Cybersecurity Compliance and Reporting Platform

2025 July

YIP Wankit, Daniel 3036383678

CHAN Cheung Hei 3036381280

SONG Insu 3036199596

WONG Kwun Yuet Shavonne 2013534309

YEUNG Hiu Ying 3036379976

AGENDA

- Project Overview
- Methodology
- Performance Evaluation
- Demonstration
- Conclusion

Project Overview

Cyber threats and technology crimes are rapidly increasing in Hong Kong, with more frequent and severe attacks

The Standard | In 2023, cyber security incidents increased by 39% and technology crimes rose by 50%. Data breach notifications, especially those caused by hacking, also more than doubled. [1]

CYBER THREATS ON THE RISE: DISSECTING THE COMMON THEMES BEHIND RECENT CYBERSECURITY INCIDENTS IN HONG KONG

AUTHOR: GABRIELA KENNEDY, JOANNA WONG

Mayer Brown | Cybersecurity incidents recorded a 65.2% quarter-toquarter increase in 2024 Q1 [2]

HK Police Force | In 2024, Hong Kong recorded over 33,900 technology crimes, including 112 serious cyberattacks [3]

Check Point | Threat Intelligence Report: An organization in Hong Kong is being attacked on average 1675 times per week in the last 6 months in 2025 [4]

Strengthen statutory requirements and Higher regulatory expectation

The Bill is set to take effect on 1 January 2026. [1]

- Improve incident reporting
- Ensure that organizations running vital services take strong measures to protect against evolving cyber threats
- Safeguard Hong Kong's economy, daily life, and reputation as an international business hub

Timely and effective cybersecurity incident reporting

The accelerated pace of digital transformation

Significant rise in cyber incidents with escalation in both frequency and severity

strengthened statutory requirements & heightened regulatory expectations

Robust cybersecurity measures & effective incident reporting more critical

- Strengthens both individual organizations and whole ecosystem
- Improves information-sharing and reduces the spread of cyber threats
- Key tool for regulators in coordinating sector-wide responses and improving cybersecurity policy

Site Usage ~~~~ 7,64. 25,423 Page 3.32 Pages/Visit Traffic Sources Overview Direct Trah. 3,097.00 (40.4. Search Engines 2,910.00 (38.04%) Referring Sites 1,642.00 (21.47%) Visitors Overview /decisions 2,958

Methodology

- Built on 5 modular components for streamlined incident handling.
- Combines rule-based logic (transparency) + LLM/AI (unstructured data processing).
- Aligns with HK regulatory standards (e.g., OGCIO guides, PCPD templates).

- Key Tech: DeepSeek-R1 + LangChain + ChromaDB for Input Assistant.
- Key Tech: XGBoost + Feature Engineering with rule-based model for Criticality Classifier
- User Benefit: Reduces manual work; guides non-experts.

- Key Tech: React JS + Node.js for responsive UI.
- User Benefit: Intuitive navigation; role-based views (user/regulator).

- Key Tech: Django (Python) + SQLite; ORM for DB management.
- User Benefit: Cross-platform access; built-in security (XSS/CSRF protection).

- Key Tech: Rule-based engine.
- User Benefit: Automated regulator mapping; avoids missed deadlines.

- Key Tech: DeepSeek-R1 + LangChain + ChromaDB + NeMo guardrails for advice generation
- User Benefit: Context-aware advice; prevents hallucinations.

Performance Evaluation

Scope of Performance Evaluation

We conducted performance evaluations to select the most appropriate model for each AI functionality.

A. LLM-based Functions (Input Assistant and Advisor)

Evaluated 4 popular models

- Open source: facilitate local deployment to ensure confidentiality of the submitted information.
- Small model (2B~10B parameters): capable of running on development machine with RTX 4000 GPU [1]

B. ML-based Function (Criticality Classifier)

- Evaluated 6 ML models: Logistic
 Regression, SVM, KNN, Gradient
 Boosting, Random Forest, and XGBoost
- Due to limited annotated data and the straightforward nature of the task, we didn't consider Neural Networks

Metrics

A. LLM-based Functions (Input Assistant and Advisor)

	· ·			
Performance Metric	Evaluation Method			
Processing Time	 Evaluated the LLMs using 700 data extraction queries derived from 100 reports generated from real-world cybersecurity incidents [1][2], with 7 queries per report. 			
Extraction Accuracy	Average Processing Time = $\frac{\text{Total processing time}}{\text{Total number of queries}}$			
	$Average \ Extraction \ Accuracy = \frac{Number \ of \ extracted \ instances \ agreeing \ with \ human \ judgement}{Total \ number \ of \ queries}$			
Generation Relevancy	 LLMs were provided a guidance document and evaluated using 100 guidance enquiry queries and comparing the responses to expected responses generated with a large LLM (Grok 3, 2.7T parameters) and verified by human. The responses were converted into embeddings using a sentence transformer (all-MiniLM-L6-v2) [3] and compared using cosine similarity [4]. 			
	Average Generation Relevancy = $\frac{\sum_{k=1}^{n} cosine_similarity(gen_embedding_k, exp_embedding_k)}{Total number of queries}$ cosine_similarity $(u, v) = \frac{u \cdot v}{\ u\ \ v\ }$			

Processing Time

Measures how fast LLM responds to a query. Faster processing time is desired for better user experience.

Extraction Accuracy

Evaluates the LLM's information extraction capability. Higher accuracy is desired for reliable extraction.

Generation Relevancy

Assesses the relevance of generated information to the guidance document. **Higher relevance is desired** for coherent response.

Best Model

[1] https://www.mdpi.com/2504-2289/9/3/67

Model Selection

To select the most appropriate model we assigned scores to each evaluated performance metric. $(1^{st} = 5 \text{ pts}, 2^{nd} = 3 \text{ pts}, 3^{rd} = 1 \text{ pts}, 4^{th} = 0 \text{ pts})$ (more points are given to first place to emphasize excellence in a particular metric)

	Processing Time	Extraction Accuracy	Generation Relevancy	Total Score
Deepseek R1, 1.5B	1	1	0	2
Llama 3.2, 3B	5	0	1	6
Mistral, 7B	3	3	3	9
Deepseek R1, 8B	0	<u>5</u>	5	10

Deepseek R1, 8B was chosen for its relatively better extraction accuracy and generation relevancy.

Criticality Classifier

Performance Metric

 Performed evaluation using precision, recall, and F1score, which are standard metrics for classification models [1].

Evaluation Method

- <u>EuRepoC Global Dataset</u> [2]:compromising of 3,416 annotated global cyber incidents.
- Data Cleansing and Preprocessing: removed incomplete data and applied ordinal encoding, resulting in 1,984 records.
- <u>Feature Engineering</u>: used Nvidia Nemotron to generate scores for Financial Impact, Operational Impact, Data Leakage Impact, and the Number of Affected Individuals by providing predefined rules.
- Model Training: trained machine learning models using engineered features to classify the overall criticality.

Chosen Model: XGBoost

Demonstration

Conclusion

Conclusion

Comprehensive Solution:

A fully functional platform that streamlines cybersecurity incident reporting and compliance in Hong Kong.

Key Features Delivered:

- Al-powered input assistant for automated data extraction.
- Criticality classification model for consistent incident evaluation.
- Regulator recommendation engine for accurate reporting.
- Secure report storage for future reference.

Achievements:

- Successfully implemented all components over March 2025 to July 2025 (~4 months)
- User-tested for reliability, accuracy, and usability.
- Ready for deployment and real-world application.

Impact:

- Simplifies compliance processes.
- Reduces reporting errors.
- Enhances transparency and accountability, strengthening Hong Kong's cybersecurity framework.

Thank you!

