

CSC380: Principles of Data Science

Midterm review

Chicheng Zhang

Summary statistics for HWs

• HW1

Summary statistics for HWs

• HW2

General suggestions on midterm preparation

- Prioritize reviewing basic concepts & ideas
 - Remember, you can bring a cheatsheet with necessary technical details
 - Understand the motivations of concepts
 - "Math should be there to aid understanding, not hinder it." Hal Daume III
- "Memorization with understanding"
- Try to solve these on your own, then discuss with classmates
 - "Quiz Candidate" questions
 - Sample midterm
 - HW questions (esp. if you did not get them right the first time)

- Basic definitions: outcome space, events
- Probability P: maps events to [0,1] values
 - Three axioms
 - Axiom 3: additivity
- Special case of P: all outcomes are equally likely
 - Happens when we flip a fair coin, roll two fair dice, etc
 - Does not apply when we flip unfair coins, etc

Calculating probability: Inclusion-exclusion rule; law of total probability

- Conditional probability $P(E|C) := \frac{P(E \cap C)}{P(C)}$
 - Is $P(A|B) \neq P(B|A)$ in general?

- Properties: chain rule, law of total probability, Bayes rule
 - Important application: medical diagnosis
 - Approach: write down the joint probability table
- Independence of events: P(A,B) = P(A)P(B)

• Discrete random variable (RV) X (e.g. outcome of a die roll) $\{X = x\}$ is an event

- Representation of its distn: probability mass function (PMF)
 - Tabular representation of joint distribution of two RV's (X, Y)

value	prob.
1	0.2
2	8.0

- Law of total probability, conditional probability, chain rule, Bayes rule on RVs
- Independence and conditional independence of RV's
- Useful discrete distns: uniform, Bernoulli, binomial, multinomial

• Continuous RVs X: P(X = x) = 0 for any x

• Key representation tool for distn: p, probability density function (PDF)

$$P(a < X \le b) = \int_a^b p(x) dx$$
: area under the PDF

- Useful continuous distns and their PDFs:
 - Uniform, exponential, Gaussian (important properties)
- Cumulative density functions (CDF): $F(t) = P(X \le t)$
 - Well-defined for discrete & continuous RVs (its shape in respective settings?)

Moments of random variables

- Calculate mean (expectation) and variance of RVs
- (Very useful) Expectation value formula:

$$E[f(Z)] = \sum_{z} f(z)P(Z = z)$$

- Also applies for Z = (X, Y)
- Linearity of expectation: E[X + cY] = E[X] + cE[Y] for constant c
 - What about Var[X + cY]?
- Moments of useful distns: Bernoulli, binomial, Gaussian

- A "mixed" 2nd moment: covariance Cov(X,Y) = E[(X E[X])(Y E[Y])] = E[XY] E[X]E[Y]
- Measures *linear relationship* between X, Y $Cov(X, Y) = 0 \Rightarrow X \perp Y$

- Pearson correlation: $\rho = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}$, where $\sigma_X = \sqrt{\text{Var}(X)}$
- Important property: Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)
 - What if *X*, *Y* are independent?

 Statistics: make statements about data generation process based on data seen; reverse engineering

- Point estimation
 - Given iid samples $X_1, \dots, X_n \sim \mathcal{D}_{\theta}$, estimate θ by constructing statistics $\hat{\theta}_n$
 - Basic estimators: sample mean, sample variance
 - Performance measures: unbiasedness, consistency, MSE (efficiency)
 - Bias-variance decomposition:
 - $MSE(\hat{\theta}) = bias(\hat{\theta})^2 + var(\hat{\theta})$
- Useful probability tools:
 - Law of Large Numbers
 - Central Limit Theorem

I would appreciate some further clarification on the bias-variance tradeoff. I understand the incentives to limit bias and variance in a model, but why can't both be easily limited simultaneously? I understand the target analogy comparing bias-variance to accuracy and precision, but this analogy doesn't convey to me why there is a tradeoff (how does increasing accuracy hurt precision?).

- Bias-variance tradeoff happens when we fix the dataset and vary estimators
- An elementary example:
 - $X_1, ..., X_n \sim \mathcal{D}$ with population mean μ
 - $\hat{\mu} = \lambda \cdot \frac{1}{n} \sum_{i=1}^{n} X_i$
 - $\lambda = 0 \Rightarrow$ high bias, zero variance
 - $\lambda = 1 =$ zero bias, high variance
- Recommended video: <u>The weirdest paradox in statistics (and machine learning)</u>
- Revisit Faraz's answer after lecture "predictive modeling"

- Maximum likelihood (MLE): a general approach for point estimation
- Given $X_1, \dots, X_n \sim \mathcal{D}_{\theta^*}$, estimate θ^* by finding the maximizer of the likelihood function

$$\mathcal{L}_n(\theta) = p(x_1, ..., x_n; \theta) = p(x_1; \theta) \cdot ... \cdot p(x_n; \theta)$$

- Intuition: $\mathcal{L}_n(\theta)$ measures the "goodness of fit" of \mathcal{D}_{θ} to data x_1, \dots, x_n
- \mathcal{D}_{θ} can be general, e.g. Bernoulli, Gaussian, Poisson (in HW3)

- MLE in action
- E.g. HW3, P3 Poisson $(x; \lambda) = \frac{1}{x!} \lambda^x e^{-\lambda}$.

During my last three office hours I received $X_1 = 5, X_2 = 6, X_3 = 8$ students.

1. Write down the (log)-likelihood function

$$\log L_n(\lambda) = \log \left(\prod_{i=1}^n p(x_i) \right)$$

$$= \sum_{i=1}^n \log \left(\frac{1}{x_i!} \lambda^{x_i} e^{-\lambda} \right) = -\sum_{i=1}^n \log(x_i!) + \log(\lambda) \sum_{i=1}^n x_i - n\lambda$$

2. Find the parameter that maximizes the likelihood

$$\Rightarrow \lambda^{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- Confidence interval (interval estimation)
- Definition of confidence intervals:
 - Given data $X_1, ..., X_n \sim \mathcal{D}_{\theta}$ with unknown θ (say, $\mathcal{D}_{\theta} = \mathcal{N}(\theta, 1)$)
 - Construct a_n , b_n (that depends on $X_1, ..., X_n$), such that $P(\theta \in [a_n, b_n]) \ge 1 \alpha$

- Confidence intervals for population mean: Gaussian(naive), Gaussian(corrected)
 - We expect you to understand how they are computed
- Confidence intervals for general population properties: bootstrap

I am having difficulty understanding the justification for confidence intervals. What would a 95% confidence interval mean exactly? Is it that we can be 95% sure that it represents the entire set of data? Perhaps an example would help me understand better.

Ali Elbekov 1 day ago

Recommended point of view:

- Assume: Heights of UA students follow a normal distribution $\mathcal{N}(\mu, 1)$ with unknown μ
- Fork m parallel universes. For each universe $u \in \{1,2,...,m\}$,
 - Subsample n UA students randomly, take the sample mean $\hat{\mu}^{(u)}$.
 - Compute the confidence bound $\left[\hat{\mu}^{(u)} \frac{1.96\sigma}{\sqrt{n}}, \hat{\mu}^{(u)} + \frac{1.96\sigma}{\sqrt{n}}\right]$

 As m goes to infinity, the fraction will become arbitrarily close to a value that is at least 0.95.

https://en.wikipedia.org/wiki/Confidence interval

What does "fork m parallel universes" mean here?

Sayyed Faraz Mohseni 21 hours ago

It's another way of saying that you take m samples of n random students from the UA with replacements.

- First, bootstrap applies to general interval estimation beyond population mean
 - Drawback: computational cost
- For population mean:
 - Gaussian(Corrected) is always preferred than Gaussian (Naive)
 - But for large sample size N, Gaussian(Naive) is almost equivalent to Gaussian(Corrected) (can you see why?)
 - https://math.stackexchange.com/questions/1350635/when-do-i-use-a-z-score-vs-a-t-score-for-confidence-intervals

- Hypothesis testing
 - Given dataset S
 - Goal: decide whether the data distribution satisfies:
 - *H*₀: null hypothesis
 - H_1 : alternative hypothesis

- Paired t-test
 - Applications?
 - What satisfies the t-distribution, under what setting?
 - What is the test?

Data analysis

- Types of data:
 - Qualitative: nominal and ordinal
 - Quantitative: discrete and continuous

- Summary statistics
 - Median