

CS120: Computer Networks

Lecture 11. Routing 2

Zhice Yang

Routing Protocols

- Routing Information Protocol (RIP)
 - Algorithm: Distance Vector
- Open Shortest Path First (OSPF)
 - Algorithm: Link State
- Border Gateway Protocol (BGP)

Intradomain Routing Protocol

Interdomain Routing Protocol

Link State Routing

- Network topology is known to all routers
 - Accomplished via broadcasting link state packets (LSP) to all routers
- Routing Algorithm: computes shortest paths from one node ('source') to all other nodes
 - Based on Dijkstra's algorithm

```
Initialization:
M = \{s\}
for all nodes v
  if v adjacent to s
then D_s(v) = c(u, v)
else D_s(v) = \inf
Loop
  find w not in M such that D_s(w) is a minimum
    add w to M
    update D_s(v) for all v adjacent to w and not in M:
        D_s(v) = \min(D_s(v), D_s(w) + c(w, v))
until all nodes in M
```

- M: set of node processed
- S: node of the local router
- v: node of other routers
- $D_s(v)$ distance from s to v
- c(u, v) link weight between node u and v

Target Router

M	$D_{D}(A)$	$D_D(B)$	$D_D(C)$
D}	Inf, from D	11, from D	2, from D

M	$D_{D}(A)$	$D_D(B)$	$D_D(C)$
{D}	Inf, from D	11, from D	2, from D
{D, C}	12, from C	5, from C	2, from D

VI	$D_{D}(A)$	$D_D(B)$	$D_{D}(C)$
D}	Inf, from D	11, from D	2, from D
D, C}	12, from C	5, from C	2, from D
D, C, B}	10, from B	5, from C	2, from D

VI	$D_{D}(A)$	$D_D(B)$	$D_{\mathrm{D}}(C)$
D}	Inf, from D	11, from D	2, from D
D, C}	12, from C	5, from C	2, from D
D, C, B}	10, from B	5, from C	2, from D

Dijkstra's Algorithm (Another notation)

<Destination, Cost, Nexthop>

Step	Confirmed	Tentative
1	(D,0,-)	
2	(D,0,-)	(B,11,B) (C,2,C)
3	(D,0,-) (C,2,C)	(B,11,B)
4	(D,0,-) (C,2,C)	(B,5,C) (A,12,C)
5	(D,0,-) (C,2,C) (B,5,C)	(A,12,C)
6	(D,0,-) (C,2,C) (B,5,C)	(A,10,C)
7	(D,0,-) (C,2,C) (B,5,C) (A,10,C)	

Open Shortest Path First (OSPF)

- "Open": nonproprietary standard created under Engineering Task Force (IETF).
 - Security: all OSPF messages authenticated (to prevent malicious intrusion)
 - Hierarchical routing: OSPF in large domains
 - Load balancing: multiple same-cost paths allowed (only one path in RIP)

OSPF: Link State Announcement

- Link State Announcement (LSA) contains key Information to describe the network topology
 - ID of the router
 - Neighbors of the router, and the cost to the neighbor (link state of its neighbors)
 - i.e., neighbor ID and link weight
- LSA is broadcasted to other routers
- Routers use the link states of other routers to construct the topology of entitle net
 - Based on that to calculate the shortest path

OSPF: Link State Announcement

- Flooding method
 - Basic Flooding
 - Transmit LSA to adjacent routers
 - Routers ACK the received LSA
 - Routers store the received (new) LSA
 - Forward LSA to adjacent routers
 - Key Designs: avoid duplication and out-of-date LSA
 - Seq: each LSA contains an increasing sequence number
 - Differentiate duplicated and old LSA.
 - Restart? Send out-of-order LSA to neighbors, neighbors ack the last stored seq
 - Aging: each LSA is associated with an increasing age
 - Flush LSA when reaching the max age (typically 1 hour)
 - Routers periodically broadcast LSA to refresh LSA (typically 0.5 hour)

Routing Protocols

- Routing Information Protocol (RIP)
 - Algorithm: Distance Vector
- Open Shortest Path First (OSPF)
 - Algorithm: Link State
- Border Gateway Protocol (BGP)

Intradomain Routing Protocol

Interdomain Routing Protocol

The Discussion on Routing So Far ...

- Routers in the network are managed by the same administrator
 - e.g., Residential building, Campus, Network of a big company, etc.
- Routers are running same routing protocol
 - e.g., OSPF or RIP.
 - These routers have certain coverage, called the routing area

The Real Internet: Network of Network

- 1. Who is responsible for connecting them?
- 2. How to route among networks?

Internet Service Providers

- End systems connect to Internet via "Consumer" ISPs (Internet Service Providers)
 - Residential, company, and university ISPs
- "Consumer" ISPs are connected "Backbone" ISPs
 - Three Major Commercial ISPs in China

- Other ISPs
 - e.g. cernet

Network of Networks

Interdomain Routing Problems

- Scalability: more than 600 million destinations
 - Storage overhead
 - Routing table
 - Calculation overhead
 - Shortest path
 - Communication overhead
 - Exchange routing information
- Routing Management: Complex Routing Polices

Interdomain Routing: New Hierarchy

- Aggregate Routers into Logical Areas: Autonomous System
- Autonomous System (AS)
 - Corresponds to an administrative domain
 - e.g. University, company, backbone network
- Routers in same AS run the same intradomain routing protocol
 - RIP, OSPF, etc.
- Routers in different AS run intrerdomain routing protocol
 - BGP, EGP
- Interdomain routing element: AS

Autonomous System (AS)

Routing Hierarchy

Border Gateway Protocol (BGP)

- Widely-used Interdomain Routing Protocol
- Not for small community or companies
- Routing Element: AS
- Routing Algorithm
 - Target on Reachability
 - Not the "shortest" route
 - Avoid Loops

Border Gateway Protocol (BGP)

- Broadcast route entries to neighbors
 - Similar to RIP
 - BGP route entry
 - AS path + network prefix+ next hop
 - e.g., <AS a, AS b, AS c, ···> 128.96.0.0/16 12.5.6.1
 - AS number is used to detect loops

BGP: Border Router

• Border Routers: connecting more than one ASs

BGP: Border Router

- Border Routers: connecting more than one ASs
 - Selected and configured by AS administrators
 - Routing entries are exchanged with other Boarder Routers through exterior BGP (eBGP)
 - Routing entries are exchanged with routers within the same AS through interior BGP (iBGP)

Combine BGP Table and Inteadomain Routing Table

Combine BGP Table and Inteadomain Routing Table

- Roughly determine the best border router for certain prefix
 - Selection Priority
 - Local Preference
 - AS hops
 - Distance to the border router
 - BGP ID

- Other Methods: Default Gateway Router (Static Method)
 - Inject a default router entry into all routers in the AS through intradomain routing protocol

Demo

- BGP Entries
 - http://bgp.potaroo.net/as2.0/bgp-active.html
- BGP Looking Glass: check BGP entry from a certain AS to an IP address
 - eg: https://www.bgp4.as/looking-glasses
- AS Number Look Up: more information about AS number
 - eg: https://spyse.com/target/as

Example

Registrar: apnic

Owner: ASN-TELSTRA-GLOBAL Telstra Global, HK

- AS route from telia Sofia to my computer
 - https://lg.telia.net/?type=bgp&router=sfia-b2&address=59.78.171.135

```
*BGP Preference: 170/-201 Src Router

Source: 2.255.253.187

Protocol next hop: 2.255.254.180

State: <Active Int Ext> Src AS
Local AS: 1299 Peer AS: 1299

Age: 4d 11:16:10 Metric: 100 Metric2: 2682
AS path: 4637 4637 4637 4637 4538 4538 24364 (Originator)
```

Owner: ERX-CERNET-BKB China Education and Research Network Center, CN

Example

- AS route from multiple ASs
 - https://stat.ripe.net/special/bgplay#bgplay_fetch.resource=59.78.171.135


```
Network: AS1299 - Telia Carrier
Router: Sofia (sfia-b2)
Command: traceroute 59.78.171.135 as-number-lookup
traceroute to 59.78.171.135 (59.78.171.135), 30 hops max, 52 byte packets
1 win-bb3-link.telia.net (62.115.121.36) 49.289 ms 47.015 ms 47.068 ms
2 ffm-bb1-link.telia.net (62.115.137.202) 46.935 ms 47.882 ms 48.332 ms
3 prs-bb3-link.telia.net (62.115.123.13) 47.737 ms 46.954 ms 47.681 ms
4 ldn-bb3-link.telia.net (62.115.123.68) 47.194 ms ldn-bb3-link.telia.net (62.115.13
5 ldn-b7-link.telia.net (62.115.138.151) 46.976 ms 48.680 ms 46.756 ms
6 telstra-ic-324829-ldn-b7.c.telia.net (62.115.154.237) 47.813 ms 48.194 ms 47.57
7 i-91.ulco-core02.telstraglobal.net (202.40.148.33) [AS 4637] 47.833 ms 51.549 m
8 i-0-1-1-1.gfr4-core01.telstraglobal.net (202.84.141.121) [AS 4637] 283.475 ms i-
298.512 ms
   202.84.153.26 (202.84.153.26) [AS 4637] 282.290 ms 281.651 ms 202.84.157.37 (201
10 CER-0003.10026.telstraglobal.net (61.8.59.38) [AS 4637] 274.015 ms 294.241 ms
   * * 101.4.114.181 (101.4.114.181) [AS 4538] 317.416 ms
12 101.4.118.121 (101.4.118.121) [AS 4538] 294.191 ms 101.4.114.238 (101.4.114.238)
   101.4.114.58 (101.4.114.58) [AS 4538] 323.583 ms 317.161 ms 323.827 ms
14 101.4.116.85 (101.4.116.85) [AS 4538] 318.175 ms 294.344 ms 318.948 ms
  101.4.115.106 (101.4.115.106) [AS 4538] 322.209 ms 321.473 ms 343.786 ms
   202.112.27.2 (202.112.27.2) [AS 4538] 340.422 ms 343.047 ms 340.877 ms
(Timeout)
```

Interdomain Routing Problems

- Scalability: More than 600 million destinations
 - Storage
 - Routing Table
 - Calculation
 - Shortest Path
 - Communication
 - Exchanges Routing Information
- ➤ Routing Management: Complex Routing Polices

Local Preference

- AS 1 can reach AS2 through AS5
 - AS5 helps AS1 to forward traffic
 - ISP negotiation
 - Priority
 - e.g., AS path prepending
 - AS5 blocks AS1 traffic to AS2
 - Does not broadcast AS2 entry to AS1

AS path: 4637 4637 4637 4538 4538 24364

Reference

- Textbook 3.3
- Textbook 4.1
- http://www.ciscopress.com/articles/article.asp?p=24090