| EAiIB                        | Pęcak Tomasz                           |                    | Rok           | Grupa               | Zespół |
|------------------------------|----------------------------------------|--------------------|---------------|---------------------|--------|
| Informatyka                  | Bielech Maciej                         |                    | II            | 3a                  | II     |
| Pracownia FIZYCZNA WFiIS AGH | Temat: Fale podłużne w ciałach stałych |                    |               | nr ćwiczenia:<br>29 |        |
| Data wykonania:              | Data oddania:                          | Zwrot do poprawki: | Data oddania: | Data zaliczenia:    | OCENA: |
| 28.10.2017                   | 31.10.2017                             |                    |               |                     |        |

## 1 Wstęp

Celem ćwiczenia było wyznaczenie wartości modułu Younga dla różnych materiałów przy wykorzystaniu równania fali rozchodzącej się w pręcie.

Moduł Younga (*E*) to współczynnik sprężystości podłużnej. Określa on własności sprężyste ciała stałego, charakteryzując podatność materiału na odkształcenia. Jego jednostką jest pascal.

Fala dźwiękowa to rozchodzące się w ośrodku mechaniczne drgania cząteczek tego ośrodka. Na skutek wychylenia częsci pręta z położenia równowagi w jego wnętrzu powstaje fala i zostaje on wprawiony w drgania. Z teorii drgań sprężystych, na podstawie równania ruchu fali, wiemy, że prędkość rozchodzenia się fali w ciele drgającym zależy od jego Modułu Younga oraz gęstości. Zależność tę opisuje wzór:

$$v = \sqrt{\frac{E}{\rho}},\tag{1}$$

który po przekształceniach pozwala nam obliczyć moduł Younga danego materiału:

$$E = \rho v^2. (2)$$

Interferencja jest zjawiskiem nakładania się fal, co prowadzi do wzmocnień i wygaszeń amplitudy. Szczególnym przypadkiem interfencji jest fala stojąca, która powstaje w wyniku nałożenia się dwóch takich samych fal, poruszających się w tym samym kierunku, ale o przeciwynch zwrotach. Z takim przypadkiem mamy do czynienia w pręcie, gdzie interferują fala padająca i odbita. Długość fali stojącej wynosi:  $\lambda=2l$ , gdzie l to odległość miedzy jej węzłami. Korzystając z tej zależności możemy wyliczyć prędkość fali w pręcie jako: v=2lf. Skąd wyproadzamy wzór roboczy na moduł Younga, z którego korzystamy w ćwiczeniu:

$$E = 4\rho l^2 f^2 \tag{3}$$

Szybka transformata Fouriera pozwala nam wyznaczyć częstotliwości kolejnych haramoniczych fali, których długości obliczamy jako:  $\lambda = \frac{2l}{n}$ , gdzie n to numer harmonicznej.

# 2 Wykonanie ćwiczenia

Ćwiczenie wykonywaliśmy dla drutów: mosiężnego, stalowego, miedzianego i aluminiowego. Dla każdego z nich powtórzyliśmy następujące czynności:

- W pierwszym kroku dokonaliśmy pomiaru wymiarów próbki danego materiału w celu wyznaczenia jego objętości. W zależności od jej kształtu stosowaliśmy: taśmę mierniczą o dokładności ±1 mm lub suwmiarkę ±0.05 mm.
- Następnie każdą próbkę zwarzyliśmy. Ze względu na różne wielkości próbek używaliśmy wag o różnych dokładnościach (±1g lub ±0.001g).
- W kolejnym kroku zmierzyliśmy długość pręta przy pomocy taśmy mierniczej.
- Na końcu dokonaliśmy pomiaru częstotliwości harmoniczych przy pomocy oscyloskopu w programie Zelscope. W tym celu umieśliśmy pręt na nitkach stojaka, by mógł swobonie drgać. Ustawiliśmy mikrofon w odpowiedniej odległości od drutu. Następnie uderzaliśmy młotkiem w koniec pręta i zapisywaliśmy wyniki uzykane w programie.

## 3 Opracowanie danych pomiarowych

Tabela 1: Pomiary dla materialu miedzianego.

| Nr harmonicznej | Częstotliwość <i>f</i><br>[Hz] | Długość fali λ [m] | Prędkość fali <i>v</i><br>[m/s] |
|-----------------|--------------------------------|--------------------|---------------------------------|
| 1               | 1180                           | 3,60               | 4248                            |
| 2               | 2160                           | 1,80               | 3888                            |
| 3               | 3240                           | 1,20               | 3888                            |
| 4               | 4280                           | 0,90               | 3852                            |
| 5               | 5260                           | 0,72               | 3787,2                          |
| 6               | 6200                           | 0,60               | 3720                            |

Tabela 2: Pomiary dla materialu aluminiowego.

| Nr harmonicznej | Częstotliwość <i>f</i><br>[Hz] | Długość fali λ [m] | Prędkość fali v<br>[m/s] |
|-----------------|--------------------------------|--------------------|--------------------------|
| 1               | 2440                           | 1,98               | 4831,2                   |
| 2               | 4960                           | 0,99               | 4910,4                   |
| 3               | 6840                           | 0,66               | 4514,4                   |
| 4               | 9560                           | 0,50               | 4732,2                   |
| 5               | 11340                          | 0,40               | 4490,64                  |
| 6               | 12360                          | 0,33               | 4078,8                   |

Tabela 3: Pomiary dla materiału mosiężnego.

| Nr harmonicznej | Częstotliwość <i>f</i><br>[Hz] | Długość fali λ [m] | Prędkość fali v<br>[m/s] |
|-----------------|--------------------------------|--------------------|--------------------------|
| 1               | 1690                           | 1,98               | 3346,2                   |
| 2               | 3460                           | 0,99               | 3425,4                   |
| 3               | 5160                           | 0,66               | 3405,6                   |
| 4               | 6840                           | 0,50               | 3385,8                   |
| 5               | 8620                           | 0,40               | 3413,52                  |
| 6               | 12000                          | 0,33               | 3960                     |

Tabela 4: Pomiary dla materialu stalowego.

| Nr harmonicznej | Częstotliwość <i>f</i><br>[Hz] | Długość fali λ [m] | Prędkość fali v<br>[m/s] |
|-----------------|--------------------------------|--------------------|--------------------------|
| 1               | 1420                           | 3,60               | 5112                     |
| 2               | 2900                           | 1,80               | 5220                     |
| 3               | 4300                           | 1,20               | 5160                     |
| 4               | 5720                           | 0,90               | 5148                     |
| 5               | 7120                           | 0,72               | 5126,4                   |
| 6               | 8600                           | 0,60               | 5160                     |

#### 3.1 Analiza błedów

Na czerwono zostały oznaczone pomiary, których prędkość znacząco odbiega od średniej. Utożsamiamy je z błedami grubymi, które najprawdopodniej są wynikiem błędnego odczytu częstotliwości.

#### 3.2 Pomiary i ich niepewności.

Wszystkie wielkości mierzyliśmy niewielką ilość razy, dlatego dla każdej z nich przyjmujemy ocenę niepewności typu B, co w naszym przypadku będzie odpowiadać dokładności przyrządu pomiarowego. W każdym przypadku  $u(f)=20\,\mathrm{Hz}$ .

Tablica 1: Niepewności standardowe miedzi

| Symbol              | d [mm]  | $d_w$ [mm] | <i>l</i> [mm] | m [g]  |
|---------------------|---------|------------|---------------|--------|
| Wartość(niepewność) | 15,2(5) | 17,9(5)    | 1801(1)       | 761(1) |

Tablica 2: Niepewności standardowe aluminium

| Symbol               | h [mm]  | d [mm] | <i>l</i> [mm] | <i>m</i> [g] |
|----------------------|---------|--------|---------------|--------------|
| Wartość (niepewność) | 43,9(5) | 4,9(5) | 999(1)        | 23,89(1)     |

Tablica 3: Niepewności standardowe stal

| Symbol               | h [mm]  | <i>b</i> [mm] | c [mm]  | <i>m</i> [g] |
|----------------------|---------|---------------|---------|--------------|
| Wartość (niepewność) | 19,8(5) | 14,1(5)       | 14,2(5) | 30,86(1)     |

Tablica 4: Niepewności standardowe mosiadz

| Symbol              | d [mm] | h [mm]  | <i>l</i> [mm] | m [g] |
|---------------------|--------|---------|---------------|-------|
| Wartość(niepewność) | 5,9(5) | 31,1(5) | 1800(1)       | 74(1) |

Niepewność złożona powierzchni prostokąta:

$$u(P_P) = \sqrt{\left(\frac{\partial P_P}{\partial b}u(b)\right)^2 + \left(\frac{\partial P_P}{\partial a}u(a)\right)^2} = \sqrt{\left(bu(a)\right)^2 + \left(au(b)\right)^2}$$
(4)

Niepewność złożona powierzchni koła:

$$u(P_p) = \sqrt{\left(\frac{\partial P_P}{\partial d}u(d)\right)^2} = \sqrt{\left(\frac{\pi}{2}du(d)\right)^2}$$
 (5)

Niepewność złożona objętości:

$$u(V) = \sqrt{\left(\frac{\partial V}{\partial h}u(h)\right)^2 + \left(\frac{\partial V}{\partial P_p}u(P_p)\right)^2} = \sqrt{\left(hu(P_p)\right)^2 + \left(P_pu(h)\right)^2}$$
 (6)

Niepewność złożona gęstości:

$$u(\rho) = \sqrt{\left(\frac{\partial \rho}{\partial V}u(V)\right)^2 + \left(\frac{\partial \rho}{\partial \lambda}u(\lambda)\right)^2} = \sqrt{\left(-\frac{m}{V^2}u(V)\right)^2 + \left(\frac{1}{V}u(m)\right)^2}$$
(7)

Niepewność złożona prędkości:

$$u(v) = \sqrt{\left(\frac{\partial v}{\partial f}u(f)\right)^2 + \left(\frac{\partial v}{\partial \lambda}u(\lambda)\right)^2} = \sqrt{\left(\lambda u(f)\right)^2 + \left(fu(\lambda)\right)^2}$$
(8)

Niepewność złożona modułu Younga:

$$u(E) = \sqrt{\left(\frac{\partial E}{\partial \rho}u(\rho)\right)^2 + \left(\frac{\partial E}{\partial v}u(v)\right)^2} = \sqrt{\left(v^2u(\rho)\right)^2 + \left(2\rho vu(v)\right)^2}$$
(9)

Korzystając z odpowiednich wzorów (zależnych od kszatłtu próbki) obliczamy niepewność złożoną modułu Younga dla wszystkich metali.

## 4 **Podsumowanie**



- Zarówno dla mosiądzu jak i dla stali otrzymane przez nas wyniki pokrywają się z wartościami tabelarycznymi. Świadczy to o poprawności wykonanych pomiarów.
- W przypadku aluminium uzyskany wynik, nawet po uwzględnieniu niepewności rozszerzonej, nie pokrywa się z wartością dokładną. Te pomiary zostały dokonane jako pierwsze i odczytwane wartości częstotliwości nie są dokładne. Mamy tutaj do czynienia z błedem systematycznym, wynikającym z nieodpowiednio umieszczoną skalą w oprogramowaniu. Po uwzględnieniu przesunięcia o +200 Hz (o taką różnicę podejrzewamy odczyt ze skali i odczyt myszą) moduł Younga równa się: E = 68,6±3 Gpa, co jest wynikiem poprawnym w zakresie obliczonej niepewności.
- Najgorsze wyniki otrzymaliśmy dla miedzi. Przyczną tak dużej rozbieżności jest najprawdopodobniej źle obliczona gęstość, której wartość dla naszych pomiarów wynosi  $\rho=5900\pm304\,\frac{\mathrm{kg}}{\mathrm{m}^3}$ , przy wartości tabelarycznej wynoszącej  $\rho_0=8900\,\frac{\mathrm{kg}}{\mathrm{m}^3}$ . Po zamianie gęstości na dokładną moduł Younga badanej próbki miedzi jest równy:  $E=130\pm6\mathrm{GPa}$ , co jest zgodne z wartością tabelaryczną w zakresie obliczonej niepewności. Możemy przypuszczać, że dokonaliśmy złych pomiarów rurki miedzianej, lub ewentualnie była ona wykonana z innego metalu.