Partial Differential Equations - Class Notes

Steven Blythe

March 7, 2022

Wave Equation Solutions

• $x \in (-\infty, \infty), t \in [0, \infty)$

•
$$u(x,0) = f(x)$$

• $u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} f(y)e^{-\frac{(x-y)^2}{4t}} dy$

Let the initial condition be a "delta function," $\delta(x)$.

What is a delta function, $\delta(x)$?

It has two main properties:

1.
$$\delta(x) = 0, x \neq 0.$$

$$2. \int_{-\infty}^{\infty} \delta(x) \, dx = 1$$

The "mass" is centered at x=0. The delta function is not a function because $\delta(0)=?$. Actually, the delta function is a measure.

Calculations with Delta Functions

$$\int_{-\infty}^{\infty} \delta(y)g(x-y) \, dy = \int_{-\infty}^{\infty} \delta(x-y)g(y) \, dy = g(x)$$
 (1)

Here, $\delta(y)$ is zero except when y = 0 and $\delta(x - y) = 0$ except when x = y.

Here, we have a convolution $\delta * g$, where our variables can switch.

What do we expect when $f(x) = \delta(x)$?

When t=0, our area is the t axis: |, however, as $t\to\infty$, then the area slowly flattens, akin to a candle.

Mathematically, what do we expect?

$$u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} \delta(y)e^{-\frac{(x-y)^2}{4t}} dy$$
 (2)

$$=\frac{1}{\sqrt{4\pi t}}e^{-\frac{x^2}{4t}}\tag{3}$$

The t's impact in the fraction reduces the amplitude and the t in the exponent flattens out the curve.

This is the Gaussian Normal Distributions

What if $f(x) = 7\delta(x) + 5\delta(x-3)$?

$$u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} [7\delta(y) + 5\delta(y-3)]e^{-\frac{(x-y)^2}{4t}} dy$$
 (4)

$$= \frac{1}{\sqrt{4\pi t}} \left[\int_{-\infty}^{\infty} 7\delta(y) e^{-\frac{(x-y)^2}{4t}} \, dy + \int_{-\infty}^{\infty} 5\delta(y-3) e^{-\frac{(x-y)^2}{4t}} \, dy \right]$$
 (5)

$$= \frac{1}{\sqrt{4\pi t}} \left[7e^{-\frac{x^2}{4t}} + 5e^{-\frac{(x-3)^2}{4t}} \right] \tag{6}$$

So for a general f(x), think of f(x) as a bunch of delta functions.