Lean Code Documentation

Gegeben sei die Funktion $f(y) = a \cdot y + b$, wobei $a \neq 0$. Wir wollen zeigen, dass f stetig an jeder Stelle $x \in \mathbb{R}$ ist. Schritte im Detail:

- 1. **Einführung:** Wir beginnen mit der Definition der Funktion $f(y) = a \cdot y + b$ und der Annahme $a \neq 0$. Ziel ist es zu zeigen, dass f an der Stelle x stetig ist.
 - 2. Einführung der ε -Umgebung: Sei $\varepsilon > 0$. Wir wählen $\delta = \frac{\varepsilon}{|a|}$.

Sei
$$\delta := \frac{\varepsilon}{|a|}$$
.

3. Existenz von δ : Da |a| > 0, folgt $\delta > 0$.

$$0 < \delta := \frac{\varepsilon}{|a|}.$$

- 4. **Definition der** δ -**Umgebung:** Wir zeigen nun, dass für alle y mit $|y-x|<\delta$ die Bedingung $|f(x)-f(y)|<\varepsilon$ erfüllt ist.
 - 5. Berechnung der Differenz:

$$|f(x) - f(y)| = |(a \cdot x + b) - (a \cdot y + b)|$$

$$= |a \cdot x + b - a \cdot y - b|$$

$$= |a \cdot x - a \cdot y|$$

$$= |a \cdot (x - y)|$$

$$= |a| \cdot |x - y|.$$

6. Schätzung der Differenz: Da $|x-y|<\delta$ und $\delta=\frac{\varepsilon}{|a|},$ erhalten wir:

$$|a| \cdot |x - y| < |a| \cdot \delta = |a| \cdot \frac{\varepsilon}{|a|} = \varepsilon.$$

7. **Abschluss:** Somit haben wir gezeigt, dass $|f(x)-f(y)|<\varepsilon$ für $|x-y|<\delta$, was die Stetigkeit von f an x beweist.