

1 / 48

FIG. 1

FIG. 2

2 / 48

FIG. 3

FIG. 4

3 / 48

FIG. 5

FIG. 6a

4 / 48

FIG. 6b

FIG. 6c

5 / 48

FIG. 7a

FIG. 7b

6 / 48

FIG. 8

7 / 48

FIG. 9

FIG. 10

8 / 48

FIG. 11

9 / 48

FIG. 12

FIG. 13

10 / 48

FIG. 14

FIG. 15

11 / 48

FIG. 16

12 / 48

FIG. 17

FIG. 18

13 / 48

FIG. 19

FIG. 20

14 / 48

FIG. 21

FIG. 22

15 / 48

FIG. 23

FIG. 24

16 / 48

17 / 48

FIG. 27

18 / 48

FIG. 28

FIG. 29

FIG. 30

FIG. 31

19 / 48

20 / 48

FIG. 34

FIG. 35

FIG. 36

21 / 48

FIG. 37

FIG. 38

FIG. 39

09 JUL 2004

22 / 48

FIG. 40A

FIG. 40B

23 / 48

FIG. 40C

FIG. 40D

24 / 48

FIG. 40E

FIG. 40F

25 / 48

FIG. 40G

FIG. 40H

SUBSTITUTE SHEET (RULE 26)

26 / 48

FIG. 41

FIG. 42

27 / 48

FIG. 43A

FIG. 43B

28 / 48

FIG. 44

29 / 48

FIG. 45A

30 / 48

particle size (μm)**FIG. 45B**

FIG. 45C

32 / 48

Comparison between secondary- and non-secondary dried USN Heparin/leucien(80:10)

FIG. 46

33 / 48

FIG. 47A**FIG. 47B**

34 / 48

FIG. 48A

FIG. 48B

35 / 48

FIG. 49A**FIG. 49B**

36 / 48

FIG. 50A**FIG. 50B**

37 / 48

FIG. 51A

FIG. 51B

38 / 48

FIG. 52A

FIG. 52B

39 / 48

FIG. 53A**FIG. 53B**

40 / 48

FIG. 54

(CL I,60 l/min, 1.5 bar, 15ml reservoir, 2mg blister, 1900ug Clobozam)

FIG. 55

42 / 48

43 / 48

FIG. 58**FIG. 59**

44 / 48

FIG. 60**FIG. 61**

45 / 48

FIG. 62**FIG. 63**

46 / 48

Formulation Details	Uniformity of Delivered Dose 6000 (DUSA, n=10)					Fine Particle Performance (<5mm Cut-Off) 7000 MSI (ACI)								
	Drug Retention 6010		6020 Metered (µg)		6025 Mass Balance (µg)	7005 n=		Drug Retention 7010		7020 FPD DD (µg)	7025 FPF (%)	7030 Metered	7035 Mass Balance (µg)	7036 Test Flow Rate (L min ⁻¹)
	Blister (µg) 6012	Device (µg) 6013	(µg)	(µg)	(µg)	(µg)	(µg)	6012	6013	(µg)	(%)	(µg)	(µg)	(L min ⁻¹)
100µg 45-63µm Inversina	7.2	4.3	84	95	93	3	(1)	7.7	7.5	85	56	66	100	95 (95)
100µg 45-63µm Air Jet Inversina	7.3	3.6	85	95	92	3	4.4	5.7	82	55	66	92	89	95
100µg 45-63µm Grindomix						3	6.9	8.6	78	39	50	93	94	95
100µg 50-63µm Grindomix						3	5.4	6.3	86	40	47	97	96	95
100µg 45-63µm Air Jet Grindomix						3	4.2	9.4	83	52	62	97	92	95
200µg UF020100MGA 45-63µm Air Jet Inversation	10.0	5.3	188	203	96	(2)	(7.8)	(14.5)	(175)	(122)	(70)	(197)	(94)	60

47 / 48

Formulation Details 5000	Uniformity of Delivered Dose 6000 (DUSA, n=10)				Fine Particle Performance (<5mm Cut-Off) 7000 MSLI (ACI)							
	Drug Retention 6010	Delivered Dose 6015	Metered Dose 6020	Mass Balance 6025 (%)	Drug Retention 7010	Blister Device 6012 (µg)	Device 6013 (µg)	Delivered Dose 7020	Fine Particle FPD 7020 (µg)	Fine Particle FFP 7505 (µg)	Metered 7030 (µg)	Mass Balance 7035 (%)
100µg 45-63µm Inversina	6.6	7.8	81	81	95	95	95	8.8	5.6	82	52	64
200µg 45-63µm t Inversina	12.1	11.5	170	85	194	93	93	9.8	13.3	175	118	67
200µg 45-63µm Inversina	9.2 14.5	12.7 8.6	162 169	81 85	184 192	93 96	96	6.5	15.2	170	105	62
200µg 45-63µm Inversina	11.0	11.2	171	85	193	95	95	10.7	14.1	172	117	68

Test Flow Rate = 60 L Min⁻¹

FIG. 64B

48 / 48

FIG. 65

FIG. 66