		L	Т	Р	EL	CREDITS
CS6202	THEORY OF COMPUTATION	3	1	0	3	5

OBJECTIVES:

- To understand the Chomsky language hierarchy
- To construct automata for any given pattern and find its equivalent regular expressions
- To design CFG for any given language and prove its equivalence
- To understand the need for Turing machines and their capability
- To understand undecidable problems

MODULE I:	L	Т	Р	EL
	3	1	0	3

Finite Automata (FA) – Deterministic Finite Automata (DFA) – Non-deterministic Finite Automata (NFA) – Finite Automata with Epsilon Transitions – NFA to DFA conversion – Epsilon NFA to DFA conversion

SUGGESTED ACTIVITIES:

- Defining automata for different types of patterns
- EL Epsilon NFA to DFA direct conversion

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE II:	L	Т	Р	EL
	3	1	0	3

Regular Expression – FA and Regular Expressions – Pumping Lemma for Regular Languages

SUGGESTED ACTIVITIES:

- Proofs in class
- EL Regular expression for practical patterns

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE III:	L	Т	Р	EL
	2	1	0	2

Properties of Regular languages - Equivalence and Minimization of Automata

SUGGESTED ACTIVITIES:

- Flipped Class room Moore and Mealy machines
- Problems based on properties in-class and EL

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE IV:	L	T	Р	EL
	2	1	0	3

Context-Free Grammar (CFG) – Derivation Trees – Ambiguity in Grammars and Languages – Equivalence of Parse Trees and Derivation

SUGGESTED ACTIVITIES:

- EL CFG for practical programming constructs
- EL Alternate theorems and proofs

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE V:	L	Т	Р	EL
	4	1	0	3

Simplification of Context-free Grammar - Chomsky Normal Form - Greibach Normal Form

SUGGESTED ACTIVITIES:

- EL Problems based on context-free grammar
- Proofs of all the grammar equivalence in-class

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VI:	L	T	Р	EL
	6	2	0	6

Definition of the Pushdown Automata – Language of a Pushdown Automata – Equivalence of Acceptance by Empty-stack and final state - Equivalence of Pushdown Automata and CFG – Pumping Lemma for CFL – Ogden's lemma for CFL - Closure Properties - Deterministic Pushdown Automata.

SUGGESTED ACTIVITIES:

- Proofs in-class
- EL String acceptance using the converted PDA from CFG and CFG from PDA
- EL Problems based on properties of CFL

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VII:	L	T	Р	EL
	3	1	0	3

Turing Machines – Language of a Turing Machine – Turing Machine as a Computing Device

SUGGESTED ACTIVITIES:

- EL problems on Turing machines as language acceptors, computing device
- In-class and EL Turing machines as computing functions in both unary and binary representation

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE VIII:	L	Т	Р	EL
	3	1	0	3

Techniques for TM – Modifications of Turing Machines – Two-way Infinite Tape, Equivalence of One Way Infinite Tape and Two-way Infinite Tape Turing Machines – Multi Tape Turing Machines

SUGGESTED ACTIVITIES:

• Flipped Class room – Non-deterministic Turing machines, multi-dimensional Turing machine

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

MODULE IX:	L	Т	Р	EL
	6	1	0	6

Chomsky hierarchy - A Language that is not Recursively Enumerable (RE) – An Undecidable Problem that is RE – Undecidable Problems about Turing Machine – Universal language – L_r , L_{nr} , L_e , L_{ne} , - Rice Theorem for Recursive and Recursively Enumerable Languages

SUGGESTED ACTIVITIES:

• EL – Halting problem and other undecidable problems and their proofs

SUGGESTED EVALUATION METHODS:

- Assignment problems
- Quizzes

MODULE X:	L	Т	Р	EL
	3	1	0	3

Undecidable nature of Post Correspondence Problem and Modified Post Correspondence problem

SUGGESTED ACTIVITIES:

- EL Problems based on PCP, MPCP and conversions
- •

SUGGESTED EVALUATION METHODS:

- Tutorial problems
- Assignment problems
- Quizzes

OUTCOMES:

Upon completion of the course, the students will be able to:

- Classify languages based on Chomsky hierarchy
- Identify the class of language and design automata or Type x grammar
- Prove equivalence of the different language representations within a class of the Chomsky hierarchy
- Identify the undecidable problems and their class of languages
- Apply and prove a given language is decidable or undecidable

TEXT BOOK:

1. John E Hopcroft and Jeffery D Ullman, "Introduction to Automata Theory, Languages and Computations", Narosa Publishing House, 2002.

REFERENCES:

- 1. J. Martin, "Introduction to Languages and the Theory of Computation", Third Edition, Tata McGraw Hill, 2003.
- 2. Micheal Sipser, "Introduction of the Theory and Computation", Thomson Brokecole, 1997.
- 3. H.R. Lewis and C.H. Papadimitriou, "Elements of the Theory of Computation", Second Edition, Pearson Education, 2003.

EVALUATION PATTERN:

Category of Course	Continuous Assessment	Mid – Semester Assessment	End Semester
Theory	40	20	40

CO-PO Mapping

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	✓									✓		
CO2		√	√								✓	
CO3											✓	✓
CO4					√				✓	✓		
CO5	√									✓		√

CS 6301

MACHINE LEARNING

OBJECTIVES:

- To understand the need for machine learning for various types of problem solving
- To know the mathematics involved in various machine learning algorithms
- To study the various supervised, semi-supervised and unsupervised learning algorithms in machine learning
- To learn about probabilistic models in machine learning
- To have a glimpse of the latest developments in machine learning