Package 'zoid'

January 24, 2024

Title Bayesian Zero-and-One Inflated Dirichlet Regression Modelling

```
Version 1.3.1
Description Fits Dirichlet regression and zero-and-one inflated Dirichlet regres-
      sion with Bayesian methods implemented in Stan. These models are sometimes referred to as tri-
      nomial mixture models; covariates and overdispersion can optionally be included.
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Biarch true
URL https://noaa-nwfsc.github.io/zoid/
BugReports https://github.com/noaa-nwfsc/zoid/issues
Depends R (>= 3.4.0)
Imports gtools, methods, Rcpp (>= 0.12.0), RcppParallel (>= 5.0.1),
      rstan (>= 2.26.0), rstantools (>= 2.1.1)
Suggests testthat, knitr, rmarkdown
LinkingTo BH (>= 1.66.0), Rcpp (>= 0.12.0), RcppEigen (>= 0.3.3.3.0),
      RcppParallel (>= 5.0.1), rstan (>= 2.26.0), StanHeaders (>=
      2.26.0)
SystemRequirements GNU make
VignetteBuilder knitr
NeedsCompilation yes
Author Eric J. Ward [aut, cre] (<a href="https://orcid.org/0000-0002-4359-0296">https://orcid.org/0000-0002-4359-0296</a>),
      Alexander J. Jensen [aut] (<a href="https://orcid.org/0000-0002-2911-8884">https://orcid.org/0000-0002-2911-8884</a>),
      Ryan P. Kelly [aut] (<a href="https://orcid.org/0000-0001-5037-2441">https://orcid.org/0000-0001-5037-2441</a>),
      Andrew O. Shelton [aut] (<a href="https://orcid.org/0000-0002-8045-6141">https://orcid.org/0000-0002-8045-6141</a>),
      William H. Satterthwaite [aut]
        (<https://orcid.org/0000-0002-0436-7390>),
      Eric C. Anderson [aut] (<a href="https://orcid.org/0000-0003-1326-0840">https://orcid.org/0000-0003-1326-0840</a>)
```

Maintainer Eric J. Ward <eric.ward@noaa.gov>

2 broken_stick

Repository CRAN

Date/Publication 2024-01-24 18:10:02 UTC

R topics documented:

zoid-package																				2
broken_stick																				2
chinook																				3
coddiet																				4
fit_dirichlet																				
fit_prior																				5
fit_zoid																				
get_fitted																				
get_pars																				
parse_re_formula																				
rmspe_calc																				9
																				4.0
																				10

zoid-package

The 'zoid' package.

Description

Index

A DESCRIPTION OF THE PACKAGE

References

Stan Development Team (2020). RStan: the R interface to Stan. R package version 2.21.2. https://mc-stan.org

broken_stick

Random generation of datasets using the dirichlet broken stick method

Description

Random generation of datasets using the dirichlet broken stick method

Usage

```
broken_stick(
    n_obs = 1000,
    n_groups = 10,
    ess_fraction = 1,
    tot_n = 100,
    p = NULL
)
```

chinook 3

Arguments

n_obs	Number of observations (rows of data matrix to simulate). Defaults to 10
n_groups	Number of categories for each observation (columns of data matrix). Defaults to 10
ess_fraction	The effective sample size fraction, defaults to 1
tot_n	The total sample size to simulate for each observation. This is approximate and the actual simulated sample size will be slightly smaller. Defaults to 100
р	The stock proportions to simulate from, as a vector. Optional, and when not included, random draws from the dirichlet are used

Value

A 2-element list, whose 1st element X_obs is the simulated dataset, and whose 2nd element is the underlying vector of proportions p used to generate the data

Examples

```
y <- broken_stick(n_obs = 3, n_groups = 5, tot_n = 100)
# add custom proportions
y <- broken_stick(
    n_obs = 3, n_groups = 5, tot_n = 100,
    p = c(0.1, 0.2, 0.3, 0.2, 0.2)
)</pre>
```

chinook

Data from Satterthwaite, W.H., Ciancio, J., Crandall, E., Palmer-Zwahlen, M.L., Grover, A.M., O'Farrell, M.R., Anson, E.C., Mohr, M.S. & Garza, J.C. (2015). Stock composition and ocean spatial distribution from California recreational chinook salmon fisheries using genetic stock identification. Fisheries Research, 170, 166–178. The data genetic data collected from port-based sampling of recreationally-landed Chinook salmon in California from 1998-2002.

Description

Data from Satterthwaite, W.H., Ciancio, J., Crandall, E., Palmer-Zwahlen, M.L., Grover, A.M., O'Farrell, M.R., Anson, E.C., Mohr, M.S. & Garza, J.C. (2015). Stock composition and ocean spatial distribution from California recreational chinook salmon fisheries using genetic stock identification. Fisheries Research, 170, 166–178. The data genetic data collected from port-based sampling of recreationally-landed Chinook salmon in California from 1998-2002.

Usage

chinook

fit_dirichlet

Format

A data frame.

coddiet

Data from Magnussen, E. 2011. Food and feeding habits of cod (Gadus morhua) on the Faroe Bank. – ICES Journal of Marine Science, 68: 1909–1917. The data here are Table 3 from the paper, with sample proportions (columns w) multiplied by total weight to yield total grams (g) for each sample-diet item combination. Dashes have been replaced with 0s.

Description

Data from Magnussen, E. 2011. Food and feeding habits of cod (Gadus morhua) on the Faroe Bank. – ICES Journal of Marine Science, 68: 1909–1917. The data here are Table 3 from the paper, with sample proportions (columns w) multiplied by total weight to yield total grams (g) for each sample-diet item combination. Dashes have been replaced with 0s.

Usage

coddiet

Format

A data frame.

fit_dirichlet

Extract point estimates of compositions from fitted model.

Description

Extract point estimates of compositions from fitted model.

Usage

fit_dirichlet(data)

Arguments

data

The data to fit the dirichlet distribution to

fit_prior 5

fit_prior	Find appropriate standard deviations for prior

Description

Find appropriate standard deviations for prior

Usage

```
fit_prior(n_bins, n_draws = 10000, target = 1/n_bins, iterations = 5)
```

Arguments

n_bins	Bins for the Dirichlet distribution
n_draws	Numbers of samples to use for doing calculation
target	The goal of the specified prior, e.g. 1 or 1/n_bins
iterations	to try, to ensure robust solution. Defaults to 5

Value

A 3-element list consisting of sd (the approximate standard deviation in transformed space that gives a similar prior to that specified), value (the value of the root mean squared percent error function being minimized), and convergence (0 if convergence occurred, error code from optim() otherwise)

Examples

```
# fit model with 3 components / alpha = 1
set.seed(123)
f <- fit_prior(n_bins = 3, n_draws = 1000, target = 1)
# fit model with 20 components / alpha = 1/20
f <- fit_prior(n_bins = 20, n_draws = 1000, target = 1 / 20)</pre>
```

fit_zoid

Fit a trinomial mixture model with Stan

Description

Fit a trinomial mixture model that optionally includes covariates to estimate effects of factor or continuous variables on proportions.

fit_zoid

Usage

```
fit_zoid(
  formula = NULL,
  design_matrix,
  data_matrix,
  chains = 3,
  iter = 2000,
  warmup = floor(iter/2),
  overdispersion = FALSE,
  overdispersion_sd = 5,
  posterior_predict = FALSE,
  moment_match = FALSE,
  prior_sd = NA,
  ...
)
```

Arguments

formula	The model formula for the design matrix. Does not need to have a response specified. If =NULL, then the design matrix is ignored and all rows are treated as replicates							
design_matrix	A data frame, dimensioned as number of observations, and covariates in columns							
data_matrix	A matrix, with observations on rows and number of groups across columns							
chains	Number of mcmc chains, defaults to 3							
iter	Number of mcmc iterations, defaults to 2000							
warmup	Number iterations for mcmc warmup, defaults to 1/2 of the iterations							
overdispersion Whether or not to include overdispersion parameter, defaults to FALSE								
overdispersion_sd								
	Prior standard deviation on 1/overdispersion parameter, Defaults to inv-Cauchy(0,5)							
posterior_predict								
	Whether or not to return draws from posterior predictive distribution (requires more memory)							
moment_match	Whether to do moment matching via loo::loo_moment_match(). This increases memory by adding all temporary parmaeters to be saved and returned							
prior_sd	Parameter to be passed in to use as standard deviation of the normal distribution in transformed space. If covariates are included this defaults to 1, but for models with single replicate, defaults to 1/n_bins.							
	Any other arguments to pass to rstan::sampling().							

Examples

```
 y <- \mbox{matrix}(c(3.77, 6.63, 2.60, 0.9, 1.44, 0.66, 2.10, 3.57, 1.33), \\  \mbox{nrow} = 3, \mbox{ byrow} = TRUE \\ ) \\ \# \mbox{ fit a model with no covariates}
```

get_fitted 7

```
fit <- fit_zoid(data_matrix = y, chains = 1, iter = 100)

# fit a model with 1 factor
design <- data.frame("fac" = c("spring", "spring", "fall"))
fit <- fit_zoid(formula = ~fac, design_matrix = design, data_matrix = y, chains = 1, iter = 100)

# try a model with random effects
set.seed(123)
y <- matrix(runif(99,1,4), ncol=3)
design <- data.frame("fac" = sample(letters[1:5], size=nrow(y), replace=TRUE))
design$fac <- as.factor(design$fac)
fit <- fit_zoid(formula = ~(1|fac), design_matrix = design, data_matrix = y, chains = 1, iter = 100)</pre>
```

get_fitted

Extract estimates of predicted latent proportions.

Description

Extract point estimates of compositions from fitted model.

Usage

```
get_fitted(fitted_model, conf_int = 0.05)
```

Arguments

fitted_model The fitted model returned as an rstan object from the call to zoid

conf_int Parameter controlling confidence intervals calculated, defaults to 0.05 for 95% intervals

Value

A list containing the posterior summaries of estimated parameters, with element mu (the predicted values in normal space). For predictions in transformed space, or overdispersion, see get_pars()

Examples

```
y <- matrix(c(3.77, 6.63, 2.60, 0.9, 1.44, 0.66, 2.10, 3.57, 1.33),
    nrow = 3, byrow = TRUE
)
# fit a model with no covariates
fit <- fit_zoid(data_matrix = y)
p_hat <- get_fitted(fit)</pre>
```

8 parse_re_formula

get_pars

Extract parameters from fitted model.

Description

Extract estimated parameters from fitted model.

Usage

```
get_pars(fitted_model, conf_int = 0.05)
```

Arguments

fitted_model The fitted model returned as an rstan object from the call to zoid

conf_int Parameter controlling confidence intervals calculated, defaults to 0.05 for 95% intervals

Value

A list containing the posterior summaries of estimated parameters. At minimum, this will include p (the estimated proportions) and betas (the predicted values in transformed space). For models with overdispersion, an extra element phi will also be returned, summarizing overdispersion. For models with random intercepts, estimates of the group level effects will also be returned as zetas (again, in transformed space). For predictions in normal space, see get_fitted()

Examples

```
y <- matrix(c(3.77, 6.63, 2.60, 0.9, 1.44, 0.66, 2.10, 3.57, 1.33),
    nrow = 3, byrow = TRUE
)
# fit a model with no covariates
fit <- fit_zoid(data_matrix = y)
p_hat <- get_pars(fit)</pre>
```

parse_re_formula

Fit a trinomial mixture model that optionally includes covariates to estimate effects of factor or continuous variables on proportions.

Description

Fit a trinomial mixture model that optionally includes covariates to estimate effects of factor or continuous variables on proportions.

rmspe_calc 9

Usage

```
parse_re_formula(formula, data)
```

Arguments

formula The model formula for the design matrix.

data The data matrix used to construct RE design matrix

rmspe_calc Find appropriate prior for a given target distribution.

Description

Extract point estimates of compositions from fitted model.

Usage

```
rmspe_calc(par, n_bins, n_draws, target)
```

Arguments

par The parameter (standard deviation) to be searched over to find a Dirichlet equiv-

alent

n_bins Bins for the Dirichlet distribution

n_draws Numbers of samples to use for doing calculation target The goal of the specified prior, e.g. 1 or 1/n_bins

Index

```
\ast datasets
     chinook, 3
     \operatorname{coddiet}, 4
broken_stick, 2
{\tt chinook}, {\color{red} 3}
coddiet, 4
fit\_dirichlet, 4
fit_prior, 5
\texttt{fit\_zoid}, \textcolor{red}{5}
{\tt get\_fitted}, \textcolor{red}{7}
get_fitted(), 8
get_pars, 8
get_pars(), 7
loo::loo_moment_match(),6
optim(), 5
parse_re_formula, 8
rmspe_calc, 9
rstan::sampling(),6
trinomix(zoid-package), 2
zoid-package, 2
```