Thermal energy to designed & hard to trenspore with other types so we want to word creating two much if we can
eg. electrical energy is hard to stone unless comedia to the forms
\$ charge a battery.— coment electrical into Chemical creggy
no energy conversion is perfect - some themsel energy is always catalod lat the nacroscopic beach)
aletrical denis thermal
efficiency $e = \frac{\text{what you get}}{\text{what you pay}}$ $= \frac{800}{1000} = 0.8 = 802$
Two reasons for inefficiency i) the process may be flowed, or may prioritize other things a.g. rusty engine power ful car power is obtained at the expense of efficiency
homans usually convert know/ptentul son, at e = 252
2) fundamental housations from physical law and Law of Hernodynamics
What is thermal energy? _ total energy of the random motion of atoms in on object
Solid angust Kintu Energy & English Spring aergy of Section & Vibrating atoms
·fivid particles are moving around
Hermol energy dozen t involute the bolk KE
because every is speed out over so many particles, difficult to coordinate it a convert it suto after types of everyly

```
Temperature is a measure of overagl energy per particle
  Usually En = £NKI
             f: just a constant depending
                  on type of moleculas/atoms
  Boltemann k= 1.38 × 10-23 0/k
         N: # of partules
         T: temperature ... in Kelvin
   Temperature Scales
      Celsius & Fahrenheit
          have an arbitrary D
        O"C! Freezing T of water
           but not a real zers -
            not a lock of anything
  in Kelvin, OK is absolute zero
        no thermal energy - molecules stops absolute temperature scale
    any time T shows up man
      equation, it must be an
        absolute temperature.
     [K = 1C*
                   but 1K=-272°C)
    Changes in T
         ΔT
                         absolute zons
                         is -273°C
    water freeze at O°C 273K
                   10°C
                              283 K
     fall weather
           AT = 10°C-0°C = 100°
               283K-273K=10K
      300K -> 27°C-181°F
          "room temperature"
                             O'C ! Freezen
                              10°C: fall
                             30°C : room
                              40°C high
 two objects at different !
      7:30°C 20°C
                       fast moleculas
                       will speed up
slover molecules
                        a nu versa
  flow of energy from hot to cald
This flow is called heat (Q).
  Objects don't have heat.
      heat is a flow
```

Heat will flow from hat to cold

high T low T

thermal equilibrium

Three types of heat

- i) conduction: objects touch
 molecules transfer energy
 between the jects
 but molecules don't
 change abjects
- a) convection: hot and cold particles more grounds mix in a fluid
- 3) radiation! works across a valuem R.g. Sun