Administrator's Manual

- 7.파티션드 객체
 - 파티셔닝 정의
 - 파티션드 객체
 - 파티션 조건
 - 파티셔닝 방법
- 8.트랜잭션 관리
 - 트랜잭션
 - 잠금(Lock)
 - 다중 버전 동시성 제어 기법
 - 트랜잭션의 영속성
 - 체크포인트
- 。 9.버퍼 관리자
 - 버퍼 관리자의 구조
 - 버퍼 관리
 - 버퍼 관련 프로퍼티
 - 버퍼 관리자 통계 정보
- 10.백업 및 복구
 - 데이터베이스 백업
 - 데이터베이스 복구
 - 백업 및 복구 사례들
- 11.증분 백업과 복구
 - 증분 백업 (Incremental Backup)
 - 증분 백업의 종류
 - 증분 백업에 대한 매체 복구
 - 백업 파일 관리
- 12.서버/클라이언트 통신
 - 통신 방법
- o 13.Altibase의 보안
 - 보안의 개요
 - 보안 기능의 구성
 - 보안 모듈 연동 방법
 - 보안 모듈 구동과 데이터 암호화
- 14.데이터베이스 감사 (Database Auditing)
 - 소개
 - 관련 메타 테이블과 프로퍼티
 - 감사 제어 구문
 - 감사 조건 구문

- 감사 결과 확인하기
- 15.Altibase 튜닝
 - 로그 파일 그룹
 - 그룹 커밋
- Altibase 진단 모니터링
 - Altibase 모니터링
 - Altibase 문제상황 분석
- o A.부록: Trace Log
 - Trace Log
- B.부록: Altibase 최대치
 - Altibase 객체들의 최대값

Altibase® Administration

Administrator's Manual

Altibase Administration Administrator's Manual

Release 7.1

Copyright © 2001~2018 Altibase Corp. All Rights Reserved.

본 문서의 저작권은 ㈜알티베이스에 있습니다. 이 문서에 대하여 당사의 동의 없이 무단으로 복제 또는 전용할 수 없습니다.

㈜알티베이스

08378 서울시 구로구 디지털로 306 대륭포스트타워II 10층

전화: 02-2082-1114 팩스: 02-2082-1099

고객서비스포털: http://support.altibase.com

homepage: http://www.altibase.com

7.파티션드 객체

파티셔닝 정의

파티셔닝(partitioning)은 더 쉬운 관리를 위하여 대용량 데이터베이스 객체를 여러 개의 작은 조각으로 분할하는 것을 말한다.

파티셔닝으로 분할된 대용량 데이터베이스 객체를 "파티션드 객체 (partitioned object)"라고 하고, 파티션드 객체가 갖는 분할된 작은 조각을 "파티션 (partition)"이라고 한다.

파티션드 객체와 논파티션드 객체

일반 사용자(end user)가 파티션드 객체를 이용할 때 논파티션드 객체(non-partitioned object)와 차이를 알아채지 못한다. 즉, 사용자 입장에서는 파티션드 객체와 논파티션드 객체는 데이터베이스 객체로 인식될 뿐이지, 해당 객체의 파티션 유무는 인식하지 못하기 때문이다. 따라서 사용자는 객체의 파티션 유무에 관계없이 질의 및 DML(레코드 삽입, 삭제, 갱신) 등의 구문을 동일한 방법으로 사용할 수 있다.

파티션드 객체와 논파티션드 객체의 차이점을 데이터베이스 구조적 측면에서 살펴보면 다음과 같다.

내부 구조

논파티션드 객체는 하나의 테이블스페이스에 종속된 객체로, 하나의 논파티션드 객체는 하나의 테이블스페이스에만 저장된다.

파티션드 객체는 다수의 테이블스페이스에 걸쳐 저장될 수 있다. 이는 [그림 7-1]으로 설명된다.

[그림 7-1] 테이블스페이스, 파티션드 객체 및 논파티션드 객체의 관계

파티션드 객체는 내부적으로 다수의 파티션으로 이루어진다. 각 파티션은 논파티션드 객체와 같은 제약 조건을 가지며, 하나의 파티션은 하나의 테이블스페이스에만 종속된다.

이러한 다수의 테이블스페이스에 존재하는 파티션을 하나의 객체로 인식하게 만드는 것이 파티션드 객체이다. [그림 7-2]는 파티션드 객체의 내부구조를 보여준다.

[그림 7-2] 파티션드 객체의 내부구조

파티션드 객체의 장점

이런 구조상의 특징으로 인해 파티션드 객체는 다음과 같은 장점들을 갖는다.

- 데이터 로딩 및 인덱스 재구축(rebuilding)이 빠르다.
- 부분 삭제(partial delete)가 빠르다.
- 테이블 스캔(table scan) 및 인덱스 스캔(index scan)이 빠르다.
- 디스크 붕괴(disk failure)에 유연하다.

파티션 키

파티션 키(Partition Key)는 테이블을 분할하는 기준이다. 파티션 키는 분할될 테이블의 하나 이상의 칼럼으로 구성된다. 이러한 칼럼들을 파티션 키 칼럼(partition key columns)이라고 한다.

파티션 키 칼럼은 반드시 대소 비교(<, >, =)가 가능한 데이터 타입이어야 하며, 이러한 칼럼만이 파티션 키 칼럼으로 선정될 수 있다.

예를 들어 레코드 삽입시, 삽입될 레코드가 어떤 파티션에 저장되어야 하는지 명확해야 한다. 이를 만족하기 위해서는 파티션 키 칼럼과 과련 조건간의 명확한

대소비교가 가능해야 한다. 따라서, BINARY, GEOMETRY, BLOB, 및 CLOB 등과 같은 대소비교가 불가능한 타입은 파티션 키 칼럼이 될 수 없다.

파티션드 객체

데이터베이스 객체중 테이블과 인덱스는 파티션이 될 수 있는 객체이다.

테이블이 분할되는 경우 해당 테이블을 "파티션드 테이블 (partitioned table)"이라고 하며, 인덱스가 분할되는 경우는 "파티션드 인덱스 (partitioned index)"라고 한다. 이러한 파티션드 테이블과 파티션드 인덱스를 "파티션드 객체(partitioned object)"라고 한다.

파티션드 객체는 반드시 다음과 같은 규칙을 만족시켜야 한다.

non-partitioned_object ≡ ∑partitionrule1

위의 규칙은 논파티션드 객체 (non-partitioned_object)는 이를 분할한 파티션의 합과 동치여야 함을 의미한다. 즉, 논파티션드 객체의 일부분만을 파티션시킬 수 없다.

파티션드 테이블

"파티션드 테이블 (Partitioned Table)"은 파티셔닝 조건 (범위, 리스트, 해시)에 따라 다수의 파티션으로 분리한 대용량 테이블을 의미한다. 이는 [그림 7-3]로 설명된다.

[그림 7-3]은 논파티션드 테이블을 색깔(color)을 기준으로 분할하였으며, 결과적으로 파티션 3개로 구성된 파티션드 테이블이 된다.

파티션드 테이블은 구조적 측면에서 기존 데이터베이스 객체중 유니온 뷰(Union View)와 비슷한 개념을 갖는다. 유니온 뷰는 다수의 테이블을 하나의 객체로 인식하기 위해서 논리적으로 유니온 시킨 것뿐이며, 어떠한 물리적 공간을 차지하지는 않는다. 이와 마찬가지로 파티션드 테이블에 참여하는 파티션들이 물리적인 공간을 가지는 것뿐이지 파티션드 테이블 자체가 물리적 공간을 갖는 것은 아니다.

하지만 파티션드 테이블이 유니온 뷰와 규별되는 몇 가지 특징은 다음과 같다.

- 갱신 가능성 파티션드 테이블은 갱신이 가능하다. 반면 유니온 뷰는 개별 테이블을 통한 레코드 갱신은 가능하지만, 유니온 뷰를 통한 레코드 갱신은 불가능하다.
- 인덱스 구축 범위 파티션드 테이블에는 인덱스를 구축할 수 있다. 그러나 유니온 뷰는 개별 테이블에는 인덱스를 구축할 수 있지만, 유니온 뷰에는 인덱스를 구축할 수 없다.

[그림 7-3] 파티션드 테이블과 논파티션드 테이블

결론적으로 파티션드 테이블은 레코드 갱신 및 인덱스 구축이 가능한 유니온 뷰 (updatable and indexable union view)라고 생각할 수 있다.

파티션드 테이블은 파티션들이 저장되는 매체의 종류에 따라서 다음과 같이 분류된다.

• 파티션드 메모리 테이블 (Partitioned Memory Table): 모든 파티션들이 메모리 테이블스페이스에 저장된 파티션드 테이블

• 파티션드 디스크 테이블 (Partitioned Disk Table): 모든 파티션들이 디스크 테이블스페이스에 저장된 파티션드 테이블

파티션드 인덱스

파티션드 테이블을 위한 인덱스들을 다음과 같이 분류할 수 있다.

- 분할 여부에 따른 분류 파티션드 인덱스 vs. 논파티션드 인덱스
- 테이블과 인덱스 관계에 따른 분류 글로벌 인덱스 vs. 로컬 인덱스

파티션드 인덱스와 논파티션드 인덱스

인덱스는 그 분할 여부에 따라 파티션드 인덱스와 논파티션드 인덱스로 구분된다.

"논파티션드 인덱스 (non-partitioned index)"는 파티션으로 분할되지 않은 인덱스를 의미하며, "파티션드 인덱스 (partitioned index)"는 파티션드 테이블과 마찬가지로 파티션 조건에 따라 분할된 대용량 인덱스를 의미한다. 이는 [그림 7-4]로 설명된다.

[그림 7-4] 파티션드 인덱스와 논파티션드 인덱스

[그림 7-4]는 논파티션드 인덱스를 색깔(color)을 기준으로 분할하였으며, 결과적으로 파티션 3개로 구성된 파티션드 인덱스가 된다.

파티션 조건에 따라 분리된 파티션드 인덱스는 인덱스 파티션 키와 인덱스 키의 관계에 따라 프리픽스드 인덱스와 논프리픽스드 인덱스로 구분한다.

- 프리픽스드 인덱스 (Prefixed Index) 프리픽스드 인덱스는 인덱스 키의 첫번째 칼럼이 인덱스 파티션 키의 첫번째 칼럼과 동일하다.
- 논프리픽스드 인덱스 (Non-prefixed Index) 논프리픽스드 인덱스는 인덱스 키의 첫번째 칼럼이 인덱스 파티션 키의 첫번째 칼럼과 동일하지 않다.

테이블(TBL_SALES)

sales_id	sales_date	
2	1월	
4	10월	
1	12월	
6	3월	
8	4월	
5	5월	
3	8월	
7	11월	
9	6월	

```
create table tbl_sales( sales_id integer, sales_date date )
partition by range( sales_date )
(
    partition p1 values less than( to_date('2007-05-01', 'YYYY-MM-DD' ) ),
    partition p2 values less than( to_date('2007-09-01', 'YYYY-MM-DD' ) ),
    partition p3 values default
)
tablespace sys_tbs_disk_data;
```


[그림 7-5] 프리픽스드 인덱스와 논프리픽스드 인덱스의 예

[그림 7-5]는 프리픽스드 인덱스와 논프리픽스드 인덱스의 차이를 sales_id와 sales_date로 이루어진 테이블을 사용해서 설명하고 있다.

위의 그림에서 인덱스들은 sales_date 칼럼에 의해서 분할된다. 각 인덱스는 어떠한 키로 구성되느냐에 따라 프리픽스드 인덱스 또는 논프리픽스드 인덱스로 분류된다.

그림에서 프리픽스드 인덱스는 sales_date를 키로 갖는다. 즉, 인덱스 파티션 키와 인덱스 키가 같은 칼럼 기반이다. 이러한 인덱스를 "프리픽스드 인덱스 (prefixed index)"라고 한다. 반면, 그림에서의 논프리픽스드 인덱스는 sales_id로 정렬되어 있다. 이러한 인덱스는 인덱스 파티션 키와는 다른 칼럼에 의해서 정렬된 인덱스로 "논프리픽스드 인덱스 (non-prefixed index)"라고 한다.

프리픽스드와 논프리픽스드로 구분하는 이유는 유니크 (Unique) 속성과 관련이 있다. 프리픽스드 인덱스의 키는 인덱스 파티션 키와 동일하기 때문에, Altibase 서버는 유니크 검사시 파티션드 인덱스에 속한 모든 파티션들을 검색하지 않고도 유니크 검사를 할 수 있다. 그러나 논프리픽스드 인덱스의 경우에는 Altibase 서버는 파티션드 인덱스에 포함된 모든 파티션들을 검색해야 한다. [그림 7-6]이 이의 예를 보여준다.

[그림 7-6] 논프리픽스드 인덱스를 이용한 유니크 검사의 예 (불가능함)

[그림 7-6]에서 인덱스 파티션 키는 sales_date칼럼이며 sales_id칼럼은 유니크 제약조건을 갖는다. sales_id칼럼을 인덱스 키로 갖는 논프리픽스드 인덱스(IDX_NON_PREFIX)가 구축된다면, 다음의 구문으로 레코드 삽입시 Altibase가 인덱스 IDX_NON_PREFIX를 이용해서 유니크 검사를 할 수 있을지 생각해보자:

INSERT INTO TBL_SALES VALUES(9, 1월);

우선 삽입하려는 레코드의 sales_date칼럼의 값이 "1월"이기 때문에, 키는 IDX_PART_1 파티션에 삽입될 것이다. 삽입시 IDX_PART_2 파티션 sales_id 칼럼에 9의 키 값이 있음에도 불구하고 IDX_PART_1 파티션에 정상적으로 삽입될 것이다. 따라서 Altibase 서버는 논프리픽스드 인덱스를 이용해서 유니크 검사를 할 경우에는 각 파티션내의 인덱스를 모두 검색해야만 한다.

글로벌 인덱스와 로컬 인덱스

인덱스는 테이블 파티션 키와 인덱스 파티션 키의 관계에 따라 글로벌 인덱스와 로컬 인덱스로 구분된다. "글로벌 인덱스 (global index)"는 인덱스 파티션 키가 테이블 파티션 키와 일치하지 않는 인덱스를 의미한다 (index partition key!= table_partition_key). "로컬 인덱스 (local index)"는 인덱스 파티션 키가 테이블 파티션 키와 일치하는 인덱스를 의미한다 (index_partition_key == table partition key).

[그림 7-7] 로컬 인덱스와 글로벌 인덱스의 예

[그림 7-7]은 글로벌 인덱스와 로컬 인덱스의 차이를 sales_id 와 sales_date 칼럼으로 이루어진 테이블을 사용해서 설명하고 있다. 그림에서 인덱스들은 sales_date에 의해서 정렬되어 있고, 각 인덱스를 어떠한 인덱스 파티션 키로 분할하느냐에 따라 로컬 인덱스 또는 글로벌 인덱스로 분류된다.

아래 그림에서 로컬 인덱스는 sales_date칼럼을 기준으로 3개의 파티션으로 분할된다. 이렇게 인덱스 파티션 키 (sale_date)와 테이블 파티션 키 (sales_date)가 동일한 파티션드 인덱스를 로컬 인덱스라고 한다.

반면, 그림 하단의 글로벌 인덱스는 sales_id칼럼에 의해서 분할되어 있다. 즉, 인덱스 파티션 키 (sales_id)와 테이블 파티션 키(sales_date)가 동일하지 않다. 이런 유형의 파티션드 인덱스를 글로벌 인덱스라고 한다.

인덱스를 글로벌 또는 로컬 인덱스로 구분하는 이유는 테이블 파티션 키와 인덱스 파티션 키의 동치 여부에 따라 다른 특징을 갖기 때문이다. 테이블 파티션 키와 다른 칼럼을 기준으로 구축된 파티션드 인덱스는 글로벌 인덱스의한 인덱스 파티션 내의 키들이 서로 다른 테이블 파티션들을 가리키고 있음을 의미한다. 이는 파티션드 테이블에 대한 변경 구문 (ALTER TABLE MERGE ...) 실행은 글로벌 인덱스의 재구축 (rebuild)으로 이어질수 있음을 의미한다.

반면 로컬 인덱스의 경우는 파티션드 테이블에 대한 변경 구문은 변경되는 파티션의로컬 인덱스에만 영향을 미치기 때문에, 전체적인 동시성 효율을 떨어뜨리지 않는다.

글로벌 논파티션드 인덱스

글로벌 논파티션드 인덱스는 논파티션드 인덱스와 비슷하게 동작한다. 즉, 파티션드 테이블에 인덱스 파티션 키 없이 테이블 전역적으로 생성된 인덱스이다.

아래 그림은 세 개의 파티션으로 분할되어 있는 tbl_sales 테이블에 인덱스 파티션 키를 지정하지 않고 글로벌 논파티션드 인덱스를 생성하는 것을 보여준다.

[그림 7-8] 글로벌 논파티션드 인덱스의 예

인덱스의 종류

지금까지 설명한 인덱스의 종류를 정리하면 아래 그림과 같다.

[그림 7-9] 인덱스의 종류

현재 Altibase는 로컬 인덱스와 글로벌 논파티션드 인덱스만 지원한다. 글로벌 파티션드 인덱스는 지원하지 않는다. 이것을 디스크 테이블과 연관지어 정리하면 다음과 같다.

	논파티션드 테이블	파티션드 테이블
(파티션드)로컬 프리픽스드 인덱스	X	0
(파티션드)로컬 논프리픽스드 인덱스	X	0
(파티션드)글로벌 프리픽스드 인덱스	X	X
(파티션드)글로벌 논프리픽스드 인덱스	X	X
글로벌 논파티션드 인덱스	0	0

[표 7-1] 디스크 테이블에 지원되는 인덱스의 종류

글로벌 논파티션드 인덱스만 논파티션드 테이블과 파티션드 테이블 위에 구축될 수 있으며, 로컬 프리픽스드 인덱스와 로컬 논프리픽스드 인덱스는 파티션드 테이블 위에 구축될 수 있다.

단 파티션드 메모리 테이블에는 글로벌 논파티션드 인덱스를 생성할 수 없다. 메모리 테이블에 생성할 수 있는 인덱스 종류는 아래의 표와 같다.

	논파티션드 테이블	파티션드 테이블
(파티션드)로컬 프리픽스드 인덱스	X	0
(파티션드)로컬 논프리픽스드 인덱스	X	0

	논파티션드 테이블	파티션드 테이블
(파티션드)글로벌 프리픽스드 인덱스	X	X
(파티션드)글로벌 논프리픽스드 인덱스	X	X
글로벌 논파티션드 인덱스	0	X

[표 7-2] 메모리 테이블에 지원되는 인덱스의 종류

하이브리드 파티션드 테이블(Hybrid Partitioned Table)

파티션드 테이블이 테이블스페이스의 저장공간(디스크/메모리)에 관계 없이 다른 테이블스페이스로 변환될 수 있다.

디스크의 파티션드 테이블에서 메모리/휘발성 파티션드 테이블로 변환될 때 칼럼의 타입을 fixed 또는 variable로 지정하더라도 fixed로 처리된다. 그러나 메모리 파티션드 테이블은 디스크 파티션드 테이블로 변환되더라도 타입이 그대로 적용된다. 또한 LOB 칼럼은 항상 variable로 처리되지만, IN ROW 절에 지정된 값에 따라 데이터들은 fixed 또는 variable로 저장된다.

제약사항

- 글로벌 인덱스는 하이브리드 파티션드 테이블을 지원하지 않는다.
- 하이브리드 파티션드 테이블은 Direct Key Index와 JOIN, DISJOIN을 이용할 수 없다. 또한 ALTER TABLE MODIFY COLUMN 구문을 이용할 수 없다.

파티션 조건

본 절에서는 파티션 조건과 기본 파티션을 설명한다.

파티션 전제조건

파티션 조건 (partition condition)은 파티션을 분할하는 기준을 의미한다. 이러한 기준은 다음과 같은 규칙을 준수해야 한다.

partition_conditioni ∩ partition_conditioni+1 = ∮.....rule2

위의 규칙은 파티션드 테이블을 위한 파티션 조건들간에 교집합이 존재해서는 안됨을 의미한다. 교집합이 존재한다는 것은 레코드가 어느 파티션으로 삽입되어야 하는지 명확하지 않다는 것이다. 따라서, 파티션드 객체 생성시 이러한 규칙을 만족하지 않으면 파티션 생성은 실패한다.

또한 파티션 조건은 어떠한 경우에도 항상 동일한 값을 표현해야 한다. 레코드가 t라는 시점에 A 파티션에 삽입되었다고 가정할 경우, 동일 레코드가 t+1시점에 삽입되는 경우에도 A파티션에 삽입되어야 한다. 이러한 조건을 만족시키기 위해서 파티션 조건에 기술되는 파티션 조건 값은 항상 상수 또는 결정가능한 내장 함수 (deterministic built-in function)여야 한다. 결정가능한 내장함수란 시점에 상관없이 동일한 값을 리턴하는 시스템 내부에서 제공하는 함수(non-user-defined function)를 의미한다.

기본 파티션

Altibase에서 파티션 조건은 다음과 같은 규칙을 항상 만족해야 한다.

column domain ≡ ∪partition conditionrule3

위의 규칙은 파티션 조건에 참여하는 칼럼의 도메인 (column domain)이 파티션 조건들의 합집합과 동치관계여야 함을 의미한다. 이는 파티션드 테이블 생성시에 모든 파티션 조건들을 명시적으로 기술해야 함을 의미한다.

그러나 현실적으로 질의문을 기술하는 사용자가 모든 파티션 조건을 기술한다는 것은 불가능하기 때문에 Altibase에서는 기본 파티션 (default partition)이라는 개념을 제공한다.

[그림 7-10]에서는 3개의 파티션을 갖는 파티션드 객체를 예를 들어 기본 파티션을 설명하고 있다. 아래 구문에서 사용자는 P1및 P2파티션에 대한 파티션 조건 (partition_condition1, partition_condition2)을 명시하였으며, P3에 대해서 기본 파티션을 선언하였다. 이러한 경우, 삽입되는 레코드가 partition_condition1과 partition_condition2조건에 걸리지 않는다면 P3파티션에 삽입된다. 즉, 기본 파티션은 파티션 키 칼럼이 갖는 전체 도메인에서 사용자가 지정한 파티션 조건들을 뺀 나머지 도메인 부분과 같다.

[그림 7-10] 기본 파티션 사용 예제

기본 파티션은 파티션드 객체 생성시 반드시 명시해야 한다. 만약 기본 파티션을 명시하지 않는다면 파티션드 객체 생성은 실패한다.

파티셔닝 방법

객체는 다음 세 가지 방법으로 분할될 수 있다: 범위 파티셔닝, 리스트 파티셔닝, 해시 파티셔닝.

범위 파티셔닝은 객체를 파티션 키 값의 범위 (range)를 기준으로 분할하는 방법이다. 범위 파티셔닝은 선형적 (linear) 범위로 파티션을 구성할 때 적합하다. 리스트 파티셔닝은 파티션 키 값의 집합을 기준으로 분할하는 방법으로 이산적 (discrete) 범위의 파티션을 구성하고 싶은 경우에 적합하다. 해시 파티셔닝은 파티션 키 값에 해당하는 해시(hash) 값을 기준으로 분할하는 방법이다.

위 방법으로 생성된 각 파티션에 대해 다음과 같은 연산이 가능한다.

	범위 파티셔닝으로 생성된 파티션	리스트 파티셔닝으로 생성된 파티션	해시 파티셔닝으로 생성된 파티션
테이블스페이스 변경	0	0	0
추가	X	X	0
병합	X	X	0
삭제	0	0	X
합병	0	0	X

	범위 파티셔닝으로 생성된 파티션	리스트 파티셔닝으로 생성된 파티션	해시 파티셔닝으로 생성된 파티션
이름 변경	0	0	0
분할	0	0	X
레코드 삭제	0	0	0

[표 7 3] 파티션 별 지원 연산

범위 파티셔닝

범위 파티셔닝(range partitioning)은 분할할 때 날짜(DATE) 타입을 많이 이용하며, 이력 데이터(historical data)를 다루는 분야에서 사용된다.

파티션 정의시 사용할 수 있는 유일한 파티션 조건은 'LESS THAN'이다. 기본 파티션은 'DEFAULT' 절을 사용해서 정의할 수 있다.

다음은 범위 파티셔닝의 예제이다.

위의 예제는 part_table테이블을 생성하면서 범위 파티셔닝 방법을 이용하여 파티션 4개로 분할한다.

처음 세 개의 파티션은 각각 FEB, MAR, 및 APR이전의 데이터를 다루며, part_def라는 기본 파티션은 어떤 조건에도 포함되지 않는 데이터를 다룬다.

위의 예를 그래피컬 방식으로 표현하면 [그림 7-10]과 같다.

[그림 7-11] 범위 파티션드 테이블의 파티션 영역

다중칼럼 파티셔닝

다중칼럼 파티셔닝(Multicolumn Partitioning)은 다중칼럼으로 구성된 파티션 키를 이용하여 객체를 분할하는 것을 말한다. 다중칼럼 파티셔닝은 다중키를 갖는 인덱스와 동일한 개념을 갖는다.

다음 그림은 두 개 칼럼(i1, i2)으로 구성된 파티션 키를 1차원 형태로 표현한 것이다.

[그림 7-12] 다중칼럼 파티셔닝의 파티션 영역

다음은 다중칼럼 파티셔닝을 SQL구문으로 예를 들어 설명하고 있다.

위의 테이블 생성 구문을 그림으로 설명하면 다음과 같다.

[그림 7-13] SQL 구문 예제의 파티션 영역

다음 표는 삽입될 레코드의 값에 따라 레코드가 삽입될 파티션과 해당 파티션에 삽입을 유도한 포함 조건이 무엇인지 보여주고 있다.

삽입될 레코드의 값(sales_date, sales_id)	레코드가 삽입될 파티션
TO_DATE('15-JAN-2006'), 100	part_1
TO_DATE('01-FEB-2006'), 100	part_1
TO_DATE('01-FEB-2006'), 200	part_2
TO_DATE('15-FEB-2006'), NULL	part_2
TO_DATE('01-MAR-2006'), 50	part_2
TO_DATE('01-MAR-2006'), NULL	part_3
TO_DATE('15-MAR-2006'), 200	part_4
NULL, 100	part_def
NULL, NULL	part_def

범위 파티션드 객체에 대한 연산

범위 파티션드 객체에 수행될 수 있는 연산의 종류는 5가지이다. 이 연산들은 파티션 분할, 파티션 삭제, 파티션 합병, 파티션 이름 변경, 파티션 레코드 삭제이다. 파티션 조건 변경은 현재는 지원되지 않는다.

범위 파티션드 객체에 파티션이 추가되는 과정은 파티션 조건이 분할되는 과정과 동일하기 때문에 'SPLIT PARTITION'을 이용하도록 한다.

마찬가지로 파티션 삭제는 파티션 조건을 삭제하는 것과 동일하므로 'DROP PARTITION'을 사용하도록 한다. 파티션 삭제시, 삭제된 파티션 조건은 이웃한

파티션의 조건에 포함된다. 또한 레코드의 삭제 여부에 따라서 'DROP PARTITION'과 'MERGE PARTITION'으로 구분된다.

파티션 이름 변경은 'RENAME PARTITION'을 사용하면 된다. 파티션의 레코드를 삭제하려면 'TRUNCATE PARTITION'을 이용하도록 한다. 이는 파티션 내에 저장된 모든 레코드를 삭제한다.

파티션 분할 (SPLIT PARTITION)

파티션 분할은 파티션드 객체가 갖는 한 파티션을 2개의 파티션으로 분할하는 연산이다. 파티션 분할은 분할 방식에 따라 다음의 2가지 경우로 나뉜다.

- 인플레이스 분할(In-place Split)
 기존 파티션의 레코드 일부를 잘라 새로운 파티션에 이동하는 분할 방식으로,
 기존 파티션의 내용이 변경된다.
 새로운 파티션의 이름이 기존 파티션의 이름과 같고, 새 파티션이 생성될
 테이블스페이스를 지정하지 않으면 인플레이스 분할 방식이 사용된다. ([그림 7-14] 참조)
- 아웃플레이스 분할(Out-place Split)
 기존 파티션의 내용은 변경되지 않는다. 대신 새로운 2개의 파티션을 생성하여,
 기존 파티션의 레코드를 복사하는 분할 방식이다. 새로운 두 파티션의 이름을
 기존 파티션의 이름과 다르게 지정했을 때 이 방식이 사용된다. 새 파티션 중
 하나의 이름이 기존 파티션의 이름과 같더라도 그 파티션이 생성될
 테이블스페이스를 지정한 경우에 사용된다. ([그림 7-15] 참조)

위의 아웃플레이스와 인플레이스 분할 방식은 성능과 효율성에서 차이가 날 수 있다. 인플레이스 분할시에는 기존 파티션이 새로운 두 파티션 중 하나와 같기 때문에 한 개의 새로운 파티션만이 생성된다. 따라서, 인플레이스 분할은 공간적인 측면에서 이득이다.

아웃플레이스 분할시에는 새로운 두 개의 파티션을 생성하고 각각의 파티션에 레코드 삽입 연산이 이루어진다. 인플레이스 분할에서의 레코드에 대한 연산은 이동 연산으로 이는 삽입과 삭제로 구성된다. MVCC 환경에서 레코드 삭제 연산은 레코드 삽입 연산에 비해 성능이 많이 떨어진다. 따라서, 인플레이스 분할은 저장 공간이 부족할 때 효율적이며, 아웃플레이스 분할은 저장 공간이 충분한 MVCC 환경에서 좋은 성능을 나타낸다.

[그림 7-14] 범위 파티션드 객체에서 인플레이스 분할

위의 그림에서 보여준 예는 4개의 파티션을 갖는 파티션드 객체의 part_2를 part_2와 part_4로 분할하고 있다.

①새로운 파티션 part_4가 생성되며, ②기존 part_2에서 part_4로의 레코드 이동(MOVE: 삽입 & 삭제)이 진행된다. 마지막으로 ③part_2의 조건이 지정된 조건으로 축소된다.

[그림 7-15] 범위 파티션드 객체에서 아웃플레이스 분할

위의 그림에서 보여준 예는 4개의 파티션을 갖는 파티션드 객체에서 part_2를 part 2와 part 4로 분할하고 있다. ①새로운 파티션 part 2와 part 4가 생성되며,

②part_2(old)에서 part_2(new)와 part_4로의 레코드 삽입이 진행된다. 마지막으로 ③part 2(old)가 물리적으로 삭제된다.

기본 파티션 분할시에는, INTO절 두 번째 파티션이 자동으로 기본 파티션으로 설정된다. 이는 INTO하위절에 기본 파티션을 지정할수 있는 구문을 지원하지 않기 때문이다.

파티션 삭제(DROP PARTITION)

파티션 삭제는 파티션드 객체가 갖는 파티션들 중에 지정된 파티션을 삭제하는 연산이다. 파티션 삭제시 삭제될 파티션이 갖는 모든 레코드와 메타 정보들은 물리적으로 삭제된다. 또한 삭제된 파티션의 조건은 이웃한 파티션으로 흡수된다.

[그림 7-16] 범위 파티션드 객체에서 파티션 삭제

위의 그림은 4개의 파티션을 갖는 파티션드 객체에서 part_2파티션이 삭제되는 과정을 보여주고 있다.

①part_2의 물리적 공간(레코드, 메타정보)이 삭제되고, ②이웃한 파티션(part_2의 조건을 포함할수 있는 조건을 가진 파티션)인 part_3으로 파티션 조건이 흡수된다.

파티션 합병(MERGE PARTITION)

파티션 합병은 파티션드 객체가 갖는 파티션들 중 지정된 파티션 두 개를 하나의 파티션으로 합병하는 연산이다. 합병할 파티션들은 반드시 이웃해야 한다. 파티션 합병은 합병 방식에 따라 인플레이스 합병과 아웃플레이스 합병으로 나뉜다.

• 인플레이스 합병(In-place Merge) 기존의 두개 파티션이 하나의 파티션으로 합쳐지면서, 기존 파티션의 레코드가 여기에 삽입되는 방식이다. 새로운 파티션의 이름이 기존 파티션 중 하나의 이름과 같고, 새로운 파티션이 생성될 테이블스페이스를 지정하지 않은 경우에 사용된다. ([그림 7-17] 참조)

 아웃플레이스 합병(Out-place Merge)
 새로운 파티션이 추가로 생성되어 기존 파티션들의 레코드들이 새로운 파티션으로 복사되는 방식이다. 새로운 파티션의 이름이 기존 파티션의 이름과 다른 경우에 사용된다. 또한 새로운 파티션의 이름이 기존 파티션 중 하나의 이름과 같더라도 새로운 파티션이 생성될 테이블스페이스를 지정한 경우에 사용된다. ([그림 7-18] 참조)

인플레이스 합병과 아웃플레이스 합병은 성능과 효율성에서 차이가 날 수 있다. 인플레이스 합병은 새로운 파티션을 생성하지 않고, 레코드 삽입 연산만 하기 때문에 성능면에서 아웃플레이스 합병보다 유리하다.

[그림 7-17] 범위 파티션드 객체에서의 인플레이스 합병

위의 그림은 4개의 파티션을 갖는 파티션드 객체의 part_2와 part_3를 part_3(old)로 합병하는 것을 보여주고 있다. ①기존 part_3의 조건이 확장되며, ②기존 part_2에서 part 3로의 레코드 삽입이 진행된다. 마지막으로 ③part 2가 물리적으로 삭제된다.

[그림 7-18] 범위 파티션드 객체에서의 아웃플레이스 합병

[그림 7-18]은 4개의 파티션을 갖는 파티션드 객체의 part_2와 part_3를 part 3(new)로 합병하는 것을 설명하고 있다.

①새로운 파티션 part_3가 생성되며, ②기존 part_2와 part_3(old)에서 part_3(new)로 레코드 삽입이 진행된다. 마지막으로 ③part_2와 part_3(old)가 물리적으로 삭제된다.

파티션 이름 변경(RENAME PARTITION)

파티션 조건은 변경되지 않으며, 파티션 이름만 변경된다

파티션 레코드 삭제(TRUNCATE PARTITION)

파티션 레코드 삭제는 파티션 조건이 변경되지 않으며, 파티션에 저장되어 있는 모든 레코드들이 삭제된다.

리스트 파티셔닝

리스트 파티셔닝(list partitioning)은 객체를 파티션 키 칼럼 값의 집합을 기준으로 분할하는 방법이다. 리스트 파티셔닝은 파티션 키 칼럼 값의 범위가 넓지 않을 경우(예: 1월 ~ 12월)에 자주 사용되는 분할 방법이다. 리스트 파티셔닝은 원칙적으로 파티션 칼럼으로 다중키를 지원하지 않는다.

범위 파티셔닝처럼 기본 파티션 생성을 위해서 DEFAULT 절이 지원된다.

다음은 리스트 파티셔닝의 예제이다.

```
CREATE TABLE part_table

(
    sales_date DATE,
    sales_id NUMBER,
    sales_city VARCHAR(20),
    ....
)

PARTITION BY LIST(sales_city)

(
    PARTITION part_1 VALUES ( 'SEOUL', 'INCHEON'),
    PARTITION part_2 VALUES ( 'PUSAN', 'JUNJU'),
    PARTITION part_3 VALUES ( 'CHUNGJU', 'DAEJUN'),
    PARTITION part_def VALUES DEFAULT
) TABLESPACE SYS_TBS_DISK_DATA;
```

위의 예제에서, 테이블은 리스트 파티셔닝으로 분할되어 4개의 파티션을 갖는 파티션드 테이블 part_table이 생성된다. 처음 세 개의 파티션은 특정 도시별로 데이터를 관리하며, part_def라는 기본 파티션은 각 조건에 포함되지 않는 데이터를 관리한다. 이를 그림으로 표현하면 아래와 같다.

[그림 7-19] 리스트 파티션드 테이블의 파티션 영역

리스트 파티션드 객체에 대한 연산

리스트 파티션드 객체에 수행될 수 있는 연산의 종류는 5가지이다. 이 연산들은 파티션 분할, 파티션 삭제, 파티션 합병, 파티션 이름 변경, 파티션 레코드 삭제이다. SQL 구문은 범위 파티션드 객체를 위한 구문과 동일하다. 파티션 조건 변경은 지원되지 않는다.

파티션 분할(SPLIT PARTITION)

리스트 파티셔닝은 범위 파티셔닝과 동일하게 인플레이스 분할과 아웃플레이스 분할을 지원한다. 파티션을 분할할 때 지정한 새로운 파티션 중 하나의 이름이 기존 파티션의 이름과 같을 경우, 테이블스페이스 지정 여부에 따라 인플레이스 분할이나 아웃플레이스 분할이 사용된다.

[그림 7-20] 리스트 파티션드 객체에서의 인플레이스 분할

위의 그림에서 보여준 예는 4개의 파티션을 갖는 파티션드 객체에서 part_2를 part_2와 part_4로 분할하는 것을 설명하고 있다. ①새로운 파티션 part_4가 생성되며, ②기존 part_2에서 part_4로의 레코드 이동(MOVE: 삽입&삭제)이 진행된다. 마지막으로 ③part_2의 조건이 지정된 조건으로 축소({'PUSAN', 'JUNJU'} -> {'JUNJU'})된다.

[그림 7-21] 리스트 파티션드 객체에서의 아웃플레이스 분할

위의 그림 예는 4개의 파티션을 갖는 파티션드 객체에서 part_2를 part_2와 part_4로 분할하는 것을 설명하고 있다. ①새로운 파티션 part_2와 part_4가 생성되며, ②part_2(old)에서 part_2(new)와 part_4로의 레코드 삽입이 진행된다. 마지막으로 ③part_2(old)가 물리적으로 삭제된다.

파티션 삭제(DROP PARTITION)

리스트 파티션드 객체에서의 파티션 삭제는 범위 파티션드 객체와 유사하며, 다만 삭제될 파티션의 파티션 조건이 이웃 파티션이 아닌 기본 파티션의 조건으로 흡수된다는 점만 다르다.

[그림 7-22] 리스트 파티션드 객체에서 파티션 삭제

위의 그림에서 보여준 예는 4개의 파티션을 갖는 파티션드 객체에서 part_2를 삭제하는 것을 설명하고 있다. ①part_2가 갖는 물리적인 공간(레코드, 메타정보)이 삭제되고, ② part 2의 조건이 기본 파티션 part def로 흡수된다.

파티션 합병(MERGE PARTITION)

리스트 파티션드 객체에서의 파티션 합병은 범위 파티션드 객체와 동일하게 인플레이스 합병과 아웃플레이스 합병이 있다. 지정한 새로운 파티션의 이름이 합병할 파티션들 중 하나의 이름과 같을 경우, 테이블스페이스를 지정했는지에 따라 인플레이스 합병이나 아웃플레이스 합병이 사용된다.

[그림 7-23] 리스트 파티션드 객체에서의 인플레이스 합병

위의 그림에서 보여준 예는 4개의 파티션을 갖는 파티션드 객체에서 part_2와 part_3를 part_3(old)로 합병하는 것을 설명하고 있다. ①기존 part_3의 조건이 확장되며, ②기존 part_2에서 part_3로 레코드 삽입이 진행된다. 마지막으로 ③part_2가 물리적으로 삭제된다.

[그림 7-24] 리스트 파티션드 객체에서 아웃플레이스 합병

위의 그림에서 보여준 예는 4개의 파티션을 갖는 파티션드 객체에서 part_2와 part_3를 part_3(new)로 합병하는 것을 설명하고 있다. ①새로운 파티션 part_3가생성되며, ②기존 part_2와 part_3(old)에서 part_3(new)로의 레코드 삽입이 진행된다. 마지막으로 ③part_2와 part_3(old)가 물리적으로 삭제된다.

파티션 이름 변경(RENAME PARTITION)

파티션 조건은 변경되지 않으며, 파티션의 이름이 변경된다.

파티션 레코드 삭제(TRUNCATE PARTITION)

파티션 조건은 변경되지 않으며, 파티션에 저장되어 있는 모든 레코드들이 삭제된다.

해시 파티셔닝

해시 파티셔닝(Hash Partitioning)은 객체를 파티션 키의 해시(hash) 값을 기준으로 분할하는 방법이다. 파티션 키는 다중 칼럼으로 구성될 수 있다. 해시 파티셔닝은 관리의 용이성보다는 데이터의 고른 부하 분배를 위해 많이 사용되는 방법이다.

해시 파티셔닝은 해시의 특성으로 인해 일반적인 파티션 연산에 제한을 받는다. 범위 파티션과 리스트 파티션과 달리 해시 파티션에는 파티션 분할, 삭제, 합병(merge) 등의 작업을 수행할 수 없으며, 파티션 추가, 병합(coalesce)과 같은 해시 전용 작업은 수행이 가능하다.

범위 파티셔닝과 리스트 파티셔닝과 달리 해시 파티셔닝에는 기본 파티션이 지원되지 않는다. 이는 해시 함수 자체가 파티션 키의 모든 값을 수용할 수 있기 때문이다. 널(null) 파티션 키 값을 갖는 레코드가 삽입되는 위치는 널에 대한 해시 값에 의존한다. 널의 해시값은 고정된 상수지만, 데이터 타입마다 상이한 값을 갖는다. 널파티션 키 값을 갖는 레코드는 칼럼의 타입에 따라 저장되는 위치가 변경될 수 있다.

다음은 해시 파티셔닝의 예제이다.

위 예제는 해시 파티셔닝을 이용해서 4개의 파티션을 갖는 테이블 part_table이 생성되는 것을 보여준다. 각 파티션은 해시 함수 HASH(sales_id, 4) 에 따라 나누어진 데이터를 관리한다. 위의 예를 도식화하면 [그림7-25]와 같다.

[그림 7-25] 해시 파티션드 테이블의 파티션 영역

해시 파티션드 객체에 대한 연산

해시 파티션드 객체에 수행될 수 있는 연산의 종류는 4가지이다. 이 연산들은 파티션 추가, 파티션 병합, 파티션 이름 변경, 파티션 레코드 삭제이다.

해시 파티션드 객체에 파티션을 추가하려면 'ADD PARTITION'을 이용한다. 파티션은 삭제하지만 그 데이터는 유지하려면 'COALESCE PARTITION'을 이용한다. 이 연산은

마지막 파티션을 삭제하고, 해당 파티션의 레코드는 기존 레코드들과 함께 파티션드 객체 전체를 재구성 (reorganization)한다. 파티션 이름을 변경하려면 'RENAME PARTITION'을 사용한다. 파티션 레코드를 삭제(파티션에 저장된 모든 레코드 삭제)하려면 'TRUNCATE PARTITION'을 이용한다.

파티션 추가(ADD PARTITION)

해시 파티션드 객체에 파티션을 추가하는 것은 해시 키의 개수가 늘어남을 의미한다. 파티션의 추가는 기존의 모든 파티션에 영향을 미치게 된다. 해시 키가 변경되면 테이블의 레코드 전체가 변경된 파티션들로 재구성(reorganization)된다. 아래 그림은 이러한 파티션 추가를 설명하고 있다.

[그림 7-26] 해시 파티션드 객체의 파티션 추가

위의 그림 예는 4개의 파티션을 갖는 파티션드 객체에서 part_5를 추가하는 것을 설명하고 있다. ①새로운 파티션 part_5가 생성되며, ②기존 파티션 4개의 레코드들이 기존 4개의 파티션과 1개의 새로 생성된 파티션으로 재분배된다.

파티션 병합(COALESCE PARTITION)

해시 파티션드 객체의 파티션을 병합(Coalesce)하는 것은 해시 키의 개수가 줄어드는 것을 의미한다. 파티션의 병합은 기존의 모든 파티션에 영향을 미친다. 마지막 파티션이 삭제되고, 해당 파티션의 레코드가 기존의 레코드들과 함께 파티션드 객체전체가 재구성(reorganization)된다. 파티션 병합을 할 때 삭제될 파티션 이름은 지정할 수 없다. 마지막 파티션부터 1개씩 삭제된다.

예를 들어 4개의 파티션(part_1, part_2, part_3, part_4)을 갖는 파티션드 객체를 병합하면 part_4가 삭제되고 3개의 파티션(part_1, part_2, part_3)을 갖는 파티션드 객체로 줄어든다. 아래 그림은 이러한 파티션 병합 과정을 설명하고 있다.

[그림 7-27] 해시 파티션드 객체의 파티션 병합

위의 그림은 4개의 파티션을 갖는 파티션드 객체에서 파티션 병합하는 것을 설명하고 있다. ①기존 파티션 4개의 레코드들이 part_1, part_2, part_3으로 재분배되고, ②마지막 파티션 part 4가 삭제된다.

파티션 이름 변경(RENAME PARTITION)

파티션 조건은 변경되지 않으며, 파티션의 이름이 변경된다.

파티션 레코드 삭제(TRUNCATE PARTITION)

파티션 조건은 변경되지 않으며, 파티션에 저장되어 있는 모든 레코드들이 삭제된다.

8.트랜잭션 관리

사용자 트랜잭션의 동시성을 제어하고 데이터의 일관성을 유지하는 것이 데이터베이스의 가장 기본적인 기능의 하나다. 이장에서는 Altibase의 트랜잭션 관리기능에 대해서 알아보자.

트랜잭션

트랜잭션(Transaction)이란 하나 이상의 SQL 문장들로 이루어진 작업의 논리적인 단위를 말한다. 트랜잭션은 사용자에 의해 첫 SQL 구문의 실행으로 시작되고, 트랜잭션이 커밋 또는 롤백 될 때 끝난다. 커밋 또는 롤백은 명시적인 COMMIT 또는 ROLLBACK 구문으로 수행할 수도 있고, DDL 구문 실행으로 인해 암묵적으로 행해 질수도 있다.

트랜잭션의 정의

트랜잭션은 한 트랜잭션 내의 SQL 구문들이 논리적으로 그룹지어 있는 한 사용자에게 데이터 변경의 일관성을 보장해 준다. 한 트랜잭션에는 작업의 논리적 단위를 위해 필요한 모든 부분이 포함되어야 한다. 트랜잭션이 시작되기 전에 일관된 상태였던 참조되는 모든 테이블의 데이터는 트랜잭션이 끝나 후에도 일관된 상태로 유지되어야 한다.

은행에서 예금을 이체하는 작업이 트랜잭션의 대표적인 예가 될 수 있다. A 계좌에서 B 계좌로 \$100을 이체한다고 가정하면 다음과 같은 작업들이 이뤄져야 한다.

- 1. A 계좌에서 \$100의 금액을 감소시킨다.
- 2. B 계좌에 \$100의 금액을 증가시킨다.
- 3. A에서 B계좌로 이체한 사실을 작업내용에 기록한다.

일관된(Consistent) 상태의 데이터베이스에서 정상적인 트랜잭션이 수행되면, 데이터베이스는 여전히 일관된 상태로 되어야 한다. 만일, 위에서 열거한 트랜잭션의 세가지 작업 중 한 가지라도 정상적으로 수행되지 않으면, 데이터베이스의 무결성이 깨져서 A 계좌의 고객, B 계좌의 고객, 혹은 은행이 손해를 보는 경우가 발생할 것이다.

데이터베이스 무결성을 유지시키기 위해 정상적으로 수행되는 트랜잭션은 다음과 같은 ACID 특성을 만족해야 한다.

- 원자성 (Atomicity): 트랜잭션 내의 모든 구문(Statement)이 모두 반영되거나, 혹은 모두 반영되지 않아야 한다. 즉, 트랜잭션은 부분적으로 성공될 수 없다.
- 일관성 (Consistency): 트랜잭션의 수행으로 인해 데이터베이스의 무결성이 깨어져서는 안 된다.
- 격리성 (Isolation): 여러 개의 트랜잭션들이 동시에 수행될 때, 어떤 트랜잭션도 다른 트랜잭션의 결과에 영향을 받아서는 안된다.
- 영속성 (Durability): 일단 트랜잭션이 완료(Commit) 되면, 시스템 장애 같은 어떤 상황 하에서도 그 변경 내용을 영구적으로 유지할 수 있어야 한다.

자율 트랜잭션 (Autonomous_Transaction)

자율 트랜잭션 프라그마(Autonomous_Transaction Pragma) 구문을 사용하면 PSM 객체가 주 트랜잭션과 독립적으로 동작한다. 자율 트랜잭션은 자원을 공유하지 않으므로 락, 커밋, 복구 등의 동작이 독립적으로 수행된다.

자세한 정보는 Stored Procedures Manual의 '프라그마'를 참조하기 바란다.

트랜잭션 종료

트랜잭션은 다음의 하나가 발생할 때 종료될 것이다.

- 트랜잭션은 사용자가 SAVEPOINT절 없이 ROLLBACK 구문을 실행하거나, COMMIT 구문을 실행할 때 종료된다.
- 사용자가 DDL 구문을 실행할 때 트랜잭션은 커밋된다.
- 사용자가 Altibase 서버로부터의 연결을 해제하면 트랜잭션은 커밋된다.
- 사용자 세션이 비정상적으로 종료되면 현재 트랜잭션은 롤백된다.

문장

문장(statement)은 트랜잭션 내에서 수행되는 SQL 문 하나 하나를 일컫는 말이다. 문장의 종류에는 다음과 같은 세 종류가 있다.

- DCL (Data Control Language): 데이터베이스의 상태나 프로퍼티 혹은 물리적 구성을 변경시키는 문장들이다.
- DDL (Data Definition Language): 데이터베이스의 논리적 구성 요소인 객체들(테이블, 인덱스, 시퀀스, 등)의 생성, 변경 및 삭제를 수행하는

문장들이다.

• DML (Data Manipulation Language): 데이터베이스 내에 저장되는 실제 데이터들의 삽입, 삭제, 변경 및 검색을 수행하는 문장들이다.

일반적으로 하나의 SQL 문이 하나의 문장이 되지만, 저장 프로시저나 함수 등이 호출되면 하나 이상의 하위 문장들이 수행된다.

문장의 수행도 역시 데이터베이스의 무결성을 해치지 않아야 한다. 문장 수행 중에러가 발생하면 해당 문장에서 수행한 모든 작업이 이전 상태로 되돌려진다. 이를위해, Altibase는 각 문장을 시작하기 전에 "암묵적 저장점(Implicit Save Point)"을설정해 두고, 오류 발생시 이 지점까지의 복원을 수행한다.

트랜잭션의 커밋

트랜잭션의 커밋(commit)이란 지금까지 트랜잭션 안에서 수행한 모든 SQL 문의 결과를 데이터베이스에 영구적으로 반영하면서 해당 트랜잭션을 종료하는 연산이다. 트랜잭션의 커밋은 데이터베이스의 상태를 이전의 무결한 상태에서 또 다른 무결한 상태로 전이시킨다.

트랜잭션이 커밋될 때, Altibase는 다음과 같은 작업을 수행한다.

- 트랜잭션 커밋 로그를 로그 파일에 기록한다.
- 트랜잭션의 수행으로 발생된 해제 가능한 자원들의 정보를 가비지 콜렉터(Garbage Collector)에게 넘겨준다.
- 트랜잭션의 상태를 커밋 상태("committed")로 변경시킨다.
- 트랜잭션 수행 중에 할당 받은 자원들(잠금, 임시 메모리 등)을 반환한다

트랜잭션의 롤백

트랜잭션의 수행 도중에 치명적인 오류가 있어 더 이상 진행할 수 없는 경우에는 지금까지 수행해 왔던 모든 SQL 문들을 다시 되돌려서, 데이터베이스를 트랜잭션 수행 이전 상태로 바꿔야 한다. 이를 트랜잭션의 롤백이라고 한다.

트랜잭션의 롤백은 트랜잭션 수행 중에 기록한 각 로그들에 대한 보상(compensation) 연산을 수행함으로써 구현된다.

트랜잭션 롤백 시 Altibase는 다음과 같은 작업을 수행한다.

- 로그 레코드를 기록 순서와 반대로 읽어가며 보상 연산을 수행한다.
- 트랜잭션 롤백 로그를 기록한다.
- 삽입 등의 연산으로 할당 받았던 자원들을 다시 가비지 콜렉터에게 반환한다.
- 트랜잭션의 상태를 롤백 상태("rolled back")로 변경한다.

• 트랜잭션 수행 중에 할당받은 자원들(잠금, 임시 메모리 등)을 반환한다.

명시적 저장점

하나의 긴 트랜잭션을 여러 개의 부분으로 나누어 관리하여야 하는 경우, 그 부분의 시작 지점에 명시적 저장점(Explicit Save Point)을 선언할 수 있다.

명시적 저장점은 이름을 가지므로, 한 트랜잭션 내에 여러 개가 선언될 수도 있다. 명시적 저장점 선언 이후 오류가 발생하여 선언한 지점으로 데이터베이스를 다시 복원을 해야 하는 경우에는, 해당 저장점으로의 롤백을 수행하면 된다.

명시적 저장점으로의 롤백이 수행되면 이후에 잡았던 테이블과 레코드 잠금 등의 자원들이 모두 해제되며, 해당 저장점 이후에 선언된 다른 저장점들은 모두 해제된다.

잠금(Lock)

잠금의 목적은 데이터베이스 내에 존재하는 특정 객체에 대한 접근 권한을 설정하는 것이다.

Altibase는 데이터에 대한 동시 접근을 제어하기 위해 잠금을 사용한다. 데이터가 갱신될 때, 갱신이 완료될 때까지 그 데이터에는 잠금이 걸린다. 이는 시스템에서 데이터의 무결성을 보장하는 데 도움이 된다.

잠금 모드

잠금은 그 사용 대상에 따라 테이블 레벨 잠금과 레코드 레벨 잠금으로 나뉜다.

테이블 레벨 잠금 모드(Table Level Lock Modes)

잠금 모드	설명	기능
S	Shared Lock (공유 락)	이 잠금의 소유자는 잠금을 획득한 테이블의 모든 레코드를 읽을 수 있다. 그 테이블을 읽기만 하는 다른 트랜잭션들과도 동시에 수행될 수 있다.
X	Exclusive Lock (배타적 락)	이 잠금의 소유자는 잠금을 획득한 테이블의 모든 레코드를 읽고 갱신할 수 있다. 다른 어떤 트랜잭션도 그 테이블을 읽거나 갱신할 수 없다.
IS	Intent Shared Lock (공유 락 의도)	테이블 내의 어떤 레코드에 대한 공유 락 획득의 의도를 가지고 그 레코드가 속한 테이블에 대해 IS 락을 먼저 획득한다. 이 잠금의 소유자는 레코드에 대해 S 잠금을 획득한 후 그 레코드를 읽을 수 있다.

잠금 모드	설명	기능
IX	Intent Exclusive Lock (배타적 락 의도)	테이블 내의 어떤 레코드에 대한 배타적 락 획득의 의도를 가지고 그 레코드가 속한 테이블에 대해 IX 락을 먼저 획득한다. 이 잠금의 소유자는 레코드에 대해 X 잠금을 획득한 후 그 레코드를 읽고 갱신할 수 있다. 서로 다른 레코드를 갱신하는 여러 트랜잭션들은 동시에 존재할 수 있다.
SIX	Shared with Intent Exclusive Lock (배타적 락 의도를 가진 공유 락)	이 잠금의 소유자는 잠금을 획득한 테이블의 모든 레코드를 읽을 수 있으며, 그 테이블에 대해 X 락을 획득한 후에는 그 테이블을 갱신할 수도 있다. 다른 트랜잭션은 그 테이블을 갱신할 수 없으며 읽기는 가능하다.

[표 8-1] 잠금 모드

의사 모드 잠금(Intention Mode Lock) - IS, IX, SIX

잠금을 걸 수 있는 객체의 종류는 여러 가지가 있다. 그 객체들의 크기 또한 다양하다. 예를 들어 잠금을 걸 수 있는 객체는 데이터베이스 자체, 스키마, 테이블, 레코드, 칼럼 등이 될 수 있으며 이들의 크기는 다음 순서를 가진다.

데이터베이스 > 스키마 > 테이블 > 레코드 > 칼럼

이처럼 잠금을 걸 수 있는 대상이 되는 객체의 크기를 잠금 단위(granularity)라한다. 잠금 단위가 큰 객체에 대해서만 잠금을 지원하는 경우 그만큼 동시성 제어가떨어진다. 왜냐하면 한 트랜잭션이 실제 작업 대상이 되는 객체는 레코드이기 때문에레코드 이상의 객체에 대해서만 잠금 단위를 지원하는 경우 한 트랜잭션이 테이블내의 레코드 하나에 대해서만 연산을 수행하더라도 그 테이블의 다른 레코드에 대해서연산을 하고자 하는 다른 트랜잭션은 먼저 시작한 트랜잭션이 끝나기를 기다려야 하기때문이다.

따라서, 지원되는 잠금 단위는 최소 단위가 레코드인 것이 가장 효율적이다. 잠금의 최소 단위에 대해 잠금을 획득하기 위해서는 최소 단위보다 큰 객체에 대해서도 잠금을 획득해야 하며 이를 "잠금 단위 규약(lock granularity protocol)"이라 한다.

더 큰 객체에 대해 잠금을 획득할 경우에는 잠금 모드를 다양하게 주어 어떤 트랜잭션이 그 테이블에 대해 연산을 수행하고 있다 하더라도 동일한 레코드에 대해서 연산을 하지 않는 다른 트랜잭션도 그 테이블에 대해 연산을 수행할 수 있게 하는 것이 바람직하다. 이를 위하여 사용되는 것이 "의사 모드 잠금 (intention mode lock)"이다.

잠금 호환성(Lock Compatibility)

잠금 호환성이란 이미 다른 트랜잭션이 해당 객체에 대해 잠금을 획득하고 있을 때 한트랜잭션이 그 객체에 대해 특정 모드의 잠금을 요구하게 되는 경우 그 요구가 받아들여질 수 있는지의 여부를 결정하기 위해 사용되는 잠금 모드 간의 호환성을 의미한다.

		Granted Mode				
Requested Mode	NONE	IS	IX	SIX	S	X
IS	0	0	0	0	0	-
IX	0	0	0	-	-	-
SIX	0	0	-	-	-	-
S	0	0	-	-	0	-
X	-	-	-	-	-	-

[표 8-2] 잠금 모드간의 호환성

레코드 레벨 잠금 모드(Record Level Lock Modes)

DML 연산 중 삽입(INSERT), 삭제(DELETE), 갱신(UPDATE) 구문은 개별 레코드에 대한 X 잠금을 잡게 되고, 조회(SELECT)구문은 S 잠금을 잡게 된다.

Lock Mode	설명	기능
S	Shred Lock	레코드에 대해 조회 작업만 수행할 수 있다.
X	Exclusive Lock	레코드에 대해 조회, 변경 작업을 수행할 수 있다.

[표 8-3] 레코드 레벨의 잠금 모드

일반적으로 레코드에 대한 S 잠금과 X 잠금은 서로 충돌하기 때문에 호환되지 않는다. 하지만 Altibase의 경우는 다중 버전 동시성 제어 기법(MVCC)을 사용하기 때문에 서로 충돌하지 않는다. 따라서 갱신 중인 레코드에 대한 조회와 조회중인 레코드에 대한 갱신이 모두 허용된다.

다중 버전 동시성 제어 기법

Altibase는 동시성 제어를 위해 다중 버전 동시성 제어 (MVCC, Multi-Version Concurrency Control) 기법을 사용한다. MVCC란 하나의 레코드에 대해 DML구문이 발생할 경우 그 레코드는 원래 상태 그대로 둔 채, 그 레코드의 복사본에 DML 구문을 실행하여 그 레코드의 새로운 버전을 만드는 것을 말한다. 이 방법으로 한 레코드에 대해 연산을 수행중인 어떤 트랜잭션은 그 레코드를 조회하는 다른 트랜잭션에게는 영향을 미치지 않게 된다.

MVCC 동시성 제어 기법은 메모리 테이블스페이스와 디스크 테이블스페이스에서의 특징이 서로 다르기 때문에 똑같이 구현될 수는 없다. Altibase는 메모리 테이블스페이스에 대해서는 "Out-place MVCC"라는 기법을, 그리고 디스크 테이블스페이스에 대해서는 "In-place MVCC"라는 기법을 사용한다. 이 두 가지 기법은 표면적으로 동일하게 동작을 하기 때문에, 사용자는 이 두 가지를 특별히 구분할 필요가 없다.

본 절에서는 MVCC 기법을 지원하기 위해 각 DML 구문 수행 시 내부적으로 수행되는 작업에 대해 간략하게 소개한다. 우선 MVCC 기법이 사용되지 않는 경우를 설명하고, Altibase의 메모리 테이블스페이스에서 사용되는 Out-place MVCC를 설명한 후, 디스크테이블스페이스에서 사용되는 In-place MVCC를 설명한다. 마지막으로 MVCC를 사용할때 주의해야 할 사항들에 대해 설명한다.

MVCC 기법을 사용하지 않는 경우의 갱신

MVCC 기법을 사용하는 경우와의 비교를 위해 MVCC 기법을 사용하지 않는 경우에 갱신 구문이 내부적으로 수행되는 방법에 대해 설명한다. 다음 그림은 MVCC 기법이 사용되지 않을 때 갱신 연산으로 인해 한 테이블의 레코드가 어떻게 변하는지를 나타낸다.

[그림 8-1] MVCC 미 사용시의 트랜잭션 처리

위 그림의 (a)는 테이블 T1에 레코드 A가 최초로 삽입된 경우를 나타낸다. 이 레코드 A에 대해 col1의 값을 2로 수정한 경우 위 그림의 (b)에서와 같이 레코드 A의 원래 위치에서 수정이 됨으로써 T1에 할당된 공간은 변화가 없다. 삭제 구문의 경우도 갱신 구문과 마찬가지로 원래 레코드에 대해 삭제 연산이 수행된다.

위 그림과 같이 MVCC 기법을 사용하지 않는 경우에는 갱신 또는 삭제에 의해 테이블에 할당된 공간이 늘어나지 않으며 한 테이블에 할당된 공간이 늘어날 수 있는 경우는 오직 삽입 구문에 의한 경우뿐이다.

메모리 테이블스페이스의 MVCC

Altibase의 메모리 테이블스페이스에서 사용되는 Out-place MVCC 기법은 갱신 연산이 발생 할 때마다 새로운 버전(version)의 레코드를 생성하고 이전 버전의 레코드과 연결 시킴으로써 구현된다.

갱신(Update) 연산

다음 그림은 Out-place MVCC 기법을 사용하는 경우 갱신 구문의 수행 효과를 보여준다.

[그림 8-2] MVCC 사용시의 트랜잭션 처리

그림의 (a)에서와 같이 테이블 T1에 레코드 A가 삽입된 상태에서 레코드 A의 col1의 값을 2로 갱신하는 경우 (b)에서와 같이 갱신을 위해 동일한 레코드를 하나 생성한 후그 레코드에 대해 값을 2로 변경한다. 따라서, 테이블 T1의 공간은 갱신 전의 상태와 비교하여 하나의 슬롯(slot)을 더 차지하게 된다.

레코드 A의 새로운 버전이 추가로 생성되면 레코드 A의 원래 버전의 헤더내의 포인터를 이용하여 새로 추가된 레코드를 가리키게 한다. 이렇게 함으로써 동일한 레코드의 다른 버전들이 동시에 관리될 수 있다.

위 그림의 (b) 상태에서 다시 레코드 A에 대한 갱신 연산이 수행되면 위에서 설명한 바와 같이 추가로 하나의 레코드를 생성하여 그 레코드에 대해 갱신을 수행하게 된다. 그 결과 하나의 동일한 레코드에 대해 여러 번의 갱신 연산이 수행되면 갱신된 횟수만큼 동일한 레코드에 대한 버전이 생기게 된다.

그렇다면 갱신 연산 수행 횟수만큼 테이블 공간은 무한정 커지는가?

특정 레코드에 대해 갱신 연산을 수행하는 각 트랜잭션이 커밋되면, 가장 최근에 생긴 버전만 유효하며 이전 버전들은 데이터베이스에 저장되어 있을 필요가 없다. 이러한 불필요한 버전들은 가비지 콜렉터에 의해 Altibase 운용 중에 삭제가 되며 삭제된 레코드들이 차지하고 있던 테이블 내의 공간들은 이후 발생하는 삽입/갱신 문에 의해 다시 재사용된다. 따라서, 갱신 연산이 일어난 횟수만큼 레코드의 새로운 버전들이 생긴다 하더라도, 데이터베이스 공간이 무한정 커지지는 않는다.

삭제 (Delete) 연산

삭제 연산도 갱신 연산과 마찬가지로 각 레코드에 대해 삭제 연산이 수행되면 하나의 새로운 버전이 생긴다. 삭제 연산의 경우 갱신 연산과 달리 삭제할 레코드에 대한 새로운 버전은 실제 아무런 데이터도 갖고 있지 않다. 따라서, 삭제 연산에 대한 새로운 버전은 삭제되는 레코드 별로 하나씩 생성할 필요가 없다. 삭제된 레코드들을 표시하는 한 개의 버전만 생성하는 것으로 충분하다.

다음 그림은 삭제 연산 수행 시 각 레코드 별로 버전을 생성하는 경우와 그렇지 않은 경우에 대해 테이블 내의 공간 활용도를 보여준다. (a) 삭제되는 모든 레코드 별로 새로운 버전을 생성하는 경우

(b) 삭제 연산을 위해 한 테이블 내에서 커서 별로 하나의 새 버전을 생성하는 경우

[그림 8-3] MVCC 사용시의 삭제 트랜잭션

위 그림의 (a)는 각 레코드 별로 새로운 버전을 생성하는 경우이다. 한 트랜잭션이 하나의 삭제 구문을 이용하여 레코드 A, B를 삭제하는 경우 두 레코드에 대해 각각의 버전을 생성하므로 테이블 T1은 추가로 두 개의 레코드가 생성되었다. 위 그림의 (b)는 하나의 삭제 구문에 의해 여러 개의 레코드가 삭제되더라도 하나의 삭제 구문에 대해서는 하나의 새 버전만을 생성하는 경우이다. 위 그림에서 보여지는 것처럼 (b)의 경우가 불필요한 레코드 버전을 적게 만들기 때문에 공간 활용도가 훨씬 높다. Altibase는 위 그림의 (b)와 같은 방법으로 삭제 연산을 수행한다.

디스크 테이블스페이스의 MVCC

Altibase의 디스크 테이블스페이스에서 사용되는 In-place MVCC 기법은 갱신 연산이 발생 할 때, 기존의 레코드에서 변경되는 칼럼들의 값을 언두 테이블스페이스에 존재하는 언두 페이지에 언두 로그 레코드라는 이름으로 기록하고, 변경 이후 값들을 기존 레코드의 해당 위치에 쓴다.

삽입 연산

최초로 레코드가 삽입되면 Altibase는 데이터 테이블스페이스에 레코드를 위한 영역을 할당 받아 레코드를 만든다. Altibase는 또한 언두 테이블스페이스에 언두 로그 레코드를 위한 영역을 할당받아서 로그 레코드를 작성한다. 마지막으로 Altibase는 데이터 테이블스페이스의 실제 레코드에 있는 롤백 RID에 이 언두 로그 레코드의 위치를 기록하여 연결 시킨다.

갱신 연산

최초로 삽입된 레코드인 버전1이 있다고 가정하자. 이 버전이 갱신되어 버전2가 되고, 다시 한번 갱신되어 현재 버전3이 되었을 경우의 상황은 다음 그림과 같이 된다.

[그림 8-4] 디스크 테이블스페이스의 MVCC

위의 그림과 같이 데이터 테이블스페이스에는 항상 최신의 레코드 이미지가 존재한다. 만일 어떤 문장(statement)이 버전3이 커밋되기 전에 시작되었다면 그 문장은 버전3을 읽을 수 없으므로, 더 이전의 이미지인 버전2를 읽어 가야 한다. 이럴 경우에는, 해당 문장은 버전3의 이미지를 자신의 특정 버퍼에 복사한 후, 그 레코드의 롤백 RID가 가리키는 곳에 존재하는 이전 이미지2를 읽어다 버전3를 복사해 둔 곳에 반영하게 된다. 만일 이 버전2마저도 자신이 읽을 수 없는 버전이라면, 다시 그 과정을 반복하여 이전 이미지1을 반영시켜 버전1을 만들어 내게 된다.

만일 버전 1도 읽지 못하는 경우라면 이는 해당 문장이 레코드의 최초 삽입연산이 커밋되기 전에 시작된 것이므로 이 레코드를 없는 것으로 가정하고 무시하게 된다.

언두 로그 레코드 영역의 해제

디스크 테이블스페이스의 경우, 단시간에 다량의 갱신연산이 발생하면 데이터 테이블스페이스의 크기는 별 차이가 없지만, In-place MVCC의 영향으로 언두 로그레코드의 양이 많아져서 언두 테이블스페이스의 크기가 증가하게 된다. 언두 테이블스페이스의 크기는 최초 CREATE DATABASE 시에 설정되어 변경될 수 없으므로 언두 로그 레코드의 재사용이 필요하다. 언두 로그 레코드는 트랜잭션이 커밋될 때 언두 테이블스페이스 헤더에 등록되어 연결 리스트(linked list)로 관리되다가, 현재시스템 내의 모든 트랜잭션이 해당 언두 로그 레코드를 참조할 필요가 없어지게 되면 바로 해제 된다. 반면 트랜잭션이 롤백이 되면 언두 로그 레코드들은 언두 테이블스페이스에 등록되지 않고 바로 해제 된다.

삽입 연산에 의해 생성된 언두 로그 레코드들은 갱신 및 삭제 연산에 의해 생성된 로그 레코드들과 따로 관리된다. 이는 삽입 연산에 의해 생성된 언두 로그 레코드들이 트랜잭션 커밋 시점에 바로 해제될 수 있게 하기 위해서이다.

삭제 연산

삭제 연산도 갱신 연산과 동일한 방식으로 수행된다. 단, 삭제 연산에 의해 변경되는 정보는 레코드의 헤더에 삭제 플래그(delete flag)가 설정되는 것이므로, 언두 로그레코드의 이전 이미지에는 레코드의 헤더 정보만 기록된다.

삭제된 레코드가 점유하던 공간은 바로 재사용되지 않는다. 먼저 해당 레코드에 대한 모든 인덱스의 키들이 삭제되고 실제 레코드가 삭제된 후에, 가비지 콜렉터가 해당 레코드에 대한 삭제 언두 로그 레코드를 삭제한다. 그 뒤에 삭제된 레코드가 점유하던 공간은 재사용 가능하게 된다.

In-place MVCC vs. Out-place MVCC

디스크 테이블스페이스에서의 In-place방식은 메모리 테이블스페이스의 Out-place와는 다른 레코드 버전 검사 방법을 사용한다. Out-place방식은 레코드의 새 버전을 생성했던 트랜잭션의 Commit SCN을 그 버전에 저장하고, 이를 이용하여 레코드 버전을 검사한다. 즉, 조회 트랜잭션은 자신의 SCN보다 작은 Commit SCN을 갖는 버전을 읽어 간다. 트랜잭션의 Commit SCN은 트랜잭션 커밋시에 설정되며, 해당 트랜잭션이 생성한모든 버전에 기록된다.

그러나 디스크 테이블스페이스에서 트랜잭션의 Commit SCN을 설정하는 것은 그 트랜잭션이 생성한 모든 레코드 버전에 대한 접근을 필요로 하는데 이는 실질적으로 불가능하다. 왜냐하면, 디스크 입출력 비용으로 인하여 트랜잭션 성능이 심각하게 저하되기 때문이다. 따라서, 디스크 테이블스페이스를 위한 독특한 Commit SCN검사 방법이 필요하며, Altibase에서는 TSS를 이용하여 이를 해결한다.

TSS(Transaction Status Slot) 는 트랜잭션의 현재 상태를 표현하고 있는 일종의 레코드이다. 각 TSS에는 Commit SCN이 기록된다. 이러한 TSS는 언두 테이블스페이스에 영구적으로 기록되며, 더이상 사용되지 않는 불필요한 경우, Ager에 의해 삭제된다. 삭제된 TSS는 새로운 트랜잭션에 의해서 재사용된다.

커밋중인 트랜잭션은 자신이 생성한 모든 버전에 Commit SCN을 설정하지 않으며 자신과 관련된 TSS에만 Commit SCN을 설정한다. 또한 레코드 갱신 연산시 TSS 식별자가 해당 레코드에 기록되며, 기록된 TSS 식별자는 레코드 버전 검사를 하는 트랜잭션에 의해서 이용된다. 즉, 트랜잭션은 레코드의 TSS가 갖는 Commit SCN과 자신의 SCN을 비교하여, 자신의 SCN보다 작은 Commit SCN을 갖는 레코드만을 읽어간다.

MVCC 사용 시 주의사항

Altibase는 메모리와 디스크 테이블스페이스 모두를 MVCC 방식으로 동시성 제어 한다. MVCC는 기존의 전통적인 SVCC(Single Version Concurrency Control)과 달라서 아래와 같이 주의하여야 할 점들이 몇 가지 있다.

• 장시간 수행되는 트랜잭션에 의한 데이터베이스 크기 증가

특정 트랜잭션이 너무 오랫동안 커밋되지 않고 수행되고 있으면, 이 트랜잭션이 이전 이미지들을 읽을 가능성이 있기 때문에 가비지 콜렉터가 다른 트랜잭션들이 작성한 이전 이미지 정보들(메모리 테이블은 이전 버전, 디스크 테이블은 언두 로그 레코드 정보)과 해당 레코드의 인덱스 키들을 삭제할 수 없게 된다. 이에 따라 메모리 테이블의 크기가 증가되고, 디스크의 언두 테이블스페이스 크기가 증가하게 된다. 또한, 해당 트랜잭션이 롤백할 때를 대비해서 로그 파일도 삭제하지 못하므로, 로그 파일이 존재하는 파일 시스템이 꽉 찰 가능성이 있다.

• 동시 수행 트랜잭션 과다로 인한 데이터베이스 크기 증가 Altibase는 MVCC로 인해 생성된 이전 이미지 정보들의 해제를 가비지 콜렉터에게 맡기고 있다. 만일 동시에 수행되는 트랜잭션의 수가 해당 시스템의 CPU개수 보다 현저히 많을 경우에는 가비지 콜렉터가 이전 이미지 정보들을 삭제할 여유를 가지지 못해 데이터베이스 크기가 계속 늘어날 수 있다.

• 대량의 갱신 연산으로 인한 데이터베이스의 크기 증가

한번에 대량의 이전 정보를 생성해야 하는 연산(bulk update)들이 자주 수행되면, 메모리 테이블은 그 크기가 커지며, 디스크 테이블은 언두 테이블스페이스가 커질수 있다.

• 이전 이미지 정보 과다로 인한 성능 저하

위에 열거한 내용들로 인하여 이전 이미지 정보가 데이터베이스 내에 너무 많이 남아있으면 실제로 목적하는 레코드를 찾는데 더 많은 비용이 들어 갈 수 있어서 전체적으로 성능이 느려질 소지가 있다.

Repeatable Read Vs. Consistent Read

SVCC로 구현된 일반적인 DBMS들은 레코드를 읽었을 때 S 잠금이 잡히게 되므로 X 잠금과 충돌하여 읽는 동안 레코드가 변하지 않으므로, 데이터베이스의 격리도(Isolation Level)가 보통 Repeatable Read로 동작한다. 반면 Altibase는 검색 연산이 수행 중에도 동일 레코드에 대해 갱신 연산이 가능하여 Consistent Read가 기본적인 격리도가 된다. 따라서, 한 트랜잭션이 커밋되지 않고 같은 테이블을 여러 번 조회하면 매번 서로 다른 결과 집합을 얻을 수도 있다. 만일이를 방지하려면 격리도를 Repeatable Read로 변경시키고 연산을 수행하거나, SELECT FOR UPDATE 구문을 사용하여 연산을 수행하여야 한다.

트랜잭션의 영속성

일반적으로 트랜잭션이란 저장 객체(페이지 또는 레코드, DBMS마다 구현 차이가 있음)에 대한 일련의 조회와 갱신 작업의 독립된 작업 단위를 의미한다.

데이터베이스 관리 시스템은 성능향상을 위해서 여러 트랜잭션이 동시에 인터리빙(interleaving)해서 수행되도록 지원하고 있으며, 여러 트랜잭션이 어떤 순서로 수행되더라도 그 결과는 차례대로 하나씩 수행한 결과와 동일하도록 동시성 제어(concurrency control)를 해주고 있다.

따라서 예측하지 못한 모든 시스템 장애 상황에서도 모든 데이터를 정확하게 관리(crash recovery)하기 위해 다음과 같은 트랜잭션의 4가지 속성을 보장하도록 설계되어 있다.

- 원자성 (atomicity)
- 일관성 (consistency)
- 격리성 (isolation)
- 영속성 (durability)

영속성의 개념

트랜잭션의 4가지 속성 중 영속성(durability)은 한 트랜잭션이 커밋된 후에 데이터베이스 객체에 대한 해당 변경 사항이 디스크에 반영(flush)되기 전에 시스템 장애가 발생하더라도, 해당 커밋된 트랜잭션은 보장되어야 한다는 속성이다.

데이터베이스 관리 시스템은 트랜잭션의 영속성을 지키기 위해 트랜잭션 로그(log)즉, 데이터 변경 작업에 대한 정보가 기록된 리두 로그 레코드를 관리한다. 커밋된트랜잭션에 의해 갱신된 내용이 디스크에 반영되기 전에 시스템 장애가 발생하면,시스템 재구동시에 로그를 판독하여 변경된 내용을 복구하게 되는 것이다.

트랜잭션의 영속성은 트랜잭션의 처리 성능과 밀접한 관련이 있는 중요한 요소이다. 디스크 기반 DBMS에 비해 성능이 수십배 더 좋은 메모리 기반 DBMS에서 영속성을 보장하는 것은 디스크 기반 DBMS에 비해 성능에 미치는 영향이 훨씬 크다.

예를 들어, DBMS가 완벽한 트랜잭션 영속성을 제공하기 위해서는 모든 데이터베이스 갱신에 대한 로그 기록이 빠짐없이 디스크의 로그파일에 반영되어야 한다. 메모리로그 버퍼에 존재하는 모든 로그들을 로그파일에 반영할 때는 디스크 I/O가 발생하게되며, 이 때 발생하는 디스크 I/O는 트랜잭션 처리의 병목(bottleneck)으로 작용하게되어 트랜잭션 처리 성능 저하의 원인으로 작용한다. 즉, 완벽한 트랜잭션 영속성과트랜잭션 처리 성능 관계는 안정성과 성능이라는 상반되는 목표를 가지는상충(tradeoff) 관계에 있다고 볼 수 있다.

Altibase는 트랜잭션의 영속성을 완벽하게 보장하고 있으며, 여러 시스템 상황에 따라서 고성능의 트랜잭션 처리를 제공하기 위해 트랜잭션 처리 성능과 트랜잭션 영속성의 균형을 조절할 수 있도록 트랜잭션 영속성 관리 방법을 지원한다.

트랜잭션 영속성 관리 방법

Altibase는 트랜잭션의 영속성(durability)을 altibase.properties 파일의 COMMIT_WRITE_WAIT_MODE 프로퍼티와 LOG_BUFFER_TYPE 프로퍼티로 관리한다. COMMIT_WRITE_WAIT_MODE는 변경 로그가 디스크 로그 파일에 반영이 완료될 때까지 트랜잭션이 대기할 것인지 여부를 설정한다. 이 프로퍼티는 전체 시스템 또는 각세션별로 설정될 수 있다.

LOG_BUFFER_TYPE는 변경 로그가 로그 파일에 기록될 때 사용될 로그 버퍼의 타입을 설정한다. 이 프로퍼티는 시스템 운영 중에 변경할 수 없다.

프로퍼티에 대한 보다 자세한 설명은 General Reference를 참조하기 바란다.

트랜잭션이 로그가 디스크에 기록될 때까지 대기하지 않고 커널 로그 버퍼가 사용되는 경우 (Durability Level 3)

[그림 8-5] 트랜잭션이 로그가 디스크에 기록될 때까지 대기하지 않고 커널 로그 버퍼가 사용되는 경우의 영속성

COMMIT_WRITE_WAIT_MODE와 LOG_BUFFER_TYPE를 모두 0으로 설정한다. 영속성 프로퍼티의 기본값으로 운영체제 커널 영역의 로그 버퍼를 사용하여 변경 로그를 기록하며 변경 로그가 로그 파일에 반영될 때까지 트랜잭션이 대기하지는 않는다.

트랜잭션이 로그가 디스크에 기록될 때까지 대기하지 않고 메모리 로그 버퍼가 사용되는 경우 (Durability Level 2)

[그림 8-6] 트랜잭션이 로그가 디스크에 기록될 때까지 대기하지 않고 메모리 로그 버퍼가 사용되는 경우의 영속성

COMMIT_WRITE_WAIT_MODE와 LOG_BUFFER_TYPE를 0과 1로 각각 설정한다. 트랜잭션은 변경 로그를 메모리 로그 버퍼에 기록하고 로그 플러시 쓰레드가 자체적으로 로그 버퍼에 있는 로그를 로그 파일에 플러시한다.

트랜잭션이 로그가 디스크에 기록될 때까지 대기하고 커널 로그 버퍼가 사용되는 경우 (Durability Level 4)

[그림 8-7] 트랜잭션이 로그가 디스크에 기록될 때까지 대기하고 커널 로그 버퍼가 사용되는 경우의 영속성

COMMIT_WRITE_WAIT_MODE와 LOG_BUFFER_TYPE를 1과 0으로 각각 설정한다. 트랜잭션이 변경 로그를 운영체제 커널의 로그 버퍼에 기록하고 직접 커밋 로그를 로그 파일까지 반영한다.

트랜잭션이 로그가 디스크에 기록될 때까지 대기하고 메모리 로그 버퍼가 사용되는 경우 (Durability Level 5)

[그림 8-8] 트랜잭션이 로그가 디스크에 기록될 때까지 대기하고 메모리 로그 버퍼가 사용되는 경우의 영속성 COMMIT_WRITE_WAIT_MODE와 LOG_BUFFER_TYPE를 모두 1로 설정한다. 트랜잭션이 변경로그를 메모리의 로그버퍼에 기록하고 앞의 경우와 마찬가지로 직접 커밋 로그를 로그파일까지 반영한다.

체크포인트

체크포인트(checkpoint)는 주기적으로 메모리 상의 데이터베이스의 내용을 백업데이터 파일에 저장하는 것을 말한다. 체크포인트 수행은 시스템 장애로부터데이터베이스 복구에 걸리는 시간을 줄이는데 그 목적이 있다.

Altibase는 데이터베이스를 안전하게 백업하여 관리하기 위해 퍼지 체크포인트 방식과 핑퐁 체크포인트 방식을 사용한다.

메모리 DB의 체크포인트

Altibase의 메모리 DB 체크포인트는 퍼지 체크포인트와 핑퐁 체크포인트를 함께 사용하여 트랜잭션의 성능뿐 아니라 데이터베이스의 안정성까지 고려하고 있다.

일반적인 데이터베이스는 데이터베이스의 일관성(consistency)을 유지하기 위해, 수정된 데이터 페이지가 디스크에 반영되기 전에 로그 레코드가 먼저 디스크에 기록되는 WAL(Write Ahead Logging) 프로토콜을 구현한다. WAL 프로토콜을 구현하기 위해서 데이터베이스 서버는 체크포인트 대상 페이지에 래치(latch)를 획득하여 로그와의 동시성을 제어한다. 이 과정에서 다른 트랜잭션들의 성능 저하가 발생할 수 있다.

하지만 Altibase는 체크포인트 대상 페이지에 래치를 획득하지 않고 체크포인트를 수행하여, 성능 저하를 해결하고 있다. 또한 체크포인트 도중 WAL 프로토콜을 지키지 않아서 발생할 수 있는 체크포인트 이미지 파일의 일관성 위배는 두 개의 체크포인트 이미지 파일을 유지하여 해결한다. 예를 들어 마지막으로 수행한 체크포인트 이미지 파일의 일관성이 깨진 상태로 Altibase 서버에 장애가 발생한 경우, 두 개의 체크포인트 이미지 파일 중 이전 이미지 파일을 사용해서 복구가 가능하다.

이렇게 두 개의 체크포인트 이미지 파일을 유지하여, 체크포인트를 할 때마다 각이미지 파일에 번갈아 쓰는 것을 핑퐁 체크포인트(Ping-pong Checkpoint)라고 한다. 그리고 체크포인트 진행 중에 다른 트랜잭션들의 수행을 허용하는 것을 퍼지체크포인트(Fuzzy Checkpoint)라고 한다. 퍼지 체크포인트를 수행하면 체크포인트이미지 파일에는 커밋 또는 커밋되지 않은 트랜잭션들의 데이터가 혼재할 수 있다. "퍼지 체크포인트"는 이런 상태에서 유래된 이름이다.

디스크 DB의 체크포인트

Altibase의 디스크 DB 체크포인트는 퍼지 체크포인트 방식을 사용하고 있으며, 다음의 특징을 갖는다.

- 체크포인트 진행 중에 다른 트랜잭션들이 시작되는 것을 막지 않는다.
- 체크포인트 수행 중에 모든 더티 페이지(Dirty Page)가 디스크에 반영되지 않을 수도 있다. 더티 페이지는 버퍼 교체 정책에 따라 디스크로 반영된다.

이러한 체크포인트 방식은 DBMS를 정지하지 않고도 수행이 가능하기 때문에, 대부분의 디스크 DBMS에서 사용된다.

하지만 장애로 인한 복구를 위해서는 진행 중이던 트랜잭션들의 시작 LSN과 더티페이지들의 LSN 중 '최소(가장 오래된) LSN'을 포함하고 있는 로그 파일부터 그 뒤의로그 파일들이 모두 필요하다. 따라서 퍼지 체크포인트 방식을 사용하는 디스크 DB는디스크에 반영하지 않은 더티 페이지가 많을수록 복구에 더 많은 시간이 걸리고,서버가 보존해야 할 로그 파일도 더 많아진다.

체크포인트 동작

체크포인트가 발생하면 아래의 표에 설명한 단계별로 체크포인트가 시작되어 완료된다.

[CHECKPOINT-BEGIN]의 메시지가 나타나면 Altibase는 체크포인트 시작 로그를 기록하기 ([CHECKPOINT-step2])에 앞서, Restart Recovery를 위한 Redo 로그의 LSN을 계산하고 결정한다. 이 때 디스크 DB의 더티 페이지들이 플러시되고, 결정된 Recovery LSN은 로그앵커에 기록된다.

각 단계별 체크포인트 메시지는 \$ALTIBASE_HOME/trc/altibase_sm.log에 기록된다. 다음은 체크포인트 메시지를 요약한 표이다.

체크포인트 메시지	설명
[CHECKPOINT-BEGIN]	체크포인트 시작
	Database buffer의 더티 페이지 플러시 테이블스페이스 로그 앵커 동기화
[CHECKPOINT-step2] Write BeginChkpt Log [0,1036171]	체크포인트 시작 로그 기록
[CHECKPOINT-step3] Flush Dirty Page(s)	메모리 DB의 더티 페이지 플러시
[CHECKPOINT-step4] sync Database File	메모리 데이터베이스 동기화(synchronization)

체크포인트 메시지	설명
	모든 테이블스페이스의 데이터 파일 헤더에 Redo LSN 기록
[CHECKPOINT-step5] Write End_Chkpt Log [0,1037350]	체크포인트 종료 로그 기록
[CHECKPOINT-step6] Sync Log File	로그 파일 동기화
[CHECKPOINT-step7] Check LogFiles that are not Needed	더 이상 필요하지 않은 로그 파일 확인
[CHECKPOINT-step8] Update and Flush Log Anchor	로그 앵커 업데이트 및 플러시
[CHECKPOINT-step9] Remove Online Log File	온라인 로그 파일 삭제
[CHECKPOINT-END]	체크포인트 완료

아래의 그림은 체크포인트가 발생할 때 Altibase 프로세스 내에서 체크포인트를 수행하는 쓰레드들의 동작을 보여준다.

[그림 8-9] 체크포인트 동작

체크포인트 제어

체크포인트는 시간 조건이나 로그 조건 또는 사용자에 의해 임의로 발생시킬 수 있다.

주기별 체크포인트

데이터베이스 운용 중 일정한 시간 간격으로 체크포인트가 수행되게 할 수 있다. 이주기는 Altibase 프로퍼티 중 CHECKPOINT_INTERVAL_IN_SEC에 의해 결정된다. 프로퍼티에 관한 자세한 설명은 *General Reference*를 참고하라.

로그 체크포인트

데이터베이스에 로그 파일이 생성된 횟수로 체크포인트를 발생시키는 방법이다. 이 횟수는 CHECKPOINT_INTERVAL_IN_LOG 프로퍼티에 의해 결정된다. 프로퍼티에 관한 자세한 설명은 *General Reference*를 참고하라.

사용자 체크포인트

사용자가 "ALTER SYSTEM CHECKPOINT" 구문을 사용해서 임의로 체크포인트를 발생시킬 수 있다.

체크포인트 관련 프로퍼티

아래는 체크포인트 수행과 관련된 프로퍼티이다. 각 프로퍼티에 대한 상세한 설명은 General Reference를 참고한다.

- CHECKPOINT_BULK_WRITE_PAGE_COUNT
- CHECKPOINT BULK WRITE SLEEP SEC
- CHECKPOINT_BULK_WRITE_SLEEP_USEC
- CHECKPOINT_BULK_SYNC_PAGE_COUNT
- CHECKPOINT ENABLED
- CHECKPOINT_INTERVAL_IN_LOG
- CHECKPOINT_INTERVAL_IN_SEC
- DIRECT_IO_ENABLED
- DATABASE IO TYPE

9.버퍼 관리자

Altibase 디스크 테이블스페이스의 데이터 객체가 접근 또는 갱신되기 위해서는 디스크로부터 메모리에 적재되어야 한다. 이렇게 임시로 사용되는 메모리를 버퍼라고 하며, Altibase에서는 이 메모리를 일괄적으로 버퍼 풀이라고 한다.

디스크의 모든 데이터를 버퍼 풀에 쌓아두면 어떤 데이터에 대한 접근이라도 디스크 I/O 없이 빠르게 수행된다. 하지만 한정된 메모리로 인해 디스크 데이터의 일부만 버퍼 풀에 적재할 수 있다. 버퍼 풀에 적재된 데이터는 다른 데이터에 의해 제거될 수 있는데, 이를 데이터 교체라고 한다. 이 때 어떤 데이터를 버퍼에 오래 둘 것인가는 시스템 성능에 중요한 영향을 주기 때문에 효율적인 알고리즘이 사용되어야 한다.

Altibase에서는 버퍼 풀을 관리하는 주체를 버퍼 관리자 (Buffer Manager)라고 한다. 버퍼 관리자의 주된 역할은 자주 접근되는 데이터를 보다 버퍼에 오래 두어 효율적으로 버퍼를 관리하는 데 있다.

이 장에서는 버퍼 관리자의 구조와 기능, 버퍼 풀 관리 방법 및 관련 프로퍼티 등에 대해 설명한다.

버퍼 관리자의 구조

버퍼 관리자 구성요소

버퍼 관리자의 구성요소에는 버퍼 영역, 버퍼 풀, 버퍼 프레임, 및 BCB (Buffer Control Block)가 있다. 버퍼 풀의 버퍼들은 효율적인 관리를 위해 LRU 리스트, 프리페어(prepare) 리스트, 플러시(flush) 리스트, 체크포인트(checkpoint) 리스트, 해시(hash) 테이블로 구성된다.

이 절에서는 버퍼 관리자의 구성요소에 대해 설명한다.

버퍼 영역 (Buffer Area)

버퍼 영역은 준비된 메모리 공간으로 이는 버퍼 풀에 할당된다. 버퍼 관리자에 의해 관리되는 버퍼 크기는 버퍼 영역의 크기에 따른다.

버퍼 풀 (Buffer Pool)

버퍼 풀은 버퍼 관리자의 핵심 요소로, 버퍼를 교체하는 정책을 구현한다. 요청된 데이터 페이지를 버퍼에 적재하고 적재된 페이지 영역의 메모리 주소를 반환한다. 버퍼 풀은 내부적으로 해시 테이블과 LRU 리스트, 프리페어 리스트, 및 플러시 리스트들로 BCB들을 관리한다.

버퍼 프레임 (Buffer Frame)

버퍼 프레임은 메모리에 하나의 페이지를 적재할 수 있도록 확보된 공간으로, 하나의 버퍼 프레임은 하나의 페이지와 크기가 같다. 버퍼 프레임이 모여서 버퍼 풀을 구성한다.

BCB (Buffer Control Block)

BCB는 버퍼 프레임에 대한 정보를 가지며, 하나의 BCB는 하나의 버퍼 프레임에 대응된다. 버퍼 관리자는 버퍼에 적재된 모든 페이지에 대한 정보를 BCB로 관리하며, 버퍼 프레임은 단지 페이지가 메모리에 적재되는 공간이다. 각 BCB는 대응하는 버퍼 프레임에 대한 주소를 유지한다.

다음의 그림과 표는 BCB의 구조와 정보를 설명한다.

[그림 9-1] BCB 구조

속성	설명
BCB 상태 (BCB Status)	BCB의 현재 상태를 나타낸다. 가능한 값은FREE, CLEAN, DIRTY이다. FREE: 버퍼에 페이지가 적재되지 않은 상태 CLEAN: 버퍼에 페이지가 적재되었지만 갱신되지 않은 상태 DIRTY: 버퍼의 페이지가 갱신되었으나 디스크에는 반영되지 않은 상태
버퍼 프레임 주소 (Buffer Frame Address)	이 BCB에 해당하는 버퍼 프레임의 주소
테이블스페이스 식별자 (Space ID)	페이지가 속한 테이블스페이스의 식별자
페이지 식별자 (Page ID)	테이블스페이스내의 페이지들이 갖는 고유 번호
페이지 소유자의 록 (Page Owner Lock)	페이지에 접근하기 위해서는 우선 록을 획득해야 한다. Read, Write, 또는 Fix 모드로 얻을 수 있다. 페이지에 대응하는 BCB에 대해 록을 특정 모드로 획득한 후에, 버퍼에 올라온 페이지에 해당 모드로 접근할 수 있다.
수정 LSN (Modified LSN)	버퍼내의 페이지가 수정된 시점의 LSN(Log Sequence Number)이다. 이 값은 플러셔가 버퍼에 올라온 페이지를 플러시할 때 어느 시점의 로그에 해당하는 변경까지 플러시할 것인지 나타낸다.

속성	설명
Fix 개수 (Fix Count)	페이지에 동시에 접근하고 있는 트랜잭션의 개수이다. 이 값이 1 이상이면 그 페이지는 교체될 수 없으며, 0이면 교체가 가능하다.
접근 회수 (Touch Count)	페이지가 버퍼에 적재된 후 트랜잭션들이 접근한 회수이다. 이 값은 버퍼의 hot, cold 여부를 판단하는데 사용된다.

[표 9-1] BCB 정보

해시 테이블

Altibase 서버는 페이지에 대한 요청이 들어오면 해당 페이지가 버퍼에 적재되었는지 확인하기 위해 해시 테이블내에서 그 페이지의 BCB를 찾는다. 해시 테이블에는 버퍼에 적재된 모든 페이지에 대한 BCB가 등록되어 있다.

LRU (Least Recently Used) List

이는 접근한지 오래된 버퍼를 우선 교체 대상으로 선정하기 위해 사용된다.

Altibase는 LRU 리스트를 hot-cold 영역으로 나누어 관리하고 있어 "hot-cold LRU List"라고도 한다. 접근 빈도가 높은 버퍼들은 hot 영역에 넣고, 그렇지 않은 버퍼들을 cold 영역에 넣어 교체 대상 검색시 cold 영역만 확인하기 때문에 hot 버퍼들은 교체 대상에서 제외된다.

버퍼에 페이지가 처음 적재될 때, 이는 mid-point(LRU cold first)에 삽입된다. 새로운 데이터 페이지에 버퍼를 할당할 때, Prepare리스트에 빈 버퍼가 없으면 이 리스트의 마지막(LRU cold last)부터 검색하여 cold 버퍼가 교체된다. 교체되는 버퍼를 "victim"이라고 한다.

[그림 9-2] hot-cold LRU list

검색하는 도중에 접근 빈도가 높은 버퍼는 hot 영역인 LRU hot first로 옮겨진다. 또한 페이지가 갱신되었지만 디스크에 플러시되지 않은 dirty 버퍼는 Flush 리스트로 옮겨진다. 그리고 버퍼에 페이지가 올라왔지만 갱신되지 않은 clean 버퍼가 hot 영역에 있지 않으면 교체 대상 버퍼로 선정된다. hot 영역의 비중은 HOT_LIST_PCT프로퍼티로 조정이 가능하다. 기본값은 50이며, 이는 LRU 리스트의 절반을 hot 영역으로 사용한다는 의미이다.

Flush List

LRU 리스트에서 교체 대상을 검색할 때 dirty 버퍼가 나타나면 플러시 리스트로 옮겨진다. 플러시 리스트는 페이지가 갱신되었지만 디스크에는 아직 반영되지 않은 버퍼들이 모여있는 리스트이다. 그러나 모든 dirty 버퍼가 플러시 리스트에 있는 것은 아니다. 갱신된 시점에 플러시 리스트로 옮겨지는 것이 아니라 LRU 리스트에서 교체 대상을 검색하는 과정에서 플러시 리스트로 옮겨지기 때문이다.

교체 플러시(replacement flush)가 발생하면 이 리스트의 갱신된 페이지는 디스크에 반영되고, clean 버퍼가 확보된다.

Prepare List

플러시 리스트에서 디스크로 반영이 된 버퍼들은 모두 Prepare 리스트로 옮겨진다. 즉 Prepare 리스트는 플러시 작업을 마친 clean 버퍼들로 구성된 리스트이다.

버퍼 관리자는 교체 대상 버퍼를 찾을 때 우선 Prepare 리스트를 검색한다. 만약 Prepare 리스트에서 적합한 버퍼를 찾을 수 없다면 LRU 리스트를 찾아본다. 그러나 버퍼가 Prepare 리스트에 있어도 갱신이 가능하기 때문에 항상 clean 상태인 것은 아니다.

Checkpoint List

LRU 리스트, Flush 리스트, Prepare 리스트는 상호 배타적인 리스트이기 때문에 한 개의 버퍼는 이 중의 두 개 이상의 리스트에 존재할 수 없다. 그러나 체크포인트 리스트는 세가지 리스트와 달리 독립적으로 관리가 가능하기 때문에 다른 세가지 리스트에 존재하는 버퍼가 체크포인트 리스트에 속할수 있다.

dirty 버퍼 즉 갱신된 버퍼들은 체크포인트 리스트에 존재하게 되며, 체크포인트 리스트의 모든 버퍼는 dirty 상태이다. 이 리스트의 버퍼들에는 처음에 갱신된 시점에 해당하는 LSN이 부여되며, 이를 기준으로 정렬 관리된다. 체크포인트 리스트가 플러시될 때 체크포인트 리스트의 LSN이 작은 버퍼부터 플러시 된다.

다음의 그림은 LRU 리스트, Flush 리스트, Prepare 리스트의 모든 버퍼들이 해시 테이블을 통해 접근이 가능한 것을 나타낸다.

[그림 9-3] 버퍼 풀(Buffer Pool)

List 다중화

LRU 리스트, Flush 리스트, Prepare 리스트, 체크포인트 리스트는 각각 다중화가 가능하다. 리스트 다중화를 통해 다수의 데이터베이스 클라이언트가 동시에 서비스 요청시 리스트 록(LOCK) 경합이 발생하는 것을 방지한다.

각 종류별 리스트의 개수는 BUFFER_LRU_LIST_CNT, BUFFER_PREPARE_LIST_CNT, BUFFER_FLUSH_LIST_CNT, 및 BUFFER_CHECKPOINT_LIST_CNT프로퍼티에 설정할 수 있고, 설정된 값은 V\$BUFFPOOL_STAT성능 뷰의 LRU_LIST_COUNT, PREPARE_LIST_COUNT, FLUSH_LIST_COUNT, 및 CHECKPOINT_LIST_ COUNT 칼럼을 조회해서 확인할 수 있다. 그러나 서버가 운영중일 경우에는 이들 값의 변경이 불가하다.

BCB 상태 전이

각 BCB의 상태는 항상 FREE, CREAN, DIRTY 3가지 중의 하나이다.

FREE

버퍼에 어떤 페이지도 적재되지 않은 상태이다. 시스템이 처음 구동되면 대부분의 버퍼들이 free 상태가 된다. 또한 테이블스페이스가 삭제(drop)되거나 오프라인(offline)으로 되면 해당 테이블스페이스에 속한 페이지에 해당하는 모든 버퍼들은 free상태로 된다.

CLEAN

버퍼에 페이지가 적재되어 있지만 아직 갱신되지 않은 상태이다. 즉, 버퍼의 페이지 내용이 디스크의 페이지 내용과 동일한 상태이다. 이 버퍼는 해시 테이블로 접근될 수 있다. 이 버퍼는 LRU 리스트, 플러시 리스트, Prepare 리스트 중 하나에 있을 수 있으나, 체크포인트 리스트에는 있을 수 없다.

DIRTY

버퍼에 있는 페이지가 갱신은 되었으나, 디스크에는 반영되지 않은 상태이다. DIRTY 버퍼는 체크포인트 리스트에 포함되며, LRU 리스트, 플러시 리스트, Prepare 리스트 중 하나에도 속한다. 더티 버퍼는 플러시 된 후 CLEAN 상태로 변경된다.

플러셔 (Flusher)

플러셔(Flusher)는 교체될 모든 버퍼를 디스크에 반영하는 플러시(flush)를 수행한다. Altibase에서는 두 종류의 플러시가 행해지는데, 교체 플러시(Replacement Flush)와 체크포인트 플러시(Checkpoint Flush)가 있다.

- 교체 플러시(Replacement Flush) 버퍼 교체를 위해 접근된지 오래된 갱신된 버퍼를 플러시
- 체크포인트 플러시(Checkpoint Flush) 체크포인트 시간을 줄이기 위해 처음 갱신한 시점이 오래된 버퍼를 플러시

교체 플러시는 주기적으로 발생하거나 교체 대상 버퍼를 찾지 못했을 때 강제적으로 수행된다. 체크포인트 플러시 역시 주기적으로 발생할 수 있으나 사용자가 ALTER SYSTEM CHECKPOINT 명령으로 수행할 수 있다.

플러셔는 교체 플러시를 먼저 수행한 후 해당 작업이 없을 때에만 주기적으로 체크포인트 플러시를 수행한다. 즉 플러셔는 일정 시간을 대기한 후 교체 플러시를 할 버퍼가 있으면 디스크에 반영한다. 플러셔는 DEFAULT_FLUSHER_WAIT_SEC이상 MAX_FLUSHER_WAIT_SEC 미만의 시간을 대기한다. 교체 플러시 이후 다시 일정 시간을 대기하여 교체 플러시할 대상이 없으면 체크포인트 플러시의 작업 여부를 판단하여 플러시를 하거나 다시 대기한다.

체크포인트 플러시가 발생하기 위한 조건은 다음과 같다.

- 마지막으로 플러셔가 플러시한 후 CHECKPOINT_FLUSH_MAX_WAIT_SEC이 지났을 때
- 시스템 재구동시 복구해야 하는 페이지들에 대한 로그 수가 일정 개수를 넘어설 때. 즉 갱신되었으나 디스크에 플러시되지 않은 페이지들이 갖는 LSN 중에서 가장 작은 LSN이 CHECKPOINT FLUSH MAX GAP 만큼 벌어졌을 때

그러나 플러셔가 오랜 시간을 대기하도록 설정되었다고 하더라도, 트랜잭션이 자주 발생하여 교체할 버퍼가 많이 발생하면 강제적인 플러셔도 가능하다.

체크포인트 플러시를 위해 플러셔가 한 번의 주기에서 플러시 할 수 있는 버퍼 페이지(프레임)의 개수는 CHECKPOINT_FLUSH_COUNT 프로퍼티를 사용해서 명시할 수 있다.

또한 BUFFER_FLUSHER_CNT프로퍼티의 값을 조정하여 다수의 플러셔를 둘 수 있다. 그러나 이 프로퍼티는 서버 운영중에는 변경될 수 없다. 각각의 플러셔는 ALTER SYSTEM START/STOP FLUSHER 구문으로 구동 또는 정지시킬 수 있다.

SQL에 대한 자세한 내용은 SQL Reference를 참조하기 바란다.

버퍼 관리

접근 모드

페이지에 접근하기 위해서는 우선 록(Lock)이 획득되어야 한다. 접근 모드는 페이지에 대한 접근을 어떤 권한으로 허가해 줄 것인가에 따라 다음과 같이 Read, Write, Fix로 구분된다.

접근 모드	설명
Read(읽기)	버퍼에 올라온 페이지를 읽기 위한 접근 모드이다. 여러 개의 트랜잭션이 동시에 페이지에 접근할 수 있다.
Write(쓰기)	버퍼에 올라온 페이지에 쓰기 위한 접근 모드이다. 쓰기 모드로는 한 시점에 하나의 트랜잭션만 같은 페이지 접근이 가능하다.
Fix	이 접근 모드로 버퍼에 페이지를 올리면, 이 페이지는 버퍼 관리자에 의해 교체되지 않는다. Fix 모드로 트랜잭션이 페이지에 접근하여 데이터를 읽으면 그 데이터가 정확한 데이터임이 보장되지 않는다. 정확한 데이터를 읽기 위해서는 페이지에 읽기 (Read) 모드로 접근해야 한다.

[표 9-2] 버퍼 접근 모드

접근 모드간 허가 관계를 살펴보면 다음과 같다.

타 트랜잭션획득 모드요청한 접근 모드	Read	Write	Fix
Read	0	X	0
Write	X	X	0
Fix	0	0	0

[표 9-3] 접근 모드간 허가 관계

위의 표를 보면 트랜잭션이 write 모드를 요청한 경우, 이미 다른 트랜잭션이 read나 write를 획득중이라면, 페이지에 대한 해당 접근 모드의 요청은 대기하거나

실패한다는 것을 나타낸다. 또는 read를 요구한 경우에 이미 다른 트랜잭션이 그 페이지에 read 접근 모드로 락을 획득하고 있다면 접근이 성공하지만, write 접근 모드로 락을 획득하고 있다면 이 요청은 실패한다.

대기 모드

대기 모드는 이미 다른 트랜잭션이 페이지를 사용하고 있어 요구한 접근 모드를 허가해 줄 수 없는 경우, 대기할 것인가 혹은 대기하지 않고 바로 에러를 리턴할 것인가를 결정한다.

대기 모드	설명
대기(Wait)	다른 트랜잭션이 작업을 마치고 록(Lock)을 해제할 때까지 해당 트랜잭션이 대기한다.
대기 안 함(No- Wait)	다른 트랜잭션이 작업을 마치는 것을 대기하지 않고 해당 트랜잭션은 바로 에러를 리턴한다.

[표 9-4] 대기 모드

페이지 요청 처리 절차

1. 해시 테이블 검색

버퍼 관리자는 페이지 식별자, 접근 모드, 및 대기 모드가 포함되어 있는 페이지 요청을 받는다.

버퍼 관리자가 요청을 받으면, 먼저 해시 테이블에 해당 BCB가 있는지 검사한다. 요청된 페이지가 이미 버퍼에 적재되어 있다면, 해당 페이지를 기술하는 BCB는 해시 테이블에서 검색될 것이다. 만약 해시 테이블에서 그 BCB를 찾을 수 없다면 페이지는 버퍼에 올라오지 않은 것이므로, 버퍼 관리자느 디스크로부터 페이지를 읽어 버퍼에 적재해야 한다.

[그림 9-4] 해시 테이블 검색

2. Lock 획득

Altibase는 항상 정확한 데이터를 읽도록 보장하기 위해 디스크로부터 read가 진행중인 페이지는 read가 끝날 때까지 접근하지 않는다.

이를 위해 Altibase는 디스크로부터 read를 수행할 때 write 권한을 획득한다. 임의의 트랜잭션이 한 페이지에 대해 read 혹은 write 권한을 획득할 수 있다면, 그 시점에는 디스크로부터 read가 진행 중이 아님을 의미한다.

Lock의 허가는 아래의 표와 같이 접근 모드, 디스크로부터 페이지 읽기, 및 대기모드에 따라 달라진다.

접근 모드	디스크로부터 읽기	대기 모드	Lock 획득 결과
Fix	0	상관없다	읽기가 끝날 때까지 대기 후 허가
Fix	X	상관없다	허가
Read	0	대기	접근 모드가 허가되면 허가, 실패 시 대기

접근 모드	디스크로부터 읽기	대기 모드	Lock 획득 결과
Read	0	대기안함	접근 모드가 허가되면 허가, 실패 시 대기
Read	X	대기	접근 모드가 허가되면 허가, 실패 시 대기
Read	X	대기안함	접근 모드가 허가되면 허가, 실패 시 바로 에러 리턴
Write	0	대기	접근 모드가 허가되면 허가, 실패 시 대기
Write	0	대기안함	접근 모드가 허가되면 허가, 실패 시 대기
Write	X	대기	접근 모드가 허가되면 허가, 실패 시 대기
Write	X	대기안함	접근 모드가 허가되면 허가, 실패 시 바로 에러 리턴

[표 9-5] Lock 획득 허가

표에서 나타나는 것처럼, Fix모드로 접근을 요청한 경우 현재 페이지가 어떤 권한으로록(Lock)이 잡혀 있더라도 바로 허가가 될 것이다. 그러나 디스크로부터 페이지를 읽어오는 중이라면 read가 끝날 때까지 그 요청은 대기한다.

Read 또는 Write 권한과 대기를 하지 않는 모드로 접근이 요청되는 경우, 만약 디스크로부터 페이지를 읽어오는 중이라면 Read가 끝날 때까지 그 요청은 대기한다.

디스크로부터 페이지 읽기

버퍼 관리자가 페이지를 요청하였을 때, 버퍼에 존재하지 않는다면 디스크로부터 페이지를 읽는 과정을 수행한다.

1. 사용 가능한 BCB 획득

Altibase 서버가 버퍼에 존재하지 않는 페이지를 버퍼로 적재하기 위해서는 우선 BCB를 확보해야 한다. 페이지가 적재될 버퍼를 찾기 위해 먼저 Prepare 리스트를 검색한다. Prepare 리스트에서 free 버퍼를 찾으면 페이지 적재를 가장 쉽게 수행할 수 있다.

그러나 이 방법으로 free 버퍼를 확보하지 못하면, 다음 단계로 교체할 버퍼를 찾는다. 시스템 구동 초기에는 많은 free 버퍼가 존재하지만, 테이블스페이스가 삭제(drop) 또는 오프라인으로 되지 않는 이상 버퍼 풀에 free 버퍼가 존재할 가능성은 낮다. 특히 플러시한 후에도 버퍼에는 페이지 내용이 유지되기 때문에 free 버퍼가 새로 생기지는 않는다.

2. 버퍼 교체

교체할 버퍼를 검색할 때 먼저 prepare 리스트가 검사된다. prepare 리스트는 플러시되어 플러시 리스트로부터 옮겨진 clean 버퍼를 보유하고 있기 때문이다.

prepare 리스트에서 적합한 교체 대상 버퍼를 찾지 못했다면 LRU 리스트가 검색된다. 그러나 LRU 리스트를 검색했는데도 clean 버퍼를 찾지 못했다면, 또 다른 prepare 리스트를 검사한다. 이 과정을 clean 버퍼를 찾을 때까지 prepare 리스트 개수만큼 반복한다.

그러나 모든 prepare 리스트를 검색하여도 clean 버퍼를 찾지 못한다면, 플러셔들을 작동시키고, prepare 리스트에 버퍼가 삽입될 때까지 대기한다. 이 대기 시간은 BUFFER_VICTIM_SEARCH_INTERVAL프로퍼티로 설정된다. 그러나 대기시간 동안에도 clean 버퍼를 찾지 못 할 경우, 다음 prepare 리스트에서 검색을 진행한다. 이를 victim search warp이라고 한다.

V\$BUFFPOOL_STAT성능 뷰에서 VICTIM_SEARCH_WARP 값이 증가하고 있다면 버퍼 교체를 위해 많은 대기를 하고 있다는 의미이다. 이러한 문제가 지속된다면 버퍼의 크기를 늘리거나 플러셔의 개수를 증가시켜 시스템을 재구동시켜야 할 것이다.

LRU list에서 버퍼 교체 대상이 되기 위해서는 다음의 조건을 만족해야 한다.

- 아무도 fix하지 않은 것 (fix count가 0인 버퍼)
- 버퍼에 적재되었으나 아직 갱신되지 않은 페이지 (clean 버퍼 상태)
- 버퍼가 Hot하지 않는 것 (touch count가 HOT_TOUCH_CNT 미만인 버퍼)

교체 대상 버퍼를 찾으면 해시 테이블에서 제거를 한 후 다음 과정을 진행한다.

3. 읽기 후 페이지 검증

BCB가 확보되면 디스크로부터 페이지를 버퍼에 적재한다. 그러나 디스크에 저장된 페이지는 하드 디스크 이상이나 정전 등의 예상하지 못한 이유로 일부 페이지의 내용이 유실될 수 있다. 이러한 상황을 인식하지 못하면 사용자는 잘못된 데이터를 볼수 있기 때문에, Altibase 서버는 이를 인식할 수 있어야 한다. 이를 위해 Altibase 서버는 디스크로부터 페이지를 버퍼에 적재한 후 바로 해당 페이지가 무결한지 검사한다.

[그림 9-5] 페이지 검증

플러시(Flush)

1. 플러시할 버퍼 선정

버퍼에 적재된 이후 수정된 페이지는 희생자로 선택되거나 체크포인트를 할 때 디스크에 플러시된다. 버퍼에 적재된 페이지가 플러시되기 위해서는 다음의 조건을 만족해야 한다.

- 적어도 한 번 수정되어야 함
- fix 개수가 0이어야 함

플러시 중에 다른 트랜잭션에 의한 읽기는 동시에 가능하다. 즉 플러시 수행을 위해서는 read 모드 권한이 획득된다.

2. IO 버퍼에 페이지 복사

플러시 대상 페이지가 정해지면 이 페이지는 디스크에 기록되기 전에 먼저 I/O 버퍼라는 메모리 공간에 복사된다. 디스크 I/O 작업은 메모리 연산에 비해 긴 시간을 소요하기 때문에 I/O 버퍼라는 메모리 공간에 먼저 복사가 된 후, 디스크에 기록된다.

버퍼 페이지가 I/O 버퍼에 복사되면 그 버퍼는 다른 트랜잭션에 의해 읽혀질 수도 있고, 재갱신될 수도 있다. 그러나 /O 버퍼가 사용되지 않는다면 페이지가 디스크에

기록되는 동안 (즉, 디스크 I/O 작업이 일어나는 동안) 그 페이지는 갱신되거나 읽혀질 수 없을 것이다.

3. 로그 플러시

수정된 페이지가 디스크에 반영되기 전에 수정된 내용에 대한 로그가 먼저 디스크에 반영되어야 한다. 이를 WAL(Write-Ahead Logging) 프로토콜이라고 한다.

그리고 디스크로부터 버퍼에 페이지가 적재될 때 이 페이지의 데이터가 깨졌는지 확인하기 위해서 체크 섬이 계산된다. 페이지를 디스크로부터 읽을 때마다 이 체크 섬을 계산하여 페이지의 체크 섬과 비교함으로써 페이지가 무결한지 여부를 가리게 된다.

4. I/O 버퍼의 페이지들을 디스크에 기록

I/O 버퍼의 페이지들이 디스크에 기록될 때 이 버퍼의 내용은 더블 라이트 파일(Double-write file)에 모두 한 번에 기록된 후, 각각의 페이지가 데이터 파일에 기록된다.

이처럼 디스크에 두 번 기록하는 이유는 페이지를 디스크에 기록하는 중에 시스템 장애가 발생하면 디스크에는 부분 쓰기(partial write)된 페이지가 남게 되는데 이는 복구가 불가능하기 때문이다. 일관성이 깨진 페이지에 대해서는 리두 로그(redo log)로도 복구가 불가능하다.

Altibase에서는 DOUBLE_WRITE_DIRECTORY 프로퍼티를 사용해서 더블 라이트 파일이 저장될 디렉토리가 지정된다. 이 파일은 시스템 구동시 데이터 파일의 정합성을 검증 또는 복구하기 위해 사용되며, 이 파일이 없으면 이 과정은 생략된다.

[그림 9-6] 페이지 플러시 과정

버퍼 관련 프로퍼티

버퍼 관리자를 사용하기 위해서는 Altibase 프로퍼티 파일의 프로퍼티들을 사용 목적에 맞게 설정해야 한다. 버퍼와 관련된 프로퍼티는 다음과 같다. 각 프로퍼티에 대한 상세한 설명은 *General Reference* 를 참조한다.

- BUFFER_AREA_CHUNK_SIZE
- BUFFER_AREA_SIZE
- BUFFER_CHECKPOINT_LIST_CNT
- BUFFER_FLUSH_LIST_CNT
- BUFFER_FLUSHER_CNT
- BUFFER_HASH_BUCKET_DENSITY

- BUFFER_HASH_CHAIN_LATCH_DENSITY
- BUFFER_LRU_LIST_CNT
- BUFFER_PINNING_COUNT
- BUFFER_PINNING_HISTORY_COUNT
- BUFFER_PREPARE_LIST_CNT
- BUFFER_VICTIM_SEARCH_INTERVAL
- BUFFER_VICTIM_SEARCH_PCT
- BULKIO_PAGE_COUNT_FOR_DIRECT_PATH_INSERT
- CHECKPOINT FLUSH COUNT
- CHECKPOINT_FLUSH_MAX_GAP
- CHECKPOINT_FLUSH_MAX_WAIT_SEC
- CM BUFFER MAX PENDING LIST
- DEFAULT_FLUSHER_WAIT_SEC
- DIRECT_PATH_BUFFER_PAGE_COUNT
- FAST_UNLOCK_LOG_ALLOC_MUTEX
- HIGH FLUSH PCT
- HOT_LIST_PCT
- HOT_TOUCH_CNT
- LOG BUFFER TYPE
- LOG FILE SIZE
- LOW FLUSH PCT
- LOW PREPARE PCT
- MAX FLUSHER WAIT SEC
- REPLICATION LOG BUFFER SIZE
- SECONDARY_BUFFER_ENABLE
- SECONDARY BUFFER FILE DIRECTORY
- SECONDARY_BUFFER_FLUSHER_CNT
- SECONDARY BUFFER SIZE
- SECONDARY BUFFER TYPE
- SMALL TABLE THRESHOLD
- TABLE BACKUP FILE BUFFER SIZE
- TOUCH TIME INTERVAL

버퍼 관리자 통계 정보

버퍼 관리자 통계 정보는 Altibase가 제공하는 성능 뷰를 통해 확인할 수 있다. 성능 뷰에 대해서는 *General Reference*를 참조한다. 버퍼 풀과 관련된 정보는 V\$BUFFPOOL_STAT을 통해 확인할 수 있고, 플러셔와 관련된 정보는 V\$FLUSHINFO와 V\$FLUSHER을 통해 확인할 수 있다. 버퍼 매니저의 버퍼 프레임 통계 정보는 V\$BUFFPAGEINFO을 통해 확인할 수 있고, 언두 테이블스페이스의 버퍼 풀 관련 통계 정보는 V\$UNDO BUFF STAT를 통해 확인할 수 있다.

통계 정보는 서버가 시작한 이래로 계속 누적된 값이므로 특정 기간 동안의 값을 알기위해서는 모든 칼럼에 대해 다음의 방법으로 계산해야 한다: (현재의 값 - 측정 시작시점의 값).

Hit Ratio 계산

V\$BUFFPOOL_STAT성능 뷰의 HIT_RATIO 칼럼을 통해 버퍼 풀의 누적된 히트율을 확인할 수 있다.

히트율은 다음의 수식에 의해 구해진다.

Hit Ratio = (GET_PAGES + FIX_PAGES - READ_PAGES) / (GET_PAGES + FIX_PAGES)

예제

iSQL> select hit_ratio from V\$BUFFPOOL_STAT;

10.백업 및 복구

디스크 데이터 파일 손상 또는 유실 등과 같은 예기치 않은 상황으로 인해 Altibase에 저장된 데이터가 손실될 경우를 대비하여 Altibase에서 제공하는 기능인 백업 및 복구에 대하여 설명한다.

데이터베이스 백업

이 절에서는 데이터베이스의 아카이브로그 모드 여부에 따라 메모리 및 디스크 테이블스페이스에 대하여 지워되는 백업 방법과 정책에 대하여 설명한다.

백업 정책

Altibase가 지원하는 백업을 분류하면 다음과 같다.

- 논리적 백업 유틸리티(Utility) 백업
- 물리적 백업 오프라인(Offline) 백업

온라인(Online) 백업

논리적 백업은 iLoader등의 유틸리티를 사용해서 데이터베이스 객체의 논리적인 복사본을 생성하여 텍스트 파일로 저장하는 것을 말한다. 논리적 백업을 사용해서는 오류가 발생한 시점까지 복구할 수 없을 수도 있다.

물리적 백업은 데이터베이스를 구성하는 데이터 파일들과 로그앵커 파일을 별도의 디스크나 테이프로 복사하는 것을 말한다. 물리적 백업은 데이터 파일의 스냅샷(snapshot)을 복사하는 동안의 서비스 중단 여부에 따라 온라인 백업과 오프라인 백업으로 구분된다.

오프라인 백업은 데이터베이스 서버를 정상 종료한 후에 모든 테이블스페이스 파일, 로그앵커 파일과 로그 파일들을 복사하는 것을 말한다.

온라인 백업은 서비스 중단 없이 데이터베이스의 데이터 파일들과 로그앵커 파일 등을 복사하는 것을 말한다. 데이터 파일들의 복사 과정에서 커밋(commit)되지 않은 데이터들이 백업될 수도 있다. 따라서 복구 시에 이들 커밋되지 않은 트랜잭션들을 철회(undo) 하기 위해서는 로그 파일들이 필요하다. 따라서, 아카이브 로그 파일들이 생성되는 아카이브 로그 모드로 운영 될 때만 온라인 백업이 가능하다.

온라인 백업 수행중에도 데이터베이스 서비스는 가능하지만, 서비스가 적은 시간에 백업을 수행하는 편이 좋다. 만약 서비스가 많은 시간에 백업을 수행한다면 과도한 로그가 발생할 수 있다.

온라인 백업으로는 데이터베이스 전체를 백업 하거나, 특정 테이블스페이스 또는 로그앵커를 백업 할 수 있다.

다음의 구문이 각 경우에 사용된다.

• 데이터베이스 전체 백업

iSQL> alter database backup database to '/backup_dir';

• 테이블스페이스 별 백업

```
iSQL> alter database backup tablespace SYS_TBS_DISK_DATA to '/backup_dir';
iSQL> alter tablespace SYS_TBS_DISK_DATA begin backup;
$ cp SYS_TBS_DISK_DATA-DATA-FILES /backup_dir
...
iSQL> alter tablespace SYS_TBS_DISK_DATA end backup;
```

시스템 카탈로그 데이터를 포함하는 메모리 테이블스페이스인 SYS_TBS_MEM_DIC는 테이블스페이스 백업 또는 전체 데이터베이스 백업 기능으로 백업이 가능하다.

백업 종류	백업 방법	백업 객체	복구 방법	온라인중에 가능?
iLoader를 이용한 백업	iLoader의 out 명령 이용	사용자가 명시한 테이블	iLoader의 in 명령 이용	0
전체 데이터베이스의 온라인 백업	SQL 문 이용 ALTER DATABASE BACKUP DATBASE TO 'BACKUP_DIR';	시스템 전체 테이블스페이스의 데이터 파일과 로그 앵커파일	1> 유닉스 명령어 cp 이용 2> ALTER DATABASE RECOVER DATABASE;	0
특정 테이블스페이스의 온라인 백업	1> SQL 문 이용 ALTER DATABASE BACKUP TABLESPACE 테이블스페이스이름 TO 'backup_dir'; 또는 1> ALTER TABLESPACE 테이블스페이스 이름 BEGIN BACKUP; 2> 유닉스 명령어 cp 사용 cp <원본 파일> <backup_dir> 3> ALTER TABLESPACE 테이블스페이스 이름 END BACKUP;</backup_dir>	테이블스페이스의 모든 데이터 파일	1> 유닉스 명령어 cp 이용. 2> ALTER DATABASE RECOVER DATABASE;	0
오프라인 백업	1>데이터베이스 종료 2>유닉스 명령어 cp 이용	전체 데이터베이스	유닉스 명령어 cp 이용	X
백업시간 비교	iLoader < online backup < offline backup			

범위에 따른 백업 분류

- 데이터베이스 단위 백업 (Database-Level Backup) 데이터베이스의 모든 데이터 파일을 백업한다. 백업과 관련된 모든 로그 파일의 아카이브를 보장한다.
- 테이블스페이스 단위 백업 (Tablespace-Level Backup)
 특정 메모리 또는 디스크 테이블스페이스의 모든 데이터 파일을 백업한다.
 백업과 관련된 로그 파일의 아카이브를 보장하지 않으므로 이들은 DCL 구문을 사용해서 별도로 아카이브될 필요가 있다.

방식에 따른 백업 분류

- 데이터베이스 시스템에 의한 백업 (Database-Driven Backup)
 Altibase 서버에 의해 파일 복사가 수행된다.
 한번의 DCL 구문으로 전체 DB 혹은 테이블스페이스 순서대로 백업된다.
 데이터베이스 단위 백업, 테이블스페이스 단위 백업 모두 지원된다.
- DBA에 의한 Backup (DBA-Driven Backup)
 DBA에 의해 파일 복사가 수행된다.
 여러 테이블스페이스에 대한 병렬 백업을 수행할 수 있으므로 3rd-Party 백업 솔루션과의 연동이 가능하다.
 테이블스페이스 단위 백업만 지원된다.

데이터베이스 모드

데이터에 대한 모든 변경이 기록된 온라인 로그 파일들이 관리되는 방법에 따라 데이터베이스는 아카이브 로그(archivelog) 모드 또는 노-아카이브 로그(noarchivelog) 모드로 운영된다.

아카이브 로그 모드에서는 한 로그 파일이 다 차서 새 로그 파일로 교체되면 이전 로그 파일은 아카이브 디렉토리로 복사된다. 아카이브 로그 디렉토리는 \$ALTIBASE_HOME/conf/altibase.properties 파일에 ARCHIVE_DIR 프러퍼티로 지정된다.

노-아카이브 로그 모드에서는 이 로그 파일들이 체크포인트 시에 지워진다.

각 데이터베이스 모드의 장단점을 비교하면 [표 9-2]와 같다.

데이터베이스 모드	장점	단점
--------------	----	----

데이터베이스 모드	장점	단점
아카이브 로그 모드 (archivelog mode)	- 매체복구가 가능하다. 데이터 파일의 유실이나 손실시에도 데이터베이스는 현재 시점까지 복구가 가능하다.	- 아카이브 로그 파일을 저장하기 위한 디스크 공간이 필요하다 DBA가 아카이브 로그를 다른 저장 장치로 받아내거나, 로그 파일 정리 등을 해야 함으로 관리의 부담이 크다 아카이브 로그를 위한 디스크 공간이 부족하면 장애가 발생한다.
노아카이브 로그 모드 (no- archivelog mode)	- DBA가 아카이브 로그 파일을 관리할 필요가 없다.	- 데이터 파일이 손상되어도, DBA는 오프라인 백업을 이용한 복구만 할 수 있다. 백업 받은 시점과 데이터 파일의 손상이 발생한 시점 사이의 데이터 변경은 복구되지 않는다.

[표 10-2] 데이터베이스 모드에 따른 장단점

데이터베이스 모드는 CREATE DATABASE 구문을 사용해서 데이터베이스가 생성될 때 결정되며, control 구동 단계에서 변경될 수 있다.

다음 예는 아카이브 로그 모드로 데이터베이스를 생성하는 예이다.

create database mydb INITSIZE=100M archivelog;

다음 예는 control 구동 단계에서 데이터베이스 모드를 아카이브 로그 모드로 변경하는 예이다.

\$ isql -silent -u sys -p manager -sysdba
iSQL(sysdba)> startup control;
iSQL(sysdba)> alter database archivelog;

데이터베이스 모드에 따른 온라인 백업 및 매체 복구

모드	백업방법	매체 복구 방법
노아카이브 로그	오프라인 백업	Full 데이터베이스 복구
아카이브 로그	온라인 백업 (오프라인 백업 가능)	완전 복구 - Full 데이터베이스 복구 불완전 복구 - Cancel 기반 복구 - Time 기반 복구

모드	백업방법	매체 복구 방법
상관없음	iLoader Utility를 이용한 백업	iloader Utility를 이용한 복구

[표 10-3] 데이터베이스 모드에 따른 백업 및 복구 방법

테이블스페이스 상태에 따른 온라인 백업 및 매체 복구

테이블스페이스 상태	온라인 백업	매체 복구
온라인(ONLINE)	가능	가능
오프라인(OFFLINE)	가능	가능
디스카드(DISCARDED)	불가능	불가능
삭제(DROPPED)	불가능	불가능
백업(BACKUP)	불가능	의미 없음

[표 10-4] 테이블스페이스 상태에 따른 온라인 백업과 매체 복구

백업 시 주의사항

온라인 백업과 체크포인트는 동시에 수행될 수 없다.

체크포인트 중에 메모리 상의 데이터베이스 내용이 디스크에 반영되고, 온라인 백업은 백업하는 바로 그 시점까지의 데이터만 백업을 보장한다. 따라서 체크포인트와 온라인 백업은 서로 배타적으로 수행되고, 동시에 수행될 수 없다.

체크포인트를 수행 중에 온라인 백업 요구가 발생하면 체크포인트가 완료된 후에 온라인 백업이 시작된다. 마찬가지로 온라인 백업 진행 중에 체크포인트 요구가 들어와도 온라인 백업이 완료된 후 체크포인트가 시작된다.

Altibase는 하이브리드 데이터베이스 특성상 데이터베이스 백업 시에 메모리 테이블스페이스, 디스크 테이블스페이스 순으로 백업을 진행한다. 메모리 테이블스페이스 백업 중에는 체크포인트가 수행될 수 없지만, 메모리 테이블스페이스의 백업이 완료되고 디스크 테이블스페이스 백업 중에는, 메모리 테이블스페이스에 대한 체크 포인트는 수행되고 디스크 테이블스페이스에 대한 체크 포인트는 수행되지 않는다.

데이터베이스 복구

데이터베이스 시스템에서는 언제든지 시스템 또는 하드웨어 장애가 발생할 가능성이 있다. 데이터베이스에 영향을 미치는 장애가 발생하면 데이터베이스 복원을 위해서 복구가 수행되어야 한다. 이런 장애 후의 목표는 모든 커밋된 트랜잭션의 결과들을 복구된 데이터베이스에 유지시키고 가능한 빨리 데이터베이스의 정상 운영이가능하도록 하는데 있다.

복구 정책

Altibase는 다음의 복구 유형을 지원한다.

- 논리적 백업본을 이용한 복구
- 재시작시 자동 복구 (Restart Recovery)
- 매체 복구 (Media Recovery)

논리적 백업본을 이용한 복구는 iLoader 유틸리티를 통하여 백업된 텍스트 파일을 iLoader 유틸리티를 통해 복구하는 방식이다.

재시작시 자동 복구는 Altibase 프로세스가 시스템 crash 또는 소프트웨어 오류로 비정상 종료된 경우, 재시작시 구동 단계에서 자동으로 수행되는 복구이다.

매체 복구는 특정 데이터 파일이 유실되거나 손상된 경우에, 과거에 백업한 데이터 파일, 로그 앵커 파일, 아카이브 로그 파일을 이용하여 현재 시점의 데이터 파일 또는 과거 특정 시점의 데이터 파일로 복구하는 방식이다. 매체 오류 상황과 복구 절차에 따라 완전 복구(complete recovery)와 불완전 복구(incomplete recovery)를 선택할 수 있다.

데이터 파일의 매체 복구가 필요한가에 대한 판단은 로그앵커 파일상의 해당 데이터 파일의 버전과 현재 데이터 파일의 버전이 일치하는지 여부에 따라 결정된다.

[그림 10-1] Altibase 복구 절차

Altibase에서는 매체 복구를 control 구동 단계에서만 할 수 있다. 즉 Altibase는 오프라인 매체 복구(offline media recovery)만 지원한다.

예제

다음은 매체 복구의 예제이다. TEST 테이블스페이스의 데이터 파일 'user1.dbf' 파일이 유실되었다. 이 예제는 이틀 전에 온라인(Online) 백업받은 'user1.dbf'을 이용하여 유실된 데이터 파일을 현재 시점으로 복원한다.

```
$ cp /bck/user1.dbf $ALTIBASE_HOME/dbs
$ isql -silent -u sys -p manager -sysdba
[ERR-00000 : Connected to idle instance]
iSQL(sysdba)> startup control;
Trying Connect to Altibase.. Connected with Altibase.
TRANSITION TO PHASE : PROCESS
TRANSITION TO PHASE : CONTROL
Command execute success.

iSQL(sysdba)> alter database recover database;
Alter success.
```

TEST 테이블스페이스의 데이터 파일 'user1.dbf'가 매체 복구되었다.

매체복구가 완료되었기 때문에 서비스(service) 단계로 전이한다.

완전 복구 vs. 불완전 복구

Altibase 매체 복구 정책은 완전 복구와 불완전 복구를 모두 지원한다.

"완전 복구(Complete recovery)"는 온라인 로그와 아카이브 로그의 유실이 없는 경우에 현재 시점까지 데이터 파일을 복원하는 것을 의미한다.

"불완전 복구(Incomplete recovery)"는 아카이브 로그 파일 또는 온라인 로그 파일이 유실된 경우에 로그 파일이 유실되기 바로 직전의 시점으로 데이터베이스를 복구하거나, 데이터베이스를 특정 시각으로 복원하기 위하여 특정 과거 시점으로 데이터베이스 전체를 되돌리는 경우를 말한다.

완전 복구의 예는 다음과 같다.

ALTER DATABASE RECOVER DATABASE;

불완전 복구는 다음 2가지 경우로 나눌 수 있다.

 과거의 특정 시점으로 데이터베이스 전체를 되돌리는 경우:
 2007년 9월 10일에 생성된 전체 데이터베이스 백업 파일을 복사한 후 이를 이용하여 복구를 수행한다.

ALTER DATABASE RECOVER DATABASE UNTIL TIME '2007-09-10:17:55:00';

 특정 온라인 로그 파일이 손상되어 현재 시점까지 데이터베이스를 복원할 수 없는 경우, 다음의 구문을 이용하여 온라인 로그 파일이 손상되기 바로 직전 시점으로 데이터베이스를 복원한다.

ALTER DATABASE RECOVER DATABASE UNTIL CANCEL;

control 구동 단계에서 불완전 복구를 수행한 경우에 meta 구동 단계로 넘어가기 위해서 반드시 다음 구문을 사용해야 한다.

ALTER DATABASE db_name META RESETLOGS;

위 구문을 수행하는 이유는 데이터베이스가 특정 과거 시점으로 복원되어, 재 시작 시자동 복구(Restart Recover)가 수행되지 않도록 할 필요가 있기 때문이다. 이를 위하여 RESETLOGS 옵션으로 온라인 로그를 초기화(resetlogs)하는 것이다. 데이터베이스가 resetlogs를 하면서 meta 구동 단계로 전이 되었다면, 오프라인이나 온라인 백업으로 데이터베이스 전체 백업을 반드시 해야 한다.

그 이유는 다음과 같다: resetlogs를 하면서 meta 구동 단계로 전이하고 나서 이틀후에 매체에 또 다시 에러가 발생한다면, 로그를 리셋하기 이전까지만 데이터 복구가 가능하기 때문이다. 즉, 로그를 리셋한 이후부터 이틀간의 데이터는 유실될 것이다.

매체 복구시 주의사항

매체 복구 알고리즘 때문에 가능하면 현재 로그 앵커 파일들을 이용하여 매체 복구를 하여야 한다.

복구 수행시, 백업된 데이터 파일들만 복사하여 복원해야 한다. 특별한 경우가 아니라면 로그앵커 파일들은 백업 본을 사용하여 복구하면 안 된다.

만약 사용자가 실수로 DROP TABLESPACE 구문을 이용하여 테이블스페이스를 삭제한 경우에는, 현재의 로그앵커 파일에는 삭제된 테이블스페이스 정보가 없기 때문에 백업된 로그앵커를 사용할 수 밖에 없다.

메모리 테이블스페이스의 데이터 파일 복구 시 안정적인(stable) 메모리 데이터 파일을 이용해야 한다.

Altibase는 메모리 테이블스페이스에 대하여 핑퐁 체크포인트 (ping-pong checkpoint) 기법을 사용하기 때문에, 디스크 상에서 각 메모리 테이블스페이스에 대하여 2개의 데이터 파일을 유지한다. 동일한 이미지를 기록한 1묶음(pair)의 데이터 파일은 MEM_DB_DIR 프로퍼티에 설정한 위치에 저장된다. 2개의 데이터 파일이 모두 존재해야만 Altibase가 정상적으로 운용된다. 어느 한 시점에서는 메모리 테이블스페이스는 이 묶음 중 1개의 데이터 파일만 사용한다.

백업 수행 시간을 줄이려면 메모리 테이블스페이스의 가장 최근 체크포인터가 수행된 1개의 데이터 파일만 백업한다.

백업받은 메모리 테이블스페이스의 데이터 파일이 다음과 같다면:

SYS_TBS_MEM_DIC-1-0, SYS_TBS_MEM_DIC-1-1, SYS_TBS_MEM_DIC-1-2

메모리 테이블스페이스를 위한 데이터 파일의 복사는 다음과 같이 되어야 한다.

```
$ cp SYS_TBS_MEM_DIC-1-0 $ALTIBASE_HOME/dbs;
$ cp SYS_TBS_MEM_DIC-1-1 $ALTIBASE_HOME/dbs;
$ cp SYS_TBS_MEM_DIC-1-2 $ALTIBASE_HOME/dbs;
```

복구 완료 시점에 자동으로 안정적인(stable) 메모리 데이터 파일을 복사해서 불안정한(unstable) 메모리 데이터 파일을 생성한다.

테이블스페이스의 추가, 삭제 또는 이름 변경 등이 이루어지면, 딕셔너리 테이블스페이스(SYS_TBS_MEM_DIC)의 백업이나 전체 데이터베이스의 백업이 필요하다.

```
iSQL(sysdba)> ALTER DATABASE BACKUP TABLESPACE
SYS_TBS_MEM_DIC TO '/backup_dir';
```

로그앵커 파일은 데이터베이스 내 테이블스페이스 정보를 포함하고 있으므로, 이는 테이블스페이스 구조가 변경될 때마다 딕셔너리 테이블스페이스와 함께 백업되어야 한다.

iSQL(sysdba)> ALTER DATABASE BACKUP LOGANCHOR TO 'anchor_path';

이중화를 진행하던 Altibase의 백업된 데이터베이스로 복구할 경우 아래의 문제가 발생할 수 있다.

백업된 데이터베이스가 동일하지 않은 시스템에서 복구되는 경우 네트워크 주소가 다르기 때문에 Altibase 복구 후 이중화 사용에 문제가 발생할 수 있다.

동일한 시스템으로 복구된 경우라도 백업 시점의 메타 정보를 기준으로 이중화를 재전송할 수 있으며, 이 경우 일부 데이터가 백업 시점의 데이터로 변경될 수 있다.

따라서 이중화가 자동으로 시작되지 않도록

(1) REPLICATION_SENDER_AUTO_START 프로퍼티의 값을 0으로 변경 후 복구를 진행해야 하며, (2) 복구가 완료되면 이중화 객체를 재생성하거나 이중화를 RESET한다.

백업 및 복구 사례들

iLoader유틸리티를 이용한 테이블 백업 및 복구

임의의 테이블에만 문제가 발생할 것을 대비하거나, 특정 이유로 해당 테이블만백업을 받으려고 하는 경우 iLoader 유틸리티를 사용할 수 있다.

백업 전

백업하기 전에 반드시 백업하고자 하는 테이블의 스키마에 관한 정보 파일(FORM file)을 생성해야 한다. FORM 파일은 테이블에 관한 기본 정보(칼럼 이름, 데이터 타입)를 가지고 있다.

예제) 테이블 t1의 form 파일 생성 (t1.fmt라는 파일 이름으로 생성됨)

iLoader> formout -T t1 -f t1.fmt

백업

iLoader의 명령 중 out을 사용한다. 사용자가 명시한 이름으로 테이블에 대한 백업 파일이 생성된다.

예제) 테이블 t1의 백업 (이용할 form 파일은 t1.fmt 생성할 백업 파일은 t1.dat)

iLoader> out -d t1.dat -f t1.fmt

복원(restore)

iLoader의 명령 중 in을 사용한다. 복구 시 테이블에 레코드가 존재하는 경우 그 레코드들을 유지하거나 덮어쓰게 할 수 있으며, 사용자가 명시하지 않는 경우 존재하는 레코드들의 내용은 유지된다.

예제) 테이블 t1의 복원

iLoader> in -d t1.dat -f t1.fmt

Offline 백업 및 복구

오프라인 백업 및 복구는 주로 노아카이브 로그 모드로 데이터베이스를 운영하는 경우에 사용하는 방법이다.

오프라인 백업 수행시 주의사항

백업 전 Altibase와 관련된 모든 서비스를 중지한다.

데이터베이스 운영 중에 오프라인 백업이 수행되면 백업 중에 로그 파일의 내용이 변경될 수 있어 백업이 정확하게 수행되지 않을 수 있다. 그러므로 반드시 Altibase 서버를 중지한 후에 오프라인 백업을 수행하여야 한다.

백업 방법

모든 테이블스페이스의 데이터 파일들, 로그 파일, 및 로그 앵커 파일 모두를 운영체제의 복사 명령어 (UNIX의 경우 cp)를 이용하여 백업한다. Altibase에서는 메모리 데이터 파일 뿐만 아니라 디스크 관련 테이블스페이스의 데이터 파일들과 로그 앵커파일이 백업되어야 한다.

메모리 테이블스페이스 데이터 파일 저장 위치는 Altibase 프로퍼티 파일인 \$ALTIBASE_HOME/conf/altibase.properties 파일 내에 MEM_DB_DIR으로 설정된다. 메모리 테이블스페이스의 데이터 파일을 백업하려면 MEM_DB_DIR 디렉토리를 모두 복사해야 한다.

로그 앵커 파일의 위치는 \$ALTIBASE_HOME/conf/altibase.properties 파일 내에 LOGANCHOR_DIR 프로퍼티로 설정된다. 로그 앵커 파일을 백업하려면 LOGANCHOR_DIR 디렉토리의 파일들을 복사해야 한다. 그리고 데이터 딕셔너리를 참조하여 디스크 테이블스페이스의 데이터 파일들을 복사해야 한다.

예제)

\$ALTIBASE_HOME/conf/altibase.properties
MEM_DB_DIR=\$ALTIBASE_HOME/dbs0
MEM_DB_DIR =\$ALTIBASE_HOME/dbs1
LOGANCHOR DIR =\$ALTIBASE HOME/logs

백업해야 하는 디스크 테이블스페이스에는 시스템 테이블스페이스,언두 테이블스페이스와 임시 테이블스페이스만 있다.

백업 파일이 저장될 위치가 /home/backup라면

\$cp -r \$ALTIBASE_HOME/dbs0 /home/backup
\$cp -r \$ALTIBASE_HOME/dbs1 /home/backup
\$cp -r \$ALTIBASE_HOME/logs /home/backup
\$cp -r \$ALTIBASE_HOME/dbs/system*.dbf /home/backup
\$cp -r \$ALTIBASE_HOME/dbs/undo.dbf /home/backup
\$cp -r \$ALTIBASE_HOME/dbs/temp.dbf /home/backup

복구 방법

Altibase 프로퍼티 설정 파일은 백업 수행 당시에 사용되었던 프로퍼티 파일을 그대로 이용해야 한다. 백업 시 받았던 파일들을 복사 명령어 cp를 이용하여 복원하라. 이들 파일에 접근하려면 충분한 권한이 있어야 한다.

예) 아래의 예제에서는 위에서 백업된 데이터베이스가 복원된다.

```
$cp -r /home/backup/dbs0 ALTIBASE_HOME/dbs0
$cp -r /home/backup/dbs1 $ALTIBASE_HOME/dbs1
$cp -r /home/backup/logs $ALTIBASE_HOME/logs
$cp -r /home/backup/system*.dbf $ALTIBASE_HOME/dbs
$cp -r /home/backup/undo.dbf $ALTIBASE_HOME/dbs
$cp -r /home/backup/temp.dbf $ALTIBASE_HOME/dbs
```

데이터베이스 시스템에 의한 온라인 백업

데이터베이스 단위 온라인 백업

전체 데이터베이스가 /backup dir 디렉토리에 온라인 백업된다.

```
iSQL(sysdba)> alter database backup database to'/backup_dir';
$ ls /backup_dir
SYS_TBS_MEM_DIC-0-0
SYS_TBS_MEM_DATA-0-0
system001.dbf
system002.dbf
undo001.dbf
loganchor0
loganchor1
```

테이블스페이스 단위 온라인 백업

SYS_TBS_MEM_DIC 데이터 파일 중에서 안정(stable)된 버전이 /backup_dir 디렉토리에 온라인 백업된다.

```
iSQL(sysdba)> alter database backup tablespace SYS_TBS_MEM_DIC to '/backup_dir';
$ ls /backup_dir
SYS_TBS_MEM_DIC-0-0
```

로그앵커 온라인 백업

모든 로그앵커 파일이 /backup dir 디렉토리에 온라인 백업된다.

```
iSQL(sysdba)> alter database backup loganchor to '/backup_dir';
$ ls /backup_dir
loganchor0 loganchor1 loganchor2
```

DBA에 의한 온라인 백업

테이블스페이스 단위 온라인 백업

/backup_dir에 USER_MEMORY_TBS와 USER_DISK_TBS테이블스페이스의 데이터 파일들을 온라인 백업 한다.

메모리 테이블스페이스 데이터 파일은 안정(stable) 버전 데이터 파일인지 확인 후 온라인 백업한다.

SNAPSHOT 백업

스냅샷(SNAPHOT) 백업은 데이터베이스의 특정 시점을 SCN으로 스냅샷을 지정한 후, iLoader 유틸리티를 사용하여 데이터를 백업할 수 있다.스냅샷 백업은 일반적으로 외래 키 또는 트리거가 있는 테이블, 서비스가 일어나는 시점에 iLoader를 사용하여 데이터를 백업할 경우에 유용하다. 스냅샷 백업은 데이터의 일관성을 유지할 수 있기 때문이다.i

스냅샷 지정 및 해제는 SYSDBA 권한을 가진 DBA만 가능하다.

스냅샷 설정

```
iSQL(sysdba)> ALTER DATABASE BEGIN SNAPSHOT;
```

스냅샷을 설정하면. V\$SNAPSHOT 성능 뷰에서 설정된 SCN의 값을 확인할 수 있다.

스냅샷 해제

```
iSQL(sysdba)> ALTER DATABASE END SNAPSHOT;
```

주의사항

- SNAPSHOT SCN을 지정하면, 해당 SCN 이후의 데이터는 삭제되지 않기 때문에 DML이 빈번하지 않은 경우에 사용해야 한다.
- 스냅샷 이후 데이터 증가로 메모리 또는 디스크 언두 테이블스페이스의 공간이 부족할 수 있다. 프로퍼티 SNAPSHOT_MEM_THRESHOLD, SNAPSHOT_DISK_UNDO_THRESHOLD에 설정된 임계치를 초과하면 스냅샷은 중단된다.
- 대량의 테이블 업데이트 또는 이중화를 진행중에 수신자(receiver)에서 데이터를 수신중에는 스냅샷의 기준 시점이 상이할 수 있다.
- iLoader 유틸리티로 데이터를 export 중에는 SNAPSHOT을 지정할 수 없다.

온라인 백업 마무리

DBA에 의한 직접 온라인 백업을 수행하였다면 마지막 절차는 백업과 관련된 로그 파일을 강제로 아카이브(archive) 하는 명령을 수행해야 하는 것이다. 이 명령은 현재로그 파일을 다 쓰지 않았어도 닫고 다음 로그 파일에 로깅을 계속하도록 명령한다.

```
iSQL(sysdba)> ALTER SYSTEM SWITCH LOGFILE;
```

온라인 백업 완료 메시지가 altibase_sm.log에 남겨진다. 이 수동 백업의 예제에서는, logfile15341 로그파일이 아카이브 되었다는 메지지가 백업이 완료됨을 표시한다.

```
[2007/09/18 14:42:38] [Thread-6] [Level-9] Waiting logfile15341 to archive [2007/09/18 14:42:43] [Thread-6] [Level-9] Database-Level Backup Completed [SUCCESS]
```

매체복구 사례 1

아카이브 로그 모드로 데이터베이스를 운영하고 있으며, 백업되지 않은 데이터 파일 \$ALTIBASE_HOME/dbs/abc.dbf가 유실되었다.

참고) 메모리 테이블스페이스의 데이터 파일은 이와 같은 방법으로 복구될 수 없다.

복구 절차

완전 복구에 필요한 아카이브 로그 파일을 확인한다.

가장 최근 삭제된 로그 파일을 확인하기 위해서는 유틸리티 'dumpla'를 이용하여 loganchor의 내용을 확인한다.

```
$ dumpla loganchor0
[LOGANCHOR HEADER]
Binary DB Version
                             [ 5.3.3 ]
Archivelog Mode
                             [ Archivelog ]
Begin Checkpoint LSN
                             [ 20345, 469859 ]
End Checkpoint LSN
                              [ 20345, 470300 ]
Disk Redo LSN
                             [ 20345, 469859 ]
Server Status
                              [ SERVER SHUTDOWN ]
End LSN
                              [ 20345,470341 ]
                             [ 4294967295, 4294967295 ]
ResetLog LSN
Last Created Logfile Num
                             [ 20350 ]
Delete Logfile(s) Range
                             [ 20333 ~ 20344 ]
Update And Flush Count
                              [ 316 ]
New Tablespace ID
                               [8]
```

ARCHIVE_DIR 프로퍼티에 정의된 디렉토리에 logfile18320부터 logfile20344까지 존재하는지 확인한다. 만약 존재하지 않는다면, 아카이브 로그파일을 백업 저장 장치로부터 ARCHIVE_DIR 프로퍼티에 지정된 디렉토리로 복사한다.

logfile20345 이후의 로그 파일은 모두 LOG_DIR 프로퍼티에 지정된 디렉토리에 존재하는 온라인 로그 파일이다. 즉, logfile18320부터 logfile20345까지의 로그 파일들은 유실된 abc.dbf 를 완전 복구하기 위해 반드시 필요하다.

ARCHIVE_DIR과 LOG_DIR프로퍼티에 지정된 디렉토리에 존재하는 로그 파일의 중복으로 인해 발생되는 디스크 공간 낭비를 제거하기 위해서, Altibase가 직접 ARCHIVE_DIR프로퍼티에 지정된 디렉토리의 로그 파일을 읽는다.

CONTROL 구동 단계에서 다음 구문으로 유실된 abc.dbf 파일을 생성한다.

```
iSQL(sysdba)> ALTER DATABASE CREATE DATAFILE abc.dbf';
```

CONTROL 구동 단계에서 다음 구문으로 완전 매체 복구를 수행한다.

```
iSQL(sysdba)> alter DATABASE RECOVER DATABASE;
```

매체복구 사례 2

아카이브 로그 모드로 데이터베이스를 운영하고 있으며, 3일 전에 테이블스페이스 USER_DISK_TBS의 데이터 파일들을 백업하였다.

오늘 오전에 USER_DISK_TBS 테이블스페이스의 데이터 파일을 모두 잃어 버렸다.

백업 절차

3일전에 다음과 같이 백업을 수행했다.

```
iSQL(sysdba)> ALTER DATABASE BACKUP TABLESPACE user_disk_tbs TO '/backup1';
iSQL(sysdba)> ALTER SYSTEM SWITCH LOGFILE;
$ ls /backup1
USER_DISK_TBS01.dbf USER_DISK_TBS02.dbf USER_DISK_TBS03.dbf
```

복구 절차

완전 복구에 필요한 아카이브 로그 파일을 확인 확인한 후, 아카이브 디렉토리로 해당 파일들을 복사한다. 필요한 아카이브 로그 파일을 확인하는 방법은 복구될 데이터 파일의 헤더에 있는 정보를 참조하는 것이다. 헤더 정보는 dumpddf 유틸리티를 이용하여 다음과 같이 확인해 볼 수 있다.

위 결과는 백업된 데이터 파일을 이용하여 데이터베이스를 복원하려면 아카이브 로그 파일 logfile4 이후 파일들을 필요로 함을 나타낸다.

backup_dir디렉토리의 데이터 파일 백업을 USER_DISK_TBS테이블스페이스의 데이터 파일이 원래 있었던 \$ALTIBASE HOME/dbs/ 디렉토리에 복사한다.

```
$ cp /backup_dir/*.dbf $ALTIBASE_HOME/dbs;
```

CONTROL 구동 단계에서 다음 구문으로 완전 매체 복구를 수행한다.

```
iSQL(sysdba)> ALTER DATABASE RECOVER DATABASE;
```

매체복구 사례 3

아카이브 로그 모드로 데이터베이스를 운영하고 있으며, 7일전에 테이블스페이스 USER_DISK_TBS의 데이터 파일들을 백업하였다.

오늘 오후에 USER_DISK_TBS 테이블스페이스의 데이터 파일이 있는 /disk1 파일시스템이 깨졌으나, /disk2파일 시스템은 정상이다.

이 경우 /disk1 파티션이 깨졌으므로 정상 상태의 /disk2 파티션에 백업된 데이터 파일을 옮겨 매체 복구를 수행한다.

백업 절차

7일 전에 같이 백업을 수행했다.

```
iSQL(sysdba)> ALTER DATABASE BACKUP TABLESPACE user_disk_tbs TO '/backup_dir';
iSQL(sysdba)>ALTER SYSTEM SWITCH LOGFILE;

$ ls /backup_dir
USER_DISK_TBS01.dbf USER_DISK_TBS02.dbf
```

복구 절차

완전 복구에 필요한 아카이브 로그 파일을 확인하고, 아카이브 디렉토리로 해당 파일들을 복사한다.backup_dir디렉토리에 있는 USER_DISK_TBS테이블스페이스의 백업 파일들을 온전한 /disk2파일 시스템으로 복사한다.

```
$ cp /backup_dir/*.dbf /disk2/dbs;
```

CONTROL 구동 단계에서 USER_DISK_TBS 테이블스페이스의 데이터 파일 경로를 변경한다.

```
iSQL(sysdba)> ALTER DATABASE RENAME DATAFILE
'/disk1/dbs/USER_DISK_TBS01.dbf' TO
'/disk2/dbs/USER_DISK_TBS01.dbf';
iSQL(sysdba)> ALTER DATABASE RENAME DATAFILE
'/disk1/dbs/USER_DISK_TBS02.dbf' TO
'/disk2/dbs/USER_DISK_TBS02.dbf';
```

Note: 이 작업 수행을 위해서 alter tablespace 명령을 사용할 수도 있다.

```
iSQL(sysdba)> ALTER TABLESPACE user_disk_tbs RENAME DATAFILE
'/disk1/dbs/USER_DISK_TBS02.dbf' TO
'/disk2/dbs/USER_DISK_TBS02.dbf';
```

데이터 파일 경로가 정확히 변경되었는지 v\$datafile성능 뷰를 확인한다.

```
iSQL(sysdba)> SELECT * FROM V$DATAFILES;
```

CONTROL 구동 단계에서 다음 구문으로 완전 매체복구를 수행한다.

```
iSQL(sysdba)> ALTER DATABASE RECOVER DATABASE;
```

매체복구 사례 4

아카이브 로그 모드로 데이터베이스를 운영하고 있으며, 사용자 실수로 summary 테이블을 DROP 하였다.

- 가장 최근의 전체 온라인 백업 완료 시각: 2007년 9월 18일 12시 00분
- 테이블이 DROP된 시각: 2007년 9월 18일 15시 00분
- 현재 시각: 2007년 9월 18일 18시 00분

summary 테이블을 복구하기 위해서는 현재 시각에서 3시간 30분 전인 2007년 9월 18일 14시 30분 정각으로 데이터베이스를 불완전 매체 복구해야 한다.

백업 절차

지난번 백업 시 다음과 같이 전체 데이터베이스를 백업하였다.

```
iSQL(sysdba)> ALTER DATABASE BACKUP DATABASE TO'/backup_dir';
iSQL(sysdba)> alter SYSTEM SWITCH LOGFILE;
```

복구 절차

- 1. 백업 받은 데이터 파일들을 원래 위치로 복사 한다.
- \$ cp /backup_dir/*.dbf \$ALTIBASE_HOME/dbs;
- 2. 메모리 테이블스페이스에 대해 핑퐁(ping pong) 체크 포인트 기법을 사용하고 있기 때문에, 백업 시에는 메모리 테이블스페이스의 안전한(stable)한 데이터 파일만 복사되었다.
 - 예) 백업받은 메모리 테이블스페이스의 데이터 파일이 다음과 같다,

```
SYS_TBS_MEM_DIC-1-0,
SYS_TBS_MEM_DIC-1-1,
SYS_TBS_MEM_DIC-1-2
SYS_TBS_MEM_DATA-0-0,
SYS_TBS_MEM_DATA-0-1,
SYS_TBS_MEM_DATA-0-2
```

3. 백업된 메모리 테이블스페이스는 안정한(stable) 데이터 파일이기 때문에 안정한 버전의 확인 절차 없이 복사하면 된다.

```
$ cp SYS_TBS_MEM_DIC-1-0 $ALTIBASE_HOME/dbs
$ cp SYS_TBS_MEM_DIC-1-1 $ALTIBASE_HOME/dbs
$ cp SYS_TBS_MEM_DIC-1-2 $ALTIBASE_HOME/dbs
$ cp SYS_TBS_MEM_DATA-0-0 $ALTIBASE_HOME/dbs
$ cp SYS_TBS_MEM_DATA-0-1 $ALTIBASE_HOME/dbs
$ cp SYS_TBS_MEM_DATA-0-2 $ALTIBASE_HOME/dbs
```

- 4. 불완전 복구는 백업된 로그앵커 파일을 사용한다. 백업 된 저장 장치로부터 로그앵커를 복사한다.
- \$ cp /backup_dir/loganchor* \$ALTIBASE_HOME/logs
- 5. 불완전 복구에 필요한 아카이브 로그 파일을 아래와 같이 확인한다.

6. $ALTIBASE_HOME$ /logs 에 있는 파일을 확인한다.

logfile15361 logfile15362 logfile15363 logfile15364 logfile15365

- 7. 위 결과에 의해 logfile15021 다음 파일인 logfile15022부터 logs에 없는 logfile15360번 까지 모두 ARCHIVE_DIR 프로퍼티에 지정된 디렉토리 (혹은 백업 장치)로부터 LOG_DIR 프로퍼티에 지정된 디렉토리에 복사한다. 불완전 매체 복구는 완전 복구와 달리 로그 파일 중복이 불가피하게 허용된다.
- 8. SYS_TBS_DISK_TEMP는 백업되지 않기 때문에 해당 파일을 만들어 준다.

iSQL(sysdba)> ALTER DATABASE CREATE DATAFILE 'temp001.dbf'

9. 불완전 매체 복구를 다음과 같이 수행한다.

iSQL(sysdba)> ALTER DATABASE RECOVER DATABASE
UNTIL TIME '2007-09-18:14:30:00';

10. 불완전 매체 복구를 수행하였기 때문에 meta 구동 단계로 가면서 resetlogs옵션을 사용하여야 한다.

iSQL(sysdba)> ALTER DATABASE MYDB META RESETLOGS;

11. resetlogs를 수행하였기 때문에 데이터베이스 전체 백업을 받는다.

iSQL(sysdba)> ALTER DATABASE BACKUP DATABASE TO 'backup_dir';

매체복구 사례 5

아카이브 로그 모드로 데이터베이스를 운영중이며, 온라인 로그파일이 499번부터 600번까지 있고, 중간 로그파일인 570번 로그 파일이 유실되었다.

복구 절차

불완전 복구에 필요한 데이터 파일과 로그앵커 파일을 백업 본으로부터 복사한다. 불완전 복구에 필요한 아카이브 로그 파일을 확인한다.

Logfile499부터 569까지의 리두 로그만 데이터베이스에 반영하고, logfile570번 이후의 로그 파일의 리두 로그는 반영하지 않는다.

iSQL(sysdba)> ALTER DATABASE RECOVER DATABASE UNTIL CANCEL;

불완전 미디어 복구를 수행하였기 때문에 meta 구동 단계로 가면서 resetlogs옵션을 사용하여야 한다.

iSQL(sysdba)> ALTER DATABASE MYDB META RESETLOGS;

resetlogs를 수행하였기 때문에 데이터베이스 전체 백업을 받는다.

iSQL(sysdba)> ALTER DATABASE BACKUP DATABASE TO '/backup_dir';

매체복구 사례 6

노아카이브 로그 모드로 운영중인 데이터베이스이지만 매체 복구를 수행할 수 있는 경우가 있다. 바로 임시(temporary) 테이블스페이스의 데이터 파일이 유실되는 경우이다. 임시 테이블스페이스에 대해서는 변경의 재수행이 필요 없기 때문이다.

복구 절차

CONTROL 구동 단계에서 SYS_TBS_DISK_TEMP 테이블스페이스의 유실된 데이터 파일 대신에 새로운 temp001.dbf를 생성한다.

```
iSQL(sysdba)> ALTER DATABASE CREATE DATAFILE 'temp001.dbf';
```

서버를 구동한다.

```
iSQL(sysdba)> ALTER DATABASE dbname SERVICE;
```

매체복구 사례 7

아카이브 로그 모드로 데이터베이스를 운영중이며, SYS_TBS_MEM_DIC 딕셔너리 테이블스페이스의 데이터 파일이 유실되었다.

백업 절차

마지막 백업 시 다음과 같이 전체 데이터베이스를 백업한다.

```
iSQL(sysdba)> ALTER DATABASE BACKUP DATABASE to '/backup_dir';
```

복구 절차

완전 복구에 필요한 아카이브 로그 파일을 확인한 후, 아카이브 디렉토리로 해당 파일들을 복사한다. 필요한 아카이브 로그 파일을 확인하는 방법은 복구될 데이터 파일의 헤더에 있는 정보를 참조하는 것이다. 헤더 정보는 dumpdb 유틸리티를 이용하여 다음과 같이 확인할 수 있다

```
% dumpdb -j 0 -f SYS_TBS_MEM_DIC-0-0
[BEGIN CHECKPOINT IMAGE HEADER]
Binary DB Version [ 5.4.1 ]
Redo LSN [ 4, 2257550 ]
Create LSN [ 0, 657403 ]
[END CHECKPOINT IMAGE HEADER]
```

위 결과는 백업된 데이터 파일을 사용하여 데이터베이스를 복원하기 위해서는 logfile4 아카이브 로그 파일 이후의 파일들이 필요함을 나타낸다.

백업받은 안정한(stable) 데이터 파일은 원위치에 복사해야 한다. 백업된 파일이 SYS TBS MEM DIC-0-0이라면 아래와 같이 데이터 파일을 복사하도록 한다.

```
$ cp /backup_dir/SYS_TBS_MEM_DIC-0-0 $ALTIBASE_HOME/dbs;
```

\$ALTIBASE_HOME/bin/dumpla loganchor0 결과 중 테이블스페이스 이름이 SYS_TBS_MEM_DIC인 테이블스페이스 속성들 중 Stable Checkpoint Image Num이란 항목을 참고한다.

```
% dumpla loganchor0
 [ TABLESPACE ATTRIBUTE ]
 Tablespace ID
                             [0]
 Tablespace Name
                             [ SYS TBS MEM DIC ]
 New Database File ID
                            [ 0 ]
                            [ ONLINE ]
 Tablespace Status
 TableSpace Type
                            [0]
 Checkpoint Path Count
                            [ 0 ]
 Autoextend Mode
                             [ Autoextend ]
 Shared Memory Key
                            [0]
 Stable Checkpoint Image Num. [ 1 ]
 Init Size
                             [ 4 MBytes ( 129 Pages ) ]
 Next Size
                            [ 4 MBytes ( 128 Pages ) ]
                             [ 134217727 MBytes ( 4294967295 Pages ) ]
 Maximum Size
 Split File Size
                             [ 1024 MBytes ( 32768 Pages ) ]
 [ MEMORY CHECKPOINT PATH ATTRIBUTE ]
 Tablespace ID
 Checkpoint Path
                             [ /home/altibase_home/dbs ]
 [ MEMORY CHECKPOINT IMAGE ATTRIBUTE ]
 Tablespace ID
                             [0]
 File Number
                             [ 0 ]
 Create LSN
                            [ 0, 2028 ]
 Create On Disk (PingPong 0) [ Created ]
 Create On Disk (PingPong 1)
                           [ Created ]
백업 데이터 파일의 번호는 [0]이고 현재 안정한 데이터 파일의 번호는 [1]이므로,
다음과 같이 복사한다.
 $ cd $ALTIBASE_HOME/dbs
 $ cp SYS_TBS_MEM_DIC-0-0 SYS_TBS_MEM_DIC-1-0
CONTROL 구동 단계에서 미디어 복구를 수행한다.
```

iSQL(sysdba)> ALTER DATABASE dbname SERVICE;

iSQL(sysdba)> ALTER DATABASE RECOVER DATABASE;

미디어 복구가 완료되었으므로 재시작 자동복구를 수행한다.

매체복구 사례 8

아카이브 로그 모드로 데이터베이스를 운영하고 있으며, 사용자 실수로 테이블스페이스 USER_DISK_TBS가 삭제되었다. 삭제 시점은 2007년 4월 6일 22시 30분이었다. 테이블스페이스가 존재했던 10분 전의 상태로 데이터베이스를 복구하려고 한다.

백업 절차

마지막 백업 시 다음과 같이 전체 DB를 백업하였다.

iSQL(sysdba)> ALTER DATABASE BACKUP DATABASE TO '/backup_dir';

복구 절차

불완전 복구에 필요한 데이터 파일과 로그앵커 파일을 백업 본으로부터 복사한다. 백업 받은 데이터베이스의 모든 디스크 테이블스페이스의 데이터 파일들을 데이터 파일들의 원래 위치로 복사한다.

```
$ cp /backup_dir/*.dbf $ALTIBASE_HOME/dbs
```

\$ cp /backup_dir/SYS_TBS_* \$ALTIBASE_HOME/dbs

불완전 복구에 필요한 아카이브 로그 파일을 확인한다. 불완전 복구는 백업된 로그앵커 파일을 사용한다. 백업 저장 장치로부터 로그앵커 파일을 복사한다.

```
$ cp /backup_dir/loganchor* /ALTIBASE_HOME/logs;
```

SYS_TBS_DISK_TEMP테이블스페이스는 백업되지 않기 때문에 해당 파일을 새로 만들어 준다.

iSQL(sysdba)> ALTER DATABASE CREATE DATAFILE 'temp001.dbf'

불완전 미디어 복구를 수행한다.

iSQL(sysdba)> ALTER DATABASE RECOVER DATABASE
UNTIL TIME '2007-04-06:22:20:00';

불완전 미디어 복구를 수행하였기 때문에 meta 구동 단계로 가면서 resetlogs 옵션을 사용하여야 한다.

iSQL(sysdba)> ALTER DATABASE mydb META RESETLOGS;

서버를 구동한다.

iSQL(sysdba)> ALTER DATABASE mydb SERVICE;

로그가 리셋되었기 때문에 전체 데이터베이스의 백업을 수행하는 것이 좋다.

iSQL(sysdba)> ALTER DATABASE BACKUP DATABASE TO '/backup_dir';

11.증분 백업과 복구

이 장은 Altibase가 제공하는 증분 백업과 증분 백업을 이용한 복구에 대하여 설명한다.

증분 백업 (Incremental Backup)

Altibase는 증분 백업 또는 전체 백업으로 유실 또는 손상된 데이터를 복구할 수 있다.

증분 백업이란 마지막으로 증분 백업이 수행된 이후부터 데이터 파일에서 변경된데이터 페이지만 백업하는 방식을 일컫는다. 증분 백업 방식은 전체 백업 방식과비교하여 백업의 양이 적다. 따라서 백업에 필요한 디스크 공간이 절감될 뿐만아니라, 디스크 I/O 양이 적어 백업 성능이 더 높다. Altibase가 제공하는 증분백업은 서버가 온라인 상태에서 수행 가능하며, 데이터 파일의 페이지를 백업하는물리적 백업 방식이다.

증분 백업은 레벨 0과 레벨 1로 분류된다. 증분 백업의 종류에 대해서는 다음 절에 설명한다.

기존의 전체 백업은 데이터 파일 전체를 백업하는 방식으로 이에 대한 자세한 설명은 "백업 및 복구" 장을 참조한다.

증분 백업의 종류

증분 백업은 레벨 0과 레벨 1로 분류된다. 레벨 0의 증분 백업은 전체 백업과 유사하나 향후 레벨 1의 증분 백업을 수행하기 위해 반드시 해야한다. 레벨 0 증분 백업을 하면, 백업 정보가 backupInfo 파일에 기록되어 이를 기준으로 레벨 1 증분 백업이 가능하다.

- 레벨 0 증분 백업
- 레벨 1 증분 백업

- 。 차등 증분 백업
- 。 누적 증분 백업

레벨 0 증분 백업

레벨 0(Level 0) 증분 백업은 데이터 파일의 모든 페이지들을 백업한다는 면에서 전체 백업과 동일하다. 그러나 전체 백업이 증분 백업 전략의 한 부분으로 참가할 수 없다. 증분 백업은 전략상 필요에 따라 레벨 0과 레벨 1의 증분 백업을 선택하여 사용할 수 있는데, 이 때 레벨 1의 증분 백업을 하기 위해서는 그 전에 한번은 레벨 0의 증분 백업이 먼저 수행되어야 한다.

아래는 레벨 0 증분 백업과 전체 백업의 차이점을 설명한다.

- 기존의 전체 백업(온라인 전체 백업)과 동작 방식은 동일하지만, 백업이 이루어진 시점에 대한 정보가 기록된다는 점이 다르다.
- 데이터베이스의 페이지들이 변경되었다는 것을 판단하기 위한 기준을 만드는 백업이다.

레벨 1 증분 백업

레벨 1 증분 백업은 이전의 증분 백업 이후로 변경된 페이지만 백업한다. 레벨 1 증분 백업은 변경된 페이지만 백업하므로, 백업 파일의 크기가 작고 백업 수행 시간이 적게 걸린다. 레벨 1 증분 백업에는 차등 증분 백업(differential incremental backup)과 누적 증분 백업(cumulative incremental backup)이 있다.

차등 증분 백업(Differential Incremental Backup)

가장 최근에 수행된 레벨 0 또는 레벨 1 증분 백업 이후에 변경된 페이지를 백업한다. 차등 증분 백업을 수행하면 Altibase는 가장 최근에 발생한 레벨 1 백업을 찾아서 그 백업 이후에 변경된 모든 페이지를 백업한다.

만약 레벨 1 백업이 없다면, 레벨 0 백업 이후로 변경된 모든 페이지를 백업한다. level 0 백업도 없다면 레벨 1 백업이 불가능하다는 에러가 반환된다.

차등 증분 백업으로 생성되는 백업 파일의 크기는 누적 증분 백업으로 생성되는 백업 파일의 크기보다 작다. 따라서 백업 시간도 더 적게 걸린다. 하지만 차등 증분 백업을 여러 번 수행하여 백업 파일의 수가 많아진다면, 매체 복원(Media Restore)시 백업 파일의 수만큼 복원(restore)해야 하기 때문에 복구 시간이 더 길어질 수 있다.

누적 증분 백업(Cumulative Incremental Backup)

가장 최근에 수행된 레벨 0 백업 이후에 변경된 페이지를 백업한다.

누적 증분 백업은 레벨 0 백업 이후 시간이 경과할수록 백업 파일의 크기가 커지기 때문에 백업 소요 시간도 더 길어진다.

하지만 누적 증분 백업을 이용하여 매체 복원(Media Restore)을 하는 경우에는 가장 마지막의 레벨 1 백업 파일만 복원하면 되기 때문에, 차등 증분 백업을 이용하는 것보다 복구 시간이 더 짧다.

증분 백업 관련 기능 및 파일

페이지 변경 추적

페이지 변경 추적 기능은 각 데이터 파일에서 변경된 페이지를 Altibase가 페이지 변경 추적 파일에 기록함으로써 증분 백업 성능을 향상시킨다.

페이지 변경 추적 기능은 레벨 0 증분 백업 이후 변경된 페이지의 정보를 페이지 변경 추적 파일에 비트맵(bitmap)으로 관리하고, 레벨 1 백업 수행 시 Altibase는 이 비트맵을 확인하여 변경된 페이지만 백업한다.

비트맵의 한 비트(bit)는 한 개 이상의 페이지에 대응한다. 이렇게 한 비트에 대응하는 페이지의 묶음을 증분 청크(Incremental Chunk)라고 한다. 한 묶음에 속해 있는 페이지들 중 한 페이지라도 변경된다면, 그 묶음의 모든 페이지가 백업될 것이다. 증분 청크의 크기는 INCREMENTAL_BACKUP_CHUNK_SIZE 프로퍼티로 조절할 수 있다. 이 프로퍼티에 대한 상세한 설명은 *General Reference*를 참고하도록 한다.

추적 기능을 활성화하면 증분 백업을 위해 서버는 변경 추적 파일을 사용해서 변경된 파일을 식별하며, 데이터 파일의 모든 페이지를 조사하지 않는다.

아래의 구문으로 페이지 변경 추적 기능을 활성화할 수 있다.

iSQL(sysdba)> ALTER DATABASE ENABLE INCREMENTAL CHUNK CHANGE TRACKING;

이 구문은 오직 SERVICE 구동 단계에서 sysdba 권한으로 수행이 가능하다. 추적 기능을 활성화하면, \$ALTIBASE_HOME/dbs 디렉토리에 변경 추적 파일과 backupInfo 파일이 생성된다.

페이지 변경 추적 기능을 비활성화하려면 아래의 구문을 사용하라.

iSQL(sysdba)> ALTER DATABASE DISABLE INCREMENTAL CHUNK CHANGE TRACKING;

이 구문은 모든 구동 단계에서 sysdba 권한으로 수행이 가능하다. 추적 기능을 비활성화하면, \$ALTIBASE HOME/dbs 디렉토리에서 변경 추적 파일이 삭제된다.

주의: 페이지 변경 추적 기능을 활성화하더라도 실제로는 변경된 페이지를 바로 추적하지 않는다. 변경 페이지 추적은 레벨 0 백업이 수행될 때 시작한다.

changeTracking 파일

이 파일에는 변경된 페이지의 정보가 비트맵으로 저장된다. 이 파일은 증분 백업을 수행하기 위해 필수적으로 필요하다.

changeTracking 파일은 \$ALTIBASE HOME/dbs 디렉토리에 위치한다.

주의:

- changeTracking파일이 소실되거나 유효하지 않다면 SYS 사용자가 sysdba 권한으로 changeTracking을 활성화하는 SQL구문을 실행하여 다시 생성해야 한다. changeTracking파일이 재생성 되면 그동안 추적하여 변경된 페이지 정보가 사라진다. 따라서 레벨 0 백업을 먼저 수행한 후 레벨 1 백업을 수행할 수 있게 된다.
- 추적 기능을 활성화하면 Altibase 서버의 성능이 하락할 수 있다. 이 경우 추적 기능을 비활성화하면 서버의 성능은 회복할 수 있지만, 증분 백업 기능은 사용할 수 없다.

backupInfo 파일

이 파일은 증분 백업 수행에 대한 정보를 저장한다. 한 번의 증분 백업 수행에 대해 증분 백업 레벨, 백업 종류, 백업 태그 이름, 백업 시작 일시, 백업 완료 일시, 및 백업 파일의 위치가 증분 백업 수행 시간 순서대로 backupInfo 파일에 저장된다.

backupInfo 파일은 매체 복원(Media Restore) 시에 복원해야 할 백업 파일의 순서를 파악할 수 있는 정보를 제공한다. 만약 backupInfo 파일이 존재하지 않으면, 백업 파일이 존재하더라도 복구가 불가능하다.

backupInfo 파일은 \$ALTIBASE_HOME/dbs 디렉토리에 위치한다.

주의: backupInfo 파일에는 증분 백업이 수행된 일시 순으로 백업 정보가 저장된다. backupInfo 파일이 소실되면 소실된 시점 이전에 생성된 증분 백업 파일은 더 이상 사용이 불가능하다. 따라서 증분 백업을 수행하면 backupInfo파일도 자동으로 백업된다.

증분 백업 예제

데이터베이스와 테이블스페이스 단위로 레벨 0 증분 백업과 레벨 1 증분 백업을 수행하는 예제이다.

백업 경로 설정

증분 백업 파일들은 Altibase 서버에 의해 관리된다. 따라서 아래의 구문으로 증분백업 파일이 저장될 위치를 지정해야 한다.

iSQL(sysdba)> ALTER DATABASE CHANGE BACKUP DIRECTORY '/backup_dir';

주의: 변경 추적 기능이 활성화 되어 있는 상태에서만 이 구문을 수행할 수 있다.

레벨 0 백업

위에서 설명한 바와 같이 레벨 0 증분 백업은 전체 백업과 동일하다. 단, 레벨 0 증분 백업을 수행하면 backupInfo 파일에 백업 정보가 기록된다. 또한 증분 백업의 기준 파일이 되는 레벨 0 백업 파일을 전체 백업 파일로 대체할 수 없다.

데이터베이스 단위 증분 백업

백업 태그를 지정하지 않고 백업하는 구문의 예제이다.

iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 0 DATABASE;

백업을 수행한 후 백업 경로에서 파일들을 확인한 결과이다.

%ls /backup_dir TAG_20121030_214906

%ls /backup_dir/TAG_20121030_214906

SYS_TBS_MEM_DATA-0-0_TAG_20121030_214906.ibak
backupinfo
loganchor1
loganchor0
loganchor2
system001.dbf_TAG_20121030_214906.ibak

SYS_TBS_MEM_DIC-0-0_TAG_20121030_214906.ibak
und001.dbf_TAG_20121030_214906.ibak

백업 태그를 지정하여 백업하는 구문의 예제이다.

iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 0 DATABASE WITH TAG 'MONDAY';

백업을 수행한 후 백업 경로에서 파일들을 확인한 결과이다.

```
%ls /backup_dir
TAG_MONDAY

%ls /backup_dir/TAG_MONDAY

$YS_TBS_MEM_DATA-0-0_TAG_MONDAY.ibak
backupinfo
loganchor1
loganchor0
loganchor2
system001.dbf_TAG_MONDAY.ibak

$YS_TBS_MEM_DIC-0-0_TAG_MONDAY.ibak
undo001.dbf_TAG_MONDAY.ibak
```

테이블스페이스 단위 증분 백업

백업 태그를 지정하지 않고 백업하는 구문의 예제이다.

iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 0 TABLESPACE SYS TBS MEM DIC;

백업을 수행한 후 백업 경로에서 파일들을 확인한 결과이다.

%ls /backup_dir
TAG_20121031_040537

%ls backup_dir/TAG_20121031_040537

SYS_TBS_MEM_DIC-0-0_TAG_20121031_040537.ibak
backupinfo

백업 태그를 지정하여 백업하는 구문의 예제이다.

iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 0 TABLESPACE SYS_TBS_MEM_DIC WITH TAG 'MONDAY';

백업을 수행한 후 백업 경로에서 파일들을 확인한 결과이다.

%ls /backup_dir
TAG_MONDAY

%ls backup_dir/TAG_MONDAY
SYS_TBS_MEM_DIC-0-0_TAG_MONDAY.ibak
backupinfo

레벨 1 백업

주의: 레벨 1 증분 백업은 이전에 레벨 0 증분 백업이 한 번이라도 수행되었어야 가능하다.

데이터베이스 단위 증분 백업

차등 증분 백업하는 구문의 예제이다.

iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 1 DATABASE;

백업을 수행한 후 백업 경로에서 파일들을 확인한 결과이다.

%ls /backup_dir TAG 20121031 043507

%ls /backup_dir/TAG_20121031_043507

SYS_TBS_MEM_DATA-0-0_TAG_20121031_043507.ibak
backupinfo
loganchor1
loganchor0
loganchor2
system001.dbf_TAG_20121031_043507.ibak

SYS_TBS_MEM_DIC-0-0_TAG_20121031_043507.ibak
und001.dbf_TAG_20121031_043507.ibak

누적 증분 백업하는 구문의 예제이다.

iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 1 CUMULATIVE DATABASE;

누적 증분 백업으로 생성되는 파일들은 차등 증분 백업으로 생성되는 파일들과 이름에는 차이가 없다. 단, 파일 내의 내용이 다르다.

백업 태그를 지정하여 레벨 1 증분 백업하는 구문의 예제이다.

iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 1 DATABASE WITH TAG 'TUESDAY';

백업을 수행한 후 백업 경로에서 파일들을 확인한 결과이다.

TAG_TUESDAY

%ls /backup_dir/TAG_TUESDAY

SYS_TBS_MEM_DATA-0-0_TAG_TUESDAY.ibak

SYS_TBS_MEM_DIC-0-0_TAG_TUESDAY.ibak

backupinfo

loganchor0

loganchor1

loganchor2

system001.dbf_TAG_TUESDAY.ibak

%ls /backup_dir

테이블스페이스 단위 증분 백업

undo001.dbf_TAG_TUESDAY.ibak

차등 증분 백업하는 구문의 예제이다.

iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 1 TABLESPACE SYS_TBS_MEM_DIC;

백업을 수행한 후 백업 경로에서 파일들을 확인한 결과이다.

%ls /backup_dir TAG_20121031_211432

%ls /backup_dir/TAG_20121031_211432 SYS_TBS_MEM_DIC-0-0_TAG_20121031_211432.ibak backupinfo

누적 증분 백업하는 구문의 예제이다.

iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 1 CUMULATIVE TABLESPACE SYS_TBS_MEM_DIC;

누적 증분 백업으로 생성되는 파일들은 차등 증분 백업으로 생성되는 파일들과 이름에는 차이가 없다.

백업 태그를 지정하여 레벨 1 증분 백업하는 구문의 예제이다.

iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 1 TABLESPACE SYS_TBS_MEM_DIC WITH TAG 'WEDNESDAY';

백업을 수행한 후 백업 경로에서 파일들을 확인한 결과이다.

%ls /backup_dir
TAG WEDNESDAY

%ls /backup_dir/TAG_WEDNESDAY
SYS_TBS_MEM_DIC-0-0_TAG_WEDNESDAY.ibak
backupinfo

증분 백업에 대한 매체 복구

이 절은 증분 백업 파일을 이용한 매체 복원 및 매체 복구에 대해서 설명한다.

매체 복원 및 복구

증분 백업 파일을 이용한 매체 복원 및 매체 복구의 수행은 Altibase의 CONTROL 구동 단계에서 이루어질 수 있다.

매체 복원 (Media Restore)

매체(Media)에 장애가 발생하여 데이터베이스 파일이 소실된 경우 백업 파일을 복사해서 소실된 파일을 대체하는 것을 복원이라고 한다.

전체 백업 파일을 이용한 매체 복원의 경우, 관리자가 복사 명령어(cp 등)를 사용해서 소실된 데이터 파일을 복원할 수 있다. 하지만 증분 백업에 대한 매체 복원의 경우, 아래의 SQL 구문을 사용해서 소실된 데이터 파일을 복원할 수 있다.

iSQL(sysdba)> ALTER DATABASE RESTORE DATABASE;

매체 복구 (Media Recovery)

백업 파일로 복원된 데이터 파일에 아카이브 로그를 적용하는 것을 복구라고 한다. 증분 백업에 대한 복구는 아래의 SQL 구문으로 수행할 수 있으며, 이는 전체 백업에 대한 복구 방법과 동일하다.

iSQL(sysdba)> ALTER DATABASE RECOVER DATABASE;

주의: 증분 백업 파일을 이용한 매체 복원이 완료되면 이후에는 기존 온라인 전체 백업 파일을 이용한 매체 복구와 동일한 방법으로 매체 복구를 수행할 수 있고 복구 동작도 동일하다.

증분 백업에 대한 복구 절차

이 절은 증분 백업을 이용한 데이터베이스 복구 절차를 개략적으로 살펴본다. 먼저 changeTracking 파일과 backupinfo 파일의 복원 방법을 살펴본 후, 데이터베이스 복구

방법을 설명한다.

매체(Media)에 장애가 발생하여 \$ALTIBASE_HOME/dbs 디렉토리에 changeTracking 파일 또는 backupInfo 파일이 소실되면, 서버를 CONTROL 구동 단계로 시작할 수 없다. 이경우 서버를 PROCESS 구동 단계로 시작하여 changeTracking 파일과 backupinfo 파일에 대해 다음과 같은 작업을 수행해야 한다.

• changeTracking 파일 이 파일은 매체 복원에는 필요하지 않다. 따라서 아래의 구문을 실행하여 서버가 더 이상 changeTracking 파일을 검사하지 않도록 해야 한다.

iSQL(sysdb)> ALTER DATABASE DISABLE INCREMENTAL CHUNK CHANGE TRACKING;

backupInfo파일

이 파일은 매체 복원에 반드시 필요하다. backupInfo 파일은 증분 백업을 수행할 때 자동으로 백업된다. 따라서 가장 최근에 수행된 증분 백업 경로에서 copy 명령어를 이용하여 backupInfo 파일을 복원하도록 한다.

% cp /backup_dir/BACKUP_TAG/backupInfo \$ALTIBASE_HOME/dbs

앞의 장에서 설명한 바와 같이 전체 백업에 대해서는 아래 두 가지 "불완전 복구(Incomplete recovery)" 방법를 지원한다.

• 특정 시점으로 불완전 복구

iSQL(sysdba)> ALTER DATABASE RECOVER DATABASE UNTIL TIME '2012-10-31:17:55:00';

• 유효한 로그가 존재하는 지점까지 불완전 복구

iSQL(sysdba)> ALTER DATABASE RECOVER DATABASE UNTIL CANCEL;

증분 백업에 대해서는 위의 두 가지 방법과 함께 추가로 백업 태그 이름을 이용한 불완전 복원 및 복구를 지원한다.

• 백업 태그 이름을 이용한 불완전 복원

iSQL(sysdba)> ALTER DATABASE RESTORE DATABASE FROM TAG 'TUESDAY';

• 백업 태그 이름을 이용한 불완전 복구

```
iSQL(sysdba)> ALTER DATABASE RECOVER DATABASE FROM TAG 'TUESDAY';
```

증분 백업을 사용하여 매체 복원을 할 때에는 로그 파일이 사용되지 않기 때문에 ALTER DATABASE RESTORE DATABASE UNTIL CANCEL 구문이 지원되지 않는다(UNTIL TIME은 가능).

백업 태그 이름을 이용한 불완전 복원 후 복구 시에는 복원과 복구에 사용되는 백업 태그 이름이 동일해야 한다. 아래와 같이 복원과 복구에 서로 다른 백업 태그 이름을 사용하면 복구에 실패할 것이다. 성공적인 복구를 위해서는 'SUNDAY'가 아닌 'TUESDAY'를 사용해야 한다.

```
ALTER DATABASE RESTORE DATABASE FROM TAG 'TUESDAY';
ALTER DATABASE RECOVER DATABASE FROM TAG 'SUNDAY';
```

만약 TUESDAY라는 백업 태그를 이용해 복원하고 그 이후 시점으로 불완전 복구를 하고 싶다면 아래와 같이 UNTIL TIME 혹은 UNTIL CANCEL구문을 사용하면 된다.

```
ALTER DATABASE RESTORE DATABASE FROM TAG 'TUESDAY';
ALTER DATABASE RECOVER DATABASE UNTIL CANCEL;
```

매체 복원 예제

매체 복원 및 복구의 예를 들기 위해. 아래와 같이 증분 백업을 했다고 가정하자.

```
iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 0 DATABASE WITH TAG 'MONDAY'; iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 1 DATABASE WITH TAG 'TUESDAY'; iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 1 DATABASE WITH TAG 'WEDNESDAY'; iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 0 DATABASE WITH TAG 'THURSDAY'; iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 1 DATABASE WITH TAG 'FRIDAY'; iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 1 CUMULATIVE DATABASE WITH TAG 'SATURDAY'; iSQL(sysdba)> ALTER DATABASE BACKUP INCREMENTAL LEVEL 1 DATABASE WITH TAG 'SUNDAY';
```

와저 복워

아래의 구문을 사용하여 완전 복원을 수행할 수 있다.

```
iSQL(sysdba)> ALTER DATABASE RESTORE DATABASE;
```

이 구문을 실행하면, 먼저 증분 백업 중에 가장 최근의 레벨 0 증분 백업(태그 이름 THURSDAY)으로 복원된다. 그런 다음 레벨 1 누적 증분 백업(태그 이름 SATURDAY)으로 복원되고, 마지막으로 레벨 1 차등 증분 백업(태그 이름 SUNDAY)으로 복원된다.

불완전 복원

백업 태그 이름 'WEDNESDAY'까지 불완전 복원

아래의 구문을 사용하여 백업 태그 이름 'WEDNESDAY'까지 불완전 복원을 수행할 수 있다.

iSQL(sysdba)> ALTER DATABASE RESTORE DATABASE FROM TAG 'WEDNESDAY';

이 구문을 실행하면, 백업 태그 이름 'WEDNESDAY' 이전에 수행된 레벨 0 증분 백업 중 가장 가까운 시점의 백업인 태그 이름 'MONDAY'로 복원된다. 그리고 레벨 1 차등 증분 백업인 태그 이름 'TUESDAY'와 'WEDNESDAY'로 복원된다.

백업 태그 이름 'SATURDAY'까지 불완전 복원

아래의 구문을 사용하여 백업 태그 이름 'SATURDAY'까지 불완전 복원을 수행할 수 있다.

iSQL(sysdba)> ALTER DATABASE RESTORE DATABASE FROM TAG 'SATURDAY';

이 구문을 실행하면, 백업 태그 이름 'SATURDAY'이전에 수행된 레벨 0 증분 백업 중 가장 가까운 시점의 백업인 태그 이름 'THURSDAY'로 복원된다. 그런 다음, 레벨 1 누적 증분 백업인 태그 이름 'SATURDAY'로 복원된다.

매체 복구 예제

와저 복구

완전 복원 후 완전 복구

아래의 구문을 사용하여 가장 최근의 백업인 백업 태그 'SUNDAY'로부터 데이터 파일을 복원한다.

iSQL(sysdba)> ALTER DATABASE RESTORE DATABASE;

매체 복구를 이용하여 최근 시점까지 아카이브 로그를 적용한다.

iSQL(sysdba)> ALTER DATABASE RECOVER DATABASE;

시스템 임시 테이블스페이스 SYS_TBS_DISK_TEMP를 위한 파일은 백업이 되지 않기 때문에, 수동으로 파일을 생성한 다음 서버를 시작한다.

iSQL(sysdba)> ALTER DATABASE CREATE DATAFILE 'temp001.dbf';
iSQL(sysdba)> STARTUP SERVICE;

불완전 복원 후 완전 복구

아래의 구문을 사용하여 백업 태그 이름 'WEDNESDAY'로부터 불완전 복원을 수행한다.

```
iSQL(sysdba)> ALTER DATABASE RESTORE DATABASE FROM TAG 'WEDNESDAY';
```

매체 복구를 통해 백업 태그 이름 'WEDNESDAY'부터 최근 시점까지 아카이브 로그를 적용한다.

```
iSQL(sysdba)> ALTER DATABASE RECOVER DATABASE;
```

시스템 임시 테이블스페이스 SYS_TBS_DISK_TEMP를 위한 파일은 백업이 되지 않기 때문에, 수동으로 파일을 생성한 다음 서버를 시작한다.

```
iSQL(sysdba)> ALTER DATABASE CREATE DATAFILE 'temp001.dbf';
iSQL(sysdba)> STARTUP SERVICE;
```

불완전 복원 후 완전 복구 방법은 증분 백업 파일이 소실된 경우에 사용할 수 있는 복구 방법이다. 이 때는 소실된 증분 백업 파일 이전의 백업 파일로 복원한 다음, 아카이브 로그를 이용해 완전 복구를 수행하면 된다.

불완전 복구

완전 복원 후 불완전 복구

불완전 복구를 위해서는 과거의 loganchor 파일과 backupInfo 파일이 필요하다. loganchor 파일과 backupInfo 파일을 이용해서 과거 시점으로 불완전 복구를 수행하고, ALTER DATABASE MYDB META RESETLOGS구문으로 로그를 리셋하게 되면, 복구전의 최신 backupInfo 파일에는 존재하지만 과거로 복원된 backupInfo 파일에는 존재하지 않는 백업 정보에 대응하는 백업 파일들은 더 이상 사용할 수 없게 된다.

아래와 같이 불완전 복구를 원하는 과거 시점의 loganchor 파일과 backupInfo 파일을 사용해서 loganchor와 backupInfo를 복원한다.

```
%cp /backup_dir/TAG_WEDNESDAY/ loganchor* $ALTIBASE_HOME/logs
%cp /backup_dir/TAG_WEDNESDAY/ backupinfo $ALTIBASE_HOME/dbs
```

loganchor 파일을 과거 버전으로 복원했기 때문에 changeTracking 파일이 더 이상 유효하지 않게 된다. 따라서 아래의 구문으로 서버의 PROCESS 구동 단계에서 변경 추적 기능을 비활성화해서 changeTracking 파일을 삭제하도록 한다.

iSQL(sysdba)> ALTER DATABASE DISABLE INCREMENTAL CHUNK CHANGE TRACKING;

아래의 구문은 가장 최근에 백업된 백업 태그 이름 'SUNDAY'로부터 데이터파일을 복원한다.

```
iSQL(sysdba)> ALTER DATABASE RESTORE DATABASE;
```

데이터베이스를 복원한 후, 아카이브로그를 이용해서 불완전 복구를 수행한다.

```
iSQL(sysdba)> ALTER DATABASE RECOVER DATABASE UNTIL CANCEL;
```

시스템 임시 테이블스페이스 SYS_TBS_DISK_TEMP를 위한 파일은 백업이 되지 않기 때문에, 수동으로 파일을 생성한 다음 resetlogs를 수행하고 서버를 시작한다.

```
iSQL(sysdba)> ALTER DATABASE CREATE DATAFILE 'temp001.dbf';
iSQL(sysdba)> ALTER DATABASE MYDB META RESETLOGS;
iSQL(sysdba)> STARTUP SERVICE;
```

불완전 복원 후 불완전 복구

아래와 같이 불완전 복구를 원하는 과거 시점의 loganchor 파일과 backupInfo 파일을 사용해서 loganchor와 backupInfo를 복원한다.

```
%cp /backup_dir/TAG_WEDNESDAY/ loganchor* $ALTIBASE_HOME/logs
%cp /backup dir/TAG WEDNESDAY/ backupinfo $ALTIBASE HOME/dbs
```

loganchor 파일을 과거 버전으로 복원했기 때문에 changeTracking 파일이 더 이상 유효하지 않게 된다. 따라서 아래의 구문으로 서버의 PROCESS 구동 단계에서 변경 추적 기능을 비활성화해서 changeTracking 파일을 삭제하도록 한다.

```
iSQL(sysdba)> ALTER DATABASE DISABLE INCREMENTAL CHUNK CHANGE TRACKING;
```

아래의 구문을 사용해서 불완전 복구를 원하는 시점 바로 이전에 수행된 증분 백업으로부터 데이터파일을 복원한다.

```
iSQL(sysdba)> ALTER DATABASE RESTORE DATABASE FROM TAG 'WEDNESDAY';
```

불완전 복원 후. 불완전 복구를 수행한다.

```
iSQL(sysdba)> ALTER DATABASE RECOVER DATABASE UNTIL CANCEL;
```

resetlogs를 수행하고 서버를 시작한다.

iSQL(sysdba)> ALTER DATABASE MYDB META RESETLOGS; iSQL(sysdba)> STARTUP SERVICE;

백업 파일 관리

전체 백업과 달리 증분 백업 수행으로 생성된 백업 파일들의 관리는 DBA가 아닌 Altibase 서버에 의해 이루어진다.

백업 경로 지정/변경

증분 백업 수행으로 생성되는 백업 파일들의 위치는 아래의 구문으로 지정할 수 있다. 백업 수행 전에 반드시 백업 경로를 지정해야 한다.

iSQL(sysdba)> ALTER DATABASE CHANGE BACKUP DIRECTORY '/backup_dir';

만약 처음에 지정한 경로에 디스크 공간이 부족하면, 위의 구문을 사용하여 새로운 백업 경로로 변경할 수 있다.

백업 파일을 이동하는데 시간이 오래 걸리거나, 생성되는 백업 파일들의 크기가 하나의 백업 디바이스에 유지할 수 없는 상황일 때에는 디스크 공간 관리를 위해 백업 경로를 변경하는 방법이 적합하다.

백업 파일 이동

백업 경로의 디스크 공간이 부족한 경우, 백업 파일들을 다른 디바이스의 경로로 이동할 수 있다. 아래의 두 가지 이동 방법이 있다.

1. SQL 구문으로 backupInfo 파일 내에서 백업 파일 경로만 변경하고, 기존 백업 파일은 관리자가 복사 명령(cp)을 사용해서 수동으로 이동하는 방법

```
iSQL(sysdba)> ALTER DATABASE MOVE BACKUP FILE TO '/backup_dir2';
$ cp ... /backup_dir2
```

2. SQL 구문으로 backupInfo 파일 내의 백업 파일 경로 변경과 백업 파일의 이동을 동시에 수행하는 방법

iSQL(sysdba)> ALTER DATABASE MOVE BACKUP FILE TO '/backup_dir2' WITH CONTENTS;

백업 파일 삭제

아래의 구문을 사용해서 유효 기간이 지난 백업 파일을 삭제하여 디스크의 여유 공간을 확보할 수 있다.

iSQL(sysdba)> ALTER DATABASE DELETE OBSOLETE BACKUP FILES;

이 구문을 수행하면 V\$OBSOLETE_BACKUP_INFO 성능 뷰에 나타나는 백업 파일들만 삭제된다. V\$OBSOLETE_BACKUP_INFO 성능 뷰에서 아무 것도 조회되지 않는다면 삭제되는 파일이 없을 것이다.

12.서버/클라이언트 통신

이 장은 Altibase 데이터베이스 서버와 클라이언트 응용프로그램간의 접속 방법과 프로토콜을 설명한다.

통신 방법

네크워크 상의 서로 다른 두 컴퓨터에 존재하는 프로세스간의 통신 또는 같은 컴퓨터에 존재하는 프로세스간의 통신 방법에는 몇 가지가 있다. 이 절에서는 Altibase 데이터베이스 서버와 클라이언트 응용프로그램에서 사용할 수 있는 통신 방법을 설명한다.

Altibase에서 제공하는 통신 방법은 아래와 같다.

- TCP/IP
- Unix Domain 소켓
- 공유 메모리를 이용한 IPC
- IPCDA
- SSL/TLS

TCP/IP

Transmission Control Protocol/Internet Protocol (TCP/IP)은 산업계 표준 네크워크 프로토콜로 글로벌 인터넷을 구축하는데도 사용되었다. TCP는 두 네크워크 호스트간의 정확한 데이터 교환을 위한 프로토콜이고, IP는 패킷을 목적지까지 전송하는 역할을 하는 프로토콜이다.

Altibase는 인터넷 프로토콜 버전 4(IPv4)와 인터넷 프로토콜 버전 6(IPv6)을 모두지원한다. IPv6주소체계는 IPv4주소를 신규로 할당하는 것을 중단하는 시점에 대비하여 설계되었다. IPv4주소와 가장 큰 차이점은 IP주소 저장 공간의 길이가 32bit에서 128bit로 확대되어 보다 많은 인터넷 주소를 사용할 수 있다는 점이다.

IPv6에 대한 자세한 정보는 Internet Protocol Version 6 (IPv6) Specification, RFC 2460 (http://tools.ietf.org/html/rfc2460)를 참고하기 바란다.

IPv6 주소 표기법

IPv6 주소는 16bit크기의 16진수 8개가 콜론(:)으로 구분되어 표기된다.

다음은 유효한 IPv6 주소의 예이다:

2001:cdba:0000:0000:0000:0000:3257:9652

IPv6 주소내의 네 개의 0으로 표시된 부분은 각각 한 개의 0으로 줄여서 표기할 수 있거나 모두 생략할 수도 있다. 그러므로 다음의 IPv6 주소들은 모두 같은 주소를 나타낸다.

2001:cdba:0000:0000:0000:0000:3257:9652

2001:cdba:0:0:0:0:3257:9652

2001:cdba::3257:9652

위 주소를 위한 URL 형식은 다음과 같다:

http://[2001:cdba:0000:0000:0000:0000:3257:9652]/

Altibase는 RFC2732에 명세화된 표준 IPv6 주소 표기법을 지원한다. Altibase 데이터베이스 서버에 연결할 때, IPv6 주소는 사각 괄호([])로 감싸여야 한다.

다음은 Altibase에서 유효한 IPv6 주소의 예이다:

```
[::1]
[2002:c0a8:101:1:216:e6ff:fed2:7aea]
$ isql -s [2002:c0a8:101:1:216:e6ff:fed2:7aea] -u sys
```

FE80로 시작하는 링크 로컬 주소의 경우, 영역 인덱스가 퍼센트 표시(%)로 구분되어 주소 뒤에 붙는다. 영역 인덱스는 링크 로컬 주소가 할당된 인터페이스를 위한 색인이다.

리눅스 시스템에서 Altibase 서버에 연결하려면 링크 로컬 주소의 영역을 표시하는 영역 인덱스를 붙여야 한다. (예외로 JDBC 응용프로그램을 위해서는 영역 인덱스가 필요없다.) 영역 인덱스를 사용한 예는 다음과 같다:

```
[fe80::221:86ff:fe94:f51f%eth0]
$ isql -s [fe80::221:86ff:fe94:f51f%eth0] -u sys
```

IP 스택

호스트 장비에는 여러 다른 프로토콜 스택⁸이 설치되어 있을 수 있다. 두 가지 프로토콜의 지원 여부에 따라 다음 세 타입의 IP 호스트로 구분된다.

[8] 프로토콜 스택이란 계층화된 구조로 모여있는 프로토콜 집합의 소프트웨어적인 구현을 말한다.

IPv4-only	IPv4 스택만 설치되어 있는 호스트. IPv4-only host에서는 IPv6 주소를 사용할 수
host	없다.
IPv6/IPv4 host	듀얼 스택이 설치되어 있는 호스트로 IPv4와 IPv6 모두 지원한다.
IPv6-only	IPv6 스택만 설치되어 있는 호스트. IPv6-only host는 IPv4 주소를 지원하지
host	않는다.

IPv6 클라이언트/서버 연결

"네트워크 연결"이란 둘 이상의 컴퓨터 사이에 네트워크를 통해서 접속과 통신을 수립하는 것을 말한다.

다음 표는 설치된 프로토콜 스택에 따라서 서버와 클라이언트 간 통신을 위해 사용될수 있는 프로토콜 버전을 보여준다. 아래의 표에서 Supportd (v6)는 IPv6를 지원하는 프로토콜 스택이 설치된 클라이언트/서버 호스트를 의미하며, 이 호스트는 IPv6인터페이스를 사용해서 다른 호스트에 연결할 수 있다.

	IPv4-only 서버	듀얼 스택 서버	IPv6-only 서버
IPv4-only 클라이언트	Supported (v4)	Supported (v4)	Not supported
듀얼 스택 클라이언트	Supported (v4)	Supported (v4, v6)	Supported (v6)
IPv6-only 클라이언트	Not supported	Supported (v6)	Supported (v6)

Altibase의 IPv6 지원

Altibase에서 IPv6 지원은 위의 "IPv6 클라이언트/서버 연결" 절의 표에 잘 나타나 있다.

서버
 IPv6를 사용하려면, altibase.properties 파일에서 NET CONN IP STACK 프로퍼티를

1 또는 2로 설정해야 한다. 이 프로퍼티에 대한 자세한 설명은 General Reference를 참고하기 바란다.

• 클라이언트

IPv6 를 사용해서 접속하려면, DSN 속성을 IPv6 주소로 지정하거나, 또는 DSN 속성은 호스트 이름으로 명시하고 PREFER_IPv6 속성을 TRUE로 지정하면 된다. 호스트 이름을 지정할 경우, Altibase 클라이언트는 getaddrinfo() 호출로 반환되는 모든 IP 주소로의 접속을 연결이 성공할 때까지 시도한다. 한 개 이상의 IP 주소가 반환될 경우, Altibase 클라이언트는 PREFER_IPv6 속성에 의한 순서대로 각 IP 주소로의 연결을 시도한다. PREFER_IPv6 속성이 지정되지 않거나 FALSE로 지정한 경우, 먼저 IPv4 주소로 연결을 시도한다. 연결이 실패하면 클라이언트는 반환되었던 IPv6 주소로 접속을 시도할 것이다. PREFER_IPv6 속성을 TRUE로 지정하면, IPv6 주소로 먼저 접속을 시도한다. 이것이 실패하면 클라이언트는 반환되었던 IPv4 주소로의 접속을 시도한다.

PREFER_IPV6 속성에 대한 자세한 설명은 CLI User's Manual를 참고하기 바란다.

Unix Domain 소켓

유닉스 플랫폼 상에서 클라이언트와 Altibase 서버가 모두 동인한 장비에 설치되었을 때, 유닉스 도메인 소켓을 통신에 사용할 수 있다. 유닉스 도메인 소켓을 사용하면 TCP/IP 사용시보다 나은 성능을 낼 수 있다. 유닉스 도메인 소켓을 사용하려면, ODBC/CLI 응용 프로그램에서는 CONNTYPE 속성을 지정하고, Altibase 유틸리티에서는 ISQL_CONNECTION 환경 변수를 설정한다.

더 자세한 설명은 CLI User's Manual 와 각각의 유틸리티에 대한 매뉴얼을 참고하기 바란다.

공유 메모리를 이용한 IPC

이 절에서는 Altibase에서 제공하는 공유 메모리를 이용한 프로세스간 통신 (inter-process communication, IPC) 즉, 동시에 실행 중인 프로세스들 사이에서 데이터를 교환하는 방법에 대해서 설명한다. 클라이언트와 Altibase 데이터베이스 서버가 동일한 장비에 설치되어 있는 경우, 이 통신 방법을 사용하면 클라이언트 응용프로그램은 보다 향상된 성능을 보여줄 것이다. 공유 메모리를 이용한 IPC는 최고의 성능을 제공하지만, 메모리를 추가로 더 많이 사용하게 된다. 이 통신 방법을 사용하려면, 먼저 다음을 수행해야 한다:

- altibase.properties 파일에서 관련 서버 프로퍼티를 설정한다. 'General Reference> 2. ALTIBASE HDB 프로퍼티> 세션 관련 프로퍼티' 를 참고하기 바란다.
- ODBC/CLI 응용 프로그램에서는 CONNTYPE 속성을 지정하고, iSQL과 iLoader 같은 Altibase 유틸리티에서는 ISQL_CONNECTION 환경 변수를 설정한다. 자세한 설명은

CLI User's Manua과 각각의 유틸리티 매뉴얼을 참고하기 바란다.

IPCDA

IPCDA(Inter Process Communication Direct Attach)는 IPC와 마찬가지로 공유 메모리를 이용하여 클라이언트와 데이터베이스 서버간에 데이터를 교환한다. IPC 보다데이터 읽기, 쓰기를 단순화하고 클라이언트, 서버 사이의 유휴 시간을 줄여 성능을 더욱 향상시켰다.

제약사항으로 Linux 이외의 운영체제에서는 사용할 수 없다. IPC와 마찬가지로 CLI, ODBC는 지원하지만, JDBC는 지원하지 않는다. 또한 IPCDA를 사용할 때는 LOB 데이터를 사용할 수 없다.

IPCDA를 이용하여 통신하려면, 먼저 아래의 환경을 설정해야 한다.

- altibase.properties 파일에서 아래의 IPCDA 관련 서버 프로퍼티를 설정한다.
 각각의 프로퍼티에 대한 자세한 설명은 General Reference를 참고하기 바란다.
 IPCDA_CHANNEL_COUNT
 IPCDA_FILEPATH
 IPCDA_DATABLOCK_SIZE
- ODBC/CLI 응용 프로그램에서는 CONNTYPE 속성을 지정한다. 자세한 설명은 CLI User's Manual 을 참고하기 바란다.

SSL/TLS

Altibase는 데이터를 암호화 및 복호화하기 위하여 대칭키 알고리즘과 인증을 위하여 공개키(public key)/개인 키(private key)의 한 쌍을 안전하게 교환하기 위한 비대칭 알고리즘을 이용하는 SSL/TLS를 채택하고 있다.

알티베이스의 SSL/TLS의 특징을 살펴보면 아래와 같다.

- Altibase 서버에 대한 보안 접속은 OpenSSL 프로젝트로 개발된 OpenSSL API를 기반으로 한다. OpenSSL 프로젝트는 범용 암호화 라이브러리를 포함하여 SSL 2.0/3.0 과 TLS 1.0 프로토콜을 지원한다.
- Altibase는 서버 전용 인증과 상호 인증을 지원한다.
- Altibase 서버에서 SSL통신을 지원하기 위해서는 기존에 사용하는 TCP 포트 이외에 별도의 서비스 포트가 필요하다.
- 서버에서 SSL 통신을 이용하기 위해서는 환경변수로 ALTIBASE_PORT_NO와 ALTIBASE SSL PORT NO 둘 다 정의되어야 한다.
- Altibase는 SSL 통신을 위해 JDBC와 ODBC를 지원하며, 현재는 리눅스에서만 사용할 수 있다.

Altibase에 SSL/TLS통신을 설정하고 사용하는 방법은 *Altibase SSL/TLS User*'s *Guide*를 참조하기 바란다.

13.Altibase의 보안

이 장에서는 Altibase의 보안을 위해 사용 가능한 방법들과 보안 모듈 사용 방법에 대해 설명한다.

보안의 개요

정보 보호의 중요성이 높아지고 개인 정보 등 민감하고 중요한 정보를 법령으로

제정하여 보호함에 따라 데이터베이스의 보안 관리 기능이 필수적으로 요구되고 있다.

데이타베이스의 보안은 의도하지 않은 내, 외부적 활동으로부터 데이타베이스를 보호하는 것을 목적으로 하며, Altibase에서는 사용자의 필요에 적합한 보안 모듈을 연동하여 데이터베이스를 효과적으로 보호할 수 있도록 보안 모듈 연동 기능을 제공한다.

이 장에서는 데이터 암호화를 위한 보안 모듈 연동 기능에 대해 설명한다.

Altibase의 보안 모듈 연동 기능은 기존 Altibase 시스템과의 독립적인 보안 모듈 구성과 응용 프로그램과의 완벽한 독립성을 바탕으로, 개인 정보 보호를 위한 강력한 암호화 관리를 지원한다. Altibase는 취약한 데이타베이스의 보안을 강화하기 위하여 신뢰할 수 있는 외부의 보안 모듈을 Altibase 시스템과 연동을 지원하며, 보안 모듈을 효과적으로 연동할 수 있는 인터페이스를 제공한다.

Altibase는 보안 모듈을 통한 데이터 암호화, 접근 제어 및 감사 기능을 위한 기반 구조를 데이타베이스 레벨에서 지원한다. 보안과 관련된 모든 작업은 Altibase 서버 내에서가 아니라 보안 모듈을 통해서 이루어진다.

암호화는 테이블의 칼럼을 대상으로 수행되며, 암호화가 적용된 칼럼의 데이터는 디스크뿐만 아니라 메모리 상에서도 암호화를 유지한다.

접근 제어 기능은 크게 보안 대상의 선정 과정과 보안 대상에 대한 접근 권한의 분류를 통해 객체에 대한 사용자의 접근 유효성을 판단하는 두 과정으로 나뉘어진다.

접근 제어의 대상은 테이블 내의 칼럼 단위로 설정되며, 보안이 설정된 칼럼에 대해접근을 하기 위해서 각 사용자는 해당 객체에 대한 필요 접근 권한을 부여 받아야한다.

보안 대상의 설정과 보안 대상의 접근, 암호화 작업에 대해서는 감사 기록이 남겨진다.

Altibase가 제공하는 보안 관련 기능은 다음과 같다.

- 디스크 및 메모리의 데이타를 암호화하여 저장 관리
- 보안 권한에 따른 출력 데이타의 복호화
- 원래 데이터의 순서를 보장하는 인덱스 구성
- 암호 칼럼을 가지는 테이블의 이중화 가능

보안 기능의 구성

Altibase와 보안 모듈은 서로 독립적이다. 암호 키, 보안 정책과 보안 권한에 대한 정보는 보안 모듈에서 별도로 관리한다.

보안 모듈이 연동되어 있지 않더라도, Altibase는 정상적으로 동작한다. 단, 암호 칼럼에 대한 질의 처리시 보안 모듈이 연동되어 있지 않으면, 해당 질의는 실패하게 된다.

Altibase는 보안 모듈 관련 속성들의 설정과 SQL문 실행을 통해 보안 모듈을 연동한다. Altibase는 보안 모듈이 연동되는 과정에서 두 모듈 간의 연결의 유효성을 평가하여 해당 연결에 대한 신뢰성을 보장한다.

Altibase는 자신이 가진 보안 모듈에 대한 정보(모듈 이름, 버전, 암호 칼럼들의 정보)와 보안 모듈이 가진 정보를 비교하여 보안 모듈과의 연결을 평가한다.

Altibase에 연결하는 기존 응용프로그램을 수정할 필요 없이 데이터를 칼럼 단위로 암호화할 수 있다. 암호 칼럼의 생성 및 삭제는 SQL로 지원된다. 이 외의 기존 응용 프로그램에서 사용하는 질의를 변경할 필요는 없다.

보안 관련 Altibase 메인 모듈의 역할은 다음과 같다.

- 데이터베이스 운영 중 보안 모듈 연동을 위한 환경변수 및 SQL 구문 지원
- 암호화된 데이타를 관리하기 위한 자료구조 및 메타 정보 지원
- 보안 관련 확장된 질의 구문 지원
- 이중화 지원

외부 보안 모듈의 역할은 다음과 같다.

- 암호화 알고리즘 설정 (암호화 알고리즘의 종류, 초기화 벡터 사용 여부 결정)
- 칼럼의 암호화 정보 설정 (암호화 알고리즘 선택, 암호화 및 복호화 권한 설정)
- 데이타의 암호화 및 복호화
- 접근 제어 설정 (IP 접근 제어, 사용자 접근 제어)

• 감사 (암호화 및 복호화 로그, 접근 제어 로그)

보안 모듈 연동 방법

이 절에서는 보안 모듈을 연동하기 위해 필요한 절차들을 설명한다.

하나의 서버에는 하나의 보안 모듈만 연동될 수 있다. 보안 모듈을 연동하기 위해서는 보안 모듈의 이름, 보안 모듈의 위치 경로, 암호화된 데이터의 순서가 원본 데이터의 순서와 같음을 보장하는 ECC알고리즘의 보안 정책 (Altibase의 ECC 알고리즘은 Order Preserving Encryption방식이다)을 설정한다. 그 다음에 보안 모듈의 연동을 시작한다.

여기서 ECC란 Encrypted Comparison Code의 약자로 암호화된 데이터의 순서가 원본데이터의 순서와 같음을 보장하는 해시값이다. ECC로부터 원본으로의 변환이 불가능한 단방향 해시 알고리즘을 적용하여 ECC를 구성한다. ECC는 DBMS내부에서 암호 컬럼에 대한 빠른 비교연산을 위해 이용되며, 관리자 또는 사용자에 노출되지 않는다.

ECC알고리즘은 ECC를 생성하기 위해 적용된 해시 알고리즘을 의미한다. 외부 보안 모듈로부터 다양한 ECC알고리즘의 지원이 가능하며, 서버 단위로 하나의 ECC 알고리즘이 선택되어 적용된다.

보안 모듈을 Altibase에 연동하려면 다음의 과정을 수행한다.

- 외부 보안 모듈 설치
- Altibase 환경 설정
- 보안 모듈 구동
- 암호 칼럼 생성

이 과정 중 외부 보안 모듈 설치 방법은 보안 모듈의 종류에 따라 다르므로 사용할 외부 보안 모듈의 설치 문서를 참고한다. 여기에서는 그 다음 과정인 Altibase 환경 설정, 보안 모듈 구동 및 암호 칼럼 생성에 더하여 보안 모듈 종료와 암호 칼럼 해제에 대해서 설명한다.

Altibase 보안 환경 설정

연동할 외부 보안 모듈의 경로를 Altibase 프로퍼티 파일인 \$ALTIBASE_HOME/conf/altibase.properties에 다음과 같이 정의한다.

SECURITY_MODULE_NAME = altibase

SECURITY_MODULE_LIBRARY = libsecurity.so

SECURITY_ECC_POLICY_NAME = ecc_policy1

프로퍼티의 값은 대, 소문자를 구별하므로 이에 주의해야 한다.

SECURITY_MODULE_NAME프로퍼티는 외부 보안 모듈의 식별자로 보안 보듈에 따라 달리설정한다.

SECURITY_MODULE_LIBRARY는 설치된 외부 보안 모듈 라이브러리의 이름을 나타낸다. SECURITY_ECC_POLICY_NAME은 Altibase 내부에서 보안 정책을 구분하기 위한 이름으로 반드시 정의해야 한다.

이 프로퍼티들의 값은 ALTER SYSTEM 구문으로 운영 도중에 설정하거나 변경할 수 있다. ALTER SYSTEM 구문으로 변경할 경우, SECURITY_MODULE_LIBRARY에는 파일의 절대 경로를 지정해야 한다.

```
ALTER SYSTEM SET SECURITY_MODULE_NAME = 'altibase';

ALTER SYSTEM SET SECURITY_MODULE_LIBRARY = '/altibase_home/lib/libsecurity.so';

ALTER SYSTEM SET SECURITY ECC POLICY NAME = 'ecc policy1';
```

보안 모듈 구동과 데이터 암호화

이 절에서는 보안 모듈 구동 및 데이터 암호화 방법에 대해 설명하고 관련 구문을 소개한다.

보안 모듈 구동

보안 모듈 관련 프로퍼티가 모두 설정되었다면 보안 모듈을 구동할 수 있다. 보안 모듈을 구동하면 내부적으로 다음 기능들이 수행된다.

- 1. 보안 모듈 인증 상호 허용되지 않은 보안 모듈을 사용할 수 없도록 인증한다.
- 보안 모듈 초기화와 유효성 검사
 보안 모듈 자체의 설정 파일이나 라이센스를 검사한다.
- 3. ECC 보안 정책 검증 보안 모듈에 프로퍼티로 설정된 ECC 보안 정책이 유효한지 검사한다.

ALTER SYSTEM START SECURITY 문으로 보안 모듈을 구동한다. 이 구문은 적절한 권한을 가진 관리자로 접속해서 실행해야 한다.

예제

1. 적절한 권한이 있는 관리자로 Altibase에 접속한다.

ISQL> CONNECT sys/manager

2. 보안 모듈 관련 프로퍼티를 설정한다.

보안 모듈 종료

보안 모듈 구동과 마찬가지로 보안 모듈을 종료하고자 할 때는 적절한 권한이 있는 관리자로 접속해야 한다. 그 다음에 다음 구문을 실행한다.

```
iSQL> ALTER SYSTEM STOP SECURITY;
```

다음과 같이 보안 모듈 연동 상태를 확인할 수 있다.

Note: 보안 모듈의 종료는 암호화 컬럼이 존재하지 않는 경우에만 수행할 수 있다.

암호 칼럼 생성

데이터를 보호해야 하는 중요한 칼럼의 경우, 칼럼을 암호화하여 데이터를 보호할 수 있다. CHAR, VARCHAR 두 가지 자료형에 대해 암호화를 지원한다.

CREATE TABLE 문으로 칼럼 생성시 암호 칼럼으로 지정하여 생성하거나, ALTER TABLE 문으로 이미 생성된 테이블의 칼럼을 암호 칼럼으로 변경할 수 있다. 두 경우 모두 사용할 보안 정책 이름(SECURITY_ECC_POLICY_NAME)을 암호화할 칼럼의 ENCRYPT USING 절에 지정한다. 칼럼의 암호화 여부는 DESC 구문을 통해 확인할 수 있다.

구문

```
CREATE TABLE table_name (column_name datatype [ENCRYPT USING 'policy_name']);
```

주의사항

암호화된 칼럼의 데이타 타입을 변경할 수 없다.

예제

질의 1> 테이블 생성시에 empID1, ssn1칼럼을 암호 칼럼으로 지정한다.

질의 2> 테이블에 암호 칼럼이 있는지 확인한다.

```
iSQL> DESC t1

NAME TYPE IS NULL

NAME1 VARCHAR(10) FIXED

EMPID1 VARCHAR(8) ENCRYPT FIXED

SSN CHAR(12) ENCRYPT FIXED
```

암호 칼럼으로 변경

일반 칼럼의 경우, ALTER TABLE 문을 사용하여 암호 칼럼으로 변경할 수 있다.

구문

```
ALTER TABLE table_name MODIFY (column_name [ENCRYPT USING 'policy_name']);
```

주의사항

- 암호 칼럼을 다시 암호화할 수 없다.
- 암호화된 칼럼의 데이타 타입을 변경할 수 없다.

예제

질의> 기존의 t1 테이블의 empID1 칼럼을 보안 정책 policy_ssn을 사용하여 암호 칼럼으로 변경한다.

암호 칼럼의 해제

ALTER TABLE 구문을 사용하여 암호화된 칼럼을 일반 칼럼으로 변경할 수 있다.

구문

ALTER TABLE table name MODIFY (column name [DECRYPT]);

예제

질의> t1 테이블의 empID1 칼럼의 암호화 설정을 해제한다.

ALTER TABLE t1 MODIFY (empID1 DECRYPT);

14.데이터베이스 감사 (Database Auditing)

이 장은 Altibase 서버 내에서 실행되고 있는 구문을 실시간으로 추적하고 로그를 기록하는 감사(Auditing) 기능에 대해 설명한다. 또한 데이터베이스 관리자가 감사를 운영하고 관리하는 기본적인 방법을 기술한다.

이 장에서 설명하는 감사 기능은 Audit User's Manual의 이중화 감사와는 구분된다.

소개

감사(Auditing)란 데이터베이스에서 특정 작업이 수행되는 것을 감시(monitor)하여 관련 정보를 파일에 기록하는 기능이다. 데이터베이스 관리자는 감사 대상이 될 구문 및 객체를 지정할 수 있다.

데이터베이스 서버 내에서 감사가 수행될 경우 서버는 실행되는 모든 구문을 실시간으로 추적하고 로그를 기록하기 때문에, 감사가 수행되지 않을 때에 비해 서버의 처리 속도가 느려질 수 있다.

알티베이스는 바이너리 또는 시스로그(syslog) 형태로 감사 로그를 지원하며, syslog는 리눅스 운영체제에서만 지원한다.

용어

아래는 감사 기능과 관련된 용어이다.

- 구문 감사 (Statement Auditing) 특정 구문을 감사하는 것을 구문 감사라고 한다.
- 객체 감사 (Object Auditing)
 데이터베이스에 존재하는 객체에 수행되는 작업을 감사하는 것을 객체 감사라고 한다.
- 감사 로그 (Audit Log)
 감사 대상에 포함되는 구문이 실행되면, Altibase 서버가 그 내역을 특정 파일에 바이너리 형태로 기록한다. 이렇게 기록되는 로그를 감사 로그라고 한다.
- 감사 제어 구문 (Audit Control Statement)
 감사 기능을 제어할 수 있도록 제공되는 SQL구문이다. 관리자는 이 구문을
 사용해서 감사를 시작 또는 종료하고, 새로 추가된 감사 조건들을 서버에 적용할수 있다.
- 감사 조건 구문 (Audit Condition Statement) 감사될 조건을 추가할 수 있도록 제공되는 SQL구문이다. 관리자는 이 구문을 사용해서 감사될 SQL문과 객체들을 지정할 수 있다.
- altiAudit

Altibase 서버가 기록한 감사 로그를 사용자가 읽을 수 있는 텍스트 형태로 출력해 주는 도구이다. 알티베이스는 바이너리 형태의 감사 로그를 \$ALTIBASE_HOME/bin 디렉토리에 위치에 저장하고, 시스로그(syslog)는 /var/log에 저장한다. 감사 로그를 syslog로 설정할 때에는 AUDIT_OUTPUT_METHOD 프로퍼티의 값을 변경후 서버를 재시작한다.

관련 메타 테이블과 프로퍼티

이 절에서는 데이터베이스 관리자가 감사를 운영하고 관리하는데 필요한 메타 테이블과 프로퍼티를 기술한다.

관련 메타 테이블

아래는 감사에 사용되는 메타 테이블 및 뷰의 목록이다. 데이터베이스 관리자는 이를 통해 감사의 상태 및 지정된 감사 조건들을 확인할 수 있다.

- SYS_AUDIT_: 감사의 동작 상태가 저장되어 있는 메타 테이블이다.
- SYS_AUDIT_OPTS_: 감사 조건이 저장되어 있는 뷰이다. 사용자가 지정한 감사 조건들은 이 뷰의 베이스 테이블인 SYS_AUDIT_ALL_OPTS_ 메타 테이블에 저장되지만, 데이터베이스 관리자에게 필요한 정보만 담고 있는 SYS_AUDIT_OPTS_ 뷰를 사용할 것을 권장한다.

각 메타 테이블의 칼럼 정보 및 상세한 설명은 General Reference를 참고하도록 한다.

관련 프로퍼티

Altibase 서버가 수집한 감사 정보는 파일에 기록된다. 이 파일을 관리하기 위해 아래의 프로퍼티가 제공된다.

- AUDIT_FILE_SIZE
- AUDIT_LOG_DIR
- AUDIT_OUTPUT_METHOD
- AUDIT_TAG_NAME_IN_SYSLOG

각 프로퍼티에 대한 상세한 설명은 General Reference를 참고하도록 한다.

감사 제어 구문

데이터베이스 를 시작 또는 종료하고, 새로 추가한 감사 조건들을 관리하기 위해 다음과 같은 SQL문들이 제공된다.

SQL문에 대한 상세한 설명은 SQL Reference를 참고하도록 한다.

감사 시작

감사 기능을 시작하기 위해 아래의 구문을 사용할 수 있다.

```
ALTER SYSTEM START AUDIT;
```

감사가 시작되면, SYS_AUDIT_ 메타 테이블의 값이 다음과 같이 변경되는 것을 볼 수 있다.

```
iSQL> ALTER SYSTEM START AUDIT;
Alter success.

iSQL> set vertical on;
iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_;

SYS_AUDIT_.IS_STARTED : 1
SYS_AUDIT_.START_TIME : 16-MAY-2013
SYS_AUDIT_.STOP_TIME :
SYS_AUDIT_.RELOAD_TIME : 16-MAY-2013
```

감사 종료

현재 진행 중인 감사 기능을 종료하기 위해 아래의 구문을 사용할 수 있다.

감사가 종료되면, SYS AUDIT 테이블의 값이 다음과 같이 변경되는 것을 볼 수 있다.

```
iSQL> ALTER SYSTEM STOP AUDIT;
Alter success.

iSQL> set vertical on;
iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_;
SYS_AUDIT_.IS_STARTED : 0
SYS_AUDIT_.START_TIME :
SYS_AUDIT_.STOP_TIME : 16-MAY-2013
SYS_AUDIT_.RELOAD_TIME : 16-MAY-2013
```

감사 조건 적용

데이터베이스 관리자가 감사 제어 구문을 사용해서 새로운 감사 조건들을 추가하여도, 서버의 감사 작업에 새로운 조건들이 바로 적용되는 것은 아니다. 운영 중인 서버에 새로운 감사 조건들이 적용되기 위해서는 감사를 시작하거나 아래의 구문을 사용해서 RELOAD해야 한다.

```
ALTER SYSTEM RELOAD AUDIT;
```

이 구문이 실행되면, 데이터베이스 서버는 내부에 가지고 있던 감사 관련 메모리들을 비우고, 메타 테이블로부터 새로운 조건들을 읽어와서 메모리를 갱신한다.

따라서 데이터베이스 서버가 감사를 진행 중이라면, RELOAD 구문을 사용해서 데이터베이스 서버가 새로운 조건으로 감사를 계속 진행하게 할 수 있다. 그러나 서버에서 감사가 진행 중이 아니라면, 감사를 시작하는 것만으로도 새로운 조건들을 적용할 수 있다.

감사 조건 삭제

Altibase 서버 내에서 감사를 하기 위해 설정한 감사 조건을 DELAUDIT 구문을 사용해서 삭제할 수 있다. 아래의 분류별로 감사 조건을 삭제할 수 있다.

- AUDIT ... BY user name 구문으로 설정한 구문 감사와 DDL 감사 조건
- BY user_name절 없이 설정한 구문 감사와 DDL 감사 조건
- 객체 감사 조건

감사가 이미 시작된 경우에는 감사 조건을 삭제할 수 없다. 아래 구문을 실행하여 감사를 종료한 후에 삭제할 수 있다.

ALTER SYSTEM STOP AUDIT;

아래는 사용자 user1에 대한 감사 조건을 삭제하는 예제이다. DELAUDIT 구문을 실행한 후에, SYS AUDIT OPTS 에서 user1에 대한 감사 조건이 삭제된 것을 확인할 수 있다.

iSQL> DELAUDIT by user1;
Audit success.
iSQL> SELECT * from SYSTEM_.SYS_AUDIT_OPTS_;
No rows selected.

주의 사항

감사를 시작하기 전에 아래의 구문을 사용해서 SQL Plan Cache를 초기화할 것을 권장한다.

ALTER SYSTEM RESET SQL_PLAN_CACHE;

Altibase 서버가 SQL Plan Cache를 사용한다면 감사 로그가 기록되지 않을 수 있다. 감사를 시작하기 전에 캐시에 저장된 SQL 실행 계획이 감사 후에 재사용되는 경우, 관련 정보가 감사 로그로 기록되지 않기 때문이다.

감사 조건 구문

감사 조건 구문이란 데이터베이스 서버에서 실행되는 구문들 중 어떤 객체에 대해 어떤 구문들이 수행되는 것을 감사할지를 지정하는 구문이다.

이 절은 객체, 구문 또는 DDL문의 감사에 대한 조건을 설정하고 해제하는 방법을 예제와 함께 설명한다.

객체 감사

특정 객체에 특정한 작업이 수행되는 것을 감시하고 로그를 기록하는 것을 객체 감사라고 한다.

설정

객체 감사 조건을 설정하는 구문은 아래와 같다.

AUDIT operation_comma_list
ON object_name
BY ACCESS | SESSION
WHENEVER [NOT] SUCCESSFUL;

구문에 대한 자세한 내용은 SQL Reference를 참고하도록 한다.

설정 예제

<질의1> 사용자 user1의 friends 테이블에 대한 INSERT, UPDATE 또는 DELETE문 수행 중 실패한 경우에 로그를 모두 기록하라.

AUDIT insert, update, delete ON user1.friends BY ACCESS WHENEVER NOT SUCCESSFUL;

<질의2> 사용자 user1의 friends 테이블에 대한 DDL문 수행들이 세션에서 모두 성공한 경우에 로그를 기록하라.

AUDIT all ON user1.friends BY SESSION WHENEVER SUCCESSFUL;

iSQL> set vertical on; iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_OPTS_ WHERE USER_NAME = 'USER1' AND OBJECT_NAME = 'FRIENDS';

USER NAME : USER1 OBJECT_NAME : FRIENDS : TABLE OBJECT_TYPE SELECT_OP : S/-INSERT_OP : S/A : S/A UPDATE_OP DELETE_OP : S/A MOVE_OP : S/-: S/-MERGE OP ENQUEUE_OP : S/-DEQUEUE_OP : S/-LOCK_TABLE_OP : S/-EXECUTE_OP : S/-: -/-COMMIT_OP ROLLBACK_OP : -/-SAVEPOINT OP : -/-CONNECT_OP : -/-DISCONNECT_OP : -/-ALTER_SESSION_OP : -/-ALTER_SYSTEM_OP : -/-DDL OP : -/-

1 row selected.

<질의3> proc1 저장 프로시저의 수행이 성공할 경우에는 세션 단위에서 감사 로그를 기록하고, 실패할 경우에는 액세스 단위의 감사 로그를 기록하라.

AUDIT execute ON proc1 BY SESSION WHENEVER SUCCESSFUL;

AUDIT execute ON proc1 BY ACCESS WHENEVER NOT SUCCESSFUL;

```
iSQL> set vertical on;
iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_OPTS_ WHERE OBJECT_NAME = 'PROC1';
USER_NAME
             : SYS
OBJECT_NAME
             : PROC1
             : PROCEDURE
OBJECT_TYPE
             : -/-
SELECT_OP
             : -/-
INSERT_OP
             : -/-
UPDATE_OP
             : -/-
DELETE_OP
MOVE_OP
             : -/-
MERGE_OP
             : -/-
              : -/-
ENQUEUE_OP
DEQUEUE_OP
             : -/-
LOCK_TABLE_OP : -/-
EXECUTE_OP
             : S/A
COMMIT_OP
             : -/-
             : -/-
ROLLBACK_OP
SAVEPOINT_OP : -/-
              : -/-
CONNECT_OP
DISCONNECT_OP : -/-
ALTER_SESSION_OP : -/-
ALTER_SYSTEM_OP : -/-
DDL_OP
             : -/-
1 row selected.
```

<질의4> SELECT 구문 내에서 저장 프로시저 proc1이 호출되는 것을 액세스 단위로 감사 로그를 기록하라.

AUDIT select ON proc1 BY ACCESS;

```
iSQL> set vertical on;
iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_OPTS_ WHERE OBJECT_NAME = 'PROC1';
USER_NAME
             : SYS
OBJECT_NAME
             : PROC1
             : PROCEDURE
OBJECT_TYPE
             : A/A
SELECT_OP
             : -/-
INSERT_OP
             : -/-
UPDATE_OP
             : -/-
DELETE_OP
MOVE_OP
             : -/-
MERGE_OP
             : -/-
              : -/-
ENQUEUE_OP
DEQUEUE_OP
             : -/-
LOCK_TABLE_OP : -/-
EXECUTE_OP
             : -/-
COMMIT_OP
             : -/-
             : -/-
ROLLBACK_OP
SAVEPOINT_OP : -/-
               : -/-
CONNECT_OP
DISCONNECT_OP : -/-
ALTER_SESSION_OP : -/-
ALTER_SYSTEM_OP : -/-
DDL_OP
             : -/-
1 row selected.
```

<질의5> INSERT 구문 내에서 시퀀스 seq1이 호출되는 것을 세션 단위로 감사 로그를 기록하라.

AUDIT insert ON seq1;

```
iSQL> set vertical on;
iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_OPTS_ WHERE OBJECT_NAME = 'SEQ1';
USER_NAME
             : SYS
OBJECT_NAME
             : SEQ1
OBJECT_TYPE
             : SEQUENCE
             : -/-
SELECT_OP
             : S/S
INSERT_OP
             : -/-
UPDATE_OP
             : -/-
DELETE_OP
MOVE_OP
             : -/-
MERGE_OP
             : -/-
              : -/-
ENQUEUE_OP
DEQUEUE_OP
             : -/-
LOCK_TABLE_OP : -/-
EXECUTE_OP
             : -/-
COMMIT_OP
             : -/-
             : -/-
ROLLBACK_OP
SAVEPOINT_OP : -/-
              : -/-
CONNECT_OP
DISCONNECT_OP : -/-
ALTER_SESSION_OP : -/-
ALTER_SYSTEM_OP : -/-
DDL_OP
             : -/-
1 row selected.
```

<질의6> 시퀀스 seq1을 호출하는 모든 DML 구문이 세션 단위에서 성공적으로 수행되는 경우 감사 로그를 기록하라.

AUDIT all ON seq1 WHENEVER SUCCESSFUL;

```
iSQL> set vertical on;
iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_OPTS_ WHERE OBJECT_NAME = 'SEQ1';
USER_NAME
               : SYS
OBJECT_NAME
              : SEQ1
OBJECT_TYPE
              : SEQUENCE
               : S/-
SELECT_OP
              : S/-
INSERT_OP
              : S/-
UPDATE_OP
DELETE_OP
              : S/-
MOVE_OP
              : S/-
MERGE_OP
              : S/-
ENQUEUE_OP
               : S/-
DEQUEUE_OP
               : S/-
LOCK_TABLE_OP : S/-
EXECUTE_OP
              : S/-
COMMIT_OP
               : -/-
              : -/-
ROLLBACK_OP
              : -/-
SAVEPOINT_OP
               : -/-
CONNECT_OP
DISCONNECT_OP : -/-
ALTER_SESSION_OP : -/-
ALTER_SYSTEM_OP : -/-
DDL_OP
              : -/-
1 row selected.
```

해제

설정되어 있던 감사 조건을 해제하는 구문은 아래와 같다.

```
NOAUDIT operation_comma_list
ON object_name
WHENEVER [NOT] SUCCESSFUL;
```

구문에 대한 자세한 내용은 SQL Reference를 참고하도록 한다.

해제 예제

<질의1> 테이블 friends에 다음과 같은 감사 조건이 설정되어 있다고 가정하자.

```
USER_NAME : SYS
OBJECT_NAME : FRIENDS
OBJECT_TYPE : TABLE
SELECT_OP : S/S
INSERT_OP : S/S
UPDATE_OP : S/S
DELETE_OP : S/S
MOVE_OP : S/S
MERGE_OP : S/S
ENQUEUE_OP : S/S
DEQUEUE_OP : S/S
LOCK_TABLE_OP : S/S
EXECUTE_OP : S/S
COMMIT_OP : -/-
ROLLBACK_OP : -/-
SAVEPOINT_OP : -/-
CONNECT_OP : -/-
DISCONNECT_OP : -/-
ALTER_SESSION_OP : -/-
ALTER_SYSTEM_OP : -/-
DDL_OP : -/-
```

이들 조건 중 SELECT 구문의 성공에 대한 감사를 해제하라.

```
iSQL> NOAUDIT select ON friends WHENEVER SUCCESSFUL;
iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_OPTS_ WHERE OBJECT_NAME = 'FRIENDS';
USER_NAME : SYS
OBJECT_NAME : FRIENDS
OBJECT_TYPE : TABLE
SELECT_OP : -/S
INSERT_OP : S/S
UPDATE_OP : S/S
DELETE_OP : S/S
MOVE_OP : S/S
MERGE_OP : S/S
ENQUEUE_OP : S/S
DEQUEUE_OP : S/S
LOCK_TABLE_OP : S/S
EXECUTE_OP : S/S
COMMIT_OP : -/-
ROLLBACK_OP : -/-
SAVEPOINT_OP : -/-
CONNECT_OP : -/-
DISCONNECT_OP : -/-
ALTER_SESSION_OP : -/-
ALTER_SYSTEM_OP : -/-
DDL_OP : -/-
1 row selected.
```

구문 감사

Altibase 서버에서 특정한 SQL 구문이 수행되는 것을 감시하고 로그를 기록하는 것을 구문 감사라고 한다.

설정

구문 감사 조건을 설정하는 구문은 아래와 같다.

```
AUDIT operation_comma_list
BY user_name
BY ACCESS|SESSION
WHENEVER [NOT] SUCCESSFUL;
```

구문에 대한 자세한 내용은 SQL Reference를 참고하도록 한다.

설정 예제

<질의1> Altibase 서버에 대해 실패하는 모든 CONNECT, DISCONNECT 구문의 정보를 액세스 단위로 로그를 기록하라.

```
iSQL> AUDIT connect, disconnect BY ACCESS WHENEVER NOT SUCCESSFUL;
Audit success
iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_OPTS_;
USER_NAME : ALL
OBJECT_NAME : ALL
OBJECT_TYPE :
SELECT_OP : -/-
INSERT_OP : -/-
UPDATE_OP : -/-
DELETE_OP : -/-
MOVE_OP : -/-
MERGE_OP : -/-
ENQUEUE_OP : -/-
DEQUEUE_OP : -/-
LOCK_TABLE_OP : -/-
EXECUTE_OP : -/-
COMMIT_OP : -/-
ROLLBACK_OP : -/-
SAVEPOINT_OP : -/-
CONNECT_OP : -/A
DISCONNECT_OP : -/A
ALTER_SESSION_OP : -/-
ALTER_SYSTEM_OP : -/-
DDL_OP : -/-
1 row selected.
```

<질의2> Altibase 서버 내에서 수행되는 모든 INSERT 구문에 대한 정보를 세션 단위로 로그를 기록하라.

```
iSQL> AUDIT insert;
Audit success.
iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_OPTS_;
USER_NAME : ALL
OBJECT_NAME : ALL
OBJECT_TYPE :
SELECT_OP : -/-
INSERT_OP : S/S
UPDATE_OP : -/-
DELETE_OP : -/-
MOVE_OP : -/-
MERGE_OP : -/-
ENQUEUE_OP : -/-
DEQUEUE_OP : -/-
LOCK_TABLE_OP : -/-
EXECUTE_OP : -/-
COMMIT_OP : -/-
ROLLBACK_OP : -/-
SAVEPOINT_OP : -/-
CONNECT_OP : -/-
DISCONNECT_OP : -/-
ALTER_SESSION_OP : -/-
ALTER_SYSTEM_OP : -/-
DDL_OP : -/-
1 row selected.
```

<질의3> Altibase 서버 내에서 수행에 실패하는 모든 INSERT, UPDATE, SELECT, 또는 DELETE 구문에 대한 정보를 액세스 단위로 로그를 기록하라.

```
iSQL> AUDIT insert, update, select, delete BY ACCESS WHENEVER NOT SUCCESSFUL;
Audit success.
iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_OPTS_;
USER_NAME : ALL
OBJECT_NAME : ALL
OBJECT_TYPE :
SELECT_OP : -/A
INSERT_OP : -/A
UPDATE_OP : -/A
DELETE_OP : -/A
MOVE_OP : -/-
MERGE_OP : -/-
ENQUEUE_OP : -/-
DEQUEUE_OP : -/-
LOCK_TABLE_OP : -/-
EXECUTE_OP : -/-
COMMIT_OP : -/-
ROLLBACK_OP : -/-
SAVEPOINT_OP : -/-
CONNECT_OP : -/-
DISCONNECT_OP : -/-
ALTER_SESSION_OP : -/-
ALTER_SYSTEM_OP : -/-
DDL_OP : -/-
1 row selected.
```

해제

구문 감사 조건을 해제하는 구문은 아래와 같다.

```
NOAUDIT operation_comma_list
BY user_name
WHENEVER [NOT] SUCCESSFUL;
```

구문에 대한 자세한 내용은 SQL Reference를 참고하도록 한다.

해제 예제

<질의1> 다음과 같이 감사 조건이 설정되어 있다고 가정하자.

iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_OPTS_;

```
USER_NAME : ALL
OBJECT_NAME : ALL
OBJECT_TYPE :
SELECT_OP : -/A
INSERT_OP : -/A
UPDATE_OP : -/A
DELETE_OP : -/A
MOVE_OP : -/-
MERGE_OP : -/-
ENQUEUE_OP : -/-
DEQUEUE_OP : -/-
LOCK_TABLE_OP : -/-
EXECUTE_OP : -/-
COMMIT_OP : -/-
ROLLBACK_OP : -/-
SAVEPOINT_OP : -/-
CONNECT_OP : -/-
DISCONNECT_OP : -/-
ALTER_SESSION_OP : -/-
ALTER_SYSTEM_OP : -/-
DDL_OP : -/-
```

1 row selected.

이들 조건 중 SELECT 구문에 대한 감사를 해제하라.

```
iSQL> NOAUDIT select;
Audit success.
iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_OPTS_;
USER_NAME : ALL
OBJECT_NAME : ALL
OBJECT_TYPE :
SELECT_OP : -/-
INSERT_OP : -/A
UPDATE_OP : -/A
DELETE_OP : -/A
MOVE_OP : -/-
MERGE_OP : -/-
ENQUEUE_OP : -/-
DEQUEUE_OP : -/-
LOCK_TABLE_OP : -/-
EXECUTE_OP : -/-
COMMIT_OP : -/-
ROLLBACK_OP : -/-
SAVEPOINT_OP : -/-
CONNECT_OP : -/-
DISCONNECT_OP : -/-
ALTER_SESSION_OP : -/-
ALTER_SYSTEM_OP : -/-
DDL_OP : -/-
1 row selected.
```

DDL문 감사

Altibase 서버에서 수행되는 모든 DDL 구문을 감시하고 로그를 기록하는 것을 DDL문 감사라고 한다.

설정

DDL문 감사 조건을 설정하는 구문은 아래와 같다.

```
AUDIT DDL
BY user_name
WHENEVER [NOT] SUCCESSFUL;
```

구문에 대한 자세한 내용은 SQL Reference를 참고하도록 한다.

설정 예제

<질의1> 사용자 user1이 수행하는 모든 DDL 구문에 대한 로그를 기록하라.

```
iSQL> AUDIT DDL BY user1;
Audit success.
iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_OPTS_;
USER_NAME : USER1
OBJECT_NAME : ALL
OBJECT_TYPE :
SELECT_OP : -/-
INSERT_OP : -/-
UPDATE_OP : -/-
DELETE_OP : -/-
MOVE_OP : -/-
MERGE_OP : -/-
ENQUEUE_OP : -/-
DEQUEUE_OP : -/-
LOCK_TABLE_OP : -/-
EXECUTE_OP : -/-
COMMIT_OP : -/-
ROLLBACK_OP : -/-
SAVEPOINT_OP : -/-
CONNECT_OP : -/-
DISCONNECT_OP : -/-
ALTER_SESSION_OP : -/-
ALTER_SYSTEM_OP : -/-
DDL_OP : T/T
1 row selected.
```

<질의2> 데이터베이스 서버 내에서 수행되는 모든 DDL 구문에 대한 실패 정보를 로그로 기록하라.

```
iSQL> AUDIT DDL WHENEVER NOT SUCCESSFUL;
Audit success.
iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_OPTS_;
USER_NAME : ALL
OBJECT_NAME : ALL
OBJECT_TYPE :
SELECT_OP : -/-
INSERT_OP : -/-
UPDATE_OP : -/-
DELETE_OP : -/-
MOVE_OP : -/-
MERGE_OP : -/-
ENQUEUE_OP : -/-
DEQUEUE_OP : -/-
LOCK_TABLE_OP : -/-
EXECUTE_OP : -/-
COMMIT_OP : -/-
ROLLBACK_OP : -/-
SAVEPOINT_OP : -/-
CONNECT_OP : -/-
DISCONNECT_OP : -/-
ALTER_SESSION_OP : -/-
ALTER_SYSTEM_OP : -/-
DDL_OP : -/T
1 row selected.
```

해제

DDL문 감사 조건을 해제하는 구문은 아래와 같다.

```
NOAUDIT DDL
BY user_name
WHENEVER [NOT] SUCCESSFUL;
```

구문에 대한 자세한 내용은 SQL Reference를 참고하도록 한다.

해제 예제

<질의1> 다음과 같이 감사 조건이 설정되어 있다고 가정하자.

```
iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_OPTS_;
USER_NAME : ALL
OBJECT_NAME : ALL
OBJECT_TYPE :
SELECT_OP : -/-
INSERT_OP : -/-
UPDATE_OP : -/-
DELETE_OP : -/-
MOVE_OP : -/-
MERGE_OP : -/-
ENQUEUE_OP : -/-
DEQUEUE_OP : -/-
LOCK_TABLE_OP : -/-
EXECUTE_OP : -/-
COMMIT_OP : -/-
ROLLBACK_OP : -/-
SAVEPOINT_OP : -/-
CONNECT_OP : -/-
DISCONNECT_OP : -/-
ALTER_SESSION_OP : -/-
ALTER_SYSTEM_OP : -/-
DDL_OP : T/T
1 row selected.
```

DDL 문에 대한 감사를 해제하라.

```
iSQL> NOAUDIT DDL;
Audit success.
iSQL> SELECT * FROM SYSTEM_.SYS_AUDIT_OPTS_;
USER_NAME : ALL
OBJECT_NAME : ALL
OBJECT_TYPE :
SELECT OP : -/-
INSERT_OP : -/-
UPDATE_OP : -/-
DELETE OP : -/-
MOVE_OP : -/-
MERGE_OP : -/-
ENQUEUE_OP : -/-
DEQUEUE_OP : -/-
LOCK_TABLE_OP : -/-
EXECUTE_OP : -/-
COMMIT_OP : -/-
ROLLBACK_OP : -/-
SAVEPOINT_OP : -/-
CONNECT_OP : -/-
DISCONNECT_OP : -/-
ALTER SESSION OP : -/-
ALTER_SYSTEM_OP : -/-
DDL_OP : -/-
1 row selected.
```

주의 사항

구문 감사는 SQL문의 수행(EXECUTE)에 대한 성공 또는 실패를 감사한다. 즉, SQL문의 준비(PREPARE) 단계에서의 성공이나 실패는 감사 대상이 아니다.

감사 결과 확인하기

감사가 데이터베이스 서버에서 실행되고 있다면, 감사된 내용은 실시간으로 메모리에 적재되며, 아래의 경우에 디스크의 파일에 기록된다.

- 적재 메모리(1MB)에서 한 블럭(32kB)이 채워질 때마다
- ALTER SYSTEM STOP AUDIT 구문으로 감사를 종료할 때
- Altibase 서버가 종료될 때

알티베이스는 감사 로그를 AUDIT_OUTPUT_METHOD 프로퍼티 값에 따라 바이너리 파일 또는 시스로그(syslog)로 저장할 수 있다. 저장 형태에 따른 차이는 아래의 표와 같다.

	바이너리 레코드	syslog 레코드
저장 형태	바이너리(이진)	텍스트
저장 위치	AUDIT_LOG_DIR 프로퍼티	slog.conf(또는 rsyslog.conf)에 설정된 위치
레코드 길이	제한 없음	각 레코드 최대 1024자
읽는 방법	AltiAudit 유틸리티 사용	syslog.conf에 설정된 파일 읽음 (ex. /var/log/messages)
출력 형태	상세 출력 요약 정보 출력	요약 정보 출력
지원 운영체제	모든 운영체제	리눅스

[표 14-1] 레코드 저장방식: 바이너리 vs syslog

altiAudit 유틸리티에 대한 상세한 설명은 Utilities Manual을 참고하기 바란다.

바이너리 레코드 감사 결과 확인

파일이 존재하는 위치는 기본적으로 \$ALTIBASE_HOME/trc 디렉토리이지만, AUDIT LOG DIR 프로퍼티로 변경이 가능하다. 파일 이름의 형식은 다음과 같다.

alti-[the_epoch_time_sec]-[sequence].aud 예제) alti-1366989680-0.aud

감사 로그는 바이너리 형식으로 파일에 저장되기 때문에, 사용자가 읽을 수 없다. 따라서 사용자는 Altibase가 제공하는 유틸리티 altiAudit을 사용해서 바이너리 형태로 저장된 감사 로그를 텍스트 형태로 출력할 수 있다.

아래는 사용 예제이다.

altiAudit \$ALTIBASE_HOME/trc/alti-1366989680-0.aud

syslog 레코드 감사 결과 확인

AUDIT_OUTPUT_METHOD 프로퍼티 값을 1~9로 설정하면 syslog를 사용하여 로그가 저장된다. 단 syslog는 리눅스 운영체제에서만 사용할 수 있다.

아래는 syslog를 사용해서 출력되는 사용 예제이다. [AUDIT] 구분자는 AUDIT TAG NAME IN SYSLOG 프로퍼티 값에 의해 설정된다.

15.Altibase 튜닝

이 장에서는 서버의 성능 향상을 위해서 Altibase가 제공하는 다음 두 가지 기능에 대해서 설명한다.

- 로그 파일 그룹 (Log File Group)
- 그룹 커밋 (Group Commit)

로그 파일 그룹

이 절에서는 Altibase에서 제공하는 로그 파일 그룹 기능에 대해서 기술한다.

로그 파일 그룹의 개념

Altibase는 기본적으로 로그파일들을 LOG_DIR프로퍼티에 설정된 하나의 디렉토리에서 관리한다. 그리고 그 로그파일들 중 오직 하나의 로그파일에 데이터베이스 서버 운영 중에 발생하는 로그가 기록된다. 트랜잭션의 영속성(Durability)보장을 위해서 로깅은 필수적이다.

이와 같이 하나의 로그 경로, 즉 여러 개의 로그파일을 지니는 로깅 시스템의 최소 단위를 로그파일그룹(Log File Group, LFG)이라고 칭한다. 앞으로는 설명의 편의를 위하여 로그파일그룹을 간략하게 LFG라고 통칭한다.

LFG의 구성요소

LFG는 다음과 같은 구성 요소를 지닌다.

- 로그 파일 경로 (LOG_DIR 프로퍼티)
 LOG_DIR 프로퍼티는 로그 파일이 저장되는 디렉토리 경로를 지정한다. 이
 디렉토리는 하나 혹은 그 이상의 로그 파일들이 존재한다. Altibase는 그 중 오직
 하나의 로그파일에만 로그를 기록할 수 있다.
- 아카이브 로그 파일 경로 (ARCHIVE_DIR 프로퍼티) 데이터베이스가 아카이브로그 모드로 운영중이라면, LOG_DIR 프로퍼티에 지정된 디렉토리에 위치하는 기록이 완료된 로그파일들은 ARCHIVE_DIR 프로퍼티에 지정된 디렉토리로 복사된다. 이러한 아카이브 로그파일은 데이터베이스 복구와 백업을 위해 사용된다.
 - 이 프로퍼티의 수는 LOG_DIR프로퍼티의 수와 정확히 일치해야 한다. 아울러,

LOG_DIR 프로퍼티가 여러 개인 경우 ARCHIVE_DIR 프로퍼티들은 LOG_DIR 프로퍼티 값과 순서대로 1:1로 매핑되도록 기술해야 한다.

LFG를 위해서 다음과 같은 세가지 종류의 쓰레드가 존재한다.

• 로그파일 준비 쓰레드 (Log File Prepare Thread)
기록 중인 로그 파일이 꽉 차게 되면, Altibase는 새로운 로그파일에 로그를 기록하기 시작한다. 이 때, 새로운 로그파일로의 교체가 필요한 시점에
Altibase가 새로운 로그파일을 생성한다면, 로그를 기록하려는 트랜잭션은 로그파일이 생성되는 동안 아무 작업도 수행하지 못한 채로 기다려야 한다는 문제점이 발생한다.

이 쓰레드는 로그 기록을 계속하기 위한 새 로그파일이 필요한 시점 전에 로그파일을 미리 만들어 둔다.

참고로, 체크포인트 중에 더 이상 사용되지 않는 로그파일들을 별도로 분류하여 체크포인트가 완료되는 시점에 이를 삭제한다.

- 로그 플러시 쓰레드 (Log Flush Thread)
 최근에 기록된 로그를 주기적으로 디스크로 기록하는 쓰레드이다. 트랜잭션이 커밋될 때, Altibase 트랜잭션은 이 쓰레드가 관련 로그를 벌써 디스크에 쓰지 않았는지 검사하고, 기록되지 않은 로그만 디스크에 쓰게 된다.
 즉, 이 쓰레드는 주기적으로 로그를 디스크에 기록함으로써 트랜잭션이 커밋되는 시점에 디스크에 기록할 로그의 수를 줄여주게 된다.
- 아카이브 로그 쓰레드 (Archive Log Thread) 로그가 기록되고 있는 로그파일이 가득 차게 되면 다른 새로운 로그파일에 로그 기록이 계속된다. 이때, 아카이브 로그 쓰레드는 방금 전까지 로그가 기록되고 있던, 하지만 끝까지 다 기록되어 더이상 로그가 기록되지 않는 이전 로그파일을 아카이브 로그파일로 복사한다.

사용 예

LFG에 관련된 프로퍼티는 아래의 2개가 있다.

LOG_DIR ARCHIVE_DIR

Altibase는 한 개의 LFG만 사용하도록 설정된다. 그리고 LOG_DIR과 ARCHIVE DIR프로퍼티를 사용해서 따로 로그 경로와 아카이브 로그 경로가 지정된다.

다음은 LFG를 구성한 경우의 Altibase 프로퍼티 파일의 일부를 보여준다.

물음표("?")는 Altibase 홈(\$ALTIBASE_HOME) 디렉토리를 나타내므로, 로그가 기록되는 경로는 \$ALTIBASE HOME/logs가 된다.

데이터베이스를 생성한 후 로그 경로 안의 내용을 살펴보면 다음과 같이 logfile0부터 logfile2까지 세 개의 로그파일이 존재하는 것을 볼 수 있다. 이들 중 오직 하나의 로그파일에만 트랜잭션이 데이터베이스에 변경을 가하면서 발생하는 로그가 기록된다.

```
-rw----- 1 kmkim kmkim 10485760 Jun 22 15:46 logfile0
-rw----- 1 kmkim kmkim 10485760 Jun 22 15:46 logfile1
-rw----- 1 kmkim kmkim 10485760 Jun 22 15:46 logfile2
```

그룹 커밋

이 절에서는 트랜잭션 처리 성능 향상을 위해서 Altibase가 제공하는 그룹 커밋 기능에 대해서 설명한다.

그룹 커밋의 개념

그룹 커밋은 여러 트랜잭션들의 커밋 요청을 모아서 한번에 처리하여 I/O부하를 줄여주는 기능이다.

하나의 트랜잭션이 커밋한 후에는 해당 트랜잭션이 수정한 내용이 어떠한 상황에서도 유실되어서는 안 된다. 이를 보장하기 위해서는 해당 트랜잭션이 기록한 로그가 모두 디스크에 반영된 후에, 클라이언트에게 트랜잭션의 커밋이 완료되었음을 알려주어야 한다.

하지만 이러한 과정에서 수행되는 디스크 I/O는 메모리 기록에 비해 시간이 많이 걸리기 때문에, 여러 트랜잭션이 동시에 디스크 I/O를 각자 처리하게 될 경우 시스템의 성능 저하 정도는 더욱 심해질 것이다.

디스크 I/O를 수행하는데 소요되는 시간은 I/O의 양보다는 횟수에 더 큰 영향을 받는다. 즉, 여러 번에 걸쳐서 수행할 I/O를 한번에 몰아서 수행한다면, 시스템의 성능을 향상시킬 수 있을 것이다.

그룹커밋은 커밋을 하려는 여러 트랜잭션들의 로그에 대한 디스크 I/O를 몰아서한번의 I/O로 처리하는 것으로, 시스템의 성능을 향상시킬 수 있다.

그룹 커밋 동작 원리

여러 트랜잭션의 커밋을 위한 디스크 I/O수행을 한번에 몰아서 처리하기 위해 Altibase는 마지막으로 디스크 I/O를 수행한 시각을 기억해두고 있다가 이후 일정시간이 지나기 전에는 디스크 I/O를 허용하지 않고 트랜잭션들을 대기하도록 한다.

이와 같은 디스크 I/O대기 시간이 너무 작게 설정되어 있으면 디스크 I/O가 빈번하게 수행되어 그룹 커밋을 하지 않은 것과 별반 다름 없게 되고, 너무 크게 설정되어 있으면 디스크 I/O를 수행하려는 트랜잭션들이 불필요하게 오래 대기하게 되어 오히려 시스템의 성능이 저하된다.

그룹 커밋을 위한 디스크 I/O대기시간을 튜닝하는 방법에 대해서는 본 장의 '그룹 커밋 관련 프로퍼티 튜닝'을 참조한다.

그룹 커밋이 지정되어 있다면, Altibase 서버가 어떤 트랜잭션이 커밋을 위해 로그를 디스크로 내릴지를 결정할 때, 다음의 단계대로 작업을 수행한다.

- 1. 이 트랜잭션이 디스크로 기록하려는 로그가 이미 다른 트랜잭션에 의해 디스크로 내려간 경우, 디스크 I/O를 수행하지 않는다. 그렇지 않을 경우, 2번을 수행한다.
- 2. 데이터베이스에 변경을 가한 트랜잭션의 수가 LFG_GROUP_COMMIT_UPDATE_TX_COUNT 프로퍼티에 지정된 값보다 작을 경우, 디스크 I/O를 수행하지 않고 대기한다. 그렇지 않을 경우 3번을 수행한다.
- 3. 가장 최근에 로그를 디스크로 기록한 이후로 LFG_GROUP_COMMIT_INTERVAL_USEC 프로퍼티에 지정한 시간이 경과하지 않은 경우, 디스크 I/O를 수행하지 않고 대기한다.
 - 그렇지 않을 경우 4번을 수행한다.
- 4. 디스크 I/O가 발생한 시각을을 기록하고 디스크 I/O를 수행하여, 모든 대기하던 로그를 디스크에 기록한다.

그룹 커밋 수행 단위

트랜잭션이 기록한 로그를 디스크로 기록하는 작업은 LFG 단위로 수행된다.

그룹 커밋 관련 프로퍼티

COMMIT_WRITE_WAIT_MODE가 0으로 설정된 경우, 트랜잭션 커밋시에 커밋 로그가 디스크에 반영되는 것을 기다리지 않기 때문에 정전시의 영속성(Durability)은 보장되지 않는다.

그룹 커밋 기능은 트랜잭션의 영속성(Durability) 보장을 위한 디스크 I/O를 모아서 처리하는 최적화 기법이다. 그러므로 이는 COMMIT_WRITE_WAIT_MODE가 1로 설정되어 있을 경우에 의미가 있다. 이 프로퍼티가 1로 설정된 경우에만 트랜잭션 커밋시 커밋 로그가 디스크에 반영될 때까지 트랜잭션이 기다리기 때문이다.

그룹 커밋시 고려사항

그룹 커밋은 여러 트랜잭션이 동시에 커밋을 하려고 할 때에만 그 효과를 발휘한다. 예를 들어 시스템상에 오직 하나의 트랜잭션만이 커밋하려고 하는 경우, 즉 커밋하려는 다른 트랜잭션이 존재하지 않는 경우, 이 때에는 함께 모아서 디스크 I/O를 처리할 트랜잭션이 없다. 이런 경우 그룹커밋을 하지 않고 바로 디스크 I/O를 수행하는 것이 더 좋은 성능을 낸다.

앞서 '그룹 커밋 수행 단위'에 기술한 바와 같이, 그룹 커밋은 LFG 단위로 이루어진다. 그룹 커밋을 수행할지의

여부도 LFG내에 커밋되지 않은 트랜잭션의 개수를 기반으로 독립적으로 결정하게 된다. Altibase는 데이터베이스에 변경을 가한 트랜잭션 수를 LFG 단위로 센다.

DBA는 시스템의 특성을 고려해 LFG_GROUP_COMMIT_UPDATE_TX_COUNT의 최적값을 찾아야한다. 이 프로퍼티의 기본값은 80이다.

그룹 커밋은 시스템이 특정 시간동안 가능한한 많은 트랜잭션의 커밋 요청을 처리할수 있도록 돕는다. 하지만 그룹 커밋을 사용할 경우 여러 트랜잭션의 커밋 요청을 몰아서 한번에 처리하기 때문에, 개별 트랜잭션에 대한 응답 시간은 그룹 커밋을 사용하지 않을 때보다 길어질 수 있다.

그룹 커밋 관련 통계치

Altibase는 DBA가 그룹 커밋의 동작을 모니터링 할 수 있는 통계치를 제공한다. 그룹 커밋은 LFG 단위로 이루어지기 때문에, 그룹 커밋의 통계치는 V\$LFG성능 뷰에 존재한다.

V\$LFG성능 뷰의 그룹 커밋 관련 통계값들은 다음과 같다.

- UPDATE_TX_COUNT
 데이터베이스에 변경을 가한 트랜잭션의 개수를 실시간으로 보여주는 통계치이다.
 이 값이 LFG_GROUP_COMMIT_UPDATE_TX_COUNT 프로퍼티에 설정된 값보다 클 때에만
 그룹 커밋을 실시한다.
- GC_WAIT_COUNT 이 통계값은 가장 최근 디스크 I/O 발생 이후 디스크 I/O가 연기된 회수를 보여준다. 이 카운트는 LFG_GROUP_COMMIT_INTERVAL_USEC 프로퍼티에 지정한 만큼의 시간이 지나지 않아서 디스크 I/O를 수행하지 못할 때마다 1씩 증가한다.
- GC_ALREADY_SYNC_COUNT 트랜잭션이 커밋을 위해 디스크로 기록해야 하는 로그의 내용이 이미 다른 트랜잭션에 의해 디스크로 기록된 경우에는 추가적인 디스크 I/O를 수행할 필요가 없다. 이와 같이 디스크 I/O를 수행하지 않고 바로 커밋 완료 응답 신호를 보내는 경우에 1씩 증가하는 카운트 값이다.

• GC REAL SYNC COUNT

실제 디스크 I/O를 수행하여 로그를 디스크로 기록한 경우 1씩 증가되는 카운트 값이다. 이는 다음 두 가지 경우 중 하나일 때 증가된다.

-하나의 트랜잭션이 커밋을 위해 로그를 디스크로 기록하려 하려는 시점에 V\$LFG 성능 뷰의 UPDATE_TX_COUNT 값이 LFG_GROUP_COMMIT_UPDATE_TX_COUNT 프로퍼티 의

값보다 작으면 그룹 커밋 기능이 활성화 되지 않고, 따라서 직접 로그 기록을 위한 디스크 I/O를 수행한 경우

-그룹 커밋이 활성화된 상황에서 마지막으로 디스크 I/O를 수행한 시각 이후로 LFG_GROUP_COMMIT_INTERVAL_USEC 프로퍼티에 지정한 만큼의 시간이 지나서 실제 디스크 I/O를 수행한 경우

그룹 커밋 관련 프로퍼티 튜닝

그룹 커밋 기능을 이용하기 위해서는 시스템 자체의 성능과 다수의 커밋하려는 트랜잭션이 발생하는 상황에서의 시스템의 부하를 종합적으로 고려하여 관련 프로퍼티를 최적값으로 설정해야 한다. 이 절에서는 각각의 그룹 커밋 관련 프로퍼티값을 튜닝하는 방법에 대해 알아본다.

- LFG_GROUP_COMMIT_UPDATE_TX_COUNT 이 프로퍼티의 값이 너무 작으면 데이터베이스에 변경을 가한 트랜잭션 수가 그다지 많지 않아도 그룹 커밋이 활성화된다. 이 경우, 로그를 기록하기 위한 디스크 I/O의 횟수가 증가하여 시스템 성능이 저하된다. 반면, 이 프로퍼티의 값이 너무 크면 비록 데이터베이스에 변경을 가한 트랜잭션의 수가 충분히 많더라도 그룹커밋이 활성화되지 못한다. 데이터베이스 시스템에 여러개의 트랜잭션이 몰리는 때에 DBA는 V\$LFG 성능 뷰의 UPDATE_TX_COUNT 값을 실시간으로 모니터링 하여 이 프로퍼티의 값을 적정한 값으로 결정하면 된다.
- LFG_GROUP_COMMIT_INTERVAL_USEC 이 프로퍼티의 값이 너무 작으면 빈번하게 디스크 I/O가 수행되어 시스템 성능이 저하된다. 이러한 상황에서는 커밋을 위해 실제로 디스크 I/O를 수행하는 횟수가 많아지므로 V\$LFG 성능 뷰의 GC_REAL_SYNC_COUNT 값이 빠른 속도로 증가한다. 반대로, 이 프로퍼티의 값이 너무 크면 이용 가능한 디스크 I/O 용량이 충분히 활용하지 못하여 시스템의 성능이 저하된다. 이러한 상황에서는 디스크 I/O를 위해 대기하는 횟수가 많아지므로 V\$LFG 성능 뷰의 GC_WAIT_COUNT 값이 빠른 속도로 증가한다.

이 프로퍼티를 최적으로 설정하려면 우선 이 프로퍼티의 값을 기본값인 1000 (1ms)에서부터 시작하여 2배씩 증가시켜가면서 시스템의 전체 성능 (TPS - Transaction Per Second)을 측정해 본다.

GC_REAL_SYNC_COUNT의 값이 점점 작아지면서 최적의 성능을 낼 때 이 프로퍼티가

최적화 됐음을 의미한다. GC_REAL_SYNC_COUNT의 값이 작아지는 것이 곧 최적의 성능을 내는 상황을 의미하지는 않는다.

앞서 설명한 대로 이 프로퍼티의 값이 너무 크면 커밋을 하려는 트랜잭션들이 디스크 I/O를 위해 불필요하게 많은 시간을 기다리게 되어 디스크 I/O를 수행할수 있는데도 디스크 I/O를 수행하지 않고 대기하는 상황이 발생하기 때문이다. 이경우에는 위와 같은 방법으로 기본값인 1000에서 절반씩 감소시켜 가면서 최적의 TPS를 내는 상황을 찾아낸다.

• LFG GROUP COMMIT RETRY USEC

이 프로퍼티의 값이 너무 작으면 디스크 I/O를 대기하는 트랜잭션들이 더 빈번하게 깨어나서 디스크 I/O를 수행해야 하는지 체크하게 된다. 이 경우 개별 트랜잭션의 커밋에 대한 응답시간은 짧아질 수 있지만, 디스크 I/O가능 여부 체크를 너무 빈번하게 하게 되어서 CPU 사용율이 높아지게 된다. 또한 이러한 상황에서는 빈번하게 디스크 I/O가능 여부를 체크한후 디스크 I/O를 위한 대기상태로 들어갈 수 있기 때문에 이 프로퍼티의 값이 클 때에 비해서 V\$LFG 성능 뷰의 GC_WAIT_COUNT 값이 빠른 속도로 증가할 것이다.

반면, 이 프로퍼티의 값이 너무 크면 디스크 I/O를 대기하는 트랜잭션들이 디스크 I/O가 가능한지의 여부를 체크하는 횟수가 줄어들게 되며, CPU사용율이 낮아지게된다. 하지만 디스크 I/O 가능 여부를 체크하기까지의 대기시간이 길어져서 개별트랜잭션의 커밋에 대한 응답시간은 길어진다.

DBA는 이 프로퍼티의 값을 변경할 때, Unix의 top 명령으로 Altibase 프로세스의 CPU 사용율을 모니터링하거나 개별 트랜잭션의 응답시간의 평균값을 측정하는 방법으로 이 프로퍼티 값을 최적의 값으로 설정할 수 있다.

Altibase 진단 모니터링

이 장에서는 Altibase 데이터베이스의 운영 상태를 확인하고 분석하는 방법에 대해 설명한다.

Altibase 모니터링

Altibase 데이터베이스의 운영 상태를 확인하기 위해서 메타 테이블과 성능 뷰를 이용할 수 있다. 메타 테이블과 성능 뷰에 대한 자세한 설명은 *General Reference*의 데이터 딕셔너리 장을 참고한다.

모니터링 해야할 주된 개체는 다음과 같다.

세션과 Statement

Altibase 운영 중 연결되어 있는 세션에 대한 정보를 성능 뷰로 확인한다. 하나의 세션에는 여러 개의 Statement⁹가 할당될 수 있다. 세션 속성은 세션 별로 다르게

지정될 수 있다.

[⁹] Statement는 하나의 SQL문을 처리하기 위해 내부적으로 사용되는 객체이며 하나의 statement는 하나의 SQL문을 처리한다.

세션과 Statement에 대한 정보를 저장하는 성능 뷰는 아래와 같다.

- V\$SESSION: 클라이언트에 대응하는 Altibase 서버에 생성된 세션 정보
- V\$STATEMENT: 현재 Altibase 서버의 세션 별 수행 구문(statement)에 대한 정보

데이터베이스(테이블/인덱스) 정보

전체 데이터베이스에 대한 정보와 각 테이블스페이스, 테이블 및 인덱스 정보를 아래의 메타 테이블과 성능 뷰로 확인할 수 있다.

- V\$DATABASE: 메모리 데이터베이스의 내부 정보
- V\$TABLESPACES: 테이블스페이스 정보
- SYS_TABLES_: 테이블 정보
- SYS INDICES : 인덱스 정보

메모리 사용량

Altibase 서버가 운영하면서 사용하는 메모리 영역 정보를 성능 뷰로 확인한다. 여기에는 메모리 테이블스페이스의 데이터(레코드의 예전 버전 포함) 저장 영역 및 인덱스 저장 영역, 질의 처리를 위한 임시 영역, 세션 정보 저장 공간, 메모리 버퍼풀 등이 포함된다.

아래의 성능 뷰를 통해서 Altibase 서버의 메모리 사용 정보를 확인할 수 있다.

- V\$MEMSTAT: Altibase 프로세스의 내부 모듈 별 메모리 사용량
- V\$MEMTBL INFO: 메모리 테이블 정보
- V\$BUFFPOOL_STAT: 버퍼 풀 관련 통계 정보

이중화 상태

이중화 상태 정보를 성능 뷰로 확인한다. 이중화 관련 쓰레드(Sender/Receiver)의 상태와 이중화 데이터 전송 상태를 확인할 수 있다.

- V\$REPRECEIVER, V\$REPRECEIVER_PARALLEL: 이중화 수신자, 수신 쓰레드들의 정보
- V\$REPSENDER, V\$REPSENDER_PARALLEL: 이중화 송신자, 송신 쓰레드들의 정보

Altibase 문제상황 분석

이 절은 Altibase 운영 중 발생할 수 있는 여러 가지 문제 상황에 대한 점검 사항 및 분석 방법에 대해 설명한다.

실제 운영 환경에서는 다양한 형태의 문제가 발생되며 미리 형태를 예측할 수 없는 경우도 있으므로 반드시 여기서 설명하는 바와 같이 진행되는 것은 아니다. 하지만 예측 가능한 범위 내에서 형태별로 나누어 일반적인 방법을 제시하여 문제 상황에 대처할 수 있는 정보를 제공하고자 한다.

예측 가능한 문제 발생 형태는 크게 다음과 같이 생각해 볼 수 있다.

- Altibase 서버 비정상 종료 및 재구동 실패 문제
- Altibase 서버 응답 시간 문제
- 디스크 사용량의 문제
- 메모리 사용량의 문제
- CPU 사용량의 문제
- 이중화 문제
- 응용프로그램 및 쿼리 수행시 문제

일반적인 문제상황 분석(PBT, Problem Tracking) 절차는 다음과 같다.

[그림 16-1] 일반적인 문제 분석 절차

Altibase 관리자 로그란 \$ALTIBASE_HOME/trc 디렉토리에 생성되고 유지되는 "*.log" 이름을 가지는 파일의 텍스트 로그이다. 이 디렉토리에는 다음의 트레이스 로그 파일들이 있다.

- altibase_boot.log
- altibase_id.log
- altibase_mt.log
- altibase_qp.log
- altibase_rp.log
- · altibase sm.log

Altibase 서버 비정상 종료 및 재구동 실패 문제

비정상 종료

Altibase 프로세스가 비정상적으로 종료할 수 있는 원인으로 다음의 것들을 생각해 볼 수 있다.

- 가용 메모리 부족
- 시스템 OS 패닉 상태

이러한 경우 관리자 로그의 에러 메시지를 통해 판단이 가능하며 가용 메모리 부족으로 인해 발생하는 경우를 제외하고는 전문 시스템 엔지니어에게 문의해야 한다.

가용 메모리가 부족한 경우라면 관리자 로그에 "Memory allocation failed." 혹은 "Unable to invoke the shmget() system function"와 같이 메모리 할당 관련 시스템 함수 호출 에러 메시지가 기록된다.

이 경우에는 현재 메모리 사용량을 점검해야 하며, 불필요하게 많이 사용하는 부분을 있는지 확인한다. 이러한 부분이 있다면 해당 부분의 메모리를 해제하여 메모리를 확보하고 과도한 메모리 사용의 원인을 찾아 재발을 방지해야 한다. 만일 불필요하게 사용하는 부분이 없다면 시스템 메모리 업그레이드를 고려해야 한다.

메모리 관련 문제는 다음 절에 나올 메모리 사용량의 문제에서 좀 더 자세히 설명하기로 한다.

Altibase 재구동 실패

Altibase 재구동 시 실패할 수 있는 원인으로 다음의 것을 생각해볼수 있다.

• 동일한 서비스 포트 번호(PORT_NO 프로퍼티)를 사용하는 Altibase 프로세스가 이미 존재하는 경우

- 구동 또는 회복 시 필요한 파일이 없거나 파일에 대한 권한이나 파일 시스템 문제로 인해 접근이 안 되는 경우 관리자 로그에 파일 접근 관련 에러가 발생한다면 해당 파일들(모든 로그 파일, 모든 로그 앵커 파일, 모든 데이터 파일)이 존재하는지를 확인한다. 파일이 존재하고 접근이 가능함에도 불구하고 에러가 발생한다면 파일이 깨졌을 가능성이 있으며 이 경우 데이터베이스를 새로 생성해야 한다.
- 시스템 리소스 부족

시스템 리소스 부족으로 인해 시스템 구동이 실패했다면, 여러 가지 시스템 리소스 중 어떤 리소스가 부족한지를 확인하여 실제 시스템에 적재되어 있는 리소스 가용량을 확인하고 시스템 커널 설정을 확인하여 문제가 있는 부분을 해결해야 한다.

구동 시 주로 문제가 되는 리소스는 메모리 또는 세마포어이다. 메모리 관련 문제의 경우 시스템 커널 설정에서 한 프로세스 당 사용 가능한 메모리의 크기 및 세그먼트의 최대 크기 등을 확인해 봐야 한다. IPC 통신을 하려면 세마포어가 필요하며 이는 Altibase 프로퍼티들 중 IPC CHANNEL COUNT와 관련이 있다.

Altibase 서버 응답 시간 문제

Altibase 서버가 실제로 질의를 처리하고 있지만 응답속도가 매우 늦다면 사용자는 서버가 응답이 없다고 오해할 수 있다.

질의 처리 요청 시 응답이 늦는 경우, 이유는 대부분 테이블을 풀스캔하거나 메모리 부족으로 인해 스와핑이 발생하기 때문이다. 이 경우 세션정보 확인과 시스템 정보를 통해 해당 질의가 실제로 수행 중인지를 확인한다. CPU 사용량이 높거나 가용 메모리가 부족하여 스와핑이 발생한다면 실제로 질의를 처리하고 있는 경우일 가능성이 높다.

자세한 설명은 다음에 나올 "응용프로그램 및 쿼리 수행시 문제"에서 좀 더 자세히 설명하기로 한다.

또 다른 원인으로는 디스크 여유 공간이 부족하여 데이터 변경이나 입력 시 응답이 없는 경우를 생각할 수 있다. 이러한 경우에는 시스템 관리자 로그에 디스크의 여유 공간이 없음을 알리는 에러 메시지가 남게 되며 디스크 공간이 확보되기 전까지 응답이 없는 상태로 남아있게 된다. 디스크 공간 부족으로 인한 문제 해결 방법은 다음에 나올 "디스크 사용량의 문제"에서 좀 더 자세히 설명하기로 한다.

이 외에 다른 문제로 Altibase 서버가 응답이 없는 상태로 남아있다면 전문 시스템 엔지니어에게 문의해야 한다.

디스크 사용량의 문제

디스크 가용 공간 부족

Altibase 운영 중에 디스크 공간이 부족하게 되면 Altibase가 더 이상 데이터 변경작업을 하지 않고 멈춰있는 현상이 발생 할 수 있다. 이런 경우 먼저 여러 파일 시스템 중 어떤 곳의 공간이 부족한지를 확인해야 한다.

Altibase가 운영 중에 사용하는 디스크 공간은 다음과 같다.

- 로그 파일 저장 공간
- 각 테이블스페이스 파일 저장 공간

Altibase 운영 중에 액티브 로그와 아카이브 로그가 지속적으로 생성되며, 액티브로그 파일은 Altibase 프로퍼티 파일(altibase.properties)에서 LOG_DIR프로퍼티에 설정된 디렉토리에 저장이 되고, 아카이브 로그 파일은 데이터베이스가 아카이브 로그모드로 운영될 경우 자동으로 ARCHIVE_DIR 프로퍼티에 설정된 디렉토리에 저장된다. 액티브 로그의 경우는 디스크 공간이 부족하여 더 이상 로그 저장이 불가능해지면 Altibase가 멈추게 된다. 이런 경우 로그 파일과 로그 앵커파일을 지우게 되면 복구가불가능해지므로 해당 파일 시스템의 크기를 늘리거나 이외에 다른 불필요한 파일을 삭제하여 디스크 공간을 확보해야 한다. 아카이브 로그의 경우에는 설정 파일의 ARCHIVE_FULL_ACTION 프로퍼티 항목의 설정값이 0인 경우 아카이브 로그를 저장하지 않고 계속 운영되게 되며, 1인 경우 해당 파일 시스템의 가용공간이 확보될 때까지 Altibase가 멈춰있게 된다.

LOG_DIR 프로퍼티에 지정된 디렉토리에 로그 파일의 개수가 많아져 로그 저장 공간이 부족해 진 경우 먼저 관리자 로그 파일을 확인하여 체크포인트가 정상적으로 이루어 지고 있는지를 확인해야 하며, Altibase 프로퍼티 파일 내에 CHECKPOINT_INTERVAL_IN_SEC 프로퍼티와 CHECKPOINT_INTERVAL_IN_LOG 프로퍼티의 설정이 적절한지 확인하여야 한다. 만일 체크포인트가 정상적으로 이루어 지고 있음에도 불구하고 아카이브 로그 파일들이 LOG_DIR 프로퍼티에 지정된 디렉토리에 계속 남아 있다면 이중화 전송 상태를 확인해 본다. 이중화 전송이 계속 밀리고 있거나 전송 불가능 상태라면 로그 파일들은 아카이브 되지 않거나 지워지지 않아서 LOG_DIR 프로퍼티에 지정된 디렉토리에 계속 보관되므로 로그 저장 공간이 부족해 질수 있다.

이중화 관련 문제 해결 방법은 다음에 나올 "이중화 문제"에서 좀 더 자세히 설명하기로 한다.

메모리 테이블스페이스와 각 시스템 테이블스페이스는 설정 파일내의 MEM_DB_DIR 프로퍼티에 설정된 디렉토리에 저장된다. 테이블스페이스 관련 디스크 부족 현상이라면 이 부분 또는 사용자가 생성한 테이블스페이스 파일이 저장된 공간을 확인해야 한다. 테이블스페이스를 저장하는 파일 시스템은 최소 해당테이블스페이스가 증가되는 크기 이상의 여유 공간이 있어야 한다.

메모리 테이블스페이스의 저장 공간은 체크포인트가 수행될 때 실제로 디스크에 기록이 되기 때문에 메모리 상에 존재하는 테이블스페이스 크기 이상의 디스크 여유 공간이 필요하다.

메모리 사용량의 문제

Altibase 운영 중 가용메모리가 부족해 진다면 응답시간이 매우 느려질 수 있으며 Altibase가 비정상적으로 종료될 수 있다. 이런 경우 Altibase가 사용하고 있는 메모리 영역을 검사하여 해당 크기가 적절한지를 판단하고 불필요하게 사용되고 있는 부분을 제거해야 한다. 만일 불필요하게 사용하고 있는 영역이 없다면 메모리 증설을 고려 하여야 한다.

Altibase가 운영 중에 사용하는 메모리 공간은 크게 나누어 보면 다음과 같다.

- 메모리 테이블스페이스
- 임시 메모리 공간
- 메모리 버퍼

메모리 테이블스페이스에는 메모리 테이블의 실제 레코드 및 MVCC 를 지원하는데 필요한 레코드의 이전 버전들이 저장된다.

임시 메모리 공간은 메모리 테이블에 생성된 테이블의 인덱스 저장, 메모리 테이블 조회 시 레코드를 임시로 정렬, 세션들의 정보를 저장하는 용도 등으로 사용된다.

메모리 버퍼는 디스크 테이블 레코드에 대한 연산 및 정렬 등을 위해 사용되는 공간이다.

메모리 과다 사용이 의심된다면 일정기간 동안 생성되는 문장(statement)의 개수와임시 메모리 영역의 크기, 메모리 테이블스페이스의 사용량, 및 메모리 테이블의인덱스 크기 등을 모니터링 하여 증가량을 확인하여야 하며 이와 함께 "ps"나 "top"과같은 시스템 모니터링 명령으로 프로세스의 크기가 지속적으로 증가되는 지 확인해보아야 한다.

Altibase가 처음 가동된 이후에 일정 기간 동안은 임시 메모리 영역 할당, 여러 이전 버전의 레코드 생성, 및 세션 정보의 증가로 인해 메모리 사용량이 증가할 수 있는데, 이는 정상이다.

그러나 만일 일정 기간 운영 이후에도 지속적으로 증가한다면 메모리 누수와 같은 이상이 있는지를 의심해 볼 수 있으며 이러한 경우 전문 시스템 엔지니어에게 문의를 해야 한다.

CPU 사용량의 문제

갑자기 Altibase의 CPU 사용량이 늘었다면 다음과 같은 상황들을 의심해 볼 수 있다.

- 메모리 테이블 질의 처리 시 인덱스를 사용하지 못함
- 디스크 테이블 질의 처리 시 디스크 사용 과다
- 메모리 부족으로 인한 스와핑 발생

시스템 성능 모니터링 도구를 이용하여 메모리 사용량을 확인하고 가용 메모리가 부족하여 스와핑이 발생한다면 추가 메모리를 확보해야 한다. 이에 대한 내용은 "메모리 사용량의 문제"에서 자세히 설명하였다.

메모리 부족 상항이 아니고 질의 처리 시 메모리 테이블 전체 스캔이나 디스크 테이블에서 디스크를 과다하게 사용한다면 해당 쿼리나 테이블 등을 튜닝하여 해결이 가능하다.

이에 대한 내용은 다음에 나올 "응용프로그램 및 쿼리 수행시문제"에서 좀 더 자세히 설명하기로 한다.

이중화 문제

이중화 관련하여 발생 할 수 있는 문제는 다음과 같은 것들이 있다.

- 이중화 시작 실패
- 이중화 반영 속도가 매우 느림
- 이중화 중인 테이블의 레코드 건수가 서로 틀림

이중화 전송에 문제가 발생되면 로그 저장 공간에 아카이브 로그 파일이 계속 남아있게 되어 가용 공간이 부족해지고 이로 인해 서비스가 안되고 Altibase가 멈춰있는 현상이 발생될 수 있다.

이중화 관련 문제가 발생했다면 먼저 관리자 로그 파일에 이중화 관련 에러 메시지가 기록되어 있는지 확인하고 해당 내용을 전문 엔지니어에게 전달해야 한다.

한쪽 시스템에 장애가 발생하고 장애 상황이 장시간 지속되면 이중화 데이터 전송을 하지 못하여 로그 저장 디렉토리의 가용 공간이 부족해 지는 현상이 발생한다. 따라서 단시간 내에 문제 해결이 어려울 경우에는 이중화를 중단하고 이중화 객체를 삭제하여 현재 운영중인 시스템에 문제가 생기지 않도록 하는 것을 고려해야 한다. 이런 경우 장애 상황이 해제된 이후 장애 발생 시스템의 데이터 복구 작업이 추가적으로 필요하다. 데이터 복구 방법으로는 iLoader 도구를 이용하는 방법과 이중화를 SYNC 모드로 구동하는 방법이 있다. 만일 이중화 객체 삭제가 어려운 경우 로그 저장 디렉토리의 가용 공간을 지속적으로 확인하여 모자란 경우 확보를 해주어야 한다.

마찬가지로 이중화 네트워크 라인에 문제가 발생했다던지 이중화에 문제가 생겨 장시간 이중화가 연결되지 못하는 경우에도 동일한 조치가 필요하다.

응용프로그램 및 쿼리 수행시 문제

응용프로그램 및 쿼리 수행에 관한 문제 발생시 크게 다음 두 가지 상황을 생각해 볼수 있다.

- 응용프로그램에서 Altibase로의 접속 실패
- 응용프로그램에서 Altibase로 쿼리 요청 이후 멈추어 있거나 정해진 시간 동안 처리하지 못하여 타임아웃 발생

Altibase 접속 실패

응용프로그램에서 접속이 실패한다면 Altibase 질의 처리 도구인 iSQL을 이용하여 접속을 시도해서 정상적으로 접속이 되는지 확인한다. Altibase에서는 접속시 4가지의 접속 방식을 제공하기 때문에 (TCP/IP, socket domain, IPC, IPCDA) 응용프로그램에서 사용하고 있는 접속 방식을 사용하여 시험해봐야 한다.

접속 방식을 설정하는 방법은 ISQL_CONNECTION 환경변수를 지정하여 가능하다. (TCP, UNIX, IPC, IPCDA)

만일 iSQL로 접속이 성공한다면 응용프로그램 안에서 접속정보 설정 시 문제가 있는 것이므로 해당 부분의 오류를 찾아 해결하면 되며, 접속이 성공하지 못한다면 다음 사항들을 고려해 볼 수 있다.

- 현재 서버에 접속된 세션 수가 MAX CLIENT Altibase 프로퍼티의 설정값을 초과함.
- 접속 방식이 IPC 방식인 경우 IPC 방식으로 접속된 세션 수가 IPC_CHANNEL_COUNT 설정값을 초과함.

응답이 없거나 타임 아웃으로 인해 세션이 끊어짐

질의 처리시 수행 속도가 느려 응답이 없는 경우 다음과 같은 상황을 생각해 볼 수 있다.

- 메모리 가용량이 부족하여 스왑핑이 발생
- 테이블을 풀 스캔하여 처리 성능이 저하
- 특정 테이블에 록을 요청하고 기다리고 있는 상태

먼저 시스템 성능 모니터링 도구를 이용하여 CPU 사용량과 메모리 사용량을 점검하여 메모리 부족 상황인지를 판단해야 하며 만일 메모리가 부족한 상황이라고 판단되면

위의 "메모리 사용량의 문제"를 참고한다.

메모리가 부족한 상황이 아니면서 CPU 사용량이 높다면 현재 처리 중인 쿼리 중 테이블 풀 스캔을 유발하는 쿼리가 있는지를 확인해야 한다.

현재 수행 중인 쿼리 목록을 확인하려면 iSQL로 서버에 접속하여 V\$STATEMENT 성능 뷰의 QUERY 칼럼을 조회하면 된다.

수행 중인 쿼리 중 의심되는 쿼리를 선정하여 실행 계획을 확인하고 문제가 있다면 튜닝을 해야 한다.

쿼리 튜닝에 대한 자세한 내용은 Performance Tuning Guide를 참조한다.

위의 두 경우에 해당하지 않는다면 록을 기다리고 있는 상태를 의심할 수 있다. 현재록 정보를 V\$LOCK 과 V\$LOCK_WAIT 성능 뷰로 확인하고 특정 세션이 불필요하게 록을 획득하고 있는 상태로 지속되고 있다면 해당 세션을 강제로 종료하여 해결할 수 있다.

A.부록: Trace Log

Trace Log

아래 프로퍼티는 Altibase 서버에서 수행되는 SQL문의 정보, 에러 메시지 종류 및 SQL 문의 수행 소요 시간 등을 altibase_boot.log 파일에 기록하게 할 수 있는 프로퍼티이다.

이 프로퍼티의 기본 값은 0이며, 위의 정보들을 trace log로 기록하려면 1을 설정한다.

프로퍼티 파일에 명시된 값은 ALTER SYSTEM 문을 이용하여 변경할 수 있다. 프로퍼티에 대한 자세한 설명은 General Reference를 참고하기 바란다.

TRCLOG	설명
TRCLOG_DETAIL_PREDICATE	EXPLAIN PLAN 을 ON(또는 ONLY)로 설정시, where 절의 predicate 분류 상태도 함께 출력할지를 지정함

B.부록: Altibase 최대치

Altibase 객체들의 최대값

아래의 표는 Altibase에서 제공하는 객체들에 대한 최대 값을 정리한 내용으로 다음과 같다.

구분	객체의 최대값	비고
DB_NAME 길이	128	데이터베이스 이름의 최대 길이
OBJECT 길이	40	데이터베이스 객체 이름의 최대 길이
테이블스페이스 개수	64K (시스템 테이블스페이스 포함)	한 DB내의 테이블스페이스 최대 개수
데이터 파일 개수	1,024	한 테이블스페이스의 데이터 파일 최대 개수
	67,108,864 (64K * 1024)	한 DB내의 데이터 파일 최대 개수
사용자 개수	2,147,483,638(시스템 사용자 포함)	한 DB내의 사용자 최대 개수
테이블 개수	2,097,151(메타 테이블 포함)	한 DB내의 테이블 최대 개수
인덱스 개수	64	테이블 당 인덱스 최대 개수
컬럼 개수	1,024	테이블 당 컬럼 최대 개수
28/NT	32	인덱스 키 컬럼의 최대 개수
로우 개수	무한 개수	테이블 당 로우 최대 개수
파티션 개수	2,147,483,638	한 DB내의 파티션 최대 개수
제약사항 개수	2,147,483,638	한 DB내의 제약사항 최대 개수