Bundesministerium Bildung, Wissenschaft und Forschung

	Schlosspark*						
Aufg	Aufgabennummer: B_507						
Tech	Technologieeinsatz: möglich □ erforderlich ⊠						
a)	·	vird ein dreieckiges Blumenbeet stehende Abbildung – Maße in m	70°				

1) Ergänzen Sie den nachstehenden Ausdruck durch Eintragen der richtigen Werte in die dafür vorgesehenen Kästchen.

$$s = \sqrt{-2 \cdot 10^2 \cdot \cos(-1)}$$

Das Blumenbeet soll mit einem Vlies gegen Unkraut abgedeckt werden. Das Abdecken des Blumenbeets kostet pro Quadratmeter € 1,42.

2) Berechnen Sie die Kosten für das Abdecken des Blumenbeets.

^{*} ehemalige Klausuraufgabe

b) Ein rechteckiges Blumenbeet mit den Seitenlängen *b* und *h* ist in einen Bereich für Rosen und einen Bereich für Tulpen unterteilt. Die Begrenzungslinie zwischen diesen Bereichen kann modellhaft durch den Graphen der Funktion *f* beschrieben werden (siehe nachstehende Abbildung).

1) Stellen Sie mithilfe der obigen Abbildung eine Formel zur Berechnung des Inhalts A der grau markierten Fläche auf.

A =

f ist eine Polynomfunktion 3. Grades mit $f(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$. Folgende Punkte liegen auf dem Graphen von f: (3 | 0,8), (5 | 2,7), (7 | 3,7), (9 | 2,3).

2) Berechnen Sie mithilfe dieser Punkte die Koeffizienten a, b, c und d.

c) Im Schlosspark gibt es ein Labyrinth aus Hecken. Der Weg durch das Labyrinth wird durch Aneinanderreihen der Vektoren $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}, ..., \overrightarrow{h}$ (in alphabetischer Reihenfolge) beschrieben. Dabei beginnt jeder Vektor an der Spitze des vorherigen Vektors.

Es gilt:
$$\overrightarrow{e} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
, $\overrightarrow{f} = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$, $\overrightarrow{g} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $\overrightarrow{h} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ (Maße in m)

In der nachstehenden Abbildung ist die quadratische Grundfläche des Labyrinths dargestellt. Der Startpunkt A des Weges durch das Labyrinth, die ersten vier Vektoren und der Punkt P sind bereits eingezeichnet.

1) Tragen Sie die fehlenden Zahlen in die dafür vorgesehenen Kästchen ein.

$$\vec{b} = \begin{pmatrix} & & \\ & & \end{pmatrix}$$

- 2) Ermitteln Sie die Länge des Weges durch das Labyrinth vom Startpunkt A zum Punkt P.
- 3) Vervollständigen Sie ausgehend vom Punkt P den Weg durch das Labyrinth durch Einzeichnen der Vektoren $\overrightarrow{e}, \overrightarrow{f}, \overrightarrow{g}$ und \overrightarrow{h} .

4)	Kreuzen Sie die auf die gegebenen Vektoren nicht zutreffende Aus	sage an.	[1	aus	5]
----	--	----------	----	-----	----

Die Vektoren \overrightarrow{a} und \overrightarrow{c} sind Gegenvektoren.	
Die Vektoren \overrightarrow{f} und \overrightarrow{g} haben den gleichen Betrag.	
Die Vektoren \overrightarrow{f} und \overrightarrow{h} sind parallel.	
Die Vektoren \overrightarrow{d} und \overrightarrow{e} haben den gleichen Betrag.	
Die Vektoren \overrightarrow{d} und \overrightarrow{e} stehen normal aufeinander.	

d) Im Schlosspark wird Schilf gepflanzt. In den ersten Wochen nach der Pflanzung wird die Höhe einer bestimmten Pflanze notiert.

Zeit t nach der Pflanzung in Wochen	1	2	3	4	5	6
Höhe der Pflanze zur Zeit t in cm	30	34	39	44	48	52

Die Höhe dieser Pflanze soll in Abhängigkeit von der Zeit t durch die lineare Funktion h beschrieben werden.

- t ... Zeit nach der Pflanzung in Wochen
- $\mathit{h}(\mathit{t})$... Höhe der Pflanze zur Zeit t in cm
- 1) Ermitteln Sie mithilfe der Regressionsrechnung eine Gleichung der linearen Funktion h.
- 2) Berechnen Sie gemäß diesem Modell die Höhe der Pflanze 20 Wochen nach der Pflanzung.

Schlosspark 5

Möglicher Lösungsweg

a1)
$$s = \sqrt{10^2 + 10^2 - 2 \cdot 10^2 \cdot \cos(40^\circ)}$$

Der Punkt ist auch zu vergeben, wenn im 3. Kästchen das Grad-Zeichen fehlt.

a2)
$$\frac{1}{2} \cdot 10 \cdot 10 \cdot \sin(40^\circ) \cdot 1,42 = 45,637...$$

Die Kosten für das Abdecken des Blumenbeets betragen € 45,64.

b1)
$$A = b \cdot h - \int_{a}^{b} f(x) \, dx$$

b2) I:
$$f(3) = 0.8$$

II:
$$f(5) = 2.7$$

III:
$$f(7) = 3.7$$

IV:
$$f(9) = 2,3$$

oder:

I:
$$a \cdot 3^3 + b \cdot 3^2 + c \cdot 3 + d = 0.8$$

II:
$$a \cdot 5^3 + b \cdot 5^2 + c \cdot 5 + d = 2.7$$

III:
$$a \cdot 7^3 + b \cdot 7^2 + c \cdot 7 + d = 3,7$$

IV:
$$a \cdot 9^3 + b \cdot 9^2 + c \cdot 9 + d = 2,3$$

Berechnung mittels Technologieeinsatz:

$$a = -\frac{1}{32} = -0.03125$$

$$b = \frac{57}{160} = 0,35625$$

$$c = -\frac{59}{160} = -0,36875$$

$$d = -\frac{73}{160} = -0.45625$$

c1)
$$\vec{b} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

c2) $5 + \sqrt{2^2 + 3^2} + 5 + 3 = 16,60...$

Die Länge des Weges durch das Labyrinth vom Startpunkt A zum Punkt P beträgt rund 16,6 m.

c3)

c4)

Die Vektoren \overrightarrow{f} und \overrightarrow{g} haben den gleichen Betrag.	\times

d1) Ermittlung mittels Technologieeinsatz:

 $h(t) = 4,49 \cdot t + 25,47$ (Koeffizienten gerundet)

d2) h(20) = 115,1...

Die Höhe der Pflanze 20 Wochen nach der Pflanzung beträgt rund 115 cm.

Schlosspark 7

Lösungsschlüssel

- a1) Ein Punkt für das Ergänzen der drei richtigen Werte.
- a2) Ein Punkt für das richtige Berechnen der Kosten.
- b1) Ein Punkt für das richtige Aufstellen der Formel.
- **b2)** Ein Punkt für das richtige Berechnen der Koeffizienten a, b, c und d.
- c1) Ein Punkt für das Eintragen der richtigen Zahlen.
- c2) Ein Punkt für das richtige Ermitteln der Länge des Weges.
- c3) Ein Punkt für das richtige Vervollständigen des Weges.
- c4) Ein Punkt für das richtige Ankreuzen.
- d1) Ein Punkt für das richtige Ermitteln der Gleichung der Funktion h.
- d2) Ein Punkt für das richtige Berechnen der Höhe der Pflanze.