Simulating ADAS with SOME/IP

What is ADAS?

- Advanced Driving Assistance Systems
- These are technologies developed to enhance vehicle safety and driving experience by assisting the driver in various tasks.
- These systems typically use sensors such as cameras, radar, lidar, and ultrasonic sensors to monitor the vehicle's surroundings and provide feedback or take corrective actions when necessary.
- The ultimate goal of ADAS is to reduce accidents and improve overall road safety.

Why do we need ADAS?

Levels of automation

Level 0 – No automation

Level 1 – Emergency braking, collision warning

Level 2 – ACC, Parking line detection, autonomous emergency braking

Level 3 – complete control except under certain traffic and weather conditions. Tells driver when it cant

Level 4 – no assistance from driver but require assistance time to time. Geographical area is limited.

Level 5 – Complete automation. No control elements like steering wheel or pedal.

General Block Diagram

Block Diagram for ACC

SOME / IP

- SOME/IP (Scalable Service-Oriented MiddlewarE over IP) is a communication protocol used in automotive and other industries.
- It operates at the application layer over IP, typically UDP or TCP, for efficient data exchange between electronic control units (ECUs).
- It supports service-oriented architecture, efficient data serialization and service discovery
- ADAPTIVE AUTOSAR uses SOME/IP as one of its communication protocol.

How it sends Data?

Method

Client requests the server and Server gives response

Events

 Client subscribes to an event and gets notified whenever server publishes. Either update on change or periodic

Fields

• A combination of method and events. A client can set and get data in the server and gets notified whenever the server publishes.

Pybus Simulation

- A python package which simulates sensor data and sends them to your fusion application through someip
- It uses vsomeip a c++ based implementation of SOME/IP

Folder Structure

VSOMEIP BINDINGS	
ECU SIMULATION CLASS	
CONFIG FILES	
DATABASE	
DATADASE	

Config File Structure

ECU Simulation Class

- Represents an ECU node in the vehicle architecture.
- Every ECU has a config manager. The config manager fetches config data for the ECU from its corresponding config file.
- It initializes a vsomeip runtime and creates an application for the ECU.
- All provided and required services for the ECU are registered here.
- Call the start function to start ECU simulation.

ECU Simulation Class

Sensor ECU

Environment Simulation

Woking With Short Range Radar Sensor

Sensor Data Fusion Application

- Sensor data fusion in ADAS combines inputs from radar, cameras, lidar, and other sensors to enhance accuracy and reliability.
- Sensor fusion enables advanced automation features and addresses challenges such as sensor integration and real-time processing for robust performance in varied driving conditions

Thank You!!