DATA STRUCTURES AND APPLICATIONS (Effective from the academic year 2018 -2019) SEMESTER – III					
Course Code	18CS32	CIE Marks	40		
Number of Contact Hours/Week	3:2:0	SEE Marks	60		
Total Number of Contact Hours	50	Exam Hours	03		

Course Learning Objectives: This course (18CS32) will enable students to:

- Explain fundamentals of data structures and their applications essential for programming/problem solving.
- Illustrate linear representation of data structures: Stack, Queues, Lists, Trees and Graphs.
- Demonstrate sorting and searching algorithms.
 Find suitable data structure during application development/Problem Solving.

Module 1	Contact
Introduction: Data Structures, Classifications (Primitive & Non Primitive), Data structure	10
Operations, Review of Arrays, Structures, Self-Referential Structures, and Unions. Pointers	10
and Dynamic Memory Allocation Functions. Representation of Linear Arrays in Memory,	
Dynamically allocated arrays.	
Array Operations: Traversing, inserting, deleting, searching, and sorting. Multidimensional	
Arrays, Polynomials and Sparse Matrices.	
Strings: Basic Terminology, Storing, Operations and Pattern Matching algorithms.	
Programming Examples.	
Textbook 1: Chapter 1: 1.2, Chapter 2: 2.2 - 2.7 Text Textbook 2: Chapter 1: 1.1 - 1.4,	
Chapter 3: 3.1 - 3.3, 3.5, 3.7, Chapter 4: 4.1 - 4.9, 4.14 Reference 3: Chapter 1: 1.4	
RBT: L1, L2, L3	
Module 2	
Stacks: Definition, Stack Operations, Array Representation of Stacks, Stacks using Dynamic	10
Arrays, Stack Applications: Polish notation, Infix to postfix conversion, evaluation of postfix	
expression.	
Recursion - Factorial, GCD, Fibonacci Sequence, Tower of Hanoi, Ackerman's function.	
Queues: Definition, Array Representation, Queue Operations, Circular Queues, Circular	
queues using Dynamic arrays, Dequeues, Priority Queues, A Mazing Problem. Multiple	
Stacks and Queues. Programming Examples.	
Textbook 1: Chapter 3: 3.1 -3.7 Textbook 2: Chapter 6: 6.1 -6.3, 6.5, 6.7-6.10, 6.12, 6.13	
RBT: L1, L2, L3	
Module 3	
Linked Lists: Definition, Representation of linked lists in Memory, Memory allocation;	10
Garbage Collection. Linked list operations: Traversing, Searching, Insertion, and Deletion.	
Doubly Linked lists, Circular linked lists, and header linked lists. Linked Stacks and Queues.	
Applications of Linked lists - Polynomials, Sparse matrix representation. Programming	
Examples	
Textbook 1: Ch apter 4: 4.1 - 4.6, 4.8, Textbook 2: Ch apter 5: 5.1 - 5.10,	
RBT: L1, L2, L3	
Module 4	
Trees: Terminology, Binary Trees, Properties of Binary trees, Array and linked	10
Representation of Binary Trees, Binary Tree Traversals - Inorder, postorder, preorder;	
Additional Binary tree operations. Threaded binary trees, Binary Search Trees - Definition,	
Insertion, Deletion, Traversal, Searching, Application of Trees-Evaluation of Expression,	
Programming Examples	

Textbook 1: Chapter 5: 5.1 –5.5, 5.7; Textbook 2: Chapter 7: 7.1 – 7.9	
RBT: L1, L2, L3	
Module 5	
Graphs: Definitions, Terminologies, Matrix and Adjacency List Representation Of Graphs,	
Elementary Graph operations, Traversal methods: Breadth First Search and Depth First	
Search.	
Sorting and Searching: Insertion Sort, Radix sort, Address Calculation Sort.	
Hashing: Hash Table organizations, Hashing Functions, Static and Dynamic Hashing.	
Files and Their Organization: Data Hierarchy, File Attributes, Text Files and Binary Files,	
Basic File Operations, File Organizations and Indexing	
Textbook 1: Chapter 6: 6.1 –6.2, Chapter 7:7.2, Chapter 8: 8.1-8.3	
Textbook 2: Chapter 8: 8.1 – 8.7, Chapter 9: 9.1-9.3, 9.7, 9.9	
Reference 2: Chapter 16: 16.1 - 16.7	
RBT: L1, L2, L3	

Course Outcomes: The student will be able to:

- Use different types of data structures, operations and algorithms
- Apply searching and sorting operations on files
- Use stack, Queue, Lists, Trees and Graphs in problem solving
- Implement all data structures in a high-level language for problem solving.

Question Paper Pattern:

- The question paper will have ten questions
 Each full Question consisting of 20 marks
- There will be 2 full questions (with a maximum of four sub questions) from each module.
- Each full question will have sub questions covering all the topics under a module.

 The students will have to answer 5 full questions, selecting one full question from each module.

- Ellis Horowitz and Sartaj Sahni, Fundamentals of Data Structures in C, 2nd Ed, Universities Press, 2014.
- Seymour Lipschutz, Data Structures Schaum's Outlines, Revised 1st Ed, McGraw Hill, 2014.

Reference Books:

- Gilberg & Forouzan, Data Structures: A Pseudo-code approach with C, 2nd Ed, Cengage
- Learning,2014.

 2. Reema Thareja, Data Structures using C, 3rd Ed, Oxford press, 2012.
- Jean-Paul Tremblay & Paul G. Sorenson, An Introduction to Data Structures with Applications, 2^{nd} Ed, McGraw Hill, 20133.
- 4. A M Tenenbaum, Data Structures using C, PHI, 1989
- Robert Kruse, Data Structures and Program Design in C, 2nd Ed, PHI, 1996.