

1^{er} mars 2020

SPITZER Victor, EL CHEAIRI Houssam

TABLE DES MATIÈRES

	0.1	Victor Spitzer
	0.2	Houssam El Cheairi
1	Rés	olution théorique du problème
	1.1	Question 1.1
	1.2	Question 1.2
	1.3	Notation
	1.4	Question 1.3
	1.5	Question 1.4
	1.6	Question 1.5
	1.7	Question 1.6
	1.8	Question 1.7
2	Tro	ncature spatiale
	2.1	Question 2.1
	2.2	Question 2.2
3	App	proximation numérique 11
	3.1	Question 3.1
	3.2	Question 3.2
	3.3	Question 3.3
	3.4	Question 3.4

0.1 VICTOR SPITZER

Questions 1.1, 1.2, 1.3, 1.4, 1.6 (formulation variationnelle, existence et unicité)

0.2 Houssam El Cheairi

Questions 1.5,1.6 (énergie), 1.7, 2.1, 2.2, 3.1, 3.2.

1

RÉSOLUTION THÉORIQUE DU PROBLÈME

1.1 Question 1.1

Soit ϕ une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} à support compact, donc intégrable sur \mathbb{R} . Par intégration par parties :

$$\int_0^{+\infty} \phi(r)^2 dr = -\int_0^{+\infty} 2r \phi'(r) \phi(r) dr$$

On en déduit par Cauchy-Schwartz :

$$(\int_0^{+\infty} \phi(r)^2 dr)^2 \le 4(\int_0^{+\infty} r^2 \phi'(r)^2 dr)(\int_0^{+\infty} \phi(r)^2 dr)$$

D'où:

$$\int_0^{+\infty} \phi(r)^2 dr \le 4 \int_0^{+\infty} r^2 \phi'(r)^2 dr$$

1.2 Question 1.2

Soit $\phi \in \mathcal{C}_0^{\infty}(\mathbb{R}^3)$ avec $\phi|_{\Omega}$ constante. Considérons alors un réel R > 0 tel que $\operatorname{supp}(\phi) \subset \mathbb{B}(0,R)$ et posons $\delta = d(0,\Omega)$. On a alors sans difficultés :

$$\int_{\mathbb{R}^3\backslash\bar{\Omega}}\frac{\phi(x)^2}{|x|^2}dx\leq \int_{\mathbb{S}}\int_{\delta}^R\frac{\phi(rw)^2}{r^2}r^2drdw=\int_{\mathbb{S}}\int_{\delta}^R\phi(rw)^2drdw$$

Or $\forall w \in \mathbb{S}$:

$$\int_{\delta}^{R} \phi(rw)^{2} dr \leq \int_{0}^{+\infty} \phi(rw)^{2} dr \leq_{(1.1)} 4 \int_{0}^{+\infty} (r\psi'(r))^{2} dr$$

Où $\forall \alpha \in \mathbb{R}, \psi(\alpha) := \phi(\alpha w)$. On en déduit alors que :

$$\forall r \in \mathbb{R} : \psi'(r) = d\phi_{rw}.(r) = \nabla \phi(rw).w$$

Et donc par Cauchy-Shwartz:

$$(\psi'(r))^2 = |\nabla \phi(rw) \cdot w|^2 \le |\nabla \phi(rw)|^2 |w|^2 = |\nabla \phi(rw)|^2$$

Finalement on obtient:

$$\int_{\delta}^{R} \phi(rw)^{2} dr \le 4 \int_{0}^{+\infty} r^{2} |\nabla \phi(rw)|^{2} dr$$

D'où:

$$\int_{\mathbb{R}^3\backslash\bar{\Omega}}\frac{\phi(x)^2}{|x|^2}dx\leq 4\int_{\mathbb{S}}\int_0^{+\infty}|\nabla\phi(rw)|^2r^2drdw=4\int_{\mathbb{R}}|\nabla\phi(x)|^2dx$$

Or puisque $\phi|_{\Omega}$ est constante on en déduit que $\int_{\bar{\Omega}} |\nabla \phi(x)|^2 dx = 0$. En effet $\nabla \phi = 0$ sur Ω et donc sur $\bar{\Omega}$ par continuité de $\nabla \phi$.

On en déduit finalement :

$$\int_{\mathbb{R}^3 \setminus \bar{\Omega}} \frac{\phi(x)^2}{|x|^2} dx \le 4 \int_{\mathbb{R} \setminus \bar{\Omega}} |\nabla \phi(x)|^2 dx$$

1.3 NOTATION

Pour la suite de la rédaction on notera : $\Gamma = \mathbb{R}^3 \backslash \overline{\Omega}$

1.4 Question 1.3

On définit l'ensemble W donné par :

W= {
$$\phi$$
 telle que $\frac{\phi}{|x|} \in L^2(\Gamma)$, $\nabla \phi \in L^2(\Gamma)$ et $\phi_{|\delta\omega}$ est constante }
 $\forall \phi \in W$, $\|\phi\|_W = \|\frac{\phi}{|x|}\|_{L^2(\Gamma)} + \|\nabla \phi\|_{L^2(\Gamma)}$

Montrons que W est de Hilbert; il est évident que W est un espace vectoriel normé, on doit donc montrer que cet espace est complet.

Soit (ϕ_n) une suite de Cauchy dans W, alors $(\frac{\phi_n}{|x|})_{n\in\mathbb{N}}$ et $(\nabla\phi_n)_{n\in\mathbb{N}}$ sont de Cauchy dans $L^2(\Gamma)$. Cet espace est complet donc les suites sont convergentes pour la norme $L^2(\Gamma)$.

En particulier, $(\frac{\phi_n}{|x|})$ converge vers $v \in L^2(\Gamma)$, et on a :

$$\nabla(\frac{\phi_n(x)}{|x|}) = \frac{1}{|x|}(\nabla\phi_n(x) - \phi_n(x)\frac{x}{|x|^2})$$

Le gradient de $(\frac{\phi_n}{|x|})$ est donc bien défini sur Γ , appartient à $L^2(\Gamma)$ et est de Cauchy dans $L^2(\Gamma)$ puisque (ϕ_n) est de Cauchy dans W. On en déduit que $(\frac{\phi_n}{|x|})$ appartient à l'espace de Sobolev $H^1(\Gamma) \subset L^2(\Gamma)$ est de Cauchy dans cet espace pour la norme H^1 . Comme cet espace est complet, on a par unicité de la limite : $v \in H^1(\Gamma)$. Le gradient de v est donc bien défini, et intégrable sur Γ .

On peut alors écrire:

$$\nabla(|x|v)(x) = |x|\nabla v(x) + v(x)\frac{x}{|x|}$$

On en déduit que ce gradient est lui aussi bien défini sur Γ .

On souhaite montrer la convergence de (ϕ_n) vers |x|v dans W. Or :

$$\|\phi_n - |x|v\|_W = \|\frac{\phi_n}{|x|} - v\|_{L^2(\Gamma)} + \|\nabla\phi_n - \nabla(|x|v)\|_{L^2(\Gamma)}$$

Par hypothèse, $\|\frac{\phi_n}{|x|} - v\|_{L^2(\Gamma)}$ converge vers 0. Il reste à démontrer :

$$\lim \|\nabla \phi_n - \nabla(|x|v)\|_{L^2(\Gamma)} = 0.$$

Tout d'abord, on remarque :

$$\nabla \phi_n(x) = |x| \nabla \left(\frac{\phi_n(x)}{|x|}\right) + \phi_n(x) \frac{x}{|x|^2}$$

On peut donc reformuler le problème :

$$\nabla \phi_n - \nabla(|x|v) = |x|(\nabla(\frac{\phi_n}{|x|}) - \nabla v) + \frac{x}{|x|}(\frac{\phi_n}{|x|} - v)$$

La suite de fonction $(\frac{x}{|x|}(\frac{\phi_n}{|x|}-v))$ converge vers 0 pour la norme de $L^2(\Gamma)$. Il reste à prouver la convergence de $(|x|(\nabla(\frac{\phi_n}{|x|})-\nabla v))$ vers 0 pour cette norme.

Posons $g_n = \nabla(\frac{\phi_n}{|x|}) - \nabla v$, on commence par observer ceci:

$$|x|g_n(x) = \nabla \phi_n(x) - \nabla(|x|v) - \frac{x}{|x|} (\frac{\phi_n}{|x|} - v)$$

Puisque $(\nabla \phi_n)$ est de Cauchy, la suite converge dans $L^2(\Gamma)$, et on a bien convergence pour la norme $L^2(\Gamma)$ de $(|x|g_n)$

De plus, par Cauchy-Schwartz, puisque |x| est bornée sur le support de μ et (g_n) converge vers 0 pour la norme $L^2(\Gamma)$, on a pour $\mu \in \mathcal{C}_0^{\infty}(\Gamma)$:

$$\int_{\Omega} |x| g_n(x) \mu(x) dx \to 0$$

Ainsi, puisque ($|x|g_n$) admet un limite dans $L^2(\Gamma)$, on a par convergence dominée (car le support de μ est borné) :

$$\int_{\Omega} \lim (|x|g_n(x))\mu(x)dx = 0$$

Par conséquent, puisque ce résultat s'applique pour tout $\mu \in \mathcal{C}^\infty_c(\Omega)$, on a prouvé :

$$\lim ||x|(\nabla(\frac{\phi_n}{|x|}) - \nabla v)||_{L^2(\Gamma)} = 0.$$

On en déduit :

$$\lim \|\nabla \phi_n - \nabla(|x|v)\|_{L^2(\Gamma)} = 0$$

Donc la suite de Cauchy (ϕ_n) converge vers |x|v pour la norme $||.||_W$. On a prouvé la complétude de W.

On prouve ensuite la densité de $\mathcal{C}_0^\infty(\mathbb{R}^3 \backslash \Omega)$ dans W.

Soit ϕ dans W, alors on remarque d'après ce qui a été mentionné précédemment que la fonction $\frac{\phi}{|x|}$ appartient à l'espace $H^1(\Gamma)$. Par théorème de densité, on a une suite (w_n) dans $\mathcal{C}_0^{\infty}(\mathbb{R}^3\backslash\Omega)$ qui converge vers $\frac{\phi}{|x|}$ pour la norme H^1 . Or $(|x|w_n)$ est aussi une suite dans $\mathcal{C}_0^{\infty}(\mathbb{R}^3\backslash\Omega)$, et :

$$\|\phi - |x|w_n\|_W = \|w_n - \frac{\phi}{|x|}\|_{L^2(\Gamma)} + \|\nabla(|x|w_n) - \nabla\phi\|_{L^2(\Gamma)}$$

Par hypothèse, la suite $(w_n - \frac{\phi}{|x|})$ converge vers 0. De plus, en réutilisant ce qui a été écrit pour prouver la complétude de W, on peut prouver que la suite $(\nabla(|x|w_n) - \nabla\phi)$ converge également vers 0. On a donc prouvé la densité de $\mathcal{C}_0^{\infty}(\mathbb{R}^3\backslash\Omega)$ dans W.

1.5 Question 1.4

Supposons qu'il y ait équivalence entre la norme H^1 et la norme W. On a k,K>0 tels que :

$$k\|\phi\|_{H^1} \le \|\phi\|_W \le K\|\phi\|_{H^1}, \, \forall \phi \in W$$

Soit la suite (ϕ_n) de Cauchy pour la norme H^1 , elle l'est aussi pour la norme W donc converge pour cette norme. Par conséquent, la suite converge pour la norme H^1 et l'espace vectoriel normé $(W, \|.\|_{H^1})$ est complet.

On souhaite donc prouver cette équivalence des normes. On peut d'ores et déjà constater :

$$\forall \phi \in W, \, \|\phi\|_{H^1} = \|\nabla \phi\|_{L^2(\Gamma)} \le \|\frac{\phi}{|x|}\|_{L^2(\Gamma)} + \|\nabla \phi\|_{L^2(\Gamma)} = \|\phi\|_W$$

On a donc $||.||_{H^1} \le ||.||_W \text{ sur W}.$

Soit $\phi \in W$, il existe une suite (w_n) de fonctions dans $C_0^{\infty}(\Gamma)$ qui converge vers ϕ dans W, pour la norme $\|.\|_W$ et donc aussi pour la norme $\|.\|_{H^1}$. Par conséquent :

$$||w_n||_W \to ||\phi||_W$$
, et $||w_n||_{H^1} \to ||\phi||_{H^1}$

Par ailleurs, on a $\mathcal{C}_0^{\infty}(\Gamma) \subset \mathcal{C}_0^{\infty}(\mathbb{R}^3)$, car Ω est un ouvert borné, donc l'adhérence de tout ensemble dans Ω , y compris le support d'une fonction quelconque, est fermée bornée. D'après la question 1.2, on a donc :

$$\forall n \in \mathbb{N}, \int_{\Gamma} \frac{w_n(x)^2}{|x|^2} dx \le 4 \int_{\Gamma} |\nabla w_n(x)|^2 dx$$

D'où:

$$\forall n \in \mathbb{N}, \|w_n\|_W \le 5\|w_n\|_{H^1}$$

Et donc:

$$\|\phi\|_{H^1} \le \|\phi\|_W \le 5\|\phi\|_{H^1}$$

D'où l'équivalence des normes, et la complétude de $(W, ||.||_{H^1})$.

1.6 Question 1.5

Soit R > 0 tel que $\bar{\Omega} \subset \mathbb{B}(0, R)$. On va prouver que la fonction définie sur $\mathbb{R}^3 \setminus \bar{\Omega}$ par $:\psi(x) = \frac{1}{|x|}$ est bien dans W_0 ce qui prouvera que $W_0 \neq H_0^1(\mathbb{R}^3 \setminus \bar{\Omega})$ puisque $\psi \notin H_0^1(\mathbb{R}^3 \setminus \bar{\Omega})$. (en effet $\psi \notin L^2(\mathbb{R}^3 \setminus \bar{\Omega})$)

Soit $n \in \mathbb{N}^*$. On rappelle qu'on peut (grâce à des couplages de fonctions plates) construire une fonction $\pi_n \in C_0^{\infty}(\mathbb{R}^3)$ tel que :

$$\begin{cases} \pi(x) = 1 & \text{si } R + \frac{1}{n} < |x| \le nR \\ \pi(x) = 0 & \text{si } |x| < R \text{ ou } |x| > nR + \frac{1}{n} \\ \pi(Rw) = \pi((nR + \frac{1}{n})w) = 0 & \forall w \in \mathbb{S} \\ \pi((R + \frac{1}{n})w) = \pi(nRw) = 1 & \forall w \in \mathbb{S} \end{cases}$$

Définissons alors ψ_n sur $\mathbb{R}^3 \setminus \bar{\Omega}$

$$\psi_n(x) = \begin{cases} \frac{1}{|x|} \pi_n(x) & \text{si } x \in \mathbb{R} \setminus \mathbb{B}(0, R) \\ 0 & \text{sinon} \end{cases}$$

On voit alors que $\psi_n \in \mathcal{C}_0^{\infty}(\mathbb{R}^3 \setminus \bar{\Omega})$ et que $\psi_n \xrightarrow[n \to \infty]{|\cdot|_W} \psi$ où $\psi \in W_0$ est définie par :

$$\begin{cases} \psi(x) = \frac{1}{|x|} & \text{si } R \le |x| \\ 0 & \text{sinon} \end{cases}$$

Ce qui conclut la démonstration au vu de l'analyse établie au début de la question.

1.7 Question 1.6

En supposant que toutes les contraintes soient respectées, on utilise la formule de Green, telle que : $\int_{\Gamma} \Delta \phi. w dx = -\int_{\Gamma} \nabla \phi. \nabla w dx + \int_{\delta \Gamma} \frac{\delta \phi}{\delta n} w dx$

Ainsi pour $\Delta \phi = 0$ sur Γ et w = 0 sur δ , on a :

$$\int_{\Gamma} \nabla \phi . \nabla w dx = 0$$

On en déduit la formulation variationnelle :

Trouver
$$\phi \in W_1$$
, telle que $\forall w \in W_0$, $\int_{\Gamma} \nabla \phi \cdot \nabla w dx = 0$

Montrons l'existence et l'unicité d'une telle solution. On remarque immédiatement que W est un espace de Hilbert pour le produit scalaire $(.,.)_{H^1}$ (Q1.4). L'espace W_0 est un sous espace vectoriel fermé dans W, donc admet un complémentaire orthogonal dans W, non vide, pour le produit scalaire $(.,.)_{H^1}$. Il existe donc une fonction $\phi \in W_0^{\perp}$ non nulle, telle que :

$$\forall w \in W_0, \int_{\Gamma} \nabla \phi \cdot \nabla w dx = 0$$

Cette fonction ϕ n'appartient pas à W_0 donc vaut la constante C > 0 sur $\delta\Omega$. Ainsi, en posant $\phi_1 = \frac{\phi}{C}$, on a prouvé l'existence d'une solution à la formulation variationnelle.

Supposons qu'on ait ϕ_1 et ϕ_1' deux solutions à la formulation variationnelle. Alors $(\phi_1 - \phi_1') \in W_0$, et :

$$\forall w \in W_0, \int_{\Gamma} \nabla (\phi_1 - \phi_1') \cdot \nabla w dx = 0 \implies \|\phi_1 - \phi_1'\|_{H^1} = 0$$

On en déduit que $\phi_1 = \phi_1'$ presque partout. La formulation variationnelle admet donc bien une unique soution.

On définit pour $\psi \in W_1$ l'énérgie :

$$J(\psi) = \frac{1}{2} \int_{\mathbb{R}^3 \setminus \bar{\Omega}} |\nabla \psi(x)|^2 dx$$

Montrons que ϕ minimise $J(\psi)$ sur W_1 . Notons d'abord que $W_1 = {\phi + \varphi, \varphi \in W_0}$, on a alors :

$$J(\phi + \varphi) = J(\phi) + J(\varphi) + \int_{\mathbb{R}^3 \setminus \bar{\Omega}} \nabla \phi(x) \nabla \varphi(x) dx = J(\phi) + J(\varphi) \ge J(\phi)$$

Et puisque φ est pris quelconque dans W_0 on en déduit que :

$$J(\phi) = \min_{\psi \in W_1} \frac{1}{2} \int_{\mathbb{R}^3 \setminus \bar{\Omega}} |\nabla \psi(x)|^2 dx$$

1.8 QUESTION 1.7

Soit $\lambda \in \mathbb{R}$. Si $\lambda = 0$ on a alors $C(\lambda \Omega) = 0 = \lambda C(\Omega)$

Supposant maintenant que $\lambda \neq 0$. Soit W_1' le sous espace affine jouant le rôle de W_1 pour $\lambda\Omega$. Soit alors l'application Φ définie de W_1' dans W_1 par :

$$\forall \psi \in W_1', \forall x \in \mathbb{R}^3 \setminus \bar{\Omega} : \Phi(\psi)(x) = \psi(\lambda x)$$

On a alors sans difficulté que Φ est bijective de W_1' dans W_1 (attention, c'est uniquement le cas car $\lambda \neq 0$!).

De plus, on a pour $\psi \in W_1'$:

$$\int_{\mathbb{R}^3 \setminus \bar{\Omega}} |\nabla \Phi(\psi)(x)|^2 dx = \int_{\mathbb{R}^3 \setminus \bar{\Omega}} \lambda^2 |\nabla \psi(\lambda x)|^2 dx$$

Par changement de variable $u = \lambda x \ (du = \lambda^3 dx)$:

$$\int_{\mathbb{R}^3\backslash\bar{\Omega}} |\nabla\Phi(\psi)(x)|^2 dx = \int_{\mathbb{R}^3\backslash\lambda\bar{\Omega}} \frac{1}{\lambda} |\nabla\psi(u)|^2 du$$

On a donc par bijectivité de Φ :

$$C(\Omega) = \min_{\psi \in W_1} \int_{\mathbb{R}^3 \backslash \bar{\Omega}} |\nabla \psi(x)|^2 dx = \min_{\psi \in W_1'} \int_{\mathbb{R}^3 \backslash \bar{\Omega}} |\nabla \Phi(\psi)(x)|^2 dx = \min_{\psi \in W_1'} \int_{\mathbb{R}^3 \backslash \lambda \bar{\Omega}} \frac{1}{\lambda} |\nabla \psi(u)|^2 du = \frac{1}{\lambda} C(\lambda \Omega)$$

On en déduit que :

$$\forall \lambda \in \mathbb{R}, C(\lambda \Omega) = \lambda C(\Omega)$$

2

TRONCATURE SPATIALE

2.1 Question 2.1

On introduit les deux espaces suivant :

$$U = \{ \phi \text{ tel que } \frac{\phi}{|x|} \in L^2(B \setminus \bar{\Omega}), \phi_{|\partial\Omega} = Cte, \nabla \phi \in L^2(B \setminus \bar{\Omega}), \phi_{|\partial B} = 0 \},$$

$$U_1 = \{ \phi \in U\phi_{|\partial\Omega} = 1 \}$$

$$U_0 = \text{l'adhérence de } \mathcal{C}_0^{\infty}(B \setminus \bar{\Omega}) \text{ dans } U$$

L'analyse menée pour les sous espaces W, W_0, W_1 reste vraie pour les sous espaces U, U_0, U_1 , ainsi U, U_0, U_1 sont des espaces de Hilbert pour les normes induites. On a alors en appliquant les formules de Green la formulation variationnelle suivante :

Trouver
$$\phi \in U_1, \forall w \in U_0$$
:

$$\int_{B\setminus \bar{\Omega}} \nabla \phi(x) \nabla w(x) dx = 0$$

L'existence et l'unicité peuvent être demandé de la même manière qu'à la guestion 1.6.

2.2 Question 2.2

On definit naturellement les sous espaces $V_{h,0}, V_{h,1}$ de V_h représentant U_0, U_1 . Notons \mathcal{T}_h le maillage obtenu et soit $(\hat{a}_i)_{1i \leq n_{dl}}$ les noeuds des degrés de liberté et soit $(\varphi_i)_{1 \leq i \leq n_{dl}}$ une base (d'éléments de \mathbb{P}_1) de $V_{h,0}$ adapté à $(\hat{a}_i)_{1i \leq n_{dl}}$.

Trouver
$$\phi_h \in V_{h,1}$$
 tel que :

$$\int_{B \setminus \bar{\Omega}} \nabla \phi_h(x) \nabla w_h(x) dx = 0, \forall w_h \in V_{h,0}$$

Soit alors $\xi_h \in V_{h,1}$ quelconque. On remarque que $V_{h,1} = V_{h,0} + \xi_h$ ainsi en notant par a(.,.) l'opérateur intégrale en question, la formulation précendente est alors équivalent à :

Trouver
$$v_h \in V_{h,0}$$
 tel que:

$$a(v_h, w_h) = -a(\xi_h, w_h), \forall w_h \in V_{h,0}$$

On pourra alors reconstruire la solution ϕ_h en posant $\phi_h = v_h + \xi_h$. D'autre part u_h est une solution si et seulement si :

$$\forall i \in [|1, n_{dl}|], a(v_h, \varphi_i) = -a(\xi_h, \varphi_i)$$

Décomposant u_h dans la base $(\varphi_i)_{1 \leq i \leq n_{dl}}$:

$$u_h = \sum_{i=1}^{n_{dl}} \alpha_i \varphi_i$$

Le système d'équation précedent est alors équivalent à :

$$\forall i \in [|1, n_{dl}|], \sum_{k=1}^{n_{dl}} \alpha_k a(\varphi_k, \varphi_i) = -a(\xi_h, \varphi_i)$$

Soit en posant $A_h = (a(\varphi_i, \varphi_j))_{1 \leq i, j \leq n_{dl}}, U_u = (\alpha_i)_{1 \leq i \leq n_{dl}}, b_h = (-a(\xi_h, \varphi_i))_{1 \leq i \leq n_{dl}}$:

$$A_h U_h = b_h$$

Montrons alors l'existence et l'unicité de la solution U_h au problème variationnelle discrétisé. A_h est une matrice réelle symétrique, montrons qu'elle est définie positive.

On a pour un vecteur U_h :

$${}^{t}U_{h}A_{h}U_{h} = \sum_{1 \leq i,j \leq n_{dl}} \alpha_{i}\alpha_{j}a(\varphi_{i},\varphi_{j}) = a(\sum_{i=1}^{n_{dl}} \alpha_{i}\varphi_{i}, \sum_{j=1}^{n_{dl}} \alpha_{j}\varphi_{j}) = a(\varphi,\varphi) \geq 0$$

Où $\varphi = \sum_{i=1}^{n_{dl}} \alpha_i \varphi_i$, et puisque a(.,.) est un produit scalaire, on a :

$${}^{t}U_{h}A_{h}U_{h} = 0 \iff a(\varphi, \varphi) = 0 \iff \varphi = 0$$

Ainsi A_h est une matrice symétrique définie positive et par consequent inversible. Il en découle que l'équation matricielle $A_hU_h=b_h$ admet une et une unique solution U_h .

3

APPROXIMATION NUMÉRIQUE

3.1 QUESTION 3.1

Puisque les domaines considérés ont tous la propriété de symétrie cylindrique par rapport à l'axe z, on remarque alors que si ϕ est solution de la formulation variationnelle de la question 1.6 alors $\forall \gamma \in \mathbb{R}, \phi_{\gamma}(r, \theta, z) := \phi(x, \theta + \gamma, z)$ est aussi une telle solution, en effet :

$$\forall w \in W_0: \int_{\mathbb{R}^3 \setminus \bar{\Omega}} \nabla \phi_{\gamma}(x) \nabla (x) dx = \int_{\mathbb{R}^3 \setminus \bar{\Omega}} \nabla \phi(x) \nabla (x) dx$$

Où on a effectué un changement le variable $\theta' = \theta - \gamma$ à dernière égalité, ce qui est possible étant donné que Ω est à symétrie cylindrique d'axe z. De plus puisque $\phi_{\gamma} \in W_1$ alors ϕ_{γ} est aussi solution de la formulation variationnelle, et donc par unicité : $\forall \gamma \in \mathbb{R}, \phi = \phi_{\gamma}$. Donc ϕ ne dépend pas de θ . Remarquons aussi qu'il suffit alors de considérer des fonctions tests w indépendantes de θ , ainsi ϕ est solution de :

Trouver
$$\phi \in W_1$$
 indépendant de θ
$$\iint_{\mathbb{R}^3 \setminus \bar{\Omega}} \nabla \phi(r,z) \nabla w(r,z) dr dz = 0, \forall w \in W_0 \text{ indépendant de } \theta$$

3.2 Question 3.2

Dans le cas d'un cylindre B amputé d'une ellipsoide de révolution :

$$W_0 = \{ \phi \in H^1(B), \phi_{\partial\Omega} = 1, \phi_{\partial} = 0 \}$$

$$W_1 = \{ \phi \in H^1(B), \phi_{\partial\Omega} = 0, \phi_{\partial} = 0 \}$$

La formulation variationnelle est alors :

$$\begin{cases} \text{Trouver } \phi \in W_1 \text{ indépendant de } \theta \\ \iint_{B \setminus \bar{K}} \nabla \phi(r,z) \nabla(r,z) r dr dz = 0, \forall w \in W_0 \text{ indépendant de } \theta \end{cases}$$

Où
$$K = \{(r, z) \in \mathbb{R}^2, \forall \theta \in \mathbb{R}, (r\cos(\theta), r\sin(\theta), z) \in B \setminus \bar{\Omega}\}$$

3.3 QUESTION 3.3

On a tenté de résoudre le problème variationnelle ci-dessus avec FreeFem++ sauf que les solutions générés étaient constantes, ce qui contredit ce que la théorie nous apprend, on a donc plutot résoulu un problème approché dans lequel la forme linéaire l(.) n'est pa nulle mais très petite empériquement parlant, plus précisément, $l(v) = \int \epsilon v$ avec $|\epsilon| << 1$. On a alors obtenu le résultats suivant pour r = 0.5

3.4 Question 3.4

On a tracé les isovaleurs des solutions pour $r_0 = 0.5, 1, 2$, on obtient alors :

 \times

■ FreeFem++ / Program ended; enter ESC to exit)

FIGURE 1

FIGURE 2

 \times

■ FreeFem++ / Program ended; enter ESC to exit)

FIGURE 3