変数選択

労働経済学 (補論)

川田恵介

Table of contents

1	変数選択	2
1.1	問題設定	2
1.2	アイディア	2
1.3	仮定: Sparsity	2
2	Penalized Regression	3
2.1	LASSO Algorithm	3
2.2	Constrained optimization としての書き換え	3
2.3	λ の役割: OLS	3
2.4	λ の役割: 平均	3
2.5	λ の役割 \ldots	4
2.6	変数選択	4
2.7	注意点	4
3	Double Selection	4
3.1	Naive なアイディア	5
3.2	問題点	5
3.3	Double Selection Algorithm	5
3.4	実装	5
3.5	実践	5
3.6	Example: Bonaccolto-Töpfer and Briel (2022)	6
4	Example: CPS1988	6
4.1	Data	6
4.2	推定方法	6
4.3	Comparison	6
4.4	Selected Variable	7
	Nama a	7

1 変数選択

- $\tau=E[Y|D=d',X]-E[Y|D=d,X]$ を近似する $Y=\beta_DD+\beta_0+\beta_1Z_1+..\beta_LZ_L$ を明確な統計的 な基準に基づいて選ぶ
 - OLSでは、事前に研究者が選ぶ必要がある!!!

1.1 問題設定

- 労働研究では、バランスさせたい X が大量に存在するケースも多い
- 関心のある比較は、E[Y|D=d',X]-E[Y|D=d,X]
 - -例: Y = 年収、D = 性別、X = ついている仕事の特徴
 - * 同じ働き方をしている男女内賃金格差
- X に大量のデータが含まれているケースがある
 - 例: 労働時間、勤続年数、業務内容、それらの交差項...
 - * 全てを Balance させることができない/推定精度が大幅に悪化する

1.2 アイディア

- *X* 全てが"重要"なわけではないかもしれない
 - X の一部 Z のみをバランスさせれば十分
 - $-E[Y|D=d',X]-E[Y|D=d,X] \simeq E[Y|D=d',Z]-E[Y|D=d,Z]$

1.3 仮定: Sparsity

 $E[Y|D,X] = \tau D + \beta_0 + \underbrace{\beta_1 X_1 + \ldots + \beta_L X_L}_{L> \$例数でもOK}$

- (Approximately) sparsity: 事例数に比べて、十分に少ない変数数 S<< 事例数で、母平均をうまく近似できる
- 実戦: 十分に複雑なモデルについて LASSO を推定し、変数選択
 - もともとのモデルには、"trivial"な変数も含まれていると仮定
 - 詳細は Capther 4 in Causal ML 参照

2 Penalized Regression

- データ主導の変数選択については、多くの提案がなされている
 - 代表例は LASSO (機械学習の代表的な手法)

2.1 LASSO Algorithm

- E[Y|X] を近似するモデル g(X) を推定
- 0. 十分に複雑なモデルからスタート: 例: X について二乗項と交差項を作成
- 1. 何らかの基準 (後述) に基づいて Hyper (Tuning) parameter λ を設定
- 2. 以下の最適化問題を解いて、Linear model $g(X)=\beta_0+\beta_1X_1+\beta_2X_2+\dots$ を推定

$$\min \sum (y_i-g(x_i))^2 + \lambda(|\beta_1|+|\beta_2|+..)$$

2.2 Constrained optimization としての書き換え

- 1. 何らかの基準 (後述) に基づいて Hyper parameter λ を設定
- 2. 以下の最適化問題を解いて、Linear model $g(X)=\beta_0+\beta_1X_1+\beta_2X_2+\dots$ を推定

$$\min \sum (y_i - g(x_i))^2$$

where

$$|\beta_1|+|\beta_2|+..\leq A$$

2.3 λ **の役割**: OLS

- $\lambda = 0$ と設定すれば、(複雑なモデルを)OLS で推定した推定結果と一致
 - すべての変数が活用される

2.4 *λ* **の**役割: 平均

- $\lambda = \infty$ と設定すれば、必ず $\beta_1 = \beta_2 = .. = 0$ となる
 - β_0 のみ、最小二乗法で推定: g(X)= サンプル平均
- すべての変数が排除される

2.5 λ の役割

- ・ やりたい事: E[Y|X] を上手く近似するように λ を設定し、単純すぎるモデル (Approximation error が大きすぎる) と複雑すぎるモデル (Estimation error が大きすぎる) の間の" ちょうどいい" モデルを構築する
- 設定方法: 理論値 (hdm で採用)
 - サンプル分割 (交差推定, glmnet で実装)/情報基準 (gamlr で採用) なども有力

2.6 変数選択

- いくつかの変数について、係数値 β が厳密にゼロになるうる
 - モデルから除外される
 - * OLSでは"生じない"

2.7 注意点

- LASSO および他の Penlized Regression (Ridge など) によって推定された係数値について、解釈を与えることは難しい
 - -E[Y|X]の近似が目的であり、係数値について明確な母集団上の解釈がない
 - * Yの予測が目的であれば、優れた手法
 - Yとそこそこの関係性がある変数であったとしても、除外される可能性がある
 - 信頼区間の計算も難しい
- さらに学びたい人は、Chap 1 in CausalML, in Chap 6 in ISL などを参照

3 Double Selection

- 変数選択には一般にミスが生じる
 - 重要な変数を除外してまうリスクがある
- リスクを緩和するために、"ダブルチェック"を行う必要がある
- Belloni, Chernozhukov, and Hansen (2014)
 - Gentle introduction: Angrist and Frandsen (2022)

3.1 Naive なアイディア

- X を全てバランスさせるのではなく、Y との相関が強いものだけをバランスさせる
 - $g_Y\!(X)$ を LASSO で推定し、選択された変数だけを OLS に加える

3.2 問題点

- 問題点: LASSO による変数選択は、Y とそこそこ相関がある変数も除外されてしまう可能性がある
 - -E[Y|X] の近似が目的であれば、(Tuning parmeter が正しく選ばれている限り)、許容できる
- D との相関が強い (分布が Unbalance) な変数が除外されると β_D の推定結果が大きな影響を受ける
 - τの推定という目標に対して、モデルが過度に単純化される (Regulization bias)

3.3 Double Selection Algorithm

- 1. $g_{V}(X)$ および $g_{D}(X)$ を LASSO で推定し、選択された変数を記録
- 2. **どちらかの**予測モデルで選択された変数 (Z) のみを用いて、 $Y \sim D + Z$ を回帰
- Yの予測モデルと D の予測モデルによる" ダブルチェック"

3.4 実装

• hdm package が有益

```
rlassoEffect(
  x = X, # Must be matrix
  d = D, # Must be vector
  y = Y # Must be vector
)
```

• 注: Tuning parameter は、交差推定ではなく、理論値を使用

3.5 実践

- かなり制約的なアプローチ (Variable selection を行う Algorithm しか使えない)
 - より柔軟なアプローチが多く提案
- 今でも多くの応用研究が、Robustness check として活用

- 最終的には OLS なので、Editor/Referee に理解させやすい!?
- すぐに活用できるという意味で、十分に実践的
 - * OLS でコントロールしている自身の研究があれば、使ってみてください!!!

3.6 Example: Bonaccolto-Töpfer and Briel (2022)

- 就業形態や教育歴、家族背景等をバランスさせたもとでの、男女間賃金格差を推定
 - 二乗項と交差項を加えて、9045変数が元々のコントロール変数
 - Double Selection により、5,821 変数を選択

4 Example: CPS1988

4.1 Data

- Use CPS1988 from AER package
 - Sample size 28155
 - $-Y = \log \text{ wage}, D = \text{partime (Parttime wage penalty)}$
 - -X = BaseLine (education, ethnicity, smsa, region) + experience
 - * 7 variables

4.2 推定方法

- Flexible control excluding experience: BaseLine と、その二乗項と交差項をコントロールし、OLS 推定
- Simple control: BaseLine + experience。ただし二乗項や交差項は除外
- Flexible control without robust CI: BaseLine + experience と、その二乗項と交差項をコントロール し、OLS 推定
 - Robust stadard error は計算できなかったので、classical standard error を報告
- Double selection: Double selection で変数選択

4.3 Comparison

• 二乗項や交差項を加えることで、経験年数を追加的にバランスされた推定結果が顕著に異なる

4.4 Selected Variable

• 教育年数や学歴の二乗項も残る

education	experience	${\tt ethnicityafam}$
TRUE	TRUE	TRUE
regionsouth	<pre>I(education^2)</pre>	<pre>I(experience^2)</pre>
TRUE	TRUE	TRUE
education:experience	education:smsayes	education:regionwest
TRUE	TRUE	TRUE
experience:smsayes	smsayes:regionsouth	
TRUE	TRUE	

Reference

Angrist, Joshua D, and Brigham Frandsen. 2022. "Machine Labor." Journal of Labor Economics 40 (S1): S97–140.

Belloni, Alexandre, Victor Chernozhukov, and Christian Hansen. 2014. "Inference on Treatment Effects After Selection Among High-Dimensional Controls." Review of Economic Studies 81 (2): 608–50.

Bonaccolto-Töpfer, Marina, and Stephanie Briel. 2022. "The Gender Pay Gap Revisited: Does Machine Learning Offer New Insights?" *Labour Economics* 78: 102223. https://doi.org/https://doi.org/10. 1016/j.labeco.2022.102223.