Numerical Linear Algebra - Notes - v
0.1.0-dev ${}_{260236}$

September 2024

Preface

Every theory section in these notes has been taken from the sources:

• Course slides. [1]

About:

GitHub repository

These notes are an unofficial resource and shouldn't replace the course material or any other book on numerical linear algebra. It is not made for commercial purposes. I've made the following notes to help me improve my knowledge and maybe it can be helpful for everyone.

As I have highlighted, a student should choose the teacher's material or a book on the topic. These notes can only be a helpful material.

Contents

1	\mathbf{Pre}	reliminaries		
	1.1	Notation	4	
	1.2	Matrix Operations	5	
	1.3	Basic matrix decomposition	7	
	1.4	Determinants	9	
_				
Index			-11	

1 Preliminaries

This section introduces some of the basic topics used throughout the course.

1.1 Notation

We try to use the same notation for anything.

• Vectors. With \mathbb{R} is a set of real numbers (scalars) and \mathbb{R}^n is a space of column vectors with n real elements.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}$$

Vectors with all zeros and all ones:

$$\mathbf{0} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad \mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

• Matrices. With $\mathbb{R}^{m \times n}$ is a space of $m \times n$ matrices with real elements:

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & & & & \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{bmatrix}$$

Identity matrix $\mathbf{I} \in \mathbb{R}^{n \times n}$:

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & & \\ 0 & 0 & \cdots & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_n \end{bmatrix}$$

Where \mathbf{e}_i , $i = 1, 2, \dots, n$ are the canonical vectors.

$$\mathbf{e}_i = \begin{bmatrix} 0 & 0 & \cdots & 1 & \cdots & 0 & 0 \end{bmatrix}^T$$

Where 1 is the i-th entry.

1 Preliminaries

1.2 Matrix Operations

Some basic matrix operations:

• Inner products. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ then:

$$\mathbf{x}^T \mathbf{y} = \sum_{i=1,\dots,n} x_i y_i$$

For real vectors, the commutative property is true:

$$\mathbf{x}^T\mathbf{y} = \mathbf{y}^T\mathbf{x}$$

Furthermore, the vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ are **orthogonal** if:

$$\mathbf{x}^T\mathbf{y} = \mathbf{y}^T\mathbf{x} = \mathbf{0}$$

And finally, some useful properties of matrix multiplication:

1. Multiplication by the *identity* changes nothing.

$$A \in \mathbb{R}^{n \times m} \Rightarrow \mathbf{I}_n A = A = A \mathbf{I}_m$$

2. Associativity:

$$A(BC) = (AB)C$$

3. Distributive:

$$A(B+D) = AB + AD$$

4. No commutativity:

$$AB \neq BA$$

5. Transpose of product:

$$(AB)^T = B^T A^T$$

• Matrix powers. For $A \in \mathbb{R}^{n \times n}$ with $A \neq \mathbf{0}$:

$$A^0 = \mathbf{I}_n$$
 $A^k = \underbrace{A \cdots A}_{k \text{ times}} = AA^{k-1}$ $k \ge 1$

Furthermore, $A \in \mathbb{R}^{n \times n}$ is:

- **Idempotent** (projector) $A^2 = A$
- Nilpotent $A^k = \mathbf{0}$ for some integer $k \ge 1$
- Inverse. For $A \in \mathbb{R}^{n \times n}$ is non-singular (invertible), if exists A^{-1} with:

$$AA^{-1} = \mathbf{I}_n = A^{-1}A \tag{1}$$

Inverse and transposition are interchangeable:

$$A^{-T} \triangleq \left(A^{T}\right)^{-1} = \left(A^{-1}\right)^{T}$$

Furthermore, an inverse of a product for a matrix $A \in \mathbb{R}^{n \times n}$ can be expressed as:

$$(AB)^{-1} = B^{-1}A^{-1}$$

Finally, remark that if $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$ and $A\mathbf{x} = 0$, then A is **singular**.

• Orthogonal matrices. Given a matrix $A \in \mathbb{R}^{n \times n}$ that is *invertible*, the matrix A is said to be orthogonal if:

$$A^{-1} = A^T \implies A^T A = \mathbf{I}_n = AA^T$$

- Triangular matrices. There are two types of triangular matrices:
 - 1. Upper triangular matrix:

$$\mathbf{U} = \begin{bmatrix} u_{1,1} & u_{1,2} & \cdots & u_{1,n} \\ 0 & u_{2,2} & \cdots & u_{2,n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{n,n} \end{bmatrix}$$

U is **non-singular** if and only if $u_{ii} \neq 0$ for i = 1, ..., n.

2. Lower triangular matrix:

$$\mathbf{L} = \begin{bmatrix} l_{1,1} & 0 & \cdots & 0 \\ l_{2,1} & l_{2,2} & \cdots & 0 \\ \vdots & \cdots & \ddots & \vdots \\ l_{n,1} & l_{n,2} & \cdots & l_{n,n} \end{bmatrix}$$

L is **non-singular** if and only if $l_{ii} \neq 0$ for i = 1, ..., n.

- Unitary triangular matrices. Are matrices similar to the lower and upper matrices, but they have the main diagonal composed of ones.
 - 1. Unitary upper triangular matrix:

$$\mathbf{U} = \begin{bmatrix} 1 & u_{1,2} & \cdots & u_{1,n} \\ 0 & 1 & \cdots & u_{2,n} \\ \vdots & \cdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

2. Unitary lower triangular matrix:

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ l_{2,1} & 1 & \cdots & 0 \\ \vdots & \cdots & \ddots & \vdots \\ l_{n,1} & l_{n,2} & \cdots & 1 \end{bmatrix}$$

1.3 Basic matrix decomposition

In the Numerical Linear Algebra course, we will use three main decomposition:

• LU factorization with (partial) pivoting. If $A \in \mathbb{R}^{n \times n}$ is a non-singular matrix, then:

$$PA = LU$$

Where:

- P is a permutation matrix
- -L is an unit lower triangular matrix
- $-\ U$ is an upper triangular matrix

Note that the linear system solution:

$$A\mathbf{x} = \mathbf{b}$$

Can be solved directly by calculation:

$$PA = LU$$

This way the complexity is equal to $O(n^3)$. So a smarter way to reduce complexity is to use the *divide et impera* (or *divide and conquer*) technique. Then solve the system:

$$\begin{cases} L\mathbf{y} = P\mathbf{b} & \to \text{ unit lower triangular system, complexity } O\left(n^2\right) \\ U\mathbf{x} = \mathbf{y} & \to \text{ upper triangular system, complexity } O\left(n^2\right) \end{cases}$$

• Cholesky decomposition. If $A \in \mathbb{R}^{n \times n}$ is a symmetric¹ and positive definite², then:

$$A = L^T L$$

Where L is a lower triangular matrix (with positive entries on the diagonal). Also note that the linear system solution:

$$A\mathbf{x} = \mathbf{b}$$

Can be solved directly by calculation:

$$A = L^T L$$

This way the complexity is equal to $O(n^3)$. So a smarter way to reduce complexity is to use the *divide et impera* (or *divide and conquer*) technique. Then solve the system:

$$\begin{cases} L^{T}\mathbf{y} = \mathbf{b} & \to \text{ lower triangular system, complexity } O\left(n^{2}\right) \\ L\mathbf{x} = \mathbf{y} & \to \text{ upper triangular system, complexity } O\left(n^{2}\right) \end{cases}$$

 $[\]overline{{}^{1}A}^{T} = A$

• QR decomposition. If $A \in \mathbb{R}^{n \times n}$ is a non-singular matrix, then:

$$A = QR$$

Where:

- Q is an orthogonal matrix
- -R is an upper triangular

Note that the linear system solution:

$$A\mathbf{x} = \mathbf{b}$$

Can be solved directly by calculation:

$$A = QR$$

This way the complexity is equal to $O(n^3)$. So a smarter way to reduce complexity is to use the *divide et impera* (or *divide and conquer*) technique. Then:

- 1. Multiply $\mathbf{c} = Q^T \mathbf{b}$, complexity $O(n^2)$
- 2. Solve the lower triangular system $R\mathbf{x} = \mathbf{c}$, complexity $O(n^2)$

1 Preliminaries

1.4 Determinants

1.4 Determinants

We will assume that the determinant topic is well known. However, in the following enumerated list there are some useful properties about the determinant of a matrix:

1. If a general matrix $T \in \mathbb{R}^{n \times n}$ is upper- or lower-triangular, then the determinant is computed as:

$$\det\left(T\right) = \prod_{i=1}^{n} t_{i,i}$$

2. Let $A, B \in \mathbb{R}^{n \times n}$, then is true:

$$\det(AB) = \det(A) \cdot \det(B)$$

3. Let $A \in \mathbb{R}^{n \times n}$, then is true:

$$\det\left(A^{T}\right) = \det\left(A\right)$$

4. Let $A \in \mathbb{R}^{n \times n}$, then is true:

$$\det(A) \neq 0 \iff A \text{ is non-singular}$$

- 5. Computation. Let $A \in \mathbb{R}^{n \times n}$ be non-singular, then:
 - (a) Factor PA = LU
 - (b) $\det(A) = \pm \det(U) = \pm u_{1,1} \dots u_{n,n}$

References

[1] Antonietti Paola Francesca. Numerical Linear Algebra. Slides from the HPC-E master's degree course on Politecnico di Milano, 2024.

Index

I		
Idempotent Matrices	5	
Invertible Matrices	5	
${f L}$		
Lower triangular matrix	6	
\mathbf{M}		
Matrices Multiplication	5	
Matrix Associativity Property	5	
Matrix Distributive Property	5	
N		
Nilpotent Matrices	5	
Non-singular Matrices	5	
0		
Orthogonal Matrices	6	
Orthogonal Vectors	5	
\mathbf{S}		
Singular Matrices	5	
${f T}$		
Transpose product between matrices	5	
U		
Unitary lower triangular matrix	6	
Unitary upper triangular matrix		
Upper triangular matrix	6	