Analysis of Design Alternatives for Reverse Proxy Cache Providers

Bruno Ciciani, Francesco Quaglia, Paolo Romano
Computer Engineering Department, University of Rome "La Sapienza"

Daniel Dias

IBM T.J. Watson Research Center, Yorktown, N.Y.

Main research project: SLA and penalty minimization

- Service provider economical risk analysis in planning phase
- Run-time minimization penalty control

Reference platform:

- Content hosting
- Reverse proxy cache

Process Flow

SLA Risk analysis (4 phases)

- 1. Definition of the parameters involved in the SLA.
- 2) Worload characterization and service time identification.
- Platform an resorse allocation policy modeling and evaluation.
- 4) Economical risk identification.

Modeling and Evaluation of Archicture Alternatives for Reverse Proxy Cache Providers

- Reverse proxy cache geographically distributed, organized in a hierarchical manner.
- Limited number of customers (less than one hundred), that share the resources.
- Proxy servers implemented over cluster of workstation.
- Proxy servers connected through a virtual private networks to the Web Servers.

Architecture

Advantage of Reverse Proxy Cache

- Reduction the load of the Web Servers.
- Improvement of the throughput.
- Reduction of the latency.
- Multiple Web Sites can share the infrastructure.

Contribution of the paper

- The proposed model takes care of the real design constraints:
 - » Bounded cache size;
 - » Bounded processing power;
 - » Popularity of the documents;
 - » Update rates of the documents.
- The model permits the identification of the architecture tradeoffs, depending on:
 - » Resource assignment policy;
 - » Workload characteristics.
- The model permits the identification of:
 - » Steady State ans Transient behavior of the architectures.

Analized resource allocation policies

- ·Exclusive vs Shared Cache Node Assignent.
- ·Static vs Dynamic RAM Partitioning.
- ·Statics vs Dynamic Cache Node Assignment.

Request management

- · Proxy configuration: no global memory management
- · Cache content defined by access pattern (object popularity)

Nomenclature

WS_k	k-th Web site
C^k_{WS}	total RAM capacity of WS_k
λ_k	arrival rate of HTTP requests to WS.
n_k	total number of cacheable objects associated with WS.
α_k	parameter of the Zipf-like distribution associated with WS_k
$p_{k,j}$	relative popularity of the j-th cacheable object of WS_k
$\mu_{k,j}$	update rate of the j-th cacheable object of WS.
$\lambda_k^{CN} \ C^{lot}$	request arrival rate, associated with WS_k , seen by any single cache node
-	total cache node RAM capacity
C_k	cache node RAM capacity destined to cacheable objects of W.C.
MR_k	miss ratio within the cache node RAM/disk for requests associated with WS_k
RHR_k	the radio indicate of W.C.
DHR_k	cache node disk hit ratio for cacheable objects of WS.
N	total number of Web sites hosted by a cache node
NP	total number of Proxy sites
NCN_k	number of cache nodes within a Proxy site that are assigned to WS_k

Hypothesis

- · Arrival process: Poisson process
- · Uniform load for each Proxy site
- · LFU replacement policy
- · All documents can be memorized in the disk subsystems
- document probability repuest: Zipf-like distribution

$$P_i K_i i = \frac{\sum_{X \in X} X_i K_i}{X_i K_i}$$

Evaluation of Cache Mode Hit/Miss Ratio

Pup-Mk, i = Pstale 1kpk, i

Pup+Pstale = 1

$$Pup = \frac{\lambda_{K} p_{K,i}}{\mu_{K,i}}$$

Pstale = MKii + JCN

MKii + JK PKii

Miss Ratio

$$MR_k = \sum_{i=1}^{object \ set} p_{k,i} \frac{\mu_{k,i}}{\lambda_k^{CN} p_{k,i} + \mu_{k,i}}$$

Parameters

- $p_{k,i}$ = document popularity
- $\mu_{k,i}$ = document update rate
- $\lambda_{k_{k}}^{c_{k}}$ = document cache node access rate

Hit ratio

RAM hit ratio (RAM with finite dimension – capacity for C_k documents)

$$RHR_k = (1 - MR_k) \sum_{i=1}^{\min(C_k, n_k)} p_{k,i}$$

DISK hit ratio (storage capacity enough to store all the documents)

$$DHR_k = (1 - MR_k) \sum_{i=\min(C_k, n_k)+1}^{n_k} p_{k,i}$$

13/

Exclusive Cache Node Assignment

$$C_k = C^{tot}$$

Processor activities modeled as M/G/1/PS

$$\lambda_k^{CN} = \frac{1}{NCN_k} \frac{\lambda_k}{NP}$$

$$\rho_{CPU} = \lambda_k^{CN}(E[ram_hit] + DHR_kE[disk_request] + MR_kE[http])$$

$$\rho_{disk} = \lambda_k^{CN} (DHR_k + MR_k) E[disk]$$

Exclusive Cache Node Assignment (cont.)

$$\rho_{\scriptscriptstyle WS_CPU} = \lambda_k M R_k (E[WS_http] + \sum_{\forall i: \ I_{k,i} > C_{WS}^k} p_{k,i} E[WS_disk_request])$$

$$\rho_{WS_disk} = \lambda_k M R_k \sum_{\forall i: \ I_{k,i} > C_{WS}^k} p_{k,i} E[disk]$$

$$T = \frac{E[ram_hit]}{1 - \rho_{CPU}} + DHR_k(\frac{E[disk_request]}{1 - \rho_{CPU}} + \frac{E[disk]}{1 - \rho_{disk}}) + MR_k(\frac{E[http]}{1 - \rho_{CPU}} + \frac{E[WS_http]}{1 - \rho_{WS_CPU}} + \sum_{\forall i: \ I_{k,i} > C_{WS}^k} p_{k,i}(\frac{E[WS_disk_request]}{1 - \rho_{WS_CPU}} + \frac{E[WS_disk]}{1 - \rho_{WS_disk}}) + \Delta)$$

Shared Cache Node Assignment with Static RAM Partitioning

$$C_k = rac{C^{tot}}{N}$$

$$\lambda_k^{CN} = \frac{1}{NCN_k} \frac{\lambda_k}{NP}$$

$$\rho_{\scriptscriptstyle CPU} = \sum_{k=1}^{N} \lambda_k^{CN} (E[ram_hit] + DHR_k E[disk_request] + MR_k E[http])$$

$$\rho_{disk} = \sum_{k=1}^{N} \lambda_k^{CN} (DHR_k + MR_k) E[disk]$$

Shared Cache Node Assignment with Dynamic RAM Partitioning

The document presence is based on the total popularity

 $I_{k,j}$: index position of the j-th document of k-th WS

$$I_{k,j} = (\lambda_k / NCN_k NP) p_{k,j}$$

Memory capacity assigned to the k-th WS

$$C_k = \sum_{\forall I_{k,j} \le C^{tot}} 1$$

Shared Cache Node Assignment with Dynamic RAM Partitioning

DOCOHENTS ARE ORDERED BY ACCESS RATE

LCN Prix

(total popularity)

WIS INDEX

NOCUMENT INDEX

17-

Transient behavior

(case: node static partition)

First of the reallocation

After the reallocation

Transient behavior Evaluation of the peak traffic on WS_k due warm-up

Conditional probability no request for the j-th object of WS_k at the newly assigned node, given M request to WS_k have been issued

$$X_{k,j}(M) = (1 - p_{k,j})^M$$

Cache node miss ratio due to warm-up at the M+1 arrival request arrival

$$MRWU_k = \sum_{i=1}^{n_k} p_{k,i} X_{k,i}(M) = \sum_{i=1}^{n_k} p_{k,i} (1 - p_{k,i})^M$$

Transient behavior(cont)

Number of request generated in a δt time interval

$$M = \lambda_k^{CN} \delta t$$

Instant arrival rate at WS_k in the warm-up period

$$\lambda_k^{WU} = \lambda_k^{CN} MRWU_k = \lambda_k^{CN} \sum_{i=1}^{n_k} p_{k,i} (1 - p_{k,i})^{\lambda_k^{CN} \delta t}$$

P3, 1. 13 CACHE NODE

Quantitative comparison

- •50 Web sites (5 homogeneous groups of 10 WS)
- •10 Proxy sites
- •10 Cache nodes per proxy site
- •2 Cache nodes have to manage an homogenous group

	WS_0	WS_1	W Co	TALC	TATO	TTTC		· 			
			W 52	VV 53	W 54	WS_5	WS_6	WS_7	WS_8	WS_9	
	1/24	1/24	1/24	2/24	2/24	1/24	1/9/	1/2/	0/04	$\frac{VV S_9}{12/24}$	
٠		<u> </u>				1/21	1/24	1/24	Z/Z4	12/24	

Load distribution among the 10 WS of each homogeneous group

System parameters

7-1	T
$E[ram_hit]$	$0.5 \mathrm{msec}$.
$E[disk_request]$	$0.05 \mathrm{msec}.$
E[http]	1 msec.
E[disk]	10 msec.
$E[WS_http]$	1 msec.
$E[WS_disk_request]$	$0.05~\mathrm{msec}.$
$E[WS_disk]$	10 msec.
Δ	100 msec.

Other parameters

CACHE NODE

- RAM: 1GB CACHEABLE OBJECT: 8Kbyte = D ~ 130'000 objects intle RAM

$$X = \begin{cases} 0.6 = \text{University traces} \\ 4.4 = \text{World Cup Web Site (2002)} P(i)_{\Lambda} \end{cases}$$

Dynamic document: = 20%

Analysed assignment

Configuration 1: WS₀-WS₄
WS₅-WS₉

are assigned to the first node of the couple are assigned to the second node

Configuration 2: WS₀-WS₈
WS₉

are assigned to the first node of the couple is assigned to the second node

Configuration 3: WS₀-WS₉

are assigned to the both nodes

Analysed assignment (cont.)

Configuration 1:

better hit ratio and balanced hit between the nodes,

unbalanced load.

Configuration 2:

balanced load between the nodes,

bigger miss ratio in the first node.

Configuration 3:

balanced load among the nodes,

balanced hit ratio between the nodes.

First configuration

LEGEND

⊖ ⊖ alpha 0.6 - dynamc RAM partitioning

□ □ alpha 0.6 - static RAM partitioning

△ △ alpha 1.0 - static RAM partitioning

d alpha 1.4 - dynamic RAM partitioning

First configuration (cont.)

- ⊕ ⊕ alpha 0.6 dynamc RAM partitioning
- 🗓 💶 alpha 0.6 static RAM partitioning
- A → A alpha 1.0 static RAM partitioning
 - ──<a> alpha 1.4 dynamic RAM partitioning
- √ √ alpha 1.4 static RAM partitioning

First configuration (cont.2)

- ⊖ ⊖ alpha 0.6 dynamc RAM partitioning
- □ □ alpha 0.6 static RAM partitioning
- Δ Alpha 1.0 static RAM partitioning

Second configuration

- ⊖ ⊖ alpha 0.6 dynamc RAM partitioning
- □ □ alpha 0.6 static RAM partitioning
- △ △ Alpha 1.0 static RAM partitioning
- √ √ alpha 1.4 static RAM partitioning

Second configuration (cont.)

- ⊕ ⊕ alpha 0.6 dynamc RAM partitioning
- ☐─── alpha 0.6 static RAM partitioning

- d alpha 1.4 dynamic RAM partitioning

Second configuration (cont.2)

- ⊖ ⊖ alpha 0.6 dynamc RAM partitioning
- □ □ □ alpha 0.6 static RAM partitioning
- △ A alpha 1.0 static RAM partitioning
- d dalpha 1.4 dynamic RAM partitioning
- ▽ ▽ alpha 1.4 static RAM partitioning

Third configuration

- O alpha 0.6 dynamc RAM partitioning
 - ——⊡ alpha 0.6 static RAM partitioning

- d dalpha 1.4 dynamic RAM partitioning
- √ √ alpha 1.4 static RAM partitioning

Third configuration (cont.)

- ⊕ ⊕ alpha 0.6 dynamc RAM partitioning
- ☐─── alpha 0.6 static RAM partitioning
- ⇔ alpha 1.0 dynamic RAM partitioning
- $\Delta \Delta$ alpha 1.0 static RAM partitioning
- d = dipha 1.4 dynamic RAM partitioning
- √ alpha 1.4 static RAM partitioning

Third configuration (cont.2)

- ♦ ♦ alpha 1.0 dynamic RAM partitioning
- △ ∆ alpha 1.0 static RAM partitioning
- alpha 1.4 dynamic RAM partitioning

Second configuration (warm-up period)

Performance conclusions

- Configuration 1 has no disk problem but the unbalanced load generates CPU saturation.
- Configuration 2 presents good steady state performance, but the disk can saturate. Moreover it can generate troubles to the WS in warm-up period.
- Configuration 3 is a good compromise, but it can generate a high RAM miss ratio.

Performance conclusions (cont) NO WINNER IN ALL CASES

• The third alternative is the best when hot documents dominate.

• The second is good for both high and moderate skew, but only if the warm-up problem is solved.