

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

И

ПРОЦЕССЫ УПРАВЛЕНИЯ

N. 3, 2021

Электронный журнал,

per. Эл. N ФС77-39410 om 15.04.2010

http://diffjournal.spbu.ru/e-mail:jodiff@mail.ru

ISSN 1817-2172

Численные методы

Устойчивость и сходимость монотонных разностных схем, аппроксимирующих краевые задачи для интегро-дифференциального уравнения с дробной по времени производной и оператором Бесселя

З.В. Бештокова, М.Х. Бештоков Институт прикладной математики и автоматизации КБНЦ РАН

Аннотация. Изучены краевые задачи для интегро-дифференциального уравнения с дробной по времени производной и оператором Бесселя. Для решения рассматриваемых задач получены априорные оценки в дифференциальной трактовке, из чего следуют единственность и устойчивость решения по начальным данным и правой части. Для численного решения краевых задач построены монотонные разностные схемы с направленными разностями и для них доказываются аналоги априорных оценок, приводятся оценки погрешности в предположений достаточной гладкости решений уравнений. Из полученных априорных оценок в разностной форме следуют единственность и устойчивость решения по начальным данным и правой части, а также в силу линейности разностных задач сходимость со вторым порядком по параметрам сетки. Предложен алгоритм приближенного решения краевой задачи с условием третьего рода, проведены численные расчеты тестового примера, иллюстрирующего полученные в работе теоретические результаты, касающиеся сходимости и порядка аппроксимации разностной схемы.

Ключевые слова: краевые задачи, дробная производная Герасимова-Капуто, априорная оценка, монотонные схемы, интегро-дифференциальное уравнение, дифференциальное уравнение дробного порядка.

1 Введение.

Важное теоретическое и практическое значение имеет построение математических моделей, учитывающих фрактальные свойства различных сред и явлении природы, которые описываются с помощью дифференциальных уравнений дробного порядка. В [1]-[5] дан достаточно полный обзор работ, посвященных дифференциальным уравнениям дробного порядка. Монография [1] посвящена качественно новым свойствам операторов дробного интегродифференцирования и их применению к дифференциальным уравнениям дробного порядка.

В настоящей работе приводится численное исследование решения трехмерного интегро-дифференциального уравнения с дробной по времени производной в смысле Герасимова-Капуто порядка α

$$\partial_{0t}^{\alpha} u = Lu + f(x, t), \quad (x, t) \in Q_T, \tag{0.1}$$

где

$$Lu = \sum_{s=1}^{3} L_s u, \quad x = (x_1, x_2, x_3),$$

$$L_s u = \frac{\partial}{\partial x_s} \left(k_s(x, t) \frac{\partial u}{\partial x_s} \right) + r_s(x, t) \frac{\partial u}{\partial x_s} + \int_0^t p_s(x, t, \tau) u(x, \tau) d\tau.$$

Переходя к цилиндрической системе координат (r, φ, z) в случае, когда решение u = u(r) не зависит ни от z, ни от φ (имеет место осевая симметрия) (0.1) принимает вид (обозначим x = r):

$$\partial_{0t}^{\alpha} u = \frac{1}{r} \left(rk(r,t)u_r \right)_r + h(r,t)u_r + \int_0^t p(r,t,\tau)u(r,\tau)d\tau + f(r,t),$$

а в случае сферической симметрии уравнение (0.1) принимает вид:

$$\partial_{0t}^{\alpha} u = \frac{1}{r^2} \Big(r^2 k(r, t) u_r \Big)_r + h(r, t) u_r + \int_0^t p(r, t, \tau) u(r, \tau) d\tau + f(r, t).$$

где

$$k(r,t) = k_1(x,t) = k_2(x,t) = k_3(x,t),$$

$$h(r,t) = h_1(x,t) = h_2(x,t) = h_3(x,t), \quad q(r,t) = q_1(x,t) = q_2(x,t) = q_3(x,t)$$

есть условия симметрии на коэффициенты в силу симметрии r относительно переменных x_1, x_2, x_3 .

Численным методам решения краевых задач для уравнения диффузии дробного порядка посвящены работы [6] - [10], работы [11]-[13] - для уравнения Аллера дробного порядка, а [14], [15] нелокальным краевым задачам для уравнения псевдопараболического типа с оператором Бесселя.

1. Постановка задачи.

В замкнутом прямоугольнике $\overline{Q}_T = \{(x,t): 0 \le x \le l, \ 0 \le t \le T\}$ рассмотрим краевую задачу для интегро-дифференциального уравнения с дробной по времени производной в смысле Герасимова-Капуто порядка α

$$\partial_{0t}^{\alpha} u = \frac{1}{x^m} \frac{\partial}{\partial x} \left(x^m k(x, t) \frac{\partial u}{\partial x} \right) + r(x, t) \frac{\partial u}{\partial x} + \int_0^t p(x, t, \tau) u(x, \tau) d\tau + f(x, t),$$

$$0 < x < l, \ 0 < t < T, \tag{1.1}$$

$$\lim_{x \to 0} x^m k(x, t) u_x(x, t) = 0, \ 0 \le t \le T, \tag{1.2}$$

$$u(l,t) = 0, \ 0 \le t \le T, \tag{1.3}$$

$$u(x,0) = u_0(x), \ 0 \le x \le l, \tag{1.4}$$

где

$$0 < c_0 \le k(x,t) \le c_1, \ |r(x,t), r_x(x,t), k_x(x,t), p(x,t,\tau)| \le c_2, \tag{1.5}$$

 $\partial_{0t}^{\alpha}u = \frac{1}{\Gamma(1-\alpha)}\int_{0}^{t} \frac{u_{\tau}(x,\tau)}{(t-\tau)^{\alpha}}d\tau$, — дробная производная в смысле Герасимова-Капуто порядка α , $0<\alpha<1$ [3], $c_{i},i=0,1,2$ — положительные числа, $0\leq m\leq 2$.

Заметим, что при x=0 ставится условие ограниченности решения $|u(0,t)|<\infty$, которое эквивалентно условию (1.2), равносильному в свою очередь тождеству $k(0,t)u_x(0,t)=0$ [16], если функции $r(0,t), \rho(0,t), f(0,t)$ конечны.

Предположим, что решение задачи (1.1) — (1.4) существует и обладает нужными по ходу изложения производными, коэффициенты уравнения и граничных условий удовлетворяют необходимым по ходу изложения условиям гладкости, обеспечивающим нужный порядок аппроксимации разностной схемы.

По ходу изложения будем также использовать $M_i = const > 0, i = 1, 2, ...,$ зависящие только от входных данных рассматриваемой задачи.

2 Априорная оценка в дифференциальной форме

Для получения априорной оценки решения задачи (1.1) - (1.4) в дифференциальной форме умножим уравнение (1.1) скалярно на $x^m u$:

$$\left(\partial_{0t}^{\alpha}u, x^{m}u\right) = \left(\left(x^{m}ku_{x}\right)_{x}, u\right) + \\
+\left(ru_{x}, x^{m}u\right) + \left(\int_{0}^{t} pud\tau, x^{m}u\right) + \left(f, x^{m}u\right), \tag{2.1}$$

где $\left(u,v\right)=\int_{0}^{l}uvdx,\;\left(u,u\right)=\|u\|_{0}^{2},\;$ где $\;u,v-$ заданные на [0,l] функции.

Преобразуя интегралы, входящие в тождество (2.1), с помощью неравенства Коши с ε , леммы 1 [9], после несложных преобразований с учетом (1.2) из (2.1) получим

$$\partial_{0t}^{\alpha} \|x^{\frac{m}{2}}u\|_{0}^{2} + \|x^{\frac{m}{2}}u_{x}\|_{0}^{2} \leq M_{1} \|x^{\frac{m}{2}}u\|_{0}^{2} + M_{2} \int_{0}^{t} \|x^{\frac{m}{2}}u\|_{0}^{2} d\tau + M_{3} \|x^{\frac{m}{2}}f\|_{0}^{2}.$$
 (2.2)

Применяя к обеим частям (2.2) оператор дробного интегрирования $D_{0t}^{-\alpha}$, получим

$$||x^{\frac{m}{2}}u||_{0}^{2} + D_{0t}^{-\alpha}||x^{\frac{m}{2}}u_{x}||_{0}^{2} \leq M_{1}D_{0t}^{-\alpha}||x^{\frac{m}{2}}u||_{0}^{2} +$$

$$+M_{2}D_{0t}^{-\alpha}\int_{0}^{t}||x^{\frac{m}{2}}u||_{0}^{2}d\tau + M_{4}\left(D_{0t}^{-\alpha}||x^{\frac{m}{2}}f||_{0}^{2} + ||x^{\frac{m}{2}}u_{0}(x)||_{0}^{2}\right).$$

$$(2.3)$$

Второе слагаемое в правой части (2.3) оценим так

$$D_{0t}^{-\alpha} \int_{0}^{t} \|x^{\frac{m}{2}}u\|_{0}^{2} d\tau = \frac{1}{\Gamma(\alpha)} \int_{0}^{t} \frac{d\tau}{(t-\tau)^{1-\alpha}} \int_{0}^{\tau} \|x^{\frac{m}{2}}u\|_{0}^{2} ds =$$

$$= \frac{1}{\Gamma(\alpha)} \int_{0}^{t} \|x^{\frac{m}{2}}u\|_{0}^{2} ds \int_{s}^{t} \frac{d\tau}{(t-\tau)^{1-\alpha}} = \frac{1}{\alpha\Gamma(\alpha)} \int_{0}^{t} (t-s)^{\alpha} \|x^{\frac{m}{2}}u\|_{0}^{2} ds \leq$$

$$\leq \frac{1}{\alpha\Gamma(\alpha)} \int_{0}^{t} \frac{\|x^{\frac{m}{2}}u\|_{0}^{2} (t-\tau)}{(t-\tau)^{1-\alpha}} d\tau \leq \frac{T}{\alpha} D_{0t}^{-\alpha} \|x^{\frac{m}{2}}u\|_{0}^{2}.$$

Итак, получаем

$$D_{0t}^{-\alpha} \int_0^t \|x^{\frac{m}{2}} u\|_0^2 d\tau \le \frac{T}{\alpha} D_{0t}^{-\alpha} \|x^{\frac{m}{2}} u\|_0^2.$$
 (2.4)

C учетом (2.4) из (2.3) находим

$$||x^{\frac{m}{2}}u||_{0}^{2} + D_{0t}^{-\alpha}||x^{\frac{m}{2}}u_{x}||_{0}^{2} \leq$$

$$\leq M_{5}D_{0t}^{-\alpha}||x^{\frac{m}{2}}u||_{0}^{2} + M_{4}\left(D_{0t}^{-\alpha}||x^{\frac{m}{2}}f||_{0}^{2} + ||x^{\frac{m}{2}}u_{0}(x)||_{0}^{2}\right).$$

$$(2.5)$$

С помощью леммы 2 [9] из (2.5) получаем следующую априорную оценку

$$||x^{\frac{m}{2}}u||_{0}^{2} + D_{0t}^{-\alpha}||x^{\frac{m}{2}}u_{x}||_{0}^{2} \le M\left(D_{0t}^{-\alpha}||x^{\frac{m}{2}}f||_{0}^{2} + ||x^{\frac{m}{2}}u_{0}(x)||_{0}^{2}\right), \tag{2.6}$$

где M=const>0, зависящая только от входных данных задачи (1.1)-(1.4), $D_{0t}^{-\alpha}u=\frac{1}{\Gamma(\alpha)}\int\limits_0^t\frac{ud\tau}{(t-\tau)^{1-\alpha}}-$ дробный интеграл Римана-Лиувилля порядка $\alpha,0<\alpha<1$.

Теорема 1. Пусть выполнены условия (1.5), тогда для решения u(x,t) задачи (1.1)-(1.4) справедлива априорная оценка (2.6), из чего следуют единственность и устойчивость решения по начальным данным и правой части.

3 Устойчивость и сходимость разностной схемы

На равномерной сетке $\overline{\omega}_{h\tau}$ дифференциальной задаче (1.1)-(1.4) поставим в соответствие монотонную разностную схему с порядком аппроксимации $O\left(\frac{h^2+\tau^2}{x}\right)$:

$$\overline{\varkappa} \Delta^{\alpha}_{0t_{j+\sigma}} y = \frac{\varkappa}{x_{i}^{m}} \left(x_{i-0.5}^{m} a_{i}^{j} y_{\bar{x}}^{(\sigma)} \right)_{x} + \frac{b^{-j}}{x_{i}^{m}} \left(x_{i-0.5}^{m} a_{i}^{j} y_{\bar{x},i}^{(\sigma)} \right) +$$

$$+\frac{b^{+j}}{x_i^m} \left(x_{i+0.5}^m a_{i+1}^j y_{x,i}^{(\sigma)} \right) + \sum_{s=0}^{j+\frac{1}{2}} \rho_{s,i}^j y_i^s \bar{\tau} + \varphi_i^j, \ (x,t) \in \omega_{h,\tau}, \tag{3.1}$$

$$\varkappa_0 a_1 y_{(x,0)}^{(\sigma)} = \frac{0.5h}{m+1} \left(\Delta_{0t_{j+\sigma}}^{\alpha} y_0 - \sum_{s=0}^{j+\frac{1}{2}} \rho_{0,s}^j y_0^s \bar{\tau} \right) - \mu, \ t \in \overline{\omega}_{\tau}, \ x = 0,$$
 (3.2)

$$y_N^{(\sigma)} = 0, \ t \in \overline{\omega}_\tau, \ x = l, \tag{3.3}$$

$$y(x,0) = u_0(x), \ x \in \overline{\omega}_h, \ t = 0, \tag{3.4}$$

где $\Delta_{0t_{j+\sigma}}^{\alpha}y=\frac{\tau^{1-\alpha}}{\Gamma(2-\alpha)}\sum_{s=0}^{\jmath}c_{j-s}^{(\alpha,\sigma)}y_t^s$ — дискретный аналог дробной производной в смысле Капуто порядка $\alpha,0<\alpha<1$ [10], обеспечивающий порядок точности $O(\tau^{3-\alpha})$,

$$\overline{\omega}_{\tau} = \{t_j = j\tau, \ j = 0, 1, ..., m, \ m\tau = T\},$$

$$\overline{\omega}_{h} = \{x_i = ih, \ i = 0, 1, ..., N, \ Nh = l\},$$

$$\overline{\omega}_{h\tau} = \overline{\omega}_{h} \times \overline{\omega}_{\tau} = \{(x_i, t_i), \ x \in \overline{\omega}_{h}, \ t \in \overline{\omega}_{\tau}\},$$

$$a_0^{(\alpha,\sigma)} = \sigma^{1-\alpha}, \ a_l^{(\alpha,\sigma)} = \left(l+\sigma\right)^{1-\alpha} - \left(l-1+\sigma\right)^{1-\alpha}, \ l \geq 1, \quad \sigma = 1-\frac{\alpha}{2},$$

$$b_l^{(\alpha,\sigma)} = \frac{1}{2-\alpha} \Big[(l+\sigma)^{2-\alpha} - (l-1+\sigma)^{2-\alpha} \Big] - \frac{1}{2} \Big[(l+\sigma)^{1-\alpha} + (l-1+\sigma)^{1-\alpha} \Big], \ l \geq 1,$$
 при $j=0, \quad c_0^{(\alpha,\sigma)} = a_0^{(\alpha,\sigma)};$ при $j>0, \quad c_s^{(\alpha,\sigma)} = \begin{cases} a_0^{(\alpha,\sigma)} + b_1^{(\alpha,\sigma)}, \ s = 0, \\ a_s^{(\alpha,\sigma)} + b_{s+1}^{(\alpha,\sigma)}, \ s = 0, \end{cases}$
$$a_s^{(\alpha,\sigma)} + b_{s+1}^{(\alpha,\sigma)} - b_s^{(\alpha,\sigma)}, \ 1 \leq s \leq j-1,$$

$$a_s^{(\alpha,\sigma)} > \frac{1-\alpha}{2} (s+\sigma)^{-\alpha} > 0, \ a_i^j = k(x_{i-0.5}, t^{j+\sigma}), \ b_i^{\pm j} = \frac{\overline{\varkappa}_i r_i^{\pm j+\sigma}}{k_i^{j+\sigma}},$$

$$y^{(\sigma)} = \sigma y^{j+1} + (1-\sigma) y^j, r_N = r(l,t) = r_N^{j+\sigma} \geq 0, \ r_0 = r(0,t) = r_0^{j+\sigma} \leq 0,$$

$$r = r^+ + r^-, \ r^+ = 0.5(r+|r|) \geq 0, \ r^- = 0.5(r-|r|) \leq 0,$$

$$\overline{\varkappa}_i = 1 + \frac{m(m-1)h^2}{24x_i^2}, \ i = \overline{1,N-1},$$

$$\varkappa_i = \frac{1}{1+R_i}, \ \rho_{i,s}^j = p_{i,s}^{j+\sigma}, \varphi_i^j = \begin{cases} \overline{\varkappa}_i f_i^{j+\sigma}, \ i \neq 0, N, \\ f_i^{j+\sigma}, \ i = 0, N. \end{cases} \quad \hbar = \begin{cases} 0.5h, i = 0, \\ h, i \neq 0, N, \end{cases}$$

$$R_i = \frac{0.5h|r_i|\overline{\varkappa}_i}{k_{i-0.5}}, \ \varkappa_0 = \frac{1}{1+\frac{0.5h|r_0|}{(m+1)a_1}}, \ r_0 \leq 0, \ |r| = r^+ - r^-, \ \overline{\varkappa}^m = \varkappa_{i-0.5}^m,$$

$$\mu = \frac{0.5h}{m+1} \varphi_0, \ Y = \hat{y} + y, \ \hat{y} = y^{j+1}, \ y_t = \frac{\hat{y} - y}{\tau}, \ y = y_i^j = y(x_i, t_j), \ t^* = t^{j+\sigma}.$$

$$\varkappa = \frac{1}{1+R}, \ R = \frac{0.5h|r|}{k} - \text{разностное число Рейнольдса},$$

$$\sum_{s=0}^{j+\frac{1}{2}} v^s \bar{\tau} = \sum_{s=1}^{j-1} v^s \tau + 0.5\tau \left(v^0 + v^j + v^{j+\frac{1}{2}}\right), \ \bar{\tau} = \begin{cases} 0.5\tau, \ j = 0, m, m + \frac{1}{2}, \\ \tau, \ j \neq 0, m, m + \frac{1}{2}. \end{cases}$$

Введем скалярные произведения и норму:

$$\left(u,v\right) = \sum_{i=1}^{N-1} u_i v_i h, \ \left(1,u^2\right) = \|u\|_0^2, \ \left(1,u_{\overline{x}}^2\right] = \|u_{\overline{x}}\|_0^2, \ \left(1,u^2\right] = \sum_{i=1}^N u_i^2 \hbar.$$

Найдем теперь априорную оценку, для этого умножим (3.1) скалярно на $x^m y^{(\sigma)}$:

$$\left(\overline{\varkappa}\Delta^{\alpha}_{0t_{j+\sigma}}y,x^{m}y^{(\sigma)}\right)=\left(\varkappa(x^{m}_{i-0.5}a^{j}_{i}y^{(\sigma)}_{\bar{x}})_{x},y^{(\sigma)}\right)+\left(b^{-j}x^{m}_{i-0.5}a^{j}_{i}y^{(\sigma)}_{\bar{x},i},y^{(\sigma)}\right)+$$

$$+\left(b^{+j}x_{i+0.5}^{m}a_{i+1}^{j}y_{x,i}^{(\sigma)},y^{(\sigma)}\right)+\left(\sum_{s=0}^{j+\frac{1}{2}}\rho_{s,i}^{j}y_{i}^{s}\bar{\tau},x^{m}y^{(\sigma)}\right)+\left(\varphi,x^{m}y^{(\sigma)}\right). \tag{3.5}$$

Справедлива следующая [10]

Лемма 3. Для любой функции y(t), определенной на сетке $\bar{\omega}_{\tau}$, справедливо неравенство

$$y^{(\sigma)} \Delta_{0t_{j+\sigma}}^{\alpha} y \ge \frac{1}{2} \Delta_{0t_{j+\sigma}}^{\alpha} (y^2).$$

Оценим суммы, входящие в (3.5), с учетом леммы 3:

$$\left(\overline{\varkappa}\Delta_{0t_{j+\sigma}}^{\alpha}y, x^{m}y^{(\sigma)}\right) \geq M_{1}\left(\frac{1}{2}, \Delta_{0t_{j+\sigma}}^{\alpha}(x^{\frac{m}{2}}y)^{2}\right) \geq \frac{1}{4}\Delta_{0t_{j+\sigma}}^{\alpha}\|x^{\frac{m}{2}}y\|_{0}^{2}, \qquad (3.6)$$

$$\left(\varkappa(x_{i-0.5}^{m}a_{i}^{j}y_{\bar{x}}^{(\sigma)})_{x}, y^{(\sigma)}\right) = \varkappa x_{i-0.5}^{m}a_{i}^{j}y_{\bar{x}}^{(\sigma)}y^{(\sigma)}\Big|_{0}^{N} - \left(\overline{x}_{i-0.5}^{m}a_{i}^{j}y_{\bar{x}}^{(\sigma)}, (\varkappa y^{(\sigma)})_{\bar{x}}\right] = \\
= \varkappa x_{i-0.5}^{m}a_{i}^{j}y^{(\sigma)}y_{\bar{x}}^{(\sigma)}\Big|_{0}^{N} - \left(\overline{x}^{m}a\varkappa_{\bar{x}}, y_{\bar{x}}^{(\sigma)}y^{(\sigma)}\right] - \left(x_{i-0.5}^{m}a\varkappa^{(-1)}, (y_{\bar{x}}^{(\sigma)})^{2}\right] \leq \\
\leq x_{i-0.5}^{m}y^{(\sigma)}\varkappa a_{i}^{j}y_{\bar{x}}^{(\sigma)}\Big|_{0}^{N} + \varepsilon \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}\|_{0}^{2} + M_{3}^{\varepsilon}\|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2} - M_{4}\|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}\|_{0}^{2}. \qquad (3.7)$$

$$\left(b^{-j}x_{i-0.5}^{m}a_{i}^{j}y_{\bar{x},i}^{(\sigma)}, y^{(\sigma)}\right) + \left(b^{+j}x_{i+0.5}^{m}a_{i+1}^{j}y_{x,i}^{(\sigma)}, y^{(\sigma)}\right) \leq \\
\leq \varepsilon \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}\|_{0}^{2} + M_{5}^{\varepsilon}\|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2}. \qquad (3.8)$$

$$\Big(\sum_{s=0}^{j+\frac{1}{2}}\rho_{i,s}^{j}y_{i}^{s}\bar{\tau},x^{m}y^{(\sigma)}\Big)\leq \Big(\frac{1}{2},(x^{\frac{m}{2}}y^{(\sigma)})^{2}+\Big(\sum_{s=0}^{j+\frac{1}{2}}\rho_{i,s}^{j}x^{\frac{m}{2}}y_{i}^{s}\bar{\tau}\Big)^{2}\Big)\leq \frac{1}{2}\|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2}+$$

$$+\left(\frac{1}{2}, \sum_{s=0}^{j+\frac{1}{2}} (\rho^s)^2 \bar{\tau} \sum_{s=0}^{j+\frac{1}{2}} (x^{\frac{m}{2}} y_i^s)^2 \bar{\tau}\right) \le \frac{1}{2} \|x^{\frac{m}{2}} y^{(\sigma)}\|_0^2 + M_6 \sum_{s=0}^{j+\frac{1}{2}} \|x^{\frac{m}{2}} y^s\|_0^2 \bar{\tau}.$$
(3.9)

$$\left(\varphi, x^m y^{(\sigma)}\right) \le \frac{1}{2} \|x^{\frac{m}{2}} y^{(\sigma)}\|_0^2 + \frac{1}{2} \|x^{\frac{m}{2}} \varphi\|_0^2. \tag{3.10}$$

Учитывая преобразования (3.6)-(3.10), из (3.5) находим

$$\frac{1}{4} \Delta_{0t_{j+\sigma}}^{\alpha} \|x^{\frac{m}{2}}y\|_{0}^{2} + M_{4} \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}]\|_{0}^{2} \leq \bar{x}^{m} y^{(\sigma)} \varkappa a y_{\bar{x}}^{(\sigma)} \Big|_{0}^{N} +$$

$$+2\varepsilon \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}]\|_{0}^{2} + M_{8}^{\varepsilon} \|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2} + M_{7}\sum_{s=0}^{j+\frac{1}{2}} \|x^{\frac{m}{2}}y^{s}\|_{0}^{2}\bar{\tau} + \frac{1}{2} \|x^{\frac{m}{2}}\varphi\|_{0}^{2}.$$
(3.11)

Преобразуем первое выражение в правой части (3.11), тогда получим

$$\bar{x}^{m}y^{(\sigma)}\varkappa ay_{\bar{x}}^{(\sigma)}\Big|_{0}^{N} = -x_{0.5}^{m}y_{0}^{(\sigma)}\varkappa_{0}a_{1}y_{x,0}^{(\sigma)} = \\
= -x_{0.5}^{m}y_{0}^{(\sigma)}\Big[\frac{0.5h}{m+1}\Big(\Delta_{0t_{j+\sigma}}^{\alpha}y_{0} - \sum_{s=0}^{j+\frac{1}{2}}\rho_{0,s}^{j}y_{0}^{s}\bar{\tau}\Big) - \mu\Big] = \\
= x_{0.5}^{m}y_{0}^{(\sigma)}\mu - \frac{0.5h}{m+1}x_{0.5}^{m}y_{0}^{(\sigma)}\Delta_{0t_{j+\sigma}}^{\alpha}y_{0} + \frac{hx_{0.5}^{m}}{2(m+1)}y_{0}^{(\sigma)}\sum_{s=0}^{j+\frac{1}{2}}\rho_{0,s}^{j}y_{0}^{s}\bar{\tau} \le \mu^{2} + \\
+M_{9}\Big(x_{0.5}^{\frac{m}{2}}y_{0}^{(\sigma)}\Big)^{2} - \frac{0.5h}{2(m+1)}\Delta_{0t_{j+\sigma}}^{\alpha}\Big(x_{0.5}^{\frac{m}{2}}y_{0}\Big)^{2} + M_{10}\sum_{s=0}^{j+\frac{1}{2}}\Big(x_{0.5}^{\frac{m}{2}}y_{0}^{s}\Big)^{2}\bar{\tau}. \quad (3.12)$$

Учитывая (3.12), из (3.11) получаем

$$\Delta_{0t_{i+\sigma}}^{\alpha} \|x^{\frac{m}{2}}y\|_{1}^{2} + \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}]\|_{0}^{2} \leq \varepsilon M_{11} \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}]\|_{0}^{2} + M_{12}^{\varepsilon} \|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2} +$$

$$+M_{13} \sum_{s=0}^{j+\frac{1}{2}} \|x^{\frac{m}{2}} y^{s}\|_{1}^{2} \bar{\tau} + M_{14} \Big(\|x^{\frac{m}{2}} \varphi\|_{0}^{2} + \mu^{2} \Big), \tag{3.13}$$

где $\|x^{\frac{m}{2}}y\|_1^2 = \|x^{\frac{m}{2}}y\|_0^2 + \left(x_{0.5}^{\frac{m}{2}}y_0\right)^2$.

Выбирая $\varepsilon = \frac{1}{2M_{11}}$ из (3.11) получаем

$$\Delta_{0t_{j+\sigma}}^{\alpha} \|x^{\frac{m}{2}}y\|_{1}^{2} + \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}\|_{0}^{2} \le$$

$$\leq M_{15} \|x^{\frac{m}{2}} y^{(\sigma)}\|_{0}^{2} + M_{16} \sum_{s=0}^{j+\frac{1}{2}} \|x^{\frac{m}{2}} y^{s}\|_{1}^{2} \bar{\tau} + M_{17} (\|x^{\frac{m}{2}} \varphi\|_{0}^{2} + \mu^{2}).$$
(3.14)

Учитывая, что

$$\sum_{s=0}^{j+\frac{1}{2}} \left(\|x^{\frac{m}{2}} y^s\|_0^2 + \left(x_{0.5}^{\frac{m}{2}} y_0^s \right)^2 \right) \bar{\tau} =$$

$$= \sum_{s=0}^{j} \left(\|x^{\frac{m}{2}} y^{s}\|_{0}^{2} + \left(x_{0.5}^{\frac{m}{2}} y_{0}^{s}\right)^{2} \right) \bar{\tau} + 0.5 \tau \left(\|x^{\frac{m}{2}} y^{j}\|_{0}^{2} + \left(x_{0.5}^{\frac{m}{2}} y_{0}^{j}\right)^{2} \right)$$

перепишем (3.14) в другой форме

$$\Delta_{0t_{i+\sigma}}^{\alpha} \|x^{\frac{m}{2}}y\|_{1}^{2} \le M_{18}^{\sigma} \|x^{\frac{m}{2}}y^{j+1}\|_{1}^{2} + M_{19}^{\sigma} \|x^{\frac{m}{2}}y^{j}\|_{1}^{2} + M_{20}F^{j}. \tag{3.15}$$

где
$$F^j = \sum_{s=0}^j \|x^{\frac{m}{2}}y^s\|_1^2 \bar{\tau} + \|x^{\frac{m}{2}}\varphi\|_0^2 + \mu^2.$$

На основании леммы 7 [12] из (3.15) получаем

$$||x^{\frac{m}{2}}y^{j+1}||_{1}^{2} \le M_{21} \left(||x^{\frac{m}{2}}y^{0}||_{1}^{2} + \max_{0 \le j' \le j} F^{j'} \right).$$
 (3.16)

где M_{21} - положительная постоянная, не зависящая от h и au. Из (3.16) получим

$$||x^{\frac{m}{2}}y^{j+1}||_{1}^{2} \leq M_{22} \left(||x^{\frac{m}{2}}y^{0}||_{1}^{2} + \max_{0 \leq j' \leq j} \left(\sum_{s=0}^{j} ||x^{\frac{m}{2}}y^{s}||_{1}^{2} \bar{\tau} + ||x^{\frac{m}{2}}\varphi||_{0}^{2} + \mu^{2} \right) \right).$$
(3.17)

Введя обозначение $g^j = \max_{0 \le j' \le j} \|x^{\frac{m}{2}} y^{j'}\|_1^2$, из (3.17) получим

$$g^{j+1} \le M_{23} \sum_{s=0}^{j} g^{s} \bar{\tau} + M_{24} F_1^{j} \le M_{25} \sum_{s=0}^{j} g^{s} \tau + M_{24} F_1^{j}, \tag{3.18}$$

где
$$F_1^j = \|x^{\frac{m}{2}}y^0\|_1^2 + \max_{0 \le j' \le j} \left(\|x^{\frac{m}{2}}\varphi\|_0^2 + \mu^2 \right).$$

На основании леммы 4 (см.[17, стр.171]) из (3.18) получаем

$$||x^{\frac{m}{2}}y^{j+1}||_{1}^{2} \leq M\left(||x^{\frac{m}{2}}y^{0}||_{1}^{2} + \max_{0 \leq j' \leq j} \left(||x^{\frac{m}{2}}\varphi^{j'}||_{0}^{2} + \mu^{2}\right)\right). \tag{3.19}$$

где M - положительное постоянное, не зависящее от h и τ .

Справедлива следующая

Теорема 2. Пусть выполнены условия (1.5), тогда существуют такие h_0, τ_0 , что если $h \leq h_0, \tau \leq \tau_0$, то для решения разностной задачи (3.1)-(3.4) справедлива априорная оценка (3.19).

Из оценки (3.19) следуют единственность и устойчивость решения разностной схемы (3.1)-(3.4) по начальным данным и правой части.

Пусть u(x,t)— решение задачи $(1.1)-(1.4),\ y(x_i,t_j)=y_i^j$ -решение разностной задачи (3.1)-(3.4). Для оценки точности разностной схемы (3.1)-(3.4) рассмотрим разность $z_i^j=y_i^j-u_i^j$, где $u_i^j=u(x_i,t_j).$ Тогда, подставляя y=z+u в соотношения (3.1)-(3.4), получаем задачу для функции z

$$\overline{\varkappa}\Delta^{\alpha}_{0t_{j+\sigma}}z = \frac{\varkappa}{x_i^m} \left(x_{i-0.5}^m a_i^j z_{\bar{x}}^{(\sigma)} \right)_x + \frac{b^{-j}}{x_i^m} \left(x_{i-0.5}^m a_i^j z_{\bar{x},i}^{(\sigma)} \right) +$$

$$+\frac{b^{+j}}{x_i^m} \left(x_{i+0.5}^m a_{i+1}^j z_{x,i}^{(\sigma)} \right) + \sum_{s=0}^{j+\frac{1}{2}} \rho_{s,i}^j z_i^s \bar{\tau} + \Psi_i^j, \ (x,t) \in \omega_{h,\tau}, \tag{3.20}$$

$$\varkappa_0 a_1 z_{(x,0)}^{(\sigma)} = \frac{0.5h}{m+1} \left(\Delta_{0t_{j+\sigma}}^{\alpha} z_0 - \sum_{s=0}^{j+\frac{1}{2}} \rho_{0,s}^j z_0^s \bar{\tau} \right) - \nu, \ t \in \overline{\omega}_{\tau}, \ x = 0,$$
 (3.21)

$$z_N^{(\sigma)} = 0, \ t \in \overline{\omega}_\tau, \ x = l, \tag{3.22}$$

$$z(x,0) = 0, \ x \in \overline{\omega}_h, \ t = 0, \tag{3.23}$$

где $\Psi=O\Big(\frac{h^2+\tau^2}{x}\Big),\, \nu=O\Big(h^2+\tau^2\Big)$ - погрешности аппроксимации дифференциальной задачи (1.1)-(1.4) разностной схемой (3.1)-(3.4) в классе решении u=u(x,t) задачи (1.1)-(1.4).

Применяя априорную оценку (3.19) к решению задачи (3.20) - (3.23), получаем неравенство

$$||x^{\frac{m}{2}}z^{j+1}||_1^2 \le M \max_{0 \le j' \le j} \left(||x^{\frac{m}{2}}\Psi^{j'}||_0^2 + \nu^2 \right), \tag{3.24}$$

где M - положительная постоянная, не зависящая от h и au.

Из априорной оценки (3.24) следует сходимость решения разностной задачи (3.1) – (3.4) к решению дифференциальной задачи (1.1) – (1.4) в смысле нормы $||x^{\frac{m}{2}}z^{j+1}||_1^2$ на каждом слое так, что если существуют такие τ_0 , h_0 , то при $\tau \leq \tau_0$, $h \leq h_0$ справедлива априорная оценка

$$||x^{\frac{m}{2}}(y^{j+1} - u^{j+1})||_1 \le M||x^{\frac{m}{2}-1}||_1 (h^2 + \tau^2) \le \overline{M} (h^2 + \tau^2),$$

где $\overline{M}=const>0$, не зависящая от h и au.

4 Постановка третьей краевой задачи и априорная оценка в дифференциальной форме

Рассмотрим краевую задачу для уравнения (1.1) с условием третьего рода. Для этого заменим условие (1.3) условием вида

$$-k(l,t)u_x(l,t) = \beta(t)u(l,t) - \mu(t), \ |\beta| \le c_2.$$
(4.1)

Для получения априорной оценки решения умножим (1.1) скалярно на $x^m u$. Тогда, учитывая преобразования (2.2)-(2.6), получим

$$\frac{1}{2}\partial_{0t}^{\alpha} \|x^{\frac{m}{2}}u\|_{0}^{2} + c_{0} \|x^{\frac{m}{2}}u_{x}\| \le x^{m}uku_{x}|_{0}^{l} + \varepsilon \|x^{\frac{m}{2}}u_{x}\|_{0}^{2} +$$

$$+M_1^{\varepsilon} \|x^{\frac{m}{2}}u\|_0^2 + M_2 \int_0^t \|x^{\frac{m}{2}}u\|_0^2 d\tau + \frac{1}{2} \|x^{\frac{m}{2}}f\|_0^2. \tag{4.2}$$

Преобразуем первое слагаемое в правой части (4.2)

$$x^{m}uku_{x}|_{0}^{l} = l^{m}u(l,t)\Big(\mu(t) - \beta(t)u(l,t)\Big) = l^{m}\mu(t)u(l,t) - l^{m}\beta(t)u^{2}(l,t) \le \varepsilon \|x^{\frac{m}{2}}u_{x}\|_{0}^{2} + M_{3}^{\varepsilon}\|x^{\frac{m}{2}}u\|_{0}^{2} + \mu^{2}(t).$$

$$(4.3)$$

Учитывая (4.3), из (4.2) при $\varepsilon = \frac{c_0}{4}$ получим

$$\partial_{0t}^{\alpha} \|x^{\frac{m}{2}}u\|_{0}^{2} + \|x^{\frac{m}{2}}u_{x}\|_{0}^{2} \le M_{4} \|x^{\frac{m}{2}}u\|_{0}^{2} +$$

$$+M_5 \int_0^t \|x^{\frac{m}{2}}u\|_0^2 d\tau + M_6 \Big(\|x^{\frac{m}{2}}f\|_0^2 + \mu^2(t)\Big), \tag{4.4}$$

Применяя к обеим частям неравенства(4.4) оператор дробного интегрирования $D_{0t}^{-\alpha}$, на основании леммы 2 [9] из (4.4) находим априорную оценку

$$||x^{\frac{m}{2}}u||_{0}^{2} + D_{0t}^{-\alpha}||x^{\frac{m}{2}}u_{x}||_{0}^{2} \leq$$

$$\leq M\left(D_{0t}^{-\alpha}\left(||x^{\frac{m}{2}}f||_{0}^{2} + \mu^{2}(t)\right) + ||x^{\frac{m}{2}}u_{0}(x)||_{0}^{2}\right), \tag{4.5}$$

где M=const>0, зависящее только от входных данных задачи (1.1), (1.2), (4.1), (1.4).

Справедлива следующая

Теорема 3. Если выполнены условия (1.5) тогда для решения u(x,t) задачи (1.1), (1.2),(4.1),(1.4) справедлива априорная оценка (4.5).

Из оценки (4.5) следуют единственность и устойчивость решения по начальным данным и правой части.

5 Устойчивость и сходимость разностной схемы

На равномерной сетке $\overline{\omega}_{h\tau}$ дифференциальной задаче (1.1),(1.2),(4.1),(1.4) поставим в соответствие разностную схему

$$\overline{\varkappa}\Delta^{\alpha}_{0t_{j+\sigma}}y = \frac{\varkappa}{x_i^m} \left(x_{i-0.5}^m a_i^j y_{\bar{x}}^{(\sigma)} \right)_x + \frac{b^{-j}}{x_i^m} \left(x_{i-0.5}^m a_i^j y_{\bar{x},i}^{(\sigma)} \right) +$$

$$+\frac{b^{+j}}{x_i^m} \left(x_{i+0.5}^m a_{i+1}^j y_{x,i}^{(\sigma)} \right) + \sum_{s=0}^{j+\frac{1}{2}} \rho_{i,s}^j y_i^s \bar{\tau} + \varphi_i^j, \ (x,t) \in \omega_{h,\tau}, \tag{5.1}$$

$$\varkappa_0 a_1 y_{x,0}^{(\sigma)} = \frac{0.5h}{m+1} \left(\Delta_{0t_{j+\sigma}}^{\alpha} y_0 - \sum_{s=0}^{j+\frac{1}{2}} \rho_{0,s}^j y_0^s \bar{\tau} \right) - \mu_1, \ t \in \overline{\omega}_{\tau}, \ x = 0,$$
 (5.2)

$$-\varkappa_N a_N y_{\bar{x},N}^{(\sigma)} = \tilde{\varkappa} \beta^{j+\sigma} y_N^{(\sigma)} + 0.5h \left(\Delta_{0t_{j+\sigma}}^{\alpha} y_N - \sum_{s=0}^{j+\frac{1}{2}} \rho_{N,s}^j y_N^s \bar{\tau} \right) - \mu_2, \ t \in \overline{\omega}_{\tau}, \ x = l,$$

$$(5.2)$$

$$y(x,0) = u_0(x), \ x \in \overline{\omega}_h, \ t = 0, \tag{5.4}$$

где

$$\mu_1 = 0.5h\varphi_0^j, \quad \mu_2 = \tilde{\varkappa}\mu^{j+\sigma} + 0.5h\varphi_N^j, \quad \tilde{\varkappa} = 1 + \frac{0.5hm}{l} = \frac{1}{1 - \frac{0.5hm}{l}},$$

$$\varkappa_0 = \frac{1}{1 + \frac{0.5h|r_0|}{(m+1)k_{0.5}^{j+\sigma}}}, \ r_0^{j+\sigma} \leq 0, \varkappa_N = \frac{1}{1 + 0.5h\frac{|r_N^{j+\sigma}|}{k_{N-0.5}}}, \ \text{если} \ r_N^{j+\sigma} \geq 0, \ t^* = t^{j+1/2},$$

Перепишем задачу (5.1)-(5.4) в операторной форме

$$\begin{cases} \overline{\overline{\varkappa}} \Delta_{0t_{j+\sigma}}^{\alpha} y = \overline{\Lambda}(t^{j+\sigma}) y^{(\sigma)} + \overline{\Phi}, \\ y(x,0) = u_0(x), \end{cases}$$
 (5.5)

где

$$\overline{\overline{\varkappa}} = \begin{cases} \overline{\varkappa}_i, & x \in \omega_h, \\ 1, & x = 0, l, \end{cases} \qquad \overline{\varkappa}_i = 1 + \frac{m(m-1)h^2}{24x_i^2}, \quad \overline{\Phi} = \begin{cases} \varphi = \varphi_i, & (x,t) \in \omega_{h\tau} \\ \varphi^- = \frac{m+1}{0.5h}\mu_1, & x = 0 \\ \varphi^+ = \frac{1}{0.5h}\mu_2, & x = l. \end{cases}$$

$$\overline{\Lambda}y^{(\sigma)} = \begin{cases} \tilde{\Lambda}y_{i}^{(\sigma)} = \frac{\varkappa_{i}}{x_{i}^{m}} \left(x_{i-0.5}^{m} a_{i}^{j} y_{\bar{x},i}^{(\sigma)}\right)_{x} + \frac{b^{-j}}{x_{i}^{m}} \left(x_{i-0.5}^{m} a_{i}^{j} y_{\bar{x},i}^{(\sigma)}\right) + \\ + \frac{b^{+j}}{x_{i}^{m}} \left(x_{i+0.5}^{m} a_{i+1}^{j} y_{x,i}^{(\sigma)}\right) + \sum_{s=0}^{j+\frac{1}{2}} \rho_{i,s}^{j} y_{i}^{s} \bar{\tau}, \\ \Lambda^{-}y_{0}^{(\sigma)} = \frac{m+1}{0.5h} \left(\varkappa_{0} a_{1} y_{x,0}^{(\sigma)} + \frac{h}{2} \sum_{s=0}^{j+\frac{1}{2}} \rho_{0,s}^{j} y_{0}^{s} \bar{\tau}\right), \ i = 0 \\ \Lambda^{+}y_{N}^{(\sigma)} = -\frac{1}{0.5h} \left(\varkappa_{N} a_{N} y_{\bar{x},N}^{(\sigma)} + \tilde{\varkappa} \beta y_{N}^{(\sigma)} - 0.5h \sum_{s=0}^{j+\frac{1}{2}} \rho_{N,s}^{j} y_{N}^{s} \bar{\tau}\right), \ x = l, \end{cases}$$

Введем скалярное произведение и норму в следующем виде

$$(u,v] = \sum_{i=1}^{N} u_i v_i \hbar, \ \|u\|_0^2 = \sum_{i=1}^{N} u_i^2 \hbar, \ \hbar = \begin{cases} 0.5h, \ i = N, \\ h, i \neq N. \end{cases}$$

Умножим (5.5) теперь скалярно на $x^m y^{(\sigma)}$, тогда получим

$$\left(\overline{\overline{\varkappa}}\Delta_{0t_{j+\sigma}}^{\alpha}y, x^{m}y^{(\sigma)}\right] = \left(\overline{\Lambda}(t_{j+\sigma})y^{(\sigma)}, x^{m}y^{(\sigma)}\right] + \left(\overline{\Phi}, x^{m}y^{(\sigma)}\right]. \tag{5.6}$$

Преобразуем суммы, входящие в тождество (5.6):

$$\left(\overline{\varkappa}\Delta_{0t_{j+\sigma}}^{\alpha}y, x^{m}y^{(\sigma)}\right) \geq \left(\overline{\varkappa}, \Delta_{0t}^{\alpha}\left(x^{\frac{m}{2}}y\right)^{2}\right]. \tag{5.7},$$

$$\left(\overline{\Lambda}(t_{j+\sigma})y^{(\sigma)}, x^{m}y^{(\sigma)}\right) = \left(\tilde{\Lambda}y^{(\sigma)}, x^{m}y^{(\sigma)}\right) + 0.5h\Lambda^{+}y_{N}^{(\sigma)}x_{N}^{m}y_{N}^{(\sigma)} =$$

$$= \left(\varkappa\left(x_{i-0.5}^{m}a_{i}^{j}y_{\bar{x}}^{(\sigma)}\right)_{x}, y^{(\sigma)}\right) + \left(b^{-j}\left(x_{i-0.5}^{m}a_{i}^{j}y_{\bar{x}}^{(\sigma)}\right), y^{(\sigma)}\right) +$$

$$+ \left(b^{+j}\left(x_{i+0.5}^{m}a_{i+1}^{j}y_{x,i}^{(\sigma)}\right), y^{(\sigma)}\right) + \left(\sum_{s=0}^{j+\frac{1}{2}}\rho_{i,s}^{j}y_{s}^{s}\bar{\tau}, x^{m}y^{(\sigma)}\right) +$$

$$+ x_{N}^{m}y_{N}^{(\sigma)}\left(-\varkappa_{N}a_{N}y_{\bar{x},N}^{(\sigma)} - \tilde{\varkappa}\beta y_{N}^{(\sigma)} + 0.5h\sum_{s=0}^{j+\frac{1}{2}}\rho_{N,s}^{j}y_{N}^{s}\bar{\tau}}\right) =$$

$$= -\left(\overline{x}^{m}a_{i}y_{\bar{x}}^{(\sigma)}, (\varkappa y^{(\sigma)})_{\bar{x}}\right] + \varkappa_{N}a_{N}y_{\bar{x},N}^{(\sigma)}\left(\overline{x}_{N}^{m} - x_{N}^{m}\right)y_{N}^{(\sigma)} -$$

$$-\varkappa_{0}x_{0.5}^{m}a_{1}y_{x,0}^{(\sigma)}y_{0}^{(\sigma)} - \tilde{\varkappa}x_{N}^{m}\beta(y_{N}^{(\sigma)})^{2} + 0.5hx_{N}^{m}y_{N}^{(\sigma)}\sum_{s=0}^{j+\frac{1}{2}}\rho_{i,s}^{j}y_{N}^{s}\bar{\tau} + \left(b^{-j}\bar{x}^{m}a_{i}, y_{\bar{x}}^{(\sigma)}y^{(\sigma)}\right) +$$

$$+ \left(b^{+j}x_{i+0.5}^{m}a_{i+1}^{j}, y_{x}^{(\sigma)}y^{(\sigma)}\right) + \left(\sum_{s=0}^{j+\frac{1}{2}}\rho_{i,s}^{j}y_{i}^{s}\bar{\tau}, x^{m}y^{(\sigma)}\right). \tag{5.8}$$

Преобразуем первое, шестое и седьмое слагаемые в правой части (5.8)

$$-\left(\overline{x}^{m}a_{i}y_{\bar{x}}^{(\sigma)}, (\varkappa y^{(\sigma)})_{\bar{x}}\right] = -\left(\overline{x}^{m}a_{i}\varkappa_{\bar{x}}, y_{\bar{x}}^{(\sigma)}y^{(\sigma)}\right] - \left(\overline{x}^{m}a_{i}\varkappa^{(-1)}, (y_{\bar{x}}^{(\sigma)})^{2}\right] \leq$$

$$\leq -M_{1}\|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}]\|_{0}^{2} + \varepsilon\|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}]\|_{0}^{2} + M_{2}^{\varepsilon}\|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2}.$$

$$\left(b^{-j}\left(\overline{x}^{m}a_{i}, y_{\bar{x}}^{(\sigma)}\right), y^{(\sigma)}\right) + \left(b^{+j}\left(x_{i+0.5}^{m}a_{i+1}^{j}y_{x}^{(\sigma)}\right), y^{(\sigma)}\right) \leq$$

$$\leq \varepsilon\|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}\|_{0}^{2} + M_{3}^{\varepsilon}\|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2}.$$

$$\left(\sum_{s=0}^{j+\frac{1}{2}}\rho_{i,s}^{j}y_{i}^{s}\bar{\tau}, x^{m}y^{(\sigma)}\right) + 0.5hx_{N}^{m}y_{N}^{(\sigma)}\sum_{s=0}^{j+\frac{1}{2}}\rho_{N,s}^{j}y_{N}^{s}\bar{\tau} = \left(\sum_{s=0}^{j+\frac{1}{2}}\rho_{i,s}^{j}y_{i}^{s}\bar{\tau}, x^{m}y^{(\sigma)}\right] \leq$$

$$\left(\sum_{s=0}^{j+\frac{1}{2}}\rho_{i,s}^{j}y_{i}^{s}\bar{\tau}, x^{m}y^{(\sigma)}\right) + 0.5hx_{N}^{m}y_{N}^{(\sigma)}\sum_{s=0}^{j+\frac{1}{2}}\rho_{N,s}^{j}y_{N}^{s}\bar{\tau} = \left(\sum_{s=0}^{j+\frac{1}{2}}\rho_{i,s}^{j}y_{i}^{s}\bar{\tau}, x^{m}y^{(\sigma)}\right] \leq$$

$$\leq \left(\frac{1}{2}, (x^{\frac{m}{2}}y^{(\sigma)})^{2} + \left(x^{\frac{m}{2}}\sum_{s=0}^{j+\frac{1}{2}}\rho_{i,s}^{j}y_{i}^{s}\bar{\tau}\right)^{2}\right) \leq \frac{1}{2}\|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2} + \left(\frac{1}{2}, x^{m}\sum_{s=0}^{j+\frac{1}{2}}\rho_{s}^{2}\bar{\tau}\sum_{s=0}^{j+\frac{1}{2}}(y_{i}^{s})^{2}\bar{\tau}\right] \leq \frac{1}{2}\|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2} + M_{4}\sum_{s=0}^{j+\frac{1}{2}}\|x^{\frac{m}{2}}y^{s}\|_{0}^{2}\bar{\tau}. \tag{5.11}$$

Учитывая (5.9)-(5.11), из(5.8) находим

$$\left(\overline{\Lambda}(t_{j+\sigma})y^{(\sigma)}, x^{m}y^{(\sigma)}\right] \leq -M_{1} \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}]\|_{0}^{2} + \varepsilon \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}]\|_{0}^{2} +
+M_{5}^{\varepsilon} \|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2} + M_{3} \sum_{s=0}^{j+\frac{1}{2}} \|x^{\frac{m}{2}}y^{s}\|_{0}^{2} \bar{\tau} +
+(\bar{x}_{N}^{m} - x_{N}^{m})y_{N}^{(\sigma)} \varkappa_{N} a_{N} y_{\bar{x},N}^{(\sigma)} - \varkappa_{0} x_{0.5}^{m} a_{1} y_{x,0}^{(\sigma)} y_{0}^{(\sigma)} - \widetilde{\varkappa} \beta x_{N}^{m} \left(y_{N}^{(\sigma)}\right)^{2}.$$

$$\left(\overline{\Phi}, x^{m} y^{(\sigma)}\right] = \left(\varphi, x^{m} y^{(\sigma)}\right) + 0.5h \varphi^{+} x_{N}^{m} y_{N}^{(\sigma)} = \left(\varphi, x^{m} y^{(\sigma)}\right) + x_{N}^{m} \mu_{2} y_{N}^{(\sigma)}.$$
(5.13)

Учитывая преобразования (5.7)-(5.13), из(5.6) получим

$$\left(\frac{\overline{\varkappa}}{2}, \Delta_{0t_{j+\sigma}}^{\alpha} \left(x^{\frac{m}{2}}y\right)^{2}\right] + M_{1} \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}\|_{0}^{2} \leq 2\varepsilon \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}\|_{0}^{2} + M_{5}^{\varepsilon} \|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2} + M_{5}^{\varepsilon} \|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2} + M_{6}\sum_{s=0}^{j+\frac{1}{2}} \|x^{\frac{m}{2}}y^{s}\|_{0}^{2} \bar{\tau} + y_{N}^{(\sigma)} \left(\bar{x}_{N}^{m} - x_{N}^{m}\right) \varkappa_{N} a_{N} y_{\bar{x},N}^{(\sigma)} - (x_{N}^{m}y_{N}^{(\sigma)}) \varkappa_{0} a_{1} y_{x,0}^{(\sigma)} - \widetilde{\varkappa} \beta x_{N}^{m} \left(y_{N}^{(\sigma)}\right)^{2} + \left(\varphi, x^{m}y^{(\sigma)}\right) + x_{N}^{m} \mu_{2} y_{N}^{(\sigma)}. \tag{5.14}$$

Преобразуем четвертое, пятое, шестое и восьмое слагаемые в правой части (5.14) с учетом (5.2),(5.3)

$$\begin{split} \left(\bar{x}_{N}^{m}-x_{N}^{m}\right)y_{N}^{(\sigma)}\varkappa_{N}a_{N}y_{\bar{x}N}^{(\sigma)}-x_{0.5}^{m}y_{0}^{(\sigma)}\varkappa_{0}a_{1}y_{x,0}^{(\sigma)}+x_{N}^{m}y_{N}^{(\sigma)}\left(\mu_{2}-\tilde{\varkappa}\beta y_{N}^{(\sigma)}\right)=\\ &=\left(\bar{x}_{N}^{m}-x_{N}^{m}\right)y_{N}^{(\sigma)}\left[\mu_{2}-\tilde{\varkappa}\beta y_{N}^{(\sigma)}-0.5h\left(\Delta_{0t_{j+\sigma}}^{\alpha}y_{N}-\sum_{s=0}^{j+\frac{1}{2}}\rho_{N,s}^{j}y_{N}^{s}\bar{\tau}\right)\right]+\\ &+x_{0.5}^{m}y_{0}^{(\sigma)}\left[\mu_{1}-\frac{0.5h}{m+1}\left(\Delta_{0t_{j+\sigma}}^{\alpha}y_{0}-\sum_{s=0}^{j+\frac{1}{2}}\rho_{0,s}^{j}y_{0}^{s}\bar{\tau}\right)\right]-\tilde{\varkappa}\beta x_{N}^{m}(y_{N}^{(\sigma)})^{2}+x_{N}^{m}\mu_{2}y_{N}^{(\sigma)}=\\ &=\bar{x}_{N}^{m}y_{N}^{(\sigma)}\mu_{2}-\bar{x}_{N}^{m}\tilde{\varkappa}\beta(y_{N}^{(\sigma)})^{2}-0.5h\left(\bar{x}_{N}^{m}-x_{N}^{m}\right)y_{N}^{(\sigma)}\Delta_{0t_{j+\sigma}}^{\alpha}y_{N}+\end{split}$$

$$+0.5h\left(\bar{x}_{N}^{m}-x_{N}^{m}\right)y_{N}^{(\sigma)}\sum_{s=0}^{j+\frac{1}{2}}\rho_{N,s}^{j}y_{N}^{s}\bar{\tau}+x_{0.5}^{m}y_{0}^{(\sigma)}\mu_{1}-\frac{0.5h}{m+1}x_{0.5}^{m}y_{0}^{(\sigma)}\Delta_{0t_{j+\sigma}}^{\alpha}y_{0}+\frac{0.5h}{m+1}x_{0.5}^{m}y_{0}^{(\sigma)}\sum_{s=0}^{j+\frac{1}{2}}\rho_{0,s}^{j}y_{0}^{s}\bar{\tau}\leq\mu_{1}^{2}+\mu_{2}^{2}+\frac{4M_{7}\left(\left(\bar{x}_{N}^{\frac{m}{2}}y_{N}^{(\sigma)}\right)^{2}+\left(x_{0.5}^{\frac{m}{2}}y_{0}^{(\sigma)}\right)^{2}\right)+\varepsilon\|\bar{x}_{2}^{\frac{m}{2}}y_{2}^{(\sigma)}\|_{0}^{2}+\frac{4M_{8}^{\varepsilon}\|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2}-0.5h(\bar{x}_{N}^{m}-x_{N}^{m})y_{N}^{(\sigma)}\Delta_{0t_{j+\sigma}}^{\alpha}y_{N}-\frac{0.5h}{m+1}x_{0.5}^{m}y_{0}^{(\sigma)}\Delta_{0t_{j+\sigma}}^{\alpha}y_{0}+\left(\sum_{s=0}^{j+\frac{1}{2}}\rho_{N,s}^{j}y_{N}^{s}\bar{\tau}\right)^{2}+\left(x_{0.5}^{m}\sum_{s=0}^{j+\frac{1}{2}}\rho_{0,s}^{j}y_{0}^{s}\bar{\tau}\right)^{2}\leq$$

$$\leq-0.5h(\bar{x}_{N}^{m}-x_{N}^{m})y_{N}^{(\sigma)}\Delta_{0t_{j+\sigma}}^{\alpha}y_{N}-\frac{0.5h}{m+1}x_{0.5}^{m}y_{0}^{(\sigma)}\Delta_{0t_{j+\sigma}}^{\alpha}y_{0}+\frac{1}{2}+\mu_{2}^{2}+\varepsilon\|\bar{x}^{\frac{m}{2}}y_{x}^{(\sigma)}\|_{0}^{2}+M_{9}^{\varepsilon}\left(\|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2}+\left(x_{0.5}^{\frac{m}{2}}y_{0}^{(\sigma)}\right)^{2}\right)+\frac{1}{2}+M_{10}^{\varepsilon}\sum_{s=0}^{j+\frac{1}{2}}\left(\|x^{\frac{m}{2}}y^{s}\|_{0}^{2}+\|\bar{x}^{\frac{m}{2}}y_{x}^{s}\|_{0}^{2}+\left(x_{0.5}^{\frac{m}{2}}y_{0}^{(\sigma)}\right)^{2}\right)\bar{\tau}.$$

$$\left(\varphi,x^{m}y^{(\sigma)}\right)\leq\frac{1}{2}\|x^{\frac{m}{2}}\varphi\|_{0}^{2}+\frac{1}{2}\|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2}.$$

$$(5.15)$$

Учитывая (5.15),(5.16), из (5.14) получаем

$$\left(\frac{\overline{z}}{2}, \Delta_{0t_{j+\sigma}}^{\alpha} \left(x^{\frac{m}{2}}y\right)^{2}\right] + M_{2} \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}]\|_{0}^{2} + 0.5h(\bar{x}_{N}^{m} - x_{N}^{m})y_{N}^{(\sigma)}\Delta_{0t_{j+\sigma}}^{\alpha}y_{N} + \frac{0.5h}{m+1}x_{0.5}^{m}y_{0}^{(\sigma)}\Delta_{0t_{j+\sigma}}^{\alpha}y_{0} \leq 2\varepsilon \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{(\sigma)}]\|_{0}^{2} + M_{11}^{\varepsilon} \left(\|x^{\frac{m}{2}}y^{(\sigma)}\|_{0}^{2} + \left(x_{0.5}^{\frac{m}{2}}y_{0}^{(\sigma)}\right)^{2}\right) + M_{12}\sum_{s=0}^{j+\frac{1}{2}} \left(\|x^{\frac{m}{2}}y^{s}\|\|_{0}^{2} + \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{s}\|\|_{0}^{2} + \left(x_{0.5}^{\frac{m}{2}}y_{0}\right)^{2}\right) \bar{\tau} + M_{13} \left(\|x^{\frac{m}{2}}\varphi\|_{0}^{2} + \mu_{1}^{2} + \mu_{2}^{2}\right). (5.17)$$

Учитывая, что $x_{N-0.5}^m \geq \frac{1}{6} x_N^m$, преобразуем первое и четвертое слагаемые в (5.17)

$$\left(\frac{\overline{z}}{2}, \Delta_{0t_{j+\sigma}}^{\alpha}(x^{\frac{m}{2}}y)^{2}\right] + \frac{h}{4}\left(\bar{x}_{N}^{m} - x_{N}^{m}\right)\Delta_{0t_{j+\sigma}}^{\alpha}y_{N}^{2} \ge \\
\ge \left(\frac{\overline{z}}{2}, \Delta_{0t_{j+\sigma}}^{\alpha}(x^{\frac{m}{2}}y)^{2}\right) + \frac{h}{4}x_{N-0.5}^{m}\Delta_{0t_{j+\sigma}}^{\alpha}y_{N}^{2} \ge$$

$$\geq \frac{M_{14}}{2} \left(1, \Delta_{0t_{j+\sigma}}^{\alpha} (x^{\frac{m}{2}} y)^{2} \right) + \frac{0.5h}{12} \Delta_{0t_{j+\sigma}}^{\alpha} \left(x_{N}^{\frac{m}{2}} y_{N} \right)^{2} \geq \frac{1}{12} \left(1, \Delta_{0t_{j+\sigma}}^{\alpha} (x^{\frac{m}{2}} y)^{2} \right) + \frac{0.5h}{12} \Delta_{0t_{j+\sigma}}^{\alpha} \left(x^{\frac{m}{2}} y_{N} \right)^{2} \geq \frac{1}{12} \left(1, \Delta_{0t_{j+\sigma}}^{\alpha} (x^{\frac{m}{2}} y)^{2} \right) \geq \frac{1}{12} \Delta_{0t_{j+\sigma}}^{\alpha} \|x^{\frac{m}{2}} y\|_{0}^{2}, \quad (5.18)$$

где

$$M_{14} = \begin{cases} 1, \text{ если } m = 0, m \ge 1, \\ \frac{1}{2}, \text{ если } m \in (0, 1), h \le h_0 = \sqrt{\frac{12x^2}{m(1-m)}}, \end{cases}$$
$$\frac{0.5h}{m+1} x_{0.5}^m y_0^{(\sigma)} \Delta_{0t_{j+\sigma}}^{\alpha} y_0 \ge \frac{0.5h}{2(m+1)} \Delta_{0t_{j+\sigma}}^{\alpha} (x_{0.5}^{\frac{m}{2}} y_0)^2. \tag{5.19}$$

Учитывая (5.18),(5.19), из (5.17) находим

$$\Delta_{0t_{j+\sigma}}^{\alpha} \|x^{\frac{m}{2}}y\|_{1}^{2} + \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{\sigma}\|_{0}^{2} \leq \varepsilon M_{15} \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{\sigma}\|_{0}^{2} + M_{16}^{\varepsilon} \|x^{\frac{m}{2}}y^{(\sigma)}\|_{1}^{2} + M_{17} \sum_{s=0}^{j+\frac{1}{2}} \|x^{\frac{m}{2}}y^{s}\|_{1}^{2} \bar{\tau} + C_{15}^{\alpha} \|x^{\frac{m}{2}}y^{s}\|_{1}^{2} + C_{15}^{\alpha} \|$$

$$+M_{18} \sum_{s=0}^{j+\frac{1}{2}} \|\bar{x}^{\frac{m}{2}} y_{\bar{x}}^{s}]\|_{0}^{2} \bar{\tau} + M_{19} (\|x^{\frac{m}{2}} \varphi\|_{0}^{2} + \mu_{1}^{2} + \mu_{2}^{2}).$$
 (5.20)

где $\|x^{\frac{m}{2}}y\|_1^2 = \|x^{\frac{m}{2}}y\|_0^2 + \left(x_{0.5}^{\frac{m}{2}}y_0\right)^2$.

Учитывая, что

$$\sum_{s=0}^{j+\frac{1}{2}} \|x^{\frac{m}{2}} y^s\|_{1}^{2} \bar{\tau} = \sum_{s=0}^{j} \|x^{\frac{m}{2}} y^s\|_{1}^{2} \bar{\tau} + 0.5\tau \|x^{\frac{m}{2}} y^j\|_{1}^{2},$$

$$\sum_{s=0}^{j+\frac{1}{2}} \|\bar{x}^{\frac{m}{2}} y_{\bar{x}}^{s}]\|_{0}^{2} \bar{\tau} = \sum_{s=0}^{j} \|\bar{x}^{\frac{m}{2}} y_{\bar{x}}^{s}]\|_{0}^{2} \bar{\tau} + 0.5\tau \|\bar{x}^{\frac{m}{2}} y_{\bar{x}}^{s}]\|_{0}^{2}$$

перепишем (5.20) в другой форме

$$\Delta_{0t_{j+\sigma}}^{\alpha} \|x^{\frac{m}{2}}y\|_{1}^{2} + \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{\sigma}\|_{0}^{2} \leq \left(0.5\tau M_{18} + \varepsilon M_{15}\right) \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}\|_{0}^{2} + M_{20} \|x^{\frac{m}{2}}y^{(\sigma)}\|_{1}^{2} +$$

$$+M_{16}\sum_{s=0}^{j}\|x^{\frac{m}{2}}y^{s}\|_{1}^{2}\bar{\tau}+M_{18}\sum_{s=0}^{j}\|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{s}]|_{0}^{2}\bar{\tau}+M_{17}\Big(\|x^{\frac{m}{2}}\varphi\|_{0}^{2}+\mu_{1}^{2}+\mu_{2}^{2}\Big). \quad (5.21)$$

Выбирая
$$au \leq au_0 = \frac{1}{2M_{18}}, \ arepsilon = \frac{1}{4M_{15}},$$
 из (5.21) находим

$$\Delta_{0t_{j+\sigma}}^{\alpha} \|x^{\frac{m}{2}}y\|_{1}^{2} + \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{\sigma}\|_{0}^{2} \leq M_{21} \sum_{s=0}^{j} \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{s}\|_{0}^{2} \bar{\tau} +$$

$$+M_{22}\|x^{\frac{m}{2}}y^{(\sigma)}]|_{1}^{2}+M_{23}\sum_{s=0}^{j}\|x^{\frac{m}{2}}y^{s}\|_{1}^{2}\bar{\tau}+M_{24}(\|x^{\frac{m}{2}}\varphi||_{0}^{2}+\mu_{1}^{2}+\mu_{2}^{2}).$$
 (5.22)

Оценим первое слагаемое в правой части (5.22), тогда перепишем (5.22) в другой форме

$$\|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{\sigma}]\|_{0}^{2} \le M_{21} \sum_{s=0}^{j} \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{s}]\|_{0}^{2} \tau + F, \tag{5.23}$$

где
$$F = M_{22} \|x^{\frac{m}{2}} y^{(\sigma)}\|_1^2 + M_{23} \sum_{s=0}^j \|x^{\frac{m}{2}} y^s\|_1^2 \bar{\tau} + M_{24} \Big(\|x^{\frac{m}{2}} \varphi\|_0^2 + \mu_1^2 + \mu_2^2 \Big).$$

Применяя лемму 4 (см.[17, стр.171]), из (5.23) получаем

$$\|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{\sigma}\|_{0}^{2} \le M_{25}F,\tag{5.24}$$

C учетом (5.24) из (5.22) находим

$$\Delta_{0t_{j+\sigma}}^{\alpha} \|x^{\frac{m}{2}}y\|_{1}^{2} + \|\bar{x}^{\frac{m}{2}}y_{\bar{x}}^{\sigma}\|_{0}^{2} \le M_{26} \|x^{\frac{m}{2}}y^{(\sigma)}\|_{1}^{2} +$$

$$+M_{27}\sum_{s=0}^{J}\|x^{\frac{m}{2}}y^{s}\|_{1}^{2}\bar{\tau}+M_{28}\sum_{s=0}^{J}\left(\|x^{\frac{m}{2}}\varphi||_{0}^{2}+\mu_{1}^{2}+\mu_{2}^{2}\right)\bar{\tau}.$$
 (5.25)

На основании леммы 7 [12] из (5.25) получаем априорную оценку

$$||x^{\frac{m}{2}}y^{j+1}||_{1}^{2} \leq M\left(||x^{\frac{m}{2}}y^{0}||_{1}^{2} + \max_{0 \leq j' \leq j} \sum_{s=0}^{j} \left(||x^{\frac{m}{2}}\varphi||_{0}^{2} + \mu_{1}^{2} + \mu_{2}^{2}\right)\bar{\tau}\right), \tag{5.26}$$

где M = const > 0, не зависящее от h и τ .

Справедлива следующая

Теорема 4. Пусть выполнены условия (1.5), тогда существуют такие h_0, τ_0 , что если $h \leq h_0, \tau \leq \tau_0$, то для решения разностной задачи (5.1)-(5.4) справедлива априорная оценка (5.26).

Из оценки (5.26) следуют единственность и устойчивость решения разностной схемы (5.1)-(5.4) по начальным данным и правой части.

Пусть u(x,t)— решение задачи (1.1),(1.2),(4.1),(1.4) $y(x_i,t_j)=y_i^j$ -решение разностной задачи (5.1)-(5.4). Для оценки точности разностной схемы (5.1)-(5.4) рассмотрим разность $z_i^j=y_i^j-u_i^j$, где $u_i^j=u(x_i,t_j)$. Тогда, подставляя y=z+u в соотношения (5.1)-(5.4), получаем задачу для функции z

$$\overline{\varkappa}\Delta^{\alpha}_{0t_{j+\sigma}}z = \frac{\varkappa}{x_i^m} \Big(x_{i-0.5}^m a_i^j z_{\bar{x}}^{(\sigma)}\Big)_x + \frac{b^{-j}}{x_i^m} \Big(x_{i-0.5}^m a_i^j z_{\bar{x},i}^{(\sigma)}\Big) +$$

$$+\frac{b^{+j}}{x_i^m} \left(x_{i+0.5}^m a_{i+1}^j z_{x,i}^{(\sigma)} \right) + \sum_{s=0}^{j+\frac{1}{2}} \rho_{i,s}^j z_i^s \bar{\tau} + \Psi_i^j, \ (x,t) \in \omega_{h,\tau}, \tag{5.27}$$

$$\varkappa_0 a_1 z_{x,0}^{(\sigma)} = \frac{0.5h}{m+1} \left(\Delta_{0t_{j+\sigma}}^{\alpha} z_0 - \sum_{s=0}^{j+\frac{1}{2}} \rho_{0,s}^j z_0^s \bar{\tau} \right) - \nu_1, \ t \in \overline{\omega}_{\tau}, \ x = 0,$$
 (5.28)

$$-\varkappa_N a_N z_{\overline{x},N}^{(\sigma)} = \tilde{\varkappa} \beta^{j+\sigma} z_N^{(\sigma)} + 0.5h \left(\Delta_{0t_{j+\sigma}}^{\alpha} z_N - \sum_{s=0}^{j+\frac{1}{2}} \rho_{N,s}^j z_N^s \overline{\tau} \right) - \nu_2, \ t \in \overline{\omega}_{\tau}, \ x = l,$$

$$(5.29)$$

$$z(x,0) = 0, \ x \in \overline{\omega}_h, \ t = 0, \tag{5.30}$$

где $\Psi = O\left(\frac{h^2 + \tau^2}{x}\right)$, $\nu_1 = O\left(h^2 + \tau^2\right)$, $\nu_2 = O\left(h^2 + \tau^2\right)$ — погрешности аппроксимации дифференциальной задачи (1.1), (1.2), (4.1), (1.4) разностной схемой (5.1) - (5.4) в классе решении u = u(x,t) задачи (1.1), (1.2), (4.1), (1.4).

Применяя оценку (5.26) к решению задачи (5.27) - (5.30), получаем

$$||x^{\frac{m}{2}}z^{j+1}||_1^2 \le M \max_{0 \le j' \le j} \left(||x^{\frac{m}{2}}\Psi^{j'}||_0^2 + \nu_1^2 + \nu_2^2 \right). \tag{5.31}$$

где M = const > 0, не зависящая от h и τ .

Из априорной оценки (5.31) следует сходимость решения разностной задачи (5.1)—(5.4) к решению дифференциальной задачи (1.1), (1.2), (4.1), (1.4) в смысле нормы $||x^{\frac{m}{2}}z^{j+1}||_1^2$ на каждом слое так, что если существуют такие τ_0, h_0 , то при $\tau \leq \tau_0, h \leq h_0$, справедлива априорная оценка

$$||x^{\frac{m}{2}}(y^{j+1} - u^{j+1})||_1 \le M||x^{\frac{m}{2}-1}||_1(h^2 + \tau^2) \le \overline{M}(h^2 + \tau^2),$$

где $\overline{M}=const>0$, не зависящая от h и au.

6 Алгоритм численного решения

Для численного решения дифференциальной задачи (1.1), (1.2), (4.1), (1.4) приведем разностную схему (5.1) - (5.4) к расчетному виду. Тогда уравнение (5.1) приводится к следующему виду

$$A_i y_{i-1}^{j+1} - C_i y_i^{j+1} + B_i y_{i+1}^{j+1} = -F_i^j, \ i = \overline{1, N-1},$$

$$(6.1)$$

где

$$A_{i} = \tau \sigma \varkappa_{i}^{j} x_{i-0.5}^{m} a_{i}^{j} - \tau h \sigma x_{i-0.5}^{m} b_{i}^{-j} a_{i}^{j}, \quad B_{i} = \tau \sigma \varkappa_{i}^{j} x_{i+0.5}^{m} a_{i+1}^{j} + \tau h \sigma x_{i+0.5}^{m} b_{i}^{+j} a_{i+1}^{j},$$

$$C_{i} = A_{i} + B_{i} + h^{2}\overline{\varkappa}_{i}x_{i}^{m}\frac{\tau^{1-\alpha}c_{0}^{(\alpha,\sigma)}}{\Gamma(2-\alpha)}, \quad F_{i}^{j} = AA_{i}y_{i-1}^{j} - CC_{i}y_{i}^{j} + BB_{i}y_{i+1}^{j} + H^{2}\tau x_{i}^{m}\varphi_{i}^{j} - h^{2}x_{i}^{m}\frac{\tau^{1-\alpha}}{\Gamma(2-\alpha)}\sum_{s=0}^{j-1}c_{j-s}^{(\alpha,\sigma)}(y_{i}^{s+1} - y_{i}^{s}) + \tau h^{2}x_{i}^{m}\sum_{s=0}^{j+\frac{1}{2}}\rho_{i,s}^{j}y_{i}^{s}\bar{\tau} - AA_{i} = \tau(1-\sigma)\varkappa_{i}^{j}x_{i-0.5}^{m}a_{i}^{j} - \tau h(1-\sigma)x_{i-0.5}^{m}b_{i}^{-j}a_{i}^{j},$$

$$BB_{i} = \tau(1-\sigma)\varkappa_{i}^{j}x_{i+0.5}^{m}a_{i+1}^{j} + \tau h(1-\sigma)x_{i+0.5}^{m}b_{i}^{+j}a_{i+1}^{j},$$

$$CC_{i} = AA_{i} + BB_{i} - h^{2}\overline{\varkappa}_{i}x_{i}^{m}\frac{\tau^{1-\alpha}c_{0}^{(\alpha,\sigma)}}{\Gamma(2-\alpha)}.$$

Краевое условие (5.2) принимает вид

$$y_0 = \varkappa_1 y_1 + \widetilde{\mu}_1, \tag{6.2}$$

где

$$\varkappa_1 = \frac{\tau \sigma \varkappa_0 a_1}{\tau \sigma \varkappa_0 a_1^j + \frac{0.5h^2}{m+1} \frac{\tau^{1-\alpha} c_0^{(\alpha,\sigma)}}{\Gamma(2-\alpha)}},$$

$$\widetilde{\mu}_{1} = \left[\mu_{1}h\tau + \tau(1-\sigma)\varkappa_{0}a_{1}(y_{1}^{j} - y_{0}^{j}) + \frac{0.5h^{2}}{m+1}\frac{\tau^{1-\alpha}c_{0}^{(\alpha,\sigma)}}{\Gamma(2-\alpha)}y_{0} + \frac{0.5h^{2}}{m+1}\tau\sum_{s=0}^{j+\frac{1}{2}}\rho_{0,s}^{j}y_{0}^{s}\bar{\tau} - \frac{0.5h^{2}}{m+1}\frac{\tau^{1-\alpha}}{\Gamma(2-\alpha)}\sum_{s=0}^{j-1}c_{j-s}^{(\alpha,\sigma)}(y_{0}^{s+1} - y_{0}^{s})\right] / \left[\tau\sigma\varkappa_{0}a_{1}^{j} + \frac{0.5h^{2}}{m+1}\frac{\tau^{1-\alpha}c_{0}^{(\alpha,\sigma)}}{\Gamma(2-\alpha)}\right].$$

Краевое условие (5.3) принимает вид

$$y_N = \varkappa_2 y_{N-1} + \widetilde{\mu}_2, \tag{6.3}$$

где

$$\varkappa_2 = \frac{\tau \sigma \varkappa_N a_N}{\tau \sigma \varkappa_N a_N^j + \sigma h \tau \widetilde{\varkappa} \beta_2^j + 0.5 h^2 \frac{\tau^{1-\alpha} c_0^{(\alpha,\sigma)}}{\Gamma(2-\alpha)}},$$

$$\begin{split} \widetilde{\mu}_{2} &= \left[\mu_{2}h\tau - (1-\sigma)h\tau\widetilde{\varkappa}\beta_{2}y_{N}^{j} - \tau(1-\sigma)\varkappa_{N}a_{N}(y_{N}^{j} - y_{N-1}^{j}) + 0.5h^{2}\frac{\tau^{1-\alpha}c_{0}^{(\alpha,\sigma)}}{\Gamma(2-\alpha)}y_{N} - \right. \\ &\left. - 0.5h^{2}\frac{\tau^{1-\alpha}}{\Gamma(2-\alpha)}\sum_{s=0}^{j-1}c_{j-s}^{(\alpha,\sigma)}(y_{N}^{s+1} - y_{N}^{s}) + 0.5\tau h^{2}\sum_{s=0}^{j+\frac{1}{2}}\rho_{N,s}^{j}y_{N}^{s}\bar{\tau} \right] \right/ \\ &\left. \left. \left[\tau\sigma\varkappa_{N}a_{N}^{j} + \sigma h\tau\widetilde{\varkappa}\beta_{2}^{j} + \frac{h^{2}}{2}\frac{\tau^{1-\alpha}c_{0}^{(\alpha,\sigma)}}{\Gamma(2-\alpha)} \right]. \end{split}$$

Таким образом, с учетом (6.1)-(6.3), разностная схема (5.1)-(5.4) приводится к трехдиагональной системе линейных алгебраических уравнений, решение которой легко находится известным методом прогонки.

7 Результаты численного эксперимента

Коэффициенты уравнения и граничных условий задачи (5.1)-(5.4) подбираются таким образом, чтобы точным решением задачи была функция $u(x,t) = t^3x^4$.

Ниже в таблице при различных значениях параметров $\alpha=0.01; 0.5; 0.99,$ m=0;0.5;1; 1.5; 2 и уменьшении размера сетки приведены максимальное значение погрешности (z=y-u) и порядок сходимости (ПС) в нормах $\|\cdot\|_0$ и $\|\cdot\|_{C(\bar{w}_{h\tau})}$, где $\|y\|_{C(\bar{w}_{h\tau})}=\max_{(x_i,t_j)\in\bar{w}_{h\tau}}|y|$, когда $h=\tau$. Порядок сходимости определяется по следующей формуле: $\Pi C=\log_{\frac{h_1}{h_2}}\frac{\|z_1\|_0}{\|z_2\|_0}$, где z_i- это погрешность, соответствующая h_i .

Таблица

Изменение погрешности и порядка сходимости в нормах $\|\cdot\|_0$ и $\|\cdot\|_{C(\bar{w}_{h\tau})}$ при уменьшении размера сетки при различных значениях $\alpha=0.01;0.5;0.99$ и m=0;0.5;1;1.5;2 на t=1, когда $h=\tau$.

α	m	h	$\max_{0 < j < m} \ z^j] _0$	ПС в ∥∙] 0	$ z _{C(\bar{w}_{h\tau})}$	$\Pi C \bowtie \ \cdot\ _{C(\bar{w}_{h\tau})}$
0.01	0	$\frac{1}{10}$	0.076879717		0.036794982	2
		$\frac{1}{20}$	0.019174526	2.0034	0.008924896	2.0452
		$\frac{1}{40}$	0.004784865	2.0026	0.002196927	2.0232
		$\frac{1}{80}$	0.001194923	2.0016	0.000544949	2.0118
		$\frac{1}{160}$	0.000298556	2.0008	0.000135702	2.0059
	0.5	$\frac{1}{10}$	0.068689773		0.030780857	7
		$\frac{1}{20}$	0.017138060	2.0029	0.007453397	2.0436
		$\frac{1}{40}$	0.004276783	2.0026	0.001833239	2.0223
		$\frac{1}{80}$	0.001068014	2.0016	0.000454558	2.0113
		$\frac{1}{160}$	0.000266842	2.0009	0.000113171	1 2.0057
	1	$\frac{1}{10}$	0.059822153		0.024798721	
		$\frac{1}{20}$	0.014884147	2.0069	0.005956540	2.0461
		$\frac{1}{40}$	0.003708226	2.0050	0.001459095	2.0235
		$\frac{1}{80}$	0.000925207	2.0029	0.000361044	2.0119
		$\frac{1}{160}$	0.000231055	2.0015	0.000089796	3 2.0060

α	m	h	$\max_{0 < j < m} \ z^j] _0$	ПС в •] 0	$ z _{C(\bar{w}_{h\tau})}$	$\Pi C \bowtie \ \cdot\ _{C(\bar{w}_{h\tau})}$
	1.5	$\frac{1}{10}$	0.050994481		0.019049512	
		$\frac{1}{20}$	0.012585331	2.0186	0.00448520	9 2.0577
		$\frac{1}{40}$	0.003121312	2.0115	0.00108703	8 2.0294
		$\frac{1}{80}$	0.000776905	2.0063	0.000267499 2.03	
		$\frac{1}{160}$	0.000193780	2.0033	0.000066344 2.0	
	2	$\frac{1}{10}$	0.042407707		0.053990105	
		$\frac{1}{20}$	0.010296342	2.0422	0.01314504	0 2.0865
		$\frac{1}{40}$	0.002530004	2.0249	0.00324001	1 2.0448
		$\frac{1}{80}$	0.000626611	2.0135	0.000804130 2.09	
		$\frac{1}{160}$	0.000155892	2.0070	0.00020029	9 2.0115
0.5	0	$\frac{1}{10}$	0.098777477		0.048583953	
		$\frac{1}{20}$	0.024719264	1.9985	0.01183977	1 2.0382
		$\frac{1}{40}$	0.006174080	2.0013	0.002919937 2.03	
		$\frac{1}{80}$	0.001542119	2.0013	0.000724931 2.010	
		$\frac{1}{160}$	0.000385289	2.0009	0.00018060	6 2.0053
	0.5	$\frac{1}{10}$	0.090332895		0.00422137	' 1
		$\frac{1}{20}$	0.022617618	1.9978	0.00107440	3 2.0368
		$\frac{1}{40}$	0.005650220	2.0011	0.00027092	1 2.0196
		$\frac{1}{80}$	0.001411390	2.0012	0.00006806	8 2.0100
		$\frac{1}{160}$	0.000352642	2.0008	0.00001707	2.0050
	1	$\frac{1}{10}$	0.079856635		0.04171431	8
		$\frac{1}{20}$	0.019946185	2.0013	0.01015011	6 2.0390
		$\frac{1}{40}$	0.004976000	2.0031	0.00250159	5 2.0206
		$\frac{1}{80}$	0.001242057	2.0023	0.00062089	2.0104
		$\frac{1}{160}$	0.000310214	2.0014	0.00015466	7 2.0052
	1.5	$\frac{1}{10}$	0.068899501		0.03449136	66
		$\frac{1}{20}$	0.017082667	2.0120	0.00833325	1 2.0493
		$\frac{1}{40}$	0.004244370	2.0089	0.00204665	8 2.0256
		$\frac{1}{80}$	0.001057175	2.0053	0.00050711	1 2.0129
		$\frac{1}{160}$	0.000263748	2.0030	0.00012621	9 2.0064

α	\overline{m}	h	$\max_{0 < j < m} \ z^j] _0$	ПС в •] 0	$ z _{C(\bar{w}_{h\tau})}$	$\Pi C \bowtie \ \cdot\ _{C(\bar{w}_{h\tau})}$
	2	$\frac{1}{10}$	0.057977170		0.027315531	
		$\frac{1}{20}$	0.014161201	2.0335	0.006487950	2.0739
		$\frac{1}{40}$	0.003489152	2.0210	0.001579365	2.0384
		$\frac{1}{80}$	0.000865205	2.0118	0.000389568	3 2.0194
		$\frac{1}{160}$	0.000215357	2.0063	0.00009674	5 2.0096
0.99	0	$\frac{1}{10}$	0.128539769		0.070745599	9
		$\frac{1}{20}$	0.032208933	1.9967	0.017237292	2.0371
		$\frac{1}{40}$	0.008051126	2.0002	0.004249847	7 2.0201
		$\frac{1}{80}$	0.002011962	2.0006	0.001054853	3 2.0104
		$\frac{1}{160}$	0.000502837	2.0004	0.000262754	2.0053
	0.5	$\frac{1}{10}$	0.120541979		0.065932457	7
		$\frac{1}{20}$	0.030216567	1.9961	0.016067838	3 2.0368
		$\frac{1}{40}$	0.007554829	1.9999	0.003962394	2.0197
		$\frac{1}{80}$	0.001888178	2.0004	0.000983648	3 2.0102
		$\frac{1}{160}$	0.000471933	2.0003	0.000245039	2.0051
	1	$\frac{1}{10}$	0.107653172		0.057770899)
		$\frac{1}{20}$	0.026922002	1.9995	0.014051048	3 2.0397
		$\frac{1}{40}$	0.006722651	2.0017	0.003461966	3 2.0210
		$\frac{1}{80}$	0.001679095	2.0013	0.000859057	7 2.0108
		$\frac{1}{160}$	0.000419534	2.0008	0.000213958	3 2.0054
	1.5	$\frac{1}{10}$	0.093164225		0.04848317	7
		$\frac{1}{20}$	0.023129167	2.0101	0.011706658	3 2.0502
		$\frac{1}{40}$	0.005752973	2.0073	0.002873947	7 2.0262
		$\frac{1}{80}$	0.001433984	2.0043	0.000711867	7 2.0134
		$\frac{1}{160}$	0.000357920	2.0023	0.000177141	2.0067
	2	$\frac{1}{10}$	0.078270796		0.038907159	9
		$\frac{1}{20}$	0.019141843	2.0317	0.009238178	3 2.0744
		$\frac{1}{40}$	0.004721898	2.0193	0.002248148	3 2.0389
		$\frac{1}{80}$	0.001171855	2.0106	0.000554370	2.0198
		$\frac{1}{160}$	0.000291838	2.0056	0.000137638	3 2.0100

8 Замечание

Полученные в данной работе результаты справедливы и в случае, когда рассматривается уравнение с нелокальным линейным источником вида

$$\partial_{0t}^{\alpha} u = \frac{1}{x^m} \frac{\partial}{\partial x} \left(x^m k(x, t) \frac{\partial u}{\partial x} \right) + r(x, t) \frac{\partial u}{\partial x} - \int_0^x p(s, t) u(s, t) ds + f(x, t).$$

Благодарности

Исследование выполнено при финансовой поддержке РФФИ и Государственного фонда естественных наук Китая (ГФЕН) в рамках научного проекта №20-51-53007.

Список литературы

- [1] Нахушев, А.М. Дробное исчисление и его применение. М: Физматлит, 2003.
- [2] Учайкин, В.В. Метод дробных производных. Ульяновск: Издательство «Артишок», 2008.
- [3] Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск, 1987
- [4] Podlubny, I. Fractional Differential Equations, Academic Press, San Diego, 1999.
- [5] Kilbas A.A., Trujillo J.J. Differential equations of fractional order: methods, results and problems, I. Appl. Anal. 78 (2001), 153-192.
- [6] Головизнин В. М., Киселев В. П., Короткий И. А. Численные методы решения уравнения дробной диффузии с дробной производной по времени в одномерном случае. М.: Институт проблем безопасного развития атомной энергетики РАН. ()2003) 35 с.
- [7] Таукенова, Ф.И., Шхануков-Лафишев М. Х. Разностные методы решения краевых задач для дифференциальных уравнений дробного порядка // Ж. вычисл. матем. и матем. физ., 46:10 (2006), 1871-1881.
- [8] Diethelm, K. Walz, G. Numerical solution of fractional order differential equations by extrapolation, Numer. Algorithms, 16 (1997), 231-253.

- [9] Алиханов, А.А. Априорные оценки решений краевых задач для уравнений дробного порядка // Дифференц. уравнения, 46:5 (2010), 658-664.
- [10] Alikhanov, A.A. A new difference scheme for the time fractional diffusion equation.// Journal of Computational Physics, 280 (2015), 424-438.
- [11] Бештоков, М.Х. Локальные и нелокальные краевые задачи для вырождающихся и невырождающихся псевдопараболических уравнений с дробной производной Римана-Лиувилля // Дифференц. уравнения, 54:6 (2018), 763-778.
- [12] Бештоков, М.Х. К краевым задачам для вырождающихся псевдопараболических уравнений с дробной производной Герасимова-Капуто // Известия вузов. Математика, 10 (2018), 3-16.
- [13] Бештоков, М.Х. Краевые задачи для псевдопараболического уравнения с дробной производной Капуто // Дифференц. уравнения, 55:7 (2019), 919-928.
- [14] Бештоков, М.Х. О численном решении нелокальной краевой задачи для вырождающегося псевдопараболического уравнения // Дифференц. уравнения, 52:10 (2016), 1393-1406.
- [15] Бештоков, М.Х. Разностный метод решения нелокальной краевой задачи для вырождающегося псевдопараболического уравнения третьего порядка с переменными коэффициентами // Ж. вычисл. матем. и матем. физ., 56:10 (2016), 1780-1794.
- [16] Самарский, А.А. Теория разностных схем. М.: Наука, 1983.
- [17] Самарский, А.А., Гулин А.В. Устойчивость разностных схем. М.: Наука, 1973.

Stability and convergence of monotone difference schemes approximating boundary value problems for an integro-differential equation with a fractional time derivative and the Bessel operator

M.KH. Beshtokov

Department of Computational Methods, Institute of Applied Mathematics and Automation, Kabardino-Balkaria Scientific Center of the Russian Academy of Sciences

Abstract. Boundary value problems for an integro-differential equation with a fractional time derivative and the Bessel operator are studied. For the solution of the problems under consideration, a priori estimates in the differential interpretation are obtained, from which the uniqueness and stability of the solution with respect to the initial data and the right-hand side follow. For the numerical solution of boundary value problems, monotone difference schemes with directed differences are constructed and analogs of a priori estimates are proved for them, and error estimates are given for the assumptions of sufficient smoothness of the solutions of the equations. From the obtained a priori estimates in the difference form, the uniqueness and stability of the solution according to the initial data and the right-hand side, as well as the linearity of the difference problems, the convergence with the second order in the grid parameters follow. An algorithm for the approximate solution of a boundary value problem with a third-order condition is proposed, and numerical calculations are performed for a test case illustrating the theoretical results obtained in this paper concerning the convergence and the order of approximation of the difference scheme.

Keywords: boundary value problems, Gerasimov-Caputo fractional derivative, a priori estimation, monotone schemes, integro-differential equation, fractional order differential equation.

Acknowledgements

The paper was supported by RFBR and Natural Science Foundation of China (NSFC) grant №20-51-53007.