so that $T(t) = e^{-i\lambda t}$ and X(x) satisfies exactly the same problem (1) as before. Therefore, the solution is

$$u(x,t) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} A_n e^{-i(n\pi/l)^2 t} \cos \frac{n\pi x}{l}.$$

The initial condition requires the cosine expansion (6).

EXERCISES

- 1. Solve the diffusion problem $u_t = ku_{xx}$ in 0 < x < l, with the mixed boundary conditions $u(0, t) = u_x(l, t) = 0$.
- 2. Consider the equation $u_{tt} = c^2 u_{xx}$ for 0 < x < l, with the boundary conditions $u_x(0, t) = 0$, u(l, t) = 0 (Neumann at the left, Dirichlet at the right).
 - (a) Show that the eigenfunctions are $\cos[(n+\frac{1}{2})\pi x/l]$.
 - (b) Write the series expansion for a solution $u(\bar{x}, t)$.
- 3. Solve the Schrödinger equation $u_t = iku_{xx}$ for real k in the interval 0 < x < l with the boundary conditions $u_x(0, t) = 0$, u(l, t) = 0.
- 4. Consider diffusion inside an enclosed circular tube. Let its length (circumference) be 2l. Let x denote the arc length parameter where $-l \le x \le l$. Then the concentration of the diffusing substance satisfies

$$u_t = ku_{xx} \quad \text{for } -l \le x \le l$$

$$u(-l, t) = u(l, t) \quad \text{and} \quad u_x(-l, t) = u_x(l, t).$$

These are called *periodic boundary conditions*.

- (a) Show that the eigenvalues are $\lambda = (n\pi/l)^2$ for $n = 0, 1, 2, 3, \dots$
- (b) Show that the concentration is

$$u(x,t) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} \left(A_n \cos \frac{n\pi x}{l} + B_n \sin \frac{n\pi x}{l} \right) e^{-n^2 \pi^2 kt/l^2}.$$

4.3 THE ROBIN CONDITION

We continue the method of separation of variables for the case of the Robin condition. The Robin condition means that we are solving $-X'' = \lambda X$ with the boundary conditions

$$X' - a_0 X = 0$$
 at $x = 0$ (1)
 $X' + a_l X = 0$ at $x = l$. (2)

The two constants a_0 and a_l should be considered as given.