## **RESUMEN ALGEBRA 1**

## **FINAL**

## CONJUNTOS, RELACIONES Y FUNCIONES

## Capítulo 1

# Conjuntos, Relaciones y Funciones.

## 1.1 Conjuntos.

1.1.1 Conjuntos y subconjuntos, pertenencia e inclusión.

## Definición 1.1.1. (informal de conjunto y elementos.)

Un conjunto es una colección de objetos, llamados *elementos*, que tiene la propiedad que dado un objeto cualquiera, se puede decidir si ese objeto es un elemento del conjunto o no.

Observación 1.1.2. El orden de los elementos no importa en un conjunto, y en un conjunto no se tiene en cuenta repeticiones de elementos.

Se dice que cada elemento a de un conjunto A pertenece al conjunto A, y se nota  $a \in A$ . Si un objeto b no pertenece al conjunto A, se nota  $b \notin A$ .

### Definición 1.1.3. (Subconjuntos e Inclusión.)

Sea A un conjunto. Se dice que un conjunto B está contenido en A, y se nota  $B \subseteq A$  (o también  $B \subset A$ ), si todo elemento de B es un elemento

de A. En ese caso decimos también que B está incluído en A, o que B es un subconjunto de A. Si B no es un subconjunto de A se nota  $B \not\subseteq A$  (o  $B \not\subset A$ ).

### Observación 1.1.4. (Igualdad de conjuntos.)

$$A = B \iff A \subseteq B \vee B \subseteq A$$
.

#### Definición 1.1.5. (Conjunto de partes.)

Sea A un conjunto. El conjunto de partes de A, que se nota  $\mathcal{P}(A)$ , es el conjunto formado por todos los subconjuntos de A, o sea el conjunto cuyos elementos son los subconjuntos de A. Es decir

$$\mathcal{P}(A) = \{B : B \subseteq A\}$$
 o también  $B \in \mathcal{P}(A) \iff B \subseteq A$ .

## 1.1.2 Operaciones entre conjuntos.

Complemento  $\stackrel{c}{\circ}$ : Sea A subconjunto de un conjunto referencial U. El complemento de A (en U) es el conjunto de los elementos de U que no pertenecen a A, que se suele notar con A' o  $A^c$  (aquí usaremos la notación

Unión  $\cup$ : Sean A, B subconjuntos de un conjunto referencial U. La unión de A y B es el conjunto  $A \cup B$  de los elementos de U que pertenecen a A o a B. Es decir

Intersección  $\cap$ . Sean A, B subconjuntos de un conjunto referencial U. La intersección de A y B es el conjunto  $A \cap B$  de los elementos de U que pertenecen tanto a A como a B. Es decir

Proposición 1.1.6. (Leyes de De Morgan y distributivas.)

Sean A, B, C conjuntos dentro de un conjunto referencial U. Entonces

- Leyes de De Morgan,  $(A \cup B)^c = A^c \cap B^c$  y  $(A \cap B)^c = A^c \cup B^c$ .
  - Leyes distributivas:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C) \quad y \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

Diferencia 
$$-: A - B := A \cap B^c$$
,

Diferencia simétrica  $\triangle$ :  $A \triangle B$  es el conjunto de los elementos de U que pertenecen a A o a B pero no a los dos a la vez. Es decir

Vale

$$A \triangle B = (A - B) \cup (B - A) = (A \cap B^c) \cup (B \cap A^c) = (A \cup B) - (A \cap B).$$

## 1.1.3 Tablas de verdad de la lógica proposicional.

Se vio que las operaciones básicas de conjuntos están definidas por medio del no (para el complemento), del o no excluyente para la unión, del y para la intersección, y del o excluyente para la diferencia simétrica. Estos se llaman conectores lógicos:  $\neg$  ("no", o "NOT"),  $\lor$  ("o" no excluyente, u "OR"),  $\land$  ("y", o "AND"),  $\lor$  ("o excluyente", u "XOR"), y se les puede agregar  $\Rightarrow$  (implica, o si . . . entonces) y  $\Leftrightarrow$  (si y solo si).

Tablas de verdad de los conectores lógicos:

| $\begin{array}{ c c c }\hline p & \neg p \\\hline V & F \\\hline F & V \\\hline \end{array}$ | $\begin{array}{c c} p & q \\ V & V \\ \hline V & F \\ \hline F & V \\ \hline F & F \end{array}$ | $\begin{array}{c} p\vee q\\ V\\ V\\ V\\ F \end{array}$                                                          | $\begin{array}{c} p \\ V \\ \hline V \\ \hline F \\ \hline F \end{array}$ | $egin{array}{c} q \\ V \\ F \\ V \\ F \end{array}$ | $\begin{array}{c} p \wedge q \\ V \\ F \\ F \\ \end{array}$                                                          |          | $egin{array}{c} p \ V \ \hline V \ F \ \hline F \ \end{array}$ | $\begin{array}{c c} q \\ \hline V \\ \hline F \\ \hline V \\ \hline F \\ \hline \end{array}$ | $ \begin{array}{c} p & \leq q \\ F \\ V \\ V \\ F \end{array} $ |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                                                                                              | $\begin{array}{c c} p & q \\ V & V \\ \hline V & F \\ \hline F & V \\ \hline F & F \end{array}$ | $\begin{array}{c c} p \Rightarrow q \\ \hline V \\ \end{array}$ |                                                                           | <i>p V V F F</i>                                   | $egin{array}{c c} q & p \Leftarrow \ \hline V & V \ \hline F & F \ \hline V & F \ \hline F & V \ \hline \end{array}$ | <i>q</i> |                                                                |                                                                                              |                                                                 |

#### Tablas de verdad de las operaciones de conjuntos:

- Complemento: El complemento  $A^c$  de A en U se corresponde con  $\neg p$ .
- Unión: La unión  $A \cup B$  se corresponde con  $p \vee q$ .
- Intersección: La intersección  $A \cap B$  se corresponde con  $p \wedge q$ .
- Diferencia simétrica: La diferencia simétrica  $P \triangle Q$  se corresponde con  $p \veebar q$ .
- Inclusión: La inclusión  $A \subseteq B$  se corresponde con  $p \Rightarrow q$ .
- Igualdad: La igualdad A = B se corresponde con  $p \Leftrightarrow q$ .



## 1.1.4 Producto cartesiano.

## Definición 1.1.7. (Producto cartesiano.)

Sean A, B conjuntos. El producto cartesiano de A con B, que se nota  $A \times B$ , es el conjunto de pares ordenados

$$A \times B := \{(x, y) : x \in A, y \in B\}.$$

## 1.2 Relaciones.

#### Definición 1.2.1. (Relación.)

Sean A y B conjuntos. Una relación  $\mathcal{R}$  de A en B es un subconjunto cualquiera  $\mathcal{R}$  del producto cartesiano  $A \times B$ . Es decir  $\mathcal{R}$  es una relación de A en B si  $\mathcal{R} \in \mathcal{P}(A \times B)$ .

Dados  $x \in A$ ,  $y \in B$  y una relación  $\mathcal{R}$  de A en B, se dice que x está relacionado con y (por la relación  $\mathcal{R}$ ) si  $(x,y) \in \mathcal{R}$ . En ese caso se escribe  $x \mathcal{R} y$ . Si x no está relacionado con y, es decir  $(x,y) \notin \mathcal{R}$ , se escribe  $x \mathcal{R} y$ .

## 1.2.1 Relaciones en un conjunto.

### Definición 1.2.2. (Relación en un conjunto.)

Sea A un conjunto. Se dice que  $\mathcal{R}$  es una relación en A cuando  $\mathcal{R} \subseteq A \times A$ .

Definición 1.2.3. (Relación reflexiva, simétrica, antisimétrica y transitiva.)

Sean A un conjunto y  $\mathcal{R}$  una relación en A.

- Se dice que  $\mathcal{R}$  es reflexiva si  $(x,x) \in \mathcal{R}, \forall x \in A$  (dicho de otra manera,  $x \mathcal{R} x, \forall x \in A$ ). En términos del grafo de la relación,  $\mathcal{R}$  es
- Se dice que  $\mathcal{R}$  es simétrica si cada vez que un par  $(x,y) \in \mathcal{R}$ , entonces el par "simétrico"  $(y,x) \in \mathcal{R}$  también (dicho de otra manera,  $\forall x,y \in A, \ x\mathcal{R}y \Rightarrow y\mathcal{R}x$ ). En términos del grafo de la relación,  $\mathcal{R}$
- Se dice que  $\mathcal{R}$  es antisimétrica si cada vez que un par  $(x,y) \in \mathcal{R}$  con  $x \neq y$ , entonces el par  $(y,x) \notin \mathcal{R}$  (dicho de otra manera,  $\forall x,y \in A$ ,  $x \mathcal{R} y \in y \mathcal{R} x \Rightarrow x = y$ ). En términos del grafo de la relación,  $\mathcal{R}$
- Se dice que  $\mathcal{R}$  es transitiva si para toda terna de elementos  $x, y, z \in A$  tales que  $(x, y) \in \mathcal{R}$  e  $(y, z) \in \mathcal{R}$ , se tiene que  $(x, z) \in \mathcal{R}$  también (dicho de otra manera,  $\forall x, y, z \in A$ ,  $x \mathcal{R} y$  e  $y \mathcal{R} z \implies x \mathcal{R} z$ ). En

Definición 1.2.4. (Relación de equivalencia y relación de orden.) Sean A un conjunto y  $\mathcal{R}$  una relación en A.

- Se dice que una relación  $\mathcal{R}$  en un conjunto A es una relación de equivalencia cuando es una relación reflexiva, simétrica y transitiva.
- Se dice que una relación  $\mathcal{R}$  en un conjunto A es una relación de orden cuando es una relación reflexiva, antisimétrica y transitiva.

## Definición 1.2.5. (Clases de equivalencia.)

Sean A un conjunto y  $\sim$  una relación de equivalencia en A. Para cada  $x \in A$ , la clase de equivalencia de x es el conjunto

$$\overline{x} = \{ y \in A : y \sim x \} \subseteq A.$$

Observemos que debido a la simetría, podríamos haber definido  $\overline{x} = \{y \in A : x \sim y\}$  y daría el mismo subconjunto de A. También, debido a la reflexividad, siempre tenemos  $x \in \overline{x}$  (pues  $x \sim x$ ). Finalmente la simetría y transitividad muestran que si  $y \in \overline{x}$  y  $z \in \overline{x}$ , entonces  $y \sim z$  (pues  $y \sim x$  y  $x \sim z$  implica  $y \sim z$ ), es decir todos los elementos de una clase de equivalencia están relacionados entre sí.

## Proposición 1.2.6. (Propiedad fundamental de las clases de equivalencia.)

Sean A un conjunto  $y \sim una \ relación \ de \ equivalencia \ en A$ . Sean  $x, y \in A$ . Entonces, o bien  $\overline{x} \cap \overline{y} = \emptyset$ , o bien  $\overline{x} = \overline{y}$ .

## Proposición 1.2.8. (Relaciones de equivalencia y particiones.)

Sea A un conjunto. Hay una manera natural de asociarle a una relación de equivalencia en A una partición de A. Recíprocamente, a toda partición se le puede asociar una relación de equivalencia, y estas asociaciones son inversas una de la otra.

## 1.3 Functiones.

## Definición 1.3.1. (Función.)

Sean A y B conjuntos, y sea  $\mathcal{R}$  una relación de A en B. Se dice que  $\mathcal{R}$  es una función cuando todo elemento  $x \in A$  está relacionado con algún  $y \in B$ , y este elemento y es único. Es decir:

$$\forall x \in A, \exists ! y \in B : x \mathcal{R} y.$$

Aquí el símbolo "∃!" significa "existe un único", es decir:

$$\forall x \in A, \exists y \in B \text{ tal que } x \mathcal{R} y,$$
  
y si  $y, z \in B$  son tales que  $x \mathcal{R} y$  y  $x \mathcal{R} z$ , entonces  $y = z$ .

Como a cada  $x \in A$  le corresponde un  $y \in B$  y este y es único, se le puede dar un nombre que hace notar que y depende de x: se dice que y es la imagen de x por f, y se suele notar "y = f(x)", que es la forma usual en la que conocemos a las funciones; se nota " $f: A \to B$ " a una función del conjunto A en el conjunto B.

## Definición 1.3.2. (Igualdad de funciones.)

Sean  $f, g: A \to B$  functiones. Se tiene

$$f = q \iff f(x) = q(x), \ \forall \ x \in A.$$

## Definición 1.3.3. (Imagen de una función.)

Sea  $f:A\to B$  es una función. La *imagen* de f, que se nota  $\mathrm{Im}(f)$ , es el subconjunto de elementos de B que están relacionados con algún elemento de A. Es decir

$$\operatorname{Im}(f) = \{ y \in B : \exists x \in A \text{ tal que } f(x) = y \}.$$

En términos del diagrama, la imagen es el conjunto de elementos de B a los que les llega al menos una flecha. En términos del gráfico, es el conjunto de

## Definición 1.3.4. (Funciones inyectivas, sobreyectivas y biyectivas.)

- f es inyectiva si para todo elemento  $y \in B$  existe a lo sumo un elemento  $x \in A$  para el cual f(x) = y. Dicho de otra manera, f es
- f es sobreyectiva si para todo elemento  $y \in B$  existe al menos un elemento  $x \in A$  para el cual f(x) = y. Dicho de otra manera, f es sobreyectiva si Im(f) = B.
- f es biyectiva si es a la vez inyectiva y sobreyectiva, es decir para todo elemento  $y \in B$  existe exactamente un elemento  $x \in A$  para el cual f(x) = y.

## Definición 1.3.5. (Composición de funciones.)

Sean A, B, C conjuntos, y  $f: A \to B$ ,  $g: B \to C$  funciones. Entonces la composición de f con g, que se nota  $g \circ f$ , definida por

$$g \circ f(x) = g(f(x)), \ \forall x \in A$$

## 1.3.1 Funciones biyectivas y función inversa.

Cuando  $f:A\to B$  es una función biyectiva, recordemos que se tiene que para todo elemento  $y\in B$  existe exactamente un elemento  $x\in A$  tal que f(x)=y. Por lo tanto el conjunto  $\mathcal{R}'=\{(y,x): f(x)=y\}\subseteq B\times A$  es una relación de B en A que también satisface las propiedades de función! Pues todos los  $y\in B$  están relacionados con algún  $x\in A$ , y ese x es único. Esta función  $\mathcal{R}'$  se nota  $f^{-1}$  y se llama la función inversa de f. Está definida

únicamente cuando la función f es biyectiva. Se tiene que  $f^{-1}: B \to A$  es la función que satisface para todo  $y \in B$ :

$$(f^{-1}(y) = x) \iff f(x) = y.$$

Proposición 1.3.6. (Biyectividad y función inversa.)

Sea  $f: A \rightarrow B$  una función.

• Si f es biyectiva, entonces  $f^{-1} \circ f = id_A$  y  $f \circ f^{-1} = id_B$ .

• Si existe una función  $g: B \to A$  tal que  $g \circ f = id_A$  (y)  $f \circ g = id_B$ , entonces f es biyectiva  $g \circ f = g$ .