Branch & Bound

Branch and Bound

- Used to find optimal solution to many optimization problems, especially in discrete and combinatorial optimization.
- Systematic enumeration of all candidate solutions.
- Discard large subsets of fruitless candidates by using upper and lower estimated bounds of quantity being optimized.

Terminology

- Live node is a node that has been generated but whose children have not yet been generated.
- **E-node** is a live node whose children are currently being explored. In other words, an E-node is a node currently being expanded.
- Dead node is a generated node that is not to be expanded or explored any further. All children of a dead node have already been expanded.
- Branch-and-bound refers to all state space search methods in which all children of an E-node are generated before any other live node can become the E-node.

General method

- Both BFS and DFS generalize to branch-and-bound strategies
 - BFS is an FIFO search in terms of live nodes
 - List of live nodes is a queue
 - DFS is an LIFO search in terms of live nodes
 - List of live nodes is a stack
- We will use bounding functions to avoid generating subtrees that do not contain an answer node.

Backtracking vs Branch & Bound

Backtracking	Branch & Bound
It is used to find all possible solutions available to a problem.	It is used to solve optimization problem.
It traverses the state space tree by DFS (Depth First Search) manner.	It may traverse the tree in any manner, DFS or BFS .
It realizes that it has made a bad choice & undoes the last choice by backing up.	It realizes that it already has a better optimal solution that the pre-solution leads to so it abandons that presolution.
It searches the state space tree until it has found a solution.	It completely searches the state space tree to get optimal solution.
It involves feasibility function .	It involves a bounding function .

Branch & Bound

0/1 knapsack Problem

0/1 Knapsack Problem

- A thief robbing a store finds n items. The i th item is worth i dollars and weighs w_i pounds, where i and w_i are integers.
- The thief wants to take as valuable a load as possible, but he can carry at most W pounds in his knapsack, for some integer W.
- For each item, the thief must either take it or leave it behind.
 That is why it is called 0/1 knapsack.
- Which items should he take?
- In the fractional knapsack problem, the setup is the same, but the thief can take fractions of items.

0/1 knapsack Example

The items' weights and values are:

Item	Weights	Value
1	7	140
2	6	132
3	4	140
4	3	90

The knapsack capacity is 15.

0/1 knapsack Example

0/1 knapsack Example

Branch & Bound

15 Puzzle Problem

15 Puzzle Problem

- 15 numbered tiles on a square frame with a capacity for 16 tiles.
- Given an initial state, transform it to the goal state through a series of legal moves.

1	3	4	15
2		5	12
7	6	11	14
8	9	10	13

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Initial State

Goal State

• A state is reachable from the initial state iff there is a sequence of legal moves from initial state to this state.

15 Puzzle Problem

- Search the state space for the goal state and use the path from initial state to goal state as the answer.
- Number of possible arrangements for tiles: $16! \approx 20.9 \times 10^{12}$
- Depth first search takes us away from the goal rather than closer
 - The search of state space tree is blind; taking leftmost path from the root regardless of initial state
 - An answer node may never be found
- Breadth-first search will always find a goal state nearest to the root.

15 Puzzle Problem

Intelligent Solution:

- Associate a cost c(x) with each node x of state space tree
 - c(x) is the length of path from the root to a nearest goal node (if any)
 in the subtree with root x
- $\hat{c}(x) = f(x) + \hat{g}(x)$ where f(x) is the length of the path from root to x and $\hat{g}(x)$ is an estimate of the length of a shortest path from x to a goal node in the subtree with root x.
- One possible choice for $\hat{g}(x)$ is the number of nonblank tiles not in their goal position.

8 Puzzle Problem Example

8 Puzzle Problem Example

8 Puzzle Problem Example

Branch & Bound

Traveling Salesman Problem

Traveling Salesman Problem

- Let us look at a situation that there are 5 cities, Which are represented as nodes
- There is a Person at node: 1
- This person has to reach each nodes one and only once and come back to original (starting)position.
- This process has to occur with minimum cost or minimum distance travelled.
- Note that starting point can start with any node.
- For Example:

1-5-2-3-4-1

2-3-4-1-5-2

Traveling Salesman Problem

- If there are 'n' nodes there are (n-1)! Feasible solutions
- From these (n-1)! Feasible solutions we have to find optimal solution.
- This can be related to graph theory.
- Travelling Salesman Problem is nothing but finding out LEAST
 COST HAMILTONIAN CIRCUIT

Let the adjacency matrix for the given graph be:

	1	2	3	4	5
1	-	20	30	10	11
2	15	-	16	4	2
3	3	5	-	2	4
4	19	6	18	-	3
5	16	4	7	16	-

- Find out Row Minima and then reduce the matrix
- Next find the Column Minima
- Total minimum distance will be summation of them.

	1	2	3	4	5
1	-	20	30	10	11
2	15	-	16	4	2
3	3	5	-	2	4
4	19	6	18	-	3
5	16	4	7	16	-

	1	2	3	4	5
1	-	10	20	0	1
2	13	-	14	2	0
3	1	3	-	0	2
4	16	3	15	-	0
5	12	0	3	12	-

- Here the total minimum distance = (10+2+2+3+4)+(1+3)
- So the lower bound is 25.
- That is a person can surely travel the cities with the distance greater than or equal to 25.

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-

Reduced matrix and reduced cost = 25

	1	2	3	4	5	
1	-	-	-	-	-	
2	-	-	11	2	0	
3	0	-	-	0	2	
4	15	-	12	-	0	
5	11	-	0	12	-	
						-

$$C(1, 2) + \gamma + \hat{\gamma}$$

= 10 + 25 + 0 = 35

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-

	1	2	3	4	5	
1	-	-	-	-	-	
2	12	-	-	2	0	
3	-	3	-	0	2	
4	15	3	-	-	0	
5	11	0	-	12	-	

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-

						_
	1	2	3	4	5	
1	-	-	-	-	-	
2	1	-	-	2	0	
3	-	3	-	0	2	
4	4	3	-	-	0	
5	0	0	-	12	-	

$$C(1, 3) + \gamma + \hat{\gamma}$$

= 17 + 25 + 11 = 53

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-

						_
	1	2	3	4	5	
1	-	-	-	-	-	
2	12	-	11	-	0	
3	0	3	-	-	2	
4	15	3	12	-	0	
5	11	0	0	-	-	

$$C(1, 4) + \gamma + \hat{\gamma}$$

= 0 + 25 + 0 = 25

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-

	1	2	3	4	5
1	-	-	-	-	-
2	12	-	11	2	-
3	0	3	-	0	-
4	15	3	12	-	-
5	-	0	0	12	-

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-

	1	2	3	4	5
1	-	-	-	-	-
2	10	-	9	0	-
3	0	3	-	0	-
4	12	0	9	-	-
5	-	0	0	12	-

$$C(1, 5) + \gamma + \hat{\gamma}$$

= 1 + 25 + 5 = 31

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-

$$C(4, 2) + \gamma + \widehat{\gamma}$$

$$= 3 + 25 + 0 = 28$$

	1	2	3	4	5
1	-	-	-	-	-
2	-	-	11	-	0
3	0	-	-	-	2
4	-	-	-	-	-
5	11	-	0	_	_

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-

	1	2	3	4	5	
1	-	-	-	-	-	
2	12	-	-	-	0	
3	-	3	-	-	2	
4	-	-	-	-	-	
5	11	0	-	-	-	

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-

C(4,	3) +	γ +	$-\widehat{\gamma}$	
= 12	+ 25	; ₊ ′	12 –	_

	1	2	3	4	5	
1	-	-	-	-	-	
2	1	-	-	-	0	
3	-	1	-	-	0	
4	-	-	-	-	-	
5	0	0	-	-	-	

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-

	1	2	3	4	5
1	-	-	-	-	-
2	12	-	11	-	-
3	0	3	-	-	-
4	-	-	-	-	-
5	-	0	0	-	-

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-

γ	$+\widehat{\gamma}$
	γ

$$= 0 + 25 + 11 = 36$$

	1	2	3	4	5
1	-	-	-	-	-
2	1	-	0	-	-
3	0	3	-	-	-
4	-	-	-	-	- 1
5	-	0	0	-	-

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-

	1	2	3	4	5
1	-	-	-	-	-
2	-	-	-	-	-
3	-	-	-	-	2
4	-	-	-	-	-
5	11	-	-	-	-

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-

				î	
	1	2	3	4	5
1	-	-	-	-	-
2	-	-	-	-	-
3	-	-	-	-	0
4	-	-	-	-	-
5	0	-	-	-	-

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-

	1	2	3	4	5
1	-	-	-	-	-
2	-	-	-	-	-
3	0	-	-	-	-
4	-	-	-	-	-
5	-	-	0	-	-

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-

	1	2	3	4	5
1	-	-	-	-	-
2	-	-	-	-	-
3	0	-	-	-	-
4	-	-	-	-	-
5	-	-	0	-	-

	1	2	3	4	5
1	-	10	17	0	1
2	12	-	11	2	0
3	0	3	-	0	2
4	15	3	12	-	0
5	11	0	0	12	-