NHẬN DẠNG KHUÔN MẶT DÙNG THUẬT TOÁN SIFT

{Bùi Thanh Tính, Nguyễn Văn Quảng, Nguyễn Việt Phú, Bùi Vũ Viết Phương, Nông Thành Nam} Đại học Bách Khoa TP.HCM

Muc đích

Nhóm đã tìm hiểu các bước cơ bản trong việc trích xuất và nhận dạng đặc trưng của thuật toán SIFT.

- 1. Scale-space extrema detection
- 2. Keypoint localization
- 3. Orientation assignment
- 4. Keypoint descriptor

PHƯƠNG PHÁP LẬP TRÌNH

Nhóm dựa vào code của behindthesciences.com để lập trình trên Matlab.

Ngoài ra nhóm đã lập trình GUI để người dùng dễ dàng tương tác hơn.

MATCHING KEYPOINT

Sau khi thực hiện bước trích xuất keypoint, ta phải so sánh các keypoint của ảnh gốc và ảnh input mục đích để nhận dạng.

Input Image: Là ảnh ta cần nhận dạng.

Database: Chứa các keypoint của ảnh trained.

Threshold: 15%

KÉT QUẢ

Khi có ảnh đầu vào (bên trái), hệ thống sẽ trích xuất keypoints rồi so sánh với keypoints ở trong database để nhận dạng.

Hình 2: Nhận dạng thành công

Nhưng khi dùng ảnh không có trong database thì nhận dạng thất bại.

Hình 3: Nhận dạng thất bại

KÉT LUÂN

ƯU ĐIỂM

Keypoint ít phụ thuộc vào:

- 1. Cường độ sáng
- 2. Che khuất
- 3. Góc xoay
- 4. Méo dạng

NHƯỢC ĐIỂM

SIFT có các nhược điểm sau:

- . Khó nhận dạng nếu có nhiễu muối tiêu.
- 2. Thời gian nhận dạng không nhanh.
- 3. Tốn bộ nhớ chương trình.

HƯỚNG PHÁT TRIỂN

Nhận dạng khuôn mặt realtime: Dùng thuật toán song song (parallel) chia nhỏ chương trình và thực hiện trên nhiều lõi CPU cùng lúc. Nhận dạng vật thể.

TÀI LIÊU THAM KHẢO

[1] Lowe, D. 2004 "Distinctive image features from scale-invariant keypoints", International Journal of Computer Vision, Vol. 60, No. 2, 91–110.

[2] Brown, M. and Lowe, D.G. 2002. "Invariant features from interest point groups". In British Machine Vision Conference, Cardiff, Wales, pp. 656-665.

THÔNG TIN LIÊN LAC

Nhóm 9 Môn học: Xử lý ảnh. Email nhom9xulyanh@gmail.com

Phone 0973 816 840

Github https://github.com/nvquang97