

PROPOSAL TUGAS AKHIR

PERANCANGAN DAN REALISASI RECTENA GSM 900 MHz UNTUK SISTEM CATU DAYA JAM (BAGIAN ANTENA)

Diusulkan oleh:

Citra Rizki Utami; 151344007; 2015

POLITEKNIK NEGERI BANDUNG BANDUNG

2019

PENGESAHAN PROPOSAL TUGAS AKHIR

1. Judul Kegiatan : Perancangan dan Realisasi Rectena

GSM 900 Mhz untuk Sistem Catu Daya Jam (Bagian Antena)

2. Bidang Kegiatan : Tugas Akhir Program Studi D-IV

Teknik Telekomunikasi

3. Pengusul

a. Nama Lengkap : Citra Rizki Utami

b. NIM : 151344007c. Jurusan : Teknik Elektro

d. Perguruan Tinggi : Politeknik Negeri Bandung

e. Alamat Rumah dan No. Tel/HP : Jl. Dharmawangsa. Komplek Teguh

Permai Duo. Blok C-4. RT 38. Thehok. Jambi Selatan. Jambi f. Email : citrahasim25@gmail.com

4. Dosen Pendamping

a. Nama Lengkap dan Gelar : Ir.Enceng Sulaeman, MT.

b. NIDN/NIDK : 0010116404

c. Alamat Rumah dan No. Tel.HP : Komp. Giri Mekar Permai Blok

A67 RT.02/RW.21. Bandung. 081910346075

5. Biaya Kegiatan Total

a. Dana Pribadi : Rp. 4.470.000 6. Jangka Waktu Pelaksanaan : 5 (lima) bulan

Bandung, 07 Februari 2019

Citra Rizki Utami

Menyetujui

Dosen Pendamping, Pelaksana Tugas Akhir,

Ir. Enceng Sulaeman, MT.

NIDN. 0010116404 NIM. 151344007

DAFTAR ISI

PENGE	ESAHAN PROPOSAL TUGAS AKHIR	ii
DAFTA	AR ISI	iii
BAB 1	PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	2
1.3	Tujuan	2
1.4	Batasan Masalah	2
BAB 2	TINJAUAN PUSTAKA	3
BAB 3	METODE PENELITIAN	5
3.1	Perancangan	5
3.2	Realisasi	6
3.3	Pengujian	6
3.4	Analisa	7
3.5	Evaluasi	7
BAB 4	BIAYA DAN JADWAL KEGIATAN	8
4.1 A	anggaran Biaya	8
4.2 Ja	adwal Kegiatan	8
DAFTA	AR PUSTAKA	9
LAMPI	IRAN-LAMPIRAN	10
Lamp	piran 1. Biodata Pengusul dan Dosen Pendamping	10
Lamp	piran 2. Justifikasi Anggaran Kegiatan	14
Lamp	oiran 3. Gambaran Teknologi yang Diharapkan	15

PENDAHULUAN

1.1 Latar Belakang

Krisis energi di Indonesia sudah bukan lagi rahasia umum dan telah menjadi perbincangan publik, hal ini perlu segera mendapat penanganan dan solusi-solusi terbaru. Salah satu upaya pembaruan energi adalah dengan memanfaatkan gelombang elektromagnetik yang tersedia di udara agar tidak terbuang sia-sia. Pemanenan energi elektromagnetik menawarkan masa depan yang menjanjikan untuk memberi energi pada perangkat elektronik berdaya rendah di bidang komunikasi nirkabel (Din, 2012). Untuk itu, perangkat yang paling utama untuk merealisasikan energi tersebut adalah antena, yang berfungsi menangkap gelombang-gelombang elektromagnetik di udara.

Salah satu jenis antena yang berbentuk papan tipis, dengan rancangan yang dapat dibentuk sesuai perancangan dengan mudah, mampu bekerja dalam *dual frequency*, dapat beroperasi pada single maupun dual band bisa didapatkan pada antena mikrostrip (Iqbal, 2018). Antena jenis ini menjadi solusi untuk merancang antena dengan spesifikasi bandwith yang sempit. Gain antenna ini relatif kecil untuk satu patch. Solusi untuk merancang gain yang besar dengan cara menyusun antena menjadi beberapa patch.

Agar menghasilkan energi yang bisa digunakan untuk perangkat elektronik berdaya rendah, antena lalu dihubungkan dengan rangkaian rectifier. Solusi yang telah diusulkan salah satunya perancangan dan realisasi rectenna pada frekuensi wifi untuk electromagnetic harvesting. Sistem ini bekerja pada frekuensi 2,4 GHz dan menghasilkan output DC sebesar 132.6 mV untuk jarak antena ke router sejauh 50 cm dengan voltage doubler 3 stage dengan antena yang digunakan yaitu antena mikrostrip rectangular patch array 1x2 (Sulianti, 2018). Namun, sistem ini bekerja bergantung dengan adanya sinyal wifi di sekitar antena dan jarak antena yang cukup dekat untuk mendapat tegangan yang optimal.

Untuk itu, diusulkan suatu inovasi yang diharapkan mampu untuk lebih mengoptimalkan output yang diinginkan. Yaitu dengan memanfaatkan sinyal Global System for Mobile Communications (GSM), dimana seperti yang kita tahu, sinyal GSM tersedia di udara dengan jumlah yang sangat banyak (selama masih terdapat Base Transceiver Station (BTS) di sekitarnya) karena pemakaian GSM yang sangat tinggi untuk komunikasi nirkabel. Kuantitas yang dimiliki sinyal GSM diharapkan mampu memberikan output energi yang lebih baik dibanding sinyal wifi.

Sinyal GSM yang akan diujicoba yaitu pada frekuensi downlink GSM 900 MHz. hal ini dikarenakan sinyal GSM900 memiliki daya pancar yang lebih besar dibandingkan dengan GSM1800, daya yang besar memungkinkan sinyal lebih kuat dalam menghadapi interferensi. Juga karena frekuensi yang lebih rendah, jangkauan sinyalnya lebih besar cakupannya. Sistem ini akan diintegrasikan dengan rangkaian rectifier yang kemudian menghasilkan suatu tegangan yang diharapkan mampu mencatu perangkat elektronika berdaya rendah.

1.2 Rumusan Masalah

Adapun rumusan masalah yang diangkat dalam tugas akhir ini adalah sebagai berikut :

- 1. Bagaimana cara memanfaatkan energi gelombang elektromagnetik yang melimpah di udara agar dapat diubah menjadi tegangan DC yang dapat mencatu daya jam?
- 2. Sinyal/gelombang elektromagnetik pada range frekuensi berapa yang digunakan sebagai objek penelitian dan apa alasan memilih frekuensi tersebut?
- 3. Antenna dengan spesifikasi seperti apa yang dapat menangkap sinyal GSM dan bagaimana rancangan antenna tersebut?

1.3 Tujuan

Dalam pelaksanaan tugas akhir ini, tentunya terdapat beberapa tujuan yang melatarbelakangi pembuatan tugas akhir ini, berikut tujuannya:

- 1. Memanfaatkan energi gelombang elektromagnetik yang terhambur di udara ada agar tidak terbuang sia-sia dan menghasilkan suatu tegangan DC yang dapat mencatu daya pada jam.
- 2. Mengetahui cara memanfaatkan sinyal GSM 900 MHz yang memiliki beberapa keunggulan dibanding sinyal GSM 1800 MHz.
- 3. Merancang, merealisasikan, dan meneliti kapabilitas antena yang menangkap sinyal GSM pada frekuensi 900 MHz.

1.4 Batasan Masalah

Tugas akhir ini dibatasi oleh beberapa parameter, seperti antena mikrostrip patch array dengan substrat dielektrik FR4 Glass Epoxy dengan konstanta dielektrik $\varepsilon_r = 4.36$ yang bekerja pada frekuensi downlink GSM 900 MHz (935 -960 MHz) dengan bandwith 25 MHz, return loss ≥ 14 dB, VSWR ≤ 1.5 , gain ≥ 8 dB sebagai suatu komponen utama rectenna dalam sistem pemanen energi (energy harvesting). Antena mikrostrip disusun menjadi beberapa patch untuk mendapatkan gain yang diinginkan. Jumlah patch bergantung pada hasil simulasi hingga target gain 8 dB sudah terpenuhi.

TINJAUAN PUSTAKA

Cadangan energi yang menipis, mengantar Indonesia pada krisis energi fosil dalam beberapa puluh tahun ke depan. Sehingga diperlukan suatu tindakan untuk mencegah dan mengatasinya dalam jangka panjang, yaitu energi baru dan terbarukan (EBT). Para peneliti sedang berupaya keras untuk mengatasi krisis energi di Indonesia dengan berbagai macam proyek EBT, seperti PLTB, PLTA, PLTP, PLTBM, PLTS dan banyak lagi. Selain sumber energi dari alam seperti, air, angin, surya, dsb, ada satu sumber energi yang tersebar di udara bebas, yaitu energi yang terdapat pada gelombang elektromgnetik di udara (gelombang radio).

Energy Harvesting atau yang biasa disebut pemanenan energi sudah lama menjadi suatu penelitian yang banyak menarik perhatian orang-orang di bidang telekomunikasi. Beberapa penelitian telah menghasilkan suatu sistem energy harvesting pada beberapa frekuensi, seperti "Design Of RF Energy Harvesting System Forenergizing Low Power Devices" (Din, 2012) sistem ini bekerja pada frekuensi 900 MHz dengan menggunakan antena patch single wideband 377 Ω berbentuk E, serta jaringan pi matching dan sirkuit 7 stage voltage doubler.

Keunikan sistem terletak pada bidang partial ground plane dan penjajaran medan listrik yang diinduksi untuk aliran arus maksimum pada antena yang memaksimalkan energi RF yang ditangkap. Ketiga modul terintegrasi dan dibuat pada papan sirkuit cetak FR4 sisi ganda. Tegangan DC yang diperoleh dari sistem pemanen dalam uji lapangan pada jarak sekitar 50 m dari menara GSM adalah 2,9 V. Tegangan ini cukup untuk memberi daya pada sensor suhu STLM20.

Lalu dengan menggunakan material substrat yang sama, dirancang sebuah rectenna untuk pemanen energi elektormagnetik pada frekuensi GSM 1800 MHz (Parubak, 2014), antena yang digunakan adalah antena mikrostrip rectangular patch array. Dengan sirkuit 1 stage voltage doubler, hasil tegangan terbaik yang didapatkan yaitu 0.4 mV dengan jarak 1 meter di depan antena pemancar. Nilai ini terlalu kecil untuk mencatu sebuah perangkat elektronik berdaya rendah.

Pada frekuensi wifi (2,4 GHz), telah dirancang sebuah rectenna dengan fungsi yang sama. Rancangan ini terdiri dari antena mikrostrip patch array 1x2 dan rangkaian voltage doubler 3 stage (Sulianti, 2018). Pengukuran sistem ini membandingkan tegangan output rectenna dengan jarak 50 dan 100 cm dari sumber wifi. Hasilnya, tegangan output dengan jarak 50 cm lebih baik dibandingkan 100 cm, dengan besar tegangan 132,6 mV. Semakin jauh jarak rectenna terhadap sumber sinyal, maka semakin kecil tegangan yang dihasilkan.

Dengan frekuensi yang sama, yaitu frekuensi wifi (2,4 GHz), telah diuji kinerja dari suatu rectenna dengan Double diode rectifier (Voltage Doubler) (Fauzi,

2014). Pengujian ini membandingkan tegangan output yang dihasilkan antara menggunakan Function Generator dengan yang menggunakan frekuensi wifi dari sumbernya. Tegangan yang dihasilkan menggunakan function generator dapat dikatakan stabil pada nilai 1,17 V. Nilai ini lebih besar dibanding menggunakan sinyal wifi itu sendiri, dan nilai tegangan yang didapat dengan jarak 1 meter dari sumber wifi masih lebih baik dibanding dengan jarak 2&3 meter.

Dengan beberapa studi literatur yang telah dijelaskan, penulis telah merangkum beberapa poin yang akan dikembangkan dalam penelitian ini berdasarkan kekurangan dan saran pengembangan dari literatur-literatur tersebut di atas. Hasil yang diperoleh dari penelitian ini diharapkan mampu bersaing dengan data-data yang diperoleh pada literatur-literatur tersebut.

METODE PENELITIAN

3.1 Perancangan

Secara keseluruhan sistem, sinyal RF yang ditangkap oleh antena terlebih dahulu difilter dan dikuatkan. Penguatan dilakukan agar daya yang masuk ke rangkaian konversi tidak terlalu kecil. Setelah dikuatkan, sinyal di-matching impedance-kan pada rangkaian matching untuk meminimalisis daya yang hilang. Sinyal lalu masuk ke rangkian konversi dan diolah sedemikian mungkin menjadi tegangan DC yang diharapkan mampu mencatu perangkat elektronik berdaya rendah, dalam hal ini jam dinding.

Pada tugas akhir ini difokuskan pada antena yang memiliki kehandalan dalam menangkap sinyal RF semaksimal mungkin untuk mendapatkan daya yang cukup besar ke rangkaian konversi. Antena ini bekerja pada frekuensi downlink GSM 900 MHz.

Gambar 1. Blok Diagram Sistem Keseluruhan

Antena akan dirancang dengan beberapa tahapan, dimulai dari menentukan spesifikasi, perhitungan, hingga proses simulasi. Penentuan spesifikasi meliputi penentuan frekuensi kerja, frekuensi tengah, lebar bandwith, insertion loss, return loss, VSWR, hingga penguatan (gain).

Setelah itu, dilakukan proses perhitungan untuk membuat desain antena sesuai spesifikasi yang telah ditentukan. Perhitungan dimensi antena tersebut meliputi perhitungan lebar patch (W), panjang patch (L), lebar saluran transmisi (W₀), panjang saluran transmisi (L₀), panjang insert feed (Y₀), lebar ground plane (W_g), panjang ground plane (L_g), dan jarak antar patch (X₀).

Gambar 2. Struktur dan Geometri Antena Mikrostrip

Setelah dilakukan perhitungan, maka dapat membuat sebuah desain yang nantinya akan disimulasikan menggunakan software CST Microwave Studio 3D Simulation secara berulang kali agar mendapatkan hasil yang sesuai dengan spesifikasi. Desain antena bergantung pada hasil perhitungan yang dibandingkan dengan hasil simulasi.

3.2 Realisasi

Pada tahapan ini akan merealisasikan desain antena, filter, dan rangkaian matching pada jenis PCB yang telah ditentukan yaitu substrat FR4 Glass Epoxy dengan $\epsilon_r=4.36$ jika hasil yang telah berulang kali disimulasikan dengan menggunakan software CST Microwave Studio 3D Simulation sesuai atau mendekati dengan spesifikasi yang telah ditentukan. Untuk realisasi rangkaian penguat, menggunakan komponen R, L, C dan transistor.

3.3 Pengujian

Tahap selanjutnya yaitu melalukan proses pengujian alat dengan menggunakan alat ukur Network Analyzer. Adapun parameter pengukuran tersebut meliputi:

1. Return loss

Untuk mengoptimalkan kinerja antena, return loss yang diinginkan harus sekecil mungkin, dalam matematis $RL \ge 14 \ dB$

2. VSWR

Dengan return loss yang sekecil mungkin, VSWR diharapkan dapat mencapai nilai ≤ 1.5 .

3. Gain

Gain sangat mempengaruhi antenna dalam menangkap sinyal dengan jumlah yang besar. Maka dari itu gain yang diharapkan ≥ 8 dB. Besar gain mempengaruhi jumlah patch pada antena yang berarti juga mempengaruhi besar dimensi antena secara keseluruhan.

4. Rangkaian matching

Dengan adanya rangkaian ini, diharapkan outputnya mendekati output penguat RF, untuk memastikan sedikit sekali daya yang hilang akibat perbedaan impedansi.

3.4 Analisa

Pada tahap ini, hasil pengukuran dapat dianalisa dengan cara membandingkan antara hasil simulasi dengan hasil realisasi yang merujuk pada spesifikasi yang telah ditentukan.

3.5 Evaluasi

Untuk tahap evaluasi ini, diharapkan antena yang telah dirancang sesuai dengan spesifikasi yang telah ditentukan melalui proses perhitungan dan simulasi dengan toleransi kesalahan yaitu sebesar 10%.

BIAYA DAN JADWAL KEGIATAN

4.1 Anggaran Biaya

Adapun rekapitulasi rencana anggaran biaya dan jadwal kegiatan ini adalah sebagai berikut :

Tabel 4.1. Rekapitulasi Rencana Anggaran Biaya

No	Jenis Pengeluaran	BIAYA (Rp)
1	Peralatan Penunjang	900.000
2	Bahan habis pakai	930.000
3	Perjalanan	340.000
4	Lain-lain	2.300.000
Jumlal	1	4.470.000

4.2 Jadwal Kegiatan

Tabel 4.2. Jadwal Kegiatan

No	lo Kegiatan		Bulan ke-1 Kegiatan		Bulan ke-2		Bulan ke-3		Bulan ke-4			Bulan ke-5									
	Ü	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	Perancangan																				
2	Survey																				
2	Komponen																				
3	Implementasi																				
	Alat																				
4	Tahap																				
1	Analisi																				
5	Pengujian																				
3	Alat																				
6	Evaluasi																				
	Pembuatan																				
7	Laporan																				
	Akhir																				

DAFTAR PUSTAKA

- Din, N. M, Chakrabarty, C. K, Ismail, A. Bin, Devi, K. K. A & Chen, W.Y 2012, 'DESIGN OF RF ENERGY HARVESTING SYSTEM FORENERGIZING LOW POWER DEVICES', *Progress In Electromagnetics Research*, Vol. 132, hh. 49–69.
- Fauzi, Ahmad 2014, PERANCANGAN RECTENNA (RECTIFIER ANTENNA) SEBAGAI PENGUBAH DAYA ELEKTROMAGNETIK MENJADI OUTPUT DC PADA FREKUENSI WIFI 2,4 GHZ, JURNAL MAHASISWA TEUB, Universitas Brawijaya, dilihat 29 Desember 2018, < http://elektro.studentjournal.ub.ac.id/index.php/teub/article/view/276/234
- Iqbal, Muhammad 2014, *Antena Mikrostrip*, Insomasta, dilihat 29 Desember 2018, < http://casdoper.blogspot.com/2014/02/antena-mikrostrip.html >
- Parubak, Dirton 2014, RANCANG BANGUN ANTENA PENYEARAH (RECTIFIER ANTENNA) UNTUK PEMANEN ENERGI ELEKTROMAGNETIK PADA FREKUENSI GSM 1800 MHz, ACADEMIA, Universitas Brawijaya, dilihat 26 Desember 2018, https://www.academia.edu/22792746/RANCANG_BANGUN_ANTENA_PENYEARAH_RECTIFIER_ANTENNA>
- Sulianti, N.A Sus, Wijanto, Heroe, & Wahyu, Yuyu 2018, 'PERANCANGAN DAN REALISASI RECTENNA PADA FREKUENSI WIFI UNTUK ELEKTOMAGNETIC HARVESTING (PANEN GELOMBANG ELEKTROMAGNETIK)', e-Proceeding of Engineering, Vol.5, No.2, hh. 2229-2237.

LAMPIRAN-LAMPIRAN

Lampiran 1. Biodata Pengusul dan Dosen Pendamping

Lampiran 1.1. Biodata Pengusul

A. Identitas Diri

1	Nama Lengkap	Citra Rizki Utami
2	Jenis Kelamin	Perempuan
3	Program Studi	D4-Teknik Telekomunikasi
4	NIM	151344007
5	Tempat dan Tanggal Lahir	Jambi, 25 Februari 1998
6	E-mail	citrahasim25@gmail.com
7	Nomor Telepon/HP	085357672858

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status Dalam Kegiatan	Waktu dan Tempat
1	Program Pengenalan Kampus (PPKK)	Peserta	2015 di Politeknik Negeri Bandung
2.	ESQ Leadership Training	Peserta	2015 di Politeknik Negeri Bandung
3.	Pelatihan Komputer (Netiquet)	Peserta	2015 di Politeknik Negeri Bandung
4.	Bela Negara	Peserta	2015 di Politeknik Negeri Bandung
5.	Kunjungan Industri 1.0	Peserta	2016 di PT. Indosat
6.	Pengabdian Kepada Masyarakat	Panitia	2016 di SDN 1 Cipanas

7.	Kunjungan Industri 2.0	Wakil Ketua	2017 di PT. SKKL Indosat
8.	HIMATEL	Anggota	2016-Sekarang
9.	Peer Counselor	Anggota	2018-Sekarang

C. Penghargaan Yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1	Juara 2 Basket Putri Pekan Olahraga Mahasiswa Polban	POLBAN	2015
2	Juara 2 Basket Putri Pekan Olahraga Mahasiswa Polban	POLBAN	2017
3	Juara 3 Voli Putri Pekan Olahraga Mahasiswa Polban	POLBAN	2017

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Proposal Tugas Akhir.

Lampiran 1.2. Biodata Dosen Pembimbing

A. Identitas Diri

1	Nama Lengkap	Ir. Enceng Sulaeman MT.
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Telekomunikasi
4	NIP/NIDN	196411101994031002 / 0010116404
5	Tempat dan Tanggal Lahir	Bandung, 10 November 1964
6	Alamat E-mail	enceng.sulaeman@polban.ac.id
7	Nomor Telepon/HP	081320704592

B. Riwayat Pendidikan

Gelar Akademik	Sarjana	S2/Magister	S3/Doctor
Nama Institusi	Institut Teknologi Bandung	Institut Teknologi Bandung	-
Jurusan/Prodi	Teknik Elektro	Teknik Elektro	-
Tahun Masuk-Lulus	1985 - 1992	1995 -1999	-

C. Rekam Jejak Tri Dharma PT

C.1 Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1.	Teknik HF dan Gelombang Mikro	Wajib	6
2.	Saluran transmisi dan Serat Optik	Wajib	4

C.2 Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1.	Perancangan dan Implementasi	DIPA	2012
1.	Digital Microwave Radio Link	Dii A	2012
	PerancangandanImplementasi		
	Model Infrastruktur		
2.	Telekomunikasi	DIPA	2013
	BerbasisTeknologi PDH Standar		
	ITU G.703		
	PerancangandanImplementasi		
	Model Infrastruktur		
3.	Telekomunikasi	DIPA	2014
	BerbasisTeknologi PDH Standar		
	ITU G.703		
	Perancangan dan Realisasi		
4.	Sirkulator Saluran Strip Sebagai	DIPA	2016
	Duplekser Pada Frekuensi 3 GHz		
	Perancangan BPF Dualband		
5.	Mikrostrip Pada Frekuensi Tengah	DIPA	2017
	2,4 dan 3,5 GHz berbasis SIR		

C.3 Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1.	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Jenis Perlengkapan	Volume	Harga Satuan (Rp)	Jumlah (Rp)
Toolset Elektronik	1 Set	500.000	500.000
Multimeter Digital	1 Buah	200.000	200.000
Terminal	1 Buah	100.000	100.000
Jam Analog	1 Buah	100.000	100.000
	SUB TOTAL (Rp)		900.000
2. Bahan Habis Pakai	Volume	Harga Satuan (Rp)	Jumlah (Rp)
FR4 Glass Epoxy	1 Set	500.000	500.000
Konektor Tipe N	2 Buah	100.000	200.000
Kabel Koaksial	2 meter	40.000	80.000
Konektor BNC	3 Buah	30.000	90.000
Timah	1 Buah	20.000	20.000
Lotfett	1 Buah	40.000	40.000
SUB TOTAL (Rp)		930.000	
3. Perjalanan	Volume	Harga Satuan (Rp)	Jumlah (Rp)
Perjalanan ke percetakan PCB	5 Kali	30.000	150.000
Perjalanan ke Jaya Plaza	5 Kali	30.000	150.000
Parkir	20 Kali	2.000	40.000
SUB TOTAL (Rp)			340.000
4. Lain-Lain	Volume	Harga Satuan (Rp)	Jumlah (Rp)
Percetakan PCB	4 Kali	400.000	1.600.000
Penyewaan Lab	4 Bulan	150.000	600.000
Pembuatan Laporan	2 Buah	75.000	100.000
SUB TOTAL (Rp)			2.300.000
		TOTAL (Rp)	4.470.000
(Terbilang empat juta empat ratus tujuh puluh ribu rupiah)			

Lampiran 3. Gambaran Teknologi yang Diharapkan

Gambar 3. Ilustrasi Sistem

Dalam ilustrasi sistem, BTS memancarkan sinyal GSM 900 MHz. antena menangkap gelombang elektromagnetik yang berasal dari BTS tersebut. Maka dari itu antena dirancang bekerja pada frekuensi downlink GSM 900 MHz dengan frekuensi resonansi 947.5 MHz dan bekerja pada range 935 – 960 MHz. bandwith antena sebesar 25 MHz. Antena berupa antenna mikrostrip rectangular patch array dengan tujuan mengoptimalkan kinerja antena dalam menangkap sinyal GSM.

Daya yang diterima kemudian diolah sedemikian mungkin sehingga cukup untuk diintegerasikan dengan rangkaian rectifier untuk mengubah gelombang mikro tersebut ke tegangan DC. Selanjutnya energi tersebut disimpan dalam baterai dan digunakan untuk mencatu daya pada jam.