Теоретические ("малые") домашние задания

Математическая логика, ИТМО, МЗ234-МЗ239, весна 2018 года

Домашнее задание №1: «знакомство с исчислением высказываний»

Докажите при любых подстановках метапеременных α , β и γ :

- 1. $\vdash \alpha \& \beta \rightarrow \beta \& \alpha$
- 2. $\vdash \alpha \rightarrow \neg \neg \alpha$
- 3. $\vdash \alpha \& (\beta \lor \gamma) \to (\alpha \lor \beta) \& (\alpha \lor \gamma)$
- $4. \vdash \neg(\alpha \& \beta) \rightarrow \neg \alpha \lor \neg \beta$
- 5. $\vdash (\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$

Домашнее задание №2: «теорема о полноте исчисления высказываний»

В данном домашнем задании вам будет предложено доказать несколько важных лемм, используемых в теореме о полноте исчисления высказываний. Подробнее с этой теоремой можно ознакомиться в конспекте курса, глава 5. В решениях можно пользоваться всем ранее доказанным на парах и в других домашних заданиях.

- 1. Докажите при любых значениях метапеременных α, β :
 - (a) $\alpha, \beta \vdash \alpha \& \beta$
 - (b) $\neg \alpha, \beta \vdash \neg (\alpha \& \beta)$
 - (c) $\alpha, \neg \beta \vdash \neg (\alpha \& \beta)$
 - (d) $\neg \alpha, \neg \beta \vdash \neg (\alpha \& \beta)$
 - (e) $\alpha, \beta \vdash \alpha \lor \beta$
 - (f) $\neg \alpha, \beta \vdash \alpha \lor \beta$
 - (g) $\alpha, \neg \beta \vdash \alpha \vee \beta$
 - (h) $\neg \alpha, \neg \beta \vdash \neg (\alpha \lor \beta)$
 - (i) $\alpha, \beta \vdash \alpha \rightarrow \beta$
 - (j) $\alpha, \neg \beta \vdash \neg(\alpha \to \beta)$
 - (k) $\neg \alpha, \beta \vdash \alpha \rightarrow \beta$
 - (1) $\neg \alpha, \neg \beta \vdash \alpha \rightarrow \beta$
 - (m) $\neg \alpha \vdash \neg \alpha$
 - (n) $\alpha \vdash \neg \neg \alpha$
- 2. Докажите, что при любых значениях метапеременной α справедливо $\vdash \alpha \lor \neg \alpha$
- 3. Докажите, что при любых списках формул Γ и Δ и при любых значениях метапеременных γ, δ, ζ если $\Gamma \vdash \gamma$, $\Delta \vdash \delta$ и $\gamma, \delta \vdash \zeta$, то $\Gamma, \Delta \vdash \zeta$
- 4. Докажите, что если $\Gamma, \rho \vdash \alpha$ и $\Gamma, \neg \rho \vdash \alpha$, то $\Gamma \vdash \alpha$

Домашнее задание №3: «интуиционистское исчисление высказываний»

Введём обозначение: нижним индексом у «турникета» будем указывать логику, в которой проводится доказательство. Если высказывание α доказуемо в интуиционистской логике, будем писать $\vdash_{\tt N} \alpha$, если в классической — $\vdash_{\tt K} \alpha$.

1. Напомним, как на лекции определялась оценка высказываний интуиционистского исчисления на топологическом пространстве $\langle X, \Omega \rangle$:

```
\begin{aligned}
& \left[ \left[ \alpha \& \beta \right] \right] = \left[ \alpha \right] \cap \left[ \beta \right] \\
& \left[ \alpha \lor \beta \right] = \left[ \alpha \right] \cup \left[ \beta \right] \\
& \left[ \alpha \to \beta \right] = \operatorname{int}(\operatorname{c}(\left[ \alpha \right]) \cup \left[ \beta \right]) \\
& \left[ \neg \alpha \right] = \operatorname{int}(\operatorname{c}(\left[ \alpha \right]))
\end{aligned}
```

Также, положим, что высказывание α истинно, если $[\![\alpha]\!] = X$ (т.е. любое доказуемое высказывание неизбежно имеет оценку, равную всему пространству). Докажите, что так опеределённая оценка корректна.

- 2. Докажите теорему Гливенко: $\vdash_{\tt K} \alpha$ тогда и только тогда, когда $\vdash_{\tt M} \neg \neg \alpha$. Чтобы это сделать, сперва докажите три вспомогательных утверждения:
 - (a) $\vdash_{\tt N} \neg \neg \alpha$, если α некоторая аксиома интуиционистского исчисления высказываний.
 - (b) При любом α выполнено $\vdash_{\mathtt{N}} \neg \neg (\neg \neg \alpha \to \alpha)$
 - (c) При любых α и β , если $\vdash_{\tt N} \neg \neg \alpha$ и $\vdash_{\tt N} \neg \neg (\alpha \to \beta)$, то $\vdash_{\tt N} \neg \neg \beta$
- 3. Покажите с помощью опровергающего примера, что в интуиционистской логике не выполнено:
 - (a) $\vdash_{\mathtt{M}} \neg \neg P \to P$
 - (b) $\vdash_{\mathtt{M}} ((P \to Q) \to P) \to P$ («закон Пирса»)
- 4. (Задача Куратовского) Будем применять к множеству в некоторой топологии различные последовательности операций int и cl и смотреть на получившиеся результаты. Некоторые множества будут совпадать: скажем, всегда int A = int(int A), а некоторые будут различны. Сколько вообще возможно получить различных множеств таким способом?

Классное-домашнее задание №4: «Алгебры Гейтинга и Линденбаума»

Прежде чем приступить к формулировке заданий, напомним некоторые определения с лекций. Мы рассматриваем интуиционистское исчисление высказываний, пусть все высказывания этого исчисления образуют множество F.

- 1. Будем писать $\alpha \sqsubseteq^* \beta$, если $\alpha \vdash \beta$.
- 2. Будем писать $\alpha \approx \beta$, если $\alpha \vdash \beta$ и $\beta \vdash \alpha$
- 3. Пусть задано некоторое отношение эквивалентности R, тогда имеют место следующие определения:
 - $[\alpha]_R = \{\beta \in F \mid R(\alpha, \beta)\}$. Нижний индекс у квадратных скобок мы будем опускать, если ясно, о каком отношении идёт речь.
 - (фактор-множество) $F/R = \{ [\alpha]_R \mid \alpha \in F \}.$
- 4. Рассмотрим фактор-множество F/\approx . Будем писать $[\alpha]_{\approx} \sqsubseteq [\beta]_{\approx}$, если $\alpha_1 \sqsubseteq^* \beta_1$ при всех $\alpha_1 \in [\alpha]_{\approx}$ и $\beta_1 \in [\beta]_{\approx}$.
- 5. Дистрибутивная решётка решётка, в которой при любых значениях a, b и c выполнено $(a+b) \cdot c = (a \cdot c) + (b \cdot c)$
- 6. Импликативная решётка решётка, в которой для любых элементов a и b определена операция псевдодополнения $(a \to b = \max\{c \mid a \cdot c \le b\})$
- 7. Алгебра Гейтинга импликативная решётка с 0.

Задания

- 1. Покажите, что $[\alpha]_R = [\beta]_R$ тогда и только тогда, когда $R(\alpha, \beta)$.
- 2. Покажите, что $[\alpha]_R$ и $[\beta]_R$ либо совпадают, либо не пересекаются.
- 3. Покажите, что если при некоторых α , α_1 , β , β_1 выполнено $\alpha_1 \in [\alpha]_{\approx}$, $\beta_1 \in [\beta]_{\approx}$ и $\alpha_1 \sqsubseteq^* \beta_1$, то $[\alpha]_{\approx} \sqsubseteq [\beta]_{\approx}$.
- 4. Покажите, что (\sqsubseteq^*) является отношением предпорядка, а (\sqsubseteq) отношением порядка.
- 5. Покажите, что F/\approx с отношением \sqsubseteq является: (a) решёткой, (б) импликативной решёткой, (в) алгеброй Гейтинга.

Домашнее задание №5: «Алгебры Гейтинга и Линденбаума, часть 2»

- 1. Рассмотрим некоторую модель Крипке на множестве миров W с отношением порядка \sqsubseteq . Рассмотрим топологическое пространство $\langle W, \{s \subseteq W \mid a \in s \text{ и } a \sqsubseteq b \text{ влечёт } b \in s\} \rangle$; иными словами, открытые множества все множества, содержащие с элементом все большие его. Рассмотрим алгебру Гейтинга, построенную по данному топологическому пространству: элементы алгебры все открытые множества, упорядоченные включением. За $\llbracket P \rrbracket$ возьмём множество всех миров, на которых переменная P вынуждена (поясните, почему это открытое множество). Тогда покажите, что $W_k \Vdash \alpha \lor \beta$ (а также: $\alpha \& \beta$, $\alpha \to \beta$, $\neg \alpha$) тогда и только тогда, когда $W_k \in \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket$ (соответственно: $\llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket$, $\operatorname{int}(\mathbf{c}(\llbracket \alpha \rrbracket) \cup \llbracket \beta \rrbracket)$), $\operatorname{int}(\mathbf{c}(\llbracket \alpha \rrbracket))$. С использованием этого восполните все пробелы в доказательстве того, что модели Крипке частный случай алгебр Гейтинга.
- 2. Из общего определения, данного на лекции, на основе операций в алгебре Гейтинга A определите формально операции (+), (\cdot) , (\sim) , (\sim) в $\Gamma(A)$.
- 3. Постройте опровергающие модели Крипке для следующих формул: $P \vee \neg P$, $((P \to Q) \to P) \to P$, $(P \to Q) \vee (P \to \neg Q)$
- 4. Будем рассматривать модели Крипке, в которых отношения между мирами образуют дерево (у двух миров не бывает одного и того же потомка). Укажите формулу, для которой не существует опровергающей модели Крипке с глубиной дерева меньше 2, 3, n.
- 5. Покажите, что любая импликативная решётка является дистрибутивной решёткой.
- 6. Покажите следующие свойства алгебр Гейтинга:
 - (a) При любых a и b выполнено $a \cdot (a \rightarrow b) \leq b$.
 - (b) При любых a, b и c верно, что $a \cdot c \le b$ влечёт $c \le a \to b$.
 - (c) При любых a и b верно, что $a \le b$ выполнено тогда и только тогда, когда $a \to b = 1$.
 - (d) При любых a и b верно, что $b \le a \to b$
 - (e) При любых a, b и c выполнено $a \to b \le (a \to (b \to c)) \to (a \to c)$
 - (f) При любых a, b и c выполнено $a \to c \le (b \to c) \to (a + b \to c)$
- 7. Пользуясь предыдущими пунктами, покажите, что алгебры Гейтинга являются корректными моделями ИИВ.

Домашнее задание №6: «Исчисление предикатов»

- 1. (Вдогонку к заданию №5) В предыдущем дз было доказано, что при любых a, b и c верно, что $a \cdot c \le b$ влечёт $c \le a \to b$. Справедливо ли обратное утверждение: $c \le a \to b$ всегда влечёт $a \cdot c \le b$? Докажите его, либо предложите контрпример.
- 2. Предложите формулы ϕ (и ψ при необходимости) и модель M для исчисления предикатов (формулы и модели могут быть разными для каждого случая), такие, что:
 - (а) При нарушении ограничений на свободу для подстановки некорректна аксиома 11:

$$[(\forall x.\phi) \rightarrow (\phi[x := \theta])]_M = \Pi$$

(b) При нарушении ограничений некорректна аксиома 12:

$$\llbracket (\phi[x := \theta]) \to (\exists x.\phi) \rrbracket_M = \Pi$$

(c) При нарушении ограничений на вхождение переменных некорректно правило введения квантора всеобщности: если $\vdash \psi \to \phi$, то

$$[\![\psi \to \forall x.\phi]\!] = \Pi$$

(d) При нарушении ограничений на вхождение переменных некорректно правило введения квантора существования: если $\vdash \phi \to \psi$, то

$$[\![(\exists x.\phi) \to \psi]\!] = \Pi$$

- 3. Докажите, что $(\exists x.\phi) \to \psi \vdash (\forall x.\phi) \to \psi$.
- 4. Докажите, что каковы бы ни были формула ϕ и переменная x, всегда выполнено $\phi \vdash \forall x.\phi$.
- 5. Чтобы доказать теорему о дедукции для исчисления предикатов, мы следуем тому же принципу, что и в исчислении высказываний: из доказательства $\delta_1, \ldots, \delta_n$ строим схему доказательства $\alpha \to \delta_1, \ldots, \alpha \to \delta_n$, в которой затем последовательно заполняем все «дыры».

При заполнении дыр мы разбираемся, как получено текущее высказывание δ_k — является ли оно аксиомой, предположением α или результатом применения правил.

Если речь идёт про первые два случая, они доказываются идентично исчислению высказываний. Однако, в исчислении предикатов используются два новых правила, для которых в исчислении высказываний не было аналогов. В данном задании требуется построить недостающие доказательства для этих правил.

Докажите, что если в условиях теоремы о дедукции для предикатов мы уже построили из доказательства $\delta_1, \ldots, \delta_{k-1}$ доказательство $\ldots, \alpha \to \delta_1, \ldots, \alpha \to \delta_{k-1}$, то:

- (a) если δ_k получено по правилу введения всеобщности, мы можем достроить недостающие шаги и доказать $\alpha \to \delta_k$;
- (b) то же справедливо для правила введения существования.
- 6. Рассмотрим следующие четыре формулы: $\forall x. \forall y. \phi, \ \forall x. \exists y. \phi, \ \exists x. \exists y. \phi, \ \exists x. \exists y. \phi$. Какие из них следуют из каких? Для каждой пары предложите либо доказательство в исчислении предикатов, либо контрпример.
- 7. Рассмотрим формулы $\exists x. \forall y. \phi$ и $\forall y. \exists x. \phi$. Следует ли какая-нибудь из этих формул из другой? Для каждой пары предложите либо доказательство в исчислении предикатов, либо контрпример.

Домашнее задание №7: Теорема Гёделя о полноте

Для доказательства теоремы Гёделя о полноте нам потребуется для произвольной формулы F уметь находить такую формулу G, что $F \vdash G$, и в G все кванторы находятся снаружи, т.е. например $\forall x \exists z \forall y (P(x, f(y)) \to H(z, g(x, y, z)))$ — подходящий нам вид. Приведение к такому виду мы будем делать в три этапа.

1. На первом этапе выкинем все импликации, для этого докажем следующую лемму:

(a)
$$\phi \to \psi \vdash \neg \phi \lor \psi$$

q

2. На втором этапе научимся строить доказательство $F \vdash F'$, где в F' знак отрицания может находиться только непосредственно перед предикатом. Здесь нам потребуется доказать следующую парочку лемм:

(a)
$$\neg(\phi \lor \psi) \vdash (\neg \phi) \land (\neg \psi)$$

(b)
$$\neg(\phi \land \psi) \vdash (\neg \phi) \lor (\neg \psi)$$

(c)
$$\neg \neg \phi \vdash \phi$$

(d)
$$\neg(\exists x.\phi) \vdash \forall x.\neg\phi$$

(e)
$$\neg(\forall x.\phi) \vdash \exists x.\neg\phi$$

- 3. На последнем этапе вынесем кванторы наружу. Для этого нам потребуется ещё несколько лемм. Замечание: здесь мы считаем, что если переменная x под квантором, то она не входит свободно во вторую часть формулы. Например: если формула имеет вид $(\forall x.\phi) \lor \psi$, то мы всегда можем преобразовать её в формулу $(\forall y.\phi[x:=y]) \lor \psi$, где y не входит свободно в ψ
 - (a) $(\exists x.\phi) \lor \psi \vdash \exists x.(\phi \lor \psi)$
 - (b) $(\forall x.\phi) \lor \psi \vdash \forall x.(\phi \lor \psi)$
 - (c) $(\exists x.\phi) \land \psi \vdash \exists x.(\phi \land \psi)$
 - (d) $(\forall x.\phi) \land \psi \vdash \forall x.(\phi \land \psi)$
 - (e) $\phi \vee (\exists x.\psi) \vdash \exists x.(\phi \vee \psi)$
 - (f) $\phi \lor (\forall x.\psi) \vdash \forall x.(\phi \lor \psi)$
 - (g) $\phi \wedge (\exists x.\psi) \vdash \exists x.(\phi \wedge \psi)q$
 - (h) $\phi \wedge (\forall x.\psi) \vdash \forall x.(\phi \wedge \psi)$

Домашнее задание №8: Формальная арифметика и рекурсивные функции

- 1. Докажите, что следующие функции являются примитивно-рекурсивными: сложение, умножение, ограниченное вычитание единицы (ограниченное потому, что 0-1=0), ограниченное вычитание, целочисленное деление, остаток от деления, частичный логарифм ($\operatorname{plog}_a(x)$ это $\max\{t\in\mathbb{N}_0\mid x\colon a^t\}$).
- 2. Постройте в формальной арифметике доказательства 2+2=4, $2\cdot 2=4,$ a=a, a+1=a', $\exists x.a+x=a,$ $\neg \exists x.1+x=0.$