(19) 日本国特許庁 (JP)

(12) 特 許 公 報 (B2)

(11)特許番号

第2952433号

(45)発行日 平成11年(1999) 9月27日

(24)登録日 平成11年(1999)7月16日

(51) Int.CL⁶

酸別配号

B01D 37/00

A61M 1/02

570

FΙ

B01D 37/00

A 6 1 M 1/02

570

請求項の数24(全 9 頁)

(21)出願番号	特願平3-501938
(86) (22)出願日	平成2年(1990)11月28日
(65)公表番号	特表平4-504532
(43)公表日	平成4年(1992)8月13日
(86)国際出願番号	PCT/US90/06924
(87)国際公開番号	WO91/08820
(87) 国際公開日	平成3年(1991)6月27日
審查請求日	平成9年(1997) 9月26日 🕆
(31)優先権主張番号	453, 952
(32) 優先日	1989年12月20日
(33)優先権主張国	米国 (US)

(73)特許権者 999999999

パクスター、インターナショナル、イン

コーポレイテッド

アメリカ合衆国 60015イリノイ、ディ

ヤフィールド、パクスターパークウェイ

1

(72)発明者 スチュワート, メアリー エイ

アメリカ合衆国 60060イリノイ、マン

デレイン、サウスプレーリー 516

(74)代理人 弁理士 赤岡 迪夫

審査官 大黒 浩之

(58) 調査した分野(Int.Cl.⁶ , DB名)

B01D 37/00

- A61M 1/02

(54) 【発明の名称】 血球から望まない物質を除去するための方法およびシステム

1

(57)【特許請求の範囲】

【請求項1】血液採取システムの一部分をなす第一の容器中に生体外の血球を採取するステップ、

第1の容器と分離システムとの間の連通を開くステップであって、該分離システムは(i)第2の容器と、(ii)血球から望まない物質を分離するための分離手段を含んでいる、第2の容器へ通ずる第1の流体通路と、

(iii) 分離手段をパイパスする、第2の容器へ通ずる 第2の流体通路を含んでおり、

血球を第1の容器から第1の流体通路および分離手段を 10 通って第2の容器中へ運び、それにより血球から望まない物質を分離するステップ、

今や望まない物質を実質上含まない血球を第2の容器から第2の通路を通って第1の容器中へ返還するステップ、

2

を含むことを特徴とする望まない物質を実質上含まない 血球の採取方法。

【請求項2】前記分離システムとの連通を開くステップは、分離システムを血液採取システムへ接続するステップを含んでいる請求項1の方法。

【請求項3】前記分離システムを接続するステップは、 分離システムおよび血液採取システムに付属した無菌接 続アセンブリを採用するステップを含んでいる請求項2 の方法。

【請求項4】第1の容器から第2の容器中へ血球を運ぶステップの間、第1の容器は血球を重力流によって運ぶため第2の容器の上方へ配置される請求項1の方法。

【請求項5】第2の容器から第1の容器へ血球を返還するステップの間、第2の容器は血球を重力流によって返還するため第1の容器の上方へ配置される請求項4の方

法。

【請求項6】血球を第2の容器から第1の容器へ返還するステップの前に、第1の容器から第2の流体通路を通って第2の容器中へ空気を追い出すステップを含んでいる請求項1の方法。

【請求項7】望まない物質を実質上含まない血球を第1 の容器中に貯蔵するステップを含んでいる請求項1の方 法。

【請求項8】血球は赤血球を含み、望まない物質は白血球を含んでいる請求項1の方法。

【請求項9】血球採取のための一次容器を含む血液採取 アセンブリと、

移換容器と、移換容器と連通しそして血球から望まない物質を分離するためのインライン分離手段を有する第1の流体通路と、移換容器と連通しそして第1の流体通路をバイパスする第2の流体通路と、第1のモードにおいて流体流を第1の流体通路および分離手段を通って一次および移換容器間を誘導し、かつ第2のモードにおいて流体流を分離手段をバイパスして第2の流体通路を通って一次および移換容器間を誘導するように作動し得る第201および第2の流路に関連した流れ制御手段を備えている分離アセンブリと、

流れ制御手段がその第1のモードにある時血球を一次容器から第1の流路および分離手段を通って移換容器中へ運びそれにより血球から望まない物質を分離し、流れ制御手段がその第2のモードにある時今や望まない物質を実質上含まない血球を移換容器から分離手段をバイバスして第2の流路を通って一次容器中へ返還するための分離アセンブリおよび血液採取アセンブリ間の連通を確立する手段

を備えていることを特徴とする血球採取システム。

【請求項10】前記連通を確立する手段は、採取および 分離アセンブリを接続および取外すため分離アセンブリ および血液採取アセンブリに関連した接続手段を含んで いる請求項9のシステム。

【請求項11】血液採取アセンブリおよび分離アセンブリは各自別体の閉鎖系をなし、

前記連通を確立する手段は前記閉鎖系の無菌完全性を保存する態様で採取および分離アセンブリを接続および取外すため分離アセンブリおよび血液採取アセンブリに関 40 連した接続手段を含んでいる請求項9のシステム。

【請求項12】第1の流体通路は第1および第2の対向 端部分を含み、第1の対向端部分は移換容器へ接続さ れ、分離手段は第2の対向端部分と移換容器の間の第1 の流体流路中に配置されており、

第2の流体通路は対向端部分を含み、一方の端部分は第 1の流体通路へその第2の対向端部分と分離手段の間で 連通し、他方の端部分は第1の流体通路へ分離手段と移 換容器の間で連通している請求項9のシステム。

【請求項13】流れ制御手段は、第1の流体通路中分離 50

手段と移換容器の間に第1の流れ制御機構と、そして第2の流体通路中その対向端間に第2の流れ制御機構を含んでいる請求項12のシステム。

【請求項14】第2の流れ制御機構は、第1の流路へその第2の端部分と分離手段の間で連通している第2の流路の一方の端部分に隣接して配置されている請求項13のシステム。

【請求項15】移換容器と、

用し得るアセンブリ。

移換容器と連通しそして血球から望まない物質を分離するためインライン分離手段を有する第1の流体通路と、 移換容器と連通しそして第1の流体通路をバイバスする 第2の流体通路と、

第1のモードにおいて流体を第1の流路および分離手段を通って移換容器中へ誘導し、そして第2のモードにおいて流体を移換容器から分離手段をバイパスして第2の流路を通って誘導するように作動し得る第1および第2の流路に関連した流れ制御手段と、

流れ制御手段がその第1のモードにある時血球を一次容器から第1の流路および分離手段を通って移換容器中へ運びそれにより血球から望まない物質を分離し、流れ制御手段がその第2のモードにある時今や望まない物質を実質上含まない血球を移換容器から分離手段をバイパスして第2を流路を通って一次容器へ返還するため分離アセンブリと一次容器の間の連通を確立する手段を備えていることを特徴とする血球から望まない物質を除去するため一次血液採取および貯蔵容器と組合せて使

【請求項16】移換容器は使用前流体を含んでいない請求項15のアセンブリ。

30 【請求項17】第1の流体通路は第1および第2の対向 端部分を含み、第1の対向端部分は移換容器へ接続さ れ、分離手段は第2の対向端部分と移換容器の間の第1 の流体流路中に配置されており、

第2の流体通路は対向端部分を含み、一方の端部分は第 1の流体通路へその第2の対向端部分と分離手段の間で 連通し、他方の端部分は第1の流体通路へ分離手段と移 換容器の間で連通している請求項15のアセンブリ。

【請求項18】流れ制御手段は、第1の流体通路中分離 手段と移換容器の間に第1の流れ制御機構と、そして第 2の流体通路中その対向端間に第2の流れ制御機構を含 んでいる請求項17のアセンブリ。

【請求項19】第2の流れ制御機構は、第1の流路へその第2の端部分と分離手段の間で連通している第2の流路の一方の端部分に隣接して配置されている請求項18のアセンブリ。

【請求項20】前記アセンブリは無菌の閉鎖系をなし、前記連通を確立する手段は前記閉鎖系を保存する態様で前記アセンブリを一次容器へ接続および取外るための接続手段を含んでいる請求項15のアセンブリ。

0 【請求項21】血球から望まない物質を除去するための

アセンブリであって、入口および出口を有する濾過体 と

血球から望まない物質を除去するための濾過体中の濾過媒体と、

濾過体の入口と連通にありそして望まない物質を除去するため血球を第1の容器から濾過媒体へ運搬するため血球を保持している第1の容器へ接続するための接続手段を含んでいる入□流路と、

瀘過媒体から望まない物質を実質上含まない血球を運搬するため濾過体の出口と連通し、そして望まない物質を 10
実質上含まない血球を収容するための第2の容器を含んでいる出口流路と、

一端は第1の容器と濾過体入口の間で入口流路へ接続され、他端は入口流路と出口流路の間で液体を移すととなく空気を排気するための、第2の容器と濾過体出口の間で出口流路へ接続されている対向端を有する濾過体中の濾過媒体をバイバスするバイバス流路

を備えていることを特徴とする血球から望まない物質を 除去するためのアセンブリ。

【請求項22】バイバス流路を開きそして閉じるためバ 20 イバス流路中の流れ制御手段を備えている請求項21のア センブリ。

,」。 内部と入口と出口を有する濾過体と、

血球から望まない物質を除去するための濾過体内部の濾 過媒体と、

濾過体の入口と連通にありそして望まない物質を除去するため血球を第1の容器から濾過媒体へ運搬するため血球を保持している第1の容器へ接続手段を含んでいる入 30 □チューブと、濾過媒体から望まない物質を実質上含まない血球を運搬するため濾過体の出口と連通し、そして望まない物質を実質上含まない血球を収容するための第2の容器を含んでいる出口チューブと、

一端は第1の容器と濾過体入口の間で入口チューブへ接続され、他端は入口チューブと出口チューブの間で流体を移すことなく空気を濾過体内部をバイバスする流路内で運搬するため濾過体出口と第2の容器の間で出口チューブへ接続されている、濾過体の外を延びているある長さのチューブを備えていることを特徴とする血球から望40まない物質を除去するためのアセンブリ。

【請求項24】チューブのある長さを開きそして閉じる ためのチューブのある長さ中の流れ制御手段を備えてい る請求項23のアセンブリ。

【発明の詳細な説明】

本発明の分野

本発明は、一般的には血液採取および処理システムおよび方法に関する。 さらに詳しくは、本発明は輸血もしくは長期保存前赤血球から白血球を除去するためのシステムおよび方法に関する。

本発明の背景

今日ボランティア供血者から採取した全血の大部分はそれ自体で貯蔵および輸血に使用されない。その代り、全血はその臨床的に証明された成分(典型的には赤血球、血小板および血漿)に分離され、それら自体が個々に貯蔵され、多数の特定の状態および病的状態を処置するために使用される。例えば、赤血球成分は貧血症を処置するために使用され、濃縮血小板成分は血小板減少症出血を制御するために使用され、そして血小板ブア血漿成分は増量剤として、または血友病の治療のための凝固因子VIIIのソースとして使用される。

6

多数の相互接続されたブラスチックパッグよりなるシステムはこれら血液成分の採取、処理および貯蔵において広い使用および受入れに合致している。合衆国においては、これらマルチブル血液パッグシステムは政府による規制の対象である。例えば、バッグおよびチューブがそれからつくられるブラスチック材料は政府により承認されなければならない。加えて、これらシステムに採取された血液成分の最高貯蔵期間は規則によって規定されている。

合衆国においては、非無菌もしくは"開放"システム(すなわち大気との連通を開放されているもの)に採取された全血成分は、政府規則によって24時間以内に輸血されなければならない。しかしながら、全血成分が無菌もしくは"閉鎖"システム(すなわち大気との連通を閉鎖されているもの)に採取される時、赤血球は42日まで(使用される抗凝固剤および貯蔵媒体のタイプに応じて)貯蔵することができ、血小板濃縮物は5日まで(貯蔵容器のタイプに応じて)貯蔵することができ、そして血小板ブア血漿は冷凍し、さらに長期間貯蔵することができる。多数の相互接続されたプラスチックバッグの慣用のシステムは血液採取および処理のための所望の無菌"閉鎖"環境を信頼して提供することができ、それにより最高の利用できる貯蔵期間を確かにする。

輸血のための全血成分の採取においては、受領者に望ましくない副作用を発生し得る不純物もしくは他の物質の存在を最小にすることが望ましい。例えば、可能性ある発熱反応のため、特に頻繁に輸血を受ける受領者に対しては、白血球成分を実質上含まない赤血球を輸血することが一般に望ましいと考えられている。

白血球を除去する一方法は赤血球を食塩水で洗うことによる。この技術は時間を消費し、そして輸血に使用し得る赤血球の数を減らすから非能率である。洗浄プロセスはまた、赤血球を大気との連通へ曝し、そしてそれにより貯蔵システム中への"非無菌"侵入を構成する。以前閉鎖されていたシステム中へ非無菌侵入が一旦なされればシステムは、"開放"されたと考えられ、そして血液が最初採取され、処理された態様に関係なく輸血は24時間以内にされなければならない。

合衆国では、百万分の1を上廻る非無菌性の確率を提

50

ه دوه د مرط پادر د ده هم د مرط چو د سآ

20

40

供する採血システム中への侵入は"非無菌"侵入を構成するものと一般に考えられている。

白血球を除去する他の方法は濾過による。慣用のマルチブル血液バッグ構造の情況内において達成するためのシステムおよび方法がWisdomの米国特許4,596,657号、4,767,541号およびCarmenらの米国特許4,810,378号、4,855,063号に記載されている。これらの組合せにおいては、インライン白血球濾過装置が使用されている。濾過はそれによって閉鎖系内において達成することができる。しかしながら、これらの組合せにおいては、濾過操10作は最終的には赤血球を一次採血バッグから貯蔵のための他のバッグへ移換する結果となる。それ故、濾過操作は両者とも血液容器に関する比較的厳しい政府規則の対象である一次採血バッグおよび第2の血液貯蔵バッグを必要とする。

それ故、それ自身閉鎖系環境において使用することを可能にするが、しかし厳しい政府規則の対象である追加の血液貯蔵容器の使用を必ず必要としない態様で、輸血または貯蔵前血液成分から望まない物質を除去するためのシステムおよび方法に対してなお需要が存在する。本発明の概要

本発明の一面は、血球を採取するためのアセンブリと、そして貯蔵もしくは輸血前血球から望まない物質を分離するためのアセンブリを含む血液採取システムを提供する。血球は最初血液採取アセンブリに採取され、処理される。次に分離アセンブリが血液採取アセンブリへ一時的に接続される。血球は望まない物質を除去するため接続した分離アセンブリへ移される。次に血球は貯蔵および輸血のため血液採取アセンブリへ直ちに返還され、そして接続した分離アセンブリは取外される。

本発明のこの面に従えば、血液採取アセンブリは、処理中血球が集められる容器として、および望まない物質が除去された後血球が貯蔵のため最終的に返還される容器として両方に役立つ一次容器を含んでいる。分離アセンブリは、分離操作の間短時間だけ血液と接触する移換容器を含んでいる。これは、血液分離アセンブリは分離操作の間採取アセンブリへ一時的に接続され、その後取外されるからである。

本発明の他の面は、二つの別々の流体通路へ接続される一時移換容器を有する血液分離アセンブリを提供する。第1の流体通路は血球から望まない物質を分離するためのインライン分離装置を有する。第2の流体通路はしかしながら分離装置をバイバスする。流れ制御機構が第1および第2の流路に関連し、一方は血液が第1の通路を通って運ばれ、他方は血液が第2の通路を通って運ばれる二つのモードで作動し得る。分離アセンブリが血液採取容器へ接続され、そして流れ制御機構がその第1のモードに置かれる時、血球は採取容器から第1の流路を通って、およびそれにより分離装置を通って移換容器中へ運ばれるととができる。この操作中望まない物質は

血球から除去される。次に流れ制御手段がその第2のモードに置かれる時、今や実質上望まない物質を含まない血球は移換容器から第2の流路を通って全く分離装置をバイバスして貯蔵もしくは輸血のため採取容器へ直接返還されることができる。

8

血球は分離アセンブリを短時間占領するだけであるか ら、移換容器および全体の分離アセンブリは長期間血液 貯蔵容器に関する厳しい政府規則に従う必要はない。好 ましくは分離アセンブリは分離操作の間だけ血液採取容 器へ一時的に接続される別体のアセンブリを含む。

本発明のこの面の好ましい具体例においては、血液採取アセンブリおよび分離アセンブリは、各自無菌の閉鎖系よりなる。この取合せにおいて、無菌の接続アセンブリが採取および分離アセンブリを両方の系の無菌の閉鎖完全性を保つように接続し、取外す。望まない物質はそれによって血球から除去されることができ、そして血球は系への1回の非無菌侵入もなしに、そしてそれにより血液製品の品質またはそれらの貯蔵期間の長さに悪影響することなしにそれらの貯蔵容器へ戻すことができる。

本発明の他の面は、望まない物質を実質上含まない貯蔵のための血球を採取する方法を提供する。この方法は血液採取のシステムの一部をなす第1の容器中にある量の血球を採取するステップを含む。次に血液は第1および第2の流体通路がそれへ取付けられている第2の容器を含んでいる分離システムへ運搬される。第1の通路は血球から望まない物質を分離するための分離装置を含んでいる。第2の通路は分離装置をバイバスする。

本発明のこの面に従えば、血球は第1の容器から第1 の通路および分離装置を通って次に第2の容器へ運搬さ 30 れ、それにより血球から望まない物質が分離される。今 や望まない物質を実質上含まない血球は次に第2の容器 から分離装置をバイバスする第2の流体通路を通って第 1の容器へ貯蔵もしくは輸血のため戻される。分離シス テムは次に血液採取システムから取外すことができる。

本発明は、分離が厳しい政府規則を受ける必要のない 一時移換バッグアセンブリを使用して達成され、そして 分離前には血液採取容器として働くバッグが分離後血液 貯蔵容器としても働く血液処理システムおよび方法を提 供する。

本発明の特徴を採用するシステムおよび方法は、閉鎖された血液採取システムおよび慣用の無菌接続技術と組合せ、それによって分離が無菌の閉鎖環境内で生起することを許容するように使用するのに特に良く適している。

本発明の特徴を具体化するシステムおよび方法はすべてのタイプの血液成分を処理するために使用し得るが、 それらは赤血球から輸血もしくは長期間貯蔵前濾過によって白血球を除去するために良く適している。

本発明の他の特徴および利益は、以下の説明、図面および請求の範囲を読了するとき明らかになるであろう。

10

図面の簡単な説明

第1図は、本発明の特徴を具体化する血液処理アセン ブリおよび血液濾過アセンブリを含んでいる血液採取シ ステムの概略図である。

第2図は、血球から望まない物質を除去する目的のため血液濾過アセンブリを血液処理アセンブリへ取付けた、第1図に示したシステムの概略図である。

第3図は、今や望まない物質を実質上含まない血球が 血液処理アセンブリへ戻されている、第1図に示したシ ステムの概略図である。

第4図は、遠過が終了した後血液濾過アセンブリを血液処理アセンブリから取外した、第1図に示したシステムの概略図である。

第5図は、第1図に示したシステムと協力する無菌接 続器具の拡大側面図である。

好ましい具体例の説明

血液採取システム10が第1図に示されている。システム10は、血液採取処理および貯蔵アセンブリ12と、分離アセンブリ14とを含む。

例証した具体例においては、分離アセンブリ14は血球 20 持っている。 から濾過によって望まない物質を除去するのに役立つ。 血液採取お この理由のためそれは"濾過アセンブリ"と呼ばれるで 合衆国におい あろう。しかしながら、分離は種々の遠心および非遠心 菌の"閉鎖" 技術によっても生起することができ、技術的に単に"濾 全血はアセ 過"ばかりでないことを理解すべきである。分離は吸 成分に分離さ ボ、血漿およし得る。術語"濾過アセンブリ"は、これら分離技術の 一次バッグ16 すべてを含むものとして本明細書において使用される。 離される。血

第1図に示した例証した好ましい具体例においては、 一次バッグ16中に残して第1の移換バッグ18中へ移され 濾過アセンブリ14は血液処理アセンブリ12へ接続されて 30 る。移換バッグ18および20は慣用のヒートシール装置 いない当初別体のサブアセンブリよりなる。この取合せ (例えば、バクスター、ヘルスケア、コーポレーショ は濾過アセンブリ14のための規制要求を減らすのに役立 販売のHematron透電シーラー)を使用して無菌態様で かされ、これはチューブ30に密封した切り離したシール 12の一体部分としてつくることができることを理解すべ (このシールは第2ないし4図に "x"により概略的に きである。 を形成する。赤血球貯蔵溶液Sが一次容

血液採取および貯蔵アセンブリ12は、特許請求の範囲において "第1の容器" (請求項1~8および21~24)または "一次容器" (請求項9~20)と呼んでいる一次バッグもしくは容器16と、1個以上の一体に取付けた移換バッグもしくは容器18および20を有するマルチブル血 40液バッグシステムを含む。使用時、一次バッグ16(これは典型的にはドナーバッグと呼ばれる)が静脈切開針24を支承する一体に取付けたドナーチューブ22を通ってドナーからの全血を受入れる。適当な抗凝固剤Aが一次バッグ16中に収容される。

使用時、一次バッグ16はアセンブリ12中で処理された 赤血球のための貯蔵容器としても役立つ。サテライトバッグ26は一体に取付けたチューブ28によって一次バッグ 16へ取付けられる。サテライトバッグ26は赤血球のため の適当な貯蔵溶液Sを収容する。そのような一溶液はGr 50 odeらの米国特許4,267,269号に開示されている。

移換バッグ18および20は一体に取付けられたチューブ30および32によって一次バッグ16へ取付けられる。移換バッグ18および20は処理のため血小板および血漿血液成分を収容することを意図する。第1の移換バッグ18は血小板濃縮物のための貯蔵容器として最終的に役立ち、第2の移換バッグ20は血小板プア血漿のための貯蔵容器として最終的に役立つ。

10

処理アセンブリ12に関連するすべてのバッグおよびチューブは、ジー2ーエチルヘキシルフタレート(DEHP)で可塑化したボリ塩化ビニルのような、慣用の承認された医療規格プラスチック材料からつくることができる。その代りに、血小板濃縮物を貯蔵することを意図した第1の移換バッグ18はポリオレフィン材料(Gajewskiら米国特許4,140,162号に開示されているような)、またはトリー2ーエチルヘキシルトリメリテート(TEHTH)で可塑化されたボリ塩化ビニルでつくることができる。これらの材料は、DEHP可塑化ポリ塩化ビニル材料に比較して、血小板貯蔵にとって有益である大きい大気透過性を持っている。

血液採取および貯蔵アセンブリ12は、一旦滅菌すれば 合衆国において適用される規準によって判定する時、無 菌のご閉鎖":系を構成する。

全血はアセンブリ12内に採取され、そして種々の治療成分に分離される。とれら治療成分は典型的には赤血球、血漿および血小板である。使用時、採取した全血は一次パッグ16中で赤血球と血小板リッチ血漿とに遠心分離される。血小板リッチ血漿は慣用技術により赤血球を一次パッグ16中に残して第1の移換パッグ18中へ移される。移換パッグ18および20は慣用のヒートシール装置(例えば、バクスター、ヘルスケア、コーボレーション販売のHematron透電シーラー)を使用して無菌態様で取外され、これはチューブ30に密封した切り離したシール(このシールは第2ないし4図に"x"により概略的に示されている)を形成する。赤血球貯蔵溶液Sが一次容器16中へ移され、サテライトバッグ26は切り離しシール"x"(第2図に示すような)を使用して取外される。ドナーチューブ22は同じ態様(やはり第2図に示すように)でシールされ、切り離される。

血小板リッチ血漿は第1の移換バッグ18中で血小板濃縮物および血小板プア血漿への後続遠心分離を受ける。 血小板プア血漿は血小板濃縮物を第1の移換バッグ18中 に残して第2の移換バッグ20へ移される。移換バッグ18 および20は次に採取した成分の後の貯蔵のためチューブ 32中の切り離しシール "x"によって分離される。

適過アセンブリ14は、特許請求の範囲において "第2 の容器" (請求項1~8 および21~24) または "移換容器 (請求項9~20) と呼んでいる一時的移換容器34と、二つの関連した流体通路36および38とを含んでいる。一次的移換容器34および全体の適過アセンブリ14自体は、

好ましくは流体、貯蔵媒体および類似物(捕捉された空 気を除く)を含まない"乾燥"状態で提供され、それに より流体収容システムを支配する規制要件を回避する。

第1の流体通路36は血球から望まない物質を分離する ためのインライン濾過装置40を含んでいる。第2の流体 通路38は濾過装置40をバイパスする。

との構造のため、一時的移換容器34に出入する流体を 瀘過装置40を通過する通路(すなわち第1の流体通路36 を通って)に、または瀘過装置40をバイバスする通路 (すなわち第2の流体通路38を通って) に向けることが 10 可能である。

移換容器34および流体通路36および3&はすべてDEHPで 可塑化したポリ塩化ビニルのような低コスト医療規格プ ラスチック材料でつくられる。

濾過アセンブリ14は、その特定の条件に応じて、異な るタイプの血球からすべてのタイプの望まない物質を除 去するために使用できることを認識すべきである。例証 具体例においては、濾過アセンブリ14は、赤血球から貯 蔵前白血球(そして好ましくは血小板も)を除去すると とを意図する。この取合わせにおいて、濾過装置40は、 赤血球から白血球および血小板を除去するのに適した慣 用の濾過媒体44を収容するハウジング42を含んている。

濾過アセンブリ14は第1 および第2の流路36および38 に関連した流れ制御手段46を含んでいる。流れ制御手段 *** 46は、流れを第1の流路36を通って、そしてそのため濾 過装置40を通って誘導するための(第2図に示すよう 制御手段46はまた、流れを第2の流路38を通って、それ により濾過装置をバイバスして誘導するための(第3図 に示すように) 第2のモードにおいて作動することがで きる。

例証した好ましい具体例においては、接続アセンブリ 48が当初別体の血液採取および濾過アセンブリ12および 14亿付属する。接続アセンブリ48は濾過アセンブリ14の 血液採取アセンブリ12への選択的接続を許容する。流れ 制御手段46をその第1のモードにして一旦接続すれば

(第2図に示すように)、赤血球は一次容器16から第1 の流路36および濾過装置40を通って一時的移換容器34へ 運搬することができる。この操作中、望まない白血球

(および血小板) は濾過装置40によって赤血球から除去 される。次に、二つのアセンブリが一体に接続されてい る間に、流れ制御手段46は、第3図に示すように、その 第2のモードに置かれる。今や望まない白血球(および 血小板)を実質上含まない赤血球は、一時的移換容器34 から第2の流路38を通り、濾過装置40をバイパスして一 次容器16へ戻される。

濾過アセンブリ14は種々に構成することができる。例 50 ウジング70間の流体通路を開く。

証具体例においては、第1の流体通路36はポリ塩化ビニ ルのような医療規格プラスチック材料製の可撓性チュー ブ50の形を取る。チューブ50は第1および第2の対向端 部分52および54を含む。第1の端部分52は移換容器34へ 一体に接続される。濾過装置40は反対端部分54と移換容

器34の間にインラインに位置する。

12

との取合せにおいて、第2の流体通路38もポリ塩化ビ ニルのような医療規格プラスチック材料製の可撓性チュ ーブ56を含んでいる。チューブ56も対向端部分58および 60を含んでいる。一方の端部分60は第1の流体通路チュ ーブ50と、その第2の対向端部分54と濾過装置40の間で 合体する。他方の端部分58は第1の流体通路チューブ50 と、濾過装置40と移換容器34との間で合体する。

例証具体例において、流れ制御手段46は第1の流路36 中週過装置40と移換容器34の間に第1の流れ制御具62を 含んでいる。流れ制御手段46はまた、第2の流路38中対 向チューブ端58と60の間に第2の流れ制御具64を含んで いる。図示するように、第2の流れ制御具64は、好まし くは第1の流路チューブ50とその第2の端部分54および 20 濾過装置40の間で合体するチューブ端部分に隣接して位 置する。

例証具体例においては、流れ制御具62および64は、関 ・濾過媒体44はコットンウール、セルロースアセテートま 連するチューブ通路50および56を開閉するように手動で "たはポリエステルのような他の合成繊維を含むことがで"」『作動される慣用のローラークランプである。作動の第 1 のモードにおいては、第1のローラークランプ62が開か 一れ、第2のローラークランプ64が閉じられる。第2の作・ ...動モードにおいてはこれと反対である。

例証した好ましい具体例においては、濾過アセンブリ 14は、一旦滅菌すると適用し得る合衆国規準で判定して に)第1のモードにおいて作動するととができる。流れ 30 無菌の"閉鎖"系(処理および貯蔵アセンブリ12のよう に)を構成する。この取合せにおいて、接続アセンブリ 48は閉鎖系12および14の無菌完全性を維持する態様で採 取および濾過アセンブリを接続および取り外す役目をす

> さらに詳しくは、接続アセンブリ48は2個の番いにな った無菌接続器具(66aおよび66bとして指定)よりな る。器具66aなよび66bは(第5図も見よ)は、Granzow らの米国特許4,157,723号および4,265,280号に記載され ており、これらを参照としてここに取入れる。一方の器 具66aは一次バッグ16へ接続されたチューブ68によって 支承される。他方の器具66bは濾過アセンブリ14のチュ ーブ端54亿支承される。

> 第5図に示すように、無菌接続器具66aおよび66bは、 各自一般に放射エネルギー吸収材料でつくった平常閉じ ている溶融し得る壁72を有するハウジング70を含んでい る。ハウジング70は壁72を対面接触させて番いのベイオ ネット型のカップラー74aおよび74bをもって合体され る。接続し、放射エネルギーへ曝露する時、壁72はバク テリアの死滅を生ずる温度で溶融し、同時に接続したハ

器具66aおよび66bは関連するアセンブリ12および14を大気との連通から平常閉鎖し、そして流体通路が形成される時相互接続される流体通路に隣接する区域を滅菌するように働く活性滅菌ステップと同時に開かれる。これら器具66aおよび66bは相互接続される流体通路をそれが形成される時に密閉シールする。これら無菌接続器具66aおよび66bの使用は百万分の一を上廻る非無菌性の確率を保証する。このように器具66aおよび66bは二つのアセンブリ12および14をどちらの無菌完全性も損なうことなく接続する。

代りに、接続アセンブリ48はSpencerの米国特許4,41 2,835号に開示されている無菌接続システム(図示せず)よりなるととができる。との取合せにおいては、とのシステムは一次バッグ16の移換チューブ30と濾過アセンブリ14のチューブ端部分54の間に溶融したシールを形成する。冷却すれば無菌溶接が形成される。

使用時、全血が血液採取アセンブリの一部分をなすドナーバッグ16中に採取される。血小板リッチ血漿の除去および移換バッグの取外し後(第2図を見よ)、ドナーバッグ16は関連する無菌接続器具66aおよび66bを使用し 20 て濾過アセンブリ14へ一時的に接続される。第1のローラークランプ62が開かれ、そして第2のローラークランプ64が閉じられる。

第2図に示すように、ドナーバッグ16が一時的移換バッグ34の上方で持ち上げられ、そして赤血球は重力流によりドナーバッグ16から第1の流体通路36および濾過装置40を通って移換バッグ34中へ運搬される。望まない物質(すなわち白血球および血小板)は濾過装置40によっ*

* て赤血球から除去される。

最初フィルター40をドナーバッグの上方に保持し、そしてドナーバッグ16を圧迫することによってフィルター40を通る血液流が確立されるまでフィルター40を通って血液を押出すことによってフィルター40をプライミングすることが必要かも知れない。

14

適過が終了した時、第1のローラークランプ62が閉じられ、第2のローラークランプが開かれる。第3図に示
10 すように、移換バッグ34はドナーバッグ12の上方に持ち上げられ、そして今や望まない物質を実質上含まない赤血球が重力流によって一時的移換バッグ34から第2の流体通路38を通り、濾過装置40を全くバイバスしてドナーバッグ16中で戻される。

次に濾過アセンブリ14が血液採取アセンブリ12から切り離される。これは一次バッグ16のチューブ68および濾過アセンブリ14のチューブ50中に切り離しシール "x"を形成し、接続した接続器具66aおよび66bを除去することによって達成される。

20 例証具体例の環境においては、全体の濾過操作(濾過アセンブリ14の接続および取外しを含む)は5分以内に達成することができる。今や望まない物質を実質上含まない赤血球は輸血のため一次バッグ16中に貯蔵することができる。そして好ましい具体例においては、移換が無菌接続技術を使用してなされた場合には、濾過は赤血球の無菌完全性を損傷またはその貯蔵寿命を減らすことなりに発生している。

本発明の種々の特徴は請求の範囲に述べられている。

【第3図】

·【第5図】

【第4図】

