## Dérivation

## Première Spécialité Mathématiques

### 1 Taux de variation

**Définition 1.** Soit f une fonction définie sur un intervalle I. On prend  $a < b \in I$ . On appelle taux de variation de f entre a et b la grandeur

$$\frac{f(b) - f(a)}{b - a}$$

**Exemple.** Une voiture roule pendant une heure. Soit f(t) la distance parcourue en km en fonction du temps t en min.

a) Quelle est l'intervalle de définition de f?

b) Dessiner sur le repère suivant une courbe représentative possible pour f.



c) En fonction de votre réponse, donner le taux de variation de f entre 0 et 30, et entre 30 et 60.

d) Comment interpréter votre résultat?

**Proposition 1.** Soit f un fonction définie sur un intervalle I, et  $a < b \in I$ . Si on se place sur un repère orthonormé, et que l'on considère les points A(a; f(a)) et B(b; f(b)), alors le taux de variation de f entre a et bcorrespond à la pente de la droite entre A et B.



Remarque. Le taux de variation d'une fonction entre a et b répond à la question suivante : Pour chaque abscisse parcourus entre a et b, de combien d'ordonnées sommes-nous montés ou descendus?

**Proposition 2.** *Soit* f *une fonction définie sur un intervalle* I. *Soit*  $J \subseteq I$  *un intervalle.* 

- Si f est croissante sur J, alors pour tout  $a < b \in J$ , le taux de variation de f entre a et b est positif.
- Si f est décroissante sur J, alors pour tout  $a < b \in J$ , le taux de variation de f entre a et b est négatif.

**Remarque.** Les réciproques sont fausses : un taux de variation de f entre a et b positif n'implique pas que la fonction f est croissante sur l'intervalle [a;b].

**Exemple.** Soit  $f: x \mapsto (x-1)^2 - 2$  définie sur [-2; 3].

- a) Donner un intervalle I sur lequel f est croissante, et un intervalle J sur lequel f est décroissante :  $I = \dots ; J = \dots$
- b) Choisir deux valeurs dans chacun des intervalles, et calculer les taux de variations de f entre ces deux valeurs.

c) Calculer le taux de variation entre -2 et 2. Que peut-on en déduire?

### 2 Dérivée locale

#### **2.1** Limite finie en 0

Soit Q(h) une quantité dépendant d'une variable h.

**Définition 2.** On dit que Q(h) admet une limite finie en 0 quand il existe un nombre q tel que Q(h) s'approche de plus en plus de q à mesure que h s'approche de plus en plus de q. Dans ce cas, ce nombre q est appelé limite de Q(h) en q0, et est noté

$$\lim_{h\to 0} Q(h)$$

**Exemple.** Pour chaque quantité Q(h) suivante, remplir le tableau de valeur suivant, et en déduire si Q(h) admet une limite finie en 0, et le cas échéant, donner  $\lim_{h\to 0} Q(h)$ .

- a) Q(h) = 1 + h
- b)  $Q(h) = \frac{1}{h}$

| h    | 1 | 0, 1 | 0,01 | 0,001 | 0,0001 |
|------|---|------|------|-------|--------|
| Q(h) |   |      |      |       |        |

| h    | 1 | 0, 1 | 0,01 | 0,001 | 0,0001 |
|------|---|------|------|-------|--------|
| Q(h) |   |      |      |       |        |

**Remarque.** Il est donc tout à fait possible pour Q(h) de ne pas admettre de limite finie en 0. Toute notion dépendant donc d'une limite finie doit être manipulée avec précaution.

#### 2.2 Nombre dérivé

Soit f une fonction définie sur un intervalle I. On fixe  $a \in I$ . Soit  $h \neq 0$  un nombre tel que  $a + h \in I$ . Alors le taux de variation de f entre a et a + h est donné par

$$T_a(h) = \frac{f(a+h) - f(a)}{(a+h) - a} = \frac{f(a+h) - f(a)}{h}$$

**Remarque.** Par définition, on ne peut pas remplacer h par 0, donc  $T_a(0)$  n'est pas défini. Par contre, on peut s'interesser à son éventuelle limite finie en 0

**Définition 3.** On dit que f **est dérivable en** a quand  $T_a(h)$  admet une limite finie en 0. Dans ce cas, on appelle **nombre dérivé de** f **en** a la limite en a0 de a0, et on le note a1, et on le note a2, le résumé, quand a3 f est dérivable en a3, alors son nombre dérivé est donné par

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

**Exemple.** Soit  $f: x \mapsto 2x + 1$  définie sur  $\mathbb{R}$ .

- a) Soit a = 2. Écrire le taux de variation  $T_a(h)$  de f entre a et a + h, et simplifier l'expression.
- b) La fonction f est-elle dérivable en 2?
- c) En déduire le nombre dérivé de f en 2.

# 3 Interprétation géométrique

Soit f une fonction définie sur I. On fixe  $a \in I$ . On s'intéresse aux droites sécantes à la courbe représentative  $\mathcal{C}_f$  de f passant par les points A(a; f(a)) et H(a+h; f(a+h)), pour h suffisamment petit pour que  $a+h \in I$ .

Remarque. La pente de cette droite sécante est donnée par le taux de variation

$$T_a(h) = \frac{f(a+h) - f(a)}{h}$$

Au fur et à mesure que H se rapproche de A, cette sécante se rapproche d'une certaine droite, dont la pente est donnée par f'(a).



**Définition 4.** On dit que f admet une **tangente en** a quand elle dérivable en a. Dans ce cas, la **tangente en** a de f est la droite passant par le point A(a; f(a)) et de pente f'(a).

**Remarque.** La tangente de f en a, quand elle existe, peut être comprise comme une droite qui « frôle » la courbe en a.

**Proposition 3.** L'équation de la tangente de f en a, quand elle existe, est

$$y = f'(a)(x - a) + f(a)$$

**Exemple.** Soit  $f: x \mapsto x^2 - 4$  définie sur  $\mathbb{R}$ .

- a) La fonction f est-elle dérivable en 3? En déduire son nombre dérivé en 3.
- b) En déduire l'équation de la tangente de f en 3.