Musterlösung des vierten Analysis I Übungstests

22. Jänner 2016

Gruppe B

Beispiel 1

Wo ist die Funktion $f: \mathbb{R} \to \mathbb{R}$:

$$f(x) = \begin{cases} a\cos(x) & x \le 0\\ e^{2x} & 0 < x < 1\\ x + b & x \ge 1 \end{cases}$$

in Abhängigkeit der reellen Parameter a, b stetig?

Was ist die größte Teilemenge von \mathbb{R} auf die die Funktion

$$g: \mathbb{R} \setminus \{0,1\} \to \mathbb{R}, \quad g(x) = \frac{x^3 + x - 2}{x^2 - x}$$

stetig fortgesetzt werden kann? Wie und warum.

Lösung: Die Funktion f ist bei x_0 genau dann stetig, wenn

$$\lim_{x \to x_0 -} f(x) = f(x_0) = \lim_{x \to x_0 +} f(x). \tag{1}$$

Zuerst werden die Punkte im inneren der jeweiligen Definitionsbereiche überprüft

- Für $x_0 < 0$ gilt sicherlich (1), da es eine offene Kugel $U_{\delta}(x_0)$ gibt, die ganz im Definitionsbereich enthalten ist und $x \mapsto a \cos(x)$ als Zusammensetzung stetiger Funktionen stetig ist. Die Aussage gilt unabhängig von a und b.
- Analog zeigt man, dass f bei $0 < x_0 < 1$ stetig ist.
- Auch für $x_0 > 1$ lässt sich dieses Argument anwenden.

Das heißt
$$f$$
 ist bei $x \in \mathbb{R} \setminus \{0,1\}$ unabhängig von a und b stetig

Die einzigen kritischen Punkte bleiben 0 und 1. Daher wird die notwendige und hinreichende Bedingung (1) überprüft.

$$\lim_{x \to 0-} f(x) = \lim_{x \to 0-} a \cos(x)$$

$$= a \cos(0) = a \cdot 1$$

Außerdem liest man der Definition ab, dass f(0)=a. Daher ist Bedingung (1) genau dann erfüllt, wenn a=1 gilt.

Das heißt f ist bei 0 genau dann stetig, wenn a = 1.

Das ganze noch einmal für den kritischen Punkt 1.

$$\lim_{x \to 1-} f(x) = \lim_{x \to 1-} e^{2x}$$

$$= e^{2}$$

$$\lim_{x \to 1+} f(x) = \lim_{x \to 1+} x + b$$

$$= 1 + b$$

Man sieht wieder einfach, dass f(1) = 1 + b. Deswegen muss $b = e^2 - 1$ gelten, um die Bedingung (1) zu erfüllen.

Das heißt
$$f$$
 ist bei 1 genau dann stetig, wenn $b = e^2 - 1$.

Da die Nullstellen des Nenners von $\frac{x^3+x-2}{x^2-x}$ genau 0 und 1 sind, ist g überall sonst stetig als Zusammensetzung stetiger Funkionen. Die Funktion g kann genau dann bei x_0 stetig fortgesetzt werden, wenn $\lim_{x\to x_0}g(x)$ existiert.

Um das für 0 und 1 zu überprüfen wird g(x) zu nächst umgeformt. Um den Zähler zu faktorisieren, kann man alle ganzzahligen Teiler des Koeffizienten von x^0 als potentielle Nullstelle testen. Man erkennt einfach, dass 1 eine Nullstelle ist. Somit teilt x-1 den Zähler.

$$g(x) = \frac{x^3 + x - 2}{x^2 - x} = \frac{(x^2 + x + 2)(x - 1)}{x(x - 1)} = \frac{x^2 + x + 2}{x} = x + 1 + \frac{2}{x}$$

Alternativ hätte man auch eine Polynomdivision durchführen können. Laut den Rechenregeln für konvergente Netze gilt

$$\lim_{x \to 1} g(x) = \lim_{x \to 1} x + 1 + \frac{2}{x} = 4$$

Das heißt g kann bei 1 stetig fortgesetzt werden mit g(1) = 4.

Nachdem $\frac{1}{x}$ für $x \to 0$ unbeschränkt ist und $\lim_{x\to 0}(x+1)=0$ gilt, dass die Summe der beiden Netze sicherlich auch unbeschränkt ist. Damit existiert der Grenzwert $\lim_{x\to 0}g(x)$ nicht.

Das heißt g kann bei 0 NICHT stetig fortgesetzt werden.

Beispiel 2

Ist die Teilmenge $M := \{z \in \mathbb{C} : \operatorname{Im}(z) \cdot \operatorname{Re}(z) > 0\} \cup \{i\}$ von \mathbb{C} offen, abgeschlossen oder kompakt? Warum bzw. warum nicht?

Lösung:

ullet offen: Die Menge M ist genau dann offen wenn

$$\forall x \in M : \exists \epsilon > 0 \text{ mit } U_{\epsilon}(x) \subseteq M$$

Mit $x=\mathrm{i}$ und $\epsilon>0$ beliebig gilt: $\mathrm{i}(1-\frac{\epsilon}{2})\in U_{\epsilon}(\mathrm{i})$ aber $\mathrm{Re}(\mathrm{i}(1-\frac{\epsilon}{2}))\,\mathrm{Im}(\mathrm{i}(1-\frac{\epsilon}{2}))=0$, also gilt $x\notin M$ und $U_{\epsilon}(\mathrm{i})\not\subseteq M$. Da ϵ beliebig war gilt

$$\exists x \in M : \forall \epsilon > 0 \text{ gilt: } U_{\epsilon}(x) \not\subseteq M$$

Die Menge M ist **NICHT** offen.

 \bullet abgeschlossen: Die Menge M ist genau dann abgeschlossen wenn jeder Häufungspunkt von M in M enthalten ist.

Ein Punkt $z\in\mathbb{C}$ ist genau dann ein Häufungspunkt wenn es eine Folge $(z_n)_{n\in\mathbb{N}}$ von Punkten in M gibt mit $\lim_{n\to\infty}z_n=z$.

Mit $z_n = \frac{1}{n} + \frac{i}{n}$ gilt:

$$\operatorname{Re}(z_n)\operatorname{Im}(z_n) = \frac{1}{n^2} > 0, \quad \forall n \in \mathbb{N},$$

also $z_n \in M, \forall n \in \mathbb{N}.$

Weiters gilt $\lim_{n\to\infty} z_n=0$. Das heißt 0 ist Häufungspunkt von M, wegen $\text{Re}(0)\,\text{Im}(0)=0$ ist $0\not\in M$. Also gilt

 $\exists\, z: z$ ist Häufungspunkt von $M \wedge z \not\in M.$

In anderen Worten

Die Menge M ist **NICHT** abgeschlossen.

• kompakt: Im metrischen Raum (\mathbb{C}, d_2) gilt

 $M \subseteq \mathbb{C}$ kompakt $\Rightarrow M$ abgeschlossen

Da ${\cal M}$ nicht abgeschlossen ist gilt demnach

Die Menge M ist NICHT kompakt.