- 153. La proposition fausse est :
 - Soit a un nombre, M et M deux points d'affixes respectives Z et Z.
 Z = Z + a équivaut à : M est l'image de M par la translation de vecteur w d'affixe a.
 - Soit un nombre réel, soit M et M deux ponts d'affixes respectives Z et Z' = e^{iaz} équivaut à : M'est l'image de M par la rotation de centre O et d'angle α.
 - centre O et d'angle α .

 3. Pour tous nombres réels θ et θ' ; $e^{i\theta} \cdot e^{i\theta} = e^{i(\theta \theta')}$, $\frac{e^{i\theta}}{e^{i\theta}} = e^{i(\theta \theta')}$ www.ecoles-rdc.net
 - 4. Pour tout nombre réel θ : cos θ = e^{iθ} e^{iθ}/2 ; sin θ = e^{iθ} + e^{iθ}/2
 5. Si A et B sont deux points du plan, d'affixes respectives Z_A et Z_B, alors le vecteur AB a pour affixe Z_B Z_A. (M-2011)
- 154. On considère l'équation d'inconnue complexe Z, notée (E)
 Z² = (3cos θ+ i sin θ)Z + 2 = 0.
 Soit M₁ et M₂ les images des solutions de (E) et P le milieu de
 - $[M_1M_2]$. L'ensemble (γ) des points P quand décrit $[0, \pi]$ est une ellipse centrée à l'origine, de petit et grand axes:

 1. 3 et 2 2. 3 et 1 3. 1 et 2 4. $\frac{3}{2}$ et $\frac{1}{2}$ 5. $\frac{3}{2}$ et $\frac{4}{3}$ (M-2011)
- 155. La solution de l'équation complexe (1 + 2i)z + (i 1) = iz 3 est :

1.
$$-\frac{3}{2} + \frac{5}{2}i$$
 2. $\frac{3}{2} - \frac{5}{2}i$ 3. $\frac{5}{2} - 2i$ 4. $\frac{5}{2} + 2i$ 5. $-\frac{3}{2} + \frac{1}{2}i$ (M-2011)

- 156. Dans l'ensemble C, l'ensemble-solution de l'équation $Z^2 + |Z|^2 + i 2 = 0 \text{ est } :$
 - 1. $\{-2-i, 2+i\}$ 3. $\{-\frac{1}{2}-i, \frac{1}{2}+i\}$ 5. $\{1+i, 1-i\}$
 - $2. \left\{ -2 + \frac{i}{2}, 2 \frac{i}{2} \right\} \qquad 4. \left\{ -1 + \frac{i}{2}, 1 \frac{i}{2} \right\}$ (B-2012)