Example: O-ring failures by temperature 3 link functions: logit, probit, log-log

- Christensen (1997) and Congdon (2001) analyze 23 binary observations of O-ring failures y_i (1=failure) in relation to temperature t_i (Fahrenheit).
- y = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0)
- t = (53, 57, 58, 63, 66, 67, 67, 67, 68, 69, 70, 70, 70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 81)

What is $Pr(\tilde{y} = 1 | \tilde{x})$, for $\tilde{x} = 31, 33, ..., 51$?

• Bernoulli model:

$$y_i | heta_i \sim Bern(heta_i)$$
 for $i=1,\ldots,n=23.$

- Link function
 - Logit link (M_1) :

$$\log\left(\frac{\theta_i}{1-\theta_i}\right) = \alpha + \beta x_i$$

- Probit link (M_2) :

$$\Phi(\theta_i) = \alpha + \beta x_i$$

- Complementary log-log link (M_3) :

$$\log(-\log(1-\theta_i)) = \alpha + \beta x_i$$

• $\alpha = -1.26$, $x_i = t_i - \overline{t}$ and $\overline{t} = 69.6$.

• Kernel of the posterior of β

$$p(\beta|y, M_j) \propto p(\beta|M_j)l_j(\theta(\beta); y)$$

$$\propto e^{-\frac{(\beta-\beta_0)^2}{2V_\beta}} \prod_{i=1}^n \theta_i^{y_i} (1-\theta_i)^{1-y_i}$$

where θ_i s are deterministic functions of β and j indexes the corresponding link function, for j=1,2,3.

• If $\beta_1, \ldots, \beta_{50000}$ is a sample from $p(\beta)$, then

$$\hat{p}(y|M_1) = 0.000001298981$$

 $\hat{p}(y|M_2) = 0.000000120205$
 $\hat{p}(y|M_3) = 0.000001469835$

are MC estimates of $p(y|M_j)$ for j = 1, 2, 3.

• The data supports more (higher p(y|M)) the logit (M_1) and complementary log-log (M_3) links.

Posterior distribution of $\boldsymbol{\beta}$ under the three link functions

Bayesian model averaging

$$Pr(\tilde{y} = 1|\tilde{x}) = \pi_1 \int_{-\infty}^{\infty} Pr(\tilde{y} = 1|\tilde{x}, \beta, M_1) p(\beta|y, M_1) d\beta$$

$$+ \pi_2 \int_{-\infty}^{\infty} Pr(\tilde{y} = 1|\tilde{x}, \beta, M_2) p(\beta|y, M_2) d\beta$$

$$+ \pi_3 \int_{-\infty}^{\infty} Pr(\tilde{y} = 1|\tilde{x}, \beta, M_3) p(\beta|y, M_3) d\beta$$

where $\pi_j = Pr(M_j|y)$, for j=1,2,3, are posterior model probabilities and can be approximated by

$$\widehat{\pi}_j = \frac{\widehat{p}(y|M_j)Pr(M_j)}{\sum_{l=1}^{3} \widehat{p}(y|M_l)Pr(M_l)}$$

For simplicity, the prior model probabilities, $Pr(M_j)$, are set to 1/3 for j=1,2,3. Therefore,

$$\hat{P}r(M_1|y) = 0.44962664$$

 $\hat{P}r(M_2|y) = 0.04160751$
 $\hat{P}r(M_3|y) = 0.50876585$

showing, again, that the data supports more the logit (M_1) and complementary log-log (M_3) links.

Finally, $Pr(\tilde{y}=1|\tilde{x})$ can be approximated by

$$\hat{P}r(\tilde{y} = 1 | \tilde{x}) = \hat{\pi}_1 \sum_{i=1}^{M} Pr(\tilde{y} = 1 | \tilde{x}, \beta_{1i}, M_1)
+ \hat{\pi}_2 \sum_{i=1}^{M} Pr(\tilde{y} = 1 | \tilde{x}, \beta_{2i}, M_2)
+ \hat{\pi}_3 \sum_{i=1}^{M} Pr(\tilde{y} = 1 | \tilde{x}, \beta_{3i}, M_3)$$

where $\beta_{j1}, \ldots, \beta_{jM}$ is a sample from $p(\beta|y, M_j)$ and j = 1, 2, 3.

 $Pr(\tilde{y}=1|\tilde{x})$ - Bayesian model averaging (black), logit models (red), probit models (green) and complementary log-log models (blue).