Faster Pseudopolynomial Algorithms for Mean-Payoff Games

L. Doyen, R. Gentilini, and J.-F. Raskin

Univ. Libre de Bruxelles

Table of Contents

Preliminaries

- ☐ Mean-Payoff Games Problems
- ☐ Energy Games Problems
- ☐ State of the Art: An Algorithmic Statement

Our Contribution

- √ A Small Energy Progress Measure
- √ Faster Pseudopolynomial Algorithms for Energy Games
- √ Faster Pseudopolynomial Algorithms for Mean-payoff Games

Mean-Payoff Games (MPG)

- 2 players (maximizer \square vs minimizer \triangle)
- turn based
- played on a finite graph (arena)
- infinite number of turns
- goal (for □): maximazing the long-run average weight

MPG in Formal Terms

In a MPG $\Gamma = (V, E, w : V \to \mathbb{Z}, \langle V_{\square}, V_{\triangle} \rangle)$, player \square (\triangle) wants to maximize (minimize) the long-run average weight in a play (payoff).

Given a play $p = \{v_i\}_{i \in \mathbb{N}}$ in Γ , the payoff of player \square on p is:

$$\mathsf{MP}(v_0 v_1 \dots v_n \dots) = \liminf_{n \to \infty} \frac{1}{n} \cdot \sum_{i=0}^{n-1} w(v_i, v_{i+1})$$

The value secured by a strategy σ_{\square} : $V^* \cdot V_{\square} \to V$ in vertex v is:

$$\mathsf{val}^{\sigma_{\square}}(v) = \inf_{\sigma_{\triangle} \in \Sigma_{\triangle}} \mathsf{MP}(\mathsf{outcome}^{\Gamma}(v, \sigma_{\square}, \sigma_{\triangle}))$$

 $\sup_{\sigma_{\square} \in \Sigma_{\square}} (\mathsf{val}^{\sigma_{\square}}(v))$ is the optimal value that player \square can secure in v

MPG are Memoryless Determined

$$\begin{aligned} \mathsf{val}^\Gamma(v) &= \sup_{\sigma_\square \in \Sigma_\square} \inf_{\sigma_\triangle \in \Sigma_\triangle} \mathsf{MP}(\mathsf{outcome}^\Gamma(v, \sigma_\square, \sigma_\triangle)) = \\ &= \inf_{\sigma_\triangle \in \Sigma_\triangle} \sup_{\sigma_\square \in \Sigma_\square} \mathsf{MP}(\mathsf{outcome}^\Gamma(v, \sigma_\square, \sigma_\square)) \end{aligned}$$

there exist uniform memoryless strategies, $\pi_\square:V_\square\to V$, $\pi_\triangle:V_\triangle\to V$ such that $\operatorname{val}^\Gamma(v)=\operatorname{val}^{\pi_\square}(v)=\operatorname{val}^{\pi_\triangle}(v)$

 $\mathsf{val}^\Gamma(v)$ is said the value of the vertex v in the meanpayoff game Γ .

The Value in MPG

For all memoryless strategies π_{\square} for player \square , for all $v \in V$:

$$\mathsf{val}^{\pi_{\square}}(v) \geq \mu$$

all cycles reachable from v in $G_{\pi_{\square}}^{\Gamma}$ have average weight $\geq \mu$.

$$\begin{aligned} \operatorname{val}^{\Gamma}(v) &= \tfrac{n}{d} \text{ such that } 0 < d \leq |V| \\ \text{and } \tfrac{|n|}{d} \leq M, M &= \max_{e \in E} \{|w(e)|\}. \end{aligned}$$

The Value in MPG

For all memoryless strategies π_{\square} for player \square , for all $v \in V$:

$$\mathsf{val}^{\pi_{\square}}(v) \geq \mu$$

all cycles reachable from v in $G_{\pi_{\square}}^{\Gamma}$ have average weight $\geq \mu$.

$$\operatorname{val}^{\Gamma}(v) = \frac{n}{d} \text{ such that } 0 < d \leq |V|$$
 and $\frac{|n|}{d} \leq M$, $M = \max_{e \in E} \{|w(e)|\}$.

MPG Problems

We consider the following four problems on MPG:

- 1. Decision Problem & Strategy Synthesis Given $v \in V$, $\mu \in \mathbb{Z}$, decide if player \square has a strategy π_{\square} to secure $\mathsf{val}^{\pi_{\square}}(v) \geq \mu$. If yes, construct a corresponding winning strategy for player \square .
- 2. Threshold-partition Problem Given $\mu \in \mathbb{Z}$, partition the set V into subsets $V_{>\mu}, V_{<\mu}, V_{=\mu}$ of vertices from which player \square can secure a payoff $> \mu, < \mu$, and $= \mu$, respectively.
- 3. Value Problem Compute the set of (rational) values $\{val^{\Gamma}(v) \mid v \in V\}$
- 4. Optimal Strategy Synth. Construct an optimal strategy for player □

MPG Problems: Why They Matter?

- ☐ MPG problems have an interesting complexity status
 - MPG decision problem belongs to NP ∩ coNP (and even to UP ∩ coUP)
 - No polynomial algorithm known so far
- ☐ MPG strongly significative for theoretical and applicative aspects
 - μ -calculus model checking $\stackrel{\mathsf{PTIME}}{\Longleftrightarrow}$ parity games $\stackrel{\mathsf{PTIME}}{\Longrightarrow}$ MPG
 - MPG ^{PTIME} simple stochastic games
 - MPG ^{PTIME} discounted payoff games

State of the Art: An Algorithmic Statement

Consider $\Gamma = (V, E, w, \langle V_{\square}, V_{\triangle} \rangle)$, where $w : V \to [-M, \dots, 0, \dots, +M]$:

U. Zwick and M. Paterson, 1996

- $\Rightarrow \Theta(EV^2M)$ algorithm for the decision problem
- $\Rightarrow \Theta(EV^3M)$ algorithm for the value problem
- $\Rightarrow \Theta(EV^4M\log(\frac{E}{V}))$ algorithm for optimal strategy synthesis

H. Bjorklund and S. Vorobyov, 2004: Use a randomized framework

- $\Rightarrow \mathcal{O}(\min(EV^2M, 2^{\mathcal{O}(\sqrt{V \log V})}))$ for the decision prob.
- $\Rightarrow \mathcal{O}(\min(EV^3M(\log V + \log M), 2^{\mathcal{O}(\sqrt{V \log V})}))$ for the value prob.

Y. Lifshits and D. Pavlov, 2006

 $\Rightarrow \mathcal{O}(EV2^V \log(Z))$ algorithm for the decision/value problem

Energy Games (EG)

In an energy game $\Gamma = (V, E, w, \langle V_{\square}, V_{\triangle} \rangle)$, the goal of player \square is building a play $p = \{v_i\}_{i \in \mathbb{N}}$ such that for some initial credit $c \in \mathbb{N}$: $c + \sum_{i=0}^{j} w(v_i, v_{i+1}) \geq 0$ for all $j \geq 0$

Energy games are memoryless determined, i.e. for all $v \in V$ either player \square has a winning memoryless strategy from v, or player \triangle has a memoryless winning strategy from u.

Winning Strategies in EG

For all memoryless strategies π_{\square} for player \square in the EG Γ :

 π_{\square} is winning from $v \in V$ for player \square

all the cycles reachable from v in $G^{\Gamma}_{\pi_{\square}}$ are nonnegative.

Winning Strategies in EG

For all memoryless strategies π_{\square} for player \square in the EG Γ :

 π_{\square} is winning from $v \in V$ for player \square

all the cycles reachable from v in $G^{\Gamma}_{\pi_{\square}}$ are nonnegative.

EG Problems

We consider the following four problems on energy games:

- 1. Decision Problem . Given $v \in V$, decide if $v \in W_{\square}$, i.e. if v is winning for player \square .
- 2. Strategy Synthesis . Given $v \in W_{\square}$ (resp. W_{\triangle}), construct a corresponding winning strategy for player \square (resp. \triangle) from v.
- 3. Partition Problem . Construct the sets of vertices $W_{\square}, W_{\triangle}$ of winning vertices for the two players.
- 4. Minimum Credit Problem . For each $v \in W_{\square}$ compute the minimum initial credit $c^*(v)$ such that player \square has a winning strategy from v, w.r.t. such an initial credit $c^*(v)$.

A Small Energy Progress Measure

Progress measures are functions $f:V\to\mathbb{N}$ defined on the set of vertices of a weighted graph

their local consistency allows to infer global properties of the graph.

Definition [Energy Progress Measure] Let $G = \langle V, E, w \rangle$

be a weighted graph. An energy progress measure for G is a

function $f: V \to \mathbb{N}$ such that for all $(v, v') \in E$:

$$f(v) \ge f(v') - w(v, v')$$

A Small Energy Progress Measure

Our progress measure (PM) is referred to as energy PM since:

Let G = (V, E, w) be a weighted graph. If G admits an energy progress measure, then:

- \Rightarrow all cycles of G are nonnegative, and
- \Rightarrow for all paths (v_0, \ldots, v_n) in G it holds:

$$f(v_0) + \sum_{i=0}^{n-1} w(v_i, v_{i+1}) \ge 0$$

A Small Energy Progress Measure

Given
$$G = (V, E, w)$$
, where $w : V \to \{-M, ..., +M\}$, let
$$\mathcal{M}_G = \sum_{v \in V} \max(\{0\} \cup \{-w(v, v') \mid (v, v') \in E\})$$

Our energy progress measure is referred to as small since:

Given G = (V, E, w), if all cycles of G are nonnegative, then there exists an energy progress measure $f : V \to \{0, \dots, \mathcal{M}_G\}$ for G.

A Small Energy PM: From Graphs to Games

To extend the concept of energy PM from graphs to games, we take into account the partition of vertices between the players.

A function $f: V \to \mathcal{C}_{\Gamma} = \{n \in \mathbb{N} | n \leq \mathcal{M}_{G^{\Gamma}}\} \cup \{\top\}$ is a small energy progress measure for the game $\Gamma = (V, E, w, \langle V_{\square}, V_{\triangle} \rangle)$ iff: \Rightarrow if $v \in V_{\square}$, then $f(v) \succeq f(v') \ominus w(v, v')$ for some $(v, v') \in E$ \Rightarrow if $v \in V_{\triangle}$, then $f(v) \succeq f(v') \ominus w(v, v')$ for all $(v, v') \in E$

- We denote by V_f the set of states $V_f = \{v \mid f(v) \neq \top\}$.
- Memoryless strategy π_{\square}^f is sayd compatible with f iff:

$$\forall v \in V_{\square}.(\pi_{\square}^f(v) = v' \to f(v) \succeq f(v') \ominus w(v, v'))$$

Solving the EG Problems

Lemma If π_{\square}^f is a strategy for player \square compatible with the small energy PM f for the EG Γ , then π_{\square}^f is a winning strategy for player \square from all vertices $v \in V_f$, i.e. $V_f \subseteq W_{\square}$.

Lemma If Γ is an energy game, then Γ admits a small energy PM f with $V_f = W_{\square}$, and such that for all $v \in W_{\square}$, $f(v) = c^*(v)$.

Hence, determining a small energy PM on the EG Γ such that $V_f = W_{\square}$ and for all $v \in W_{\square}$, $f(v) = c^*(v)$, subsumes our four EG problems.

EG Algorithm: Basics

Our energy game algorithm based on the notion of small energy PM:

- Initializes the small energy $\mathsf{PM} f: V \to \mathcal{C}_{\Gamma}$ to the constant function 0
- Maintain overall its execution a list L of nodes that witness a local inconsistency of f, namely:
 - $v \in L \cap V_{\square}$ iff for all v' such that $(v, v') \in E$ it holds $f(v) < (v') \ominus w(v, v')$
 - $v \in L \cap V_{\triangle}$ iff there exists v' such that $(v, v') \in E$ and $f(v) < (v') \ominus w(v, v')$

EG Algorithm in Big Steps

The algorithm iteratively extracts a node v from L and performs:

- 1. Apply to f the lifting operator $\delta(f, v)$ to solve local inconsistency.
- 2. Insert into the list L the set of nodes witnessing a new local inconsistency, due to the increasing of f(v).

Definition [Lifting Operator] Given $v \in V$, the lifting operator

$$\delta(\cdot,v):[V\to\mathcal{C}_\Gamma]\to[V\to\mathcal{C}_\Gamma]$$
 is defined by $\delta(f,v)=g$ where:

$$g(z) = \begin{cases} f(z) & \text{if } z \neq v \\ \min\{f(v') \ominus w(v, v') \mid (v, v') \in E\} & \text{if } z = v \in V_{\square} \\ \max\{f(v') \ominus w(v, v') \mid (v, v') \in E\} & \text{if } z = v \in V_{\triangle} \end{cases}$$

EG Algorithm: Correctness and Complexity

Correctness The energy game algorithm applied to the energy game Γ computes a small energy PM f on Γ such that:

$$\Rightarrow$$
 if $v \in W_{\square}$, then $f(v) = c^*(v)$, otherwise $f(v) = \top$.

To establish the complexity of our energy games algorithm note that:

- each iteration of the procedure (corresponding to a lift operation, followed by an update of the list L) costs $\mathcal{O}(post(v) + pre(v))$.
- For each $v \in V$, f(v) can increase at most $\mathcal{M}_{G^{\Gamma}} + 1$ times.

Complexity The complexity of the energy games algorithm is

$$\mathcal{O}(\sum_{v \in V} (post(v) + pre(v)) \cdot \mathcal{M}_{G^{\Gamma}}) = \mathcal{O}(E \cdot \mathcal{M}_{G^{\Gamma}})$$

Pseudopolynomial Upper Bounds for EG Problems

The following problems can be solved in time $\mathcal{O}(E \cdot V \cdot M)$ on the

EG
$$\Gamma = (V, E, w : V \rightarrow [-M, \dots, 0, \dots, +M], \langle V_{\square}, V_{\triangle} \rangle)$$

- (1) the decision problem,
- (2) the strategy synthesis problem,
- (3) the partition problem, and
- (4) the minimum credit problem.

Solving the MPG Problems

Given the MPG $\Gamma = (V, E, w, \langle V_{\square}, V_{\triangle} \rangle)$, consider $\mu \in \mathbb{Z}$, and let $\Gamma^{-\mu} = (V, E, z - \mu, \langle V_{\square}, V_{\triangle} \rangle)$.

Lemma If f is a small energy PM for $\Gamma^{-\mu}$ and π_f is a strategy for player \square compatible with f, then π_f applied to Γ secures player \square a payoff at least t from all $u \in V_f$.

Moreover, $\Gamma^{-\mu}$ admits a small energy PM f, such that $V_f = V_{\geq \mu}$.

Solving the MPG Decision Problem

Let $\Gamma = (V, E, w, \langle V_{\square}, V \triangle \rangle)$ be a MPG, let $\mu \in \mathbb{Z}$. The decision problem "Is $\mathsf{val}^{\Gamma}(v) \geq \mu$?" can be easily solved using our EG algorithm, on the ground of the previous lemma:

- If $t > M = \max_{v \in V} \{|w(v)|\}$, then no. If -t > M, then yes.
- Otherwise, in virtue of the previous lemma we can apply our energy games algorithm to $\Gamma^{-\mu}$ obtainin the energy PM f, such that our decision problem has a positive answer iff $f(v) \neq \bot$.
- Moreover, if $f(v) \neq \bot$, any strategy π_f compatible with f to Γ secures player \square a payoff at least μ .

Solving the MPG 3-way Partition Problem

Also the three-way partition problem can be solved using the energy games algorithm as a basic ingredient:

- Given $\Gamma' = (V, E, w \mu, \langle V_{\square}, V_{\triangle} \rangle)$ and $\mu \in \mathbb{Z}$, define $\Gamma' = (V, E, w \mu, \langle V_{\square}, V_{\triangle} \rangle), \Gamma'' = (V, E, -w + \mu, \langle V_{\triangle}, V_{\square} \rangle)$
- Running EG algorithm on Γ' yields the partition on V into $V_{\geq \mu}, V_{<\mu}$
- Running EG algorithm on Γ'' yields the partition on V into $V_{\leq \mu}, V_{>\mu}$
- The desired three-way partition can be immediately extracted from the above two partitions.

New Pseudopolynomial Upper Bounds for MPG (I)

The following problems can be solved in $\mathcal{O}(E \cdot V \cdot M)$ on the MPG

$$\Gamma = (V, E, w : V \to [-M, \dots, 0, \dots, +M], \langle V_{\square}, V_{\triangle} \rangle)$$

- (1) the decision problem,
- (2) the strategy synthesis problem,
- (3) the 3-way partition problem.

New Pseudopolynomial Upper Bounds for MPG (II)

Combining a our energy games algorithm with a dichotomic search into the set of rationals:

$$S = \{ \frac{p}{m} \mid 1 \le m \le |V| \land -M \le \frac{p}{m} \le M \}$$

we finally establish the last two new mean-payoff lower bounds:

The following problems can be solved in $\mathcal{O}(EV^2M(\log V + \log M))$ on the mean-payoff game $\Gamma = (V, E, w, \langle V_{\square}, V_{\triangle} \rangle)$

- (1) the value problem,
- (2) the optimal strategy synthesis problem.

Summary of Results (I)

Problems				
Algorithms	Decision Problem 3-Way Partition Problem	Strategy Synthesis	Remarks	
This paper	$\mathcal{O}(E\cdot V\cdot W)$	$\mathcal{O}(E\cdot V\cdot W)$	Deterministic	
Zwick & Paterson '96	$\Theta(E\cdot V^2\cdot W)$	$\Theta(E \cdot V^3 \cdot W \log(\frac{E}{V}))$	Deterministic	
Lifshits & Pavlov '07	$\mathcal{O}(E \cdot V \cdot 2^{\textstyle V})$	_	Deterministic	
Bjorklund & Vorobyov '07	$\min(\mathcal{O}(E \cdot V^2 \cdot W), \ 2^{\mathcal{O}(\sqrt{V \cdot \log(V)})})$	$\min(\mathcal{O}(E \cdot V^2 \cdot W), \ 2^{\mathcal{O}(\sqrt{V \cdot \log(V)})})$	Randomized	

Summary of Results (II)

Problems			
Algorithms	Value Problem	Optimal Strategy Synthesis	
This paper Daterministic	$\mathcal{O}(E \cdot V^2 \cdot W \cdot (\log(V) + \log(W)))$	$\mathcal{O}(E \cdot V^2 \cdot W \cdot (\log(V) + \log(W)))$	
Zwick& Pat.'96 Deterministic	$\Theta(E\cdot V^3\cdot W)$	$\Theta(E \cdot V^4 \cdot W \log(\frac{E}{V}))$	
Lif.& Pav.'07 Deterministic	$\mathcal{O}(E \cdot V \cdot 2^{\textstyle V} \cdot \log(W))$	_	
Bjor.& Vor.'07 Randomized	$\min(\mathcal{O}(E \cdot V^3 \cdot W \cdot (\log(V) + \log(W))), \\ 2^{\mathcal{O}(\sqrt{V \cdot \log(V)})})$	$\min(\mathcal{O}(E \cdot V^3 \cdot W \cdot (\log(V) + \log(W))), \\ 2^{\mathcal{O}(\sqrt{V \cdot \log(V)})})$	