Table 1: Calibration

Macroeconomic Parameters					
ε	0.36	Capital's Share of Income			
٦	$0.94^{1/4}$	Depreciation Factor			
σ_{Θ}^2	0.00001	Variance Aggregate Transitory Shocks			
σ_{Ψ}^2	0.00004	Variance Aggregate Permanent Shocks			
	Steady St	ate of Perfect Foresight DSGE Model			
	$(\sigma_{\Psi} =$	$\sigma_{\Theta} = \sigma_{\psi} = \sigma_{\theta} = \wp = D = 0, \ \Phi_t = 1$			
$reve{K}/reve{K}^arepsilon$	12.	SS Capital to Output Ratio			
$reve{K}$	≈ 48.55	SS Capital to Labor Productivity Ratio (= $12^{1/(1-\varepsilon)}$)			
W	≈ 2.59	SS Wage Rate $(=(1-\varepsilon)\breve{K}^{\epsilon})$			
ř	= 0.03	SS Interest Rate $(= \varepsilon \breve{K}^{\varepsilon-1})$			
$reve{\mathcal{R}}$	≈ 1.014	SS Between-Period Return Factor $(= \mathbb{k} + \check{r})$			
		Preference Parameters			
ho	2.	Coefficient of Relative Risk Aversion			
β_{SOE}	0.969	SOE Discount Factor (= $0.99 \cdot \mathcal{D} \breve{\mathcal{R}} / \mathbb{E} [\psi]^{-\rho}$)			
β_{DSGE}	≈ 0.986	HA-DSGE Discount Factor $(= \breve{\mathcal{R}}^{-1})$			
П	0.25	Probability of Updating Expectations (if Sticky)			
Idiosyncratic Shock Parameters					
σ_ψ^2	0.004	Variance Idiosyncratic Perm Shocks $(=\frac{4}{11} \times \text{Annual})$			
$\sigma_{ heta}^2$	0.12	Variance Idiosyncratic Tran Shocks (= $4\times$ Annual)			
60	0.05	Probability of Unemployment Spell			
D	0.005	Probability of Mortality			

Table 2: Equilibrium Statistics

	SOE Mod	lel	HA-DSGE Mode	
	Frictionless Sticky		Frictionless	Sticky
Means				
A	7.76	7.70	59.09	58.97
C	2.71	2.71	3.47	3.47
Standard Deviations				
Aggregate Time Serie	es ('Macro')			
$\log A$	0.344	0.333	0.273	0.270
$\Delta \log {f C}$	0.011	0.007	0.010	0.005
$\Delta \log \mathbf{Y}$	0.011	0.011	0.008	0.008
Individual Cross Sect				
$\log \mathbf{a}$	1.030	1.032	1.006	1.005
$\log \mathbf{c}$	0.929	0.929	0.696	0.697
$\log p$	0.940	0.940	0.940	0.940
$\log \mathbf{y} \mathbf{y}>0$	0.997	0.997	0.997	0.997
$\Delta \log \mathbf{c}$	0.099	0.100	0.056	0.056
Cost Of Stickiness	5.06e-4		6.59e-4	

Notes: The cost of stickiness is calculated as the proportion by which the permanent income of a newborn frictionless consumer would need to be reduced in order to achieve the same reduction of expected value associated with forcing them to become a sticky expectations consumer.

Table 3: Placeholder for Empirical US table

Table 4: Micro Consumption Regression on Simulated Data

$$\Delta \log \mathbf{c}_{t+1,i} = \varsigma + \chi \Delta \log \mathbf{c}_{t,i} + \eta \mathbb{E}_{t,i} [\Delta \log \mathbf{y}_{t+1,i}] + \alpha \underline{a}_{t,i}$$

Model of				
Expectations	χ	η	α	$ar{R}^2$
Frictionless				
	0.020			0.000
		0.011		0.003
			-0.187	0.009
	0.052	0.014	-0.181	0.014
Sticky				
	0.013			0.000
		0.011		0.003
			-0.188	0.009
	0.043	0.013	-0.182	0.013

Notes: $\mathbb{E}_{t,i}$ is the expectation from the perspective of person i in period t; \bar{a} is a dummy variable indicating that agent i is in the top 99 percent of the normalized a distribution. Simulated sample size is large enough such that standard errors are effectively zero. Sample is restricted to households with positive income in period t.

Table 5: Aggregate Consumption Dynamics in SOE Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

$\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$					
Expectations : Dep Var			OLS	2 nd Stage	KP p -val
Independent Variables			or IV	$ar{R}^2$	Hansen J p -val
Frictionless: $\Delta \log \mathbf{C}_{t+1}$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);					
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.173^{\bullet \bullet}$			OLS	0.031	
(0.069)					
0.585^{\bullet}			IV	0.027	0.286
(0.340)					0.595
	0.430^{\bullet}		IV	0.027	0.069
	(0.231)				0.462
		-6.18e-4	IV	0.020	0.000
		(6.06e-4)			0.395
0.331	0.251	-0.14e-4	IV	0.029	0.537
(0.465)	(0.408)	(10.09e-4)			0.556
Memo: Fo	or instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1} = Z_t$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.02$	29; $var(\xi_t) = 15.76e-6$
Sticky : Δ	$\Delta \log \mathbf{C}_{t+1}$ (no	measureme	nt error	•)	
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.864^{\bullet\bullet\bullet}$			OLS	0.746	
(0.035)					
Sticky : Δ	$\Delta \log \mathbf{C}_{t+1}^*$ (wi	th measurer	nent err	for $\mathbf{C}_t^* = \mathbf{C}_t \times \delta$	$(\xi_t);$
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.501^{\bullet\bullet\bullet}$			OLS	0.256	
(0.059)					
$0.800^{\bullet\bullet\bullet}$			IV	0.252	0.000
(0.105)					0.543
	$0.828^{\bullet \bullet \bullet}$		IV	0.188	0.070
	(0.182)				0.239
		$-7.59e-4^{\bullet \bullet}$	IV	0.063	0.000
		(3.75e-4)			0.001
$0.662^{\bullet\bullet\bullet}$	0.184	0.49e-4	IV	0.254	0.374
(0.183)	(0.260)	(4.66e-4)			0.548
Memo: Fo	or instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = Z_t$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.25$	53; $var(\xi_t) = 6.14e-6$

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Table 6: Aggregate Consumption Dynamics in HA-DSGE Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expe	ctations : De			$\frac{2^{\text{red Stage}}}{2^{\text{nd Stage}}}$	KP p-val
Independent Variables			or IV	$ar{R}^2$	Hansen J p -val
Frictionless: $\Delta \log \mathbf{C}_{t+1}$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);					
	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
0.077			OLS	0.007	
(0.073)					
0.404			IV	0.013	0.365
(0.373)					0.571
	0.338		IV	0.013	0.139
	(0.332)				0.484
		-0.39e-4	IV	0.012	0.000
		(1.02e-4)			0.466
0.210	0.171	-0.10e-4	IV	0.014	0.598
(0.496)	(0.618)	(1.91e-4)			0.555
Memo: Fo	or instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1} = 3$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.03$	16; $var(\xi_t) = 13.07e-6$
Sticky : Δ	$\log \mathbf{C}_{t+1}$ (no	measureme	ent erroi	<u>:)</u>	
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.835^{\bullet\bullet\bullet}$			OLS	0.698	
(0.040)					
Sticky : Δ	$\log \mathbf{C}_{t+1}^*$ (wi	th measurer	nent eri	$\operatorname{cor} \mathbf{C}_t^* = \mathbf{C}_t \times \mathbf{C}_t$	$(\xi_t);$
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.460^{\bullet\bullet\bullet}$			OLS	0.216	
(0.061)					
$0.773^{\bullet\bullet\bullet}$			IV	0.228	0.000
(0.108)					0.532
	$0.838^{\bullet\bullet\bullet}$		IV	0.139	0.137
	(0.238)				0.200
		$-1.00\mathrm{e}\text{-}4^{\bullet}$	IV	0.060	0.000
		(0.53e-4)			0.002
$0.674^{\bullet\bullet\bullet}$	0.154	0.07e-4	IV	0.230	0.478
,	(0.330)	` ,			0.554
Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1}^* = \mathbf{Z}_t \zeta$, $\bar{R}^2 = 0.231$; $\operatorname{var}(\xi_t) = 4.17\text{e-}6$					

Notes: Reported statistics are the average values for 100 subsamples of 200 simulated quarters each. Bullets indicate that the average subsample coefficient divided by average subsample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}$.

Table 7: Aggregate Consumption Dynamics in RA Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expe	ctations : De			$\frac{2t[\Delta \log 1_{t+1}]}{2^{\text{nd}} \text{ Stage}}$	KP p-val	
Independent Variables			or IV	$ar{R}^2$	Hansen J p-val	
Frictionless: $\Delta \log \mathbf{C}_{t+1}$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);						
	$\Delta \log \mathbf{Y}_{t+1}$	A_t		·		
-0.097			OLS	0.012		
(0.074)						
0.314			IV	0.011	0.390	
(0.401)					0.579	
	0.413		IV	0.014	0.079	
	(0.332)				0.509	
		-0.34e-4	IV	0.014	0.000	
		(1.19e-4)			0.520	
0.026	0.279	-0.00e-4	IV	0.015	0.592	
(0.529)	(0.614)	(2.26e-4)			0.580	
Memo: Fo	r instrument	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1} = 1$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	014; $var(\xi_t) = 13.15e-6$	
Sticky : Δ	$\log \mathbf{C}_{t+1}$ (no	measureme	ent erro	r)		
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
0.801			OLS	0.642		
(0.043)						
Sticky : Δ	$\log \mathbf{C}_{t+1}^*$ (wi	th measurer	nent er	$\operatorname{ror} \mathbf{C}_t^* = \mathbf{C}_t \times$	$(\xi_t);$	
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
$0.414^{\bullet \bullet \bullet}$			OLS	0.182		
(0.063)						
$0.793^{\bullet\bullet\bullet}$			IV	0.192	0.001	
(0.134)					0.546	
	$0.650^{\bullet\bullet\bullet}$	•	IV	0.137	0.077	
	(0.162)				0.196	
		-0.57e-4	IV	0.081	0.000	
		(0.50e-4)			0.023	
$0.642^{\bullet\bullet\bullet}$	0.106	0.08e-4	IV	0.193	0.325	
(0.227)	(0.289)	(0.79e-4)			0.504	
Memo: Fo	r instrument	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = 1$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.1$	94; $var(\xi_t) = 3.23e-6$	

Notes: Reported statistics are the average values for 100 subsamples of 200 simulated quarters each. Bullets indicate that the average subsample coefficient divided by average subsample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments \mathbf{Z}_t = $\{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$