물질은 어디에서 왔을까?

- 수소 (hydrogen), 헬륨 (helium)
 - 대폭발 (Big Bang)에 의해 생성

• 수소, 헬륨 이외의 다른 원자들의 탄생

• 별의 구성 성분

90% hydrogen atoms

10% helium atoms

Less than 1%
everything else
(and everything
else is made in stars!)

• 태양의 핵융합 (nuclear fusion)

Hydrogen burning

Helium burning

$$3(^{4}He) \rightarrow ^{12}C + energy$$

Three helium atoms combine to form carbon

- Massive Stars (large stars)
 - Hydrogen → helium → carbon
 - 내부 온도가 높음 : carbon → 'alpha' elements (magnesium, etc.)

- Massive stars (supernova explosions 이전)
 - Protons과 neutrons이 서로 교환 가능 -> iron peak metals (transition metals)생성

- 원소들의 개수분포 비율
 - 수소 원자의 개수를 1로 놓는다.
 - Odd-even effect

• 정리

- Hydrogen
 - from big bang nucleosynthesis
- Hellium
 - from big bang and from hydrogen burning
- Nitrogen
 - from CNO cycle
- Carbon, Oygengen
 - from helium burning
- Light elements (Neon, Magnesium, Calcium)
 - from carbon and oxygen burning
- Iron metals
 - from the final burning

Making Elements Up to Iron

- 핵자의 결합 에너지 nuclear binding energy
 - 수평축 : 원자의 질량수 A
 - 수직축 : 핵자의 결합에너지
 - 핵융합 nuclear fusion
 - 예) K-STAR

- 핵분열 nuclear fission
 - 예) 핵폭탄, 원자력발전

- 철 Fe 보다 무거운 원자 생성
 - Ion peak metals에 중성자 포획 (neutron capture)
 - $_{26}Fe + neutron + energy \rightarrow _{26}Fe + proton \rightarrow _{27}Co$

• ...

• 중성자 포획에 의해 만들어지는 무거운 원자

Heavy Metals

All heavier elements are formed when iron peak elements capture neutrons

• 주기율표의 원자 생성 분류

White - Big Bang Pink - Cosmic Rays
Yellow - Small Stars Green - Large Stars
Blue - Supernovae

Your Cosmic Origin

