Continuous	Optimization:	Assignment	8
------------	---------------	------------	---

Due on June 18, 2024

Honglu Ma Hiroyasu Akada Mathivathana Ayyappan

Exercise 1

The constraint set C is defined as

$$C := \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1, x_2 \ge 0, \ x_1 x_2 = 0 \right\}$$

which are the points lie on the axes of the first quadrant shown in Figure 1.

Figure 1: Illustration of the constraint set C marked in red.

Tangent Cone

The tangent cone of a set C at a point $\bar{x} \in C$ is the closure of the set of all feasible directions of C at \bar{x} . Apparently, the vectors on the axes pointing at positive directions are the feasible directions of C at \bar{x} and also the closure of such set is itself.

Thus, the tangent cone to C at $\bar{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is

$$T_C(\bar{x}) = \left\{ \begin{pmatrix} t_1 \\ t_2 \end{pmatrix} \in \mathbb{R}^2 \mid t_1, t_2 \ge 0, \ t_1 t_2 = 0 \right\}$$

as shown in Figure 2.

Normal Cone

The normal cone of a set C at a point $\bar{x} \in C$ is the set of all vectors v s.t. $\langle v, x - \bar{x} \rangle \leq 0, \forall x \in C$. Another way to visualize this is that v must form acute angles between all feasible directions of C at \bar{x} .

Apparently, the normal cone to C at $\bar{x} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ is

$$N_C(\bar{x}) = \left\{ \begin{pmatrix} n_1 \\ n_2 \end{pmatrix} \in \mathbb{R}^2 \mid n_1, n_2 \le 0 \right\}$$

as shown in Figure 3.

Figure 2: Illustration of the tangent cone of C at \bar{x} marked in red.

Figure 3: Illustration of the normal cone of C at \bar{x} marked in red.

Exercise 2

The constraint set C is defined as

$$C := \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid |x_1| + |x_2| \le 1 \right\}$$

as shown in Figure 4. There are three cases of where the point \bar{x} can land in C:

- i. \bar{x} is in the interior of C
- ii. \bar{x} is on the edges of C
- iii. \bar{x} is on the vertices C

Figure 4: Illustration of the constraint set C as the area covered in blue.

(i) \bar{x} is in the interior of C

As shown in Figure 5, \bar{x} is in the interior of set C. Every vector pointing out of \bar{x} in any direction is a feasible direction of C at \bar{x} . Thus, the tangent cone of C at \bar{x} is the entire \mathbb{R}^2 and the normal cone of C at \bar{x} is $\{0\}$.

(ii) \bar{x} is on the edges of C

As shown in Figure 6, \bar{x} is on the edges of set C. The feasible directions of C at \bar{x} are the vectors pointing into C. Thus, the tangent cone of C at \bar{x} is the area under the line of the edge where \bar{x} lies. In case of Figure 6,

$$T_C(\bar{x}) = \left\{ \begin{pmatrix} t_1 \\ t_2 \end{pmatrix} \in \mathbb{R}^2 \mid t_1 + t_2 \le 1 \right\}$$

The normal cone of C at \bar{x} is the ray starts from \bar{x} and points out of C and is perpendicular to the edge In our case, it can be expressed as

$$N_C(\bar{x}) = \left\{ \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} + n \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} \mid n \in \mathbb{R}^2, n \ge 0 \right\}$$

(iii) \bar{x} is on the vertices of C

As shown in Figure 7, \bar{x} is on the vertices of set C. The feasible directions of C at \bar{x} are the vectors pointing into C. Thus, the tangent cone of C at \bar{x} is the area under the two lines of the two edges coincides at \bar{x} In case of Figure 7,

$$T_C(\bar{x}) = \left\{ \begin{pmatrix} t_1 \\ t_2 \end{pmatrix} \in \mathbb{R}^2 \mid t_1 + t_2 \le 1 \text{ and } t_1 - t_2 \le 1 \right\}$$

and the normal cone of C at \bar{x} is the area above C where the inverse direction of the two edges surrounds. as shown in Figure 7,

Figure 5: Illustration of \bar{x} in the interior of C marked in red, the tangent cone in green which is the entire \mathbb{R}^2 .

Figure 6: Illustration of \bar{x} on the edges of C marked in red, the tangent cone in green, and the normal cone in yellow.

Figure 7: Illustration of \bar{x} on the vertices of C marked in red, the tangent cone in green, and the normal cone in yellow.