SUCCESSIONS I SÈRIES DE NOMBRES REALS

(Resum teòric)

Índex	
2.1.	Successions de nombres reals
2.2.	Criteris per al càlcul de límits de successions
2.3.	Sèries de nombres reals
2.4.	Criteris de convergència per a sèries

2.1. Successions de nombres reals

Una successió de nombres reals és una aplicació $a\colon D\to\mathbb{R}$ amb domini un subconjunt infinit de $D\subseteq\mathbb{N}\cup\{0\}$ (habitualment D és \mathbb{N}). La imatge d'un natural n del domini es denota a_n i s'anomena $terme\ n$ -èsim de la successió. La successió a es denota per $(a_n)_{n\in D}$ o (a_n) .

La forma més usual de definir una successió (a_n) consisteix a donar explícitament la imatge de cada natural n del domini (per exemple, $a_n = n^2 - 3$). No obstant això, en certs contextos la forma natural en què apareixen les successions és la recurrent, que consisteix a donar els primers termes a_0, \ldots, a_{k-1} i una relació que, per a $n \ge k$, permeti calcular a_n a partir dels k termes anteriors $a_{n-1}, a_{n-2}, \ldots, a_{n-k}$. Per exemple, una progressió aritmètica és una successió en què cada terme s'obté de l'anterior sumant un nombre real fix d denominat diferència. En aquest cas, tenim una successió definida mitjançant un primer terme a_1 i la recurrència $a_n = a_{n-1} + d$ per a $n \ge 2$. En les progressions geomètriques cada terme s'obté de l'anterior multiplicant per un nombre real fix r denominat raó; en aquest cas la recurrència és $a_n = a_{n-1} \cdot r$.

Fites

Sigui (a_n) una successió. Si existeix $k \in \mathbb{R}$ tal que $a_n \le k$ per a tot n, es diu que k és una fita superior de (a_n) i que (a_n) està fitada superiorment; en aquest cas, la menor de les fites superiors es denomina suprem de (a_n) . Si existeix $k \in \mathbb{R}$ tal que $k \le a_n$ per a tot n, es diu que k es una fita inferior de (a_n) i que (a_n) està fitada inferiorment; en aquest cas, la més gran de les fites inferiors es denomina *infim* de (a_n) . Si (a_n) està fitada superior i inferiorment, es diu que (a_n) está fitada.

Limits

- El *límit* d'una successió (a_n) és:
- 1) el nombre real ℓ si per a cada nombre real $\epsilon>0$ existeix un natural N tal que $|a_n-\ell|<\epsilon$ per a tot $n\geq N$.
- 2) $+\infty$ si per a cada nombre real M>0 existeix un natural N tal que $a_n>M$ per a tot $n\geq N$.
- 3) $-\infty$ si per a cada nombre real M<0 existeix un natural N tal que $a_n< M$ per a tot n>N.

Les notacions

$$\lim a_n = \ell$$
, $\lim a_n = +\infty$, $\lim a_n = -\infty$, $\lim a_n = \infty$

indiquen, respectivament, que el límit de (a_n) és el nombre real ℓ , $+\infty$ o $-\infty$, o que lím $|a_n|=+\infty$, respectivament. Si el límit de (a_n) és un nombre real ℓ , es diu que la successió és convergent i que convergeix cap a ℓ ; si és $\pm\infty$, es diu que la successió és divergent. Una successió que no és convergent ni divergent s'anomena oscil·lant. Determinar el caràcter d'una successió és esbrinar si és convergent, divergent o oscil·lant.

Una primera propietat de les successions convergents és que són successions fitades. El recíproc no és cert, com a prova, per exemple, la successió $a_n = (-1)^n$, que és fitada però no convergent.

Unes altres propietats dels límits de successions són les següents.

- Si el límit d'una funció existeix, aleshores és únic.
- Si el límit d'una successió (a_n) és diferent de zero, llavors existeix un terme de la successió a partir del qual tots els restants tenen el mateix signe que el límit.
- Si existeix un natural N tal que $a_n \leq b_n \leq c_n$ per a tot $n \geq N$, i lím $a_n = \ell$, lím $b_n = r$, lím $c_n = s$, llavors $\ell \leq r \leq s$.
- Criteri del sandwich: Si existeix un natural N tal que $b_n \leq a_n \leq c_n$ per a tot $n \geq N$, i lím $b_n = \ell =$ lím c_n , llavors lím $a_n = \ell$.
- $\lim a_n = \ell \implies \lim |a_n| = |\ell|$; $\lim |a_n| = 0 \iff \lim a_n = 0$.
- Si lím $a_n = 0$ i (b_n) és una successió fitada, llavors lím $a_n b_n = 0$.
- Si lím $a_n = +\infty$ i (b_n) és una successió fitada inferiorment, llavors lím $(a_n+b_n) = +\infty$. Anàlogament, si lím $a_n = -\infty$ i (b_n) és una successió fitada superiorment, llavors lím $(a_n + b_n) = -\infty$.
- Si lím $a_n = \pm \infty$ i (b_n) té una cota inferior positiva, llavors lím $a_n b_n = \pm \infty$.

Successions monòtones

Es diu que la successió (a_n) és *creixent* si $a_{n+1} \geq a_n$ per a tot n i és *estrictament creixent* si $a_{n+1} > a_n$ per a tot n. Anàlogament, (a_n) és *decreixent* si $a_{n+1} \leq a_n$ per a tot n i *estrictament decreixent* si $a_{n+1} < a_n$ per a tot n. Una successió *monòtona* és una successió creixent o decreixent i una successió *estrictament monòtona* és una successió estrictament creixent o estrictament decreixent.

Teorema de la convergència monòtona. Tota successió monòtona i fitada és convergent.

Per a les successions fitades i creixents, el límit és el suprem, i per a les decreixents el límit és l'ínfim.

Un exemple important de successió monòtona i fitada és $a_n = \left(1 + \frac{1}{n}\right)^n$. En molts textos es pot consultar la demostració, es tracta d'una successió estrictament creixent i fitada entre 2 i 3. El seu límit és un nombre irracional denominat nombre d'Euler, denotat per e, i el seu valor aproximat és 2,71828183... També es poden demostrar les propietats següents

- Si (a_n) és una successió i lím $|a_n|=+\infty$, llavors lím $\left(1+\frac{1}{a_n}\right)^{a_n}=e$.
- ullet Si (a_n) i (b_n) són successions tals que $\lim a_n=1,\quad \lim |b_n|=+\infty,$ llavors

$$\lim (a_n)^{b_n} = e^{\lim b_n(a_n - 1)}.$$

2.2. Criteris per al càlcul de límits de successions

Criteri del quocient. Sigui (a_n) una successió tal que existeix un natural N amb la propietat que $a_n \neq 0$ per a tot n > N. Suposem que

$$\lim \frac{|a_{n+1}|}{|a_n|} = L \in \mathbb{R} \cup \{+\infty\}.$$

Es compleix: (i) Si L < 1, llavors $\lim a_n = 0$; (ii) si L > 1, llavors $\lim |a_n| = +\infty$. Criteri de l'arrel. Si (a_n) és una successió tal que $\lim \sqrt[n]{|a_n|} = L \in \mathbb{R} \cup \{+\infty\}$, es compleix:

- (i) Si L < 1, llavors $\lim a_n = 0$;
- (ii) si L>1, llavors $\lim |a_n|=+\infty$.

La semblança entre els dos enunciats anteriors suggereix que hi ha alguna relació entre $\lim \frac{|a_{n+1}|}{|a_n|}$ i $\lim \sqrt[n]{|a_n|}$. En efecte, així és:

Criteri de l'arrel-quocient. Sigui (a_n) una successió tal que existeix un natural N amb la propietat que $a_n \neq 0$ per a tot n > N. Si $\lim \frac{|a_{n+1}|}{|a_n|} = L \in \mathbb{R} \cup \{+\infty\}$, llavors $\lim \sqrt[n]{|a_n|} = L$.

No obstant això, per a una successió (a_n) , pot passar que la successió $(\sqrt[n]{|a_n|})$ tingui límit i la successió $(|a_{n+1}|/|a_n|)$ no el tingui.

Subsuccessions

Una subsuccessió o successió parcial d'una successió (a_n) és una successió obtinguda prenent infinits termes de (a_n) mantenint la seva posició relativa a la successió.

Usualment, si (a_n) és una successió, una subsuccessió es denota per (a_{n_k}) .

• Una successió és convergent i té límit ℓ si, i només si, totes les seves subsuccessions són també convergents i de límit ℓ .

El resultat anterior s'utilitza de vegades per demostrar que una successió no és convergent mitjançant l'obtenció de dues subsuccessions de límits diferents.

2.3. Sèries de nombres reals

Una sèrie de nombres reals és un parell de successions $((a_n), (s_n))$ tals que $s_n = a_1 + \cdots + a_n$ per a tot natural n; la successió (a_n) s'anomena successió de termes de la sèrie i (s_n) successió de sumes parcials. La sèrie $((a_n), (s_n))$ es denota per algun dels símbols

$$\sum_{n=1}^{\infty} a_n, \quad \sum_{n\geq 1} a_n, \quad \sum_n a_n.$$

Noteu que la successió (a_n) pot començar per qualsevol $n=k_0\geq 0$. Llavors la sèrie és $\sum_{n=k_0}^\infty a_n, \text{ o } \sum_{n\geq k_0} a_n.$

Si
$$\lim s_n = s \in \mathbb{R} \cup \{+\infty, -\infty\}$$
, es diu que s és la suma de la sèrie i s'escriu $s = \sum_{n \geq 1} a_n$

Una sèrie és convergent, divergent o oscil·lant segons la seva successió de sumes parcials sigui convergent, divergent o oscil·lant. Determinar el caràcter d'una sèrie és esbrinar si és convergent, divergent o oscil·lant. El caràcter d'una sèrie no es modifica si es canvien un nombre finit de termes de la sèrie, però la suma de la sèrie sí que pot canviar.

Si $\sum_n a_n$ és una sèrie de termes no negatius $(a_n \ge 0 \text{ per a tot } n)$, llavors la successió de sumes parcials (s_n) és creixent i, per tant, la sèrie només pot ser convergent o divergent, però no oscil·lant.

La propietat següent dóna una condició necessària per a la convergència d'una sèrie:

$$lacksquare$$
 Si la sèrie $\sum_n a_n$ és convergent, llavors $\lim a_n = 0$.

Però aquesta condició no és suficient, ja que la sèrie harmònica $\sum_{n} 1/n$ és divergent, tot i que la successió dels seus termes té límit 0.

La *suma* de dues sèries i el producte d'una sèrie per un escalar es defineixen de forma natural:

$$\sum_{n} a_n + \sum_{n} b_n = \sum_{n} (a_n + b_n), \qquad \alpha \sum_{n} a_n = \sum_{n} (\alpha a_n).$$

En els enunciats següents, quan A o B són $\pm \infty$, sobreentenem els mateixos convenis respecte al significat de A+B que hem establert amb els límits de successions.

• Si
$$\sum_n a_n = A$$
 i $\sum_n b_n = B$, amb $A, B \in \mathbb{R} \cup \{+\infty, -\infty\}$ i $\alpha \in \mathbb{R}$, llavors
$$\sum_n a_n + \sum_n b_n = A + B, \qquad \text{y} \qquad \alpha \sum_n a_n = \alpha A.$$

Determinar el caràcter d'una sèrie no és sempre immediat i menys encara calcular la seva suma. Les sèries geomètriques proporcionen exemples senzills però importants de sèries per a les quals és possible calcular la seva suma. Una sèrie geomètrica és una sèrie de la forma $\sum_{n} ar^{n}$, amb $a \neq 0$ i $r \in \mathbb{R}$. El número r s'anomena $ra\delta$ de la sèrie i d'ell depèn essencialment el caràcter de la sèrie, com es descriu a continuació.

Sèries geomètriques. Siguin $a \neq 0$ i r nombres reals. Llavors:

 \blacksquare La sèrie $\sum_n ar^n$ és convergent si, i només si, |r|<1. En aquest cas, la seva suma és $\sum_n a$

$$\sum_{n>0} ar^n = \frac{a}{1-r}.$$

- \bullet Si |r|>1 o r=1, llavors la sèrie $\sum_n ar^n$ és divergent.
- \blacksquare Si r=-1, llavors la sèrie $\sum_n ar^n$ és oscil·lant.

2.4. Criteris de convergència per a sèries

Per a sèries de termes positius

Les sèries $\sum_n a_n$, amb $a_n \geq 0$ per a tot n, s'anomenen sèries de termes positius (encara que es permet que hi hagi termes iguals a zero). Els criteris següents s'enuncien per a sèries de termes positius; però, com ja s'ha observat, el caràcter d'una sèrie no depèn dels primers termes, així que es pot entendre que $a_n \geq 0$ per a tot n a partir d'algun natural k. D'altra banda, els mateixos criteris són també vàlids per a les sèries en què $a_n \leq 0$ per a tot n a partir d'algun n0 per a tot n1 a partir d'algun n2 per a tot n3 per a les sèries en què n4 per a tot n5 per a tot n6 per a tot n6 per a tot n6 per a tot n8 per a tot n9 per a tot

- Criteri de comparació ordinària. Si $0 \le a_n \le b_n$ per a tot n, llavors:
 - i) $\sum_{n} b_n$ convergent $\Rightarrow \sum_{n} a_n$ convergent.
 - ii) $\sum_n a_n$ divergent $\Rightarrow \sum_n b_n$ divergent.
- Criteri de comparació en el límit. Si $a_n \ge 0$ i $b_n \ge 0$ per a tot n i existeix el límit $\lim \frac{a_n}{b_n} = L$, llavors
 - i) si $0 < L < +\infty$, les dues sèries $\sum_n a_n$ i $\sum_n b_n$ tenen el mateix caràcter;
 - ii) si L=0 i $\sum_n b_n$ convergeix, llavors $\sum_n a_n$ convergeix;
 - iii) si $L = +\infty$ i $\sum_n b_n$ divergeix, llavors $\sum_n a_n$ divergeix.
- Criteri del quocient. Si $a_n > 0$ per a tot n i existeix $\lim \frac{a_{n+1}}{a_n} = L \in \mathbb{R} \cup \{+\infty\}$, llavors
 - i) L < 1 implica que $\sum_n a_n$ és convergent;
 - ii) L > 1 implica que $\sum_n a_n$ és divergent.
- Criteri de l'arrel. Si $a_n \ge 0$ per a tot n i existeix $\lim \sqrt[n]{a_n} = L \in \mathbb{R} \cup \{+\infty\}$, llavors
 - i) L < 1 implica que $\sum_n a_n$ és convergent;
 - ii) L > 1 implica que $\sum_n a_n$ és divergent.
- Criteri de la integral. Si $a_n > 0$ per a tot n i f és una funció decreixent en $[k, +\infty)$ tal que $f(n) = a_n$ per a tot $n \ge k$, llavors

$$\sum_{n\geq k} a_n$$
 y $\int_k^{+\infty} f$ tenen el mateix caràcter.

Una sèrie de la forma $\sum_n 1/n^{\alpha}$, amb α un nombre real, s'anomena sèrie harmònica generalitzada, o també sèrie de Riemann. Aquestes sèries, junt amb les sèries geomètriques, s'utilitzen sovint en els criteris de comparació. Si $\alpha \leq 0$, la sèrie $\sum_n 1/n^{\alpha}$ és divergent perquè la successió de termes no tendeix a 0 (tendeix a 1 si $\alpha = 0$ i a $+\infty$ si $\alpha < 0$). El caràcter de la sèrie per a $\alpha > 0$ es dedueix de l'criteri integral.

- Si $\alpha > 1$, la sèrie $\sum_{n} \frac{1}{n^{\alpha}}$ és convergent.
- $\blacksquare \ \ \text{Si} \ \alpha \leq 1, \ \text{la sèrie} \ \sum_n \frac{1}{n^\alpha} \ \text{\'es divergent}.$

Altres criteris

Els criteris anteriors s'apliquen a sèries amb tots els termes, excepte un nombre finit, del mateix signe.

Entre les sèries que tenen un nombre infinit de termes positius i un nombre infinit de termes negatius destaquen les sèries alternades. Una sèrie alternada és una sèrie de la forma

$$\sum_{n} (-1)^n a_n$$
 o $\sum_{n} (-1)^{n+1} a_n$

on (a_n) és una successió de termes no negatius. Per a aquestes sèries, es té el criteri següent.

■ Criteri de Leibniz. Si (a_n) és decreixent i $a_n \ge 0$ per a tot n, llavors $\sum_n (-1)^n a_n$ és convergent si, i només si, lím $a_n = 0$.

Finalment, tenim la següent condició suficient de convergència.

Criteri de la convergència absoluta.

$$\sum_n |a_n| \quad \text{convergent} \quad \Rightarrow \quad \sum_n a_n \quad \text{convergent}.$$

La condició no és necessària, com es pot veure amb la sèrie harmònica alternada $\sum_n (-1)^n/n$, que és convergent pel criteri de Leibniz i, en canvi, $\sum_n |(-1)^n/n| = \sum_n (1/n)$ és divergent.

Una sèrie $\sum_n a_n$ és absolutament convergent si la sèrie $\sum_n |a_n|$ és convergent. Una sèrie $\sum_n a_n$ és condicionalment convergent si és convergent, però $\sum_n |a_n|$ és divergent (la sèrie harmònica alternada, per exemple).