

Soluciones (no se incluyen las comprobaciones, que son inmediatas):

1°) a)
$$x^2y^3 + y^2senx = k$$
, con el factor integrante $\mu = y$.

b)
$$a = 2$$

2°) a) Las soluciones son:

b) Las soluciones son de la forma

$$y = \sqrt{2e^x + Ax^2 + Bx + C}$$
, o bien $y = -\sqrt{2e^x + Ax^2 + Bx + C}$, siendo A, B, C constantes reales, definidas en $I = \{x \in R/2e^x + Ax^2 + Bx + C > 0\}$.

Dos casos particulares de lo anterior son las soluciones $y = \sqrt{2} e^{\frac{x}{2}}, \quad y = -\sqrt{2} e^{\frac{x}{2}}$, obtenidas haciendo A = B = C = 0, y definidas en I = R.

3°) Existen dos soluciones, que son

$$y = -\sqrt{2x^2 + 1}$$
 , definida en $I = R$, $y = -\sqrt{1 - 4x^2}$, definida en $I = (-\frac{1}{2}, \frac{1}{2})$.

Es fácil comprobar (hay que hacerlo) que ninguna de las dos soluciones es creciente en todo el intervalo *I*.

4°) Es un caso particular de la demostración que viene en el libro (páginas 384-386).

Distintos alumnos han desarrollado demostraciones alternativas, que en varios casos han sido correctas.

Como siempre, cualquier procedimiento correcto utiliza en el fondo las mismas claves.