KCSE 2024 CHEMISTRY PAPER 3

MARKING SCHEME

(a)

Table 1

Piece of Magnesium added	1	2	3	4	5	6
Length of Magnesium added (cm)	2	4	6	8	10	12
Time taken t (second)	150	190	225	295	430	500
Reciprocal of time $\underline{1}$ (S·)	0.0066 7	0.0052 6	0.004 44	0.00 33	0.0023 3	0.00

```
Marking points
```

Complete Table - 1

Decimal point – 1

Accuracy – 1

Trend – 1

Graph:

Straight line graph of best fit

Label of axis = $\frac{1}{2}$

 $Scale = \frac{1}{2}$

Plotting = 1

Line = 1

(ii)
$$\underline{1} = 0.00510 \ \sqrt{1/2}$$
 From the graph and must be shown. Showing. $\sqrt{1/2}$ t

 $t = 1 \ \sqrt{1/2} = 196.5 \text{ seconds.} \ \sqrt{1/2}$
 0.00510

(iii) $Mg_{(s)} + H_2SO_{4(aq)}$ $MgSO_{4(s)} + H_{2(g)} \ \sqrt{1/2}$
 $1 : 1$ With correct physical state. (iv) Moles of $Mg = 0.12 \ \sqrt{1/2} = 0.005 \text{ moles } \sqrt{1/2}$
 24 $1 : 1$

Moles of H_2SO_4 used $= 0.005$ moles $= 0.12 \ \sqrt{1/2}$ $= 0.005$ moles $= 0.12 \ \sqrt{1/2}$

This is done to gradual decrease in the concentration of the acid.

 $\sqrt{\frac{1}{2}}$

Titration	I	II	III
Find burette reading (cm³)	15.3	30.5	45.7
Initial burette reading	0.0	15.3	30.5
Volume of solution B used (cm³)	15.3	15.2	15.2
			D =

$$CT = 1$$
 $D = 1$
 $AC = 1$
 $PA = 1$
 $TA = 1$

(c) (i)
$$T_1 + T_2 + T_3 \sqrt{2} = C.A \sqrt{2}$$
 1 fall are consistent

3

OR

i.e
$$\frac{15..3 + 15.2 + 15.2}{3}$$
 $\sqrt{\frac{1}{2}}$ = 15.233 cm³ $\sqrt{\frac{1}{2}}$

(ii) Moles of sodium hydroxide = $15.233 \times 0.5 = 0.007617$ 1000

i.e. Ans in
$$\frac{c (i) \times 0.5}{1000} \sqrt{\frac{1}{2}} = \text{C.A. } \frac{\sqrt{\frac{1}{2}}}{1000}$$

(d) (i) Ans in
$$c$$
 (ii) $\sqrt{\frac{1}{2}} = C.A. \sqrt{\frac{1}{2}}$ i.e. $0.007617 = 0.003809$ moles $\frac{1 \text{ mk}}{2}$

(ii) Ans. in d (i)
$$x = C.A$$
.
i.e o.003809 $x = 0.015236$ moles. 1 mk

(e) Ans in b (iv) + Ans.
$$d(ii) \sqrt{\frac{1}{2}} = C.A$$

 $0.005 + Ans. d (ii) = C.A$
i.e. $0.005 + 0.015235 = 0.020236 \text{ moles}.$ 1 mk

(f) Ans. in
$$\frac{e \times 1000}{50 \text{ cm}^3}$$
 cm³ = C.A.
50 cm³
i.e. $\frac{0.020236 \times 1000}{50}$ = 0.40472 M

2. (a)Observations Inferences Dissolves to form colourless solution . $\sqrt{\frac{1}{2}}$ Soluble salt or absence of coloured irons i.e Fe $^{3+}$, Fe $^{2+}$, Cu $^{2+}$ $\sqrt{\frac{1}{2}}$

(1 mrk) $(\frac{1}{2} mrk)$

(b) (i) Observations Inferences

No white ppt.
$$\sqrt{\frac{1}{2}}$$
 Pb^{2+} , Al^{3+} or Mg^{2+} absent $(\frac{1}{2}mk)$ Or (1 mk)

NH⁺4, Na⁺, or K⁺ may be present. $\sqrt{\frac{1}{2}}$

	(1	ii) Observations	Inferences
	No white ppt. $\sqrt{\frac{1}{2}}$		NH^+_4 , $Na^+\sqrt{\frac{1}{2}}$ or K^+ possibly present. $\sqrt{\frac{1}{2}}$
			Or (1 mk)
			$Pb^{2+} Al^{3+}, Zn^{2+} absent$ $\underline{1 mks}$
	<u>(iii)</u> Observatio		Inferences
		White ppt. formed. $\sqrt{1}$	CO_3^2 , SO_4^2 Or Cl present. $\sqrt{1}$
		(1 mr	k) (1 mk)
			'
	liv) <u>Observations</u>	<u>Inferences</u>
	(00	White ppt. $\sqrt{\frac{1}{2}}$ dissolves	
		ammonia $\sqrt{\frac{1}{2}}$ solution to	
			m(k) (1 $m(k)$
		•	1,
	(v)	Observations	Inferences
	• •	Golden yellow flame. $\sqrt{1}$	Na $^+$ present. $\sqrt{1}$
		(1 m)	_ I
		·	
3.	(a)	<u>Observations</u>	Inferences
		Burns with yellow flame	- Long chain hydrocarbon
		sooty /smoky flame. $\sqrt{2}$	2 - Unsaturated organic compound.
√1/ ₂			
			Or
		-	organic compound with high C – H ratio
			or
			/ C = C or
			0 - 0
	<i>r</i> .		— c ≡ c —
	(b)	Observations C	Inferences 1/11
		Dissolves to form	Polar organic compound/ soluble salt/
		colourless solution. $\sqrt{1}$	soluble compound $\sqrt{1}$
		colouriess solution. VI	(1 m la)
		(1 mk)	(1 mk)
		(1 nek)	
		I	
	(c) (i)	Observations	Inferences
	(0) (9)		esence of H ⁺ / H ₃ O ⁺ , R- COOH. $\sqrt{\frac{1}{2}}$
		/fizzing. $\sqrt{\frac{1}{2}}$	
-5		(½ mk)	
		, =	$\overline{1 mk}$
	(i	i)Observations	Inferences
AYA W	,		
10	TEAL .		

Orange colour remains the same / persists i.e does not change green. $\sqrt{\frac{1}{2}}$ (1 mk)

Inferences

KMnO4 decolourized i.e changes from purple to colourless $\sqrt{\frac{1}{2}}$ $\sqrt{\frac{1}{2}}$

