Ficha de Exercícios Sistemas Operativos

Exercícios sobre Algoritmos de Escalonamento

Nota . Tempo de circulação (turnaround): tempo que decorre entre o instante em que um processo é submetido e o instante em que é concluído. <u>Critério de minimização</u>.

 Faça o diagrama temporal (Carta Gantt) do processamento dos processos indicados na tabela abaixo seguindo o algoritmo de escalonamento por prioridades com preempção. A seguir calcular o tempo de circulação (turnaround) médio.

processo	tempo de chegada	prioridade	duração
P1	0	5	3
P2	1	2	3
P3	2	3	2
P4	3	4	3
P5	7	1	2

2. Faça o diagrama temporal da execução dos processos indicados abaixo seguindo o algoritmo de escalonamento Round Robin com tempo de quantum de (a) 20 e (b) 10.

<u>Process</u>	Burst Time
P1	51
P2	23
P3	18
P4	30

Em cada caso calcule o número de **trocas** (comutação de contexto) de processos (deverá incluir nesta contagem a "troca" feita quando a fila de processos ready apenas tem um processo e no final do tempo quando a ultima processo é terminado).

Se o custo de execução do código do Sistema Operativo (escalanador, despachador etc.) é (i) 0,2 e (ii) 0,5 unidades do tempo, calcule a percentagem do tempo que o CPU está a executar código do SO.

- 3. Faça o diagrama temporal da execução dos processos indicados na tabela abaixo seguindo
 - (a) o algoritmo de escalonamento por prioridades sem preempção.
 - (b) o algoritmo de escalonamento por prioridades com preempção e Mostre que os tempos médios de circulação (turnaround) nos dois casos são 6,2 e 5,8.

processo	tempo de chegada	prioridade	duração
P1	1	3	4
P2	2	1	3
P3	8	2	2
P4	3	4	1
P5	1	2	2

4. A eficácia do CPU (E) é definida como o valor do CPU gasto em computações úteis dividido pelo tempo total gasto pelo CPU. Suponha que o processo médio executa durante um tempo "T" antes de ser bloqueado com uma operação de I/O. e o tempo duma comutação de contexto é S (que é tempo efectivamente perdido e inútil). Para escalonamento do tipo Round Robin com time quantum Q diga o valor de E quando:

(A) Q=Infinito	E=S/(T+S),	E=T/(T+S)	ou	E=Q/(Q+T)?.
(B) Q=Quase Zero	E=0,	E=0,5	ou	E=1 ?
(C) Q=S	E=0,	E=0,5	ou	E=1 ?
(D) Q>T	E=S/(T+S),	E=T/(T+S)	ou	E=Q/(Q+T)?
(E) S <q<t< td=""><td>dê uma forn</td><td>nula para É (.</td><td>Justific</td><td>que.)</td></q<t<>	dê uma forn	nula para É (.	Justific	que.)

5. Faça o diagrama temporal da execução dos processos Real Time periódicos indicados na tabela abaixo seguindo nos casos de (i)RM e (ii) EDF. Faça o diagrama de Gantt até 40 unidade de tempo – o tempo inicial dos processo é zero.

Nome CPU-Burst		Period
Α	5	12
В	7	16
С	1	10