CS 221: Artificial Intelligence

Lecture 3: Probability and Bayes Nets

Sebastian Thrun and Peter Norvig

Naranbaatar Bayanbat, Juthika Dabholkar, Carlos Fernandez-Granda, Yan Largman, Cameron Schaeffer, Matthew Seal

Slide Credit: Dan Klein (UC Berkeley)

Goal of Today

Structured representation of probability distribution

Probability

- Expresses uncertainty
- Pervasive in all of Al
 - Machine learning
 - Information Retrieval (e.g., Web)
 - Computer Vision
 - Robotics
- Based on mathematical calculus

Disclaimer: We only discuss finite distributions

Probability

Probability of a fair coin

$$P(COIN = tail) = \frac{1}{2}$$

$$P(\text{tail}) = \frac{1}{2}$$

Probability

Probability of cancer

$$P(\text{has cancer}) = 0.02$$

$$\triangleright P(\emptyset \text{ has cancer}) = 0.98$$

Joint Probability

Multiple events: cancer, test result

P(has cancer, test positive)

Has cancer?	Test positive?	P(C,TP)
yes	yes	0.018
yes	no	0.002
no	yes	0.196
no	no	0.784

Joint Probability

The problem with joint distributions

It takes 2^D-1 numbers to specify them!

Conditional Probability

Describes the cancer test:

$$P(\text{test positive} \mid \text{has cancer}) = 0.9$$

 $P(\text{test positive} \mid \emptyset \text{has cancer}) = 0.2$

Put this together with: Prior probability

$$P(\text{has cancer}) = 0.02$$

 $P(\text{test negative} \mid \text{has cancer}) = 0.1$

Conditional Probability

$$P(C) = 0.02$$

$$P(C) = 0.02$$
 $P(\emptyset C) = 0.98$

We have:

$$P(\text{TP} \mid \text{C}) = 0.9$$

$$P(\text{TP} \mid C) = 0.9$$
 $P(\emptyset\text{TP} \mid C) = 0.1$

$$P(\text{TP} \mid \varnothing\text{C}) = 0.2$$

$$P(\text{TP } | \varnothing \text{C}) = 0.2 \quad P(\varnothing \text{TP } | \varnothing \text{C}) = 0.8$$

We can now calculate joint probabilities

Has cancer?	Test positive?	P(TP, C)
yes	yes	0.018
yes	no	0.002
no	yes	0.196
no	no	0.784
no	no	

Conditional Probability

"Diagnostic" question: How likely do is cancer given a positive test?

$$P(\text{has cancer} \mid \text{test positive}) = ?$$

Has cancer?	Test positive?	P(TP, C)
yes	yes	0.018
yes	no	0.002
no	yes	0.196
no	no	0.784

$$P(C \mid TP) = P(C, TP) / P(TP) = 0.018 / 0.214 = 0.084$$

Bayes Network

• We just encountered our first Bayes network:

P(cancer) and P(Test positive | cancer) is called the "model"

Calculating P(Test positive) is called "prediction"

Calculating P(Cancer | test positive) is called "diagnostic reasoning"

Bayes Network

• We just encountered our first Bayes network:

Independence

Independence

$$P(C, TP) = P(C) \times P(TP)$$

- What does this mean for our test?
 - Don't take it!

Independence

Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- This implies:

$$\forall x, y : P(x|y) = P(x)$$

- We write: $X \perp\!\!\!\perp Y$
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent

Example: Independence

N fair, independent coin flips:

$$2^n \left\{ \begin{array}{c} P(X_1, X_2, \dots X_n) \\ \end{array} \right.$$

Example: Independence?

$P_{\scriptscriptstyle \bullet}$	T	W)
<i>•</i> 1	$(\bot,$	vv j

Т	W	Р
warm	sun	0.4
warm	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(T)

Т	Р
warm	0.5
cold	0.5

W	Р
sun	0.6
rain	0.4

$P_2(T,W)$

Т	W	Р
warm	sun	0.3
warm	rain	0.2
cold	sun	0.3
cold	rain	0.2

Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a Toothache, a dental probe might be more likely to catch
- But: if I have a cavity, the probability that the probe catches doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - $P(+catch \mid +toothache, \neg cavity) = P(+catch \mid \neg cavity)$
- Catch is conditionally independent of Toothache given Cavity:
 - P(Catch | Toothache, Cavity) = P(Catch | Cavity)
- Equivalent conditional independence statements:
 - P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 - P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 - One can be derived from the other easily

Bayes Network Representation

Versus: $2^3-1 = 7$ parameters

A More Realistic Bayes Network

Example Bayes Network: Car

Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)

- Arcs: interactions
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (they may not!)

Example: Coin Flips

N independent coin flips

 No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic
- Model 1: independence

Model 2: rain causes traffic

Why is an agent using model 2 better?

Variables

B: Burglary

A: Alarm goes off

M: Mary calls

J: John calls

E: Earthquake!

Bayes Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

$$P(X|A_1\ldots A_n)$$

Probabilities in BNs

- Bayes nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Example:

$$P(+cavity, +catch, \neg toothache)$$

- This lets us reconstruct any entry of the full joint
- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

$$P(h, h, t, h) =$$

Example: Traffic

Α	7	P(J A)
+a	+j	0.9
+a	Γj	0.1
−a	+j	0.05
¬а	¬j	0.95

Α	M	P(M A)
+a	+m	0.7
+a	$\neg m$	0.3
¬а	+m	0.01
¬а	\neg m	0.99

Е	P(E)
+e	0.002
¬е	0.998

В	ш	Α	P(A B,E)
+b	+e	+a	0.95
+b	- e	¬а	0.05
+b	e 「	+a	0.94
+b	e 「	¬а	0.06
¬b	+e	+a	0.29
¬b	+e	¬а	0.71
Γb	e 「	+a	0.001
⊸b	¬е	−a	0.999

$$\prod P(X_i|\operatorname{Parents}(X_i)) = P(B) \cdot P(E) \cdot P(A|B,E) \cdot P(J|A) \cdot P(M|A)$$

Bayes' Nets

 A Bayes' net is an efficient encoding of a probabilistic model of a domain

- Questions we can ask:
 - Inference: given a fixed BN, what is P(X | e)?
 - Representation: given a BN graph, what kinds of distributions can it encode?
 - Modeling: what BN is most appropriate for a given domain?

Remainder of this Class

- Find Conditional (In)Dependencies
 - Concept of "d-separation"

Causal Chains

This configuration is a "causal chain"

X: Low pressure

Y: Rain

Z: Traffic

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

Is X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$
$$= P(z|y)$$
 Yes!

Evidence along the chain "blocks" the influence

Common Cause

- Another basic configuration: two effects of the same cause
 - Are X and Z independent?
 - Are X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)} = \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$
$$= P(z|y)$$
$$= P(z|y)$$
Yes!

Y: Alarm

X: John calls

Z: Mary calls

Observing the cause blocks influence between effects.

Common Effect

- Last configuration: two causes of one effect (v-structures)
 - Are X and Z independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
 - Are X and Z independent given Y?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation?
 - This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

X: Raining

Z: Ballgame

Y: Traffic

The General Case

 Any complex example can be analyzed using these three canonical cases

General question: in a given BN, are two variables independent (given evidence)?

Solution: analyze the graph

Reachability

- Recipe: shade evidence nodes
- Attempt 1: Remove shaded nodes.
 If two nodes are still connected by an undirected path, they are not conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"

Reachability (D-Separation)

- Question: Are X and Y conditionally independent given evidence vars {Z}?
 - Yes, if X and Y "separated" by Z
 - Look for active paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain A → B → C where B is unobserved (either direction)
 - Common cause A ← B → C where B is unobserved
 - Common effect (aka v-structure)
 A → B ← C where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment

Active Triples

Inactive Triples

Example

Example

$$L \! \perp \! \! \perp \! \! T' | T$$
 Yes

$$L \! \perp \! \! \! \perp \! \! B$$
 Yes

$$L \! \perp \! \! \perp \! \! \! \! \perp \! \! \! \! \! \! B|T$$

$$L \! \perp \! \! \perp \! \! B | T'$$

$$L \! \perp \! \! \perp \! \! B | T, R$$
 Yes

Example

Variables:

R: Raining

■ T: Traffic

D: Roof drips

S: I'm sad

• Questions:

$$T \perp \!\!\! \perp D$$

$$T \perp \!\!\! \perp D | R$$

Yes

 $T \perp \!\!\! \perp D | R, S$

$$P(A \mid T_1, T_2, T_3, ..., T_N)$$

$$P(A \mid T_{1}....T_{N}) = \frac{P(T_{N} \mid A, T_{1}....T_{N-1}) P(A \mid T_{1}....T_{N-1})}{P(T_{N} \mid T_{1}....T_{N-1})}$$

$$= \frac{1}{P(T_{N} \mid T_{1}....T_{N-1})} P(T_{N} \mid A) P(A \mid T_{N} \mid T_{N$$

$$P(A \mid T_1, T_2, T_3, ..., T_N)$$

$$\partial_{+} \neg P(A) \overset{N}{\overset{N}{\bigodot}} P(T_{n} | A)$$

$$\partial_{-} \neg P(\emptyset A) \overset{N}{\overset{N}{\bigodot}} P(T_{n} | \emptyset A)$$

$$h \neg \frac{1}{\partial_{+} + \partial_{-}}$$

$$P(A | T_1...T_N) = ha_+$$

 $P(\emptyset A | T_1...T_N) = ha_-$

$$P(A \mid T_1, T_2, T_3, ..., T_N)$$

$$b_{+} - \log P(A) + \mathop{a}_{n=1}^{N} \log P(T_{n} | A)$$

$$b_{-} - \log P(\emptyset A) + \mathop{a}_{n=1}^{N} \log P(T_{n} | \emptyset A)$$

$$h - \frac{1}{h}$$

$$P(A \mid T_1...T_N) = h \exp b_+$$

$$P(\emptyset A \mid T_1...T_N) = h \exp b_-$$

$$P(A \mid T_1, T_2, T_3, ..., T_N)$$

$$b = \log \frac{P(A \mid T_1 ... T_N)}{P(\emptyset A \mid T_1 ... T_N)} = \log \frac{P(A \mid T_1 ... T_N)}{1 - P(A \mid T_1 ... T_N)}$$

$$b - \log P(A) - \log P(\emptyset A) + \mathop{a}_{n=1}^{N} \log P(T_n \mid A) - \log P(T_n \mid \emptyset A)$$

$$P(A \mid T_1 ... T_N) = 1 - \frac{1}{1 + \exp b}$$

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain
 - End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
 - Topology may happen to encode causal structure
 - Topology only guaranteed to encode conditional independence

Summary

- Bayes network:
 - Graphical representation of joint distributions
 - Efficiently encode conditional independencies
 - Reduce number of parameters from exponential to linear (in many cases)
 - Thursday: Inference in (general) Bayes networks