MATH 644

Chapter 6

SECTION 6.1: CONFORMAL MAPS

Contents

Definition	2
Uniqueness Problem	3
Riemann's Mapping Theorem: Necessary condition	4

Created by: Pierre-Olivier Parisé Spring 2023

DEFINITION

Definition 1. A function $f:\Omega\to\mathbb{C}$ is conformal on Ω if

- (a) f is analytic in Ω and;
- (b) f is one-to-one in Ω .

EXAMPLE 2. Find an conformal map f from the unit disk \mathbb{D} onto the unit disk \mathbb{D} , with $f(0) = \frac{1}{2}$.

Uniqueness Problem

THEOREM 3. If there exists a conformal map of a region Ω onto \mathbb{D} , then, given any $z_0 \in \Omega$, there exists a unique conformal map f of Ω onto \mathbb{D} such that

$$f(z_0) = 0$$
 and $f'(z_0) > 0$.

Proof.

RIEMANN'S MAPPING THEOREM: NECESSARY CONDITION

THEOREM 4. If φ is a conformal map of a region Ω onto \mathbb{D} , then Ω must be simply-connected. **Proof.**