1 Variables

2 root

	var	symbol	documentation	type	units	tokens	eqs
13	$F_{N,A}$	F	directed graph incidence matrix	network			
1	t_N	t	time	frame	s		
3	$t^o{}_N$	to	starting time	frame	s		1
4	$t^e{}_N$	te	end time	frame	s		2
2	#	value	numerical value	constant			
18	0	null	numerical value 0	constant			16
19	1	one	numerical value 1	constant			17

3 System

	var	symbol	documentation	type	units	tokens	eqs
37	$\hat{x}^{A,\alpha}{}_N$	fx_A_alpha	netflow of token A due to mechanism alpha	transport	ms^{-1}		50 55
38	$\hat{x}^{A,eta}{}_N$	fx_A_beta	netflow of token A due to mechanism beta	${ m transport}$	ms^{-1}		51 56
39	$\hat{y}^{B,\gamma}{}_N$	fy_B_gamma	netflow of token B due to mechanism gammma	transport	s^{-1}		52 57
40	$\hat{y}^{B,\delta}{}_N$	fy_B_delta	netflow of token B due to mechanism delta	transport	s^{-1}		53 54
5	x_N	x	state token A	state	$\mid m \mid$		60
11	$\pi^{A,\alpha}{}_N$	pi_A_alpha	effort A mechanism alpha	state	$\mid m \mid$		7 14
12	$\pi^{A,eta}{}_N$	pi_A_beta	effort A mechanism beta	state	$\mid m \mid$		8 15
16	\dot{x}_N	dx	differential state	state	ms^{-1}		18 58
17	$x^o{}_N$	xo	initial condition for token A	state	$\mid m \mid$		12
20	$\underline{\pi}^{A}{}_{N}$	pi_A_stack	the stack of intensive variables token A	state	$\mid m \mid$	[]	19

Continued on next page

	var	symbol	documentation	type	units	tokens	eqs
21	y_N	у	state token B	state			61
24	$\pi^{B,\gamma}{}_N$	pi_B_gamma	effort B mechanism gamma	state			23
26	\dot{y}_N	dy	differential state for token B	state	s^{-1}		36 59
27	$y^o{}_N$	уо	initial condition for token B	state			26
33	$\pi^{B,\delta}{}_N$	pi_B_delta	effort B mechansim delta	state			32
36	$\underline{\pi}^{B}{}_{N}$	pi_B_stack	the stack of intensive variables token B	state			44
7	$K^{A,lpha}{}_N$	K_A_alpha	frequency token A	constant	$ s^{-1} $		40
8	$K^{A,eta}{}_N$	K_A_beta	frequency token B	constant	$ s^{-1} $		41
9	$M^{A,lpha}$	M_A_alpha	norming factor token A mechanism alpha	constant			42
10	$M^{A,eta}$	M_A_beta	norming factor token A mechanism beta	constant			43
22	$M^{B,\gamma}$	M_B_gamma	norming factor token B mechanism gamma	constant			
23	$K^{B,\gamma}{}_N$	K_B_gamma	norming factor token A mechanism d	constant	s^{-1}		22
30	$K^{B,\delta}{}_N$	K_B_delta	frequency B delta	constant	s^{-1}		30
31	$M^{B,\delta}$	M_B_delta	norming factor token B mechanism delta	constant			

4 Properties

	var	symbol	documentation	type	units	tokens	eqs
--	-----	--------	---------------	------	-------	--------	-----

5 Control

	T.			Т		
var	symbol	documentation	type	units	$_{ m tokens}$	eqs

6 System-Properties

	var	symbol	documentation	type	units	tokens	eqs	
$7 ext{Properties-System}$								
	var	symbol	documentation	type	units	tokens	eqs	
8 System-Control								
	var	symbol	documentation	type	units	tokens	eqs	
9	Control-Sys	stem	documentation	type	units	tokens	ons	
var symbol documentation type units tokens eqs 10 Properties-Control								
	var	symbol	documentation	type	units	tokens	eqs	
11 Control-Properties								
l 1		-						

12 Equations

12.1 Model equations

no	equation	documentation	layer
1	$t^o{}_N := \operatorname{Instantiate}(t_N, \#)$	starting time	root
2	$t^e{}_N := \operatorname{Instantiate}(t_N, \#)$	end time	root
7	$\pi^{A,\alpha}{}_N := M^{A,\alpha} \cdot x_N$	effort a	System
8	$\pi^{A,\beta}{}_N := M^{A,\beta} \cdot x_N$	effort b	System
12	$x^o{}_N := \text{Instantiate}(x_N, \#)$	initial condition	System
14	$\pi^{A,\alpha}{}_N := \operatorname{Instantiate}(\pi^{A,\alpha}{}_N, \#)$	effort a	System
15	$\pi^{A,\beta}{}_{N} := \operatorname{Instantiate}(\pi^{A,\beta}{}_{N}, \#)$	effort b	System
16	0 := Instantiate(#, #)	numerical value 0	root
17	1 := Instantiate(#, #)	numerical value 1	root
18	$\dot{x}_N := \text{Instantiate}(\dot{x}_N, 0)$	differential state	System
19	$\boxed{\underline{\pi}^{A}{}_{N} := Stack\left(\pi^{A,\alpha}{}_{N}, \pi^{A,\beta}{}_{N}\right)}$	the stack of intensive variables	System
22	$K^{B,\gamma}_{N} := \operatorname{Instantiate}((t_{N})^{-1}, \#)$	frequency B alpha	System
23	$\pi^{B,\gamma}{}_N := M^{B,\gamma} \cdot y_N$	transport of B mechanism gamma	System
26	$y^o{}_N := \operatorname{Instantiate}(y_N, \#)$	initial condition for token B	System
30	$K^{B,\delta}_{N} := \operatorname{Instantiate}((t_{N})^{-1}, \#)$	var doc : frequency B delta	System
32	$\pi^{B,\delta}{}_N := M^{B,\delta} \cdot y_N$	effort B mechansim delta	System

Continued on next page

no	equation	documentation	layer
36	$\dot{y}_N := \operatorname{Instantiate}(\dot{y}_N, \#)$	differential state for token B	System
40	$K^{A,\alpha}_{N} := \text{Instantiate}((t_{N})^{-1}, \#)$	frequency token A	System
41	$K^{A,\beta}{}_{N} := \operatorname{Instantiate}((t_{N})^{-1}, \#)$	frequency token B	System
42	$M^{A,\alpha} := \text{Instantiate}(\#, \#)$	norming factor token A mechanism alpha	System
43	$M^{A,eta} := \operatorname{Instantiate}(\#,\#)$	norming factor token A mechanism beta	System
44	$\underline{\pi}^{B}{}_{N} := Stack\left(\pi^{B,\gamma}{}_{N}, \pi^{B,\delta}{}_{N}\right)$	the stack of intensive variables token B	System
50	$\hat{x}^{A,\alpha}{}_{N} := F_{N,A} \overset{A}{\star} \left(K^{A,\alpha}{}_{N} . F_{N,A} \overset{N}{\star} \pi^{A,\alpha}{}_{N} \right)$	netflow of token A due to mechanism alpha	System
51	$\hat{x}^{A,\beta}{}_{N} := F_{N,A} \stackrel{A}{\star} \left(K^{A,\beta}{}_{N} . F_{N,A} \stackrel{N}{\star} \pi^{A,\beta}{}_{N} \right)$	netflow of token A due to mechanism beta	System
52	$\hat{y}^{B,\gamma}{}_{N} := F_{N,A} \stackrel{A}{\star} \left(K^{B,\gamma}{}_{N} . F_{N,A} \stackrel{N}{\star} \pi^{B,\gamma}{}_{N} \right)$	netflow of token B due to mechanism gammma	System
53	$\hat{y}^{B,\delta}{}_{N} := F_{N,A} \stackrel{A}{\star} \left(K^{B,\delta}{}_{N} \cdot F_{N,A} \stackrel{N}{\star} \pi^{B,\delta}{}_{N} \right)$	netflow of token B due to mechanism delta	System
54	$\hat{y}^{B,\delta}{}_N := \text{Instantiate}(\hat{y}^{B,\delta}{}_N, \#)$	netflow of token B due to mechanism delta	System
55	$\hat{x}^{A,\alpha}{}_N := \text{Instantiate}(\hat{x}^{A,\alpha}{}_N, \#)$	netflow of token A due to mechanism alpha	System
56	$\hat{\boldsymbol{x}}^{A,\beta}{}_{N} := \operatorname{Instantiate}(\hat{\boldsymbol{x}}^{A,\alpha}{}_{N}, \#)$	netflow of token A due to mechanism beta	System

Continued on next page

no	equation	documentation	layer
57	$\hat{y}^{B,\gamma}{}_N := \operatorname{Instantiate}(\hat{y}^{B,\gamma}{}_N, \#)$	netflow of token B due to mechanism gammma	System
58	$\dot{x}_N := \hat{x}^{A,\alpha}{}_N + \hat{x}^{A,\beta}{}_N$	differential state	System
59	$\dot{y}_N := \hat{y}^{B,\gamma}{}_N + \hat{y}^{B,\delta}{}_N$	differential state for token B	System
60	$x_N := \int_{t^o_N}^{t^e_N} \dot{x}_N \ dt_N$	state token A	System
61	$y_N := \int_{t^o_N}^{t^e_N} \dot{y}_N \ dt_N$	state token B	System