

STGW12NB60H

N-CHANNEL 12A - 600V TO-247 PowerMESHTM IGBT

PRELIMINARY DATA

TYPE	V _{CES}	V _{CE(sat)}	Ic
STGW12NB60H	600 V	< 2.8 V	12 A

- HIGH INPUT IMPEDANCE (VOLTAGE DRIVEN)
- LOW ON-VOLTAGE DROP (VCESAT)
- LOW GATE CHARGE
- HIGH CURRENT CAPABILITY
- VERY HIGH FREQUENCY OPERATION
- OFF LOSSES INCLUDE TAIL CURRENT

DESCRIPTION

Using the latest high voltage technology based on a patented strip layout, STMicroelectronics has designed an advanced family of IGBTs, the PowerMESHTM IGBTs, with outstanding perfomances. The suffix "H" identifies a family optimized to achieve very low switching times for high frequency applications (<120kHz).

APPLICATIONS

- HIGH FREQUENCY MOTOR CONTROLS
- SMPS AND PFC IN BOTH HARD SWITCH AND RESONANT TOPOLOGIES

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{GS} = 0)	600	V
V _{ECR}	Emitter-Collector Voltage	20	V
V_{GE}	Gate-Emitter Voltage	± 20	V
Ic	Collector Current (continuous) at T _c = 25 °C	24	А
Ic	Collector Current (continuous) at T _c = 100 °C	12	А
I _{CM} (•)	Collector Current (pulsed)	96	А
P _{tot}	Total Dissipation at T _c = 25 °C	120	W
	Derating Factor	0.96	W/°C
T _{stg}	Storage Temperature	-65 to 150	°C
T _j	Max. Operating Junction Temperature	150	°C

(•) Pulse width limited by safe operating area

June 1999 1/8

THERMAL DATA

Γ	R _{thj-case}	Thermal	Resistance	Junction-case	Max	1.04	°C/W
	R _{thj-amb}	Thermal	Resistance	Junction-ambient	Max	30	oC/W
	R_{thc-h}	Thermal	Resistance	Case-heatsink	Тур	0.1	°C/W

ELECTRICAL CHARACTERISTICS ($T_j = 25$ $^{\circ}C$ unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{BR(CES)}	Collector-Emitter Breakdown Voltage	$I_C = 250 \ \mu A$ $V_{GE} = 0$	600			V
I _{CES}	Collector cut-off (V _{GE} = 0)	$V_{CE} = Max Rating$ $T_j = 25 ^{\circ}C$ $V_{CE} = Max Rating$ $T_j = 125 ^{\circ}C$			10 100	μΑ μΑ
I _{GES}	Gate-Emitter Leakage Current (V _{CE} = 0)	$V_{GE} = \pm 20 \text{ V}$ $V_{CE} = 0$			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$V_{\text{GE(th)}}$	Gate Threshold Voltage	$V_{CE} = V_{GE}$ $I_C = 250 \mu A$	3		5	V
V _{CE} (SAT)		$V_{GE} = 15 \text{ V}$ $I_{C} = 12 \text{ A}$ $V_{GE} = 15 \text{ V}$ $I_{C} = 12 \text{ A}$ $T_{j} = 125 ^{\circ}\text{C}$		2.0 1.7	2.8	V

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g fs	Forward Transconductance	V _{CE} =25 V I _C = 12 A		9.5		S
C _{ies} C _{oes} C _{res}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{CE} = 25 V f = 1 MHz V _{GE} = 0		950 120 27		pF pF pF
Q _G Q _{GE} Q _{GC}	Total Gate Charge Gate-Emitter Charge Gate-Collector Charge	V _{CE} = 480 V I _C = 12 A V _{GE} = 15 V		68 10 30		nC nC nC
I _{CL}	Latching Current	$V_{clamp} = 480$	48			А

SWITCHING ON

Symbol	Parameter	Test Conditions			Тур.	Max.	Unit
t _{d(on)}	Delay Time Rise Time	V _{CC} = 480 V V _{GE} = 15 V	$I_C = 12 A$ $R_G = 10\Omega$		5 46		ns ns
(di/dt) _{on}	Turn-on Current Slope	$V_{CC} = 480 \text{ V}$ $R_G = 10 \Omega$	I _C = 12 A V _{GE} = 15 V		1000		A/μs
Eon	Turn-on Switching Losses	T _j = 125 °C			290		μJ

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING OFF

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
t_c $t_r(v_{off})$	Cross-Over Time Off Voltage Rise Time	$V_{CC} = 480 \text{ V}$ $R_{GE} = 10 \Omega$	$I_C = 12 A$ $V_{GE} = 15 V$		150 27		ns ns
$t_{d(off)}$ t_{f} $E_{off}(**)$ E_{ts}	Delay Time Fall Time Turn-off Switching Loss Total Switching Loss				76 92 0.21 0.49		ns ns mJ mJ
t _c t _r (v _{off}) t _d (off) t _f E _{off} (**) E _{ts}	Cross-Over Time Off Voltage Rise Time Delay Time Fall Time Turn-off Switching Loss Total Switching Loss	$V_{CC} = 480 \text{ V}$ $R_{GE} = 10 \Omega$ $T_{j} = 125 ^{\circ}\text{C}$	I _C = 12 A V _{GE} = 15 V		230 76 95 200 0.45 0.74		ns ns ns ns mJ mJ

^(•) Pulse width limited by max. junction temperature
(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %
(**)Losses Include Also The Tail (Jedec Standardization)

Thermal Impedance

Output Characteristics

Transfer Characteristics

Transconductance

Collector-Emitter On Voltage vs Temperature

Collector-Emitter On Voltage vs Collector Current

Gate Threshold vs Temperature

Normalized Breakdown Voltage vs Temperature

Gate Charge vs Gate-Emitter Voltage

Total Switching Losses vs Temperature

Capacitance Variations

Total Switching Losses vs Gate Resistance

Total Switching Losses vs Collector Current

Switching Off Safe Operating Area

Fig. 1: Gate Charge test Circuit

Fig. 2: Test Circuit For Inductive Load Switching

Fig. 3: Switching Waveforms

TO-247 MECHANICAL DATA

DIM.		mm				
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.7		5.3	0.185		0.209
D	2.2		2.6	0.087		0.102
E	0.4		0.8	0.016		0.031
F	1		1.4	0.039		0.055
F3	2		2.4	0.079		0.094
F4	3		3.4	0.118		0.134
G		10.9			0.429	
Н	15.3		15.9	0.602		0.626
L	19.7		20.3	0.776		0.779
L3	14.2		14.8	0.559		0.582
L4		34.6			1.362	
L5		5.5			0.217	
М	2		3	0.079		0.118

57

Information furnished is believed to be accurate and reliable. However, STMicroelectonics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third partes which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com