Notations.

On note \land le pgcd et \lor le ppcm, par ailleurs on préfère la notation $a \equiv b \pmod{n}$ pour exprimer que a est congru à b modulo n.

Exercice 1.

Soit $n \geqslant 2$. Calculer:

- **1.** $n \wedge (2n+1)$
- **2.** $n \lor (2n+1)$
- 3. $(n-1) \wedge (2n+1)$
- **4.** $(n-1) \lor (2n+1)$

Solution, proposée par le manuel, de l'exercice 1.

1. $n \wedge (2n+1)$?

La division euclidienne de 2n+1 par n s'exprime par l'égalité $2n+1=2\times n+1$, c'est-à-dire 2n+1-2n=1 d'où on conclut que les entiers (2n+1) et n sont premiers entre eux.

2. $n \lor (2n+1)$ **?**

Comme le pgcd de (2n+1) et n vaut 1, alors le ppcm de (2n+1) et n est le produit $(2n+1)\times n$.

- 3. $(n-1) \wedge (2n+1)$
- **4.** $(n-1) \lor (2n+1)$

Exercice 2.

Soit $(a,b,c)\in (\mathbb{N}*)^3$ tel que $a^2+b^2=c^2$ et $a\wedge b\wedge c=1$. Montrer que $a\wedge b=a\wedge c=b\wedge =1$.

Solution de l'exercice 2.

Exercice 3.

Soit $(a,b,c)\in (\mathbb{N}*)^3$ tel que $a^2+b^2=c^2$ et $a\wedge b=1$.

Montrer que a et b ne sont pas de même parité.

Indication. On pourra utiliser des congruences modulo 4.

Solution de l'exercice 3.