# VACON 50X AC DRIVES

# USER'S MANUAL



# 1 • VACON

| 1.  | INTRODUCTION                                          | . 3        |
|-----|-------------------------------------------------------|------------|
| 1.1 | Product Overview                                      |            |
| 1.2 | Overview of This Manual                               |            |
| 1.3 | User's Manual Publication History                     | 3          |
| 2.  | TECHNICAL CHARACTERISTICS                             | . 5        |
| 2.1 | Interpreting Model Numbers                            |            |
| 2.2 | Power and Current Ratings                             |            |
| 2   | 2.2.1 230-volt drives                                 |            |
|     | 2.2.2 380-480-volt drives                             |            |
| _   | 2.2.3 575-volt drives                                 |            |
| 2.3 | Environmental Specifications                          |            |
| 2.4 | Control Features Specifications.                      |            |
| 2.6 | Dimensions and Weights                                |            |
|     | 3                                                     |            |
| 3.  | RECEIVING AND INSTALLATION                            |            |
| 3.1 | Preliminary Inspection                                |            |
| 3.2 | Installation Precautions                              |            |
| 3.3 | Dissipation Requirements                              | . 20<br>21 |
| 3.5 | Serial Number Label.                                  |            |
| 3.6 | Conduit Usage                                         |            |
| 3.7 | Condensation                                          |            |
| ,   | CONNECTIONS                                           | 22         |
| 4.  |                                                       |            |
| 4.1 | gg                                                    |            |
|     | k.1.1 Wiring Practices                                |            |
|     | 4.1.3 Considerations for Control Wiring               |            |
|     | Input Line Requirements                               |            |
| 7   | 4.2.1 Line Voltage                                    | . 25       |
|     | 4.2.2 Use of Isolation Transformers and Line Reactors |            |
|     | 4.2.3 Line Capacity                                   |            |
|     | 4.2.4 Phase Imbalance                                 |            |
|     | i.2.5 Single-phase Operation                          |            |
|     | 4.2.7 Motor Lead Length.                              |            |
|     | 4.2.8 Using Output Contactors                         |            |
| 4.3 | Terminals Found on the Vacon 50X Power Board          | . 27       |
|     | 4.3.1 Description of the Terminals                    | . 27       |
|     | 1.3.2 Typical Power Connections                       |            |
|     | Dynamic Braking                                       |            |
|     | 4.5.1 Description of the Control Terminals            |            |
|     | 4.5.2 Typical Connection Diagrams for Digital Inputs  |            |
|     | 4.5.3 Typical Connection Diagrams for Analog Inputs   |            |
| 4   | 4.5.4 Typical Connection Diagrams for Analog Outputs  | . 36       |
| 4.6 | Reducing Current Surges and Voltage Transients        |            |
| 5.  | KEYPAD OPERATION AND PROGRAMMING                      | 30         |
| 5.1 | Introduction                                          |            |
| 5.1 | Keypad Operation                                      |            |
| 5.3 | LCD Displays                                          |            |
|     | 5.3.1 Control                                         | . 42       |
| 5   | 5.3.2 Vacon 50X Keypad Status and Warning Messages    | . 42       |

## 1. Introduction

## 1.1 Product Overview

Although the Vacon 50X AC drive is small in size, it is big on performance. It is an economical yet powerful solution for many industrial applications. It features remote communications capability (using Modbus® protocol), a keypad for easy configuration, and standard NEMA 4X / IP66 and NEMA 12 / IP55 enclosures that eliminate the need for mounting in a separate enclosure.

The Vacon 50X product family includes a wide variety of models to suit almost any input voltage requirement. An 'x' in the following table indicates what models are currently available. Refer to Chapter 2 on page 5 for help in interpreting model numbers.

|            |            | Input Voltage      |                    |                    |  |  |  |
|------------|------------|--------------------|--------------------|--------------------|--|--|--|
| Power (kW) | Power (hp) | 230 Vac<br>3 Phase | 460 Vac<br>3 Phase | 575 Vac<br>3 Phase |  |  |  |
| 0.75       | 1          | х                  | Х                  | Х                  |  |  |  |
| 1.5        | 2          | х                  | х                  | х                  |  |  |  |
| 2.2        | 3          | х                  | Х                  | х                  |  |  |  |
| 4.0        | 5          | х                  | х                  | х                  |  |  |  |
| 5.5        | 7.5        | х                  | х                  | х                  |  |  |  |
| 7.5        | 10         | х                  | х                  | х                  |  |  |  |
| 11         | 15         | х                  | х                  | х                  |  |  |  |
| 15         | 20         | х                  | х                  | х                  |  |  |  |
| 18.5       | 25         | х                  | Х                  | х                  |  |  |  |
| 22         | 30         |                    | х                  | х                  |  |  |  |
| 30         | 40         |                    | х                  | х                  |  |  |  |
| 37         | 50         |                    | Х                  | х                  |  |  |  |
| 45         | 60         |                    | х                  | х                  |  |  |  |
| 55         | 75         |                    | х                  | х                  |  |  |  |
| 75         | 100        |                    | х                  | х                  |  |  |  |
| 90         | 125        |                    | х                  | х                  |  |  |  |
| 110        | 150        |                    | х                  | х                  |  |  |  |
| 150        | 200        |                    | Х                  | х                  |  |  |  |

## 1.2 Overview of This Manual

This manual contains specifications, receiving and installation instructions, configuration, description of operation, and procedures for Vacon 50X AC drive devices.

For experienced users, a "Quick Start" section begins on page 57.

## 1.3 User's Manual Publication History

| Date       | Form Number | Nature of Change                                                                                                                                                                                                                            |  |  |  |
|------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 16.7.2008  | DPD00080A   | Original version                                                                                                                                                                                                                            |  |  |  |
| 10.12.2008 | DPD00080B   | Changed installation diagrams to reflect changes in product; changed photographs of product; added information to Chapter 2 on current surges and voltage transients; deleted mention of Model 0002 5; other minor changes and corrections. |  |  |  |
|            |             |                                                                                                                                                                                                                                             |  |  |  |
|            |             |                                                                                                                                                                                                                                             |  |  |  |
|            |             |                                                                                                                                                                                                                                             |  |  |  |
|            |             |                                                                                                                                                                                                                                             |  |  |  |

## 2. Technical Characteristics

# 2.1 Interpreting Model Numbers

The model number of the Vacon 50X AC drive appears on the shipping carton label and on the technical data label affixed to the model. The information provided by the model number is shown below:

## VACON

This segment is common for all products.

## 0050

Product range:

0050=Vacon 50X

## 3L

Input/Function:

3L=Three-phase input

# 0023

Drive rating in ampere; e.g. 0023 = 23 A

#### 5

Supply voltage:

2=230 V

5=400 V

6=575 V

## Х

Information for factory

# 2.2 Power and Current Ratings

# 2.2.1 230-volt drives

|    | Mains voltage 230V, IP66, EMC N, 50-60 Hz, 3~ |                                 |                                   |                                 |                                   |                                 |                |  |  |  |  |
|----|-----------------------------------------------|---------------------------------|-----------------------------------|---------------------------------|-----------------------------------|---------------------------------|----------------|--|--|--|--|
|    |                                               | Motor shaft power and current   |                                   |                                 |                                   |                                 |                |  |  |  |  |
|    | Converter                                     | High o                          | verload                           | Low ov                          | erload                            |                                 |                |  |  |  |  |
|    | type                                          | 50%<br>overload<br>50°C<br>[kW] | 50%<br>overload<br>current<br>[A] | 10%<br>overload<br>40°C<br>[kW] | 20%<br>overload<br>current<br>[A] | Dimensions<br>W x H x D<br>[mm] | Weight<br>[kg] |  |  |  |  |
|    | 0004                                          | 0,37                            | 2,2                               | 0,75                            | 4,2                               | 165x241x155                     | 3,9            |  |  |  |  |
| 20 | 0007                                          | 0,75                            | 4,2                               | 1,5                             | 6,8                               | 165x241x155                     | 3,9            |  |  |  |  |
|    | 0010                                          | 1,5                             | 6,8                               | 2,2                             | 9,6                               | 165x241x155                     | 3,9            |  |  |  |  |
|    | 0015                                          | 2,2                             | 9,6                               | 4,0                             | 15,2                              | 221x306x166                     | 6,35           |  |  |  |  |
| S1 | 0022                                          | 4,0                             | 15,2                              | 5,5                             | 22,0                              | 221x306x166                     | 6,35           |  |  |  |  |
|    | 0028                                          | 5,5                             | 22,0                              | 7,5                             | 28,0                              | 221x306x166                     | 6,35           |  |  |  |  |
| 25 | 0042                                          | 7,5                             | 28,0                              | 11                              | 42,0                              | 273x442x201                     | 13,38          |  |  |  |  |
| S  | 0054                                          | 11,0                            | 42,0                              | 15                              | 54,0                              | 273x442x201                     | 13,38          |  |  |  |  |
| 23 | 0068                                          | 15,0                            | 54,0                              | 18,5                            | 68,0                              | 286x513x314                     | 22,68          |  |  |  |  |

# 2.2.2 380-480-volt drives

|                  | Mains voltage 380-480V, IP66, EMC N, 50-60 Hz, 3~ |                                 |                                                         |        |                     |                                 |                |  |  |  |  |
|------------------|---------------------------------------------------|---------------------------------|---------------------------------------------------------|--------|---------------------|---------------------------------|----------------|--|--|--|--|
|                  |                                                   | Motor shaft power and current   |                                                         |        |                     |                                 |                |  |  |  |  |
|                  | Converter                                         | High o                          | verload                                                 | Low ov | erload              |                                 |                |  |  |  |  |
|                  | type                                              | 50%<br>overload<br>50°C<br>[kW] | overload overload overload<br>50°C current 40°C current |        | overload<br>current | Dimensions<br>W x H x D<br>[mm] | Weight<br>[kg] |  |  |  |  |
|                  | 0002                                              | 0,55                            | 1,8                                                     | 0,75   | 2,4                 | 165x241x155                     | 3,9            |  |  |  |  |
| 20               | 0004                                              | 0,75                            | 2,4                                                     | 1,5    | 3,8                 | 165x241x155                     | 3,9            |  |  |  |  |
|                  | 0005                                              | 1,5                             | 3,8                                                     | 2,2    | 5,1                 | 165x241x155                     | 3,9            |  |  |  |  |
|                  | 0009                                              | 2,2                             | 5,1                                                     | 4,0    | 8,9                 | 221x306x166                     | 6,35           |  |  |  |  |
| S1               | 0012                                              | 4,0                             | 8,9                                                     | 5,5    | 12,0                | 221x306x166                     | 6,35           |  |  |  |  |
|                  | 0016                                              | 5,5                             | 12,0                                                    | 7,5    | 15,6                | 221x306x166                     | 6,35           |  |  |  |  |
|                  | 0023                                              | 7,5                             | 15,6                                                    | 11,0   | 23,0                | 273x442x201                     | 13,38          |  |  |  |  |
| 7                | 0031                                              | 11,0                            | 23,0                                                    | 15,0   | 31,0                | 273x442x201                     | 13,38          |  |  |  |  |
| 25               | 0037                                              | 15,0                            | 31,0                                                    | 18,5   | 37,0                | 273x442x201                     | 13,38          |  |  |  |  |
|                  | 0043                                              | 18,5                            | 37,0                                                    | 22,0   | 43,0                | 273x442x201                     | 13,38          |  |  |  |  |
| 53               | 0061                                              | 22,0                            | 43,0                                                    | 30,0   | 61,0                | 286x513x314                     | 22,68          |  |  |  |  |
| S                | 0071                                              | 30,0                            | 61,0                                                    | 37,0   | 71,0                | 286x513x314                     | 22,68          |  |  |  |  |
|                  | 0086                                              | 37,0                            | 71,0                                                    | 45,0   | 86,0                | 326x745x351                     | 43,1           |  |  |  |  |
| 24               | 0105                                              | 45,0                            | 86,0                                                    | 55,0   | 105,0               | 326x745x351                     | 43,1           |  |  |  |  |
|                  | 0140                                              | 55,0                            | 105,0                                                   | 75,0   | 140,0               | 326x745x351                     | 43,1           |  |  |  |  |
| _                | 0168                                              | 75,0                            | 140,0                                                   | 90,0   | 168,0               | 414x1296x429                    | 138,35         |  |  |  |  |
| S <sub>2</sub> a | 0205                                              | 90,0                            | 168,0                                                   | 110,0  | 205,0               | 414x1296x429                    | 138,35         |  |  |  |  |
| -                | 0240                                              | 110,0                           | 205,0                                                   | 132,0  | 240,0               | 414x1296x429                    | 138,35         |  |  |  |  |

a. Enclosure class IP54

# 2.2.3 575-volt drives

|                 | Mains voltage 575V, IP66, EMC N, 50-60 Hz, 3~ |                                 |                                   |                                 |                                   |                                 |                |  |  |  |  |
|-----------------|-----------------------------------------------|---------------------------------|-----------------------------------|---------------------------------|-----------------------------------|---------------------------------|----------------|--|--|--|--|
|                 |                                               | Motor shaft power and current   |                                   |                                 |                                   |                                 |                |  |  |  |  |
|                 | Converter                                     | High o                          | verload                           | Low ov                          | erload                            |                                 |                |  |  |  |  |
|                 | type                                          | 50%<br>overload<br>50°C<br>[kW] | 50%<br>overload<br>current<br>[A] | 10%<br>overload<br>40°C<br>[kW] | 20%<br>overload<br>current<br>[A] | Dimensions<br>W x H x D<br>[mm] | Weight<br>[kg] |  |  |  |  |
|                 | 0002                                          | 0,5                             | 1                                 | 1,1                             | 1,7                               | 221x306x166                     | 6,35           |  |  |  |  |
|                 | 0003                                          | 1,1                             | 1,7                               | 1,5                             | 2,7                               | 221x306x166                     | 6,35           |  |  |  |  |
| _               | 0004                                          | 1,5                             | 2,7                               | 2,2                             | 3,9                               | 221x306x166                     | 6,35           |  |  |  |  |
| S               | 0006                                          | 2,2                             | 3,9                               | 3,0                             | 6,1                               | 221x306x166                     | 6,35           |  |  |  |  |
|                 | 0009                                          | 3,0                             | 6,1                               | 5,0                             | 9,0                               | 221x306x166                     | 6,35           |  |  |  |  |
|                 | 0011                                          | 5,0                             | 9,0                               | 7,5                             | 11,0                              | 221x306x166                     | 6,35           |  |  |  |  |
|                 | 0017                                          | 7,5                             | 11,0                              | 11,0                            | 17,0                              | 273x442x201                     | 13,38          |  |  |  |  |
| 25              | 0022                                          | 11,0                            | 17,0                              | 15,0                            | 22,0                              | 273x442x201                     | 13,38          |  |  |  |  |
| S               | 0027                                          | 15,0                            | 22,0                              | 18,5                            | 27,0                              | 273x442x201                     | 13,38          |  |  |  |  |
|                 | 0032                                          | 18,5                            | 27,0                              | 22,0                            | 32,0                              | 273x442x201                     | 13,38          |  |  |  |  |
| 53              | 0041                                          | 22,0                            | 32,0                              | 30,0                            | 41,0                              | 286x513x314                     | 22,68          |  |  |  |  |
| S               | 0052                                          | 30,0                            | 41,0                              | 37,0                            | 52,0                              | 286x513x314                     | 22,68          |  |  |  |  |
|                 | 0062                                          | 37,0                            | 52,0                              | 45,0                            | 62,0                              | 326x745x351                     | 43,1           |  |  |  |  |
| 24              | 0077                                          | 45,0                            | 62,0                              | 55,0                            | 77,0                              | 326x745x351                     | 43,1           |  |  |  |  |
|                 | 0099                                          | 55,0                            | 77,0                              | 75,0                            | 99,0                              | 326x745x351                     | 43,1           |  |  |  |  |
| _               | 0125                                          | 75,0                            | 99,0                              | 90,0                            | 125,0                             | 414x1296x429                    | 138,35         |  |  |  |  |
| S5 <sub>a</sub> | 0144                                          | 90,0                            | 125,0                             | 110,0                           | 144,0                             | 414x1296x429                    | 138,35         |  |  |  |  |
| -               | 0192                                          | 110,0                           | 144,0                             | 132,0                           | 192,0                             | 414x1296x429                    | 138,35         |  |  |  |  |

a. Enclosure class IP55

# 2.3 Environmental Specifications

| Operating temperature | For 0010 2, 0015 2, and 0040 5 models:<br>-10 °C to +35 °C<br>For all other models:<br>-10 °C to +40 °C |
|-----------------------|---------------------------------------------------------------------------------------------------------|
| Storage temperature   | -20 °C to +65 °C (-4 °F to 149 °F)                                                                      |
| Humidity              | 0% to 95% non-condensing                                                                                |
| Altitude              | 1000 m (3300 ft) without derating                                                                       |
| Maximum vibration     | per EN50178 (1g @ 57-150 Hz)                                                                            |
| Acoustic noise        | 80 dba sound power at 1 m (3 ft), maximum                                                               |
| Cooling               | 0,75–4,0 kW models: Natural convection.<br>5,5–150 kW models: Forced air.                               |

# 2.4 Electrical Specifications

| Input voltage                                                                                         | 230 Vac, 3 phase, ±15%<br>380–460 Vac, 3 phase, ±15%                                                                           |                  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|
| Line frequency                                                                                        | 50 / 60 Hz ±2 Hz                                                                                                               |                  |  |  |  |  |
| Source kVA (maximum)                                                                                  | 10 times the unit rated kV                                                                                                     | (see note below) |  |  |  |  |
| DC bus voltage for:<br>Overvoltage trip<br>Dynamic brake activation<br>Nominal undervoltage (UV) trip | 230 Vac models 460 Vac models 575 Vac models<br>406 Vdc 814 Vdc 1017 Vdc<br>388 Vdc 776 Vdc 970 Vdc<br>199 Vdc 397 Vdc 497 Vdc |                  |  |  |  |  |
| Control system                                                                                        | V/Hz or SVC<br>Carrier frequency = 1–16 kHz, programmable; 8 kHz max. for 90–150 kW<br>models                                  |                  |  |  |  |  |
| Output voltage                                                                                        | 0–100% of line voltage, thr                                                                                                    | ee-phase         |  |  |  |  |
| Overload capacity                                                                                     | 120% of rated normal duty<br>150% of rated heavy duty r                                                                        |                  |  |  |  |  |
| Frequency range                                                                                       | 0,1–400 Hz                                                                                                                     |                  |  |  |  |  |
| Frequency stability                                                                                   | 0.1 Hz (digital), 0.1% (analog) over 24 hours ±10 °C                                                                           |                  |  |  |  |  |
| Frequency setting                                                                                     | By keypad or by external signal<br>(Speed Pot 0-5 Vdc; 0-10 Vdc; 0-20 mA, or 4-20 mA)<br>OR by pulse train up to 100 kHz       |                  |  |  |  |  |

NOTE: Unit Rated kVA = rate Voltage  $\times$  rated Current  $\times$  1.732

# 2.5 Control Features Specifications

| Vin1 reference input   | $0-5/10$ Vdc, $0/4-20$ mAdc (250 $\Omega$ load) Pulse train input, $0-1/10/100$ kHz pulse input, inverted function, $0-5-10$ bipolar input, broken wire detection. Span and offset adjustment. |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vin2 reference input   | 0-5/10 Vdc, 0-5-10 bipolar input, inverted function, broken wire detection, span and offset adjustment. Programmable for frequency reference or current limit input.                           |
| Cin reference input    | $0/4$ -20 mAdc (50 $\Omega$ load), inverted function, span and offset adjustment. Programmable for frequency reference or current limit input.                                                 |
| Reference voltage      | 10 Vdc (10 mAdc maximum)                                                                                                                                                                       |
| Digital inputs – 10    | Off = 0 to 3 Vdc; On = 10 to 32 Vdc (pullup logic), selectable between pullup and pulldown logic                                                                                               |
| Digital supply voltage | 24 Vdc (150 mAdc maximum)                                                                                                                                                                      |
| Preset frequencies     | 3 inputs for seven preset frequencies (selectable)                                                                                                                                             |
| Digital outputs        | 2 SPDT relay output – 130 Vac, 1 A/250 Vac, 0.5 A.<br>2 open collector outputs 50 mA per device                                                                                                |

| Digital pulse train output                    | Open collector output pulse train proportional to output frequency                                                                                                                               |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vmet analog output                            | 0 to 10 Vdc (5 mAdc maximum)                                                                                                                                                                     |
| Imet analog output                            | 0–20 mAdc output into a 500 $\Omega$ load (maximum)                                                                                                                                              |
| DC holding / injection braking                | At start, stop, by frequency with adjustable current level and time or contin-<br>uous DC injection by digital input                                                                             |
| Current limit                                 | Four quadrant adjustable from 5 to 150%                                                                                                                                                          |
| Speed ramps                                   | Primary and alternate adjustable from 0.1 to 3200.0 seconds                                                                                                                                      |
| Voltage boost                                 | Fixed boost adjustable from 0 to 50% or auto boost                                                                                                                                               |
| Voltage characteristic (V/Hz)                 | Linear, pump, fan or 2-piece linear                                                                                                                                                              |
| Timed overload                                | Adjustable inverse time trip (shear pin, 30 sec, $60\mathrm{sec}, 5\mathrm{min}$ ), standard or inverterduty motors                                                                              |
| Protective features                           | Overcurrent, overvoltage fault, ground fault, short circuit, dynamic brake overload, drive temperature, power wiring fault, drive timed overload, input voltage quality, overvoltage ridethrough |
| Program Sequence Logic Control-<br>ler (PSLC) | 9-step PLC type functionality that can control speed, direction, and ramps based on time, analog input, digital input, or pulse input                                                            |
| Serial communications                         | Modbus Standard: RTU                                                                                                                                                                             |

# 2.6 Dimensions and Weights

Table 1 lists dimensions and weights for the Vacon 50X frame size 0, 1, 2, and 3 models. Dimensions and weights for the Vacon 50X frame size 4 and 5 models are shown in Table 2 on page 12.

See Figures on pages 13–18 for locations of dimensions. Dimensions A through Q are in millimeters [mm]. Weight is in kilograms [kq].

| Frame                             |                         | 0        |       | 1     |         | 2      |       | 3     |       |       |       |
|-----------------------------------|-------------------------|----------|-------|-------|---------|--------|-------|-------|-------|-------|-------|
| Voltage (V)                       |                         | 230 460  | 230   | 460   | 575     | 230    | 460   | 575   | 230   | 460   | 575   |
| KW                                |                         | 0.75-2.2 | 4-5.5 | 4-7.5 | 1.1-7.5 | 7.5-11 | 11-22 | 11-22 | 15-22 | 30-37 | 30-37 |
|                                   | hp                      | 1-3      | 5-7.5 | 5-10  | 1-10    | 10-15  | 15-30 | 15-30 | 20-30 | 40-50 | 40-50 |
|                                   | Α                       | 241      |       | 306   |         |        | 442   |       |       | 513   |       |
|                                   | В                       | 165      |       | 221   |         |        | 274   |       |       | 289   |       |
|                                   | C (with-<br>out Filter) | 156      |       | 167   |         |        | 202   |       |       | 314   |       |
|                                   | C1 (with<br>Filter)     |          |       | 217   |         |        | 252   |       |       | 303   |       |
|                                   | D                       | 215      |       | 280   |         |        | 419   |       | 489   |       |       |
|                                   | E                       | 144      |       | 198   |         | 248    |       | 200   |       |       |       |
| Dimen-                            | F                       | 7.1      |       | 7.1   |         |        | 9.0   |       | 7.1   |       |       |
| sions<br>in mm                    | G                       | 95       |       | 104   |         |        | 119   |       | 199   |       |       |
|                                   | Н                       | 69       |       | -     |         | -      |       | -     |       |       |       |
|                                   | J                       | 49       |       | 56    |         | 72     |       |       | 63    |       |       |
|                                   | К                       | 71       |       | 98    |         | 123    |       | 58    |       |       |       |
|                                   | L                       | 95       |       | 100   |         | 172    |       | 100   |       |       |       |
|                                   | М                       | 22       |       | 25.5  |         | 32     |       | 44    |       |       |       |
|                                   | N                       | -        |       | -     |         | 25.5   |       | 25.5  |       |       |       |
|                                   | Р                       | -        |       | -     |         |        | -     |       | 142   |       |       |
|                                   | Q                       | -        |       | -     |         |        | -     |       |       | 184   |       |
| Weight (kg) without<br>Filter (C) |                         | 3.9      |       | 6.7   |         | 12.7   |       |       | 23.7  |       |       |
| Weight (l                         | (g) with Fil-<br>r (C1) |          |       | 7.8   |         |        | 15.6  |       |       |       |       |

Table 1:Dimensions and Weights for Frame Sizes 0–3  $\,$ 

| Frame              |                    | 4      |         | 5       |        |
|--------------------|--------------------|--------|---------|---------|--------|
| Voltage (          | V)                 | 460    | 575     | 460     | 575    |
| KW                 |                    | 45-75  | 45-75   | 90-132  | 90-132 |
| hp                 | 60-100             | 60-100 | 125-200 | 125-200 |        |
|                    | Α                  | 74     | 5       | 129     | 96     |
|                    | В                  | 32     | 6       | 41      | 4      |
|                    | C (without Filter) | 35     | 1       | 42      | 9      |
|                    | D                  | 71     | 1       | 110     | 63     |
|                    | E                  | 20     | 0       | 19      | 4      |
|                    | F                  | 11     |         | 1       | 1      |
|                    | G                  | 219    |         | 319     |        |
|                    | Н                  | 210    |         | 282     |        |
| Dimensions in mm   | J                  | 13     |         | 5       |        |
|                    | К                  | 68     |         | 59      |        |
|                    | L                  | 10     | 0       | 97      |        |
|                    | М                  | 62     | 2       | 75      |        |
|                    | N                  | 22     |         | 22      |        |
|                    | P                  | 13     | 2       | 13      | 5      |
|                    | Q                  | 18     | 7       | 18      | 9      |
|                    | R                  | 26     | 0       |         |        |
|                    | S                  |        | 49      |         | 7      |
| Weight (kg) withou | ıt Filter (C)      | 43.1   |         | 138.4   |        |

Table 2:Dimensions and Weights for Frame Sizes 4–5



Figure 1: Vacon 50X Frame Size 0 Models



Figure 2: Vacon 50X Frame Size 1 Models



Figure 3: Vacon 50X Frame Size 2 Models



Figure 4: Vacon 50X Frame Size 3 Models



Figure 5: Vacon 50X Frame Size 4 Models



Figure 6: Vacon 50X Frame Size 5 Models

## 3. Receiving and Installation

## 3.1 Preliminary Inspection

Before storing or installing the Vacon 50X AC drive, thoroughly inspect the device for possible shipping damage. Upon receipt:

- 1. Remove the drive from its package and inspect exterior for shipping damage. If damage is apparent, notify the shipping agent and your sales representative.
- 2. Remove the cover and inspect the drive for any apparent damage or foreign objects. (See Figure 7 on page 21 for locations of cover screws.) Ensure that all mounting hardware and terminal connection hardware is properly seated, securely fastened, and undamaged.
- 3. Read the technical data label affixed to the drive and ensure that the correct horsepower and input voltage for the application has been purchased.
- 4. If you will be storing the drive after receipt, place it in its original packaging and store it in a clean, dry place free from direct sunlight or corrosive fumes, where the ambient temperature is not less than -20 °C (-4 °F) or greater than +65 °C (+149 °F).



CAUTION

#### FOLLIPMENT DAMAGE HAZARD

Do not operate or install any drive that appears damaged. Failure to follow this instruction can result in injury or equipment damage.

### 3.2 Installation Precautions

Improper installation of the Vacon 50X AC drive will greatly reduce its life. Be sure to observe the following precautions when selecting a mounting location. Failure to observe these precautions may void the warranty!

- Do not install the drive in a place subjected to high temperature, high humidity, excessive vibration, corrosive gases or liquids, or airborne dust or metallic particles. See Chapter 2 for temperature, humidity, and maximum vibration limits.
- Do not mount the drive near heat-radiating elements or in direct sunlight.
- Mount the drive vertically and do not restrict the air flow to the heat sink fins.
- The drive generates heat. Allow sufficient space around the unit for heat dissipation. See "Dissipation Requirements" on page 20.

# 3.3 Dissipation Requirements

| Model  | Required Dissipation for Models<br>Entirely Inside an Enclosure at Rated<br>Current, 3 kHz Carrier Frequency (Watts) | Required Dissipation When Fins are<br>External to the Enclosure (Watts) |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|--|
| 0004 2 | 47                                                                                                                   | 13                                                                      |  |  |  |
| 0007 2 | 48                                                                                                                   | 14                                                                      |  |  |  |
| 0010 2 | 71                                                                                                                   | 17                                                                      |  |  |  |
| 0015 2 | 92                                                                                                                   | 16                                                                      |  |  |  |
| 0022 2 | 132                                                                                                                  | 20                                                                      |  |  |  |
| 0028 2 | 177                                                                                                                  | 23                                                                      |  |  |  |
| 0042 2 | 263                                                                                                                  | 67                                                                      |  |  |  |
| 0054 2 | 362                                                                                                                  | 68                                                                      |  |  |  |
| 0068 2 | 550                                                                                                                  | 97                                                                      |  |  |  |
| 0004 5 | 46                                                                                                                   | 16                                                                      |  |  |  |
| 0005 5 | 71                                                                                                                   | 20                                                                      |  |  |  |
| 0009 5 | 91                                                                                                                   | 21                                                                      |  |  |  |
| 0012 5 | 114                                                                                                                  | 28                                                                      |  |  |  |
| 0016 5 | 155                                                                                                                  | 30                                                                      |  |  |  |
| 0023 5 | 304                                                                                                                  | 77                                                                      |  |  |  |
| 0031 5 | 393                                                                                                                  | 76                                                                      |  |  |  |
| 0037 5 | 459                                                                                                                  | 78                                                                      |  |  |  |
| 0043 5 | 458                                                                                                                  | 77                                                                      |  |  |  |
| 0061 5 | 695                                                                                                                  | 95                                                                      |  |  |  |
| 0071 5 | 834                                                                                                                  | 100                                                                     |  |  |  |
| 0086 5 | 776                                                                                                                  | 130                                                                     |  |  |  |
| 0105 5 | 988                                                                                                                  | 135                                                                     |  |  |  |
| 0140 5 | 1638                                                                                                                 | 155                                                                     |  |  |  |
| 0168 5 | 1656                                                                                                                 | 353                                                                     |  |  |  |
| 0205 5 | 1891                                                                                                                 | 372                                                                     |  |  |  |
| 0240 5 | 2302                                                                                                                 | 382                                                                     |  |  |  |

Table 3:Dissipation Requirement for Vacon 50X Models

# 3.4 Cover Assembly and Torque Specifications

Figure 7 shows the locations of the Vacon 50X cover screws. The torque range for the Size 0 and 1 covers is 2-3 Nm (18-26 in/lbs).



Figure 7: Vacon 50X Cover Assembly and Screw Locations

Torque specifications for control terminals and power terminals are listed in "General Wiring Information" on page 23.

#### 3.5 Serial Number Label

To determine if your drive is within the warranty time frame, find the bar code label or look in the lower left of the technical nameplate. The serial number can be broken down as follows:

- yywwxxxx = yy ... year of manufacture
- · ww ... week of manufacture
- xxxx....sequential number drive during that week.

# 3.6 Conduit Usage

The Vacon 50X drive in the IP66 enclosure is rated for 70 bar washdown from 15 cm. To keep this rating, the use of a sealed conduit is required. The use of a Romex-type conduit will not prevent water entry into the enclosure. If the approved conduit is not used, all warranty claims against water damage will be void.

## 3.7 Condensation

The washdown process of an Vacon 50X drive may create a temperature and humidity change in and around the drive. If the unit is mounted in a cool environment and washed down with higher-temperature water, as the drive cools to room temperature, condensation can form inside the drive, especially around the display. To prevent this from happening, avoid using sealed connectors around rubbercoated cables to seal the drive. These do not allow any air transfer and hence create a level of condensation and humidity that exceeds the drive's rating.

#### 4. Connections

This chapter provides information on connecting power and control wiring to the Vacon 50X AC drive.



Danger

#### HAZARDOUS VOLTAGE

- Read and understand this manual in its entirety before installing or operating the Vacon 50X AC drive. Installation, adjustment, repair, and maintenance of these drives must be performed by qualified personnel.
- Disconnect all power before servicing the drive. WAIT 5
   MINUTES until the DC bus capacitors discharge.
- DO NOT short across DC bus capacitors or touch unshielded components or terminal strip screw connections with voltage present.
- Install all covers before applying power or starting and stopping the drive.
- The user is responsible for conforming to all applicable code require-ments with respect to grounding all equipment.
- Many parts in this drive, including printed circuit boards, operate at line voltage. DO NOT TOUCH. Use only electrically-insulated tools.

Before servicing the drive:

- · Disconnect all power.
- Place a "DO NOT TURN ON" label on the drive disconnect.
- · Lock the disconnect in the open position.

Failure to observe these precautions will cause shock or burn, resulting in severe personal injury or death.

# 4.1 General Wiring Information

Pay conscientious attention to ensuring that the installation wiring is installed in conformity with local standards. Where local codes exceed these requirements, they must be followed.

# 4.1.1 Wiring Practices

When making power and control connections, observe these precautions:

- Never connect input AC power to the motor output terminals T1/U, T2/V, or T3/W.
   Damage to the drive will result.
- Power wiring to the motor must have the maximum possible separation from all other power wiring. Do not run in the same conduit; this separation reduces the possibility of coupling electrical noise between circuits.
- Cross conduits at right angles whenever power and control wiring cross.
- Good writing practice also requires separation of control circuit wiring from all
  power wiring. Since power delivered from the drive contains high frequencies which
  may cause interference with other equipment, do not run control wires in the same
  conduit or raceway with power or motor wiring.

# 4.1.2 Considerations for Power Wiring

Power wiring refers to the line and load connections made to terminals L1/R, L2/S, L3/T, and T1/U, T2/V, T3/W respectively. Select power wiring as follows:

- 1. Use only VDE, UL or CUL recognized wire.
- Wire voltage rating must be a minimum of 300 V for 230 Vac systems and 600 V [Class 1 wire] for 400 Vac systems.

- 3. Wire gauge must be selected based on 125% of the continuous input current rating of the drive. Wire gauge must be selected from wire tables for 75 °C insulation rating, and must be of copper construction. The 230 V 5.5 and 11 kW models, and the 460 V 22 kW models require 90 °C wire to meet UL requirements. See Chapter 2 for the continuous output ratings for the drive.
- 4. Grounding must be in accordance with VDE, NEC and CEC. If multiple Vacon 50X drives are installed near each other, each must be connected to ground. A central earthing point should be used for interference suppression [e.g. equipotential bonding strip or centrally at an interference suppression filter]. The earthing lines are routed to the respective terminals radially from this point. Conductor loops of the earthing lines are impermissible and can lead to unnecessary interference.

See Table 4 below for a summary of power terminal wiring specifications.

| Vacon 50X Size /<br>Models                                           | Specifications                                                                                                        |  |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Size 0                                                               | 1.36 Nm (12 in-lbs) nominal torque or<br>1.47 Nm (13 in-lbs) maximum torque<br>1.5–4 mm <sup>2</sup> (11–15 awg wire) |  |
| Size 1                                                               | 1.8 Nm (16 in-lbs) nominal torque or<br>2.0 Nm (18 in-lbs) maximum torque<br>1.5–10 mm² (7–15 awg wire)               |  |
| Size 2                                                               | 3.4 Nm (30 in-lbs) nominal torque<br>10–16 mm² (5–7 awg wire)                                                         |  |
| Size 3                                                               | 4.0 Nm (35 in-lbs) nominal torque<br>25 mm² (3 awg wire)                                                              |  |
| Size 4                                                               | 7.3 Nm (64 in-lbs) nominal torque<br>25 mm² (3 awg wire max)                                                          |  |
| Size 5 14.9 Nm (131 in-lbs) nominal torque 120 mm² (250MCM wire max) |                                                                                                                       |  |

Table 4: Vacon 50X Power Terminal Wiring Specifications

NOTE: Wire type not specified by the manufacturer. Some types of wire may not fit within the constraints of the conduit entry and bend radius inside the drive.

# 4.1.3 Considerations for Control Wiring

Control wiring refers to the wires connected to the control terminal strip. Select control wiring as follows:

- Shielded wire is recommended to prevent electrical noise interference from causing improper operation or nuisance tripping.
- 2. Use only VDE, UL or CUL recognized wire.
- 3. Wire voltage rating must be at least 300 V for 230 Vac systems. It must be at least 600 V for 460 Vac systems.

See Table 5 below for a summary of power terminal control wiring specifications.

| Vacon 50X Size / Models | Specifications                                                               |
|-------------------------|------------------------------------------------------------------------------|
|                         | 0.5 Nm (4.4 in-lbs) maximum torque<br>0.2–4 mm <sup>2</sup> (12–24 awg wire) |

Table 5: Vacon 50X Control Wiring Specifications

## 4.2 Input Line Requirements

## 4.2.1 Line Voltage

See "Power and Current Ratings" on chapter 2.2 for the allowable fluctuation of AC line voltage for your particular Vacon 50X model. A supply voltage above or below the limits given in the table will cause the drive to trip with either an overvoltage or undervoltage fault.

Exercise caution when applying the Vacon 50X AC drive on low-line conditions.

For example, an Vacon 50X 2-series unit will operate properly on a 208 Vac line, but the maximum output voltage will be limited to 208 Vac. If a motor rated for 230 Vac line voltage is controlled by this drive, higher motor currents and increased heating will result.

Therefore, ensure that the voltage rating of the motor matches the applied line voltage.

## 4.2.2 Use of Isolation Transformers and Line Reactors

In nearly all cases, the Vacon 50X drive may be connected directly to a power source. However, in the following cases, a properly-sized isolation transformer or line reactor should be utilized to minimize the risk of drive malfunction or damage:

- When the line capacity exceeds the requirements of the drive (see Section 4.2.3).
- When power factor correction capacitors are used on the drive's power source.
- When the power source experiences transient power interruptions or voltage spikes.
- When the power source supplying the drive also supplies large devices (such as DC drives) that contain controlled rectifiers.

| Drive kW        | 0.75 | 1.5 | 2.2 | 4.0 | 5.5 | 7.5 | 11 | 15 | 18.5 | 30 | 37 | 45 | 55  | 75  | 90  | 110 | 150 |
|-----------------|------|-----|-----|-----|-----|-----|----|----|------|----|----|----|-----|-----|-----|-----|-----|
| Drive hp        | 1    | 2   | 3   | 5   | 7.5 | 10  | 15 | 20 | 25   | 40 | 50 | 60 | 75  | 100 | 125 | 150 | 200 |
| Transformer kVA | 2    | 4   | 5   | 9   | 13  | 18  | 23 | 28 | 36   | 57 | 70 | 90 | 112 | 150 | 180 | 220 | 250 |

Table 6:Transformer Sizing for the Vacon 50X Drive

# 4.2.3 Line Capacity

If the source of AC power to the Vacon 50X drive is greater than 10 times the kVA rating shown in Table 6, an isolation transformer or line reactor is recommended. Consult VACON for assistance in sizing the reactor.

NOTE: Vacon 50X AC drive devices are suitable for use on a circuit capable of delivering not more than 65,000 rms symmetrical amperes at 10% above the maximum rated voltage.

## 4.2.4 Phase Imbalance

Phase voltage imbalance of the input AC source can cause unbalanced currents and excessive heat in the drive's input rectifier diodes and DC bus capacitors. Phase imbalance can also damage motors running directly across the line. The phase imbalance should not exceed 2% of the voltage rating.



## 4.2.5 Single-phase Operation

Vacon 50X AC drive 230 Vac models are designed for both three-phase and singlephase input power. If one of these models is operated with single-phase power, use any two line input terminals. The output of the device will always be three-phase.

The safe derating of the Vacon 50X series of drives is 50% of the nominal current (hp) rating. Consult the factory with the particular application details for exact derating by model.

## 4.2.6 Ground Fault Circuit Interrupters

Vacon 50X drives rated for 230 Vac are not designed to operate with ground fault circuit interrupters (GF-CI). The GFCI breakers are designed for residential use to protect personnel from stray currents to ground. Most GFCI breakers will shut off at 5 mA of leakage. It is not uncommon for an AC drive to have 30 to 60 mA of leakage.

# 4.2.7 Motor Lead Length

The distance from the Vacon 50X drive to the motor should not exceed 300 meters. If the leads for motor connections exceed 30 meters, the motor windings may be subjected to voltage stresses two to three times nominal values unless an output filter is utilized. Consult with the motor manufacturer to ensure compatibility. Line disturbance and noise can be present in motor wiring of any distance. The carrier frequency for the drive should also be reduced using parameter 803 (PWM Frequency).

Nuisance trips can occur due to capacitive current flow to ground.

Some applications can have a restricted lead length because of type of wire, motor type, or wiring placement. Consult VACON and the motor manufacturer for additional information.

## 4.2.8 Using Output Contactors

Contactors in the output wiring of an AC drive may be needed as part of the approved safety circuit. Problems can arise if these contactors are opened for the safety circuit and the drive is left in run mode of operation. When the contactor is open, the drive is in a no-load, no-resistance state, but is still trying to supply current to the motor. However, when the contactor closes, the drive sees the motor resistance and instantly demands current. This inrush of current when the contactor closes can fault or cause failure to the drive

To prevent problems, interlock an auxiliary contact to the drive's Run or Enable circuit to stop the drive when the contactor opens. In this way, the drive will be disabled and no inrush will occur when the contactor is closed again.

## 4.3 Terminals Found on the Vacon 50X Power Board

# 4.3.1 Description of the Terminals

Table 7 describes the Vacon 50X power terminals.

| Terminal                     | Description                                                                                                                                                             |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L1/R (L)<br>L2/S<br>L3/T (N) | These terminals are the line connections for input power. (Single-phase 230 Vac, 0,75 to 4,0 kW models connect to any two of these terminals.) See Figure 8 on page 27. |
| T1/U<br>T2/V<br>T3/W         | These terminals are for motor connections.                                                                                                                              |

Table 7:Description of Vacon 50X Power Terminals

Note that earth ground is on the terminal strip (see Figure 8 below). See page 31 for specific information about dynamic braking.



Figure 8: Power Terminals Size 0



Figure 9: Power Terminals Size 1



Figure 10: Power Terminals Size 2 and 3

29 ● VACON CONNECTIONS



Figure 11: Power Terminals Size 4 and 5

# 4.3.2 Typical Power Connections

See Section 4.2 starting on page 25 for input line requirements. Note that when testing for a ground fault, do not short any motor lead (T1/U, T2/V, or T3/W) back to an input phase (L1/R, L2/S, or L3/T).

It is necessary to provide fuses and a disconnect switch for the input AC line in accordance with all applicable electrical codes. The Vacon 50X AC drive is able to withstand a 150% overload for 60 seconds for heavy duty rating, and 120% overload for normal duty rating.

The fusing and input protection of the drive must always meet UL, NEC (National Electric Code), CEC (Canadian Electric Code) and local requirements. All fuse ratings included in Table 8 below are for reference only and do not supersede code requirements. For 230/400 V mains supplies we recommend time-lag type NEOZED-fuses. The recommended supplier is Bussman.

|                  | Model Number | Fuse<br>Size<br>208 Vac<br>JJS/JJN | Fuse Size<br>230 Vac<br>JJS/JJN | Fuse Size<br>380 Vac | Fuse Size<br>460 Vac |
|------------------|--------------|------------------------------------|---------------------------------|----------------------|----------------------|
|                  | 0004         | 10                                 | 6                               | -                    | -                    |
| Ñ                | 0007         | 15                                 | 10                              | _                    | -                    |
| Š                | 0010         | 20                                 | 15                              | _                    | -                    |
| <u>.</u>         | 0015         | 30                                 | 25                              | _                    | -                    |
| ס                | 0022         | 40                                 | 35                              | _                    | -                    |
| 230 V drives     | 0028         | 50                                 | 40                              | _                    | -                    |
| 30               | 0042         | 70                                 | 60                              | _                    | -                    |
| 7                | 0054         | 90                                 | 80                              | -                    | -                    |
|                  | 0068         | 100                                | 90                              | _                    | -                    |
|                  | 0002         | -                                  | -                               | 6                    | 6                    |
|                  | 0004         | -                                  | -                               | 10                   | 6                    |
|                  | 0005         | -                                  | -                               | 10                   | 10                   |
|                  | 0009         | -                                  | -                               | 16                   | 16                   |
| S                | 0012         | -                                  | -                               | 20                   | 20                   |
| ē                | 0016         | -                                  | -                               | 25                   | 20                   |
| ŀ <b>;</b>       | 0023         | -                                  | -                               | 40                   | 35                   |
| Þ                | 0031         | -                                  | -                               | 50                   | 40                   |
| 380-480 V drives | 0037         | -                                  | -                               | 63                   | 50                   |
| 0                | 0043         | -                                  | -                               | 80                   | 63                   |
| <b>78</b>        | 0061         | -                                  | -                               | 100                  | 80                   |
| اخ               | 0071         | -                                  | -                               | 100                  | 100                  |
| 8                | 0086         | 1                                  | 1                               | 125                  | 100                  |
| က                | 0105         | -                                  | -                               | 160                  | 125                  |
|                  | 0140         | ı                                  | 1                               | 200                  | 160                  |
|                  | 0168         | -                                  | -                               | 250                  | 200                  |
|                  | 0205         | -                                  | -                               | 250                  | 250                  |
|                  | 0240         | -                                  | -                               | 315                  | 315                  |

Table 8:Fuse Ratings

## 4.4 Dynamic Braking

The Vacon 50X AC drive is supplied with an integrated dynamic braking (DB) resistor, and is designed to have adequate dynamic braking for most applications. In cases where short stopping times or high inertia loads require additional braking capacity, install an external resistor.

NOTE: External braking cannot be added to Size 0 models. For Size 4 (45–75 kW) and Size 5 (90–150 kW) models, additional external dynamic braking requires a kit that provides the connections to the braking transistors. The XDBKITS4 and XDBKITS5 kits can be purchased through VACON

- Starting from size 1 the internal DB resistor can be replaced by an external DB resistor.
- The terminal identifications of the DB resistor are "B+" and "DB".
- On the size 1 the DB resistor is connected by fast-on terminals 6.35 mm (see Figure 9 on page 28).
- Starting from size 2 the DB resistor is connected by 2 separate terminals (see Figure 3 on page 29). The internal DB resistor is connected by fast-on terminals "J3/ DB" and "J4/B+", which are placed on the power board (right and left side of the display).

To install an external resistor, first disconnect the internal DB resistor and properly terminate the wires leading to it. Connect now the external resistance over the connections planned for it.

Changes to Parameter 410 must be made when using external DB resistors.

Verify with the manufacturer of the selected resistor that the resistor is appropriate for your application. Contact VACON Application Engineering for further assistance with other possible sizing limitations.

| Refer to | Table 9 | helow fo | r information | about dynar | nic hrakina | canacity for | each Vacon 503 | lahom X |
|----------|---------|----------|---------------|-------------|-------------|--------------|----------------|---------|
|          |         |          |               |             |             |              |                |         |

| Model  | kW   | Standard<br>Resistance<br>(Ω) | Standard<br>DB %<br>of Drive | Min. Allowed Res. ( $\Omega$ ) | Max. Peak<br>Watts | Max. Ext. DB % of Drive |
|--------|------|-------------------------------|------------------------------|--------------------------------|--------------------|-------------------------|
| 0004 2 | 0,75 | 125                           | 164%                         | 125                            | 1,223              | 164%                    |
| 0007 2 | 1,5  | 125                           | 82%                          | 125                            | 1,223              | 82%                     |
| 0010 2 | 2,2  | 125                           | 55%                          | 125                            | 1,223              | 55%                     |
| 0015 2 | 4,0  | 60                            | 68%                          | 43                             | 3,555              | 95%                     |
| 0022 2 | 5,5  | 60                            | 45%                          | 30                             | 5,096              | 91%                     |
| 0028 2 | 7,5  | 60                            | 34%                          | 27                             | 5,662              | 76%                     |
| 0042 2 | 11   | 60                            | 23%                          | 20                             | 7,644              | 68%                     |
| 0054 2 | 15   | 30                            | 34%                          | 10                             | 15,288             | 102%                    |
| 0068 2 | 18,5 | 30                            | 27%                          | 10                             | 15,288             | 82%                     |
| 0002 5 | 0,75 | 500                           | 163%                         | 270                            | 2253               | 302%                    |
| 0004 5 | 1,5  | 500                           | 82%                          | 270                            | 2253               | 151%                    |
| 0005 5 | 2,2  | 500                           | 54%                          | 270                            | 2253               | 101%                    |
| 0009 5 | 4,0  | 120                           | 136%                         | 100                            | 6084               | 163%                    |
| 0012 5 | 5,5  | 120                           | 91%                          | 75                             | 8112               | 145%                    |
| 0016 5 | 7,5  | 120                           | 68%                          | 75                             | 8112               | 109%                    |
| 0023 5 | 11   | 120                           | 45%                          | 57                             | 12944              | 116%                    |
| 0031 5 | 15   | 120                           | 34%                          | 47                             | 12944              | 87%                     |
| 0037 5 | 18,5 | 120                           | 27%                          | 47                             | 12944              | 69%                     |
| 0043   | 22   | 120                           | 23%                          | 39                             | 15600              | 70%                     |

Table 9: Vacon 50X Dynamic Braking Capacity

| Model | kW  | Standard<br>Resistance<br>( $\Omega$ ) | Standard<br>DB %<br>of Drive | Min. Allowed Res. ( $\Omega$ ) | Max. Peak<br>Watts | Max. Ext. DB % of Drive |
|-------|-----|----------------------------------------|------------------------------|--------------------------------|--------------------|-------------------------|
| 0061  | 30  | 60                                     | 34%                          | 20                             | 30420              | 102%                    |
| 0071  | 37  | 60                                     | 27%                          | 20                             | 30420              | 82%                     |
| 0086  | 45  | 60                                     | 23%                          | 15                             | 40560              | 91%                     |
| 0105  | 55  | 60                                     | 18%                          | 10                             | 60840              | 109%                    |
| 0140  | 75  | 60                                     | 14%                          | 10                             | 60840              | 82%                     |
| 0168  | 90  | 60                                     | 11%                          | 10                             | 60840              | 65%                     |
| 0205  | 110 | 60                                     | 9%                           | 10                             | 60840              | 54%                     |
| 0240  | 132 | 60                                     | 7%                           | 10                             | 60840              | 41%                     |

Table 9:Vacon 50X Dynamic Braking Capacity

<sup>\*</sup>Note that the asterisked Vacon 50X model numbers cannot have external braking added.

## 4.5 Terminals Found on the Vacon 50X Control Board

# 4.5.1 Description of the Control Terminals

Figure 12 shows the control terminals found on the I/O board of the Vacon 50X AC drive. See page 9 for specifications. Table 10 on page 33 describes the control terminals.

The drive's control terminals are referenced to earth ground through a resistor / capacitor network. Use caution when connecting analog signals not referenced to earth ground, especially if the communications port [J3] is being used. The J3 port includes a common reference that can be connected to earth ground through the host PLC or computer.



Figure 12: Vacon 50X Control Terminals

| Terminal | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vmet     | Analog output 1, which is a dedicated voltage output. The default signal range is from 0 to 10 Vdc [5 mA maximum]. It is proportional to the variable configured by parameter 700 [Vmet Config] [see page 79]. It may be calibrated while the drive is running via parameter 701 [Vmet Span] [see page 79].                                                                                                                                                                                                                                                                                            |
| Imet     | Analog output 2, which is a dedicated current output. The default signal ranges from 0 to 20 mAdc (50 to 500 $\Omega$ ). It is proportional to the variable configured by parameter 702 (Imet Config) [see page 80]. It may be calibrated while the drive is running via parameters 704 (Imet Offset) and 703 (Imet Span) (see page 80).                                                                                                                                                                                                                                                               |
| Vin1     | Analog Input 1, which is used to provide speed references. The default input signal is 0 to 10 Vdc (the type of input signal is selected with parameter 205 [Vin1 Config); see page 64]. Parameters 206 [Vin1 Offset] and 207 [Vin1 Span] may be used to offset the starting value of the range and the size of the range, respectively; see page 64 for more information. If a 0 to 20 mAdc input signal is configured, the burden is 250 ohm. If a 0 to 10 Vdc input signal is configured, the input impedance is 475 kohm. A potentiometer with a range of 1 to 2 kohm is suggested for this input. |
| +10      | This terminal is a +10 Vdc source for customer-supplied potentiometers. The maximum load on this supply cannot exceed 10 mAdc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Table 10:Description of Vacon 50X Control Terminals

| Terminal          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cin+ / Cin-       | Current Input. The default input signal is 4–20 mA, although this range may be adjusted by using parameters 209 (Cin Offset) (which configures an offset for the range) and 210 (Cin Span) (to reduce or enlarge the range – for example, setting this parameter to 50% results in a range of 4–12 mA). See page 65 for more information on these parameters. The burden for this terminal is 50 to.                                                                                                                                                                                                                       |
| Vin2              | Voltage Input 2, which is used to provide speed references. The default input signal is 0 to 10 Vdc (the type of input signal is selected with parameter 211 (Vin2 Config); see page 65). Parameters 212 (Vin2 Offset) and 213 (Vin2 Span) may be used to offset the starting value of the range and the size of the range, respectively; see page 65 for more information. If a 0 to 20 mAdc input signal is configured, the burden is 250 $\Omega$ . If a 0 to 10 Vdc input signal is configured, the input impedance is 475 k $\Omega$ . A potentiometer with a range of 1 to 2 k $\Omega$ is suggested for this input. |
| Acom              | Common for the Analog Inputs and Outputs. Note that while there are three Acom (common) terminals, they connect to the same electrical point.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| +24               | A source for positive nominal 24 Vdc voltage, and has a source capacity of 150 mA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FWD               | Forward Direction Selection terminal. This may be connected for two-wire maintained or three wire momentary operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| REV               | Reverse Direction Selection Terminal. This may be connected for two-wire maintained or threewire momentary operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| R/J               | Run/Jog Selector. When this terminal is connected to $+24$ or common (depending upon Active Logic setting), momentarily connecting either FWD or REV to $+24$ results in a latched run mode (3-wire operation).                                                                                                                                                                                                                                                                                                                                                                                                            |
| MOL               | Motor Overload input terminal. This requires a N/O or N/C contact for operation, referenced to +24 or COM, depending on Active Logic setting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| EN                | Enable terminal. A jumper is placed between this terminal and the +24 terminal at the factory. You may replace this with a contact, if desired. The circuit from EN to +24 must be closed for the drive to operate.  Note that unlike all other terminals, this terminal cannot be configured for "pull-down logic." That is, a high input to this terminal is always regarded as true, and must be present for the drive to operate.                                                                                                                                                                                      |
| Dcom              | Digital Common for use with digital inputs and +24 internal power.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DI1-DI5           | Digital inputs.  The function of a digital input is configured by the parameter with the same name as the digital input (for example, DI2 is configured by parameter 722 (DI2 Configure); see page 81.                                                                                                                                                                                                                                                                                                                                                                                                                     |
| NC1<br>NO1<br>RC1 | The first auxiliary relay.  The function of the relay is set by parameter 705 (Relay 1 Select) (see page 80); the default setting is for the relay to activate when a fault occurs (Drv Fault).  Terminal N01 is the normally-open contact, which closes when the relay is activated. Terminal NC1 is the normally-closed contact, which opens when the relay is activated. Terminal RC1 is the common terminal.                                                                                                                                                                                                           |
| NC2<br>NO2<br>RC2 | The second auxiliary relay.  The function of the relay is set by parameter 706 (Relay 2 Select) (see page 80); the default setting is for the relay to activate when the drive is running (Drv Run).  Terminal NO2 is the normally-open contact; it will close when the relay is activated. RC2 is the common terminal.                                                                                                                                                                                                                                                                                                    |
| D01<br>D02        | Digital Outputs 1 and 2. The function of the outputs is set by parameters 707 (DO1 Select) and 708 (DO2 Select). The default setting for DO1 is Drive Ready; for DO2 it is At Speed. See page 80. Note that if you are using a high-impedance meter to this terminal, the pull-up resistor value may need to change. Please consult the factory for more information.                                                                                                                                                                                                                                                      |
| DOP               | Open collector transistor output that supplies a pulse train proportional to speed. The frequency of the output is set by parameter 812 (Freq Ref Output) to either 6x or 48x the running frequency. The output has a maximum rating of 28 Vdc and requires a pull-up resistor (4.7 KOhms) if using the drive's internal supply.  Note that if you are using a high-impedance meter to this terminal, the pull-up resistor value may need to change. Please consult the factory for more information.                                                                                                                      |

Table 10:Description of Vacon 50X Control Terminals

# 4.5.2 Typical Connection Diagrams for Digital Inputs



Typical connection for 2-wire control



Typical connection for 3-wire control

Figure 13: Connections for 2-wire and 3-wire Control

| PS3 (Bit 3) | PS2 (Bit 2) | PS1 (Bit 1) | Speed Selected                                                                           |
|-------------|-------------|-------------|------------------------------------------------------------------------------------------|
| 0           | 0           | 0           | Normal reference speed as defined by parameters 201 (Input<br>Mode) and 204 (Ref Select) |
| 0           | 0           | 1           | Preset frequency F1 (303-F1).                                                            |
| 0           | 1           | 0           | Preset frequency F2 (304-F2).                                                            |
| 0           | 1           | 1           | Preset frequency F3 (305-F3).                                                            |
| 1           | 0           | 0           | Preset frequency F4 (306-F4).                                                            |
| 1           | 0           | 1           | Preset frequency F5 (307-F5).                                                            |
| 1           | 1           | 0           | Preset frequency F6 (308-F6).                                                            |
| 1           | 1           | 1           | Maximum frequency (302, Max Frequency).                                                  |

Table 11:Selection of Preset Speeds



Figure 14: Connections for Preset Speeds

CONNECTIONS VACON ● 36

## 4.5.3 Typical Connection Diagrams for Analog Inputs



Figure 15: Connections for Speed Potentiometer



Figure 16: Connections for Process Signal

# 4.5.4 Typical Connection Diagrams for Analog Outputs



Figure 17: Connections for Process Meters

## 4.6 Reducing Current Surges and Voltage Transients

Inrush currents to coils of magnetic contactors, relays, and solenoids associated with or near the drive can induce high current spikes in the power and control wiring, causing faulty operation. If this occurs, a snubber network consisting of a series resistor and capacitor for AC loads, or a freewheeling or flyback diode for DC loads, can be placed across the relay coil to prevent this condition.

The following component values should be used for 115 VAC or 230 VAC relays or solenoids.



Figure 18: Connection Diagram for AC and DC Relay Coils and Solenoids

For magnetic contactors, relays, and solenoids energized from a DC source, use a free-wheeling diode of the high-speed, fast-recovery type. Connect the diode across the coil as shown above in Figure 18. The diode current and voltage should be selected using the following formulae:

Diode Current Rating (A)  $= \frac{\text{Coil Capacity (VA)}}{\text{Rated Voltage of Coil (V)}}$ Diode Voltage Rating  $= \text{Rated Voltage of Coil (V)} \times 2$ 

### 5. Keypad Operation and Programming

### 5.1 Introduction

The Vacon 50X AC drive is pre-programmed to run a standard, 4-pole AC induction motor. For many applications, the drive is ready for use right out of the box with no additional programming needed. The digital keypad controls all operations of the unit. The ten input keys allow "press and run" operation of the motor (Operation mode) and straightforward programming of the parameters (Program mode).



Figure 19: The Vacon 50X Keypad

To simplify programming, the parameters are grouped into three levels:

- Enter Level 1 by pressing the Program (PROG) key at any time. Level 1 allows you
  to access the most commonly used parameters.
- Enter Level 2 by holding down the SHIFT key while pressing the PROG key. Level 2 allows access to all Vacon 50X parameters, including those in Level 1, for applications which require more advanced features.
- Enter Macro mode by holding the Program (PROG) key down for more than 3 seconds. The display then shows "Hold PROG for Macro Mode." See Chapter 6, "Using Macro Mode and Getting a Quick Start", starting on page 49, for more information.

The parameter table on page 113 shows the standard settings, the table on page 117 the parameter names in 5 languages and on page 121 the settings and messages in 5 languages. "Vacon 50X Parameter" describes the individual parameters starting from page 59.

If you want to get started quickly, see the "Quick Start" section on page 57.

## 5.2 Keypad Operation

Parameter 201, Input Mode (see page 62), determines whether the Vacon 50X AC drive accepts its Run/ Stop and speed commands from the digital keypad or from the input terminals. Table 12 describes the function of the keys in Operation mode.



Initiates forward run when pressed momentarily. If the drive is running in reverse when FWD is pressed, it will decelerate to zero speed, change direction, and accelerate to the set speed.

The green  $\dot{\rm FWD}$  designation in the key illuminates whenever a FWD command has been given.

When both the FWD and REV lights are on, the DC braking function is active.



Initiates reverse run when pressed momentarily. If the drive is running in forward when REV is pressed, it will decelerate to zero speed, change direction, and accelerate to the set speed. The green REV in the key illuminates whenever a REV command has been issued. When both the FWD and REV lights are on, the DC braking function is active



Causes a Ramp-to-Stop when pressed. Programmable to Coast-to-Stop by parameter 401, Ramp Select (page 67). The red STOP indicator in the key illuminates whenever a STOP command has been given. If the drive has stopped because of a fault, this indicator flashes to call attention to the display.



Press the Jog key to enter Jog mode. The green JOG indicator in the key illuminates when the drive is in the JOG mode of operation. To jog the motor in either direction, press either the FWD or REV [if REV is enabled in parameter 202]. The motor will operate at the speed programmed in parameter 303. To exit Jog mode, press the JOG key again.



When the drive is stopped, pressing this key increases the desired running speed. When the drive is running, pressing this key increases the actual running speed in 0.1 Hz increments. Holding the SHIFT key while pressing the INC (UP arrow) key moves the decimal place to the left with each press [0.1 Hz, 1.0 Hz, 10.0 Hz increments].



When the drive is stopped, pressing this key decreases the desired running speed. When the drive is running, pressing the DEC (down arrow) key decreases the actual running speed in 0.1 Hz increments. Holding the SHIFT key while pressing the DEC key moves the decimal place to the right with each press (10.0 Hz, 1.0 Hz, 0.1 Hz increments).

NOTE: The operating speed for the drive is stored on Power Down.



Pressing this key while a parameter is displayed allows that parameter to have its value changed by use of the INC and DEC (up and down arrow) keys. The P indicator flashes to show that the parameter can be programmed. See also the descriptions for the INC and DEC keys above to see how they work with the SHIFT key.



The ENTER key has no function when the drive is running or stopped. ENTER can be used to store the speed command so that it is saved through a power-down. To enable this function, see the description for parameter 802 (Start Options) on page 83.

Table 12: Function of Keys in Operation Mode (Vacon 50X Running or Stopped)



Table 12: Function of Keys in Operation Mode (Vacon 50X Running or Stopped)

You can access Program mode by stopping the Vacon 50X drive and pressing the Program (PROG) key for Level 1 access; or holding down SHIFT while pressing PROG for Level 2 access. Pressing and holding the Enter key and then pressing the Program key will show only those parameters that have been changed from the factory defaults. Table 13 describes the function of the keys in Program mode.

| PROG<br>MENU | Press this key to have the drive enter Program mode and have Level 1 parameters available. [To access Level 2 parameters, hold down SHIFT while pressing this key; to access Macro mode, hold down the PROG key for more than 3 seconds.] Once Program mode is active, pressing this key at any time returns the drive to the Operation mode. If an Access Code has been programmed, it must be entered to proceed with programming. See Parameter 811 [Access Code] (page 85). |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | NOTE: To see what parameters have changed from the factory default, press ENTER + PROG. If the display flashes "Factory Defaults," no parameters have changed.                                                                                                                                                                                                                                                                                                                  |
| INC   T      | In the Program mode, pressing this key scrolls forward through the parameters. If the P indicator is flashing, it increases the value of the parameter. To change the scroll rate, hold the SHIFT key at the same time to increase the scroll rate; release the SHIFT key to return to the normal scroll rate. Press the ENTER key to store the new value.                                                                                                                      |
| DEC          | In the Program mode, pressing this key scrolls backward through the parameters. If the P indicator is flashing, it decreases the value of the parameter. To change the scroll rate, hold the SHIFT key at the same time to increase the scroll rate; release the SHIFT key to return to the normal scroll rate. Press the ENTER key to store the new value.                                                                                                                     |
|              | NOTE: If the P indicator on the keypad display is flashing, momentarily pressing and releasing both the INC and DEC keys at the same time restores the parameter to the factory default value. Press ENTER to store the new value.                                                                                                                                                                                                                                              |
| SHIFT        | Pressing this key while a parameter is displayed allows that parameter to have its value changed by use of INC and DEC (up and down arrow) keys. The Pindicator flashes to show that the parameter can be programmed. See also the descriptions for INC and DEC (up and down arrow) keys above to see how they work with the SHIFT key.                                                                                                                                         |

Table 13: Function of Keys in Program Mode

| ENTER | This key must be pressed after the value of a parameter has been changed to store the new value. The display will show "stored" for one second indicating that the new value has been entered into memory.                            |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | NOTE: The Vacon 50X unit allows you to view only those parameters that have changed. If you press keypad keys ENTER and PROGram simultaneously, only those parameters that have been changed from the factory defaults will be shown. |

Table 13: Function of Keys in Program Mode

| INC   T      | In Fault mode, pressing the INC (up arrow) and DEC (down arrow) keys allows the operator to view the drive's status immediately before the fault occurred. Use the INC or DEC keys to scroll through the status parameters.  Press the STOP (Reset) key to return to normal operation. |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>↓</b> DEC | See "Troubleshooting" on page 101 for information about viewing Advanced Fault Codes and understanding error codes.                                                                                                                                                                    |
| STOP         | The red STOP key functions as a reset button when in Fault mode. If the drive has stopped because of a fault, this light flashes to call attention to the display.                                                                                                                     |

Table 14:Function of Keys in Fault Mode

## 5.3 LCD Displays

The Vacon 50X drive's digital keypad display provides information such as source of drive control, status, mode, and access rights.

### 5.3.1 Control

The first 3 characters of the display show the source of control for the drive:

| Display Values Meaning |                                              |  |
|------------------------|----------------------------------------------|--|
| LOC                    | Local control via the keypad                 |  |
| REM                    | Remote control from the terminal strip       |  |
| SIO                    | Remote control via the RS485 Serial SIO Link |  |
| SQx                    | Control via the Program Sequencer            |  |
| MEA                    | The Stator Resistance Measurement is armed   |  |

## 5.3.2 Vacon 50X Keypad Status and Warning Messages

Table 4 shows Vacon 50X keypad status messages that may appear during operation:

| Message   | Meaning                                                                                                              |
|-----------|----------------------------------------------------------------------------------------------------------------------|
| Stopped   | The drive is not spinning the motor or injecting DC voltage. The drive is ready to run when given the proper signal. |
| FWD Accel | The drive is spinning the motor in the forward direction and the speed of the motor is increasing.                   |
| REV Accel | The drive is spinning the motor in the reverse direction and the speed of the motor is increasing.                   |

Table 15: Keypad Status States

| FWD Decel   | The drive is spinning the motor in the forward direction and the speed of the motor is decreasing. $ \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| REV Decel   | The drive is spinning the motor in the reverse direction and the speed of the motor is decreasing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Jog FWD     | The drive is jogging in the forward direction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Jog REV     | The drive is jogging in the reverse direction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| FWD At Spd  | The drive is spinning the motor in the forward direction and the speed of the motor is at the reference frequency. $ \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int$ |
| REV At Spd  | The drive is spinning the motor in the reverse direction and the speed of the motor is at the reference frequency. $ \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left( \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left( \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{$                 |
| Zero Speed  | The drive has an active run signal but the motor is not spinning because the reference speed to the drive must be 0.0 Hz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DC Inject   | The drive is injecting DC voltage into the motor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Faulted     | The drive is faulted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Reset-Flt   | The drive is faulted, but has the possibility of being automatically reset.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LS Lockout  | Line-Start Lockout functionality has become active. This means there was an active run signal during power-up or when a fault was reset. This run signal must be removed before the Line-Start Lockout functionality will be removed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Catch Fly   | The Catch on the Fly functionality is actively searching for the motor frequency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Forward     | The drive is running forward without accelerating, decelerating or residing at the reference frequency. This means that something is keeping the drive from the reference frequency [for example, Current Limit].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Reverse     | The drive is running in reverse without accelerating, decelerating or residing at the reference frequency. This means that something is keeping the drive from the reference frequency (for example, Current Limit).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Not Enabled | The drive is not allowed to run either because the digital input enable is not active or because ARCTIC mode has shut down the run operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Volt Range  | The drive has not met the input voltage requirements that it needs to be able to run. In other words,the Bus Voltage of the drive is either too low or too high.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Low Voltage | The drive has reached an undervoltage state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Kpd Stop    | A stop command was given from the keypad when the keypad was not the active control source. To remove this condition, the run signal to the drive must be removed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Table 15:Keypad Status States

Table 16 shows Vacon 50X keypad warning messages that may appear during operation:

| Message     | Meaning                                                                                                                                                             |  |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| DB Active   | The DB Resistor is being actively pulsed.                                                                                                                           |  |
| Curr Limit  | The drive is operating in current limit.                                                                                                                            |  |
| HS Fan Err  | Either the heatsink fan should be on and is off, or vice-versa.                                                                                                     |  |
| Addr XXX    | This is the node address of the drive when it receives a valid message through the IR port address to another node. The XXX will be replaced with the node address. |  |
| High Temp   | The temperature of either the heatsink or the control board is nearing a high temperature limit that will fault the drive.                                          |  |
| Low Temp    | The temperature of either the heatsink or the control board is nearing a low temperature limit that will fault the drive.                                           |  |
| Vac Imblnce | Either the drive has lost an input phase or the input voltage is unbalanced more than 2%.                                                                           |  |
| Power Supp  | A power supply short occurred.                                                                                                                                      |  |

Table 16:Keypad Warnings

| Seq Dwell   | The sequencer is active, but the transition to the next step is halted.                    |  |
|-------------|--------------------------------------------------------------------------------------------|--|
| Int Fan Err | Either the internal fan is on and should be off, or vice-versa.                            |  |
| DB OverTemp | The temperature of the DB Resistor is nearing a high temperature and will fault the drive. |  |
| ARCTIC Mode | The ARCTIC DB Resistor mode is actively pulsing the DB Resistor.                           |  |
| CPU Warning | A system error occurred in the software of the Vacon 50X.                                  |  |
| Mtr Measure | An RS Measurement is armed or active.                                                      |  |
| IR Active   | Valid IR communications are occurring.                                                     |  |
| Seq Running | The program sequencer functionality is active.                                             |  |

Table 16:Keypad Warnings

#### 5.3.3 Rights

After Program mode is entered, the operator's access rights are displayed:

| Display Values   |                                                                                                                                                                                                                                              |                                                                                                                     |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| ACCESS<br>RIGHTS | Р                                                                                                                                                                                                                                            | This indicates that while in Programming mode, parameter data can be changed.                                       |
|                  | ٧                                                                                                                                                                                                                                            | If the drive is in Run mode (FWD or REV) when the PROG key was pressed, param eters can be viewed, but not changed. |
|                  | The first character of the second line indicates if the particular parameter can be changed [P] or only examined [V]. If an attempt is made to change data while in the View (V) mode, the message **NO ACCESS** will appear for one second. |                                                                                                                     |

### 5.3.4 Other Data

The top line gives 16-character description of the parameter being accessed. The parameter number will flash when data is being changed. Up to 10 characters are used to display the information stored in the parameter. Some parameters have a unit designator such as:

- s Seconds
- h Hours
- C Degrees centigrade
- Hz Hertz
- % Percent
- A Amperes

When the drive stops because of a fault trip, a unique error message will be displayed, along with the flashing STOP indicator. "Pages," or screens of information are available concerning the actual fault and drive status.

"Troubleshooting" on page 101 gives information about fault codes and troubleshooting.

#### 5.4 Keypad Display Window

The keypad display provides information on drive operation and programming. Special symbols provide further information about drive operation (see the following section). Figure 20 shows an example of the Vacon 50X keypad display.



Figure 20: Vacon 50X Keypad Display

### 5.5 Programming

### 5.5.1 Accessing Parameters

When PROG (or SHIFT+PROG) is pressed after application of power or a fault reset, parameter 201, Input Mode, is always the first parameter displayed. Figure 21 shows a typical programming display.



Figure 21: Typical Programming Display

If a different parameter is accessed and Program mode is exited, that parameter is the first one displayed the next time Program mode is entered. The drive remembers a different "last parameter accessed" for Levels 1 and 2.

## 5.5.2 Changing the Display Scroll Rate

Pressing the INC or DEC keys (up or down arrows) arrows causes the display to scroll at a slow rate. To increase the scroll rate, hold the SHIFT key at the same time that you press the INC key. Release the SHIFT key to return to the slow scroll rate. This procedure works in all programming and operation modes.

#### 5.5.3 Programming Procedure

To program the value of a parameter, follow these steps:

 Press the Program (PROG) key to enter Level 1 Program mode. To enter Level 2, press SHIFT+PROG. The Pindicator will appear on the display. You must enter one level of programming or the other; you cannot switch between levels without exiting Program mode.

Note that some parameters cannot be changed in Run mode. For example, if you wish to program parameter 201, Input Mode, you must stop the drive before beginning programming. Refer to the Parameter Summary Table at the front of this manual to see which parameters cannot be changed in Run mode (they appear as shaded entries in the table).

- 2. Press the INC/DEC keys to access the desired parameter.
- 3. Press the SHIFT key to allow the value to be changed. The P indicator starts to blink.
- 4. Press the INC/DEC keys to select the new value.
- Press the ENTER key to store the new value. The display shows "Stored" for one second.
- Press the PROG key to exit the Program mode, or the INC/DEC keys to select a new parameter.

To program a text parameter, follow these steps:

- Like other parameters, text parameters use the INC/DEC (up/down arrow) and SHIFT keys for editing. A line appears under the character that you are changing.
- Press SHIFT to advance to the next character that you want to change.
- 3. Use the INC or DEC keys to change the character value.
- 4. Press ENTER to store the edited text.

#### 5.5.4 Restoring Factory Settings

Whenever a parameter's value is being changed (noted by the P indicator flashing), the original factory setting for that parameter may be restored by pressing and releasing both the INC and DEC keys simultaneously and then pressing the ENTER key.

To restore ALL parameters to factory settings, or to recall a previously stored parameter set, see parameter 801, Program Number (page 83).

#### 5.5.5 Viewing Parameters That Have Changed

The Vacon 50X unit allows you to view only those parameters that have changed. If you press the ENTER and PR0G keys simultaneously, only those parameters that have been changed from the factory defaults will be shown. Note that all parameters, regardless of Level 1 or 2 default location, will be shown. If other parameters need to be changed, press the PR0G key to exit this mode in either Level 1 or 2, as needed.

#### 5.5.6 Using Macro Mode

A special Macro programming mode is available with the Vacon 50X series of AC drives. The Macro programming mode allows you to customize the most common parameters for your application in the Level 1 group. Macro mode provides special parameters for activating modes of operation by macros, program sequencer, or serial communications.

Parameters that are important to the drive's operation are also included in the Macro mode. Although these parameters are also available with standard programming, the Macro mode allows you to quickly and easily configure the drive with essential parameters.

See "Using Macro Mode and Getting a Quick Start" on page 49, for detailed information about using macros to program the Vacon 50X drive.

### 5.6 Measuring Stator Resistance (RS Measurement)

#### 5.6.1 Activating Automatic RS Measurement via Keypad

- 1. Make sure there is no load applied to the motor and that the motor shaft is free to spin without damage or injury.
- Enter the Macro programming mode of the Vacon 50X keypad by pressing and holding the PROG key until the parameter "Appl Macro" appears on the keypad. This takes about two seconds.
- Scroll through the parameters of the Vacon 50X Macro programming mode and configure the following parameters to the data provided on the nameplate of the motor:
  - Rated Mtr Volt (509)
  - Rated Mtr FLA (510)
  - Rated Mtr RPM (511)
  - Power Factor (515)
- Change parameter "Find Mtr Data" (519) to a value of "Motor RS." At this point, the RS Measurement will be armed.
- 5. Exit the Macro programming mode by pressing the PROG key.
- 6. The Operate screen shows in two ways that an RS Measurement is ready to be made. First, the Control path status field displays "MEA." Second, a "Mtr Measure" warning flashes, both of these signifying that a measurement is about to be taken.
- Start the RS Measurement by pressing the FWD key. The measurement can only be made with the FWD key. The FWD/REV terminals and the REV key will not work.
- The measurement will begin as the drive injects voltage to the motor at zero frequency. The test lasts about two seconds.

- If the test was successful, the drive will stop and return to the configured control path. The "Motor RS" parameter will contain a new value that is the calculated resistance of the motor.
- If the test was not successful, the drive will fault with a "RS Meas. Fail" message (Fault 34). If the test fails, you may want to try the test again with a different "Rated Mtr FLA" or different Current Limit percentage.
- If the measurement process fails for any reason, it is possible to physically measure
  motor resistance by using an ohmmeter and dividing the result by 2. Then enter this
  value manually into parameter 514 [Motor RS].

## 5.6.2 Activating Automatic RS Measurement via Serial Link (Modbus)

- . Make sure there is no load applied to the motor and that the motor shaft is free to spin without damage or injury.
- . Configure the following parameters to the data provided on the nameplate of the motor:
  - Rated Mtr Volt (509)
  - Rated Mtr FLA (510)
  - Rated Mtr RPM (511)
  - Power Factor (515)
- 3. Change parameter "Find Mtr Data" (519) to a value of "Motor RS." At this point, the RS Measurement will be armed.
- Start the RS Measurement by writing a value of 0x0007 to parameter "SIO Cntl Word" [904].
- The measurement begins as the drive injects voltage to the motor at zero frequency.
   The test lasts about two seconds.
- If the test was successful, the drive will stop and return to the configured control path. The "Motor RS" parameter will contain a new value that is the calculated resistance of the motor.
- If the test was not successful, the drive will fault with a "RS Meas. Fail" message (Fault 34). If the test fails, you may want to try the test again with a different "Rated Mtr FLA" or different Current Limit percentage.
- If the measurement process fails for any reason, it is possible to physically measure motor resistance by using an ohmmeter and dividing the result by 2. Then enter this value manually into parameter 514 (Motor RS).

## 6. Using Macro Mode and Getting a Quick Start

A special Macro programming mode is available with the Vacon 50X series of AC drives. The Macro programming mode allows you to customize quickly the most common parameters for your application in the Level 1 group. Macro mode provides special parameters for activating modes of operation by macros, program sequencer, or serial communications.

Parameters important to the drive's operation are also included in Macro mode. Although these parameters are also available with standard programming, the Macro mode allows you to easily configure the drive with essential parameters.

Macros configure what advanced functions will be active in the drive. A macro can also change the default or visibility of a parameter within the programming levels. Parameter 490 (Appl Macro) configures what macro will be active in the drive. Parameter 491 (Seq Appl) configures the visibility of sequencer parameters and the time base of the sequencer. Parameter 492 (SIO Visible) configures whether or not SIO parameters are visible. (See page 50.)

#### 6.1 Entering Macro Mode

Factory

Vector

To enter the Macro mode, press and hold the PROGram key for more than three seconds. The drive then enters Macro mode and displays "Hold PROG for Macro Mode." Following is a list of the different macros available and their features. A description of parameters used in Macro mode begins on page 49.

|            | parameter listings.                                                        |
|------------|----------------------------------------------------------------------------|
| Fan        | The Fan macro provides a basic set-up for Fan applications. Parameters     |
|            | such as the V/Hz curve and terminal strip operation are available in Level |
|            | 1 programming.                                                             |
| Fan w/ PI  | The Fan w/ PI macro allows for a simple set-up for Fan applications re-    |
|            | quiring process control. Parameters such as the V/Hz curve, terminal       |
|            | strip operation, and PI configuration parameters are available in Level 1  |
|            | programming.                                                               |
| Pump       | The Pump macro provides a basic set-up for Pump applications. Param-       |
|            | eters such as the V/Hz curve and terminal strip operation are available    |
|            | in Level 1 programming.                                                    |
| Pump w/ PI | The Pump w/ PI macro allows for a simple set-up for Pump applications      |

strip operation, and PI configuration parameters are available in Level 1 programming.

The Vector macro activates the sensorless vector control algorithm.

When an operation requires low speed and high torque, this macro

requiring process control. Parameters such as the V/Hz curve, terminal

The Factory macro provides a simple way to restore the factory default

should be activated.

### 6.2 Description of Parameters Used in Macro Mode

Parameters 490, 491, and 492 are used only in the Macro mode. Parameters 509, 510, 511, 801, and 810 are used in both Macro and Level 2 programming. Vacon 50X parameters are described in "Vacon 50X Parameters" on page 59 of this manual.

490 Appl Macro Default: Factory Range: Text string Macro

This parameter configures what macro will be active in the drive. A macro will change a default or visibility of a parameter.

The following data values may be assigned to this parameter:

Macro Description

Factory Provides a simple way to restore factory default parame-

ter listings.

Fan Provides a basic set-up for Fan applications, including V/

Hz curve and terminal strip operation in Level 1 program-

ming.

Fan w/PI Provides a simple set-up for Fan applications that require process control. Parameters such as V/Hz curve, terminal

strip operation, and PI configuration are available in Level

1 programming.

Pump Provides a basic set-up for Pump applications, including

V/Hz curve and terminal strip operation in Level 1 pro-

gramming.

Pump w/PI Provides a simple set-up for Pump applications requiring

strip operation, and PI configuration are available in Level

1 programming.

Vector Activates the sensorless vector control algorithm. When

an operation requires low speed and high torque, this macro should be activated. Note that in Vector control, the drive automatically runs the the Motor Rs measurements

when leaving PROGram mode.

| 491 Seq Appl | Default: Disabled | Range: Text string<br>Macro |
|--------------|-------------------|-----------------------------|
|              |                   |                             |

This parameter configures sequencer parameters are visible and the time base of the sequencer. The time base may change depending on the timing loops used.

The following data values may be assigned to this parameter:

Macro Value Description

Disabled Sequencer disabled and parameters hidden.

1sec Base Sequencer enabled and 1 second time base.

1sec Base Sequencer enabled and 0.1 second time base.

01sec Base Sequencer enabled and 0.01 second time base.

| 492 SIO Visible | Default: No | Range: Text string<br>Macro |
|-----------------|-------------|-----------------------------|
|                 |             |                             |

This parameter configures whether SIO parameters are visible.

The following data values may be assigned to this parameter:

Macro Value Description

No SIO parameters hidden Yes SIO parameters visible

| 509 Rated Mtr Volt | Default: Model dependent | Range: 100–690 V<br>Level 2, Macro |
|--------------------|--------------------------|------------------------------------|
|                    |                          |                                    |

The Rated Motor Voltage parameter configures the rated motor voltage, and allows a user to enter the rated voltage from the motor nameplate to provide optimal control and protection. This is usually the amount of voltage delivered to the motor terminals at the setting of 503 (V/ Hz Kne e Freg).

| 510 Rated Mtr FLA | Default: ND Rating | Range: 50% of ND rating–200% of ND rating<br>Level 2, Macro |
|-------------------|--------------------|-------------------------------------------------------------|
|                   |                    |                                                             |

The Rated Motor FLA parameter allows a user to enter the rated FLA from the motor nameplate to provide optimal control and protection. This parameter should be configured to the value on the nameplate of the motor, as that value is used in calculating the percentage of current at which the drive is operating.

For information on motor timed overload operation, and how Parameter 610 works with it, see page 78.

| 511 Rated Mtr RPM | Default: 1750 rpm | Range: 0–24000 rpm<br>Level 2, Macro |
|-------------------|-------------------|--------------------------------------|
|                   |                   |                                      |

This parameter replaces the slip compensation parameter setting of the drive so the user does not need to calculate it.

| 514 Motor RS | Default: Model-dependent | Range: 0.00–655.35 $\Omega$ Level 2 |
|--------------|--------------------------|-------------------------------------|
|              |                          |                                     |

This parameter allows direct entry of the Stator Resistance (Rs) of the motor for better vector performance. The motor manufacturer can provide this information, or you can physically measure this value with an ohmmeter. From the line-to-line measurement of motor resistance, enter half the measured value. See "Measuring Stator Resistance (RS Measurement)" on page 46.

| 515 Power<br>Factor | Default: 0.80 | Range: 0.50–1.00<br>Level 2 |
|---------------------|---------------|-----------------------------|
|                     |               |                             |

This parameter allows direct entry of the motor's power factor for better vector performance. The motor manufacturer can provide this information.

| 519 Find Mtr Data | Default: Not active | Range: Text string<br>Macro |
|-------------------|---------------------|-----------------------------|
|                   |                     |                             |

This parameter activates the drive's ability to measure the stator resistance of the attached motor. The automatic stator resistance measurement can be performed either through the keypad or through the serial link. See "Measuring Stator Resistance (RS Measurement)" on page 46 for more information about this parameter. The following data values may be assigned:

Parameter Value Description

Not Active No stator RS measurement.

Motor RS Automatic RS measurement using macro procedure.

| 801 Program Number | Default: 0 | Range: 0-9999<br>Level 2, Macro |
|--------------------|------------|---------------------------------|
|                    |            |                                 |

This parameter (Special Program Number) provides a method of enabling hidden functions in the drive and storing parameters to the customer set.

| Data Value | Special Function Configured                                      |
|------------|------------------------------------------------------------------|
| 0          | Standard program                                                 |
| 1          | Reset all parameters to factory default values (display = SETP). |
| 2          | Store customer parameter values (display = STOC).                |
| 3          | Load customer parameter values (display = SETC).                 |
| 4          | Swap active parameters with customer stored settings.            |

| 810 Language | Default: English | Range: Text string<br>Level 2, Macro |
|--------------|------------------|--------------------------------------|
|              |                  |                                      |

This parameter configures the language in which text strings will be displayed.

The following data values may be assigned to this parameter:

## Parameter Value

English Spanish German

Italian

French

# 6.3 Macro Mode Applications and Included Parameters

The tables below list the different applications and the Level 1 parameters included in the macro for that application. The Factory Application macro is the core package (listed in Table 17); the other macros include the Factory Application macro parameters as well as the ones listed in their respective tables (Tables 18, 19, 20, 21, and 22). The macro mode applications are as follows:

- Factory Application (Table 17)
- Fan Application (Table 18)
- Fan with PI Application (Table 19)
- Pump Application (Table 20)
- Pump with PI Application (Table 21)
- Vector Application (Table 22)

| Para. # | Parameter Name  | Default       | See Page |
|---------|-----------------|---------------|----------|
| 001     | Model Number    | Read-only     | 60       |
| 010     | Last Fault      | Read-only     | 60       |
| 102     | Output Freq     | Read-only     | 61       |
| 103     | Output Voltage  | Read-only     | 61       |
| 104     | Output Current  | Read-only     | 61       |
| 105     | Drive Load      | Read-only     | 61       |
| 106     | Load Torque     | Read-only     | 61       |
| 107     | Drive Temp      | Read-only     | 61       |
| 111     | DC Bus Voltage  | Read-only     | 62       |
| 201     | Input Mode      | Local Only    | 62       |
| 202     | Rev Enable      | Forward       | 63       |
| 301     | Min Frequency   | 0.0 Hz        | 67       |
| 302     | Max Frequency   | 60.0 Hz       | 67       |
| 303     | Preset Freq 1   | 50 Hz         | 67       |
| 402     | Accel Time 1    | 5.0 sec       | 68       |
| 403     | Decel Time 1    | 5.0 sec       | 68       |
| 502     | Voltage Boost   | 0.0%          | 72       |
| 610     | Timed OL Select | In Duty 60sec | 78       |
| 700     | Vmet Config     | Freq Out      | 79       |
| 705     | Relay 1 Select  | Drv Fault     | 80       |
| 706     | Relay 2 Select  | Drive Rdy     | 80       |

Table 17:Factory Application Macro

| Para. # | Parameter Name   | Default     | See Page |
|---------|------------------|-------------|----------|
| 203     | Stop Key Remote  | Coast       | 63       |
| 204     | Ref Select       | Vin1        | 63       |
| 205     | Vin1 Config      | 0-10 V      | 64       |
| 206     | Vin1 Offset      | 0.00%       | 64       |
| 207     | Vin1 Span        | 100.00%     | 64       |
| 406     | DC Inject Config | DC at Start | 69       |
| 501     | V/Hz Select      | Fan Fixed   | 71       |
| 504     | Skip Freq Band   | 0.2 Hz      | 72       |
| 505     | Skip Freq 1      | 0.0 Hz      | 72       |

Table 18:Fan Application Macro

(Core Factory Application from Table 17, plus the following parameters)

| Para. # | Parameter Name | Default     | See Page |
|---------|----------------|-------------|----------|
| 608     | Restart Number | 0           | 78       |
| 609     | Restart Delay  | 60 sec      | 78       |
| 702     | Imet Config    | Current Out | 80       |
| 703     | Imet Span      | 100.0%      | 80       |
| 704     | Imet Offset    | 0.0%        | 80       |
| 721     | DI1 Configure  | Preset 1    | 81       |
| 722     | DI2 Configure  | Preset 2    | 81       |
| 723     | DI3 Configure  | Preset 3    | 81       |
| 724     | DI4 Configure  | Ref Switch  | 81       |
| 725     | DI5 Configure  | Fault Reset | 81       |
| 803     | PWM Frequency  | 16.0 kHz    | 83       |
| 804     | Display Mode   | Output Freq | 84       |

Table 18:Fan Application Macro (Core Factory Application from Table 17, plus the following parameters)

| Para. # | Parameter Name   | Default     | See Page |
|---------|------------------|-------------|----------|
| 203     | Stop Key Remote  | Coast       | 63       |
| 204     | Ref Select       | Vin1        | 63       |
| 205     | Vin1 Config      | 0-10 V      | 64       |
| 206     | Vin1 Offset      | 0.00%       | 64       |
| 207     | Vin1 Span        | 100.00%     | 64       |
| 208     | Cin Config       | 0-20 mA 50  | 64       |
| 209     | Cin Offset       | 0.0%        | 65       |
| 210     | Cin Span         | 100.0%      | 65       |
| 211     | Vin2 Config      | 0-10 V      | 65       |
| 212     | Vin2 Offset      | 0.00%       | 65       |
| 213     | Vin2 Span        | 100.00%     | 65       |
| 401     | Ramp Select      | ART-DI      | 67       |
| 406     | DC Inject Config | DC at Start | 69       |
| 501     | V/Hz Select      | Fan Fixed   | 71       |
| 504     | Skip Freq Band   | 0.2 Hz      | 72       |
| 505     | Skip Freq 1      | 0.0 Hz      | 72       |
| 608     | Restart Number   | 0           | 78       |
| 609     | Restart Delay    | 60 sec      | 78       |
| 702     | Imet Config      | Current Out | 80       |
| 703     | Imet Span        | 100.0%      | 80       |
| 704     | Imet Offset      | 0.0%        | 80       |
| 721     | DI1 Configure    | Preset 1    | 81       |
| 722     | DI2 Configure    | Preset 2    | 81       |
| 723     | DI3 Configure    | Preset 3    | 81       |
| 724     | DI4 Configure    | Ref Switch  | 81       |
| 725     | DI5 Configure    | PI Enable   | 81       |
| 803     | PWM Frequency    | 16.0 kHz    | 83       |
| 804     | Display Mode     | Output Freq | 84       |

Table 19:Fan with PI Application Macro (Core Factory Application from Table 17, plus the following parameters)

| Para. # | Parameter Name | Default | See Page |
|---------|----------------|---------|----------|
| 850     | PI Configure   | No PI   | 86       |
| 851     | PI Feedback    | Vin1    | 87       |
| 852     | PI Prop Gain   | 0       | 87       |
| 853     | PI Int Gain    | 0       | 87       |
| 854     | PI Feed Gain   | 1000    | 87       |
| 857     | Pl High Corr   | 100.00  | 87       |
| 858     | PI Low Corr    | 0.00%   | 87       |

Table 19:Fan with PI Application Macro (Core Factory Application from Table 17, plus the following parameters)

| Para. # | Parameter Name  | Default     | See Page |
|---------|-----------------|-------------|----------|
| 203     | Stop Key Remote | Coast       | 63       |
| 204     | Ref Select      | Vin1        | 63       |
| 205     | Vin1 Config     | 0-10 V      | 64       |
| 206     | Vin1 Offset     | 0.00%       | 64       |
| 207     | Vin1 Span       | 100.00%     | 64       |
| 401     | Ramp Select     | ART-DI      | 67       |
| 501     | V/Hz Select     | Pump Fxd    | 71       |
| 608     | Restart Number  | 0           | 78       |
| 609     | Restart Delay   | 60 sec      | 78       |
| 702     | Imet Config     | Current Out | 80       |
| 703     | Imet Span       | 100.0%      | 80       |
| 704     | Imet Offset     | 0.0%        | 80       |
| 721     | DI1 Configure   | Preset 1    | 81       |
| 722     | DI2 Configure   | Preset 2    | 81       |
| 723     | DI3 Configure   | Preset 3    | 81       |
| 724     | DI4 Configure   | Ref Switch  | 81       |
| 725     | DI5 Configure   | Fault Reset | 81       |
| 803     | PWM Frequency   | 16.0 kHz    | 83       |
| 804     | Display Mode    | Output Freq | 84       |

Table 20:Pump Application Macro (Core Factory Application from Table 17, plus the following parameters)

| Para. # | Parameter Name  | Default    | See Page |
|---------|-----------------|------------|----------|
| 203     | Stop Key Remote | Coast      | 63       |
| 204     | Ref Select      | Vin1       | 63       |
| 205     | Vin1 Config     | 0-10 V     | 64       |
| 206     | Vin1 Offset     | 0.00%      | 64       |
| 207     | Vin1 Span       | 100.00%    | 64       |
| 208     | Cin Config      | 0-20 mA 50 | 64       |
| 209     | Cin Offset      | 0.0%       | 65       |
| 210     | Cin Span        | 100.0%     | 65       |
| 211     | Vin2 Config     | 0-10 V     | 65       |
| 212     | Vin2 Offset     | 0.00%      | 65       |
| 213     | Vin2 Span       | 100.00%    | 65       |

Table 21:Pump with PI Application Macro (Core Factory Application from Table 17, plus the following parameters)

| Para. # | Parameter Name   | Default     | See Page |
|---------|------------------|-------------|----------|
| 401     | Ramp Select      | ART-DI      | 67       |
| 406     | DC Inject Config | DC at Stop  | 69       |
| 501     | V/Hz Select      | Pump Fxd    | 71       |
| 504     | Skip Freq Band   | 0.2 Hz      | 72       |
| 505     | Skip Freq 1      | 0.0 Hz      | 72       |
| 608     | Restart Number   | 0           | 78       |
| 609     | Restart Delay    | 60 sec      | 78       |
| 702     | Imet Config      | Current Out | 80       |
| 703     | Imet Span        | 100.0%      | 80       |
| 704     | Imet Offset      | 0.0%        | 80       |
| 721     | DI1 Configure    | Preset 1    | 81       |
| 722     | DI2 Configure    | Preset 2    | 81       |
| 723     | DI3 Configure    | Preset 3    | 81       |
| 724     | DI4 Configure    | Ref Switch  | 81       |
| 725     | DI5 Configure    | PI Enable   | 81       |
| 803     | PWM Frequency    | 16.0 kHz    | 83       |
| 804     | Display Mode     | Output Freq | 84       |
| 850     | PI Configure     | No PI       | 86       |
| 851     | PI Feedback      | Vin1        | 87       |
| 852     | PI Prop Gain     | 0           | 87       |
| 853     | PI Int Gain      | 0           | 87       |
| 854     | PI Feed Gain     | 1000        | 87       |
| 857     | PI High Corr     | 100.00      | 87       |
| 858     | PI Low Corr      | 0.00%       | 87       |

Table 21:Pump with PI Application Macro (Core Factory Application from Table 17, plus the following parameters)

| Para. # | Parameter Name   | Default         | See Page |
|---------|------------------|-----------------|----------|
| 501     | V/Hz Select      | Vector          | 71       |
| 509     | Rated Mtr Volt   | Model dependent | 73       |
| 510     | Rated Mtr FLA    | ND rating       | 73       |
| 511     | Rated Mtr RPM    | 1750 rpm        | 73       |
| 514     | Motor RS         | Model dependent | 73       |
| 515     | Power Factor     | 0.8             | 73       |
| 516     | Slip Comp Enable | No              | 74       |
| 519     | Find Mtr Data    | Not Active      | 74       |
| 520     | Filter FStator   | 8 mS            | 74       |
| 521     | Start Field En   | No              | 74       |
| 522     | Filter Time Slip | 100 mS          | 75       |
| 523     | Id Percent       | Read-only       | 75       |
| 524     | Iq Percent       | Read-only       | 75       |
| 803     | PWM Frequency    | 3.0 kHz         | 83       |
| 804     | Display Mode     | Std Display     | 84       |

Table 22:Vector Application Macro (Core Factory Application from Table 17, plus the following parameters)

### 6.4 Quick Start

The following procedure is for operators using simple applications, who would like to get started quickly. Be sure to read and understand all the sections in this chapter before proceeding with these instructions. If you are using remote operators, substitute the speed potentiometer for the INC and DEC keys (up and down arrows), and the remote Run/Stop switch for the FWD key in the following instructions.



- 1. Follow all precautions and procedures in "Receiving and Installation" on page 19.
- Find the motor nameplate, and using parameters 509 (Rated Mtr Volt), 510 (Rated Mtr FLA), 511 (Rated Mtr RPM), and 515 (Power Factor), set up the motor parameters appropriately. Parameter 514 (Motor RS) should also be set up accurately so the drive can run its routine to measure motor stator resistance. (See "Measuring Stator Resistance (RS Measurement)" on page 46.
- Apply AC power to the input terminals. For about 2 seconds the display will show all segments active. The display then changes to zeros.
- The factory settings are for keypad-only operation in the forward direction that is, the REV key is disabled. Press the FWD key, which causes the FWD indicator to illuminate.
- Press the INC key to increase the desired running frequency. When the display gets to 0.1 Hz, the drive starts to produce an output.
- When the motor starts to turn, check the rotation. If the motor is turning in the wrong direction, press STOP, remove AC power, and wait for all indicators to go out. After the STATUS indicator has gone out, reverse any two of the motor leads at T1/ U.T2/N. or T3/M.
- The Vacon 50X drive is preset to run a typical NEMA B 4-pole induction motor to a maximum speed of 60.0 Hz with both acceleration and deceleration times set to 5.0 seconds.
- 8. Use the INC and DEC keys to set the proper running speed of the motor and the FWD and STOP keys to control its operation.

#### 7. Vacon 50X Parameters

#### 7.1 Introduction

The Vacon 50X AC drive incorporates a comprehensive set of parameters that allow you to configure the device to meet the special requirements of your particular application.

Note that pressing the PROG key enters Level 1 programming. Press SHIFT+PROG to enter Level 2 programming. Press ENTER+PROG to show only those parameters that have changed from the factory default values.

This chapter describes the available parameters and the values that may be assigned to them. The parameter summary table on page 113 provides a summary of all parameters including their ranges and default values.

#### 7.2 Level 1 Parameters

The most commonly configured Vacon 50X parameters are stored in a group named Level 1. This group is easily accessed by pressing the PROG key as described in "Keypad Operation and Programming" on page 39. The following table lists the parameters in this group; for further information on the parameter, please turn to the indicated page.

| Para. # | Parameter Name | See<br>Page | Para. # | Parameter Name  | See<br>Page |
|---------|----------------|-------------|---------|-----------------|-------------|
| 001     | Model Number   | 60          | 301     | Min Frequency   | 67          |
| 010     | Last Fault     | 60          | 302     | Max Frequency   | 67          |
| 102     | Output Freq    | 61          | 303     | Preset Freq 1   | 67          |
| 103     | Output Voltage | 61          | 402     | Accel Time 1    | 68          |
| 104     | Output Current | 61          | 403     | Decel Time 1    | 68          |
| 105     | Drive Load     | 61          | 502     | Voltage Boost   | 72          |
| 106     | Load Torque    | 61          | 610     | Timed OL Select | 78          |
| 107     | Drive Temp     | 61          | 700     | Vmet Config     | 79          |
| 111     | DC Bus Voltage | 62          | 705     | Relay 1 Select  | 80          |
| 201     | Input Mode     | 62          | 706     | Relay 2 Select  | 80          |
| 202     | Rev Enable     | 63          |         |                 |             |

Table 23:Parameters Available in Level 1 Programming (Factory Macro)

## 7.3 Description of Parameters

This chapter lists the Vacon 50X parameters in the order in which they appear in the keypad display. For each parameter, the table lists the default value and range as well as describes the use of the parameter.

| 001 Model Number | Read-Only | Range: Text string<br>Levels 1, 2 |
|------------------|-----------|-----------------------------------|
|------------------|-----------|-----------------------------------|

Parameter 001, the Model Number parameter, contains the portion of the Vacon 50X model number related to voltage and horsepower. The number format is whhf, where w is the code for the input voltage  $\{20 = 230 \text{ Vac}$ , three-phase; 40 = 460 Vac, three-phase; 50 = 575 Vac, three-phase); hh is horsepower; and f is the fractional part of the horsepower. Example: 20020 = 230 Vac, three-phase, 2.0 hp model.

| 002 Software Rev Read-O | Range: 0.00–99.99<br>Level 2 |
|-------------------------|------------------------------|
|-------------------------|------------------------------|

Parameter 002, the Software Revision parameter, displays the software revision that is installed in the drive.

Options: 0.00-99.99

| 003 Rated Current | Read-Only | Range: 0.0–200.0 A<br>Level 2 |
|-------------------|-----------|-------------------------------|

Parameter 003, the Rated Current parameter, displays the normal duty current rating of the model of drive.

| 005 Serial No 1 | Read-Only | Range: 0–65535<br>Level 2 |
|-----------------|-----------|---------------------------|

Parameter 005, Serial No 1, contains a number that corresponds to the year and week in which the drive was manufactured.

| 006 Serial No 2 Read-Only Range: 0-65535 |
|------------------------------------------|
|------------------------------------------|

Parameter 006, Serial No 2, contains a number that determines the number of the drive that was manufactured during the week of Serial No 1. Options: 0.00-99.99

| 010 Last Fault Read-Only Range: Text string Levels 1, 2 |
|---------------------------------------------------------|
|---------------------------------------------------------|

Parameter 010, Last Fault, lists the fault that occurred most recently. For more information, refer to Chapter 8, "Troubleshooting", beginning on page 101.

| 025 4th Fault | Read-Only | Range: Text string<br>Level 2 |
|---------------|-----------|-------------------------------|
|---------------|-----------|-------------------------------|

Parameter 025, 4th Fault, lists the fault that occurred 1 before the last fault. For more information, refer to Chapter 8, "Troubleshooting", beginning on page 101.

| 040 3rd Fault | Read-Only | Range: Text string<br>Level 2 |
|---------------|-----------|-------------------------------|
|---------------|-----------|-------------------------------|

Parameter 040, 3rd Fault, lists the fault that occurred 2 before the last. For more information, refer to Chapter 8, "Troubleshooting", beginning on page 101.

| 055 2nd Fault | Read-Only | Range: Text string<br>Level 2 |
|---------------|-----------|-------------------------------|
|---------------|-----------|-------------------------------|

Parameter 055, 2nd Fault, lists the fault that occurred 3 before the last. For more information, refer to Chapter 8, "Troubleshooting", beginning on page 101.

| 070 1st Fault | Read-Only | Range: 0–65535<br>Level 2 |
|---------------|-----------|---------------------------|
|---------------|-----------|---------------------------|

Parameter 070, 1st Fault, lists the fault that occurred 4 before the last. For more information, refer to Chapter 8, "Troubleshooting", beginning on page 101.

| 102 Output Freq | Read-Only | Range: 0.0–400.0 Hz<br>Levels 1, 2 |
|-----------------|-----------|------------------------------------|

Parameter 102, the Output Frequency parameter, shows the frequency being applied to the motor connected to the drive (ramp).

| 103 Output Voltage | Read-Only | Range: 0–600 V<br>Levels 1, 2 |
|--------------------|-----------|-------------------------------|
|--------------------|-----------|-------------------------------|

Parameter 103, the Output Voltage parameter, displays the output voltage of the drive.

| 104 Output Current | Read-Only | Range: 0.0–200.0 A<br>Levels 1, 2 |
|--------------------|-----------|-----------------------------------|
|--------------------|-----------|-----------------------------------|

Parameter 104, the Output Current parameter, displays the output current of the drive.

| 105 Drive Load | Read-Only | Range: –200.0 to 200.0%<br>Levels 1, 2 |
|----------------|-----------|----------------------------------------|
|----------------|-----------|----------------------------------------|

Parameter 105, the Drive Load parameter, shows the percentage torque of the drive when operating below the knee frequency. It displays Load Torque if the frequency is below FKNEE, and displays Power if above FKNEE.

The output current is measured with the motor power factor applied to an accuracy of  $\pm 20\%$ . The parameter value is positive when the motor is pulling a load ("motoring mode") and negative when being pulled by a load ("regenerative mode").

| 106 Load Torque | Read-Only | Range: -200.0200.0%<br>Levels 1, 2 |
|-----------------|-----------|------------------------------------|
|-----------------|-----------|------------------------------------|

Parameter 106, the Load Torque parameter, displays the load torque of the drive.

| 107 Drive Temp   Read-Only   Range: -20.0200.0 °C   Levels 1, 2 |
|-----------------------------------------------------------------|
|-----------------------------------------------------------------|

Parameter 107, the Drive Temp parameter, shows the actual temperature of the drive's heatsink. The drive will fault when the internal temperature reaches 85  $^{\circ}$ C.

| 108 Total Run Time | Read-Only | Range: 0.0–6553.5 h<br>Level 2 |
|--------------------|-----------|--------------------------------|
|--------------------|-----------|--------------------------------|

Parameter 108, Total Run Time, is a resettable timer for drive operation. To reset the timer, enter 10 in parameter 801, Program Number.

| 109 Power On Hours | Read-Only | Range: 0–65535 h<br>Level 2 |
|--------------------|-----------|-----------------------------|
|--------------------|-----------|-----------------------------|

Parameter 109, Power On Hours, displays how long the drive has been powered up.

| 110 Stator Freq | Read-Only | Range: 0.0–400.0 Hz<br>Level 2 |
|-----------------|-----------|--------------------------------|
|-----------------|-----------|--------------------------------|

Parameter 110, Stator Frequency, displays the frequency the drive is applying to the motor stator

| 111 DC Bus Voltage | Read-Only | Range: 0–1000 Vdc<br>Levels 1, 2 |  |
|--------------------|-----------|----------------------------------|--|
|--------------------|-----------|----------------------------------|--|

Parameter 111, DC Bus Voltage, displays the voltage on the DC bus.

| 115 Drive Power Out | Read-()nly | Range: 0.0–200.0%<br>Level 2 |
|---------------------|------------|------------------------------|
|---------------------|------------|------------------------------|

This parameter displays the power being output by the drive in terms of drive rating. The measurement is calculated by scaling the Load Torque value by the ratio of Volt-Amps to Rated Volt-Amps, and adjusted by Output Frequency.

| 201 Input Mode | Default = Local only | Range: Text string<br>Levels 1, 2 |
|----------------|----------------------|-----------------------------------|

Parameter 201, the Input Mode parameter, configures local and remote control of the Start/Stop source and the reference source.

The following data values may be assigned to this parameter:

Run/Stop Control Parameter Value

Local only Local keypad operation only Remote only Terminal strip operation only

L/R Rem Ref LOCal Keypad Start/Stop and Speed

REMote Keypad Start/Stop, Terminal Strip Speed Reference

L/R Rem Ctl LOCal Keypad Start/Stop and Speed

REMote Keypad Speed Reference, Terminal Strip Start/Stop

L/R Rem Bth

LOCal Keypad Start/Stop and Speed REMote Terminal Strip Start/Stop and Speed Reference

EMOP<sup>{1} {2} {4}</sup> Terminal strip operation using Increase/Decrease buttons EMOP2<sup>{1} {3} {4}</sup> Terminal strip operation using Increase/Decrease buttons

LOC/EMOP<sup>{1} {2} {4}</sup> LOCal Keypad Start/Stop and Speed

REMote Terminal strip operation using Increase/Decrease LOC/EMOP2<sup>{1} {3} {4}</sup>

LOCal Keypad Start/Stop and Speed

REMote Terminal strip operation using Increase/Decrease

## NOTES:

- Electronic Motor Operated Potentiometer (EMOP): simulates the INC/DEC keys on keypad using external remote N/O pushbuttons
- Commanded output frequency returns to the value of parameter 301 (Min Frequency) when the drive is stopped.
- Commanded output frequency remains at the previous setpoint when the drive is stopped.
- The parameters that set the functions of the designated digital inputs for EMOP must be configured as "EMOP+" and "EMOP-" to complete the implementation.

| 202 Rev Enable | Default = Forward | Range: Text string<br>Levels 1, 2 |
|----------------|-------------------|-----------------------------------|
|----------------|-------------------|-----------------------------------|

Parameter 202, the Rev Enable parameter, configures whether the REV key on the keypad is functional. If this parameter is configured to "Forward," then pressing the REV key on the keypad will have no effect. Note that this parameter does not affect terminal strip

The following data values may be assigned to this parameter:

Parameter Value Description

Forward Only, REV key disabled FWD/REV FWD and REV keys enabled

| 203 Stop Key Remote | Default = Coast | Range: Text string<br>Level 2 |
|---------------------|-----------------|-------------------------------|
|---------------------|-----------------|-------------------------------|

Parameter 203, the Stop Key Remote parameter, configures how the Stop key on the keypad will operate when the keypad is not the drive's control source (terminals, SIO, or SEQ). The following data values may be assigned to this parameter:

Parameter Value Description

Coast Drive will coast to a stop

Ramp Drive will ramp to a stop using Decel #1

Disabled Stop key will have no function

| 204 Ref Select | Default = Vin1 | Range: Text string<br>Level 2 |
|----------------|----------------|-------------------------------|
|----------------|----------------|-------------------------------|

Parameter 204, the Ref Select parameter, configures how the reference is determined when the reference source is configured to terminals. The following data values may be assigned to this parameter:

Parameter Value Description

Vin1 Vin1 terminal (configured by parameter 205)
Cin Cin terminal (configured by parameter 208)
Vin2 Vin2 terminal (configured by parameter 211)

Vin1 6FS Vin1 terminal with 6x pulse train from an Vacon 50X, WFC,

WF2 drive

Vin1 48FS Vin1 terminal with 48x pulse train from an Vacon 50X, WFC,

WF2 drive

Vin1+Cin Sum of signal at Vin1 and the signal at Cin Vin1+Vin2 Sum of signal at Vin1 and the signal at Vin2

Vin1-Cin Difference between the signal at Vin and the signal at Cin
Vin1-Vin2 Difference between the signal at Vin and the signal at Vin2

Max Input<sup>{2}</sup>
Greatest signal between Vin, Vin2 and Cin
Vin1/Cin Dl<sup>{1}</sup>
Switch between Vin and Cin using a Digital Input
Vin1/2 Dl<sup>{1}</sup>
Switch between Vin and Vin2 using a Digital Input

Vin1/KYP DI<sup>{1}</sup> Switch between Vin and Keypad reference using Digital Input
Cin/KYP DI<sup>{1}</sup> Switch between Cin and Keypad reference using Digital Input

#### NOTES:

- The parameter that sets the function of the designated digital input must be configured as "Ref Switch" to complete the implementation.
- The "Max Input" option will compare the inputs of all three analog inputs (Vin1, Vin2, Cin) and take the analog input with the highest percentage input after span, offset, and inversion is applied.
- 3. When using a 6FS or 48FS signal, parameter 205 should be set to 0-10V.

| 205 Vin1 Config | Default = 0-10V | Range: Text string<br>Level 2 |
|-----------------|-----------------|-------------------------------|
|-----------------|-----------------|-------------------------------|

Parameter 205, Vin1 Config, selects the type of signal for analog input Vin1. Vin1 can be voltage, current, or pulse train input. This parameter also determines input range, impedance, and characteristics. Use Parameters 206 (Vin1 Offset) and 207 (Vin1 Span) to customize the selected range. The following data values may be assigned to this param-

Parameter Value Description 0-10V 0-10 Vdc signal

0-10V Brk W 0-10 Vdc signal with broken wire detection for speed pot op-

eration

0\_10V I 0-10 Vdc signal Inverted

0-10 Vdc signal (5 Vdc is stop with 0 Vdc Full Rev and 10 Vdc 0-10V Bipol

Full FWD)

0-5V 0-5 Vdc signal

0-5V I 0-5 Vdc signal Inverted

0-20mA 250 0 to 20 mA current signal with 250 0hm load 0-20mA 250I 0 to 20 mA current signal with 250 0hm load Inverted 4-20mA 250 4 to 20 mA current signal with 250 0hm load 4-20mA 250I 4 to 20 mA current signal with 250 0hm load Inverted

PT 0-1kHz 0 to 1 kHz pulse train

PT 0-10kHz 0 to 10 kHz pulse train PT 0-100kHz 0 to 100 kHz pulse train

When the signal range is inverted (that is, the minimum input corresponds to the maximum output, while the maximum input corresponds to the minimum output).

|                 |                 | D 0.0 400 00/                |
|-----------------|-----------------|------------------------------|
| 206 Vin1 Offset | Default = 0.00% | Range: 0.0–100.0%<br>Level 2 |

Parameter 206, Vin1 Offset, configures the input range (offset) for analog input Vin1 that will affect speed or torque limit functions. It is expressed as a percentage of the maximum value of the input signal.

Note that if the input signal drops below the offset value or if the input signal is lost (if no offset is configured), fault 22 will be generated. See parameter 222 for options related to the drive's response to loss of input signal.

|               |                | D 40.0.000.00/                |
|---------------|----------------|-------------------------------|
| 207 Vin1 Span | Default = 100% | Range: 10.0–200.0%<br>Level 2 |

Parameter 207, the Vin1 Span parameter, is used to alter the input range (span) of the input signal for analog input Vin1 that will affect speed or torque limit functions. For example, if parameter 205, Vin1 Config, selects the 0 to 10 Vdc input signal, setting this parameter to 50% reduces it to 0 to 5 Vdc.

| 208 Cin Config | Default = 0-20 mA 50 | Range: Text string<br>Level 2 |
|----------------|----------------------|-------------------------------|
|----------------|----------------------|-------------------------------|

Parameter 208, Cin Config, selects the type of signal for analog input Cin. Parameters 209 (Cin Offset) and 210 (Cin Span) may be used to customize the selected range. The following data values may be assigned to this parameter:

Parameter Value Description

4-20mA 50 4 to 20 mA current signal with 50 0hm load 4-20m4 50I 4 to 20 mA current signal with 50 0hm load Inverted 0-20mA 50 0 to 20 mA current signal with 50 0hm load

0-20mA 50I 0 to 20 mA current signal with 50 0hm load Inverted

When the signal range is inverted (that is, the minimum input corresponds to the maximum output, while the maximum input corresponds to the minimum output).

| 209 Cin Offset Default = 0.0% | Range: 0.0–100.0%<br>Level 2 |
|-------------------------------|------------------------------|
|-------------------------------|------------------------------|

Parameter 209, Cin Offset, configures the offset for analog input Cin expressed as a percentage of the maximum value of the input signal. Note that if the input signal drops below the offset value or if the input signal is lost (if no offset is configured), a fault will be generated.

| 210 Cin Span |  | Range: 10.0–200.0%<br>Level 2 |
|--------------|--|-------------------------------|
|--------------|--|-------------------------------|

Parameter 210, Cin Span, is used to alter the range of the input signal for analog input Cin. For example, if parameter 208 (Cin Config) selects the 0 to 20 mA input signal, setting this parameter to 50% reduces it to 0 to 10 mA.

| 211 Vin2 Config Default = 0-10 V | Range: Text string<br>Level 2 |
|----------------------------------|-------------------------------|
|----------------------------------|-------------------------------|

Parameter 211, Vin2 Config, selects the type of signal for analog input Vin2. Parameters 212 (Vin2 Offset) and 213 (Vin2 Span) may be used to customize the selected range. The following data values may be assigned to this parameter:

| Parameter Value | Description     |
|-----------------|-----------------|
| 0-10V           | 0-10 Vdc signal |
|                 |                 |

0-10V Brk W 0-10 Vdc signal with broken wire detection for speed pot operation

0-10 Vdc signal inverted

N-10V I 0-10V Bipol

0-10 Vdc signal (5 Vdc is stop with 0 Vdc Full REV and 10 Vdc Full FWD

0-5V 0-5 Vdc signal

0-5V I 0-5 Vdc signal inverted

| 212 Vin2 Offset | Default = 0.0% | Range: 0.0–100.0%<br>Level 2 |
|-----------------|----------------|------------------------------|
|-----------------|----------------|------------------------------|

Parameter 212, Vin2 Offset, configures the offset for analog input Vin2 expressed as a percentage of the maximum value of the input signal. Note that if the input signal drops below the offset value or if the input signal is lost (if no offset is configured), a fault will be generated.

| 213 Vin2 Span | Default = 100% | Range: 10.0–200.0%<br>Level 2 |
|---------------|----------------|-------------------------------|
|---------------|----------------|-------------------------------|

Parameter 213, Vin2 Span, is used to alter the range of the input signal for analog input Vin2. For example, if parameter 211 (Vin2 Config) selects the 0 to 10 Vdc input signal, setting this parameter to 50% reduces it to 0 to 5 Vdc.

| 214 Vin1 Filter Time | Default = 20 ms | Range: 0–1000 ms<br>Level 2 |
|----------------------|-----------------|-----------------------------|
|----------------------|-----------------|-----------------------------|

This parameter configures the time constant of a first-order filter of the Vin1 analog input. When this parameter is a value of 0 ms there is no software filtering of the analog input. Note that long filter times will create a delay in the drive response to signal chang-

| 215 Cin Filter Time | Default = 20 ms | Range: 0–1000 ms<br>Level 2 |
|---------------------|-----------------|-----------------------------|
|                     |                 | Level 2                     |

This parameter configures the time constant of a first-order filter of the Cin analog input. When this parameter is a value of 0 ms there is no software filtering of the analog input. Note that long filter times will create a delay in the drive response to signal changes.

| 216 Vin2 Filter Time | Default = 20 ms | Range: 0–1000 ms<br>Level 2 |
|----------------------|-----------------|-----------------------------|
|----------------------|-----------------|-----------------------------|

This parameter configures the time constant of a first-order filter of the Vin2 analog input. When this parameter is a value of 0 ms there is no software filtering of the analog input. Note that long filter times will create a delay in the drive response to signal chang-

| OAR Tains Dad Freshler | District Disabled  | Range: Text string |
|------------------------|--------------------|--------------------|
| 217 Trim Ref Enable    | Default = Disabled | Level 2            |

This parameter enables or disables trimming of the drive reference by an analog input and selects which analog input will perform the trimming function. Speed Ref. = Main ref.+(Trim % Factor) x value of parameter 217 x Max Frequency

100% Parameter Value Description

Disabled

No trimming of drive reference

Vin1 Value of Vin1 will be used in the calculation above Vin2 Value of Vin2 will be used in the calculation above Cin Value of Cin will be used in the calculation above

Fxd Trim % Value of Fxd Trim % will be used

Drive Ref. = Drive ref.+ (Trim % Factor) x Max Frequency

Note that setting a parameter for a Bipolar input value allows trimming both positive and negative around the reference value.

| 218 Trim % Factor | Default = 0.0% | Range: –100.0 to 100.0%<br>Level 2 |
|-------------------|----------------|------------------------------------|

This parameter determines the percentage of the analog input signal selected in Parameter 217, Trim Ref Enable, that will affect the reference signal.

| 222 Ref Loss Fault | Default = Disabled | Range: Text string<br>Level 2 |
|--------------------|--------------------|-------------------------------|
|--------------------|--------------------|-------------------------------|

This parameter allows for the control of the drive's response to a 4-20mA input on either the Vin1 or Cin input terminals when the input drops below approximately 3mA. The default value is No Fault. The options for this parameter are:

Retain Spd Hold the last operating speed

Preset Spd2 Go to the speed programmed at address 304

Fault Drive faults with an F22 Reference Loss indication

No Fault Drive does NOT fault; operating frequency drops to the limit set at Parameter 301, Min Frequency

| 301 Min Frequency | Default = 0.0% | Range: 0.0–Max Freq<br>Level 1 |
|-------------------|----------------|--------------------------------|
|-------------------|----------------|--------------------------------|

Parameter 301, Minimum Frequency, configures the minimum frequency output of the drive. This parameter governs the minimum frequency when operating from the keypad or from an analog input. The preset speeds can be set lower than the minimum frequency in parameter 301.

| 302 Max Frequency | Default: 50 Hz | Range: 0.0–400.0 Hz<br>Level 1 |
|-------------------|----------------|--------------------------------|
|-------------------|----------------|--------------------------------|

Parameter 302, the Maximum Frequency parameter, configures the maximum frequency output of the drive.

| 303 Preset Freq 1 [Jog Ref] 304 Preset Freq 2 305 Preset Freq 3 306 Preset Freq 4 307 Preset Freq 5 308 Preset Freq 6 | Default: 5 Hz<br>Default: 10 Hz<br>Default: 20 Hz<br>Default: 30 Hz<br>Default: 40 Hz<br>Default: 50 Hz | Range: Min-Max Freq<br>Levels 1, 2 for 303<br>Level 2 for 304–308 |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|

These parameters configure six preset speeds in addition to the normal reference speed of the drive (as defined by parameters 201 (Input Mode) and 204 (Ref Select) and the maximum frequency of the drive (as set with parameter 302, Max Frequency). Thus, in effect, you may choose to operate the drive at up to eight different speeds.

The eight speeds are selected by a combination of three digital inputs (PS1, PS2, PS3). A wiring scheme for utilizing preset speeds is provided on page 24 along with a truth table showing what combination of inputs results in the selection of which speeds.

Note that parameter Parameter 303 (Preset Freq1) also serves as the reference frequency for jogging.

| 309 Cut-Off Freq | Default = 0.0 Hz | Range: 0.0–5.0 Hz<br>Level 2 |
|------------------|------------------|------------------------------|
|------------------|------------------|------------------------------|

This parameter sets the point where the drive no longer attempts to spin the motor. The range of this parameter is 0.0–5.0 Hz. When the parameter is configured to a value of 0.0 Hz, the drive will operate with no Cut-off Frequency. If the function is enabled, the drive will be able to ramp up through the cut-off frequency range, as in normal operation. If the speed command falls below the cut-off frequency, the drive stops "gating" the outputs and coasts down to zero speed. The keypad display will indicate Zero Speed, and the Forward or Reverse LED will be lit depending on the command. When the reference returns to a value greater than the cut-off frequency, the drive will ramp from 0.0 Hz to the reference frequency.

| 401 Ramp Select Default: ART-DI Range: Text string Level 2 |
|------------------------------------------------------------|
|------------------------------------------------------------|

The Ramp Select parameter configures when the alternate ramps of the drive will be active and whether the drive ramps to stop, or coasts to stop. The following data values may be assigned to this parameter:

| Parameter Value | Type of Ramp | Ramp Configured by:                       |
|-----------------|--------------|-------------------------------------------|
| ART-DI          | Ramp-to-Stop | 402 (Accel Time 1) and 403 (Decel Time 1) |

| AF               | RT-F/R              | Ramp-to-Stop         | 403 (De<br>Runnin                                   | g forward: 402 (Accel Time 1) and<br>icel Time 1).<br>g reverse: 404 (Accel Time 2) and<br>icel Time 2)                                                                                                                                          |
|------------------|---------------------|----------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Af               | RT-Frq              | Ramp-to-Stop         | frequer<br>the acti<br>and 403<br>quency<br>(Preset | utput frequency is less than preset ncy parameter 308 (Preset Freq 6), we ramp is set by 402 Accel Time 1 8 Decel Time 1 11 the output freis equal to or greater than 308 Freq 6), the active ramp is set by cel Time 2) and 405 (Decel Time 2). |
| Af               | RT-Strt/RS          | Ramp-to-Stop         | Acceler<br>speed,<br>eters 40<br>adjuste<br>nate De | tting uses the Alternate Ramp for ration (parameter 404) to the set then uses the Main ramps (param-<br>02 and 403) when the speeds are d. The drive will revert to the Alter-<br>10 the properties of the parameter 405) when a mand is given.  |
| S-               | Curve               | Ramp-to-Stop         | (Decel 3<br>S Ramp<br>rounding                      | ve uses 402 (Accel Time 1) and 403<br>Fime 1) for total time and 414 as the<br>Rounding value. The amount of<br>g is the same for that start and<br>the ramp time.                                                                               |
| Al               | RT-DI CTS           | Coast-to-Stop        | Same a                                              | as ART-DI but with Coast-to-Stop                                                                                                                                                                                                                 |
| AF               | RT-F/R CTS          | Coast-to-Stop        | Same a                                              | s ART-F/R but with Coast-to-Stop                                                                                                                                                                                                                 |
| AF               | RT-Frq CTS          | Coast-to-Stop        | Same a                                              | s ART-Frq but with Coast-to-Stop                                                                                                                                                                                                                 |
| AF               | RT-Str/CS           | Coast-to-Stop        | Same a                                              | s ART-Strt but with Coast-to-Stop                                                                                                                                                                                                                |
| AF               | RT-STR/CTS          | Coast-to-Stop        | Same a                                              | s S-Curve but with Coast-to-Stop                                                                                                                                                                                                                 |
| 402 Accel Time 1 |                     | Default: 5.0 s       |                                                     | Range: 0.1–3200.0 s<br>Levels 1, 2                                                                                                                                                                                                               |
| Th               | is naramatar config | uras tha dafault lar | ath of t                                            | ima ta aggalarata from 0 Hz to the value                                                                                                                                                                                                         |

This parameter configures the default length of time to accelerate from 0 Hz to the value of parameter 302 (Max Frequency). This acceleration ramp is selected by parameter 401 (Ramp Select).

Note that extremely short acceleration times may result in nuisance fault trips.

| 403 Decel Time 1 | Default: 5.0 s | Range: 0.1–3200.0 s<br>Levels 1, 2 |
|------------------|----------------|------------------------------------|
|------------------|----------------|------------------------------------|

This parameter configures the default length of time to decelerate from the value of parameter 302 (Max Frequency) to 0 Hz. The deceleration ramp is selected by Parameter 401 (Ramp Select).

Note that extremely short deceleration times may result in nuisance fault trips or may require an external dynamic brake or regen current limit.

|                  | ı              | Range: 0.1-3200.0 s |
|------------------|----------------|---------------------|
| 404 Accel Time 2 | Detault: 3 Dis | Level 2             |

This parameter provides an alternate ramping time for the drive when accelerating, configuring the length of time to accelerate from 0 Hz to the value of parameter 302 (Max Frequency). This acceleration ramp is selected by parameter 401 (Ramp Select) or Sequencer Configuration.

Note that extremely short acceleration times may result in nuisance fault trips.

| 405 Decel Time 2 | Default: 3.0 s | Range: 0.1–3200.0 s<br>Level 2 |
|------------------|----------------|--------------------------------|
|------------------|----------------|--------------------------------|

This parameter provides an alternate ramping time for the drive when decelerating, configuring the length of time to decelerate from the value of parameter 302 (Max Frequency) to 0 Hz. This deceleration ramp is selected by parameter 401 (Ramp Select) or Sequencer Configuration.

Note that extremely short deceleration times may result in nuisance fault trips or may require an external dynamic brake or regen current limit.

| 406 DC Inject Config | Default: DC at Stop | Range: Text string<br>Level 2 |
|----------------------|---------------------|-------------------------------|
|----------------------|---------------------|-------------------------------|

DC injection braking may be used to stop the motor more quickly than is possible by either a ramp-to-stop or a coast to-stop. The Vacon 50X drive allows DC braking to be initiated either when a digital input assigned to DC braking becomes true, when a specified frequency is reached, or when either of these events occurs.

When using a digital input for DC braking, you must use one of the DI parameters to configure the selected digital input for DC braking. The amount of braking force is set by parameter 408 (DC Inject Level). The length of time that the braking force is applied is determined by the time that the selected digital input is active. The second type of DC injection braking supported by the Vacon 50X drive is where DC braking occurs at a specified frequency. The duration of the braking is adjusted by parameter 407 (DC Inject Time). With this type of braking, as the drive slows down after a Stop command, DC braking begins when the frequency reaches the value set in parameter 409 (DC Inj Freq). If the frequency at the time of a Stop command is less than that of DC Inj Freq, DC braking begins immediately. The braking continues for the time period specified by parameter DC Inj Time. Once the time period elapses, the drive may be restarted.

| Parameter Value | <u>Description</u>                    |
|-----------------|---------------------------------------|
| DC at Stop      | DC inject only on Stop                |
| DC at Start     | DC inject only on Start               |
| DC at Both      | DC inject only on both Start and Stop |

DC on Freq DC inject only on Stop below the set frequency

| 407 DC Inject Time | Default: 0.2 sec | Range: 0.0 to 5.0 sec<br>Level 2 |
|--------------------|------------------|----------------------------------|
|--------------------|------------------|----------------------------------|

If parameter 406 is set to DC at Stop (see page 69), direct current is applied to the motor. This parameter, DC Inject Time, determines how long the direct current will be applied, and how long DC is applied at Start if programmed accordingly.

This parameter works in tandem with parameter 410 (DC Inject Config) and the other parameters associated with DC Inject Config. That is, the time period configured by this parameter, DC Inject Time, determines how long DC injection braking will be active. When DC injection braking is controlled by a digital input, the braking continues for as long as the digital input is true, plus the time set by parameter 407 (DC Inject Time). When it is controlled by frequency, however, it continues for the length of time once the drive reaches the frequency set by parameter 409 (DC Inj Freq).

| 408 DC Inject Level | Detault: 50 0% | Range: 0.0% to 100.0%<br>Level 2 |
|---------------------|----------------|----------------------------------|
|---------------------|----------------|----------------------------------|

Configures the amount of DC injection that will occur when direct current is injected into the motor windings, which acts as a braking force. The amount of current is expressed as a percentage of nominal motor current. The braking force may be applied when starting or stopping. If this parameter is set to 0.0%, the DC injection is disabled.

| 409 DC Inj Freq | Default: 0 Hz | Range: 0.0 to 20.0 Hz<br>Level 2 |
|-----------------|---------------|----------------------------------|
|-----------------|---------------|----------------------------------|

Configures the frequency under which direct current will be applied to the drive when DC Inject Config is set to "DC on Freq." If this parameter is set to 0.0, the parameter operates in the same way as "DC at Stop."

| 410 DB Config Default: DB Internal | Range: 0–2<br>Level 2 |
|------------------------------------|-----------------------|
|------------------------------------|-----------------------|

Determines whether an external or internal dynamic brake is utilized or disabled. The drive provides an internal dynamic brake (DB) to assist in stopping. If desired, an external resistor can be connected to DB and B+ for additional capacity. (Note: Size 0 models cannot have an external brake added.)

The following data values may be assigned to this parameter:

Parameter Value Description

Int-ARCTIC

DB Internal Internal dynamic braking active DB External External dynamic braking active No Dyn Brk Dynamic braking circuit disabled

> When DB Config is configured to "Int-ARCTIC," dynamic braking becomes active if the drive temperature drops below -7 degrees C. When the DB becomes active, an "ARCTIC Mode" warning flashes on the keypad. If the drive drops below -10 degrees C, the drive will be disabled and not allowed to run. The keypad will indicate a "Not enabled" state at this point. If the drive heats up after being below -10 degrees C, the drive must meet the following criteria before operating again:

> a) Drive temperature must be above -9 degrees C, and b) Drive temperature must stay above -9 degrees C until a time period has elapsed. The time period is dependent on how far below -10 degrees C the drive was. Each degree below -10 degrees C adds another 4 minutes before restart.



#### MOTOR OVERHEATING

Do not use DC injection braking as a holding brake or excessive motor heating may result.

Failure to observe this instruction can result in equipment damage.

CAUTION

| 414 S Ramp Rounding | Default: 25% | Range: 1–100%<br>Level 2 |
|---------------------|--------------|--------------------------|
|---------------------|--------------|--------------------------|

This parameter is used to define the amount of rounding or S-curve to the Accel and Decel ramp. The amount of rounding is split evenly between the beginning and the end of the ramp. A value of 1% would mean that the rounding of the ramp is near linear. A value of 50% would have 25% rounding at the start of the ramp and 25% at the end of the ramp.

| 501 V/Hz Select | Default: Linear Fxd | Range: n/a<br>Level 2 |
|-----------------|---------------------|-----------------------|
|-----------------|---------------------|-----------------------|

The V/Hz Characteristic Selection parameter determines the characteristic of the V/Hz curve and whether any boost will be applied at starting. (The amount of boost may be automatically determined or set with parameter 502 (Voltage Boost).) The following data values may be assigned:

The following data values may be assigned to this parameter:

| D               | Description |
|-----------------|-------------|
| Parameter Value | Description |

Linear Auto The Linear Auto selection operates the Vector algorithm and

activates current limiting functionality.

Linear Fxd V/Hz curve with the amount of boost fixed at the value set in

parameter 502 (Voltage Boost).

Pump Fxd V/Hz curve with the amount of boost fixed at the value set in

parameter 502 (Voltage Boost).

Fan Fxd V/Hz curve with the amount of boost fixed at the value set in parameter 502 (Voltage Boost).

Activates parameters 512 (Midpoint Frg) and 513 (Midpoint Linear 2pc Volt). These parameters are used to define a midpoint through

which the V/Hz curve passes so a custom curve may be creat-

ed for special motor applications.

Activates the sensorless vector algorithm for high torque / Vector

low speed operation. A vector-duty motor should be used for this mode of operation. Vector mode does not use of the pa-

rameter (parameter 502).

|                     | 501 =<br>Linear Auto         | 501 =<br>Linear Fxd          | 501 =<br>Pump Fxd            | 501 =<br>Fan Fxd             | 501 =<br>Linear 2pc          | 501 =<br>Vector     |
|---------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|---------------------|
| Limiting<br>Feature | 4-Quad<br>Current Lim-<br>it | 4-Quad<br>Trq Limit |
| Parameter Valu      | e Changes                    | •                            | •                            | •                            | •                            | •                   |
| Slip Comp Enable    | 0 = No                       | 1 = Yes             |
| Start Field En      | 0 = No                       | 1 = Yes             |
| Find Mtr Data       | 0 = No                       | 1 = Motor RS        |
| Parameter Lock      | Status Chang                 | es                           |                              | •                            | •                            |                     |
| Slip Comp Enable    | Unlocked                     | Locked                       | Locked                       | Locked                       | Locked                       | Unlocked            |
| Start Field En      | Unlocked                     | Locked                       | Locked                       | Locked                       | Locked                       | Unlocked            |
| Filter Fstator      | Unlocked                     | Locked                       | Locked                       | Locked                       | Locked                       | Unlocked            |
| Filter Time Slip    | Unlocked                     | Locked                       | Locked                       | Locked                       | Locked                       | Unlocked            |
| Power Fail Config   | Unlocked                     | Locked                       | Locked                       | Locked                       | Locked                       | Unlocked            |
| Voltage Boost       | Locked                       | Unlocked                     | Unlocked                     | Unlocked                     | Unlocked                     | Locked              |
| Parameter Visib     | ility Changes                |                              |                              |                              |                              |                     |
| Slip Comp Enable    | Level 2                      | Invisible                    | Invisible                    | Invisible                    | Invisible                    | Level 1/Level 2     |
| Start Field En      | Level 2                      | Invisible                    | Invisible                    | Invisible                    | Invisible                    | Level 1/Level 2     |
| Filter Fstator      | Level 2                      | Invisible                    | Invisible                    | Invisible                    | Invisible                    | Level 2             |
| Filter Time Slip    | Level 2                      | Invisible                    | Invisible                    | Invisible                    | Invisible                    | Level 2             |
| Power Fail Config   | Level 2                      | Invisible                    | Invisible                    | Invisible                    | Invisible                    | Level 2             |
| ID Percent          | Level 2                      | Invisible                    | Invisible                    | Invisible                    | Invisible                    | Level 2             |
| IQ Percent          | Level 2                      | Invisible                    | Invisible                    | Invisible                    | Invisible                    | Level 2             |
| Voltage Boost       | Invisible                    | Level 2                      | Level 2                      | Level 2                      | Level 2                      | Invisible           |

| 502 Voltage Boost | Default: 1.0% | Range: 0.0–50.0%<br>Levels 1, 2 |
|-------------------|---------------|---------------------------------|
|-------------------|---------------|---------------------------------|

Parameter 502. Voltage Boost, increases the motor voltage at low speed to increase the starting torque of the motor. The parameter sets the amount of boost (expressed as a percentage of the default boost) to be applied at zero frequency. The amount of boost decreases linearly with increasing speed.

This parameter is used when parameter 501 is set with fixed boost options. For vector mode this parameter is inactive.



## MOTOR OVERHEATING

Too much boost may cause excessive motor currents and motor overheating.

Use only as much boost as is necessary to start the motor. Auto-boost may be selected at parameter 501 (V/Hz Select) to provide optimum value of boost to suit the load automatically. Failure to observe this instruction can result in equipment damage.

CAUTION

| 503 V/Hz Knee Freq | Default: 50 | Range: 25–400 Hz<br>Level 2 |
|--------------------|-------------|-----------------------------|
|                    |             |                             |

This parameter sets the point on the frequency scale of the V/Hz curve at which the output is at full line voltage. Normally, this is set at the base frequency of the motor, but it may be increased to enlarge the constant torque range on special motors. Setting this parameter to a higher value can reduce motor losses at low frequencies.

| 504 Skip Freq Band         Default: 0.2 Hz         Range: 0.2-20.0 Hz           Level 2         2 |  |
|---------------------------------------------------------------------------------------------------|--|
|---------------------------------------------------------------------------------------------------|--|

To reduce mechanical resonances in a drive system, the drive may be configured to "skip" certain frequencies. Once configured, the drive will accelerate or decelerate through the prohibited frequency band without settling on any frequency in the band.

The Vacon 50X AC drive provides the capability to configure four prohibited frequency bands. Parameter 504 (Skip Freg Band), the Skip Frequency Band parameter, sets the width of the band above and below each of the prohibited frequencies set in parameters 505, 506, 507, and 508 (Skip Freg 1, 2, 3, 4).

For example, if this parameter is set to its default value of 1 Hz and parameter 505 (Skip Freq 1) is set to 20 Hz, a skip band from 19 to 21 Hz is established.

| 505 Skip Freq 1<br>506 Skip Freq 2<br>507 Skip Freq 3 | Range: Min Freq-Max Freq<br>Level 2 |
|-------------------------------------------------------|-------------------------------------|
| 508 Skip Freq 4                                       |                                     |

As discussed in the description of parameter 504 (Skip Freg Band), the drive may be configured to skip certain frequencies. These three parameters set the center of the three skip frequency bands (with the width of each band being twice the value of parameter 504 - an equal amount above and below the skip frequency).

For example, if parameter 504 is set to 2.5 Hz and parameter 508 (Skip Freq 4) is set to 55 Hz. a skip band from 52.5 to 57.5 Hz is established.

| 509 Rated Mtr Volt | Default: Model dependent | Range: 100–690 V<br>Level 2, Macro |
|--------------------|--------------------------|------------------------------------|
|--------------------|--------------------------|------------------------------------|

The Rated Motor Voltage parameter configures the rated motor voltage, and allows a user to enter the rated voltage from the motor nameplate to provide optimal control and protection. This is usually the amount of voltage delivered to the motor terminals at the setting of 503 (V/Hz Knee Fregl.

| 510 Rated Mtr FLA | Default: ND Rating | Range: 50–200% of ND rating<br>Level 2, Macro |
|-------------------|--------------------|-----------------------------------------------|

The Rated Motor FLA parameter allows a user to enter the rated FLA from the motor nameplate to provide optimal control and protection. This parameter should be configured to the value on the nameplate of the motor, as that value is used in calculating the percentage of current at which the drive is operating.

For information on motor timed overload operation, and how Parameter 610 works with it, see page 78.

| 511 Rated Mtr RPM | Default: 1450 rpm | Range: 0–24000 rpm<br>Level 2, Macro |
|-------------------|-------------------|--------------------------------------|
|-------------------|-------------------|--------------------------------------|

This parameter replaces the slip compensation parameter setting of the drive so the user does not need to calculate it.

| 512 Midpoint Freq |  | Range: 0.0 Hz–V/Hz Knee Freq<br>Level 2 |
|-------------------|--|-----------------------------------------|
|-------------------|--|-----------------------------------------|

When parameter 501, V/Hz Select, is configured to "Linear 2pc," this parameter, together with parameter 513, Midpoint Volt, defines an additional point in the V/Hz characteristic.

| 513 Midpoint Volt Default: 100.0% | Range: 0.0–100.0%<br>Level 2 |
|-----------------------------------|------------------------------|
|-----------------------------------|------------------------------|

When parameter 501, V/Hz Select, is configured to "Linear 2pc," this parameter, along with parameter 512, Midpoint Freq, defines an additional point in the V/Hz characteristic.

| 514 Motor RS | Default: Model dependent | Range: 0.00–655.35 Ohms<br>Level 2, Macro |
|--------------|--------------------------|-------------------------------------------|
|--------------|--------------------------|-------------------------------------------|

This parameter allows direct entry of the Stator Resistance [Rs] of the motor for better vector performance. The motor manufacturer can provide this information, or you can physically measure this value with an ohmmeter. From the line-to-line measurement of motor resistance, enter half the measured value. [See page 46 for more information.]

| 515 Power Factor | Default: 0.80 | Range: 0.50–1.00<br>(0.5 times the measured line to line<br>resistance of motor)<br>Level 2, Macro |
|------------------|---------------|----------------------------------------------------------------------------------------------------|
|------------------|---------------|----------------------------------------------------------------------------------------------------|

This parameter allows direct entry of the motor's power factor for better vector performance. The motor manufacturer can provide this information.

| 516 Slip Comp Enable | Default: No | Range: Text string<br>Levels 1, 2 |
|----------------------|-------------|-----------------------------------|
|----------------------|-------------|-----------------------------------|

The following data values may be assigned to this parameter:

Parameter Value Description

Nο No Slip Compensation enabled Yes Slip Compensation enabled

Parameter 516 permits activation of slip compensation for better speed regulation. The motor rated speed must be entered into parameter 511 (Rated Mtr RPM) for best results.

| 517 Single Phase | Default: Model dependent | Range: Text string<br>Level 2 |
|------------------|--------------------------|-------------------------------|
|------------------|--------------------------|-------------------------------|

The following data values may be assigned to this parameter:

Parameter Value

Nο No single phase input operation. Phase loss engaged.

Vec Single phase operation. No phase loss.

| 519 Find Mtr Data | Default: Not active | Range: Text string<br>Macro |
|-------------------|---------------------|-----------------------------|
|-------------------|---------------------|-----------------------------|

This parameter activates the drive's ability to measure the stator resistance of the attached motor. The automatic stator resistance measurement can be performed either through the keypad or through the serial link. See "Measuring Stator Resistance (RS Measurement)" on page 46 for more information about this parameter. The following data values may be assigned:

Parameter Value

Not Active No stator RS measurement.

Motor RS Automatic RS measurement using macro procedure.

Range: 1–100 ms 520 Filter FStator Default: 8 ms Level 2

> This parameter filters the stator frequency applied to the motor, which can help tune the acceleration behavior of the motor. This is particularly helpful when using short ramps and operating the motor at a frequency above the "V/Hz Knee Freq" (parameter 503) value (field weakening area). Lower values allow dynamic currents to be produced, but with greater peaks. This could produce unstable states in the field weakening area. Low values for this parameter can cause overcurrent faults while accelerating to frequencies over the Knee Frequency. Higher values allow the drive to run more smoothly at frequencies over the Knee Frequency and protect the drive against overcurrents - often the case when using special motors or spindle drives.

| 521 Start Field En | Default: No | Range: Text string<br>Level 2 |
|--------------------|-------------|-------------------------------|
|                    |             |                               |

Parameter Value Description

The shaft will begin rotating after receiving a Start command, Nο without delay. If the application has heavy load conditions or short ramp times, this setting can produce very large starting currents, to overcome the inertia of the system. This may produce nuisance trips when starting.

Vec The shaft will begin rotating after receiving a Start command.

with delay. During this delay, the drive is building up the magnetic field in the motor. This allows the drive to start in vector

mode with less starting current.

Range: 10-1000 ms 522 Filter Time Slip Default: 100 ms l evel 2

> This parameter filters the slip frequency applied to the motor, which can help improve the dynamic response of the drive. This parameter produces the following results based on the parameter value:

If the parameter is configured to 100 ms, the drive will produce stable conditions to a change in load, in most cases.

If the parameter is configured to less than 100 ms, the drive will be able to react quickly to a change in load, but may over-compensate its reaction to the load.

If the parameter is configured to greater than 100 ms, the drive will react very slowly to a change in load and will need a longer time to compensate for the difference between the setpoint and the actual frequency.

| 523 Id Percent | Default: Read-only | Range: 0–200%<br>Level 2 |
|----------------|--------------------|--------------------------|
|----------------|--------------------|--------------------------|

This parameter shows the Flux producing current (as a percentage of motor rated current) that is being applied to the drive.

| 524 Iq Percent Default: Read-only | Range: 0–200%<br>Level 2 |
|-----------------------------------|--------------------------|
|-----------------------------------|--------------------------|

This parameter shows the Torque producing current (as a percentage of motor rated current) that is being applied to the drive.

| 525 Power Fail Cfg | Default = CTS No Msg | Range: Text string<br>Level 2 |
|--------------------|----------------------|-------------------------------|
|--------------------|----------------------|-------------------------------|

This parameter can be used to define how the drive responds to an undervoltage operation when parameter 501 is set for Vector or Linear Auto mode. The following data values

may be assigned to this parameter:

Parameter Value Description CTS No Msg The drive will coast to a stop when an undervoltage condition

(power-down) is detected.

The drive will coast to a stop when an undervoltage condition Coast Stop (power-down) is detected. In this mode, however, the drive

will generate an undervoltage fault, which will be registered

in the fault log.

Ramp Down With this setting, if power is lost, the drive ramps the motor down at a decel rate of Decel 1. When the drive is fully ramped

down, the drive will generate an undervoltage fault. If power is restored, the drive will continue to ramp to a stop and will

fault.

Quick Ramp Same as Ramp Down, except the shorter ramp time (Decel 1

or Decel 2) will be used.

Controlled With this setting, if power is lost, the drive decelerates the

motor, trying to regulate the bus voltage to the undervoltage level. If power is restored, the drive accelerates to the command frequency without faulting. If the drive reaches the stopped condition, it will generate an undervoltage fault.

ContrNoMsq Same as Controlled, but without generating an undervoltage

fault

NOTE: Current limit is only available when Parameter 501 is set to Linear Auto. If Parameter 501 is set to Vector, then the Current Limiting values will actually be Torque Limiting values.

| 526 UV Ride-Thru En | Default = w/ LVT | Range: Text string<br>Level 2 |
|---------------------|------------------|-------------------------------|
|---------------------|------------------|-------------------------------|

This parameter allows the function to disable either (a) undervoltage ride-through or (b) continuous Line Voltage Tracking (LVT) that produces dynamic Undervoltage Ride-Thru Thresholds. The following data values may be assigned to this parameter:

Parameter Value Description

Disabled This turns off the Undervoltage Ride-Thru function.

w/ LVT This enables the standard Ride-Thru algorithm in the V/Hz modes and allows the choice of algorithm in the Linear Auto

and Vector modes.

w/o LVT This option operates in the same way as "w/ LVT" except that the Line Voltage Tracker function of the Undervoltage Ride-

Thru is not active. The Line Voltage will be estimated on pow-

ering up the drive.

No UV Fault This mode is the same as "/o LVT" except if the bus recover from the ride-thru timeout state the under voltage fault is not

generated. The bus voltage system will reset and goes back

thru the startup sequence.

| Summary of UV Ride-Thru Enable Parameter (Parameter 526) |          |                   |          |
|----------------------------------------------------------|----------|-------------------|----------|
| Parameter Setting                                        | Tracking | Ride-thru<br>mode | UV Fault |
| Disabled                                                 | Disabled | Disabled          | Disabled |
| w/ LVT                                                   | Enabled  | Enabled           | Enabled  |
| w/o LVT                                                  | Disabled | Enabled           | Enabled  |
| No UV Fault                                              | Disabled | Enabled           | Disabled |

| 600 Current Lim Sel | Default: Fixed Lvls | Range: Text string<br>Level 2 |
|---------------------|---------------------|-------------------------------|
|---------------------|---------------------|-------------------------------|

The Vacon 50X drive provides a Current Limit feature. With this feature enabled, the drive's frequency is automatically reduced when operating in motoring mode to keep the measured torque within limits. When operating in regenerative mode, the output frequency can be automatically increased for the same reason. In addition to the current limit parameters that activate the Current Limit mode, more current limit parameters are available to adjust the drive's response to the load demands. The following data values may be assigned to this parameter:

The following data values may be assigned to this parameter:

Parameter Value

The fixed levels set in parameters 601, 602, 603 and 604 de-Fixed Lvls

termine the current limit in each of the four quadrants of op-

eration.

Vin2 Vin2 analog input sets the current limit value, range 0-200% Cin Cin analog input sets the current limit value, range 0-200% Vin2 Motor Vin2 analog input sets the motoring current limit value, range

0-200%

Cin Motor Cin analog input sets the motoring current limit value, range

0-200%

Vin2 F-Mtr Vin2 analog input sets the FWD motoring current limit value,

range 0-200%

Cin F-Motor Cin analog input sets the FWD motoring current limit value, range 0-200%

NOTE: Current limit is only available when Parameter 501 is set to Linear Auto. If Parameter 501 is set to Vector, then the Current Limiting values will actually be Torque Limiting values.

| 601 Cur Lim Mtr Fwd | Default: 120% | Range: 5–150%<br>Level 2 |
|---------------------|---------------|--------------------------|
|---------------------|---------------|--------------------------|

This parameter sets the current limiting point when the drive is in motoring mode in the forward direction. The limit is expressed as a percentage of the current capacity of the drive.

| 602 Cur Lim Mtr Rev | Default: 120% | Range: 5–150%<br>Level 2 |
|---------------------|---------------|--------------------------|
|---------------------|---------------|--------------------------|

This parameter sets the current limiting point when the drive is in motoring mode in the reverse direction. The limit is expressed as a percentage of the current capacity of the drive.

| 603 Cur Lim Reg Fwd | Default: 80% | Range: 5–150%<br>Level 2 |
|---------------------|--------------|--------------------------|
|---------------------|--------------|--------------------------|

This parameter sets the current limiting point when the drive is in regenerative mode in the forward direction. The limit is expressed as a percentage of the current capacity of the drive.

| 604 Cur Lim Reg Rev | Default: 80% | Range: 5–150%<br>Level 2 |
|---------------------|--------------|--------------------------|
|---------------------|--------------|--------------------------|

This parameter sets the current limiting point when the drive is in regenerative mode in the reverse direction. The limit is expressed as a percentage of the current capacity of the drive.

| 605 Cur Lim Freq | Default: 3.0 Hz | Range: 0.0–400.0 Hz<br>Level 2 |
|------------------|-----------------|--------------------------------|
|------------------|-----------------|--------------------------------|

This parameter sets the frequency where current limit becomes active. This value will also be the frequency point the drive will decelerate the motor to during Motoring Current Limit.

| 606 Ramp Time CL | Default: 1.0 sec | Range: 0.1–3200.0 sec<br>Level 2 |
|------------------|------------------|----------------------------------|
|------------------|------------------|----------------------------------|

This parameter determines the ramp rate when the drive enters Current Limit, and defines the ramping rate of the drive when in a current limiting mode. If the drive is in regenerative current limit, it is an acceleration time. If the drive is in motoring current limit, it is a deceleration time.

| 607 Cur Lim Minimum | Default: 10% | Range: 0–50%<br>Level 2 |
|---------------------|--------------|-------------------------|
|---------------------|--------------|-------------------------|

This parameter limits the lowest amount of current (or Torque) limiting that can occur when the limit threshold is determined by an analog input.

| 608 Restart Number<br>609 Restart Delay | Default: 0<br>Default: 60 sec | P608 Range: 0–8<br>P609 Range: 0–60 sec<br>Level 2 |
|-----------------------------------------|-------------------------------|----------------------------------------------------|
|-----------------------------------------|-------------------------------|----------------------------------------------------|

You may configure the drive to attempt to re-start a specified number of times after certain faults occur. Chapter 8 lists all faults and notes which ones may be reset automatically.

The number of attempts at re-starting is set with parameter 608 [Restart Number]. A value of 0 prevents the drive from attempting a re-start]. The time duration that must elapse between re-start attempts is set with parameter 609 [Restart Delay]. The type of start to be attempted is set with parameter 802 [Start Options]; see page 83].

If the number of attempted re-starts is exceeded, the drive will trip with a fault and will stop operating. Resetting the fault can result in instant starting. (See page 101 for more information on faults and troubleshooting.)

Note that for 2-wire operation, the FWD or REV terminal must still be active for the drive to attempt a re-start.

Also note that the counter for attempted re-starts will not reset to zero until ten minutes after a successful re-start.



WARNING

#### UNINTENDED EQUIPMENT ACTION

Ensure that automatic re-starting will not cause injury to personnel or damage to equipment.

Failure to observe this instruction can result in serious injury or equipment damage.

610 Timed OL Select Default: In Duty 60sec Range: Text string Level 2

Two parameters in the Vacon 50X work together to configure how the motor timed overload operates: Parameter 510 (Rated Mtr FLA) and Parameter 610 (Timed OL Select). Parameter 510 (Rated Mtr FLA) should be configured to the value on the nameplate of the motor. This value is used in calculating the percentage of current at which the drive is operating.

Set parameter 610 to one of the following data values to configure the desired overload characteristic:

| <u>Options</u> | Trip Time | Motor Type         |
|----------------|-----------|--------------------|
| Std Ind Shp    | 0 sec     | Standard Induction |
| Std Ind 30s    | 30 sec    | Standard Induction |
| Std Ind 60s    | 60 sec    | Standard Induction |
| Std Ind 5mn    | 300 sec   | Standard Induction |
| In Duty Shp    | 0 sec     | Inverter Duty      |
| In Duty 30s    | 30 sec    | Inverter Duty      |
| In Duty 60s    | 60 sec    | Inverter Duty      |
| In Duty 5mn    | 300 sec   | Inverter Duty      |

Parameter 610 (Timed OL Select) determines the graph of Trip (Fault) Time vs. Percent Current that is used by the Motor TOL functionality. This protective feature is speed-dependent to handle standard induction motors whose cooling is limited by the shaftmounted fan. Blower-cooled motors and most inverter-duty motors do not have this limitation.

| 613 Max Regen Ramp | Default: 300% | Range: 100–1000%<br>Level 2 |
|--------------------|---------------|-----------------------------|
|--------------------|---------------|-----------------------------|

This parameter operates as a percentage of the longest ramp time. This time then defines the amount of time a deceleration to stop can take without causing a "Regen Timeout" fault. For example, if "Decel Time 1" is 5.0 seconds, "Decel Time 2" is 10.0 seconds, and "Max Regen Ramp" is 300%, a deceleration to stop that takes more than 30 seconds will cause a "Regen Timeout" fault in the drive.

| 614 Stability Gain | Default: Model dependent | Range: 0–10<br>Level 2   |
|--------------------|--------------------------|--------------------------|
| 615 Stability Rate | Default: Model dependent | Range: 0–1000<br>Level 2 |

Both of these parameters can be used to resolve stability problems if they occur. Use Parameter 615 if the load has significant inertia with respect to the motor itself.

| 700 Vmet Config | Default: Freq Out | Range: Text string<br>Levels 1, 2 |
|-----------------|-------------------|-----------------------------------|
|-----------------|-------------------|-----------------------------------|

This parameter configures the analog signal that will be applied to the Vmet output pin. The following data values may be assigned to this parameter:

|               | Parameter Value | <u>Description</u>                                                                                | Range Limit              |
|---------------|-----------------|---------------------------------------------------------------------------------------------------|--------------------------|
|               | Freq Out        | Output frequency of the drive                                                                     | Parameter max freq.      |
|               | Voltage Out     | Voltage being supplied to the motor                                                               | Rated motor voltage      |
|               | Current Out     | Current being supplied to the motor                                                               | 200% of drive rating     |
|               | Drive Load      | Calculated percentage of drive rating                                                             | 200% of drive rating     |
|               | Drive Temp      | Calculation of total drive temp rating                                                            | 100% of unit temp rating |
|               | Stator Freq     | Commanded frequency                                                                               | 100% of input config     |
|               | Power Out       | Calculated power output of drive                                                                  | 250% of drive rating     |
|               | PI Fback        | Allows the analog output<br>to produce a signal in pro-<br>portion to the PI feedback<br>received | 100% of feedback signal  |
| 701 Vmet Span |                 | Default: 100% Range                                                                               | : 0.0–200.0%             |

This parameter sets the span of the Vmet analog output.

| 702 Imet Config | Default: Drive Load | Range: Text string<br>Level 2 |
|-----------------|---------------------|-------------------------------|
|-----------------|---------------------|-------------------------------|

This parameter configures the analog signal that will be applied to the Imet output pin. The following data values may be assigned to this parameter:

| Parameter Value | <u>Description</u>                                                                                  |               | Range Limit              |
|-----------------|-----------------------------------------------------------------------------------------------------|---------------|--------------------------|
| Freq Out        | Output frequency of the drive                                                                       |               | Parameter max freq.      |
| Voltage Out     | Voltage being supplied to the motor                                                                 |               | Rated motor voltage      |
| Current Out     | Current being supplied to the motor                                                                 |               | 200% of drive rating     |
| Drive Load      | Calculated percentage of drive rating                                                               |               | 200% of drive rating     |
| Drive Temp      | Calculation of total drive temp rating                                                              |               | 100% of unit temp rating |
| Stator Freq     | Commanded frequency                                                                                 |               | 100% of input config     |
| Power Out       | Calculated power output of drive                                                                    |               | 250% of drive rating     |
| PI Fback        | Allows the analog output to<br>produce a signal in propor-<br>tion to the PI feedback re-<br>ceived |               |                          |
|                 | Default: 100%                                                                                       | Rang<br>Level | e: 0.0-200.0%<br>2       |

This parameter sets the span of the Imet analog output.

703 Imet Span

| 704 Imet Offset | Default: 0.0% | Range: 0.0–90.0%<br>Level 2 |
|-----------------|---------------|-----------------------------|

This parameter sets the offset of the Imet analog output.

| 705 Relay 1 Select<br>706 Relay 2 Select<br>707 D01 Select<br>708 D02 Select | Default: Drive Run | Range for Parameters 705–708: Text string<br>Levels 1, 2 for Parameters 705–706<br>Level 2 for Parameters 707–708 |
|------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------|

This parameter configures what condition will cause relays R1 and R2 to activate. The following values may be assigned:

| <u>Parameter Value</u><br>Drv Ready | <u>Description</u> The drive is ready. (The relay will be open in Fault and Low Voltage conditions.)                                                                                                                                                                                |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drv Fault                           | A fault occurs. (If automatic fault reset and re-start is enabled, only faults that cannot be reset will activate the relay. The relay will also activate for faults that can be reset when the number of restart attempts exceeds the value set in parameter 608 (Restart Number.) |
| Drive Run                           | The drive has received a direction command.                                                                                                                                                                                                                                         |
| Running FWD                         | The motor is running Forward and the output frequency is above 0.5 Hz.                                                                                                                                                                                                              |

Running REV The motor is running in Reverse and the output frequency is

above 0.5 Hz

Zero Speed The drive is in Run mode, but the speed reference is 0 Hz.

At Speed The drive has reached reference speed.

Freq Limit The drive limit is active when the speed commanded exceeds

the value of parameter 306, Preset Freq 4.

Frea Hyst This is active when the speed exceeds parameter 306 (Preset

Freq 4) but is less than parameter 307 (Preset Freq 5).

Current Lim Current Limit mode is active.

High Temp The temperature limit of the drive has been exceeded.

Local Mode The keypad is the control path for reference speed and control

SeqOut-00 Programmed sequence step active. SeqOut-00, SeqOut-01, SeaOut-01 SegOut-10, SegOut-11 are all status outputs linked to a step in

the program sequencer. See "Using the Vacon 50X Program SeqOut-11 See' Sequencer" on page 92 for

SegOut-10

more information.

ARCTIC When a digital output is configured to use this option, the out-

put will be active when the Arctic Mode is turning on the DB

This option will turn on when the temperature drops below the Arctic mode entry point, which is -7 degrees C. This will work

even if Arctic Mode is not enabled.

Independent of the status of parameter 222 (Ref Loss Config), Ref Loss

this selection activates the digital output when a 4-20mA input to either the VIN1 or CIN inputs drop to approximately 3mA.

| 720 Active Logic | Detault: Active High | Range: Text string<br>Level 2 |
|------------------|----------------------|-------------------------------|
|------------------|----------------------|-------------------------------|

This parameter configures the input state of all the digital inputs except the EN digital input. The EN digital input is always active high. The following data values may be assigned to this parameter:

Parameter Value Description

Active Low Low input is true ("pull-down logic") Active High High input is true ("pull-up logic")

| 721 DI1 Configure | Default: Preset 1    |                               |
|-------------------|----------------------|-------------------------------|
| 722 DI2 Configure | Default: Preset 2    | D                             |
| 723 DI3 Configure | Default: Preset 3    | Range: Text string<br>Level 2 |
| 724 DI4 Configure | Default: Alt Ramp    | Level 2                       |
| 725 DI5 Configure | Default: Fault Reset |                               |

These parameters configure the function that the digital inputs DI1-5 will perform when active. The following data values may be assigned:

Parameter Value Description

Preset 1 Preset Speed Input 1 (PS1). Preset 2 Preset Speed Input 2 (PS2). Preset 3 Preset Speed Input 3 (PS3).

Coast Stop Activates a Coast-to-Stop condition.

DC Inject Begins DC injection braking.

Switches from Local to Remote mode. Loc/Rem

Alt Ramp Activates Alternate Ramp.

Fault Reset Resets a fault. EMOP+ EMOP increases speed.
EMOP- EMOP decreases speed.

PI Enable Enables PI control.

Ref Switch Switches speed reference signals.
Cur Lim Dis Disables Current Limit mode.
CurLimlMax Set the current limit to Imax

SL Override Takes control away from the serial link.

Seq 1 Sequencer input 1.
Seq 2 Sequencer input 2.
Seq 3 Sequencer input 3.

 Seq Dwell
 Sequencer dwell mode (pause).

 Seq Advance
 Sequencer advance (skip).

 FLY Dis
 Disable Catch-on-fly operation.

| 726 MOL Polarity | Default: NO Operate | Range: Text string<br>Level 2 |
|------------------|---------------------|-------------------------------|
|------------------|---------------------|-------------------------------|

This parameter sets the Motor Overload input polarity. The following data values may be assigned to this parameter:

Parameter Value Description

NC Operate A normally closed (NC) connection allows the unit to operate;

the drive faults when the connection opens.

NO Operate A normally open (NO) connection allows the unit to operate;

the drive faults when the connection closes.

| 727 MOL Configure | Default = MOL | Range: n/a<br>Level 2 |
|-------------------|---------------|-----------------------|
|-------------------|---------------|-----------------------|

This allow the MOL digital input to be programmable.

Parameter Value Description

Preset 1 Preset Speed Input 1 (PS1).
Preset 2 Preset Speed Input 2 (PS2).
Preset 3 Preset Speed Input 3 (PS3).

Coast Stop Activates a Coast-to-Stop condition.

DC Inject Begins DC injection braking.

Loc/Rem Switches from Local to Remote mode.

Alt Ramp Activates Alternate Ramp.
Fault Reset Resets a fault.
EMOP+ EMOP increases speed.
EMOP- EMOP decreases speed.
PI Enable Enables PI control.

Ref Switch Switches speed reference signals.
Cur Lim Dis Disables Current Limit mode.
CurLimIMax Set the current limit to Imax

SL Override Takes control away from the serial link.

Seq 1 Sequencer input 1.
Seq 2 Sequencer input 2.
Seq 3 Sequencer input 3.

Seq Dwell Sequencer dwell mode (pause).
Seq Advance Sequencer advance (skip).
FLY Dis Disable Catch-on-fly operation.

| 801 Program Number Default: 0 | Range: 0-9999<br>Level 2, Macro |
|-------------------------------|---------------------------------|
|-------------------------------|---------------------------------|

This parameter (Special Program Number) provides a way of enabling hidden functions in the drive and storing parameters to the customer set.

| Data Value | Special Function Configured                                      |
|------------|------------------------------------------------------------------|
| 0          | Standard program                                                 |
| 1          | Reset all parameters to factory default values (display = SETP). |
| 2          | Store customer parameter values (display = STOC).                |
| 3          | Load customer parameter values (display = SETC).                 |
| 4          | Swap active parameters with customer stored settings.            |
| 10         | Reset Total Run Time, parameter 108.                             |

| 802 Start Options | Default: LS Lockout | Range: Text string<br>Level 2 |
|-------------------|---------------------|-------------------------------|
|-------------------|---------------------|-------------------------------|

The Start Options parameter configures the Line Start Lockout functionality of the drive. All data values ending with "2" allow the user to press the Enter key to store the customer speed reference value on the keypad. You must press and hold the Enter key for two seconds to save the speed command. The following data values may be assigned to this parameter:

| <u>Data Value</u><br>LS Lockout | <u>Description</u> (Line Start Lockout). If maintained contact run operators are used, they must be opened and then re-closed for the drive to start after AC power is applied. |                                  |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| AutoStart                       | When AC power is applied, if<br>through the terminal strip, th                                                                                                                  |                                  |
| LSL w/FLY                       | This setting has both LS Lock at the same time.                                                                                                                                 | out and Catch on the Fly enabled |
| Auto w/FLY                      | This setting has both Auto-Start and Catch on the Fly enabled at the same time.                                                                                                 |                                  |
| LS Lockout2                     | (Line Start Lockout). If maintained contact run operators are used, they must be opened and then re-closed for the drive to start after AC power is applied.                    |                                  |
| AutoStart2                      | When AC power is applied, if a Run command is present through the terminal strip, the drive will start.                                                                         |                                  |
| LSL w/FLY 2                     | This setting has both LS Lockout and Catch on the Fly enabled at the same time.                                                                                                 |                                  |
| Auto w/FLY2                     | This setting has both Auto-Start and Catch on the Fly enabled at the same time.                                                                                                 |                                  |
| 803 PWM Frequency               | Default: 3.0 kHz                                                                                                                                                                | Range: 0.6–16.0 kHz<br>Level 2   |

The PWM Carrier Frequency parameter sets the carrier frequency of the Pulse-Width Modulation (PWM) waveform supplied to the motor. Low carrier frequencies provide better low-end torque, but produce some audible noise from the motor. Higher carrier frequencies produce less audible noise, but cause more heating in the drive and motor.

| 804 Display Mode Default: Std Disply | Range: Text string<br>Level 2 |
|--------------------------------------|-------------------------------|
|--------------------------------------|-------------------------------|

The Display Mode parameter determines how the reference or output of the drive will be displayed to the user. If User Units is selected, parameter 805 allows you to customize the 3 unit values on the display. The following data values may be assigned to this parameter.

Parameter Value Description

Std Disply Standard commanded frequency

Out Frequency actually sent to the motor

Stator Freq Frequency of the stator

User Units Custom units display based on values in parameter 805

RPM Units Custom speed display with RPM as units GPM Units Custom speed display with GPM as units

FPM Units
Custom speed display with FPM as units
MPM Units
Custom speed display with MPM as units
PSI Units
Custom speed display with PSI as units
Degrees C
Custom display with degrees C

Degrees F Custom display with degrees F

Time hrs Custom display time in hours of operation
Time min Custom display time in minutes of operation
Time sec Custom display time in seconds of operation

Fbk RPM Display is scaled to read in RPM based on the PI feedback in-

put to an analog input

Fbk PSI Display is scaled to read in PSI based on the PI feedback input

to an analog input

Display is scaled to read in GPM based on the PI feedback in-

Fbk GPM Display is scaled to read in GPM based on the PI feedback in-

put to an analog input

Fbk User Display is scaled to read in User units (parameter 805) based

on PI feedback input to an analog input

When using any of the Time functions, these refer to "Retention Time." Retention time is an inverse function: as speed goes up, time goes down, and vice versa. It is typically used in oven-type applications. The value set in parameter 809 (Display Scale) references the time of operation when running at Max. Frequency. For instance, if parameter 302 (Max. Frequency) is set for 60 Hz, 804 (Display Mode) is set for Time min, and 809 (Display Scale) is set for 600, the scales of the display will read 60.0 min at maximum speed and increase in time (in minutes) up to the maximum scale of 6553.5 at minimum frequency.

| 805 Display Units(1) | Default: RPM: 1 | Range: Text string<br>Level 2 |
|----------------------|-----------------|-------------------------------|
|----------------------|-----------------|-------------------------------|

This parameter determines the three-character customer display units used when parameter 804 is set to User Units. The last digit indicates the number of decimal places to be shown on the display. Up to three decimal places are possible.

| 809 Display Scale | Default: 1 | Range: 1–65535<br>Level 2 |
|-------------------|------------|---------------------------|

This parameter determines how the reference or output of the drive will be displayed to the user. It selects the maximum scaling of the display when running at maximum frequency.

| 810 Language | Default: English | Range: Text string<br>Level 2, Macro |
|--------------|------------------|--------------------------------------|
|--------------|------------------|--------------------------------------|

This parameter configures the language text strings will be displayed in. The following data values may be assigned:

Parameter Value

English

Spanish

German

Italian

French

| 811 Access Code | Default: 0 | Range: 0–9999<br>Level 2 |
|-----------------|------------|--------------------------|
|-----------------|------------|--------------------------|

The security Access Code allows the user to control access to the programmable functions of the inverter. The initial value of this parameter is 000, which signifies that no access code is necessary. Any number between 001 and 999 may be used for an access code, but is not necessary. If an access code is entered, you will not be able to view the values while scrolling through parameters. Only after the Shift key is pressed will the actual value appear.

To enter an access code, re-program parameter 811 as you would any other parameter. After the new value is stored, you have 10 minutes of free access. If you remove power and then restore it, you will need to enter the access code to change any program parameter. If you enter an incorrect access code, the drive displays \*\*WRONG CODE\*\* and allows only viewing rights to the various parameters. Once the correct code is entered, you again have 10 minutes of free access unless power is removed and restored. To disable the access code requirement, set parameter 811 back to 000.

| 812 Freq Ref Output | Default: 6FS | Range: Text string<br>Level 2 |
|---------------------|--------------|-------------------------------|
|---------------------|--------------|-------------------------------|

The Frequency Reference Output parameter determines the frequency pulse-train output from the DOP terminal. This digital output is a pulse train that can be linked to another drive or to a field meter for speed indication. The pulse train is a 50% duty cycle signal and requires a pull-up resistor of approximately 4.7 kOhms.

The following data values may be assigned to this parameter:

Parameter Value

6FS

48FS

| 813 Speed Ratio | Default: 100.0% | Range: 0.0–200.0%<br>Level 2 |
|-----------------|-----------------|------------------------------|
|-----------------|-----------------|------------------------------|

The Master / Follower Speed Ratio parameter allows the pulse train output of one Vacon 50X series drive (master) to be used to control the speed of up to 8 other follower drives. The output of each follower can be individually programmed, or trimmed "ON-THE-FLY" with A2-RATIO. The range of adjustment is 0-200% of the master. This function only works when using the 6FS or 48FS functions in parameter 204.

| 814 Display Status | Default: Drive Load | Range: Text string<br>Level 2 |
|--------------------|---------------------|-------------------------------|
|--------------------|---------------------|-------------------------------|

This parameter allows configuration of the additional parameter status field on the operate screen. The following fields can be configured:

| Parameter Value | <u>Description</u>                     | Range Limit              |
|-----------------|----------------------------------------|--------------------------|
| Voltage Out     | Voltage being supplied to the motor    | Rated motor voltage      |
| Current Out     | Current being supplied to the motor    | 200% of drive rating     |
| Drive Load      | Calculated percentage of drive rating  | 200% of drive rating     |
| Drive Temp      | Calculation of total drive temp rating | 100% of unit temp rating |
| Power Out       | Calculated power output of drive       | 250% of drive rating     |
| % of FLA        | Calculated percentage of drive rating  | Percent of motor FLA     |

| 816 Fly Catch Mode | Default: Sweep Fwd | Range: Text string<br>Level 2 |
|--------------------|--------------------|-------------------------------|
|--------------------|--------------------|-------------------------------|

This parameter configures how the "catch on the fly" operates.

| <u>Parameter Value</u> | <u>Description</u>                                                                                                                                                                                                                                                                          |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Sweep Fwd              | Catch on the fly algorithm sweeps through frequencies only in<br>the forward direction while searching for the operating fre-<br>quency.                                                                                                                                                    |  |
| Sweep Rev              | Catch on the fly algorithm sweeps through frequencies only in<br>the reverse direction while searching for the operating fre-<br>quency.                                                                                                                                                    |  |
| Sweep F/R              | Catch on the fly algorithm sweeps through frequencies in both directions while searching for the operating frequency. The direction that is chosen first depends on the direction of the command given to the drive. Note that this option is slower than the other two modes of operation. |  |
| 850 PI Configure       | Default: No PI Range: Text string<br>Level 2                                                                                                                                                                                                                                                |  |

The PI Configure parameter determines what type of PI control is active in the drive. PI can be active at all times, or activated using a digital input. If you select a digital input or function key as the means to enable PI control, remember to configure the parameter that sets the function of the digital input or function key to enable PI control to complete the implementation.

The following data values may be assigned to this parameter:

| ···- ·-·        |                                                          |
|-----------------|----------------------------------------------------------|
| Parameter Value | Description                                              |
| No PI           | PI control is always inactive.                           |
| Dir F-FWD       | Direct action with feed-forward.                         |
| Rev F-FWD       | Reverse action with feed-forward.                        |
| Dir F-FWD E     | Direct action with feed-forward, with PI enabled by DI.  |
| Rev F-FWD E     | Reverse action with feed-forward, with PI enabled by DI. |
| Dir Full        | Direct action with full range.                           |
| Rev Full        | Reverse action with full range.                          |
| Dir Full E      | Direct action with full range, with PI enabled by DI.    |
| Rev Full E      | Reverse action with full range, with PI enabled by DI.   |
|                 |                                                          |

| 851 PI Feedback | Default: Vin1 | Range: Text string<br>Level 2 |
|-----------------|---------------|-------------------------------|
|-----------------|---------------|-------------------------------|

The PI Feedback parameter configures the feedback signal to be used in PI control.

The following data values may be assigned to this parameter:

Parameter Value Description

Vin1 Vin1 is the PI feedback.
Cin Cin is the PI feedback.
Vin2 Vin2 is the PI feedback.

| 852 Pl Prop Gain | Default: 0 | Range: 0–2000<br>Level 2 |
|------------------|------------|--------------------------|
|------------------|------------|--------------------------|

The PI Proportional Gain parameter configures the proportional gain that is applied to the PI control.

NOTE: Value must be greater than 0 for this to be active.

| 853 PI Int Gain         Default: 0         Range: 0-10000 Level 2 |
|-------------------------------------------------------------------|
|-------------------------------------------------------------------|

The PI Integral Gain parameter configures the integral gain that is applied to the PI control.

NOTE: Value must be greater than 0 for this to be active.

| 854 PI Feed Gain | Default: 1000 | Range: 0–2000<br>Level 2 |
|------------------|---------------|--------------------------|
|------------------|---------------|--------------------------|

The PI Feed Gain parameter allows the feedback signal to be scaled. A setting of 1000 indicates 100.0%.

| 855 PI Error 1 | Default: Read-Only | Range: 0.00-100.00% |
|----------------|--------------------|---------------------|
| 856 PI Error 2 | Default: Read-Only | Level 2             |

Both the PI Error 1 and PI Error 2 parameters are read-only; they provide feedback on how the PI control is operating.

| 857 Pl High Corr | Detault: 100 00% | Range: 0.00–100.00%<br>Level 2 |
|------------------|------------------|--------------------------------|
|------------------|------------------|--------------------------------|

This parameter sets the high limit of the PI output.

| 858 PI Low Corr | Default: 0.00% | Range: 0.00–100.00%<br>Level 2 |
|-----------------|----------------|--------------------------------|
|-----------------|----------------|--------------------------------|

This parameter sets the low limit of the PI output.

| 900 SIO Protocol Defau | ılt: RTU N81 | Range: Text string<br>Level 2 (SIO) |
|------------------------|--------------|-------------------------------------|
|                        |              |                                     |

This parameter defines the protocol and the parity of the SIO port.

The following data values may be assigned to this parameter:

Parameter Value Description

RTU N81 No parity, 8 data bits, 1 stop bit
RTU N82 No parity, 8 data bits, 2 stop bits
RTU E81 Even parity, 8 data bits, 1 stop bit
RTU O81 Odd parity, 8 data bits, 1 stop bit

| 901 SIO Baud Rate |  | Range: Text string<br>Level 2 (SIO) |
|-------------------|--|-------------------------------------|
|-------------------|--|-------------------------------------|

This parameter defines the baud rate of the SIO port.

The following data values may be assigned to this parameter:

Parameter Value

4800

9600

19200

38400 57600

| 902 Comm Drop # | Default: 1 | Range: 1–247<br>Level 2 (SIO) |
|-----------------|------------|-------------------------------|

This parameter defines the network drop number for both SIO and IRDA communications.

| 903 SIO Timer | Default: 1.0 sec | Range: 0.0–60.0 sec<br>Level 2 (SIO) |
|---------------|------------------|--------------------------------------|
|               |                  |                                      |

This parameter defines a watchdog timer that will require a valid communication in the specified time period while in SIO control. If the requirement is not met, a fault occurs.

| 904 SIO Cntl Word | Default: 0x0000 | Range: Text string<br>Level 2 (SIO) |
|-------------------|-----------------|-------------------------------------|
|-------------------|-----------------|-------------------------------------|

The SIO Control Word parameter allows control of the drive through Modbus communications.

The following bits are used with this parameter:

| _                |     |        |         |         |     |                         |    |   |                                             |   |                      |       |       |      |   |   |   |  |  |  |
|------------------|-----|--------|---------|---------|-----|-------------------------|----|---|---------------------------------------------|---|----------------------|-------|-------|------|---|---|---|--|--|--|
|                  | 15  | 14     | 13      | 12      | 11  | 10                      | 9  | 8 |                                             | 7 | 6                    | 5     | 4     | 3    | 2 | 1 | 0 |  |  |  |
| •                | Bit | When   | Set t   | o 1 Sig | Bit | When Set to 1 Signifies |    |   |                                             |   |                      |       |       |      |   |   |   |  |  |  |
|                  | 8   | Alt Ra | amp     |         |     |                         |    |   |                                             | 0 | SLC (Run)            |       |       |      |   |   |   |  |  |  |
|                  | 9   | PI En  | able    |         |     |                         |    |   |                                             | 1 | SLF                  | (Ref) |       |      |   |   |   |  |  |  |
|                  | 10  | Not L  | lsed    |         |     |                         |    |   |                                             | 2 | FWD                  | )     |       |      |   |   |   |  |  |  |
|                  | 11  | Cur L  | Cur Lim |         |     |                         |    |   |                                             | 3 | REV                  |       |       |      |   |   |   |  |  |  |
|                  | 12  | DCI    | DCI     |         |     |                         |    |   |                                             |   | FEXT2                |       |       |      |   |   |   |  |  |  |
|                  | 13  | CTS    | CTS     |         |     |                         |    |   |                                             | 5 | Preset Input 1 (PS1) |       |       |      |   |   |   |  |  |  |
|                  | 14  | Ref S  | witch   |         |     |                         |    |   |                                             | 6 | Pres                 | et In | put 2 | (PS2 | ) |   |   |  |  |  |
|                  | 15  | Fault  | Reset   | :       |     |                         |    |   |                                             | 7 | Pres                 | et In | put 3 | (PS3 | ) |   |   |  |  |  |
| 905 Ext Ref Freq | 1   |        |         | 1       |     |                         |    |   | Das                                         | M | :- F                 | - M   | Г     |      |   |   | _ |  |  |  |
| 906 Ext Ref Freq | •   |        |         |         |     | t: 0.0 F                | łz |   | Range: Min. FreqMax. Freq.<br>Level 2 (SIO) |   |                      |       |       |      |   |   |   |  |  |  |
|                  |     |        |         |         |     |                         |    |   |                                             |   |                      |       |       |      |   |   |   |  |  |  |

These parameters provide access for changing the frequency reference over the serial link.

| 908 Status Word | Default: Read-Only | Range: Text string<br>Level 2 (SIO) |
|-----------------|--------------------|-------------------------------------|
|-----------------|--------------------|-------------------------------------|

The Status Word parameter provides status of the drive operation to a serial link user.

The following bits are used with this parameter:

|   | 15  | 14 13 12 11 10 9 8      | 7   | 6 5 4 3 2 1 0           |  |  |  |  |
|---|-----|-------------------------|-----|-------------------------|--|--|--|--|
| , | Bit | When Set to 1 Signifies | Bit | When Set to 1 Signifies |  |  |  |  |
|   | 8   | Alt Ramp                | 0   | SLC (Run)               |  |  |  |  |
|   | 9   | SL Override             | 1   | SLF (Ref)               |  |  |  |  |
|   | 10  | Remote                  | 2   | FWD run                 |  |  |  |  |
|   | 11  | Curr Lim                | 3   | REV run                 |  |  |  |  |
|   | 12  | DCI                     | 4   | FEXT2                   |  |  |  |  |
|   | 13  | Jogging                 | 5   | Accel                   |  |  |  |  |
|   | 14  | Zero Spd                | 6   | Decel                   |  |  |  |  |
|   | 15  | Drive FIt               | 7   | At Speed                |  |  |  |  |
|   |     |                         |     |                         |  |  |  |  |

| 909 DI Status | Default: Read-Only | Range: Text string<br>Level 2 |
|---------------|--------------------|-------------------------------|
|---------------|--------------------|-------------------------------|

This parameter provides a 10-bit status display.

The following bits are used with this parameter:

|                                                      | 9   | 8                       | 7    | 6 | 5     | 4                       | 3      | 2      | 1           | U |           |
|------------------------------------------------------|-----|-------------------------|------|---|-------|-------------------------|--------|--------|-------------|---|-----------|
| '                                                    | Bit | When Set to 1 Signifies |      |   | Bit   | When Set to 1 Signifies |        |        |             |   |           |
|                                                      | 5   | DI3 Input               |      |   | 0     | FWD Input               |        |        |             |   |           |
|                                                      | 6   | DI4 Ir                  | nput |   |       |                         | 1      | REV    | Input       |   |           |
|                                                      | 7   | DI5 In                  | nput |   |       |                         | 2      | R/J Ir | nput        |   |           |
|                                                      | 8   | MOL Input               |      |   | 3     | DI1 Input               |        |        |             |   |           |
|                                                      | 9   | EN Ir                   | put  |   |       |                         | 4      | DI2 I  | nput        |   |           |
|                                                      |     |                         |      |   |       |                         |        |        |             |   |           |
| 910 Vin1 Status<br>911 Cin Status<br>912 Vin2 Status |     |                         |      |   | Defau | lt: Rea                 | d-Only | ,      | Ran<br>Leve |   | 0–100.00% |

Parameter 910 provides the input percentage applied to the Vin1 terminal; parameter 911 provides the input percentage applied to the Cin terminal; and parameter 912 provides the input percentage applied to the Vin2 terminal.

| 913 Output Status | Default: Read-Only | Range: n/a<br>Level 2 |
|-------------------|--------------------|-----------------------|
|-------------------|--------------------|-----------------------|

This parameter provides a 10-bit binary status display. A "1" in the status word indicates that the output is active.

The following bits are used with this parameter:

| 9   | 8                       | 7 | 6 | 5 | 4 | 3 | 2     | 1      | 0       |        |
|-----|-------------------------|---|---|---|---|---|-------|--------|---------|--------|
| Bit | When Set to 1 Signifies |   |   |   |   |   | When  | Set to | o 1 Sig | nifies |
| 5   | N/A                     |   |   |   |   | 0 | R1 0  | utput  |         |        |
| 6   | N/A                     |   |   |   |   | 1 | R2 O  | utput  |         |        |
| 7   | N/A                     |   |   |   |   | 2 | DO1 ( | Output |         |        |
| 8   | N/A                     |   |   |   |   | 3 | DO2 ( | Output |         |        |
| 9   | N/A                     |   |   |   |   | 4 | N/A   |        |         |        |
|     |                         |   |   |   |   |   |       |        |         |        |

| 914 Vmet Status | Default Dand Only  | Range: 0.00-100.00% |
|-----------------|--------------------|---------------------|
| 915 Imet Status | Default: Read-Only | Level 2             |

Parameter 914 provides the output percentage applied to the Vmet terminal; parameter 915 provides the output percentage applied to the Imet terminal.

| 916 Infrared Baud | Default: 9600 | Range: Text string<br>Level 2 (SIO) |
|-------------------|---------------|-------------------------------------|
|-------------------|---------------|-------------------------------------|

This parameter defines the baud rate of the IRDA port.

The following data values may be assigned to this parameter:

Parameter Value

9600

19200 38400

57600

| 931 Seq Cntl 1<br>932 Seq Cntl 2 |                      |                                     |
|----------------------------------|----------------------|-------------------------------------|
| 933 Seq Cntl 3                   |                      |                                     |
| 934 Seq Cntl 4                   |                      | Daniel Test states                  |
| 935 Seq Cntl 5                   | Default: 00000000000 | Range: Text string<br>Level 2 (SEQ) |
| 936 Seq Cntl 6                   |                      | Level 2 (SEQ)                       |
| 937 Seq Cntl 7                   |                      |                                     |
| 938 Seq Cntl 8                   |                      |                                     |
| 939 Seq Cntl 9                   |                      |                                     |

These parameters each provide a 10-bit binary status display. See "Using the Vacon 50X Program Sequencer" on page 92.

The following bits are used with this parameter:

Bit 0-2 = Speed Sel

Bit 3 = Accl Sel

Bit 4-6 = Event Length

Bit 7-8 = Dir Sel

Bit 9-10 = Output Sel

| 951 Seq Count 1 952 Seq Count 2 953 Seq Count 3 954 Seq Count 4 955 Seq Count 5 956 Seq Count 6 957 Seq Count 7 958 Seq Count 8 959 Seq Count 9 | Default: 0 | Range: 0-65535<br>Level 2 (SEQ) |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------|

These parameters configure the time, number of pulses, or analog level of sequencer steps 1 through 9, respectively. See "Using the Vacon 50X Program Sequencer" on page 92.

# 7.4 Using the Vacon 50X Program Sequencer

The Vacon 50X AC drive offers functionality that allows users to program up to nine independent operation states of the drive. This functionality is called the "program sequencer" because it allows the drive to sequence through the operation states programmed by the user. The Vacon 50X Program Sequencer can be used in applications that would normally require external intelligence, such as a simple programmable logic controller.

#### 7.4.1 Enabling the Vacon 50X Program Sequencer

The Vacon 50X Program Sequencer can be enabled with parameter 491 [Seq Appl], found in the Application Macro programming mode of the Vacon 50X keypad. This parameter configures:

- Whether the sequencer is enabled,
- · The time base used for all timing of the sequencer,
- Whether other sequencer parameters are visible in Level 2 programming.

Table 2 shows the options for this parameter:

| Options       | Value | Meaning                                                                                                                                                              |
|---------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Disabled      | 0     | The Sequencer mode of the Vacon 50X is not active and the sequencer parameters are not visible in Level 2 programming.                                               |
| 1 sec base    | 1     | The Sequencer mode of the Vacon 50X is active, sequencer parameters are visible in Level 2, and all timing for the sequencer will be on a 1-second base.             |
|               |       | The Sequencer mode of the Vacon $50\mathrm{X}$ is active, sequencer parameters are visible in Level 2, and all timing for the sequencer will be on a .1-second base. |
| 0.01 sec base | 3     | The Sequencer mode of the Vacon 50X is active, sequencer parameters are visible in Level 2, and all timing for the sequencer will be on a .01-second base.           |

Table 24:Seq Appl Parameter Options

## 7.4.2 Controlling the Vacon 50X Program Sequencer

The Program Sequencer can be activated and controlled from either the keypad or the terminal strip. It is not possible to control the sequencer through the serial link. The control method of the program sequencer is determined by parameter 201, Input Mode. Setting the Input Mode parameter also allows switching from Sequencer mode to normal keypad operation by way of the Local/Remote switch. Table 3 illustrates possible program sequencer control configurations.

| Input Mode<br>Setting | Input Mode<br>Value | Local Operation                                                       | Remote Operation                                                          |
|-----------------------|---------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|
| Local Only            | 0                   | Sequencer control via keypad (FWD/Stop).<br>Default Seq Ref is keypad | N/A                                                                       |
| Remote Only           | 1                   | N/A                                                                   | Seq control via FWD terminal.<br>Default Seq Ref is "Ref Select"          |
| L/R Rem Ref           | 2                   | Normal Vacon 50X keypad operation<br>(Sequencer disabled)             | Seq control via keypad (FWD/<br>Stop).<br>Default Seq Ref is "Ref Select" |
| L/R Rem Ctl           | 3                   | Normal Vacon 50X keypad operation<br>(Sequencer disabled)             | Seq control via FWD terminal.<br>Default Seq Ref is keypad                |
| L/R Rem Bth           | 4                   | Normal Vacon 50X keypad operation<br>(Sequencer disabled)             | Seq control via FWD terminal.<br>Default Seq Ref is "Ref Select"          |
| EMOP                  | 5                   | Sequencer not enabled                                                 | Sequencer not enabled                                                     |
| EM0P2                 | 6                   | Sequencer not enabled                                                 | Sequencer not enabled                                                     |
| LOC/EMOP              | 7                   | Sequencer not enabled                                                 | Sequencer not enabled                                                     |
| LOC/EMOP2             | 8                   | Sequencer not enabled                                                 | Sequencer not enabled                                                     |

Table 25:Program Sequencer Control Configuration

NOTE: If Input Mode is configured to any of the EMOP options, the sequencer is not available.

# Keypad Control (Activation) of the Vacon 50X Program Sequencer

When activating or controlling the Vacon 50X Program Sequencer from the keypad, pressing the FWD key commands the drive to cycle through the programmed states of the sequencer one time only (oneshot operation). One-shot operation will run the sequencer until state 9 is reached, or until any state that is not changed from the default is reached.

Pressing the SHIFT and FWD keys simultaneously causes the programmed sequence to repeat until the Stop key is pressed (continuous operation). In continuous mode, the sequencer runs until state 9 or any state that is not changed from the default is reached; it then jumps back to state 1.

Note that the REV key has no function in the sequencer mode.

## Terminal Control of the Vacon 50X Program Sequencer

When activating or controlling the Vacon 50X Program Sequencer from terminals, continuous and one-shot operation is determined by whether the drive is wired for 2-wire or 3-wire control. If the terminal is set up for 2-wire control, the sequencer operates in continuous mode (R/J terminal inactive). This will run the sequencer until the Forward command is removed. If the terminal is set up for 3-wire control, the sequencer runs one cycle when the FWD terminal is activated.

Note that the REV terminal has no function in sequencer mode.

## Vacon 50X Sequencer Dwell Functionality

The Vacon 50X sequencer has the capability to dwell, or pause, in a state and disregard any command to advance to the next state. This can be done in two different ways, and both methods can be used at the same time.

If the sequencer is actively running and the Enter key is pressed from the Operate screen of the Vacon 50X keypad, the sequencer will dwell in the current state (it will never advance to the next state). While the sequencer is dwelling, a warning of "Seq Dwell" will flash on the Operate screen. To leave the dwell state, press the Enter key again from the Operate screen.

The sequencer Dwell mode can also be entered by programming a digital input to "Seq Dwell." The sequencer will then dwell in the current state, for as long as the digital input is active.

#### Vacon 50X Sequencer Advance Functionality

The sequencer has the ability to allow the user to advance to the next state without satisfying the conditions programmed to advance. To do this, program a digital input to "Seq Advance." When a digital input program to this option changes from inactive to active, a running sequencer will advance one state. This feature is useful when debugging a sequence with long time intervals.

## 7.4.3 Sequencer State Configuration Overview

Each state of the program sequencer is defined by five characteristics:

- Direction in which the drive will operate
- Speed at which the drive will operate
- · Ramp selection of the drive
- · Output configuration (relays and digital outputs) of the drive
- How the sequencer advances to the next state.

These five characteristics are configured by two parameters for each state. These parameters are named "Seq Cntl X" and "Seq Count X," where X represents the state number of the sequencer. The "Seq Cntl X" parameter is a binary parameter that sets each of the five characteristics listed above. "Seq Count X" configures the threshold that the sequencer will use in determining when to advance by the

method programmed in the control parameter. The bit patterns of the Seq Cntl X'' parameters are shown in Table 4:

Table 26:Seg Cntl Parameter, Bit Definition

| 10          | 9                                                                                                                  | 8                           | 7  | 6    | 5 | 4 | 3 | 2                                | 1                                                                                                    | 0                       |        | Bit number   |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------|----|------|---|---|---|----------------------------------|------------------------------------------------------------------------------------------------------|-------------------------|--------|--------------|--|--|--|
| 0           | 0                                                                                                                  | 0                           | 0  | 0    | 0 | 0 | 0 | 0                                | 0                                                                                                    | 0                       |        | Program data |  |  |  |
| Bit         | Descr                                                                                                              | iption                      |    |      |   |   |   |                                  |                                                                                                      |                         |        |              |  |  |  |
| 10<br>9     | 00 - S                                                                                                             | t Confi<br>eqOut-<br>eqOut- | 00 | on:  |   |   |   | 10 - SeqOut-10<br>11 - SeqOut-11 |                                                                                                      |                         |        |              |  |  |  |
| 8<br>7      | 00 - S                                                                                                             | ion Sel<br>topped<br>orward |    | :    |   |   |   | 10 - Reverse<br>11 - DC Inject   |                                                                                                      |                         |        |              |  |  |  |
| 6<br>5<br>4 | 001 - Pulse Count (Vin1)                                                                                           |                             |    |      |   |   |   |                                  | 100 - Low Curr Thres (Cin)<br>101 - High Curr Thres (Cin)<br>110 - DI Compare<br>111 - Never Advance |                         |        |              |  |  |  |
| 3           |                                                                                                                    | Select<br>cel/De            |    | ne 1 |   |   |   | 1 - Ac                           | cel/De                                                                                               | cel Tim                 | ne 2   |              |  |  |  |
| 2<br>1<br>0 | Speed Selection:<br>000 - Default Setpoint<br>001 - Preset Speed 1<br>010 - Preset Speed 2<br>011 - Preset Speed 3 |                             |    |      |   |   |   |                                  | Preset<br>Preset                                                                                     | Speed<br>Speed<br>Speed | 5<br>6 |              |  |  |  |

Vacon 50X Sequencer Speed Selection

Table 5 gives more information on the speed selection options available in the Vacon 50X sequencer by programming bits 0, 1, and 2 of each state's control parameter. The options include any Preset Speed,

MaxFrequency, or allowing the reference to be determined in the normal Vacon 50X control path.

| Binary Value | Definition (Resulting Speed)                                                                                      |
|--------------|-------------------------------------------------------------------------------------------------------------------|
| 000          | Speed selection as in normal Vacon 50X operation, as defined by parameters 204 [Ref Select] and 201 [Input Mode]. |
| 001          | Value of parameter Preset Speed 1 (303).                                                                          |
| 010          | Value of parameter Preset Speed 2 (304).                                                                          |
| 011          | Value of parameter Preset Speed 3 (305).                                                                          |
| 100          | Value of parameter Preset Speed 4 (306).                                                                          |
| 101          | Value of parameter Preset Speed 5 (307).                                                                          |
| 110          | Value of parameter Preset Speed 6 (308).                                                                          |
| 111          | Value of parameter Max Frequency (302)                                                                            |

Table 27:Speed Selection Options

Vacon 50X Sequencer Ramping Selection

When the sequencer is active, the active ramp is no longer determined by parameter "Ramp Select." The user, however, does have the choice of using the main ramps (Accel Time 1/Decel Time 1), or the alternate ramps (Accel Time 2/Decel Time 2) for each independent state. This is determined by bit 3 of the control parameter. If bit 3 is set to 1, then the alternate ramps are used (Accel Time 2/Decel Time 2).

# Sequencer Output Configuration

The Vacon 50X Program Sequencer allows digital outputs to be activated during states of the sequencer. This function could be used to activate other devices in a system or to signal to an operator when a part of the sequence is active. The user sets the digital output by setting bits 9 and 10 of the control parameter with a binary value, and then sets a digital output parameter with the option for that same binary value. For example, if a control state was output configured for a binary value of 11, then any digital output configured to "SeqOut-11" would be activated during that time.

#### Sequencer Direction Selection

The sequencer allows each state to be configured as running Forward, Reverse, Stopped, or DC Injected by setting bits 7 and 8 of the control parameters.

# Sequencer State Duration

Bits 4, 5, and 6 of each sequencer control parameter specify how that step will allow advancement to the next step. The options for advancement are time, pulse input, voltage threshold, current threshold, or digital input comparison. After the advancement method is selected with these bits, the threshold of advancement is determined by the state's count parameter (see the next paragraph).

# Sequencer State Advance Threshold (via Count Parameter)

The sequencer count parameters work in conjunction with the state duration configuration in the control parameter to determine when to advance to the next state. The function of this parameter is dependent on the state duration configuration as defined in Table 6 on page 96. The range of data programmed into this parameter can be from 0 to 65,535, and can represent time, pulse counts, analog voltage thresholds, analog current thresholds, or digital comparison values.

| Bits 4, 5,<br>of Seq Cı | Description o                               | of Seq Cou                                                                                                                                                                                                                                                                                                                                                                                        | int Function                                                                                  |              |                                           |  |  |  |  |  |  |  |
|-------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------|-------------------------------------------|--|--|--|--|--|--|--|
|                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                   | sequencer state will last for<br>e time base configured in th                                 |              | val equal to the number "Seq<br>arameter. |  |  |  |  |  |  |  |
| 000                     | Seq Appl Set                                | ting                                                                                                                                                                                                                                                                                                                                                                                              | Time to Advance                                                                               | Maxim        | um Sequence Time                          |  |  |  |  |  |  |  |
| 000                     | 1 sec Base                                  |                                                                                                                                                                                                                                                                                                                                                                                                   | (1 sec) * (Seq Count X)                                                                       | 18.2 hou     | ırs                                       |  |  |  |  |  |  |  |
|                         | .1 sec Base                                 |                                                                                                                                                                                                                                                                                                                                                                                                   | (0.1 sec) * (Seq Count X)                                                                     | 1.82 hou     | ırs                                       |  |  |  |  |  |  |  |
|                         | 0.01 sec Base                               |                                                                                                                                                                                                                                                                                                                                                                                                   | (0.01 sec) * (Seq Count X)                                                                    | 10.92 m      | 10.92 minutes                             |  |  |  |  |  |  |  |
| 001                     | "Seq Count X"                               | is detecte                                                                                                                                                                                                                                                                                                                                                                                        | d on terminal Vin1.                                                                           |              | per of pulses programmed into             |  |  |  |  |  |  |  |
| 010                     | to terminal Vir<br>Count X" shou<br>10000). | Note: The % of analog input after span and offset can be read in parameter 912, Vin2 Status.                                                                                                                                                                                                                                                                                                      |                                                                                               |              |                                           |  |  |  |  |  |  |  |
| 011                     | to terminal Vir<br>Count X" shou<br>10000). | High Analog Voltage Threshold – The active sequencer state lasts until the voltage signal applied to terminal Vin2 is > a value programmed into "Seq Count X." The value programmed into "Seq Count X" should be the percentage of input after span and offset are applied (where 100.00% = 10000).  Note: The % of analog input after span and offset can be read in parameter 912, Vin2 Status. |                                                                                               |              |                                           |  |  |  |  |  |  |  |
| 100                     | to Cin termina<br>Count X" shou<br>10000).  | Low Analog Current Threshold – The active sequencer state lasts until the current signal applied to Cin terminals is < a value programmed into "Seq Count X." The value programmed into "Seq Count X" should be the percentage of input after span and offset are applied (where 100.00% = 10000).  Note: The % of analog input after span and offset can be read in parameter 911, Cin Status.   |                                                                                               |              |                                           |  |  |  |  |  |  |  |
| 101                     | to Cin termina<br>Count X" shou<br>10000).  | High Analog Current Threshold – The active sequencer state lasts until the current signal applied to Cin terminals is > a value programmed into "Seq Count X." The value programmed into "Seq Count X" should be the percentage of input after span and offset are applied (where 100.00% = 10000).  Note: The % of analog input after span and offset can be read in parameter 911, Cin Status.  |                                                                                               |              |                                           |  |  |  |  |  |  |  |
|                         | configured to S                             | Seq1, Seq2                                                                                                                                                                                                                                                                                                                                                                                        | e active sequencer state last<br>, and Seq3 is equal to the va<br>/ork, "Dlx Configure" param | lue programr | ned into "Seq Count X."                   |  |  |  |  |  |  |  |
|                         | Seg Count                                   | Digital                                                                                                                                                                                                                                                                                                                                                                                           | Input Terminals                                                                               |              | Description                               |  |  |  |  |  |  |  |
|                         | Seq Count                                   | Seq1                                                                                                                                                                                                                                                                                                                                                                                              | Seq2                                                                                          | Seq3         | Description                               |  |  |  |  |  |  |  |
|                         | 0                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                             | 0            | No input active                           |  |  |  |  |  |  |  |
| 110                     | 1                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                             | 0            | Seq1 active                               |  |  |  |  |  |  |  |
|                         | 2                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                             | 0            | Seq2 active                               |  |  |  |  |  |  |  |
|                         | 3                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                             | 0            | Seq1 & Seq2 active                        |  |  |  |  |  |  |  |
|                         | 4                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                             | 1            | Seq3 active                               |  |  |  |  |  |  |  |
|                         | 5                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                             | 1            | Seq1 & Seq3 active                        |  |  |  |  |  |  |  |
|                         | 6                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                             | 1            | Seq2 & Seq3 active                        |  |  |  |  |  |  |  |
|                         | 7                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                             | 1            | Seq1, Seq2, Seq3 active                   |  |  |  |  |  |  |  |
| 111                     | The sequence                                | The sequencer will never advance if this option is selected.                                                                                                                                                                                                                                                                                                                                      |                                                                                               |              |                                           |  |  |  |  |  |  |  |

Table 28:Seq Count Definition Based on Cntl Parameter Configuration

# 7.4.4 Sequencer Status Indicators

When the sequencer is enabled, the control path indication field on the keypad will indicate SQx, where x represents the active state of the sequencer. A sample operate screen (where the sequencer is in state 1) is shown below:

| S | Q | 1 | : |   |   |   | S | t | 0 | р | p | е | d |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   | 0 | 0 | Н | Z |   |   |   |   | + | 0 | % |

When the sequencer is running, a warning, "Seq Running," will flash on the screen to indicate that the drive control state may change without user input. For example:



When the sequencer is dwelling (pausing) in a state, a warning, "Seq Dwell," will flash on the screen to indicate that the sequencer will not advance. For example:

| S | Q | 1 |   |   |   | S | t | 0 | р | р | е | d |   | S | Q | 1 |   | S | е | q | D | ٧ | е | l | l |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   | 0 | 0 | Н | z |   |   |   |   | + | 0 | % |   |   |   | 0 | 0 | Η | Z |   |   |   | + | 0 | % |

#### 7.4.5 Sample Sequencer Program

A machine is required to run in the forward direction at 50 Hz for one hour, then quickly decelerate to a stop. While stopped, a digital output must be enabled to sound an alarm to an operator. After two minutes, the machine must accelerate in the reverse direction to 5 Hz until a limit switch is activated, causing the drive to decelerate to a stop. The following three sequential states can be programmed using only the drive:

|                      | State 1   | State 2    | State 3         |
|----------------------|-----------|------------|-----------------|
| Direction Selection  | Forward   | Stop       | Reverse         |
| Speed Selection      | 50 Hz     | Zero speed | 5 Hz            |
| Ramp Selection       | Primary   | Alternate  | Primary         |
| Output Configuration | SeqOut-00 | SeqOut-01  | SeqOut-10       |
| State Duration       | 1 hour    | 2 minutes  | Until DI active |

Table 29:Sample Sequencer Program Requirements

First, since two of the sequential states are time-based, the proper setting of the "Seq Appl" parameter must be determined. Since there is not time required that has resolution needed of less than one second, the "1 sec Base" option is the easiest to use. If greater resolution is needed (for example, if a state needed to last for 2.5 seconds), another option should be chosen.

Since the sequence requires use of a digital input and a digital output, two non-sequencer parameters need to be used. Set the parameter "DI1 Configure" to "Seq1" and the parameter "D01 Configure" to "Seq0ut-01."

Since control of the sequencer is only needed from the keypad, the configuration of the "Input Mode" parameter should be "Local Only."

Required parameter modifications for this program are provided in Table 30, with explanations.

| Parameter      | Value       | Explanation                                         |
|----------------|-------------|-----------------------------------------------------|
| Seq Appl       | 1 sec Base  | Sets 1 second time increments                       |
| DI1 Configure  | Seq1        | Allows DI1 to end state 3                           |
| D01 Configure  | SeqOut-01   | Allows D01 to be active in state 2                  |
| Preset Speed 1 | 5 Hz        | Speed for state 3                                   |
| Preset Speed 6 | 50 Hz       | Speed for state 1                                   |
| Seq Cntl1      | 00010000110 | No outputs/FWD/Timed/Primary Ramp/Preset Speed 6    |
| Seq Count 1    | 3600        | 1 hour = 3600 seconds                               |
| Seq Cntl 2     | 01000001000 | Enable Output/Stop/Timed/Alt Ramp/Speed Ignored     |
| Seq Count 2    | 120         | 2 minutes = 120 seconds                             |
| Seq Cntl 3     | 00101100001 | No outputs/REV/DI Value/Primary Ramp/Preset Speed 1 |
| Seq Count 3    | 1           | Seq1 active                                         |

Table 30:Required Parameter Settings for Sample Sequencer Program

|                         | Wor  | kshee | t for S | equen | cer Pi | rogran | n Setu | р | • | . , |    |
|-------------------------|------|-------|---------|-------|--------|--------|--------|---|---|-----|----|
| on                      |      |       |         |       |        |        |        |   |   |     |    |
| Speed Selection         |      |       |         |       |        |        |        |   |   |     |    |
| Spe                     |      |       |         |       |        |        |        |   |   |     |    |
| Ramp<br>Selection       |      |       |         |       |        |        |        |   |   |     |    |
|                         |      |       |         |       |        |        |        |   |   |     |    |
| State Duration          |      |       |         |       |        |        |        |   |   |     |    |
| S                       |      |       |         |       |        |        |        |   |   |     |    |
| tion                    |      |       |         |       |        |        |        |   |   |     |    |
| Direction<br>Selection  |      |       |         |       |        |        |        |   |   |     |    |
| put<br>ıration          |      |       |         |       |        |        |        |   |   |     |    |
| Output<br>Configuration |      |       |         |       |        |        |        |   |   |     |    |
|                         | Step | 1     | 2       | က     | 4      | 2      | 9      | 7 | 8 | 6   | 10 |

## 8. Troubleshooting

## 8.1 Vacon 50X Fault Codes

Table 1 shows the fault codes that may be displayed during Vacon 50X AC drive operation, along with suggestions for recovering from the fault condition.

When faults occur, you can access the status parameters that are saved along with the fault (Advanced Fault history). To view these parameters, which store the drive's status at the time of the fault, view Fault History, and select Last Fault. Press the Shift key while viewing the last fault, and then use the UP and DOWN arrow keys to scroll through the stored drive status parameters. Press the Shift key again to return to the programming mode fault parameter.

| Code | Fault<br>Display | Description                    | Adv.<br>Fault<br>Code | Explanation                                                                                                                                                     | Suggestions for Recovery                                                                                  |
|------|------------------|--------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1    | System           | System fault                   | 0, 1, 2               | Internal microprocessor problem                                                                                                                                 | Consult factory for repair or replacement.                                                                |
| ľ    | System           | System lautt                   | 3                     | Thermistor profile incor-<br>rect                                                                                                                               | Consult factory for repair or replacement.                                                                |
|      |                  |                                | 0                     | Memory problem when re-<br>flashing the drive's memo-<br>ry                                                                                                     | Reset drive to factory settings.<br>Consult VACON.                                                        |
|      |                  |                                | 1, 2, 3               | Conflict in drive's memory                                                                                                                                      | Reset drive to factory settings.<br>Consult VACON.                                                        |
| 2    | EE Check-<br>sum | Checksum error                 | 4                     | Unable to write an EE pa-<br>rameter after a parameter<br>has been changed through<br>the keypad or SIO                                                         | Reset drive to factory settings.<br>Consult VACON.                                                        |
|      |                  |                                | 5                     | The drive is receiving EE write requests faster than they can be processed. This would typically be caused by writing parameters too frequently through Modbus. | Slow down the frequency of Mod-<br>bus writes.                                                            |
|      |                  |                                | 0                     | Current calibration fault on phase T1/U                                                                                                                         | Check the motor connections to the terminal strip of the drive and at                                     |
| 3    | Curr Cali-<br>br | Current calibra-<br>tion fault | 1                     | Current calibration fault on phase T2/V                                                                                                                         | the motor. Have motor checked. Consult VACON for repair or re-                                            |
|      |                  | '                              | 2                     | Current calibration fault on phase T3/W                                                                                                                         | placement of drive.                                                                                       |
| 4    | Power<br>Supp    | Power supply fault             | 0                     | 5 V supply is below 4 Vdc<br>for more than 100 ms                                                                                                               | Increase resistance between REF<br>and analog inputs.<br>Check wiring to REF terminals.<br>Consult VACON. |
| 6    | IOC Trip         | Instantaneous                  | 0                     | Short circuit was detected<br>on power-up                                                                                                                       | Remove the short from the power wiring.                                                                   |
| 0    | loc IIIp         | overcurrent trip               | 1                     | Short circuit was detected during operation                                                                                                                     | Check for shorted motor.<br>Consult VACON.                                                                |
| 7    | MOL              | MOL contact fault              | 0                     | The MOL digital input was activated, depending on pull-up or pull-down logic configuration                                                                      | Reset MOL contact or remove condition causing the MOL contact activation.                                 |
| 8    | Model ID         | ID # out of range              | 0, 1, 2               | Control board is not reading the drive ID properly                                                                                                              | Consult VACON for repair or re-<br>placement.                                                             |
| 10   | Res Lock-<br>out | Restart lockout                | 0                     | The number of fault restarts is greater than the limit defined in the customer parameter.                                                                       | Check the actual fault in the fault log and use the appropriate remedy.                                   |
| 11   | Ground           | Ground fault                   | 0                     | The drive has detected cur-<br>rent imbalance between<br>output phases. Imbalance<br>determined to be current<br>flow to ground.                                | Check for unbalanced currents.<br>Check for grounded motor leads or<br>motor.<br>Consult VACON.           |
| 1    | Note: Shade      | d faults are auto-             | resettab              | ole, except where noted.                                                                                                                                        |                                                                                                           |

Table 31:Vacon 50X Fault Codes

| Code | Fault<br>Display | Description                  | Adv.<br>Fault<br>Code | Explanation                                                                                                                                                | Suggestions for Recovery                                                                                                                                     |
|------|------------------|------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 12   | Vac Im-<br>blnce | Input voltage im-<br>balance | 0                     | The drive has detected a singlephase condition or a voltage imbalance outside the drive's rating while running a load that could be damaging to the drive. | Check input voltage and current for imbalance, and correct.                                                                                                  |
|      |                  |                              | 0                     | The drive has detected an overvoltage condition during power-up (not auto-resettable).                                                                     | Verify incoming line power is within specification. Add reactor or transformer to correct.                                                                   |
| 13   | OverVolt-<br>age | Overvoltage con-<br>dition   | 1, 3                  | The drive has detected an overvoltage condition during a running condition.                                                                                | Verify incoming line power and check for regenerative load. Reduce Regen load or add dynamic braking resistors. Regen Current Limit may help; consult VACON. |
|      |                  |                              | 2                     | The drive has detected an overvoltage condition on power-up on the load side.                                                                              | Verify incoming line power is within specification. Add reactor or transformer to correct.                                                                   |
|      |                  |                              | 0                     | The DB circuit is active on power-up (not auto-reset-table)                                                                                                | Check for failed braking transistor.<br>Consult VACON.                                                                                                       |
| 15   | Dyn Brake        | Dynamic brake<br>overload    | 1                     | The DB circuit is being activated for too long, possibly causing the resistor to overheat or fail.                                                         | Reduce braking cycle or increase capacity. Activate current limit; consult VACON.                                                                            |
|      |                  | overtoad                     | 2                     | The DB circuit is overloaded because of too large a regenerative load.                                                                                     | Reduce braking cycle or increase capacity. Activate current limit; consult VACON.                                                                            |
|      |                  |                              | 3, 4, 5               | The DB circuit is faulty on power-up (not auto-resettable).                                                                                                |                                                                                                                                                              |
|      |                  |                              | 0                     | The drive sensed an over-<br>current condition on pow-<br>erup (not auto-resettable).                                                                      | Check for failed output power device or shorted motor.                                                                                                       |
| 18   | OverCur-<br>rent | Overcurrent con-<br>dition   | 1                     | The drive sensed an over-<br>current condition during<br>operation. The current has<br>exceeded the safe opera-<br>tion point of power devices.            | Reduce load on motor. Verify that<br>Motor FLA is programmed correct-<br>ly. Check for mechanical binding<br>and shock loading.                              |
|      |                  |                              | 0                     | The temperature of the heatsink exceeded a temperature limit.                                                                                              | Check that ambient temperature does not exceed drive's rating. Check for fan operation (assuming drive has fans installed).                                  |
| 19   | Over             | Over-tempera-                | 1                     | The temperature of the control board exceeded a temperature limit.                                                                                         | Check that ambient temperature does not exceed drive's rating. Check for fan operation (assuming drive has fans installed).                                  |
| 17   | Temp             | ture condition               | 2                     | The drive sensed the heat-<br>sink thermistor sensor is<br>faulty or not connected<br>properly.                                                            | Check thermistor connections or replace. Consult VACON.                                                                                                      |
|      |                  |                              | 3                     | The drive sensed the con-<br>trol board thermistor sen-<br>sor is faulty or not<br>connected properly.                                                     | Check thermistor connections or replace. Consult VACON.                                                                                                      |
| 20   | Motor TOL        | Motor timed overload trip    | 0                     | The drive detected an over-<br>load that exceeds the cus-<br>tomer's defined overload<br>setting.                                                          | Check load current demand. Verify<br>Motor FLA is programmed to the<br>correct value. Verify TOL charac-<br>teristic is correct for the applica-<br>tion.    |
| 21   | Low Temp         | Low temperature              | 0                     | This fault occurs if the temperature of the heat-sink falls below -10.0 degrees C.                                                                         | Verify that ambient temperature is within the drive's specifications; increase the ambient temperature if necessary.                                         |

Table 31:Vacon 50X Fault Codes

| Code | Fault<br>Display | Description                | Adv.<br>Fault<br>Code | Explanation                                                                                                                                                                                                  | Suggestions for Recovery                                                                                                                                                             |
|------|------------------|----------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22   | Ref Loss         | Speed reference<br>loss    | 0                     | The drive detected the analog input was configured to fault if the input current went below the level specified by customer parameters.                                                                      | Check physical connections for reference signal. Check that programming for 4–20 mA signal is correct. Verify that signal to the drive is correct.                                   |
| 23   | Brk Wire         | Broken wire de-<br>tection | 0                     | The drive detected that the potentiometer circuit wiring opened and generated a fault.                                                                                                                       | Check wiring for loss of connection to control terminals. Check that a proper-value potentiometer is installed.                                                                      |
|      |                  |                            | 0                     | This fault occurs because of a problem with the key-<br>pad or a keypad connec-<br>tion. It occurs if the drive<br>detects that it cannot read<br>any key presses.                                           |                                                                                                                                                                                      |
| 24   | Keypad<br>Loss   | Keypad loss                | 1                     | This fault occurs because of a problem with the key-<br>pad, a keypad connection, or the wrong keypad is be-<br>ing used. It occurs if the<br>keypad ID for an Vacon 50X<br>cannot be read.                  | Check the connection from keypad to control board. Note that the keypad is not designed for remote mounting.                                                                         |
|      |                  |                            | 2                     | This fault occurs because of a problem with the keypad or a keypad connection. It occurs if the drive detects that it cannot write to the LCD.                                                               |                                                                                                                                                                                      |
| 25   | Comm<br>Loss     | Communication<br>loss      | 0                     | This fault occurs when the drive is in a serial link control path and the amount of time since the last Modbus comm. exceeds the time set in parameter 903 [SIO Timer].                                      | Check connections to the Modbus<br>port. Adjust value of parameter 903<br>[SIO Timer] as needed.                                                                                     |
| 26   | Regen<br>Time    | Regen timeout              | 0                     | This fault occurs if the drive takes more time to decelerate to a stop than is allowed. The timeout is determined by the longest deceleration ramp time (Decell or Decel2) plus the Regen Timeout parameter. | Reduce the amount of regenerative energy or increase the Regen time-<br>out parameter.                                                                                               |
| 27   | Pwr<br>Bridge    | Power bridge<br>fault      | 0, 1, 2               | The drive detected a failure in the output power devices.                                                                                                                                                    | Check for failed input power device.                                                                                                                                                 |
| 28   | Drive TOL        | Drive timed over-<br>load  | 0                     | The drive sensed an over-<br>load that exceeded the<br>drive rating.                                                                                                                                         | Check that load conditions do not exceed the drive's rating [120% for 60 seconds from nameplate current rating for normal duty and 150% or rated current for 60 seconds heavy duty]. |
| 29   | Stuck Key        | Stuck key error            | 0                     | This fault occurs if a key press is detected upon power-up. This would occur because of a defective keypad or because someone was holding down a key when powering-up the drive.                             | Check for stuck keypad and repair<br>or replace. Consult VACON.                                                                                                                      |
| 30   | Param<br>Range   | Parameter out of range     | 0                     | One of the customer parameters is out of range.                                                                                                                                                              | Check for a parameter value saved<br>out of the standard range.<br>Reset parameters to factory de-<br>fault. Consult VACON.                                                          |
| ١    | Note: Shade      | d faults are auto-         | resettab              | ole, except where noted.                                                                                                                                                                                     |                                                                                                                                                                                      |

Table 31:Vacon 50X Fault Codes

| Code | Fault<br>Display                                             | Description                                | Adv.<br>Fault<br>Code | Explanation                                                                                                                                                                                                                                                                                                                                                              | Suggestions for Recovery                                                                                                                      |  |  |  |  |  |  |
|------|--------------------------------------------------------------|--------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|      | Pwr Wir-                                                     | Power wiring er-                           | 0                     | This fault flags a problem with the drive wiring.                                                                                                                                                                                                                                                                                                                        | Check that input power wiring is                                                                                                              |  |  |  |  |  |  |
| 31   | ing                                                          | ror                                        | 1                     | This fault can occur if an IOC fault is detected during the power wiring test.                                                                                                                                                                                                                                                                                           | not connected to load power termi-<br>nals. Consult VACON.                                                                                    |  |  |  |  |  |  |
| 32   | Low Volt-<br>age                                             | Low voltage trip                           | 0                     | This fault occurs if a power dip occurs when the drive is operating, and the drive is not able to ride through the power dip before shutting off outputs.                                                                                                                                                                                                                | Verify that input line power is within<br>the drive's specifications. Add a<br>transformer or reduce demands to<br>power feed. Consult VACON. |  |  |  |  |  |  |
| 33   | 1Ph Over-<br>load                                            | 1Ph overload                               | 0                     | If the user configures parameter 517 (Single Phase) for singlephase operation, this fault occurs if the bus voltage ripple is outside the limit of the drive.                                                                                                                                                                                                            | Check that input power demand does not exceed the drive's capacity for single-phase operation. Consult VACON.                                 |  |  |  |  |  |  |
| 34   | RS Meas.<br>Fail                                             | Stator resistance<br>measurement<br>failed | 0                     | If the drive cannot measure<br>the stator resistance prop-<br>erly, this fault occurs.                                                                                                                                                                                                                                                                                   | Try the routine again and if the fault occurs twice, consult VACON.                                                                           |  |  |  |  |  |  |
|      |                                                              |                                            | 0                     | There is a problem with the heat sink fan.                                                                                                                                                                                                                                                                                                                               |                                                                                                                                               |  |  |  |  |  |  |
| 35   | Fan Loss                                                     | Loss of fan con-<br>trol or operation      | 1                     | There is a problem with the internal fan. This occurs only on Size 4 and 5 models. All other models display a fan error warning. Note that this is lack of Ian control, so the fan can be spinning and this fault will still occur. This can happen if the fan is on and should not be, or if the fan feedback signals are obstructed from getting to the control board. | Consult VACON.                                                                                                                                |  |  |  |  |  |  |
| 1    | Note: Shaded faults are auto-resettable, except where noted. |                                            |                       |                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                               |  |  |  |  |  |  |

Table 31:Vacon 50X Fault Codes

# 9. Hexadecimal to Binary Conversion

The Vacon 50X AC drive utilizes hexadecimal numbers to display and store the binary values of some parameters. These parameters are read and written as four-digit hexadecimal values. The hexadecimal values are then translated to binary values, with the binary values being compared to the "key" provided for each parameter to determine what status is shown or what action is commanded.

The following table shows the sixteen hexadecimal values and the corresponding binary values. The binary values are divided into four columns so you may more readily see which bits of the status or control words are affected by the binary values.

| Hexadecimal Value |                    | Binary Value                                   |                   |                   |  |
|-------------------|--------------------|------------------------------------------------|-------------------|-------------------|--|
| 0                 | 0                  | 0                                              | 0                 | 0                 |  |
| 1                 | 0                  | 0                                              | 0                 | 1                 |  |
| 2                 | 0                  | 0                                              | 1                 | 0                 |  |
| 3                 | 0                  | 0                                              | 1                 | 1                 |  |
| 4                 | 0                  | 1                                              | 0                 | 0                 |  |
| 5                 | 0                  | 1                                              | 0                 | 1                 |  |
| 6                 | 0                  | 1                                              | 1                 | 0                 |  |
| 7                 | 0                  | 1                                              | 1                 | 1                 |  |
| 8                 | 1                  | 0                                              | 0                 | 0                 |  |
| 9                 | 1                  | 0                                              | 0                 | 1                 |  |
| A                 | 1                  | 0                                              | 1                 | 0                 |  |
| В                 | 1                  | 0                                              | 1                 | 1                 |  |
| С                 | 1                  | 1                                              | 0                 | 0                 |  |
| D                 | 1                  | 1                                              | 0                 | 1                 |  |
| E                 | 1                  | 1                                              | 1                 | 0                 |  |
| F                 | 1                  | 1                                              | 1                 | 1                 |  |
|                   | 15<br>11<br>7<br>3 | 14<br>10<br>6<br>2                             | 13<br>9<br>5<br>1 | 12<br>8<br>4<br>0 |  |
|                   | С                  | Corresponding Bit Positions of Parameter Words |                   |                   |  |

#### 10. Fundamentals of PI Control

#### 10.1 Introduction

The Vacon 50X AC drive has a built-in PI (Proportional-Integral) Controller that makes it possible to control a process by adjusting motor speed using a reference input and a feedback input. When the drive is configured to operate with feedback from a transducer, the Vacon 50X AC drive essentially ceases to be a frequency controller and instead becomes a process controller.

Several Vacon 50X parameters are specifically designed for PI control. These include:

- 490 (Appl Macro)
- 850 (PI Configure)
- 851 (PI Feedback)
- 852 (PI Prop Gain)
- 853 (PI Int Gain)
- 854 (PI Feed Gain)
- 855 (PI Error 1)
- 856 (PI Error 2)
- 857 (PI High Corr)858 (PI Low Corr)

The function performed by each of these parameters is described in the following section. Figure 22 on page 108 provides a flowchart of PI control and shows the interaction of these parameters.

# 10.2 Configuration of PI Control Parameters

This section discusses the parameters used for PI control and provides advice on how best to configure these parameters for your particular application.

# 10.2.1 Parameter 490 (Appl Macro)

Parameter 490 (Appl Macro) is used to active the PI mode for either a Fan with PI or Pump with PI application.

## 10.2.2 Parameter 857 (PI High Corr) and 858 (PI Low Corr)

These two parameters define the correction limits for the drive's response to a change in, or loss of, the feedback signal.



Figure 22: PI Controller Functional Diagram

## 10.2.3 Parameter 852 (PI Prop Gain)

Parameter 852 [PI Prop Gain] is the proportional feedback gain for the process control loop. It determines the overall effect on the process for an incremental change in the feedback signal.

Generally, when configuring this parameter, you must observe the drive's response to an incremental change in the feedback input, and then decide if this response is sufficient.

For example, if the feedback input changes 1 V (or 1 mA), what is the drive's response? Is it enough or too much?

#### 10.2.4 Parameter 853 (PI Int Gain)

Parameter 853 (PI Int Gain) is the integral feedback gain for the process control loop. This parameter determines the short-term effects of a change in the feedback signal.

Generally, when configuring this parameter, you must observe the drive's response to an incremental change in the feedback input over a certain length of time, and then decide if this response is acceptable.

For example, if the feedback input changed 1 V (or 1 mA) for 5 seconds, what is the drive's response? Is it acceptable? Would you prefer to have the drive ignore a change over such a short time period, but still react to longer time durations (say, 8 to 10 seconds)? [If so, decreasing the integral gain by reducing the value for parameter 853 would have that effect.]

#### 10.2.5 Parameter 854 (PI Feed Gain)

Parameter 854 (PI Feed Gain) is the feedback scaling factor. It is used to scale the signal supplied by the transducer — thereby optimizing the effect of the signal on the drive.

### 10.2.6 Parameter 850 (PI Configure)

Parameter 850 (PI Configure) determines the characteristics of the process control loop – direct-acting or inverse-acting (also known as reverse-acting), the rate of response (fast or slow), whether feed-forward is enabled, and whether the loop is operated via digital inputs. The following paragraphs discuss each of these characteristics in more detail:

Direct- or inverse-acting loop

In a direct-acting loop, as the process speed increases, the feedback signal will decrease and cause a corresponding decrease in the process speed as it approaches the regulation point. This type is typically employed in pump applications where the level control is the process variable.

Conversely, in an inverse-acting loop, as the process speed increases, the feedback signal increases but causes a corresponding decrease in the process speed as it approaches the regulation point. This type is typically employed in supply pump applications where the pressure is the process variable.

Slow or fast rate of response

A slow rate of response (over 10 s, usually) is most often selected for processes with long time constraints (for example, thermal and fluid level controls). On the other hand, a fast response rate is utilized for processes with short time constraints (such as mechanical systems and pressure loops). Most industrial systems require a slow rate of response.

Whether feed-forward is enabled

Feed-forward is usually enabled when there is very little difference between the process speed and the feedback signal.

For example, feed-forward is useful in "speed regulation" situations, such as controlling motor speed in a closed loop. Note that feed-forward should be enabled when attempting to close a speed loop.

Feed-forward is not suited to applications such as pressure regulation systems because generally the process speed and the process variable are vastly different.

Whether PI control is enabled via a digital input

A digital input, when properly configured via the corresponding parameter, may be used to toggle PI control

Generally, a digital input is used when the process will be operated as both a closed and an open loop and/ or when circumstances may arise where you would want to override the process speed as determined by the process variable and reference.

Remember: to complete the implementation, you must configure a digital input separately to invoke PI control.

## 10.3 Tuning the PI Control Loop

Once the parameters are initially configured, you should tune them so the process control loop operates as optimally as possible. To make tuning easier, the following recommendations should be observed:

- If your application does not require enabling by digital input, for the duration of tuning you should select a value for parameter 850 (PI Configure) which does allow a digital input to enable PI control. Once tuning is finished, you can restore the parameter to its original value.
- Install a switch to select closed loop and open loop performance.
- Connect a calibration signal to the drive to simulate the effects of the transducer's signal. While this is not absolutely required, it can be very helpful.

Once the preparations for tuning are complete, enable PI control via the digital input and set the switch to open loop. Then operate the drive, utilizing any necessary instrumentation (for example, pressure gauges, meters, etc.) to characterize the range of the signal supplied from the transducer (for example, at 3 PSI, the transducer provides 1 V). This will aid in better understanding the operation of the system and make calibration easier.

Select a mid-range operating point for the system and inject a signal close to that which the transducer would provide at that point. Vary the signal by the value determined by the set-up technician and determine whether the proportional response of the system is appropriate. If the questions posed in the previous section are answered correctly and your initial assumptions prove correct, a combination of input scaling and proportional gain should make the performance match the system.

Next, examine the transient or short-term effects that are common on all realworld systems. Use the calibrator to change the feedback signal by some value for a measured interval, with the value and duration approximating the real system.

For example, say 1 V for 5 seconds was selected. By monitoring parameter 856 (PI Error 2), the effect of the feedback signal may be observed. The value of this parameter should increase and then settle back to zero, or perhaps go below zero (negative). The value of the parameter may go positive and negative a number of times as a response to repeated 5 second transients. Tune parameter 853 (PI Int Gain) to optimize this effect to suit the circumstances.

Finally, put the transducer into the circuit and review the results. The results will likely show that the value of parameter 853 (PI Int Gain) needs to be modified to complete the implementation. Minor adjustment of the other PI control parameters may also be necessary.

Once the process control loop is optimally functioning, if you changed the value of parameter 850 (PI Configure) for tuning, restore it to its original value.

If you need further assistance or advice, please contact VACON. (See the inside front cover of this manual for information on how to contact technical support.)

### 11. EU Declaration of Conformity

Vacon, Inc. 440 North Fifth Avenue Chambersburg, PA 17201 USA

hereby declare that the products:

Product Name: Vacon 50X Series

Model Numbers:

0004 2, 0007 2, 0010 2, 0015 2, 0022 2, 0028 2, 0042 2, 0054 2, 0068 2, 0002 5, 0004 5, 0005 5. 0009 5, 0012 5, 0016 5, 0023 5, 0031 5, 0037 5, 0043 5, 0061 5, 0071 5, 0086 5, 0105 5, 0140 5, 0168 5, 0205 5, 0240 5, 0002 6, 0003 6, 0004 6, 0006 6, 0009 6, 0011 6, 0017 6, 0022 6, 0027 6, 0032 6, 0041 6, 0052 6, 0062 6, 0077 6, 0099 6, 0125 6, 0144 6, 0192 6

have been designed and manufactured in accordance with standards:

Low Voltage Directive: EN50178

Electronic equipment for use in power installations

Electromagnetic compatibility: EN61800-3

Adjustable speed electrical power drive systems - Part 3:

EMC product standard including specific test methods

The products referenced above are for the use of control of the speed of AC motors.

cant Heustis

The use in residential and commercial premises (Class B) requires an optional WLF series filter.

Via internal mechanisms and Quality Control, it is verified that these products conform to the requirements of the Directive and applicable standards.

Chambersburg, PA, USA - 31. May 2007

Frank H. Custis Marketing Manager

Electronics Division

# 12. Summary of Vacon 50X Parameters

## 12.1 Default Settings

| No. | Parameter Name   | Options           | Default    | User Setting | See Page |
|-----|------------------|-------------------|------------|--------------|----------|
| 001 | Model Number     | Model Dependent   | Read-only  |              | 60       |
| 002 | Software Rev     | 0.00-99.99        | Read-only  |              | 60       |
| 003 | Rated Current    | 0.0-200.0 A       | Read-only  |              | 60       |
| 005 | Serial No. 1     | 0-65535           | Read-only  |              | 60       |
| 006 | Serial No. 2     | 0-65535           | Read-only  |              | 60       |
| 010 | Last Fault       | text string       | Read-only  |              | 60       |
| 025 | 4th Fault        | text string       | Read-only  |              | 60       |
| 040 | 3rd Fault        | text string       | Read-only  |              | 60       |
| 055 | 2nd Fault        | text string       | Read-only  |              | 61       |
| 070 | 1st Fault        | text string       | Read-only  |              | 61       |
| 102 | Output Freq      | 0.0-400.0 Hz      | Read-only  |              | 61       |
| 103 | Output Voltage   | 0-600 V           | Read-only  |              | 61       |
| 104 | Output Current   | 0.0-200.0 A       | Read-only  |              | 61       |
| 105 | Drive Load       | -200.0-200.0%     | Read-only  |              | 61       |
| 106 | Load Torque      | -200.0-200.0%     | Read-only  |              | 61       |
| 107 | Drive Temp       | -20.0-200.0 °C    | Read-only  |              | 61       |
| 108 | Total Run Time   | 0.0-6553.5 h      | Read-only  |              | 61       |
| 109 | Power On Hours   | 0-65535 h         | Read-only  |              | 62       |
| 110 | Stator Freq      | 0.0-400.0 Hz      | Read-only  |              | 62       |
| 111 | DC Bus Voltage   | 0-1000 Vdc        | Read-only  |              | 62       |
| 115 | Drive Power Out  | 0.0-200.0%        | Read-only  |              | 62       |
| 201 | Input Mode       | text string       | Local Only |              | 62       |
| 202 | Rev Enable       | text string       | Forward    |              | 63       |
| 203 | Stop Key Remote  | text string       | Coast      |              | 63       |
| 204 | Ref Select       | text string       | Vin1       |              | 63       |
| 205 | Vin1 Config      | text string       | 0-10V      |              | 64       |
| 206 | Vin1 Offset      | 0.0-100.0%        | 0.00%      |              | 64       |
| 207 | Vin1 Span        | 10.0-200.0%       | 100.00%    |              | 64       |
| 208 | Cin Config       | text string       | 0-20mA 50  |              | 64       |
| 209 | Cin Offset       | 0.0-100.0%        | 0.0%       |              | 65       |
| 210 | Cin Span         | 10.0-200.0%       | 100.0%     |              | 65       |
| 211 | Vin2 Config      | text string       | 0-10V      |              | 65       |
| 212 | Vin2 Offset      | 0.0-100.0%        | 0.00%      |              | 65       |
| 213 | Vin2 Span        | 10.0-200.0%       | 100.00%    |              | 65       |
| 214 | Vin1 Filter Time | 0–1000 ms         | 20 ms      |              | 66       |
| 215 | Cin Filter Time  | 0–1000 ms         | 20 ms      |              | 66       |
| 216 | Vin2 Filter Time | 0–1000 ms         | 20 ms      |              | 66       |
| 217 | Trim Ref Enable  | text string       | Disabled   |              | 66       |
| 218 | Trim % Factor    | -100.0 to 100.0%  | 0.0%       |              | 66       |
| 222 | Ref Loss Fault   | text string       | Disabled   |              | 66       |
| 301 | Min Frequency    | 0.0-Max Freq.     | 0.0 Hz     |              | 67       |
| 302 | Max Frequency    | 20.0-400.0 Hz     | 60.0 Hz    |              | 67       |
| 303 | Preset Freq 1    | Min Freq-Max Freq | 5.0 Hz     |              | 67       |

| No.        | Parameter Name   | Options                    | Default                                       | User Setting | See Page |
|------------|------------------|----------------------------|-----------------------------------------------|--------------|----------|
| 304        | Preset Freq 2    | Min Freq-Max Freq          | 10.0 Hz                                       |              | 67       |
| 305        | Preset Freq 3    | Min Freq-Max Freq          | 20.0 Hz                                       |              | 67       |
| 306        | Preset Freq 4    | Min Freq-Max Freq          | 30.0 Hz                                       |              | 67       |
| 307        | Preset Freq 5    | Min Freq-Max Freq          | 40.0 Hz                                       |              | 67       |
| 308        | Preset Freq 6    | Min Freq-Max Freq          | 50.0 Hz                                       |              | 67       |
| 309        | Cut-Off Freq     | 0.0-5.0 Hz                 | 0.0 Hz                                        |              | 67       |
| 401        | Ramp Select      | text string                | (Size 0-4):<br>ART-DI<br>(Size 5):<br>S-Curve |              | 67       |
| 402        | Accel Time 1     | 0.1-3200.0 sec             | 5.0 sec                                       |              | 68       |
| 403        | Decel Time 1     | 0.1-3200.0 sec             | 5.0 sec                                       |              | 68       |
| 404        | Accel Time 2     | 0.1-3200.0 sec             | 3.0 sec                                       |              | 68       |
| 405        | Decel Time 2     | 0.1-3200.0 sec             | 3.0 sec                                       |              | 69       |
| 406        | DC Inject Config | text string                | DC at Stop                                    |              | 69       |
| 407        | DC Inject Time   | 0.0-5.0 sec                | 0.2 sec                                       |              | 69       |
| 408        | DC Inject Level  | 0.0-100.0%                 | 50.0%                                         |              | 69       |
| 409        | DC Inj Freq      | 0.0-20.0 Hz                | 0.0 Hz                                        |              | 70       |
| 410        | DB Config        | text string                | Internal                                      |              | 70       |
| 414        | S Ramp Rounding  | 1–100%                     | 25%                                           |              | 70       |
| 490        | Арр Масго        | text string                | Factory                                       |              | 50       |
| 491        | Seq Appl         | text string                | Disabled                                      |              | 50       |
| 492        | SIO Visible      | text string                | No                                            |              | 50       |
| 501        | V/Hz Select      | text string                | Linear Fxd                                    |              | 71       |
| 502        | Voltage Boost    | 0.0-50%                    | 1.0%                                          |              | 72       |
| 503        | V/Hz Knee Freq   | 25.0-400.0 Hz              | 60.0 Hz                                       |              | 72       |
| 504        | Skip Freq Band   | 0.2-20.0 Hz                | 0.2 Hz                                        |              | 72       |
| 505        | Skip Freq 1      | Min Freq-Max Freq          | 0.0 Hz                                        |              | 72       |
| 506        | Skip Freq 2      | Min Freq-Max Freq          | 0.0 Hz                                        |              | 72       |
| 507        | Skip Freq 3      | Min Freq-Max Freq          | 0.0 Hz                                        |              | 72       |
| 508        | Skip Freq 4      | Min Freq-Max Freq          | 0.0 Hz                                        |              | 72       |
| 509        | Rated Mtr Volt   | 100V-690V                  | Model Dependent                               |              | 73       |
| 510        | Rated Mtr FLA    | 50%-200% of ND Rat-<br>ing | ND Rating                                     |              | 73       |
| 511        | Rated Mtr RPM    | 0–24000 rpm                | 1750 rpm                                      |              | 73       |
| 512        | Midpoint Freq    | 0.0 Hz–V/Hz Knee<br>Freq   | 60.0 Hz                                       |              | 73       |
| 513        | Midpoint Volt    | 0.0-100.0%                 | 100.0%                                        |              | 73       |
| 514        | Motor RS         | 0.0-655.35 Ohm             | Model Dependent                               |              | 73       |
| 515        | Power Factor     | 0.50-1.00                  | 0.80                                          |              | 73       |
| 516        | Slip Comp Enable | text string                | No                                            |              | 74       |
| 517        | Single Phase     | text string                | No                                            |              | 74<br>74 |
| 519        | Find Mtr Data    | Not Active/Motor RS        | Not Active                                    |              |          |
| 520        | Filter FStator   | 1–100 ms                   | 8 ms                                          |              | 74       |
| 521        | Start Field En   | Yes/No                     | No                                            |              | 74       |
| 522        | Filter Time Slip | 10–1000 ms                 | 100 ms                                        |              | 75       |
| 523<br>524 | Id Percent       | 0-200%<br>0-200%           | Read-only                                     |              | 75<br>75 |
| 524        | Iq Percent       | U-2UU%                     | Read-only                                     |              | 75       |

| No.        | Parameter Name                 | Options                   | Default       | User Setting | See Page |
|------------|--------------------------------|---------------------------|---------------|--------------|----------|
| 525        | Power Fail Cfg                 | text string               | CTS No Msg    |              | 75       |
| 526        | UV Ride-Thru En                | text string               | w/ LVT        |              | 76       |
| 600        | Current Lim Sel                | 0-6                       | Fixed Lvls    |              | 76       |
| 601        | Cur Lim Mtr Fwd                | 5%-150%                   | 120%          |              | 77       |
| 602        | Cur Lim Mtr Rev                | 5%-150%                   | 120%          |              | 77       |
| 603        | Cur Lim Reg Fwd                | 5%-150%                   | 80%           |              | 77       |
| 604        | Cur Lim Reg Rev                | 5%-150%                   | 80%           |              | 77       |
| 605        | Cur Lim Freq                   | 0.0-400.0 Hz              | 3.0 Hz        |              | 77       |
| 606        | Ramp Time CL                   | 0.1–3200.0 sec            | 1.0 sec       |              | 77       |
| 607        | Cur Lim Minimum                | 0-50%                     | 10%           |              | 77       |
| 608        | Restart Number                 | text string               | 0             |              | 78       |
| 609        | Restart Delay                  | 0-60 sec                  | 60 sec        |              | 78       |
| 610        | Timed OL Select                | text string               | In Duty 60sec |              | 78       |
| 613        | Max Regen Ramp                 | 100-1000%                 | 300%          |              | 79       |
| 700        | Vmet Config                    | text string               | Freq Out      |              | 79       |
| 701        | Vmet Span                      | 0.0-200.0%                | 100.0%        |              | 79       |
| 702        | Imet Config                    | text string               | Drive Load    |              | 80       |
| 703        | Imet Span                      | 0.0-200.0%                | 100.0%        |              | 80       |
| 704        | Imet Offset                    | 0.0-90.0%                 | 0.0%          |              | 80       |
| 705        | Relay 1 Select                 | text string               | Drv Fault     |              | 80       |
| 706        | Relay 2 Select                 | text string               | Drv Run       |              | 80       |
| 707        | D01 Select                     | text string               | Drv Ready     |              | 80       |
| 708        | D02 Select                     | text string               | At Speed      |              | 80       |
| 720        | Active Logic                   | text string               | Active High   |              | 81       |
| 721        | DI1 Configure                  | text string               | Preset 1      |              | 81       |
| 722        | DI2 Configure                  | text string               | Preset 2      |              | 81       |
| 723        | DI3 Configure                  | text string               | Preset 3      |              | 81       |
| 724        | DI4 Configure                  | text string               | Alt Ramp      |              | 81       |
| 725        | DI5 Configure                  | text string               | Fault Reset   |              | 81       |
| 726        | MOL Polarity                   | text string               | NO Operate    |              | 82       |
| 727        | MOL Configure                  | text string               | MOL           |              | 82       |
| 801        | Program Number                 | 0-9999                    | 0             |              | 83       |
| 802        | Start Options                  | text string               | LS Lockout    |              | 83       |
| 803        | PWM Frequency                  | 0.6-16.0 kHz              | 3.0 kHz       | 1            | 83       |
| 804        | Display Mode                   | text string               | Std Disply    |              | 84       |
| 805        | Display Units(1)               | alphanumeric              | RPM:1         |              | 84       |
| 809        | Display Scale                  | 1-65535                   | 1             |              | 84       |
| 810        | Language                       | text string               | English<br>0  | 1            | 85       |
| 811<br>812 | Access Code<br>Freg Ref Output | 0-9999                    | 0<br>6FS      | 1            | 85<br>85 |
| 812        |                                | text string<br>0.0-200.0% | 100.0%        | 1            | 85       |
|            | Speed Ratio                    |                           |               | 1            | 85<br>85 |
| 814        | Display Status                 | text string               | Drive load    | 1            |          |
| 816        | Fly Catch Mode                 | Sweep Fwd / Rev / F/<br>R | Sweep Fwd     |              | 86       |
| 850        | PI Configure                   | text string               | No PI         |              | 86       |
| 851        | PI Feedback                    | text string               | Vin1          |              | 87       |

| No. | Parameter Name | Options      | Default     | User Setting | See Page |
|-----|----------------|--------------|-------------|--------------|----------|
| 852 | PI Prop Gain   | 0-2000       | 0           |              | 87       |
| 853 | PI Int Gain    | 0-10000      | 0           |              | 87       |
| 854 | PI Feed Gain   | 0-2000       | 1000        |              | 87       |
| 855 | PI Error 1     | 0.00-100.00% | Read-only   |              | 87       |
| 856 | PI Error 2     | 0.00-100.00% | Read-only   |              | 87       |
| 857 | PI High Corr   | 0.00-100.00% | 100.00%     |              | 87       |
| 858 | PI Low Corr    | 0.00-100.00% | 0.00%       |              | 87       |
| 900 | SIO Protocol   | text string  | RTU N81     |              | 88       |
| 901 | SIO Baud Rate  | text string  | 9600        |              | 88       |
| 902 | Comm Drop #    | 1-247        | 1           |              | 88       |
| 903 | SI0 Timer      | 0.0-60.0 sec | 1.0 sec     |              | 88       |
| 904 | SIO Cntl Word  | text string  | 0x0000      |              | 89       |
| 905 | Ext Ref Freq1  | Min-Max Freq | 0.0 Hz      |              | 89       |
| 906 | Ext Ref Freq2  | Min-Max Freq | 0.0 Hz      |              | 89       |
| 908 | Status Word    | text string  | Read-only   |              | 89       |
| 909 | DI Status      | text string  | Read-only   |              | 90       |
| 910 | Vin1 Status    | 0.00-100.00% | Read-only   |              | 90       |
| 911 | Cin Status     | 0.00-100.00% | Read-only   |              | 90       |
| 912 | Vin2 Status    | 0.00-100.00% | Read-only   |              | 90       |
| 913 | Output Status  | text string  | Read-only   |              | 90       |
| 914 | Vmet Status    | 0.00-100.00% | Read-only   |              | 90       |
| 915 | Imet Status    | 0.00-100.00% | Read-only   |              | 90       |
| 916 | Infrared Baud  | n/a          | 9600        |              | 91       |
| 931 | Seq Cntl 1     | n/a          | 00000000000 |              | 91       |
| 932 | Seq Cntl 2     | n/a          | 00000000000 |              | 91       |
| 933 | Seq Cntl 3     | n/a          | 00000000000 |              | 91       |
| 934 | Seq Cntl 4     | n/a          | 00000000000 |              | 91       |
| 935 | Seq Cntl 5     | n/a          | 00000000000 |              | 91       |
| 936 | Seq Cntl 6     | n/a          | 00000000000 |              | 91       |
| 937 | Seq Cntl 7     | n/a          | 00000000000 |              | 91       |
| 938 | Seq Cntl 8     | n/a          | 00000000000 |              | 91       |
| 939 | Seq Cntl 9     | n/a          | 00000000000 |              | 91       |
| 951 | Seq Count 1    | 0-65535      | 0           |              | 91       |
| 952 | Seq Count 2    | 0-65535      | 0           |              | 91       |
| 953 | Seq Count 3    | 0-65535      | 0           |              | 91       |
| 954 | Seq Count 4    | 0-65535      | 0           |              | 91       |
| 955 | Seq Count 5    | 0-65535      | 0           |              | 91       |
| 956 | Seq Count 6    | 0-65535      | 0           |              | 91       |
| 957 | Seq Count 7    | 0-65535      | 0           |              | 91       |
| 958 | Seq Count 8    | 0-65535      | 0           |              | 91       |
| 959 | Seq Count 9    | 0-65535      | 0           |              | 91       |

# 12.2 Parameter Names in 5 Languages

| Nr. | English         | German                | Italian         | French          | Spanish          |
|-----|-----------------|-----------------------|-----------------|-----------------|------------------|
| 001 | Model Number    | Modellnummer          | Numero Modello  | Numero Modelo   | Numero de modele |
| 002 | Software Rev    | Softwareversion       | Vers Software   | Rev del Softwar | Rev du Logiciel  |
| 003 | Rated Current   | Gera-<br>etenennstrom | Corrente Nom    | Corrien Clasif  | Courant Nominal  |
| 005 | Serial No 1     | Serien Nr. 1          | Nr Seriale 1    | Num de Serie 1  | Numero Serie 1   |
| 006 | Serial No 2     | Serien Nr. 2          | Nr Seriale 2    | Num de Serie 2  | Numero Serie 2   |
| 010 | Last Fault      | Letzter Fehler        | Ultimo Errore   | Ultima Fallo    | Derniere Faute   |
| 025 | 4th Fault       | Vierter Fehler        | Quarto Errore   | 4to Fallo       | 4ieme Faute      |
| 040 | 3rd Fault       | Dritter Fehler        | Terzo Errore    | 3ro Fallo       | 3ieme Faute      |
| 055 | 2nd Fault       | Zweiter Fehler        | Secondo Errore  | 2do Fallo       | 2ieme Faute      |
| 070 | 1st Fault       | Erster Fehler         | Primo Errore    | 1r Fallo        | 1iere Faute      |
| 102 | Output Freq     | Ausg. Freq.           | Freq Uscita     | Frec Salida     | Freq Sortie      |
| 103 | Output Voltage  | Ausg. Spannung        | Tens di Uscita  | Tension Salida  | Tension Sortie   |
| 104 | Output Current  | Ausg. Strom           | Corr di Uscita  | Corrien Salida  | Courant Sortie   |
| 105 | Drive Load      | Ausg. Last            | Caric Inver     | Invert Carga    | Charge Sort      |
| 106 | Load Torque     | Ausg. Moment          | Mom di Uscita   | Torque de Carga | Couple Charge    |
| 107 | Drive Temp      | Kk. Temp.             | Temp Invert     | Temp Invert     | Temp Cntl        |
| 108 | Total Run Time  | Motor Laufzeit        | Tempo Funz Mot  | Tiemp Pasad Tot | Duree Fonction   |
| 109 | Power On Hours  | Betriebszeit          | Ore funzionam   | Hrs Tot Prend   | Duree D'Aliment  |
| 110 | Stator Freq     | Statorfreq.           | FreqStatore     | Frc Estator     | Freq Stator      |
| 111 | DC Bus Voltage  | Zwischenk. Spa.       | Tensione Bus DC | Tens Bus CC     | Tension Bus-DC   |
| 115 | Drive Power Out | Ausgangsleist.        | Pot Usc Inv     | Pot Sal Drive   | Puis Sort Cntl   |
| 201 | Input Mode      | Steuermodus           | Modo Comando    | Modo Entrada    | Mode Entree      |
| 202 | Rev Enable      | Rev. Auswahl          | Rev Abilitato   | Rev Permita     | Activer Renverse |
| 203 | Stop Key Remote | Stoptaste Rem         | Tast Stop Rem   | Boton Parad Tel | Rem Cle Arret    |
| 204 | Ref Select      | Ref. Auswahl          | Selezione Rif   | Ref Selec       | Ref Select       |
| 205 | Vin1 Config     | Vin1 Auswahl          | Vin1 Config     | Vin1 Config     | Vin1 Config      |
| 206 | Vin1 Offset     | Vin1 Offset           | Vin1 Offset     | Vin1 Comp       | Vin1 Decalage    |
| 207 | Vin1 Span       | Vin1 Bereich          | Vin1 Campo      | Vin1 Extension  | Vin1 Span        |
| 208 | Cin Config      | Cin Auswahl           | Cin Config      | Cin Config      | Cin Config       |
| 209 | Cin Offset      | Cin Offset            | Cin Offset      | Cin Comp        | Cin Decalage     |
| 210 | Cin Span        | Cin Bereich           | Cin Campo       | Cin Extension   | Cin Span         |
| 211 | Vin2 Config     | Vin2 Auswahl          | Vin2 Config     | Vin2 Config     | Vin2 Config      |
| 212 | Vin2 Offset     | Vin2 Offset           | Vin2 Offset     | Vin2 Comp       | Vin2 Decalage    |
| 213 | Vin2 Span       | Vin2 Bereich          | Vin2 Campo      | Vin2 Extension  | Vin2 Span        |
| 301 | Min Frequency   | Min. Frequenz         | Frequenza Min   | Frecuencia Min  | Frequence Min    |
| 302 | Max Frequency   | Max. Frequenz         | Frequenza Max   | Frecuencia Max  | Frequence Max    |
| 303 | Preset Freq 1   | Fixfrequenz 1         | Freq Fissa 1    | Frec Predet 1   | Freq 1 Prereglee |
| 304 | Preset Freq 2   | Fixfrequenz 2         | Freq Fissa 2    | Frec Predet 2   | Freq 2 Prereglee |
| 305 | Preset Freq 3   | Fixfrequenz 3         | Freq Fissa 3    | Frec Predet 3   | Freq 3 Prereglee |
| 306 | Preset Freq 4   | Fixfrequenz 4         | Freq Fissa 4    | Frec Predet 4   | Freq 4 Prereglee |
| 307 | Preset Freq 5   | Fixfrequenz 5         | Freq Fissa 5    | Frec Predet 5   | Freq 5 Prereglee |
| 308 | Preset Freq 6   | Fixfrequenz 6         | Freq Fissa 6    | Frec Predet 6   | Freq 6 Prereglee |
| 401 | Ramp Select     | Rampen Auswahl        | Selezione Rampa | Rampa Selec     | Select Rampe     |
| 402 | Accel Time 1    | Hochlaufz. 1          | Tempo Accel 1   | Tiempo Acel 1   | Temps Accel 1    |

| Nr. | English          | German                | Italian               | French           | Spanish          |
|-----|------------------|-----------------------|-----------------------|------------------|------------------|
| 403 | Decel Time 1     | Tieflaufz. 1          | Tempo Decel 1         | Tiemp Desacel 1  | Temps Decel 1    |
| 404 | Accel Time 2     | Hochlaufz. 2          | Tempo Accel 2         | Tiempo Acel 2    | Temps Accel 2    |
| 405 | Decel Time 2     | Tieflaufz. 2          | Tempo Decel 2         | Tiemp Desacel 2  | Temps Decel 2    |
| 406 | DC Inject Config | DC-Bremsau-<br>swahl  | Config Freno DC       | Config CC Inyect | Config Inject DC |
| 407 | DC Inject Time   | DC-Bremszeit          | Tempo Freno DC        | Tiemp CC Inyect  | Temps DC Inject  |
| 408 | DC Inject Level  | DC-Bremspegel         | Livello Freno DC      | Nivel CC Inyec   | Niveau DC Inject |
| 409 | DC Inject Freq   | DC-Bremsfreq.         | Freq Freno DC         | Frec CC Inyec    | Freq DC Inject   |
| 410 | DB Config        | DB Auswahl            | DB Config             | DB Config        | DB Config        |
| 414 | S Ramp Rounding  | S-Rampenver-<br>schl. | Andamento Cur-<br>vaS | Redondeo S-Rampa | Arrond. Rampe S  |
| 490 | Appl Macro       | Makro Auswahl         | Scelta Macro          | Macro de apl     | Appl Macro       |
| 491 | Seq Appl         | Sequenz Auswahl       | Scelta Sequenza       | Secuen Aplic     | Seq Appl         |
| 492 | SIO Visible      | SIO Sichtbar          | SIO Visibile          | SIO Visible      | SIO Visible      |
| 501 | V/Hz Select      | V/Hz Auswahl          | Selezione V/Hz        | V/Hz Selec       | V/Hz Select      |
| 502 | Voltage Boost    | Boost Spannung        | Tensione Boost        | Refuerzo Tens    | Boost Tension    |
| 503 | V/Hz Knee Freq   | V/Hz Knickfreq.       | V/Hz Knee Freq        | V/Hz Frec Rodil  | V/Hz Knee Freq   |
| 504 | Skip Freq Band   | Sperrfreq. Band       | Banda Escl Freq       | Banda Frec Salto | Bande Extraite   |
| 505 | Skip Freq 1      | Sperrbereich 1        | Escl Freq 1           | Frec Salto 1     | Freq Extraite 1  |
| 506 | Skip Freq 2      | Sperrbereich 2        | Escl Freq 2           | Frec Salto 2     | Freq Extraite 2  |
| 507 | Skip Freq 3      | Sperrbereich 3        | Escl Freq 3           | Frec Salto 3     | Freq Extraite 3  |
| 508 | Skip Freq 4      | Sperrbereich 4        | Escl Freq 4           | Frec Salto 4     | Freq Extraite 4  |
| 509 | Rated Mtr Volt   | Motornennspan.        | Tens Nom Motore       | Tens Salida Nom  | Tens Mtr Nominal |
| 510 | Rated Mtr FLA    | Motornennstrom        | Corr Nom Motore       | Corr Nom Mtr     | Mtr FLA Nominal  |
| 511 | Rated Mtr RPM    | Motornenndrehz.       | RPM Nom Motore        | RPM Nom Mtr      | Mtr RPM Nominal  |
| 512 | Midpoint Freq    | Freq. Stuetzst.       | Punto Medio Freq      | Punto Med Frec   | Point Centr Freq |
| 513 | Midpoint Volt    | Span. Stuetzst.       | Punto Medio Tens      | Punto Med Tens   | Point Centr Tens |
| 514 | Motor RS         | Motor RS              | Motore RS             | Motor RS         | Moteur RS        |
| 515 | Power Factor     | Leistungsfaktor       | Fattore Pot           | Factor Pot       | Fact. Puiss      |
| 516 | Slip Comp Enable | Schlupfkomp.          | Comp Scorrimen-<br>to | Perm Comp Dslz   | Activ Comp Gliss |
| 517 | Single Phase     | 1 Phasen              | Singola Fase          | Solo Fase        | Simple Phase     |
| 519 | Find Mtr Data    | Find Mtr Daten        | Cerc dati Mtr         | Consig Datos Mtr | Find Mtr Data    |
| 520 | Filter Fstator   | Fstator Filterz.      | Filtro Fstatore       | Filt Festator    | Filter Fstator   |
| 521 | Start Field En   | Feldaufbau            | Campo Start Abil      | Campo Arr Perm   | Start Field En   |
| 522 | Filter Time Slip | Schlupf Filterz.      | Filter Temp Scor      | Tiemp Filt Sliz  | Filter Time Slip |
| 523 | ID Percent       | ID Prozent            | ID Percento           | ID Por Ciento    | ID Pourcent      |
| 524 | IQ Percent       | IQ Prozent            | IQ Percento           | IQ Por Ciento    | IQ Pourcent      |
| 600 | Current Lim Sel  | Strombegr. Ausw.      | Sel Limite Corr       | Sel Lim Corrien  | Sel Lim Courant  |
| 601 | Cur Lim Mtr Fwd  | Strombe-<br>gr.Mtr.Fw | Lim Corr Mtr Fwd      | Lim Cor Mtr FWD  | Lim Cour Mtr Avt |
| 602 | Cur Lim Mtr Rev  | Strombe-<br>gr.Mtr.Rw | Lim Corr Mtr Rev      | Lim Cor Mtr REV  | Lim Cour Mtr Inv |
| 603 | Cur Lim Reg Fwd  | Strombe-<br>gr.Gen.Fw | Lim Corr Reg Fwd      | Lim Cor Reg FWD  | Lim Cour Reg Avt |
| 604 | Cur Lim Reg Rev  | Strombe-<br>gr.Gen.Rw | Lim Corr Reg Rev      | Lim Cor Reg REV  | Lim Cour Reg Inv |
| 605 | Cur Lim Freq     | Freq. Strombegr.      | Lim Corr Freq         | Lim Cor Frec     | Lim Cour Freq    |
| 606 | Ramp Time CL     | Rampe Strombe-<br>gr. | Tempo Rampa LC        | Tiempo Rampa LC  | Temps Rampe LC   |

| Nr. | English         | German               | Italian          | French           | Spanish          |
|-----|-----------------|----------------------|------------------|------------------|------------------|
| 607 | Cur Lim Minimum | Min. Strombegr.      | Lim cor minimo   | Min Lim Cor      | Cur Lim Minimum  |
| 608 | Restart Number  | Fehlerrestart        | Numero Restart   | Numero Arranqu   | Nbr Redemarrage  |
| 609 | Restart Delay   | Verzoeg.Fehlerr.     | Ritardo Restart  | Retardo Arranque | Delai Redemar    |
| 610 | Timed OL Select | Ueberlast Ausw.      | Selez Tempo OL   | Tiemp Sobrec Sel | Temps Surch Sel  |
| 613 | Max Regen Ramp  | Max Regen Ramp       | Max Regen Ramp   | Max Regen Ramp   | Max Regen Ramp   |
| 700 | Vmet Config     | Vmet Auswahl         | Vmet Config      | Vmet Config      | Vmet Config      |
| 701 | Vmet Span       | Vmet Bereich         | Vmet Campo       | Vmet Extension   | Vmet Span        |
| 702 | Imet Config     | Imet Auswahl         | Imet Config      | Imet Config      | Imet Config      |
| 703 | Imet Span       | Imet Bereich         | Imet Campo       | Imet Extension   | Imet Span        |
| 704 | Imet Offset     | Imet Offset          | Imet Offset      | Imet Comp        | Imet Decalage    |
| 705 | Relay 1 Select  | Relais 1 Auswahl     | Rele 1 Selez     | Relais 1 Selec   | Relais 1 Select  |
| 706 | Relay 2 Select  | Relais 2 Auswahl     | Rele 2 Selez     | Relais 2 Selec   | Relais 2 Select  |
| 707 | D01 Select      | D01 Auswahl          | D01 Selez        | D01 Selec        | D01 Select       |
| 708 | D02 Select      | D02 Auswahl          | D02 Selez        | D02 Selec        | D02 Select       |
| 720 | Active Logic    | DI Logik             | Logica Attiva    | Logica Activa    | Logique Active   |
| 721 | DI1 Configure   | DI1 Auswahl          | DI1 Configuraz   | DI1 Configure    | DI1 Configure    |
| 722 | DI2 Configure   | DI2 Auswahl          | DI2 Configuraz   | DI2 Configure    | DI2 Configure    |
| 723 | DI3 Configure   | DI3 Auswahl          | DI3 Configuraz   | DI3 Configure    | DI3 Configure    |
| 724 | DI4 Configure   | DI4 Auswahl          | DI4 Configuraz   | DI4 Configure    | DI4 Configure    |
| 725 | DI5 Configure   | DI5 Auswahl          | DI5 Configuraz   | DI5 Configure    | DI5 Configure    |
| 726 | MOL Polarity    | MOL Polaritaet       | Polarita MOL     | Polaridad MOL    | Polaritee MOL    |
| 801 | Program Number  | Programm Num-<br>mer | Num Programma    | Numero Del Prog  | Numero Program   |
| 802 | Start Options   | Startoption          | Opzioni di Avvio | Opciones Arranq  | Options Demarr   |
| 803 | PWM Frequency   | PWM Frequenz         | Frequenza PWM    | Frecuencia Mod   | Frequence PWM    |
| 804 | Display Mode    | Anzeigeeinheit       | Modo Visualiz    | Opcion en Pant   | Mode Affichage   |
| 805 | Display Units   | Anzeigeformat        | Unit Visualiz    | Unidad en Pant   | Unites Affichage |
| 809 | Display Scale   | Anzeigefaktor        | Scala Visualiz   | Escala en Pant   | Echelle Affichee |
| 810 | Language        | Sprache              | Lingua           | Idioma           | Language         |
| 811 | Access Code     | Zugangscode          | Codice Accesso   | Codigo Aceso     | Code Acces       |
| 812 | Freq Ref Output | Frequenzausgang      | Freq Rif Uscita  | Frec Ref Salida  | Ref Freq Sortie  |
| 813 | Speed Ratio     | Skal.Freq.Eing.      | Cal Rif Dig      | Relacion de Frec | Ratio Vitesse    |
| 814 | Display Status  | Anzeigeoption        | Opzione Display  | Estado en Pant   | Etat Affichage   |
| 816 | Fly Catch Mode  | Fangmodus            | Modo agg al volo | Modo de Reten    | Fly Catch Mode   |
| 850 | PI Configure    | PI Auswahl           | PI Config        | PI Configure     | PI Config        |
| 851 | PI Feedback     | PI Rueckfuehrung     | PI Retroazione   | PI Regeneracion  | PI Feedback      |
| 852 | PI Prop Gain    | PI Proportional      | PI Guad Prop     | PI Aumento Prop  | PI Prop Gain     |
| 853 | PI Int Gain     | PI Integral          | PI Guad Int      | PI Aumento Int   | PI Int Gain      |
| 854 | PI Feed Gain    | PI Verst.Rueckf.     | PI Guad Deriv    | PI Aumento Reg   | PI Feed Gain     |
| 855 | PI Error 1      | PI Fehler 1          | PI Errore 1      | PI Error 1       | PI Erreur 1      |
| 856 | PI Error 2      | PI Fehler 2          | PI Errore 2      | PI Error 2       | PI Erreur 2      |
| 857 | PI High Corr    | PI Obergrenze        | PI Lim Superiore | PI Alto Corr     | PI Haute Corr    |
| 858 | PI Low Corr     | PI Untergrenze       | PI Lim Inferiore | PI Bajo Corr     | PI Basse Corr    |
| 900 | SIO Protocol    | SIO Protokoll        | Protocollo SIO   | SIO Protocol     | SIO Protocol     |
| 901 | SIO Baud Rate   | SIO Baudrate         | Baud Rate SIO    | SIO Baud Rate    | SIO Baud Rate    |
| 902 | Comm Drop #     | SIO Adresse          | Indirizzo SIO    | Direccion SIO    | Comm Drop #      |

| Nr. | English        | German           | Italian         | French          | Spanish        |
|-----|----------------|------------------|-----------------|-----------------|----------------|
| 903 | SI0 Timer      | SIO Timeout      | Timer SI0       | SIO Temprizador | SIO Timer      |
| 904 | SIO Cntl Word  | SIO Steuerwort   | Cntl Word SIO   | SIO Palab Cntl  | SIO Cntl Word  |
| 905 | Ext Ref Freq 1 | Ext Freq. Ref. 1 | Rif Est Freq 1  | Frec Ref Ext 1  | Freq Ref Ext 1 |
| 906 | Ext Ref Freq 2 | Ext Freq. Ref. 2 | Rif Est Freq 2  | Frec Ref Ext 2  | Freq Ref Ext 2 |
| 908 | Status Word    | Statuswort       | Status Word     | Palabra Estado  | Status Word    |
| 909 | DI Status      | Status DI        | Stato DI        | DI Estado       | DI Status      |
| 910 | Vin1 Status    | Status Vin1      | Stato Vin1      | Vin1 Estado     | Vin1 Status    |
| 911 | Cin Status     | Status Cin       | Stato Cin       | Cin Estado      | Cin Status     |
| 912 | Vin2 Status    | Status Vin2      | Stato Vin2      | Vin2 Estado     | Vin2 Status    |
| 913 | Output Status  | Status Ausgang   | Stato Usci      | Salida Estado   | Output Status  |
| 914 | Vmet Status    | Status Vmet      | Stato Vmet      | Vmet Estado     | Vmet Status    |
| 915 | Imet Status    | Status Imet      | Stato Imet      | Imet Estado     | Imet Status    |
| 916 | Infared Baud   | Infrarot Baudr.  | Baud Infrarosso | Baudio Infrared | Infared Baud   |
| 931 | Seq Cntl 1     | Seq. Strg 1      | Seq Cntl 1      | Secuen Cntl 1   | Seq Cntl 1     |
| 932 | Seq Cntl 2     | Seq. Strg 2      | Seq Cntl 2      | Secuen Cntl 2   | Seq Cntl 2     |
| 933 | Seq Cntl 3     | Seq. Strg 3      | Seq Cntl 3      | Secuen Cntl 3   | Seq Cntl 3     |
| 934 | Seq Cntl 4     | Seq. Strg 4      | Seq Cntl 4      | Secuen Cntl 4   | Seq Cntl 4     |
| 935 | Seq Cntl 5     | Seq. Strg 5      | Seq Cntl 5      | Secuen Cntl 5   | Seq Cntl 5     |
| 936 | Seq Cntl 6     | Seq. Strg 6      | Seq Cntl 6      | Secuen Cntl 6   | Seq Cntl 6     |
| 937 | Seq Cntl 7     | Seq. Strg 7      | Seq Cntl 7      | Secuen Cntl 7   | Seq Cntl 7     |
| 938 | Seq Cntl 8     | Seq. Strg 8      | Seq Cntl 8      | Secuen Cntl 8   | Seq Cntl 8     |
| 939 | Seq Cntl 9     | Seq. Strg 9      | Seq Cntl 9      | Secuen Cntl 9   | Seq Cntl 9     |
| 951 | Seq Count 1    | Seq. Zaehler 1   | Seq Cont 1      | Sec Cuenta 1    | Seq Compte 1   |
| 952 | Seq Count 2    | Seq. Zaehler 2   | Seq Cont 2      | Sec Cuenta 2    | Seq Compte 2   |
| 953 | Seq Count 3    | Seq. Zaehler 3   | Seq Cont 3      | Sec Cuenta 3    | Seq Compte 3   |
| 954 | Seq Count 4    | Seq. Zaehler 4   | Seq Cont 4      | Sec Cuenta 4    | Seq Compte 4   |
| 955 | Seq Count 5    | Seq. Zaehler 5   | Seq Cont 5      | Sec Cuenta 5    | Seq Compte 5   |
| 956 | Seq Count 6    | Seq. Zaehler 6   | Seq Cont 6      | Sec Cuenta 6    | Seq Compte 6   |
| 957 | Seq Count 7    | Seq. Zaehler 7   | Seq Cont 7      | Sec Cuenta 7    | Seq Compte 7   |
| 958 | Seq Count 8    | Seq. Zaehler 8   | Seq Cont 8      | Sec Cuenta 8    | Seq Compte 8   |
| 959 | Seq Count 9    | Seq. Zaehler 9   | Seq Cont 9      | Sec Cuenta 9    | Seq Compte 9   |

# 12.3 Settings and Messages in 5 Languages

| English        | German          | Italian         | French          | Spanish         |
|----------------|-----------------|-----------------|-----------------|-----------------|
| %              | %               | %               | %               | %               |
| 1200           | 1200            | 1200            | 1200            | 1200            |
| 4800           | 4800            | 4800            | 4800            | 4800            |
| 9600           | 9600            | 9600            | 9600            | 9600            |
| 19200          | 19200           | 19200           | 19200           | 19200           |
| 38400          | 38400           | 38400           | 38400           | 38400           |
| 57600          | 57600           | 57600           | 57600           | 57600           |
| % of FLA       | % Motorstr.     | % of FLA        | % of FLA        | % of FLA        |
| %/s            | %/s             | %/s             | %/s             | %/s             |
| .01sec Base    | .01sekBasis     | .01sec Base     | .01seg Base     | .01sec Base     |
| .1sec Base     | .1 sekBasis     | .1sec Base      | .1seg Base      | .1sec Base      |
| ċ              | i               | i               | ċ               | ċ               |
| °C             | °C              | °C              | °C              | °C              |
| 0-10V          | 0-10V           | 0-10V           | 0-10V           | 0-10V           |
| 0-10V Bipol    | 0-10V Bipol     | 0-10V Bipol     | 0-10V Bipol     | 0-10V Bipol     |
| 0-10V Brk W    | 0-10V K.Br.     | 0-10V Brk W     | 0-10V Brk W     | 0-10V Brk W     |
| 0-10V I        | 0-10V I         | 0-10V I         | 0-10V I         | 0-10V I         |
| 0-20mA 250     | 0-20mA 250      | 0-20mA 250      | 0-20mA 250      | 0-20mA 250      |
| 0-20mA 250I    | 0-20mA 250I     | 0-20mA 250I     | 0-20mA 250I     | 0-20mA 250I     |
| 0-20mA 50      | 0-20mA 50       | 0-20mA 50       | 0-20mA 50       | 0-20mA 50       |
| 0-20mA 50I     | 0-20mA 50I      | 0-20mA 50I      | 0-20mA 50I      | 0-20mA 50I      |
| 0-5V           | 0-5V            | 0-5V            | 0-5V            | 0-5V            |
| 0-5V I         | 0-5V I          | 0-5V I          | 0-5V I          | 0-5V I          |
| 1Ph Ovrload    | 1Ph Ueberl.     | 1Ph Sovvrac     | 1Fase SCrga     | 1Ph Surchar     |
| 1sec Base      | 1 sekBasis      | 1sec Base       | 1seg Base       | 1sec Base       |
| 4-20mA 250     | 4-20mA 250      | 4-20mA 250      | 4-20mA 250      | 4-20mA 250      |
| 4-20mA 250I    | 4-20mA 250I     | 4-20mA 250I     | 4-20mA 250I     | 4-20mA 250I     |
| 4-20mA 50      | 4-20mA 50       | 4-20mA 50       | 4-20mA 50       | 4-20mA 50       |
| 4-20mA 50I     | 4-20mA 50I      | 4-20mA 50I      | 4-20mA 50I      | 4-20mA 50I      |
| 48FS           | 48FS            | 48FS            | 48FS            | 48FS            |
| 6FS            | 6FS             | 6FS             | 6FS             | 6FS             |
| Α              | Α               | Α               | А               | А               |
| Active High    | Highaktiv       | Attivo High     | Alto Activo     | Actif Haut      |
| Active Low     | Lowaktiv        | Attivo Low      | Bajo Activo     | Actif Bas       |
| Actual Carrier | Akt. PWM-Freq.  | Freq PWM Att    | Frc Mod Actual  | Freq PWM Actuel |
| Addr XXX       | Adr. XXX        | Ind XXX         | Direcc XXX      | Addr XXX        |
| Adv Fault Code | Zus. Fehl. Code | Cod Err Aggiunt | Codig Fallo Adv | Adv Fault Code  |
| Alt Ramp       | Alt. Rampe      | Rampa Alt       | Rampa Alt       | Alt Ramp        |
| ARCTIC Mode    | ARCTIC Mode     | Modo ARCTIC     | Modo ARCTIC     | ARCTIC Mode     |
| ART-DI         | ART-DI          | ART-DI          | ART-DI          | ART-DI          |
| ART-DI CTS     | ART-DI CTS      | ART-DI CTS      | ART-DI CTS      | ART-DI CTS      |
| ART-F/R        | ART-F/R         | ART-F/R         | ART-F/R         | ART-F/R         |
| ART-F/R CTS    | ART-F/R CTS     | ART-F/R CTS     | ART-F/R CTS     | ART-F/R CTS     |
| ART-Frq        | ART-Frq         | ART-Frq         | ART-Frec        | ART-Frq         |
| ART-Frq CTS    | ART-Frq CTS     | ART-Frq CTS     | ART-FrecCTS     | ART-Frq CTS     |

| English         | German           | Italian          | French          | Spanish           |
|-----------------|------------------|------------------|-----------------|-------------------|
| ART-Strt/CS     | ART-Strt/CS      | ART-Strt/CS      | ART-And CTS     | ART-Strt/CS       |
| ART-Strt/RS     | ART-Strt/RS      | ART-Strt/RS      | ART-Andar       | ART-Strt/RS       |
| At Speed        | F. soll Er.      | A Regime         | a Velocidad     | Vit. Attein       |
| Auto w/FLY      | A-S m.Fang.      | Auto c agga      | Auto conRet     | Auto w/FLY        |
| Auto w/FLY2     | A-S m.Fang2      | Auto c agg2      | Auto Ret2       | Auto w/FLY2       |
| AutoSelect      | AutoSelekt       | AutoSelez        | AutoSelec       | AutoSelect        |
| AutoStart       | Auto-Start       | AutoStart        | AutoEmpez       | AutoStart         |
| AutoStart2      | Auto-Start2      | AutoStart 2      | AutoEmpez2      | AutoStart2        |
| Brk Wire        | Unterb.Ref.      | Interuz Rif      | Alamb Roto      | Brk Wire          |
| Catch Fly       | Freq. Suche      | RicercaFreq      | Reten March     | Attrape Vol       |
| Catch Vlt Ramp  | Fang.Spann.Rampe | Rampa tens agg   | Catch Vlt Ramp  | Catch VIt Ramp    |
| Cin             | Cin              | Cin              | Cin             | Cin               |
| CIN Counts      | CIN Counts       | CIN Counts       | CIN Counts      | CIN Counts        |
| Cin Filter Time | Cin Filter Time  | Cin Filter Time  | Cin Filter Time | Cin Filter Time   |
| Cin F-Motor     | Cin F-Mtr.       | Cin F-Mtr        | Cin F-Motor     | Cin F-Mtr         |
| Cin Motor       | Cin Motor.       | Cin Motori       | Cin Motor       | Cin Moteur        |
| Cin/KYP DI      | Cin/KYP DI       | Cin/KYP DI       | Cin/KYP DI      | Cin/KYP DI        |
| Cntl Board Temp | Steuerk. Temp.   | Temp Sched Cont  | Temp Tab Cont   | Cntl Board Temp   |
| Coast           | Auslauf          | In Folle         | Rodar           | Coast             |
| Coast Stop      | FreierAusl.      | Rotaz Stop       | Rodar Parar     | Arret Libre       |
| Comm Loss       | Ausf. SIO        | Perdita Com      | Perdid Com      | Perte Comm        |
| ContrNoMsg      | ContrNoMsg       | ContrNoMsg       | ContrNoMsg      | ContrNoMsg        |
| Control Group   | Gruppe Steuerung | Gruppo Controllo | Grupo Control   | Groupe Controle   |
| Controlled      | ZK-Gefuehrt      | ContrBus-DC      | Controlled      | Controlled        |
| CPU Load        | CPU Auslastung   | Carico CPU       | Carga CPU       | Charge CPU        |
| CPU Warning     | CPU Warnung      | CPU Avvert       | Aviso CPU       | Avert. CPU        |
| CTS No Msg      | CTS No Msg       | CTS No Msg       | CTS No Msg      | CTS No Msg        |
| Cur Lim Dis     | Str.Begr.A.      | DisLim Corr      | Lim Cor Dis     | Cur Lim Dis       |
| CurLimlMax      | CurLimIMax       | CurLimlMax       | CurLimIMax      | CurLimIMax        |
| Curr Calibr     | Stromkalib.      | Corr Calibr      | Corr Calibr     | Calibr Cour       |
| Curr Limit      | Strombegr.       | Limite Corr      | Limit Corr      | Lim. Cour.        |
| Curr Stability  | Stromstabilit.   | StabilitaCorr    | Estabilidad Cor | Stabilite Courant |
| Current Fault   | AktuellerFehler  | Errore Attuale   | Fallo Actual    | Faute Actuelle    |
| Current Group   | Gruppe Strom     | Gruppo Corrente  | Grupo Corriente | Groupe Courant    |
| Current Lim     | Strombegr.       | Lim Corr         | Lim Corr        | Lim Courant       |
| Current Out     | Ausg. Strom      | CorrenteUsc      | Corrien Sal     | Cour Sortie       |
| Cut-off Freq    | Cut-off Freq     | Cut-off Freq     | Cut-off Freq    | Cut-off Freq      |
| DAC 1 Address   | DAC 1 Adresse    | DAC 1 Indiriz    | DAC 1 Direction | DAC 1 Adresse     |
| DAC 1 Divide    | DAC 1 Divisor    | DAC 1 Divis      | DAC 1 Divide    | DAC 1 Divide      |
| DAC 1 Mask      | DAC 1 Maske      | DAC 1 Masc       | DAC 1 Mascara   | DAC 1 Mask        |
| DAC 1 Multiply  | DAC 1 Multiplik. | DAC 1 Moltipl    | DAC 1 Multiplic | DAC 1 Multiply    |
| DAC 1 Offset    | DAC 1 Offset     | DAC 1 Use its    | DAC 1 Comp      | DAC 1 Offset      |
| DAC 1 Output    | DAC1 Ausgang     | DAC 1 Uscita     | DAC 1 Salida    | DAC 1 Output      |
| DAC 2 Address   | DAC 2 Adresse    | DAC 2 Indiriz    | DAC 2 Direction | DAC 2 Address     |
| DAC 2 Divide    | DAC 2 Divisor    | DAC 2 Divis      | DAC 2 Divide    | DAC 2 Divide      |
| DAC 2 Mask      | DAC 2 Maske      | DAC 2 Masc       | DAC 2 Mascara   | DAC 2 Mask        |

| English          | German                | Italian           | French          | Spanish          |
|------------------|-----------------------|-------------------|-----------------|------------------|
| DAC 2 Multiply   | DAC 2 Multiplik.      | DAC 2 Moltipl     | DAC 2 Multiplic | DAC 2 Multiply   |
| DAC 2 Offset     | DAC 2 Offset          | DAC 2 Offset      | DAC 2 Comp      | DAC 2 Offset     |
| DAC 2 Output     | DAC2 Ausgang          | DAC 2 Uscita      | DAC 2 Salida    | DAC 2 Output     |
| DAC 3 Address    | DAC 3 Adresse         | DAC 3 Indiriz     | DAC 3 Direccion | DAC 3 Address    |
| DAC 3 Divide     | DAC 3 Divisor         | DAC 3 Divis       | DAC 3 Divide    | DAC 3 Divide     |
| DAC 3 Mask       | DAC 3 Maske           | DAC 3 Masc        | DAC 3 Mascara   | DAC 3 Mask       |
| DAC 3 Multiply   | DAC 3 Multiplik.      | DAC 3 Moltipl     | DAC 3 Multiplic | DAC 3 Multiply   |
| DAC 3 Offset     | DAC 3 Offset          | DAC 3 Offset      | DAC 3 Comp      | DAC 3 Offset     |
| DAC 3 Output     | DAC3 Ausgang          | DAC 3 Uscita      | DAC 3 Salida    | DAC 3 Output     |
| DB Active        | DB Aktiv              | DB Attivo         | DB Activo       | DB Actif         |
| DB Duty Cycle    | DB Impulsdauer        | DB Duty Cycle     | DB Ciclo Deber  | DB Duty Cycle    |
| DB External      | DB Extern             | DB Esterno        | DB External     | DB Externe       |
| DB Internal      | DB Intern             | DB Interno        | DB Internal     | DB Interne       |
| DB OverLoad      | DB Ueberla.           | DB SovraCar       | DB Carga        | DB Surchauf      |
| DB OverTemp      | DB Uebert.            | DB SovraTem       | DB SobreTem     | DB Surcharg      |
| DB Res Cth       | DB Res Cth            | DB Res Cth        | DB Res Cth      | DB Res Cth       |
| DB Res Rth       | DB Res Rth            | DB Res Rth        | DB Res Rth      | DB Res Rth       |
| DB Res Value     | DB Wid. Wert          | DB Res Value      | DB Res Cant     | DB Res Valeur    |
| DC at Both       | DC b. St/St           | DC in St/St       | CC en Ambos     | DC au deux       |
| DC at Start      | DC v. Start           | DC in Start       | CC Comienzo     | DC Demarrag      |
| DC at Stop       | DC n. Stop            | DC in Stop        | CC en Parar     | DC a Arret       |
| DC Bus Volt      | Zwischenkr.           | DC Bus Volt       | CC Bus Tens     | Tens DC Bus      |
| DC Bus Voltage   | Zwischenk. Spa.       | Tensione Bus-DC   | CC Bus Tens     | Tension Bus-DC   |
| DC Inject        | DC Stop               | Stop DC           | CC Inyect       | DC Inject        |
| DC Inject        | DC Bremse             | IniezioneDC       | CC Inyect       | DC Inject        |
| DC on Freq       | DC bei Freq           | DC in Freq        | CC en Frec      | DC a Freq        |
| Degrees C        | Grad C                | Gradi C           | Grados C        | Degres C         |
| Degrees F        | Grad F                | Gradi F           | Grados F        | Degres F         |
| Dir F-FWD        | Dir. F-FWD            | Dir F-FWD         | Dir F-FWD       | Dir F-FWD        |
| Dir F-FWD E      | Dir.F-FWD E           | Dir F-FWD E       | Dir F-FWD E     | Dir F-FWD E      |
| Dir Full         | Dir. Optim.           | Dir Ottim         | Dir Full        | Dir Full         |
| Dir Full E       | Dir. Opt. E           | Dir Ottim E       | Dir Full E      | Dir Full E       |
| Disabled         | Deaktiviert           | Disabilit         | Incapacitad     | Desactive        |
| Drive Info Group | Gruppe Umrichter Info | Info Gruppo Drive | Grupo Info Inv  | Drive Info Group |
| Drive Load       | Ausg. Last            | Caric Inver       | Carga Invert    | Charge Ctrl      |
| Drive Run        | Gestartet             | In Movim          | Drive Andar     | Ctrl Fonct       |
| Drive Status     | UmrichterStatus       | Stato Inverter    | Estado Invert   | Statut Controle  |
| Drive Temp       | Kuehlk.Temp.          | Invert Temp       | Temp Invert     | Temp Ctrl        |
| Drive TOL        | Umrich. TOL           | Invert TOL        | Invert TOL      | Drive TOL        |
| Drive Warning    | Umrich.Warnung        | InvertAvvertenza  | Adv Inverter    | Ctrl Avert.      |
| Drv Fault        | Fehler                | In Errore         | Drv Fallo       | Ctrl Erreur      |
| Drv Ready        | Bereit                | Pronto            | Listo           | Ctrl Pret        |
| DT_Comp Gain     | Totzeitkomp.          | Guad DT_Comp      | Aum DT_Comp     | DT_Comp Gain     |
| Dyn Brake        | Dyn. Bremse           | Freno Din         | Freno Din       | Frein Dyn        |
| EE Checksum      | EE Checksum           | EE Checksum       | EE Checksum     | EE Checksum      |
| EMOP             | EMOP                  | EMOP              | EMOP            | EMOP             |

| English             | German                      | Italian             | French           | Spanish          |
|---------------------|-----------------------------|---------------------|------------------|------------------|
| EMOP-               | EMOP-                       | EMOP-               | EMOP-            | EMOP-            |
| EM0P+               | EM0P+                       | EM0P+               | EM0P+            | EM0P+            |
| EM0P2               | EM0P2                       | EM0P2               | EMOP2            | EM0P2            |
| English             | Englisch                    | Inglese             | Ingles           | Anglais          |
| Factory             | Werkseinst.                 | Fabbrica            | Fabrica          | Usine            |
| Factory Group       | Gruppe Werkseintel-<br>lung | Gruppo Fabbrica     | Grupo Fabrica    | Groupe Factory   |
| Family Code         | Geraetecode                 | Codice Inverter     | Codigo Inverter  | Code Famil.      |
| Fan                 | Ventilator                  | Ventilatore         | Ventilador       | Ventilateur      |
| Fan Fxd             | Vent. Fix                   | Vent Fisso          | Vent Est         | Vent. Fixe       |
| Fan w/PI            | Vent. m. PI                 | Vent con PI         | Vent con PI      | Vent. PI         |
| Fast Stop           | Schnellstop                 | Stop Rapido         | Parar Rapid      | Arret Rapid      |
| Fault Enable        | Fehler Aktiv                | Errori Abilitati    | Fallo Permit     | Faute Permi      |
| Fault History Group | Gruppe Fehler Histo-<br>rie | Gruppo Storia Fault | Grupo Hist Falla | Groupe Hist Faut |
| Fault Reset         | Fehlerreset                 | Reset Err           | Recom Fallo      | Fault Reset      |
| Faulted             | Fehler                      | Errore              | Fallada          | Erreur           |
| Fbk GPM             | Istw. GPM                   | GPM retro           | Fbk GPM          | Fbk GPM          |
| Fbk PSI             | Istw. PSI                   | PSI retro           | Fbk PSI          | Fbk PSI          |
| Fbk RPM             | Istw. RPM                   | RPM retro           | Fbk RPM          | Fbk RPM          |
| Fbk User            | Istw.Benuz.                 | Retro Opera         | Fbk Usador       | Fbk User         |
| Fixed Lvls          | FixeSchwel.                 | Livel Fisso         | Nvls. Estac      | Niveau Fixe      |
| FLY Dis             | Fangen Aus                  | Agganc Dis          | Ret Incap        | FLY Dis          |
| Forward             | Vorw.                       | Avanti              | Delantero        | Avant            |
| FPM Units           | FPM Einheit                 | Unit FPM            | Unidad FPM       | Unites FPM       |
| French              | Franzoes.                   | Francese            | Frances          | Francais         |
| Freq Hyst           | Freq. Hyst                  | Ister Freq          | Hyst Frec        | Freq Hyst        |
| Freq Limit          | Freq. Schw.                 | Limite Freq         | Limit Frec       | Freq Limite      |
| Freq Out            | Ausg. Freq.                 | Freq Usc            | Frec Sal         | Freq Sortie      |
| Frequency Group     | Gruppe Frequenz             | Gruppo Frequenza    | Grupo Frecuen    | Groupe Frequenc  |
| Future Use          | Reserviert                  | Usi Futuri          | Usa Futura       | Usage Futur      |
| FWD Accel           | FWD Hochl.                  | FWD Accel           | FWD Acel         | Accel AVT        |
| FWD At Spd          | FWD Endfre.                 | FWD Vel Fin         | FWD a Veloc      | V-Att. AVT       |
| FWD Decel           | FWD Tiefl.                  | FWD Decel           | FWD Desacel      | Decel AVT        |
| FWD/REV             | Vorw.+Rev.                  | FWD/REV             | FWD/REV          | AVT/ARR          |
| Fxd Trim %          | Fxd Trim %                  | Fxd Trim %          | Fxd Trim %       | Fxd Trim %       |
| German              | Deutsch                     | Tedesco             | Aleman           | Alemand          |
| GPM Units           | GPM Einheit                 | Unit GPM            | Unidad GPM       | Unites GPM       |
| Ground              | Kurzschl.                   | Terra               | Tierra           | Terre            |
| h                   | h                           | h                   | h                | h                |
| High Temp           | Hohe Temp.                  | Temp Elev           | Temp Alta        | Haute Temp       |
| HS Fan Err          | Kk.Ven.Feh.                 | Err HS Vent         | Err HS Vent      | HS Fan Err       |
| HSTemp Counts       | HSTemp Counts               | HSTemp Counts       | HSTemp Counts    | HTemp Counts     |
| Hz                  | Hz                          | Hz                  | Hz               | Hz               |
| I/O Group           | Gruppe I/O                  | Gruppo I/O          | Grupo I/O        | Groupe I/O       |
| ID 1 Counts         | ID 1 Counts                 | ID 1 Counts         | ID 1 Counts      | ID 1 Counts      |
| ID 2 Counts         | ID 2 Counts                 | ID 2 Counts         | ID 2 Counts      | ID 2 Counts      |

| English       | German        | Italian       | French        | Spanish       |
|---------------|---------------|---------------|---------------|---------------|
| IMET Percent  | IMET Prozent  | IMET Percent  | IMET Percent  | IMET Percent  |
| In Duty 30s   | Um.Motor30s   | In Duty 30s   | In Duty 30s   | In Duty 30s   |
| In Duty 5mn   | Um.Motor5mn   | In Duty 5mn   | In Duty 5mn   | In Duty 5mn   |
| In Duty 60s   | Um.Motor60s   | In Duty 60s   | In Duty 60s   | In Duty 60s   |
| In Duty ShP   | Um.MotorShP   | In Duty ShP   | In Duty ShP   | In Duty ShP   |
| Int Fan Err   | I.Vent.Feh.   | ErrVent Int   | ErrVent Int   | ErrVent Int   |
| Int-ARCTIC    | Int-ARCTIC    | Int-ARCTIC    | Int-ARCTIC    | Int-ARCTIC    |
| IOC Trip      | IOC Ausl.     | IOC Trip      | Alarma IOC    | IOC Trip      |
| IR Active     | IR Aktiv      | IR Attivo     | IR Activo     | IR Actif      |
| Italian       | Italienisch   | Italiano      | Italiano      | Italien       |
| IUFB Counts   |
| IVFB Counts   |
| IWFB Counts   |
| Jog FWD       | Tipp FWD      | Jog FWD       | JOG FWD       | Jog AVT       |
| Jog REV       | Tipp REV      | Jog REV       | JOG REV       | Jog ARR       |
| Keypad Loss   | Ausf.Tasta.   | PerditaTast   | Perdid Tecl   | Perte Clav    |
| kHz           | kHz           | kHz           | kHz           | kHz           |
| Kpd Stop      | Tast. Stop    | Stop Kpd      | Stop Tec      | Clav. Arret   |
| kW            | kW            | kW            | kW            | kW            |
| L/R Rem Bth   | L/R Rem R/S   | L/R Rem Bth   | L/R Rem Bth   | L/R Rem Bth   |
| L/R Rem Ctl   | L/R RemStrg   | L/R Rem Ctl   | L/R Rem Ctl   | L/R Rem Ctl   |
| L/R Rem Ref   |
| Linear 2pc    | Linear 2p.    | Linear 2pc    | Linear 2pc    | Linear 2pc    |
| Linear Auto   |
| Linear Fxd    | Linear Fix    | LinearFisso   | Lin Estac     | Linear Fixe   |
| LOC           | LOC           | LOC           | LOC           | LOC           |
| LOC/EMOP      | LOK/EMOP      | LOC/EMOP      | LOC/EMOP      | LOC/EMOP      |
| LOC/EMOP2     | LOK/EMOP2     | LOC/EMOP2     | LOC/EMOP2     | LOC/EMOP2     |
| Loc/Rem       | Loc/Rem       | Loc/Rem       | Loc/Rem       | Loc/Rem       |
| Local Mode    | Lokal Modus   | Modo Locale   | Modo Local    | Mode Locale   |
| Local Only    | Nur Lokal     | Solo Locale   | Solo Local    | Local Seul    |
| Low Temp      | Untertemp.    | SottoTemp     | Temp Bajo     | Basse Temp    |
| Low Voltage   | Unterspann.   | SottoTens     | Tens Baja     | Basse Tens    |
| LS Lockout    | Anlaufsper.   | No A-Start    | LS Lockout    | LS Lockout    |
| LS Lockout    | Anlaufsper.   | No A-Start    | Bloq Arranq   | LS Lockout    |
| LS Lockout2   | Anlaufspe.2   | Blocc LS 2    | Bloq Arranq2  | LS Lockout2   |
| LSL w/FLY     | Als.m.Fang    | LSL c aggan   | LSL con Ret   | LSL w/FLY     |
| LSL w/FLY2    | Als.m.Fang2   | LSL c agg2    | LSL con Ret2  | LSL w/FLY2    |
| Macro Group   | Gruppe Makro  | Gruppo Macro  | Grupo Macro   | Groupe Macro  |
| Mag Amps      | Magnet. Strom | Corr Mag      | Corr Mag      | Amp Magnet    |
| Max Input     | Max.Eingang   | IngressoMax   | Entrada Max   | Max Input     |
| MEA           | MEA           | MEA           | MEA           | MEA           |
| Meas. Fail    | Messfehler    | Err Misura    | Medida fallo  | Meas. Fail    |
| Model ID      | Modul ID      | Modulo ID     | ID Modelo     | Model ID      |
| MOL           | MOL           | MOL           | MOL           | MOL           |
| MOL Configure |

| English        | German          | Italian         | French         | Spanish        |
|----------------|-----------------|-----------------|----------------|----------------|
| Motor          | Motor           | Motore          | Motor          | Moteur         |
| Motor Group    | Gruppe Motor    | Gruppo Motore   | Grupo Motor    | Groupe Moteur  |
| Motor TOL      | Motor TOL       | Motor TOL       | Motor TOL      | Motor TOL      |
| MPM Units      | MPM Einheit     | Unit MPM        | Unidad MPM     | Unites MPM     |
| ms             | ms              | ms              | ms             | ms             |
| Mtr Measure    | Motor mess.     | Misuraz Mtr     | Medida Motor   | Mtr Measure    |
| NC Operate     | NC Betrieb      | Funz NC         | NC Func        | NC Fonction    |
| NetID_996      | NetID_996       | NetID_996       | NetID_996      | NetID_996      |
| NetID_997      | NetID_997       | NetID_997       | NetID_997      | NetID_997      |
| NetID_998      | NetID_998       | NetID_998       | NetID_998      | NetID_998      |
| NetID_999      | NetID_999       | NetID_999       | NetID_999      | NetID_999      |
| No             | Nein            | No              | No             | Non            |
| No Dyn Brk     | DB Inaktiv      | No FrenoDin     | No Fren Din    | No Dyn Brk     |
| No Fault       | Kein Fehler     | No Errore       | No Fallo       | Pas D'erreur   |
| NO Operate     | NO Betrieb      | Funz NA         | N0 Func        | NO Fonction    |
| No PI          | PI Inaktiv      | No PI           | No PI          | No PI          |
| Not Active     | Nicht Aktiv     | Non attivo      | No es activo   | Not Active     |
| Not Enabled    | EN offen        | EN Aperto       | NoPermitada    | Non Permis     |
| Out Ph Loss    | Ausf. M.Ph.     | Perd F Usc      | Perd F Sal     | Pert Ph Sor    |
| Out Power (kW) | Out Power (kW)  | Out Power (kW)  | Out Power (kW) | Out Power (kW) |
| Output         | Ausgang         | Uscita          | Salida         | Sorite         |
| Output Freq    | Ausg. Freq.     | Freq Uscita     | Frec Salida    | Freq Sortie    |
| Over Temp      | Uebertemp.      | SovraTemp       | SobreTemp      | Surchauffe     |
| Over Temp      | Uebertemp.      | SovraTemp       | SobreTemp      | Surchauffe     |
| OverCurrent    | Ueberstrom      | SovraCorr       | SobreCorr      | OverCurrent    |
| OverVoltage    | Ueberspann.     | SovraTens       | Sobre Tens     | Surtension     |
| Param Range    | Par.Bereich     | Gamma Param     | Gama Param     | Plage Param    |
| PI Enable      | PI Aktiv.       | PI Abilito      | PI Permita     | PI Activer     |
| PI Fback       | PI Fback        | PI Fback        | PI Fback       | PI Fback       |
| PI Group       | Gruppe PI       | Gruppo PI       | Grupo PI       | Groupe PI      |
| PID Deriv Gain | PID Deriv Gain  | PID Deriv Gain  | PID Deriv Gain | PID Deriv Gain |
| PID Feedback   | PID Feedback    | PID Feedback    | PID Feedback   | PID Feedback   |
| PID Reference  | PID Reference   | PID Reference   | PID Reference  | PID Reference  |
| Ping Mode      | Ping Mode       | Ping Mode       | Modo Ping      | Ping Mode      |
| Power Fail Cfg | Netzausf.Vektor | Cad Rete Vector | Power Fail Cfg | Power Fail Cfg |
| Power Out      | Ausg.Leist.     | Potenza Usc     | Poten Sal      | Puiss Sorti    |
| Power Supp     | Referenzsp.     | Fonte Alim      | Fuente Alim    | Alim. Puiss    |
| Preset 1       | Fixfreq. 1      | Freq Fiss 1     | Preset 1       | Preregle 1     |
| Preset 2       | Fixfreq. 2      | Freq Fiss 2     | Preset 2       | Preregle 2     |
| Preset 3       | Fixfreq. 3      | Freq Fiss 3     | Preset 3       | Preregle 3     |
| PSI Units      | PSI Einheit     | Unit PSI        | Unidad PSI     | Unites PSI     |
| PT 0-100kHz    | PT 0-100kHz     | PT 0-100kHz     | PT 0-100kHz    | PT 0-100kHz    |
| PT 0-10kHz     | PT 0-10kHz      | PT 0-10kHz      | PT 0-10kHz     | PT 0-10kHz     |
| PT 0-1kHz      | PT 0-1kHz       | PT 0-1kHz       | PT 0-1kHz      | PT 0-1kHz      |
| Pump           | Pumpe           | Pompa           | Bomba          | Pompe          |
| Pump Fxd       | Pumpe Fix       | Pompa Fissa     | Bomba Estac    | Pompe Fixe     |

| English         | German           | Italian          | French          | Spanish         |
|-----------------|------------------|------------------|-----------------|-----------------|
| Pump w/PI       | Pumpe m. PI      | Pompa conPl      | Bomba c/PI      | Pompe PI        |
| Pwr Bridge      | Gleichrich.      | Ponte Rad        | Puente Pot      | Pwr Bridge      |
| Pwr Wiring      | Netzverkab.      | Cabl Pot         | CableadoPot     | Cable Puiss     |
| Quick Ramp      | Schnellstop      | Rampa veloc      | Quick Ramp      | Quick Ramp      |
| Ramp            | Rampe            | Rampa            | Rampa           | Rampe           |
| Ramp Down       | Tiefl.Rampe      | Decel Rampa      | Ramp Down       | Ramp Down       |
| Ramp Group      | Gruppe Rampen    | Gruppo Rampa     | Grupo Rampa     | Groupe Rampe    |
| Ref Loss        | Ausf.Refer.      | Perdita Rif      | Perdido Ref     | Ref Loss        |
| Ref Switch      | Ref. Umsch.      | Ref Switch       | Interup Ref     | Ref Switch      |
| Regen Time      | Stop Gener.      | Tempo Gener      | Tiemp Regen     | Temps Regen     |
| REM             | REM              | REM              | REM             | REM             |
| Remote Only     | Nur Remote       | Solo Remoto      | SoloAlejdo      | Rem Seul        |
| Res Lockout     | Max.Restart      | Res Blocc        | Rec Bloq        | Res Lockout     |
| Reset-Flt       | Fehlerreset      | Reset-Err        | Recom-Fall      | Reset-Flt       |
| REV Accel       | REV Hochl.       | REV Accel        | REV Acel        | Accel ARR       |
| REV At Spd      | REV Endfre.      | REV Vel Fin      | REV a Veloc     | V-Att. ARR      |
| REV Decel       | REV Tiefl.       | REV Decel        | REV Desacel     | Decel ARR       |
| Rev F-FWD       | Inv. F-FWD       | Rev F-FWD        | Rev F-FWD       | Rev F-FWD       |
| Rev F-FWD E     | Inv.F-FWD E      | Rev F-FWD E      | Rev F-FWD E     | Rev F-FWD E     |
| Rev Full        | Inv. Optim.      | Rev Ottim        | Rev Full        | Rev Full        |
| Rev Full E      | Inv. Opt. E      | Rev Ottim E      | Rev Full E      | Rev Full E      |
| Reverse         | Rueckw.          | Indietro         | Atraz           | Arriere         |
| rpm             | rpm              | rpm              | rpm             | rpm             |
| RPM Units       | RPM Einheit      | Unit RPM         | Unidad RPM      | Unites RPM      |
| RTU E81         | RTU E81          | RTU E81          | RTU E81         | RTU E81         |
| RTU N81         | RTU N81          | RTU N81          | RTU N81         | RTU N81         |
| RTU N82         | RTU N82          | RTU N82          | RTU N82         | RTU N82         |
| RTU 081         | RTU 081          | RTU 081          | RTU 081         | RTU 081         |
| Running FWD     | FWD Lauf         | Movim FWD        | Andando FWD     | Mouv. AVT       |
| Running REV     | REV Lauf         | Movim REV        | Andando REV     | Mouv. ARR       |
| S-Curve         | S-Kurve          | Curva ad S       | S-Curva         | Courbe-S        |
| S-Curve CTS     | S-Kurve CTS      | Curva-S CTS      | S-Curva CTS     | Courb-S CTS     |
| sec             | sek              | sec              | seg             | sec             |
| Seq 1           | Sequenz 1        | Seq 1            | Sec 1           | Seq 1           |
| Seq 2           | Sequenz 2        | Seq 2            | Sec 2           | Seq 2           |
| Seq 3           | Sequenz 3        | Seq 3            | Sec 3           | Seq 3           |
| Seq Advance     | Seq. Vorw.       | Seq Avanz        | Sec Avance      | Seq Avance      |
| Seq Dwell       | Seq. Halten      | Arresto Seq      | Sec Deten       | Seq Dwell       |
| Seq Running     | Seq. Aktiv       | Seq Attiva       | Sec Func        | Seq Fonct.      |
| Seq Thres Input | SeqAna.Eing.Aus. | Selez IngrAn Seq | Seq Thres Input | Seq Thres Input |
| SeqOut-00       | SeqAusg-00       | SeqOut-00        | SeqOut-00       | SeqOut-00       |
| SeqOut-01       | SeqAusg-01       | SeqOut-01        | SeqOut-01       | SeqOut-01       |
| SeqOut-10       | SeqAusg-10       | SeqOut-10        | SeqOut-10       | SeqOut-10       |
| SeqOut-11       | SeqAusg-11       | SeqOut-11        | SeqOut-11       | SeqOut-11       |
| Sequencer Group | Gruppe Sequenzer | Gruppo Sequencer | Grupo Secuen    | Groupe Sequence |
| SI0             | SI0              | SI0              | SI0             | SI0             |

| English         | German          | Italian         | French          | Spanish         |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| SIO Group       | Gruppe SIO      | Gruppo SIO      | Grupo SIO       | Groupe SIO      |
| SL Override     | SL Aufheben     | Sovrapp SL      | Anular SL       | SL Override     |
| Spanish         | Spanisch        | Spagnolo        | Espanol         | Espagnol        |
| Special Mode    |
| SPI Read 1      |
| SPI Read 2      |
| SPI Read 3      |
| SQ1             | SQ1             | SQ1             | SQ1             | SQ1             |
| SQ2             | SQ2             | SQ2             | SQ2             | SQ2             |
| SQ3             | SQ3             | SQ3             | SQ3             | SQ3             |
| SQ4             | SQ4             | SQ4             | SQ4             | SQ4             |
| SQ5             | SQ5             | SQ5             | SQ5             | SQ5             |
| SQ6             | SQ6             | SQ6             | SQ6             | SQ6             |
| SQ7             | SQ7             | SQ7             | SQ7             | SQ7             |
| SQ8             | SQ8             | SQ8             | SQ8             | SQ8             |
| SQ9             | SQ9             | SQ9             | SQ9             | SQ9             |
| Start Group     | Gruppe Start    | Gruppo Start    | Grupo Arranq    | Groupe Demarrag |
| Std Display     | Std.Anzeige     | Display Std     | Pant Estand     | Affich Std      |
| Std Ind 30s     |
| Std Ind 5mn     |
| Std Ind 60s     |
| Std Ind ShP     |
| Stopped         | Stop            | Stop            | Parada          | Arrete          |
| Stuck Key       | Tast.steckt     | Tast Attacc     | Boton Peg       | Cle Bloquee     |
| Sweep F/R       | Fangen F/R      | Agganc F/R      | Buscar Ambos    | Sweep F/R       |
| Sweep FWD       | Fangen FWD      | Agganc FWD      | Buscar FWD      | Sweep FWD       |
| Sweep REV       | Fangen REV      | Agganc REV      | Buscar REV      | Sweep REV       |
| System          | System          | Sistema         | Sistema         | Systeme         |
| Test Inputs     | Test Eing.      | Test Ingressi   | Test Inputs     | Test Inputs     |
| Test Outputs    | Test Ausg.      | Test Uscite     | Test Outputs    | Test Outputs    |
| Test Vin1 Freq  | Test Vin1 Freq. | Test Vin1 Freq  | Test Vin1 Frec  | Test Vin1 Freq  |
| Time hrs        | Zeit Std.       | Tempo ore       | Tiemp horas     | Temps hrs       |
| Time min        | Zeit Min.       | Tempo min       | Tiemp min       | Temps min       |
| Time sec        | Zeit Sek.       | Tempo sec       | Tiemp sec       | Temps sec       |
| Timed Overload  | Ueberlastschutz | Tempo Overload  | Tiempo Sobrecar | Temps Surcharge |
| Trim % Factor   |
| Trim Ref Enable |
| User Units      | Benutz.Ein.     | Unit Oper       | Unidad Oper     | Unites Oper     |
| UV Clamp Ramp   | UV Rampengeb.   | UV Clamp Ramp   | Ramp UV Abraz   | UV Clamp Ramp   |
| UV Ride-Thru En |
| V               | V               | V               | V               | V               |
| Vac Imblnce     | DC Unausgeg     | Vac Inbilan     | Vac Imblnce     | Vac Imblnce     |
| VBUS Counts     |
| Vdc             | Vdc             | Vdc             | Vdc             | Vdc             |
| Vector          | Vektor          | Vector          | Vector          | Vectoriel       |
| Vector          | Vektor          | Vector          | Vector          | Vectoriel       |

| English          | German           | Italian          | French           | Spanish          |
|------------------|------------------|------------------|------------------|------------------|
| VIN 1 Counts     |
| VIN 2 Counts     |
| Vin1             | Vin1             | Vin1             | Vin1             | Vin1             |
| Vin1 48FS        |
| Vin1 6FS         |
| Vin1 Filter Time |
| Vin1/2 DI        |
| Vin1/Cin DI      |
| Vin1/KYP DI      |
| Vin1+Cin         | Vin1+Cin         | Vin1+Cin         | Vin1+Cin         | Vin1+Cin         |
| Vin1+Vin2        | Vin1+Vin2        | Vin1+Vin2        | Vin1+Vin2        | Vin1+Vin2        |
| Vin1-Cin         | Vin1-Cin         | Vin1-Cin         | Vin1-Cin         | Vin1-Cin         |
| Vin1-Vin2        | Vin1-Vin2        | Vin1-Vin2        | Vin1-Vin2        | Vin1-Vin2        |
| Vin2             | Vin2             | Vin2             | Vin2             | Vin2             |
| Vin2 Filter Time |
| Vin2 F-Mtr       | Vin2 F-Mtr.      | Vin2 F-Mtr       | Vin2 F-Mtr       | Vin2 F-Mtr       |
| Vin2 Motor       | Vin2 Motor.      | Vin2 Motori      | Vin2 Motor       | Vin2 Moteur      |
| VMET Percent     | VMET Prozent     | VMET Percent     | VMET Percent     | VMET Percent     |
| Volt Range       | VoltBereich      | Gamma Volt       | Gama Tens        | Volt Range       |
| Voltage Out      | Ausg. Span.      | Volt Usc         | Tension Sal      | Tens Sortie      |
| w/ LVT           |
| w/o LVT          |
| Warning          | Warnung          | Avvertenza       | Advertencia      | Avertissem.      |
| WFx Appl ID      | WFx Appl ID      | WFx Appl ID      | WFx ID Aplic     | WFx Appl ID      |
| WFx Network ID   | WFx Netzwerk ID  | WFx Network ID   | WFx ID Red       | WFx ID Reseau    |
| WFx Revision ID  | WFx Version ID   | WFx Versione ID  | WFx ID Rev       | WFx Revision ID  |
| Vacon 50C        |
| Vacon 50C(B)     |
| Vacon 50K        |
| Vacon 50K(B)     |
| Yes              | Ja               | Si               | Si               | Oui              |
| Zero Speed       | Stillstand       | Vel Zero         | Cero Veloc       | V-Zero           |

# VACON DRIVEN BY DRIVES

Find your nearest Vacon office on the Internet at: www.vacon.com

