

Machine Learning & Predictive Analysis

Stock Prediction

Y.Hiraji, B.Hajji, Y.Lourarhi, A.Mansouri, R.Nazih

Dr. AHIDAR Adil Ecole Centrale Casablanca

January 19, 2024

Table Of Contents

- 1. Problem Overview
- 2. Project Objectives
- 3. ARIMA Models
- 4. LSTM Model
- 5. CNN-LSTM Model
- 6. Application
- 7. Results
- 8. Conclusion

Problem Overview

Problem Overview

Why Predict Stock?

- Maximize profits
- Predict the economy
- Implement suitable economic policies

Challenges

- Stochastic nature
- Multiple factors

Scientific Project 3/35

Project Objectives

What are the Goals?

- Build a working ARIMA (Autoregressive integrated Moving Average) model
- Build a working LSTM model
- Build a working feature fusion LSTM CNN model
- Outputs: predicted daily closing for Apple (AAPL) (Application)
- Compare different results
- Find in which kind of stock these models can perform better

Scientific Project 4/35

ARIMA Models

Example 1:

Figure: Population size of the USA between the years 1790 and 1990

Scientific Project 5/35

Example 2:

Figure: Monthly number of passengers (in thousands) between the years 1949 and 1960 in the airlines.

Scientific Project 6/35

What is it?

• Mathematically, a time series is a series of data indexed by time.

How does a time series decompose?

- A trend (T_t)
- A seasonality (S_t)
- A residual or error (Xt)

$$Y_t = T_t + s_t + X_t \tag{1}$$

Scientific Project 7/35

The trend

• The trend corresponds to an increasing or decreasing behavior of a series over time. It often reflects a long-term phenomenon of growth or decline.

The seasonality

 Seasonality reflects the presence of a periodic phenomenon that repeats itself throughout the time series.

The residual

 The residual of the model corresponds to the part of the time series that the decomposition does not explain. A time series cannot be entirely decomposed solely based on trend and seasonality.

Scientific Project 8/35

The **ARIMA** (Autoregressive Integrated Moving Average) model is a handu tool for analyzing and predicting seguential data.

IT COMBINES THREE IMPORTANT FLEMENTS:

Figure: ARIMA Model (AR) + (I) + (MA)

Scientific Project 9/35

The AR process

• Concretely, if we consider a stationary process X_t , we consider it to be autoregressive of order p if we can explain its value at time T using its previous p terms.

Mathematically, this means that:

$$\forall t : X_t = \sum_{i=1}^p \alpha_i X_{t-i} + \varepsilon_t \tag{2}$$

Scientific Project 10/35

The I

The I in the ARIMA model stands for 'integrated.'
 It addresses the need for time series data to be stationary in order to be suitable for modeling. If a time series is not stationary, meaning its statistical properties change over time, we must often apply differencing.
 By differencing time series, it is possible to remove the trends they exhibit to make them stationary.

Scientific Project 11/35

The MA process

 Let X_t be a time series, we consider it to be an MA (Moving Average) process of order q if we can express its value at time t as a linear combination of random errors (white noise).

Mathematically, this is expressed as:

$$\forall t: X_t = \varepsilon_t + \sum_{i=1}^q \alpha_i \varepsilon_{t-i} \tag{3}$$

Scientific Project 12/35

Box-Jenkins method

Figure: Forecasting procedure using Box-Jenkins approach

Scientific Project 13/35

LSTM Model

RNN cellul

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t) \qquad (4)$$

Scientific Project 14/35

LSTM construction

$$c_t = c_{t-1} + \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$
 (5)

$$h_t = \tanh(c_t) \tag{6}$$

Scientific Project 15/35

Forget Gate

Scientific Project 16/35

Forget Gate

$$f_t = \sigma(W_{hf}h_{t-1} + W_{xf}x_t) \tag{7}$$

$$c_t = f_t * c_{t-1} + \tanh(W_{hc}h_{t-1} + W_{xc}x_t)$$
 (8)

$$h_t = \tanh(c_t) \tag{9}$$

Input Gate

Scientific Project 18/35

Input Gate

$$f_t = \sigma(W_{hf}h_{t-1} + W_{xf}x_t) \tag{10}$$

$$i_t = \sigma(W_{hi}h_{t-1} + W_{xi}x_t) \tag{11}$$

$$c_t = f_t * c_{t-1} + i_t * \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$
 (12)

$$h_t = \tanh(c_t) \tag{13}$$

Output Gate

$$f_t = \sigma(W_{hf}h_{t-1} + W_{xf}x_t) \tag{14}$$

$$i_t = \sigma(W_{hi}h_{t-1} + W_{xi}x_t) \tag{15}$$

$$o_t = \sigma(W_{ho}h_{t-1} + W_{xo}x_t) \tag{16}$$

$$c_t = f_t * c_{t-1} + i_t * \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$
(17)

$$h_t = o_t * \tanh(c_t) \tag{18}$$

Scientific Project 20/35

Synthesis

Scientific Project 21/35

CNN-LSTM Model

CNN in our case

- CNNs designed for image processing.
- Application to stock prediction by recognizing local patterns.
- Conceptualizing time-series data as a 1D image.

Scientific Project 22/35

1D CNN Architecture

Figure: CNN-LSTM architecture

Scientific Project 23/35

1D CNN Architecture

- Input: X 1D time-series data.
- Convolution:

$$Y = f(X * W + b)$$

• Activation:

$$Z = ReLU(Y)$$

• Pooling:

$$P = MaxPooling(Z)$$

CNN-LSTM Fusion

Figure: CNN-LSTM architecture

Scientific Project 25/35

CNN-LSTM Fusion

• CNN Output:

 O_{CNN}

Captures spatial features.

• LSTM Input:

$$I_{\mathsf{LSTM}} = [O_{\mathsf{CNN}}, X]$$

Concatenation of CNN output and original data.

• LSTM Output:

 O_{LSTM}

Handles temporal dependencies.

Application

Scientific Project

Data Overview : Apple Stock

	Open	High	Low	Close	Volume
Date					
2024-01-08 00:00:00-05:00	182.089996	185.600006	181.500000	185.559998	59144500
2024-01-09 00:00:00-05:00	183.919998	185.149994	182.729996	185.139999	42841800
2024-01-10 00:00:00-05:00	184.350006	186.399994	183.919998	186.190002	46792900
2024-01-11 00:00:00-05:00	186.539993	187.050003	183.619995	185.589996	49128400
2024-01-12 00:00:00-05:00	186.059998	186.740005	185.190002	185.919998	36923605

Figure: Apple's Data

Scientific Project 27/35

Apple Stock Trend

Figure: Apple's Trend

Scientific Project 28/35

Results

Scientific Project

ARIMA result

Figure: Apple's Data

Scientific Project 29/35

LSTM result

Figure: Apple's Data

Scientific Project 30/35

CNN-LSTM result

Evaluation

Model	MSE	MAE	RMSE
CNN-LSTM	29.214037	4.24860	5.4050
LSTM	7.77e+04	6.9574	8.8133
ARIMA	54.2668	5.5958	7.3666

Table: Different metrics of the models

Scientific Project 32/35

Comparing the models

Criteria:

- For MSE and MAE. lower values are better.
- For RMSE, lower values are also better.

Comparison : Based on these criteria, the CNN-LSTM model appears to be the most performant.

Scientific Project 33/35

Conclusion

Scientific Project

References

- H.Q.Thang, Vietnam Stock Index Trend Prediction using Gaussian Process Regression and Autoregressive Moving Average Model, Research and Development on Information and Communication Technology, HUST, 2018.
- Kim T, Kim HY, Forecasting stock prices with a feature fusion LSTM-CNN model using different representations of the same data, PLoS ONE 14(2): e0212320, 2019.
- Hao Y, Gao Q, Predicting the Trend of Stock Market Index Using the Hybrid Neural Network Based on Multiple Time Scale Machine Learning, MDPI Appl. Sci. 2020, 10(11), 3961.
- © CS231n, Convolutional Neural Networks (CNNs / ConvNets), https://cs231n.github.io/convolutional-networks/.
- Aston Zhang, Zachary C. Lipton, Dive into Deep Learning.

Scientific Project 34/35

Thank you for your attention

Y.Hiraji, B.Hajji, Y.Lourarhi, A.Mansouri, R.Nazih

Dr. AHIDAR Adil Ecole Centrale Casablanca

January 19, 2024