

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

TOTALIO DO DO DO DO

KRANACI KRACI DI ADALE

COLOR VERNOR

AD-A191 915

MC_FILE COOK

UNCLASSIFIED

CUMPY CLASSIFICA	THON OF					12(- WEY				
		RE	PORT DOCUME	NTATION PA	GE						
TA REPORT SECURI	TY CLASSIFICATION		······································	16. RESTRICTIVE MARKINGS							
UNCLASSIFI	ED		1	<u> </u>							
	SIFICATION AUTHOR	HTY		3. DISTRIBUTION/AVAILAB	ILITY OF REPORT						
24 DECLASSIFICATI	ON/DOWNGRADING	SCHEDULE	ľ	Approved for pub	olic release; dis	tribution is un	limited.				
A PERFORMING OR	IGANIZATION REPOR	IT MUMBER(S)		5. MONITORING ORGANIZA	TION REPORT NUMBER	vs.					
		· · · · · · · · · · · · · · · · · · ·		o. month of mile of markets	on ner on nomben	40,	ì				
							•				
Sa. NAME OF PERF	ORMING ORGANIZAT	TION	6b. OFFICE SYMBOL	7a. NAME OF MONITORING	ORGANIZATION						
			(if applicable)				ľ				
	Systems Cer	nter	NOSC	Naval Ocean Syst	ems Center		i				
Sc. ADDRESS (City.				76. ADDRESS (City, State an	d ZIP Code)						
			ľ				ì				
		_					1				
	A 92152-500			San Diego, CA 9							
	MG/SPONSORING O		8b. OFFICE SYMBOL (if applicable)	9. PROCUREMENT INSTRUK	MENT IDENTIFICATION A	TUMBER					
	avai Warfare	ı	SDAWAD								
Systems Com			SPAWAR	10. SOURCE OF FUNDING N	NUMBERS	<u> </u>					
	-		ł	PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO	AGENCY				
REWSON S.	stems Progra	A.M.					ACCESSION NO.				
Washington,				RDDA	MP57	NSA	DN288 591				
11. TITLE /include S	ocurity Classification)				·						
13a TYPE OF REPO Presentation 16 SUPPLEMENTAR	Speech	13b. TIME COVERS		November 1987	Month, Day)	15. PAGE CO	Nn1				
							İ				
17. COSATI CODES			18. SUBJECT TERMS (Continue o	n raverse if necessary and ide	ntify by block number)						
FIELD	GROUP	SUB-GROUP]]				
			diurnal trends geographic region	sunspot	numbers		ł				
	<u> </u>	ressary and identify by block ru									
Models of corresponding presented. A in the predic strength; onlight of the SU ends, called S distribution.	of the probal predicted v. data base ted MUFs. ly the 81 pa em of freque distribution; B'distribution Overall for	bility distribution relates from HFBC8- of 13,054 hours of A modified version at the for short patiency curves. This (2) data that is bushed to the field strengt or the relation to the field strength.	representing the residual, an ionospheric pre- oblique sounder MOF on of CCIR Data Ba h propagation were a system of curves co- ound on one end call MUF residuals, it was the residuals, a SU dist the data for frequencies	diction program "s measured on 70 see C was used t retained. The re onsists of three d led the SL distribu as determined tha tribution fit the	developed for paths was use obtain the saiduals for the listributions: tion; and (3) of the data condata for frequents.	the Broadcassed to obtain residuals in please models we (1) data that	t WARC, are the residuals predicted field ere fit to the t is unbound,				
,	ч ч ч ч в	,	en madaencies	Steeper page MO.	*>	2	DTIC ELECT MAR 28 PS				
_	AVAILABILITY OF ABI			21 ABSTRACT SECURITY			04.				
	FIED/UNLIMITED	SAME AS RPT	DTIC USERS	UNCLASSIFIE							
220 NAME OF NESS D.B. Sallors	PONSIBLE INDIVIOU	AL		22b. TELEPHONE (include (619)225-7706	Area Codel	Code 542	or 💆				

On fact page type title of paper here—

Affiliation City State

١	1	
1	-	(0)
ŀ	ı	DOS TEO
l		THOP'S
L	-	

EMPIRICAL MODELS REPRESENTING THE
ERROR IN THE PREDICTED MUF AND FIELD STRENGTH FROM HFBC84

D. B. SAILORS
OCEAN AND ATMOSPHERIC SCIENCES DIVISION
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152-5000

Accession For NTIS GRAŁI DTIC TAB Unamounced Justification Distribution/ Availability Codes Availability Codes Availability Special

ABSTRACT

Models of the probability distribution representing the residuals between the observed MOF and field strength and the corresponding predicted values from HFBC84, an ionospheric prediction program developed for the Broadcast WARC, are presented. A data base of 13,054 hours of oblique sounder MOFs measured on 70 paths was used to obtain the residuals in the predicted MUFs. A modified version of CCIR Data Base C was used to obtain the residuals in predicted field strength; only the 81 paths for short path propagation were retained. The residuals for these models were fit to the Johnson system of frequency curves. This system of curves consists of three distributions: (1) data that is unbound, called the S_H distribution; (2) data that is bound on one end, called the S_A distribution; and (3) data that is bound on both ends, called S_B distribution. Overall for the MUF residuals, it was determined that the data could be represented by a S_A distribution. Overall for the field strength residuals, a S_H distribution fit the data for frequencies below or equal the predicted MUF, and a S_B distribution fit the data for frequencies greater than the MUF.

INTRODUCTION

The effective operation of long distance high frequency (HF) communication systems has increased in proportion to the ability to predict variations in the ionosphere. These variations are affected in a complex manner by solar activity, seasonal and diurnal changes, as well as latitude and longitude. Such a predictive capability has permitted communicators to optimize frequencies, antennas and other circuit parameters. The need for HF model uncertainty assessment has become important as more and more uses are found for the prediction models. This paper differs from the more usual report on the accuracy of prediction models. Here, a model of the probability distributions representing the residuals (the errors) between the observed parameters and the corresponding predicted values is presented. The residuals for the prediction model are fit to a Johnson system of frequency curves (Johnson, 1949) using an algorithm due to Hill et al. (Hill et al., 1976; Hill and Wheeler, 1981; Dodgson and Hill, 1983) which uses the method of moments to obtain the required parameters. This distribution represents all univariate distribution systems; its simplicity of calculation once its parameters have been determined makes it adaptable to minicomputer type of applications; and the transformation of application.

Here, the probability distribution representing the error in the predicted MUF and field strength from HFBC84, an ionospheric prediction program for the HF Broadcasting WARC, is presented. A data base of 13,054 hours of oblique sounder MOFs measured on 70 paths was used to obtain the residuals in the predicted MUFs. A modified version of CCIR Data Base C was used to obtain the residuals in predicted field strength; only the 81 paths for short path propagation were retained. Detailed documentation of the determination of the residuals for the predicted MUF asnd field strength for HFBC84 is given by Sprague and Sailors (1987), Roy and Sailors (1987), and Sprague (1987).

The first section of the body of the paper discusses the determination of the statistical model. In addition to the method of moments, this section presents alternate methods for determining the parameters when the moments are large. The second section presents tables of parameters representing the probability distribution of HFBC84 predictions. However, because of the limited scope of the paper, not all the variations studied can be presented. The third section discusses application of the statistical model. The final section discusses improvements that could be made in the technique used to get the Johnson curve parameters.

Leave Blank ----

Start here ____ for all pages after the first

DETERMINATION OF A STATISTICAL MODEL

On first page type title of paper hereThe first step in determining a probability distribution to represent the residuals between observed data and the corresponding predicted data is to hypothesize a distribution function and determine its parameters. In the case of the application at hand, the determination of the distribution function was motivated by (1) a desire for ease of calculation so that the results could be used in minicomputer type applications, and (2) a need to automate the data analysis. The distribution function chosen was one known as the Johnson curves (Johnson, 1949).

Johnson Curves

Author ____ Affiliation City, State The Johnson curves are an empirical family of curves satisfying the following chosen conditions: (1) they should be easy to evaluate once their parameters are determined; (2) they are a monotonic function of y where $y=(x-\xi)/\lambda$, λ is a scale factor, ξ a location factor of the distribution, and x is the variable being represented by the distribution; (3) the range of values of f(y) corresponding to the actual range of values of y should be from $-\infty$ to $+\infty$; and (4) the resulting system of distributions of y (and so of x) should include distributions of most, is not all, of the kinds encountered in collected data. Johnson proposed basing empirical distributions on the transformation of a standard normal variate. The Johnson system of frequency curves consist of:

the lognormal system (or
$$S_{\gamma}$$
): $z = \gamma + \delta \ln \{(x-\xi)/\lambda\}, \xi < x$, (1)

the unbounded system (or
$$S_{ti}$$
): $z = \gamma + \delta \sinh^{-1} [(x-\xi)/\lambda],$ (2)

the bounded system (or
$$S_R$$
): $z = \gamma + \delta \ln [(x-\xi)/(\xi+\lambda-x)], \xi < x < \xi+\lambda$ (3)

where z is the standardized normal variate in each case. The parameters γ and δ determine the shape of the distribution of x.

To decide which of the three Johnson families should be used for a given set of data, the usual procedure is to obtain the data estimates of the skewness $/\beta$, and the kurtosis β_2 . These then are plotted on a figure such as figure 1 which shows the region in the (β_1, β_2) plane for the three Johnson families. Also shown are other common sampling distributions. If the (β_1, β_2) point is close to the S₁ curve, the S₂ curve is chosen. If it is in the region above the S₁ curve, the S₂ family is chosen; and if it is below the curve, the S₂ curve is used. The S₂ curve can be extended by use of the parametric equations:

$$\beta_1 = (\omega - 1) (\omega + 2)^2 \tag{4}$$

$$\beta_2 = \omega^4 + 2 \omega^3 + 3 \omega^2 - 3 \tag{5}$$

where ω denotes $\exp{(\delta^{-2})}$. The impossible region in the figure is bounded by the line β_2 - β_1 - 1 = 0. These three systems of curves; S_1 , S_U , and S_R ; together cover the entire "possible" region of the β_1 , β_2 plane (the plane describing the entire possible 3rd and 4th moment variation).

Fitting Johnson Curves by Moments

To determine the parameters for the Johnson curves, an algorithm, called JNSN, known by the Royal Statistical Society as algorithm AS 99, was used (Hill et al., 1976; Hill and Wheeler, 1981; Dodgson and Hill, 1983; Griffiths and Hill, 1985). This algorithm uses the sample moments (i.e., the mean, standard deviation, skewness (β_1), and the kurtosis (β_2) to determine the type of Johnson curve and its parameters. For the sake of completeness, the algorithm includes the normal curve itself and the special case of the S_p curve on the $\beta_2 - \beta_1 + 1$ boundary which is called S_T (T standing for two-ordinate). Equations (4) and (5) are solved in JNSN to determine the type of Johnson distributions. If the required β_2 from these equations is less than the input β_2 , S_R (or S_T) is appropriate; if greater, S_U is appropriate. The parameters γ , δ , ξ , and λ are found such that estimated values of β_1 and β_2 using the parameters are within \pm 0.01 of the input values.

Start here ____ for all pages after the first

On first page type title of paper here——

Author _____ Affiliation City, State

Figure 1. Region in $(\beta_1,\ \beta_2)$ plane for the Johnson System of Curves.

Alternate Methods for Determining the Parameters

When the moments are large, the methods of moments is not always efficient. Hence, it is desirable to have alternate methods to use to obtain a second set of parameters. A test of fit can be used to choose between the sets of parameters so chosen. In addition to the methods of soments, two additional methods of estimation are maximum likelihood and the use of quantiles or percentiles. Depending on the Johnson curve being evaluated, the different methods may or may not be possible.

For the S, curve, the maximum likelihood method can be used to obtain the parameters γ and δ if β is known (Hahn and Shapiro, 1967). If ξ is unknown, one is tempted to set ξ to the minimum value in the data set. However, as ξ tends to the minimum, the maximum likelihood estimates tend to infinity. There can be considerable variation of ξ with little variation of the percentiles. This is particularly true for large negative values of ξ . In the algorithm written for this method, ξ was set to min $(x_1, x_2, \ldots, x_N) - 0.1$ min (x_1, x_2, \ldots, x_N) . If the value of ξ is unknown, the unknown parameter γ , δ , and ξ can be obtained by setting three percentiles determined from the data to the three corresponding percentiles for the normal standard variate z (Hahn and Shapiro, 1967). Three equations of the form

$$z_{\alpha} = \hat{\gamma} + \hat{\delta} \, \ln \left(x_{\alpha} - \hat{\xi} \right) \tag{6}$$

are solved for the parameters γ , δ , and ξ ; x is the α 100th percentile for a standard normal variate and x is the corresponding percentile from the data. Hahn and Shapiro provide solutions to these equations for any two symmetric percentiles (e.g., the α 100th and the $(1-\alpha)$ 100th percentile) along with the median value. If $(x_1 - x_0) < (x_0 - x_0)$, then a negative value of δ is obtained and the percentile method fails; this is very unlikely to be the case if the distribution has substantial positive skewness.

Start here ____ for all pages after the first

On first page type title of paper here—

Author ____ Affiliation City, State For the S_U case, the only alternate method is the method of quantiles. In this case all four parameters, ξ , λ , γ , and δ , have to be estimated. This requires that estimates be obtained of four values, x_A , x_B , x_C , x_D say, such that certain fixed proportions P_A , P_B , P_C , P_D , respectively, of the distribution fall below these values. Then the parameters may be found from the four equation for z_k , the normal standard deviate for the S_U case. This set of equations is non-linear in nature and currently there is no algorithm that has been used to solve them.

For the S_B curves, both the maximum likelihood and method of percentile methods can be applied (Johnson, 1949). If the parameters ξ and λ are known, then the maximum likelihood method can be used to obtain the parameters γ and δ . If only the lower end-point, ξ , is known, the method of percentiles can be used to estimate λ , γ , and δ . The method of percentiles uses the medium \mathbf{x}_0 and the lower and upper 100th percentile points \mathbf{x}_1 and \mathbf{x}_2 .

Verification of Model Fit

The final step in the determination of a distribution representing the error data was the verification that the fit was adequate. In addition the test of fit was used to determine if the parameters produced by alternate methods were preferable. The procedures followed for the test of fit was that for the chi-square test of fit (Hahn and Shapiro, 1967; Williams, 1950). The first step is the estimation of the unknown parameters of the assumed distribution (Johnson curves). After sorting the data, the data is divided into k classes or cells, and the probability of a random value from the assumed model falling with each class is determined. The number of classes k itself is selected by the following formula, depending on the sample size N and the level of significance C

$$k = 4 \left[2(N-1)^2/c^2 \right]^{1/5}$$
 (7)

For the 5% level of significance C=1.645. The class limits are chosen such that each class contains the same number of items under the null hypothesis (i.e., a Johnson distribution). For this distribution, the class boundaries were found by inputting 1/k, 2/k, ..., (k-1)/k into an algorithm for finding the normal deviates corresponding to the lower tail (Beasley and Springer, 1977). Then an algorithm was used to find the Johnson deviates corresponding to the normal deviates (Hill and Wheeler, 1981; Dodgson and Hill, 1983; Hill, 1976). These Johnson deviates so determined are the cell boundaries. The lower boundary of the first cell and the upper boundary of the last cell are the smallest and largest values that the random variable may take on. The cell boundaries were set up in such a way that the probability of a random value falling within a given class is estimated to be 1/k for each class. The expected number of observations for each cell under the assumed distribution is N/k. The chi-square test statistic is given by

$$\chi^2 - \frac{k}{N} \sum_{i=1}^{k} f_i^2 - N \tag{8}$$

where f_i is the observed number of frequencies in the ith class. As the sample size approaches infinity, the distribution of this statistic approaches the chi-square distribution with k-l-s degrees of freedom where s is the number of parameters estimated from the sample.

For a one-sided (upper tail) test for a significance level of 5%, χ^2_{k-1} (α) is determined using a table of critical values for the chi-square distribution for degrees of freedom less than equal ten and the Cornish-Fisher approximation for larger degrees of freedom (Goldberg and Levine, 1945; Zar, 1978). Ratios of χ^2/χ^2_{k-1} (α) greater than 1 signify that the observed data contradicts the assumed model. This ratio is also used to determine which of the methods of determining the Johnson parameters is preferable; the method producing the lowest ratio is used. The chi-square test holds for sample sizes as low as 200 (Williams, 1950).

The chi-square test depends on the data being ungrouped. When data is grouped, the chi-square test will fail. That is because equations (7) and (8) assume that there are N ungrouped data points. What happens is that χ^2 calculated from equation (8) is large and the hypothesis is rejected when in fact it might be accepted. This is because χ^2 is computed on the assumption that every cell has an expected number not too small. Usually 5 is given as the required minimum. When the data is grouped, then some cells have large numbers in them and adjoining cells have a number less than the minimum or even zero. One solution is to include cells with numbers less than the minimum with adjoining cells, and increase the number of cells. However, the number of cells must not exceed N/5. In the application here the number of cells was doubled when grouping occurred.

Start here ___ for all pages after the liest

JOHNSON CURVE PARAMETERS FOR HFBC84

7 i r

On first page type title of

Author ____ Affiliation City, State The Johnson curve parameters were determined for the predicted MUF and field strength for MFBC84. For the predicted MUF, the parameters were found as a function of latitude of the control points, of data recorder type, of geographics region, of each particular path in the data base where sufficient data was available, of circuit path length, of mid-path local time, of monthly mean sunspot number, of month, of path orientation, of season, and of smoothed sunspot number. A limited set of these results are presented in tables 1 to 6. For the predicted field strength, the parameters were found as a function of frequency relative to predicted MUF, of each particular path in the data base where sufficient data was available, of mid-path latitude, of circuit length, of mid-path local time, of relative path orientation, of season, of smoothed sunspot number, and of mid-path local time, of relative path orientation, of season, of smoothed sunspot number, and of mid-path local time, of relative path orientation, of season, of smoothed sunspot number, and of mid-path local time. In the case of the field strength, the parameters were determined for frequencies > MUF and frequencies < MUF. A limited set of these results is presented in tables 7 to 14. In the case of the field strength data, the alternate methods produced the preferable set of parameters quite often, particularly the maximum likelihood method. Whereas, for the MUF residuals, only rerely did an alternate method to the method of moments produce the preferable set of parameters.

In tables 1 to 14, the conditions for which the analysis was $\max_{k \geq 2} e_{2k}$, circuit length 2000-3000 km), the sample size, the four input moments, γ , δ , λ , ξ , the χ^2/χ^2_{k-1} (0.05) ratio, the class size k, the Johnson type curve t, and the method of analysis a size given. Type -1 implies an S, curve, type -2 implies an S₁ curve; type -3 implies an S curve; type -4 implies a normal curve; and type -5 implies an S₂ curve. Method m-1 implies method of moments; method m-2 implies percentile points; and method m-3 implies maximum likelihood. In the table the error codes imply: (1) 1 - residual statistics were not calculated; (2) 2 - residual data is not valid; (3) 3 - chi-squared test of fit unable to run, usually not enough data points; and (4) 4 - chi-squared critical value not determined usually not enough degrees of freedom. Only the error codes 3 and 4 having to do with the ch-square test of fit actually occurred. This usually was due to grouping in the residual data, particularly the field strength data. Because the data in Date Base C is given only as integer values, this causes grouping precisely at values of field strength where the model is most accurate.

APPLICATION OF THE MODEL

After having determined the Johnson distribution parameters for HFBC84 by the methods described earlier, it is desirable to be able to apply the results. It is envisioned that it might be applied in one of two ways. The first is that for a given probability, it might be desired to know the error in the model. The second is given a certain error in the model, what is the corresponding probability? There are several useful algorithms to aid in this (Beasley and Springer, 1977; Dodgson and Hill, 1983; Griffiths and Hill, 1985; Hill, 1973; Hill, 1976; Hill and Wheeler, 1981).

In the first application, the given probability is converted to the corresponding normal standard deviate using the algorithm function PPMD (Beasley and Springer, 1977; Griffith and Hill, 1985). Then the corresponding Johnson deviates are found using the algorithm AJV (Dodgson and Hill, 1983; Griffiths and Hill, 1985; Hill, 1976; Hill and Wheeler, 1981). The parameters necessary as input can be found for the case and model under consideration from the tables in the previous section. The Johnson deviates are the error for the model being applied.

In the second application, the given error is converted to normal standard deviates using the second algorithm due to Hill (1976; Dodgson and Hill, 1983; Griffiths and Hill, 1985; Hill and Wheeler, 1981) called SRV. Then the corresponding probability level can be found using a normal integral elgorithm (Hill, 1973) called ALNORM. This particular algorithm has the capability to calculate either the upper or lower tail area of the standardized normal curve corresponding to any given argument.

A sample of the application of the model is given in figures 2-3. In these figures the predicted residual is given for seven different standard normal deviates (snv) and their corresponding probability levels. The residuals range from values that might occur 0.1% of the time to 99.9% of the time. Figure 2 is for the MUF model, and shows the residual variation as a function of path range. Figure 3 is for the field strength model, and shows the residual variation as a function of ratio of the frequency to the predicted MUF.

5 Type pni

Leave Blank -----

pages e first	=		[#			•	
Lude	4	типпипипипи	Ĺ	4	ดดดด		ų	ดดดดด		4	uuuu
le of cre—	×	44880UUUU 24880844480		×	132		*	1088		×	125 125 165 165
<u> </u>	ratto	34.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ratio	4.044 3.378 2.822	Points	ratio	2.280 4.880 1.295 1.295		ratio	2.734
th (x1000	. 1	-3.02 -3.02 -2.002 -123.80 -14.831 -108.40	Ş	126	14.99 -108.30 -107.20	Control Pol	ĩ.	-30 -30 -30 -30 -25 -25	NSS P	pei	12.59 3.17 -23.75
circuit Langth	lambda	22 22 22 22 22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	MUF : Season	lambda	112.000 119.700 125.900	Latitude of Co	lambda	14.090 44.030 4.276 11.30	: smoothed	lambda	7.414 5.692 7.972
5	delta	24447.24.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	for HFBC84	delta	32.00 3.1.00 3.1.00 3.4.00 7.7.00 7.7.00 7.7.00 7.00 7.00 7.0	MOT : Lati	delta	21.6433 2.6833 2.0837 4027	HFBC84 MUF	delta	3.224 1.865 2.155
for HTBC84	gamen	3.002 1.122 1.122 1.226 1.226 1.226 1.226 1.2763 1.2763 1.2763	Perameters (į	4.1137 6.634 6.640	for HFBC84	2	.902 .686 -1.710 290	Į	game	3.904
Parameters	Deta2	unar-uuddan nagrogaanua regutooaaa rugutooaaaa roguanuanu	Ourve P	beta2	3.774	Parameters fo	beta2	64004 82004 82004 8885 885	ve Parameters	beta2	45.063 2.233 2.233 2.233 2.233
Ourve Pa	betal	2 444-1001111011 844-144-148-14 888-144-148-14	Johnson	betal	.370 .192 1.386 .383	Curve Para	betal	0.00 1.00 1.00 0.00	Johnson Curve	beta1	
Johnson	Age		TABLE 2.	adev	25.5.3 2.8.5.3 2.8.5.3	Johnson O	adev	2.31 2.31 2.31 3.31	÷	edev	4.6.44
PACE 1.	5	HULHUL I UANU BUNUSK AUAUR BULUSE GONEL		Li de	2.24	PARCE 3. JA		2.92	TABLE	mean	1.99
	es la			size	4252 2232 4213 2351	ā	-21s	2631 11114 4350 4045 914		size	2649 1512 1908 6469
	condition			condition	WINTER SPRING SUPPER FALL		condition	Transequet. Low Latitude Mid Latitude High Latitude Transauroral		condition	310 661 - 1 1200 1200 1200

pages ne first	-			-	1			
it page	4	опимителеперепериимими		4	듸		비	777
tie of here——	~	30000000000000000000000000000000000000		L.	5		*	なたな
	ratio	44 144444444444 4444 84492200222444404422044444 5249220024440047284620000 5449220024440047284444		ratio	6.205	ysis	ratio	9.517 5.732 3.438
local time	T T T	######################################	nalysis	pet	19.56	Overall Analysis	psi	-35.06 -3.49 -44.17
mid path 1	Lambda	82118.4874444468889448744446888888888888888888	: Overall Analysis	lambda	-1.000	••	lambda	46.980 32.230 109.600
	delta	204401441414444444444444444444444444444	HFBC84 MUF	delta	4.132	Field Strength	delta	3.873 2.912 .989
Johnson Curve Parameters for HFBC84	980	44444444444444444444444444444444444444	for	garage	-11.910	Johnson Curve Parameters for HFBC84	4	-2.849 460 .067
Parametei	beta2	00000000000000000000000000000000000000	Parameters	beta2	4.013	meters f	Deta2	3.626 3.611 2.133
n Curve	betal	######################################	ion Curve	betal	.565	irve Para	betal	244 0032 0022
	Neber 1	นุนนุนนุนนุนุลุลุลุลยุยยุยยุยยุยยุยยุยยุลุลุลนุน นูลูนนุดอนุนุลลูลุลุลยยุยยุยยุยยุยยู นูลูนนุดอนุนุยยูนนุลลูนุดยุลุนุยยู	6. Johnson	Schev Service	4.52	ohnson o	sdev	16.20 11.91 23.00
TABLE 5.	5	44444444444444444444444444444444444444	TABLE	5	1.16	TABLE 7. J	- LOSE	1.93
•	size	89999999999999999999999999999999999999		size	13054	គ	size	12277 8783 3494
'	condition !	444466mavouduuduuduuduuduuduuduuduuduuduuduuduudu		condition i	all data	•	omdition 1	all data fred<=#UF

7 1., e 1 m Leave Blank ----

all pages or the first						
first page	4	ппппппппппппппппппппппппппппппппппппппп		+ กกกกกก		กดอนดอ
e title of per here——	×	LEUR LOS OR LEUR VOU LOS ACTACLES LE		84848E	5	20004 2004 2004 2004 2004
1	ratio ratio	4 444444444444444444444444444444444444		1.196 1.196 1.196 1.994	t	1.252 1.252 1.618 1.776 3.112
ilintion y, State	freq/MOF ra	4 Louis Lunique and 14 La a a a a a a a a a a a a a a a a a a	SSN with	445.01 1.55.01 1.55.01 1.55.01 1.50.01	₹	-124.00 -2.83 -3.43 -53.62
	Strængth : f lambda	499864448844494999899899999999999999999	: amouthed	117.700 105.700 117.200 97.490 126.900	: smoothed	23.230 236.800 29.000 246.840
4	Field	44444444444444444444444444444444444444	_	1.257 1.955 1.399 1.399	t	3.001 2.913 3.201 3.201 3.201
	for HPBC84	401 4 414 414 414 416 11	PI .	001 001 000 000 000 000 000 000 000 000	Pield	1.099 1.099 1.554 4.188
	Parameters 1 beta2	######################################	for	2.005 1.005	•	1.001582 1.001582 1.001582 6610582
	Ourve Pa	4 64004460000000000111122000000 84001086000104001111121000000	Curve Parameters	g 20000000 2000000000000000000000000000	Parameters	.000 .002 .002 .005 .005 .005 .005
	Johnson	64444644464444446 64464446888446986464688488		2002200 200200	Ourve	11.09 11.69 11.91 12.98 12.98
	ENBIZ 6.		Johnson	25.75 15.24 8.24 8.24	Johnson	1.91 1.91 1.91
	stre	104401104 104401104	TABLE 9.	#12e 717 673 694 895 384	TABLE 10.	1279 12956 12956 1343 1343
	condition	್ಷಿ ಚಿವ್ರಕ್ಕಾರ್ ಪ್ರವರ್ಷಗಳಗಳಗಳನ್ನು ಚಿವ್ರಕ್ಕಾರ್ ಪ್ರಕ್ಷಾರ್ ಪ್ರಕ್ಷಾರ್ ಪ್ರಕ್ಷಾರ್ ಪ್ರಕ್ಷಾರ್ ಪ್ರಕ್ಷಾರ ಪ್ರಕ್ತ ಪ್ರಕ್ಷಾರ ಪ್ರಕ್ಷಾರ ಪ್ರಕ್ಷಾರ ಪ್ರಕ್ಷಾರ ಪ್ರಕ್ಷಾರ ಪ್ರಕ್ಷಾರ ಪ್ರಕ್ಷಾರ ಪ್ರಕ್ಷಾರ ಪ್ರಕ್ಷಾರ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷಾರ ಪ್ರಕ್ಷ ಪ್ರಕ್ಷಾರ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ಷಾರ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ತಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ತಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ತಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ತಕ್ಕೆ ಪ್ರಕ್ಷಕ್ತ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ತಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ತಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ಷಕ್ಕೆ ಪ್ರಕ್ತಕ್ಕೆ ಪ್ರಕ್ತಕ್ಕ ಪ್ರಕ್ತಕ್ಕೆ ಪ್ರಕ್ತಕ್ಕೆ ಪ್ರಕ್ತಕ್ಕೆ ಪ್ರಕ್ತಕ್ಕೆ ಪ್ರಕ್ತಕ್ಕೆ ಪ್ರಕ್ತ		ondition 0 - 30 31 - 60 61 - 90 91 - 120 121 - 180		0 - 30 31 - 60 61 - 90 91 - 120 121 - 150 151 - 180

Leave Blank —

Start here for all pages efter the first		•	<u>-</u>	<u> </u>			1	R			я	
0-1	5	t		ğ	-	n-Indunananana	† .	-	mmm	•	4	2000
On first page , type title of poper here——	freq > 1	×	4777777 47777777	\$ bar	–	Signature Signature Signature	· ·	 ×	25.E.Z.		×	82238 82238
	vith	ratio	1.129 1.129 1.129 1.726 1.726 7410	r t	ratio	2.22 2.22 2.22 2.22 2.22 2.22 2.22 2.2	- H	ratio	2.465 1.982 2.131 1.993	ank => 1	ratio	2.872 2.685 2.685 2.639
Affiliation City, State	(x1000 la)	Pei	28.75 2.45.38 2.45.30 2.15.90 2.75 2.92 4.92	(x1000 km)	pei	84. 84. 84. 84. 84. 84. 84. 84. 84. 84.	ı vith freq	186	-44.33 -44.95 -40.70 -51.34	, with freq	pet	-7.87 -73.88 -85.85
	Circuit Langth	Lambda	81.380 94.780 159.400 121.630 24.140 25.140 113.300 95.360	Length	lambda	1242 1242 1242 1212 126 126 126 126 126 126 126 126 1	th : season	lambda	114.700 104.100 107.800 117.400	th : season	lambda	26.380 28.440 401.200 45.270
	••	delta	2.000 10 10 10 10 10 10 10 10 10 10 10 10	h : Circuit	delta	18444444 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	, 0	delta	1.076 1.124 1.030	ld Strength	delta	2.310 2.750 3.975
	Field Strength	Comme	11 21 12 1 410012 14 14 14 14 14 14 14 14 14 14 14 14 14	ld Str e ngth	da de	466 660 660 660 660 660 660 660 660 660	HFBC84 Field	games	159 180 159	HFBC84 Field	gamma	8 . 258 953 953
	HFBC84 F	beta2	26.55.09 26.55.00 26.55.00 26.55.00 26.55.00 26.55.00 26.55.00 26.55.00 26.55.00 26.	HFBC84 Field	beta2	40000499944444444444444444444444444444	ğ	beta2	2.221 1.981 2.059 2.179	for	beta2	4.178 3.178 3.142 3.325
	ğ	beta1	2.000.44 4.000.44 1.000.44 1.000.000.000.000.0000.0	ğ	beta1	999999999999999999999999999999999999999	Z	beta1	00.00 00.00 00.00 00.00	Parameters	beta1	0100
	Parameters	adev	241.301.100 241.301.100 241.301.1201	Parameters	sdev	8 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	1 0	sdev	22.53 24.89 20.66 23.86	Bon Curve	Bdev	12.42
	son Curve	mean	211- 11-21- 17-22- 14-6522- 26-6522- 26-6522- 26-6522- 26-652-	Samo	naem	41	13. Johnson	mean	8.65 9.46 7.35 11.12	14. Johnson	mean	1-12 201-25 45778
	11. Johnson	size	2 2 111 20 20 111 20 2 2 7 722222 2 2 4 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	12. Johnson	size	21.20 22.20 22.20 23.20 25.20	Ť	size	1187 735 775 797	TABLE	size	1704 2287 2327 2465
	TABLE	condition	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TABLE 1	condition	17774444776 1777666767777777777777777777		condition	WINTER SPRING SUMMER FALL		condition	WINTER SPRING SUMMER FALL

Figure 2. Predicted residual for the MUF model for the given standard normal deviates and their corresponding probability levels with path range.

Figure 3. Predicted residual for the field strength model for the given standard normal deviates and their corresponding probability levels with f/MUF.

for all pages efter the first

DISCUSSION

On first page type title of paper here—— A model of the probability distribution representing the residuals (errors) between the observed parameters and the corresponding predicted MUF and field strength values from HFBC84 was presented. The residuals for this program were fit to the Johnson system of frequency curves.

In the cases of both the S_U and S_D curve, the alternate method for determining the desired parameters when all four are unknown involves solving four equations representing the normal standard deviate for four percentile points. These systems of equations are non-linear, and an algorithm needs to be developed to solve these equations for the required parameters. Further, the appropriate percentile points to be used in the analysis needs to be determined.

Alfiliation City, State

Finally, the chi-square test of fit employed is affected by the grouping of data at particular values. At precisely the values at which a propagation model is most accurate is where the grouping occurs. This is due in part to the lack of enough precision or enough significant digits in the observed data used to evaluate the prediction model. The chi-square test of fit is used because it can be used when data from a sample is used to generate a probability distribution function. Other well known tests of fit methods can not be employed in this case.

REFERENCES

Beasley, J.D. and S.G. Springer (1977), "Algorithm AS 111. The percentage points of the normal distribution," Appl. Statist., 26, 118-121.

Dodgson, J.H. and I.D. Hill (1983), "A remark on algorithm 100: Normal-Johnson and Johnson-Normal transformations," Appl. Statist., 32, 345.

Goldberg, H. and H. Levine (1945), "Approximate formulas for the percentage points and normalization of t and χ^2 ," Ann. Math. Statist., 17, 216-225.

Griffiths, P. and I.D. Hill (1985), <u>Applied Statistics Algorithms</u>, Ellis Horwood Limited. London, lst Ed.

Hahn, G.J. and S.S. Shapiro (1967), <u>Statistical Models in Engineering</u>, John Wiley and Sons, New York, 302-308.

Hill, I.D. (1973), "The normal integral," Appl. Statist., 22, 424-427.

Hill, I.D. (1976), "Algorithm AS 100. Normal-Johnson and Johnson-Normal transformations," Appl. Statist. 25, 190-192.

Hill, I.D., R. Hill and R.L. Holder (1976), "Fitting Johnson curves by moments," Appl. Statist., 25, 180-189.

Hill, I.D. and R.E. Wheeler (1981), "A remark on algorithms AS 99: fitting Johnson curves by moments and AS 100: Normal-Johnson and Johnson-Normal transformations," <u>Appl. Statist.</u>, 30, 106.

Johnson, N.L. (1949), "Systems of frequency curves generated by methods of translation," Biometrika," 36, 149-176.

Roy, T.H. and D.B. Sailors (1987), HF maximus usable frequency (MUF) model uncertainty assessment, Naval Ocean Systems Center TR to be published, San Diego, CA.

Sprague, R.A. (1987), Accuracy of HF skywave field strength models: PROPHET and HFBC84, Naval Ocean Systems Center TR 1147, San Diego, CA.

Sprague, R.A. and D.B. Sailors (1987), Accuracy of MUF and field strength predictions by HFBC84, paper given at Fifth International Ionospheric Effects Symposium, Springfield, VA, Hay 5-7.

Williams, Jr., C.A. (1950), "On the choice of the number and width of classes for the chisquare test of goodness.of fit," Jour. Am. Sts. Assn., 45, 77-86.

Zar, J.H. (1978), "Approximations for the percentage points of the chi-squared distribution," \underline{Appl} , Statist., 27, 280-290.

11 Linear

EMPIRICAL MODELS REPRESENTING THE ERROR IN THE PREDICTGED MUF AND FIELD STRENGTH FROM HFBC 84

David B. Sailors Ocean and Atmospheric Sciences Division Naval Ocean Systems Center San Diego, CA 92152-5000 use the find the

Models of the probability distribution representing the residuals between the observed MOF and field strength and the corresponding predicted values from HFBC 84, an ionospheric prediction program developed for the Broadcast WARC, is presented. A data base of 13,054 hours of oblique sounder MOFs measured on 70 paths was used to obtain the residuals in the predicted MUFs. A modified version of CCIR Data Base C was used to obtain the residuals in predicted field strength; only the 81 paths for short path propagation were retained. The residuals for these models were fit to the Johnson system of frequency curves (N. L. Johnson, Biometrika 36, 149-176, 1949). distribution was chosen because the transformation of the Johnson variables to the normal system allows use of normal probability algorithms in its application and because it can be used to represent all univariate distributions. The Johnson system of curves consists of three distributions: (1) data that is unbounded, called the S_{ij} distribution; (2) data that is bound on one end, called the $S_{\tilde{L}}$ distribution; and (3) data that is bound on both ends, called the S_R distribution.

The residuals for these models were fit using an algorithm due to Hill et al which used the methods of moments (Hill et al, Appl. Statist., 25, 180-189, 1976). Since, when moments are large, the method of moments is not always efficient, the alternate methods of maximum likelihood and quantities estimation were used to obtain additional sets of Johnson parameters. Then a chi-square test of fit for a 5% level of significance was used to determine the best fit to the data.

Overall for the MUF residuals, the data can be represented by a S_L distribution. Parameters were also found for: (1) data recorder type, (2) path length and orientation, (3) season, (4) month, (5) latitude, (6) sunspot number, (7) diurnal trends, (8) geographic region, and (9) particular paths.

Overall for the field strength residuals, a S_U distribution fit the data for frequencies below or equal the predicted MUF, and a S_B distribution fit the data for frequencies greater than the MUF. The parameters were also found as a function of (1) frequency/MUF ratio, (2) particular paths in data base, (3) path length, (4) season, (5) sunspot number, (6) mid-path local time, and (7) latitude at path mid-point.