The real power of the Web?

- ◆To be distributed
- ♦ → its potential is all about aggregation of informative resources

Massachusetts Institute of Technology

The Babel Tower of the Web...

"Send a rose to my girlfriend"

Babel Tower...

```
*<html>
...
    <strong>Box of Roses</strong> ...
    <strong>price: 15 dollars</strong>
```

Babel Tower...

<HTML>...
From editor The Dark Rose...
... price 7.50 dollars, the book "The Art of Masochism"...(!!)

The Semantic Web

- Tries to facilitate automatic aggregation of information...
- ... and even more, try to enable automatic reasoning on such information

How?

Adding... "semantics" (meaning) in the appropriate way, so to enable information understanding and reuse

The Semantic Web Tower ("classic" version)

Base technology: RDF

- Resource Description Framework: Framework to describe resources
- The milestone of the "Web2": a universal language to express information on the web and beyond
- It describes relationships and concepts

The RDF model

- Technically, an "enriched entityrelationship" knowledge model
- Base grammar:
- A "sentence" is made by:
- **♦ subject** predicate object

The RDF model

- Essentially, this is the backbone of RDF..
- With more power ("enriched"): referencing, quoting, bags etc etc

RDF as a graph

RDF as graph...

Writing RDF?

- Many possibilities! Remember RDF is a model, that can then be written in various ways!
- Two most used ways:
- As XML (specific dialect)
- As N-triples

As XML...

```
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-</p>
  syntax-ns#"
  xmlns:exterms="http://www.example.org/terms">
  <rdf:Description
  rdf:about="http://www.example.org/index.html">
  <exterms:creation-date>August 16, 1999
  </exterms:creation-date> </rdf:Description>
  <rdf:Description
  rdf:about="http://www.example.org/index.html">
  <exterms:language>English</exterms:language>
  </rdf:Description>
  </rdf:RDF>
```

RDF and aggregation

- RDF enables easy aggregation of information sources
- Because essentially, merging graphs (a forest) gives again graphs
- The graphs doesn't always stay distinct, but they can melt together...

Melting? How?

Via URLs (URIs), the names of the web!

What do we want as a minimum?

◆To *classify* information

Ontologies

- Systems for information classification
- ◆Information of "type X", where here "type" is a semantic type

Types

- Classic "type" in computer science: the datatype
- Examples: integers, strings, URIs etc.
- They give information on the syntactic format of the object

Types (cont.)

◆Semantic type → they provide the meaning of the objects

Examples

- ◆P2P (Peer to Peer): e.g., Kazaa, Bearshare, Gnutella
- MP3 songs exchange
- RIIA (Recording Industry Association of America)...

615,526,043 views • Apr 17, 2015

House • Nu Disco • Chill Hous...

SIGN IN

SIGN IN

- Syntactic type (datatype):
- ◆"Usher" is of string type
- Semantic type:
- ◆"Usher" is a singer type

The semantic types...

- ... are more commonly called classes
- So, an ontology is basically composed by a collection of classes. Each classe can contain objects, and so these objects belong to a class

Example

- Wine ontology:
- Red wines, white wines, pink wines, Merlot, Cabernet, Chardonnay etc...
- The class "red wines" can contain the objects "Merlot bottle from 1999", "Cabernet bottle" and so on.

Structure

- The interesting thing is that an ontology can also have an internal structure (so, not just being a "flat" collection of classes)
- The easiest structure is the so-called hierarchical structure
- ♦ → a class can be contained in another class, and so on

So...

In general, the hierarchical structure is provided by a *containment* relationship among classes, that can be true or false

More structure = more power

How do we support ontologies in the Semantic Web?

♦ Via RDF Schema: the standard the enriches RDF with the basic support for ontologies management

RDF-Schema (cont.)

- ♦ rdf:Property
- <u>rdfs:subPropertyOf</u>
- <u>rdfs:domain</u>

Example

- "eat" can be defined as a property
- Subproperty of the "act" property
- With domain "animals"
- And with range "food"

So...

Tim Berners-Lee...

... and the axioms of Web Architecture

Axiom 0: Universality 1

Any resource anywhere can be given a URI

Axiom 0a: Universality 2

Any resource of significance should be given a URI

But... the right name?

Sometimes it's not so easy to find the right name...

The problems with URIs...

- Problem: find the right concept
- URI Variant problem: in general, there can be many variants (URIs) for the same concept
- **URI Variant**: usefulness of URIs decreases exponentially with the number of *variants*

URI Variant: meaning...

URI meaning

- Natasha: (trying to smooth things over) Ah, so it doesn't look like a duck to you Aubrey...
- Aubrey: No.
- Gregorian: What does it look like to you Aubrey?
- Aubrey: Book!

Ceci n'est pas une pipe.

Axiom 1: Global scope

It doesn't matter to whom or where you specify that URI, it will have the same meaning

More power...

- The basic support provided by RDF-Schema has then been extended, with a specific layer in the "Semantic Web Tower"
- **OWL**
- ♦ → Web Ontology Language

(Dis-)Equality in OWL:

- ◆ equivalentClass
- ◆ equivalentProperty
- ♦ sameIndividualAs (~ sameAs)

So, OWL...

... allows to reduce the problem due to the URI Variant Law, establishing relationship among different ontologies

OWL: More power to express properties

- ♦ inverseOf
 - ◆ TransitiveProperty
 - ♦ SymmetricProperty

More power to handle property types

- ◆ all Values From
- ◆ some Values From
- minCardinality
- ***** maxCardinality

So, more power...

♦... more applications!

More power = ??

◆It's information, so we would like to reason about it...

So far...

- ... we can use relationships and more to define a *logic*: what we would like is then to do automatica calculations
- ♦ > so, having an executable logic

But, fact...

- ◆Already the super-simple first order logic (∀ for all, ∃ exists) is not decidable
- ♦ → in computer science terms, it just means the corresponding program might not terminate (!)

And so??

- Think of other contexts...
- ◆For instance, databases: SQL (!)
- ◆In its base versions, like SQL-92, every SQL «query» (program...) terminates!
- ◆So? Why?
- Well, SQL is not Turing-complete: so it has limited expressive power, but terminates!