

Mastering Cryogenic Propellants

Michael L. Meyer
David J. Chato
David W. Plachta
Gregory A. Zimmerli
Stephen J. Barsi
Neil T. Van Dresar
Jeffrey P. Moder

Presented at the
2014 AIAA P&E Forum
July 30, 2014

Project Bee (1955-1959)

USAF: Is it practical to use LH₂ in an airplane?

NACA Lewis conducts Project Bee

- B-57B modified to permit one engine to burn JP-4 or H₂

Flight test demonstrated feasibility and safety

GRC Cryogenic Fluid Management Accomplishments

1962-> Centaur
LO2/LH2 stage
development

COLD-SAT
Experiment
Experiment Design
completes Phase A
(1990)

LH₂ Zero Boil-off
storage feasibility
demonstrated (1998)

2010 Methane
Lunar Surface
Thermal Control
Test demonstrate
advanced MLI

Cryogenic Propellant
Storage and Transfer
(CPST) Demonstration
completes SRR/MDR
(2014)

Shuttle Experiments:
Tank Pressure
Control Experiment
(1992), Vented Tank
Resupply Experiment
(1996)

Liquid
acquisition,
gauging, pressure
control, and
modeling matured
(2005)

2010-2013 CFM
technology matured
for flight
demonstration

1996-2001: Propellant
densification development
culminates in X-33 GSE

2004 Creek Road
Cryogenic Complex
opens; Over 50 test
programs conducted to
mature CFM technology
in next 10 years

1988-1994: NASP
Slush H₂ Technology
Program. >200,000
gallons of SLH₂
produced

Centaur

1960s - Centaur stage being lowered into Spacecraft Propulsion research Facility for integrated CFM and hot-fire testing

Subscale experiments and full scale demonstration flights addressed:

- Propellant slosh
- Propellant settling
- Short term storage/pressure control

1990s - Liquid hydrogen tank in test at the Cryogenic Propellant Tank Facility (K-Site): fill, pressurization/venting, slosh

Flight Experiments

Tank Pressure Control Experiment (TPCE)

Vented Tank Resupply Experiment (VTRE)

Zero Boil-off Tank Experiment (ZBOT)

Liquid Motion Control Experiment (LME)

Cryogenic Fluid Management Facilities

**Spacecraft Propulsion research Facility
(B-2) at Plum Brook Station (PBS)**

**Cryogenic Propellant Tank
Facility (K-Site) (PBS)**

**Small Multipurpose
Research Facility
(SMiRF) at Lewis Field**

Not Pictured:

- Cryogenic Components Laboratory (CCL) (PBS)
- “Cell 7” at Lewis Field

Recent Highlights

Since 2003, Technology Development Projects have enabled maturation of technologies for:

Efficient long duration cryogen storage

- Advanced multilayer insulation
- Mixing and thermodynamic venting for pressure control
- Active Thermal control

In-space cryogenic propellant transfer

- Unsettled liquid acquisition
- Transfer line chill-down

Cryogenic propellant gauging

- Evaluation of alternative liquid level sensors
- Radio frequency mass gauging

Analysis and simulation

- Correlations
- Lumped element modeling
- Full physics computational fluid dynamics
- Analysis of unsettled cryogen storage
- Analysis of transfer line and tank chill and fill processes

Broad suite of cryogens

- Liquid oxygen
- Liquid hydrogen
- Liquid methane
- Liquid nitrogen

Recent Highlights

**CPST Engineering Development
Unit - Fabrication and Testing**

**CFM Flight
Payload Concept**

**Vibro-acoustic Testing of MLI
and BAC**

**LOX ZBO
Demonstration**

Summary

- CFM technologies have matured at a slow pace compared to other aerospace technologies
- During the last ten years considerable progress has been achieved in:
 - Technology Development
 - Modeling
 - System Performance
- NASA future architectures and roadmaps require a robust CFM approach