ISE 426 Optimization models and applications

Lecture 5 — September 10, 2015

- Graphical solutions of LPs
- Production planning problem
- Shortest path problem
- Optimization on graphs

Reading: WV 3.10, 7.1 and 8.2

Homework #1 will be out after class! It is due **Thursday**, **September 17.** Check the CourseSite.

Example: Transportation problem

- ➤ A large manufacturing company produces liquid nytrogen in five plants spread out in East Pennsylvania
- ► Each plant has a monthly production capacity

Plant	i	1	2	3	4	5
Capacity	p_i	120	95	150	120	140

- ▶ It has seven retailers in the same area
- Each retailer has a monthly demand to be satisfied

Retailer	j	1	2	3	4	5	6	7
Demand	d_i	55	72	80	110	85	30	78

- ▶ transportation between any plant i and any retailer j has a cost of c_{ij} dollars per volume unit of nytrogen
- $ightharpoonup c_{ij}$ is **constant** and depends on the distance between i and j
- ⇒ find how much nitrogen to be transported from each plant to each retailer
 - ... while minimizing the total transportation cost

Transportation model

Variables: qty from plant i to retailer j: x_{ij} (non-negative)

Constraints:

- 1. capacity: $\sum_{j=1}^{7} x_{ij} \leq p_i \quad \forall i$
- 2. demand: $\sum_{i=1}^{5} x_{ij} \ge d_j \quad \forall j$

Objective function: total transportation cost, $\sum_{i=1}^{5} \sum_{j=1}^{7} c_{ij} x_{ij}$

Example: Production planning

A small firm produces plastic for the car industry.

- ▶ At the beginning of the year, it knows exactly the demand d_i of plastic for every month i.
- ▶ It also has a maximum production capacity of *P* and an inventory capacity of *C*.
- ➤ The inventory is empty on 01/01 and has to be empty again on 12/31
- production has a monthly cost c_i

What do we produce at each month to minimize total production cost while satisfying demand?

Production planning. What variables?

- ► How much to produce each month i: x_i , i = 1, 2 ..., 12
- Anything else?

Production planning. What variables?

- ► How much to produce each month i: x_i , i = 1, 2 ..., 12
- ► Anything else?
- ► The inventory level at the beginning of each month (demand is satisfied by part of production **and** part of inventory): y_i , $i = 0, 1, 2 \dots, 12$
- ▶ Why 0? Because we need to know (actually we need to constrain!) the inventory on 01/01 and on 12/31.

▶ Production capacity constraint: $x_i \le P \quad \forall i = 1, 2..., 12$

- ▶ Production capacity constraint: $x_i \le P \quad \forall i = 1, 2..., 12$
- ▶ Inventory capacity constraint: $y_i \le C \quad \forall i = 1, 2..., 11$

- ▶ Production capacity constraint: $x_i \le P \quad \forall i = 1, 2..., 12$
- ▶ Inventory capacity constraint: $y_i \le C \quad \forall i = 1, 2 \dots, 11$
- ▶ Beginning/end of year: $y_0 = 0$, $y_{12} = 0$

- ▶ Production capacity constraint: $x_i \le P \quad \forall i = 1, 2 \dots, 12$
- ▶ Inventory capacity constraint: $y_i \le C \quad \forall i = 1, 2 \dots, 11$
- ▶ Beginning/end of year: $y_0 = 0$, $y_{12} = 0$
- ▶ What goes in must go out...

- ▶ Production capacity constraint: $x_i \le P \quad \forall i = 1, 2..., 12$
- ▶ Inventory capacity constraint: $y_i \le C \quad \forall i = 1, 2 \dots, 11$
- ▶ Beginning/end of year: $y_0 = 0$, $y_{12} = 0$
- What goes in must go out...

Optimization on graphs

A (undirected) graph is defined as

- ▶ a set *V* of nodes (or *vertices*)
- ▶ a set *E* of *edges*
- each edge is a **subset** containing two nodes of *V*

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{\{1, 2\}, \{1, 4\}, \{2, 4\}, \{3, 5\}\}$$

Directed graphs

A **directed** graph (or *digraph*) is defined as

- ▶ a set *V* of nodes (or *vertices*)
- ▶ a set *A* of *arcs*
- each arc is an **ordered pair** of nodes of *V*

$$V = \{1, 2, 3, 4, 5\}$$

$$A = \{(1, 2), (2, 3), (4, 2), (2, 4), (5, 3)\}$$

Graphs are useful!

... because they can model

- road networks
- gas/oil pipelines
- telecommunication networks
- electronic circuits

Optimization problems often arise in the management of network-like structures.

⇒ Variables, constraints, obj. f. related to nodes and edges/arcs.

Given

- a directed graph G = (V, A),
- ▶ a function $c : A \to \mathbb{R}_+$, and
- \blacktriangleright two nodes s and t of V,

Given

- a directed graph G = (V, A),
- ▶ a function $c : A \to \mathbb{R}_+$, and
- ightharpoonup two nodes s and t of V,

find a subset $P = \{(s, i_1), (i_1, i_2), \dots, (i_k, t)\}$ of A forming a path from s to t whose length, $c_{si_1} + c_{i_1i_2} + \dots + c_{i_kt}$, is minimum.

► Countless applications, e.g. GPS navigation systems.

Given

- ▶ a directed graph G = (V, A),
- ▶ a function $c: A \to \mathbb{R}_+$, and
- ightharpoonup two nodes s and t of V,

find a subset $P = \{(s, i_1), (i_1, i_2), \dots, (i_k, t)\}$ of A forming a path from s to t whose length, $c_{si_1} + c_{i_1i_2} + \dots + c_{i_kt}$, is minimum.

- ► Countless applications, e.g. GPS navigation systems.
- ► Variables $x_{ij} = \begin{cases} 1 & \text{if travel from } i \text{ to } j \\ 0 & \text{otherwise} \end{cases}$

Given

- a directed graph G = (V, A),
- ▶ a function $c: A \to \mathbb{R}_+$, and
- \blacktriangleright two nodes s and t of V,

find a subset $P = \{(s, i_1), (i_1, i_2), \dots, (i_k, t)\}$ of A forming a path from s to t whose length, $c_{si_1} + c_{i_1i_2} + \dots + c_{i_kt}$, is minimum.

- ► Countless applications, e.g. GPS navigation systems.
- ► Variables $x_{ij} = \begin{cases} 1 & \text{if travel from } i \text{ to } j \\ 0 & \text{otherwise} \end{cases}$

$$\begin{array}{ll}
\min & \sum_{(i,j)\in A} c_{ij} x_{ij} \\
\text{s.t.} & \sum_{j\in V: (i,j)\in A} x_{ij} - \sum_{j\in V: (j,i)\in A} x_{ji} = b_i \quad \forall i\in V \\
& x_{ij} \ge 0 \quad \forall (i,j)\in A
\end{array}$$

where
$$b_i = \begin{cases} 1 & \text{if } i = s \\ -1 & \text{if } i = t \\ 0 & \text{otherwise} \end{cases}$$

An example: the shortest path problem

For simplicity, the graph below is undirected, but we can assume for each edge there are two oppositely oriented arcs.

Suppose the problem is to compute the shortest path $A \rightarrow F$.

The shortest path problem: primal

min
$$c_{AB}x_{AB} + c_{BA}x_{BA} + \dots + c_{EF}x_{EF}$$
 $+c_{FE}x_{FE}$ $= 1$
 $x_{AB} + x_{AC}$ $-x_{BA} - x_{CA}$ $= 1$
 $x_{BA} + x_{BC} + x_{BD} + x_{BF}$ $-x_{AB} - x_{CB} - x_{DB} - x_{FB}$ $= 0$
 $x_{CA} + x_{CB} + x_{CD} + x_{CE}$ $-x_{AC} - x_{BC} - x_{DC} - x_{EC}$ $= 0$
 $x_{DB} + x_{DC} + x_{DE} + x_{DF}$ $-x_{BD} - x_{CD} - x_{ED} - x_{FD}$ $= 0$
 $x_{EC} + x_{ED} + x_{EF}$ $-x_{CE} - x_{DE} - x_{FE}$ $= 0$
 $x_{FB} + x_{FD} + x_{FE}$ $-x_{BF} - x_{DF} - x_{DF}$ $= -1$
 $x_{AB}, x_{BA}, \dots, x_{EF}, x_{FE} \ge 0$

- ▶ We can express this as $\min\{c^{\top}x : Ax = b, x \ge 0\}$
- ► *A* is the adjacency matrix of *G*
- ightharpoonup |V| constraints, |A| variables
- ▶ All constraints are equalities

Problem 1: oil pipeline²

An oil pipeline pumps oil from an oil well s to an oil refinery t.

Each pipe has its own monthly capacity (in mega-barrels¹). Assuming for now an infinite supply of oil at *s*,

- \Rightarrow maximize the amount of oil arriving at t each month
 - while not exceeding pipe capacities

¹One mega-barrel = 10⁶ barrels

²Winston&Venkataramanan, page 420.

Max-Flow

- ► The Maximum Flow problem is classical in Optimization
- Can be solved with a very simple and neat algorithm
- ▶ We'll see a Linear Programming **model** of this problem
- Variables: oil flowing between each node pair
- Constraints: Oil is conserved at intermediate nodes;
 There is a maximum capacity on each pipe.
- Objective function: The total oil arriving at t
 (note: this is exactly the amount of oil that left s)

Max-Flow

- Variables: oil flowing on each arc:
 - $x_{s1}, x_{s2}, x_{12}, x_{13}, x_{2t}, x_{3t}$
- ► Constraints: oil is conserved at intermediate nodes i.e. what enters node 1 exits node 1: $x_{s1} = x_{12} + x_{13}$ what enters node 2 exits node 2: $x_{s2} + x_{12} = x_{2t}$ what enters node 3 exits node 3: $x_{13} = x_{3t}$
- ► Constraints: there is a maximum capacity on each pipe, $x_{s1} \le 2$, $x_{s2} \le 3$, $x_{12} \le 3$, $x_{13} \le 4$, $x_{2t} \le 2$, $x_{3t} \le 1$
- ▶ Objective function: The total oil at node t: $x_{2t} + x_{3t}$
- this should be the same oil that left s: $x_{s1} + x_{s2}$

Max-Flow: the model

Could re-write objective function as $\max x_{s1} + x_{s2}$

- two nodes s and t of V act as source and destination.
- each arc $(i,j) \in A$ has a capacity c_{ij}

- \blacktriangleright two nodes *s* and *t* of *V* act as *source* and *destination*.
- each arc $(i,j) \in A$ has a capacity c_{ij}
- ▶ Variables: flow on each arc (i, j), call it x_{ij} In general, x_{ij} can be $\neq x_{ji}$ (opposite flow)

- \blacktriangleright two nodes *s* and *t* of *V* act as *source* and *destination*.
- ▶ each arc $(i,j) \in A$ has a capacity c_{ij}
- ▶ Variables: flow on each arc (i, j), call it x_{ij} In general, x_{ij} can be $\neq x_{ji}$ (opposite flow)
- ► Constraints: conservation of flow at intermediate node *i*.

Consider a digraph G = (V, A):

- \blacktriangleright two nodes *s* and *t* of *V* act as source and destination.
- each arc $(i,j) \in A$ has a capacity c_{ij}
- ▶ Variables: flow on each arc (i, j), call it x_{ij} In general, x_{ij} can be $\neq x_{ji}$ (opposite flow)
- ▶ Constraints: conservation of flow at intermediate node *i*.

At an interm. node, what enters will leave $\forall i \in V : s \neq i \neq t$

Consider a digraph G = (V, A):

- \blacktriangleright two nodes s and t of V act as source and destination.
- each arc $(i,j) \in A$ has a capacity c_{ij}
- ▶ Variables: flow on each arc (i, j), call it x_{ij} In general, x_{ij} can be $\neq x_{ji}$ (opposite flow)
- ▶ Constraints: conservation of flow at intermediate node *i*.

At an interm. node, what enters will leave
$$\forall i \in V : s \neq i \neq t \qquad \sum_{j \in V : (j,i) \in A} x_{ji} \qquad = \sum_{j \in V : (i,j) \in A} x_{ij}$$

► Constraints: min and max flow, $0 \le x_{ij} \le c_{ij} \forall (i,j) \in A$

- ▶ Objective Function: flow entering t, i.e., $\sum_{j \in V:(j,t) \in A} x_{jt}$
- (same that leaves s, i.e. $\sum_{j \in V:(s,j) \in A} x_{sj}$)

$$\begin{array}{ll} \max & \sum_{j \in V: (j,t) \in A} x_{jt} \\ \text{s.t.} & \sum_{j \in V: (j,i) \in A} x_{ji} = \sum_{j \in V: (i,j) \in A} x_{ij} & \forall i \in V: s \neq i \neq t \\ & 0 \leq x_{ij} \leq c_{ij} & \forall (i,j) \in A \end{array}$$

Problem 2: another oil pipeline

- ▶ Oil company X now uses company Y's pipeline
- ▶ Each month, X wants to pump 5 mega-barrels from A to D,
- ▶ Y reserves part of the capacity and charges a cost/flow
- $A \rightarrow B$ allows ≤ 4 mega-barrels, cost of 10k\$/mega-barrel
- $A \rightarrow C$ allows ≤ 2 at a cost of 12
- $B \rightarrow C$ allows < 3, cost: 15
- B→D allows ≤ 2, cost: 18
- $C \rightarrow D$ allows ≤ 4 , cost: 21
- \Rightarrow Can the company send oil from A to D?
- ▶ How to do it at minimum cost?

Minimum cost flow

Another classical problem in Optimization

- ▶ Variables: same as in the Max-Flow problem, i.e., quantity of oil flowing on each arc (i.e. between each node pair)
- ► Constraints: same as in the Max-Flow problem, plus:
- * the flow leaving node A (= entering node D) has to be equal to 5 mega-barrels
- Objective function: total flow cost

Min-Cost-Flow

- ▶ Variables: oil flowing on each arc:
 - x_{AB} , x_{AC} , x_{BC} , x_{BD} , x_{CD}
- ► Constraints: oil does not evaporate at interm. nodes i.e. what enters B exits B: $x_{AB} = x_{BC} + x_{BD}$ what enters C exits C: $x_{AC} + x_{BC} = x_{CD}$
- ► Constraints: there is a maximum capacity on each pipe, $x_{AB} \le 4$, $x_{AC} \le 2$, $x_{BC} \le 3$, $x_{BD} \le 2$, $x_{CD} \le 4$
- ► Constraint: required flow must leave A, i.e., $x_{AB} + x_{AC} = 5$
- ▶ Objective function: The total pumping cost: $10x_{AB} + 12x_{AC} + 15x_{BC} + 18x_{BD} + 21x_{CD}$

Min-Cost-Flow: the model

min
$$10x_{AB} + 12x_{AC} + 15x_{BC} + 18x_{BD} + 21x_{CD}$$

 $x_{AB} = x_{BC} + x_{BD}$
 $x_{AC} + x_{BC} = x_{CD}$
 $x_{AB} + x_{AC} = 5$
 $0 \le x_{AB} \le 4$
 $0 \le x_{AC} \le 2$
 $0 \le x_{BC} \le 3$
 $0 \le x_{BD} \le 2$
 $0 \le x_{CD} \le 4$

Min-Cost-Flow: the general model

- ▶ two nodes *s* and *t* of *V* act as *source* and *destination*.
- ▶ each arc (i,j) ∈ A has a capacity c_{ij} and a cost d_{ij}
- ▶ a required flow r
- ▶ Variables: flow on each arc (i, j), call it x_{ij}
- ► Constraints: conservation of flow at intermediate node *i*:

At an interm. node, what enters must leave
$$\forall i \in V : s \neq i \neq t$$
 $\sum_{j \in V : (j,i) \in A} x_{ji} = \sum_{j \in V : (i,j) \in A} x_{ij}$

- ► Constraints: min and max flow, $0 \le x_{ij} \le c_{ij} \ \forall (i,j) \in A$
- ► Constraint: required flow leaves s, i.e., $\sum_{j \in V:(s,j) \in A} x_{sj} = r$

Min-Cost-Flow: the general model

▶ Objective Function: cost of flow, i.e., $\sum_{(i,j)\in A} d_{ij}x_{ij}$

$$\begin{array}{ll} \min & \sum_{(i,j) \in A} d_{ij} x_{ij} \\ \text{s.t.} & \sum_{j \in V: (j,i) \in A} x_{ji} = \sum_{j \in V: (i,j) \in A} x_{ij} & \forall i \in V: s \neq i \neq t \\ & \sum_{j \in V: (s,j) \in A} x_{sj} = r \\ & 0 \leq x_{ij} \leq c_{ij} & \forall (i,j) \in A \end{array}$$

Min-Cost-Flow: the general model with multiple sources and sinks

- ▶ Sets of nodes $s \in S \subseteq V$ and $t \in T \subseteq V$ act as *sources* and *destinations*.
- ▶ each arc (i,j) ∈ A has a capacity c_{ij} and a cost d_{ij}
- ▶ Each destination $t \in T$ has a required flow demand d_t
- ▶ Variables: flow on each arc (i, j), call it x_{ij}
- ▶ Constraints: conservation of flow at intermediate node *i*:

At an interm. node, what enters must leave
$$\forall i \in V/\{S \cup T\} \qquad \sum_{j \in V: (j,i) \in A} x_{ji} = \sum_{j \in V: (i,j) \in A} x_{ij}$$

- ► Constraints: min and max flow, $0 \le x_{ij} \le c_{ij} \ \forall (i,j) \in A$
- ► Constraints: required flow demand for each $t \in T$, i.e., $\sum_{i \in V: (i,t) \in A} x_{jt} \sum_{i \in V: (t,j) \in A} x_{tj} = d_t$

What about the shortest path problem?

$$\min_{\mathbf{s.t.}} \quad \sum_{(i,j)\in A} c_{ij} x_{ij}$$

$$\mathbf{s.t.} \quad \sum_{j\in V:(i,j)\in A} x_{ij} - \sum_{j\in V:(j,i)\in A} x_{ji} = b_i \quad \forall i\in V$$

$$x_{ij} \geq 0 \qquad \qquad \forall (i,j)\in A$$

$$\text{where } b_i = \begin{cases} 1 & \text{if } i=s \\ -1 & \text{if } i=t \\ 0 & \text{otherwise} \end{cases}$$

The problem is to compute the shortest path $A \rightarrow F$.

Transportation model?

Variables: qty of product from producer i to location j: x_{ij} (non-negative)

Constraints:

- 1. capacity: $\sum_{i=1}^{7} x_{ij} \leq p_i$
- 2. demand: $\sum_{i=1}^{5} x_{ii} \geq d_i$

Objective function: total transportation cost,

$$\sum_{i=1}^{5} \sum_{j=1}^{7} c_{ij} x_{ij}$$

Production planning?

- ▶ Production capacity constraint: $x_i \le P \quad \forall i = 1, 2..., 12$
- ▶ Beginning/end of year: $y_0 = 0$, $y_{12} = 0$
- ▶ What goes in must go out...

Generalizations

- multiple sources (have a negative flow balance), multiple destinations (positive flow balance)
- non-zero lower bounds on flows
- nonlinear flow costs
- multiple types of flow on the same arc

Back to Max-Flow

- ▶ Objective Function: flow entering t, i.e., $\sum_{j \in V:(j,t) \in A} x_{jt}$
- (same that leaves s, i.e. $\sum_{j \in V:(s,j) \in A} x_{sj}$)

$$\begin{array}{ll} \max & \sum_{j \in V: (j,t) \in A} x_{jt} \\ \text{s.t.} & \sum_{j \in V: (j,i) \in A} x_{ji} = \sum_{j \in V: (i,j) \in A} x_{ij} & \forall i \in V: s \neq i \neq t \\ & 0 \leq x_{ij} \leq c_{ij} & \forall (i,j) \in A \end{array}$$

Min-Cut

- ▶ What is the set of edges of the smallest capacity which, if cut, completely cuts off *s* from *t*?
- Useful applications: finding bottleneck in networks, damming systems of rivers, military...

Min-Cut

- ▶ Variables for each node $u_i = \{0, 1\}$: 0 if i is cut off from t, 1 if i is not cut off from t.
- ▶ Variables for each arc $z_{ij} = \{0,1\}$: 1 if arc (i,j) is in the cut, 0 otherwise.
- ▶ Objective Function: the capacity of the cut $\sum_{(i,j)\in A} c_{ij}z_{ij}$

$$\max \sum_{\substack{(i,j) \in A}} \sum_{ij} z_{ij}$$
s.t. $z_{ij} \ge u_j - u_i$

$$u_s = 0$$

$$u_t = 1$$

$$0 \le z_{ij} \qquad \forall (i,j) \in A$$

$$0 \le u_i \qquad \forall i \in V$$

Min-Cut = Max-Flow

- ► **THEOREM:** (Ford, Fullkerson, 1956) The capacity of the minimum cut equals the value of the maximum flow
- ▶ **NOTE:** The capacity of any cut is gearter or equal to the value of any feasible flow in the network.

