CSE 431/531: Algorithm Analysis and Design (Fall 2024) Divide-and-Conquer

Lecturer: Kelin Luo

Department of Computer Science and Engineering University at Buffalo

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- 6 Summary and More Classic Algorithms using Divide-and-Conquer
- Computing *n*-th Fibonacci Number

- Divide-and-Conquer
- 2 Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- 6 Summary and More Classic Algorithms using Divide-and-Conquer
- Computing *n*-th Fibonacci Number

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- Summary and More Classic Algorithms using Divide-and-Conquer
- Computing n-th Fibonacci Number

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- Summary and More Classic Algorithms using Divide-and-Conquer
- Computing n-th Fibonacci Number

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- Summary and More Classic Algorithms using Divide-and-Conquer
- Computing *n*-th Fibonacci Number

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- Summary and More Classic Algorithms using Divide-and-Conquer
- Computing n-th Fibonacci Number

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- Summary and More Classic Algorithms using Divide-and-Conquer
- Computing n-th Fibonacci Number

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- Summary and More Classic Algorithms using Divide-and-Conquer
- Computing n-th Fibonacci Number

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- 6 Summary and More Classic Algorithms using Divide-and-Conquer
- Computing *n*-th Fibonacci Number

- Divide: Divide instance into many smaller instances
- Conquer: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance

- Divide: Divide instance into many smaller instances
- Conquer: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem

• Merge sort, quicksort, count-inversions:

$$T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n)$$

• Merge sort, quicksort, count-inversions: $T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n)$

• Selection problem:

$$T(n) = T(n/2) + O(n) \Rightarrow T(n) = O(n)$$

• Merge sort, quicksort, count-inversions: $T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n)$

• Selection problem:
$$T(n) = T(n/2) + O(n) \Rightarrow T(n) = O(n)$$

• Polynomial Multiplication: $T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3})$

• Merge sort, quicksort, count-inversions: $T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n)$

• Selection problem:
$$T(n) = T(n/2) + O(n) \Rightarrow T(n) = O(n)$$

• Polynomial Multiplication: $T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3})$

 To improve running time, design better algorithm for "combine" step, or reduce number of recursions, ...

- Modular Exponentiation Problem
- Matrix multiplication
- Closest pair
- Convex hull

Modular Exponentiation Problem

Input: integer a, n and m

Output: $a^n \mod m$

Formula: $(A \times B) \mod m = [(A \mod m) \times (B \mod m)] \mod m$

$\mathsf{ModExp}(a, n, m)$

- 1: if n = 1 then return $a \mod m$
- 2: $M_L \leftarrow \mathsf{ModExp}(a, \lfloor n/2 \rfloor, m)$
- 3: **if** n is odd **then return** $M_R \leftarrow (M_L \times (a \mod m)) \mod m$
- 4: **return** $(M_L \times M_R) \mod m$

Modular Exponentiation Problem

Input: integer a, n and m

Output: $a^n \mod m$

Formula: $(A \times B) \mod m = [(A \mod m) \times (B \mod m)] \mod m$

$\mathsf{ModExp}(a, n, m)$

- 1: if n = 1 then return $a \mod m$
- 2: $M_L \leftarrow \mathsf{ModExp}(a, \lfloor n/2 \rfloor, m)$
- 3: **if** n is odd **then return** $M_R \leftarrow (M_L \times (a \mod m)) \mod m$
- 4: return $(M_L \times M_R) \mod m$
- Recurrence for ModExp: T(n) = T(n/2) + O(1)

Modular Exponentiation Problem

Input: integer a, n and m

Output: $a^n \mod m$

Formula: $(A \times B) \mod m = [(A \mod m) \times (B \mod m)] \mod m$

$\mathsf{ModExp}(a, n, m)$

- 1: **if** n = 1 **then return** $a \mod m$
- 2: $M_L \leftarrow \mathsf{ModExp}(a, \lfloor n/2 \rfloor, m)$
- 3: if n is odd then return $M_R \leftarrow (M_L \times (a \mod m)) \mod m$
- 4: **return** $(M_L \times M_R) \mod m$
- Recurrence for ModExp: T(n) = T(n/2) + O(1)
- Solving recurrence: $T(n) = O(\log n)$

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: C = AB

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication (A, B, n)

```
1: for i \leftarrow 1 to n do
```

- 2: **for** $j \leftarrow 1$ to n **do**
- 3: $C[i,j] \leftarrow 0$
- 4: **for** $k \leftarrow 1$ to n **do**
- 5: $C[i,j] \leftarrow C[i,j] + A[i,k] \times B[k,j]$
- 6: return C

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: C = AB

Naive Algorithm: matrix-multiplication (A, B, n)

```
1: for i \leftarrow 1 to n do
```

2: **for**
$$j \leftarrow 1$$
 to n **do**

3:
$$C[i,j] \leftarrow 0$$

4: **for**
$$k \leftarrow 1$$
 to n **do**

5:
$$C[i,j] \leftarrow C[i,j] + A[i,k] \times B[k,j]$$

6: return C

• running time = $O(n^3)$

Try to Use Divide-and-Conquer

$$A = \begin{bmatrix} n/2 \\ A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} n/2 \qquad B = \begin{bmatrix} n/2 \\ B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} n/2$$

•
$$C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

• matrix_multiplication(A,B) recursively calls matrix_multiplication (A_{11},B_{11}) , matrix_multiplication (A_{12},B_{21}) , . . .

Try to Use Divide-and-Conquer

$$A = \begin{bmatrix} n/2 \\ A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} n/2 \qquad B = \begin{bmatrix} n/2 \\ B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} n/2$$

- $C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$
- matrix_multiplication(A,B) recursively calls matrix_multiplication (A_{11},B_{11}) , matrix_multiplication (A_{12},B_{21}) , ...
- Recurrence for running time: $T(n) = 8T(n/2) + O(n^2)$
- $T(n) = O(n^3)$

Strassen's Algorithm

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen's Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$

Strassen's Algorithm

- $T(n) = 8T(n/2) + O(n^2)$
- Strassen's Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: $T(n) = 7T(n/2) + O(n^2)$
- Solving Recurrence $T(n) = O(n^{\log_2 7}) = O(n^{2.808})$

See: https://en.wikipedia.org/wiki/Strassen_algorithm

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

Closest Pair

Input: *n* points in plane: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$

Output: the pair of points that are closest

•

• Trivial algorithm: $O(n^2)$ running time

• Divide: Divide the points into two halves via a vertical line

• **Divide**: Divide the points into two halves via a vertical line

• Conquer: Solve two sub-instances recursively

- **Divide**: Divide the points into two halves via a vertical line
- Conquer: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half

Each box contains at most one pair

- Each box contains at most one pair
- ullet For each point, only need to consider O(1) boxes nearby

Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- ullet For each point, only need to consider O(1) boxes nearby
- time for combine = O(n) (many technicalities omitted)

Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- ullet For each point, only need to consider O(1) boxes nearby
- time for combine = O(n) (many technicalities omitted)
- Recurrence: T(n) = 2T(n/2) + O(n)

Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- ullet For each point, only need to consider O(1) boxes nearby
- time for combine = O(n) (many technicalities omitted)
- Recurrence: T(n) = 2T(n/2) + O(n)
- Running time: $O(n \lg n)$

Outline

- Divide-and-Conquer
- Counting Inversions
- Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
- Polynomial Multiplication
- Solving Recurrences
- Summary and More Classic Algorithms using Divide-and-Conquer
- Computing n-th Fibonacci Number

Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \ge 2$
- \bullet Fibonacci sequence: $0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \cdots$

n-th Fibonacci Number

Input: integer n > 0

Output: F_n

$\mathsf{Fib}(n)$

```
1: if n = 0 return 0
```

2: if n = 1 return 1

3: return Fib(n-1) + Fib(n-2)

Q: Is the running time of the algorithm polynomial or exponential in n?

Fib(n)

```
1: if n = 0 return 0
```

2: if n = 1 return 1

3: return Fib(n-1) + Fib(n-2)

 ${f Q:}$ Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

$\mathsf{Fib}(n)$

- 1: if n = 0 return 0
- 2: if n = 1 return 1
- 3: return Fib(n-1) + Fib(n-2)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

• Running time is at least $\Omega(F_n)$

Fib(n)

- 1: if n = 0 return 0
- 2: if n = 1 return 1
- 3: return Fib(n-1) + Fib(n-2)

 ${f Q:}$ Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n

Computing F_n : Reasonable Algorithm

- 1: $F[0] \leftarrow 0$
- 2: $F[1] \leftarrow 1$
- 3: **for** $i \leftarrow 2$ to n **do**
- 4: $F[i] \leftarrow F[i-1] + F[i-2]$
- 5: **return** F[n]
- Dynamic Programming

Computing F_n : Reasonable Algorithm

- 1: $F[0] \leftarrow 0$
- 2: $F[1] \leftarrow 1$
- 3: **for** $i \leftarrow 2$ to n **do**
- 4: $F[i] \leftarrow F[i-1] + F[i-2]$
- 5: **return** F[n]
- Dynamic Programming
- Running time = ?

Computing F_n : Reasonable Algorithm

- 1: $F[0] \leftarrow 0$
- 2: $F[1] \leftarrow 1$
- 3: **for** $i \leftarrow 2$ to n **do**
- 4: $F[i] \leftarrow F[i-1] + F[i-2]$
- 5: **return** F[n]
- Dynamic Programming
- Running time = O(n)

Computing F_n : Even Better Algorithm

$$\begin{pmatrix} F_{n} \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n-1} \\ F_{n-2} \end{pmatrix}$$
$$\begin{pmatrix} F_{n} \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{2} \begin{pmatrix} F_{n-2} \\ F_{n-3} \end{pmatrix}$$
$$\cdots$$
$$\begin{pmatrix} F_{n} \\ F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} F_{1} \\ F_{0} \end{pmatrix}$$

- 1: if n = 0 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- 2: $R \leftarrow \mathsf{power}(\lfloor n/2 \rfloor)$
- 3: $R \leftarrow R \times R$
- 4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
- 5: return R

- 1: if n = 0 then return 0
- 2: $M \leftarrow \mathsf{power}(n-1)$
- 3: **return** M[1][1]

1: if
$$n = 0$$
 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- 2: $R \leftarrow \mathsf{power}(\lfloor n/2 \rfloor)$
- 3: $R \leftarrow R \times R$
- 4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
- 5: return R

- 1: if n = 0 then return 0
- 2: $M \leftarrow \mathsf{power}(n-1)$
- 3: **return** M[1][1]
- Recurrence for running time?

1: if
$$n = 0$$
 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

- 2: $R \leftarrow \mathsf{power}(\lfloor n/2 \rfloor)$
- 3: $R \leftarrow R \times R$
- 4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
- 5: return R

Fib(n)

- 1: if n = 0 then return 0
- 2: $M \leftarrow \mathsf{power}(n-1)$
- 3: **return** M[1][1]

• Recurrence for running time? T(n) = T(n/2) + O(1)

- 1: if n = 0 then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
- 2: $R \leftarrow \mathsf{power}(\lfloor n/2 \rfloor)$
- 3: $R \leftarrow R \times R$
- 4: if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
- 5: return R

- 1: if n = 0 then return 0
- 2: $M \leftarrow \mathsf{power}(n-1)$
- 3: return M[1][1]
- Recurrence for running time? T(n) = T(n/2) + O(1)
- $\bullet \ T(n) = O(\lg n)$

Q: How many bits do we need to represent F(n)?

Q: How many bits do we need to represent F(n)?

A: $\Theta(n)$

Q: How many bits do we need to represent F(n)?

A: $\Theta(n)$

• We can not add (or multiply) two integers of $\Theta(n)$ bits in O(1) time

Q: How many bits do we need to represent F(n)?

A: $\Theta(n)$

- \bullet We can not add (or multiply) two integers of $\Theta(n)$ bits in O(1) time
- ullet Even printing F(n) requires time much larger than $O(\lg n)$

Q: How many bits do we need to represent F(n)?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in O(1) time
- ullet Even printing F(n) requires time much larger than $O(\lg n)$

Fixing the Problem

To compute F_n , we need $O(\lg n)$ basic arithmetic operations on integers