Key concepts on Deep Neural Networks

10/10 points (100%)

Quiz, 10 questions

✓ Congratulations! You passed!

Next Item

1/1 points

1.

What is the "cache" used for in our implementation of forward propagation and backward propagation?

- It is used to keep track of the hyperparameters that we are searching over, to speed up computation.
- We use it to pass variables computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.

Correct

Correct, the "cache" records values from the forward propagation units and sends it to the backward propagation units because it is needed to compute the chain rule derivatives.

- We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.
- It is used to cache the intermediate values of the cost function during training.

1/1 points

2.

Among the following, which ones are "hyperparameters"? (Check all that apply.)

activation values $a^{[l]}$

Key concepts on Deep Neural Networks Quiz, 10 questions

10/10 points (100%)

Un-se	weight matrices $W^{[l]}$
Corre	number of layers L in the neural network $oldsymbol{ ext{ect}}$
Corre	learning rate $lpha$
Corre	number of iterations
Corre	size of the hidden layers $n^{[l]}$
Un-se	bias vectors $m{b}^{[l]}$ elected is correct
3.	1 / 1 points of the following statements is true?
Corre	The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.

10/10 points (100%)

1/1 points

4.

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers l=1, 2, ...,L. True/False?

True

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1 points

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
for(i in range(1, len(layer_dims)/2)):
    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims)/2)):
2    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3    parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
```

```
for(i in range(1, len(layer_dims))):
    parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01
    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

Correct

1/1 points

6.

Consider the following neural network.

How many layers does this network have?

igcup The number of layers L is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

- The number of layers L is 3. The number of hidden layers is 3.
- The number of layers L is 4. The number of hidden layers is 4.
- igcup The number of layers L is 5. The number of hidden layers is 4.

1/1 points

7.

During forward propagation, in the forward function for a layer l you need to know what is **Key concepts to nice experience of the large Notifies** h, ReLU, etc.). During backpropagation, the points (100%) Quiz, 10 question corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

0	True
duri	ect as you've seen in the week 3 each activation has a different derivative. Thus, ng backpropagation you need to know which activation was used in the forward pagation to be able to compute the correct derivative. False
~	1/1 points
8. There	are certain functions with the following properties:
(where	ompute the function using a shallow network circuit, you will need a large network we measure size by the number of logic gates in the network), but (ii) To compute it deep network circuit, you need only an exponentially smaller network. True/False?
0	True
Corr	ect
	False
9 .	1/1 points

Consider the following 2 hidden layer neural network: Key concepts on Deep Neural Networks

Quiz, 10 questions

10/10 points (100%)

Which of the following statements are True? (Check all that apply).

Key co	ncepftsrtth i	Deep Ne	ural Net	works	S
Ouiz 10 au	estions Yes, More	e generally ti	he shape of	$W^{[t]}$ is ($n^{[l]}$, $n^{[l-1]}$

10/10 points (100%)

	$b^{[2]}$ will have shape (1, 1)
Un-s	elected is correct
	$W^{\left[2 ight]}$ will have shape (3, 1)
Un-s	elected is correct
	$b^{[2]}$ will have shape (3, 1)
Corre	ect
Yes.	More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

res. More generally, the shape of $\theta^{s,s}$

 $oxed{ W^{[3]}}$ will have shape (3, 1)

Un-selected is correct

 $oldsymbol{b}^{[3]}$ will have shape (1, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $W^{[3]}$ will have shape (1, 3)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[3]}$ will have shape (3, 1)

Un-selected is correct

1 / 1

Key concepts on Deep Neural Networks

Quiz, 10 question whereas the previous question used a specific network, in the general case what is the dimension of W^{[l]}, the weight matrix associated with layer l?

- $W^{[l]}$ has shape $(n^{[l-1]}, n^{[l]})$
- $igcup W^{[l]}$ has shape $(n^{[l+1]},n^{[l]})$
- $W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correct

True

 $W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$

