Prova Parziale di **Ottimizzazione Combinatoria** 24 Aprile 2008

Cognome	
Nome	
Matricola	

Domanda 1

Enunciare e dimostrare il teorema di Berge.

Domanda 2

Scrivere un grafo in cui ogni nodo abbia grado almeno pari a 1 e tale che

- 1. $\alpha = \rho$
- 2. $\alpha + \mu = 10$
- 3. $\alpha \tau = 2$

Domanda 3

Scrivere una matrice di 6 righe e 10 colonne con almeno tre coefficienti uguali a 1 per riga e almeno un coefficiente uguale a –1 che soddisfi il criterio sufficiente per la totale unimodularità.

Domanda 4

Dato il grafo in figura G non bipartito dire se esiste un cammino aumentante rispetto al matching evidenziato.

Prova Parziale di **Ottimizzazione Combinatoria** 24 Aprile 2008

Cognome	
Nome	
Matricola	

Esercizio 1

La tabella che segue contiene una lista di oggetti che volete inserire in uno zaino di capacità pari a 170Kg. Ogni oggetto ha un peso a_i e un profitto (atteso) p_i . Dopo aver formulato il problema di scegliere gli oggetti da inserire nello zaino massimizzando il profitto finale e rispettando il vincolo di capacità, determinare un upper bound per il profitto massimo ottenibile.

Oggetto	1	2	3	4	5	6	7	8	9	10
Peso	11	21	40	30	21	35	12	11	35	40
Profitto	89	110	300	250	90	280	112	68	250	320

Esercizio 2

La seguente matrice è una matrice delle distanze di un'istanza del problema del Commesso Viaggiatore.

	A	В	C	D	E	F	G	H
A	-	6	10	15	5	17	15	19
В	6	_	4	9	11	23	9	13
C	10	4	_	5	15	27	5	9
D	15	9	5	-	20	32	10	14
E	5	11	15	20	-	12	32	24
F	17	23	27	32	12	-	32	36
G	15	9	5	10	32	32	-	4
H	19	13	9	14	24	36	4	-

Calcolare

- 1. Una soluzione euristica S ottenuta tramite l'algoritmo Nearest Neighbour.
- 2. Una soluzione euristica *S* ottenuta tramite l'algoritmo Double Tree.

Dimostrare, inoltre, che l'algoritmo Double Tree per il problema del Commesso Viaggiatore è un algoritmo 2-approssimato.

Cognome	
Nome	
Matricola	

Esercizio 3

Dato il grafo in figura G e il matching $M = \{ cd, ge, nl, hi \}$, determinare il valore del minimo edge cover $\rho(G)$. Spiegare nel dettaglio i passi degli algoritmi utilizzati.

