Table 1: Basic Discrete-Time Fourier Transform Pairs

	T
Signal $x[n]$	DTFT $X(\omega)$
$a^n u[n], a < 1$	$\frac{1}{1-ae^{-j\omega}}$
$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & n > N_1 \end{cases}$	$\frac{\sin[\omega(N_1 + \frac{1}{2})]}{\sin(\omega/2)}$
$\frac{\sin Wn}{\pi n} = \frac{W}{\pi} \operatorname{sinc} \left(\frac{Wn}{\pi}\right)$ $0 < W < \pi$	$X(\omega) = \begin{cases} 1, & 0 \le \omega \le W \\ 0, & W < \omega \le \pi \end{cases}$ $X(\omega) \text{ periodic with period } 2\pi$
$\delta[n]$	1
u[n]	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{+\infty} \pi \delta(\omega - 2\pi k)$ $e^{-j\omega n_0}$
$\delta[n-n_0]$	$e^{-j\omega n_0}$
$(n+1)a^n u[n], a < 1$	$\frac{1}{(1-ae^{-j\omega})^2}$
$\frac{(n+r-1)!}{n!(r-1)!}a^nu[n], a < 1$	$\frac{1}{(1 - ae^{-j\omega})^r}$
$\sum_{k=\langle N\rangle} a_k e^{jk(2\pi/N)n}$	$\frac{1}{(1 - ae^{-j\omega})^r}$ $2\pi \sum_{k = -\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$
$e^{j\omega_0 n}$	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - \omega_0 - 2\pi l)$
$\cos \omega_0 n$	$\pi \sum_{l=-\infty}^{+\infty} \{\delta(\omega - \omega_0 - 2\pi l) + \delta(\omega + \omega_0 - 2\pi l)\}$
$\sin \omega_0 n$	$\frac{l=-\infty}{j} \sum_{l=-\infty}^{+\infty} \left\{ \delta(\omega - \omega_0 - 2\pi l) - \delta(\omega + \omega_0 - 2\pi l) \right\}$
x[n] = 1	$2\pi \sum_{l=-\infty}^{+\infty} \delta(\omega - 2\pi l)$
Periodic square wave	
$x[n] = \begin{cases} 1, & n \le N_1 \\ 0, & N_1 < n \le N/2 \end{cases}$	$2\pi \sum_{k=-\infty}^{+\infty} a_k \delta\left(\omega - \frac{2\pi k}{N}\right)$
and	~- w
$\frac{x[n+N] = x[n]}{+\infty}$	2_ +∞ / 2_l\
$\sum_{k=-\infty} \delta[n-kN]$	$\frac{2\pi}{N} \sum_{k=-\infty}^{+\infty} \delta\left(\omega - \frac{2\pi k}{N}\right)$

Table 2: Properties of the Discrete-Time Fourier Transform

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$X(\omega) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

Property	Aperiodic Signal	DTFT
Linearity Time-Shifting Frequency-Shifting Conjugation Time Reversal Time Expansions Convolution Multiplication	$x[n]$ $y[n]$ $ax[n] + by[n]$ $x[n - n_0]$ $e^{j\omega_0 n}x[n]$ $x^*[n]$ $x[-n]$ $x[-n]$ $x[k)[n] = \begin{cases} x[n/k], & \text{if } n = \text{multiple of } k \\ 0, & \text{if } n \neq \text{multiple of } k \end{cases}$ $x[n] * y[n]$ $x[n]y[n]$	$X(\omega)$ Periodic with $Y(\omega)$ period 2π $aX(\omega) + bY(\omega)$ $e^{-j\omega n_0}X(\omega)$ $X(\omega - \omega_0)$ $X^*(-\omega)$ $X(k\omega)$ $X(k\omega)$ $X(\omega)Y(\omega)$ $\frac{1}{2\pi}\int_{2\pi}X(\theta)Y(\omega-\theta)d\theta$
Differencing in Time Accumulation	$x[n] - x[n-1]$ $\sum_{k=-\infty}^{n} x[k]$	$(1 - e^{-j\omega})X(\omega)$ $\frac{1}{1 - e^{-j\omega}}X(\omega)$
Differentiation in Frequency	nx[n]	$+\pi X(0) \sum_{k=-\infty}^{+\infty} \delta(\omega - 2\pi k)$ $j \frac{dX(\omega)}{d\omega}$
Conjugate Symmetry for Real Signals	x[n] real	$\begin{cases} X(\omega) = X^*(-\omega) \\ \Re e\{X(\omega)\} = \Re e\{X(-\omega)\} \\ \Im m\{X(\omega)\} = -\Im m\{X(-\omega)\} \\ X(\omega) = X(-\omega) \\ \stackrel{\triangleright}{} X(\omega) = -\stackrel{\triangleright}{} X(-\omega) \end{cases}$
Symmetry for Real, Even Signals	x[n] real and even	$X(\omega)$ real and even
Symmetry for Real, Odd Signals Even-odd Decomposition of Real Signals	$x[n]$ real and odd $x_e[n] = \mathcal{E}v\{x[n]\} [x[n] \text{ real}]$ $x_o[n] = \mathcal{O}d\{x[n]\} [x[n] \text{ real}]$	$X(\omega)$ purely imaginary and odd $\Re e\{X(\omega)\}$ $j\Im m\{X(\omega)\}$

Parseval's Relation for Aperiodic Signals

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 = \frac{1}{2\pi} \int_{2\pi} |X(\omega)|^2 d\omega$$

Table 3: Some Common z-Transform Pairs

Signal	Transform	ROC
1. $\delta[n]$	1	All z
$2. \ u[n]$	$\frac{1}{1-z^{-1}}$	z > 1
3. $u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z except 0 (if $m > 0$) or ∞ (if $m < 0$)
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
$6\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
$8n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
9. $[\cos \omega_0 n] u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2\cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n] u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1-[2r\cos\omega_0]z^{-1}+r^2z^{-2}}$	z > r

$$X(z) = \sum_{n = -\infty}^{\infty} x[n]z^{-n}$$

Table 4: Properties of the z-Transform

Property	Sequence	Transform	ROC
	x[n]	X(z)	R
	$x_1[n]$	$X_1(z)$	R_1
	$x_2[n]$	$X_2(z)$	R_2
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$	At least the intersection of R_1 and R_2
Time shifting	$x[n-n_0]$	$z^{-n_0}X(z)$	R except for the possible addition or deletion of the origin
Scaling in the	$e^{j\omega_0 n}x[n]$	$X(e^{-j\omega_0}z)$	R
z-Domain	$z_0^n x[n]$	$X\left(\frac{z}{z}\right)$	z_0R
	$a^n x[n]$	$X\left(\frac{z}{z_0}\right) \\ X(a^{-1}z)$	Scaled version of R (i.e., $ a R =$ the set of points $\{ a z\}$ for z in R)
Time reversal	x[-n]	$X(z^{-1})$	Inverted R (i.e., R^{-1} = the set of points z^{-1} where z is in R)
Time expansion	$x_{(k)}[n] = \begin{cases} x[r], & n = rk \\ 0, & n \neq rk \end{cases}$	$X(z^k)$	$R^{1/k}$
	for some integer r		(i.e., the set of points $z^{1/k}$ where z is in R)
Conjugation	$x^*[n]$	$X^*(z^*)$	R
Convolution	$x_1[n] * x_2[n]$	$X_1(z)X_2(z)$	At least the intersection of R_1 and R_2
First difference	x[n] - x[n-1]	$(1-z^{-1})X(z)$	At least the intersection of R and $ z > 0$
Accumulation	$\sum_{k=-\infty}^{n} x[k]$	$\frac{1}{1-z^{-1}}X(z)$	At least the intersection of R and $ z > 1$
Differentiation in the z -Domain	nx[n]	$-z\frac{dX(z)}{dz}$	R
	Initial Val	ue Theorem	

Initial Value Theorem
If x[n] = 0 for n < 0, then $x[0] = \lim_{z \to \infty} X(z)$