

FWAM Session B: Function Approximation and Differential Equations

Alex Barnett¹ and Keaton Burns^{1,2}

Wed, 10/30/19

¹Center for Computational Mathematics, Flatiron Institute

²Center for Computational Mathematics, Flatiron Institute, and Department of Mathematics, MIT

LECTURE 1: interpolation, integration, spectral methods

Motivations

exact func. f(x) described by ∞ number of points how handle approximately (but accurately) in computer, using least cost (bytes)?

• Interpolation: cheap but accurate look-up table for expensive f(x) data fitting: given non-noisy data $f(x_i)$ at some x_i , model f(x) at other points x?

Contrast: fit noisy data = learning (pdf for) params in model, via likelihood/prior

- (Numerical) integration:
 eg computing expectation values given a pdf
 - Contrast: Monte Carlo (random, high-dim.) integration, Thurs am
- Differentiation: get gradient ∇f in order to optimize or
- Spectral (often Fourier) methods: If f(x) is smooth, handle very accurately without much extra cost

Deterministic (non-random) methods.

Integr/diff crucial for numerical ODEs and PDEs topic of LECTURE FLATIRON INTEGRAL PROPERTY OF THE PROPERTY OF

Goals LECTURE I

TODO

teach range of practical methods focusing on 1D pointers to dimensions d>1 concepts: convergence order spectral methods local vs global adaptivity rounding error interpolation = func. representation, key to all else

Say $y_j = f(x_j)$ known at nodes $\{x_j\}$ *N*-pt "grid" exact data, not noisy want interpolant $\tilde{f}(x)$, s.t. $\tilde{f}(\mathbf{x}_j) = y_j$

Say $y_j = f(x_j)$ known at nodes $\{x_j\}$ *N*-pt "grid" exact data, not noisy want interpolant $\tilde{f}(x)$, s.t. $\tilde{f}(\mathbf{x}_j) = y_j$

hopeless w/o assumptions on f, eg smoothness, otherwise...

• extra info helps, eg f periodic, or $f(x) = \text{smooth} \cdot |x|^{-1/2}$

Say
$$y_j = f(x_j)$$
 known at nodes $\{x_j\}$ N-pt "grid" exact data, not noisy want interpolant $\tilde{f}(x)$, s.t. $\tilde{f}(\mathbf{x}_j) = y_j$

hopeless w/o assumptions on f, eg smoothness, otherwise...

• extra info helps, eg f periodic, or $f(x) = \text{smooth} \cdot |x|^{-1/2}$

Simplest: use value at x_i nearest to x

"snap to grid"

Error $\max_x |\tilde{f}(x) - f(x)| = \mathcal{O}(h)$ as $h \to 0$

The typ. spread

holds if f' bounded; can be nonsmooth but not crazy

Recall notation " $\mathcal{O}(h)$ ": exists $C, h_0 > 0$ s.t. error $\leq Ch$ for all $h < h_0$

Say
$$y_j = f(x_j)$$
 known at nodes $\{x_j\}$ *N*-pt "grid" exact data, not noisy want interpolant $\tilde{f}(x)$, s.t. $\tilde{f}(\mathbf{x}_j) = y_j$

hopeless w/o assumptions on f, eg smoothness, otherwise...

• extra info helps, eg f periodic, or $f(x) = \text{smooth} \cdot |x|^{-1/2}$

Simplest: use value at x_i nearest to x

Error
$$\max_{x} |\tilde{f}(x) - f(x)| = \mathcal{O}(h)$$
 as $h \to 0$ holds if f' bounded; can be nonsmooth but not crazy

Recall notation "
$$\mathcal{O}(h)$$
": exists $C, h_0 > 0$ s.t. error $\leq Ch$ for all $h < h_0$

Piecewise linear:

"connect the dots"

max error
$$=\mathcal{O}(h^2)$$
 as $h o 0$

$$x \in \mathcal{O}(n)$$
 as $n \to 0$

needs f'' bounded, ie smoother than before

Message: a higher order method is only higher order if f smooth enough

Should know or measure convergence rate of any method you use

• "effort" parameter N eg # grid-points = $1/h^d$ where h = grid spacing, d = dim We just saw algebraic conv. error = $\mathcal{O}(N^{-p})$, for order p = 1, 2

Should know or measure convergence rate of any method you use

• "effort" parameter N eg # grid-points $= 1/h^d$ where h = grid spacing, d = dim We just saw algebraic conv. error $= \mathcal{O}(N^{-p})$, for order p = 1, 2 Is only one graph in numerical analysis: "relative error vs effort"

Should know or measure convergence rate of any method you use

• "effort" parameter N eg # grid-points = $1/h^d$ where h = grid spacing, d = dim We just saw algebraic conv. error = $\mathcal{O}(N^{-p})$, for order p = 1, 2 Is only one graph in numerical analysis: "relative error vs effort"

Should know or measure convergence rate of any method you use

• "effort" parameter N eg # grid-points = $1/h^d$ where h = grid spacing, d = dim We just saw algebraic conv. error = $\mathcal{O}(N^{-p})$, for order p=1,2 Is only one graph in numerical analysis: "relative error vs effort"

Note how spectral gets many digits for small ${\it N}$

crucial for eg 3D prob.

"spectral" = "superalgebraic", $O(N^{-k})$ for any k

• how many digits to you want? for 1-digit (10% error), low order ok, easier to code

<rant> test your code w/ known exact soln to check error conv. <\rant>
What is the prefactor C in error < Ch^k ? Has asymp, rate even kicked in yet? :)

Higher-order interpolation for smooth f: the local idea

For any target x, use only set of nearest p nodes:

Exists unique degree-(p-1) poly, $\sum_{k=0}^{p-1} c_k x^k$ which matches local data $(x_j, y_j)_{j=1}^p$ generalizes piecewise lin. idea do **not** eval poly outside its central region!

• error $\mathcal{O}(h^k)$, ie high order, but \tilde{f} not continuous $(\tilde{f} \notin C)$ small jumps if must have cont, recommend splines, eg cubic p = 3: $\tilde{f} \in C^2$, meaning \tilde{f}'' is cont.

Higher-order interpolation for smooth f: the local idea

For any target x, use only set of nearest p nodes:

Exists unique degree-(p-1) poly, $\sum_{k=0}^{p-1} c_k x^k$ which matches local data $(x_j, y_j)_{j=1}^p$ generalizes piecewise lin. idea do **not** eval poly outside its central region!

• error $\mathcal{O}(h^k)$, ie high order, but \tilde{f} not continuous $(\tilde{f} \notin C)$ small jumps if must have cont, recommend splines, eg cubic p = 3: $\tilde{f} \in C^2$, meaning \tilde{f}'' is cont.

How to find the degree-(k-1) poly?

1) Crafty: solve square lin sys for coeffs
$$\sum_{k < p} x_j^k c_k = y_j$$
 $j = 1, ..., p$ ie $V \mathbf{c} = \mathbf{y}$ $V = \text{"Vandermonde" matrix, is ill-cond. but works}$

le
$$V \mathbf{c} = \mathbf{y}$$
 $V=$ "Vandermonde" matrix, is ill-cond. but works

2) Traditional: barycentric formula $\tilde{f}(x) = \frac{\sum_{j=1}^{p} \frac{y_j}{x - x_j} w_j}{\sum_{j=1}^{p} \frac{1}{x - x_j} w_j}$ $w_j = \frac{1}{\prod_{i \neq j} (x_j - x_i)}$
[Tre13, Ch. 5]

Either way, $\tilde{f}(x) = \sum_{j=1}^{p} y_j \ell_j(x)$ where $\ell_j(x)$ is ℓ th Lagrange basis func:

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single $\tilde{f}(x)$, so p=N? "global" p=N=32, smooth (analytic) $f(x)=\frac{1}{1+9x^2}$ on [-1,1]: (Runge 1901)

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single $\tilde{f}(x)$, so p=N? "global" p=N=32, smooth (analytic) $f(x)=\frac{1}{1+9x^2}$ on [-1,1]: (Runge 1901)

ullet warning: unif. grid, global interp. fails ullet only use locally in central region

Global polynomial (Lagrange) interpolation?

Want increase order p. Use all data, get single $\tilde{f}(x)$, so p = N? "global" p = N = 32, smooth (analytic) $f(x) = \frac{1}{1+9x^2}$ on [-1, 1]:

warning: unif. grid, global interp. fails → only use locally in central region

But exists good choice of nodes...

ho > 1 "radius" of largest ellipse in which f analytic

"Chebychev": means non-unif. grid density $\sim \frac{1}{\sqrt{1-x^2}}$

our first spectral method max err = $\mathcal{O}(\rho^{-N})$

exponential conv!

Recap poly approx. f(x) on [a, b]: are good & bad node sets $\{x_j\}_{j=1}^N$

Question: Do you get to *choose* the set of nodes at which f known?

- No: data fitting applications (or noisy variants: kriging, Gaussian processes, etc)
 use local poly (central region only!), or something stable (splines)
- Yes: almost all else, interp., quadrature, PDE solvers so pick good nodes!

Recap poly approx. f(x) on [a, b]: are good & bad node sets $\{x_j\}_{j=1}^N$

Question: Do you get to *choose* the set of nodes at which f known?

- No: data fitting applications (or noisy variants: kriging, Gaussian processes, etc) use local poly (central region only!), or something stable (splines)
- Yes: almost all else, interp., quadrature, PDE solvers so pick good nodes!

Adaptivity idea global is inefficient if f smooth in most places, structured in a few

Recap poly approx. f(x) on [a, b]: are good & bad node sets $\{x_j\}_{j=1}^N$

Question: Do you get to *choose* the set of nodes at which f known?

- No: data fitting applications (or noisy variants: kriging, Gaussian processes, etc)
 use local poly (central region only!), or something stable (splines)
- Yes: almost all else, interp., quadrature, PDE solvers so pick good nodes!

Adaptivity idea

global is inefficient if f smooth in most places, structured in a few

Recap poly approx. f(x) on [a, b]: are good & bad node sets $\{x_i\}_{i=1}^N$

Question: Do you get to *choose* the set of nodes at which f known?

- No: data fitting applications (or noisy variants: kriging, Gaussian processes, etc) use local poly (central region only!), or something stable (splines)
- Yes: almost all else, interp., quadrature, PDE solvers so pick good nodes!

automatically split (recursively) panels until max err $< \epsilon$

via tests for local error

1D adaptive interpolator codes to try:

- github/dbstein/function_generator py+numba, fast (Stein '19)
- chebfun for MATLAB big-p Cheb. grids can exploit FFTs! (Trefethen et al.)

App.: replace nasty expensive f(x) by cheap one!

optimal "look-up table"

Interpolation of periodic functions

Just did f on intervals [a, b]. Interpolation (& integration, etc.) of periodic f not same!

Periodic: $f(x+2\pi)=f(x)$ for all x, $f(x)=\sum_{n\in\mathbb{Z}}\hat{f}_ke^{ikx}$ Fourier series

Interpolation of periodic functions

smooth = rapid Fourier series decay = rapid conv

Just did f on intervals [a,b]. Interpolation (& integration, etc.) of periodic f not same! Periodic: $f(x+2\pi)=f(x)$ for all x, $f(x)=\sum_{n\in\mathbb{Z}}\hat{f}_ke^{ikx}$ Fourier series instead of poly's, use truncated series $\tilde{f}(x)=\sum_{|k|< N/2}c_ke^{ikx}$ "trig. poly"

What's best you can do? if \hat{f}_n decays rapidly, How get c_n ? unif. grid now good! Use FFT of vals $f(2\pi j/N)$, $j=1,\ldots,N$ $c_n=\exp$ conv if f analytic in strip. what if f not as smooth as this? relapse to conv. order given by smoothness of f why? \hat{f}_n decay Messages: spectral conv usually requires understanding f off the real axis!

Interpolation in d > 1

can you choose the points?

data fit: often no

PDE solve: usually yes - product grids, piecewise (FEM), etc

in d > 1 getting $f(\mathbf{x})$ from scattered data $\{\mathbf{x}_i\}$ is hard

Eg google terrain: $f(\mathbf{x})$ rough \rightarrow v low ord

height f(x) interp from unstructured points in 2D, kernel method

pock-marks!

interp from Cartesian grid, more accurate

unless you know f smooth, eg fit local multivariate polynomial kriging

Numerical integration

Usually the user gets to choose the nodes x_j Once have interpolant \tilde{f} from data $f(x_j)$, can integrate it exactly "intepolatory quadrature"

Eg: piecewise linear gives composite trap rule $\mathcal{O}(N^{-2})$ periodic spectral gives periodic trap rule $\mathcal{O}(c^{-N})$ if analytic

TO DO extrapolation Rounding error [GC12, Ch. 5–6]

LECTURE II: numerical differential equations

For now we start with "elliptic": time-independent problems Motivations eg steady-state (equilibrium) diffusion of a chemical eg what electric potential caused by bunch of charges surrounded by H₂O ? (protein electrostatics) Find u solving $\Delta u = f$, f = volume source term Δ means Laplacian $\partial^2/\partial x^2 + \partial^2/\partial y^2 + \dots$ Δu is curvature of uplus some BCs on u eg viscous fluid flow: **u** is velocity field, sat Stokes egns eg what is ground state of quantum system, solving $\Delta u = Eu$ Mike will in next talk overview this and 2 other flavors of PDE

References

- A Greenbaum and T P Chartier, Numerical methods, Princeton University Press, 2012.
- L. N. Trefethen, Approximation theory and approximation practice, SIAM, 2013, http://www.maths.ox.ac.uk/chebfun/ATAP.

