10 класс

Задача 1. Воднолыжник. Катер едет посередине прямого длинного канала фиксированной ширины с постоянной скоростью υ . За катером на натянутом все время тросе длиной L курсирует от одного берега канала до другого воднолыжник. В момент времени, когда расстояние между лыжником и правым берегом увеличивалось со скоростью u, а трос составлял с направлением движения катера угол α₀, спортсмен оторвался от воды.

Пренебрегая вертикальной составляющей скорости, найдите модуль скорости u_0 спортсмена в этот момент? Какова в этот же момент сила натяжения троса T, если масса спортсмена т? На рисунке в качестве иллюстрации показан вид сверху в некоторый момент движения воднолыжника.

Возможное решение: Разложим скорость спортсмена относительно берега на две составляющие: перпендикулярную берегу u и продольную u'. Так как расстояние от

спортсмена до точки катера, к которой xприкреплен трос, не меняется, то проекции скоростей воднолыжника и катера на линию, проходящую через трос, должны быть одинаковы.

первом случае, когда спортсмен Первый случай uберегом и находится между правым

катером, получим: $v\cos\alpha_0 = u'\cos\alpha_0 + u\sin\alpha_0$, тогда $u' = v - u \operatorname{tg}\alpha_0$. Во втором случае, когда спортсмен находится между катером и левым берегом, получим: $v\cos\alpha_0 = u'\cos\alpha_0 - u\sin\alpha_0$, тогда $u' = v + u \operatorname{tg}\alpha_0$.

Модуль скорости спортсмена относительно берега $u_0 = \sqrt{u^2 + u'^2} = \sqrt{u^2 + (v \pm u \operatorname{tg}\alpha_0)^2}$. Так как относительно катера воднолыжник движется по окружности радиусом L, то сила натяжения троса $T = \frac{mu_{\text{отн}}^2}{L}$, где $u_{\text{отн}}^2 = u^2 + (u'-v)^2 = u^2(1+\operatorname{tg}^2\alpha_0) = \frac{u^2}{\cos^2\alpha_0}$.

Окончательно, $T = \frac{mu^2}{L\cos^2\alpha_0}$

В

Задача 2. Шайбу! Шайба летит в сторону движущейся поступательно тяжёлой плиты так, что их плоскости параллельны. Вектор скорости шайбы составляет угол $\phi = 30^\circ$ с нормалью к поверхности плиты. Происходит столкновение. Векторы скорости шайбы до и после столкновения одинаковы по модулю и перпендикулярны друг другу (см. рисунок).

Кроме того, они лежат в одной плоскости с вектором скорости плиты. Определите минимальное и максимальное значения коэффициента трения μ , при которых возможно такое столкновение.

Возможное решение.

Свяжем импульсы шайбы до и после удара: $\vec{P}_2 = \vec{P}_1 + \Delta \vec{P}$ (см. рисунок).

Из рисунка видно, что вектор $\Delta \vec{P}$ образует с вертикалью (осью ОҮ) угол $\alpha = 90^{\circ} - 45^{\circ} - 30^{\circ} = 15^{\circ}$.

Если после столкновения шайбы с плитой проекция скорости шайбы на ось ОХ меньше проекции скорости плиты на ту же ось, то это значит, что в течение всего времени столкновения шайба скользила по плите и, следовательно, $F_{\rm Tp.}=\mu N$. Здесь N — нормальная реакция опоры. В таком случае

$$\frac{\Delta P_{_{X}}}{\Delta P_{_{Y}}} = \frac{\left(\frac{\Delta P_{_{X}}}{\Delta t}\right)}{\left(\frac{\Delta P_{_{Y}}}{\Delta t}\right)} = \frac{F_{_{\mathrm{Tp.}}}}{N} = \mu = \tan\alpha \approx 0,27 \quad \text{(или } \mu = \tan 15^{\circ} = \frac{\sqrt{3}-1}{\sqrt{3}+1} = 2-\sqrt{3} \text{)}.$$

Если же после столкновения шайбы с плитой проекция скорости шайбы на ось ОХ сравняется с проекцией скорости плиты на ту же ось, то коэффициент трения μ может быть любым большим 0,27.

Задача 3. Девять резисторов. Электрическая цепь состоит из 9 резисторов и идеального вольтметра (см. рисунок). Сопротивление трех резисторов $R_{\rm x}$, $R_{\rm y}$ и $R_{\rm z}$ неизвестны, сопротивления остальных: $R_1=1$ кОм, $R_2=2$ кОм, $R_3=3$ кОм. При подключении к точкам A и B источника с постоянным напряжением $U_0=10$ В вольтметр показывает $U_1=4$ В, при подключении того же источника к точкам A и C показания вольтметра $U_2=5$ В.

Определите:

- 1) значения сопротивлений R_x , R_y и R_z ;
- 2) значения силы тока через источник при подключении его к точкам A и B (I_{AB}) и к точкам A и C (I_{AC}).

Возможное решение.

Перерисуем схему в виде, показанном на левом рисунке. Здесь R_{BC} — сопротивление участка схемы BC, который может быть преобразован (правый рисунок) в сбалансированный мостик с не зависящим от R_z сопротивлением R_{BC} = 2 кОм.

Таким образом, R_z может быть любым. Показания вольтметра при подключении источника к A и B:

$$U_1 = U_0 \frac{R_{BC}}{R_x + R_{BC}}$$

Отсюда находим, что $R_x = 3$ кОм.

Аналогично, при подключении источника к точкам А и С:

$$U_2 = U_0 \frac{R_{BC}}{R_v + R_{BC}}$$

Отсюда находим, что $R_y = 2$ кОм.

Силы токов I_{AB} и I_{AC} определить не составляет труда:

$$I_{AB} = \frac{U_0}{R_y} + \frac{U_0}{R_x + R_{BC}} = 7MA$$

$$I_{AC} = \frac{U_0}{R_x} + \frac{U_0}{R_x + R_{BC}} = \frac{35}{6}MA$$

22 января на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс — 11.00; 8 класс — 12.00; 9 класс — 13.00; 10 класс — 14.30; 11 класс — 16.00.

Задача 4. На планете R19. В далеком космосе астронавты исследовали атмосферу планеты R19. Оказалось, что она очень похожа на атмосферу Земли: состоит из идеального газа с молярной массой $\mu=28$ г/моль и имеет схожую зависимость температуры от высоты (см. рис.). И даже ускорение свободного падения у поверхности R19 равно g=9.9 м/с². Однако, атмосферное давление на уровне моря отличается от земного. Оно равно $p_0=500$ кПа. Определите по этим данным, пренебрегая изменением g с высотой, давление p_1 и плотность p_1 на высоте $p_1=1.0$ км. Универсальная газовая постоянная $p_2=8.31$ Дж/(моль·К).

- Возможное решение.
 - 1) Заметим, что на участке от 0 до 2 км зависимость температуры от высоты линейная убывающая: $T=T_0-\alpha h$. Из графика $\alpha=\left|\frac{\Delta T}{\Delta h}\right|=33,3\frac{\mathrm{K}}{\mathrm{KM}}$.
 - 2) Получим зависимость p(h).

При малом изменении высоты на Δh давление изменяется на $\Delta p = -\rho g \Delta h$, где плотность газа $\rho = \frac{p\mu}{RT}$. Тогда $\frac{\Delta p}{p} = -\frac{\mu g}{RT} \Delta h = \frac{\mu g}{RT} \frac{\Delta T}{\alpha}$.

Тогда связь между относительным изменением давления и относительным изменением температуры: $\frac{\Delta p}{p} = k \frac{\Delta T}{T}$, где $k = \frac{\mu g}{R\alpha} \approx 1$.

Это означает, что давление также линейно убывает с высотой и $\frac{\Delta p}{\Delta h} = -\rho g = const.$

- 3) Таким образом, плотность атмосферы постоянна от 0 до 2 км: $\rho = \rho_0 = \frac{p_0 \mu}{RT_0} = 5.85 \ \text{к г/м}^3.$
- 4) Давление на высоте 1 км $p_1 = p_0 \rho_0 gh = 442$ кПа.

²² января на портале http://abitu.net/vseros будет проведён онлайн-разбор решений задач теоретического тура. Начало разбора (по московскому времени): 7 класс — 11.00; 8 класс — 12.00; 9 класс — 13.00; 10 класс — 14.30; 11 класс — 16.00.

Задача 5. Бусинка на кольце. На тонкое проволочное кольцо радиусом R свободно надета бусинка массой т. Кольцо неподвижно и расположено горизонтально в поле тяжести д. Коэффициент трения скольжения между бусинкой и кольцом равен и. В начальный момент времени бусинка движется со скоростью v_0 .

- 1) Найдите модуль силы трения, действующей на бусинку, в начальный момент времени.
- 2) Найдите модуль полного ускорения бусинки в этот же момент.
- 3) Запишите выражение, позволяющее с погрешностью не более 2% найти путь бусинки за время, в течение которого ее скорость уменьшилась на 1%.

Возможное решение.

1) Сила нормальной реакции опоры $\vec{N} = \vec{N}_1 + \vec{N}_2$, где $|\vec{N}_1| =$ mg – ее вертикальная составляющая, $\left| \vec{N}_2 \right| = \frac{m v_0^2}{R}$ – горизонтальная составляющая в начальный момент времени. Сразу после начала движения модуль силы трения, действующей на бусинку, $F_{\rm rp} = \mu N$, где $N = \sqrt{N_1^2 + N_2^2}$.

Окончательно, $F_{\text{тр}} = \mu m \sqrt{g^2 + \left(\frac{v_0^2}{p}\right)^2}$.

2) Полное ускорение бусинки $\vec{a} = \vec{a}_n + \vec{a}_\tau$, где $a_n = \frac{v_0^2}{R}$ – нормальная составляющая ускорения в начальный момент времени, $a_{\tau} = \frac{F_{\text{тр}}}{m} = \mu \sqrt{g^2 + \left(\frac{v_0^2}{R}\right)^2}$ — тангенциальная составляющая. Сразу после начала движения модуль полного ускорения:

$$a = \sqrt{a_n^2 + a_\tau^2} = \sqrt{(\mu g)^2 + (1 + \mu^2) \left(\frac{v_0^2}{R}\right)^2}.$$

3) Необходимая точность будет обеспечена при использовании приближенных формул: $\Delta S = v_0 \Delta t$; $\Delta v = a_\tau \Delta t$, где ΔS – искомый путь, Δt – время после начала движения, за которое скорость бусинки уменьшилась на 1%. Тогда

орое скорость бусинки уменьшилась на 1%. Тогд
$$\Delta S = \frac{v_0 \Delta v}{a_\tau} = \frac{v_0^2 \cdot 10^{-2}}{a_\tau} = \frac{v_0^2}{\mu \sqrt{g^2 + \left(\frac{v_0^2}{R}\right)^2}} \cdot 10^{-2}.$$

Уточненные критерии 10 класс Задача 1

1	В любой системе координат записано уравнение кинематической связи	2 балла
	между скоростью спортсмена и скоростью катера для двух случаев. Если	
	рассмотрен только один случай – ставится 1,5 балла.	
2	Получено выражение для продольной составляющей скорости спортсмена	1 балл
	относительно берега (спортсмен между правым берегом и катером)	
3	Получено выражение для продольной составляющей скорости спортсмена	1 балл
	относительно берега (спортсмен между левым берегом и катером)	
4	Получен ответ на первый вопрос (для обоих рассмотренных случаев) – по	1 балл
	0,5 балла за каждый случай.	
	При решении задачи можно использовать любую удобную систему	
	координат (для п. 2 и п. 3) – все правильные решения должны оцениваться	
	соответствующим баллом.	
5	В системе отсчета, связанной с катером, записан второй закон Ньютона	2 балла
	для движения лыжника по окружности ($T = ma_{uc}$).	
6	Получено выражение для скорости спортсмена относительно катера	2 балла
7	Получено выражение для силы натяжения троса	1 балл

Задачу можно сразу решать, перейдя в систему отсчета, связанную с катером. Такой способ решения должен оцениваться эквивалентно.

Если полученное при рассмотрении одного случая выражение для скорости спортсмена автоматически правильно учитывает оба случая – ставится 10 баллов.

Задача 2

1	Отмечено (или явно использовано при решении), что изменение проекций	3 балла
	скорости шайбы на оси ОХ и ОУ происходит из-за действия сил нормальной	
	реакции опоры (1 балл) и силы трения (2 балла)	
2	Указано, что возможны два случая в зависимости от μ :	2 балла
	- х-проекция скорости шайбы после столкновения меньше х-проекции	
	скорости плиты (проскальзывание не прекратилось – малые μ) – 1 балл;	
	- х-проекция скорости шайбы после столкновения равна х-проекции скорости	
	плиты (проскальзывание прекратилось – большие μ) – 1 балл.	
3	Записаны уравнения для изменений проекций импульса шарика на оси ОХ и	2 балла
	OY	
4	Получено значение μ_{\min} (через угол α или в эквивалентной форме)	1 балл
5	Отмечено, что при всех $\mu > \mu_{\min}$ проскальзывание исчезает до момента	2 балла
	прекращения контакта плиты и шайбы (при этом x -проекции скорости шайбы	
	и плиты сравниваются, а угол отскока не зависит от μ). В этом случае значение	
	μ может быть сколь угодно велико.	

Возможны разные методы решения – графический и аналитический. Правильные решения нужно оценивать в 10 баллов.

Задача 3

	, ,	
1	Аргументированное объяснение произвольности номинала $R_{\rm z}$	2 балла
2	Правильно найдено сопротивление $R_{\rm BC}$	2 балла
3	Правильно найдено сопротивление R_{x}	2 балла
4	Правильно найдено сопротивление $R_{\rm y}$	2 балла
5	Правильно найдена сила тока I_{AB}	1 балл
6	Правильно найдена сила тока $I_{\rm BC}$	1 балл

Задача 4

1	Для линейного начального участка графика найдено $\left \frac{\Delta T}{\Delta h} \right = 33,3 \frac{K}{KM}$	1 балл
2	Записано выражение $\Delta p = -\rho g \Delta h$	1 балл
3	Записано выражение для плотности газа $\rho = \frac{p\mu}{RT}$	1 балл
4	Получено выражение для связи между относительными изменениями	2 балла
	давления и температуры при малом изменении высоты: $\frac{\Delta p}{p} = k \frac{\Delta T}{T}$, где $k = \frac{\mu g}{R\alpha}$	
5	Вычислено $k \approx 1$	1 балл
6	Сделан вывод о том, что давление линейно убывает с высотой	1 балл
7	Сделан вывод о том, что плотность атмосферы постоянна от 0 до 2 км	1 балл
8	Вычислена плотность $\rho = 5,85 \ {\rm k} {\rm r/m}^3$	1 балл
9	Вычислено давление на высоте 1 км: $p_1 = 442$ кПа	1 балл

Возможно решение путем интегрирования соответствующего дифференциального уравнения.

J I	iteliini.	
1	Для линейного начального участка графика найдено $\left \frac{\Delta T}{\Delta h} \right = 33,3 \frac{K}{KM}$	1 балл
2	Записано выражение $\Delta p = -\rho g \Delta h$	1 балл
3	Записано выражение для плотности газа $\rho = \frac{p\mu}{RT}$	1 балл
4	Получено дифференциальное уравнение	1 балл
5	Правильно проинтегрировано дифференциальное уравнение (решение имеет	2 балла
	вид $p(h)=p_0\!\!\left(\!\frac{T_0-\alpha h}{T_0}\!\right)^{\!\!k}$), где $k=\!\frac{\mu g}{R\alpha}$.	
4	Вычислено $k = \frac{\mu g}{R\alpha} \approx 1$	1 балл
7	Сделан вывод о том, что плотность атмосферы постоянна от 0 до ≈1,8 км, а	1 балл
	давление убывает по линейному закону	
8	Вычислена плотность на указанной высоте $\rho = 5.85 \text{ к г/м}^3$	1 балл
9	Вычислено давление на высоте 1 км: $p_1 = 442$ кПа	1 балл

Задача 5

I → I	
реакции опоры $ \vec{N}_1 =mg$	
Записано выражение для горизонтальной составляющей силы нормальной	1 балл
реакции опоры $\left \vec{N}_2 \right = \frac{m v_0^2}{R}$	
Получено выражение для силы трения $F_{ m Tp} = \mu m \sqrt{g^2 + \left(rac{v_0^2}{R} ight)^2}$	1 балл
Записано выражение для нормальной составляющей ускорения $a_n = \frac{v_0^2}{R}$	1 балл
Получено выражение для тангенциальной составляющей ускорения	1 балл
$a_{\tau} = \mu \sqrt{g^2 + \left(\frac{v_0^2}{R}\right)^2}$	
Записано выражение для модуля полного ускорения $a = \sqrt{a_n^2 + a_{\tau}^2}$	1 балл
Записаны приближенные формулы $\Delta S = v_0 \Delta t$; $\Delta v = a_\tau \Delta t$	2 балла
(по 1 баллу за каждую формулу)	
Получен ответ в виде $\Delta S = \frac{v_0 \Delta v}{a_\tau}$	1 балл
Получено конечное выражение для ответа $\Delta S = \frac{v_0^2}{\mu \int g^2 + \left(\frac{v_0^2}{R}\right)^2} \cdot 10^{-2}$	1 балл
	Записано выражение для горизонтальной составляющей силы нормальной реакции опоры $ \vec{N}_2 = \frac{m v_0^2}{R}$ Получено выражение для силы трения $F_{\rm Tp} = \mu m \sqrt{g^2 + \left(\frac{v_0^2}{R}\right)^2}$ Записано выражение для нормальной составляющей ускорения $a_n = \frac{v_0^2}{R}$ Получено выражение для тангенциальной составляющей ускорения $a_{\tau} = \mu \sqrt{g^2 + \left(\frac{v_0^2}{R}\right)^2}$ Записано выражение для модуля полного ускорения $a = \sqrt{a_n^2 + a_{\tau}^2}$ Записаны приближенные формулы $\Delta S = v_0 \Delta t$; $\Delta v = a_{\tau} \Delta t$ (по 1 баллу за каждую формулу)