Using MPPCs for T2K Fine Grain Detector

Fabrice Retière (TRIUMF) for the FGD group

University of British Columbia, Kyoto University, University of Regina, TRIUMF and University of Victoria

T2K Fine Grain Detector

- ☐ Element of T2K near detector
- ☐ Active target for neutrino interaction
- □ Elements
 - Plastic scintillator bar (POPOP)
 - >2 meter long
 - Light collection with Wavelength Shifting fiber
 - Readout by Hamamatsu MPPC
 - ~10,000 channels

FGD physics requirements

- □ 100% efficiency for MIP crossing a bar
- ☐ Particle identification
 - By dE/dx for particle crossing the FGD
 - By range, especially for stopping protons
 Large energy released (10 MIPs)
 - By detecting Michel positrons for stopping π^+
- ☐ Position resolution
 - Bar width & no information along the bar
- ☐ Timing resolution
 - ~ 3ns per neutrino interaction for matching with photons in calorimeter

MPPC basic parameters

- ☐ Gain > 2 10⁵
 - i.e. 1PE = 2 10⁵ e-
 - Way above typical electronics noise
- ☐ Photo-detection efficiency
 - Comparable or better than PMT
 - ➤ But need to measure PDE for proper wavelength

Photo-electron per MIP MPPC fulfill requirements

- Beam test at TRIUMF
 - 120 MeV/c particles
- ☐ Electrons are minimum ionizing
- ☐ Worst case scenario
 - No fiber mirroring
 - End of the bar
- More than 10 direct PE even at 69.5V
 - No need to run at higher voltage
- ☐ Issue of Fiber-MPPC coupling still being addressed
 - New coupler
 - 1.2x1.2 mm² MPPC

MPPC fulfilling requirements

- ☐ Quantum efficiency
 - For 100% efficiency need more than 10 PE per MIP
 ➤ Go for at least 15 PEs per MIP
- ☐ Energy resolution. Not directly a MPPC issue
 - Driven by photon statistics (~25% for 15 PE)
 - > Increase quantum efficiency would help
- ☐ Timing resolution.
 - Not a MPPC issue in principle (fast)
- Dynamic range
 - 400 pixels provide more than 50 MIPs dynamic range due to saturation
- □ Nuisances: Dark noise, cross-talk, after-pulsing

Reading out MPPCs

- □Compromise between timing resolution and integration time
 - Desirable to measure all pulses continuously during beam spill (5 μs) and about 2 muon decay constant (2.2 μs) after spill
 - Chose a waveform digitization solution
 - ➤ Use the Switch Capacitor Array designed for Time Projection Chamber (AFTER ASIC)
 - > Fairly slow shaper (100 ns rise time)
 - ➤ 50 MHz sampling frequency
 - >512 time bin ~ 10 µs total integration time

Waveforms from MPPC coupled to AFTER ASIC

Fulfilling the dynamic range and energy resolution requirements

- ☐ For calibration need to identify 1 PE peak
 - Noise set to 0.2 PE
- ☐ Maximum dynamic range = 400 PE
 - After-pulsing may increase beyond 400 pixel

- □ASIC noise ~ 2,000 e-
 - MPPC gain ~ 5 10⁵
 - 0.2 PE noise ⇒
 attenuate by ~50
- ASIC dynamic range = 600 fC
 - Dynamic range 0.2 PE
 to ~200 PE
 - Need another channel with higher attenuation

Coupling AFTER ASIC to MPPC

☐ Issues

- Attenuation
 - ➤ High/low input to ASIC
- Low input capacitance
 - > Low electronic noise
- Noise from resistors
- MPPC recovery
 - ➤ Require small R_{bias} with purely capacitive termination
- Minimize reflections (50 Ω line)
- Pulse shape

■ Solution

- Not clear yet. Some answer from Spice simulations
- Building a specific 8 channel prototype

Pulse shape and recovery

N. Jain (Darmouth), and T. Lindner (UBC)

Timing resolution

- ☐ Obtained by fitting waveforms
 - Fit rising edge only
- ☐ Source of fluctuations
 - Photon arrival time
 - Fiber and scintillator decay constants
- Waveform distortion
 - Dark noise
 - After-pulsing
 - Need to measure afterpulsing to evaluate effect

Configuration	Resolution for MIP (20 PE)
Simulations + waveform fit	3 ns
Data + full waveform fit	5 ns
Data + rising edge fit	4±1 ns

Beyond the gross features Estimating the MPPC Nuisances

- □ Dark noise
 - Add pulses. Increase data size
 - ➤ But useful for gain calibration
 - At <500 kHz, does not affect timing and energy resolution
- ☐ Cross-talk
 - Marginal worsening of energy resolution (if <20%)
 - Increase number of PE
 - ➤ May skew timing resolution
- ☐ After-pulsing
 - Worsen timing resolution when fitting full waveform

Measuring Dark noise, cross-talk and after-pulsing

- ☐ Fast recovery biasing scheme: no resistance in series
- ☐ Trigger on Dark noise hits (~0.3 PE threshold)
- ☐ Use fast amplifier (CAEN N978)
- ☐ Use 1 GHz digitizer (CAEN V1789)
- ☐ Search for pulses
 - Extract MPPC*Amplifier response function
 - Search for pulses based on rise time + fall time + amplitude criteria
 - Fit by a superposition of response functions
 - > Add more pulses if poor fit (partial pulse overlap)
 - Pulse finding is the main source of systematic errors

Typical waveforms with afterpulsing test setup

Amplitude vs time for all pulses

70 V, 25C

Hit amplitude vs time

Reducing after-pulsing by playing with recovery time

- ☐ It is possible to reduce after-pulsing by increasing the recovery time
 - Resistance in series with bias
 - Introduce dead time after the pulse
 - ➤ Is there an acceptable compromise?
 - For the FGD, readout issue may force us to run with a long recovery time
 - > After-pulsing is then automatically reduced
- ☐ FGD approach
 - Run a low bias voltage: after-pulsing ~ 10%

Separating Dark Noise and after-pulsing

- □ Count all hits
 - No cross-talk
 - Sensitive to multiple afterpulse
- ☐ Histogram the time of the 1st hit after trigger
 - No cross-talk
 - No multiples
 - But more complicated fit

time after trigger (ns)

time after trigger (ns)

After-pulsing fit results

- ☐ Fit is impaired by low statistics
 - 69.5V and 70V have more statistics
 - Long time constant hard to pin down
 - Increase of constant in all hits expected
 - Short time constant 20-30 ns
 - Dominate the afterpulsing

Competing contributions

Is dark noise really saturating and the visible increase due to after-pulsing?

Conclusions

- □ MPPC + AFTER combination fulfill FGD requirements
- ■MPPC nuisances are under control for the FGD application
 - After-pulsing is dominant
 - > Run MPPC at low bias to avoid significant after-pulsing
 - > Not a problem. Quantum efficiency is large enough
- ☐ Investigating interplay between recovery, pulse shape, and after-pulsing
 - Is there an optimum design?

Back-up

Measuring after-pulsing with gate technique

Measuring after-pulsing with average technique

R. Tacik (U. Regina)

1st hit timing distribution fit function

$$dN/dt = e^{-DN \cdot t} * \left[(1 - Ap - Ap \cdot e^{\frac{-t}{\tau}})DN \right] + \frac{Ap}{\tau} e^{\frac{-t}{\tau}} e^{-DN \cdot t}$$

DN = dark noise rate

Ap = After-pulsing probability

 τ = After-pulsing time constant

