Логистическая регрессия и SVM

Повторение

Классификация

- $Y = \{-1, +1\}$
- -1 отрицательный класс
- +1 положительный класс
- Алгоритм a(x) должен возвращать одно из двух чисел

Линейный классификатор

Геометрия

- Линейный классификатор проводит гиперплоскость
- < w, x > < 0 объект слева от нее
- < w, x >> 0 объект справа от нее

Отступ

- $M_i = y_i < w, x_i >$
- $M_i > 0$ классификатор дает верный ответ
- $M_i < 0$ классификатор ошибается
- Чем дальше отступ от нуля, тем больше уверенности

Линейный классификатор

- Линейный классификатор разделяет два класса гиперплоскостью
- Чем больше отступ по модулю, тем дальше объект от гиперплоскости
- Знак отступа говорит о корректности предсказания

Функция потерь в классификации

- Частый выбор бинарная функция потерь $L(y,a) = [a \neq y]$
- Функционал ошибки доля ошибок (error rate) $Q(y,a) = \frac{1}{l} \sum_{i=1}^{l} [a(x_i) \neq y_i]$
- Нередко измеряют долю верных ответов (accuracy): $Q(y,a) = \frac{1}{l} \sum_{i=1}^{l} [a(x_i) = y_i]$

Доля ошибок для линейного классификатора

• Функционал ошибки:

$$Q(w, X) = \frac{1}{l} \sum_{i=1}^{l} [sign(< w, x_i >) \neq y_i]$$

• Индикатор – недифференцируемая функция

Отступы для линейного классификатора

• Функционал ошибки:

$$Q(w, X) = \frac{1}{l} \sum_{i=1}^{l} [sign(< w, x_i >) \neq y_i]$$

• Альтернативная запись:

$$Q(w, X) = \frac{1}{l} \sum_{i=1}^{l} [y_i < w, x_i > < 0]$$

$$y_i < w$$
, $x_i > = M_i$ - отступ

Примеры верхних оценок

- $L^{\sim}(M) = \log(1 + e^{-M}) -$ логистическая
- $L^{\sim}(M) = \max(0, 1 M)$ кусочно линейная
- $L^{\sim}(M) = e^{-M}$ экспоненциальная
- $L^{\sim}(M)=\frac{2}{1+e^{M}}$ сигмоидная

Качество классификации

• Доля неправильных ответов:

$$\frac{1}{l} \sum_{i=1}^{l} [a(x_i) \neq y_i]$$

• Доля правильных ответов:

$$\frac{1}{l} \sum_{i=1}^{l} [a(x_i) = y_i]$$

Матрица ошибок

	Y = 1	Y = -1
a(x) = 1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN0

Точность (precision)

Можно ли доверять классификатору при a(x) = 1?

$$precision(a, X) = \frac{TP}{TP + FP}$$

Полнота (recall)

Как много положительных объектов находит классификатор?

$$recall(a, X) = \frac{TP}{TP + FN}$$

F-мера

$$F = \frac{2 * precision * recall}{precision + recall}$$

- precision = 0.4, recall = 0.5
- F = 0.44
- precision = 0.4, recall = 0.9
- F = 0.55

Работает!

PR-кривая

- Кривая точности-полноты
- Ось X полнота
- Ось У точность
- Точки значения точности и
- полноты при последовательных порогах

ROC-кривая

- Receiver Operating Characteristic
- Ось X False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

• Ось Y - True Positive Rate

$$TPR = \frac{TP}{TP + FN}$$

ROC-кривая

AUC (Area Under Curve) - площадь под ROC-кривой.

 $AUC \in 0; 1$.

• AUC = 1 -

идеальная классификация

• AUC = 0.5 -

случайная классификация

ROC-кривая

- Receiver Operating Characteristic
- Ось X False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

FP + TN — число отрицательных объектов

• Ось Y - True Positive Rate

$$TPR = \frac{TP}{TP + FN}$$

 $\mathsf{T}P + FN$ — число положительных объектов

AUC-ROC

$$FPR = \frac{FP}{FP + TN}$$
 $TPR = \frac{TP}{TP + FN}$

FP и TP нормируются на размеры классов

- AUC-ROC не поменяется при изменении баланса классов
- Учитывает True Negatives
- Идеальный алгоритм: AUC ROC = 1
- Худший алгоритм: $AUC ROC \approx 0.5$

Логистическая регрессия

Логистическая регрессия

- Решаем задачу бинарной классификации: $\mathbb{Y} = \{-1, +1\}$
- Минимизация верхней оценки:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

- Кредитный скоринг
- Стратегия: выдавать кредит только клиентам с b(x)>0.9
- 10% невозвращённых кредитов нормально

- Баннерная реклама
- b(x)— вероятность, что пользователь кликнет по рекламе
- c(x)— прибыль в случае клика
- c(x)b(x)— хотим оптимизировать

- Прогнозирование оттока клиентов
- Медицинская диагностика
- Поисковое ранжирование (насколько веб-страница соответствует запросу?)

Будем говорить, что модель b(x) предсказывает вероятности, среди объектов b(x) = p—если доля положительных равна p

•

Логистическая регрессия

Логистическая регрессия - это линейный классификатор!

Линейный классификатор

$$a(x) = \operatorname{sign} \langle w, x \rangle$$

• Обучим как-нибудь — например, на логистическую функцию потерь:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \log(1 + \exp(-y_i \langle w, x_i \rangle)) \to \min_{w}$$

• Может, $\langle w, x \rangle$ сойдёт за оценку?

$$b(x) = w_1 x + w_0$$

Линейный классификатор

- Переведём выход модели на отрезок [0, 1]
- Например, с помощью сигмоиды¹:

$$\sigma(\langle w, x \rangle) = \frac{1}{1 + \exp(-\langle w, x \rangle)}$$

¹ https://sebastianraschka.com/faq/docs/logistic-why-sigmoid.html

Сигмоида

. .

. .

$$b(x) = \sigma(w_1 x + w_0)$$

. .

• Модель для оценивания вероятностей:

$$b(x) = \sigma(\langle w, x \rangle)$$

• Как обучать?

• Модель для оценивания вероятностей:

$$b(x) = \sigma(\langle w, x \rangle)$$

- Как обучать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

• Модель для оценивания вероятностей:

$$b(x) = \sigma(\langle w, x \rangle)$$

- Как обучать?
- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$ или $\langle w, x_i \rangle \to +\infty$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$ или $\langle w, x_i \rangle \to -\infty$

- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$ или $\langle w, x_i \rangle \to +\infty$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$ или $\langle w, x_i \rangle \to -\infty$
- То есть задача сделать отступы на всех объектах максимальными

$$y_i\langle w, x_i\rangle \to \max_w$$

- Если $y_i = +1$, то $\sigma(\langle w, x_i \rangle) \to 1$
- Если $y_i = -1$, то $\sigma(\langle w, x_i \rangle) \to 0$

$$-\sum_{i=1}^{\ell} \{ [y_i = 1] \sigma(\langle w, x_i \rangle) + [y_i = -1] (1 - \sigma(\langle w, x_i \rangle)) \} \rightarrow \min_{w}$$

$$-\sum_{i=1}^{\ell} \{ [y_i = 1] \sigma(\langle w, x_i \rangle) + [y_i = -1] (1 - \sigma(\langle w, x_i \rangle)) \} \rightarrow \min_{w}$$

- Если $y_i = +1$ и $\sigma(\langle w, x_i \rangle) = 0$, то штраф равен 1
- Надо строже!

$$-\sum_{i=1}^{\ell} \{ [y_i = 1] \log \sigma(\langle w, x_i \rangle) + [y_i = -1] \log (1 - \sigma(\langle w, x_i \rangle)) \} \rightarrow \min_{w}$$

- Если $y_i = +1$ и $\sigma(\langle w, x_i \rangle) = 0$, то штраф равен $-\log 0 = +\infty$
- Достаточно строго
- Функция потерь называется **log-loss**

$$L(y,z) = -[y = 1]\log z - [y = -1]\log(1 - z)$$

Логистическая регрессия

$$-\sum_{i=1}^{\ell} \left\{ [y_{i} = 1] \log \sigma(\langle w, x_{i} \rangle) + [y_{i} = -1] \log \left(1 - \sigma(\langle w, x_{i} \rangle) \right) \right\} =$$

$$-\sum_{i=1}^{\ell} \left\{ [y_{i} = 1] \log \frac{1}{1 + \exp(-\langle w, x \rangle)} + [y_{i} = -1] \log \left(1 - \frac{1}{1 + \exp(-\langle w, x \rangle)} \right) \right\} =$$

$$-\sum_{i=1}^{\ell} \left\{ [y_{i} = 1] \log \frac{1}{1 + \exp(-\langle w, x \rangle)} + [y_{i} = -1] \log \left(\frac{1}{1 + \exp(\langle w, x \rangle)} \right) \right\} =$$

$$\sum_{i=1}^{\ell} \left\{ [y_{i} = 1] \log (1 + \exp(-\langle w, x \rangle)) + [y_{i} = -1] \log \left((+ \exp(\langle w, x \rangle)) \right) \right\} =$$

$$\sum_{i=1}^{\ell} \log (1 + \exp(-y_{i} \langle w, x_{i} \rangle))$$

$$\sum_{i=1}^{\ell} \log (1 + \exp(-y_{i} \langle w, x_{i} \rangle))$$

Метод опорных векторов

Hinge loss

• Бинарная классификация: $Y = \{-1, +1\}$

• Минимизация верхней оценки:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \max(0, 1 - y_i \langle w, x_i \rangle) \to \min_{w}$$

Какой классификатор лучше?

• Будем максимизировать отступ классификатора — расстояние от гиперплоскости до ближайшего объекта

- Будем максимизировать отступ классификатора расстояние от гиперплоскости до ближайшего объекта
- При этом будет стараться сделать поменьше ошибок
- По сути, делаем как можно меньше предположений о модели, и верим, что это понизит вероятность переобучения

Простой случай

- Будем считать, что выборка линейно разделима
- Существует линейный классификатор, не допускающий ни одной ошибки

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

• Расстояние от точки до гиперплоскости $\langle w, x \rangle + w_0 = 0$:

$$\frac{|\langle w, x \rangle + w_0|}{\|w\|}$$

• Отступ классификатора:

$$\min_{i=1,\dots,\ell} \frac{|\langle w, x_i \rangle + w_0|}{\|w\|}$$

Небольшое предположение

• Линейный классификатор:

$$a(x) = \text{sign}(\langle w, x_i \rangle + w_0)$$

• Если мы поделим w и w_0 на число k>0, то выходы классификатора никак не поменяются:

$$a(x) = \operatorname{sign}\left(\frac{\langle w, x_i \rangle + w_0}{k}\right) = \operatorname{sign}\left(\langle w, x_i \rangle + w_0\right)$$

Небольшое предположение

• Поделим w и w_0 на $\min_{i=1,\dots,\ell} |\langle w, x_i \rangle + w_0| > 0$, после этого будет выполнено

$$\min_{i=1,\dots,\ell} |\langle w, x_i \rangle + w_0| = 1$$

• Расстояние от точки до гиперплоскости $\langle w, x \rangle + w_0 = 0$:

$$\frac{|\langle w, x \rangle + w_0|}{\|w\|}$$

• Отступ классификатора:

$$\min_{i=1,\dots,\ell} \frac{|\langle w, x_i \rangle + w_0|}{||w||} = \frac{\min_{i=1,\dots,\ell} |\langle w, x_i \rangle + w_0|}{||w||} = \frac{1}{||w||}$$

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

$$\frac{1}{\|w\|} \to \max_{w}$$

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

$$\frac{1}{\|w\|} \to \max_{w}$$

• При условии, что $\min_{i=1,\dots,\ell} |\langle w, x_i \rangle + w_0| = 1$

- Требование 1: $y_i(\langle w, x_i \rangle + w_0) > 0$ для всех $i = 1, ..., \ell$
- Требование 2: максимальный отступ классификатора

$$\frac{1}{\|w\|} \to \max_{w}$$

- При условии, что $|\langle w, x_i \rangle + w_0| \ge 1$
- И мы минимизируем $\|w\|$ тогда где-то модуль отступа будет равен 1

Метод опорных векторов (SVM)

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 \end{cases}$$

• Любой линейный классификатор допускает хотя бы одну ошибку

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 \end{cases}$$

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

$$\begin{cases} ||w||^2 \to \min_{w,w_0} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - 10^{1000} \end{cases}$$

Метод опорных векторов

$$\begin{cases} ||w||^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

Метод опорных векторов

$$\begin{cases} ||w||^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i(\langle w, x_i \rangle + w_0) \ge 1 - \xi_i \\ \xi_i \ge 0 \end{cases}$$

• Объединим ограничения:

$$\xi_i \ge \max(0, 1 - y_i(\langle w, x_i \rangle + w_0))$$

Метод опорных векторов

$$C\sum_{i=1}^{\ell} \max(0, 1 - y_i(\langle w, x_i \rangle + w_0)) + ||w||^2 \to \min_{w, w_0}$$

• Функция потерь (hinge loss) + регуляризация

Сравнение логистической регрессии и **SVM**

Резюме

- Логистическая регрессия минимизирует логистические потери
- Метод опорных векторов основан на идее максимизации отступа классификатора

Метод опорных векторов

Спасибо за внимание!

Ildar Safilo

@Ildar_Saf irsafilo@gmail.com https://www.linkedin.com/in/isafilo/