Zadanie 1.

A)

	czas wykonania operacji	koszty operacji I/O	koszty CPU	ilość wierszy, które musiały być wczytane
Z kluczem głównym	0,002s	0,003125	0,0001581	1
Bez klucza głównego	6,804s	1,82905	0,133606	121317

Analizując powyższą tabelę można zauważyć, że po usunięciu klucza głównego zarówno czas wykonania operacji, jak i koszty znacznie się zwiększają. Jednym z powodów jest fakt, że dzięki kluczowi głównemu wczytywany jest tylko jeden wiersz, natomiast gdy go nie ma, wiele wierszy.

B)

Po zmianie AND na OR	czas wykonania operacji	koszty operacji I/O	koszty CPU	ilość wierszy, które musiały być wczytane
Z kluczem głównym	0,060s	0,203125	0,133606	121317
Bez klucza głównego	115s	1,82905	0,133606	121317

Zmiana słowa AND na OR, niezależnie od istnienia klucza głównego, powoduje wczytywanie wielu wierszy tabeli, co za tym idzie koszty CPU w obu przypadkach są takie same. Zamiana ta zwiększa znacząco czas wykonania operacji oraz koszty operacji I/O w porównaniu do podpunktu A.

Zadanie 2.

Jeśli nie istnieje indeks przeszukany musi być każdy wiersz w tabeli. Przez to koszty operacji I/O i CPU są bardzo duże. Po dodaniu indeksu baza od razu lokalizuje odpowiedni wiersz. Zabieg ten znacznie redukuje koszty operacji i czas jej wykonania.