

Corso di Laurea Magistrale in Ingegneria Informatica

CORSO DI ALGORITMI E STRUTTURE DATI

Prof. ROBERTO PIETRANTUONO

Prova del 21 Dicembre 2022

Indicazioni

Si consegni un file in **formato** .txt nominandolo *CognomeNome*.txt, in cui è riportata l'implementazione (nel linguaggio scelto) seguita da una indicazione della complessità temporale dell'algoritmo implementato (complessità nel caso peggiore, è sufficiente il limite superiore O(f(n))). Se si utilizzano librerie di cui non si conosce la complessità, lo si indichi nella spiegazione (ad esempio, "la complessità è O(n log n) al netto della complessità dell'algoritmo x, che è non nota"). Se si utilizza la randomizzazione, si indichi anche il tempo di esecuzione atteso.

PROBLEMA 1

Si considerino N basi militari dislocate lungo il confine tra due stati, contrassegnate da coordinate geografiche unidimensionali rappresentate da numeri interi distinti compresi tra 1 e 50, $< x_1, x_2, ... x_N >$. Dunque, la base 1 e alla posizione x_1 , la base 2 e alla posizione x_2 , ecc. Si assume che ciascuna di queste basi abbia una omologa base dislocata dall'altro lato del confine, rappresentate da numeri interi distinti $< y_1, y_2, ... y_N >$, con cui dialogare tramite un canale dedicato. La base x_1 può comunicare solo con y_1, x_2 solo con $y_2, ... e così via$. Si implementi un algoritmo che determini il massimo numero di collegamenti dedicati tra le basi che è possibile dispiegare, con il vincolo che i canali di comunicazione non si devono mai incrociare, per ragioni di sicurezza. Ad esempio, con:

X = <8 5 3 2> Y = <3 4 7 6>

stiamo indicando che la base alla posizione $x_1 = 8$ può comunicare solo con la base alla posizione $y_1 = 3$, $x_2 = 5$ con $y_2 = 4$, e così via. Il numero massimo di canali senza incrocio in questo caso è 2, che si ottiene collegando l'ultima coppia ($x_4 = 2$, $y_4 = 6$) e la penultima coppia ($x_3 = 3$, $y_3 = 7$). Infatti, ordinando rispetto alle coordinate, abbiamo:

2358 \\ \\ \\ \\ 3467

INPUT

La prima riga dell'input indica il numero di casi di test T. Le 3*T righe successive sono i casi di test. Ogni caso di test è costituito da una prima riga che indica N (la dimensione dei due vettori X ed Y), e due successive righe con i valori del vettore X e del vettore Y, rispettivamente. I valori x_i ed y_i sono compresi tra 1 e 50 (estremi inclusi).

OUTPUT

Per ogni caso di test, l'output deve stampare il numero massimo di canali dispiegabili secondo quanto spiegato in precedenza.

Sample Input

Sample Output