14 Kongruenzrelationen

14.1 Verträglichkeit von Relationen mit Operationen

14.2 Wohldefiniertheit von Operationen mit Äquivalenzklassen

• Wichtig: Verständnis dafür, dass so etwas wie

$$f'_x:A^*_{/\equiv_L}\to A^*_{/\equiv_L}:[w]\mapsto [wx]$$

nicht vollkommen automatisch eine vernünftige Definition ist, sondern nur, weil eben \equiv_L mit Konkatenation von rechts verträglich ist.

Arithmetik modulo n

• im Skript nachgerechnet: wenn

$$x_1 \equiv x_2 \pmod{n}$$
 also $x_1 - x_2 = kn$
und $y_1 \equiv y_2 \pmod{n}$ also $y_1 - y_2 = mn$

dann auch

$$x_1 + y_1 \equiv x_2 + y_2 \pmod{n} .$$

• analog zeigt man, dass dann auch

$$x_1 \cdot y_1 \equiv x_2 \cdot y_2 \pmod{n}$$

denn

$$x_1 \cdot y_1 = (x_2 + kn) \cdot (y_2 + mn) = x_2 \cdot y_2 + (x_2m + ky_2 + km)n$$

also ist $x_1 \cdot y_1 - x_2 \cdot y_2$ offensichtlich ganzzahliges Vielfaches von n.

• also kann man mit den Äquivalenzklassen rechnen, indem man immer irgendein Element jeder Ä.klasse hernimmt und mit ihnen rechnet ("repräsentantenweise"); Beispiel n = 5:

$$[3] + [4] = [3 + 4] = [7] = [2]$$

$$[2] + [3] = [2 + 3] = [5] = [0]$$
aber auch $[2] + [3] = [7] + [-12] = [7 - 12] = [-5] = [0]$

$$[2] \cdot [3] = [2 \cdot 3] = [6] = [1]$$

- wann ist $[x] \cdot [y] = [0]$? Dafür muss xy äquivalent zu 0 sein, also Vielfaches von 5. Da 5 eine Primzahl ist, muss dann schon x oder y Vielfaches von 5 gewesen sein, also [x] = [0] oder [y] = [0].
- Es ergeben sich die folgenden Tabellen:

+	[0]	[1]	[2]	[3]	[4]			[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	$\overline{[4]}$		[0]	[0]	[0]	[0]	[0]	[0]
[1]	[1]	[2]	[3]	[4]	[0]		[1]	[0]	[1]	[2]	[3]	[4]
[2]	[2]	[3]	[4]	[0]	[1]	und	[2]	[0]	[2]	[4]	[1]	[3]
[3]	[3]	[4]	[0]	[1]	[2]		[3]	[0]	[3]	[1]	[4]	[2]
[4]	[4]	[0]	[1]	[2]	[3]		[4]	[0]	[4]	[3]	[2]	[1]

15 Ordnungen und Halbordnungen

15.1 Halbordnungen

15.1.1 Grundlegende Definitionen

- Man erarbeite, dass die Relation \sqsubseteq_p auf A^* mit $v \sqsubseteq_p w \iff \exists u : vu = w$ eine Halbordnung ist:
 - Reflexivität: gilt wegen $w_1 \varepsilon = w_1$
 - Antisymmetrie: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq_p w_1$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1u_1 = w_2$ und $w_2u_2 = w_1$. Also ist $w_1u_1u_2 = w_2u_2 = w_1$. Also muss $|u_1u_2| = 0$ sein, also $u_1 = u_2 = \varepsilon$, also $w_1 = w_2$.
 - Transitivität: wenn $w_1 \sqsubseteq_p w_2$ und $w_2 \sqsubseteq_p w_3$, dann gibt es $u_1, u_2 \in A^*$ mit $w_1u_1 = w_2$ und $w_2u_2 = w_3$. Also ist $w_1(u_1u_2) = (w_1u_1)u_2 = w_2u_2 = w_3$, also $w_1 \sqsubseteq_p w_3$.
- Das folgende ist keine Halbordnung auf A^* : $w_1 \sqsubseteq w_2 \iff |w_1| \le |w_2|$. Studenten überlegen lassen: Antisymmetrie ist verletzt. (Reflexivität und Transitivität sind erfüllt.)
- Vielleicht noch mal Rekapitulation des Begriffs "Potenzmenge"?
- ullet die drei Eigenschaften von Halbordnungen für \subseteq auf 2^M durchgehen ...

Hasse-Diagramm

• man lässt überall die trivial ergänzbaren Kringel weg

• und lässt von den übrigen Pfeilen diejenigen weg, die man aus anderen mittels Transitivität "konstruieren" kann

15.1.2 "Extreme" Elemente

• Man male Hassediagramme von Halbordnungen, bei denen irgendwelche Teilmengen kleinste/größte/.... Elemente besitzen oder nicht besitzen.

15.2 Ordnungen

lexikographische Ordnung erster und zweiter Art

- Man betrachte Beispiele für \sqsubseteq_1 ("Wörterbuchordnung"):
 - Warum ist aa \sqsubseteq_1 aabba?
 - Warum ist aa \sqsubseteq_1 bba?
 - Warum ist aaaaa \sqsubseteq_1 bba?
 - Warum ist aaaab \sqsubseteq_1 aab?
- Man betrachte Beispiele für \sqsubseteq_2 (primär nach Länge, erst danach alphabetisch ordnen):
 - Warum ist aa \sqsubseteq_2 aabba?
 - Warum ist aa \sqsubseteq_2 bba?
 - Warum ist bba \sqsubseteq_2 aaaaa? (vergleiche $\sqsubseteq_1!$)
 - Warum ist aab \sqsubseteq_2 aaaab? (vergleiche $\sqsubseteq_1!$)