3 Übung vom 12.05.

5. Aufgabe

(a) Es seien

$$M = \bigcap_{i=1}^{k} \{ f_i \le \alpha_i \} = \bigcap_{i=1}^{m} \{ g_i \le \beta_i \}$$

zwei Darstellungen von M. Es sei weiter $i \in \{1, ..., k\}$ mit

$$F := M \cap \{f_i = \alpha_i\} \neq \emptyset$$

Behauptung: $\exists J \subset \{1,\ldots,m\}, \ J \neq \emptyset \ [\text{mit } F = M \cap \bigcap_{j \in J} \{g_j = \beta_j\}]$

 $F\neq\varnothing,$ also besitzt F
 relativ innere Punkte, d.h. es existiert ein $\alpha>0$ mit

$$B := \underbrace{B_{\alpha}(x)}_{\text{Kugel um x mit Radius }\alpha} \cap \operatorname{aff} F \subset F$$

wobei $x \in \text{rel int } F \text{ sein soll.}$

Wir definieren

$$J := \{i \in \{1, \dots, k\} | g_j(x) = \beta_j\}$$

Weil $x \in F \subset \{f_i = \alpha_i\}$, gilt $x \notin \text{int } M$. Also gilt: $\exists j \in \{1, \dots, k\} : g_j(x) = \beta_j$, somit ist $J \neq \emptyset$.

Wir setzen

$$\tilde{F} := M \cap \bigcap_{j \in J} \{g_j = \beta_j\}$$

 $z.z.: \tilde{F} = F$

"⊃": Sei $j \in J$ und $z \in \mathbb{R}^n$ so, dass $x + z \in B$. Dann gilt:

$$x+z\in B\subset F\subset \{g_j\leq \beta_j\}$$

$$x - z \in B \subset F \subset \{g_j \le \beta_j\}$$

Somit:

$$g_j(x+z) = g_j(x) + g_j(z) = \beta_j + g_j(z) \le \beta_j$$

 $g_j(x-z) = g_j(x) - g_j(z) = \beta_j - g_j(z) \le \beta_j$

$$\Rightarrow g_i(z) = 0$$

Es gilt: $B \subset \{g_j = \beta_j\}$ für alle $j \in J$

$$\left. \begin{array}{ll} F & \subset & \text{aff } F = \text{aff } B \subset \bigcap_{j \in J} \{g_j = \beta_j\} \\ F & \subset & M \end{array} \right\} \Rightarrow F \subset \tilde{F}$$

"
—": Sei $y \in \tilde{F}$ und x wie zuvor.

Der Strahl $h := \{y + \beta(x - y) | \beta \ge 0\}$ erfüllt $h \subset \{g_j = \beta_j\} \ \forall j \in J$.

Weil $g_j(x) < \beta_j \ \forall j \notin J \text{ liegt } x \in \text{int } \bigcap_{j \notin J} \{g_j = \beta_j\}.$ Damit existiert aber ein $z \in h \cap M \text{ mit } x \in [y, z].$

Es gilt $f_i(x) = \alpha_i$ und $f_i(y) \le \alpha_i$ und $f_i(z) \le \alpha_i$, sowie $f_i(\alpha y + (1 - \alpha)z) = f(x)$ für ein $\alpha \in (0, 1)$.

$$\alpha_i = f_i(x) = \alpha f_i(y) + (1 - \alpha) f_i(z) \Rightarrow f_i(y) = \alpha_i, \ f_i(z) = \alpha_i \Rightarrow y \in F$$

(b) Falls $M = \mathbb{R}^n$, so hat M keine Seiten.

Es sei also

$$M = \bigcap_{i=1}^{k} \{ f_i \le \alpha_i \}, \ k \ge 1 \qquad (*)$$

Ist $F = M \cap \{f_{i_0} = \alpha_{i_0}\}$ für ein $i_0 \in \{1, \dots, k\}$, so gilt $F = M \cap \{f_{i_0} \le \alpha_{i_0}\} \cap \{f_{i_0} \ge \alpha_{i_0}\}$ und F ist polyedrisch nach Definition.

Jeder andere Seitentyp ist nicht-leerer Schnit solcher Mengen, also auch polyedrisch.

(c) Es sei M in der Form (*) gegeben und $F = M \cap \bigcap_{i \in I} \{f_i = \alpha_i\} = M \cap \bigcap_{i \in I} \{f_i \leq \alpha_i\} \cap \bigcap_{i \in I} \{f_i \geq \alpha_i\}$ mit $\emptyset \neq I \subset \{1, \dots, k\}$. (**)

Für jede Seite F' von F gilt also

$$F' = F \cap \bigcap_{j \in J} \{f_j = \alpha_j\} = M \cap \bigcap_{i \in I \cup J} \{f_i = \alpha_i\}$$

 $mit J \subset \{1, \dots, k\}.$

Also ist F' Seite von M.

(d) Es seien F', F Seiten von M, $F' \subset F$. Dann existieren $I, I' \subset \{1, \dots, k\}$ mit

$$F = \bigcap_{i=1}^{k} \{ f_i \le \alpha_i \} \cap \bigcap_{i \in I} \{ f_i = \alpha_i \}$$

$$F' = M \cap \bigcap_{i \in I'} \{ f_i = \alpha_i \}$$

Es gilt:

$$F' = F \cap F' = M \cap \bigcap_{i \in I} \{f_i = \alpha_i\} \cap \bigcap_{i \in I'} \{f_i = \alpha_i\} = F \cap \bigcap_{i \in I, I'} \{f_i = \alpha_i\}$$

6. Aufgabe

"(i)⇒(ii)": Es sei s Extremalstrahl, d.h.

$$s = M \cap \bigcap_{i \in I} \{ f_i = \alpha_i \} \text{ mit } I \subset \{1, \dots, k\}$$

$$(M = \bigcap_{i=1}^{k} \{ f_i \le \alpha_i \})$$

Weiter sei $x \in s$ und $y, z \in M$ mit $x = \alpha y + (1 - \alpha)z$. Für $i \in I$ gilt: $\alpha_i = f_i(x) = \alpha \underbrace{f_i(y)}_{\leq \alpha_i} + (1 - \alpha) \underbrace{f_i(z)}_{\leq \alpha_i} \Rightarrow f_i(y) = \alpha_i, \ f_i(z) = \alpha_i$ $\Rightarrow y, z \in s$

"(ii)⇒(i)": Wir definieren

$$I := \{i \in \{1, \dots, k\} | s \subset \{f_i = \alpha_i\}\}$$

und

$$F := M \cap \bigcap_{i \in I} \{ f_i = \alpha_i \}$$

z.z.: $I \neq \emptyset$, F = s

Falls $I = \emptyset$, dann existiert $x \in s$ mit $x \in \bigcap_{i=1}^k \{f_i < \alpha_i\} = \text{int } M$. Dann existieren aber $y, z \in M$ mit $y, z \notin s$ und $x \in [y, z]$, was ein Widerspruch zur Voraussetzung ist.

Also $I \neq \emptyset$.

Nach Definition von F ist $s \subset F$ klar.

 $\mathbf{z.z.:}\ F\subset s$

Sei $y \in F$ und $x = x^0 + u^0$ (wobei $s = \{x^0 + \beta u^0 | \beta \ge 0\}$). Wir betrachten den Strahl

$$h := \{ y + \beta(x - y) | \beta \ge 0 \}$$

Für $i \in I$ gilt: $h \subset \{f_i = \alpha_i\}$, also $h \subset \bigcap_{i \in I} \{f_i = \alpha_i\}$. Wie zuvor: $f_i(x) < \alpha_i \ \forall i \notin I$.

Also gilt $x \in \bigcap_{i \notin I} \{f_i < \alpha_i\}.$

Damit existiert aber ein $z \in h$ mit $z \neq x$ und $x \in [y, z]$. Wegen (ii) folgt daraus, dass $y, z \in s$.

Also gilt $F \subset s$.

7. Aufgabe

 $M \subset \mathbb{R}^n$ mit M nichtleer, geradenfrei, polyedrisch

"⇒": (Sei M ein Kegel.)

 $M \neq \emptyset$, M polyedrisch, M geradenfrei \Rightarrow vert $M \neq \emptyset$

Sei $x \in \text{vert } M$.

Falls $x \neq 0$, so gilt $0 \in M$, $2x \in M$ und es gilt $x \in [0, 2x]$. Widerspruch zu x Ecke!

Also muss x = 0 sein. [Also: vert $M = \{0\}$]

 \Rightarrow ": Sei vert $M = \{0\}$.

Nach Vorlesung: (*) $M = \text{conv} \{\{0\} \cup \text{exth } M\}$

[exth ist die Vereinigung aller Extremalstrahlen]

Ist $M = \{0\}$, so ist M Kegel. Also gelte nun exth $M \neq \emptyset$.

Es sei $s \in \text{exth } M$, also $s = \{x^0 + \beta u^0 | \beta \ge 0\}, \ x^0 \in \mathbb{R}^n, \ u^0 \in S^{n-1}.$

 $[S^{n-1} = \{u \in \mathbb{R}^n : ||u|| = 1\}$ Einheitssphäre]

$$x^0 \in \text{vert } s \Rightarrow x^0 \text{ ist 0-Seite von s}$$

$$\overset{\text{Aufgabe 5}}{\Rightarrow} x^0 \text{ ist 0-Seite von M}$$

$$\Rightarrow x^0 \in \text{vert } M$$

$$\Rightarrow x^0 = 0$$

D.h. jeder Extremalstrahl ist von der Form $\{\beta u^0|\ \beta\geq 0\}$ für ein $u^0\in S^{n-1}$.

Seien $u^1, \dots, u^k \in S^{n-1}$ die Richtungen der Extremalstrahlen. Dann gilt:

$$M = \operatorname{conv} \left\{ \{0\} \cup \bigcup_{i=1}^{k} \{\beta u^{i} | \beta \ge 0\} \right\}$$

und man rechnet einfach nach, dass M Kegel ist.

8. Aufgabe

O.E.
$$y^{i} \neq 0$$
 für $i = 1, ..., m$.

Wir definieren $M := \text{conv } \{y^1, \dots, y^m\}.$

Dann gilt: $0 \notin M$. Denn andernfalls:

$$0 = \beta_1 y^1 + \ldots + \beta_m y^m \quad \text{mit } \beta_i \ge 0 \text{ und } \sum_{i=1}^m \beta_i = 1$$

$$\overset{\text{O.E. } \beta_1 > 0}{\Rightarrow} y^1 = -(\underbrace{\alpha_2}_{=\frac{\beta_2}{\beta_1}} y^2 + \dots + \underbrace{\alpha_m}_{=\frac{\beta_m}{\beta_1}} y^m) \quad \text{mit } \alpha_i \ge 0$$

Also gilt $-y^1 \in V \Rightarrow$ Gerade, die von y^1 und $-y^1$ aufgespannt wird, liegt auch in V. Widerspruch!

Es sei $x_0 \in M$ mit $||x_0|| = \min_{x \in M} ||x||$.

Wir definieren $f := \langle \cdot, x_0 \rangle$.

Dann gilt: $f(z) \ge 0 \ \forall z \in M$. Ansonsten Widerspruch zur Wahl von $x_0!^{(1)}$

 $V=\bigcup_{\alpha\geq 0}\alpha M\subset\{f\geq 0\}$ und $V\backslash\{0\}\subset\{f>0\}$ und wir haben die Behauptung.

Anmerkung (1): Man kann sich das anschaulich klar machen. Im zweidimensionalen zeichne die Gerade $\{f=0\}$. Sei $z\in M$ in der Halbebene, in der x_0 nicht liegt, z.B. $z\in \{f<0\}$ (dann f(z)<0). $[z,x_0]\subset M$ und schon findet man einen Punkt der näher am Nullpunkt ist als x_0 . [...]

Zusatzaufgabe

Musterlösung online.