Основы наивной теории множеств.

Лектор — Станислав Олегович Сперанский Создатель конспекта — Глеб Минаев *

TODOs

Dekker, Inc., 1999.

C	одержание	
1	Аксиоматика	2
2	Отношения	3
3	Натуральные числа и индукция	4
4	Мощности 4.1 Основные свойства конечных множеств	7 9
5	Упорядоченность 5.1 Трансфинитная индукция и фундированность	12 14
6	Ординалы, кардиналы и важные теоремы ZFC 6.1 Ординалы 6.2 Кардиналы 6.3 Важные теоремы в ZFC	16 16 21 23
	Материалы лекций: ссылка (обавить конспекты теории из упражнений. Слить аккуратно воедино. Добавить ссылку пражнения.	на

• T. Jech. Set Theory. 3rd ed., revised and expanded. Springer, 2002.

 $^{^*}$ Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

1 Аксиоматика

Будем рассматривать как базовые выражения "x равен (совпадает с) y" ("x = y") "x лежит в y" (" $x \in y$ ").

Определение 1 (Наиваная схема аксиом выделения). Пусть $\Phi(x)$ — произвольное условие на объекты. Тогда существует X, что $\forall u(\Phi(u) \leftrightarrow u \in X)$. В этом случае X обозначается как $\{u \mid \Phi(u)\}$.

Утверждение 1 (парадокс Рассела). Пусть $R = \{u \mid u \notin u\}$. Тогда R не может лежать в себе u не может не лежать в себе одновременно.

Утверждение 2 (парадокс Берри). Пусть n — наименьшее натуральное число, которое нельзя описать менее чем одиннадиатью словами. Тогда n описывается 10 словами.

Из-за данного парадокса будем рассматривать только условия, образованные переменными $u \in = \neg, \land, \lor, \leftarrow, \leftrightarrow, \forall, \exists$.

Определение 2 (аксиомы ZFC (= ZF (аксиомы Цермело-Френкеля) + C (аксиома выбора))).

Ext) "Аксиома экстенциональности":

$$\forall X \forall Y (\forall u (u \in X \leftrightarrow u \in Y) \leftrightarrow X = Y)$$

Empty) "Аксиома пустого множества":

$$\exists\varnothing\;\forall u\,(u\notin\varnothing)$$

Pair) "Аксиома пары":

$$\forall X\,\forall Y\;\exists Z(\forall u\,(u\in Z\leftrightarrow (u=X\vee u=Y)))$$

Обозначение: $Z = \{X, Y\}$.

Sep) "Схема аксиом выделения":

$$\forall \Phi(x) \quad \forall X \exists Y \ \forall u \ (u \in Y \leftrightarrow (u \in X \land \Phi(u)))$$

Обозначение: $Y = \{u \in X \mid \Phi(u)\}.$

Следствие. Операторы

$$X \cap Y := \{ u \mid u \in X \land u \in Y \}$$
$$X \setminus Y := \{ u \in X \mid u \notin Y \}$$
$$\bigcap X := \{ u \mid \forall v \in X \quad u \in v \}$$

определены корректно.

Union) "Аксиома объединения":

$$\forall X \exists Y \ \forall u \ (u \in Y \leftrightarrow \exists v \ (v \in X \land u \in v))$$

Обозначение: $Y = \bigcup X$.

Следствие. Оператор

$$X \cup Y := \bigcup \{X, Y\} = \{u \mid u \in X \land u \in Y\}$$

определён корректно.

Power) Пусть $x \subseteq y := \forall v \{v \in x \to v \in y\}$. "Аксиома степени":

$$\forall X \,\exists Y \,\forall u \,(u \in Y \leftrightarrow u \subseteq X)$$

Обозначение: $Y = \mathcal{P}(X) := \{u \mid u \subseteq X\}$. $\mathcal{P}(X)$ — "множество-степень X" или "булеан X".

Определение 3. Упорядоченная пара — это объект от некоторых X_1 и Y_1 , который равен другому такому объекту от X_2 и Y_2 тогда и только тогда, когда $X_1 = X_2 \wedge Y_1 = Y_2$.

Определение 4. Декартово произведение X и Y $(X \times Y) - \{(x;y) \mid x \in X \land y \in Y\}$.

Замечание 1. Можно несложно показать, что декартово произведение определено корректно.

Inf) Пусть $\operatorname{Ind}(X) := \emptyset \in X \land \forall u (u \in X \land u \cup \{u\} \in X)$. Если $\operatorname{Ind}(X)$, то X называется индуктивным. "Аксиома бесконечности": существует индуктивное множество.

Repl) "Схема аксиом подстановки":

$$\forall \Phi(x, y)$$

$$\forall x \, \forall y_1 \, \forall y_2 \, ((\Phi(x, y_1) \land \Phi(x, y_2)) \rightarrow y_1 = y_2) \rightarrow$$

$$\forall X \, \exists Y \, \forall y \, (y \in Y \leftrightarrow \exists x (x \in X \land \Phi(x, y)))$$

Reg) "Аксиома регулярности":

$$\forall X (X \neq \emptyset \rightarrow \exists u (u \in X \land X \cap u = \emptyset))$$

2 Отношения

Определение 5. Бинарное (или двухместное) отношение R между X и Y — подмножество $X \times Y$. Если Y = X, R называется бинарным (или двухместным) отношением на X. Обозначение: $(x,y) \in R \Leftrightarrow xRy$.

Определение 6.

$$\mathrm{dom}(R) := \{u \in X \mid \exists v \quad uRv\} \qquad \text{"область определения } R"$$

$$\mathrm{range}(R) := \{v \in Y \mid \exists u \quad uRv\} \qquad \text{"область значений } R"$$

$$R[U] := \mathrm{range}(R \cap (U \times Y))$$

$$R^{-1} := \{(y,x) \mid (x,y) \in R\}$$

Замечание 2.

range
$$(R) = dom(R^{-1}) = R[X]$$

range $(R^{-1}) = dom(R) = R^{-1}[Y]$

Определение 7. Бинарные отношения можно естественным образом комбинировать: для любых отношений R и Q между X и Y, Y и Z соответственно отношение

$$S = R \circ Q := \{(x, z) \in X \times Z \mid \exists y : xRy \land yQz\}$$

называется композицией R и Q.

Определение 8. Тождественное отображение на $X - id_X := \{(x, x) \mid x \in X\}.$

Замечание 3. Тождественное отображение при композиции (не важно, правой или левой) с другим отношением не меняет его.

Определение 9. Отношение R между X и Y называется функциональным, если

$$\forall x \ \forall y_1 \ \forall y_2 \ ((xRy_1 \land xRy_2) \rightarrow y_1 = y_2).$$

Определение 10. Функция из X в Y — функциональное отношение R между X и Y, в котором $\mathrm{dom}(R) = X$. Обозначение: $R: X \to Y$.

Определение 11. Ограничение или сужение функции $f: X \to Y$ на $U \subseteq X$ — функция $f \upharpoonright_U := f \cap (U \times Y)$.

Если $f: X \to Y$ и $g: U \to Y$, где $U \subseteq X$, таковы, что $f \upharpoonright_U = g$, то f называется расширением g, а g — ограничением f.

Определение 12. $Y^X := \{f : X \to Y\}.$

Определение 13. Функция $f: X \to Y$ называется

- сюртекцией, если range(f) = Y;
- *инъекцией*, если f^{-1} функционально;
- $\mathit{биекцией}$, если f сюръективно и инъективно.
- С) "Аксиома выбора":

$$\forall X(\varnothing \notin X \to \exists f(f:X \to \bigcup X \land \forall u \in X(f(u) \in u)))$$

3 Натуральные числа и индукция

Важным следствием Inf является

$$\exists X (\operatorname{Ind}(X) \land \forall Y (\operatorname{Ind}(Y) \to X \subseteq Y)) \tag{Nat}$$

Nat описывает минимальное по включению индуктивное множество — \mathbb{N} , \aleph_0 или ω .

Вывод Nat из Inf. Пусть есть какое-то индуктивное X_0 . Тогда рассмотрим

$$\mathbb{N} := \{ x \in X_0 \mid \forall X (\operatorname{Ind}(X) \to x \in X) \}$$

По построению $\operatorname{Ind}(X) \to \mathbb{N} \subseteq X$. Также $\operatorname{Ind}(\mathbb{N})$.

Определение 14. Определим функцию последователя $s: \mathbb{N} \to NN$ как

$$s := \{(n, m) \in \mathbb{N} \times \mathbb{N} \mid m = n \cup \{n\}\}\$$

Вместо s(n) часто пишут n+1.

Определение 15. (Естественный) порядок на $\mathbb{N} - <:= \{(n,m) \in \mathbb{N}^2 \mid n \in m\}$.

Замечание 4. Для всех $n, m \in \mathbb{N}$ верно:

- 1. $\neg (n < 0)$;
- 2. $n < m + 1 \leftrightarrow (n < m \lor n = m)$.

Теорема 3 (принцип индукции). Пусть X удовлетворяет условию

$$0 \in X \land \forall n \in \mathbb{N} (n \in X \to n+1 \in X).$$

 $Tor \partial a \mathbb{N} \subseteq X.$

Доказательство. Из условия на X следует, что $\mathbb{N} \cap X$ индуктивно. Тогда из определения \mathbb{N} следует, что $\mathbb{N} \subseteq \mathbb{N} \cap X \subseteq X$, значит $\mathbb{N} \subseteq X$.

3амечание 5. В качестве X могут быть $\{n \in \mathbb{N} \mid \Phi(n)\}$.

Следствие 3.1. $\forall n \in \mathbb{N}$ верно $n \subseteq \mathbb{N}$.

Теорема 4 (возвратная индукция). Пусть дан X, что $\forall n \in \mathbb{N} (\forall m < n \ m \in X \to n \in X)$. Тогда $\mathbb{N} \subseteq X$.

Доказательство. Докажем, что $\forall n \in \mathbb{N} n \subseteq X$, по индукции. База для 0 очевидна. Шаг очевиден, так как $n \subseteq X$, значит $n \in X$, значит $n + 1 \subseteq X$.

Определение 16. $Min(X) := \{x \in X \mid \neg \exists u \in X u \in x\}.$

Теорема 5 (принцип минимального элемента). Если $X \subset \mathbb{N}$ и $X \neq \emptyset$, то $Min(X) \neq \emptyset$.

Доказательство. Пусть $Min(X) = \emptyset$. Возьмём $Y := \mathbb{N} \setminus X$. Заметим, что

$$\forall n \in \mathbb{N} (\forall m < n \ m \in Y \to n \in Y)$$

Тогда по принципу возвратной индукции $Y=\mathbb{N},$ а тогда $X=\varnothing$ — противоречие.

Теорема 6 (о рекурсии). Пусть есть $y_0 \in Y$ и $h : \mathbb{N} \times Y \to Y$. Тогда существует и единственная $f : \mathbb{N} \to Y$ такая, что для любого $n \in \mathbb{N}$

$$f(n) = \begin{cases} y_0 & ecnu \ n = 0 \\ h(m, f(m)) & ecnu \ n = m + 1 \end{cases}$$

Доказательство. Пусть $k \in \mathbb{N}$. Тогда будем называть функцию $f: k+1 \to Y$ правильной, если условие в определении рекурсии верно для всех $n \in k+1$. Также рассмотрим

$$S:=\{k\in\mathbb{N}\mid$$
 существует единственная правильная $f:k+1\to Y\}$

Будем обозначать для каждого $k \in S$ через f_k соответствующую правильную функцию из k+1 в Y.

Докажем по индукции, что $S = \mathbb{N}$.

База. Очевидно, $\{(0, y_0)\}$ — единственная правильная функция из 0+1 в Y. Поэтому $0 \in S$.

Шаг. Легко заметить, что сужение любой правильной функции на k+2 на множество k+1 правильно. Поэтому все правильные функции на k+2 определены на k+1 как f_k . Тогда значение в k+1 определяется однозначно, значит правильная функция на k+2 существует и единственна.

Теорема 7 (о рекурсии, параметризованная). Пусть $g_0 \in Y^X$ и $h: X \times \mathbb{N} \times Y \to Y$. Тогда существует и единственна $f: X \times \mathbb{N} \to Y$, что $\forall x \in X, n \in \mathbb{N}$

$$f(x,n) = \begin{cases} g_0(x) & ecnu \ n = 0 \\ h(x,m,f(x,m)) & ecnu \ n = m+1 \end{cases}$$

Доказательство. Рассмотрим для каждого $x \in X$ функцию $h_x : \mathbb{N} \times Y \to Y, (n, y) \mapsto h(x, n, y)$. Тогда по теореме о рекурсии есть $f_x : \mathbb{N} \to Y$, что

$$f_x(n) = egin{cases} g_0(x) & ext{если } n = 0 \ h_x(m, f_x(m)) & ext{если } n = m+1 \end{cases}$$

Тогда определим $f: X \times \mathbb{N} \to Y, (x, n) \mapsto f_x(n)$. В этом случае

$$f(x,n) = f_x(n) = egin{cases} g_0(x) & \text{если } n = 0 \\ h_x(m,f_x(m)) & \text{если } n = m+1 \end{cases} = egin{cases} g_0(x) & \text{если } n = 0 \\ h(x,m,f(x,m)) & \text{если } n = m+1 \end{cases}$$

Замечание 6. Заметим, что с помощью теоремы о параметризованной рекурсии можно определить сложение, умножение и возведение в степень на натуральных числах.

Определение 17. Несложно заметить, что функциональные отношения $R \subseteq X \times Y$ — функции из подмножества X в Y. Поэтому будем называть их *частичными функциями* и обозначать как $R : \subseteq X \to Y$.

Теорема 8 (о рекурсии, частичной). Пусть $y_0 \in Y$ и $h : \subseteq \mathbb{N} \times Y \to Y$. Тогда существует и единственна $f : \subset \mathbb{N} \to Y$, что

• ∂n любого $n \in \text{dom}(f)$,

$$f(n) = \begin{cases} y_0 & ecnu \ n = 0 \\ h(m, f(m)) & ecnu \ n = m + 1 \end{cases}$$

• либо $dom(f) = \mathbb{N}$, либо dom(f) = k+1 для некоторого $k \in \mathbb{N}$, что $(k, f(k)) \notin dom(h)$.

Доказательство. Зафиксируем некоторое ы $\notin Y$ и положим $Y' := Y \cup \{ \mathbf{ы} \}$. Теперь расширим h до $h' : \mathbb{N} \times Y' \to Y'$ следующим образом:

$$h'(n,y') := \begin{cases} h(n,y') & \text{если } (n,y') \in \text{dom}(h) \\ \mathbf{b} & \text{иначе} \end{cases}$$

В силу теоремы о рекурсии существует и единственна $f': \mathbb{N} \to Y'$ такая, что для любого $n \in \mathbb{N}$,

$$f'(n) = egin{cases} y_0 & ext{если } n = 0 \\ h'(m, f'(m)) & ext{если } n = m+1 \end{cases}$$

Возьмём $f := f' \cup (\mathbb{N} \times Y)$. Несложно убедиться, что f будет искомой.

Определение 18. Конечными последовательностями элементов X называются элементы множества $X^* := \{f \mid \exists n \in \mathbb{N} (f : n \to X)\}.$

Теорема 9 (о возвратной индукции). Пусть $h: \mathbb{N} \times Y^* \to Y$. Тогда существует единственная $f: \mathbb{N} \to Y$ такая, что для любого $n \in \mathbb{N}$, $f(n) = h(n, f \upharpoonright_n)$.

Доказательство. По аналогии с доказательством теоремы о рекурсии, однако вместо обычной индукции тут используется возвратная. [...]

Определение 19. Условие $\Phi(x,y)$ называется ϕy нки, и ональным, если

$$\forall x \forall y_1 \forall y_2 ((\Phi(x, y_1) \land \Phi(x, y_2)) \rightarrow y_1 = y_2)$$

Если для некоторого u нашёлся тот самый y, что $\Phi(u,y)$, тогда данный y обозначается как $\llbracket \Phi \rrbracket (x)$.

Функциональное условие $\Phi(x,y)$ называется тотальным, если $\forall x \exists y \ \Phi(x,y)$.

Теорема 10 (о возвратной "классовой рекурсии"). Пусть $\Phi(x,y)$ — тотальное функциональное условие. Тогда существует единственная функция $f \ c \ dom(f) = \mathbb{N}$, что $\forall n \in \mathbb{N}$

$$f(n) = \llbracket \Phi \rrbracket (f \upharpoonright_n)$$

Доказательство. Идея здесь та же, хотя деталей побольше. В нашем модуле эта теорема не будет играть особой роли, однако именно "классовая рекурсия" является базовым инструментом в ТМ. [...]

4 Мощности

Определение 20. X и Y *равномощны*, если существует биекция $f:X \to Y$. Обозначение: $X \sim Y$.

Теорема 11. Для всех X, Y u Z верно следующее:

- 1. $X \sim X$:
- 2. $X \sim Y \Leftrightarrow Y \sim X$:
- 3. $X \sim Y \sim Z \Rightarrow X \sim Z$.

 Π ример 1. $\mathcal{P}(X) \sim 2^X$. Действительно, рассмотрим для каждого $Y \subseteq X$ функцию $\chi_Y : X \to 2$, что

$$\chi_Y(x) := \begin{cases} 1 & \text{если } x \in Y \\ 0 & \text{если } x \in X \setminus Y \end{cases}$$

Несложно заметить, что отображение, сопоставляющее Y функцию χ_Y есть биекция из $\mathcal{P}(x)$ в 2^X .

Определение 21. Множество X по мощности менее или равно Y ($X \leq Y$), если существует инъекция из X в Y.

Множество X по мощности (строго) менее Y ($X \prec Y$), если $X \preccurlyeq Y \land X \nsim Y$.

3амечание 7. Тогда очевидно, что $X \leq Y$ тогда и только тогда, когда X равномощно некоторому подмножеству Y.

Теорема 12.

1. $X \leq X$.

2. $X \sim Y \Rightarrow X \preccurlyeq Y$.

3.
$$X \preceq Y \sim Z \Rightarrow X \preceq Z$$
.

4.
$$X \sim Y \leq Z \Rightarrow X \leq Z$$
.

5.
$$X \leq Y \leq Z \Rightarrow X \leq Z$$
.

Теорема 13 (Кантора, обобщённая). $X \prec \mathcal{P}(X)$.

Доказательство. Очевидно, что $f: X \to \mathcal{P}(X), x \mapsto \{x\}$ есть инъекция, поэтому $X \preccurlyeq \mathcal{P}(X)$. Покажем, что между ними нет биекции.

Предположим противное, т.е. есть биекция $f: X \to \mathcal{P}(X)$. Рассмотрим $Y:= \{x \in X \mid x \notin f(x)\}$. Поскольку f — биекция, то f(y) = Y для некоторого y. В итоге мы получаем

$$y \in Y \iff y \notin f(Y) \iff y \notin Y$$

Получаем противоречие.

Теорема 14 (Кантора-Шрёдера-Бернштейна). Если $X \preceq Y$ и $Y \preceq X$, то $X \sim Y$.

Доказательство.

Лемма 14.1. Если $X \supseteq Y \supseteq X'$ и $X \sim X'$, то $X \sim Y \sim X'$.

Доказательство. Пусть $f: X \to X'$ — биекция. Определим по рекурсии $\{X_i\}_{i=0}^{\infty}$ и $\{Y_i\}_{i=0}^{\infty}$:

$$X_n := egin{cases} X & ext{ если } n=0 \ f[X_m] & ext{ если } n=m+1 \end{cases}$$
 $Y_n := egin{cases} Y & ext{ если } n=0 \ f[Y_m] & ext{ если } n=m+1 \end{cases}$

По условию $X_0 = X \supseteq Y = Y_0$ и $Y_0 = Y \supseteq X' = f(X) = X_1$. Тогда несложно убедиться по индукции по n, что $X_n \supseteq Y_n \supseteq X_{n+1}$, так как $X_{n-1} \supseteq Y_{n-1} \supseteq X_n$, значит $f(X_{n-1}) \supseteq f(Y_{n-1}) \supseteq f(X_n)$, что буквально означает, что $X_n \supseteq Y_n \supseteq X_{n+1}$.

Тогда для каждого $n \in \mathbb{N}$ определим $U_n := X_n \setminus Y_n$. Пусть также $U := \bigcup_{n=0}^{\infty} U_n, Z := X \setminus U$. Несложно видеть, что

$$X = \bigcup_{n=0}^{\infty} U_n \cup Z \qquad Y = \bigcup_{n=1}^{\infty} U_n \cup Z$$

Также несложно видеть, что $f[U_n] = f[X_n \setminus Y_n] = f[X_n] \setminus f[Y_n] = X_{n+1} \setminus Y_{n+1} = U_{n+1}$, а потому $f[U] = U \setminus U_0$.

Тогда определим $q:X\to X$ по правилу

$$g(x) := egin{cases} f(x) & ext{если } x \in U \\ x & ext{если } x \in Z \end{cases}$$

Несложно видеть, что это инъекция. Действительно, g на U равна f, а значит есть биекция из U в $U \setminus U_0$, также является биекцией из Z в себя, а поскольку U и Z дизъюнктны, то g является биекцией из $U \cup Z$ в $U \setminus U_0 \cup Z$, т.е. из X в Y. Значит $Y \sim X$.

Пусть $f: X \to Y$ и $g: Y \to X$ — инъекции. Несложно видеть, что $g[Y] \subseteq X$, а $f[X] \subseteq Y$, значит $g[f[X]] \subseteq g[Y]$. Т.е. $X \supseteq g[Y] \supseteq g[f[X]]$. При этом $X \sim f[X] \sim g[f[X]]$, поэтому применяя лемму 14.1, имеем, что $X \sim g[Y] \sim Y$, значит $X \sim Y$.

Определение 22. Будем говорить, что X *имеет* n *элементов* (где $n \in \mathbb{N}$), если $X \sim n$. X *конечно*, если для какого-то $n \in \mathbb{N}$, что $X \sim n$.

Утверждение 15. X бесконечно, значит $\forall n \in \mathbb{N} \mid |X| \geqslant n$.

Доказательство. Докажем по индукции по n.

База: $|X| \geqslant 0$ — очевидно.

Шаг: Пусть |X| > n, тогда существует инъекция $f: n \to X$. $f(n) \neq X$, поэтому есть $x \in X \setminus f(n)$, значит есть $f' = f \cup \{(n; x)\}$ — инъекция из n+1 в X.

4.1 Основные свойства конечных множеств

Утверждение 16. X конечно, $a |Y| \leq |X|$, то |Y| конечно.

Доказательство. Существует $n \in \mathbb{N}$, что |X| = n. Тогда Y кончено, так как иначе $n = |X| \geqslant |Y| \geqslant n+1$.

Утверждение 17. Пусть есть сюръекция из X в Y, и X конечно. Тогда $|Y| \leq |X|$.

Доказательство. WLOG X=n для некоторого $n\in\mathbb{N}$. Определим $g:Y\to n$ по правилу

$$g(y) :=$$
 "минимальный элемент в $f^{-1}[\{y\}]$ "

Легко понять, что $g: Y \to n$ — инъекция. Стало быть, $|Y| \geqslant |n| = n$.

Утверждение 18. Пусть X и Y конечны, причём $X \cup Y = \emptyset$. Тогда $X \cap Y$ конечно и $|X \cup Y| = |X| + |Y|$.

Доказательство. Докажем утверждение индукцией по |Y|.

База. Очевидно, если |Y|=0, то $|Y|=\varnothing$, а потому $|X\cup Y|=|X|=|X|+0=|X|+|Y|$.

Шаг. Пусть |Y| = n+1, т.е. существует биекция $f: n+1 \to Y$. Рассмотрим $y = f^{-1}(n)$ и $Z := Y \setminus \{y\}$. Очевидно, что |Z| = n. Тогда

$$|X \cup Y| = |(X \cup Z) \cup \{y\}| = |X \cup Z| + 1 = (|X| + |Z|) + 1$$
$$= |X| + (|Z| + 1) = |X| + |Y|$$

Утверждение 19. Пусть X и Y конечны. Тогда $X \times Y$ и X^Y кончены и $|X \times Y| = |X| \cdot |Y|$, $|X^Y| = |X|^{|Y|}$.

4.2 Основные свойства (не более чем) счётных множеств

Утверждение 20 (в ZFC). Пусть X бесконечно, тогда оно содержит счётное подмножество.

Доказательство. Пусть η — какая-нибудь функция выбора для $\mathcal{P}(X) \setminus \{\emptyset\}$. Используя рекурсию, определим $f: \mathbb{N} \to X$ по правилу

$$f(k) := \eta(X \setminus \operatorname{range}(f \upharpoonright_k))$$

Как легко видеть, $f:\mathbb{N}\to X$ — инъекция. Поэтому $\mathrm{range}(f)$ будет счётным подмножеством X.

Определение 23. \mathbb{N} является кардиналом и обычно обозначается \aleph_0 .

Следствие 20.1 (в ZFC). $|X| > \aleph_0$ тогда и только тогда, когда X бесконечно и несчётно.

Утверждение 21. $|X| \leq \aleph_0$ тогда и только тогда, когда X конечно или счётно.

Доказательство. Если X конечно или счётно, то, очевидно, $|X| \leq \aleph_0$.

Если $|X| \leqslant \aleph_0$, то WLOG $X \subseteq \mathbb{N}$. Если X бесконечно, то рекурсивно определим $f: \mathbb{N} \to X$ по правилу

$$f(k) :=$$
 "минимальный элемент в $X \setminus \operatorname{range}(f \upharpoonright_k)$ "

Нетрудно проверить, что $f: \mathbb{N} \to X$ — биекция.

Следствие 21.1 (в ZFC). $|X| \not> \aleph_0$ тогда и только тогда, когда $|X| \leqslant \aleph_0$.

Утверждение 22. Есть сюртекция из X в Y, причём $|X| \leqslant \aleph_0$. Тогда $|Y| \leqslant \aleph_0$.

Доказательство. WLOG $X \subseteq \mathbb{N}$. Определим $g: Y \to X$ по правилу

$$g(y) :=$$
 "минимальный элемент в $f^{-1}[\{y\}]$ "

Легко понять, что $g: Y \to X$ — инъекция. Стало быть, $|Y| \leqslant |X| \leqslant \aleph_0$.

Следствие 22.1. Непустое X не более чем счётно тогда и только тогда, когда существует сюр π екция из \mathbb{N} в X.

Следствие 22.2. Пусть R — отношение эквивалентности на X, причём X не более, чем счётно. Тогда X/R не более чем счётно.

Утверждение 23. Пусть X и Y не более чем счётны, тогда $X \times Y$ не более чем счётно.

Доказательство. WLOG $X,Y\subseteq\mathbb{N}$. Тогда $X\times Y\subseteq\mathbb{N}\times\mathbb{N}$, а значит нужно показать, что счётность $\mathbb{N}\times\mathbb{N}$. Определим $\nu:\mathbb{N}\times\mathbb{N}\to\mathbb{N}$ по правилу

$$\nu(n,m) := \frac{(n+m)(n+m+1)}{2} + n$$

Нетрудно проверить, что ν биективна.

Следствие 23.1. $\forall n \in \mathbb{N}$

$$\underbrace{\mathbb{N}\times\cdots\times\mathbb{N}}_{n}$$

счётно.

Следствие 23.2. Пусть X и Y не более чем счётны, тогда $X \cup Y$ не более чем счётно.

Доказательство. Поскольку X и $Y\setminus X$ равномощны некоторым подмножествам $\mathbb{N}\times\{0\}$ и $\mathbb{N}\times\{1\}$, то $X\cup Y=X\cup (Y\setminus X)$ равномощно подмножеству $\mathbb{N}\times\{0,1\}\subseteq\mathbb{N}\times\mathbb{N}$, а потому не более чем счётно.

Утверждение 24. X конечно, а элементы X не более чем счётны. Тогда $\bigcup X$ не более чем счётно.

Доказательство. По индукции по |X|.

Определение 24. Условие "быть (бесконечной) последовательностью" — $Seq(F) := \exists Y : F \in \mathbb{N} \to Y$. Если Seq(F), то для любого $n \in \mathbb{N}$ вместо F(n) нередко пишут F_n .

Утверждение 25. Eсли F-nоследовательность последовательностей, то тогда

$$\bigcup \{ \operatorname{range}(F_n) \mid n \in \mathbb{N} \}$$

не более чем счётно.

Доказательство. Определим $g: \mathbb{N} \times \mathbb{N} \to \bigcup \{\operatorname{range}(F_n) \mid n \in \mathbb{N}\}$ по правилу

$$g(n,m) := F_n(m) = F(n)(m)$$

Легко понять, что g сюръективна.

Следствие 25.1 (в ZFC). Пусть X не более чем счётно, u все его элементы не более чем счётны, тогда []X не более чем счётно.

Доказательство. WLOG $X \neq \emptyset$ и $\emptyset \notin X$. Пусть g — сюръекция из $\mathbb N$ на X. Для каждого $n \in \mathbb N$ положим

$$S_n := \{ f \mid f : \mathbb{N} \to g(n) - \text{сюръекция} \}$$

Очевидно, $S_n \neq \emptyset$ для всякого $n \in \mathbb{N}$. Обозначим $\{S_n \mid n \in \mathbb{N}\}$ через \mathcal{J} . Пусть η — какая-нибудь функция выбора для \mathcal{J} . Наконец, определим $F : \mathbb{N} \to \bigcup \mathcal{J}$ по правилу

$$F(n) := \eta(S_n)$$

Ясно, что $\bigcup \{ \operatorname{range}(F_n) \mid n \in \mathbb{N} \} = \bigcup \{ g(n) \mid n \in \mathbb{N} \} = \bigcup X.$

Теорема 26. Пусть непустое X не более чем счётно. Тогда X^* счётно.

Доказательство. Зафиксируем сюръекцию $g: \mathbb{N} \to X$. Очевидно, $f \circ g \in X^*$ для всякого $f \in \mathbb{N}^*$. Определим $G: \mathbb{N}^* \to X^*$ по правилу

$$G(f) := f \circ g$$

Легко убедиться, что G сюръективна. Поэтому достаточно показать, что N^* не более чем счётно, а X^* бесконечно.

Пусть $\nu: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ — биекция. Разумеется, можно построить функции left : $\mathbb{N} \to \mathbb{N}$ и right : $\mathbb{N} \to \mathbb{N}$ такие, что для любых $n, m \in \mathbb{N}$,

$$\operatorname{left}(\nu(n,m)) = n$$
 и $\operatorname{right}(\nu(n,m)) = m$

Используя рекурсию, можно определить последовательность последовательностей f, удовлетворяющую следующим условиям:

$$f_0(i) = \varnothing$$

 $f_{n+1}(i) = f_n(\operatorname{left}(i)) \cup \{(n, \operatorname{right}(i))\}$

Далее несложно доказать по индукции, что для каждого $n \in \mathbb{N}$

$$range(f_n) = \{g \mid g : n \to \mathbb{N}\}\$$

В таком случае $\bigcup \{ \operatorname{range}(f_n) \mid n \in \mathbb{N} \} = \mathbb{N}^*$. Поэтому \mathbb{N}^* не более чем счётно.

Осталось показать, что X^* бесконечно. Для этого выберем какой-нибудь $x_0 \in X$ и определим $h: \mathbb{N} \to X^*$ по правилу

$$h(n) := n \times \{x_0\},\,$$

т.е. h(n) — последовательность длины n только из элемента x_0 . Очевидно, что h инъективна, а потому X^* не может быть конечным.

Определение 25. Для произвольного множества X обозначим

$$\mathcal{P}_{fin}(X) := \{ Y \mid Y \subseteq X \text{ и } Y \text{ конечно} \}$$

Говоря просто, $\mathcal{P}_{\text{fin}}(X)$ — семейство конечных подмножеств X.

Следствие 26.1. Пусть X счётно. Тогда $\mathcal{P}_{\mathrm{fin}}(X)$ счётно.

Доказательство. Рассмотрим $h: X^* \to \mathcal{P}_{\text{fin}}(X)$, действующую по правилу

$$h(f) := \operatorname{range}(f)$$

Легко видеть, что h сюръективна, значит $\mathcal{P}_{\text{fin}}(X)$ не более чем счётно.

С другой стороны пусть $\nu: \mathbb{N} \to X$ — инъекция. Тогда рассмотрим $g: \mathbb{N} \to \mathcal{P}_{\text{fin}}(X)$, что

$$g(n) := \nu[n]$$

Несложно проверить, что $|\nu[n]| = n$, поэтому g инъективна, значит $\mathcal{P}_{\text{fin}}(X)$ бесконечно, а значит счётно.

Следствие 26.2. В следствие теоремы Кантора \mathcal{P} нельзя заменить на $\mathcal{P}_{\mathrm{fin}}$.

Теорема 27 (в ZFC). Пусть X бесконечно, а Y не более чем счётно. Тогда $|X \cup Y| = |X|$.

Доказательство. Заменяя Y на $Y\setminus X$, имеем, что WLOG $X\cap Y=\varnothing$. При этом у X есть счётное подмножество Z. Тогда понятно, что $Z\cup Y$ счётно, а значит есть биекция $f:Z\cup Y\to Z$. Тогда определим $g:X\cup Y\to X$ так, что

$$g(x) := \begin{cases} f(x) & \text{если } x \in Z \cup Y \\ x & \text{если } x \in X \setminus Z \end{cases}$$

Очевидно, что g биективна.

Следствие 27.1. Пусть X более чем счётно, а Y не более чем счётно. Тогда $|X \setminus Y| = |X|$.

Доказательство. Пусть $U := X \cap Y$, а $V := X \setminus U$. Ясно, что U не более чем счётно, V бесконечно. Значит, $|X| = |V \cup U| = |V| = |X \setminus Y|$.

5 Упорядоченность

Определение 26. *Частично упорядоченное множество (ЧУМ)* — пара из множества и частичного порядка на нём.

Обозначение: $\mathfrak{A} = \langle A, \leqslant \rangle$.

Определение 27. Пусть даны ЧУМ $\mathfrak{A} = \langle A, \leqslant \rangle$ и непустое $S \subseteq A$. Тогда $a \in A$ является

- максимальным элементом для S в \mathfrak{A} , если $a \in S \land \neg (\exists x \in S : a < x);$
- минимальным элементом для S в \mathfrak{A} , если $a \in S \land \neg (\exists x \in S : x < a)$;
- наибольшим элементом для S в \mathfrak{A} , если $a \in S \land (\forall x \in S \mid x \leqslant a)$;
- наименьшим элементом для S в \mathfrak{A} , если $a \in S \land (\forall x \in S \mid a \leqslant x)$.

Если S=A, то уточнение "для S" опускают. Также a является

- верхней гранью для S в \mathfrak{A} , если $\forall x \in S$ $x \leqslant a$;
- нижней гранью для S в \mathfrak{A} , если $\forall x \in S \quad x \geqslant a$;
- супремумом гранью для S в \mathfrak{A} , если a наименьшая верхняя грань для S в \mathfrak{A} ;
- инфимумом гранью для S в \mathfrak{A} , если a наибольшая нижняя грань для S в \mathfrak{A} .

Утверждение 28. *В ЧУМ* 🎗

- не более одного наибольшего в 🎗 элемента;
- всякий наибольший в 🎗 максимален в 🎗;
- любые два максимальных в 🎗 несравнимы.

Аналогично для наименьших и минимальных элементов.

Утверждение 29. В ЛУМ все максимальные наибольшие и наоборот. Аналогично для минимальных и наименьших.

Определение 28. Гомоморфизм из $\langle A, \leqslant_A \rangle$ в $\langle B, \leqslant_B \rangle$ — отображение $f: A \to B$, что

$$a_1 \leqslant_A a_2 \Rightarrow f(a_1) \leqslant_B f(a_2)$$

В таком случае ещё говорят, что f сохраняет порядок.

Если f инъективно, а последнее условие усиливается до равносильности (а не остаётся следствием), то f называется вложением из $\langle A, \leqslant_A \rangle$ в $\langle B, \leqslant_B \rangle$.

Утверждение 30. Любой интективный гомоморфизм из ЛУМ в ЧУМ является вложением.

Определение 29. *Изоморфизм из* \mathfrak{A} *в* \mathfrak{B} — сюръективное вложение из \mathfrak{A} в \mathfrak{B} . Обозначение: $\mathfrak{A} \simeq \mathfrak{B}$.

Утверждение 31. "Изоморфность" — "отношение эквивалентности" на ЧУМах. Т.е. для любых \mathfrak{A} , \mathfrak{B} и \mathfrak{C} верно:

- 1. $\mathfrak{A} \simeq \mathfrak{A}$;
- 2. $\mathfrak{A} \simeq \mathfrak{B} \Leftrightarrow \mathfrak{B} \simeq \mathfrak{A}$;
- 3. $\mathfrak{A} \simeq \mathfrak{B} \simeq \mathfrak{C} \Rightarrow \mathfrak{A} \simeq \mathfrak{C}$.

Определение 30. Изоморфизм из \mathfrak{A} на себя — *автоморфизм*.

С ЧУМами можно делать базовые преобразования:

1. Пусть даны ЧУМ $\mathfrak{A}=\langle A,\leqslant \rangle$ и $S\subseteq A$. Возьмём

$$\leq_S := \leq \cap S \times S$$

Тогда $\langle S, \leqslant_S \rangle$ — ЧУМ. Оно называется *индуцированным в* $\mathfrak A$ *по* S. При этом из ЛУМ получится ЛУМ.

2. Пусть даны ЧУМ $\mathfrak{A}=\langle A,\leqslant_A\rangle$ и $\mathfrak{B}=\langle B,\leqslant_B\rangle$, причём A и B дизъюнктны. Возьмём

$$\leq := \leq_A \cup A \times B \cup \leq_B$$

Тогда $\langle A \cup B, \leqslant \rangle$ — ЧУМ, которое обозначается $\mathfrak{A} \oplus \mathfrak{B}$. При этом из двух ЛУМ всегда получится ЛУМ.

3. Пусть даны ЧУМ $\mathfrak{A}=\langle A,\leqslant_A\rangle$ и $\mathfrak{B}=\langle B,\leqslant_B\rangle$. Определим \leqslant на $A\times B$ по правилу

$$(a_1,b_1) \leqslant (a_2,b_2) :\Leftrightarrow a_1 \leqslant_A a_2 \land b_1 \leqslant$$

Тогда $\langle A \times B, \leqslant \rangle$ — ЧУМ, где \leqslant традиционно называют *покоординатным порядком*. Понятно, что \leqslant мало когда бывает линейным.

4. Модифицируем предыдущую конструкцию, сделав одну из координат главной. Например, первую:

$$(a_1, b_1) \leqslant (a_2, b_2) : \Leftrightarrow a_1 < a_2 \lor (a_1 = a_2 \land b_1 \leqslant b_2)$$

Тогда $\langle A \times B, \leqslant \rangle$ — ЧУМ, которое обозначается $\mathfrak{A} \otimes \mathfrak{B}$. В таком случае из двух ЛУМ получается ЛУМ.

5.1 Трансфинитная индукция и фундированность

Определение 31. Для ЧУМ $\mathfrak{A} = \langle A, \leqslant \rangle$ верен *принцип трансфинитной индукции*, если для всякого $X \subseteq A$,

$$\forall x \in A((\forall y < x)y \in X \to x \in X) \to X = A$$

Определение 32. Для ЧУМ $\mathfrak{A} = \langle A, \leqslant \rangle$ верен *принцип минимального элемента*, если для всякого $X \subseteq A$,

$$X \neq \emptyset \rightarrow \exists x \in X((\forall y \in X) \ y \not< x)$$

Такие ЧУМ называются фундированными.

Теорема 32. Для ЧУМ верен принцип трансфинитной индукции тогда и только тогда, когда оно фундировано.

Доказательство. Пусть $X \subseteq A$. Обозначим $A \setminus X$ через \overline{X} . Тогда

$$\forall x \in A((\forall y < x)y \in X \to x \in X) \to X = A \Longleftrightarrow$$

$$X \neq A \to \neg \forall x \in A((\forall y < x)y \in X \to x \in X) \Longleftrightarrow$$

$$X \neq A \to \exists x \in A \neg ((\forall y < x)y \in X \to x \in X) \Longleftrightarrow$$

$$X \neq A \to \exists x \in A((\forall y < x)y \in X \land x \notin X) \Longleftrightarrow$$

$$X \neq A \to \exists x \in A((\forall y \notin X)y \notin x \land x \notin X) \Longleftrightarrow$$

$$\overline{X} \neq \varnothing \to \exists x \in \overline{X}((\forall y \in \overline{X})y \notin x)$$

Утверждение 33.

1. Пусть даны фундированные ЧУМ $\mathfrak A$ и $\mathfrak B$, что $A\cap B=\varnothing$. Тогда $\mathfrak A\oplus\mathfrak B$ будет фундированным.

2. Пусть даны фундированные ЧУМ ${\mathfrak A}$ и ${\mathfrak B}$. Тогда ${\mathfrak A}\otimes {\mathfrak B}$ будет фундированным.

Определение 33. Вполне упорядоченное множество (ВУМ) — фундированное ЛУМ. Порядки ВУМ называются полными порядками.

Определение 34. Пусть дано ВУМ $\mathfrak{A} = \langle A, \leqslant \rangle$. *Начальный сегмент* — множество $S \subseteq A$, если для $\forall a_1, a_2 \in A$

$$(a_1 \leqslant a_2 \land a_2 \in S) \Rightarrow a_1 \in S$$

Определение 35. Пусть дано ВУМ $\mathfrak{A} = \langle A, \leqslant \rangle$. Множество

$$[0, a)_{\mathfrak{A}} := \{ x \in A \mid x < a \}$$

является начальным сегментом 𝔄. Когда ясно, о каком 𝔄 идёт речь, нижний индекс ⋅м обычно опускается.

Утверждение 34. Пусть $\mathfrak{A} - BYM$, а S — начальный сегмент \mathfrak{A} , отличный от A. Тогда существует единственный $a \in A$, что S = [0, a).

Определение 36. $IS_{\mathfrak{A}}$ — множество всех начальных сегментов \mathfrak{A} , отличных от A, а

$$\subseteq_{\mathrm{IS}_{\mathfrak{A}}} := \{(U, V) \in \mathrm{IS}_{\mathfrak{A}} \times \mathrm{IS}_{\mathfrak{A}} \mid U \subseteq V\}$$

Утверждение 35. Для любого ВУМ $\mathfrak A$ верно, что $\mathfrak A \simeq \langle \mathrm{IS}_{\mathfrak A}, \subseteq_{\mathrm{IS}_{\mathfrak A}} \rangle$.

Доказательство. Несложно видеть, что

$$f: A \to \mathrm{IS}_{\mathfrak{A}}, a \mapsto [0, a)$$

есть изоморфизм из \mathfrak{A} в $\langle \mathrm{IS}_{\mathfrak{A}}, \subseteq_{\mathrm{IS}_{\mathfrak{A}}} \rangle$.

Утверждение 36. Пусть $\mathfrak{A} - BYM$, а f - вложение из \mathfrak{A} в \mathfrak{A} . Тогда $f(a) \geqslant a$ для всех $a \in A$.

Доказательство. Рассмотрим

$$X := \{ a \in A \mid f(a) < a \}$$

Предположим, что X непусто. Пусть a' — наименьший элемент для X в \mathfrak{A} . Тогда f(a') < a', поэтому f(f(a')) < f(a'), что значит $f(a') \in X$. В таком случае $a' \leq f(a')$ — противоречие. \square

Следствие 36.1. Для каждого $BYM \mathfrak{A}$ единственным автоморфизмом \mathfrak{A} является id_A .

Доказательство. Пусть f — автоморфизм \mathfrak{A} . Очевидно, что f^{-1} также будет автоморфизмом \mathfrak{A} . Тогда для любого $a \in A$ имеем, что $f(a) \geqslant a$ и $f^{-1}(a) \geqslant a$, а значит $a \geqslant f(a) \geqslant a$, т.е. f(a) = a. Таким образом $f = id_A$.

Следствие 36.2. Для любых $BYM \mathfrak{A}$ и \mathfrak{B} имеется не более одного изоморфизма из \mathfrak{A} в \mathfrak{B} .

Доказательство. Пусть f и g — изоморфизмы из $\mathfrak A$ в $\mathfrak B$. Тогда несложно понять, что $f \circ g^{-1}$ есть автоморфизм, а значит $f \circ g^{-1} = id_A$. Следовательно $f = f \circ g^{-1} \circ g = id_A \circ g = g$.

 Π емма 37. Никакой собственный начальный сегмент ВУМ ${\mathfrak A}$ не изоморфен самому ${\mathfrak A}.$

Доказательство. Пусть f — изоморфизм из $\mathfrak A$ на некоторый собственный начальный сегмент $\mathfrak A$. Тогда range(f)=[0,a) для некоторого $a\in A$. Поэтому f(a)< a — противоречие.

Теорема 38 (о сравнении ВУМ). Для любых ВУМ $\mathfrak A$ и $\mathfrak B$ имеет место ровно один из трёх случаев:

- 1. **Q** и **B** изоморфны;
- 2. \mathfrak{A} изоморфно собственному начальному сегменту \mathfrak{B} ;
- 3. $\mathfrak B$ изоморфно собственному начальному сегменту $\mathfrak A$.

При этом в пунктах (2) и (3) соответствующие собственные начальные сегменты определяются однозначно.

Доказательство. Единственность сегментов в (2) и (3) и взаимная исключаемость пунктов (1), (2) и (3) следуют из предыдущей леммы. Поэтому осталось показать, что один из трёх случаев точно будет иметь место.

Рассмотрим

$$\xi := \{(a, b) \in A \times B \mid [0, a)_{\mathfrak{A}} \simeq [0, b)_{\mathfrak{B}} \}$$

По предыдущей лемме ξ и ξ^{-1} являются функциональными.

Также несложно видеть, что если f — изоморфизм из $[0,a)_{\mathfrak{A}}$ на $[0,b)_{\mathfrak{B}}$, а $a'<_A a$ и $b'<_B b$, то

- $f \upharpoonright_{[0,a')_{\mathfrak{A}}}$ является изоморфизмом из $[0,a')_{\mathfrak{A}}$ на $[0,f(a'))_{\mathfrak{B}};$
- $f^{-1} \upharpoonright_{[0,b')_{\mathfrak{B}}}$ является изоморфизмом из $[0,b')_{\mathfrak{B}}$ на $[0,f^{-1}(b'))_{\mathfrak{A}}$.

Следовательно, если $a \in \text{dom}(\xi)$, то $[0,a)_{\mathfrak{A}} \subseteq \text{dom}(\xi)$; если $b \in \text{range}(\xi)$, то $[0,b)_{\mathfrak{B}} \subseteq \text{range}(\xi)$. Поэтому ξ — биекция между начальными сегментами \mathfrak{A} и \mathfrak{B} . Также следует и то, что $a_1 <_A a_2 \Leftrightarrow f(a_1) <_B f(a_2)$, что значит, что ξ — изоморфизм между начальными сегментами \mathfrak{A} и \mathfrak{B} .

Если $\operatorname{dom}(\xi) \neq A$, а range $(\xi) \neq B$, то существуют $a \in A$ и $b \in B$, что $\operatorname{dom}(\xi) = [0, a)_{\mathfrak{A}}$, а range $(\xi) = [0, b)_{\mathfrak{B}}$. Это значит, что $(a, b) \in \xi$ — противоречие. Значит $\operatorname{dom}(\xi) = A$ или range $(\xi) = B$, откуда следует желаемое.

6 Ординалы, кардиналы и важные теоремы ZFC

6.1 Ординалы

Определение 37. X называется *транзитивным*, если $\bigcup X \subseteq X$ (или, что равносильно, $X \subseteq \mathcal{P}(X)$).

Определение 38.

$$\in_X := \{(u, v) \in X \times X \mid u \in v\}$$

Определение 39. *Ординал* или *ординальное число* — трансфинитное множество X, что \in_X — строгий полный порядок на X. Обозначение: α , β , γ , . . .

Поскольку $\mathbb N$ (и все его элементы) являются ординалами, то когда речь идёт об ординалах, то пишут не $\mathbb N$, а ω .

Также вместо $\alpha \in \beta$ можно писать $\alpha < \beta$.

Замечание 8. Важно заметить, что для любого ординала α ЛУМ $\langle \alpha, \in_{\alpha} \rangle$ является ВУМ. Так как иначе есть некоторое $X \subseteq \alpha$, что у него нет минимального элемента, значит для любого $x \in X$ найдётся $x' \in X$, что x' < x, значит есть бесконечная убывающая последовательность (элементов X), но это противоречит аксиоме регулярности.

Утверждение 39. Пусть $\alpha - opduнал$, $a \ X \in \alpha$. Тогда X - opduнал.

Доказательство.

- 1. Проверим, что X транзитивно. Пусть $E \in X$, тогда нужно показать, что $E \subseteq X$. Пусть $u \in E$. Тогда $E \in \alpha$, значит $u \in \alpha$. При этом $u \in_{\alpha} E \in_{\alpha} X$, значит $u \in_{\alpha} X$. Это и значит, что $E \subseteq X$.
- 2. Заметим, что $X \subseteq \alpha$. Поэтому $\in_X = \in_{\alpha} \cap (X \times X)$, поэтому $\in_X -$ строгий полный порядок.

Утверждение 40. Пусть $\alpha - opduнал$, а $\beta \in \alpha$. Тогда $\beta = [0, \beta)$.

Доказательство. Очевидно следует из транзитивности \in_{α} .

Утверждение 41. Для любых ординалов α и β

$$\alpha \in \beta \iff \alpha \subseteq \beta$$

Доказательство.

- Пусть $\alpha \in \beta$. Тогда $\alpha \subseteq \beta$. Если $\alpha = \beta$, то $\beta \in \beta$, значит $\alpha \in_{\beta} \beta$, значит $\beta \in_{\beta} \beta$ противоречие со строгостью \in_{β} . Значит $\alpha \neq \beta$, значит $\alpha \subsetneq \beta$.
- Пусть $\alpha \subseteq \beta$. Тогда $\beta \setminus \alpha \neq \emptyset$, а значит мы можем определить

$$y:=$$
 "наименьший элемент $\beta\setminus\alpha$ в $\langle\beta,\in_{\beta}\rangle$ "

Нетрудно убедиться, что α совпадает с $\{x \in \beta \mid x < \gamma\}$:

- если $x \in \alpha$, то $\gamma \nleq x$ (так как иначе $\gamma \leqslant x \in \alpha$, а значит $\gamma \in \alpha$), а потому $x < \gamma$;
- если $x \in \beta$ и $x < \gamma$, то $x \notin \beta \setminus \alpha$, т.е. $x \in \gamma$.

Таким образом $\alpha = [0, \gamma) = \gamma$.

Теорема 42. Для любых ординалов α , β и γ :

- 1. $\alpha \not< \alpha$;
- 2. $\alpha < \beta < \gamma \Rightarrow \alpha < \gamma$;
- 3. либо $\alpha < \beta$, либо $\alpha = \beta$, либо $\alpha > \beta$;

Более того для любого непустого множества ординалов X:

4. $\bigcap X \in X$, причём \bigcap — наименьший элемент X в $\langle X, \in_X \rangle$.

Доказательство.

- 1. Иначе $\alpha \in \alpha$, значит $\alpha \in_{\alpha} \alpha$ противоречие.
- 2. $\beta \subseteq \gamma$, следовательно $\alpha \in \gamma$.
- 4. Легко видеть, что $\bigcap X$ ординал. При этом для любого $\alpha \in X$ верно, что $\bigcap X \subseteq \alpha$, а значит $\bigcap X \leqslant \alpha$. Заметим, что $\bigcap X \not< \bigcap X$, значит есть $\alpha \in X$, что $\bigcap X \not< \alpha$, т.е. $\bigcap X = \alpha$, следовательно $\bigcap X \in X$.
- 3. В силу предыдущего пункта, в $\{\alpha, \beta\}$ есть наименьший элемент. Стало быть α и β сравнимы по \leq .

Следствие 42.1. Пусть X — транзитивное множество ординалов. Тогда X — ординал.

Доказательство. Действительно, \in_X — полный порядок на X по только доказанной теореме, значит X — ординал.

Теорема 43. Пусть X — множество ординалов. Тогда $\bigcup X$ — ординал, причём $\bigcup X$ является "супремумом X" в классе всех ординалов относительно \in .

Доказательство. Очевидно, что $\bigcup X$ — множество ординалов и что оно транзитивно. Поэтому $\bigcup X$ — ординал.

Разумеется, $\bigcup X$ является "супремумом X" в классе всех ординалов относительно \subsetneq , что на ординалах совпадает с \in .

Определение 40. Пусть α — ординал. Тогда

$$\alpha + 1 := \alpha \cup \{\alpha\}$$

является ординалом.

Замечание 9. Не сложно понять, что $\alpha \subsetneq \alpha + 1$ и нет такого X, что $\alpha \subsetneq X \subsetneq \alpha + 1$.

Определение 41. Ненулевой ординал α называется непредельным, если есть ординал β , что $\alpha = \beta + 1$, и предельным иначе.

Утверждение 44.

1. $\alpha = \beta \Leftrightarrow \alpha + 1 = \beta + 1$. (Что значит, что у каждого непредельного ординала α есть единственный "предшественник" $\alpha - 1$.)

2.

$$\bigcup \alpha = \begin{cases} \alpha & ecnu \ \alpha & npedenen \\ \alpha - 1 & ecnu \ \alpha & nenpedenen \end{cases}$$

Теорема 45 (о связи ординалов и ВУМ). Пусть $\mathfrak{A}-$ строгий ВУМ. Тогда существует единственный ординал α , что $\mathfrak{A} \simeq \langle \alpha, \in_{\alpha} \rangle$.

Доказательство. Единственность очевидна: для любых ординалов α и β

$$\langle \alpha, \in_{\alpha} \rangle \simeq \langle \beta, \in_{\beta} \rangle \iff \alpha = \beta$$

Осталось показать существование α .

Рассмотрим

$$S:=\{a\in A\mid$$
 существует ординал α_a , что $[0,a)_{\mathfrak{A}}\simeq \langle \alpha,\in_{\alpha}\rangle\}$

Само собой, для каждого $a \in S$ ординал α_a строго единственен. Поэтому есть

$$X := \{ \alpha_a \mid a \in S \}$$

Поскольку изоморфизмы переводят начальные сегменты в начальные, то поэтому X транзитивно, да и \in_X является полным строгим порядком. Значит X — ординал. Рассматривая

$$f: S \to X, a \mapsto \alpha_a$$

имеем, что f — изоморфизм. Тогда если $A\setminus S\neq\varnothing$, то S=[0,a), где a — наименьший элемент $A\setminus S$. Но тогда $[0,a)_{\mathfrak{A}}\simeq X$, а значит $a\in S$. Значит S=A.

Определение 42. Если $\mathfrak A$ — ВУМ, то $\operatorname{ord}(\mathfrak A)$ — это такой ординал α , что $\mathfrak A \simeq \langle \alpha, \in_{\alpha} \rangle$.

Определение 43. Пусть α и β — ординалы. Тогда определим операции

$$\alpha + \beta := \operatorname{ord}(\langle \alpha, \in_{\alpha} \rangle \oplus \langle \beta, \in_{\beta} \rangle)$$
$$\alpha \cdot \beta := \operatorname{ord}(\langle \alpha, \in_{\alpha} \rangle \otimes \langle \beta, \in_{\beta} \rangle)$$

3амечание 10. Важно заметить, что класс Ord всех ординалов не является множеством. Действительно, если Ord — множество, то Ord — само ординал, а значит Ord ∈ Ord, чего не может быть.

Определение 44. Пусть X — любое множество, а α — ординал. Тогда определим

$$X^{<\alpha} := \{ f \mid (\exists \beta < \alpha) f : \beta \to X \} = \bigcup \{ X^\beta \mid \beta < \alpha \}$$

Определение 45. Если $f: \beta \to X$, где β — ординал, то f называют β -последовательностью

Теорема 46 (о трансфинитной рекурсии). Фиксируем некоторый ординал α . Пусть $h: X^{<\alpha} \to X$. Тогда существует единственная $f: \alpha \to X$, что для всякого $\beta \in \alpha$

$$f(\beta) = h(f \upharpoonright_{\beta})$$

Доказательство. Пусть $\gamma \in \alpha$. Будем называть $t: \gamma + 1 \to X$ чудесной, если для любого $\beta \in \gamma + 1$

$$t(\beta) = h(t \upharpoonright_{\beta})$$

Рассмотрим

$$S:=\{\gamma\in\alpha\mid$$
 существует единственная чудесная $t:\gamma+1\to X\}$

Тогда для каждого $\gamma \in S$ обозначим соответствующую (единственную) чудесную функцию из $\gamma + 1$ в X как f_{γ} .

Заметим, что если $t: \gamma + 1 \to X$ чудесна, то для каждого $\beta < \gamma$ функция $t \cap ((\beta + 1) \times X)$ тоже чудесна. Таким образом, если $\gamma, \beta \in S$, то $f_{\beta} = f_{\gamma} \cap ((\beta + 1) \times X)$ (и т.е. $f_{\beta} \subseteq f_{\gamma}$).

Заметим также, что если для некоторого $\gamma \in \alpha$ все $\beta < \gamma$ лежат в S, то и γ лежит в S. Действительно, можно рассмотреть

$$t_0 := \bigcup \{ f_\beta \mid \beta < \gamma \}$$

Несложно видеть, что $t_0: \gamma \to X$. В таком случае рассмотрим

$$t := t_0 \cup \{(\gamma, h(t_0))\}$$

Несложно видеть, что ограничение t на $\beta+1$ для всех $\beta<\gamma$ есть f_{β} . Поэтому дял всех $\beta\in\gamma+1$ либо $\beta=\gamma$, и тогда

$$t(\beta) = t(\gamma) = h(t_0) = h(t \upharpoonright_{\beta}),$$

либо $\beta < \gamma$, и тогда

$$t(\beta) = t_0(\beta) = f_{\beta}(\beta) = h(f_{\beta} \upharpoonright_{\beta}) = h(t_0 \upharpoonright_{\beta}) = h(t \upharpoonright_{\beta})$$

Это значит, что t чудесна. При этом если бы была отличная от t чудесная функция $t': \gamma+1 \to X$, то у неё должны быть такие же сужения на $\beta+1$ для каждого $\beta<\gamma$, что и у t. Значит она может отличаться только в γ ; но это тоже невозможно, так как

$$t(\gamma) = h(t\restriction_{\gamma}) = h(t'\restriction_{\gamma}) = t'(\gamma)$$

Поэтому t является единственной чудесной функцией для $\gamma+1$, что и значит, что $\gamma\in S$.

Тогда по трансфинитной индукции имеем, что $S=\alpha.$

Рассмотрим

$$f := \bigcup \{ f_{\gamma} \mid \gamma \in \alpha \}$$

Несложно видеть, что $f: \alpha \to X$ и f тоже окажется чудесной (что и требуется). Также если будет вдруг существовать ещё одна чудесная $f': \alpha \to X$, то у неё будут такие же сужения на $\beta+1$ для каждого $\beta \in \alpha$, что и у f, значит f' не будет ничем отличаться от f.

Замечание. Теорему о трансфинитной рекурсии можно обобщить до параметризованной, используя уже готовую рекурсию.

Теорема 47 (о трансфинитной рекурсии, частичной). Фиксируем некоторый ординал α . Пусть $h :\subseteq X^{<\alpha} \to X$. Тогда существует единственная $f :\subseteq \alpha \to X$, что

1. для всякого $\beta \in \text{dom}(f)$

$$f(\beta) = h(f \upharpoonright_{\beta});$$

2. либо $dom(f) = \alpha$, либо $dom(f) = \gamma$ для некоторого $\gamma < \alpha$, причём $f \notin dom(h)$.

Доказательство. Как обычно, рассмотрим ы $\notin X$ и положим $X' := X \cup \{ \mathbf{ы} \}$. Затем расширим h до $h: (X')^{<\alpha} \to X'$ следующим образом:

$$h'(g') := \begin{cases} h(g') & \text{если } g' \in \text{dom}(h) \\ \mathbf{ы} & \text{иначе} \end{cases}$$

В силу теоремы о трансфинитной рекурсии, найдётся единственная $f': \alpha \to X$, что для любого $\beta \in \alpha$

$$f'(\beta) = h'(f' \upharpoonright_{\beta})$$

Возьмём

$$f := f' \cap (\alpha \times X)$$

Нетрудно убедиться, что f является искомой.

Теорема 48 (о трансфинитной "классовой рекурсии"). Фиксируем некоторый ординал α . Пусть $\Phi(x,y)$ — тотальное функциональное условие. Тогда существует единственная функция f с $\mathrm{dom}(f) = \alpha$, что для всякого $\beta \in \alpha$

$$f(\beta) = \llbracket \Phi \rrbracket (f \upharpoonright_{\beta})$$

Доказательство. Несложная модификация доказательства теоремы о трансфинитной рекурсии. \Box

Теорема 49 (Цермело о полном упорядочении; в ZFC). Для любого A существует \leqslant , что $\langle A, \leqslant \rangle - BYM$.

Доказательство. Пусть η — функция выбора на $\mathcal{P}(A)\setminus\{\varnothing\}$. Тогда для каждого ординала α существует единственная $f_\alpha:\subseteq\alpha\to A$, что

1. для любого $\beta \in \text{dom}(f_{\alpha})$

$$f_{\alpha}(\beta) = \eta(A \setminus \text{range}(f_{\alpha} \upharpoonright_{\beta}))$$

2. либо $dom(f_{\alpha}) = \alpha$, либо $dom(f_{\alpha}) = \gamma \in \alpha$, причём $range(f_{\alpha}) = A$.

Несложно видеть, что f_{α} — биекция между $\operatorname{dom}(f_{\alpha})$ и $\operatorname{range}(f_{\alpha})$, а значит с помощью неё можно построить на $\operatorname{range}(f_{\alpha})$ ВУМ, изоморфный $\operatorname{dom}(f_{\alpha})$. Поэтому если для некоторого ординала α окажется, что $\operatorname{dom}(f_{\alpha}) \neq \alpha$, то тогда $\operatorname{range}(\alpha) = A$, а значит мы сможем построить на A ВУМ. Осталось показать, что такое α найдётся.

Предположим противное: для каждого ординала α верно, что $\mathrm{dom}(f_{\alpha}) = \alpha$. Рассмотрим

$$\Phi(x,y) := "y - \text{ ординал"} \land x = f_{y+1}(y)$$

Ясно, что если $\alpha < \beta$, то $f_{\alpha} \subseteq f_{\beta}$. Поэтому для любых α и β

$$f_{\alpha+1}(\alpha) = f_{\beta+1}(\beta) \implies \alpha = \beta$$

Это значит, что Ф функционально. Поэтому по аксиоме подстановки можно выделить

$$X := \{ y \mid (\exists x \in A) \Phi(x, y) \}$$

Однако X должно совпадать с Ord — противоречие.

6.2 Кардиналы

Теорема 50 (о сравнимости по мощности; в ZFC). Для любых X и Y верно, что $X \preccurlyeq Y$ или $X \succ Y$.

Доказательство. Прямое следствие из теоремы Цермело и теоремы о сравнении ВУМ.

Определение 46. *Кардинал* или *кардинальное число* — ординал, неравномощный никакому меньшему ординалу. Обозначение: κ , μ , λ .

Утверждение 51. Для любых кардиналов κ u μ

$$\kappa \sim \mu \iff \kappa = \mu$$

Утверждение 52. Для любых кардиналов κ и μ

$$\kappa \preccurlyeq \mu \iff \kappa \leqslant \mu$$

Доказательство.

- 1. Если $\kappa \leqslant \mu$, то очевидно, что $\kappa \preccurlyeq \mu$.
- 2. Пусть $\kappa \preccurlyeq \mu$. Предположим противное: $\kappa \nleq \mu$. Тогда $\kappa > \mu$, значит $\kappa \succcurlyeq \mu$. Ввиду теоремы Кантора-Шрёдера-Бернштейна, мы получаем, что $\kappa \sim \mu$, а значит $\kappa = \mu$ противоречие.

Теорема 53 (в ZFC). Для любого множества есть единственный кардинал ему равномощный.

Доказательство. По теореме Цермело есть ординал α , равномощный X. Тогда можно определить

$$\kappa := \bigcap \{ \beta \in \alpha + 1 \mid \beta \sim X \}$$

По уже доказанным утверждениям $\kappa \in \{\beta \in \alpha + 1 \mid \beta \sim X\}$, поэтому $\kappa \sim X$. При этом κ является кардиналом, так как иначе есть $\gamma < \kappa$, что $\gamma \sim \kappa$, но тогда $\gamma \in \alpha + 1$ и $\gamma \sim X$, а тогда $\kappa \in \gamma$ — противоречие. Поэтому у X есть равномощный ему кардинал. А его единственность очевидна.

Определение 47. Кардинал, равномощный множеству обозначается как card(X) или |X|.

Утверждение 54. Для любых X и Y

- 1. $X \sim Y$ тогда и только тогда, когда $\operatorname{card}(X) = \operatorname{card}(Y)$;
- 2. $X \preceq Y$ тогда и только тогда, когда $\operatorname{card}(X) \leqslant \operatorname{card}(Y)$.

Определение 48. Для любых кардиналов κ и μ определим

$$\kappa + \mu := \operatorname{card}(\kappa \times \{0\} \cup \mu \times \{1\}) \tag{1}$$

$$\kappa \cdot \mu := \operatorname{card}(\kappa \times \mu) \tag{2}$$

Замечание. Важно заметить, что + и · отличаются между ординалами и кардиналами. Например, ординалы

$$\omega$$
, $\omega + 1$, $\omega + \omega$, $\omega \cdot \omega$

являются попарно различными, а при этом кардиналы

$$\aleph_0 = \aleph_0 + 1 = \aleph_0 + \aleph_0 = \aleph_0 \cdot \aleph_0$$

совпадают.

Утверждение 55. Для любого ординала существует больший кардинал.

Доказательство. Пусть $\kappa := \operatorname{card}(\mathcal{P}(\alpha))$. Если $\alpha \not< \kappa$, то $\kappa \leqslant \alpha$, а значит $\kappa \subseteq \alpha$, $\kappa \preccurlyeq \alpha$, т.е. $\mathcal{P}(\alpha) \preccurlyeq \alpha$ — противоречие с теоремой Кантора. А поэтому $\alpha < \kappa$.

Замечание 11. Как и Ord, класс всех кардиналов Card также не является множеством. Действительно, если Card — множество, то \bigcup Card = Ord тоже является множеством, чего быть не может.

Определение 49. Когда речь идёт о кардиналах, будем говорить, что для всякого кардинала κ

$$2^{\kappa} := \operatorname{card}(\mathcal{P}(\kappa))$$

Определение 50. Для каждого кардинала κ обозначим

$$\kappa^+ :=$$
 "наименьший кардинал, больший κ "

 \aleph_0^+ обозначают \aleph_1 , $\aleph_1^+ - \aleph_2$, и т.д. На само деле, можно было бы определить \aleph_α для произвольного ординала α .

Утверждение 56 (Континуум-гипотеза, СН).

$$2^{\aleph_0} = \aleph_1$$

Теорема 57 (Гёдель, 1940). Можно доказать, что ¬СН нельзя доказать в ZFC.

Теорема 58 (Коэн, 1963). Можно доказать, что СН нельзя доказать в ZFC.

6.3 Важные теоремы в ZFC

Определение 51. Пусть \mathfrak{A} — ЧУМ. *Цепь в* \mathfrak{A} — непустое $S \subseteq A$, индуцирующее ЛУМ.

Теорема 59 (лемма Цорна; в ZFC). Пусть $\mathfrak{A} = \langle A, \leqslant_A \rangle - \mathit{ЧУМ}$ с непустым носителем, в которой у любой цепи имеется верхняя грань. Тогда в \mathfrak{A} есть максимальный элемент.

Доказательство. Пусть κ — какой-нибудь кардинал, больший |A|, например, $2^{|A|}$. Пусть также η — функция выбора для $\mathcal{P}(A)\setminus\varnothing$. Используя трансфинитную рекурсию, определим $f:\subseteq\kappa\to A$ по правилу

$$f(\beta) = \eta(\{a' \in A \mid a' >_A a \quad \forall a \in \text{range}(f \upharpoonright_{\beta})\})$$

Легко видеть, что для любых $\beta_1, \beta_2 \in \text{dom}(f)$

$$\beta_1 < \beta_2 \implies f(\beta_1) <_A f(\beta_2)$$

Из этого мы получаем, что

- 1. f инъективна. Поэтому $dom(f) \neq \kappa$, а значит $dom(f) = \alpha < \kappa$. Причём в A нет элементов, строго больших всех элементов из range(f).
- 2. range(f) является цепью в \mathfrak{A} , значит у него есть верхняя грань s.

Отсюда выходит, что $s \in \text{range}(f)$, а значит нет элементов как внутри цепи range(f), так и вне неё больших s. Значит s — максимальный элемент в \mathfrak{A} .

Следствие 59.1 (в ZFC). Пусть $\mathfrak{A} = \langle A, \leqslant_A \rangle - \mathit{ЧУM}$, в котором у любой цепи имеется верхняя грань. Тогда для каждого $a \in A$ в \mathfrak{A} есть максимальный элемент $a' \geqslant_A a$.

Доказательство. Случай $A=\varnothing$ тривиален, поэтому будем считать, что $A\neq\varnothing$. Зафиксируем произвольное $a\in A$. Возьмём

$$B := \{b \in A \mid a \leqslant_A b\}$$
 и $\leqslant_B := \leqslant_A \cap B \times B$

Очевидно, что $\mathfrak{B} = \langle B, \leqslant_b \rangle$ будет ЧУМ, которое удовлетворяет условию леммы Цорна. Поэтому в \mathfrak{B} есть максимальный элемент a'. Тогда несложно понять, что a' будет максимальным и в \mathfrak{A} , а также $a' \geqslant_A a$.

Теорема 60 (в ZFC). Пусть X бесконечно. Тогда $|X \times X| = |X|$.

Доказательство. Рассмотрим

$$M := \{ f \mid f : U \to U \times U -$$
биекция, где $U \subseteq X$ и U бесконечно $\}$

Поскольку X бесконечно, у него есть счётное подмножество, равномощное собственному декартовому квадрату, то M непусто. Определим

$$\leqslant := \{ (f_1, f_2) \in M \times M \mid f_1 \subseteq f_2 \}$$

Далее будем рассматривать ЧУМ $\mathfrak{M} = \langle M, \leqslant \rangle$.

Покажем, что условие леммы Цорна для ${\mathfrak M}$ выполнено. Пусть S — произвольная цепь в ${\mathfrak M}$. Возьмём

$$f_S := \bigcup_{f \in S} f$$

Понятно, что f_S — биекция из $dom(f_S)$ в $range(f_S)$, и при этом

Очевидно, что range $(f_S) \subseteq \text{dom}(f_S) \times \text{dom}(f_S)$. Также заметим, что для любых $a_1, a_2 \in \text{dom}(f_S)$ существуют $f_1, f_2 \in S$, что $a_1 \in \text{dom}(f_1)$ и $a_2 \in \text{dom}(f_2)$, а значит $f = f_1 \cup f_2 \in S$ содержит в области определения a_1 и a_2 , что значит, что $(a_1, a_2) \in \text{range}(f) \subseteq \text{range}(f_S)$. Это значит, что range $(f_S) = \text{dom}(f_S) \times \text{dom}(f_S)$, а значит $f_S \in M$. Так мы имеем, что f_S — верхняя грань (и даже супремум) для S в \mathfrak{M} .

Тогда, применяя лемму Цорна, получаем максимальный элемент f_{\star} . Обозначим $\mathrm{dom}(f_{\star})$ за Y.

Предположим, что $|Y| < |X \setminus Y|$. Тогда Y равномощно некоторому $Z \subseteq X \setminus Y$. Заметим, что

$$\begin{split} |Z| \leqslant |Z \times Z| & \leqslant 3 \cdot |Z \times Z| \\ &= |Y \times Z| + |Z \times Y| + |Z \times Z| & = |(Y \cup Z) \times (Y \cup Z) \setminus Y \times Y| \\ &\leqslant |(2 \times Z) \times (2 \times Z)| & = |4 \times Z \times Z| \leqslant |Z \times Z \times Z| \\ &= |Z| \end{split}$$

Следовательно по теореме Кантора-Шрёдера-Бернштейна есть биекция g из $Y \times Z \cup Z \times Y \cup Z \times Z$ в Z. Рассмотрим $h: (Y \cup Z) \to (Y \cup Z) \times (Y \cup Z)$, определённую по правилу

$$h(x) := \begin{cases} f_{\star}(x) & x \in Y \\ g(x) & x \in Z \end{cases}$$

Следовательно $h \in M$ и $h > f_{\star}$ — противоречие. Поэтому $|Y| \geqslant |X \setminus Y|$. В таком случае

$$|Y| \le |X| = |Y| + |X \setminus Y| \le |Y| + |Y| = 2 \cdot |Y| \le |Y| \cdot |Y| = |Y|$$

а значит по теореме Кантора-Шрёдера-Бернштейна |Y|=|X|, а потому $|X|=|X\times X|.$

Следствие 60.1 (в ZFC). Если $0 < |X| \le |Y|$ и Y бесконечно, то $|X \times Y| = |Y|$.

Доказательство. Ясно, что

$$|Y| = |1 \times Y| \leqslant |X \times Y| \leqslant |Y \times Y| = |Y|,$$

откуда по теореме Кантора-Шрёдера-Бернштейна $|X \times Y| = |Y|$.

Следствие 60.2. Пусть $|X| \leqslant |Y|$ и Y бесконечно. Тогда $|X \cup Y| = |Y|$.

Доказательство. Легко видеть, что

$$|Y| \le |X \cup Y| \le |X| + |Y| \le 2 \cdot |Y| \le |Y|^2 = |Y|,$$

откуда по теореме Кантора-Шрёдера-Бернштейна $|X \cup Y| = |Y|$.

Следствие 60.3. Пусть |X| < |Y| и Y бесконечно. Тогда $|Y \setminus X| = |Y|$.

Доказательство. Легко видеть, что

$$|Y| = \max\{|X|, |Y|\} = |X \cup Y| = |X \cup (Y \setminus X)| = \max\{|X|, |Y \setminus X|\}$$

Поскольку $|X| \neq |Y|$, то $|Y| = |Y \setminus X|$.

Следствие 60.4. Пусть X бесконечно. Тогда $|X^*| = |X|$.

Доказательство. По определению $|X^* = \bigcup_{n \in \mathbb{N}} X^n|$. При этом очевидно по индукции, что $|X^n| = |X|$ для n > 0; $|X^0| = |\{\varnothing\}| = 1$. Поэтому

$$|X^*| = |X^0| + \sum_{n \in \mathbb{N}} |X^{n+1}| = 1 + \sum_{n \in \mathbb{N}} |X| = 1 + |\mathbb{N}| \cdot |X| = 1 + |X| = |X|$$