Zestaw 9. LOGIKA DLA INFORMATYKÓW - zbiory rozmyte, relacje

- **Z1.** Dany jest zbiór rozmyty A określony przez trójkątną funkcję przynależności $\mu(x; 5, 10, 15)$
 - (a) zapisać analityczną postać funkcji przynależności,
 - (b) narysować wykres funkcji przynależności,
 - (c) wyznaczyć α -przekrój $A_{\alpha} = [p(\alpha); q(\alpha)]$ zbioru A,
 - (d) wyznaczyć moc zbioru A.
- **Z2.** Dany jest zbiór rozmyty A określony przez funkcję przynależności o postaci gaussowskiej

$$\mu(x; a, b) = \exp\left[-\left(\frac{x-b}{a}\right)^2\right]$$

i parametrach a = 1, b = 5

- (a) zapisać analityczną postać funkcji przynależności,
- (b) narysować wykres funkcji przynależności,
- (c) wyznaczyć α -przekrój $A_{\alpha} = [p(\alpha); q(\alpha)]$ zbioru A,
- (d) wyznaczyć moc zbioru A.
- **Z3.** Zapisać wzory oraz narysować wykresy trójkątnych funkcji przynależności zbiorów rozmytych. Wiadomo, że wykresy tych funkcji przechodzą przez następujące punkty:
- (a) (-5; 0), (0; 1), (5; 0), $X \subseteq R$
- (b) (3; 0), (7; 0,8), (11; 0), $X \subseteq R$
- (c) $(1; 0), (6; 1), (7; 0), X \subseteq R_+$
- (d) $(0; 1), (5; 0), X \subseteq R_+$
- (e) (-5; 0), (0; 1), $X \subseteq R$ -
- **Z4.** Niech X=Y=[0; 120] będzie długością życia człowieka. Relacja R o funkcji przynależności $\mu_R(x, y)$ reprezentuje nieprecyzyjne stwierdzenie "osoba w wieku x jest dużo starsza od osoby w wieku y", gdzie:

$$\mu_{R}(x,y) = \begin{cases} 0 & \text{dla } x - y \le 0 \\ \frac{x - y}{30} & \text{dla } 0 < x - y \le 30 \\ 1 & \text{dla } x - y > 30 \end{cases}$$

Wyznaczyć macierz relacji reprezentującą siłę powiązania między osobami z danej grupy

Osoba	Wiek
1	10
2	60
3	20
4	40
5	80
6	50
7	100
8	110

R	1	2	3	4	5	6	7	8
1								
2								
3								
4								
5								
6								
7								
8								

Z5. Dane są relacje rozmyte $R \subseteq X \times Y$ i $S \subseteq Y \times Z$, gdzie $X = \{x_1, x_2, x_3\}$, $Y = \{y_1, y_2, y_3, y_4\}$, $Z = \{z_1, z_2, z_3\}$ reprezentowane przez macierze:

R	y 1	y 2	y 3	y 4
X1	0,1	0,2	0,5	0,7
X2	0,2	0,3	0,8	0,1
Х3	0,7	0,4	0,6	0,9

S	\mathbf{z}_1	\mathbf{z}_2	Z 3
y 1	0,1	0,2	0,5
y 2	0,4	0,3	0,1
y 3	0,6	0,7	0,8
y 4	0,9	0,2	0,3

Wyznaczyć złożenie (typu max-min i typu max-iloczyn) relacji $R \circ S$.

Z6. Dany jest zbiór rozmyty $A=\{(x_1; 0,2), (x_2; 0,4), (x_3; 0,5)\}$ i relacja rozmyta $R\subseteq X\times Y$, gdzie $X=\{x_1, x_2, x_3\}$, $Y=\{y_1, y_2, y_3, y_4\}$ reprezentowana przez macierz:

R	y 1	y 2	y 3	y 4
X1	0,1	0,2	0,5	0,7
X2	0,2	0,3	0,8	0,1
X 3	0,7	0,4	0,6	0,9

Wyznaczyć złożenie zbioru rozmytego A i relacji rozmytej R (typu max-min i typu max-iloczyn).

Z7. Dane są relacje $R \subseteq X \times Y$ i $S \subseteq X \times Y$, gdzie $X = \{x_1, x_2\}$, $Y = \{y_1, y_2, y_3\}$ reprezentowane przez macierze:

R	y 1	y 2	y 3
X1	0,1	0,3	0,6
X2	0,8	0,2	0,3

S	y 1	y 2	y 3
X1	0,5	0,4	0,7
X2	0,9	0,6	0,4

Wyznaczyć:

- dopełnienia relacji R i S,
- iloczyn relacji,
- sumę relacji,
- iloczyn algebraiczny relacji,
- sumę algebraiczną relacji,
- różnicę relacji,
- różnicę symetryczną relacji.