Министерство образования Республики Беларусь Учреждение образования «Брестский Государственный технический университет» Кафедра ИИТ

Лабораторная работа №1 По дисциплине «Основы машинного обучения» Тема: «Знакомство с анализом данных: предварительная обработка и визуализация»

Выполнила: Студентка 3 курса Группы АС-65 Сунцова М. Д. Проверил: Крощенко А. А. **Цель:** получить практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации. Научиться выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.

Вариант 8

1. Загрузите данные и выведите их статистические характеристики.

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler

df = pd.read_csv("pima-indians-diabetes.csv", comment="#", header=None)
df.columns = [
    "Pregnancies", "Glucose", "BloodPressure", "SkinThickness", "Insulin",
    "BMI", "DiabetesPedigreeFunction", "Age", "Outcome"
]

print("Статистические характеристики:")
print(df.describe(), "\n")
```

Статистические характеристики:											
	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome		
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000		
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958		
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951		
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000		
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000		
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000		
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000		
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000		

2. Проанализируйте столбцы Glucose, BloodPressure, SkinThickness. Нулевые значения в них, скорее всего, являются ошибками. Замените их медианным значением соответствующего столбца.

```
cols_to_fix = ["Glucose", "BloodPressure", "SkinThickness"]
for col in cols_to_fix:
    median_val = df[col].median()
    df[col] = df[col].replace(0, median_val)

print("Проверка нулевых значений после замены:")
print(df[cols_to_fix].isin([0]).sum(), "\n")
```

```
Проверка нулевых значений после замены:
Glucose 0
BloodPressure 0
SkinThickness 0
dtype: int64
```

3. Постройте гистограммы для признаков ВМІ и Age.

```
plt.figure(figsize=(10, 4))
plt.subplot(1, 2, 1)
plt.hist(df["BMI"], bins=20, color="skyblue", edgecolor="black")
plt.title("Распределение BMI")
plt.xlabel("BMI")
plt.ylabel("Количество")

plt.subplot(1, 2, 2)
plt.hist(df["Age"], bins=20, color="salmon", edgecolor="black")
plt.title("Распределение возраста")
plt.xlabel("Age")
plt.ylabel("Количество")
plt.tight_layout()
plt.show()
```


4. Создайте матрицу корреляции только для признаков Glucose, BMI, Age и Outcome.

```
corr_matrix = df[["Glucose", "BMI", "Age", "Outcome"]].corr()
plt.figure(figsize=(5, 4))
plt.imshow(corr_matrix, cmap="coolwarm", interpolation="none")
plt.colorbar(label="Коэффициент корреляции")
plt.xticks(range(len(corr_matrix.columns)), corr_matrix.columns)
plt.yticks(range(len(corr_matrix.columns)), corr_matrix.columns)
plt.title("Матрица корреляции")
plt.show()
```


5. Визуализируйте распределение Outcome (наличие диабета) с помощью круговой диаграммы.

```
outcome_counts = df["Outcome"].value_counts()
labels = ["Без диабета", "С диабетом"]
plt.figure(figsize=(5, 5))
plt.pie(outcome_counts, labels=labels, autopct="%.1f%%", startangle=90,
colors=["lightgreen", "lightcoral"])
plt.title("Распределение наличия диабета")
plt.show()
```

Распределение наличия диабета

6. Примените стандартизацию ко всем признакам, кроме Outcome.

```
# 6
scaler = StandardScaler()
features = df.drop("Outcome", axis=1)
scaled_features = scaler.fit_transform(features)

df_scaled = pd.DataFrame(scaled_features, columns=features.columns)
df_scaled["Outcome"] = df["Outcome"]

print("Первые строки стандартизированных данных:")
print(df_scaled.head())
```

Первые строки стандартизированных данных:												
	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome			
0	0.639947	0.866045	-0.031990	0.831114	-0.692891	0.204013	0.468492	1.425995	1			
1	-0.844885	-1.205066	-0.528319	0.180566	-0.692891	-0.684422	-0.365061	-0.190672	0			
2	1.233880	2.016662	-0.693761	-0.469981	-0.692891	-1.103255	0.604397	-0.105584	1			
3	-0.844885	-1.073567	-0.528319	-0.469981	0.123302	-0.494043	-0.920763	-1.041549	0			
4	-1.141852	0.504422	-2.679076	0.831114	0.765836	1.409746	5.484909	-0.020496	1			

Вывод: получили практические навыки работы с данными с использованием библиотек Pandas для манипуляции и Matplotlib для визуализации. Научились выполнять основные шаги предварительной обработки данных, такие как очистка, нормализация и работа с различными типами признаков.