Codes

Digital Design. M. Morris Mano

Prof. Imane Aly Saroit Ismail

1

Logic Design

Binary Codes

- A binary code is defined as a coding system that uses two binary digits (0,1), to represent a letter or a number.
- Having n digits (each of 0,1), this n digits can code 2ⁿ different elements.

Binary-Coded Decimal (BCD)

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

- BCD Code uses 4 bits to represent the 10 decimal digits {0 to 9}
- 6 BCD codes are unused {1010 1011 1100 1101 1111}

(Examples)

Examples:

(5463)10=(?)BCD

From the previous table

 $5 \rightarrow 0101$ $4 \rightarrow 0100$ $6 \rightarrow 0110$ $3 \rightarrow 0011$

So

 $(5463)10 = (0101\ 0100\ 0110\ 0011)BCD$

Binary Coded Decimal (BCD) (Examples)

- $(1001\ 0111\ 0010.1000\ 0000\ 0010)_{BCD} = (?)_{10}$
- (1101 0111 0010.1000 0000 0010)BCD=(?)10
 Using the table
- $(1001\ 0111\ 0010.1000\ 0000\ 0010)_{BCD} = (972.802)_{10}$
- (1101 0111 0010.1000 0000 0010)BCD is not a BCD number is 1101 does not represents a BCD code.

Exercise:

Determine the binary code for each of the decimal numbers (0,15) using 84-2-1 code.

Binary Coded Decimal (BCD) (Addition)

- Adding two BCD numbers together with a carry of 1 may lead to result =19 (9+9+1).
- As BCD can represent only numbers from 0 to 9, so when the resulting number of the addition is greater than 9 (invalid number). In this case we should add 6 (0110) to the result.

Binary Coded Decimal (BCD) (Addition-Example)

Binary Coded Decimal (BCD) (Addition)

Exercise:

Solve the solving problem:

• (01000111.0010)BCD + (01011000.01101000)BCD = (?)BCD

Binary Coded Decimal (BCD) (Subtraction)

- (A)BCD (B)BCD = (A)BCD + 9's Comp(B)BCD + 1
- 9's Complement of a BCD code is the number which if added to the original code the sum will be 9.
- 9's Comp(0101 0100 0110 0011)BCD

 $=(0100\ 0101\ 0011\ 0110)$

(Subtraction-Example)

Binary Coded Decimal (BCD) (Subtraction)

Exercise:

Solve the solving problem:

• (011101011000.0110)BCD - (01000111.00101000)BCD = (?)BCD

Other Decimal Codes (Gray Code)

- The Gray code is defined as an ordering of the binary number system such that each incremental value can only differ by one bit. Meaning that only one bit in the code changes in going from one number to the next.
- For example in BCD code from 7 (0111) to 8 (1000) the whole four bits are changed, while in gray code from 7 (0100) to 8 (1100), only one bit changes.

Other Decimal Codes (Gray Code)

Prof. Imane Aly Saroit Ismail

17

Logic Design

Other Decimal Codes

TableFour Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

• The American Standard Code for Information Interchange (ASCII) code is a table or list containing all the letters of the alphabet plus a variety of additional characters. In this code, each character is represented by an order number, which is always the same.

- It is composed of 7 bits (i.e. $2^7 = 128$ characters)
 - 94 printable, 34 non-printable (control)
 - 2x26 English letters (A,...Z, a,...z)
 - 10 decimal digits (0,1,...9)
 - 32 special characters such as %, *, \$, ... etc.
 - 34 control characters (with special uses).
- Usually stored as a byte, where the extra bit is used for other purposes depending on the application..

	$b_7b_6b_5$							
$b_4b_3b_2b_1$	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	`	p
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	66	2	B	R	b	r
0011	ETX	DC3	#	3	C	S	C	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	6	7	G	W	g	W
1000	BS	CAN	(8	H	X	h	X
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K	[k	{
1100	FF	FS	,	<	L	\	1	
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	^	n	~
1111	SI	US	1	?	O	-	o	DEL

Prof. Imane Aly Saroit Ismail

21

Logic Design

Control Characters				
NUL	Null	DLE	Data-link escape	
SOH	Start of heading	DC1	Device control 1	
STX	Start of text	DC2	Device control 2	
ETX	End of text	DC3	Device control 3	
EOT	End of transmission	DC4	Device control 4	
ENQ	Enquiry	NAK	Negative acknowledge	
ACK	Acknowledge	SYN	Synchronous idle	
BEL	Bell	ETB	End-of-transmission block	
BS	Backspace	CAN	Cancel	
HT	Horizontal tab	EM	End of medium	
LF	Line feed	SUB	Substitute	
VT	Vertical tab	ESC	Escape	
FF	Form feed	FS	File separator	
CR	Carriage return	GS	Group separator	
SO	Shift out	RS	Record separator	
SI	Shift in	US	Unit separator	
SP	Space	DEL	Delete	

Prof. Imane Aly Saroit Ismail