2Bac.SM

Exercice 1(session normal 2011) 3points

Soit N un entier naturel représenté dans le système de numération à base 10 comme suit : N = 111.....11 (2010 fois 1)

- 1) Montrer que N se divise par 11
- 2) A- Vérifier que 2011 est un nombre premier et $10^{2010} 1 = 9N$
 - B- Montrer que 2011 divise 9N
 - C- Déduire que 2011 divise N
- 3) Montrer que N se divise par 22121

Exercice 2(session normal 2012) 3points

Soit dans \mathbb{Z}^2 l'équation (E): 143x - 195y = 52

- 1) A- Déterminer le plus grand diviseur commun de 195 et 143 puis déduire que l'équation (E) admet des solutions dans \mathbb{Z}^2
 - b- Sachant que (-1,-1)est une solution particulière de l'équation e(E)résoudre dans \mathbb{Z}^2 l'équation (E)en précisant tous les étapes de la solution
- 2) Soit *n* un entier naturel non nul et premier avec 5 montrer que pour tout k de \mathbb{N} on a $n^{4k} \equiv 1[5]$
- 3) Soit deux entiers naturels x et y non nul tel que x = y[4]
 - a- montrer que $n^x \equiv n^y [5]$
 - b-Déduire que pour *n* tout de \mathbb{N}^* on a $n^x \equiv n^y \lceil 10 \rceil$
- 4) Soit x et y deux entiers naturels tel que(x, y) est solution de(E) montrer que pour n tout $de \mathbb{N}^*$ les deux nombres n^x et n^y ont le même chiffre des unités dans le système de numération à base 10

Exercice 3(session normal 2018) 3points

Soit p un nombre premier tel que

- 1) Montrer que pour tout entier relatif x si $x^2 = 1[p]$ alors $x^{p-5} = 1[p]$
- 2) soit *x* entier relatif vérifiant $x^{p-5} \equiv 1[p]$
 - A- Montrer que x et p sont premiers entre eux
 - B- Montrer que $x^{p-1} \equiv 1[p]$
 - C- Vérifier que 2 + (k-1)(p-1) = k(p-5)

- D- Déduire que $x^2 \equiv 1[p]$
- 4) Résoudre dans \mathbb{Z} l'équation $x^{62} \equiv 1[67]$

Exercice 4(session normal 2017) 3points

Admettant que 2017 est un nombre premier et $2016 = 2^5 \times 3^2 \times 7$ soit *p* un nombre premier supérieur ou égale à 5

- 1) Soit le couple (x, y) de $\mathbb{N}^* \times \mathbb{N}^*$ tel que $px + y^{p-1} = 2017$
 - A- Vérifier que p < 2017
 - B- Montrer que p ne divise pas y
 - C- Montrer que $y^{p-1} \equiv 1[p]$ puis déduire que p divise 2016
 - D- Montrer que p = 7
- 2) Déterminer suivant la valeur de p les couples (x, y) de $\mathbb{N}^* \times \mathbb{N}^*$ qui vérifient $px + y^{p-1} = 2017$

Exercice 5 (session normal 2016) 3points Partie 1

Soit le couple (x, y) de $\mathbb{N}^* \times \mathbb{N}^*$ tel que le nombre premier 173 divise $a^3 + b^3$

- 1) Montrer que $a^{171} \equiv -b^{171} [173]$ (remarquer171 = 3×57)
- 2) Montrer que173 divise *a* si et seulement si 173 divise *b*
- 3) On suppose que 173 divise a montrer que 173 divise a+b
- 4) On suppose que 173 ne divise pas a A- En utilisant le théorème de Fermat montrer que $a^{172} \equiv b^{172} [173]$
 - B- Montrer que $a^{171}(a+b) \equiv 0[173]$
 - C- Déduire que 173 divise a+b

Partie 2

soit dans $\mathbb{N}^* \times \mathbb{N}^*$ l'équation suivante $(E): x^3 + y^3 = 173(xy+1)$ et (x,y) de $\mathbb{N}^* \times \mathbb{N}^*$ solution de l'équation (E)

- on pose x + y = 173k tel que $k \in \mathbb{N}^*$
 - 1) Vérifier que $k(x-y)^2 + (k-1)xy = 1$
 - 2) Montrer que k = 1 puis résoudre l'équation (E)