Flow Matching

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, Matt Le

Meta AI (FAIR) - Weizmann Institute of Science

Presented by: Amir Alimohammadi

Yaron Lipman

<u>Weizmann Institute</u>, FAIR Meta Verified email at weizmann.ac.il - <u>Homepage</u>

Geometric Deep Learning Graph Neural Networks Generative Models Flow Matching Geometry Processing

TITLE	CITED BY	YEAR	
Laplacian surface editing O Sorkine, D Cohen-Or, Y Lipman, M Alexa, C Rössl, HP Seidel Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry	1590	2004	
Volume rendering of neural implicit surfaces L Yariv, J Gu, Y Kasten, Y Lipman Advances in Neural Information Processing Systems 34, 4805-4815	898	2021	
Implicit geometric regularization for learning shapes A Gropp, L Yariv, N Haim, M Atzmon, Y Lipman arXiv preprint arXiv:2002.10099	821	2020	
Multiview neural surface reconstruction by disentangling geometry and appearance L Yariv, Y Kasten, D Moran, M Galun, M Atzmon, B Ronen, Y Lipman Advances in Neural Information Processing Systems 33, 2492-2502	810	2020	
Provably powerful graph networks H Maron, H Ben-Hamu, H Serviansky, Y Lipman Advances in neural information processing systems 32	631	2019	
Point convolutional neural networks by extension operators M Atzmon, H Maron, Y Lipman arXiv preprint arXiv:1803.10091	593	2018	

GET MY OWN PROFILE

VIEW ALL

Cited by

All	Since 2019
16330	10776
57	47
97	92
	3100
	2325
	1550
	16330 57

Public access	VIEW ALL
1 article	31 articles
not available	available
Based on funding mandates	2

Ricky Tian Qi Chen

FOLLOW

Other names >

Meta FAIR

Verified email at meta.com - <u>Homepage</u>

generative modeling dynamical systems stochastic control normalizing flows

TITLE	CITED BY	YEAR
Neural ordinary differential equations RTQ Chen, Y Rubanova, J Bettencourt, DK Duvenaud Advances in neural information processing systems, 6571-6583	5588	2018
Isolating Sources of Disentanglement in Variational Autoencoders RTQ Chen, X Li, R Grosse, D Duvenaud Advances in Neural Information Processing Systems, NIPS 2018	1484	2018
Latent odes for irregularly-sampled time series Y Rubanova, RTQ Chen, D Duvenaud Advances in Neural Information Processing Systems, NeurIPS 2019	925 *	2019
FFJORD: Free-form continuous dynamics for scalable reversible generative models W Grathwohl, RTQ Chen, J Betterncourt, I Sutskever, D Duvenaud International Conference on Learning Representations, ICLR 2019	905	2019
Invertible residual networks J Behrmann, W Grathwohl, RTQ Chen, D Duvenaud, JH Jacobsen International Conference on Machine Learning, ICML 2019	686	2019
Flow Matching for Generative Modeling Y Lipman, RTQ Chen, H Ben-Hamu, M Nickel, M Le International Conference on Learning Representations, ICLR 2023	555	2022
Fact noteb based stills transfer of arbitrary stills	NET	0040

GET MY OWN PROFILE

Cited by

	All	Since 2019
Citations	12669	12493
h-index	25	25
i10-index	34	34

Public access	VIEW ALL
0 articles	5 articles
not available	available
Based on funding mandate	S

Outline

- Normalizing Flows
- Continuous Normalizing Flows
- Flow Matching
- Conditional Flow Matching
- Simple Sample Code
- Optimal Transport (OT) coupling (if time permits)

Flow-based Generative Models

Normalizing Flows

P_{base}(data)

Normalizing Flows

Base Distribution

Data Distribution

Base Distribution

Data Distribution

$$L(\theta) = \frac{1}{m} \sum_{1}^{m} \log P_{\theta}(x)$$
$$= D_{KL}[p_{data}(x) || P_{\theta}(x)] + C$$

$$L(\theta) = \frac{1}{m} \sum_{1}^{m} \log P_{\theta}(x)$$
$$= D_{KL}[p_{data}(x) || P_{\theta}(x)] + C$$

$$L(\theta) = \frac{1}{m} \sum_{1}^{m} \log P_{\theta}(x)$$
$$= D_{KL}[p_{data}(x) || P_{\theta}(x)] + C$$

$$P_{\theta}(x)$$
 ? $P_{\text{base}}(G^{-1}_{\theta}(x))$

$$L(\theta) = \frac{1}{m} \sum_{1}^{m} P_{\theta}(x)$$
$$= D_{KL}[p_{data}(x) || P_{\theta}(x)] + C$$

$$\log P_{\theta}(x) = \log P_{\text{base}}(G^{-1}_{\theta}(x)) + \log |\det[J^{-1}_{G}]|$$

Coupling layers

$$\log P_{\theta}(x) = \log P_{\text{base}}(G^{-1}_{\theta}(x)) + \log |\det[J^{-1}_{G}]|$$

$$f_i(x_j) = egin{cases} x_j & j \leq d \ au_i(x_j; heta_i(x_{\leq d})) & j > d \end{cases}$$

Coupling layers

$$\log P_{\theta}(x) = \log P_{\text{base}}(G^{-1}_{\theta}(x)) + \log |\text{det}[J^{-1}_{G}]|$$

$$f_i(x_j) = egin{cases} x_j & j \leq d \ au_i(x_j; heta_i(x_{\leq d})) & j > d \end{cases}$$

$$rac{\partial f_i}{\partial x} = egin{pmatrix} I & 0 \ rac{\partial au_i}{\partial x_{>d}} & rac{\partial au_i}{\partial x_{>d}} \end{pmatrix}$$

$$\log \left| \det rac{df_i(x)}{dx}
ight| = \log \prod_{j=d}^D \left| rac{d au_i(x_j)}{dx_j}
ight| = \sum_{j=d}^D \log \left| rac{d au_i(x_j)}{dx_j}
ight|$$

Coupling Layers

Affine Coupling Layers

Affine Coupling Layers

Other normalizing flows

- Autoregressive flows
- Residual flows

Are they invertible?

Are they invertible?

u: Contraction map

Are they invertible?

u: Contraction map

$$x = z + u(z)$$

$$g(n) = x - u(n)$$

G is contrastive map.

$$g(z^*) = z^*$$
$$x = z^* + u(z^*)$$

Are they invertible?

Can we compute $\log |\det[J^{-1}_{Gi}]|$?

$$\frac{\partial}{\partial \theta} \log \det \left(I + J_g(x, \theta) \right) = \mathbb{E}_{n, v} \left[\sum_{k=1}^n \frac{(-1)^{k+1}}{k} \frac{\partial v^T (J_g(x, \theta)^k) v}{\partial \theta} \right]$$

Model	MNIST	CIFAR-10	ImageNet 32	ImageNet 64	CelebA-HQ 256
Real NVP (Dinh et al., 2017)	1.06	3.49	4.28	3.98	_
Glow (Kingma and Dhariwal, 2018)	1.05	3.35	4.09	3.81	1.03
FFJORD (Grathwohl et al., 2019)	0.99	3.40	_	_	_
Flow++ (Ho et al., 2019)	-	3.29 (3.09)	- (3.86)	- (3.69)	_
i-ResNet (Behrmann et al., 2019)	1.05	3.45		_	
Residual Flow (Ours)	0.970	3.280	4.010	3.757	0.992

Similar to Residual Flows

Similar to Residual Flows

$$\frac{dx_t}{dt} = V_t(X_t)$$

$$\frac{dx_t}{dt} = V_t(X_t, \theta)$$

Ordinary Differentiable Equation

Neural Ordinary Differentiable Equation

 $v: [0,1] \times R^{D} \rightarrow R^{D}$

$$x_t = \Psi_t(x_0)$$

Flow ODE

$$\frac{dx_t}{dt} = V_t(X_t)$$

$$x_t = \Psi_t(x_0)$$

Continuity Equation $\frac{dp_t}{dt} = -\text{div}(p_t v_t)$

$$L(\theta) = \frac{1}{m} \sum_{1}^{m} \log P_{1}(x)$$
$$= D_{KL}[p_{data}(x) || P_{1}(x)] + C$$

Continuity Equation:

$$\frac{dp_t}{dt} = -\text{div}(p_t v_t)$$

Instantaneous Change of Variables:

$$\frac{d}{dt}\log p_t = -\text{div}(v_t)$$

Estimating Score Function in Diffusion Models

$$J(\theta) = \mathbb{E}_{p(\mathbf{x})}[\|s_{\theta}(\mathbf{x}) - s(\mathbf{x})\|_{2}^{2}]$$
$$= \mathbb{E}_{p(\mathbf{x})}[\|s_{\theta}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p(\mathbf{x})\|_{2}^{2}]$$

Denoising Score Matching

$$J(\theta) = \mathbb{E}_{p(\mathbf{x})}[\|s_{\theta}(\mathbf{x}) - s(\mathbf{x})\|_{2}^{2}]$$
$$= \mathbb{E}_{p(\mathbf{x})}[\|s_{\theta}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p(\mathbf{x})\|_{2}^{2}]$$
Intractable

$$J_{explicit}(\theta) = \mathbb{E}_{q_{\sigma}(\tilde{\mathbf{x}})} \left[\frac{1}{2} \| s_{\theta}(\tilde{\mathbf{x}}) - \nabla_{\tilde{\mathbf{x}}} \log q_{\sigma}(\tilde{\mathbf{x}}) \|_{2}^{2} \right].$$

Continuity Equation:

Continuity Equation:

$$\frac{dp_t}{dt} = -\text{div}(p_t v_t)$$

$$L_{FM} = \min E_{t,pt(x)} ||v_t(x, \theta) - u_t(x)||^2$$

Compare velocities instead of score functions

Marginalizing the Conditional Probability

$$p_t(x) = \int p_t(x|x_1)q(x_1)dx_1$$

where $p_0(x) = Pba_{se}$ and $p_1(x) = q$ (boundary conditions)

Marginalizing the Conditional Probability

$$p_t(x) = \int p_t(x|x_1)q(x_1)dx_1$$

where $p_0(x) = Pba_{se}$ and $p_1(x) = q$ (boundary conditions).

It can be done simply by

$$p_0(.|x_1) = Pba_{se} \text{ and } p_1(.|x_1) = \delta_{x1}.$$

Marginalizing the Vector Field

$$u_t(x) = \int u_t(x|x_1) \frac{p_t(x|x_1)q(x_1)}{p_t(x)} dx_1$$

$u_t(x|x_1)$

Marginalizing the Vector Field

$$u_t(x) = \int u_t(x|x_1) \frac{p_t(x|x_1)q(x_1)}{p_t(x)} dx_1$$

Just to satisfy the continuity equation.

$u_t(x|x_1)$

 $u_t(x)$

Conditional Flow Matching

$$L_{FM} = \min E_{t, pt(x)} ||v_t(x, \theta) - u_t(x)||^2$$

$$L_{CFM} = min E_{t, q(x1), pt(x|x1)} ||v_t(x, \theta) - u_t(x|x_1)||^2$$

The gradient of L_{FM} and L_{CFM} are equal.

Diffusion Model

Optimal Transport conditional VF

Define VF as follow:

$$u_t(x|x_1) = \frac{x_1 - (1 - \sigma_{min})x}{1 - (1 - \sigma_{min})t}$$

OT path – conditional vector field

Optimal Transport vs Diffusion Path

Diffusion path – conditional score function

OT path – conditional vector field

Optimal Transport vs Diffusion Path

Diffusion path – conditional score function

OT path – conditional vector field

Optimal Transport vs Diffusion Path

One-sided Conditioning

- $p_t(x) = \int p_t(x|x_1)q(x_1)dx_1$
- where $p_0(x) = Pba_{se}$ and $p_1(x) = q$ (boundary conditions).

Two-sided Conditioning

- $p_t(x) = \int p_t(x|x_1)q(x_1)dx_1 = \int p_t(x|x_1)q(x_1, x_0)dx_1dx_0$
- where $p_0(.|x_1,x_0) = \delta_{x_1}$ and $p_1(.|x_1,x_0) = \delta_{x_1}$ (boundary conditions).

Optimal Transport (OT) coupling

- $p_t(x) = \int p_t(x|x_1)q(x_1)dx_1 = \int p_t(x|x_1)q(x_1, x_0)dx_1dx_0$
- where $p_0(.|x_1,x_0) = \delta_{x_1}$ and $p_1(.|x_1,x_0) = \delta_{x_1}$ (boundary conditions).
- $q(x_1, x_0) = \pi(x_1, x_0) \in \arg\inf_{\pi \in \Pi} \int ||x_1 x_0||_2^2 d\pi(x_1, x_0)$

One-sided conditioning (Lipman et al., 2022)

Two-sided conditioning (Tong et al., 2023)

OT coupling (Tong et al., 2023)

Mini-batch OT

Thank you!

- Thank you for your attention!
- I appreciate your time and interest.
- If you have any questions, please feel free to ask.
- Contact information: alimohammadiamirhossein@gmail.com

Change of Variables, Change of Density

X = Uniform (0,1)

$$Y = f(X) = 2X + 1$$

Change of Variables, Change of Density

$$p(x)dx=p(y)dy$$

$$p(y)=p(x)\left|\frac{dx}{dy}\right|$$

$$\log p(y)=\log p(x)+\log \left|\frac{dx}{dy}\right|$$

Maximum Likelihood

$$L(\theta) = \frac{1}{m} \sum_{1}^{m} P_{\theta}(x)$$
$$= D_{KL}[p_{data}(x) || P_{\theta}(x)] + C$$

$$P_{\theta}(x)$$
 ? $P_{\text{base}}(G^{-1}_{\theta}(x))$

Change of Variables, Change of Area

Change of Variables, Change of Area

$$p(x)dx_{1}dx_{2} = p(y)|det\begin{bmatrix} a & b \\ c & d \end{bmatrix}| = p(y)|det\begin{bmatrix} dy_{11} & dy_{21} \\ dy_{12} & dy_{22} \end{bmatrix}|.$$

$$p(x) = \frac{1}{dx_{1}dx_{2}}p(y)|det\begin{bmatrix} dy_{11} & dy_{21} \\ dy_{12} & dy_{22} \end{bmatrix}|.$$

$$p(x) = \frac{1}{dx_1 dx_2} p(y) |\det \begin{bmatrix} dy_{11} & dy_{21} \\ dy_{12} & dy_{22} \end{bmatrix}|.$$

$$p(x) = p(y) \left| \det \begin{bmatrix} \frac{dy_{11}}{dx_1} & \frac{dy_{21}}{dx_1} \\ \frac{dy_{12}}{dx_2} & \frac{dy_{22}}{dx_2} \end{bmatrix} \right|.$$

$$p(x) = p(y) |det[J_f]|.$$

 $\log p(x) = \log p(y) + \log |\det[J_f]|.$

Maximum Likelihood

$$L(\theta) = \frac{1}{m} \sum_{1}^{m} P_{\theta}(x)$$
$$= D_{KL}[p_{data}(x) || P_{\theta}(x)] + C$$

$$P_{\theta}(x)$$
 ? $P_{\text{base}}(G^{-1}_{\theta}(x))$

Maximum Likelihood

$$L(\theta) = \frac{1}{m} \sum_{1}^{m} P_{\theta}(x)$$
$$= D_{KL}[p_{data}(x) || P_{\theta}(x)] + C$$

$$\log P_{\theta}(x) = \log P_{\text{base}}(G^{-1}_{\theta}(x)) + \log |\det[J^{-1}_{G}]|$$