Analysis of the Frank-Wolfe Method for Convex Composite Optimization involving a Logarithmically-Homogeneous Barrier

Renbo Zhao

MIT Operations Research Center

Joint work with Robert M. Freund (MIT Sloan School of Management)

SIAM Conference on Optimization July, 2021

1 / 20

$$F^* := \min_{x \in \mathbb{R}^n} \left[F(x) := f(\mathsf{A}x) + h(x) \right] \tag{P}$$

Consider the following convex composite optimization problem:

$$F^* := \min_{x \in \mathbb{R}^n} [F(x) := f(Ax) + h(x)]$$
 (P)

 $ightharpoonup f: \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ is a θ -logarithmically-homogeneous self-concordant barrier (θ -LHSCB) for some regular cone $\mathcal{K} \subseteq \mathbb{R}^m$,

$$F^* := \min_{x \in \mathbb{R}^n} [F(x) := f(Ax) + h(x)]$$
 (P)

- $ightharpoonup f: \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ is a θ -logarithmically-homogeneous self-concordant barrier (θ -LHSCB) for some regular cone $\mathcal{K} \subseteq \mathbb{R}^m$,
- \triangleright A: $\mathbb{R}^n \to \mathbb{R}^m$ is a linear operator (not necessarily invertible),

$$F^* := \min_{x \in \mathbb{R}^n} [F(x) := f(Ax) + h(x)]$$
 (P)

- $ightharpoonup f: \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ is a θ -logarithmically-homogeneous self-concordant barrier (θ -LHSCB) for some regular cone $\mathcal{K} \subseteq \mathbb{R}^m$,
- $\triangleright A : \mathbb{R}^n \to \mathbb{R}^m$ is a linear operator (not necessarily invertible),
- $\triangleright h: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a proper, closed and convex (but possibly non-smooth) function, and dom h is nonempty convex and compact.

$$F^* := \min_{x \in \mathbb{R}^n} [F(x) := f(Ax) + h(x)]$$
 (P)

- $ightharpoonup f: \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ is a θ -logarithmically-homogeneous self-concordant barrier (θ -LHSCB) for some regular cone $\mathcal{K} \subseteq \mathbb{R}^m$,
- $\triangleright A : \mathbb{R}^n \to \mathbb{R}^m$ is a linear operator (not necessarily invertible),
- $\triangleright h: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a proper, closed and convex (but possibly non-smooth) function, and dom h is nonempty convex and compact.
- \triangleright We recover the traditional problem setting for Frank-Wolfe when h is the indicator function $h := \iota_{\mathcal{X}}$ of a compact convex set \mathcal{X} .

$$F^* := \min_{x \in \mathbb{R}^n} [F(x) := f(Ax) + h(x)]$$
 (P)

- $ightharpoonup f: \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ is a θ -logarithmically-homogeneous self-concordant barrier (θ -LHSCB) for some regular cone $\mathcal{K} \subseteq \mathbb{R}^m$,
- $\triangleright A : \mathbb{R}^n \to \mathbb{R}^m$ is a linear operator (not necessarily invertible),
- $\triangleright h: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is a proper, closed and convex (but possibly non-smooth) function, and dom h is nonempty convex and compact.
- \triangleright We recover the traditional problem setting for Frank-Wolfe when h is the indicator function $h := \iota_{\mathcal{X}}$ of a compact convex set \mathcal{X} .
- ightharpoonup Assume dom $F \neq \emptyset$, so at least one minimizer $x^* \in \text{dom } F$ exists, and define $F^* := F(x^*)$.

$$\min_{x \in \mathcal{X}} f(x)$$
 (tP)

3 / 20

$$\min_{x \in \mathcal{X}} f(x)$$
 (tP)

 \triangleright \mathcal{X} is a nonempty convex and compact set.

$$\min_{x \in \mathcal{X}} f(x)$$
 (tP)

- \triangleright \mathcal{X} is a nonempty convex and compact set.
- ${}> f$ is L-smooth w.r.t. $\|\cdot\|$ on \mathcal{X} , which then implies

$$f(x') \le f(x) + \langle \nabla f(x), x' - x \rangle + (L/2) \|x' - x\|^2, \quad \forall x', x \in \mathcal{X}. \quad (LSm)$$

$$\min_{x \in \mathcal{X}} f(x)$$
 (tP)

- $\triangleright \mathcal{X}$ is a nonempty convex and compact set.
- $\triangleright f$ is L-smooth w.r.t. $\|\cdot\|$ on \mathcal{X} , which then implies

$$f(x') \leq f(x) + \langle \nabla f(x), x' - x \rangle + (L/2) \|x' - x\|^2, \quad \forall \, x', x \in \mathcal{X}. \quad \text{(LSm)}$$

 \triangleright At iteration k of FW, $x^k \in \mathcal{X}$ and the method does the following:

$$\min_{x \in \mathcal{X}} f(x)$$
 (tP)

- $\triangleright \mathcal{X}$ is a nonempty convex and compact set.
- $\triangleright f$ is L-smooth w.r.t. $\|\cdot\|$ on \mathcal{X} , which then implies

$$f(x') \le f(x) + \langle \nabla f(x), x' - x \rangle + (L/2) \|x' - x\|^2, \quad \forall x', x \in \mathcal{X}. \quad (LSm)$$

- \triangleright At iteration k of FW, $x^k \in \mathcal{X}$ and the method does the following:
 - Compute

$$v^k \in \operatorname{arg\,min}_{x \in \mathcal{X}} \langle \nabla f(x^k), x \rangle$$

by solving a linear-optimization sub-problem.

$$\min_{x \in \mathcal{X}} f(x)$$
 (tP)

- $\triangleright \mathcal{X}$ is a nonempty convex and compact set.
- \triangleright f is L-smooth w.r.t. $\|\cdot\|$ on \mathcal{X} , which then implies

$$f(x') \le f(x) + \langle \nabla f(x), x' - x \rangle + (L/2) \|x' - x\|^2, \quad \forall x', x \in \mathcal{X}. \quad (LSm)$$

- \triangleright At iteration k of FW, $x^k \in \mathcal{X}$ and the method does the following:
 - Compute

$$v^k \in \operatorname{arg\,min}_{x \in \mathcal{X}} \langle \nabla f(x^k), x \rangle$$

by solving a linear-optimization sub-problem.

• Determine step-length $\alpha^k \in [0, 1]$.

$$\min_{x \in \mathcal{X}} f(x)$$
 (tP)

- $\triangleright \mathcal{X}$ is a nonempty convex and compact set.
- $\triangleright f$ is L-smooth w.r.t. $\|\cdot\|$ on \mathcal{X} , which then implies

$$f(x') \le f(x) + \langle \nabla f(x), x' - x \rangle + (L/2) \|x' - x\|^2, \quad \forall x', x \in \mathcal{X}. \quad (LSm)$$

- \triangleright At iteration k of FW, $x^k \in \mathcal{X}$ and the method does the following:
 - Compute

$$v^k \in \operatorname{arg\,min}_{x \in \mathcal{X}} \langle \nabla f(x^k), x \rangle$$

by solving a linear-optimization sub-problem.

- Determine step-length $\alpha^k \in [0, 1]$.
- Update $x^{k+1} = (1 \alpha_k)x^k + \alpha^k v^k$.

$$\min_{x \in \mathcal{X}} f(x)$$
 (tP)

4 / 20

$$\min_{x \in \mathcal{X}} f(x)$$
 (tP)

 \triangleright The step-size α_k is typically chosen in one of two ways:

$$\min_{x \in \mathcal{X}} f(x)$$
 (tP)

- \triangleright The step-size α_k is typically chosen in one of two ways:
 - Fixed step-size, such as the standard step-size $\alpha_k = 2/(k+2)$, or

$$\min_{x \in \mathcal{X}} f(x)$$
 (tP)

- \triangleright The step-size α_k is typically chosen in one of two ways:
 - Fixed step-size, such as the standard step-size $\alpha_k = 2/(k+2)$, or
 - Adaptive step-size, such as $\alpha_k = \min\{G_k/C_k, 1\}$, where

$$G_k := \langle \nabla f(x^k), x^k - v^k \rangle$$
 and $C_k := L \|v^k - x^k\|^2$.

$$\min_{x \in \mathcal{X}} f(x)$$
 (tP)

- \triangleright The step-size α_k is typically chosen in one of two ways:
 - Fixed step-size, such as the standard step-size $\alpha_k = 2/(k+2)$, or
 - Adaptive step-size, such as $\alpha_k = \min\{G_k/C_k, 1\}$, where

$$G_k := \langle \nabla f(x^k), x^k - v^k \rangle$$
 and $C_k := L \|v^k - x^k\|^2$.

 \triangleright FW is very useful in "sparse" or otherwise "structured" optimization where \mathcal{X} has special structure, e.g., probability simplex or spectrahedron.

$$\min_{x \in \mathcal{X}} f(x)$$
 (tP)

- \triangleright The step-size α_k is typically chosen in one of two ways:
 - Fixed step-size, such as the standard step-size $\alpha_k = 2/(k+2)$, or
 - Adaptive step-size, such as $\alpha_k = \min\{G_k/C_k, 1\}$, where

$$G_k := \langle \nabla f(x^k), x^k - v^k \rangle$$
 and $C_k := L \|v^k - x^k\|^2$.

- \triangleright FW is very useful in "sparse" or otherwise "structured" optimization where \mathcal{X} has special structure, e.g., probability simplex or spectrahedron.
- FW has been generalized to the composite setting: $\min_{x \in \mathbb{R}^n} \left[F(x) := f(\mathsf{A}x) + h(x) \right] \tag{P}$ in e.g., Bach (2015) and Nesterov (2018), where the subproblem becomes:

$$v^k \in \operatorname{arg\,min}_{x \in \mathbb{R}^n} \langle \nabla f(\mathsf{A} x^k), \mathsf{A} x \rangle + h(x).$$

However, note that all of these works assume that f is L-smooth.

➤ Khachiyan, L.G.: Rounding of polytopes in the real number model of computation. *Mathematics of Operations Research* 21(2), 307–320 (1996) (Elegant analysis of the FW method with exact line-search for D-optimal design)

- ▶ Khachiyan, L.G.: Rounding of polytopes in the real number model of computation. Mathematics of Operations Research 21(2), 307–320 (1996) (Elegant analysis of the FW method with exact line-search for D-optimal design)
- ▷ Dvurechensky, P., Ostroukhov, P., Safin, K., Shtern, S., Staudigl, M.: Self-concordant analysis of Frank-Wolfe algorithms. *Proc. ICML*, pp. 2814–2824 (2020)

- ▶ Khachiyan, L.G.: Rounding of polytopes in the real number model of computation. Mathematics of Operations Research 21(2), 307–320 (1996) (Elegant analysis of the FW method with exact line-search for D-optimal design)
- Dvurechensky, P., Ostroukhov, P., Safin, K., Shtern, S., Staudigl, M.: Self-concordant analysis of Frank-Wolfe algorithms. *Proc. ICML*, pp. 2814–2824 (2020)
- Dvurechensky et al. (2020) proposed and analyzed a FW method for the *whole class* of self-concordant functions. However, when specialized to D-optimal design, their complexity bound is very different from Khachiyan's result, and lacks the affine-invariance property.

- ▶ Khachiyan, L.G.: Rounding of polytopes in the real number model of computation. Mathematics of Operations Research 21(2), 307–320 (1996) (Elegant analysis of the FW method with exact line-search for D-optimal design)
- Dvurechensky, P., Ostroukhov, P., Safin, K., Shtern, S., Staudigl, M.: Self-concordant analysis of Frank-Wolfe algorithms. *Proc. ICML*, pp. 2814–2824 (2020)
- Dvurechensky et al. (2020) proposed and analyzed a FW method for the *whole class* of self-concordant functions. However, when specialized to D-optimal design, their complexity bound is very different from Khachiyan's result, and lacks the affine-invariance property.
- ▶ We identified the *logarithmic-homogeneity* as the key element in Khachiyan's analysis, and proposed a (generalized) FW method with adaptive step-size for the much broader problem class (P).

- ▶ Khachiyan, L.G.: Rounding of polytopes in the real number model of computation. Mathematics of Operations Research 21(2), 307–320 (1996) (Elegant analysis of the FW method with exact line-search for D-optimal design)
- Dvurechensky, P., Ostroukhov, P., Safin, K., Shtern, S., Staudigl, M.: Self-concordant analysis of Frank-Wolfe algorithms. *Proc. ICML*, pp. 2814–2824 (2020)
- Dvurechensky et al. (2020) proposed and analyzed a FW method for the *whole class* of self-concordant functions. However, when specialized to D-optimal design, their complexity bound is very different from Khachiyan's result, and lacks the affine-invariance property.
- ▶ We identified the *logarithmic-homogeneity* as the key element in Khachiyan's analysis, and proposed a (generalized) FW method with adaptive step-size for the much broader problem class (P).
- Our complexity bound essentially recovers Khachiyan's result, and is affine-invariant (along with other desirable properties).

ightharpoonup Let $\mathcal{K} \subsetneq \mathbb{R}^m$ be a regular cone, i.e., \mathcal{K} is closed, convex, pointed and has nonempty interior.

- ightharpoonup Let $\mathcal{K} \subsetneq \mathbb{R}^m$ be a regular cone, i.e., \mathcal{K} is closed, convex, pointed and has nonempty interior.
- \triangleright f is a θ -LHSCB on \mathcal{K} with complexity parameter $\theta \ge 1$ if f is three-times differentiable and strictly convex on int \mathcal{K} , and satisfies

- ightharpoonup Let $\mathcal{K} \subsetneq \mathbb{R}^m$ be a regular cone, i.e., \mathcal{K} is closed, convex, pointed and has nonempty interior.
- \triangleright f is a θ -LHSCB on \mathcal{K} with complexity parameter $\theta \ge 1$ if f is three-times differentiable and strictly convex on int \mathcal{K} , and satisfies
 - $|D^3 f(u)[w, w, w]| \le 2(\langle H(u)w, w \rangle)^{3/2} \quad \forall u \in \text{int } \mathcal{K}, \, \forall \, w \in \mathbb{R}^m,$
 - 2 $f(u_k) \to \infty$ for any $\{u_k\}_{k\geq 1} \subseteq \operatorname{int} \mathcal{K}$ such that $u_k \to u \in \operatorname{bd} \mathcal{K}$,
 - 3 $f(tu) = f(u) \theta \ln(t) \quad \forall u \in \text{int } \mathcal{K}, \, \forall t > 0$

where H(u) denotes the Hessian of f at $u \in \text{int } \mathcal{K}$.

- ightharpoonup Let $\mathcal{K} \subsetneq \mathbb{R}^m$ be a regular cone, i.e., \mathcal{K} is closed, convex, pointed and has nonempty interior.
- \triangleright f is a θ -LHSCB on \mathcal{K} with complexity parameter $\theta \ge 1$ if f is three-times differentiable and strictly convex on int \mathcal{K} , and satisfies

 - 2 $f(u_k) \to \infty$ for any $\{u_k\}_{k\geq 1} \subseteq \operatorname{int} \mathcal{K}$ such that $u_k \to u \in \operatorname{bd} \mathcal{K}$,
 - 3 $f(tu) = f(u) \theta \ln(t) \quad \forall u \in \text{int } \mathcal{K}, \forall t > 0$

where H(u) denotes the Hessian of f at $u \in \text{int } \mathcal{K}$.

- ightharpoonup Let $\mathcal{K} \subsetneq \mathbb{R}^m$ be a regular cone, i.e., \mathcal{K} is closed, convex, pointed and has nonempty interior.
- $\triangleright f$ is a θ -LHSCB on $\mathcal K$ with complexity parameter $\theta \ge 1$ if f is three-times differentiable and strictly convex on int $\mathcal K$, and satisfies

 - 2 $f(u_k) \to \infty$ for any $\{u_k\}_{k\geq 1} \subseteq \operatorname{int} \mathcal{K}$ such that $u_k \to u \in \operatorname{bd} \mathcal{K}$,
 - $f(tu) = f(u) \theta \ln(t) \forall u \in \text{int } \mathcal{K}, \forall t > 0 ,$

where H(u) denotes the Hessian of f at $u \in \text{int } \mathcal{K}$.

- - $f(U) = -\ln \det(U)$ for $U \in \mathcal{K} := \mathbb{S}^k_+$ and $\theta = k$,

- ightharpoonup Let $\mathcal{K} \subsetneq \mathbb{R}^m$ be a regular cone, i.e., \mathcal{K} is closed, convex, pointed and has nonempty interior.
- \triangleright f is a θ -LHSCB on \mathcal{K} with complexity parameter $\theta \ge 1$ if f is three-times differentiable and strictly convex on int \mathcal{K} , and satisfies

 - 2 $f(u_k) \to \infty$ for any $\{u_k\}_{k\geq 1} \subseteq \operatorname{int} \mathcal{K}$ such that $u_k \to u \in \operatorname{bd} \mathcal{K}$,
 - $f(tu) = f(u) \theta \ln(t) \forall u \in \text{int } \mathcal{K}, \forall t > 0 ,$

where H(u) denotes the Hessian of f at $u \in \text{int } \mathcal{K}$.

- - $f(U) = -\ln \det(U)$ for $U \in \mathcal{K} := \mathbb{S}^k_+$ and $\theta = k$,
 - $f(u) = -\sum_{j=1}^m w_j \ln(u_j)$ for $u \in \mathcal{K} := \mathbb{R}_+^m$ and $\theta = \sum_{j=1}^m w_j$ where $w_1, \ldots, w_n \ge 1$.

A Motivating Example: D-optimal Design

$$\begin{aligned} \max_{p} \ h(p) &\triangleq \ln \det \left(\sum_{i=1}^{m} p_{i} a_{i} a_{i}^{\top} \right) \\ \text{s.t.} \quad \sum_{i=1}^{m} p_{i} = 1, \ p_{i} \geq 0, \ \forall i \in [m]. \end{aligned} \tag{D-OPT}$$

A Motivating Example: D-optimal Design

$$\begin{aligned} \max_{p} \ h(p) &\triangleq \ln \det \left(\sum_{i=1}^{m} p_{i} a_{i} a_{i}^{\top} \right) \\ \text{s.t.} \quad \sum_{i=1}^{m} p_{i} = 1, \ p_{i} \geq 0, \ \forall i \in [m]. \end{aligned} \tag{D-OPT}$$

 \triangleright Problem data: $\{a_i\}_{i=1}^m \subseteq \mathbb{R}^n$.

A Motivating Example: D-optimal Design

$$\begin{aligned} \max_{p} \ h(p) &\triangleq \ln \det \left(\sum_{i=1}^{m} p_{i} a_{i} a_{i}^{\top} \right) \\ \text{s.t.} \quad \sum_{i=1}^{m} p_{i} = 1, \ p_{i} \geq 0, \ \forall i \in [m]. \end{aligned} \tag{D-OPT}$$

- \triangleright Problem data: $\{a_i\}_{i=1}^m \subseteq \mathbb{R}^n$.
- > Arises in many places, including optimal experimental design, and as the dual problem of the minimum volume enclosing ellipsoid (MVEE) problem.

A Motivating Example: D-optimal Design

$$\begin{aligned} \max_{p} \ h(p) &\triangleq \ln \det \left(\sum_{i=1}^{m} p_{i} a_{i} a_{i}^{\top} \right) \\ \text{s.t.} \quad \sum_{i=1}^{m} p_{i} = 1, \ p_{i} \geq 0, \ \forall i \in [m]. \end{aligned} \tag{D-OPT}$$

- \triangleright Problem data: $\{a_i\}_{i=1}^m \subseteq \mathbb{R}^n$.
- ▷ Arises in many places, including optimal experimental design, and as the dual problem of the minimum volume enclosing ellipsoid (MVEE) problem.
- ▷ Khachiyan (1996) proposed a "barycentric coordinate ascent" method with exact line-search, which is actually FW with exact line-search. Method works remarkably well both in theory and practice: it computes an ε -optimal solution of (D-OPT) in (essentially) $O(n^2/\varepsilon)$ iterations.

A Motivating Example: D-optimal Design

$$\begin{aligned} \max_{p} \ h(p) &\triangleq \ln \det \left(\sum_{i=1}^{m} p_{i} a_{i} a_{i}^{\top} \right) \\ \text{s.t.} \quad \sum_{i=1}^{m} p_{i} = 1, \ p_{i} \geq 0, \ \forall i \in [m]. \end{aligned} \tag{D-OPT}$$

- \triangleright Problem data: $\{a_i\}_{i=1}^m \subseteq \mathbb{R}^n$.
- ▷ Arises in many places, including optimal experimental design, and as the dual problem of the minimum volume enclosing ellipsoid (MVEE) problem.
- ▷ Khachiyan (1996) proposed a "barycentric coordinate ascent" method with exact line-search, which is actually FW with exact line-search. Method works remarkably well both in theory and practice: it computes an ε -optimal solution of (D-OPT) in (essentially) $O(n^2/\varepsilon)$ iterations.
- ➤ The theoretical success of this method has been a mysterious outlier for more than 20 years, since (D-OPT) does not satisfy the usual L-smooth curvature condition in (LSm). What problem structure actually drives the complexity bound? And might such structure exist anywhere else?

A Motivating Example: D-optimal Design

$$\begin{aligned} \max_{p} \ h(p) &\triangleq \ln \det \left(\sum_{i=1}^{m} p_{i} a_{i} a_{i}^{\top} \right) \\ \text{s.t.} \quad \sum_{i=1}^{m} p_{i} = 1, \ p_{i} \geq 0, \ \forall i \in [m]. \end{aligned} \tag{D-OPT}$$

- \triangleright Problem data: $\{a_i\}_{i=1}^m \subseteq \mathbb{R}^n$.
- ▷ Arises in many places, including optimal experimental design, and as the dual problem of the minimum volume enclosing ellipsoid (MVEE) problem.
- ▶ Khachiyan (1996) proposed a "barycentric coordinate ascent" method with exact line-search, which is actually FW with exact line-search. Method works remarkably well both in theory and practice: it computes an ε -optimal solution of (D-OPT) in (essentially) $O(n^2/\varepsilon)$ iterations.
- ▶ The theoretical success of this method has been a mysterious outlier for more than 20 years, since (D-OPT) does not satisfy the usual L-smooth curvature condition in (LSm). What problem structure actually drives the complexity bound? And might such structure exist anywhere else?

 \triangleright Let an $m \times n$ matrix X denote the true representation of an image, such that $0 \le X_{ij} \le M$ denotes the pixel level at location (i, j).

- \triangleright Let an $m \times n$ matrix X denote the true representation of an image, such that $0 \le X_{ij} \le M$ denotes the pixel level at location (i, j).
- ightharpoonup Let $A: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ denote the 2D discrete convolutional (linear) operator, which is assumed to be known.

- \triangleright Let an $m \times n$ matrix X denote the true representation of an image, such that $0 \le X_{ij} \le M$ denotes the pixel level at location (i, j).
- ightharpoonup Let $A: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ denote the 2D discrete convolutional (linear) operator, which is assumed to be known.
- \triangleright The observed image Y is obtained by first passing X through A, and then is assumed to be subject to additive independent (entry-wise) Poisson noise.

- \triangleright Let an $m \times n$ matrix X denote the true representation of an image, such that $0 \le X_{ij} \le M$ denotes the pixel level at location (i, j).
- ightharpoonup Let $A: \mathbb{R}^{m \times n} \to \mathbb{R}^{m \times n}$ denote the 2D discrete convolutional (linear) operator, which is assumed to be known.
- \triangleright The observed image Y is obtained by first passing X through A, and then is assumed to be subject to additive independent (entry-wise) Poisson noise.
- ightharpoonup For convenience, we also represent A in its matrix form $A \in \mathbb{R}^{N \times N}$, where N := mn, and vectorize Y and X into $y \in \mathbb{R}^N$ and $x \in \mathbb{R}^N$, respectively. Notation: we write $x = \mathsf{vec}(X)$ and $X = \mathsf{mat}(x)$, etc.

Poisson Image Deblurring with TV Regularization, continued

Poisson Image Deblurring with TV Regularization, continued

 \triangleright We seek to recover X from Y (equivalently x from y) using maximum-likelihood estimation on the TV-regularized problem:

$$\begin{aligned} \min_{x \in \mathbb{R}^N} & \bar{F}(x) := -\sum_{l=1}^N y_l \ln(a_l^\top x) + (\sum_{l=1}^N a_l)^\top x + \lambda \text{TV}(x) \\ & \text{s.t.} & 0 \le x \le Me \ , \end{aligned} \tag{Deblur}$$

Poisson Image Deblurring with TV Regularization, continued

 \triangleright We seek to recover X from Y (equivalently x from y) using maximum-likelihood estimation on the TV-regularized problem:

$$\begin{aligned} \min_{x \in \mathbb{R}^N} & \bar{F}(x) := -\sum_{l=1}^N y_l \ln(a_l^\top x) + (\sum_{l=1}^N a_l)^\top x + \lambda \text{TV}(x) \\ & \text{s.t.} & 0 \le x \le Me \ , \end{aligned} \tag{Deblur}$$

▷ (Deblur) has a (standard) total-variation (TV) regularization term to recover a smooth image with sharp edges. The TV term is given by

$$\begin{split} \mathrm{TV}(x) := & \sum_{i=1}^m \sum_{j=1}^{n-1} |[\mathsf{mat}(x)]_{i,j} - [\mathsf{mat}(x)]_{i,j+1}| \\ & + \sum_{i=1}^{m-1} \sum_{j=1}^n |[\mathsf{mat}(x)]_{i,j} - [\mathsf{mat}(x)]_{i+1,j}| \,. \end{split}$$

⊳ Positron emission tomography (PET)

→ Positron emission tomography (PET)

▷ Optimal expected log investment (Cover (1984))

⊳ Positron emission tomography (PET)

▷ Optimal expected log investment (Cover (1984))

Computation of the analytic center of a polytope

$$F^* := \min_{x \in \mathbb{R}^n} [F(x) := f(Ax) + h(x)]$$
 (P)

FW for Convex Composite Optimization Involving LHSCB

$$F^* := \min_{x \in \mathbb{R}^n} [F(x) := f(Ax) + h(x)]$$
 (P)

▶ Initialize: $x^0 \in \text{dom } F, k := 0$

$$F^* := \min_{x \in \mathbb{R}^n} [F(x) := f(Ax) + h(x)]$$
 (P)

- ▶ Initialize: $x^0 \in \text{dom } F, k := 0$
- ▶ Repeat (until some convergence criterion is met)

$$v^k \in \arg\min_{x \in \mathbb{R}^n} \langle \nabla f(\mathsf{A} x^k), \mathsf{A} x \rangle + h(x)$$
 (Solve Lin. subproblem)

$$F^* := \min_{x \in \mathbb{R}^n} [F(x) := f(Ax) + h(x)]$$
 (P)

- Initialize: $x^0 \in \text{dom } F, k := 0$
- Repeat (until some convergence criterion is met)

$$v^k \in \arg\min_{x \in \mathbb{R}^n} \langle \nabla f(\mathsf{A} x^k), \mathsf{A} x \rangle + h(x) \qquad \text{(Solve Lin. subproblem)}$$

$$G_k := \langle \nabla f(\mathsf{A} x^k), \mathsf{A} (x^k - v^k) \rangle + h(x^k) - h(v^k) \qquad \text{(FW Gap)}$$

FW for Convex Composite Optimization Involving LHSCB

$$F^* := \min_{x \in \mathbb{R}^n} [F(x) := f(Ax) + h(x)]$$
 (P)

- ▶ Initialize: $x^0 \in \text{dom } F, k := 0$
- ▶ Repeat (until some convergence criterion is met)

$$v^k \in \arg\min_{x \in \mathbb{R}^n} \langle \nabla f(\mathsf{A} x^k), \mathsf{A} x \rangle + h(x) \qquad \text{(Solve Lin. subproblem)}$$

$$G_k := \langle \nabla f(\mathsf{A} x^k), \mathsf{A} (x^k - v^k) \rangle + h(x^k) - h(v^k) \qquad \text{(FW Gap)}$$

$$D_k := D_k := \|\mathsf{A} (v^k - x^k)\|_{\mathsf{A} x^k} \qquad \text{(Local Distance)}$$

$$F^* := \min_{x \in \mathbb{R}^n} [F(x) := f(Ax) + h(x)]$$
 (P)

- ▶ Initialize: $x^0 \in \text{dom } F$, k := 0
- ▶ Repeat (until some convergence criterion is met)

$$\begin{split} v^k &\in \arg\min_{x \in \mathbb{R}^n} \langle \nabla f(\mathsf{A} x^k), \mathsf{A} x \rangle + h(x) & \text{(Solve Lin. subproblem)} \\ G_k &:= \langle \nabla f(\mathsf{A} x^k), \mathsf{A} (x^k - v^k) \rangle + h(x^k) - h(v^k) & \text{(FW Gap)} \\ D_k &:= D_k &:= \|\mathsf{A} (v^k - x^k)\|_{\mathsf{A} x^k} & \text{(Local Distance)} \\ \alpha_k &:= \min \left\{ \frac{G_k}{D_k (G_k + D_k)} \;, 1 \right\} & \text{(Stepsize)} \end{split}$$

$$F^* := \min_{x \in \mathbb{R}^n} [F(x) := f(Ax) + h(x)]$$
 (P)

- ▶ Initialize: $x^0 \in \text{dom } F$, k := 0
- ▶ Repeat (until some convergence criterion is met)

$$v^{k} \in \arg\min_{x \in \mathbb{R}^{n}} \langle \nabla f(\mathsf{A}x^{k}), \mathsf{A}x \rangle + h(x) \qquad \text{(Solve Lin. subproblem)}$$

$$G_{k} := \langle \nabla f(\mathsf{A}x^{k}), \mathsf{A}(x^{k} - v^{k}) \rangle + h(x^{k}) - h(v^{k}) \qquad \text{(FW Gap)}$$

$$D_{k} := D_{k} := \|\mathsf{A}(v^{k} - x^{k})\|_{\mathsf{A}x^{k}} \qquad \text{(Local Distance)}$$

$$\alpha_{k} := \min\left\{\frac{G_{k}}{D_{k}(G_{k} + D_{k})}, 1\right\} \qquad \text{(Stepsize)}$$

$$x^{k+1} := x^{k} + \alpha_{k}(v^{k} - x^{k}) \qquad \text{(Update)}$$

$$F^* := \min_{x \in \mathbb{R}^n} \left[F(x) := f(\mathsf{A}x) + h(x) \right] \tag{P}$$

- ▶ Initialize: $x^0 \in \text{dom } F$, k := 0
- ▶ Repeat (until some convergence criterion is met)

$$v^{k} \in \arg\min_{x \in \mathbb{R}^{n}} \langle \nabla f(\mathsf{A}x^{k}), \mathsf{A}x \rangle + h(x) \qquad \text{(Solve Lin. subproblem)}$$

$$G_{k} := \langle \nabla f(\mathsf{A}x^{k}), \mathsf{A}(x^{k} - v^{k}) \rangle + h(x^{k}) - h(v^{k}) \qquad \text{(FW Gap)}$$

$$D_{k} := D_{k} := \|\mathsf{A}(v^{k} - x^{k})\|_{\mathsf{A}x^{k}} \qquad \text{(Local Distance)}$$

$$\alpha_{k} := \min \left\{ \frac{G_{k}}{D_{k}(G_{k} + D_{k})}, 1 \right\} \qquad \text{(Stepsize)}$$

$$x^{k+1} := x^{k} + \alpha_{k}(v^{k} - x^{k}) \qquad \text{(Update)}$$

$$k := k + 1$$

 \triangleright When h is the indicator function $h = \iota_{\mathcal{X}}$, then gFW-LHSCB specializes exactly to the algorithm of Dvurechensky et al. (2020).

- \triangleright When h is the indicator function $h = \iota_{\mathcal{X}}$, then gFW-LHSCB specializes exactly to the algorithm of Dvurechensky et al. (2020).
- \triangleright For most applications (including all of the applications mentioned previously), D_k in (Local Distance) can be computed in O(n) time.

- \triangleright When h is the indicator function $h = \iota_{\mathcal{X}}$, then gFW-LHSCB specializes exactly to the algorithm of Dvurechensky et al. (2020).
- \triangleright For most applications (including all of the applications mentioned previously), D_k in (Local Distance) can be computed in O(n) time.
- ▷ The step-size rule in (Stepsize) is derived from the "curvature property" of a (standard) self-concordant function:

$$f(x^k + \alpha(v^k - x^k)) \le f(x^k) - \alpha G_k + \omega(\alpha D_k),$$
 (Curvature)

where $\omega(t) := -t - \ln(1-t)$ for t < 1.

- \triangleright When h is the indicator function $h = \iota_{\mathcal{X}}$, then gFW-LHSCB specializes exactly to the algorithm of Dvurechensky et al. (2020).
- \triangleright For most applications (including all of the applications mentioned previously), D_k in (Local Distance) can be computed in O(n) time.
- ▶ The step-size rule in (Stepsize) is derived from the "curvature property" of a (standard) self-concordant function:

$$f(x^k + \alpha(v^k - x^k)) \le f(x^k) - \alpha G_k + \omega(\alpha D_k),$$
 (Curvature)

where $\omega(t) := -t - \ln(1-t)$ for t < 1.

 \triangleright Neither the algorithm nor (Curvature) use the special properties of the barrier or the logarithmic homogeneity of f. However, these properties drive our complexity analysis.

Computational Guarantees

Define $\delta_k := F(x^k) - F^*$ for $k \ge 0$ (hence δ_0 is the initial optimality gap)

Define $R_h := \max_{x,y \in \text{dom } h} |h(x) - h(y)|$ (the variation of h on its domain)

Theorem:

Computational Guarantees

Define $\delta_k := F(x^k) - F^*$ for $k \ge 0$ (hence δ_0 is the initial optimality gap)

Define $R_h := \max_{x,y \in \text{dom } h} |h(x) - h(y)|$ (the variation of h on its domain)

Theorem:

 \triangleright (Iteration complexity for ε -optimality gap) Let K_{ε} denote the number of iterations required by gFW-LHSCB to obtain $\delta_k \leq \varepsilon$. Then:

$$K_{\varepsilon} \leq \lceil 5.3(\delta_0 + \theta + R_h) \ln(10.6\delta_0) \rceil + \left\lceil 12(\theta + R_h)^2 \max \left\{ \frac{1}{\varepsilon} - \frac{1}{\delta_0} , 0 \right\} \right\rceil .$$

Computational Guarantees

Define $\delta_k := F(x^k) - F^*$ for $k \ge 0$ (hence δ_0 is the initial optimality gap)

Define $R_h := \max_{x,y \in \mathsf{dom}\, h} |h(x) - h(y)|$ (the variation of h on its domain)

Theorem:

 \triangleright (Iteration complexity for ε -optimality gap) Let K_{ε} denote the number of iterations required by gFW-LHSCB to obtain $\delta_k \leq \varepsilon$. Then:

$$K_\varepsilon \leq \lceil 5.3(\delta_0 + \theta + R_h) \ln(10.6\delta_0) \rceil + \left\lceil 12(\theta + R_h)^2 \max \left\{ \frac{1}{\varepsilon} - \frac{1}{\delta_0} \right., 0 \right\} \right\rceil \ .$$

ightharpoonup (Iteration complexity for ε -FW gap) Let FWGAP $_{\varepsilon}$ denote the number of iterations required by gFW-LHSCB to obtain $G_k \leq \varepsilon$. Then:

$$FWGAP_{\varepsilon} \leq \lceil 5.3(\delta_0 + \theta + R_h) \ln(10.6\delta_0) \rceil + \left\lceil \frac{24(\theta + R_h)^2}{\varepsilon} \right\rceil.$$

> Our computational guarantees only depend on three (natural) quantities:

- ▷ Our computational guarantees only depend on three (natural) quantities:
 - the initial optimality gap δ_0 ,

- ▷ Our computational guarantees only depend on three (natural) quantities:
 - the initial optimality gap δ_0 ,
 - the complexity parameter θ of the barrier f,

- ▷ Our computational guarantees only depend on three (natural) quantities:
 - the initial optimality gap δ_0 ,
 - the complexity parameter θ of the barrier f,
 - the variation of h on its domain dom $h (= 0 \text{ if } h = \iota_{\mathcal{X}}).$

- ▷ Our computational guarantees only depend on three (natural) quantities:
 - the initial optimality gap δ_0 ,
 - the complexity parameter θ of the barrier f,
 - the variation of h on its domain dom h (= 0 if $h = \iota_{\mathcal{X}}$).
- Comparison with Khachiyan's results for (D-OPT):

14 / 20

- ▷ Our computational guarantees only depend on three (natural) quantities:
 - the initial optimality gap δ_0 ,
 - the complexity parameter θ of the barrier f,
 - the variation of h on its domain dom h (= 0 if $h = \iota_{\mathcal{X}}$).
- \triangleright Comparison with Khachiyan's results for (D-OPT):
 - In (D-OPT), we have $\theta = n$, $R_h = 0$, and if $x^0 = (1/m)e$, then $\delta_0 \leq n \ln(m/n)$.

14 / 20

- ▷ Our computational guarantees only depend on three (natural) quantities:
 - the initial optimality gap δ_0 ,
 - the complexity parameter θ of the barrier f,
 - the variation of h on its domain dom h (= 0 if $h = \iota_{\mathcal{X}}$).
- ▷ Comparison with Khachiyan's results for (D-OPT):
 - In (D-OPT), we have $\theta = n$, $R_h = 0$, and if $x^0 = (1/m)e$, then $\delta_0 \le n \ln(m/n)$.
 - Using the adaptive step-size, our complexity bound specializes to

$$O\left(n\ln(m/n)(\ln n + \ln\ln(m/n)) + n^2/arepsilon
ight)$$
 . (Ours)

- ▷ Our computational guarantees only depend on three (natural) quantities:
 - the initial optimality gap δ_0 ,
 - the complexity parameter θ of the barrier f,
 - the variation of h on its domain dom h (= 0 if $h = \iota_{\mathcal{X}}$).
- Comparison with Khachiyan's results for (D-OPT):
 - In (D-OPT), we have $\theta = n$, $R_h = 0$, and if $x^0 = (1/m)e$, then $\delta_0 \le n \ln(m/n)$.
 - Using the adaptive step-size, our complexity bound specializes to

$$O(n \ln(m/n)(\ln n + \ln \ln(m/n)) + n^2/\varepsilon)$$
. (Ours)

• Using exact line-search, Khachiyan's bound is

$$O(n(\ln n + \ln \ln(m/n)) + n^2/\varepsilon)$$
 . (Kha)

- Our computational guarantees only depend on three (natural) quantities:
 - the initial optimality gap δ_0 ,
 - the complexity parameter θ of the barrier f,
 - the variation of h on its domain dom h (= 0 if $h = \iota_{\mathcal{X}}$).
- Comparison with Khachiyan's results for (D-OPT):
 - In (D-OPT), we have $\theta = n$, $R_h = 0$, and if $x^0 = (1/m)e$, then $\delta_0 < n \ln(m/n)$.
 - Using the adaptive step-size, our complexity bound specializes to $O(n \ln(m/n)(\ln n + \ln \ln(m/n)) + n^2/\varepsilon)$. Ours)
 - Using exact line-search, Khachiyan's bound is

$$O(n(\ln n + \ln \ln(m/n)) + n^2/\varepsilon)$$
 (Kha)

Observe that (Ours) has the exact same dependence on ε as (Kha), namely $O(n^2/\varepsilon)$, but the "fixed" term is slightly inferior to (Kha) by the factor $O(\ln(m/n)).$

FW for Convex Composite Optimization Involving LHSCB

14 / 20

$$\begin{split} \min_{x \in \mathbb{R}^N} \ \bar{F}(x) := \underbrace{-\sum_{l=1}^N y_l \ln(a_l^\top x)}_{=f(\mathsf{A}x)} + \underbrace{\langle \sum_{l=1}^N a_l, x \rangle + \lambda \mathrm{TV}(x)}_{=h(x)} \\ \mathrm{s.\,t.} \quad 0 \leq x \leq Me \ , \end{split} \tag{Deblur}$$

$$\begin{aligned} \min_{x \in \mathbb{R}^N} & \bar{F}(x) := \underbrace{-\sum_{l=1}^N y_l \ln(a_l^\top x)}_{=f(\mathsf{A}x)} + \underbrace{\langle \sum_{l=1}^N a_l, x \rangle + \lambda \mathrm{TV}(x)}_{=h(x)} \\ & \text{s. t.} & 0 \le x \le Me \ , \end{aligned} \tag{Deblur}$$

Very few principled first-order methods have been proposed to solve (Deblur), because:

$$\min_{x \in \mathbb{R}^N} \ \bar{F}(x) := \underbrace{-\sum_{l=1}^N y_l \ln(a_l^\top x)}_{=f(\mathsf{A}x)} + \underbrace{\langle \sum_{l=1}^N a_l, x \rangle + \lambda \mathrm{TV}(x)}_{=h(x)}$$
s.t. $0 \le x \le Me$, (Deblur)

- Very few principled first-order methods have been proposed to solve (Deblur), because:
 - $f: u \mapsto -\sum_{l=1}^{N} y_l \ln(u_l)$ is neither Lipschitz nor L-smooth on the set $\{u \in \mathbb{R}^N : u = Ax, \ 0 \le x \le Me\}$, and

$$\min_{x \in \mathbb{R}^N} \ \bar{F}(x) := \underbrace{-\sum_{l=1}^N y_l \ln(a_l^\top x)}_{=f(\mathsf{A}x)} + \underbrace{\langle \sum_{l=1}^N a_l, x \rangle + \lambda \mathrm{TV}(x)}_{=h(x)}$$
 s.t. $0 \le x \le Me$, (Deblur)

- Very few principled first-order methods have been proposed to solve (Deblur), because:
 - $f: u \mapsto -\sum_{l=1}^{N} y_l \ln(u_l)$ is neither Lipschitz nor L-smooth on the set $\{u \in \mathbb{R}^N : u = \mathsf{A}x, \ 0 \le x \le Me\}$, and
 - $TV(\cdot)$ does not have an efficiently computable proximal operator.

$$\min_{x \in \mathbb{R}^N} \ \bar{F}(x) := \underbrace{-\sum_{l=1}^N y_l \ln(a_l^\top x)}_{=f(\mathsf{A}x)} + \underbrace{\langle \sum_{l=1}^N a_l, x \rangle + \lambda \mathrm{TV}(x)}_{=h(x)}$$
 s.t. $0 \le x \le Me$, (Deblur)

- ∨ Very few principled first-order methods have been proposed to solve (Deblur), because:
 - $f: u \mapsto -\sum_{l=1}^{N} y_l \ln(u_l)$ is neither Lipschitz nor L-smooth on the set $\{u \in \mathbb{R}^N : u = \mathsf{A}x, \ 0 \le x \le Me\}$, and
 - $TV(\cdot)$ does not have an efficiently computable proximal operator.
- \triangleright However, $TV(\cdot)$ is a polyhedral function, and the linear-optimization sub-problem

$$v^k \in \arg\min_{0 \le x \le Me} \langle \nabla f(\mathsf{A} x^k), \mathsf{A} x \rangle + \langle \sum_{l=1}^N a_l, x \rangle + \lambda \mathrm{TV}(x)$$

can be formulated as a relatively simple LP and solved easily using a standard LP solver such as Gurobi.

▶ We evaluate the numerical performance of our FW method gFW-LHSCB (with adaptive stepsize) which we call FW-Adapt.

- ▶ We evaluate the numerical performance of our FW method gFW-LHSCB (with adaptive stepsize) which we call FW-Adapt.
- ▶ It turns out that an exact line-search step-size for gFW-LHSCB can be computed for this particular problem, which we call FW-Exact.

- ▶ We evaluate the numerical performance of our FW method gFW-LHSCB (with adaptive stepsize) which we call FW-Adapt.
- ▶ It turns out that an exact line-search step-size for gFW-LHSCB can be computed for this particular problem, which we call FW-Exact.
- \triangleright We tested FW-Adapt and FW-Exact on the Shepp-Logan phantom image of size 100×100 (hence N=10,000).

- ▶ We evaluate the numerical performance of our FW method gFW-LHSCB (with adaptive stepsize) which we call FW-Adapt.
- ▷ It turns out that an exact line-search step-size for gFW-LHSCB can be computed for this particular problem, which we call FW-Exact.
- \triangleright We tested FW-Adapt and FW-Exact on the Shepp-Logan phantom image of size 100×100 (hence N=10,000).
- \triangleright We chose the starting point $x^0 = \text{vec}(Y)$, and we set $\lambda = 0.01$.

- ▶ We evaluate the numerical performance of our FW method gFW-LHSCB (with adaptive stepsize) which we call FW-Adapt.
- ▷ It turns out that an exact line-search step-size for gFW-LHSCB can be computed for this particular problem, which we call FW-Exact.
- \triangleright We tested FW-Adapt and FW-Exact on the Shepp-Logan phantom image of size 100×100 (hence N=10,000).
- \triangleright We chose the starting point $x^0 = \text{vec}(Y)$, and we set $\lambda = 0.01$.
- ightharpoonup We used CVXPY to (approximately) compute the optimal objective value \bar{F}^* of (Deblur) in order to compute optimality gaps.

Results: Recovered Images

Figure 1: True, noisy and recovered Shepp-Logan phantom image.

Results: Optimality Gaps versus Time and Iterations

- (a) Optimality gap versus time (in seconds)
- (b) Optimality gap versus iterations

Figure 2: Comparison of empirical optimality gaps of FW-Adapt (FW-A) and FW-Exact (FW-E) for image recovery of the Shepp-Logan phantom image.

Thank you!

20 / 20

 \rhd To find an $\varepsilon\text{-optimal}$ solution, the complexity bound in Dvurechensky et al. (2020) reads:

$$O\left(\sqrt{L(x^0)}D_{\mathcal{X},\|\cdot\|_2}\ln\left(\delta_0/\left(\sqrt{L(x^0)}D_{\mathcal{X},\|\cdot\|_2}\right)\right) + L(x^0)D_{\mathcal{X},\|\cdot\|_2}^2/\varepsilon\right), \qquad \text{(Dvu)}$$

where $\mathcal{S}(x^0):=\{x\in \mathsf{dom}\, F\cap \mathcal{X}\,:\, F(x)\leq F(x^0)\}$ denotes the initial level-set and

$$L(x^0) := \max_{x \in \mathcal{S}(x^0)} \ \|\nabla^2 \bar{F}(x)\|_2 < +\infty \ , \text{and} \ \ D_{\mathcal{X}, \|\cdot\|_2} := \max_{x,y \in \mathcal{X}} \|x-y\|_2 \quad .$$

 $\,\rhd\,$ To find an $\varepsilon\text{-}\textsc{optimal}$ solution, the complexity bound in Dvurechensky et al. (2020) reads:

$$O\left(\sqrt{L(x^0)}D_{\mathcal{X},\|\cdot\|_2}\ln\left(\delta_0/\left(\sqrt{L(x^0)}D_{\mathcal{X},\|\cdot\|_2}\right)\right) + L(x^0)D_{\mathcal{X},\|\cdot\|_2}^2/\varepsilon\right), \qquad \text{(Dvu)}$$

where $\mathcal{S}(x^0):=\{x\in \mathsf{dom}\, F\cap \mathcal{X}\,:\, F(x)\leq F(x^0)\}$ denotes the initial level-set and

$$L(x^0) := \max_{x \in S(x^0)} \|\nabla^2 \bar{F}(x)\|_2 < +\infty \text{ , and } D_{\mathcal{X}, \|\cdot\|_2} := \max_{x,y \in \mathcal{X}} \|x-y\|_2 \quad .$$

$$O((\delta_0 + \theta) \ln(\delta_0) + (\theta)^2/\varepsilon).$$
 (Ours)

 \rhd To find an $\varepsilon\text{-optimal}$ solution, the complexity bound in Dvurechensky et al. (2020) reads:

$$O\left(\sqrt{L(x^0)}D_{\mathcal{X},\|\cdot\|_2}\ln\left(\delta_0/\left(\sqrt{L(x^0)}D_{\mathcal{X},\|\cdot\|_2}\right)\right) + L(x^0)D_{\mathcal{X},\|\cdot\|_2}^2/\varepsilon\right), \qquad \text{(Dvu)}$$

where $\mathcal{S}(x^0):=\{x\in \mathsf{dom}\, F\cap \mathcal{X}\,:\, F(x)\leq F(x^0)\}$ denotes the initial level-set and

$$L(x^{0}) := \max_{x \in S(x^{0})} \|\nabla^{2} \bar{F}(x)\|_{2} < +\infty \text{ , and } D_{\mathcal{X}, \|\cdot\|_{2}} := \max_{x, y \in \mathcal{X}} \|x - y\|_{2}$$

▷ Specialized to the traditional setting, our complexity bound reads:

$$O((\delta_0 + \theta) \ln(\delta_0) + (\theta)^2/\varepsilon).$$
 (Ours)

○ Our bound (Ours) has the following merits:

 \triangleright To find an $\varepsilon\text{-optimal}$ solution, the complexity bound in Dvurechensky et al. (2020) reads:

$$O\left(\sqrt{L(x^0)}D_{\mathcal{X},\|\cdot\|_2}\ln\left(\delta_0/\left(\sqrt{L(x^0)}D_{\mathcal{X},\|\cdot\|_2}\right)\right) + L(x^0)D_{\mathcal{X},\|\cdot\|_2}^2/\varepsilon\right), \qquad \text{(Dvu)}$$

where $\mathcal{S}(x^0):=\{x\in \mathsf{dom}\, F\cap \mathcal{X}\,:\, F(x)\leq F(x^0)\}$ denotes the initial level-set and

$$L(x^{0}) := \max_{x \in S(x^{0})} \|\nabla^{2} \bar{F}(x)\|_{2} < +\infty \text{ , and } D_{\mathcal{X}, \|\cdot\|_{2}} := \max_{x, y \in \mathcal{X}} \|x - y\|_{2}$$

$$O((\delta_0 + \theta) \ln(\delta_0) + (\theta)^2/\varepsilon).$$
 (Ours)

- Our bound (Ours) has the following merits:
 - Affine-invariance

 \rhd To find an $\varepsilon\text{-optimal}$ solution, the complexity bound in Dvurechensky et al. (2020) reads:

$$O\left(\sqrt{L(x^0)}D_{\mathcal{X},\|\cdot\|_2}\ln\left(\delta_0/\left(\sqrt{L(x^0)}D_{\mathcal{X},\|\cdot\|_2}\right)\right) + L(x^0)D_{\mathcal{X},\|\cdot\|_2}^2/\varepsilon\right), \qquad \text{(Dvu)}$$

where $\mathcal{S}(x^0):=\{x\in \mathsf{dom}\, F\cap \mathcal{X}\,:\, F(x)\leq F(x^0)\}$ denotes the initial level-set and

$$L(x^{0}) := \max_{x \in S(x^{0})} \|\nabla^{2} \bar{F}(x)\|_{2} < +\infty \text{ , and } D_{\mathcal{X}, \|\cdot\|_{2}} := \max_{x, y \in \mathcal{X}} \|x - y\|_{2}$$

$$O((\delta_0 + \theta) \ln(\delta_0) + (\theta)^2/\varepsilon).$$
 (Ours)

- Our bound (Ours) has the following merits:
 - Affine-invariance
 - Norm-invariance

 $\,\rhd\,$ To find an $\varepsilon\text{-optimal}$ solution, the complexity bound in Dvurechensky et al. (2020) reads:

$$O\left(\sqrt{L(x^0)}D_{\mathcal{X},\|\cdot\|_2}\ln\left(\delta_0/\left(\sqrt{L(x^0)}D_{\mathcal{X},\|\cdot\|_2}\right)\right) + L(x^0)D_{\mathcal{X},\|\cdot\|_2}^2/\varepsilon\right), \qquad \text{(Dvu)}$$

where $\mathcal{S}(x^0):=\{x\in \mathsf{dom}\, F\cap \mathcal{X}\,:\, F(x)\leq F(x^0)\}$ denotes the initial level-set and

$$L(x^0) := \max_{x \in S(x^0)} \|\nabla^2 \bar{F}(x)\|_2 < +\infty \text{ , and } D_{\mathcal{X}, \|\cdot\|_2} := \max_{x, y \in \mathcal{X}} \|x - y\|_2$$

$$O((\delta_0 + \theta) \ln(\delta_0) + (\theta)^2/\varepsilon).$$
 (Ours)

- Our bound (Ours) has the following merits:
 - Affine-invariance
 - Norm-invariance
 - Interpretability

 \triangleright To find an $\varepsilon\text{-optimal}$ solution, the complexity bound in Dvurechensky et al. (2020) reads:

$$O\left(\sqrt{L(x^0)}D_{\mathcal{X},\|\cdot\|_2}\ln\left(\delta_0/\left(\sqrt{L(x^0)}D_{\mathcal{X},\|\cdot\|_2}\right)\right) + L(x^0)D_{\mathcal{X},\|\cdot\|_2}^2/\varepsilon\right), \qquad \text{(Dvu)}$$

where $\mathcal{S}(x^0):=\{x\in \mathsf{dom}\, F\cap \mathcal{X}\,:\, F(x)\leq F(x^0)\}$ denotes the initial level-set and

$$L(x^0) := \max_{x \in \mathcal{S}(x^0)} \|\nabla^2 \bar{F}(x)\|_2 < +\infty \text{ , and } D_{\mathcal{X}, \|\cdot\|_2} := \max_{x, y \in \mathcal{X}} \|x - y\|_2$$

$$O((\delta_0 + \theta) \ln(\delta_0) + (\theta)^2/\varepsilon).$$
 (Ours)

- Our bound (Ours) has the following merits:
 - Affine-invariance
 - Norm-invariance
 - Interpretability
 - Ease of parameter estimation