Problem 1

Suppose the risk measure \Re is $VaR(\alpha)$ for some α .

Let P_1 and P_2 be two portfolios whos returns have a joint normal distribution with means μ_1 and μ_2 , standard deviations σ_1 and σ_2 , and correlation ρ .

Suppose the initial investments are S_1 and S_2 .

Show that $\Re(P_1 + P_2) \leq \Re(P_1) + \Re(P_2)$ under joint normality.

Solution:

From 19.12, we know that:

$$\widehat{VaR}_{P_i}^{norm}(\alpha) = -S_i * \{\hat{\mu}_{P_i} + \phi^{-1}(\alpha)\hat{\sigma}_{P_i}\}$$

$$\dots = -S_i * \{\hat{\mu}_{P_i} + Z_\alpha\hat{\sigma}_{P_i}\}$$

Where S_i is the initial value of the portfolio P_i for i in 1, 2. Let the portfolio weights, w_i ,

$$w_1 = \frac{S_1}{S_1 + S_2}$$
, $w_2 = 1 - w_1$, so that $w_1 + w_2 = 1$.

From 16.1 and 16.3, we know that,

$$\mathbb{E}(R_p) = \mu_P = w_1 \mu_1 + w_2 \mu_2$$

$$\sigma_p^2 = w_1 \sigma_1^2 + w_2 \sigma_1^2 + 2w_1 w_2 \rho_{12} \sigma_1 \sigma_2$$

Where $\rho \le 1$, $w_1 > 0$ and $w_2 > 0$.

Let
$$\rho_{P_{12}} \leq w_1 \sigma_1 + w_2 \sigma_2$$
 and $\alpha < 0.5^*$,

then $Z_{\alpha} < 0$, so that:

$$Z_{\alpha}\sigma_{p} \ge w_{1}Z_{\alpha}\sigma_{1} + w_{2}Z_{\alpha}\sigma_{2}$$

Adding portfolio means from above,

$$\mu_p + Z_{\alpha}\sigma_p \ge w_1\mu_1 + w_1Z_{\alpha}\sigma_1 + w_2\mu_2 + w_2Z_{\alpha}\sigma_2$$

... = $w_1(\mu_1 + Z_{\alpha}\sigma_1) + w_2(\mu_2 + Z_{\alpha}\sigma_2)$

Multiplying both sides by -S,

$$-S\{\mu_p + Z_{\alpha}\sigma_p\} \le -Sw_1(\mu_1 + Z_{\alpha}\sigma_1) - Sw_2(\mu_2 + Z_{\alpha}\sigma_2)$$

... = $-S_1(\mu_1 + Z_{\alpha}\sigma_1) - S_2(\mu_2 + Z_{\alpha}\sigma_2)$

Again using 19.12,

$$VaR_p^{norm}(\alpha) \leq VaR_{p_1}^{norm}(\alpha) + VaR_{p_2}^{norm}(\alpha)$$

^{*}Since we are interested in tail events.

Problem 2

• What are the sample mean vector and sample covariance matrix of the 499 returns on these stocks?

```
stock.means <- colMeans(returns)
stock.cov <- cov(returns)</pre>
```

Table 1: Stock Mean Returns

	mu
GM_AC	0.00098
F_AC	0.00156
UTX_AC	0.00005
CAT_AC	0.00123
MRK_AC	0.00086

Table 2: Covariance Matrix

	GM_AC	F_AC	UTX_AC	CAT_AC	MRK_AC
GM_AC	0.00041	0.00029	0.00019	0.00023	0.00019
F_AC	0.00029	0.00045	0.00020	0.00028	0.00022
UTX_AC	0.00019	0.00020	0.00037	0.00022	0.00017
CAT_AC	0.00023	0.00028	0.00022	0.00050	0.00023
MRK_AC	0.00019	0.00022	0.00017	0.00023	0.00031

How many shares of each stock should one buy to invest \$50 million in an equally weighted portfolio?

Table 3: Equal Weighted Shares

Stock	Shares
GM_AC	594,530.32
F_AC	2,232,142.86
UTX_AC	2,923,976.61
CAT_AC	1,821,493.62
MRK_AC	1,754,385.96

```
VaR_N = function( alpha, mu, v, S ) {
    -S * ( mu + qnorm(alpha) * sqrt(v) )
}

stock.weight <- 1/n.stocks
port.weights <- rep( stock.weight, n.stocks )

port.ret <- sum(stock.weight * stock.means)
port.var <- t(port.weights) %*% stock.cov %*% port.weights</pre>
```

What is the one-day VaR(0.1)* for this equally weighted portfolio?

```
var1d <- VaR_N(0.1, port.ret, port.var, capital)</pre>
```

One-day VaR(.01) = 984,181.54

What is the five-day VaR(0.1)* for this portfolio?

```
port.ret <- 5 * sum( stock.weight * stock.means )
port.var <- 5 * sum( stock.weight**2 * diag(stock.cov) )
var5d <- VaR_N(0.1, port.ret, port.var, capital)</pre>
```

Five-day VaR(.01) = 1,062,887.10

^{*} VaR estimates assume normality of returns.