Probability & Machine Learning

- 1. Overview
 - a. Maximum Likelihood Estimation → parameter model (pdf, pmf)
 - i. Max $L(D|\theta) \rightarrow \text{example } \theta = (\mu, o^2) \text{ when it is normal}$
 - ii. $L(D; \theta) = \text{multiply from i} = 1 \text{ to i} = n (p^x_i) * (1-p)^(1-x_i)$
 - 1. $X_i = 1$ if the ith toss is H, 0 otherwise
 - 2. P: Heads: $\sum x_i$
 - 3. 1-P: Tails: $\sum 1-x_i$
 - b. In other words, we assume iid samples from some distribution
- 2. The Thumbtack problem (cont.)
 - a. We shall denote Pr(HTHHTHT) as Pr(HTHHTHT;p)
 - i. P is not a random variable
 - b. D data, θ parameter
 - c. We refer to $Pr(D|\theta)$ as the likelihood of the data under the model
 - d. In our problem, $Pr(D;p) = p^4 (1-p)^3$
- 3. Maximum Likelihood Estimate (MLE)
 - a. Data: thumbtack tosses
 - b. Hypothesis: A flip is a Bernoulli distributed variable. Independence of flips
 - c. Learning: Find p* that maximizes the data likelihood

$$\Pr(\mathcal{D};p) = p^4 (1-p)^3$$

d.

- 4. Optimize to find p*
 - a. $f(p) = p^4(1-p)^3$
 - b. Max f(p)
 - c. Take the logarithm of L(D;p) to make life easier $\rightarrow log(L(D;p))$ since the product becomes the sum

$$p^* = \arg \max_{P} \log \left(p^{\alpha_H} \left(\frac{1-p}{p} \right)^{\alpha_T} \right)$$

$$\frac{d}{dp} \left(\frac{1}{p} \right) = \frac{d}{dp} \left(\frac{1-p}{p} \right) = \frac{d}{dp} \left(\frac{1-p}{p}$$

d.

- e. P = 4/7
- 5. Confidence intervals (reminder)
 - a. Boston billionaire says: I want to know the true p within 0.01 accuracy, with confidence at least 95%
 - b. Sampling theorem: Given n independent 0-1 RVs X_i such that $Pr(X_i = 1) = p(i=1,...,n)$ where $n \ge \frac{3}{\epsilon^2} \ln\left(\frac{2}{\delta}\right)$ then the following holds:

$$\left|\Pr\left(\left|rac{\sum_{i=1}^{n}X_{i}}{n}-p
ight|\leq\epsilon
ight)\geq1-\delta$$

- 6. Two important properties of the MLE
 - a. Consistent

$$_{ ext{i.}}$$
 $heta_{ ext{MLE}}
ightarrow heta_{ ext{true}} ext{ in probability}$

- b. Equivariant
 - If θ_{MLE} is the MLE of $\theta_{\text{true}} \Rightarrow g(\theta_{\text{MLE}})$ is the MLE of $g(\theta_{\text{true}})$

- ii. This means that if we want to the function it (example: p^2), we simply put the function
- iii. For example, phat^2 for p^2
- 7. Billionaire with prior beliefs
 - a. He says: Wait! I know that the thumbtack should be close to 50-50
 - b. You say: let's be Bayesian
 - c. Rather than learn a single value for p, we learn a probability distribution
 - i. P now becomes a random variable
- 8. Inference using Bayes' rule
 - a. Notice the notation Pr(D|p) instead of Pr(D;p)

$$Pr(p|D) = \frac{Pr(D|p)Pr(p)}{Pr(D)}$$

b.

- c. $Pr(D) \rightarrow does not depend on p$
- 9. Bayesian inference summary
 - a. We choose the prior distribution $f(\theta)$. This distribution expresses our prior beliefs on the parameter θ .
 - b. We choose the statistical model for the likelihood function $f(D|\theta)$
 - c. After observing the data $D=X_1,...,X_n$, we update our beliefs and calculate the posterior distribution $f(\theta|D)$
- d. Maximum a posteriori (MAP) estimate is the mode of the posterior distbrution 10. Important observation
 - a. If we impose a uniform prior on p, then

$$Pr(p|D) \propto Pr(D|p)$$

- b. Image denoising lecture
 - i. Had we imposed a uniform prior on images x, then our MAP inference would be the same as the MLE
 - ii. Choosing a good prior is important in applications of Bayesian inference

11. Conjugate priors

- a. Definition
 - i. "If the posterior distribution $p(\theta|x)$ is in the same probability distribution family as the prior probability distribution $p(\theta)$, the prior and posterior are then called conjugate distributions, and the prior is called a conjugate prior for the likelihood function $p(x|\theta)$ " \rightarrow assume that prior is same as likelihood
- b. Conjugate prior: create fictitious data
 - i. For example: billionaire is sure that the probability of head to tails is 8:2
 - ii. Append 800^H, 200^T (the more confident you are, the more data you collect) from the data H^4, T^3, you append the data
 - iii. Therefore, H \rightarrow 804, T \rightarrow 203, so P(H) = 804/1007

12. Bayesian inference for the thumbtack problem

The probability density for beta distribution is

$$f(x;a,b) = rac{\Gamma(a+b)x^{a-1}(1-x)^{b-1}}{\Gamma(a)\Gamma(b)}, \ 0 \le x \le 1, a,b > 0$$

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$$
 is the

is the gamma function

c. As you increase beta and theta, you increase the confidence

$$P(p) \propto p^{\beta_{+}-1} \left(1-p\right)^{\beta_{+}-1} PRIOR$$

$$P(D/p) = p^{\alpha_{+}} \left(1-p\right)^{\alpha_{+}} LIKEUHOOD.$$
POSTERIOR
$$P(p|D) \propto P(D/p) P(p) \propto p^{\alpha_{+}+\beta_{+}-1} \left(1-p\right)^{\alpha_{+}+\beta_{+}-1}$$
Beta $(a_{+}+\beta_{+}, a_{+}+\beta_{+})$.
$$\int_{Cfitious} Coin tosses reflecting our prior belief.$$

13. Method of moments

- a. Suppose our model has parameters $\theta = (\theta_1,...,\theta_k)$
 - i. Recall that the j-th moment of a RV X is $E[X^{\hat{j}}]$. To denote that this is a function of the model, we write $E_{\theta}[X^{\hat{j}}]$.
 - 1. Compute analytically, $\alpha_j = \mathbb{E}_{ heta}ig[X^jig], \ j=1,\ldots,k$
 - ii. Consider the j-th sample moment for data data $x_1, ..., x_n$ is

$$\hat{lpha}_j = rac{1}{n} \sum_{i=1}^n x_i^j, \ j=1,\ldots,k$$
 = $\mu_{ exttt{MOM}}$

- iii. $\sum x_i^2/n = o^2_{MOM}$
- iv. Equate the analytical moment expressions with the sample moments, and solve a system of k equations with unknowns to learn $\theta = (\theta_1,...,\theta_k)$
- 14. Method of methods: example 1
 - a. Let $X1, ..., Xn \sim Bernoulli(p)$
 - i. We have one parameter, so k=1.
 - ii. The first moment is the mean $\alpha_1 = E_p[X] = p$.
 - iii. The first sample moment is the sample mean.

$$p_{ ext{MoM}=} rac{1}{n} \sum_{i=1}^n x_i$$

- iv. Thus we directly get
- v. Remark: Here, MOM is same as MLE, but this is not always the case

15. MLE vs MAP

- a. MLE
 - i. Goal: Find θ maximizing the log-likelihood $Pr(x;\theta) \rightarrow$ also denoted as $Pr(x|\theta)$
- b. MAP
 - i. Goal: Find θ maximizing the posterior $Pr(\theta|x)$
- c. In some cases, solving analytically for θ is hard
- d. EM algorithm is an iterative approach to solving hard parameter learning problems
- 16. Two coin problem

 $\Pr(H) = \theta_A$

 $\Pr(H) = \theta_B$

- a.
- b. Process
 - i. Suppose we choose a coin (A or B) uniformly at random
 - ii. We toss the coin n times, and record the total number of heads

- c. We repeat the process k times
- d. We have two unknown parameters: θ_A , θ_B
- e. Suppose k = 5, n = 10
- f. The data are two vectors
 - $x=X_{H} = (x_{1}, x_{2}, x_{3}, x_{4}, x_{5})$ #heads per round
 - $z=Z_c = (z_1, z_2, z_3, z_4, z_5)$ #coin id per round
- g. E.g., x=(5,9,8,4,7), z=(B, A, A, B, A)
- h. Solve two separate maximum posterior

Coin A	Coin B	
	5 H, 5 T	
9 H, 1 T		$\hat{\theta}_A = \frac{24}{24+6} = 0.80$
8 H, 2 T		â 9 -0.45
	4 H, 6 T	$\hat{\theta}_{B} = \frac{9}{9+11} = 0.45$
7 H, 3 T		
24 H, 6 T	9 H, 11 T	

- i.
- Use EM if there is missing data
- k. Suppose we only see the number of heads per round
 - In other words, we do not have access to z
- We refer to z as hidden variables or latent factors
- m. Remarks
 - i. Not uncommon/common setting in data science applications → missing
 - ii. Clear that maximizing $Pr(x|\theta)$ is much harder than $Pr(x,z|\theta)$ in the presence of missing data z
- n. We will proceed iteratively by updating
- o. Each iteration starts with a guess of the unknown parameters

$${\hat{ heta}}^{(t)} = \left({\hat{ heta}}_A^{(t)}, {\hat{ heta}}_B^{(t)}
ight)$$

- p. E-step: a probability distribution over possible completions is computed using the current parameters $\hat{\theta}^{(t)}$
- q. M-step: the new parameters are determined using the current completions
- Suppose our initial guess for the unknown variables are 0.6, 0.5
- s. E-step: what is the probability that round i comes from coin A/ coin B?

Coin A:
$$\alpha = 0.6^{\frac{5}{2}} \cdot 0.4^{\frac{5}{2}} \times 0.000796$$

Coin B $\alpha = 0.5^{\frac{5}{2}} \cdot 0.5^{\frac{5}{2}} = \left(\frac{1}{2}\right)^{10} \times 0.000976$

$$Pr(Z_1 = A) = \frac{0.6^{\frac{5}{2}} \cdot 0.4^{\frac{5}{2}}}{0.6^{\frac{5}{2}} 0.4^{\frac{5}{2}} + (0.5)^{10}} = 0.45^{\frac{5}{2}}, Pr(Z_1 = B) = 0.55^{\frac{5}{2}}$$

- v. M-step: in order to learn $\theta = \theta_A$, θ_B , we first need to estimate the number of heads/tails from coins A/B given our estimate of the latent variables
 - i. Notice that instead of being 100% certain whether a round was due to coin A or B, we have a probability distribution

We repeat this for all five rounds

W.

x. Suppose we do one more round with different number of heads and tails

z. Having done this for all 5 rounds, we obtain the following

Coin A	Coin B
≈ 2.2 H, 2.2 T	≈ 2.8 H, 2.8 T
≈ 7.2 H, 0.8 T	≈ 1.8 H, 0.2 T
≈ 5.9 H, 1.5 T	≈ 2.1 H, 0.5 T
≈ 1.4 H, 2.1 T	≈ 2.6 H, 3.9 T
≈ 4.5 H, 1.9 T	≈ 2.5 H, 1.1 T
≈ 21.3 H, 8.6 T	≈ 11.7 H, 8.4 T

y.

aa. The M-step now simply becomes the MLEs according to this data

$$\hat{\theta}_A^{(1)} \approx \frac{21.3}{21.3 + 8.6} \approx 0.71$$

$$\hat{\theta}_B^{(1)} \approx \frac{11.7}{11.7 + 8.4} \approx 0.58$$

bb. Expectation maximization

17. EM algorithm

- a. Suppose maximizing $Pr(x|\theta)$ has no closed form solution/intractable
- b. Key idea: latent variables z that make likelihood computations tractable
- c. Intuition: $Pr(x,z|\theta)$, $Pr(z|x,\theta)$ should be easy to compute after introducing the "right" latent variables
- d. EM guaranteed to converge to a local maximum
- e. Define "expected log" $Q(\theta|\theta)$ where θ is the current estimate of θ :

$$Qig(heta \mid heta'ig) = \sum_{z} \Prig(z \mid x, heta'ig) \log \Prig(x, z \mid hetaig)$$

- f. The EM algorithm is an iterative method consisting of two steps
 - i. E-step: Find $Q(\theta|\theta')$ in terms of the latent variables z
 - ii. M-step: find θ^* maximizing $Q(\theta|\theta')$