

# EXPLOITING STRUCTURE AND UNCERTAINTY OF BELLMAN UPDATES IN MARKOV DECISION PROCESSES



D. TATEO, C. D'ERAMO, A. NUARA, M. RESTELLI, A. BONARINI

{davide.tateo, carlo.deramo, alessandro.nuara, marcello.restelli, andrea.bonarini}@polimi.it

### POLITECNICO MILANO 1863

# PROBLEM

- Learning is difficult in highly stochastic environments
- Uncertainty in action-value function estimates propagates
- Some algorithms face this problem focusing on the bias of the estimate

## CONTRIBUTIONS

- 1. Split the estimate in two components:
  - The expected reward  $\widetilde{R}(x, u)$
  - The expected next state value function  $\widetilde{Q}(x,u)$
- 2. Use different learning rates for the two components
- 3. We provide empirical results showing the effectiveness of our approach

# RQ-LEARNING ALGORITHM

IDEA

To improve estimates, exploit:

• The structure of the Bellman update

Split the action-value function in two components:

• The uncertainty of the estimation

APPROACH

Exploit the variance of estimation to set the learning rate:

1. Estimate the variance of the estimator  $\widetilde{Q}$ , using the sample variance of the target:  $\operatorname{Var}\left[\widetilde{Q}\right]=S_t^2\omega_t$ 

$$\omega_{t+1} = (1 - \beta_t)^2 \omega_t + \beta_t^2$$

•  $Q^*(x,u) = \widetilde{R}(x,u) + \gamma \widetilde{Q}(x,u)$ 

Compute the update as follows:

•  $\widetilde{Q}(x, u) = \mathbb{E}\left[\max_{x' \sim \mathcal{P}(x'|x, u')} Q^*(x', u')\right]$ 

•  $\widetilde{R}(x, u) = \mathbb{E}[r(x, u, x')]$ 

 $\widetilde{D}$  ( )  $\widetilde{D}$  ( ) ( )

- $\widetilde{R}_{t+1}(x,u) \leftarrow \widetilde{R}_t(x,u) + \alpha_t(R(x,u,x') \widetilde{R}_t(x,u))$
- $\widetilde{Q}_{t+1}(x,u) \leftarrow \widetilde{Q}_t(x,u) + \beta_t(\max_{u'} Q_t(x',u') \widetilde{Q}_t(x,u))$
- 2. Compute the learning rate
  - Select a  $\beta$  that decreases when the estimate precision increases:

$$\beta_t = \frac{\sigma_e^2(t)}{\sigma_e^2(t) + \eta}$$

• Or, select a  $\delta$  that increases when the estimate precision increases:

$$\delta_t = e^{\frac{\sigma_e^2}{\eta} \log \frac{1}{2}}$$

<u>Algorithms</u>

Different effects on the choiche of  $\alpha$  and  $\beta$ :

**Q-Learning**  $\alpha_t = \beta_t$ 

 $\mathbf{RQ}_{\delta}$ -Learning  $\beta_t = \alpha_t \delta_t$ 

**RQ-Learning**  $\beta_t \neq \alpha_t$ 

# EMPIRICAL RESULTS



