

## Nachrichtentechniklabor

Wintersemester 2014

# Übung C: RFID

Übungsdatum: 18.11.2014

Gruppe: 05

Protokollführer: Thomas Neff

## Laborteilnehmer:

- 1. Daniel Freßl, 1230028
- 2. Thomas Neff, 1230319
- 3. Thomas Pichler, 1230320
- 4. Martin Winter, 1130688

Laborleiter: Ao. Univ.-Prof. Dipl.-Ing. Dr. techn. Erich Leitgeb

Betreuer: Paul Seebacher

Graz, am 17. November 2014

## Inhaltsverzeichnis

| 1        |                | ckwirkungsfreie Messung des H-Feldes zweier PCD-Schleifenantennen  |
|----------|----------------|--------------------------------------------------------------------|
|          | $\mathbf{mit}$ | unterschiedlichen Güten                                            |
|          | 1.1            | Aufgabenstellung                                                   |
|          | 1.2            | Messaufbau                                                         |
|          | 1.3            | Tabellen                                                           |
|          | 1.4            | Formeln                                                            |
|          | 1.5            | Berechnungsbeispiele                                               |
|          | 1.6            | Diagramme                                                          |
|          | 1.7            | Geräteliste                                                        |
|          | 1.8            | Diskussion                                                         |
| <b>2</b> | Mes            | ssung der H-Feldstärke über der Frequenz bei unterschiedlichen An- |
|          | teni           | nengüten 7                                                         |
|          | 2.1            | Aufgabenstellung                                                   |
|          | 2.2            | Messaufbau                                                         |
|          | 2.3            | Tabellen                                                           |
|          | 2.4            | Formeln                                                            |
|          | 2.5            | Berechnungsbeispiele                                               |
|          | 2.6            | Diagramme                                                          |
|          | 2.7            | Diskussion                                                         |
| 3        | Arb            | peitsbereich eines Lesegerätes 10                                  |
|          | 3.1            | Aufgabenstellung                                                   |
|          | 3.2            | Tabellen                                                           |
|          | 3.3            | Formeln                                                            |
|          | 3.4            | Berechnungsbeispiele                                               |
|          | 3.5            | Diagramme                                                          |
|          | 3.6            | Diskussion                                                         |
| 4        | Seit           | enbandpegel der Rückmodulation 11                                  |
|          | 4.1            | Aufgabenstellung                                                   |
|          | 4.2            | Messaufbau                                                         |
|          | 4.3            | Tabellen                                                           |
|          | 4.4            | Formeln                                                            |
|          | 4.5            | Berechnungsbeispiele                                               |
|          | 4.6            | Diagramme                                                          |
|          | 17             | Dislussion                                                         |

## 1 Rückwirkungsfreie Messung des H-Feldes zweier PCD-Schleifenantennen mit unterschiedlichen Güten

#### 1.1 Aufgabenstellung

Bei dieser Aufgabe sollten zwei Antennen mit unterschiedlicher Güte (5, 50) miteinander verglichen werden. Dazu soll die magnetische Feldstärke in Abhängigkeit von der Entfernung zur Antenne gemessen werden (in 5mm Schritten, von 0 bis 14cm).

Weiters soll die Anstiegszeit des Sendesignals, von 10% auf 90% der Trägersignalamplitude, für beide Antennen bestimmt werden.

#### 1.2 Messaufbau

Für den Messaufbau wurde ein speziell dafür modifizierter RFID-Reader mit regelbarer Ausgangsamplitude verwendet. Dieser wurde an einen Computer und einen Verstärker angeschlossen. Zwischen Verstärker und zu vermessender Antenne wurde ein Dämpfer (6db) eingebaut.

Die Antenne und die zur Messung verwendete Referenzspule wurden in einen verstellbaren Distanzhalter platziert. Zur Messung wurde die Referenzspule an ein Oszilloskop angeschlossen.

## 1.3 Tabellen

|         | Q=50      | Q=5       | Q=50          | Q=5           |
|---------|-----------|-----------|---------------|---------------|
| Distanz | $U_i(pp)$ | $U_i(pp)$ | H(rms)        | H(rms)        |
| [cm]    |           | [V]       | $[\hat{A}/m]$ | $[\hat{A}/m]$ |
| 0       | 2.9       | 0.894     | 3.167         | 0.976         |
| 0.5     | 2.75      | 0.863     | 3.003         | 0.942         |
| 1       | 2.61      | 0.813     | 2.85          | 0.888         |
| 1.5     | 2.44      | 0.756     | 2.664         | 0.826         |
| 2       | 2.25      | 0.706     | 2.457         | 0.771         |
| 2.5     | 2.06      | 0.637     | 2.249         | 0.696         |
| 3       | 1.89      | 0.584     | 2.064         | 0.638         |
| 3.5     | 1.7       | 0.531     | 1.86          | 0.579         |
| 4       | 1.55      | 0.481     | 1.69          | 0.525         |
| 4.5     | 1.39      | 0.434     | 1.52          | 0.474         |
| 5       | 1.25      | 0.425     | 1.37          | 0.464         |
| 5.5     | 1.13      | 0.425     | 1.23          | 0.464         |
| 6       | 1.01      | 0.425     | 1.102         | 0.464         |
| 6.5     | 0.92      | 0.425     | 1.004         | 0.464         |
| 7       | 0.82      | 0.425     | 0.895         | 0.464         |
| 7.5     | 0.75      | 0.425     | 0.819         | 0.464         |
| 8       | 0.68      | 0.425     | 0.743         | 0.464         |
| 8.5     | 0.62      | 0.425     | 0.677         | 0.464         |
| 9       | 0.55      | 0.425     | 0.6           | 0.464         |
| 9.5     | 0.5       | 0.425     | 0.546         | 0.464         |
| 10      | 0.46      | 0.425     | 0.502         | 0.464         |
| 10.5    | 0.41      | 0.425     | 0.448         | 0.464         |
| 11      | 0.38      | 0.425     | 0.415         | 0.464         |
| 11.5    | 0.35      | 0.425     | 0.382         | 0.464         |
| 12      | 0.32      | 0.425     | 0.349         | 0.464         |
| 12.5    | 0.29      | 0.425     | 0.317         | 0.464         |
| 13      | 0.29      | 0.425     | 0.317         | 0.464         |
| 13.5    | 0.29      | 0.425     | 0.317         | 0.464         |
| 14      | 0.29      | 0.425     | 0.317         | 0.464         |

Tabelle 1: Gemessene Spannung bei verschiedenen Höhen und Güten

#### 1.4 Formeln

Diese Formel stellt den Zusammenhang zwischen induzierter Spannung und Feldstärke dar. Die verwendeten Parameter sind  $f_r=13,56 \mathrm{MHz},~\mu_0=4\pi\cdot 10^{-7}\frac{As}{Vm},~\mu_r=1~\mathrm{und}~A=0,072\cdot 0,042~m^2.$ 

$$U_{ind} = 2\pi \cdot f_r \cdot \mu_0 \cdot \mu_r \cdot H \cdot A \tag{1}$$

Zusammenhang zwischen Spitze-Spitze-Spannung und dem Effektivwert der Spannung.

$$U_{pp} = \sqrt{2} \cdot 2 \cdot U_{ind} \tag{2}$$

#### 1.5 Berechnungsbeispiele

Die Werte für das Berechnungsbeispiel wurden aus der Tabelle 1.3 Zeile 1 entnommen.

$$U_{ind} = \frac{U_{pp}}{\sqrt{2} \cdot 2} = \frac{2,9V}{\sqrt{2} \cdot 2} = 1,025V \tag{3}$$

$$H = \frac{U_{ind}}{2\pi \cdot f_r \cdot \mu_e \cdot \mu_r \cdot A} = \tag{4}$$

$$\frac{1,025V}{2\pi \cdot 13,56MHz \cdot 4\pi \cdot 10^{-7} \frac{As}{Vm} \cdot 1 \cdot 0,072m \cdot 0,042m} = 3,167 \frac{A}{m}$$
 (5)

#### 1.6 Diagramme



Abbildung 1: Verlauf der Feldstärke über die Entfernung für Q=5 und Q=50



Abbildung 2: Messung der Anstiegszeit der Antenne mit  $\mathbf{Q}=5$ am Oszilloskop

## 1.7 Geräteliste

- Computer
- Reader: Labor-RFID-Reader
- Verstärker: Amplifier Research Model 75A250
- Dämpfer: 6dB
- $\bullet$  Antennen: PCD-Schleifenantennen mit Q=5 und Q=50
- Referenzspule mit Abmessungen 72mm x 42mm
- Oszilloskop: Agilent 54622D
- Distanzhalter: verstellbar

#### 1.8 Diskussion

Bei dieser Übung wurde jeweils eine Antenne (mit der Güte Q=5, Q=50) in den Aufbau eingesetzt und angeschlossen. Es wurde nur das Trägersignal ohne zusätzliche Information übertragen und mit der Referenzspule gemessen. Die Entfernung der Referenzspule zur Antenne wurde mit 5mm Schritten von 0cm auf 14cm verändert. Mit dem Oszilloskop wurde die Peak-Peak-Spannung gemessen.

Diese Spannung kann mit den oben angeführten Formeln in die magnetische Feldstärke umgerechnet werden. Bei der Umrechnung ist zu beachten, das die magnetische Feldstärke als Effektivwert angegeben werden soll und die Spannung als Spitze-Spitze-Wert gemessen wird. Die gemessenen und berechneten Werte wurden in einem Diagramm (Abbildung 3) dargestellt.

Die magnetische Feldstärke ist bei der Antenne mit der Güte Q=50 bis zu einer Entfernung von 10cm höher.

Zur Messung der Anstiegszeit wurde beim Oszilloskop der Single-Shot-Modus und Triggern an der fallenden Flanke mit nachfolgender Pause von  $1,5\mu s$  eingestellt.

Der Reader wurde über die Reader-Software am Computer zum Senden eines Lesebefehls veranlasst, welcher an der Referenzspule und somit am Oszilloskop die zum Triggern benötigte negative Flanke und nachfolgende Pulsbreite (Pause) erzeugt.

Nach dieser Pause steigt die Amplitude des Signals wieder auf die Amplitude des Trägersignals an. Die Zeit für diesen Anstieg von 10% auf 90% der Signalamplitude wurde mittels Marker am Oszilloskop gemessen.

- Antenne Q = 50: 1,  $24\mu s$
- Antenne Q = 5: 204ns

Aus diesen Werten ist ersichtlich, das die Anstiegszeit für höhere Güten größer wird. Somit kann mit Antenne mit höherer Güte zwar eine größere Reichweite aber eine geringere Datenrate erzielt werden.

# 2 Messung der H-Feldstärke über der Frequenz bei unterschiedlichen Antennengüten

## 2.1 Aufgabenstellung

Bei dieser Aufgabe soll der Frequenzgang beider Antennen (Q = 5, Q = 50) von 12MHz bis 15MHz aufgenommen werden.

#### 2.2 Messaufbau

Als Signalquelle wurde ein Funktionsgenerator verwendet, dieser wurde über den Verstärker und Dämpfer an die jeweilige Antenne angeschlossen.

## 2.3 Tabellen

|          | Q=50      | Q=5       | Q=50   | Q=5    |
|----------|-----------|-----------|--------|--------|
| Frequenz | $U_i(pp)$ | $U_i(pp)$ | H(rms) | H(rms) |
| [MHz]    | [V]       | [V]       | [A/m]  | [A/m]  |
| 12       | 0.363     | 0.5       | 0.396  | 0.546  |
| 12.2     | 0.425     | 0.575     | 0.464  | 0.628  |
| 12.4     | 0.5       | 0.6       | 0.546  | 0.655  |
| 12.6     | 0.784     | 0.813     | 0.856  | 0.888  |
| 12.8     | 1         | 0.844     | 1.092  | 0.922  |
| 13       | 1.3       | 0.869     | 1.419  | 0.949  |
| 13.2     | 1.78      | 0.887     | 1.944  | 0.969  |
| 13.25    | 1.97      | 0.894     | 2.151  | 0.976  |
| 13.3     | 2.14      | 0.9       | 2.337  | 0.983  |
| 13.35    | 2.31      | 0.906     | 2.523  | 0.989  |
| 13.4     | 2.5       | 0.906     | 2.73   | 0.989  |
| 13.45    | 2.64      | 0.906     | 2.883  | 0.989  |
| 13.5     | 2.73      | 0.913     | 2.981  | 0.997  |
| 13.55    | 2.76      | 0.913     | 3.014  | 0.997  |
| 13.6     | 2.7       | 0.913     | 2.948  | 0.997  |
| 13.65    | 2.61      | 0.919     | 2.85   | 1.004  |
| 13.7     | 2.45      | 0.925     | 2.675  | 1.01   |
| 13.75    | 2.31      | 0.925     | 2.523  | 1.01   |
| 13.8     | 2.14      | 0.925     | 2.337  | 1.01   |
| 14       | 1.59      | 0.925     | 1.736  | 1.01   |
| 14.2     | 1.23      | 0.925     | 1.343  | 1.01   |
| 14.4     | 1.02      | 0.919     | 1.114  | 1.004  |
| 14.6     | 0.86      | 0.906     | 0.939  | 0.989  |
| 14.8     | 0.734     | 0.9       | 0.802  | 0.983  |
| 15       | 0.653     | 0.887     | 0.713  | 0.987  |

Tabelle 2: Test

## 2.4 Formeln

## 2.5 Berechnungsbeispiele

- 2.6 Diagramme
- 2.7 Diskussion

| H(rms)) | $U_i(pp)amScope$ | $U_i(pp)amTransponder$ |
|---------|------------------|------------------------|
| [A/m]   | [V]              | [V]                    |
| 0       | 0                | 0                      |
| 0.498   | 0.456            | 0.982                  |
| 0.997   | 0.913            | 1.933                  |
| 1.4677  | 1.344            | 3.154                  |
| 1.9656  | 1.8              | 4.21                   |
| 2.4352  | 2.23             | 5.26                   |
| 2.9375  | 2.69             | 6.29                   |
| 3.4835  | 3.19             | 7.46                   |
| 3.9421  | 3.61             | 8.5                    |
| 4.4663  | 4.09             | 9.5                    |
| 5.0123  | 4.59             | 10.52                  |
| 5.4928  | 5.03             | 11.55                  |
| 5.9733  | 5.47             | 12.55                  |
| 6.4537  | 5.91             | 13.53                  |
| 6.9233  | 6.34             | 14.55                  |
| 7.4038  | 6.78             | 15.56                  |
| 7.8515  | 7.19             | 16.5                   |

Tabelle 3: Test

## 3 Arbeitsbereich eines Lesegerätes

## 3.1 Aufgabenstellung

- ???.
- 3.2 Tabellen
- 3.3 Formeln
- 3.4 Berechnungsbeispiele

### 3.5 Diagramme



Abbildung 3: Verlauf der Feldstärke über die Entfernung für  $\mathbf{Q}=5$  und  $\mathbf{Q}=10$ 

#### 3.6 Diskussion

## 4 Seitenbandpegel der Rückmodulation

## 4.1 Aufgabenstellung

Bei dieser Aufgabe, galt es die Amplituden der beiden Seitenbänder der Rückmodulation vom Transponder zu ermitteln. Hierfür soll die Helmholz-Anordnung verwendet werde. Mit Hilfe des Verstärkers soll die magnetische Feldstärke am Referenz-PICC von 1-6 A/m eingestellt werden. Danach soll eine ISO 14443 Karte in das Feld gebracht und ein Kommando über die PC-Software geschickt werden. Mit Hilfe der Helmholtz-Anordnung wird die Transponder-Antwort mit dem Oszilloskop aufgenommen. Die Amplituden der Seitenbänder werden mit Hilfe eines Oszilloskop-Screenshots und einer FFT-Software berechnet.

| $U_{pp}$ | H(rms) | $U_i(pp)oberesSeitenband$ | $U_i(pp)unteresSeitenband \ \mathrm{V}_{\dot{c}}\mathrm{V}$ |
|----------|--------|---------------------------|-------------------------------------------------------------|
|          | [A/m]  | [mV]                      | [mV]                                                        |
| 0.913    | 0.997  | 320.6                     | 41.95                                                       |
| 1.83     | 1.9984 | 866.21                    | 727.24                                                      |
| 2.75     | 3.003  | 158.54                    | 32.35                                                       |
| 3.69     | 4.0295 | 218.7                     | 312.14                                                      |
| 4.59     | 5.0123 | 175.37                    | 61.54                                                       |
| 5.53     | 6.0388 | 323.9                     | 267.93                                                      |
| 6.0388   | 323.9  | 267.93                    |                                                             |

Tabelle 4: Test

## 4.2 Messaufbau



Abbildung 4: Messaufbau zu Aufgabe 4, entnommen aus Skript [1, S.39 Abbildung 42]

## 4.3 Tabellen

#### 4.4 Formeln

Diese Formel stellt den Zusammenhang zwischen induzierter Spannung und Feldstärke dar. Die verwendeten Parameter sind  $f_r=13,56 \mathrm{MHz},~\mu_0=4\pi\cdot 10^{-7}\frac{As}{Vm},~\mu_r=1$  und  $A=0,072\cdot 0,042~mm^2$ .

$$U_{ind} = 2\pi \cdot f_r \cdot \mu_0 \cdot \mu_r \cdot H \cdot A \tag{6}$$

Zusammenhang zwischen Spitze-Spitze-Spannung und dem Effektivwert der Spannung.

$$U_{pp} = \sqrt{2} \cdot 2 \cdot U_{ind} \tag{7}$$

#### 4.5 Berechnungsbeispiele

Die Werte für das Berechnungsbeispiel wurden aus der Tabelle 1.3 Zeile 1 entnommen.

$$U_{ind} = \frac{U_{pp}}{\sqrt{2} \cdot 2} = \frac{0.913V}{\sqrt{2} \cdot 2} = 0.323V \tag{8}$$

$$H = \frac{U_{ind}}{2\pi \cdot f_r \cdot \mu_e \cdot \mu_r \cdot A} = \tag{9}$$

$$\frac{0.323V}{2\pi \cdot 13,56MHz \cdot 4\pi \cdot 10^{-7} \frac{As}{Vm} \cdot 1 \cdot 0,072mm \cdot 0,042mm} = 0.997 \frac{A}{m}$$
 (10)

#### 4.6 Diagramme



Abbildung 5: Seitenbandpegel bei verschiedenen Feldstärken im Vergleich zur ISO-Norm-Kurve

#### 4.7 Diskussion

## Literatur

 Teresa Meier, Dipl.-Ing. Georg Egger, Dipl.-Ing. Dr Michael Gebhart Übung C: RFID
Technische Universität Graz