Introduction to Bayesian Estimation

How do Classical and Bayesian Analysis Differ?

Consider a simple model:

$$y_t = \mu + \varepsilon_t$$
 where $t = 1, 2, ..., T$ $\varepsilon_t \sim N(0, \sigma^2)$

Assume σ^2 is known \implies we want to estimate μ

$$\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} y_t \qquad \qquad \hat{\mu} \sim N(\mu, \frac{\sigma^2}{T})$$

95% confidence interval: $\left[\hat{\mu} - 1.96 \frac{\sigma}{\sqrt{T}}, \hat{\mu} + 1.96 \frac{\sigma}{\sqrt{T}}\right]$

How do Classical and Bayesian Analysis Differ?

1. Classical analysis

- $\triangleright \mu$ is a fixed, unknown quantity \Longrightarrow "true value"
- The estimator $\hat{\mu}$ is a random variable and is evaluated via repeated sampling \implies the interval we constructed will contain the true value in 95% of cases if we estimate $\hat{\mu}$ for thousand different samples taken from a population with given μ and σ^2
- The estimator $\hat{\mu}$ is "best" in the sense of having the highest probability of being close to the true μ Probability is objective and is the limit of the

relative frequency of an event.

How do Classical and Bayesian Analysis Differ?

- 2. Bayesian analysis
 - $\triangleright \mu$ is treated as a random variable \Longrightarrow it has a probability distribution
 - \triangleright The distribution summarizes our knowledge about the model parameter \Longrightarrow 2 sources of information:
 - Prior information (before seeing the data): subjective belief about how likely different parameter values are
 - Sample information: leads researcher to revise/update his prior beliefs
 - ➤ Probabilities are subjective and *not* necessarily related to the relative frequency of an event.
 - Explicit use of probabilities to quantify uncertainty.

Key Ingredients for Bayesian Analysis

1. Probabilities

□ Review some probability rules to derive Bayes'
 rule

2. Initial information

⇒ What is the reason for using prior information?

How to specify a prior distribution for parameters?

3. How to combine data and non-data (prior) information?

Bayesian estimation in practice

Some Rules of Probability

Consider two random variables: A and B

The rules of probability imply: $p(A, B) = p(A \mid B) p(B)$

- Where p(A, B) is the *joint* probability of A and B
 - p(A | B) is the probability of A occurring conditional on B having occurred
 - p(B) is the *marginal* probability of B

Alternatively, we can reverse the roles of A and B so that:

$$p(A, B) = p(B \mid A) p(A)$$

Bayes' Rule

Equating the two expressions for the joint probability of A and B provides us with *Bayes' rule*:

$$p(B|A) = \frac{p(A|B)p(B)}{p(A)}$$

Let's map this rule into a simple regression model where we want to learn about a parameter θ given the data y:

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{p(y)}$$

A Closer Look at Each Component

Key object of interest: $p(\theta \mid y)$

- > p(y) \implies marginal data density Since we are interested in learning about θ , we can ignore p(y) since it does not involve θ .
- $p(\theta) \implies prior density$ It does not depend on the data y; instead, it contains non-data information about θ .
- $p(y \mid \theta) \implies \begin{array}{c} \text{likelihood function} \\ \text{It is the density of the data conditional} \\ \text{on the parameters.} \\ \end{array}$

The Posterior Distribution

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$

"The posterior is proportional to the likelihood times the prior."

- The posterior summarizes all we know about θ after seeing the data.
 - The posterior combines both data and non-data information.
- The equation can be viewed as an updating rule where the data allow us to update our prior views about θ .

Skills for Bayesian Inference

Bayesian inference requires a good knowledge of:

- Probability distributions
 - > to formulate prior distributions
 - > to generate draws from them
 - > to analyze posterior distributions
- Numerical simulation techniques
 - Gibbs sampling
 - ➤ Metropolis-Hastings algorithm

More on Priors

- Two decisions with regard to priors:
 - 1. Family of the prior distribution
 - 2. Hyperparameters of the prior distribution
- *In principle* any distribution can be combined with the likelihood to form the posterior.

11

The Linear Regression Model

• Consider the linear regression model with *K* fixed regressors:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \qquad \boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \boldsymbol{I_T})$$

where **Y** and ε are $T \times 1$ vectors, **X** is a $T \times K$ matrix of exogenous variables and deterministic terms.

• Likelihood:

$$p(\mathbf{Y}|\boldsymbol{\beta}, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{T}{2}}} \exp\left[-\frac{1}{2\sigma^2} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})\right]$$

Bayesian Analysis

- Idea 1: The parameters $\theta = [\beta' \ \sigma^2]'$ are random variables with a probability distribution.
- Idea 2: A Bayesian estimate of this distribution combines prior beliefs and information from the data.
 - > Step 1: Form prior beliefs about parameters (based on past experience or other studies) and express in the form of a probability distribution: $p(\theta)$
 - > Step 2: Information contained in the data is summarized by the likelihood function: $L(\theta|\mathbf{Y})$
 - Step 3: Bayes' Rule gives the posterior distribution of the parameters: $p(\theta|\mathbf{Y}) \propto L(\theta|\mathbf{Y})p(\theta)$

Example 1: Inference of β when σ^2 known

Prior distribution of β

$$p(\boldsymbol{\beta}|\boldsymbol{\sigma}^2) \sim N(\boldsymbol{\beta}_0, \boldsymbol{\Sigma}_0)$$

Prior density:
$$(2\pi)^{-\frac{K}{2}} |\mathbf{\Sigma_0}|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} (\mathbf{\beta} - \mathbf{\beta_0})' \mathbf{\Sigma_0^{-1}} (\mathbf{\beta} - \mathbf{\beta_0})\right\}$$

$$p(\boldsymbol{\beta}|\sigma^2) \propto \exp\left\{-\frac{1}{2}(\boldsymbol{\beta}-\boldsymbol{\beta_0})'\boldsymbol{\Sigma_0^{-1}}(\boldsymbol{\beta}-\boldsymbol{\beta_0})\right\}$$

Example:
$$\beta_0 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\Sigma_0 = \begin{bmatrix} 1 & 0 \\ 0 & 10 \end{bmatrix}$

Likelihood

$$L(\boldsymbol{\beta}|\sigma^2, \mathbf{Y}) \propto \exp\left\{-\frac{1}{2\sigma^2}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})\right\}_{14}$$

Combining prior density and likelihood

$$p(\boldsymbol{\beta}|\sigma^2, \mathbf{Y}) \propto p(\boldsymbol{\beta}|\sigma^2) L(\boldsymbol{\beta}|\sigma^2, \mathbf{Y})$$

$$\propto \exp\left\{-\frac{1}{2}(\boldsymbol{\beta}-\boldsymbol{\beta_0})'\boldsymbol{\Sigma_0^{-1}}(\boldsymbol{\beta}-\boldsymbol{\beta_0})-\frac{1}{2\sigma^2}(\mathbf{Y}-\mathbf{X}\boldsymbol{\beta})'(\mathbf{Y}-\mathbf{X}\boldsymbol{\beta})\right\}$$

Posterior distribution of β

$$p(\boldsymbol{\beta}|\boldsymbol{\sigma}^2, \mathbf{Y}) \sim N(\boldsymbol{\beta}_1, \boldsymbol{\Sigma}_1)$$

where

$$\begin{split} \beta_1 &= (\Sigma_0^{-1} + \sigma^{-2} X' X)^{-1} (\Sigma_0^{-1} \beta_0 + \sigma^{-2} X' Y) \\ &= (\Sigma_0^{-1} + \sigma^{-2} X' X)^{-1} (\Sigma_0^{-1} \beta_0 + \sigma^{-2} X' X b) \text{ with } \mathbf{b} = (X' X)^{-1} X' Y \\ \Sigma_1 &= (\Sigma_0^{-1} + \sigma^{-2} X' X)^{-1} \end{split}$$

Example 2: Inference of σ^2 when β known

• Recall: $\varepsilon_i \sim N(0, \sigma^2) \implies W = \sum_{i=1}^{\nu} \varepsilon_i^2$ then $W \sim \Gamma(\nu, \delta)$

with the density for the Gamma distribution given by:

$$p(W) = [\Gamma(\nu/2)]^{-1} \left[\frac{\delta}{2} \right]^{\nu/2} W^{(\frac{\nu}{2} - 1)} \exp[\frac{\delta}{2} W]$$

where
$$E(W) = \frac{v}{\delta}$$
 and $Var(W) = \frac{v}{\delta^2}$

• Use this as a prior for the inverse of the variance σ^2 (also called the "precision"):

$$p(1/\sigma^2) \sim \Gamma(\nu_0, \delta_0)$$

Why Use this Prior?

- 1) $p(\sigma^2) = 0$ for $\sigma^2 < 0$
- 2) flexible family (different shapes)

Gamma Distributions with Mean Unity

Why Use this Prior?

- 3) It is the "natural conjugate prior" given the likelihood, meaning that if the prior is $p(1/\sigma^2) \sim \Gamma(\nu_0, \delta_0)$, then the posterior turns out to be $p(1/\sigma^2|\mathbf{Y}) \sim \Gamma(\nu_1, \delta_1)$
 - ➤ If prior were derived from earlier data analysis, it would have this form
 - \implies it is equivalent to having v_0 observations with sum of squared residuals δ_0
 - This prior makes analytical treatment of the problem tractable

Example 2: Inference of σ^2 when β known

Prior distribution of $1/\sigma^2$

$$p(1/\sigma^2|\mathbf{\beta}) \sim \Gamma(\nu_0, \delta_0)$$

Prior density:
$$p(1/\sigma^2|\mathbf{\beta}) \propto (\frac{1}{\sigma^2})^{\frac{v_o}{2}-1} \exp(-\frac{\delta_0}{2\sigma^2})$$

Likelihood

$$L(1/\sigma^2|\boldsymbol{\beta}, \mathbf{Y}) \propto \frac{1}{(\sigma^2)^{\frac{T}{2}}} \exp\left\{-\frac{1}{2\sigma^2}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})\right\}$$

Combining prior density and likelihood

$$p(1/\sigma^2|\mathbf{\beta}, \mathbf{Y}) \propto p(1/\sigma^2|\mathbf{\beta}) L(\sigma^2|\mathbf{\beta}, \mathbf{Y})$$

$$\propto \left(\frac{1}{\sigma^2}\right)^{\frac{\nu_0}{2}-1} \exp\left\{-\frac{\delta_0}{2\sigma^2}\right\} \frac{1}{(\sigma^2)^{\frac{T}{2}}} \exp\left\{-\frac{1}{2\sigma^2} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})\right\}$$

$$= \left(\frac{1}{\sigma^2}\right)^{\frac{\nu_o}{2} + \frac{T}{2} - 1} \exp\left\{-\frac{1}{2\sigma^2} \left[\delta_0 + (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})\right]\right\}$$

Posterior distribution of $1/\sigma^2$

$$p(1/\sigma^2|\mathbf{\beta}, \mathbf{Y}) \sim \Gamma(\nu_1, \delta_1)$$

where

$$\mathbf{v}_1 = \mathbf{v}_0 + T$$

$$\delta_1 = \delta_0 + (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

What If All Parameters Are Unknown?

• Setting the prior: *joint* density for β and $1/\sigma^2$

$$p(\boldsymbol{\beta}, 1/\sigma^2) = p(\boldsymbol{\beta}|\sigma^2) p(1/\sigma^2)$$
where
$$p(\boldsymbol{\beta}|\sigma^2) \sim N(\boldsymbol{\beta_0}, \sigma^2 \boldsymbol{\Sigma_0})$$

$$p(1/\sigma^2) \sim \Gamma(\nu_o, \delta_0)$$

Setting up the likelihood function

$$p(\mathbf{Y}|\boldsymbol{\beta},\sigma^2) = \frac{1}{(2\pi\sigma^2)^{\frac{T}{2}}} \exp\left[-\frac{1}{2\sigma^2}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})\right]$$

What If All Parameters Are Unknown?

• Calculating the *joint* posterior distribution

$$p(\boldsymbol{\beta}, 1/\sigma^2 | \mathbf{Y}) \propto p(\mathbf{Y}, \boldsymbol{\beta}, 1/\sigma^2)$$

$$\propto \frac{1}{(\sigma^2)^{\frac{T}{2}}} \exp\left\{-\frac{1}{2\sigma^2} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})' (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})\right\}$$

$$\left(\frac{1}{\sigma^2}\right)^{\frac{v_0}{2}-1} \exp\left\{-\frac{\delta_0}{2\sigma^2}\right\}$$

$$\left(\frac{1}{\sigma^2}\right)^{K/2} \exp\left\{-\frac{1}{2\sigma^2} (\boldsymbol{\beta} - \boldsymbol{\beta_0})' \boldsymbol{\Sigma_0^{-1}} (\boldsymbol{\beta} - \boldsymbol{\beta_0})\right\}$$

Posterior for $\sigma^{-2}|Y$

$$1/\sigma^2 | \mathbf{Y} \sim \Gamma(\nu^*, \delta^*)$$

$$\nu^* = \nu_0 + T$$

$$\delta^* = \delta_0 + (\mathbf{Y} - \mathbf{X}\mathbf{b})'(\mathbf{Y} - \mathbf{X}\mathbf{b}) + (\mathbf{b} - \boldsymbol{\beta_0})'\widetilde{\boldsymbol{\Sigma}}(\mathbf{b} - \boldsymbol{\beta_0})$$

$$\mathbf{b} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Y}$$

$$\widetilde{\mathbf{\Sigma}} = \mathbf{\Sigma}_{\mathbf{0}}^{-1}(\mathbf{\Sigma}_{\mathbf{0}}^{-1} + \mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{X}$$

Posterior for $\beta | \sigma^{-2}$, Y

$$\boldsymbol{\beta} | \sigma^{-2}, \mathbf{Y} \sim N(\boldsymbol{\beta}^*, \sigma^2 \boldsymbol{\Sigma}^*)$$

$$\boldsymbol{\beta}^* = \boldsymbol{\Sigma}^* (\boldsymbol{\Sigma}_0^{-1} \boldsymbol{\beta}_0 + \mathbf{X}' \mathbf{Y})$$

$$\mathbf{\Sigma}^* = (\mathbf{\Sigma}_0^{-1} + \mathbf{X}'\mathbf{X})^{-1}$$

• Diffuse prior: $\Sigma_0 \to \infty \cdot I_K$ $\Rightarrow \Sigma^* \to (X'X)^{-1}$ $\Rightarrow \beta^* \to (X'X)^{-1}X'Y$

= usual OLS formulas

Posterior for $\beta | \sigma^{-2}$, Y

$$\boldsymbol{\beta} | \sigma^{-2}, \mathbf{Y} \sim N(\boldsymbol{\beta}^*, \sigma^2 \boldsymbol{\Sigma}^*)$$

$$\boldsymbol{\beta}^* = \boldsymbol{\Sigma}^* (\boldsymbol{\Sigma}_0^{-1} \boldsymbol{\beta}_0 + \mathbf{X}' \mathbf{Y})$$

$$\mathbf{\Sigma}^* = (\mathbf{\Sigma}_{\mathbf{0}}^{-1} + \mathbf{X}'\mathbf{X})^{-1}$$

• Dogmatic prior: $\Sigma_0 \to 0 \cdot I_K$

$$\Rightarrow \Sigma^* \rightarrow 0$$

$$\Rightarrow \beta^* \rightarrow \beta_0$$

posterior = prior

Posterior for $\beta | \sigma^{-2}$, Y

$$\beta | \sigma^{-2}, Y \sim N(\beta^*, \sigma^2 \Sigma^*)$$

$$\beta^* = \Sigma^* (\Sigma_0^{-1} \beta_0 + X'Y)$$

$$\Sigma^* = (\Sigma_0^{-1} + X'X)^{-1}$$

• In general: $\boldsymbol{\beta}^*$ is a matrix-weighted average of $\boldsymbol{\beta}_0$ and $\widehat{\boldsymbol{\beta}}$, where weights depend on confidence in prior $(\boldsymbol{\Sigma}_0)$ and strength of evidence from data $(\mathbf{X}'\mathbf{X})$

• Suppose I had observed an earlier sample of \tilde{T} observations:

$$\{\widetilde{Y}_t, \widetilde{\boldsymbol{X}}_t\}_{\widetilde{t}=1}^{\widetilde{T}}$$

which were independent of the current observed sample:

$$\{Y_t, \boldsymbol{X}_t\}_{t=1}^T$$

• Then my OLS estimate based on all information would be:

$$\widehat{\boldsymbol{\beta}} = \left(\sum_{t=1}^{T} \mathbf{X}_{t} \mathbf{X}_{t}' + \sum_{\tilde{t}=1}^{\tilde{T}} \widetilde{\mathbf{X}}_{t} \widetilde{\mathbf{X}}_{t}'\right)^{-1}$$

$$\left(\sum_{t=1}^{T} \mathbf{X}_{t} \mathbf{Y}_{t} + \sum_{\tilde{t}=1}^{\tilde{T}} \widetilde{\mathbf{X}}_{t} \widetilde{\mathbf{Y}}_{t}'\right)$$

with variance (given σ^2) of:

$$Var(\widehat{\boldsymbol{\beta}}) = \sigma^2 \left(\sum_{t=1}^T \mathbf{X}_t \, \mathbf{X}_t' + \sum_{\tilde{t}=1}^{\tilde{T}} \widetilde{\mathbf{X}}_t \, \widetilde{\mathbf{X}}_t' \right)^{-1}$$

• Let β_0 be the OLS estimate based on the prior sample *alone*:

$$\boldsymbol{\beta}_0 = \left(\sum_{\tilde{t}=1}^{\tilde{T}} \widetilde{\mathbf{X}}_t \, \widetilde{\mathbf{X}}_t'\right)^{-1} \left(\sum_{\tilde{t}=1}^{\tilde{T}} \widetilde{\mathbf{X}}_t \, \widetilde{\mathbf{Y}}_t\right)$$

and let $\sigma^2 \Sigma_0$ denote its variance:

$$\mathbf{\Sigma}_0 = \left(\sum_{\tilde{t}=1}^{\tilde{T}} \widetilde{\mathbf{X}}_t \, \widetilde{\mathbf{X}}_t'\right)^{-1}$$

$$\widehat{\boldsymbol{\beta}} = \left(\sum_{t=1}^{T} \mathbf{X}_{t} \, \mathbf{X}_{t}' + \sum_{\tilde{t}=1}^{\tilde{T}} \widetilde{\mathbf{X}}_{t} \, \widetilde{\mathbf{X}}_{t}'\right)^{-1}$$

$$\left(\sum_{t=1}^{T} \mathbf{X}_{t} \mathbf{Y}_{t} + \sum_{\tilde{t}=1}^{\tilde{T}} \widetilde{\mathbf{X}}_{t} \, \widetilde{\mathbf{Y}}_{t}\right)$$

$$= \left(\sum_{t=1}^{T} \mathbf{X}_{t} \, \mathbf{X}_{t}' + \sum_{0}^{-1}\right)^{-1}$$

$$\left(\sum_{t=1}^{T} \mathbf{X}_{t} \, \mathbf{Y}_{t} + \sum_{0}^{-1} \widehat{\boldsymbol{\beta}}_{0}\right)$$

 \implies identical to formula for posterior mean β^*

$$Var(\widehat{\boldsymbol{\beta}}) = \sigma^2 \left(\sum_{t=1}^T \mathbf{X}_t \, \mathbf{X}_t' + \sum_{\tilde{t}=1}^{\tilde{T}} \widetilde{\mathbf{X}}_t \, \widetilde{\mathbf{X}}_t' \right)^{-1}$$

$$= \sigma^2 (\sum_{t=1}^T \mathbf{X}_t \, \mathbf{X}_t' + \, \mathbf{\Sigma}_0^{-1})^{-1}$$

$$=\sigma^2 \Sigma^*$$

 \Longrightarrow for Σ^* the posterior variance defined earlier

Dummy Observations

• Augment original dataset with artificial observations that correspond to the prior

$$\mathbf{y}^* = \begin{bmatrix} y_1 \\ \vdots \\ y_T \\ \mathbf{P}^{-1} \boldsymbol{\beta}_0 \end{bmatrix} \quad \mathbf{X}^* = \begin{bmatrix} \mathbf{x}'_0 \\ \vdots \\ \mathbf{X}'_{T-1} \\ \mathbf{P}^{-1} \end{bmatrix}$$

where \mathbf{P}^{-1} is the Cholesky factor of $\mathbf{\Sigma_0^{-1}} (= \mathbf{P}^{-1} \mathbf{P}^{-1'})$

Sources of Prior Information

- Observations of another dataset
 - Earlier time period
 - Different country
 - ➤ Question: How representative of sample/country we want to analyze?

Sources of Prior Information

• Solution: downweight these observations by κ

Use
$$v = \kappa \tilde{T}$$
, $\delta = \kappa \sum_{\tilde{t}=1}^{\tilde{T}} (y_{\tilde{t}} - \hat{\tilde{\boldsymbol{\beta}}}_{i}^{T} \mathbf{x}_{\tilde{t}-1})^{2}$

$$\boldsymbol{\beta}_{0} = \left(\sum_{\tilde{t}=1}^{\tilde{T}} \mathbf{x}_{\tilde{t}-1}^{T} \mathbf{x}_{\tilde{t}-1}^{T}\right)^{-1} \left(\sum_{\tilde{t}=1}^{\tilde{T}} \mathbf{x}_{\tilde{t}-1}^{T} y_{\tilde{t}}\right)$$

$$\boldsymbol{\Sigma}_{0} = \kappa^{-1} \left(\sum_{\tilde{t}=1}^{\tilde{T}} \mathbf{x}_{\tilde{t}-1}^{T} \mathbf{x}_{\tilde{t}-1}^{T}\right)^{-1}$$

 $\kappa=1\Rightarrow$ earlier data just as good as current $\kappa=0.5\Rightarrow$ earlier gets half the weight of current $\kappa=0\Rightarrow$ earlier data completely ignored

 $\implies \kappa$ summarizes how much you trust the other dataset (how many observations the prior is counted as)₃₅

Sources of Prior Information

- Typical time-series properties
 - Most variables are hard to forecast
 - \rightarrow most elements of β_0 are zero
 - To the extent that variables do help, most recent values are likely to be more useful

What About the Marginal Posterior for β ?

• To make inference on β , we need to know the *marginal* posterior:

$$p(\boldsymbol{\beta}|\mathbf{Y}) = \int_0^\infty p(\boldsymbol{\beta}, \frac{1}{\sigma^2}|\mathbf{Y}) d\frac{1}{\sigma^2}$$

- For this simple model under the natural conjugate prior analytical results can be obtained:
 - $\boldsymbol{\beta}|\mathbf{Y} \sim \text{multivariate Student } t \text{ with } v_0 + T \text{ degrees of freedom, mean } \boldsymbol{\beta}^*, \text{ and scale matrix } (\delta^*/v^*) \boldsymbol{\Sigma}^* \text{ as defined before}$
- BUT » integration is hard
 - » with other prior distributions analytical derivation of joint and marginal posterior is <u>not</u> possible ₃₇

Solution: Gibbs Sampling

• Suppose the parameter vector $\boldsymbol{\theta}$ can be partitioned as $\boldsymbol{\theta}' = (\boldsymbol{\theta}_1', \boldsymbol{\theta}_2', \boldsymbol{\theta}_3')$ with the property that $p(\boldsymbol{\theta}|\mathbf{Y})$ is of unknown form but

$$p(\mathbf{\theta}_1|\mathbf{Y},\mathbf{\theta}_2,\mathbf{\theta}_3)$$

 $p(\mathbf{\theta}_2|\mathbf{Y},\mathbf{\theta}_1,\mathbf{\theta}_3)$
 $p(\mathbf{\theta}_3|\mathbf{Y},\mathbf{\theta}_1,\mathbf{\theta}_2)$

are of known form and we can easily sample from these *conditional* distributions (same idea works for 2, 4, or *n* blocks)

Gibbs Sampling: Theory

- What does that buy us?
 - Theory suggests that if we obtain many samples $\theta_1^{(j)}$, $j \to \infty$ from $p(\theta_1 | \mathbf{Y}, \theta_2, \theta_3)$, then these will also be samples from the joint posterior $p(\theta_1, \theta_2, \theta_3 | \mathbf{Y})$ (see Geman and Geman, 1984; Casella and George, 1992)
 - The marginal posterior distribution $p(\theta_1|\mathbf{Y})$ can be approximated by the *empirical* distribution of θ_1
 - \Rightarrow for example: estimate of mean for $\theta_{1,i}$ is the sample mean of retained draws $\frac{1}{(D-D_0)}\sum_{j=D_0+1}^D \theta_{1,i}$

Gibbs Sampling: Implementation

(1) Start with arbitrary initial guesses

$$\mathbf{\theta}_{1}^{(j)}, \mathbf{\theta}_{2}^{(j)}, \mathbf{\theta}_{3}^{(j)} \text{ for } j = 1.$$

(2) Generate: $\boldsymbol{\theta}_1^{(j+1)}$ from $p(\boldsymbol{\theta}_1|\mathbf{Y},\boldsymbol{\theta}_2^{(j)},\boldsymbol{\theta}_3^{(j)})$

$$\mathbf{\theta}_2^{(j+1)}$$
 from $p(\mathbf{\theta}_2|\mathbf{Y},\mathbf{\theta}_1^{(j+1)},\mathbf{\theta}_3^{(j)})$

$$\boldsymbol{\theta}_3^{(j+1)}$$
 from $p(\boldsymbol{\theta}_3|\mathbf{Y},\boldsymbol{\theta}_1^{(j+1)},\boldsymbol{\theta}_2^{(j+1)})$

- (3) Repeat step (2) for j = 1, 2, ..., D
- (4) Throw out first D_0 draws (for D_0 large) and use remaining $(D D_0)$ draws for inference

Back to our Regression Model

• <u>Idea</u>: By sampling repeatedly from the conditional distributions $p(\boldsymbol{\beta}|\frac{1}{\sigma^2}, \mathbf{Y})$ and $p(\frac{1}{\sigma^2}|\boldsymbol{\beta}, \mathbf{Y})$, we can approximate the joint and marginal distributions of our parameters of interest

• Steps:

- 1. Set priors and initial guess for σ^2
- 2. Sample β conditional on $\frac{1}{\sigma^2}$
- 3. Sample $\frac{1}{\sigma^2}$ conditional on β
- 4. Cycle through steps (2) and (3) a large number of times and keep only the last $(D D_0)$ draws

Application 1

• Linear regression model with one exogenous variable:

$$y_t = x_t \beta + \varepsilon_t$$
, $t = 1, ..., T$ and $\varepsilon_t \sim N(0, \sigma^2)$

- Gibbs sampling algorithm:
 - (1) a. Set priors: $\beta \sim N(b_0, P_0)$ and $\frac{1}{\sigma^2} \sim \Gamma(t_0, R_0)$ Prior hyperparameters:

$$b_0 = 0.5, P_0 = 10, t_0 = 0, R_0 = 0$$

b. Set starting value for first iteration

$$\sigma^{2,(0)} = 1$$

Application 1

(2) At iteration j, conditional on draw $\sigma^{2,(j-1)}$, draw

$$\beta^{j} | \sigma^{2,(j-1)}, \mathbf{y} \sim N(b_1^{j-1}, P_1^{j-1})$$

where

$$P_1^{j-1} = (P_0^{-1} + \sigma^{2,(j-1)} x' x)^{-1}$$

$$b_1^{j-1} = P_1^{j-1} (P_0^{-1} b_0 + \sigma^{2,(j-1)} x' y)$$

(3) Conditional on draw β^{j} , draw

$$\frac{1}{\sigma^{2,(j)}}|\beta^j, \mathbf{y} \sim \Gamma(t_1, R_1^j)$$

where

$$t_1 = t_0 + T$$

$$R_1^j = R_0 + (y - x\beta^j)'(y - x\beta^j)'$$

How to Take Draws

Normal distribution

To sample a $k \times 1$ vector \mathbf{z} from $N(\mathbf{m}, \mathbf{V})$, generate $k \times 1$ draws \mathbf{z}^0 from the standard normal distribution (randn in Matlab) and then apply the following transformation

$$\mathbf{z} = \mathbf{m} + \left[\left(\mathbf{z}^{0} \right)' \cdot \mathbf{V}^{1/2} \right]' = \mathbf{m} + \left[randn(1, k) \cdot chol(\mathbf{V}) \right]'$$

- \triangleright **A** is said to be a square root of **V** if the matrix product $\mathbf{A}\mathbf{A} = \mathbf{V}$
- For positive-definite matrices, one way to obtain the square root is the *Choleski decomposition* (chol in Matlab): $\mathbf{C} = chol(\mathbf{V})' \Rightarrow \mathbf{CC}' = \mathbf{V}$

How to Take Draws

Inverse gamma distribution

$$\frac{1}{\sigma^2} \sim \Gamma(v, \frac{1}{\delta})$$
$$\sigma^2 \sim \Gamma^{-1}(v, \delta)$$

To sample a scalar s from an inverse gamma with degrees of freedom v and scale parameter δ , there are 2 options:

 \triangleright generate T numbers from $s^0 \sim N(0, 1)$ and apply the following transformation

$$s = \frac{\delta}{(s^0)'s^0}$$

 \triangleright generate a draw \bar{s} from a gamma with degrees of freedom v and scale parameter $\frac{1}{\delta}$ (gamrnd in Matlab) and compute

$$s = \frac{1}{\bar{s}}$$

Posterior Distribution

