$= 4cx - x^2 - 2c^2$

F(a) = { x2/2 for 02x ≤ C 4(x-x-2) for 02x ≤ C

(c)
$$F(x,c) = \frac{1}{2}Cbase \times AH + \frac{1}{2}Cbas$$

e) first moment = Mean = E(x)
$$E(x) = \int x f(x) dx$$

$$= \int x \cdot x dx + \int x (2c - x) dx$$

$$= \left[\frac{x^3}{3}\right]^{c} + 2c \cdot \left[\frac{x^2}{2}\right]^{2c} - \left[\frac{x^3}{3}\right]^{2c}$$

$$= \left[\frac{x^3}{3}\right]^{c} + 2c \cdot \left[\frac{x^2}{2}\right]^{2c} - \left[\frac{x^3}{3}\right]^{2c}$$

$$= \frac{c^3}{3} + c \cdot \left[4c^2 - c^2\right] - \frac{1}{3} \cdot \left[8c^3 - c^3\right]$$

$$= \frac{c^3}{3} + 3c^3 - \frac{1}{3} + 3c^3$$

$$= \frac{3c^3}{3}$$

$$= \frac{3c^3}{3}$$

$$= \frac{3c^3}{3}$$

$$= (x^2) + \frac{2c}{3} + \frac{2c}{3} + \frac{2c}{3}$$

$$= \left[\frac{x^4}{4}\right]^{c} + 2c \cdot \left[\frac{x^3}{3}\right]^{2c} - \left[\frac{x^4}{4}\right]^{2c}$$

$$= \left[\frac{x^4}{4}\right]^{c} + 2c \cdot \left[\frac{x^3}{3}\right]^{2c} - \left[\frac{x^4}{4}\right]^{2c}$$

$$= \frac{x^{4}}{4} \Big|_{0}^{c} + \frac{2c}{3} \Big(8c^{3} - c^{3} \Big) - \frac{1}{4} \Big(16c^{4} - c^{4} \Big)$$

$$= \frac{c^{4}}{4} + \frac{2c}{3} + \frac{2c}{3} - \frac{1}{4} \cdot 15c^{4}$$

$$= \frac{3c^{4} - 45c^{4} + 15c^{4}}{12}$$

$$= \frac{14c^{4}}{12}$$

$$= \frac{14c^{4}}{12} - (c^{3})^{2}$$

$$= \frac{7c^{4} - 6c^{6}}{6}$$

$$= \frac{1}{6}$$
(f) $V = 2X$

Area $\frac{1}{2} \times 2c \times y + \frac{1}{2} \times (y(c - 2c) \times y)$

$$= \frac{2c}{3} + \frac{2c$$

f(y) = { 1/4 0 \le xy \le 2 c \\ 1-y|4 2 \cess{2} \cess{2} \le 4 c

=> Useconty . 3-7.5 Chotomers per hour. b) Performance metrics at Terminal 1 check in, AT, = 10 Cost / hack det, = 30 Cust P= ATI = 10 = 1/3

$$L_{T1} = \frac{P}{1-P} = \frac{1}{1-1/3} = \frac{1}{213} = \frac{1}{2}$$
 or 30 customer in hour. (7)

$$W = \frac{1}{u(1-P)} = \frac{1}{30(1-1/3)} = \frac{1}{30 \times \frac{2}{3}} = \frac{1}{20}$$
 or 3 minutes

$$W_0 = \frac{P}{4(1-P)} = \frac{\sqrt{3}}{30(1-\frac{1}{3})} = \frac{\sqrt{3}}{30 \times \frac{2}{3}} = \frac{1}{60}$$
 or 1 where

$$L_0 = \frac{P^2}{1-P} = \frac{(0.8)^2}{1-0.8} = \frac{0.8 \times 0.8}{(0.2)} = 7.3.2$$
 Customers per hour

$$Wo = \frac{P}{u_s(1-P)} = \frac{0.8}{37.5(1-0.8)} = \frac{0.8.4}{37.5\times0.2} = 6.4 \text{ minutes.}$$

(1) Total any time sport by Terminal 1 passengers

= 11 minutes

(6) The total average time Spent by terminal 2 passenger = tome spent at security check = 8 minutes

(e) The total average number of Terminal 1 passengers in System

= No of passengers at Terminal 1 + passengers at Security check

=
$$L_{T1} + \left(\frac{A_1}{A_1 + A_2}\right)$$
 Lescuity

= $\frac{1}{2} + \frac{10}{60} \cdot 4$
 $20/60 + 10/60$

= $\frac{1}{2} + \frac{4}{3}$

= $\frac{3+8}{6}$

= $11/6$ Customer per hour.

(5) $A = 30$ per hour.

Mean = 90 sec

Variance = 90 = 90 = 90 .

If a 90 =

$$W_0 = \frac{1}{2(1-r)} \left(\frac{1}{11^2} + \sigma^2 \right) = \frac{40}{3600} \left(\left(\frac{1}{190} \right)^2 + (90)^2 \right)$$

$$= \frac{1}{2(1-3)4}$$

$$= \frac{1}{120} \left(\frac{1}{90^2} + \frac{1}{90^2} \right)$$

$$= \frac{1}{160} \cdot 2 \cdot 90^5$$

$$= 270 \text{ Sec}$$

$$U = \frac{1}{4} + W_0 = \frac{1}{4} + 270 = 360 \text{ Sec}$$

$$W = \frac{1}{4} + W_0 = \frac{1}{4} + 270 = 360 \text{ Sec}$$

$$W = \frac{1}{4} + W_0 = \frac{1}{4} + 270 = 360 \text{ Sec}$$

$$W = \frac{1}{4} + W_0 = \frac{1}{4} + 270 = 360 \text{ Sec}$$

$$W = \frac{1}{4} + W_0 = \frac{1}{4} + 270 = 360 \text{ Sec}$$

$$W = \frac{1}{4} + W_0 = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{27}{18}$$

$$= 270 \times 25 = \frac{18}{18}$$

$$= 375 \text{ J}$$

$$W = \frac{1}{12} + \frac{1}{12} = \frac{1}{12} + \frac{1}{12} = \frac{1}{12} + \frac{1}{12} = \frac{1}{12} = \frac{1}{12} + \frac{1}{12} = \frac{1}{12} =$$

Scanned by CamScanner

Woombined =
$$W_1 = W_2$$

$$= \frac{1}{u_1(1-\rho_1)} = \frac{1}{u_2(1-\rho_2)} = \frac{1}{u_2(1-\rho)}$$
We combined = $W_{01} = W_{02}$

$$= \frac{\rho_1}{u_1(1-\rho_1)} = \frac{\rho_2}{u_2(1-\rho_2)} = \frac{\rho}{u_2(1-\rho)}$$

For a M/M/2 Queue,

Po = Probablity that there are no customers in the Queve

$$\beta_{0} = \frac{1}{\frac{2}{2}} \frac{(CP)^{N} + (CP)^{C} \cdot \frac{1}{(1-P)}}{\frac{1}{1+2P+4P^{2}(1-P)}} = \frac{1}{1+2P+4P^{2}(1-P)}$$

$$= \frac{1}{1-P+2P(1-P)+2P^{2}}$$

$$= \frac{1-P}{1-P+2P(1-P)+2P^{2}}$$

$$= \frac{1-P}{1-P+2P-2P^{2}+2P^{2}}$$

$$P_0 = \frac{1 - P}{1 + P}$$

$$L(M|M|2) = \frac{21}{4} + Po \frac{P(CP)^{C}}{(1-P)^{2}Cl}$$

$$= 2P + \frac{(1-P)}{(1+P)} \frac{P(2P)^{2}}{(1-P)^{2}2!}$$

$$= 2P + \frac{(1-P)}{(1-P)^{2}2!} = 2P + \frac{2P^{3}}{1-P^{2}} = \frac{2P-2P^{3}+2P^{3}}{1-P^{2}}$$

$$L(M|M|2) = \frac{2P}{1-P^{2}} \cdot Lo(M|M|2) = \frac{2P^{3}}{1-P^{2}}$$

Scanned by CamScanner

$$\frac{20}{1-0} = \frac{20}{(1-0)} = \frac{20}{20}$$

$$= \frac{\rho}{\mu \rho (1-\rho^2)} = \frac{1}{\mu (1-\rho^2)}$$

2 x MINII

Performance metrics

MIMIZ Performance metro

The probablity of Zoo curbines quater for MIMIR Systom.

The utilization rates are same

L for 2 M|M|1

L 2+ M|M|1 =
$$\frac{2P}{1-P}$$
= $\frac{2 \times 0.5}{1-0.5} = 2.$

The number of Customen in System

Average would time I delay w

$$W_{2} + u | m | 1 = \frac{1}{u(1-e)} = \frac{1}{10(1-0.5)}$$

$$= \frac{1}{5}$$

MIMIZ utilisation vate (
$$P = \frac{21}{cu}$$
where $c = 2$

$$P = 1/u$$

The utilization vater are same for both systems.

L for MM/2

LMIMIZ =
$$\frac{2P}{1-P^2} = \frac{2\times0.5}{1-(0.5)^2} = 1.33$$
.

with 2 M [m] 1 is greater than number of Customen in M/M/Z Ang waiting time I delay (w)

$$W(|M|M|2) = \frac{1}{u(1-e^2)}$$

$$= \frac{1}{10(1-0.5)^2}$$

$$= \frac{1}{10(1-0.25)}$$

$$= \frac{1}{10 * 0.75}$$

$$= \frac{1}{15}$$

The Average wanting time in the System with 2 M/M/1 is slightly higher than the System with M/M/2

Given: A Customer is turned away once there are 7 customers in the System, we need to Calculate probability of having 7 Customer in System for MMIAI7 model .

(13)

$$P_{0} = \frac{1}{\sum_{k=0}^{c} \frac{\lambda^{k}}{\mu^{k} k!}} + \frac{\lambda^{c}}{\mu^{c} c!} \sum_{k=c+1}^{c} \frac{\lambda^{k-c}}{\mu^{k-c}} c^{k-c}$$

$$= \frac{1}{\sum_{k=0}^{c} \frac{\rho^{k}}{k!}} + \frac{\rho^{c}}{c!} \sum_{k=c+1}^{c} \frac{\rho^{k-c}}{c^{k-c}}$$

$$\frac{1}{1+\frac{3\cdot8}{1!}+(3\cdot8)^2+(3\cdot8)^3+(3\cdot8)^4+\frac{p^4}{4!}\left[\frac{p^1}{c^1}+\frac{p^2}{c^2}+\frac{p^3}{c^3}\right]}$$

$$\frac{1+3.8+(3.8)^{2}+(3.8)^{3}+(3.8)^{4}+(3.8)^{4}}{21}+\frac{(3.8)^{3}}{41}+\frac{(3.8)^{4}}{41}\left[\frac{3.8}{4}+\frac{(3.8)^{2}}{42}+\frac{(3.8)^{3}}{43}\right].$$

$$= \frac{P^{2} + 0.019}{41 + 4^{3}} = \frac{(3.8)^{2} \times 0.019}{24 \times 64} = 0.1415$$

Probablity of Customers Lost = 14.10/8

Now Trying for MIMISTA, adding I Queue as server

$$= 1 + \frac{38}{1!} + \frac{3.8^{2}}{2!} + \frac{3.8^{3}}{3!} + \frac{3.8^{4}}{4!} + \frac{3.8^{5}}{5!} + \frac{3.8^{5}}{5!} \left[\frac{3.8}{5} + \frac{3.8^{2}}{5!} \right]$$

-0.022

P= 0.083

Rate of customers Lost: 0.083 ×100 = 8.3 %.

The new System MINI517 is better Since Customers Lost is Compandively Less to MINI417 System

- (b) No, combination of three Exponential distribution is not an Exponential distribution.
- (c) This is a MIGHT System.

$$\mu = \frac{1}{45}$$
, $h = \frac{1}{60}$

$$\rho = \frac{1}{45} = \frac{\frac{1}{60}}{\frac{1}{45}} = \frac{3}{4}$$

$$= \left(\frac{3}{4}\right)^{2} \left(1 + \left(675\right) + \left(\frac{1}{4r}\right)^{2}\right) = \left(\frac{3}{4}\right)^{2} \times \left(1 + \frac{1}{3}\right) = \frac{9^{2} + \left(\frac{1}{3}\right)^{2}}{416} \times \left(\frac{1}{3}\right)^{2}$$

$$= \left(\frac{3}{4}\right)^{2} \left(1 + \left(675\right) + \left(\frac{1}{4r}\right)^{2}\right) = \left(\frac{3}{4}\right)^{2} \times \left(1 + \frac{1}{3}\right) = \frac{9^{2} + \left(\frac{1}{3}\right)^{2}}{416} \times \left(\frac{1}{3}\right)^{2}$$

$$= \left(\frac{3}{4}\right)^{2} \left(1 + \left(675\right) + \left(\frac{1}{4r}\right)^{2}\right) = \left(\frac{3}{4}\right)^{2} \times \left(1 + \frac{1}{3}\right) = \frac{9^{2} + \left(\frac{1}{3}\right)^{2}}{416} \times \left(\frac{1}{3}\right)^{2}$$

$$= \left(\frac{3}{4}\right)^{2} \left(1 + \left(675\right) + \left(\frac{1}{4r}\right)^{2}\right) = \left(\frac{3}{4}\right)^{2} \times \left(1 + \frac{1}{3}\right) = \frac{9^{2} + \left(\frac{1}{3}\right)^{2}}{416} \times \left(\frac{1}{3}\right)^{2}$$

$$= \left(\frac{3}{4}\right)^{2} \left(1 + \left(675\right) + \left(\frac{1}{3}\right)^{2}\right) = \left(\frac{3}{4}\right)^{2} \times \left(1 + \frac{1}{3}\right) = \frac{9^{2} + \left(\frac{1}{3}\right)^{2}}{416} \times \left(\frac{1}{3}\right)^{2}$$

(d)
$$W = \frac{1}{4} + \Lambda \left(\frac{1}{42} + 6^2 \right) = 45 + \frac{1}{60} \left(\frac{45^2 + 67\Gamma}{0.5} \right)$$

= $45 + \frac{1}{30} \left(2700 \right)$
= $45 + 90$
= 135 min

$$W = 90 = 90/60 = 3/2 \text{ hows}$$

$$W = 90 = 90/60 = 3/2 \text{ hows}$$

$$W = 40 = 90/60 = 2/3 \text{ hows}$$

$$W = 40 = 90/60 = 2/3 \text{ hows}$$

$$W = 40 = 90/60 = 2/3 \text{ hows}$$

$$W = 40 = 90/60 = 2/3 \text{ hows}$$

$$W = 1 \text{ 10.7 of x}$$

$$W = 1 \text{ 10.1 of x}$$

$$W =$$

Utilization rade is greater at repair station.

For Conservation Law,

Max value of Prepair = 1

$$1 = 1 \pm 0.1 \text{M} = 6 = 1 \pm 0.1 \text{M}$$

 $54 = 6 \times 1 + 0.9 \text{M} - (2)$

Using (1) and(2)

(10) Given & k.pk = Pd & pk -(1) (18) L= & k. Pk PK = (1-P) PK L: 2 K. (1-P) pk L = & K. PK - ZK. PK+1 = ZK.PY-P ZK.PX = ZKP (1-P) -(2) Using (1) in (2) = (P(d 2 pk)) (1-P) K-0 pt - 1-P = P(d (1-P)) 1-P Geometric P (1-P) (1-P) P(L=K) = P

Qn4) Simulation table for Security Queue of Airport.

		L	L(Q)	L(S)	W	W(Q)	W(S)
Seed	RHO	Customer	Customer	Customer	(Mins)	Mins	mins
12345	0.789	3.748981	2.9595533	0.7894285	7.54343	5.955003	1.588432
98765	0.80911671	4.2388033	3.429686594	0.80911671	8.394288953	6.79195947	1.60232947
54567	0.801105	4.02779848	3.22669269	0.801105791	8.05580062	6.453548533	1.602252088
67234	0.7934097	3.840499323	3.04708958	0.793409743	7.688450765	6.100091744	1.588359021
78123	0.799687	3.992189289	3.192502207	0.799687083	7.963511411	6.368317209	1.595194202
Average	0.798463682	3.969654278	3.171104874	0.798549565	7.92909635	6.333783991	1.595313356
Theoretical	0.8	4	3.2	0.8	8	6.4	1.6

The results of Simulation are Consistent with the Theoretical calculations in Qn 3.