Кластеризация

RS School Machine Learning course

План

- Векторные и метрические пространства
- Методы кластеризации
 - Иерархическая кластеризация
 - ullet Алгоритм k средних
 - DBSCAN
- Оценивание качества кластеризации
 - Силуэт
 - Adjusted Rand index

Напоминание

- Когда целевой переменной нет или её значения неизвестны, говорят, что перед нами задача машинного обучения «без учителя» (unsupervised learning).
- Типичный пример кластеризация: разбить данные на несколько групп (классов, кластеров) наблюдений, похожих между собой.
- Количество кластеров иногда известно, иногда нет.
- Приложения кластеризации:
 - ⊳ Сегментация аудитории
 - ▷ Опознавание аномалий в поведении пользователей
 - Моделирование тематики текстов
 - > ...

Векторные пространства

- Данные для кластеризации (наблюдения, точки) обычно заданы в \mathbb{R}^d , вещественном d-мерном пространстве.
- Это одно из векторных пространств объектов с богатой алгебраической и геометрической структурой.
- Элементы векторного пространства обычно называют векторами или точками.
- Обычная евклидова плоскость \mathbb{R}^2 модельный пример, которым можно пользоваться, обсуждая свойства векторных пространств.

4 / 13

Векторные пространства

Алгебраические свойства:

- ⊳ Векторы можно складывать.
- ightharpoonup Можно умножать на число (будем считать, что из \mathbb{R}).
- ightharpoonup Поэтому линейная комбинация векторов из какого-нибудь векторного пространства V принадлежит этому пространству:

$$\forall a, b \in \mathbb{R}, u, v \in V : au + bv \in V$$

Кластеризация 4 / 13

Векторные пространства

Геометрические свойства:

 \triangleright В некоторых векторных пространствах, в частности, в \mathbb{R}^d , определено скалярное произведение:

$$\langle u, v \rangle = \sum_{i=1}^{d} u_i v_i \qquad (u, v \in \mathbb{R}^d)$$

> Скалярное произведение порождает норму:

$$\|u\| = \sqrt{\langle u, \, u \rangle}$$

▶ Норма порождает метрику (берётся линейная комбинация векторов):

$$\rho(u, v) = ||u - v||$$

Кластеризация 4/13

Метрические пространства

- Метрическим пространством называется пара (X, ρ) , где X произвольное множество; $\rho: X \times X \to \mathbb{R}$ функция с набором хороших свойств (далее о них).
- ullet Элементы множества X называют точками.
- ullet Функцию ho называют метрикой.
- О величине $\rho(x,\,y)$ можно думать как о расстоянии или длине кратчайшего пути между точками x и y.

Метрические пространства

Свойства метрики:

• Неотрицательность:

$$\forall x, y \in X \quad \rho(x, y) \ge 0$$

(У любого пути неотрицательная длина.)

2 Условие обращения в ноль:

$$\forall x, y \in X \quad \rho(x, y) = 0 \Leftrightarrow x = y$$

(У пути нулевой длины совпадают начало и конец, и наоборот.)

Оимметричность:

$$\forall x, y \in X \quad \rho(x, y) = \rho(y, x)$$

(Путь между точками имеет одинаковую длину в обе стороны.)

Меравенство треугольника:

$$\forall x, y, z \in X \quad \rho(x, y) + \rho(y, z) \ge \rho(x, z)$$

(Путь через промежуточный пункт не бывает короче, чем напрямик.)

Метрические пространства

- Таким образом, векторное пространство со скалярным произведением (такое, как \mathbb{R}^d) сразу является метрическим пространством.
- Но не на любом метрическом пространстве можно задать структуру векторного пространства.
- Есть метрические пространства, которые невозможно вложить в \mathbb{R}^d при любом d:

5/13

Опять к кластеризации

- Метрическая структура «беднее», чем векторная
 ⇒ больше разных объектов обладают ею.
- Алгоритмы, о которых мы будем говорить:
 - работают в произвольных метрических пространствах
 - либо нуждаются для этого в незначительных изменениях
- Поэтому мы можем считать, что наблюдения живут в метрическом пространстве $(X,\,
 ho).$
- ullet Совокупность данных обозначим $U = \{x_1, \, \dots, \, x_n\}.$
- У многих алгоритмов кластеризации один настраиваемый параметр k количество кластеров, которое нужно получить.

Иерархическая кластеризация

- ightarrow Инициализируем n кластеров, в каждом по одному наблюдению.
- ▶ Таким образом, на каждом шаге число кластеров уменьшается на единицу.
- ightharpoonup Когда останется ровно k кластеров, остановимся.
- Это иерархическая (или агломеративная) кластеризация.
- Проблема: Что такое «кластеры, самые близкие друг к другу»?

Кластеризация 7 / 13

Критерии близости кластеров

- Как задать «расстояние» D между двумя кластерами M и N?
- Single-linkage clustering:

$$D(M, N) = \min \{ \rho(x, y) | x \in M, y \in N \}$$

Complete-linkage clustering:

$$D(M, N) = \max \{ \rho(x, y) | x \in M, y \in N \}$$

Average-linkage clustering:

$$D(M,\,N) = \frac{1}{|M||N|} \sum_{x \in M} \sum_{y \in N} \rho(x,\,y)$$

• Эти и другие критерии близости кластеров можно представить как частные случаи формулы Ланса–Уильямса (мы не будем её обсуждать подробнее).

Алгоритм k средних

- ullet Будем считать, что наблюдения даны в $\mathbb{R}^d.$
- ightharpoonup Случайным образом выберем k наблюдений x_{i_1} , ..., x_{i_k} в качестве центров.
- ightharpoonup Сформируем k кластеров: в кластер с центром x_i входят наблюдения, которые ближе к x_i , чем к любому другому из центров.
- ⊳ На каждом шаге:
 - Пересчитаем центры, усреднив каждый кластер.
 - Переформируем кластеры относительно новых центров.
- ⊳ Когда кластеры перестают меняться, остановимся.

Кластеризация 9 / 13

Алгоритм k средних

- Это алгоритм k средних (k-means).
- Модификация для произвольного метрического пространства: центрами могут быть только точки, представленные в данных (алгоритм k-medoids).
- Проблема: При разном выборе начальных точек получаются разные результаты.
- Улучшенный способ первоначального выбора центров:
- Первый центр выберем случайно (равномерно по всем наблюдениям).
- Каждый следующий будем выбирать с вероятностью, прямо пропорциональной квадрату расстояния данной точки до ближайшего уже выбранного центра.
- Этот способ инициализации называется k-means++.

Кластеризация 9 / 13

DBSCAN

• В некоторых ситуациях (кластеры сложной формы, зашумлённые данные) иерархическая кластеризация и алгоритм k средних работают плохо.

 Не будем фиксировать число кластеров, посмотрим на локальную структуру данных.

Кластеризация 10 / 13

DBSCAN

- ightharpoonup Введём два параметра: радиус arepsilon и минимальная плотность m.
- ho Для каждой точки x_i рассмотрим её окрестность $U_{\varepsilon}(x_i)=\{x_j\in U\mid i\neq j,\ \rho(x_i,x_j)\leq \varepsilon\}.$
- ⊳ Подразделим все точки на:
 - центральные: $|U_{\varepsilon}(x_i)| \geq m$
 - периферийные: $1 \le |U_{\varepsilon}(x_i)| < m$
 - шумовые: $|U_{\varepsilon}(x_i)| = 0$
- ▶ На всех центральных точках построим граф: две точки в окрестности друг друга соединяются ребром.
- ⊳ Одна связная компонента графа = один кластер.
- ▶ Каждую периферийную точку относим к тому же кластеру, что и ближайшая центральная.
- ⊳ Шумовые точки не кластеризуем.

Кластеризация 10 / 13

DBSCAN

- Это алгоритм DBSCAN.
- 🕀 На практике обычно даёт хорошие результаты.
- Не параметризуется число кластеров.
- Можно использовать для фильтрации шума в данных,
 т. е. сами кластеры отбрасываются.

Кластеризация 10 / 13

Оценивание качества кластеризации

- Для подбора параметров нужно уметь оценивать, насколько кластеризация хороша.
- Геометрические характеристики: насколько плотные кластеры, далеко ли отстоят друг от друга...
- Если есть размеченные данные, можно сравнить с эталонной кластеризацией.

Кластеризация 11 / 13

Силуэт

- ullet Пусть выборка $x_1, \, \dots, \, x_N$ разбита на кластеры.
- Для точки x_i , отнесённой к кластеру C, рассмотрим две величины:

 a_i – среднее расстояние от x_i до других точек в C;

 b_i – минимум, по всем остальным кластерам C', среднего расстояния от x_i до точек в C'.

12 / 13

Силуэт

- Силуэтом (silhouette) x_i называется разность $b_i a_i$, нормированная до отрезка [-1, 1].
- Усредняем по всей выборке.
- Интуитивно, тем ближе к 1,
 - чем ближе расположены точки внутри кластеров;
 - чем дальше кластеры друг от друга.

Кластеризация 12 / 13

Adjusted Rand index

- Пусть для выборки x_1, \ldots, x_N есть эталонная кластеризация C, а мы построили кластеризацию D.
- Насколько наша кластеризация близка к эталону?
 - ⊳ Количество и нумерация кластеров могут различаться.
- Рассмотрим всевозможные пары точек x_i, x_j , их всего $\binom{N}{2}$.
- Обозначим:
 - a # пар, которые в ${\mathcal C}$ попадают в один кластер и в ${\mathcal D}$ тоже;
 - b # пар, которые в ${\mathcal C}$ попадают в разные кластеры и в ${\mathcal D}$ тоже;
 - c # пар, которые в ${\mathcal C}$ попадают в один кластер, а в ${\mathcal D}$ в разные;
 - d # пар, которые в ${\mathcal C}$ попадают в разные кластеры, а в ${\mathcal D}$ в один.

Кластеризация 13/13

Adjusted Rand index

• Индексом Рэнда называется величина

$$\frac{a+b}{a+b+c+d} = \frac{a+b}{\binom{N}{2}}.$$

- Заключён между 0 и 1, равен 1 для разбиений, которые различаются только нумерацией кластеров.
- «Исправленный» индекс Рэнда: вычитается математическое ожидание суммы a+b по всевозможным парам разбиений, однотипных с $\mathcal C$ и $\mathcal D$ по численности кластеров.

Кластеризация 13 / 13