Raspberry Pi를 활용한 IoT 프로젝트

라즈베리 파이 GPIO와 센서 동작하기

4일차

2021.07.15 10:00~13:00

담당교수:조도은

학습목차

1일차: 라즈베리파이 소개와 환경 구축(3H)

2일차: 라즈베리 파이를 위한 리눅스 기초 배우기(3H)

3일차:파이썬 기초 명령어 익히기(3H)

4일차: 라즈베리 파이 GPIO와 센서 동작하기(3H)

5일차: 나만의 가상비서 만들기(구글 어시스턴트)(3H)

4일차

강의내용

• 라즈베리 파이 GPIO 및 센서 사용하기

- GPIO 핀 구조
- LED
- Button
- Button과 LED
- Servo Motor
- PIR(HC-SR501)

4-1

GPIO 핀구조

GPIO

- General Purpose Input Output의 약자
- 라즈베리 파이에서 범용 입출력으로 많이 사용
- 총 26개 포트가 있음(GPIO 2~GPIO 27)
- 기본 입출력 외에 하나의 핀에 다른 기능의 입출력도 사용 가능
- 전원은 micro-USB 단자를 통해 5V 전원을 제공(내 부 동작은 3.3Volt기반)
- GPIO 핀 당 3.3V/50mA의 최대 허용 전원이내에서 사용할 것

Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1 , I2C)	00	DC Power 5v	04
05	GPIO03 (SCL1 , I ² C)	00	Ground	06
07	GPIO04 (GPIO_GCLK)	00	(TXD0) GPIO14	08
09	Ground	00	(RXD0) GPIO15	10
11	GPIO17 (GPIO_GEN0)	00	(GPIO_GEN1) GPIO18	12
13	GPIO27 (GPIO_GEN2)	00	Ground	14
15	GPIO22 (GPIO_GEN3)	00	(GPIO_GEN4) GPIO23	16
17	3.3v DC Power	00	(GPIO_GEN5) GPIO24	18
19	GPIO10 (SPI_MOSI)	O	Ground	20
21	GPIO09 (SPI_MISO)	00	(GPIO_GEN6) GPIO25	22
23	GPIO11 (SPI_CLK)	00	(SPI_CEO_N) GPIO08	24
25	Ground	00	(SPI_CE1_N) GPIO07	26
27	ID_SD (I2C ID EEPROM)	00	(I ² C ID EEPROM) ID_SC	28
29	GPIO05	00	Ground	30
31	GPIO06	00	GPIO12	32
33	GPIO13	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40
			J	

GPIO 핀구조 : https://pinout.xyz/

GPIO 핀구조

■ GPIO라이브러리

- GPIO사용을위해서는센서와라즈베리파이의GPIO핀을연결해야함
- 프로그램으로센서를 제어하기 위해 라즈비안에 포함된 RPi.GPIO 라이브러리가필요
- GPIO.setmode 함수
 - GPIO세팅을위해사용하는함수로BCM옵션은 "브로드컴SOC채널" 번호에의한핀번호를사용할 경우세팅하는옵션
 - BOARD옵션은그림의물리적구성(핀)을 핀번호로사용할경우세팅하는옵션
 - BCM으로세팅하는경우GPIO4에해당하는핀은BOARD로세팅하는경우7번핀에해당

GPIO.setmode(GPIO.BCM) # BCM 핀번호 GPIO.setmode(GPIO.BOARD) #물리적 핀번호

4-1

GPIO 핀구조

■ 브레드보드

- 브레드보드는 납땜하지 않고도 각종 전자 부품을 쉽게 꽃아 전자회로를 구성할 수 있는 보드

LED

LED실습

라즈베리파이의GPIO출력을제어하기위해LED를 브레드 보드에 연결하여 ON/OFF 실습을 진행한다.

(1) 브레드보드연결하기

준비물: LED×1, 저항(220Ω)×1, 점퍼선×2

라즈베리 파이	LED
GPIO 4	+ 저항
GND	-

■ LED실습

- (2) 파이썬 코드작성하기
- (3) 코드실행하기 LED가 10회깜빡이는것을 확인할수있다.

```
#-*-coding:util-8-*-
#모듈 불러오기
import RPi.GPIO as GPIO
import time
#GPIO 핀 번호 모드를 BCM으로 설정
GPIO.setmode(GPIO.BCM)
#LED 핀번호 설정
led_pin = 4
#LED 핀 출력으로 설정화
GPIO.setup(led_pin, GPIO.OUT)
#10번 반복하여 LED on/off
for i in range (10):
        GPIO.output(led_pin, 1)
        time.sleep(1)
        GPIO.output(led_pin, 0)
        time.sleep(1)
#GPIO 설정 초기
```

GPIO.cleanup()

led.py

■ 푸시 버튼 입력 감지하기

푸시버튼을추가연결하여버튼을눌렀을때모니터에 "Button push!" 메시지를출력한다.

(1) 브레드보드연결하기

준비물: Button×1, 점퍼선×2

라즈베리 파이	Button
VCC(3.3V)	버튼 연결
GPIO 15	버튼 연결

button.py

Button실습

- (2) 파이썬 코드작성하기
- (3) 코드실행하기

Button을 눌렀을 때 출력창에 "Button pushed!"가출력되는것을 확인한다.

```
#-*-coding:util-8-*-
#모듈 불러오기
import RPi.GPIO as GPIO
import time
#GPIO 핀 번호 모드를 BCM으로 설정
GPIO.setmode(GPIO.BCM)
#Button 핀번호 설정
button = 15
#버튼을 input으로 설정
GPIO.setup(button, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
while 1:
   if GPIO.input(button) == GPIO.HIGH:
       print("Button pushed!")
   time.sleep(0.1)
```

Button과LED

■ 푸시버튼입력으로LED켜고끄기실습

푸시버튼을연결하여 Event 알림방식으로 입력을 받아서 LED의 ON/OFF를 제어한다.

(1) 브레드보드연결하기

준비물: LED×1, 저항(220Ω)×1, 점퍼선×4, Button×1

라즈베리 파이	LED	Button
GPIO 4	+ 저항	
GND	-	
VCC(3.3V)		버튼 연결
GPIO 15		버튼 연결

Button과LED

■ 푸시버튼입력으로LED켜고끄기실습

(2) 파이썬 코드작성하고, 버튼을 눌렀을 때 LED가 켜지는 것을 확인한다.

```
#LED를 out으로 설정
#-*-coding:utf-8-*-
                                                                    GPIO.setup(led, GPIO.OUT)
#모듈 불러오기
import RPi.GPIO as GPIO
                                                                    light_on = False
import time
                                                                     def button callback(channel):
#불필요한 warning 제거
                                                                        global light_on
GPIO.setwarnings(False)
                                                                        if light_on == False:
                                                                            GPIO.output(led, 1)
#GPIO 핀모드 설정
                                                                            print("LED ON!")
GPIO.setmode(GPIO.BCM)
                                                                        else:
                                                                            GPIO.output(led, 0)
#사용할 GPIO핀 번호 설정
                                                                            print("LED OFF!")
button = 15
                                                                        light_on = not light_on
led = 4
                                                                    GPIO.add_event_detect(button, GPIO.RISING,
#버튼을 input으로 설정
                                                                    callback=button_callback, bouncetime=300)
GPIO.setup (button, GPIO.IN, pull_up_down = GPIO.PUD_DOWN)
                                                                    while 1:
                                                                        time.sleep(0.1)
```

Servo Motor

■ PWM으로서버모터 움직이기

서버모터가원하는각도만큼움직이게한다.

(1) 브레드보드연결하기

준비물: Servo×1, 점퍼선×3

라즈베리 파이	Servo
VCC(5V)	빨간색
GPIO 18	오렌지
GND	갈색

Servo Motor

■ PWM으로서버모터움직이기

(2) 파이썬 코드작성하고, 실행했을 때서보모터가 듀티를 변경하여 움직이는 것을 확인한다.

```
#-*-coding:utf-8-*-
                                          #PWM 듀티비 0으로 시작
#모듈 불러오기
                                          servo.start(0)
import RPi.GPIO as GPIO
import time
                                          try:
                                              while True:
#불필요한 warning 제거
                                                  servo.ChangeDutyCycle(7.5) #90도
GPIO.setwarnings(False)
                                                 time.slpeep(1)
                                                  servo.ChangeDutyCycle(12.5) #180도
#GPIO 핀모드 설정
                                                 time.slpeep(1)
GPIO.setmode (GPIO.BCM)
                                                  servo.ChangeDutyCycle(2.5) #0도
                                                 time.slpeep(1)
#사용할 GPIO핀 번호 설정
SERVO PIN = 18
                                           except KeyboardInterrupt:
                                              servo.stop()
#서보 핀의 출력 설정
                                              GPIO.cleanup()
GPIO.setup(SERVO_PIN, GPIO.OUT)
```

PIR 센서(HC-SR501)

■ 적외선인체감지센서(PIP)를이용하여 LED 켜고끄기실습

사람의움직임을감지하여 적외선변화가있을때노란색LED를 켜고,감지되지않을때빨간색LED를 켠다.

■ 적외선인체감지센서(PIP)를이용하여 LED 켜고 끄기실습

(1) 브레드보드연결하기

준비물: PIP센서 \times 1, 저항(220 Ω) \times 2, 점퍼선 \times 5, LED \times 2

라즈베리 파이	PIP센서	LED
VCC(5V)	VCC	
GPIO 4	OUT	
GPIO 20		LED(Red) +
GPIO 21		LED(Yellow) +
GND	GND	

■ 적외선인체감지센서(PIP)를이용하여 LED 켜고 끄기실습

(2) 파이썬 코드작성하고, 실행했을때 인체의 움직임을 감지하여 LED가 켜지는 것을 확인한다.

```
#-*-coding:utf-8-*-
                                                    print("PIR Ready ....")
#모듈 불러오기
                                                    time.sleep(5) # 센서 준비 시간
import RPi.GPIO as GPIO
import time
                                                    try:
                                                        while True:
#불필요한 warning 제거
                                                            if GPIO.input(sensor) == 1:
GPIO.setwarnings (False)
                                                               GPIO.output(led_Y, 1)
                                                               GPIO.output(led_R, 0)
#GPIO 핀모드 설정
                                                               print("Motion detected!")
GPIO.setmode(GPIO.BCM)
                                                               time.sleep(0.2)
#사용할 GPIO핀 번호 설정
                                                            if GPIO.input(sensor) == 0:
led R = 20
                                                               GPIO.output(led_Y, 0)
led Y = 21
                                                               GPIO.output(led_R, 1)
sensor = 4
                                                               print("Motion undetected!")
                                                               time.sleep(0.2)
#핀 입출력 설정
GPIO.setup(led_R, GPIO.OUT)
                                                    except KeyboardInterrupt:
GPIO.setup(led_Y, GPIO.OUT)
                                                        print("Stopped by user")
GPIO.setup(sensor, GPIO.IN)
                                                        GPIO.cleanup()
```

Raspberry Pi를 활용한 IoT 프로젝트

Thank You