CCP 2008 - PSI - ÉPREUVE 1

Partie I. Quelques valeurs de la fonction θ

I.1. Calcul de $\theta(1)$

I.1.1.
$$\lim_{n \to +\infty} \frac{1}{n^x} = \begin{cases} +\infty & \text{si} & x < 0 \\ 1 & \text{si} & x = 0 \\ 0 & \text{si} & x > 0 \end{cases}$$

I.1.2. La série $\sum_{x \ge 1} \frac{(-1)^{n+1}}{n^x}$ diverge grossièrement si $x \le 0$, et converge pour x > 0: en effet,

dans ce dernier cas, la suite $\left(\frac{1}{n^x}\right)_{n\geq 1}$ tend vers zéro en décroissant, la convergence résulte donc du critère spécial des séries alternées. On a donc bien $D_{\theta} = E = \mathbb{R}_{+}^{*}$.

I.1.3.

I.1.3.1. Sur l'intervalle $\left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$ par exemple, on a $\tan = \frac{\sin}{\cos} = -\frac{(\cos)'}{\cos} = (-\ln \circ \cos)'$.

$$J_1 = \int_0^{\frac{\pi}{4}} \tan t \, dt = \left[-\ln(\cos t) \right]_0^{\frac{\pi}{4}} = \frac{\ln 2}{2} .$$

I.1.3.2. Posons $f_n(t) = (\tan t)^n$ pour $t \in \left[0, \frac{\pi}{4}\right]$ et $n \in \mathbb{N}^*$; on a alors

 $\lim_{n \to +\infty} f_n(t) = \begin{cases} 0 & \text{si} \quad t \in \left[0, \frac{\pi}{4}\right] \\ 1 & \text{si} \quad t = \frac{\pi}{4} \end{cases}$. La suite de fonctions continues (f_n) converge donc

simplement sur $\left[0,\frac{\pi}{4}\right]$ vers la fonction f continue par morceaux qui vaut 0 sur $\left[0,\frac{\pi}{4}\right]$ et 1 au point $\frac{\pi}{4}$. Enfin, on a $|f_n(t)| \leq 1$, la fonction constante $t \mapsto 1$ étant intégrable sur le segment $S = \left[0, \frac{\pi}{4}\right]$. Le théorème de convergence dominée permet d'affirmer alors que

$$\lim_{n\to+\infty}J_n=\lim_{n\to+\infty}\int_Sf_n=\int_S\lim_{n\to+\infty}f_n=\int_Sf=0\;.$$
 I.1.3.3. En utilisant le changement de variable $u=\tan t$, on a

$$J_n + J_{n+2} = \int_0^{\frac{\pi}{4}} (1 + \tan^2 t) (\tan t)^n dt = \int_0^1 u^n du = \frac{1}{n+1}.$$

Remarque. Cela permet de retrouver avec des arguments plus élémentaires le résultat de la question précédente : les intégrales J_n étant positives, on a $0 \le J_n \le J_n + J_{n+2} = \frac{1}{n+1}$ et, de cet encadrement, on déduit $\lim_{n\to+\infty} J_n = 0$.

I.1.3.4. Pour tout entier naturel non nul k, on a $\frac{1}{2k} = J_{2k-1} + J_{2k+1}$. Donc

$$\sum_{k=1}^{n} \frac{(-1)^{k+1}}{2k} = \sum_{k=1}^{n} (-1)^{k+1} (J_{2k-1} + J_{2k+1})$$

$$= (J_1 + J_3) - (J_3 + J_5) + \dots + (-1)^{n+1} (J_{2n-1} + J_{2n+1})$$

$$= J_1 + (-1)^{n+1} J_{2n+1}$$

après télescopage.

I.1.3.5. On fait tendre n vers $+\infty$ dans l'égalité ci-dessus sachant que $\lim_{n\to+\infty} J_{2n+1}=0$: on obtient $\frac{1}{2} \theta(1) = J_1$, donc $\theta(1) = 2 J_1 = \ln 2$.

- I.2. Une valeur approchée de $\theta(3)$.
 - **I.2.1.** s := 0; pour k de 1 à n faire $s := s + (-1)^{k+1}/k^3$; afficher s.
 - **I.2.2.** La valeur approchée décimale à 10^{-4} près par défaut de S_{30} est $\sigma = 0,9015$.
 - **I.2.3.** Du critère spécial des séries alternées, on déduit que la somme $\theta(2)$ de la série est encadrée par deux sommes partielles consécutives, par exemple $S_{30} < \theta(2) < S_{31}$. Comme S_{31} admet aussi σ pour valeur approchée décimale à 10^{-4} près par défaut, on conclut.
- I.3. Calcul de $\theta(2)$ et $\theta(4)$.
 - **I.3.1.** On a $\alpha_0 = \frac{\pi^3}{3}$ et, par deux intégrations par parties, on obtient $\alpha_n = \frac{2\pi}{n^2}(-1)^n$ pour $n \in \mathbb{N}^*$.
 - **I.3.2.** La fonction g est paire donc $b_n(g) = 0$ et $a_n(g) = \frac{2}{\pi} \int_0^{\pi} g(x) \cos(nx) dx = \frac{2}{\pi} \alpha_n$. Ainsi, $a_0(g) = \frac{2\pi^2}{3}$ et, pour n entier naturel non nul, $a_n(g) = \frac{4}{n^2}(-1)^n$.
 - **I.3.3.** Posons $h_n(x) = \frac{(-1)^n}{n^2} \cos(nx)$. De $|h_n(x)| \leq \frac{1}{n^2}$, on déduit la convergence absolue de la série $\sum_{n\geq 1} h_n(x)$ pour tout x réel et, même mieux, la convergence normale de la série

de fonctions $\sum_{n\geq 1}^{n\geq 1}h_n$ sur \mathbb{R} . La fonction g est 2π -périodique, continue et de classe \mathcal{C}^1 par

morceaux, elle est donc somme sur \mathbb{R} de sa série de Fourier (et cette dernière converge normalement, mais c'est la constatation déjà faite plus haut). On a ainsi

$$\forall x \in \mathbb{R} \qquad g(x) = \frac{a_0(g)}{2} + \sum_{n=1}^{+\infty} a_n(g) \cos(nx) = \frac{\pi^2}{3} + 4 \sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} \cos(nx) ,$$

soit $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} \cos(nx) = \frac{1}{4} \left(g(x) - \frac{\pi^2}{3} \right)$. En particulier,

$$\forall x \in]-\pi,\pi]$$

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} \cos(nx) = \frac{x^2}{4} - \frac{\pi^2}{12}.$$

- **I.3.4.** On évalue cette dernière relation pour x=0: $\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^2} = -\theta(2) = -\frac{\pi^2}{12}, \text{ donc}$ $\theta(2) = \frac{\pi^2}{12}.$
- I.3.5. La convergence de la série de Riemann d'exposant 4 est un résultat du cours. Pour calculer sa somme, utilisons la formule de Parseval.

En posant $||g||_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |g(x)|^2 dx = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^4 dx = \frac{\pi^4}{5}$, on a

$$||g||_2^2 = \frac{|a_0(g)|^2}{4} + \frac{1}{2} \sum_{n=1}^{+\infty} |a_n(g)|^2 = \frac{\pi^4}{9} + 8 \sum_{n=1}^{+\infty} \frac{1}{n^4}$$

- d'où $\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{1}{8} \left(\frac{\pi^4}{5} \frac{\pi^4}{9} \right) = \frac{\pi^4}{90}$. Il serait facile d'en déduire la valeur de $\theta(4)$ en séparant les termes d'indices pairs et les termes d'indices impairs, mais suivons l'énoncé...
- **I.3.6.** La série proposée converge normalement sur \mathbb{R} par rapport au paramètre x puisque le terme général est majoré, en valeur absolue, par $\frac{1}{n^3}$. La convergence normale de la série de fonctions $\sum_{n\geq 1} h_n$ (question **I.3.3.**) permet d'intégrer terme à terme sur le segment [0,x] ou [x,0] pour $x\in]-\pi,\pi]$, cela donne

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n^3} \sin(nx) = \sum_{n=1}^{+\infty} \int_0^x h_n(t) dt = \int_0^x \left(\sum_{n=1}^{+\infty} h_n(t)\right) dt$$
$$= \int_0^x \left(\frac{t^2}{4} - \frac{\pi^2}{12}\right) dt = \frac{x^3}{12} - \frac{\pi^2 x}{12}.$$

I.3.7. La série proposée converge toujours normalement sur \mathbb{R} par rapport au paramètre x. La convergence normale de la série proposée en **I.3.6.** permet toujours d'intégrer terme à terme sur le segment [0, x] ou [x, 0] avec $x \in]-\pi, \pi]$. On obtient

$$\int_0^x \left(\frac{t^3}{12} - \frac{\pi^2 t}{12}\right) dt = \int_0^x \left(\sum_{n=1}^{+\infty} \frac{(-1)^n \sin(nt)}{n^3}\right) dt$$

$$= \sum_{n=1}^{+\infty} \int_0^x \frac{(-1)^n \sin(nt)}{n^3} dt$$

$$= \sum_{n=1}^{+\infty} \left[\frac{(-1)^{n+1} \cos(nt)}{n^4}\right]_0^x$$

$$= -\sum_{n=1}^{+\infty} \frac{(-1)^n \cos(nx)}{n^4} - \theta(4),$$

soit
$$\sum_{n=1}^{+\infty} \frac{(-1)^n \cos(nx)}{n^4} = \frac{\pi^2 x^2}{24} - \frac{x^4}{48} - \theta(4).$$

I.3.8. On évalue pour $x = \pi$:

$$\sum_{n=1}^{+\infty} \frac{1}{n^4} = \frac{\pi^4}{90} = \frac{\pi^4}{24} - \frac{\pi^4}{48} - \theta(4) \ .$$

Après réduction, $\theta(4) = \frac{7\pi^4}{720}$.

Partie II. Étude d'une fonction

- **II.1.** Si x < 0, $\lim_{n \to +\infty} u_n(x) = +\infty$; si x = 0, $\lim_{n \to +\infty} u_n(x) = \ln 2$: dans ces deux cas, la série de terme général $u_n(x)$ diverge grossièrement. Si x > 0, alors $\lim_{n \to +\infty} e^{-nx} = 0$, donc $u_n(x) = \ln(1 + e^{-nx}) \underset{n \to +\infty}{\sim} e^{-nx}$: par comparaison de séries à termes positifs, on en déduit que la série de terme général $u_n(x)$ converge. En conclusion, $D_f =]0, +\infty[$.
- II.2. Soit a>0. Pour $x\in [a,+\infty[$, on a $\forall n\in\mathbb{N}\ 0\leq \ln(1+e^{-nx})\leq \ln(1+e^{-na})$ (terme général d'une série convergente). La série de fonctions $\sum_{n\geq 0}u_n$ converge donc normalement sur $[a,+\infty[$ pour tout a>0. Les fonctions u_n étant continues, on en déduit la continuité de la somme f sur $[a,+\infty[$ pour tout a>0, donc sur \mathbb{R}_+^* .
- II.3. Pour tout $n \in \mathbb{N}^*$, la fonction u_n est strictement décroissante sur \mathbb{R}_+^* , donc f est strictement décroissante sur \mathbb{R}_+^* (par addition d'inégalités de même sens, l'une au moins étant stricte).
- II.4. C'est le théorème des valeurs intermédiaires : l'image d'un intervalle par une application continue est un intervalle.

Comme f est continue et strictement monontone sur \mathbb{R}_+^* , on peut préciser que f établit une bijection de $]0,+\infty[$ vers $\mathcal{E},$ et que $\mathcal{E}=f\big(]0,+\infty[\big)=\Big]\lim_{t\to\infty}f$, $\lim_{0+}f\Big[$.

II.5. La série $\sum_{n\geq 0} u_n$ converge normalement donc uniformément sur $[1,+\infty[$; $\lim_{x\to +\infty} u_0(x) = \ln 2$ et, pour $n\in \mathbb{N}^*$, $\lim_{x\to +\infty} u_n(x) = 0$. Par le théorème d'interversion limite-somme, on déduit que $\lambda = \lim_{x\to +\infty} f(x) = \ln 2$.

II.6.

- **II.6.1.** C'est l'intégrale impropre d'une fonction continue et positive sur $[0, +\infty[$, et on a $\psi_x(t) = \ln(1 + e^{-tx}) \underset{t \to +\infty}{\sim} e^{-xt}$. Or on sait que, pour x > 0 fixé, la fonction $t \mapsto e^{-xt}$ est intégrable sur \mathbb{R}_+ , il en est donc de même de la fonction ψ_x .
- **II.6.2.** Pour tout x > 0 fixé, la fonction ψ_x est décroissante sur \mathbb{R}_+ , donc

$$\forall n \in \mathbb{N}$$
 $\psi_x(n+1) \le \int_n^{n+1} \psi_x(t) \, \mathrm{d}t \le \psi_x(n)$.

On en déduit que

$$\int_{n}^{n+1} \psi_x(t) dt \le \psi_x(n) = u_n(x) \le \int_{n-1}^{n} \psi_x(t) dt$$

(la première inégalité est vraie pour tout n entier naturel, la deuxième à partir du rang 1). En sommant ces inégalités (les séries et intégrales impropres étant convergentes), on obtient

$$\int_0^{+\infty} \psi_x(t) \, dt \le \sum_{n=0}^{+\infty} u_n(x) = f(x) \le \ln 2 + \int_0^{+\infty} \psi_x(t) \, dt .$$

II.6.3. La fonction $y\mapsto \frac{\ln(1+y)}{y}$ est continue sur]0,1], et prolongeable par continuité en 0 (avec la valeur 1) d'où l'existence de l'intégrale. On la calcule maintenant par une intégration terme à terme.

Sur l'intervalle I=]0,1[, on a $\frac{\ln(1+y)}{y}=\sum_{n=1}^{+\infty}f_n(y),$ en posant $f_n(y)=(-1)^{n-1}\frac{y^{n-1}}{n}.$ Chaque fonction f_n est continue et intégrable sur I, la série de fonctions $\sum_{n\geq 1}f_n$ converge simplement sur I vers la fonction $y\mapsto \frac{\ln(1+y)}{y},$ et la série de terme général $\int_I |f_n|=\int_0^1\frac{y^{n-1}}{n}\,\mathrm{d}y=\frac{1}{n^2}$ converge, on peut donc intervertir série et intégrale : $\int_0^1\frac{\ln(1+y)}{y}\,\mathrm{d}y=\int_0^1\left(\sum_{n=1}^{+\infty}(-1)^{n-1}\frac{y^{n-1}}{n}\right)\,\mathrm{d}y=\sum_{n=1}^{+\infty}\frac{(-1)^{n-1}}{n}\int_0^1y^{n-1}\,\mathrm{d}y$ $=\sum_{n=1}^{+\infty}\frac{(-1)^{n+1}}{n^2}=\theta(2)\,.$

II.6.4. Le changement de variable $y = e^{-tx}$ donne

$$\int_0^{+\infty} \psi_x(t) dt = \int_0^{+\infty} \ln(1 + e^{-tx}) dt = -\int_1^0 \frac{\ln(1+y)}{xy} dy = \frac{\theta(2)}{x}.$$

La question II.6.2. donne alors

$$\frac{\theta(2)}{x} \le f(x) \le \ln 2 + \frac{\theta(2)}{x} ,$$

soit l'encadrement recherché avec $\lambda = \ln 2$ et $\mu = \theta(2) = \frac{\pi^2}{12}$.

II.6.5. Donc $\theta(2) \le x \, f(x) \le x \, \ln 2 + \theta(2)$ et $\lim_{x \to 0^+} x \, f(x) = \theta(2) = \frac{\pi^2}{12}$. Donc $f(x) \sim \frac{\pi^2}{12x}$ lorsque $x \to 0^+$, et notamment $\lim_{x \to 0^+} f(x) = +\infty$. Ainsi, $\mathcal{E} =]\ln 2, +\infty[$.

Partie III. Propriétés de la fonction θ

Dans toute cette partie, on notera $v_k(x) = \frac{(-1)^{k+1}}{k^x}$ pour tout $x \in \mathbb{R}_+^*$ et tout $k \in \mathbb{N}^*$; on notera aussi $\theta_n(x) = \sum_{k=1}^n \frac{(-1)^{k+1}}{k^x}$ la somme partielle d'ordre n de la série définissant $\theta(x)$.

III.1. La suite $\left(\frac{1}{k^x}\right)_{k\in\mathbb{N}^*}$ est décroissante et tend vers zéro. D'après le critère spécial des séries alternées, on a

$$\forall p \in \mathbb{N}^* \quad \forall x \in \mathbb{R}_+^* \qquad \theta_{2p}(x) \le \theta(x) \le \theta_{2p-1}(x) .$$

En particulier, $1 - \frac{1}{2^x} = \theta_2(x) \le \theta(x) \le \theta_1(x) = 1$.

III.2. Pour tout x strictement positif, on a $0 < \frac{1}{2^x} = e^{-x \ln 2} < 1$, donc $0 \le \theta(x) \le 1$: la fonction θ est bornée sur E. De plus, $\lim_{x \to +\infty} \frac{1}{2^x} = 0$, donc $\lim_{x \to +\infty} \left(1 - \frac{1}{2^x}\right) = 1$. L'encadrement de la question précédente montre alors que $\lim_{x \to +\infty} \theta(x) = 1$.

III.3. Continuité de la fonction θ

III.3.1. Soit $a \in]1, +\infty[$. Pour $x \in [a, +\infty[$, on a $|v_k(x)| \le \frac{1}{k^a}$ (terms général d'une série convergente) : on a ainsi prouvé la convergence normale sur $[a, +\infty[$ de la série $\sum v_k$.

Chacune des fonctions v_k étant continue, on en déduit la continuité de la fonction somme θ sur $[a, +\infty[$ pour tout a > 1, donc la continuité sur $]1, +\infty[$.

III.3.2. Du critère spécial des séries alternées, on déduit aussi que $|\theta(x) - \theta_n(x)| \le |v_{n+1}(x)| =$ $\frac{1}{(n+1)^x}$. Fixons alors a>0; pour $x\in[a,+\infty[$, on a $|\theta(x)-\theta_n(x)|\leq\frac{1}{(n+1)^a}$ et $\lim_{n\to+\infty}\frac{1}{(n+1)^a}=0$, il y a donc convergence uniforme sur $[a,+\infty[$ de la série de fonctions définissant θ . Comme en III.3.1., on en déduit que θ est continue sur $[a, +\infty[$ pour tout a > 0, donc sur $E = \mathbb{R}_+^*$.

III.4. Caractère \mathcal{C}^1 de la fonction θ

III.4.1. On calcule d'abord $\varphi_x'(t) = \frac{1 - x \ln t}{t^{x+1}}$

III.4.1.1. Si $x \ge \frac{1}{\ln 2}$, alors, comme $\ln t \ge \ln 2$ sur $[2, +\infty[$, on a $x \ln t \ge 1$ donc $\varphi_x'(t) \le 0$ et φ_x est (strictement) décroissante sur l'intervalle $[2, +\infty[$.

III.4.1.2. Si $0 < x < \frac{1}{\ln 2}$, on a $e^{\frac{1}{x}} > 2$ et la fonction φ_x est strictement croissante sur l'intervalle $\left[2,e^{\frac{1}{x}}\right]$, strictement décroissante sur $\left[e^{\frac{1}{x}},+\infty\right[$.

III.4.2. Notons d'abord que chaque fonction v_k est de classe \mathcal{C}^1 sur $E = \mathbb{R}_+^*$ avec

$$\forall k \ge 2$$
 $v'_k(x) = (-1)^k \frac{\ln k}{k^x} = (-1)^k \varphi_x(k)$.

Notons aussi que la fonction v_1 est constante, donc $v_1'=0$. III.4.2.1. Pour $x \in \left[\frac{1}{\ln 2}, +\infty\right[$, la suite de terme général $|v_k'(x)| = \varphi_x(k)$ est décroissante à partir du rang 2 (d'après la question III.4.1.1.) et elle tend vers zéro (croissances comparées) donc, toujours d'après le critère spécial des séries alternées, le reste

$$r_n(x) = \sum_{k=n+1}^{+\infty} (-1)^k \frac{\ln k}{k^x} \quad \text{v\'erifie} \quad |r_n(x)| \le |v'_{n+1}(x)| = \frac{\ln(n+1)}{(n+1)^x} \le \frac{\ln(n+1)}{(n+1)^{\ln 2}}. \text{ Cette}$$

dernière expression majorante tendant vers zéro indépendamment de x, on a prouvé la convergence uniforme sur l'intervalle $\left[\frac{1}{\ln 2}, +\infty\right[$ de la série de fonctions $\sum_{n\geq 1} v_n'$ (la suite

des restes converge uniformément vers la fonction nulle). On en déduit que la fonction $\theta = \sum_{n=1}^{\infty} v_n$ est de classe \mathcal{C}^1 sur cet intervalle.

III.4.2.2. Soit a>0, si $x\in[a,+\infty[,$ la suite $\left(|v_n'(x)|\right)_{n\geq 2}$ est décroissante à partir du rang $1 + E\left(e^{\frac{1}{\overline{a}}}\right)$, donc au moins à partir du rang $N = 1 + E\left(e^{\frac{1}{\overline{a}}}\right)$. La série $\sum_{n\geq N}v_n'(x)=\sum_{n\geq N}(-1)^n|v_n'(x)| \text{ vérifie les hypothèses du critère spécial des séries alternées}:$ pour tout $x\in [a,+\infty[$, la suite $\left(|v_n'(x)|\right)_{n\geq N}$ tend vers zéro en décroissant. On a donc, pour

tout $n \ge N$ et tout $x \in [a, +\infty[$,

$$\Big| \sum_{k=n+1}^{+\infty} v'_k(x) \Big| \le |v'_{n+1}(x)| \le |v'_{n+1}(a)| = \frac{\ln(n+1)}{(n+1)^a} \quad \underset{n \to +\infty}{\longrightarrow} \quad 0.$$

La série de fonctions $\sum_{n>N} v'_n$ converge uniformément sur $[a,+\infty[$, la fonction $\sum_{n=N}^{+\infty} v_n$ est donc de classe \mathcal{C}^1 sur cet intervalle. Donc θ est de classe \mathcal{C}^1 sur $[a, +\infty[$ pour tout a > 0,

elle est donc de classe C^1 sur $]0, +\infty[$.

III.4.3.1. On a $\theta'(2) = \sum_{n=2}^{+\infty} (-1)^n \varphi_2(n)$. Or, $2 > \frac{1}{\ln 2}$, donc la suite $(\varphi_2(n))$ est strictement décroissante à partir du rang 2 d'après III.4.1.1., et elle tend vers zéro ; il résulte donc du critère spécial des séries alternées que la somme de la série est du même signe que son premier terme, à savoir $\theta'(2) > 0$.

III.4.3.2. On a $\theta'(1) = \sum_{n=2}^{+\infty} (-1)^n \varphi_1(n)$. La fonction φ_1 est décroissante seulement sur $[e, +\infty[$, donc la suite $(\varphi_1(n))$ est strictement décroissante à partir du rang 3, et elle tend vers zéro . Le critère spécial (encore!) permet alors d'encadrer la somme $\sum_{n=0}^{\infty} (-1)^n \varphi_1(n)$ entre deux sommes partielles consécutives. En rajoutant à chaque membre d'un tel encadrement le terme $\varphi_1(2)$, on peut aussi encadrer la somme $\theta'(1) = \sum_{k=2}^{+\infty} (-1)^k \frac{\ln k}{k}$ entre deux sommes partielles consécutives Ainsi, par exemple,

$$\frac{\ln 2}{2} - \frac{\ln 3}{3} + \frac{\ln 4}{4} - \frac{\ln 5}{5} \le \theta'(1) \le \frac{\ln 2}{2} - \frac{\ln 3}{3} + \frac{\ln 4}{4} \; .$$

Comme le minorant est strictement positif (valeur approchée 0,005056), on a $\theta'(1) > 0$.