Exam I

ECE 342 Electronics I

Sept. 28, 2018

Name: Spenes GoloHC

- Make sure you write your name on all pages.
- Detailed descriptions of how you solved the problem will get you maximum partial credit if your final answer is wrong.
- You must provide the correct unit along with your answer in the answer areas. An answer without its unit will be considered incorrect.
- You may only use FE exam approved, so called dumb calculators.
- A table of commonly used constants, parameters and equations is at the end of the exam.
- Unless noted otherwise, assume room temperature conditions, i.e. T = 300K

Question	Grade	Out of
#1	18	20
#2	20	20
#3	24	24
#4	18	20
#5	16	16
Total Grade	96	100

Rank: #2

Circle your favorite season:

Fall

Summer

Winter

Spring

ECE 342 Electronics I

Sept. 28, 2018

Name: Space Goulette

1. (2	rue or False:
11	rue or False:
1.	When designing an active filter, the designer aims to set the 3 dB frequency (or frequencies) using passive components.
	A difference amplifier should amplify the common mode signal while rejecting the difference mode signal.
U	The slew rate of an op-amp limits the rate of change of the output for large output voltages.
	The output voltage magnitude of a voltage follower (i.e. unity gain amplifier) implemented with a practical finite-gain op-amp will be smaller than its input voltage magnitude.
Capital States	_A gain of -46 dB means the gain magnitude is 200 V/V and the phase shift between the input and output is 180°.
F	An op-amp's output voltage can exceed the supply voltages RC crcc see
た	The non-inverting input of an op-amp used in an inverting amplifier circuit must always be connected to DC ground. $ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
	An instrumentation amplifier is preferred over a difference amplifier because it has bette input resistance.
T	A simple op-amp circuit which uses only resistors will still have a low pass response.
1	An op-amp will have a finite but large input impedance

Name: species Cadeltes

- 2. Quick calculations (20 points). Each of the questions below are quick calculations, usually requiring a single equation.
 - a) The DC open-loop voltage gain of the MCP6001 operational amplifier is approximately 200,000 V/V. The voltage difference between its two input terminals is 10 μ V. What is its output voltage?

G. = A. (Vie-Vin) Gr - compo 10 mi GV= 2 V

 $V_{OUT} = 2$

b) An inverting amplifier is implemented using an op-amp with a finite gain of $A_{vo} = 1,000$ V/V at DC. The resistors are $R_1 = 2 \text{ k}\Omega$ and $R_2 = 18 \text{ k}\Omega$. What is the closed loop voltage gain, in V/V?

(m) = 1+ R2/R1

 $Gv[V/V] = \frac{8.9}{\sqrt{}}$

GUE -8.91 5

c) The MCP6021 op-amp has an open loop voltage gain of $A_{vo} = 116$ dB at DC, and a unity gain frequency of $f_T = 10$ MHz. What is the upper 3 dB frequency limit of a single stage non-inverting amplifier built using the MCP6021 with a gain of $G_V = 500 \text{ V/V}$?

f3dB,max = 301/ 17

f = f39Bmx f 3aBmax = 10 MHz = 20KHz

d) The input voltages to a difference amplifier are 0 V and +2.4V. What is the common mode voltage, V_{ICM}?

VICEN = 1 (VII+ VIZ) VICEN = 12 VILW == (0+24V)

View = 1,2V

Name: Some Govette

A difference amplifier has a differential gain of $A_d = 20 \text{ V/V}$ and a common mode gain of $A_{CM} = +1 \text{ mV/V}$. What is its output voltage if the differential input voltage is $v_{id} = 200 \text{ mV}$ and the common mode voltage is $V_{ICM} = -100 \text{ V}$.

Vout = Advia+ Acmilian

 $V_{\text{OUT}} = \frac{2}{3}$

Vout = 3,9 V Vout = 4 V + -0.1 W Name: Spance Geoletic

- 3. (24 points) The single-supply amplifier circuit in the figure below is constructed with the MCP6001 rail-to-rail output op-amp, which has a unity gain frequency of 1 MHz. The supply voltage is V_{DD} = +3.3 V. The resistor values are R_1 = 10 k Ω , R_2 = 100 k Ω , and R_3 = R_4 = 200 k Ω . The capacitor values are C_1 = 100 pF, and C_2 = 1 μ F.
 - a) Derive an expression for V_{OUT} as a function of V_{IN}, V_{REF} and the resistors (note that these are DC values). Plug in the component values to obtain a numerical expression.
 - b) Determine the range of input voltages for which the amplifier will operate linearly, i.e. it will not saturate ($0 < V_{OUT} < +3.3 \text{ V}$).
 - c) What is the upper 3 dB frequency of the amplifier?

534B = 15,9 KHZ

Name: Sponce Constate

- 4. (20 points) A non-inverting single-supply amplifier meant for use with audio frequencies is shown in the figure below. The supply voltage is $V_{DD} = +3.3 \text{ V}$, and the reference voltage is $V_{REF} = +1.65 \text{ V}$, as provided by the REF2033 voltage reference IC. The resistor values are $R_1 = 1 \text{ k}\Omega$ and $R_2 = R_3 = 100 \text{ k}\Omega$. The capacitor values are $C_1 = 10 \text{ \mu}F$, $C_2 = 82 \text{ pF}$ and $C_3 = 1 \text{ \mu}F$. The MCP6001 op-amp has a DC open loop voltage gain of 106 dB and a gain-bandwidth product of $f_T = 1 \text{ MHz}$.
 - a) What is the nominal output voltage if the input is grounded?
 - b) What is the lower 3 dB cut-off frequency of the amplifier? Consider C₂ to be an open.
 - c) Did the circuit designer meet the upper cut-off frequency specification of $f_{HI} = 20 \text{ kHz} \pm 1 \text{ kHz}$? Explain your reasoning.

Name: Spencer Compette

- 5. (16 points) A difference amplifier circuit is shown in the figure below is to have a differential gain of A_d = 10 V/V. The nominal resistor values for the input resistors are R₁ = R₃ = 100 kΩ. R₂ = R₄.
 - a) Calculate the input differential resistance, Rid.
 - **b)** Calculate the required values of R₂ and R₄.
 - c) What is the common mode gain if CMRR = 80 dB, in units of mV/V?

C. Ride R, + R3

Rid = 100 k St + 100 kss

Rid = 200 k St

6. Ad = R2

100 k

1MSC = R2

C. $CMRR = 20log_{10} (|\frac{Aa}{Acm}|)$ $10^{20/20} = |\frac{Ad}{Acm}|$ $10,000 = |\frac{10}{Acm}|$ $Acm = \pm \frac{10}{10,000} = \frac{10}{4000}$ $Acm = \pm \frac{10}{10,000} = \frac{10}{4000}$

- (a) Rid 300K2
- (b) R₂ 1 M 1
- (c) $A_{cm} [mV/V] \stackrel{+}{=} 1 \frac{mV}{\sqrt{}}$