EE 209 Midterm #2

Problem 1: (25 pts)

- a) Find Thevenin Equivalent of the resistive circuit on the left side of a-b terminals.
- b) Using the result of part a), write a differential equation in terms of $V_c(t)$ characterizing the given circuit.
- c) Given that $V_c(t)$ at t=0 is 2 V, i.e. $V_c(0)=2$ V; find and plot $V_c(t)$ for $t \ge 0$.
- d) Given that $V_c(0)=2$ V; find and plot $V_{3\Omega}(t)$ for $t \ge 0$ using the result of part c).

Problem 2: (25 pts)

The phasor equivalent of an AC circuit is given above.

- a) Draw the circuit diagram for the time domain equivalent of the circuit if $\omega = 2$ rad/sec.
- b) Find the phasor voltage of V_{out} .
- c) Find the steady state value of $V_{out}(t)$ (take $\omega = 2$).
- d) Find the equivalent impedance seen from a-b terminals.

(Voltage and current values are in RMS)

- a) Find the complex power of each one of the 7 components in the circuit.
- b) Determine the real power of each source. State whether the source is supplying or absorbing power.
- c) Determine the power factor of each source. State whether it is lagging or leading.

The load shown by Z_L absorbs 60 kW at 0.8 pf lagging.

For the circuit shown above, a shunt capacitor is being planned to be installed in parallel with the load. (Assume that the load voltage stays at 220 V (rms) after the capacitor installation)

- a) Find the magnitude of current I, the power loss on 0.5 Ω resistor and the magnitude of voltage V_g , when there is no shunt capacitor in the system.
- **b)** Assume that the connected capacitor improves the power factor of the combined load (the capacitor and Z_L) to 0.95 lagging. Redo part a) when the capacitor is in-line.