Appello di Gennaio

Fisica Nucleare e Subnucleare I

16 Gennaio 2023

Esercizio 1

Un fascio di 4×10^8 muoni al secondo viaggia in un tubo di lunghezza $L = 200 \,\mathrm{m}$ con velocità v = 0.973c.

1. I muoni decadono attraverso il processo

$$\mu^- \to e^- + \nu_\mu + \overline{\nu}_e$$
.

Determinare, nel sistema del centro di massa del muone, l'energia massima dei neutrini ν_{μ} prodotti nel decadimento.

- 2. Calcolare l'intensità del fascio di muoni, in nA, alla fine del tubo.
- 3. All'uscita dal tubo è posta una lastra di grafite ($\rho=2\,{\rm g/cm^3}$) spessa 2 mm. Se la sezione d'urto dell'interazione fra neutrini e grafite è

$$\sigma(\nu_{\mu} + {}^{12}_{6}\text{C} \to \mu^{-} + X) = 20 \times 10^{-40} \,\text{cm}^{2},$$

calcolare il numero di particelle X prodotte in un giorno. Si assuma che tutti (e soli) i neutrini ν_{μ} prodotti dal decadimento dei muoni interagiscano col bersaglio.

Soluzione dell'esercizio 1

I muoni hanno $\beta=0.973$, perciò $\gamma=1/\sqrt{1-\beta^2}=4.33$ ($\beta\gamma=4.22$) ed energia e impulso valgono $E=m\gamma=457.5\,\mathrm{MeV}$ e $p=\sqrt{E^2-m^2}=445.2\,\mathrm{MeV}$ (c=1).

• L'energia massima si ha quando il neutrino ν_{μ} è emesso da una parte e elettrone e neutrino $\overline{\nu}_{e}$ viaggiano con la stessa velocità dall'altra. Questa configurazione è equivalente a quella di un decadimento a due corpi, dove un corpo è il ν_{μ} e l'altro corpo ha massa pari alla somma delle masse di elettrone e neutrino $\overline{\nu}_{e}$, per cui

$$E_{\text{max}}^* = \frac{m_{\mu}^2 + m_{\nu_{\mu}}^2 - (m_e + m_{\overline{\nu}_e})^2}{2m_{\mu}} = 52.8 \,\text{MeV}.$$

• L'intensità all'inizio del tubo è pari a

$$I(x=0) = q \frac{\mathrm{d}N}{\mathrm{d}t} = 1.6 \times 10^{-19} \,\mathrm{C} \times 4 \times 10^8 \,\mathrm{s}^{-1} = 6.4 \times 10^{-11} \,\mathrm{A} = 0.064 \,\mathrm{nA}.$$

Alla fine del tubo, cioè dopo aver percorso una lunghezza L, il fascio si sarà attenuato a causa del decadimento dei muoni, che hanno un tempo proprio di $\tau=2.2\,\mu\mathrm{s}$ e dunque una lunghezza propria di $\beta\gamma c\tau=2782\,\mathrm{m}$:

$$I(x=L) = I(0)e^{-\frac{t}{\gamma\tau}} = I(0)e^{-\frac{\beta ct}{\beta\gamma c\tau}} = I(0)e^{-L}\beta\gamma c\tau = 0.064\,\text{nA} \times 0.931 = 0.0596\,\text{nA},$$

che corrisponde a un flusso di muoni di $4 \times 10^8 \,\mathrm{Hz} \times 0.931 = 3.724 \times 10^8 \,\mathrm{Hz}$.

• Il flusso di neutrini ν_{μ} non è altro che

$$\frac{\mathrm{d}N_{\nu}}{\mathrm{d}t} = 4 \times 10^8 \,\mathrm{Hz} \times (1 - 0.931) = 0.276 \times 10^8 \,\mathrm{Hz}.$$

Il numero di interazioni nell'unità di tempo è pari a

$$\frac{\mathrm{d}N_i}{\mathrm{d}t} = \sigma \frac{\mathrm{d}N_\nu}{\mathrm{d}t} n_b d,$$

dove la densità volumetrica dei bersagli vale

$$n_b = \rho \frac{N_A}{A} = 1 \times 10^{23} \,\mathrm{cm}^{-3},$$

per cui

$$\frac{\mathrm{d}N_i}{\mathrm{d}t} = \sigma \frac{\mathrm{d}N_\nu}{\mathrm{d}t} n_b d = 20 \times 10^{-40} \,\mathrm{cm}^2 \times 0.276 \times 10^8 \,\mathrm{Hz} \times 1 \times 10^{23} \,\mathrm{cm}^{-3} \times 0.2 \,\mathrm{cm} = 1.1 \times 10^{-9} \,\mathrm{Hz},$$

che corrisponde in un giorno a un numero di interazioni, e dunque di particelle X, pari a

$$N_i = \int_{\text{giorno}} \frac{dN_i}{dt} dt = 1.1 \times 10^{-9} \,\text{Hz} \times 3600 \times 24 = 9.5 \times 10^{-5}.$$

Esercizio 2

Dei kaoni e dei pioni carichi, aventi impulso massimo pari a $p=700\,\mathrm{MeV/c}$ vengono fatti passare attraverso un misuratore di tempo di volo (TOF) che viene utilizzato per discriminare in massa le particelle cariche. Il misuratore di tempo di volo è composto da due lastre di scintillatore (composto principalmente di carbonio $^{12}_{6}\mathrm{C}$, densità $\rho=0.91\,\mathrm{g/cm^3}$) identiche, ciascuna spessa $d=5\,\mathrm{cm}$ e poste a una distanza L=1 m, che misurano i tempi dei passaggi t_0 e t_1 (TOF= t_1-t_0), aventi una precisione di misura temporale pari a σ_t .

- 1. Calcolare quale valore di σ_t devono possedere i due rivelatori affinché sia possibile discriminare in massa i kaoni dai pioni quando questi possiedono il massimo dell'impulso. Si consideri significativa una differenza in tempo di volo se essa è maggiore di $3 \times \sqrt{2}\sigma_t$.
- 2. Stimare l'energia persa nel passaggio tra i due scintillatori da pioni e kaoni di impulso $p=700\,\mathrm{MeV/c}$, usando il grafico della perdita di energia per ionizzazione riportato di seguito.

- 3. Quando i kaoni e pioni carichi impattano sui protoni presenti nei nuclei delle lastre di scintillatore, possono produrre altre particelle. Stabilire se sono possibili le seguenti reazioni, dandone la motivazione:
 - $\bullet \ K^- + p \rightarrow \Omega^- + K^+ + K^0$
 - $\bullet \ \pi^- + p \rightarrow \pi^0 + \pi^0$
- 4. (Facoltativo) Qualora si avessero a disposizione due rivelatori con $\sigma_t = 800 \,\mathrm{ps}$, quanto dovrebbero essere distanti le due lastre affinché sia possibile discriminare in massa i kaoni dai pioni a un impulso $p = 700 \,\mathrm{MeV/c?}$

Soluzione dell'esercizio 2

1. Il tempo di volo minimo per le due particelle si ha in corrispondenza dell'impulso massimo, $p=700\,\mathrm{MeV/c}$. Calcoliamo l'energia dei pioni e kaoni:

$$E_{\pi} = \sqrt{m_{\pi}^2 + p^2} = \sqrt{139.6^2 + 700^2} \text{MeV} = 713.8 \,\text{MeV}$$

$$E_{K} = \sqrt{m_{K}^2 + p^2} = \sqrt{493.7^2 + 700^2} \text{MeV} = 856.6 \,\text{MeV}$$

Per calcolare il tempo di volo delle due particelle bisogna calcolarne la velocità, quindi β :

$$\beta_{\pi} = \frac{cp}{E_{\pi}} = 0.981$$

$$\beta_{K} = \frac{cp}{E_{K}} = 0.817$$

da cui:

$$\mathrm{TOF}_{\pi} = \frac{L}{\beta_{\pi}c} = \frac{1\,\mathrm{m}}{0.981 \cdot 3 \times 10^8\,\mathrm{m/s}} = 3.40\,\mathrm{ns}$$
 $\mathrm{TOF}_{K} = \frac{L}{\beta_{K}c} = \frac{1\,\mathrm{m}}{0.817 \cdot 3 \times 10^8\,\mathrm{m/s}} = 4.08\,\mathrm{ns}$

quindi la differenza di tempo di volo tra le due particelle è:

$$\Delta t_{\rm TOF} = 0.68 \, \rm ns$$

Per risolvere le due ipotesi di massa si deve quindi avere:

$$\Delta t_{\rm TOF} > 3 \times \sqrt{2}\sigma_t$$

dove $\sqrt{2}\sigma_t$ è la precisione necessaria sul tempo di volo $\Delta t_{\rm TOF} = t_1 - t_0$, ottenuta come somma in quadratura della precisione della misura temporale nella singola lastra, σ_t (essendo le due lastre identiche). Quindi:

$$\sigma_t \le \frac{\Delta t_{\text{TOF}}}{3\sqrt{2}} = \frac{0.68 \, \text{ns}}{3\sqrt{2}} = 160 \, \text{ps}$$

2. La perdita di energia per ionizzazione per una particella carica dipende dal suo impulso, e in particolare dal fattore cinematico $\beta\gamma$. Calcoliamolo per le due ipotesi di particella:

$$\beta \gamma|_{\pi} = p/m_{\pi} = 5.0$$
$$\beta \gamma|_{K} = p/m_{K} = 1.4$$

Quindi un pione di quell'impulso è circa una m.i.p., mentre un kaone ha una perdita di energia per ionizzazione maggiore. Prendiamo l'intercetta della curva per il carbonio $^{12}_{6}$ C nel grafico, da cui si può stimare una perdita di energia media:

$$\begin{aligned} & -\frac{1}{\rho} \left. \frac{\mathrm{d}E}{\mathrm{d}x} \right|_{\pi} \approx 1.7 \, \mathrm{MeVg^{-1}cm^2} \\ & -\frac{1}{\rho} \left. \frac{\mathrm{d}E}{\mathrm{d}x} \right|_{K} \approx 2.2 \, \mathrm{MeVg^{-1}cm^2} \end{aligned}$$

e quindi calcoliamo la perdita di energia per ionizzazione moltiplicando per la densità e il percorso nelle due lastre:

$$\Delta E_{\text{ion}}^{\pi} = \left(\frac{1}{\rho} \left. \frac{dE}{dx} \right|_{\pi}\right) \cdot \rho \cdot 2d = 1.7 \,\text{MeVg}^{-1} \text{cm}^2 \cdot 0.91 \,\text{g/cm}^3 \cdot 2 \cdot 5 \,\text{cm} = 15.5 \,\text{MeV}$$

$$\Delta E_{\text{ion}}^{K} = \left(\frac{1}{\rho} \left. \frac{dE}{dx} \right|_{K}\right) \cdot \rho \cdot 2d = 2.2 \,\text{MeVg}^{-1} \text{cm}^2 \cdot 0.91 \,\text{g/cm}^3 \cdot 2 \cdot 5 \,\text{cm} = 20.0 \,\text{MeV}$$

- 3. Le reazioni considerate sono dovute all'interazione forte, pertanto si devono conservare i numeri quantici di: carica elettrica C, numero barionico B, numero leptonico L, stranezza S ed isospin (totale I e terza componente I_3). Quindi:
 - $K^- + p \rightarrow \Omega^- + K^+ + K^0$ conserva tutte le quantità, quindi è permessa
 - $\pi^- + p \to \pi^0 + \pi^0$ non è permessa, perché viola la conservazione del numero barionico B (iniziale: 1 per la presenza del protone, finale: 0).
- 4. Se si ha a dispoizione un rivelatore che ha una precisione temporale di $\sigma'_t = 800 \,\mathrm{ps}$, la condizione sul nuovo tempo di volo minimo necessario per discriminare le due ipotesi di massa, $\Delta t'_{\mathrm{TOF}}$, diventa:

$$\Delta t'_{\rm TOF} = k \times \Delta t_{\rm TOF} \geq 3\sqrt{2}\sigma'_t$$

$$k \times 0.68 \, \text{ns} \geq 3\sqrt{2} \cdot 0.8 \, \text{ns}$$

$$k > 3\sqrt{2} \times 0.8/0.68 = 4.99$$

Quindi la nuova distanza tra le due lastre deve essere:

$$L' = kL = 4.99 \,\mathrm{m}$$

Part.	$[{ m MeV/c^2}]$	I	I_3	$J^{P(C)}$	В	S	τ [s]
π^+	139.6	1	1	0-	0	0	$2.6 \ 10^{-8}$
π^-	139.6	1	-1	0-	0	0	$2.6 \ 10^{-8}$
π^0	135.0	1	0	0-+	0	0	8.4×10^{-17}
K^+	493.7	1/2	1/2	0-	0	1	$1.2 \ 10^{-8}$
K^-	493.7	1/2	-1/2	0-	0	-1	$1.2 \ 10^{-8}$
$\frac{K^-}{K^0}$	497.6	1/2	-1/2	0-	0	1	non definita
\overline{K}^0	497.6	1/2	1/2	0-	0	-1	non definita
p	938.272	1/2	1/2	$1/2^{+}$	1	0	stabile
n	939.565	1/2	-1/2	$1/2^{+}$	1	0	8.79×10^{2}
$\overline{\phi^0}$	1019.5	0	0	1	0	0	1.54×10^{-22}
ρ^0	770	1	0	1	0	0	4.5×10^{-24}
$\frac{\rho^0}{\rho^+}$	770	1	1	1-	0	0	4.5×10^{-24}
$ \frac{\rho^{-}}{f_2^0} $ $ \frac{d(pn)}{d(pn)} $	770	1	-1	1-	0	0	4.5×10^{-24}
f_{2}^{0}	1275.5	0	0	2++	0	0	6.76×10^{-21}
d(pn)	1875.6	0	0	1+	2	0	stabile
$\alpha({}_{2}^{4}He)$	3727.4	0	0	0+	4	0	stabile
Λ^0	1115.7	0	0	$1/2^{+}$	1	-1	2.63×10^{-10}
Σ^+	1189.4	1	1	$1/2^{+}$	1	-1	8.01×10^{-11}
Σ^0	1192.6	1	0	$1/2^{+}$	1	-1	7.4×10^{-20}
Σ^-	1197.3	1	-1	$1/2^{+}$	1	-1	1.48×10^{-10}
$ \begin{array}{c c} \Sigma^{+} \\ \hline \Sigma^{0} \\ \hline \Sigma^{-} \\ \hline \Xi^{0} \\ \hline \Xi^{-} \\ \hline \Xi^{0*} \\ \hline \Omega^{-} \end{array} $	1314.9	1/2	1/2	$1/2^{+}$	1	-2	2.90×10^{-10}
Ξ-	1321.7	1/2	-1/2	$1/2^{+}$	1	-2	1.64×10^{-10}
Ξ^{0*}	1531.8	1/2	1/2	$3/2^{+}$	1	-2	7.23×10^{-23}
	1672.5	0	0	$3/2^{+}$	1	-3	8.21×10^{-11}
J/ψ	3096.9	0	0	1	0	0	7.2×10^{-21}

Tabella 1: Massa (M), isospin $(I, e \text{ sua terza componente } I_3)$, spin (J), parità (P), coniugazione di carica (C), stranezza (S), numero barionico (B) e vita media (τ) di diverse particelle adroniche.

Part.	${ m M~[MeV/c^2]}$	τ [s]
$\overline{e^-}$	0.511	stabile
$\overline{\mu^-}$	105.6	2.2×10^{-6}
τ^{-}	1776	2.9×10^{-13}
$ u_{e/\mu/ au}$	0	stabile

Tabella 2: Massa (M) e vita media (τ) dei leptoni.

Costanti utili:

- $\hbar c = 197 \,\mathrm{MeV} \,\mathrm{fm}$
- \bullet costante di normalizzazione per $\frac{\mathrm{d}E}{\mathrm{d}x}$ di ionizzazione: $C=0.307~\mathrm{MeV~g^{-1}~cm^2}$

Formule utili:

 \bullet Energia della particella B prodotta in un decadimento a due corpi $A \to B + C,$ con A fermo:

$$E_B = \frac{m_A^2 + m_B^2 - m_C^2}{2m_A}$$