

PLAN

Introduction

Informatique médicale Evidence-Based Medicine Ingénierie des Données

Gestion des connaissances

PubMed
PubMed Central
Modèles de langage

Conclusion

INTRODUCTION

INFORMATIQUE MÉDICALE

Un domaine d'expansion rapide

INFORMATIQUE MÉDICALE

Branche de l'Informatique Biomédicale

- Évolution exponentielle en rapport avec les dernières avancées de l'Intelligence Artificielle.
- S'intéresse aux données manipulées de façon régulière par les Médecins.
- Essaie d'apporter une aide à la décision clinique.
- Cherche à automatiser quelques tâches biomédicales avec une grande précision.

PLACE DANS L'INFORMATIQUE BIOMÉDICALE

Niveau	Domaine médical	Informatique biomédicale	
Population	Santé Publique	Informatique Médicale (Épidemiologie et Données Cliniques)	
Individu	Médecine Clinique		
Tissu, Organe	Physiologie et Anatomie	Informatique Médicale (Images Biomédicales)	
Cellule	Biologie Cellulaire et Histopathologie		
Molecule	OMICS	Bioinformatique	
Atome	Nanomédecine	Chémoinformatique	

INFORMATIQUE ET CORPS MÉDICAL

Fausse Perception

Bonne Perception

6D: CE QUE L'AUTOMATISATION VISE À ÉLIMINER

```
    Dull → Ennuyeux, terne, monotone
    Dirty → Sale, impur, malpropre
    Dangerous → Dangereux, risqué, périlleux
    Deep → Profond, intense, abyssal
    Dear → Cher, précieux, coûteux
    Duration → Durée, laps de temps, période
```


EVIDENCE-BASED MEDICINE

Une pratique basée sur les connaissances

EVIDENCE-BASED MEDICINE

Branche de la pratique médicale personnalisée

- Repose sur l'adaptation de la prise en charge thérapeutique aux pratiques réussis pour les cas similaires.
- Se base sur une lecture exhaustive de la littérature biomédicale.
- Les revues de littérature et les articles de synthèse ont le plus haut niveau d'évidence.
- Les études de cas ont un apport très minime.

POINT FAIBLE

Les connaissances médicales évoluent rapidement

- Ce qui est valable aujourd'hui peut devenir obsolète.
- La production scientifique biomédicale ne peut pas être analysée par un seul chercheur.
- La terminologie médicale change.
- Les exigences de l'intégrité scientifique deviennent plus importantes.

REVUES SYSTÉMATIQUES VIVANTES

Une revue systématique qui se met à jour automatiquement d'une façon très régulière.

- Est constituée grâce à un cycle de développement: Recherche, Crible, Aspiration, Extraction, Rapport.
- Repose sur les techniques de l'Intelligence Artificielle et des algorithmes de l'extraction des connaissances.
- Utilise quelques pratiques des sciences de l'information comme le Snowballing.
- Concept soutenu par Cochrane.

INGÉNIERIE DES DONNÉES

Une pratique basée sur les connaissances

1001-0-00110010-

ETL: PIPELINE DE DONNÉES

CHAMPS D'APPLICATION

RECHERCHE SCIENTIFIQUE

LES DONNÉES BIBLIOGRAPHIQUES PEUVENT ÊTRE UTILISÉES POUR ÉVALUER LA **PRODUCTIVITÉ SCIENTIFIQUE** DANS UN DOMAINE PARTICULIER.

LES TEXTES INTÉGRAUX, LES ABSTRACTS, LES TITRES ET LES MOTS-CLÉS PEUVENT ÊTRE UTILISÉS DANS LE CADRE DE L'AUTOMATISATION DES **REVUES**SYSTÉMATIQUES ET LA CRÉATION DES GRAPHES DES CONNAISSANCES BIOMÉDICALES.

PRATIQUE CLINIQUE

LES ARTICLES CONTIENNENT DES DONNÉES CLINIQUES DÉJÀ ANONYMES.

ON PEUT LES UTILISER DANS DES **SYSTÈMES D'AIDE À LA DÉCISION CLINIQUE**.

RESSOURCES

BASES DES DONNÉES BIBLIOGRAPHIQUES

PUBMED

https://pubmed.ncbi.nlm.nih.gov/

Bases des données des métadonnées des publications scientifiques.

Automatisation des recherches en utilisant BioPython.

Extraction des données bibliographiques en utilisant BioPython.

PUBMED CENTRAL

https://pmc.ncbi.nlm.nih.gov/

Bases des données des métadonnées et des textes intégraux des publications scientifiques en accès ouvert.

Automatisation des recherches en utilisant BioPython.

Extraction des textes intégraux, des PDFs et des figures en utilisant le dump de PMC.

BIOPYTHON

Bibliothèque Python

- Permet de naviguer toutes les bases des données fournies par National Center for Biotechnology Information (NCBI).
- Ces bases des données incluent plusieurs bases des données en rapport avec la bioinformatique ainsi que PubMed et PubMed Central.
- Ne requiert pas une clé API. Authentification possible grâce à votre adresse de courrier électronique.
- Utilisation relativement intuitive pour les débutants.

MÉTHODES DE TRAITEMENT

Recherche esearch read close **Aspiration** efetch close parse

PRINCIPE

TRAITEMENT DES TEXTES INTÉGRAUX

Accès au dump PMC

Téléchargement de l'Archive

Décompression de l'Archive

Traitement du fichier XML

ÉTIQUETTES DU FORMAT PUBMED

Vous pouvez retrouver toutes les étiquettes sur https://pubmed.ncbi.nlm.nih.gov/help/.

Étiquette	Nom	Description
AB	Résumé	Résumé en anglais tiré directement de l'article publié
AU	Auteur	Auteurs
CIN	Commentaire dans	Référence contenant un commentaire sur l'article
DP	Date de publication	Date de publication de l'article
JT	Titre complet du journal	Titre complet du journal selon le catalogue NLM
PMID	Identifiant unique PubMed	Numéro unique attribué à chaque citation PubMed
RIN	Rétractation dans	Rétractation de l'article
TI	Titre	Titre de l'article

UTILISATION DES ÉTIQUETTES

Application	Format	Exemple
Requête de recherche	"Valeur"[étiquette]	"patient-physician relationship"[Tl]
Extraction des données de BioPython	next(Medline.parse(handle))["Tl"]	metadata["TI"]

MODÈLES DE LANGAGE

Une nouvelle vague qui monte en masse dès l'apparition de ChatGPT en 2023.

C'est un modèle probabiliste conversationnel qui complète une discussion en se basant sur des données d'entrainement.

L'utilisation informatisée des grands modèles de langage comme ChatGPT, Claude, Gemini et d'autres est plafonnée à un certain nombre de requêtes.

Par contre, il existe des petits modèles de langage qui peuvent être stockés dans moins que 16 Go. Ces modèles peuvent être utilisés par une machine locale sans recours à un intermédiaire.

L'utilisation de ces modèles requiert l'utilisation d'une carte graphique performante (GPU) et une bibliothèque Python nommée Llama-cpp-python.

PASSONS À LA PRATIQUE

UN TUTORIEL

Atelier 1 : Extraire des métadonnées bibliographiques de PubMed en utilisant BioPython.

Atelier 2 : Traiter des textes intégraux de PubMed Central en utilisant le dump de PubMed Central.

Atelier 3 : Traiter des données en utilisant des modèles de langage de petite taille et Llama-cpp-python.

MERCI POUR VOTRE ATTENTION

