

Direct estimation of fetal head circumference from ultrasound images based on regression CNN

Jing Zhang¹ jing.zhang@insa-rouen.fr
Caroline Petitjean¹ caroline.petitjean@univ-rouen.fr
Pierre Lopez¹ pierre.lopez@etu.univ-rouen.fr
Samia Ainouz¹ samia.ainouz@insa-rouen.fr

¹ Normandie Université, INSA Rouen, Université de Rouen, LITIS Lab

June 26, 2020

Background

Head Circumference (HC)-One of fetal biometrics.

The HC can be used to estimate the gestational age and monitor growth of the fetus.

Figure: Ultrasound images of fetal head¹, corresponding head circumference (HC) is displayed in millimeters and pixels.

Related works

- Manually annotated by an experienced sonographer and a medical researcher(van den Heuvel et al., 2018).
- Automated measurements based on segmentation:
 - Image processing algorithm (Lu, Wei, Jinglu Tan, and Randall Floyd, 2005)
 - Machine learning technique (Feature extraction+ellipse fitting) (van den Heuvel et al.,2018).
 - Deep learning technique (CNN based model to segment and ellipse fitting(Kim et al., 2019)).

Our method

State of the art:

Benefits of our method:

- Doesn't need Ground truth images, no segmentation errors.
- Can estimate the HC value directly by a regression CNN model.

4 of 12

Regression CNN architecture

2 changes from classic CNN to regression CNN model:

- Last layer: linear regression layer.
- Loss function: regression loss.

$$- MAE = \frac{1}{n} \sum_{i=1}^{n} |p_i - g_i|$$

$$- MSE = \frac{1}{n} \sum_{i=1}^{n} (p_i - g_i)^2$$

$$- HL = \begin{cases} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (p_i - g_i)^2, & \text{for } |p_i - g_i| < \delta \\ \frac{1}{n} \sum_{i=1}^{n} \delta * (|p_i - g_i| - \frac{\delta}{2}), & \text{otherwise} \end{cases}$$

Note: predicted (resp. ground truth) values are denoted p_i (resp. g_i).

CNN regressors

We tested 4 architectures:

- Custom Regression CNN_1M
- Custom Regression CNN_263K
- Regression VGG16
- Regression ResNet50

(a) Regression CNN_1M (b) Regression CNN_263K

Experiment

• The HC18 dataset

- HC18 training dataset: 999 US images, ground truth HC values range from 439.1 pixels (44.3 mm) to 1786.5 pixels (346.4 mm).
- Data augmentation: horizontal flipping, translation (5 pixels offset), rotation (10 degrees)
- Image preprocessing: Resizing(800*540 to 224*224). Normalization: images: $\frac{x-\mu}{\sigma}$. The HC values: $\frac{HC}{\max(HC)}$.

Experimental setup

- Hyper parameter: 5-fold cross validation, $\delta=0.5$ in Huber loss, learning rate $1e^{-3}$, Adam optimizer, batch size is 8.
- Metrics: Mean Absolute Error (mae), percentage of mae (pmae).
- Implementation: Keras and Tensorflow.

Performance of 4 CNN regresssor models

Table: Performance of regression models in terms of mean absolute error (mae) in pixels and %mae (\pm standard deviation) for three different loss functions: MSE, MAE, HL

	CNN_263K		CNN_1M		Reg-VGG16		Reg-ResNet50	
loss	mae(pix)	pmae(%)	mae(pix)	pmae(%)	mae(pix)	pmae(%)	mae (pix)	pmae(%)
MSE	90.18±86.42	8.74 ± 12.51	50.96±58.61	4.96±7.85	38.85 ±40.31	5.31±5.63	36.21 ±35.82	4.62±4.27
MAE	$101.85{\pm}108.51$	10.99 ± 18.48	51.61 ± 59.96	5.15 ± 8.66	40.17 ± 40.99	5.26 ± 5.79	37.34 ± 37.46	$4.85{\pm}4.93$
HL	98.18 ± 89.77	$9.69{\pm}13.9$	53.87 ± 66.46	5.45 ± 9.08	40.7 ± 40.07	$5.67{\pm}5.19$	38.18 ± 37.32	$5.16{\pm}4.84$

- The loss MSE performs best among three loss functions.
- The Regression VGG16 and Regression ResNet50 are better than the customized model.

Performance of CNN regresssor based on VGG16 and ResNet50

Table: Performance of Reg-Resnet50 vs Reg-VGG16 in terms of mae (pixels and mm). † : significantly different (p < 0.05) from all other methods.

	Reg Res	Reg VGG16		
loss	mae (pixels)	mae (mm)	mae (pixels)	mae (mm)
MSE	$36.21{\pm}35.82^{\dagger}$	4.52 \pm 4.27 [†]	$38.85{\pm}40.31$	4.87 ±5.81
MAE	37.34 ± 37.46	4.78 ± 4.41	40.17 ± 40.99	$5.46{\pm}5.99$
HL	38.18 ± 37.32	4.68 ± 4.37	40.7 ± 40.07	5.19 ± 5.42

- The loss MSE with ResNet performs best.
- Room for improve in prediction error (segmentation error is around 2 mm ((Sobhaninia et al., 2019))).

Qualitative results

True=1303.3, pred=1298.54

True=663.2, pred=668.15

True=1320.7, pred=1318.84

True=1399.5, pred=1399.0

True=1467.5, pred=1471.59

True=1060.6, pred=1059.69

Figure: Good prediction with Reg-Resnet50-MSE

Conclusion

- We proposed a regression CNN model that can directly estimate the HC value.
- Encouraging results are obtained according to the experiment results, while room for improvement is left.
- Future work will focus on improving the performance like attention mechanism and multi-task learning.

Acknowledgment:

China Scholarship Council (CSC)

Centre Régional Informatique et d'Applications Numériques de Normandie (CRIANN)

Thank you for your attention!

12 of 12