2016년 2학기 응용통계학개론 2 중간고사

[문제1] 한 소비자단체에서는 컴퓨터 chip의 평균 수명이 15,000시간 이하라고 주장하고 있다. 이러한 주장의 타당성을 조사하기 위하여 100개의 chip을 표본으로 추출하여 조사한 결과 표본평균=14,800이고 표준편차(s)=1,000 으로 나타났다. 이 단체의 주장을 믿을 수 있는가?

- 1. 유의수준 1% 하에서 검정하여라.
- 2. p-value를 계산하여라.

1. 귀무가설 vs 대립가설

귀무가설 (H_0) 은 기존의 사실이고, 대립가설 (H_1) 은 새롭게 제시된 주장이다.

 H_0 : 컴퓨터 칩의 평균 수명 시간은 15,000 시간이다. $(\mu=15,000)$

 H_1 : 컴퓨터 칩의 평균 수명 시간은 15,000 시간 이하이다. $(\mu \leq 15,000)$

2. 검정통계량

$$T = \frac{X - \mu}{\frac{s}{\sqrt{n}}} = \frac{14,800 - 15,000}{\frac{1,000}{\sqrt{100}}} = \frac{-200}{\frac{1,000}{10}} = \frac{-200}{100} = -2$$

3. 유의수준 1%하에서 검정

유의수준 1%하에서 검정하는 문제이므로 표준정규분포표에서 0.01의 값을 찾는다.

 $P(Z \le -2.33) = 0.01$ 이 값은 뒤에 표준정규분포표에서 표 안의 값이 0.01이 되는 곳을 찾아 왼쪽과 위쪽을 붙여서 읽는다.

 $Z \sim N(0,1)$ 에서, $P(Z \le -2.33) = 0.01$ 이므로 검정통계량 T = -2 는 -2.33 보다 크므로 귀무가설을 기각할 근거가 충분하지 않다. 따라서 컴퓨터 칩의 평균 수명 시간이 15,000 이하라는 주장을 믿을 수 없다.

4. p-value 계산하기

표준정규분포표에서 Z=-2.0 과 0.00 이 만나는 지점의 값을 읽는다. 따라서 p-value = 0.0228 이다.

[문제2] 우리나라 전국의 2015년 가구당 평균소득이 1,200만원 이라고 알려져 있다. 서울의 가구당 평균 소득이 전국의 평균소득과 차이가 있는지를 알아보기 위하여 9가구를 임의로 추출하여 조사한 결과 표본평균=1,300만원이고 표준편차(s)=120만원을 얻었다. 유의수준 5%를 가정한다.

- 1. 이 문제의 신뢰구간 및 가설검정을 위하여 가정이 필요하다면 서술하여라.
- 2. 임계값을 이용한 전형적인 기법으로 가설 검정하여라.
- 3. p-value를 이용한 기법으로 가설 검정하여라.
- 4. 서울의 가구당 평균소득 모평균의 95% 신뢰구간을 구하여라.
- 5. 앞선 4항의 결과를 이용하여 2 및 3항의 가설검정 결과를 예측하라.

1. 필요한 가정

표본분산을 이용한 모평균의 가설검정은 모집단이 정규분포를 한다는 가정이 필요하다.

2. 임계값을 이용한 전형적인 가설 검정

 $H_0: \mu = 1,200$

 $H_1: \mu \neq 1,200$

$$T = \frac{X - \mu}{\frac{s}{\sqrt{n}}} = \frac{1,300 - 1,200}{\frac{120}{\sqrt{9}}} = \frac{100}{\frac{120}{3}} = \frac{100}{40} = 2.5$$

이 문제는 양측검정이고, 유의수준 5%하에서 임계값을 이용하여 검정하는 문제이고, 표본이 9이므로 충분히 크지 않으므로 t 검정을 실시한다. 자유도가 8(9-1) t-분포에서 $P(t \le -2.306) = 0.025$, $P(t \ge 2.306) = 1 - P(t \le 2.306) = 1 - 0.975 = 0.025$ 이다. 따라서 검정통계량 값이 -2.306보다 작거나 2.306보다 크면 귀무가설을 기각한다. 검정통계량 T = 2.5 는2.306 보다 크므로 귀무가설을 기각할 근거가 충분하다. 따라서 유의수준 5%하에서 서울의 평균 소득이 전국의 평균소득과 차이가 있다고 볼 수 있다.

3. p-value를 이용한 검정

 $H_0: \mu = 1,200$

 $H_1: \mu \neq 1,200$

$$T = \frac{X - \mu}{\frac{s}{\sqrt{n}}} = \frac{1,300 - 1,200}{\frac{120}{\sqrt{9}}} = \frac{100}{\frac{120}{3}} = \frac{100}{40} = 2.5$$

p-값을 구해보면 $P(t_8>2.306)=0.025$ 이고, $P(t_8>2.896)=0.01$ 이므로, $0.01< P(t_8>2.5)<0.025$ 이고, 양측검정이므로 2배를 하면, 0.02< P-Value<0.05 이다. 구해진 P-값은 0.05보다 작으므로 유의수준 5%하에서 귀무가설을 기각한다.

4. 모평균의 신뢰구간

t-분포의 95% 신뢰구간은 다음과 같다. $\overline{X}-t_{df,0.025}\frac{s}{\sqrt{n}}\leq \mu\leq \overline{X}+t_{df,0.975}\frac{s}{\sqrt{n}}$ 이 공식에 대입을 해

보면 $1{,}300-2.306\frac{120}{\sqrt{9}} \le \mu \le 1{,}300+2.306\frac{120}{\sqrt{9}}$ 이고 계산을 정리하면, $1{,}218.56 \le \mu \le 1{,}381.44$ 이다.

5. 신뢰구간을 이용한 가설 검정 결과 예측

4항에서 구한 신뢰구간 안에 모평균 1.200이 존재하지 않으므로 귀무가설을 기각할 것이라 예측된다.

[문제3] 영양사는 20대 80%가 다이어트 경험이 있다고 주장한다. 사실여부를 알아보기 위하여 400세대를 임의로 추출하여 조사한 결과, 그 중에 332명이 다이어트 경험이 있는 것으로 나타났다. 유의수준 5%하에서 영양사의 신빙성여부를 검정하여라.

1. 가설

$$H_0: p = 0.8$$

$$H_1: p \neq 0.8$$

2. 검정통계량

$$T = \frac{X - p}{\sqrt{\frac{p(1-p)}{n}}} = \frac{\frac{332}{400} - 0.8}{\sqrt{\frac{0.8 \times 0.2}{400}}} = \frac{0.03}{0.02} = 1.5$$

3. 유의수준

표본의 수가 400으로 충분히 크므로, 검정통계량 T가 N(0,1)인 정규분포를 따른다고 가정할 때, 유의수준 5% 하에서 양측검정이므로, 양쪽의 기각역은 $Z_{0.025}=-1.96$ 와 $Z_{0.975}=+1.96$ 인데, 1.5는 -1.96보다 작지 않고, 1.96보다 크지 않으므로 귀무가설을 기각할 만한 근거가 충분하지 않다.

4. 결론

따라서 80%가 다이어트 경험이 있다고 주장하는 영양사의 주장은 신빙성이 있다.

[문제4] 은행직과 전문직간의 급여차이 유무를 알아보고자 한다. 각각의 모집단에서 표본을 추출하여 아래의 자료를 얻었다. 유의수준 5%하에서 검정하여라.

은행직 : $n_1 = 100$, 표본평균 = 3천만원, 모분산 = 4천만원

전문직 : $n_2 = 100$, 표본평균 = 3천 6백만원, 모분산 = 5천만원

1.가설

 $H_0: \mu_1 - \mu_2 = 0$, 은행직과 전문직간의 급여차이가 없다. $H_1: \mu_1 - \mu_2 \neq 0$, 은행직과 전문직간의 급여차이가 있다.

2. 검정통계량

$$z = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{(3,000 - 3,600)}{\sqrt{\frac{4,000}{100} + \frac{5,000}{100}}} = \frac{-600}{3\sqrt{10}} = -63.2455$$

3. 유의수준

표본의 수가 각각 100, 100 이므로 충분히 크고 모분산이 알려져 있으므로, 검정통계량 z 가 N(0,1)인 정 규분포를 따른다고 가정할 때, 유의수준 5% 하에서 양측검정이므로, 양쪽의 기각역은 $Z_{0.025}=-1.96$ 와 $Z_{0.975}=+1.96$ 인데, -63.2455는 -1.96보다 작으므로 귀무가설을 기각할 만한 근거가 충분하다.

4. 결론

따라서 은행직과 전문직간의 급여차이가 존재한다고 볼 수 있다.

[문제5] 특정 교육프로그램이 유아교육에 도움이 되는지를 알아보기 위하여, 9명의 쌍둥이에게 일정기간 교육전후 주어진 20개 문항에 따른 문자인식 정답수를 각각 조사하였다. 교육에 의한 정답 수 증가가 존재하는가? 유의수준 5%하에서 검정하여라. 단 표본표준편차는 1.5 이다.

70 1	17	10	20	10	17	1.0	1.0	1.0	1.5
_ 뽀퓩 신	17	13	20	19	17	10	10	10	15
교육 후	16	14	18	20	17	13	15	14	15

1. 표 만들기

교육 전	교육 후	D = 교육 전 - 교육 후	D^2
17	16	-1	1
13	14	+1	1
20	18	-2	4
19	20	+1	1
17	17	0	0
16	13	-3	9
18	15	-3	9
16	14	-2	4
15	15	0	0
	합계	-9	29

2. 가설

 $H_0:\mu_D\leq 0$, 교육 전후의 정답의 개수에는 차이가 없거나 더 낮아졌다.

 $H_1: \mu_D > 0$, 교육 전에 비해 교육 후가 정답의 개수가 더 많아졌다.

3. 검정통계량

$$\overline{D} = \frac{\sum D}{n} = \frac{-9}{9} = -1$$

$$S_D = \sqrt{\frac{n\sum D^2 - (\sum D)^2}{n(n-1)}} = \sqrt{\frac{9 \times 29 - 81}{9 \times 8}} = 1.5$$

$$t = \frac{\overline{D} - \mu_D}{\frac{S_D}{\sqrt{n}}} = \frac{-1}{\frac{1.5}{3}} = -2.0$$

4. 유의수준

자유도가 8이고, 유의수준 5%하에서 좌측검정의 기각역 $t_{8,0.05} = -1.860$ 보다 검정통계량 -2.00 더 작으므로 귀무가설을 기각할 만한 근거가 충분하다.

5. 결론

[문제6] 아래의 항목에 대하여 간단히 답하여라.

제1종 오류를 정의하여라.

제1종 오류는 귀무가설이 사실일 때 귀무가설을 기각하면 발생하는 오류이다.

검정기법의 단계를 간략하게 서술하여라.

- 1. 가설들을 정의하고 주장을 확인한다.
- 2. 적당한 표로부터 임계값들을 찾는다.
- 3. 검정통계량 값을 계산한다.
- 4. 귀무가설을 기각할 것인지 기각 하지 않을 것인지를 결정한다.
- 5. 결과들을 요약한다.

p-value를 정의하여라.

귀무가설이 사실일 때 대립가설의 방향으로 더 극단적인 표본 통계량 혹은 표본 통계량을 얻는 확률이다.

모비율의 가설검정에서 검정통계량이 대부분 정규분포화하는 이유는?

표본의 크기가 커질수록 정규분포로 근사하기 때문이다.

p-값을 이용하여 귀무가설을 채택, 기각하는 원칙을 서술하여라.

계산된 p-값이 주어진 유의수준보다 크면 귀무가설을 채택하고, 주어진 유의수준보다 작으면 귀무가설을 기각한다.

신뢰구간 값이 0을 포함할 때. 귀무가설을 기각 하는가 혹은 기각하지 못하는가?

신뢰구간이 0을 포함하면 귀무가설을 채택한다.

귀무가설을 기각하는 경우가 커지는 것은 p-값이 작을수록 인가? 클수록 인가?

p-값이 작을수록 귀무가설을 기각하는 경우가 많아진다.

대응비교(쌍비교)검정의 특징을 서술하여라.

두 집단이 쌍으로 되거나 대응하게 될 때 표본들을 종속표본이라 하는데, 하나의 집단에서 사건의 전후에 대한 값이므로 평균 차이를 비교할 때 독립표본과는 다른 검정통계량을 사용해야 한다. 이 때 사용하는 통

계량은
$$t=\frac{\overline{D}-\mu_D}{\frac{S_D}{\sqrt{n}}}$$
 이며, $\overline{D}=\frac{\sum D}{n}$ 이고, $D=$ 각표본의차이 이다.