Representation of line and plane

Point X¹ lies on the line
$$\Rightarrow n^T X^1 + b = 0$$
 – (1)
Point X² lies on the line $\Rightarrow n^T X^2 + b = 0$ – (2)
Subtracting (2) from (1)
 $n^T (X^2 - X^1) = 0$.
Thus n is perpendicular to $(X^2 - X^1)$

Projections

• We can define the projection (\hat{X}) of a vector (X) onto a lower dimension (two dimensions in the picture) mathematically as

$$\widehat{X} = c_1 v_1 + c_2 v_2$$

Using vector addition

$$X = c_1 v_1 + c_2 v_2 + n$$

Projections

• Projections onto general orthogonal directions (two dimensions in this case)

$$v_1^T \underline{n} = 0$$

$$v_1^T (\underline{X - c_1 v_1 + c_2 v_2}) = 0$$

$$v_1^T X - c_1 v_1^T v_1 = 0$$

$$\hat{X} = \frac{v_1^T X}{v_1^T v_1} v_1 + \frac{v_2^T X}{v_2^T v_2} v_2$$

Projections: Example

$$X = [1 \ 2 \ 3]^T$$

- Projecting this vector onto the space spanned by the vectors $v_1 = \begin{bmatrix} 1 & -1 & -2 \end{bmatrix}^T$ and $v_2 = \begin{bmatrix} 2 & 0 & 1 \end{bmatrix}^T$
- Thus, finding the projection onto the plane defined by v_1 and v_2 is

$$\hat{X} = \frac{\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}}{6} \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix} + \frac{\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}}{5} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$$

Linear Algebra

Projections: Example

Linear Algebra

Projection -Generalization

- Projections onto general directions
- Consider the problem of projection of X onto a space spanned k linearly independent vectors

$$\hat{X} = \sum_{j=1}^{k} c_j v_j$$

$$\hat{X} = \begin{bmatrix} v_1 & \dots & v_k \end{bmatrix} \begin{bmatrix} c_1 \\ \vdots \\ c_k \end{bmatrix}$$

$$\hat{X} = Vc$$

Projection -Generalization

Using orthogonality idea

$$V^{T}(X - \widehat{X}) = V^{T}(X - Vc) = 0$$

$$V^{T}X - V^{T}Vc = 0$$

$$c = (V^{T}V)^{-1}V^{T}X$$

$$\widehat{X} = V(V^{T}V)^{-1}V^{T}X$$

Linear Algebra

8