北京林业大学 2023--2024 学年第 2 学期实验任务书

课程名称:	_三维动	<u> 画原理与制</u>	<u> </u>	开课与	学院: _	信息等	学院		
考试班级:	数媒 2	1-1、2; 其	<u> (他</u>	命题	人:	杨	猛		
实验环境:	<u>VS2010</u>	或以上、	其他语言	(如 Java、	Pytho	n)、Uni	ty/Bler	ıder 环坎	<u>竟亦可</u>
实验题目(范围): _	大作业	基于**	**动画设计	<u>† </u>				_
									_
									•

请详细说明该设计的方案、内容、要求、进度等

严禁剽窃、抄袭等作弊行为!

实验目的:

- 1. 深入地理解某一种计算机动画原理与技术的基础知识,诸如关键帧动画、路径动画、关节动画、基于物理的动画、变形动画、过程动画等;
- 2. 能够综合、灵活地运用上述所学内容,设计一个<mark>具有一定特色、具有一定难度</mark>的动画。

实验内容:

- 1. 综合、灵活地运用以下知识中的一种或数种,设计一个具有一定特色、难度的动画。
 - (1) 关键帧动画;
 - (2) 路径动画;
 - (3) 关节动画;
 - (4) 基于物理的动画;
 - (5) 变形动画;
 - (6) 过程动画;
 - (7) 行为动画、粒子动画等。

实验方法:

1. 自拟动画主题

诸如模拟刚体碰撞过程、布料模拟、流体模拟、风中植物动态、火焰模拟、烟雾

模拟、雨雪等自然现象模拟等等。

2. 确定动画模拟的技术

比如雨的模拟应用物理方法,或者应用图像的方法; 刚体碰撞选择何种碰撞检测 技术:液体模拟选用 SPH 还是网格的方法等等。

3. 动画实现

诸如应用自由落体物理模型模拟小球从高处落下后的运动过程等,还涉及数值计算、碰撞检测等内容。

4. Demo 制作(必须)

动画最终以 Demo 的形式展现,建议 3 分钟内,原则上大小限制在 200M 以内。

5. 答辩 PPT (<mark>必须</mark>)

主要包括成员介绍以及分工情况、实验题目、实验环境、实验灵感/创意来源、实验主要方法以及实验结果与分析、总结与心得体会、主要参考文献等部分。

→ 提示: 可以实现某篇文章的算法。

结论分析:

列举实验中遇到的问题、解决的方法,总结实验的收获和体会以及尚存在的问题。

实验要求:

- 1. 设计要求:
 - ▶ 可以没有创新,但必须原创!
 - ▶ 难度高于平时实验!
 - ▶ VC++或者 Java、Python 等语言编程实现!
 - ▶ 可以在 Unity、Unreal Engine、Blender 等平台制作!
 - ▶ 可以在平时实验的基础上有所发展,但不能完全一致!
 - ▶ 分组完成!每组人数要求在 1~5 人之间,如果不在此范围之内,可与老师协商!

2. 提交材料:

将完成实验报告与动画设计源文件、Demo 与答辩 PPT (必须) 等内容压缩成一个压缩文件(命名方法参见 3)。其中,实验报告需按照"大作业报告模板.doc"填写,内容包括创意来源、详细的分组与分工以及完成情况、实验步骤、结果截图

以及"**结论分析**"中所述内容等;必须为 Microsoft Office Word 文件。

本次大作业不同于课程**所有其他实验**,要求大作业材料单独提交。

- 3. **命名规则**: 学号_姓名_题目(题目例如"大作业"等),注意中间为"<mark>下划线</mark>",未 按规则命名者记0分。
- 4. **Demo** 时长与文件大小: 要求 **Demo** 时长在 1分钟至 5 分钟之间为宜; **Demo** 需要 压缩,最终与报告一起组成的总的压缩文件大小 不超过 2001/1 为宜。如果时长与大 小超过各自的限制,请与老师联系。
- 5. **提交时间**:课程结束后所规定的时间,未按规定时间提交作业者记0分。
- 6. **提交地址**: <u>ftp://211.71.149.149/Yang_Meng/homework/三维动画原理与制作/大</u>作业(注: 按班级提交)。

参考书目:

- 上课时各章课件。
- 实验过程中所参考过的材料。
- 网上的一些资源。
- 其他一些课程相关书籍。
- 其他资源。

主讲教师:

教研室主任意见: 同	^{司意} 签字: ₋	年	月	日
学院负责人意见:	签字: _	年	月	日

注:此表一式两份,一份于考前交到考试中心,一份随学生课程设计材料上交学院。