SME0805 - Processos Estocásticos - Teste 5

Francisco Rosa Dias de Miranda - 4402962

setembro 2021

Exercício 1

Uma cadeia de Markov com espaço de estado $E = \{0, 1, 2\}$ e matriz de probabilidade de transição:

$$P = \begin{bmatrix} 0.5 & 0.2 & 0.3 \\ 0 & 0.6 & 0.4 \\ 0.4 & 0.1 & 0.5 \end{bmatrix}$$

Sua distribuição inicial dada por

$$p = \begin{bmatrix} 0.3 \\ 0.4 \\ 0.3 \end{bmatrix}$$

• (a) $P(X_0 = 0, X_1 = 1, X_2 = 2)$

$$P(X_0 = 0, X_1 = 1, X_2 = 2) = P(X_0 = 0)P(X_1 = 1|X_0 = 0)P(X_2 = 2|X_1 = 1) = p_0 P_{01} P_{12} = 0.3 * 0.2 * 0.4 = 0.024$$

• (b) $P(X_2 = 1, X_3 = 1 | X_1 = 0)$

$$P(X_2 = 1, X_3 = 1 | X_1 = 0) = P(X_2 = 1 | X_1 = 0)P(X_3 = 1 | X_2 = 1) = P_{01}P_{11} = 0.2 * 0.6 = 0.12$$

• (c) $P(X_1 = 1, X_2 = 1 | X_0 = 0)$

Dado que saímos do estado t=0, as probabilidades de transição não se modificam mais. Portanto:

$$P(X_1 = 1, X_2 = 1 | X_0 = 0) = P(X_2 = 1, X_3 = 1 | X_1 = 0) = 0.12$$

• (d) $P(X_0 = 1, X_1 = 0, X_2 = 2 | X_0 = 1)$

Como as transições de estados são eventos independentes, saber que X_0 ocorreu não afeta a probabilidade de X_1 e X_2 dado X_0 , pois $P(X_0 = 1 | X_0 = 1) = 1$. Assim, temos que:

$$P(X_0 = 1, X_1 = 0, X_2 = 2|X_0 = 1) = P(X_1 = 0|X_0 = 1)P(X_2 = 2|X_1 = 0) = P_{10}P_{02} = 0.2 * 0.3 = 0.06$$