CHAPITRE 04

Dérivation - Exercices de base (Correction)

Exercice 1

- 1. On utilise les techniques liées aux tableaux de signes.
 - **a.** $f(x) = -3x^2 12x + 15$ est une expression du second degré, avec 2 racines, $x_1 = -5$ et $x_2 = 1$ et $x_2 = 1$ et $x_3 = -3$ et $x_4 = -3$ et $x_4 = -3$ et $x_5 = -3$ et x_5

x	$-\infty$		-5		1		+∞
f(x)		_	0	+	0	_	

b. $f(x) = \frac{x+3}{x+1}$ est un quotient de deux fonctions affines :

x	$-\infty$		-3		-1		+∞
<i>x</i> + 3		_	0	+		+	
<i>x</i> + 1		_		-	0	+	
f(x)		+	0	_		+	

2. On utilise les techniques de transformations avant de passer aux tableaux de signes.

$$f(x) = x + 1 - \frac{6}{x} = \frac{(x+1) \times x}{x} - \frac{6}{x} = \frac{x^2 + x - 6}{x}$$
:

x	$-\infty$		-3		0		2		+∞
$x^2 + x - 6$		+	0	_		_	0	+	
x		_		_	0	+		+	
f(x)		_	0	+		_	0	+	

Exercice 2

- 1. On utilise les dérivées « classiques ».
 - **a.** $f(x) = 4x^2 + 8x 10$ donne $f'(x) = 4 \times 2x + 8 = 8x + 8$.
 - **b.** $g(x) = x^3 \frac{1}{x^2}$ donne $g'(x) = 3x^2 \frac{-2}{x^3} = 3x^2 + \frac{2}{x^3}$.
 - **c.** $h(x) = \frac{x+3}{2x+3}$ est un quotient u/v:

$$h'(x) = \frac{1 \times (2x+3) - 2 \times (x+3)}{(2x+3)^2} = \frac{2x+3-2x-6}{(2x+3)^2} = \frac{-3}{(2x+3)^2}.$$

Exercice 3

- 1. f est dérivable sur [0;5] (polynôme) et $f'(x) = 4 \times 3x^2 30 \times 2x + 72 = 12x^2 60x + 72$ pour $x \in [0;5]$.
- **2.** La dérivée f'(x) est un trinôme, dont les racines sont 2 et 3, et dont le coefficient a (ici 12) est positif, donc :

х	0		2		3		5
f'(x)		+	0	_	0	+	

On en déduit donc le tableau de variations de f sur [0;5] :

x	0	α	2	β	3	Υ	5
f'(x)		+	0	-	0	+	
f	-55	0	, 1 <u> </u>	0	-1	0	_* 55

Avec f(0) = -55; f(2) = 1; f(3) = -1 et f(5) = 55.

3. a. D'après le tableau de variations de f (ou bien en utilisant \mathcal{C}_f) on peut justifier que l'équation f(x) = 0 admet exactement 3 solutions (α , β et γ) sur [0;5].

- **b.** Par lecture graphique (ou par calculatrice), on trouve $\alpha \approx 1.6$; $\beta \approx 2.5$ et $\gamma \approx 3.4$.
- **4.** On utilise la technique *classique* d'obtention du tableau de signes via le tableau de variations (en *descendant* les zéros et en *suivant* les flèches) :

x	0		α		β		Υ		5
f(x)		_	0	+	0	_	0	+	