- 1. V kompleksni ravnini skiciraj množice rešitev spodnjih neenačb:
 - (a) $|\bar{z} + 2 i| \le 2$,
 - (b) $\text{Re}(\bar{z} + 2 i) \le 2$,
 - (c) $\text{Im}(\bar{z} + 2 i) \le 2$.
- 2. Kaj naj velja za število $a \in \mathbb{R}$, da bo imela enačba $z^2 + 2z 3 + a = 0$ vsaj eno kompleksno rešitev?
- 3. Prevedi v polarno obliko, nato pa z uporabo Eulerjeve formule izračunaj
 - (a) $\left(-\frac{1}{2} + \frac{i}{2}\right)^8$,
 - (b) $(1+i\sqrt{3})^{20}$,
 - (c) $(1-i)^{20}$,
 - (d) $\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$.
- 4. Reši enačbo $z^4+4=0$, nato pa razstavi polinom z^4+4 na dva kvadratna faktorja z realnimi koeficienti.
- 5. Poišči naslednja števila:
 - (a) $\sqrt{1+i}$,
 - (b) $\sqrt[3]{-27+27i}$,
 - (c) $\sqrt[5]{-32i}$,
 - (d) $\sqrt[3]{-1+i\sqrt{3}}$.
- 6. Z območjem \boldsymbol{A} naredimo naslednjo transformacijo:
 - (a) prezrcalimo ga preko realne osi,
 - (b) zavrtimo ga okoli števila 0 za kot π ,
 - (c) premaknemo ga za 2 v desno in 3 navzdol.

Zapiši predpis $z\mapsto f(z)$, ki opravi to kompleksno transformacijo. Nariši tudi f(A) in ugotovi, kam se preslika število 1+i.