further reproduction or distribution is permitted

CODE

where α is the angle between bent-up reinforcement and longitudinal axis of the member.

22.5.8.6.3 If shear reinforcement consists of a series of parallel bent-up bars or groups of parallel bent-up bars at different distances from the support, V_s shall be calculated by Eq. (22.5.8.5.4).

22.6—Two-way shear strength

22.6.1 General

- **22.6.1.1** Provisions 22.6.1 through 22.6.8 apply to the nominal shear strength of two-way members with and without shear reinforcement.
- **22.6.1.2** Nominal shear strength for two-way members without shear reinforcement shall be calculated by

$$v_n = v_c {(22.6.1.2)}$$

22.6.1.3 Nominal shear strength for two-way members with shear reinforcement shall be calculated by

$$v_n = v_c + v_s \tag{22.6.1.3}$$

- **22.6.1.4** Two-way shear shall be resisted by a section with a depth d and an assumed critical perimeter b_0 as defined in 22.6.4.
- **22.6.1.5** v_c for two-way shear shall be calculated in accordance with 22.6.5. For two-way members with shear reinforcement, v_c shall not exceed the limits in 22.6.6.1.
- **22.6.1.6** For calculation of v_c , λ shall be in accordance with 19.2.4.
- **22.6.1.7** For two-way members reinforced with single- or multiple-leg stirrups, v_s shall be calculated in accordance with 22.6.7.
- **22.6.1.8** For two-way members reinforced with headed shear stud reinforcement, v_s shall be calculated in accordance with 22.6.8.

R22.6—Two-way shear strength

Factored shear stress in two-way members due to shear and moment transfer is calculated in accordance with the requirements of 8.4.4. Section 22.6 provides requirements for determining nominal shear strength, either without shear reinforcement or with shear reinforcement in the form of stirrups or headed shear studs. Factored shear demand and strength are calculated in terms of stress, permitting superposition of effects from direct shear and moment transfer.

Design provisions for shearheads have been eliminated from the Code because this type of shear reinforcement is seldom used in current practice. Shearheads may be designed following the provisions of ACI 318-14.

R22.6.1 General

R22.6.1.4 The critical section perimeter b_o is defined in 22.6.4.

