ESP12F_RELAY_X1

Traduzido por AthenasArch

Placa de desenvolvimento "ESP12F Relay x1" com entrada para Fonte de alimentação AC/DC utilizando o chip ESP8266-12, com módulo WIFI e conjunto de quatro relés.

VISÃO GERAL

A placa de desenvolvimento "ESP12F Relay x1" é equipada com módulo WiFi ESP-12F, todos os pinos de Entrada/Saída estão disponíveis para utilização de qualquer forma. A placa conta com uma fonte AC integrada, com capacidade de 90 a 250VAC / DC 7 a 30VDC / 5V e outros métodos de fonte de alimentação. É possível utilizar o ambiente de desenvolvimento Arduino, adequado para aprendizado e desenvolvimento com ESP8266, controle sem fio residencial inteligente e outras aplicações.

CARACTERÍSTICAS

- 1 Módulo ESP-12F WiFi estável integrado, com memória Flash de 4M Byte;
- 2 As portas I/O e a porta de download do programa (através da UART) estão com fácil acesso, para facilitar o desenvolvimento;
- **3** Placa possui circuito para alimentação AC-DC integrada, é possível alimentar a placa através de:
 - a) Tensão alternada da rede (tomada) AC de 90 a 250VAC;
 - b) Fonte de alimentação DC 7 a 30VDC;
 - c) Entrada por USB ou fonte de 5V;
- 4 O botão de reinicialização RST do módulo WiFi integrado;
- **5** ESP-12F oferece suporte a ferramentas de desenvolvimento como Eclipse / Arduino IDE e fornece programas de referência no ambiente de desenvolvimento Arduino;
- 6 Existem 1 relé de 5V na placa, que emite sinal de contato seco NA/NF/COM (Aberto, fechado e comum), adequados para controlar cargas cuja tensão de trabalho está dentro de AC 250V 10A / DC30V 10A;
- 7 Indicador de fonte integrado, 1 LED programável e indicador de relé;

INTRODUÇÃO E DESCRIÇÃO DO HARDWARE

- Dimensões da placa: 80 x 50mm.
- Peso: 34g.

INTERFACE DE OPERAÇÃO

- 1 L / N: (Fase/Neutro ou Fase/Fase) Fonte de alimentação 90 a 250VAC.
- 2 90 a 250VAC, circuito fonte de alimentação para DC5V (Quando adotar a alimentação por corrente alternada/tomada, **não toque aqui diretamente com a mão** !!!).
- 3 VCC / GND: Fonte de alimentação 7 a 12VDC.
- 4 Micro USB: fonte de alimentação 5VDC USB.
 - a) Tensão alternada da rede (tomada) AC de 90 a 250VAC;
 - b) Fonte de alimentação DC 7 a 30VDC;
 - c) Entrada por USB ou fonte de 5V;
- 5 Botão de pressionar (6X6 mm), botão de reinicialização RST do ESP8266.
- 6 Porta de download do programa UART: ESP8266 GND, RX, TX, 5V, conectar separadamente Módulo serial TTL externo: GND, TX, RX, 5V, IO0 Conectar o IO0 ao GND para fazer o download/gravação do ESP8266.
- 7 Porta de pinagem GPIO.
- 8 Saída de relé (NA/COM/NF):
- NO: Normalmente aberto (NA), este pino está aberto em relação ao comum até o relé ser acionado;
 - COM: Comum (COM), este pino pode ser usado com o NO ou com o NC;

- NC: Normalmente fechado (NC), este pino está em curto com o comum até o relé ser acionado;
- 10 LED programável.
- 11 LED indicador de relé.

PROGRAMAÇÃO DA PLACA

Pinos de programação no conector P6: GND, GND, RX, TX e 5V do ESP8266

IO0 precisa ser conectado a GND durante o download e, em seguida, desconecte a conexão entre IO0 e GND após a conclusão do download;

SAÍDA DE RELÉ

NO: Normalmente aberto (NA), este pino está aberto em relação ao comum até o relé ser acionado;

COM: Comum (COM), este pino pode ser usado com o NO ou com o NC;

NC: Normalmente fechado (NC), este pino está em curto com o comum até o relé ser acionado;

GPIO PINOUT – PINOS DE INTERFACE

Num.	Descrição	Função	Num.	Descrição	Função
1	GND	NEGATIVO	13	IO10	GPIO10
2	RELAY	Pino utilizado para o IO5. Para utilizar o pino sem relé será necessário remover o reistsor R14	14	MISO	Slave output master input
3	IO2	GPIO2; UART1_TXD	15	IO13	GPIO13; HSPI_MOSI; UART0_CTS
4	IO4	GPIO4	16	IO14	GPIO14; HSPI_CLK
5	RX	UART0_RXD; GPIO3	17	ADC	A/D Conversor; Tensão de entrada de 0 a 1V - Range de 0 a 1024
6	3V3	3V3 POWER	18	3V3	3V3 POWER
7	SCLK	CLOCK	19	MOSI	MASTER OUTPUT SLAVE INPUT
8	IO15	GPIO15; MTDO; HSPICS; UART0_RTS	20	IO9	GPIO9
9	IO0	GPIO0	21	CS0	CHIP SELECT
10	IO5	GPIO5	22	IO12	GPIO12; HSPI_MISO
11	TX	UART0_TXD; GPIO1	23	IO16	GPIO16
12	5V	5V POWER	24	GND	NEGATIVO

INSTALAÇÃO E UTILIZAÇÃO DO AMBIENTE DE DESENVOLVIMENTO ARDUINO

ESP8266 oferece suporte a ferramentas de desenvolvimento como Eclipse (Nativo e em linguagem C) / Arduino IDE. É relativamente simples usar o Arduino. Aqui está como construir o ambiente de desenvolvimento Arduino:

1. Instale o Arduino IDE 1.8.9 ou a versão mais recente;

https://www.arduino.cc/en/software

Faça o download da IDE para seu sistema operacional.

- **2**. Abra o IDE do Arduino, clique em Arquivo-Preferências na barra de menu e clique em Adicionar URL em "URL do gerenciador de placa de desenvolvimento adicional" após inserir as preferências: http://arduino.esp8266.com/stable/package esp8266com index.json
- 3. Clique em Ferramentas-Placa de desenvolvimento-Gerenciador de placa de desenvolvimento na barra de menus e, em seguida, pesquise "ESP8266" para instalar o pacote de suporte do Arduino 2.5.2 ou a versão mais recente do ESP8266

DOWNLOAD DO PROGRAMA PARA A PLACA

1. use uma conexão de jumper para conectar os pinos **IO0 e GND**, prepare um módulo de porta serial TTL (por exemplo: FT232) para conectar ao USB do computador, o módulo de porta serial e a placa de desenvolvimento são conectados da seguinte forma:

TTL serial port module	ESP8266 development board		
GND	GND		
TX	RX		
RX	TX		
5V	5V		

- 2. Clique em "Ferramentas" > "Placa de Desenvolvimento" na barra de menu, selecione a placa de desenvolvimento como "ESPino" (módulo ESP-12).
- 3. Abra o programa que deseja baixar, clique em "Ferramentas" > "Porta" na barra de menu para selecionar o número da porta correta;
- 4. Após clicar em "Upload", o programa será compilado automaticamente e baixado para a placa de desenvolvimento, da seguinte forma:

```
op pwm | Arduino 1.8.12
                                                                  - □ ×
Arquivo Editar Sketch Ferramentas Ajuda
pwm §
 * @brief Arquivo exemplo de utilização de rele com ESP8266.
 * @name
 * @version | 1.0
 * @date | 09/03/2021
 * @author | athenasarch@gmail.com |
 * @file | main.cpp
 **/
#include <Arduino.h>
#define TOGGLE DATA(DATA) ((DATA)?DATA=0:DATA=1) // utilizado para
#define PIN_RELAY_1 16 // pino que esta localizado o Rele 1.
#define PIN_RELAY_2 14 // pino que esta localizado o Rele 2.
#define PIN_RELAY_3 12 // pino que esta localizado o Rele 3.
#define PIN_RELAY_4 13 // pino que esta localizado o Rele 4.
#define QTTY RELAYS 4 // Quantidade de reles disponievis...
#define RELAY ON
#define RELAY OFF 0
uint8 t cntRelays = 0;
void timerRelay( unsigned long timeInterval ); // inicializa funcao
 * @brief Funcao Init.
**/
void setup() {
     Serial.begin(115200); // inicia a comunicacao serial.
```

5. Finalmente, desconecte **IO0 e GND**, ligue a placa de desenvolvimento novamente ou pressione o botão de reinicialização para executar o programa.