MATH1309 - Practice Problems 9

This week we will explore the solutions to Examples 3 to 5 in the lecture notes using the procedure PROC DISCRIM

Example 3: Let $X^T = (X_1, X_2, X_3)$ be a random vector representing important characteristics to distinguish between genuine and forged bank notes. A random sample of 50 genuine bank notes gives the mean $\overline{x}_1^T = (2.1, 5.3, 4.0)$ and covariance matrix

$$S_1 = \begin{pmatrix} 3.1 & 2.2 & 5.1 \\ 2.2 & 4.1 & 2.4 \\ 5.1 & 2.4 & 15.1 \end{pmatrix}.$$

Also the mean and covariance matrix of a random sample of 26 forged bank notes are as follows:

$$\overline{x}_2 = \begin{pmatrix} 8.0 \\ 10.1 \\ 5.0 \end{pmatrix}$$
 and $S_2 = \begin{pmatrix} 2.9 & 2.8 & 5.1 \\ 2.8 & 4.0 & 2.6 \\ 5.1 & 2.6 & 14.9 \end{pmatrix}$

(a) Identify the following two suspected bank notes as genuine or forged bank notes using Linear discriminant function.

Bank note 1: =
$$\begin{pmatrix} 6.0\\9.0\\4.1 \end{pmatrix}$$
 and Bank note 2: = $\begin{pmatrix} 2.1\\4.9\\4.9 \end{pmatrix}$.

(b) List the assumptions you used for the above analysis.

Example 4: Allocate the following observations, x_1 and x_2 to most suitable population among $\Pi_1: N_2(\mu_1, \Sigma_1)$ and $\Pi_2: N_2(\mu_2, \Sigma_2)$, where

$$\mu_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \ \mu_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \ \Sigma_1 = \begin{pmatrix} 1 & 1 \\ 1 & 4 \end{pmatrix} \text{ and } \Sigma_2 = \begin{pmatrix} 4 & -2 \\ -2 & 16 \end{pmatrix}.$$

Observations are:

$$x_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $x_2 = \begin{pmatrix} 2 \\ -3 \end{pmatrix}$.

Assume misclassification costs, c(2|1) = 2c(1|2) and, prior probabilities $p_1 = 0.25$ and $p_2 = 0.75$.

Example 5: Let $X^T = (X_1, X_2)$ be a random vector representing important characteristics to distinguish between two normal populations Π_1 and Π_2 . A random sample of 10 observations from Π_1 , gives the mean $\overline{x}_1^T = (-1, 3)$ and the sample covariance matrix

$$S_1 = \left(\begin{array}{cc} 1 & -1 \\ -1 & 4 \end{array}\right).$$

Also the mean and covariance matrix of a random sample of 15 from Π_2 are as follows:

$$\overline{x}_2 = \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$
 and $S_2 = \begin{pmatrix} 4 & 1 \\ 1 & 9 \end{pmatrix}$

Given the prior probability $p_1 = 0.4$, identify the following two observations assuming equal misclassification costs.

Observations are: $\boldsymbol{x}_1^T = (0.5, 1)$ and $\boldsymbol{x}_2^T = (-1, -3)$.

From a sample data set contained in Example15.dat on Canvas, perform a discriminant analysis. This file contains undergraduate grade point average (gpa) and graduate management aptitude test (gmat) results for two different groups (populations) $\Pi 1$ and $\Pi 2$.

- (a) Use proc discrim to create the groups.
- (b) Use the results in the output to determine the Apparent Error Rate and the Estimate of the Actual Error Rate.