Charakterystyki czasowe podstawowych obiektów dynamicznych.

Cel ćwiczenia.

Celem ćwiczenia jest zapoznanie się z charakterystykami czasowymi (odpowiedziami czasowymi obiektu na określone wymuszenie) podstawowych obiektów dynamicznych. Ćwiczenie zostanie wykonane symulacyjnie z wykorzystaniem pakietu MATLAB. W czasie ćwiczenia będą badane odpowiedzi obiektów na następujące typy wymuszeń:

- skok jednostkowy (charakterystyki skokowe)
- delta Diraca (charakterystyki impulsowe)

Podczas ćwiczenia należy zbadać oba typy charakterystyk dla podstawowych obiektów omówionych we wprowdzeniu. Są one następujące:

- 1. obiekt inercyjny I rzędu o transmitancji: $G(s) = \frac{k}{T_{s+1}}$
- 2. obiekt inercyjny II rzędu o transmitancji: $G(s) = \frac{k}{T_1 T_2 s^2 + (T_1 + T_2) s + 1}$
- 3. obiekt oscylacyjny II rzędu o transmitancji: $G(s) = \frac{k}{T_0^2 s^2 + 2\xi T_0 s + 1}$
- 4. obiekt całkujący z inercją I rzędu o transmitancji: $G(s) = \frac{k}{T_i s(Ts+1)}$
- 5. obiekt różniczkujący rzeczywisty o transmitancji: $G(s) = \frac{T_d s}{T s + 1}$
- 6. obiekt inercyjny I rzędu z opóźnieniem o transmitancji: $G(s) = \frac{e^{-s\tau}}{Ts+1}$

Zapis transmitancji w MATLAB-ie.

Transmitancja w MATLAB-ie jest reprezentowana przez 2 wektory, zawierające współczynniki jej licznika i mianownika. Sposób zapisu w MATLAB-ie obiektów wymienionych powyżej jest podany w poniższej tabeli.

Transmitancja obiektu	Zapis licznika transmitancji	Zapis mianownika transmitancji
$G(s) = \frac{k}{Ts+1}$	[k]	[T,1]
$G(s) = \frac{k}{T_1 T_2 s^2 + (T_1 + T_2) s + 1}$	[k]	$[T_1T_2, T_1 + T_2, 1]$
$G(s) = \frac{k}{T_0^2 s^2 + 2\xi T_0 s + 1}$	[k]	$[T_0^2, 2\xi T_0, 1]$
$G(s) = \frac{k}{T_i s(Ts+1)}$	[k]	[TT _i , T _i , 0]
$G(s) = \frac{T_d s}{Ts + 1}$	$[T_d,0]$	[T,1]

$e^{-s\tau}$	zob. poniżej	zob. poniżej
$G(s) = \frac{1}{Ts+1}$		

UWAGA: Składnia jest istotna! Tu muszą być nawiasy [], pomiędzy parametrami spacja lub przecinek. Jako wartości \mathbf{k} i T podstawiamy konkretne liczby, lub dajemy symbole, po wcześniejszym nadaniu im wartości, np. nadanie parametrowi \mathbf{k} wartości 5 odbywa się następująco: piszemy: $\mathbf{k} = \mathbf{5}$;

Zapis transmitancji z opóźnieniem w MATLAB-ie.

W celu modelowania w MATLAB-ie członu opóźniającego należy zastosować aproksymację PADE' go. Kolejność postępowania jest następująca:

- Wyznaczamy transmitancję członu opóźniającego przy pomocy instrukcji PADE w sposób następujący:

[del_l,del_m] = pade (T , n); , gdzie: T - opóźnienie w [s], n -rząd aproksymacji (np n = 5). Po wykonaniu tej instrukcji otrzymujemy licznik i mianownik transmitancji członu opóźniającego zapisany pod zmiennymi del_l oraz del_m .

- Zapisujemy transmitancję obiektu bez opóźnienia jako: licz = [k];, mian = [T, 1];
- Łączymy obie transmitancje szeregowo przy użyciu instrukcji series i otrzymujemy transmitancję obiektu z opóźnieniem: [licz_d,mian_d] = series(del_l , del_m , licz , mian); Ta transmitancja może być używana dalej tak , jak wszystkie inne.

Wyznaczanie charakterystyk czasowych.

Do wyznaczania charakterystyk czasowych w/w podstawowych obiektów zostaną wykorzystane instrukcje:

- Instrukcja step (licz, mian); do wyznaczania charakterystyk skokowych układu,
- Instrukcja impulse (licz, mian); do wyznaczania charakterystyk impulsowych układu.

Jeśli instrukcje te nie mają argumentów wyjściowych (sytuacja powyżej) to w rezultacie ich działania otrzymuje się wykres odpowiedniej charakterystyki. Jeżeli mają one argumenty wyjściowe w postaci np. :

$$[y, x, czas] = step(licz, mian);$$
 lub (*)
 $[y, x, czas] = impulse(licz, mian);$ (*)

to wtedy otrzymuje się wektory zawierające składowe odpowiedniej charakterystyki.

Rysowanie wykresów.

Wykresy są generowane automatycznie w przypadkach omówionych powyżej. Mogą one też być narysowane za pomocą instrukcji **plot**, np. **plot** (**czas** , **y**). Za pomocą tej instrukcji można też narysować kilka charakterystyk na wspólnym wykresie, np. **plot** (**czas1** , **y1** , **czas2** , **y2**); (ilość wykresów jest w tym wypadku dowolna). Kilka wykresów można też narysować we wspólnym układzie współrzędnych używając instrukcję **hold on**. Siatkę na wykresie nanosi się za pomocą instrukcji **grid** (bez argumentów). Opisy do wykresów dodaje się za pomocą instrukcji: **title** (' ... **tekst tytulu...'**) (tytuł u góry wykresu) , **xlabel** (' ... **opis osi x... '**) , **ylabel** ('... **opis osi y... '**). (Opisy obu osi). Wykres można wydrukować używając opcji **print** z menu rysunku.

Wykonanie ćwiczenia.

W czasie ćwiczenia należy wykonać komplety charakterystyk skokowych oraz impulsowych dla każdego z wymienionych na wstępie obiektów. Należy to zrobić tak , aby na wspólnym wykresie znalazły się charakterystyki dla kilku różnych zestawów parametrów obiektu.

Przykład: W wypadku obiektu inercyjnego I rzędu należy wyznaczyć wykresy np. dla T = 5 [s] i T = 10 [s], a potem narysować je i wydrukować na wspólnym wykresie. Kolejność postępowania jest w tym wypadku następująca:

- [y1, x1, t1] = step([1], [5, 1]);
- [y2, x2, t2] = step([1], [10, 1]);
- plot(t1, y1, t2, y2);
- grid ...i instrukcje do opisu wykresu.

Równoważnie można to wykonać następująco:

- step([1],[5,1]);
- hold on
- **step([1],[10,1]);** (Tu może być kilka instrukcji **step**)
- •
- grid, ... instrukcje opisu wykresu.

Taką kolejność postępowania należy przyjąć też przy pozostałych obiektach.

 $\begin{tabular}{ll} $UWAGA$: Dla tych samych zestawów parametrów wyznaczyć charakterystyki skokowe i impulsowe ! Użyć w tym celu instrukcji step i impulse w postaci (*), a następnie instrukcji plot (w sumie każda grupa ma mieć 6 kompletów charakterystyk !) \end{tabular}$

UWAGA: Nie zabierać tej instrukcji!!! \$\frac{\pi}{2}\$