Inferring Change Points in High-Dimensional Linear Regression via Approximate Message Passing

Gabriel Arpino, Xiaoqi (Shirley) Liu, Ramji Venkataramanan {ga442, xl394, rv285}@cam.ac.uk

Change Points Model

Motivation: Vast amounts of time-ordered, non-stationary data, e.g., stock prices

For
$$i = 1, 2, ..., n$$
,

Goal: recover change point locations $\{\eta_l\}_{l=1}^{L^*-1}$ from $\{x_i, y_i\}_{i=1}^n$, and estimate signals $\{\beta^{(l)}\}_{l=1}^{L^*}$

High dimensional regime: $n, p \to \infty$, $n/p \to$ fixed constant δ

Existing work

- penalised maximum-likelihood optimisation + partitioning algorithms e.g., [Rinaldo et al. 2021, Xu et al. 2022]
- complementary sketching [Gao and Wang 2022]

Limitations:

- Restricted to certain signal priors (e.g., sparse $\beta^{(l)}$)
- Provide point estimate, without uncertainty quantifications

Our work

Change point inference via Approximate Message Passing (AMP)

Define
$$\mathbf{B} = \begin{bmatrix} \boldsymbol{\beta}^{(1)} & \dots & \boldsymbol{\beta}^{(L)} \end{bmatrix}$$
, rows of $\mathbf{B} \stackrel{\text{iid}}{\sim} p_{\bar{\mathbf{B}}}$, $\mathbf{\Theta} := X\mathbf{B}$, $\mathbf{\Theta} \sim p_{\bar{\mathbf{\Theta}}}$

AMP iteratively produces:

$$\mathbf{\Theta}^{t} = X\hat{B}^{t} - R^{t-1} (F^{t})^{\mathsf{T}}$$

$$R^{t} = g^{t} (\mathbf{\Theta}^{t}, y)$$

produce residual **R**^t infer change points

$$\mathbf{B}^{t+1} = X^{\mathsf{T}} R^t - \hat{B}^t \left(C^t \right)^{\mathsf{T}}$$
$$\hat{B}^t = f^t \left(\mathbf{B}^t \right)$$

produce signal estimate $\hat{\pmb{B}}^t$

Theorem (informal):

$$\begin{array}{ccc}
\mathbf{B}^t & \xrightarrow{\mathbb{P}} \mathbf{B} \nu_B^t + \mathbf{G}_B^t & \text{rows of } \mathbf{G}_B^t & \stackrel{\text{iid}}{\sim} N(\mathbf{0}, \kappa_B^t) \\
\mathbf{\Theta}^t & \xrightarrow{\mathbb{P}} \mathbf{\bar{\Theta}} \nu_{\mathbf{\Theta}}^t + \mathbf{G}_{\mathbf{\Theta}}^t & \text{rows of } \mathbf{G}_{\mathbf{\Theta}}^t & \stackrel{\text{iid}}{\sim} N(\mathbf{0}, \kappa_{\mathbf{\Theta}}^t)
\end{array}$$

 $\nu_B^t, \nu_\Theta^t, \kappa_B^t, \kappa_\Theta^t$ can be computed deterministically; depend on η

Bayesian approach for choosing denoisers f^t , g^t

Prior info about change points $\eta \sim p_{\bar{\eta}}$

(Informal): choose f^t as the Bayes-optimal estimator of signal $B\nu_B^t$ embedded in Gaussian noise G_B^t :

$$f_j^t(B_j^t) = \mathbb{E}\left[\bar{B} \mid \bar{B}\bar{\nu}_B^t + \bar{G}_{B,j}^t = B_j^t\right]$$
 where $\bar{\nu}_B^t := \mathbb{E}_{\bar{\eta}}[\nu_B^t(\bar{\eta})]$

rows of $\bar{G}_B^t \sim N(0, \bar{\kappa}_B^t), \ \bar{\kappa}_B^t := \mathbb{E}_{\bar{\eta}}[\kappa_B^t(\bar{\eta})]$

(Informal): choose g^t using prior knowledge $\eta \sim p_{\bar{\eta}}$ of change point locations:

$$\underline{g_i^t(\boldsymbol{\Theta^t}, y)} = \mathbb{E}\left[\bar{\boldsymbol{\Theta}}_i \mid \bar{y}_i(\bar{\boldsymbol{\Theta}}_i, \bar{\boldsymbol{\eta}}) = y_i, \bar{\boldsymbol{\Theta}}_i \bar{\boldsymbol{\nu}}_{\boldsymbol{\Theta}}^t + \bar{\boldsymbol{G}}_{\boldsymbol{\Theta}, i}^t = \boldsymbol{\Theta_i^t}\right] \cdot \text{other}$$
terms

 g_i^t is explicitly dependent on $\bar{\eta}$, row-wise **non-separable** due to sequential structure in $\bar{\eta}$

Comparison with existing work

sparse $p_{\bar{B}}, L^* = 3, p = 200$

Estimation performance (Hausdorff distance d_H)

Proposition (informal):

$$d_{H}^{1}\left(\boldsymbol{\eta},\boldsymbol{\hat{\eta}}(\boldsymbol{\Theta^{t}},\boldsymbol{y})\right)/n \stackrel{\mathbb{P}}{\rightarrow} \mathbb{E}_{V_{\boldsymbol{\Theta}}^{t},\bar{\boldsymbol{\Theta}}}\left[d_{H}\left(\boldsymbol{\eta},\boldsymbol{\hat{\eta}}(\bar{\boldsymbol{\Theta}}\boldsymbol{\nu}_{\boldsymbol{\Theta}}^{t}+\boldsymbol{G}_{\boldsymbol{\Theta}}^{t},\bar{\boldsymbol{y}}(\bar{\boldsymbol{\Theta}},\boldsymbol{\eta}))\right)/n\right]$$

Inference performance (posterior)

 $p_{\bar{B}} = N(0, I)$, 2 chgpts at n/3,8n/15, p = 400 $L = L^* = 3$, $p_{\bar{\eta}} =$ uniform prior over all configs with chgpts at least n/5 apart

Experiments on real images

Ground truth signals:

Signals' estimate $\hat{\mathbf{B}}^t$ after 10 AMP iterations:

Posterior:

 $\delta = 0.25$ 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.2 0.5 0.5 0.5 0.5 0.5 0.9

Hausdorff distance d_H

Measure of distance between two subsets *X*, *Y* of a metric space:

References

- Rinaldo, A., Wang, D., Wen, Q., Willett, R., and Yu, Y. Localizing Changes in High-Dimensional Regression Models. In Proceedings of The 24th International Conference on Artificial Intelligence and Statistics, 2021.
- Xu, H., Wang, D., Zhao, Z., and Yu, Y. Change point inference in high-dimensional regression models under temporal dependence, 2022. arXiv:2207.12453.
- Gao, F. and Wang, T. Sparse change detection in high-dimensional linear regression, 2022. arXiv:2208.06326.