

Centrul Național De Evaluare și Examinare

Országos Magyar Matematika Olimpia Megyei szakasz, 2019. január 26.

Javítókulcs IX. osztály

1. Feladat (10 pont)

Adott az $a = \frac{\sqrt{2} - \sqrt{3}}{\sqrt{6}} + \frac{\sqrt{3} - \sqrt{4}}{\sqrt{12}} + ... + \frac{\sqrt{9} - \sqrt{10}}{\sqrt{90}}$ valós szám.

- a) Számítsd ki az a szám egész részét.
- b) Oldd meg az egész számok halmazán az $\left[\frac{x+1}{2}\right] = 2019[a]$ egyenletet, ahol [t] az t valós szám egész részét jelöli.

(Oláh-Ilkei Árpád, Barót)

Megoldás:

 $M = \{-4039; -4038\}$

Megodas:	
Hivatalból	1pont
a) $a = \frac{\sqrt{2} - \sqrt{3}}{\sqrt{6}} + \frac{\sqrt{3} - \sqrt{4}}{\sqrt{12}} + \dots + \frac{\sqrt{9} - \sqrt{10}}{\sqrt{90}} = \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{4}} - \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{10}} - \frac{1}{\sqrt{9}} = \frac{1}{\sqrt{90}} + \frac{1}{\sqrt{10}} + $	1pont
$=\frac{1}{\sqrt{10}} - \frac{1}{\sqrt{2}} = \frac{\sqrt{10}\left(1 - \sqrt{5}\right)}{10}$	1pont
$\sqrt{4} < \sqrt{5} < \sqrt{9} \Rightarrow -2 < 1 - \sqrt{5} < -1$	1pont
$3 < \sqrt{10} < 4 \Rightarrow -6 < \sqrt{10} \left(1 - \sqrt{5} \right) < -4$	1pont
$\Rightarrow -1 < -0, 6 < a < -0, 4 < 0$	1pont
$\Rightarrow [a] = -1$	1pont
b) $x \in \square$, $\left[\frac{x+1}{2}\right] = 2019[a]$	
$\left[\frac{x+1}{2}\right] = -2019 \Longrightarrow -2019 \le \frac{x+1}{2} < -2018$	1pont
$-4039 \le x < -4037$ és $x \in \square$	1pont

1pont

Centrul Național De Evaluare și Examinare

2. Feladat (10 pont)

Igazold, hogy

a)
$$\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b}$$
 bármely a, b pozitív valós szám esetén;

b)
$$\frac{1}{a} + \frac{1}{b} + \frac{4}{c} \ge \frac{16}{a+b+c}$$
 bármely a, b, c pozitív valós szám esetén;

c)
$$\frac{1}{a} + \frac{1}{b} + \frac{4}{c} + \frac{16}{d} \ge \frac{64}{a+b+c+d}$$
 bármely a, b, c, d pozitív valós szám esetén!

(Nagy Olga, Nagyszalonta)

Megoldás:

Hivatalból

1pont

a)
$$\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b} \Leftrightarrow \frac{a+b}{ab} \ge \frac{4}{a+b}$$
 (1)

$$a+b>0 \Rightarrow (1) \Leftrightarrow \frac{(a+b)^2}{ab} \ge 4$$
 (2)

1pont

$$ab > 0 \Rightarrow (2) \Leftrightarrow (a+b)^2 \ge 4ab$$

1pont

$$(a+b)^2 \ge 4ab \Leftrightarrow (a-b)^2 \ge 0$$
, evidens bármely a,b pozitív valós szám esetén **1pont**

Megiegyzés: Az egyenlőség fennáll, ha a=b.

b)
$$\frac{1}{a} + \frac{1}{b} + \frac{4}{c} \ge \frac{4}{a+b} + \frac{4}{c}$$
 (3)

1pont

és
$$\frac{4}{a+b} + \frac{4}{c} = 4 \cdot \left(\frac{1}{a+b} + \frac{1}{c} \right)^{a} + 4 \cdot \frac{4}{a+b+c} = \frac{16}{a+b+c}$$
 (4)

1pont

$$(3)$$
 és (4) $\Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{4}{c} \ge \frac{16}{a+b+c}$ igaz, bármely a, b, c pozitív valós szám esetén, **1pont**

Megjegyzés: Az egyenlőség fennáll, ha a=b és a+b=c és a+b+c=d.

c)
$$\frac{1}{a} + \frac{1}{b} + \frac{4}{c} + \frac{16}{d} \ge \frac{16}{a+b+c} + \frac{16}{d}$$
 (5)

1pont

$$\frac{16}{a+b+c} + \frac{16}{d} = 16 \cdot \left(\frac{1}{a+b+c} + \frac{1}{d} \right)^{a} \ge 16 \cdot \frac{4}{a+b+c+d}$$
 (6)

1pont

$$(5)$$
 és (6) $\Rightarrow \frac{1}{a} + \frac{1}{b} + \frac{4}{c} + \frac{16}{d} \ge \frac{64}{a+b+c+d}$ igaz bármely a, b, c, d pozitív valós szám

esetén.

1pont

Megjegyzés: Az egyenlőség fennáll, ha a=b és a+b=c és a+b+c=d.

De Evaluare și

Examinare

3. Feladat (10 pont)

Adott az ABC háromszög és E, D és F pontok úgy, hogy $\overline{AE} = \overline{EB}, \overline{BD} = 2\overline{DC}$ és $\overline{CF} = \frac{1}{2}\overline{CE}$

Igazold, hogy a) az A, F és D pontok kollineárisak;

b)
$$\frac{T_{FEA_{\Lambda}}}{T_{FDC_{\Lambda}}} = 3$$
.

(Szőts Ildikó, Brassó és Spier Tünde, Arad)

Megoldás:

Hivatalból

Rajz

1pont

a)
$$\overline{AF} = \frac{1}{2}\overline{AE} + \frac{1}{2}\overline{AC}$$
 (1)

$$\overline{AE} = \frac{1}{2} \overline{AB} \stackrel{(1)}{\Rightarrow} \overline{AF} = \frac{1}{4} \left(\overline{AB} + 2 \overline{AC} \right) \quad (2)$$

$$\overline{AD} = \frac{1}{3}\overline{AB} + \frac{2}{3}\overline{AC} = \frac{1}{3}\left(\overline{AB} + 2\overline{AC}\right) \quad (3)$$

$$(3) \Rightarrow 3\overrightarrow{AD} = \overrightarrow{AB} + 2\overrightarrow{AC} \quad (4)$$

$$(2)$$
és (4) $\Rightarrow \overline{AF} = \frac{3}{4}\overline{AD}$

b) Mivel F felezőpontja az EC -nek, $T_{AEF} = T_{AFC}$ (5) Legyen h a CFD háromszög C -ből húzott magassága, amely megegyezik az AFC

háromszög C -ből húzott magasságával.

$$\frac{T_{AEF}}{T_{FDC}}^{(5)} = \frac{T_{AFC}}{T_{FDC}} = \frac{AF \cdot \frac{h}{2}}{FD \cdot \frac{h}{2}} = \frac{AF}{FD} \quad (6)$$

1pont

Centrul Național De Evaluare și Examinare

az a)
$$\Rightarrow \frac{AF}{FD} = 3$$
 (7)

1pont

$$(6)$$
és (7) $\Rightarrow \frac{T_{FEA_{\Delta}}}{T_{FDC_{\Delta}}} = 3$.

1pont

4. Feladat (10 pont)

Egy kör alakú 1 kg tömegű pizzát egyenes vágásokkal darabokra osztunk. Ha tudjuk, hogy két vágás átmegy a pizza közepén, a harmadik pedíg nem, bizonyítsd be, hogy létezik egy olyan darab, amelynek tömege legalább 166 g.

(Matlap, 2893.feladat, 7szám/2018)

Megoldás:

Hivatalból

1pont

A két vágással, amely átmegy a pizza közepén négy részre osztják a pizzát, A, B, C és D, ezek közül két-két rész szimmetrikus: A és C, valamint B és D.

2pont

A harmadik vágás, amely nem megy át a középponton, a négy részből maximum hármat vághat el, így a harmadik vágás után öt, hat vagy hét darabot kaphatunk.

2pont

Ha öt darabot kapunk, akkor a skatulya-elv alapján létezik legalább egy darab, amelynek tömege legalább 1000:5=200 (g),

(tehát legalább 166 g).

Ha a pizzát hat részre osztottuk, akkor szintén a skatulya-elv alapján egy darab tömege: 1000:6=166,(6), ami legalább 166 g.

1pont

Tekintsük a harmadik esetben a következő ábrát (amikor hét részre osztjuk a pizzát):

A $D_1, D_2, C_1 \cup C_2, B_1, B_2$ és A részek tömege összesen 1 kg, így egy darab tömege: 1000:6=166,(6), ami legalább 166 g.

1pont

Ha a fenti részekből a D_1 , D_2 , B_1 , B_2 vagy A tömege legalább 166 g, akkor a feladat megoldását befejeztük. **1pont** Ha pedig a $C_1 \cup C_2$ rész tömege legalább 166 g, akkor szintén befejeztük a feladat megoldását, mert $C_1 \cup C_2 = A$.

1pont

Centrul Național De Evaluare și

Examinare

Országos Magyar Matematikaolimpia 2019 Megyei szakasz, 2019. január 26.

Javítókulcs X. osztály

1. Feladat (10 pont)

- a) Tudva, hogy $x = \log_a(bc)$, $y = \log_b(ca)$, $z = \log_c(ab)$, $a, b, c \in (0, 1) \cup (1, \infty)$, igazold, hogy $x + y + z + 2 = x \cdot y \cdot z$.
- b) Adj példát olyan a, b és c páronként különböző természetes számokra, amelyekre az x, y és z is természetes számok!

Megoldás:

Hivatalból
a) $x = \log_a(bc) = \frac{\lg b + \lg c}{\lg a}$, $y = \log_b(ca) = \frac{\lg c + \lg a}{\lg b}$, $z = \log_c(ab) = \frac{\lg a + \lg b}{\lg c}$ 1 pont
$x \cdot y \cdot z = \frac{\lg b + \lg c}{\lg a} \cdot \frac{\lg c + \lg a}{\lg b} \cdot \frac{\lg a + \lg b}{\lg c} = \frac{\left(\lg b \cdot \lg c + \lg a \cdot \lg b + \lg^2 c + \lg a \cdot \lg c\right) \cdot \left(\lg a + \lg b\right)}{\lg a \cdot \lg b \cdot \lg c} = \frac{\left(\lg b \cdot \lg c + \lg a \cdot \lg b + \lg^2 c + \lg a \cdot \lg c\right) \cdot \left(\lg a + \lg b\right)}{\lg a \cdot \lg b \cdot \lg c} = \frac{\left(\lg b \cdot \lg c + \lg a \cdot \lg b + \lg^2 c + \lg a \cdot \lg c\right) \cdot \left(\lg a + \lg b\right)}{\lg a \cdot \lg b \cdot \lg c} = \frac{\left(\lg b \cdot \lg c + \lg a \cdot \lg b + \lg^2 c + \lg a \cdot \lg c\right) \cdot \left(\lg a + \lg b\right)}{\lg a \cdot \lg b \cdot \lg c} = \frac{\left(\lg b \cdot \lg c + \lg a \cdot \lg b + \lg^2 c + \lg a \cdot \lg c\right) \cdot \left(\lg a + \lg b\right)}{\lg a \cdot \lg b \cdot \lg c} = \frac{\left(\lg b \cdot \lg c + \lg a \cdot \lg b + \lg^2 c + \lg a \cdot \lg c\right) \cdot \left(\lg a + \lg b\right)}{\lg a \cdot \lg b \cdot \lg c} = \frac{\left(\lg b \cdot \lg c + \lg a \cdot \lg b + \lg^2 c + \lg a \cdot \lg c\right) \cdot \left(\lg a + \lg b\right)}{\lg a \cdot \lg b \cdot \lg c} = \frac{\left(\lg b \cdot \lg c + \lg a \cdot \lg b + \lg^2 c\right) \cdot \left(\lg a + \lg b\right)}{\lg a \cdot \lg b \cdot \lg c} = \frac{\left(\lg b \cdot \lg c + \lg a \cdot \lg b\right) \cdot \lg a \cdot \lg b}{\lg a \cdot \lg b \cdot \lg c} = \frac{\left(\lg b \cdot \lg a \cdot \lg b\right) \cdot \lg a \cdot \lg b}{\lg a \cdot \lg b \cdot \lg c} = \frac{\left(\lg b \cdot \lg a \cdot \lg b\right) \cdot \lg a}{\lg a \cdot \lg b \cdot \lg a} = \frac{\left(\lg b \cdot \lg a \cdot \lg b\right) \cdot \lg a}{\lg a \cdot \lg b} = \frac{\left(\lg a \cdot \lg b\right) \cdot \lg a}{\lg a \cdot \lg b} = \frac{\left(\lg a \cdot \lg b\right) \cdot \lg a}{\lg a \cdot \lg b} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a \cdot \lg b} = \frac{\left(\lg a \cdot \lg b\right) \cdot \lg a}{\lg a \cdot \lg b} = \frac{\left(\lg a \cdot \lg b\right) \cdot \lg a}{\lg a \cdot \lg b} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg b\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right) \cdot \lg a}{\lg a} = \frac{\left(\lg a \cdot \lg a\right)}{\lg a} = \left($
$= \frac{\lg a \cdot \lg b \cdot \lg c + \lg^2 a \cdot \lg b + \lg a \cdot \lg^2 c + \lg^2 a \cdot \lg c + \lg^2 b \cdot \lg c + \lg a \cdot \lg^2 b + \lg b \cdot \lg^2 c + \lg a \cdot \lg b \cdot \lg c}{2c + \lg a \cdot \lg b \cdot \lg c} =$
$\lg a \cdot \lg b \cdot \lg c$
$=1+\frac{\lg a}{\lg c}+\frac{\lg c}{\lg b}+\frac{\lg a}{\lg b}+\frac{\lg b}{\lg a}+\frac{\lg b}{\lg c}+\frac{\lg c}{\lg a}+1=$ 2 pont
$=2+\frac{\lg(bc)}{\lg a}+\frac{\lg(ca)}{\lg b}+\frac{\lg(ab)}{\lg c}=$ 1 pont
= $2 + \log_a(bc) + \log_b(ca) + \log_c(ab) = x + y + z + 2$, amit igazolni kellett 1 pont
b) Legyen $z = 1$, akkor $x + y + 3 = xy \Leftrightarrow (x - 1)(y - 1) = 4 \implies x = 2, y = 5$
$x = 2 \Leftrightarrow a^2 = bc$
$ x = 2 \Leftrightarrow a^2 = bc $ $ y = 5 \Leftrightarrow b^5 = a \cdot c $ $ z = 1 \Leftrightarrow c = a \cdot b $ $ \Rightarrow \begin{cases} a = b^2 \\ c = b^3 \end{cases} \Rightarrow $
$z=1 \Leftrightarrow c=a \cdot b$ $(c=b)$

MINISTERUL EDUCATIEI NATIONALI

Centrul Național De Evaluare și Evaminare

Például: b = 2, a = 4, c = 8, amelyek teljesítik a kért feltételeket. 2. Feladat (10 pont) Legyen $z \in \mathbb{C} \setminus \mathbb{R}$. Igazold, hogy $\omega = \frac{1+z+z^2}{1-z+z^2} \in \mathbb{R}$ akkor és csak akkor, ha |z|=1. Hivatalból 1 pent I. Megoldás:1 pont $z \in \mathbb{C} \setminus \mathbb{R} \Rightarrow z = a + bi, a, b \in \mathbb{R}, b \neq 0$ Akkor $\omega = \frac{1 + a + bi + a^2 - b^2 + 2abi}{1 - a - bi + a^2 - b^2 + 2abi} = \dots 1$ pont $=\frac{\left(1+a+a^2-b^2\right)+b\left(1+2a\right)i}{\left(1-a+a^2-b^2\right)-b\left(1-2a\right)i}=$ $= \frac{\left[\left(1+a+a^2-b^2\right)+b\left(1+2a\right)i\right]\cdot\left[\left(1-a+a^2-b^2\right)+b\left(1-2a\right)i\right]}{\left[\left(1-a+a^2-b^2\right)-b\left(1-2a\right)i\right]\cdot\left[\left(1-a+a^2-b^2\right)+b\left(1-2a\right)i\right]} = \dots 1 \text{ pont}$ $=\operatorname{Re}\omega + \frac{\left(1+a+a^2-b^2\right)b\left(1-2a\right)+\left(1-a+a^2-b^2\right)b\left(1+2a\right)}{\left(1-a+a^2-b^2\right)^2+b^2\left(1-2a\right)^2}i = \dots 1 \text{ pont}$ $= \operatorname{Re} \omega + \frac{2(1 - a^2 - b^2)}{(1 - a + a^2 - b^2)^2 + b^2(1 - 2a)^2} i \in \mathbb{R} \iff \dots$ 1,5 pont \Leftrightarrow Im $\omega = 0 \Leftrightarrow 2(1-a^2-b^2) = 0 \Leftrightarrow \dots 1,5$ point 1 pont $\Leftrightarrow a^2 + b^2 = 1 \Leftrightarrow |z| = 1.$ II. Megoldás: $\omega \in \mathbb{R} \Leftrightarrow \bar{\omega} = \omega$, akkor $\frac{1+\overline{z}+\overline{z}^2}{1-\overline{z}+\overline{z}^2} = \frac{1+z+z^2}{1-z+z^2} \Leftrightarrow -z+\overline{z}+z^2 \cdot \overline{z}-z \cdot \overline{z}^2 = 0 \Leftrightarrow \dots 4 \text{ pont}$ illetve, $1 - z \cdot \overline{z} = 0 \Leftrightarrow |z|^2 = 1 \Leftrightarrow |z| = 1$. 2 pont

3. Feliabet (16 point)

As ABC haromostiphen $\frac{\theta}{h} = 2 + \sqrt{3}$ is a C solig méricke 60 .

- s) Ignizated hopy I = ignight = 0.
- bi) Sizamitad ki az ili és a B szóg mértékét!

1. Megaldás

menéke 60', ezén az Aszág 30'-es.

$$CD = \frac{b}{2}$$
, $AD = \frac{b\sqrt{3}}{2}$1.pont

$$BD = BC - CD = \frac{3 + 2\sqrt{3}}{2}b$$
.

Az ABC háromszögben $tgA = tg(180^\circ - (B+C)) = -tg(B+C) =1$ pont

Mivel $A + B = 120^{\circ}$ azt kapjuk, hogy a B szög mértéke 15' és az A szög mértéke 105' ... 1 pont

II. Megoldás

Kifejtve a baloidati kifejezést és átrendezve az egyenlőséget, azt kapjuk, hogy

 $\sqrt{3}\cos B = (3 + 2\sqrt{3})\sin B$. Innen következik, hogy $tgB = 2 - \sqrt{3}$2 pont

ahonnan következik, hogy a B szög mértéke 15'.

MINISTERUL EDUCATIEI NATIONALI

Centrul Național De Evaluare și Examinare

kapott szögek tangensét kiszámolva és behelyettesítve kapjuk a feladat a) alpontjállak az
redményét1 pont
III. Megoldás:
A - B
A tangenstétel értelmében $\frac{a-b}{a+b} = \frac{tg\frac{A-B}{2}}{tg\frac{A+B}{2}}$,3 pont
amit a $\frac{\frac{a}{b}-1}{\frac{a}{b}+1} = tg \frac{A-B}{2} tg \frac{C}{2}$ alakba írva2 pont
a feltételek alapján azt kapjuk, hogy $tg \frac{A-B}{2} = 1$, ahonnan az következik, hogy $A-B = 90^{\circ}$. Az
$A+B=120^{\circ}$ és $A-B=90^{\circ}$ összefüggésekből következik, hogy a B szög mértéke 15° és az A
$A+B=120^{\circ} \text{ es } A-B=90^{\circ} \text{ Osszelüggesöndet in } 3$ pont
szög mértéke 105°
szög mértéke 105°
eredményét1 pont
4. Feladat (10 pont) Oldd meg a $2^{[4x-1]} = \left[\frac{x^2 - 2x + 3}{x^2 + x + 1}\right]$ egyenletet a valós számok halmazán, ahol $[x]$ az x valós szám
egész részét jelöli. Matlap
Hivatalból 1 pont
Hivatalból
Megoldás:
Bizonyítjuk, hogy $\frac{x^2-2x+3}{x^2+x+1} > 0$, $\forall x \in \mathbb{R}$
Bizonyítjuk, hogy $\frac{x^2 - 2x + 3}{x^2 + x + 1} < 7, \ \forall \ x \in \mathbb{R} \implies \left[\frac{x^2 - 2x + 3}{x^2 + x + 1}\right] \le 6 $ 2 pont
A fentiek helyett tekinthetjük az $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \frac{x^2 - 2x + 3}{x^2 + x + 1}$ függvényt, és meghatározzuk a
függvényértékek halmazát: $\operatorname{Im}(f) = \left[\frac{10 - 2\sqrt{19}}{3}, \frac{10 + 2\sqrt{19}}{3}\right]$, amit szintén 3 pontot ér.

MINISTERLE EDECATIES NATIONALS

Central National De Evaluare și Examinare

Tehát
$$\left[\frac{x^2-2x+3}{x^2+x+1}\right] \ge 0 \implies \left[\frac{x^2-2x+3}{x^2+x+1}\right] \in \mathbb{N}$$
, bármely valós x esetén,

ebből következik, hogy $[4x-1] \ge 0 \implies [4x-1] \in \mathbb{N}$, bármely valós x esetén.

Ezért
$$2^{[4z-1]} \in \{1,2,4,8,...\}$$
 és $Im(f) \cap \mathbb{Z} = \{1,2,3,4,5,6\}$

.....1 pon

$$\Rightarrow 2^{[4x-1]} \in \{1,2,4\} \text{ és ebből } \left[\frac{x^2 - 2x + 3}{x^2 + x + 1}\right] \in \{1,2,4\}$$

.....1 pont

Tárgyalás:

1. eset:

$$2^{[4x-1]} = 1 \Leftrightarrow \begin{cases} \left[4x-1\right] = 0 \\ \left[\frac{x^2 - 2x + 3}{x^2 + x + 1}\right] = 1 \end{cases} \Leftrightarrow \begin{cases} x \in \left[\frac{1}{4}, \frac{1}{2}\right) \\ x \in \left(-\infty, -2 - \sqrt{5}\right] \cup \left[-2 + \sqrt{5}, \frac{2}{3}\right] \end{cases} \Leftrightarrow x \in \left[\frac{1}{4}, \frac{1}{2}\right) = M_1$$

.....1 pont

2. eset:

$$2^{[4x-1]} = 2 \Leftrightarrow \begin{cases} \left[4x-1\right] = 1 \\ \left[\frac{x^2 - 2x + 3}{x^2 + x + 1}\right] = 2 \end{cases} \Leftrightarrow \begin{cases} x \in \left[\frac{1}{2}, \frac{3}{4}\right) \\ x \in \left(-\infty, -2 - \sqrt{5}\right] \cup \left[-2 + \sqrt{5}, \infty\right) \end{cases} \Leftrightarrow x \in \left[\frac{1}{2}, \frac{3}{4}\right) = M_2$$

.....1 pont

3. eset:

$$2^{\left[4x-1\right]} = 4 \Leftrightarrow \begin{cases} \left[4x-1\right] = 2 \\ \left[\frac{x^2 - 2x + 3}{x^2 + x + 1}\right] = 4 \end{cases} \Leftrightarrow \begin{cases} x \in \left[\frac{3}{4}, 1\right) \\ x \in \left[\frac{-3 - \sqrt{6}}{3}, \frac{-7 - \sqrt{17}}{8}\right] \cup \left(\frac{-7 + \sqrt{17}}{8}, \frac{-3 + \sqrt{6}}{3}\right] \Leftrightarrow x \in \emptyset = M_1 \end{cases}$$

.....1 pont

$$M = M_1 \cup M_2 \cup M_3 = \left[\frac{1}{4}, \frac{1}{2}\right] \cup \left[\frac{1}{2}, \frac{3}{4}\right] \cup \emptyset = \left[\frac{1}{4}, \frac{3}{4}\right].$$
 1 point

Centrul Național De Evaluare și Examinare

Országos Magyar Matematika Olimpia Megyei szakasz, 2019. január 26.

Javítókulcs XI. osztály

1. Feladat (10 pont)

a.) Kétféleképpen kiszámítva az $A=\begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}$, $a,b,c\in\mathbb{R}$ mátrix determinánsát, igazold

az alábbi egyenlőséget:

$$a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-ac-bc)$$

b) Ha
$$a,b,c \in \mathbb{R}$$
 és $a+b+c=1$, igazold, hogy $\frac{a^3+b^3+c^3}{3} \ge abc$.

(Betuker Enikő, Mastan Eliza, Szilágyi Judit)

Megoldás

Hivatalból 1p

a)
$$\det A = \begin{vmatrix} a & b & c \\ c & a & b \\ b & c & a \end{vmatrix} = a^3 + b^3 + c^3 - 3abc$$
 2p

$$\det A = \begin{vmatrix} a+b+c & b & c \\ a+b+c & a & b \\ a+b+c & c & a \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & b & c \\ 1 & a & b \\ 1 & c & a \end{vmatrix} =$$

$$= (a+b+c) \begin{vmatrix} 1 & b & c \\ 0 & a-b & b-c \\ 0 & c-b & a-c \end{vmatrix} =$$

$$= (a+b+c)(a^2+b^2+c^2-ab-ac-bc)$$
2p

b) Ha
$$a+b+c=1$$
, akkor az a) alpont alapján $a^3+b^3+c^3-3abc=a^2+b^2+c^2-ab-ac-bc$. 1p

$$a^{2} + b^{2} + c^{2} - ab - ac - bc = \frac{1}{2} \left[a^{2} - 2ab + b^{2} + a^{2} - 2ac + c^{2} + b^{2} - 2bc + c^{2} \right] = 1$$

$$= \frac{1}{2} \left[(a-b)^2 + (a-c)^2 + (c-b)^2 \right] \ge 0.$$

Tehát $a^3 + b^3 + c^3 - 3abc \ge 0$, innen:

$$\frac{a^3+b^3+c^3}{3} \ge abc.$$

1p

2. Feladat (10 pont)

Az $(x_n)_{n\geq 0}$ sorozatot a következőképpen értelmezzük: $x_{n+1}=x_n+\frac{3}{x_n}$, $x_0=1$.

- a) Igazold, hogy $\lim_{n\to\infty} x_n = +\infty$!
- b) Számítsd ki a $\lim_{n\to\infty}\frac{x_n^2}{n}$ határértéket!
- c) Számítsd ki a $\lim_{n\to\infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{x_n}$ határértéket!

(Zákány Mónika)

Megoldás

Hivatalból 1p

lp

a) Indukcióval igazoljuk, hogy
$$x_n > 0$$
, $\forall n \in \mathbb{N}^*$.

 $x_{n+1} - x_n = \frac{3}{x_n} > 0 \implies (x_n)_{n \ge 0}$ sorozat szigorúan növekvő

Mivel $(x_n)_{n\geq 0}$ szigorúan növekvő \Rightarrow ha $(x_n)_{n\geq 0}$ korlátos, akkor létezik $\lim_{n\to\infty} x_n = l \in \mathbb{R}$, ha pedig $(x_n)_{n\geq 0}$ nem korlátos, akkor $\lim_{n\to\infty} x_n = +\infty$.

Feltételezzük, hogy a sorozat korlátos és $\lim_{n\to\infty} x_n = l \in \mathbb{R}$. Határértékre térve a rekurzióban:

$$l = l + \frac{3}{l} \Rightarrow \frac{3}{l} = 0$$
 ellentmondás, tehát a sorozat nem korlátos és $\lim_{n \to \infty} x_n = +\infty$.

b) Legyen $a_n = x_n^2$ és $b_n = n$, $\forall n \in \mathbb{N}^*$. A $(b_n)_{n \ge 0}$ sorozat szigorúan növekvő és korlátos. (1) 1p

$$\lim_{n \to \infty} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = \lim_{n \to \infty} \frac{x_{n+1}^2 - x_n^2}{n + 1 - n} = \lim_{n \to \infty} \left(x_n + \frac{3}{x_n} \right)^2 - x_n^2 = \lim_{n \to \infty} \left(6 + \frac{9}{x_n^2} \right) = 6$$
 (2)

(1) és (2) Cesaro-Stolz tétele alapján
$$\exists \lim_{n \to \infty} \frac{a_n}{b_n} = 6$$
 2p

c)
$$\lim_{n \to \infty} \left(1 + \frac{1}{\sqrt{n}} \right)^{x_n} = \lim_{n \to \infty} \left[\left(1 + \frac{1}{\sqrt{n}} \right)^{\sqrt{n}} \right]^{\frac{x_n}{\sqrt{n}}} = e^{\lim_{n \to \infty} \frac{x_n}{\sqrt{n}}}$$

$$\lim_{n\to\infty} \left(\frac{x_n}{\sqrt{n}}\right)^2 = \left(\lim_{n\to\infty} \frac{x_n}{\sqrt{n}}\right)^2 \text{ és a b) alapján} \left(\lim_{n\to\infty} \frac{x_n}{\sqrt{n}}\right)^2 = 6.$$

Mivel
$$\frac{x_n}{\sqrt{n}} > 0$$
, $\forall n \in \mathbb{N}^*$, $\lim_{n \to \infty} \left(\frac{x_n}{\sqrt{n}} \right) = \sqrt{6}$.

$$\lim_{n\to\infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{x_n} = e^{\sqrt{6}}$$

3. Feladat (10 pont)

Adott az
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \in M_3(\mathbb{C})$$
 mátrix.

- a) Számítsd ki az A" mátrixot!
- b) Számítsd ki det (A") értékét!

(Matlap)

Megoldás

Hivatalból lp

$$A^{2} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 2 & 3 & 2 \end{pmatrix}$$

$$1p$$

Igazoljuk, indukcióval, hogy $A^n = \begin{pmatrix} x_n & y_n & y_n \\ y_n & x_n & y_n \\ y_n & y_n & x_n \end{pmatrix}$ alakú és

$$A^{n+1} = \begin{pmatrix} 2y_n & x_n + y_n & x_n + y_n \\ x_n + y_n & 2y_n & x_n + y_n \\ x_n + y_n & x_n + y_n & 2y_n \end{pmatrix} = \begin{pmatrix} x_{n+1} & y_{n+1} & y_{n+1} \\ y_{n+1} & x_{n+1} & y_{n+1} \\ y_{n+1} & y_{n+1} & x_{n+1} \end{pmatrix}.$$
1p

Innen:

$$\begin{cases} x_{n+1} = 2y_n \\ y_{n+1} = x_n + y_n \end{cases}$$

Tehát
$$\begin{cases} x_n = y_{n+1} - y_n \\ y_{n+2} = y_{n+1} + 2y_n \end{cases}$$
.

A második lineáris rekurencia karakterisztikus egyenlete $r^2 - r - 2 = 0$, melynek megoldásai 2 és -1, tehát $y_n = A \cdot 2^n + B \cdot (-1)^n$. lρ

Az
$$y_1 = 1$$
 és $y_2 = 1$ feltételekből $A = \frac{1}{3}$ és $B = -\frac{1}{3}$.

Innen $y_n = \frac{1}{3} \cdot 2^n - \frac{1}{3} \cdot (-1)^n$

és
$$x_n = \frac{2}{3} \cdot 2^{n-1} - \frac{2}{3} \cdot (-1)^{n-1}$$
.

Tudjuk, hogy
$$\det(A^n) = (\det A)^n$$

Mivel $\det A = 2 \Rightarrow \det(A^n) = 2^n$

Ip

Centrul Național De Evaluare și Examinare

4. Feladat (10 pont)

Igazold, hogy az 1, 2, 3, ..., 2019 számok közül nem választható ki 100 olyan szám, amelyekből bármely kettőt összeadva, az így képezhető kéttagú összegek mind különbözzenek egymástól!

(Szilágyi Judit)

Megoldás Hivatalból 1p Az 1, 2,, 2019 számokból képezhető	
legkisebb kéttagú összeg 1+2=3, illetve	1p
legnagyobb kéttagú összeg 2018+2019 = 4037	1p
emiatt a 2019 számból legtöbb 4035 különböző összeget kaphatunk.	2p
Ha a 2019 számból kiválasztunk 100 számot, ezekből nyilvánvalóan nem kaphatunk en	nél több
kűlönböző összeget.	1p
Száz számból $C_{100}^2 = 4950$ számpárt alkothatunk, tehát 4950 összeget képezhetünk.	3p
Mivel 4950 > 4037 ezek nem lehetnek mind különbözőek.	1p

Országos Magyar Matematika Olimpia Megyei szakasz, 2019. január 26.

Javítókulcs XII. osztály

- 1. Feladat (10 pont) Adottak az $f,g:I\to\mathbb{R}$, $I\subseteq\mathbb{R}$ deriválható függvények, amelynek deriváltjai folytonosak.
 - a) Igazold, hogy $\int [f'(x) + f(x)g'(x)]e^{g(x)}dx = f(x) \cdot e^{g(x)} + C$;
 - b) Számítsd ki: $\int \frac{x^2 \ln x \ln x + x}{x^2} \cdot e^{x + \frac{1}{x}} dx$ integrált, ahol x > 0!

(Matlap 10- L:2951/2018)

Megoldás:

2. Feladat (10 pont) Számítsd ki :

a) az
$$I - J$$
 integrált, ha $I = \int \frac{\sin x}{\sin x + \cos x} dx$ és $J = \int \frac{\cos x}{\sin x + \cos x} dx$;

Centrul Național De Evaluare și

Examinare

b)
$$\int \frac{e^x + \cos x}{e^x + \cos x + \sin x} dx, x > 0 \text{ integrált!}$$

Megoldás:

Hivatalból	1 p
a) $I - J = \int \frac{\sin x - \cos x}{\sin x + \cos x} dx = -\int \frac{\cos x - \sin x}{\sin x + \cos x} dx = \dots$	1p
$-\int \frac{(\sin x + \cos x)'}{\sin x + \cos x} dx = \dots$	
$-\ln(\sin x + \cos x) + c .$ b)	2р
Legyen $I = \int \frac{e^x + \cos x}{e^x + \cos x + \sin x} dx$ és $J = \int \frac{\sin x}{e^x + \cos x + \sin x} dx$	
Ekkor $I+J=x+C_1$	1p
$I - J = \ln\left(e^x + \cos x + \sin x\right) + C_2. \dots$	
Összegezve az egyenlőségeket kapjuk, hogy $I = \frac{1}{2} \left(x + \ln \left(e^x + \cos x + \sin x \right) \right)$	+ C1p

3. Feladat (10 pont) Öt számkártyára felírtuk az 1,2,3,4 és 5 számokat, minden kártyára pontosan egyet. Az öt számkártyát elhelyezzük az egymás mellett lévő X, Y és Z dobozokba. Hány olyan elhelyezése van a számkártyáknak, amelyekben az X jelű dobozban levő számkártyákra írt számok összege osztható 5 -tel? (Ha egy dobozba egy számkártya kerül, akkor az ezen levő számot tekintjük a számkártyán lévő számok összegének. Üres doboz esetén az összeg 0.)

Megoldás:

Centrul Naționa De Evaluare și Examinare

- Tehát az elhelyezések száma: $2^5 + 2^4 + 2 \cdot 2^3 + 2 \cdot 2^2 + 2 + 1 = 75$1p
- **4. Feladat (10 pont)** A $G = (1, \infty)$ halmazon értelmezett az $x \circ y = \sqrt{x^2 y^2 x^2 y^2 + 2}$ belső művelet $\forall x, y \in G$ esetén.
 - a) Igazold, hogy (G, °) Ábel-féle csoport;
 - b) Határozd meg az m, n valós számokat úgy, hogy az $f:(0,\infty)\to(1,\infty)$ függvény, ahol $f(x) = \sqrt{mx + n}$ egy izomorfizmust valósítson meg az (\mathbb{R}_+^*,\cdot) és a (G,\circ) csoportok közöt;
 - c) Számítsd ki $\sqrt{\frac{2 \cdot 1^2 + 2}{1^2 + 1 + 1}} \circ \sqrt{\frac{2 \cdot 2^2 + 2}{2^2 + 2 + 1}} \circ ... \circ \sqrt{\frac{2 \cdot n^2 + 2}{n^2 + n + 1}}$ értékét!

Megoldás:

	1n
	Hivatalból
a)	Asszociativítás kimutatásalp
,	4.4
	$e = \sqrt{2} \in (1, \infty)$
	$x' = \sqrt{\frac{x^2}{x^2 - 1}} = \sqrt{1 + \frac{1}{x^2 - 1}} > 1$ tehát $x' \in G$ szimmetrikus elem
b)	$f(x \cdot y) = f(x) \circ f(y) \iff \sqrt{mxy + n} = \sqrt{mx + n} \circ \sqrt{my + n} =$
	$= \sqrt{m^2 xy + m(n-1)x + m(n-1)y + mn - 2n + 2}$ innen kapjuk, hogy
	$\begin{cases} m^2 = m \\ m(n-1) = 0 \end{cases}$ ahonnan $m \in \{0,1\}$, de mivel f nem lehet konstans függvény.
	mn-2n+2=n
	Innen következik, hogy $n = 0$
	$f(x) = \sqrt{x+1} \text{ bijektiv}$
c)	Ha az $f:(0,\infty)\to(1,\infty)$, $f(x)=\sqrt{x+1}$ izomorfizmus a $(\mathbb{R}_+^*;\cdot)$ és (G,\circ) között, akkor az
	$f^{-1}:(1,\infty)\to(0,\infty),\ f^{-1}(x)=x^2-1$ is izomorfizmus a (G,\circ) és $(\mathbb{R}_+^*;\cdot)$ közöttlp
	Jelöljük $x_1 = \sqrt{\frac{2 \cdot 1^2 + 2}{1^2 + 1 + 1}}$, $x_2 = \sqrt{\frac{2 \cdot 2^2 + 2}{2^2 + 2 + 1}}$,, $x_n = \sqrt{\frac{2 \cdot n^2 + 2}{n^2 + n + 1}}$,
	ekkor $f^{-1}(x_1) = \frac{2 \cdot 1^2 + 2}{1^2 + 1 + 1} - 1 = \frac{1^2 - 1 + 1}{1^2 + 1 + 1}, \ f^{-1}(x_2) = \frac{2 \cdot 2^2 + 2}{2^2 + 2 + 1} - 1 = \frac{2^2 - 2 + 1}{2^2 + 2 + 1}, \dots,$
	$f^{-1}(x_n) = \frac{2 \cdot n^2 + 2}{n^2 + n + 1} - 1 = \frac{n^2 - n + 1}{n^2 + n + 1}.$

MINISTERUL EDUCATIEI NATIONALI

Centrul Național

De Evaluare și Examinare

$$\prod_{k=1}^{n} f^{-1}(x_{k}) = \prod_{k=1}^{n} \frac{k^{2} - k + 1}{k^{2} + k + 1} = \frac{1}{3} \cdot \frac{3}{7} \cdot \dots \cdot \frac{(n-1)^{2} - (n-1) + 1}{(n-1)^{2} + (n-1) + 1} \cdot \frac{n^{2} - n + 1}{n^{2} + n + 1} = \frac{1}{n^{2} + n + 1} \cdot \dots \cdot \frac{n^{2} - n + 1}{n^{2} - n + 1} \cdot \frac{n^{2} - n + 1}{n^{2} - n + 1} = \frac{1}{n^{2} + n + 1} \cdot \dots \cdot 1p$$

$$x_{1} \circ x_{2} \circ \dots \circ x_{n} = f\left(\prod_{k=1}^{n} f^{-1}(x_{k})\right) = f\left(\frac{1}{n^{2} + n + 1}\right) = \sqrt{\frac{1}{n^{2} + n + 1} + 1} = \sqrt{\frac{n^{2} + n + 2}{n^{2} + n + 1}} \cdot \dots \cdot 1p$$