Geometric Series formulas							
Interval	Sum	Condition	Interval	Sum	Condition		
Infinite	$\sum_{k=0}^{\infty} a^k = \frac{1}{1-a}$	a <1	Finite on [1,N]	$\sum_{k=1}^{N} a^k = \frac{a(1 - a^{N+1})}{1 - a}$	None		
Finite on [0,N]	$\sum_{k=0}^{N} a^k = \frac{1 - a^{N+1}}{1 - a}$	None	Finite on [N ₁ ,N ₂]	$\sum_{k=N_1}^{N_2} a^k = \frac{a^{N_1} - a^{N_2 + 1}}{1 - a}$	None		
Infinite	$\sum_{k=1}^{\infty} a^k = \frac{a}{1-a}$	a <1	Finite on [1,N]	$\sum_{k=1}^{N} k = \frac{N(N+1)}{2}$	None		

■ Partial fractions.

f(x)	$A \perp B$
f(x)	x-a $x-b$
f(x)	A B
$\overline{(x-a)^2}$	${x-a} + {(x-a)^2}$
f(x)	A $Bx+C$
$(x-a)(x^2+bx+c)$	${x-a} + {x^2+bx+c}$
f(x)	A B C
$\frac{\overline{(x-a)(x+d)^2}}{f(x)}$	${x-a} + {x+d} + {(x+d)^2}$
f(x)	A B
$(x+d)^2$	$\frac{1}{x+d} + \frac{1}{(x+d)^2}$
f(x)	A Bx+C
$\overline{(x-a)(x^2-b^2)}$	$\frac{1}{x+d} + \frac{1}{x^2-b^2}$
f(x)	Ax+B $Cx+D$
$\overline{(x^2-a)(x^2-b)}$	$\frac{1}{x^2-a} + \frac{1}{x^2-b}$
f(x)	Ax+B $Cx+D$
$\frac{1}{(x^2-a)^2}$	$\frac{1}{x^2-a} + \frac{1}{(x^2-a)^2}$
_ (·· <i>'')</i>	(" ")

Sequence	Transform	ROC
$\delta[n]$	1	All z
$\delta[n-m]$	z^{-m}	$ z > 0$, $m > 0$; $ z < \infty$, $m < 0$
	1	z > a
$a^nu[n]$	$1 - az^{-1}$	
	1	
$-a^n u[-n-1]$	$1 - az^{-1}$	z < a
	az^{-1}	
$na^nu[n]$	$\frac{\overline{(1-az^{-1})^2}}{az^{-1}}$	z > a
$-na^nu[-n-1]$	$\overline{(1-az^{-1})^2}$	z < a
	$1 - a\cos(b)z^{-1}$	
$a^n \cos(bn)u[n]$	$1 - 2a\cos(b)z^{-1} + a^2z^{-2}$	z > a
	$a\sin(b)z^{-1}$	
$a^n \sin(bn)u[n]$	$1 - 2a\cos(b)z^{-1} + a^2z^{-2}$	z > a