## **Homework 2**

同济大学 2022级 计算机科学与技术学院 软件工程专业 机器智能方向 计算机视觉课程作业

授课教师: 张林

授课学期: 2024-2025年度 秋季学期

2251730 刘淑仪

## 无穷远点的齐次坐标

首先,将直线方程转换为射影平面中的齐次方程形式:

$$X - 3Y + 4Z = 0$$

无穷远点满足 Z=0,因此将 Z=0 代入方程,得到:

$$X - 3Y = 0 \Rightarrow X = 3Y$$

因此, 无穷远点的齐次坐标为:

$$[3Y, Y, 0]^T = [3, 1, 0]^T$$

综上所述,直线 x-3y+4=0 的无穷远点的齐次坐标是:

$$[3, 1, 0]^T$$

## 畸变映射的雅可比矩阵

在归一化视网膜平面上,假设  $p_n$  是一个不考虑畸变的理想投影点。如果考虑畸变, $p_n=(x,y)^T$  被映射到  $p_d=(x_d,y_d)^T$ ,其关系由以下方程组表示:

$$\begin{cases} x_d = x(1 + k_r r^2 + k_y r^4) + 2\rho_1 xy + \rho_2 (r^2 + 2x^2) + xk_r r^6 \\ y_d = y(1 + k_r r^2 + k_y r^4) + 2\rho_2 xy + \rho_1 (r^2 + 2y^2) + yk_r r^6 \end{cases}$$

其中  $r^2 = x^2 + y^2$ 。

为了在相机标定的流程中进行非线性优化,我们需要计算  $p_d$  对  $p_n$  的雅可比矩阵:

$$rac{dp_d}{dp_n} = egin{bmatrix} rac{\partial x_d}{\partial x} & rac{\partial x_d}{\partial y} \ rac{\partial y_d}{\partial x} & rac{\partial y_d}{\partial y} \end{bmatrix}$$

经过详细推导,各偏导数如下:

$$\begin{split} \frac{\partial x_d}{\partial x} &= 1 + k_r r^2 + k_y r^4 + 2 k_r x^2 + 4 k_y r^2 x^2 + 2 \rho_1 y + 6 \rho_2 x + k_r r^6 + 6 k_r x^2 r^4 \\ & \frac{\partial x_d}{\partial y} = 2 k_r x y + 4 k_y r^2 x y + 2 \rho_1 x + 2 \rho_2 y + 6 k_r x y r^4 \\ & \frac{\partial y_d}{\partial x} = 2 k_r x y + 4 k_y r^2 x y + 2 \rho_2 y + 2 \rho_1 x + 6 k_r x y r^4 \\ & \frac{\partial y_d}{\partial y} = 1 + k_r r^2 + k_y r^4 + 2 k_r y^2 + 4 k_y r^2 y^2 + 2 \rho_2 x + 2 \rho_1 y + k_r r^6 + 6 k_r y^2 r^4 \end{split}$$

因此, 雅可比矩阵为:

$$\frac{dp_d}{dp_n} = \begin{bmatrix} 1 + k_r r^2 + k_y r^4 + 2k_r x^2 + 4k_y r^2 x^2 + 2\rho_1 y + 6\rho_2 x + k_r r^6 + 6k_r x^2 r^4 & 2k_r xy + 4k_y r^2 xy + 2\rho_1 x + 2\rho_2 y + 6k_r xy r^4 \\ 2k_r xy + 4k_y r^2 xy + 2\rho_2 y + 2\rho_1 x + 6k_r xy r^4 & 1 + k_r r^2 + k_y r^4 + 2k_r y^2 + 4k_y r^2 y^2 + 2\rho_2 x + 2\rho_1 y + k_r r^6 \end{bmatrix}$$

## 旋转矩阵的雅可比矩阵

## 1. 旋转矩阵的定义

根据罗德里格斯公式,旋转矩阵 R 可以表示为:

$$R = \beta I + \gamma n n^T + \alpha [n]_{\times}$$

其中:

- $\beta = \cos \theta$
- $\gamma = 1 \cos \theta$
- $\alpha = \sin \theta$
- I 是单位矩阵
- $[n]_{\times}$  是 n 的反对称矩阵

### 2. 向量化旋转矩阵

旋转矩阵 R 的向量化形式为:

$$r = (r_{11}, r_{12}, r_{13}, r_{21}, r_{22}, r_{23}, r_{31}, r_{32}, r_{33})^T$$

### 3. 雅可比矩阵的计算

我们需要计算 r 对 d 的雅可比矩阵  $\frac{dr}{dd^T}$  , 其中  $d=\theta n$  , 且 n 是单位向量。

首先,计算  $r_{ij}$  对  $\theta$  和 n 的偏导数,然后利用链式法则求得  $r_{ij}$  对 d 的偏导数。

### 3.1 $r_{ij}$ 对 $\theta$ 的偏导数

例如:

$$rac{\partial r_{11}}{\partial heta} = -\sin heta + (1-\cos heta)\cdot 2n_1^2$$

#### 3.2 $r_{ij}$ 对 n 的偏导数

例如:

$$\frac{\partial r_{11}}{\partial n_1} = 2(1 - \cos \theta)n_1$$

#### $3.3 \theta$ 和 n 对 d 的偏导数

由于  $d = \theta n$ , 且 n 是单位向量, 因此:

$$heta = \|d\|, \quad n = rac{d}{\|d\|}$$

所以:

$$egin{aligned} rac{\partial heta}{\partial d_k} &= rac{d_k}{ heta} \ rac{\partial n_i}{\partial d_k} &= rac{\delta_{ik} heta - n_k d_i}{ heta^2} \end{aligned}$$

#### 3.4 组合偏导数

利用链式法则,组合上述偏导数:

$$\frac{\partial r_{ij}}{\partial d_k} = \frac{\partial r_{ij}}{\partial \theta} \frac{\partial \theta}{\partial d_k} + \sum_{m=1}^{3} \frac{\partial r_{ij}}{\partial n_m} \frac{\partial n_m}{\partial d_k}$$

#### 4. 结论

通过上述步骤,可以计算出每个  $r_{ij}$  对  $d_k$  的偏导数,并最终构建出  $\frac{dr}{dd^2}$  的雅可比矩阵。这个过程需要细致地进行符号计算,确保每一步都准确无误。

## 鸟瞰图生成

Environment: Windows 11

Platform: PyCharm Professional 2024.1.4

Python version: 3.12.4

Python libraries: numpy opency-Python

Code location: ../Project1

#### Results are as follows:

### 相机标定参数

### 重投影误差

ret = 1.3526290383110415

### 内参矩阵

$$\mathbf{mtx} = \begin{bmatrix} 1.06408820 \times 10^3 & 0.00000000 \times 10^0 & 6.97624043 \times 10^2 \\ 0.00000000 \times 10^0 & 1.05884544 \times 10^3 & 3.67820618 \times 10^2 \\ 0.00000000 \times 10^0 & 0.00000000 \times 10^0 & 1.00000000 \times 10^0 \end{bmatrix}$$

### 畸变系数

 $dist = \begin{bmatrix} 2.19183009 \times 10^{-1} & -9.71999184 \times 10^{-1} & 8.92226849 \times 10^{-4} & -7.72790370 \times 10^{-3} & 9.61389806 \times 10^{-1} \end{bmatrix}$ 

### 旋转向量

rvecs =

| _   |                |   |               |   |               |   |               |   |            |   |              |   |                               |  |
|-----|----------------|---|---------------|---|---------------|---|---------------|---|------------|---|--------------|---|-------------------------------|--|
| /   | /[-0.15060814] |   | [-0.62169292] |   | [-0.48797313] |   | [-0.00730448] | 1 | 0.42666152 |   | [0.42971655] |   | [0.12150479]                  |  |
| - ( | 0.68259582     | , | 0.02379807    | , | 0.57757602    | , | 0.19318482    | , | 0.16677968 | , | -0.20436555  | , | -0.42919655                   |  |
| - / | -1.42548071    |   | -1.54327886   |   | -1.47210871   |   | -1.58085337   |   | -1.6343885 |   | -1.63009947  |   | $\lfloor -1.65266561 \rfloor$ |  |

### 平移向量

tvecs =

$$\left( \begin{bmatrix} -0.16131816 \\ 0.04315679 \\ 0.4099573 \end{bmatrix}, \begin{bmatrix} -0.1625625 \\ 0.07084516 \\ 0.35582155 \end{bmatrix}, \begin{bmatrix} -0.17356461 \\ 0.05434441 \\ 0.38696302 \end{bmatrix}, \begin{bmatrix} -0.13625178 \\ 0.07758926 \\ 0.37540559 \end{bmatrix}, \begin{bmatrix} -0.08562375 \\ 0.08729008 \\ 0.34406331 \end{bmatrix}, \begin{bmatrix} -0.05401651 \\ 0.05972098 \\ 0.28404526 \end{bmatrix}, \begin{bmatrix} -0.07216266 \\ 0.05521112 \\ 0.27942144 \end{bmatrix} \right)$$

### 原始图片



# 无畸变图像



### 鸟瞰图

