

Figure 2 Multiple sequence alignment

(a)	1 1 1 1	A '	 ГА	_ G		 G I	- ' A	<u>-</u> Т	G G G G G C		- G '	 ГА	_ . G	<u>-</u>	 G (3 C	<u>-</u>	- · A (A A	. C . <u>C</u>	C (C 1 C_1	' A	C 2	<u>A</u> A	A (СТ	A -	ATC ATC ACC ACC	CBA87 71V-1658 EEE VEE
I. C. I. C. I.	41 17 39 37	G	А Т А <u>Т</u>	C	C 2	A A	TA	A A	T G T G	G	A A	A A	G	A A	A 1 G 1	r T	C .	A [C G	T	T T	G Z	A C	: т : <u>т</u>	T 2	4 G 4 G	A	G G	c c	TGA TGA AGA AGA	CBA87 71V-1658 EEE VEE
	81 57 79 77	C 2 C 2 C 2	A G	С	C	\mathbb{C}^{-G}	T	Α	ТG	Т	\mathbf{C}^{-1}	A A	G	T		G T A C	Т Т[Т	A (A (C A	G A A	C A C	G G G	G A A I	C G G	G T	T T T T	т (т (2 C	A A G	C A A C A T C A G	CBA87 71V-1658 EEE VEE
	117	T	rт	G	A (G_A	<u>_</u> T	Α	G A	Α.	G	C <u>A</u>	ͺA	C	GC	C A	G	G :	ГС	: A	C	T (G A	C	A A	Т	G 2	A C	С	ATG ATG ATG	71V-1658 EEE VEE
	97 137 159 157	lc[:	ГΑ	Α	T (G C		A	ြေ	G	C	GТ	Т	T	r (G	C.	AΓ	C C	т	A	G	cГī	A	C	A	A _(3_C	T_	C A T C A T G A T	71V-1658 EEE VEE
	97 177 199 197	T	G A	ď	GL	GΑ	G	Α_	A_G	T	G	G A	T	A	C Z	1 G	A.	$C_{\underline{C}}$	Z A	G	G	тſ	GA	Т	clo	T	G	A E	T	ATTATT	71V-1658 EEE VEE
(b)	Iclo	r c c t	G A	T	Α	\mathbf{T}	AIG	G	G (CIT	T	Clo	\mathbb{C}	3 C	\mathbf{G}_{\perp}	T I	<u>l</u> G	_G	\mathbf{T}	CL	$\subseteq A$	١G	G	W	1V- /EE EE						

- - a. The 5' terminus of WEE CBA87 (1-97), WEE 71V-1658 (25-240), EEE (1-238) and VEE (1-236) via Clustal module of DNAStar. Areas where sequences differ are boxed.
 - b. Hypervariable region identified in nsP1. Alignment of WEE 71V-1658 (1420-1449), WEE 1654 (65-94) and EEE (1415-1444) is shown.

Figure 3 Stem loop structures in the 5' NTR

Hairpin structures were identified using the RNA folding program of the Genequest module (DNASTAR).

- a. Structures for WEE (CBA87/71V-1658) sequence (1-192).
- b. Structures for EEE (1-192).

Minimal free energy values are shown for the different structures.

Double stem loop structures in SIN.

(b) Double stem loop structures in 3' NTR of WEE. Residues in the SIN-like 40 nt repeat are shaded.

Figure 4 Stem loop structures in the 3' NTR

Figure 5 Phylogenetic relationship of the WEE nonstructural region compared to other alphaviruses

Figure 6 Expression of WEE structural genes in cell culture

One μg of plasmid DNA was transfected into Vero cells. After 31 hrs incubation, the cells were histochemically stained using a monoclonal antibody to WEE (11D2). a. pCXH-3; b. pCI (control plasmid).

Figure 7 In vitro transcription and translation of WEE expression vectors

Qiagen purified vectors containing the WEE 26S insert were expressed *in vitro* using the TNT system and [35 S]-methionine labelling. Three μ L aliquots of each samples were run by SDS-PAGE on a 12% gel.

Lane: 1) Rainbow ¹⁴C-labelled marker; 2) Luciferase translation control; 3) pVAX; 4) pVHX-6; 5)pCXH-3; 6) pcDWXH-7; 7) pcDWHX-45; 8) pXTR2-4.

Figure 8 WEE mouse infectivity model

Groups of 4 mice were inoculated intranasally with 50 $\,\mu$ L of virus (approximately 10⁴ PFU). The mice were monitored for 12 days, and the % survival graphed.

Figure 9 Protection using ballistic delivery of pCXH-3

Groups of 4 mice were immunized with one or two doses (2 x 1.25 $\,\mu$ g) of either pCl or pCXH-3. The interval between boosters (2 doses) or challenge was 3 weeks. The mice were challenged intranasally with 50 $\,\mu$ L of WEE Fleming (1.25 x 10⁴ PFU). The mice were monitored for 12 days, and the % survival graphed.

Figure 10 Protection using ballistic delivery of pVHX-6

Groups of 4 mice were immunized with four doses (2 x 1.25 $\,\mu$ g) of pVAX or pVXH-6 . The interval between boosters or challenge was 2 weeks. The mice were challenged intranasally with 50 $\,\mu$ L of WEE Fleming (1.25 x 10⁴ PFU). The mice were monitored for 14 days, and the % survival graphed.

Figure 11 Protection using ballistic delivery of pVHX-6

Groups of 5-8 mice were immunized with three or four doses (2 x 1.25 $\,\mu$ g) of pVAX or pVXH-6 . The interval between boosters or challenge was 2 weeks. The mice were challenged intranasally with 50 $\,\mu$ L of WEE Fleming (1.7 x 104 PFU). Untreated control and WEE inactivated control (3 doses) groups were also included. The mice were monitored for 14 days, and the % survival graphed.