Lesson 2 Computability

Math 574 - Topics in Logic Penn State, Spring 2014

Jan Reimann

2-1

Finite Automata

Finite Automorra

Quintuple $M = (Q, A, q_0, F, S)$ Pinile set of states

$$Q = \{1, 2, 3\}$$
 $f_0 = 1$
 $F = \{3\}$
 $A = \{0, 1\}$
 $S: Q \times A \rightarrow Q$

· A finite antonation M accepts a ret L = A IN language M- 01101 accept .] mput, we we

Inport,
$$W = W_0 ... W_{n-1} \in A^{< N}$$

State function for $W:$

$$T_w(x) = q_0$$

$$T_w(k), W_k$$

DEF: M accepts $w \in A^{< |N|}$, $W = W_s ...$ W_{n-1} $\frac{1}{\sqrt{M}} = \frac{1}{\sqrt{M}} \left(\frac{1}{\sqrt{M}} \right) = \frac{1}{\sqrt{M}} \left(\frac{1}{\sqrt{M}$

Accepted

0 0 0

precisely
the string odd
with an odd
of 11s

not accepted

. The languages that can be accepted by a FA can be characterited as the collection et regular languages: - Ø is regular, mid for each act, 2a] is reg.
- If A, B ⊆ A are regular, then AUB, AB, ar myller. ¿concakuation that can be concetenating finitely - No other language is requiler

EXA:

. {w: w ands with 1}

w: w combins odd number of 1's}

ore regular

· {w: W = 0"1" for some n > 0}

{w: W is a palindrome } OIIIO

are not regular

(can be shown wing Lemma)