On Confidence Sequence from Universal Gambling

Jongha (Jon) Ryu

MIT

October 14, 2022

Joint work with Alankrita Bhatt (Simons)

Outline

 Universal Gambling Coin Betting Horse Race Stock Investment

2 Time-Uniform Confidence Intervals

Universal Gambling

Coin Betting

- Coin tosses $y_1, y_2, \ldots \in \{0, 1\}$
- \bullet At each round t, a gambler distributes its wealth W_{t-1} according to $(q_t,1-q_t)$
- For each \$1, earn \$1 if you hit, lose \$1 otherwise
- Causal strategy: $q_t := q(1|y^{t-1}) \in [0,1]$
- The recursive equation:

$$\mathbf{W}_{t} = \mathbf{W}_{t-1} 2q_{t}^{\mathbb{I}\{y_{t}=1\}} (1 - q_{t})^{\mathbb{I}\{y_{t}=0\}} = \mathbf{W}_{t-1} 2q(y_{t}|y^{t-1})$$

Cumulative wealth: starting with \$W₀,

$$W_T = W_0 \prod_{t=1}^T \frac{2q(y_t|y^{t-1})}{2q(y_t|y^{t-1})} = W_0 2^T q(y^T),$$

where
$$q(y^T) := \prod_{t=1}^{T} q(y_t | y^{t-1})$$

Universality and Minimax Optimality

- Let $\mathsf{W}_t := \mathsf{W}^q(y^t)$ for a betting strategy $(q(\cdot|y^{t-1}))_{t=1}^\infty$
- For some $\mathcal{P} = \{\text{reference strategies } p\}$, track the best performance of \mathcal{P} in hindsight
- Worst-case regret w.r.t. the best reference strategy

$$\max_{y^T} \max_{p \in \mathcal{P}} \log \frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)}$$

If o(T), the gambler q is said to be universal w.r.t. \mathcal{P}

• The best strategy is called minimax optimal

$$\min_{q} \max_{p \in \mathcal{P}} \max_{y^T} \log \frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)}$$

$$\bullet \ \ \text{Note:} \ \frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)} = \frac{\mathsf{W}_0 2^T p(y^T)}{\mathsf{W}_0 2^T q(y^T)} = \frac{p(y^T)}{q(y^T)} \ \text{by definition}$$

- Binary prediction under log loss
 - At each round t, a learner assigns probability $q(\cdot|y^{t-1})$ over $\{0,1\}$
 - After observing $y_t \in \{0,1\}$, suffer loss $\log \frac{1}{q(y_t|y^{t-1})}$
 - \bullet The cumulative regret w.r.t. a reference probability $p(y^t)$ is

$$\sum_{t=1}^{T} \log \frac{1}{q(y_t|y^{t-1})} - \sum_{t=1}^{T} \log \frac{1}{p(y_t|y^{t-1})} = \log \frac{p(y^T)}{q(y^T)}$$

- \therefore coin betting \equiv binary prediction under log loss (\equiv lossless binary compression)
- \therefore universal compression \rightarrow universal betting!

Example: Constant Bettors

- $\mathcal{P} = \{p_{\theta}(\cdot) \colon \theta \in [0,1]\}$, where $p_{\theta}(1|y^{t-1}) = \theta$
- Cumulative wealth:

$$\mathsf{W}^{\theta}(y^T) := \mathsf{W}_0 2^T p_{\theta}(y^T),$$

where $p_{\theta}(y^T)$ is the "probability" under $y^T \sim \text{ i.i.d. } \text{Bern}(\theta)$

- Fact: p_{θ^*} is optimal if $y^T \sim \text{ i.i.d. } \mathrm{Bern}(\theta^*)$ (a.k.a. Kelly betting)
- Krichevsky-Trofimov (KT) probability assignment (Krichevsky and Trofimov, 1981)

$$q_{\mathsf{KT}}(1|y^{t-1}) := \frac{1}{t} \Big(\sum_{i=1}^{t-1} y_i + \frac{1}{2} \Big)$$

Asymptotically minimax optimal (Xie and Barron, 2000)

$$\max_{\theta \in [0,1]} \max_{y^T} \log \frac{p_\theta(y^T)}{q_{\mathsf{KT}}(y^T)} = \frac{1}{2} \log T + \frac{1}{2} \log \frac{\pi}{2} + o(1)$$

Mixture Probability

• The KT probability $q_{\rm KT}(\cdot|y^{t-1})$ is induced by a mixture probability, i.e.,

$$q_{\mathsf{KT}}(y^T) \equiv \int_0^1 p_{\theta}(y^T) \, \mathrm{d}\pi(\theta)$$

for $\pi(\theta) = \mathsf{Beta}(\theta|\frac{1}{2},\frac{1}{2})$

• In other words, KT strategy attains the mixture wealth,

$$\mathsf{W}^{\mathsf{KT}}(y^T) = \mathsf{W}_0 2^T q_{\mathsf{KT}}(y^T) = \int_0^1 \mathsf{W}^{\theta}(y^T) \, \mathrm{d}\pi(\theta)$$

So, mixture is nice!

Horse Race

• Horses: 1, 2, ..., m

• Odds: o_1, o_2, \dots, o_m

• Outcome: $y_t \in [m]$

• Instantaneous gain: $o_{y_t}q(y_t|y^{t-1})$

Cumulative wealth:

$$\mathsf{W}^q(y^T) = \mathsf{W}_0 \prod_{t=1}^T o_{y_t} q(y_t | y^{t-1}) = \mathsf{W}_0 \prod_{z \in [m]} o_z^{\sum_{t=1}^T \mathbb{1}\{y_t = z\}} q(y^T)$$

- Regret: $\log \frac{\mathsf{W}^p(y^T)}{\mathsf{W}^q(y^T)} = \log \frac{p(y^T)}{q(y^T)} \Rightarrow \text{ equivalent to } m\text{-ary prediction under log loss!}$
- KT strategy: $q_{\mathrm{KT}}(y^T) := \int_{\Delta_{m-1}} p_{m{ heta}}(y^T) \, \mathrm{d}\pi(m{ heta})$, where $\pi(m{ heta}) = \mathrm{Dir}(m{ heta}|\frac{1}{2},\dots,\frac{1}{2})$

Stock Investment

- Stocks: 1, 2, ..., m
- Price relatives (market vector):

$$\mathbf{x}_t = (x_{t1}, \dots, x_{tm}) \in \mathcal{M} \subseteq \mathbb{R}^m_{\geq 0},$$

$$x_{ti} := \frac{\text{(end price of stock } i \text{ on day } t)}{\text{(start price of stock } i \text{ on day } t)}$$

- Portfolio: $\mathbf{b}(\mathbf{x}^{t-1}) \in \Delta_{m-1}$
- Cumulative wealth: starting with \$W₀,

$$\mathsf{W}(\mathbf{x}^T) = \mathsf{W}_0 \prod_{t=1}^T \langle \mathbf{b}(\mathbf{x}^{t-1}), \mathbf{x}_t \rangle$$

Image credit: https://www.reuters.com/article/usa-stocks-bearmarket-idCAKCN2N61PI

Special Cases

From Probability Assignment to Portfolio Selection

• By distributive law,

$$\mathsf{W}(\mathbf{x}^T) = \mathsf{W}_0 \prod_{t=1}^T \langle \mathbf{b}(\mathbf{x}^{t-1}), \mathbf{x}_t \rangle = \mathsf{W}_0 \sum_{y^T \in [m]^T} \Bigl(\prod_{t=1}^T b(y_t | \mathbf{x}^{t-1}) \Bigr) \mathbf{x}^T(y^T),$$

where $\mathbf{x}^T(y^T) := x_{1y_1} \dots x_{Ty_T} =$ (multiplicative gain of the extremal portfolio y^T)

• A probability induced portfolio: for a probability $q(y^T)$, define

$$\mathsf{W}^q(\mathbf{x}^T) := \mathsf{W}_0 \sum_{y^T \in [m]^T} q(y^T) \mathbf{x}^T(y^T),$$

which is achieved by a causal bettor \mathbf{b}^q defined to satisfy

$$\mathsf{W}^q(\mathbf{x}^t) = \mathsf{W}^q(\mathbf{x}^{t-1}) \langle \mathbf{b}^q(\mathbf{x}^{t-1}), \mathbf{x}_t \rangle$$

Portfolio Selection ≡ Probability Assignment

Theorem

$$\sup_{p \in \mathcal{P}} \sup_{\mathbf{x}^T} \frac{\mathsf{W}^p(\mathbf{x}^T)}{\mathsf{W}^q(\mathbf{x}^T)} = \sup_{p \in \mathcal{P}} \sup_{y^T} \frac{p(y^T)}{q(y^T)}$$

Proof

$$\sup_{\mathbf{x}^n} \sup_{p \in \mathcal{P}} \frac{\mathsf{W}^p(\mathbf{x}^n)}{\mathsf{W}^q(\mathbf{x}^n)} \ge \sup_{y^n \in [m]^n} \sup_{p \in \mathcal{P}} \frac{\mathsf{W}^p(\mathbf{e}_{y_1} \dots \mathbf{e}_{y_n})}{\mathsf{W}^q(\mathbf{e}_{y_1} \dots \mathbf{e}_{y_n})} = \sup_{y^n \in [m]^n} \sup_{p \in \mathcal{P}} \frac{p(y^n)}{q(y^n)}$$

$$\sup_{\mathbf{x}^n} \sup_{p \in \mathcal{P}} \frac{\mathsf{W}^p(\mathbf{x}^n)}{\mathsf{W}^q(\mathbf{x}^n)} = \sup_{\mathbf{x}^n} \sup_{p \in \mathcal{P}} \frac{\sum_{y^n} p(y^n) \mathbf{x}(y^n)}{\sum_{y^n} q(y^n) \mathbf{x}(y^n)} \overset{(\star)}{\le} \sup_{p \in \mathcal{P}} \sup_{y^n} \frac{p(y^n)}{q(y^n)}$$

Lemma * (Cover, 2006, Lemma 16.7.1)

For $a_i,b_i\geq 0$, we have $rac{\sum_{i=1}^n a_i}{\sum_{i=1}^n b_i}\leq \max_{j\in[n]}rac{a_j}{b_j}$, where $rac{0}{0}:=0$

Example: Constant Rebalanced Portfolios

- $\mathcal{P}_{\text{i.i.d.}} = \{ \text{i.i.d. categorical probabilities} \} = \{ p_{\theta}(\cdot) \colon \theta \in \Delta_{m-1} \}$
- For each $\theta \in \Delta_{m-1}$, $\mathbf{b}^{\theta} := \mathbf{b}^{p_{\theta}}$ is called a constant rebalanced portfolio (CRP)
- Fact: for an i.i.d. market $(\mathbf{x}_t)_{t=1}^{\infty}$, the log-optimal portfolio is a CRP for some $\boldsymbol{\theta}^*$
- **Example**: Consider a market vector sequence $(1, \frac{1}{2}), (1, 2), (1, \frac{1}{2}), \dots$
- To track the best performance of CRPs, we can plug-in the KT probability!
- Cover's universal portfolio (Cover, 1991; Cover and Ordentlich, 1996): $\mathbf{b}^{\mathsf{UP}} := \mathbf{b}^{q_{\mathsf{KT}}}$

$$\sup_{p \in \mathcal{P}_{\text{i.i.d.}}} \sup_{\mathbf{x}^T} \log \frac{\mathsf{W}^p(\mathbf{x}^T)}{\mathsf{W}^{\text{UP}}(\mathbf{x}^T)} = \sup_{p \in \mathcal{P}_{\text{i.i.d.}}} \sup_{y^T} \log \frac{p(y^T)}{q_{\text{KT}}(y^T)}$$

- Time complexity: $O(t^{m-1})$ at round t
- Note: for horse race, UP is equivalent to the simple KT strategy

Time-Uniform Confidence Intervals

Confidence Intervals

ullet Consider a [0,1]-valued stochastic process Y_1,Y_2,\ldots such that

$$\mathsf{E}[Y_t|Y^{t-1}] \equiv \mu \in (0,1)$$

• At time t, $C_t = (\ell_t, u_t)$ is said to be a confidence interval for μ with level $1 - \delta$ if

$$P(\mu \in C_t) \ge 1 - \delta$$

• **Example**: for each $t \ge 1$, Hoeffding inequality gives

$$C_t^{\mathsf{H}} := \left(\frac{1}{t} \sum_{i=1}^t Y_i - \sqrt{\frac{1}{2t} \log \frac{2}{\delta}}, \frac{1}{t} \sum_{i=1}^t Y_i + \sqrt{\frac{1}{2t} \log \frac{2}{\delta}}\right)$$

as a confidence interval with level $1 - \delta$, i.e.,

$$P(\mu \in C_t^H) \ge 1 - \delta, \ \forall t \ge 1$$

• However, we must choose t ahead of time to make a probabilistic statement

Time-Uniform Confidence Intervals

- Wish to decide to keep or stop sampling Y_t to estimate μ given confidence level on the fly (sequentially)
- Time-uniform confidence intervals (a.k.a. confidence sequence)

$$P(\mu \in C_t, \ \forall t \ge 1) \ge 1 - \delta$$

Contrast with

$$P(\mu \in C_t^H) \ge 1 - \delta, \ \forall t \ge 1$$

 Originally studied by Darling and Robbins (1967); Lai (1976), and recently resurrected by some statisticians (Ramdas et al., 2020; Waudby-Smith and Ramdas, 2020a,b; Howard et al., 2021) and computer scientists (Jun and Orabona, 2019; Orabona and Jun, 2021)

A Tool from Martingale Theory

Many standard concentration inequalities (such as Hoeffding) rely on

Markov's inequality

For a nonnegative random variable W,

$$\mathsf{P}\Big(\frac{W}{\mathsf{E}[W]} \geq \frac{1}{\delta}\Big) \leq \delta$$

• In martingale theory, there is a time-uniform counterpart:

Ville's inequality (Ville, 1939)

For a nonnegative supermartingale sequence $(W_t)_{t=0}^{\infty}$ with $W_0>0$,

$$\mathsf{P}\Big\{\sup_{t\geq 1}\frac{W_t}{W_0}\geq \frac{1}{\delta}\Big\}\leq \delta$$

Supermartingales from Gambling

- A (super)martingale naturally arises as a wealth process from a (sub)fair gambling
- We call a gambling subfair, if $\mathsf{E}[\mathbf{x}_t|\mathbf{x}^{t-1}] \leq \mathbb{1}$ for every t (and fair if "=")

Proposition

If $(\mathbf{x}_t)_{t=1}^\infty$ is (sub)fair, then $(\mathsf{W}_t)_{t=1}^\infty$ of any causal strategy is (super)martingale

Proof.

For every t, $\mathsf{E}[\mathsf{W}_t|\mathbf{x}^{t-1}] = \mathsf{W}_{t-1}\langle \mathbf{b}_t, \mathsf{E}[\mathbf{x}_t|\mathbf{x}^{t-1}] \rangle \leq \mathsf{W}_{t-1}\langle \mathbf{b}_t, \mathbb{1} \rangle = \mathsf{W}_{t-1}$

Examples

- Coin betting: $\mathbf{x}_t = (2Y_t, 2(1 Y_t)), Y_t \in \{0, 1\}$
 - fair if $\mathsf{E}[Y_t|Y^{t-1}] = \frac{1}{2}$ (e.g., $Y_t \sim \mathsf{i.i.d.} \; \mathrm{Bern}(\frac{1}{2})$)
- Two-horse race: $\mathbf{x}_t = (o_1 Y_t, o_2 (1 Y_t)), Y_t \in \{0, 1\}$
 - fair if $\frac{1}{o_1} + \frac{1}{o_2} = 1$ and $\mathsf{E}[Y_t | Y^{t-1}] = \frac{1}{o_1}$ (e.g., $Y_t \sim \mathsf{i.i.d.} \; \mathrm{Bern}(\frac{1}{o_1})$)
- Continuous two-horse race: $\mathbf{x}_t = (o_1 Y_t, o_2 (1 Y_t)), Y_t \in [0, 1]$
 - fair if $\frac{1}{o_1} + \frac{1}{o_2} = 1$ and $\mathsf{E}[Y_t|Y^{t-1}] = \frac{1}{o_1}$;
 - more like a structured stock market

Martingales from Continuous Two-Horse Race

- ullet Recall: Assume $\mathsf{E}[Y_t|Y^{t-1}] \equiv \mu$ for some $\mu \in (0,1)$
- Denote as CTHR(m) the Continuous Two-Horse Race defined by the market vector

$$\mathbf{x}_t = \left(\frac{Y_t}{m}, \frac{1 - Y_t}{1 - m}\right)$$

Proposition

- If $m = \mu$, any wealth process from CTHR(m) is martingale
- If $m \neq \mu$, there exists a causal betting strategy whose wealth process from CTHR(m) is strictly submartingale

Remark on the Alternative, Equivalent Convention

- CTHR(m) is equivalent to the gambling considered in (Waudby-Smith and Ramdas, 2020b; Orabona and Jun, 2021)
- For the two-horse race setting with odds $\frac{1}{m}$ and $\frac{1}{1-m}$ and a betting strategy $(b_t)_{t=1}^{\infty}$, the multiplicative gain can be written as

$$\frac{1}{m}y_tb_t + \frac{1}{1-m}(1-y_t)(1-b_t) = 1 + \lambda_t(m)(y_t - m),$$

by viewing the single number $y_t-m\in[-m,1-m]$ as an outcome of the horse race and defining a scaled betting

$$\lambda_t(m) := \frac{b_t}{m(1-m)} - \frac{1}{1-m} \in \left[-\frac{1}{1-m}, \frac{1}{m} \right]$$

• Unlike $b_t \in [0,1]$, the scaled betting $\lambda_t(m)$ inherently depends on the underlying odds (and thus m) by the range it can take

High-Level Intuition (Waudby-Smith and Ramdas, 2020b)

- For CTHR(m), we play a strategy $(\mathbf{b}(Y^{t-1};m))_{t=1}^{\infty}$ and get $(\mathsf{W}(Y^t;m))_{t=1}^{\infty}$
- Since $(\mathsf{W}(Y^t;\mu))_{t=1}^\infty$ is martingale, by Ville's inequality, w.p. $\geq 1-\delta$,

$$\sup_{t \ge 1} \frac{\mathsf{W}(Y^t; \mu)}{\mathsf{W}_0} < \frac{1}{\delta}$$

- Assume this high-probability event happens (w.r.t. the randomness in $(Y_t)_{t=0}^{\infty}$)
- Suppose we "play" $\mathsf{CTHR}(m)$ for each $m \in (0,1)$ in parallel
- ullet At round t, if the cumulative wealth from CTHR(m) exceeds the threshold W $_0/\delta$, i.e.,

$$\frac{\mathsf{W}(Y^t;m)}{\mathsf{W}_0} \ge \frac{1}{\delta},$$

then this means that m cannot be μ , and thus exclude m from the candidate list

• If we collect all m whose corresponding wealth never exceeds W_0/δ by then, it forms a time-uniform confidence set with level $1-\delta$

Confidence Sequence from CTHR(m)

Formally, if we define

$$C_t(Y^t; \delta) := \left\{ m \in (0, 1) \colon \sup_{1 \le i \le t} \frac{\mathsf{W}(\mathbf{x}^i; m)}{\mathsf{W}_0} < \frac{1}{\delta} \right\},\,$$

then

$$P\{\mu \in C_t(Y^t; \delta), \ \forall t \ge 1\} \ge 1 - \delta$$

- Intuitively, a better betting strategy gives a tighter confidence sequence, by growing wealth faster from CTHR(m) for $m \neq \mu$
- We can plug-in any (causal) strategies, so why shouldn't we try universal gambling strategies?
- Orabona and Jun (2021) empirically showed that applying Cover's UP gives tight confidence sequences

A Special Case: $\{0,1\}$ -Valued Sequences

- CTHR(m) becomes the standard horse race THR(m) if $Y_t \in \{0,1\}$
- Recall: for the standard horse race, the KT strategy has asymptotic minimax optimality against constant bettors
- For THR(m), the KT strategy yields the cumulative wealth

$$\mathsf{W}^{\mathsf{KT}}(Y^t;m) = \mathsf{W}_0 \phi_t \Big(\sum_{i=1}^t Y_i; \frac{1}{m}, \frac{1}{1-m} \Big) q_{\mathsf{KT}}(Y^t),$$

where $\phi_t(x;o_1,o_2):=o_1^xo_2^{t-x}$ for $x\in[0,t]$ and $q_{\mathrm{KT}}(y^t)$ is the KT probability

Define

$$C_t^{\mathsf{KT}}(y^t;\delta) := \left\{ m \in [0,1] \colon \sup_{1 < i < t} \frac{\mathsf{W}^{\mathsf{KT}}(y^i;m)}{\mathsf{W}_0} < \frac{1}{\delta} \right\}$$

Confidence Sequence from KT Betting

Theorem

 $(C_t^{\mathsf{KT}}(Y^t;\delta))_{t=1}^\infty$ is a time-uniform confidence interval with level $1-\delta$

Proof.

- Apply Ville's inequality
- The set is an interval, since $m\mapsto \phi_t(x;\frac{1}{m},\frac{1}{1-m})$ is log-convex
- **Note**: the size of the interval behaves as $\sqrt{\frac{2}{t}\log\frac{1}{\delta}+\frac{1}{t}\log t+o(1)}$ for $t\gg 1$, which is comparable to $\sqrt{\frac{2}{t}\log\frac{1}{\delta}}$ from the standard Hoeffding¹

¹The optimal order is $\frac{1}{t} \log \log t$, which is implied by the law of iterated logarithm (LIL)

A General Case: [0,1]-Valued Sequences

- One may still employ the KT strategy, but strictly suboptimal
- Cover's UP for CTHR(m) gives empirically very tight confidence sequence in general (Orabona and Jun, 2021); but O(t) complexity at round t
- Orabona and Jun (2021) proposed an algorithm that approximates Cover's UP based on a regret analysis
- $\mathbb Q.$ Can there be a conceptually simpler way to approximate Cover's UP with O(1) complexity per round?
 - An alternative approach (Ryu and Bhatt, 2022)
 - Recall that Cover's UP is defined as a mixture of wealths of CRPs
 - Consider a tight lower bound of the CRP wealth and take a mixture over the lower bounds

A Lower Bound on the Wealth of CRP

- Let $\bar{a} := 1 a$ for any $a \in \mathbb{R}$
- For CTHR(m), we can lower-bound the multiplicative gain with CRP(b) as

Lemma (Generalization of (Waudby-Smith and Ramdas, 2020b, Lemma 1))

For any $n \in \mathbb{N}$ and $m \in (0,1)$, we have

$$\log\left(b\frac{y}{m} + \bar{b}\frac{\bar{y}}{\bar{m}}\right) \ge \log\phi_n\left(\frac{\bar{b}}{\bar{m}}; \left(\left(1 - \frac{y}{m}\right)^{2n} - \left(1 - \frac{y}{m}\right)^k\right)_{k=1}^{2n-1}, \left(1 - \frac{y}{m}\right)^{2n}\right)$$

if $b \in [m, 1)$ and $y \ge 0$, where

$$\phi_n(x; \boldsymbol{\rho}, \boldsymbol{\eta}) := \exp\left(\sum_{k=1}^{2n-1} \frac{(1-x)^k}{k} \rho_k + \eta \log x\right)$$

- Can view $\phi_n(x; oldsymbol{
 ho}, \eta)$ as an unnormalized exponential-family distribution
- Lower-bound the logarithm by moments of y, i.e., $(1, y, \dots, y^{2n})$

Key Lemma for the Proof

Lemma (Generalization of (Fan et al., 2015, Lemma 4.1))

For an integer $\ell \geq 1$, if we define

$$f_{\ell}(t) := \begin{cases} \Big(\log(1+t) - \sum_{k=1}^{\ell-1} (-1)^{k+1} \frac{t^k}{k}\Big) \Big/ \Big((-1)^{\ell} \frac{t^{\ell}}{\ell}\Big) & \text{if } t > -1 \text{ and } t \neq 0, \\ -1 & \text{if } t = 0, \end{cases}$$

then $t\mapsto f_\ell(t)$ is continuous and strictly increasing over $(-1,\infty)$

• Fan et al. (2015) considered $\ell=2$, i.e.,

$$f_2(t) = egin{cases} rac{\log(1+t) - t}{t^2/2} & ext{if } t > -1 ext{ and } t
eq 0, \ -1 & ext{if } t = 0 \end{cases}$$

A Lower Bound on the Cumulative Wealth of CRP

• Since it is easy to check $\phi_n(x; \rho, \eta)\phi_n(x; \rho', \eta') = \phi_n(x; \rho + \rho, \eta + \eta')$,

Lemma

For any $n \in \mathbb{N}$, $m \in (0,1)$, $b \in [0,1]$, and $y^t \in [0,1]^t$, we have

$$\log \frac{\mathsf{W}_t^b(y^t;m)}{\mathsf{W}_0} \ge \log \phi_n \left(\frac{\bar{b}}{\bar{m}}; \boldsymbol{\rho_n}(y^t;m), \eta_n(y^t;m)\right)$$

if m < b < 1, where $\eta_n(y^t; m) := \sum_{i=1}^t \left(1 - \frac{y_i}{m}\right)^{2n}$ and

$$(\boldsymbol{\rho}_n(y^t;m))_k := \sum_{i=1}^t \left\{ \left(1 - \frac{y_i}{m}\right)^{2n} - \left(1 - \frac{y_i}{m}\right)^k \right\} \quad \text{for } k = 1, \dots, 2n - 1$$

- ullet Lower-bound the logarithm by moments of y^t , i.e., $(\sum_{i=1}^t y_i^j)_{j=1}^{2n}$
- Complexity from O(t) to O(n)

A Mixture of Lower Bounds Approach

- Take a mixture of lower bounds with the conjugate prior of $\phi_n(x; \boldsymbol{\rho}, \eta)$
- In general, this prior is different from the Beta priors used for universal strategies
- For a special case, it subsumes the uniform distribution
- · For example, with the uniform prior, the mixture of wealth lower bounds becomes

$$\bar{m}Z_n(\boldsymbol{\rho}_n(y^t;m),\eta_n(y^t;m)) + mZ_n(\boldsymbol{\rho}_n(\bar{y}^t;\bar{m}),\eta_n(\bar{y}^t;\bar{m})),$$

where
$$Z_n(\boldsymbol{\rho}, \eta) := \int_0^1 \phi_n(x; \boldsymbol{\rho}, \eta) \, \mathrm{d}x$$

- We can construct a time-uniform confidence interval using this "mixture of wealth lower bounds"!
- We call this LBUP(n), where n is the approximation order

Caveats

• Computational bottleneck: computing the normalization constant $Z_n(
ho,\eta)$ of the form

$$\int_0^1 x^{\eta} \exp\left(\sum_{k=0}^{2n-1} a_k x^k\right) \mathrm{d}x$$

- ${}^{\bullet}$ Hence, O(1) per round in principle, but may take longer than running exact UP due to numerical integration steps
- Larger n leads to better approximation, but with increased numerical instability; n=2 or n=3 empirically work well
- Bad approximation in a small sample regime
 - Hybrid UP: run UP for the first few samples and switch to LBUP

Evolution of Wealth Processes

ullet The horizontal lines indicate an example threshold $\ln rac{1}{\delta} pprox 2.996$ for $\delta = 0.05$

Figure: An i.i.d. Bern(0.25) process

Evolution of Wealth Processes

ullet The horizontal lines indicate an example threshold $\ln rac{1}{\delta} pprox 2.996$ for $\delta = 0.05$

Figure: An i.i.d. Beta(1,3) process

Evolution of Wealth Processes

ullet The horizontal lines indicate an example threshold $\ln rac{1}{\delta} pprox 2.996$ for $\delta = 0.05$

Figure: An i.i.d. Beta(10,30) process

- Confidence sequences with level 0.95 (i.e., $\delta=0.05$)
- CB: betting strategy from another gambling construction
- HR: KT strategy
- UP: exact Cover's UP strategy
- LBUP: proposed lower-bound approach
- HybridUP: run exact UP for the first few steps and switch to LBUP
- PRECiSE (Orabona and Jun, 2021)

Figure: With i.i.d. Bern(0.25) processes

Figure: With i.i.d. Beta(1,3) processes

Figure: With i.i.d. Beta(10,30) processes

Concluding Remarks

- Gambling with respect to probability induced strategies \equiv probability assignment
- Confidence sequence induced by universal portfolios can be "efficiently" approximated by a mixture of lower bounds approach
- Orabona and Jun (2021) provides an explicit analysis of the confidence sequence of UP based on the regret analysis
- Q. Can we construct a time-uniform confidence set for bounded vectors?
- Q. Can there be a gambling other than CTHR(m) that corresponds to some other statistics applications?

References I

- Thomas M Cover. Universal portfolios. *Math. Financ.*, 1(1):1–29, 1991.
- Thomas M Cover. *Elements of information theory*. John Wiley & Sons, 2006.
- Thomas M Cover and Erik Ordentlich. Universal portfolios with side information. *IEEE Trans. Inf. Theory*, 42(2):348–363, 1996.
- Donald A Darling and Herbert Robbins. Confidence sequences for mean, variance, and median. *Proc. Natl. Acad. Sci. U. S. A.*, 58(1):66, 1967.
- Xiequan Fan, Ion Grama, and Quansheng Liu. Exponential inequalities for martingales with applications. *Electron. J. Probab.*, 20:1–22, 2015.
- Steven R Howard, Aaditya Ramdas, Jon McAuliffe, and Jasjeet Sekhon. Time-uniform, nonparametric, nonasymptotic confidence sequences. *Ann. Statist.*, 49(2):1055–1080, 2021.
- Kwang-Sung Jun and Francesco Orabona. Parameter-free online convex optimization with sub-exponential noise. In *Conf. Learn. Theory*, pages 1802–1823. PMLR, 2019.

References II

- Raphail Krichevsky and Victor Trofimov. The performance of universal encoding. *IEEE Trans. Inf. Theory*, 27(2):199–207, 1981.
- Tze Leung Lai. On confidence sequences. Ann. Statist., 4(2):265–280, 1976.
- Francesco Orabona and Kwang-Sung Jun. Tight concentrations and confidence sequences from the regret of universal portfolio. arXiv preprint arXiv:2110.14099, 2021.
- Aaditya Ramdas, Johannes Ruf, Martin Larsson, and Wouter Koolen. Admissible anytime-valid sequential inference must rely on nonnegative martingales. *arXiv preprint arXiv:2009.03167*, September 2020.
- J Jon Ryu and Alankrita Bhatt. On confidence sequences for bounded random processes via universal gambling strategies. arXiv preprint arXiv:2207.12382, 2022.
- Jean Ville. Etude critique de la notion de collectif. *Bull. Amer. Math. Soc*, 45(11):824, 1939.

References III

Ian Waudby-Smith and Aaditya Ramdas. Confidence sequences for sampling without replacement. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, *Adv. Neural Inf. Proc. Syst.*, volume 33, pages 20204–20214. Curran Associates, Inc., 2020a. URL https://proceedings.neurips.cc/paper/2020/file/e96c7de8f6390b1e6c71556e4e0a4959-Paper.pdf.

Ian Waudby-Smith and Aaditya Ramdas. Estimating means of bounded random variables by betting. arXiv preprint arXiv:2010.09686, 2020b.

Qun Xie and Andrew R Barron. Asymptotic minimax regret for data compression, gambling, and prediction. *IEEE Trans. Inf. Theory*, 46(2):431–445, 2000.