SVM application with R

Introduction

- Support Vector Machine is one of the most popular supervised machine learning algorithms.
 - Inner product-training of the model is very efficient
 - Kernel function-it allows us to conduct non-linear fitting
- Agenda
 - Example 1: face recognition
 - Example 2: MRI classification
 - Understanding SVM
 - + Cost function & boundary
 - + Kernel functions & parameters
 - Example 3: spam email classification (hands-on)

Example 1: Face recognition

Example 1: Yale face recognition (1/4)

- This example aims to compare SVM with KNN* and show the visualization of SVM model
- Data: <u>Yale FR database</u>, 494 frontal face picture of 38 people (13 picture per person), with resolution of 192x168 (32k pixels)

- Learning target: recognize the identity of the photo
- Training and test: 50 photos are randomly selected as test set
- Algorithm comparison: SVD**+KNN vs SVM
- SVM strategy: 703*** "one vs one" classifiers are built

^{*} K-nearest-neighbor * *SVD Singular Value Decomposition *** Choose 2 from 38

Example 1: Yale face recognition (2/4)

Solution 1:

- SVD + 1-nearest-neighbor
- Result: reduce dimension to less than 444 and achieve the accuracy of 47/50.

Solution 2:

- SVM + Support Vector Face
- Result: achieve accuracy of 50/50, SV-Face is used to visualize the model.

Example 1: Yale face recognition (3/4)

Boundary function:

$$f(x) = w^T x + b$$

• Support Vector Face—visualization of f(x)

Example 1: Yale face recognition (4/4)

Visualization of the distance

Example 2: MRI classification

Example 2: MRI classification (1/2)

- This Example shows the framework to introduce prior knowledge to SVM through <u>regularizing the coefficients</u> and <u>designing kernel</u>
- Literature: Spatial and anatomical regularization of SVM: a general framework for neuroimaging data
- Model:

$$Alzheimer \sim SVM(256 * 256 * 180voxels)$$

- To much degree of freedom
 - Hundreds of training samples but millions of variables
- Introduce constrain
 - Penalize coefficients of "similar " voxels using adjacency/similarity matrix (11m by 11m)
 - Similarity: spatial and anatomical prior knowledge
- Ease of computation
 - Kernalization

Example 2: MRI classification (2/2)

Fig. 4. Normalized $\mathbf{w}^{\mathrm{opt}}$ coefficients for: (a) *Voxel-Direct*, (b) *Voxel-Regul-Spatial* (FWHM = 4 mm), (c) *Voxel-Regul-Spatial* (FWHM = 8 mm), (d) *Voxel-Regul-CombineFisher* (FWHM \sim 4 mm, $\sigma_{\mathrm{loc}} = 10$), and (e) *Voxel-Regul-CombineFisher* (FWHM \sim 8 mm, $\sigma_{\mathrm{loc}} = 10$).

Understanding SVM

Understanding SVM (1/5)

- SVM is trying to find
 - Boundary points (support vectors)
 - Maximum in-between distance

Boundary function

$$y = \sum_{s} \alpha_{s} y_{s} x_{s} x + b$$
; s for all support vectors

Boundary points defines separation line

Cost function

$$cost = \frac{1}{2}||w||^2 - \frac{1}{n}\sum_{i}l_{hinge}(\alpha_{i}(y_{i}(wx_{i}) + b) - (1)) + C\sum_{i}\xi_{i} - \sum_{i}r_{i}\xi_{i} for \ i = 1, 2, ..., n$$

Can be changed to kernel function $K(w, x_i)$ for non-linear fitting

Tolerance of outliers, avoiding over fitting

Understanding SVM (2/5)

Input & Output

- Input:
 - Data: numerical, ordinal, categorical
 - Parameters:
 - + Slack variable C
 - + Kernel functions and parameters
- Output:
 - SV index: which samples are the boundary points
 - Coefficients

Understanding SVM (3/5)

Kernel function

Why we need kernel?

High dimension projection -> Non-linear boundary

Understanding SVM (4/5)

Gaussian Kernel—the 2D "gravitational field"

SVM classification plot

Understanding SVM (5/5)

Cost function

$$cost = \frac{1}{2} ||w||^2 - \sum_{i} \alpha_i (y_i(K(w, x_i) + b) - 1) + C \sum_{i} \xi_i - \sum_{i} r_i \xi_i$$

$$for \ i = 1, 2, ..., n$$

Polynomial Kernel

$$K(w, x) = (w^T x + b)^d$$

Gaussian Kernel

$$K(w,x) = a \exp\left(-\frac{(w-x)^2}{2\sigma^2}\right)$$

- / larger/smaller value increases the boundary curvature
- Other Kernels

Example 3: spam email classification

Example 3: spam email

- Spam email classification:
 - Use extracted email features to predict whether an email is a spam email
- R code hands-on
 - Loading library
 - Accessing data
 - Training SVM and interpreting results
 - Tuning parameters
- Learn through practice—tips for R programming
 - Describe your problem with key words and Google them
 - Use R help
 - Find sample code and visualize each step

Get your hands dirty!

Example 3: spam email

Error on the test set

Kernel/ para		False positive: Nonspam-> spam	False negative: Spam->Nonspam	False rate
Linear		6.7%	11.1%	8.4%
Gaussian(RDB)				
(sigma)	0.01	4.5%	11.5%	7.3%
	0.03	4.5%	12.4%	7.7%
	0.05	4.1%	14.3%	8.1%
	0.07	4.3%	16.0%	9.0%
	0.09	4.1%	18.1%	9.7%
Polynomial				
(degree)	2	10.3%	13.2%	11.4%
	3	9.4%	15.3%	11.7%
	4	11.7%	14.7%	12.9%

