Занятие 16. ADL

Autoregressive Distributed Lag (ADL) Model (GRETL)

(Авторегрессионные модели с распределенными лагами – ADL)

План

- 1. Кросскорреляционная функция.
- 2. ЕСМ-представление.
- 3. Моделирование с помощью ADL/ARMAX.
- 4. Случай тренд-стационарного ряда.

Задача 1. Даны x_t и y_t. Рассчитайте значения кросскорреляционной функции для лага -1, -2, +1. Постройте график кросскорреляционной функции. Сделайте выводы о взаимосвязи х, и у,.

t	Yt	Xt
1	4,0	8,0
2	5,0	10,0
3	6,0	7,0
4	7,0	14,0
5	5,0	7,0

$$\rho_{xy}(\mathbf{k}) = \frac{1}{\sigma_x \sigma_y} \frac{1}{T - \mathbf{k}} \sum_{t=1}^{T-\kappa} (y_t - \overline{y}_t) (x_{t+k} - \overline{x}_t)$$

$$\rho_{xy}(1) = \frac{1}{\sigma_x \sigma_y} \frac{1}{T - 1} \sum_{t=1}^{T-1} (y_t - \bar{y}_t) (x_{t+1} - \bar{x}_t)$$

Замечание. Используйте вспомогательную таблицу.

t	Yt	Xt	Xt-1	Xt-2	Xt+1	Xt+2
1	4,0	8,0	-	-		
2	5,0	10,0		-		
3	6,0	7,0				
4	7,0	14,0				-
5	5,0	7,0			-	_

Кросскорреляционная функция (вычислите и заполните таблицу)

Лаг К	-2	-1	0	1	2
$\rho_{xy}(k)$					

Пример вычисления $\rho_{xy}(1)$. Пусть известно $\bar{y}_t = 5.4$; $\bar{x}_t = 9.2$; $\sigma_y = 1$; $\sigma_x = 2.6$.

t	Yt	Xt	Xt+1
1	4,0	8,0	10,0
2	5,0	10,0	7,0
3	6,0	7,0	14,0
4	7,0	14,0	7,0
5	5,0	7,0	-

$$\rho_{xy}(k) = \frac{1}{\sigma_x \sigma_y} \frac{1}{T - k} \sum_{t=1}^{T - \kappa} (y_t - \bar{y}_t) (x_{t+k} - \bar{x}_t)$$

$$\rho_{xy}(1) = \frac{1}{\sigma_x \sigma_y} \frac{1}{T - 1} \sum_{t=1}^{T - 1} (y_t - \bar{y}_t) (x_{t+1} - \bar{x}_t)$$

$$\rho_{xy}(1) = \frac{1}{\sigma_{x}\sigma_{y}} \frac{1}{T-1} \sum_{t=1}^{T-1} (y_{t} - \overline{y}_{t})(x_{t+1} - \overline{x}_{t})$$

$$\rho_{xy}(1) = \frac{1}{1*2,6} \frac{1}{5-1} \sum_{t=1}^{5-1} (y_t - 5,4)(x_{t+1} - 9,2) =$$

$$= \frac{1}{1*2,6} \frac{1}{4} ((4-5,4)(10-9,2) + (5-5,4)(7-9,2) + (6-5,4)(14-9,2) + (7-5,4)(7-9,2)) =$$

$$= -0,085$$

Задача 2. Интерпретация и прогнозирование ADL.

2.1. Пусть даны две реализации случайных процессов:

$$x_{t} = 0.4x_{t-1} + \varepsilon_{t}$$

$$(1 - 0.3L)y_{t} = 0.5 + (0.4 + 0.2L)x_{t} + \varepsilon_{t}$$

- ADL(p, q). p, q-?
- перепишите модель в виде y_t =...
- стационарность y_t
- запишите ЕСМ-представление
- определите долгосрочный и краткосрочный эффекты влияния х на у_t
- скорость коррекции к равновесному состоянию, период возврата к равновесному состоянию
- рассчитать прогноз на 1 шаг
- 2.2. Пусть даны две реализации случайных процессов:

$$x_{t} = 0.3x_{t-1} + \varepsilon_{t},$$

$$(1 - 0.5L + 0.1L^{2})y_{t} = 0.7 + (0.2 + 0.1L + 0.05L^{2})x_{t} + \varepsilon_{t}$$

$$- ADL(p, q). \quad p, q-?$$

- стационарность y_t
- запишите ЕСМ-представление
- определите долгосрочный и краткосрочный эффекты влияния x на y_t
- скорость коррекции к равновесному состоянию, период возврата к равновесному состоянию

Задача 3. Моделирование ADL. Пусть даны две реализации случайных процессов:

$$\mathbf{x}_{t} = 0.3\mathbf{x}_{t-1} + \varepsilon_{t},$$

$$(1 - 0.5L - 0.1L^{2} - 0.05L^{3})\mathbf{y}_{t} = 0.7 + (0.2 + 0.1L + 0.05L^{2})\mathbf{x}_{t} + \varepsilon_{t}$$

Исходные данные: файл ADL2.

3.1. Постройте графики X и У. Что можно сказать о характере изменения данных переменных.

- 3.2. Проверьте ряды на стационарность. Сделайте вывод. В случае нестационарности, приведите ряды к стационарному виду.
- 3.3. Оцените модель $y_t = \mu + \alpha x_t + \varepsilon_t$ МНК. Опишите модель. Исследуйте остатки. Сделайте вывод об адекватности модели.

3.4. На основе кросскорреляционной функции сделайте предположение относительно порядка ADL модели.

- 3.5. На основе ACF, PACF сделайте предположение относительно порядка AR-части для y_t .
- 3.6. Оцените и сравните несколько ADL моделей:

ADL(1, 1)
$$y_t = \mu + \alpha y_{t-1} + \beta_0 x_t + \beta_1 x_{t-1} + \varepsilon_t$$

ADL(2, 3), ADL(2, 2), ADL(1, 2)

- 3.7. Для наилучшей модели запишите ЕСМ-представление, дайте интерпретацию модели и постройте прогноз на два шага вперед (рассчитать по формулам).
- 3.8. Оцените и сравните несколько ARMAX моделей, самостоятельно подобрав параметры р и q.

Сравните и опишите модели, исследуйте остатки, выберете наилучшую модель.

ADL модели	Значимость коэффициентов	Ошибка модели, инф.критерии	Анализ остатков	Общий вывод
ADL(1, 1)				
ADL(2, 3)				
!ADL(2, 2)				
!ADL(1, 2)				
ARMAX				

Задача 4. Случай трендстационарного ряда.

Данные: denmark.gdt

Danish macroeconomic data used in Johansen, "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models", Oxford University Press, 1995.

1 LRM log of real money supply, m2

2 LRY log of real income

Исследуйте взаимосвязь между денежной массой и доходами на основе ADL-моделей. Предварительно исследуете стационарность рядов.

```
Расширенный тест Дики-Фуллера для LRY
Расширенный тест Дики-Фуллера для LRM
                                                     testing down from 10 lags, criterion Крит. Акаике
testing down from 10 lags, criterion Крит. Акаике
                                                     объем выборки 54
объем выборки 52
                                                     нулевая гипотеза единичного корня: а = 1
нулевая гипотеза единичного корня: а = 1
 тест с константой
                                                      тест с константой
 включая 2 лага(-ов) для (1-L)LRM
                                                       включая 0 лага(-ов) для (1-L)LRY
 модель: (1-L)y = b0 + (a-1)*y(-1) + ... + e
                                                      модель: (1-L)y = b0 + (a-1)*y(-1) + e
 оценка для (а - 1): -0,0382455
                                                      оценка для (а - 1): -0,0484706
 тестовая статистика: tau_c(1) = -1,26302
                                                       тестовая статистика: tau c(1) = -1,00236
  асимпт. р-значение 0,6489
                                                       Р-значение 0,7463
 с константой и трендом
                                                      с константой и трендом
 включая 10 лага(-ов) для (1-L)LRM
                                                      включая 0 лага(-ов) для (1-L)LRY
 модель: (1-L)y = b0 + b1*t + (a-1)*y(-1) + \dots + e модель: (1-L)y = b0 + b1*t + (a-1)*y(-1) + e
 оценка для (а - 1): -0,184565
                                                      оценка для (а - 1): -0,151292
 тестовая статистика: tau ct(1) = -3,15109
                                                      тестовая статистика: tau_ct(1) = -2,11129
 асимпт. р-значение 0,09455
                                                      Р-значение 0,5279
```

Запишите модель, дайте интерпретацию полученным результатам.

Домашняя работа (ТДЗ) 16. ADL (самоконтроль, сдавать не надо).

1. Даны x_t и y_t.

t	\mathbf{Y}_{t}	X_{t}
1	2	8
2	7	10
3	4	7
4	5	12
5	3	5

- 1.1. Рассчитайте по формулам значения кросскорреляционной функции для лагов -1, -2, 0, 1, 2.(для одного лага приведите подробные вычисления)
- 1.2. Схематично постройте график кросскорреляционной функции и дайте интерпретацию.

2. На основе ADL моделей исследуйте взаимосвязь между температурой воздуха и потреблением электричества. Обоснуйте выбор моделей.

Исходные данные: DATA10-2 (Gretl):

Hourly load and temperature data for an electric company in the Northwest region of the U.S. for the period Jan 1, 1992 -Jan 31, 1992.

day_hour = Day and hour, Range 1.01 - 31.24. load = Electricity usage in megawatts, Range 1646 - 3833.

temp = Temperature in Farenheit, Range 27 - 59.

- 2.1. Проверьте ряды на стационарность (Опишите результаты) при α =0,12.
- 2.2. Оцените несколько ADL/ARMAX моделей (3 модели), предварительно построив коррелограммы, кросскорреляционную функцию и сделав предположение о порядке ADL(p,q). Сравните и опишите полученные модели, исследуйте остатки, выберете наилучшую модель в виде сводной таблицы.

ADL модели	Значимость	Ошибка модели,	Анализ	Общий вывод
	коэффициентов	инф.критерии	остатков	

- 2.3. Дайте интерпретацию (долгосрочный эффект) одной из моделей.
- Напишите решение задач (скан рукописного варианта) и краткий отчет с выводами и полученными графиками, где это необходимо. Допускается сдача работы в группе по 2 человека (не забывайте указывать авторов).
- Выполненная домашняя работа загружается в LMS. Срок выполнения 1 неделя.
- Оценка: зачет/незачет.