Mathematical Brush Up for Machine Learning

- Saurav Poudel

Topics

- Linear Algebra
- Calculus

Linear Algebra

- Vector
- Vector Operations
- Dot Product / Similarity
- Matrix / Transformation
- Dot Product using Matrix Notation
- Matrix Operations

Calculus

- Derivative
- Minima / Maxima
- Optimization
- Integration

Vector vs Scalar (Examples, with real Data Case too)

The Vector Dot Product

$$a \cdot b = |a||b| \cos \theta$$

$$\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}$$

Scalars, Vectors, Matrices & Tensors

Modeling / ML

- Modeling in terms of f(x) approx
- Finding f(x) meaning finding a vector
- Finding f(x) meaning finding a matrix
- Matrix as transformation
- Purpose to find that f(x) in terms of vector / matrix
- Whole Modeling and ML in summary

Concept of Linearity (and non linearity)

Linearity

- What do you mean by Linear?
- Linearity in terms of 3 terms.
- Role of Matrix.

Non-Linearity

- What do you mean by Non-Linear?
- Examples of Non-Linear
- How to deal with Non-Linear

Calculus time!

It is all about slope!

Slope =
$$\frac{\text{Change in Y}}{\text{Change in X}}$$

We can find an average slope between two points.

average slope =
$$\frac{24}{15}$$

But how do we find the slope at a point?

There is nothing to measure!

Slope =
$$\frac{\text{Change in Y}}{\text{Change in X}} = \frac{\Delta y}{\Delta x}$$

$$\frac{\Delta y}{\Delta x} = \frac{f(x+\Delta x) - f(x)}{\Delta x}$$

$$f(x) = x^2$$

The slope formula is:
$$\frac{f(x+\Delta x) - f(x)}{\Delta x}$$

Put in
$$f(x+\Delta x)$$
 and $f(x)$:
$$\frac{x^2 + 2x \Delta x + (\Delta x)^2 - x^2}{\Delta x}$$

Simplify (x² and -x² cancel):
$$\frac{2x \Delta x + (\Delta x)^2}{\Delta x}$$

Simplify more (divide through by
$$\Delta x$$
): = $2x + \Delta x$

Then as Δx heads towards 0 we get: = 2x

Concave Up Concave Down Slope Decreasing Slope Increasing

End Note!

