RT Data-Driven Detection of Bad Electrodes Connection

Simple autoencoder architecture

Output Hidden Hidden Hidden Hidden Input of size of size of size of size of size Latent of **Space** 8, size 8 "tanh" "tanh" "tanh" "tanh" "tanh"

Only, 110 parameters - should work in mobile and might be suitable even for embedded

Example Doublet Noise

Autoencoder trained on clean data

Autoencoder trained on noisy data

Reconstruction error is much smaller when trained on noisy train set, thus RT anomaly detection is better doing in the latent space.

Example Doublet Noise

Autoencoder and K-means trained on clean data

Autoencoder and K-means trained on noisy data

Example White Noise

Autoencoder and K-means trained on clean data

Autoencoder and K-means trained on noisy data

Here separability is worser than in a doublet case, probably because noise is a continuous value between (0, 1), while in doublet it is either 1, either -1. In addition doublet is more representative to electrode disconnection than white noise.