```
In [1]: #import necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

#Load the dataset
#application data
data = pd.read_csv(r"C:\Users\mani ganesh\Desktop\loan data set\application_data.csv")

#previous application data
pdata = pd.read_csv(r"C:\Users\mani ganesh\Desktop\loan data set\previous_application.csv")

#columns description
description = pd.read_csv(r"C:\Users\mani ganesh\Desktop\loan data set\columns_description.csv
```

INSPECING APPLICATION DATA

```
In [2]: data.shape
```

Out[2]: (307511, 122)

There 122 columns in this dataset its a lot so we start with checking the null values of each column

```
In [3]: missing = pd.DataFrame(data.isna().sum().sort_values(ascending = False))
missing
```

Out[3]:

```
0
        COMMONAREA_MEDI 214865
         COMMONAREA_AVG 214865
       COMMONAREA_MODE 214865
NONLIVINGAPARTMENTS_MODE 213514
 NONLIVINGAPARTMENTS_AVG 213514
       NAME_HOUSING_TYPE
                              0
       NAME_FAMILY_STATUS
                              0
     NAME_EDUCATION_TYPE
                              0
        NAME_INCOME_TYPE
                              0
               SK ID CURR
                              0
```

122 rows × 1 columns

We can reset the index and rename the column name and add new column as percent that have percentage of null values in each column

```
In [4]: missing.reset_index(inplace=True)
    missing.head()
```

Out[4]:

	index	0
0	COMMONAREA_MEDI	214865
1	COMMONAREA_AVG	214865
2	COMMONAREA_MODE	214865
3	NONLIVINGAPARTMENTS_MODE	213514
4	NONLIVINGAPARTMENTS AVG	213514

```
In [5]: missing.rename(columns={'index':'column',0:'null_count'},inplace=True)
missing['percent'] = missing['null_count']/data.shape[0]*100
missing.head()
```

Out[5]:

	column	null_count	percent
0	COMMONAREA_MEDI	214865	69.872297
1	COMMONAREA_AVG	214865	69.872297
2	COMMONAREA_MODE	214865	69.872297
3	NONLIVINGAPARTMENTS_MODE	213514	69.432963
4	NONLIVINGAPARTMENTS_AVG	213514	69.432963

Calculate the number of columns that has missing percentage more than 40

In [6]: missing[missing.percent>40]

	column	null_count	percent
0	COMMONAREA_MEDI	214865	69.872297
1	COMMONAREA_AVG	214865	69.872297
2	COMMONAREA_MODE	214865	69.872297
3	NONLIVINGAPARTMENTS_MODE	213514	69.432963
4	NONLIVINGAPARTMENTS_AVG	213514	69.432963
5	NONLIVINGAPARTMENTS_MEDI	213514	69.432963
6	FONDKAPREMONT_MODE	210295	68.386172
7	LIVINGAPARTMENTS_MODE	210199	68.354953
8	LIVINGAPARTMENTS_AVG	210199	68.354953
9	LIVINGAPARTMENTS_MEDI	210199	68.354953
10	FLOORSMIN_AVG	208642	67.848630
11	FLOORSMIN_MODE	208642	67.848630
12	FLOORSMIN_MEDI	208642	67.848630
13	YEARS_BUILD_MEDI	204488	66.497784
14	YEARS_BUILD_MODE	204488	66.497784
15	YEARS_BUILD_AVG	204488	66.497784
16	OWN_CAR_AGE	202929	65.990810
17	LANDAREA_MEDI	182590	59.376738
18	LANDAREA_MODE	182590	59.376738
19	LANDAREA_AVG	182590	59.376738
20	BASEMENTAREA_MEDI	179943	58.515956
21	BASEMENTAREA_AVG	179943	58.515956
22	BASEMENTAREA_MODE	179943	58.515956
23	EXT_SOURCE_1	173378	56.381073
24	NONLIVINGAREA_MODE	169682	55.179164
25	NONLIVINGAREA_AVG	169682	55.179164
26	NONLIVINGAREA_MEDI	169682	55.179164
27	ELEVATORS_MEDI	163891	53.295980
28	ELEVATORS_AVG	163891	53.295980
29	ELEVATORS_MODE	163891	53.295980
30	WALLSMATERIAL_MODE	156341	50.840783
31	APARTMENTS_MEDI	156061	50.749729
32	APARTMENTS_AVG	156061	50.749729
33	APARTMENTS_MODE	156061	50.749729
34	ENTRANCES_MEDI	154828	50.348768
35	ENTRANCES_AVG	154828	50.348768
36	ENTRANCES_MODE	154828	50.348768
37	LIVINGAREA_AVG	154350	50.193326
38	LIVINGAREA_MODE	154350	50.193326
39	LIVINGAREA_MEDI	154350	50.193326
40	HOUSETYPE_MODE	154297	50.176091
41	FLOORSMAX_MODE	153020	49.760822
42	FLOORSMAX_MEDI	153020	49.760822
43	FLOORSMAX_AVG	153020	49.760822
44	YEARS_BEGINEXPLUATATION_MODE	150007	48.781019
45	YEARS_BEGINEXPLUATATION_MEDI	150007	48.781019

	column	nuii_count	percent	
46	YEARS_BEGINEXPLUATATION_AVG	150007	48.781019	
47	TOTALAREA_MODE	148431	48.268517	
48	EMERGENCYSTATE MODE	145755	47.398304	

There are 49 columns that has missing values more than 40%. I believe this kind of data will not make much sense even when imputation, so we can remove those columns

the columns has been reduced from 122 to 73 columns we removed 49 columns

INVESTIGATING THE COLUMNS

we can see there are lots of column starting with the FLAG, so we can investigate them

```
In [11]: |cols_with_flag = data.columns[data.columns.str.startswith('FLAG')]
                  cols with flag
Out[11]: Index(['FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'FLAG_MOBIL', 'FLAG_EMP_PHONE',
                               'FLAG_OWN_CAR', 'FLAG_OWN_REALTY', 'FLAG_NOBIL', 'FLAG_NOBIL', 'FLAG_NOBIL', 'FLAG_NOBIL', 'FLAG_NOR', 'FLAG_EMAIL', 'FLAG_DOCUMENT_2', 'FLAG_DOCUMENT_3', 'FLAG_DOCUMENT_4', 'FLAG_DOCUMENT_5', 'FLAG_DOCUMENT_6', 'FLAG_DOCUMENT_7', 'FLAG_DOCUMENT_8', 'FLAG_DOCUMENT_9', 'FLAG_DOCUMENT_10', 'FLAG_DOCUMENT_11', 'FLAG_DOCUMENT_12', 'FLAG_DOCUMENT_13', 'FLAG_DOCUMENT_14', 'FLAG_DOCUMENT_15', 'FLAG_DOCUMENT_16', 'FLAG_DOCUMENT_17', 'FLAG_DOCUMENT_18', 'FLAG_DOCUMENT_18
                                'FLAG_DOCUMENT_17', 'FLAG_DOCUMENT_18', 'FLAG_DOCUMENT_19',
                                'FLAG DOCUMENT 20', 'FLAG DOCUMENT 21'],
                             dtype='object')
In [12]: #concatenating the cols_with_flag and TARGET column from data
                  flags_cols_data = data[np.concatenate([cols_with_flag,np.array(['TARGET'])])]
                  flags_cols_data.info()
                  <class 'pandas.core.frame.DataFrame'>
                  RangeIndex: 307511 entries, 0 to 307510
                  Data columns (total 29 columns):
                                                            Non-Null Count
                    # Column
                                                                                              Dtype
                                                             _____
                  ---
                    0 FLAG OWN CAR
                                                             307511 non-null object
                           FLAG_OWN_REALTY 307511 non-null object
                    1
                    2
                           FLAG MOBIL
                                                             307511 non-null int64
                    3
                           FLAG EMP PHONE
                                                             307511 non-null int64
                           FLAG_WORK_PHONE
                    4
                                                              307511 non-null
                           FLAG_CONT_MOBILE 307511 non-null int64
                    5
                                                             307511 non-null int64
                         FLAG_PHONE
                    6
                         FLAG EMAIL
                                                             307511 non-null int64
                    7
                    8 FLAG DOCUMENT 2 307511 non-null int64
                    9 FLAG DOCUMENT 3 307511 non-null int64
                    10 FLAG DOCUMENT 4 307511 non-null int64
                    11 FLAG_DOCUMENT_5 307511 non-null int64
                    12 FLAG_DOCUMENT_6 307511 non-null int64
                    13 FLAG_DOCUMENT_7
                                                             307511 non-null int64
                    14 FLAG_DOCUMENT_8
15 FLAG_DOCUMENT_9
                                                             307511 non-null int64
                    15 FLAG_DOCUMENT_9 307511 non-null int64
16 FLAG_DOCUMENT_10 307511 non-null int64
                    17 FLAG_DOCUMENT_11 307511 non-null int64
                    18 FLAG_DOCUMENT_12 307511 non-null int64
                    19 FLAG_DOCUMENT_13 307511 non-null int64
                    20 FLAG DOCUMENT 14 307511 non-null int64
                    21 FLAG_DOCUMENT_15 307511 non-null int64
                    22 FLAG_DOCUMENT_16 307511 non-null int64
                    23 FLAG_DOCUMENT_17 307511 non-null int64
                    24 FLAG_DOCUMENT_18 307511 non-null int64
                    25 FLAG_DOCUMENT_19 307511 non-null int64
                    26 FLAG_DOCUMENT_20 307511 non-null int64
                    27 FLAG_DOCUMENT_21 307511 non-null int64
                    28 TARGET
                                                              307511 non-null int64
                  dtypes: int64(27), object(2)
                  memory usage: 68.0+ MB
In [13]: #removing the columns with object datatypes so we can plot the corr matrix
                 object columns = flags cols data.select dtypes(include = ['object']).columns
                  flags_cols_data = flags_cols_data.drop(object_columns, axis = 1 )
```

```
In [14]: #Observing the correlation
   plt.figure(figsize = (20,15))
   corr_matrix = round(flags_cols_data.corr(),2)
   sns.heatmap(corr_matrix,linewidth = 0.2, annot = True)
```

Out[14]: <Axes: >

As we see they are very less correlation with the target, which is totaly insignificant, so we can remove them

```
In [15]: data.drop(cols_with_flag, axis = 1, inplace = True)
```

In [16]: data.shape

Out[16]: (307511, 45)

As we see the column has been reduced from 73 to 45

Check if any other columns can be removed

```
In [17]: data.head()
Out[17]:
              SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER CNT_CHILDREN AMT_INCOME_TOTAL AMT_CRI
                    100002
                                                  Cash loans
                                                                         Μ
                                                                                         0
                                                                                                        202500.0
                                                                                                                     4065
           1
                    100003
                                  0
                                                  Cash loans
                                                                         F
                                                                                         0
                                                                                                        270000.0
                                                                                                                    12935
           2
                    100004
                                  0
                                              Revolving loans
                                                                         М
                                                                                         0
                                                                                                         67500.0
                                                                                                                     1350
                                                                          F
           3
                                                                                         0
                                                                                                        135000.0
                    100006
                                  0
                                                  Cash loans
                                                                                                                     3126
                                  O
                                                  Cash loans
                                                                                         0
           4
                    100007
                                                                         M
                                                                                                        121500.0
                                                                                                                     5130
          5 rows × 45 columns
In [18]: data.columns
'AMT_GOODS_PRICE', 'NAME_TYPE_SUITE', 'NAME_INCOME_TYPE',
                   'NAME_EDUCATION_TYPE', 'NAME_FAMILY_STATUS', 'NAME_HOUSING_TYPE', 'REGION_POPULATION_RELATIVE', 'DAYS_BIRTH', 'DAYS_EMPLOYED',
                   'DAYS_REGISTRATION', 'DAYS_ID_PUBLISH', 'OCCUPATION_TYPE',
                   'CNT_FAM_MEMBERS', 'REGION_RATING_CLIENT',
                   'REGION_RATING_CLIENT_W_CITY', 'WEEKDAY_APPR_PROCESS_START',
                   'HOUR_APPR_PROCESS_START', 'REG_REGION_NOT_LIVE_REGION',
                   'REG_REGION_NOT_WORK_REGION', 'LIVE_REGION_NOT_WORK_REGION',
                   'REG_CITY_NOT_LIVE_CITY', 'REG_CITY_NOT_WORK_CITY',
'LIVE_CITY_NOT_WORK_CITY', 'ORGANIZATION_TYPE', 'EXT_SOURCE_2',
                   'EXT_SOURCE_3', 'OBS_30_CNT_SOCIAL_CIRCLE', 'DEF_30_CNT_SOCIAL_CIRCLE',
                   'OBS_60_CNT_SOCIAL_CIRCLE', 'DEF_60_CNT_SOCIAL_CIRCLE', 'DAYS_LAST_PHONE_CHANGE', 'AMT_REQ_CREDIT_BUREAU_HOUR',
                   'AMT_REQ_CREDIT_BUREAU_DAY', 'AMT_REQ_CREDIT_BUREAU_WEEK', 'AMT_REQ_CREDIT_BUREAU_MON', 'AMT_REQ_CREDIT_BUREAU_QRT',
                   'AMT_REQ_CREDIT_BUREAU_YEAR'],
                  dtype='object')
In [19]: missing = pd.DataFrame(data.isna().sum().sort_values(ascending = False))
          missing.reset_index(inplace=True)
          missing.rename(columns = {'index':'column',0:'null_count'},inplace = True)
          missing['percent'] = missing['null_count']/data.shape[0]*100
```

In [20]: missing

	column	null_count	percent
0	OCCUPATION_TYPE	96391	31.345545
1	EXT_SOURCE_3	60965	19.825307
2	AMT_REQ_CREDIT_BUREAU_YEAR	41519	13.501631
3	AMT_REQ_CREDIT_BUREAU_QRT	41519	13.501631
4	AMT_REQ_CREDIT_BUREAU_MON	41519	13.501631
5	AMT_REQ_CREDIT_BUREAU_WEEK	41519	13.501631
6	AMT_REQ_CREDIT_BUREAU_DAY	41519	13.501631
7	AMT_REQ_CREDIT_BUREAU_HOUR	41519	13.501631
8	NAME_TYPE_SUITE	1292	0.420148
9	DEF_30_CNT_SOCIAL_CIRCLE	1021	0.332021
10	OBS_30_CNT_SOCIAL_CIRCLE	1021	0.332021
11	OBS_60_CNT_SOCIAL_CIRCLE	1021	0.332021
12	DEF_60_CNT_SOCIAL_CIRCLE	1021	0.332021
13	EXT_SOURCE_2	660	0.214626
14	AMT_GOODS_PRICE	278	0.090403
15	AMT_ANNUITY	12	0.003902
16	CNT_FAM_MEMBERS	2	0.000650
17	DAYS_LAST_PHONE_CHANGE	1	0.000325
18	REG_REGION_NOT_LIVE_REGION	0	0.000000
19	ORGANIZATION_TYPE 0		0.000000
20	LIVE_CITY_NOT_WORK_CITY 0		0.000000
21	REG_CITY_NOT_WORK_CITY 0		0.000000
22	REG_CITY_NOT_LIVE_CITY 0		0.000000
23	LIVE_REGION_NOT_WORK_REGION 0		0.000000
24	REG_REGION_NOT_WORK_REGION	0	0.000000
25	SK_ID_CURR	0	0.000000
26	HOUR_APPR_PROCESS_START	0	0.000000
27	NAME_FAMILY_STATUS	0	0.000000
28	NAME_CONTRACT_TYPE	0	0.000000
29	CODE_GENDER	0	0.000000
30	CNT_CHILDREN	0	0.000000
31	AMT_INCOME_TOTAL	0	0.000000
32	AMT_CREDIT	0	0.000000
33	NAME_INCOME_TYPE	0	0.000000
34	NAME_EDUCATION_TYPE	0	0.000000
35	NAME_HOUSING_TYPE	0	0.000000
36	WEEKDAY_APPR_PROCESS_START	0	0.000000
37	REGION_POPULATION_RELATIVE	0	0.000000
38	DAYS_BIRTH	0	0.000000
39	DAYS_EMPLOYED	0	0.000000
40	DAYS_REGISTRATION	0	0.000000
41	DAYS_ID_PUBLISH	0	0.000000
42	REGION_RATING_CLIENT	0	0.000000
43	TARGET	0	0.000000
44	REGION_RATING_CLIENT_W_CITY	0	0.000000

As we see there is no column that has null values more 40%, we can check them...

DEALING MISSING VALUES OF NUMERIC VARIABLES

The mean is used for normal number distributions, which have a low amount of outliers. If there are more outliers in the data, then median is generally used as it returns the central tendency for skewed number distributions. The mode is typically used when dealing with categorical or discrete data, rather than numeric variables.

We can deal column wise for the rest of missing values

DAYS_LAST_PHONE_CHANGE

```
In [22]: data['DAYS_LAST_PHONE_CHANGE'].isna().sum()
Out[22]: 1
In [23]: data.dropna(subset=['DAYS_LAST_PHONE_CHANGE'],inplace = True)
```

As there is only one row with null value, decided to remove it.

CNT_FAM_MEMBERS

```
In [24]: data['CNT_FAM_MEMBERS'] = data['CNT_FAM_MEMBERS'].fillna(data['CNT_FAM_MEMBERS'].mode()[0])
data['CNT_FAM_MEMBERS'].isnull().sum()
Out[24]: 0
```

AMT_ANNUITY

```
In [25]: data['AMT_ANNUITY'].isna().sum()
```

Out[25]: 12

```
In [26]: plt.figure(figsize =(8,6))
sns.boxplot(data['AMT_ANNUITY'])
```

Out[26]: <Axes: >

Observing that it has significant amount of outliers, decided to impute with median

```
In [27]: data['AMT_ANNUITY'] = data['AMT_ANNUITY'].fillna(data['AMT_ANNUITY'].median())
data['AMT_ANNUITY'].isna().sum()
Out[27]: 0
```

AMT_GOODS_PRICE

```
In [28]: plt.figure(figsize=(8,5))
sns.boxplot(data['AMT_GOODS_PRICE'])
```

Out[28]: <Axes: >

Observing that it has significant amount of outliers, decided to impute with median

```
In [29]: data['AMT_GOODS_PRICE'] = data['AMT_GOODS_PRICE'].fillna(data['AMT_GOODS_PRICE'].median())
data['AMT_GOODS_PRICE'].isna().sum()
Out[29]: 0
```

AMT_GOODS_PRICE

```
In [30]: plt.figure(figsize=(8,5))
sns.boxplot(data['AMT_GOODS_PRICE'])
```

Out[30]: <Axes: >

Observing that it has significant amount of outliers, decided to impute with median

```
In [31]: data['AMT_GOODS_PRICE'] = data['AMT_GOODS_PRICE'].fillna(data['AMT_GOODS_PRICE'].median())
data['AMT_GOODS_PRICE'].isna().sum()
Out[31]: 0
```

DEALING MISSING VALUES OF CATEGORICAL VARIABLES

```
print(data['NAME_TYPE_SUITE'].value_counts())
         # 'Unaccompanied' class is purely dominating the distribution. So, we use it to fill the missing
         data['NAME_TYPE_SUITE'] = data['NAME_TYPE_SUITE'].fillna((data['NAME_TYPE_SUITE'].mode()[0]))
         Unaccompanied
                             248525
         Family
                              40149
         Spouse, partner
                              11370
         Children
                               3267
         Other B
                               1770
         Other A
                                866
         Group of people
                                271
         Name: NAME_TYPE_SUITE, dtype: int64
In [36]: data.isna().sum().sort_values(ascending = False).head(10)
Out[36]: EXT_SOURCE_3
                                         60964
         AMT_REQ_CREDIT_BUREAU_YEAR
                                         41518
         AMT_REQ_CREDIT_BUREAU_QRT
                                         41518
         AMT REQ CREDIT BUREAU MON
                                         41518
         AMT REQ CREDIT BUREAU WEEK
                                         41518
         AMT_REQ_CREDIT_BUREAU_DAY
                                         41518
                                         41518
         AMT_REQ_CREDIT_BUREAU_HOUR
         EXT_SOURCE_2
                                           659
         LIVE_CITY_NOT_WORK_CITY
                                             0
         REG_REGION_NOT_LIVE_REGION
                                             0
         dtype: int64
         DEALING WITH COLUMNS RELATED TO DATE
In [37]: data[data['AMT_REQ_CREDIT_BUREAU_DAY'].isna()].head()
Out[37]:
              SK_ID_CURR TARGET NAME_CONTRACT_TYPE CODE_GENDER CNT_CHILDREN AMT_INCOME_TOTAL AMT_CF
                   100006
                                                                   F
                                                                                               135000.0
           3
                                              Cash loans
           9
                   100012
                               0
                                           Revolving loans
                                                                   M
                                                                                  0
                                                                                               135000.0
                                                                                                           405
          14
                   100018
                               0
                                              Cash loans
                                                                   F
                                                                                  0
                                                                                               189000 0
                                                                                                           773
                   100021
                                          Revolving loans
                                                                   F
                                                                                               81000.0
          17
                               0
                                                                                  1
                                                                                                           270
                   100024
                                          Revolving loans
                                                                                  0
                                                                                               135000.0
                                                                                                           427
          20
                               0
                                                                   М
         5 rows × 45 columns
In [38]: # Fetching the columns
         amt req = []
         for k in data.columns:
              if k.startswith('AMT_REQ_CREDIT_BUREAU_'):
                  amt_req.append(k) #add the features to the list
         amt_req
Out[38]: ['AMT_REQ_CREDIT_BUREAU_HOUR',
           'AMT_REQ_CREDIT_BUREAU_DAY',
           'AMT_REQ_CREDIT_BUREAU_WEEK',
           'AMT_REQ_CREDIT_BUREAU_MON',
           'AMT_REQ_CREDIT_BUREAU_QRT',
           'AMT_REQ_CREDIT_BUREAU_YEAR']
```

In [35]: # NAME TYPE SUITE

```
In [39]: #Impute missing values with median
         for col in amt_req:
             data[col] = data[col].fillna(data[col].median())
In [40]: data.isna().sum().sort_values(ascending=False).head(20)
Out[40]: EXT_SOURCE_3
                                         60964
         EXT_SOURCE_2
                                           659
         SK_ID_CURR
                                             0
         WEEKDAY_APPR_PROCESS_START
                                             0
         REG_REGION_NOT_LIVE_REGION
                                             0
         REG_REGION_NOT_WORK_REGION
                                             0
         LIVE_REGION_NOT_WORK_REGION
                                             0
         REG_CITY_NOT_LIVE_CITY
                                             0
         REG CITY NOT WORK CITY
                                             0
         LIVE_CITY_NOT_WORK_CITY
         ORGANIZATION_TYPE
         OBS_30_CNT_SOCIAL_CIRCLE
                                             0
         DEF_30_CNT_SOCIAL_CIRCLE
                                             0
         OBS_60_CNT_SOCIAL_CIRCLE
                                             0
         DEF_60_CNT_SOCIAL_CIRCLE
                                             0
         DAYS_LAST_PHONE_CHANGE
                                             0
         AMT_REQ_CREDIT_BUREAU_HOUR
                                             0
         AMT_REQ_CREDIT_BUREAU_DAY
                                             0
         AMT_REQ_CREDIT_BUREAU_WEEK
                                             0
         AMT_REQ_CREDIT_BUREAU_MON
                                             0
         dtype: int64
In [41]: # Correlation matrix
         plt.figure(figsize=(6,4))
         sns.heatmap(round(data[['EXT_SOURCE_2', 'EXT_SOURCE_3', 'TARGET']].corr(),2),linewidths=0.5, an
         plt.show()
                                                                                  1.0
                                                 0.11
                                                                 -0.16
          EXT SOURCE 2 -
                                 1
                                                                                 - 0.8
                                                                                - 0.6
                                0.11
                                                                 -0.18
          EXT SOURCE 3 -
                                                  1
                                                                                 0.4
                                                                                  0.2
                 TARGET -
                                -0.16
                                                -0.18
                                                                   1
                                                                                  0.0
                           EXT_SOURCE_2 EXT_SOURCE_3
                                                               TARGET
In [42]: # Drop features
```

NUMERICAL VARIABLES BINNING FOR DATA VISUALIZATION

data = data.drop(columns=['EXT_SOURCE_2','EXT_SOURCE_3'])

<class 'pandas.core.frame.DataFrame'>
Int64Index: 307510 entries, 0 to 307510
Data columns (total 43 columns):

	columns (total 43 columns):		
#	Column	Non-Null Count	Dtype
0	SK_ID_CURR	307510 non-null	int64
1	TARGET	307510 non-null	int64
2	NAME_CONTRACT_TYPE	307510 non-null	object
3	CODE_GENDER	307510 non-null	object
4	CNT_CHILDREN	307510 non-null	int64
5	AMT_INCOME_TOTAL	307510 non-null	float64
6	AMT CREDIT	307510 non-null	float64
7	AMT ANNUITY	307510 non-null	float64
8	AMT GOODS PRICE	307510 non-null	float64
9	NAME_TYPE_SUITE	307510 non-null	object
10	NAME INCOME TYPE	307510 non-null	object
11	NAME_EDUCATION_TYPE	307510 non-null	object
12	NAME FAMILY STATUS	307510 non-null	object
13	NAME HOUSING TYPE	307510 non-null	object
14	REGION POPULATION RELATIVE	307510 non-null	float64
15	DAYS BIRTH	307510 non-null	int64
16	DAYS EMPLOYED	307510 non-null	int64
17	_	307510 non-null	float64
18	DAYS_REGISTRATION		
	DAYS_ID_PUBLISH	307510 non-null	int64
19	OCCUPATION_TYPE	307510 non-null	object
20	CNT_FAM_MEMBERS	307510 non-null	float64
21	REGION_RATING_CLIENT	307510 non-null	int64
22	REGION_RATING_CLIENT_W_CITY	307510 non-null	int64
23	WEEKDAY_APPR_PROCESS_START	307510 non-null	object
24	HOUR_APPR_PROCESS_START	307510 non-null	int64
25	REG_REGION_NOT_LIVE_REGION	307510 non-null	int64
26	REG_REGION_NOT_WORK_REGION	307510 non-null	int64
27	LIVE_REGION_NOT_WORK_REGION	307510 non-null	int64
28	REG_CITY_NOT_LIVE_CITY	307510 non-null	int64
29	REG_CITY_NOT_WORK_CITY	307510 non-null	int64
30	LIVE_CITY_NOT_WORK_CITY	307510 non-null	int64
31	ORGANIZATION_TYPE	307510 non-null	object
32	OBS_30_CNT_SOCIAL_CIRCLE	307510 non-null	float64
33	DEF_30_CNT_SOCIAL_CIRCLE	307510 non-null	float64
34	OBS_60_CNT_SOCIAL_CIRCLE	307510 non-null	float64
35	DEF 60 CNT SOCIAL CIRCLE	307510 non-null	float64
36	DAYS_LAST_PHONE_CHANGE	307510 non-null	float64
37	AMT REQ CREDIT BUREAU HOUR	307510 non-null	float64
38	AMT REQ CREDIT BUREAU DAY	307510 non-null	float64
39	AMT_REQ_CREDIT_BUREAU_WEEK	307510 non-null	float64
40	AMT REQ CREDIT BUREAU MON	307510 non-null	float64
41	AMT_REQ_CREDIT_BUREAU_QRT	307510 non-null	float64
42	AMT_REQ_CREDIT_BUREAU_YEAR	307510 non-null	float64
	es: float64(18), int64(15), o		. 10000
	ry usage: 111.3+ MB	-)()	
CIIIOI	y asage, III. III		

In [44]: data.select_dtypes(include = 'float')

Out[44]:

	AMT_INCOME_TOTAL	AMT_CREDIT	AMT_ANNUITY	AMT_GOODS_PRICE	REGION_POPULATION_RELATIVE [D
0	202500.0	406597.5	24700.5	351000.0	0.018801	_
1	270000.0	1293502.5	35698.5	1129500.0	0.003541	
2	67500.0	135000.0	6750.0	135000.0	0.010032	
3	135000.0	312682.5	29686.5	297000.0	0.008019	
4	121500.0	513000.0	21865.5	513000.0	0.028663	
307506	157500.0	254700.0	27558.0	225000.0	0.032561	
307507	72000.0	269550.0	12001.5	225000.0	0.025164	
307508	153000.0	677664.0	29979.0	585000.0	0.005002	
307509	171000.0	370107.0	20205.0	319500.0	0.005313	
307510	157500.0	675000.0	49117.5	675000.0	0.046220	
307510 rows × 18 columns						

SK ID CURR	307510
DAYS_BIRTH	17460
DAYS_REGISTRATION	15688
AMT_ANNUITY	13672
DAYS_EMPLOYED	12574
DAYS_ID_PUBLISH	6168
AMT CREDIT	5603
DAYS_LAST_PHONE_CHANGE	3773
AMT INCOME TOTAL	2548
AMT GOODS PRICE	1002
REGION_POPULATION_RELATIVE	81
ORGANIZATION TYPE	58
OBS_60_CNT_SOCIAL_CIRCLE	33
OBS 30 CNT SOCIAL CIRCLE	33
AMT_REQ_CREDIT_BUREAU_YEAR	25
HOUR APPR PROCESS START	24
AMT_REQ_CREDIT_BUREAU_MON	24
OCCUPATION TYPE	19
CNT_FAM_MEMBERS	17
CNT_CHILDREN	15
AMT_REQ_CREDIT_BUREAU_QRT	11
DEF_30_CNT_SOCIAL_CIRCLE	10
AMT_REQ_CREDIT_BUREAU_WEEK	9
AMT_REQ_CREDIT_BUREAU_DAY	9
DEF 60 CNT SOCIAL CIRCLE	9
NAME_INCOME_TYPE	8
WEEKDAY_APPR_PROCESS_START	7
NAME TYPE SUITE	7
NAME_FAMILY_STATUS	6
NAME HOUSING TYPE	6
NAME_EDUCATION_TYPE	5
AMT_REQ_CREDIT_BUREAU_HOUR	5
CODE GENDER	3
REGION_RATING_CLIENT	3
REGION_RATING_CLIENT_W_CITY	3
LIVE CITY NOT WORK CITY	2
REG_CITY_NOT_LIVE_CITY	2
NAME_CONTRACT_TYPE	2
LIVE REGION NOT WORK REGION	2
REG REGION NOT WORK REGION	2
REG_REGION_NOT_LIVE_REGION	2
TARGET	2
REG CITY NOT WORK CITY	2
dtype: int64	2
acype. Inco-	

```
In [46]: plt.figure(figsize = (20,10))
    sns.kdeplot(data = data, x = 'AMT_GOODS_PRICE')
    plt.show()
```



```
In [47]: plt.figure(figsize = (20,10))
    sns.boxenplot(data = data, x = 'AMT_GOODS_PRICE')
    plt.show()
```



```
In [48]: #AMT_GOODS_PRICE
data['AMT_GOODS_PRICE'].quantile([0.1,0.25,0.5,0.75,0.9])
```

```
Out[48]: 0.10 180000.0
0.25 238500.0
0.50 450000.0
0.75 679500.0
0.90 1093500.0
```

Name: AMT_GOODS_PRICE, dtype: float64

```
In [49]: plt.figure(figsize = (20,10))
            sns.histplot(data.AMT_CREDIT)
Out[49]: <Axes: xlabel='AMT_CREDIT', ylabel='Count'>
              14000
              12000
               6000
               2000
In [50]: data.AMT_CREDIT.describe().loc[['min', 'max']]
Out[50]: min
                        45000.0
                     4050000.0
            Name: AMT_CREDIT, dtype: float64
           labels = ['0-50000', '50001-100000', '100001-150000', '150001-250000', '250001-500000', '500001 data['Amt_credit_category'] = pd.cut(data['AMT_CREDIT'], bins=[0, 50000, 100000, 150000, 250000
In [51]:
```

plt.figure(figsize=(20, 10)) sns.countplot(x=data['Amt_credit_category']) plt.title('Amt credit distribution') plt.show()


```
In [52]: data.AMT_GOODS_PRICE.describe().loc[['min', 'max']]
Out[52]: min
                    40500.0
                  4050000.0
          max
          Name: AMT_GOODS_PRICE, dtype: float64
In [53]:
          # AMT_GOODS_PRICE
          labels= ['0 - 100000','100001 - 200000','200001 - 300000','300001 - 500000','500001 - 1000000',
          data['Amt_goods_price_category'] = pd.cut(data['AMT_GOODS_PRICE'], bins=[0,100000,200000,300000
          plt.figure(figsize=(20,10))
          sns.countplot(x=data['Amt_goods_price_category'])
          plt.title('Amt_goods_price_category')
          plt.show()
                                                         Amt_goods_price_category
            40000
            20000
                                                    200001 - 300000 300001 - 500000
Amt_goods_price_category
In [54]: data.AMT_ANNUITY.describe().loc[['min', 'max']]
```

Out[54]: min

max

1615.5 258025.5

Name: AMT_ANNUITY, dtype: float64

```
In [55]: # AMT_ANNUITY
labels= ['0 - 20000','20001 - 50000','50001 - 100000','100001 - 150000','150001 - 250000','2500
data['Amt_annuity_category'] = pd.cut(data['AMT_ANNUITY'], bins=[0,20000,50000,100000,150000,25

plt.figure(figsize=(20,10))
sns.countplot(x=data['Amt_annuity_category'])
plt.title('Amt_annuity_category')
plt.show()
```



```
In [56]: data.AMT_INCOME_TOTAL.describe().loc[['min','max']]
```

Out[56]: min 25650.0 max 117000000.0

Name: AMT_INCOME_TOTAL, dtype: float64

```
In [57]: # AMT_INCOME_TOTAL
    labels= ['0 - 100000','100001 - 150000','150001 - 200000','200001 - 300000','300001 - 1000000',
    data['Amt_income_category'] = pd.cut(data['AMT_INCOME_TOTAL'], bins=[0,100000,150000,200000,300

    plt.figure(figsize=(20,10))
    sns.countplot(x=data['Amt_income_category'])
    plt.title('Amt_income_category')
    plt.show()
```


CATEGORICAL VARIABLES DATA VISUALIZATION

In [58]: # NAME_CONTRACT_TYPE
data.NAME_CONTRACT_TYPE.value_counts()

Out[58]: Cash loans 278231 Revolving loans 29279

Name: NAME_CONTRACT_TYPE, dtype: int64

```
In [59]: #countplot
   plt.figure(figsize = (20,10))
   sns.countplot(x='NAME_CONTRACT_TYPE', data=data, hue = "TARGET")
   plt.title('Distribution of loan type')
   plt.show()
```


Based on the observations, there is a strong indication or pattern that individuals who have taken a cash loan (presumably a type of loan where the borrower receives cash directly) are more likely to default on their loans compared to individuals who have not taken a cash loan.

```
In [60]: # Dataframe for Loan type with target
loan_with_target = data.groupby(['NAME_CONTRACT_TYPE', 'TARGET']).size().reset_index(name='coun
loan_with_target['percentage'] = round((loan_with_target['count']/len(data['NAME_CONTRACT_TYPE'
loan_with_target
```

Out[60]:

_	NAME	_CONTRACT_TYPE	TARGET	count	percentage
	0	Cash loans	0	255010	82.93
	1	Cash loans	1	23221	7.55
	2	Revolving loans	0	27675	9.00
	3	Revolving loans	1	1604	0.52

By Close observation of each bar chart, we can come to following conclusions:

- 1. Females are less likely to default the loan than male.
- 2. Working client, Commercial associate and Pensioner have taken more loans.
- 3. Unaccompanied has taken most number of loans.
- 4. Married client has received more number of credits.
- 5. Most of the clients have their house apartment.
- 6. All days have equal number of application received, except sunday.

```
In [62]: #organization type
         data['ORGANIZATION_TYPE'].value_counts().sort_values(ascending = False)
```

Out[62]: Business Entity Type 3 67992 XNA 55374 Self-employed 38412 Other 16683 Medicine 11193 Business Entity Type 2 10553 10404 Government School 8893 Trade: type 7 7831 Kindergarten 6880 6721 Construction Business Entity Type 1 5984
Transport: type 4 5398
Trade: type 3 3491
Industry: type 9 3368
Industry: type 3 3278
Security 3247 2958 Housing Industry: type 11 2704 2634 Military Bank 2507 Agriculture 2454 2341 Police 2204 Transport: type 2 Postal 215/ Security Ministries 1974 Security Ministrace
Trade: type 2
Restaurant
1811
Canvices
1575
1327 1307 1187 1039 Industry: type 7 Transport: type 3
Industry: type 1 966 Hotel 950 Electricity Industry: type 4 877 Trade: type 6 631 Industry: type 5 599 597 Insurance 577 Telecom 560 Emergency Industry: type 2 458 Advertising 429 Realtor 396 Culture 379 369 Industry: type 12 348 Trade: type 1 317 Mobile Legal Services 305 Cleaning 260 201 Transport: type 1 112 Industry: type 6 Industry: type 10 109 85 Religion Industry: type 13 67 Trade: type 4 64 49 Trade: type 5 Industry: type 8 24 Name: ORGANIZATION_TYPE, dtype: int64

In [64]: data.info()

memory usage: 112.5+ MB

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 307510 entries, 0 to 307510
Data columns (total 47 columns):
#
    Column
                                Non-Null Count
                                                 Dtype
---
                                 -----
                                307510 non-null int64
    SK ID CURR
0
                                307510 non-null int64
1
    TARGET
2
    NAME CONTRACT TYPE
                                307510 non-null object
3
    CODE GENDER
                                307510 non-null object
    CNT CHILDREN
                                307510 non-null int64
5
    AMT_INCOME_TOTAL
                                307510 non-null float64
6
    AMT CREDIT
                               307510 non-null float64
    AMT_ANNUITY
7
                                307510 non-null float64
8
    AMT_GOODS_PRICE
                                307510 non-null float64
9
    NAME TYPE SUITE
                                307510 non-null object
 10
    NAME_INCOME_TYPE
                                307510 non-null
                                                 object
11 NAME_EDUCATION_TYPE
                                307510 non-null object
    NAME_FAMILY_STATUS
 12
                                307510 non-null object
 13 NAME_HOUSING_TYPE
                                307510 non-null object
14 REGION_POPULATION_RELATIVE 307510 non-null float64
 15 DAYS BIRTH
                                307510 non-null int64
 16 DAYS_EMPLOYED
                                307510 non-null int64
17 DAYS_REGISTRATION
                               307510 non-null float64
                                307510 non-null int64
18 DAYS_ID_PUBLISH
 19
    OCCUPATION_TYPE
                                307510 non-null object
 20
    CNT_FAM_MEMBERS
                                307510 non-null float64
    REGION_RATING_CLIENT
                                307510 non-null
    REGION_RATING_CLIENT_W_CITY 307510 non-null
                                                 int64
 23
    WEEKDAY_APPR_PROCESS_START
                                307510 non-null
                                                 object
                                307510 non-null int64
 24 HOUR_APPR_PROCESS_START
 25 REG REGION NOT LIVE REGION
                                307510 non-null int64
 26 REG REGION NOT WORK REGION
                                307510 non-null int64
 27 LIVE_REGION_NOT_WORK_REGION 307510 non-null int64
 28 REG_CITY_NOT_LIVE_CITY
                                307510 non-null int64
 29 REG_CITY_NOT_WORK_CITY
                                307510 non-null int64
                                307510 non-null int64
 30 LIVE_CITY_NOT_WORK_CITY
 31 ORGANIZATION_TYPE
                                307510 non-null object
 32
    OBS_30_CNT_SOCIAL_CIRCLE
                                307510 non-null float64
 33 DEF_30_CNT_SOCIAL_CIRCLE
                                307510 non-null float64
 34 OBS_60_CNT_SOCIAL_CIRCLE
                                307510 non-null float64
                                307510 non-null float64
 35 DEF_60_CNT_SOCIAL_CIRCLE
 36 DAYS_LAST_PHONE_CHANGE
                                307510 non-null float64
 37 AMT REQ CREDIT BUREAU HOUR
                                307510 non-null float64
 38 AMT REQ CREDIT BUREAU DAY
                                307510 non-null float64
 39 AMT_REQ_CREDIT_BUREAU_WEEK
                                307510 non-null float64
40 AMT_REQ_CREDIT_BUREAU_MON
                                307510 non-null float64
41 AMT_REQ_CREDIT_BUREAU_QRT
                                307510 non-null float64
42 AMT_REQ_CREDIT_BUREAU_YEAR
                                307510 non-null float64
43 Amt_credit_category
                                307510 non-null category
44 Amt_goods_price_category
                                307510 non-null
                                                 category
45 Amt_annuity_category
                                307510 non-null
                                                 category
46 Amt_income_category
                                307510 non-null category
dtypes: category(4), float64(18), int64(15), object(10)
```

```
In [65]: # numeric features and categorical features
num_features = data.select_dtypes(include = ['int','float']).columns
num_cat_features = data.select_dtypes(include = ['int','float','category']).columns
```

```
In [66]: num_features
'DAYS_REGISTRATION', 'DAYS_ID_PUBLISH', 'CNT_FAM_MEMBERS',
                  'REGION_RATING_CLIENT', 'REGION_RATING_CLIENT_W_CITY',
                  'HOUR_APPR_PROCESS_START', 'REG_REGION_NOT_LIVE_REGION'
                  'REG_REGION_NOT_WORK_REGION', 'LIVE_REGION_NOT_WORK_REGION',
                  'REG_CITY_NOT_LIVE_CITY', 'REG_CITY_NOT_WORK_CITY',
                  'LIVE_CITY_NOT_WORK_CITY', 'OBS_30_CNT_SOCIAL_CIRCLE',
                  'DEF_30_CNT_SOCIAL_CIRCLE', 'OBS_60_CNT_SOCIAL_CIRCLE', 'DEF_60_CNT_SOCIAL_CIRCLE', 'DAYS_LAST_PHONE_CHANGE',
                  'AMT_REQ_CREDIT_BUREAU_HOUR', 'AMT_REQ_CREDIT_BUREAU_DAY', 'AMT_REQ_CREDIT_BUREAU_MON', 'AMT_REQ_CREDIT_BUREAU_YEAR'],
                 dtype='object')
In [67]: # Create the num_data DataFrame
          num_data = data[num_features]
          # Print the head of the num data DataFrame
          num_data.head()
Out[67]:
              SK_ID_CURR TARGET CNT_CHILDREN AMT_INCOME_TOTAL AMT_CREDIT AMT_ANNUITY AMT_GOODS_PRICE
                   100002
                                                             202500.0
                                                                          406597.5
                                                                                        24700.5
                                                                                                          351000.0
           1
                   100003
                                0
                                               0
                                                             270000.0
                                                                         1293502.5
                                                                                        35698.5
                                                                                                          1129500.0
           2
                   100004
                                0
                                               0
                                                              67500.0
                                                                          135000.0
                                                                                         6750.0
                                                                                                           135000.0
           3
                                0
                                               0
                                                                                                          297000.0
                   100006
                                                             135000.0
                                                                         312682.5
                                                                                        29686.5
                   100007
                                               0
                                                             121500.0
                                                                         513000.0
                                                                                        21865.5
                                                                                                          513000.0
          5 rows × 33 columns
In [68]: data['TARGET'].unique()
```

Out[68]: array([1, 0], dtype=int64)

```
In [69]: amt_var = ['AMT_INCOME_TOTAL', 'AMT_CREDIT', 'AMT_ANNUITY', 'AMT_GOODS_PRICE']

plt.figure(figsize=(12,20))
for index, k in enumerate(amt_var):
    plt.subplot(len(amt_var),2, index+1)
    sns.kdeplot(x=k, data=num_data, hue='TARGET', palette='Accent')
    plt.title(f"Box-plot of {k} with target", fontweight='bold')

plt.tight_layout()
```


Observations:

- 1. Most of the defaulters are from high-income groups.
- 2. Most defaulters fall under the category of amt credit between 0 to 1 million.
- 3. Annuity payment of 0 to 50000 have more number of defaults.
- 4. Amount goods price between o to 1 million have more number of defaults.

```
In [70]: # Scatter plot
plt.figure(figsize=(12,6))
sns.scatterplot(data=num_data, x='AMT_GOODS_PRICE', y='AMT_CREDIT', palette=['red', 'blue'], hu
plt.title("Amt_credit and Amt_goods_price", fontweight='bold')
plt.show()
```


Here we can observe that **Amt_goods_price and Amt_credit have linear relation**. And, most of the defaulters are under 1 million level.

```
In [71]: plt.figure(figsize=(12,6))
    sns.scatterplot(data=num_data, x='AMT_INCOME_TOTAL', y='AMT_CREDIT', palette=['red', 'blue'], h
    plt.title("Amt_credit and AMT_INCOME_TOTAL", fontweight='bold')
    plt.show()
```


People with income less than 1 million is taking more number of loans. And, people who got credit/loans less than 150,000 are more likely to default.

Final Observations:

1. Female loan has less default rate. So, the bank should give a little bit priority to females.

- 2. Those clients who do not have any accompany should be focused.
- 3. Safest segementation of employment are workers, commercial associates and pensioners.
- 4. Client who have the higher education should be given more loans.
- 5. Married clients are safer than unmarried.
- 6. People having house/apartment are safer to provide loans.
- 7. Low-skill laborers and drivers should be given less priority as they have high probability of making defaults.
- 8. People having income less than 1 million and taking loans near to 1 million have higher chance of defaults. So, should not be given focus.
- 9. Married couples having children less than five are safe for providing loans.
- 10. Client having annuity less than 100K are safer side for the bank.