UMVUE*

X. Ling

2022年5月10日

第一部分 知识点

1 一些定义

定义 1 (均方误差).

$$MSE(\hat{\theta}) = E(\hat{\theta} - \theta)^2.$$

性质:

$$\begin{split} MSE(\hat{\theta}) &= E(\hat{\theta} - \theta)^2 \\ &= E[(\hat{\theta} - E(\hat{\theta})) + (E(\hat{\theta}) - \theta)]^2 \\ &= E(\hat{\theta} - E(\hat{\theta}))^2 + (E(\hat{\theta}) - \theta)^2 + 2E[(\hat{\theta} - E(\hat{\theta}))(E(\hat{\theta}) - \theta)] \end{split}$$

即: 均方误差由点估计的方差和偏差 $|E(\hat{\theta}) - \theta|$ 的平方两部分组成.

定义 2 (一致最小均方误差估计). 设有一个样本 x_1, x_2, \ldots, x_n , 对待估参数 θ , 设有一个估计类, 称 $\hat{\theta}(x_1, x_2, \ldots, x_n)$ 是该估计类中 θ 的一致最小均方误差估计, 如果对另外任意的 $\tilde{\theta}$, 在参数空间 Θ 上, 有

$$MSE_{\theta}(\hat{\theta}) \leq MSE_{\theta}(\tilde{\theta})$$

定义 3 (一致最小方差无偏估计 (UMVUE Uniform Minimum Variance Unbiased Estimation)). 设有一个样本 x_1, x_2, \ldots, x_n , 对待估参数 θ , 设有一个估计类, 称 $\hat{\theta}(x_1, x_2, \ldots, x_n)$ 是该估计类中 θ 的一致最小方差无偏估计, 如果对另外任意的无偏估计 $\tilde{\theta}$, 在参数空间 Θ 上, 有

$$Var_{\theta}(\hat{\theta}) \leq Var_{\theta}(\tilde{\theta})$$

^{*}Reference

[《]概率论与数理统计教程(第三版)》, 茆诗松, 程依明, 濮晓龙, 高等教育出版社;

[《]概率论与数理统计教程(第三版)习题与解答》,茆诗松,程依明,濮晓龙,高等教育出版社;

2 一些定理 2

2 一些定理

定理 1 (UMVUE 的充要条件). 设 $\mathbf{X} = (x_1, x_2, \dots, x_n)$ 是来自总体的一个样本, $\hat{\theta} = \hat{\theta}(\mathbf{X})$ 是 θ 的一个无偏估计, $Var(\hat{\theta}) < \infty$. 则 $\hat{\theta}$ 是 θ 的 UMVUE 的充要条件是,对任意一个满足 $E(\phi(\mathbf{X})) = 0$ 和 $Var(\phi(\mathbf{X})) < \infty$ 的 $\phi(\mathbf{X})$,都有

$$Cov_{\theta}(\hat{\theta}, \phi) = 0, \forall \theta \in \Theta$$

这个定理表明, θ 的 UMVUE 必与任一 0 的无偏估计不相关.

定理 2 (UMVUE 的充分条件). 设总体概率函数是 $p(x;\theta), x_1, x_2, \ldots, x_n$ 是其样本, $T = T(x_1, x_2, \ldots, x_n)$ 是 θ 的一个充分统计量,则对 θ 的任一无偏估计 $\hat{\theta} = \hat{\theta}(x_1, x_2, \ldots, x_n)$, 令 $\tilde{\theta} = E(\hat{\theta}|T)$,则 $\tilde{\theta}$ 也是 θ 的无偏估计. 且

$$Var(\tilde{\theta}) \le Var(\hat{\theta})$$

证. 由于 $T = T(x_1, x_2, ..., x_n)$ 是充分统计量, 从而 $\tilde{\theta} = E(\hat{\theta}|T)$ 与 θ 无关, 因此它也是 θ 的一个估计, 根据全期望公式¹

$$E(\tilde{\theta}) = E[E(\hat{\theta}|T)] = E(\hat{\theta}) = \theta$$

因此 $\tilde{\theta}$ 是 θ 的无偏估计. 再考察其方差

$$Var(\hat{\theta}) = E(\hat{\theta} - \theta)^2 = E((\hat{\theta} - \tilde{\theta}) + (\tilde{\theta} - \theta))^2 = E(\hat{\theta} - \tilde{\theta})^2 + E(\tilde{\theta} - \theta)^2 + 2E(\hat{\theta} - \tilde{\theta})(\tilde{\theta} - \theta)$$

由于

$$E(\hat{\theta} - \tilde{\theta})(\tilde{\theta} - \theta) = E\{E[(\hat{\theta} - \tilde{\theta})(\tilde{\theta} - \theta)|T]\} = E\{(\tilde{\theta} - \theta)E[(\hat{\theta} - \tilde{\theta})|T]\} = 0$$

由此可得

$$Var(\hat{\theta}) = Var(\tilde{\theta}) + E(\hat{\theta} - \tilde{\theta})^2$$

由于右端第二项非负,可得结论.

定理说明,一个样本如果有充分统计量,那么考虑 θ 的估计问题,只要从关于充分统计量的函数里面找.

第二部分 习题

1 第一组

1. 设 T_1,T_2 分别是 θ_1 和 θ_2 的 UMVUE, 证明, 对任意的非零常数 a,b,aT_1+bT_2 是 $a\theta_1+b\theta_2$ 的 UMVUE.

 $^{^{1}}E(X) = E(E(X|Y))$

2 第二组 3

证. 由于 T_1, T_2 分别为 θ_1, θ_2 的 UMVUE, 故 $E(T_i) = \theta$, 且对任意满足 $E(\phi) = 0$ 的 ϕ , 有 $Cov(T, \phi) = 0$, i = 1, 2, 于是

$$E(aT_1 + bT_2) = a\theta_1 + b\theta_2,$$

$$Cov(aT_1 + bT_2, \phi) = aCov(T_1, \phi) + bCov(T_2, \phi) = 0.$$

从而 $aT_1 + bT_2$ 是 $a\theta_1 + b\theta_2$ 的 UMVUE.

2. 设总体 $X \sim N(\mu, \sigma^2), x_1, x_2, ..., x_n$ 为样本, 证明 $(1)\bar{x} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E} \mu$ 的 UMVUE;

2 第二组

$$(2)s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
 是 σ^2 的 UMVUE.

注: 如果仅做 $\overset{i=1}{(1)}$, 可以通过求 C-R 下界并且计算 \bar{x} 的方差, 容易验证 \bar{x} 的方差达到 C-R 下界, 从 而 \bar{x} 是 μ 的 UMVUE, 这里不再写出来了. 但是要做第二问的话, 再用这个方法并不一定行之有效, 首先, $Var(s^2)$ 并不那么容易计算; 其次, 即使算得 $Var(s^2)$, 如果 $Var(s^2) > 1/nI(\sigma^2)$, 我们将无法说明它是 UMVUE. 这也是 (2) 出现在第二组的原因. 在这里我们对两问均采用充要条件证明.

 \mathbf{u} . 已经知道, \bar{x} 和 s^2 分别是 μ , σ^2 的无偏估计, 设 $\phi(x_1, x_2, \ldots, x_n)$ 是 0 的任一无偏估计, 则有

$$E(\phi) = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \phi \cdot \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\} dx_1 \cdot dx_n = 0,$$

此即

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \phi \cdot (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} x_i^2 + \frac{n\bar{x}}{\sigma^2} \mu - \frac{n\mu^2}{2\sigma^2}\right\} dx_1 \cdot dx_n = 0, \tag{1}$$

对 (1) 式两端求导, 并利用 $E(\phi) = 0$, 可得

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \frac{n\bar{x}}{\sigma^2} \phi \cdot (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} x_i^2 + \frac{n\bar{x}}{\sigma^2} \mu - \frac{n\mu^2}{2\sigma^2}\right\} dx_1 \cdot dx_n = 0, \tag{2}$$

此即说明 $E\left(\frac{n\bar{x}\phi}{\sigma^2}\right)=0$,即 $E(\bar{x}\phi)=0$,于是 $Cov(\bar{x},\phi)=E(\bar{x}\phi)-E(\bar{x})E(\phi)=0$,即 \bar{x} 是 μ 的 UMVUE. 下面说明 s^2 是 σ^2 的无偏估计. 对 (2) 的两端再次求导, 有

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \left(\frac{n\bar{x}}{\sigma^2} \right) \phi \cdot (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2 + \frac{n\bar{x}}{\sigma^2} \mu - \frac{n\mu^2}{2\sigma^2} \right\} dx_1 \cdot dx_n - \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \frac{n\mu}{\sigma^2} \frac{n\bar{x}}{\sigma^2} \phi \cdot (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left\{ -\frac{1}{2\sigma^2} \sum_{i=1}^n x_i^2 + \frac{n\bar{x}}{\sigma^2} \mu - \frac{n\mu^2}{2\sigma^2} \right\} dx_1 \cdot dx_n = 0,$$

由此可以得到 $E(\bar{x}^2\phi)=0$. 之后将 (1) 两端对 σ^2 求导, 可以得到

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \sum_{i=1}^{n} x_i^2 \phi \cdot (2\pi\sigma^2)^{-\frac{n}{2}} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} x_i^2 + \frac{n\bar{x}}{\sigma^2} \mu - \frac{n\mu^2}{2\sigma^2}\right\} dx_1 \cdot dx_n = 0,$$

2 第二组 4

此即 $E\left(\sum_{i=1}^{n}x_{i}^{2}\phi\right)=0$, 由此可得到 $E(s^{2}\phi)=0$, 从而

$$Cov(s^2, \phi) = E(s^2\phi) - E(s^2)E(\phi) = 0$$

所以 s^2 是 σ^2 的 UMVUE.

3. 设 x_1, x_2, \ldots, x_n 是来自指数分布 $Exp(1/\theta)$ 的样本, 求证, $\bar{x} = \frac{1}{n} \sum_{i=1}^n \mathcal{L}(\theta)$ 的 UMVUE.

证. 根据因子分解定理, $T=x_1+x_2+\cdots+x_n$ 是 θ 的充分统计量,由于 $E(T)=n\theta$,所以 $\bar{x}=T/n$ 是 θ 的无偏估计. 设 $\phi=\phi(x_1,x_2,\ldots,x_n)$ 是 0 的任一无偏估计 (期望是 0),则

$$E(\phi(x_1, x_2, \dots, x_n)) = \int_0^\infty \dots \int_0^\infty \phi(x_1, x_2, \dots, x_n) \cdot \prod_{i=1}^n \left\{ \frac{1}{\theta} \exp(-\frac{x_i}{\theta}) \right\} dx_1 \dots dx_n = 0,$$

即

$$\int_0^\infty \cdots \int_0^\infty \phi(x_1, x_2, \dots, x_n) \cdot e^{-(x_1 + x_2 + \dots + x_n)/\theta} dx_1 \cdots dx_n = 0.$$

两端对 θ 求导,

$$\int_0^\infty \cdots \int_0^\infty \frac{n\bar{x}}{\theta^2} \phi(x_1, x_2, \dots, x_n) \cdot e^{-(x_1 + x_2 + \dots + x_n)/\theta} dx_1 \cdots dx_n = 0.$$

此即 $E(\bar{x} \cdot \phi) = 0$, 从而 (协方差的定义)

$$Cov(\bar{x}, \phi) = E(\bar{x} \cdot \phi) - E(\bar{x})E(\phi) = 0$$

于是, \bar{x} 是 θ 的 UMVUE.