

Introduction to source coding

Dr. Yoann Altmann

B39AX – Fall 2023 Heriot-Watt University

Plan

- Types of compression
- Lossless compression
 - Expected code length
 - Prefix codes
 - Optimal codes
 - Shannon source coding theorem (symbol code)
 - Huffman code
- Based on the book:
 "Information Theory,. Inference, and Learning Algorithms". David J.C. MacKay (Chap. 4-5)

Construction of an optimal code

- So far, we have proved the existence of "good" prefix codes
- We can assess if a code is uniquely decodable
- How can we construct an optimal code?
 - Huffman code

Huffman code

- 1. Take two least probable symbols in the alphabet
- 2. Give them the longest codewords differing only in the last digit
- 3. Combine them into a single symbol
- 4. Go back to 1.

Example 1

$$x$$
 step 1 step 2 step 3 step 4

a 0.25 0.25 0.25 0.25 0.55 0.25 0.45 0.45 1

b 0.25 0.25 0.25 0.45 0.45 1

c 0.2 0.2 0.3 0.3 0.3 0.3 0.3

a_i	p_i	$I(a_i)$	$c(a_i)$	l_i
а	0.25	2	00	2
b	0.25	2	10	2
С	0.2	2.3	11	2
d	0.15	2.7	010	3
е	0.15	2.7	011	3

$$H(X) = 2.2855$$
 bits $L(X, C) = 2.30$ bits

Example 2

$$H(X) = 1.0298$$
 bits $L(X, C) = 1.31$ bits

a_i	p_i	$I(a_i)$	$c(a_i)$	l_i
а	0.8	0.32	0	1
b	0.09	2.41	10	2
С	0.05	3.00	110	3
d	0.06	2.81	111	3

Huffman code

- Optimal: minimizes L(X, C)
- Prefix code (easy to decode)
- Limitations:
 - Overhead (between 0 and 1) important if H(X) is small: compression of blocks of symbols instead to increase H(X)
 - Context not used (symbol code vs stream code)

Summary

- Lossless compression of symbols
 - Expected code length
 - Prefix codes
 - Optimal codes
 - Shannon source coding theorem (symbol code)
 - Huffman code