Aprendizaje Profundo

Índice

Aprendizaje profundo

Modelos de lenguaje

Transfer learning

Introducción

Datos estructurados

Introducción

Datos estructurados

Datos no estructurados

Introducción

Aprendizaje profundo

Redes neuronales

- 1943: McCulloch & Pitts
 - Modelo matemático de una neurona
- 1957: Rosenblatt
 - Perceptrón
- 1974-80: Primer invierno
 - Perceptrón no modela funciones simples
 - Se soluciona con múltiples capas
- 1986: Parallel distributed processing y back propagation

Redes neuronales

- 1987-93: Segundo invierno
 - Dos capas para aproximador universal
 - No es útil en la práctica (demasiado grandes y lentas)
- 2006: Hinton & Salakhutdinov
 - Deep learning
- 2019: Turing award

Yoshua Bengio, Geoffrey Hinton, Yann Lecun

¿Qué diferencia hay?

Método automático tradicional

¿Qué diferencia hay?

Método tradicional

¿Qué diferencia hay?

Método tradicional

Aprendizaje profundo - aprendizaje de la representación

Representación jerárquica

- Representación jerárquica con niveles incrementales de abstracción
- Cada nivel transforma los descriptores

¿Qué modelos son profundos?

Redes que aprenden una representación jerárquica de los datos

- Más capas y más neuronas
- Para que funcione:
 - Más datos
 - Más potencia (GPUs, TPUs)
 - Variantes y mejoras de los algoritmos
 - Software libre

Más capas y más neuronas

Mas datos

GPUs:

- Resultados más rápidos
- Bajo consumo
- Bajo coste

- EfficientNet: 128 núcleos TPUv3
- GPT-3: 285000 núcleos CPU y 10000 GPUs

... pero veremos que con una GPU (gratuita) podemos crear buenos modelos

Software libre:

- Tensorflow y Pytorch
- Keras, FastAI, Pytorch lightning
- HuggingFace
- Gran cantidad de repositorios en GitHub

¿Dónde funciona el aprendizaje profundo?

- Visión por computador
- Procesado lenguaje natural
- Medicina
- Biología
- Generación de imágenes
- Sistemas de recomendación
- Robótica
- •

Índice

- 1. Aprendizaje profundo
- 2. Modelos de lenguaje
- 3. Transfer learning

Los modelos de lenguaje estiman la probabilidad de distintas unidades lingüísticas

Un modelo que dada parte de una frase es capaz de predecir la siguiente palabra

Intentan predecir la siguiente palabra a partir del contexto

Para cenar voy a hacer _____

P(fajitas | Para cenar voy a hacer) > P(cemento | Para cenar voy a hacer)

Estiman probabilidad de que una frase ocurra

 $P(S) = P(Where) \times P(are \mid Where) \times P(we \mid Where are) \times P(going \mid Where are we)$

Perplexity (perplejidad)

Una medida para saber cómo de bien un modelo de probabilidad predice una muestra

La perplejidad nos dice si un conjunto de frases parecen escritas por personas y no por una máquina

Frases escritas por personas tienen una perplejidad baja, mientras que frases aleatorias tienen una perplejidad alta

Perplejidad

Menor perplejidad = mejor modelo Valores típicos entre 10 y 60

- Bert
- ULMFit
- ElMo
- T5
- XLNet
- GPT-2, GPT-3, GPT-4
- •

Modelos de lenguaje en español

- BETO
- Bertin
- MarlA
- RigoBERTa

Tamaño

Datasets

Dataset	# Tokens (Billions)
Total	499
Common Crawl (filtered by quality)	410
WebText2	19
Books1	12
Books2	55
Wikipedia	3

Procesamiento de secuencias

- RNN
- LSTM
- Transformers

Redes neuronales recurrentes

La RNN procesa secuencias mediante un bucle que itera a través de los elementos de la secuencia y mantiene un estado que contiene información relativa a lo procesado anteriormente.

Redes neuronales recurrentes

El procesamiento secuencial es una de las mayores limitaciones de las RNR ante largas secuencias

Cuanto más extensa es la secuencia, mayor es el desvanecimiento de los gradientes.

LSTM

Variante de las RNN diseñadas para superar los problemas de desvanecimiento y explosión del gradiente.

Puerta de entrada Puerta de olvido Puerta de salida

LSTM

En las LSTM se añade la incorporación de las celdas de memoria.

La red neuronal es capaz de eliminar información previa y actualizar la memoria al recibir nuevo input.

LSTM

Tres puertas: puerta de olvido (O), puerta de entrada (E) y puerta de salida (S).

- En la primera puerta o puerta de olvido se aplica una función sigmoidal para calcular cuánta información antigua se debe eliminar.
- En la puerta de entrada se determina cuánta nueva información se debe agregar al estado de memoria.
- En la puerta de salida se establece qué información del estado de memoria se usa en el cálculo de la salida de cada celda

2017

Vaswani et al.

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡
illia.polosukhin@gmail.com

Arquitectura Transformer

Transformers

Transformers

Transformers

Encoder

Auto atención

"The animal didn't cross the street because it was too tired"

Auto atención

Encoder

Atención multicabezal

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

Χ

3) The result would be the $\mathbb Z$ matrix that captures information from all the attention heads. We can send this forward to the FFNN

Encoder

Decoder

Índice

- 1. Aprendizaje profundo
- 2. Modelos de lenguaje
- 3. Transfer learning

Transfer learning

Transfer learning: idea

Problemas Deep Learning

- Requieren grandes cantidades datos
- Requieren uso de múltiples GPUs

Transfer learning

Feature extractor

<u>Aplicaciones</u>

LAB