The Analytic Class Number Formula ...with no proofs whatsoever

Swayam Chube Guide: Prof. Sandeep Varma

IIT Bombay

June 21, 2024

• A number field K is a finite extension of \mathbb{Q} . An element $\alpha \in K$ is said to be an algebraic integer if it is the root of a **monic** integer polynomial.

• A number field K is a finite extension of \mathbb{Q} . An element $\alpha \in K$ is said to be an algebraic integer if it is the root of a **monic** integer polynomial. The algebraic integers in K form a ring, known as the ring of integers of K, often denoted by \mathcal{O}_K .

• A number field K is a finite extension of \mathbb{Q} . An element $\alpha \in K$ is said to be an algebraic integer if it is the root of a **monic** integer polynomial. The algebraic integers in K form a ring, known as the ring of integers of K, often denoted by \mathcal{O}_K . The group of units in K is the multiplicative group $\mathcal{O}_K^{\times} \subseteq \mathcal{O}_K$.

- A number field K is a finite extension of \mathbb{Q} . An element $\alpha \in K$ is said to be an algebraic integer if it is the root of a **monic** integer polynomial. The algebraic integers in K form a ring, known as the ring of integers of K, often denoted by \mathcal{O}_K . The group of units in K is the multiplicative group $\mathcal{O}_K^\times \subseteq \mathcal{O}_K$.
- A fractional ideal in K is an \mathcal{O}_K -submodule M of K such that there exists a $d \in \mathcal{O}_K$ with $dM \subseteq \mathcal{O}_K$.

- A number field K is a finite extension of \mathbb{Q} . An element $\alpha \in K$ is said to be an algebraic integer if it is the root of a **monic** integer polynomial. The algebraic integers in K form a ring, known as the ring of integers of K, often denoted by \mathcal{O}_K . The group of units in K is the multiplicative group $\mathcal{O}_K^\times \subseteq \mathcal{O}_K$.
- A fractional ideal in K is an \mathcal{O}_K -submodule M of K such that there exists a $d \in \mathcal{O}_K$ with $dM \subseteq \mathcal{O}_K$. The **nonzero** fractional ideals in K form a group under multiplication (with identity element \mathcal{O}_K), denoted \mathscr{I}_K .

- A number field K is a finite extension of \mathbb{Q} . An element $\alpha \in K$ is said to be an algebraic integer if it is the root of a **monic** integer polynomial. The algebraic integers in K form a ring, known as the ring of integers of K, often denoted by \mathcal{O}_K . The group of units in K is the multiplicative group $\mathcal{O}_K^\times \subseteq \mathcal{O}_K$.
- A fractional ideal in K is an \mathcal{O}_K -submodule M of K such that there exists a $d \in \mathcal{O}_K$ with $dM \subseteq \mathcal{O}_K$. The **nonzero** fractional ideals in K form a group under multiplication (with identity element \mathcal{O}_K), denoted \mathscr{I}_K .
- The class group C_K of K is the cokernel of the natural map $K^{\times} \longrightarrow \mathscr{I}_K \twoheadrightarrow C_K \to 0$.

Theorem (Minkowski)

 C_K is a finite group.

The cardinality h_K of C_K is known as the *class number* of K.

Theorem (Minkowski)

 C_K is a finite group.

The cardinality h_K of C_K is known as the class number of K.

Theorem (Dedekind)

Every nonzero ideal \mathfrak{a} in \mathcal{O}_K can be factorized uniquely as a product of prime ideals, $\mathfrak{a} = \prod_{i=1}^r \mathfrak{p}_i^{e_i}$.

It follows that $\mathcal{O}_K/\mathfrak{a}$ is a finite ring and is cardinality is called the *ideal* norm of \mathfrak{a} , denoted $\|\mathfrak{a}\|$. One can show that $\|\mathfrak{a}\| = \prod_{i=1}^r \|\mathfrak{p}_i\|^{e_i}$

Theorem (Minkowski)

 C_K is a finite group.

The cardinality h_K of C_K is known as the class number of K.

Theorem (Dedekind)

Every nonzero ideal \mathfrak{a} in \mathcal{O}_K can be factorized uniquely as a product of prime ideals, $\mathfrak{a} = \prod_{i=1}^r \mathfrak{p}_i^{e_i}$.

It follows that $\mathcal{O}_K/\mathfrak{a}$ is a finite ring and is cardinality is called the *ideal* norm of \mathfrak{a} , denoted $\|\mathfrak{a}\|$. One can show that $\|\mathfrak{a}\| = \prod_{i=1}^r \|\mathfrak{p}_i\|^{e_i}$

• If \mathfrak{p} is a nonzero prime ideal in \mathcal{O}_K , then $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$ for some rational prime p and hence, $\|\mathfrak{p}\| \geq p$.

Theorem (Minkowski)

 C_K is a finite group.

The cardinality h_K of C_K is known as the class number of K.

Theorem (Dedekind)

Every nonzero ideal \mathfrak{a} in \mathcal{O}_K can be factorized uniquely as a product of prime ideals, $\mathfrak{a} = \prod_{i=1}^r \mathfrak{p}_i^{e_i}$.

It follows that $\mathcal{O}_K/\mathfrak{a}$ is a finite ring and is cardinality is called the *ideal* norm of \mathfrak{a} , denoted $\|\mathfrak{a}\|$. One can show that $\|\mathfrak{a}\| = \prod_{i=1}^r \|\mathfrak{p}_i\|^{e_i}$

- If \mathfrak{p} is a nonzero prime ideal in \mathcal{O}_K , then $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$ for some rational prime p and hence, $\|\mathfrak{p}\| \geq p$.
- Thus, for every $\lambda > 0$, there are finitely many ideals $\mathfrak a$ with $\|\mathfrak a\| \le \lambda$. The number of such ideals is $O(\lambda)$. (See, for example, Chapter 6 of the book *Number Fields* by Daniel Marcus.)

• Let j_n denote the number of ideals $\mathfrak a$ in $\mathcal O_K$ with $\|\mathfrak a\|=n$. We remarked in the previous slide that $\sum_{m\leq n} j_m = O(n)$.

- Let j_n denote the number of ideals $\mathfrak a$ in $\mathcal O_K$ with $\|\mathfrak a\|=n$. We remarked in the previous slide that $\sum_{m\leq n} j_m = O(n)$.
- The series

$$\sum_{n\geq 1}\frac{j_n}{n^s}$$

converges for Re s>1 and defines a holomorphic function. This is called the *Dedekind zeta function* and is denoted by $\zeta_K(s)$.

- Let j_n denote the number of ideals $\mathfrak a$ in $\mathcal O_K$ with $\|\mathfrak a\|=n$. We remarked in the previous slide that $\sum_{m\leq n} j_m = O(n)$.
- The series

$$\sum_{n\geq 1}\frac{j_n}{n^s}$$

converges for Re s>1 and defines a holomorphic function. This is called the *Dedekind zeta function* and is denoted by $\zeta_K(s)$.

Informally, you can think of this series as

$$\sum_{0 \neq \mathfrak{a} \triangleleft \mathcal{O}_K} \frac{1}{\|\mathfrak{a}\|^s}.$$

Notice that $\zeta_{\mathbb{Q}}(s) = \zeta(s)$.

- Let j_n denote the number of ideals $\mathfrak a$ in $\mathcal O_K$ with $\|\mathfrak a\|=n$. We remarked in the previous slide that $\sum_{m\leq n} j_m = O(n)$.
- The series

$$\sum_{n>1}\frac{j_n}{n^s}$$

converges for Re s>1 and defines a holomorphic function. This is called the *Dedekind zeta function* and is denoted by $\zeta_K(s)$.

Informally, you can think of this series as

$$\sum_{0 \neq \mathfrak{a} \triangleleft \mathcal{O}_K} \frac{1}{\|\mathfrak{a}\|^s}.$$

Notice that $\zeta_{\mathbb{Q}}(s) = \zeta(s)$.

• Like the Riemann zeta function, this too admits a *meromorphic* continuation to the entire complex plane with a simple pole at s = 1.

Absolute Values on Fields

- An absolute value on K is a map $v: K \to \mathbb{R}_{>0}$ such that:
 - v(x) = 0 if and only if x = 0.
 - v(xy) = v(x)v(y) for all $x, y \in K$.
 - $v(x+y) \le v(x) + v(y) \text{ for all } x, y \in K.$

If further, $v(x + y) \le \max\{v(x), v(y)\}$, then v is said to be a non-archimedean absolute value.

Absolute Values on Fields

- An absolute value on K is a map $v: K \to \mathbb{R}_{\geq 0}$ such that:
 - v(x) = 0 if and only if x = 0.
 - v(xy) = v(x)v(y) for all $x, y \in K$.
 - $v(x+y) \le v(x) + v(y) \text{ for all } x, y \in K.$

If further, $v(x + y) \le \max\{v(x), v(y)\}$, then v is said to be a non-archimedean absolute value.

• Every absolute value induces a metric on K which can be completed and the completion K_{ν} has a natural structure of a field such that the inclusion $K \hookrightarrow K_{\nu}$ is a field homomorphism.

Absolute Values on Fields

- An absolute value on K is a map $v: K \to \mathbb{R}_{\geq 0}$ such that:
 - v(x) = 0 if and only if x = 0.
 - v(xy) = v(x)v(y) for all $x, y \in K$.
 - $v(x+y) \le v(x) + v(y) \text{ for all } x, y \in K.$

If further, $v(x + y) \le \max\{v(x), v(y)\}$, then v is said to be a non-archimedean absolute value.

- Every absolute value induces a metric on K which can be completed and the completion K_{ν} has a natural structure of a field such that the inclusion $K \hookrightarrow K_{\nu}$ is a field homomorphism.
- The field K_{ν} is what is known as a *local field* (owing to it being locally compact) and has its own "ring of integers"

$$\mathcal{O}_{v} = \left\{ x \in K_{v} \colon v(x) \leq 1 \right\},\,$$

which is a local ring.

Ideles

The group of ideles is the restricted direct product

$$\prod_{v}'(K_{v}^{\times}, \mathcal{O}_{v}^{\times}) = \left\{ (x_{v}) \colon x_{v} \in \mathcal{O}_{v}^{\times} \text{ for almost all } v \right\},\,$$

and is denoted by \mathbb{I}_K .

Ideles

The group of ideles is the restricted direct product

$$\prod_{v}'(K_{v}^{\times}, \mathcal{O}_{v}^{\times}) = \left\{ (x_{v}) \colon x_{v} \in \mathcal{O}_{v}^{\times} \text{ for almost all } v \right\},\,$$

and is denoted by \mathbb{I}_K .

• The *norm* of an idele (x_v) is defined to be

$$\prod_{\nu} v(x_{\nu}).$$

The subgroup of norm 1 ideles is denoted by \mathbb{I}^1_K .

Ideles

The group of ideles is the restricted direct product

$$\prod_{v}'(K_{v}^{\times}, \mathcal{O}_{v}^{\times}) = \left\{ (x_{v}) \colon x_{v} \in \mathcal{O}_{v}^{\times} \text{ for almost all } v \right\},\,$$

and is denoted by \mathbb{I}_{K} .

• The *norm* of an idele (x_v) is defined to be

$$\prod_{\nu} v(x_{\nu}).$$

The subgroup of norm 1 ideles is denoted by \mathbb{I}_K^1 .

 Let S be a finite set of absolute values of K and define the S-ideles of K to be

$$\mathbb{I}_{K,S} = \left\{ (x_v) \colon x_v \in \mathcal{O}_v^{\times} \text{ for all } v \notin S \right\}.$$

Their norm 1 version is denoted by $\mathbb{I}^1_{K,S} = \mathbb{I}_{K,S} \cap \mathbb{I}^1_K$.

The Regulator

• Let $S = S_{\infty}$ be the Archimedean absolute values of K. Define the logarithmic map $\lambda : \mathbb{I}^1_{K,S_{\infty}} \to \mathbb{R}^{r_1+r_2}$ by

$$x = (x_v) \mapsto (\log v(x_v))_{v \in S_\infty},$$

where r_1 and r_2 are the number of real and non-conjugate complex embeddings of K into \mathbb{C} .

The Regulator

• Let $S = S_{\infty}$ be the Archimedean absolute values of K. Define the logarithmic map $\lambda: \mathbb{I}^1_{K,S_{\infty}} \to \mathbb{R}^{r_1+r_2}$ by

$$x = (x_v) \mapsto (\log v(x_v))_{v \in S_\infty},$$

where r_1 and r_2 are the number of real and non-conjugate complex embeddings of K into \mathbb{C} .

• One can show that the image of the logarithm map is precisely the hyperplane H in $\mathbb{R}^{r_1+r_2}$ given by

$$\sum_{v \text{ real}} t_v + 2 \sum_{v \text{ complex}} t_v = 0.$$

The Regulator

• Let $S = S_{\infty}$ be the Archimedean absolute values of K. Define the logarithmic map $\lambda: \mathbb{I}^1_{K,S_{\infty}} \to \mathbb{R}^{r_1+r_2}$ by

$$x = (x_v) \mapsto (\log v(x_v))_{v \in S_\infty},$$

where r_1 and r_2 are the number of real and non-conjugate complex embeddings of K into \mathbb{C} .

• One can show that the image of the logarithm map is precisely the hyperplane H in $\mathbb{R}^{r_1+r_2}$ given by

$$\sum_{v \text{ real}} t_v + 2 \sum_{v \text{ complex}} t_v = 0.$$

• The restriction of λ to $\mathcal{O}_K^\times = K^\times \cap \mathbb{I}_K^1$ is called the *regulator map* and its image is a full lattice L in H. The volume of the fundamental parallelotope H/L of this lattice is called the *regulator* and is denoted by R_K .

• Since \mathcal{O}_K is a finitely generated torsion free \mathbb{Z} -module, it must be free.

• Since \mathcal{O}_K is a finitely generated torsion free \mathbb{Z} -module, it must be free. Further, $\mathcal{O}_K \otimes_{\mathbb{Z}} \mathbb{Q} = K$ whence \mathcal{O}_K has rank n.

- Since \mathcal{O}_K is a finitely generated torsion free \mathbb{Z} -module, it must be free. Further, $\mathcal{O}_K \otimes_{\mathbb{Z}} \mathbb{Q} = K$ whence \mathcal{O}_K has rank n.
- We can therefore find $\alpha_1, \ldots, \alpha_n \in \mathcal{O}_K$ such that

$$\mathcal{O}_K = \bigoplus_{j=1}^n \mathbb{Z}\alpha_j.$$

- Since \mathcal{O}_K is a finitely generated torsion free \mathbb{Z} -module, it must be free. Further, $\mathcal{O}_K \otimes_{\mathbb{Z}} \mathbb{Q} = K$ whence \mathcal{O}_K has rank n.
- We can therefore find $\alpha_1, \ldots, \alpha_n \in \mathcal{O}_K$ such that

$$\mathcal{O}_K = \bigoplus_{j=1}^n \mathbb{Z}\alpha_j.$$

• Define the discriminant of K to be the quantity

$$\Delta_{\mathcal{K}} = \det \begin{pmatrix} \sigma_{1}\alpha_{1} & \cdots & \sigma_{1}\alpha_{n} \\ \vdots & \ddots & \vdots \\ \sigma_{n}\alpha_{1} & \cdots & \sigma_{n}\alpha_{n} \end{pmatrix}^{2} = \det \begin{pmatrix} \operatorname{Tr}(\alpha_{1}^{2}) & \cdots & \operatorname{Tr}(\alpha_{1}\alpha_{n}) \\ \vdots & \ddots & \vdots \\ \operatorname{Tr}(\alpha_{n}\alpha_{1}) & \cdots & \operatorname{Tr}(\alpha_{n}^{2}) \end{pmatrix}$$

where $\sigma_1, \ldots, \sigma_n$ are the distinct embeddings of $K \hookrightarrow \overline{\mathbb{Q}}$. Note that $\Delta_K \in \mathbb{Z}$.

The Volume of C_K^1

The cokernel of the natural map $K^{\times} \hookrightarrow \mathbb{I}^1_K$ is denoted by C^1_K .

The Volume of C_K^1

The cokernel of the natural map $K^{\times} \hookrightarrow \mathbb{I}^1_K$ is denoted by C^1_K .

Theorem (Tate)

$$\operatorname{\mathsf{Res}}_{s=1} \zeta_{\mathsf{K}}(s) = \operatorname{\mathsf{Vol}} \left(C_{\mathsf{K}}^{1} \right) = \frac{2^{r_{1}} (2\pi)^{r_{2}} h_{\mathsf{K}} R_{\mathsf{K}}}{w_{\mathsf{K}} \sqrt{|\Delta_{\mathsf{K}}|}}$$

where w_K is the number of roots of unity in K.

For Cyclotomic Fields

Let ζ_m denote a primitive m-th root of unity and set $F_m = \mathbb{Q}(\zeta_m)$. It can then be shown that

$$\zeta_{F_m}(s) = \zeta(s) \prod_{\substack{\chi \bmod m \\ \chi \neq 1}} L(s, \chi),$$

where the product ranges over all *Dirichlet characters* $\chi: (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$.

For Cyclotomic Fields

Let ζ_m denote a primitive m-th root of unity and set $F_m = \mathbb{Q}(\zeta_m)$. It can then be shown that

$$\zeta_{F_m}(s) = \zeta(s) \prod_{\substack{\chi \bmod m \\ \chi \neq 1}} L(s, \chi),$$

where the product ranges over all *Dirichlet characters* $\chi: (\mathbb{Z}/m\mathbb{Z})^{\times} \to \mathbb{C}^{\times}$. Since the *L*-series corresponding to non-trivial Dirichlet characters is holomorphic around s=1 (See, for example, Chapter 6 of the book *A Course in Arithmetic* by J.P. Serre)

$$\frac{(2\pi)^{\varphi(m)/2}h_mR_m}{w_m\sqrt{|\Delta_m|}} = \prod_{\substack{\chi \bmod m \\ \chi \neq 1}} L(1,\chi)$$

Computing $L(1,\chi)$

Let χ be a Dirichlet character modulo m. Then,

$$L(1,\chi) = \begin{cases} \frac{g(\chi)}{m^2} \pi i \sum_{a=1}^{m} \overline{\chi}(a) a & \text{if } \chi(-1) = -1 \\ -\frac{g(\chi)}{m} \sum_{a=1}^{m} \overline{\chi}(a) \log \left| 1 - e^{-2\pi i a/m} \right| & \text{if } \chi(-1) = 1, \end{cases}$$

where $g(\chi)$ is the Gauss sum

$$\sum_{a=1}^{m} \chi(a) e^{2\pi i a/m}$$

We shall consider the case $K = \mathbb{Q}[i] = \mathbb{Q}(\zeta_4)$. Its ring of integers is $\mathbb{Z}[i]$, which is a PID and hence, $h_K = 1$.

We shall consider the case $K = \mathbb{Q}[i] = \mathbb{Q}(\zeta_4)$. Its ring of integers is $\mathbb{Z}[i]$, which is a PID and hence, $h_K = 1$. Now, $\{1, i\}$ forms an integral basis. A simple computation gives

$$\Delta_{\mathcal{K}} = \det \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix}^2 = -4.$$

We shall consider the case $K = \mathbb{Q}[i] = \mathbb{Q}(\zeta_4)$. Its ring of integers is $\mathbb{Z}[i]$, which is a PID and hence, $h_K = 1$. Now, $\{1, i\}$ forms an integral basis. A simple computation gives

$$\Delta_{\mathcal{K}} = \det \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix}^2 = -4.$$

Finally, $r_1 = 0$ and $r_2 = 1$, whence $R_K = 1$ (this is true for all imaginary quadratic fields).

We shall consider the case $K = \mathbb{Q}[i] = \mathbb{Q}(\zeta_4)$. Its ring of integers is $\mathbb{Z}[i]$, which is a PID and hence, $h_K = 1$. Now, $\{1, i\}$ forms an integral basis. A simple computation gives

$$\Delta_{\mathcal{K}} = \det \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix}^2 = -4.$$

Finally, $r_1 = 0$ and $r_2 = 1$, whence $R_K = 1$ (this is true for all imaginary quadratic fields). Putting this into the class number formula,

$$L(1,\chi) = \frac{(2\pi)^1 \times 1 \times 1}{4 \times \sqrt{4}} = \frac{\pi}{4},$$

where χ is the unique nontrivial Dirichlet character modulo 4.

We shall consider the case $K = \mathbb{Q}[i] = \mathbb{Q}(\zeta_4)$. Its ring of integers is $\mathbb{Z}[i]$, which is a PID and hence, $h_K = 1$. Now, $\{1, i\}$ forms an integral basis. A simple computation gives

$$\Delta_{\mathcal{K}} = \det \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix}^2 = -4.$$

Finally, $r_1 = 0$ and $r_2 = 1$, whence $R_K = 1$ (this is true for all imaginary quadratic fields). Putting this into the class number formula,

$$L(1,\chi) = \frac{(2\pi)^1 \times 1 \times 1}{4 \times \sqrt{4}} = \frac{\pi}{4},$$

where χ is the unique nontrivial Dirichlet character modulo 4. We have successfully computed the infinite sum

$$L(1,\chi) = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}.$$

The End

Thank you for your attention!

The main reference for this talk is the wonderful GTM book by Robert J. Valenza and Dinakar Ramakrishnan titled

Fourier Analysis on Number Fields.

Chapter 7 of the book is the relevant chapter, which is an exposition of Tate's Thesis (1950) titled

Fourier analysis in number fields, and Hecke's zeta-functions.