AUTOMATY A GRAMATIKY

Pavel Surynek

Univerzita Karlova v Praze

Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky 10

Pokročilé uzávěrové vlastnosti Rozhodovací problémy Determinismus u ZA Uzávěrové vlastnosti u DZA Kontextové jazyky

Pokročilé uzávěrové vlastnosti (1)

- bezkontextové jazyky jsou uzavřené na inverzní homomorfismus
 - homomorfismus je speciální případ bezkontextové (regulární substituce)
 - substituce $f: X \to 2^{\Sigma^*}$ je homomorfismus, jestliže |f(x)|=1 pro každé $x \in X$
 - $f: X \to 2^{\Sigma^*}$ homomorfismus, L, K bezkontextové jazyky nad X, resp. nad Σ
 - $f(L) = \{ w_1 w_2 ... w_n \mid (\exists x_1 x_2 ... x_n \in L) w_1 \in f(x_1) \land w_2 \in f(x_2) \land ... \land w_n \in f(x_n) \}$
 - víme, že f(L) je bezkontextový
 - $f^{-1}(K) = \{x_1 x_2 ... x_n \mid (\exists w_1 w_2 ... w_n \in K) w_1 \in f(x_1) \land w_2 \in f(x_2) \land ... \land w_n \in f(x_n) \}$
 - f¹(K) je bezkontextový
 - existuje ZA Z = $(Q, \Sigma, Y, \delta, q_0, z_0, F)$, že L(Z) = K
 - definujeme $\overline{ZAZ'} = (Q', X, Y, \delta', [q_0, \lambda], z_0, F \times \{\lambda\})$, kde
 - - použitých slov u,v je konečně mnoho
 - $\delta'([q,u], \lambda, y) = \{ ([p, u], w) \mid (p, w) \in \delta(q, \lambda, y) \}$ $\cup \{ ([p, v], w) \mid (p, w) \in \delta(q, \sigma, y) \land u = \sigma v \}$
 - $\delta'([q, λ], x, y) = \{ [q, f(x)], y \}$
 - po přečtení páskového symbolu x je do druhé komponenty stavu vloženo f(x)
 - nad druhou komponentou stavu proběhne simulace Z, přičemž pásku nečteme
 - platí, že $L(Z') = f^{-1}(L(Z)) = f^{-1}(K)$

Pokročilé uzávěrové vlastnosti (2)

- bezkontextové jazyky jsou uzavřené na průnik s regulárním jazykem
 - paralelně simulujeme zásobníkový a konečný automat
 - R regulární jazyk, že R = L(A) pro konečný automat $A = (Q_A, X, \delta_A, q_{A0}, F_A)$
 - L bezkontextový jazyk, že L = L(Z) pro zásobníkový automat $Z = (Q_z, X, Y, \delta_z, q_{z0}, z_0, F_z)$
 - definujeme zásobníkový automat $Z' = (Q_A \times Q_z, X, Y, \delta, [q_{A0}, q_{Z0}], z_0, F_A \times F_z)$, kde
 - $\delta([p,q], x, y) \ni ([r,s], u)$, jestliže
 - p=r a $(s,u) \in \delta_7(q,x,y)$ pro $x = \lambda$
 - Z nečte pásku, pracuje na zásobníku, A nepracuje
 - = $r = \delta_A(p,x) a(s,u) \in \delta_Z(q,x,y) pro <math>x \neq \lambda$
 - Z a A současně zpracují symbol x
 - $L(Z') = L(A) \cap L(Z) = R \cap L$

Pokročilé uzávěrové vlastnosti (3)

- bezkontextové jazyky jsou uzavřené na kvocienty s regulárním jazykem
 - pro levý kvocient paralelně simulujeme konečný a zásobníkový automat, jakmile se KA dostane do přijímajícího stavu, ZA začne zpracovávat vstup
 - R regulární jazyk, že R = L(A) pro konečný automat A = $(Q_A, X, \delta_A, q_{AO}, F_A)$
 - L bezkontextový jazyk, že L = L(Z) pro zásobníkový automat Z = $(Q_7, X, Y, \delta_7, q_{70}, z_0, F_7)$
 - připomenutí
 - R\L = { v | (∃u∈R) uv∈L }
 - L/R = { u | (∃v∈R) uv∈L }
 - □ definujeme zásobníkový automat $Z' = (Q_A \times Q_7 \cup Q_7, X, Y, \delta, [q_{A0}, q_{70}],$ z_0 , F_7), kde
 - U $\{([p,s],u) \mid (s,u) \in \delta_7(q,\lambda,y)\}$ $\{(q,y) \mid p \in F_{\Delta}\}$
 - $\delta(q, x, y) = \delta_{z}(q, x, y) \text{ pro } x \in X \cup \{\lambda\}, q \in Q_{z}$
 - $\Box L(Z') = L(A) \setminus L(Z) = R \setminus L$

Rozhodovací problémy

- dán bezkontextový jazyk L nad X a slovo w∈X*, chceme testovat, zda w∈L
 - předpokládejme, že máme gramatiku G = (V_N,V_T,S,P) v <u>Chomského</u> <u>normálním tvaru</u>, že L(G) = \bar{L} a w = $x_1x_2...x_n$
- algoritmus **CYK**
 - najdeme X_{i,i} pro i,j=1,2,...,n, kde
 - $X_{i,i} = \{ X \mid X \in V_N \land X \Rightarrow_G^* X_i X_{i+1} ... X_i \}$
 - když $S \in X_{1,n}$, máme $S \Rightarrow_G^* w$ a tedy $w \in L$
 - dynamické programování
 - $X_{i,i} = \{ X \mid X \in V_N \land X \Rightarrow_G X_i \}$
 - jeden odvozovací krok stačí díky Chomského tvaru
 - $X_{i,i} = \{ X \mid (\exists k \in \{i, i+1, \dots j-1\}) [(\exists Y \in X_{i,k}, \exists Z \in X_{k+1,i}) X \Rightarrow_G YZ] \}$
 - čas O(|w|³)
- test, zda L je nekonečný
 - pomocí pumping lemmatu
 - existuje slovo $w \in L$, že $|w| \ge n$ a $|w| \le 2n-1$
- test, zda $\mathbf{L} = \mathbf{\emptyset}$
 - regularizací

Př.:	$G = (V_N, V_T, S, P), kde$ $V_N = \{ S, A, B, C \}$					
	$V_{T} = \{ a, b, c \}$					
$P = \{ S \rightarrow AB \mid BC \}$						
	$A \rightarrow BA \mid a$					
	$B \rightarrow CC \mid b$					
	$C \rightarrow AB \mid a $					
w = baaba						

X _{i,j}	j					
	В	S,A	Ø	Ø	S,A,C	
	Ø	A,C	В	В	S,A,C	
i	Ø	Ø	A,C	S,C	В	
	Ø	Ø	Ø	В	S,A	
	Ø	Ø	Ø	Ø	A,C	

Determinismus u ZA (1)

- zásobníkový automat $Z = (Q, X, Y, \delta, q_0, z_0, F)$ je deterministický (DZA), jestliže
 - $\square |\delta(q, x, y)| \le 1$ pro všechna $q \in \mathbb{Q}, x \in X \cup \{\lambda\}, y \in Y$
 - □ když $\delta(q,\lambda,y)\neq\emptyset$ pro q∈Q a y∈Y, pak $\delta(q,x,y)=\emptyset$ pro všechna x∈X
- □ jazyk L je **deterministický bezkontextový**, jestliže existuje deterministický ZAZ, že L = L(Z)
 - \Box K = {ww^R | w∈{a,b}* } je bezkontextový, ale nikoli deterministický
 - je třeba nedeterministicky <u>uhádnout střed</u>vstupního slova
- jazyk L se nazývá bezprefixový, jestliže pro každé u,v∈L platí
 - kdyžu je prefix v, pak u = v

Determinismus u ZA (2)

- nechť Z je deterministický zásobníkový automat, pak říkáme, že N(Z) je bezkontextový bezprefixový jazyk
 - - po přečtení w je zásobník vyprázdněn a není možné pokračovat
 - □ jelikož konstrukce Z', že L(Z')=N(Z) zachovává determinismus, je N(Z) rovněž deterministický bezkontextový jazyk
- nikoli každý deterministický bezkontextový jazyk je bezprefixový
 - uvažme regulární L = {a, aa}
- když L nad abecedou X je deterministický bezkontextový jazyk, pak L.\$ pro \$∉X je bezkontextový bezprefixový

Zjemnění Chomského hierarchie

svědci

- $L_1 = \{a^ib^i | i=1,2,...\}$
- $L_2 = \{aba\}$
- $L_3 = \{a, aa\}$

- $L_5 = \{ww^R \mid w \in \{a,b\}^*\}$

Uzávěrové vlastnosti pro DZA (1)

- deterministické bezkontextové jazyky jsou uzavřené na doplněk
 - připomeňme: bezkontextové na doplněk uzavřené nejsou
- důkaz je technicky náročný, uvedeme jen několik myšlenek
 - případy <u>nepřijetí stavem</u> u deterministického ZA
 - (i) přečte vstupní slovo a skončí v nepřijímajícím stavu
 - (ii) vyprázdní zásobník
 - (iii) dostane se do konfigurace, která nemá pokračování
 - (iv) zacyklí se v krocích na zásobníku
 - opakují se konfigurace
 - (v) dojde k nekontrolovatelnému růstu zásobníku
 - 🗖 případy (i), (ii), (iii) lze poznat snadno, případy (iv) a (v) obtížněji

Uzávěrové vlastnosti pro DZA (2)

- deterministické bezkontextové jazyky jsou uzavřené na inverzní homomorfismus a průnik s regulárním jazykem
 - předchozí konstrukce zachovají determinismus
- deterministické bezkontextové jazyky <u>nejsou</u> uzavřené na **průnik,** sjednocení a homomorfismus
 - důkaz pro sjednocení
 - L = $\{a^ib^jc^k \mid i,j,k = 0,1,2,... \land (i \neq j \lor j \neq k \lor i \neq k)\}$ je bezkontextový (sjednocení tří deterministických)
 - nechť L je navíc deterministický, pak -L rovněž
 - $K = \{a^ib^jc^k \mid i,j,k = 0,1,2,...\}$ je regulární a $(-L)\cap K = \{a^ib^ic^i \mid i = 0,1,2,...\}$, který není bezkontextový
 - důkaz pro homomorfismus
 - $L = \{a^ib^ic^j \mid i,j = 0,1,2,...\}$
 - $K = \{a^i b^j c^j \mid i,j = 0,1,2,...\}$
 - K a L jsou deterministické bezkontextové
 - OL U 1K je deterministický bezkontextový, 1L U 1K nikoli
 - nedeterminismus 1L U 1K rozborem případů
 - f(0) = 1, identita jinak, pak $f(0L \cup 1K) = 1L \cup 1K$

Kontextové jazyky (1)

kontextové jazyky

- generované kontextovými gramatikami (context sensitive) [typu 1]
 - pravidla tvaru $\alpha X\beta \rightarrow \alpha w\beta$, kde α , $\beta \in (V_N \cup V_T)^*$, $X \in V_N \text{ a } W \in (V_N \cup V_T)^* \text{ a } W \neq \lambda$
 - nebo $S \rightarrow \lambda$, pokudS není na pravé straně žádného jiného pravidla
- generované nezkracujícími gramatikami
 - pravidla tvaru $\alpha \rightarrow \beta$, kde α , $\beta \in (V_N \cup V_T)^*$ a $|\alpha| \le |\beta|$
 - nebo $S \rightarrow \lambda$, pokudS není na pravé straně žádného jiného pravidla
 - kontextová pravidla jsou nezkracující, naopak nikoli
- pro každou nezkracující gramatiku $G = (V_N, V_T, S, P)$ existuje kontextová gramatika G'=(V_N',V_T,S,P'), že L(G)=L(G')
 - ukazuje, že definice jsou ekvivalentní


```
Př.: G = (V_N, V_T, S, P), kde
      V_N = \{ S, A, B, C \}
      V_T = \{ a, b, c \}
      P= {
             S \rightarrow aSBC \mid abC
             CB \rightarrow BC
             bB \rightarrow bb
             bC \rightarrow bc
             cC \rightarrow cc
```

G je <u>nezkracující</u>, ale nikoli kontextová

$$L(G) = \{a^ib^ic^i \mid i = 1,2,...\}$$

Kontextové jazyky (2)

- \Box G = (V_N, V_T, S, P) nezkracující gramatika
 - nejprve separace
 - výsledkem je separovaná gramatika G" = (V_N", V_T, S, P")
 - pro každý terminál x∈V_T zavedeme nový neterminál X_x
 - v pravidlech nahradíme každý terminál x za X_x
 - zavedeme pravidla $X_x \rightarrow x$
 - L(G'') = L(G)
 - **náhrada nezkracujícího** pravidla $\alpha \rightarrow \beta$ sérií kontextových
 - nechť $\alpha \rightarrow \beta = A_1A_2...A_m \rightarrow B_1B_2...B_n$, kde m≤n
 - $\blacksquare A_1A_2...A_m \rightarrow C_1A_2...A_m$

 - $\blacksquare C_1C_2...C_m \rightarrow B_1C_2...C_m$
 - $\blacksquare B_1 C_2 C_2 ... C_m \rightarrow B_1 B_2 C_3 ... C_m ...$
 - $B_1B_2...B_{m-1}C_m \to B_1B_2...B_{m-1}B_mB_{m+1}...B_n$
 - C₁,C₂,...,C_m jsou pro každé nahrazované pravidlo <u>nové</u>

```
Př.: AB \rightarrow BA

zavedeme
neterminály C_1, C_2

náhrada za AB \rightarrow BA

AB \rightarrow C_1B

C_1B \rightarrow C_1C_2

C_1C_2 \rightarrow BC_2

BC_2 \rightarrow BA
```

Kontextové uzávěrové vlastnosti (1)

- kontextové jazyky jsou uzavřené na konečná sjednocení
 - kontextové gramatiky $G_1 = (V_N^1, V_T, S_1, P_1)$ a $G_2 = (V_N^2, V_T, S_2, P_2)$, kde $V_N^1 \cap V_N^2 = \emptyset$
 - položme G = $(V_N^1 \cup V_N^2 \cup \{S'\}, V_T, S', P1 \cup P2 \cup \{S' \rightarrow S_1 | S_2\})$
 - S' je nový neterminál
 - ošetřit přepis původních počátečních symbolů na λ
 - platí $L(G) = L(G_1) \cup L(G_2)$
- kontextové jazyky jsou uzavřené na konkatenaci
 - položme G = $(V_N^1 \cup V_N^2 \cup \{S'\}, V_T, S', P_1 \cup P_2 \cup \{S' \rightarrow S_1, S_2\})$
 - S' je nový neterminál
 - ošetřit přepis původních počátečních symbolů na λ
 - platí $L(G) = L(G_1).L(G_2)$
- kontextové jazyky jsou uzavřené na iteraci
 - položme G = $(V_N^1 \cup \{S', S''\}, V_T, S', P_1 \cup \{S' \rightarrow \lambda \mid S'', S'' \rightarrow S''S_1 \mid S_1\})$
 - S', S" jsou nové neterminály
 - je třeba dávat pozor na výskyt počátečního neterminálu vpravo (u bezkontextových netřeba)
 - platí $L(G) = L(G_1)^*$
- kontextové jazyky jsou uzavřené na zrcadlový obraz
 - položme G = $(V_N^1, V_T, S_1, \{v^R \rightarrow w^R \mid v \rightarrow w \in P_1\})$
 - platí $L(G) = L(G_1)^R$

Kontextové uzávěrové vlastnosti (2)

- kontextové jazyky jsou uzavřené na kontextovou substituci
 - □ substituce $f: X \to 2^{Y^*}$ je kontextová substituce, jestliže f(x) je kontextový jazyk pro každé x∈X
 - máme $G_x = (V_N^x, Y, S_x, P_x)$, že $f(x) = L(G_x)$ pro každé $x \in X$
 - V_N^x jsou po dvou disjunktní
 - mějme G = (V_N, X, S, P) , zajímá nás kontextovost f(L(G))
 - položíme G' = $(V_N \cup \bigcup_{x \in X} V_N^x \cup X, Y, S, P \cup \bigcup_{x \in X} P^x \cup \{x \to S_x \mid x \in X\})$
 - případně ošetříme přepis neterminálů jiných než S na λ
 - platí L(G') = f(L(G))
- kontextové jazyky jsou uzavřené na doplňky a konečné průniky
 - velmi hluboký výsledek (řešilo se asi 20 let)
 - věta Immerman–Szelepcsényi