Big Data Small Data, In Domain Out-of Domain, Known Word Unknown Word: The Impact of Word Representations on Sequence Labelling Tasks

Lizhen Qu, Gabriela Ferraro, Liyuan Zhou, Weiwei Hou, Nathan Schneider & Timothy Baldwin

7 July 2015

What we want to know about word embeddings

Research questions

- RQ1: Are word embeddings better than baseline approaches of one-hot unigram features and Brown clusters?
- RQ2: Do word embeddings require less training data than one-hot unigram features? If so, to what degree can word embeddings reduce the amount of labelled data?
- RQ3: What is the impact of updating word embeddings in sequence labelling tasks, both empirically over the target task and geometrically over the vectors?
- RQ4: What is the impact of these word embeddings (with and without updating) on both OOV items (relative to the training data) and out-of-domain data?
- RQ5: Are some word embeddings better than others in a sequence labelling context?

Experiments Setup

Fix the experiments conditions

Pre-trained word embeddings

- Corpora
 - UMBC [?], 48.1GB
 - One Billion [?], 4.1GB
 - English Wikipedia, 49.6GB
- Embedding dimensions: d ∈ {25, 50, 100, 200}
- Context window size: m ∈ {1, 5, 10}

Selected Word Representations

- Brown clustering [?]
- CBOW [?],
- Skipgram [?],
- Global vectors [?]

- Four sequence labeling tasks

- POS-Tagging,
- Chunking,
- NER,

Lizhen Qu et al.

- MWE (Multi-word Expressions identification)

Training, development and test data

	Training	Development	In-domain Test	Out-of-domain Test
POS tagging	WSJSec. 0-18	WSJSec. 19-21	WSJ Sec. 22-24	EWT
Chunking	WSJ	WSJ(1K sentences)	WSJ(CoNLL-00 test)	Brown
NER	Reuters(CoNLL-03 train)	Reuters(CoNLL-03 dev)	Reuters(CoNLL-03 test)	MUC7
MWE	EWT(500 docs)	EWT(100 docs)	EWT(123 docs)	_

- RQ1: Word embeddings vs. one-hot unigram features vs. Brown clusters?
- RQ2: Do word embeddings require less training data than one-hot unigram features?

Figure: POS tagging(Acc)

Figure : Chunking(F1)

Figure: NER(F1)

Figure: MWE(F1)

RQ3: What is the impact of updating word embeddings geometrically over the vectors?

Figure: Chunkingwith SKIP-GRAM

Figure: NERwith SKIP-GRAM

RQ4: What is the impact of these word embeddings (with and without updating) on both OOV items (relative to the training data) and out-of-domain data?

RQ5: Are some word embeddings better than others in a sequence labelling context?

