Linear Models 2: Tree growth Lab

Dr. Luisa Barbanti and Dr. Matteo Tanadini

Applied Machine Learning and Predictive Modelling 1, HS25 (HSLU)

Contents

1	Load package	2
2	Getting data	2
3	Fit linear models	3
4	Contrasts	5
	4.1 Oak vs Spruce	5
5	Testing several variables	6
	5.1 Testing categorical variables	6
	5.2 Testing continuous and categorical variables	7
6	Appendix	8
	6.1 Testing all predictors in a model $\ \ldots \ \ldots$	8
	6.2 Sequential sum of squares	8
	6.3 Testing all pairwise comparisons	9
	6.4 Principle of marginality	9
	6.5 Comparing F-tests and t-tests for categorical variables	11

1 Load package

```
## Load packages
import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
import seaborn as sns
from statsmodels.stats.multicomp import pairwise_tukeyhsd
```

2 Getting data

0.701705 Beech

```
## Load the data
d_trees = pd.read_csv("../../Datasets/TreesChamagne2017_Lab_modified.csv",
                        sep = ';', decimal = ',')
# Rename variables because "." causes problems in python
d_trees.rename(columns = {'growth.rate': 'growth_rate'}, inplace = True)
d_trees.rename(columns = {'Density.tree.Class': 'Density_tree_Class'}, inplace = True)
## Inspect the data
print(d_trees.info())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 557 entries, 0 to 556
Data columns (total 12 columns):
 #
    Column
                         Non-Null Count Dtype
                     557 non-null float64
0
     growth_rate
 1
     species
                         557 non-null object
 2
                          557 non-null int64
     site
     Density_tree_Class 557 non-null object
 3
                   557 non-null float64
 4
     age
5 size 557 non-null float64
6 density.site 557 non-null float64
7 density.tree 557 non-null float64
8 diversity.tree 557 non-null float64
9 diversity.site 557 non-null float64
10 sp.richness 557 non-null int64
 11 SiteID
                           557 non-null
                                              int64
dtypes: float64(7), int64(3), object(2)
memory usage: 52.3+ KB
None
print(d_trees.head())
   growth_rate species site ... diversity.site sp.richness SiteID
```

1.279284

1 ...

```
1.138995
                 Beech
                                          1.279284
                                                              1
                           1
                                                                       1
2
      1.394101
                 Beech
                                          2.272922
                                                              2
                                                                      12
                           12
                                                              2
3
      0.999519 Spruce
                                         2.272922
                                                                      12
                           12
                               . . .
4
      1.354924 Spruce
                           12
                                          2.272922
                                                                      12
                              . . .
```

[5 rows x 12 columns]

```
## Clean figure object
plt.clf()

## Boxplot for growth rate by species
sns.boxplot(x = 'species', y = 'growth_rate', data = d_trees)
```


3 Fit linear models

```
## Fit a linear model: growth.rate ~ species
lm_trees_1 = smf.ols('growth_rate ~ species', data = d_trees).fit()
print(lm_trees_1.params)
```

Intercept 1.252760 species[T.Larch] -0.299561 species[T.Oak] -0.200879 species[T.Spruce] -0.086747

dtype: float64

Summary

print(lm_trees_1.summary())

OLS Regression Results

Dep. Variable:	growth_rate	R-squared:	0.163
Model:	OLS	Adj. R-squared:	0.159
Method:	Least Squares	F-statistic:	35.99
Date:	Thu, 11 Sep 2025	Prob (F-statistic):	2.92e-21
Time:	14:40:36	Log-Likelihood:	-31.948
No. Observations:	557	AIC:	71.90
Df Residuals:	553	BIC:	89.19

Df Model: 3
Covariance Type: nonrobust

 coef
 std err
 t
 P>|t|
 [0.025
 0.975]

 Intercept
 1.2528
 0.022
 58.046
 0.000
 1.210
 1.295

 species[T.Larch]
 -0.2996
 0.031
 -9.708
 0.000
 -0.360
 -0.239

 species[T.Oak]
 -0.2009
 0.030
 -6.593
 0.000
 -0.261
 -0.141

 species[T.Spruce]
 -0.0867
 0.031
 -2.811
 0.005
 -0.147
 -0.026

Omnibus:	31.045	Durbin-Watson:	1.653
Prob(Omnibus):	0.000	Jarque-Bera (JB):	34.746
Skew:	-0.583	Prob(JB):	2.85e-08
Kurtosis:	3.371	Cond. No.	4.75

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
## Fit a null model: growth.rate ~ 1
lm_trees_0 = smf.ols('growth_rate ~ 1', data = d_trees).fit()
print(lm_trees_0.params)
```

Intercept 1.106865

dtype: float64

Summary

print(lm_trees_0.summary())

OLS Regression Results

Dep. Variable:	growth_rate	R-squared:	-0.000
Model:	OLS	Adj. R-squared:	-0.000
Method:	Least Squares	F-statistic:	nan
Date:	Thu, 11 Sep 2025	Prob (F-statistic):	nan
Time:	14:40:37	Log-Likelihood:	-81.623
No. Observations:	557	AIC:	165.2

Df Residuals: 556 BIC: 169.6

Df Model: 0
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.1069	0.012	93.160	0.000	1.084	1.130
Omnibus: Prob(Omnibus) Skew: Kurtosis:):	0.	000 Jarq 560 Prob	in-Watson: ue-Bera (JB) (JB): . No.	:	1.440 29.641 3.66e-07 1.00

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
## Compare the two models
anova_comparison = sm.stats.anova_lm(lm_trees_0, lm_trees_1)
print(anova_comparison)
```

```
df_resid ssr df_diff ss_diff F Pr(>F)
0 556.0 43.718384 0.0 NaN NaN NaN
1 553.0 36.576334 3.0 7.14205 35.993706 2.921792e-21
```

4 Contrasts

4.1 Oak vs Spruce

5 Testing several variables

5.1 Testing categorical variables

OLS Regression Results

______ Dep. Variable: growth_rate R-squared: 0.167 Model: OLS Adj. R-squared: 0.158 Method: Least Squares F-statistic: 18.43 Thu, 11 Sep 2025 Prob (F-statistic): 1.46e-19 Date: 14:40:37 Log-Likelihood: Time: -30.602 No. Observations: 557 AIC: 75.20 Df Residuals: 550 BIC: 105.5

Df Model: 6
Covariance Type: nonrobust

	========	========		========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.2252	0.039	31.182	0.000	1.148	1.302
species[T.Larch]	-0.3045	0.031	-9.721	0.000	-0.366	-0.243
species[T.Oak]	-0.2031	0.032	-6.326	0.000	-0.266	-0.140
species[T.Spruce]	-0.0962	0.031	-3.062	0.002	-0.158	-0.034
<pre>Density_tree_Class[T.low]</pre>	-0.0250	0.028	-0.885	0.377	-0.081	0.031
<pre>Density_tree_Class[T.medium]</pre>	0.0046	0.027	0.171	0.865	-0.049	0.058
SiteID	0.0009	0.001	1.113	0.266	-0.001	0.002

 Omnibus:
 31.557
 Durbin-Watson:
 1.682

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 35.512

 Skew:
 -0.582
 Prob(JB):
 1.94e-08

 Kurtosis:
 3.419
 Cond. No.
 205.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
##
## Check
print(lm_trees_2.model.formula)
```

growth_rate ~ species + Density_tree_Class + SiteID

```
## Test the two newly added variables
anova_added_var = sm.stats.anova_lm(lm_trees_2, typ = 2)
anova_added_var_df = pd.DataFrame(anova_added_var)
print(anova_added_var_df)
```

```
df
                                                     PR(>F)
                      sum_sq
                               3.0 34.506581 1.906822e-20
species
                    6.851124
Density_tree_Class
                    0.086108
                               2.0 0.650544 5.221626e-01
SiteID
                                     1.237854 2.663711e-01
                    0.081923
                               1.0
Residual
                   36.399993 550.0
                                          NaN
                                                        NaN
## SiteID wasn't correctly coded. We recode it.
## Add a factor version of SiteID
d_trees['SiteID_fac'] = d_trees['SiteID'].astype('category')
## Update model to use SiteID.fac instead of SiteID
lm_trees_3 = smf.ols('growth_rate ~ species + Density_tree_Class + SiteID_fac',
                    data = d_trees).fit()
# print(lm_trees_3.summary())
## Test the variables
anova_added_var2 = sm.stats.anova_lm(lm_trees_3, typ = 2)
anova_added_var2_df = pd.DataFrame(anova_added_var2)
print(anova_added_var2_df)
                                                     PR(>F)
                      sum_sq
                                df
species
                    3.973384
                               3.0 22.869942 6.705132e-14
                               2.0 2.203263 1.114986e-01
Density_tree_Class
                    0.255194
SiteID fac
                   7.120148 44.0 2.794230 3.389389e-08
Residual
                   29.361768 507.0
                                          NaN
                                                       NaN
5.2
     Testing continuous and categorical variables
```

```
## Add age to the model
lm_trees_4 = smf.ols('growth_rate ~ species + Density_tree_Class + SiteID_fac + age',
                    data = d_trees).fit()
# print(lm_trees_4.summary())
## Global F-test
anova_global = sm.stats.anova_lm(lm_trees_4)
print(anova_global)
                      df
                            sum_sq mean_sq
                                                      F
                                                               PR(>F)
species
                     3.0
                         7.142050 2.380683 41.095496 8.822530e-24
Density_tree_Class
                     2.0 0.094418 0.047209 0.814924 4.432532e-01
SiteID_fac
                    44.0
                          7.120148 0.161822
                                               2.793373 3.439666e-08
                          0.048928 0.048928
                                               0.844590 3.585251e-01
                     1.0
age
                   506.0 29.312841 0.057931
                                                    NaN
                                                                  NaN
Residual
## Check coefficient for age
# Get summary output as text
lm_trees_4_summary_text = lm_trees_4.summary().as_text()
# Convert to list of lines
```

```
summary_lines = lm_trees_4_summary_text.split("\n")

# Extract specific lines (equivalent to R's c(10,11,62))
selected_lines = [summary_lines[i] for i in [12, 13, 64]]

# Print the selected lines
for line in selected_lines:
    print(line)
```

```
coef std err t P>|t| [0.025 0.975]
-----
age 0.0015 0.002 0.919 0.359 -0.002 0.005
```

6 Appendix

1

6.1 Testing all predictors in a model

50.0 14.405543 4.973387 9.535671e-22

6.2 Sequential sum of squares

print(sm.stats.anova_lm(lm_trees_4_again))

506.0 29.312841

```
## Sequential sum of squares
lm_trees_4.model.formula
'growth_rate ~ species + Density_tree_Class + SiteID_fac + age'
print(sm.stats.anova_lm(lm_trees_4))
                                                    F
                                                             PR(>F)
                     df
                           sum_sq mean_sq
species
                    3.0 7.142050 2.380683 41.095496 8.822530e-24
Density_tree_Class
                    2.0 0.094418 0.047209 0.814924 4.432532e-01
                   44.0 7.120148 0.161822
                                              2.793373 3.439666e-08
SiteID_fac
                   1.0 0.048928 0.048928
                                              0.844590 3.585251e-01
age
                  506.0 29.312841 0.057931
Residual
                                                   {\tt NaN}
## Let's move *species* at the end
lm_trees_4_again = smf.ols('growth_rate ~ Density_tree_Class + SiteID_fac + age + species',
                   data = d trees).fit()
```

```
F
                    df
                                                          PR(>F)
                         sum_sq
                                 {\tt mean\_sq}
Density_tree_Class
                   2.0 0.424338 0.212169 3.662472 2.635188e-02
SiteID fac
                  44.0 9.958894 0.226338 3.907068 4.092440e-14
                   3.0 3.973384 1.324461 22.862932 6.792075e-14
species
age
                   1.0
                        0.048928 0.048928 0.844590 3.585251e-01
Residual
                 506.0 29.312841 0.057931
                                                \mathtt{NaN}
```

6.3 Testing all pairwise comparisons

```
# Tukey HSD test for species (i.e., testing all pairwise comparisons)
tukey_species = pairwise_tukeyhsd(endog = d_trees['growth_rate'].astype(float),
                            groups = d_trees['species'],
                            alpha = 0.05)
print(tukey_species)
Multiple Comparison of Means - Tukey HSD, FWER=0.05
_____
group1 group2 meandiff p-adj lower upper reject
______
Beech Larch -0.2996 0.0 -0.3791 -0.22
                                       True
Beech Oak -0.2009 0.0 -0.2794 -0.1224
                                       True
Beech Spruce -0.0867 0.0262 -0.1663 -0.0072 True
Larch Oak 0.0987 0.0078 0.0193 0.1781
                                       True
Larch Spruce 0.2128 0.0 0.1324 0.2932 True
  Oak Spruce 0.1141 0.0013 0.0348 0.1935 True
## Unfortunately, the plot doesn't seem to be as straightforward as in R
```

6.4 Principle of marginality

```
# Add interaction between age and species
lm_trees_5 = smf.ols('growth_rate ~ species + Density_tree_Class + SiteID_fac + age + age:species',
                   data = d trees).fit()
# print(lm_trees_5.summary())
print(sm.stats.anova_lm(lm_trees_5))
                     df
                          sum_sq mean_sq
                                                  F
                                                            PR(>F)
species
                    3.0 7.142050 2.380683 42.765326 1.248640e-24
Density_tree_Class
                  2.0 0.094418 0.047209 0.848036 4.288664e-01
SiteID_fac
                 44.0 7.120148 0.161822 2.906876 9.061162e-09
                   1.0 0.048928 0.048928 0.878909 3.489507e-01
age
                   3.0 1.311566 0.437189 7.853422 3.946487e-05
age:species
Residual
                503.0 28.001275 0.055669 NaN
                                                               NaN
plt.clf()
## Visualise age effect over all data
g = sns.lmplot(x = 'age', y = 'growth_rate', data = d_trees,
             height = 4, aspect = 1, ci = 95)
```


6.5 Comparing F-tests and t-tests for categorical variables

print(lm_trees_1.summary())

OLS Regression Results

0.163
0.159
35.99
92e-21
31.948
71.90
89.19

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]		
Intercept	1.2528	0.022	58.046	0.000	1.210	1.295		
species[T.Larch]	-0.2996	0.031	-9.708	0.000	-0.360	-0.239		
species[T.Oak]	-0.2009	0.030	-6.593	0.000	-0.261	-0.141		
species[T.Spruce]	-0.0867	0.031	-2.811	0.005	-0.147	-0.026		
Omnibus:	:=======	31.045	Durbin-Watson	:======= 1:	1.6	=== 853		
D h (O i h) .		0 000 Innoun Dana (ID).			24 746			

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 34.746

 Skew:
 -0.583
 Prob(JB):
 2.85e-08

 Kurtosis:
 3.371
 Cond. No.
 4.75

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

print(sm.stats.anova_lm(lm_trees_1))

df sum_sq mean_sq F PR(>F) species 3.0 7.142050 2.380683 35.993706 2.921792e-21 Residual 553.0 36.576334 0.066142 NaN NaN

OLS Regression Results

Dep. Variable:	growth_rate	R-squared:	0.163
Model:	OLS	Adj. R-squared:	0.159
Method:	Least Squares	F-statistic:	35.99
Date:	Thu, 11 Sep 2025	Prob (F-statistic):	2.92e-21
Time:	14:40:39	Log-Likelihood:	-31.948
No. Observations:	557	AIC:	71.90
Df Residuals:	553	BIC:	89.19
Df Model:	3		

nonrobust

Covariance Type:

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.0519	0.022	48.910	0.000	1.010	1.094
<pre>species_relevelled[T.Beech]</pre>	0.2009	0.030	6.593	0.000	0.141	0.261
<pre>species_relevelled[T.Spruce]</pre>	0.1141	0.031	3.705	0.000	0.054	0.175

species_relevelled[T.Larch]	-0.0987	0.031	-3.204	0.001	-0.159	-0.038
Omnibus:	31.045	Durbin-Watson	.:	1.	=== 653	
<pre>Prob(Omnibus):</pre>	0.000	Jarque-Bera (JB):	34.	746	
Skew:	-0.583	<pre>Prob(JB):</pre>		2.85e	-08	
Kurtosis:	3.371	Cond. No.		4	.74	
					===	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

print(sm.stats.anova_lm(lm_trees_1_relevelled))

 df
 sum_sq
 mean_sq
 F
 PR(>F)

 species_relevelled
 3.0
 7.142050
 2.380683
 35.993706
 2.921792e-21

 Residual
 553.0
 36.576334
 0.066142
 NaN
 NaN