Conjuntos c.e.

Guillermo (Billy) Mosse

FCEyN, UBA

Introducción

Definición

Se dice que un conjunto A es c.e. si existe una función $g:\mathbb{N}\to\mathbb{N}$ parcial computable tal que:

$$A = \{x : g(x) \downarrow\} = dom g$$

Introducción

Definición

Se dice que un conjunto A es c.e. si existe una función $g:\mathbb{N}\to\mathbb{N}$ parcial computable tal que:

$$A = \{x : g(x) \downarrow\} = dom g$$

Teorema

Sea $A \subset \mathbb{N}$. Son equivalentes:

- A es c.e.
- A es el rango de una función p.r.
- A es el rango de una función computable.
- A es el rango de una función parcial computable.

Introducción

Definición

Se dice que un conjunto A es c.e. si existe una función $g:\mathbb{N}\to\mathbb{N}$ parcial computable tal que:

$$A = \{x : g(x) \downarrow\} = dom g$$

Teorema

Sea $A \subset \mathbb{N}$. Son equivalentes:

- A es c.e.
- A es el rango de una función p.r.
- A es el rango de una función computable.
- A es el rango de una función parcial computable.

Ejercicio

¿Es todo conjunto finito c.e.? ¿Y todo conjunto co-finito?

Una definición más

Definición

Sea $A, B \subset \mathbb{N}$. Se dice que $A \leq B$ si existe una función f computable tal que $\forall x \in \mathbb{N}, x \in A$ sii $f(x) \in B$. Decimos que $A \equiv B$ si $A \leq B$ y $B \leq A$.

Una definición más

Definición

Sea $A, B \subset \mathbb{N}$. Se dice que $A \leq B$ si existe una función f **computable** tal que $\forall x \in \mathbb{N}, x \in A$ sii $f(x) \in B$. Decimos que $A \equiv B$ si $A \leq B$ y $B \leq A$.

Ejercicio

Probar que si $A \leq B$, entonces B c.e implica A c.e.

Una definición más

Definición

Sea $A, B \subset \mathbb{N}$. Se dice que $A \leq B$ si existe una función f **computable** tal que $\forall x \in \mathbb{N}, x \in A$ sii $f(x) \in B$. Decimos que $A \equiv B$ si $A \leq B$ y $B \leq A$.

Ejercicio

Probar que si $A \leq B$, entonces B c.e implica A c.e.

Ejercicio

(Tarea) Probar lo mismo, cambiando "c.e." por:

- computable
- 2 co-ce (co-c.e. es que el complemento sea c.e.)

Ejercicio

Completar con
$$\leq, \geq$$
 $\acute{o} \equiv$

$$\mathbb{N} \ \square \ \{2 \cdot n : n \in \mathbb{N}\}$$

Ejercicio

Completar con
$$\leq, \geq$$
 $\acute{o} \equiv$

$$\mathbb{N} \ \square \ \{2 \cdot n : n \in \mathbb{N}\}\$$

$$K \square \{x : \phi_x(x) \downarrow \land \phi_x(x) = 42^{42}\}$$

Ejercicio

Completar con
$$\leq, \geq \delta \equiv$$

$$\mathbb{N} \ \square \ \{2 \cdot n : n \in \mathbb{N}\}\$$

$$K \square \{x : \phi_x(x) \downarrow \land \phi_x(x) = 42^{42}\}$$

Ejercicio

Completar con
$$\leq$$
, \geq $\delta \equiv$

$$\mathbb{N} \ \square \ \{2 \cdot n : n \in \mathbb{N}\}\$$

$$K \square \{x : \phi_x(x) \downarrow \land \phi_x(x) = 42^{42}\}$$

¿Siempre se pueden comparar dos conjuntos? ¿Es total el orden?

Ejercicio

Completar con
$$\leq$$
, \geq $\delta \equiv$

$$\mathbb{N} \ \square \ \{2 \cdot n : n \in \mathbb{N}\}\$$

$$K \square \{x : \phi_x(x) \downarrow \land \phi_x(x) = 42^{42}\}$$

¿Siempre se pueden comparar dos conjuntos? ¿Es total el orden?

(Dejamos de nuevo la definición de \leq)

Definición

Sea $A, B \subset \mathbb{N}$. Se dice que $A \leq B$ si existe una función f **computable** tal que $\forall x \in \mathbb{N}, x \in A$ sii $f(x) \in B$. Decimos que $A \equiv B$ si $A \leq B$ y $B \leq A$.

Además teníamos que:

$$K \leq \{x : \phi_x(x) \downarrow \land \phi_x(x) = 42^{42}\}$$

Ejercicio

Ejercicio 5: sea $A = \{x : \phi_x(x) \downarrow \land \phi_x(x) = 42^42\}$, como arriba. ¿Es A c.e.? ¿Es A co-c.e.?

Ejercicio 6. Decidir V ó F y justificar.

• Sea A computable. Entonces existe f tal que f(A) es no computable.

- Sea A computable. Entonces existe f tal que f(A) es no computable.
- Sea ∅ ≠ A computable y no vacío. Entonces existe f tal que f(A) es no computable.

- Sea A computable. Entonces existe f tal que f(A) es no computable.
- Sea ∅ ≠ A computable y no vacío. Entonces existe f tal que f(A) es no computable.
- Sea A computable e infinito. Entonces existe f tal que f(A) es no computable.

- Sea A computable. Entonces existe f tal que f(A) es no computable.
- Sea ∅ ≠ A computable y no vacío. Entonces existe f tal que f(A) es no computable.
- Sea A computable e infinito. Entonces existe f tal que f(A) es no computable.
- Sea A computable e infinito. Entonces existe f computable total tal que f(A) no es computable.

- Sea A computable. Entonces existe f tal que f(A) es no computable.
- Sea ∅ ≠ A computable y no vacío. Entonces existe f tal que f(A) es no computable.
- Sea A computable e infinito. Entonces existe f tal que f(A) es no computable.
- Sea A computable e infinito. Entonces existe f computable total tal que f(A) no es computable.