

MATEMÁTICA BÁSICA – CE82 SEMANA 6 – SP1

Temario: Función exponencial, función logarítmica, ecuaciones exponencial y logarítmicas.

Logro de la sesión: Al término de la sesión el estudiante reconoce una función exponencial y logarítmica, determina su regla de correspondencia, gráfica, dominio y resuelve ecuaciones exponenciales, logarítmicas.

FUNCIÓN EXPONENCIAL

Toda función de la forma $f(x) = \mathbf{b}^x$; donde b y x son números reales tal que b > 0 y diferente de uno, se denomina **función exponencial**, con base b.

Por ejemplo:
$$f(x) = 2^x$$
, $g(x) = 3^x$, $h(x) = \left(\frac{1}{2}\right)^x = 2^{-x}$, $f(x) = (0.35)^x$

Ejemplo:

Si
$$f(x) = 2^{x}$$

x	f(x)
-3	0,125
-2	0,25
-1	0,5
0	1
1	2
2	4
3	8

Características de la función:

$$f(x) = 2^x$$

$$Dom f = \mathbf{R}$$

$$Ran f =]0; +\infty[$$

Intersección con el eje x: no hay

Intersección con el eje y: (0; 1)

Monotonía: creciente

Asíntota: y = 0

Ejercicio 1:

Si
$$f(x) = \left(\frac{1}{2}\right)^x$$

x	f(x)
-3	8
-2	4
-1	2
0	1
1	0,5
2	0,25
3	0,125

Características de la función:

$$f(x) = \left(\frac{1}{2}\right)^x = 2^{-x}$$

$$Dom f = \mathbf{R}$$

$$Ran f =]0; +\infty[$$

Intersección con el eje x: no hay

Intersección con el eje y: (0; 1)

Monotonía: decreciente

Asíntota: y = 0

Conclusiones:

Si $f(x) = b^x$ tal que la base es mayor que 1, es decir, b > 1

Si $f(x) = b^x$ tal que la base es un número mayor que 0 pero menor que 1, es decir, 0 < b < 1

Función exponencial: $f(x) = b^x$

Dominio: $Dom f = \mathbb{R}$ Rango: $Ran f =]0; +\infty[$

- No hay intersección con el eje x Intersecta al eje y en el punto: (0; 1)
- Si la base: b > 1 entonces la función es **creciente**
- Si la base: 0 < b < 1 entonces la función es decreciente
- La asíntota es el eje \mathbf{x} , cuya ecuación es $\mathbf{y} = \mathbf{0}$

Ejercicios 2: Esboce el gráfico de las siguientes funciones

FUNCIÓN EXPONENCIAL NATURAL

2/6 EPE INGENIERÍA

Cualquier número no negativo se puede usar como base para una función exponencial. Sin embargo, uno de los más utilizados es el número irracional e (constante de Euler), cuyo valor aproximado a 14 decimales es e = 2,71828182845905.

La función exponencial natural es la función exponencial con base e: $f(x) = e^x$

Características de la función: $f(x) = e^x$

$$Dom f = \mathbf{R} \quad Ran f =]0; +\infty[$$

Intersección con el eje x: no hay

Intersección con el eje y: (0; 1)

Monotonía: creciente

Asíntota: y = 0

Toda función de la forma $f(x) = \log_b x$; donde b y x son números reales tal que b > 0 y diferente de uno,

Y se cumple que: $\log_b x = y \Leftrightarrow \mathbf{b}^y = x$

se denomina función logaritmo con base b.

En consecuencia, $\log_b x$ es el exponente al cual hay que elevar la base b para obtener x.

Ejemplos:

$$\log_2 8 = 3 \dots \text{ i.Por qué? } 2^3 = 8$$

$$\log_3 9 = 2 \dots \text{ i.Por qué? } 3^2 = 9$$

Ejercicio 3:

Halle (sin calculadora) cada uno de los siguientes logaritmos:

a)
$$\log_4 16 = 1$$

b)
$$\log_{10} 1000 =$$

a)
$$\log_4 16 =$$
____ b) $\log_{10} 1000 =$ ____ 3 c) $\log_2 0.5 =$ ____ 1 d) $\log_5 5 =$ ____ 1

d)
$$\log_{5} 5 = 1$$

Ejemplo:

Si

$$f(x) = \log_2 x$$

Características de la función:

$$f(x) = \log_2 x$$

$$Dom f =]0; +\infty[$$

$$Ran f = \mathbf{R}$$

Intersección con el eje x: (1; 0)

Intersección con el eje y: no hay

Monotonía: creciente

Asíntota: x = 0

x	f(x)
0,125	-3

EPE INGENIERÍA 3/6

0,25	-2
0,5	-1
1	0
2	1
4	2
8	3

Ejercicio 4:

Si
$$f(x) = \log_{0.5} x$$

x	f(x)	4.	у					 			
0,125	3	3.									
0,25	2							 	 	! ! !	
0,5	1	11-				 		! ! ! !	! ! !		! ! !
1	0										X
2	-1	-1		1 2	2	 4 :	5 (5	7	8 9	9 ¦
4	-2	2				 		! ! !	! ! !		
8	-3	3-	<u></u>			 					
,		4-	<u></u>			 					

Características de la función:

$$f(x) = \log_{0.5} x$$

$$Dom f =]0; +\infty[$$

$$Ran f = \mathbf{R}$$

Intersección con el eje x: (1; 0)

Intersección con el eje y: no hay

Monotonía: decreciente

Asíntota: x = 0

Conclusiones:

Si $f(x) = \log_b x$ tal que la base es mayor que 1, es decir, b > 1

Si $f(x) = \log_b x$ tal que la base es un número mayor que 0 pero menor que 1, es decir,

0 < b < 1

Función logaritmo: $f(x) = \log_b x$

Dominio: $Dom f =]0; +\infty[$

Rango: $Ran f = \mathbf{R}$

• No hay intersección con el eje y Intersecta al eje x en el punto: (1; 0)

4/6 EPE INGENIERÍA

- Si la base: b > 1 entonces la función es **creciente**
- Si la base: 0 < b < 1 entonces la función es **decreciente**
- La asíntota es el eje y, cuya ecuación es x=0

LOGARITMO COMÚN y LOGARITMO NATURAL

La función logaritmo con base 10 se llama logaritmo común y se representa por: $f(x) = \log x$

Ejemplos:
$$\log x = 2 \Rightarrow 10^2 = x$$
, $\log x = -3 \Rightarrow 10^{-3} = x$, $\log x = a \Leftrightarrow 10^a = x$

La función logaritmo con base e se llama logaritmo natural y se representa por: $f(x) = \ln x$

Ejemplos:
$$\ln x = 2 \Rightarrow e^2 = x$$
, $\ln x = -3 \Rightarrow e^{-3} = x$, $\ln x = a \Leftrightarrow e^a = x$

FUNCIÓN EXPONENCIAL Y FUNCIÓN LOGARITMO

La función exponencial $f(x) = \mathbf{b}^x$ y función logaritmo $f(x) = \log_b x$ son mutuamente inversas, por lo tanto, cumplen con las propiedades de las funciones inversas.

Si
$$f(x) = b^x$$
 entonces: Dom $f = \mathbb{R}$ y Dom $f = [0; +\infty[$; asíntota: $y = 0$

Si
$$f(x) = \log_b x$$
 entonces: $Dom f =]0$; $+\infty[y Ran f = \mathbb{R}$; asíntota: $\mathbf{x} = \mathbf{0}$

Relación gráfica: Las curvas son simétricas respecto a la recta y = x.

Relación analítica

a)
$$\log_a x = a \Rightarrow b^a = x$$

a)
$$\log_b x = a \Rightarrow b^a = x$$
 b) $\log_3 x = 2 \Rightarrow 3^2 = x$ c) $\ln x = -1 \Rightarrow e^{-1} = x$

c)
$$\ln x = -1 \Rightarrow e^{-1} = x$$

d)
$$b^x = a \Rightarrow x = \log_b a$$
 e) $5^x = 7 \Rightarrow x = \log_5 7$ f) $e^x = 9 \Rightarrow x = \ln 9$

e)
$$5^x = 7 \Rightarrow x = \log_5 7$$

f)
$$e^x = 9 \Rightarrow x = \ln 9$$

g)
$$8^x = 4 \Rightarrow x = \log_8 4$$

g)
$$8^x = 4 \Rightarrow x = \log_8 4$$
 h) $e^x = 2 \Rightarrow x = \log_e 2$ i) $3^x = 6 \Rightarrow x = \log_3 6$

i)
$$3^x = 6 \Rightarrow x = \log_2 6$$

i)
$$\log_4 x = 3 \Rightarrow x = 4^3$$

j)
$$\log_4 x = 3 \Rightarrow \mathbf{x} = \mathbf{4}^3$$
 k) $\log_7 x = -2 \Rightarrow \mathbf{x} = \mathbf{7}^{-2}$ l) $\ln x = 8 \Rightarrow \mathbf{x} = \mathbf{e}^8$

1)
$$\ln x = 8 \Rightarrow x = e^8$$

Propiedades fundamentales:
$$\log_b b = 1$$
 y $\log_b 1 = 0$

$$\log_b b = 1 \text{ y } \log_b 1 = 0$$

Ejemplos:
$$\log_4 4 = 1$$

$$\log_5 1 = 0$$
 $\log 10 = 1$

$$log10 = 1$$

$$ln e = 1$$

PROPIEDADES DE LOGARITMOS

PROPIEDAD	APLICACIÓN
$\log_{b}(m) + \log_{b}(n) = \log_{b}(m \cdot n)$	a) $\log_7 4 + \log_7 8 = \log_7 (4x8) = \log_7 32$ b) $\log_3 21 = \log_3 (7x3) = \log_3 7 + \log_3 3$
$\log_{b}(m) - \log_{b}(n) = \log_{b}\left(\frac{m}{n}\right)$	a) $\log_7 4 - \log_7 8 = \log_7 \left(\frac{4}{8}\right) = \log_7 \left(\frac{1}{2}\right)$ b) $\log_2 \left(\frac{8}{9}\right) = \log_2 8 - \log_2 9$
$\log_{b}(m)^{k} = k \log_{b}(m)$	a) $\log_3(x)^5 = 5 \log_3 x$ b) $9 \log_4(x) = \log_4(x)^9$

Ejercicios 5:

a) $\log_3 7 + \log_3 5 = \log_3 35$	b) $\ln 12 - \ln 3 + \ln 2 = \ln 8$	c) $\ln(x^2)^5 = 10. \ln x$
d) $\log x^6 - \log x^4 - 2\log x = 0$	e) $\log_2 8^6 - \log_3 9^5 = 8$	f) $\ln(e)^5 = 5$

CIERRE DE CLASE

- A. La función $f(x) = 3^{-x}$, ¿es creciente? No
- B. La función $g(x) = e^x$ ¿Tiene asíntota vertical? No
- C. La función $h(x) = \ln x$ ¿es negativa? No

Problema (Competencia Razonamiento Cuantitativo)

Una colonia de ranas está en un proceso de extinción de forma exponencial. El gráfico muestra la cantidad de ejemplares que aún quedan vivos por mes.

- A) ¿Cuántas ranas había inicialmente? 200
- **B**) Escribe una función del tipo $r(t) = k(b)^t$ con la que se pueda calcular la cantidad de ranas vivas que hay cada mes. $r(t) = 200(0,8)^t$
- C) ¿Qué porcentaje de ranas se muere cada mes? 20%

