

Schematic components that have been frozen by the user will appear with blue reference designators.

Power Supply Input

Var	Value	Units	Description	
VACMIN 85		V	Minimum Input AC Voltage	
VACMAX	265	V	Maximum Input AC Voltage	
FL	50	Hz	Line Frequency	
TC	2.69	ms	Input Rectifier Conduction Time	
z	0.47		Loss Allocation Factor	
η	79.0	%	Efficiency Estimate (Target)	
VMIN	93.1	V	Minimum DC Input Voltage	
VMAX	374.8	V	Maximum DC Input Voltage	

Input Section

Var	Value	Units	Description
Fuse	1.00	A	Input Fuse Rated Current
IAVG	0.20		Average Diode Bridge Current (DC Input Current)

Device Variables

Var	Value	Units	Description	
Device	TNY278PN		PI Device Name (Manual Overwrite)	
BVDSS	700	V	Drn-Src Bkdn Voltage	
Current Limit Mode	Increased		Device Current Limit Mode	
PO	15.00	W	Total Output Power	
VDRAIN Estimated	534.77	V	Estimated Drain Voltage	
VDS	5.74	V	On state Drain to Source Voltage	
I2F_MIN	50.19	A²kHz	Minimum I2F	
I2F_MAX	64.69	A²kHz	Maximum I2F	
FS_AT_ILIMMIN	137129	Hz	Switching Frequency at Current Limit Minimum	
KP	0.856		Continuous/Discontinuous Operating Ratio (at VMIN and Full Load)	
KP_TRANSIENT	0.65		Transient Ripple to Peak Current Ratio	
DMAX	0.607		Maximum Duty Cycle (at VMIN and Full Load)	
ILIMITMIN	0.605	A	Minimum Current Limit	
ILIMITMAX	0.721	A	Maximum Current Limit	
IRMS	0.303	A	Primary RMS Current (at VMIN and Full Load)	
RTH_DEVICE	66.87	°C/W	PI Device Heatsink Maximum Thermal Resistance	
DEV_HSINK_TYPE	2 Oz (70 μ) 2-Sided Copper PCB		PI Device Heatsink Type	
DEV_HSINK_AREA	63	mm²	PI Device Heatsink Area	

Clamp Circuit

Var	Value Units		Description	
Clamp Type Zener Clamp			Clamp Circuit Type	
VCLAMP	25.00	V Average Clamping Voltage		
Estimated Clamp Loss	0.000	W	Clamp total power loss	

Transformer Construction Parameters

Var	Value	Units	Description
-----	-------	-------	-------------

Core Type	EF20 (PC40EF20-Z)		Core Type (Manual Overwrite)
Core Material	PC40		Core Material
Primary Pins	2		Number of Primary pins used
Secondary Pins	2		Number of Secondary pins used
USE_SHIELDS	NO		Use shield Windings
LP_nom	780	μΗ	Nominal Primary Inductance
LP_Tol	12.0	%	Primary Inductance Tolerance
NP	102.2		Calculated Primary Winding Total Number of Turns
NSM	12		Secondary Main Number of Turns
Primary Current Density	4.88	A/mm²	Primary Winding Current Density
VOR	135.00	V	Reflected Output Voltage
BW	12.50	mm	Bobbin Winding Width
FF	60.17	%	Actual Transformer Fit Factor. 100% signifies fully utilized winding window
AE	33.50	mm²	Core Cross Sectional Area
ALG	66	nH/T²	Gapped Core Specific Inductance
ВМ	150	mT	Maximum Flux Density
BAC	53	mT	AC Flux Density for Core Loss
LG	0.614	mm	Estimated Gap Length. See Information section for detail
L_LKG	23.39	μΗ	Estimated primary leakage inductance
LSEC	20	nH	Secondary Trace Inductance

Primary Winding Section 1

Var	Value	Units	Description
NP1	103		Number of Primary Winding Turns in the First Section of Primary
L	2.72		Primary Winding - Number of Layers
DC Copper Loss	0.11	W	Primary Section 1 DC Losses

Output 1

Var	Value	Units	Description	
VO	15.00	V	Typical Output Voltage	
10	1.00	A	Output Current	
VOUT_ACTUAL	15.00	V	Actual Output Voltage	
NS	12		Secondary Number of Turns	
L_S_OUT	0.72		Secondary Output Winding Layers	
DC Copper Loss	0.20	W	Secondary DC Losses	
VD	0.85	V	Output Winding Diode Forward Voltage Drop (Manual Overwrite)	
VD	0.85	V	Output Winding Diode Forward Voltage Drop (Manual Overwrite)	
PIVS	58.66	V	Output Rectifier Maximum Peak Inverse Voltage	
ISP	5.153	Α	Peak Secondary Current	
ISRMS	2.012	Α	Secondary RMS Current	
ISRMS_WINDING	2.012	A	Secondary Winding RMS Current	
Secondary Current Density	8	A/mm²	Secondary Winding Current Density	
RTH_RECTIFIER	59.45	°C/W	Output Rectifier Heatsink Maximum Thermal Resistance	

OR_HSINK_TYPE	2 Oz (70 μ) 2-Sided Copper PCB		Output Rectifier Heatsink Type
OR_HSINK_AREA	99	mm²	Output Rectifier Heatsink Area
со	680 x 1	μF	Output Capacitor - Capacitance
IRIPPLE	1.746	Α	Output Capacitor - RMS Ripple Current
Expected Lifetime	33810	hr	Output Capacitor - Expected Lifetime

The regulation and tolerances do not account for thermal drifting and component tolerance of the output diode forward voltage drop and voltage drops across the LC post filter. The actual voltage values are estimated at full load only.

Please verify cross regulation performance on the bench.

Board Layout Recommendations

	Description	Show Me
1	Maximize source area for good heat-sinking	
2	Keep drain trace short	
3	The BYPASS pin capacitor should be located as close as possible to the BYPASS and SOURCE pins	
4	Keep noisy traces away from EN/UV pin	
5	Route bias winding currents back to the bulk cap	
6	Keep clamp loop short	
7	Connect Y capacitor to the B+ rail on the primary side for better surge immunity. Keep Y capacitor traces short	
8	The area of the loop connecting the secondary winding, the output rectifier and the output filter capacitor should be minimized	

Bill Of Materials

Ite m #	Quantity	Part Ref	Value	Description	Mfg	Mfg Part Number
1	1	C1	1 μF	1 μF, 400 V, High Voltage Al Electrolytic, (11 mm x 6.3 mm)	Nippon Chemi-Con	ESMG401ELL1R0MF11D
2	1	C2	47 μF	47 μF, 450 V, High Voltage Al Electrolytic, (26.5 mm x 18 mm)	Nichicon	UCS2W470MHD
3	1	C3	10 μF	10 μF, 16 V, Ceramic, X7R	Kemet	C1206C106K4RACTU
4	1	C4	0.1 nF	0.1 nF, 250 VAC, Ceramic, Y Class	Murata	GA342QR7GF101KW01L
5	1	C5	390 pF	390 pF, 200 V, High Voltage Ceramic	AVX Corp	08052C391KAT2A
6	1	C6	680 μF	680 μF, 25 V, Electrolytic, Super Low ESR, 23 mΩ, (20 mm x 10 mm)	United Chemi-Con	EKZE250ELL681MJ20S
7	1	C7	100 μF	100 μ F, 25 V, Electrolytic, Low ESR, 260 $m\Omega$, (8 mm x 6.2 mm)	Panasonic	EEEFK1E101AP
8	4	D1, D2, D3, D4	DFLR1800-7	800 V, 1 A, Standard Recovery, POWERDI123	Diodes Inc.	DFLR1800-7
9	1	D5	RS07K-GS08	800 V, 1.4 A, Fast Recovery, 300 ns, DO-219AB	Vishay	RS07K-GS08
10	1	D6	SB1100	100 V, 1 A, Schottky, DO-201AD	ON Semiconductor	SB1100
11	1	F1	1 A	250 VAC, 1 A, Radial TR5, Time Lag Fuse	Littelfuse / Wickmann(R)	37411000410
12	1	L1	6 mH	6 mH, 1.6 A	Panasonic	ELF18N016
13	1	L2	10 μΗ	10 μH, 5 A	Eaton	HCM1103-100-R
14	2	R1, R2	1.96 MΩ	1.96 MΩ, 1 %, 0.25 W, Thick Film	Generic	
15	1	R3	27 Ω	27 Ω, 5 %, 0.25 W, Thick Film	Generic	
16	1	R4	681 Ω	681 Ω, 1 %, 0.125 W, Thick Film	Generic	
17	1	R5	1000 Ω	1000 Ω, 5 %, 0.125 W, Thick Film	Generic	
18	1	T1	EF20 (PC40EF20-Z)	PC40 Core Material Refer to Manufacturer datasheet for a number of parts to purchase	TDK	PC40EF20-Z
19	1	T1 Bobbin	EF20 - 1 (P5-S5)	Bobbin Material : GFR polyterephthalate	EPCOS (TDK)	B66206
20	1	T1 Core Acc.1	B66206	Yoke . Stainless spring steel	EPCOS (TDK)	B66206
21	1	U1	TNY278PN	TinySwitch-III, TNY278PN, DIP-8	Power Integrations	TNY278PN
22	1	U2	FOD817A3SD	Optocoupler FOD817A3SD , 70 V, CTR 80 - 160 %, 4-SMD	ON Semiconductor	FOD817A3SD
23	1	VR1	P6SMB160A-E3 /52	160 V, 5 W, 5 %, DO-214AA, TVS	Vishay	P6SMB160A-E3/52
24	1	VR2	BZT55B13-GS0 8	13 V, 500 mW, 2 %, SOD-80, General Purpose	Vishay	BZT55B13-GS08
25	1			63 mm² area on Copper PCB. 2 oz (70 μm) thickness. Heatsink for use with Device U1.	Custom	
26	1			99 mm² area on Copper PCB. 2 oz (70 μm) thickness. Heatsink for use with Rectifier D6.	Custom	

Electrical Diagram

Mechanical Diagram

Winding Instruction

Primary Winding

Start on pin(s) 2 and wind 103 turns (x 1 filar) of item [5]. in 3 layer(s) from left to right. Winding direction is clockwise. At the end of 1st layer, continue to wind the next layer from right to left. At the end of 2nd layer, continue to wind the next layer from left to right. On the final layer, spread the winding evenly across entire bobbin. Finish this winding on pin(s) 1.

Add 3 layers of tape, item [3], for insulation.

Secondary Winding

Start on pin(s) 7 and wind 12 turns (x 1 filar) of item [6]. Spread the winding evenly across entire bobbin. Winding direction is clockwise. Finish this winding on pin(s) 6.

Add 2 layers of tape, item [3], for insulation.

Core Assembly

Assemble and secure core halves. Item [1].

Varnish

Dip varnish uniformly in item [4]. Do not vacuum impregnate.

Comments

1. For non margin wound transformers use triple insulated wire for all secondary windings.

Materials

Item	Description		
[1]	Core: EF20 (PC40EF20-Z), PC40, gapped for ALG of 66 nH/T ²		
[2]	Bobbin: Generic, 5 pri. + 5 sec.		
[3]	Barrier Tape: Polyester film [1 mil (25 μm) base thickness], 12.50 mm wide		

[4]	Varnish
[5]	Magnet Wire: 0.28 mm, Solderable Double Coated
[6]	Triple Insulated Wire: 0.55 mm

Electrical Test Specifications

Parameter	Condition	Spec
Electrical Strength, VAC	60 Hz 1 second, from pins 1,2 to pins 6,7.	3000
Nominal Primary Inductance, μΗ	Measured at 1 V pk-pk, typical switching frequency, between pin 1 to pin 2, with all other Windings open.	780
Tolerance, ±%	Tolerance of Primary Inductance	12.0
Maximum Primary Leakage, μΗ	Measured between Pin 1 to Pin 2, with all other Windings shorted.	23.39

Although the design of the software considered safety guidelines, it is the user's responsibility to ensure that the user's power supply design meets all applicable safety requirements of user's product.

Description	Fix	Ref. #
Gap length too big.	Decrease transformer size, decrease secondary turns (NS), decrease KP.	217
Selected Post Filter values are too large on output(s) '1'.	Reduce post filter values such that resonant frequency is above 8 kHz (30 kHz for DPASwitch)	175