ARPA Crder No. - 306-6

Project Code No. - 4730

EVALUATION OF CERIUM OXIDE AS A LASER HOST

Submitted by:

Robert C. Linares, Project Scientist

Perkin-Elmer Corporation

Main Avenue

Norwalk, Connecticut 06852

Phone No. (203) 847-0411

OFFICE OF NAVAL RESEARCH

CONTRACT NO. NONR 4660 (00)

1 November 1964 to 31 October 1965

Amount of Contract - \$89,152.00

HARD COPY \$. 1,00 MICROFICHE \$. 0.50

ARCHIVE COPY

BEST AVAILABLE COPY

THIRD QUARTERLY REPORT ON THE GROWTH AND EVALUATION OF CeO AND ThO

During the third quarter investigation of the properties and crystal growth of ThO, was begun. Some work continued on attempts to grow large crystals of CeO, by slow cooling of the flux and by the gradient technique.

CRYSTAL GROWTH

ThO₂

Exhibited the same morphology changes as CeO_2 . However, the solubilities were quite different as was the reaction with the flux medium. The solubility in $NaBO_2$ was very low compared with CeO_2 but about equal in PbF_2 . There was also much less tendency for color center formation than with CeO_2 as determined by transmiss bectra and usual examination. These were very weak with Ca^2 additions and non-existent with F^{-1} additions. Experiments were conducted with fluxes in the ternary system $NaF \cdot B_2O_3 \cdot FoF_2$. It was found that additions of NaF produced a great enhancement of solubility and crystal yield and had a lower vapor pressure than $PbF_2 \cdot B_2O_3$ alone. Using a flux composition of 75 Mole % PbF_2 , 16.7 Mole % NaF and 8.3 Mole % B_2O_3 . ThO_2 crystals have been

grown 4 x 4 x 3mm. These crystals grow as cubes and exhibit identification of growth and flux inclusion like CeO₂, however, this is apparently very growth rate dependent because the latter growth, which occurs very slowly, is of very high quality growth.

Frequently crystals are found with no growth defects and flux inclusion. It is expected that further reduction of growth rates will yield large crystals which are completely free of flux inclusions.

CeO₂

Several large slow cooling runs were made on CeO₂ using the NaBO₂ flux. One was at 0.25°/hour from 1300°C to 950°C. The quality and size of crystals obtained from this run were pcor. The largest crystal was on the order of 3mm³. This melt lost 30% of its volume during the run by evaporation. It is believed that Na₂O is lost preferentially during prolonged heating. This results in a shift of the composition toward or into the region for cubic growth. Subsequent growth is of poor optical quality. CeO₂ was grown from PbO and PbF₂ with very low calcium content (7 ppm). The resulting crystals were yellow in color indicating color center formation due to this Ca²⁺ or possibly to Pb²⁺ in the crystal. Since the NaBO₂ and lead fluxes have shown serious drawbacks, the present emphasis is on the use of Li₂Mo₂O₇ as a

flux. This shows no deterioration in long runs, yields octahedra and yields colorless crystals.

A continued effort has been under way to grow CeO_2 by the gradient technique. High quality growth in excess of 0.02" per day has been achieved. Crystals 2 x 2 x 1mm have been grown by self seeding on a wire.

PROPERTIES

Visible emission has been observed in ThO₂ doped with Eu³⁺, Sm³⁺, Er³⁺, Tb³⁺, Pr³⁺ and Dy³⁺. Ultraviolet emission from Gd³⁺ and infrared emission from Nd³⁺ has been observed. The position of the emission lines are typical for these rare earths. The lines are as harrow as those observed in CeO₂. Europium is particularly interesting having a strong narrow line (<1.5% wide) at 7040% which terminates 3000 cm⁻¹ above the ground state. Eu³⁺ is easily excited in ThO₂ by UV or plue excitation even at low concentrations where as it is very weakly excited in CeO₂. This is mainly due to a shift of the absorption edge to higher energy. Energy transfer has been observed from Tb³⁺ or Eu³⁺ in ThO₂: No change has been noted in the emission linewidth of Eu³⁺ when Tb³⁺ is present up to 5%, although the brightness increased.

The usual objection to the use of ThO as a laser is possible degradation of its optical properties due to its inherent radio-

led us to conclude that optical damage anneals out at a faster rate than it can occur and that other effects such as transmutation are unlikely because of the energy of the radiation involved.

RCL/jld

¥