Prečkanje puščave neznane velikosti Diplomski seminar

Justin Raišp Mentor: izr. prof. dr. David Dolžan

Fakulteta za matematiko in fiziko

21. 11. 2022

Predstavitev problema

Potrebno je prečkati puščavo neznane velikosti, pri čemer imamo na začetku na voljo neomejeno količino goriva, vendar imamo končen rezervoar za gorivo v avtu. Brez škode za splošnost predpostavimo:

- rezervoar ima kapaciteto 1 liter goriva,
- za 1 kilometer potrebujemo 1 liter goriva,
- poraba goriva je konstantna skozi celotno pot.

Zanima nas optimalna strategija postavljanja postaj z gorivom, da dosežemo cilj, pri čemer porabimo čim manjšo količino goriva.

Že rešeni problemi

Prečkanje puščave je v matematiki znan problem, ki se je prvič pojavil že v 9. stoletju, trenutna različica problema pa se je pojavila v letu 1947 s strani Nathan Jacob Fine-a, vendar so ti problemi predpostavljali, da poznamo širino dane puščave.

Ideja

Z n označimo količino goriva.

- n = 1: Peljemo se $\frac{1}{2}$ in se vrnemo na začetek
- n=2: Peljemo se $\frac{1}{4}$, shranimo $\frac{1}{2}$ in se vrnemo. Nato se peljemo $\frac{1}{4}$ poberemo $\frac{1}{4}$, se peljemo $\frac{1}{2}$, se vrnemo in po poti poberemo $\frac{1}{4}$,
- n=3: Peljemo se $\frac{1}{6}+\frac{1}{4}+\frac{1}{2}$ in se vrnemo, vmes imamo 2 postaji,

• n = k: Peljemo se $\frac{1}{2k} + \frac{1}{2(k-1)} + \cdots + \frac{1}{4} + \frac{1}{2}$, vmes pa imamo k-1

postaj.

Ideja

Ker imamo pot v obe smeri, pomeni da prevozimo

$$2\sum_{n=1}^{k} \frac{1}{2n} = \sum_{n=1}^{k} \frac{1}{n},$$

kar nam da harmonično vrsto, katera divergira ko $k \to \infty$, torej lahko prevozimo vsakršno razdaljo. k-to delno vsoto harmonične vrste lahko aproksimiramo z

$$\sum_{n=1}^{k} \frac{1}{n} \approx \ln(k) + \gamma,$$

kjer je $\gamma \approx 0.577$ Euler-Macheronijeva konstanta. Torej lahko ocenimo, da za d kilometrov in nazaj, potrebujemo $O(e^{2d})$ litrov goriva. Torej za velike d, je cena goriva za razdaljo d sorazmerna 7.389^d .

Učinkovitost strategije

Učinkovitost strategije ocenimo s "worst case competitive ratio", ki je značilen za ocenjevanje učinkovitosti pri problemih, kjer ključne informacije niso znane vnaprej. Definiran je kot:

Najvišja cena z danim algoritmom Optimalna cena, če poznamo razdaljo apriori

Najpreprostejši način reševanja tega problema bi bile enakomerno razporejene postaje z gorivom. Ideja je, da se premikamo naprej dokler je možno. Definiramo **razvrščanje vnaprej**: predpostavimo, da smo na postaji in s p označimo razdaljo do predhodne postaje in trenutno količino goriva, vključno z gorivmo na postaji s f. Če velja $f-p \geq 1$, gremo naprej s polnim rezervoarjem. Sicer se vrnemo s p litri goriva.

Za primer vzamemo enakomerno razporejene postaje na razdalji $\frac{1}{3}$.

- Povratna pot do prve postaje nas stane $\frac{1}{3}$ v vsako smer, vmes pa shranimo $\frac{1}{2}$ goriva,
- Dve takšni poti nam omogočita $\frac{2}{3}$ goriva na prvi postaji,
- Na tretji poti porabimo $\frac{1}{3}$ do prve postaje, vzamemo $\frac{1}{3}$, se peljemo do druge postaje, odložimo $\frac{1}{3}$, in se vrnemo na začetek z vmesno postajo na $\frac{1}{3}$.

Z f(n) označimo začetno količino goriva, potrebnega za dostavo $\frac{1}{3}$ goriva do n-te postaje, s predpostavko, da so vse vmesne postaje prazne. Potem velja

- f(1) = 1,
- f(2) = 2f(1) + 1 = 3,
- f(3) = 2f(2) + 2f(1) + 1 = 9

Za *n*-to postajo dobimo formulo:

$$f(n) = 1 + \sum_{i=1}^{n-1} 2f(i) = 3^{n-1}$$

Torej, če imamo 3 postaje na kilometer, nas povratna pot dolžine d stane $3^{3d-1}=O(27^d)$.

Če postavimo postaje na razdalji $\frac{1}{4}$, nas povratna pot dolžine d stane $O(16^d)$, kar je veliko boljše kot $O(27^d)$, vendar veliko slabše kot $O(7.389^d)$, kar dobimo pri optimalni strategiji pri znani razdalji. Zaradi večje eksponentne rasti teh strategij, je njihov konkurenčni kriterij neomejen. Da se pokazati, da pri nobeni strategiji z enakomerno razporejenimi postajami ne moremo doseči končnega konkurenčnega razmerja.

Izrek

Pri razvrščanju naprej z enakoremo razporejenimi postajami $\frac{1}{k}$ narazen, asimptotična cena za doseganje dane razdalje raste eksponentno z razdaljo, in osnova eksponenta je omejena od spodaj z $(\frac{k}{k-2})^k$

Optimalnost

Da se pokazati, da je razvrščanje vnaprej optimalna strategija. Vendar če imamo enakomerno razporejene postaje na razdaljah $\frac{1}{k}$, lahko učinkovitost povečamo, če dodamo na sredino vsakih dveh postaj novo postajo. Posledično z nobeno strategijo z enakomerno razporejenimi postajami za neznano razdaljo, ne dosežemo končnega "konkurenčno razmerje v najslabšem primeru", saj je edini način da dosežemo stopnjo e^2 , da k pošljemo v neskončnost, kar bi pomenilo, da bi potrebovali neskončno količino goriva za katerokoli razdaljo od začetka.

Iteracija

V nadaljevanju se bom ukvarjal z iterativnim pristopom k temu problemu in kako s pomočjo dinamičnega programiranja določimo "konkurenčno razmerje v najslabšem primeru".

Literatura

- Richard E. Korf (2022) *A Jeep Crossing a Desert of Unknown Width,* The American Mathematical Monthly, 129:5, 435-444, DOI: 10.1080/00029890.2022.2051404
- Weisstein, Eric W, *Harmonic Series*, [ogled 11. 11. 2022], dostopno na

https://mathworld.wolfram.com/HarmonicSeries.html