Laporan Praktikum Pembelajaran Mesin Neural Network

Disusun oleh: Kelompok 3

1.	Gede Rangga Wira Aditya	(082011633048)
2.	Muhammad Rahmadhani Ferdiansyah	(082011633068)
3.	Arya Danu Triatmodjo	(082011633069)
4.	Mukhamad Ikhsanudin	(082011633086)

Kelas I3

PROGRAM STUDI S1 SISTEM INFORMASI FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS AIRLANGGA SURABAYA

2021/2022

COBA SEMUA SOURCE CODE NEURAL NETWORK

MATLAB

5. Data Training

X		Υ	Target
	1	1	1
	1	0	1
	0	1	1
	0	0	0

6. Membaca data dari excel

```
%Membaca data dari excel
filename = 'DataLatih.xlsx';
sheet = 1;
xlRange = 'A2:C5';
Data = xlsread (filename, sheet, xlRange);
data_latih = Data(:,1:2)';
target_latih = Data(:,3)';
[m, n] = size(data latih);
```

7. Menentukan jumlah neuron, jumlah epoch, dan nilai learning rate lalu menyimpan hasilnya

```
% Pembuatan JST
% Arsitek jaringan yang dipakai adalah 3-3-1, artinya 3 neuron input
% X,Y,Z), 3 neuron hidden (karena Inputnya ada 3 neuron maka neuron hiddennya
% Fungsi Aktivasi di hidden layer menggunakan 'logsig', di output layer menggunakan 'purelin'
% Model JST yang digunakan gradien descent maka fungsi aktivasinya adalah traingdx
net = newff(minmax(data_latih),[2 1],{'logsig', 'purelin'}, 'traingdx');
% Memberikan nilai untuk mempengaruhi proses Training
net.performFcn= 'mse';
net.trainParam.goal = 0.0001; % Errornya (0 sampai 1)
net.trainParam.show = 20; % Boleh diganti
net.trainParam.epochs = 1500; % Banyaknya epoch / iterasi training
net.trainParam.mc = 0.95;
net.trainParam.lr = 1; % Nilai learning Rate (0 sampai 1)
% Proses training
[net_keluaran, tr, Y, E] = train(net, data_latih, target_latih);
% Hasil setelah pelatihan
bobot hidden = net keluaran.IW {1,1};
bobot_keluaran = net_keluaran.LW{2,1};
bias_hidden = net_keluaran.b{1,1};
bias_keluaran = net_keluaran.b{2,1};
jumlah_iterasi = tr.num_epochs;
nilai keluaran = Y;
nilai error = E;
error_MSE = (1/n) *sum(nilai_error.^2);
save ('C:\ikhsan\UNAIR\SEMESTER 4\PEMBELAJARAN MESIN (PRAKTIKUM)\Tugas SVM dan NN\net_keluaran.mat')
```

```
% Hasil prediksi
hasil_latih = sim(net_keluaran, data_latih);
% Performansi hasil prediksi
target_latih_asli = target_latih;
figure,
plotregression(target latih asli, hasil latih, 'Regression')
figure,
plotperform(tr)
% Gambar JST
figure,
plot(hasil latih, 'bo-')
hold on
plot(target_latih_asli, 'ro-')
hold off
grid on
title(strcat(['Grafik Keluaran JST vs Target dengan nilai MSE = ', num2str(error_MSE)]))
xlabel('Pola ke-')
ylabel('MSE')
legend('Keluaran JST', 'Target', 'Location', 'Best')
```

8. Data Testing

X		Υ	Target
	1	1	1
	1	0	1
	0	1	1
	0	0	0

9. Load Jaringan Data Training

```
% load jaringan yang sudah dibuat pada proses pelatihan
load('C:\ikhsan\UNAIR\SEMESTER 4\PEMBELAJARAN MESIN (PRAKTIKUM)\Tugas SVM dan NN\net keluaran.mat')
```

10. Membaca data dari excel

```
% Proses membaca data uji dari excel
filename = 'DataUji.xlsx';
sheet = 1;
xlRange = 'A2:C5';
Data = xlsread (filename, sheet, xlRange);
data_uji = Data(:,1:2)';
target_uji = Data (:, 3)';
[m, n] = size (data_uji);
```

11. Hasil prediksi

```
% Hasil prediksi
hasil_uji = sim(net_keluaran, data_uji);
nilai_error = abs(hasil_uji - target_uji)
% Performansi hasil prediksi
error = (1/n)*sum(nilai_error.^1);
Akurasi = (1-error)*100
```

Output

12. Hasil Training

13. Regression

14. Performance

15. Grafik Keluaran

16. Hasil Prediksi Data Testing

```
Command Window

nilai_error =

0.0046  0.0071  0.0013  0.0131

Akurasi =

99.3498
```

PYTHON

1. Input Data dan Output Data

```
import numpy as np
import matplotlib.pyplot as plt

inputs = np.array([[0,1,0],[0,1,1],[0,0,0],[1,0,0],[1,1,1],[1,0,1]])
outputs = np.array([[0],[0],[0],[1],[1],[1]])
```

2. Membuat class Neural Network

```
class NeuralNetwork:
             def __init__(self,inputs,outputs):
    self.inputs = inputs
                   self.outputs = outputs
                   self.weights = np.array([[.50],[.50],[.50]])
                   self.error_history = []
self.epoch_list = []
             def sigmoid(self,x,deriv=False):
    if deriv == True:
                        return x * (1-x)
17
                   return 1 / (1+np.exp(-x))
              def feed_forward(self):
                   self.hidden = self.sigmoid(np.dot(self.inputs,self.weights))
             def backpropagation(self):
    self.error = self.outputs - self.hidden
    delta = self.error * self.sigmoid(self.hidden, deriv=True)
                   self.weights += np.dot(self.inputs.T, delta)
              def train(self, epochs=25000):
    for epoch in range(epochs):
                        self.feed forward()
                        self.backpropagation()
                        self.error_history.append(np.average(np.abs(self.error)))
self.epoch_list.append(epoch)
              def predict(self, new_input):
                   prediction = self.sigmoid(np.dot(new_input, self.weights))
                   return prediction
```

3. Create Neural Network

```
NN = NeuralNetwork(inputs,outputs)
NN.train()
```

4. Testing data

```
example = np.array([[1,1,0]])
example_2= np.array([[0,1,1]])

print(NN.predict(example), '- Correct:', example[0][0])
print(NN.predict(example_2), '- Correct:', example_2[0][0])
```

5. Plot Error

```
48 plt.figure(figsize=(15,5))
49 plt.plot(NN.epoch_list,NN.error_history)
50 plt.xlabel('Epoch')
51 plt.ylabel('Error')
52 plt.show()
```

Output

```
[[0.99089925]] - Correct: 1
[[0.006409]] - Correct: 0
```


COBA CODE DENGAN DATA SENDIRI

MATLAB

1. Data Training

long_hair	lips_thin	gender
0	0	1
1	1	0
1	0	0
1	1	0
1	1	0
1	1	0
1	0	0
0	1	1
1	1	0
1	1	0
1	0	1
1	1	0
1	0	1
1	1	0
1	1	0

2. Membaca data dari excel

```
%Membaca data dari excel
filename = 'gender_training.xlsx';
sheet = 1;
xlRange = 'A2:C76';
Data = xlsread (filename, sheet, xlRange);
data_latih = Data(:,1:2)';
target_latih = Data(:,3)';
[m, n] = size(data_latih);
```

3. Menentukan jumlah neuron, jumlah epoch, dan nilai learning rate lalu menyimpan hasilnya

```
% Pembuatan JST
% Arsitek jaringan yang dipakai adalah 3-3-1, artinya 3 neuron input
% X,Y,Z), 3 neuron hidden (karena Inputnya ada 3 neuron maka neuron hiddennya
% Fungsi Aktivasi di hidden layer menggunakan 'logsig', di output layer menggunakan 'purelin'
% Model JST yang digunakan gradien descent maka fungsi aktivasinya adalah traingdx
net = newff(minmax(data_latih),[2 1],{'logsig', 'purelin'}, 'traingdx');
% Memberikan nilai untuk mempengaruhi proses Training
net.performFcn= 'mse';
net.trainParam.goal = 0.0001; % Errornya (0 sampai 1)
net.trainParam.show = 20; % Boleh diganti
net.trainParam.epochs = 1500; % Banyaknya epoch / iterasi training
net.trainParam.mc = 0.95;
net.trainParam.lr = 1; % Nilai learning Rate (0 sampai 1)
```

```
% Proses training
[net_keluaran, tr, Y, E] = train(net, data_latih, target_latih);
% Hasil setelah pelatihan
bobot_hidden = net_keluaran.IW {1,1};
bobot keluaran = net keluaran.LW{2,1};
bias hidden = net keluaran.b{1,1};
bias_keluaran = net_keluaran.b{2,1};
jumlah_iterasi = tr.num_epochs;
nilai_keluaran = Y;
nilai error = E;
error_MSE = (1/n) *sum(nilai_error.^2);
save ('C:\ikhsan\UNAIR\SEMESTER 4\PEMBELAJARAN MESIN (PRAKTIKUM)\Tugas SVM dan NN\gender_keluaran.mat')
% Hasil prediksi
hasil_latih = sim(net_keluaran, data_latih);
% Performansi hasil prediksi
target_latih_asli = target_latih;
figure,
plotregression(target_latih_asli, hasil_latih, 'Regression')
figure,
plotperform(tr)
% Gambar JST
figure,
plot(hasil_latih, 'bo-')
hold on
plot(target_latih_asli, 'ro-')
hold off
grid on
title(strcat(['Grafik Keluaran JST vs Target dengan nilai MSE = ', num2str(error_MSE)]))
xlabel('Pola ke-')
ylabel('MSE')
legend('Keluaran JST', 'Target', 'Location', 'Best')
```

4. Data Testing

long_hair	lips_thin	gender
1	1	0
0	1	1
0	1	0
0	1	0
1	0	1
1	1	0
1	1	0
0	0	1
1	1	1
1	0	1
0	1	0
1	1	0
0	1	0
1	1	0
1	0	1

5. Load Jaringan Data Training

```
% load jaringan yang sudah dibuat pada proses pelatihan load('C:\ikhsan\UNAIR\SEMESTER 4\PEMBELAJARAN MESIN (PRAKTIKUM)\Tugas SVM dan NN\gender_keluaran.mat')
```

6. Membaca data dari excel

```
% Proses membaca data uji dari excel
filename = 'gender_test.xlsx';
sheet = 1;
xlRange = 'A2:C76';
Data = xlsread (filename, sheet, xlRange);
data_uji = Data(:,1:2)';
target_uji = Data (:,3)';
[m, n] = size (data_uji);
% Hasil prediksi
hasil_uji = sim(net_keluaran, data_uji);
nilai_error = abs(hasil_uji - target_uji)
```

7. Hasil prediksi

```
% Hasil prediksi
hasil_uji = sim(net_keluaran, data_uji);
nilai_error = abs(hasil_uji - target_uji)
% Performansi hasil prediksi
error = (1/n)*sum(nilai_error.^1);
Akurasi = (1-error)*100
```

Output

1. Hasil Training

2. Regression

3. Performance

4. Grafik Keluaran

5. Hasil Prediksi Data Testing

```
nilai_error =

Columns 1 through 11

0.1171  0.8861  0.1139  0.1139  0.1450  0.1171  0.1171  0.2316  0.8829  0.1450  0.1139

Akurasi =

74.8639
```

PYTHON

1. Input Data dan Output Data

Sebelum memasukkan data input dan data output, kita import dulu numpy dan matplotlib

2. Membuat class Neural Network

```
class NeuralNetwork:
   def __init__(self,inputs,outputs):
       self.inputs = inputs
       self.outputs = outputs
       self.weights = np.array([[.50],[.50],[.50]])
        self.error_history = []
        self.epoch_list = []
   def sigmoid(self,x,deriv=False):
       if deriv == True:
           return x * (1-x)
       return 1 / (1+np.exp(-x))
   def feed_forward(self):
        self.hidden = self.sigmoid(np.dot(self.inputs, self.weights))
   def backpropagation(self):
        self.error = self.outputs - self.hidden
        delta = self.error * self.sigmoid(self.hidden, deriv=True)
        self.weights += np.dot(self.inputs.T, delta)
   def train(self, epochs=25000):
        for epoch in range(epochs):
            self.feed_forward()
            self.backpropagation()
            self.error_history.append(np.average(np.abs(self.error))
            self.epoch_list.append(epoch)
   def predict(self, new_input):
        prediction = self.sigmoid(np.dot(new_input, self.weights))
        return prediction
```

Membuat kelas neural network dan menginisial variable

3. Create Neural Network

```
54 NN = NeuralNetwork(inputs,outputs)
55 NN.train()
```

Selanjutnya kita meng create neural network

4. Testing data

```
example = np.array([[1,1,0]])

example_2= np.array([[0,1,1]])

print(NN.predict(example), '- Correct:', example[0][0])

print(NN.predict(example_2), '- Correct:', example_2[0][0])
```

Selanjutnya kita membuat 2 contoh untuk prediksi lalu menampilkan hasil prediksinya

5. Plot Error

```
62
63 plt.figure(figsize=(15,5))
64 plt.plot(NN.epoch_list,NN.error_history)
65 plt.xlabel('Epoch')
66 plt.ylabel('Error')
67 plt.show()
```

Membuat plot errornya

Output

```
wdir='C:/Users/ACEK/Downloads')
[[0.731389]] - Correct: 1
[[0.10038553]] - Correct: 0
```

ini adalah hasil dari 132 data input dan 44 data output

