Drew Johnston

www.linkedin.com/in/drewjohnston13 - drew.johnston13@gmail.com - 918-804-4321

Education

BS, Applied & Computational Mathematics (ACME)

December 2020

Brigham Young University

Provo. Utah

- ACME is a combination of rigorous mathematics, coding, and statistical modelling.
- Concentration: Machine Learning
- Major GPA: 4.00, Total GPA: 3.99, ACT: 35, SAT: 2340 (1540)
- Awarded full tuition scholarship from Brigham Young University based on academics
- Relevant Coursework:

Deep Learning Modeling Dynamics and Control Natural Language Processing Modeling Uncertainty and Data

Approximation Theory Machine Learning **Dynamic Optimization** Probabilistic Methods

Skills

- Reading Documentation
- Data Visualization
- **Predictive Modeling**
- Communication Coding: Python, R, C++, Apache Spark, SQL, MongoDB, Jupyter, NLTK, Git, Bash
- Python Modules: NumPy, SciPy, Scikit-Learn, Matplotlib, Pandas, PyTorch, BeautifulSoup, Requests, NetworkX

Debugging

Problem Solving

Relevant Experience

Undergraduate Researcher

June 2019 – August 2019

University of North Carolina at Wilmington - Department of Mathematics and Statistics

Wilmington, NC

- Selected as one of 8 students to work with a team funded by the National Science Foundation to develop novel features for detecting atrial fibrillation in electrocardiogram readings.
- Achieved up to 97% accuracy using a random forest model with personally engineered features.
- Composed a paper detailing methodology and results and presented my work at multiple research conferences.

Data Science Intern

September 2018 – Present

NCH Capital Inc.

Rio de Janeiro, Brazil/Provo, UT

- Validated proprietary metrics for stock cycle prediction with machine learning techniques.
- Combined in-house data with data from BYU's Bloomberg terminal to identify features to be used in anomaly detection for growth-based investment strategies.

Relevant Projects

Applied Machine Learning: "The Titanic Problem"

- Built and tested a variety of machine learning to solve "The Titanic Problem," predicting the survival of hundreds of passengers on the Titanic based on a given training set.
- Performed data munging, cleaning, preprocessing, and feature engineering to improve performance.
- Achieved 83% accuracy with my model, a result on par with the industry standard for this problem.

Fourier Analysis

Experimented using the Discrete Fourier Transform to perform convolution on sound bites, effectively eliminate white noise from sound files, and clean up distorted images.

Deep Learning: Cancer Detection

- Built a convolutional neural network with U-net architecture to act as a "virtual radiologist," learning to identify and label cancerous tissue among healthy tissue in images.
- Achieved cross-validation accuracy of 95% with cross-entropy loss of 0.3 on cancer image dataset.

Data Analysis: Bias in Pitchfork Music Reviews

- Used Selenium, BeautifulSoup, and Spotipy to scrape information from 18,000 Pitchfork music reviews, 70 years of Billboard 200 albums, and musical features from Spotify about the albums in question.
- Engineered features and created visualizations to illustrate bias inherent in modern music review companies.