ASEN 5519 - Algorithmic Motion Planning Fall 2020

Homework 3

Assigned October 10; Due October 23

Exercise 1. (a) Give a definition for a *complete* planning algorithm. (b) Give a definition for an *optimal* planning algorithm. (c) Recall the wave-front planner from Lecture 8. Is it a complete planner? Is it an optimal planner? Justify your answers in part (c).

Exercise 2. Implement a gradient descent planning algorithm with a potential function of the form $U = U_{att} + U_{rep}$.

- (a) Demonstrate the performance of your planner on a simple example in a 2D C-space $(C = \mathbb{R}^2)$ with $q_{\text{start}} = (0,0)$, $q_{\text{goal}} = (10,0)$ and two square obstacles with side length of 1 centered at (4,1) and (7,-1). Choose a radius of $\epsilon = 0.25$ centered at q_{goal} for the termination condition at goal.
 - i. Plot the vector field.
 - ii. How did you choose the values for d_{goal}^* and Q_i^* for $i \in \{1, 2\}$?
 - iii. Plot the path generated by the planner.
 - iv. What is the length of the path?
 - v. Would you expect the same path length for different values of d_{goal}^* and Q_i^* ?
- (b) Solve the planning problems in **Exercise 7** of **Homework 1** using your gradient descent planner. Unlike the Bug algorithms, assume the obstacles are known. Choose a radius of $\epsilon = 0.25$ centered at $q_{\rm goal}$ for the termination condition at goal.
 - i. How did you choose the values for d_{goal}^* and Q_i^* ?
 - ii. Plot the paths generated by the planner.
 - iii. What are the lengths of the paths?
 - iv. Would you expect the same path lengths for different values of d_{goal}^* and Q_i^* ?

Exercise 3. Implement the wave-front algorithm and solve the planning problems in Exercise 7 of Homework 1 with a grid of size 0.25 (i.e., square cells with length of 0.25 for each side). Define neighbors as the cells that share a facet.

- (a) Plot the paths generated by the planner. (Assume the robot transverses the adjacent cells using a line that connects their centers.)
- (b) What are the lengths of the paths?
- (d) Would you expect the path lengths to get smaller as the grid size gets smaller?

(e) How does this wave-front planner perform in comparison to the gradient descent planner in **Exercise 2** part (b)?

Exercise 4. Use your front-wave planner from **Exercise 3** to plan a motion for the robotic manipulator in **Exercise 8** part (c) of **Homework 2** to move the end-effector from location $x_{\text{start}} = (2,0)$ to $x_{\text{goal}} = (-2,0)$ in the workspace. Plot the computed motion plan in the robot's C-space. Also, show the computed motion of the robot in the workspace in a series of snapshots in one plot.