Iteración de Punto Fijo

• Se ha definido *cero* de f(x) al valor de x tal que

$$f(x) = 0$$

• En forma similar se define *punto fijo* de g(x) al x tal que

$$g(x) = x$$

• Un problema de hallar un cero de f(x) se puede transformar en uno de hallar el punto fijo de g(x). Por ejemplo: a partir de la ecuación f(x) = 0 se puede escribir g(x) = x definiendo g(x) = x + f(x). Así el valor de x que verifica la primera ecuación, también verifica la segunda: el cero de f(x) es el punto fijo de g(x).

Ejemplos:

- La función $g_1(x) = x^2$, en el intervalo [0, 1] tiene dos puntos fijos: X = 0 y x = 1
- La misma función en el intervalo [2, 3] no tiene puntos fijos.
- La función $g_2(x) = \frac{1}{2} + x^2$, en el intervalo [0, 1] no tiene puntos fijos. No los tiene en todo el eje real.
- La función identidad g(x) = x en [0, 1] tiene ∞ puntos fijos.

Teorema 1: Si $g \in C[a,b]$ y $g(x) \in [a,b] \ \forall \ x \in [a,b]$ entonces g tiene un punto fijo en [a,b].

Si además, g'(x) existe en (a,b) y $|g'(x)| \le k < 1 \ \forall \ x \in [a,b]$ entonces g tiene un punto fijo *único* (p) en [a,b].

Demostración:

Primera parte:

- Si g(a) = a o g(b) = b, entonces $\exists p$
- Si no; debe ser g(a) > a y g(b) < b,
- Sea h(x) = g(x) x.
- h(x) es continua en [a,b] y h(a) = g(a) a > 0, h(b) = g(b) b < 0.
- Por teorema del valor medio, $\exists p \mid h(p) = 0$ y por tanto g(p) = p.

O sea: existe un Punto Fijo en [a,b]

Segunda parte:

- Supóngase que $|g'(a)| \le k < 1$ y que p y q sean Puntos Fijos de g. $(p \ne q)$
- Por Teorema del Valor Medio, $\exists \ \xi$ entre q y p tal que $|g(p) g(q)| = |g'(\xi)| |p q|$

• Por ser p y q puntos fijos, y por ser $|g'(\xi)| < 1$:

$$|p-q| < |p-q|$$

• A esta contradicción se ha llegado al suponer que $p \neq q$. Luego el punto fijo es único.

Iteración funcional

- Para encontrar el punto fijo de una función se usa una técnica iterativa de punto fijo o iteración funcional.
- Se propone un valor de partida p_0 .
- Se construye una sucesión $\{p_n\}$ con la fórmula:

$$p_n = g(p_{n-1})$$

para n = 1, 2, ...

• Si $\{p_n\} \rightarrow p$ y g es continua, entonces:

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g(\lim_{n \to \infty} p_{n-1}) = g(p)$$

Es decir que p es el punto fijo de g.

Algoritmo de Punto Fijo

```
Dados: g(x), p_0, Tol, Kmax
Salida: p
1) i \leftarrow 1
2) mientras i < K_{max}
       3) p \leftarrow g(p_0)
       4) si |p - p_0| < Tol \rightarrow Salida: p y Parar.
       5) i \leftarrow i + 1
       6) p_0 \leftarrow p
       7) va a 3.
8) Salida: 'No converge en K_{max} iteraciones'
Parar.
```

Interpretación gráfica de la Iteración Funcional

Sea obtener la raiz de

$$f(x) = x^3 + 4x^2 - 10$$

Esta función tiene una sola raiz en [1,2]: p=1.365230013

- Hay muchas maneras de obtener la función g(x) para un problema de punto fijo g(x) = x:
 - 1) De la ecuacion original: f(x) = 0

$$x - f(x) = x$$

$$con g_1(x) = x - x^3 - 4 x^2 + 10$$

2) De la ecuacion original: $x^3 = 10 - 4x^2$

$$x = \pm \sqrt{\frac{10}{x} - 4x}$$

de donde: $g_2(x) = \sqrt{\frac{10}{x} - 4x}$

3) De la ecuacion original: $4x^2 = 10 - x^3$

$$x = \pm \frac{1}{2} \sqrt{10 - x^3}$$

de donde: $g_3(x) = \frac{1}{2}\sqrt{10 - x^3}$

4) De la ecuacion original: $x^2(x+4) = 10$

$$x = \pm \sqrt{\frac{10}{x+4}}$$

de donde: $g_4(x) = \sqrt{\frac{10}{x+4}}$

Dividiendo la ecuacion original por $3x^2+8x$ y operando: $g_5(x)=x-\frac{x^3+4}{3x^2+8x}$

$$g_5(x) = x - \frac{x^3 + 4x^2 - 10}{3x^2 + 8x}$$

Resolviendo el problema por Iteración Funcional, partiendo del valor inicial $p_0=1.5$, y obteniendo los resultados con 9 dígitos despues de la coma, se llegó a:

- Con g1(x) no se obtuvo convergencia.
- Con g2(x) no se obtuvo convergencia.
- Con g3(x) se requirieron 30 iteraciones.
- Con g4(x) se requirieron 15 iteraciones.
- Con *g*5(*x*) se requirieron 4 iteraciones.
- Con el método de la Bisección se requirieron 27 iteraciones.

Teorema 2:

Sea $g \in C[a,b]$ y que $g(x) \in [a,b] \ \forall \ x \in [a,b].$ Además supóngase que $\exists \ g'(x)$ en (a,b) con

$$|g'(x)| \le k < 1 \ \forall \ x \in [a,b] \qquad (*)$$

.

Si p_0 es cualquier número en [a,b], entonces la sucesión $\{p_n\}$ definida por

$$p_n = g(p_{n-1}) \qquad n \ge 1 \qquad (**)$$

converge al único Punto Fijo en [a, b].

Demostración:

- Por Terorema 1, existe un P.F. $p \in [a, b]$.
- Como $g(x) \in [a,b]$ entonces $p_n \in [a,b] \ \forall n$.

$$|p_n - p| = |g(p_{n-1}) - g(p)| = |g'(\xi)||p_{n-1} - p| \le k |p_{n-1} - p|$$

• la primera igualdad es por ser P.F y por (**); la segunda por el T. del Valor Medio (con $\xi \in [a,b]$); y la desigualdad es por (*).

$$|p_n - p| \le k |p_{n-1} - p| \le k^2 |p_{n-2} - p| \dots \le k^n |p_0 - p|$$

● Como k < 1:</p>

$$\lim_{n\to\infty} |p_n - p| \le \lim_{n\to\infty} k^n |p_0 - p| = 0$$

Es decir $\{p_n\}$ converge a p.

Corolario 1:

Si g satisface las hipótesis del Teorema 2

$$|p_n - p| \le k^n \max\{p_0 - a, b - p_0\} \quad \forall n \ge 1$$

Corolario 2:

Si g satisface las hipótesis del Teorema 2

$$|p_n - p| \le \frac{k^n}{1 - k} |p_0 - p_1| \quad \forall n \ge 1$$

- La velocidad de convergencia depende de $\frac{k^n}{1-k}$
- Cuanto menor sea k, más rápido converge.
- Si $k \sim 1$ la convergencia es lenta.
- Si $|g'(p)| \neq 0$ la convergencia es lineal.
- Si |g'(p)| = 0 puede tener convergencia cuadrática.

Del ejemplo anterior se ve que:

- No hay ningún intervalo conteniendo a p=1.365230013 tal que $|g_1'(x)| < 1$. Por eso diverge.
- La función $g_2(x)$ no manda [1,2] a [1,2]. Y no hay ningún intervalo conteniendo a p tal que $|g_1'(x)| < 1$. Por eso diverge.
- La derivada $g_3'(2) \simeq 2.12$. No satisface que sea menor que 1. Pero en el intervalo [1,1.5] $g_3'(x) \leq g_3'(1.5) \simeq 0.66$. Por eso ha convergido.
- La derivada $g_4'(x) \le 0.15 \quad \forall x \in [1,2]$. Converge más rápido que g_3
- Cosa similar sucede con g₅ para la cual k es menor aún.

Iteración Funcional

Caso en que |g'(x)| < 1

Iteración Funcional

Caso en que |g'(x)| > 1

Iteración Funcional

Caso en que g'(x) < -1

