Claims

Axial piston machine having a first group of pistons
 (34.1) for delivery into a first hydraulic circuit and
 at least a second group of pistons (34.2) for delivery
 into at least a second hydraulic circuit,
 characterized in

that the pistons (34.1) of the first group and the pistons (34.2) of the second group are supported on a common swash plate (37'), and that the swash plate (37') for adjusting a first volumetric displacement of the first group of pistons (34.1) into the first hydraulic circuit is pivotable about a first swivelling axis (55) and for adjusting a second volumetric displacement of the second group of pistons (34.2) into the second hydraulic circuit is pivotable about a second swivelling axis (56).

- Axial piston machine according to claim 1,
 characterized in
 that the first swivelling axis (55) and the second swivelling axis (56) and a centre line (40) of the axial piston machine intersect at a point (S).
- 25 3. Axial piston machine according to claim 1 or 2, characterized in that the first swivelling axis (55) and the second swivelling axis (56) are approximately perpendicular to one another.
 - 4. Axial piston machine according to one of claims 1 to 3, characterized in the pistons (34.1) of the first group are disposed in a

30

5

10

15

longitudinally displaceable manner in first cylinder bores (33.1), wherein the first cylinder bores (33.1) are connectable to the first hydraulic circuit by a first kidney-shaped control port (50) and by a second kidney-shaped control port (51) and the first kidney-shaped control port (50) and the second kidney-shaped control port (51) are disposed in each case opposite in relation to a vertical projection (55') of the first swivelling axis (55) into the plane of the first and second kidney-shaped control port (50, 51).

- Axial piston machine according to one of claims 1 to 4, characterized in
- that the pistons (34.2) of the second group are
 disposed in a longitudinally displaceable manner in
 second cylinder bores (33.2), wherein the second
 cylinder bores (33.2) are connectable to the second
 hydraulic circuit by a third kidney-shaped control port
 (57) and by a fourth kidney-shaped control port (58)
 and the third kidney-shaped control port (57) and the
 - fourth kidney-shaped control port (57) and the fourth kidney-shaped control port (58) are disposed opposite in relation to a vertical projection (56') of the second swivelling axis (56) into the plane of the third and fourth kidney-shaped control port (57, 58).

25

30

5

10

6. Axial piston machine according to one of claims 1 to 5, characterized in

that the swash plate (37') at its side remote from the pistons (34) has a region (59) with a hemispherical geometry.

7. Axial piston machine according to one of claims 1 to 6, characterized in

that the pistons (34.1) of the first group and the pistons (34.2) of the second group are disposed in a longitudinally displaceable manner in cylinder bores (33), which are disposed on a common graduated circle in a cylinder drum (24).

- 8. Axial piston machine according to one of claims 1 to 6, characterized in
- that the pistons (34.1) of the first group and the
 pistons (34.2) of the second group are disposed in a
 longitudinally displaceable manner in first cylinder
 bores (33.1) and second cylinder bores (33.2)
 respectively, wherein the first cylinder bores (33.1)
 and the second cylinder bores (33.2) are disposed on
 different graduated circles in a cylinder drum (24).

5

30

- Axial piston machine according to one of claims 1 to 8, characterized in
- that for adjusting the inclination of the swash plate (37') relative to the first swivelling axis (55) and for adjusting the inclination of the swash plate (37') relative to the second swivelling axis (56) in each case an adjusting device is provided.
- 25 10. Axial piston machine according to one of claims 1 to 8, characterized in

that for adjusting the inclination of the swash plate (37') relative to the first swivelling axis (55) and relative to the second swivelling axis (56) a common adjusting device is provided.