

Digital Systems Design

Lecture

1

Review

Part 0

Part 0 Course content and rules

Personal information

- Dr. Shereen Moataz Afifi
- Email: shereen.moataz@guc.edu.eg
- Office: C7-211
- Day off: Saturday

- TAs
- Noura Gamal
- Manar Hatem
- Nada Alazab

Course content

Digital Logic Design review	2	
Ch2, 3-Introduction to VHD, CAD tools and FPGA	2	2
Ch5- Numbers, adders, subtractors, multipliers (1)	2	2
Ch5- Numbers, adders, subtractors, multipliers (2)	2	2
Ch6- Combinational circuits	2	2
Ch6- Combinational circuits	2	2
Ch7- Sequential circuits	2	2
Ch7- Sequential circuits	2	2
Appendix. B, C- FPGA tools: Quartus and Altera board.	2	2
Ch8- Synchronous sequential circuits (FSM)	2	2
Ch8- ASM and Digital system design	2	2
Ch10- Advances topics	2	2

- Core course for computer engineers
- Important for creating digital systems with inputs and outputs, and creating useful projects in many areas

Textbook: Fundamentals of Digital Logic with VHDL Design, THIRD EDITION by Stephen Brown and Zvonko Vranesic [ISBN-10:0077221435-ISBN-13:978-0077221430]

Course grading and rules

Assessment	
Student assessment methods	Assessment weighting
Quizzes	10%
Assignments	5%
Project	20%
Midterm Exam	25%
Final Exam	40%

- Project will be done on Altera FPGA board available at the university.
 Other parts might be purchased.
- Attendance in lectures is highly recommended to get the most out of the course
- Schedule and Office hours: TBA

Lecture contents

- 1. Introduction to digital systems
- 2. Numbers
- 3. Combinational systems
- 4. Combinational circuit blocks
- 5. Sequential systems

Part 1

Part 1 Introduction to digital systems

What is a digital system?

- Devices we use on a daily basis such as computers, smart phones, tablets, laptops, calculators, digital camera,...
- Systems that have inputs and outputs depending on the inputs.
- Can be used in many scientific, industrial and commercial applications.

What is a digital system? (2)

- Examples include simple systems like adders, multipliers, traffic light controllers and so on.
- Some systems are:
 - combinational (output depend only on inputs)
 - or sequential (with a clock and the output depends on the input and previous output)

Part 2 Numbers

Number systems

Any integer N can be represented using the following:

$$N = a_{n-1} r^{n-1} + a_{n-2} r^{n-2} + ... + a_2 r^2 + a_1 r^1 + a_0$$

- *n* is the number of digits
- r is the radix or base (Decimal is base ten for example)
- $0 \le \alpha_i < r$

Example

- The number 17 in decimal:
- n = 2 (2 digits)
- r =10 (Base)
- a can be between 0 and 9
- $17 = a_1 10^1 + a_0 = 1 \times 10 + 7$

Binary numbers

- Base 2
- Digits can only be 0 or 1
- To convert the number **101111** from binary to decimal, we apply the formula in the previous slide:
- $1x 2^5 + 0x 2^4 + 1x 2^3 + 1x 2^2 + 1x 2^1 + 1x 2^0 = 32 + 0 + 8 + 4 + 2 + 1 = 47$
- An easier way is to memorize the places in powers of 2:

Binary numbers

Question

 Question: What's the largest decimal number that be represented using 3-bit binary digits?

- Answer: The largest is when all digits are 1s: 111
- This equals: 4 + 2 + 1 = 7

Quick way to know your binary numbers

3-bit binary	Decimal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

4-bit binary	Decimal
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1110	14
1111	15

Decimal, Binary, Octal and Hexadecimal

Decimal	Binary	Octal	Hex
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	Е
15	1111	17	F

Number Base Conversions

Octal - Hexadecimal Conversion

Convert to Binary as an intermediate step
 Example:

Works both ways (Octal to Hex & Hex to Octal)

Decimal (*Integer*) to Binary Conversion

- Divide the number by the 'Base' (=2)
- Take the remainder (either 0 or 1) as a coefficient
- Take the quotient and repeat the division

Example: $(13)_{10}$

	Quotient	Remainder	Coefficient
13 /2 =	6	1	$a_0 = 1$
6 / 2 =	3	0	$a_1 = 0$
3 / 2 =	1	1	$\mathbf{a}_2 = 1$
1 / 2 =	0	1	$a_3 = 1$
Answ	er: (1	$(a_3 a_2 a_3)$	$a_1 a_0)_2 = (1101)_2$
		1	
		MSB	LSB

Decimal (*Fraction*) to Binary Conversion

- Multiply the number by the 'Base' (=2)
- Take the integer (either 0 or 1) as a coefficient
- Take the resultant fraction and repeat the division

Example: $(0.625)_{10}$

MSB

Example

■ Convert the decimal number 25.35 to binary

The fractional binary number = .01011

$$\square$$
 (25.35)₁₀ = (11001.01011)₂

Example

- Convert the decimal number 49 into binary by using the sum-of-weights method
 - 1. Write the decimal weight of each column
 - 2. Place 1's in the columns that sum to the decimal number

```
2<sup>6</sup> 2<sup>5</sup> 2<sup>4</sup> 2<sup>3</sup> 2<sup>2</sup> 2<sup>1</sup> 2<sup>0</sup>
64 32 16 8 4 2 1
0 1 1 0 0 1
```

Decimal 49 = binary 110001

Write: $49_{10} = 110001_2$

Binary addition

if we concatenate carry to the result, we get (10)which is the right result of (1)+(1)

Binary addition

Generic form

$$C_{in}$$

- To represent negative numbers in binary, we use 2's complement:
 - Positive numbers are stored as is (MSB will be 0)
 - Negative numbers (MSB will be 1)

- To get the 2's complement of a number A: Flip (complement) and add 1: (A'+1)
- Example: consider A= 0100 is number 4, to get -4, we do A'+1 = 1011 + 1 = 1100

 Trick: To quickly get 2's complement without flipping and adding 1, start from the right to the left, keep the digits as is until you hit the first 1, keep it also, but flip everything to its left.

10110000

01010000

- Example re-visited: A = 0100
 - → we start from the right, we find 0, keep it, then 0 keep it, then 1 keep it but start flipping after, we get 1100

Try it yourself: find the 2's complement of 0011 and 0010

- How to compute the decimal number for a 2's complement binary number?
- If the MSB is 0, means the number is +ve, and we compute it in the regular way.
 - Example: 0100 is 4
- If the MSB is 1, means the number is –ve, so must find its 2's complement to know what was it.
 - Example: 1100, we find its 2's complement which is 0100 which is 4 so the original number was -4

 A quicker way to get the decimal negative number from 2's complement representation is the following:

- Negative Binary number: 1 X X X X
- To get the decimal we do this: -2^(number of digits X) + (XXXX in normal binary)
- Example: 1100 \rightarrow -2(3) + (100_{base 2} = 4_{base 10}) = -8+ 4 = -4

Binary subtraction

• (A-B) = (A) + (-B) = (A) + (2's complement of B)

Part 3 Combinational systems

Combinational systems

 A system consists of logic gates with a a set of inputs and a set of outputs such that the output reacts to a certain combination of inputs.

• **Example**: An adder that adds the input bits and generates the sum as output.

What are the internal components of such a system to perform the way we want it to perform?

Truth table

 A table that shows the output value(s) depending on the input values.

• Example: the truth table of 1-bit adder with 2 inputs

inp	outs	Output
Α	В	Sum
0	0	0
0	1	1
1	0	1
1	1	0

Truth table (cont.)

- Don't cares: represented as X
- Used when the output value can be either 0 or 1 for a certain input combination, in other words, we don't care

• **Example**: System that has 2 inputs A and B, and output Z such that Z should be 1, if any of the inputs is 1, the other input must be zero, otherwise z=0. But when both are zeros, we don't care about the output.

A B Z

0 0 X

0 1 1

1 0 1

1 1 0

Basic Logic Gates

Truth Table	Function	Symbol
$ \begin{array}{c cc} x & \overline{x} \\ 0 & 1 \\ 1 & 0 \end{array} $	NOT	$x \longrightarrow \overline{x}$
$\begin{array}{c cccc} x & y & x*y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$	AND	$x \longrightarrow x * y$
$\begin{array}{c cccc} x & y & x+y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$	OR	$x \longrightarrow x+y$
$\begin{array}{c cccc} x & y & x \oplus y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{array}$	XOR	$x \longrightarrow x \oplus y$

Basic Logic Gates (cont.)

Truth Table	Function	Symbol
$ \begin{array}{c ccccc} x & y & \overline{x*y} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} $	NAND	$x \longrightarrow \overline{x*y}$
$ \begin{array}{c cccc} x & y & \overline{x+y} \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array} $	NOR	$\frac{x}{y}$ $\sqrt{x+y}$
$\begin{array}{c ccccc} x & y & \overline{x \oplus y} \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$	NXOR	$x \longrightarrow \overline{x \oplus y}$

Using logic gates to build a combinational circuit

$$f(x, y, z) = x \cdot y \cdot z + \bar{x} \cdot \bar{z}$$

$$f(x, y, z) = \overline{(x \cdot \overline{y}) \oplus (y + z)}$$

Timing diagram

- Consider the following circuit with 2 inputs x1 and x2, one output f=x₁'+x₁x₂
- A and B are intermediary outputs

x_1	x_2	$f(x_1, x_2)$	A	В
0	0	1	1	0
0	1	1	1	0
1	0	0	0	0
1	1	1	0	1

(b) Truth table

Timing	diagram
9	alagi alli

In a more realistic situation

Why do you think there's a delay in the output?

Boolean algebra (1)

Axioms of Boolean algebra

$$0 \cdot 0 = 0$$

 $1 + 1 = 1$
 $1 \cdot 1 = 1$
 $0 + 0 = 0$
 $0 \cdot 1 = 1 \cdot 0 = 0$
 $1 + 0 = 0 + 1 = 1$
If $x = 0$, then $\overline{x} = 1$
If $x = 1$, then $\overline{x} = 0$

Single variable theorem

$$x \cdot 0 = 0$$

$$x + 1 = 1$$

$$x \cdot 1 = x$$

$$x + 0 = x$$

$$x \cdot x = x$$

$$x + x = x$$

$$x \cdot \overline{x} = 0$$

$$x + \overline{x} = 1$$

$$\overline{x} = x$$

Boolean algebra (2)

Two and three variable properties

$$x \cdot y = y \cdot x$$
 Commutative
 $x + y = y + x$
 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ Associative
 $x + (y + z) = (x + y) + z$
 $x \cdot (y + z) = x \cdot y + x \cdot z$ Distributive
 $x + y \cdot z = (x + y) \cdot (x + z)$
 $x + x \cdot y = x$ Absorption

Boolean algebra (3)

$$\overline{x \cdot y} = \overline{x} + \overline{y}$$

$$\overline{x + y} = \overline{x} \cdot \overline{y}$$

$$x + \overline{x} \cdot y = x + y$$

$$x \cdot (\overline{x} + y) = x \cdot y$$

DeMorgan's theorem

Minterms and Maxterms

Minterm (standard product): an AND term consists of all literals in their normal form or in their complement form.

Maxterm (standard sum): an OR term

x_1	x_2	<i>x</i> ₃	Minterm	Maxterm
0 0 0 0 1 1	0 0 1 1 0 0	0 1 0 1 0 1	$m_0 = \overline{x}_1 \overline{x}_2 \overline{x}_3$ $m_1 = \overline{x}_1 \overline{x}_2 x_3$ $m_2 = \overline{x}_1 x_2 \overline{x}_3$ $m_3 = \overline{x}_1 x_2 x_3$ $m_4 = x_1 \overline{x}_2 \overline{x}_3$ $m_5 = x_1 \overline{x}_2 x_3$ $m_6 = x_1 x_2 \overline{x}_3$	$M_{0} = x_{1} + x_{2} + x_{3}$ $M_{1} = x_{1} + x_{2} + \overline{x}_{3}$ $M_{2} = x_{1} + \overline{x}_{2} + x_{3}$ $M_{3} = x_{1} + \overline{x}_{2} + \overline{x}_{3}$ $M_{4} = \overline{x}_{1} + x_{2} + x_{3}$ $M_{5} = \overline{x}_{1} + x_{2} + \overline{x}_{3}$ $M_{6} = \overline{x}_{1} + \overline{x}_{2} + x_{3}$
1	1	1	$m_6 - x_1 x_2 x_3 m_7 = x_1 x_2 x_3$	$M_6 = x_1 + x_2 + x_3$ $M_7 = \overline{x}_1 + \overline{x}_2 + \overline{x}_3$

Sum of products (SoP)

- Any function f can be represented by a sum of Minterms that correspond to the rows in the truth table for which f = 1.
- The result is called sum of products.

Example

x_1	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1 ←
0	1	0	0
0	1	1	0
1	0	0	1 ←
1	0	1	1 ←
1	1	0	1 ←
1	1	1	0
I			1

Looking at the 1s, we get this SoP

$$f(x_1, x_2, x_3) = \sum_{m_1, m_2, m_3} (m_1, m_4, m_5, m_6)$$

We can further minimize it:

$$f = (\overline{x}_1 + x_1)\overline{x}_2x_3 + x_1(\overline{x}_2 + x_2)\overline{x}_3 \xrightarrow{x_2}$$

$$= 1 \cdot \overline{x}_2x_3 + x_1 \cdot 1 \cdot \overline{x}_3$$

$$= \overline{x}_2x_3 + x_1\overline{x}_3$$

Product of sums (PoS)

- Any function f can be represented by a product of **Maxterms** that correspond to the rows in the truth table for which f = 0.
- The result is called product of sums.

Example

x_1	<i>x</i> ₂	<i>x</i> ₃	$f(x_1, x_2, x_3)$
0	0	0	0 ←
0	0	1	1
0	1	0	0 ←
0	1	1	0 ←
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0 ←
1			I

Looking at the 0s, we get this Pos

$$f(x_1, x_2, x_3) = \Pi(M_0, M_2, M_3, M_7)$$

$$= (x_1 + x_2 + x_3)(x_1 + \overline{x}_2 + x_3)(x_1 + \overline{x}_2 + \overline{x}_3)(\overline{x}_1 + \overline{x}_2 + \overline{x}_3)$$

Using NAND and NOR in implementations

- We can implement all other gates using either all NANDs or all NORs (universal gates)
- This is actually more efficient when it comes to hardware implementation if we can limit the use of gate types.

Using NAND and NOR in implementations

• Using Demorgan's theorem we can do the following:

$$\begin{array}{c} x_1 \\ x_2 \end{array} \longrightarrow \begin{array}{c} x_1 \\ x_1 \\ x_2 \end{array} \longrightarrow \begin{array}{c} x_1 \\ x_1 \\ x_2 \end{array} \longrightarrow \begin{array}{c} x_1 \\ x_2 \end{array} \longrightarrow \begin{array}{c} x_1 \\ x_1 \\ x_1 \\ x_2 \end{array} \longrightarrow \begin{array}{c} x_1 \\ x_1 \\ x_2 \end{array} \longrightarrow \begin{array}{c} x_1 \\ x_1 \\ x_2 \end{array}$$

(b) $x_1 + x_2 = x_1 x_2$

Converting to NAND

NAND Implementation

Implementing F = (AB' + A'B)(C + D')

Can you guess the job of each one?

Karnaugh-maps (K-maps)

 A systematic way to optimize your boolean expression without the hassle of looking into all theorems.

General rule: a k-map for each output to try to minimize its SoP expression

$x_1 x_2$				\ v		<u>y</u>
0 0 n	m_0			x	0	1
0 4	m_1	m_0	m_1	0	$m_0 \ x'y'$	$\begin{bmatrix} m_1 \\ x'y \end{bmatrix}$
$1 0 \qquad n$	m_2			ſ	m_2	m_3
4 4	m_3	m_2	m_3	$x \begin{cases} 1 \end{cases}$	xy'	xy

(a) Truth table

(b) Karnaugh map

Figure 4.2 Location of two-variable minterms.

- RULES:
- Try to group the adjacent ones (1's) horizontally or vertically or both. A don't care value can be used as a 1.
- Find the biggest group you can. Group sizes should be 1, 2, 4, 8, 16 ONLY
- You can re-use grouped ones to help other groups get bigger.

Example

$$f(x, y) = m_1 + m_2 + m_3$$

this group spans 1 for y (so y) and 0 and 1 for x so it's removed.

- When the group spans 0 and 1 for the same variable, we omit this variable
- This group spans 0 and 1 for y but only 1 for x, so it corresponds to x

- Note the 11 before the 10
- This only helps in optimization

m_0	m_1	m_3	m_2		
m_4	m_5	m_7	m_6		
(a)					

Note: the k-map behaves like a sphere so you can wrap around groups

Example

$$F(x, y, z) = \Sigma(2, 3, 4, 5) = x'y + xy'$$

$$F(x, y, z) = x'y + xy'$$

Example with don't-care Conditions

Part 4

Combinational circuits building blocks

Multiplexers

(a) Graphical symbol

- Multiplexers are used to allow one input to go through to the output depending on the select line value
- They are usually 2-to-1, 4-to-1, 8-to-1 and so on.

Multiplexers (cont.)

Can you guess the truth table of this mux?

(a) Graphical symbol

Decoders

- Extract "Information" from the code
- With n-inputs, decoders have 2ⁿ outputs
- Only one output is asserted (=1) at any given time, depending on the input and given that Enable is 1

Decoders (cont.)

A 2-to-4 decoder

En	w_1	w_0	y_0	y_1	y_2	y_3
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1
0	X	X	0	0	0	0
1	0 1 1 x	1 0 1 x	0	0 0	1 0	0

(a) Truth table

(b) Graphical symbol

Part 5

Part 5 Sequential systems

Sequential systems

- Everything we have seen so far is based on combinational systems
- In combinational systems, the output depends on the current input
- In sequential systems, the output depends on the current input and the history of the output/state of the system: **memory** units

Sequential systems

- A simple example is the system that controls the sound volume on a TV. The input is the command button: Volume up or Volume down
- The output/state is the sound volume
- The next output/state depends on the given command (up or down) and the current volume
- E.g.: if current volume= 18 and volume up is pressed, next volume will be 19 and it will become the current volume

Concept of the clock (clk)

- A periodic signal that alternates between high and low
- Sequential elements are usually triggered by the clock signal to do a job
- They can triggered by the rising/leading edge (going from 0 to 1) or the falling edge (from 1 to 0)

Concept of the clock (clk)

 Clocks are usually used also to tell how fast are systems (or processors) by increasing their frequencies

D-Flip flop

- Two inputs: D and the clk
- Two outputs: Q and its inverse Q'
- This D-flip flop is leading/positive edge triggered
- When the clock is 0, the D flip flop retains its output Q. $(Q_{t+1} = Q_t)$
- When the clock becomes 1, the value of D just before the edge is propagated to Q. (Q_{t+1}= D)
- Q stays unchanged until the next edge (even if D changed in the middle of the clock period)

D-Flip flop

 The behavior of the D-flip flop can be depicted in the following state diagram

Can you complete this timing diagram?

 The barred squares denote that the output was unknown before the first edge.

T-Flip flop

- Toggles its state when T=1
- Keep same output if T=0

Т	Q(t+1)
0	Q(t)
1	$\overline{\overline{\mathbf{Q}}}(t)$

(b) Characteristic table

(c) Graphical symbol

(d) Timing diagram

T-Flip flop (cont.)

- the truth table can be seen as follows
- q* is the new output, q is the old

T	q	q^{\star}
0	0	0
0	1	1
1	0	1
1	1	0

$$q^* = T \oplus q$$

JK-Flip flop

- Retains its value when J and K are 0
- Toggles when both are 1 (like T-flip flop)
- Q= J otherwise (like a D-flip flop)

J K	Q(t+1)		_		I
0 0	Q(t)	No change	J	Q	
0 1	0	Reset	─		
1 0	1	Set	— К	\bar{Q}	
1 1	$\bar{Q}(t)$	Complement	<u> </u>		

(b) Characteristic table

(c) Graphical symbol

Figure 7.17 JK flip-flop.

JK-flip flop truth table

J	K	q	q^{\star}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

$$q^* = Jq' + K'q$$

- How did we get that?
- K-map?

Flip flop Characteristic Tables

JK Flip-flop

J K	Q(t+1)	
0 0	Q(t)	No change
0 1	0	Reset
1 0	1	Set
1 1	Q'(t)	Complement

D Flip-flop

D	Q(t+1)	
0	0	Reset
1	1	Set

T Flip-flop

T	Q(t+1)	
0	Q(t)	Hold
1	Q'(t)	Toggle

Exercise:

 Complete the following timing diagram of a trailing-edge triggered JK flip flop. PS: q is 0 at the beginning.

J	K	q^{\star}
0	0	q
0	1	$q \\ 0$
1	0	1
1	1	q'