MA 562 - Introduction to Differential Geometry and Topology Introduction to Smooth Manifolds by John M. Lee

Student: Ralph Razzouk

Homework 6

Submitting an incomplete homework as I had been absent for a few lectures and didn't manage to read up on the topics missed.

Problem 6-2

Prove Theorem 6.18 (the Whitney immersion theorem) in the special case $\partial M = \emptyset$. [Hint: without loss of generality, assume that M is an embedded n-dimensional submanifold of \mathbb{R}^{2n+1} . Let $UM \subseteq T\mathbb{R}^{2n+1}$ be the unit tangent bundle of M (Problem 5-6), and let $G: UM \to \mathbb{RP}^{2n}$ be the map G(x,v) = [v]. Use Sard's theorem to conclude that there is some $v \in \mathbb{R}^{2n+1} \setminus \mathbb{R}^{2n}$ such that [v] is not in the image of G, and show that the projection from \mathbb{R}^{2n+1} to \mathbb{R}^{2n} with kernel \mathbb{R}^v restricts to an immersion of M into \mathbb{R}^{2n} .]

Solution. The Whitney Immersion Theorem states that every smooth manifold M can be smoothly immersed into some Euclidean space \mathbb{R}^n , for sufficiently large N. We aim to prove this for the case $\partial M = \emptyset$. We use the hint given.

Without loss of generality, assume that M is an embedded n-dimensional submanifold of \mathbb{R}^{n+1} . Let UM be the unit tangent bundle of M and let $G: UM \to \mathbb{RP}^{2n}$ be the map G(x,v) = [v]. Since $\partial M = \emptyset$. then UM is a smooth manifold of dimension 2n and \mathbb{RP}^{2n} is a smooth manifold of dimension 2n-1.

By Sard's theorem, almost every point of \mathbb{RP}^{2n} is a regular value of G, then the preimage of any regular value is a smooth submanifold of UM of dimension 1. Thus, there exists some $v \in \mathbb{R}^{2n+1} \setminus \mathbb{R}^{2n}$ such that [v] is not in the image of G.

Let $p: \mathbb{R}^{2n+1} \to \mathbb{R}^{2n}$ be the projection with kernel $\mathbb{R}v$. Then p restricts to an immersion of M into \mathbb{R}^{2n} . Let i be an injective smooth map that embeds the n-dimensional submanifold M into \mathbb{R}^{2n+1} and let X be a vector field on M. Then $d_{\pi}(M)$ is a linear subspace of \mathbb{R}^{2n} of dimension n and $d_{\pi}(x)$ is a linear map from $d_{\pi}(M)$ to \mathbb{R}^{2n} that is injective at every point of M.

Therefore, $d_{\pi}(X)$ has full rank n at every point of M, which means that $p \circ i$ is an immersion of M into \mathbb{R}^{2n} .

Problem 6-5

Let $M \subseteq \mathbb{R}^n$ be an embedded submanifold. Show that M has a tubular neighborhood U with the following property: for each $y \in U, r(y)$ is the unique point in M closest to y, where $r: U \to M$ is the retraction defined in Proposition 6.25. [Hint: first show that if $y \in \mathbb{R}^n$ has a closest point $x \in M$, then $(y-x) \perp T_x M$. Then, using the notation of the proof of Theorem 6.24, show that for each $x \in M$, it is possible to choose $\delta > 0$ such that every $y \in E(V_{\delta}(x))$ has a closest point in M, and that point is equal to r(y).]

Solution. Let $M \subseteq \mathbb{R}^n$ be an embedded submanifold and let $y \in \mathbb{R}^n$ and define the map

$$d:\mathbb{R}^n\to\mathbb{R}$$

$$p\mapsto |y-p|.$$

Let $x \in M$ be a closest point to $y \in \mathbb{R}^n$. The directional derivative of d in the direction of v is

$$\nabla d \cdot v|_x = \frac{y - x}{|y - x|} \cdot v = 0.$$

Thus $y - x \perp T_x M$. Incomplete...

Problem 6-10

Suppose $F: N \to M$ is a smooth map that is transverse to an embedded submanifold $X \subseteq M$, and let $W = F^{-1}(X)$. For each $p \in W$, show that $T_pW = (dF_p)^{-1}(T_{F(p)}X)$. Conclude that if two embedded submanifolds $X, X' \subseteq M$ intersect transversely, then $T_p(X \cap X') = T_pX \cap T_pX'$ for every $p \in X \cap X'$. (Used on p. 146)

Solution. Let $X \subseteq M$ and $W = F^{-1}(X)$. It is enough to check that W is a submanifold of M in a neighborhood $X \in W$. Let (V, ψ) be a local coordinate chart of N adapted to X around $X = F_p$, then $\psi: V \to \mathbb{R}^{n+k}$ and $\psi(V \cap X) = \psi(V) \cap \mathbb{R}^n$, where $n = \dim(X)$. Let $\pi_2: \mathbb{R}^{n+k} \to \mathbb{R}^k$ be the standard projection and let $g = \pi_1 \circ \psi$, then $g: V \to \mathbb{R}^k$ is a submersion and

 $g^{-1}(0) = V \cap X.$

Incomplete...