1 Lorentzian matter-coupled F(4) gauged supergravity

The theory of matter-coupled F(4) gauged supergravity was first studied in , with some applications and extensions given in . Below we present a short review of this theory, similar to that given in .

1.1 The bosonic Lagrangian

We begin by recalling the field content of the 6-dimensional supergravity multiplet,

$$(e^a_\mu, \, \psi^A_\mu, \, A^\alpha_\mu, \, B_{\mu\nu}, \, \chi^A, \, \sigma)$$
 (1)

The field e^a_μ is the 6-dimensional frame field, with spacetime indices denoted by $\{\mu,\nu\}$ and local Lorentz indices denoted by $\{a,b\}$. The field ψ^A_μ is the gravitino with the index A,B=1,2 denoting the fundamental representation of the gauged $SU(2)_R$ group. The supergravity multiplet contains four vectors A^α_μ labelled by the index $\alpha=0,\ldots 3$. It will often prove useful to split $\alpha=(0,r)$ with $r=1,\ldots,3$ an $SU(2)_R$ adjoint index. Finally, the remaining fields consist of a two-form $B_{\mu\nu}$, a spin- $\frac{1}{2}$ field χ^A , and the dilaton σ . The only allowable matter in the d=6, $\mathcal{N}=2$ theory is the vector multiplet, which has the following field content

$$(A_{\mu}, \lambda_{A}, \phi^{\alpha})^{I} \tag{2}$$

where $I=1,\ldots,n$ labels the distinct matter multiplets included in the theory. The presence of the n new vector fields A^I_{μ} allows for the existence of a further gauge group G_+ of dimension $\dim G_+=n$, in addition to the gauged $SU(2)_R$ R-symmetry. The presence of this new gauge group contributes an additional parameter to the theory, in the form of a coupling constant λ . Throughout this section, we will denote the structure constants of the additional gauge group G_+ by C_{IJK} . However, these will play no role in what follows, since we will be restricting to the case of only a single vector multiplet n=1, in which case $G_+=U(1)$. In (half-)maximal supergravity, the dynamics of the 4n vector multiplet scalars $\phi^{\alpha I}$ is given by a non-linear sigma model with target space G/K; see e.g. . The group G is the global symmetry group of the theory, while K is the maximal compact subgroup of G. As such, in the Lorentzian case the target space is identified with the following coset space,

$$\mathcal{M} = \frac{SO(4, n)}{SO(4) \times SO(n)} \times SO(1, 1)$$
(3)

where the second factor corresponds to the scalar σ which is already present in the gauged supergravity without added matter. In the particular case of n=1, explored here and in , the first factor is nothing but four-dimensional hyperbolic space \mathbb{H}_4 . When we analytically continue to the Euclidean case, it will prove very important that we analytically continue the coset space as well, resulting in a dS₄ coset space. This will be discussed more in the following section.