})x_2,$$

e ambas as equações produzem $x_1 = -\sqrt{2}x_2$. Um possível autovetor é

$$v_2 = (-\sqrt{2}, 1) \blacksquare$$

4 [25] A matriz

$$[A] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

possui 5 autovalores iguais a 1 (ou, o que dá no mesmo: possui autovalor $\lambda = 1$ com multiplicidade 5). Quanto vale seu determinante? Sugestão: lembre-se dos invariantes de uma transformação linear. Justifique sua resposta.

$$\det [A] = \lambda_1 \times \cdots \times \lambda_5;$$

$$\det [A] = 1 \times 1 \times 1 \times 1 \times 1 = 1 \blacksquare$$

TEA010 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P03A, 12 ago 2022

0

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova.

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

NÃO ESCREVA NA CARTEIRA.

1 [25] O programa a seguir,

Prof. Nelson Luís Dias

```
#!/usr/bin/python3
from math import exp
def ff(x):
   return (x*t + x/(1.0 + exp(x)))
def trapezio(n,a,b,f):
  h = (b-a)/n
  Se = f(a) + f(b)
  Si = 0.0
   for k in range(1,n):
      xk = a + k*h
      Si += f(xk)
  return (Se + 2*Si)*h/2
nt = 100
dt = 1.0/nt
nx = 100000
Fold = 0.0
Fnew = 0.0
told = 0.0
t = 0.0
fou = open('intxt.out','wt')
fou.write('%8.4f %8.4f\n' % (t,Fnew))
for it in range(nt):
  Fold = Fnew
  told = t
  t = told + dt
  Fnew = trapezio(nx,0,t,ff)
   fou.write('%8.4f %8.4f\n' % (t,Fnew))
fou.close();
```

calcula e imprime uma tabela de valores (t, F(t)). Escreva a expressão analítica para F(t), em termos de uma integral.

$$F(t) = \int_{x=0}^{t} \left[xt + \frac{x}{1 + e^x} \right] dx \blacksquare$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_0^t \left[xt + \frac{x}{1 + \mathrm{e}^x} \right] \, \mathrm{d}x.$$

Sugestão: Use a regra de Leibnitz:

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{a(t)}^{b(t)} f(x,t) \, \mathrm{d}x = f(b,t) \frac{\mathrm{d}b}{\mathrm{d}t} - f(a,t) \frac{\mathrm{d}a}{\mathrm{d}t} + \int_{a(t)}^{b(t)} \frac{\partial f(x,t)}{\partial t} \mathrm{d}x.$$

$$a(t) = 0,$$

$$b(t) = t,$$

$$\frac{d}{dt} \int_0^t \left[xt + \frac{x}{1 + e^x} \right] dt = \left[t^2 + \frac{t}{1 + e^t} \right] \times 1 - 0 + \int_0^t x dx$$

$$= t^2 + \frac{t}{1 + e^t} + \frac{t^2}{2}$$

$$= \frac{3t^2}{2} + \frac{t}{1 + e^t} \blacksquare$$

 $\mathbf{3}$ [25] Se $f(x,y) = \cosh(x+y)$, calcule a derivada da função

$$F(s) = f(x(s), y(s))$$

ao longo da curva

$$x = s,$$

$$y = s^2,$$

em s = 1.

$$F(s) = f(x(s), y(s));$$

$$\frac{dF}{ds} = \frac{\partial f}{\partial x} \frac{dx}{ds} + \frac{\partial f}{\partial y} \frac{dy}{ds};$$

$$\frac{\partial f}{\partial x} = \operatorname{senh}(x + y),$$

$$\frac{\partial f}{\partial y} = \operatorname{senh}(x + y),$$

$$\frac{dx}{ds} = 1,$$

$$\frac{dy}{ds} = 2s,$$

$$\frac{dF}{ds} = \operatorname{senh}(x + y) \left[\frac{dx}{ds} + \frac{dy}{ds} \right];$$

$$\frac{dF(1)}{ds} = \operatorname{senh}(x + y) \left[1 + 2s \right] \Big|_{s=1}$$

$$= 3 \operatorname{senh}(2) \blacksquare$$

calcule $\nabla \times v$.

$$\nabla \times v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^2 + y^2 & y^2 + z^2 & z^2 + x^2 \end{vmatrix}$$

$$= \left[\frac{\partial (z^2 + x^2)}{\partial y} - \frac{\partial (y^2 + z^2)}{\partial z} \right] \mathbf{i} - \left[\frac{\partial (z^2 + x^2)}{\partial x} - \frac{\partial (x^2 + y^2)}{\partial z} \right] \mathbf{j} + \left[\frac{\partial (y^2 + z^2)}{\partial x} - \frac{\partial (x^2 + y^2)}{\partial y} \right] \mathbf{k}$$

$$= \left[-\frac{\partial (y^2 + z^2)}{\partial z} \right] \mathbf{i} - \left[\frac{\partial (z^2 + x^2)}{\partial x} \right] \mathbf{j} + \left[-\frac{\partial (x^2 + y^2)}{\partial y} \right] \mathbf{k}$$

$$= -2z\mathbf{i} - 2x\mathbf{j} - 2y\mathbf{k} \blacksquare$$

P03B, 19 ago 2022 Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova.

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

NÃO ESCREVA NA CARTEIRA.

1 [25] A área da superfície mostrada na figura ao lado e parametrizada por

$$x = u,$$
 $-\pi \le u \le +\pi,$
 $y = v,$ $-\pi \le v \le +\pi,$
 $z = \operatorname{sen}(u + v),$

é dada pela integral dupla

$$A = \int_{u = -\pi}^{+\pi} \int_{v = -\pi}^{+\pi} F(u, v) \, dv du.$$

Obtenha F(u, v). Não tente calcular a integral.

$$r = (x(u, v), y(u, v), z(u, v));$$

$$A_{\mathscr{S}} = \iint_{R_{uv}} \left| \frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v} \right| du dv;$$

$$r = (u, v, \operatorname{sen}(u + v));$$

$$\frac{\partial r}{\partial u} = (1, 0, \cos(u + v)),$$

$$\frac{\partial r}{\partial v} = (0, 1, \cos(u + v)),$$

$$\frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v} = (-\cos(u + v), -\cos(u + v), +1);$$

$$\left| \frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v} \right| = \sqrt{1 + 2\cos^2(u + v)};$$

$$A_{\mathscr{S}} = \int_{u = -\pi}^{+\pi} \int_{v = -\pi}^{+\pi} \sqrt{1 + 2\cos^2(u + v)} dv du;$$

$$F(u, v) = \sqrt{1 + 2\cos^2(u + v)} \blacksquare$$

2 [25] Se $F = (y, -x, \text{senh}(x^2 + y^2))$, calcule

$$I_{\mathscr{S}} = \int_{\mathscr{D}} (\boldsymbol{n} \cdot [\boldsymbol{\nabla} \times \boldsymbol{F}]) \, dA$$

sobre a superfície $\mathscr S$ da semiesfera $z=\sqrt{1-x^2-y^2}$. Considere que o vetor unitário n normal a $\mathscr S$ aponta para "fora" da semiesfera.

SOLUÇÃO DA QUESTÃO:

Trata-se de uma aplicação evidente do Teorema de Stokes:

$$\int_{\mathcal{L}} (\boldsymbol{n} \cdot [\nabla \times \boldsymbol{F}]) \, \mathrm{d}\boldsymbol{A} = \oint_{\mathcal{L}} \boldsymbol{F} \cdot \mathrm{d}\boldsymbol{r},$$

onde \mathcal{L} é o círculo unitário $x^2 + y^2 = 1$ no plano z = 0. Mas

$$\oint_{\mathcal{L}} \mathbf{F} \cdot d\mathbf{r} = \oint_{\mathcal{L}} (-y, x, \operatorname{senh}(x^2 + y^2)) \cdot (dx, dy, 0)$$
$$= \oint_{\mathcal{L}} (-y dx + x dy).$$

A integral de linha precisa ser parametrizada:

$$x = \cos(\theta),$$

$$dx = -\sin(\theta) d\theta,$$

$$y = \sin(\theta),$$

$$dy = \cos(\theta) d\theta; \implies$$

$$I_{\mathscr{S}} = \int_{\theta=0}^{2\pi} \left[\sin^2(\theta) + \cos^2(\theta) \right] d\theta = 2\pi \blacksquare$$

3 [25] Obtenha a solução geral de

$$\frac{\mathrm{d}y}{\mathrm{d}x} + y = (1 + 2x)\mathrm{e}^x.$$

As integrais

$$\int e^{2x} dx = \frac{e^{2x}}{2} + C_1,$$

$$\int xe^{2x} dx = \frac{(2x - 1)e^{2x}}{4} + C_2$$

são úteis para resolver este problema.

SOLUÇÃO DA QUESTÃO:

$$y = uv,$$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx},$$

$$u\frac{dv}{dx} + v\frac{du}{dx} + uv = (1 + 2x)e^{x},$$

$$u\left[\frac{dv}{dx} + v\right] + v\frac{du}{dx} = (1 + 2x)e^{x}.$$

Para v temos:

$$\frac{dv}{dx} + v = 0,$$

$$\frac{dv}{dx} = -v,$$

$$\frac{dv}{v} = -dx,$$

$$\ln |v| = -x + k'_v,$$

$$|v| = e^{k'_v}e^{-x},$$

$$= k_v e^{-x},$$

$$v = \pm k_v e^{-x} = C_v e^{-x}.$$

Para *u* temos:

$$C_v e^{-x} \frac{du}{dx} = (1+2x)e^x,$$

$$\frac{du}{dx} = \frac{1}{C_v} (1+2x)e^{2x},$$

$$du = \frac{1}{C_v} (1+2x)e^{2x} dx,$$

$$u = \frac{1}{C_v} \left[\int e^{2x} dx + 2 \int xe^{-2x} dx \right] + C_u$$

$$= \frac{1}{C_v} \left[\frac{e^{2x}}{2} + 2 \frac{(2x-1)e^{2x}}{4} \right] + C_u$$

$$= \frac{1}{2C_v} \left[e^{2x} + (2x-1)e^{2x} \right] + C_u$$

$$= \frac{1}{C_v} xe^{2x} + C_u.$$

Finalmente,

$$y = uv = \left[\frac{1}{C_v}xe^{2x} + C_u\right]C_ve^{-x}$$
$$= xe^x + (C_uC_v)e^{-x}$$
$$= xe^x + Ce^{-x} \blacksquare$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 5\frac{\mathrm{d}y}{\mathrm{d}x} + 4y = 0.$$

A equação característica é

$$\lambda^2 - 5\lambda + 4$$
,

cujas raízes são

$$\lambda_1 = 1,$$
 $\lambda_2 = 4;$

Portanto, a solução geral é

$$y(x) = C_1 e^x + C_2 e^{4x} \blacksquare$$

P04A, 09 set 2022 Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova.

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

NÃO ESCREVA NA CARTEIRA.

Nesta prova, é útil saber que

$$\int e^{ax} \operatorname{sen}(ax) = \frac{e^{ax}}{2a} [\operatorname{sen}(ax) - \cos(ax)] + C,$$
$$\int e^{ax} \cos(ax) = \frac{e^{ax}}{2a} [\operatorname{sen}(ax) + \cos(ax)] + C.$$

1 [25] Encontre a solução de

$$\frac{\mathrm{d}x}{\mathrm{d}t} + 3x = \mathrm{sen}(3t), \qquad x(0) = 1.$$

$$x = uv \implies u\frac{\mathrm{d}v}{\mathrm{d}t} + v\frac{\mathrm{d}u}{\mathrm{d}t} + 3uv = \mathrm{sen}(3t);$$

$$u\left[\frac{\mathrm{d}v}{\mathrm{d}t} + 3v\right] + v\frac{\mathrm{d}u}{\mathrm{d}t} = \mathrm{sen}(3t);$$

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -3v$$

$$\frac{\mathrm{d}v}{v} = -3dt$$

$$\ln|v| = -3t + k_1$$

$$|v| = d_1e^{-3t}$$

$$v = c_1e^{-3t};$$

$$c_1e^{-3t}\frac{\mathrm{d}u}{\mathrm{d}t} = \mathrm{sen}(3t);$$

$$\frac{\mathrm{d}u}{\mathrm{d}t} = \frac{1}{c_1}e^{3t} \mathrm{sen}(3t);$$

$$u(t) = \frac{1}{6c_1}e^{3t} (\mathrm{sen}(3t) - \mathrm{cos}(3t)) + c_2;$$

$$x(t) = uv = \left[\frac{1}{6c_1}e^{3t} (\mathrm{sen}(3t) - \mathrm{cos}(3t)) + c_2\right]c_1e^{-3t}$$

$$= \frac{1}{6} (\mathrm{sen}(3t) - \mathrm{cos}(3t)) + Ce^{-3t};$$

$$x(0) = 1 \implies 1 = -\frac{1}{6} + C;$$

$$C = 7/6 \blacksquare$$

$$y^{\prime\prime} + y = e^x.$$

A equação homogênea associada e sua solução são

$$y_h'' + y = 0,$$

$$\lambda^2 + 1 = 0,$$

$$\lambda = \pm i,$$

$$y_h(x) = A\cos(x) + B\sin(x) = Ay_1 + By_2.$$

Procure a solução por variação de parâmetros:

$$y = Ay_1 + By_2,$$

$$y' = \underbrace{A'y_1 + B'y_2}_{=0} + Ay'_1 + By'_2,$$

$$y'' = A'y'_1 + B'y'_2 + Ay''_1 + By''_2.$$

Substitua:

$$A'y'_1 + B'y'_2 + Ay''_1 + By''_2 + Ay_1 + By_2 = e^x,$$

$$A[y''_1 + y_1] + B[y''_2 + y_2] + A'y'_1 + B'y'_2 = e^x,$$

$$-A' \operatorname{sen}(x) + B' \operatorname{cos}(x) = e^x.$$

As duas equações que devemos resolver são:

$$A'\cos(x) + B'\sin(x) = 0,$$

-A'\sen(x) + B'\cos(x) = \epsilon^x.

Com alguma inspiração, para A(x):

$$A' \cos^{2}(x) + B' \sin(x) \cos(x) = 0,$$

$$-A' \sin^{2}(x) + B' \cos(x) \sin(x) = \sin(x)e^{x},$$

$$A' \left[\cos^{2}(x) + \sin^{2}(x)\right] = -\sin(x)e^{x},$$

$$\frac{dA}{dx} = -\sin(x)e^{x},$$

$$A(x) = -\frac{e^{x}}{2} \left[\sin(x) - \cos(x)\right] + C_{A};$$

para B(x):

$$A' \cos(x) \sin(x) + B' \sin^2(x) = 0,$$

 $-A' \sin(x) \cos(x) + B' \cos^2(x) = \cos(x)e^x,$
 $B' [\sin^2(x) + \cos^2(x)] = \cos(x)e^x,$
 $\frac{dB}{dx} = \cos(x)e^x,$
 $B(x) = \frac{e^x}{2} [\sin(x) + \cos(x)] + C_B;$

A solução geral terá a forma

$$y(x) = \left\{ -\frac{e^x}{2} \left[\sec(x) - \cos(x) \right] + C_A \right\} \cos(x) + \left\{ \frac{e^x}{2} \left[\sec(x) + \cos(x) \right] + C_B \right\} \sin(x)$$

$$= \frac{e^x}{2} \left[-\sec(x) \cos(x) + \sec(x) \cos(x) \right] + \frac{e^x}{2} \left[\cos^2(x) + \sec^2(x) \right] + C_A \cos(x) + C_B \sec(x)$$

$$= \frac{e^x}{2} + C_A \cos(x) + C_B \sec(x) \blacksquare$$

$$z = re^{i\theta},$$

$$-1 = e^{i[\pi + 2k\pi]},$$

$$r^{3}e^{3i\theta} = e^{i[\pi + 2k\pi]},$$

$$r = 1,$$

$$3i\theta = \pi + 2k\pi,$$

$$\theta = \frac{\pi}{3} + \frac{2k\pi}{3} :$$

$$z_{1} = e^{\frac{i\pi}{3}} = \frac{1}{2} + \frac{\sqrt{3}}{2}i;$$

$$z_{2} = e^{i\pi} = -1,$$

$$z_{3} = e^{\frac{i5\pi}{3}} = \frac{1}{2} - \frac{\sqrt{3}}{2}i \blacksquare$$

4 [25] Seja \mathcal{L}_C o círculo com raio 1 e centro na origem do plano complexo, ou seja: o conjunto dos números complexos z tais que |z|=1. Calcule a integral

$$I = \oint_{\mathscr{L}_C} \frac{1}{z(z-2)} \, \mathrm{d}z.$$

SOLUÇÃO DA QUESTÃO:

Pelo Teorema dos Resíduos,

$$\oint_{\mathcal{L}_C} \frac{1}{z(z-2)} \, \mathrm{d}z = 2\pi \mathrm{i} c_{-1},$$

onde c_{-1} é o resíduo em torno de z=0, que é o único polo dentro do contorno $\mathscr{L}_{\mathbb{C}}.$ Mas

$$c_{-1} = \frac{1}{-2} \implies$$

$$I = 2\pi i \times -\frac{1}{2} = -\pi i \blacksquare$$

P04B, 16 set 2022 Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova.

NOME: GABARITO Assinatura:

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

NÃO ESCREVA NA CARTEIRA.

1 [25] Encontre a solução geral de

$$\frac{\mathrm{d}x}{\mathrm{d}t} + 3x = \mathrm{e}^t.$$

$$x = uv \implies u\frac{\mathrm{d}v}{\mathrm{d}t} + v\frac{\mathrm{d}u}{\mathrm{d}t} + 3uv = e^t;$$

$$u\left[\frac{\mathrm{d}v}{\mathrm{d}t} + 3v\right] + v\frac{\mathrm{d}u}{\mathrm{d}t} = e^t;$$

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -3v$$

$$\frac{\mathrm{d}v}{v} = -3dt$$

$$\ln|v| = -3t + k_1$$

$$|v| = d_1e^{-3t}$$

$$v = c_1e^{-3t};$$

$$c_1e^{-3t}\frac{\mathrm{d}u}{\mathrm{d}t} = e^t,$$

$$c_1\frac{\mathrm{d}u}{\mathrm{d}t} = e^{4t},$$

$$\frac{\mathrm{d}u}{\mathrm{d}t} = \frac{1}{c_1}e^{4t},$$

$$du = \frac{1}{4c_1}e^{4t} + dt,$$

$$u = \frac{1}{4c_1}e^{4t} + c_2;$$

$$x = uv = \left[\frac{1}{4c_1}e^{4t} + c_2\right]c_1e^{-3t}$$

$$= \frac{1}{4}e^t + Ce^{-3t} \blacksquare$$

$$x^{2}y'' + 3xy' = -1,$$

$$w = y',$$

$$x^{2}w' + 3xw = -1,$$

$$\frac{dw}{dx} + \frac{3}{x}w = -\frac{1}{x^{2}},$$

$$w = uv,$$

$$u\frac{dv}{dx} + v\frac{du}{dx} + \frac{3}{x}uv = -\frac{1}{x^{2}},$$

$$u\left[\frac{dv}{dx} + \frac{3}{x}v\right] + v\frac{du}{dx} = -\frac{1}{x^{2}}.$$

$$\frac{dv}{dx} = -\frac{3}{x}v,$$

$$\frac{dv}{v} = -\frac{3dx}{x},$$

$$\frac{dv}{v} + \frac{3dx}{x} = 0,$$

$$\ln|v| + 3\ln|x| = c_{1},$$

$$\ln\left(|v||x|^{3}\right) = c_{1},$$

$$|v||x|^{3} = \exp(c_{1}) = c_{2},$$

$$vx^{3} = \pm c_{2} = v_{0},$$

$$v(x) = v_{0}x^{-3};$$

$$v_{0}x^{-3}\frac{du}{dx} = -\frac{1}{x^{2}},$$

$$\frac{du}{dx} = -\frac{1}{v_{0}}x,$$

$$du = -\frac{1}{v_{0}}[xdx],$$

$$u = -\frac{1}{v_{0}}\left[\frac{x^{2}}{2} + u_{0}\right];$$

$$w = uv = -\frac{1}{v_{0}}\left[\frac{x^{2}}{2} + u_{0}\right]v_{0}x^{-3}$$

$$= -\frac{1}{2x} - w_{0}x^{-3};$$

$$y = \int w(x) dx + w_{1}$$

$$= -\frac{1}{2}\ln|x| + \frac{w_{0}}{2}x^{-2} + w_{1} =$$

3 [25] Usando obrigatoriamente variáveis complexas, integração de contorno e o teorema dos resíduos, calcule

$$\int_0^{2\pi} \frac{\mathrm{d}\theta}{2 - \sin\theta}.$$

Sugestão: faça a transformação de variável $z = e^{i\theta}$ e transforme a integral acima em uma integral sobre o círculo unitário no plano complexo envolvendo um polo.

SOLUÇÃO DA QUESTÃO:

Este é o problema 9.28 do livro-texto

Fazendo a substituição sugerida, se $z = e^{i\theta}$, quando θ vai de 0 a 2π , z percorre o círculo unitário C no plano complexo; então:

$$z = e^{i\theta},$$
$$dz = ie^{i\theta},$$
$$\frac{dz}{iz} = d\theta$$

e

$$z - \frac{1}{z} = e^{i\theta} - e^{-i\theta}$$
$$= 2i \operatorname{sen} \theta \Longrightarrow$$
$$\operatorname{sen} \theta = \frac{z^2 - 1}{2iz}.$$

Retornando à integral,

$$\int_0^{2\pi} \frac{d\theta}{2 - \sin \theta} = \oint_C \frac{1}{2 - \frac{z^2 - 1}{2iz}} \frac{dz}{iz}$$
$$= \oint_C \frac{-2dz}{z^2 - 4iz - 1}$$

O integrando possui dois polos, $z_1 = (2 - \sqrt{3})i$ e $z_2 = (2 + \sqrt{3})i$, mas apenas z_1 está dentro do círculo unitário. Portanto,

$$\oint_C f(z) dz = 2\pi i c_{-1}$$

$$= 2\pi i \lim_{z \to z_1} \left[(z - z_1) \frac{-2}{(z - z_1)(z - z_2)} \right]$$

$$= 2\pi i \frac{-2}{z_1 - z_2} = \frac{2\pi}{\sqrt{3}} \blacksquare$$

com o método de Frobenius.

SOLUÇÃO DA QUESTÃO:

$$y = \sum_{n=0}^{\infty} a_n x^{n+r},$$

$$y' = \sum_{n=0}^{\infty} (n+r) a_n x^{n+r-1},$$

$$y'' = \sum_{n=0}^{\infty} (n+r-1)(n+r) a_n x^{n+r-2}.$$

Os 4 termos da EDO são

$$5x^{2}y'' = \sum_{n=0}^{\infty} 5(n+r-1)(n+r)a_{n}x^{n+r},$$

$$xy' = \sum_{n=0}^{\infty} (n+r)a_{n}x^{n+r},$$

$$x^{2}y' = \sum_{n=0}^{\infty} (n+r)a_{n}x^{n+r+1},$$

$$y = \sum_{n=0}^{\infty} a_{n}x^{n+r}.$$

Combinando todos os termos,

$$\sum_{n=0}^{\infty} \left[5(n+r-1)(n+r) + (n+r) - 1 \right] a_n x^{n+r} + \sum_{n=0}^{\infty} (n+r) a_n x^{n+r+1} = 0.$$

Faça

$$m = n + 1,$$
$$n = m - 1.$$

$$\sum_{n=0}^{\infty} \left[5(n+r-1)(n+r) + (n+r) - 1 \right] a_n x^{n+r} + \sum_{m=1}^{\infty} (m+r-1) a_{m-1} x^{m+r} = 0,$$

$$5(r-1)r + r - 1 + \sum_{n=1}^{\infty} \left[5(n+r-1)(n+r) + (n+r) - 1 \right] a_n x^{n+r} + \sum_{n=1}^{\infty} (n+r-1) a_{n-1} x^{n+r} = 0,$$

$$5r^2 - 4r - 1 + \sum_{n=1}^{\infty} \left\{ \left[5(n+r-1)(n+r) + (n+r) - 1 \right] a_n + (n+r-1) a_{n-1} \right\} x^{n+r} = 0.$$

Obviamente, a equação indicial é

$$5r^{2} - 4r - 1 = 0,$$

 $r_{1} = 1,$
 $r_{2} = -\frac{1}{5}$

As raízes são distintas e sua diferença $n\tilde{a}o$ é um número inteiro. Estamos no caso 1 do Teorema de Frobenius. r = 1:

$$[5(n+r-1)(n+r) + (n+r) - 1] a_n + (n+r-1)a_{n-1} = 0,$$

$$[5(n)(n+1) + (n+1) - 1] a_n + (n)a_{n-1} = 0,$$

$$[5n(n+1) + n] a_n + na_{n-1} = 0,$$

$$[5n^2 + 6n] a_n + na_{n-1} = 0,$$

$$a_n = -\frac{n}{5n^2 + 6n} a_{n-1}$$

$$= -\frac{1}{5n + 6} a_{n-1}.$$

A 1ª solução é

$$y_1(x) = x - \frac{1}{11}x^2 + \frac{1}{176}x^3 - \frac{1}{3696}x^4 + \frac{1}{96096}x^5 - \dots$$

r = -1/5:

$$\begin{split} \left[5(n-1/5-1)(n-1/5)+(n-1/5)-1\right]a_n+(n-1/5-1)a_{n-1}&=0,\\ \left[5n^2-6n\right]a_n+\left[n-6/5\right]a_{n-1}&=0,\\ a_n&=-\frac{n-6/5}{5n^2-6n}a_{n-1}\\ &=-\frac{1}{5}\frac{5n-6}{n(5n-6)}a_{n-1}\\ &=-\frac{1}{5n}a_{n-1};\Rightarrow\\ a_n&=\frac{a_0}{5^nn!}, \end{split}$$

A 2ª solução é

$$y_2(x) = x^{-1/5} \left[1 - \frac{x}{5} + \frac{1}{2!} \left(\frac{x}{5} \right)^2 - \frac{1}{3!} \left(\frac{x}{5} \right)^3 + \dots \right]$$
$$= x^{-1/5} e^{-x/5}.$$

A solução geral é

$$y(x) = C_1 y_1(x) + C_2 y_2(x) \blacksquare$$

TEA010 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPF
FA. 19 set 2022

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova.

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

NÃO ESCREVA NA CARTEIRA.

Prof. Nelson Luís Dias

1 [25] Dada a equação diferencial

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (x+1)y + x^2,\tag{*}$$

construa um esquema de diferenças finitas implícito "sob medida", fazendo

$$\frac{\mathrm{d}y}{\mathrm{d}x} \approx \frac{y_{n+1} - y_n}{\Delta x},$$

onde $x_{n+1} - x_n = \Delta x$ = constante, e substituindo todos os termos do lado direito de (*) pelas médias aritméticas de x_n e x_{n+1} , e de y_n e y_{n+1} . Explicite uma fórmula do tipo

$$y_{n+1}=f(y_n,x_n,x_{n+1}).$$

$$\frac{y_{n+1} - y_n}{\Delta x} = \left(\frac{x_{n+1} + x_n}{2} + 1\right) \left(\frac{y_{n+1} + y_n}{2}\right) + \left(\frac{x_{n+1} + x_n}{2}\right)^2$$

$$\frac{y_{n+1} - y_n}{\Delta x} = \frac{(x_{n+1} + x_n + 2)(y_{n+1} + y_n)}{4} + \frac{(x_{n+1} + x_n)^2}{4}$$

$$y_{n+1} - y_n = \left[\frac{(x_{n+1} + x_n + 2)(y_{n+1} + y_n)}{4} + \frac{(x_{n+1} + x_n)^2}{4}\right] \Delta x$$

$$y_{n+1} \left[1 - (x_{n+1} + x_n + 2)\frac{\Delta x}{4}\right] = y_n \left[1 + (x_{n+1} + x_n + 2)\frac{\Delta x}{4}\right] + \frac{(x_{n+1} + x_n)^2 \Delta x}{4}$$

$$y_{n+1} = \frac{y_n \left[1 + (x_{n+1} + x_n + 2)\frac{\Delta x}{4}\right] + \frac{(x_{n+1} + x_n)^2 \Delta x}{4}}{\left[1 - (x_{n+1} + x_n + 2)\frac{\Delta x}{4}\right]} \blacksquare$$

3 vetores do \mathbb{R}^3 são LD se forem coplanares. Portanto, a forma mais rápida de responder ao enunciado é calculando o produto triplo

$$[\mathbf{u} \times \mathbf{v}] \cdot \mathbf{w} = \begin{vmatrix} 7 & 3 & 4 \\ 1 & 2 & 3 \\ 2 & 4 & 1 \end{vmatrix} = -55 \neq 0;$$

logo, os 3 vetores são LI

 ${f 3}$ [25] Na figura ao lado, considere a curva plana cujas equações são

$$x(t) = 3e^{-t/10} \cos t,$$

 $y(t) = 3e^{-t/10} \sin t,$

 $t \ge 0$. Calcule o seu comprimento total. **Observação**: $0 \le t < \infty$, mas o comprimento da curva é **finito**.

SOLUÇÃO DA QUESTÃO:

Este é o problema 7.4 do livro-texto

$$\begin{split} \mathrm{d}t &= \sqrt{\mathrm{d}x^2 + \mathrm{d}y^2} \\ &= \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \, \mathrm{d}t \\ &= \left[\left(-3\mathrm{e}^{-t/10} \left(\mathrm{sen}(t) + \frac{1}{10} \cos(t) \right) \right)^2 + \left(+3\mathrm{e}^{-t/10} \left(\cos(t) - \frac{1}{10} \sin(t) \right) \right)^2 \right]^{1/2} \, \mathrm{d}t \\ &= \left[9\mathrm{e}^{-2t/10} \left(\mathrm{sen}^2(t) + 2 \sin(t) \frac{\cos(t)}{10} + \frac{1}{100} \cos^2(t) \right) \right. \\ &+ 9\mathrm{e}^{-2t/10} \left(\cos^2(t) - 2 \cos(t) \frac{\sin(t)}{10} + \frac{1}{100} \sin^2(t) \right) \right]^{1/2} \, \mathrm{d}t \\ &= \left[9\mathrm{e}^{-2t/10} \left(\mathrm{sen}^2(t) + \frac{1}{100} \cos^2(t) + \cos^2(t) + \frac{1}{100} \sin^2(t) \right) \right]^{1/2} \, \mathrm{d}t \\ &= \sqrt{\frac{909}{100}} \mathrm{e}^{-2t/10} \, \mathrm{d}t \\ &= \frac{3\sqrt{101}}{10} \mathrm{e}^{-t/10} \, \mathrm{d}t. \end{split}$$

Integrando,

$$\ell = \int_{t=0}^{\infty} \frac{3\sqrt{101}}{10} e^{-t/10} dt = 3\sqrt{101} \blacksquare$$

$$f(z) = \frac{1}{z(1-z)}$$

em torno de z=0 e para a região |z|>1. Sugestão: |1/z|<1 na região especificada.

SOLUÇÃO DA QUESTÃO:

Este é o problema 9.14 do livro-texto

$$f(z) = \frac{1}{z} \frac{1}{1-z}$$

$$= \frac{1}{z} \frac{1}{z(\frac{1}{z}-1)}$$

$$= -\frac{1}{z^2} \frac{1}{1-\frac{1}{z}}$$

$$= -\frac{1}{z^2} \left(1 + \frac{1}{z} + \frac{1}{z^2} + \dots\right)$$

$$= -\frac{1}{z^2} - \frac{1}{z^3} - \frac{1}{z^4} - \dots \blacksquare$$

TEA010 Matemática Aplicada I Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR FB, 23 set 2022

0

Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova.

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

NÃO ESCREVA NA CARTEIRA.

1 [25] O programa ao lado resolve numericamente a equação diferencial

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \dots,$$
$$y(0) = \dots$$

Preencha os pontos.

```
#!/usr/bin/python3
h = 0.1
                               # passo em x
x = [0.0]
                               # x inicial
y = [1.0]
                               # y inicial
n = int(10/h)
                               # número de passos
def ff(x,y):
    return (x+1)*y + x**2;
def rk4(x,y,h,ff):
   k1 = h*ff(x,y)
   k2 = h*ff(x+h/2,y+k1/2)
   k3 = h*ff(x+h/2,y+k2/2)
   k4 = h*ff(x+h,y+k3)
   yn = y + k1/6.0 + k2/3.0 + k3/3.0 + k4/6.0
   return yn
for i in range(0,n):
                             # loop da solução numérica
   xn = (i+1)*h
   yn = rk4(x[i],y[i],h,ff)
   x.append(xn)
   y.append(yn)
fou = open('rukfb.out','wt')
for i in range(0,n+1):
                              # imprime o arquivo de saída
   fou.write( \%12.6f \%12.6f \% (x[i],y[i]))
fou.close()
```

$$\frac{\mathrm{d}y}{\mathrm{d}x} = (x+1)y + x^2;$$
$$y(0) = 1 \blacksquare$$

2 [25] Nesta questão, considere que os vetores e_i pertencem à base canônica do \mathbb{R}^3 . A **contração** de dois tensores de ordem 2 A e B é definida por

$$A: B \equiv A_{ij}B_{lm}(e_j \cdot e_l)(e_i \cdot e_m).$$

Se S é um tensor simétrico $S = S_{ij}e_ie_j$, $S_{ij} = S_{ji}$ e se A é um tensor antissimétrico, $A = A_{ij}e_ie_j$, $A_{ij} = -A_{ji}$, obtenha S : A.

$$\begin{split} S: A &= S_{ij} A_{lm} (\boldsymbol{e}_j \cdot \boldsymbol{e}_l) (\boldsymbol{e}_i \cdot \boldsymbol{e}_m). \\ &= S_{ij} A_{lm} \delta_{jl} \delta_{im} \\ &= S_{ij} A_{ji} \\ &= \frac{1}{2} S_{ij} A_{ji} + \frac{1}{2} S_{ji} A_{ij} \\ &= \frac{1}{2} S_{ij} \left(A_{ji} + A_{ij} \right) = 0 \; \blacksquare \end{split}$$

3 [25] Utilizando obrigatoriamente integração de contorno com variáveis complexas, calcule

$$I = \int_{x = -\infty}^{+\infty} \frac{1}{x^3 + i} \, \mathrm{d}x.$$

Justifique todos os passos, incluindo a prova de sobre quais partes do contorno a integral é nula.

SOLUÇÃO DA QUESTÃO:

Considere a função $f(z) = 1/(z^3 + i)$. Esta função possui singularidades em

$$z^{3} + i = 0,$$

 $z^{3} = -i = e^{(-i\pi/2 + 2k\pi)};$
 $z = e^{(-i\pi/6 + 2k\pi/3)}.$

Consequentemente, apenas a singularidade em z_1 = i precisa ser considerada no Teorema dos resíduos.

Para verificar a integral sobre o semi-círculo \mathscr{L}_S quando $R \to \infty$:

$$\begin{split} \lim_{R \to \infty} \left| \int_{\mathscr{L}_S} \frac{1}{z^3 + \mathbf{i}} \, \mathrm{d}z \right| &\leq \lim_{R \to \infty} \int_{\mathscr{L}_S} \left| \frac{1}{z^3 + \mathbf{i}} \, \mathrm{d}z \right| \\ &= \lim_{R \to \infty} \int_{\theta = 0}^{\pi} \left| \frac{\mathbf{i} R \mathrm{e}^{\mathrm{i}\theta}}{R^3 \mathrm{e}^{3\mathrm{i}\theta} + \mathbf{i}} \right| \, \mathrm{d}\theta \\ &= \lim_{R \to \infty} \int_{\theta = 0}^{\pi} \left| \frac{\mathbf{i} R \mathrm{e}^{\mathrm{i}\theta}}{R^3 \mathrm{e}^{3\mathrm{i}\theta}} \right| \, \mathrm{d}\theta = \lim_{R \to \infty} \frac{\pi}{R^2} = 0. \end{split}$$

Portanto, pelo Teorema dos resíduos, devemos ter

$$\int_{x=-\infty}^{x=+\infty} \frac{1}{x^3 + i} \, \mathrm{d}x = 2\pi \mathrm{i} c_{-1},$$

onde o resíduo c_{-1} em z_1 é calculado como se segue:

$$\frac{1}{z^3+i}=\frac{1}{(z-z_1)(z-z_2)(z-z_3)};$$

logo, nas proximidades de z_1 ,

$$f(z) \sim \frac{1}{(z-z_1)(z_1-z_2)(z_1-z_3)},$$

donde z_1 é claramente um polo de primeira ordem, e

$$c_{-1} = \frac{1}{(z_1 - z_2)(z_1 - z_3)}$$

$$= \frac{1}{(i - [\sqrt{3}/2 - i/2])(i - [-\sqrt{3}/2 - i/2])}$$

$$= \frac{1}{(3i/2 - \sqrt{3}/2)(3i/2 + \sqrt{3}/2)}$$

$$= \frac{1}{-9/4 - 3/4} = -\frac{1}{3};$$

Finalmente,

$$I = -\frac{2\pi i}{3} \blacksquare$$

$$y^{\prime\prime} + x^2 y = 0.$$

O ponto x = 0 é um ponto ordinário. Isso sugere que soluções simples em série de potências são possíveis. De qualquer forma, usamos o ferramental usual do método de Frobenius:

$$y = \sum_{n=0}^{\infty} a_n x^{r+n},$$

$$y' = \sum_{n=0}^{\infty} (r+n) a_n x^{r+n-1},$$

$$y'' = \sum_{n=0}^{\infty} (r+n-1)(r+n) a_n x^{r+n-2}.$$

Substituindo na equação diferencial,

$$\sum_{n=0}^{\infty} (r+n-1)(r+n)a_n x^{r+n-2} + \sum_{n=0}^{\infty} a_n x^{r+n+2} = 0.$$

Faça

$$r + n + 2 = r + m - 2,$$

$$n = m - 4,$$

$$m = n + 4.$$

Agora,

$$\sum_{n=0}^{\infty} (r+n-1)(r+n)a_n x^{r+n-2} + \sum_{m=4} a_{m-4} x^{r+m-2} = 0,$$

$$(r-1)(r)a_0 x^{r-2} + (r)(r+1)a_1 x^{r-1} + (r+1)(r+2)a_2 x^r + (r+2)(r+3)a_3 x^{r+1} +$$

$$\sum_{n=4}^{\infty} \left[(r+n-1)(r+n)a_n + a_{n-4} \right] x^{r+n-2} = 0,$$

A equação indicial é obtida tomando-se $a_0 \neq 0$:

$$(r-1)r = 0,$$

$$r_1 = 1,$$

$$r_2 = 0.$$

Estamos no caso iii do Teorema de Frobenius, e primeiro verificamos se a menor raiz leva a duas soluções. De fato, fazendo r = 0, vemos que tanto a_0 quanto a_1 podem ser quaisquer, mas que $a_2 = 0$ e $a_3 = 0$. A relação de recorrência é

$$(n-1)na_n + a_{n-4} = 0,$$

$$a_n = -\frac{a_{n-4}}{(n-1)n}.$$

Partindo de $a_2 = a_3 = 0$,

$$a_6 = a_7 = a_{10} = a_{11} = a_{14} = a_{15} = \dots = 0.$$

Partindo de $a_0 = 1$ e de $a_1 = 1$, obtemos, respectivamente

$$a_4 = -\frac{1}{12},$$
 $a_5 = -\frac{1}{20},$ $a_8 = +\frac{1}{672},$ $a_9 = +\frac{1}{1440},$ $a_{12} = -\frac{1}{88704}$ $a_{13} = -\frac{1}{224640},$ \vdots \vdots

As duas soluções LI são

$$y_1(x) = 1 - \frac{1}{12}x^4 + \frac{1}{672}x^8 - \frac{1}{88704}x^{12} + \dots,$$

$$y_2(x) = x - \frac{1}{20}x^5 + \frac{1}{1440}x^9 - \frac{1}{224640}x^{13} + \dots,$$

e a solução geral, como sempre, é

$$y(x) = c_1 y_1(x) + c_2 y_2(x) \blacksquare$$