SVM Support Vector Machines

SVM – Support Vector Machine

- Supervised machine learning algorithm
- Classification technique for linear and non-linear separable classes
- Alternate to Logistic regression
- Classification based on finding a hyperplane that <u>maximises</u> the margin between two classes
 - ➤ Mathematically speaking, SVM's are co-ordinates of the data/observations
- Mainly used in binary classification
 - > Can be used in multiclass classification by implementing 'One-Vs-All' method
- SVM algorithm has a feature to ignore outliers
- Complex algorithm, computing resources high, but SVM performs very well

Let us consider a Binary Classification Problem that is Linearly separable

---- Margin

Marginal distance

The goal of SVM

- Find a hyperplane that maximises the distance between the 2 nearest opposite classes
- The margin signifies a generalised model that would give a more accurate model

 The hyperplane leaves the widest possible "cushion" between input points from two classes. Trade-off between

- "narrow cushion, little / no mistakes"
- "wide cushion, quite a few mistakes"
- A narrow margin may do a good job at separating the training classes, but it is prone to misclassifications of the test data

What are Support Vectors?

- Support Vectors are the data points through which the marginal lines passes
- The number of SV's can vary depending upon the data

General equation

$$y = w_1x_1 + w_2x_2 + \dots + b$$

Where

w: weight associated with feature x

Y > +1: Positive Class

Y < -1: Negative Class

We can generalise the equation as $y = w^Tx + b$

where

w: weights of the features

x: input features

b: constant

Assume m=-1 b=0 (since line passes through the origin

$$y = mx + b$$

Here, weights (w) are m (-1) and b (0) w = [-1, 0]

Consider 2 data points

$$X_1 = [-5,0], X_2 = [5,5]$$

This area (under the line) is always +ve

- Vector w = (w1, w2) is perpendicular to the decision boundary
- w -> normal vector
- b -> scalar

Margin Error

Let the equations of the lines be

I1: ax+by+c = 1I2: ax+by+c = -1

Margin (d1) = Perpendicular distance joining each line

Formula (d1) = 2 /
$$\sqrt{a^2 + b^2}$$

Margin Error: $a^2 + b^2$

Goal of SVM is to minimise this error

Which line is better depends on whether we need too many classification errors or too many margin errors

Which line is better?

Margin Error defines the best line

Larger distance (d) means less margin error; Smaller distance (d) means larger margin error

To find the **marginal distance**

$$w^{T}x_{1} + b = 1 \rightarrow (1)$$

 $w^{T}x_{2} + b = -1 \rightarrow (2)$

Subtracting (2) from (1)
$$\mathbf{w}^{\mathsf{T}}(\mathbf{x}_2 - \mathbf{x}_1) = \mathbf{2}$$

Dividing both sides by ||w|| (length of the normal vector)

$$\mathbf{w}^{\mathsf{T}} (\mathbf{x}_2 - \mathbf{x}_1) / ||\mathbf{w}|| = 2 / ||\mathbf{w}||$$

SVM Optimisation function

subject to the constraint

$$y = +1 \text{ when } w^{T}x + b >= +1$$

= -1 when $w^{T}x + b <= -1$

The goal is to maximise | | w | |

This is done by changing the (w,b) values

Multiplying the constraints with the class labels, we can rewriting the condition as

$$Y * w^{T}x + b >= +1$$

 $Y * w^{T}x + b >= +1$

This indicates correct classification

Rewriting the maximisation problem into a minimisation problem, we get

$$\max 2 / ||w|| \rightarrow \min \frac{1}{2} (||w||)^2$$

Subject to the condition $Y (w^Tx + b) -1 >= 0$

Solving this will give the value for w and b

- Real life scenario does not usually have such linearly separable points
- Prone to misclassifications and errors
- Errors doesn't mean change the margin

Rewriting the equation, we get

$$min \frac{1}{2} (||w||) + C \sum_{\zeta}$$

where

C = number of errors

 ζ = value of the errors

Cost Parameter

- C controls the cost of misclassification on the training data
- C → how many errors are there
- (C * Classification Error) + (Margin Error)
- Value of C
 - ✓ Small C
 - Cost of misclassification low ("too strict")
 - Large Margin Error
 - ✓ Large C
 - Cost of misclassification high and potentially overfit ("too loose")
 - Low Margin Error
- The goal is to find the balance between "not too strict" and "not too loose"
- Cross-validation and resampling are good ways to finding the best C

C and Gamma

- For linear models, only C needs to be optimized
- For RBF models, both C and Gamma parameters need to be optimized
- C and Gamma values can change based on the dataset / problem dataset
- For starters, the estimates could range from
 - > C -> 0.1 100
 - > Gamma -> 0.0001 10

Find the best Kernel and other parameters

Cost

- Known as the Penalty parameter (C)
- Controls the cost of misclassification on the training data
- High C → more data points chosen as support vectors
 - ➤ High variance : Low Bias → Overfit
- Low C → less data points chosen as support vectors
 - ➤ Low variance : High Bias → Underfit

Gamma

- Influence of data points on the decision boundary
- Shape of the decision boundary line depends on gamma
 - ▶ High Gamma → decision boundary depends on data points near the decision boundary
 - ▶ Low Gamma → decision boundary depends on far away points
- The goal of SVM is to find a hyperplane that would leave the widest possible "cushion" between input points from two classes.
- There is a trade-off between "narrow cushion, little / no mistakes" and "wide cushion, quite a few mistakes".

C Parameter

Predictions with C=0.1

- Large margin
- More generalised model
- May have classification errors

Predictions with C=100

- Smaller margin
- May not have any classification errors

- Given 2 models, assume there are 2 boundary lines
- Which separating line is better?

Gamma Parameter

- Used mainly with non-linear SVM (where data cannot be linearly separated due to high dimensions)
- RBF (Radial Basis Function) most commonly used non-linear kernel in SVM
- Influence of a single training example (definition according to SVM documentation)
- Low Gamma
 - > Training data has a far reach
 - > Large similarity radius that groups more points
- High Gamma
 - > Training data has a close reach
 - > Points need to be very close to group them in the same class
 - Models with high gamma values usually overfits

Decision boundary depends on these closest points

Low Gamma

Decision boundary depends on these far away points

Find the best Kernel and other parameters

Kernel

- Kernels are mathematical functions
- Measures the similarity between 2 data points
- Sometimes, it is difficult to draw decision boundary
- This kernel technique is black-box

Kernel types

- RBF (Radial Basis Kernel Function) (observations > features)
- Linear Kernel (features > observations)

Non-Linear classification / Kernel Trick

- Uses "kernel" technique to convert non-linear classes to linear classes to fit multi-classes
 - Quite efficient in multi-class prediction
- Uses higher dimension feature space for calculation (i.e. converting non-linear separable classes to separable classes)
- SVM is popular as it works efficiently in large datasets having multi-classes
- Algorithm to arrive at an optimum hyperplane can be computationally expensive and time consuming
- More features and more observations complicate the algorithm
- Choice of Kernel for non-linear datasets
 - > A big challenge
 - Black-box performance
 - > Uses complex data transformation techniques

X	good	bad	
1	-1	3	
4	0	4	
9	1	5	
16	2	6	
25	3	7	
36	4	8	
49	5	9	
64	6	10	
81	7	11	
100	8	12	
121	9	13	
144	10	14	

How to separate the Red Class from Green?

transformation

X	У	x+y	x*y	X ²
0	%	3	0	0
1	2	3	2	1
2	1	3	2	4
3	0	3	0	9

X	У	x*y	(x,y,x*y)	
0	%	0	(0,3,0)	
1	2	2	(1,2,2)	
2	1	2	(2,1,2)	
3	0	0	(3,0,0)	

