## EE 16A HW 9

I forse worked alone, then discussed with Ilya and James.

1) a) 
$$I_3 = \hat{c}_1$$
 true  $\hat{c}_1 = \hat{c}_2$  false  $\hat{c}_2 = \hat{c}_3$  true

b) 
$$V_{5}^{R}_{2}$$
 golden rule,  $V_{01}^{\dagger} = V_{01}^{\dagger} = 0$ 
 $V_{1}$   $O = V_{02}$   $V_{03}$   $V_{04}^{\dagger} = V_{01}^{\dagger} = 0$ 
 $V_{1}$   $O = V_{02}$   $V_{03}^{\dagger} = 0$ 
 $V_{1}^{\dagger} = V_{02}^{\dagger} = 0$ 
 $V_{2}$   $V_{3}^{\dagger} = V_{3}^{\dagger} = 0$ 
 $V_{3}^{\dagger} = V_{3}^{\dagger} = 0$ 

c) Check that the voltages match up with the sain from the op-nump, alcoholded from the golden rules. Also, knowing I recognizing that the two openies are invertiry, the signs match up.

d) 
$$V_3 = I_s \frac{R_1 P_3}{R_2} = (Q1A) \frac{FIOLD) P_3}{(1000 LD)}$$

Since  $V_2 = OV$  when  $I_3 = OA$ ,

Set  $P_3 = 4kL$  so then

 $V_3 = 4V$  when  $I_5 = 0.1A$ ,

50 that  $V_7 = 4V$  when  $I_8 = 0.1A$ ,

 $V_8 = 4V$  when  $V_8 = 4V$ 



## Scanned by CamScanner

e) Check even voltage step by step to verify that the V3 is what is expected. Then, check that the (V+-V-), or in this cose, (V) - Vret) is nowhere close to 0. 3) Rioce - Right = 3-2 , Repensor = 4-2 Vocals = 120.524mV , Virg = 50mV a) 11 (5) Men Rope Les Robert Vrshy to By nulling one souse (VIRA) Vij= Re+Rs Vish V2 RAPS PARSHRY Vrished.

RAPS PARSHRY

RAPS PARSHRY

RAPS PARSHRY

Vished.

RAPS PARSHRY

Vished. Null Vight, we set V2 = Rs + Pr V 1000 Viz Rr Rs V2 = Rr Violy : V, = V, + V, = Ve R+ + V+ (R+Rs)
R+R+R. V2 = V2, + V2 2 Vr R1 + V1 (Rs+Pr) Vs = \frac{R\_s}{R\_2 + R\_5 + R\_r} (V\_r - V\_l) \, V\_r - V\_l = V\_2 + V\_2 + V\_3 + V\_4 + V\_5 + V\_6 + Notice that this acts as like a voltage divider, and that the Voltage across the speaker does not depend on

V rocals since Vr-Ve = Vongerument. Islanders will thus

Scanned by CamScanner

hear the astronom.

b) 
$$V_{\text{specker}} = \frac{R_{\text{S}}}{R_{\text{L}} + R_{\text{T}} + R_{\text{T}}} (V_{\text{T}} - V_{\text{L}}) = 20 \text{ mV}$$

$$I_{\text{specker}} = \frac{V_{\text{S}}}{R_{\text{S}}} = \frac{(V_{\text{T}} - V_{\text{L}})}{R_{\text{L}} + R_{\text{T}} + R_{\text{T}}} = 0.005 \text{ A}$$

$$P = IV = \left| \frac{R_{\text{S}} (V_{\text{T}} - V_{\text{L}})^{2}}{(P_{\text{L}} + P_{\text{S}} + R_{\text{T}})^{2}} \right| = \left| 0.0001 \text{ Warrs} \right|$$





e) 
$$V_{2}=0$$
:  $\frac{V_{1}}{R_{1}} = \frac{-V_{0}}{R_{2}} \rightarrow \left[\frac{V_{0}}{V_{1}} - \frac{P_{2}}{R_{1}}\right]$   
f)  $V_{1}=0$ :  $V^{+} = \frac{R_{4}}{R_{3}+R_{4}} = V^{-} \rightarrow V_{0} = V^{-} \rightarrow \left[\frac{V_{0}}{V_{2}} - \frac{R_{4}}{R_{3}+R_{4}}\right]$ 

3) 
$$V_1 \xrightarrow{R_1} V_2$$
 $V_2 \xrightarrow{R_2} P_4$ 
 $V_3 \xrightarrow{R_2} P_4$ 
 $V_4 = \frac{P_4}{P_3 + P_4} V_2$ 
 $V_5 \xrightarrow{R_3} P_4 V_2$ 
 $V_7 = \frac{P_4}{P_3 + P_4} V_2$ 
 $V_8 = \frac{P_4}{P_3 + P_4} V_2$ 
 $V_9 = \frac{P_9}{P_9} V_9 = 0$ 
 $V_9 = \frac{P_9}{P_9} V_9 = 0$ 

In order not to hear the vocals, v, and v, must be equally amplified, meaning

$$\frac{P_{4}(R_{1}+R_{2})}{R_{1}(R_{3}+R_{4})} = \frac{R_{2}}{R_{1}}$$
, and each amplification be x409.  
 $\frac{P_{2}(P_{3}+R_{4})}{R_{1}} = \frac{P_{4}(R_{1}+R_{2})}{R_{1}}$ ,  $\frac{P_{2}}{R_{1}} = \frac{40}{1}$ 

Or any RiRz, Ps, and Ry where Rz and Ry are 40\$ times Ry and Rs, respectively.

## **Scanned by CamScanner**

Consider the following circuit:



Wrote Vove in terms of R.C. Vin, & t.

Arsmen
Usag Golden rule, we know that V+= 0= V.

Dopperentiate:

Since I = I + = 0 at the terminals of op-amp,