nur mit Genehmigung des DIN Deutsches Institut für Normung e.V., Berlin, gestattet DIN Deutsches Institut für Normung e.V.

Formelzeichen

Allgemeine Formelzeichen

DIN 1304

Letter symbols for physical quantities; symbols for general use

Ersatz für Ausgabe 03.89

Zusammenhang mit den von der International Organization for Standardization (ISO) herausgegebenen Internationalen Normen ISO 31-1 bis 31-10 und der von der International Electrotechnical Commission (IEC) herausgegebenen Internationalen Norm IEC 27-1: 1992 siehe Erläuterungen.

Inhalt

	S	eite		Seite
2	Anwendungsbereich und Zweck	1 1 2	S.8 Formelzeichen für Atom- und Kernphysik	. 16
	Formelzeichen für Länge und ihre Potenzen	2	4 Kennzeichnung bezogener Größen	. 21
3.2	Formelzeichen für Raum und Zeit Formelzeichen für Mechanik	3 4	Zitierte Normen und andere Unterlagen	. 22
3.4	Formelzeichen für Elektrizität und Magnetismus	7	Weitere Normen	. 23
3.5	Formelzeichen für Thermodynamik und Wärmeübertragung	10	Frühere Ausgaben	. 23
3.6	Formelzeichen für Physikalische Chemie und		Änderungen	. 23
3.7	Molekularphysik Formelzeichen für Licht und verwandte	12	Erläuterungen	. 23
	elektromagnetische Strahlungen	13	Stichwortverzeichnis	. 24

1 Anwendungsbereich und Zweck

In dieser Norm werden Formelzeichen für physikalische Größen (siehe DIN 1313) festgelegt. Die in der Spalte "Bedeutung" der Tabellen 1 bis 9 angeführten Benennungen der Größen sollen hier nicht genormt werden, sondern dienen nur zur Identifizierung der Größen.

In dieser Norm sind "Allgemeine Formelzeichen" aufgeführt, die in Physik und Technik in mehreren Fachbereichen angewendet werden. "Zusätzliche Formelzeichen", die in begrenzten Fachbereichen angewendet werden, sind — nach Fachgebieten zusammengefaßt — in Folgeteilen zu dieser Norm aufgeführt, mit der sie zusammen benutzt werden sollen.

2 Formelzeichen und ihre Darstellung

Formelzeichen bestehen aus dem Grundzeichen und den im Bedarfsfalle dem Grundzeichen beigegebenen Nebenzeichen. Nebenzeichen haben die Aufgabe, über die Größe nähere Angaben zu machen; sie verändern im Regelfall nicht die Größenart. Ausnahmen sind Nr 2.28, Nr 3.2, Nr 3.3, Nr 3.7, Nr 10.30 (Index rel), Nr 10.47 sowie andere in Abschnitt 4 aufgeführte Nebenzeichen. Auch mathematische Zeichen (siehe DIN 1302), die dem Grundzeichen angefügt werden, können die Größenart verändern, wie z.B. Potenzzeichen

Grundzeichen sind lateinische und griechische Groß- und Kleinbuchstaben.

Nebenzeichen sind Buchstaben, Ziffern oder Sonderzeichen, wie z.B. Strich, Kreuz – auch liegend –, Stern, Tilde, Dach, Winkel, Häkchen, Unendlich-Zeichen ∞, die rechts oder links vom Grundzeichen hoch oder tief, ferner über oder unter dem Grundzeichen stehen können, siehe Bild 1.

 ${}_{2}^{5} {\,}_{3}^{4}$

- G Grundzeichen
- 1 Hochzeichen links vom Grundzeichen
- 2 Tiefzeichen links vom Grundzeichen
- 3 Tiefzeichen rechts vom Grundzeichen
- 4 Hochzeichen rechts vom Grundzeichen
- 5 Überzeichen über dem Grundzeichen
 - Unterzeichen unter dem Grundzeichen

Bild 1: Stellung von Nebenzeichen

Beispiele für die Anwendung von Nebenzeichen:

Für **Unter-** oder **Überzeichen** werden im Regelfall nur Sonderzeichen angewendet. Besonders häufig werden Tiefzeichen rechts vom Grundzeichen angewendet. Sie heißen **Indizes** (Einzahl: Index) und bieten viele Möglichkeiten, nähere Angaben zur betrachteten Größe zu machen (siehe Tabelle 10).

Ein Hochzeichen links vom Grundzeichen bedeutet bei chemischen Elementen die Nukleonenzahl (früher auch Massenzahl), Summe aus Protonen- und Neutronenzahl, und ein Tiefzeichen links vom Grundzeichen die Protonenzahl (Ordnungszahl), z.B. bedeutet $^{16}_{6}$ C ein Kohlenstoffnuklid mit 6 Protonen und 8 Neutronen (siehe DIN 32 640).

Ein waagerechter Strich als **Unterzeichen unter dem Grundzeichen** bedeutet, daß das Formelzeichen eine komplexe Größe darstellt, z. B.: <u>a</u> (siehe DIN 5483 Teil 3).

Ein waagerechter Strich als Überzeichen über dem Grundzeichen kennzeichnet das Formelzeichen als arithmeti-

Fortsetzung Seite 2 bis 28

Normenausschuß Einheiten und Formelgrößen (AEF) im DIN Deutsches Institut für Normung e.V. Deutsche Elektrotechnische Kommission im DIN und VDE (DKE)

schen Mittelwert von Größenwerten, z.B. \bar{u} (gesprochen u-quer), siehe DIN 5483 Teil 2/09.82, Tabelle 1, Nr 8.

Als **Hochzeichen rechts vom Grundzeichen** findet man an komplexen Größen einen Stern. Dieser kennzeichnet einen konjugiert-komplexen Ausdruck, z. B.: \underline{a}^* (siehe DIN 5483 Teil 3). In der Mathematik wird anstelle dieses Sterns vorwiegend ein waagerechter Strich als Überzeichen über dem Grundzeichen verwendet, z. B. \bar{z} , siehe DIN 1302. Ein zugleich auftretender Mittelwert ist dann anders zu bezeichnen

3 Tabellen mit Formelzeichen und Indizes

Anwendungsregeln:

- a) Alle Grundzeichen der Formelzeichen sind im Druck **kursiv** (schräg), alle Einheitenzeichen **senkrecht** (steil) zu setzen (siehe DIN 1338).
- b) Sind für eine Größe mehrere Formelzeichen angeführt, dann sollte das an erster Stelle stehende Zeichen – das Vorzugszeichen – gewählt werden. Die anderen Zeichen – die Ausweichzeichen – stehen zur Wahl, wenn das Vorzugszeichen bereits in anderer Bedeutung angewendet wird.
- c) Ist für zwei Größen verschiedener Art der gleiche Buchstabe festgelegt und kein Ausweichzeichen vorhanden, dann kann auf eine andere Schrift oder von Großbuchstaben auf Kleinbuchstaben oder umgekehrt ausgewichen werden, wenn keine Mißverständnisse zu befürchten sind
- d) Formelzeichen vektorieller Größen werden in der Spalte "Formelzeichen" ohne die entsprechende Kennzeichnung dargestellt.

- e) Formelzeichen komplexer Größen werden in der Spalte "Formelzeichen" nur dann als solche gekennzeichnet, wenn sie so benannt sind.
- f) Indizes (siehe Tabelle 10) werden in einer kleineren Type gedruckt als das Grundzeichen, siehe DIN 1338.
- g) Formelzeichen, die aus mehreren Buchstaben bestehen, sind nicht zugelassen, da sie als Produkte mehrerer Größen mißdeutet werden können. Ausnahmen sind die Kenngrößen, z. B.: Re, Nu, Pe, Pr (DIN 1341, DIN 5491, DIN 1304 Teil 5).
- h) Anstelle der Einheiten, die in der Spalte "SI-Einheit" der Tabellen 1 bis 9 angeführt sind, dürfen auch andere in DIN 1301 Teil 1 und Teil 2 festgelegte Einheiten benutzt werden. Die angeführten SI-Einheiten dienen nur der Veranschaulichung der zugehörigen Größen.
- i) Das Internationale Komitee für Maß und Gewicht (CIPM) hat im Jahre 1980 klargestellt, daß die "ergänzenden Einheiten" Radiant und Steradiant abgeleitete Einheiten der Dimension 1 sind. Sie können verwendet werden, um die Unterscheidung zwischen Größen verschiedener Art, aber gleicher Dimension zu erleichtern. Die Generalkonferenz für Maß und Gewicht (CGPM) hat bisher nicht entschieden, ob in den Ausdrücken für abgeleitete Einheiten des SI ergänzende Einheiten eingeführt werden sollen oder nicht.
- k) Bei Verwendung von Einzeilendruckern oder Datensichtgeräten mit beschränktem Schriftzeichenvorrat gilt für die Darstellung von Formelzeichen DIN 13 304 und für die Darstellung von Einheitenzeichen DIN 66 030.
- Für Bücher und umfangreiche Fachaufsätze wird empfohlen, die benutzten Formelzeichen und ihre Bedeutung in einer Liste zusammenzustellen.

3.1 Formelzeichen für Länge und ihre Potenzen

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung
1.1	$x, y, z \\ x_1, x_2, x_3$	kartesische (orthonormierte) Koordinaten	m	siehe DIN 4895 Teil 1 und Teil 2
1.2	Q, φ, z	Kreiszylinder-Koordinaten	m, rad, m	siehe DIN 4895 Teil 1 und Teil 2
1.3	r, ϑ, φ	Kugel-Koordinaten	m, rad, rad	siehe DIN 4895 Teil 1 und Teil 2
1.4	α, β, γ, ϑ, φ	ebener Winkel, Drehwinkel (bei Drehbewegungen)	rad	Anwendungsregel b) gilt hier nicht. α nicht gleichzeitig mit Nr 2.16 anwenden. rad = m/m = 1
1.5	Ω, ω	Raumwinkel	sr	$sr = m^2/m^2 = 1$
1.6	l	Länge	m	
1.7	b	Breite	m	
1.8	h	Höhe, Tiefe	m	
1.9	Н	Höhe über dem Meeresspiegel, Höhe über Normal-Null	m	
1.10	δ, <i>d</i>	Dicke, Schichtdicke	m	
1.11	r	Radius, Halbmesser, Abstand	m	
1.12	$\delta_x, \delta_y, \delta_z$ ξ, η, ζ	Auslenkung, Ausschlag, Verschiebung	m	Anwendungsregel b) gilt hier nicht.
1.13	f	Durchbiegung, Durchhang	m	

Tabelle 1 (abgeschlossen)

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung
1.14	d, D	Durchmesser	m	
1.15	s	Weglänge, Kurvenlänge	m	
1.16	A, S	Flächeninhalt, Fläche, Oberfläche	m ²	
1.17	S, q	Querschnittsfläche, Querschnitt	m ²	
1.18	V	Volumen, Rauminhalt	m ³	

3.2 Formelzeichen für Raum und Zeit

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung			
2.1	t	Zeit, Zeitspanne, Dauer	s				
2.2	T	Periodendauer, Schwingungsdauer	s				
2.3	τ, Τ	Zeitkonstante	s	auch Abklingzeit			
2.4	f, v	Frequenz, Periodenfrequenz	Hz	f = 1/T, T nach Nr 2.2			
2.5	fo	Kennfrequenz, Eigenfrequenz im ungedämpften Zustand	Hz				
2.6	fa	Eigenfrequenz bei Dämpfung	Hz				
2.7	ω	Kreisfrequenz, Pulsatanz (Winkelfrequenz)	s ⁻¹	$\omega = 2 \pi f$, Einheit auch rad/s f nach Nr 2.4			
2.8	ω_0	Kennkreisfrequenz	s ⁻¹	$\omega_0 = 2\pi f_0$, Einheit auch rad/s f_0 nach Nr 2.5			
2.9	ω_{d}	Eigenkreisfrequenz bei Dämpfung	s ⁻¹	$\omega_{\rm d} = \sqrt{\omega_0^2 - \delta^2}$, Einheit auch rad/s $\omega_{\rm d} = 2\pif_{\rm d}$ ω_0 nach Nr 2.8, δ nach Nr 2.10, $f_{\rm d}$ nach Nr 2.6			
2.10	δ	Abklingkoeffizient	s ⁻¹				
2.11	σ	Anklingkoeffizient, Wuchskoeffizient	s ⁻¹	$\sigma = -\delta$ δ nach Nr 2.10			
2.12	<u>p</u> , <u>s</u>	komplexer Anklingkoeffizient	s ⁻¹	$\underline{p} = \sigma + j\omega$, siehe DIN 5483 Teil 3 σ nach Nr 2.11, ω nach Nr 2.7			
2.13	θ	Dämpfungsgrad	1	$\vartheta = \delta/\omega_0$, siehe DIN 1311 Teil 2 δ nach Nr 2.10, ω_0 nach Nr 2.8			
2.14	$n, f_{\rm r}$	Umdrehungsfrequenz (Drehzahl)	s ⁻¹	Kehrwert der Dauer einer Umdrehung			
2.15	ω, Ω	Winkelgeschwindigkeit, Drehgeschwindigkeit	rad/s				
2.16	α	Winkelbeschleunigung, Drehbeschleunigung	rad/s ²				
2.17	λ	Wellenlänge	m				
2.18	σ	Repetenz (Wellenzahl)	m ⁻¹	$\sigma = 1/\lambda$ λ nach Nr 2.17			
2.19	k	Kreisrepetenz (Kreiswellenzahl)	m ⁻¹	$k=2~\pi/\lambda=2~\pi~\sigma$, Einheit auch rad/m λ nach Nr 2.17, σ nach Nr 2.11			

Tabelle 2 (abgeschlossen)

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung
2.20	α	Dämpfungskoeffizient, Dämpfungsbelag	m ⁻¹	siehe DIN 1304 Teil 6
2.21	β	Phasenkoeffizient, Phasenbelag	m ⁻¹	Einheit auch rad/m
2.22	γ	Ausbreitungskoeffizient	m ⁻¹	$\underline{\gamma} = \alpha + j\beta$, siehe DIN 5483 Teil 3 $\overline{\alpha}$ nach Nr 2.20, β nach Nr 2.21
2.23	v, u, w, c	Geschwindigkeit	m/s	
2.24	С	Ausbreitungsgeschwindigkeit einer Welle	m/s	im leeren Raum: c_0 siehe auch Nr 7.19
2.25	а	Beschleunigung	m/s ²	
2.26	g	örtliche Fallbeschleunigung	m/s ²	g_n Normfallbeschleunigung $g_n = 9,806 65 \text{ m/s}^2$
2.27	r, h	Ruck	m/s ³	
2.28	$q_{ m V},\dot{ m V}$	Volumenstrom, Volumendurchfluß	m ³ /s	

3.3 Formelzeichen für Mechanik

Tabelle 3

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung
3.1	m	Masse, Gewicht als Wägeergebnis	kg	siehe DIN 1305
3.2	m'	längenbezogene Masse, Massenbelag, Massenbehang	kg/m	m' = m/l m nach Nr 3.1 l nach Nr 1.6
3.3	m"	flächenbezogene Masse, Massenbedeckung	kg/m²	m'' = m/A m nach Nr 3.1 A nach Nr 1.16
3.4	Q, Qm	Dichte, Massendichte, volumenbezogene Masse	kg/m ³	$\varrho=m/V$, siehe DIN 1306 m nach Nr 3.1, V nach Nr 1.18 $\varrho_{\rm m}$, wenn gleichzeitig Nr 4.4 oder Nr 4.38 angewendet wird
3.5	d	relative Dichte	1	siehe DIN 1306
3.6	v	spezifisches Volumen, massen- bezogenes Volumen	m ³ /kg	v = V/m V nach Nr 1.18 m nach Nr 3.1
3.7	q_{m},\dot{m}	Massenstrom, Massendurchsatz	kg/s	
3.8	I	Massenstromdichte	kg/(m² · s)	$I = \frac{\dot{m}}{S} = \varrho \cdot v$, siehe DIN 5491 S nach Nr 1.17 ϱ nach Nr 3.4 v nach Nr 2.23
3.9	J	Trägheitsmoment, Massenmoment 2. Grades	kg⋅m²	früher: Massenträgheitsmoment
3.10	i, r _i	Trägheitsradius	m	
3.11	F	Kraft	N	
3.12	F_{G}, G	Gewichtskraft	N	siehe DIN 1305

Tabelle 3 (fortgesetzt)

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung
3.13	G, f	Gravitationskonstante	N · m²/kg²	$F = G \frac{m_1 \cdot m_2}{r^2}$ mit $G = 6,67259 \cdot 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2} \text{ l}$ 85 r nach Nr 1.11 m nach Nr 3.1 F hier Gravitationskraft
0.14		Must be a search Dunburg and and	N	
3.14	M	Kraftmoment, Drehmoment	N· m	in ISO 31-3 : 1992 auch T
3.15	M_{T}, T	Torsionsmoment, Drillmoment	N·m	
3.16	<i>M</i> _b	Biegemoment	N·m	
3.17	р	Bewegungsgröße, Impuls ²)	kg · m/s	$p = \int v dm$ v nach Nr 2.23
3.18	I	Kraftstoß ²)	$N \cdot s = kg \cdot m/s$	$I = \Delta p = \int Fdt = p(t_2) - p(t_1)$ p nach Nr 3.17 F nach Nr 3.11 t nach Nr 2.1
3.19	L	Drall, Drehimpuls 2)	kg⋅ m²/s	$L = \int \omega dJ$ ω nach Nr 2.7 J nach Nr 3.9
3.20	Н	Drehstoβ²)	$N \cdot m \cdot s = kg \cdot m^2/s$	$H = \Delta L = \int M dt = L(t_2) - L(t_1)$ t nach Nr 2.1 L nach Nr 3.19 M nach Nr 3.14
3.21	p	Druck	Pa	siehe DIN 1314
3.22	$p_{ m abs}$	absoluter Druck	Pa	siehe DIN 1314
3.23	$p_{ m amb}$	umgebender Atmosphärendruck	Pa	siehe DIN 1314
3.24	p _e	atmosphärische Druckdifferenz, Überdruck	Pa	$p_{\rm e}=p_{\rm abs}-p_{\rm amb}$, siehe DIN 1314 $p_{\rm abs}$ nach Nr 3.22, $p_{\rm amb}$ nach Nr 3.23
3.25	σ	Normalspannung, Zug- oder Druckspannung	N/m ²	siehe DIN 13 316
3.26	τ	Schubspannung	N/m ²	siehe DIN 13 316
3.27	ε	Dehnung, relative Längenänderung	1	$\varepsilon = \Delta U l$ l nach Nr 1.6
3.28	$arepsilon_{ m q}$	Querdehnung	1	$\varepsilon_{\rm q} = \frac{\Delta d}{d}$ bei Kreisquerschnitt d nach Nr 1.14
3.29	μ, ν	Poisson-Zahl	1	$\mu = -\varepsilon_{\rm q}/\varepsilon \qquad \qquad \varepsilon_{\rm q} \ {\rm nach \ Nr \ 3.28} \\ \varepsilon {\rm nach \ Nr \ 3.27}$
3.30	ð, e	relative Volumenänderung, Volumendilatation	1	$\vartheta = \Delta V/V$
3.31	γ	Schiebung, Scherung	1	siehe DIN 13 316
3.32	Θ, κ	Drillung, Verwindung	rad/m	$\Theta = \varphi / l$ φ Torsionswinkel l nach Nr 1.6

¹⁾ Dieser Wert ist im Codata-Bulletin Nr 63 (1986) veröffentlicht. Die unter den letzten Ziffern angegebene Unsicherheit bedeutet die einfache Standardabweichung.

²⁾ Nach ISO 31-3: 1992 bedeutet Nr 3.17 "momentum", Nr 3.18 "impulse", Nr 3.19 "moment of momentum, angular momentum" und Nr 3.20 "angular impulse".

Tabelle 3 (abgeschlossen)

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung
3.33	D	Direktionsmoment, winkel- bezogenes Rückstellmoment	N · m/rad	$D = M_{\rm T} l \varphi$ $M_{\rm T}$ nach Nr 3.15 φ Torsionswinkel
3.34	E	Elastizitätsmodul	N/m ²	$E = \sigma/\varepsilon$ σ nach Nr 3.25, ε nach Nr 3.27
3.35	G	Schubmodul	N/m²	$G = \tau I \gamma$ τ nach Nr 3.26, γ nach Nr 3.31
3.36	K	Kompressionsmodul	N/m ²	$K = -p/\vartheta = \sigma/\vartheta$, p nach Nr 3.21, ϑ nach Nr 3.30, σ nach Nr 3.25
3.37	χ _T , х	isothermische Kompressibilität	Pa ⁻¹	$\chi_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$ $V \text{ nach Nr 1.18}$ $T \text{ nach Nr 5.1}$ $p \text{ nach Nr 3.21}$
3.38	χς, κ	isentropische Kompressibilität	Pa ⁻¹	$\chi_S = -\frac{1}{V} \left(\frac{\partial U}{\partial p} \right)_S$ $p \text{ nach Nr 3.21}$ $U \text{ nach Nr 5.28}$ $S \text{ nach Nr 5.24}$
3.39	μ, f	Reibungszahl	1	$\mu = F_{\rm R}/F_{\rm N}$ $F_{\rm R}$ Reibungskraft, $F_{\rm N}$ Normalkraft siehe DIN 50 281 und DIN 13 317
3.40	η	dynamische Viskosität	Pa·s	siehe DIN 1342 Teil 2
3.41	ν	kinematische Viskosität	m ² /s	$v = \eta/\varrho$ ϱ nach Nr 3.4, η nach Nr 3.40 siehe DIN 1342 Teil 2
3.42	σ, γ	Grenzflächenspannung, Oberflächenspannung	N/m	
3.43	Н	Flächenmoment 1. Grades	m ³	
3.44	W	Widerstandsmoment	m ³	
3.45	I	Flächenmoment 2. Grades	m ⁴	früher: Flächenträgheitsmoment
3.46	W, A	Arbeit	J	
3.47	E, W	Energie	J	
3.48	E_{p},W_{p}	potentielle Energie	J	
3.49	$E_{ m k},W_{ m k}$	kinetische Energie	J	
3.50	w	Energiedichte, volumenbezogene Energie	J/m ³	
3.51	Y	spezifische Arbeit, massenbezogene Arbeit	J/kg	
3.52	P	Leistung	w	
3.53	φ	Leistungsdichte, volumenbezogene Leistung	W/m ³	$\varphi = wlt$ w nach Nr 3.50 t nach Nr 2.1
8.54	η	Wirkungsgrad	1	Leistungsverhältnis
3.55	ζ	Arbeitsgrad, Nutzungsgrad	1	Arbeitsverhältnis, Energieverhältnis

3.4 Formelzeichen für Elektrizität und Magnetismus

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung
4.1	Q	elektrische Ladung	С	siehe DIN 1324 Teil 1
4.2	е	Elementarladung	С	Ladung eines Protons e = 1,602 177 33 · 10 ⁻¹⁹ C ¹) 49
4.3	σ	Flächenladungsdichte, Ladungsbedeckung	C/m ²	siehe DIN 1324 Teil 1
4.4	Q, Q _e , η	Raumladungsdichte, Ladungs- dichte, volumenbezogene Ladung	C/m ³	ρ _e , wenn gleichzeitig Nr 3.4 oder Nr 4.38 verwendet wird siehe DIN 1324 Teil 1
4.5	Ψ, Ψ _е	elektrischer Fluß	С	siehe DIN 1324 Teil 1
4.6	D	elektrische Flußdichte	C/m ²	siehe DIN 1324 Teil 1
4.7	P	elektrische Polarisation	C/m ²	$P = D - \varepsilon_0 \cdot E = \chi_e \cdot \varepsilon_0 \cdot E$ siehe DIN 1324 Teil 1 D nach Nr 4.6 ε_0 nach Nr 4.14 E nach Nr 4.11 χ_e nach Nr 4.16
4.8	p, p _e	elektrisches Dipolmoment	C·m	$p = \int P dV$, siehe DIN 1324 Teil 1 P nach Nr 4.7 V nach Nr 1.18
4.9	φ, φ _e	elektrisches Potential	V	siehe DIN 1324 Teil 1 In ISO 31-5 : 1992 und IEC 27-1 : 1992 ist V als Vorzugszeichen und φ als Ausweichzeichen angegeben.
4.10	U	elektrische Spannung, elektrische Potentialdifferenz	V	siehe DIN 5483 Teil 2 Nach ISO 31-5 : 1992 und IEC 27-1 : 1992 ist auch V zulässig.
4.11	E	elektrische Feldstärke	V/m	siehe DIN 1324 Teil 1
4.12	С	elektrische Kapazität	F	C = Q/U Q nach Nr 4.1, U nach Nr 4.10
4.13	ε	Permittivität	F/m	$\varepsilon = D/E$ D nach Nr 4.6, E nach Nr 4.11 siehe DIN 1324 Teil 2 (früher: Dielektrizitätskonstante)
4.14	εο	elektrische Feldkonstante	F/m	Permittivität des leeren Raumes $\varepsilon_0 = 1/(\mu_0 \cdot c_0^2)$ $= 8,854 \ 187 \ 817 \dots pF/m$ $\mu_0 \text{ nach Nr } 4.28, c_0 \text{ nach Nr } 7.19$ siehe DIN 1324 Teil 1 1)
4.15	$arepsilon_{ m r}$	Permittivitätszahl, relative Permittivität	1	$\varepsilon_{\rm r}=\varepsilon l\varepsilon_{\rm 0}$, siehe DIN 1324 Teil 2 (früher: Dielektrizitätszahl) ε nach Nr 4.13, $\varepsilon_{\rm 0}$ nach Nr 4.14
4.16	Xe, X	elektrische Suszeptibilität	1	$\chi_{e} = \frac{\varepsilon - \varepsilon_{0}}{\varepsilon_{0}} = \varepsilon_{r} - 1$ $\varepsilon_{0} \text{ nach Nr 4.13}$ $\varepsilon_{r} \text{ nach Nr 4.15}$ siehe DIN 1324 Teil 2

Tabelle 4 (fortgesetzt)

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung
4.17	I	elektrische Stromstärke	Α	siehe DIN 5483 Teil 2
4.18	J	elektrische Stromdichte	A/m ²	J = I/S, S nach Nr 1.17, I nach Nr 4.17
4.19	Θ	elektrische Durchflutung	Α	siehe DIN 1324 Teil 1
4.20	V, V _m	magnetische Spannung	A	siehe DIN 1324 Teil 2 nach ISO 31-5 : 1992 und IEC 27-1 : 1992 U _m
4.21	Н	magnetische Feldstärke	A/m	siehe DIN 1324 Teil 1
4.22	Φ	magnetischer Fluß	Wb	siehe DIN 1324 Teil 1
4.23	В	magnetische Flußdichte	Т	$B = \Phi/S$, S nach Nr1.17, Φ nach Nr4.2: siehe DIN 1324 Teil 1
4.24	$A, A_{\rm m}$	magnetisches Vektorpotential	Wb/m	siehe DIN 1324 Teil 1
4.25	L	Induktivität, Selbstinduktivität	Н	
4.26	L_{mn}	gegenseitige Induktivität	Н	In ISO 31-5: 1992 und IEC 27-1: 1992 ist M als Vorzugszeichen und L_{mn} als Aus weichzeichen angegeben.
4.27	μ	Permeabilität	H/m	$\mu=B/H$, siehe DIN 1324 Teil 2 B nach Nr 4.23 H nach Nr 4.21
4.28	μ ₀	magnetische Feldkonstante	H/m	Permeabilität des leeren Raumes $\mu_0 = 4 \pi 10^{-7} \text{ H/m}$ = 1,256 637 061 4 μ H/m siehe DIN 1324 Teil 1 ¹)
4.29	$\mu_{\scriptscriptstyle \mathrm{T}}$	Permeabilitätszahl, relative Permeabilität	1	$\mu_{\rm r}=\mu l \mu_0$, siehe DIN 1324 Teil 2 μ nach Nr 4.27, μ_0 nach Nr 4.28
4.30	χ _m , κ	magnetische Suszeptibilität	1	$\chi_{\rm m} = \frac{\mu - \mu_0}{\mu_0} = \mu_{\rm r} - 1 \qquad \begin{array}{c} \mu & {\rm nach \ Nr \ 4.27} \\ \mu_0 & {\rm nach \ Nr \ 4.28} \\ \mu_{\rm r} & {\rm nach \ Nr \ 4.29} \\ {\rm siehe \ DIN \ 1324 \ Teil \ 2} \end{array}$
4.31	H _i , M	Magnetisierung	A/m	$H_{\rm i}=BI\mu_0-H=\chi_{\rm m}H$ B nach Nr 4.2 siehe DIN 1324 Teil 1 μ_0 nach Nr 4.2 H nach Nr 4.2 $\chi_{\rm m}$ nach Nr 4.3
4.32	$B_{\rm i}, J$	magnetische Polarisation	Т	$J=B-\mu_0\cdot H=\mu_0\cdot H_i \qquad B \text{ nach Nr 4.2}$ siehe DIN 1324 Teil 1 $\mu_0 \text{ nach Nr 4.2}$ $H \text{ nach Nr 4.2}$ $H_i \text{ nach Nr 4.3}$
4.33	т	elektromagnetisches Moment, magnetisches Flächenmoment	A·m²	$m = \frac{M}{B}$ M nach Nr 3.14, B nach Nr 4.23 siehe DIN 1324 Teil 1
4.34	R _m	magnetischer Widerstand, Reluktanz	H ⁻¹	
4.35	Λ	magnetischer Leitwert, Permeanz	Н	

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung
4.36	R	elektrischer Widerstand, Wirkwiderstand, Resistanz	Ω	
4.37	G	elektrischer Leitwert, Wirkleitwert, Konduktanz	S	
4.38	Q	spezifischer elektrischer Widerstand, Resistivität	Ω·m	$1\Omega \cdot m = 1\Omega \cdot m^2/m$ $= 10^6 \Omega \cdot mm^2/m$
4.39	γ, σ, κ	elektrische Leitfähigkeit, Konduktivität	S/m	$\gamma = 1/\varrho, \varrho \text{ nach Nr 4.38}$ $1 \text{ S/m} = 1 \text{ S} \cdot \text{m/m}^2 = 10^{-6} \text{ S} \cdot \text{m/mm}^2$
4.40	X	Blindwiderstand, Reaktanz	Ω	
4.41	В	Blindleitwert, Suszeptanz	S	
4.42	<u>Z</u>	Impedanz (komplexe Impedanz)	Ω	$\underline{Z} = R + jX^3$ $R \text{ nach Nr 4.3}$ $X \text{ nach Nr 4.4}$
4.43	Z, <u> Z </u>	Scheinwiderstand, Betrag der Impedanz	Ω	$Z = \sqrt{R^2 + X^2}$ $X \text{ nach Nr 4.3}$ $X \text{ nach Nr 4.4}$
4.44	<u>Y</u>	Admittanz (komplexe Admittanz)	S	$\underline{Y} = 1/\underline{Z} = G + jB^3$) B nach Nr 4.4 G nach Nr 4.3 \underline{Z} nach Nr 4.4
4.45	Y, <u> Y </u>	Scheinleitwert, Betrag der Admittanz	S	$Y = \sqrt{G^2 + B^2}$ B nach Nr 4.4 G nach Nr 4.3
4.46	$Z_{ m w}$, Γ	Wellenwiderstand	Ω	
4.47	Z_0, Γ_0	Wellenwiderstand des leeren Raumes	Ω	$Z_0 = \sqrt{\mu_0/\varepsilon_0} = \mu_0 \cdot c_0 = \frac{1}{\varepsilon_0 \cdot c_0}$ $\approx 376,730 \ 313 \dots \Omega$ $\mu_0 \ \text{nach Nr 4.28}, c_0 \ \text{nach Nr 7.19}$ $\varepsilon_0 \ \text{nach Nr 4.14}$
4.48	W	Energie, Arbeit	J	
4.49	<i>P</i> , <i>P</i> _p	Wirkleistung	W	siehe DIN 40 110
4.50	Q, P_{q}	Blindleistung	W	siehe DIN 40 110 Einheit auch var
4.51	S, P _s	Scheinleistung	W	siehe DIN 40 110 Einheit auch VA Wie bei der Impedanz ist auch hier zw schen der komplexen Scheinleistun und ihrem Betrag zu unterscheide (siehe Nr 4.42 und Nr 4.43).
4.52	S	elektromagnetische Energie- stromdichte, elektromagnetische Leistungsdichte, Poynting-Vektor	W/m ²	$S = E \times H$ E nach Nr 4.1 H nach Nr 4.2
4.53	$\varphi(t)$	Phasenwinkel 3)	rad	siehe DIN 1311 Teil 1, t nach Nr 2.1
4.54	φ	Phasenverschiebungswinkel 3)	rad	auch Winkel der Impedanz $\underline{Z} = Z \cdot e^{j\varphi}, \underline{Z}$ nach Nr 4.42, Z nach Nr 4.43 siehe DIN 40 110 Teil 1
4.55	$\delta_{arepsilon}$	Permittivitäts-Verlustwinkel	rad	

Tabelle 4 (abgeschlossen)

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung
4.56	δ_{μ}	Permeabilitäts-Verlustwinkel	rad	
4.57	λ	Leistungsfaktor	1	$\lambda = P/S$ P nach Nr 4.49, S nach Nr 4.51, $\lambda = \cos \varphi^3$), φ nach Nr 4.54 siehe DIN 40 110 Teil 1
4.58	d	Verlustfaktor	1	d=P/ Q P nach Nr 4.49, Q nach Nr 4.50, $d=\tan\delta^3$), δ nach Nr 4.55 oder Nr 4.56 siehe DIN 40 110 Teil 1
4.59	δ	Eindringtiefe, äquivalente Leitschichtdicke	m	siehe Nr 1.10
4.60	g	Grundschwingungsgehalt	1	siehe DIN 40 110 Teil 1
4.61	k	Oberschwingungsgehalt, Klirrfaktor	1	siehe DIN 40 110 Teil 1
4.62	F	Formfaktor	1	siehe DIN 40 110 Teil 1
4.63	m	Anzahl der Phasen, Anzahl der Stränge	1	siehe DIN 40 110 Teil 1 siehe DIN 40 108
4.64	N	Windungszahl	1	
4.65	k	Kopplungsgrad	1	$k = L_{12} / \sqrt{L_1 \cdot L_2}$ L nach Nr 4.25, L ₁₂ nach Nr 4.26
³) Sieł	ne Seite 9		·· I	

3.5 Formelzeichen für Thermodynamik und Wärmeübertragung (Stoffmengenbezogene (molare) Größen siehe Abschnitt 3.6)

Tabelle 5

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung
5.1	Τ, Θ	Temperatur, thermodynamische Temperatur	К	
5.2	ΔT , Δt , $\Delta \vartheta$	Temperaturdifferenz	К	siehe DIN 1345
5.3	t, ϑ Celsius-Temperatur °C		$t = T - T_0$, siehe DIN 1345 T nach Nr 5.1 $T_0 = 273,15 \text{ K}$	
5.4	α _l .	(thermischer) Längenausdeh- nungskoeffizient	K ⁻¹	$\alpha_l = \frac{1}{l} \cdot \frac{\mathrm{d}l}{\mathrm{d}T}, l \text{ nach Nr 1.6}$ $T \text{ nach Nr 5.1}$
5.5	α_V , γ	(thermischer) Volumenausdeh- nungskoeffizient	K ⁻¹	$\alpha_V = \frac{1}{V} \cdot \frac{dV}{dT}$, V nach Nr 1.18 T nach Nr 5.1
5.6	α_p	(thermischer) Spannungs- koeffizient	K ⁻¹	$a_p = \frac{1}{p} \cdot \frac{\mathrm{d}p}{\mathrm{d}T}, p \text{ nach Nr 3.21}$ $T \text{ nach Nr 5.1}$
5.7	Q	Wärme, Wärmemenge	J	
5.8	w_{th}	Wärmedichte, volumenbezogene Wärme	J/m ³	siehe Nr 3.50
5.9	Φ_{th},Φ,\dot{Q}	Wärmestrom	w	

Tabelle 5 (abgeschlossen)

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung	
5.10	$q_{ m th}, q$	Wärmestromdichte	W/m ²		
5.11	$R_{ m th}$	thermischer Widerstand, Wärmewiderstand	K/W	$R_{\rm th} = \frac{\Delta T}{\Phi_{\rm th}}, \Delta T \text{ nach Nr 5.2}$ $\Phi_{\rm th} \text{ nach Nr 5.9}$	
5.12	$G_{ m th}$	thermischer Leitwert, Wärmeleitwert	W/K	$G_{\rm th} = \frac{1}{R_{\rm th}}$, $R_{\rm th}$ nach Nr 5.11	
5.13	Qth	spezifischer Wärmewiderstand	K⋅m/W	$ \varrho_{\rm th} = \frac{1}{\lambda}, \lambda \text{ nach Nr 5.14} $	
5.14	λ	Wärmeleitfähigkeit	W/(m⋅K)	siehe DIN 1341	
5.15	α, h	Wärmeübergangskoeffizient	W/(m ² · K)	siehe DIN 1341	
5.16	k	Wärmedurchgangskoeffizient	W/(m² ⋅ K)	siehe DIN 1341	
5.17	а	Temperaturleitfähigkeit	m²/s	siehe DIN 1341	
5.18	C_{th}	Wärmekapazität	J/K		
5.19	с	spezifische Wärmekapazität, massenbezogene Wärme- kapazität	J/(kg·K)	$c = C_{\text{th}}/m$ C_{th} nach Nr 5.18, m nach Nr 3.1	
5.20	c_p	spezifische Wärmekapazität bei konstantem Druck	J/(kg·K)		
5.21	c_V	spezifische Wärmekapazität bei konstantem Volumen	J/(kg·K)		
5.22	γ	Verhältnis der spezifischen Wärmekapazitäten	1	$\gamma = c_p/c_V \qquad \qquad c_p \text{ nach Nr 5.20} \\ c_V \text{ nach Nr 5.21}$	
5.23	ж	Isentropenexponent	1	$\kappa = -\frac{V}{p} \left(\frac{\partial p}{\partial V}\right)_S \qquad \begin{array}{c} V \text{ nach Nr 1.18} \\ S \text{ nach Nr 5.24} \\ p \text{ nach Nr 3.21} \\ \text{Für ideale Gase ist } \kappa = \gamma, \gamma \text{ nach Nr 5.22}. \end{array}$	
5.24	S	Entropie	J/K		
5.25	s	spezifische Entropie, massenbezogene Entropie	J/(kg·K)		
5.26	Н	Enthalpie	J		
5.27	h	spezifische Enthalpie, massenbezogene Enthalpie	J/kg		
5.28	U	innere Energie	J		
5.29	u	spezifische innere Energie, massenbezogene innere Energie	J/kg		
5.30	H _o	spezifischer Brennwert, massenbezogener Brennwert	J/kg	früher: oberer Heizwert siehe DIN 5499	
5.31	$H_{ m u}$	spezifischer Heizwert, massenbezogener Heizwert	J/kg	früher: unterer Heizwert siehe DIN 5499	
5.32	R_{B}	individuelle (spezielle) Gas- konstante des Stoffes B	J/(kg·K)	$R_{\rm B} = R/M_{\rm B}$ R nach Nr 6.14, $M_{\rm B}$ nach Nr 6.8	

3.6 Formelzeichen für Physikalische Chemie und Molekularphysik

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung
6.1	$A_{\rm r}$	relative Atommasse eines Nuklids oder eines Elementes 4)	1	
6.2	$M_{ m r}$	relative Molekülmasse eines Stoffes 4)	1	
6.3	N	Anzahl der Teilchen, Teilchen- zahl	1	
6.4	z_{B}	Ladungszahl eines Ions, Wertigkeit eines Stoffes B	1	siehe DIN 4896
6.5	n, v	Stoffmenge	mol	ν, wenn gleichzeitig Nr 8.20 angewendet wird
6.6	'n	Stoffmengenstrom	mol/s	siehe DIN 5491
6.7	C _B	Stoffmengenkonzentration eines Stoffes B	mol/m ³	$c_{\rm B}=n_{\rm B}/V$ $n_{\rm B}$ Stoffmenge eines Stoffes B V nach Nr 1.18 siehe DIN 4896, siehe auch DIN 32 625 früher: Molarität
6.8	$M_{ m B}$	stoffmengenbezogene (molare) Masse eines Stoffes B	kg/mol	siehe auch DIN 32 625
6.9	A	Affinität einer chemischen Reaktion	J/mol	siehe DIN 13 345
6.10	$\mu_{ extsf{B}}$	chemisches Potential eines Stoffes B	J/mol	siehe DIN 13 345
6.11	$\nu_{\mathtt{B}}$	stöchiometrische Zahl eines Stoffes B in einer chemischen Reaktion	1	siehe DIN 13 345
6.12	N_{A}, L	Avogadro-Konstante	mol ⁻¹	$N_{\rm A} = N/n = 6{,}022\ 136\ 7 \cdot 10^{23}\ {\rm mol}^{-1}{}^{1})$ 3 6 N nach Nr 6.3, n nach Nr 6.5
6.13	F	Faraday-Konstante	C/mol	$F = N_A \cdot e$, e nach Nr 4.2 N_A nach Nr 6.12 $F = 96 \cdot 485,309 \cdot C/\text{mol}^{-1}$)
6.14	R	(universelle) Gaskonstante	J/(mol·K)	$R = 8,314 510 \text{J/(mol} \cdot \text{K)}^{ 1}$
6.15	k	Boltzmann-Konstante	J/K	$k = R/N_{\rm A} = 1,380~658 \cdot 10^{-23}~{\rm J/K^{1}})$ 12 R nach Nr 6.14, $N_{\rm A}$ nach Nr 6.12
6.16	$b_{\mathtt{B}}, m_{\mathtt{B}}$	Molalität einer Komponente B	mol/kg	siehe DIN 4896 siehe auch DIN 32 625

¹⁾ Siehe Seite 5

⁴⁾ Die Zahlenwerte von A_r und M_r sind gleich den Zahlenwerten für die Atommasse und die Molekülmasse, gemessen in der atomaren Masseneinheit u (siehe DIN 1301 Teil 1) und gleich dem Zahlenwert der stoffmengenbezogenen Masse M in g/mol.

3.7 Formelzeichen für Licht und verwandte elektromagnetische Strahlungen Tabelle 7

Nr	Formelzeichen 5)	Bedeutung	SI-Einheit	Bemerkung
7.1	Q_{e},W	Strahlungsenergie, Strahlungsmenge	J	siehe DIN 5496, DIN 5031 Teil 1
7.2	w, u	Strahlungsenergiedichte, volumenbezogene Strahlungs- energie	J/m ³	siehe DIN 5496
7.3	$\Phi_{ m e}, P$	Strahlungsleistung, Strahlungsfluß	w	siehe DIN 5496, DIN 5031 Teil 1
7.4	$E_{ m eO}, \psi$	Strahlungsflußdichte, Raumbestrahlungsstärke	W/m ²	siehe DIN 5031 Teil 1, DIN 6814 Teil 2
7.5	I_{e}	Strahlstärke	W/sr	siehe DIN 5496, DIN 5031 Teil 1
7.6	L_{e}	Strahldichte	W/(sr·m²)	siehe DIN 5496, DIN 5031 Teil 1
7.7	$M_{ m e}$	spezifische Ausstrahlung	W/m ²	siehe DIN 5031 Teil 1
7.8	E _e	Bestrahlungsstärke	W/m ²	siehe DIN 5031 Teil 1
7.9	H _e	Bestrahlung	J/m ²	$H_{\rm e}=E_{\rm e}\cdot t, E_{\rm e}$ nach Nr 7.8 t nach Nr 2.1 siehe DIN 5031 Teil 1
7.10	I _v	Lichtstärke	cd	siehe DIN 5031 Teil 3
7.11	$\Phi_{\rm v}$	Lichtstrom	lm	siehe DIN 5031 Teil 3
7.12	Q _v	Lichtmenge	lm·s	siehe DIN 5031 Teil 3
7.13	L _v	Leuchtdichte	cd/m ²	siehe DIN 5031 Teil 3
7.14	$M_{ m v}$	spezifische Lichtausstrahlung	lm/m²	siehe DIN 5031 Teil 3
7.15	E _v	Beleuchtungsstärke	lx	siehe DIN 5031 Teil 3
7.16	$H_{\rm v}$	Belichtung	lx·s	$H_{\rm v}=E_{\rm v}\cdot t, E_{\rm v} \ {\rm nach\ Nr\ 7.15}$ $t\ {\rm nach\ Nr\ 2.1}$ siehe DIN 5031 Teil 3
7.17	η	Lichtausbeute	lm/W	$\eta = \Phi_{\rm v}/P, \Phi_{\rm v}$ nach Nr 7.11 P nach Nr 4.49 siehe DIN 5031 Teil 4
7.18	K	photometrisches Strahlungs- äquivalent	lm/W $K = \Phi_{\rm v}/\Phi_{\rm e},$ $\Phi_{\rm v}$ nach Nr 7.11, $\Phi_{\rm e}$ nach Nr siehe DIN 5031 Teil 4	
7.19	c ₀	Lichtgeschwindigkeit im leeren Raum	m/s	$c_0 = 2,997 \ 924 \ 58 \cdot 10^8 \ \text{m/s}^{1})$
7.20	f	Brennweite	m	
7.21	n	Brechzahl	1	$n = c_0/c$, c nach Nr 2.24, c ₀ nach Nr 7.19
7.22	D	Brechwert von Linsen	m ⁻¹	D = nlf in einem Medium mit der Brechzahl n nach Nr 7.21, f nach Nr 7.20

¹⁾ Siehe Seite 5

⁵⁾ Die Größen der Energiestrahlung erhalten den Index e (für energetisch) zur Unterscheidung von den Größen der photometrisch bewerteten Strahlung, die mit dem Index v (für visuell) gekennzeichnet werden. Diese Indizes können weggelassen werden, wenn keine Verwechslungsgefahr besteht.

Tabelle 7 (abgeschlosssen)

Nr	Formelzeichen 5)	Bedeutung	SI-Einheit	Bemerkung
7.23	σ	Stefan-Boltzmann-Konstante	W/(m ² · K ⁴)	$\sigma = M_e/T^4$ = 5,670 51 · 10 ⁻⁸ W/(m ² · K ⁴) ¹) 19 $M_e \text{ nach Nr 7.7}, T \text{ nach Nr 5.1}$ siehe DIN 5031 Teil 8
7.24	c ₁	erste Plancksche Strahlungskonstante	W⋅m²	$c_1 = 2 \pi \cdot h \cdot c_0^2$ = 3,741 774 9 · 10 ⁻¹⁶ W · m ² 1) 2 2 h nach Nr 8.6, c_0 nach Nr 7.19 siehe DIN 5031 Teil 8, DIN 5496
7.25	c_2	zweite Plancksche Strahlungskonstante	K· m	$c_2 = c_0 \cdot h/k = 0.014 387 69 \text{ m} \cdot \text{K}^{1})$ 12 c_0 nach Nr 7.19, h nach Nr 8.6, k nach Nr 6.15 siehe DIN 5031 Teil 8, DIN 5496
7.26	ε	Emissionsgrad	1	$\varepsilon = M_{\rm e}/M_{\rm s}, M_{\rm e} \text{ nach Nr 7.7}$ $M_{\rm s}$ spezifische Ausstrahlung eines schwarzen Strahlers siehe DIN 5031 Teil 8, DIN 5496
7.27	Q	Reflexionsgrad	1	siehe DIN 5496, DIN 5036 Teil 1
7.28	α	Absorptionsgrad	1	siehe DIN 5496, DIN 5036 Teil 1
7.29	τ	Transmissionsgrad	1	siehe DIN 5496, DIN 5036 Teil 1

3.8 Formelzeichen für Atom- und Kernphysik

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung
8.1	Z	Protonenzahl (Kernladungszahl, Ordnungszahl eines Elementes)	1	siehe DIN 32 640
8.2	N	Neutronenzahl	1	
8.3	A	Nukleonenzahl (Massenzahl)	1	A = Z + N, siehe DIN 32 640 Z nach Nr 8.1, N nach Nr 8.2
8.4	$m_{\rm a}$	Atommasse	kg	
8.5	$m_{ m e}$	Ruhemasse des Elektrons	kg	$m_{\rm e} = 9,109 389 7 \cdot 10^{-31} \rm kg^{ 1})$ 5 4
8.6	h	Planck-Konstante, Plancksches Wirkungsquantum	J·s	$h = 6,6260755\cdot10^{-34}\mathrm{J}\cdot\mathrm{s}^{1})$
8.7	a ₀	Bohr-Radius	m	$a_0 = \frac{\alpha}{4 \pi R_{\infty}} = 0,529 177 249 \cdot 10^{-10} \text{m}^{-1})$ 24 $\alpha \text{ nach Nr 8.11,} R_{\infty} \text{ nach Nr 8.8}$
¹) Sie	he Seite 5	<u> </u>	<u> </u>	

Tabelle 8 (fortgesetzt)

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung	
8.8	R_{∞}	Rydberg-Konstante	m ⁻¹	$R_{\infty} = \mu_0^2 \cdot m_e \cdot e^4 \cdot c_0^3 / 8 \ h^3$ = 10 973 731,534 m ⁻¹ 1) 13 $\mu_0 \text{ nach Nr 4.28}, m_e \text{ nach Nr 8.5},$ $e \text{ nach Nr 4.2}, c_0 \text{ nach Nr 7.19},$ $h \text{ nach Nr 8.6}$	
8.9	μ	magnetisches (Flächen-)Moment eines Teilchens	A·m²	·	
8.10	γ	gyromagnetischer Koeffizient	A·m²/(J·s)		
8.11	α	Sommerfeld-Feinstruktur- Konstante	1	$\alpha = \mu_0 \cdot c_0 \cdot e^2 / 2 h$ = 7,297 353 08 \cdot 10^{-3} 1) 33 $\mu_0 \text{ nach Nr 4.27}, c_0 \text{ nach Nr 7.19},$ $e \text{ nach Nr 4.2}, h \text{ nach Nr 8.6}$	
8.12	τ	mittlere Lebensdauer	s	siehe DIN 25 404	
8.13	Г	Niveaubreite, Halbwertsbreite	J	siehe DIN 25 404, $\Gamma = h l \tau$, h nach Nr 8.6, τ nach Nr 8.12	
8.14	λ	Zerfallskonstante	s ⁻¹	$\lambda = 1/\tau$, τ nach Nr 8.12 siehe DIN 25 404	
8.15	T _{1/2}	Halbwertszeit	s	$T_{1/2}= au\cdot \ln 2$, $ au$ nach Nr 8.12 siehe DIN 25 404	
8.16	A	Aktivität einer radioaktiven Substanz	Вq	siehe DIN 6814 Teil 4	
8.17	а	spezifische (massenbezogene) Aktivität einer radioaktiven Substanz	Bq/kg	siehe DIN 6814 Teil 4	
8.18	Q	Reaktionsenergie	J	siehe DIN 25 404	
8.19	E_{r}	Resonanzenergie	J	siehe DIN 25 404	
8.20	п	Teilchenzahldichte, Neutronenzahldichte	m ⁻³	siehe DIN 25 404	
8.21	σ	Wirkungsquerschnitt	m ²	siehe DIN 25 404	
8.22	Σ	Wirkungsquerschnittsdichte	m ⁻¹	$\Sigma = \sigma \cdot n$, siehe DIN 25 404 n nach Nr 8.20, σ nach Nr 8.21	
8.23	Φ	Fluenz, Teilchenfluenz	m ⁻²	siehe DIN 6814 Teil 2, DIN 25 404	
8.24	φ	Flußdichte, Teilchenflußdichte	m ⁻² ⋅ s ⁻¹	$\varphi=\dot{\Phi}$, siehe DIN 6814 Teil 2, DIN 25 404 Φ nach Nr 8.23	
8.25	Ψ	Energiefluenz	J/m ²	siehe DIN 6814 Teil 2, DIN 25 404	
8.26	ψ	Energieflußdichte	W/m ²	$\psi = \dot{Y}$, siehe DIN 6814 Teil 2, DIN 25 404 Ψ nach Nr 8.25	
8.27	I	Teilchenstrom	s ⁻¹	siehe DIN 6814 Teil 2	
8.28	j	Teilchenstromdichte	m ⁻² · s ⁻¹	siehe DIN 6814 Teil 2, DIN 25 404	
8.29	μ	Schwächungskoeffizient	m ⁻¹	siehe DIN 6814 Teil 2, DIN 25 404	
¹) Sieł	ne Seite 5				

Tabelle 8 (abgeschlossen)

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung
8.30	D	Energiedosis	Gy	siehe DIN 6814 Teil 3
8.31	Ď	Energiedosisrate, Energiedosisleistung	Gy/s	siehe DIN 6814 Teil 3
8.32	L	lineares Energieübertragungs- vermögen	J/m	siehe DIN 6814 Teil 2, DIN 25 404
8.33	q	Bewertungsfaktor	Sv/Gy	q = H/D, siehe DIN 6814 Teil 3, DIN 25 404
8.34	Н	Äquivalentdosis	Sv	$H = D \cdot q$, siehe DIN 6814 Teil 3, DIN 25 404
8.35	Ĥ	Äquivalentdosisrate, Äquivalentdosisleistung	Sv/s	$\dot{H} = \dot{D} \cdot q$ q nach Nr 8.33 \dot{D} nach Nr 8.31
8.36	K	Kerma	Gy	kinetic energy released in material siehe DIN 6814 Teil 3, DIN 25 404
8.37	K	Kermarate, Kermaleistung	Gy/s	siehe DIN 6814 Teil 3, DIN 25 404
8.38	J	Ionendosis	C/kg	siehe DIN 6814 Teil 3
8.39	j	lonendosisrate, lonendosisleistung	A/kg	siehe DIN 6814 Teil 3

3.9 Formelzeichen für Akustik

Nr	Formelzeichen	Bedeutung	SI-Einheit	Bemerkung
9.1	p	Schalldruck	Pa	siehe DIN 1304 Teil 4 (z.Z. Entwurf)
9.2	C, Ca	Schallgeschwindigkeit	m/s	siehe DIN 1304 Teil 4 (z. Z. Entwurf)
9.3	P, Pa	Schalleistung	w	siehe DIN 1304 Teil 4 (z. Z. Entwurf)
9.4	I, J	Schallintensität	W/m²	siehe DIN 1304 Teil 4 (z.Z. Entwurf)
9.5	L_p, L	Schalldruckpegel		wird in dB angegeben siehe DIN 1304 Teil 4 (z. Z. Entwurf)
9.6	L_{W}, L_{P}	Schalleistungspegel		wird in dB angegeben siehe DIN 1304 Teil 4 (z. Z. Entwurf)
9.7	L_N	Pegellautstärke		wird in phon angegeben siehe DIN 1304 Teil 4 (z. Z. Entwurf)
9.8	N	Lautheit		wird in sone angegeben siehe DIN 1304 Teil 4 (z.Z. Entwurf)

3.10 Indizes

Indizes, die aus mehreren Buchstaben bestehen, können durch deren Anfangsbuchstaben ersetzt werden, wenn keine Mißverständnisse zu befürchten sind.

Tabelle 10

Nr	Index	Bedeutung		Beispiele
10.1	0	null	<i>X</i> ₀	Nullreaktanz
		leerer Raum	c_0	Lichtgeschwindigkeit im leeren Raum
ļ	j	ohne Dämpfung	fo	Kennfreguenz
		Leerlauf	n_0	Leerlaufdrehzahl
ļ		fester Bezugswert	$\begin{vmatrix} n_0 \\ l_0 \end{vmatrix}$	Bezugslänge
				
10.2	1	eins 	ω_1	Kreisfrequenz der Grundschwingung
		primär	U_1	Primärspannung
ļ		Eingang	P ₁	Eingangsleistung
		mitdrehend	X ₁	Mitreaktanz
		Anfangszustand	ϑ1	Anfangstemperatur
10.3	2	zwei	ω_2	Kreisfrequenz der zweiten Teilschwingung
ļ		sekundär	U_2	Sekundärspannung
ļ		Ausgang	P_2	Ausgangsleistung
		gegendrehend, invers	X_2	Gegenreaktanz, Inversreaktanz
1		Endzustand	ϑ_2	Endtemperatur
10.4		dua:		Kasiafaa waa da daidaa Tallaabaa aa
10.4	3	drei tertiär	$egin{array}{c} \omega_3 \ U_3 \end{array}$	Kreisfrequenz der dritten Teilschwingung Tertiärspannung
10.5	∞	unendlich	R_{∞}	Rydberg-Konstante (Wellenzahl für unendlich große Kernmasse)
10.6	а	außen	d_{a}	Außendurchmesser
	abs	absolut	$\mu_{\rm abs}$	absolute Permeabilität
	abt	absorbiert	$\phi_{ m abt}$	absorbierter Strahlungsfluß
]	ac	akustisch, Schall-	$Z_{\rm ac}$	akustische Impedanz
	ad	additiv	$R_{\rm ad}$	Zusatzwiderstand
	alt	wahlweise, alternativ	""	
		wechselnd, alternierend	p_{alt}	wechselnder Druck
	amb	umgebend, ambient	p_{amb}	Umgebungsdruck
	amp	Amplitude	$\mu_{\rm amp}$	Amplituden-Permeabilität
	an .	anodisch	U_{an}	Anodenspannung
	as	asynchron	$n_{\rm as}$	asynchrone Umdrehungsfrequenz
	at	atomar	$\mu_{\rm at}$	atomarer Schwächungskoeffizient
	ax	axial	$I_{\rm ax}$	axiales Flächenmoment 2. Grades
10.7	A	Anlauf	I_{A}	Anlaufstromstärke
		Anzug	$M_{\rm A}$	Anzugsmoment
		Bewertungskurve A	L _A	A-bewerteter Schallpegel
10.8	b	Basis	h_{b}	Höhe einer Meßbasis
		Biegung	$M_{\rm b}$	Biegemoment
		Blind-	I_{b}	Blindkomponente eines Wechselstromes
10.9	В	Bezugsstoff	M _B	molare Masse eines Stoffes B
10.10	С			
	calc	berechnet, kalkuliert	$W_{ m calc}$	Arbeit, berechnet
	char	charakteristisch	Q _{char}	charakteristische Dichte
ļ	chem	chemisch	E _{chem}	
Ì		koerzitiv	H_{coe}	magnetische Koerzitiv-Feldstärke
j	് റേക	NOCIAIUY	1 11 000	magnotisone noeizitivi diastatke
	coe			_
	coe con cor	Mitführung, Konvektion Korrektur, korrigiert	Qcon	Wärmeabgabe durch Konvektion

Tabelle 10 (fortgesetzt)

d dam dem dev dfu dif dirs diss dist dyn	Dämpfung demoduliert Abweichung, Deviation diffus differentiell längs-, direkt Zerstreuung (dissipatio) Verdrehung, Verzerrung (distortio) dynamisch überschreitend (excedens) Effektivwert elektrisch elastisch energetisch	$f_{ m dam}$ $f_{ m dem}$ $lpha_{ m dev}$ $p_{ m dfu}$ $arepsilon_{ m dif}$ $X_{ m dir}$ $L_{ m diss}$ $P_{ m dist}$ $p_{ m dyn}$ $p_{ m e}$ $B_{ m eff}$	Eigenfrequenz bei Dämpfung Demodulationsfrequenz Winkelabweichung Diffusfeld-Schalldruck differentielle Permittivität Längsfeldreaktanz Leuchtdichte einer gestreuten Strahlung Verzerrungsleistung dynamischer Druck Überdruck
dam dew dfu dif dir diss dist dyn e eff el ela en eq er exi	demoduliert Abweichung, Deviation diffus differentiell längs-, direkt Zerstreuung (dissipatio) Verdrehung, Verzerrung (distortio) dynamisch überschreitend (excedens) Effektivwert elektrisch elastisch	$f_{ m dem}$ $lpha_{ m dev}$ $p_{ m dfu}$ $arepsilon_{ m dif}$ $X_{ m dir}$ $L_{ m diss}$ $P_{ m dist}$ $p_{ m dyn}$ $p_{ m e}$ $B_{ m eff}$	Demodulationsfrequenz Winkelabweichung Diffusfeld-Schalldruck differentielle Permittivität Längsfeldreaktanz Leuchtdichte einer gestreuten Strahlung Verzerrungsleistung dynamischer Druck
dem dev dfu dif dir diss dist dyn e eff el ela en eq er exi	demoduliert Abweichung, Deviation diffus differentiell längs-, direkt Zerstreuung (dissipatio) Verdrehung, Verzerrung (distortio) dynamisch überschreitend (excedens) Effektivwert elektrisch elastisch	$f_{ m dem}$ $lpha_{ m dev}$ $p_{ m dfu}$ $arepsilon_{ m dif}$ $X_{ m dir}$ $L_{ m diss}$ $P_{ m dist}$ $p_{ m dyn}$ $p_{ m e}$ $B_{ m eff}$	Demodulationsfrequenz Winkelabweichung Diffusfeld-Schalldruck differentielle Permittivität Längsfeldreaktanz Leuchtdichte einer gestreuten Strahlung Verzerrungsleistung dynamischer Druck
dev dfu dif dir diss dist dyn e eff el ela en eq er exi	Abweichung, Deviation diffus differentiell längs-, direkt Zerstreuung (dissipatio) Verdrehung, Verzerrung (distortio) dynamisch überschreitend (excedens) Effektivwert elektrisch elastisch	$lpha_{ m dev}$ $p_{ m dfu}$ $arepsilon_{ m dif}$ $X_{ m dir}$ $L_{ m diss}$ $P_{ m dist}$ $p_{ m dyn}$	Winkelabweichung Diffusfeld-Schalldruck differentielle Permittivität Längsfeldreaktanz Leuchtdichte einer gestreuten Strahlung Verzerrungsleistung dynamischer Druck
dfu dif dir diss dist dyn e eff el ela en eq er exi	diffus differentiell längs-, direkt Zerstreuung (dissipatio) Verdrehung, Verzerrung (distortio) dynamisch überschreitend (excedens) Effektivwert elektrisch elastisch	$p_{ m dfu}$ $arepsilon_{ m dif}$ $X_{ m dir}$ $L_{ m diss}$ $P_{ m dist}$ $p_{ m dyn}$	Diffusfeld-Schalldruck differentielle Permittivität Längsfeldreaktanz Leuchtdichte einer gestreuten Strahlung Verzerrungsleistung dynamischer Druck
dif dir diss dist dyn e eff el ela en eq er exi	differentiell längs-, direkt Zerstreuung (dissipatio) Verdrehung, Verzerrung (distortio) dynamisch überschreitend (excedens) Effektivwert elektrisch elastisch	Edif Xdir Ldiss Pdist Pdyn	differentielle Permittivität Längsfeldreaktanz Leuchtdichte einer gestreuten Strahlung Verzerrungsleistung dynamischer Druck
dir diss dist dyn e eff el ela en eq er exi	längs-, direkt Zerstreuung (dissipatio) Verdrehung, Verzerrung (distortio) dynamisch überschreitend (excedens) Effektivwert elektrisch elastisch	Xdir Ldiss Pdist pdyn	Längsfeldreaktanz Leuchtdichte einer gestreuten Strahlung Verzerrungsleistung dynamischer Druck
diss dist dyn e eff el ela en eq er exi	Zerstreuung (dissipatio) Verdrehung, Verzerrung (distortio) dynamisch überschreitend (excedens) Effektivwert elektrisch elastisch	$egin{array}{c} L_{ m diss} \ P_{ m dist} \ p_{ m dyn} \ \end{array}$	Leuchtdichte einer gestreuten Strahlung Verzerrungsleistung dynamischer Druck
e eff el ela en eq er exi	Verdrehung, Verzerrung (distortio) dynamisch überschreitend (excedens) Effektivwert elektrisch elastisch	$egin{array}{c} P_{ m dist} \ p_{ m dyn} \ \end{array}$	Verzerrungsleistung dynamischer Druck
e eff el ela en eq er exi	überschreitend (excedens) Effektivwert elektrisch elastisch	$p_{ m dyn}$ $p_{ m e}$ $B_{ m eff}$	dynamischer Druck
e eff el ela en eq er exi	überschreitend (excedens) Effektivwert elektrisch elastisch	$p_{ m e} \ B_{ m eff}$	
eff el ela en eq er exi	Effektivwert elektrisch elastisch	$B_{ m eff}$	Überdruck
el ela en eq er exi	Effektivwert elektrisch elastisch	$B_{ m eff}$	
ela en eq er exi	elastisch		Effektivwert der magnetischen Flußdichte
en eq er exi		$W_{ m el}$	elektrische Arbeit
en eq er exi		$\varepsilon_{\mathrm{ela}}$	elastische Dehnung
eq er exi		$L_{\rm en}$	Strahldichte
er exi	äquivalent	1	äquivalente Stoffmenge
exi	Irrtum (error)	$n_{\rm eq}$	agairaionto otonniongo
		D.	Ausgangsleistung
OV+ 1	Ausgang (exitus)	P_{exi}	Ausgangsleistung Außendurchmesser
ext	außen, extern	$d_{\rm ext}$	Aubendurchmesser
E	Erde, Erdschluß	I _E	Erdstromstärke
f	Feld, Erregung	$I_{ m f}$	Erregerstromstärke
fin	Ende (finis)	$\alpha_{\rm fin}$	Endausschlag
fle	Biegung (flexio)	σ_{fle}	Biegespannung
g	Gravitation	F_{g}	Gravitationskraft
-			spezifisches Volumen im gasförmigen Zustand
	Gitter		Gitterspannung
G	Generator		Generatorleistung
ď			Gewichtskraft
	downoni		
h	Haupt-	Φ_{h}	magnetischer Hauptfluß
hyd	hydraulisch	$p_{ m hyd}$	hydraulischer Druck
hyg	feucht, hygroskopisch	t _{hyg}	Temperatur am feuchten Thermometer
hsph	hemisphärisch	$oldsymbol{\phi}_{hsph}$	hemisphärischer Lichtstrom
Н	Hysterese	P _H	Hystereseverluste
i			
id	ideell	δ_{id}	ideeller Luftspalt
indi	indirekt		Beleuchtungsstärke bei indirekter Beleuchtun
indu	induziert		induzierte Spannung
			Höhe einer Unterkante
		1	Eingangsleistung
- 1		_	Anfangspermeabilität
	-		Augenblickswert der Geschwindigkeit
1	•		Innendurchmesser
IS	Isoliert	a _{is}	Durchmesser eines isolierten Leiters
k	Kurzschluß	$I_{\mathbf{k}}$	Kurzschlußstromstärke
kat	kathodisch	Ikat	Kathodenstromstärke
kin	kinetisch	$E_{\rm kin}$	kinetische Energie
h i	hyd hyg hsph id indu inf ing ini inst int is	gr Gitter Generator Gewicht Haupt- hyd hydraulisch feucht, hygroskopisch hemisphärisch Hysterese id ideell indi indirekt indu induziert inf unten, niedrig (inferior) ing Eingang (ingressus) ini Anfangswert (initial) inst augenblicklich (instans) int innen (intus) is isoliert Kurzschluß kat kathodisch	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Tabelle 10 (fortgesetzt)

Nr	Index	Bedeutung		Beispiele
10.21	К	Kommutator	d_{K}	Kommutatordurchmesser
10.22	ι	längs-	E ₁	elektrische Längsfeldstärke
	lam	glatt, laminar	v_{lam}	Geschwindigkeit bei laminarer Strömung
	le ::	leitend	F 7	untores Cremmunt des Cremmune
	li lim	unterer Grenzwert (limes inferior) Grenzwert (limes)	$egin{array}{c} U_{ m li} \ artheta_{ m lim} \end{array}$	unterer Grenzwert der Spannung Grenztemperatur
	lin	linear	L_{lin}	unbewerteter Schallpegel
	liq	flüssig (liquidus)	Q_{liq}	Dichte im flüssigen Zustand
	loc	örtlich, lokal	gloc	örtliche Fallbeschleunigung
	long	longitudinal	ξlong	Longitudinalausschlag
	ls	oberer Grenzwert (limes superior)	U_{ls}	oberer Grenzwert der Spannung
10.23	L			
	Lo	Last (load)	t_{Lo}	Belastungsdauer
	Lu	Luft	Q _{Lu}	Dichte der Luft
10.24	m	stoffmengenbezogen, molar	V_{m}	stoffmengenbezogenes (molares) Volumen
	mad	triefend naß (madidus)	m_{mad}	Masse (Gewicht) im nassen Zustand
	mag	magnetisch	W_{mag}	magnetische Energie
	mas	die Masse betreffend maximal	q _{mas}	Massenstrom
	max mec	mechanisch	$\delta_{max} \ E_{mec}$	Maximalausschlag mechanische Energie
	med	mittel, medial	$v_{\rm med}$	mittlere Geschwindigkeit
	mes	gemessen	$v_{\rm mes}$	gemessene Geschwindigkeit
	min	minimal	α_{\min}	Minimalausschlag
	mod	moduliert	$f_{\rm mod}$	Modulationsfrequenz
10.25	n	allgemeine Zahl	ω_n	Kreisfrequenz der <i>n</i> -ten Teilschwingung
	:	Normzustand nach DIN 1343	p_{n}	Normdruck
	nom	Nennwert (nominal)	U_{nom}	Nennspannung
10.26	N	normal (⊥)	F _N	Normalkraft
10.27	0			
	ob	oberer, oben		011
	oct	Oktave	Loct	Oktavpegel
	opt or	optisch Ursprung, Anfang (origo)	$egin{array}{c} \eta_{ m opt} \ U_{ m or} \end{array}$	optischer Wirkungsgrad Urspannung
		Orsprung, Amang (Origo)	or	Orspanning
10.28	р	konstanter Druck, isobar	c_p	spezifische Wärmekapazität bei konstantem Druck
		Wirk- (bei elektrischen Leistungen)	P_{p}	Wirkleistung
	par	parallel	$R_{\rm par}$	Parallelwiderstand, Shunt
	ph	Phase	c_{ph}	Phasengeschwindigkeit
	pls	plastisch	$arepsilon_{pls}$	plastische Dehnung
	pol	polar	J _{pol}	polares Trägheitsmoment
	pot pre	potentiell Druck (pressus)	E_{pot}	potentielle Energie Druckkraft
	pul	Puls	$f_{ m pul}$	Pulsfrequenz
10.29	q	quer	F_{q}	Querkraft
	3	Blind- (bei elektrischen Leistungen)	$P_{\mathbf{q}}$	Blindleistung
	qu	Ruhe, Pause (quies)	t_{qu}	Pausendauer
			1	

Tabelle 10 (fortgesetzt)

Nr	Index	Bedeutung		Beispiele
10.30	r	Reflexion	$\phi_{\rm r}$	reflektierter Strahlungsfluß
	rad	radial	Frad	Radialkraft
	rat	Bemessungswert (rated)	$U_{\rm rat}$	Bemessungsspannung
	140	Beurteilung (rating)	$L_{\rm rat}$	Beurteilungspegel
	rcf	Gleichrichtwert	i _{ref}	Gleichrichtwert eines elektrischen Stromes
	rd	Strahlung	$\phi_{\rm rd}$	Fluenz einer Strahlung
			I	<u> </u>
	rec	Empfang (recipere)	$P_{\rm rec}$	Empfangsleistung
	red	reduziert	$p_{\rm red}$	reduzierter Luftdruck
	ref	Referenz	$T_{\rm ref}$	Referenztemperatur
	rel	relativ	$\mu_{\rm rel}$	Permeabilitätszahl, relative Permeabilität
	rem	Remanenz	B_{rem}	Remanenz-Flußdichte
	rev	reversibel, umkehrbar	$\mu_{ m rev}$	reversible Permeabilität
	rot	Läufer, Rotor, Rotation	$d_{\rm rot}$	Läuferdurchmesser
	rsd	Rest (residuus)	$U_{\rm rsd}$	Restspannung
	rsl	resultierend	$P_{\rm rsl}$	resultierender Druck
	rsn	Resonanz	E_{rsn}	Resonanzenergie
10.31	R	Reibung	FR	Reibungskraft
		ohmscher Widerstand	U_R	elektrische Spannung am Widerstand
10.32	s	Schein- (bei elektrischen Leistungen)	p_{s}	Scheinleistung
	sat	Sättigung (satietas)	$M_{\rm sat}$	Sättigungsmagnetisierung
	ser	Reihe, Serie	$R_{\rm ser}$	Reihenschlußwiderstand
	sic	trocken (siccus)	$t_{\rm sic}$	Temperatur des trockenen Thermometers
	sig	Zeichen, Signal	$P_{\rm sig}$	Signalleistung
	sim	gleichzeitig, simultan	J 516	·
	sin	sinusförmig	$U_{\rm sin}$	sinusförmige Spannung
	sph	sphärisch	$\phi_{\rm sph}$	sphärischer Lichtstrom
	sol	fest (solidus)	$Q_{\rm sol}$	Dichte im festen Zustand
	stat	stationär, statisch	t _{stat}	Endtemperatur, stationäre Temperatur
	std	genormt, standardisiert	$U_{\rm std}$	Normspannung
	str	Ständer (Stator)	$d_{\rm str}$	Ständerdurchmesser
		oben (superior)		Höhe einer Oberkante
	sup	synchron	h_{\sup}	
	syn sys	System-	$n_{\rm syn}$ $a_{\rm sys}$	synchrone Umdrehungsfrequenz Systemdämpfungsmaß
10.33	t	Augenblickswert, Zeitabhängigkeit	P_t	Augenblickswert der Leistung
10.55				
	tan	tangential Terz	F _{tan}	Tangentialkraft Tarzpagel
	terz	1	L_{terz}	Terzpegel
	th	Wärme, thermisch	$R_{\rm th}$	Wärmewiderstand
	tor	Torsion	$G_{ m tor}$	Torsionsmodul
	tot	total	μ_{tot}	totale Permeabilität
	tra	Durchgang, Transmission	$\Phi_{\rm tra}$	durchgelassener Strahlungsfluß
		Sendung (transmittere)	P _{tra}	Sendeleistung
	trc	Zug (tractus)	$F_{\rm trc}$	Zugkraft
	trt	vorübergehend, transient	$I_{ m trt}$	vorübergehende (transiente) Stromstärke
:	trv	quer, transversal	ξtrv	Transversalausschlag
	tur	wirbelnd, turbulent	Qtur	Wärmeabgabe bei turbulenter Strömung
10.34	u			
	un	unterer, unten		
	us	gebräuchlich (usual)		
10.35	٧	Verlust	$P_{\rm v}$	Verlustleistung
	var	veränderlich, variabel	$U_{ m var}$	variable Spannung
	vir	virtuell	$W_{\rm vir}$	virtuelle Arbeit
	vis	sichtbar, visuell	Lvis	Leuchtdichte
	vt	Lüftung, Ventilation	P_{vt}	Ventilationsleistung
	• •	I	* V[

Tabelle 10 (abgeschlossen)

Nr	Index	Bedeutung		Beispiele
10.36	V	konstantes Volumen, isochor	c_V	spezifische Wärmekapazität bei konstantem Volumen
10.37	w	Wirbel Wasser, feucht Wirk-	P _w t _w I _w	Wirbelstromverluste Temperatur eines feuchten Thermometers Wirkkomponente eines Wechselstromes
10.38	x xer	trocken (xeros)	$m_{ m xer}$	Trockenmasse, Trockengewicht
10.39	x	induktiver Widerstand, Blindwiderstand	U_X	Blindkomponente einer Wechselspannung
10.40	z zul	zulässig	$v_{ m zul}$	zulässige Geschwindigkeit
10.41	z	Zusatz	P_{Z}	Zusatzverluste
10.42	δ	Luftspalt	$B_{\hat{o}}$	Luftspaltinduktion
10.43	σ	Streuung	Φ_{σ}	magnetischer Streufluß
10.44	Δ	Differenz	p_{Δ}	Differenzdruck
10.45	П	Produkt	T_{Π}	Produkt der Verstärkungsfaktoren
10.46	Σ	Summe	F_{Σ}	Summenkraft
10.47	. *	bezogen	U_*	auf den Nennwert bezogene Spannung

4 Kennzeichnung bezogener Größen

4.1 Grundsätze

a) Bezogene Größen, bei denen die Zählergröße Z und die Nennergröße N verschiedener Art sind (siehe DIN 5485), sind von den Zählergrößen eindeutig zu unterscheiden. Der hier stellvertretend benutzte Buchstabe Z ist durch das Formelzeichen der Zählergröße zu ersetzen.

b) Wird eine Größe als Quotient definiert, dann ist es oft möglich, für diese ein eigenes Wort und ein eigenes Formelzeichen anzugeben. Andernfalls ist eine Wortverbindung aus der Benennung der Nennergröße mit dem Wortteil "bezogen" zu bilden, z. B. ist ein "zeitbezogener Weg" eine "Geschwindigkeit".

4.2 Bezug auf Länge, Fläche oder Volumen Tabelle 11

	Formel- zeichen	Benennung
längenbezogene Größe	Z/l, Z'	-belag, -behang
flächenbezogene Größe	Z/A, Z"	-bedeckung
volumenbezogene Größe	Z/V, Z"'	-dichte

BEISPIEL:

Längenbezogener Widerstand (Widerstandsbelag) R/l = R'

4.3 Bezug auf die Zeit

Benennungen für zeitbezogene Größen können durch Anhängen von Wörtern wie -frequenz, -rate, -geschwindigkeit, -strom,

-leistung an die Größenbenennung der Zählergröße gebildet werden.

BEISPIEL:

Impulsrate ist Impulszahl durch Zeit.

Der Differentialquotient einer Größe nach der Zeit kann durch einen Punkt über dem Formelzeichen dieser Größe ausgedrückt werden.

BEISPIEL:

Volumenstrom $dV/dt = \dot{V}$

4.4 Bezug auf die Masse

Massenbezogene Größen können – wenn für sie kein eigenes Formelzeichen festgelegt ist – oft durch den entsprechenden Kleinbuchstaben dargestellt werden, wenn die Zählergröße durch einen Großbuchstaben gekennzeichnet wird. Ein Massenbezug wird durch das vorgesetzte Eigenschaftswort "spezifisch" ausgedrückt (siehe DIN 5485).

BEISPIELE:

Massenbezogenes Volumen (spezifisches Volumen) V/m=v, massenbezogene Wärmekapazität (spezifische Wärmekapazität) C/m=c,

massenbezogene Entropie (spezifische Entropie) D/m = s.

4.5 Relative Größen

Relative Größen sind Verhältnisse zweier Größen gleicher Dimension, wobei die Nennergröße (Bezugsgröße) ein festgelegter Wert – z. B. ein Nennwert – ist (siehe DIN 5485). Relative Größen können wie folgt gekennzeichnet werden, wobei wieder Z für das Formelzeichen der Zählergröße steht:

$$Z_{\rm rel}, Z_{\star}$$

Zitierte Normen und andere Unterlagen

DIN 1301 Teil 1 Einheiten; Einheitennamen, Einheitenzeichen

DIN 1301 Teil 2 Einheiten; Allgemein angewendete Teile und Vielfache
DIN 1302 Allgemeine mathematische Zeichen und Begriffe

DIN 1304 Teil 4 (z. Z. Entwurf) Formelzeichen; Zusätzliche Formelzeichen für Akustik

DIN 1304 Teil 5 Formelzeichen; Formelzeichen für die Strömungsmechanik

DIN 1304 Teil 6 Formelzeichen; Formelzeichen für die elektrische Nachrichtentechnik
DIN 1305 Masse, Wägewert, Kraft, Gewichtskraft, Gewicht, Last; Begriffe

DIN 1306 Dichte; Begriffe, Angaben

DIN 1311 Teil 1 Schwingungslehre; Kinematische Begriffe DIN 1311 Teil 2 Schwingungslehre; Einfache Schwinger

DIN 1313 Physikalische Größen und Gleichungen; Begriffe, Schreibweisen

DIN 1314 Druck; Grundbegriffe, Einheiten

DIN 1324 Teil 1 Elektromagnetisches Feld; Zustandsgrößen
DIN 1324 Teil 2 Elektromagnetisches Feld; Materialgrößen
DIN 1338 Formelschreibweise und Formelsatz
DIN 1341 Wärmeübertragung; Begriffe, Kenngrößen
DIN 1342 Teil 2 Viskosität; Newtonsche Flüssigkeiten

DIN 1343 Referenzzustand, Normzustand, Normvolumen; Begriffe und Werte

DIN 1345 Thermodynamik; Grundbegriffe

DIN 4895 Teil 1 Orthogonale Koordinatensysteme; Allgemeine Begriffe

DIN 4895 Teil 2 Orthogonale Koordinatensysteme; Differentialoperatoren der Vektoranalysis

DIN 4896 Einfache Elektrolytlösungen; Formelzeichen

DIN 5031 Teil 1 Strahlungsphysik im optischen Bereich und Lichttechnik; Größen, Formelzeichen und Einheiten der Strah-

lungsphysik

DIN 5031 Teil 3 Strahlungsphysik im optischen Bereich und Lichttechnik; Größen, Formelzeichen und Einheiten der Licht-

technik

DIN 5031 Teil 4 Strahlungsphysik im optischen Bereich und Lichttechnik; Wirkungsgrade

DIN 5031 Teil 8 Strahlungsphysik im optischen Bereich und Lichttechnik; Strahlungsphysikalische Begriffe und Konstanten

DIN 5036 Teil 1 Strahlungsphysikalische und lichttechnische Eigenschaften von Materialien; Begriffe, Kennzahlen

DIN 5483 Teil 2 Zeitabhängige Größen; Formelzeichen

DIN 5483 Teil 3 Zeitabhängige Größen; Komplexe Darstellung sinusförmig zeitabhängiger Größen

DIN 5485 Benennungsgrundsätze für physikalische Größen; Wortzusammensetzungen mit Eigenschafts- und Grund-

wörtern

DIN 5491 Stoffübertragung; Diffusion und Stoffübergang; Grundbegriffe, Größen, Formelzeichen, Kenngrößen

DIN 5496 Temperaturstrahlung von Volumenstrahlern

DIN 5499 Brennwert und Heizwert; Begriffe

DIN 6814 Teil 2 Begriffe und Benennungen in der radiologischen Technik; Strahlenphysik

DIN 6814 Teil 3 Begriffe und Benennungen in der radiologischen Technik; Dosisgrößen und Dosiseinheiten

DIN 6814 Teil 4 Begriffe und Benennungen in der radiologischen Technik; Radioaktivität
DIN 13 304 Darstellung von Formelzeichen auf Einzeilendruckern und Datensichtgeräten

DIN 13 316 Mechanik ideal elastischer Körper; Begriffe, Größen, Formelzeichen

DIN 13 317 Mechanik starrer Körper; Begriffe, Größen, Formelzeichen

DIN 13 345 Thermodynamik und Kinetik chemischer Reaktionen; Formelzeichen, Einheiten

DIN 25 404 Kerntechnik; Formelzeichen

DIN 32 625 Größen und Einheiten in der Chemie; Stoffmenge und davon abgeleitete Größen; Begriffe und Definitionen

DIN 32 640 Chemische Elemente und einfache anorganische Verbindungen; Namen und Symbole

DIN 40 108 Elektrische Energietechnik; Stromsysteme; Begriffe, Größen, Formelzeichen

DIN 40 110 Teil 1 Wechselstromgrößen; Zweileiter-Stromkreise

DIN 50 281 Reibung in Lagerungen; Begriffe, Arten, Zustände, physikalische Größen

DIN 66 030 Informationsverarbeitung; Darstellung von Einheitennamen in Systemen mit beschränktem Schriftzeichen-

vorrat

ISO 31-3: 1992 Quantities and units - Part 3: Mechanics

ISO 31-5: 1992 Quantities and units - Part 5: Electricity and magnetism

IEC 27-1: 1992 Letter symbols to be used in electrical technology; Part 1: General

Codata Bulletin Nr 63, November 1986, Pergamon Press, Pergamon Journals Ltd, Headington Hill Hall, Oxford OX3 OBW, UK

Weitere Normen

DIN 1303	Vektoren, Matrizen, Tensoren; Zeichen und Begriffe
DIN 1304 Teil 2	Formelzeichen; Formelzeichen für Meteorologie und Geophysik
DIN 1304 Teil 3	Formelzeichen; Formelzeichen für elektrische Energieversorgung
DIN 1304 Teil 7	Formelzeichen; Formelzeichen für elektrische Maschinen
DIN 1304 Teil 8	(z. Z. Entwurf) Formelzeichen; Formelzeichen für Stromrichter mit Halbleiterbauelementen
DIN 1324 Teil 3	Elektromagnetisches Feld; Elektromagnetische Wellen

Frühere Ausgaben

DIN 1339: 07.46, 04.58, 09.68, 11.71; DIN 1357: 04.58x, 08.66, 12.67, 11.71 DIN 1304: 07.25, 07.26, 03.33, 02.55, 09.65, 03.68, 11.71, 02.78; DIN 5497: 12.68 DIN 1304 Teil 1: 03.89

Änderungen

Gegenüber der Ausgabe März 1989 wurden folgende Änderungen vorgenommen:

- a) Druckfehler wurden korrigiert.
- b) Zitate wurden aktualisiert.

Erläuterungen

Die vorliegende Ausgabe dieser Norm hat den Zweck, Doppelund Mehrfachnormung viel gebrauchter Formelzeichen einzuengen (viele Normen, in denen Formelzeichen festgelegt werden, beginnen z. Z. noch mit den Formelzeichen für Länge, Breite, Höhe usw.). Die in mehreren Fachgebieten benutzten Formelzeichen sind in der vorliegenden Norm DIN 1304 Teil 1, die den Grundstock aller benötigten Formelzeichen bilden soll, zusammengefaßt. Weitere Folgeteile zu dieser Norm mit Formelzeichen für spezielle Fachgebiete sind bereits erschienen oder in Vorbereitung; sie ersetzen entsprechende Normen über Formelzeichen mit anderen DIN-Nummern. Durch diese Zusammenfassung unter der DIN-Hauptnummer DIN 1304 werden die Formelzeichen leichter auffindbar. Die bisher genormten Formelzeichen selbst werden durch diese Ausgabe nicht wesentlich geändert.

Die Festlegung von Formelzeichen bereitet stets dadurch Schwierigkeiten, daß es viel mehr Größen gibt – im vorliegenden allgemeinen Teil allein etwa 280 – als Buchstaben zu ihrer Kennzeichnung zur Verfügung stehen, nämlich nur 86. Somit ist fast jeder Buchstabe mehrfach besetzt. Genormte Ausweichzeichen geben für begrenzte Fachbereiche die Möglichkeit, eine Doppelverwendung einzelner Buchstaben für verschiedenartige Größen zu vermeiden. Wenn z. B. die Formelzeichen für Zeit (Nr 2.1) und für Celsius-Temperatur (Nr 5.3) zusammentreffen, dann steht für die Celsius-Temperatur deren Ausweichzeichen ϑ zur Verfügung. Steht kein genormtes Ausweichzeichen zur Verfügung, dann kann nach Abschnitt 3, Anwendungsregel c), verfahren werden.

Bei der Auswahl der Formelzeichen für begrenzte Fachbereiche sollte zunächst versucht werden, mit den Vorzugszeichen auszukommen. Ist dies nicht möglich, dann sind die Ausweichzeichen heranzuziehen. Dabei ist jene Lösung anzustreben, die mit den geringsten Abweichungen von den Zeichen dieser Norm gefunden werden kann. Besonderer Wert ist dabei auf den Erhalt jener wichtigen Zeichen zu legen, die in gleicher Weise auch in vielen anderen Fachgebieten verwendet werden können, z. B. für Zeit, Masse, Druck, Arbeit, Temperatur.

Als Doppelnormung gegenüber DIN 1304 Teil 1 wird in den Folgeteilen zu dieser Norm nicht angesehen, wenn

 a) von den Vorzugs- und Ausweichzeichen in DIN 1304
 Teil 1 nur eines im betreffenden Fachgebiet verwendet werden soll, um Kollisionen zu vermeiden;

- b) der Bedeutungsumfang eines in DIN 1304 Teil 1 erwähnten Zeichens in besonderer Weise eingeschränkt werden soll:
- c) ein in DIN 1304 Teil 1 angeführtes Zeichen Indizes erhält, die im betreffenden Fachbereich eine besondere Bedeutung haben.

Dieses Auswahlverfahren für begrenzte Fachbereiche führt dazu, daß man bei jedem Fachgebiet zu einer Lösung gelangen kann, die für dieses Fachgebiet besonders günstig ist, sich von den Festlegungen anderer Fachgebiete nur wenig unterscheidet. Eine völlige Übereinstimmung der Normen mit Formelzeichen für verschiedene Fachbereiche ist somit nicht immer erreichbar, aber stets anzustreben.

Die in den Tabellen 1 bis 9 angeführten Formelzeichen stimmen weitgehend überein mit den Festlegungen der Internationalen Normen

time

Quantities and units - Part 1: Space and

ISO 31-2: 1992 Quantities and units - Part 2: Periodic and related phenomena ISO 31-3: 1992 Quantities and units - Part 3: Mechanics ISO 31-4: 1992 Quantities and units - Part 4: Heat
ISO 31-4: 1992 Quantities and units - Part 4: Heat
ISO 31-5: 1992 Quantities and units – Part 5: Electricity and magnetism
ISO 31-6: 1992 Quantities and units - Part 6: Light and related electromagnetic radiations
ISO 31-7: 1992 Quantities and units - Part 7: Acoustics
ISO 31-8: 1992 Quantities and units - Part 8: Physical chemistry and molecular physics

ISO 31-9: 1992 Quantities and units - Part 9: Atomic and nuclear physics

ISO 31-10: 1992 Quantities and units – Part 10: Nuclear reactions and ionizing radiations

sowie der

ISO 31-1: 1992

IEC 27-1: 1992 Letter symbols to be used in electrical technology - Part 1: General

Viele der in Tabelle 10 angeführten Indizes sind einer Aufstellung in der IEC 27-1: 1992 entnommen, um eine internationale Verständlichkeit zu ermöglichen. Von der Internationalen Organisation für Normung (ISO) wurde bisher noch keine ähnliche Zusammenstellung von Indizes als Internationale Norm herausgegeben.

Stichwortverzeichnis

Nicht mit dem Zusatz "Abschnitt" kenntlich gemachte Nummern beziehen sich auf die Nummern in den Tabellen.

Abklingkoeffizient 2.10 Abklingzeit 2.3 absolut 10.6 absoluter Druck 3.22 absorbiert 10.6 Absorptionsgrad 7.28 Abstand 1.11 Abweichung 10.11 additiv 10.6 Admittanz 4.44 Admittanz, komplexe 4.44 Affinität einer chemischen Reaktion 6.9 Aktivität einer radioaktiven Substanz 8.16 Aktivität, spezifische 8.17 akustisch 10.6 allgemeine Zahl 10.25 alternativ 10.6 alternierend 10.6 ambient 10.6 Amplitude 10.6 Anfang 10.27 Anfangswert 10.19 Anfangszustand 10.2 Anklingkoeffizient 2.11 Anklingkoeffizient, komplexer 2.12 Anlauf 10.7 anodisch 10.6 Anzahl der Phasen 4.63 Anzahl der Stränge 4.63 Anzahl der Teilchen 6.3 Anzug 10.7 äquivalent 10.12 Äquivalentdosis 8.34 Äquivalentdosisleistung 8.35 Äquivalentdosisrate 8.35 äquivalente Leitschichtdicke 4.59 Arbeit 3.46, 4.48 Arbeit, massenbezogene 3.51 Arbeit, spezifische 3.51 Arbeitsgrad 3.55 Arbeitsverhältnis 3.55 asynchron 10.6 Atmosphärendruck 3.23 atmosphärische Druckdifferenz 3.24 atomar 10.6 Atommasse 8.4 Atommasse, relative 6.1 augenblicklich 10.19 Augenblickswert 10.33 Ausbreitungsgeschwindigkeit 2.24 Ausbreitungskoeffizient 2.22 Ausgang 10.3, 10.12 Auslenkung 1.12 Ausschlag 1.12 Ausstrahlung, spezifische 7.7, 7.26 Ausweichzeichen Abschnitt 3 außen 10.6, 10.12 Avogadro-Konstante 6.12

Basis 10.8
Beleuchtungsstärke 7.15
Belichtung 7.16
Bemessungswert 10.30
berechnet 10.10
Beschleunigung 2.25

axial 10.6

Bestrahlung 7.9 Bestrahlungsstärke 7.8 Betrag der Admittanz 4.45 Betrag der Impedanz 4.43 Beurteilung 10.30 Bewegungsgröße 3.17 Bewertungsfaktor 8.33 Bewertungskurve A 10.7 bezogen 10.47 bezogene Größe Abschnitt 4 Bezugsstoff 10.9 Bezugswert, fester 10.1 Biegemoment 3.16 Biegung 10.8, 10.14 Blind- 10.8, 10.29 Blindleistung 4.50 Blindleitwert 4.41 Blindwiderstand 4.40, 10.39 Bohr-Radius 8.7 Boltzmann-Konstante 6.15 Brechwert von Linsen 7.22 Brechzahl 7.21 Breite 1.7 Brennweite 7.20 Brennwert, massenbezogener 5.30

Celsius-Temperatur 5.3 charakteristisch 10.10 chemisch 10.10 chemisches Potential eines Stoffes B 6.10

Dämpfung 10.11

Brennwert, spezifischer 5.30

Dämpfungsbelag 2.20
Dämpfungsgrad 2.13
Dämpfungskoeffizient 2.20
Dauer 2.1
Dehnung 3.27
demoduliert 10.11
Deviation 10.11
Dichte 3.4
Dichte, relative 3.5
Dicke 1.10
Dielektrizitätskonstante 4.13
Dielektrizitätszahl 4.15
differentiell 10.11
Differenz 10.44
diffus 10.11
Dipolmoment, elektrisches 4
direkt 10.11

Differenz 10.44 diffus 10.11 Dipolmoment, elektrisches 4.8 direkt 10.11 Direktionsmoment 3.33 Drall 3.19 Drehbeschleunigung 2.16 Drehgeschwindigkeit 2.15 Drehimpuls 3.19 Drehmoment 3.14 Drehstoß 3.20 Drehwinkel 1.4 Drehzahl 2.14 drei 10.4 Drillmoment 3.15 Drillung 3.32 Druck 3.21, 10.28

Druck, absoluter 3.22

Druckspannung 3.25

Druck, konstanter 10.28

Druckdifferenz, atmosphärische 3.24

Durchbiegung 1.13
Durchflutung, elektrische 4.19
Durchgang 10.33
Durchhang 1.13
Durchmesser 1.14
dynamisch 10.11
dynamische Viskosität 3.40

ebener Winkel 1.4

effektiv 10.12 Eigenfrequenz 2.5, 2.6 Eigenkreisfrequenz 2.9 Eindringtiefe 4.59 Eingang 10.2, 10.19 Einheitenzeichen Abschnitt 3 eins 10.2 elastisch 10.12 Elastizitätsmodul 3.34 elektrisch 10.12 elektrische Durchflutung 4.19 elektrische Feldkonstante 4.14 elektrische Feldstärke 4.11 elektrische Flußdichte 4.6 elektrische Kapazität 4.12 elektrische Ladung 4.1 elektrische Leitfähigkeit 4.39 elektrische Polarisation 4.7 elektrische Potentialdifferenz 4.10 elektrische Spannung 4.10 elektrische Stromdichte 4.18 elektrische Stromstärke 4.17 elektrische Suszeptibilität 4.16 elektrischer Fluß 4.5 elektrischer Leitwert 4.37 elektrischer Widerstand 4.36 elektrischer Widerstand, spezifischer 4.38 elektrisches Dipolmoment 4.8 elektrisches Potential 4.9 Elektrizitätsmenge 4.1 elektromagnetische Leistungsdichte 4.52 elektromagnetisches Moment 4.33 Elementarladung 4.2 Emissionsgrad 7.26 Empfang 10.30 Ende 10.14 Endzustand 10.3 energetisch 10.12 Energie 3.47, 4.48 Energie, innere 5.28, 5.29 Energie, kinetische 3,49 Energie, potentielle 3.48 Energie, volumenbezogene 3.50 Energiedichte 3.50 Energiedosis 8.30 Energiedosisleistung 8.31 Energiedosisrate 8.31 Energiefluenz 8.25 Energieflußdichte 8.26 Energiestromdichte 4.52 Energieübertragungsvermögen, lineares 8.32 Energieverhältnis 3.55 Enthalpie 5.26 Enthalpie, massenbezogene 5.27

Enthalpie, spezifische 5.27

Entropie 5.24

Entropie, massenbezogene 5.25 Entropie, spezifische 5.25 Erde 10.13 Erdschluß 10.13 Erregung 10.14 erste Plancksche Strahlungskonstante 7.24 extern 10.12

Fallbeschleunigung 2.26 Faraday-Konstante 6.13 Feld 10.14 Feldkonstante, elektrische 4.14 Feldkonstante, magnetische 4.28 Feldstärke, elektrische 4.11 Feldstärke, magnetische 4.21 fest 10.32 fester Bezugswert 10.1 feucht 10.17, 10.37 Fläche 1.16 flächenbezogene Größe Abschnitt 4.2 flächenbezogene Masse 3.3 Flächeninhalt 1.16 Flächenladungsdichte 4.3 Flächenmoment 1. Grades 3.43 Flächenmoment 2. Grades 3.45 Flächenmoment, magnetisches 4.33, 8.9 Flächenträgheitsmoment 3.45 Fluenz 8.23 flüssig 10.22 Fluß, elektrischer 4.5 Fluß, magnetischer 4.22 Flußdichte 8.24 Flußdichte, elektrische 4.6 Flußdichte, magnetische 4.23 Formfaktor 4.62 Frequenz 2.4

gasförmig 10.15 Gaskonstante eines Stoffes B, individuelle 5.32 Gaskonstante, universelle 6.14 gebräuchlich 10.34 gegendrehend 10.3 gegenseitige Induktivität 4.26 gemessen 10.24 Generator 10.16 genormt 10.32 Geschwindigkeit 2.23 Gewicht 3.1, 10.16 Gewichtskraft 3.12 Gitter 10.15 glatt 10.22 Gleichrichtwert 10.30 gleichzeitig 10.32 Gravitation 10.15 Gravitationskonstante 3.13 Gravitationskraft 3.13 Grenzflächenspannung 3.42 Grenzwert 10.22 Grenzwert, oberer 10.22 Grenzwert, unterer 10.22 Größe, bezogene Abschnitt 4 Größe, flächenbezogene Abschnitt 4.2 Größe, komplexe Abschnitt 2 Größe, längenbezogene Abschnitt 4.2 Größe, massenbezogene

Abschnitt 4.4

Größe, relative Abschnitt 4.5
Größe, volumenbezogene
Abschnitt 4.2
Größe, zeitbezogene Abschnitt 4.3
Grundschwingungsgehalt 4.60
Grundzeichen
Abschnitt 2, Abschnitt 3
gyromagnetischer Koeffizient 8.10

Halbmesser 1.11 Halbwertbreite 8.13 Halbwertszeit 8.15 Haupt- 10.17 Heizwert, massenbezogener 5.31 Heizwert, oberer 5.30 Heizwert, spezifischer 5.31 Heizwert, unterer 5.31 hemisphärisch 10.17 Hochzeichen Abschnitt 2 Höhe 1.8 Höhe über dem Meeresspiegel 1.9 Höhe über Normal-Null 1.9 hydraulisch 10.17 hygroskopisch 10.17 Hysterese 10.18

ideell 10.19 Impedanz 4.42 Impedanz, komplexe 4.42 Impuls 3.17, 3.18 indirekt 10.19 individuelle (spezielle) Gaskonstante eines Stoffes B 5.32 Indizes Abschnitt 2, Abschnitt 3.10 induktiver Widerstand 10.39 Induktivität 4.25 Induktivität, gegenseitige 4.26 induziert 10.19 innen 10.19 innere Energie 5.28 innere Energie, massenbezogene 5.29 innere Energie, spezifische 5.29 invers 10.3 Ionendosis 8.38 Ionendosisleistung 8.39 Ionendosisrate 8.39 Irrtum 10.12 Isentropenexponent 5.23 isentropische Kompressibilität 3.38 isobar 10.28 isochor 10.36 isoliert 10.19 isothermische Kompressibilität 3.37

kalkuliert 10.10
Kapazität, elektrische 4.12
kathodisch 10.20
Kennfrequenz 2.5
Kennkreisfrequenz 2.8
Kerma 8.36
Kermaleistung 8.37
Kermarate 8.37
Kernladungszahl 8.1
kinematische Viskosität 3.41
kinetisch 10.20
kinetische Energie 3.49
Klirrfaktor 4.61
Koeffizient, gyromagnetischer 8.10
koerzitiv 10.10

Kommutator 10.21 komplexe Admittanz 4.44 komplexe Größe Abschnitt 2 komplexe Impedanz 4.42 komplexer Anklingkoeffizient 2.12 Kompressibilität, isentropische 3.38 Kompressibilität, isothermische 3.37 Kompressionsmodul 3.36 Konduktanz 4.37 Konduktivität 4.39 konstanter Druck 10.28 konstantes Volumen 10.36 Konvektion 10.10 Koordinaten 1.1, 1.2, 1.3 Kopplungsgrad 4.65 Korrektur 10.10 korrigiert 10.10 Kraft 3.11 Kraftmoment 3.14 Kraftstoß 3.18 Kreisfrequenz 2.7 Kreisrepetenz 2.19 Kreiswellenzahl 2.19 kritisch 10.10 Kurvenlänge 1.15 Kurzschluß 10.20

Ladung eines Protons 4.2 Ladung, elektrische 4.1 Ladung, volumenbezogene 4.4 Ladungsbedeckung 4.3 Ladungsdichte 4.4 Ladungszahl eines Ions 6.4 laminar 10.22 Länge 1.6 Längenänderung, relative 3.27 Längenausdehnungskoeffizient 5.4 längenbezogene Größe Abschnitt 4.2 längenbezogene Masse 3.2 längs- 10.11, 10.22 Last 10.23 Läufer 10.30 Lautheit 9.8 Lebensdauer, mittlere 8.12 leerer Raum 10.1 Leerlauf 10.1 Leistung 3.52 Leistung, volumenbezogene 3.53 Leistungsdichte 3.53 Leistungsdichte, elektromagnetische 4.52 Leistungsfaktor 4.57 Leistungsverhältnis 3.54 leitend 10.22 Leitfähigkeit, elektrische 4.39 Leitschichtdicke 4.59 Leitwert, elektrischer 4.37 Leitwert, magnetischer 4.35 Leitwert, thermischer 5.12 Leuchtdichte 7.13 Lichtausbeute 7.17 Lichtausstrahlung, spezifische 7.14 Lichtaeschwindiakeit · im leeren Raum 7.19 Lichtmenge 7.12 Lichtstärke 7.10 Lichtstrom 7.11 linear 10.22 lineares Energieübertragungs-

vermögen 8.32

lokal 10.22 longitudinal 10.22 Luft 10.23 Luftspalt 10.42 Lüftung 10.35

magnetisch 10.24 magnetische Feldkonstante 4.28 magnetische Feldstärke 4.21 magnetische Flußdichte 4.23 magnetische Polarisation 4.32 magnetische Spannung 4.20 magnetische Suszeptibilität 4.30 magnetischer Fluß 4.22 magnetischer Leitwert 4.35 magnetischer Widerstand 4.34 magnetisches Flächenmoment eines Teilchens 8.9 magnetisches Flächenmoment 4.33 magnetisches Vektorpotential 4.24 Magnetisierung 4.31 Masse 3.1 Masse betreffend, die 10.24 Masse, flächenbezogene 3.3 Masse, längenbezogene 3.2 Masse, stoffmengenbezogene 6.8 Masse, volumenbezogene 3.4 Massenbedeckung 3.3 Massenbehang 3.2 Massenbelag 3.2 massenbezogene Aktivität einer radioaktiven Substanz 8.17 massenbezogene Arbeit 3.51 massenbezogene Enthalpie 5.27 massenbezogene Entropie 5.25 massenbezogene Größe Abschnitt 4.4 massenbezogene innere Energie 5.29 massenbezogene Wärmekapazität 5.19 massenbezogener Brennwert 5.30 massenbezogener Heizwert 5.31 massenbezogenes Volumen 3.6 Massendichte 3.4 Massendurchsatz 3.7 Massenmoment 2. Grades 3.9 Massenstrom 3.7 Massenstromdichte 3.8 Massenträgheitsmoment 3.9 Massenzahl 8.3 maximal 10.24 mechanisch 10.24 medial 10.24 minimal 10.24 mitdrehend 10.2 Mitführung 10.10 mittel 10.24 mittlere Lebensdauer 8.12 moduliert 10.24 Molalität 6.16 molar 10.24 Molarität 6.7 Molekülmasse, relative 6.2 Moment, elektromagnetisches 4.33

Nebenzeichen Abschnitt 2 Nennwert 10.25 Neutronenzahl 8.2 Neutronenzahldichte 8.20 niedrig 10.19 Niveaubreite 8.13 nominal 10.25 normal 10.26 Normalkraft 3.39 Normalspannung 3.25 Normfallbeschleunigung 2.26 Normzustand nach DIN 1343 10.25 Nukleonenzahl 8.3 null 10.1 Nutzungsgrad 3.55

oben 10.27, 10.32 oberer 10.27 oberer Grenzwert 10.22 oberer Heizwert 5.30 Oberfläche 1.16 Oberflächenspannung 3.42 Oberschwingungsgehalt 4.61 ohmscher Widerstand 10.31 ohne Dämpfung 10.1 Oktave 10.27 optisch 10.27 Ordnungszahl eines Elementes 8.1 örtlich 10.22

parallel 10.28 Pause 10.29 Pegellautstärke 9.7 Periodendauer 2.2 Periodenfrequenz 2.4 Permeabilität 4.27, 4.28 Permeabilität, relative 4.29 Permeabilitäts-Verlustwinkel 4.56 Permeabilitätszahl 4.29 Permeanz 4.35 Permittivität 4.13, 4.14 Permittivität, relative 4.15 Permittivitäts-Verlustwinkel 4.55 Permittivitätszahl 4.15 Phase 10.28 Phasen, Anzahl der 4.63 Phasenbelag 2.21 Phasenkoeffizient 2.21 Phasenverschiebungswinkel 4.54 Phasenwinkel 4.53 photometrisches Strahlungsäguivalent 7.18 Planck-Konstante 8.6 Plancksche Strahlungskonstante, erste 7.24 Plancksche Strahlungskonstante, zweite 7.25 Plancksches Wirkungsquantum 8.6 plastisch 10.28 Poisson-Zahl 3.29 polar 10.28 Polarisation, elektrische 4.7 Polarisation, magnetische 4.32 Potential, chemisches 6.10

quer 10.29, 10.33 Querdehnung 3.28 Querschnitt 1.17 Querschnittsfläche 1.17

Potential, elektrisches 4.9

Poynting-Vektor 4.52

potentiell 10.28 potentielle Energie 3.48

primär 10.2

Puls 10.28

Produkt 10.45

Pulsatanz 2.7

Protonenzahl 8.1

radial 10.30 Radius 1.11 rated 10.30 rating 10.30 Raumbestrahlungsstärke 7.4 Rauminhalt 1.18 Raumladungsdichte 4.4 Raumwinkel 1.5 Reaktanz 4.40 Reaktionsenergie 8.18 reduziert 10.30 Referenz 10.30 Reflexion 10.30 Reflexionsgrad 7.27 Reibung 10.31 Reibungskraft 3.39 Reibungszahl 3.39 Reihe 10.32 relativ 10.30 relative Atommasse eines Nuklids oder eines Elementes 6.1 relative Dichte 3.5 relative Größe Abschnitt 4.5 relative Längenänderung 3.27 relative Molekülmasse eines Stoffes 6.2 relative Permeabilität 4.29 relative Permittivität 4.15 relative Volumenänderung 3,30 Reluktanz 4.34 Remanenz 10.30 Repetenz 2.18 Resistanz 4.36 Resistivität 4.38 Resonanz 10.30 Resonanzenergie 8.19 Rest 10.30 resultierend 10.30 reversibel 10.30 Rotation 10.30 Rotor 10.30 Ruck 2.27 Rückstellmoment, winkelbezogenes 3.33 Ruhe 10.29 Ruhemasse des Elektrons 8.5 Rydberg-Konstante 8.8

Sättigung 10.32 Schall- 10.6 Schalldruck 9.1 Schalldruckpegel 9.5 Schalleistung 9.3 Schalleistungspegel 9.6 Schallgeschwindigkeit 9.2 Schallintensität 9.4 Schein- 10.32 Scheinleistung 4.51 Scheinleitwert 4.45 Scheinwiderstand 4.43 Scherung 3.31 Schichtdicke 1.10 Schiebung 3.31 Schubmodul 3.35 Schubspannung 3.26 Schwächungskoeffizient 8.29 Schwingungsdauer 2.2 sekundär 10.3 Selbstinduktivität 4.25 Sendung 10.33 Serie 10.32

Tangential 10.33 Teilchen, Anzahl der 6.3

Teilchenfluenz 8.23 Teilchenflußdichte 8.24 Teilchenstrom 8.27 Teilchenstromdichte 8.28 Teilchenzahl 6.3 Teilchenzahldichte 8.20 Temperatur 5.1 Temperatur, thermodynamische 5.1 Temperaturdifferenz 5.2 Temperaturleitfähigkeit 5.17 tertiär 10.4 Terz 10.33 thermisch 10.33 thermischer Längenausdehnungskoeffizient 5.4 thermischer Leitwert 5.12 thermischer Spannungskoeffizient 5.6 thermischer Volumenausdehnungskoeffizient 5.5 thermischer Widerstand 5.11 thermodynamische Temperatur 5.1 Tiefe 1.8 Tiefzeichen Abschnitt 2 Torsion 10.33 Torsionsmoment 3.15 Torsionswinkel 3.32, 3.33 total 10.33 Trägheitsmoment 3.9 Trägheitsradius 3.10 transient 10.33 Transmission 10.33 Transmissionsgrad 7.29 transversal 10.33 triefend naß 10.24 trocken 10.32, 10.38 turbulent 10.33

Überdruck 3.24
überschreitend 10.12
Überzeichen Abschnitt 2
Umdrehungsfrequenz 2.14
umgebend 10.6
umkehrbar 10.30
unendlich 10.5
universelle Gaskonstante 6.14
unten 10.19, 10.34
unterer 10.34
unterer Grenzwert 10.22
unterer Heizwert 5.31
Unterzeichen Abschnitt 2
Ursprung 10.27

variabel 10.35 Vektorpotential, magnetisches 4.24 Ventilation 10.35 veränderlich 10.35 Verdrehung 10.11 Verhältnis der spezifischen Wärmekapazitäten 5.22 Verlust 10.35 Verlustfaktor 4.58 Verlustwinkel 4.55, 4.56 Verschiebung 1.12 Verwindung 3.32 Verzerrung 10.11 virtuell 10.35 Viskosität, dynamische 3.40 Viskosität, kinematische 3.41 visuell 10.35 Volumen 1.18

Volumen, konstantes 10.36

Volumen, massenbezogenes 3.6 Volumen, spezifisches 3.6 Volumenänderung, relative 3.30 Volumenausdehnungskoeffizient 5.5 volumenbezogene Energie 3.50 volumenbezogene Größe Abschnitt 4.2 volumenbezogene Ladung 4.4 volumenbezogene Leistung 3.53 volumenbezogene Masse 3.4 volumenbezogene Strahlungsenergie 7.2 volumenbezogene Wärme 5.8 Volumendilatation 3.30 Volumendurchfluß 2.28 Volumenstrom 2.28 vorübergehend 10.33 Vorzugszeichen Abschnitt 3

wahlweise 10.6

Wärme 5.7, 10.33 Wärme, volumenbezogene 5.8 Wärmedichte 5.8 Wärmedurchgangskoeffizient 5.16 Wärmekapazität 5.18 Wärmekapazität, massenbezogene 5.19 Wärmekapazität, spezifische 5.19, 5.20, 5.21 Wärmeleitfähigkeit 5.14 Wärmeleitwert 5.12 Wärmemenge 5.7 Wärmestrom 5.9 Wärmestromdichte 5.10 Wärmeübergangskoeffizient 5.15 Wärmewiderstand 5.11 Wärmewiderstand, spezifischer 5.13 Wasser 10.37 wechselnd 10.6 Weglänge 1.15 Wellenlänge 2.17 Wellenwiderstand 4.46 Wellenwiderstand des leeren Raumes 4.47 Wellenzahl 2.18 Wertigkeit eines Stoffes B 6.4 Widerstand, elektrischer 4.36 Widerstand, induktiver 10.39 Widerstand, ohmscher 10.31 Widerstand, magnetischer 4.34 Widerstand, spezifischer elektrischer 4.38 Widerstand, thermischer 5.11 Widerstandsmoment 3.44 Windungszahl 4.64 Winkel der Impedanz 4.54 Winkel, ebener 1.4

Winkelbeschleunigung 2.16
winkelbezogenes Rückstellmoment
3.33
Winkelfrequenz 2.7
Winkelgeschwindigkeit 2.15
Wirbel 10.37
wirbelnd 10.33
Wirk- 10.28, 10.37
Wirkleistung 4.49
Wirkleitwert 4.37
Wirkungsgrad 3.54
Wirkungsquantum, Plancksches 8.6
Wirkungsquerschnitt 8.21
Wirkungsquerschnittsdichte 8.22

Seite 28 DIN 1304 Teil 1

Wirkwiderstand 4.36 Wuchskoeffizient 2.11

Zahl, allgemeine 10.25 Zeichen 10.32 Zeit 2.1

Zeitabhängigkeit 10.33

zeitbezogene Größe Abschnitt 4.3 Zeitkonstante 2.3 Zeitspanne 2.1 Zerfallskonstante 8.14 Zerstreuung 10.11 Zug 10.33 Zugspannung 3.25 zulässig 10.40 Zusatz 10.41 zwei 10.3 zweite Plancksche Strahlungskonstante 7.25

Internationale Patentklassifikation

G 09 F G 09 B 023/00 G 06 F G 11 B