

TD2 – Continuité et intégration

Exercice 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue et soit $F(x) := \int_0^x f(t) dt$. En justifiant, dire si les affirmations suivantes sont vraies ou fausses.

- **1.** La fonction F est continue sur \mathbb{R} .
- **2.** La fonction F est dérivable sur \mathbb{R} de dérivée f.
- **3.** Si f est croissante sur \mathbb{R} alors F est croissante sur \mathbb{R} .
- **4.** Si f est positive sur \mathbb{R} alors F est croissante sur \mathbb{R} .
- **5.** Si f est T-périodique sur $\mathbb R$ alors F est T-périodique sur $\mathbb R$.
- **6.** Si f est paire alors F est impaire.

Exercice 2. Soit $f: [a,b] \to \mathbb{R}$ une fonction continue positive.

- **1.** On suppose qu'il existe $x_0 \in [a, b]$ tel que $f(x_0) > 0$. Montrer que $\int_a^b f(x) dx > 0$.
- **2.** En déduire que si f est positive et que $\int_a^b f(x) dx = 0$, alors f est identiquement nulle.

Exercice 3. Soit $f: [0,1] \to \mathbb{R}$ une fonction continue. On suppose que $\int_0^1 f(x) dx = \frac{1}{2}$. Montrer que f possède un point fixe dans]0,1[(c.-à-d. qu'il existe $x_0 \in]0,1[$ tel que $f(x_0)=x_0)$.

Exercice 4. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue. On considère la fonction $g: \mathbb{R}^* \to \mathbb{R}$ définie par :

$$g(x) := \frac{1}{x} \int_0^x f(t) \, \mathrm{d}t.$$

- 1. Montrer que g se prolonge par continuité en 0.
- **2.** On suppose que $\lim_{x \to +\infty} f(x) = \ell$. Montrer que $\lim_{x \to +\infty} g(x) = \ell$.
- **3.** Donner un exemple où g admet une limite en $+\infty$ mais pas f.

Exercice 5. Soit $f: [-1,1] \to \mathbb{R}$ une fonction continue.

1. Montrer que la fonction G définie sur $\mathbb R$ par :

$$g(x) := \int_0^{\sin x} f(t) \, \mathrm{d}t,$$

est dérivable et calculer sa dérivée.

2. Montrer que si f(0) = 1, alors G est décroissante sur un voisinage ouvert de π .

Exercice 6. Soit a > 0, déterminer le minimum de la fonction G définie sur \mathbb{R} par :

$$g(x) := \int_{x}^{x+a} |t| \, \mathrm{d}t.$$

Exercice 7. Soit $f:[a,b] \to \mathbb{R}$ une fonction positive strictement croissante telle que f(b) = 1. Montrer que:

$$\lim_{n \to +\infty} \int_a^b f(x)^n \, \mathrm{d}x = 0.$$

Exercice 8. Soit $f:[a,b] \to \mathbb{R}$ une fonction continue positive. Montrer que :

$$\lim_{p \to +\infty} \left(\int_a^b f(x)^p \, \mathrm{d}x \right)^{1/p} = \sup_{x \in [a,b]} f(x).$$

Indication: pour $\varepsilon > 0$, considérer $x_0 \in]a,b[$ tel que $M - \varepsilon < f(x_0) < M$, où $M = \sup_{[a,b]} f$.

Exercice 9 (formules de la moyenne). Soit $f: [a, b] \to \mathbb{R}$ une fonction continue.

- **1.** Montrer qu'il existe $c \in a$, b[tel que $f(c) = \frac{1}{b-a} \int_a^b f(x) \, dx$. Interpréter graphiquement ce résultat.
- **2. a.** Soit $g: [a,b] \to \mathbb{R}$ une fonction continue positive. À l'aide du théorème des valeurs intermédiaires, montrer qu'il existe $c \in [a,b]$ tel que :

$$\int_{a}^{b} f(x)g(x) dx = f(c) \int_{a}^{b} g(x) dx.$$
 (*)

- **b.** Comparer ce résultat avec la question 1.
- **3.** Sous les mêmes hypothèses qu'à la question 2, on veut montrer qu'il existe $c \in]a, b[$ tel que (*).
 - **a.** Justifier que f admet un maximum M et un minimum m sur l'intervalle [a,b], et que f([a,b]) = [m,M].
 - **b.** Montrer que f(a, b) est un intervalle inclus dans [m, M]. En déduire que $[m, M] \subset f(a, b)$.
 - **c.** Démontrer que $m \int_a^b g(x) dx < \int_a^b f(x)g(x) dx < M \int_a^b g(x) dx$.
 - d. Conclure.

Exercice 10 (inégalité de Jensen). Soit $f:[a,b]\to\mathbb{R}$ une fonction continue et soit $g:\mathbb{R}\to\mathbb{R}$ une fonction convexe. Montrer l'inégalité intégrale de Jensen :

$$g\left(\frac{1}{b-a}\int_{a}^{b}f(x)\,\mathrm{d}x\right) \leq \frac{1}{b-a}\int_{a}^{b}g(f(x))\,\mathrm{d}x,$$

à partir de l'inégalité de Jensen discrète.

Exercice 11. Montrer que pour toute fonction continue $f: [a, b] \rightarrow]0, +\infty[$:

$$\left(\int_{a}^{b} f(x) \, \mathrm{d}x\right) \left(\int_{a}^{b} \frac{1}{f(x)} \, \mathrm{d}x\right) \ge (b-a)^{2}.$$

Dans quels cas y a-t-il égalité?

Exercice 12. Montrer que pour tous b > a > 0, $\int_a^b \frac{1}{x} dx \le \frac{b-a}{\sqrt{ab}}$.

Exercice 13. Soit $f: [0, a] \to \mathbb{R}$ de classe \mathscr{C}^1 telle que f(0) = 0. Montrer que :

$$\int_0^a f(x)^2 dx \le \frac{a^2}{2} \int_0^a f'(x)^2 dx.$$

Exercice 14. Soit $f: [a,b] \to \mathbb{R}$ Riemann–intégrable et soit $g: \mathbb{R} \to \mathbb{R}$ de classe \mathscr{C}^1 . Montrer que $g \circ f$ est Riemann–intégrable sur [a,b].

Exercice 15*. Soit $f: [a,b] \to \mathbb{R}$ Riemann–intégrable et soit $g: \mathbb{R} \to \mathbb{R}$ continue. Montrer que $g \circ f$ est Riemann–intégrable sur [a,b].