Capstone Project - The Battle of Neighborhoods

Created by Pablo Diego-Rosell, PhD

Table of Contents

1. <u>Introduction/Business Problem</u> 2. <u>Data</u> 3. <u>Methodology</u> 4. <u>Results</u> 5. <u>Discussion</u> 6. <u>Conclusions</u>

1. Introduction/Business Problem

My friends are planning a 3-day visit to New York City, and I would like to give them suggestions regarding the neighborhoods to visit each day for their meals, taking into account their individual preferences. Besides helping my friends, this data science solution will help tour operators and other tourist-related businesses when designing tourist packages and providing advice to their clients.

2. Data

I will first generate a neighborhood dataset along with their latitude and longitude values for a total of 5 boroughs and 306 neighborhoods, subsetting later for neighborhoods in Manhattan. There is a total of 5 boroughs and 306 neighborhoods. In order to segment the neighborhoods and explore them, we will essentially need a dataset that contains the 5 boroughs and the neighborhoods that exist in each borough as well as the the latitude and logitude coordinates of each neighborhood. This dataset exists for free on the web: https://geo.nyu.edu/catalog/nyu_2451_34572 (https://geo.nyu.edu/catalog/nyu_2451_34572). I will then leverage the Foursquare API to download restaurants in each neighborhood of Manhattan.

In [8]:

```
# Install dependencies.
import numpy as np # library to handle data in a vectorized manner
import pandas as pd # library for data analsysis
pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)
import json # library to handle JSON files
!conda install -c conda-forge geopy --yes
from geopy.geocoders import Nominatim # convert an address into Latitude and Longitude
values
import requests # library to handle requests
from pandas.io.json import json normalize # tranform JSON file into a pandas dataframe
# Matplotlib and associated plotting modules
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import matplotlib.colors as colors
# import k-means from clustering stage
from sklearn.cluster import KMeans
from sklearn import metrics
!conda install -c conda-forge folium=0.5.0 --yes # uncomment this line if you haven<mark>'</mark>t c
ompleted the Foursquare API lab
import folium # map rendering library
from scipy.spatial.distance import cdist
print('Libraries imported.')
```

The following packages will be downloaded:

	package	build		
ngo	geographiclib-1.50	py_0	34	KB conda-fo
rge rge	geopy-1.20.0	py_0	57	KB conda-fo
		 Total:	 91	. КВ

The following NEW packages will be INSTALLED:

```
geographiclib: 1.50-py_0 conda-forge
geopy: 1.20.0-py_0 conda-forge
```

```
Downloading and Extracting Packages
```

100%

100%

Preparing transaction: done Verifying transaction: done Executing transaction: done Solving environment: done

All requested packages already installed.

Libraries imported.

3. Methodology

- 1. I will identify the optimal number of clusters using the elbow method.
- 2. I will then segment neighborhoods using k-means clustering according to the types and frequency of restaurants in each neighborhood.
- 3. For each resulting cluster, I will identify the defining features and provide a descriptive label.
- 4. Finally, I will use the Folium library to visualize the neighborhoods in New York City and their emerging clusters. This visual exploration will allow me to generate a final recommended itinerary for each of the three days my friends.

In [9]:

```
!wget -q -0 'newyork_data.json' https://cocl.us/new_york_dataset
with open('newyork_data.json') as json_data:
    newyork_data = json.load(json_data)
neighborhoods_data = newyork_data['features']
# define the dataframe columns
column_names = ['Borough', 'Neighborhood', 'Latitude', 'Longitude']
# instantiate the dataframe
neighborhoods = pd.DataFrame(columns=column names)
# loop through the data and fill the dataframe one row at a time
for data in neighborhoods_data:
    borough = neighborhood_name = data['properties']['borough']
    neighborhood_name = data['properties']['name']
    neighborhood_latlon = data['geometry']['coordinates']
    neighborhood_lat = neighborhood_latlon[1]
    neighborhood_lon = neighborhood_latlon[0]
    neighborhoods = neighborhoods.append({'Borough': borough,
                                           'Neighborhood': neighborhood_name,
                                           'Latitude': neighborhood lat,
                                           'Longitude': neighborhood_lon}, ignore_index=
True)
print('Data downloaded!')
```

Data downloaded!

Explore the data

Examine the neighborhoods pandas dataframe

```
In [10]:
```

```
neighborhoods.head()
```

Out[10]:

	Borough	Neighborhood	Latitude	Longitude
0	Bronx	Wakefield	40.894705	-73.847201
1	Bronx	Co-op City	40.874294	-73.829939
2	Bronx	Eastchester	40.887556	-73.827806
3	Bronx	Fieldston	40.895437	-73.905643
4	Bronx	Riverdale	40.890834	-73.912585

Make sure that the dataset has all 5 boroughs and 306 neighborhoods.

In [11]:

The dataframe has 5 boroughs and 306 neighborhoods.

Use geopy library to get the latitude and longitude values of New York City

In [12]:

```
address = 'Manhattan, NY'

geolocator = Nominatim(user_agent="ny_explorer")
location = geolocator.geocode(address)
latitude = location.latitude
longitude = location.longitude
print('The geograpical coordinate of Manhattan are {}, {}.'.format(latitude, longitude))
```

The geograpical coordinate of Manhattan are 40.7896239, -73.9598939.

In [13]:

```
# Subset for Manhattan
manhattan_data = neighborhoods[neighborhoods['Borough'] == 'Manhattan'].reset_index(dro
p=True)
manhattan_data.head()
# create map of Manhattan using latitude and longitude values
map_manhattan = folium.Map(location=[latitude, longitude], zoom_start=11)
# add markers to map
for lat, lng, label in zip(manhattan_data['Latitude'], manhattan_data['Longitude'], man
hattan_data['Neighborhood']):
    label = folium.Popup(label, parse_html=True)
    folium.CircleMarker(
        [lat, lng],
        radius=5,
        popup=label,
        color='blue',
        fill=True,
        fill_color='#3186cc',
        fill_opacity=0.7,
        parse_html=False).add_to(map_manhattan)
map_manhattan
```

Out[13]:

Define Foursquare Credentials and Version

In [105]:

```
CLIENT_ID = 'CBGP33XYGAH0LBD053EZIQAUXTEMUPJU0RM2LPHE3UUKRIUL' # your Foursquare ID
CLIENT_SECRET = 'U2WSYIGL5PRZBBHWJYP1UVKE03KJX3RWWCCDTRK5SRZCBEC4' # your Foursquare Se
cret
VERSION = '20180605' # Foursquare API version
```

In [15]:

```
# Function to extract venues by neighborhood
def getNearbyVenues(names, latitudes, longitudes, radius=500):
    venues_list=[]
    for name, lat, lng in zip(names, latitudes, longitudes):
        print(name)
        # create the API request URL
        url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret
={}&v={}&ll={},{}&radius={}&limit={}'.format(
            CLIENT_ID,
            CLIENT_SECRET,
            VERSION.
            lat,
            lng,
            radius,
            LIMIT)
        # make the GET request
        results = requests.get(url).json()["response"]['groups'][0]['items']
        # return only relevant information for each nearby venue
        venues_list.append([(
            name,
            lat,
            lng,
            v['venue']['id'],
            v['venue']['name'],
            v['venue']['location']['lat'],
            v['venue']['location']['lng'],
            v['venue']['categories'][0]['name']) for v in results])
    nearby_venues = pd.DataFrame([item for venue_list in venues_list for item in venue_
list])
    nearby_venues.columns = ['Neighborhood',
                  'Neighborhood Latitude',
                  'Neighborhood Longitude',
                  'Venue',
                  'id',
                  'Venue Latitude',
                  'Venue Longitude',
                  'Venue Category']
    return(nearby venues)
```

In [16]:

Marble Hill Chinatown Washington Heights Inwood Hamilton Heights Manhattanville Central Harlem East Harlem Upper East Side Yorkville Lenox Hill Roosevelt Island Upper West Side Lincoln Square Clinton Midtown Murray Hill Chelsea Greenwich Village East Village Lower East Side Tribeca Little Italy Soho West Village Manhattan Valley Morningside Heights Gramercy Battery Park City Financial District Carnegie Hill Noho Civic Center Midtown South Sutton Place Turtle Bay Tudor City Stuyvesant Town Flatiron **Hudson Yards**

We are only interested in restaurants, so we subset the 'manhattan_venues' dataset to include those venues with the word 'restaurant' in their venue name

In [17]:

```
manhattan_venues = manhattan_venues[manhattan_venues['Venue Category'].str.contains("Re
staurant")]
print('There are {} unique restaurant categories.'.format(len(manhattan_venues['Venue C
ategory'].unique())))
```

There are 77 unique restaurant categories.

In [19]:

```
manhattan_venues.head()
```

Out[19]:

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	id	V Lat
8	Marble Hill	40.876551	-73.910660	4b9c9c6af964a520b27236e3	Land & Sea Restaurant	40.87
17	Marble Hill	40.876551	-73.910660	585c205665e7c70a2f1055ea	Boston Market	40.87
26	Chinatown	40.715618	-73.994279	5521c2ff498ebe2368634187	Kiki's	40.71
28	Chinatown	40.715618	-73.994279	4db3374590a0843f295fb69b	Spicy Village	40.71
31	Chinatown	40.715618	-73.994279	4c9d482e46978cfa8247967f	The Fat Radish	40.71
4						•

4. Results

Group rows by neighborhood and take the mean of the frequency of occurrence of each category

In [20]:

```
# one hot encoding
manhattan_onehot = pd.get_dummies(manhattan_venues[['Venue Category']], prefix="", pref
ix_sep="")

# add neighborhood column back to dataframe
manhattan_onehot['Neighborhood'] = manhattan_venues['Neighborhood']

# move neighborhood column to the first column
fixed_columns = [manhattan_onehot.columns[-1]] + list(manhattan_onehot.columns[:-1])
manhattan_onehot = manhattan_onehot[fixed_columns]

manhattan_grouped = manhattan_onehot.groupby('Neighborhood').mean().reset_index()
manhattan_grouped.head()
```

Out[20]:

	Neighborhood	Afghan Restaurant	African Restaurant	American Restaurant	Arepa Restaurant	Argentinian Restaurant	Asian Restaurant	∤ R
0	Battery Park City	0.0	0.000000	0.125000	0.0	0.0	0.000000	
1	Carnegie Hill	0.0	0.000000	0.043478	0.0	0.0	0.000000	
2	Central Harlem	0.0	0.142857	0.142857	0.0	0.0	0.000000	
3	Chelsea	0.0	0.000000	0.130435	0.0	0.0	0.043478	
4	Chinatown	0.0	0.000000	0.102564	0.0	0.0	0.051282	

Put it into a pandas dataframe and show top 5 categories

In [99]:

```
def return most common venues(row, num top venues):
    row_categories = row.iloc[1:]
    row_categories_sorted = row_categories.sort_values(ascending=False)
    return row categories sorted.index.values[0:num top venues]
num_top_venues = 5
indicators = ['st', 'nd', 'rd']
# create columns according to number of top venues
columns = ['Neighborhood']
for ind in np.arange(num_top_venues):
        columns.append('{}{} Most Common Venue'.format(ind+1, indicators[ind]))
    except:
        columns.append('{}th Most Common Venue'.format(ind+1))
# create a new dataframe
neighborhoods_venues_sorted = pd.DataFrame(columns=columns)
neighborhoods_venues_sorted['Neighborhood'] = manhattan_grouped['Neighborhood']
for ind in np.arange(manhattan grouped.shape[0]):
    neighborhoods_venues_sorted.iloc[ind, 1:] = return_most_common_venues(manhattan_gro
uped.iloc[ind, :], num_top_venues)
neighborhoods_venues_sorted.head()
```

Out[99]:

	Neighborhood	1st Most Common Venue	2nd Most Common Venue	3rd Most Common Venue	4th Most Common Venue	5th Most Common Venue
0	Battery Park City	Italian Restaurant	Sushi Restaurant	American Restaurant	Chinese Restaurant	Mediterranean Restaurant
1	Carnegie Hill	Japanese Restaurant	French Restaurant	Vietnamese Restaurant	Indian Restaurant	Italian Restaurant
2	Central Harlem	African Restaurant	American Restaurant	Seafood Restaurant	Chinese Restaurant	French Restaurant
3	Chelsea	Italian Restaurant	Seafood Restaurant	American Restaurant	Tapas Restaurant	Chinese Restaurant
4	Chinatown	Chinese Restaurant	American Restaurant	Vietnamese Restaurant	Asian Restaurant	Korean Restaurant

Cluster Neighborhoods

The elbow method finds the optimal value of k for k-means clustering.

In [85]:

```
manhattan_grouped_clustering = manhattan_grouped.drop('Neighborhood', 1)

# k means determine k
distortions = []
K = range(1,10)
for k in K:
    kmeanModel = KMeans(n_clusters=k).fit(manhattan_grouped_clustering)
    kmeanModel.fit(manhattan_grouped_clustering)
    distortions.append(sum(np.min(cdist(manhattan_grouped_clustering, kmeanModel.cluste
r_centers_, 'euclidean'), axis=1)) / manhattan_grouped_clustering.shape[0])

# Plot the elbow
plt.plot(K, distortions, 'bx-')
plt.xlabel('k')
plt.ylabel('Distortion')
plt.title('The Elbow Method showing the optimal k')
plt.show()
```


In [23]:

There is no clear optimal number of clusters, but 6 seems appropriate, manageable and produces interpretable results.

In [100]:

```
# set number of clusters
kclusters = 6

manhattan_grouped_clustering = manhattan_grouped.drop('Neighborhood', 1)

# run k-means clustering
kmeans = KMeans(n_clusters=kclusters, random_state=0).fit(manhattan_grouped_clustering)

# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]
```

Out[100]:

```
array([1, 4, 4, 4, 4, 4, 4, 2, 4, 4], dtype=int32)
```

Create a new dataframe that includes the cluster as well as the top 10 venues for each neighborhood.

In [101]:

```
# add clustering Labels
neighborhoods_venues_sorted.insert(0, 'Cluster Labels', kmeans.labels_)
manhattan_merged = manhattan_data

# merge toronto_grouped with toronto_data to add Latitude/Longitude for each neighborho
od
manhattan_merged = manhattan_merged.join(neighborhoods_venues_sorted.set_index('Neighborhood'), on='Neighborhood')
manhattan_merged.head() # check the Last columns!
```

Out[101]:

	Borough	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	3rd Mos Commo Venu
0	Manhattan	Marble Hill	40.876551	-73.910660	3.0	American Restaurant	Seafood Restaurant	Vietnames Restaurai
1	Manhattan	Chinatown	40.715618	-73.994279	4.0	Chinese Restaurant	American Restaurant	Vietnames Restaurai
2	Manhattan	Washington Heights	40.851903	-73.936900	2.0	Mexican Restaurant	Spanish Restaurant	Lat America Restauraı
3	Manhattan	Inwood	40.867684	-73.921210	2.0	Mexican Restaurant	Spanish Restaurant	America Restauraı
4	Manhattan	Hamilton Heights	40.823604	-73.949688	2.0	Mexican Restaurant	Chinese Restaurant	India Restaurai
4								•

Map resulting clusters

In [103]:

```
manhattan merged = manhattan merged.dropna()
manhattan_merged['Cluster Labels'] = manhattan_merged['Cluster Labels'].astype(int)
manhattan_merged.sort_values('Cluster Labels')
# create map
map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11)
# set color scheme for the clusters
x = np.arange(kclusters)
ys = [i + x + (i*x)**2  for i  in range(kclusters)]
colors_array = cm.rainbow(np.linspace(0, 1, len(ys)))
rainbow = [colors.rgb2hex(i) for i in colors_array]
# add markers to the map
markers_colors = []
for lat, lon, poi, cluster in zip(manhattan_merged['Latitude'], manhattan_merged['Longi
tude'], manhattan_merged['Neighborhood'], manhattan_merged['Cluster Labels']):
    label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True)
    folium.CircleMarker(
        [lat, lon],
        radius=5,
        popup=label,
        color=rainbow[cluster-1],
        fill=True,
        fill color=rainbow[cluster-1],
        fill_opacity=0.7).add_to(map_clusters)
map_clusters
```

Out[103]:

Provide Interpretable labels

In [104]:

```
clusters = {0:'Korean', 1:'Italian & Sushi, French', 2: 'Mexican', 3: 'American', 4: 'I
nternational', 5: 'Japanese'}
manhattan_merged['Cluster Labels'] = manhattan_merged['Cluster Labels'].map(clusters)
manhattan_merged
```

Out[104]:

	Borough	Neighborhood	Latitude	Longitude	Cluster Labels	1st Most Common Venue	2nd Most Common Venue	
0	Manhattan	Marble Hill	40.876551	-73.910660	American	American Restaurant	Seafood Restaurant	
1	Manhattan	Chinatown	40.715618	-73.994279	International	Chinese Restaurant	American Restaurant	
2	Manhattan	Washington Heights	40.851903	-73.936900	Mexican	Mexican Restaurant	Spanish Restaurant	
3	Manhattan	Inwood	40.867684	-73.921210	Mexican	Mexican Restaurant	Spanish Restaurant	
4	Manhattan	Hamilton Heights	40.823604	-73.949688	Mexican	Mexican Restaurant	Chinese Restaurant	
5	Manhattan	Manhattanville	40.816934	-73.957385	International	Italian Restaurant	Seafood Restaurant	
6	Manhattan	Central Harlem	40.815976	-73.943211	International	African Restaurant	American Restaurant	
7	Manhattan	East Harlem	40.792249	-73.944182	Mexican	Mexican Restaurant	Latin American Restaurant	
8	Manhattan	Upper East Side	40.775639	-73.960508	Italian & Sushi, French	Italian Restaurant	French Restaurant	
9	Manhattan	Yorkville	40.775930	-73.947118	Italian & Sushi, French	Italian Restaurant	Sushi Restaurant	
10	Manhattan	Lenox Hill	40.768113	-73.958860	Italian & Sushi, French	Italian Restaurant	Sushi Restaurant	
11	Manhattan	Roosevelt Island	40.762160	-73.949168	Japanese	Japanese Restaurant	Restaurant	
12	Manhattan	Upper West Side	40.787658	-73.977059	International	Italian Restaurant	Vegetarian / Vegan Restaurant	
13	Manhattan	Lincoln Square	40.773529	-73.985338	Italian & Sushi, French	Italian Restaurant	French Restaurant	
14	Manhattan	Clinton	40.759101	-73.996119	International	American Restaurant	Italian Restaurant	N
15	Manhattan	Midtown	40.754691	-73.981669	International	Japanese Restaurant	American Restaurant	
16	Manhattan	Murray Hill	40.748303	-73.978332	International	Japanese Restaurant	Italian Restaurant	
17	Manhattan	Chelsea	40.744035	-74.003116	International	Italian Restaurant	Seafood Restaurant	
18	Manhattan	Greenwich Village	40.726933	-73.999914	Italian & Sushi, French	Italian Restaurant	Sushi Restaurant	
19	Manhattan	East Village	40.727847	-73.982226	International	Mexican Restaurant	Chinese Restaurant	

	Borough	Neighborhood	Latitude	Longitude	Cluster Labels 1st Most Common Venue		2nd Most Common Venue	
20	Manhattan	Lower East Side	40.717807	-73.980890	International	Japanese Restaurant	Chinese Restaurant	
21	Manhattan	Tribeca	40.721522	-74.010683	International	American Restaurant	Italian Restaurant	
22	Manhattan	Little Italy	40.719324	-73.997305	International	Italian Restaurant	Mediterranean Restaurant	
23	Manhattan	Soho	40.722184	-74.000657	International	Italian Restaurant	Mediterranean Restaurant	
24	Manhattan	West Village	40.734434	-74.006180	Italian & Sushi, French	Italian Restaurant	New American Restaurant	
25	Manhattan	Manhattan Valley	40.797307	-73.964286	International	Indian Restaurant	Thai Restaurant	
26	Manhattan	Morningside Heights	40.808000	-73.963896	American	American Restaurant	Seafood Restaurant	
27	Manhattan	Gramercy	40.737210	-73.981376	Mexican	Mexican Restaurant	American Restaurant	
28	Manhattan	Battery Park City	40.711932	-74.016869	Italian & Sushi, French	Italian Restaurant	Sushi Restaurant	
29	Manhattan	Financial District	40.707107	-74.010665	International	American Restaurant	Mediterranean Restaurant	
30	Manhattan	Carnegie Hill	40.782683	-73.953256	International	Japanese Restaurant	French Restaurant	
31	Manhattan	Noho	40.723259	-73.988434	International	Italian Restaurant	French Restaurant	
32	Manhattan	Civic Center	40.715229	-74.005415	International	French Restaurant	Italian Restaurant	
33	Manhattan	Midtown South	40.748510	-73.988713	Korean	Korean Restaurant	Japanese Restaurant	
34	Manhattan	Sutton Place	40.760280	-73.963556	International	Italian Restaurant	Indian Restaurant	
35	Manhattan	Turtle Bay	40.752042	-73.967708	International	Italian Restaurant	Sushi Restaurant	
36	Manhattan	Tudor City	40.746917	-73.971219	Mexican	Mexican Restaurant	Greek Restaurant	
38	Manhattan	Flatiron	40.739673	-73.990947	International	American Restaurant	Japanese Restaurant	١
39	Manhattan	Hudson Yards	40.756658	-74.000111	International	American Restaurant	Italian Restaurant	
4								•

5. Discussion

Based on the clustering of restaurants and geographical proximity, I would advice my friends to visit the following neighborhoods for different types of cuisines:

- · Korean: Midtown South (Korea town).
- Italian & Sushi / French: Greenwich Village or West Village.
- · Mexican: Inwood, Washington Heights or Hamilton Heights.
- · American & Seafood: Morningside Heights or Marble Hill.
- · Varied Internationa: Lower Manhattan.
- · Japanese: Roosevelt Island.

6. Conclusions

- · Built successful pipeline to download and process geolocation data for restaurants in New York City.
- Clusters, while interpretable, were not always clean.
- Could not access venue ratings at scale due to Foursquare API's free account limitations.
- · Ideas for improvement include:
- Venue ratings to select top rated restaurants in each cluster.
- Merge restaurants into fewer categories for easier analysis and interpretation (e.g. Indian, Pakistani, Nepali, Sri Lankan = South Asian)