The Environment Model of Evaluation

Jim Royer

CIS 352

March 22, 2019

References

- Structure and Interpretation of Computer Programs, 2/e, §3.2: The Environment Model of Evaluation, by Harold Abelson and Gerald Sussman, MIT Press, 1996. https://mitpress.mit.edu/sicp/full-text/book/book.html
- William Cook, *Anatomy of Programming Languages*, Chapters 3 and 4, http://www.cs.utexas.edu/~wcook/anatomy/anatomy.htm

LFP = LC + λ + function application + variables

LFP Expressions

$$E ::= n \mid b \mid \ell \mid E \text{ iop } E \mid E \text{ cop } E \mid \text{ if } E \text{ then } E \text{ else } E$$

$$\mid !E \mid E := E \mid \text{ skip } \mid E; E \mid \text{ while } E \text{ do } E$$

$$\mid \underline{x} \mid \lambda x.E \mid E \mid E \mid \text{ let } x = E \text{ in } E$$

where

- $x \in \mathbb{V}$, an infinite set of variables
- $n \in \mathbb{Z}$ (integers), $b \in \mathbb{B}$ (booleans), $\ell \in \mathbb{L}$ (locations)
- $iop \in (integer\text{-valued binary operations})$
- cop ∈ (boolean-valued binary comparisons)

We focus on the (λ -calculus + **let**) part of LFP.

Application via substitution and its problems

Call by name

$$\Downarrow\text{-}cbn: \ \frac{\langle E_1,s\rangle \Downarrow \langle \lambda x.E_1',s'\rangle \quad \langle E_1'[E_2/x],s'\rangle \Downarrow \langle V,s''\rangle}{\langle (E_1 E_2),s\rangle \Downarrow \langle V,s''\rangle}$$

Call by value

$$\psi\text{-}cbv: \frac{\langle E_1,s\rangle \Downarrow \langle \lambda x.E_1',s'\rangle \quad \langle E_2,s'\rangle \Downarrow \langle V_2,s''\rangle \quad \langle E_1'[V_2/x],s''\rangle \Downarrow \langle V,s'''\rangle}{\langle (E_1\ E_2),s\rangle \Downarrow \langle V,s'''\rangle}$$

- Call-by-name and call-by-value are defined above via *substitution*.
- Substitution is:

dandy for nailing down sensible meanings of application. stinko for everyday implementations.

E.g., An implementation via substitution constantly needs to modify a program's source code.

Idea: In place of substituting a value v for a variable x:

- Keep a dictionary of variables \mathcal{E} their values.
- When you need the value of *x*, look it up.

Environments (Warning: Scary Greek letters)

Definition

An environment is just a table of *variables* and associated *values*.

Consider an expression e = if z then x else y + 2.

- With environment $\{x \mapsto 3, y \mapsto 4, z \mapsto \mathbf{tt}\}$, *e* evaluates to 3.
- With environment $\{x \mapsto 8, y \mapsto 5, z \mapsto \mathbf{ff}\}$, e evaluates to 7.
- Etc.

$lookup(\rho, x)$

returns the value (if any) of x in environment ρ .

$$update(\rho, x, v)$$

returns a new environment $\rho[x \mapsto v]$ ($\rho[x \mapsto v]$ is just like ρ except x has value v.)

Evaluating variable x in environment $\rho \equiv lookup(\rho, x)$.

Revising call-by-value big-step semantics, 1

Definition

 $\rho \vdash \langle e, s \rangle \Downarrow_{\mathsf{V}} \langle v, s' \rangle$ means that expression *e* with environment ρ and state s evaluates to value v and state s'.

Var:
$$\frac{\rho \vdash \langle x, s \rangle \biguplus_{\mathbf{V}} \langle v, s \rangle}{\rho \vdash \langle e_1, s \rangle \biguplus_{\mathbf{V}} \langle v_1, s' \rangle} (v = \operatorname{lookup}(\rho, x))$$
Let:
$$\frac{\rho \vdash \langle e_1, s \rangle \biguplus_{\mathbf{V}} \langle v_1, s' \rangle}{\rho \vdash \langle \operatorname{let} x = e_1 \operatorname{in} e_2, s \rangle \biguplus_{\mathbf{V}} \langle v_2, s'' \rangle}$$

Examples/Exercises: Let $\rho = \{x \mapsto 7, y \mapsto 3\}$.

- $\bullet \rho \vdash \langle x + y, s \rangle \downarrow \downarrow_{\mathsf{V}} ??$
- $\bullet \ \rho \vdash \langle \text{ let } x = 1 \text{ in } x + y, s \rangle \downarrow_{V} ??$
- $\rho \vdash \langle \text{ let } x = 1 \text{ in } (\text{ let } z = 11 \text{ in } x + y + z), s \rangle \downarrow_{V} ??$

Revising call-by-value big-step semantics, 2

Preliminary versions of these rules:

$$\rho \vdash \langle e_{1}, s \rangle \quad \Downarrow_{V} \quad \langle \lambda x. e'_{1}, s' \rangle$$

$$\rho \vdash \langle e_{2}, s' \rangle \quad \Downarrow_{V} \quad \langle v_{2}, s'' \rangle$$

$$App: \frac{\rho[x \mapsto v_{2}] \vdash \langle e'_{1}, s'' \rangle \quad \Downarrow_{V} \quad \langle v, s''' \rangle}{\rho \vdash \langle (e_{1} e_{2}), s \rangle \quad \Downarrow_{V} \quad \langle v, s''' \rangle} \qquad \text{Fun: } \frac{\rho \vdash \langle \lambda x. e, s \rangle \Downarrow_{V} \langle \lambda x. e, s \rangle}{\rho \vdash \langle \lambda x. e, s \rangle \Downarrow_{V} \langle \lambda x. e, s \rangle}$$

Examples/Exercises: Let $\rho = \{x \mapsto 7, y \mapsto 3\}$.

•
$$\rho \vdash \langle \mathbf{let} f = \lambda x.(x+y) \mathbf{in} (f 10), s \rangle \Downarrow_{\mathbf{V}} ??$$

$$\rho \vdash \langle \operatorname{let} f = \lambda x.(x+y) \operatorname{in} (\operatorname{let} y = 100 \operatorname{in} (f 10)), s \rangle \Downarrow_{\mathsf{V}} ??$$

Scoping

Definition (Variable Scope)

The scope of a variable binding/declaration is the region of a program where the binding is valid, i.e., when you use the variable, it uses that declaration for the binding (meaning) of the name.

A Java example (static/lexical scoping)

```
{
  int i = 23;
  for (int i = 1; i<11; i++) { ...}
  System.out.println(i);
  ...
}</pre>
```

- the outer i's scope
- the inner i's scope

Dynamic Scoping, 1

Re: λ -expressions, functions, procedures, etc., there are two sorts of environments you have to worry about:

- The environment in force when the function was created.
- 2 The environment in force when the function is *applied*.

$$\rho \vdash \langle e_{1}, s \rangle \quad \bigvee_{\mathbf{V}} \quad \langle \lambda x. e'_{1}, s' \rangle$$

$$\rho \vdash \langle e_{2}, s' \rangle \quad \bigvee_{\mathbf{V}} \quad \langle v_{2}, s'' \rangle$$

$$Dynamic-App: \frac{\rho[x \mapsto v_{2}] \vdash \langle e'_{1}, s'' \rangle \quad \bigvee_{\mathbf{V}} \quad \langle v, s''' \rangle}{\rho \vdash \langle (e_{1} e_{2}), s \rangle \quad \bigvee_{\mathbf{V}} \quad \langle v, s''' \rangle}$$

Example: Let $\rho = \{x \mapsto 7, y \mapsto 3\}$ and consider

$$\rho \vdash \langle \mathbf{let} f = \lambda x.x + y$$

$$\mathbf{in} \ \mathbf{let} \ g = \lambda y.f(y + 100)$$

$$\mathbf{in} \ ((f \ 10) + (g \ 0)), s \rangle \Downarrow_{\mathbf{V}} ??$$

Dynamic Scoping, 2

$$\rho \vdash \langle e_{1}, s \rangle \quad \Downarrow_{\mathsf{V}} \quad \langle \lambda x. e'_{1}, s' \rangle$$

$$\rho \vdash \langle e_{2}, s' \rangle \quad \Downarrow_{\mathsf{V}} \quad \langle v_{2}, s'' \rangle$$

$$Dynamic-App: \frac{\rho[x \mapsto v_{2}] \vdash \langle e'_{1}, s'' \rangle \quad \Downarrow_{\mathsf{V}} \quad \langle v_{*}, s''' \rangle}{\rho \vdash \langle (e_{1} e_{2}), s \rangle \quad \Downarrow_{\mathsf{V}} \quad \langle v, s''' \rangle}$$

Under dynamic scoping, when you apply a function in environment

$$((\lambda x.e_1') e_2)$$
 in environment ρ

you evaluate e'_1 in environment $\rho[x \mapsto v_2]$.

Question:

Is this a bug or a feature?

Dynamic Scoping, 3

$$\rho \vdash \langle e_{1}, s \rangle \quad \bigvee_{\mathsf{V}} \quad \langle \lambda x. e'_{1}, s' \rangle$$

$$\rho \vdash \langle e_{2}, s' \rangle \quad \bigvee_{\mathsf{V}} \quad \langle v_{2}, s'' \rangle$$

$$Dynamic-App: \frac{\rho[x \mapsto v_{2}] \vdash \langle e'_{1}, s'' \rangle \quad \bigvee_{\mathsf{V}} \quad \langle v, s''' \rangle}{\rho \vdash \langle (e_{1} e_{2}), s \rangle \quad \bigvee_{\mathsf{V}} \quad \langle (v, s''' \rangle}$$

What goes *right* under dynamic scoping?

$$\mathbf{let}\,f = \lambda n.\,\,\mathbf{if}\,\,n \leq 0\,\,\mathbf{then}\,\,1\,\,\mathbf{else}\,\,n * (f\,(n-1))$$

$$\mathbf{in}\,\,(f\,3)$$

History

Discovered and formalized in early (≈1960s) Lisp implementations.

Re: λ -expressions, functions, procedures, etc., there are two sorts of environments you have to worry about:

- **1** The environment in force when the function is *created*.
- The environment in force when the function is applied.
- In human language, statements need to be understood in context: Such a fact is probable, but undoubtedly false.
 - —Edward Gibbon in "Decline and Fall of the Roman Empire"
- When Gibbon was writing "probable" meant "well-recommended".
- So in reading Gibbon we have to use a 1700's English dictionary.
- We pull a similar trick for functions.

Definition

A closure, $e\rho$, is an expression e with an environment ρ such that $fv(e) \subseteq \operatorname{domain}(\rho)$, i.e., all of e's free variables are in ρ 's dictionary.

Ideas:

- A λ -expression evaluates to a closure.
- When we create a λ -expression, we "close" it with its definition-time environment.

Lexical-Fun:
$$\frac{}{\rho \vdash \langle \lambda x.e,s \rangle \Downarrow_{\mathsf{V}} \langle (\lambda x.e)\rho,s \rangle}$$

• When we apply a function (i.e., closure $(\lambda x.e')\rho'$), we evaluate e' in $\rho'[x \mapsto v]$, where v is the value of the argument.

$$\rho \vdash \langle e_{1}, s \rangle \quad \bigvee_{\mathbf{V}} \quad \langle (\lambda x. e'_{1}) \rho'_{1}, s' \rangle$$

$$\rho \vdash \langle e_{2}, s' \rangle \quad \bigvee_{\mathbf{V}} \quad \langle v_{2}, s'' \rangle$$

$$Lexical-App: \quad \frac{\rho'_{1}[x \mapsto v_{2}] \vdash \langle e'_{1}, s'' \rangle \quad \bigvee_{\mathbf{V}} \quad \langle v, s''' \rangle}{\rho \vdash \langle (e_{1} e_{2}), s \rangle \quad \bigvee_{\mathbf{V}} \quad \langle (v, s''' \rangle}$$

$$Lexical-Fun: \frac{}{\rho \vdash \langle \lambda x.e,s \rangle \biguplus_{\mathbf{V}} \langle \underbrace{(\lambda x.e)\rho,s}\rangle}_{\text{a closure}}$$

$$\frac{}{\rho \vdash \langle e_1,s \rangle \biguplus_{\mathbf{V}} \langle \underbrace{(\lambda x.e_1')\rho_1',s'}\rangle}_{\rho \vdash \langle e_2,s' \rangle \biguplus_{\mathbf{V}} \langle v_2,s'' \rangle}$$

$$Lexical-App: \frac{}{\rho_1'[x \mapsto v_2] \vdash \langle e_1',s'' \rangle \biguplus_{\mathbf{V}} \langle v,s''' \rangle}_{\rho \vdash \langle (e_1 e_2),s \rangle \biguplus_{\mathbf{V}} \langle (v,s''' \rangle}$$

Examples/Exercises: Let $\rho = \{x \mapsto 7, y \mapsto 3\}$.

- $\rho \vdash \langle \mathbf{let} f = \lambda x.(x+y) \mathbf{in} (f 10), s \rangle \Downarrow_{\mathbf{V}} ??$
- $\bullet \ \rho \vdash \langle \ \mathbf{let} \ f = \lambda x. (x+y) \ \mathbf{in} \ \ (\mathbf{let} \ y = 100 \ \mathbf{in} \ (f \ 10)), \ s \, \rangle \Downarrow_{\mathbf{V}} ??$
- $\rho \vdash \langle \text{ let } f = \lambda n. \text{ if } n \leq 0 \text{ then } 1 \text{ else } n * (f(n-1)) \text{ in } (f3), s \rangle \downarrow_{\mathbf{V}} ??$

Puzzle 1

$$ho_1 = [a \mapsto 1, \ b \mapsto 2]$$
 $e_1 = \mathbf{let} \ q = \lambda a.(a+b) \ \mathbf{in}$
 $\mathbf{let} \ a = 5 * b \ \mathbf{in}$
 $\mathbf{let} \ b = a * b \ \mathbf{in}$
 $(q \ 100)$

What the value of e_1 in environment ρ_1 under call-by-value with

- lexical scoping?
- dynamic scoping?

Puzzle 1(a): Call-by-value, lexical scoping

$$\rho_{1} = [a \mapsto 1, \ b \mapsto 2]$$

$$\rho_{1} : \begin{bmatrix} a \mapsto 1 \\ b \mapsto 2 \end{bmatrix}$$

$$e_{1} = \mathbf{let} \ q = \lambda a.(a + b) \ \mathbf{in}$$

$$\mathbf{let} \ a = 5 * b \ \mathbf{in}$$

$$\mathbf{let} \ b = a * b \ \mathbf{in}$$

$$(q \ 100)$$

$$\rho_{2} : \begin{bmatrix} a \mapsto 1 \\ b \mapsto 2 \end{bmatrix}$$

$$\rho_{2} : \begin{bmatrix} a \mapsto (\lambda a.(a + b))\rho_{1} \\ \hline a \mapsto 10 \end{bmatrix}$$

$$\mathbf{let} \ a = \dots$$

$$\rho_{3} : \begin{bmatrix} a \mapsto 10 \\ \hline b \mapsto 20 \end{bmatrix}$$

$$\rho_{4} : \begin{bmatrix} b \mapsto 20 \\ \hline b \mapsto 20 \end{bmatrix}$$

$$\rho_{5} : \begin{bmatrix} a \mapsto 100 \\ \hline a \mapsto 100 \end{bmatrix} \rightarrow \rho_{1} \quad (a + b)$$

value of $e_1\rho_1$: 102

Puzzle 1(b): Call-by-value, dynamic scoping

$$\rho_{1} = [a \mapsto 1, \ b \mapsto 2]$$

$$\rho_{1} : \begin{bmatrix} a \mapsto 1 \\ b \mapsto 2 \end{bmatrix}$$

$$e_{1} = \mathbf{let} \ q = \lambda a.(a + b) \ \mathbf{in}$$

$$\mathbf{let} \ a = 5 * b \ \mathbf{in}$$

$$\mathbf{let} \ b = a * b \ \mathbf{in}$$

$$(q \ 100)$$

$$\rho_{4} : \begin{bmatrix} b \mapsto 20 \\ b \mapsto 20 \end{bmatrix}$$

$$\rho_{5} : \begin{bmatrix} a \mapsto 1 \\ a \mapsto 1 \end{bmatrix}$$

$$\rho_{1} : \begin{bmatrix} a \mapsto 1 \\ b \mapsto 2 \end{bmatrix}$$

$$\rho_{2} : \begin{bmatrix} a \mapsto 1 \\ b \mapsto 20 \end{bmatrix}$$

$$\rho_{3} : \begin{bmatrix} a \mapsto 10 \\ b \mapsto 20 \end{bmatrix}$$

$$\rho_{4} : \begin{bmatrix} b \mapsto 20 \\ b \mapsto 20 \end{bmatrix}$$

$$\rho_{5} : \begin{bmatrix} a \mapsto 100 \end{bmatrix}$$

value of $e_1\rho_1$: 120

Puzzle 2

$$ho_1 = [a \mapsto 1, \ b \mapsto 2]$$
 $ho_2 = \mathbf{let} \ p = \lambda a.(a+b) \ \mathbf{in}$
 $ho_1 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_2 = \mathbf{let} \ p = \lambda b.(a+(p\ b)) \ \mathbf{in}$
 $ho_3 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_4 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_5 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_6 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto 1, \ b \mapsto 2]$
 $ho_7 = [a \mapsto$

What is the value of e_2 in environment ρ_1 under call-by-value with

- lexical scoping?
- dynamic scoping?

Puzzle 2(a): Call-by-value, lexical scoping

$$\rho_{1}: \qquad \begin{array}{c} \text{tag} \qquad \qquad \text{Environment} \qquad \qquad \text{Expression} \\ \rho_{1}: \qquad \begin{array}{c} a \mapsto 1 \\ b \mapsto 2 \end{array} \qquad \text{let} \ p = \dots \\ \\ \rho_{1}: \qquad \begin{array}{c} \rho_{1}: \qquad \qquad \\ \rho_{2}: \qquad \qquad \\ \rho_{2}: \qquad \qquad \\ \rho_{2}: \qquad \qquad \\ \rho_{3}: \qquad \qquad \\ \rho_{4}: \qquad \qquad \\ \rho_{3}: \qquad \qquad \\ \rho_{4}: \qquad \qquad \\ \rho_{4}: \qquad \qquad \\ \rho_{5}: \qquad \begin{array}{c} \rho_{4}: \qquad \qquad \\ \rho_{5}: \qquad \qquad \\ \rho_{5}: \qquad \qquad \\ \rho_{6}: \qquad \qquad \\ \rho_{6}: \qquad \qquad \\ \rho_{6}: \qquad \qquad \\ \rho_{7}: \qquad \begin{array}{c} \rho_{6}: \qquad \qquad \\ \rho_{7}: \qquad \qquad \\ \rho_{7}:$$

value of $e_2\rho_1$: 1+(100+2) = 103

Puzzle 2(b): Call-by-value, dynamic scoping

value of $e_2\rho_1$: 10+(100+100) = 210

Lexical Scoping, 4: Closures + States = Objects

Suppose $(new\ v)$ returns a fresh location initialize to v.

Warning: The following is tormented LFP; return is as in HW10.

```
let mkbox = \lambda x. (let bx = (new\ x) in (\lambda y.\{bx : =!bx + y; \text{ return }!bx\})); in let u = (mxbox\ 10); in let v = (mxbox\ (100 + (u\ 5))) in ((u\ 0) + (v\ 0)) [Trace this thing]
```

In more familiar notation, *mkbox* is roughly:

```
\begin{aligned} \mathbf{function} \ mxbox(x) &= \{ \ \mathbf{var} \ bx = (new \ x); \\ \mathbf{return} \ (\mathbf{function} \ foo(v) \\ & \{ \ bx := !bx + v; \ \mathbf{return} \ !bx \ \}); \ \} \end{aligned}
```

```
In Java terms: • box is a class • mkbox is a box-constructor • u and v are instance methods • bx is an instance variable.
```

Lexical Scoping, 5: What about call-by-name?

Call by name

Subst-App-cbn:
$$\frac{\langle E_1, s \rangle \Downarrow_{\mathsf{N}} \langle \lambda x. E_1', s' \rangle \quad \langle E_1'[E_2/x], s' \rangle \Downarrow_{\mathsf{N}} \langle V, s'' \rangle}{\langle (E_1 E_2), s \rangle \Downarrow_{\mathsf{N}} \langle V, s'' \rangle}$$

Question:

With environments, how do we simulate substituting the unevaluated E_2 for x in E'_1 that call-by-name requires?

Answer:

Thunks \equiv closures of arbitrary expressions, not just λ -expressions.

History of the term: http://www.retrologic.com/jargon/T/thunk.html

The Call-By-Name Version

$$Lexical-App: \frac{\rho \vdash \langle e_{1}, s \rangle \biguplus_{N} \langle \overbrace{(\lambda x. e_{1}') \rho_{1}', s' \rangle}^{\text{a closure}} \rho[x \mapsto \overbrace{e_{2}\rho}^{\text{thunk}}] \vdash \langle e_{1}', s' \rangle \biguplus_{N} \langle v, s'' \rangle}{\rho \vdash \langle (e_{1} e_{2}), s \rangle \biguplus_{N} \langle (v, s'') \rangle}$$

$$Var: \frac{\rho' \vdash \langle e', s \rangle \biguplus_{N} \langle v', s' \rangle}{\rho \vdash \langle x, s \rangle \biguplus_{N} \langle v', s' \rangle} \left(e'\rho' = \text{lookup}(\rho, x) \right)$$

Call-by-name/dynamic-scoping makes very little sense, ...but we are implementing it any way in Homework 10.

Puzzle 3

$$ho_0 = \emptyset$$
 $s_0 = [\ell \mapsto 0]$
 $e_0 = \mathbf{let} \ g = \lambda x. \{ \ell : = !\ell + 1; \ \mathbf{return} \ x \};$
 $\mathbf{in} \ \mathbf{let} \ z = (g \ 100)$
 $\mathbf{in} \ (z + z + z)$

Consider $\rho_0 \vdash (e_0, s_0) \Downarrow_? (v_1, s_1)$.

What are v_1 and s_1 we use lexical scoping and

- call-by-value evaluation?
- call-by-name evaluation?

Puzzle 3(a): Call-by-value

What are v_1 and s_1 in

$$\rho_0 \vdash (e_0, s_0) \Downarrow_{\mathbf{V}} (v_1, s_1)$$
?

$$v_1 = 300$$
$$s_1 = [\ell \mapsto 1]$$

Puzzle 3(b): Call-by-name

What are v_1 and s_1 in

$$\rho_0 \vdash (e_0, s_0) \Downarrow_{\mathbf{N}} (v_1, s_1)$$
?

$$v_1 = 300$$
$$s_1 = [\ell \mapsto 3]$$

Puzzle 4

$$ho_0 = \emptyset$$
 $s_0 = [\ell \mapsto 0]$
 $e_0 = \text{let } g = \lambda x. \{ \ell : =!\ell + 1; \text{ return } x \};$
 $\text{in let } h = \lambda y. 2;$
 $\text{in } (h (g 89))$

Consider $\rho_0 \vdash (e_0, s_0) \Downarrow_{7} (v_1, s_1)$.

What are v_1 and s_1 we use lexical scoping and

- all-by-value evaluation?
- call-by-name evaluation?

Puzzle 4(a): Call-by-value

$$v_1 = 2$$

$$s_1 = [\ell \mapsto 1]$$

Puzzle 4(b): Call-by-name

$$\begin{split} \rho_0 &= \varnothing \\ s_0 &= [\,\ell \mapsto 0] \\ e_0 &= \textbf{let} \; g = \lambda x. \{\,\ell : = !\ell + 1; \\ &\quad \textbf{return} \; x\,\}; \\ \textbf{in} \; \textbf{let} \; h &= \lambda y. 2 \\ &\quad \textbf{in} \; (h \, (g \, 89)) \end{split}$$

What are v_1 and s_1 in

$$\rho_0 \vdash (e_0, s_0) \Downarrow_{\mathsf{V}} (v_1, s_1)$$
?

Recursion under lexical scoping, 1

Recall:

$$E := \dots \mid \operatorname{rec} x.E$$

Informally: "**rec** *x*.*E*" reads recursively define *x* to be *E*.

The big-step operational semantics is given by:

unfolding_{subst}:
$$\frac{\langle E[(\mathbf{rec} \ x.E)/x], s \rangle \Downarrow \langle V, s' \rangle}{\langle \mathbf{rec} \ x.E, s \rangle \Downarrow \langle V, s' \rangle}$$

Recursion under lexical scoping, 2

The substitution-based version of unfold

unfolding_{subst}:
$$\frac{\langle E[(\mathbf{rec} \ x.E)/x], s \rangle \Downarrow \langle V, s' \rangle}{\langle \mathbf{rec} \ x.E, s \rangle \Downarrow \langle V, s' \rangle}$$

An environment-based version of unfold (There are better ways!)

unfolding_{env}:
$$\frac{\rho[x \mapsto (\mathbf{rec} \ x.E)] \vdash \langle E, s \rangle \Downarrow \langle V, s' \rangle}{\rho \vdash \langle \mathbf{rec} \ x.E, s \rangle \Downarrow \langle V, s' \rangle}$$

Try:

$$\vdash \langle \operatorname{rec} z.(\operatorname{if} ! \ell > 0 \text{ then } (\ell : = !\ell - 1; z) \text{ else skip}), \{ \ell \mapsto 2 \} \rangle \Downarrow ??$$