

POLITECHNIKA GDAŃSKA

Katedra:	Algorytmów i Modelowania Systemów
Imię i nazwisko dyplomanta:	Marcin Jurczak
Nr albumu:	171641
Forma i poziom studiów:	Stacjonarne jednolite studia magisterskie
Kierunek studiów:	Informatyka
Specjalność:	Algorytmów i Technologii Internetowych

Praca dyplomowa magisterska

Temat pracy:

Wykorzystanie języka Elm do tworzenia aplikacji frontendowych.

Title of thesis:

Programming the front-end applications with Elm language.

Opiekun pracy:

dr inż. Krzysztof Manuszewski

Data ostatecznego zatwierdzenia raportu podobieństw w JSA: TBA

Streszczenie

Celem niniejszej pracy magisterskiej było stworzenie frontend'owej aplikacji internetowej z wy-

korzystaniem funkcyjnego języka Elm, porównanie tejże technologii z istniejącymi, bardziej po-

wszechnymi rozwiązaniami tego typu, a także przygotowanie instrukcji laboratoryjnej, która mo-

głaby zostać wykorzystana w ramach zajęć "Współczesne Aplikacje Programowania Funkcyjnego"

przeprowadzanych na Wydziałe Elektroniki, Telekomunikacji i Informatyki Politechniki Gdańskiej.

Wytworzona aplikacja to strona internetowa typu startpage, czyli startowa strona przeglądarki,

zawierająca najpotrzebniejsze informacje, takie jak czas, pogoda oraz odnośniki do wyszukiwarki

i najczęściej odwiedzanych stron.

Słowa kluczowe: Elm, programowanie funkcyjne, wytwarzane aplikacji internetowych

Dziedzina nauki i techniki: Nauki inżynieryjne i techniczne, inżynieria informatyczna.

Abstract

The goal of this master thesis is to use the Elm language to create a frontend web application, com-

paring this technology to existing, more popular solutions, as well as preparing a lab instruction,

which could be used at "Modern applications of functional programming" class at Gdańsk Uni-

versity of Technology's Faculty of Electronics, Telecommunications and Informatics. The created

application is a startpage, meaning a starting page of a web browser consisting of the most useful

information, such as time, weather and references to search engine and the most visited websites.

Keywords: Elm, functional programming, web development

Field of Science and Technology: Engineering and Technology, Information engineering.

2

Spis treści

1	Wst	tęp i cel pracy	6				
2	Pov	Powszechne rozwiązania					
	2.1	React.js	8				
	2.2	Angular	8				
	2.3	Vue.js	8				
	2.4	Podobieństwa i różnice	9				
3	Elm	n	10				
	3.1	Programowanie funkcyjne	10				
	3.2	The Elm Architecture	10				
		3.2.1 Model	11				
		3.2.2 Update	12				
		3.2.3 View	12				
	3.3	Narzędzia	13				
4	Imp	plementacja 1					
	4.1	JSON	14				
5	Inst	nstrukcja laboratoryjna 1					
	5.1	Przygotowanie środowiska	15				
		5.1.1 Platforma Elm	15				
		5.1.2 Edytor	17				
		5.1.3 Tworzenie projektu	17				

Spis treści

	5.2	Podsta	awy języka Elm	18
		5.2.1	Wartości	18
		5.2.2	Funkcje	18
	5.3	Aplika	acja frontendowa	18
		5.3.1	Zegar	18
		5.3.2	Pogoda	18
		5.3.3	Wyszukiwarka	18
		5.3.4	Zakładki	18
		5.3.5	Dokument hipertekstowy	18
		5.3.6	Style	19
6	Aut	omaty	zacja	20
	6.1	CI/CI)	20
		6.1.1	Ciągła integracja	20
		6.1.2	Ciągłe wdrażanie	21
	6.2	GitHu	b Actions	21
	6.3	GitHu	b Pages	21
7	7 Podsumowanie 2			
•		Wnios		22 22
	/ I	VVDIOS	K1	'''

Wykaz najważniejszych skrótów

CD – ang. Continuous Deployment, pol. ciągłe wdrażanie.

CI – ang. Continuous Integration, pol. ciagla integracja.

 $\mathbf{CSS}~$ – ang. Cascading Style Sheets, pol. kaskadowe arkusze stylów

HTML – ang. Hypertext Markup Language, pol. hipertekstowy język znaczników.

HTTP – ang. Hypertext Transfer Protocol, pol. protokół przesyłania hipertekstu.

JSON – ang. JavaScript Object Notation, pol. tekstowy format zapisu danych

Wstęp i cel pracy

Głównym celem niniejszej pracy jest zapoznanie się z funkcyjnym językiem programowania Elm oraz stworzenie przykładowej frontendowej aplikacji internetowej. Ponadto chciałbym przeprowadzić porównanie tej technologii z innymi, bardziej powszechnie używanymi rozwiązaniami do tworzenia aplikacji internetowych. Ostatnim celem pracy jest przygotowanie części dydaktycznej w postaci instrukcji laboratoryjnej, która mogłaby zostać potencjalnie wykorzystana w ramach przedmiotu Współczesne Aplikacje Programowania Funkcyjnego, prowadzonego przez mojego promotora, dra inż. Krzysztofa Manuszewskiego.

Logo Elma

W drugim rozdziale skupiam się na przedstawieniu technologii powszechnie używanych do tworzenia frontendowych aplikacji internetowych, t.j. React.js, Angular oraz Vue.js. Prezentuję ich zalety i wady względem siebie, a także przedstawiam cechy wyróżniające je między sobą.

Trzeci rozdział poświęcam na wysokopoziomowe wprowadzenie do języka Elm. Mówię o idei jaka przyświęcała stworzeniu tego języka, jakie są jego potencjalne zastosowania, gdzie sprawdza się najlepiej oraz przedstawiam narzędzia wspomagające tworzenie oprogramowania z użyciem tejże technologii.

W czwartm rozdziałe przedstawiam implementację przygotowanej aplikacji frontendowej napisanej w Elmie. Jest to poniekąd rozwinięcie poprzedniego rozdziału, ponieważ głównym celem jest dalej zapoznanie się z Elmem, jednak tutaj uwagę skupiam na przedstawieniu konkretnych rozwiązań, jakie zostały wykorzystane do osiągniecia wybranego celu.

Piąty rozdział zawiera instrukcję laboratoryjną, w której przeprowadzam czytelnika nieposiadającego żadnego doświadczenia z Elmem przez proces tworzenia oprogramowania z wykorzystaniem tej technologii, zaczynając od przygotowania środowiska, przez podstawy języka, aż po stworzenie aplikacji frontendowej przedstawionej we wcześniejszym rozdziale.

Szósty rozdział poświęcam na omówienie zagadnień związanych z ciągłą integracją oraz ciągłym

wdrażaniem, a także przedstawiam narzędzia wykorzystywane przeze mnie w tym celu podczas tworzenia omawianej aplikacji. Pokazuję, że Elm nie stanowi przeszkody w wykorzystywaniu tych technologii i całkowicie nadaje się do użytku produkcyjnego.

Ostatni rozdział dotyczy przede wszystkim podsumowania niniejszej pracy magisterskiej. Przedstawiam produkt dwóch semestrów moich działań oraz wyciągam wnioski na temat Elma jako języka przeznaczonego do tworzenia aplikacji frontendowych.

Na końcu dokumentu znajdują się spisy użytych rysunków i listingów, a także bibliografia, która została wykorzystana podczas pracy nad niniejszym dokumentem oraz w czasie zapoznawania się z tematem wytwarzania aplikacji internetowych z wykorzystaniem języka Elm.

Powszechne rozwiązania

W poniższym rozdziałe chciałbym przedstawić najpopularniejsze rozwiązania do tworzenia frontendowych stron internetowych, które są powszechnie stosowane zarówno przez największych gigantów technologicznych, tj. Google, Facebook, Netflix, ale także małe, dopiero wchodządzące na rynek firmy startupowe.

Według ankiety przeprowadzonej w 2021 roku przez StackOverflow [1], najczęściej wybieranym przez programistów frameworkiem do tworzenia stron internetowych był React.js (40,14% odpowiedzi), a na czwartym i piątym miejscu znajdowały się odpowiednio biblioteki Angular (22,96% odpowiedzi) oraz Vue.js (18,97% odpowiedzi). Są to biblioteki, na których chciałbym się skupić w poniższych podrozdziałach. Opiszę, czym się charakteryzują, jakie są ich wady i zalety, a także co je ze sobą łączy oraz w jaki sposób są od siebie różne.

2.1 React.js

Biblioteka React.js [2] [3]

2.2 Angular

Biblioteka Angular [4] [4]

2.3 Vue.js

Biblioteka Vue.js [5]

2.4 Podobieństwa i różnice

Elm

Elm [6] jest czysto funkcyjnym językiem programowania przeznaczonym do tworzenia graficznych interfejsów użytkownika. Powstał w roku 2012 wraz z opublikowaniem przez Evana Czaplickiego pracy "Elm: Concurrent FRP for Functional GUIs" [7]. Podczas jego tworzenia nacisk został położony na użyteczność, wydajność oraz niską podatność na błędy.

Największym atutem tego języka jest zdecydowanie silnie promowany przez autora brak występowania wyjątków w czasie działania programu (tzw. *runtime exception*), co jest możliwe dzięki statycznemu sprawdzaniu typów przez kompilator Elma.

3.1 Programowanie funkcyjne

3.2 The Elm Architecture

Rysunek 3.1: Diagram działania programu w Elmie

The Elm Architecture jest schematem tworzenia interaktywnych aplikacji internetowych lub gier. Zgodnie z rysunkiem 3.1 typowa aplikacja Elm działa w następujący sposób: Program generuje pewien kod HTML, który zostaje wyświetlony na ekranie, a następnie komputer zwraca wiadomości informujące o tym co się dzieje, np. użytkownik wcisnął guzik.

A co się dzieje wewnątrz wspomnianego programu Elmowego? Zawsze składa się z trzech podstawowych elementów:

- Model opisujący stan aplikacji
- Update opisujący logikę aplikacji
- View opisujący wygląd aplikacji

W kolejnych podrozdziałach przedstawiam powyższe elementy architektury Elma na podstawie prostego programu, którego zadaniem jest wyświetlenie na ekranie dwóch guzików oraz licznika, który może się zwiększać i zmniejszać, w zależności od tego, który guzik zostanie naciśnięty przez użytkownika.

3.2.1 Model

Celem modelu przedstawionego na listingu 3.1 jest zdefiniowanie danych w naszej aplikacji.

W tym przypadku model będzie bardzo prosty – jest to rekord zawierający jedną wartość całkowitoliczbową (typ Int), która będzie mogła zostać zwiększona lub zmniejszona poprzez naciśnięcie odpowiedniego guzika.

Listing 3.1: The Elm Architecture - Model

type alias Model = Int

init : Model

init =

0

12 Elm

3.2.2 Update

Listing 3.2: The Elm Architecture - Update

```
type Msg
= Increment
| Decrement

update : Msg -> Model -> Model

update msg model =
   case msg of
   Increment ->
     model + 1

Decrement ->
   model - 1
```

Funkcja update, która została przedstawiona na listingu 3.2, ma za zadanie opisywać jak nasz model będzie się zmieniał w czasie.

Jako argument przyjmuje nowo zdefiniowany typ Msg, który ma dwa warianty – Increment i Decrement. Typ zostaje dopasowany i w zależności od otrzymanego wariantu, model zostanie odpowiednio zaktualizowany (zmniejszony lub zwiększony) i zwrócony z funkcji.

3.2.3 View

Funkcja view, która została zaprezentowana na listingu 3.3, jako argument przyjmuje model i zwraca kod HTML. Wykorzystany został tutaj handler onClick z biblioteki Html.Events, który po kliknięciu guzika, do którego został przypisany, generuje odpowiednią wiadomość. Znak plusa generuje wiadomość Increment, znak minusa Decrement. Następnie wybrana wiadomość trafia do funkcji update.

Listing 3.3: The Elm Architecture – View

```
view : Model -> Html Msg
view model =
  div []
  [ button [ onClick Decrement ] [ text "-" ]
  , div [] [ text (String.fromInt model) ]
  , button [ onClick Increment ] [ text "+" ]
]
```

3.3 Narzędzia 13

3.3 Narzędzia

elm repl

Platforma Elm jest dostarczana wraz z zestawem narzędzi pozwalających m.in. na kompilację plików źródłowych czy instalację dodatkowych modułów. Poniżej postaram się opisać większość z tych narzędzi, tj. dostarczanych przez Elma, ale wskazać również te dostarczane przez zewnętrznych twórców, a które znacząco ułatwiły mi pracę z tym językiem.

otwiera interaktywną sesję programistyczną.

elm init – inicjalizuje bieżący katalog jako nowy projekt Elma poprzez stworzenie pliku elm. json opisującego projekt i jego zależności, a także tworzy katalog src/, w którym będą znajdowały się pliki .elm.
 elm reactor – uruchamia serwer deweloperski, który poprzez przeglądarkę pozwala wybrać dany plik źródłowy, skompilować go i sprawdzić jak wygląda po zbudowaniu.

elm make — pozwala na kompilację kodu źródłowego do HTML'a lub JavaScript'u.

Jest to najbardziej ogólna forma kompilacji, jaką udostępnia Elm, ale jest to niezwykle przydatne narzędzie, kiedy projekt stanie się zbyt skomplikowany na korzystanie z elm reactor.

elm install – pozwala instalować paczki dostępne na stronie package.elm-lang.org, które udostępniają nowe funkcjonalności, jak np. obsługa plików JSON czy praca z zapytaniami HTTP.

elm-format [8] – formater kodu "upiększający" kod źródłowy Elm'a zgodnie z oficjalną dokumentacją opisującą styl jego tworzenia

elm-live [9] — podobnie jak elm reactor, uruchamia serwer deweloperski, jednak jest to znacznie bardziej rozbudowane narzędzie, oferujące m.in. takie funkcjonalności jak kompilowanie Elm'a do JavaScript'u, załączanie go do pliku HTML i wyświetlanie w przeglądarce stworzonej strony

Implementacja

W ramach części praktycznej niniejszej pracy stworzona została aplikacja internetowa typu startpage, czyli spersonalizowanej strony startowej przeglądarki zawierającej najpotrzebniejsze i najczęściej używane elementy oraz skróty. Na potrzeby aplikacji postanowiłem stworzyć cztery moduły:

- Cyfrowy zegar wskazujący aktualny czas w strefie czasowej użytkownika
- Pogoda w Gdańsku przedstawiona w formie krótkiego opisu oraz temperatury w stopniach Celsjusza
- Wyszukiwarka Google
- Zakładki zawierające odnośniki do wybranych stron internetowych

Powyżej wymienione elementy wykorzystują różne mechanizmy języka, dodatkowe biblioteki Elm'a oraz uwzględniają pracę z najpopularniejszymi sposobami przekazywania informacji w aplikacjach internetowych, takich jak przetwarzanie plików JSON, wysyłanie zapytań HTTP oraz praca z plikami.

W poniższych podrozdziałach skupię się na opisie wymienionych wyżej mechanizmów,

4.1 JSON

Instrukcja laboratoryjna

W poniższym rozdziale przedstawiam przykładową instrukcję laboratoryjną, która krok po kroku przeprowadza czytelnika przez proces tworzenia aplikacji w Elmie, zaczynając od przygotowania środowiska deweloperskiego, przez podstawy języka wraz z ćwiczeniami pozwalającymi na lepsze zrozumienie składni, aż po stworzenie większej aplikacji frontendowej.

5.1 Przygotowanie środowiska

Pierwszą rzeczą, którą należy się zająć przed rozpoczęciem nowego projektu jest przygotowanie odpowiedniego środowiska deweloperskiego. Należy upewnić się, że wszystkie narzędzia potrzebne do wykonania pracy są zainstalowane i prawidłowo skonfigurowane. W przypadku pracy z Elm'em będziemy korzystać przede wszystkim z platformy dostarczanej przez autora, edytora tekstu wspierającego podświetlanie składni, a także innych narzędzi wspomagających proces tworzenia oprogramowania z użyciem tej technologii.

5.1.1 Platforma Elm

Najważniejszą rzeczą, jaka będzie nam potrzebna podczas pracy z Elm'em, będzie platforma języka zawierająca m.in. takie narzędzia jak kompilator oraz menadżer bibliotek. Poniżej przedstawiam instukcję instalacji tej platformy na systemach operacyjnych Linux i Windows. Po przejściu tych kroków, w wierszu poleceń należy wykonać instrukcję elm. Jeśli wszystko zostało prawidłowo zainstalowane i skonfigurowane, powinniśmy ujrzeć widok podobny do przedstawionego na rysunku 5.1.

```
\rightarrow ~ elm Hi, thank you for trying out Elm 0.19.1. I hope you like it!
```

I highly recommend working through https://guide.elm-lang.org to get started. It teaches many important concepts, including how to use `elm` in the terminal.

The most common commands are:

```
elm repl
   Open up an interactive programming session. Type in Elm expressions like
   (2 + 2) or (String.length "test") and see if they equal four!
```

elm init
 Start an Elm project. It creates a starter elm.json file and provides a
 link explaining what to do from there.

elm reactor

Compile code with a click. It opens a file viewer in your browser, and when you click on an Elm file, it compiles and you see the result.

There are a bunch of other commands as well though. Here is a full list:

```
elm repl --help
elm init --help
elm reactor --help
elm make --help
elm install --help
elm bump --help
elm diff --help
elm publish --help
```

Adding the --help flag gives a bunch of additional details about each one.

Be sure to ask on the Elm slack if you run into trouble! Folks are friendly and happy to help out. They hang out there because it is fun, so be kind to get the best results!

Rysunek 5.1: Wyjście instrukcji elm

Linux

Najprostszym sposobem instalacji platformy Elm na systemie operacyjnym Linux jest wykorzystanie narzędzia npm – powszechnie używanego menadżera pakietów służącego do zarządzania warstwą frontendową aplikacji internetowych. Aby zainstalować npm należy skorzystać z systemowego menadżera pakietów. Na przykładzie dystrybucji Ubuntu będą to komendy:

```
$ sudo apt update
$ sudo apt install npm
```

Kiedy narzędzie zostanie już pomyślnie zainstalowane, można przejść do instalacji platformy Elm. Posłuży do tego polecenie:

```
$ npm install −g elm
```

Zgodnie z dokumentacją npm [10], flaga -g oznacza, że pakiet zostanie zainstalowany globalnie, dzięki czemu będzie dostępny z każdego miejsca z systemu. Aby sprawdzić, czy rzeczywiście tak się stało, wystarczy w wierszu poleceń uruchomić komendę elm. Naszym oczom powinien ukazać się widok podobny do rysunku 5.1, tak jak zostało to już wcześniej wspomniane.

Windows

Osoby korzystające z systemu operacyjnego Windows mogą skorzystać z npm, tak jak to było opisane w powyższej sekcji dotyczącej Linuxa lub posłużyć się dedykowanym instalatorem Elm'a [11] na system Windows. W tym drugim przypadku wystarczy przejść przez wszystkie kroki zostawiając opcje domyślne i w rezultacie Elm zostanie pomyślnie zainstalowany i będzie gotowy do użytkowania. W celu sprawdzenia czy faktycznie tak się stało, należy uruchomić wiersz poleceń oraz wykonać instrukcję elm. Wyjście komendy powinno być podobne do tego przedstawionego na rysunku 5.1, tak jak zostało to już wcześniej wspomniane.

5.1.2 Edytor

Ważnym elementem tworzenia oprogramowania jest wyposażenie się w odpowiedni edytor tekstowy, który jest w stanie podświetlać składnię języka, z którego aktualnie korzystamy. Żeby osiągnąć ten cel, w przypadku Elm'a potrzebna będzie instalacja dodatkowej wtyczki do jednego z następujących edytorów:

- Atom
- Emacs
- IntelliJ
- Light Table
- Sublime Text
- Vim
- VS Code

Powyższa lista zawiera odnośniki do wspomnianych wtyczek dla danego edytora, wystarczy kliknąć nazwę swojego ulubionego edytora i pobrać odpowiedni dodatek.

5.1.3 Tworzenie projektu

Elm jest dostarczany wraz z zestawem bardzo przydatnych narzędzi. Jednym z nich jest elm init, które posłuży nam do stworzenia nowego projektu. W tym celu należy otworzyć wiersz poleceń i wykonać następujące instrukcje:

```
$ mkdir elm project
```

- \$ cd elm project
- \$ elm init

Po wypisaniu zawartości katalogu elm_project z użyciem polecenia ls powinny pojawić się dwa nowe elementy:

- Plik elm. json opisujący projekt oraz jego zależności
- Katalog src/ zawierący nasze przyszłe pliki Elm'a

Następnym krokiem będzie utworzenie nowego pliku Main.elm w nowoutworzonym katalogu src/. Będzie się tam znajdował kod naszej aplikacji, którą stworzymy w kolejnych krokach.

5.2 Podstawy języka Elm

W celu nauki podstaw języka Elm skorzystamy z narzędzia elm repl, pozwalającego na korzystanie z interaktywnej sesji programistycznej.

5.2.1 Wartości

5.2.2 Funkcje

5.3 Aplikacja frontendowa

W ramach większego projektu zbudujemy stronę internetową typu **startpage**, czyli strony startowej przeglądarki zawierającej najważniejsze i najczęściej używane elementy. W naszym przypadku będą to cztery moduły – zegar, pogoda, wyszukiwarka oraz pasek zakładek.

5.3.1 Zegar

5.3.2 Pogoda

5.3.3 Wyszukiwarka

5.3.4 Zakładki

5.3.5 Dokument hipertekstowy

Listing 5.1: Zawartość pliku index.html

5.3.6 Style

Automatyzacja

W poniższym rozdziale chciałbym opisać procesy CI/CD oraz korzyści płynące z ich użytkowania, a także zaprezententować implementację takiego rozwiązania na przykładzie stworzonej wcześniej aplikacji w Elm'ie.

6.1 CI/CD

Mianem ${\rm CI/CD}$ określa się zbiór praktyk pozwających na ciągłą integrację oraz ciągłe wdrażanie projektów informatycznych.

CI/CD Pipeline

Rysunek 6.1: Przykładowy potok CI/CD

Na rysunku 6.1 przedstawiony został przykład potoku CI/CD.

6.1.1 Ciągła integracja

Na rynku dostępnych jest wiele narzędzi oferujących usługi wspierające CI. Kilka najpopularniejszych z nich to m.in. Jenkins, TeamCity i CircleCI. Są to potężne narzędzia, umożliwiające

6.2 GitHub Actions 21

tworzenie i zarządzanie potokami ciągłej integracji nawet w przypadku bardzo rozbudowanych projektów prowadzonych przez największe firmy informatyczne.

6.1.2 Ciągłe wdrażanie

6.2 GitHub Actions

Od samego rozpoczęcia pracy nad aplikacją w Elmie, cały kod źródłowy przechowywany był z użyciem systemu kontroli wersji Git [12], a wybór serwisu hostującego zdalne repozytorium kodu padł na GitHub [13]. Z tego względu, oraz przez niewielki rozmiar stworzonej w Elmie aplikacji, zdecydowałem się wykorzystać GitHub Actions do zbudowania potoków CI/CD.

6.3 GitHub Pages

Serwis GitHub udostępnia możliwość hostowania stron internetowych prosto z repozytorium kodu. Warto zaznaczyć, że ta opcja jest dostępna za darmo, pod warunkiem, że hostowana strona znajduje się w **publicznym** repozytorium kodu. Aby skorzystać z usług GitHub Pages dla prywatnego repozytorium konieczne jest wykupienie jednej z płatnych opcji.

Wykorzystanie funkcjonalności Pages jest dość proste – w ustawieniach repozytorium należy ustawić gałąź (*branch*), która ma być zbudowana i wystawiona na stronie, a także wybrać odpowiedni katalog. Domyślnie mogą być to jedynie katalogi / (root) oraz /docs.

Jednakże wykorzystując GitHub Actions możliwe jest bardziej szczegółowe dostosowanie tej strony do swoich potrzeb. W przypadku stworzonej w ramach tej pracy aplikacji w Elmie, kod źródłowy znajdował się w podkatalogu /elm. W wyniku stworzonej konfiguracji, na gałąź gh-pages wypychana jest aktualna zawartość katalogu /elm, a następnie do tej samej gałęzi dorzucany jest otrzymany podczas przeprowadzonej wcześniej fazy budowania wynikowy plik main.js. GitHub Pages znajduje w wybranym miejscu plik index.html, który zostaje wystawiony i strona staje się dostępna do oglądania.

Podsumowanie

7.1 Wnioski

Spis rysunków

3.1	Diagram działania programu w Elmie	10
5.1	Wyjście instrukcji elm	16
6.1	Przykładowy potok CI/CD	20

Spis listingów

3.1	The Elm Architecture – Model	1.
3.2	The Elm Architecture – Update	12
3.3	The Elm Architecture – View	12
5.1	Zawartość pliku index.html	19

Bibliografia

- [1] Stack Overflow Developer Survey Web frameworks. StackOverflow, 2021.
- [2] Alex Banks i Eve Porcello. Learning React: functional web development with React and Redux. "O'Reilly Media, Inc.", 2017.
- [3] Jordan Walke. React documentation. 2022. URL: https://angular.io/docs.
- [4] Deborah Kurata. Angular documentation. Google. 2022. URL: https://angular.io/docs.
- [5] Evan You. Vue.js documentation. 2022. URL: https://vuejs.org/guide.
- [6] Evan Czaplicki. Elm documentation. 2022. URL: https://elm-lang.org/docs.
- [7] Evan Czaplicki. "Elm: Concurrent FRP for Functional GUIs". W: Elm: Concurrent FRP for Functional GUIs. 2012.
- [8] Aaron VonderHaar. elm-format. 2022. URL: https://github.com/avh4/elm-format.
- [9] Will King. elm-live. 2022. URL: https://www.elm-live.com/.
- [10] Isaac Z. Schlueter. npm documentation. 2022. URL: https://docs.npmjs.com/.
- [11] Evan Czaplicki. Elm installer. 2019. URL: https://github.com/elm/compiler/releases.
- [12] Linus Torvalds. Git documentation. 2022. URL: https://git-scm.com/docs.
- [13] PJ Hyett Chris Wanstrath i Tom Preston-Werner. *GitHub documentation*. Microsoft. 2022. URL: https://docs.github.com/en.