AC to DC Current

A group of circuits used to convert ac to dc.

Rectifier – Converts ac to pulsating dc.

Filter – Reduces variations in the rectifier output.

Voltage regulator – Maintains a constant dc output

voltage.

Types of Rectifier

Half Wave Rectifier

Center Tapped Full Wave Rectifier

During Negative Half Cycle

D1: Reverse Bias - Open Circuit

EngineeringTutorial.com

D2: Forward Bias - Closed Circuit

Center Tapped Full Wave Rectifier

During Positive Half Cycle

D1: Forward Bias - Closed Circuit

D2: Reverse Bias - Open Circuit

RMS and Average Value

RMS Values of Current and Voltage related to Peak Value or Max Value.

$$V_{RMS} = \frac{V_{PK}}{\sqrt{2}}$$
, $I_{RMS} = \frac{I_{PK}}{\sqrt{2}}$
 $V_{RMS} = 0.707 \times V_{PK}$, $I_{RMS} = 0.707 \times I_{PK}$

RMS Value of Current & Voltage in Sine wave

The RMS (Root Mean Square) value AC is the value of DC when flowing through a resistor for the specific time period and produces same amount of heat which produced by the AC when flowing through the same circuit for a specific time.

RMS Value of Load Current of HWR

$$I_{RMS}=rac{I_m}{2}$$

$\eta = rac{ ext{P}_{ ext{dc}}}{ ext{P}_{ ext{ac}}}$

Average Value of Load Current of HWR

$$I_{avg} = rac{I_m}{\pi}$$

$\eta = 40.6 \%$

Form Factor of HWR

$$\operatorname{Form}\operatorname{Factor} = \frac{\operatorname{RMS}\operatorname{Value}}{\operatorname{Avg.}\operatorname{Value}} = \frac{V_{\operatorname{rms}}}{V_{\operatorname{avg}}}$$

$$\text{Ripple Factor} = \sqrt{(\text{Form Factor})^2} - 1$$

RMS Value of Load Current of FWR

$$I_{RMS} = \frac{I_m}{\sqrt{2}}$$

Average Value of Load Current of FWR

$$I_{RMS} = \frac{2I_m}{\pi}$$

Form Factor of FWR

$$Form \, Factor = \frac{RMS \, Value}{Avg. \, Value} = \frac{V_{rms}}{V_{avg}}$$

$$Ripple\ Factor = \sqrt{(Form\ Factor)^2} - 1$$

$$\eta = rac{ ext{P}_{ ext{dc}}}{ ext{P}_{ ext{ac}}}$$

$$\eta = 81.2 \%$$

$$RF = 0.48$$

Half Wave Rectifier

$$V_{o}(t) = \begin{cases} V_{m} \sin(\omega t), & 0 \le t \le T/2 \\ 0, & T/2 \le t \le T \end{cases}$$

Average voltage of half wave rectifier

$$V_{\text{dc}} = \frac{1}{T} \int_{0}^{T} V_{\text{o}}(t) dt$$

$$= \frac{1}{T} \int_{0}^{T/2} V_{m} \sin(\omega t) dt + \frac{1}{T} \int_{T/2}^{T} 0 dt$$

$$= \frac{V_{m}}{T} \int_{0}^{T/2} \sin(\omega t) dt$$

$$= \frac{V_{m}}{T} \left[-\frac{\cos(\omega t)}{\omega} \right]_{0}^{T/2}$$

$$= \frac{V_{m}}{W} \left\{ -\cos(\omega T/2) + \cos(0) \right\}$$

$$V_{\text{dc}} = \frac{V_{m}}{\pi}.$$

$$\{ -\cos(\pi) + \cos 0 \}$$

RMS value of half wave rectifier

$$\begin{split} V_{\rm rms}^2 &= \frac{1}{T} \int_0^T V_{\rm o}^2(t) \mathrm{d}t \\ &= \frac{V_m^2}{T} \int_0^{T/2} \sin^2(\omega t) \mathrm{d}t + \frac{V_m^2}{T} \int_{T/2}^T 0 \; \mathrm{d}t \\ &= \frac{V_m^2}{2T} \int_0^{T/2} 2 \sin^2(\omega t) \mathrm{d}t \\ &= \frac{V_m^2}{2T} \int_0^{T/2} \left\{ 1 - \cos(2\omega t) \right\} \mathrm{d}t \\ &= \frac{V_m^2}{2T} \int_0^{T/2} \mathrm{d}t - \frac{V_m^2}{2T} \int_0^{T/2} \cos(2\omega t) \mathrm{d}t \\ &= \frac{V_m^2}{2T} \left[T \right]_0^{T/2} - \frac{V_m^2}{2T} \left[\frac{\sin(2\omega t)}{2\omega} \right]_0^{T/2} \\ &= \frac{V_m^2}{4} - \frac{V_m^2}{4\omega T} \left\{ \sin(\omega T) - \sin(0) \right\} \end{split}$$

$$\omega = 2\pi/T$$

$$V_{\rm rms} = \frac{V_m}{2}$$
.

Ripple factor of half wave rectifier

$$\gamma = \frac{\text{RMS value of the AC component}}{\text{value of DC component}} = \frac{V_{\text{r(rms)}}}{V_{\text{dc}}}.$$

$$\gamma = \frac{V_{\text{r(rms)}}}{V_{\text{dc}}} = \sqrt{\left(\frac{V_{\text{rms}}}{V_{\text{dc}}}\right)^2 - 1}$$

$$\gamma = \sqrt{\left(\frac{V_m}{2} \times \frac{\pi}{V_m}\right)^2 - 1} = \sqrt{\left(\frac{\pi}{2}\right)^2 - 1} \approx 1.21.$$

Form factor
$$=\frac{V_{\rm rms}}{V_{\rm dc}}=\frac{V_m/2}{V_m/\pi}=\frac{\pi}{2}\approx 1.57.$$

Efficiency of half wave rectifier

$$\eta = \frac{\text{DC power output}}{\text{AC power input}} = \frac{P_{\text{dc}}}{P_{\text{ac}}}.$$

$$P_{\rm ac} = I_{\rm rms}^2 (R_L + r_f) = \frac{V_{\rm rms}^2}{R_L + r_f}.$$

$$P_{\rm dc} = I_{\rm dc}^2 R_L = \frac{V_{\rm dc}^2}{R_L}.$$

Efficiency of half wave rectifier

$$\begin{split} \eta &= \frac{P_{\rm dc}}{P_{\rm ac}} & P_{\rm ac} = I_{\rm rms}^2(R_L + r_f) = \frac{V_{\rm rms}^2}{R_L + r_f}. \\ &= \frac{V_{\rm dc}^2}{R_L} \times \frac{R_L + r_f}{V_{\rm rms}^2} & P_{\rm dc} = I_{\rm dc}^2 R_L = \frac{V_{\rm dc}^2}{R_L}. \\ &= \frac{V_{\rm dc}^2}{V_{\rm rms}^2} \times \frac{R_L + r_f}{R_L} \\ &= \left(\frac{V_{\rm dc}}{V_{\rm rms}}\right)^2 \times \left(1 + \frac{r_f}{R_L}\right) \\ &= \left(\frac{V_m/\pi}{V_m/2}\right)^2 \times \left(1 + \frac{r_f}{R_L}\right) \\ &\approx 0.4053 \left(1 + \frac{r_f}{R_L}\right) & \eta_{\rm max} \approx 0.4053 = 40.53\%. \end{split}$$

Average voltage of Full wave Rectifier

$$\begin{split} V_{\text{avg}} &= \frac{1}{T/2} \int_{0}^{T/2} V(t) \mathrm{d}t \\ &= \frac{2V_m}{T} \int_{0}^{T/2} \sin(\omega t) \mathrm{d}t \\ &= \frac{2V_m}{T} \left[-\frac{\cos(\omega t)}{\omega} \right]_{0}^{T/2} \\ &= \frac{2V_m}{T} \left[-\cos(\omega T/2) + \cos 0 \right] \\ &= \frac{2V_m}{2\pi} \left\{ -\cos(\pi) + \cos 0 \right\} \\ &= \frac{V_m}{\pi} \left\{ -\cos(\pi) + \cos 0 \right\} \\ &= \frac{V_m}{\pi} \left\{ -\sin(\pi) + \cos 0 \right\} \\ &= \frac{V_m}{\pi} \left\{ -\cos(\pi) + \cos 0 \right\} \\ &= \frac{V_m}{\pi} \left\{ -\sin(\pi) + \cos 0 \right\} \\ &= \frac{V_m}{\pi} \left\{ -\sin(\pi) + \cos 0 \right\} \\ &= \frac{V_m}{\pi} \left\{ -\cos(\pi) + \cos 0 \right\} \\ &= \frac{V_m}{\pi} \left\{ -\sin(\pi) + \cos 0 \right\} \\ &= \frac{V_m}{\pi} \left\{ -\cos$$

RMS value of Full wave rectifier

$$\begin{split} V_{\rm rms}^2 &= \frac{V_m^2}{T} \int_0^T \sin^2(\omega t) \mathrm{d}t \\ &= \frac{V_m^2}{2T} \int_0^T 2 \sin^2(\omega t) \mathrm{d}t \\ &= \frac{V_m^2}{2T} \int_0^T \{1 - \cos(2\omega t)\} \, \mathrm{d}t \\ &= \frac{V_m^2}{2T} \int_0^T \mathrm{d}t - \frac{V_m^2}{T} \int_0^T \cos(2\omega t) \mathrm{d}t \\ &= \frac{V_m^2}{2T} \left[T\right]_0^T - \frac{V_m^2}{2T} \left[\frac{\sin(2\omega t)}{2\omega}\right]_0^T \\ &= \frac{V_m^2}{2} - \frac{V_m^2}{4\omega T} \left\{\sin(2\omega T) - \sin(0)\right\} \\ &= \frac{V_m^2}{2} - \frac{V_m^2}{4\omega T} \left\{\sin(4\pi) - \sin(0)\right\} \\ &= \frac{V_m^2}{2} - \frac{V_m^2}{4\omega T} (0 - 0) \\ &= \frac{V_m^2}{2}. \end{split}$$

$$V_{\rm rms} = \frac{V_m}{\sqrt{2}} \approx 0.707 \, V_m.$$

Ripple factor of full wave rectifier

$$\gamma = \sqrt{\left(\frac{V_{\rm rms}}{V_{\rm dc}}\right)^2 - 1}$$

$$= \sqrt{\left(\frac{\pi}{2\sqrt{2}}\right)^2 - 1}$$

$$\approx 0.48$$

Form factor =
$$\frac{V_{\text{rms}}}{V_{\text{dc}}} = \frac{\pi}{2\sqrt{2}} \approx 1.11$$
.

Efficiency of Full wave rectifier

$$\eta = \frac{P_{\rm dc}}{P_{\rm dc}} \qquad V_{\rm dc} \approx 0.637 V_m.$$

$$= \left(\frac{V_{\rm dc}}{V_{\rm rms}}\right)^2 \times \left(1 + \frac{r_f}{R_L}\right) \qquad V_{\rm rms} = \frac{V_m}{\sqrt{2}} \approx 0.707 V_m.$$

$$\approx 0.8106 \left(1 + \frac{r_f}{R_L}\right)$$

 $\eta_{\text{max}} \approx 0.8106 = 81.06\%$.

Comparison of Rectifiers

Parameters	Half wave rectifier	Full wave rectifier
Number of diodes	1	2 or 4
Maximum efficiency	40.53%	81.06~%
Peak inverse voltage	V_m	V_m or $2V_m$
Average voltage no load	V_m/π	$2V_m/\pi$
$V_{ m rms}$ no load	$V_m/2$	$V_m/\sqrt{2}$
Ripple factor	1.21	0.48
Form factor	1.57	1.11
Output frequency	f	2f

RL Circuits

$$V = \sqrt{(IR)^2 + (IX_L)^2}$$

$$I = \frac{V}{\sqrt{(R)^2 + (X_L)^2}} = \frac{V}{Z}$$

where
$$Z = \sqrt{(R)^2 + (X_L)^2}$$

is called impedance

$$\phi = \tan^{-1} \frac{X_L}{R}$$
 Power, P = VI cos ϕ

RL Circuits

RC Series Circuit

$$V = \sqrt{(IR)^2 + (IX_c)^2}$$

$$I = \frac{V}{\sqrt{(R)^2 + (X_C)^2}} = \frac{V}{Z}$$

where
$$Z = \sqrt{(R)^2 + (X_C)^2}$$

is called impedance

$$\phi = \tan^{-1} \frac{X_C}{R}$$
 Power, P = VI cos ϕ

RC Series Circuit

RLC Circuit

RLC Series Circuit

Phasor diagram
$$\chi_L > \chi_C$$

$$V = \sqrt{(IR)^{2} + I^{2}(X_{L} - X_{C})^{2}}$$

$$I = \frac{V}{\sqrt{(R)^{2} + (X_{L} - X_{C})^{2}}} = \frac{V}{Z}$$

$$Where Z = \sqrt{(R)^{2} + (X_{L} - X_{C})^{2}}$$
is called impedance
$$\Phi = \tan^{-1} \frac{X}{R} \quad Power, P = VI \cos \Phi$$

$$Where X = X_{L} - X_{C}$$

A series RLC circuit containing a resistance of 12Ω , an inductance of 0.15H and a capacitor of 100uF are connected in series across a 100V, 50Hz supply. Calculate the total circuit impedance, the circuits current, power factor.

Inductive Reactance, X_L.

$$X_1 = 2\pi f L = 2\pi \times 50 \times 0.15 = 47.13\Omega$$

Capacitive Reactance, X_C.

$$X_{C} = \frac{1}{2\pi f C} = \frac{1}{2\pi \times 50 \times 100 \times 10^{-6}} = 31.83 \Omega$$

Circuit Impedance, Z.

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$

$$Z = \sqrt{12^2 + (47.13 - 31.83)^2}$$

$$Z = \sqrt{144 + 234} = 19.4\Omega$$

Circuits Current, I.

$$I = \frac{V_S}{Z} = \frac{100}{19.4} = 5.14$$
Amps

Voltages across the Series RLC Circuit, V_R , V_L , V_C .

$$V_{R} = I \times R = 5.14 \times 12 = 61.7 \text{ volts}$$

$$V_{L} = I \times X_{L} = 5.14 \times 47.13 = 242.2 \text{ volts}$$

$$V_{\odot} = I \times X_{\odot} = 5.14 \times 31.8 = 163.5 \text{ volts}$$

Circuits Power factor and Phase Angle, θ .

$$\cos \phi = \frac{R}{Z} = \frac{12}{19.4} = 0.619$$

$$\therefore$$
 cos⁻¹ 0.619 = 51.8° lagging

3 Phase AC Circuit

3-Phase Waveform

3-Phase Voltage

Balanced Load

Unbalanced Load

3 Phase Load

Star Load

Delta Load

3-Phase Formulas

$$Power = \sqrt{3}V_{Line}I_{Line}Cos\phi$$

Total Phase Power=V_PI_PCOSф

Total line Power=V_LI_LCOSф

Three similar coils each of resistance 10Ω and an inductance of 0.05H are connected in star and delta to three phase 400V,50Hz symmetrical system. Find the phase current, line current, total phase power & total line power?

Given:
$$R=10 \Omega$$
, $L=0.05H$, $V=400$ $f=50 Hz$

$$X_L = 2\pi f L$$

Line Power =>
$$V_L I_L (osp)$$

= $(J_2 \cdot V_P) I_P \cdot (osp)$
= $(J_3 \cdot 400) (\frac{231}{18.61}) Cor (57.6) = 4608 W$