

Sede	Andina
Localidad	Bariloche
Escuela de Docencia	Producción, Tecnología y Medio Ambiente
Carrera	Profesorado de Nivel Medio y Superior en Física

	Física IIIB (Res. SEDEyVE 029/16)	Código SIU-Guaraní
PROGRAMA ANALÍTICO DE		B5331 (y B5287)

Correlativas según	Para Cursar		Para Aprobar
plan de estudios	Cursada Aprobada	Materia Aprobada	Materia Aprobada
	Física IB y Física IIA y Matemática IB y		Física IB y Física IIA y Matemática IB y
	Química General		Química General
Ciclo Lectivo	2019	Régimen de cursada	
		cuatrimestral	1° cuatrimestre
Carga horaria Semanal	5	Carga horaria total	80
Horas Teóricas Totales	No corresponde	Horas Prácticas Totales	No corresponde
Horas de estudio extra clase recomendada	3 semanales		
Día/s y horario/s de	Martes 20 :00a 23:00		
cursado	Jueves 18:00 a 20:00		
Día/s y horario/s de Tutorías/Consultas	Miércoles 16 a 20		

Profesor/a a cargo	Hernán Gonzalo ASOREY
Equipo de docencia	

Fundamentación

Representa un intento por exponer aspectos de la física que normalmente no se presentan en un curso de primer año con el objeto de brindar a los futuros docentes conocimientos y herramientas que les permitan abordar en la escuela media, temas actuales. La física de los dos primeros cuatrimestres incluye tópicos contemporáneos en "materia" con contenidos que desde que se tiene conocimiento fascinan e interesan al hombre como es el del origen del universo, Se introducen contenidos de física moderna como el modelo estándar de las partículas fundamentales y en "energía" con cuestiones relacionadas con la cotidianeidad."(Plan vigente)

Propósitos de la asignatura

Construir un marco de trabajo conceptual sobre la termodinámica en general; los principios y leyes que regulan los mecanismos de transferencia de calor; y la importancia y problemas asociados a la termodinámica en la actualidad.

Contenidos Mínimos según plan de estudios

Termodinámica: introducción. Ideas alternativas en la termodinámica. El calor como transferencia de energía. El experimento de Joule. Modelo cinético. Temperatura, calor y energía interna. Teoría cinética. Energía interna de un gas ideal. Calor específico. Calorimetría. Calor latente o cómo enfriar una bebida. Conducción, convección y radiación. 1o Ley de la termodinámica. Metabolismo humano. La 2o Ley de la termodinámica. Máquinas térmicas y refrigeradores. Entropía y la 2o Ley. Disponibilidad de energía. Muerte térmica. Interpretación estadística de la entropía y de la 2o ley. Fuentes de energía. Contaminación térmica. Potenciales termodinámicos

Propuesta Metodológica

Las clases serán interactivas, con amplio espacio para la discusión de los conceptos claves de la materia. Se realizarán demostraciones y prácticas de laboratorio con los equipos disponibles y con elementos de bajo costo. En todos los casos se abordará la problemática planteada desde un modelo constructivista.

Cronograma de Actividades Teóricas, Prácticas, Salidas de Campo, etc.

Cada unidad será acompañada por una práctica consistente en una guía de ejercicios, de entrega obligatoria, y una demostración y/o experiencia de laboratorio. No se preveen salidas de campo.

¿Requiere extensión áulica? - modalidad virtual-

No requiere.

Ajustes para estudiantes con discapacidad

Según el caso.

Unidad 1	Fecha Probable de Inicio y Finalización	
El calor	Semana 1, 2 y 3	

Contenidos

El calor. Gases ideales y reales. Energía interna. Calorimetría. Calor específico. Teoría cinética de los gases. Temperatura: concepto macroscópico y microscópico. Cambios de fase y calor latente.

Actividades Prácticas de la Unidad

Una (1) guía de problemas y una (1) experiencia de laboratorio

Bibliografía

1- Física, Resnick, Halliday y Krane 2- Física, Douglas Giancoli 3 - Física, Sears y Zemansky 6- Física recreativa, Salvador Gil y Eduardo Rodríguez.

Bibliografía Complementaria

Michael J. Moran y Howard N. Shapiro, "Fundamentos de Termodinámica Técnica", 2da Edición

Unidad 2	Fecha Probable de Inicio y Finalización
Primer principio de la termodinámica	Semana 4, 5, 6 y 7

Contenidos

Calor y trabajo. Equivalente mecánico del calor. Experimento de Joule. Sistemas. Fuentes de calor. Potenciales termodinámicos. Primer principio. Flujo de calor. Muerte térmica. Máquinas térmicas.

Actividades Prácticas de la Unidad

Una (1) guía de problemas y una (1) experiencia de laboratorio

Bibliografía

1- Física, Resnick, Halliday y Krane 2- Física, Douglas Giancoli 3 - Física, Sears y Zemansky 6- Física recreativa, Salvador Gil y Eduardo Rodríguez.

Bibliografía Complementaria

Michael J. Moran y Howard N. Shapiro, "Fundamentos de Termodinámica Técnica", 2da Edición

Unidad 3	Fecha Probable de Inicio y Finalización
Segundo Principio de la Termodinámica	Semana 7, 8, 9, 10 y 11

Contenidos

Ciclos termodinámicos. Ciclo de Carnot. Eficiencia de una máquina térmica. Segundo principio de la termodinámica. Postulados. Móviles perpetuos. Entropía. Interpretación micro y macroscópica de la entropía. La flecha temporal

Actividades Prácticas de la Unidad

Una (1) guía de problemas y una (1) experiencia de laboratorio

Bibliografía

1- Física, Resnick, Halliday y Krane 2- Física, Douglas Giancoli 3 - Física, Sears y Zemansky 6- Física recreativa, Salvador Gil y Eduardo Rodríguez.

Bibliografía Complementaria

Michael J. Moran y Howard N. Shapiro, "Fundamentos de Termodinámica Técnica", 2da Edición

Unidad 4	Fecha Probable de Inicio y Finalización
Aplicaciones	Semana 12, 13, 14, 15 y 16

Contenidos

Transferencia de calor: radiación, conducción y convección. Ley de Newton. Conductores y aislantes del calor. Ley de Fourier. Aplicaciones hogareñas. Termodinámica de la vida. Energía y humanidad. Calentamiento global.

Actividades Prácticas de la Unidad

Una (1) guía de problemas y una (1) experiencia de laboratorio

Bibliografía

1- Física, Resnick, Halliday y Krane 2- Física, Douglas Giancoli 3 - Física, Sears y Zemansky 6- Física recreativa, Salvador Gil y Eduardo Rodríguez.

Bibliografía Complementaria

Michael J. Moran y Howard N. Shapiro, "Fundamentos de Termodinámica Técnica", 2da Edición

Vigencia del Programa		
2019	2020	2021
Si	Si	Si
Firma y Aclaración Docente	Firma y Aclaración Docente	Firma y Aclaración Docente
Firma y Aclaración Director	Firma y Aclaración Director	Firma y Aclaración Director