Ray Tracing: Part 2

Some Slides/Images adapted from Marschner and Shirley and David Levin

Announcements

Assignment 3 is due 2 June

Any Questions?

Ray Tracing

(Last week)

Review Ray Casting
Point and Directional Lights

Lambertian Shading Model

Blinn-Phong Shading Model

(Today!)

Shadows

Reflection

Transparency and Refraction

Ray Casting

```
for each pixel in the image {
   Generate a ray
   for each object in the
   scene {
      if (Intersect ray with
          object) { Set pixel
          colour
```

$$L = k_a I_a + \sum_{i=1}^{N} (k_d I_i \max(0, \mathbf{n} \cdot \mathbf{l_i}) + k_s I_i \max(0, \mathbf{n} \cdot \mathbf{h_i})^p)$$

$$L = k_a I_a + \sum_{i=1}^{N} (k_d I_i \max(0, \mathbf{n} \cdot \mathbf{l_i}) + k_s I_i \max(0, \mathbf{n} \cdot \mathbf{h_i})^p)$$

$$L = k_a I_a + \sum_{i=1}^{N} (k_d I_i \max(0, \mathbf{n} \cdot \mathbf{l_i}) + k_s I_i \max(0, \mathbf{n} \cdot \mathbf{h_i})^p)$$

$$L = k_a I_a$$

$$L = k_a I_a + \sum_{i=1}^{N} (k_d I_i \max(0, \mathbf{n} \cdot \mathbf{l_i}) + k_s I_i \max(0, \mathbf{n} \cdot \mathbf{h_i})^p)$$

$$L = k_d I \max(0, \mathbf{n} \cdot \mathbf{l})$$

$$L = k_a I_a + \sum_{i=1}^{N} (k_d I_i \max(0, \mathbf{n} \cdot \mathbf{l_i}) + k_s I_i \max(0, \mathbf{n} \cdot \mathbf{h_i})^p)$$

$$L = k_s I \max(0, \mathbf{n} \cdot \mathbf{h})^p$$

$$L = k_a I_a + \sum_{i=1}^{N} (k_d I_i \max(0, \mathbf{n} \cdot \mathbf{l_i}) + k_s I_i \max(0, \mathbf{n} \cdot \mathbf{h_i})^p)$$

$$L = k_s I \max(0, \mathbf{n} \cdot \mathbf{h})^p$$

Numerical Precision

What are valid values *t* for the shadow ray?

Ray Casting

```
for each pixel in the image {
   Generate a ray
   for each object in the
   scene {
      if (Intersect ray with
          object) { Set pixel
          colour
```

No Global Effects

http://www.deluxerender.com/2017/01/the-cornell-box-a-renderers-rite-of-pathage/

No Global Effects

© www.scratchapixel.com

No Global Effects

© www.scratchapixel.com

Global Effects

http://www.deluxerender.com/2017/01/the-cornell-box-a-renderers-rite-of-pathage/https://en.wikipedia.org/wiki/Cornell_box

Ray Traced Image

Ray Traced Image

Recursive Ray Tracing

Recursive Ray Tracing

Light and Surfaces

Light and Surfaces

Light and Surfaces Perion

Light and Surfaces Periection

Light and Surfaces

Light and Surfaces

$$-1 + 2nn^T I$$

```
for each pixel in the image {
    pixel colour = rayTrace(viewRay, 0)
}
```

```
colour rayTrace(Ray, depth) {
    for each object in the scene {
        if(Intersect ray with object) {
            colour = shading model
            if(depth < maxDepth)
            colour +=rayTrace(reflectedRay, depth +1)
        }
    }
    return colour
}</pre>
```

Ray Spawning

© www.scratchapixel.com

Transparency and Refraction

Snell's Law

$$c_l \sin(\theta_l) = c_t \sin(\theta_t)$$

Indices of Refraction

$$t = t_{\parallel} + t_{\perp}$$
$$|t| = 1$$

$$|\mathbf{t}_{\parallel}| = \sin(\theta_t)$$

$$|\mathbf{t}_{\parallel}| = \frac{c_l}{c_t} \sin(\theta_l)$$

$$|\mathbf{t}_{\parallel}| = \sin(\theta_t)$$

$$|\mathbf{t}_{\parallel}| = \frac{c_l}{c_t} \sin(\theta_l)$$

$$|\mathbf{t}_{\parallel}| = \frac{c_l}{c_t} |\mathbf{l}_{\parallel}|$$

$$\mathbf{t}_{\parallel} = -\frac{c_l}{c_t} \mathbf{1}_{\parallel}$$

$$\mathbf{t}_{\parallel} = -\frac{c_l}{c_t} \mathbf{1}_{\parallel}$$

$$\mathbf{t}_{\parallel} = -\frac{c_l}{c_t} (\mathbf{l} - \mathbf{n} \mathbf{n}^{\mathrm{T}} \mathbf{l})$$

$$\mathbf{t}_{\parallel} = -\frac{c_l}{c_t} \mathbf{1}_{\parallel}$$

$$\mathbf{t}_{\parallel} = -\frac{c_l}{c_t} (\mathbf{l} - \mathbf{n} \mathbf{n}^{\mathrm{T}} \mathbf{l})$$

$$\mathbf{t}_{\parallel} = -\frac{c_l}{c_t} (\mathbf{l} - \cos(\theta_l)\mathbf{n})$$

$$\mathbf{t} = \mathbf{t}_{\parallel} + \mathbf{t}_{\perp}$$

$$\mathbf{t} = -\frac{c_l}{c_t} \mathbf{1} + \frac{c_l}{c_t} \cos(\theta_l) \mathbf{n} + \mathbf{t}_{\perp}$$

$$\mathbf{t} = \mathbf{t}_{\parallel} + \mathbf{t}_{\perp}$$

$$\mathbf{t} = -\frac{c_l}{c_t} \mathbf{1} + \frac{c_l}{c_t} \cos(\theta_l) \mathbf{n} + \mathbf{t}_{\perp}$$

$$\mathbf{t}_{\perp} = \alpha \mathbf{n}$$

$$\mathbf{t} = \mathbf{t}_{\parallel} + \mathbf{t}_{\perp}$$

$$\mathbf{t} = -\frac{c_l}{c_t} \mathbf{1} + \frac{c_l}{c_t} \cos(\theta_l) \mathbf{n} + \mathbf{t}_{\perp}$$

$$\mathbf{t}_{\perp} = \alpha \mathbf{n}$$

$$\mathbf{t}_{\perp} = -\sqrt{1 - \sin^2 \theta_t} \mathbf{n}$$

$$\mathbf{t} = \mathbf{t}_{\parallel} + \mathbf{t}_{\perp}$$

$$\mathbf{t} = -\frac{c_l}{c_t} \mathbf{1} + \frac{c_l}{c_t} \cos(\theta_l) \mathbf{n} + \mathbf{t}_{\perp}$$

$$\mathbf{t}_{\perp} = -\sqrt{1 - \sin^2 \theta_t \mathbf{n}}$$

$$\mathbf{t} = \mathbf{t}_{\parallel} + \mathbf{t}_{\perp}$$

$$\mathbf{t} = -\frac{c_l}{c_t} \mathbf{1} + \frac{c_l}{c_t} \cos(\theta_l) \mathbf{n} + \mathbf{t}_{\perp}$$

$$\mathbf{t} = \mathbf{t}_{\parallel} + \mathbf{t}_{\perp}$$

$$\mathbf{t} = -\frac{c_l}{c_t} \mathbf{1} + \frac{c_l}{c_t} \cos(\theta_l) \mathbf{n} + \mathbf{t}_{\perp}$$

$$\mathbf{t} = \mathbf{t}_{\parallel} + \mathbf{t}_{\perp}$$

$$\mathbf{t} = -\frac{c_l}{c_t} \mathbf{1} + \frac{c_l}{c_t} \cos(\theta_l) \mathbf{n} - \cos\theta_t \mathbf{n}$$

$$\mathbf{t}_{\perp} = -\sqrt{1 - \sin^2 \theta_t} \mathbf{n}$$

$$\mathbf{t}_{\perp} = -\sqrt{\cos^2 \theta_t} \mathbf{n}$$

$$\mathbf{t}_{\perp} = -\cos \theta_t \mathbf{n}$$

$$\mathbf{t} = -\frac{c_l}{c_t} \mathbf{1} + \frac{c_l}{c_t} \cos(\theta_l) \mathbf{n} - \cos\theta_t \mathbf{n}$$

https://graphics.stanford.edu/courses/cs148-10summer/docs/2006--degreve--reflection_refraction.pdf

```
colour rayTrace(Ray, depth) {
    for each object in the scene {
         if (Intersect ray with object) {
              colour = shading model
              if (depth < maxDepth) {</pre>
                   colour +=
rayTrace (reflectedRay, depth+1)
                   colour +=
rayTrace(refractedRay, depth+1)
    return colour
```

```
colour rayTrace(Ray, depth) {
    for each object in the scene {
         if (Intersect ray with object) {
              colour = shading model
              if (depth < maxDepth) {</pre>
                   colour +=
rayTrace (reflectedRay, depth+1)
                   colour +=
rayTrace(refractedRay, depth+1)
    return colour
```

Ray Spawning

© www.scratchapixel.com

Any Questions?