Teoría de la Computación Licenciatura en Informática con Orientación en Desarrollo de Software Universidad Nacional de Quilmes

Práctica 3 Reducibilidad *many-one*

Ejercicio 1. Una máquina de Turing M se dice total si para toda palabra $w \in \Sigma^*$ se tiene que M termina cuando se la alimenta con w. Considerar el lenguaje:

$$\mathsf{TOT} = \{ \langle M \rangle \mid M \text{ es total} \}$$

Demostrar que TOT es indecidible. Proceder por el absurdo, suponiendo que TOT fuera decidible y demostrando que A_{MT} resultaría ser decidible.

Ejercicio 2. Usando reducibilidad, demostrar que los siguientes lenguajes son indecidibles:

- 1. $\{\langle M, w \rangle \mid M \text{ termina cuando se la alimenta con } w \text{ y deja la cinta totalmente en blanco}\}$
- 2. $\{\langle M \rangle \mid \mathcal{L}(M) \text{ es un lenguaje decidible}\}$
- 3. $\{\langle M_1, M_2 \rangle \mid \mathcal{L}(M_1) \cup \mathcal{L}(M_2) = \Sigma^* \}$

Ejercicio 3. Demostrar que el siguiente lenguaje es decidible:

 $\{\langle M,w\rangle\mid M(w)$ no mueve el cabezal fuera del fragmento donde se encuentra la entrada $\}$

Ejercicio 4. Demostrar que el siguiente lenguaje es semi-decidible:

 $\{\langle M \rangle \mid \text{ existe una palabra } w \in \Sigma^* \text{ tal que } M \text{ acepta } w\}$

Ejercicio 5. Demostrar que $A \leq_m B$ si y sólo si $\overline{A} \leq_m \overline{B}$.

Ejercicio 6. Probar que la relación de reducibilidad many-one \leq_m es:

- 1. Reflexiva: $A \leq_m A$ para todo lenguaje $A \subseteq \Sigma^*$.
- 2. Transitiva: si $A \leq_m B$ y $B \leq_m C$ entonces $A \leq_m C$.

Ejercicio 7. Sean $A, B \subseteq \Sigma^*$ lenguajes y supongamos dadas dos palabras $w_1 \in B$ y $w_2 \notin B$. Demostrar que si A es decidible entonces $A \leq_m B$. ¿Valdría la propiedad si sólo supiéramos que A es semi-decidible?

Ejercicio 8. Demostrar que existen lenguajes $A, B \subseteq \Sigma^*$ distintos tales que $A \leq_m B$ y $B \leq_m A$.

Ejercicio 9.

- 1. Demostrar que si A es semi-decidible y $A \leq_m \overline{A}$ entonces A es decidible.
- 2. Demostrar que si \overline{A} es semi-decidible y $A \leq_m \overline{A}$ entonces A es decidible.

Ejercicio 10. Demostrar que A es semi-decidible si y sólo si $A \leq_m A_{MT}$.