

Cambridge International AS & A Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

4708712398

COMPUTER SCIENCE

9618/12

Paper 1 Theory Fundamentals

May/June 2022

1 hour 30 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use an HB pencil for any diagrams, graphs or rough working.
- Calculators must not be used in this paper.

INFORMATION

- The total mark for this paper is 75.
- The number of marks for each question or part question is shown in brackets [].
- No marks will be awarded for using brand names of software packages or hardware.

1 (a) Draw **one** line from each image representation term to its correct definition.

(b) The following section of a bitmap image is 10 pixels wide and 5 pixels high. In this example, each colour is represented by a letter, e.g. B is blue.

В	В	В	В	В	В	В	В	В	В
Υ	Υ	Р	Υ	Υ	Y	Р	Υ	Y	Υ
R	R	М	R	Р	K	Т	Т	R	R
В	0	Р	Y	Υ	Y	Р	G	Р	Р
R	0	R	Р	Р	Р	R	R	R	R

The complete image can have up to 256 colours.

(i) Identify the smallest number of bits that can be used to represent each colour in the complete bitmap image.

<u>8</u>[1]

	(ii)	Calculat your ans										oitmap	image	showr	n, giving
		Show yo	our wo	orking											
		Working	,10) * 5	* 8 (k	oits) /	/ 8								
		Answer		50			bvtes						•••••		
							,								[2]
(c)	Des	scribe hov	w chai	nging	the co	olour d	lepth o	of an i	mage	affect	s its fi	le size	e.		
	Inc	reasing	the	colo	ır de	pth r	esult	s in	ncre	ased	file s	size /	/ Decr	easin	g the
															[2]
(d)	The	e first row	of pix	els in	the in	nage f	rom p	art (b) is sh	own:					
				_]		
			В	В	В	В	В	В	В	В	В	В			
	Exp	olain how	this ro	ow of	oixels	can b	e com	npress	ed usi	ing los	sless	comp	ression	ı <u>.</u>	
	U	se run-l	engtl	h end	codin	g // F	RLE	•		Ū		·			
	R	ecord th	ne co	lour l	Blue	and	the i						s 10		
						·····									
															[2]

_				
2	A car	has	several	features

(a)	One feature is a lane detection system. This system monitors the lines on either side of the
	lane. If the car gets too close to one line, the system automatically moves the car away from
	the line.

	Explain wh	ly the lane	detection	system is an	example of an	embedded sys	stem.
--	------------	-------------	-----------	--------------	---------------	--------------	-------

The lane detection	system is	built into	/ integrated	into the car

The lane detection system is not easily changed/updated by the car owner

The lane detection system only performs one task

r	101
	171

(b) Two other features:

- record the number of miles travelled in the current journey, from when the engine is turned on to when it is turned off
- record the total number of miles the car has travelled since it was built.

Identify the data that will be stored in the primary **and** secondary storage of the car for these **two** features.

Primary Number of miles travelled in the current journey, from when the engine is turned on to when it is turned off

Secondary	Total number of miles the car has travelled since it was built
Secondary	Total named of miles are call nas travelles clines it was said

(c) The car has a resistive touchscreen for the user to select options.

Tick (\checkmark) one box in each row to show whether each statement about a resistive touchscreen is true or false.

Statement	True	False
The screen always has five different layers		Correct
A processor determines the horizontal and vertical coordinates of the point of contact	Correct	
The touchscreen will work if any object touches the screen	Correct	

[1]

[2]

3 The table shows part of the instruction set for a processor. The processor has one general purpose register, the Accumulator (ACC).

Insti	ruction	Evaluation
Opcode	Operand	Explanation
AND	#n	Bitwise AND operation of the contents of ACC with the operand
AND	<address></address>	Bitwise AND operation of the contents of ACC with the contents of <address></address>
XOR	#n	Bitwise XOR operation of the contents of ACC with the operand
XOR	<address></address>	Bitwise XOR operation of the contents of ACC with the contents of <address></address>
OR	#n	Bitwise OR operation of the contents of ACC with the operand
OR	<address></address>	Bitwise OR operation of the contents of ACC with the contents of <address></address>
		Later and a second all and disconditions.

<address> can be an absolute or a symbolic address # denotes a denary number, e.g. #123

(a) The ACC currently contains the following positive binary integer:

|--|

Write the bit manipulation instruction that would change the binary integer in ACC to:

1	1	1	1	1	1	1	1

Opcode OP Operand #255

(b) The ACC currently contains the following positive binary integer:

0 1 1	0	0	1	0	1
-------	---	---	---	---	---

Write the bit manipulation instruction that would change the binary integer in ACC to:

1 0 0 1 1 0 1 0	1	0	0	1	1	0	1	0
-----------------	---	---	---	---	---	---	---	---

[2]

(c)	Convert the following positive binary integer into hexadecimal.
	0111110
	7E[1]
(d)	A three-place logical shift to the left is performed on the following positive binary integer.
	Show the result of this logical shift.
	0111110
	1111000C [1]
(e)	Convert the denary numbers 127 and 12 to 8-bit binary and then perform the subtraction 12 – 127 in binary.
	Show your working.
	127 in binary
	12 in binary
	12 – 127 in binary
	[3]

	Data need	s protecting from someone amending / deleti	المصاداحة مصادات						
		Data needs protecting from someone amending / deleting or taking it							
C	Computer system	Computer system need protecting to stop per	ople for exam						
ir	nstalling malwa	re or damaging the system							
(b) C	Complete the table	by identifying two security threats to the data on a con	nputer.						
	Describe each threa	at.							
C	Give a different pre	vention method for each threat.							
Г	•								
	Threat	Description	Prevention method						
		Malicious software that replicates itself and							
		can corrupt data	Anti-virus /						
	Virus		Firewall /						
			Anti-malware						
		Unauthorised access to the computer with							
		malicious intent	Biometrics /						
	Hacker		Strong						
			Password						

Data is turned into cipher text // Data is encoded Used so that it cannot be understood if intercepted without the decryption key [Turn over 9618/12/M/J/22

5 A database, FILMS, stores information about films and actors.

Part of the database is shown:

```
ACTOR(<u>ActorID</u>, FirstName, LastName, DateOfBirth)

FILM_FACT(<u>FilmID</u>, FilmTitle, ReleaseDate, Category)

FILM_ACTOR(<u>ActorID</u>, <u>FilmID</u>)
```

(a) Complete the entity-relationship (E-R) diagram.

(b) A composite primary key consists of two or more attributes that together form the primary key.

Explain why the table FILM ACTOR has a composite primary key.

[2]

Neither key uniquely identifies each tuple by itself
One actor cannot appear in the same film twice so together they are unique

(c) Complete the SQL script to return the IDs of all the actors in the film with the title Cinderella.

SELECT FILM_ACTOR.ActorID / ActorID

FROM FILM_ACTOR

INNER JOIN FILM_FACT

ON FILM_FACT.FilmID = FILM_ACTOR.FilmID

WHERE FILM_FACT.FilmTitle = "Cinderella"

[4]

(d) Write an SQL script to count the number of films that were released in January 2022.

SELECT COUNT(FilmID).

FROM FILM_FACT

WHERE ReleaseDate >= #01/01/2022# AND ReleaseDate <= #31/01/2022#;

// WHERE ReleaseDate BETWEEN #01/01/2022# AND

#31/01/2022#;

// WHERE ReleaseDate = "January 2022";

(e) A Database Management System (DBMS) is used to create and manipulate the database.

Complete the descriptions of the features and tools found in a DBMS using the given terms. Not all terms will be used.

Boolean	data dictionary	data redundancy	field names
input	interface	logical schema	normalisation
operating system	output	primary keys	query
structure			

A DBMS provides data management. This includes the development of a

data dictionary

that stores information about the data stored, such as

field names

and

primary keys

The logical schema

uses methods, such as an E-R diagram, to show the structure of the database and its relationships.

The query

processor allows a user to perform searches to find specific data. The DBMS also provides a developer interface

that allows the user to create tables, forms and reports.

6	A pr	rogrammer uses language translators when writing and testing a program.					
	(a)	Describe the operation of a compiler.					
		Attempts to translate the whole source code					
		Creates a separate error report at the end of the translation process					
		If translation successful / no errors creates an executable file					
		[2]					
	(b)	Describe the operation of an interpreter.					
		Reads each line then translates it and executes it					
		Stops when an error is encountered // displays errors where it finds					
		them					
		[0]					
		[2]					
	(c)	Explain how a programmer can make use of a typical Integrated Development Environment (IDE) when writing and testing a program.					
		Writing Enter code into an editor / Pretty printing to identify key terms /					
		Context-sensitive prompts to help complete statements / Expand and					
		collapse code blocks / Auto-complete to suggest what to type next /					
		Auto-formatting to indent code blocks / Dynamic syntax checking					
		Testing Single stepping to run the code line by line /					
		Breakpoints to stop the code at set points to check values /					
		Report window to see how variables change					
		[4]					

7 Complete the truth table for the following logic expression:

X = (A XOR B) AND NOT C

A	В	С	Working space	x
0	0	0		0
0	0	1		0
0	1	0		1
0	1	1		0
1	0	0		1
1	0	1		0
1	1	0		0
1	1	1		0

[2]

8 Describe **one** application of Artificial Intelligence (AI).

Police identifying wanted people

Uses image recognition

... to identify characteristics in an image

Natural language interfaces

Use speech recognition to identify words that are spoken ... and adapts to learn regional accents

Self-driving cars

Detects its position on the road and within the traffic Follows a route // Collision avoidance // Self-parking etc.

Game playing

Models characters in a computer game ... to allow computer characters to react according to the player's movements

9 (a) The following incomplete table contains four network devices and their descriptions.

Complete the table by writing the missing devices and missing descriptions.

Device	Description
Router	Receives and sends data between two networks operating on the same protocol
Wireless Network Interface Card (WNIC)	Hardware component that allows a device to connect to a wireless network // Provides a MAC address to the device to identify it on the wireless network
Repeater	Restores the digital signal so it can be transmitted over greater distances
Wireless Access Point (WAP)	Hardware component that provides radio communication from the central device to nodes on the network (and vice versa)

[4]

- (b) Describe three differences between fibre-optic cables and copper cables.
 - 1 Fibre optic data is transmitted using light, copper cable through electrical signals / Fibre optic has higher bandwidth than copper cable /
 - Fibre optic has smaller risk of (noise) interference than copper cable / Fibre optic is much more difficult to hack into than copper cable /
 - 3 Fibre optic is more prone to damage than copper cable / Fibre optic can be used over longer distances than copper cable before repeaters are needed

(c) Ethernet uses Carrier Sense Multiple Access/Collision Detection (CSMA/CD).

Describe CSMA/CD.

A workstation / node (wishing to transmit) listens to the communication	n
channel if channel is free data is sent	
Because there is more than one computer connected to the same	
transmission medium two workstations can start to transmit at the	
same time, causing a collision	
If a collision happens, the workstations send a (jamming) signal /	
abort transmission and each waits a random amount of time before)
attempting to resend [4]	

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.