## Derivations

|     |                       |                       | 1  | $(p_0 \vee p_1)$                                         |                           |
|-----|-----------------------|-----------------------|----|----------------------------------------------------------|---------------------------|
| 1.  | $(p_0 \lor p_1)$      | Premise               | 2  | $(p_0 \to p_2)$                                          |                           |
| 2.  | $(p_0 	o p_2)$        | Premise               | 3  | $(p_1 \vee \neg p_2)$                                    |                           |
| 3.  | $(p_1 \vee \neg p_2)$ | Premise               | 4  | $p_0$                                                    |                           |
| 4.  | $p_0$                 | Assumption            | 5  | $p_1$                                                    |                           |
| 5.  | $p_1$                 | Assumption            | 6  | $  \hspace{.1cm}   \hspace{.1cm} p_1$                    | Reit (5)                  |
| 6.  | $\neg p_2$            | Assumption            | 7  | $p_2$                                                    |                           |
| 7.  | $p_2$                 | $\rightarrow$ E: 2, 4 | 8  | $  p_2  $                                                | $\rightarrow$ -E $(4, 2)$ |
| 8.  | Т                     | $\perp$ I:6,7         | 9  |                                                          | ⊥-I (7, 8)                |
| 9.  | $p_1$                 | ⊥E:8                  | 10 | $  \hspace{.05cm}   \hspace{.05cm}   \hspace{.05cm} p_1$ | ⊥-E (9)                   |
| 10. | $p_1$                 | $\forall E\!:\!3,5,9$ | 11 | $\begin{vmatrix} p_1 \end{vmatrix}$                      | ∨-E (3, 6, 10)            |
| 11. | $p_1$                 | Assumption            | 12 | $p_1$                                                    |                           |
| 12. | $p_1$                 | $\vee E : 1, 10, 11$  | 13 | $p_1$                                                    | Reit (12)                 |
|     |                       |                       |    | ı                                                        | ∨-Elim (1, 11, 13)        |
|     |                       |                       | 14 | $p_1$                                                    | v-Emm (1, 11, 13)         |

$$\frac{\cancel{p_2}^2 \quad \cancel{p_0}^1 \quad (p_0 \to p_2)}{p_2} \to E}{1 \quad \frac{(p_0 \lor p_1)}{2} \quad \cancel{p_1}^2 \quad \cancel{p_1}}{p_1} \quad (p_0 \lor p_1)} \to E$$

$$\frac{p_{Z}^{2} \qquad \frac{p_{Z}^{1} \qquad (p_{0} \rightarrow p_{2})}{p_{2}} \rightarrow E}{\frac{\perp}{p_{1}} RAA} \rightarrow E}$$

$$1 \frac{(p_{0} \lor p_{1}) \qquad 2 \frac{(p_{1} \lor \neg p_{2})}{p_{1}} \qquad p_{1}^{2}}{p_{1}} \lor E} \qquad p_{1}^{1} \lor E$$



## **Natural Deduction**

Example:  $\{(\neg p \land \neg q)\} \vdash \neg(p \lor q)$ 

## Gentzen Deduction

A Gentzen deduction of  $\Gamma \vdash \varphi$  is a binary tree constructed according to the following rules, with a root  $\Gamma \Rightarrow \varphi$  and each leaf is empty.

$$\varphi \Rightarrow \varphi$$
 A

$$\frac{\Gamma \Rightarrow \Delta}{\Gamma, \varphi \Rightarrow \Delta} \text{ WL} \qquad \frac{\Gamma, \varphi, \psi \Rightarrow \Delta}{\Gamma, \varphi \land \psi \Rightarrow \Delta} \land L$$

$$\frac{\Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \varphi, \Delta} \text{ WR} \qquad \frac{\Gamma \Rightarrow \Delta, \varphi, \psi}{\Gamma, \Rightarrow \Delta, \varphi \lor \psi} \lor R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi \Rightarrow \Delta} \text{ CL} \qquad \frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma, \varphi, \varphi \Rightarrow \Delta} \land R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta} \text{ CR} \qquad \frac{\Gamma, \varphi \Rightarrow \psi, \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \varphi, \Delta} \text{ CR} \qquad \frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \land R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \land R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi \Rightarrow \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

$$\frac{\Gamma, \varphi, \varphi, \Delta}{\Gamma, \varphi, \varphi, \Delta} \rightarrow R$$

Example:  $\{(\neg p \land \neg q)\} \vdash \neg(p \lor q)$ 

$$\frac{\frac{p \Rightarrow p}{p, \neg q \Rightarrow p} \text{WL}}{\frac{\neg q, p \Rightarrow p}{\neg q, p \Rightarrow p} \text{PL}} \xrightarrow{\text{PL}} \frac{\frac{q \Rightarrow q}{q, \neg p \Rightarrow q} \text{WL}}{\frac{\neg q, p, \neg p \Rightarrow}{\neg p, \neg q, p \Rightarrow} \text{PL}} \xrightarrow{\frac{\neg p, q \Rightarrow q}{\neg p, q \Rightarrow q} \text{PL}} \frac{\frac{\neg p, q, \neg p \Rightarrow q}{\neg p, q \Rightarrow q} \text{PL}}{\frac{\neg p, q, \neg q \Rightarrow}{\neg p, \neg q, q \Rightarrow} \text{PL}} \xrightarrow{\frac{\neg p, q, \neg q \Rightarrow}{\neg p, \neg q, q \Rightarrow} \text{PL}} \xrightarrow{\text{PL}} \xrightarrow{\frac{\neg p, q, \neg q \Rightarrow}{\neg p, \neg q, q \Rightarrow} \text{VR}} \times \text{L}$$

$$\frac{(\neg p \land \neg q), (p \lor q) \Rightarrow}{(\neg p \land \neg q) \Rightarrow \neg (p \lor q)} \neg \text{R}$$

## **Hilbert Deduction**

A **Hilbert-style proof calculus** consists of a collection of axiom schemes and inference rules. Axioms and Rules:

Axiom 1 
$$\varphi \to (\psi \to \varphi)$$

Axiom 2 
$$(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

Axiom 3 
$$\varphi \to (\varphi \lor \psi)$$

Axiom 4 
$$\psi \to (\varphi \lor \psi)$$

Axiom 5 
$$(\varphi \to \chi) \to ((\psi \to \chi) \to ((\varphi \lor \psi) \to \chi))$$

Axiom 6 
$$(\varphi \wedge \psi) \rightarrow \varphi$$

Axiom 7 
$$(\varphi \wedge \psi) \rightarrow \psi$$

Axiom 8 
$$\varphi \to (\psi \to (\varphi \land \psi))$$

Axiom 9 
$$\neg \varphi \rightarrow (\varphi \rightarrow \bot)$$

Axiom 10 
$$(\varphi \to \bot) \to \neg \varphi$$

Axiom 11 
$$\neg \neg \varphi \rightarrow \varphi$$

MP from 
$$\varphi$$
 and  $\varphi \to \psi$  infer  $\psi$ 

A Hilbert-style deduction of  $\varphi$  from from a set of formulas  $\Gamma$ , dented  $\Gamma \vdash \varphi$ , is a list of formulas  $\chi_1, \chi_2, \ldots, \chi_n$  where  $\chi_n$  is  $\varphi$  and for each  $1 \leq i \leq n$ , either  $\chi_i \in \Gamma$ ,  $\chi_i$  is an instance of an axiom, or  $\chi_i$  follows by MP from  $\chi_j$  and  $\chi_k$  with j, k < i.

Example:  $\{(\neg p \land \neg q)\} \vdash \neg (p \lor q)$ 

| 1.  | $(\neg p \land \neg q)$                                     | Assumption          |
|-----|-------------------------------------------------------------|---------------------|
| 2.  | $(\neg p \land \neg q) \to \neg p$                          | Axiom 6             |
| 3.  | $(\neg p \land \neg q) \to \neg q$                          | Axiom 7             |
| 4.  | $(p \to \bot) \to ((q \to \bot) \to ((p \lor q) \to \bot))$ | Axiom 5             |
| 5.  | $\neg p$                                                    | MP 1, 2             |
| 6.  | $\neg q$                                                    | MP 1, 3             |
| 7.  | $\neg p \to (p \to \bot)$                                   | Axiom 9             |
| 8.  | $(p \to \bot)$                                              | $\mathrm{MP}\ 5, 7$ |
| 9.  | $\neg q \to (q \to \bot)$                                   | Axiom 9             |
| 10. | (q 	o ot)                                                   | MP 6, 9             |
| 11. | $(q \to \bot) \to ((p \lor q) \to \bot)$                    | MP 8, 4             |
| 12. | $(p \lor q) \to \bot$                                       | MP 10, 11           |
| 13. | $((p \lor q) \to \bot) \to \neg (p \lor q)$                 | Axiom 10            |
| 14. | $\neg(p\lor q)$                                             | MP 12, 13           |
|     |                                                             |                     |

Find the following using Natural deductions, Genzten deductions, and Hilbert deductions:

1. 
$$\vdash (\neg p \land \neg q) \rightarrow \neg (p \lor q)$$

2. 
$$\{\neg(p \lor q)\} \vdash \neg p \land \neg q$$

3. 
$$\vdash \neg (p \lor q) \to (\neg p \land \neg q)$$

$$4. \ (p \to q) \vdash (\neg p \lor q)$$

5. 
$$\{(\neg p \lor q)\} \vdash (p \to q)$$

6. 
$$\vdash p \lor \neg p$$