T-test

Chao Cheng

August 30, 2022

Contents

1	2 One-sample test			T	
2				2	
	2.1	variance known			
		2.1.1	Decide C from α	2	
		2.1.2	Power at given underlying μ	3	
		2.1.3	Sample size at given α , β and underlying μ	3	
	2.2	varian	ice unknown	4	
		2.2.1	Decide C from α	4	
		2.2.2	Power at given underlying μ and σ^2	5	
		2.2.3	Sample size at given α , β and underlying μ and σ^2	5	
3	Two sample test				
	3.1	Two-s	ample, variance known	7	
		3.1.1	Decide C from α	7	
		3.1.2	Power at given $\Delta = \mu_1 - \mu_2$	8	
		3.1.3	Sample size at given α , β , Δ and $k = \frac{n_1}{n_2}$	8	
	3.2	Two-s	ample, variance unknown but equal	9	
		3.2.1	Decide C from α	10	
		3.2.2	Power at given underlying $\Delta = \mu_1 - \mu_2$ and σ^2	11	
		3.2.3	Sample size at given α , β , Δ and σ^2	12	
	3.3	Two-s	ample, variance unknown and unequal	13	

1 Basic knowledge

 $\phi(x)$ and $\Phi(x)$ are pdf and cdf of standard normal distribution, respectively. We use Z to represent a random variable that follows standard normal distribution and z_{α} the lower α quantile of standard normal distribution. Therefore

$$P(Z \le z_{\alpha}) = \Phi(z_{\alpha}) = \alpha.$$

Theorem 1. Let x_1, \dots, x_n be a random sample from a population with mean μ and variance $\sigma^2 < \infty$. Then

1.
$$E\bar{x} = \mu$$
.

2.
$$\operatorname{Var}\bar{x} = \sigma^2/n$$
.

3.
$$ES^2 = \sigma^2$$
, where $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$.

Theorem 2. Let x_1, \dots, x_n be a random sample from $N(\mu, \sigma^2)$. Then

- 1. $\bar{X} \sim N(\mu, \sigma^2/n)$.
- 2. \bar{X} is independent of S^2 .
- 3. $(n-1)S^2/\sigma^2$ follows a chi-squared distribution with n-1 degree of freedom.

2 One-sample test

Consider a random sample x_1, \dots, x_n from $N(\mu, \sigma^2)$. The likelihood is

$$f(x_1, \dots, x_n) = \prod_{i=1}^{n} (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2}\right).$$

We propose the test

$$H_0: \mu = \mu_0 \quad \mathbf{v.s} \quad H_1: \mu \neq \mu_0$$

2.1 variance known

Construct LRT

$$LR = \frac{\max_{\mu \in H_0} f(x_1, \dots, x_n | \mu)}{\max_{\mu \in H_0 \cup H_1} f(x_1, \dots, x_n | \mu)} = \frac{f(x_1, \dots, x_n | \mu = \mu_0)}{f(x_1, \dots, x_n | \mu = \bar{x})} = \exp\left(-\frac{(\bar{x} - \mu_0)^2}{2\sigma^2/n}\right)$$

Therefore rejecting H_0 when LR is smaller than some constant C is equivalent to rejecting H_0 when $|\bar{x} - \mu_0|$ is larger than some other constant C. Hence

Reject Region:
$$\{\bar{x}: |\bar{x}-\mu_0| > C\}$$

2.1.1 Decide C from α

From definition of α we know that C in the reject region is chosen such that

$$P(|\bar{x} - \mu_0| > C|H_0 \text{ is true }) \leq \alpha.$$

But to fully utilize the test, we choose to use equal sign instead of \leq . Therefore

$$P(|\bar{x} - \mu_0| > C|\mu = \mu_0) = \alpha.$$

Note that $\bar{x} \sim N(\mu, \sigma^2/n)$. Then under the condition $\mu = \mu_0$,

$$\frac{\bar{x} - \mu_0}{\sqrt{\sigma^2/n}} \sim N(0, 1).$$

Therefore we propose the reject region for H_0 being

$$\left| \frac{\bar{x} - \mu_0}{\sqrt{\sigma^2/n}} \right| \ge z_{1-\alpha/2}.$$

Note: Here, even if the sample distribution is not normal, the result still holds due to CLT under large sample.

2.1.2 Power at given underlying μ

The power (the probability to reject H_0 , when H_1 is true) of the proposed test procedure for any given underlying $\mu \neq \mu_0$ is computed as

$$P\left(\left|\frac{\bar{x}-\mu_{0}}{\sqrt{\sigma^{2}/n}}\right| \geq z_{1-\alpha/2}\right)$$

$$=P\left(\frac{\bar{x}-\mu_{0}}{\sqrt{\sigma^{2}/n}} \leq z_{\alpha/2}\right) + P\left(\frac{\bar{x}-\mu_{0}}{\sqrt{\sigma^{2}/n}} \geq z_{1-\alpha/2}\right)$$

$$=P\left(\frac{\bar{x}-\mu}{\sqrt{\sigma^{2}/n}} \leq z_{\alpha/2} + \frac{\mu_{0}-\mu}{\sqrt{\sigma^{2}/n}}\right) + P\left(\frac{\bar{x}-\mu}{\sqrt{\sigma^{2}/n}} \geq z_{1-\alpha/2} + \frac{\mu_{0}-\mu}{\sqrt{\sigma^{2}/n}}\right)$$

$$=P\left(Z \leq z_{\alpha/2} + \frac{\mu_{0}-\mu}{\sqrt{\sigma^{2}/n}}\right) + P\left(Z \geq z_{1-\alpha/2} + \frac{\mu_{0}-\mu}{\sqrt{\sigma^{2}/n}}\right)$$

$$(1)$$

Here we use the fact that $\frac{\bar{x}-\mu}{\sqrt{\sigma^2/n}} \sim N(0,1)$.

2.1.3 Sample size at given α , β and underlying μ

W.l.o.g, assume that $\mu > \mu_0$, then in previous power equation (1)

$$P\left(Z \le z_{\alpha/2} + \frac{\mu_0 - \mu}{\sqrt{\sigma^2/n}}\right)$$

would be really close to zero and

$$P\left(Z \ge z_{1-\alpha/2} + \frac{\mu_0 - \mu}{\sqrt{\sigma^2/n}}\right)$$

will offer most of the power. In order to guarantee a power of at least $1 - \beta$, we could simply set

$$P\left(Z \ge z_{1-\alpha/2} + \frac{\mu_0 - \mu}{\sqrt{\sigma^2/n}}\right) \ge 1 - \beta,$$

which means

$$z_{1-\alpha/2} + \frac{\mu_0 - \mu}{\sqrt{\sigma^2/n}} \le z_\beta.$$

Normally in test settings, $\alpha < 0.1$ and $\beta < 0.5$, which means $z_{1-\alpha/2}$ is positive and z_{β} is negative. Also $\mu_0 - \mu < 0$ in our assumption. This leads to

$$-z_{\alpha/2} - z_{\beta} \le \frac{\sqrt{n} \left(\mu - \mu_0\right)}{\sigma}.$$

Hence the sample size requirement is

$$n \ge \frac{\sigma^2 \left(z_{\alpha/2} + z_{\beta}\right)^2}{\left(\mu - \mu_0\right)^2}.\tag{2}$$

Note: The sample size requirement can be deduced the same way when $\mu < \mu_0$. And the result is just the same as (2).

2.2 variance unknown

When σ^2 is unknown, the MLE under H_0 is

$$\mu_{(0)} = \mu_0, \quad \sigma_{(0)}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu_0)^2.$$

And the MLE under $H_0 \cup H_1$ is

$$\mu_{(0\cup 1)} = \bar{x}, \quad \sigma_{(0\cup 1)}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2.$$

Note: MLE for σ^2 offers smaller MSE than S^2 , but it's biased. Then the likelihood ratio is

$$LR = \frac{f\left(x_1, \dots, x_n \middle| \mu = \mu_{(0)}, \sigma^2 = \sigma_{(0)}^2\right)}{f\left(x_1, \dots, x_n \middle| \mu = \mu_{(0 \cup 1)}, \sigma^2 = \sigma_{(0 \cup 1)}^2\right)} = \left(\frac{\sum_{i=1}^n (x_i - \mu_0)^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)^{-n/2} \propto \left(\frac{\sum_{i=1}^n (\bar{x} - \mu_0)^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)^{-n/2},$$

where for the last part we mainly focus on terms related to μ_0 . So to reject H_0 when LR is small is equivalent to

Reject Region:
$$\left\{ \bar{x} : \frac{|\bar{x} - \mu_0|}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2}} > C \right\}$$

The idea is similar to that in Section 2.1. But we replace σ^2 with S^2 .

2.2.1 Decide C from α

First we can write

$$P\left(\frac{|\bar{x} - \mu_0|}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}} > C \middle| \mu = \mu_0\right) = P\left(\frac{|\bar{x} - \mu_0|}{\sqrt{(n-1)S^2}} > C \middle| \mu = \mu_0\right) = \alpha.$$

From Theorem 2 we know that

$$\frac{\bar{x} - \mu}{\sqrt{\sigma^2/n}} \sim N(0,1), \quad (n-1) S^2/\sigma^2 \sim \chi^2(n-1), \quad \bar{x} \perp S^2$$

Therefore

$$\frac{\frac{\bar{x}-\mu}{\sqrt{\sigma^2/n}}}{\sqrt{\frac{(n-1)S^2}{(n-1)\sigma^2}}} = \frac{\bar{x}-\mu}{\sqrt{S^2/n}} \sim t(n-1).$$

Then we know the reject rejion is

$$\left| \frac{\bar{x} - \mu}{\sqrt{S^2/n}} \right| > t_{1-\alpha/2} \left(n - 1 \right).$$

Note: Here we need Theorem 2, which means the normal assumption of the sample is **necessary**. Though one might argue that without normal assumption, under large sample scenario, using Slutsky's theorem, asymptotically

$$\frac{\bar{x} - \mu}{\sqrt{S^2/n}} = \frac{\bar{x} - \mu}{\sqrt{\sigma^2/n}} \sqrt{\frac{\sigma^2}{S^2}} \to N(0, 1).$$

2.2.2 Power at given underlying μ and σ^2

Before any computation, we introduce the **non-central** t-distribution.

$$T = \frac{Z + \mu}{\sqrt{V/v}},\tag{3}$$

where Z follows standard normal and V follows $\chi^2(v)$ and $Z \perp V$. Then T follows a non-central t-distribution with degree of freedom v and non-central parameter μ , denoted by $t(v,\mu)$.

Then we know that

$$\frac{\bar{x} - \mu_0}{\sqrt{S^2/n}} = \frac{\frac{\bar{x} - \mu_0}{\sqrt{\sigma^2/n}}}{\sqrt{\frac{(n-1)S^2}{(n-1)\sigma^2}}} = \frac{\frac{\bar{x} - \mu}{\sqrt{\sigma^2/n}} + \frac{\mu - \mu_0}{\sqrt{\sigma^2/n}}}{\sqrt{\frac{(n-1)S^2}{(n-1)\sigma^2}}} \sim t \left(n - 1, \frac{\mu - \mu_0}{\sqrt{\sigma^2/n}}\right),$$

which means $\frac{\bar{x}-\mu_0}{\sqrt{S^2/n}}$ follows a non-central t-distribution $t\left(n-1,\frac{\mu-\mu_0}{\sqrt{\sigma^2/n}}\right)$. Therefore the power can be computed as

$$P\left(\left|\frac{\bar{x}-\mu_{0}}{\sqrt{S^{2}/n}}\right| \geq t_{1-\alpha/2}(n-1)\right)$$

$$=P\left(\left|T\left(n-1,\frac{\mu-\mu_{0}}{\sqrt{\sigma^{2}/n}}\right)\right| \geq t_{1-\alpha/2}(n-1)\right)$$

$$=P\left(T\left(n-1,\frac{\mu-\mu_{0}}{\sqrt{\sigma^{2}/n}}\right) \leq t_{\alpha/2}(n-1)\right) + P\left(T\left(n-1,\frac{\mu-\mu_{0}}{\sqrt{\sigma^{2}/n}}\right) \geq t_{1-\alpha/2}(n-1)\right). \tag{4}$$

2.2.3 Sample size at given α , β and underlying μ and σ^2

W.l.o.g, assume $\mu > \mu_0$, then in the previous power equation (4)

$$P\left(T\left(n-1,\frac{\mu-\mu_0}{\sqrt{\sigma^2/n}}\right) \le t_{\alpha/2}(n-1)\right)$$

would be close to zero and

$$P\left(T\left(n-1,\frac{\mu-\mu_0}{\sqrt{\sigma^2/n}}\right) \ge t_{1-\alpha/2}(n-1)\right)$$

will offer the most power. In order to guarantee a power of at least $1-\beta$, we could simply set

$$P\left(T\left(n-1,\frac{\mu-\mu_0}{\sqrt{\sigma^2/n}}\right) \ge t_{1-\alpha/2}(n-1)\right) \ge 1-\beta,$$

which means

$$t_{1-\alpha/2}(n-1) \le t_{\beta}\left(n-1, \frac{\mu-\mu_0}{\sqrt{\sigma^2/n}}\right).$$

There's no close form for this inequality, we should use some numerical method to solve for n.

Note: If $\mu < \mu_0$, then similarly we can get the requirement as

$$t_{\alpha/2}(n-1) \ge t_{1-\beta} \left(n-1, \frac{\mu - \mu_0}{\sqrt{\sigma^2/n}}\right).$$

Use the fact that $t_{\alpha}(n,\mu) = -t_{1-\alpha}(n,-\mu)$, we can arrange the previous inequality as

$$t_{1-\alpha/2}(n-1) \le t_{\beta}\left(n-1, \frac{\mu_0 - \mu}{\sqrt{\sigma^2/n}}\right).$$

Therefore in summary the sample size requirement is

$$t_{1-\alpha/2}(n-1) \le t_{\beta}\left(n-1, \frac{|\mu_0 - \mu|}{\sqrt{\sigma^2/n}}\right).$$

3 Two sample test

Consider two random samples $x_1, \dots, x_{n_1} \sim N(\mu_1, \sigma_1^2)$ and $y_1, \dots, y_{n_2} \sim N(\mu_2, \sigma_2^2)$. Then the likelihood of the data is

$$f\left(x_{1}, \dots, x_{n_{1}}, y_{1}, \dots, y_{n_{2}} \middle| \mu_{1}, \mu_{2}, \sigma_{1}^{2}, \sigma_{2}^{2}\right)$$

$$= \left(2\pi\sigma_{1}^{2}\right)^{-n_{1}/2} \left(2\pi\sigma_{2}^{2}\right)^{-n_{2}/2} \exp\left(-\frac{\sum_{i=1}^{n_{1}} \left(x_{i} - \mu_{1}\right)^{2}}{2\sigma_{1}^{2}} - \frac{\sum_{i=1}^{n_{2}} \left(y_{i} - \mu_{2}\right)^{2}}{2\sigma_{2}^{2}}\right)$$

We propose the test

$$H_0: \mu_1 = \mu_2$$
 v.s. $H_1: \mu_1 \neq \mu_2$.

3.1 Two-sample, variance known

When σ_1^2 and σ_2^2 are known, the likelihood satisfies

$$f(x_1, \dots, x_{n_1}, y_1, \dots, y_{n_2} | \mu_1, \mu_2) \propto \exp\left(-\frac{n_1(\bar{x} - \mu_1)^2}{2\sigma_1^2} - \frac{n_2(\bar{y} - \mu_2)^2}{2\sigma_2^2}\right).$$

Therefore under H_0 , the MLE for μ_1 and μ_2 is

$$\mu_{1(0)} = \mu_{2(0)} = \mu_{(0)} = \frac{\sigma_2^2 n_1 \bar{x} + \sigma_1^2 n_2 \bar{y}}{\sigma_2^2 n_1 + \sigma_1^2 n_2}.$$

And under $H_0 \cup H_1$, the MLE for μ_1 and μ_2 is

$$\mu_{1(0\cup 1)} = \bar{x}, \quad \mu_{2(0\cup 1)} = \bar{y}.$$

Then the likelihood ratio is

$$LR = \frac{\max_{H_0} f(\boldsymbol{x}, \boldsymbol{y} | \mu_1, \mu_2)}{\max_{H_0 \cup H_1} f(\boldsymbol{x}, \boldsymbol{y} | \mu_1, \mu_2)}$$

$$= \frac{f(\boldsymbol{x}, \boldsymbol{y} | \mu_1 = \mu_2 = \mu_{(0)})}{f(\boldsymbol{x}, \boldsymbol{y} | \mu_1 = \mu_{1(0 \cup 1)}, \mu_2 = \mu_{2(0 \cup 1)})}$$

$$\propto \exp\left(-\frac{1}{2} \left(\frac{n_1 \left(\bar{x} - \mu_{(0)}\right)^2}{\sigma_1^2} + \frac{n_2 \left(\bar{y} - \mu_{(0)}\right)^2}{\sigma_2^2}\right)\right)$$

$$= \exp\left(-\frac{1}{2} \frac{n_1 n_2}{\sigma_2^2 n_1 + \sigma_1^2 n_2} (\bar{x} - \bar{y})^2\right).$$

From the idea of LRT, H_0 is rejected when LR is small enough, which means the reject rule is

Reject Region:
$$\{(\bar{x}, \bar{y}) | |\bar{x} - \bar{y}| > C\}$$

3.1.1 Decide C from α

From the definition of α we know that

$$P(|\bar{x} - \bar{y}| > C|H_0 \text{ is true}) \leq \alpha.$$

Note that $\bar{x} \sim N(\mu_1, \sigma_1^2/n_1)$, $\bar{y} \sim N(\mu_2, \sigma_2^2/n_2)$ and $\bar{x} \perp \bar{y}$. Therefore

$$\bar{x} - \bar{y} \sim N \left(\mu_1 - \mu_2, \sigma_1^2 / n_1 + \sigma_2^2 / n_2 \right).$$

Then under H_0 , $\mu_1 = \mu_2$ and

$$\frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0, 1),$$

which means

$$P(|\bar{x} - \bar{y}| > C|\mu_1 = \mu_2) = P\left(|Z| > \frac{C}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}\right) \le \alpha.$$

Here to fully utilize the test, we choose the equal sign. Hence

$$z_{1-\alpha/2} = \frac{C}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}.$$

Here the reject region is

$$\frac{|\bar{x} - \bar{y}|}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} > z_{1-\alpha/2}.$$

Note: Even the samples does not follow normal distribution, by CLT this test still holds true for large sample.

3.1.2 Power at given $\Delta = \mu_1 - \mu_2$

The power at a given $\Delta = \mu_1 - \mu_2$ is

$$\begin{split} P\left(\frac{|\bar{x} - \bar{y}|}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} > z_{1-\alpha/2} \middle| \Delta = \mu_{1} - \mu_{2}\right) \\ = P\left(\frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} > z_{1-\alpha/2}\right) + P\left(\frac{\bar{x} - \bar{y}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} < z_{\alpha/2}\right) \\ = P\left(\frac{\bar{x} - \bar{y} - \Delta}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} > z_{1-\alpha/2} - \frac{\Delta}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}\right) + P\left(\frac{\bar{x} - \bar{y} - \Delta}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} < z_{\alpha/2} - \frac{\Delta}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}\right) \\ = P\left(Z > z_{1-\alpha/2} - \frac{\Delta}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}\right) + P\left(Z < z_{\alpha/2} - \frac{\Delta}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}\right) \end{split}$$

3.1.3 Sample size at given α , β , Δ and $k = \frac{n_1}{n_2}$

W.l.o.g, assume $\Delta > 0$, then the power of the test comes mostly from

$$P\left(Z > z_{1-\alpha/2} - \frac{\Delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}\right).$$

So to achieve the power, we can set

$$P\left(Z > z_{1-\alpha/2} - \frac{\Delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}\right) \ge 1 - \beta.$$

And this means

$$z_{1-\alpha/2} - \frac{\Delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \le z_{\beta}.$$

Rearrange this inequality we have

$$\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \le \frac{\Delta^2}{\left(z_{\alpha/2} + z_{\beta}\right)^2}.$$

1. When n_1 is fixed and given, we need

$$n_2 \ge rac{\sigma_2^2}{rac{\Delta^2}{\left(z_{lpha/2} + z_{eta}
ight)^2} - rac{\sigma_1^2}{n_1}}.$$

Also this fixed and given n_1 must satisfy

$$\frac{\Delta^2}{\left(z_{\alpha/2} + z_{\beta}\right)^2} > \frac{\sigma_1^2}{n_1}$$

for the test to be feasible.

2. Similarly, when n_2 is given and fixed, we need

$$n_1 \ge \frac{\sigma_1^2}{\frac{\Delta^2}{(z_{\alpha/2} + z_{\beta})^2} - \frac{\sigma_2^2}{n_2}}.$$

Also this fixed and given n_2 must satisfy

$$\frac{\Delta^2}{\left(z_{\alpha/2} + z_{\beta}\right)^2} > \frac{\sigma_2^2}{n_2}$$

for the test to be feasible.

3. For a fixed and given sample size ratio $k = n_2/n_1$, we need

$$n_1 \ge \frac{\left(\sigma_1^2 + \sigma_2^2/k\right) \left(z_{\alpha/2} + z_\beta\right)^2}{\Lambda^2}$$

Note: These results hold the same form when $\Delta < 0$.

3.2 Two-sample, variance unknown but equal

When σ_1 and σ_2 are both unknown but equal, denoted by σ . The likelihood of the data becomes

$$f(x_1, \dots, x_{n_1}, y_1, \dots, y_{n_2} | \mu_1, \mu_2, \sigma^2)$$

$$= (2\pi\sigma^2)^{-n_1/2 - n_2/2} \exp\left(-\frac{\sum_{i=1}^{n_1} (x_i - \mu_1)^2 + \sum_{i=1}^{n_2} (y_i - \mu_2)^2}{2\sigma^2}\right).$$

So the MLE under H_0 is

$$\mu_{1(0)} = \mu_{2(0)} = \mu_{(0)} = \frac{n_1 \bar{x} + n_2 \bar{y}}{n_1 + n_2}, \quad \sigma_{(0)}^2 = \frac{\sum_{i=1}^{n_1} (x_i - \mu_{(0)})^2 + \sum_{i=1}^{n_2} (y_i - \mu_{(0)})^2}{n_1 + n_2}$$

And the MLE under $H_0 \cup H_1$ is

$$\mu_{1(0\cup 1)} = \bar{x}, \quad \mu_{2(0\cup 1)} = \bar{y}, \quad \sigma_{(0\cup 1)}^2 = \frac{\sum_{i=1}^{n_1} (x_i - \bar{x})^2 + \sum_{i=1}^{n_2} (y_i - \bar{y})^2}{n_1 + n_2}.$$

Then the likelihood ratio is

$$LR = \frac{f\left(\boldsymbol{x}, \boldsymbol{y} \middle| \mu_{1} = \mu_{2} = \mu_{(0)}, \sigma^{2} = \sigma_{(0)}^{2}\right)}{f\left(\boldsymbol{x}, \boldsymbol{y} \middle| \mu_{1} = \mu_{1(0 \cup 1)}, \mu_{2} = \mu_{2(0 \cup 1)}, \sigma^{2} = \sigma_{(0 \cup 1)}^{2}\right)}$$

$$= \left(\frac{\sigma_{(0)}^{2}}{\sigma_{(0 \cup 1)}^{2}}\right)^{-n_{1}/2 - n_{2}/2}$$

$$= \left(\frac{\sum_{i=1}^{n_{1}} \left(x_{i} - \bar{x} + \bar{x} - \mu_{(0)}\right) + \sum_{i=1}^{n_{2}} \left(y_{i} - \bar{y} + \bar{y} - \mu_{(0)}\right)}{\sum_{i=1}^{n_{1}} \left(x_{i} - \bar{x}\right)^{2} + \sum_{i=1}^{n_{2}} \left(y_{i} - \bar{y}\right)^{2}}\right)^{-n_{1}/2 - n_{2}/2}$$

$$= \left(1 + \frac{n_{1}\left(\bar{x} - \mu_{(0)}\right)^{2} + n_{2}\left(\bar{y} - \mu_{(0)}\right)^{2}}{\sum_{i=1}^{n_{1}} \left(x_{i} - \bar{x}\right)^{2} + \sum_{i=1}^{n_{2}} \left(y_{i} - \bar{y}\right)^{2}}\right)^{-n_{1}/2 - n_{2}/2}$$

$$= \left(1 + \frac{n_{1}n_{2}}{n_{1} + n_{2}} \cdot \frac{\left(\bar{x} - \bar{y}\right)^{2}}{\sum_{i=1}^{n_{1}} \left(x_{i} - \bar{x}\right)^{2} + \sum_{i=1}^{n_{2}} \left(y_{i} - \bar{y}\right)^{2}}\right)^{-n_{1}/2 - n_{2}/2}.$$

So to reject H_0 when the likelihood ratio is small enough implies that the reject region is

Reject region:
$$\left\{ (\boldsymbol{x}, \boldsymbol{y}) \middle| \frac{|\bar{x} - \bar{y}|}{\sqrt{\sum\limits_{i=1}^{n_1} (x_i - \bar{x})^2 + \sum\limits_{i=1}^{n_2} (y_i - \bar{y})^2}} > C \right\}.$$

3.2.1 Decide C from α

Like before, we know that

$$\bar{x} \sim N\left(\mu_1, \frac{\sigma^2}{n_1}\right), \quad (n_1 - 1) S_x^2 / \sigma^2 \sim \chi^2(n_1 - 1), \quad \bar{x} \perp S_x^2,$$

and

$$\bar{y} \sim N\left(\mu_2, \frac{\sigma^2}{n_2}\right), \quad (n_2 - 1) S_y^2 / \sigma^2 \sim \chi^2 (n_2 - 1), \quad \bar{y} \perp S_y^2.$$

Since these two samples x and y are independent, we have

$$\bar{x} - \bar{y} \sim N\left(\mu_1 - \mu_2, \ \frac{n_1 + n_2}{n_1 n_2} \sigma^2\right),$$

which implies

$$\frac{\bar{x} - \bar{y} - (\mu_1 - \mu_2)}{\sqrt{\frac{n_1 + n_2}{n_1 n_2} \sigma^2}} \sim N(0, 1).$$

And more importantly (the summation of independent χ^2 variables)

$$\frac{(n_1 - 1) S_x^2 + (n_2 - 1) S_y^2}{\sigma_2} \sim \chi^2 (n_1 + n_2 - 2)$$

and

$$\frac{\bar{x} - \bar{y} - (\mu_1 - \mu_2)}{\sqrt{\frac{n_1 + n_2}{n_1 n_2} \sigma^2}} \perp \frac{(n_1 - 1) S_x^2 + (n_2 - 1) S_y^2}{\sigma_2}.$$

This leads us to

$$\frac{\frac{\bar{x}-\bar{y}-(\mu_1-\mu_2)}{\sqrt{\frac{n_1+n_2}{n_1n_2}\sigma^2}}}{\sqrt{\frac{1}{n_1+n_2-2}\frac{(n_1-1)S_x^2+(n_2-1)S_y^2}{\sigma_2}}} = \frac{\bar{x}-\bar{y}-(\mu_1-\mu_2)}{\sqrt{\left(\frac{1}{n_1}+\frac{1}{n_2}\right)\cdot\frac{(n_1-1)S_x^2+(n_2-1)S_y^2}{n_1+n_2-2}}} \sim t(n_1+n_2-2).$$

Here we use S_p to represent the pooled standard deviation of the data, i.e.

$$S_p = \sqrt{\frac{(n_1 - 1) S_x^2 + (n_2 - 1) S_y^2}{n_1 + n_2 - 2}}.$$

Under H_0 , the type-I error is controlled as

$$P\left(\frac{|\bar{x} - \bar{y}|}{\sqrt{\sum_{i=1}^{n_1} (x_i - \bar{x})^2 + \sum_{i=1}^{n_2} (y_i - \bar{y})^2}} > C \middle| \mu_1 = \mu_2\right) \le \alpha.$$

Therefore we can write

$$P\left(\frac{|\bar{x}-\bar{y}|}{\sqrt{\sum_{i=1}^{n_1} (x_i-\bar{x})^2 + \sum_{i=1}^{n_2} (y_i-\bar{y})^2}} > C \middle| \mu_1 = \mu_2\right) = P\left(\left|T_{(n_1+n_2-2)}\right| > \frac{C}{\sqrt{\frac{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}{n_1+n_2-2}}}\right) = \alpha.$$

Here in the last part we use the equal sign instead of \leq for fully utilize the test. So we can construct the test to reject H_0 when

$$\frac{|\bar{x} - \bar{y}|}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)S_p^2}} > t_{1-\alpha/2} \left(n_1 + n_2 - 2\right).$$

3.2.2 Power at given underlying $\Delta = \mu_1 - \mu_2$ and σ^2

The distribution of the test statistics is derived as

$$\frac{\bar{x} - \bar{y}}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) S_p^2}} = \frac{\bar{x} - \bar{y} - \Delta + \Delta}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) S_p^2}} = \frac{\bar{x} - \bar{y} - \Delta}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \sigma^2}} + \frac{\Delta}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \sigma^2}} \sim t(n_1 + n_2 - 2, \frac{\Delta}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \sigma^2}}).$$

So the test statistic follows a non-central t-distribution with degree of freedom $n_1 + n_2 - 2$ and non-central parameter $\frac{\Delta}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\sigma^2}}$. Then the power of the test

$$P\left(\frac{|\bar{x} - \bar{y}|}{\sqrt{\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) S_{p}^{2}}} > t_{1-\alpha/2} \left(n_{1} + n_{2} - 2\right)\right)$$

$$= P\left(\left|T\left(n_{1} + n_{2} - 2, \frac{\Delta}{\sqrt{\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \sigma^{2}}}\right)\right| > t_{1-\alpha/2} \left(n_{1} + n_{2} - 2\right)\right)$$

$$= P\left(T\left(n_{1} + n_{2} - 2, \frac{\Delta}{\sqrt{\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \sigma^{2}}}\right) > t_{1-\alpha/2} \left(n_{1} + n_{2} - 2\right)\right)$$

$$+ P\left(T\left(n_{1} + n_{2} - 2, \frac{\Delta}{\sqrt{\left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right) \sigma^{2}}}\right) < t_{\alpha/2} \left(n_{1} + n_{2} - 2\right)\right)$$

$$(5)$$

3.2.3 Sample size at given α , β , Δ and σ^2

W.l.o.g, assume $\Delta = \mu_1 - \mu_2 > 0$. Then in the previous power equation (5),

$$P\left(T\left(n_1+n_2-2,\frac{\Delta}{\sqrt{\left(\frac{1}{n_1}+\frac{1}{n_2}\right)\sigma^2}}\right) < t_{\alpha/2}\left(n_1+n_2-2\right)\right)$$

will be close to zero and

$$P\left(T\left(n_1+n_2-2,\frac{\Delta}{\sqrt{\left(\frac{1}{n_1}+\frac{1}{n_2}\right)\sigma^2}}\right) > t_{1-\alpha/2}\left(n_1+n_2-2\right)\right)$$

will offer most of the power. So to guarantee a $1-\beta$ power we can simply set

$$P\left(T\left(n_1+n_2-2,\frac{\Delta}{\sqrt{\left(\frac{1}{n_1}+\frac{1}{n_2}\right)\sigma^2}}\right) > t_{1-\alpha/2}\left(n_1+n_2-2\right)\right) \ge 1-\beta.$$

Therefore

$$t_{1-\alpha/2}(n_1+n_2-2) \le t_{\beta} \left(n_1+n_2-2, \frac{\Delta}{\sqrt{\left(\frac{1}{n_1}+\frac{1}{n_2}\right)\sigma^2}}\right).$$

If in another way around $\Delta < 0$, then we set the power inequality

$$P\left(T\left(n_{1}+n_{2}-2,\frac{\Delta}{\sqrt{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\sigma^{2}}}\right) < t_{\alpha/2}\left(n_{1}+n_{2}-2\right)\right) \geq 1-\beta,$$

which means

$$t_{\alpha/2}(n_1 + n_2 - 2) \ge t_{1-\beta} \left(n_1 + n_2 - 2, \frac{\Delta}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\sigma^2}} \right).$$

So in summary (using $t_{\alpha}(v, \delta) + t_{1-\alpha}(v, -\delta) = 0$),

$$0 \le t_{\alpha/2} (n_1 + n_2 - 2) + t_{\beta} \left(n_1 + n_2 - 2, \frac{|\Delta|}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \sigma^2}} \right).$$

3.3 Two-sample, variance unknown and unequal

For this we refer to the "Welch's unequal variance t-test" [WELCH, 1947]. The test statistic is

 $t = \frac{\bar{x} - \bar{y}}{s_{\bar{\Delta}}},$

where

$$s_{\bar{\Delta}} = \sqrt{\frac{s_x^2}{n_1} + \frac{s_y^2}{n_2}}.$$

Here $s_x^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (x_i - \bar{x})^2$ and $s_y^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (y_i - \bar{y})^2$ are the unbiased estimator for σ_1^2 and σ_2^2 . The test statistic approximately follows a t-distribution with degree of freedom being

$$\mathbf{d.f.} = \frac{\left(\frac{s_x^2}{n_1} + \frac{s_y^2}{n_2}\right)^2}{\frac{(s_x^2/n_1)^2}{n_1 - 1} + \frac{(s_y^2/n_2)^2}{n_2 - 1}}.$$

References

B. L. WELCH. THE GENERALIZATION OF 'STUDENT's' PROBLEM WHEN SEVERAL DIFFERENT POPULATION VARLANCES ARE INVOLVED. *Biometrika*, 34 (1-2):28–35, 1947. doi: 10.1093/biomet/34.1-2.28.