Variables of Interest	Parameter of Interest	Statistic of Interest	Descriptive Methods	Inferential Methods	Assumptions for Inferential Methods
Single Numerical Variable	True Population Mean (μ)	Sample Mean (x)	 Report measures of center and variation Dotplot, boxplot, histogram, etc. Describe shape + outliers 	One-sample t-testCI for population mean	• Either the sample size is fairly large or the data reasonably follow a normal distribution
Comparing Numerical Variable across Two Categories of a Categorical Variable (INDEPENDENT samples)	Difference in True Population Means $(\mu_1 - \mu_2)$	Difference in Sample Means $(\overline{x}_1 - \overline{x}_2)$	 Report \$\overline{x}_1\$, \$\overline{x}_2\$, and \$s_1\$, \$s_2 Side-by-side boxplots, facet histograms, etc. 	 Two-sample t-test CI for μ1 - μ2 	 Observations are independent Either both sample sizes are fairly large or the data from each group reasonably follow a normal distribution
Comparing Numerical Variable across Two Categories of a Categorical Variable (DEPENDENT samples)	True Mean Difference (µd)	Sample Mean Difference (\bar{x}_d)	 Report measures of center and variation for the differences Dotplot, boxplot, histogram, etc. 	paired t-testCI for population mean difference	• Either the number of pairs is fairly large or the differences reasonably follow a normal distribution