Algebraic Geometry I

David Wiedemann

Table des matières

1	Presheaves and Sheaves		2
	1.1	Presheaves	2
	1.2	Sheaves	3
List of Theorems			
	1	Definition (Presheaf)	2
	2	Definition (Morphism of presheaves)	3
	3	Definition (Sheaf)	3
	4	Definition (Morphisms of sheaves)	4
	5	Definition (Natural sheaf on Spec A)	5

Lecture 1: Intro

Mon 10 Oct

Quick Motivation

We study schemes.

These are objects that "look locally" like (Spec A, A). Examples include

- A itself
- Varieties in affine or Projective

1 Presheaves and Sheaves

1.1 Presheaves

Let X be a topological space.

Definition 1 (Presheaf)

Let C be a category. A presheaf \mathcal{F} of C on X consists of

- $\forall U \subset X$ open, an object in C $\mathcal{F}(U)$
- $\forall V \subset U \subset X$ open, a morphism $\rho_{U,V} : \mathcal{F}(U) \to \mathcal{F}(V)$

such that

- $\forall U \text{ open, } \rho_{U,U} \text{ is the identity on } \mathcal{F}(U)$
- Restriction maps are compatible

$$\forall W \subset V \subset U \subset X$$

open, we have $\rho_{U,V} \circ \rho_{V,W} = \rho_{U,W}$

Remark

 ${\it Usually, C = Set, Ab, Ring, etc.}$

In particular, we usually assume the objects in C have elements.

Remark

- Elements of $\mathcal{F}(U)$ are called sections of \mathcal{F} over U.
- $\mathcal{F}(U)$ is called the space of sections of \mathcal{F} over U
- Elements of $\mathcal{F}(X)$ are called global sections.
- There are alternative notations for $\mathcal{F}(U)$: $\Gamma(U,F)$ or $H_0(F)$
- The ρ_{UV} are called restriction maps, for $s \in \mathcal{F}(U)$, we write $s|_{V} := \rho_{UV}(s)$ and is called restriction of s to V.

Example

— For any object A in C, we define the constant presheaf \underline{A}' defined by $\underline{A}'(U) = A$ and with restriction maps the identity.

- The presheaf of continuous functions : C^0 . We define $C^0(U) := \{f : U \to \mathbb{R} | f \text{ continuous } \}$ and the restriction maps are the natural restrictions.
- More generally, if $\pi: Y \to X$ is continuous, we can look at the presheaf of continuous sections of π , here

$$\mathcal{F}_{\pi}(U) := \{s : U \to Y | s \ continuous \ \pi \circ s = \mathrm{Id} \}$$

This example is universal in a certain sense

Remark

Define the category Ouv_X with

- objects $U \subset X$ open subsets
- morphisms $U \to V$ are either empty or the inclusion $U \to V$ if $U \subset V$ Then a presheaf of C on X is just a contravariant functor $\operatorname{Ouv}_X^{op} \to C$

Definition 2 (Morphism of presheaves)

A morphism $\phi: \mathcal{F}_1 \to \mathcal{F}_2$ of presheaves on X consists of a collection of morphisms $\rho(U): \mathcal{F}_1(U) \to \mathcal{F}_2(U)$ which are natural.

$$\mathcal{F}_1(U) \xrightarrow{\rho(U)} \mathcal{F}_2(U)
\downarrow \qquad \qquad \downarrow
\mathcal{F}_1(V) \xrightarrow{\rho(V)} \mathcal{F}_2(V)$$

Example

- Every morphism of objects $A \to B$ in C yields a morphism $\underline{A}' \to \underline{B}'$
- If $X = \mathbb{R}^n$, let C^{∞} be the presheaf of smooth functions, then for every open U, there is an inclusion $C^{\infty}(U) \to C^0(U)$ and these inclusions induce a morphism of sheaves $C^{\infty} \to C^0$
- If $Y_2 \xrightarrow{\pi_2} Y_1 \xrightarrow{\pi_1} X$ are continuous, we get $\rho : \mathcal{F}_{\pi_1 \circ \pi_2} \to \mathcal{F}_{\pi_1}$ by mapping a section $s \in \mathcal{F}_{\pi_1 \circ \pi_2}(U) \to \pi_2 \circ s$

Remark

 $There\ is\ an\ equivalence\ of\ categories$

Presheaves of
$$C$$
 on $X \simeq Fun(\operatorname{Ouv}_X^{op}, C)$

1.2 Sheaves

Definition 3 (Sheaf)

Let C = Set, Ab, Ring.

A sheaf \mathcal{F} of \mathcal{C} on X is a presheaf such that $\forall U \subset X$ open and all open covers $U = \bigcup_{i \in I} U_i$

- $\forall \{s_i\}$ with $s_i \in \mathcal{F}(U_i)$ and $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \ \forall i, j \in I$, then $\exists s \in \mathcal{F}(U)$ such that $s|_{U_i} = s_i$

Condition 1 is called locality and condition 2 is the gluing condition.

Remark

- The section s of the gluability condition is unique by the locality condition.
- If C has products, then a presheaf is called a sheaf if

$$\mathcal{F}(U) \to \prod_{i \in I} \mathcal{F}(U_i) \Rightarrow \prod_{i,j \in I} \mathcal{F}(U_i \cap U_j)$$

is an equalizer diagram Here the first map is induced by the maps s_i : $\mathcal{F}(U) \to \mathcal{F}(U_i)$, the two second maps are induced by, for each pair $i, j \in I$ the restrictions $\rho_{U_i,U_i \cap U_j}$ resp. $\rho_{U_j,U_i \cap U_j}$

Example

- 1. If \mathcal{F} is a sheaf, let $U\emptyset \subset X$ and $I=\emptyset$, then $\mathcal{F}(\emptyset)$ contains at most one element
- 2. C^0 (and C^{∞} if $X = \mathbb{R}^n$) are sheaves since $\forall U \subset X$ open
 - Two continuous functions $f, g: U \to \mathbb{R}$ that coincide on an open cover are equal
 - Given an open cover $U = \bigcup_{i \in I} U_i$ and $f_i : U_i \to \mathbb{R}$, the function $f : U \to \mathbb{R}$ defined in the obvious way is continuous (resp. smooth) because continuity (resp. smoothness) is local.

Definition 4 (Morphisms of sheaves)

A morphism of sheaves $\rho: \mathcal{F}_1 \to \mathcal{F}_2$ is a morphism of the underlying presheaves.

Remark

- $PSh_C(X)$ is the category of presheaves of C on X
- $Sh_C(X)$ is the category of sheaves of C on X

If C = Ab, we drop the index.

Remark

There is a forgetful functor $Sh_C(X) \to PSh_C(X)$. By definition, this functor is fully faithful

Recall

Let A be a commutative ring (with 1), then Spec A is the set of prime ideals of A.

The closed subsets of the Zariski topology on Spec A are of the form $V(M) = \{p \in \operatorname{Spec} A | M \subset p\}$.

A basis of this topology is given by $D(a) = \{ p \in \operatorname{Spec} A | a \notin p \}$, here $a \in A$

Definition 5 (Natural sheaf on Spec A)

Let A be a ring and X = Spec A, then the structure sheaf \mathcal{O}_X on X is defined by

$$\mathcal{O}_X(U) = \left\{ s: U \to \coprod_{p \in \operatorname{Spec} A} A_p | s \text{ satisfies } i \text{ and } ii \right\}$$

where

- 1. $\forall p \in U, s(p) \in A_p$
- 2. $\forall p \in U, \exists a,b \in A \text{ and } V \subset U \text{ open with } p \in V \subset D(b) \text{ with } s(q) = \frac{a}{b} \in A_q \forall q \in V$

and ρ_{UV} are simply the (pointwise) restrictions.

Remark

 \mathcal{O}_X is a sheaf of rings:

— $\mathcal{O}_X(U)$ is a ring with pointwise multiplication and addition