Martin Kleinsteuber: Computer Vision Kap. 1 – Wissenswertes über Bilder

2. Bildgradient

Der Gradient eines Bildes

Kanten sind starke lokale Änderungen der Intensität

Lokale Änderungen werden durch den Gradienten beschrieben

$$\nabla I(x,y) = \begin{bmatrix} \frac{d}{dx}I(x,y) \\ \frac{d}{dy}I(x,y) \end{bmatrix}$$

Gradient eines Bildes

Wie schätzt man den Gradienten?

- Gegeben ist das Bild in diskreter Form $I \in \mathbb{R}^{m \times n}$
- Naiver Ansatz:

$$\frac{d}{dx}I(x,y) \approx I(x+1,y) - I(x,y)$$

$$\frac{d}{dy}I(x,y) \approx I(x,y+1) - I(x,y)$$

Diskretes und kontinuierliches Signal Interpolation

• Vom diskreten Signal $f[x] = S\{f(x)\}$ zum kontinuierlichen Signal f(x)

 Interpoliertes Signal ist Faltung der Abtastwerte mit dem Interpolationsfilter

$$f(x) \approx \sum_{k=-\infty}^{\infty} f[k]h(x-k) =: f[x] * h(x)$$

Diskretes und kontinuierliches Signal

Interpolationsfilter

- Diskretes Signal: $f[x] = S\{f(x)\}$
- Kontinuierliches Signal: $f(x) \approx f[x] * h(x)$
- Gaußfilter: h(x) = g(x)

- Ideales Interpolationsfilter: $h(x) = \operatorname{sinc}(x)$
- Damit gilt: f[x] * h(x) = f(x)

Die diskrete Ableitung

Mit Hilfe des rekonstruierten Signals

- Algorithmisch
 - 1. Rekonstruktion des kontinuierlichen Signals
 - 2. Ableitung des kontinuierlichen Signals
 - 3. Abtastung der Ableitung

- Sinc-Funktion
 - LangsamesAbklingen

Herleitung:

•
$$f'(x) \approx \frac{d}{dx}(f[x] * h(x))$$

= $f[x] * h'(x)$

- Gaußfilter
 - Schnelles Abklingen

Zweidimensionale Rekonstruktion

Separables 2D-Gaußfilter

■ 2D-Rekonstruktion: $I(x,y) \approx I[x,y] * h(x,y) = \sum_{k=-\infty} \sum_{l=-\infty} I[k,l]g(x-k)g(y-l)$

Zweidimensionale Ableitung

Ausnutzen der Separabilität

Ableitung in x-Richtung

$$\frac{d}{dx}I(x,y) \approx I[x,y] * \left(\frac{d}{dx}h(x,y)\right)$$

$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} I[k,l]g'(x-k)g(y-l)$$

$$S\{\frac{d}{dx}I(x,y)\} = I[x,y] * g'[x] * g[y]$$
$$= \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} I[x-k,y-l]g'[k]g[l]$$

Endliche Approximation des Gaußfilters

Normierung des endlichen Filters

- In der Praxis wird die unendliche Summe durch wenige Summanden approximiert
- Wie wählt man eine geeignete Gewichtung C des Gaußfilters $g(x) = Ce^{\frac{-x^2}{2\sigma^2}}$?
- Interpoliertes Signal: $f(x) \approx \sum_{k=0}^{\infty} f[k]g(x-k)$
- Abgetastetes interpoliertes Signal: $f[x] \approx \sum_{k=-\infty}^{\infty} f[x-k]g[k]$
- Approximation durch endliche Summe:

$$f[x] \approx \sum_{k=-n}^{n} f[x-k]g[k]$$

Endliche Approximation des Gaußfilters

Normierung des endlichen Filters

■ Die endliche Approximation von f[x] ist eine gewichtete Summe der Werte $f[x-n], \ldots, f[x+n]$ mit den Gewichten $g[n], \ldots, g[-n]$

■ Normierungskonstante *C* so gewählt, dass sich alle Gewichte zu 1 addieren

$$\label{eq:C} \bullet \text{ W\"ahle } C = \frac{1}{\displaystyle\sum_{-n \le k \le n} e^{\frac{-k^2}{2\sigma^2}}}$$

Sobel-Filter

Herleitung

- Approximation von $S\{\frac{d}{dx}I(x,y)\}=I[x,y]*g'[x]*g[y]=\sum_{k=-\infty}\sum_{l=-\infty}I[x-k,y-l]g'[k]g[l]$ durch endliche Summe $\sum_{k=-1,0,1}\sum_{l=-1,0,1}I[x-k,y-l]g'[k]g[l]$
- Daraus folgt der Normierungsfaktor $C = \frac{1}{1 + 2e^{-\frac{1}{2\sigma^2}}}$
- lacksquare Für die Wahl $\sigma = \sqrt{\frac{1}{2\log 2}}$ ergeben sich somit die Werte

$$g[-1] = \frac{1}{4}$$
; $g[0] = \frac{1}{2}$; $g[1] = \frac{1}{4}$
 $g'[-1] = \frac{1}{2}\log 2$; $g'[0] = 0$; $g'[1] = -\frac{1}{2}\log 2$ $(\frac{1}{2}\log 2 \approx 0.35)$

Sobel-Filter

Herleitung

- Aus praktischen Gründen sind ganzzahlige Filterkoeffizienten erwünscht
- Für das Detektieren von Intensitätsunterschieden ist ein Vielfaches des Gradienten ausreichend

$$\frac{1}{8}\log 2 \begin{bmatrix} 1 & 0 & -1\\ 2 & 0 & -2\\ 1 & 0 & -1 \end{bmatrix}$$

Ganzzahlige Approximation

1	0	-1
2	0	-2
1	0	-1

Horizontales Sobel-Filter

Beispiel

Sobel-Filterung

1	2	1
0	0	0
-1	-2	-1

1	0	-1
2	0	-2
1	0	-1

Zusammenfassung

Bildgradient

- Der Bildgradient ist ein wichtiges Werkzeug für die Bestimmung von lokalen Intensitätsänderungen
- Diskrete Ableitung wird durch Differenzieren des interpolierten Signals berechnet
- Sobel-Filter sind ganzzahlige Approximation eines Vielfachen des Gradienten