Markov Decision Processes: Discrete Stochastic Dynamic Programming

Peng Lingwei

August 28, 2019

Contents

4	Cha	apter4: Finite-Horizon Markov Decision Processes	3		
	4.1	OPTIMALITY CRITERIA	3		
		4.1.1 Some Preliminaries	3		
		4.1.2 The Expected Total Reward Criterion	3		
		4.1.3 Optimal Policies	4		
	4.2	FINITE-HORIZON POLICY EVALUATION	4		
	4.3	OPTIMALITY EQUATIONS AND THE PRINCIPLE OF OP-			
		TIMALITY	5		
	4.4	OPTIMALITY OF DETERMINISTIC MARKOV POLICIES	7		
	4.5	BACKWARD INDUCTION	8		
	4.6	OPTIMALITY OF MONOTONE POLICIES	8		
		4.6.1 Structured Policies	8		
		4.6.2 Superadditive Functions	8		
	4.7	Optimality of Monotone Policies	8		
5	Infinite-Horizon Models: Foundations				
IJ	5.1	THE VALUE OF A POLICY	9 9		
	$5.1 \\ 5.2$	MARKOV POLICIES	9		
	0.2	WARROV I OLICIES	9		
6	Discounted Markov Decision Problems				
	6.1	POLECY EVALUATION (Stationary Policy)	11		
	6.2	OPTIMALITY EQUATIONS	11		
	6.3	VALUE ITERATION AND ITS VARIANTS	14		
		6.3.1 Rates of Convergence	14		
		6.3.2 Value Iteration	15		
6.4		POLICY ITERATION	16		
	6.5	MODIFIED POLICY ITERATION	18		
		6.5.1 Convergence Rates	20		
	6.6	SPANS, BOUNDS, STOPPING CRITERIA, AND RELATIVE			
		VALUE ITEARTION	20		
		6.6.1 The Span Seminorm	20		
		6.6.2 Bounds on the Value of a Discounted Markov Decision			
		Process			
		6.6.3 Stopping Criteria			
	6.7	ACTION ELIMINATION PROCEDURES	24		

	6.7.1	Identification of Nonoptimal Actions	24
	6.7.2	Action Elimination Procedures	24
	6.7.3	Modified Policy Iteration with Action Elimination and an	
		Improved Stopping Criterion	26
	6.7.4	Numerical Performance of Modified Policy Iteration with	
		Action Elimination	26
6.8	CONV	ERGENCE OF POLICIES TURNPIKESAND PLANNING	
	HORIZ	ZONS	26
6.9	LINE	AR PROGRAMMING	28
	6.9.1	Model Formulation	28
	6.9.2	Basic Solutions and Stationary Policies	28
	6.9.3	Optimal Solutions and Optimal Policies	30
6.10	Remai	n sections	30

Chapter4: Finite-Horizon Markov Decision Pro-4 cesses

OPTIMALITY CRITERIA 4.1

4.1.1Some Preliminaries

About MDP:

- 1. $\pi = (d_1, d_2, \dots, d_{N-1}) \in \Pi^{HR}$;
- 2. $h_N = (s_1, a_1, s_2, \dots, s_N)$
- 3. Rewards sequence: $\{r_1(s_1, a_1), r_2(s_2, a_2), \dots, r_{N-1}(s_{N-1}, a_{N-1}), r_N(s_N)\}$
 - $\pi \in \Pi^{HD}$, $\{r_1(X_1, d_1(H_1)), \dots, r_{N-1}(X_{N-1}, d_{N-1}(H_{N-1})), r_N(X_N)\}$
 - $\pi \in \Pi^{MD}$, $\{r_1(X_1, d_1(X_1)), \dots, r_{N-1}(X_{N-1}, d_{N-1}(X_{N-1})), r_N(X_N)\}$
- 4. $R = (R_1, R_2, \dots, R_N)$, where $R_t = r_t(X_t, Y_t)$, and $|R_t| \le M < \infty$.
- 5. $\mathbb{P}_{R}^{\pi}(r_1, r_2, \dots, r_N) = \mathbb{P}^{\pi}\left[\left\{(s_1, a_1, \dots, s_N) : (r(s_1, a_1), \dots, r_N(s_N)) = (r_1, \dots, r_N)\right\}\right]$

Definition:

1. The random vairable U is stochastically greater than V:

$$\forall t \in \mathbb{R}, \quad P(V > t) \le P(U > t).$$

2. Probability distribution P_2 is stochastically greater than P_1 if:

$$\forall t \in \mathbb{R}, \quad \int_{t}^{\infty} p_1(t)dt \le \int_{t}^{\infty} p_2(t)dt.$$

3. The random vector $\vec{U} = (U_1, \dots, U_n)$ is stochastically greater than the random vector $\vec{V} = (V_1, \dots, V_n)$:

$$\forall f \in \{f : \mathbb{R}^n \to \mathbb{R} | \vec{v} \leq \vec{u} \Rightarrow f(\vec{v}) \leq f(\vec{u})\}, \quad \mathbb{E}[f(\vec{V})] \leq \mathbb{E}[f(\vec{U})]$$

4.1.2 The Expected Total Reward Criterion

The expected total reward criterion:

1.
$$\pi \in \Pi^{HR}$$
: $v_N^{\pi}(s) = \mathbb{E}_S^{\pi} \left\{ \sum_{t=1}^{N-1} r_t(X_t, Y_t) + r_N(X_N) \right\}$.

2.
$$\pi \in \Pi^{HD}$$
: $v_N^{\pi}(s) = \mathbb{E}_S^{\pi} \left\{ \sum_{t=1}^{N-1} r_t(X_t, d_t(H_t)) + r_N(X_N) \right\}$.

3. Discounted reward:
$$\pi \in \Pi^{HR}$$
,
$$v_{N,\lambda}^{\pi}(s) = \mathbb{E}_S^{\pi} \left\{ \sum_{t=1}^{N-1} \lambda^{t-1} r_t(X_t, d_t(H_t)) + \lambda^{N-1} r_N(X_N) \right\}.$$

Taking the discount factor into account does not effect any theoretical results or algorithms in the finite-horizon case but might effect the decision maker's preference for policies.

4.1.3 Optimal Policies

Definition:

- 1. Optimal policy $\pi^*: \forall \pi \in \Pi^{HR}, v_N^{\pi^*} \succeq v_N^{\pi}$.
- 2. ϵ -optimal policy, $\pi^* : \forall \pi \in \Pi^{HR}, v_N^{\pi_{\epsilon}^*} + \epsilon \succeq v_N^{\pi}$.
- 3. Optimal value: $v_N^* = \sup_{\pi \in \Pi^{HR}} v_N^{\pi}$.
- 4. We can get $v_N^{\pi^*} = v_N^*$ and $v_N^{\pi_{\epsilon}^*} + \epsilon > v_N^*$.
- 5. Considering initial state distribution P_1 : $v_N^{\pi,P_1} = \sum_{s \in S} v_N^{\pi}(s) P_1\{X_1 = s\}$.

Markov decision problem = Markov decision process + Optimality criteria

4.2 FINITE-HORIZON POLICY EVALUATION

- 1. $\pi = (d_1, d_2, \dots, d_{N-1}) \in \Pi^{HR}$
- 2. Define: $u_t^{\pi}(h_t) = \mathbb{E}_{h_t}^{\pi} \left\{ \sum_{n=t}^{N-1} r_n(X_n, Y_n) + r_N(X_N) \right\}, (u_t^{\pi} : H_t \to \mathbb{R}).$ And we define $u_N^{\pi}(h_N) = r_N(s_N).$
- 3. Finite horizon-policy evaluation algorithm $(\pi \in \Pi^{HD})$:

$$\begin{split} \hat{u}_t^{\pi}(h_t) = & r_t(s_t, d_t(h_t)) + \sum_{s' \in S} p_t(s'|s_t, d_t(h_t)) \hat{u}_{t+1}^{\pi}(h_t, d_t(h_t), s'). \quad ((h_t, d_t(h_t), s') \in H_{t+1}) \\ = & r_t(s_t, d_t(h_t)) + \mathbb{E}_{h_t}^{\pi} \left\{ \hat{u}_{t+1}^{\pi}(h_t, d_t(h_t), X_{t+1}) \right\} \end{split}$$

Proof. Part proof with backward induction hypothesis $(u^\pi_{h_{t+1}} = \hat{u}^\pi_{h_{t+1}})$:

$$\begin{split} \hat{u}_{t}^{\pi}(h_{t}) = & r_{t}(s_{t}, d_{t}(h_{t})) + \mathbb{E}_{h_{t}}^{\pi} \left\{ u_{t+1}^{\pi}(h_{t}, d_{t}(h_{t}), X_{t+1}) \right\} \\ = & r_{t}(s_{t}, d_{t}(h_{t})) + \mathbb{E}_{h_{t}}^{\pi} \left\{ \mathbb{E}_{h_{t+1}}^{\pi} \left\{ \sum_{n=t+1}^{N-1} r_{n}(X_{n}, Y_{n}) + r_{N}(X_{N}) \right\} \right\} \\ = & r_{t}(s_{t}, d_{t}(h_{t})) + \mathbb{E}_{h_{t}}^{\pi} \left\{ \sum_{n=t+1}^{N-1} r_{n}(X_{n}, Y_{n}) + r_{N}(X_{N}) \right\} \\ = & \mathbb{E}_{h_{t}}^{\pi} \left\{ r_{t}(s_{t}, d_{t}(h_{t})) + \sum_{n=t+1}^{N-1} r_{n}(X_{n}, Y_{n}) + r_{N}(X_{N}) \right\} = u_{t}^{\pi}(h_{t}) \end{split}$$

4. Finite horizon-policy evaluation algorithm ($\pi \in \Pi^{HR}$):

$$\hat{u}_t^{\pi}(h_t) = \sum_{a \in A_{s_t}} q_{d_t(h_t)}(a) \left\{ r_t(s_t, a) + \sum_{s' \in S} p_t(s'|s_t, a) \hat{u}_{t+1}^{\pi}(h_t, a, s'). \right\}$$

5. Finite horizon-policy evaluation algorithm ($\pi \in \Pi^{MD}$):

$$\hat{u}_t^{\pi}(s_t) = r_t(s_t, d_t(s_t)) + \sum_{s' \in S} p_t(s'|s_t, d_t(s_t)) \hat{u}_{t+1}^{\pi}(s').$$

- 6. The computation complexity. There are K states and L actions, then:
 - If $\pi \in \Pi^{HD}$, then requiring $K \sum_{i=0}^{N-1} (KL)^i$ multiplications.
 - If $\pi \in \Pi^{MD}$, then requiring $(N-1)K^2L$ multiplications.

4.3 OPTIMALITY EQUATIONS AND THE PRINCIPLE OF OPTIMALITY

Optimality equations (Bellman equations or functional equations).

We start study this equation:

$$u_t^*(h_t) = \sup_{\pi \in \Pi^{HR}} u_t^{\pi}(h_t)$$

When minimizing costs instead of maximizing rewards, we sometimes refer to u_t^* as a **cost-to-go** function.

Definition 1. (Optimality equations).

$$\hat{u}_t(h_t) = \sup_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s' \in S} p_t(s'|s_t, a) \hat{u}_{t+1}(h_t, a, s') \right\}, \quad s.t. \ \hat{u}_N(h_N) = r_N(s_N).$$
(1)

If A_{s_t} is finite, it can be replaced by max. Then, $\forall h_t, \hat{u}_t(h_t) = u_t^*(h_t)$.

Proof. The proof is in two parts.

Let arbitrary $\pi' = (d'_1, d'_2, \dots, d'_{N-1}) \in \Pi^{HR}$.

Step1:

First, we have $u_N^{\pi'}(h_N) = \hat{u}_N(h_N) = u_N^*(h_N)$.

Then, because we take the operation sup, we reasonably have $\hat{u}_{N-1}(h_{N-1}) \ge u_{N-1}^*(h_{N-1})$.

Assuming that $\forall h_t \in H_t$, and t = n + 1, ..., N, we have $\hat{u}_t(h_t) \geq u_t^*(h_t)$.

$$\begin{split} \hat{u}_n(h_n) &= \sup_{a \in A_{s_n}} \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) \hat{u}_{n+1}(h_n, a, s') \right\} \\ &\geq \sup_{a \in A_{s_n}} \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^*(s_n, a, s') \right\} \\ &\geq \sum_{a \in A_{s_n}} q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^{\pi'}(s_n, a, s') \right\} \\ &\geq u_n^{\pi'}(h_n) \end{split}$$

Which means that, $\forall \pi \in \Pi^{HR}, \hat{u}_n(h_n) \geq u_n^{\pi}(h_n)$.

Step2:

 $\forall \epsilon$, we can construct $\pi' \in \Pi^{HR}$ for which: $u_n^{\pi'}(h_n) + (N-n)\epsilon \geq \hat{u}_n(h_n)$. To do this, construct a policy $\pi' = (d'_1, d'_2, \dots, d'_{N-1}) \in \Pi^{HR}$ by choosing $d_n(h_n)$ to satisfy

$$\sum_{a \in A_{S_t}} q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) \hat{u}_{n+1}(s_n, a, s') \right\} + \epsilon \ge \hat{u}_n(h_n).$$

First, we have $u_N^{\pi'}(h_N) = u_N(h_N)$. Then, we assume that $u_t^{\pi'}(h_t) + (N-t)\epsilon \ge u_t(h_t)$ for $t = n+1, \ldots, N$.

$$u_n^{\pi'}(h_n) = \sum_a q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^{\pi'}(s_n, a, s') \right\}$$

$$\geq \sum_a q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) \hat{u}_{n+1}(s_n, a, s') \right\} - (N - n - 1)\epsilon$$

$$\geq \hat{u}_n(h_n) - (N - n)\epsilon$$

Step3: $u_n^*(h_n) + (N-n)\epsilon \ge u_n^{\pi'}(h_n) + (N-n)\epsilon \ge u_n(h_n) \ge u_n^*(h_n)$. The lefting question is

$$\int_{a \in A_{s_n}} q_{d'_n(h_n)}(a) \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^{\pi'}(s_n, a, s') \right\} da$$

Theorem 1. Suppose $u_t^*, t = 1, ..., N$ are solutions of the optimality equation (max version). Then we can construct a corresponding policy $\pi^* = (d_1^*, d_2^*, ..., d_{N-1}^*) \in \Pi^{HD}$ satisfies

$$d_t^*(h_t) \in \arg\max_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s' \in S} p_t(s'|s_t, a) u_{t+1}^*(h_t, a, s') \right\}$$

for $t = 1, \ldots, N - 1$. Then

1.
$$u_t^{\pi^*}(h_t) = u_t^*(h_t), \quad h_t \in H_t.$$

2.
$$v_N^{\pi^*}(s) = v_N^*(s), \quad s \in S.$$

Proof. Clearly, $u_N^{\pi^*}(h_n) = u_N^*(h_n), h_n \in H_n$. We assume that $u_{n+1}^{\pi^*}(h_{n+1}) = u_{n+1}^*(h_{n+1}),$

$$u_n^*(h_n) = \max_{a \in A_{s_n}} \left\{ r_n(s_n, a) + \sum_{s' \in S} p_n(s'|s_n, a) u_{n+1}^*(h_n, a, s') \right\}$$

$$= r_n(s_n, d_n^*(h_n)) + \sum_{s' \in S} p_n(s'|s_n, d_n^*(h_n)) u_{n+1}^*(h_n, d_n^*(h_n), s')$$

$$= r_n(s_n, d_n^*(h_n)) + \sum_{s' \in S} p_n(s'|s_n, d_n^*(h_n)) u_{n+1}^{\pi^*}(h_n, d_n^*(h_n), s')$$

$$= u_n^{\pi^*}(h_n)$$

Theorem 2. Let $\epsilon > 0$ be arbitrary and suppose $u_t^*, t = 1, ..., N$ are solutions of the optimality equation (sup version, a is continuous). Then we can construct a corresponding policy $\pi^{\epsilon} = (d_1^{\epsilon}, d_2^{\epsilon}, ..., d_{N-1}^{\epsilon}) \in \Pi^{HD}$ satisfies

$$\left\{r_t(s_t, d_t^{\epsilon}) + \sum_{s' \in S} p_t(s'|s_t, d_t^{\epsilon}) u_{t+1}^*(h_t, d_t^{\epsilon}, s')\right\} + \frac{\epsilon}{N-1}$$

$$\geq \sup_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s' \in S} p_t(s'|s_t, a) u_{t+1}^*(h_t, a, s') \right\}$$

for $t = 1, \dots, N - 1$. Then

1.
$$u_t^{\pi^{\epsilon}}(h_t) + (N-t)\frac{\epsilon}{N-1} \ge u_t^*(h_t), \quad h_t \in H_t.$$

2.
$$v_N^{\pi^{\epsilon}}(s) + \epsilon = v_N^*(s), \quad s \in S.$$

The proof is analogous.

4.4 OPTIMALITY OF DETERMINISTIC MARKOV POLICIES

Theorem 3. Let $u_t^*(h_t)$ is the solution of the optimality equations, then:

- 1. $\forall t = 1, ..., N, u_t^*(h_t)$ depends on h_t only through s_t .
- 2. $\forall \epsilon > 0$, there exists an ϵ optimal policy which is deterministic and Markov.
- 3. if a is reachable, then there exists an optimal policy which is deterministic Markov

Proof. First, we have $\forall h_{N-1} \in H_{N-1}, a_{N-1} \in A_{S_{N-1}}, u_N^*(h_N) = u_N^*(s_N) = r_N(s_N)$. Then, we assume that $\forall n = t+1, \ldots, N, u_n^*(h_n) = u_n^*(s_n)$.

$$u_t^*(h_t) = \sup_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s' = S} p_t(s'|s_t, a) u_{t+1}^*(h_t, a, s') \right\}$$
$$= \sup_{a \in A_{s_t}} \left\{ r_t(s_t, a) + \sum_{s' = S} p_t(s'|s_t, a) u_{t+1}^*(s') \right\}$$
$$= u_t^*(s_t)$$

We have established that

$$v_N^*(s) = \sup_{\pi \in \Pi^{HR}} v_N^{\pi}(s) = \sup_{\pi \in \Pi^{MD}} v_N^{\pi}(s), \quad s \in S$$

Proposition 1. Assume S is finite or countable, and that

- 1. A_s is finite for each $s \in S$, or
- 2. As is compact; $p_t(s'|s,a), r_t(s,a)$ is continuous in a, and $|r_t(s,a)| \leq M < \infty$
- 3. A_s is compact; $r_t(s, a)$ is upper semicontinuous in a; and $|r_t(s, a)| \leq M < \infty$; $p_t(s'|s, a)$ is lower semi-continuous in a.

Then there exists a deterministic Markovian policy which is optimal. (Which means that sup is reachable.)

4.5 BACKWARD INDUCTION

The terms "backward induction" and "dynamic programming" are synonymous. Key assumption: optimal action is obtainable.

Definition 2. (The backward induction algorithm).

- 1. $\forall s \in S$, let $\hat{u}_N(s) = r_N(s)$.
- 2. t = N 1:1, we calculate that

$$\forall s \in S, \hat{u}_t(s) = \max_{a \in A_s} \left\{ r_t(s, a) + \sum_{s' \in S} p_t(s'|s, a) \hat{u}_{t+1}(s') \right\}$$

4.6 OPTIMALITY OF MONOTONE POLICIES

4.6.1 Structured Policies

4.6.2 Superadditive Functions

Definition 3. Let X and Y be partially ordered sets and $g: X \times Y \to \mathbb{R}$. We say g is superadditive if for $x^+ \geq x^-$ and $y^+ \geq y^-$, we have

$$g(x^+, y^+) + g(x^-, y^-) \ge g(x^+, y^-) + g(x^-, y^+)$$

If the reverse inequality above holds, g(x,y) is said to be **subadditive**. If superadditive function g is twice differentiable, we have $\frac{\partial^2 g(x,y)}{\partial x \partial u} \geq 0$.

Lemma 1. Let

$$f(x) = \max_{y} \left\{ y \in \arg \max_{y' \in Y} g(x, y') \right\}$$

If g is a superadditive function, then f(x) is monotone nondecreasing in x.

Proof. Let corresponding numbers: (x^+,y^+) and (x^-,y^-) , where $y^+=f(x^+)$ and $y^-=f(x^-)$. We assume that $x^+>x^-$, but $y^+\leq y^-$,then:

- 1. By the definition of f(x), we have $g(x^-, y^-) \ge g(x^-, y^+)$.
- 2. By the definition of supperadditive, we have $g(x^+, y^-) + g(x^-, y^+) \ge g(x^-, y^-) + g(x^+, y^+)$.
- 3. Then we have $g(x^+, y^-) \ge g(x^+, y^+)$, which contradicts with the definition of f.

4.7 Optimality of Monotone Policies

Leaving...

5 Infinite-Horizon Models: Foundations

- S is finite or countable.
- stationary policy: $d^{\infty} = (d, d, ...)$

5.1 THE VALUE OF A POLICY

1. Expected total reward of policy $\pi \in \Pi^{HR}$:

$$v^{\pi}(s) = \lim_{n \to \infty} \mathbb{E}_{S}^{\pi} \left\{ \sum_{t=1}^{N} r(X_{t}, Y_{t}) \right\} = \lim_{n \to \infty} v_{n+1}^{\pi}(s)$$
 (2)

If the limit exists and when interchanging the limits and expectation is valid, we have

$$v^{\pi}(s) = \mathbb{E}_S^{\pi} \left\{ \sum_{t=1}^{\infty} r(X_t, Y_t) \right\}$$
 (3)

2. Expected total discounted reward of policy $\pi \in \Pi^{HR}$:

$$v_{\lambda}^{\pi}(s) = \lim_{n \to \infty} \mathbb{E}_{S}^{\pi} \left\{ \sum_{t=1}^{n} \lambda^{t-1} r(X_{t}, Y_{t}) \right\}$$
 (4)

For $0 \le \lambda \le 1$, the limits exists when $\sup_{s \in S} \sup_{a \in A_s} |r(s,a)| = M < \infty$. When the limit exists and interchaining the limit and expectation are valid, we have

$$v_{\lambda}^{\pi}(s) = \mathbb{E}_{S}^{\pi} \left\{ \sum_{t=1}^{\infty} \lambda^{t-1} r(X_{t}, Y_{t}) \right\}$$
 (5)

3. Average reward or gain of policy $\pi \in \Pi^{HR}$:

$$g^{\pi}(s) = \lim_{n \to \infty} \frac{1}{n} \mathbb{E}_{S}^{\pi} \left\{ \sum_{t=1}^{n} r(X_{t}, Y_{t}) \right\} = \lim_{n \to \infty} \frac{1}{n} v_{n+1}^{\pi}(s)$$
 (6)

If the limit doesn't exist, we define:

$$g_-^\pi(s) = \liminf_{n \to \infty} \frac{1}{n} v_{n+1}^\pi(s), \quad g_+^\pi(s) = \limsup_{n \to \infty} \frac{1}{n} v_{n+1}^\pi(s).$$

5.2 MARKOV POLICIES

Theorem 4. $\forall \pi = (d_1, d_2, ...) \in \Pi^{HR}$. Then, for each $s_1 \in S_1$, $\exists \pi' = (d'_1, d'_2, ...) \in \Pi^{MR}$, satisfying

$$\forall t, \quad P^{\pi'} \{ X_t = s', Y_t = a | X_1 = s_1 \} = P^{\pi} \{ X_t = s', Y_t = a | X_1 = s_1 \}$$
 (7)

Proof. We construct the randomized Markov decision rule $d'_t \in \pi'$ by

$$q_{d'(s')}(a) = P^{\pi} \{ Y_t = a | X_t = s', X_1 = s_1 \}$$

Then,

$$P^{\pi'}\left\{Y_{t} = a | X_{t} = s'\right\} = P^{\pi'}\left\{Y_{t} = a | X_{t} = s', X_{1} = s_{1}\right\} = P^{\pi}\left\{Y_{t} = a | X_{t} = s', X_{1} = s_{1}\right\}$$

We use indunction method. Clearly the theorem holds with t=1. We assume that the theorem holds for $t=1,2,\ldots,n-1$. Then,

$$\begin{split} P^{\pi}\left\{X_{n} = s'|X_{1} = s_{1}\right\} &= \sum_{s \in S} \sum_{a \in A_{s}} P^{\pi}\left\{X_{n-1} = s, Y_{n-1} = a|X_{1} = s_{1}\right\} p(s'|s, a) \\ &= \sum_{s \in S} \sum_{a \in A_{s}} P^{\pi'}\left\{X_{n-1} = s, Y_{n-1} = a|X_{1} = s_{1}\right\} p(s'|s, a) \\ &= P^{\pi'}\left\{X_{n} = s'|X_{1} = s_{1}\right\} \\ P^{\pi'}\left\{X_{n} = s', Y_{n} = a|X_{1} = s_{1}\right\} &= P^{\pi'}\left\{Y_{n} = a|X_{n} = s'\right\} P^{\pi'}\left\{X_{n} = s'|X_{1} = s_{1}\right\} \\ &= P^{\pi}\left\{Y_{n} = a|X_{n} = s', X_{1} = s_{1}\right\} P^{\pi}\left\{X_{n} = s'|X_{1} = s_{1}\right\} \\ &= P^{\pi}\left\{X_{n} = s', Y_{n} = a|X_{1} = s_{1}\right\} \end{split}$$

Note that, in the above theorem, π' depends on the initial state X_1 . When the state at decision epoch 1 is chosen according to a probability distribution, then π' is depended on the distribution intead of $X_1 = s_1$.

Corollary 1. $\forall \mathcal{D}_1 \sim X_1, \pi \in \Pi^{HR}, \exists \pi' \in \Pi^{MR} \text{ for which}$

$$P^{\pi'} \{ X_t = s', Y_t = a \} = P^{\pi} \{ X_t = s', Y_t = a \}$$

Noting that

$$v_N^{\pi}(s) = \sum_{t=1}^{N-1} \sum_{s' \in S} \sum_{a \in A_{s'}} r(s', a) P^{\pi} \left\{ X_t = s', Y_t = a | X_1 = s_1 \right\}$$

$$+ \sum_{s' \in S} \sum_{a \in A_{s'}} r_N(s') P^{\pi} \left\{ X_N = s', Y_N = a | X_1 = s_1 \right\}$$

$$v_{\lambda}^{\pi}(s) = \sum_{t=1}^{\infty} \sum_{s' \in S} \sum_{a \in A_{s'}} \lambda^{t-1} r(s', a) P^{\pi} \left\{ X_t = s', Y_t = a | X_1 = s_1 \right\}$$
(8)

6 Discounted Markov Decision Problems

Assumptions in this chapter:

- 1. Stationary rewards and transition probabilities; r(s, a) and p(s'|s, a) do not vary from decision epoch to decision epoch.
- 2. Bounded rewards; $|r(s, a)| \leq M < \infty$.
- 3. Discount factor λ .
- 4. Discrete state spaces.

6.1 POLECY EVALUATION (Stationary Policy)

$$v_{\lambda}^*(s) = \sup_{\pi \in \Pi^{HR}} v_{\lambda}^{\pi}(s) = \sup_{\pi \in \Pi^{MR}} v_{\lambda}^{\pi}(s)$$

Let $\pi = (d_1, d_2, \ldots) \in \Pi^{MR}$, then

$$v_{\lambda}^{\pi}(s_1) = \mathbb{E}_{s_1}^{\pi} \left\{ \sum_{t=1}^{\infty} \lambda^{t-1} r(X_t, Y_t) \right\} = r_{d_1} + \lambda P_{d_1} v_{\lambda}^{\pi' = \{d_2, d_3, \dots\}}$$

Let $d^{\infty} = (d, d, ...)$, then $v_{\lambda}^{d^{\infty}}(s_1) = r_d(s_1) + \lambda P_d v_{\lambda}^{d^{\infty}}$. Let $\forall v \in V, L_d v = r_d + \lambda P_d v$, then $v_{\lambda}^{d^{\infty}} = L_d v_{\lambda}^{d^{\infty}}$, which means $v_{\lambda}^{d^{\infty}}$ is a fixed point of L_d in V.

Theorem 5. Suppose $0 \le \lambda < 1$. Then $\forall d^{\infty}$ with $d \in D^{MR}$, $\vec{v}_{\lambda}^{d^{\infty}}$ is the unique solution in V of $\vec{v} = r_d + \lambda P_d \vec{v}$, and $\vec{v}_{\lambda}^{d^{\infty}} = (I - \lambda P_d)^{-1} r_d$.

Proof. Key theorem: $||P_d|| = 1$ and $\sigma(\lambda P_d) \le ||\lambda P_d|| = \lambda \le 1$, then $(I - \lambda P_d)^{-1}$ exists.

$$\vec{v} = (I - \lambda P_d)^{-1} r_d = \sum_{t=1}^{\infty} \lambda^{t-1} P_d^{t-1} r_d = \vec{v}_{\lambda}^{d^{\infty}}$$

Lemma 2. 1. $\vec{u} \succ \vec{0} \Rightarrow (I - \lambda P_d)^{-1} \vec{u} \succ \vec{u} \succ \vec{0}$

2.
$$\vec{u} \succeq \vec{v} \Rightarrow (I - \lambda P_d)^{-1} \vec{u} \succeq (I - \lambda P_d)^{-1} \vec{v}$$

3.
$$\vec{u} \succeq \vec{0} \Rightarrow \vec{u}^T (I - \lambda P_d)^{-1} \succeq \vec{u}^T$$

6.2 OPTIMALITY EQUATIONS

Optimality equations or Bellamn equations (in discounted MDP):

$$v(s) = \sup_{a \in A_s} \left\{ r(s, a) + \sum_{s' \in S} \lambda p(s'|s, a) v(s') \right\}$$

Lemma 3. $\forall v \in V, 0 \leq \lambda < 1, \sup_{d \in D^{MD}} \{r_d + \lambda P_d v\} = \sup_{d \in D^{MR}} \{r_d + \lambda P_d v\}$

Proof. First, $D^{MD} \subset D^{MR}$, so $\sup_{d \in D^{MD}} \{r_d + \lambda P_d v\} \leq \sup_{d \in D^{MR}} \{r_d + \lambda P_d v\}$. Second, $\forall d^{MR} \in D^{MR}$,

$$\sum_{a \in A_s} q_{d^{MR}}(a) \left[r(s,a) + \sum_{s' \in S} \lambda p(s'|s,a) v(s') \right] \leq \sup_{a \in A_s} \left\{ r(s,a) + \sum_{s' \in S} \lambda p(s'|s,a) v(s') \right\}$$

which means,

$$r_{d^{MR}} + \lambda P_{d^{MR}}v \preceq \sup_{d \in D^{MD}} \left\{ r_d + \lambda P_d v \right\} \Rightarrow \sup_{d \in D^{MR}} \left\{ r_d + \lambda P_d v \right\} \preceq \sup_{d \in D^{MD}} \left\{ r_d + \lambda P_d v \right\}$$

Definition 4. (Bellman operator).

$$\forall v \in V, \mathcal{L}v = \sup_{d \in D^{MD}} \left\{ r_d + \lambda P_d v \right\} \tag{9}$$

If the supremum is attained for all $v \in V$, we define L by

$$\forall v \in V, Lv = \max_{d \in D^{MD}} \{ r_d + \lambda P_d v \}$$
 (10)

Theorem 6. Suppose there exists a $v \in V$ for which

1.
$$v \succeq \mathcal{L}v \Rightarrow v \succeq v_{\lambda}^*$$
;

2.
$$v \leq \mathcal{L}v \Rightarrow v \leq v_{\lambda}^*$$
;

3.
$$v = \mathcal{L}v \Rightarrow v$$
 is unique and $v = v_{\lambda}^*$.

Proof. First, we proof 1. $\forall \pi = (d_1, d_2, \ldots) \in \Pi^{MR}$,

$$v \succeq \sup_{d \in D^{MD}} \left\{ r_d + \lambda P_d v \right\} = \sup_{d \in D^{MR}} \left\{ r_d + \lambda P_d v \right\}$$
$$\succeq r_{d_1} + \lambda P_{d_1} v = \sum_{t=1}^n \left(\lambda P^{\pi} \right)^{k-1} r_{d_t} + \left(\lambda P^{\pi} \right)^n v$$
$$v - v_{\lambda}^{\pi} \succeq (\lambda P^{\pi})^n v - \sum_{t=n+1}^{\infty} \left(\lambda P^{\pi} \right)^{t-1} r_{d_t}$$
$$\succeq -\lambda^n \|v\|_{\infty} \cdot \vec{e} - \lambda^n \cdot \frac{M}{1-\lambda} \cdot \vec{e}$$

Because r is bounded, so $\forall \epsilon, \exists N$, when $n \geq N$, we have

$$v \succeq v_{\lambda}^{\pi} - \epsilon \cdot \vec{e}$$

$$v \succeq \sup_{\pi \in \Pi^{MR}} v_{\lambda}^{\pi} = \sup_{\pi \in \Pi^{HR}} v_{\lambda}^{\pi} = v_{\lambda}^{*}$$

Second, we proof 2.

If $v \leq \mathcal{L}v$, by definition of sup, we have

$$\forall \epsilon, \exists d \in D^{MD}, v \leq r_d + \lambda P_d v + \epsilon \cdot \vec{e}$$

$$\Rightarrow v \leq (I - \lambda P_d)^{-1} (r_d + \epsilon \cdot \vec{e}) = v_{\lambda}^{\pi_d} + (1 - \lambda)^{-1} \epsilon \cdot \vec{e} \leq \sup_{\pi \in \Pi^{HR}} v_{\lambda}^{\pi} + (1 - \lambda)^{-1} \epsilon \cdot \vec{e}$$

The following norm is supremum norm.

Theorem 7. (Banach Fixed-Point Theorem). Suppose U is a Banach space and $T: U \to U$ is a contraction mappint with contraction parameter λ . Then

- 1. there exists a unique v^* in U such that $Tv^* = v^*$;
- 2. $\forall v^0 \in U, \lim_{n \to \infty} v^n = \lim_{n \to \infty} T^n v^0 = v^*.$

Proof.

$$\forall m \ge 1, \quad \|v^{n+m} - v^n\| \le \sum_{k=0}^{m-1} \|v^{n+k+1} - v^{n+k}\| = \sum_{k=0}^{m-1} \|T^{n+k}v^1 - T^{n+k}v^0\|$$
$$\le \sum_{k=0}^{m-1} \lambda^{n+k} \|v^1 - v^0\| = \frac{\lambda^n (1 - \lambda^m)}{(1 - \lambda)} \|v^1 - v^0\|$$

It follows that $\{v^n\}$ is a Cauchy sequence. From the completeness of U, it follows that $\{v^n\}$ has a limit $v^{\infty} \in U$.

$$\begin{split} 0 \leq & \|Tv^{\infty} - v^{\infty}\| \leq \|Tv^{\infty} - v^n\| + \|v^n - v^{\infty}\| \\ = & \|Tv^{\infty} - Tv^{n-1}\| + \|v^n - v^{\infty}\| \leq \lambda \|v^{\infty} - v^{n-1}\| + \|v^n - v^{\infty}\| \to 0 \end{split}$$

which means that v^{∞} is a fixed point of T. Let u^* and v^* are fixed points of T, then

$$||u^* - v^*|| = ||Tu^* - Tv^*|| \le \lambda ||u^* - v^*|| \Rightarrow u^* = v^*$$

Lemma 4. Suppose that $0 \le \lambda < 1$; then L and \mathcal{L} are contraction mappings on V.

Proof. Let $u, v \in V$, corresponding optimal actions are a_u, a_v , fix $s \in S$, without loss of generality, let $Lu(s) \geq Lv(s)$.

$$0 \le Lu(s) - Lv(s) = r(s, a_u) + \sum_{s' \in S} \lambda p(s'|s, a_u)u(s') - Lv(s)$$

$$\le \sum_{s' \in S} \lambda p(s'|s, a_u)(u(s') - v(s')) \le \lambda ||u - v||_{\infty}$$

 $\forall s \in S$, we have $|Lu(s) - Lv(s)| \le \lambda ||u - v||_{\infty}$ The proof of \mathcal{L} is analogue.

Theorem 8. Suppose $0 \le \lambda < 1$, S is finite or countable, and r(s, a) is bounded. If V is a complete normed linear space, there exists a unique $v^* \in V$ satisfying $Lv^* = v^*$, and $v^* = v^*_{\lambda}$.

Definition 5. For $v \in V$, call a decision rule $d_v \in D^{MD}$ v-improving if

$$d_v \in \arg\max_{d \in D^{MD}} \left\{ r_d + \lambda P_d v \right\} \Leftrightarrow L_{d_v} v = L v$$

Clarify:

- 1. $v_{\lambda}^{d_{v}^{\infty}}$ needs not be greater than or equal to v.
- 2. Even if $r_{d_v} + \lambda P_{d_v} v \succeq v$, $v_{\lambda}^{d_v^{\infty}}$ exceeds v in some component only if $r_{d_v}(s') + \lambda P_{d_v} v(s') > v(s')$.
- 3. d^* , v^*_{λ} -improving, is called conserving decision rule.

Theorem 9. If supremum is attained, then $\exists d \in D^{MD}, d^{\infty} \in \Pi^{MD}$, satisfies $v_{\lambda}^{d^{\infty}} = v_{\lambda}^{*}$. So we can calculate that $v_{\lambda}^{*} = \sup_{d \in D^{MD}} v_{\lambda}^{d^{\infty}}$.

Proof.

$$v_{\lambda}^* = L v_{\lambda}^* = L_{d_{v_{\lambda}^*}} v_{\lambda}^* \Rightarrow v_{\lambda}^* = v_{\lambda}^{d_{v_{\lambda}^*}^{\infty}}$$

Theorem 10. Assume S is discrete, and either

- 1. A_s is finite for each $s \in S$, or
- 2. A_s is compact, r(s,a) is continuous in a for each $s \in S$, and for each $s' \in S$ and $s \in S$, p(s'|s,a) is continuous in a, or
- 3. A_s is compact, r(s, a) is upper semicontinuous in a for each $s \in S$, and for each $s' \in S$ and $s \in S$, p(s'|s, a) is lower semicontinuous in a.

Then there exists an optimal deterministic stationary policy.

If the supremum is not attained in $\mathcal{L}v$, then optimal policies need not exist.

Theorem 11. Support S is finite or countable, then for all $\epsilon > 0$ there exists an ϵ – optimal deterministic stationary policy.

Proof. Take d_{ϵ} satisfying

$$r_{d_{\epsilon}} + \lambda P_{d_{\epsilon}} v_{\lambda}^* \succeq \sup_{d \in D^{MD}} \left\{ r_d + \lambda P_d v_{\lambda}^* \right\} - (1 - \lambda) \epsilon \vec{1} = v_{\lambda}^* - (1 - \lambda) \epsilon \vec{1}$$

$$v_{\lambda}^{d_{\epsilon}^{\infty}} = (I - \lambda P_{d_{\epsilon}})^{-1} r_{d_{\epsilon}} \succeq v_{\lambda}^* - (1 - \lambda) \epsilon (I - \lambda P_{d_{\epsilon}})^{-1} \vec{1} = v_{\lambda}^* - \epsilon \vec{1}$$

6.3 VALUE ITERATION AND ITS VARIANTS

6.3.1 Rates of Convergence

Rate of Convergence

- 1. linear convergence or quadratic convergence: $||y_{n+1} y^*|| \le K||y_n y^*||^{\alpha}$;
- 2. superlinearly convergence: $\limsup_{n\to\infty} \frac{\|y_{n+1}-y^*\|}{\|y_n-y^*\|}=0;$
- 3. asymptotic average rate of convergence $\limsup_{n\to\infty} \left[\frac{\|y_n-y^*\|}{\|y_0-y^*\|}\right]^{1/n}$

Algorithm 1 Value Iteration Algorithm

```
\begin{aligned} & \textbf{Require: } \epsilon > 0 \\ & \textbf{Ensure: } v^0 \in V \\ & \textbf{for } n = 1, 2, \dots \textbf{do} \\ & \forall s \in S, v^{n+1}(s) = \max_{a \in A_s} \left\{ r(s, a) + \sum_{s' \in S} \lambda p(s'|s, a) v^n(s') \right\} \\ & \textbf{if } \left\| v^{n+1} - v^n \right\| < \epsilon (1 - \lambda)/(2\lambda) \textbf{ then} \\ & \text{break.} \\ & \textbf{end if.} \\ & \textbf{end for.} \\ & \textbf{return } d_{\epsilon}(s) \in \arg\max_{a \in A_s} \left\{ r(s, a) + \sum_{s' \in S} \lambda p(s'|s, a) v^{n+1}(s') \right\} \end{aligned}
```

6.3.2 Value Iteration

Theorem 12. $(d_{\epsilon})^{\infty}$ is ϵ – optimal.

Proof.

$$||v^{n+1} - v^n|| = ||Lv^n - Lv^{n-1}|| \le \lambda^{n-1}||v^1 - v^0||$$

so

$$\exists N, \forall n > N \ge 1 + \log\left(\frac{\epsilon(1-\lambda)}{\lambda^2 \|v^1 - v^0\|}\right), \|v^{n+1} - v^n\| < \epsilon(1-\lambda)/(2\lambda).$$

$$\begin{split} \|v^{d^{\infty}_{\epsilon}}-v^{n+1}\| = & \|L_{d_{\epsilon}}v^{d^{\infty}_{\epsilon}}-v^{n+1}\| \\ \leq & \|L_{d_{\epsilon}}v^{d^{\infty}_{\epsilon}}-L_{d_{\epsilon}}v^{n+1}\| + \|Lv^{n+1}-Lv^{n}\| \\ \leq & \lambda\|v^{d^{\infty}_{\epsilon}}-v^{n+1}\| + \lambda\|v^{n+1}-v^{n}\| \\ \|v^{d^{\infty}_{\epsilon}}-v^{n+1}\| \leq & \frac{\lambda}{1-\lambda}\|v^{n+1}-v^{n}\|. \\ & Analogously, \|v^{n+1}-v^{*}\| \leq & \frac{\lambda}{1-\lambda}\|v^{n+1}-v^{n}\|. \\ & \|v^{d^{\infty}_{\epsilon}}-v^{*}\| \leq & \|v^{d^{\infty}_{\epsilon}}-v^{n+1}\| + \|v^{n+1}-v^{*}\| \leq \epsilon \end{split}$$

Theorem 13. (monotone). If $u \succeq v$, then $Lu \succeq Lv$.

Proof.

$$\begin{split} Lu - Lv &= \max_{d \in D^{MD}} (r_d + \lambda P_d u) - \max_{d \in D^{MD}} (r_d + \lambda P_d v) \\ &= \max_{d \in D^{MD}} (r_d + \lambda P_d u) - (r_{d_v} + \lambda P_{d_v} v) \\ &\succeq (r_{d_v} + \lambda P_{d_v} u) - (r_{d_v} + \lambda P_{d_v} v) \\ &= \lambda P_{d_v} (u - v) \succeq \vec{0} \end{split}$$

Therefore, if $Lv^0 \succeq (\preceq)v^0$, then value iteration converges monotonically to v^* .

Theorem 14. (Convergence of value iteration).

1.
$$||v^{n+1} - v_{\lambda}^*|| = ||Lv^n - Lv_{\lambda}^*|| \le \lambda ||v^n - v_{\lambda}^*||$$

$$2. \ \frac{\|v^n-v_\lambda^*\|}{\|v^0-v_\lambda^*\|} \leq \lambda^n \Rightarrow \limsup_{n \to \infty} \left[\frac{\|v^n-v_\lambda^*\|}{\|v^0-v_\lambda^*\|}\right]^{1/n} \leq \lambda$$

3.
$$||v^n - v_{\lambda}^*|| \le \frac{\lambda^n}{1 - \lambda} ||\lambda^1 - \lambda^0||$$

If we want change inequality into equality, we need $v^0 \succeq (\preceq)v^*$ and $v^1 - v^* = \lambda(v^0 - v^*)$

6.4 POLICY ITERATION

Algorithm 2 Policy Iteration Algorithm

```
Select an arbitrary rule d_0 \in D^{MD}.

for n=1,2,\ldots do

Policy evaluation: v^n=(I-\lambda P_{d_n})^{-1}r_{d_n}
Policy improvement: d_{n+1} \in \arg\max_{d \in D^{MD}} \{r_d + \lambda P_d v^n\}
if d_{n+1} = d_n then
break.
end if.
end for.
return d_{n+1}
```

Proposition 2. In policy iteration algorithm $v^{n+1} \geq v^n$.

Proof.

$$r_{d_{n+1}} + \lambda P_{d_{n+1}} v^n \ge r_{d_n} + \lambda P_{d_n} v^n = v^n$$
$$v^{n+1} = (I - \lambda P_{d_{n+1}})^{-1} r_{d_{n+1}} \ge v^n$$

If states and actions are finite, the algorithm can terminate in finite number of iterations.

Definition 6. Operator $B: V \to V$,

$$Bv = \max_{d \in D^{MD}} \left\{ r_d + (\lambda P_d - I)v \right\} = Lv - v.$$

Proposition 3. $\forall u, v \in V \text{ and } d_v \in D_v.$

$$Bu \ge Bv + (\lambda P_{d_v} - I)(u - v) \Rightarrow (\lambda P_{d_v} - I) \in \partial_v(Bv)$$

Proof.

$$Bu - Bv = \max_{d \in D^{MD}} \{ r_d + (\lambda P_d - I)u \} - \max_{d \in D^{MD}} \{ r_d + (\lambda P_d - I)v \}$$

$$\succeq \{ r_{d_v} + (\lambda P_{d_v} - I)u \} - \{ r_{d_v} + (\lambda P_{d_v} - I)v \}$$

$$\succeq (\lambda P_{d_v} - I)(u - v)$$

Proposition 4. Suppose the sequence $\{v^n\}$ is obtained from the policy iteration algorithm. Then, for any $d_{v^n} \in D_{v^n}$.

$$v^{n+1} = v^n - (\lambda P_{d_{v^n}} - I)^{-1} B v^n$$

Proof.

$$\begin{aligned} v^{n+1} = & (I - \lambda P_{d_{v^n}})^{-1} r_{d_{v^n}} - v^n + v^n \\ = & v^n - (\lambda P_{d_{v^n}} - I)^{-1} \left[r_{d_{v^n}} + (\lambda P_{d_{v^n}} - I) v^n \right] \\ = & v^n - (\lambda P_{d_{v^n}} - I)^{-1} B v^n \end{aligned}$$

Definition 7. $V_B = \{v \in V; Bv \ge 0\} \ (v \in V_B \Rightarrow v \le v^*).$

Definition 8. $Zv = v - (\lambda P_{d_v} - I)^{-1}Bv$.

Lemma 5. Let $v \in V_B, d_v \in D_v, v \succeq u$. Then $Zv \succeq Lu, Zv \in V_B, Zv \succeq v$.

Proof.

$$Zv = v - (\lambda P_{d_v} - I)^{-1} Bv \succeq v + Bv = Lv \succeq Lu$$
$$B(Zv) \succeq Bv + (\lambda P_{d_v} - I)(Zv - v) = \vec{0}$$
$$Zv = v + (I - \lambda P_{d_v})^{-1} Bv \succeq v$$

Theorem 15. (Policy iteration converges monotonically).

Proof. Let $u^k = L^k v^0$ and $v^k = Z^k v_0$. We inductively show that $v^k \in V_B$ and $u^k \le v^k \le v^*_{\lambda}$.

First, if k = 0, then $u^0 = v^0$ and

$$Bv^0 \succeq r_{d_0} + (\lambda P_{d_0} - I)v^0 = \vec{0},$$

therefore, $v^0 \in V_B$ and $v^0 \leq v_{\lambda}^*$. Above all, $k = 0, u^0 \leq v^0 \leq v_{\lambda}^*$. Then, we assume $k \leq n, u^k \leq v^k \leq v_{\lambda}^*$ and $Bv^k \succeq \vec{0}$.

$$v^{n+1} = Zv^n \in V_B \Rightarrow v^{n+1} \le v_{\lambda}^*.$$
$$v^k \succeq u^k, v^{n+1} = Zv^n \succeq Lu^n = u^{n+1}.$$

Theorem 16. (Convergence Rate). If policy iteration's sequence $\{v^n\}$ satisfies $\|P_{d_{v^n}} - P_{d_{v^*_{\lambda}}}\| \le K\|v^n - v^*_{\lambda}\|$ (for some K), then

$$||v^{n+1} - v_{\lambda}^*|| \le \frac{K\lambda}{1-\lambda} ||v^n - v_{\lambda}^*||^2$$

Proof. Let $U_n = \lambda P_{d_{v^n}-I}$ and $U_* = \lambda P_{d_{v^*}} - I$.then

$$Bv^{n} \succeq Bv_{\lambda}^{*} + U_{*}(v^{n} - v_{\lambda}^{*}) = U_{*}(v^{n} - v_{\lambda}^{*}) \Rightarrow U_{n}^{-1}Bv^{n} \preceq U_{n}^{-1}U_{*}(v^{n} - v_{\lambda}^{*})$$

$$0 \preceq v_{\lambda}^{*} - v^{n+1} = v_{\lambda}^{*} - v^{n} + U_{n}^{-1}Bv^{n} \preceq U_{n}^{-1}(U_{n} - U_{*})(v_{\lambda}^{*} - v^{n})$$

$$\|v_{\lambda}^{*} - v^{n+1}\| \preceq \|U_{n}^{-1}\| \|U_{n} - U_{*}\| \|v_{\lambda}^{*} - v^{n}\| \preceq \frac{\lambda}{1 - \lambda} \|P_{d_{v^{n}}} - P_{d_{v_{\lambda}^{*}}}\| \|v_{\lambda}^{*} - v^{n}\|$$

Consider that $||P_{d_{v^n}} - P_{d_{v_{\lambda}^*}}|| \le K||v^n - v_{\lambda}^*||$ is unsatisfying, for the unkown v_{λ}^* , we can change into a general condition:

$$\forall u, v \in V, ||P_{d_v} - P_{d_u}|| \le K||v - u||$$

$$\forall u, v \in V, ||P_{d_v} - P_{d_{v_{\lambda}^*}}|| \le K||v - v_{\lambda}^*||$$

6.5 MODIFIED POLICY ITERATION

Algorithm 3 Modified Policy Iteration Algorithm (MPI)

```
Require: \epsilon > 0, \{m_0, m_2, \ldots\}.

Ensure: v^0 \in V_B.

for n = 0, 1, \ldots do

d_{n+1} \in \arg\max_{d \in D} \{r_d + \lambda P_d v^n\}
u_n^0 = r_{d_{n+1}} + \lambda P_{d_{n+1}} v^n
if \|u_n^0 - v^n\| < \epsilon(1 - \lambda)/(2\lambda) then break
end if.

for k = 0, 1, \ldots, m_n do

u_n^{k+1} = r_{d_{n+1}} + \lambda P_{d_{n+1}} u_n^k = L_{d_{n+1}} u_n^k
end for.

(v^{n+1} = L_{d_{n+1}}^{m_n+1} v^n)
end for.
return d_{n+1}
```

In policy iteration, we have

$$v^{n+1} = v^n - (\lambda P_{d_{v^n}} - I)^{-1} B v^n = v^n + \sum_{k=0}^{\infty} (\lambda P_{d_{n+1}}^k B v^n)$$

Proposition 5. Modified policy iteration algorithm equals:

$$v^{n+1} = v^n - (\lambda P_{d_{v^n}} - I)^{-1} B v^n = v^n + \sum_{k=0}^{m_n} (\lambda P_{d_{n+1}}^k) B v^n$$

Proof.

$$v^{n+1} = v^{n} + \sum_{k=0}^{m_{n}} (\lambda P_{d_{n+1}})^{k} \left[r_{d_{n+1}} + \lambda P_{d_{n+1}} v^{n} - v^{n} \right]$$

$$= r_{d_{n+1}} + \lambda P_{d_{n+1}} r_{d_{n+1}} + \dots + (\lambda P_{d_{n+1}})^{m_{n}} r_{d_{n+1}} + (\lambda P_{d_{n+1}})^{m_{n}+1} v^{n}$$

$$= (L_{d_{n+1}})^{m_{n}+1} v^{n}$$

The preceeding proposition shows that order 0 modified policy iteration equals to value iteration, and order ∞ modified policy iteration equals to policy iteration.

The graph of algorithm: Bv lines and 45-degree lines.

Denote the operator $U^m: V \to V$,

$$U^{m}v = \max_{d \in D} \sum_{k=0}^{m} (\lambda P_{d})^{k} r_{d} + (\lambda P_{d})^{m+1} v.$$

Proposition:

- 1. $||U^m u U^m v|| \le \lambda^{m+1} ||u v||$;
- 2. The sequence $w^{n+1} = U^m w^n$ converges in norm to v_{λ}^* ;

Proof. Assume w^* is the fixed point of U^m , and let $d^* \in D^{MD}$ be the $v_{\lambda}^* - improving$ decision rule.

$$v_{\lambda}^{*} = L^{m} v_{\lambda}^{*} = \sum_{k=0}^{m} (\lambda P_{d^{*}})^{k} r_{d^{*}} + (\lambda P_{d^{*}})^{m+1} v_{\lambda}^{*} \leq U^{m} v_{\lambda}^{*} \leq (U^{m})^{n} v_{\lambda}^{*} \to w^{*},$$
$$w^{*} = U^{m} w^{*} \leq L^{m} w^{*} \to v_{\lambda}^{*}$$

3. v_{λ}^* is the unique fixed point of U^m ;

4. $||w^{n+1} - v_{\lambda}^*|| \le \lambda^{m+1} ||w^n - v_{\lambda}^*||$

Denote the MPI operator $W^m: V \to V$,

$$W^m v = v + \sum_{k=0}^m (\lambda P_{d_v})^k B v$$

Lemma 6. For $u \in V$ and $v \in V$ satisfying $u \succeq v \Rightarrow U^m u \succeq W^m v$. Furthermore, if $u \in V_B$, then $W^m u \succeq U^0 v = Lv$.

Proof. Let $d_v \in D$ is v-improving and $d_u \in D$ is u-improving. Then

$$U^{m}u - W^{m}v \succeq \sum_{k=0}^{m} (\lambda P_{d_{v}})^{k} r_{d_{v}} + (\lambda P_{d_{v}})^{m+1} u - \sum_{k=0}^{m} (\lambda P_{d_{v}})^{k} r_{d_{v}} - (\lambda P_{d_{v}})^{m+1} v$$
$$= (\lambda P_{d_{v}})^{m+1} (u - v) \succeq 0.$$

For $u \in V_B$,

$$W^m u = u + \sum_{k=0}^m (\lambda P_{d_u})^k Bu \succeq u + Bu = Lu \succeq r_{d_v} + \lambda P_{d_v} u \succeq Lv$$

Lemma 7. $u \in V_B \Rightarrow w = W^m u \in V_B$.

Proof.

$$Bw \succeq Bu + (\lambda P_{d_u} - I)(w - u) = Bu + (\lambda P_{d_u} - I) \sum_{k=0}^{m} (\lambda P_{d_u})^k Bu$$
$$= (\lambda P_{d_u})^{m+1} Bu \succeq \vec{0}$$

Theorem 17. (The monotonical convergence of MPI).

Proof. Define three sequence $\{v^n\}, \{y^n\}, \{w^n\}$ which corresponds to W^{m_n}, L , and U^{m_n} , and $v^0 = y^0 = w^0 \in V_B$. We will show that $v^n \in V_B, v^{n+1} \succeq v^n$, and $w^n \succeq v^n \succeq y^n$.

According preceding lemma, $v^0 \in V_B \Rightarrow v^n \in V_B$. We can get monotonous by $v^{n+1} = v^n + \sum_{m=0}^{m_n} (\lambda P_{d_n})^m B v^n \succeq v^n$.

By condunction, we assum $w^n \succeq v^n \succeq y^n$ the preceding lemma also proofs that $U^{m_n}w^n \succeq W^{m_n}v^n \succeq Ly^n$.

Noting: $W^{m_n+k}v^n$ can be small than $W^{m_n}v^n$

6.5.1Convergence Rates

Theorem 18. Suppose $v^0 \in V_B$ and $\{v^n\}$ is generated by modified policy iteration, d_n is a v^n -improving decision rule, and d^* is a v^*_{λ} -improving decision rule.

$$||v^{n+1} - v_{\lambda}^*|| \le \left(\frac{\lambda(1 - \lambda^{m_n})}{1 - \lambda}||P_{d_n} - P_{d^*}|| + \lambda^{m_n + 1}\right)||v^n - v_{\lambda}^*||.$$
 (11)

Proof.

$$0 \le v_{\lambda}^* - v^{n+1} = v_{\lambda}^* - v^n - \sum_{k=0}^{m_n} (\lambda P_{d_n})^k B v^n$$

$$\le v_{\lambda}^* - v^n + \sum_{k=0}^{m_n} (\lambda P_{d_n})^k (I - \lambda P_{d^*}) (v^n - v_{\lambda}^*)$$

$$= \lambda (P_{d_n} - P_{d^*}) \sum_{l=0}^{m_n - 1} (\lambda P_{d_n})^k (v^n - v_{\lambda}^*) - \lambda^{m_n + 1} P_{d_n}^{m_n} P_{d^*} (v^n - v_{\lambda}^*)$$

Taking norms yields the result.

If $\lim_{n\to\infty} \|P_{d_n} - P_{d^*}\| = 0$, then $\|v^{n+1} - v_{\lambda}^*\| \le (\lambda^{m_n+1} + \epsilon) \|v^n - v_{\lambda}^*\|$. If $m_n \to \infty$, $\lim \sup_{n\to\infty} \frac{\|v^{n+1} - v_{\lambda}^*\|}{\|v^n - v_{\lambda}^*\|} = 0$.

SPANS, BOUNDS, STOPPING CRITERIA, AND REL-ATIVE VALUE ITEARTION

The Span Seminorm 6.6.1

- 1. $\Lambda(v) = \min_{s \in S} v(s), \Upsilon(v) = \max_{s \in S} v(s);$
- 2. $sp(v) = \max_{s \in S} v(s) \min_{s \in S} v(s) = \Upsilon(v) \Lambda(v)$
 - $\forall v \in V, sp(v) \geq 0$;
 - $\forall v, u \in V, sp(u+v) \le sp(u) + sp(v);$
 - $\forall k \in \mathbb{R}, sp(kv) = |k|sp(v);$
 - $\forall k \in \mathbb{R}, sp(v + ke) = sp(v);$
 - sp(v) = sp(-v);

•
$$sp(v) \le 2||v||_{\infty} \le 2||v||_2 \le 2||v||_1$$

Proposition 6. Let $v \in V, d \in D$. Then $sp(P_dv) \leq \gamma_d sp(v)$, $\gamma_d = \max_{s,s' \in S \times S} \sum_{j \in S} \max \{0, P_d(j|s) - P_d(j|s')\}.$

Proof. Let $b(s, s'; j) = \min \{P(j|s), P(j|s')\}$

$$\begin{split} sp(Pv) &= \max_{s,s' \in S \times S} \sum_{j \in S} [P(j|s) - b(s,s';j)]v(j) - \sum_{j \in S} [P(j|s') - b(s,s';j)]v(j) \\ &\leq \max_{s,s' \in S \times S} \sum_{j \in S} [P(j|s) - b(s,s';j)]\Upsilon(v) - \sum_{j \in S} [P(j|s') - b(s,s',j)]\Lambda(v) \\ &= \max_{s,s' \in S \times S} \left[1 - \sum_{j \in S} b(s,s';j) \right] sp(v) = \max_{s,s' \in S \times S} \left[1 - \sum_{j \in S} \min \left\{ P(j|s), P(j|s') \right\} \right] sp(v) \\ &= \max_{s,s' \in S \times S} \left[1 - \sum_{j \in S} (P(j|s) + P(j|s') - |P(j|s) - P(j|s')|)/2 \right] sp(v) \\ &= \max_{s,s' \in S \times S} \left[\frac{1}{2} \sum_{j \in S} |P(j|s) - P(j|s')| \right] sp(v) \\ &= \max_{s,s' \in S \times S} \sum_{j \in S} \max \left\{ 0, P(j|s) - P(j|s') \right\} sp(v) \end{split}$$

$$(|x-y| = x + y - 2\min(x, y), \max(0, x - y) = x - \min(x, y), \max(0, y - x) = y - \min(x, y))$$

 $\exists v' \in V \text{ such that } sp(Pv) = sp(v)$:

- 1. P's rows are equal $\Rightarrow \gamma_d = 0 \Rightarrow sp(Pv) = 0 = 0 \cdot sp(v)$;
- $\begin{array}{l} \text{2. Let } s^*, s'^* \text{ be } \sum_{j \in S} \max \left\{ 0, P(j|s^*) P(j|s'^*) \right\} = \max_{s, s' \in S \times S} \sum_{j \in S} \max \left\{ 0, P(j|s) P(j|s') \right\}, \\ \text{then } v(j) = \mathbf{1}_{\{P(j|s^*) > P(j|s'^*)\}}. \ sp(v') = 1 \ \text{and} \ sp(Pv) \geq \sum_{j \in S} P(j|s^*) v(j) \sum_{j \in S} P(j|s'^*) v(j) = \sum_{j \in S} \max \left\{ 0, P(j|s^*) P(j|s'^*) \right\} = \gamma_d sp(v) \\ \end{array}$

 γ_d is referred to as the Hajnal measure or delta coefficient of P_d , which upper bounds the subradius (modulus of the second largest eigenvalue) of P_d , $\sigma_s(P_d)$. γ_d equals to 0 if all rows of P_d are equal, and equals to 1 if at least two rows of P_d are orthogonal.

Theorem 19. Let span construction $T: V \to T$ and suppose there exists an α , $0 \le \alpha < 1$ for which

$$sp(Tv - Tu) \le \alpha \cdot sp(v - u)$$

then

- 1. $\exists v^* \in V, sp(Tv^* v^*) = 0$ which called **span fixed point**. Furthermore, $Tv^* = v^* = v^* + ke$.
- 2. For sequence $\{v^n\}$ by $v^n = T^n v^0$, then $\lim_{n \to \infty} sp(v^n v^*) = 0$.
- 3. $sp(v^{n+1} v^*) \le \alpha^n sp(v^0 v^*)$

6.6.2 Bounds on the Value of a Discounted Markov Decision Process

Theorem 20. For $v \in V, m \ge -1$, and any v – improving decision rule d_v ,

$$G_m(v) = v + \sum_{i=1}^m (\lambda P_{d_v})^k B v + \lambda^{m+1} (1 - \lambda)^{-1} \Lambda(Bv) \vec{1}, \quad \text{nondecreasing in } m$$

$$G^m(v) = v + \sum_{k=0}^m (\lambda P_{d_{v_{\lambda}^*}})^k B v + \lambda^{m+1} (1 - \lambda)^{-1} \Upsilon(Bv) \vec{1}, \quad \text{nonincreasing in } m$$

$$G_m(v) \le v_{\lambda}^{(d_v)^{\infty}} \le v_{\lambda}^* \le G^m(v)$$

Proof. We have $0 = Bv_{\lambda}^* \succeq Bv + (\lambda P_{d_v} - I)(v_{\lambda}^* - v)$. Since that $(I - \lambda P_{d_v})^{-1} \succeq 0$, then, $0 \succeq v - v_{\lambda}^* + (I - \lambda P_{d_v})^{-1}Bv$.

$$v_{\lambda}^* \succeq v + \sum_{k=0}^m (\lambda P_{d_v})^k B v + \sum_{k=m+1}^\infty (\lambda P_{d_v})^k [\Lambda(Bv)] \vec{1}$$
$$= v + \sum_{k=0}^m (\lambda P_{d_v})^k B v + \frac{\lambda^{m+1}}{1 - \lambda} [\Lambda(Bv)] \vec{1}$$

Analoguely,
$$Bv \succeq Bv_{\lambda}^* + (\lambda P_{d_{v_{\lambda}^*}} - I)(v - v_{\lambda}^*) \Rightarrow v_{\lambda}^* \preceq v + (I - \lambda P_{d_{v_{\lambda}^*}})^{-1}Bv \preceq v + \sum_{k=0}^{m} (\lambda P_{d_{\lambda}^*})^k Bv + \frac{\lambda^{m+1}}{1-\lambda} [\Upsilon(Bv)] \vec{1}.$$

Corollary 2.

$$v + (1 - \lambda)^{-1} \Lambda(Bv) \vec{1} \leq v + Bv + \lambda (1 - \lambda)^{-1} \Lambda(Bv) \vec{1} \leq v_{\lambda}^{d_{v}^{\infty}}$$
$$\leq v_{\lambda}^{*} \leq v + Bv + \frac{\lambda}{1 - \lambda} \Upsilon(Bv) \vec{1}$$
$$\leq v + (1 - \lambda)^{-1} \Upsilon(Bv) \vec{1}$$

6.6.3 Stopping Criteria

Proposition 7. For $v \in V$ and $\epsilon > 0$ that

$$sp(Lv - v) = sp(Bv) < \frac{(1 - \lambda)}{\lambda}\epsilon$$

then

$$||Lv + \frac{\lambda}{1-\lambda}\Lambda(Bv)\vec{e} - v_{\lambda}^*|| < \epsilon$$

and

$$\|v_{\lambda}^{d_v^{\infty}} - v_{\lambda}^*\| < \epsilon$$

Proof. $(w \le x \le y \le z \Rightarrow 0 \le y - x \le z - w)$.

$$0 \preceq v_{\lambda}^* - v - Bv - \frac{\lambda}{1 - \lambda} \Lambda(Bv) \vec{1} \preceq \frac{\lambda}{1 - \lambda} sp(Bv) \vec{1}$$

Because Lv = Bv + v, therefore we can get the first inequation by taking norms on both side. Analogously,

$$0 \leq v_{\lambda}^* - v_v^{d_v^{\infty}} \leq \frac{\lambda}{1 - \lambda} sp(Bv)\vec{1}$$

Here is something we need to know

$$\forall k, \arg\max_{d \in D} \left\{ r_d + \lambda P_d(v + k\vec{1}) \right\} = \arg\max_{d \in D} \left\{ r_d + \lambda P_dv + \lambda k\vec{1} \right\} = \arg\max_{d \in D} \left\{ r_d + \lambda P_dv \right\}$$

Theorem 21.
$$\gamma = \max_{s \in S, a \in A_s, s' \in S, a' \in A_{s'}} \left[1 - \sum_{j \in S} \min \left[p(j|s, a), p(j|s', a') \right] \right].$$

Then $\forall u, v \in V, sp(Lv - Lu) \leq \lambda \gamma sp(v - u).$

Proof.

$$\begin{split} sp(Lv-Lu) &\leq \max_{s \in S}(Lv(s)-Lu(s)) - \min_{s \in S}(Lv(s)-Lu(s)) \\ &\leq \max_{s \in S}(L_{d_v}v(s)-L_{d_v}u(s)) - \min_{s \in S}(L_{d_u}v(s)-L_{d_u}u(s)) \\ &= \max_{s \in S}(P_{d_v}(v-u)(s)) - \min_{s \in S}(\lambda P_{d_u}(v-u)(s)) \\ &\leq sp\left(\lambda \begin{bmatrix} P_{d_v} \\ P_{d_u} \end{bmatrix}(v-u)\right) \leq \lambda \gamma_{d_v,d_u}(v-u) \leq \lambda \gamma(v-u) \end{split}$$

If u = Lv then $\forall v \in V, sp(B^2v) \leq \lambda \gamma sp(Bv)$. For value iteration,

$$||v^{n+2} - v^{n+1}|| = ||Bv^{n+1}|| = ||B^2v^n|| \le \lambda ||Bv^n|| = \lambda ||v^{n+1} - v^n||$$

$$sp(v^{n+2} - v^{n+1}) = sp(B^2v^n) \le \lambda \gamma sp(Bv^n) = \lambda \gamma sp(v^{n+1} - v^n)$$

We can use γ' instead of γ : $\gamma \leq 1 - \sum_{j \in S} \min_{s \in S, a \in A_s} p(j|s, a) = \gamma'$.

Corollary 3. Let $v^0 \in V$, $\{v^n\}$ has been generated using value iteration. Then

- 1. $\lim_{n\to\infty} sp(v^n V_{\lambda}^*) = 0;$
- 2. $\forall n, sp(v^{n+1} v_{\lambda}^*) \le (\lambda \gamma)^n sp(v^0 v_{\lambda}^*);$
- 3. $sp(v^{n+1} v^n) < (\lambda \gamma)^n sp(v^1 v^0)$.

In chapter8, the following algorithm is useful.

Algorithm 4 Relative Value Iteration Algorithm

```
Require: \epsilon > 0

Ensure: u^0 \in V, choose s_0 set w^0 = u^0 - u^0(s_0)\vec{1}

for n = 0, 1, \dots do

u^{n+1} = Lw^n

w^{n+1} = u^{n+1} - u^{n+1}(s_0)\vec{1}

if sp(u^{n+1} - u^n) < (1 - \lambda)\epsilon/\lambda then break

end if.

end for.

return d_{\epsilon} \in \arg\max_{d \in D} \{r_d + \lambda P_d u^n\}
```

6.7 ACTION ELIMINATION PROCEDURES

The advantages of using action elimination procedures:

- 1. Reduction in size of the action sets;
- 2. Get optimal policy, instead of ϵ optimal.

6.7.1 Identification of Nonoptimal Actions

$$B(s,a)v = r(s,a) + \sum_{s' \in S} \lambda p(s'|s,a)v(s') - v(s).$$

Proposition 8.

$$B(s,a')v_{\lambda}^* < 0 \Rightarrow a' \notin \arg\max_{a \in A_s} \left\{ r(s,a) + \sum_{s' \in S} \lambda p(s'|s,a)v_{\lambda}^*(s') \right\}$$

Proof.

$$\forall s, a', B(s, a')v_{\lambda}^* \le \max_{a \in A_S} B(s, a)v_{\lambda}^* = 0;$$

$$a' \in \arg\max_{a \in A_s} \left\{ r(s,a) + \sum_{s' \in S} \lambda p(s'|s,a) v_{\lambda}^*(s') \right\} \Rightarrow B(s,a') v_{\lambda}^* = 0$$

Since v_{λ}^* is unknown, the result in preceeding proposition cannot be used in practice to identify nonoptimal actions.

Proposition 9. If a' satisfies $\exists v^L \leq v_{\lambda}^* \leq v^U$ that

$$r(s,a') + \sum_{s' \in S} \lambda p(s'|s,a') v^U(s') < v^L(s)$$

Proof.

$$B(s, a)v_{\lambda}^* \le B(s, a)v^U < v^L(s) \le v_{\lambda}^*(s)$$

6.7.2 Action Elimination Procedures

Definition 9. (Action Elimination Procedures)

- Policy evaluation;
- Action elimination;
- Policy Improvement over reduced action set.

Recall that

$$v^{n+1} = \begin{cases} Lv^n, & \text{for value iteration} \\ v^n + \sum_{k=0}^{m_n} (\lambda P_{d_{v^n}})^k Bv^n, & \text{for modified policy iteration} \\ (I - \lambda P_{d_{v^n}})^{-1} r_{d_{v^n}}, & \text{for policy iteration} \end{cases}$$

We use the weakest upper: $v^U = v^n + \frac{\lambda}{1-\lambda} \Upsilon(Bv^n) \vec{1}$. Define

$$G_m(v) = v + \sum_{k=0}^{m-1} (\lambda P_{d_v})^k B v + \lambda^m (1 - \lambda)^{-1} \Lambda(Bv) \vec{1}$$

For value iteration $v^L = G_0(v^n)$, for modified policy iteration $v^L = G_{m_n}(v^n)$ and for policy iteration $v^L = G_{\infty}(v^n)$. Then Action a' is nonoptimal in state s at iteration n if

$$r(s, a') + \sum_{s' \in S} \lambda p(s'|s, a') v^n(s') + \frac{\lambda}{1 - \lambda} \Upsilon(Bv^n) < G_{m_n}(v^n)(s)$$

Which is equal to

$$\frac{\lambda}{1-\lambda} sp(Bv^n) < Lv^n(s) - r(s,a) - \sum_{s' \in S} \lambda p(s'|s,a)v^n(s')$$

The $\lambda/(1-\lambda)$ can be replaced by $\lambda \gamma_{s,a}/(1-\lambda \gamma)$:

$$\gamma_{s,a} = \max_{a' \in A_S} \left\{ 1 - \sum_{s' \in S} \min \left[p(s'|s, a), p(s'|s, a') \right] \right\}$$

$$\gamma = \max_{s \in S, a \in A_S, s' \in S, a' \in A_{s'}} \left\{ 1 - \sum_{s' \in S} \min \left[p(s'|s, a), p(s'|s, a') \right] \right\}$$

Proposition 10. If $v' = v + \sum_{k=0}^{p} (\lambda P_{d_n})^k Bv$,

$$\forall p, q \ge 0, G_p(v) \le G_q(v') \le v_\lambda^* \le G^q(v') \le G^p(v)$$

Proof. We proof $G_p(v) \leq G_0(v') = v' + \frac{1}{1-\lambda}\Lambda(Bv')\vec{1}$.

$$\begin{split} G_{0}(v') - G_{p}(v) = & v' + \frac{1}{1 - \lambda} \Lambda(Bv') \vec{1} - v - \sum_{k=0}^{p-1} (\lambda P_{d_{v}})^{k} Bv - \frac{\lambda^{p}}{1 - \lambda} \Lambda(Bv) \vec{1} \\ = & (\lambda P_{d_{v}})^{p} Bv + \frac{1}{1 - \lambda} \Lambda(Bv') \vec{1} - \frac{\lambda^{p}}{1 - \lambda} \Lambda(Bv) \vec{1} \\ Bv' = & Lv' - v' = L[L_{d_{v}}^{p+1} v] - L_{d_{v}}^{p+1} v \\ & \succeq & L_{d_{v}}^{p+2} v - L_{d_{v}}^{p+1} v = L_{d_{v}}^{p+1} [Bv] \succeq \lambda^{p+1} \Lambda(Bv) \vec{1} \\ G_{0}(v') - G_{p}(v) \succeq & \lambda^{p} \Lambda(Bv) \vec{1} + \frac{\lambda^{p+1}}{1 - \lambda} \Lambda(Bv) \vec{1} - \frac{\lambda^{p}}{1 - \lambda} \Lambda(Bv) \vec{1} = \vec{0} \end{split}$$

We already have $G_{q-1}(v') \leq G_q(v')$.

$$Bv' = L \left[L_{d_v}^{p+1} v \right] - L_{d_v}^{p+1} v \preceq L_{d_{v'}} \left[L_{d_v}^{p+1} v - L_{d_v}^p v \right] = L_{d_{v'}'} \left[\lambda^p \Upsilon(Bv) \right] = \lambda^{p+1} \Upsilon(Bv)$$

$$G^{p}(v) - G^{0}(v') = \frac{\lambda^{p}}{1 - \lambda} \Upsilon(Bv) \vec{1} - \frac{1}{1 - \lambda} \Upsilon(Bv') \vec{1} - (\lambda P_{d_{v}})^{p} Bv$$
$$\succeq \frac{\lambda^{p}}{1 - \lambda} \Upsilon(Bv) \vec{1} - \frac{\lambda^{p+1}}{1 - \lambda} \Upsilon(Bv) \vec{1} - \lambda^{p} \Upsilon(Bv) \vec{1} = \vec{0}$$

$$r(s, a') + \sum_{s' \in S} \lambda p(s'|s, a') G^{m_{n+1}}(v^{n+1})$$

$$\leq r(s, a') + \sum_{s' \in S} \lambda p(s'|s, a') G^{m_n}(v^n)$$

$$\leq G_{m_n}(v^n) \leq G_{m_{n+1}}(v^{n+1})$$

Which means that it's safty to eliminate nonoptimal action a' in step n. Another complicate criterion is (without proof)

Theorem 22. Let $\{v^n\}$ be generated by modified policy iteration, and let d_{n+1} be any v^{n+1} -improving decision rule. Then $d_{n+1}(s)$ will note equal a' if, for some $v \leq n$,

$$r(s,a') + \sum_{s' \in S} \lambda p(s'|s,a') v^{\nu}(s') + \lambda \sum_{k=\nu}^{n} \Upsilon(v^{k+1} - v^k) - v^{n+1}(s) < \lambda^{m_n+1} \Lambda(P_{d_{v^n}}^{m_n} B v^n)$$

- 6.7.3 Modified Policy Iteration with Action Elimination and an Improved Stopping Criterion
- 6.7.4 Numerical Performance of Modified Policy Iteration with Action Elimination

6.8 CONVERGENCE OF POLICIES TURNPIKESAND PLANNING HORIZONS

Up to now, we focused on properties of sequences of values $\{v^n\}$. Then we study the corresponding decision rules $\{D_n\}$ where

$$D_n = \left\{ d \in D : r_d + \lambda P_d v^n = \max_{d \in D} \left\{ r_d + \lambda P_d v^n \right\} \right\}$$

Let $D^* = \{d \in D : r_d + \lambda P_d v_{\lambda}^* = \max_{d' \in D} \{r_{d'} + \lambda P_{d'} v_{\lambda}^*\}\}$. In this section, we let $\{v^n\}$ be the sequences of value iteration's sequence.

Theorem 23. Suppose S and A_S are finite. Then for any $v^0 \in V$, there exists an n^* such that, for all $n \geq n^*$, $D_n \subset D^*$. If $D^* = D, n^* = 0$. Otherwise,

$$n^* \le \left[\frac{\log(\lambda^{-1}(1-\lambda)c) - \log(sp(Bv^0))}{\log(\lambda\gamma)} \right]^+ + 1, \quad c = \inf_{d \in D/D^*} \|v_{\lambda}^* - L_d v_{\lambda}^*\|_{\infty} > 0$$

Proof.

$$v_n^L = v^n + (1-\lambda)^{-1}\Lambda(Bv^n)\vec{1} \preceq v_\lambda^* \preceq v^n + (1-\lambda)^{-1}\Upsilon(Bv^n)\vec{1} = v_n^U$$

$$\begin{aligned} v_{\lambda}^* - L_{d_n} v_{\lambda}^* &\leq v_{n+1}^U - L_{d_n} v_n^L \\ &= v^{n+1} + (1 - \lambda)^{-1} \Upsilon(Bv^{n+1}) \vec{1} - L_{d_n} \left[v^n + (1 - \lambda)^{-1} \Lambda(Bv^n) \vec{1} \right] \\ &\leq \lambda (1 - \lambda)^{-1} \left[\Upsilon(Bv^n) - \Lambda(Bv^n) \right] \vec{1} \\ v_{\lambda}^* - L_{d_n} v_{\lambda}^* &\geq v_{n+1}^L - L_{d_n} v_n^U \\ &= v^{n+1} + (1 - \lambda)^{-1} \Lambda(Bv^{n+1}) \vec{1} - L_{d_n} \left[v^n + (1 - \lambda)^{-1} \Upsilon(Bv^n) \vec{1} \right] \\ &\geq \lambda (1 - \lambda)^{-1} \left[\Lambda(Bv^n) - \Upsilon(Bv^n) \right] \vec{1} \\ &\| v_{\lambda}^* - L_{d_n} v_{\lambda}^* \|_{\infty} \leq \lambda (1 - \lambda)^{-1} sp(Bv^n) \vec{1} \end{aligned}$$

Then if $\lambda(1-\lambda)^{-1}sp(Bv^n)\vec{1} < c\vec{1}$, we can guarantee that $\forall d_n \in D_n$, $\|v_{\lambda}^* - L_{d_n}v_{\lambda}^*\|_{\infty} < c \Rightarrow D_n \subset D^*$. Furthermore, we already have

$$sp(Bv^n) \le (\lambda \gamma)^n sp(Bv^0)$$

we can let n^* satisfies

$$(\lambda \gamma)^{n^*} sp(Bv^0) \le \frac{1-\lambda}{\lambda} c \Rightarrow n^* \ge \frac{\log(\lambda^{-1}(1-\lambda)c) - \log(sp(Bv^0))}{\log(\lambda \gamma)}$$

We refine our proof: $n^* \geq \frac{\log(\lambda^{-1}(1-\lambda)c) - \log(sp(Bv^0))}{\log(\lambda\gamma)}$ is sufficient to guarantee that $\forall n \geq n^*, \ D_n \subset D^*$.

This bound may be quite large when $\lambda \to 1$.

Lemma 8.

$$\gamma = \max_{s \in S, a \in A_s, s' \in S, a' \in A_{s'}} \left[1 - \sum_{j \in S} \min\left[p(j|s, a), p(j|s, a')\right]\right]$$

Then, for any $u \in V, d \in D$ and $d' \in D$

$$-\gamma sp(u)\vec{1} \prec P_d u - P_{d'} u \prec \gamma sp(u)\vec{1}$$

Proof.

$$P_d u - P_{d'} u \leq sp\left(\begin{bmatrix} P_d \\ P_{d'} \end{bmatrix} u\right) \vec{1} \leq \gamma_d sp(u) \vec{1} \leq \gamma sp(u) \vec{1}$$

Proposition 11. Another sufficient bound

$$n^* \ge \frac{\log(c) - \log(sp(v_{\lambda}^* - v^0))}{\log(\lambda \gamma)}$$

Proof. $\forall d_n \in D_n$,

$$Lv_{\lambda}^{*} - L_{d_{n}}v_{\lambda}^{*} = L\left[v^{n} + (v_{\lambda}^{*} - v^{n})\right] - L_{d_{n}}\left[v^{n} + (v_{\lambda}^{*} - v^{n})\right]$$

$$= L_{d^{*}}v^{n} - L_{d_{n}}v^{n} + \lambda P_{d^{*}}(v_{\lambda}^{*} - v^{n}) - \lambda P_{d_{n}}(v_{\lambda}^{*} - v^{n})$$

$$\leq L_{d^{*}}v^{n} - L_{d_{n}}v^{n} + \lambda \gamma sp(v_{\lambda}^{*} - v^{n})$$

$$\leq L_{d^{*}}v^{n} - L_{d_{n}}v^{n} + (\lambda \gamma)^{n+1}sp(v_{\lambda}^{*} - v^{0})$$

$$\leq (\lambda \gamma)^{n+1}sp(v_{\lambda}^{*} - v^{0})$$

$$Lv_{\lambda}^{*} - L_{d_{n}}v_{\lambda}^{*} = L\left[v_{\lambda}^{*} + (v^{n} - v_{\lambda}^{*})\right] - L_{d_{n}}\left[v_{\lambda}^{*} + (v^{n} - v_{\lambda}^{*})\right]$$

$$= L_{d^{*}}v_{\lambda}^{*} - L_{d_{n}}v_{\lambda}^{*} + \lambda P_{d^{*}}(v^{n} - v_{\lambda}^{*}) - \lambda P_{d_{n}}(v^{n} - v_{\lambda}^{*})$$

$$\succeq L_{d^{*}}v_{n}^{*} - L_{d_{n}}v_{n}^{*} - \lambda \gamma sp(v^{n} - v_{\lambda}^{*})$$

$$\succeq L_{d^{*}}v^{n} - L_{d_{n}}v^{n} - (\lambda \gamma)^{n+1}sp(v_{\lambda}^{*} - v^{0})$$

$$\succeq - (\lambda \gamma)^{n+1}sp(v_{\lambda}^{*} - v^{0})$$

We want $\forall d_n \in D_n, v_{\lambda}^* - L_{d_n} v_{\lambda}^* \leq c\vec{1}$, let

$$(\lambda \gamma)^{n^*+1} sp(v_{\lambda}^* - v^0) \le c \Rightarrow n^* \ge \frac{\log c - \log(sp(v_{\lambda}^* - v^0))}{\log(\lambda \gamma)} - 1$$

6.9 LINEAR PROGRAMMING

6.9.1 Model Formulation

Primal Linear Program:

$$\min_{\boldsymbol{v}} \vec{\alpha}^T \vec{\boldsymbol{v}}, \quad s.t. \quad \forall s, a, \ \boldsymbol{v}(s) - \sum_{j \in S} \lambda p(j|s,a) \boldsymbol{v}(j) \geq r(s,a)$$

Dual Linear Pragram:

$$\max_{\beta} \sum_{s \in S, a \in A_s} r(s, a) \beta_{s, a}, \quad s.t. \quad \forall s, a, \sum_{a \in A_i} \beta_{i, a} - \sum_{s \in S, a \in A_s} \lambda p(i|s, a) \beta_{s, a} = \alpha(i)$$

Proof. Primal Linear Program equals:

$$\min_{v} \max_{\beta \geq 0} L(v, \beta) = \min_{v} \vec{\alpha}^T \vec{v} + \sum_{s \in S, a \in A_s} \beta_{s, a} \left\{ r(s, a) - v(s) + \sum_{j \in S} \lambda p(j|s, a) v(j) \right\}$$

$$\min_{v} \max_{\beta \geq 0} L(v, \beta) \geq \max_{\beta \geq 0} \min_{v} L(v, \beta)$$

$$\frac{\partial L(v, \beta)}{\partial v_i} = \alpha_i - \sum_{a \in A_i} \beta_{i, a} + \sum_{s \in S, a \in A_s} \lambda p(i|s, a) v(i)$$

$$\min_{v} L(v, \beta) = \sum_{s \in S, a \in A_s} r(s, a) \beta_{s, a}$$

6.9.2 Basic Solutions and Stationary Policies

For all $d \in D^{MR}$, following $\beta_{s,a}^d$ is a feasible solution to the dual problem.

$$\beta_{s,a}^{d} = \sum_{j \in S} \alpha(j) \sum_{n=1}^{\infty} \lambda^{n-1} P^{d^{\infty}} (S_n = s, A_n = a | X_1 = j)$$

Proof.

$$\begin{split} & \sum_{s \in S, a \in A_s} \lambda p(i|s, a) \beta_{s, a}^d \\ &= \sum_{s \in S, a \in A_s} \lambda p(i|s, a) \sum_{j \in S} \alpha(j) \sum_{n=1}^{\infty} \lambda^{n-1} P^{d^{\infty}} (S_n = s, A_n = a | X_1 = j) \\ &= \sum_{j \in S} \alpha(j) \sum_{n=1}^{\infty} \lambda^n \sum_{s \in S, a \in A_s} p(i|s, a) P^{d^{\infty}} (S_n = s, A_n = a | X_1 = j) \\ &= \sum_{j \in S} \alpha(j) \sum_{n=1}^{\infty} \lambda^n P^{d^{\infty}} (S_{n+1} = i | S_1 = j) \\ &= \sum_{j \in S} \alpha(j) (\sum_{n=1}^{\infty} \lambda^{n-1} P^{d^{\infty}} (S_n = i | S_1 = j) - P^{d^{\infty}} (S_1 = i | S_1 = j)) \\ &= \sum_{j \in S} \alpha(j) (\sum_{n=1}^{\infty} \lambda^{n-1} \sum_{a \in A_i} P^{d^{\infty}} (S_n = i, A_n = a | S_1 = j) - P^{d^{\infty}} (S_1 = i | S_1 = j)) \\ &= \sum_{a \in A_i} \beta_{i, a}^d - a(i) \end{split}$$

Suppose $\beta_{s,a}$ is a feasible solution to the dual problem, we can construct $\beta_{s,a}^d = \beta_{s,a}$.

Proof. For each $s \in S$, $\sum_{a \in A_s} x(s,a) > 0$ (Because $\alpha \succ \vec{0}$), then construct the randomized stationary policy d_x^{∞} by

$$\mathbb{P}\left\{d_x(s) = a\right\} = \frac{\beta_{s,a}}{\sum_{a' \in A_s} \beta_{s,a'}}$$

$$\begin{split} \alpha(i) &= \sum_{a \in A_i} \beta_{s,a} - \sum_{s \in S, a \in A_s} \lambda p(i|s,a) \beta_{s,a} \\ &= \sum_{a \in A_i} \beta_{s,a} - \sum_{s \in S, a \in A_s} \lambda p(i|s,a) p(d_x(s) = a) \sum_{a' \in A_s} \beta_{s,a} \\ &= \sum_{a \in A_i} \beta_{s,a} - \sum_{s \in S} \lambda p_{d_x}(i|s) \sum_{a' \in A_s} \beta_{s,a'} \end{split}$$

$$\left(\sum_{a \in A_s} \beta_{s,a}\right)^T = \alpha^T [I - \lambda P_{d_x}]^{-1} = a^T \left[\sum_{n=1}^{\infty} (\lambda P_{d_x})^{n-1}\right] = \sum_{j \in S} \alpha(j) \sum_{n=1}^{\infty} \lambda^{n-1} P^{d_x^{\infty}} (S_n = s | S_1 = j)$$

$$\sum_{a \in A_s} \beta_{s,a} = \sum_{a \in A_s} \beta_{s,a}^{d_x}$$

$$\begin{split} \beta_{s,a}^{d_x} &= \sum_{j \in S} \alpha(j) \sum_{n=1}^{\infty} \lambda^{n-1} P^{d_x^{\infty}} (X_n = s | X_1 = j) q_{d_x(s)}(a) \\ &= \sum_{j \in S} \alpha(j) \sum_{n=1}^{\infty} \lambda^{n-1} P^{d_x^{\infty}} (X_n = s | X_1 = j) \frac{\beta_{s,a}}{\sum_{a' \in A_s} \beta_{s,a'}} \\ &= \sum_{a \in A_s} \beta_{s,a}^{d_x} \frac{\beta_{s,a}}{\sum_{a' \in A_s} \beta_{s,a'}} = \beta_{s,a} \end{split}$$

By the define of $\beta_{s,a}^d$, we have

$$\sum_{s \in S} \alpha(s) v_{\lambda}^{d_{x}^{\infty}}(s) = \sum_{s \in S, a \in A_{s}} \beta_{s,a}^{d} r(s, a)$$

We have mapped D^{MR} into $\{\beta\}$, and mapped $\{\beta\}$ into D^{MR} . We call the base of set $\{\beta\}$ basic feasible solution.

- 1. Let β_i be standard base of $\{\beta\}$, then $d_{\beta_i} \in D^{MD}$. (trivial for standard base):
- 2. Suppose that $d \in D^{MD}$, then β_d is a standard base of $\{\beta\}$;

Proof. if β_d is not standard base, we can write $\beta_d = [\beta_1, \beta_2, \ldots] \vec{w}$. It's easy to verify that $d_{\beta_d} = d_{[\beta_1, \beta_2, \ldots]} \vec{w} \notin D^{MD}$, which causes contradiction. \square

6.9.3 Optimal Solutions and Optimal Policies

Theorem 6.9.4: repeat preceding result.

The optimal policy is not depended on $\vec{\alpha}$.

6.10 Remain sections

Section 6.7, 6.10 and 6.11 are tedious and difficult, I don't want waste my time.