VIASM-KAIST Annual Meeting on Mathematics Sciences

Duc A. Hoang

hoanganhduc@hus.edu.vn

VNU University of Science Hanoi, Vietnam

October 27-30, 2025

Distance Recoloring

in collaboration with Niranka Banerjee (Kyoto University, Japan) Christian Engels (National Institute of Informatics, Japan)

Contents

- 1 Introduction to Reconfiguration
- 2 Some Examples

- 3 Distance Recoloring
- 4 Concluding Remarks

- Introduction
- Online Wiki Page

2 Some Examples

- Example: Token-Set Reconfiguration
- Example: Vertex-Coloring Reconfiguration
- Example: Nondeterministic Constraint Logic
- 3 Distance Recoloring
- 4 Concluding Remarks

Reconfiguration Setting

- **>** A description of what *states* (\equiv *configurations*) are
- One or more allowed moves between states (≡ reconfiguration rule(s))

Figure: Reconfiguration Setting

Reconfiguration vs. Solution Space

For a computational problem \mathcal{P} (e.g., Independent Set, Dominating Set, Vertex-Coloring, etc.)

Reconfiguration	Solution Space
States/Configurations	Feasible solutions of ${\mathcal P}$
Allowed Moves	Slight modifications of a solution
	without changing its feasibility

Algorithmic Questions

- ▶ REACHABILITY: Given two states S and T, is there a sequence of moves that *transforms* S into T?
 - **SHORTEST TRANSFORMATION:** Given two states S and T and a positive integer ℓ , is there a sequence of moves that *transforms* S into T using at most ℓ moves?
 - CONNECTIVITY: Is there a sequence of moves between any pair of states?
- and so on

Figure: Online Reconfiguration Wiki Page (https://reconf.wikidot.com/)

A. Hoang

Introduction to Reconfiguration

Figure: A word cloud of titles extracted from the current list of papers related to reconfiguration problems available at https://reconf.wikidot.com/ (Accessed on January 3, 2025)

TOKEN RECONFIGURATION

Each vertex has at most one token

Each state is a set of tokens satisfying certain property

Independent Set

 ${\sf Dominating} \,\, {\sf Set} \,\,$

[Hearn and Demaine 2005]

TOKEN RECONFIGURATION (Example: INDEPENDENT SET RECONFIGURATION)
Token Sliding (TS)

[Hearn and Demaine 2005]

TOKEN RECONFIGURATION (Example: INDEPENDENT SET RECONFIGURATION) Token Sliding (TS)

PSPACE-complete on general graphs

[Cereceda, van den Heuvel, and Johnson 2008]

VERTEX-COLORING RECONFIGURATION

Each vertex is colored by one of the k given colors

Each state is a *k*-coloring of all vertices such that no two adjacent vertices share the same color

[Cereceda, van den Heuvel, and Johnson 2008]

VERTEX-COLORING RECONFIGURATION

Recoloring using $\leq k$ colors

Example: k = 3

[Cereceda, van den Heuvel, and Johnson 2008]

VERTEX-COLORING RECONFIGURATION

Recoloring using $\leq k$ colors

PSPACE-complete on general graphs for $k \geq 4$

Example: k = 3

P on general graphs for $k \leq 3$

[Hearn and Demaine 2005]

Nondeterministic Constraint Logic (NCL)

Each state is a weighted, oriented graph

[Hearn and Demaine 2005]

NONDETERMINISTIC CONSTRAINT LOGIC (NCL)

Reversing edge direction

Some Examples

[Hearn and Demaine 2005]

NONDETERMINISTIC CONSTRAINT LOGIC (NCL)

Reversing edge direction

[Hearn and Demaine 2005]

NONDETERMINISTIC CONSTRAINT LOGIC (NCL)

Reversing edge direction

[van der Zanden 2015]

Nondeterministic Constraint Logic (NCL)

Duc A. Hoang

Distance Recoloring

Distance constraints for vertex colorings

	k-Coloring	(d,k)-Coloring
Distance between two vertices having the same color	≥ 2	$\geq d+1$

- (d,k)-coloring was first studied in [F. Kramer and H. Kramer 1969]
- Has applications in frequency assignment problem (or radio channel assignment) [F. Kramer and H. Kramer 2008]

Duc A. Hoang

Distance Recoloring

(d,k)-Coloring Reconfiguration ((d,k)-CR) Reconfiguration Rule: Recoloring a vertex

- The case d = 1 (k-Coloring Reconfiguration (k-CR)) has been well-studied [Mynhardt and Nasserasr 2019]; [Heuvel 2013]
- We focus on the case $d \ge 2$

Duc A. Hoang

Distance Recoloring

Graph $k\text{-CR} = (1, k)\text{-CR}$ $(d, k)\text{-CR} (d \ge 2)$ general PSPACE-C $(k \ge 3)$ [Cereceda, Heuvel, and Johnson 2011] PSPACE-C $(4 < k < 6)$)
[Cereceda, Heuvel, and Johnson 2011]	
[Cereceda, Heuvel, and Johnson 2011]	
PCDACE C (A < b < 6)	
Γ FSFACE-C $(4 \le k \le 0)$	
planar P $(k \geq 7)$	
[Bonsma and Cereceda 2009]	
bipartite PSPACE-C $(k \ge 4)$	
[Bonsma and Cereceda 2009]	
planar \cap PSPACE-C $(k=4)$ PSPACE-C $(k=\Omega(d))$	(2))
$P(k \ge 5)$	
bipartite [Bonsma and Cereceda 2009]	
P	
2-degenerate [Hatanaka, Ito, and Zhou 2019]	
planar ∩ P	
bipartite \cap (\subset 2-degenerate)	
2-degenerate	
path P $P(k > d+1)$	
$(\subseteq \text{planar} \cap \text{bipartite} \cap 2\text{-degenerate})$	
P PSPACE-C $(d=2, lar)$	ge k)
split [Hatanaka, Ito, and Zhou 2019] P $(d \ge 3)$	

Table: Our Results for $d \ge 2$. We provide the status for d = 1 for comparison.

Here PSPACE-C stands for PSPACE-complete [Banerjee, Engels, and Hoang 2024]

A. Hoang

Distance Recoloring

Theorem (Banerjee, Engels, and Hoang 2024)

(d,k)-CR is PSPACE-complete for $d \geq 2$ and $k = \Omega(d^2)$ on graphs which are planar, bipartite, and 2-degenerate.

Proof Sketch.

Restricted PSPACE-Complete Variant of ISR under TS (RESTRICTED SLIDING TOKENS) List $(d, \Omega(d))$ -Coloring Reconfiguration $(d, \Omega(d^2))$ -Coloring Reconfiguration

Frozen-Coloring Graph F_r

First Phase

Restricted Sliding Tokens \Rightarrow List $(d,\Omega(d))$ -Coloring Reconfiguration

RESTRICTED SLIDING TOKENS

First Phase

Restricted Sliding Tokens \Rightarrow List $(d, \Omega(d))$ -Coloring Recon-FIGURATION

First Phase

Restricted Sliding Tokens \Rightarrow List $(d,\Omega(d))$ -Coloring Reconfiguration

Magnification of $(C_{t,e_1},1,1)$ -forbidding path P_{t,e_1} , where $C_{t,e_1}=A\cup B$

Second Phase

List $(d,\Omega(d))$ -Coloring Reconfiguration $\Rightarrow (d,\Omega(d^2))$ -Coloring Reconfiguration

Key Ideas

- $lue{}$ List Coloring \equiv Coloring with constraints on which colors can be used for each vertex
- **2** Frozen-Coloring Graphs: Pre-colored graphs where no vertex can be recolored

Vertices are pre-colored

Containing all possible colors

No vertex can be recolored

Second Phase

List $(d,\Omega(d))$ -Coloring Reconfiguration $\Rightarrow (d,\Omega(d^2))$ -Coloring Reconfiguration

Figure: Construction of the frozen-coloring subgraph F_v for a vertex v. The colors used in this figure are just for illustration of paths. 16/18

Theorem (Banerjee, Engels, and Hoang 2024)

On split graphs,

	(d,k)-Coloring Reconfiguration
d=1	P for any k
	[Hatanaka, Ito, and Zhou 2019]
d=2	PSPACE- $complete$ for large k
$d \geq 3$	P for any k

Proof Sketch.

- $d \geq 3$ Trivial. (Any connected split graph has diameter $\leq 3 \Rightarrow$ Reconfiguration is easy!)
- d=2 Reduction from the problem for d=1 and $k\geq 4$ on general graphs (which is known to be PSPACE-complete [Bonsma and Cereceda 2009])

Concluding Remarks

Take-Home Messages

- **I** Reconfiguration studies the "solution space" of a problem
 - >> Moving from one solution to another without violating feasibility
- 2 Under certain distance constraints,
 - >>> Reconfiguration problems can be hard for very restricted graph classes
 - Problems on graphs whose diameters are bounded by some constant c (e.g., split graphs) are interesting when restricted to distances close to c
- Nondeterministic Constraint Logic is a powerful tool for hardness reductions

Open Problems

The complexities of the following problem remain open for trees:

(d,k)-CR $(d \ge 2)$

VIASM-KAIST Annual Meeting on Mathematics Sciences

Partially supported by

Came to my talk, you did.

Thank you, I must!

References I

- Banerjee, Niranka, Christian Engels, and **Duc A. Hoang** (2024). "Distance Recoloring". In: *arXiv preprint*. arXiv: 2402.12705.
- Hatanaka, Tatsuhiko, Takehiro Ito, and Xiao Zhou (2019). "The Coloring Reconfiguration Problem on Specific Graph Classes". In: *IEICE Transactions on Information and Systems* E102.D.3, pp. 423–429. DOI: 10.1587/transinf.2018FCP0005.
 - Mynhardt, C.M. and S. Nasserasr (2019). "Reconfiguration of Colourings and Dominating Sets in Graphs". In: 50 years of Combinatorics, Graph Theory, and Computing. Ed. by Fan Chung, Ron Graham, Frederick Hoffman, Ronald C. Mullin, Leslie Hogben, and Douglas B. West. 1st. CRC Press, pp. 171–191. DOI: 10.1201/9780429280092–10.
 - van der Zanden, Tom C. (2015). "Parameterized complexity of graph constraint logic". In: *Proceedings of IPEC 2015*. Vol. 43. LIPIcs. Schloss Dagstuhl Leibniz-Zentrum für Informatik, pp. 282–293. DOI: 10.4230/LIPIcs.IPEC.2015.282.

References II

- Cereceda, Luis, Jan van den Heuvel, and Matthew Johnson (2011). "Finding Paths Between 3-Colorings". In: *Journal of Graph Theory* 67.1, pp. 69–82. DOI: 10.1002/jgt.20514.
- Bonsma, Paul S. and Luis Cereceda (2009). "Finding Paths Between Graph Colourings: PSPACE-Completeness and Superpolynomial Distances". In: *Theoretical Computer Science* 410.50, pp. 5215–5226. DOI: 10.1016/j.tcs.2009.08.023.
 - Cereceda, Luis, Jan van den Heuvel, and Matthew Johnson (2008). "Connectedness of the Graph of Vertex-Colourings". In: *Discrete Mathematics* 308.5-6, pp. 913–919. DOI: 10.1016/j.disc.2007.07.028.
 - Kramer, Florica and Horst Kramer (2008). "A Survey on the Distance-Colouring of Graphs". In: *Discrete mathematics* 308.2-3, pp. 422–426. DOI: 10.1016/j.disc.2006.11.059.

References III

Hearn, Robert A. and Erik D. Demaine (2005). "PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation". In: *Theoretical Computer Science* 343.1-2, pp. 72–96. DOI: 10.1016/j.tcs.2005.05.008.

Kramer, Florica and Horst Kramer (1969). "Ein Färbungsproblem der Knotenpunkte eines Graphen bezüglich der Distanz p". In: *Rev. Roumaine Math. Pures Appl* 14.2, pp. 1031–1038.