Notes on fixed-point procedure

Contents

L	Not	cations and assumptions
2	Esti	imates
	2.1	Useful elementary lemmas
	2.2	Integrals along ion characteristics
	2.3	Upper bounds on the densities
	2.4	Lower bound on n_i .

1 Notations and assumptions

We suppose that

- 1. $f_{e,b}$ satisfies the boundary condition, i.e. $f_{e,b}(v) = 0$ as soon as $\mathcal{L}_e(0,v) \leq \mathcal{L}_e(1,0)$.
- 2. $f_{e,b}$ is continuous. Lipschitz may be required?
- 3. $f_{e,b}$ is bounded from above by a constant $\bar{c} \geqslant 0$.
- 4. There exists $\underline{c} > 0$ and $0 \leq \underline{v} < \overline{v}$ such that $f_{e,b}(v) \geq \underline{c}$ for all $v \in [-\overline{v}, -\underline{v}]$.
- 5. The function φ satisfies $\varphi(0) = \varphi'(0) = 0$.
- 6. The function φ is strongly concave, i.e. there exists $\alpha > 0$ such that $\varphi((1-\tau)x + \tau y) \ge (1-\tau)\varphi(x) + \tau \varphi(y) + \frac{\alpha}{2}(1-\tau)\tau |x-y|^2$.
- 7. There exists $\beta > \alpha$ such that $\varphi(1) \geqslant -\beta$. Uniformly over the fixed-point iterations

We use the following notations: the Liapunov functions of the electrons and the ions are

$$\mathcal{L}_e(x,v) := \frac{v^2}{2} - \frac{1}{\mu}\varphi(x). \tag{1.1}$$

$$\mathcal{L}_i(x,v) := \frac{v^2}{2} + \varphi(x). \tag{1.2}$$

We define an upper bound \overline{v}_e over the velocities in the support of f_e , given as

$$\mathcal{L}_e(0, \overline{v}_e) := \frac{1}{\mu}\beta \geqslant -\frac{1}{\mu}\varphi(1) = \mathcal{L}_e(1, 0), \quad \text{i.e.} \quad \overline{v}_e := \sqrt{\frac{2}{\mu}\beta}.$$
 (1.3)

For a given point $(x, v) \in [0, 1] \times \mathbb{R}^-$, we denote by (x_b, v_b) the intersection of the boundary $\{x = 0\} \cup \{v = 0\}$ with the ion characteristic issued from (x, v). The values are given by

$$\begin{pmatrix} x_b(x,v) \\ v_b(x,v) \end{pmatrix} := \begin{cases} \begin{pmatrix} \varphi^{-1} \left(\frac{v^2}{2} + \varphi(x) \right) \\ 0 \end{pmatrix} & \text{if } \mathcal{L}_i(x,v) \leq 0, \\ \begin{pmatrix} 0 \\ -\sqrt{v^2 + 2\varphi(x)} \end{pmatrix} & \text{if } \mathcal{L}_i(x,v) > 0. \end{cases}$$
(1.4)

2 Estimates

2.1 Useful elementary lemmas

Lemma 2.1. Let $\alpha > 0$, $\overline{x} \geqslant 0$ and $\overline{y} \geqslant 0$. Then

$$\mathcal{I} \coloneqq \int_{x=0}^{\overline{x}} \int_{y=0}^{\overline{y}} \frac{1}{\left(x^2 + \alpha y^2\right)^{1/2}} dy dx \leqslant 2 \frac{\sqrt{2\overline{xy}}}{\alpha^{1/4}}.$$

Demonstration By the change of variable $z = \sqrt{\alpha}y$, with $\overline{z} := \sqrt{\alpha}\overline{y}$, we have

$$\mathcal{I} = \frac{1}{\sqrt{\alpha}} \int_{x=0}^{\overline{x}} \int_{z=0}^{\overline{z}} \frac{1}{(x^2 + z^2)^{1/2}} dz dx.$$

Notice that $x + z \leq \sqrt{2} (x^2 + y^2)^{1/2}$. Then,

$$\mathcal{I} \leqslant \frac{1}{\sqrt{\alpha}} \int_{x=0}^{\overline{x}} \int_{z=0}^{\overline{z}} \frac{\sqrt{2}}{x+z} dz dx = \sqrt{\frac{2}{\alpha}} \int_{x=0}^{\overline{x}} \ln\left(\frac{x+\overline{z}}{x}\right) dx = \sqrt{\frac{2}{\alpha}} \int_{x=0}^{\overline{x}} \ln\left(1+\frac{\overline{z}}{x}\right) dx.$$

Using $\ln(1+a) \leqslant \sqrt{a}$, we get

$$\mathcal{I}\leqslant\sqrt{\frac{2}{\alpha}}\int_{x=0}^{\overline{x}}\sqrt{\frac{\overline{z}}{x}}dx=\sqrt{\frac{2}{\alpha}}2\sqrt{\overline{x}\overline{z}}=2\frac{\sqrt{2\overline{x}\overline{y}}}{\alpha^{1/4}}.$$

Remark 2.1 (Exact value). Let $\overline{r} := \sqrt{\overline{x}^2 + \overline{z}^2}$. Then

$$\mathcal{I} = \overline{x} \ln \left(\frac{1 + \overline{z}/\overline{r}}{\overline{x}/\overline{r}} \right) + \overline{z} \ln \left(\frac{1 + \overline{x}/\overline{r}}{\overline{z}/\overline{r}} \right).$$

2.2 Integrals along ion characteristics

The estimates will rely on two particular cases, the we treat independently as lemmas. For a given x, we define $g_x : [0, x] \mapsto \mathbb{R}^+$ by

$$\mathcal{L}_i(x, -g_x(y)) = \mathcal{L}_i(y, 0), \quad \text{i.e.} \quad g_x(y) = \left(2\left(\varphi(y) - \varphi(x)\right)\right)^{1/2}.$$

Lemma 2.2. Let $0 \le y < x \le 1$. We have

$$\mathcal{I} := \int_{v=-q_{\tau}(y)}^{0} \int_{z=x_{h}(x,v)}^{x} \frac{1}{\left(v^{2}-q_{\tau}^{2}(z)\right)^{1/2}} dz dv \leqslant 2\sqrt{\frac{2}{\alpha}} \left(\varphi(y)-\varphi(x)\right)^{1/4} \sqrt{x-y}.$$

Demonstration Let us first use Fubini's theorem to switch the order of integration. The lower bound $x_b(x, v) \ge z$ becomes an upper bound $v \le -g_x(z)$, and we have

$$\mathcal{I} = \int_{z=y}^{x} \int_{v=-g_x(y)}^{-g_x(z)} \frac{1}{(v^2 - g_x^2(z))^{1/2}} dv dz = \int_{z=y}^{x} \int_{v=g_x(z)}^{g_x(y)} \frac{1}{(v^2 - g_x^2(z))^{1/2}} dv dz.$$

With the change of variable $w = v - g_x(z)$, and using $\frac{d}{dw} \left[\sinh^{-1} \left(\sqrt{\frac{w}{a}} \right) \right] = \left(w^2 + 2aw \right)^{-1/2}$, we get

$$\mathcal{I} = \int_{z=y}^{x} \int_{w=0}^{g_x(y) - g_x(z)} \frac{1}{\left(w^2 + 2wg_x(z)\right)^{1/2}} dw dz = \int_{z=y}^{x} \sinh^{-1} \left(\sqrt{\frac{g_x(y) - g_x(z)}{g_x(z)}}\right) dz.$$

Using the coarse estimates $\sinh^{-1}(a) \leqslant a$ and $\sqrt{\frac{a-b}{b}} \leqslant \sqrt{\frac{a}{b}}$, we get

$$\mathcal{I} \leqslant \int_{z=y}^{x} \sqrt{\frac{g_x(y)}{g_x(z)}} dz = \int_{z=y}^{x} \left(\frac{\varphi(y) - \varphi(x)}{\varphi(z) - \varphi(x)}\right)^{1/4} dz.$$

The assumption of strong convexity yields $\varphi(z) - \varphi(x) \ge -\varphi'(z)(x-z) + \frac{\alpha}{2}|x-z|^2 \ge \frac{\alpha}{2}(x-z)^2$, so that

$$\mathcal{I} \leqslant \sqrt{\frac{2}{\alpha}} \left(\varphi(y) - \varphi(x) \right)^{1/4} \int_{z=y}^{x} \frac{1}{\left(x - z \right)^{1/2}} dz = 2\sqrt{\frac{2}{\alpha}} \left(\varphi(y) - \varphi(x) \right)^{1/4} \sqrt{x - y}.$$

Lemma 2.3. Let $0 \le y \le x \le 1$, and $-v_0 < -g_x(y)$. We have

$$\mathcal{I} \coloneqq \int_{v=-v_0}^{-g_x(y)} \int_{z=y}^{1} \frac{1}{\left(v^2 + 2\left(\varphi(x) - \varphi(z)\right)\right)^{1/2}} dz \, dv \leqslant \frac{2\sqrt{2(1-y)}}{\alpha^{1/4}} \left(v_0^2 + 2\left(\varphi(x) - \varphi(y)\right)\right)^{1/4}.$$

Proposition 2.1. The density n_i is bounded and continuous.

Demonstration We use the symmetry of f_i to write

$$n_i(x) = \int_{v = -\infty}^{\infty} f_i(x, v) dv = 2 \int_{v = -\infty}^{0} f_i(x_b(x, v), v_b(x, v)) dv = 2 \int_{v = -\infty}^{0} \int_{t = -\infty}^{0} f_e(x(t), v(t)) dt dv,$$

where $(x(t), v(t))_{t \leq 0}$ is the ion characteristic reaching $(x_b(x, v), v_b(x, v))$ at t = 0. Notice that the lower bounds are artificial, since the characteristic enters the support of f_e in finite time: we may use $v \geq -\overline{v}_e$, and consider only times t for which $x(t) \in [0, 1]$.

We first reparametrize (x(t), v(t)) using the space variable. Define $z = x(t) \in [x_b, 1]$, and observe that

$$dz = \dot{x}(t)dt = v(t)dt$$
, with $\mathcal{L}_i(z, v(t)) = \mathcal{L}_i(x, v)$ \iff $v(t) = -\left(v^2 + 2\left(\varphi(x) - \varphi(z)\right)\right)^{1/2}$.

Then, the density rewrites

$$n_i(x) = 2 \int_{v = -\overline{v}_e}^{0} \int_{z = x_b(x, v)}^{1} \frac{f_e\left(z, -\left(v^2 + 2\left(\varphi(x) - \varphi(z)\right)\right)^{1/2}\right)}{\left(v^2 + 2\left(\varphi(x) - \varphi(z)\right)\right)^{1/2}} dz dv.$$

Let us show that n_i is bounded. We use the coarse estimate $f_e \leqslant \bar{c}$, and decompose the integral in three:

$$n_{i}(x) \leqslant 2\overline{c} \left[\underbrace{\int_{v=-g_{x}(0)}^{0} \int_{z=x_{b}(x,v)}^{x}}_{\overline{I}_{1}} + \underbrace{\int_{v=-g_{x}(0)}^{0} \int_{z=x}^{1}}_{\overline{I}_{2}} + \underbrace{\int_{v=-\overline{v}_{e}}^{-g_{x}(0)} \int_{z=x_{b}(x,v)}^{1}}_{\overline{I}_{3}} \right] \frac{1}{\left(v^{2} + 2\left(\varphi(x) - \varphi(z)\right)\right)^{1/2}} dz dv.$$

The corresponding domains are represented figure (2).

Notice that whenever $z \le x$, we have $0 \ge 2(\varphi(x) - \varphi(z)) = -(2(\varphi(z) - \varphi(x)))^{2/2} = -g_x^2(z)$. Then, the integral \mathcal{I}_1 may be bounded using lemma (2.2) with y = 0:

$$\mathcal{I}_{1} = \int_{v=-q_{x}(0)}^{0} \int_{z=x_{b}(x,v)}^{x} \frac{1}{\left(v^{2}-q_{x}^{2}(z)\right)^{1/2}} dz dv \leqslant 2\sqrt{\frac{2}{\alpha}} \left(-\varphi(x)\right)^{1/4} \sqrt{x} \leqslant 2\sqrt{\frac{2}{\alpha}} \left(-\varphi(1)\right)^{1/4}.$$

We use lemma (2.3) to bound \mathcal{I}_2 and \mathcal{I}_3 . In the first case, we take y=x and $v_0=g_x(0)$, and notice that $-g_x(x)=0$. In the second case, we take $v_0=\overline{v}_e$ and y=0, and notice that on $v \leq -g_x(0)$, we have $x_b(x,v)=0$ (the velocity is low enough so that the characteristic ends on x=0). This yields

$$\mathcal{I}_{2} \leqslant \frac{2\sqrt{2(1-x)}}{\alpha^{1/4}} \left(g_{x}^{2}(0)\right)^{1/4} \leqslant \frac{4}{\alpha^{1/4}} \left(-\varphi(1)\right)^{1/2}, \quad \text{and} \quad \mathcal{I}_{3} \leqslant \frac{2\sqrt{2}}{\alpha^{1/4}} \left(\overline{v}_{e}^{\; 2} + 2\varphi(x)\right)^{1/4} \leqslant \frac{4}{\alpha^{1/4}} \left(\frac{\beta}{\mu}\right)^{1/4}.$$

Figure 1: Decomposition of the integral defining n_i .

o boy so many things to say