Project 3:动态规划

蓝浩宁518021910270

Project 3:动态规划

解题思路

代码实现思路

问题解答

问题一

解题思路

原思路:

这是一个完全背包问题,我们可以构建一个 $M\times N$ 的矩阵dp,用来存放中间结果,其中dp[i][j]表示当硬币的面值最大为coins[i],总金额为j时的方案数,我们可以得到状态转移方程

$$dp(i,j) = egin{cases} 0 & ext{if } i = 0\&\&j
eq 0 \ 1 & ext{if } j = 0 \ \sum_0^{j/coins[i]} dp[i-1][j-kcoins[i]] & ext{if } i \geq 3 \end{cases}$$

最后取出dp[0][amount], 即为答案。

改进思路:

因为利用状态转移方程计算dp时只需要用到上一层的数据,而且最终结果不要求回溯,所以可以只用一个 $2\times N$ 的矩阵记录数据即可,空间复杂度可以优化至O(N)。

代码实现思路

问题解答

(1) 设总金额为13, 硬币= $\{1,2,5,10\}$, 画出动态规划的表格并填满结果。

硬币\金额	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	2	2	3	3	4	4	5	5	6	6	7	7
5	1	1	2	2	3	4	5	6	7	8	10	11	13	14
10	1	1	2	2	3	4	5	6	7	8	11	12	15	16

(2) 这个动态规划的时间复杂度是多少?

第一列赋值 O(N),第一行赋值 O(M),接下来填表三重循环 $O(NM^2)$ 。 所以整体时间复杂度 $O(NM^2)$ 。

(3) 请将这个动态规划的空间复杂度优化到 O(M), 并指出你是如何优化的。

因为只需要上一行的数据就可以算出下一行的数据,所以可以只用一个 $M \times 2$ 的矩阵就可以存储所需信息,每次计算结束后覆盖上次信息即可,详见代码。

问题二

解题思路

这是一个剑客决斗问题,我们可以构建一个 $N\times N$ 的矩阵dp,用来存放中间结果,其中dp[i][j]为 true时表示i和j能相遇,为false表示不能相遇。我们可以得到状态转移方程

$$dp(i,j) = \begin{cases} ture & \text{ if } j = (i+1)\%n \\ true & \text{ if } (dp(i,k)\&\&dp(k,j))\&\&(conquer(i,k)||conquer(j,k)\&\&(i< k < j) \\ false & \text{ other} \end{cases}$$

若选手能和自己相遇,则他能吃鸡。

代码实现思路

问题解答

(1) 请分析./lab3/test/test2.txt中case3 (amount=6) 究竟是哪个倒霉蛋不可能吃鸡,并写出其余每个人吃鸡的一种随机决斗过程。

A胜B	Α	В	С	D	Ε	F
Α		1	0	1	1	1
В	0		0	1	1	0
С	1	1		0	1	0
D	0	0	1		0	0
Е	0	0	0	1		1
F	0	1	1	1	0	

倒霉蛋: B。

		A吃鸡			
对决	C-D	A-B	A-D	A-E	A-F
淘汰	С	В	D	Ε	F
剩余	A-B-D-E-F-A	A-D-E-F-A	A-E-F-A	A-F	Α

		C吃鸡			
对决	D-E	A-F	C-E	A-C	B-C
淘汰	D	F	E	Α	В
剩余	A-B-C-E-F-A	A-B-C-E-A	A-B-C-A	B-C	С
		D吃鸡			
对决	D-E	A-F	C-E	A-C	B-C
淘汰	D	F	E	Α	В
剩余	A-B-C-E-F-A	A-B-C-E-A	A-B-C-A	B-C	C
		E吃鸡			
对决	B-C	A-C	C-D	F-D	E-F
淘汰	В	Α	С	D	F
剩余	E-F-A-C-D-E	E-F-C-D-E	E-F-D-E	E-F	Ε
		F吃鸡			
对决	B-C	A-C	D-E	C-E	C-F
淘汰	В	Α	D	Ε	С
剩余	F-A-C-D-E-F	F-C-D-E-F	F-C-E-F	C-F	F

(2) 这个程序的时间复杂度和空间复杂度是多少?能否继续优化?你可以写下你的优化思路或者在自己的代码中实现它,或是说明你的程序时间复杂度已经达到最佳了。

时间复杂度: $O(n^3)$

空间复杂度: $O(n^2)$

时间复杂度最佳了:假设我们已知n个选手中有那些人能吃鸡,现新增加一人,我们仍需要 $O(n^2)$ 的时间复杂度去计算他能否吃鸡,所以最佳时间复杂度是 $O(n^3)$ 。

问题三

解题思路

我们可以构建一个 $hp \times N$ 的矩阵f,用来存放中间结果,其中f(i,j)设置为到达j点时剩下i点血的概率与进入次数的乘积(算是期望吧)。设degree[i]为第i个点的度,edge[i][j] == 1表示i和j之间有通路。我们可以得到状态转移方程

$$f(i,j) = \begin{cases} \sum_{1}^{n-1} f[i + damage[j]][k] * edge[i][j]/degree[k] + 1 & \text{if } i = hp, j = 1 \\ \sum_{1}^{n-1} f[i + damage[j]][k] * edge[i][j]/degree[k] & \text{other} \end{cases}$$

(超出矩阵部分默认为0)

其中对于damage大于0的节点,可以直接计算出来;而对于damage等于0的节点,可以建立方程组,用高斯消元解出。

因为只可能到达最后一个点一次,所以最后计算每个hp到达最后一个点的概率之和即可得出答案。

代码实现思路

```
//M是矩阵,n是未知数个数
double func3(int n, int hp, vector<int> &damage, vector<int> &edges)
{
    初始化f矩阵,均赋值为0;

    从第hp层开始向下遍历
    若是有陷阱节点
    直接利用状态转移方程求值:
    end
    若是无陷阱节点
    利用状态转移方程构造方程组:
    由无陷阱节点部分得到系数;
    由有陷阱节点部分得到常数项; //此处注意hp层的初始节点的常数项特殊处理
    高斯消元法求值并赋值到f;
    end
end

用count累加所有hp层能到达最后一个节点概率;
    return count;
}
```

问题解答

(1) 写出这个算法的状态转移方程。

设degree[i]为第i个点的度,edge[i][j] == 1表示i和j之间有通路

$$f(i,j) = \begin{cases} \sum_{1}^{n-1} f[i + damage[j]][k] * edge[i][j]/degree[k] + 1 & \text{if } i = hp, j = 1\\ \sum_{1}^{n-1} f[i + damage[j]][k] * edge[i][j]/degree[k] & \text{other} \end{cases}$$

(2) 对于某个特定的hp,所有无陷阱节点构成的方程组,这个方程组的未知数是什么?系数是什么?常数项又是什么?写出它的增广矩阵。PS:如果你觉得一般情况很抽象的话,可以以part3-case3 在hp=2时的方程组为特例考虑。

未知数是此hp状态下无陷阱节点的概率,系数是其余有通路节点的度的倒数之和,常数项是有陷阱 节点概率的倒数之和。

(3) 这个算法的时间复杂度和空间复杂度是多少?如果按照该文档截至目前的思路,算法的时间复杂度还有提升的空间。上一小问给了你什么启发?如果你能回答出来,你将会获得更高一点的分数;如果你能在你的程序中实现,你将获得满分。Hint:你需要从高斯消元法的时间复杂度去考虑这个问题。

时间复杂度: $O(n^3hp)$

空间复杂度: O(nhp)

优化方向:在所有无陷阱节点构成的方程组中,未知数及其系数都是相同的,所以在高斯消元的时候我们可以记录消元时的比例系数,仅需计算一次,可以减少时间复杂度至 $O(n^3+n^2hp)$ 。

实现见代码。