Homework #5: Optimization

November 20th, 2019

Jae W. Lee (jaewlee@snu.ac.kr)
Computer Science and Engineering
Seoul National University

TA: Jeonghun Gong, Yunho Jin

Goal of This Project

Optimize the given matrix convolution operation.

Convolution (Simplified)

^{*}Assume stride = 1

Filter (3 x 3)

Output image (5 x 5)

Input image (5 x 5)

Part of input image(I) (3 x 3)

Filter (3 x 3)

Output Pixel(O)

What You Need to Do

- Optimize the given convolution with...
 - Blocking
 - Loop unrolling
 - Reduce branch penalty
 - SIMD operations
 - Inline assembly (you need to study x86_64 ISA)
 - Many others...
 - But, DO NOT write multi-threaded program or use accelerators (e.g., GPUs)
- File to modify (and submit): conv.c

Setup

- You may use given VM instance or HW lab computers for development
 - Performance will be measured using HW lab computers
 - We strongly recommend you do measurement at the HW lab before submission.
- Download PA5.tar from eTL
 - Extract it on your directory
 - On terminal: \$> tar -xzvf PA5.tar.gz
 - Build: \$> make
 - Execute your code: \$> ./conv_test [input file]

Grading Rules (1)

- We will grade your submitted code on a HW lab computer
 - We will measure the performance of your code using the same input.txt.
 - All execution times will be measured by the minimum of 5 runs.
 - If you do hardware-specific optimization (e.g., cache optimization, SIMD), you must target the HW lab computer.

```
jeonghun@NEETProduction:~/PA5$ make
gcc -Wall -Werror -std=c99 -00 -c main.c -o main.o
gcc -Wall -Werror -std=c99 -00 -c conv.c -o conv.o
gcc -Wall -Werror -std=c99 -00 -c conv_ref.c -o conv_ref.o
gcc -Wall -Werror -std=c99 -00 -c conv_ref.c -o conv_ref.o
gcc main.o conv.o conv_ref.o -o conv_test ./conv_TA.so
jeonghun@NEETProduction:~/PA5$ ./conv_test input.txt
Your time: 2.329090, Reference time: 2.350445, TA time: 0.594196, Your speedup: 1.009169x, TA speedup: 3.955673x
```

Grading Rules (2)

Other rules

- If your code is faster than TA's, you will get 100 points.
 - If it is slower, we will use a grading curve on next slide.
 - Top k students will be given bonus credits by up to 100 points.
 - k is around 3-5 depending on the outcome.
 - We'll assign bonus points according to the speedup numbers.
- We will use gcc on Linux with a fixed set of flags
 - Refer to attached Makefile.
 - Playing with compilation flags is not allowed.
- If your code is incorrect, you will get a very low score.
 - We may test the correctness of your code using other inputs.

Grading Rules (3)

Grading curve

Submission guideline

- Write-up
 - Briefly describe your implementation
 - File name should be [Student ID].pdf (example: 2019-12345.pdf)
- Compress your code (conv.c) and write-up in a single ZIP file.
 - File name should be [Student ID].zip (example: 2019-12345.zip)
- Due: 2019.12.9 (Mon) 23:59 KST
 - Within next 24 hours: -10% deduction
 - Within next 48 hours: -30% deduction
 - Within next 72 hours: -50% deduction
 - After next 72 hours: Submission not accepted