

Lab 7

MOSFET (Metal-Oxide-Semiconductor Field -Effect Transistor)

Introduction:

A MOSFET, or Metal-Oxide-Semiconductor Field-Effect Transistor, is a type of transistor that can be used as a switch or amplifier in electronic circuits. It consists of a metal gate, an insulating oxide layer, and a semiconductor channel, and operates by applying a voltage to the gate to control the flow of current through the channel.

1-Device Characterization

The test setups for the NMOS transistor are shown in Figure 1, which will produce the plots shown in graphs 1 and 2, using parametric analysis.

Figure 1 Active Mode circuit

Steps:

- -Starting cadence with normal way then:
- -Create >> Instance
- -Library=> UMC 65

-SCHEMATIC1:

- -we need to define DC analysis for getting the response of mosfet's operation
- Launch >> ADE XL window.

- -on sweep 2 variables ,need to clarify the input component so we can select it by click on bottom like that:
- -Choosing Analysis window =>dc
- -click on =>" Save DC Operating point" icon
- -Component parameter=>Select component

-Schematic Window => vds Source =>OK.

-Run from XL's window

-Final Results

Graph 1 (I/Vds Characteristic for select regions of mosfet)

Note that : the output curve will be linear for 2 stages , the second stage due to the library of MOSFET selecting breakdown voltage of MOSFET at almost 4v so after that voltage ,MOSFET will act as resistor

> Replacing the main sweep variables as shown below

	Choosi	ng Analyse	es ADE L	(2)	,
Analysis	O tran	● dc	O ac	Onoise	
	○ xf	O sens	O dcmatch	O acmatch	
	○ stb	O pz	O If	○ sp	
	O envlp	O pss	O pac	O pstb	
	O pnoise	O pxf	O psp	O qpss	
	O qpac	O qpnoise	O qpxf	O qpsp	
	O hb	O hbac	Ohbstb	Ohbnoise	
	Ohbsp	Ohbxf			
		DC Analy	sis		
Save DC Op	perating Point	⊻			
Hysteresis	Sweep				
☐ Model	Parameter				
Sweep Ra	nge				
Start-	Ston				
- Juli 1-	Stop	Start 0	St	op 1	
O Cente	r.Cnan				
O Cente	r-Span				
				-	
O Cente		○ Step	Size	20	
			Size ber of Steps	20	
Sweep Ty	pe			20	
Sweep Ty Linear Add Specifi	pe			20	
Sweep Ty	pe c Points By File			20 Options	

At Vds=1,2,3volts

Graph 2(I/Vgs for select the operating point of gate voltage)

From the above 2 curves we suggest to work on Vds=3volts and Vgs started from 0.1volts

2-Types of MOSFET Amplifiers

MOSFET amplifiers are available in three types like common source (CS), common gate (CG), and common drain (CD), where each type along with its configuration is discussed below.

2-a Common Source

The common source circuit provides a medium input and output impedance levels. Both current and voltage gain can be described as medium, but the output is the inverse of the input, i.e. 180° phase change. This provides a good overall performance and as such it is often thought of as the most widely used configuration.

The common-source MOSFET amplifier is related to the CE (common-emitter) amplifier of BJT. This is very popular due to high gain and larger signal amplification can be achieved.

Figure 2 Common Source Circuit

Steps:

- -Library=> analogLib
- -Cell=>res
- -view=> symbol

- -Library=> analogLib
- -Cell=>Vsin
- -view=> symbol

		Edit Object Properties	×
Apply To	only curre	ent instance	
Show	☐ systen	n 🗹 user 🔽 CDF	
	Browse	Reset Instance Labels Display	
Prope	erty	Value	Display
Library	Name	analogLib	off
Cell Na	ime	vsource	off 🔛
View N	lame	symbol	off
Instan	ce Name	V2	off
		Add Delete Modify	
User	Property	Master Value Local Value	Display
lvslgr	nore	TRUE	off 🔽
CDF F	Parameter	Value	Display
DC voltage		600m V	off
Source type		sine	off
Frequency name 1			off
Frequency 1		1K Hz	off
Amplitude 1 (Vpk)		100m V	off
Phase for Sinusoid 1			off
Sine DC level			off
Delay time			off
Display second sinusoid			off
Display multi sinusoid			off
Display modulation params			off
Display small signal params			off
Display temperature params			off
Display noise parameters			off
Multiplier			off 🔽

- SCHEMATIC 2:

-select output and input node as active-mode lab

-Final Results:-

Graph 3(Transient analysis for checking the amplification)

➤ Making Ac analysis to check the output voltage gain

Graph 4 (voltage gain)

2-b Common gate

Common gate FET configuration provides a low input impedance while offering a high output impedance. As the gate is grounded, this acts as a barrier between input and output providing high levels of isolation, preventing feedback, especially at very high frequencies.

Although the voltage gain is high, the current gain is low and the overall power gain is also low when compared to the other FET circuit configurations available.

The other salient feature of this configuration is that the input and output are in phase.

Note that: although gate have to be grounded, we have to make voltage difference between gate and source =1v so MOSFET can work

Figure 3 Common Gate Circuit

Steps:

Same properties of component (input sine wave) and setup of analysis(even transient or AC) then:-

SCHEMATIC 3:

-Final Results Graph 5

Graph 6

2-c Common drain

The like the transistor emitter follower, the FET source follower configuration itself provides a high level of buffering and a high input impedance. The actual input resistance of the FET itself is very high as it is a field effect device. This means that the source follower circuit is able to provide excellent performance as a buffer.

The voltage gain is unity, although current gain is high. The input and output signals are in phase.

Figure 4 Common Drain Circuit

Steps:

	Edit Object Properties	×
pply To only cur	rent instance	
how 🗌 syste	em 🗹 user 🗹 CDF	
Browse	Reset Instance Labels Display	
Property	Value	Display
Library Name	analogLib	off 🔽
Cell Name	vsource	off
View Name	symbol symbol	off
Instance Name	V2	off 🔽
User Property	Add Delete Modify Master Value Local Value	Display
lvslgnore	TRUE	off
CDF Parameter	Value	Display
C voltage	2 V	off 🔽
ource type	sine	off
Frequency name 1		off
Frequency 1	1K Hz	off
Amplitude 1 (Vpk)	2 V	off
Phase for Sinusoid 1		off
Sine DC level		off
Delay time		off
isplay second sinusoid		off
isplay multi sinusoid		off
isplay modulation params		off
isplay small signal params		off
isplay temperature param	s 🔲	off
isplay noise parameters		off
fultiplier		off

-SCHEMATIC 4:

-Final Results Graph 7

Graph 8

Assignment 7

Using cadence simulation build the below circuit and answer the following question using the simulator.

P.S.: Create a .scs file including the following model library at the adexl to save the parameters of the Mosfet and to make it easier to analyze.

save*:gm sigtype=dev
save*:gds sigtype=dev
save*:id sigtype=dev
save*:vgs sigtype=dev
save*:vds sigtype=dev
save*:vth sigtype=dev
save*:vdsat sigtype=dev
save*:gmbs sigtype=dev
save*:region sigtype=dev

- Q1) Using DC sweep find the value of RSS that will make the current ID = 2.75 mA. Report the Graph RSS vs ID
- Q2) 2- After setting the Value of RSS Report the DC operating points of the MOSFET ID, Vgs, Vds, gm, region of operation and vth
- Q3) Find the input resistance and output resistance of the amplifier mid-band.

Bonus 7

Q4) If it's desired to attach 100Ω resistance instead of 8K load resistance and
maintain the same gain of the amplifier at the same value, then what type of
the amplifier stage should be inserted between this one and the load. (Justify
your answer using graph simulations)