WEST Search History

Hide Items Restore Clear Cancel

DATE: Tuesday, April 20, 2004

Hide?	<u>Set</u> <u>Name</u>	Query	<u>Hit</u> <u>Count</u>
	DB=P	GPB,USPT,EPAB,JPAB,DWPI,TDBD; PLUR=YES; OP=ADJ	
	L13	((x and y and z) or 3D or "3 dimension\$4") and L11	2783
	L12	x and y and z and L11	2532
	L11	coordinate and L10	5485
	L10	15 and L9	35390
	L9	rotation angle	35390
	L8	L4 aned angle\$	0
	L7	L4 aned angle	0
	L6	11 and 12 and L5	2164140
	L5	13 or L4	5993009
	L4	(twist\$4 or wind together or "produce a single strand" wind or coil or interlock\$3 or interlace or wrench or sprain or revolv\$3 or spin or twirl or spining motion)	1643270
	L3	(rotat\$8 or pivot\$4 or swing\$4 or turn\$4 or proceed in sequence or mov\$3 around)	5211264
	L2	(link\$ or connected same series or chain or connect\$3 or join\$5 or point or articulation or node or shared by or sharing with another or combin\$8 or attach\$3)	10550870
	L1	(robot\$6 or articulat\$3 or automat\$6 or autonomous\$2 or CNC or machine\$2 or mechanical device or mechan\$6 or servomechan\$4)	6122655

END OF SEARCH HISTORY

A unified optimization approach for a (6+1)-axis robot system

Yilong Chen; You-Liang Gu;

Systems, Man and Cybernetics, 1993. 'Systems Engineering in the Service of Humans', Conference Proceedings., International Conference on , 17-20 Oct. 1993

Page(s): 560 - 565 vol.4

Modelling of robot dynamics based on a multi-dimensional RBF-like neural network

Krabbes, M.; Doschner, C.;

Information Intelligence and Systems, 1999. Proceedings. 1999 International Conference on , 31

Oct.-3 Nov. 1999 Page(s): 180 -187

Joint impedance control applied to a biped pneumatic leg

Guihard, M.; Gorce, P.;

Systems, Man, and Cybernetics, 1996., IEEE International Conference on , Volume: 2 , 14-17 Oct.

1996

Page(s): 1114 -1119 vol.2

Neural force/position control in Cartesian space for a 6DOF industrial robot: concept and first results

Maass, R.; Zahn, V.; Eckmiller, R.;

Neural Networks, 1997., International Conference on , Volume: 3 , 9-12 June 1997

Page(s): 1744 -1748 vol.3

A global optimization approach to trajectory planning for industrial robots

Piazzi, A.; Visioli, A.;

Intelligent Robots and Systems, 1997. IROS '97., Proceedings of the 1997 IEEE/RSJ International

Conference on , Volume: 3 , 7-11 Sept. 1997

Page(s): 1553 -1559 vol.3

Experimental approach for the biped walking robot MARI-1

Yonemura, A.; Nakajima, Y.; Hirakawa, A.R.; Kawamura, A.;

Advanced Motion Control, 2000. Proceedings. 6th International Workshop on , 30 March-1 April 2000

Page(s): 548 -553

Monocular, vision based, autonomous refueling system

Farag, A.; Dizdarevic, E.; Eid, A.; Lorincz, A.;

Applications of Computer Vision, 2002. (WACV 2002). Proceedings. Sixth IEEE Workshop on , 3-4

Dec. 2002

Page(s): 309 -313

Posture control using foot toe and sole for biped walking robot "Ken"

Takahashi, T.; Kawamura, A.;

Advanced Motion Control, 2002. 7th International Workshop on , 3-5 July 2002

Page(s): 437 -442

Partitioned neural network architecture for inverse kinematic calculation of a 6 DOF robot manipulator

Kozakiewicz, C.; Ogiso, T.; Miyake, N.;

Neural Networks, 1991. 1991 IEEE International Joint Conference on , 18-21 Nov. 1991

Page(s): 2001 -2006 vol.3

Copyright © 2003 IEEE -- All rights reserved

Casala	Web	<u>Images</u>	<u>Groups</u>	<u>News</u>	Froogle New!	more »	
Google	"sixt	h joints" ro	bot			Search	Advanced Search Preferences
Web	700 : 1 (4) 2 (1) 1				Résults 1 - 2	of 2 for "sixth j	oints" robot. (0.25 seconds)

Tip: Try removing quotes from your search to get more results.

[PDF] ROBOT MOTION REALISATION USING LABVIEW

File Format: PDF/Adobe Acrobat - <u>View as HTML</u> ... relative position of the fourth, the fifth and the **sixth joints**. There are four different solutions of the inverse kinematics six joints **robot** problem for the ... www.pp.bme.hu/me/1999_2/pdf/me1999_2_07.pdf - <u>Similar pages</u>

[PDF] BARRY IRVIN SOROKA

File Format: PDF/Adobe Acrobat - View as HTML

... Illustrates the special kinematics problems which arise when the fifth joint of the Unimation PUMA-560 **robot** causes the fourth and **sixth joints** to become ... www.csupomona.edu/~bisoroka/website/resume.pdf - <u>Similar pages</u>

<u>"sixt</u>	th joints" robot	Search
<u>Search within r</u>	esults Language Tools Search Tips Diss	atisfied? Help us improve

Google Home - Advertising Programs - Business Solutions - About Google

©2004 Google