Operating Systems: Internals and Design Principles, 6/E William Stallings

I/O Management

- Difficult area of OS design
 - Difficult to develop a consistent solution due to a wide variety of devices and applications
- Devices differ in a number of areas
 - Data Rate
 - Application
 - Complexity of Control
 - Unit of Transfer
 - Data Representation
 - Error Conditions

I/O Buffering

- Processes must wait for I/O to complete before proceeding
- It may be more efficient to perform input transfers in advance of requests being made and to perform output transfers some time after the request is made.

Block-oriented Buffering

- Information is stored in fixed sized blocks
- Transfers are made a block at a time
 - Can reference data by block number
- Used for disks and USB

Stream-Oriented Buffering

- Transfer information as a stream of bytes
- Used for terminals, printers, communication ports, mouse and other pointing devices, and most other devices that are not secondary storage

No Buffer

 Without a buffer, the OS directly access the device as and when it needs

Single Buffer

 Operating system assigns a buffer in main memory for an I/O request

Block Oriented Single Buffer

- Input transfers made to buffer
- Block moved to user space when needed
- The next block is moved into the buffer
 - Read ahead or Anticipated Input
- Often a reasonable assumption as data is usually accessed sequentially

Stream-oriented Single Buffer

- Line-at-time or Byte-at-a-time
- Terminals often deal with one line at a time with carriage return signaling the end of the line
- Byte-at-a-time suites devices where a single keystroke may be significant
 - Also sensors and controllers

Double Buffer

- Use two system buffers instead of one
- A process can transfer data to or from one buffer while the operating system empties or fills the other buffer

Circular Buffer

- More than two buffers are used
- Each individual buffer is one unit in a circular buffer
- Used when I/O operation must keep up with process

Disk Performance Parameters

- The actual details of disk I/O operation depend on many things
 - A general timing diagram of disk I/O transfer is shown here.

Positioning the Read/Write Heads

- When the disk drive is operating, the disk is rotating at constant speed.
- Track selection involves moving the head in a movablehead system or electronically selecting one head on a fixed-head system.

Disk Performance Parameters

- Access Time is the sum of:
 - Seek time: The time it takes to position the head at the desired track
 - Rotational delay or rotational latency: The time its takes for the beginning of the sector to reach the head
- Transfer Time is the time taken to transfer the data.

Disk Scheduling Policies

- To compare various schemes, consider a disk head is initially located at track 100.
 - Assume a disk with 200 tracks and that the disk request queue has random requests in it.
- The requested tracks, in the order received by the disk scheduler, are
 - 55, 58, 39, 18, 90, 160, 150, 38, 184.

First-in, first-out (FIFO)

- 55, 58, 39, 18, 90, 160, 150, 38, 184
- Process request sequentially
- Fair to all processes, every request honored
- Can become random scheduling in performance if there are many processes competing for disk

Priority

- Goal is not to optimize disk use but to meet other objectives
- Short batch jobs may have higher priority
- Provide good interactive response time
- Longer jobs may have to wait an excessively long time

Last-in, first-out

- Consider most recent request so there should be little arm movement (Principle of locality)
- Can provide increased throughput and reduced queue length
- Possibility of starvation since a job may never regain the head of the line

Shortest Service Time First

- Select the disk I/O request that requires the least movement of the disk arm from its current position
- Always choose the minimum seek time
- 55, 58, 39, 18, 90, 160, 150, 38, 184

SCAN

- Priority, LIFO and SSTF may leave some request unfulfilled, this is prevented by SCAN
- Arm moves in one direction only, satisfying all outstanding requests
 - until it reaches the last track in that direction or
 - there are no more requests in that direction
- then the direction is reversed
- Also known as the elevator algorithm

SCAN

55, 58, 39, 18, 90, 160, 150, 38, 184

SCAN is biased against the area most recently traversed

C-SCAN

- Restricts scanning to one direction only
- When the last track has been visited in one direction, the arm is returned to the opposite end of the disk and the scan begins again
- 55, 58, 39, 18, 90, 160, 150, 38, 184

Performance Compared

(a) FIFO		(b) SSTF		(c) SCAN		(d) C-SCAN	
(starting at track 100)		(starting at track 100)		(starting at track 100, in the direction of increasing track number)		(starting at track 100, in the direction of increasing track number)	
Next track accessed	Number of tracks traversed	Next track accessed	Number of tracks traversed	Next track accessed	Number of tracks traversed	Next track accessed	Number of tracks traversed
55	45	90	10	150	50	150	50
58	3	58	32	160	10	160	10
39	19	55	3	184	24	184	24
18	21	39	16	90	94	18	166
90	72	38	1	58	32	38	20
160	70	18	20	55	3	39	1
150	10	150	132	39	16	55	16
38	112	160	10	38	1	58	3
184	146	184	24	18	20	90	32
Average seek length	55.3	Average seek length	27.5	Average seek length	27.8	Average seek length	35.8