Desenvolvimentos matemáticos e numéricos em escoamentos bifásicos aplicados a processos de refino

Documentação

Adenilso Silva Simão Antônio Castelo Filho Fabricio Simeoni de Sousa Leandro Franco de Souza

Sumário

1	Documentação científica			2
	1.1	Malha	s hierárquicas	2
	1.2	Diferenças finitas generalizadas		
	1.3	Interpolações		6
		1.3.1	Aproximação polinomial	6
		1.3.2	Aproximação pelo Método dos Mínimos Quadrados	7
		1.3.3	Cálculo dos coeficientes	8
		1.3.4	Interpolações por MMQ com peso	10
	1.4	Propri	edades variáveis	10
	1.5	Distrib	ouição de variáveis	10
		1.5.1	Variáveis no centro da célula	11
		1.5.2	Variáveis nas facetas da célula	11
	1.6	Cálcul	lo de derivadas espaciais	11
		1.6.1	Derivada primeira de p na direção $x_i cdots cdots cdots$	14
		1.6.2	Derivada primeira de u_i na direção x_i	14
		1.6.3	Derivada primeira de u_i na direção x_j	18
		1.6.4	Derivada segunda de u_i na direção x_i	18
	1.7	Resolução da equação de Poisson		18
	1.8	Simulação de escoamento incompressível 2D		24
		1.8.1	Método da projeção de Chorin	25
		1.8.2	Método da solução manufaturada	25
2	Documentação do usuário			27
	2.1	Tutori	al 1 – Gerando uma malha 2D	27
	2.2	Tutori	al 2 – Refinamento de células	29
3	B Documentação do programador			31
Re	Referências			

Capítulo 1

Documentação científica

Este capítulo descreve os métodos utilizados para resolução numérica de equações diferenciais parciais (em especial as equações de Navier-Stokes) em uma malha hierárquica do tipo "HiG-tree". São descritos detalhes sobre este tipo de malha, bem como os métodos utilizados para discretização por diferenças finitas generalizadas e interpolações necessárias entre os diferentes níveis de refinamento. Finalmente são apresentados os mecanismos necessários para a resolução de uma equação de Poisson em um domínio genérico.

1.1 Malhas hierárquicas

O desenvolvimento dos métodos apresentados neste documento é baseado em uma malha cartesiana do tipo hierárquica, contendo elementos de tamanhos diferentes. De agora em diante, tais malhas serão denotadas como ${\tt HiG}$ (do inglês, "Hierarchical Grid") e a estrutura de dados utilizada para representá-la será denominada ${\tt HiG-Tree}$. Tal estrutura é baseada em subdivisões espaciais recursivas arbitrárias, e pode ser representada por um árvore m-tree. Um exemplo clássico deste tipo de malha são quadtree em 2D e octree em 3D.

A malha HiG é baseada em uma matriz regular de elementos de mesmo tamanho, e, a partir destes, subdivisões arbitrárias podem ser definidas de forma recursiva, obtendo-se uma malha irregular (não-estruturada). Um exemplo desta malha e sua respectiva estrutura de árvore podem ser vistos na figura 1.1. Apesar de o exemplo da figura 1.1 ser ilustrado em duas dimensões, esta representação é genérica o suficiente para ser utilizada em qualquer número de dimensões.

Figura 1.1: Exemplo de uma malha tipo HiG e sua representação na forma de árvore (HiG-Tree).

1.2 Diferenças finitas generalizadas

O método adotado para discretização de equações diferenciais é o método de diferenças finitas. Tal método é baseado na expansão em série de Taylor da função a ser aproximada e de suas derivadas, cuja omissão de termos de alta ordem desta série resulta em fórmulas adequadas para as aproximações.

Um exemplo clássico é a discretização de uma equação de Poisson do tipo

$$\nabla^2 u = f,$$

com condições de contorno adequadas. Simplificando o domínio por um retângulo em um espaço de dimensão dois $\Omega=[a,b]\times[c,d]$, e utilizando uma malha cartesiana regular (do tipo grid) com espaçamentos δx e δy , obtém-se a clássica fórmula do laplaciano de 5 pontos, dada por

$$\frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{\delta x^2} + \frac{u_{i,j+1} - 2u_{i,j} + u_{i,j-1}}{\delta y^2} + \mathcal{O}(\delta x^2 + \delta y^2) = f_{i,j},$$

ou ainda, desprezando-se os termos de ordem 2,

$$\frac{U_{i+1,j} - 2U_{i,j} + U_{i-1,j}}{\delta x^2} + \frac{U_{i,j+1} - 2U_{i,j} + U_{i,j-1}}{\delta y^2} = f_{i,j},$$

onde $U_{i,j}$ representa uma aproximação para a função $u_{i,j}$, avaliada em $(x_i, y_j) = (a + i\delta x, b + j\delta y)$, e $f_{i,j} = f(x_i, y_j)$. Com esta fórmula, mais as condições de contorno, é possível montar um sistema da forma

$$L\mathbf{u} = \mathbf{f},$$

cuja a solução é o vetor de aproximações $\mathbf{u} = (U_{1,1}, U_{1,2}, \ldots)$ para a função u original, avaliada nos vértices da malha cartesiana.

Como visto na seção anterior, o objetivo é utilizar diferenças finitas em uma malha cartesiana irregular, então tal aproximação deve ser modificada, pois uma discretização por um laplaciano de 5 pontos resultaria o envolvimento de valores não conhecidos no interior da malha. Desta forma é preciso realizar um procedimento de interpolação que seja genérico o suficiente para englobar qualquer configuração de células (como no exemplo da figura 1.1), e que seja preciso o suficiente para não deteriorar a ordem de convergência do método numérico.

Uma clara desvantagem da utilização de malhas irregulares como as exemplificadas anteriormente é que uma numeração do tipo matricial (i,j) não é mais possível, sendo necessária a definição de uma enumeração dos nós válidos da malha. Tal enumeração é fornecida pela estrutura ${\tt HiG-Tree}$, contudo, diferentes

Figura 1.2: Exemplo de um estêncil resultando em pontos a serem interpolados $(x_L e x_B)$.

formas de enumeração podem ser implementadas, com impacto direto na estrutura da matriz do sistema resultante, e consequentemente no desempenho dos métodos numéricos utilizados para resolvê-lo.

Considere o caso ilustrado na figura 1.2, onde um estêncil de cinco pontos é utilizado para discretizar as derivadas no ponto x_C . É fácil notar que, devido a configuração irregular da malha, não existe nó da malha que armazene um valor de u para os pontos x_L e x_B , ou seja, não existem incógnitas U_L e U_B para o sistema linear. Neste exemplo, é necessário obter então uma interpolação dos nós vizinhos, pertencentes à malha, mais próximos às incógnitas não existentes. Digamos que uma interpolação adequada resulte na seguinte expressão para U_L

$$U_L \approx w_1 U_{j_1} + w_2 U_{j_2} + \ldots + w_n U_{j_n},$$

sendo $U_{j_1}, U_{j_2}, \ldots, U_{j_n}$ valores conhecidos na malha. Escrevendo a fórmula usual do laplaciano de 5 pontos para o ponto x_C , obtém-se uma equação para U_C , a saber,

$$\frac{U_L - 2U_C + U_R}{\delta x^2} + \frac{U_T - 2U_C + U_B}{\delta y^2} = f_C,$$

que pode ainda ser reescrita como

$$a_L U_L + a_R U_R + a_T U_T + a_R U_B + a_C U_C = f_C$$

onde

$$a_L = \frac{1}{\delta x^2}, \quad a_R = \frac{1}{\delta x^2}, \quad a_T = \frac{1}{\delta y^2}, \quad a_B = \frac{1}{\delta y^2}, \quad a_C = -\frac{2}{\delta x^2} - \frac{2}{\delta y^2}.$$

Substituindo o valor interpolado de U_L na equação, obtém-se

$$a_L(w_1U_{j_1} + w_2U_{j_2} + \ldots + w_nU_{j_n}) + a_RU_R + a_TU_T + a_BU_B + a_CU_C = f_C,$$

gerando-se novos coeficientes e uma equação. Note que o mesmo deve ser feito para U_B , para que a equação envolva finalmente somente valores conhecidos da malha. Note que este processo pode ser repetido arbitrariamente para qualquer valor que ainda não esteja definido na malha, e que incógnitas repetidas podem ser agrupadas em um único coeficiente multiplicativo. Desta forma, obtém-se uma expressão que é uma combinação linear formada somente por incógnitas verdadeiras, para valores definidos na malha, que define a equação para a incógnita U_C no sistema linear.

A próxima seção explica como obter uma interpolação que seja suficientemente genérica e precisa, e como obter os pesos $w_{j_1}, w_{j_2}, \dots, w_{j_n}$ necessários.

1.3 Interpolações

1.3.1 Aproximação polinomial

Um dos objetivo do método descrito aqui é obter uma aproximação para o valor de uma propriedade em um dado ponto (x,y,z) em função dos valores da propriedade em m outros pontos $(x_1,y_1,z_1),...,(x_m,y_m,z_m)$. Os valores nos m pontos não são conhecidos a priori. Denotamos o valor em um ponto (x,y,z) por P(x,y,z) um polinômio de grau no máximo r,

$$P(x, y, z) = \alpha_{i_1, j_1, k_1} x^{i_1} y^{j_1} z^{k_1} + \dots + \alpha_{i_n, j_n, k_n} x^{i_n} y^{j_n} z^{k_n} = c^t \alpha,$$

onde $0 \le i_s + j_s + k_s \le r$, para $s=1,\ldots,n$. Observe que poderia ser uma combinação de funções não polinomiais.

Assim, o método deve obter os coeficientes w_i , para $1 \le i \le m$, de forma que

$$P(x, y, z) = \sum_{i=1}^{m} w_i P(x_i, y_i, z_i) = w^t b.$$

Assim,

$$b = \begin{pmatrix} P(x_1, y_1, z_1) \\ \vdots \\ P(x_m, y_m, z_m) \end{pmatrix} = \begin{pmatrix} x_1^{i_1} y_1^{j_1} z_1^{k_1} & \cdots & x_1^{i_n} y_1^{j_n} z_1^{k_n} \\ \vdots & & \vdots \\ x_m^{i_1} y_m^{j_1} z_m^{k_1} & \cdots & x_m^{i_n} y_m^{j_n} z_m^{k_n} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} =$$

$$= \begin{pmatrix} a_1^t \\ \vdots \\ a_m^t \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = A \alpha$$

Logo,

$$w^t b = w^t A \alpha = c^t \alpha$$

e uma solução é dada por w^t $A = c^t$, ou

$$A^t w = c$$
.

Se $m \geq n$ e A tem posto máximo n, w pode ser obtido pelo método dos mínimos quadrados.

1.3.2 Aproximação pelo Método dos Mínimos Quadrados

Fazendo a decomposição QR de A, temos:

$$A_{m \times n} = \begin{pmatrix} A_{1n \times n} \\ A_{2m-n \times n} \end{pmatrix} = Q_{m \times m} R_{m \times n}^*$$

$$= Q_{m \times m} \begin{pmatrix} R_{n \times n} \\ 0_{m-n \times n} \end{pmatrix} = \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{pmatrix} \begin{pmatrix} R \\ 0 \end{pmatrix}$$

Assim,

$$w = A^+c^t = A\left(A^tA\right)^{-1}c^t = QR^*\left(R^{*t}Q^tQR^*\right)^{-1}c^t = QR^*\left(R^tR\right)^{-1}c^t = QR^*R^{-1}(R^t)^{-1}c^t = Q\left(\begin{array}{c} R\\0 \end{array}\right)R^{-1}(R^t)^{-1}c^t = Q\left(\begin{array}{c} (R^t)^{-1}\\0 \end{array}\right)c^t$$
 Fazendo $u = Q^t$ w e $u = \begin{pmatrix} u_1\\u_2 \end{pmatrix}$, temos:
$$u = Q^tw = \begin{pmatrix} (R^t)^{-1}\\0 \end{pmatrix}c^t$$

$$u = \begin{pmatrix} u_1\\u_2 \end{pmatrix} = \begin{pmatrix} (R^t)^{-1}\\0 \end{pmatrix}c^t$$

$$\begin{cases} u_1 & = (R^t)^{-1}c^t\\u_2 & = 0 \end{cases}$$

Daí, resolvendo o sistema triangular inferior $R^tu_1=c^t$, temos w=Qu, com $u_2=0$.

Resumindo, são dados A e c^t e queremos w, então são feitos três passos:

- 1. Fazer a decomposição QR de A, isto é, $A = Q R^*$;
- 2. Resolver o sistema triangular inferior $R^t u_1 = c^t$;
- 3. Fazer $w = Qu \operatorname{com} u_2 = 0$.

Observe que para o caso de m=n, a aproximação polinomial P será o polinômio interpolador.

1.3.3 Cálculo dos coeficientes

Seja

$$C = \begin{pmatrix} A_1 & B_1 \\ A_2 & B_2 \end{pmatrix} = \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{pmatrix} \begin{pmatrix} R & 0 \\ 0 & I \end{pmatrix} = \begin{pmatrix} Q_{11}R & Q_{12} \\ Q_{21}R & Q_{22} \end{pmatrix}.$$

Desde que,

$$\begin{split} I_m &= Q^t Q = \left(\begin{array}{cc} Q_{11}^t & Q_{21}^t \\ Q_{12}^t & Q_{22}^t \end{array} \right) \left(\begin{array}{cc} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{array} \right) = \\ &= \left(\begin{array}{cc} Q_{11}^t Q_{11} + Q_{21}^t Q_{21} & Q_{11}^t Q_{12} + Q_{21}^t Q_{22} \\ Q_{12}^t Q_{11} + Q_{12}^t Q_{22} & Q_{12}^t Q_{12} + Q_{22}^t Q_{22} \end{array} \right) = \left(\begin{array}{cc} I_n & 0 \\ 0 & I_{m-n} \end{array} \right), \end{split}$$

Temos que,

$$A^{t}B = \begin{pmatrix} A_{1}^{t} & A_{2}^{t} \end{pmatrix} \begin{pmatrix} B_{1} \\ B_{2} \end{pmatrix} = A_{1}^{t}B_{1} + A_{2}^{t}B_{2} = R\left(Q_{11}^{t}Q_{12} + Q_{21}^{t}Q_{22}\right) = 0,$$

$$B^t B = \begin{pmatrix} B_1^t & B_2^t \end{pmatrix} \begin{pmatrix} B_1 \\ B_2 \end{pmatrix} = B_1^t B_1 + B_2^t B_2 = Q_{12}^t Q_{12} + Q_{22}^t Q_{22} = I_{m-n},$$

e

$$C^tC = \left(\begin{array}{cc} A_1^t & A_2^t \\ B_1^t & B_2^t \end{array}\right) \left(\begin{array}{cc} A_1 & B_1 \\ A_2 & B_2 \end{array}\right) = \left(\begin{array}{cc} R^tR & 0 \\ 0 & I \end{array}\right).$$

Logo $Det(C)=\pm Det(R)=R_{1,1}\cdots R_{n,n}$, e se A tem posto máximo $R_{i,i}\neq 0$ e

$$C^t \ w = \left(\begin{array}{cc} A_1^t & A_2^t \\ B_1^t & B_2^t \end{array} \right) w = \left(\begin{array}{c} c \\ 0 \end{array} \right),$$

tem solução única.

Se m=n, $C^t=A_1^t=(a_1\cdots a_n)$. Logo se $x=x_i(i=1,\ldots,n)$ tem-se $c=a_i$ e $C^tw=d$, segue que $A_1w=c$ que implica que

$$(a_1 \cdots a_i \cdots a_n) w = a_i,$$

tem solução $w_k=1$ se i=k e $w_k=0$ se $i\neq k$. Se m>n e $x=x_i(i=1,\ldots,n)$,

$$C^t w = \begin{pmatrix} A_1^t & A_2^t \\ B_1^t & B_2^t \end{pmatrix} w = \begin{pmatrix} a_1 & \cdots & a_i & \cdots & a_m \\ b_1 & \cdots & b_i & \cdots & b_m \end{pmatrix} w = \begin{pmatrix} c \\ 0 \end{pmatrix} = \begin{pmatrix} a_i \\ 0 \end{pmatrix}.$$

Como

$$\begin{split} C^t &= \left(\begin{array}{cc} A_1^t & A_2^t \\ B_1^t & B_2^t \end{array} \right) = \left(\begin{array}{cc} R^t & 0 \\ 0 & I \end{array} \right) \left(\begin{array}{cc} Q_{11}^t & Q_{21}^t \\ Q_{12}^t & Q_{22}^t \end{array} \right) = \left(\begin{array}{cc} R^t & 0 \\ 0 & I \end{array} \right) Q^t, \\ \left(\begin{array}{cc} A_1^t & A_2^t \\ 0 & 0 \end{array} \right) &= \left(\begin{array}{cc} R^t & 0 \\ 0 & 0 \end{array} \right) \left(\begin{array}{cc} Q_{11}^t & Q_{21}^t \\ Q_{12}^t & Q_{22}^t \end{array} \right) = \left(\begin{array}{cc} R^t & 0 \\ 0 & 0 \end{array} \right) Q^t, \end{split}$$

que implica que

$$\begin{pmatrix} a_i \\ 0 \end{pmatrix} = \begin{pmatrix} A_1^t & A_2^t \\ 0 & 0 \end{pmatrix} e_i = \begin{pmatrix} R^t & 0 \\ 0 & 0 \end{pmatrix} Q^t e_i.$$

Logo,

$$C^{t}w = d$$

$$\begin{pmatrix} R^{t} & 0 \\ 0 & I \end{pmatrix} Q^{t} w = \begin{pmatrix} R^{t} & 0 \\ 0 & 0 \end{pmatrix} Q^{t} e_{i}.$$

$$w = Q \begin{pmatrix} R^{-t} & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} R^{t} & 0 \\ 0 & 0 \end{pmatrix} Q^{t} e_{i}.$$

$$w = Q \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} Q^{t} e_{i}.$$

Figura 1.3: Malha deslocada.

1.3.4 Interpolações por MMQ com peso

Complementar com MMQ com peso.

1.4 Propriedades variáveis

O que muda para ρ variável.

1.5 Distribuição de variáveis

Com o objetivo de evitar o aparecimento de oscilações não físicas nas simulações numéricas, foram desenvolvidas técnicas de distribuição de variáveis de forma deslocada, ou seja, pode-se atribuir variáveis no centro da célula, ou nas facetas da mesma. O esquema mais adotado pelos pesquisadores da área de simulação de escoamento de fluidos, quando se adota formulação com variáveis primitivas, em escoamentos incompressíveis, é a distribuição da pressão nos centros das células, e das velocidades nas facetas da mesma, conforme pode ser visto na figura 1.3.

Figura 1.4: Distribuição da Pressão no centro das células.

1.5.1 Variáveis no centro da célula

A pressão, densidade, entalpia total, etc, são normalmente distribuídas nos centros das células. A figura 1.4 ilustra a distribuição da pressão em uma malha com 3 níveis de refinamento.

1.5.2 Variáveis nas facetas da célula

As variáveis provenientes da decomposição da velocidade em vetores (u_i) são distribuídas nas facetas das células. A distribuição da componente da velocidade u_1 em uma malha com 3 níveis de refinamento é apresentada na figura 1.5 e a componente da velocidade u_2 nesta mesma malha é apresentada na figura 1.6.

1.6 Cálculo de derivadas espaciais

Com a utilização da malha deslocada, temos que o cálculo das derivadas espaciais de cada variável distribuída em uma localização diferente tem uma forma diferente de cálculo. Abaixo são apresentadas as variações possíveis numa simulação de

Figura 1.5: Componente da velocidade u_1 nas facetas da células.

Figura 1.6: Componente da velocidade u_2 nas facetas da células.

Figura 1.7: Derivada de p na direção x_1 .

escoamento.

1.6.1 Derivada primeira de p na direção x_i

Neste caso a variável é definida no centro da célula e pretende-se calcular a derivada espacial na direção x_i , na faceta da célula. A figura 1.7 ilustra as possibilidades de cálculo da derivada na posição marcada com um x de uma variável distribuída no centro da célula na direção x_1 . A forma equivalente para o cálculo da derivada na direção x_2 , é apresentada na figura 1.8.

1.6.2 Derivada primeira de u_i na direção x_i

Nas equações de Navier-Stokes faz-se necessário o cálculo das primeiras derivadas de variáveis distribuídas nas facetas das células. A figura 1.9 ilustra o cálculo da derivada na posição marcada com um x da componente u_1 na direção x_1 . A malha adotada tem 3 níveis de refinamento para ilustrar as diversas possibilidades neste cálculo. O cálculo da componente u_2 na direção x_2 e apresentado na figura 1.10.

Figura 1.8: Derivada de p na direção x_2 .

Figura 1.9: Derivada de u_1 na direção x_1 .

Figura 1.10: Derivada de u_2 na direção x_2 .

Figura 1.11: Derivada de u_1 na direção x_2 .

1.6.3 Derivada primeira de u_i na direção x_i

A figura 1.11 ilustra o cálculo da derivada na posição marcada com um x da componente u_1 na direção x_2 . O cálculo da componente u_2 na direção x_1 e apresentado na figura 1.10.

1.6.4 Derivada segunda de u_i na direção x_i

O cálculo da segunda derivada de variáveis definidas nas facetas das células são apresentadas nas figuras 1.13 a 1.16. A posição onde a derivada é calculada é marcada com um x. As diversas configurações dentro da malha com 3 níveis de refinamento são ilustradas.

1.7 Resolução da equação de Poisson

Dada uma variável p(x,y) distribuída no centro das células e um campo de velocidade dado por $u^*(x,y)$, distribuído nas facetas das células, pretende-se resolver a equação de Poisson abaixo:

Figura 1.12: Derivada de u_2 na direção x_1 .

Figura 1.13: Derivada segunda de u_1 na direção x_1 .

Figura 1.14: Derivada segunda de u_2 na direção x_2 .

Figura 1.15: Derivada segunda de u_1 na direção x_2 .

Figura 1.16: Derivada segunda de u_2 na direção x_1 .

$$\nabla^2 p = \nabla \cdot u^*$$

Para analisar a convergência do método propõe-se um Método de Solução Manufaturada (MMS - do inglês *Method of Manufactured Solution*) onde as componentes da velocidade são dadas por:

$$u_1(x,y) = -sen(x)cos(y)$$

e

$$u_2(x,y) = -\cos(x)\operatorname{sen}(y)$$

utilizando as componentes de velocidade acima descritas, em um domínio $0 \le x,y \le \pi$ teremos que a solução desta equação para a pressão p é dada por:

$$p(x,y) = cos(x)cos(y)$$

a adoção desta solução garante que a condição de contorno do tipo Neumann é aplicada em todos os contornos do domínio. Para se obter uma solução única, é fixado o valor da pressão em um ponto do contorno. Desta forma a solução desta equação é bem próxima ao que desejamos para aplicação em Navier-Stokes.

1.8 Simulação de escoamento incompressível 2D

A dinâmica de um escoamento bidimensional incompressível de um único fluido sem transferência de calor, pode ser modelado pelas equações de Navier-Stokes e da continuidade dados abaixo:

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial p}{\partial x_i} + \nu \frac{\partial^2 u_i}{\partial x_j^2} + s_i, \tag{1.1}$$

$$\frac{\partial u_i}{\partial x_i} = 0, (1.2)$$

onde ν é viscosidade cinemática, ρ é a densidade, u_i o componente da velocidade, p é pressão, t é o tempo, x_i as coordenadas espaciais e s_i o termo fonte (gravidade, coriollis, etc.).

Por razões didáticas, propõe-se inicialmente a utilização do método de Euler explícito para avançar a Eq. (1.1) no tempo. O sistema de EDPs Eqs. (1.1) e (1.2) é resolvido utilizando o método da projeção de Chorin [1] descrita abaixo.

1.8.1 Método da projeção de Chorin

Com o objetivo de se obter um campo de velocidade que respeite a continuidade, e como não há uma equação para a pressão p, as equações de Navier-Stokes (Eq. (1.1)) podem ser discretizada da seguinte forma [1]:

$$\frac{u_i^* - u_i^n}{\Delta t} = -u_j^n \frac{\partial u_i^n}{\partial x_j} + \nu \frac{\partial^2 u_i^n}{\partial x_j^2} + s_i,$$

onde o valor de u_i^* é um valor intermediário que deverá ser corrigido através da equação:

$$\frac{u_i^{n+1} - u_i^*}{\Delta t} = -\frac{1}{\rho} \frac{\partial p^{n+1}}{\partial x_i},$$

ou seja,

$$u_i^{n+1} = u_i^* - \Delta t \frac{1}{\rho} \frac{\partial p^{n+1}}{\partial x_i}.$$

Para que isto funcione, pode-se obter a equação de Poisson abaixo, que deverá ser resolvida para podermos avançar com a discretização temporal:

$$\frac{\partial^2 p^{n+1}}{\partial x_i^2} = \frac{\rho}{\Delta t} \frac{\partial u_i^*}{\partial x_i}$$

Utilizando-se este método obtém-se uma distribuição de velocidade e pressão que respeitam a condição de incompressibilidade. Desta forma pode-se realizar uma simulação até atingir-se o estado estacionário (quando as propriedades não variam mais com o tempo), ou até que se atinja um determinado tempo ou mesmo um estado periódico no tempo.

1.8.2 Método da solução manufaturada

Para verificação do método numérico que simula o escoamento bidimensional incompressível propõe-se resolver o problema clássico de fluxo laminar dentro de uma cavidade quadrada de dimensões $0 < x_1, x_2 < 1$, na qual a tampa se move. Para este caso, existe uma solução analítica dada por [2]. As condições de contorno para as componentes de velocidades u_i são do tipo Dirichlet, sendo nula em todos os pontos, exceto em $x_2 = 1$, onde temos:

$$u_1(x_1, 1) = 16(x_1^4 - 2x_1^3 + x_1^2).$$

Um termo fonte s_i está presente somente na equação da quantidade de movimento na direção x_2 e é dado como:

$$s_1 = 0$$

$$s_2 = -8\nu[24F(x_1) + 2f^{(1)}(x_1)g^{(2)}(x_2) + f^{(3)}(x_1)g(x_2)]$$

$$-64[F_2(x_1)G_1(x_2) - g(x_2)g^{(1)}(x_2)F_1(x_1)],$$

onde

$$f(x_1) = x_1^4 - 2x_1^3 + x_1^2,$$

$$g(x_2) = x_2^4 - x_2^2,$$

$$F(x_1) = \int f(x_1)dx_1 = 0.2x_1^5 - 0.5x_1^4 + x_1^3/3,$$

$$F_1(x_1) = f(x_1)f^{(2)}(x_1) - [f^{(1)}(x_1)]^2 = -4x_1^6 + 12x_1^5 - 14x_1^4 + 8x_1^3 - 2x_1^2,$$

$$F_2(x_1) = \int f(x_1)f^{(1)}(x_1)dx_1 = 0.5[f(x_1)]^2,$$

$$G_1(x_2) = g(x_2)g^{(3)}(x_2) - g^{(1)}(x_2)g^{(2)}(x_2) = -24x_2^5 + 8x_2^3 - 4x_2.$$

A solução analítica é dada por

$$u(x_1, x_2) = 8f(x_1)g^{(1)}(x_2) = 8(x_1^4 - 2x_1^3 + x_1^2)(4x_2^3 - 2x_2),$$

$$v(x_1, x_2) = -8f^{(1)}(x_1)g(x_2) = -8(4x_1^3 - 6x_1^2 + 2x_1)(x_2^4 - x_2^2),$$

$$p(x_1, x_2) = 8\nu[F(x_1)g^{(3)}(x_2) + f^{(1)}(x_1)g^{(1)}(x_2)] +$$

$$64F_2(x_1)\{g(x_2)g^{(2)}(x_2) - [g^{(1)}(x_2)]^2\}.$$

Sabendo-se a solução analítica do escoamento pode-se então verificar o correto funcionamento do mesmo. Além disto, caso sejam realizadas simulações com malhas com diferentes números de pontos, pode-se verificar a ordem de precisão do código como um todo.

Capítulo 2

Documentação do usuário

Esta parte da documentação é destinada a usuários do código e foi subdividida em tutoriais. Estes tutoriais tem como objetivo familiarizar o usuário com os comandos utilizados no código, começando por exemplos bem simples até os casos mais complexos. Cada tutorial é acompanhado de um código executável.

2.1 Tutorial 1 – Gerando uma malha 2D

Nesta seção iremos gerar uma malha bidimensional, em um domínio retangular, o qual damos o nome de *root*, e subdividi-lo em células. Esta será a malha raiz e à partir dela poder-se-á refiná-la nas regiões aonde o usuário achar conveniente. Iniciamos com uma malha bidimensional, portanto onde referencia-se a variavel *DIM*, ela terá valor 2. O código completo se encontra no diretório *tutoriais*, com o nome de *tutorial01.c*. A seguir será descrito o que é realizado em cada comando do código.

Primeiramente é necessário incluir as definições minimamente necessárias para a execução do código, as bibliotecas padrão do sistema e da HiG-Tree:

```
#include<stdio.h>
#include<stdlib.h>
#include "mtree.h"
#include "mtree-io.h"
```

A seguir, inicializa-se o bloco principal

```
int main(int argc, char *argv[])
```

A malha será gerada em um retângulo, desta forma é necessário declarar então os pontos inferior esquerdo lp e superior direito hp, além de atribuí-los um valor

```
Point lp, hp;
POINT_ASSIGN_SCALAR(lp, -1.0);
POINT_ASSIGN_SCALAR(hp, 1.0);
```

Veja que neste caso atribuimos lp=(-1,-1) e hp=(1,1) através da macro POINT ASSIGN SCALAR $\}$, que substitui o código

```
lp[0] = -1.0;

lp[1] = -1.0;

hp[0] = 1.0;

hp[1] = 1.0;
```

Com os pontos lp e hp declarados, basta criar a malha com o comando

```
mt_cell *root = mt_create_root(lp, hp);
```

Com este comando, a célula endereçada pela variável *root* foi criada. Agora é necessário subdividi-la em uma malha regular. Para este exemplo, vamos gerar uma malha de 2×2 elementos. Primeiro, declara-se o número de células desejadas em cada direção (lembrando que DIM=2)

```
int num_cell[DIM];
POINT_ASSIGN_SCALAR(num_cell, 2);
e invocar o comando

mt_refine_uniform(root, num_cell);
```

para criar a malha desejada.

Para visualizar a malha, basta criar um arquivo *vtk* e imprimir a malha no arquivo. Isto pode ser realizado da seguinte forma:

```
FILE *fd = fopen("tut01.vtk", "w");
mtio_print_in_vtk2d(fd, root);
fclose(fd);
```

Uma imagem da malha gerada pode ser vista na figura 2.1.

Após realizados todos os cálculos a raiz tem que ser destruir para não ficar ocupando espaço em memória, o que é feito através do comando:

```
mt_destroy(root);
```


Figura 2.1: Malha gerada pelo tutorial 1.

2.2 Tutorial 2 – Refinamento de células

Nesta seção iremos tomar uma malha bidimensional gerada como no exemplo anterior, mas com 4 células na direção x e 5 na direção y, e realizar o procedimento de refinamento, ou seja, tomar uma ou mais células da malha e dividi-la em partes menores. O código a ser adotado se encontra no diretório *tutoriais*, com o nome de *tutorial02.c.* A seguir será descrito o que é realizado em cada comando do código.

Após inicializada a nova malha, subdivide-se o domínio da forma descrita acima

```
int num_cell[DIM];
num_cell[0] = 4;
num_cell[1] = 5;
mt_refine_uniform(root, num_cell);
```

Digamos que seja necessário o refinamento de células próximo ao ponto (0.5,0.5). Definamos o ponto p

```
Point p;
p[0] = 0.5;
p[1] = 0.5;
```

Em seguida, selecionamos a célula a ser refinada através do comando

Figura 2.2: Malha gerada pelo tutorial 2.

```
mt_cell *c = mt_get_cell_with_point(root,p);
```

Para realizar o refinamento da célula que contém o ponto p, define-se o número de células que será utilizado para este refinamento nas duas direções e em seguida é dado o comando de refinamento uniforme na célula c.

```
num_cells[0] = 2;
num_cells[1] = 2;
mt_refine_uniform(c,num_cells);
```

Como feito anteriormente, a malha pode ser impressa em arquivo vtk da seguinte forma

```
FILE *fd = fopen("tut02.vtk", "w");
mtio_print_in_vtk2d(fd, root);
fclose(fd);
```

A malha resultante pode ser vista na figura 2.2.

Capítulo 3

Documentação do programador

Referências Bibliográficas

- [1] Alexandre Joel Chorin. Numerical solution of the Navier–Stokes equations. *Mathematics of Computation*, 22(104):745–762, 1968.
- [2] T. M. Shih, C. H. Tan, and B. C. Hwang. Effects of grid staggering on numerical schemes. *International Journal for Numerical Methods in Fluids*, (2):193–212, 1989.