2007-PH-1-17

1

EE24BTECH11010 - BALAJI B

c) Hermitian

d) anti-Hermitian

1) The eigenvalues of a matrix are i, -2i and 3i. The matrix is

a) unitary

b) anti-unitary

2) A space station moving in orbit by firing its engine r			_	to a new bound
a) A larger circleb) a smaller circle			an ellipse a parabola	
3) A power amplifier gives 1	50W out	tput for an	input of 1.5W. The gai	in, in dB , is
a) 10 b) 20		c) d)	54 100	
4) Four point charges are pl $-Q$ at $(-1,0)$, $+Q$ at $(0,1)$ potential due to this charge	1) and -	-Q at $(0, -1)$	-1). At large distances t	
a) monopole momentb) dipole moment			quadrupole moment octopole moment	
 5) A charged capacitor (<i>C</i>) displacement current reduce a) stored entirely in its many b) stored entirely in its electory c) distributed equally amony d) radiated out of the circum 6) Match the following 	ces to ze ignetic fi ctric fiel ng its ele	ero, the end eld. d	ergy of the <i>LC</i> circuit is	
P. Franck-hertz experiment Q. Hartee-Fock method R. Stern-Gerlach experiment S. Frank-Condon principle	2. 3.	wave func spin angul	excitation of molecules tion of atoms ar momentum of atoms rels in atoms	
	P-4 I R-3 I	(B) (C) P-1 P-3 R-3 R-4 S-2 S-1	(D) P-4 R-3 S-2	

- 7) The wave function of a particle, moving in a one-dimensional time-independent potential V(x), is given by $\Psi(x) = e^{-iax+b}$, where a and b are constants. This means that the potential V(x) is of the form
 - a) $V(x) \propto x$

b) $V(x) \propto x^2$

- c) V(x) = 0d) $V(x) \propto e^{-ax}$
- 8) The D_1 and D_2 lines of $Na\left(3^2P_{\frac{1}{2}} \to 3^2S_{\frac{1}{2}}, 3^2P_{\frac{3}{2}} \to 3^2S_{\frac{1}{2}}\right)$ will split on the application of a weak magnetic field magnetic field into
 - a) 4 and 6 lines respectively
- c) 6 and 4 lines respectively

b) 3 lines each

- d) 6 lines each
- 9) In a He Ne laser transition takes place in
 - a) He only

c) Ne first, then in He

b) Ne only

- d) He first, then in Ne
- 10) The partition function of a single gas molecule is Z_{α} . The partition function of N such non-interacting gas molecules is then given by
 - a) $\frac{(Z_a)^N}{N!}$ b) $(Z_a)^N$

- c) $N(Z_{\alpha})$ d) $\frac{(Z_{\alpha})^{N}}{N}$
- 11) A solid superconductor is placed in an external magnetic field and then cooled below its critical temperature. The superconductor
 - a) retains its magnetic flux because the surface current supports it.
 - b) expels out its magnetic flux because it behaves like a paramagnetic material
 - c) expels out its magnetic flux because it behaves like an anti-ferromagnetic material
 - d) expels out its magnetic flux because the surface current induces a field in the opposite to the applied magnetic field
- 12) A particle with energy E is a time-independent double well potential as shown in the figure.

Which of the following statements about the particle is **NOT** correct?

- a) The particle will always be in a bound state
- b) The probability of finding the particle in one well will be time-dependent
- c) The particle will be confined to any one of the wells
- d) The particle can tunnel from one well to the other, and back.

- 13) It is necessary to apply quantum statistics to a system of particles if
 - a) there is substantial overlap between the wavefunctions of the particles
 - b) the mean free path of the particles is comparable to the inner-particle seperation.
 - c) the particle have identical mass and charge
 - d) the particle are interacting.
- 14) When liquid oxygen is poured down close to a strong bar magnet, the oxygen stream is
 - a) repelled towards the field because it is diamagnetic.
 - b) attracted towards the higher field because it is diamagnetic.
 - c) repelled towards the lower field because it is paramagnetic.
 - d) attracted towards the higher field because it is paramagnetic.
- 15) Fission fragments are generally radioactive as
 - a) they have excess of neutrons.
 - b) they have excess of protons.
 - c) they are products of radioactive nuclides.
 - d) their total kinetic energy is of the order of 200MeV.
- 16) In a typical npn transistor the doping concentrations in emitter, base and collector regions are C_E , C_B and C_E respectively. These satisfy the relation

a)
$$C_E > C_C > C_B$$

c)
$$C_C > C_B > C_E$$

b)
$$C_E > C_B > C_C$$

d)
$$C_E = C_C > C_B$$

- 17) The allowed states for $He(2p^2)$ configuration are
 - a) ${}^{1}S_{0}$, ${}^{3}S_{1}$, ${}^{1}P_{1}$, ${}^{3}P_{0,1,2}$, ${}^{1}D_{2}$ and ${}^{3}D_{1,2,3}$
 - b) ${}^{1}S_{0}$, ${}^{3}P_{0,1,2}$ and ${}^{1}D_{2}$
 - c) ${}^{1}P_{1}$ and ${}^{3}P_{0,1,2}$
 - d) ${}^{1}S_{0}$ and ${}^{1}P_{1}$