

The SIR Model Family

Jonathan Dushoff

MMED 2017

Dynamic modeling connects scales

Measles reports from England and Wales

- Start with rules about how things change in short time steps
 - Usually based on individuals

Compartmental models

Divide people into categories:

 $\blacktriangleright \ \, \text{Susceptible} \to \text{Infectious} \to \text{Recovered}$

What determines transition rates?

- People get better independently
- People get infected by infectious people

Conceptual modeling

Conceptual modeling

- What is the final result?
- When does disease increase, decrease?

Dynamic implementation

- Requires assumptions about recovery and transmission
- The conceptually simplest implementation uses Ordinary Differential Equations (ODEs)
 - Other options may be more realistic
 - Or simpler in practice

Recovery

- \blacktriangleright Infectious people recover at $\emph{per capita}$ rate γ
 - ▶ Total recovery rate is γI
 - Mean time infectious is $D = 1/\gamma$

Transmission

- Susceptible people get infected by:
 - ► Going around and contacting people (rate *c*)
 - Some of these people are infectious (proportion I/N)
 - Some of these contacts are effective (proportion p)
- ▶ Per capita rate of becoming infected is $cpI/N \equiv \beta I/N$
- ▶ Population-level transmission rate is $T = \beta SI/N$

Another perspective on transmission

- Infectious people infect others by:
 - Going around and contacting people (rate c)
 - ▶ Some of these people are susceptible (proportion S/N)
 - Some of these contacts are effective (proportion p)
- ▶ Per capita rate of infecting others is $cpS/N \equiv \beta S/N$
- ▶ Population-level transmission rate is $T = \beta SI/N$

ODE implementation

$$\begin{array}{rcl} \frac{dS}{dt} & = & -\beta \frac{SI}{N} \\ \frac{dI}{dt} & = & \beta \frac{SI}{N} - \gamma I \\ \frac{dR}{dt} & = & \gamma I \end{array}$$

Spreadsheet implementation

http://tinyurl.com/SIR-MMED-2017

ODE assumptions

- Lots and lots of people
- Perfectly mixed

ODE assumptions

- Waiting times are exponentially distributed
- Rarely realistic

Scripts vs. spreadsheets

More about transmission

- $\beta = pc$
 - What is a contact?
 - What is the probability of transmission?
- Sometimes this decomposition is clear
- ▶ But usually it's not

Population sizes

$$\begin{array}{rcl} \frac{dS}{dt} & = & -\beta \frac{SI}{N} \\ \frac{dI}{dt} & = & \beta \frac{SI}{N} - \gamma I \\ \frac{dR}{dt} & = & \gamma I \end{array}$$

Population sizes

$$\begin{array}{ll} \frac{dS}{dt} & = & -\beta(N)\frac{SI}{N} \\ \frac{dI}{dt} & = & \beta(N)\frac{SI}{N} - \gamma I \\ \frac{dR}{dt} & = & \gamma I \end{array}$$

Standard incidence

$$\beta(N) = \beta_0$$

$$T = \frac{\beta_0 SI}{N}$$

$$\mathcal{T} = \frac{\beta_0 S_N}{N}$$

Also known as frequency-dependent transmission

Mass action

- $\beta(N) = \beta_1 N$
- $ightharpoonup \mathcal{T} = \beta_1 SI$
- Also known as density-dependent transmission

General

- May not go to zero when N does
- May not go to ∞ when N does

Digression – units

- $\mathcal{T} = \beta SI/N$: [ppl/time]
- $\triangleright \beta : [1/time]$
 - $\beta/\gamma = \beta D : [1]$
 - Standard incidence, β_0 : [1/time]
 - ▶ Mass-action incidence, β_1 : [1/(people · time)]

Closing the circle

Tendency to oscillate

With individuality

Summary

- Dynamics are an essential tool to link scales
- Very simple models can provide useful insights
- More complex models can provide more detail, but also require more assumptions, and more choices

Conclusions from simple models

- ► There is a link between individual-level processes and population-level outcomes
- The reproductive number (number of cases per case) is a key quantity
 - Disease increases when > 1
 - Decreases when < 1</p>
- Oscillation
 - If susceptibles are replenished, diseases have a tendency to oscillate
 - These oscillations tend to be damped (get smaller through time)
- These conclusions from simple models help guide our understanding of more complicated models

This presentation is made available through a Creative Commons Attribution-Noncommercial license. Details of the license and permitted uses are available at http://creativecommons.org/licenses/by-nc/3.0/

© 2014-2017, International Clinics on Infectious Disease Dynamics and Data

Title: The SIR Model Family
Attribution: Jonathan Dushoff, MMED 2017

Source URL: https://figshare.com/articles/NAME/NUMBER For further information please contact admin@ici3d.org.

