

<u>Simulations – 1.2 שאלה</u>

.ח"ח. ניתן לראות בקוד מטלב בסוף הדו"ח.

1.2.4) להלן החישוב של ההסתברות לשגיאה של הגאוסיאן (ניתן לראות את תהליך החישוב בקוד מטלב בסוף הדו"ח):
■ prob_error_gauss * □ prob_error_gaus □ prob_error_

	prob_ciror_gaass	
	13x1 double	
	1	2
1	0.1573	
2	0.1456	
3	0.1304	
4	0.1174	
5	0.1033	
6	0.0904	
7	0.0806	
8	0.0673	
9	0.0568	
10	0.0468	
11	0.0368	
12	0.0301	
13	0.0230	

1.2.5) להלן הגרף להסתברות לשגיאה בגילוי האותות שעברו דרך הערוץ עם רעש בהתפלגות גאוסית כתלות ביחס האות לרעש:

נשים לב כי היחס מוצג ב [dB].

1.2.6) להלן הגרף להסתברות לשגיאה בגילוי האותות שעברו דרך הערוץ עם רעש בהתפלגות לפלסיאנית כתלות ביחס האות לרעש:

נשים לב כי היחס מוצג ב [dB].

1.2.7) להלן הגרף המשווה את הסתברויות השגיאה בגילוי האותות בהתפלגות גאוסיאנית לעומת התפלגות לפלסיאנית כתלות ביחס האות לרעש:

נשים לב כי היחס מוצג ב [dB].

בהתאם לחישוב ב-1.1.5, עבור SNR גדול הסתברות השגיאה עם רעש בהתפלגות גאוסית קטנה יותר מהרעש המתפלג לפלסיאנית, ואילו עבור SNR קטן הסתברות השגיאה עם רעש בהתפלגות לפלסיאן קטנה יותר מאשר ההתפלגות הגאוסיאנית.

	2 n/ce
ות ש-פרורית צחה R האשל העתרה	
RISC~ U(-\$, \$), RISA~ N(0,02), FRISO (1745=5)	$(a) = \begin{cases} A, \Gamma \in L^{-3}, 3L \\ O, also \end{cases}$
	2 7 POT MAP-7 (5 (2.1
>) => fais, (r/s,) ses or fais, (r/s,)	
Γ¢ [-\$, \$]: √3πο 3 ΕΧΡΙ - 5σ 3] 5,25 ° O	
3(r) = S1	לבן בתחום הצה נבחר
[E[-3, 2]: \$ EXP[-503] 15.25 A => EXP[-503] 5.25	
=> 902 5 25 ln((21102)) => 1250 03 ln(2103)	1/5.7
100 10 (A 2) = B : 1/2	
So: r2-B U 17B , S1: -B2 12B	
	אתר קבוע: י ספור
S(r) = { So, (-3 2 r 2 - R) U(2 mg) : B < 25	י זביר
51, 6/36	
39) Pe = Program = Pro/sol + Pro/sol + Pro/sol + Pro/sol	
·B>3: #P(a/s,) = P(3m-s,/s,) =0; # P(a/so)=P(s	
	3-3,/201-7
=> Pro Po = 0.5-1-0.5-0= 3	Tars,
· B < \$: # P(0/5,) = P(5=5,/5,) = 3 fp/s, dr + 3 fp/s, dr =	()210 =) TRIS, (1/5,) dr=
= 2 (Q(Az) - Q(B))	
= 2 (Q(A3) - Q(B)) = P(0/50) = P(S=5,/50) = 3 AOr + 3 Ordr + 3 Ox	or = 2B
> Po = 3 B + 38 (Q(3)-Q(B)) = B + Q(3)-Q(B)	

=

=

Contents

- Variables
- Gaussian noise
- Laplacian noise
- Compare Plots
- Sub-Functions

```
clear all;
close all;
```

Variables

```
E = 1;
s = randsrc(10^5, 1);
SNR_db = (-6 : 1 : 6);
SNR = 10.^(SNR_db / 20);
N = E./SNR;
var = sqrt(N / 2);
norm = 10^5;
```

Gaussian noise

```
SG = zeros(10^5, 13);
for i = 1 : 13
  WG(:, i) = var(i) * randn(10^5, 1);
  RG(:, i) = s + WG(:, i);
   for j = 1 : 10^5
       if (RG(j, i) > 0)
           SG(j, i) = 1;
       else
           SG(j, i) = -1;
       end
   end
end
prob_error_A = zeros(13,1);
for i = 1 : 13
  for j = 1 : 10^5
       if(SG(j, i) - s(j) \sim 0)
          prob_error_A(i) = prob_error_A(i) + 1;
       end
   end
prob_error_gauss = prob_error_A / norm;
%Graph
figure(1);
plot(SNR_db, prob_error_gauss / norm ,'-h');
grid on
title('P_e_r_r_o_r - Gaussian noise');
xlabel('SNR[dB]');
ylabel('P_e(SNR[dB])');
movegui('west');
```


Laplacian noise

```
SL=zeros(10<sup>5</sup>,13);
for i = 1 : 13
   WL(:, i) = laprnd(10^5, 1, 0, var(i));
   RL(:, i) = s + WL(:, i);
   for j = 1 : 10^5
       if (RL(j, i) > 0)
           SL(j, i) = 1;
       else
           SL(j, i) = -1;
       end
   end
end
prob_error_laplace = zeros(13, 1);
for i = 1 : 13
    for j = 1 : 10^5
        if(SL(j, i) - s(j) \sim 0)
           prob_error_laplace(i) = prob_error_laplace(i) + 1;
        end
    end
end
%Graph:
figure(2);
plot(SNR_db, prob_error_laplace/norm, 'r-h');
grid on
title('P_e_r_r_o_r - Laplacian noise');
xlabel('SNR[dB]');
ylabel('P_e(SNR[dB])');
movegui('east');
```


Compare Plots

```
figure(3);
plot(SNR_db, prob_error_A/norm, 'b-*');
hold on
plot(SNR_db, prob_error_laplace/norm, 'r-o');
grid on
title('P_e_r_r_o_r - Comparison');
xlabel('SNR[dB]');
ylabel('P_e(SNRdB)');
legend('Gaussian noise','Laplacian noise')
movegui('north');
```


Sub-Functions

```
function y = laprnd(m, n, mu, sigma)
%LAPRND generate i.i.d. laplacian random number drawn from laplacian distribution
   with mean mu and standard deviation sigma.
%
           : mean
%
   sigma : standard deviation
%
  [m, n] : the dimension of y.
%
  Default mu = 0, sigma = 1.
%
   For more information, refer to
%
   http://en.wikipedia.org./wiki/Laplace_distribution
   Author : Elvis Chen (bee33@sjtu.edu.cn)
%
%
           : 01/19/07
   Date
%Check inputs
if nargin < 2
   error('At least two inputs are required');
end
if nargin == 2
   mu = 0; sigma = 1;
end
if nargin == 3
    sigma = 1;
end
% Generate Laplacian noise
u = rand(m, n)-0.5;
b = sigma / sqrt(2);
y = mu - b * sign(u).* log(1- 2* abs(u));
```

Published with MATLAB® R2019b