Cereal Box Hero

Comparing Model-Free Reinforcement Learning Approaches in Maze Solving

Goal: Solve a 9x9 Maze

9x9 maze images generated using Kruskal's algorithm

Maze Analysis and Representation

- Apply grayscale
- Maze represented as a reward matrix (Walls: -100, Path: -1, End: 10000)


```
-100 -100
                      -100 -100
-100
                                         -1 -100
      -1 -100 -100 -100 -100 -100
                                         -1 -100]
               -1 -100
                       -1 -100
                                         -1 -100]
    -100 -100
                       -1 -100
                                         -1 -100]
[-100
                                         -1 -100]
-100
      -1 -100 -100 -100
                       -1 -100
                                -1 -100 -100 -100]
               -1 -100
      -1 -100 -100 -100
                        -1 -100
                                -1 -100 -100 -100]
                                            -100
1000000
          -100]
```

Reinforcement Learning

Markov Decision Process

State: s

Action: A(s)

Policy: $\pi(s, a) = Pr(a = a | s = s)$

Reward: R(s), R(s, a), R(s, a, s')

Value Function

 Used to optimize policy to increase reward size or frequency

$$V_{\pi}(s) = \left(\sum_{t=0}^{n} \gamma^{t} r_{t} | s_{0} = s\right)$$
Discount rate Reward

Model-Free Reinforcement Learning

- No pre-built model of environment
- Measures and stores "quality" of a state/action pair based on a value function
- Better rewards → higher q-values
- Often based on either Temporal Difference (TD) or Gradient-Based Learning methods

	actions			
states a o	a,	a ₂	•••	
Q(s。,a。)	Q(s,a,)	Q(s,,a,)	• • •	
Q(s, ,a,)	Q(s,,a,)	Q(s, ,a ₂)	• • •	
Q(s₂,a₀)	Q(s₂,a₁)	Q(s₂,a₂)	• • •	
•	•	•	•	
	Q(s,,a,) Q(s,,a,)	a ₀ a ₁ Q (s ₀ ,a ₀) Q (s ₀ ,a ₁) Q (s ₁ ,a ₀) Q (s ₁ ,a ₁)		

Model-Free Reinforcement Learning

Q-Learning

- "Quality" Learning
- Can use ON, OFF, or HYBRID policy using an Epsilon-greedy function

SARSA

- "State Action Reward State Action"
- Always ON policy

Both methods based on TD-learning...

Temporal Difference Learning (TD-Learning) Function:

$$V^{new}(s_k) = V^{old}(s_k) + \alpha \left[r_k + \gamma V^{old}(s_{k+1}) - V^{old}(s_k)\right]$$
Learning rate

Q-Learning Function:

$$Q_{2}(s, a) = Q_{1}(s, a) + \alpha \left[(r_{k} + \gamma \max_{a} Q_{1}(s_{t+1}, a) - Q_{1}(s, a) \right]$$

Q-Learning Function:

$$Q_{2}(s, a) = Q_{1}(s, a) + \alpha \left[(r_{k} + \gamma \max_{a} Q_{1}(s_{t+1}, a) - Q_{1}(s, a) \right]$$

SARSA Function:

$$Q_{2}(s, a) = Q_{1}(s, a) + \alpha \left[(r_{k} + \gamma Q_{1}(s_{t+1}, a_{t+1}) - Q_{1}(s, a) \right]$$

Training Phase

- 1) Start at random location/state on the path
- 2) Move up, down, right, or left, depending on largest Q-value for given location
 - a) **Q-Learning**: 10% of the time, a random action is chosen
 - b) **SARSA**: Optimal action is always chosen
- 3) Update last Q-value depending on whether or not the move was on path
- 4) Repeat 1-3 if last action was on path

Continue until Q-tables converge upon an optimal solution!

Q-Learning

SARSA

Q-Learning

SARSA

Q-Learning

SARSA

Epsilon change not applicable

Q-Learning

SARSA

Notes on Model-Free Reinforcement Learning

- Q-learning is more widely applied than SARSA
- Deep reinforcement Q-learning
 - Gradient-based algorithms can be applied to continuous action spaces
 - Surpassed human expert control in video games
 - Frameworks are becoming more lightweight
- Some algorithms combine value-based and policy-based approaches
 - Actor-critic methods combine TD-learning and policy gradients