Unsupervised Learning

Clustering

Maarten Cruyff

Program

Content

- 1. K-means clustering
- 2. Hierarchical clustering

K-means algorithm

- 1. Specify the total number of clusters K
- 2. Randomly assign each observation to a cluster
- 3. Compute cluster centroids
- 4. Reassign observations to cluster with closest centroid
- 5. Repeat 3 and 4 untill convergence

Solution with 5 centroids

Would a solution with 3 clusters been better?

Issues

Determination optimal number of clusters

elbow criterion for within-cluster SS

Solution is local minimum of within-cluster SS

try out multiple starting values, e.g.

Scaling

- standardization of features (same scale)
- principal components scores (noise reduction)

6

Elbow criterion

Local minimum

Scaling

K-means in R

```
k_fit <- kmeans(x, centers, nstart = 1) # scale(x) for standardization
print(k_fit) # print a summary
fitted(k_fit) # centroids for each case
k_fit$withinsss # total within-cluster sum of squares</pre>
```

Let's look at examplekmeansoutput for theiris' data

Screeplot iris data

- 6 clusters
- 10 random starts


```
K-means clustering with 3 clusters of sizes 50, 53, 47
```

Cluster means:

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
1 -1.01119138 0.85041372 -1.3006301 -1.2507035
2 -0.05005221 -0.88042696 0.3465767 0.2805873
3 1.13217737 0.08812645 0.9928284 1.0141287
```

Clustering vector:

Within cluster sum of squares by cluster:

```
[1] 47.35062 44.08754 47.45019 (between_SS / total_SS = 76.7 %)
```

Available components:

```
[1] "cluster" "centers" "totss" "withinss"
```

[5] "tot.withinss" "betweenss" "size" "iter"

[9] "ifault"

Example iris data

Confusion matrices

K-means on scaled iris data

```
1 2 3
setosa 50 0 0
versicolor 0 39 11
virginica 0 14 36
```

K-means on 1st principal component

	3	1	2
setosa	50	0	0
versicolor	0	45	5
virginica	0	6	44

Hierarchical clustering

Algorithm (bottom-up and greedy)

- 1. Treat each observation as a cluster
- 2. Compute distances between all $\binom{n}{2}$ cluster pairs
- 3. Link pair with smallest distance in new cluster
- 4. Repeat 2-3 until 2 clusters left
- 5. Plot dendogram

Linkage methods

and others!

Effect linkage

Single-link

Average-link

Complete-link

Centroid distance

Distance measures

Euclidean

distance between points

$$\sum_{i} \sqrt{(a_i - b_i)^2}$$

Mahalanobis

distance between profiles

$$\sqrt{(a-b)'\boldsymbol{S}^{-1}(a-b)}$$

and others!

Hierachical clustering in R

Beer example

Cluster 10 beers (3 types) on calories and alcohol

Comparisons

How many clusters?

large distances between and small distance within

