AG313 Summary:

Treasury Management & Derivatives

Lewis Britton {201724452}

AG313: Treasury Management & Derivatives

Academic Year 2019/2020

Word Count: {N/A}

AG313 Course Summary

Derivatives

1: Options

1.1: Option vs. Forward Contracts:

- Forward: Obligation to buy/sell in the future at rate
 - o Future ER Safety
- Option: Right to buy/sell in future at rate
 - No Future ER Safety (may be better/worse)

1.2: Spot vs. Future/Forward Prices:

- Spot Price: immediate delivery price (S_{θ}, S_T)
- Future/Forward Price: future delivery price (lock in price today) (F_0, F_T)
 - o $F_T(<)$ S_T : Forward is Spot grossed up at r, Spot exp. to be (>) r growth

1.3: Short vs. Long Positions:

- Short: Sells shares **now** ($S_{\theta} = \text{Spot}$), buy later ($S_T = \text{Delivery}$)
 - o Exp. fall in **future** to buy
 - o Futures price up: loss
 - $\circ \quad \text{Profit} = (S_0 K)$
- Long: Buy shares **now**
 - o Exp. rise in **future** to sell
 - o Futures price up: gain
 - \circ Profit = $(K S_T)$

1.4: Call vs. Put Option Types:

- **At-The-Money**: $S_T = K$
- <u>Call</u>: Agreement to buy at specified time and Strike Price
 - o Profit (**In-The-Money**) When $S_T > K$
 - $\circ \quad \text{Profit} = N(S_T K) \text{Cost} \left\{ \text{Cost} = N(C_0) \right\}$
- <u>Put</u>: Agreement to sell at specified time and Strike Price
 - Profit (**In-The-Money**) When $K > S_T$
 - o Profit = Cost $-N(K S_T)$ {Cost = $N(P_0)$ }
- <u>European Option</u>: exercised only on expiration
- American Option: exercised any time up-to expiration

1.5: Exchange vs. Over-the-Counter:

- Over-the-Counter: \$600tn; high credit risk high prices
 - Trades Forward Contracts
- Exchange: \$60tn; more standardised and regulated
 - o Trades Futures Contracts

2: Futures Market

- Regulated by 'Commodities Futures Trading Commission (CFTC)'
- Clearing House: always used in <u>Futures Market</u> to ensure payment made
- Central Clearing Parties (CCPs): similar job to CH
- Haircut: difference between Market Value and Collateral usage of an asset
- Bilateral Clearing: group agree terms to trade w/ each other to minimise risk
- Limit Order: trader identifies worst at which trade can take place
- Note that <u>Futures</u> on stock are cosh settled as opposed to w/ the underlying asset

2.1: Forward vs. Future:

- Futures trade on Exchange Market standardised
- Futures last shorter time than Forward Contracts
- Futures don't usually have final cash settlements
- Short: loss when futures rises must buy at higher price to replace
- Long: gain when futures rises made profit as share price rises

2.2: Margin 'Curtain Call' Call:

- Broker's demand that investor adds funds to retain minimum value of fund daily
- Options up to 9-months must be bought in full, post-9: margin can be taken
- The **seller** posts margin, not the buyer as they make the payment for the option
- Margin Accounts are adjusted for gain/loss daily
- Reduce Systematic Risk → Ensure Funds Available → Reduce Risk of Back-Out
- Margin Call when loss over: (Initial Margin (-) Maintenance Margin)
 - 1) If Short: ea. \$1 rise in price is a \$1 per unit loss find (=) to above
 - 2) Add the per unit rise to the per unit price
 - 3) If Long: ea. \$1 rise in price is a \$1 per unit gain find (=) to above
 - 4) Add the per unit rise to the per unit price

2.3: Corn Futures Contract:

- Initiated by: party w/ Short position 'Notice of Intention to Deliver'
- Exchange goes through procedure of choosing party to take <u>Long</u> position

2.4: Hedging vs. Speculating:

- <u>Hedging</u>: e.g. expect volatility perhaps price rise to take <u>Futures</u> contract to lock in a price now
- <u>Speculating</u>: e.g. act upon expectation perhaps where they expect a fall in price, they'd take a <u>Short</u> position and buy back for profit
- Hedgers hold <u>Long</u>, Speculators hold <u>Short</u>: $(F_T > S_T)$

3: Forward & Futures Prices

- Futures Price quoted as no. of US\$/unit of foreign currency
- Lenders cannot issue instructions
- Investment Asset: traded but not usually physically usable or tangible
- Consumption Asset: traded and usable for consumption (e.g. Copper)
 - Upper limit but no lower limit
- Convenience Yield: 0/(+), measures benefit of owning rather than for ./fut.
 - o Having real value vs. locked in F value
 - o <u>Investment</u>: (=)0
 - o Consumption: (+)
 - o **Increase**: F as % of S decreases; more convenient to own
 - o **Decrease**: F as % of S increases; more convenient to F
- **Div. Yield**: Div.'s as a % of Stock Price at t of Div. payment
- **Contango**: $F_T(>)$ S_T abnormal

3.1: Shorting w/ Dividends:

- (1) S_0 Sell Now S_T Buy Later $(S_0 - S_T \text{ Gain/Share}) \rightarrow$ (2) Pays Div. $(S_0 - S_T - \text{Div})$

3.2: Spot to Forward Price:

$$F_T = S_0 e^{rT}$$

$$F_T = (S_0 - \text{Income})e^{rT} \{\text{Income} = Y_t e^{-rT} + \dots + Y_{t+n} e^{-rT}\}$$

$$F_T = ER_0 e^{(r_1 - r_2)T}$$

4: Hedging Strategies w/ Futures

- Futures delivery month should be as close as possible to purchase of asset
- "Tailing the Hedge": Corrects for daily settlement
- Hedging Futures leads to predictability

$$Basis = Spot_{At\ Close} - Futures_{At\ Close}(For\ Maturity)$$

$$Price\ Recieved = Basis + Futures_{At\ Purchase(For\ Maturity)}$$

Optimal Hedge Ratio =
$$ho_{A,B}\left(rac{\sigma_A}{\sigma_B}
ight)$$

"Movement in S Price to Movement in F Price"

$$\textbf{Optimal Folios} = (\beta_{Current} - \beta_{Desired}) \left(\frac{V_{Folio}}{F_0 F_N} \right)$$

$$\text{If (+): Short}$$

$$P_{Total} = w_{Hedged} P_{Hedged} + w_{NotHedged} P_{NotHedged}$$

Where:

Given:
$$S_0, F_0, S_T, F_T$$

$$P_{Hedged} = S_T - (F_T F_0)$$

$$P_{NotHedged} = S_T$$

5: Options Market

- **Recall**: "The option, but not obligation, to buy (call) or sell (put)"
- Recall:
 - o Short: sell now (exp. to buy later lower)
 - o Long: buy now (exp. to sell later higher)
- **Recall**: differences in *S*, *E*(*S*), and *F* mean Short Call, Long Calls, Short Put, Long Put are all different
- Option Class: "All <u>Calls</u> or <u>Puts</u> on a stock"
- Option Series: "All options on a certain stock type"
- LEAPS: Long-Term Equity Anticipation Securities w/ long maturities
- Stock-Split:
 - \circ E.g. N = 100, K = 20, 2 for 1 Split
 - o Ans. $N = 2(100) = 200, K = \frac{1}{2}(20) = 10$
- Stock-Div:
 - o E.g. N = 100, K = 20, 25% Div.
 - o Ans. N = 1.25(100) = 125, K = 4/5(20) = 16
- Cash-Div:
 - o No Effect
- Option Value (=) Time Value (+) Intrinsic Value
 - o At-The-Money Time Value (=) 0 so Option Value (=) Intrinsic Value
 - \circ Call: $(S_T K, 0)$
 - o Put: $(K S_T, 0)$

6: Option Pricing

1: Binomial Option Tree - European Put

Step 1

$$u=e^{\sigma\sqrt{\Delta t}}$$

$$d=e^{-\sigma\sqrt{\Delta t}}=\frac{1}{u}$$

$$p=\frac{e^{r\Delta t}-d}{u-d}=\text{Risk Neutral Probability of Up Movement}}$$

$$(1-p)=\text{Risk Neutral Probability of Down Movement}}$$

Step 1

$$S_{u/d}=$$
 Value of Stock Upon Increase/Decrease
$$S_u=Pu$$

$$S_d=Pd$$

$$S_{uu}=Pu^2$$

$$S_{ud}=Pud$$

$$S_{dd}=Pd^2$$

Step 3

$$\begin{split} P_{u/d} &= \text{Value of Option Upon Increase/Decrease} \\ P_{uu} &= 0 \\ P_{ud} &= K - S_{ud} \\ P_{dd} &= K - S_{dd} \\ P_u &= \left((pP_{uu}) + \left((1-p)P_{ud} \right) \right) e^{-r\Delta t} \\ P_d &= \left((pP_{ud}) + \left((1-p)P_{dd} \right) \right) e^{-r\Delta t} \\ P_0 &= \left((pP_u) + \left((1-p)P_d \right) \right) e^{-r\Delta t} \end{split}$$

2: Converting to American Put

$$P_d = \max\{K - S_d, P_d\}$$
; $P_{d_A} = \text{Larger Outcome}$; $P_{u_A} = \text{Remains Same}$
$$P_{0_A} = \left(\left(pP_{u_A}\right) + \left((1-p)P_{d_A}\right)\right)e^{-r\Delta t}$$

7: Stock Options

- Stock Price (\uparrow): Call (\uparrow), Put (\downarrow)

- Strike Price (↑): Call (↓), Put (↑)

- Volatility (†): Call Payoff (†), Put Payoff (†)

- Dividends (↑): Stock Price (↓), Call (↓), Put (↑)

- Interest Rate (↑): Call (↑), Put (↓)

- Time-Maturity (↑): European Options (↑/↓)

Call Lower Bound

$$S_0 - Ke^{-rT}$$

Put Lower Bound

$$Ke^{-rT}-S_0$$

Put Call Parity w/o Dividend (or Interest 0)

$$C_0 + Ke^{-rT} = P_0 + S_0$$

 $C_0 + K = P_0 + S_0$

Put Call Parity w/ Dividend

$$C_0 + Ke^{-rT} = P_0 + (S_0 - D)$$

Black & Scholes Models

$$d_1 = \frac{\ln\left(\frac{S}{K}\right) + T\left(r + \frac{\sigma^2}{2}\right)}{\sigma\sqrt{T}}$$

$$d_2 = d_1 - \sigma \sqrt{T}$$

$$C_0 = S(N(d_1)) - Ke^{-rT}(N(d_2))$$

$$C_0 = Se^{-yT} \big(N(d_1) \big) - Ke^{-rT} (N(d_2))$$

$$P_0 = K(1 - N(d_1)) - Se^{-rT}(1 - N(d_2))$$

Treasury Management

1: Foreign Exchange Market

Domestic in Terms of Foreign; Foreign in Terms of Domestic

$$Spread = \frac{Ask - Bid}{Ask}$$

Direct Quotation = £/\$ =
$$\frac{1}{\$/£}$$

Indirect Quotation =
$$\$/£ = \frac{1}{£/\$}$$

Cross Rate =
$$\$/£ = \$/£ \frac{1}{\$/\$}$$

2: Interest Parity Relationships

Interest Rate Arbitrage

$$A_n = \left(\frac{A_h}{S}\right) (1 + i_f) (S(1+p))$$

$$F = S(1+p)$$

 $A_{h,n} = \text{Home/New Home Currency}$ $i_{h,f} = \text{Home/Foreign Currency}$ $S = \text{Spot Exchange Rate} = "N \text{ of } \pounds \text{ Per Unit of } \$"$ $F = \text{Forward (Locked) Exchange Rate} = "N \text{ of } \pounds \text{ Per Unit of } \$"$ $p = \text{Forward Premium} = "Amount By Which F is } \updownarrow \text{ than S"}$

Convert to \$:
$$\left(\frac{A_h}{S}\right)$$

End of Period \$ Principal & Interest: $\left(\frac{A_h}{S}\right)\left(1+i_f\right)$
\$ Principal & Interest Back to £: $\left(\frac{A_h}{S}\right)\left(1+i_f\right)F$

Interest Rate No-Arbitrage

$$A_h(1+i_h) = A_h(1+i_f)(1+p)$$

 $A_h(1+i_h) =$ Investing with Home Interest = Investing with Foreign Interest

$$\therefore p = \frac{(1+i_h)}{(1+i_f)} - 1 \therefore p \approx i_h - i_f$$

$$\begin{bmatrix} \mathbf{S}_f^d = \frac{\mathbf{P}_s^d}{\mathbf{P}_s^f} \end{bmatrix}$$
As: $P_s^d = S_f^d * P_s^f$

Spot = Implied ER = Ratio of Domestic to Foreign Prices Domestic Price (Should Be) = Foreign Price (Given S)

Relative PPP (w/ Inflation)

Adjust for Inflation:
$$P_h(1 + \pi_h) \& P_f(1 + \pi_f)$$

If $\pi_h > \pi_f$: PP is Greater When Buying Foreign Goods \rightarrow Foreign Cheaper If $\pi_h < \pi_f$: PP is Greater When Buying Domestic Goods \rightarrow Domestic Cheaper

Adjust for Change in Currency:
$$P_f(1 + \pi_f)(1 + e_f)$$

 $e_f=\%$ Change Per Unit of Foreign Currency In Domestic Currency

Hence:

$$P_h(1 + \pi_h) = P_f(1 + \pi_f)(1 + e_f)$$

$$\therefore e_f = \frac{P_h(1 + \pi_h)}{P_f(1 + \pi_f)} - 1 = \frac{(1 + \pi_h)}{(1 + \pi_f)} - 1$$

* Given P_h & P_f Are Equal *

If $\pi_h > \pi_f$: $e_f(+)$: Foreign Should Appreciate — Domestic Depreciate If $\pi_h < \pi_f$: $e_f(-)$: Foreign Should Depreciate — Domestic Appreciate

* For Relatively Low Inflation *

$$e_f = \frac{(1+\pi_h)}{(1+\pi_f)} - 1 \approx \pi_h - \pi_f$$

3: Exchange Exposure

Variance of a Two-Asset Folio

$$\sigma_{x,y}^2 = \sigma_x^2 + \sigma_y^2 + 2(cov_{x,y})$$
Hence $\{p = \{x, y\}\}; \{cov_{x,y} = \rho_{x,y}\sigma_x\sigma_y\}:$

$$\sigma_p^2 = \sigma_x^2 + \sigma_y^2 + 2(\rho_{x,y}\sigma_x\sigma_y)$$

Variance of a Three-Asset Folio

Where
$$\{p = \{x, y, z\}\}:$$

$$\sigma_p^2 = \sigma_x^2 + \sigma_y^2 + \sigma_z^2 + 2(\rho_{x,y}\sigma_x\sigma_y) + 2(\rho_{x,z}\sigma_x\sigma_z) + 2(\rho_{y,z}\sigma_y\sigma_z)$$

Economic Exposure

$$V_{MNC} = \sum \frac{\sum (E(CF_{j,t})E(ER_{j,t}))}{(1+k)^t}$$
Where:

 $E(CF_{j,t})$ = Expected CF in Currency j Recieved At End of Period t $E(ER_{j,t})$ = Expected ER of Currency j At End of Period t k = Weighted Average Cost of Capital (WACC) of MNC

4: Derivatives

Long/Sort Positions (Recall)

$$Payoff_{Long} = (S_t - F)$$

$$Payoff_{Short} = (F - S_t)$$

Forward Discount/Premium

$$p = \frac{F - S}{S}$$

$$F = S(1+p)$$

If $\{p < 0\}$: F at Discount If $\{p > 0\}$: F at Premium

Premium On Options

$$C = f((X - S), T, \sigma^{2})$$
If $(X - S) (\uparrow); C (\uparrow)$

If
$$T(\uparrow)$$
; $C(\uparrow)$
If $\sigma^2(\uparrow)$; $C(\uparrow)$

5: Interest Rate Risk

- $\frac{1}{100}$ of a % is 'Basis Point'
- Must Convert Period to Days

Recall

R =Simple Interest Rate

$$r = \frac{R}{m}$$
 = Periodic Interest Rate
"m periods per n"

 $(1+r)^{mn} - 1 =$ Compound Interest Rate

$$EAR = (1+r)^{\frac{year}{days}} - 1$$

Duration

$$\Delta B = -DB\Delta y$$

$$B = \sum \frac{CF_t}{(1+y)^t}$$

$$D = \sum t \left(\frac{CF_t}{(1+y)^t} \right) = \sum tw_t$$

y =Yield on Bond B =Bond Price

"Weighted average of times of payments which is (=) proportion of B to CF at t"

 $D_{ZeroCoupon} = Maturity = T$

Constant Maturity: $D(\uparrow)CF(\downarrow)$

Constant Coupon: $D(\uparrow)T(\uparrow)$

Constant All Other: $D(\uparrow)y(\downarrow)$

Payoff = (Notional Amount)(LIBOR – Agreed Upon Rate)
$$\left(\frac{m}{360}\right)$$

$$Payoff = (Notional\ Amount) \left(((LIBOR) - Agreed\ Upon\ Rate) \frac{\left(\frac{m}{360}\right)}{(1 + LIBOR)\left(\frac{m}{360}\right)} \right)$$

Interest Rate Option

Payoff_{Call} = (Notional Amount)
$$\left(Max(0, LIBOR - X) \left(\frac{m}{360} \right) \right)$$

If LIBOR > X: Exercise
Payoff(↑)LIBOR(↑)
"Protection Against Rising i" (e. g. future borrowing)

Payoff_{Put} = (Notional Amount)
$$\left(Max(0, X - \text{LIBOR})\left(\frac{m}{360}\right)\right)$$

If LIBOR < X: Exercise
Payoff(↑)LIBOR(↓)
"Protection Against Falling i" (e. g. future investing)

Derivatives Extensive Summary

Lecture 1: Introduction to Derivatives

- Derivative value depends on another asset
- E.g. (Derivatives): futures, forwards, swaps, options
- E.g. (Assets): equity, bonds, shares, interest rates
- Derivatives **transfer risk** in economy
- Derivative market larger than stock market (several *global-GDP)

1: How Are Derivatives Traded

- Traded on standard der. exchanges
- Over-the-counter market (OTC) traders work for banks, fund managers corporate treasurers contact one-another directly

1.1: Exchange-Traded Derivatives

- Standardised contracts
- Limit credit risk
- Central clearing
- Regulated exchanges
- Liquid markets

1.2: Over-the-Counter Markets

- Tailor-made contracts
- Flexibility in negotiation
- Larger than exchange-traded market
- Telephone and computer network of dealers
- Higher credit-risk

2: Forward Contracts

- **Terms**: buy/sell at future time/price
- Market: Over-the-Counter
- Long-term maturity available
- Party agreeing to **buy** underlying asset: <u>Long Position</u>
- Party agreeing to **sell** underlying asset: Short Position
- Legally binding agreement

2.1: Payoffs

- F = Delivery Price of Asset @ Present
- S_t = Spot Price of Asset @ Maturity
- $(S_t F)$ = Long Position Payoff (Buyer)
- $(F S_t)$ = Short Position Payoff (Seller)

- From Long:

From Short:

3: Futures Contracts

- **Terms**: buy/sell at future time/price

- **Market**: Exchange-traded

- Available on commodities financial assets

- Standardised contracts

- Specification:

o What can be delivered

o Where it can be delivered

o When it can be delivered

- Settled daily

3: Options Contracts

- Call Option: right to buy <u>underlying asset</u> on/by date for price

- Put Option: right to sell <u>underlying asset</u> on/by date for price

- American Option: exercised any time up-to expiration

- European Option: exercised only on expiration

3.2: Definitions

- **Premium**: price options bought/sold

- **Exercise/Strike Price**: price at which right to buy/sell underlying asset of call/put is set

- Expirations/Maturity: date in contract on/by option must be exercised

- Writer: supplier/seller of option at selling price (premium) (Short Position)

- **Holder/Investor**: party who's acquired/bought option (<u>Long Position</u>)

3.3: Options vs. Futures/Forwards

- Futures/Forward is a **commitment** to buy/sell

- Options give the **right** to buy/sell

- Options traded on both exchanges/OTC

- Investors don't pay premium to enter futures/forwards

4: Types of Traders

- **Hedgers**: use derivatives to reduce risk they face from potential movements
- **Speculators**: use derivatives to bet on future direction of a market variable
- **Arbitrageurs**: take offsetting positions in 2+ instruments to lock profit by taking adv. of price discrepancies

4.1: Hedging

- **Long Hedge**: one future date committed to **buying** assets, fix future price by taking <u>Long Position</u> in <u>Futures</u> on asset
 - o "Hedge against possibility of price rise"
- **Short Hedge**: one future date committed to **selling** assets, fix selling price by taking <u>Short Position</u> in <u>Futures</u> on asset
 - o "Hedge against possibility of price fall"
- In both, changes in value of asset can be offset by changes in value of position in futures

4.2: Speculation

- Betting on future changes in price of an asset using derivatives
- Bank of England "broken" example video

4.3: Arbitrage

- Riskless profit: simultaneous purchase and sale of asset to profit from difference in price
- Equivalent assets trade at different prices, they buy in cheaper markets and sell in more expensive one
- Rare and don't last long
- Rational, well-formed markets: equivalent assets have same price (equilibrium: no arbitrage)

Lecture 2: Futures Markets

- Recall:
 - o Long Position: Buyer
 - o Short Position: Seller
 - o Spot Price: Price at which can be sold immediately
 - o Futures Price: Price at which can buy/sell in future
 - o Basis: Difference between two
- Categories:
 - o Agricultural commodities
 - Metals and minerals
 - o Foreign currency
 - o Financial futures

1: Terminology

1.1: Convergence

- Towards expiration: futures converges on spot
- Point of expiration: futures and spot identical

1.2: Terms

- Open Interest: total contracts outstanding
 - o Equal to no. of **long** or **short** positions
- <u>Settlement Price</u>: price right before final bell (each day)
 - o For daily settlement processes
- Volume of Trading: no. trades contracts traded daily

1.3: Patterns of Futures Prices

- Normal Markets: Futures prices **pos. corr.** to time to maturity
- <u>Inverted Markets</u>: Futures prices **neg. corr.** to time to maturity

2: Payoff from Futures (Gain/Loss)

- F_0 = Futures Price when Position Opened
- F_T = Futures Price when Position Closed
- Gain or Loss = Sell Price Buy Price

2.1: Long Position & Short Position (Respectively)

- $F_T F_0 =$ Spot @ Maturity Original Futures
- $F_0 F_T =$ Original Futures Spot @ Maturity
- $(F_T F_0) * No. Contracts * Shares per Contract$
- $(F_0 F_T) * No. Contracts * Shares per Contract$

2.2: Zero-Sum Game

- All <u>long positions</u> offset by <u>short position</u>
- Therefore aggregate profit/loss w/ futures trading over all investors = 0
- Long:

Short:

3: Margin Accounts

- Margin is cash/marketable securities depo'd by investors w/ their broker (interest paying account)
- Determined by var. of price of underlying asset
- Balance of Margin Account is reflective of daily settlement
- Margins minimise possibility of loss through **default** on contract
- <u>Initial Margin</u>: amount which must be deposited at entry (usually 5%-15% of total value of contract)
- <u>Marking to Market</u>: account adjusted ea. trading day for gain/loss (<u>daily settlement process</u>)
- <u>Maintenance Margin</u>: if margin falls below critical value (75% of <u>initial margin</u>), investor receives <u>margin call</u> to restore level of initial margin
- <u>Variation Margin</u>: funds deposited in <u>margin acc</u>. following a <u>margin call</u>

4: Clearing House

- The trading partner of ea. side of futures contract
- Seller of contract for long position and buyer for short position
- Obligated to deliver commodity to long pos. and pay for delivery from short
- Zero-net-position
- Improves liquidity
- Reduces uncertainty and credit risk

4.1: Margin CFs w/ Increase & Decrease in Futures Price (Respectively)

5: Types of Orders

- Market
- Limit
- Stop-Loss
- Stop-Limit
- Market-if-Touched
- Discretionary
- Time of Day
- Open
- Fill or Kill

6: Forwards vs. Futures

- Forwards
 - o Private bet. Two parties
 - Non-standard contract
 - Usually one specified delivery date
 - o Settled at end of contract
 - Delivery or final C settlement occurs
 - o Some credit risk

- Futures
 - Exchange traded
 - Standard contract
 - o Range of delivery dates
 - Settled daily
 - Contract usually closed out prior to maturity
 - Virtually no credit risk

Lecture 3: Forward & Futures Prices

1: Investment vs. Consumption Assets

- <u>Investment Assets</u>: held by significant numbers of people purely for investment purposes (e.g. stocks, bonds etc.)
- <u>Consumption Assets</u>: held primarily for consumption (e.g. oil, corn, etc.)

2: Short Selling

- Selling assets you don't own
- Broker borrows securities from another client and sells in market
- In order to close your position: buy the securities to return them
- Div.'s and other benefits must be paid to owner
- Perhaps small fee for borrowing the assets

2.1: Short Selling Example

- Short 100 shares w/ price of £100
- Close short in 3 months w/ price of £90
- £ month div. of £3 per share
- Profit = (Selling Price Buying Price)*No. Shares (Div.*No. Shares) = £700

2.2: Notation

- S_o = Spot Price Today
- F_0 = Futures or Forward Price Today
- T = Time Until Delivery
- r = fRisk Free i for Maturity T

2.3: Assumptions

- No transaction costs
- Same tax rates for all participants
- Borrow/lend at *r*
- Participants take adv. of arbitrage

3: Pricing Futures: Spot-Futures Relation

- Investor requires asset at time T
- 1) Buy asset today at S_0 and hold until T or...
- 2) Enter contract today to buy asset at T at F_0

3.1: Buy Asset Today

- Cost of holding 'til T is **interest lost** on alternative of holding C
- Cost 'Buy-and-Hold' = S_0 + Interest Lost
- Cost of holding asset is reduced by any **income**, e.g. div.'s/shares
- Cost of 'Buy-and-Hold' = S_0 + Interest Lost Income Received

3.2: Is There Arbitrage?

- Suppose:
 - o S_0 of non-div-paying stock is £40
 - o F_0 (futures price) is unknown
 - o 3-month (forward price) is £43 or £39 (Arbitrage)
 - o 3-month UK i is 5% p.a.
- Forward Price: $F_0 = S_0 e^{rT}$
 - **Standard**: $F_0 = 40e^{0.05*0.25} = 40.5 \rightarrow £40.50$
 - o $F_0 > S_0$ because cost of financing the spot purchase of asset during life of project
 - **Arbitrage**: $F_0 = 40e^{0.05*0.25} = 40.5 \rightarrow £40.50$
 - Short one share for £40
 - Invest proceeds in short sale for F_0
 - Take **long-forward** to buy share at £39 in 3 months to close short
 - Take **Riskless Profit** = £40.50 £39 = £1.50
- Price Equilibrium:
 - o $F_0 > S_0 e^{rT}$: arbitrageurs can buy asset and enter **short-forward** contract on asset for **Riskless Profit** = $F_0 S_0 e^{rT}$
 - o $F_0 < S_0 e^{rT}$: arbitrageurs can short sale asset and enter **long-forward** on asset for **Riskless Profit** = $S_0 e^{rT} F_0$

4: Short-Selling Not Possible

- See Slide 13 and on

Lecture 4: Hedging Using Futures

- ...

Lecture 5: Interest Rate Swaps (IRSs)

- A swap is an over-the-counter agreement
 - Two parties
 - o Exchange CFs
 - o Specified future times according to rules

1: Plain Interest Swaps

- Agrees: to make fixed i payments on **notional principal** given no. years
- In return: receives i at a floating rate on same **notional principal** same period
 - O Notional principal: used only to calculate of *i* payments not exchanged

- Example:

- MSFT agrees to receive 6-month LIBOR and pay Intel fixed rate of 5% every 6 months for 3 years on notional principal of £100m
 - Microsoft: <u>Long Position</u> in floating-rate bond & <u>Short Position</u> in fixed-rate bond
 - Intel: <u>Long Position</u> in fixed-rate bond & <u>Short Position</u> in floating-rate bond

2: Uses of IRSs

- Covert Liability from:
 - o Fixed-rate to floating-rate
 - o Floating-rate to fixed-rate
- Convert Investment (Asset) from:
 - o Fixed-rate to floating-rate
 - o Floating-rate to fixed-rate

2.1: Example: Converting Liability

- MSFT borrow £100m at i of LIBOR + 0.1%
- Receives LIBOR on **notational principal** of £100m from Intel
- Pays 5% on same principal
- . .
- MSFT Net Liability is **fixed-rate** *i* payment of:
 - o (LIBOR + 0.1% LIBOR + 5%) = 5.1% on £100m

3: Market Makers (Swap Dealers)

- Unlikely two companies will need to oppose positions in same swap at same time
- Large financial institutions act as Market Makers for swaps
- Market Makers prepared to enter swap w/o having offsetting/counterparty swap
- Carefully quantify and hedge risks they take

3.1: Example: Converting Liability w/ Financial Institution

- MSFT borrow £100m at i of LIBOR + 0.1%
- Receives LIBOR on **notational principal** of £100m from Intel
- Pays 5.015% via Financial Institution to Intel
- Financial Institution pays Intel 4.985% on £100m

- -

- MSFT Net Liability is **fixed-rate** *i* payment of:
 - \circ (LIBOR) = 0.1% LIBOR + 5.015% = 5.115% on £100m
- Financial Institution makes profit of:
 - \circ 0.03% (= 5.0155 4.985%)

3.2: Example: Converting Assets

- MSFT bought bonds of £100m which provide 4.7% p.a. for 3 years
- Receives LIBOR on **notional principal** of £100m from Intel
- Pays Intel 5% on same principal

- -

- MSFT Net Interest Rate Inflow on £100m:
 - \circ 4.7% + LIBOR 5% = LIBOR 0.3%

3.3: Example: Converting Assets w/ Financial Institution

- MSFT bought bonds of £100m which provide 4.7% p.a. for 3 years
- Receives LIBOR on **notional principal** of £100m from Intel
- Pays Intel 5.015% via Financial Institution to Intel
- Financial Institution pays Intel 4.985% on £100m

. .

- MSFT Net Interest Rate Inflow on £100m:
 - \circ 4.7% + LIBOR 5.015% = LIBOR 0.315%
- Financial Institution makes profit of:
 - 0.03% = 5.015% 4.985%

4: Total Gains

- Total Gain form IRS = Difference in Fixed Rates Difference in Floating Rates
 - o Slide 14 for More

5: Credit Risk

- Suppose: i increases right after interest rate agreement begins
- Floating rate payer suffers loss and backs out
- Loss for **fixed-rate** payer limited to difference between fixed and floating rates
- Default of **floating-rate** payer relieves **fixed-rate** payer from obligation too

6: Forward Rate Agreement (FRA) Valuation

- L = Principal Underlying the Contract
- $R_{FRA} = i$ Agreed in FRA
- R_{FL} = Forward LIBOR for $T_1 T_2$
- r = Risk Free i
- Value of FRA is PV of difference between i paid at R_{FL} and i which would be paid at R_{FRA}

$$V_{FRA} = L * (R_{FL} - R_{FRA}) * (T_2 - T_i)e^{-rT_2}$$

7: Interest Rate Swap Valuation

- Initially: worth close to 0
- As time goes on: equal to difference between **fixed-rate** bond and **floating-rate**
- **Floating-rate** payer: $V_{swap} = B_{fix} B_{float}$
- **Fixed-rate** payer: $V_{swap} = B_{float} B_{fix}$
- Alternatively: valued as portfolio of Forward Rate Agreements

7.1: Example: w/ Microsoft

- LIBOR rate 5%
- Risk-free rate 4%
- $V_{FRA(MSFT)} > 0$: Forward Rate > 5.0%
- $V_{FRA(MSFT)} = 0$: Forward Rate = 5.0%
- $V_{FRA(MSFT)}$ < 0: Forward Rate < 5.0%

8: Overnight Index Swaps (OIS)

- **Fixed-rate** for a period is exchanged for geometric avg. of <u>Overnight</u> rates
- Allows overnight borrowing/lending swapped at **fixed-rate**
- **Fixed-rate** in OIS referred to as "Overnight Swap Rate"
- Bears risk that counterparty (another bank) will default
- To compensate: LIBOR > OIS
- Example: Slide 29

9: Currency Swaps

- Exchange principal and *i* payments in one currency for principal and *i* payments in another currency
 - o Convert liability in one currency to a liability in another
 - o Convert investment in one currency to investment in another
 - o Quick, cheap, anonymous method of restructuring balance sheet

Lecture 6: Options Markets

1: Options vs. Forwards/Futures

- Right to do something does not have to exercise
- As opposed to commitment (forwards/futures)
- Forwards/futures do not require time 0 payments
- Options require time 0 payments
- Positions:
 - o **Long Call**: buy right to buy (bullish)
 - o **Long Put**: buy right to sell (bearish)
 - o **Short Call**: sell right to buy (bearish)
 - o **Short Put**: sell right to sell (bullish)

2: Long Call Option (1:4)

- C_0 = Call Option Price (e.g. £5)
- K = Strike Price (e.g. £100)
- " \rightarrow " = Breakeven = $C_0 + K$

- Exercise only if share price at expiry is greater than strike price
 - o If $S_T > K$: Exercise
 - o If $S_T < K$: Don't Exercise
- **Example**: C = 8; K = 100
 - o Profit/Loss = $\max\{S_T K C_0\}, -C_0$
 - \circ Assume $S_T = 128$
 - $P/L = max\{128 100 8\}, -8$
 - $P/L = max\{20, -8\} = 20 \text{ so } Exercise$
 - o Assume $S_T = 90$
 - $P/L = max\{90 100 8\}, -8$
 - $P/L = max\{18, -8\} = -8$ so <u>Don't Exercise</u>
 - o Assume $S_T = 105$
 - $P/L = \max\{105 100 8\}, -8$
 - $P/L = max\{-3, -8\} = -3$ so Exercise to Minimise Loss

3: Long Put Option (2:4)

- P_0 = Put Option Price (e.g. £7)
- K = Strike Price (e.g. £70)
- Breakeven (Shown). = $K P_0$

- Exercise if profit from selling asset through put is greater than market price
 - o If $S_T < K$: Exercise
 - o If $S_T > K$: Don't Exercise
- **Example**: P = 8; K = 100
 - o Profit/Loss = $\max\{K S_T P_0\}, -P_0$
 - \circ Assume $S_T = 128$
 - $P/L = \max\{100 128 8\}, -8$
 - $P/L = max\{-36, -8\} = -8 \text{ so } \underline{Don't Exercise}$
 - o Assume $S_T = 90$
 - $P/L = \max\{100 90 8\}, -8$
 - $P/L = max\{2, -8\} = 2$ so Exercise
 - \circ Assume $S_T = 98$
 - $P/L = \max\{100 98 8\}, -8$
 - $P/L = max\{-6, -8\} = -6$ so Exercise to Minimise Loss

4: Short Call (3:4)

- $C_0 = £5$
- -K = £100

5: Short Put (4:4)

- $P_0 = £7$
- -K = £70

6: Call & Put Profitability

- Call Profitable: $S_T > (C_0 + K)$
- Put Profitable: $K > (P_0 + S_T)$
- Call Option Zero-Sum Game:

Profit $+ C_0$ Investor's position $- C_0$ Writer's position Loss $Breakeven point = X + C_0$

Put Options Zero-Sum Game:

- Summary:

7: Value At Expiration

- Call:

$$\begin{array}{ccc} \circ & S_T - K & \text{if } S_T > K \\ \circ & 0 & \text{if } S_T \leq K \end{array}$$

- Put:

$$\begin{array}{ccc} \circ & K - S_T \text{ if } S_T < K \\ \circ & 0 & \text{if } S_T \ge K \end{array}$$

8: Moneyness

- In-the-Money Option (profitable when):

 \circ Call: S > K

o Put: S < K

- At-the-Money Option

 \circ S = K

- Out-of-the-Money Option

9: Intrinsic & Time Value

- Option Price (Premium) = Intrinsic Val. + Time Val.

- Intrinsic Value maximum of 0, option value would have it if instantly exercised

o Call: $max{S - K, 0}$

 \circ Put: max{K - S, 0}

- <u>Time Value</u> difference between current option price and intrinsic value

10: Market Makers

- Quotes bid (price prepared to buy) and ask (price prepared to sell) prices

- Bid-Offer Spread: difference between bid and ask

11: Option-Like Securities

- Callable Bonds

- Convertible Bonds (and other securities)

Lecture 7: Properties of Stock Options

1: Notation & Introduction

- C_E = European Call Option Price

- P_E = European Put Option Price

- S_0 = Stock Price Today

- K = Strike (Exercise) Price

- T =Life of Option

- σ = std. dev of Stock (Volatility)

- C_A = American Call Option Price

- P_A = American Put Option Price

- S_T = Stock Price at Maturity

- D = PV of Future Divs

- r = Risk - Free Rate at T

1.1: Factors Affecting Option Prices

- Current stock price, S_0

- Strike price, \vec{K}

- Time to expiration, T

- Volatility of stock price, σ

- Risk-free rate, r

- Dividends expected, D

1.2: Interaction Matrix

Variable	C_E	P_E	C_{A}	P_A
\mathcal{S}_0	+	ı	+	_
K	_	+	_	+
T	?	?	+	+
σ	+	+	+	+
r	+		+	_
D	_	+	_	+

1.3: American vs. European Options

- American worth at least as much as corresponding European
- $C_A \geq C_E$
- $P_A \ge P_E$

1.4: Upper Bounds

- Call can never be worth more than underlying stock
 - $\circ \quad S_0 \geq C_0$
- Put can never be worth more than PV of K
 - $\circ PV(K) \ge P_0$

2: Call Values at T

	Investment	Value at T	Value at T
		(In the Money)	(Out of the Money)
		$E.g. S_T = £190 > K$	$E.g. S_T = £130 < K$
Portfolio A	Invest in $S_0 = £140$	$S_T = £190$	$S_T = £130$
	$Total = S_{\theta}$	= £190	= £130
Portfolio B	Call ($C_0 = £20$)	Exercise Call	Do Not Exercise
	+	$K-K+S_T$	K
	PV of K ($K = £150$)	= £190	= £150
	$Total = C_0 + PV(K)$		

2.1: Lower Bound

- If folio B offers > folio A, worth more at t=0:

$$\circ$$
 $C_0 + PV(K) \geq S_0$

$$\circ : C_0 \geq S_0 - PV(K)$$

$$\circ : C_0 \ge S_0 - Ke^{-rT}$$

3: Put Values at T

	Investment	Value at T	Value at T
		(In the Money)	(Out of the Money)
		E.g. $S_T = £130 < K$	$E.g. S_T = £190 > K$
Portfolio C	Put ($P_0 = £30$)	Exercise Put	Do Not Exercise
	Call ($S_0 = £140$)	K	S_T
	$Total = S_{\theta}$	= £150	= £190
Portfolio D	PV of K ($K = £150$)	K =150	K
	Total = PV(K)	= £190	= £150

3.1: Lower Bound

- $P_0 + S_0 \ge PV(K)$
- $\therefore P_0 \ge PV(K) S_0$
- $\therefore P_0 \ge Ke^{-rT} S_0$

4: Put-Call Parity

- "Since folio B gives equal payoffs at T as folio C, must have same payoffs at 0"
 - $\circ C_0 + PV(K) = P_0 + S_0$
 - o Assume continuous compounding:

5: Early Exercise

- Chance w/ American option
- Exception where it is a non-div. paying stock (don't exercise early)
- Should **never** be exercised early if investor plans to hold stock for life of option
- **Do not** early exercise if:
 - o No income is sacrificed
 - o You delay paying the strike price
 - \circ Holding the call provides insurance against S_0 falling below K

6: Graphical Representation

- European Call:

European Put:

- American Put:

Lecture 8: Trading Strategies w/ Stock Options

- Strategies
 - Option plus underlying asset
 - Two or more options same type (**Spread**)
 - Two or more options different type (**Combination**)

1: Covered Call

- Write call, invest in underlying asset (hold share, write call)
- Controls risk exposure call writers
- Earn premium on holdings by giving up potential high returns share holders

- Profit /Loss
 - Exceeds profit on simple investment for all prices up to exercise (plus call value)
 - Combination lower profit than would be seen holding normal share for prices exceeding exercise (plus call value)
- Note: short stack and long call payoffs (Slide 6)

2: Protective Put

- Insurance against share price fall
 - \circ P₀ = Put Premium
 - X Exercise Price
 - o S_0 = Share Price at 0
- If S falls below S_0 , share can be sold through <u>Put Option</u> to realise $(X = S_0)$
- Investor benefits: any increase in S above S_0 , guaranteed min. payoff $(S_0 P_0)$

- Note: short stack and short put payoffs (Slide 9)

3: Spreads

- Calls or Puts
 - o Bull Spreads
 - o Bear Spreads
 - o Box Spreads
 - o Butterfly Spreads

3.1: Bull Spread

- Limits up/downside risk
- Three types:

 - Both options are out of the money initially
 One is in the money and one out the money initially
 - o Both options in the money initially
- "Investor expects S Increase"

Lecture 9: Option Pricing

- Binomial Tree: representation of different Option paths as probabilities
 - Assumes stock prices follow 'random walk'
 - o Assumes no arbitrage opportunity
 - o As steps get smaller, model converges to Black & Scholes Merton

1: One-Step The Binomial Tree

1.1: Simple Tree

- Call Option: "Value of European Call w/ Exercise of £21?"

- Riskless Folio:
 - Long Position Change in Shares
 - Short Position 1 Call Option

- O Riskless when: $(22\Delta 1) = 18\Delta$
- o Example:
 - Stock Price = £22; $(22\Delta 1) = 22 * 0.25 1 = £4.50$
 - Stock Price = £18; $18\Delta = 18 * 0.25 = £4.5$
 - 1) // Riskless Folio Earns 12% //
 - $V_0 = 4.5e^{-0.12*0.25} = 4.367 \{t = 3; T = 0.25\}$
 - 2) // Value of Call Option Stock today recall = £20 //
 - $20\Delta C_0 = 4.367$
 - $C_0 = 0.633$

1.2: Notation

- uS_0 = Value of Stock if Increase
- dS_0 = Value of Stock if Decrease
- C_u = Value of Call Option if Increase
- C_d = Value of Call Option if Decrease
- Where: $\{u > 1; 0 < d < 1\}$
- Generalise →

1.3: Generalised Form

$$S_0 \times \Delta - C_0 \underbrace{\hspace{1cm} uS_0 \times \Delta - C_u}_{dS_0 \times \Delta - C_d}$$

Riskless When: $uS_0\Delta - C_u = dS_0 - C_d$

$$\Delta = \frac{C_u - C_d}{uS_0 - dS_0}$$

"Ratio of Option Price change to Stock Price change"

• Value of Folio (at *T*):

- $uS_0\Delta C_u$ $(uS_0\Delta C_u)e^{-rT}$
- Value of Folio (at T, When Riskless):

Value of Folio (at 0):

 $S_0 \Delta - C_0$ $C_0 = S_0 \Delta - (uS_0 \Delta - C_u)e^{-rT}$

- Value of Call (at 0):
 - // Substitute \Delta //
- $C_0 = (C_u(p C_u)(1 p))e^{-rT}$ $p = \frac{e^{-rT} d}{u d}$ = Risk Neutral Probability of Up Movement
 - (1-p) = Risk Neutral Probability of Down Movement

2: Two-Step Binomial Tree

$$C_0 = ((p^2 * C_{uu}) + (2p(1-p) * C_{ud}) + (1-p)^2 * C_{dd})e^{-2r\Delta t}$$

$$P_0 = ((p^2 * P_{uu}) + (2p(1-p) * P_{ud}) + (1-p)^2 * P_{dd})e^{-2r\Delta t}$$

$$p = \frac{e^{r\Delta t} - d}{u - d}$$

3: Girsanov's Theorem

- σ^2 is the **same** through real-world and risk-neutral-worlds
- Can therefore measure σ^2 in real-world and use it in risk-neutral

3.1: Choosing u & d

$$- u = e^{\sigma \sqrt{\Delta t}}$$

$$d = e^{-\sigma\sqrt{\Delta t}} = \frac{1}{u}$$

4: Probability of An Upwards Move

$$p = \frac{a - d}{u - d}$$

 $\circ \quad a = e^{r\Delta t}:$ Non-Div. Stock

o $a = e^{(r-y)\Delta t}$: o $a = e^{(r-r_f)\Delta t}$: Div. Stock

Foreign Risk-Free Rate

 \circ a = 1: **Futures Contract**

Lecture 10: Black & Scholes Model

- Function of **underlying asset** and **time**
- Two parameters: risk-free rate and asset volatility
- "The history of the variable is irrelevant"
 - o Short-selling permitted
 - No transaction costs
 - No risk arbitrage
 - o R_f and volatility are constant
 - o No dividends from underlying assets

1: Notation & Definitions

- C_o = Call Option Value
- P_o = Put Option Value
- $S_o = \text{Current Stock Price}$
- X =Exercise Price
- r =Annual Risk Free Rate
- T =Annual Time to Maturity
- σ = Annual Standard Deviation

1.1: Normal Probability

- N(x) is probability that a **normally distributed** variable w/ mean of 0 and std.dev of 1, is less than x

2: Black & Scholes: Call Option

2.1: Call Option

$$d_1 = \frac{\ln\left(\frac{S_0}{X}\right) + T(r + \frac{\sigma^2}{2})}{\sigma\sqrt{T}}$$

$$d_2 = d_1 - \sigma\sqrt{T}$$

- $N(d_1)$: risk-adjusted probability that <u>Call Option</u> will expire **in-the-money**
- $\ln\left(\frac{S}{x}\right)$: percentage amount by which <u>Call Option</u> is **in/out-of-the-money**
 - \circ **Example**: S = 160, X = 100; Option is 60% **in-the-money** at 0.47
 - \circ **Example**: S = 90; X = 100; Option is 10% **out-of-the-money** at -0.105

- Hence, when N(d) is close to 1, there's near a 100% chance the <u>Call</u> will be exercised
 - o If $N(d_1)$ and $N(d_2)$ are 1, <u>Call Value</u> will be approx. its intrinsic vlue
- When there's a yield on the underlying asset:

$$C_0 = S_0 e^{-(r-y)T} N(d_1) - X e^{-rT} N(d_2)$$

2.2: Put Option

- The **Put-Call Parity**

$$P_0 = Xe^{-rT}(1 - N(d_1)) - S_0(1 - N(d_2))$$

2.3: Properties of Model

- As S_0 gets large: C_0 tends towards $(S_0 - Xe^{-rT})$; P_0 tends to 0 - As S_0 gets small: C_0 tends towards 0; P_0 tends to $(Xe^{-rT} - S_0)$

- As σ tends to 0: C_0 tends towards max $\{S_0 - Xe^{-rT}, 0\}$ C_0 tends towards max $\{Xe^{-rT} - S_0, 0\}$

- If including div., they should be the ex-div. rather than div.
 - Should be the E(reduction in S)
 - o Short-Life Options: estimate div. during option life w/ decent accuracy
 - o Long-Life Options: estimate div. w/ uncertainty option pricing difficult

3: Volatility

- Estimated from historical data suing daily R's over several months
- Volatility greater when market open
- Thus, usually measured in **trading days** rather than calendar days (252 days/yr.)
 - o **Example**: April 1st \rightarrow April 30th: 22 t-days: T = (22/252 = 0.0873 yr.)

3.1: Implied Volatility

- σ for which Black-Scholes price = Market Price
- Forward-looking (where normal volatility is backward)
 - o High corr. w/ financial crisis, known as "investor fear gauge"
- One-to-one corr. between prices and **implied volatility**
- If actual $\sigma > \sigma_{Implied}$: Option good to buy
- If actual $\sigma > \sigma_{Implied}$: Option price lower than observed

3.2: Estimated Volatility Incorrect?

- Higher σ : increases option prices; Lower σ : decreases option prices
- May be B-S biases
- Mkt. prices may be incorrect e.g. market inefficiency
 - o If market out of equilibrium arbitrage exists

4: Option Payoff at Expiration

- $X > S_T$:
 - Put exercised to receive $(X S_T)$
 - o Call not exercised
- $X < S_T$:
 - o Put not exercised
 - Call exercised to receive $-(S_T X) = (X S_T)$

4.1: Overall Position at Expiration

- Share Value: $(+) S_T$ - FV of Div.: (+) FV(D)- Option Payoff: $(+) (X - S_T)$ - Repay Loans: (-) (FV(D) - X)

- Net: 0

5: Arbitrage & Biases in the Model

- Mispricing should be temporary market should return to equilibrium
- Arbitrageurs don't need to hold until maturity
 - o Buy puts at low then when equilibrium is reached, sell at high
- Based on the European option doesn't account for early exercise however, American Calls on non-div. never early-exercise so basically same as European
- Early Put more common div. or not. If sufficiently **in-the-money**, w/ long (T-t), may be beneficial to early-exercise