[40] Homework 5: $Big O, \Omega.$

- [10] Select the best "big Oh" notation for each expression. Justify by showing the constants c and n_0 . Note that f(n) = O(g(n)) if there are constants c > 0 and $n_0 > 0$ so that for all $n \ge n_0$ we have $|f(n)| \le c \cdot g(n)$.
 - 1. 95n + 1.
 - 2. $(11n+1)^6$
 - 3. $4n^4 10n^3 100$.
 - 4. $n^3 + n + n\sqrt{n} + \log n^4$.
- [10] Show the following:

$$10n^{3} + \log n = \Theta(n^{3})$$

$$\frac{6n^{2}}{\log^{3} n + 1} = O(n^{3})$$

$$3n^{3} + 44n^{2} = \Omega(n^{2})$$

- [10] Is $(\log n)^2 = O(\log n^2)$? Justify your answer?
- [10] We say that $f(n) \prec g(n)$ if g(n) grows faster than f(n) (e.g., $\log n \prec n$). Order the following functions by by \prec from the lowest to the highest:

$$\left(\frac{3}{2}\right)^n$$
, 100, $n^3 \log^2 n$, $2^{\log_2 n}$, $\log^4 n$, $2^{3 \log_2 n}$, 2^n .

Justify your answer.