Lecture 16 Decompositions

Lossless Join Decomposition into BCNF

- Whether a relation schema Q is in BCNF or not?
 - For each X → Y in Q, whether X⁺ fails to include all the attributes in Q
- Consider a relation R with FDs F. If X → Y violates BCNF, decompose R into R - Y and XY. Repeat this for all other FDs that violate BCNF will give us:
 - A collection of relations that are in BCNF
 - Lossless join decomposition
- In general, several dependencies may cause violation of BCNF. The order in which we "deal with" them could lead to very different sets of relations!

Example 1

R = (ABCDEFGH), F = {ABH \rightarrow C, A \rightarrow DE, BGH \rightarrow F, F \rightarrow ADH, BH \rightarrow GE}

Step 1: Find a FD that violates BCNF
Not ABH → C since (ABH)⁺ includes all attributes
A → DE violates BCNF since A is not a superkey (A⁺ =ADE)

Step 2: Split R into:

 $R_1 = (ADE)$

 $R_2 = (ABCFGH)$

- R₁ is in BCNF
- Decomposition is lossless since A is a key of R₁
- Is this lossless join decomposition dependency preserving?

Example 1 (Cont.)

 $R_2 = (ABCFGH), F_2 = \{ABH \rightarrow C, BGH \rightarrow F, F \rightarrow AH, BH \rightarrow G\}$

Step 1: Find a FD that violates BCNF

Not ABH \rightarrow C or BGH \rightarrow F since BH is a key of R₂

 $F \rightarrow AH$ violates BCNF since F is not a superkey (F⁺ =AFH)

Step 2: Split R₂ into:

$$R_{21} = (FAH)$$

$$R_{22} = (BCFG)$$

- Both R₂₁ and R₂₂ are in BCNF
- The decomposition is lossless since F is a key of R₂₁
- Is this lossless join decomposition dependency preserving?

Example 2

- CSJDPQV, key C, JP → C, SD → P, J → S
- To deal with SD → P, decompose into SDP, CSJDQV
- To deal with J → S, decompose CSJDQV into JS and CJDQV

BCNF and Dependency Preserving

- A BCNF decomposition is not necessarily dependency-preserving
- In example 2, adding JPC to the collection of relations gives a dependency preserving decomposition
 - JPC tuples stored only for checking FD (Redundancy!)

Dependency-Preserving Decomposition into 3NF

- Compromise: Not all redundancy removed, but dependency-preserving decompositions are always possible
- 3NF dependency-preserving decomposition is based on a minimal cover

3NF Synthesis Algorithm

- Given a schema R = (ABCDEFGH) with functional dependencies F = {ABH → C, A → D, C → E, BGH → F, F → AD, E → F, BH → E}
- 1. Compute a minimal cover G for F
 - $G = \{BH \rightarrow C, A \rightarrow D, C \rightarrow E, F \rightarrow A, E \rightarrow F\}$
- 2. For each LHS X of a functional dependency in G, create a relation schema in D with attributes $\{X \cup \{A_1\} \cup \{A_2\} ... \cup \{A_k\}\}$, where $X \to A_1$, $X \to A_2$,..., $X \to A_k$ are the only dependencies in G with X as LHS (X is the key of this relation)
 - $R_1 = (BHC), R_2 = (AD), R_3 = (CE), R_4 = (FA), R_5 = (EF)$

3NF Synthesis Algorithm (Cont.)

- 3. Place any remaining attributes (that have not been placed in any relation) in a single relation schema to ensure the attribute preservation property
- Every relation schema created by this algorithm is in 3NF

Synthesis

- The 3NF synthesis algorithm does preserve the original dependencies, but it makes no guarantee of preserving all of the information (may not be lossless join)
- It is called a relational synthesis algorithm, because each relation schema R_i in the decomposition is synthesized (constructed) from the set of functional dependencies in minimum cover G with the same LHS X

Dependency-Preserving and Lossless Join Decomposition into 3NF

- Keep step 1 and 2 from the algorithm of dependency-preserving decomposition into 3NF
- 3. If none of the relation schemas in D contains a key of R, then create one more relation schema in D that contains attributes that form a key of R
- 4. Eliminate redundant relations from the resulting set of relations
 - A relation R is redundant if R is a projection of another relation S in the schema (R is subsumed by S)

Is there always a lossless join and dependency preserving decomposition into 3NF?

Is there always a lossless join and dependency preserving decomposition into 3NF?

Yes	
	0%
No	
	0%

Is there always a lossless join and dependency preserving decomposition into 3NF?

Yes	
	0%
No	
	0%

Example

- Consider the Contracts relation with attributes CSJDPQV and the following FDs
 - C→CSJDPQV, JP→C, SD→P, and J→S
- Find a minimal cover
 - First replace C→CSJDPQV with the FDs:
 - $C \rightarrow S$, $C \rightarrow J$, $C \rightarrow D$, $C \rightarrow P$, $C \rightarrow Q$, and $C \rightarrow V$
 - No redundant attribute on the LHS of each FDs
 - C→P is deleted since it is implied by C→S, C→D, and SD→P
 C→S is deleted since it is implied by C→J and J→S
 - The minimal cover is:
 - C \rightarrow J, C \rightarrow D, C \rightarrow Q, C \rightarrow V, JP \rightarrow C, SD \rightarrow P, and J \rightarrow S
- Apply 3NF synthesis algorithm, we have the relational schema:
 - $R_1 = (CDJQV), R_2 = (JPC), R_3 = (SDP), R_4 = (JS)$
 - Since (CDJQV) is a superkey, we are done

Exercise

- Find a dependency-preserving and lossless join decomposition into 3NF
 - 1. R1 (Emp_ssn, Pno, Esal, Ephone, Dno, Pname, Plocation) FDs that hold on R1:
 - Emp_ssn → Esal, Ephone, Dno,
 - $Pno \rightarrow Pname$, Plocation,
 - Emp_ssn, Pno → Esal, Ephone, Dno, Pname, Plocation
 - R2 (Property_id, Lot#, County, Area) represented by PLCA
 FDs that hold on R2: {P →LCA, LC →AP, A →C}

Finding a Key

- Given: a relation R and a set of functional dependencies F on the attributes of R
- 1.Set K=R
- 2. For each attribute A in K

{Compute (K-A)⁺ with respect to F; if (K-A)⁺ contains all the attributes in R, then set K=K-A}

Summary of Decompositions

- If a relation is in BCNF, it is free of redundancies that can be detected using FDs
 - Trying to ensure that all relations are in BCNF is a good heuristic
- Must consider whether all information and FDs are preserved
 - If a lossless-join, dependency preserving decomposition into BCNF is not possible (or unsuitable, given typical queries), should consider decomposition into 3NF
- Decompositions should be carried out and/or re-examined while keeping performance requirements in mind