MAT320 Practice Problems

10/3/2023

Problem. A rectangle is a subset $(a,b) \times (c,d) \subset \mathbb{R}^2$ where b>a and d>c. We write

$$l((a,b) \times (c,d)) = (b-a)(d-c).$$

For a subset $S \subset \mathbb{R}^2$, define

$$\mu^*(S) = \left\{ \sum_{i=1}^{\infty} \ell(R_i) \mid R_i \text{ a rectangle for } i = 1, \dots; S \subset \bigcup_{i=1}^{\infty} R_i \right\}.$$

For $a = (a_1, a_2) \in \mathbb{R}^2$ and r > 0, write

$$B(a,r) = \{(x_1, x_2) \in \mathbb{R}^2 | \sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2} \}.$$

Prove that $\mu^*(B(a,r)) = r^2 \mu^*(B((0,0),1)).$

Problem.

Find the measure of the set of all numbers $x \in [0,1]$ for which there are no 4s in any decimal expansion of x.

Problem. Let A_i be subsets of a metric space X for $i=1,2,\ldots,$. Prove that if $B=\bigcup_{i=1}^{\infty}A_i$ then $\overline{B}\supset\bigcup_{i=1}^{\infty}A_i$. Show that the latter inclusion does not have to be an equality.

Problem. An F_{δ} set is a set that is a countable union of closed sets. Show that continuous functions $f: \mathbb{R} \to \mathbb{R}$ map F_{δ} sets to F_{δ} sets.

(Hint: show first that the image of a compact set under a continuous function is compact.)

Problem. Problem 2.4.19.

Problem. Show that a function $f: \mathbb{R} \to \mathbb{R}$ that is continuous except at a finite number of points is measurable. (On the quiz, I would remind you of the definition of a measurable function.)

Problem. Is the subset

$$\bigcup_{n=2}^{\infty} [1/n, 1-1/n] \times \{1/n\} \subset \mathbb{R}^2$$

compact? Here we use the standard distance metric on \mathbb{R}^2 given by

$$d((v_1, v_2), (w_1, w_2)) = \sqrt{(v_1 - w_1)^2 + (v_2 - w_2)^2}.$$