Segunda Tarea Examen

Profesor: Luis Jesús Trucio Cuevas.

Ayudantes: Jesús Angel Cabrera Labastida, Hugo Víctor García Martínez.

- 1) Se pueden usar resultados vistos en clase, siempre y cuando se mencione claramente cuándo y dónde se usan.
- II) Cada ejercicio tiene un valor de dos puntos para un total de diez. Hay un ejercicio adicional con valor de un punto, éste se calificará únicamente con cero o su valor total.

Conjuntos Abstractos

Los ejercicios de esta sección se deben resolver en la categoría de conjuntos abstractos, S.

Ej 1 Muestra que el clasificador de subobjetos Ω es coseparador, es decir, dadas f, g: $A \to B$ si para cualquier $\phi \colon B \to \Omega$ el diagrama

$$A \xrightarrow{f} B \xrightarrow{\varphi} \Omega \tag{1}$$

conmuta, entonces f = g.

Ej 2 Sean ev: $A \times \Omega^A \to \Omega$, $x: X \to A$ y m: $S \mapsto A$. Además, considera la característica de m y su nombre en la exponencial, $\lceil \chi_m \rceil : 1 \to \Omega^A$. Muestra que $x \in_A$ m si y sólo si ev $(x \times \lceil \chi_m \rceil) = \nu_{X \times 1}$.

ZFC

Resuelvan los ejercicios de esta sección utilizando únicamente los axiomas de ZFC vistos en clase (aún NO se puede usar el axioma del infinito)

Ej 3 Si R es un orden parcial sobre A, definimos $R' = R \cup \Delta_A$ como el orden parcial reflexivo asociado; por otro lado si R es reflexivo, definimos $R^* = R \setminus \Delta_A$ como su orden estricto asociado.

Demuestra los siguientes puntos:

- I) Si $A \subseteq B$, entonces $(B \setminus A) \cup A = B$.
- II) $A \cap B = \emptyset$, entonces $(B \cup A) \setminus A = B$.
- III) R' es efectivamente un orden parcial reflexivo sobre A.
- IV) R* es efectivamente un orden estricto sobre A.
- v) $R'^* = R$ cuando R es estricto.
- vi) $R^{*\prime}=R$ cuando R es reflexivo. Esto junto al inciso anterior prueba que los órdenes estrictos y reflexivos están asociados mediante unaa biyección.
- Ej 4 Sean (P,<) y (Q, \square) conjuntos totalmente ordenados. Sea $X:=P\times Q$ y defínase la relación R en X como sigue:

$$(p,q) R(x,y)$$
 si y sólo si $((p < x) \lor (p = x \land q \sqsubseteq y))$

Demuestre que (X, R) es un conjunto totalmente ordenado.

Ej 5 Sean (P, <) y (Q, \sqsubset) conjuntos parcialmente ordenados y $f: P \to Q$ tal que para cualesquiera $x, y \in P$: si x < y, entonces $f(x) \sqsubset f(y)$ (estas funciones se llaman "morfismos de orden"). Demuestra; o refuta mediante un contraejemplo, las siguientes afirmaciones.

- ı) Si $p \in P$ es el mínimo de (P,<), entonces f(p) es el mínimo de (Q,\sqsubset) .
- II) Si $p \in P$ <-minimal de P, entonces f(p) es \sqsubseteq -minimal de Q.
- III) Si f es biyectiva, entonces f^{-1} es un morfismo de orden.
- (P, <) es un conjunto totalmente ordenado, entonces f es inyectiva.

Ej 6 Sea P un conjunto. Se dice que un orden parcial (antirreflexivo) R en P es *fuertemente inductivo* si y sólo si se satisface:

$$\forall A\subseteq P\left(\forall\alpha\in P\left(R^{-1}[\{\alpha\}]\subseteq A\rightarrow\alpha\in A\right)\rightarrow P=A\right)$$

Demuestra que para todo orden parcial (antirreflexivo) R en P son equivalentes:

- 1) R es total y fuertemente inductivo.
- II) R es buen orden.

Ej Extra Sea (P,<) un conjunto parcialmente ordenado con $P \neq \emptyset$. Supóngase que f y g son funciones con dominio P de modo que para cada $p \in P$ el conjunto g(p) es orden parcial en f(p) y que $f(p) \neq \emptyset$. En el conjunto $X := \bigcup \{f(p) \times \{p\} \mid p \in P\}$ defínase \sqsubseteq como la relacion:

$$(x,p) \sqsubset (y,q) \quad \text{ si } y \text{ s\'olo s\'i} \quad (p < q \lor (p = q \land x \text{ } g(p) \text{ } y))$$

- I) Demuestre que \square es una relación de orden parcial en X.
- II) Demuestre que \sqsubseteq es un orden total en X y sólo si (P, <) es un conjunto totalmente ordenado y para cada $p \in P$, g(p) es orden total en f(p).

Solutions to the Exercises

Solution 1

Primero veamos que el enunciado es cierto cuando A=1. Esto es, si suponemos que $b_1,b_2\colon 1\to B$ son tales que

$$1 \xrightarrow{b_1} B \xrightarrow{\varphi} \Omega \tag{2}$$

conmuta, entonces veamos que $b_1 = b_2$.

Como toda flecha que sale del terminal es mono y Ω es clasificador de subobjetos, entonces b_1 tiene una característica, digamos $\varphi \colon B \to \Omega$. Por la hipótesis en (2) y la propiedad universal del

producto fibrado tenemos que el siguiente diagrama conmuta:

$$\begin{array}{ccc}
1 & \xrightarrow{id} & \\
\downarrow & 1 & \xrightarrow{id} & 1 \\
\downarrow b_1 & & \downarrow \nu \\
A & \xrightarrow{\varphi} & \Omega.
\end{array}$$

Como la única flecha del terminal a sí mismo es la identidad, entonces $b_1 = b_2$.

Ahora sea A arbitrario y supongamos que f, g: $A \to B$ son tales que para cualquier ϕ : $B \to \Omega$ el diagrama (1) conmuta. Para ver que f = g usaremos que 1 es separador, es decir, veremos que para cualquier α : $1 \to A$ se satisface $f\alpha = g\alpha$. Por la hipótesis sobre f y g tenemos que el siguiente diagrama conmuta:

$$1 \xrightarrow{\underline{fa}} B \xrightarrow{\varphi} \Omega.$$

Así, por lo que hicimos antes podemos concluir que fa = ga.

Solution 2

Primero consideramos el siguiente diagrama

$$\begin{array}{ccccc}
A \times \Omega^{A} & \xrightarrow{ev} & \Omega \\
\downarrow id \times \lceil \chi_{m} \rceil & 1 & \chi_{m} & \uparrow \\
A \times 1 & \xrightarrow{p_{A}} & A & \downarrow \nu \\
\downarrow x \times id & 2 & \chi & \downarrow \chi & 1 \\
X \times 1 & \xrightarrow{p_{X}} & \chi & \downarrow \chi
\end{array} \tag{3}$$

La parte 1 conmuta por la definición de $\lceil \chi_m \rceil$ y la parte 2 por definición de la flecha $x \times id$. Si el diagrama 3 conmuta, entonces el diagrama exterior es conmutativo. Viceversa, si el diagrama exterior es conmutativo, entonces el diagrama 3 conmuta. En efecto, para ver que 3 conmuta es suficiente ver que conmuta desde $X \times 1$, ya que p_X es iso. Si seguimos el diagrama podemos obtener la conmutatividad que queremos. Las ecuaciones que lo muestran son:

$$u!x p_X = ev (x \times \lceil \chi_m \rceil) (x \times id)$$
 $= \chi_m p_A (x \times id)$
 $= \chi_m x p_X$
parte 1
parte 2.

Con esto hemos concluido que 3 conmuta si y sólo si el exterior conmuta.

Ahora, si suponemos que $x \in_A m$, entonces existe $h: X \to S$ que hace conmutar al siguiente diagrama

$$\begin{array}{ccc}
X & \xrightarrow{h} & & \\
S & \xrightarrow{!_S} & 1 & & \\
\downarrow \nu & & \downarrow \nu & \\
A & \xrightarrow{\chi_m} & \Omega.
\end{array}$$
(4)

De esto tenemos que la parte 3 de diagrama (3) conmuta. Así, el exterior conmuta. Por lo tanto $ev(x \times \lceil \chi_m \rceil) = v_{X \times 1}$.

Por el lado contrario, si ev $(x \times \lceil \chi_m \rceil) = \nu_{X \times 1}$, entonces el exterior del diagrama (3) conmuta. Así, la parte 3 del mismo diagrama es conmutativa. Esta parte es el exterior del diagrama (4). Por lo que podemos usar la propiedad universal del producto fibrado para obtener la existencia de h: $X \to S$ que hace conmutar el diagrama (4). Por lo tanto, $x \in_A m$.