The circle of Basis

Nilava Metya

August 2019

Theorem

Let *V* be a k-vector space and $X \subseteq V$. The following are equivalent:

- 1. X is a Maximal Linearly Independent set
- 2. X is a Minimal Spanning set
- 3. X is Linearly Independent and $\langle X \rangle = V$
- 4. Every $v \in V$ is uniquely expressible as $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$ for $v_i \in X$, $\lambda_i \in k$

Proof

$1 \implies 2$

Suppose that *X* is a *Maximal Linearly Independent* subset of *V* .

Note that if $v \in X$, then $v = \lambda v$ where $\lambda = 1$.

Say $v \in V$ but $v \notin X$. Then, the set $A = X \cup \{v\}$ must be Linearly Dependent, due to maximality of X. Hence, $\exists v_1, \ldots, v_n \in A$ and $\lambda_1, \ldots, \lambda_n \in k$ (not all 0) such that $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$

Claim

$$v \in \{v_1, v_2, \ldots, v_n\}$$

Proof. Suppose that $v \neq v_i$ for any i. Therefore, $\{v_1, v_2, \ldots, v_n\} \subseteq X \implies \{v_1, v_2, \ldots, v_n\}$ is linearly independent. Therefore, if we have that $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$, then $\lambda_i = 0 \ \forall i$, which contradicts our choice of λ_i 's. Thus, $v \in \{v_1, v_2, \ldots, v_n\}$.

Without loss of generality, let $v = v_1$. Hence, $\lambda_1 v + \lambda_2 v_2 + \cdots + \lambda_n v_n = 0$

Claim

 $\lambda_1 \neq 0$

Proof. All v_i are distinct in \mathcal{A} . Therefore $\{v_2, \ldots, v_n\} \subseteq X \implies \{v_2, \ldots, v_n\}$ is linearly independent. Suppose that $\lambda_1 = 0$. Then, $\lambda_2 v_2 + \cdots + \lambda_n v_n = 0$. Due to linear independence, $\lambda_2 = \cdots = \lambda_n = 0 = \lambda_1$ which contradicts our choice of λ_i 's. Thus, $\lambda_1 \neq 0$.

So,
$$v = \frac{-\lambda_2}{\lambda_1}v_2 + \frac{-\lambda_3}{\lambda_1}v_3 + \cdots + \frac{-\lambda_n}{\lambda_1}v_n$$
.

Thus we can write any element of V as a linear combination of the elements of $X \implies V = \langle X \rangle$

To prove the minimality of X as a spanning subset of V, we suppose that $\exists Y \subset X \neq \phi$ (proper subset) such that $V = \langle Y \rangle$. Let $v \in X \setminus Y$. Since Y spans V, so $\exists \lambda - i \in k$, $v_i \in Y$ such that $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$ for some $n \in \mathbb{N}$. But this means that $\lambda_1 v_1 + \cdots + \lambda_n v_n - v = 0$ with $\{v, v_1, \ldots, v_n\} \subseteq X$. This is impossible as v has coefficient $-1 \neq 0$ and $\{v_1, \ldots, v_n, v\}$ is linearly independent (since, it is a subset of X). Thus, such a proper subset Y does not exist. This proves that X is a *minimal spanning* subset of V.

$2 \implies 3$

Suppose that X is a Minimal Spanning subset of V. Since X spans V, we directly have that $\langle X \rangle = V$.

For the sake of contradiction, suppose that X is linearly dependent. So, $\exists v_i \in X$, $\lambda_i \in k$ (not all o) such that $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$. Without loss of generallity, suppose that $\lambda_1 \neq 0$. Thus, $v_1 = \frac{-\lambda_2}{\lambda_1} v_2 + \frac{-\lambda_3}{\lambda_1} v_3 + \cdots + \frac{-\lambda_n}{\lambda_1} v_n$. This means that $Y = X \setminus \{v_1\}$ also spans V which contradicts the minimality of X as a spanning set as $Y \subset X$. Hence, X is linearly independent.

$3 \implies 4$

Suppose that X is a linearly independent subset of V such that $\langle X \rangle = V$.

Let $v \in V$. Since X spans V, so $\exists \lambda_1, \ldots, \lambda_n \in k$ and $v_1, v_2, \ldots, v_n \in X$ such that $v = \lambda_1 v_1 + \cdots + \lambda_n v_n$.

If possible, suppose that $u \in V$ is such that it can be represented as two different linear combinations of vectors of X, that is, $\exists \lambda_1, \ldots, \lambda_n \in k$ and $\lambda'_1, \ldots, \lambda'_n \in k$ with vectors $u_1, u_2, \ldots, u_n \in X$ such that

$$u = \lambda_1 u_1 + \dots + \lambda_n u_n = \lambda_1' u_1 + \dots + \lambda_n' u_n$$

$$\implies (\lambda_1 - \lambda_1')u_1 + \cdots + (\lambda_n - \lambda_n')u_n = 0$$

Due to linear independence of $\{u_1, \ldots, u_n\} \subset X$, we have that $\lambda_i - \lambda_i' = 0 \iff \lambda_i = \lambda_i'$. Thus the representation is unique.

$\underline{4} \implies \underline{1}$

Let $Y \subset X$ be a finite subset such that $Y = \{v_1, \dots, v_n\}$ for some $n \in \mathbb{N}$. Consider the equation

$$\sum_{i=1}^{n} \lambda_i v_i = 0$$

for some $\lambda_i \in k$ and we want to solve for λ_i 's.

First we notice that $\lambda_i = 0 \ \forall i$ is a valid solution. But by our hypothesis, $0 = \lambda_1 v_1 + \cdots + \lambda_n v_n$ is uniquely expressible $\implies \lambda_i = 0 \ \forall i$ is the only solution. Thus we have that: $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0 \implies \lambda_i = 0 \ \forall i$. So, X is linearly independent.

Now, suppose there is a proper superset $Z \supset X$ ($Z \subseteq V$) such that Z is linearly independent. Choose some $v \in Z \setminus X \neq \phi$. But $v \in V$, so $\exists v_1, \ldots, v_n \in X$ and $\lambda_1, \ldots, \lambda_n \in k$ such that

$$v = \lambda_1 v_1 + \dots + \lambda_n v_n$$

$$\implies \lambda_1 v_1 + \cdots + \lambda_n v_n - v = 0$$

This contradicts the fact that Z is linearly independent because $\{v, v_1, \dots, v_n\} \subseteq Z$ is linearly independent (as it is a subset of Z) but coefficient of v in the equation is $-1 \neq 0$. Hence, such a proper superset Z does not exist.

This proves that *X* is a *maximal linearly independent* set.