

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE INSTITUTO DE INGENIERÍA MATEMÁTICA Y COMPUTACIONAL

IMT2230-1 2023-2

Profesor: Cristobal Rojas Ayudante: Pablo Rademacher

Interrogación 2

Cada pregunta vale 2 puntos. Se tomarán las mejores 3.

- 1. Verdadero o Falso. Justifique con una demostración o un contraejemplo.
 - a) Si A es diagonal, entonces sus valores singulares son iguales a sus valores propios.
 - b) Si A es invertible y $\lambda > 0$ es valor propio de $A^T A$, entonces $\sqrt{\lambda}$ es valor singular de A.
 - c) Si A de $n \times n$ tiene n vectores propios l.i., entonces es invertible.
 - d) Si A es simétrica, entonces existe una única matriz S tal que $S^{-1}AS$ es diagonal.

Solución:

a) **FALSO**. Basta considerar alguna matriz diagonal con solo entradas negativas; luego tendrá todos sus valores propios negativos, pero sus valores singulares deben ser positivos. Por ejemplo,

$$A = \begin{pmatrix} -1 & 0 \\ 0 & -2 \end{pmatrix},$$

tiene a -1 y -2 como valores propios, pero a 1 y 2 como valores singulares.

b) **VERDADERO**. Usando que $A = U\Sigma V^T$, vemos que $A^TA = V\Sigma^T U^T U\Sigma V^T = V\Sigma^2 V^T$. Usando que V posee columnas ortonormales, podemos multiplicar V por la derecha a ambos lados para obtener que $A^TAV = V\Sigma^2$. Observando columna a columna, tenemos que

$$A^T A v_i = \sigma_i^2 v_i,$$

por lo que los valores propios de A^TA son los cuadrados de los valores singulares de A.

c) **FALSO**. Si el 0 es valor propio, la matriz podría ser diagonalizable, pero no será invertible. Por ejemplo, si

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

al ser diagonal sus valores propios son 0 y 1, y como son distintos entonces A es diagonalizable, lo que equivale a que tenga dos vectores propios l.i. Sin embargo, A no es invertible.

d) Falso. Para diagonalizar A basta con tomar cualquier matriz S' cuyas columnas sean vectores propios l.i., en cuyo caso se tendrá que $A = S'\Lambda S'^{-1}$, por lo que $S'^{-1}AS = \Lambda$ es diagonal. Por ejemplo, si S es tal que $S^{-1}AS$ es diagonal, podemos duplicar algún vector propio en S y considerar S' = 2S. Entonces se tendrá que $S'^{-1} = \frac{1}{2}S^{-1}$ y

$$(S')^{-1}AS' = \frac{1}{2}S^{-1}A(2S) = S^{-1}AS$$

será por tanto también diagonal.

PUNTAJE: En cada parte, 0,2 por decir si es V o F, y 0,3 por justificar correctamente.

2. Para las siguientes matrices, encuentre U, Σ y V tales que $A = U \Sigma V^T$ es la descomposición SVD de A.

a)
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$$
.
b) $A = \begin{pmatrix} 1/2 & 0 \\ 0 & -2 \end{pmatrix}$.

Solución:

a) Observemos que $FIL(A) = \operatorname{Span} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ y que A es de rango 1, por lo que sólo tendrá un valor singular distinto a cero. Usamos que v_1 es un generador del espacio de dimensión 1 que mejor aproxima a Fil(A) (en este caso es Fil(A) mismo), por lo que basta tomar $v_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Luego, usamos que $Av_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ para obtener $\sigma_1 = ||Av_1|| = \sqrt{3}$, y luego $u_1 = \frac{1}{\sigma_1}Av_1 = \frac{1}{\sqrt{3}}\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Finalmente, como no hay más valores singulares, obtenemos que $A=U\Sigma V^T,$ con

$$U = \begin{pmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{pmatrix}, \quad \Sigma = \begin{pmatrix} \sqrt{3} \end{pmatrix} \quad \text{y} \quad V = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Puntaje: 0,5 por v_1 , 0,3 por σ_1 , y 0,2 por u_1 .

b) Partimos buscando v_1 . Para ello, usamos la definición $v_1 = \arg\max_{\|x\|=1} \{\|Ax\|\}$, lo que es directo de ver en una matriz diagonal, como es este caso. Como |-2| > |1/2|, el producto Ax alcanza su mayor norma al ser igual a la segunda columna, y esto se da con $v_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Se puede obtener que $\sigma_1 = 2$ y $u_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ usando las mismas fórmulas que en el punto anterior. Para obtener v_2 , hay que agregar la restricción de que $v_2 \perp v_1$. Como solo hay dos vectores en \mathbb{R}^2 perpendiculares a v_1 (los cuales son $\begin{pmatrix} \pm 1 \\ 0 \end{pmatrix}$), basta con elegir cualquiera de ellos. Así, podemos tomar $v_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, y luego $\sigma_2 = \frac{1}{2}$ y $u_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Finalmente,

$$U = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \Sigma = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix} \quad \text{y} \quad V = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Puntaje: 0,4 por u_1 , σ_1 y v_1 ; 0,4 por u_2 , σ_2 y v_2 ; y 0,2 por mostrar las matrices.

- 3. Considere la matriz $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.
 - i) Muestre que A no es diagonalizable.
 - ii) Encuentre los valores singulares de A.

Solución:

i) Como A es triangular superior, se puede ver inmediatamente que sus valores propios son los elementos de la diagonal. En este caso solo habrá un valor propio, $\lambda = 1$. Estudiamos su espacio propio (vectores propios asociados).

Para ello, sabemos que v es valor propio asociado a $\lambda = 1$ si y solo si $v \in Nul(A-1I)$, lo que significa que $(A-I)v = \vec{0}$. Escribiendo en forma matricial, tenemos que

$$(A-I)v = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} v_2 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Esto quiere decir que, si v es un vector propio asociado a $\lambda = 1$, entonces $v_2 = 0$ y v_1 es libre. Así, solo podemos obtener un vector propio l.i. (por ejemplo, el vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$). Como solo hay un vector propio l.i., entonces A no es diagonalizable.

Puntaje: 0,3 puntos por encontrar el valor propio, 0,5 por encontrar el vector propio, 0,2 por concluir.

ii) Usaremos el hecho de que los valores singulares de A son las raíces de los valores propios de A^TA . Multiplicando, obtenemos que

$$A^T A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

Para encontrar sus valores propios buscamos las raíces de su polinomio característico. Para una matriz de 2x2, este está dado por $p(\lambda) = \lambda^2 - tr(A^TA) + det(A^TA) = \lambda^2 - 3\lambda + 1$, cuyas raíces son $\lambda_{1,2} = \frac{3\pm\sqrt{5}}{2}$ (se pueden encontrar usando la fórmula cuadrática). Finalmente, los valores singulares de A son las raíces de esto valores propios, es decir

$$\sigma_1 = \sqrt{\frac{3+\sqrt{5}}{2}}$$
 y $\sigma_2 = \sqrt{\frac{3-\sqrt{5}}{2}}$.

Puntaje: 0,3 por multiplicar A^TA , 0,5 por encontrar sus valores propios, 0,2 por tomar su raíz. Si se calculan los valores propios de A en vez de A^TA , 0,4 puntos.

4. Se define la matriz

$$A = \left(\begin{array}{cc} \lambda & \lambda - \beta \\ 0 & \beta \end{array}\right).$$

Encuentre una matriz S, que no dependa de λ ni de β , tal que $S^{-1}AS$ sea siempre diagonal.

Solución:

Vamos a diagonalizar la matriz, para lo cual haremos que las columnas de S sean vectores propios de A. Para ello, partimos buscando sus valores propios, lo que es fácil de hacer ya que la matriz es triangular. Así, los valores propios son λ y β , las entradas de la diagonal.

Para encontrar un vector propio asociado a λ estudiamos el conjunto $Nul(A - \lambda I)$. Para ello, vemos que si v está en ese conjunto,

$$(A - \lambda I)v = \begin{pmatrix} 0 & \lambda - \beta \\ 0 & \beta - \lambda \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} (\lambda - \beta)v_2 \\ (\beta - \lambda)v_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Para que ello pase, basta con que v_2 sea 0, y podemos dejar v_1 libre. Así, podemos tomar $v = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ como vector propio asociado.

Por otro lado, para encontrar un vector propio asociado a β , estudiamos el conjunto $Nul(A - \beta I)$. Para ello, vemos que si v está en ese conjunto,

$$(A - \beta I)v = \begin{pmatrix} \lambda - \beta & \lambda - \beta \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} (\lambda - \beta)v_1 + (\lambda - \beta)v_2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Para que ello pase, necesitamos que se cumpla $(\lambda - \beta)v_1 + (\lambda - \beta)v_2 = 0$, por lo que basta con tomar $v_1 = -v_2$, con v_2 libre. Así, podemos tomar $v = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ como el vector propio asociado a β . Finalmente, podemos formar S como

$$S = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}.$$

Puntaje: 0,6 por encontrar los valores propios, 0,6 por cada vector propio, y 0,2 por dar la matriz S.