# Lecture 3: Propositional logic CAB203 Discrete Structures

Matthew McKague

Queensland University of Technology matthew.mckague@qut.edu.au



## Outline

Recursion

Propositions

Logical operators

**Formulas** 

Logical equivalence

Logic and computers

# Readings

#### This week

▶ Pace: 2.1 to 2.5

#### Next week

▶ Pace: 4.1 to 4.5

► Lawson: 3.1

## Outline

#### Recursion

Propositions

Logical operators

Formulas

Logical equivalence

Logic and computers

#### Recursive definitions

When defining a type of object, sometimes it is easiest to define it in terms of itself. This is called a recursive definition.

Example: The factorial function on  $\mathbb{N}$  can be defined by:

$$n! = \prod_{j=1}^{n} j = 1 \times 2 \times \cdots \times (n-1) \times n$$

We can also define *n*! recursively by

$$n! = \begin{cases} 1 & : n = 1 \\ (n-1)! \times n & : n > 1 \end{cases}$$

#### Parts of a recursive definition

There are two main parts of a recursive definition:

- ▶ base cases: these can be evaluated without any reference to the object
- recursive cases: these cases will refer back to the definition of the object
- Bases cases are often trivial cases, with the interesting part being the recursive cases.
- ▶ At least one base case is required, but there may be several

# Types of recursive definitions

Recursive definitions are used frequently in computer science and mathematics. Some types of things defined recursively:

- ► functions (mathematical)
- functions (in computer programs)
- data structures
- programming languages
- languages (in theoretical computer science)
- algorithms

## Example: Fibonacci sequence

The Fibonacci sequence is a classic example of a recursive definition:

$$f(n) = \begin{cases} 1 & : n = 1 \\ 1 & : n = 2 \\ f(n-1) + f(n-2) & : n > 2 \end{cases}$$

The sequence given by f(n)/f(n-1) converges to the golden ratio, which plays a special role in mathematics and art.

# Python example

```
def F(n):
    if n == 1: return 1
    elif n == 2: return 1
    else: return F(n-1) + F(n-2)
```

More discussion about the python example available on Stack Overflow

# Arithmetic expression example

Programming languages are often expressed in terms of multiple types, in a big recursive pile.

Example, we might define an expression like so:

$$EXPR := \begin{cases} VALUE \\ EXPR "+" VALUE \\ EXPR "-" VALUE \end{cases}$$

$$VALUE := \begin{cases} CONSTANT \\ VARIABLE \end{cases}$$

One formal system for specifying languages in this way is Parsing expression grammar, which can be used to automatically generate a program which parses the language.

## Outline

Recursion

#### Propositions

Logical operators

Formulas

Logical equivalence

Logic and computers

## Propositional logic

#### Propositional logic studies:

- Propositions (statements which are true or false)
- Logical connectives that build larger propositions from smaller ones

Logic allows us to determine if a large proposition is true or not based on how it is constructed and the truth value of the smaller pieces.

## **Propositions**

A proposition is a statement that is either true or false:

- ► I like tomatoes could be true or false
- ► All humans are mortal is true
- ► This sentence is false is neither true or false, so it is not a proposition.

We will often uses symbols p, q etc. to stand in for propositions:

- ightharpoonup p = 1 like tomatoes
- ightharpoonup q =all humans are mortal

# More examples of propositions

- ▶ Propositions from math:
  - ▶  $5 \in \{2x : x \in \mathbb{N}\}$
  - $ightharpoonup 3 \equiv 7 \pmod{4}$
- Propositions from the world:
  - ► Rain comes from peaches
  - Socrates is human
- Complex propositions:
  - ► It is sunny if and only if it is raining
  - ► Goats eat grass and goats eat hats

## Examples of non-propositions

If we can't assign a truth value, then it isn't a proposition.

- ► This sentence is false.
- ► Which way to the bus stop?
- ▶ Please make your way to the nearest exit.
- ▶ I now pronounce you husband and wife.

## Atomic and compound propositions

We distinguish between *atomic* and *compound* propositions. Compound propositions are composed of two or more atomic propositions. Atomic propositions cannot be broken down.

- lt is raining is atomic. It can't be broken down.
- ▶ It is raining and it is cloudy is a compound proposition. It contains the propositions It is raining and It is cloudy.
- ▶ It is raining or snowing is also compound. It contains the propositions It is raining and It is snowing.
- ▶ If I hit my head then it will hurt is compound. It contains the propositions I hit my head and my head will hurt.

## Atomic and compound proposition examples

- ► Goats eat grass and hats. (compound)
- ► The species *Sequoiadendron giganteum* is more commonly known as the giant sequoia. (atomic)
- ► If you do not have a ticket then you cannot enter. (compound)
- ► It is either raining or sunny. (compound)

## Atomic propositions

- Propositional logic doesn't care about the content of an atomic proposition, only whether it is true or false. So we usually replace them with letters.
- ► In compound propositions we just care about how they are built, not the content of their atomic propositions.

## Outline

Recursion

**Propositions** 

## Logical operators

Formulas

Logical equivalence

Logic and computers

## Logical operators

We can build compound propositions using atomic propositions and *logical operators* (also called *logical connectives*). Some common operators:

- ► *NOT* symbolised by ¬
- ► *AND* symbolised by ∧
- ▶ OR symbolised by ∨
- ➤ XOR symbolised by ⊕
- ► *IF*..*THEN* symbolised by →
- $\blacktriangleright$  *IF AND ONLY IF* symbolised by  $\leftrightarrow$

There are 4 possible unary logical operators (like  $\neg$ ) and 16 possible binary logical connectives.

## Logical NOT

*NOT* operates on one proposition, giving the negation of the proposition

- $\triangleright$  p = Socrates is mortal
- ightharpoonup 
  egp p = Socrates is not mortal (informally)

*NOT* always gives the exact *logical* opposite. Example:

► ¬ He is tall would be He is not tall, which is different from He is short.

Socrates was a Greek philosopher who lived in the 5th century BCE.

#### Truth tables

We can represent logical values of compound propositions using a *truth table*. A truth table lists all possible truth values of atomic propositions, and the truth value of some compound propositions built using them.

Truth table for NOT:

#### AND

 $p \wedge q$  is true only when both p and q are true:

AND has an (evil?) twin called NAND, which plays a special role in computer science because it is *universal*, or *functionally complete* 

# AND examples

- ► All humans are mortal ∧ Socrates is human is true.
- ▶ All humans are mortal ∧ Socrates is a teapot is false.
- ► All humans are spoons ∧ Socrates is human is false.
- ► All humans are spoons ∧ Socrates is a teapot is false.
- ► Tomatoes are red ∧ Socrates is human is true.

## **OR**

 $p \lor q$  is true only when at least one of p and q is true:

$$\begin{array}{ccccc}
p & q & p \lor q \\
T & T & T \\
T & F & T \\
F & F & F
\end{array}$$

OR also has an (evil?) twin called NOR, which is functionally complete. The Apollo guidance computer was built entirely out of NOR gates.

## OR examples

- ► All humans are mortal ∨ Socrates is human is true.
- ► All humans are mortal ∨ Socrates is a teapot is true.
- ► All humans are spoons ∨ Socrates is human is true.
- ▶ All humans are spoons ∨ Socrates is a teapot is false.
- ► Tomatoes are red ∨ Socrates is a teapot is true.

#### OR is inclusive

English has two different meanings for "or". Compare:

- ► You can take the bus or the train.
- ► You can have milk or sugar in your tea.

The first is *exclusive*: you can't take *both* the bus and the train (at the same time). The second is *inclusive*: you *can* have both milk and sugar. In logic, *OR* is always inclusive, but in English the exclusive meaning is more often implied.

## **XOR**

 $p \oplus q$  is true only when *exactly* one of p and q is true:

We use XOR when we want the exclusive meaning of or.

 $(\{T,F\},\oplus)$  is a cyclic group, equivalent to arithmetic modulo 2.

# XOR examples

- ► Tomatoes are red ⊕ Socrates is a teapot is true.
- ► Tomatoes are red ⊕ Socrates is human is false.
- ► Tomatoes are blue ⊕ Socrates is human is true.
- ► Tomatoes are blue ⊕ Socrates is a teapot is false.

In some of the above cases, Socrates needs to return error 418.

#### IF..THEN

 $p \rightarrow q$  means that q must be true whenever p is. But we don't care when p is false.

| р | q | p 	o q |
|---|---|--------|
| Т | Т | T      |
| Τ | F | F      |
| F | Τ | T      |
| F | F | Τ      |

When p is false, then  $p \rightarrow q$  is always true.

We sometimes say p implies q to mean if p then q.

# IF..THEN examples

- ightharpoonup Socrates is mortal. is True
- ightharpoonup Socrates is a teapot. is False
- Socrates is a teapot → Socrates is mortal. is True
- ightharpoonup Socrates is an alligator. is True
- Socrates is human → Tomatoes are red. is True.
- Socrates is blue → Tomatoes are red. is True.

It is important to understand that the truth of  $p \to q$  does not depend on any underlying relationship between p and q, only their truth values.

## IF AND ONLY IF

As a shorthand, instead of  $(p \to q) \land (q \to p)$  we can write  $p \leftrightarrow q$ .

$$\begin{array}{ccccc}
p & q & p \leftrightarrow q \\
T & T & T \\
T & F & F \\
F & T & F \\
F & F & T
\end{array}$$

We say p if and only if q.

# IF AND ONLY IF examples

- ► Socrates is human ↔ Socrates is mortal. is True.
- ► Socrates is human ↔ Socrates is a teapot. is False.
- ► Socrates is a teapot ↔ Socrates is mortal. is False.
- ► Socrates is a teapot ↔ Socrates is an alligator. is True.
- ▶ Socrates is human ↔ Tomatoes are red. is True.

# More complex propositions

We can combine compound propositions using logical operators as well:

- $\blacktriangleright (p \land q) \rightarrow p$
- ► (Socrates is mortal → Socrates is human) ∨ Humans are blue

We evaluate the truth by working from the atomic propositions outward. There is an order of operations, but we'll always use parentheses.

## Outline

Recursion

Propositions

Logical operators

#### **Formulas**

Logical equivalence

Logic and computers

#### **Formulas**

A *Boolean formula* is a string of symbols that tells how to build a compound proposition. Formulas are defined by these rules:

- T (true), F (false) and lower case letters are all formulas
- ▶ If A and B are formulas then so are:
  - ¬A
  - $\triangleright$   $(A \land B)$
  - ► (*A* ∨ *B*)
  - ► (*A* ⊕ *B*)
  - ightharpoonup (A o B)
  - $\blacktriangleright (A \leftrightarrow B)$
- no other strings are formulas

### Formula examples

Formulas are *well formed* if they conform to the rules, otherwise they are *not well formed*.

Some well formed formulas:

- **▶** ¬*p*
- $\blacktriangleright (p \lor q) \to (q \oplus p)$
- $\blacktriangleright (T \lor (p \leftrightarrow F))$
- ► T ∧ p

Note that we will often omit outer parentheses.

Some not well formed formulas (non-formulas):

- ▶ pq¬
- ▶ p →
- ▶ (p∨)q

#### Truth value of forumla

To find the truth value of a formula:

- ► Fill in the truth value for all variables
- Evaluate logical connectives from innermost parentheses outwards

Eg. when p = T and q = F

$$(p \lor q) \to (q \oplus p) = (T \lor F) \to (F \oplus T)$$
  
=  $T \to T$   
=  $T$ 

# Classifying formulas

Three basic kinds of formulas depending on how they behave when we replace variables with truth values

- ► tautologies are always true
- contradictions are always false
- contingent formulas can be true or false depending on the variables
- satisfiable formulas are either tautologies or contingent formulas

Satisfiability is the classic NP-complete problem. If you can find a fast algorithm for determining if a formula is satisfiable you can win yourself \$1 000 000 USD.

#### Formula classifications summarised

| Classification | Always true  | Sometimes true | Always false |
|----------------|--------------|----------------|--------------|
| Tautology      | ✓            | ×              | ×            |
| Contingent     | ×            | $\checkmark$   | ×            |
| Contradition   | ×            | ×              | $\checkmark$ |
| Satisfiable    | $\checkmark$ | $\checkmark$   | ×            |

## **Tautologies**

A tautology is always true. Examples:

- ► T
- $\neg F$
- $ightharpoonup A \lor \neg A$
- $ightharpoonup \neg (A \land \neg A)$
- $\blacktriangleright (A \land (A \rightarrow B)) \rightarrow B$

We can see this using a truth table:

| Α | В | $A \rightarrow B$ | $A \wedge (A \rightarrow B)$ | $(A \land (A \to B)) \to B$ |
|---|---|-------------------|------------------------------|-----------------------------|
| T | Т | T                 | T                            | T                           |
| T | F | F                 | F                            | T                           |
| F | Τ | T                 | F                            | T                           |
| F | F | T                 | F                            | Τ                           |

Tautologies are also satisfiable.



# Contingent formulas

Contingent formulas are sometimes true, sometimes false.

#### Examples:

- $\triangleright$   $A \lor B$
- ► *A* → *B*

We can see this using a truth table:

| Α | В | $A \rightarrow B$ |
|---|---|-------------------|
| T | Т | T                 |
| Τ | F | F                 |
| F | Τ | T                 |
| F | F | T                 |

Contingent formulas are also satisfiable.

#### Contradictions

Contradictions are always false

- **▶** *F*
- ¬T
- $ightharpoonup A \wedge \neg A$
- $\blacktriangleright (A \land (A \rightarrow B)) \land \neg B$

| Α | В | $\neg B$ | $A \rightarrow B$ | $A \wedge (A \rightarrow B)$ | $(A \wedge (A \rightarrow B)) \wedge \neg B$ |
|---|---|----------|-------------------|------------------------------|----------------------------------------------|
| T | Т | F        | T                 | T                            | F                                            |
| Τ | F | T        | F                 | F                            | F                                            |
| F | T | F        | T                 | F                            | F                                            |
| F | F | T        | T                 | F                            | F                                            |

Contraditions are not satisfiable

#### Outline

Recursion

Propositions

Logical operators

Formulas

Logical equivalence

Logic and computers

## Logically equivalent formulas

Some formulas are *logically equivalent* meaning that they are true at the same time. For example,  $A \to B$  is logically equivalent to  $\neg A \lor B$ .

| Α | В | $\neg A$ | $A \rightarrow B$ | $\neg A \lor B$ |
|---|---|----------|-------------------|-----------------|
| Т | Т | F        | T                 | T               |
| Τ | F | F        | F                 | F               |
| F | T | T        | T                 | T               |
| F | F | T        | T                 | T               |

Here the last two columns are identical.

We write  $A \rightarrow B \equiv \neg A \vee B$ .

Saying  $A \equiv B$  is the same as saying that  $A \leftrightarrow B$  is a tautology.

# Logically equivalent formula examples

- $\neg \neg A \equiv A$
- $ightharpoonup A \wedge B \equiv B \wedge A$
- $ightharpoonup A \lor B \equiv B \lor A$
- $ightharpoonup A \lor \neg A \equiv T$
- $ightharpoonup A \wedge \neg A \equiv F$
- $ightharpoonup A \wedge T \equiv A$
- $ightharpoonup A \lor F \equiv A$
- $ightharpoonup A \wedge (B \wedge C) \equiv (A \wedge B) \wedge C$
- $A \lor (B \lor C) \equiv (A \lor B) \lor C$

## Logically equivalent formula examples

$$A \wedge (B \vee C) \equiv (A \wedge B) \vee (A \wedge C)$$

$$A \vee (B \wedge C) \equiv (A \vee B) \wedge (A \vee C)$$

$$A \lor B \equiv \neg (\neg A \land \neg B)$$

$$A \wedge B \equiv \neg (\neg A \vee \neg B)$$

$$ightharpoonup A 
ightharpoonup B \equiv \neg A \lor B$$

$$A \leftrightarrow B \equiv (A \to B) \land (B \to A)$$

There are many more equivalences that describe basic properties of the logical operators.

# Using logically equivalent formulas

We can do *substitution* whenever we have two logically equivalent formulas: replace an occurrence of a formula with the thing it is equivalent to

▶ Suppose  $A \equiv B$ . Then substituting in B for A in  $A \lor C$  we get

$$A \lor C \equiv B \lor C$$

#### Also:

- ▶ If  $A \equiv B$  and  $B \equiv C$  then
- $ightharpoonup A \equiv C$ .

By using substitutions, any Boolean formula can be rewritten entirely in NANDs, or in NORs.

## Using logically equivalent formulas

We can string together equivalences:

$$A \to B \equiv \neg A \lor B$$

$$\equiv B \lor \neg A$$

$$\equiv \neg (\neg B) \lor \neg A$$

$$\equiv \neg B \to \neg A$$

We have shown  $A \rightarrow B \equiv \neg B \rightarrow \neg A$ .

Note that we are implictly using a property called *transitivity*: if  $A \equiv B$  and  $B \equiv C$  then  $A \equiv C$ . We'll discuss this property later.

#### Outline

Recursion

Propositions

Logical operators

Formulas

Logical equivalence

Logic and computers

# Bits and logic

There is a natural correspondence between bits and truth values:

- $ightharpoonup 0 \equiv F$
- ▶ 1 ≡ *T*

We can use boolean formulas to describe how bits are manipulated within the computer.

A computer is a logic machine.

# Uses of logic

- Basic vocabulary for mathematics and computer science
- Designing and understanding conditional statements in programming
- ► Tool for analysing algorithms
- Mathematical underpinning of bit logic, logical circuits, computer architecture

Computers do logic. Everything else is an abstraction on top.

## Logic in Python

```
>>> True
True
>>> False
False
>>> True and False
False
>>> True and True
True
>>> True or False
True
>>> not True
False
>>> 3 == 4 - 1
True
>>> not 3 == 4 - 1
False
>>>
```

## More logic in Python

```
>>> True ^ False  # XOR is same as bitwise XOR
True
>>> def ifthen(x,y):  # no builtin if..then.
... return (not x) or y # Build our own from a logical equiv
>>> ifthen(True, False)
False
```