Studiengang: KST / TI Dozent: Kai.Schulz@hs-albsig.de Änderungsstand: 11.10. 2013

Kommunikations- und Softwaretechnik

Versuchsbeschreibung:

Versuch 4: Grundlagen Digitaltechnik

Anlagen: Datenblatt 74LS 00, 74LS 73

Bauteile:

4 Stck. 74LS00 (Vier 2fach- NAND) mit Steckadapter

1 Stck. **74LS73** (Zwei **JK**- FF) mit Steckadapter

2 Multimeter, 1 Oscillograph.

1 Widerstand	51Ohm
1 Widerstand	330Ohm
1 Widerstand	1,5kOhm
2 Widerstände	2,2kOhm
1 Potentiometer	220Ohm
1 Potentiometer	4,7kOhm
0 E' / A 1 1/	

2 Ein/ Ausschalter

74LS00

versuch 74LS73

Darstellung von Binärziffern

Die Binärwerte '0' und '1' werden bei der technischen Realisierung von Logikschaltungen durch zwei Spannungsbereiche dargestellt.

Für **positive Logik** gilt: logisch **1** entspricht 'High' -Potential

logisch 0 entspricht 'Low' –Potential

Erklären Sie den Begriff "Worst- Case".

I. Logische Spannungspegel- Bereiche

UeHmin; UaHmin: mindestens oder "Worst- case" -Pegel für logik. "1" UeLmin; UaLmax: maximaler oder "Worst- case" -Pegel für logik. "0" Ucc = Versorgungsspannung

Vorbereitungsaufgaben:

- 1. Was versteht man unter dem Gleichspannungs Störabstand bei logischen Schaltungen? Wie berechnet man ihn? Bsp. für LS-TTL-Logik angeben.
- 2. Berechnen Sie die Werte der Störabstände in <u>der unten aufgeführten Tabelle</u>. Annahme Ucc = **4.5V**
- 3. Tragen Sie die fehlenden Werte in die Tabelle ein:

Tab: I.1 Kenngrößen verschiedener Logikfamilien

	LS-TTL	HCHMOS	Advanced CMOS
Versorg Spg. Ucc		2V bis 6V	2V bis 6V
Eingangs-Pegel:	2V		
UeLmax	_0,31		
UeHmin	-0/30		
Ausgangspegel:	2,4V		
UaLmax:	0 21		
UaHmin:	U 4V		
Störabstand:			
"Low":			
"High":			
Arbeitstemperatur:	0° bis ° C	bis 90° C	-40° bis C

Eingangsspannungsvorgabe:

Übung I. 1: Wertetabelle NAND- Gatter.

Messen Sie die Wertetabelle eines NAND- Gatters (74LS00), indem Sie die Ein- und Ausgangsspannungen protokollieren.

Tab: 1.2:

U 1a [V]	U 1b [V]	U 1y [V]
	L	3,38
Ļ	H,	3,23
64	L	3,16
17	14	On 4

<u>Übung I.2:</u> Übertragungskennlinie eines TTL- Gatters.

Wie wird bei einem TTL- Gatter ein unbeschalteter Eingang interpretiert? Begründen Sie dieses.

Messschaltung:

Vorbereitungsaufgabe:

Messaufgaben:

 $\overline{\text{M1:}}$ Übertragungskennlinie Ua = f(Ue) eines TTL- Gatters (74LS00) aufnehmen.

Vorgaben / Einstellungen:

Versorgungsspannung Ucc = 5V

Eingangsspannung Ue nach Tabelle 1.3 vorgegeben.

M2: Ermitteln Sie die Schaltschwelle Uth. Verbinden Sie dazu einen Eingang mit dem Ausgang.

des Gatters Uth = ? O SS &

Tab: 1.3:

Ue [V]	Ua [V]
0,2	3,49
0,4	3.49
0,8	7,33
0,9	285
1,0	1,07
1,1	01-128
1,2	0143
1,3	0,1 41
1,4	0 141
_	

Auswertung:

- A1: Zeichnen Sie die Kennlinie. (Übergangsbereich genügend groß auflösen!)
- A2: Ermitteln Sie aus der Übertragungskennlinie- a) Schaltschwelle (Umschaltspannung) Uth; Hinweis: Kurvenpunkt für Ue = Ua, -b) Kurvenpunkt mit der Verstärkung dUa/dUe = 1; A1 (UeLmax; UaHmin); A2 (UeHmin; UaLmax). Hinweis, Anlegen der Tangente mit der Steigung 1.
- **A3:** Warum kann die Schaltschwelle Uth bei invertierenden Gattern durch Zusammenschalten von Ein- und Ausgang ermittelt werden?
- **A4:** Warum weichen die ermittelten Kenngrößen von den Datenblattangaben ab?

II. Belastung logischer Schaltungen

Vorbereitungsaufgaben: Was versteht man unter: a) Ausgangslastfaktor ("fan- out") b) Eingangslastfaktor ("fan- in")?

<u>Übung II.1</u>: Eingangskennlinie Ie = f(Ue) eines TTL- Gatters.

Messschaltung:

Tab: 2.1:

Ue [V]	Ie [μA]
0,2	720
0,4	200
0,8	670
1,0	690
2,0	
2,4	·O
2,7	\bigcirc
3,0	0
Ucc (5)	0

Messaufgaben:

M1: Nehmen Sie die Eingangskennlinie Ie = f(Ue) eines TTL- Gatters **74LS00** auf Eingangsspannung mit Potentiometer vorgeben.

Auswertung:

A1: Stellen Sie die Eingangkennlinie **graphisch** dar.

A2: Wie groß sind die Eingangsströme bei den "worst case" Eingangsspannungen?

Tab: 2.2:

	Eingangsspannung Ue [V]	Eingangsstrom Ie [mA]
"worst- case" für LOW		
"worst- case" für HIGH		

Übung II.2: Ausgangskennlinie eines TTL- Gatters (74LS00).

Versuch 4

Messschaltung:

Messaufgaben:

M1: Nehmen Sie die Ausgangskennlinie Ua = f(Ia) eines TTL (Transistor/ Transistor Logik) - Gatters 74LS00 für "low" und für "high" - Pegel auf.

Vorgaben/Einstellungen:

Versorgungsspannung Ucc = 5V

Ausgang stufenweise, durch Ändern des Potentiometerwiderstandes, belasten.

Tab: 2.3:

The second secon

"High" - Pegel am Ausgang:

Versuch 4

"Low"- Pegel am Ausgang:

Ua [V]	Ia [mA]	Ua [V]	Ia [mA]
0,2	1,6	1,0	16,7
Ó/4	101	1,2	19,8
0,6	191	1,4	12,4
Ó 🔊	28,6	1,6	11,4
1,0	33	1,5	$\mathcal{L}_{\mathcal{L}}$
1,2	335	2',6	67
1,9	23,8	2,2	50
1,6	34	2,9	22
1,8	393	2,5	1,1
20	34,8	2,875	0,5
2,7	3 <i>5,2</i>		•

Auswertung:

- A1: Stellen Sie die Ausgangskennlinien graphisch dar (Ia = f(Ua)).
- **A2:** Bestimmen Sie in LS-TTL- Einheiten:
 - den maximalen Ausgangslastfaktor aus der Ausgangskennlinie Ua = f(Ia) und der Eingangskennlinie Ie = f(Ue) (High und Low);
 - $-\ den\ zul{\"assigen}\ (empfohlenen)\ Ausgangslastfaktor\ aus\ den\ Datenblattangaben.$

Warum ist es nicht ratsam ein Gatter mit dem maximal möglichem fan- out zu belasten?

III. Schaltzeiten von TTL- Gatter

Vorbereitungsaufgaben:

Erklären Sie: a) Anstiegszeit tr b) Abfallzeit tf.

<u>Übung III.1:</u> Schaltzeiten eines TTL- Gatters (74LS00).

Bei der Realisierung von taktgesteuerten Funktionseinheiten kommt des öfteren eine sogenannte "spike" - Schaltung zum Einsatz. Die hier vorgestellte Schaltung nutzt zur Impulserzeugung die Gatterlaufzeit aus.

Vorgaben/Einstellungen:

- Zum Messen die **Tastköpfe** benutzen und Masseleitung anschließen.
- Versorgungsspannung Ucc = 5V
- Eingangssignal an X0 mit dem Frequenzgenerator vorgeben: f = **1MHz**; TTL- Ausgang verwenden, wenn vorhanden!
- Schaltung aufbauen:
- Leitungsführung "kurz" halten.

Messaufgaben:

M1: Messen Sie die Signalverläufe von X1 und X2 mit dem Oszillograph. Bestimmen Sie:

Tragen Sie die Signalverläufe X1 und X2 in ein zu erstellendes Zeitdiagramm ein.

M2: Messen Sie die Signalverläufe von X1 und X4 mit dem Oszillograph und stellen Sie die Signalverläufe graphisch mit Zeitangabe (**farbig**) dar.

Auswertung:

A1: Vergleichen Sie die Messwerte mit den im Datenblatt angegebenen und erklären Sie eventuelle Abweichungen.

IV. Impuls- Schaltung

<u>Übung IV.1.:</u> Messschaltung:

Vorgaben/Einstellungen:

- Versorgungsspannung Ucc = 5V und Eingangssignal X0 mit dem Frequenzgenerator auf f = 500Hz einstellen; TTL- Ausgang verwenden!

Messaufgaben:

- M1: Messen Sie die Signale X0, X1 und X3 der Schaltung mit dem Oszillograph. Stellen Sie die Signalverläufe von X0, X1 und X3 in einer Zeichnung untereinander da.
- M2: Erklären Sie den Begriff Impulsdauer.
 Wie groß ist hier die Impulsdauer ti des Ausgangssignals?
- M3: Bestimmen Sie die Schaltschwelle Uth des Gatters N1/2:

Auswertung:

- A1: Beschreiben Sie die Funktionsweise der Schaltung (Zeitablaufdiagram, Funktionstabelle).
- **A2:** Geben Sie eine Formel zur Berechnung der Impulsdauer $\mathbf{ti} = f(R, C, Ue)$ an.

75mV

A3: Berechnen Sie **ti** für obige Schaltung; Rechnen Sie mit der zuvor gemessenen Schaltschwelle Ueth. Vergleichen Sie das Ergebnis mit der Messung.

V. Flip- Flop- Speicher

Versuch 4

Übung V.1: 'R 'S-Flip-Flop. (JK-74LS73)

Ergänzen Sie nachfolgende Schaltung mit einem 'R 'S- Flip- Flop, aufgebaut aus **NAND**-Gattern.

Für die Eingänge des 'R'S-FF' gilt:

Achtung, IC wechseln!

Auswertung:

A1: Bauen Sie die Schaltung auf.

A2: Überprüfen Sie die Funktionstabelle (Spannungspegel eintragen).

A3: Welche Eingangssignalkombination ist **undefiniert?** Können Sie diesen Sachverhalt an der Schaltung nachweisen?

Tab: V.2:

Logischer Signalpegel		gemessene Spannungswerte			
S	R	Q	Q	. Q	Q
0	0	0	1	0,15	3, 45
0	1	0	1	0,19	づ, グ
1	0	1	0	3,5	011
1	1	Uh	de	7,5	3.5
			σ	•	- /

Ende Versuch 4

Anlage: Datenblätter

Wichtig für die Auswertung.