Homework Assignment 03

Machiry Aravind Kumar

UCSB

1 Problem 1

Consider the exponent d=49=(110001). Show the steps and all intermediate powers in the computation of m^d for the algorithms

1.1 the left-to-right binary method

i	\mathbf{e}_i	Step 2a	Step 2b
4	1	$(\mathbf{m})^2 = m^2$	$m^2.m = m^3$
3	0	$(m^3)^2 = m^6$	m^6
2	0	$(m^6)^2 = m^{12}$	m^{12}
1	0	$(m^{12})^2 = m^{24}$	m^{24}
0	1	$(m^{24})^2 = m^{48}$	$m^{48}.m = m^{49}$

1.2 the right-to-left binary method

$$R_0 = 1, R_1 = m, i = 0$$

i	d_i	R_0	R_1
0	1	1.m	m^2
1	0	m	$({\rm m}^2)^2$
2	0	m	$({\rm m}^4)^2$
3	0	m	$(m^8)^2$
4	1	$\mathrm{m.m^{16}}$	$(m^{16})^2$
5	1	$m^{17}.m^{32}$	$(m^{32})^2$

$$R_0 = m^{49}$$

1.3 the square-and-multiply-always algorithm

$$R_0 = 1, R_1 = 1$$

i	d_i	b	R_0	R_b
5	1	0	$R_0 = 1^2$	$R_0 = 1.m$
4	1	0	$R_0 = m^2$	$R_0 = m^2.m$
3	0	1	$R_0 = (m^3)^2$	$R_1 = 1.m$
2	0	1	$R_0 = (m^6)^2$	$R_1 = m.m$
1	0	1	$R_0 = (m^{12})^2$	$R_1 = m^2.m$
0	1	0	$R_0 = (m^{24})^2$	$R_0 = m^{48}.m$

$$R_0 = m^{49}$$

1.4 the Montgomery powering ladder

$$R_0 = 1, R_1 = m$$

i	d_i	b	R_b	R_{d_i}
5	1	0	$R_0 = 1.m$	$R_1 = m^2$
4	1	0	$R_0 = m.m^2$	$R_1 = (m^2)^2$
3	0	1	$R_1 = m^3.m^4$	$R_0 = (m^3)^2$
2	0	1	$R_1 = m^6.m^7$	$R_0 = (m^6)^2$
1	0	1	$R_1 = m^{12}.m^{13}$	$R_0 = (m^{12})^2$
0	1	0	$R_0 = m^{24}.m^{25}$	$R_1 = (m^{25})^2$

$$R_0 = m^{49}$$

1.5 the Atomic square-and-multiply algorithm

$$R_0 = 1, R_1 = m$$

i	d_i	b_{before}	R_b	R_0	b_{after}
5	1	0	$R_0 = 1$	1.1	1
5	1	1	$R_1 = m$	1.m	0
4	1	0	$R_0 = m$	m.m	1
4	1	1	$R_1 = m$	$m^2.m$	0
3	0	0	$R_0 = m^3$	$\mathrm{m}^3.m^3$	0
2	0	0	$R_0 = m^6$	$m^6.m^6$	0
1	0	0	$R_0 = m^{12}$	$m^{12}.m^{12}$	0
0	1	0	$R_0 = m^{24}$	$m^{24}.m^{24}$	1
0	1	1	$R_1 = m$	$m^{48}.m$	0

$$R_0 = m^{49}$$

1.6 the Atomic right-to-left algorithm

$$R_0 = 1, R_1 = m, b = 1, i = 0$$

i	d_i	$b = b \bigoplus d_i$	R_b
0	1	0	$R_0 = 1.m$
0	1	1	$R_1 = m.m$
1	0	1	$R_1 = m^2.m^2$
2	0	1	$R_1 = m^4.m^4$
3	0	1	$R_1 = m^8.m^8$
4	1	0	$R_0 = m.m^{16}$
4	1	1	$R_1 = m^{16}.m^{16}$
5	1	0	$R_0 = m^{17}.m^{32}$
5	1	1	$R_1 = m^{32}.m^{49}$

$$R_0 = m^{49}$$

Let an RSA key be determined by the parameters $\{p,q,n,\phi(n),e,d\}$ = $\{97,103,9991,9792,2015,8927\}$. Compute $S = M^d \pmod{n}$ for M = 25 using each of these DPA-type countermeasure algorithms by selecting suitable random parameters:

2.1 Randomizing m, where e is known

```
Picking random r = 17.

m^* = (17)^{2015}.25 mod(9991) = 7111.

S^* = (7111)^{8927} mod(9991) = 5681.

r^{-1} = 4114.

S = 5681.4114 \mod (9991) = 2685.
```

2.2 Randomizing m, where e is unknown

```
Picking random r = 17.

m^* = 17.25 \mod (9991) = 425.

S^* = (425)^{8927} \mod (9991) = 4289.

r^{-1} = 4114.

S = 4289.4114^{8927} \mod (9991) = 2685.
```

2.3 Randomizing m, using a small r

```
Selecting l to be 5. 2^l = 32.

Selecting r to be 17 ( < 32).

m^* = 25 + 17.9991 = 169872.

N^* = 32^*9991 = 319712.

S^* = (169872)^{8927} mod(319712) = 52640.

S = 52640 mod(9991) = 2685.
```

2.4 Randomizing d, using a small r

```
Picking random r = 17.

d^* = 8927 + 17^*9792 = 175391.

S = (25)^{175391} mod(9991) = 2685.
```

2.5 Randomizing d, where $\phi(n)$ is unknown

```
Picking random r = 17.

d^* = 8927 + 17^*(2015^*8927 - 1) = 305803295.

S = (25)^{305803295} mod(9991) = 2685.
```

2.6 Randomizing d, where e is unknown

```
Picking random r = 17.

d^* = 8927 \cdot 17 = 8910.

S_1^* = (25)^{8910} mod(9991) = 7017.

S_2^* = (25)^{17} mod(9991) = 9120.

S = 7017 * 9120 mod(9991) = 2685.
```

2.7 Randomizing n, using small random r_1 and r_2

Picking random $r_1 = 17, r_2 = 29$. $m^* = 25 + 17^*9991 = 169872$. $N^* = 29^*9991 = 289739$. $S^* = 169872^{8927} mod(289739) = 22667$. S = 22667 mod(9991) = 2685.

3 For the same RSA key set, show the computation of $s=m^d\pmod{n}$ for m=50 using the CRT method, and emulate the fault attack by showing that of there is an fault induced on mod p or q computations, an incorrect s value gives away the prime q or p using the GCD attack

3.1 Chinese remainder theorem

We have: $\{p,q,n,\phi(n),e,d\} = \{97,103,9991,9792,2015,8927\}$ and m = 50. $d_1 = 8927 \mod (96) = 95$. $d_2 = 8927 \mod (102) = 53$.

iteration	quotient	g_0	g_1	u_0	u_1	v_0	$ v_1 $
0	-	103	97	1	0	0	1
1	1	97	6	0	1	1	-1
2	16	6	1	1	-16	-1	17
3	6	1	0	-16	97	17	-103
		•		•		•	

From Table 3.1, Initial values of $g_0 = q = 103$ and $g_1 = p = 97$. This $p^{-1} = 17$ and $q^{-1} = -16$. $M_1 = M^{d_1} \mod p = 50^{95} \mod 97 = 33$. $M_2 = M^{d_2} \mod q = 50^{53} \mod 103 = 28$. $S = M_1 + p *((M_2 - M_1) * p^{-1} \mod q) = 33 + 97*((28-33)*17 \mod 103) = 14 + 1746 = 1779$.

Assuming fault happened during calculating M_1 , because of which $M_1 = M_1^f = 83$. $S^f = M_1^f + p *((M_2 - M_1^f) * p^{-1} \mod q) = 83 + 97*((28-83)*17 \mod 103) = 83 + 9215 = 9298$.

 $\gcd(((S^f)^e\text{-m}) \bmod \mathbf{n},\mathbf{n}) = \gcd((9298^{2015}\text{-}50) \bmod 9991,9991) = \gcd(4017,9991) = \mathbf{103} = q.$

Fault Attack Successful.