CH2 Discrete-time Signals and Systems

离散序列的表示方法

Right sided, left-sided, two-sided, finite-length, causal, noncausal 的概念

基本序列 $\delta[n]$, u[n], $R_{N}[n]$ 以及它们之间的关系

指数序列,正弦序列,欧拉公式

digital frequency 与 analog frequency 的关系, $\omega = \Omega T = \Omega / f_s$

离散正弦序列的周期性判别

序列的对称性 symmetry:

偶序列 even sequence,奇序列 odd sequence 共轭对称序列 conjugate-symmetric sequence 共轭反对称序列 conjugate-anti symmetric sequence 序列的偶部 even symmetric part,奇部 odd symmetric part

信号 total energy E_n 和 average power P_n 的计算方法

序列的计算:

time shift,time reversal,插值 interpolation 和抽取 decimation linear convolution 的计算方法,序列与 $\delta[n-n_0]$ 做卷积 卷积后序列的长度,坐标

离散时间系统性质的判别: memoryless、linear、time-invariant、causal、stable

LTI 系统的时域分析方法 y[n] = x[n]*h[n]

根据单位脉冲响应h[n]判断LTI系统的因果性,稳定性

FIR、IIR 系统的含义 系统级联、并联

DTFT 正反变换式,物理意义,常用序列的 DTFT: $\boldsymbol{\delta}[n]$, $\boldsymbol{\delta}[n-n_0]$, $a^nu[n]$,1,Spectrum (magnitude spectrum, phase spectrum),frequency response 的意义 周期序列的 DTFT: $e^{j\boldsymbol{\omega}_0 n}$, $\cos(\boldsymbol{\omega}_0 n)$

DTFT 性质:

时移、频移、反转、Parseval's Theorem、时域卷积、调制(加窗)、interpolation(插值)、时域频域的对偶性(duality)

CH3 The z-Transform

- z变换定义,常用序列的 z变换
- z变换的 ROC, 零极点
- Z 反变换的求法: 部分分式展开
- z变换的性质

用 z 变换分析系统 Y(z) = X(z)H(z), 系统函数 H(z), 判断系统的因果性稳定性

CH4 Sampling of CT Signals

Nyquist Sampling theorems,

理想冲激串采样的数学推导过程, $x(t) \rightarrow x[n]$ 的过程中时域频域公式

Downsampling 和 Upsampling 的原理和频谱变化。

Change sampling rate by a non-integer factor

CH5 Transform Analysis of LTI Systems

概念: frequency response, magnitude response, phase response, group delay 系统函数 H(z), 判断系统的因果性稳定性

FIR、IIR 两种滤波器的 difference equation、transfer function H(z)、poles & zeros、impulse response h[n]各有什么特点。

系统函数H(z)零极点的分布对系统因果稳定的影响。

系统函数H(z)零极点的分布对频率响应 $H(e^{j\omega})$ 的影响。

Distortionless system 的时域、频域表述 all-pass system、minimum-Phase Systems 的概念,零极点的分布特点。 非 minimum-phase 系统的分解

linear phase system 概念、判别 $h[n] = \pm h[M-n]$ 、phase function

4 种 type 的 Linear phase FIR system 特点和适合设计的滤波器种类推导幅频响应和相频响应的公式

CH6 Structures for Discrete-time Systems

signal flow graph 的画法

IIR 滤波器的结构 direct form cascade form parallel form

FIR 滤波器的结构 direct form cascade form linear phase form

CH7 Filter Design Techniques

Specification of the filter

1. Specifications for frequency:

passband cutoff frequency: Ω_p (analog, rad/sec), ω_p (digital, rad)

stopband cutoff frequency: Ω_s (analog, rad/sec), ω_s (digital, rad)

3dB cutoff frequency: Ω_c (analog, rad/sec), ω_c (digital, rad) analog 和 digital 之间转化

- 2. Specifications for gain:
 - (a) absolute specification: passband tolerance δ_1 ,

stopband tolerance δ_2

(b) relative specification: maximum attenuation in passband α_p

minimum attenuation in stopband α_s

absolute 和 relative 相互转化

设计方法:

Design methods for IIR filter ${ \mbox{impulse invariance} \atop \mbox{bilinear t ransform} } z$ 平面与 s 平面的映射关系

Design methods for FIR filter: windowing $\begin{cases} Blackman \text{ family} \\ Kaiser \end{cases}$

CH8 The Discrete Fourier Transform

DFT 正反变换定义, 物理意义

DFT 与 DFS、DTFT、ZT 的关系

频域采样定理

会求 $R_N[n]$ 的DFT

DFT 的性质:循环移位、对偶性、对称性、循环卷积

利用 DFT 计算线性卷积

循环卷积与线性卷积的关系

CH9 (不考)

基 2 的时域抽取的 FFT 算法原理,运算量估算。

除此之外,有一些东西要了解:

1. 对于 LTI 系统, 要知道

difference equation

transfer function H(z)

frequency response $H(e^{j\omega})$

impulse response h[n]

signal flow graph

这几种系统表示方式的相互转化。知道其中一个, 要能化成其余形式。

2. 经过时域采样和频域采样后,这几种坐标之间的对应关系:

2. 几种变换的关系:

