Álgebra Lineal - Clase 20

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- Adjunta de una transformación lineal.
- Transformación lineal autoadjunta.
- Diagonalización de matrices hermitianas.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 8 (Sección 8.3).

Adjunta de una transformación lineal

Definición.

Sea (V,\langle,\rangle) un e.v. con p.i. y sea $f:V\to V$ una t.l. Se llama adjunta de f a una t.l. $f^*:V\to V$ tal que

$$\langle f(v), w \rangle = \langle v, f^*(w) \rangle \quad \forall v, w \in V.$$

Ejemplo.

Sea $f: \mathbb{C}^2 \to \mathbb{C}^2$, f(x,y) = (x+iy,2x-(1+i)y). Para el p.i. canónico de \mathbb{C}^2 :

$$\langle f(x,y),(z,w)\rangle = \langle (x+iy,2x-(1+i)y),(z,w)\rangle$$

$$= (x+iy)\overline{z}+(2x-(1+i)y)\overline{w}$$

$$= x(\overline{z}+2\overline{w})+y(i\overline{z}-(1+i)\overline{w})$$

$$= x(\overline{z}+2w)+y(-iz+(-1+i)w)$$

$$= \langle (x,y),(z+2w,-iz+(-1+i)w)\rangle.$$

$$\Rightarrow f^*: \mathbb{C}^2 \to \mathbb{C}^2, \ f^*(z, w) = (z + 2w, -iz + (-1 + i)w).$$

Proposición.

Sea (V, \langle, \rangle) un e.v. de dimensión finita con p.i. y sea $f: V \to V$ una t.l. Existe una única t.l. $f^*: V \to V$ que satisface $\langle f(v), w \rangle = \langle v, f^*(w) \rangle \ \forall v, w \in V$.

Demostración.

Unicidad. Supongamos que $f_1^*:V\to V$ y $f_2^*:V\to V$ son t.l. que verifican la propiedad.

Sea $w \in V$.

Luego, $f_1^* = f_2^*$.

$$\forall v \in V, \langle f(v), w \rangle = \langle v, f_1^*(w) \rangle \ y \ \langle f(v), w \rangle = \langle v, f_2^*(w) \rangle.$$

$$\Rightarrow \forall v \in V, \langle v, f_1^*(w) - f_2^*(w) \rangle = \langle v, f_1^*(w) \rangle - \langle v, f_2^*(w) \rangle = 0.$$

$$v = f_1^*(w) - f_2^*(w) \Rightarrow \langle f_1^*(w) - f_2^*(w), f_1^*(w) - f_2^*(w) \rangle = 0$$

$$\Rightarrow f_1^*(w) - f_2^*(w) = 0, \text{ o sea, } f_1^*(w) = f_2^*(w).$$

Existencia. Sea $\{v_1, \ldots, v_n\}$ una base ortonormal de V. Si $f^*: V \to V$ cumple la condición requerida, $\forall w \in V$,

Si
$$f^*: V \to V$$
 cumple la condición requerida, $\forall w \in V$,
 $f^*(w) = \sum_{i=1}^n \langle f^*(w), v_i \rangle v_i = \sum_{i=1}^n \overline{\langle v_i, f^*(w) \rangle} v_i = \sum_{i=1}^n \overline{\langle f(v_i), w \rangle} v_i$

$$= \sum_{i=1}^{n} \langle w, f(v_i) \rangle v_i.$$

Definimos $f^*: V \to V$ como $f^*(w) = \sum \langle w, f(v_i) \rangle v_i$.

Definition
$$f': V \to V$$
 como $f'(w) = \sum_{i=1}^{N} \langle w, f(v_i) \rangle v_i$.

• f^* es una transformación lineal:

 $ightharpoonup f^*$ es una transformación lineal:

 $\forall \lambda \in \mathbb{C} \text{ (o } \mathbb{R}). \ \forall w \in V.$

$$= \sum_{i=1}^{n} (\langle w, f(v_i) \rangle + \langle w', f(v_i) \rangle) + \sum_{i=1}^{n} \langle w, f(v_i) \rangle v_i + \sum_{i=1}^{n}$$

 $= \sum_{i=1}^{n} \langle w, f(v_i) \rangle v_i + \sum_{i=1}^{n} \langle w', f(v_i) \rangle v_i$ = $f^*(w) + f^*(w') \quad \forall w, w' \in V.$

$$f^*(w + w') = \sum_{\substack{i=1\\n}}^n \langle w + w', f(v_i) \rangle v_i$$
$$= \sum_{i=1}^n (\langle w, f(v_i) \rangle + \langle w', f(v_i) \rangle) v_i$$

 $f^*(\lambda w) = \sum_{i=1}^n \langle \lambda w, f(v_i) \rangle v_i = \sum_{i=1}^n \lambda \langle w, f(v_i) \rangle v_i = \lambda f^*(w)$

$$\forall v, w \in V$$
, vale $\langle f(v), w \rangle = \langle v, f^*(w) \rangle$:

$$v = \sum_{i=1}^{n} \langle v, v_i \rangle v_i \Rightarrow f(v) = \sum_{i=1}^{n} \langle v, v_i \rangle f(v_i).$$

$$\langle f(v), w \rangle = \left\langle \sum_{i=1}^{n} \langle v, v_i \rangle f(v_i), w \right\rangle = \sum_{i=1}^{n} \langle v, v_i \rangle \langle f(v_i), w \rangle.$$

$$\langle v, f^*(w) \rangle = \left\langle \sum_{i=1}^n \langle v, v_i \rangle v_i, \sum_{j=1}^n \langle w, f(v_j) \rangle v_j \right\rangle$$

$$= \sum_{i=1}^{n} \langle v, v_i \rangle \langle v_i, \sum_{j=1}^{n} \langle w, f(v_j) \rangle v_j \rangle$$

$$= \sum_{i=1}^{n} \langle v, v_i \rangle \langle v_i, \sum_{j=1}^{n} \langle w, f(v_j) \rangle \langle v_j \rangle$$

$$= \sum_{i=1}^{n} \langle v, v_i \rangle \left(\sum_{i=1}^{n} \overline{\langle w, f(v_j) \rangle} \langle v_i, v_j \rangle \right) = \sum_{i=1}^{n} \langle v, v_i \rangle \overline{\langle w, f(v_i) \rangle}$$

$$= \sum_{i=1}^{n} \langle v, v_i \rangle \langle f(v_i), w \rangle.$$

$$\Rightarrow \langle f(v), w \rangle = \langle v, f^*(w) \rangle.$$

Proposición.

Sean (V, \langle, \rangle) un e.v. de dimensión finita con p.i. y $f: V \to V$ una t.l. Si B es una base ortonormal de V, entonces $|f^*|_B = (|f|_B)^*$.

Recordar: para $A \in \mathbb{C}^{n \times n}$, se define $A^* \in \mathbb{C}^{n \times n}$ como $(A^*)_{ij} = \overline{A}_{ji} \ \forall i,j$.

Demostración.

$$B = \{v_1, \dots, v_n\}$$
 la base ortonormal de V . Para cada $1 \le i, j \le n$,

$$(|f^*|_B)_{ij} = \langle f^*(v_j), v_i \rangle = \overline{\langle v_i, f^*(v_j) \rangle} = \overline{\langle f(v_i), v_j \rangle}$$

= $(\overline{|f|_B})_{ji} = ((|f|_B)^*)_{ij}$

Ejemplo (continuación).

En \mathbb{C}^2 con el p.i. canónico,

$$f: \mathbb{C}^2 \to \mathbb{C}^2$$
, $f(x, y) = (x + iy, 2x - (1 + i)y)$,
 $f^*: \mathbb{C}^2 \to \mathbb{C}^2$, $f^*(x, y) = (x + 2y, -ix + (-1 + i)y)$.

$$|f|_E = \begin{pmatrix} 1 & i \\ 2 & -1 - i \end{pmatrix}$$
 y $|f^*|_E = \begin{pmatrix} 1 & 2 \\ -i & -1 + i \end{pmatrix} = (|f|_E)^*.$

Ejemplo.

Sea $f: \mathbb{C}^3 \to \mathbb{C}^3$, f(x,y,z) = (x+iy-iz,(2+i)x+iy+z,(1+i)y+2z). Hallar f^* para el producto interno canónico de \mathbb{C}^3 .

E base canónica de \mathbb{C}^3 es ortonormal para el p.i. canónico.

$$|f|_E = \begin{pmatrix} 1 & i & -i \\ 2+i & i & 1 \\ 0 & 1+i & 2 \end{pmatrix}.$$

$$\Rightarrow |f^*|_E = (|f|_E)^* = \begin{pmatrix} 1 & 2-i & 0 \\ -i & -i & 1-i \\ i & 1 & 2 \end{pmatrix}.$$

$$f^*(x,y,z) = (x + (2-i)y, -ix - iy + (1-i)z, ix + y + 2z).$$

Transformaciones lineales autoadjuntas

Definición.

Sean (V, \langle, \rangle) un e.v de dimensión finita con p.i. y $f: V \to V$ una t.l. Se dice que f es autoadjunta si $f^* = f$.

$$f: V \to V$$
 autoadjunta $\iff \langle f(v), w \rangle = \langle v, f(w) \rangle \ \forall v, w \in V.$

Definición.

 $A \in \mathbb{R}^{n \times n}$ se dice simétrica si $A_{ij} = A_{ji} \ \forall \ 1 \le i, j \le n \ (A = A^t)$. $A \in \mathbb{C}^{n \times n}$ se dice hermitiana si $A_{ij} = \overline{A_{ji}} \ \forall \ 1 \le i, j \le n \ (A = A^*)$.

Proposición.

Sean (V, \langle, \rangle) un e.v de dimensión finita con p.i. y $f: V \to V$ t.l. Son equivalentes:

- i) f es autoadjunta.
- ii) $\forall B$ base ortonormal de V, $|f|_B$ es hermitiana.
- iii) $\exists B$ base ortonormal de V tal que $|f|_B$ es hermitiana.

Diagonalización de transformaciones lineales autoadjuntas

Proposición.

Sea (V, \langle, \rangle) un e.v. de dimensión finita con p.i.

Si $f:V\to V$ es una t.l. autoadjunta, entonces el polinomio característico de f tiene todas sus raíces en \mathbb{R} .

Demostración.

► Si *V* es un ℂ-e.v.:

$$\lambda \in \mathbb{C}$$
 raíz de $\mathcal{X}_f \Rightarrow \lambda$ autovalor de f .

Sea $v \in V$ un autovector de f de autovalor $\lambda \in \mathbb{C}$.

$$\lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle f(v), v \rangle = \langle v, f(v) \rangle = \langle v, \lambda v \rangle = \bar{\lambda} \langle v, v \rangle.$$

$$\langle v, v \rangle \neq 0 \Rightarrow \lambda = \bar{\lambda}$$
, es decir, $\lambda \in \mathbb{R}$.

▶ Si V es un \mathbb{R} -e.v.:

Sean B base ortonormal de V y $A = |f|_B \in \mathbb{R}^{n \times n}$.

$$f$$
 autoadjunta \Rightarrow A simétrica.
 $\lambda \in \mathbb{C}$ raíz de $\mathcal{X}_f = \mathcal{X}_A \Rightarrow \lambda \in \mathbb{C}$ autovalor de $f_A : \mathbb{C}^n \to \mathbb{C}^n$,

$$f_A(x) = Ax$$
 autoadjunta para el p.i. canónico. $\Rightarrow \lambda \in \mathbb{R}$.

Teorema.

Sea (V, \langle, \rangle) un e.v. de dimensión finita con p.i. Si $f: V \to V$ es una t.l. autoadjunta, existe una base ortonormal B de V tal que $|f|_B$ es diagonal real.

Demostración. Por inducción en $n=\dim V$: n=1 \checkmark Sea $n=\dim V>1$ y supongamos que vale para t.l. autoadjuntas en e.v. de dimensión n-1.

 $f: V \to V$ t.l. autoadjunta, λ autovalor de $f \Rightarrow \lambda \in \mathbb{R}$. Sea $v \in V$ autovector asociado a λ y sea $S = \langle v \rangle^{\perp}$. dim(S) = n - 1 y S es f-invariante:

$$\forall x \in S, \ \langle f(x), v \rangle = \langle x, f(v) \rangle = \langle x, \lambda v \rangle = \lambda \langle x, v \rangle = 0,$$

$$\Rightarrow f(x) \in \langle v \rangle^{\perp} = S.$$

 (S, \langle, \rangle) con el p.i. de V restringido $\Rightarrow f_{|S}: S \to S$ autoadjunta. Por HI, $\exists B'$ base ortonormal de S tal que $|f_{|S}|_{B'}$ es diagonal real.

$$\Rightarrow B = \{\frac{1}{\|V\|}V\} \cup B'$$
 es una base ortonormal de V y

$$|f|_B = \begin{pmatrix} \lambda & 0 \\ 0 & |f_L|_{B'} \end{pmatrix}$$
 es diagonal real.

Ejemplo.

Sea $f: \mathbb{C}^2 \to \mathbb{C}^2$, f(x,y) = (x+iy,-ix+y). Hallar, si es posible, una base ortonormal de \mathbb{C}^2 tal que $|f|_B$ sea diagonal.

$$|f|_E = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$$
 es hermitiana, E es base ortonormal de \mathbb{C}^2

 $\Rightarrow f$ es autoadjunta

$$\mathcal{X}_f = \det \begin{pmatrix} \lambda - 1 & -i \\ i & \lambda - 1 \end{pmatrix} = (\lambda - 1)^2 - 1 = \lambda^2 - 2\lambda$$
Autovalores de $f: \lambda = 2$ v $\lambda = 0$

►
$$E_2 = \text{Nu}(2 id - f) = \text{Nu} \begin{pmatrix} 1 & -i \\ i & 1 \end{pmatrix} = \langle (i, 1) \rangle,$$

 $E_0 = \text{Nu}(f) = \langle (-i, 1) \rangle.$

$$\begin{split} B &= \left\{ \frac{1}{\|(i,1)\|}(i,1), \frac{1}{\|(-i,1)\|}(-i,1) \right\} = \left\{ (\frac{i}{\sqrt{2}},\frac{1}{\sqrt{2}}), (\frac{-i}{\sqrt{2}},\frac{1}{\sqrt{2}}) \right\} \text{ es una} \\ \text{base ortonormal de } \mathbb{C}^2 \text{ y } |f|_B &= \left(\begin{array}{cc} 2 & 0 \\ 0 & 0 \end{array} \right). \end{split}$$

Diagonalización de matrices hermitianas y simétricas

Sea $A \in \mathbb{C}^{n \times n}$ hermitiana.

 $f_A: \mathbb{C}^n \to \mathbb{C}^n$, $f_A(x) = A.x$, es autoadjunta para el p.i. canónico. $\Rightarrow \exists B$ base ortonormal de \mathbb{C}^n tal que $|f_A|_B = D$ es diagonal real.

$$C(B, E)^{-1}$$
. A. $C(B, E) = D$.

Como E y B son bases ortonormales de \mathbb{C}^n ,

$$(C(B,E)^{-1})_{ij} = C(E,B)_{ij} = \langle e_j, v_i \rangle = \overline{\langle v_i, e_j \rangle}$$

= $\overline{C(B,E)_{ji}} = (C(B,E)^*)_{ij} \quad \forall 1 \leq i,j \leq n.$

$$\Rightarrow C(B,E)^{-1} = C(B,E)^*.$$

Análogamente, si $A \in \mathbb{R}^{n \times n}$ es simétrica, existe una base ortonormal B de \mathbb{R}^n tal que $|f_A|_B = D$ es diagonal.

$$C(B, E)^{-1}$$
. A. $C(B, E) = D$ y vale $C(B, E)^{-1} = C(B, E)^{t}$.

Definición.

- ▶ $U \in \mathbb{C}^{n \times n}$ se dice unitaria si es inversible y $U^{-1} = U^*$.
- ▶ $O \in \mathbb{R}^{n \times n}$ se dice ortogonal si es inversible y $O^{-1} = O^t$.

Corolario

- ▶ Si $A \in \mathbb{C}^{n \times n}$ es hermitiana, existe $U \in \mathbb{C}^{n \times n}$ unitaria tal que $U^*.A.U$ es diagonal real.
- ▶ Si $A \in \mathbb{R}^{n \times n}$ es simétrica, existe $O \in \mathbb{R}^{n \times n}$ ortogonal tal que $O^t.A.O$ es diagonal.

Ejemplos.

(1)
$$A = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$$
 matriz hermitiana del ejemplo anterior.

 $B = \{(\frac{i}{\sqrt{2}}, \frac{1}{\sqrt{2}}), (\frac{-i}{\sqrt{2}}, \frac{1}{\sqrt{2}})\}$ base ortonormal de \mathbb{C}^2 formada por autovectores de A.

$$\Rightarrow U = C(B, E) = \begin{pmatrix} \frac{i}{\sqrt{2}} & -\frac{i}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \text{ cumple } U^*AU = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\forall U^{-1} = U^*.$$

(2) Sea
$$A = \begin{pmatrix} 0 & -2 & 4 \\ -2 & 3 & 2 \\ 4 & 2 & 0 \end{pmatrix}$$
.

Hallar $O \in \mathbb{R}^{3 \times 3}$ ortogonal tal que $O^t AO$ sea diagonal.

Buscamos B base ortonormal de \mathbb{R}^3 de autovectores de A.

$$\mathcal{X}_{A} = (\lambda - 4)^{2}(\lambda + 5)$$

$$ightharpoonup E_4 = <(1,0,1), (0,2,1) > y E_{-5} = <(2,1,-2) >$$

 $v \in E_4$, $w \in E_{-5} \Rightarrow v$ y w son ortogonales.

$$\{(1,0,1),(0,2,1)\}$$
 no es ortogonal \Rightarrow aplicamos Gram-Schmidt $z_1=(1,0,1)$ $z_2=(0,2,1)-\frac{\langle(0,2,1),(1,0,1)\rangle}{\|(1,0,1)\|^2}(1,0,1)=(-\frac{1}{2},2,\frac{1}{2}).$

$$\{(1,0,1),(-\frac{1}{2},2,\frac{1}{2}),(2,1,-2)\}$$
 base ortogonal de \mathbb{R}^3 formada por autovectores de A .

Normalizamos:

$$B = \{(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}), (-\frac{\sqrt{2}}{6}, \frac{2\sqrt{2}}{3}, \frac{\sqrt{2}}{6}), (\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})\}$$
 base ortonormal.

 $B = \{(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}), (-\frac{\sqrt{2}}{6}, \frac{2\sqrt{2}}{3}, \frac{\sqrt{2}}{6}), (\frac{2}{3}, \frac{1}{3}, -\frac{2}{3})\}$ base ortonormal de

$$\mathbb{R}^3$$
 formada por autovectores de A .
$$\left(\begin{array}{cc} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{6} & \frac{2}{3} \end{array}\right)$$

$$\mathbb{R}^3$$
 formada por autovectores de A .
$$\left(\begin{array}{cc} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{6} & \frac{2}{3} \end{array} \right)$$

 $O^t AO = C(E,B).|f_A|_E.C(B,E) = |f_A|_B = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$

$$\mathbb{R}^3$$
 formada por autovectores de A .
$$O = C(B, E) = \begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{6} & \frac{2}{3} \\ 0 & \frac{2\sqrt{2}}{3} & \frac{1}{3} \\ \sqrt{2} & \sqrt{2} & 2 \end{pmatrix} \text{ cumple:}$$

 $\triangleright O^t O = I_3 \Rightarrow O$ es ortogonal