Market

Gözde Nur Özdemir

2023-09-12

MARKET DATA SET

This data set is taken from Kaggle

Power BI

This graph is made by POWER BI.

Preperation

```
# Please first download required library
library(tidyverse)
library(ggplot2)
library(dplyr)
library(rvest)
library(stringr)
library(corrplot)
```

General Information About Data Set

```
data<-read.csv("C:/Users/gozde/Desktop/market/supermarket_sales.csv")
# Assuming 'data' is your data frame
cols_to_factor <- c("Gender", "Customer.type", "City", "Branch", "Product.line", "Payment")
# Use lapply to factorize selected columns
data[cols_to_factor] <- lapply(data[cols_to_factor], factor)</pre>
```

View the summary

summary(data)

```
##
     Invoice.ID
                                        City
                        Branch
                                                 Customer.type
                                                                   Gender
##
    Length: 1000
                        A:340
                                Mandalay:332
                                                 Member:501
                                                                Female:501
##
    Class : character
                        B:332
                                Naypyitaw:328
                                                 Normal:499
                                                                Male
                                                                     :499
##
    Mode :character
                        C:328
                                Yangon
                                          :340
##
##
##
##
                     Product.line
                                     Unit.price
                                                       Quantity
                                                                        Tax.5.
##
    Electronic accessories:170
                                  Min.
                                          :10.08
                                                   Min.
                                                           : 1.00
                                                                    Min.
                                                                            : 0.5085
    Fashion accessories
                           :178
                                  1st Qu.:32.88
                                                   1st Qu.: 3.00
                                                                    1st Qu.: 5.9249
                                  Median :55.23
                                                   Median: 5.00
##
    Food and beverages
                           :174
                                                                    Median :12.0880
                                                           : 5.51
##
    Health and beauty
                           :152
                                  Mean
                                          :55.67
                                                   Mean
                                                                    Mean
                                                                            :15.3794
##
    Home and lifestyle
                           :160
                                   3rd Qu.:77.94
                                                    3rd Qu.: 8.00
                                                                    3rd Qu.:22.4453
##
    Sports and travel
                           :166
                                  Max.
                                          :99.96
                                                   Max.
                                                           :10.00
                                                                    Max.
                                                                            :49.6500
        Total
##
                           Date
                                               Time
                                                                      Payment
##
           : 10.68
                       Length: 1000
                                           Length: 1000
                                                               Cash
                                                                           :344
    Min.
    1st Qu.: 124.42
                       Class : character
                                           Class : character
                                                               Credit card:311
    Median: 253.85
                       Mode : character
##
                                           Mode :character
                                                               Ewallet
                                                                           :345
##
    Mean
           : 322.97
##
    3rd Qu.: 471.35
##
    Max.
           :1042.65
##
         cogs
                      gross.margin.percentage gross.income
                                                                      Rating
                                                       : 0.5085
##
    Min.
           : 10.17
                      Min.
                             :4.762
                                                                          : 4.000
                                               Min.
                                                                  Min.
##
    1st Qu.:118.50
                      1st Qu.:4.762
                                               1st Qu.: 5.9249
                                                                  1st Qu.: 5.500
   Median :241.76
                      Median :4.762
                                               Median: 12.0880
                                                                  Median: 7.000
##
   Mean
           :307.59
                             :4.762
                                               Mean
                                                       :15.3794
                                                                  Mean
                                                                          : 6.973
                      Mean
                                               3rd Qu.:22.4453
    3rd Qu.:448.90
                      3rd Qu.:4.762
                                                                  3rd Qu.: 8.500
##
                                                       :49.6500
   Max.
           :993.00
                             :4.762
                                               Max.
                                                                  Max.
                                                                          :10.000
                      Max.
```

Features:

- 1. Invoice ID: Unique identifier for each invoice.
- 2. Branch: The branch where the purchase was made.
- 3. City: The city where the purchase was made.
- 4. Customer Type: Type of customer, e.g., "Member" or "Normal."
- 5. Gender: Gender of the customer.
- 6. Product Line: The category or type of product.
- 7. Unit Price: Price per unit of the product.
- 8. Quantity: Number of units purchased.
- 9. Tax 5%: Tax amount as a percentage of the total.
- 10. Total: Total amount including tax.

Plot of Market Sales Data

Gender vs Product Line

```
ggplot(data = data, aes(x=Product.line, fill = Gender)) +
geom_histogram(stat="count",position="dodge")+theme_minimal()+
xlab("Product Line")+ylab("Gender")+labs(title="Product Line vs Gender")
```

Warning in geom_histogram(stat = "count", position = "dodge"): Ignoring unknown
parameters: 'binwidth', 'bins', and 'pad'

As we can see from the plot, the Majority of Females tend to buy Fashion accessories. But Males tend to buy health and beauty stuff.

Average Rating vs Product Line

```
average_ratings <- data %>%
  group_by(Product.line) %>%
```

```
# Create a bar plot using ggplot2 with average rating on the y-axis
ggplot(data = average_ratings, aes(x = Product.line, y = Average_Rating, fill = Product.line)) +
    geom_bar(stat = "identity", position = "dodge") +
    theme_minimal() +
    xlab("Product Line") +
    ylab("Average Rating") +
    labs(title = "Product Line vs Average Rating")
```


Food and beverages are mostly likeable.

Average Income vs Branch

```
average_income=data %>% group_by(Branch) %>%
  summarize(average=mean(gross.income))
```

```
ggplot(data = average_income, aes(y = average ,x=Branch, fill = Branch)) +
  geom_bar(stat = "identity", position = "dodge") +
  theme_minimal() +
  xlab("Branch") +
  ylab("Average Income") +
  labs(title = "Average Income vs Branch")
```


The branch C is makes the most income other than the Branch A and B.

Quantity vs Branch

```
average_quantity=data %>% group_by(Branch) %>%
   summarize(average=mean(Quantity))

ggplot(data = average_quantity, aes(y = average ,x=Branch, fill = Branch)) +
   geom_bar(stat = "identity", position = "dodge") +
   theme_minimal() +
   xlab("Branch") +
   ylab("Quantity") +
   labs(title = "Quantity vs Branch")
```


Customer Type vs Gender

```
ggplot(data = data, aes(x = Customer.type, fill = Gender)) +
  geom_bar() +
  theme_minimal() +
  xlab("Customer Type") +
  ylab("Count") +
  labs(title = "Customer Type vs Gender")
```


Females are more tend to be members. But, Males are more tend to be Normal customers.

Gender vs Payment

```
ggplot(data = data, aes(x = Payment, fill = Gender)) +
  geom_bar() +
  theme_minimal() +
  xlab("Payment") +
  ylab("Count") +
  labs(title = "Payment vs Gender")
```


E-wallet is more used by males. Credit card is more used by females.

Correlation Matrix

```
# Assuming 'data' is your data frame
cor_data <- data[c(7, 8, 16, 17)]
# Compute the correlation matrix, specifying 'use' to handle missing values
cor_data <- cor(cor_data, use = "pairwise.complete.obs")
# Round the correlation matrix
cor_data <- round(cor_data, 2)
# Create the correlation plot with a different font
corrplot(cor_data, method = "number",type="upper") # You can try different fonts</pre>
```


There is strong positive relation between Quantity and Gross income.

Logistic Regression

Product line by Gender

```
log1 <- glm(Product.line ~ Gender, data = data, family = "binomial")</pre>
print(log1)
##
## Call: glm(formula = Product.line ~ Gender, family = "binomial", data = data)
##
## Coefficients:
## (Intercept)
                 {\tt GenderMale}
##
       1.60227
                    -0.03317
##
## Degrees of Freedom: 999 Total (i.e. Null); 998 Residual
## Null Deviance:
                         911.8
## Residual Deviance: 911.7
                                 AIC: 915.7
```

```
#Product.line=1.60227-0.03317*(GenderMale)
```

Customer Type and Product Line

```
log2 <- glm(Product.line ~ Customer.type, data = data, family = "binomial")</pre>
print(log2)
##
## Call: glm(formula = Product.line ~ Customer.type, family = "binomial",
##
       data = data)
##
## Coefficients:
           (Intercept) Customer.typeNormal
##
                1.6907
                                    -0.2036
##
##
## Degrees of Freedom: 999 Total (i.e. Null); 998 Residual
## Null Deviance:
                        911.8
## Residual Deviance: 910.3
                                AIC: 914.3
\#product.line=1.6907-0.2036*NormalCustomer
```

Branch and Gender

```
log3 <- glm(Branch~ Gender, data = data, family = "binomial")</pre>
print(log1)
##
## Call: glm(formula = Product.line ~ Gender, family = "binomial", data = data)
##
## Coefficients:
## (Intercept)
                 GenderMale
       1.60227
                   -0.03317
##
##
## Degrees of Freedom: 999 Total (i.e. Null); 998 Residual
## Null Deviance:
                       911.8
## Residual Deviance: 911.7
                                AIC: 915.7
# Branch=0.7475-0.1666*GenderMale
```

Payment and Gender

```
log4 <- glm(Gender~ Payment, data = data, family = "binomial")
summary(log4)</pre>
```

```
##
## Call:
## glm(formula = Gender ~ Payment, family = "binomial", data = data)
## Deviance Residuals:
##
     Min
             1Q Median
                               3Q
                                     Max
## -1.240 -1.148 -1.137 1.207
##
## Coefficients:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     -0.06980
                                 0.10790 -0.647
                                                    0.864
## PaymentCredit card -0.02674
                                 0.15663 -0.171
## PaymentEwallet
                      0.21498
                                 0.15264
                                           1.408
                                                    0.159
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 1386.3 on 999 degrees of freedom
##
## Residual deviance: 1383.3 on 997 degrees of freedom
## AIC: 1389.3
## Number of Fisher Scoring iterations: 3
# GenderMale=-0.0698-0.0267*CreditCard+0.21498*Ewallet
```

Branch and Quantity

```
data$Quantity<-factor(data$Quantity)</pre>
data$Quantity<-relevel(data$Quantity,ref=1)</pre>
log5 <- glm(Quantity~ Branch, data = data, family = "binomial")</pre>
print(log5)
## Call: glm(formula = Quantity ~ Branch, family = "binomial", data = data)
## Coefficients:
                    BranchB
                                  BranchC
## (Intercept)
                     0.1045
##
        2.1335
                                  -0.2687
##
## Degrees of Freedom: 999 Total (i.e. Null); 997 Residual
## Null Deviance:
                        701.4
## Residual Deviance: 698.8
                                 AIC: 704.8
# Quantity=2.13+0.1045*BranchB-0.2687*BrancC
```

Customer Type and Branch

```
data$Customer.type<-relevel(data$Customer.type,ref="Member")
log6 <- glm(Customer.type~ Branch, data = data, family = "binomial")
print(log6)</pre>
```

#Member=0.035-0.0235BranchB-0.09629BranchC

Linear Regression

Simple Linear Regression Conceptual Model

The population regression model: This is a conceptual model, a hypothesis, or a postulation

Quantity- Unit Price

```
data$Quantity<-as.numeric(data$Quantity)
l1<-lm(Quantity~Unit.price,data=data)
print(l1)

##

## Call:
## lm(formula = Quantity ~ Unit.price, data = data)
##

## Coefficients:
## (Intercept) Unit.price
## 5.443795 0.001189

## Quantity=5.4437+0.001189*UnitPrice</pre>
```

Quantity-Rating

```
12<-lm(Quantity~Rating,data=data)
print(12)

##

## Call:
## lm(formula = Quantity ~ Rating, data = data)
##

## Coefficients:
## (Intercept) Rating
## 5.6976 -0.0269

#Quantity=5.6976-0.0269*Rating</pre>
```

This is an interesting result for me. Since, when the rating is increasing 1 unit the corresponding quantity is decreasing as 0.0269

Gross Margin Percentage-Gross Income

```
13<-lm(gross.margin.percentage~gross.income,data=data)
print(13)

##
## Call:
## lm(formula = gross.margin.percentage ~ gross.income, data = data)
##
## Coefficients:
## (Intercept) gross.income
## 4.762e+00 -1.236e-16</pre>
```

```
{\it \# gross.margin.percentage=4.762e+00-1.236e-16~* gross.income}
```

This is very low, so we can say that there is no linear relation between two variables.

Total-Unit Price

```
14<-lm(Total~Unit.price,data=data)
print(14)

##
## Call:
## lm(formula = Total ~ Unit.price, data = data)
##
## Coefficients:
## (Intercept) Unit.price
## -4.582 5.884

##Total=-4.582+5.884*UnitPrice</pre>
```

This isn't reliable since intercept is minus, but total can't be negative.

Total-Rating

```
15<-lm(Total~Rating,data=data)
print(15)

##

## Call:
## lm(formula = Total ~ Rating, data = data)
##

## Coefficients:
## (Intercept) Rating
## 359.322 -5.214

##Total=359.322-5.214*Rating</pre>
```

When rating is increasing 1 unit, total is decreasing as 5.214 unit.