Поиск границ радужки методом круговых проекций

Баженов Андрей Александрович

Московский физико-технический институт

Курс: Автоматизация научных исследований (практика, В.В. Стрижов)/Группа 821

Эксперт: И. А. Матвеев

Консультант: И. А. Матвеев

2021

Цели исследования

Цель исследования

Исследовать возможность применения метода круговых проекций яркости в качестве метода понижения размерности в задачах машинного обучения.

Задача

Построить алгоритм нахождения приблизительных границ элементов глаза на чёрно-белых фотографиях.

Круговые проекции яркости

 \vec{x} — точка изображения $\vec{g}(\vec{x})$ — градиент яркости $v_U(\vec{x})$ — индикатор возможности принадлежности границе $\Pi_U(r)$ — усредненное значение индикатора по кругу радиуса r

Литература

- Обзор алгоритмов обнаружения радужки
 A. Nithya and C. Lakshmi. Iris Recognition Techniques: A Literature Survey. 2015
 K. Bowyer, K. Hollingsworth, and P. Flynn. Image Understanding for Iris Biometrics: A Survey. 2008
- Описание метода круговых проекций
 A. Matveev. Detection of iris in image by interrelated maxima of brightness gradient projections. 2010

Постановка задачи

Дано

Выборка $\mathcal{M} = \{(M(i), P_{R}(i), I_{R}(i))\}_{i=1}^{n}$ — множество растровых изображений со зрачком радиуса P_{R} и радужкой радиуса I_{R} .

Требуется

Построить алгоритм

$$f: M \mapsto (P_{R}, I_{R}).$$

Модель

Рассматриваются алгоритмы вида

$$f = g \circ \Pi$$

П — процедура подсчета круговых проекций,

$$g(x) = \sigma_k \left(W_k^T \sigma_{k-1} \left(\dots \sigma_1 \left(W_1^T x \right) \dots \right) \right).$$

Критерий качества

Пусть $\left(\widehat{P}_{\mathsf{R}}(i),\widehat{I}_{\mathsf{R}}(i)\right)=f(M(i))$. Рассматривается L — кусочно линейное преобразование относительной ошибки.

Задача оптимизации

$$f_0 = \arg\min_{f \in \mathcal{F}} \sum_{i=1}^n L\left(\widehat{P}_{\mathsf{R}}(i), P_{\mathsf{R}}(i)\right) + L\left(\widehat{I}_{\mathsf{R}}(i), I_{\mathsf{R}}(i)\right).$$

Обработка круговых проекций

Гипотеза

Значения $P_{\rm R}$ и $I_{\rm R}$ являются точками локальных максимумов функции $\Pi_U(r)$.

Для выделения максимумов и их обработки используются линенйные, сверточные и реккурентные нейронные сети, обучаемые по метрике MSE.

Результаты эксперимента

Результаты эксперимента

	Среднее значение ошибки, %	Доверительный интервал ошибки	Число па- раметров
Сверточная сеть	1.39	1.32-1.47	56831
Сверточная сеть	1.48	1.39-1.58	17655
Линейная сеть	2.21	2.15-2.24	166402
Реккурентная сеть	1.77	1.45-2.05	14962