Le traitement du langage naturel par transformers illustré par un exemple pour la classification de texte

Cerisara Nathan, MPI 1^{er} juin 2023

Sommaire

- Architecture Transformer
 - Vectorisation du texte
 - La partie Encodeur de l'architecture
 - Les matrices d'Attention
 - Le réseau Feed Forward
- Application personnelle
 - Objectif / Rapport à la ville
 - Le modèle BERT
 - La structure du réseau de neurone utilisée
 - Les données et l'apprentissage
 - Les résultats
- Annexes

L'architecture Transformer

Schéma de l'architecture dans le cas de la génération :

Vectorisation du texte : Tokenisation du texte

```
Tokenizer (bert-base-uncased)
Ex1:
 SENTENCE: "Neural Networks are so cool!"
 TOKFNS .
 [101, 15756, 6125, 2024, 2061, 4658, 999, 102, 0, \dots, 0]
 [CLS] "neural" "networks" "are" "so" "cool" "!" [SEP]
Ex2:
 SENTENCE: "Bonjour le monde!"
 TOKFNS .
 [101, 14753, 23099, 2099, 3393, 23117, 999, 102, 0, \dots, 0]
 [CLS] "bon" "##jou" "##r" "le" "monde" "!" [SEP]
```

Vectorisation du texte : Embeddings & Positional Encoding

Positional Encoding

Token Embedding

$$k \in \llbracket 1, N \rrbracket$$
 $p_k = (f_k(1), f_k(2), \dots, f_k(d_E))$
 $f_k(i)$: position de chaque token dans la séquence

$$t_k \longrightarrow \underbrace{\left(e_{k,0},\ldots,e_{k,d_E}\right)}_{\text{dimension } d_E}$$

$$E = [e_1, \dots, e_N]$$
 TokenEmbedding TokenEmbedding
$$T = [t_1, \dots, t_N]$$
 Positional Encoding
$$P = [p_1, \dots, p_N]$$
 LayerNormalization $(E + P) \rightarrow Model$

La partie Encodeur

Schéma d'un block de la partie Encodeur de l'architecture Transformer :

Matrice d'attention

Le réseau Feed Forward

Couche linéaire : $X \mapsto X \cdot W^{\top} + B$

Application Personnelle : Objectifs & Rapport à la ville

- Objectif:
 - Classification de texte
 - Sentiment : Négatif ←→ Positif
- Rapport à la ville :
 - Analyser les sentiments des habitants sur différents sujets
 - Peut servir à aider par exemple les mairies pour déterminer ce qui est le plus urgent

Le modèle BERT

- Architecture Transformer
- Plusieurs tailles de BERT (base, large)
- ullet BERT base : 12 imes blocks encoder ightarrow 112M paramètres
- BooksCorpus (800M words) and English Wikipedia (2,500M words)
- Publié vers fin 2018 par des chercheurs de Google

La structure du réseau de neurone utilisée

Les données et l'apprentissage

- Données: Twitter Sentiment140 (1.6 millions Tweets)
- Train: 50000, Test: 25000
- Temps d'entraînement : $\approx 5 h$
- Algorithme d'apprentissage : Adam optimizer (extension de la descente de gradient stochastique)
- Fonction de Loss : CrossEntropy

Les résultats

	My custom bert classifier			bertweet-base-sentiment-analysis		
	Positive	Neutral	Negative	Positive	Neutral	Negative
City (5784)	1940	<u> 2006</u>	1838	1110	<u> 2834</u>	1840
Cars (13104)	3272	4708	5124	1621	5466	<u>6017</u>
House (4681)	1501	<u> 1675</u>	1505	720	2297	1664
Plants (1012)	197	371	444	81	430	<u>501</u>
Store (2087)	605	693	<u> 789</u>	273	771	1043
Police (5834)	1496	2323	2015	482	<u>2797</u>	2555
Hospitals (4928)	1315	1634	<u> 1979</u>	917	1765	<u>2246</u>

Annexes

Ce que l'on a vu :

- Architecture Transformer
 - Le block d'encodeur
 - Les matrices d'attention
 - Les réseaux Feed
 Forward
- Application Personnelle

Annexes / Ouvertures :

- Détails du code python
- Adam optimizer
- La fonction de loss
- La Normalisation par couche (LayerNorm)
- La partie décodeur
- Comparaison avec le modèle GPT
- Le théorème d'approximation universel
- Bibliographie

Annexes: Code python

```
import torch.nn as nn
class Net(nn. Module):
    def init (self, dim in, dim out):
        super(). init ()
        self.layer = nn.Linear(dim in, dim out)
    def forward (self, \times):
        return self. layer(x)
```

Annexes: Adam Optimizer

Descente de gradient stochastique

Différences avec Descente de Gradient :

- Batch de données vs Dataset Entier
- Plus efficace en terme de calculs
- Ne se bloque pas forcément dans un minimum local
- Plus flexible pour le taux d'apprentissage

Adam : Adaptive Moment Estimation

- pour chaque itération : Moyenne mobile exponentielle des valeurs historiques du gradient
- Taux d'apprentissage adaptatif (individuellement pour chaque paramètre) sur la base du premier (Moyenne) et deuxième moment (Variance) du gradient
- Correction de biais
- Mise à jour des paramètres

Annexes: Fonction de loss

Fonction Cross Entropy

Soit C_1, \ldots, C_N N classes . Soit $x = (x_1, \ldots, x_N)$ la sortie du modèle. Soit ν l'indice de la vraie classe.

pour chaque $i \in \llbracket 1, n \rrbracket$,

$$E_i = -\log\left(\frac{e^{x_v}}{\sum_{k=1}^N e^{x_k}}\right)$$

Donc au final $CE(x, v) = \frac{1}{N} \sum_{i=1}^{N} E_i$

Annexes: LayerNormalization

Entrée : Tensor *X* de dimensions : (batch_size, sequence_length, embedding_size)

Opérations :

- La moyenne E(X) et la Variance V(X) (sur la dimension de l'embedding de l'entrée)
- Normalization :

$$N_X = \frac{X - E(X)}{\sqrt{V(X)}}$$

Mise à l'échelle et décalage :

$$N_{x} \cdot \alpha + \beta$$

$$LayerNorm(X) = \frac{X - E(X)}{\sqrt{V(X)} + \varepsilon} \cdot \alpha + \beta$$

Annexes : Partie décodeur de l'architecture transformer

Annexes : Comparaison avec le modèle GPT

Annexes : Le théorème d'approximation universel

Enoncé: Les transformateurs sont des approximateurs universels des fonctions continues de séquence à séquence sur un domaine compact.

Preuve:

Annexes : Bibliographie

- Pytorch documentation
- "Attention is all you need", Google Research, 2017
- "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding", Google Al Language, 2018
- "Improving Language Understanding by Generative Pre-Training" OpenAI, 2018
- "ARE TRANSFORMERS UNIVERSAL APPROXIMATORS OF SEQUENCE-TO-SEQUENCE FUNCTIONS?", Google Research, 2020