AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

2

1	1. (Currently amended) A method for generating code to perform
2	anticipatory prefetching for data references, comprising:
3	receiving code to be executed on a computer system;
4	analyzing the code to identify data references to be prefetched; and
5	inserting prefetch instructions into a preceding basic block of the code in
6	advance of the identified data references, wherein inserting prefetch instructions
7	involves inserting multiple prefetch instructions for a given cache line, and
8	wherein inserting the prefetch instructions involves,
9	attempting to calculate a stride value for a given data
0	reference within a loop,
1	if the stride value cannot be calculated, setting the stride
2	value to a default stride value, and
13	inserting a prefetch instruction to prefetch the given data
4	reference for a subsequent loop iteration based on the stride value;
15	wherein the stride value is constant for some but not necessarily all loop
6	iterations.

1	3. (Original) The method of claim 1, wherein calculating the stride value
2	involves:
3	identifying an induction variable for the stride value;
4	identifying a stride function for the stride value; and
5	calculating the stride value based upon the stride function and the
6	induction variable.
1	4. (Original) The method of claim 1, wherein inserting the prefetch
2	instruction based on the stride value involves:
3	calculating a prefetch cover distance by dividing a cache line size by the
4	stride value;
5	calculating a prefetch ahead distance as a function of a prefetch latency,
6	the prefetch cover distance and an execution time of a loop; and
7	calculating a prefetch address by multiplying the stride value by the
8	prefetch cover distance and the prefetch ahead distance and adding the result to a
9	address accessed by the given data reference.
1	5. (Original) The method of claim 1, wherein analyzing the code involves
2	identifying loop bodies within the code; and
3	identifying data references to be prefetched from within the loop bodies.
1	6. (Original) The method of claim 5, wherein analyzing the code to
2	identify data references to be prefetched involves examining a pattern of data
3	references over multiple loop iterations.
1	7. (Original) The method of claim 1, wherein analyzing the code involves
2	analyzing the code within a compiler.

1	8. (Currently amended) A computer-readable storage medium storing
2	instructions that when executed by a computer cause the computer to perform a
3	method for generating code to perform anticipatory prefetching for data
4	references, the method comprising:
5	receiving code to be executed on a computer system;
6	analyzing the code to identify data references to be prefetched; and
7	inserting prefetch instructions into a preceding basic block of the code in
8	advance of the identified data references, wherein inserting prefetch instructions
9	involves inserting multiple prefetch instructions for a given cache line, and
0	wherein inserting the prefetch instructions involves,
1	attempting to calculate a stride value for a given data
2	reference within a loop,
3	if the stride value cannot be calculated, setting the stride
4	value to a default stride value, and
5	inserting a prefetch instruction to prefetch the given data
6	reference for a subsequent loop iteration based on the stride value;
7	wherein the stride value is constant for some but not necessarily all loop
8	iterations.
1	9. (Original) The computer-readable storage medium of claim 8, wherein
2	the method further comprises allowing a system user to specify the default stride
3	value.
1	10. (Original) The computer-readable storage medium of claim 8, wherein
2	calculating the stride value involves:
3	identifying an induction variable for the stride value;
4	identifying a stride function for the stride value; and

5	calculating the stride value based upon the stride function and the
6	induction variable.
1	11. (Original) The computer-readable storage medium of claim 8, wherein
2	inserting the prefetch instruction based on the stride value involves:
3	calculating a prefetch cover distance by dividing a cache line size by the
4	stride value;
5	calculating a prefetch ahead distance as a function of a prefetch latency,
6	the prefetch cover distance and an execution time of a loop; and
7	calculating a prefetch address by multiplying the stride value by the
8	prefetch cover distance and the prefetch ahead distance and adding the result to an
9	address accessed by the given data reference.
1	12. (Original) The computer-readable storage medium of claim 8, wherein
2	analyzing the code involves analyzing the code within a compiler.
1	13. (Currently amended) An apparatus that generates code to perform
2	anticipatory prefetching for data references, comprising:
3	a receiving mechanism that is configured to receive code to be executed or
4	a computer system;
5	an analysis mechanism that is configured to analyze the code to identify
6	data references to be prefetched; and
7	an insertion mechanism that is configured to insert prefetch instructions
8	into a preceding basic block of the code in advance of the identified data
9	references wherein the insertion mechanism facilitates inserting multiple prefetch
10	instructions for a given cache line;
11	wherein the insertion mechanism is configured to,

2	attempt to calculate a stride value for a given data reference
3	within a loop,
4	set the stride value to a default stride value if the stride
.5	value cannot be calculated, and to
6	insert a prefetch instruction to prefetch the given data
.7	reference for a subsequent loop iteration based on the stride value;
8	wherein the stride value is constant for some but not necessarily all loop
9	iterations.
1	14. (Original) The apparatus of claim 13, further comprising a
2	configuration mechanism that is configured to receive the default stride value
3	from a system user.
1	15. (Original) The apparatus of claim 13, wherein while calculating the
2	stride value, the insertion mechanism is configured to:
3	identify an induction variable for the stride value;
4	identify a stride function for the stride value; and to
5	calculate the stride value based upon the stride function and the induction
6	variable.
1	16. (Original) The apparatus of claim 13, wherein the insertion mechanism
2	is configured to:
3	calculate a prefetch cover distance by dividing a cache line size by the
4	stride value;
5	calculate a prefetch ahead distance as a function of a prefetch latency, the
6	prefetch cover distance and an execution time of a loop; and to

- 7 calculate a prefetch address by multiplying the stride value by the prefetch
- 8 cover distance and the prefetch ahead distance and adding the result to an address
- 9 accessed by the given data reference.
- 1 17. (Original) The apparatus of claim 13, wherein the apparatus resides
- 2 within a compiler.
- 1 18-45 (Canceled).