105061254 林士平 數位訊號處理實驗報告 Lab4

1.

(1) Design Specification:

↑本實驗的 block diagram,其中 ECG 電路沒有使用 analog notch filter

(2) Experiment Objective:

a. 找出我的 ECG 訊號的 R-peak。

(3) Results and analysis:

a. MATLAB 程式的 block diagram

↑ MATLAB 程式的 block diagram

b. MATLAB 程式

本題我使用了兩種不同的寫法來找出 R-peak:

方法一:全部使用 for 迴圈做處理

```
60-Hz moving average
                 % 60-Hz moving average filter (8-pt)
filter
                 pt = 8;
                  N new = 0;
                 y2 = zeros(1, N);
                 buffer = zeros(1,pt);
                 for i = 1:(pt-1)
                     buffer(i) = y(i);
                     y2(i) = sum(buffer) / pt;
                  end
                  for i = pt:N
                     for j = 1:(pt-1)
                         y2(i) = y2(i) + y(i - j);
                     end
                     y2(i) = y2(i) / pt;
                  % difference filter(slope calculation)
Difference filter
                 y3 = zeros(1, N);
                  y3(1) = y2(1);
                  y3(2) = y2(2);
                 y3(3) = y2(3);
                  y3(4) = y2(4);
                  y3(5) = y2(5);
                  for i = 6:N
                     y3(i) = y2(i) - y2(i - 1) + y2(i - 2) - y2(i - 3) +
                  y2(i - 4) - y2(i - 5);
                  end
                  % squaring
Squaring
                  y4 = zeros(1, N);
                  for i = 1:N
                     y4(i) = y3(i) * y3(i);
                 end
flattering
                 % flattering(moving average LPF) (-pt)
                 pt = 15;
                  N new = 0;
```

數位訊號處理實驗報告 Lab3

```
y5 = zeros(1, N);
                 buffer = zeros(1,pt);
                 for i = 1:(pt-1)
                    buffer(i) = y4(i);
                    y5(i) = sum(buffer) / pt;
                 end
                 for i = pt:N
                    for j = 1:(pt-1)
                        y5(i) = y5(i) + y4(i - j);
                    end
                    y5(i) = y5(i) / pt;
                 end
threshold
                 % threshold
                 thd = 10000;
                 y6 = zeros(1, N);
                 for i = 1:N
                    if y5(i) > thd
                        y6(i) = y5(i);
                    else
                       y6(i) = 0;
                    end
                 end
                 % local maximum
Find local maximum
                 label = 1;
(R-peak)
                 delay = 9; %total group delay
(利用前項-後項來判
                 y7 = zeros(1, N); %final result
斷 local maximum)
                 for i = 2:N
                    if label == 1 && (y6(i)-y6(i-1)<0)
                        y7(i - 1) = y2(i - 1 - delay);
                        label = 0;
                    elseif label == 0 \&\& (y6(i) - y6(i-1) == 0)
                        label = 1;
                    end
                 end
```

方法二:全部使用 MATLAB 函數做處理

60-Hz moving average	% 60-Hz moving average filter (8-pt)		
filter	pt = 8;		
	f1 = ones(1, pt) / pt;		
	y2 = conv(y2, f1, 'same');		
Difference filter	% difference filter(slope calculation)		
	f2 = [1 -1];		
	y3 = conv(y2, f2, 'same');		
Squaring	% squaring		
	y4 = y3 .* y3;		
flattering	% low pass filter		
	pt2 = 23;		
	f3 = ones(1, pt2) / pt2;		
	y5 = conv(y4, f3, 'same');		
Threshold and find	% threshold		
local maximum	[~,locs_Rwave] = findpeaks(y5,'MinPeakHeight',		
(R-peak)	1500, 'MinPeakDistance',100);		
(利用 findpeaks)			

c. 最終結果

↑利用方法一偵測 R-peak 的結果

↑利用方法二偵測 R-peak 的結果

d. 結果分析:

方法一程式較複雜,且處理 group delay 的方式較為麻煩(方法二使用 conv(same'),所以較沒有 group delay 的問題),濾出來的訊號也沒有方法二乾淨,所以後面第二和第三題**均會使用方法二**。

2.

(1) Experiment Objective:

- a. 使用 1.設計出的演算法來找到 MIT-BIH database 的 R-peaks。
- b. 分析 TP, TF, FN, FP。

(2) Results and analysis:

a. TP, TF, FN, FP 表格:

	TP	FN	FP	TN
100m	945	1328	1329	646398
103m	662	1422	1424	646492
112m	1489	1050	1052	646409
117m	125	1410	1412	647053
122m	363	2113	2116	645408

↑ TP, TF, FN, FP 示意圖

b. MATLAB 程式:

讀取 excel 檔	%read the data		
	<pre>xlsFile = '100.xlsx';</pre>		
	<pre>[Data, headerText] = xlsread(xlsFile);</pre>		
truth2 為 excel 檔中	truth = Data';		
R-peak 區間的累積總	truth2 = truth;		
合,也就是 R-peak 出	result = 0;		
現的絕對時間	TP = 0;		
	<pre>for i = 2:length(truth)</pre>		
	truth2(i) = truth2(i) + truth2(i - 1);		
	end		
比較並找出 TP、TN、	<pre>for i = 1:length(locs_Rwave_final)</pre>		
FN 和 FP	<pre>if truth2(1, i) == locs_Rwave_final(1, i)</pre>		
	TP = TP + 1;		
	end		
	end		
	TP		
	FN = length(truth2) - TP		
	FP = length(locs_Rwave_final) - TP		
	TN = N - TP - FN - FP		

105061254 林士平

數位訊號處理實驗報告 Lab3

c. 結果分析

這些資料中有許多非理想的 ECG 波型(例如:T interval 高到幾乎和 R-peak 一樣高),因此造成錯誤率偏高的問題,不過我想這些問題如果時間夠多應該可以利用 try and error 來解決,例如:調整 threshold 值、調整最小的 max 值區間、調整 flattering 的 Moving average filter 的點數等。

3.

(1) Design Specification:

↑本實驗的 block diagram,其中 ECG 電路沒有使用 analog notch filter

(2) Experiment Objective:

a. 實現即時的心電圖。

(3) Results and analysis:

a. MATLAB 程式的 block diagram

↑MATLAB 程式的 block diagram

b. MATLAB 程式

首先最外層有個大迴圈決定總共要跑幾個點。

接著裏頭先有 60-Hz moving average filter、Difference filter、Squaring and Flattering 和 Threshold,此流程和第一大題方法二相同。

此部分為本題重點, 因為使用 conv 函數, 所以必須要累積一些 點再做處理,累積到 一定點數後畫出 ECG 訊號並找出 Heard rate(利用 60/R-peak time interval 找出一分 鐘的心跳數),最後顯 示在螢幕上。

```
if i>1 && rem(i,40)==0
    plot(time,y2,'b',locs,y2(locsR),'ro');
    axis([ min(time) max(time) 0 800 ]);
    xlabel('Time(s)');
    ylabel('Quantization value');

    if i>700
        rate=60/(locs(3)-locs(2));
    end
    str=['Heart Rate: ',num2str(rate),' per
minute'];
    title(str);
    drawnow;
end
```

c. 結果分析

↑ECG Demo 截圖,可以觀察到 R-peak 與心律

4. Discussion:

Why do we need flattening after squaring if you perform difference filtering or high pass filtering to remove baseline wandering?

由上圖可知,經過 difference filter 後的波型會有一個波峰和一個波谷,因此利用 squaring 讓波 谷變成另一個波峰,然而我們想要找的 R-peak 實際上在兩個波峰正中間凹陷下去的地方,所以利用一個 LPF 讓凹陷下去的地方突起來,便能利用 threshold 找到最大值,也就是 R-peak 的所在。

5. Extra stuff:

我覺得 MIT 資料庫的資料真的太多,而且裏頭的波型千奇百怪,只有一個禮拜的時間根本不足以把裡面所有的資料給做好,而且資料的 ground truth 是 txt 檔,還要轉成 excel 檔非常麻煩,我認為這一大題可以把它拿掉,因為光是 1. 3.題的 loading 已經夠重了。

6. Conclusion:

終於把 ECG 的部分結束了,雖然很累不過看到自己的 Real time 心電訊號還是覺得滿有成就感的,而且從中學到滿多數位訊號處理的實際應用與實際會遇到的問題,更多的是學到如何 debug 電路還有寫 Matlab 程式。