Robust and Interpretable Learning Techniques for Operator-Theoretic Modeling of Non-linear Dynamics

by

Shaowu Pan

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Aerospace Engineering) in The University of Michigan 2020

Doctoral Committee:

Associate Professor Karthik Duraisamy, Chair Professor Venkat Raman Assistant Professor Aaron Towne Assistant Professor Alex Gorodetsky Professor Nathan Kutz © Shaowu Pan 2021

All Rights Reserved

For my parents.

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

DEDICATIO	N	ii
ACKNOWLE	EDGEMENTS	iii
LIST OF FIG	URES	v
LIST OF TAI	BLES	vi
LIST OF AP	PENDICES	vii
ABSTRACT		viii
CHAPTER		
I. Intro	duction	1
1.1	High Dimensional Non-linear Dynamical Systems	1
1.2	Fluid Dynamic Modeling	4
1.3	Dimensionality-reduction	6
1.4	Introduction to Koopman Operators	9
	1.4.1 Mathematical Formulation	9
	1.4.2 Koopman Invariant Subspace & Koopman Analysis	11
	1.4.3 Implications of Koopman Operators	13
1.5	Overview of the state-of-the art in the Approximation of Koop-	
	man Operators	16
1.6	Motivating Questions	19
1.7	Contributions	19
1.8	Outline	22
APPENDICE	ES	23
BIBLIOGRA	PHY	25

LIST OF FIGURES

Figure

1.1	Left: Aerion SBJ designed by jet builder Aerion Supersonic that expects to fly silent supersonic planes by 2024, unlocking a \$40 billion	
	market (?). Right: Human launch of SpaceX's Falcon 9 rocket raises	
	the company value to \$44 billion (?)	2
1.2	Prevalence of high dimensional non-linear systems in aerospace engi-	
	neering (??)	Ę
1.3	Schematic of finding a Koopman-invariant subspace	12
1.4	Sketch of contributions in this dissertation	21

LIST OF TABLES

 $\underline{\text{Table}}$

LIST OF APPENDICES

Apper	<u>ndix</u>	
Α.	Appendix	2

ABSTRACT

Operator theoretic learning and decomposition of non-linear dynamics

by

Shaowu Pan

Chair: Associate Professor Karthik Duraisamy

abstract

CHAPTER I

Introduction

We choose to go to the moon. We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win, and the others, too.

John F. Kennedy Moon Speech, Rice Stadium (1962)

1.1 High Dimensional Non-linear Dynamical Systems

The need for faster, more efficient and versatile air transport vehicles continues to drive challenging design problems in Aerospace engineering. As examples, the desire to reduce travel time from New York City to London by half has led to silent supersonic commercial aircraft initiated by $Aerion\ Supersonic$, while SpaceX is developing vehicles for space exploration as shown in fig. 1.1.

Figure 1.1: Left: Aerion SBJ designed by jet builder Aerion Supersonic that expects to fly silent supersonic planes by 2024, unlocking a \$40 billion market (?). Right: Human launch of SpaceX's Falcon 9 rocket raises the company value to \$44 billion (?).

APPENDICES

APPENDIX A

Appendix

BIBLIOGRAPHY