Nachiketa Mishra IIITDM Kancheepuram, Chennai

Let V be a vector space over a field F.

Let V be a vector space over a field F. A subspace of V is a subset W of V

Let V be a vector space over a field F. A subspace of V is a subset W of V which is itself a vector space over F

Let V be a vector space over a field F. A subspace of V is a subset W of V which is itself a vector space over F with the operations of vector addition and scalar multiplication defined on V.

Let V be a vector space over a field F. A subspace of V is a subset W of V which is itself a vector space over F with the operations of vector addition and scalar multiplication defined on V.

Let V be a vector space over a field F. A subspace of V is a subset W of V which is itself a vector space over F with the operations of vector addition and scalar multiplication defined on V.

Remark

If $\langle V, F, +, . \rangle$ is a vector space, then

- (i) $\forall \alpha, \beta \in V$, $\alpha + \beta \in V$ (V is closed under vector addition)
- (ii) $\forall c \in F$ and $\alpha \in V$, $c\alpha \in V$ (V is closed under scalar multiplication)
- (iii) If $\alpha_1, \ldots, \alpha_n \in V$, then $c_1\alpha_1 + \ldots + c_n\alpha_n \in V$ where $c_i \in F$.

Let V be a vector space over the field F.

Let V be a vector space over the field F. A non-empty subset W of V is a subspace of V if and only if

$$\forall \alpha, \beta \in W, c \in F \Longrightarrow c\alpha + \beta \in W.$$

Let V be a vector space over the field F. A non-empty subset W of V is a subspace of V if and only if

$$\forall \alpha, \beta \in W, c \in F \Longrightarrow c\alpha + \beta \in W.$$

Proof:

Case 1 : Suppose that W is a subspace of V.

Let V be a vector space over the field F. A non-empty subset W of V is a subspace of V if and only if

$$\forall \alpha, \beta \in W, c \in F \Longrightarrow c\alpha + \beta \in W.$$

Proof:

Case 1 : Suppose that W is a subspace of $V \longrightarrow W$ is a vector space over the field F.

Let V be a vector space over the field F. A non-empty subset W of V is a subspace of V if and only if

$$\forall \alpha, \beta \in W, c \in F \Longrightarrow c\alpha + \beta \in W.$$

Proof:

Case 1 : Suppose that W is a subspace of $V \Longrightarrow W$ is a vector space over the field F.

If
$$c \in F, \alpha, \beta \in W$$
,

Let V be a vector space over the field F. A non-empty subset W of V is a subspace of V if and only if

$$\forall \alpha, \beta \in W, c \in F \Longrightarrow c\alpha + \beta \in W.$$

Proof:

Case 1 : Suppose that W is a subspace of V. $\Longrightarrow W$ is a vector space over the field F.

If $c \in F, \alpha, \beta \in W$, then $c\alpha \in W$ (closed under scalar multiplication) and

Let V be a vector space over the field F. A non-empty subset W of V is a subspace of V if and only if

$$\forall \alpha, \beta \in W, c \in F \Longrightarrow c\alpha + \beta \in W.$$

Proof:

Case 1 : Suppose that W is a subspace of $V \Longrightarrow W$ is a vector space over the field F.

If $c \in F, \alpha, \beta \in W$, then $c\alpha \in W$ (closed under scalar multiplication) and $c\alpha + \beta \in W$ (closed under vector addition).

Let V be a vector space over the field F. A non-empty subset W of V is a subspace of V if and only if

$$\forall \alpha, \beta \in W, c \in F \Longrightarrow c\alpha + \beta \in W.$$

Proof:

Case 1 : Suppose that W is a subspace of V. $\Longrightarrow W$ is a vector space over the field F.

If $c \in F, \alpha, \beta \in W$, then $c\alpha \in W$ (closed under scalar multiplication) and $c\alpha + \beta \in W$ (closed under vector addition). Hence

$$\forall \alpha, \beta \in W, c \in F \Longrightarrow c\alpha + \beta \in W.$$

Case 2 : Suppose that W is a non-empty subset of V such that

$$\forall \alpha, \beta \in W, c \in F \Longrightarrow c\alpha + \beta \in W. ----(a)$$

Case 2 : Suppose that W is a non-empty subset of V such that

$$\forall \alpha, \beta \in W, c \in F \Longrightarrow c\alpha + \beta \in W. ----(a)$$

Since $W \neq \phi$, there exists $\rho \in W$ and hence $(-1)\rho + \rho = 0 \in W$, by (a).

Case 2 : Suppose that W is a non-empty subset of V such that

$$\forall \alpha, \beta \in W, c \in F \Longrightarrow c\alpha + \beta \in W. ----(a)$$

Since $W \neq \phi$, there exists $\rho \in W$ and hence $(-1)\rho + \rho = 0 \in W$, by (a). For all $\alpha \in W \subseteq V$, $1.\alpha = \alpha$ (V is a vector space).

Case 2 : Suppose that W is a non-empty subset of V such that

$$\forall \alpha, \beta \in W, c \in F \Longrightarrow c\alpha + \beta \in W. ----(a)$$

Since $W \neq \phi$, there exists $\rho \in W$ and hence $(-1)\rho + \rho = 0 \in W$, by (a). For all $\alpha \in W \subseteq V$, $1.\alpha = \alpha$ (V is a vector space). For all $\alpha, \beta \in W$, $1.\alpha + \beta = \alpha + \beta \in W$ by (a).

Case 2 : Suppose that W is a non-empty subset of V such that

$$\forall \alpha, \beta \in W, c \in F \Longrightarrow c\alpha + \beta \in W. ----(a)$$

Since $W \neq \phi$, there exists $\rho \in W$ and hence $(-1)\rho + \rho = 0 \in W$, by (a). For all $\alpha \in W \subseteq V$, $1.\alpha = \alpha$ (V is a vector space). For all $\alpha, \beta \in W$, $1.\alpha + \beta = \alpha + \beta \in W$ by (a). For all $c \in F$ and $c \in W$, $c \in C$, by (a).

Case 2 : Suppose that W is a non-empty subset of V such that

$$\forall \alpha, \beta \in W, c \in F \Longrightarrow c\alpha + \beta \in W. ----(a)$$

Since $W \neq \phi$, there exists $\rho \in W$ and hence $(-1)\rho + \rho = 0 \in W$, by (a). For all $\alpha \in W \subseteq V$, $1.\alpha = \alpha$ (V is a vector space). For all $\alpha, \beta \in W$, $1.\alpha + \beta = \alpha + \beta \in W$ by (a). For all $c \in F$ and $c \in W$, $c \in A$ for all $c \in A$ and $c \in A$ for all $c \in A$ for all $c \in A$ by (a).

Case 2 : Suppose that W is a non-empty subset of V such that

$$\forall \alpha, \beta \in W, c \in F \Longrightarrow c\alpha + \beta \in W. ----(a)$$

Since $W \neq \phi$, there exists $\rho \in W$ and hence $(-1)\rho + \rho = 0 \in W$, by (a). For all $\alpha \in W \subseteq V$, $1.\alpha = \alpha$ (V is a vector space). For all $\alpha, \beta \in W$, $1.\alpha + \beta = \alpha + \beta \in W$ by (a). For all $c \in F$ and $c \in W$, $c\alpha + 0 = c\alpha \in W$, by (a). In addition, $(-1)\alpha + 0 = -\alpha \in W$ for all $c \in W$ by (a). Since $c \in W \subseteq V$, $c \in W$, $c \in W$, $c \in W$ satisfies the rest of the axioms (verify!) of a vector space and thus $c \in W$ is a subspace of $c \in W$.

(1) Let V be a vector space over the field F. Then the subset $\{0\}$ of V is a subspace of V and it is called the zero subspace.

- (1) Let V be a vector space over the field F. Then the subset $\{0\}$ of V is a subspace of V and it is called the zero subspace.
- (2) Note that $W = \{(0, x_2 \dots, x_n) : x_i \in F\}$ is a subspace of F^n .

- (1) Let V be a vector space over the field F. Then the subset $\{0\}$ of V is a subspace of V and it is called the zero subspace.
- (2) Note that $W = \{(0, x_2 \dots, x_n) : x_i \in F\}$ is a subspace of F^n .

Proof: Clearly $0 = (0, 0, ..., 0) \in W$.

- (1) Let V be a vector space over the field F. Then the subset $\{0\}$ of V is a subspace of V and it is called the zero subspace.
- (2) Note that $W = \{(0, x_2 \dots, x_n) : x_i \in F\}$ is a subspace of F^n .

Proof: Clearly $0 = (0, 0, \dots, 0) \in W$. So $\phi \neq W \subseteq F^n$.

- (1) Let V be a vector space over the field F. Then the subset $\{0\}$ of V is a subspace of V and it is called the zero subspace.
- (2) Note that $W = \{(0, x_2 \dots, x_n) : x_i \in F\}$ is a subspace of F^n .

Proof: Clearly
$$0 = (0, 0, ..., 0) \in W$$
. So $\phi \neq W \subseteq F^n$. Let $\alpha = (0, x_2, ..., x_n)$, $\beta = (0, y_2, ..., y_n) \in W$ and $c \in F$.

- (1) Let V be a vector space over the field F. Then the subset $\{0\}$ of V is a subspace of V and it is called the zero subspace.
- (2) Note that $W = \{(0, x_2 \dots, x_n) : x_i \in F\}$ is a subspace of F^n .

Proof: Clearly
$$0 = (0, 0, ..., 0) \in W$$
. So $\phi \neq W \subseteq F^n$. Let $\alpha = (0, x_2, ..., x_n)$, $\beta = (0, y_2, ..., y_n) \in W$ and $c \in F$.

$$c\alpha + \beta = (0, cx_2 + y_2, \dots, cx_n + y_n) \in W$$

- (1) Let V be a vector space over the field F. Then the subset $\{0\}$ of V is a subspace of V and it is called the zero subspace.
- (2) Note that $W = \{(0, x_2 \dots, x_n) : x_i \in F\}$ is a subspace of F^n .

Proof: Clearly
$$0 = (0, 0, \dots, 0) \in W$$
. So $\phi \neq W \subseteq F^n$. Let $\alpha = (0, x_2, \dots, x_n)$, $\beta = (0, y_2, \dots, y_n) \in W$ and $c \in F$.

$$c\alpha + \beta = (0, cx_2 + y_2, \dots, cx_n + y_n) \in W$$

By Theorem 1, W is a subspace of F^n .

- (1) Let V be a vector space over the field F. Then the subset $\{0\}$ of V is a subspace of V and it is called the zero subspace.
- (2) Note that $W = \{(0, x_2 \dots, x_n) : x_i \in F\}$ is a subspace of F^n .

Proof: Clearly
$$0 = (0, 0, ..., 0) \in W$$
. So $\phi \neq W \subseteq F^n$. Let $\alpha = (0, x_2, ..., x_n)$, $\beta = (0, y_2, ..., y_n) \in W$ and $c \in F$.

$$c\alpha + \beta = (0, cx_2 + y_2, \dots, cx_n + y_n) \in W$$

By Theorem 1, W is a subspace of F^n .

(3) Prove that $W = \{(1 + x_2, x_2, x_3, \dots, x_n) : x_i \in F\}$ is not a subspace of F^n .

- (1) Let V be a vector space over the field F. Then the subset $\{0\}$ of V is a subspace of V and it is called the zero subspace.
- (2) Note that $W = \{(0, x_2 \dots, x_n) : x_i \in F\}$ is a subspace of F^n .

Proof: Clearly
$$0 = (0, 0, ..., 0) \in W$$
. So $\phi \neq W \subseteq F^n$. Let $\alpha = (0, x_2, ..., x_n)$, $\beta = (0, y_2, ..., y_n) \in W$ and $c \in F$.

$$c\alpha + \beta = (0, cx_2 + y_2, \dots, cx_n + y_n) \in W$$

By Theorem 1, W is a subspace of F^n .

(3) Prove that $W = \{(1 + x_2, x_2, x_3, \dots, x_n) : x_i \in F\}$ is not a subspace of F^n .

Reason : $0 = (0, 0, ..., 0) \notin W$

(4) Prove that the solution set of the homogeneous system AX = 0 is subspace of $F^{n \times 1}$ where $A \in F^{m \times n}$.

(4) Prove that the solution set of the homogeneous system AX = 0 is subspace of $F^{n \times 1}$ where $A \in F^{m \times n}$. Let $S = \{X \in F^{n \times 1} : AX = 0\}$.

(4) Prove that the solution set of the homogeneous system AX = 0 is subspace of $F^{n \times 1}$ where $A \in F^{m \times n}$.

Let $S = \{X \in F^{n \times 1} : AX = 0\}$. Clearly $0 \in S \neq \phi$.

(4) Prove that the solution set of the homogeneous system AX = 0 is subspace of $F^{n \times 1}$ where $A \in F^{m \times n}$. Let $S = \{X \in F^{n \times 1} : AX = 0\}$. Clearly $0 \in S \neq \phi$.

Let $X_1, X_2 \in S$ and $c \in F$.

(4) Prove that the solution set of the homogeneous system

AX = 0 is subspace of $F^{n \times 1}$ where $A \in F^{m \times n}$.

Let $S = \{X \in F^{n \times 1} : AX = 0\}$. Clearly $0 \in S \neq \phi$.

Let $X_1, X_2 \in S$ and $c \in F$. $\Longrightarrow AX_1 = AX_2 = 0$.

(4) Prove that the solution set of the homogeneous system

$$AX = 0$$
 is subspace of $F^{n \times 1}$ where $A \in F^{m \times n}$.

Let
$$S = \{X \in F^{n \times 1} : AX = 0\}$$
. Clearly $0 \in S \neq \phi$.

Let
$$X_1, X_2 \in S$$
 and $c \in F$. $\Longrightarrow AX_1 = AX_2 = 0$.

$$\implies A(cX_1+X_2)=cAX_1+AX_2=0,$$

(4) Prove that the solution set of the homogeneous system

AX = 0 is subspace of $F^{n \times 1}$ where $A \in F^{m \times n}$.

Let $S = \{X \in F^{n \times 1} : AX = 0\}$. Clearly $0 \in S \neq \phi$.

Let $X_1, X_2 \in S$ and $c \in F$. $\Longrightarrow AX_1 = AX_2 = 0$.

$$\implies$$
 $A(cX_1 + X_2) = cAX_1 + AX_2 = 0, \implies cX_1 + X_2 \in S$

6

(4) Prove that the solution set of the homogeneous system

$$AX = 0$$
 is subspace of $F^{n \times 1}$ where $A \in F^{m \times n}$.

Let
$$S = \{X \in F^{n \times 1} : AX = 0\}$$
. Clearly $0 \in S \neq \phi$.

Let
$$X_1, X_2 \in S$$
 and $c \in F$. $\Longrightarrow AX_1 = AX_2 = 0$.

$$\implies$$
 $A(cX_1 + X_2) = cAX_1 + AX_2 = 0, \implies cX_1 + X_2 \in S$

$$\forall X_1, X_2 \in S, c \in F \Longrightarrow cX_1 + X_2 \in S$$

6

(4) Prove that the solution set of the homogeneous system

$$AX = 0$$
 is subspace of $F^{n \times 1}$ where $A \in F^{m \times n}$.

Let
$$S = \{X \in F^{n \times 1} : AX = 0\}$$
. Clearly $0 \in S \neq \phi$.

Let
$$X_1, X_2 \in S$$
 and $c \in F$. $\Longrightarrow AX_1 = AX_2 = 0$.

$$\implies$$
 $A(cX_1 + X_2) = cAX_1 + AX_2 = 0, \implies cX_1 + X_2 \in S$

$$\forall X_1, X_2 \in S, c \in F \Longrightarrow cX_1 + X_2 \in S$$

Hence, *S* is a subspace of $F^{n\times 1}$.

Let V be a vector space over the field F. Let W_1 , W_2 be two subspaces of V. Then $W_1 \cap W_2$ is a subspace of V.

7

Let V be a vector space over the field F. Let W_1 , W_2 be two subspaces of V. Then $W_1 \cap W_2$ is a subspace of V.

Proof: Since W_1 and W_2 are subspace of V, (a) $0 \in W_i \neq \phi$ and (b) $\forall \alpha, \beta \in W_i, c \in F \Longrightarrow c\alpha + \beta \in W_i$ for i = 1, 2

Let V be a vector space over the field F. Let W_1 , W_2 be two subspaces of V. Then $W_1 \cap W_2$ is a subspace of V.

Proof : Since W_1 and W_2 are subspace of V, (a) $0 \in W_i \neq \phi$ and (b) $\forall \ \alpha, \beta \in W_i, c \in F \Longrightarrow c\alpha + \beta \in W_i$ for i = 1, 2 By (a), $0 \in W_1 \cap W_2 \neq \phi$.

Let V be a vector space over the field F. Let W_1 , W_2 be two subspaces of V. Then $W_1 \cap W_2$ is a subspace of V.

Proof : Since W_1 and W_2 are subspace of V, (a) $0 \in W_i \neq \phi$ and (b) $\forall \ \alpha, \beta \in W_i, c \in F \Longrightarrow c\alpha + \beta \in W_i$ for i = 1, 2 By (a), $0 \in W_1 \cap W_2 \neq \phi$.

Let $\alpha, \beta \in W_1 \cap W_2$, $c \in F$.

Let V be a vector space over the field F. Let W_1 , W_2 be two subspaces of V. Then $W_1 \cap W_2$ is a subspace of V.

Proof : Since W_1 and W_2 are subspace of V, (a) $0 \in W_i \neq \phi$ and (b) $\forall \alpha, \beta \in W_i, c \in F \Longrightarrow c\alpha + \beta \in W_i$ for i = 1, 2 By (a), $0 \in W_1 \cap W_2 \neq \phi$.

Let $\alpha, \beta \in W_1 \cap W_2$, $c \in F$. $\Longrightarrow \alpha, \beta \in W_i$ for i = 1, 2.

Let V be a vector space over the field F. Let W_1 , W_2 be two subspaces of V. Then $W_1 \cap W_2$ is a subspace of V.

Proof : Since W_1 and W_2 are subspace of V, (a) $0 \in W_i \neq \phi$ and (b) $\forall \alpha, \beta \in W_i, c \in F \Longrightarrow c\alpha + \beta \in W_i$ for i = 1, 2 By (a), $0 \in W_1 \cap W_2 \neq \phi$.

Let $\alpha, \beta \in W_1 \cap W_2$, $c \in F$. $\Longrightarrow \alpha, \beta \in W_i$ for i = 1, 2.

 $\implies c\alpha + \beta \in W_i \text{ for } i = 1,2 \text{ by (b)}.$

Let V be a vector space over the field F. Let W_1 , W_2 be two subspaces of V. Then $W_1 \cap W_2$ is a subspace of V.

Proof: Since W_1 and W_2 are subspace of V, (a) $0 \in W_i \neq \phi$ and (b) $\forall \alpha, \beta \in W_i, c \in F \Longrightarrow c\alpha + \beta \in W_i$ for i = 1, 2 By (a), $0 \in W_1 \cap W_2 \neq \phi$.

Let $\alpha, \beta \in W_1 \cap W_2$, $c \in F$. $\Longrightarrow \alpha, \beta \in W_i$ for i = 1, 2.

$$\implies c\alpha + \beta \in W_i \text{ for } i = 1, 2 \text{ by (b)}.$$

$$\implies c\alpha + \beta \in W_1 \cap W_2.$$

Let V be a vector space over the field F. Let W_1 , W_2 be two subspaces of V. Then $W_1 \cap W_2$ is a subspace of V.

Proof : Since W_1 and W_2 are subspace of V, (a) $0 \in W_i \neq \phi$ and (b) $\forall \alpha, \beta \in W_i, c \in F \Longrightarrow c\alpha + \beta \in W_i$ for i = 1, 2

By (a), $0 \in W_1 \cap W_2 \neq \phi$.

Let $\alpha, \beta \in W_1 \cap W_2$, $c \in F$. $\Longrightarrow \alpha, \beta \in W_i$ for i = 1, 2.

 $\implies c\alpha + \beta \in W_i$ for i = 1, 2 by (b).

 $\implies c\alpha + \beta \in W_1 \cap W_2.$

By Theorem 1, $W_1 \cap W_2$ is a subspace of V.

Let V be a vector space over the field F. Let W_1 , W_2 be two subspaces of V. Then $W_1 \cap W_2$ is a subspace of V.

Proof : Since W_1 and W_2 are subspace of V, (a) $0 \in W_i \neq \phi$ and (b) $\forall \alpha, \beta \in W_i, c \in F \Longrightarrow c\alpha + \beta \in W_i$ for i = 1, 2 By (a), $0 \in W_1 \cap W_2 \neq \phi$.

Let $\alpha, \beta \in W_1 \cap W_2$, $c \in F$. $\Longrightarrow \alpha, \beta \in W_i$ for i = 1, 2.

 $\implies c\alpha + \beta \in W_i \text{ for } i = 1,2 \text{ by (b)}.$

 $\implies c\alpha + \beta \in W_1 \cap W_2.$

By Theorem 1, $W_1 \cap W_2$ is a subspace of V.

Let S be a subset of a vector space V.

Let S be a subset of a vector space V. The subspace spanned by S is defined as the intersection all subspaces of V which contains S.

Let S be a subset of a vector space V. The subspace spanned by S is defined as the intersection all subspaces of V which contains S.

Subspace spanned by $S = \cap \{W : S \subseteq W, W \text{ is a subspace of } V\}$

Let S be a subset of a vector space V. The subspace spanned by S is defined as the intersection all subspaces of V which contains S.

Subspace spanned by $S = \cap \{W : S \subseteq W, W \text{ is a subspace of } V\}$

Note (1): Subspace spanned by S is the smallest subspace which contains S.

Let S be a subset of a vector space V. The subspace spanned by S is defined as the intersection all subspaces of V which contains S.

Subspace spanned by $S = \cap \{W : S \subseteq W, W \text{ is a subspace of } V\}$

Note (1): Subspace spanned by S is the smallest subspace which contains S.

Note (2): If $S = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$, we call the subspace spanned by S as the subspace spanned by the vectors $\alpha_1, \alpha_2, \dots, \alpha_n$.

$$L(S) = \left\{ \sum_{i=1}^{n} c_{i} \alpha_{i} : c_{i} \in F, \alpha_{i} \in S, n \in \mathbb{N} \right\}$$

$$L(S) = \left\{ \sum_{i=1}^{n} c_{i} \alpha_{i} : c_{i} \in F, \alpha_{i} \in S, n \in \mathbb{N} \right\}$$

(1) Let
$$S = \{(1,0,0), (0,0,1)\}$$

$$L(S) = \left\{ \sum_{i=1}^{n} c_{i} \alpha_{i} : c_{i} \in F, \alpha_{i} \in S, n \in \mathbb{N} \right\}$$

(1) Let
$$S = \{(1,0,0),(0,0,1)\}$$

$$L(S) = \{a(1,0,0) + b(0,0,1) : a, b \in \mathbb{R}\}\$$

$$L(S) = \left\{ \sum_{i=1}^{n} c_{i} \alpha_{i} : c_{i} \in F, \alpha_{i} \in S, n \in \mathbb{N} \right\}$$

$$(1) \text{ Let } S = \{(1,0,0), (0,0,1)\}$$

$$L(S) = \{a(1,0,0) + b(0,0,1) : a,b \in \mathbb{R}\}$$

$$L(S) = \{(a,0,b) : a,b \in \mathbb{R}\}$$

L(S) is a subspace of V and $S \subseteq L(S)$.

Proof: Since $S \neq \phi$, there exists $\alpha \in S \subseteq V$.

L(S) is a subspace of V and $S \subseteq L(S)$.

Proof: Since $S \neq \phi$, there exists $\alpha \in S \subseteq V$. By Note 2, $0\alpha = 0 \in L(S)$ (0α is a linear combination of α).

L(S) is a subspace of V and $S \subseteq L(S)$.

Proof: Since $S \neq \phi$, there exists $\alpha \in S \subseteq V$. By Note 2, $0\alpha = 0 \in L(S)$ (0α is a linear combination of α). $L(S) \neq \phi$.

L(S) is a subspace of V and $S \subseteq L(S)$.

Proof: Since $S \neq \phi$, there exists $\alpha \in S \subseteq V$. By Note 2, $0\alpha = 0 \in L(S)$ (0α is a linear combination of α). $L(S) \neq \phi$. In addition $\forall \alpha \in S$, $1.\alpha = \alpha \in L(S)$ and thus $S \subseteq L(S)$.

L(S) is a subspace of V and $S\subseteq L(S)$. **Proof:** Since $S\neq \phi$, there exists $\alpha\in S\subseteq V$. By Note 2, $0\alpha=0\in L(S)$ (0α is a linear combination of α). $L(S)\neq \phi$. In addition $\forall \alpha\in S$, $1.\alpha=\alpha\in L(S)$ and thus $S\subseteq L(S)$. Let $x,y\in L(S)$.

L(S) is a subspace of V and $S \subseteq L(S)$.

Proof: Since $S \neq \phi$, there exists $\alpha \in S \subseteq V$. By Note 2, $0\alpha = 0 \in L(S)$ (0α is a linear combination of α). $L(S) \neq \phi$. In addition $\forall \alpha \in S$, $1.\alpha = \alpha \in L(S)$ and thus $S \subseteq L(S)$.

Let
$$x, y \in L(S)$$
. $\Longrightarrow x = \sum_{i=1}^{m} c_i \alpha_i, y = \sum_{j=1}^{n} d_j \beta_j$

L(S) is a subspace of V and $S \subseteq L(S)$.

Proof: Since $S \neq \phi$, there exists $\alpha \in S \subseteq V$. By Note 2, $0\alpha = 0 \in L(S)$ (0α is a linear combination of α). $L(S) \neq \phi$. In addition $\forall \alpha \in S$, $1.\alpha = \alpha \in L(S)$ and thus $S \subseteq L(S)$.

Let
$$x, y \in L(S)$$
. $\Longrightarrow x = \sum_{i=1}^{m} c_i \alpha_i, y = \sum_{j=1}^{n} d_j \beta_j$
 $\Longrightarrow cx + y = \sum_{i=1}^{m} cc_i \alpha_i + \sum_{i=1}^{n} d_j \beta_j$ is a linear combination of vectors

in S. Thus $cx + y \in L(S)$.

L(S) is a subspace of V and $S \subseteq L(S)$.

Proof: Since $S \neq \phi$, there exists $\alpha \in S \subseteq V$. By Note 2, $0\alpha = 0 \in L(S)$ (0α is a linear combination of α). $L(S) \neq \phi$. In addition $\forall \alpha \in S$, $1.\alpha = \alpha \in L(S)$ and thus $S \subseteq L(S)$.

Let
$$x, y \in L(S)$$
. $\Longrightarrow x = \sum_{i=1}^{m} c_i \alpha_i, y = \sum_{j=1}^{n} d_j \beta_j$

$$\implies$$
 $cx + y = \sum_{i=1}^{m} cc_i \alpha_i + \sum_{j=1}^{m} d_j \beta_j$ is a linear combination of vectors

in S. Thus $cx + y \in L(S)$.

 \implies L(S) is a subspace of V by Theorem 1.

Let S be a non-empty subset of a vector space V over the field F. Then the subspace spanned by the set S is the set of all linear combinations of vectors in S.

Let S be a non-empty subset of a vector space V over the field F. Then the subspace spanned by the set S is the set of all linear combinations of vectors in S.

Proof.

It is enough to prove that the subspace spanned by S = L(S).

Let S be a non-empty subset of a vector space V over the field F. Then the subspace spanned by the set S is the set of all linear combinations of vectors in S.

Proof.

It is enough to prove that the subspace spanned by S = L(S). Prove that

$$W^* = \cap \{W : S \subseteq W, W \text{ is a subspace of } V\}$$

Let S be a non-empty subset of a vector space V over the field F. Then the subspace spanned by the set S is the set of all linear combinations of vectors in S.

Proof.

It is enough to prove that the subspace spanned by S = L(S). Prove that

$$W^* = \cap \{W : S \subseteq W, W \text{ is a subspace of } V\} = L(S) - - - (a)$$

Theorem 3

Let S be a non-empty subset of a vector space V over the field F. Then the subspace spanned by the set S is the set of all linear combinations of vectors in S.

Proof.

It is enough to prove that the subspace spanned by S = L(S). Prove that

$$W^* = \cap \{W : S \subseteq W, W \text{ is a subspace of } V\} = L(S) - - - (a)$$

By the previous lemma, $S \subseteq L(S)$ and L(S) is a subspace of V,

Theorem 3

Let S be a non-empty subset of a vector space V over the field F. Then the subspace spanned by the set S is the set of all linear combinations of vectors in S.

Proof.

It is enough to prove that the subspace spanned by S = L(S). Prove that

$$W^* = \cap \{W : S \subseteq W, W \text{ is a subspace of } V\} = L(S) - - - (a)$$

By the previous lemma, $S \subseteq L(S)$ and L(S) is a subspace of V, and thus $W^* \subseteq L(S) - - - - (i)$.

Claim : If W is a subspace of V and $S \subseteq W$, then $L(S) \subseteq W$. Let $x \in L(S)$.

Claim: If W is a subspace of V and $S \subseteq W$, then $L(S) \subseteq W$. Let $x \in L(S)$. $\implies x$ is a linear combination of vectors in S. Since W is a subspace and $S \subseteq W$, every linear combination of vectors in S is also a member of W and thus $x \in W$.

Claim: If W is a subspace of V and $S \subseteq W$, then $L(S) \subseteq W$. Let $x \in L(S)$. $\implies x$ is a linear combination of vectors in S. Since W is a subspace and $S \subseteq W$, every linear combination of vectors in S is also a member of W and thus $x \in W$.

$$x \in L(S) \Longrightarrow x \in W$$
.

Claim: If W is a subspace of V and $S \subseteq W$, then $L(S) \subseteq W$. Let $x \in L(S)$. $\implies x$ is a linear combination of vectors in S. Since W is a subspace and $S \subseteq W$, every linear combination of vectors in S is also a member of W and thus $x \in W$.

$$x \in L(S) \Longrightarrow x \in W$$
. Thus $L(S) \subseteq W$.

Claim: If W is a subspace of V and $S \subseteq W$, then $L(S) \subseteq W$. Let $x \in L(S)$. $\implies x$ is a linear combination of vectors in S. Since W is a subspace and $S \subseteq W$, every linear combination of vectors in S is also a member of W and thus $x \in W$.

$$x \in L(S) \Longrightarrow x \in W$$
. Thus $L(S) \subseteq W$.

By above claim,

$$L(S) \subseteq \cap \{W : S \subseteq W, W \text{ is a subspace of } V\}$$

Claim: If W is a subspace of V and $S \subseteq W$, then $L(S) \subseteq W$. Let $x \in L(S)$. $\implies x$ is a linear combination of vectors in S. Since W is a subspace and $S \subseteq W$, every linear combination of vectors in S is also a member of S and thus S is also a member of S.

$$x \in L(S) \Longrightarrow x \in W$$
. Thus $L(S) \subseteq W$.

By above claim,

$$L(S) \subseteq \cap \{W : S \subseteq W, W \text{ is a subspace of } V\} = W^* - -(ii)$$

Claim: If W is a subspace of V and $S \subseteq W$, then $L(S) \subseteq W$. Let $x \in L(S)$. $\implies x$ is a linear combination of vectors in S. Since W is a subspace and $S \subseteq W$, every linear combination of vectors in S is also a member of W and thus $x \in W$.

$$x \in L(S) \Longrightarrow x \in W$$
. Thus $L(S) \subseteq W$.

By above claim,

$$L(S) \subseteq \cap \{W : S \subseteq W, W \text{ is a subspace of } V\} = W^* - -(ii)$$

By (i) and (ii),

$$W^* = \cap \{W : S \subseteq W, W \text{ is a subspace of } V\} = L(S) - - - (a)$$

Let $A \in F^{m \times n}$ with rows $\{R_1, R_2, \dots, R_m\}$ and columns $\{C_1, C_2, \dots, C_n\}$.

Let
$$A \in F^{m \times n}$$
 with rows $\{R_1, R_2, \dots, R_m\}$ and columns $\{C_1, C_2, \dots, C_n\}$. Then

Row space of $A = \text{The subspace spanned by } R_1, R_2, \dots, R_m$

Let $A \in F^{m \times n}$ with rows $\{R_1, R_2, \dots, R_m\}$ and columns $\{C_1, C_2, \dots, C_n\}$. Then

Row space of $A = \text{The subspace spanned by } R_1, R_2, \dots, R_m$

Column space of A = The subspace spanned by C_1, C_2, \ldots, C_n

Let
$$A \in F^{m \times n}$$
 with rows $\{R_1, R_2, \dots, R_m\}$ and columns $\{C_1, C_2, \dots, C_n\}$. Then

Row space of $A = \text{The subspace spanned by } R_1, R_2, \dots, R_m$

Column space of A = The subspace spanned by C_1, C_2, \ldots, C_n

Note : Row space of $A \subseteq F^{1 \times n}$ and Column space of $A \subseteq F^{m \times 1}$.

Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

where

$$R_1 = (1,0,0), R_2 = (0,1,0), C_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, C_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, C_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

where

$$R_1 = (1,0,0), R_2 = (0,1,0), C_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, C_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, C_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Row space of A

$$= \{x(1,0,0) + y(0,1,0) : x,y \in F\}$$

Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

where

$$R_1 = (1,0,0), R_2 = (0,1,0), C_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, C_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, C_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Row space of A

$$= \{x(1,0,0) + y(0,1,0) : x,y \in F\} = \{(x,y,0) : x,y \in F\}$$

Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

where

$$R_1 = (1,0,0), R_2 = (0,1,0), C_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, C_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, C_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Row space of A

$$= \{x(1,0,0) + y(0,1,0) : x,y \in F\} = \{(x,y,0) : x,y \in F\}$$

Column Space of A

$$= \left\{ x \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad : \quad x, y, z \in F \right\} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \right\}_{14}$$

Assignment

Prove or disprove that

- (i) column space of AB is same as column space of A and
- (ii) row space of AB is same as row space of B.

Note 1: (Visit previous lecture notes)

Find the solution space of the system RX = 0

$$R = \left[\begin{array}{ccccc} 0 & 1 & -3 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right]$$

Note 1: (Visit previous lecture notes)

Find the solution space of the system RX = 0

$$R = \begin{bmatrix} 0 & 1 & -3 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{array}{c} x_2 - 3x_3 + \frac{1}{2}x_5 = 0 \\ x_4 + 2x_5 = 0 \end{array} \right\}$$

No. of non-zero rows of R, r=2, No. of variables, n=5

 $k_1 = 2, k_2 = 4 \Longrightarrow \text{ Pivot variables} = \{x_{k_1}, x_{k_2}\} = \{x_2, x_4\}$ No. of free variables = n - r = 5 - 2 = 3,

Free variables = $\{u_1, u_2, u_3\} = \{x_1, x_3, x_5\}$

$$\begin{cases} x_2 - 3x_3 + \frac{1}{2}x_5 = 0 \\ x_4 + 2x_5 = 0 \end{cases} \Rightarrow \begin{cases} x_{k_1} + \sum_{j=1}^{n-r} C_{1j}u_j = 0 \\ x_{k_2} + \sum_{j=1}^{n-r} C_{2j}u_j = 0 \end{cases}$$
 (general expression)

Note 1 contd.

$$\begin{cases} x_2 - 3x_3 + \frac{1}{2}x_5 = 0 \\ x_4 + 2x_5 = 0 \end{cases} \right\} \Longrightarrow \begin{cases} x_{k_1} + \sum_{j=1}^{n-r} C_{1j}u_j = 0 \\ x_{k_2} + \sum_{j=1}^{n-r} C_{2j}u_j = 0 \end{cases}$$
 general expression)

Set the free variables as:

$$u_1 = x_1 = a, \ u_2 = x_3 = b, \ u_3 = x_5 = c$$

 $\implies x_2 = 3b - \frac{1}{2}c, \ x_4 = -2c$
Solution set $S = \left\{ (a, 3b - \frac{1}{2}c, b, -2c, c) : a, b, c \in \mathbb{R} \right\}$

Note 1 contd. (back to chapter one !)

Solution set
$$S = \{(a, 3b - \frac{1}{2}c, b, -2c, c) : a, b, c \in R\}$$

$$S = \left\{ a(1,0,0,0,0) + b(0,3,1,0,0) + c(0,-\frac{1}{2},0,-2,1) : a,b,c \in \mathbb{R} \right\}$$

= Span of
$$\left\{ (1,0,0,0,0), (0,3,1,0,0), (0,-\frac{1}{2},0,-2,1) \right\}$$

Dimension of S = dim S = 3 = n - r (Information for future)

Problem

Let W be set of all $(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5$ which satisfies

$$2x_1 - x_2 + \frac{4}{3}x_3 - x_4 = 0$$

$$x_1 + \frac{2}{3}x_3 - x_5 = 0$$

$$9x_1 - 3x_2 + 6x_3 - 3x_4 - 3x_5 = 0$$

Find a finite set of vectors which spans W.

Let
$$\alpha = (2,3)$$
 and $\beta = (6,9)$.

Let
$$\alpha=$$
 (2,3) and $\beta=$ (6,9). Then $\beta=$ 3 $\alpha.$

Let
$$\alpha=(2,3)$$
 and $\beta=(6,9)$. Then $\beta=3\alpha$. $\implies 3\alpha+(-1)\beta=0$.

Let
$$\alpha=(2,3)$$
 and $\beta=(6,9)$. Then $\beta=3\alpha$.
 $\implies 3\alpha+(-1)\beta=0$.
 $\implies c_1\alpha+c_2\beta=0$ where $c_i\neq 0$ for at least one i .

Let
$$\alpha=(2,3)$$
 and $\beta=(6,9)$. Then $\beta=3\alpha$. $\Longrightarrow 3\alpha+(-1)\beta=0$. $\Longrightarrow c_1\alpha+c_2\beta=0$ where $c_i\neq 0$ for at least one i . We say $\{\alpha,\beta\}$ is a linearly dependent set.

Let
$$\alpha=(2,3)$$
 and $\beta=(6,9)$. Then $\beta=3\alpha$. $\Longrightarrow 3\alpha+(-1)\beta=0$. $\Longrightarrow c_1\alpha+c_2\beta=0$ where $c_i\neq 0$ for at least one i . We say $\{\alpha,\beta\}$ is a linearly dependent set. Let $\gamma=(3,4)$.

Let
$$\alpha=(2,3)$$
 and $\beta=(6,9)$. Then $\beta=3\alpha$. $\Longrightarrow 3\alpha+(-1)\beta=0$. $\Longrightarrow c_1\alpha+c_2\beta=0$ where $c_i\neq 0$ for at least one i . We say $\{\alpha,\beta\}$ is a linearly dependent set. Let $\gamma=(3,4)$. Prove that there is no $c\in\mathbb{R}$ such that $\gamma=c\alpha$

Let
$$\alpha=(2,3)$$
 and $\beta=(6,9)$. Then $\beta=3\alpha$. $\Longrightarrow 3\alpha+(-1)\beta=0$. $\Longrightarrow c_1\alpha+c_2\beta=0$ where $c_i\neq 0$ for at least one i . We say $\{\alpha,\beta\}$ is a linearly dependent set. Let $\gamma=(3,4)$. Prove that there is no $c\in\mathbb{R}$ such that $\gamma=c\alpha$ $c_1\alpha+c_2\gamma=0\Longrightarrow c_1=c_2=0$

Let
$$\alpha=(2,3)$$
 and $\beta=(6,9)$. Then $\beta=3\alpha$. $\Longrightarrow 3\alpha+(-1)\beta=0$. $\Longrightarrow c_1\alpha+c_2\beta=0$ where $c_i\neq 0$ for at least one i . We say $\{\alpha,\beta\}$ is a linearly dependent set. Let $\gamma=(3,4)$. Prove that there is no $c\in\mathbb{R}$ such that $\gamma=c\alpha$ $c_1\alpha+c_2\gamma=0\Longrightarrow c_1=c_2=0$ We say $\{\alpha,\gamma\}$ is a linearly independent set.

Let
$$\alpha=(2,3)$$
 and $\beta=(6,9)$. Then $\beta=3\alpha$. $\Rightarrow 3\alpha+(-1)\beta=0$. $\Rightarrow c_1\alpha+c_2\beta=0$ where $c_i\neq 0$ for at least one i . We say $\{\alpha,\beta\}$ is a linearly dependent set. Let $\gamma=(3,4)$. Prove that there is no $c\in\mathbb{R}$ such that $\gamma=c\alpha$ $c_1\alpha+c_2\gamma=0 \Rightarrow c_1=c_2=0$ We say $\{\alpha,\gamma\}$ is a linearly independent set. Since $3\alpha+(-1)\beta+0\gamma=0$, $\{\alpha,\beta,\gamma\}$ is a linearly dependent set.