Automi e Linguaggi Formali

Parte 15 – Riducibilità

Sommario

1 Un altro problema indecidibile

2 Dimostrazioni per riduzione

3 Riducibilità mediante funzione

Il problema della fermata

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM che si ferma su input } w \}$

- Come possiamo dimostrare che *HALT_{TM}* è indecidibile?
- Possiamo provare con la diagonalizzazione
- Sappiamo che A_{TM} è indecidibile: possiamo usare questo fatto per semplificare la dimostrazione?

Sommario

1 Un altro problema indecidibile

2 Dimostrazioni per riduzione

3 Riducibilità mediante funzione

Riducibilità

- Una riduzione è un modo per trasformare un problema in un altro problema
- Una soluzione al secondo problema può essere usata per risolvere il primo problema

Riducibilità

- Una riduzione è un modo per trasformare un problema in un altro problema
- Una soluzione al secondo problema può essere usata per risolvere il primo problema
- Se A è riducibile a B, e B è decididibile, allora A è decidibile
- Se A è riducibile a B, e A è indecididibile, allora A è indecidibile

Dimostrazioni per riduzione

Sono usate per dimostrare che un problema è indecidibile:

- 1 Assumi che B sia decidibile
- 2 Riduci A al problema B
 - costruisci una TM che usa B per risolvere A
- 3 Se A è indecidibile, allora questa è una contraddizione
- 4 L'assunzione è sbagliata e B è indecidibile

Il problema del vuoto

$$E_{TM} = \{ \langle M \rangle \mid M \text{ è una TM tale che } L(M) = \emptyset \}$$

- lacksquare La dimostrazione è per contraddizione e riduzione di A_{TM}
- Chiamiamo R la TM che decide E_{TM}
- Useremo R per costruire la TM S che decide A_{TM}

Stabilire se un linguaggio è regolare

$REGULAR_{TM} = \{ \langle M \rangle \mid M \text{ è una TM tale che } L(M) \text{ è regolare} \}$

- La dimostrazione è per contraddizione e riduzione di *A_{TM}*
- Chiamiamo R la TM che decide REGULAR_{TM}
- Useremo R per costruire la TM S che decide A_{TM}
- Capire come possiamo usare *R* per implementare *S* è meno ovvio di prima

II problema dell'equivalenza

$$EQ_{TM} = \{ \langle M_1, M_2 \mid M_1, M_2 \text{ TM tali che } L(M_1) = L(M_2) \}$$

- La dimostrazione è per contraddizione e riduzione di *E_{TM}* (problema del vuoto)
- Chiamiamo R la TM che decide EQ_{TM}
- Useremo R per costruire la TM S che decide E_{TM}

Sommario

1 Un altro problema indecidibile

2 Dimostrazioni per riduzione

3 Riducibilità mediante funzione

Riducibilità mediante funzione

Riducibilità mediante funzione

Trasforma istanze del problema A in istanze del problema B mediante una funzione calcolabile

■ Chiarisce e formalizza la riducibilità

Funzioni calcolabili

Definition

 $f: \Sigma^* \mapsto \Sigma^*$ è una funzione calcolabile se esiste una TM M che su input w, termina la computazione avendo solo f(w) sul nastro

- Le operazioni aritmetiche sugli interi sono funzioni calcolabili
- Le trasformazioni di macchine di Turing possono essere funzioni calcolabili

Definizione

Definition

Un linguaggio A è riducibile mediante funzione al linguaggio B $(A \leq_m B)$, se esiste una funzione calcolabile $f: \Sigma^* \mapsto \Sigma^*$ tale che

per ogni $w : w \in A$ se e solo se $f(w) \in B$

f è la riduzione da A a B

Riducibilità mediante funzione

Se esiste una riduzione da A a B, possiamo risolvere A usando una soluzione per B:

Proprietà delle riduzioni

Theorem

Se $A \leq_m B$ e B è ??? , allora A è ???

Theorem

Se $A \leq_m B$ e A è ??? , allora B è ???

Il problema della fermata (2)

 $HALT_{TM} = \{ \langle M, w \rangle \mid M \text{ è una TM che si ferma su input } w \}$

- Possiamo dimostrare che $A_{TM} \leq_m HALT_{TM}$?
- Qual è l'input della funzione di riduzione?
- Qual è l'output?
- Quali proprietà devono rispettare?

$\overline{A_{TM}} \leq_m \overline{HALT_{TM}}$?

M accetta w se e solo se M' si ferma su w'

Il problema del vuoto (2)

$$E_{TM} = \{ \langle M \rangle \mid M \text{ è una TM tale che } L(M) = \emptyset \}$$

- Possiamo dimostrare che $A_{TM} \leq_m E_{TM}$?
- Qual è l'input della funzione di riduzione?
- Qual è l'output?
- Quali proprietà devono rispettare?

$\overline{A_{TM}} \leq_m \overline{E_{TM}}$?

M accetta w se e solo se $L(M') = \emptyset$

Proprietà delle riduzioni (2)

Theorem

Se $A \leq_m B$ e B è ??? , allora A è ???

Theorem

Se $A \leq_m B$ e A è ??? , allora B è ???

Il problema dell'equivalenza (2)

$$EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1, M_2 \text{ TM tali che } L(M_1) = L(M_2)\}$$

- Possiamo dimostrare che EQ_{TM} non è né Turing-riconoscibile né co-Turing-riconoscibile?
- Quali riduzioni possiamo usare per dimostrare che EQ_{TM} non è Turing-riconoscibile?
- Quali riduzioni possiamo usare per dimostrare che EQ_{TM} non è co-Turing-riconoscibile?