Homework 3

Samuel Lindskog

September 14, 2024

Problem 1

Let $(X_1,d_1), (X_2,d_2)$ be two metric spaces. Let $X=X_1\times X_2$, with (X,d) a metric space, and d satisfying property (4.4), let U_1,U_2 be open subsets of X_1,X_2 , and $x=(x_1,x_2)\in U_1\times U_2$. There exists $r_1,r_2>0\in\mathbb{R}$ such that $B(x_1,r_1)\subseteq U_1$ and $B(x_2,r_2)\subseteq U_2$. Suppose $n\in\mathbb{N}$ with $r_n>0\in\mathbb{R}$ and $\{x_n=(x_{1n},x_{2n})\}_{n=1}^\infty$ a sequence in X such that $x_n\in B(x,r_n)$ and

$$\forall \epsilon > 0 \in \mathbb{R}, \exists N \in \mathbb{N} \text{ such that } n \geq N \Rightarrow r_n \leq \epsilon.$$

Therefore $\lim_{n\to\infty} x_n = x$. Following property (4.4), x_{1n} and x_{2n} converge to x_1 and x_2 respectively, so

$$\exists M \in \mathbb{N} \text{ such that } n \geq M \Rightarrow d(x_{1n}, x_1) < r_1 \text{ and}$$

 $\exists L \in \mathbb{N} \text{ such that } n \geq L \Rightarrow d(x_{2n}, x_2) < r_2.$

For all ϵ , there exists N arbitrarily large so that $N \geq \max(M, L)$, and thus if n = N, $x_n \in B(x, r_n)$ implies $x_{1n} \in B(x_1, r_1)$ and $x_{2n} \in B(x_2, r_2)$, so $B(x, r_n) \subseteq X$.