

Nicolas Poggi

Outline

- 1. Intro
 - 1. PaaS Cloud
 - 2. BigBench
- 2. Part I Scalability
 - 1. Hive vs. Spark
- 3. Part II Additional experiments
 - 1. Versions, Concurrency, 10TB
- 4. Summary

Motivation

- 2016 **SQL-on-Hadoop paper** and presentations
 - Focused on Hive, due to **SparkSQL** not being ready to use in PaaS
 - Used benchmark (TPC-H)
- Early 2017, BigBench testing Hive and Spark and TPC-TC paper
 - New code available in May for MLlib2 compatibility

Goals:

Evaluate the current out-of-the-box experience of Spark v2 in PaaS cloud

Using Hive as baseline

Platform-as-a-Service Spark

aloja 🙃

- Simplified management
- Cloud-based managed Hadoop services
 - Ready to use Spark, Hive, ...
- Deploys in minutes, on-demand, elastic
- Pay-as-you-go pricing model
- Decoupled compute and storage
- Optimized for general purpose
 - Fined tuned to the cloud provider architecture

Surveyed PaaS services

Amazon Elastic Map Reduce (EMR)

- Released: Apr 2009
- OS: Amazon Linux AMI (RHEL-like)
- Spark 2.1.0 and Hive 2.1 (Tez)
- VM: M4.2xlarge (32GB RAM)

- OS: Ubuntu 16.04 (HDP-based)
- Spark 2.1.0 and 1.6.3, Hive 1.2 (Tez)
- VM: D4v2 (28GB RAM)

Google Cloud DataProc (GCD)

- Released: Feb 2016
- **OS**: Debian 8.4
- Spark 2.1.0 (preview), Hive 2.1 (M/R)
- VM: n1-standard-8 (30GB RAM)

• Target deployment 128-cores:

- 16 data nodes with 8-cores each
- Master node with 16-cores
- Decoupled storage only
 - EBS, WASB, GCS

What is **BigBench** (TPCx-BB)

- End-to-end application level benchmark specification
 - result of many years of collaboration of industry and academia
- Covers most Big Data Analytical properties (3Vs)
- 30 business use cases for a retailer company
 - Merchandizing,
 - pricing,
 - customers ...
- Defines data scale factors
 - 1GB to PBs

Retailer database

Welcome to

Sequential Hive vs Spark 2.1

Queries 1-30 on Spark 2.1 (power runs)

BB 1GB-1TB Scalability Dataproc: Hive 2.1 (M/R) vs Spark 2.1

BB 1GB-1TB Scalability EMR: Hive 2.1 (Tez) vs Spark 2.1

BB 1GB-1TB Scalability HDI: Hive 1.2 (Tez) vs Spark 2.1

BB 1GB-1TB Scalability: Hive vs Spark 2.1 All providers

BB 1TB Power runs : Hive vs Spark 2.1 (ALL)

CPU % Q5 (ML) in Hive and Spark (HDI)

Radar charts – query characterization

- Useful for displaying multivariate data (5 resources)
- Quickly identify similarities and differences.
- From example
 - Hive and Spark
 - Only Disk Write is similar
 - Hive consumes more MEM and CPU
 - Spark read more from disk (DISK_R)
 - And moderately more network

BB 1TB Query 5 (ML) providers comparison

Other comparisons:

10TB SQL-Only

2.0.2 vs 2.1.0

1.6.3 vs 2.1.0

MLlib v1 vs v2

BB 1GB-10TB Scalability SQL-only queries

BigBench 1GB-1TB: Spark 2.0.2 vs 2.1.0 (CDP)

Notes:

Spark 2.1 a bit faster at small scales, slower at 100 GB and 1 TB on the UDF/NLP queries

BigBench 1GB-1TB: Spark 1.6.3 vs 2.1.0 MLlib 1 vs 2.1 MLlib 2(HDI)

Notes:

- Spark 2.1 is always faster than 1.6.3 in HDI
- MLlilb 2 using dataframes over RDDs is only slightly faster than V1.

Concurrency runs (throughput)

SQL-only: 100GB – 1TB 512-core cluster

BB Throughput at 100GB 8 streams SQL-only (512-cores)

BB Throughput at 1TB 4 streams SQL-only (512-cores)

Conclusions

- All providers have up to date (2.1.0) and well tuned versions of Spark
 - They could run BigBench up to 1TB on medium-sized cluster,
 - [Almost] Out-of-the box
- Performance similar among providers for similar cluster types and disk configs.
 - Difference according to scale (and pricing)
- Spark 2.1.0 is faster than previous versions
 - Also MLlib 2 with dataframes
 - But improvements within the 30% range
- Hive (+Tez + MLlib) are still slightly faster than Spark at lower scales for sequential
- But Spark significantly faster at high data scales and concurrency
- BigBench has been useful to stress a cluster with different workloads
 - Highlights config problems fast and stresses scale limits
 - Helpful for tuning the clusters

Resources and references

BigBench and ALOJA

- BigBench Spark 2 branch (thanks Christoph and Michael from bankmark.de):
 - https://github.com/carabolic/Big-Data-Benchmark-for-Big-Bench/tree/spark2
- Original BigBench Implementation repository
 - https://github.com/intel-hadoop/Big-Data-Benchmark-for-Big-Bench
- ALOJA benchmarking platform
 - https://github.com/Aloja/aloja
 - ALOJA fork of BigBench (adds support for HDI and fixes spark)
 - https://github.com/Aloja/Big-Data-Benchmark-for-Big-Bench

Papers and slides

- https://www.slideshare.net/ni_po
- Characterizing TPCx-BB Queries, Hive, and Spark in Multi-Cloud Environments – N. Poggi et. Al
 - TPC-TC 2017
- The State of SQL-on-Hadoop in the Cloud – N. Poggi et. al.
 - IEEE Big Data 2016
 - https://doi.org/10.1109/BigData.2016
 .7840751

The state of $\frac{1}{1-1}\frac{1}{1-1}\frac{1}{1-1}\frac{1}{1-1}\frac{1}{1-1}\frac{1}{1-1}\frac{1}{1-1}$ in the cloud

Thanks, questions?

Follow up / feedback : Npoggi@ac.upc.edu

Twitter: ni po

Extra slides

BB 1TB Query 2 (M/R) providers comparison

Spark config

	EMR	CDP	HDI
Java version	OpenJDK 1.8.0_121	OpenJDK 1.8.0_121	OpenJDK 1.8.0_131
Spark version	2.1.0	2.1	2.1.0.2.6.0.2-76
Driver memory	5G	5G	5G
Executor memory	5G	10G	4G
Executor cores	4	4	3
Executor instances	Dynamic	Dynamic	20
dynamicAllocation enabled	TRUE	TRUE	FALSE
Executor memoryOverhead	Default (384MB)	1,117 MB	Default (384MB)