افراز — فرض میکنیم برای $\{A_i,i\in \llbracket 1,n
rbracket\}$ به ازای هر i داشته باشیم $A_i
eq\emptyset$ ، در این صورت میگوییم $\{A_i,i\in \llbracket 1,n
rbracket\}$ یک افراز است اگر :

$$\forall i \neq j, A_i \cap A_j = \emptyset \quad \mathbf{g} \quad \bigcup_{i=1}^n A_i = S$$

$$P(B) = \sum_{i=1}^n P(B|A_i) P(A_i)$$
نکته : برای هر رخداد B در فضای نمونه داریم

: عمیم قضیهی بیز – فرض میکنیم $\{A_i,i\in \llbracket 1,n
rbracket\}$ یک افراز از فضای نمونه باشید. در این صورت داریم $lacksymbol{\square}$

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$

: استقلال – دو رخداد A و B مستقل هستند اگر و فقط اگر داشته باشیم \square

$$P(A \cap B) = P(A)P(B)$$

متغيرهاى تصادفى

تفیر تصادفی — یک متغیر تصادفی، که معمولاً با X نمایش داده میشود، یک تابع است که هر عضو فضای نمونه را به اعداد حقیقی نگاشت میکند.

و تابع توزیع تجمعی F(x)=0 تابع توزیع تجمعی F(x)=0 تابع توزیع تجمعی F(x)=0 تابع توزیع تجمعی F(x)=0 تابع توزیع تجمعی $\lim_{x\to +\infty}F(x)=0$ تابع توزیع تجمعی $\lim_{x\to +\infty}F(x)=0$ تابع توزیع تجمعی $\lim_{x\to +\infty}F(x)=0$ تابع توزیع تجمعی تحمیل تعریف می تعریف می تعریف می تحمیل تعریف تحمیل تعریف تحمیل تعریف تحمیل تعریف تحمیل تعریف تحمیل تعریف تحمیل ت

$$F(x) = P(X \leqslant x)$$

 $P(a < X \le B) = F(b) - F(a)$ نکته : داریم

تابع چگالی احتمال (PDF) – تابع چگالی احتمال f احتمال آن است که متغیر تصادفی X مقداری بین دو تحقق همجوار این متغیر تصادفی را بگیرد.

🗖 ارتباط بین PDF و CDF – موارد زیر ویژگیهای مهمی هستند که باید در مورد حالت گسسته و حالت پیوسته در نظر گرفت.

ویژگیهای PDF	f PDF	F CDF	حالت
$0\leqslant f(x_j)\leqslant 1$ g $\displaystyle\sum_j f(x_j)=1$	$f(x_j) = P(X = x_j)$	$F(x) = \sum_{x_i \leqslant x} P(X = x_i)$	(D)
$f(x)\geqslant 0$ g $\int_{-\infty}^{+\infty}f(x)dx=1$	$f(x) = \frac{dF}{dx}$	$F(x) = \int_{-\infty}^{x} f(y)dy$	(C)

واریانس — واریانس یک متغیر تصادفی، که معمولاً با ${
m Var}(X)$ یا σ^2 نمایش داده میشود، میزانی از پراکندگی یک تابع توزیع است. مقدار واریانس به صورت زیر به دست میآید :

$$Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$$

یادآوری آمار و احتمالات

اقتین عمیدی و شروین عمیدی

۱۵ شهریور ۱۳۹۸

ترجمه به فارسی توسط عرفان نوری. بازبینی توسط محمد کریمی.

مقدمهای بر احتمالات و ترکیبیات

🗖 فضای نمونه — مجموعهی همهی پیشامدهای یک آزمایش را فضای نمونهی آن آزمایش گویند که با 🏿 نمایش داده میشود.

رخداد — هر زیرمجموعهی E از فضای نمونه یک رخداد در نظر گرفته میشود. به عبارت دیگر، یک رخداد مجموعهای از پیشامدهای یک آزمایش است. اگر پیشامد یک آزمایش عضوی از مجموعهی E باشد، در این حالت میگوییم که رخداد E اتفاق افتاده است.

. امبول موضوعهی احتمالات – برای هر رخداد P(E) ، E احتمال اتفاق افتادن رخداد E میباشد. \Box

1)
$$0 \le P(E) \le 1$$
 (2) $P(S) = 1$ (3) $P\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} P(E_i)$

است P(n,r) است مورت زیر تعریف می شود : P(n,r) شی از P(n,r) شی با یک ترتیب خاص است. تعداد این چنین جایگشت ها P(n,r) است که به صورت زیر تعریف می شود :

$$P(n,r) = \frac{n!}{(n-r)!}$$

ترکیب — یک ترکیب چیدمانی از r شی از n شی است، به طوری که ترتیب اهمیتی نداشته باشد. تعداد این چنین ترکیبها C(n,r) است که به صورت زیر تعریف میشود :

$$C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}$$

 $P(n,r) \geqslant C(n,r)$ نکته : برای $0 \leqslant r \leqslant n$ نکته : برای

احتمال شرطى

: داریمP(B)>0 داریمB و B به طوری که P(B)>0 داریم \Box

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

 $.P(A\cap B)=P(A)P(B|A)=P(A|B)P(B)$ نکته : داریم

 \Box انحراف معیار — انحراف معیار یک متغیر تصادفی، که با σ نمایش داده میشود، میزانی از پراکندگی یک تابع توزیع است که با متغیر تصادفی همواحد است. مقدار آن به صورت زیر به دست میآید :

$$\sigma = \sqrt{\operatorname{Var}(X)}$$

امید ریاضی و گشتاورهای یک توزیع – عبارتهای مربوط به امید ریاضی E[X] ، امید ریاضی تعمیم یافته -k ، E[g(X)] مین گشتاور -k ، $E[X^k]$ و تابع ویژگی -k برای حالات پیوسته و گسسته به صورت زیر هستند :

$\psi(\omega)$	$E[X^k]$	E[g(X)]	E[X]	حالت
$\sum_{i=1}^{n} f(x_i) e^{i\omega x_i}$	$\sum_{i=1}^{n} x_i^k f(x_i)$	$\sum_{i=1}^{n} g(x_i) f(x_i)$	$\sum_{i=1}^{n} x_i f(x_i)$	(D)
$\int_{-\infty}^{+\infty} f(x)e^{i\omega x}dx$	$\int_{-\infty}^{+\infty} x^k f(x) dx$	$\int_{-\infty}^{+\infty} g(x)f(x)dx$	$\int_{-\infty}^{+\infty} x f(x) dx$	(C)

 $e^{i\omega x} = \cos(\omega x) + i\sin(\omega x)$ نکته : داریم

تبدیلات متغیرهای تصادفی — فرض کنید متغیرهای تصادفی X و Y توسط تابعی به هم مرتبط هستند. با نمایش تابع توزیع متغیرهای تصادفی X و Y با f_X و f_X داریم :

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|$$

c اشده و a و b کرانهایی باشند که مقدار آنها وابسته به مقدار a و b باشد، و a و b کرانهایی باشند که مقدار آنها وابسته به مقدار a باشد. داریم :

$$\frac{\partial}{\partial c} \left(\int_{a}^{b} g(x) dx \right) = \frac{\partial b}{\partial c} \cdot g(b) - \frac{\partial a}{\partial c} \cdot g(a) + \int_{a}^{b} \frac{\partial g}{\partial c}(x) dx$$

: نابرابری چبیشف – فرض کنید X متغیری تصادفی با امید ریاضی μ و انحراف معیار σ . برای هر x>0 نابرابری زیر را داریم:

$$P(|X - \mu| \geqslant k\sigma) \leqslant \frac{1}{k^2}$$

متغیرهای تصادفی با توزیع مشترک

ی چگالی شرطی – چگالی شرطی X نسبت به Y ، که معمولاً با $f_{X|Y}$ نمایش داده می شود، به مورت زیر تعریف می شود:

$$f_{X|Y}(x) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

استقلال – دو متغیر تصادفی X و Y مستقل هستند اگر داشته باشیم : \Box

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$

: داریم و توزیع تجمعی – از تابع چگالی احتمالی مشترک f_{XY} داریم \Box

تابع تجمعی	چگالی حاشیهای	حالت
$F_{XY}(x,y) = \sum_{x_i \leqslant x} \sum_{y_j \leqslant y} f_{XY}(x_i,y_j)$	$f_X(x_i) = \sum_j f_{XY}(x_i, y_j)$	(D)
$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(x',y')dx'dy'$	$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x,y)dy$	(C)

 \square کواریانس — کواریانس دو متغیر تصادفی X و Y که با σ^2_{XY} یا به صورت معمول تر با $\mathrm{Cov}(X,Y)$ نمایش داده می شود، به صورت زیر است :

$$\boxed{\operatorname{Cov}(X,Y) \triangleq \sigma_{XY}^2 = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y}$$

 ho_{XY} همبستگی – با نمایش انحراف معیار X و Y به صورت σ_X و σ_Y ، همبستگی مابین دو متغیر تصادفی X و و Y که با نمایش داده میشود به صورت زیر تعریف میشود :

$$\rho_{XY} = \frac{\sigma_{XY}^2}{\sigma_X \sigma_Y}$$

 $.
ho_{XY}=0$ نکتهی : برای هر دو متغیر تصادفی دلخواه X و Y داریم Y داریم Y اگر X و Y مستقل باشند، داریم ایم Y

🗖 **توزیع های احتمالی اصلی** — توزیع های زیر توزیع های احتمالی اصلی هستند که بهتر است به خاطر بسپارید :

Var(X)	E[X]	$\psi(\omega)$	PDF	توزيع	نوع
npq	np	$(pe^{i\omega}+q)^n$	$P(X = x) = \binom{n}{x} p^x q^{n-x}$ $x \in [0,n]$	$X \sim \mathcal{B}(n, p)$ Binomial	(D)
μ	μ	$e^{\mu(e^{i\omega}-1)}$	$P(X = x) = \frac{\mu^x}{x!}e^{-\mu}$ $x \in \mathbb{N}$	$X \sim \text{Po}(\mu)$ Poisson	
$\frac{(b-a)^2}{12}$	$\frac{a+b}{2}$	$\frac{e^{i\omega b} - e^{i\omega a}}{(b-a)i\omega}$	$f(x) = \frac{1}{b-a}$ $x \in [a,b]$	$X \sim \mathcal{U}(a, b)$ Uniform	
σ^2	μ	$e^{i\omega\mu - \frac{1}{2}\omega^2\sigma^2}$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ $x \in \mathbb{R}$	$X \sim \mathcal{N}(\mu, \sigma)$ Gaussian	(C)
$\frac{1}{\lambda^2}$	$\frac{1}{\lambda}$	$\frac{1}{1 - \frac{i\omega}{\lambda}}$	$f(x) = \lambda e^{-\lambda x}$ $x \in \mathbb{R}_+$	$X \sim \text{Exp}(\lambda)$ Exponential	

تخمين پارامتر

نمونهی تصادفی — یک نمونهی تصادفی مجموعهای از n متغیر تصادفی $X_1,...,X_n$ است که از هم مستقل هستند و توزیع یکسانی با X دارند.

تخمین گر – یک تخمین گر $\hat{ heta}$ تابعی از دادهها است که برای بهدستآوردن مقدار نامشخص یک پارامتر در یک مدل heta آماری به کار میرود.

ییشقدر – پیشقدر یک تخمینگر $\hat{ heta}$ به عنوان اختلاف بین امید ریاضی توزیع $\hat{ heta}$ و مقدار واقعی تعریف میشود. یعنی :

$$Bias(\hat{\theta}) = E[\hat{\theta}] - \theta$$

 $E[\hat{ heta}] = heta$ نکته : یک تخمینگر بدون پیشقدر است اگر داشته باشیم

میانگین و واریانس نمونه — میانگین نمونهی یک نمونهی تصادفی که برای تخمین مقدار واقعی میانگین μ یک توزیع به کار میرود، معمولاً با \overline{X} نمایش داده میشو. واریانس نمونهی یک نمونهی تصادفی که برای تخمین مقدار واقعی واریانس σ^2 یک توزیع به کار میرود، معمولاً با s^2 یا s^2 نمایش داده میشود و به صورت زیر تعریف میشود :

$$\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$$
 g $s^2 = \hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$

ق<mark>فیهی حد مرکزی</mark> – یک نمونهی تمادفی $X_1,...,X_n$ که از یک توزیع با میانگین μ و واریانس σ^2 به دست آمدهاند را در نظر بگیرید؛ داریم :

$$\overline{X} \underset{n \to +\infty}{\sim} \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$