1.

a. Point 2, 18, 19

b.
$$w = \sum ai \cdot yi \cdot xi$$

=

$$0.9492 \cdot 1 \cdot [0.91, 0.32]^{T} + 0.3030 \cdot (-1) \cdot [2.05, 1.54]^{T} + 0.9053 \cdot (-1) \cdot [2.34, 0.72]^{T}$$

$$= [-1.8755, -0.8147]^{T}$$

c. $b = \sum (yk - wTxk)/Nk$

=
$$\frac{1}{3}$$
 * (1 - [-1.8755, -0.8147] * [0.91, 0.32]^T + (-1) - [-1.8755, -0.8147] * [2.05, 1.54]^T + (-1) - [-1.8755, -0.8147] * [2.34, 0.72]^T) = (-1 + 1.9674 + 5.0994 + 4.9753) / 3 = 3.6807

d. f(x) = -1.8755 * x1 - 0.8147 * x2 + 3.6807

e.
$$f(x) = -1.8755 * (-1) - 0.8147 * 2 + 3.6807 = 3.9268$$

So, the class is 1

f.

2.

a.
$$(p+1)*3+(3+1)*4+(4+1)*k=3p+5k+19$$

b.

- i. Initialize weights to small random numbers, associated with biases
- ii. Repeat until terminating condition meets
 - 1. For each training example
 - 2. Propagate the inputs forward
 - a. For a hidden or output layer unit j
 - i. Calculate net input: $I_j = \sum_i w_{ij} o_i + \theta_j$
 - ii. Calculate output of unit j: $O_j = \sigma(I_j) = \frac{1}{1+e^{-I_j}}$
 - 3. Backpropagate the error
 - a. For unit j in output layer: $Err_j = O_j(1 O_j)(T_j O_j)$
 - b. For unit j in a hidden layer: Errj = Oj(1 Oj) $\sum_{k} Err_k w_{jk}$
 - c. Update weights: $w_{ij} = w_{ij} + \eta Err_j O_i$
 - d. Update bias: $\theta_i = \theta_i + \eta Err_i$
- iii. Terminating condition

c. Net input and output calculations

Unit, j	Net Input, I _j	Output, O _j
3	0.4	$1/(1+e^{-0.4}) = 0.599$
4	-0.1	$1/(1+e^{0.1}) = 0.475$
5	-0.2*0.599 - 0.3*0.475 = -0.2623	$1/(1+e^{-0.2623}) = 0.5652$

Calculation of the error at each node

Unit, j	Err _j
5	0.5652*(1-0.5652)*(1-0.5652) = 0.107
4	0.475*(1-0.475)*(0.107)*(-0.3) = -0.008
3	0.599*(1-0.599)*(0.107)*(-0.2) = -0.005

Calculations for weight and bias updating

Weight or Bias	New Value
W ₃₅	-0.2 + 0.8 * 0.107 * 0.599 = -0.149
W ₄₅	-0.3 + 0.8 * 0.107 * 0.475 = -0.259
W ₁₃	-0.3 + 0.8 * (-0.005) * 0 = -0.3
W ₁₄	0.2 + 0.8 * (-0.008) * 0 = 0.2
W ₂₃	0.4 + 0.8 * (-0.005) * 1 = 0.396
W ₂₄	-0.1 + 0.8 * (-0.008) * 1 = -0.1064
θ_5	0.1 + 0.8 * 0.107 = 0.1856
θ_4	-0.4 + 0.8 * (-0.008) = -0.4064
θ_3	0.1 + 0.8 * (-0.005) = 0.096

^{3.} Base on the given training datasets, 1-NN is ok, but it would be overfitting. And the large extreme values are underfitting.