Entropy (엔트로II)

2019 Fall

Yusung Kim yskim525@skku.edu

Information Gain (정보 이득량)

- ◈ 잘 일어나지 않는 사건은 자주 발생하는 사건보다 정보량이 많다고 정의
- ◈ 발생할 확률이 적을 수록 더 많은 정보량을 갖는다
 - ◈ 정보량이 많다 == 더 중요한 정보
- $I(x) = -\log P(x)$

Entropy

- ◈ 확률 변수의 평균 정보량
 - ◇ 결과 값을 예상하기 어려운 (불확실성) 정도를 의미
 - ♦ High Entropy → High Uncertainty
 - ♦ Low Entropy → Low Uncertainty

$$Entropy = E(-\log P(x)) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Entropy Calculation

동전 던지기	앞면: 50% <i>,</i> 뒷면: 50%	- (0.5*log0.5 + 0.5*log0.5)	Entropy : 1
해가 뜨는 방향	동: 100%, 서,남,북: 0%	- (1.0*log 1.0 + 3*(0.0*log 0.0))	Entropy:0
사건 발생 확률	A: 90%, B: 10%, C: 0%	- (0.9*log 0.9 + 0.1*log 0.1 + 0)	Entropy: 0.47

Max Entropy

Binary Classification

$$0 \le Entropy \le 1$$
 $(2^1 = 2)$

♦ For 8 different classes

$$0 \le Entropy \le 3$$
 $(2^3 = 8)$

♦ For 16 different classes

$$0 \le Entropy \le 4$$
 $(2^4 = 16)$

Cross Entropy

- ▼ 두 확률분포가 하나의 사건 X 에 대해 갖는 평균 정보량
- ◈ 분류 문제에서 비용함수/손실함수로 활용 가능

Cross Entropy as Loss Function

- Q: Estimated Probability
- P: True Probability

$$Entropy = H(P) = -\sum_{i=1}^{n} p_i \log_2 p_i \qquad Cross \ Entropy = H(P,Q) = -\sum_{i=1}^{n} p_i \log_2 q_i$$

Cross Entropy Examples

 $-(1 * \log_2 0.0 + 0 * \log_2 1.0 + 0 * \log_2 0.0) = infinity$

Cross Entropy =
$$H(P,Q) = -\sum_{i=1}^{n} p_i \log_2 q_i$$

Q

0.0 1

1.0

0.0

- Q F
- 0.8
- 0.1 0
- 0.1

- Q P
- 1.0
- 0.0
- 0.0

KL-Divergence (쿨백-라이블러 발산)

- ◈ 두 확률 분포의 다른 정도를 측정하는 방법

×	0	1	2
Distribution P(x)	0.36	0.48	0.16
Distribution <i>Q</i> (x)	0.333	0.333	0.333

KL Divergence: Relative Entropy

- \bigcirc D(P||Q) is relative entropy of P with respect to Q
- ▼ To measure how one probability distribution is different from another
 - KL divergence is zero if two distributions are identical

$$KL\ Divergence = Cross\ Entropy - Entropy$$

$$D(P||Q) = H(P,Q) - H(P)$$

$$D(P||Q) = -\sum_{i=1}^{n} p_i \log_2 q_i + \sum_{i=1}^{n} p_i \log_2 p_i$$

$$D(P||Q)! = D(Q||P)$$

KL Divergence for deep learning model?

D(P||Q) = Cross Entropy - Entropy