$U_t = 12 \text{ V}$

 $R_E = 1 \text{ k}\Omega$

 $U_{BE} = 0.6 \text{ V}$

 $R_1 = 4.7 \text{ k}\Omega$ $R_2 = 1.3 \text{ k}\Omega$

 $R_C = 2.6 \text{ k}\Omega$

4. TÉMA

ELEKTRONIKA

Bipoláris tranzisztorok munkapont beállítása

Feladatok

1. Határozza meg az ábrán látható bipoláris tranzisztorral megvalósított közös emitterű (FE) erősítő kapcsolás munkaponti adatait (U_B , U_E , U_{RE} , I_E , I_C , U_{CC} , U_C)!

$$U_B = ?$$
 $U_{E} = ?$ $U_{E} = ?$ $I_{E} = ?$ $I_{C} = ?$ $U_{RC} = ?$ $U_{C} = ?$ $U_{CE} = ?$

2. Határozza meg az ábrán látható bipoláris tranzisztorral megvalósított közös emitterű (FE) erősítő kapcsolás munkaponti adatait (U_{RE} , U_{RC} , U_{CE} , U_{C} , U_{R} , U_{R2} , R_2 , U_{R1} , R_1)!

$$U_{RE}=?$$
 $U_{RC}=?$ $U_{CE}=?$ $U_{C}=?$ $U_{B}=?$ $U_{R2}=?$ $R_{2}=?$ $U_{RI}=?$ $R_{I}=?$

3. Határozza meg az ábrán látható bipoláris tranzisztorral megvalósított földelt emitteres erősítő kapcsolás munkaponti adatait (U_B , U_E , U_{RE} , R_E , R_C , U_C , U_{CE})!

Adatok:

A tápfeszültség: $U_{tl} = 15 \text{ V}$ $U_{t2} = -5 \text{ V}$

a tranzisztor bázis-emitter

feszültsége: $U_{BE} = 0,645 \text{ V}$ emitteráram: $I_E = 2,5 \text{ mA}$

 $I_E \approx I_C$

kollektorellenálláson mért feszültség: $U_{RC} = 7 \text{ V}$

$$U_B = ?$$
 $U_E = ?$ $U_{RE} = ?$ $R_E = ?$ $R_C = ?$ $U_C = ?$ $U_{CE} = ?$

4. Határozza meg a 2. *ábrán* látható bipoláris tranzisztorral megvalósított közös emitterű (FE) erősítő kapcsolás munkaponti adatait (U_B , U_E , U_{RE} , I_E , U_{RC} , U_C , U_{CE})!

Adatok:

– a tápfeszültség: $U_{tl} = 15 \text{ V}$

 $U_{t2} = -5 \text{ V}$

- a tranzisztor bázis-emitter feszültsége: $U_{BE} = 0.65 \text{ V}$
- az emitterellenállás értéke: $R_E = 2.5 \text{ k}\Omega$
- a kollektorellenállás értéke: $R_C = 4.2 \text{ k}\Omega$
- $-I_E \approx I_C$

$$U_B=?$$
 $U_E=?$ $U_{RE}=?$ $I_E=?$ $U_{RC}=?$ $U_C=?$ $U_{CE}=?$