Example Class 6

Meng Xuran

Department of Statistics and Actuarial Science, The University of Hong Kong

October 21, 2022

Jeffreys Prior

 The Jeffreys Prior is proportional to the square root of the determinant of the Fisher information matrix

$$f(\theta) \propto |I(\theta)|^{\frac{1}{2}}$$

$$I(\theta) = -E\left\{\frac{\partial^2 \log L(\theta|y)}{\partial \theta^2}\right\}$$

- It is invariant to re-parametrization.
- That is, the relative probability assigned to a volume of a probability space using a Jeffreys prior will be the same regardless of the parameterization used to define the Jeffreys prior.

Jeffreys Prior (Parameterization)

- For a monotone variable transformation $\eta = h(\theta), \theta = h^{-1}(\eta)$
- Note that

$$I(\eta) = -\mathbb{E}\left(rac{\partial^2 \log f(x|\eta)}{\partial \eta^2}
ight) = -\mathbb{E}\left[\left|rac{rac{\partial^2}{\partial \eta^2}f(x|\eta)}{f(x|\eta)} - \left(rac{rac{\partial}{\partial \eta}f(x|\eta)}{f(x|\eta)}
ight)^2
ight] = \mathbb{E}\left(rac{\partial \log f(x|\eta)}{\partial \eta}
ight)$$

where

$$\mathbb{E}\left(\frac{\frac{\partial^2}{\partial \eta^2}f(x|\eta)}{f(x|\eta)}\right) = \int \frac{\frac{\partial^2}{\partial \eta^2}f(x|\eta)}{f(x|\eta)}f(x|\eta)dx = \frac{\partial^2}{\partial \eta^2}\int f(x|\eta)dx = 0.$$

So we have

$$\begin{aligned} |I(\eta)| &= \left| \mathbb{E} \left(\frac{\partial^2 \log f(\mathbf{x}|\eta)}{\partial \eta^2} \right) \right| \\ &= \mathbb{E} \left(\frac{\partial \log f(\mathbf{x}|h(\theta))}{\partial \eta} \right)^2 = \mathbb{E} \left(\frac{\partial \log f(\mathbf{x}|h(\theta))}{\partial \theta} \frac{\partial \theta}{\partial \eta} \right)^2 \\ &= |I(\theta)| \left| \frac{\partial \theta}{\partial \eta} \right|^2. \end{aligned}$$

• We thus have $|I(\eta)|^{1/2} = |I(\theta)|^{1/2} \left| \frac{\partial \theta}{\partial \eta} \right|$.

How to Borrow Information from Historical Data

• Power Prior (γ is the power parameter):

$$\pi(\theta|D_0,\gamma) \propto L(\theta|D_0)^{\gamma} \pi(\theta)$$
 discounted prior information historical unrelated to information historical data

Posterior:

$$f(\theta|D_0, D, \gamma) \propto L(\theta|D)\pi(\theta|D_0, \gamma) \propto L(\theta|D)L(\theta|D_0)^{\gamma}\pi(\theta)$$

- ullet γ weights the historical data D_0 relative to the current data D
- With a flexible γ ,

$$\pi(\theta, \gamma|D_0) \propto \frac{L(\theta|D_0)^{\gamma}\pi(\theta)}{\int L(\theta|D_0)^{\gamma}\pi(\theta)d\theta}\pi(\gamma)$$

- Historical data $x_0 = (x_{01}, ..., x_{0n_0})'$
- Current data $\mathbf{x} = (x_1, \dots, x_n)', \ x_i \overset{i.i.d}{\sim} \mathcal{N}(\mu, \sigma^2)$
- For simplicity, we assume that the variance σ^2 is known.
- Power prior with fixed γ

$$\pi^{PP}(\mu|D_0,\gamma)\propto L(\mu|D_0)^{\gamma}\pi_0(\mu)$$

• With a flat prior $\pi_0(\mu) \propto 1$,

$$\pi^{PP}(\mu|D_0,\gamma) \propto e^{-rac{\gamma\sum_{i=1}^{n_0}(x_{0i}-\mu)^2}{2\sigma^2}} \sim N\left(ar{x}_0,rac{\sigma^2}{n_0\gamma}
ight)$$

• The posterior distribution has the form,

$$p^{PP}(\mu|D,D_0,\gamma) \propto e^{-\frac{\gamma \sum_{i=1}^{n_0} (x_{0i}-\mu)^2}{2\sigma^2}} e^{-\frac{\sum_{i=1}^{n_0} (x_{i}-\mu)^2}{2\sigma^2}} \sim N\left(\frac{\gamma n_0 \bar{x}_0 + n\bar{x}}{\gamma n_0 + n}, \frac{\sigma^2}{n_0 \gamma + n}\right)$$

How to Borrow Information from Historical Data

- If we specify $\pi(\gamma)$ as a Beta(a,b) distribution for fixed positive hyperparameters a and b
- (a = 5, b = 1) would strongly encourage borrowing
- (a = 1, b = 5) would strongly discourage it
- (a = b = 1) would be agnostic on the subject, essentially letting the data determine the degree of borrowing.

• Modified power prior (flexible γ) Page 4

$$\pi^{MPP}(\mu, \gamma | D_0) \propto rac{L(\mu | D_0)^{\gamma} \pi(\mu)}{\int L(\mu | D_0)^{\gamma} \pi(\mu) d\mu} \pi(\gamma)$$

• With a Beta(a,b) prior on γ ,

$$\pi^{MPP}(\mu, \gamma | D_0) \propto rac{e^{-rac{(\mu - ar{x}_0)^2}{2\sigma^2/(n_0\gamma)}}}{\int e^{-rac{(\mu - ar{x}_0)^2}{2\sigma^2/(n_0\gamma)}} d\mu} \pi(\gamma) \propto \sqrt{\gamma} e^{-rac{n_0\gamma(\mu - ar{x}_0)^2}{2\sigma^2}} \gamma^{a-1} (1 - \gamma)^{b-1} \ \propto \mathcal{N}\left(\mu | ar{x}_0, rac{\sigma^2}{n_0\gamma}
ight) \operatorname{Beta}(\gamma | a, b)$$

Posterior

$$p^{MPP}(\mu, \gamma | D_0, D) \propto \pi^{MPP}(\mu, \gamma | D_0) L(\mu | D)$$

Posterior

$$p^{MPP}(\mu, \gamma | D_0, D) \propto \pi^{MPP}(\mu, \gamma | D_0) L(\mu | D)$$

$$\begin{split} \rho^{MPP}(\mu,\gamma|D_0,D) &\propto \gamma^{1/2} e^{-\frac{n_0\gamma(u-\bar{x}_0)}{2\sigma^2}} e^{-\frac{\sum_{i=1}^n(x_i-\mu)^2}{2\sigma^2}} \gamma^{a-1} (1-\gamma)^{b-1} \\ &\propto \gamma^{1/2} \gamma^{a-1} (1-\gamma)^{b-1} e^{-\left[\frac{\left(u-\frac{n_0\gamma\bar{x}_0+n\bar{x}}{n_0\gamma+n}\right)^2}{2\sigma^2/(n_0\gamma+n)} + \frac{n_0\gamma\bar{x}_0^2 - \frac{(n_0\gamma\bar{x}_0+n\bar{x}})^2}{n_0\gamma+n}\right]}{2\sigma^2} \right]} \\ &\propto \gamma^{1/2} \gamma^{a-1} (1-\gamma)^{b-1} e^{-\frac{\left(u-\frac{n_0\gamma\bar{x}_0+n\bar{x}}{n_0\gamma+n}\right)^2}{2\sigma^2/(n_0\gamma+n)}} e^{-\frac{nn_0\gamma(\bar{x}-\bar{x}_0)^2}{2\sigma^2(n+n_0\gamma)}} \\ \rho^{MPP}(\mu|D_0,D,\gamma) &\sim N\left(\frac{\gamma n_0\bar{x}_0+n\bar{x}}{\gamma n_0+n},\frac{\sigma^2}{n_0\gamma+n}\right) \\ \rho^{MPP}(\gamma|D_0,D) &\sim N\left(\bar{x}|\bar{x}_0,\frac{\sigma^2(n+n_0\gamma)}{nn_0\gamma}\right) \text{Beta}(\gamma|a,b) \end{split}$$

Commensurate Power Prior

- ullet The hierachical power prior do not directly parametrize the commensurability of the historical and new data since the posterior of γ is free of the current data D.
- Commensurate Power Prior: assume different parameters in the historical and current data.

$$\pi(heta,\gamma, au|D_0) \propto \int rac{L(heta_0|D_0)^\gamma \pi(heta_0)}{\int L(heta_1|D_0)^\gamma \pi(heta_1)d heta_1} \pi(heta| heta_0, au)d heta_0 \cdot \pi(\gamma| au)\pi(au)$$

- The prior of θ has the mean θ_0 and precision τ and the power parameter γ depends on τ . Thus, τ parameterizes commensurability between the historical and current data.
- For example, $\theta \sim N(\theta_0, 1/\tau), \gamma \sim \text{Beta}(g(\tau), 1)$

Commensurate Power Prior:

$$\begin{split} \pi^{CPP}(\mu,\gamma,\tau|D_0) &\propto \int \frac{L(\mu_0|D_0)^\gamma \pi(\mu_0)}{\int L(\mu_0|D_0)^\gamma \pi(\mu_0)} \pi(\mu|\mu_0,\tau) d\mu_0 \cdot \pi(\gamma|\tau) \pi(\tau) \\ &\sim \textit{N}\left(\mu|\bar{x}_0,\frac{1}{\tau} + \frac{\sigma^2}{\gamma n_0}\right) \text{Beta}(g(\tau),1) \pi(\tau) \\ p^{CPP}(\mu|\gamma,\tau,D_0,D) &\sim \textit{N}\left(\frac{\gamma n_0 \tau \sigma^2 \bar{x}_0 + n(\gamma n_0 + \sigma^2 \tau) \bar{x}}{\gamma n_0 \tau \sigma^2 + n(\gamma n_0 + \sigma^2 \tau)}, \\ &\qquad \qquad \frac{(\gamma n_0 + \sigma^2 \tau) \sigma^2}{\gamma n_0 \tau \sigma^2 + n(\gamma n_0 + \sigma^2 \tau)} \right) \\ p^{CPP}(\gamma,\tau|D,D_0) &\sim \textit{N}\left(\bar{x}|\bar{x}_0,\frac{\sigma^2}{n} + \frac{1}{\tau} + \frac{\sigma^2}{\gamma n_0}\right) \text{Beta}(g(\tau),1) \pi(\tau) \end{split}$$

 $\pi(\mu_0) \propto 1, \pi(\mu|\mu_0, \tau) \sim N(\mu_0, 1/\tau), \pi(\gamma|\tau) \sim \text{Beta}(g(\tau), 1)$

Hierarchical Commensurate Prior

 General case of commensurate priors: weighting the influence of prior information relative to its consistency with data from the concurrent study.

$$\pi(\theta|\theta_0, D_0, \tau) \propto L(\theta_0|D_0)p(\theta|\theta_0, \tau)\pi_0(\theta)$$

- Note that the full conditional posterior distribution for θ_0 would be independent of the current data. Thus, θ_0 should be integrated out of the prior when the $\int L(\theta_0|D_0)p(\theta|\theta_0,\tau)d\theta_0$ is tractable.
- When $\tau \to 0$, $\pi(\theta|\theta_0, D_0, \tau) \to \pi_0(\theta)$.
- When $au o \infty$, $\pi(\theta|\theta_0,D_0, au) o L(\theta|D_0)\pi_0(\theta)$

• Hierarchical Commensurate Prior: consider $\pi_0(\mu) \propto 1$

$$\pi^{HCP}(\mu, \tau | D_0) = \int L(\mu_0 | D_0) \pi(\mu | \mu_0, \tau) d\mu_0 \pi_0(\mu) \pi(\tau)$$

$$\propto N\left(\mu | \bar{x}_0, \frac{1}{\tau} + \frac{\sigma^2}{n_0}\right) \pi(\tau)$$

Example (Binary Case)

- Historical data: y_0, n_0
- Current data: $y, n, y \sim Bin(n, \theta)$
- Power prior with a fixed γ and a Beta(a, b) prior on θ :

$$\pi^{PP}(\theta|D_0,\gamma) \propto L(\theta|D_0)^{\gamma}\pi_0(\theta) \propto \theta^{\gamma y_0}(1-\theta)^{\gamma(n_0-y_0)}\theta^{a-1}(1-\theta)^{b-1}$$
 $\sim \mathsf{Beta}(a+\gamma y_0,b+\gamma(n_0-y_0))$

Posterior:

$$p^{PP}(\theta|D,D_0,\gamma) \sim \mathsf{Beta}(a+y+\gamma y_0,b+(n-y)+\gamma(n_0-y_0))$$

Example (Binary Case w/ Modified Power Prior)

• Modified power prior (with a Beta(c, d) on γ):

$$\pi^{MPP}(\theta, \gamma | D_0) \propto \frac{\Gamma(a+b+\gamma n_0)}{\Gamma(a+\gamma y_0)\Gamma(b+\gamma(n_0-y_0))} \theta^{\gamma y_0+a-1} (1-\theta)^{\gamma(n_0-y_0)+b-1}$$
$$\gamma^{c-1} (1-\gamma)^{d-1}$$
$$\propto \text{Beta}(\theta | a+\gamma y_0, b+\gamma(n_0-y_0)) \text{Beta}(\gamma | c, d)$$

Posterior:

$$\begin{split} \rho^{MPP}(\theta|D,D_0,\gamma) &\sim \mathsf{Beta}(a+\gamma y_0+y,b+\gamma(n_0-y_0)+n_0) \\ \rho^{MPP}(\gamma|D,D_0) &\propto \frac{\Gamma(a+b+\gamma n_0)}{\Gamma(a+\gamma y_0)\Gamma(b+\gamma(n_0-y_0))} \\ &\cdot \frac{\Gamma(a+\gamma y_0+y)\Gamma(b+\gamma(n_0-y_0)+(n-y))}{\Gamma(a+b+\gamma n_0+n)} \\ &\cdot \mathsf{Beta}(\gamma|c,d) \end{split}$$