Document-Réponse 1

Nom, PRENOM:

Question 1: Relation algébrique reliant L_0 , L_1 , L_2 , θ_1 et θ_3

$$L_2^2 =$$

Question 2: Exprimer le vecteur position du point E dans la base du repère R0 en fonction de L_0 , L_1 , L_2 , θ_1 et θ_3

$$\overrightarrow{AE} = \dots$$

$$\overrightarrow{AE} = \left(\begin{array}{c} \cdots \\ B0 \end{array}\right)_{B0}$$

R Costadoat – F Puig Page 1 sur 10

R Costadoat – F Puig Page 2 sur 10

Question 5 : Graphe des liaisons

Degré d'hyperstatisme : (avec justifications)

Question 6: Proposition pour rendre isostatique

R Costadoat – F Puig Page 3 sur 10

R Costadoat – F Puig Page 4 sur 10

Question 9 : Fonction de transfert modélisant le comportement dynamique du manipulateur esclave :

$$H(p) = \frac{X_{S}(p)}{C_{m}(p)} =$$

Application Numérique :

$$H(p) =$$

Document-Réponse 2

NOM, PRENOM:

Question 10: (fin de la phase d'insertion)

Question 11: justification de la modélisation $x_e(t) = A[-1 + \sin(2\pi f \cdot t + \phi)]$

Valeurs numériques :

$$A =$$

$$f =$$

$$f_e(t) =$$

Question 12: Fonction de transfert

$$H_2(p) = \frac{S(p)}{E(p)} =$$

R Costadoat – F Puig

Question 13: Diagrammes de Bode (Gain et Phase) relatif à $H_2(j\omega)$

Free Logarithmic Graph Paper from http://incompetech.com/graphpaper/logarithmic/

Free Logarithmic Graph Paper from http://incompetech.com/graphpaper/logarithmic/

Fréquence propre en fonction de R et C :

$$f_0 =$$

R Costadoat – F Puig Page 7 sur 10

Question 14 : En déduire la valeur du produit RC

$$R.C =$$

Question 15 : (Simplification du schéma bloc)

$$H_t(p) =$$

$$H(p) =$$

Question 16 : fonction de transfert en boucle fermée (sans tenir compte de la perturbation)

$$F_{BF1}(p) = \left| \frac{X_v(p)}{X_m(p)} \right|_{X_e^*(p)=0} =$$

Gain statique : K = A.N. : K =

Pulsation propre : $\omega_0 =$ A.N. : $\omega_0 =$

Coefficient d'amortissement : z = A.N. : z =

Question 17:

Question 18 : Vérification des exigences de stabilité, rapidité et précision

R Costadoat – F Puig Page 9 sur 10

