

Versão original gentilmente cedida pelo professor **FELIPE GUSTAVO SILVA TEODORO**

FEATURE ENGINEERING

THIAGO NASCIMENTO NOGUEIRA

PROFESSOR

- Bacharel, mestre e doutor em física pela USP
- Trabalha com ambiente Linux desde 1995
- Atuação em sistemas distribuídos desde 2007
- Big Data desde 2016
- Ciência de Dados desde 2017
- Computação Quântica desde 2021
- IA Generativa desde 2020

OBJETIVOS DA DISCIPLINA

Trabalhar com conceitos relacionados ao processo de extração, transformação e seleção de características para problemas de Machine e Deep Learning.

PROGRAMA TRADICIONAL VS IA

Programa tradicional

Machine Learning

FEATURE ENGINEERING

A arte de transformar dados brutos em características significativas

- Feature engineering é a prática de criar características úteis a partir de dados brutos para melhorar o desempenho dos modelos de machine learning.
- Essas características são representações específicas que ajudam os algoritmos a entender padrões nos dados.
- A qualidade das características é crítica para o sucesso dos modelos.
- Envolve transformar dados em formatos mais informativos e relevantes para a modelagem.
- É uma combinação de habilidades técnicas, conhecimento de domínio e criatividade.
- Aspecto mais criativo de Ciência de Dados!!!

IMPORTÂNCIA DA FEATURE ENGINEERING POR QUE É CRUCIAL?

- A qualidade das características é crítica para o sucesso dos modelos de ML.
- Boas características levam a previsões mais precisas.
- Características bem projetadas simplificam a interpretação dos dados.
- A engenharia de características extrai informações úteis dos dados brutos.
- Essencial para resolver problemas do mundo real em várias áreas.

Coming up with features is difficult, time-consuming, requires expert knowledge. "Applied machine learning" is basically feature engineering.

- Andrew Ng, Machine Learning and AI via Brain simulations

MACHINE E DEEP LEARNING

DIA A DIA DE UM CIENTISTA DE DADOS

. PIPELINE DE MODELOS **DE ML e DL**

. PIPELINE DE MODELOS DE ML e DL

MACHINE E DEEP LEARNING

TRADITIONAL MACHINE LEARNING

DEEP LEARNING

NOSSA JORNADA

Manipulação e Pré-Processamento Extração e Transformação de Características

Seleção de Características

PRÉ-PROCESSAMENTO DOS DADOS

ATIVIDADE FILTRO INICIAL DE FEATURES

FEATURES

- Nome
- Idade
- Endereço
- Renda R\$
- Renda USD
- Dívidas em outros bancos
- Serasa
- CPF
- Gênero

SEGMENTOS

- Varejo
- Uniclass
- Personalité
- Private

. CASE: **ESTUDO DE DOENÇAS CRÔNICAS**

OBJETIVO

Entendimento da evolução de doenças crônicas a partir do histórico de internações dos pacientes

FONTE PRINCIPAL DADOS

Base de internações do DATASUS

CASE: ESTUDO DE DOENÇAS CRÔNICAS FEATURES

VAL_ORTP

• VAL_SANGUE

• VAL_SADTSR

• UTI_MES_AL

• UTI_MES_TO

MARCA_UTI

• FEATU	IRES				
• UF_ZI	• UTI_INT_IN	• VAL_TRANSP	• COD_IDADE	• INSC_PN	• FAEC_TP
• ANO_CMPT	• UTI_INT_AN	VAL_OBSANG	• IDADE	• SEQ_AIH5	• REGCT
• MES_CMPT	• UTI_INT_AL	 VAL_PED1AC 	• DIAS_PERM	• CBOR	• RACA_COR
• ESPEC	• UTI_INT_TO	VAL_TOT	 MORTE 	• CNAER	• ETNIA
• CGC_HOSP	• DIAR_ACOM	VAL_UTI	 NACIONAL 	 VINCPREV 	• SEQUENCIA
N_AIH	• QT_DIARIAS	• US_TOT	• NUM_PROC	• GESTOR_COD	 REMESSA
• IDENT	• PROC_SOLIC	• DT_INTER	• CAR_INT	• GESTOR_TP	
• CEP	• PROC_REA	 DT_SAIDA 	TOT_PT_SP	• GESTOR_CPF	
• MUNIC_RES	VAL_SH	• DIAG_PRINC	• CPF_AUT	• GESTOR_DT	
• NASC	• VAL_SP	• DIAG_SECUN	 HOMONIMO 	• CNES	
• SEXO	 VAL_SADT 	 COBRANCA 	• NUM_FILHOS	• CNPJ_MANT	
• UTI_MES_IN	• VAL_RN	• NATUREZA	• INSTRU	 INFEHOSP 	•
• UTI_MES_AN	• VAL_ACOMP	• GESTAO	• CID_NOTIF	• CID_ASSO	

• CONTRACEP1

• CONTRACEP2

• GESTRISCO

• CID_MORTE

COMPLEX

• FINANC

RUBRICA

• IND_VDRL

MUNIC_MOV

. CASE: **ESTUDO DE DOENÇAS CRÔNICAS**

IDENTIFICAÇÃO DO PACIENTE

• Definição das features para construção da chave

CASE: ESTUDO DE DOENÇAS CRÔNICAS DIAGRAMA DE TRANSIÇÃO

CARACTERISTICAS COMUNS DAS FEATURES

MISSING DATA

- Dados ausentes, ou valores ausentes, ocorrem quando nenhum dado é armazenado para uma determinada observação em uma variável.
- Dados ausentes são uma ocorrência comum na maioria dos conjuntos de dados
- A falta de dados pode ter um efeito significativo nas conclusões que podem ser tiradas dos dados.

MISSING DATA: IMPACTOS

.

MISSING DATA: TIPOS DE DADOS FALTANTES

Fonte: Train in Data . . .

MISSING DATA: Missing completely at random (MCAR)

- Os dados são ditos do tipo MCAR quando "a probabilidade de estarem ausentes é independente de qualquer observação no dataset".
- Ou seja, imagine um dataset com 10.000 respostas de entrevistados. Encontramos 100 pessoas que não responderam ao item 'Você prefere o inverno ou verão?' por exemplo. Como não conseguimos identificar alguma relação que explique essa ausência, podemos descartar essas 100 pessoas e realizar a modelagem do problema apenas com as 9900 respostas completas.

MISSING DATA: Missing completely at random (MCAR)

Complete data			
Age	IQ score		
25	133		
26	121		
29	91		
30	105		
30	110		
31	98		
44	118		
46	93		
48	141		
51	104		
51	116		
54	97		

Incomplete data			
Age	IQ score		
25			
26	121		
29	91		
30			
30	110		
31			
44	118		
46	93		
48			
51			
51	116		
54			

No exemplo ao lado, conseguimos visualizar que não há relação entre a idade e os dados faltantes na tabela da direita. Temos amostras com idade 30 que possuem dados preenchidos e outra não. O mesmo para 51 anos.

Ou seja, não é possível identificar uma relação entre as amostras sem preenchimento e aquelas completamente preenchidas.

MISSING DATA: Missing at random (MAR)

A probabilidade de uma observação estar faltando depende da informação disponível

A abordagem de dados do tipo MAR assumem que as observações com dados faltantes não respeitam uma distribuição aleatória como as amostras com dados observados. Isso significa que precisamos modelar o comportamento das amostras com dados faltantes.

MISSING DATA: Missing at Not random (MNAR)

Existe um mecanismo ou uma razão pela qual os valores ausentes são introduzidos no conjunto de dados.

Target = depression	No of clinic visits	No sports classes weekly	
Yes	1	NA	٦
Yes	NA	NA	More NA
Yes	NA	0	overall fo
Yes	4	2	depresse patients
Yes	NA	1	patients
Yes	3	NA	• /
No	0	0	\ \ \\ /\
No	NA	5	Less NA fo
No	1	2	non-
No	1	1	depressed
No	2	1	patients
No	NA	2	

MISSING DATA: Mas como lidar com dados faltantes?

. MISSING DATA: Preenchimento por média e mediana?

Price		Price	
100	Mean = 86.66	100	
90		90	
50	Median = 90	50	
40		40	
20		20	
100		100	
		86.66	
60		60	
120		120	
		86.66	
200		200	

MISSING DATA: Preenchimento por média e mediana?

Média ou Mediana?

Se a variável tiver distribuição normal, a média e a mediana são aproximadamente as mesmas

. MISSING DATA: Preenchimento por média e mediana?

Média ou Mediana?

Se a variável for assimétrica, a mediana é uma representação melhor.

MISSING DATA: Preenchimento por média e mediana

Faltam dados completamente aleatórios Não mais de 5% da variável contém dados ausentes

Fácil de implementar Maneira rápida de obter conjuntos de dados completos

Pode ser integrado na produção (durante a implantação do modelo) Distorção da distribuição da variável original

Distorção da covariância com as variáveis restantes do conjunto de dados .

Quanto maior a porcentagem de NA, maiores as distorções

. MISSING DATA: Arbitrary value imputation

Price		Price
100		100
90	Arbitrary = 999	90
50	Albitialy - 333	50
40		40
20		20
100		100
		999
60		60
120		120
		999
200		200

MISSING DATA: Arbitrary value imputation

Price		Price
100		100
90	Arbitray = 99	90
50	, ii bittii 55	50
40		40
20		20
100		100
		999
60		60
120		120
		999
200		200

MISSING DATA: End of Tail

A imputação de final de cauda é equivalente à imputação de valor arbitrário, mas selecionando automaticamente valores arbitrários no final das distribuições de variáveis.

Se a variável for normalmente distribuída, podemos usar a média mais ou menos 3 vezes o desvio padrão.

Se a variável for assimétrica, podemos usar a regra de proximidade IQR.

MISSING DATA: End of Tail

•	•	•		Method	Definition	Pros	Cons
+	+	•		Listwise Deletion	excluding all cases (listwise) that have missing values	preserve distribution if MCAR	may discard too much data and hurt the model may yield biased estimates if not MCAR (as we keep a special subsample from the population)
				Mean/Median/Mode Imputation	replacing the NA by mean/median/most frequent values (for categorical feature) of that variable	good practice if MCAR	distort distribution distort relationship with other variables
				End of distribution Imputation	replacing the NA by values that are at the far end of the distribution of that variable, calculated by mean + 3*std	Captures the importance of missingness if there is one	distort distribution may be considered outlier if NA is few or mask true outlier if NA is many. if missingness is not important this may mask the predictive power of the original variable
				Random Imputation	replacing the NA by taking a random value from the pool of available observations of that variable	preserve distribution if MCAR	not recommended in business settings for its randomness (different result for same input)
				Arbitrary Value Imputation	replacing the NA by arbitrary values	Captures the importance of missingness if there is one	distort distribution typical used value: -9999/9999. But be aware it may be regarded as outliers.
				Add a variable to denote NA	creating an additional variable indicating whether the data was missing for that observation	Captures the importance of missingness if there is one	expand feature space

. MISSING DATA: Similaridade - KNN Imputer

K NEAREST NEIGHBOR

K NEAREST NEIGHBOR

Normalização MinMax

Transformar um conjunto de dados que estão em diferentes grandezas e escalas em um conjunto de dados padronizados.

Normalization Formula

Padronização

Centraliza a variável em zero e define a variância como 1.

Standardisation Formula

X - mean(X)

X standard =

std(X)

Padronização

Centraliza a variável em zero e define a variância como 1.

Robust Scaling

Transformar um conjunto de dados que estão em diferentes grandezas e escalas em um conjunto de dados padronizados.

Formula

75th quant X– 25th quant(X)

Robust Scaling

Robust Scaling vs Standard Scaler

. . .

		1	Original	Standardization	Max-Min Scaler	Rubost Scaler
	•	2	6.9314183	-0.2244971	0.0000003	0.8283487
•	•	3	2.6674115	-0.2244979	0.000001	0.0690181
•	+	4	7.7248183	-0.2244970	0.0000003	0.9696367
+	•	5	5.7388433	-0.2244973	0.0000002	0.6159760
		6	0.8965615	-0.2244982	0.0000000	-0.2463333
		7	4.5147618	-0.2244975	0.0000002	0.3979926
		8	2.9934144	-0.2244978	0.000001	0.1270724
		9	4.8708377	-0.2244975	0.0000002	0.4614023
+		10	4.2797819	-0.2244976	0.0000002	0.3561476
		11	1.0085616	-0.2244982	0.0000000	-0.2263885
		12	5.5166580	-0.2244974	0.0000002	0.5764094
		13	1.1171326	-0.2244981	0.0000000	-0.2070542
		14	0.4069897	-0.2244983	0.0000000	-0.3335159
		15	5.0536949	-0.2244975	0.0000002	0.4939654
		16	8.4068370	-0.2244969	0.0000003	1.0910900
		17	8.9588050	-0.2244968	0.0000003	1.1893840
		18	0.9543401	-0.2244982	0.0000000	-0.2360442
		19	94750.5292279	-0.2079018	0.0037104	16872.6857158
		20	2051.2433203	-0.2241390	0.0000803	364.8776314
		21	25536631.9371928	4.2485000	1.000000	4547540.7645023

Label Encoding

One-Hot Encoding

color_red	color_blue	color_green
1	0	0
0	0	1
0	1	0
1	0	0

Count/Frequency Encoding

Count

Frequency

Height		Height
Short		0.4
Tall		0.2
Short	,	0.2
Medium		0.2

Rare Labels Encoding

CITY	CITY_COUNT	CITY	CITY_COUNT	
Α	56	Α	56	
В	84	В	84	CITY
С	54	С	54	Α
D	2	D	2	В
E	12	E	12	С
F	60	F	60	F
G	3	G	3	K
Н	5	Н	5	M
K	25	K	25	Z
L	1	L	1	RARE (D,E,G,H,L)
M	36	M	36	
Z	45	Z	45	O

CITY	CITY_COUNT
Α	56
В	84
С	54
F	60
K	25
M	36
Z	45
RARE (D,E,G,H,L)	23
0	

Target Encoding – Classificação

target
1
0
0
1

Target Encoding - Regressão

Target Encoding

- Em uma tarefa de classificação binária, a nova representação numérica corresponde a probabilidade do alvo ser de uma classe dado a categoria assumida pela variavel categórica (probabilidade de alvo_y=1 dado a cor_x='branco' por exemplo).
- Em uma tarefa de **regressão**, a nova representação numérica corresponde ao valor esperado para o alvo y dado a categoria assumida pela variavel categórica (preço_carro_y=12.7 dado que cor x='branco' por exemplo).

Target Encoding – Target Leakage

OBRIGADO

Copyright © 2020 | Professor Felipe Gustavo Silva Teodoro

Todos os direitos reservados. A reprodução ou divulgação total ou parcial deste documento é expressamente proibida sem consentimento formal, por escrito, do professor(a)/autor(a).

#