Summation and Product Notation

Exercise 1.1

For the set $\{x_1 = 4, x_2 = 3, x_3 = 2, x_4 = -1, x_5 = 10, x_6 = 0, x_7 = -11\}$ calculate:

1.
$$\sum_{i=1}^{5} x_i$$

2. $\sum_{i=2}^{3} x_i$

3.
$$\sum_{i=4}^{7} x_i$$

4. $\sum_{i=1}^{7} x_i$

5.
$$\prod_{i=2}^{4} x_i$$

6. $\prod_{i=1}^{3} x_i$

7.
$$\prod_{i=1}^{7} x_i$$

8. $\prod_{i=4}^{5} x_i$

$$2. \quad \sum_{i=2}^{3} x_i$$

4.
$$\sum_{i=1}^{7} x_i$$

6.
$$\prod_{i=1}^{3} x_i$$

8.
$$\prod_{i=4}^{5} x_i$$

Exercise 1.2

Expand the following summation expressions:

1.
$$\sum_{i=1}^{5} x_i$$

$$2. \sum_{i=5}^{8} a_i x_i$$

3.
$$\sum_{i=1}^{4} bx_i$$

4.
$$\sum_{i=1}^{n} a_i x^{i}$$

3.
$$\sum_{i=1}^{4} bx_i$$
 4. $\sum_{i=1}^{n} a_i x^{i-1}$ 5. $\sum_{i=0}^{3} (x-i)^2$

Exercise 1.3

Rewrite the following in Σ notation:

1.
$$x_1(x_1-1) + 2x_2(x_2-1) + 3x_3(x_3-1)$$

2.
$$a_2(x_3-2)+a_3(x_4-3)+a_4(x_5-4)$$

3.
$$\frac{1}{x} + \frac{1}{x^2} + \ldots + \frac{1}{x^n}$$

3.
$$\frac{1}{x} + \frac{1}{x^2} + \ldots + \frac{1}{x^n}$$

4. $1 + \frac{1}{x} + \frac{1}{x^2} + \ldots + \frac{1}{x^n}$

Exercise 1.4

Show that the following are true:

1.
$$\left(\sum_{i=0}^{n} x_i\right) + x_{n+1} = \sum_{i=0}^{n+1} x_i$$
 2. $\sum_{j=1}^{n} ab_j y_j = a \sum_{j=1}^{n} b_j y_j$

2.
$$\sum_{j=1}^{n} ab_j y_j = a \sum_{j=1}^{n} b_j y_j$$

3.
$$\sum_{j=1}^{n} x_j + y_i = \sum_{j=1}^{n} x_j + \sum_{j=1}^{n} y_j$$

2 Exponentiation and Logarithms

Exercise 2.1

Simplify:

1.
$$x^3 \cdot x^7$$

6.
$$a^{-1}:a$$

$$10.\ \log_2 16$$

14.
$$\log_3 x^{\frac{1}{2}}$$

$$2. \ x^{-3} \cdot x^5$$

7.
$$(x^3)^5$$

10.
$$\log_2 16$$

19.
$$\ln 27$$

2.
$$x \cdot x^{3}$$

3. $x^{-5} \cdot x^{4}$

6.
$$a^{-7} : a^{-7}$$

7. $(x^3)^5$
8. $[(c^3)^3]^3$

11.
$$\log_{\frac{1}{2}} 16$$

4.
$$x^3 : x^4$$

$$[(c)]^2$$

12.
$$\log_2 64$$

17.
$$\ln 2 + \ln 10$$

21.
$$\ln 2 - \ln 1$$

5.
$$x^3: x^{-3}$$

9.
$$\left[\left(a^2\right)^b\right]^2$$

13.
$$\log_{\frac{1}{2}} 64$$

18.
$$\ln 9 - \ln 3$$

22.
$$\ln 2 + \ln 15 - \ln 3$$

Important Functions and Plots 3

Exercise 3.1

Draw and find X and Y-intercept of the following functions:

1.
$$y = x$$

3.
$$y = 2x + 3$$

5.
$$y = -2x + 5$$

2.
$$y = -x$$

4.
$$y = 3x - 2$$

6.
$$y = -2x - 1$$

Exercise 3.2

Find zeros, coordinates of the vertex and draw the following functions:

1.
$$y = 3x^2 + x + 5$$

3.
$$y = -2x^2 + 3x + 7$$

$$5. \ \ y = -2x^2 - 8x + 10$$

1.
$$y = 3x^2 + x + 5$$
 3. $y = -2x^2 + 3x + 7$ 5. $y = -2x^2 - 8x + 10$ 7. $y = -0, 5x^2 - 4x - 8$

$$2. \ \ y = 16x^2 + 8x + 1$$

2.
$$y = 16x^2 + 8x + 1$$
 4. $y = -2x^2 + 6x + 5$ 6. $y = 3x^2 + 2x$

6.
$$y = 3x^2 + 2x$$

8.
$$y = x^2 + 2x - 6$$

Exercise 3.3

Draw the following hyperbolic (1 - 7), exponential (8 - 15), logarithmic (16 - 21) and trigonometric (22 - 29) functions:

1.
$$y = \frac{1}{x}$$

$$=\frac{1}{x}$$
 8. $y=2^x$

16.
$$y = \log_2 x$$

23.
$$y = 2\sin(x)$$

2.
$$y = \frac{1}{x+1} + 3$$

9.
$$y = (\frac{1}{2})^x + 3$$

17.
$$y = \log_{\frac{1}{2}} x$$

24.
$$y = \sin(2x)$$

3.
$$y = \frac{1}{x^2} - 2$$

10.
$$y = 3 \cdot 2^x$$

$$18. y = \log_2 x$$

$$25. \ \ y = \cos(x)$$

4.
$$y = \frac{2}{(1+x)^2} - 1$$

11.
$$y = 3 \cdot (\frac{1}{2})^x$$

$$19. \ \ y = \left| \log_{\frac{1}{2}} x \right|$$

$$26. \ \ y = 2\cos(x)$$

4.
$$y = \frac{1}{(1+x)^2}$$
5. $y = \left|\frac{1}{x}\right|$

12.
$$y = 2^{2x}$$
13. $y = (\frac{1}{2})^{2x}$

10.
$$y = |\log_{\frac{1}{2}} x|$$

20. $y = \log_2(x - 1) + 2$

$$27. \ \ y = \operatorname{tg}(x)$$

6.
$$y = \left| \frac{1}{x^2} \right|$$

13.
$$y = (\frac{1}{2})^{2x}$$

14. $y = 2 \cdot 3^{x-1} - 1$

21.
$$y = \log_{\frac{1}{2}}(x+1) + 3$$

$$28. \ \ y = \operatorname{tg}(2x)$$

7.
$$y = -\left|\frac{1}{x}\right| - 2$$

15.
$$y = 2 \cdot (\frac{1}{4})^{2x-2}$$

$$22. \ y = \sin(x)$$

29.
$$y = \operatorname{ctg}(x)$$

Exercise 3.4

Compare:

1.
$$y = 2^x$$
 and $y = \log_2 x$

2.
$$y = (\frac{1}{2})^x$$
 and $y = \log_{(\frac{1}{2})} x$

Logic 4

Exercise 4.1

Check whether the following are tautologies:

1.
$$\neg (p \land q) \leftrightarrow \neg p \lor \neg q$$

4.
$$[p \to (\neg p)] \leftrightarrow \neg p$$

7.
$$p \lor (q \land r) \leftrightarrow (p \lor q) \land (p \lor r)$$

$$2. \ [(p \lor q) \land \neg p] \to q$$

5.
$$(p \to q) \leftrightarrow [(\neg q) \to \neg p]$$

8.
$$[(p \to q) \land (q \to r)] \to (p \to r)$$

3.
$$[(\neg p) \to q] \leftrightarrow [(\neg q) \to p]$$

6.
$$p \land (q \lor r) \leftrightarrow (p \land q) \lor (p \land r)$$

Set Thoery 5

Exercise 5.1

Given the following: $\Omega = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}, A = \{1, 2, 3, 4, 5\},\$ $B = \{0, 2, 4, 6, 8, 10\}, C = \{2, 3, 5, 7\}$ find:

1. $A \cup B$

5. A\B

- 9. $A \cap B \cap C$
- 13. $C\backslash(B\backslash A)$

2. $A' \cup B'$

- 6. $A\backslash (B\backslash C)$ 7. $A \setminus B \cap C \setminus B$
- 10. $A \cup (B \cap C)$

11. $(A \cup B)'$

14. $(A\backslash B) \cap (A\backslash C)$

- 3. $A' \cap B$ 4. $A \cap (B \cup C)$
- 8. $A \cap C$

12. B\A