AI534 — Written Homework Assignment 2 — Due Oct 29th, 2021

- 1. (Subgradient) (5 pts) Consider the L_1 form function for $\mathbf{x} \in R^d$: $f(\mathbf{x}) = |\mathbf{x}|_1 = \sum_{i=1}^d |x_i|$. Show that $\mathbf{g} = [g_1, g_2, ..., g_d]^T$ is a subgradient of $f(\mathbf{x})$ at $\mathbf{x} = \mathbf{0}$ if every $g_i \in [-1, 1]$. Hint: go back to the definition of subgradient: g is a subgradient of f(x) at x_0 if $\forall x, f(x) \geq f(x_0) + g^T(x x_0)$
- 2. (Perceptron) (5 pts) Consider the following argument. We know that the number of steps for the perceptron algorithm to converge for linearly separable data is bounded by $(\frac{D}{\gamma})^2$. If we multiple the input \mathbf{x} by a small constant α , which effectively reduces the bound on $|\mathbf{x}|$ to $D' = \alpha D$, we can reduce the upper bound to $(\alpha \frac{D}{\gamma})^2$. Is this argument correct? Why?
- 3. (Cubic Kernels.) (10 pts) In class, we showed that the quadratic kernel $K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i \cdot \mathbf{x}_j + 1)^2$ was equivalent to mapping each $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$ into a higher dimensional space where

$$\Phi(\mathbf{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1).$$

Now consider the cubic kernel $K(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i \cdot \mathbf{x}_j + 1)^3$. What is the corresponding Φ function?

- 4. (Kernel or not). In the following problems, suppose that K, K_1 and K_2 are kernels with feature maps ϕ , ϕ_1 and ϕ_2 . For the following functions K'(x,z), state if they are kernels or not. If they are kernels, write down the corresponding feature map, in terms of ϕ , ϕ_1 and ϕ_2 and c, c_1 , c_2 . If they are not kernels, prove that they are not.
 - (5 pts) $K'(\mathbf{x}, \mathbf{z}) = cK(\mathbf{x}, \mathbf{z})$ for c > 0.
 - (5 pts) $K'(\mathbf{x}, \mathbf{z}) = cK(\mathbf{x}, \mathbf{z})$ for c < 0.
 - (5 pts) $K'(\mathbf{x}, \mathbf{z}) = c_1 K_1(\mathbf{x}, \mathbf{z}) + c_2 K_2(\mathbf{x}, \mathbf{z})$ for $c_1, c_2 > 0$.
 - (5 pts) $K'(\mathbf{x}, \mathbf{z}) = K_1(\mathbf{x}, \mathbf{z})K_2(\mathbf{x}, \mathbf{z})$.