Course Code	Course Title	L	Т	Р	С
PSTS601L	Advanced Competitive Coding			0	3
Pre-requisite	NIL	Syllabus version			
		1.0			

Course Objectives

- 1. To understand the basic concepts of data structures and algorithm.
- 2. To develop the step by step approach in solving problems with the help programming techniques of data structures.
- 3. To deploy algorithms in real time applications.

Course Outcome

At the end of the course the student should be able to

- 1. Provide a basic understanding of core Java concepts
- 2. Use linear and non-linear data structures to solve practical problems.
- 3. Identify Bitwise algorithms for solving real world problems.
- 4. Illustrate various techniques for searching, sorting and hashing
- 5. Understand and implement Dynamic Programming.
- 6. Design new algorithms or modify existing algorithms for new application.

Module:1 Algorithms

6 hours

Java Introduction, Features, Structure, Data Types, Basic I/O Operators, Decision making and Control structure, Time & Space complexity

Module:2 | Math based problems and Bitwise algorithms | 6 hours |
Simple Sieve, Segmented & Incremental Sieve, Euler's phi Algorithm, Strobogrammatic Number, Remainder Theorem, Toggle the switch & Alice Apple tree, Binary Palindrome, Booth's Algorithm, Euclid's Algorithm, Karatsuba Algorithm, Longest Sequence of 1 after flipping a bit Swap two nibbles in a byte.

Module:3 Arrays, Searching, Sorting and Strings

6 hours

Block Swap Algorithm , Max product subarray, Maximum sum of hour glass in matrix ,Max Equilibrium Sum ,Leaders in array, Majority element, Lexicographically first palindromic string, Natural Sort order , Weightes substring ,Move hyphen to beginning, Manacher's Algorithm

Module:4 Recursion, Back tracking, Greedy Algorithm

6 hours

Sorted Unique Permutation, Maneuvering, Combination, Josephus trap, Maze Solving, N Queens Problem, Warnsdorff's Algorithm, Hamiltonian Cycle, Kruskal's Algorithm, Activity Selection Problem, Graph Coloring, Huffman Coding

Module:5 | Dynamic Programming

6 hours

Longest Common Subsequence ,Longest Increasing Subsequence , Longest Bitonic Subsequence ,Longest Palindromic Subsequence ,Subset sum problem ,0-1 Knapsack, Traveling Salesman, Coin Change, Shortest Common, Supersequence, Levenshtein Distance problem, Rod Cutting problem, Wildcard pattern matching , Pots of gold game

Module:6 Linked list, Stack, Queue

6 hours

Loop Detection, Sort the bitonic DLL, Segregate even & odd nodes in a LL, Merge sort for DLL, Minimum Stack, The Celebrity problem, Iterative Tower of Hanoi Stock

Span problem, Priority Queue using DLL, Sort without extra Space, Max Sliding Window, Stack permutations							
Module:7	Trees, Graphs , Heaps, N	laps			6 hours		
Recover the BST, Views of tree Vertical order traversal ,Boundary traversal, BFS,							
DFS, Dial's Algorithm ,Bellman-Ford Algorithm, Topological Sort ,Heap So							
Binomial heap, K-array heap, Winner tree, Hash Map to Tree Map.							
Module:8	Interview Preparation				3 hours		
Networking, Security, Operating Systems, Data Base Management Systems.							
Total Lecture hours			45 hours				
Text Book							
1. Mark Allen Weiss, "Data structures and algorithm analysis in C++", 2019, 4th							
Edition, Pearson Education.							
Reference Books							
1. J.P. Tremblay and P.G. Sorenson, "An Introduction to Data Structures with							
applications", 2017, Second Edition, Tata Mc Graw Hill.							
2. Richar	Richard M. Reese, Jennifer L. Reese, Alexey Grigorev, Java: Data Science						
Made Easy, 2019 Pocket Publishing.							
Mode of Evaluation: CAT, Written assignment, Quiz, Project & FAT.							
Recommended by Board of Studies 24-02-2023							
Approved b	No. 70	Date	24-06-2023				