

06. Comparing samples and plotting

Erik Dassi & Davide Bressan

Genomics Technologies Lab

Where are we?

- 1. QC
- 2. Alignment
- 3. Variant calling
- 4. Variant annotation: you have obtained a VCF-format file containing all the variants identified in your cell line along with their functional annotation
- 5. Comparing samples to identify similarities/differences

Principal Component Analysis

- Technique that allows to simplify the input dataset by **reducing the number of features** within it
- Each observation (sample) can be represented in an **n**-dimensional space but **not** all these **n** dimensions (genes) are interesting and informative
- PCA identifies a **small set of informative dimensions**, i.e. that are able to **capture the most variance** (*variability*) in the input dataset

- The new dimensions, called *principal components*, are linear combinations of the input dataset features (genes)

$$Z_1 = \phi_{11}X_1 + \phi_{21}X_2 + \ldots + \phi_{p1}X_p$$

Xi is the observations vector of feature (gene) iФi1 are the weights of each feature (gene) in principal component 1

- The first principal component is the one with the **biggest variance**, so the first dimension will be the one **separating the samples the most**
- The second principal component will be the one with the **highest variance** among the linear combinations that are **independent** (*orthogonal*) of the first principal component

What is the best way to differentiate food items?

https://algobeans.com/2016/06/15/principal-component-analysis-tutorial/

What is the best way to differentiate food items?

	PC1	PC2	PC3	PC4
Fat	-0.45	0.66	0.58	0.18
Protein	-0.55	0.21	-0.46	-0.67
Fiber	0.55	0.19	0.43	-0.69
Vitamin C	0.44	0.70	-0.52	0.22

1st Principal Component

1. Preparing the merged VCF

We must first correct the VCFs from Mutect to be compliant with the format specifications:

./correctAllVCFinFolder.sh

Then, we need to merge the variants for each sample into a single VCF:

bcftools merge *corrected.vcf.gz -o AllSamplesMerged_chrM.vcf.gz

bcftools index AllSamplesMerged.vcf.gz

2. Computing the PCA

- We're going to use the SNPRelate R package through RStudio
- Let's open a new project into our working folder

```
# load the package
library("SNPRelate")

# open the VCF file and convert it to GDS format
vcf_file <- "AllSamplesMerged_chrM.vcf.gz"
snpgdsVCF2GDS(vcf_file, "AllSamplesMerged_chrM.gds", method="biallelic.only")

# load the GDS file
genofile <- snpgdsOpen("AllSamplesMerged_chrM.gds")

# compute the PCA
variantsPca <- snpgdsPCA(genofile, autosome.only=F)</pre>
```


3. Plotting the PCA

- Let's set a different color for each sample
- We also write the name of the sample next to the corresponding point
- We add some jitter to space the labels

What should you do?

- 1. Compute and plot the PCA
- 2. Look at the plot to understand the relationships between samples
- 3. Use the VCF to analyze which variants are in common / different between interesting sample pairs from the PCA

#CH ROM	os i	DREF	ALT	QUA L		INFO	-	_	A549-			HCT116- MITO-NXT	HCT11 6-ROI	_	Nalm 6-ROI	RPE-MITO-NXT	RPE-ROI
chrM	152.	Т	С		PASS			J	<i>/</i>	<i>J.</i> :.::::::	./.:.::.	J	<i>J.</i>	<i>J</i> .:.:::::	<i>/.</i>	0/1:0,843:0.998:843:0,395:0,423:0,0,322,521	0/1:0,338:0.997:338:0,0:0,307:0,0,66,272

Questions?