Формулировки задач

alexmipt

November 2022

группа	(1) Одномерная минимизация	(2) Безусловная минимизация
1	Метод парабол	Метод градиентного спуска;
		Метод Флетчера-Ривза
2	Метод золотого сечения	Метод градиентного спуска;
		Демпфированный метод Ньютона
3	Метод Брента	Метод градиентного спуска;
		Метод Левенберга-Марквардта
4	Правило Армихо	Метод градиентного спуска;
		Метод тяжелого шарика Поляка
5	Метод дихотомии	Метод градиентного спуска;
		Метод Полака-Рибьера-Поляка
6	Метод Фибоначчи	Метод градиентного спуска;
		Метод Хестенса-Штифеля
7	Метод дихотомии с производной	Метод градиентного спуска;
		Метод Бройдена
8	Правило Гольдштейна	Метод градиентного спуска;
		Метод Бройдена-Флетчера-Гольдфарба-
		Шенно (BFGS или LBFGS)

Таблица 1: Распределение задач 1 и 2 по группам

1 Одномерная минимизация

1.1 Тестовые функции

Минимизировать функции на отрезке:

- 1. $f(x) = x^2, x \in [-1; 10];$
- 2. $f(x) = (x+5)^4, x \in [-6; 2];$
- 3. $f(x) = xe^x, x \in [-2; 0];$
- 4. $f(x) = xe^{-x}, x \in [-2; 6];$
- 5. $f(x) = \frac{x^4}{\ln x}$; $x \in [1.1; 1.5]$;

группа	(3) Условная минимизация	(4) Штрафные функции
1	Метод проекции градиента	Метод внешних штрафных функций;
		квадратичный штраф
2	Метод условного градиента	Метод внутренних штрафный функций;
		логарифмический барьер
3	Метод зеркального спуска	Метод модифицированной функции
		Лагранжа
4	Условный метод Ньютона	Метод параметризации целевой функции
5	Метод проекции градиента	Метод модифицированной функции
6	Метод условного градиента	Метод внутренних штрафный функций;
		обратный барьер
7	Условный метод Ньютона	Метод внешних штрафных функций;
		квадратичный штраф
8	Метод зеркального спуска	Метод параметризации целевой функции

Таблица 2: Распределение задач 3 и 4 по группам

1.2 Графики

Построить графики:

- 1. Время решения задачи от точности;
- 2. Число итераций при решении задачи от точности;
- 3. Количество вычислений значения функции, градиента функции в точке от точности.

Точность решения задачи варьировать от 0.0001 до 0.001 с шагом 0.0001.

2 Безусловная минимизация

2.1 Тестовые функции

выпуклая задача Расчет минимума сильно-выпуклой функции

$$f(x) = \frac{L - \mu}{8} \left[x_1^2 + \sum_{i=2}^{n} (x_i - x_{i+1})^2 - 2x_1 \right] + \frac{\mu}{2} ||x||_2^2$$

Полагаем $L = 100, \, \mu = 0.1.$

выпуклая задача Расчет двойственной задачи к задаче расчета матрицы корреспонденций:

$$f(x,y) = -(L,x) - (W,y) + \ln \left[\sum_{i,j} \exp(-\alpha c_{ij} + x_i + y_j) \right]$$

Здесь: $x \in \mathbb{R}^n$, $y \in \mathbb{R}^n$, $L, W \in \mathbb{R}^n_+$, $\|L\|_1 = 1$, $\|W\|_1 = 1$, $\alpha \geq 1$, $c_{ij} \in [0,1]$. Параметры L, W, c задаются случайно, $\alpha = 100$.

невыпуклая задача Функция Розенброка ($x \in \mathbb{R}^n, x^* \equiv 1_n, f^* = 0$):

$$f(x) = (x_1 - 1)^2 + \alpha \sum_{i=2}^{n} (x_i - x_{i-1}^2)^2.$$

Параметр α можно тоже варьировать. Для тестов возьмем его 10.

- 1. Начальная точка выбирается случайно на достаточно большом удалении от оптимальной точки. Расстояние фиксируется одним и тем же для разных размерностей задачи;
- 2. Точность решения варьируется от 10^{-4} до 10^{-5} с шагом 10^{-5} ;
- 3. Точность одномерного поиска варьируется от 10^{-7} до 10^{-8} с шагом 10^{-8} ;
- 4. Размерность задачи варьируется: 10, 20, 30, 40, 50, 60, 60, 70, 80, 90, 100, 200, 400, 600, 800, 1000.

2.2 Графики

- 1. Для фиксированных выбранных значений точности одномерного поиска и точности решения задачи по функции построить график зависимости времени решения от размерности задачи.
- 2. Для фиксированных выбранных значений размерности задачи и точности одномерного поиска построить график зависимости времени решения задачи от требуемой точности решения задачи по функции
- 3. Для фиксированных выбранных значений размерности и точности решения задачи по функции построить график зависимости времени решения от точности одномерного поиска.
- Для фиксированных выбранных значений точности одномерного поиска, размерности задачи и точности решения задачи по функции построить график зависимости времени решения от расстояния между начальной точкой и оптимальной точкой.

3 Условная минимизация

3.1 Тестовые функции

1. Задача линейного программирования

$$c^Tx \to \min_{x \in G}; G = \left\{ x \in R^n_+ : Ax = b \right\}$$

2. Задача энтропийно-линейного программирования

$$c^{T}x + \gamma \sum_{i=1}^{n} x_{i} \ln x_{i} \to \min_{x \in G}; G = \{x \in R_{+}^{n} : Ax = b\}$$

3. Квадратичная задача

$$\frac{1}{2}x^TCx + b^Tx \to \min_{x \in G}; G = x \in R^n: Ax = b.$$

Здесь $C^T = C$

3.2 Графики

- 1. Для фиксированных выбранных значений точности одномерного поиска и точности решения задачи по функции построить график зависимости времени решения от размерности задачи.
- 2. Для фиксированных выбранных значений размерности задачи и точности одномерного поиска построить график зависимости времени решения задачи от требуемой точности решения задачи по функции
- 3. Для фиксированных выбранных значений размерности и точности решения задачи по функции построить график зависимости времени решения от точности одномерного поиска.
- Для фиксированных выбранных значений точности одномерного поиска, размерности задачи и точности решения задачи по функции построить график зависимости времени решения от расстояния между начальной точкой и оптимальной точкой.
- 1. Начальная точка выбирается случайно на достаточно большом удалении от оптимальной точки. Расстояние фиксируется одним и тем же для разных размерностей задачи;
- 2. Точность решения варьируется от 10^{-4} до 10^{-5} с шагом 10^{-5} ;
- 3. Точность одномерного поиска варьируется от 10^{-7} до 10^{-8} с шагом 10^{-8} ;
- 4. Размерность задачи варьируется: 10, 20, 30, 40, 50, 60, 60, 70, 80, 90, 100, 200, 400, 600, 800, 1000.