ANNO ACCADEMICO 2024/2025

Intelligenza Artificiale e Laboratorio

Teoria

Altair's Notes

DIPARTIMENTO DI INFORMATICA

Capitolo 1	Introduzione	Pagina 5
1.1	Il Corso in Breve Motivazioni — 5	5
Capitolo 2	IL PROLOG	PAGINA 8
2.1	Le Basi Liste — 10	8
2.2		10

Premessa

Licenza

Questi appunti sono rilasciati sotto licenza Creative Commons Attribuzione 4.0 Internazionale (per maggiori informazioni consultare il link: https://creativecommons.org/version4/).

Formato utilizzato

Box di "Concetto sbagliato":

Concetto sbagliato 0.1: Testo del concetto sbagliato

Testo contente il concetto giusto.

Box di "Corollario":

Corollario 0.0.1 Nome del corollario

Testo del corollario. Per corollario si intende una definizione minore, legata a un'altra definizione.

Box di "Definizione":

Definizione 0.0.1: Nome delle definizione

Testo della definizione.

Box di "Domanda":

Domanda 0.1

Testo della domanda. Le domande sono spesso utilizzate per far riflettere sulle definizioni o sui concetti.

Box di "Esempio":

Esempio 0.0.1 (Nome dell'esempio)

Testo dell'esempio. Gli esempi sono tratti dalle slides del corso.

Box di "Note":

Note:-

Testo della nota. Le note sono spesso utilizzate per chiarire concetti o per dare informazioni aggiuntive.

Box di "Osservazioni":

Osservazioni 0.0.1

Testo delle osservazioni. Le osservazioni sono spesso utilizzate per chiarire concetti o per dare informazioni aggiuntive. A differenza delle note le osservazioni sono più specifiche.

Introduzione

1.1 Il Corso in Breve...

1.1.1 Motivazioni

Definizione 1.1.1: Intelligenza Artificiale

L'intelligenza artficiale (o IA, dalle iniziali delle due parole, in italiano) è una disciplina appartenente all'informatica che studia i fondamenti teorici, le metodologie e le tecniche che consentono la progettazione di sistemi hardware e sistemi di programmi software capaci di fornire all'elaboratore elettronico prestazioni che, a un osservatore comune, sembrerebbero essere di pertinenza esclusiva dell'intelligenza umana.

Note:-

Meh, in realtà l'IA è una disciplina di confine. Però le tematiche sono prettamente informatiche.

IA In breve:

- Area di ricerca dell'informatica.
- Si occupa di tutto ciò che serve per rendere un computer intelligente come un essere umano.
- Interessata a problemi *intelligenti*: problemi per cui non esiste/non è noto un algoritmo di risoluzione¹.

Note:-

Il cubo di Rubik non è un gioco intelligente >:(

Ci sono tante sotto-aree di ricerca:

- Rappresentazione della conoscenza e ragionamento.
- Interpretazione/sintesi del linguaggio naturale.
- Apprendimento automatico.
- Pianificazione.
- Robotica.

¹Tris, il labirinto, etc.

Si collega a tante discipline, oltre all'informatica:

- Filosofia.
- Fisica.
- Psicologia.

Questo insegnamento ha l'obiettivo di approfondire le conoscenze di Intelligenza Artificiale con particolare riguardo alle capacità di un agente intelligente di fare *inferenze* sulla base di una *rappresentazione esplicita della conoscenza* sul dominio. In questo corso si faranno anche sperimentazione di metodi di ragionamento basati sul paradigma della *programmazione logica*, sull'uso di *formalismi a regole* (CLIPS) e su *reti bayesiane* (ragionamento probabilistico²).

Programma:

- Dal punto di vista metodologico saranno a rontate problematiche relative a:
 - Meccanismi di ragionamento per calcolo dei predicati del primo ordine.
 - Programmazione logica.
 - Ragionamento non monotono.
 - Answer set programming.
- Queste metodologie verranno a rontate dal punto di vista sperimentale con l'introduzione dei principali costrutti del *Prolog*, lo sviluppo di strategie di ricerca in Prolog e l'utilizzo dell'ambiente *CLINGO* nella risoluzione di problemi in cui sia necessaria l'applicazione di meccanismi di ragionamento non monotono e del paradigma dell'Answer Set Programming.

Domanda 1.1

E le novità dell'AI che vanno di moda?

Risposta: vengono trattate in altri corsi (TLN, RNDL, AAUT, ELIVA, AGINT).

 $^{^2{\}rm Odio}$ la probabilità con tutto il mio cuore ${<}3$

Definizione 2.0.1: PROLOG

PROLOG (Programming Logic) è un linguaggio dichiarativo basato sul paradigma logico:

- Non si descrive cosa fare per risolvere un problema.
- Si descrive la situazione reale con *fatti* e *regole* e si chiede all'interprete di verificare se un *goal* segue oppure no secondo una logica classica.

Note:-

Il PROLOG è equivalente alla logica dei predicati del primordine.

2.1 Le Basi

Definizione 2.1.1: Fatti

Si rappresenta con dei fatti un dominio di interesse.

Esempio 2.1.1 (Fatto)

Fatto per descrivere che un alimento contiene più calorie di un altro:

- piuCalorico(wurstel, banana).
- Rappresenta il fatto che il würstel è un alimento maggiormente calorico rispetto alla banana.

Definizione 2.1.2: Regole

Si rappresentano le possibili inferenze con delle regole:

head := subgoal1, subgoal2, ..., subgoaln

Esempio 2.1.2 (Regola)

felino(X) := gatto(X)

Rappresenta la regola che permette di concludere che i gatti sono felini.

Idee di base del PROLOG:

- Regole ricorsive.
- L'interprete analizza i fatti e le regole nell'ordine in cui si trovano nel programma.
- Meccanismo di pattern matching per uni care variabili e termini.
- L'interprete, dato un programma, cerca di dimostrare un goal considerando fatti e applicando regole, nel secondo caso generando sotto-goal.

Definizione 2.1.3: Clausole

Le clausole sono i fatti o le regole. Contengono:

- Atomi:
 - Costanti.
 - Numeri.
- Variabili.
- Termini Composti, ottenuti applicando funtori a termini.

Note:-

Un programma PROLOG è un insieme di clausole.

Osservazioni 2.1.1

- L'estensione dei file PROLOG è 'pl'.
- In PROLOG le variabili hanno l'iniziale maiuscola.
- L'unica struttura dati nativa è la lista.
- Per eseguire swi: swipl.
- Per compilare: ['nomefile.pl'].
- Il comando ';' indica possibili alternative.
- Il comando 'trace.' consente un esecuzione passo per passo.
- L'ordine è importante perché PROLOG "legge" dall'alto verso il basso.

Qualche predicato built-in:

- var(X): indica se X è una variabile.
- ground(X): indica se X è istanziata.
- atom(X): indica se X è atomica.

2.1.1 Liste

Definizione 2.1.4: Lista

La lista è la struttura dati principale in PROLOG. Una lista è caratterizzata da una testa e da una coda:

- Testa: primo termine (a sinistra) della lista.
- Coda: la lista dei termini dal secondo (incluso) in poi.

Note:-

Rappresentata come [Head | Tail].

```
?- [1,2,3,4,5] = [Head | Tail].
Head = 1
Tail = [2,3,4,5] = [Head | Tail]
Yes

?- [a, ciao, [], 2, [1, saluti]] = [Head | Tail].
Head = a
Tail = [ciao, [], 2, [1, saluti]]
Yes
```

Figure 2.1: Le liste in PROLOG.

Predicati built-in:

- length(Lista, N): ha successo se la Lista contiene N elementi.
- member (Elemento, Lista): ha successo se la Lista contiene il termine Elemento.
- select(Elemento, Lista, Rimanenti): rimuove Elemento da Lista e restituisce Rimanenti.

2.2 Interprete PROLOG

Domanda 2.1

Come avviene l'esecuzione di programmi PROLOG?

- Esecuzione mediante *backward chaining* in profondità.
- Si parte dal *goal* che si vuole derivare:
 - Goal = congiunzione di formule atomiche G_1, G_2, \ldots, G_n .
 - Si vuole dimostrare, mediante risoluzione, che il goal segua logicamente dal programma.
- Una regola $A: -B_1, B_2, \ldots, B_m$ è applicabile a G_i se:
 - Le variabili vengono rinominate.
 - $-A \in G_i$ unificano.

Figure 2.2: Una formulazione non deterministica di come funziona l'interprete PROLOG.

Note:-

MGU è il Most General Unifier: minimo sforzo per rendere uguali due variabili (il fatto e il goal).

- La computazione ha successo se esiste una computazione che termina con successo.
- Non determinismo: non è specificata la regola scelta in R.
- Ma l'interprete PROLOG si comporta in modo deterministico:
 - Le clausole vengono considerate nell'ordine in cui sono scritte nel programma.
 - Viene fatto backtracking all'ultimo punto di scelta ogni volta che la computazione fallisce.
- In caso di successo, l'interprete restituisce una sostituzione per le variabili che compaiono nel goal.

2.2.1 Breve Ripasso di Logica

Definizione 2.2.1: Logica Classica

Conseguenza logica definita semanticamente: dato una teoria e una formula, diciamo che la formula segue dalla teoria se essa è vera in tutti i modelli della teoria.

Esempio 2.2.1 (Gatti)

- I gatti miagolano: gatto \rightarrow miagola.
- \bullet I persiani sono gatti: persiano \rightarrow gatto.
- Si vuole dimostrare che i persiani miagolano: $k \models persiano \rightarrow miagola$.

