

Discrete Structures (Monsoon 2021)

Ashok Kumar Das

Associate Professor IEEE Senior Member

Center for Security, Theory and Algorithmic Research International Institute of Information Technology, Hyderabad (IIIT Hyderabad)

E-mail: ashok.das@iiit.ac.in

URL: http://www.iiit.ac.in/people/faculty/ashokkdas
 https://sites.google.com/view/iitkgpakdas/

Topic: Ring and Field

Definition (Ring)

A ring R, sometimes denoted by $(R, \circ, *)$ is a set of elements with two binary operations, \circ (e.g., ordinary addition) and * (e.g., ordinary multiplication), such that for all $a, b, c \in R$ the following axioms are obeyed:

- (A1-A5) *R* is an abelian group under ∘.
- (M1) Closure under *: If $a, b \in R$, then $a * b \in R$.
- (M2) Associativity of *: a*(b*c) = (a*b)*c, for all $a, b, c \in R$.
- (M3) Distributive Laws:
 - (i) Left Distributive Law: $a*(b \circ c) = (a*b) \circ (a*c)$, for all $a,b,c \in R$.
 - (i) Right Distributive Law: $(a \circ b) * c = (a * c) \circ (b * c)$, for all $a, b, c \in R$.

Definition (Commutative Ring)

A ring $(R, \circ, *)$ is said to be *commutative* if it satisfies the following additional condition:

• (M4) Commutative of *: a * b = b * a, for all $a, b \in R$.

Example

Let *E* denote the set of even integers, that is,

$$E = \{0, \pm 2, \pm 4, \pm 6, \cdots, \}$$
. Then, $(E, +, \times)$ is a commutative ring.

Example

Let M_n denote the set of all n-square $(n \times n)$ matrices over the real numbers. Then, $(M_n, +, \times)$ is a commutative ring, where + and \times denote the ordinary matrix addition and multiplication, respectively.

- **Problem:** Let $(R, +, \times)$ be a ring with identity, R is the set of real numbers. Using its elements, let us define another structure (R', \oslash, \otimes) , where R' = R and for $a, b \in R$,
 - $a \oslash b = a + b + 1$ and $a \otimes b = a \times b + a + b$.
 - (i) Prove that (R', \emptyset, \otimes) is a ring.
 - (ii) Is R' is a ring with identity? If so, which one is the multiplicative identity (under \otimes)?

Definition (Field)

A field F, sometimes denoted by $(F, +, \times)$, is a set of elements with two binary operations, say addition and multiplication (note that these operations may be any binary operations), such that for all $a, b, c \in F$, the following axioms are obeyed:

- \bullet $(F, +, \times)$ is an *integral domain*, that is,
 - (A1-M4) hold
 - ► (M5) Multiplicative identity: $\forall a \in F$, $\exists 1 \in F$ such that 1a = a1 = a, 1 is called the multiplicative identity in F.
 - ▶ **(M6) No zero divisors:** If $a, b \in F$ and ab = 0, then either a = 0 or b = 0.
- **(M7) Multiplicative inverse:** For each $a \in F$, except 0, there is an element a^{-1} in F such that $aa^{-1} = a^{-1}a = 1$.

Example

The set of real numbers is a field under addition and multiplication.

Example

Let Q denote the set of rational numbers, that is, $Q = \{\frac{a}{b} | a, b \text{ are reals, with } b \neq 0 \text{ and } \gcd(a, b) = 1\}$. Then, $(Q, +, \times)$ is a field.

Example

Let C be the set of complex numbers. Then, $(C, +, \times)$ is also a field.

Example

The set Z of integers is NOT a field. Note that not every element of Z has a multiplicative inverse; in fact, only the elements 1 and -1 have the multiplicative inverses in the integers.

Problem: Consider the addition and multiplication arithmetic modulo 8 in the finite set $Z_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$.

Construct the following composition table (addition modulo 8):

+8	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

The additive identity is 0.

Construct the following composition table (multiplication modulo 8):

\times_8	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Construct the following table of additive and multiplicative inverses:

W	-w	W^{-1}
0	0	_
1	7	1
2	6	_
3	5	3
4	4	_
2 3 4 5 6	6 5 4 3 2	5
6	2	_
7	1	7

- \bullet -w is the additive inverse of w
- w^{-1} is the multiplicative inverse of w
- Z_8 is NOT a field (only a commutative ring with identity 1)

Theorem

Let $Z_n = \{0, 1, 2, \dots, n-1\}.$

- (i) $\langle Z_n, +_n, \cdot_n \rangle$ is a ring, for all $n \in \mathbb{N}$.
- (ii) $\langle Z_n, +_n, \cdot_n \rangle$ has a multiplicative identity 1.
- (iii) $\langle Z_n, +_n, \cdot_n \rangle$ is an integral domain.

Theorem

Let $Z_n = \{0, 1, 2, ..., n-1\}$. Then, $\langle Z_n, +_n, ._n \rangle$ is a field if and only if n is prime.

Remark: $\langle Z_p, +_p, \cdot_p \rangle$ is known as **Galois field** or finite field, when p is a prime.

It is defined as $GF(p) = \langle Z_p, +_p, \cdot_p \rangle$; p being a prime.

Definition

Given two integers a and b, the greatest common divisor (gcd) of a and b is $d = \gcd(a, b)$ if the following conditions are satisfied:

- \bigcirc d|a and d|b
- 2 Any divisor c of a and b is also a divisor of d.

We have:

$$\gcd(a,0) = a$$

 $\gcd(0,0) = undefined$
 $\gcd(a,-b) = \gcd(-a,b) = \gcd(-a,-b) = \gcd(|a|,|b|)$

Euclid's GCD Algorithm

Given integers b, c > 0, we make a repeated application of division algorithms to obtain a series of equations which yield gcd(b, c):

$$b = q_1c + r_1, 0 \le r_1 < c$$

$$c = q_2r_1 + r_2, 0 \le r_2 < r_1$$

$$r_1 = q_3r_2 + r_3, 0 \le r_3 < r_2$$

$$\vdots = \vdots$$

$$r_{j-2} = q_jr_{j-1} + r_j, 0 \le r_j < r_{j-1}$$

$$r_{j-1} = q_{j+1}r_j + \boxed{0}$$

It is worth noticing that

$$0 \le r_i < r_{i-1} < r_{i-2} < \cdots < r_2 < r_1 < c$$

Therefore,

$$\gcd(b, c) = \gcd(c, r_1) = \gcd(r_1, r_2) = \cdots = \gcd(r_{i-1}, r_i) = r_i.$$

Euclid's GCD Algorithm

Algorithm: EUCLID(b, c)

To compute gcd(b, c)

- 1: Initialize: $A \leftarrow b$; $B \leftarrow c$
- 2: **if** B = 0 **then**
- 3: **return** $A = \gcd(b, c)$
- 4: end if
- 5: Compute $R \leftarrow A \mod B$
- 6: Set *A* ← *B*
- 7: Set *B* ← *R*
- 8: goto Step 2

Complexity: If j is the total number of iterations or steps needed to compute gcd(b, c), then $j < \lfloor 3 \cdot \log_e(c) \rfloor$, where $c = \min\{b, c\}$.

Problem: Compute gcd(1970, 1066).

Using the Euclid's gcd algorithm, we have the following computations:

$$1970 = 1 \times 1066 + 904$$

$$1066 = 1 \times 904 + 162$$

$$904 = 5 \times 162 + 94$$

$$162 = 1 \times 94 + 68$$

$$94 = 1 \times 68 + 26$$

$$68 = 2 \times 26 + 16$$

$$26 = 1 \times 16 + 10$$

$$16 = 1 \times 10 + 6$$

$$10 = 1 \times 6 + 4$$

$$6 = 1 \times 4 + 2$$

$$4 = 2 \times 2 + 0$$

Therefore, gcd(1970, 1066) = 2.

We see that j = number of iterations needed to compute gcd(1970, 1066)

$$= 11 \text{ and } j < |3.\log_e(c)| = |3.\log_e(1066)| = 20$$

Lemma

If $d = \gcd(a, b)$, then there exist integers x and y such that d = ax + by, where x and y are called the multipliers of a and b, respectively.

Problem: Find the multipliers x, y and z such that

gcd(170, 128, 217) = 170x + 128y + 217z.

Solution: We know,

$$gcd(170, 128, 217) = gcd[gcd(170, 128), 217].$$
 (1)

To compute gcd(170, 128), we proceed as follows:

$$170 = 1 \times 128 + 42 \tag{2}$$

$$128 = 3 \times 42 + 2 \tag{3}$$

$$42 = 21 \times 2 + 0.$$

Therefore, we have:

$$2 = \gcd(170, 128)$$

$$= 128 - 3 \times 42, \text{ using Eqn (3)}$$

$$= 128 - 3 \times [170 - 1 \times 128] \text{ using Eqn (2)}$$

$$= (-3) \times 170 + 4 \times 128. \tag{4}$$

Now, to compute gcd(2, 217), we proceed as follows:

$$217 = 108 \times 2 + 1$$

$$2 = 2 \times 1 + 0.$$
(5)

Then,

```
 1 = \gcd(2,217) 
 = \gcd[\gcd(170,128),217] 
 = \gcd(170,128,217) 
 = 217 - 108 \times 2, \text{ using Eqn (5)} 
 = 217 - 108 \times [(-3) \times 170 + 4 \times 128], \text{ using Eqn (4)} 
 = 324 \times 170 + (-432) \times 128 + 1 \times 217.
```

Hence, we have: x = 324, y = -432, z = 1.