

Selective deletion of non-relevant Data

Christian Zoubek, <u>Konstantin Sack</u> 23rd March 2017

- Introduction
- Selective deletion
- Evaluation
- Conclusion

Motivation

- In law enforcement investigations search and seizure of digital devices is a standard procedure
 - Bitwise copies (imaging)
 - even if reason of investigation is of non-electronic nature

- Problems arising
 - How to handle mass of data (only slightly in scope of this paper)
 - → selective imaging
 - More specialized defense counsels
 - → selective imaging or selective deletion

Legal considerations

- Privacy laws limit access and usage of information
- Elfes'-decision made by the German Federal Constitutional Court (1957)
 - "One's data is part of a human beings's inviolable dignity and freedom"
 - Law enforcement is forced to spare data blocks irrelevant to cases
 - If not done while imaging
 - Deletion as soon as possible
 - Documentation of obtainment and deletion mandatory
- Sparing blocks while imaging hardly applicable in practise
 - Selective deletion one possible solution
 - Yet, not actively pursued
 - Deletion of data modify images
 - Applicability in court may be endangered

Example: Blogserver hosting hundreds of blogs

- Some blogs involved in illegal activities, most are not
 - Search warrant for serverhost
 - Seizure and imaging of whole server
- A lot of case-irrelevant data, especially data of innocent bystanders
- Question arises: What to do with such data?
 - E.g. in Germany: Delete afterwards
 - How to delete afterwards securely and in a forensically sound way?

Selective deletion of files

- Common forensics software do not allow modification directly in images/ disks
- Deletion by instructions implemented in OS not sufficient
 - Only index entry is modified
 - Content and meta data unaffected
- Deletion by zeroing content (wiping) also not sufficient
 - Meta data still yield enough information about users

Example extended

- One suspect also used the server to store private data, which is not shared amongst all users
- For instance, pictures made in holidays, saved in directories with unique names
 - In Germany: If not case-relevant data and belongs to protected data in regard of privacy laws, deletion of such data is also mandatory
 - Two problems arise
 - How to classify which data is case-relevant and which not? (not in scope of this paper)
 - How to delete affected data without causing damage to residual data and file systems

Forensically sound selective deletion

- With respect to Law
 - Private non-relevant data to be deleted
 - Integrity of residual data
- Technical point of view
 - Deletion of content straightforward: zero or random data
- Our requirement / demand for forensically sound selective deletion
 - Meta data on file system level which still yields enough information about a user's activity and/or private life should be deleted

- Introduction
- Selective deletion
- Evaluation
- Conclusion

Our selective deletion tool

- Intention to investigate whether a secure selective deletion is technically achievable
 - Realized as a plugin for the Digital Forensics Framework (unfortunately ArxSys seems to be closed)
 - Plugin is bounded to usage of Microsoft's NTFS
- Some more functionality included
 - Detection of duplicated files which are not necessarily flagged/found by an investigator
 - Basic partition table parser (only finds NTFS partitions)
 - Detection of carved files, which are not managed by a file system
 - Hard link detection, if more than one file is linked to the same content
 - Calculation of hash trees
 - and more

Deletion-module

- Modification of corresponding MFT entry/entries
 - Toggle ,in use'-flag
 - Overwrite all attributes with zeros, care for Fixup-values
- B-tree update
 - Leaf-level
 - Search filename and wipe affected bytes
 - Indent data right of it
 - Node-level
 - Find suitable replacing file
 - Smallest element in right child node
 - or, greatest element in left child node
 - Replace filename you want to delete (careful of filename lengths)
 - Delete replacing filename in leaf

Hashcalculator-module (Integrity)

- Before deletion
 - Calculate hash tree of original image
 - Find, classify and mark every sector affected by a file in a bitmap
 - Prepare modification of sectors in RAM
- Deletion
 - Write path, affected sectors, type of alterations in a separated file
 - Write prepared modifications on the image/disk
- After deletion
 - Calculate hash tree
 - Differences in hash trees should yield the same modified sectors as can be found in the logfiles

- Introduction
- Selective deletion
- Evaluation
- Conclusion

Experimental setup

- I. Scenario (seven various test cases)
 - some directories and/or files were to be deleted
 - Different allocations of data
 - Resident vs. Non-resident data
 - Reformatted devices, some data transparent to the new format
 - Test case with a bootable Windows
- **II. Scenario** (functionality comparison against an existing implementation of professional software)
 - USB-device with many different directories, many cloned files across directories
 - Deletion of one whole folder
 - Search for duplicates across partition
 - Comparison of results

Evaluation (first scenario)

- seven test cases worked without major problems
- Comparison of logfiles, hash trees and resulting image verified correct behaviour
 - Data content erased in a whole
 - B-trees rearranged properly
 - Images/disks were mountable
 - Directories were readable without any warning/error
 - No traces of deleted files
 - Meta data could not be found anymore
- One exception
 - Deletion of a user's home in Windows 7
 - Windows could see a broken home, warning popped up
 - Yet, only username was found, anything else was irrecoverable

Evaluation (second scenario)

- Comparison against pro software
 - Both tools could find all duplicates
 - Pro software deletes files by sparing only data content
 - Meta data still usable
 - Even full filenames were found
 - Pro software cleanses image by creating a new image
 - Input image is not modified in any way
 - Marked entries are deleted by only skipping a file's content on disk when copying the image
 - Files can still be found and accessed, yet no content is readable
- Our tool operates directly on the image
- Further verification of correctness with FTK Imager

Original Disk

MBR partition table	boot sector	MFT	free space	File A content	File B content	free space	File C content	contents other files	free space	unpar- titioned space
Partition										

Cleansed Image of the Disk: blue = wiped, excluded areas (X-Ways Forensics)

MBR partition table	boot sector	MFT	free space	File A content	File B content	free space	File C content	contents other files	free space	unpar- titioned space
Partition										

selective deletion image of the Disk: blue = wiped, excluded areas; checkered = modified MFT

MBR partition table	boot sector	MFT	free space	File A content	File B content	free space	File C content	contents other files	free space	unpar- titioned space
---------------------------	----------------	-----	---------------	----------------	-------------------	---------------	-------------------	----------------------------	---------------	-----------------------------

- Introduction
- Selective deletion
- Evaluation
- Conclusion

Conclusion

- Practical approach of prototypical selective deletion tool
- Legal requirements are fulfilled in case of non-relevant data
 - Content and meta data is erased/wiped
 - Residual data stays untouched
 - File system data structures are not damaged, hence disks/images are still usable without professional software
 - Calculation and comparison of hash trees for verification of data integrity
 - Continuous logging of every single step

Problems?

- Logging while deleting could also reveal information about bystanders

Thank you for your attention!

Questions?

(christian.zoubek@th-nuernberg.de)

Tool can be found here:

https://www1.informatik.uni-erlangen.de/content/selective_deletion