A first extraction and test of new association cuts

J. Kašpar, G. Sroka

for a PPS Meeting 1 Sep 2021

- association cuts = rules how to associate local tracks in the near RP with those fro the far RP
- in Run2
 - o form of cuts: associate if $|\Delta x \text{mean}| < \text{threshold}$ (and similarly for y)
 - $\circ \Delta \equiv far near$
 - two parameters per quantity: mean and threshold (cannot depend on event kinematics)
- plan for Run3
 - \circ man and threshold: any function of xangle and track position in the near RP (x_N, y_N)
 - o functions described by a string (TF1 notation) and stored in DB
- CMSSW implementation → see Grzegorz's talk
- this presentation:
 - o first attempt to derive the cuts for Run3 (in no way the final)
 - step 1: simulate hit distribution with MC $\rightarrow \Delta x$ and Δy distributions
 - step 2: parametrise the distributions with an analytic function/model
 - check if exploiting the new flexibility does lead to improvement (efficiency comparison):
 - "model 1": Run2-like tuning, i.e. mean and threshold constant
 - "model 2": Run3-like tuning, i.e. mean and threshold function of x_N and y_N

Cut extraction : Step 1 - method

- with "direct" simulation, CMSSW_12_1_0_pre2, profile "profile_2021_default"
 - \circ before the bug-fix of isPixelHit o acceptance (artificially) limited at high x
 - with "2021" optics, while "2022" is (being) prepared
 - $\circ~$ 2021 optics symmetric 45 wrt. 56 ightarrow extraction for sector 56 only
 - o due to a recent update of Run3 geometry, the distance beam-RPs on the optimistic side → the lowest x bin or two most likely not accessible with LHC data
- hit distributions (including near-far differences): module CTPPSTrackDistributionPlotter (included in CMSSW)
- run simulations
 - \circ for discrete xangles: 100, 130 and 160 \rightarrow to establish also xangle dependence of the cuts
 - statistics: 1E7 events

arm 1

- left column: histograms of Δx and Δy
 - \circ mean and RMS define "model 1" (threshold = 4× RMS)

arm 1

- other columns: histograms of Δx and Δy as functions of track position in the near RP NB: non-trivial dependence!
 - \circ define "model 2": central column mean, right column RMS (threshold = 4× RMS)
 - needs parametrisation expressible as a string

- for example consider mean of Δx (see backup for more complete set of plots)
- step A: consider slices at const x_N , thus functions of $y_N \to \text{left plot}$
 - o blue: simulation
 - \circ identify shapes, parametrise: $p_0 p_1 |y_N|$, fit (red)

6

- step B: consider fitted parameters as function of $x_N \rightarrow \text{right plot}$
 - o blue: parameters extracted in step A
 - fit with an appropriate function (red), here a parabola $p_1 \approx a_0 + a_1 x_N + a_2 x_N^2$
- step C: put everything together
 - mean of $\Delta x = (-0.462076 + 0.100746 * x_N 0.005906 * x_N * x_N) (0.036128 + 0.333544/x_N) * abs(y_N)$

• for example consider RMS of Δx (see backup for more complete set of plots)

- parameter 0 (left plot)
 - o xangle dependence straight-forward (∼ vertical shift)
- o can be included to the model (CMSSW framework prepared for it), not yet done
- parameter 1 (right plot)
 - xangle dependence not obvious

- for several representative values of x_N (different colours), compare:
 - solid: original simulation (from slide 4)
 - o dashed: model parametrisation

relatively good overlap between dashed and solid lines

8

- run again "direct" simu, same conditions as on slide 3, focus on xangle 130
- efficiency estimated with module CTPPSProtonReconstructionEfficiencyEstimatorData (included in CMSSW)
 - o same module used for Run2 data
 - efficiency of the near-far association, algorithm:
 - scan through local tracks in the near RP, for each
 - open a "expectation" window in the far RP \rightarrow count local tracks in the far RP \rightarrow denominator = number of expected protons
 - numerator = number of really reconstructed multi-RP protons
 - efficiency = numerator / denominator

- simulation run with 4 particles per event however not all in acceptance
 number of accepted protons → different categories in columns
- blue = Run2-like parametrisation, red = Run3-like parametrisation

Efficiency comparison: First results - comments to previous slide

• 1 proton per event

- o almost everywhere: both models almost at 100 %
- lowest x bins: "sacrificed" for model simplicity (can be improved), but anyway most likely inaccessible in LHC data (cf. slide
 3)

multiple protons per event

- model 2 (with new flexibility) always better than model 1 (without the flexibility) → justification that the new framework works
 as desired
- efficiency decrease for $x_N \lesssim 6$ mm to be studied, possibly related to the vertical squeeze of the hit distribution (which makes disentangling multiple tracks harder)

J. Kašpar, G. Sroka for a PPS Meeting 1 Sep 2021 **11**

- a first simple extraction of association cuts from MC simulation of Run3-like data
- test of the extended association cut framework (cf. talk by Grzegorz)
 - model exploiting the new flexibility (kinematic dependent mean and threshold) performs better that model with constant mean and threshold
 - o updated CMSSW infrastructure thus can lead to improved efficiency in Run3

Backup

