TRANSFERT DE CHALEUR

CONVECTION

INTRODUCTION

- Convection thermique:
 - □ L'ensemble des phénomènes de transfert de chaleur impliquant la présence d'un <u>fluide en mouvement</u>

INTRODUCTION: Exemples

Echanges thermiques entre un fluide et un solide

INTRODUCTION: Exemples

Echanges thermiques entre 2 fluides:

INTRODUCTION

- Convection forcée et naturelle:
 - ☐ Mise en mouvement du fluide:
 - Convection forcée: moyen mécanique:
 - Ventilateur
 - □ Pompe
 - ...

INTRODUCTION

- Convection forcée et naturelle:
 - ☐ Mise en mouvement du fluide:
 - Convection naturelle: variation de densité

INTRODUCTION: Plan

- Généralités
 - □ Approche microscopique et macroscopique
 - □ Convection de masse/Convection de chaleur
- Analogie dynamique/convection
 - □ Relation vitesse/température
- Mise en équation
- Plaque plane
 - □ Analyse des ordres de grandeurs
 - □ Résolution exacte
- Convection interne
- Convection externe (obstacle)
- Convection naturelle
- Ebullition/Condensation

LEÇON 1: GÉNÉRALITÉS

Approche microscopique, macroscopique, couche limite

Diffusion:

- □ Exemples:
 - Plaques planes
 - Contact avec de l'air
 - Air immobile

DIFFUSION DE MASSE: point de vue microscopique

- Diffusion de masse:
 - Gradient de concentration de particule:
 - Fort à la paroi C_p
 - Faible au loin C_∞

- Dans un plan donné, équiprobabilité des particules de se diriger vers le haut ou vers le bas
- □ MAIS, du fait de la forte concentration dans les couches proches de la paroi, chocs plus fréquents
- □ Flux préférentiel vers le haut

DIFFUSION DE MASSE: point de vue macroscopique

Loi de Fick:

$$n = -D \frac{\partial C}{\partial y}$$

□ Avec:

- n=densité de flux molaire (kmol/m²s)
- D=coefficient de diffusion de la naphtaline dans l'air (m²/s)

DIFFUSION DE CHALEUR: point de vue microscopique

- Diffusion de chaleur:
 - ☐ Gradient de température:
 - Haute à la paroi T_p
 - basse au loin T_∞

- Plus grande énergie cinétique des molécules d'air proches de la plaque (plus grande T)
- □ Lors des chocs, échange d'énergie cinétique ⇒ de T
- □ Flux préférentiel vers le haut

DIFFUSION DE CHALEUR: point de vue macroscopique

Loi de Fourier:

$$\varphi = -\lambda \, \frac{\partial T}{\partial y}$$

□ Avec:

- φ=Densité de flux thermique (J/m²s=W/m²)
- λ=conductivité thermique de l'air (W/mK)
- Conduction

- Air en mouvement:
 - □ Exemples:
 - Plaques planes
 - Contact avec de l'air
 - Air en mouvement parallèle à la paroi

Air en mouvement:

- □ En très proche paroi, air immobile⇒diffusion (de masse ou de chaleur)
- □ Pour des Y supérieurs, le mouvement d'entrainement perturbe la diffusion

Air en mouvement:

- L'entrainement va « diluer » la concentration en particules de naphtaline
- La concentration de naphtaline va dépendre de Y mais aussi de X

Air en mouvement:

- □ Le gradient de température évolue de la même façon
- La convection:
 - Diffusion (origine microscopique),essentiellement en proche paroi
 - Advection (entrainement macroscopique), plus loin de la paroi

ANALYSE DES TRANSFERTS DE CHALEUR ET DE MASSE: Grandeurs locales

- Concentration C (kmol/m³)
- (kmol/m²)
 Densité de flux molaire
 Densité de flux thermique
- Densité de flux molaire n (kmol/m²s)
- Densité de flux thermique φ (J/m²s=W/m²)

Températures T (K)

ANALYSE DES TRANSFERTS DE CHALEUR ET DE MASSE: Grandeurs locales

- $n(x) = h_m(x) (C_p C_\infty)$
- Coefficient d'échange de masse local h_m(x) (m³/m²s=m/s)
- $\phi(x)=h(x) (T_p-T_{\infty})$ (loi de Newton)
- Coefficient d'échange de chaleur local h(x) (W/m²K)

ANALYSE DES TRANSFERTS DE CHALEUR ET DE MASSE: Grandeurs locales

- Près de la paroi:

■ Près de la paroi:

$$| \varphi(X) = -\lambda \frac{\partial T}{\partial y} \Big|_{paroi}$$

$$\Rightarrow h = \frac{-\lambda \frac{\partial T}{\partial y} \Big|_{paroi}}{T_p - T_{\infty}}$$

ANALYSE DES TRANSFERTS DE CHALEUR ET DE MASSE: Grandeurs globales

$$N = \int_{0}^{L} n(x) P dx$$

$$\overline{h_m} = \frac{1}{L} \int_{0}^{L} h_m(x) P dx$$

$$N = \overline{h_m}(P.L)(C_p - C_\infty)$$

$$\Phi = \int_{0}^{L} \varphi(x) P dx$$

$$\overline{h} = \frac{1}{L} \int_{0}^{L} h(x) P dx$$

$$\Phi = \overline{h} \left(P.L \right) \left(T_{p} - T_{\infty} \right)$$

	Masse	Chaleur
Concentration/température	kmol/m ³	K
Densité de flux	kmol/m²s	J/m²s=W/m²
Flux	kmol/s	W
Coefficient d'échange	$m^3/m^2s=m/s$	W/m²K

LIEN AVEC LA MECANIQUE DES FLUIDES

- Transferts de chaleur par convection fortement liés à la dynamique des fluides
 - □ Résolution des équations de Navier Stokes+équation de l'énergie

- Généralement dans une configuration de proche paroi
- ⇒ Notion de couches limites dynamique et thermique

Cas d'une plaque plane:

Epaisseur de couche limite dynamique:

$$\Box U(X) = 0.99U_e(x)$$

Couche limite thermique définie comme la couche limite dynamique:

$$\Box$$
 T-T_∞=0.01(T_p-T_∞)

LIEN AVEC LA MECANIQUE DES FLUIDES: régimes laminaire et turbulent

Laminaire:

- □ Ecoulement stable
- □ Bien ordonné

> temps

Turbulent:

- Ecoulement instationnaire,
- Eventuellement intermittent
- □ Caractère aléatoire

LIEN AVEC LA MECANIQUE DES FLUIDES: régimes laminaire et turbulent

- Caractérisation laminaire/turbulent:
 - □ Nombre de Reynolds:

$$Re = \frac{\rho VL}{\mu}$$

- ☐ Si Re<Re_c: laminaire
- ☐ Si Re>Re_c: turbulent
- □ Exemples:
 - Conduite Re_c≈2000
 - Plaque plane Re_c≈5.10⁵

- Cas d'une plaque plane:
 - □ Vitesses du fluide modérées
 - □ Zone proche du bord d'attaque

- ⇒ Couche limite laminaire
- □ Valable pour de nombreuses couches limites

- Cas d'une plaque plane:
 - □ Vitesses du fluides modérées
 - □ Vers l'aval
- Apparition de petites fluctuations
- Puis amplification
- ⇒ Zone de transition

⇒ Puis couche limite turbulente

Cas d'une plaque plane: couche limite laminaire

Cas d'une plaque plane: aspect thermique:

Cas d'une plaque plane: aspect thermique:

Cas d'une conduite: écoulement laminaire

- ☐ Rencontre des couches limites
- □ Au delà le profil de vitesse n'évolue plus avec X, le régime est établi

Cas d'une conduite: écoulement laminaire

OBJECTIFS

 Comprendre les mécanismes et la phénoménologie de la convection thermique

 Mettre en place les moyens calculatoires permettant de déterminer les transferts de chaleur

OBJECTIFS

 Mettre en place les moyens calculatoires permettant de déterminer les transferts de chaleur

ORDRE DE GRANDEUR

Gamme de valeur des nombres de PRANDTL à l'ambiante.

Moteurs électriques

Turboréacteurs: chambre de combustion

Turboréacteurs: aubes de turbines

Echangeurs de chaleur compacts:

Electronique: convection naturelle

■ Electronique: convection forcée

Electronique: ébullition

