## Advanced Research Tools for Economics and Business Administration

Thomas de Graaff

January 8, 2015

#### Introduction

#### Why this workshop?

- In the social sciences few attention to what tools to use (and why they make sense)
- Increasing need for/in openness, reproducability & transparancy
  - from journals, universities and governments
  - increase in cooperation (over wider distances)
  - access to your own files
  - make yourself more visible
- Why I want to give this workshop
  - intrinsic interest
  - my goal: pre-conferences workshops / courses



#### What I want (and don't want) with this workshop

- Give a general introduction of why some tools work together
  - Why version control systems?
  - Why reference managers
- Give an introduction to LATEX
  - First the basics
  - Next workshop: some advanced stuff
- What I do not want
  - Tell you what applications to use (you need to decide and make a well-informed decision)

## Workflow

#### Research cycle





#### Why bother about a workflow or tools?

- Good scientific practice: document how you have achieved your results; this ensures
  - Reproducibility
  - Transparency
  - Modularity
  - Portability (across systems and users)
  - Efficiency
  - Self-sanity

#### When should I adopt new tools/workflow?

- The sooner the better (you really have time now)
- But think twice about which one (switching is costly; not in terms of beer but in terms of time)
- Start one step at a time (starting with LATEX is a pretty neat idea)

A journey of a thousand miles begins with a single step Lao-tzu



#### In general

In science consensus is irrelevant. What is relevant is reproducible results. The greatest scientists in history are great precisely because they broke with the consensus (Michael Crichton)

#### In data science

- Typically, a publication is not at the heart of research
  - Code
  - Data

The data and code used to make a finding are available and they are sufficient for an independent researcher to recreate the finding (Peng, 2011)

#### Code, documentation and output

- Synonyms
- All based on .txt files
- Encompasses almost anything
  - data itself (.csv)
  - set of commands for data cleaning and statistical analysis (.do, .R)
  - database with references (.bib)
  - transcript of interviews (.tex)
  - text for aticles, presentations or websites (.tex, .html)
- Only output is displayed/interpreted differently (e.g., in a browser or pdf viewer)

#### Tools for workflows in this workshop

- Versioning system (Time-Machine, Dropbox, GitHub)
- Reference manager (Mendeley)
- Markup lanaguages
  - PLEX
  - HTML

## **Version Control Systems**

# Folder structure of your new project (theses, paper, research)

- Think a priori about project set-up
  - Seperate analysis, data and output files
- Be careful with source data!
  - Seperate source and derived data files
  - Typically
    - you get/collect data
    - transform data
    - analyse data
  - Keep track of all these stages!



#### Why is version control systems such a neat idea



#### **Version control systems**

With version control system only one copy of each file (but with fully backed-up history)

A version control system is not the same as a backup devise, but the combination is a killer-ap

- Time machine (mac only) with external hard drive
- Dropbox
- more advanced stuff: Git and GitHub

With .txt files you can use the diff command

## **Reference managers**

#### Why reference managers?

This is a life saver!

Use one!

Several applications out there:

- In this case Mendeley (free but not open source)
- Make sure it exports to .bib files
- Search for references (google scholar, jstor, etc.)
- Mendeley can import .pdf's

Workflow

**Version Control Systems** 

Reference managers



## Background

- TEXhas been devised by Donald E. Knuth in the late 70's
- LATEX is a set of macro's around TeX and devised in the 80's
- LATEX is a typesetting program, not a Word processor
  - It is actually some code that needs to be compiled
  - Code is typed in by an editor
- So, huge differences between
  - Word processor: Open Office, Word
  - Typesetter: LaTEX, Adobe's InDesign (in general XML)
  - Editors:
    - Specific editors: TexStudio, TexShop, RStudio
    - General editors: Sublime, TextMate, Notepad++, Vim, Emacs



#### Disadvantages

- Not WYSIWYG
- You nead to learn (quite) some commands
  - Learning curve, but
  - hurray for cheat sheets and Google
- Very specific lay-outs difficult to attain
- Basic LATEX has difficulties with incorporating new fonts (Hoefler, minion pro)
  - XeTeX
  - For the purists: LATEXdoes it right (LATEXvs Word)



#### **Advantages**

- Free (as in beer) and ubiquitous
- WYSIWYM
- Consistent lay-out throughout the whole document (including tables, appendices, formulas, source code, etc)
- Internal references are a breeze (references, tables of, indices)
- Forced to structure documents
- Macros, thus scriptable
- Large community, thus a package for almost everything (books, articles, presentation, posters, exams, musicscores)
- Superior typography & output
- Large publishers (i.e., Elsevier and Springer) have LATEXtemplates for their articles



#### How does it work in practice?

- You edit a .tex file without thinking about how it looks
  - distraction free writing (yeah right)
- You then compile it
  - ETEXis unforgiving: if there is an error, usually it does not compile
  - Typically, errors are missing brackets or parentheses.
- Typically, source .tex file is compiled into .pdf

**Version Control Systems** 

#### Basic set-up

```
\documentclass[]{article}
%opening
\title{}
\author{}
\begin{document}
\maketitle
\begin{abstract}
\end{abstract}
\section{}
\end{document}
```

#### **Creating some text**

- Use a first package: \usepackage{lipsum}
- Create an abstract, title, authors and will in some sections
- Create subsections

#### Further text control

- itemization
- enumeration
- bold
- emphasize

#### **Inserting equations**

• Inline:  $e=mc^2$  will be  $e=mc^2$ 

or

```
\begin{equation}
e=mc^2
\end{equation}
```

will render in

$$e = mc^2$$

• Equations can be as complex (cool) as you want



#### **Inserting figures**

\end{figure}

```
\usepackage{graphicx}
\includegraphics{../Figs/home stalin poster}
Better is to include them in a floating environment (this is where
typically the problem starts)
\begin{figure}[htb!]
    \includegraphics[width = 1.0\textwidth]
    {../Figs/home_stalin_poster}
    \caption{Next slide please!}
```



IAT<sub>E</sub>X



#### **Inserting tables**