

A rational QZ method

Daan Camps

joint work with: Karl Meerbergen and Raf Vandebril

NASCA 2018

KU Leuven - University of Leuven - Department of Computer Science - NUMA Section

We will discuss:

Numerical solution of the generalized eigenvalue problem:

We will discuss:

Numerical solution of the generalized eigenvalue problem:

- ♦ Small to medium-sized
- \Diamond Regular
- ♦ All eigenvalues required
- \diamondsuit No symmetry assumed

We will discuss:

Numerical solution of the generalized eigenvalue problem:

- ♦ Small to medium-sized
- ♦ Regular
- ♦ All eigenvalues required
- ♦ No symmetry assumed

Tools:

We will discuss:

Numerical solution of the generalized eigenvalue problem:

- ♦ Small to medium-sized
- ♦ Regular
- ♦ All eigenvalues required
- \diamondsuit No symmetry assumed

Tools:

- ♦ Hessenberg, Hessenberg form
- \Diamond Shift & *pole* introduction and swapping
- ♦ Rational Krylov
- Nested subspace iteration

We will discuss:

Numerical solution of the generalized eigenvalue problem:

- ♦ Small to medium-sized
- ♦ Regular
- ♦ All eigenvalues required
- \diamondsuit No symmetry assumed

Tools:

- ♦ Hessenberg, Hessenberg form
- \Diamond Shift & *pole* introduction and swapping
- Rational Krylov
- Nested subspace iteration

We will discuss:

Numerical solution of the generalized eigenvalue problem:

- ♦ Small to medium-sized
- ♦ Regular
- ♦ All eigenvalues required
- \Diamond No symmetry assumed

Tools:

- ♦ Hessenberg, Hessenberg form
- ♦ Shift & pole introduction and swapping
- Rational Krylov
- ♦ Nested subspace iteration

- ♦ Method of QR-type driven by rational functions
 - → generalization of the classic QZ method [Moler and Stewart]

We will discuss:

Numerical solution of the generalized eigenvalue problem:

- ♦ Small to medium-sized
- ♦ Regular
- ♦ All eigenvalues required
- ♦ No symmetry assumed

Tools:

- ♦ Hessenberg, Hessenberg form
- ♦ Shift & pole introduction and swapping
- Rational Krylov
- Nested subspace iteration

- ♦ Method of QR-type driven by rational functions
 - \rightarrow generalization of the classic QZ method [Moler and Stewart]

Generalized eigenvalue problems

- \diamondsuit Given $A \& B: n \times n$ matrices, either $\mathbb R$ or $\mathbb C$
- \diamondsuit Computation of the triplets $(\alpha, \beta, \mathbf{x})$ that satisfy $\beta A\mathbf{x} = \alpha B\mathbf{x}$
- ♦ Procedure:
 - 1. Reduce the pencil to manageable form
 - 2. Iterate to generalized Schur form
 - 3. Recover eigenvectors
- ♦ Make use of well-chosen unitary equivalences:

$$(\hat{A},\hat{B})=Q^*(A,B)Z$$
 preserves eigenvalues

Generalized eigenvalue problems

- \diamondsuit Given $A \& B: n \times n$ matrices, either $\mathbb R$ or $\mathbb C$
- \diamondsuit Computation of the triplets $(\alpha, \beta, \mathbf{x})$ that satisfy $\beta A\mathbf{x} = \alpha B\mathbf{x}$
- ♦ Procedure:
 - 1. Reduce the pencil to manageable form
 - 2. Iterate to generalized Schur form
 - 3. Recover eigenvectors
- ♦ Make use of well-chosen unitary equivalences:

$$(\hat{A},\hat{B})=Q^*(A,B)Z$$
 preserves eigenvalues

We will discuss:

Numerical solution of the generalized eigenvalue problem $\beta Ax = \alpha Bx$:

- ♦ Small to medium-sized
- ♦ Regular
- ♦ All eigenvalues required
- No symmetry assumed

Tools:

- ♦ Hessenberg, Hessenberg form
- ♦ Shift & pole introduction and swapping
- ♦ Rational Krylov
- ♦ Nested subspace iteration

- ♦ Method of QR-type driven by rational functions
 - → generalization of the classic QZ method [Moler and Stewart]

Hessenberg, Hessenberg form

 $\boldsymbol{\mathcal{A}}$

B

Hessenberg, Hessenberg form

 $\boldsymbol{\mathcal{A}}$

B

Hessenberg, Hessenberg form

$$A$$
 B poles $\Xi = (\frac{\times}{\times}, \frac{\times}{\times}, \ldots)$

Hessenberg, Hessenberg form

A poles
$$\Xi = (\frac{1}{a}, \frac{2}{b}, \dots)$$

Hessenberg, triangular form (QZ)

$$A$$
 B poles $\Xi = (\frac{1}{0}, \frac{2}{0}, \dots)$

Changing the first pole/Introducing a shift

A

B

Changing the first pole/Introducing a shift

Changing the first pole/Introducing a shift

A

В

Swapping consecutive poles

A

B

Swapping consecutive poles

This problem is completely analogous to reordering eigenvalues in the Schur form.

- [Kågström and Poromaa]: solution of a coupled Sylvester equation $(k \times k)$
- [Bojanczyk and Van Dooren]: direct method $(1 \times 1 \text{ or } 2 \times 2)$

Conditions:

$$\Rightarrow Q^* = \begin{bmatrix} \times & \times \\ \times & \times \end{bmatrix} , Z = \begin{bmatrix} \times & \times \\ \times & \times \end{bmatrix}$$

Swapping consecutive poles

 \times \times \times \times \times \times $(d) \times \times \times \times$ $(e) \times \times \times$

Swapping consecutive poles

A

В

Swapping consecutive poles

 $e \times \times \times$

Swapping consecutive poles

A

В

Swapping consecutive poles

 \times \times \times \times \times \times $(b) \times \times \times \times \times \times \times$

Swapping consecutive poles

$$\begin{array}{c} \times \times \otimes \otimes \times \times \times \times \times \\ \text{b} \times \otimes \otimes \times \times \times \times \times \\ \text{c} \otimes \otimes \times \times \times \times \times \\ \text{d} \otimes \otimes \otimes \otimes \otimes \\ \hline \otimes \otimes \otimes \otimes \otimes \\ \hline \otimes \otimes \otimes \otimes \otimes \\ \hline \text{e} \times \times \times \\ \text{f} \times \times \\ \hline \text{g} \times \\ \end{array}$$

Swapping consecutive poles

 \times \times \times \times \times \times $(b) \times \times \times \times \times \times \times$ $(c) \times \times \times \times \times \times$ $\begin{bmatrix} \times \times \\ \times \times \end{bmatrix}$ $\begin{bmatrix} \times \times \\ \times \times \end{bmatrix}$

Swapping consecutive poles

 $\begin{array}{c} \times \times \times \times \otimes \otimes \times \times \times \times \\ \text{(b)} \times \times \otimes \otimes \times \times \times \times \\ \text{(c)} \times \otimes \otimes \times \times \times \times \\ \text{(d)} \otimes \otimes \times \times \times \times \\ \text{(e)} \otimes \otimes \otimes \otimes \\ \text{(f)} \times \times \\ \text{(g)} \times \end{array}$

A

В

Swapping consecutive poles

 \times \times \times \times \times \times $(b) \times \times \times \times \times \times \times$ $(c) \times \times \times \times \times \times$ $(d) \times \times \times \times \times$ $(e) \times \times \times \times$

Swapping consecutive poles

 $\begin{array}{c} \times \times \times \times \otimes \otimes \times \times \\ \text{(b)} \times \times \times \otimes \otimes \times \times \\ \text{(c)} \times \times \otimes \otimes \times \times \\ \text{(d)} \times \otimes \otimes \times \times \\ \text{(e)} \otimes \otimes \times \times \\ \text{(f)} \otimes \otimes \otimes \\ \text{(g)} \times \\ \end{array}$

A

В

Swapping consecutive poles

$$\begin{bmatrix}
\times \times \\
2 \times \times \times \times \times \times \times \\
3 \times \times \times \times \times \times \times \\
4 \times \times \times \times \times \\
5 \times \times \times \\
6 \times \times \times \\
7 \times \\
7$$

 \times \times \times \times \times \times $(b) \times \times \times \times \times \times \times$ $(c) \times \times \times \times \times \times$ $(d) \times \times \times \times \times$ $(e) \times \times \times \times$ f × × ×

Swapping consecutive poles

$$\begin{array}{c} \times \times \times \times \times \times \otimes \otimes \times \\ \text{b} \times \times \times \times \otimes \otimes \times \\ \text{c} \times \times \times \otimes \otimes \times \\ \text{d} \times \times \otimes \otimes \times \\ \text{e} \times \otimes \times \times \\ \text{f} \otimes \otimes \times \\ \end{array}$$

A

В

Changing the last pole/Removing the shift

Changing the last pole/Removing the shift

$$\begin{array}{c} \times \times \times \times \times \times \times \otimes \otimes \\ \text{(b)} \times \times \times \times \times \times \otimes \otimes \\ \text{(c)} \times \times \times \times \times \otimes \otimes \\ \text{(d)} \times \times \times \otimes \otimes \\ \text{(e)} \times \times \otimes \otimes \\ \text{(f)} \times \otimes \otimes \\ \text{(g)} \otimes \otimes \\ \text{(h)} \end{array}$$

A

В

RQZ algorithm

The algorithm in a nutshell:

The algorithm in a nutshell:

1. Introduce shift at the top

The algorithm in a nutshell:

- 1. Introduce shift at the top
- 2. Swap it all the way down

The algorithm in a nutshell:

- 1. Introduce shift at the top
- 2. Swap it all the way down
- 3. Introduce pole at the end

The algorithm in a nutshell:

- 1. Introduce shift at the top
- 2. Swap it all the way down
- 3. Introduce pole at the end

Poles at ∞ (\times = 0) \rightarrow **QZ method**: Bulge exchange interpretation [Watkins]

Caution: shift $\notin \Xi$ to avoid slower convergence

Is it worth it?

Data: 9 random matrix pairs, $n \in [100, 1000]$, reduced to H-T, averaged over 10 runs

Is it worth it?

Data: 9 random matrix pairs, $n \in [100, 1000]$, reduced to H-T, averaged over 10 runs

→ QZ; → RQZ

 \Rightarrow up to 5 – 10% reduction in iterations with obvious choice of poles.

Is it worth it?

Data: 9 random matrix pairs, $n \in [100, 1000]$, reduced to H-T, averaged over 10 runs

Is it worth it?

Data: 9 random matrix pairs, $n \in [100, 1000]$, reduced to H-T, averaged over 10 runs

Step 1: QR factorization of *B*

$$A \leftarrow Q^*A$$
 $B \leftarrow Q^*B$

Step 2: Zero out element (5,1) of A

 $A \leftarrow Q_A^* A$ $B \leftarrow Q_A^* B$

13

Step 3: Restore upper triangularity of *B*

$$A \leftarrow AZ_4$$
 $B \leftarrow BZ_4$

...Repeat this process on the first column of A until...

Step 7: First column of (A, B) in H-T form

Step 7: Change first pole to ξ_{n-1}

$$A \leftarrow Q_1^* A$$
 $B \leftarrow Q_1^* B$

Step 8: Reduce second column to H-T and swap pole 1 and 2

Step 9: First pole now at ∞

$$A \leftarrow Q^*AZ$$
 $B \leftarrow Q^*BZ$

Step 10: Change first pole to ξ_{n-2}

... Continue with this process until...

End result

Computational cost:

- H-T reduction: $O(8n^3)$ flops
- H-H reduction: additional $O(6n^3)$ flops (worst case)

Numerical example: Reduction to Hessenberg form

Data: MHD matrix pair from MatrixMarket, n = 1280

Numerical example: Reduction to Hessenberg form

Data: MHD matrix pair from MatrixMarket, n = 1280

Numerical example: Reduction to Hessenberg form

Data: MHD matrix pair from MatrixMarket, n = 1280

Definition: Properness

The Hessenberg, Hessenberg pair (A, B) is called *proper* (or *irreducible*) if:

$$\boxed{1.}$$

$$\times \neq \gamma \times$$

$$\boxed{1}$$

$$\begin{vmatrix} 2. \\ \frac{\times}{\times} \end{vmatrix} \neq \frac{0}{0}$$

Why and how does RQZ work?

Krylov subspaces

1. Krylov subspace: $\mathcal{K}_i(M, \mathbf{v}) = \mathcal{R}(\mathbf{v}, M\mathbf{v}, \dots, M^{i-1}\mathbf{v})$

Why and how does RQZ work?

Krylov subspaces

- 1. Krylov subspace: $\mathcal{K}_i(M, \mathbf{v}) = \mathcal{R}(\mathbf{v}, M\mathbf{v}, \dots, M^{i-1}\mathbf{v})$
- 2. rational Krylov subspace: $\mathcal{K}_i^{\mathsf{rat}}(M, \mathbf{v}, \Xi = (\xi_1, \dots, \xi_{i-1})) = q_{\Xi}(M)^{-1} \mathcal{K}_i(M, \mathbf{v})$

Why and how does RQZ work?

Krylov subspaces

- 1. Krylov subspace: $\mathcal{K}_i(M, \mathbf{v}) = \mathcal{R}(\mathbf{v}, M\mathbf{v}, \dots, M^{i-1}\mathbf{v})$
- 2. rational Krylov subspace: $\mathcal{K}_i^{\mathsf{rat}}(M, \mathbf{v}, \Xi = (\xi_1, \dots, \xi_{i-1})) = q_{\Xi}(M)^{-1} \mathcal{K}_i(M, \mathbf{v})$

Theorem

If (A, B) is a proper Hessenberg pair with poles $(\xi_1, \dots, \xi_{n-1})$ then for $i = 1, \dots, n-1$:

$$\mathcal{K}_i^{\mathsf{rat}}(AB^{-1}, \mathbf{e}_1, (\xi_1, \dots, \xi_{i-1})) = \mathcal{K}_i^{\mathsf{rat}}(B^{-1}A, \mathbf{e}_1, (\xi_2, \dots, \xi_i)) = \mathcal{R}(\mathbf{e}_1, \dots, \mathbf{e}_i) = \mathcal{E}_i$$

Why and how does RQZ work?

Theorem: Implicit Q (and Z)

Given a pair (A, B), the matrices Q and Z that transform it to proper Hessenberg form,

$$(\hat{A},\hat{B})=Q^*(A,B)Z,$$

are determined essentially unique if Qe_1 and the poles are fixed.

Why and how does RQZ work?

Nested subspace iteration

An RQZ step with shift ϱ on a Hessenberg pencil with poles $(\xi_1, \ldots, \xi_{n-1})$ and new pole ξ_n performs nested subspace iteration for $i=1,\ldots,n-1$ accelerated by

$$\mathcal{R}(\boldsymbol{q}_1,\ldots,\boldsymbol{q}_i) = (A - \varrho B)(A - \xi_i B)^{-1} \mathcal{E}_i$$

$$\mathcal{R}(\boldsymbol{z}_1,\ldots,\boldsymbol{z}_i) = (A - \xi_{i+1}B)^{-1}(A - \varrho B) \mathcal{E}_i.$$

Why and how does RQZ work?

Nested subspace iteration

An RQZ step with shift ϱ on a Hessenberg pencil with poles $(\xi_1, \ldots, \xi_{n-1})$ and new pole ξ_n performs nested subspace iteration for $i=1,\ldots,n-1$ accelerated by

$$\mathcal{R}(\mathbf{q}_1,\ldots,\mathbf{q}_i) = (A - \varrho B)(A - \xi_i B)^{-1} \mathcal{E}_i$$

$$\mathcal{R}(\mathbf{z}_1,\ldots,\mathbf{z}_i) = (A - \xi_{i+1}B)^{-1}(A - \varrho B) \mathcal{E}_i.$$

What does this mean?

• QR step with shift ϱ on entire space \to fast convergence at the bottom

Why and how does RQZ work?

Nested subspace iteration

An RQZ step with shift ϱ on a Hessenberg pencil with poles $(\xi_1, \ldots, \xi_{n-1})$ and new pole ξ_n performs nested subspace iteration for $i=1,\ldots,n-1$ accelerated by

$$\mathcal{R}(\mathbf{q}_1,\ldots,\mathbf{q}_i) = (A - \varrho B)(A - \xi_i B)^{-1} \mathcal{E}_i$$
$$\mathcal{R}(\mathbf{z}_1,\ldots,\mathbf{z}_i) = (A - \xi_{i+1}B)^{-1}(A - \varrho B) \mathcal{E}_i.$$

What does this mean?

- QR step with shift ϱ on entire space \rightarrow fast convergence at the bottom
- ullet RQ steps with tightly packed shifts Ξ on selected subspaces o slow convergence at the top

Tightly packed shifts

 \rightarrow More cache efficient implementations (Level 3 BLAS)

Tightly packed shifts

Block Hessenberg

 \rightarrow complex conjugate shifts and poles in real arithmetic for real pencils

Block Hessenberg

Data: 9 real-valued random matrix pairs, $n \in [100, 1000]$, reduced to H-T, averaged over 5 runs

Conclusions

- 1. RQZ is a generalization of QZ: bulge chasing \leftrightarrow pole swapping
- 2. Implicit rational subspace iteration is promising
- 3. New shift and pole strategies can be a powerful tool to compute invariant subspaces (already during reduction of the pencil)

Further reading:

```
arXiv:1802.04094
```

http://numa.cs.kuleuven.be/software/rqz/

Conclusions

- 1. RQZ is a generalization of QZ: bulge chasing \leftrightarrow pole swapping
- 2. Implicit rational subspace iteration is promising
- 3. New shift and pole strategies can be a powerful tool to compute invariant subspaces (already during reduction of the pencil)

Further reading:

```
arXiv:1802.04094
```

```
http://numa.cs.kuleuven.be/software/rqz/
```

Thank you for your attention!