1. Given that $\mathbf{B} = 3\hat{x} + 2\hat{y} - \frac{4\pi R}{L}\hat{z}$, determine the magnetic flux $\int \mathbf{B} \cdot d\mathbf{S}$ through the partial cone surface shown in the figure below, where the \mathbf{dS} vector points towards the bottom of the figure (i.e., it has a negative \hat{z} component). **Hint**: Gauss's law for magnetic field \mathbf{B} states that the surface integral $\oint_S \mathbf{B} \cdot d\mathbf{S} = 0$ over any closed surface S enclosing a volume V.

2. An infinite current sheet with a uniform current density $\mathbf{J}_s = J_s \hat{z} \frac{\mathbf{A}}{\mathbf{m}}$ produces magnetostatic fields \mathbf{B} with $\frac{\mu_o J_s}{2}$ magnitude on both sides of the sheet and with opposing directions in consistency with the right-hand-rule and the Biot-Savart law.

Determine the **magnetic field intensity** $\mathbf{H} = \frac{\mathbf{B}}{\mu_o}$ at origin O in the following diagrams due to a pair of current sheets with specified $\mathbf{J_s}$ vectors.

- 3. Consider an infinite slab (extending in y and z directions) of a finite width W=3 m described by -1 < x < 2. The slab is electrically neutral but it conducts a uniform current density of $\mathbf{J}=2\hat{y}$ $\mathrm{A/m^2}$ (meaning that it contains equal densities of positive and negative charge carriers moving in opposite directions parallel to \hat{y}). Outside the slab, that is for x>2 and x<-1, the charge and current densities are zero.
 - a) Using the right-hand-rule and Biot-Savart law, discuss why the current slab should generate equal and opposite directed magnetic fields in $\pm \hat{z}$ directions in front of and behind the plane of symmetry of the slab.
 - b) Based on part (a), what is **B** on the x=0.5 m plane? Briefly explain the reasoning behind your answer.
 - c) Next, make use of the integral form of Ampere's law and the deductions of parts (a) and (b), to find $B_z(x)$ in the regions outside the slab. Hint: make use of a shifted coordinate system with its origin at the center of the slab.

- d) Use Ampere's law to find $B_z(x)$ at a distance x within the current slab.
- e) Plot B_z as a function of x over -3 < x < 3. Be sure to label all relevant values of B_z and x.
- 4. Consider two concentric circular wire loops of radii a=10 cm and b=0.25 cm placed on the x-y plane of the reference coordinate system with their centers at the origin. The medium is free space. The conductivity of the wire from which both loops are made is $\sigma=4\times10^7$ S/m. The cross-section of the wire is circular with radius $r_w=1$ mm and a 5 V battery is connected in the outer loop (see figure).

- a) Calculate the current I_a that flows in the outer loop. **Hint:** resistance R of the outer loop can be calculated using the expression for R developed in Lecture 10 in terms of $d=2\pi a$ and $A=\pi r_w^2$.
- b) Derive an expression for the magnetic flux $\Psi_{a\to b}$ due to the current flowing in the outer loop that "links" the inner loop. Your expression should be in terms of the magnetic permeability of free space, the current I_a , and the radii of the two loops. **Hint:** Refer to the Lecture 13 notes for expressions for the magnetic flux density due to a current flowing in a circular wire loop. Also, take advantage of the fact that $b \ll a$ so that the magnetic field across the smaller loop can be considered nearly constant.
- c) $L_{a\to b} \equiv \Psi_{a\to b}/I_a$ is defined to be the **mutual inductance** between the outer and inner loop. What is the numerical value of the mutual inductance $L_{a\to b}$?