Curso: Introducción a la Probabilidad y Estadística CM -274 Práctica dirigida 7 Funciones generadoras de probabilidad Momentos, transformada de Laplace.

Lista de ejercicios

- 1. Si u_0, u_1, \ldots tiene una función generadora U(s) y v_0, v_1, \ldots una función generadora V(s), encuentra V(s) en términos de U(s), cuando $(a)v_n = 2u_n$, $(b)v_n = u_n + 1$, $(c)v_n = nu_n$.
- 2. Sea $0 . ¿ De qué secuencia es <math>U(s) = \sqrt{1 4pqs^2}$, la función generadora?
- 3. Si X es una variable aleatoria con función generadora de probabilidad $G_X(s)$ y k es un entero positivo. Muestra que Y = kZ y Z = X + k, tienen funciones generadoras de probabilidad:

$$G_Y(s) = G_X(s^k), \quad G_Z(s) = s^k G_X(s).$$

4. Si X es uniformemente distribuida en $\{0,1,2,\ldots a\}$, tal que:

$$\mathbb{P}(X = k) = \frac{1}{a+1}$$
 para $k = 0, 1, 2, \dots a$,

muestra que X tienen una función generadora de probabilidad:

$$G_X(s) = \frac{1 - s^{a+1}}{(a+1)(1-s)}.$$

- 5. Sea X una variable aleatoria tomando valores en el conjunto finito $\{1,2,\ldots N\}$. La función generadora de probabilidad de Dirichlet es definida como la función $\Delta(s)=\mathbb{E}(X^{-s})$. Expresa la media (esperanza) de X en términos de Δ .
- 6. Sea X una variable aleatoria, con una función generadora de probabilidad $G_X(s)$ y sea $u_n = \mathbb{P}(X > n)$. Muestra que la función generadora U(s) de la secuencia u_0, u_1, \ldots , satisface:

$$(1-s)U(s) = 1 - G_X(s).$$

siempre que la serie definiendo esa serie converga.

7. Sea X una variable aleatoria con una función generadora de probabilidad $\mathbb{G}_X(s)$. La r-ésima derivada de $\mathbb{G}_X(s)$ en s=1 es igual $\mathbb{E}(X[X-1]\cdots[X-r+1])$ para $r=1,2,\ldots$ Esto es:

$$G_X^{(r)}(1) = \mathbb{E}(X[X-1]\cdots[X-r+1]).$$

8. Sea N y X_1, X_2, \ldots variables aleatorias X, cada una tomando valores en $\{0, 1, 2, \ldots\}$. Si las X_i son idénticamente distribuidas con una función generadora de probabilidad G_X , entonces la suma:

$$S = X_1 + X_2 + \cdots + X_N,$$

tiene una función generadora de probabilidad:

$$\mathbb{G}_S(s) = \mathbb{G}_N(\mathbb{G}_X(s)).$$

9. Determina qué distribuciones de los reales no negativos, tiene una media μ y una mediana 2μ .

1

10. Muestra por la desigualdad de Jensen que $\mathbb{E}(X^2) \ge \mathbb{E}(X)^2$.

11. Sea X una variable aleatoria continua, cuya función densidad es:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0, \\ 0 & \text{en otros casos.} \end{cases}$$

Encuentra la función generadora de momentos de X.

12. Sea *X* una variable aleatoria de Bernoulli, con paramétro *p*, esto es:

$$\mathbb{P}(X = x) = \begin{cases} 1 - p & x = 0\\ p & x = 1\\ 0 & \text{en otros casos} \end{cases}$$

Determina $M_X(t)$ y $\mathbb{E}(X^n)$.

- 13. Sea X una variable aleatoria binomial con paramétros (n,p). Encuentra la función generadora de momentos de X y calcula $\mathbb{E}(X)$ y $\mathbb{V}(X)$,
- 14. Sea X una variable aleatoria exponencial con un paramétro λ . Usando la función generadora de momentos, calcula la esperanza y la varianza de X.
- 15. Sea Z la variable aleatoria normal estándar.
 - (a) Calcula la función generadora de momentos de Z.
 - (b) Usa la parte(a) para encontrar la función generadora de momentos de X, donde X es una variable aleatoria normal con media μ y varianza σ^2 .
 - (c) Usa la parte (b) para calcular la media y la varianza de X.
- 16. Prueba que la función t/(1-t), t<1, no puede tener función generadora de momentos de una variable aleatoria.
- 17. Para una variable aleatoria X, $M_X(t)=(1/81)(e^t+2)^4$. Encuentra $\mathbb{P}(X<2)$.
- 18. Supongamos que $\forall n \geq 1$, el n-ésimo momento de la variable aleatoria X, es dada por $\mathbb{E}(X^n) = (n+1)!2^n$. Encuentra la distribución de X.
- 19. Sea Z una variable aleatoria exponencial, con paramétro s. Muestra que:

$$\mathcal{L}_X(s) = \mathbb{P}(Z > X).$$

- 20. Prueba las siguientes propiedades de la transformada de Laplace:
 - (a) $\mathcal{L}_Y(s) = e^{-bs} \mathcal{L}_X(as)$ si Y = aX + b.
 - (b) $\mathcal{L}_{X+Y}(s) = \mathcal{L}_X(s)\mathcal{L}_Y(s)$ si X e Y son variables aleatorias independientes.
 - (c) $\mathcal{L}_{X_1+X_2+\cdots+X_n}(s)=(\mathcal{L}_X(s))^n$ si $X_i, i=1,2,\ldots,n$ son independientes e idénticamente distribuidas y $X=X_1+X_2+\ldots X_n$.
 - (d) $\mathcal{L}_X^{(n)}(0) = (-1)^n \mathbb{E}(X^n)$.
 - (e) $\mathcal{L}_X(s) = \mathbb{G}(e^{-s})$ si X es una variable aleatoria discreta entera.