

CMP9780, EGR3031 & BME3002

Lecture Week 2 – Introduction to Fourier Transforms

Contact Information

- Dr John Atanbori
 - jatanbori@lincoln.ac.uk
 - Isaac Newton Building, INB2217
 - Office Hours
 - Wed 11:00 13:00

- Introduced by Joseph Fourier, a French Mathematician
- Information as a function of time aka signal
- Periodic vs non-periodic signals
 - Periodic -> F(x + p) = F(x), p is periodicity of function F(x).
- The sinusoidal waveform in the figure is repeating over a period of 2π .
 - It can be written as $sin(x+2\pi)=sin(x)$

Square Wave

import numpy as np import matplotlib.pyplot as plt from scipy import signal

```
fs = 1000
dt = 1/fs
t = np.arange(0, 2, dt)
x = signal.square(2*np.pi*2*t)
```

```
plt.figure(figsize=(10, 8))
plt.plot(t, x, label='Sine wave')
plt.xlabel('Time is seconds', fontsize=15)
plt.ylabel('Amplitude', fontsize=15)
plt.title('square(2*pi*2*t)', fontsize=15)
plt.legend(fontsize=10, loc='upper right')
```

Is the signal periodic? What is the time period?

Sawtooth / Triangular Wave

Is the signal periodic? What is the time period?

```
fs = 1000
dt = 1/fs
t = np.arange(0, 2, dt)
x = signal.sawtooth(2*np.pi*10*t)
```

```
plt.figure(figsize=(10, 8))
plt.plot(t[0:1000], x[0:1000], label='Sawtooth wave')
plt.xlabel('Time is seconds', fontsize=15)
plt.ylabel('Amplitude', fontsize=15)
plt.title('sawtooth(2*pi*2*t)', fontsize=15)
plt.legend(fontsize=10, loc='upper right')
```

Periodic Signals

$$x(t+T) = x(t)$$
 for $-\infty < t < \infty$

- Periodic signals repeat themselves at a specific time interval.
 - This interval is called the **period** of the signal.

Amplitude

- "Amplitude is the height, force or power of the wave"
- Maximum Displacement

Phase

- Same frequency, and same cycle
- But the wave forms are not exactly aligned together.

Signal that composes of multiple sinusoids, amplitudes and phases

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \phi_k)$$

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \phi_k)$$

Remember these relations

$$\sin \theta = \cos(90 - \theta)$$

$$\cos\theta = \sin(90 - \theta)$$

Fourier In complex form

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \phi_k)$$
$$= X_0 + \text{Re} \left\{ \sum_{k=1}^{N} X_k e^{j2\pi f_k t} \right\}$$

where here $X_0 = A_0$ is real, $X_k = A_k e^{j\phi_k}$ is complex, and f_k is the frequency in Hz

- Euler's formula, by renowned mathematician Leonhard Euler
- Euler's formula demonstrates the fundamental relationship between the <u>trigonometric</u> <u>functions</u> and the <u>complex exponential function</u>.
- Euler's formula states that for any real number x:
 - $-e^{ix} = cosx + isinx$
 - $-e^{-ix} = cosx isinx$
- Hence:

$$- cosx = \frac{e^{ix} + e^{-ix}}{2} = \frac{1}{2} e^{ix} + \frac{1}{2} e^{-ix}$$

and:

$$- \sin x = \frac{e^{ix} - e^{-ix}}{2i} = -\frac{1}{2} i e^{ix} + \frac{1}{2} i e^{-ix}$$

• Maths might become simpler if we use e^{ix} instead of cosx and sinx

Signal Spectra

 By Fourier theory, any waveform can be represented by a summation of a (possibly infinite) number of sinusoids, each with a particular amplitude and phase.

 Such a representation is referred to as the signal's spectrum (or it's frequency-domain representation).

The signal (Left) and Spectrum (right)

Signal reconstructed with first peak

Signal reconstructed with first two peaks

Signal reconstructed with first three peaks

• Signal reconstructed with first four peaks

Signal reconstructed with all five peaks

Question

• Since the different peaks can be used to reconstruct a signal, what conclusions can be drawn from the previous demonstrations regarding signal noise and compression?

- Many physical systems that resonate or oscillate produce quasi-sinusoidal motion
- The speech signal can be decomposed into multiple sinusoids
- In short, most signals can be decomposed into sinusoidal components, and the sum of the individual components forms the same signal.

Time schedule:

- Monday: put trash outside (plus do your homework)
- Tuesday: clean kitchen (plus do your homework)
- Wednesday: put trash outside (plus do your homework)
- Thursday: clean your bedroom (plus do your homework)
- Friday: put trash outside (plus do your homework)
- Saturday: clean your bedroom (plus do your homework)
- Sunday: (do your homework)

Spectral schedule:

- Always: do your homework
- Once a week: clean kitchen
- Twice a week: clean your bedroom
- Three times a week: put trash outside

Time Dimension

Instead of looking how these patterns are scheduled over time, we can also order these activities, in the frequency they occur

Frequency Dimension, losing the time dimension

Are these signals periodic?

• $y(t) = \sin(2*pi*10*t) + \sin(2*pi*20*t)$

Are these signals periodic?

x(t) = sin(2*pi*10*t) +
sin(2*pi*20*t) + sin(2*pi*25*t)
+ sin(2*pi*50*t) + +
sin(2*pi*75*t);

What about this signal?
 Periodic or Non-Period?

- Sometimes it is all but impossible to figure out the period from a graph
- The signal below has a period of 1 second

The mathematical definition of a signal is given below.

$$x(t) = \cos(2\pi 100t) + \sin(2\pi 150t)$$

Check if the signal is periodic at 40ms

```
x(t+0.04) = \cos(2\pi 100(t+0.04)) + \sin(2\pi 150(t+0.04))
x(t+0.04) = \cos(2\pi 100t + 2\pi 100(0.04)) + \sin(2\pi 100t + 2\pi 100(0.04))
x(t+0.04) = \cos(2\pi 100t + 2\pi 4)) + \sin(2\pi 100t + 2\pi 6)
x(t+0.04) = \cos(2\pi 100t)) + \sin(2\pi 100t)
x(t+0.04) = x(t)
```

• In the study of Fourier series, we learn how any **periodic continuous signal** can be represented as a **sum of harmonically related sinusoids**

The **synthesis formula** is:

 $x(t) = \sum_{k = -\infty}^{\infty} a_k e^{j(2\pi/T_0)kt}$ where T_0 is the period

Fourier coefficient /
Complex-valued
coefficient → amplitude
and phase combined

A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum of sines and cosines.

It cannot represent any arbitrary function.

It can represent either:

- (a) a periodic function, or
- (b) a function that is defined over a finite-length interval only;

values produced by the Fourier series outside the finite interval are irrelevant.

$$x\left(t
ight)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n}\cos(n\omega_{0}t)+b_{n}\sin(n\omega_{0}t)
ight)$$

$$E_n e^{jn\omega_0 t} \hspace{0.5cm} Exponential$$

Trigonometric

- Work by Joseph Fourier in the early 1800's - Fourier Series.
 - Determine that such a function can be represented as a series of sines and cosines.
 - In other words, as sum of sines and cosines of different frequencies, called a Fourier Series.
 - There are two common forms of the Fourier Series, "Trigonometric" and "Exponential." For easy reference the two forms are stated here.

- A function is called even if f(-x)=f(x), e.g. cos(x).
- A function is called odd if f(-x)=-f(x), e.g. sin(x).

- These have somewhat different properties than the even and odd numbers:
 - Sum: Even + Even = Even, and Odd + Odd = Odd
 - Product: Even × Even = Even; Odd × Odd = Even; and Even × Odd = Odd

Question

 Determine from the graph whether the plotted function is an EVEN or ODD function.

- a) Even
- b) Odd

The Fourier series expansion of an even function f(x) with the period of 2π does not involve the terms with sines and has the form:

$$f\left(x
ight) =rac{a_{0}}{2}+\sum_{n=1}^{\infty }a_{n}\cos nx,$$

where the Fourier coefficients are given by the formulas

$$a_{0}=rac{2}{\pi}\int\limits_{0}^{\pi}f\left(x
ight) dx,$$

$$oxed{a_0 = rac{2}{\pi} \int\limits_0^\pi f\left(x
ight) dx,} oxed{a_n = rac{2}{\pi} \int\limits_0^\pi f\left(x
ight) \cos nx dx.}$$

Accordingly, the Fourier series expansion of an odd 2π -periodic function f(x) consists of sine terms only and has the form:

$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx,$$

where the coefficients b_n are

$$b_{n}=rac{2}{\pi}\int\limits_{0}^{\pi}f\left(x
ight) \sin nxdx.$$

- The computation and study of Fourier series is known as harmonic analysis.
- Harmonic analysis
 - break up an arbitrary periodic function into a set of simple terms
 - Solved individually and then recombined to obtain the solution to the original problem or an approximation.
- Examples of successive approximations to common functions using Fourier series are illustrated next.

Square Wave Approximation Demo


```
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0, 2 * np.pi, 0.01)
signal = np.zeros_like(x)
N = 9
for n in range(1, N, 2):
        (1/n) * np.sin(n * x)
    signal += y
plt.plot(x, signal)
plt.xlabel('x')
plt.ylabel('Signal')
plt.title('Signal Plot')
```

To obtain a Fourier series representation of periodic signal x(t) we need to evaluate the Fourier integral

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi/T_0)kt} dt$$

Where T_0 is the fundamental³ period

³The **fundamental period** is the smallest positive real number T_0 for which the periodic equation f(t+T) = f(t) holds true.

Discrete Fourier Transform

- DFT is the equivalent of the Continuous Fourier Transform
 - It has N samples, which are separated by sample time T
 - Finite sequence of data
- Let f(t) be the continuous signal
- Let the N samples be
 - f[0], f[1], f[2], ..., f[k], ..., f[N-1]
- The Fourier transform of the original signal f(t) (continuous) is

$$F(j\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

- We could regard each sample f[k] as an impulse having area f[k].
- Then, since the integrand exists only at the sample points:

$$\int_{o}^{(N-1)T} f(t)e^{-j\omega t}dt$$

$$f[0]e^{-j0} + f[1]e^{-j\omega T} + \dots + f[k]e^{-j\omega kT} + \dots f(N-1)e^{-j\omega(N-1)T}$$

$$F(j\omega) = \sum_{k=0}^{N-1} f[k]e^{-j\omega kT}$$

Discrete Fourier Transform

- Since there are only a **finite number of input data points**, the DFT treats the data as if they were periodic (i.e. f(N) to f(2N-1) is the same as f(0) to f(N-1)).
- The Nyquist criterion is also important in DFT analysis. When sampling at frequency fs, we obtain reliable frequency information only for frequencies less than fs/2. (Here, reliable means without aliasing problems.)

Plot (a) is considered to be one period (in a sequence of N = 10 samples) of the periodic sequence in plot (b) (implicit periodicity in DFT)

The 10Hz Sine Wave and its FFT

• Examined the characteristics of a 10 Hz sine wave sampled at frequencies of 1 kHz, 21 Hz, 18 Hz, 11 Hz, and 5 Hz on the frequencies in the FFT domain..

In general

$$F[n] = \sum_{k=0}^{N-1} f[k]e^{-j\frac{2\pi}{N}nk} \quad (n=0:N-1)$$

- F[n] is the Discrete Fourier Transform of the sequence f[k]

We may write this equation in matrix form as:

$$\begin{pmatrix} F[0] \\ F[1] \\ F[2] \\ \vdots \\ F[N-1] \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & \dots & 1 \\ 1 & W & W^2 & W^3 & \dots & W^{N-1} \\ 1 & W^2 & W^4 & W^6 & \dots & W^{N-2} \\ 1 & W^3 & W^6 & W^9 & \dots & W^{N-3} \\ \vdots & & & & & & \\ 1 & W^{N-1} & W^{N-2} & W^{N-3} & \dots & W \end{pmatrix} \begin{pmatrix} f[0] \\ f[1] \\ f[2] \\ \vdots \\ f[N-1] \end{pmatrix}$$

where $W = \exp(-j2\pi/N)$ and $W = W^{2N}$ etc. = 1.

In the previous example and with Euler....

$$F[n] = \sum_{k=0}^{N-1} f[k]e^{-j\frac{2\pi}{N}nk} \qquad (n = 0: N-1)$$

DFT can be rewritten as:

$$F[n] = \sum_{k=0}^{N-1} f[k] \cos\left(\frac{2\pi k n}{N}\right) - i \sum_{k=0}^{N-1} f[k] \sin\left(\frac{2\pi k n}{N}\right)$$

DFT – example

Let the continuous signal be

$$f(t) = 5 + 2\cos(2\pi t - 90^{\circ}) + 3\cos 4\pi t$$

Example signal for the Discrete Fourier Transform

Let us sample f(t) at 4 times per second (i.e. fs = 4Hz) from t = 0 to $t = \frac{3}{4}$. The values of the discrete samples are given by:

$$f[k] = 5 + 2\cos(\frac{\pi}{2}k - 90^\circ) + 3\cos\pi k$$
 by putting $t = kT_s = \frac{k}{4}$

i.e.
$$f[0] = 8$$
, $f[1] = 4$, $f[2] = 8$, $f[3] = 0$, $(N = 4)$

Therefore
$$F[n] = \sum_{0}^{3} f[k]e^{-j\frac{\pi}{2}nk} = \sum_{k=0}^{3} f[k](-j)^{nk}$$

$$\begin{pmatrix} F[0] \\ F[1] \\ F[2] \\ F[3] \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{pmatrix} \begin{pmatrix} f[0] \\ f[1] \\ f[2] \\ f[3] \end{pmatrix} = \begin{pmatrix} 20 \\ -j4 \\ 12 \\ j4 \end{pmatrix}$$

The magnitude of the DFT coefficients is shown below

Discrete Fourier Transform of 4 point sequence

Inverse Discrete Fourier Transform

The inverse transform of

$$F[n] = \sum_{k=0}^{N-1} f[k]e^{-j\frac{2\pi}{N}nk}$$

Inverse Discrete Fourier Transform

is

$$f[k] = \frac{1}{N} \sum_{n=0}^{N-1} F[n] e^{+j\frac{2\pi}{N}nk}$$

i.e. the inverse matrix is $\frac{1}{N}$ times the complex conjugate of the original (symmetric) matrix.

Mind that the F[n] coefficients are complex. In the simplest case one can assume that the f[k] values are real as well.

⁶The **complex conjugate** of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. For example, if *x* and *y* are real, then the complex conjugate of *x* + *yi* is *x* - *yi*.

- It is a fast and effective way of computing DFT
- Several people discovered fast FFT algorithms independently and many people have since contributed to their development
- but it was a 1965 paper by John Tukey of Princeton University and John Cooley of IBM Research that is generally credited as the starting point for the modern usage of the FFT
- Computational Complexities (Big O notation)
 - $-DFT-O(n^2)$
 - $FFT O(nLog_2(n))$
- Applications
 - Audio and image compression
 - Denoising data
 - streaming video
 - satellite communications,

DFT is a linear operator (i.e., a matrix) → maps the data points in f to the frequency domain F:

```
-\{f_1, f_2, ..., fn\} \stackrel{DFT}{\longrightarrow} \{F1, F2, ..., Fn\}
```

- High computational complexity $\rightarrow N^2$ complex multiplications
- **FFT** reduces this complexity to $O(N \log N)$
 - For example, audio is generally sampled at 44.1 kHz
 - For 10 seconds of audio, the dimension of f, = 4.41×10^5 .
 - DFT \rightarrow 2 × 10¹¹ matrix multiplications.
 - FFT → 6 × 10⁶ matrix multiplications
 - Speed-up factor of over 30, 000.
- For this reason, most devices and software have FFT libraries built in.

- FFT uses divide-and-conquer:
 - Breaks DFT of size N into smaller DFTs of size N/2.
 - Uses symmetry and periodicity properties of the complex exponential $W_N = e^{-j2\pi/N}$.
 - This drastically reduces computation.
- The most famous algorithm is the Cooley–Tukey FFT algorithm.

DFT matrix:

$$-X = W_N x$$

- FFT doesn't explicitly form W_N ; instead:
 - It factorizes W_N into sparse submatrices.
 - Applies the transformation recursively.

Diagram Representation

•
$$N = 8 = 2^3$$

Application – Noise Filtering

- Consider the function with frequencies f₁ = 50 and f₂ = 120. (above, black)
 - $f(t) = \sin(2\pi f_1 t) + \sin(2\pi f_2 t)$
- We then add a large amount of Gaussian white noise to this signal (above, red)
- PSD is the normalised squared magnitude (middle plot).
- Zero out components that have power below a threshold to remove noise from the signal (filtered signal – below, blue).

To Conclude....

- Sinusoids and periodic/non-periodic signals
- Signal spectra, amplitude, period and phase
- Trigonometric identities
- Euler to work on either e or cos/sin
- Fourier series, to represent a periodic signal in terms of cosine and sine waves
- Discrete Fourier Transform to go from the time-domain to the frequency-domain
- FFT to reduce computational complexities of DFT

In addition to the module reading list have a look at.....

https://www.le.ac.uk/users/dsgp1/LODZLECT/Lodz3.pdf

 http://www.ee.ic.ac.uk/hp/staff/dmb/courses/E1Fourier/00 300 ComplexFourier.pdf

 https://users.dimi.uniud.it/~antonio.dangelo/MMS/material s/Guide to Digital Signal Process.pdf (Chapter 8)

Appendix

Example

Let the function f(x) be 2π -periodic and suppose that it is presented by the Fourier series:

$$f\left(x
ight) =rac{a_{0}}{2}+\sum_{n=1}^{\infty }\left\{ a_{n}\cos nx+b_{n}\sin nx
ight\}$$

Calculate the coefficients a_0 , a_n , and b_n .

To define a_0 , we integrate the Fourier series on the interval $[-\pi, \pi]$:

$$f\left(x
ight) =rac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{ a_{n}\cos nx+b_{n}\sin nx
ight\}$$

$$\int\limits_{-\pi}^{\pi}f\left(x
ight) dx=\pi a_{0}+\sum_{n=1}^{\infty}\left[a_{n}\int\limits_{-\pi}^{\pi}\cos nxdx+b_{n}\int\limits_{-\pi}^{\pi}\sin nxdx
ight] dx$$

For all n > 0,

$$\int\limits_{-\pi}^{\pi}\cos nxdx=\left.\left(rac{\sin nx}{n}
ight)
ight|_{-\pi}^{\pi}=0\ ext{ and } \int\limits_{-\pi}^{\pi}\sin nxdx=\left.\left(-rac{\cos nx}{n}
ight)
ight|_{-\pi}^{\pi}=0.$$

Therefore, all the terms on the right of the summation sign are zero, so we obtain

$$\int\limits_{-\pi}^{\pi}f\left(x
ight) dx=\pi a_{0} \ \ ext{or} \ \ a_{0}=rac{1}{\pi}\int\limits_{-\pi}^{\pi}f\left(x
ight) dx.$$

In order to find the coefficients a_n , we multiply both sides of the Fourier series by $\cos mx$ and integrate term by term:

$$\int\limits_{-\pi}^{\pi}f\left(x
ight)\cos mxdx=rac{a_{0}}{2}\int\limits_{-\pi}^{\pi}\cos mxdx+\sum_{n=1}^{\infty}\left[a_{n}\int\limits_{-\pi}^{\pi}\cos nx\cos mxdx
ight. \ +\left.b_{n}\int\limits_{-\pi}^{\pi}\sin nx\cos mxdx
ight].$$

The first term on the right side is zero. Then, using the well-known trigonometric identities, we have

$$\int\limits_{-\pi}^{\pi}\sin nx\cos mxdx=rac{1}{2}\int\limits_{-\pi}^{\pi}\left[\sin\left(n+m
ight)x\,+\,\sin(n-m)x
ight]dx=0,$$

$$\int\limits_{-\pi}^{\pi}\cos nx\cos mxdx=rac{1}{2}\int\limits_{-\pi}^{\pi}\left[\cos\left(n+m
ight)x+\cos(n-m)x
ight]dx=0,$$

if $m \neq n$.

In case when m = n, we can write:

$$\int_{-\pi}^{\pi} \sin nx \cos mx dx = rac{1}{2} \int_{-\pi}^{\pi} \left[\sin 2mx + \sin 0
ight] dx, \quad \Rightarrow \int_{-\pi}^{\pi} \sin^2 mx dx$$
 $= rac{1}{2} \left[\left(-rac{\cos 2mx}{2m}
ight) \Big|_{-\pi}^{\pi}
ight] = rac{1}{4m} \left[-\cos(2m\pi) + \cos(2m(-\pi))
ight] = 0;$
 $\int_{-\pi}^{\pi} \cos nx \cos mx dx = rac{1}{2} \int_{-\pi}^{\pi} \left[\cos 2mx + \cos 0
ight] dx, \quad \Rightarrow \int_{-\pi}^{\pi} \cos^2 mx dx$
 $= rac{1}{2} \left[\left(rac{\sin 2mx}{2m}
ight) \Big|_{-\pi}^{\pi} + 2\pi
ight] = rac{1}{4m} \left[\sin(2m\pi) - \sin(2m(-\pi))
ight] + \pi = \pi.$

Thus,

$$\int\limits_{-\pi}^{\pi}f\left(x
ight) \cos mxdx=a_{m}\pi,\;\;\Rightarrow a_{m}=rac{1}{\pi}\int\limits_{-\pi}^{\pi}f\left(x
ight) \cos mxdx,\;\;m=1,2,3,\ldots$$

Similarly, multiplying the Fourier series by $\sin mx$ and integrating term by term, we obtain the expression for b_m :

$$b_{m}=rac{1}{\pi}\int\limits_{-\pi}^{\pi}f\left(x
ight) \sin mxdx,\ \ m=1,2,3,\ldots$$

Rewriting the formulas for a_n , b_n , we can write the final expressions for the Fourier coefficients:

$$a_n = rac{1}{\pi} \int\limits_{-\pi}^{\pi} f\left(x
ight) \cos nx dx, \;\; b_n = rac{1}{\pi} \int\limits_{-\pi}^{\pi} f\left(x
ight) \sin nx dx.$$