Complexity Issues in Binding-Blocking Automata

M. Sakthi Balan

Theoretical Computer Science Lab

Department of Computer Science and Engineering

Indian Institute of Technology, Madras

Contents

- About Peptide Computing
- Binding-Blocking Automata
- Complexity Measures for Binding-Blocking Automata
- Hierarchical Results
- Conclusion

Peptide Computing

- Uses peptides and antibodies.
- Peptides encrypts the solution space of the problem.
- Antibodies selects the correct solution, by binding to the correct peptides.

Advantages

- Parallel interactions between the peptides and antibodies are possible.
- Highly non-deterministic.
- Makes it possible to solve NP-complete problems in constant biosteps (efficient).

Binding-Blocking Automata

- Consists of
 - finite control
 - finite tape
 - tape head
 - finite tape symbols
 - transition function
 - partial order relation
 - blocking and unblocking functions

BBA - Formal Definition

- $\mathcal{P} = (Q, V, E, \delta, q_0, R, \beta_b, \beta_{ub}, Q_{accept}, Q_{reject}),$
- $Q = Q_{block} \cup Q_{unblock} \cup Q_{general}$,
- $q_0 \in Q$ (start state), V is a finite set of symbols, E is the finite subset of V^* ,
- δ is the transition function from $Q \times E \longrightarrow Q$,
- $R \subseteq E \times E$ is the partial order relation (called as affinity relation) on E,
- β_b is the blocking function from $Q_{block} \longrightarrow 2^V$,
- β_{ub} is the unblocking function from $Q_{unblock} \longrightarrow 2^V$,
- $Q_{accept} \cup Q_{reject} \subseteq Q_{general}$ where Q_{accept} is the set of accepting states and Q_{reject} is the set of rejecting states.

- ullet The symbols read by the head are called marked symbols.
- ullet The symbols blocked are called as blocked symbols.
- The head can read a sequence of symbols from its present position.
- Only those symbols which are not marked and not blocked can be read by the head.

Initial Configuration

$$q_0$$
 a_1 a_2 \cdots a_n

Instantaneous Description

$$a_1 \quad a_2 \quad \cdots \quad a_{i-1} \quad q \quad a_i \quad a_{i+1} \quad \cdots \quad a_n$$

$$X \quad X \quad \cdots \quad X \quad \uparrow \quad Y \quad Y \quad \cdots \quad Y$$

Two kinds of transitions

- 1. *l*-transition $X \in \{\#, \$\}$ and $Y \in \{-, \#, \$\}$
- 2. ll-transition $X \in \{-, \#, \$\}$ and $Y \in \{-, \#, \$\}$

$$q \in Q_{general}$$

if
$$\delta(q, x) = p$$
 where $x = a_i a_{i+1} \cdots a_j \in V^*$

M. Sakthi Balan DCFS' 02 Theory Lab

$$q \in Q_{block}$$

where $\beta_{ub}(q) = A$

 $q \in Q_{unblock}$

in case of the leftmost reading and

in the case of locally leftmost reading.

Language Acceptance

$$L_D(\mathcal{P}) = \{ w \in V^* \mid \begin{array}{ccc} q_0 & w & & \\ & & & \vdash_D^* & \\ & \uparrow & - & \# \uparrow \end{array} \right. q_f \in Q_{accept} \}.$$

Example

$$Q_{general} = \{q_0, q_a, q_b, q_c\},$$

$$Q_{block} = \{q^{block_a}, q^{block_b}, q^{block_c}\},$$

$$Q_{unblock} = \{q^{unblock_a}, q^{unblock_b}, q^{unblock_c}\},$$

$$Q_{final} = \{q_c\},$$

$$Q_{reject} = \{q_{reject}\},$$

$$\beta_b(q^{block_a}) = \{a\}, \beta_b(q^{block_b}) = \{b\}, \beta_b(q^{block_c}) = \{c\},$$

$$\beta_{ub}(q^{unblock_a}) = \{a\}, \beta_{ub}(q^{unblock_b}) = \{b\}, \beta_{ub}(q^{unblock_c}) = \{c\},$$

 $R = \{ba > b, ca > c, cb > c\}.$

$$\delta(q_0, a) = \{q^{block_a}\},\,$$

$$\delta(q^{block_a}, \epsilon) = \{q_a\},\,$$

$$\delta(q_a, ba) = \{q_{reject}\},$$

$$\delta(q_a, b) = \{q^{unblock_a}\},$$

$$\delta(q^{unblock_a}, \epsilon) = \{q_{block_b}\}$$

$$\delta(q^{block_b},\epsilon) = \{q_b\}$$

$$\delta(q_b, cb) = \{q_{reject}\},\,$$

$$\delta(q_b, ca) = \{q_{reject}\},\$$

$$\delta(q_b,c) = \{q^{unblock_b}\},$$

$$\delta(q^{unblock_b}, \epsilon) = \{q_{block_c}\}$$

$$\delta(q^{block_c}, \epsilon) = \{q_c\}$$

$$\delta(q_c, \epsilon) = \{q_0\},\$$

$$L = \{a^n b^n c^n \mid n \ge 1\}$$
 in ll transition.

Definitions

•
$$A = \{A_1, A_2, \dots, A_n\}, B = \{B_1, B_2, \dots, b_m\}, A_i, B_j \in 2^V$$

ullet A set $S\subseteq V$ is said to be attainable from A and B if

$$S = S_1 * S_2 * \cdots * S_k$$

where

$$S_1 \in A, S_i \in A \cup B, i \geq 2$$
 and

if $S_i \in A$ then * preceding it is \cup or else * is -

The set of all attainable sets is denoted by $\mathcal{A}_V(A, B)$. Note that the evaluation is from left to right.

- A run on BBA is defined as the finite sequence of states $q_0q_1q_2\cdots q_n$ where q_0 is the start state, $q_i \in Q, 1 \leq i \leq k, q_k \in Q_{accept} \cup Q_{reject}$ and there exists $a \in V$ such that $q_i \in \delta(q_{i-1}, a)$
- \bullet A run is called k-run if k is the length of the run.
- A run is said to be a block run if $q_1 \in Q_{block}$, and $q_k \in Q_{unblock}$ with $\beta_b(q_1) = \beta_{ub}(q_k) = X$.

simple unblocking scheme: $\forall q \in Q_{unblock}, \ \beta_{ub}(q) \subseteq \beta_b(p)$ for some $p \in Q_{block}$.

useful blocking scheme: at no time the automaton tries to block an already blocked symbol.

perfect unblocking scheme: $\forall q \in Q_{unblock}, \ \beta_{ub}(q) = \beta_b(p)$ for some $p \in Q_{block}$.

A BBA is said to be well-formed BBA if it follows both useful blocking and perfect unblocking.

Note: perfect unblocking scheme implies simple unblocking.

Notations

- If the affinity relation R is empty then the system is denoted by BBA_{np}
- If the system reads only one symbol at a time then the BBA system is called as a simple BBA system and is denoted by SBBA
- The systems by $X_{y,D}$ and the set of languages by $x_{y,D}$ where $X \in \{BBA, SBBA\}, y \in \{p, np\}, x \in \{bba, sbba\}, D \in \{l, ll\}$

Known Results

- BBA_p and BBA_{np} have the same acceptance power.
- The acceptance power of BBA is equivalent to that of SBBA.
- For every $L \in BBA_l$ there exists BBA_{ll} , \mathcal{P} such that $L(\mathcal{P}) = L$.
- ullet Given a BBA, \mathcal{P} we can construct an equivalent well-formed BBA, \mathcal{P}' with $L(\mathcal{P}) = L(\mathcal{P}')$.

Complexity Issues

• Blocking number denoted by $n(\mathcal{P})$ is defined as the cardinality of the set

$$\mathcal{A}_V(\beta_b(Q_{block}), \beta_{ub}(Q_{unblock})),$$

Note that the value of $n(\mathcal{P})$ lies between $1 \leq n(\mathcal{P}) \leq |2^{V}|$.

• Blocking instant denoted as $B(\mathcal{P})$ is defined as

$$B(\mathcal{P}) = Max\{Card(A) \mid A \in \mathcal{B}(\mathcal{P})\}$$

- Blocking quotient of a set $X \subseteq V$ is defined as the length of the longest run from the blocking of X to the unblocking of X. It is denoted by $BQ_X(\mathcal{P})$.
- Blocking quotient of \mathcal{P} is defined as $BQ(\mathcal{P}) = Max\{BQ_X\}$ where the maximum is taken over all the sets X (where $X \subseteq V$ such that there exists $q \in Q_{block}$ with $\beta_b(q) = X$). We denote blocking quotient simply as BQ if \mathcal{P} is understood.
- $\mathcal{P}(k, m, n)$ denoted a BBA \mathcal{P} with k the blocking number, m the blocking instant and n blocking quotient.
- For every BBA with infinite blocking quotient there is an equivalent BBA with finite blocking quotient

M. Sakthi Balan DCFS' 02 Theory Lab

Hierarchy Results

- $REG \subset bba_l(*,1,*) \subset bba_l(*,2,*) \subset bba_l(*,3,*) \subset \cdots$
- $REG \subset bba_D(1, *, *) \subset bba_D(2, *, *) \subset bba_D(3, *, *) \subset \cdots$

$$L_k = \{a_1^n a_2^n \cdots a_k^n \mid n \ge 1\}, \ k \ge 2.$$

• $REG \subset bba_{ll}(*,1,*) \subset bba_{ll}(*,2,*) \subset bba_{ll}(*,3,*) \subset \cdots$

$$L_k = \{(a_1 a_2 \cdots a_k)^n b^n \mid n \ge 1\}, \ k \ge 1$$

- $REG \subset bba_l(*,1,*) \subset bba_l(*,2,*) \subset bba_l(*,3,*) \subset \cdots \subset k-NFA$
- $REG \subset bba_l(1, *, *) \subset bba_l(2, *, *) \subset bba_D(l, *, *) \subset \cdots \subset k NFA$
- $bba_D(*,*,1) = bba_D(*,*,k), k \ge 2, D \in \{l, ll\}$

Conclusion

- We introduce some complexity measures for BBA blocking number, blocking instant and blocking quotient
- We also study about the hierarchical structures of BBA arising out of these complexity measures
 - Blocking number and blocking instant gives an infinite hierarchy within BBA in both l and ll.
 - We show that for every BBA with a finite blocking quotient we can construct an equivalent BBA with blocking quotient equal to one in both l and ll transitions.