

Equivalence of DFA & NFA

Equivalence of DFA & NFA

Theorem:

Should be true for any L

A language L is accepted by a DFA if and only if it is accepted by an NFA.

Proof:

- 1. If part:
 - Prove by showing every NFA can be converted to an equivalent DFA (in the next few slides...)
- 2. Only-if part is trivial:
 - Every DFA is a special case of an NFA where each state has exactly one transition for every input symbol. Therefore, if L is accepted by a DFA, it is accepted by a corresponding NFA.

Proof for the if-part

- If-part: A language L is accepted by a DFA if it is accepted by an NFA
- rephrasing...
- Given any NFA N, we can construct a DFA D such that L(N)=L(D)
- How to convert an NFA into a DFA?
 - Observation: In an NFA, each transition maps to a subset of states
 - Idea: Represent:

each "subset of NFA_states" > a single "DFA_state"

Subset construction

NFA to DFA by subset construction

- Let $N = \{Q_N, \Sigma, \delta_N, q_0, F_N\}$
- Goal: Build D={ $Q_D, \Sigma, \delta_D, \{q_0\}, F_D$ } s.t. L(D)=L(N)
- Construction:
 - 1. Q_D = all subsets of Q_N (i.e., power set)
 - F_D=set of subsets S of Q_N s.t. S∩F_N≠Φ
 - δ_D: for each subset S of Q_N and for each input symbol a in Σ :

Idea: To avoid enumerating all of power set, do "lazy creation of states"

NFA to DFA construction: Example

• $L = \{w \mid w \text{ ends in 01}\}$

NFA:

- <u>-</u> !	δ_N	0	1
	q_0	$\{q_0,q_1\}$	{q ₀ }
	q_1	Ø	{q ₂ }
	*q ₂	Ø	Ø

DFA:

δ_{D}	0	1
 ▶[q₀]	[q ₀ ,q ₁]	[q ₀]
[q ₀ ,q ₁]	[q ₀ ,q ₁]	[q ₀ ,q ₂]
*[q ₀ ,q ₂]	[q ₀ ,q ₁]	[q ₀]

- 0. Enumerate all possible subsets
- 1. Determine transitions
- 2. Retain only those states reachable from $\{q_0\}$

NFA to DFA: Repeating the example using *LAZY CREATION*

• $L = \{w \mid w \text{ ends in } 01\}$

NFA: 0,1 q_0 q_1 q_2

- <u>!</u>	δ_{N}	0	1
	\mathbf{q}_0	$\{q_0,q_1\}$	{q ₀ }
	q_1	Ø	{q ₂ }
	*q ₂	Ø	Ø

DFA:

	δ_{D}	0	1
 	[q ₀]	$[q_0,q_1]$	[q ₀]

Main Idea:

Introduce states as you go (on a need basis)

Class Activity

Convert to a DFA the following NFA:

Class Activity Solution

Here are the sets of NFA states represented by each of the DFA states A through H: $A = \{p\}$; $B = \{p,q\}$; $C = \{p,r\}$; $D = \{p,q,r\}$; $E = \{p,q,s\}$; $F = \{p,q,r,s\}$; $G = \{p,r,s\}$; $H = \{p,s\}$.

Example

Convert to DFA

Solution

Class Activity

Convert to DFA

References

- Book Chapter 2
- Lectures from Stanford University
 - http://infolab.stanford.edu/~ullman/ialc/spr1 0/spr10.html#LECTURE%20NOTES
- Lectures from Washington State
 University
 - http://www.eecs.wsu.edu/~ananth/CptS317 /Lectures/