Algebraic Geometry 1

So Murata

2024/2025 Winter Semester - Uni Bonn

1 Topology

1.1 Connected Sets

Definition 1.1. Let (X, \mathcal{T}) be a topological space. A subset A of X is said to be connected if for any $U, V \in \mathcal{T}$, $U \cap V = \emptyset$, $U \cup V \supset A$ then A is fully contained in one of U, V.

Definition 1.2. A connected component of a topological space is a maximal connected subset of a space.

Proposition 1.1. Let (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) be topological space and $f: X \to Y$ be a continuous function. Then for any connected subset A of X, f(A) is connected in Y.

Proof.

$$U, V \in \mathcal{T}_Y, U \cup V \supset f(A), U \cap V = \emptyset,$$

$$\Rightarrow f^{-1}(U), f^{-1}(V) \in \mathcal{T}_X,$$

$$f^{-1}(U) \cup f^{-1}(V) \supset A,$$

$$f^{-1}(U) \cap f^{-1}(V) = \emptyset,$$

$$\Rightarrow f^{-1}(U) \supset A \vee f^{-1}(V) \supset A,$$

$$\Rightarrow U \supset f(A) \vee V \supset f(A).$$

Definition 1.3. Let X be a topological space. A point $\eta \in X$ is called a generic point if

$$\overline{\{\eta\}} = X.$$

2 Category Theory

2.1 Categories

Definition 2.1. A category A consists of

- a collection ob(A) of objects;
- for each $A, B \in ob(A)$, a collection A(A, B) of morphisms from A to B; such that
 - i). for each $A \in ob(A)$, the identity $1_A \in A(A, A)$;
- ii). the composition $\mathcal{A}(B,C) \times \mathcal{A}(A,B) \ni (g,f) \mapsto g \circ f \in \mathcal{A}(A,C)$ is well-defined;

and they satisfy the following axioms

- I). Associativity: $f \in \mathcal{A}(A,B), g \in \mathcal{A}(B,C), h \in \mathcal{A}(C,D), (h \circ g) \circ f = h \circ (g \circ f).$
- II). Identity laws: $f \in \mathcal{A}(A, B)$ then $f \circ 1_A = 1_B \circ f$.

Definition 2.2. Let A be a category. A terminal object $T \in ob(A)$ is an object such that for any $A \in ob(A)$, A(A,T) is a single element set.

Definition 2.3. Given two categories A, B, we say A is a full-subcategory of B if

- i). $A \subset \mathcal{B}$,
- ii). ob(A) = ob(B).

Notation 2.1. Here we give notations to some important categories.

- (Sets): A category of sets equipped with set theoretic functions.
- (Ab) : A category of abelian groups with group homomorphisms.

Example 2.1. Given a partially ordered set (X, \leq) . This can be encoded to a category \mathcal{O} by

- i). ob(\mathcal{O}) = X,
- ii). For $x, y \in X$, $x \leq y \Rightarrow \mathcal{O}(x, y) = \{*\}$ otherwise the morphisms between x, y is an emptyset.

Definition 2.4. A opposite/dual category of a category A is A^{op} such that

- i). $ob(\mathcal{A}^{op}) = ob(\mathcal{A}),$
- ii). $\mathcal{A}^{op}(B,A) = \mathcal{A}(A,B).$

Definition 2.5. Let A be a category and $\varphi_1, \varphi_2 \in A(M, N)$. A morphism $\varphi : K \to M$ is called an equalizer of (φ_1, φ_2) if for any morphism $\psi : P \to M$ such that $\varphi_1 \circ \psi = \varphi_2 \circ \psi$, there is a unique morphism $\tilde{\psi} : P \to K$ such that $\varphi \circ \tilde{\psi} = \psi$.

Proposition 2.1. If an equalizer exists then it is unique up to unique isomorphism.

Proof. Suppose $\varphi: K \to M, \psi: L \to M$ be equalizers of (φ_1, φ_2) . Then we have

$$\varphi \circ \tilde{\psi} = \psi, \quad \psi \circ \tilde{\varphi} = \varphi$$

By the uniqueness, we have $\tilde{\varphi} \circ \tilde{\psi} = 1_L, \tilde{\psi} \circ \tilde{\varphi} = 1_K$.

Definition 2.6. Let \mathcal{A}, \mathcal{B} be categories. A functor $F: \mathcal{A} \to \mathcal{B}$ is a function such that for each $f \in \mathcal{A}(A, A')$, $F(f): F(A) \to F(A')$. In other words, $f \mapsto F(f): \mathcal{A}(A, A') \to \mathcal{B}(F(A), F(A'))$. Furthermore, F satisfies the following axioms.

- I). $F(f' \circ f) = F(f') \circ F(f)$ whenever $f: A \to A', f': A' \to A''$ in A,
- II). $F(1_A) = 1_{F(A)}$ whenever $A \in \mathcal{A}$.

Definition 2.7. Let F, G be functors between two categories A, B. A natural transformation $\alpha : F \to G$ is a family $(\alpha_A : F(A) \to G(A))_{A \in A}$ such that

$$F(A) \xrightarrow{F(f)} F(A')$$

$$\alpha_A \downarrow \qquad \qquad \downarrow \alpha_{A'}$$

$$G(A) \xrightarrow{G(f)} G(A')$$

is a commutative diagram. Each α_A is called a component of α .

2.2 Direct Limits

Definition 2.8. A partially ordered set (X, \leq) is directed if for any $x, y \in X$ there is $z \in X$ such that $x \leq z$ and $y \leq z$.

Example 2.2. Let (X, \mathcal{T}) be a topological space. A partially ordered set (\mathcal{T}, \leq) such that

$$V \subseteq U \Rightarrow U \leq V$$

is directed. Since for any $U \in \mathcal{T}$, $U \leq \emptyset$. As a category this is $\mathbf{Ouv}_X^{\mathbf{op}}$.

Example 2.3. Let (X, \mathcal{T}) be a topological space. For $x \in X$, define $O_x = \{U \in \mathcal{T} \mid x \in U\}$. If we define an order as in the previous example, we get (O_x, \leq) is directed. This follows from for any $U, V \in O_x$, $U, V \leq U \cap V$.

Definition 2.9. Let I be a directed partially ordered set and A be a category. A directed system of objects of A indexed by I is a collection of objects $(A_i)_{i \in I}$ and morphisms $(\rho_{ij})_{i < j}$ of A such that

$$i$$
). $\rho_{ii} = \mathbf{id}_{A_i}$,

ii). for
$$i, j, k \in I$$
, $i \leq j \leq k \Rightarrow \rho_{ik} = \rho_{jk} \circ \rho_{ij}$.

Remark 2.1. Categorically, the directed system of objects of \mathcal{A} indexed by I is a functor $\mathcal{O}^{op} \to \mathcal{C}$, where \mathcal{O} is a category which encodes the ordered set I as a category by the same procedure as in Example 2.1. Then a directed system if a functor $\mathcal{O}^{op} \to \mathcal{A}$.

Definition 2.10. Given a directed system $((A_i)_{i\in I}, \{\rho_{ij}\}_{i\leq j})$ of objects in \mathcal{A} indexed by I. A direct limit of the system is an object $\varinjlim A_n \in \mathbf{ob}(\mathcal{A})$ satisfying the following universal property.

Given a collection of morphisms $(f_i)_{i\in I}$ such that

$$i). \ f_i: A_i \to \varinjlim A_n \in \mathcal{A},$$

ii). for any
$$i \leq j$$
, $f_j \circ \rho_{ij} = f_i$.

For any $A \in \mathcal{A}$ where there is a collection of morphisms $(g_i)_{i \in I}$ satisfying the above condition, there is a unique map $\varphi : \varinjlim A_n \to A$ such that

 $is\ a\ commutative\ diagram.$

Proposition 2.2. lim is an exact functor.

Proposition 2.3. In the cases where A = (Ab), (Sets), there exist direct limits and for each category, such limit is constructed in the following ways.

i).
$$\varinjlim A_n = (\bigoplus_{i \in I} A_i)/N$$
 where $N = \{a_i - \rho_{ij}(a_i) \mid a_i, i \leq j\}$.

ii).
$$\varinjlim_{i \in I} A_n = (\coprod_{i \in I} A_i) / \sim \text{ where } a_i \sim a_j \text{ if there is } k \text{ such that } i \leq k \text{ } j \leq k,$$
 and $\rho_{ik}(a_i) = \rho_{jk}(a_j)$.

Furthermore, these two direct limits coincide as sets.

Proposition 2.4. \varinjlim is (left) exact in (**Ab**). In other words, given a exact sequence of directed systems

$$0 \longrightarrow (M_i)_{i \in I} \longrightarrow (N_i)_{i \in I} \longrightarrow (P_i)_{i \in I} \longrightarrow 0$$

in which we have

$$0 \longrightarrow M_{i} \longrightarrow N_{i} \longrightarrow P_{i} \longrightarrow 0$$

$$\downarrow \rho_{ij}^{M} \downarrow \qquad \rho_{ij}^{N} \downarrow \qquad \rho_{ij}^{P} \downarrow$$

$$0 \longrightarrow M_{j} \longrightarrow N_{j} \longrightarrow P_{j} \longrightarrow 0$$

There exists a short exact sequence

$$0 \longrightarrow \varinjlim M_n \longrightarrow \varinjlim N_n \longrightarrow \varinjlim P_n \longrightarrow 0$$

Proof.

2.3 Abelian Categories

Definition 2.11. A category $\mathscr A$ is said to be preadditive if for any objects $A, B \in \mathscr A$, $\mathscr A(A, B)$ is forms an abelian group and the map

$$(f,g) \in \mathcal{A}(A,B) \times \mathcal{A}(A,B) \to \mathcal{A}(A,B), \quad (f,g) \mapsto g \circ f$$

is bilinear.

Definition 2.12. Let \mathscr{A} be a category and $A, B \in \mathbf{ob}(\mathscr{A})$. The coproduct $A \coprod B$ of A and B is an object equipped with two morphisms $\iota_A : A \to A \coprod B, \iota_B : B \to A \coprod B$ such that we have a following commutative diagram

$$A \xrightarrow{\iota_A} A \coprod B \xleftarrow{\iota_B} B$$

$$f \xrightarrow{} C$$

$$G$$

Definition 2.13. A preadditive category $\mathscr A$ is said to be additive if any pair of objects admits a coproduct.

Definition 2.14. Let \mathscr{A} be an additive category and $A_1, \dots, A_n \in \mathbf{ob}(\mathscr{A})$. A biproduct of these objects is an object $\bigoplus_{i=1}^n A_i$ together with morphisms

$$\bigoplus_{i=1}^n A_i \stackrel{\pi_k}{\longleftarrow} A_k$$

for each $k = 1, \dots, n$ such that

$$\iota_k \circ \pi_l = \delta_{kl}, \quad \sum_{k=1}^n \pi \circ \iota_k = \mathrm{id}_{\bigoplus_{i=1}^n A_i}.$$

Definition 2.15. Let \mathscr{A}, \mathscr{B} be additive categories. A functor $F : \mathscr{A} \to \mathscr{B}$ is said to be additive if it preserves finite biproduct. That is to say for a zero object

 $0 \in \mathscr{A}, \ F(0)$ is a zero object in \mathscr{B} and for given any two objects $A, B \in \mathscr{A},$ there is an isomorphism

$$F(A \oplus B) \cong F(A) \oplus F(B)$$
,

which respects the inclusion and projection maps of the direct sum.

Definition 2.16. Let \mathscr{A} be an abelian category. An object $I \in \mathbf{ob}(\mathscr{A})$ is said to be injective if for any monomorphism $\iota \in \mathscr{A}(A_1, A_2)$ and a morphism $\varphi \in \mathscr{A}(A_1, I)$, there is $\psi \in \mathscr{A}(A_2, I)$ making the following diagram commutative.

$$A_1 \stackrel{\iota}{\longleftarrow} A_2$$

$$\varphi \Big|_{I} \qquad \exists \psi$$

Remark 2.2. Clearly, a zero object is injective by the definition.

Definition 2.17. Let \mathscr{A} be an abelian category. A short exact sequence

$$0 \longrightarrow A_1 \stackrel{\iota}{\longrightarrow} A_2 \stackrel{\pi}{\longrightarrow} A_3 \longrightarrow 0$$

in $\mathscr A$ is said to split if there exists a morphism $\varphi: A_2 \to A_1$ such that $\varphi \circ \iota = \mathrm{id}_{A_1}$.

Definition 2.18.

Lemma 2.1. Let $G \in ob(Ab)$. Then the functor

$$\operatorname{Hom}(G, \cdot) : (\mathbf{Ab}) \to (\mathbf{Ab}),$$

 $is\ left\ exact.$

Lemma 2.2. Let A be an abelian category and

$$0 \longrightarrow A_1 \stackrel{\iota}{\longrightarrow} A_2 \stackrel{\pi}{\longrightarrow} A_3 \longrightarrow 0$$

be a short exact sequence in \mathscr{A} .

The sequence splits if and only if $A_2 \cong A_1 \oplus A_3$ and under such isomorphism, ι, π are mapped to an injection and a projection from A_1 and to A_3 , respectively.

Proof.

$$0 \longrightarrow A_1 \xrightarrow{\iota} A_2 \xrightarrow{\pi} A_3 \longrightarrow 0$$

$$\downarrow_{\mathrm{id}_{A_1}, \varphi}^{\mathrm{id}_{A_2}, \varphi}$$

$$A_1$$

Lemma 2.3. Let A be an abelian category and

$$0 \longrightarrow A_1 \stackrel{\iota}{\longrightarrow} A_2 \stackrel{\pi}{\longrightarrow} A_3 \longrightarrow 0$$

be a short exact sequence in \mathscr{A} .

If A_1 is injective then the sequence splits.

Proof. By the definition of injective objects, such $\varphi:A_2\to A_1$ making the diagram

$$0 \longrightarrow A_1 \xrightarrow{\iota} A_2 \xrightarrow{\pi} A_3 \longrightarrow 0$$

$$\downarrow_{\mathrm{id}_{A_1} \varphi}$$

$$A_1$$

commutative exists.

Definition 2.19. Let \mathscr{A} be an abelian category and $A \in \mathbf{ob}(\mathscr{A})$.

An injective resolution of A is a long exact sequence in \mathscr{A}

$$0 \longrightarrow A \longrightarrow I_0 \longrightarrow I_1 \longrightarrow \cdots$$

, where all $(I_i)_{i\in\mathbb{N}_0}$ are injective objects

Definition 2.20. An abelian category is said to have enough injective objects if any objects admits an injective resolution.

Example 2.4. The category (**Ab**) of abelian groups has enough injectives. (eg. $\mathbb{Q}, \mathbb{Q}/\mathbb{Z}, \mathbb{R}/\mathbb{Z}$).

3 Commutative Algebra

3.1 Local Rings

Definition 3.1. The total ring of fraction of a ring A is a localization of A by the set of all non-zero divisors. It is denoted as Q(A).

Definition 3.2. A ring is said to be local if it has a unique maximal ideal.

Definition 3.3. A ring homomorphism $\phi:(A,\mathfrak{m}_A)\to(B,\mathfrak{m}_B)$ of two local rings is said to be local if

$$\mathfrak{m}_A = \phi^{-1}(\mathfrak{m}_B).$$

Example 3.1. Let $i: \mathbb{Z}_{(p)} \to Q(\mathbb{Z}_{(p)})$ be an inclusion map. Then it is a homomorphism of local rings. However, If p is prime then $Q(\mathbb{Z}_{(p)})$ is a field thus its maximal ideal is (0). Obviously

$$i^{-1}((0) = (0).$$

Therefore, i is not a local ring homomorphism.

Proposition 3.1. Let $\phi: A \to B$ be a ring homomorphism. Recall that for any prime ideal $\mathfrak{q} \subseteq B$, we have $\mathfrak{p} = \phi^{-1}(\mathfrak{q})$ is a prime ideal in A. Thus ϕ induces a homomorphism between $A_{\mathfrak{p}}$ and $B_{\mathfrak{q}}$ which is a local ring homomorphism.

Proof. If $a \in A$, $\phi(a) = 0$ then $a \in \mathfrak{p}$. Thus $\phi(s) \neq 0$ for any $s \notin \mathfrak{p}$. Since $\mathfrak{p}, \mathfrak{q}$ are unique maximal ideals of $A_{\mathfrak{p}}$ and $B_{\mathfrak{q}}$, respectively. We derived the claim.

Lemma 3.1. Let k be an algebraically closed field and A be a k-algebra. A localization $A_{\mathfrak{m}}$ by a maximal(prime) ideal $\mathfrak{m} \subset A$, we have the following isomorphism.

$$k \cong A_{\mathfrak{m}}/\mathfrak{m}A_{\mathfrak{m}}.$$

Proof. Follows from the algebraically closedness of k.

3.2 Maximal Spec

Definition 3.4. Let R be a commutative ring. We define the maximal spec of R as

$$MaxSpec(R) = \{ \mathfrak{m} \operatorname{Spec}(R) \mid \mathfrak{m} \text{ is a maximal ideal.} \}.$$

Lemma 3.2. Let k be an algebraically closed field. We have the following isomorphism

MaxSpec
$$k[x_1, \dots, x_n] \cong k^n$$
, $(x_1 - a_1, \dots, x_n - a - n) \leftrightarrow (a_1, \dots, a_n)$.

Proof. Surjectivity follows from the algebraically closedness of k.

3.3 Zariski Topology

Definition 3.5. Let k be a algebraically closed field. A subset X of k^n is called an affine algebraic set if there exists an ideal $\mathfrak{a} \subset k[x_1, \dots, x_n]$ such that

$$X = V(\mathfrak{a}) = \{(a_1, \cdots, a_n) \mid \forall f \in \mathfrak{a}, f(a_1, \cdots, a_n) = 0\}.$$

Definition 3.6. Let k be an algebraically closed. The Zariski topologi on k^n is a topology generated by affine algebraic sets as closed subsets.

Definition 3.7. Let X be the Zariski topology on k^n . A function $f: X \supseteq U \to k$ is said to be regular if for any $a = (a_1, \dots, c_n) \in U$, there exist a neighborhood $U_a \subseteq U$ and $f_1, f_2 \in k[x_1, \dots, x_n]$ such that

$$(b_1, \dots, b_n) \in V_a \Rightarrow f(b_1, \dots, b_n) = \frac{f_1(b_1, \dots, b_n)}{f_2(b_1, \dots, b_n)}.$$

Remark 3.1. A regular function f on the Zariski topology on k^n is continuous as they are locally equivalent to quotients of polynomial functions.

Lemma 3.3. Let $\mathfrak{a} \subset A$ be an ideal. Then we have the following are homeomorphic.

$$\operatorname{Spec}(A/\mathfrak{a}) \cong V(\mathfrak{a}).$$

Lemma 3.4. Let A be a commutative ring and $a \in A$. For elements $\frac{b_1}{a^{n_1}}, \frac{b_2}{a^{n_2}}$ of A_a , assume that for any $\mathfrak{p} \in D(a)$,

$$\frac{b_1}{a^{n_1}}, \frac{b_2}{a^{n_2}} \in A_{\mathfrak{p}}, \quad \frac{b_1}{a^{n_1}} = \frac{b_2}{a^{n_2}}$$

Let us define an ideal

$$\mathfrak{q} = \operatorname{Ann}(b_1 a^{n_2} - b_2 a^{n_1}).$$

Then for any $\mathfrak{p} \in D(a)$, we have $\mathfrak{q} \not\subseteq \mathfrak{p}$.

4 Classical Algebraic Geometry

4.1 Affine Variety

Definition 4.1. An affine algebraic set X is called an affine variety if there exists a prime ideal $\mathfrak{p} \subseteq k[x_1, \dots, x_n]$ such that

$$X = V(\mathfrak{p}).$$

Definition 4.2. Let k be an algebraically closed field and $X \subseteq k^n$. The ideal of X is

$$I(X) = \{ f \in k[x_1, \dots, x_n] \mid \forall (a_1, \dots, a_n) \in X, f(a_1, \dots, a_n) = 0 \}.$$

Theorem 4.1. For any ideal $\mathfrak{a} \subset k[x_1, \dots, x_n]$, we have

$$I(V(\mathfrak{a})) = \sqrt{\mathfrak{a}}.$$

Definition 4.3. Let $X \subset k^n$ where k is an algebraically closed field. The affine coordinate ring with respect to X is

$$A(X) = k[x_1, \cdots, x_n]/I(X).$$

5 Sheaf Theory

5.1 Presheaves

Definition 5.1. Let (X, \mathcal{T}) be a topological space. We define a presheaf \mathcal{F} of a category \mathcal{A} on X to be such that

- $U \in \mathcal{T}, \ \mathcal{F}(U) \in ob(\mathcal{A}),$
- $U, V \in \mathcal{T}, V \subset U \Rightarrow there \ exists \ a \ map \ \rho_{UV} : \mathcal{F}(U) \to \mathcal{F}(V)$ satisfying,
 - i). For any $U \in \mathcal{T}$, $\rho_{UU} = 1_{\mathcal{F}(U)}$.
- *ii*). $U, V, W \in \mathcal{T}, W \subset V \subset U \rightarrow \rho_{UW} = \rho_{VW} \circ \rho_{UW}$.

Notation 5.1. In the case $A = (\mathbf{Sets}), (\mathbf{Ab}), \mathcal{F}(\emptyset) = \emptyset, \{1\}, respectively.$

Definition 5.2. An element of $\mathcal{F}(U)$ is called a local section of \mathcal{F} and $\Gamma(U,\mathcal{F}) = \mathcal{F}(U)$ is called the space of sections over U. In particular $\Gamma(X,\mathcal{F})$ is called the space of global sections of \mathcal{F} .

Definition 5.3. Let (X, \mathcal{T}) be a topological space and \mathcal{F} be a presheaf of a category \mathcal{A} on X. Suppose we have two open sets $U, V \in \mathcal{T}$ such that $V \subset U$. Then for any section $s \in \mathcal{F}(U)$, $s|_{V} = \rho_{UV}(s)$ is called the restriction of s to V.

Example 5.1. Let (X, \mathcal{T}) be a topological space. We have a presheaf of continuous functions $\mathcal{C}_X(U) = \mathcal{C}^0(U, \mathbb{R})$. This is indeed a presheaf with restriction maps $\rho_{UV}: \mathcal{C}_X(U) \to \mathcal{C}_X(V)$. (Explicitly, $\rho_{UV}(f) = f \circ i_V$ where i_V is an inclusion map.) We note that we can introduce operations $+, \cdot$ to endow some algebraic structures (groups, rings, ...) on \mathbb{R} .

Example 5.2. Let (X, \mathcal{T}) be a topological space and suppose we have presheaves

• $C_X^{diff}(U) = \{ f : U \to \mathbb{R} \mid f \text{ is differentiable.} \}.$

Then there is an inclusion relation $C_X^{\text{diff}}(U) \subseteq C_X(U)$ and this defines a presheaf.

Example 5.3. Let $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ be topological spaces. Define a presheaf on X by

$$U \in \mathcal{T}_X, \mathcal{F}(U) = \mathcal{C}^0(X, Y).$$

And like the previous example, we define $\rho_{UV}(f) = f|_V$ for $U, V \in \mathcal{T}_X, V \subset U$. the restriction of f to V.

But this is a presheaf only of a set.

Example 5.4. Let (X, \mathcal{T}) be a topological space and G be an abelian group. The constant presheaf \mathbb{G} is such that

$$U \in \mathcal{T}, \mathbb{G}(U) = G,$$

with $\rho_U V = id_G$ for any $U, V \in \mathcal{T}, V \subset U$.

5.2 Presheaves as Categories

Definition 5.4. Let (X, \mathcal{T}) be a topological space then (\mathbf{Ouv}_X) is the category such that its objects are the open sets of X and for any $U, V \in \mathcal{T}$ we have

$$\mathbf{Ouv}_X(U,V) = \begin{cases} \emptyset & (V \not\subset U), \\ i_V & (V \subset U). \end{cases}$$

Definition 5.5. Let (X, \mathcal{T}) be a topological space and \mathcal{A} be a category. A presheaf of \mathcal{A} on X is a functor $F : \mathbf{Ouv}_X \to \mathcal{A}$.

Example 5.5. For \mathbf{Ouv}_X , we can define a presheaf of F to be

$$ob(\mathbf{Ouv}_X) \ni U \mapsto F(U) = \mathcal{C}^0(U, \mathbb{R}).$$

Example 5.6. Let A be a commutative ring with non-zero multiplicative identity and $X = \operatorname{Spec}(A)$. Let us consider the Zariski topology (X, \mathcal{T}) . Let us consider a category \mathcal{O}_X such that

- $ob(\mathcal{O}_X) = \mathcal{T}$,
- $\mathcal{O}_X(U) = \{s : U \to \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}}\},\$

where $s: U \to \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}}$ is a function such that for any $\mathfrak{p} \in U$,

- i). $s(p) \in A_{\mathfrak{p}}$,
- ii). there exists an open set $V \subset U$ such that $\mathfrak{p} \in V$ and for any $\mathfrak{q} \in V$, $s(\mathfrak{q}) = \frac{a}{b}$ for $b \notin \mathfrak{q}$.

Now we define a presheaf by the restrictions of maps such that

$$s: U \to \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}} \mapsto s|_{V}: V \to \coprod_{\mathfrak{q} \in V} A_{\mathfrak{q}}.$$

Definition 5.6. Let (X, \mathcal{T}) be a topological space and \mathcal{A} be a category. We define a set of presheaves of \mathcal{A} on X as

$$\operatorname{PreSh}_{\mathcal{A}}(X) = \operatorname{Fun}(\mathbf{Ouv}_X^{\mathbf{op}}, \mathcal{A}).$$

Definition 5.7. A morphism of presheaves is a natural transformation $\varphi : \mathcal{F} \to \mathcal{G}$ where $\mathcal{F}, \mathcal{G} \in \operatorname{PreSh}_{\mathcal{A}}(X) = \operatorname{Fun}(\mathbf{Ouv}_X^{\mathbf{op}}, \mathcal{A}).$ (See Definition 2.7).

Such
$$\varphi: \mathcal{F} \to \mathcal{G}$$
 is

i). injective if

Remark 5.1. $\operatorname{PreSh}(X)$ can be regarded as a category with its objects presheaves and morphisms defined above.

Notation 5.2. In the case A = (Ab) then we denote $\operatorname{PreSh}(X) = \operatorname{PreSh}_{Ab}(X)$.

Example 5.7. Let X be a differential manifold(eg. $X \subset \mathbb{R}^n$). Let us define

$$C^{\mathbf{diff}}(U) = \{ f : U \to \mathbb{R} \mid f \text{ is differentiable.} \}.$$

Then the inclusions $\mathcal{C}_X^{\mathbf{diff}}(U) \subset \mathcal{C}_X(U)$ defines a morphism of presheaves.

Example 5.8. Let $X,Y=S^1$ be topological spaces and F be a presheaf such that for any open set $U \subset X$, $F(U) = \mathcal{C}^0(U,Y)$. Then we can introduce a natural transformation such that

$$C_X(U) \ni f \mapsto \exp(2\pi f i)$$

which is indeed a morphism of presheaves $C_X(U)$ and F(U)

5.3 Sheaves

Definition 5.8. A presheaf \mathcal{F} on (X, \mathcal{T}) is called a sheaf if the following holds. For any collection of open sets $(U_i)_{i\in I}\subset \mathcal{T}, U=\bigcup_{i\in I}U_i$, the map $\varphi:\mathcal{F}(U)\to\prod_{i\in I}\mathcal{F}(U_i)$ which is defined as

$$\varphi(s) = (s|_{U_i})_{i \in I}.$$

is the equalizer of the following functions $\varphi_1, \varphi_2 : \prod_{i \in I} \mathcal{F}(U_i) \to \prod_{i,j \in I} \mathcal{F}(U_i \cap U_j)$,

$$\varphi_1((s_i)_{i \in I}) = (s_i|_{U_i \cap U_j})_{i,j \in I}, \quad \varphi_1((s_i)_{i \in I}) = (s_j|_{U_i \cap U_j})_{i,j \in I}.$$

Remark 5.2. In the case $I = \{1, 2\}$, we have $U = U_1 \cup U_2$, and for any $U' \in \mathcal{T}$ such that $U \subset U'$, we have for $\mathcal{F}(U') \ni s : U' \to \mathbb{R}$, $\psi(s) = (s|_{U_1}, s|_{U_2})$, as in \mathbf{Ouv}_X , morphisms are inclusions. Let $\tilde{\psi}(s) = s|_U$, then this satisfies the condition for the equalizer (ie. $\varphi \circ \tilde{\psi} = \psi$).

Remark 5.3. A presheaf \mathcal{O}_X with $X = \operatorname{Spec}(A)$ is a sheaf.

Example 5.9. Let (X, \mathcal{T}) be a topological space and G be a group. We define a constant presheaf $\mathbb{G}(U) = G$. In general, this is not a sheaf. Instead, we define a constant sheaf $\underline{\mathbb{G}}(U) = \mathcal{C}^0(U, G)$ where G is regarded as a topological space with the discrete topology. Then for any connected component of X is mapped to a single point set in G.

Definition 5.9. Let $\mathcal{F}_1, \mathcal{F}_2$ be sheaves. A mapping $\varphi : \mathcal{F}_1 \to \mathcal{F}_2$ is called a morphism of sheaves if it is a morphism of presheaves.

Notation 5.3. A set of sheaves of A on the topological space (X, \mathcal{T}) is denoted as $Sh_A(X)$.

Remark 5.4. As in the case of presheaves, $Sh_{\mathcal{A}}(X)$ can be regarded as a category with sheaf morphisms.

Remark 5.5. $\operatorname{Sh}_{\mathcal{A}}(X)$ is a full-subcategory of $\operatorname{PreSh}_{\mathcal{A}}(X)$.

Notation 5.4. In the case A = (Ab), we denote $Sh_{(Ab)}(X) = Sh(X)$.

5.4 Stalks

Notation 5.5. Let (X, \mathcal{T}) be a topological space. For a point $x \in X$, we denote the collection of all open sets which contain x as

$$\mathcal{O}_x = \{ U \in \mathcal{T} \mid x \in U \}.$$

Definition 5.10. Suppose we have a topological space (X, \mathcal{T}) and a category \mathcal{A} which admits direct limits. For a presheaf $\mathcal{F} \in \operatorname{PreSh}_{\mathcal{A}}(X)$, by inheriting the notations from Example 2.3, we define the stalk \mathcal{F}_x of \mathcal{F} at $x \in X$ by

$$\mathcal{F}_x = \varinjlim_{U \in \mathcal{O}_x} \mathcal{F}(U).$$

Example 5.10. Let us assume that A = (Ab) in Definition 5.10. Then stalks and germs can be constructed explicitly in the following way.

$$\mathcal{F}_x = \{(s, U) \mid U \in \mathcal{O}_x, s \in \mathcal{F}(U)\} / \sim,$$

where \sim is an equivalent relation such that for (s, U), (t, V),

$$(s,U) \sim (t,V)$$
 if there is $W \in \mathcal{O}_x$ such that $W \subseteq U \cap V$, $\rho_{UW}(s) = \rho_{VW}(t)$.

Definition 5.11. Inheriting the notations from Definition 5.10, suppose we have $(f_U : \mathcal{F}(U) \to \mathcal{F}_x)_{U \in \mathcal{O}_x}$ such that for f_U , f_V are compatible with ρ_{UV} . Then we define the germ of $s \in \mathcal{F}(U)$ to be $s_x = f_U(s)$. By the universal property of the direct limit, such s_x is unique up to images under isomorphisms.

Example 5.11. In the case of Remark 5.10, we have for each $U \in \mathcal{T}$, $x \in U$, and $s \in \mathcal{F}(U)$,

$$s_x = \{(t, V) \mid \text{ There is } W \in \mathcal{O}_x \text{ such that } W \subseteq U \cap V, \rho_{UW}(s) = \rho_{VW}(t) \}.$$

Remark 5.6. In the above definition, if a category A admits products, we get a map

$$(s \mapsto (s_x)_{x \in U}): \mathcal{F}(U) \to \prod_{x \in U} \mathcal{F}_x.$$
 (5.1)

This is neither surjective nor injective in general.

Proposition 5.1. Suppose in the definition of stalks, \mathcal{F} is a sheaf. Then the map defined by Equation 5.1 is injective.

Proof. We prove the case when A = (Ab).

Suppose $s \in \mathcal{F}(U)$ is such that $s_x = 0$ in \mathcal{F}_x for all $x \in U$. Since for any restriction maps are group homomorphisms. We have that there is $V_x \in \mathcal{O}_x$ such that

$$V_x \subseteq U$$
, $\rho_{UV_x}(s) = 0$.

Therefore $\{V_x\}_{x\in U}$ is an open covering of U. Since \mathcal{F} is a sheaf, we derive that s=0 in $\mathcal{F}(U)$.

Example 5.12. Given (X, \mathcal{F}) , a topological space and G, an abelian group. We will consider the constant presheaf \mathbb{G} and the constant sheaf $\underline{\mathbb{G}}$ on X. For any open set U and $x \in U$ we have

$$\mathbb{G}_x \cong \underline{\mathbb{G}}_x \cong G.$$

For any U, V open such that $V \subset U$ we have, $\rho_{UV} = \mathbf{id}_G$. Thus by the construction, for $x \in U, V$, $(s, U) \sim (t, V)$ then $x \in U \cap V$ and $\rho_{UU \cap V}(s) = s = t = \rho_{VU \cap V}(t)$. Therefore, we proved the claim.

Definition 5.12. Suppose $\varphi: \mathcal{F} \to \mathcal{G}$ be a morphism of presheaves. Then we define

$$\varphi_x(s_x) = (\varphi(s)_U)_x.$$

This defines a morphism of presheaves.

Remark 5.7. Categorically, taking stalks is a functor for each $x \in X$. Suppose we have $\mathcal{F}, \mathcal{G} \in \operatorname{PreSh}_{\mathcal{A}}(X)$ and a morphism $\varphi : \mathcal{F} \to \mathcal{G}$,

Proposition 5.2. Let $\mathcal{F}, \mathcal{G} \in Sh_{(\mathbf{Ab})}(X)$ Then for any morphism $\varphi : \mathcal{F} \to \mathcal{G}$ we have

$$\varphi = 0 \Leftrightarrow \forall x \in X, \varphi_x = 0$$

Proof. \Rightarrow is trivial by its construction. We will prove \Leftarrow .

We first note that $\varphi = 0$ means that for any $U \in \mathcal{T}$, we have $\varphi_U \equiv 0$ as a group homomorphism. Let $U \in \mathcal{T}$ and $s \in \mathcal{F}(U)$. Then by the assumption and Proposition 5.1, we have proven the claim.

5.5 Sheafification

Definition 5.13. Let $\mathcal{F} \in \operatorname{PreSh}_{\mathcal{A}}(X)$. The sheafification of \mathcal{F} is a presheaf \mathcal{F}^+ which is a set of all $(s_x)_{x \in U} \in \prod_{x \in U} \mathcal{F}_x$ such that for any $x \in U$ there is $x \in V_x \subset U$, such that there is $t \in \mathcal{F}(V_x)$ satisfying for any $y \in V_x$, $s_y = t_y$. We give them restrictions such that

$$\mathcal{F}^+(U) \ni (s_x)_{x \in U} \mapsto (s_x)_{x \in V} \in \mathcal{F}^+(V).$$

Proposition 5.3. Such \mathcal{F}^+ is indeed a sheaf.

Proof. later \Box

Remark 5.8.

$$\mathcal{F} \mapsto \mathcal{F}^+ : \operatorname{PreSh}_{\mathcal{A}}(X) \to \operatorname{Sh}_{\mathcal{A}}(X)$$

is a functor. Indeed given $\varphi: \mathcal{F} \to \mathcal{G}$, a morphism of presheaves. We give

$$\varphi^+(U)((s_x)_{x\in U}) = (\varphi(s)_x)_{x\in U}.$$

later

Proposition 5.4. A mapping $\varphi : \mathcal{F} \to \mathcal{F}^+$ such that for each $U \in \mathcal{T}$,

$$\varphi_U : \mathcal{F}(U) \to \mathcal{F}^+(U), \quad \varphi(s) = (s_x)_{x \in U},$$

is a natural transformation thus a morphism of presheaves.

Proof. Later
$$\Box$$

Proposition 5.5. For any open set $U \in \mathcal{T}$ and a section $s \in \mathcal{F}^+(U)$, there is an open covering $(U_i)_{i \in I}$ which satisfies that there is a sequence $(s_i)_{i \in I} \in \prod_{i \in I} \mathcal{F}(U_i)$ and for each i, the following holds.

$$\rho_{UU_i}(s) = s_i.$$

Proof. Later. \Box

Proposition 5.6. For each $x \in X$, there exists an isomorphism

$$\mathcal{F}_x \cong (\mathcal{F}^+)_x$$
,

as presheaves.

Proof. later
$$\Box$$

Proposition 5.7. Let (X, \mathcal{T}) be a topological group and \mathcal{F} be a presheaf of a category \mathcal{A} on X. Suppose for a sheaf \mathcal{G} of a category \mathcal{A} on X, there exists a morphism $\varphi : \mathcal{F} \to \mathcal{G}$. Then there exists a unique morphism $\varphi^+ : \mathcal{F}^+ \to \mathcal{G}$, such that

$$\begin{array}{ccc} \mathcal{F} & \longrightarrow \mathcal{F}^+ \\ \varphi \downarrow & & \\ \varphi \downarrow & & \\ \mathcal{G} & & \\ \end{array}$$

 $is\ a\ commutative\ diagram.$

Proof. Let $U \in \mathcal{T}$, then by Proposition 5.5, for any $s \in \mathcal{F}^+$, there exists an open covering $(U_i)_{i \in I}$ and $(s_i)_{i \in I} \in \prod_{i \in I} \mathcal{F}(U_i)$ such that $\rho_{UU_i}(s) = s_i$ for any $i \in I$. We define

$$t_i = \varphi(s_i) \in \mathcal{G}(U_i),$$

for each $i \in I$. Using the definition of natural transformation we derive that

$$\rho_{UU_i \cap U_j}^{\mathcal{G}}(t_i) = \varphi_{U_i \cap U_j}^{\mathcal{F}}(\rho_{UU_i \cap U_j}(s)) = \rho_{UU_i \cap U_j}^{\mathcal{G}}(t_j).$$

Thus we can glue $(t_i)_{i\in I}$ to a section $t\in \mathcal{G}(U)$.

We now define $\varphi^+: \mathcal{F}^+ \to \mathcal{G}$. Given $(s_x)_{x \in U}$ which is the germ of s,

$$\varphi_U^+((s_x)_{x\in U})=t.$$

Such φ^+ is unique since \mathcal{G} is a sheaf.

Corollary 5.1. Let $i: \operatorname{Sh}_{\mathcal{A}}(X) \to \operatorname{PreSh}_{\mathcal{A}}(X)$ be a forgetful functor. Then we have

$$\operatorname{PreSh}_{\mathcal{A}}(X)(\mathcal{F}, i(\mathcal{G})) \cong \operatorname{Sh}_{\mathcal{A}}(\mathcal{F}^+, \mathcal{G})$$

In other words, the sheafification is a left-adjoint functor of the inclusion map.

Proof. By Proposition 5.7, we define two maps Φ, Ψ such that

$$\Phi: \operatorname{PreSh}_{\mathcal{A}}(X)(\mathcal{F}, i(\mathcal{G})) \to \operatorname{Sh}_{\mathcal{A}}(\mathcal{F}^+, \mathcal{G}),$$

$$\Phi(\varphi) = \varphi^+,$$

$$\Psi: \operatorname{Sh}_{\mathcal{A}}(\mathcal{F}^+, \mathcal{G}) \to \operatorname{PreSh}_{\mathcal{A}}(X)(\mathcal{F}, i(\mathcal{G})),$$

$$\Psi(\varphi^+) = \varphi.$$

Then these two are inverses of each other.

Proposition 5.8. Let $X = \operatorname{Spec}(A)$ and \mathcal{O}_X be the structure sheaf defined in Example 5.6. Then we have the following.

- 1). For any $\mathfrak{p} = x \in X$, $(\mathcal{O}_X)_x \cong A_{\mathfrak{p}}$.
- 2). For any $a \in A$, $\mathcal{O}_X(D(a)) \cong A_a$.

Proof. For a given $U \subset X$ open and $\mathfrak{p} \subset A$, there is $a, b \in A$ such that for $V \subset U$ open and $s \in \mathcal{O}_X(U), s : U \to \coprod_{\mathfrak{p} \in U} A_{\mathfrak{p}}$.

$$s(\mathfrak{q}) = \frac{a}{b} \in A_{\mathfrak{q}}$$

holds for any $\mathfrak{q} \in V$.

 $\begin{array}{ccc}
\mathcal{O}_X(U) & \longrightarrow & A_{\mathfrak{p}} \\
 & & & \\
 & & & \\
\mathcal{O}_X(V) & & & \\
\end{array}$

5.6 Morphisms in $PreSh_{(Ab)}(X)$

Definition 5.14. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a homomorphism of presheaves $\operatorname{PreSh}_{(\mathbf{Ab})}(X)$. Then we define the following presheaves.

- 1). $\operatorname{Ker}^{\mathbf{pre}}(\varphi)(U) = \operatorname{Ker} \varphi_U$,
- 2). $\operatorname{Im}^{\mathbf{pre}}(\varphi)(U) = \operatorname{Im} \varphi_U$,
- 3). $\operatorname{Coker}^{\mathbf{pre}}(\varphi)(U) = \operatorname{Coker} \varphi_U$.

Proposition 5.9. Such Ker^{pre}, Im^{pre}, Coker^{pre} are presheaves.

Proof. For the case of kernels. Let $U, V \in \mathcal{T}$ and $V \subset U$. We define $\rho_U V$: $\operatorname{Ker}^{\mathbf{pre}}(\varphi)(U) \to \operatorname{Ker}^{\mathbf{pre}}(\varphi)(V)$ to be such that

$$\rho_U V(s) = \rho^{\mathcal{F}}(s).$$

Such construction is justified as the diagram below is commutative.

$$\begin{array}{ccc}
\mathcal{F}(U) & \xrightarrow{\rho_{UV}^{\mathcal{F}}} \mathcal{F}(V) & \xrightarrow{\rho_{UV}^{\mathcal{F}}} \mathcal{F}(W) \\
\varphi_{U} \downarrow & & \downarrow \varphi_{V} & & \downarrow \varphi_{W} \\
\mathcal{G}(U) & \xrightarrow{\rho_{UV}^{\mathcal{G}}} \mathcal{G}(V) & \xrightarrow{\rho_{UV}^{\mathcal{G}}} \mathcal{F}(W)
\end{array}$$

Furthermore,

$$\rho_U W(s) = \rho_{UV}^{\mathcal{F}}(s) = \rho_{VW}^{\mathcal{F}} \circ \rho_{UV}^{\mathcal{F}}(s) = \rho_{VW} \circ \rho_{UV}(s).$$

Thus $\operatorname{Ker}^{\mathbf{pre}}(\varphi)(U)$ is a presheaf.

Corollary 5.2. If $\varphi : \mathcal{F} \to \mathcal{G}$ is a morphism of sheaves. Then $Ker^{\mathbf{pre}}$ is also a sheaf.

Proof. Given $(s_i)_{i \in I} \in \prod_{i \in I} \operatorname{Ker} \varphi_{U_i}$ such that

$$\rho(s_i)_{U_iU_i\cap U_j} = \rho(s_j)_{U_jU_i\cap U_j}$$

for any $i, j \in I$. Then since \mathcal{F} is a sheaf, we can glue $(s_i)_{i \in I}$ to $s \in \mathcal{F}(U)$. For such s we have

$$\rho_{UU_i}^{\mathcal{G}}(\varphi_U(s)) = (\varphi_{U_i}(\rho_{UU_i}^{\mathcal{F}}(s))) = \varphi_{UU_i}(s_i) = 0.$$

Therefore, since \mathcal{G} is a sheaf, $\varphi_U(s) = 0$.

Remark 5.9. Let $\varphi : \mathcal{F}(U) \to \prod_{i \in I} \mathcal{F}(U_i), \varphi_1 : \prod_{i \in I} \mathcal{F}(U_i) \to \prod_{i,j \in I} \mathcal{F}(U_i \cap U_j), \varphi_2 : \prod_{i \in I} \mathcal{F}(U_j) \to \prod_{i,j \in I} \mathcal{F}(U_i \cap U_j)$. Then \mathcal{F} is a sheaf if and only if

$$\operatorname{Ker}(\varphi_1 \circ \varphi - \varphi_2 \circ \varphi) = \mathcal{F}(U),$$

holds for any open set U.

Remark 5.10. Im^{**pre**} φ , Coker^{**pre**} φ are not in general sheaves even tho $\varphi : \mathcal{F} \to \mathcal{G}$ is a homomorphism of sheaves.

Example 5.13. Let $X = \{x_1, x_2\}$ and we assign the discrete topology to it. Let G be an abelian group. We define a sheaf $\mathcal{F}, \mathcal{G} \in \mathrm{Sh}_{(\mathbf{Ab})}(X)$ by such that

$$\mathcal{F}(U) = \mathcal{G}(U) = \begin{cases} G \times G & (U = X), \\ G & (|U| = 1), \\ 0 & (U = \emptyset). \end{cases}$$

Let us define a homomorphism of sheaves φ such that

$$\varphi_U = \begin{cases} \mathbf{id}_{G \times G} & (U = X) \\ 0 & (U \neq X). \end{cases}$$

Then we have

$$\operatorname{Coker}^{\mathbf{pre}}(\varphi)(U) = \begin{cases} 0 & (U = X), \\ G & (U \neq X). \end{cases}$$

By 5.10, we observe that

$$\operatorname{Coker}^{\mathbf{pre}}(\varphi)(X) = G \times G/\operatorname{id}_{G \times G}(G \times G) = \{0\}.$$

However,

later.

Definition 5.15. Given a morphism of sheaves $\varphi : \mathcal{F} \to \mathcal{G}$, we define the following.

- 1). $\operatorname{Ker}(\varphi) = \operatorname{Ker}^{\mathbf{pre}}(\varphi)$,
- 2). $\operatorname{Im}(\varphi) = (\operatorname{Im}^{\mathbf{pre}}(\varphi))^+,$
- 3). $\operatorname{Coker}(\varphi) = (\operatorname{Coker}^{\mathbf{pre}}(\varphi))^+$.

Proposition 5.10 (Universal property of kernels). Given a sheaf homomorphism $\varphi : \mathcal{F} \to \mathcal{G}$. For any sheaf homomorphism $\alpha : \mathcal{H} \to \mathcal{F}$, $\varphi \circ \alpha = 0$ if and only if there is a unique $\psi : \mathcal{H} \to \operatorname{Ker} \varphi$ such that

$$\begin{array}{ccc}
& & \mathcal{H} \\
& \downarrow^{\alpha} & \downarrow^{\alpha} \\
& \text{Ker}(\varphi) & \longrightarrow & \mathcal{F} & \xrightarrow{\varphi} & \mathcal{G}
\end{array}$$

is a commutative diagram.

Proof. We argue by each open set of the space.

$$\mathcal{H}(U)$$

$$\downarrow^{\alpha_U} \qquad \downarrow^{\alpha_U} \qquad \downarrow^{\alpha_U} \qquad \downarrow^{\alpha_U} \qquad \downarrow^{\alpha_U}$$

$$\operatorname{Ker}(\varphi)(U) \longleftrightarrow \mathcal{F}(U) \xrightarrow{\varphi_U} \mathcal{G}(U)$$

This is a universal property of the kernel in abelian groups. Thus the statement immediately follows from it. $\hfill\Box$

Proposition 5.11 (Universal property of Cokernels). Given a sheaf homomorphism $\varphi : \mathcal{F} \to \mathcal{G}$. For any sheaf homomorphism $\alpha : \mathcal{G} \to \mathcal{H}$, $\alpha \circ \varphi = 0$ if and only if there is a unique $\psi : \operatorname{Coker} \varphi \to \mathcal{H}$ such that

$$\mathcal{F} \xrightarrow{\varphi} \mathcal{G} \xrightarrow{\pi} \operatorname{Coker}(\varphi)$$

$$\downarrow^{\alpha} \qquad \qquad \downarrow^{\alpha}$$

$$\mathcal{H}$$

is a commutative diagram.

Proof. We argue for each open set $U \subset X$.

$$\mathcal{F}(U) \xrightarrow{\varphi_U} \mathcal{G}(U) \longrightarrow \operatorname{Coker}^{\mathbf{pre}}(\varphi)(U) \longrightarrow \operatorname{Coker}(\varphi)(U)$$

$$\downarrow^{\alpha_U} \downarrow^{\mathbf{pre}}_{U}$$

$$\mathcal{H}(U) \xrightarrow{\xi_U} \mathbb{F}_{U}$$

By the universal property of Cokernels of abelian groups, there is a unique $\varphi^{\mathbf{pre}}$. By the universal property of the sheafification operator, we derive a unique ψ .

Proposition 5.12. Let $x \in X$, then we have the following.

- 1). $Ker(\varphi)_x = Ker(\varphi_x)$,
- 2). $\operatorname{Im}(\varphi)_x = \operatorname{Im}(\varphi_x)$,
- 3). $\operatorname{Coker}(\varphi)_x = \operatorname{Coker}(\varphi_x)$.

Proof. By Definition, 5.12

Definition 5.16. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a sheaf morphism. φ is called

1). a monomorphism if any morphism of sheaves $\varphi_0: \mathcal{H} \to \mathcal{F}$, $\varphi \circ \varphi_0 = 0$ if and only if $\varphi_0 = 0$,

Proposition 5.13. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves of (\mathbf{Ab}) . Then the following statements are equivalent.

- i). φ is a monomorphism.
- ii). Ker $\varphi = 0$.
- iii). For any open set $U \subset X$, φ_U is injective.
- iv). For any $x \in X$, $\varphi_x : \to \mathcal{F}_x \to \mathcal{G}_x$ is injective.

Proof. Here, I put the procedure of the proof.

 $i) \Rightarrow ii),$

Where $\varphi_0(U)$ is an inclusion map of abelian groups.

 $ii) \Leftrightarrow iii),$

 $\operatorname{Ker} \varphi = 0 \Leftrightarrow \forall U \in \mathcal{T}, \operatorname{Ker} \varphi(U) = 0 \Leftrightarrow \varphi_U \text{ is injective.}$

 $iii) \Rightarrow iv$), Fix $x \in X$.

$$0 \longrightarrow \mathcal{F}(U) \xrightarrow{\varphi_U} \mathcal{G}(U)$$

is an exact sequence as φ_U is injective for any $U \subset X$ open. Since \varinjlim is left-exact we obtain,

$$0 \longrightarrow \mathcal{F}_x \xrightarrow{\varphi_x} \mathcal{G}_x$$

is also an exact sequence.

Proposition 5.14. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism in Sh(X). Then the following are equivalent.

- 1). φ is an epimorphism (for any $\varphi_1, \varphi_2 : \mathcal{H} \to \mathcal{F}$, such that $\varphi \circ \varphi_1 = \varphi \circ \varphi_2$ implies $\varphi_1 = \varphi_2$).
- 2). Coker $\varphi = 0$.
- 3). For any open set $U \subset X$,
- 4). For any $x \in X$, Coker $\varphi_x = 0$, (in other words, φ_x is a surjection).

Proof. Recall the definition of epimorphisms is such that $\varphi : \mathcal{F} \to \mathcal{G}$ is an epimorphism if for any morphism $\psi : \mathcal{G} \to \mathcal{G}_0$, we have,

$$\psi \circ \varphi = 0 \Rightarrow \psi = 0.$$

 $i) \Rightarrow iv$). Suppose φ is an epimorphism, then we have

By the assumption $\psi = 0$.

Let $\mathcal{O}_x = \{U \in \mathcal{T} \mid x \in U\}$. We consider an exact sequence,

$$0 \longrightarrow \operatorname{Ker}(\varphi_U) \hookrightarrow \mathcal{F}(U) \stackrel{\varphi}{\longrightarrow} \mathcal{G}(U) \stackrel{\pi}{\longrightarrow} \operatorname{Coker}(\varphi_U) \longrightarrow 0,$$

for each $U \in \mathcal{O}_x$. By Proposition 2.2,

$$0 \longrightarrow \operatorname{Ker}(\varphi)_x \hookrightarrow \mathcal{F}_x \xrightarrow{\varphi_x} \mathcal{G}_x \xrightarrow{\pi_x} \operatorname{Coker}(\varphi)_x \longrightarrow 0$$

is also exact. Thus we conclude

$$\operatorname{Coker}^{pre}(\varphi)_x = \operatorname{Coker}(\varphi_x).$$

And we conclude that φ_x is surjective by the exactness of the sequence.

 $iv) \Rightarrow ii$). Assume For each $x \in X$, $\operatorname{Coker}(\varphi_x) = 0$. By applying Proposition. 5.2 to $\operatorname{id} : \mathcal{F} \to \mathcal{F}$, we obtain

$$\mathcal{F} = 0 \Leftrightarrow \forall x \in X, \mathcal{F}_x = 0.$$

Apply this to $\operatorname{Coker} \varphi$, we derive that

$$\operatorname{Coker} \varphi = 0.$$

 $iv) \Rightarrow i$). Assume $\operatorname{Coker}(\varphi_x) = 0$ for any $x \in X$. Consider a commutative diagram of sheaves

$$\mathcal{F} \xrightarrow{\varphi} \mathcal{G} \downarrow_{\psi} \\ \mathcal{G}_{0}$$

By assumption $\varphi_x : \mathcal{F}_x \to \mathcal{G}_x$ is a surjection. Thus $\psi_x = 0$ for any $x \in X$ which is equivalent to $\psi = 0$.

 $ii) \Rightarrow i)$. Suppose Coker $\varphi = 0$ if and only if $\operatorname{Coker}(\varphi)_x = \operatorname{Coker}(\varphi_x) = 0$ for any $x \in X$.

 $iii) \Rightarrow iv$). Assume $\varphi_U : \mathcal{F}(U) \to \mathcal{G}(U)$ is surjective for any $U \subset X$ open. By Proposition. 2.2, we conclude that

$$\varphi_x: \mathcal{F}_x \to \mathcal{G}_x$$

is also surjective.

Corollary 5.3. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of sheaves. Then the following statements are equivalent.

- 1). φ is an isomorphism.
- 2). For all $x \in X$, φ_x is an isomorphism.

Proof.

5.7 Exact Sequences of Sheaves

Definition 5.17. A sequence

$$\mathcal{F} \stackrel{\varphi}{\longrightarrow} \mathcal{G} \stackrel{\psi}{\longrightarrow} \mathcal{H}$$

of sheaves with morphisms φ, ψ of sheaves is said to be exact at \mathcal{G} if

$$\operatorname{Im} \varphi = \operatorname{Ker} \psi$$
.

Definition 5.18. A short exact sequence of sheaves is a sequence

$$0 \longrightarrow \mathcal{F} \stackrel{\varphi}{\longrightarrow} \mathcal{G} \stackrel{\psi}{\longrightarrow} \mathcal{H} \longrightarrow 0$$

which is exact at all terms. In other words,

- i). φ is injective,
- ii). ψ is surjective,
- *iii*). Im $\varphi = \operatorname{Ker} \psi$.

Proposition 5.15. Given a exact sequence

$$0 \longrightarrow \mathcal{F} \stackrel{\varphi}{\longrightarrow} \mathcal{G} \stackrel{\psi}{\longrightarrow} \mathcal{H},$$

of sheaves on a topological space X. Then for each open set $U \subseteq X$, we derive an exact sequence of abelian groups

$$0 \longrightarrow \mathcal{F}(U) \stackrel{\varphi}{\longrightarrow} \mathcal{G}(U) \stackrel{\psi}{\longrightarrow} \mathcal{H}(U),$$

Proof.

Corollary 5.4. Taking stalks in $Sh_{(Ab)}(X)$ is an exact functor.

Theorem 5.1. The category of sheaves of abelian groups is an abelian category.

5.8 Direct Image Functors

Definition 5.19. Let $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ be topological spaces and $f: X \to Y$ be a continuous map. The direct image functor is the functor $f_*: \mathrm{Sh}(X) \to \mathrm{Sh}(Y)$ such that,

$$\mathcal{F} \in \operatorname{Sh}(X), U \in \mathcal{T}_Y \{ f_*\mathcal{F}(U) = \mathcal{F}(f^{-1}(U)) \}$$

Proposition 5.16. Such $f_*\mathcal{F}$ is indeed a sheaf.

Proof. \Box

Definition 5.20. Let $f_*: \operatorname{Sh}(X) \to \operatorname{Sh}(Y)$ be a direct image functor. Given a morphism of sheaves, $\varphi: \mathcal{F} \to \mathcal{G}$ in $\operatorname{Sh}(X)$. For an open set $U \in Y$, the image of φ under f_* is

$$(f_*\varphi)_U = \varphi_{f^{-1}(U)} : f_*\mathcal{F}(U) \to f_*\mathcal{G}(U).$$

Definition 5.21. Let $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ be topological spaces and $f: X \to Y$ be a continuous map. The inverse image functor

$$f^{-1}: \operatorname{Sh}(Y) \to \operatorname{Sh}(X)$$

is defined as follow.

For a sheaf $\mathcal{G} \in Sh(Y)$, we set $f^{-1}\mathcal{G}$ to be the sheafification of the presheaf

$$V \in \mathcal{T}_X, \quad f^{-1}\mathcal{G}(V) = \varinjlim_{U \in \mathcal{O}_V} \mathcal{G}(U),$$

where $\mathcal{O}_V = \{U \in \mathcal{T}_X \mid V \subseteq U\}.$

Definition 5.22. Let $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ be topological spaces and $f: X \to Y$ be a continuous map. For a sheaf $\mathcal{F} \in Sh(X)$ and a point $y \in Y$, we define the stalk of $f_*\mathcal{F}$ at y as

$$(f_*\mathcal{F})_y = \varinjlim_{U \in \mathcal{O}_y} \mathcal{F}(f^{-1}(U)).$$

Proposition 5.17. Let $(X, \mathcal{T}_X), (Y, \mathcal{T}_Y)$ be topological spaces and $f: X \to Y$ be a continuous map. For $\mathcal{F} \in Sh(Y), x \in X$, there exists an isomorphism such that

$$(f^{-1}\mathcal{F})_x \cong \mathcal{F}_{f(x)}.$$

Example 5.14. Given a topological space X and a single point set $\{y\}$. A unique map $f: X \to \{y\}$ is continuous. We know that

$$Sh(\{y\}) = (\mathbf{Ab}).$$

Thus the direct image functor f_* and $\mathcal{F} \in Sh(\{y\})$, we have

$$f_*\mathcal{F} = \mathcal{F}(X) \in (\mathbf{Ab}).$$

Example 5.15. Given a topological space X and a single point set $\{y\}$ and a unique continuous map $f: X \to \{y\}$. We have for $G \in Sh(\{y\}) = (\mathbf{Ab})$,

$$f^{-1}G = G.$$

Example 5.16. Given a topological space X and a single point set $\{y\}$ and a continuous map $f: \{y\} \to X$. We have for $G \in Sh(\{y\}) = (\mathbf{Ab})$,

$$f_*G(U) = \begin{cases} G & (f(y) \in U), \\ 0 & (f(y) \notin U). \end{cases}$$

Example 5.17. Given a topological space X and a single point set $\{y\}$ and a continuous map $f: \{y\} \to X$. For $\mathcal{F} \in Sh(X)$,

$$f^{-1}\mathcal{F}(\{y\}) = \mathcal{F}_f(y).$$

Lemma 5.1. Given a topological spaces X and Y, $f: X \to Y$ a continuous function. The inverse image functor f^{-1} is exact.

Lemma 5.2. Given a topological spaces X and Y, f a continuous function. The direct image functor f_* is (only) left-exact.

Lemma 5.3. Given a topological spaces X and Y, f a continuous function. We have seen that f_* induces a group homomorphism between $\text{Hom}(\mathcal{F},\mathcal{G})$ and $\text{Hom}(f_*\mathcal{F},f_*\mathcal{G})$. Allowing the abuse of notation, we denote this homomorphism by

$$f_*: \operatorname{Hom}(\mathcal{F}, \mathcal{G}) \to \operatorname{Hom}(f_*\mathcal{F}, f_*\mathcal{G}).$$

For such homomorphism we have

$$f_*(\mathcal{F} \oplus \mathcal{G}) \cong f_*\mathcal{F} \oplus f_*\mathcal{G}.$$

6 Cohomology

6.1 Basics of Cohomology

Example 6.1. Sheaf of holomorphic functions.

6.2 δ -Functors

Definition 6.1. Let A, B be categories. A δ =functor from $A \to B$ consist of additive functors

$$H^i: \mathcal{A} \to \mathcal{B} \quad (i = 0, 1, \cdots),$$

such that for any short exact sequence

$$0 \longrightarrow A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow 0$$

in A, we have mapping

$$\delta^i: H^i(A_3) \to H^{i+1}(A_1),$$

which make the sequence

$$0 \longrightarrow H_0(A_1) \longrightarrow H_0(A_2) \longrightarrow H_0(A_3) \xrightarrow{\delta^0} H_1(A_1) \longrightarrow \cdots$$

$$\cdots \longrightarrow H_i(A_3) \xrightarrow{\delta^i} H_{i+1}(A_1) \longrightarrow \cdots$$

a long exact sequence.

Furthermore, given a commutative diagram,

$$0 \longrightarrow A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow B_1 \longrightarrow B_2 \longrightarrow B_3 \longrightarrow 0$$

we get a commutative diagram

$$\cdots \longrightarrow H^{i}(A_{1}) \longrightarrow H^{i}(A_{2}) \longrightarrow H^{i}(A_{3}) \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow H^{i}(B_{1}) \longrightarrow H^{i}(B_{2}) \longrightarrow H^{i}(B_{3}) \longrightarrow \cdots$$

Definition 6.2. A δ -functor $(H^i: \mathcal{A} \to \mathcal{B}, \delta^i)_i$ is universal if for any other δ -functor $(\tilde{H}^i: \mathcal{A} \to \mathcal{B}, \tilde{\delta}^i)_i$ together with a morphism (functor transforms) $H^i \to \tilde{H}^i$ such that for any exact sequence

$$0 \longrightarrow A_1 \longrightarrow A_2 \longrightarrow A_3 \longrightarrow 0$$

in A, we get a commutative diagram

$$\cdots \longrightarrow H^{i}(A_{2}) \longrightarrow H^{i}(A_{3}) \xrightarrow{\delta^{i}} H^{i}(A_{1}) \longrightarrow \cdots$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\cdots \longrightarrow \tilde{H}^{i}(A_{2}) \longrightarrow \tilde{H}^{i}(A_{3}) \xrightarrow{\tilde{\delta}^{i}} \tilde{H}^{i}(A_{1}) \longrightarrow \cdots$$

Lemma 6.1. A universal δ -functor $(H^i: \mathscr{A} \to \mathscr{B}, \delta^i)$ is uniquely determined by fixing H^0 .

Definition 6.3. Let $F: \mathscr{A} \to \mathscr{B}$ be a functor. F is said to be erasable if for any $A \in \mathbf{ob}(\mathscr{A})$, there exists a monomorphism $\varphi: A \hookrightarrow A'$ for some $A' \in \mathbf{ob}(\mathscr{A})$ such that $F(\varphi) = 0$.

Theorem 6.1. Supposer $(H^i: \mathcal{A} \to \mathcal{B}, \delta^i)$ be a δ -functor such that for any $i \in \mathbb{N}$, H^i is erasable. Then (H^i, δ^i) is universal.

Proof. \Box

Definition 6.4. A δ -functor $(H^i: \mathscr{A} \to \mathscr{B}, \delta^i)$ such that for any $i \in \mathbb{N}$, H^i is erasable. Let us denote $H^0 = F$, then $(H^i: \mathscr{A} \to \mathscr{B}, \delta^i)$ is called higher derived functors of F and each H^i is denoted as R^iF .

Definition 6.5. Let \mathscr{A}, \mathscr{B} be abelian categories and $F : \mathscr{A} \to \mathscr{B}$ be a functor such that

- i). A has enough injectives,
- ii). F is additive left exact.

Given an injective resolution of A

$$0 \longrightarrow A \longrightarrow I_0 \longrightarrow I_1 \longrightarrow \cdots$$

we define

$$R^{i}F(A) = \frac{\operatorname{Ker}(FI_{i} \to FI_{i+1})}{\operatorname{Im}(FI_{i-1} \to FI_{i})}.$$

Lemma 6.2. Let \mathscr{A} , \mathscr{B} be abelian categories with \mathscr{A} having enough injectives, $F: \mathscr{A} \to \mathscr{B}$ be an additive left exact functor.

Then for any $A \in \mathbf{ob}(\mathscr{A})$, we have

$$R^0F(A) \cong F(A)$$
.

Proof. By the left exactness of F, we see

$$R^0FA = \operatorname{Ker}(FI_0 \to FI_1) = FA.$$

Lemma 6.3. Let \mathscr{A}, \mathscr{B} be abelian categories with \mathscr{A} having enough injectives, $F: \mathscr{A} \to \mathscr{B}$ be an additive left exact functor.

Each $R^iF(A)$ is independent of the choice of injective resolution, thus Definition 6.5 is well-defined.

Corollary 6.1. Let \mathscr{A}, \mathscr{B} be abelian categories with \mathscr{A} having enough injectives, $F: \mathscr{A} \to \mathscr{B}$ be an additive left exact functor.

For any injective object $A \in \mathcal{A}$, we have

$$\forall i \in \mathbb{N}, \quad R^i F(A) = 0$$

Proof.

Lemma 6.4. Let \mathscr{A} , \mathscr{B} be abelian categories with \mathscr{A} having enough injectives, $F: \mathscr{A} \to \mathscr{B}$ be an additive left exact functor.

Proof. \Box

Lemma 6.5. Let \mathscr{A} , \mathscr{B} be abelian categories with \mathscr{A} having enough injectives, $F: \mathscr{A} \to \mathscr{B}$ be an additive left exact functor.

For any $i \in \mathbb{N}$, $R^i F$ is erasable.

Proof.

Corollary 6.2. Let \mathscr{A}, \mathscr{B} be abelian categories with \mathscr{A} having enough injectives, $F : \mathscr{A} \to \mathscr{B}$ be an additive left exact functor.

 (R^F, δ^i) is a universal δ -functor where

 δ

with $H^0 = F$.

Proof. \Box

Example 6.2. Let $G \in ob(Ab)$ be a fixed abelian group. Since

$$H \in \mathbf{ob}(\mathbf{Ab}), \quad H \mapsto \mathrm{Hom}(G, H),$$

is an additive left exact functor, we can define the following

$$\operatorname{Ext}^{i}(G,\cdot) = R^{i} \operatorname{Hom}(G,\cdot)$$

which is called the Ext-functor.

Definition 6.6. Let \mathscr{A}, \mathscr{B} be abelian categories with \mathscr{A} having enough injectives, $F : \mathscr{A} \to \mathscr{B}$ be an additive left exact functor.

An object $A \in \mathbf{ob}(\mathscr{A})$ is said to be F-acyclic if we have

$$\forall i \in \mathbb{N} \quad R^i F(A) = 0.$$

Remark 6.1. For any such functor $F: \mathscr{A} \to \mathscr{B}$, by Corollary ??, every injective object is F-acyclic.

Definition 6.7. Let \mathscr{A}, \mathscr{B} be abelian categories with \mathscr{A} having enough injectives, $F: \mathscr{A} \to \mathscr{B}$ be an additive left exact functor.

A F-acyclic resolution of an object $A \in \mathbf{ob}(\mathscr{A})$ is the complex

$$0 \longrightarrow A \longrightarrow I_0 \longrightarrow I_1 \longrightarrow \cdot$$

which is exact and each I_0, I_1, \cdots are F-acyclic.

6.3 Cohomology of Sheaves

Lemma 6.6. For a topological space X, the category of sheaves Sh(X) on X has enough injectives.

Proof.

Example 6.3. Let X be a topological space. Then the global section functor

$$\Gamma(X, \cdot) : \operatorname{Sh}(X) \to (\mathbf{Ab}), \quad \mathcal{F} \mapsto \mathcal{F}(X).$$

is an additive left exact functor.

Example 6.4. Let X, Y be topological spaces and $f: X \to Y$ be a continuous function. Then the direct image functor f_* is an additive left exact functor.

7 Scheme Theory

7.1 Ringed Spaces

Definition 7.1. Let (X, \mathcal{T}) be a topological space. A ringed space is a sheaf \mathcal{O}_X of rings on X.

Definition 7.2. A morphism of ringed spaces between $(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ is a tuple $(f, f^{\#})$ where $f: X \to Y$ is a continuous map and $f: \mathcal{O}_Y \to f_*\mathcal{O}_X$ is a morphism of sheaves of rings.

Example 7.1. Let (X, \mathcal{T}) be a topological space. The sheaf of continuous functions \mathcal{C}_X is a ringed space and any continuous map $f: X \to Y$ defines a morphism of ringed spaces.

Example 7.2. Let X is a differentiable manifold then the differentiable functions C_X^{diff} is a ringed space. A morphism of ringed spaces $f: X \to Y$, for this case must satisfy the following condition.

Example 7.3. Let $X \subseteq \mathbb{C}^n$ be open subset. A sheaf of holomorphic functions \mathcal{O}_X over X is a ringed space. And a morphism of such ringed spaces must be a holomorphic functions

Example 7.4. Given the Zariski topology on $X = k^n$ and the sheaf $\mathcal{O}_X(U) = \{f: U \to k \mid f \text{ is regular }\}, (X, \mathcal{O}_X) \text{ is a ringed space.}$

Definition 7.3. By Remark 3.1, the sheaf of regular functions \mathcal{O}_X is contained in the sheaf of continuous functions \mathcal{C}_X . Given two Zariski topologies X,Y, and a continuous function $f:X\to Y$, f is said to be regular if for any regular function $g:U\to k$ for an open set $U\subseteq Y$, $g\circ f:f^{-1}(U)\to k$ is also regular. In other words, f is said to be regular if it defines a morphism of ringed spaces between two ringed spaces of regular functions.

Definition 7.4. A locally ringed space is a ringed space (X, \mathcal{O}_X) such that for any $x \in X$, the stalk $\mathcal{O}_{X,x}$ is a local ring.

Example 7.5. A sheaf of continuous functions on a topological space X is a locally ringed space. Indeed, for each $x \in X$ and the stalk $C_{X,x}$, the ideal

$$\mathfrak{m}_x = \{ (f: U \to \mathbb{R}, U) \mid f(x) = 0 \}$$

is a unique maximal ideal. In order to prove this, we recall that an ideal $\mathfrak m$ is a unique maximal ideal if any element not in $\mathfrak m$ is a unit.

For each $(f: U \to \mathbb{R}, U) \in \mathcal{C}_{X,x}$, $f(x) \neq 0$ implies that there exists a neighborhood $V \subset U$ such that $f(x) \neq 0$ for any $x \in V$. Thus $(f|_V: V \to \mathbb{R}, V)$ is invertible, therefore a unit.

Example 7.6. In similar manner, the following are also locally ringed spaces.

- 1. X is a differentiable manifold and $(X, \mathcal{C}_X^{\mathbf{diff}})$.
- 2. $X \subseteq \mathbb{C}^n$ be an open set, and (X, \mathcal{O}_X) be a sheaf of holomorphic functions.
- 3. A sheaf of regular functions on $X = k^n$.

Definition 7.5. A morphism $(f, f^{\#}): (X, \mathcal{O}_X \to (Y, \mathcal{O}_Y))$ between ringed spaces is a morphism of locally ringed space if $f^{\#}$ is local as a ring homomorphism.

Example 7.7. Let A be a commutative ring and consider the Zariski topology on X = Spec(A) and the structure sheaf (X, \mathcal{O}_X) . We have proven that

$$\mathfrak{O}_{X,\mathfrak{p}}\cong A_{\mathfrak{p}}.$$

Therefore, (X, \mathcal{O}_X) is a locally ringed space and for any ring homomorphism ϕ : $A \to B$, it induces a morphism of locally ringed spaces $(f, f^{\#})$: $(\operatorname{Spec}(B), \mathcal{O}_{\operatorname{Spec}(B)}) \to (\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)})$ such that

$$\mathfrak{q} \in \operatorname{Spec}(B), f(\mathfrak{q}) = \phi^{-1}(\mathfrak{q}) \in \operatorname{Spec}(A).$$

This is indeed a morphism of locally ringed spaces.

Proposition 7.1. Let A, B be commutative rings. Then the map $\phi \mapsto (f, f^{\#})$ is a bijection between

$$\operatorname{Hom}(A, B) \leftrightarrow \operatorname{Hom}_{\mathbf{loc}}(\operatorname{Spec}(B), \mathcal{O}_{\operatorname{Spec}(B)}), (\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)}))$$

Proof. \Box

Definition 7.6. A category of ringed spaces is denoted by (RingedSpaces) with morphisms $(f, f^{\#})$ morphisms of ringed spaces.

Definition 7.7. A category of ringed spaces is denoted by (RingedSpaces) with morphisms $(f, f^{\#})$ morphisms of locally ringed spaces.

Remark 7.1. A composition of two morphisms locally ringed space is indeed a morphism of locally ringed spaces thus the above construction is justified.

Definition 7.8. Two locally ringed spaces (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) are isomorphic if there exists morphisms $(f, f^{\#}) : (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ and $(g, g^{\#}) : (Y, \mathcal{O}_Y) \to (X, \mathcal{O}_X)$ such that f and g are inverses of each other. (ie. there exists a morphism of locally ringed spaces $(f, f^{\#})$ where f is a homeomorphism).

Example 7.8. (A morphism of locally ringed spaces induced by homeomorphism but not an isomorphism of locally ringed spaces).

Let $X = \mathbb{R}^n$ and consider the sheaf of continuous functionals \mathcal{C}_X and the sheaf of smooth functionals $\mathcal{C}_X^{\text{diff}}$. Furthermore, we consider $f = id_X$ then $f^\#$ is an inclusion as smooth functions are continuous. However, $(f, f^\#)$ is not an isomorphism of locally ringed spaces.

Example 7.9. Let us consider $X = \mathbb{C}^n$ and the sheaf of holomorphic functions \mathcal{O} on X and the structure sheaf \mathcal{O}_X . Then consider the morphism of locally ringed spaces $(f, f^{\#})$ by the identity map. However, f is not continuous as the topology defined on the image is the Zariski topology.

Definition 7.9. Let $X = \mathbb{C}^n$ and $Y = \operatorname{MaxSpec}(\mathbb{C}[x_1, \dots, x_n])$. Let $f: X \to Y$ be such that

$$f(z_1, \dots, z_n) = (x_1 - z_1, \dots, x_n - z_n).$$

This is a bijection. Furthermore, f is continuous because polynomials are continuous functions.

We define f# to be

7.2 Schemes

Definition 7.10. An affine scheme is a locally ringed space (X, \mathcal{O}_X) which is isomorphic to a structure sheaf $(\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)})$ for some commutative ring A.

Example 7.10. We consider the Zariski topology on $\mathrm{Spec}(\mathbb{Z})$ and a sheaf $\mathcal O$ such that

$$\mathcal{O}(D(\mathfrak{a})) = \mathbb{Z}_{\mathfrak{a}}.$$

is an affine scheme.

Example 7.11. Let k be a field. Then $\operatorname{Spec}(k)$ is a single point set. And we consider the sheaf \mathcal{O} such that $\mathcal{O}(\operatorname{Spec}(k)) = k$.

Definition 7.11. For a field A be a commutative ring and n a natural number, we define

$$\mathbb{A}_A^n = (\operatorname{Spec}(A[x_1, \cdots, x_n]), \mathcal{O}).$$

Example 7.12. Let A be a discrete valuation ring in other words $k[t]_{(t)}$.

Example 7.13. Let k be a field and $A = k[x]/(x^2)$. Then $Spec(A) = \{(x)\}$. Thus a single point set. However, this is not isomorphic to $(Spec(k), \mathcal{O})$ introduced in Example 7.11.

Definition 7.12. A scheme is a ringed space (X, \mathcal{O}_X) which is locally isomorphic t an affine scheme. In other words, for any $x \in X$, there is a neighborhood U of X such that there exists a commutative ring A and $(U, \mathcal{O}|_U)$ is isomorphic to $(\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)})$.

Definition 7.13. A category of affine schemes is (AffSch) where

- i). $\mathbf{ob}(\mathbf{AffSch}) = \{(\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)}) | A \text{ is a commutative ring and } \mathcal{O}_{\operatorname{Spec}(A)} \text{ is a structure sheaf} \}.$
- ii). $(\mathbf{AffSch})((\operatorname{Spec}(A), \mathcal{O}_{\operatorname{Spec}(A)}), (\operatorname{Spec}(B), \mathcal{O}_{\operatorname{Spec}(B)})) = \{ \text{ morphisms of locally ringed spaces} \}.$

Definition 7.14. A category of schemes is (Sch) where

- i). $\mathbf{ob}(\mathbf{Sch}) = \{(X, \mathcal{O}_X) \mid Schemes\}.$
- ii). (AffSch)($(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$) = { morphisms of locally ringed spaces}.

Remark 7.2. We have the inclusion relations

$$(AffSch) \subset (Sch) \subset (LocallyRingedSpaces)$$

which are all full subcategories however,

$$(LocallyRingedSpaces) \subset (RingedSpaces)$$

is not a full subcategory

7.3 Connection with Classical Algebraic Geometry

Proposition 7.2. Let X be an affine variety. The regular functions $\mathcal{O}_X(U)$

$$\mathcal{O}_X(U) = \{h : U \to k \mid h \text{ is a regular function.}\}.$$

defined on open subset U of X form a sheaf. Furthermore, it is a locally ringed space.

Proposition 7.3. Let X be an affine variety and Y = A(X) be a coordinate ring. Let us consider the sheaf of regular functions (X, \mathcal{O}_X) and an affine scheme (Y, \mathcal{O}_Y) . There exists a natural morphism of locally ringed spaces $(f, f^{\#})$: $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$.

Proof. Notice that we have the following isomorphisms.

$$X \cong \operatorname{MaxSpec}(A(X)), \quad k^n \cong \operatorname{MaxSpec}(k[x_1, \cdots, x_n]).$$

For any maximal ideal $\mathfrak{m} \subset k[x_1, \cdots, x_n]$,

$$I(X) \subseteq \mathfrak{m} = (x_1 - a_1, \dots, x_n - a_n) \Leftrightarrow \forall f \in I(X), f(a_1, \dots, a_n) = 0.$$

Let $\pi: Y \to X$ to be the canonical map by I(X), then the map $f: X \to Y, (\mathfrak{m}) = \pi^{-1}(\mathfrak{m})$ is an inclusion. Then f is continuous.

Let us define $f^{\#}: \mathcal{O}_Y \to f_*(\mathcal{O}_X)$. For an open set $U \subseteq Y$, we have

$$(s:U\to\coprod_{\mathfrak{p}\in U}A(x)_{\mathfrak{p}})\mapsto (s:U\to\coprod_{\mathfrak{m}\in U\cap\operatorname{MaxSpec}A(x)}A(x)_{\mathfrak{m}}).$$

By Lemma 3.1 and applying canonical maps $\pi_{\mathfrak{m}}: A(X)_{\mathfrak{m}} \to A(X)_{\mathfrak{m}}/\mathfrak{m}A(X)_{\mathfrak{m}}$ locally, we get

$$s: U \to \coprod_{\mathfrak{m} \in U \cap \operatorname{MaxSpec} A(x)} \to \coprod_{\mathfrak{m} \in U \cap \operatorname{MaxSpec} A(x)} A(X)_{\mathfrak{m}}/\mathfrak{m} A(X)_{\mathfrak{m}} = k.$$

Thus we obtained a map $s: U \to k$. Locally, we have

$$s = \frac{g_1 + I(X)}{g_2 + I(X)},$$

for $g_1 + I(X), g_2 + I(X) \in A(X)$. We conclude, locally

$$t = \frac{g_1}{g_2}.$$

We now claim that $(f, f^{\#})$ is a local morphism of ringed spaces. By the correspondence of a maximal ideal \mathfrak{m} of $k[x_1, \dots, x_n]$ and a point (a_1, \dots, a_n) , we have the isomorphism

$$\mathcal{O}_{X \mathfrak{m}} \stackrel{\sim}{\to} \mathcal{O}_{Y \mathfrak{m}} = A(X)_{\mathfrak{m}}.$$

Remark 7.3. Since X is an algebraic variety, there is a prime ideal \mathfrak{p} of $k[x_1, \dots, x_n]$ such that

$$X = V(\mathfrak{p}).$$

Let us define $(Y', \mathcal{O}_{Y'}) = (\operatorname{Spec}(k[x_1, \dots, x_n]), \mathcal{O})$, where $I(X) = \mathfrak{a}$. Since k is field, $k[x_1, \dots, x_n]$ is Noetherian, thus the primary decomposition exists for any ideal. Thus there is a bijection between

$$\operatorname{Spec}(k[x_1,\cdots,x_n]/\mathfrak{a}) \leftrightarrow \operatorname{Spec}(A(X)).$$

Example 7.14. Let K be any field and $A = k[x]/(x^2)$. A is called the ring of dual numbers. Observe that

$$(\operatorname{Spec} k, \mathcal{O}_{\operatorname{Spec} k}), (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A}),$$

both consist of single points. Let us define $(f, f^{\#})$: (Spec $k, \mathcal{O}_{\operatorname{Spec} k}) \to (\operatorname{Spec} A, \mathcal{O}_{\operatorname{Spec} A})$. By the previous observation, the function $f: \operatorname{Spec} A \to \operatorname{Spec} k$ is unique map sending the unique point to the unique point.

7.4 Properties of Schemes

Theorem 7.1 (Topological properties of schemes).

Definition 7.15. A scheme is said to be locally Noetherian if there exists an open cover $(U_i)_{i\in I}$ such that for each $i\in I$,

$$U_i \cong \operatorname{Spec}(A_i) \tag{7.1}$$

for some Noetherian ring A_i .

Lemma 7.1. Let A, B be rings and $\varphi : A \to B$ be a ring homomorphism. Let $a \in A$ and $b = \varphi(a)$, then we have

$$\operatorname{Spec}(A_a) = \operatorname{Spec}(B_b)$$

 $as\ sets.$

Proof. Let $\mathfrak{q} \subset B$ be a prime ideal not containing b and $\mathfrak{p} \subset A$ be a contraction of \mathfrak{q} by φ . φ^{-1} is the inclusion from $\operatorname{Spec}(B)$ to $\operatorname{Spec}(A)$. Also we have

$$\operatorname{Spec}(A_a) \cong D_A(a) \subset \operatorname{Spec}(A)$$

for an arbitrary ring and an element. And by φ^{-1} we have

$$D_B(b) \subset D_A(a)$$
.

Thus we have an inclusion

$$\operatorname{Spec}(B_b) \subset \operatorname{Spec}(A_a).$$

Proposition 7.4. Let A, B be rings and $\varphi : A \to B$ be a ring homomorphism. Let $a \in A$ and $b = \varphi(a)$, then we have

$$\operatorname{Spec}(A_a) = \operatorname{Spec}(B_b)$$

as affine schemes.

Proof. By Lemma 7.1, they are equal as sets. Since Spec(B) is open in Spec(A). Using the definition of structure sheaves, we have

$$\mathcal{O}_{\mathrm{Spec}(A)}|_{\mathrm{Spec}(B)} = \mathcal{O}_{\mathrm{Spec}(B)}.$$

Therefore, by the lemma we have

$$\mathcal{O}_{\operatorname{Spec}(A_a)} = \mathcal{O}_{\operatorname{Spec}(B_b)}.$$

Lemma 7.2. A scheme (X, \mathcal{O}_X) is locally Noetherian if and only if for any open affine set $U \subset X, U = \operatorname{Spec}(A)$ for some Noetherian ring A.

Proof. By definition, \Leftarrow is trivially true. We will prove \Rightarrow direction.

Let $X = \bigcup_{i \in I} \operatorname{Spec}(A_i)$ be an open affine Noetherian covering of X and $U = \operatorname{Spec}(A)$ be an open affine set. Let us define an open covering of U by

$$U_i = U \cap \operatorname{Spec}(A_i), \quad U = \bigcup_{i \in I} U_i.$$

By Theorem 7.1 and the assumption on U, U is quasi-compact. By arranging I, there exists a large enough $n \in \mathbb{N}$ such that

$$U = \bigcup_{i=1}^{n} U_i.$$

Since each $i = 1, \dots, n$, U_i is open in $\operatorname{Spec}(A_i, \text{ thus there is } \{a_{ij}\}_{j=1,\dots,n_i} \subset A_i$ such that

$$U_i = \bigcup_{j=1}^{n_i} \operatorname{Spec}(A_{i,a_{ij}}).$$

Thus substituting this to (7.1), we get

$$U = \bigcup_{i=1}^{n} \bigcup_{j=1}^{n_i} \operatorname{Spec}(A_{i,a_{ij}}).$$

Again by the quasi-compactness of U, we conclude finitely many $A_{i,a_{ij}}$ cover U.

Since A_i is Noetherian for each $i \in I$, this means that any localization of it is also Noetherian. Thus we $\{\operatorname{Spec}(A_{i,a_{ij}}) \text{ is an open Noetherian covering of } U$. By rearranging $\{a_{ij}\}$, we let $\{a_1, \dots, a_n\}$ to be the elements which spectrums of their localizations cover U. We then show that

$$\mathfrak{a} = \bigcap_{i=1}^{n} \pi_i^{-1}(\pi_i(\mathfrak{a}) A_{a_i}).$$

where $\pi_i: A \to A_{a_i}$ is the canonical inclusion for each $i = 1, \dots, n$.

 $\mathfrak{a} \subseteq \bigcap_{i=1}^n \pi_i^{-1}(\pi_i(\mathfrak{a})A_{a_i})$ is trivial, thus we prove $\mathfrak{a} \supset \bigcap_{i=1}^n \pi_i^{-1}(\pi_i(\mathfrak{a})A_{a_i})$. Let $b \in \bigcap_{i=1}^n \pi_i^{-1}(\pi_i(\mathfrak{a})A_{a_i})$ be arbitrary. By definition, for each $i = 1, \dots, n$, there exists $b_i \in \mathfrak{a}$ and n_i such that

$$\pi_i(b) = \frac{b_i}{a_i^{n_i}}.$$

Using that \mathfrak{a} is an ideal, we derive that for big enough N, we have

$$\pi_i(b) = \frac{b_i}{a_i^N}.$$

Using the definition of localization, for each $i = 1, \dots, n$, there is m_i such that

$$(b_i - a_i^N b) a_i^{m_i} = 0.$$

Taking large enough M, for each $i = 1, \dots, n$, we derive

$$(b_i - a_i^N b) a_i^M = 0.$$

Thus for all $i = 1, \dots, n$, we know

$$a_i^{N+M}b \in \mathfrak{a}. \tag{7.2}$$

Since $\{D_A(a_i)\}_{i=1,\dots,n}$ covers Spec A, we have

$$\bigcap_{i=1}^{n} V(a_i) = \emptyset \Leftrightarrow V((a_1, \cdots, a_n)) = \emptyset \Leftrightarrow (a_1, \cdots, a_n) = (1).$$

Therefore, for any $k \in \mathbb{N}_0$ we have $(a_1^k, \dots, a_n^k) = (1)$. By Equation (7.2), we derive that for some $c_1, \dots, c_n \in A$,

$$b = \sum_{i=1}^{n} c_i a_i^k \in \mathfrak{a}.$$

Finally, we prove that A is Noetherian. Given an ascending chain of ideal

$$\mathfrak{a}_1 \subset \mathfrak{a}_2 \subset \cdots$$
.

We get an ascending chain of extended ideals

$$\pi(\mathfrak{a}_1)A_{a_i} \subset \pi(\mathfrak{a}_2)A_{a_i} \subset \cdots$$

for each $i=1,\cdots,n$. Since each A_{a_i} is Noetherian, we conclude that there is large enough N such that

$$\pi_i(\mathfrak{a}_N)A_{a_i} = \pi_i(\mathfrak{a}_{N+1})A_{a_i}$$

for each $i = 1, \dots, n$. By Equation (7.4), we conclude that

$$\mathfrak{a}_N = \bigcap_{i=1}^n \pi_i^{-1}(\pi_i(\mathfrak{a}_N)A_{a_i}) = \bigcap_{i=1}^n \pi_i^{-1}(\pi_i(\mathfrak{a}_{N+1})A_{a_i}) = \mathfrak{a}_{N+1}.$$

Corollary 7.1. An affine scheme (Spec A, $\mathcal{O}_{\operatorname{Spec} A}$) is a Noetherian scheme, then A is Noetherian.

Remark 7.4. A Sheaf is noetherian then its base space is Noetherian as topological space. The converse is not true.

Definition 7.16. A scheme (X, \mathcal{O}_X) is said to be reduced if for any open subset $U \subseteq X$, $\mathcal{O}_X(U)$ is a reduced ring.

Proposition 7.5. A scheme (X, \mathcal{O}_X) is reduced if and only if for any $x \in X$, the stalk $\mathcal{O}_{X,x}$ is a reduced ring.

Proof. \Box

Definition 7.17. A scheme is integral if every section of it is an integral domain.

Proposition 7.6. A scheme (X, \mathcal{O}_X) is reduced then for any $x \in X$, the stalk $\mathcal{O}_{X,x}$ is an integral domain.

Proof. \Box

Remark 7.5. The converse is not true.

Let k be a field and R be a k-algebra.

Remark 7.6. By the definition of reduced rings, it is obvious that integral schemes are reduced.

Example 7.15. An affine scheme on a field k is integral.

Example 7.16. Let k be a field. (Spec $k[x]/(x^2)$, $\mathcal{O}_{\text{Spec }k[x]/(x^2)}$) is neither integral nor reduced.

Example 7.17. Let k be a field. (Spec k[x,y]/(x,y), $\mathcal{O}_{\operatorname{Spec} k[x,y]/(x,y)}$) is reduced but not integral.

Lemma 7.3. Let (X, \mathcal{O}_X) is a scheme and fix $s \in \mathcal{O}_X(U)$ for some open set U. For each $x \in U$, define \mathfrak{m}_x to be a unique maximal ideal in the stalk. Then the set

$$F = \{ x \in U \mid s \in \mathfrak{m}_x \}$$

is a closed subset of X.

Proof. First, let us assume that $U = \operatorname{Spec}(A)$ for some ring A. We will prove that T^c is open

Lemma 7.4. A scheme (X, \mathcal{O}_X) is integral if and only if it is a reduced scheme on an irreducible topological space.

Proof. Since integral schemes are reduced. We first prove that X is not irreducible then (X, \mathcal{O}_X) is not integral.

Since X is not irreducible, there is non-empty disjoint open subsets U_1, U_2 of X. Then

$$\mathcal{O}_X(U_1 \cup U_2) \cong \mathcal{O}_X(U_1) \times \mathcal{O}_X(U_2).$$

Therefore, this is not an integral domain.

Suppose X is irreducible and (X, \mathcal{O}_X) is reduced. Given an arbitrary open set $U \subset X$, and $s_1, s_2 \in \mathcal{O}_X(U)$, we will show that

$$s_1 s_2 = 0 \Rightarrow s_1 = 0 \lor s_2 = 0.$$

By Lemma 7.3,

$$X_1 = \{ x \in U \mid s_1 \in \mathfrak{m}_x \}, \quad X_2 = \{ x \in U \mid s_2 \in \mathfrak{m}_x \},$$

are closed subsets.

By the sheaf property, we have $s_1s_2=0$ implies for all $x\in U$,

$$(s_1s_2)_x = s_{1,x}s_{2,x} = 0.$$

Since each \mathfrak{m}_x is prime and $s_{1,x}s_{2,x}=0\in\mathfrak{m}_x,\,s_{1,x}\in\mathfrak{m}_x$ or $s_{2,x}\in\mathfrak{m}_x$. Therefore, this show that

$$U = X_1 \cup X_2$$
.

Since X is irreducible, so is U, Without the loss of generality, we assume $U = X_1$. Let $\text{Spec}(A) \subset U$ be an open affine set. Let us define

$$t = s_1|_{\operatorname{Spec}(A)} \in A.$$

for all $x = \mathfrak{p} \in \operatorname{Spec}(A) \subset U$, we have

$$t_x \in \mathfrak{m}_x \in \mathcal{O}_{X,x}$$
.

In other words,

$$\frac{t}{1} \in \mathfrak{p}A_{\mathfrak{p}} \subset A_{\mathfrak{p}}.$$

Therefore, $t \in \mathfrak{p}$ for any prime ideal of A, thus t is a nilpotent. Furthermore, X is reduced, thus t = 0.

Thus any section $s_1|_{\operatorname{Spec}(A)}=0$ for all $\operatorname{Spec}(A)$. By the sheaf property, we conclude $s_1=0$.

Corollary 7.2. If X is integral, then there exists a unique generic point $\eta \in X$. Proof. For any $\operatorname{Spec}(A) \subseteq X$, A is an integral domain. Let $\eta = (0) \in \operatorname{Spec}(A)$. Then η is a generic point of $\operatorname{Spec}(A)$. By the irreducibility of X, we have η is a generic point of X.

For the uniqueness, assume ζ, η be generic points of X. Let us pick an open affine set $\operatorname{Spec}(A)$ containing η . By closedness of $X \setminus \operatorname{Spec}(A)$ and that ζ is also a generic point, we conclude that $\zeta \in \operatorname{Spec}(A)$.

Without the loss of generality, we assume that $\eta = (0) \subset A$. Since $\eta \neq \zeta$, $\zeta = \mathfrak{p} \subset A$ for some prime ideal. However

$$\eta \in V(\mathfrak{p}) \Leftrightarrow \mathfrak{p} = (0) \Rightarrow \eta = \zeta.$$

7.5 Open and Closed Subschemes

Definition 7.18. Let (X, \mathcal{O}_X) be a scheme and $U \subseteq X$ be open. Then

$$(U, \mathcal{O}_X|_U)$$

is called an open subscheme of X.

Remark 7.7. If $\operatorname{Spec}(B) \subseteq \operatorname{Spec}(A)$ is an open subscheme then

$$\operatorname{Spec}(B) = \bigcup_{i=1}^{n} \operatorname{Spec}(A_{a_i}) = \bigcup_{i=1}^{n} \operatorname{Spec}(B_{b_i}),$$

with morphisms $A \ni a_i \mapsto b_i \in B$.

Definition 7.19 (1st definition of closed subschemes). Let (X, \mathcal{O}_X) be a scheme and M be a set of morphisms of schemes such that for each $(i, i^{\#}) \in M$,

- 1. $i: Z \to X$, is a homeomorphism of Z and some closed subset i(Z) of X.
- 2. $i^{\#}: \mathcal{O}_X \to i_*\mathcal{O}_Z$ is surjective. In other words, for any $z \in Z$, $\mathcal{O}_{X,i(z)} \to \mathcal{O}_{Z,z}$ is a surjection.

We now define an equivalence relation \sim such that $(i, i^{\#}): Y \to X \sim (j, j^{\#}): Z \to X$ if Y and Z are homeomorphic and the following diagram is commutative.

$$(Y, \mathcal{O}_Y) \xrightarrow{(i, i^{\#})} (X, \mathcal{O}_X)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Definition 7.20 (Second definition of closed subschemes). A closed subscheme of a scheme (X, \mathcal{O}_X) consists of a closed subset $i: Z \hookrightarrow X$ and a sheaf \mathcal{O}_Z such that there is a sheaf of ideals (Z, \mathcal{I}_Z) which is a subsheaf of \mathcal{O}_X such that

$$\mathcal{O}_X|_{\mathcal{I}_Z} \cong i_*\mathcal{O}_X.$$

Lemma 7.5. Let $X = \operatorname{Spec}(A)$ for a commutative ring and consider a scheme (X, \mathcal{O}_X) . Consider a closed subscheme (Z, \mathcal{O}_Z) of (X, \mathcal{O}_X) and an ideal

$$\mathfrak{a}_Z = \operatorname{Ker}(A \to Z).$$

Then we have the inclusions of set,

$$Z \subseteq V(\mathfrak{a}_Z) \subseteq \operatorname{Spec}(A)$$
.

Lemma 7.6. The second claim of the preceding lemma.

Lemma 7.7. Let A be a ring then there exists a natural bijection between

 $\{\mathfrak{a}\subseteq A\mid \mathfrak{a} \text{ is an ideal of } A\}\leftrightarrow \{Z\subseteq \operatorname{Spec}(A)\mid Z \text{ is a closed subscheme}\}.$

Proof. \Box

7.6 Fiber Products

Definition 7.21. Let X, S be schemes. X is called a S-scheme if there exists a morphism of schemes $\varphi: X \to S$.

Definition 7.22. Let S be a scheme. The category of S-schemes is (\mathbf{Sch}/S) where

- 1. $\mathbf{ob}(\mathbf{Sch}/S) = \{\varphi : X \to S \mid \varphi \text{ is a morphism of schemes}\}.$
- 2. $(\mathbf{Sch}/S)(\varphi: X \to S, \psi: Y \to S) = \{f: X \to Y \mid f \text{ is a morphism of schemes such that } \varphi = f \circ \psi\}.$

Remark 7.8. Clearly we have

$$(\mathbf{Sch}/\operatorname{Spec}(\mathbb{Z})) = (\mathbf{Sch}).$$

For a field k we have,

A given scheme can have many k-scheme structure.

Definition 7.23. A fiber product of S-schemes X, Y with morphisms $f: X \to S, g: Y \to S$ is a scheme $X \underset{S}{\times} Y$ together with a morphisms $p: X \underset{S}{\times} Y \to X, q: X \underset{S}{\times} Y \to Y$ such that

$$f \circ p = g \circ q$$

and for any scheme F with such pair of morphisms $p_F: F \to X, q_F: F \to Y$, there is a morphisms of scheme $\varphi: F \to X \underset{c}{\times} Y$ such that we have

$$p \circ \varphi = p_F, \quad q \circ \varphi = q_F.$$

Proposition 7.7. A fiber product of S-schemes X, Y is unique up to isomorphisms if it exists.

Proposition 7.8. Let X, Y be S-schemes. Then we have an isomorphism

$$X \underset{S}{\times} Y \cong Y \underset{S}{\times} X.$$

Proof. \Box

Proposition 7.9. Let X be a S-scheme, Z be a T-scheme, and Y be both a S and T-scheme. Then we have an isomorphism

$$(X\underset{S}{\times}Y)\underset{T}{\times}Z\cong X\underset{S}{\times}(Y\underset{T}{\times}Z).$$

Proof.

Example 7.18. Let $X, Y, S \in \mathbf{ob}(\mathbf{Sch})$ and $f: X \to S, g: Y \to S$ be mappings. Define

$$X \underset{S}{\times} Y = \{(x,y) \in X \times Y \mid f(x) = g(y)\}.$$

Then this is a fiber product together with restriction of projections from $X \times Y \to X, Y$ to $X \times Y$, denoted by p, q.

Example 7.19. There does not exist a fiber product for \mathbb{A}^1_k , \mathbb{A}^1_k , $\operatorname{Spec}(k)$.

Lemma 7.8. Fiber products exist in (AffSch).

Corollary 7.3. Let k be a field and $m, n \in \mathbb{N}$ then we have

$$\mathbb{A}_k^m \times \mathbb{A}_k^m \cong \mathbb{A}_k^{m+n}$$
.

Proof. \Box

Remark 7.9. For a scheme X, write |X| be its underling topological space. Then as topological spaces we have

$$|\mathbb{A}_k^1| \times |\mathbb{A}_k^1| \ncong |\mathbb{A}_k^2|.$$

Since

Lemma 7.9. Let X, Y be S-schemes and assume the fiber product $X \times Y$ exists with projections $p: X \times Y \to X$ and $q: X \times Y \to Y$. Then for open sets $U \subseteq X, V \subseteq Y$, we have

$$p^{-1}(U) \cong U \underset{S}{\times} Y, \quad q^{-1}(V) \cong X \underset{S}{\times} V.$$

Proof.

Lemma 7.10. Let X, Y be S-schemes and $X = \bigcup_{i \in I} U_i$ be an open covering of X. If for each i, the fiber product $U_i \times Y$ exists, then the fiber product $X \times Y$ exists.

Proof.

Corollary 7.4. Let X, Y be S-schemes and assume Y, S are affine. Then $X \underset{S}{\times} Y$ exists.

Proof. Let $X = \bigcup_{i \in I} U_i$ be an open covering such that for each $i \in I$, $\Gamma(U_i, \mathcal{O}_X)$ is affine. Then by Lemma 7.8, fiber products $\{U_i \times Y\}_{i \in I}$ exist. By Lemma 7.10, we conclude the fiber product $X \times Y$ exists.

Corollary 7.5. Let X, Y be S-schemes and assume X, S are affine. Then $X \underset{S}{\times} Y$ exists.

Corollary 7.6. Let X, Y be S-schemes and assume S is affine. Then $X \underset{S}{\times} Y$ exists.

Proof. Let $X = \bigcup_{i \in I} U_i$ be an open covering such that for each $i \in I$, $\Gamma(U_i, \mathcal{O}_X)$ is affine. They by Corollary 7.5, fiber products $\{U_i \times Y\}_{i \in I}$ exist. By Lemma 7.10, $X \times Y$ exists.

Proposition 7.10. Fiber products exist in (Sch).

Proof.
$$\Box$$

Definition 7.24. Let Y be a topological group and (Y, \mathcal{O}_Y) be a locally ringed space. We denote the residue field of y to be

$$k(y) = \mathcal{O}_{Y,y}/\mathfrak{m}_y$$

where \mathfrak{m}_y is the maximal ideal of the stalk $\mathcal{O}_{Y,y}$.

Definition 7.25. Let $f: X \to Y$ be a scheme morphism and $y \in Y$. The fiber of f over y is the scheme X_y defined as

$$X_y = X \underset{Y}{\times} \operatorname{Spec}(k(y)).$$

$$\operatorname{Spec}(k(y)) \underset{Y}{\times} X \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow^{f}$$

$$\operatorname{Spec}(k(y)) \xrightarrow{i} Y$$

Definition 7.26. Let $|X_y|$ be an underlying topological space of X_y . Then we have the homeomorphism between

$$|X_y| \cong f^{-1}(y)$$

with the topology on $f^{-1}(y)$ is the induced topology.

Definition 7.27. Let k be a field. We define a category (\mathbf{Sch}/k) such that its object consists of morphisms of schemes $f: X \to \operatorname{Spec}(k)$ and morphisms between two objects $\varphi: X \to \operatorname{Spec}(k)$ and $\psi: Y \to \operatorname{Spec}(k)$ consists of morphisms $f: X \to Y$ such that

$$X \xrightarrow{f} Y$$

$$\varphi \downarrow \qquad \qquad \psi$$

$$\operatorname{Spec}(k)$$

is a commutative diagram.

Proposition 7.11. Let K/k be an extension of fields. Then we have a morphism such that

$$(\mathbf{Sch}/k)\ni [f:X\to \mathrm{Spec}(k)]\mapsto [X\underset{k}{\times} K\to \mathrm{Spec}(K)]\in (\mathbf{Sch}/K).$$

Definition 7.28. Let K/k be an extension of fields. Let X be a Spec(k) scheme then the base change X_K of X to K is

$$X_K = X \underset{k}{\times} K.$$

Proposition 7.12. Let K/k be an extension of fields. Let X, Y be $\operatorname{Spec}(k)$ scheme. A morphism $f: X \to Y$ between two objects $\varphi: X \to \operatorname{Spec}(k), \psi: Y \to \operatorname{Spec}(k)$ of $(\operatorname{\mathbf{Sch}}/k)$, there is a unique morphism $f_K: X_K \to Y_K$ such that it is a morphism between X_K and Y_K in $(\operatorname{\mathbf{Sch}}/K)$.

Definition 7.29. Let K/k be a field extension and X be a Spec(k) – scheme. Then we define the set of K-rational points of X by

$$X(K) =$$

Remark 7.10. There is one to one correspondence between

$$X(K) \leftrightarrow X_K(K)$$
.

Definition 7.30. Let $f: X \to Y$ be a morphism of schemes and $y \in Y$. Consider the residue field k(y) and its algebraic closure $\overline{k(y)}$.

The geometric fiber over y is

$$X_{\overline{y}} = \operatorname{Spec}(\overline{k(y)}) \underset{\operatorname{Spec}(k(y))}{\times} X_y.$$

Proposition 7.13. We have the isomorphism,

$$X_{\overline{y}} \cong \operatorname{Spec}(\overline{k(y)}) \underset{Y}{\times} X.$$

Proof.

Example 7.20.

$$\begin{array}{cccc} \mathbb{A}^1_{\overline{\mathbb{Q}}} & & & \mathbb{A}^1_{\mathbb{Q}} \\ \downarrow & & & \downarrow \\ \operatorname{Spec}(\overline{\mathbb{Q}}) & & & \operatorname{Spec}(\mathbb{Q}) = \{y\} \end{array}$$

where

$$\mathbb{A}^1_{\mathbb{Q}} = \{(f) \mid f \in \mathbb{Q}[x] \text{ is irreducible}\} \cup \{(0)\}$$

and

$$\mathbb{A}_{\overline{\mathbb{Q}}}^{1} = \{(x - \lambda) \mid \lambda \in \mathbb{Q}\} \cup \{(0)\}.$$

Example 7.21. Consider $X \to Y = \operatorname{Spec}(\mathbb{Z}_{(p)})$. Notice that $Y = \{\eta, t\}$ where $\eta = (0)$ a generic point and t = We have

$$X_{\eta} \cong \operatorname{Spec}(\mathbb{Q}), \quad X_t \cong \operatorname{Spec}(\mathbb{F}_p).$$

And geometric fibers

$$X_{\overline{\eta}} \cong \operatorname{Spec}(\overline{\mathbb{Q}}), \quad X_{\overline{t}} \cong \operatorname{Spec}(\overline{\mathbb{F}_p}).$$

Example 7.22. There is a bijection between $\mathbb{A}^n_k(\overline{k})$ and \overline{k}^n by

$$(x_1 - \lambda_1, \cdots, x_n - \lambda_n) \leftrightarrow (\lambda_1, \cdots, \lambda_n).$$

Remark 7.11. The base change does not preserve the topology in general.

$$X_K \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec}(K) \longrightarrow \operatorname{Spec}(k)$$

And X is connected does not imply X_K being connected. Indeed, we have a counter example that

$$X = \operatorname{Spec}(\mathbb{C}), \quad k = \mathbb{R}, \quad K = \mathbb{C}.$$

By Proposition 7.13 we have

$$X_K = \operatorname{Spec}(\mathbb{C}) \underset{\operatorname{Spec}(\mathbb{R})}{\times} \operatorname{Spec}(\mathbb{C}).$$

We observe that

$$|X_K| = \{(x-i), (x+i)\}$$

which is disconnected however,

$$|X| = \{(0)\}$$

which is connected.

Proposition 7.14. Let K/k be a field extension where both k, K are algebraically closed. Then the topology on X_K coincides with the topology on X.

Example 7.23.

Then $X_{\overline{\mathbb{Q}}} = X(\overline{\mathbb{Q}}) = \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}).$

Definition 7.31 (Conjugate of k-schemes). Given a k-scheme $X \to \operatorname{Spec}(k)$, and $\sigma \in \operatorname{Aut}(k)$. A conjugate k-scheme is defined as the fiber product.

$$\begin{matrix} X^{\sigma} & \longrightarrow & X \\ \downarrow & & \downarrow \\ \operatorname{Spec}(k) & \xrightarrow[]{\sigma} & \operatorname{Spec}(k) \end{matrix}$$

We call the morphism $X^{\sigma} \to \operatorname{Spec}(k)$ the k-scheme structure of X^{σ} .

Remark 7.12. As schemes we have $X^{\sigma} \cong X$, but typically not as k-schemes. We could have taken another isomorphism of schemes

$$X^{\sigma} \xrightarrow{\varphi} X$$

$$\downarrow \qquad \qquad \downarrow$$

$$\operatorname{Spec}(k)$$

Example 7.24. Let $X = \operatorname{Spec}(\mathbb{R})$ and consider $\operatorname{Spec}(X \to \mathbb{Q}(\sqrt{2}))$ and $\sigma : \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(-\sqrt{2})$. Such that $\sigma(\sqrt{2}) = -\sqrt{2}$.

Proposition 7.15. Let $f: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ be a morphism of affine schemes corresponding to a ring homomorphism $\varphi: A \to B$. For $s \in A$ and $t = \varphi(s) \in B$ we have

$$f^{-1}(\operatorname{Spec}(A_s)) = \operatorname{Spec}(B_t).$$

Proposition 7.16. Suppose $\operatorname{Spec}(A), \operatorname{Spec}(B) \subseteq X$ be schemes which are open affine. Then the intersection $\operatorname{Spec}(A) \cap \operatorname{Spec}(B)$ can be covered by open affine sets $U \subseteq \operatorname{Spec}(A) \cap \operatorname{Spec}(B)$ of the form

$$U = D(s) = \operatorname{Spec}(A_s)$$

for some element $s \in A$ and

$$U = D(t) = \operatorname{Spec}(B_t)$$

for some element $t \in B$.

Proposition 7.17. Suppose we have a morphism $f: X \to Y$ of schemes where

$$X = \bigcup_{i \in I} \operatorname{Spec}(B_i), \quad Y = \operatorname{Spec}(A).$$

Given homomorphisms of rings $\varphi_i: A \to B_i, \varphi(s) = t_i$ for some fixed $s \in A$. We have

$$f^{-1}(\operatorname{Spec}(A_s)) = \operatorname{Spec}((B_i)_{t_i}).$$

Proposition 7.18. Suppose we have a ring homomorphism $\varphi: A \to B$ and $\{b_i\}_{i\in I} \subset B$ be such that

$$(b_1, \dots, b_i, \dots)_{i \in I} = (1) = B.$$

If each B_{b_i} is of finite type over A for all $i \in I$, then B is also of finite type over A.

Proposition 7.19. Given a ring homomorphism $\varphi: A \to B$ and $\{s_i\}_{i \in I} \subseteq A$ such that

$$(a_i)_{i \in I} = (1) = A.$$

Denote $\{t_i = \varphi(s_i)\}_{i \in I}$. If for each B_{t_i} is of finite type over A_{s_i} then B is of finite type over A.

Proposition 7.20. Let X be a scheme and denote its global section by $A = \Gamma(X, \mathcal{O}_X)$. Then X is affine (ie. $X = \operatorname{Spec} 9A$) if and only if there exists finitely many $a_1, \dots, a_n \in A$ such that

1.
$$(a_1, \dots, a_n) = (1) = A$$
,

2.
$$X_{a_i} = \{x \in X \mid (a_i)_x \in \mathcal{O}_{X_x}^* \}$$
 is affine.

Proposition 7.21. Let $f: X \to Y$ be a morphism of schemes. Then f is locally of finite type if and only if for any open affine set $V = \operatorname{Spec}(A) \subseteq Y$ and an open affine subset $U = \operatorname{Spec}(B)$ of $f^{-1}(V)$, B is of finite type over A.

Proposition 7.22. Let $f: X \to Y$ be a morphism of scheme. f is locally of finite type if and only if for any open affine set $V = \operatorname{Spec}(A) \subseteq Y$, and for any open affine subset $U = \operatorname{Spec}(B) \subseteq f^{-1}(V)$, B is of finite type over A.

Proposition 7.23. Let $f: X \to Y$ be a morphism of schemes. Then f is affine if and only if for any open set $V = \text{Spec}(A) \subseteq Y$, $f^{-1}(V)$ is affine.

Corollary 7.7. If a morphism of schemes $f: X \to \operatorname{Spec}(A)$ is affine then X is affine.

Corollary 7.8. A morphism of scheme f is finite if and only if for any open set $V = \text{Spec}(A) \subseteq Y$, and for all $f^{-1}(\text{Spec}(B))$, B is finite over A.

Lemma 7.11. Let $f: X \to Y$ be a morphism of affine schemes where $X = \operatorname{Spec}(B), Y = \operatorname{Spec}(A)$. Then if f is finite then f is closed and quasi-finite.

Proposition 7.24. Let $f: X \to Y$ be a morphism of schemes. If f is finite then f is closed and quasi-finite.

7.7 Separated and Proper Morphisms

Proposition 7.25. Any morphism of affine schemes is separated.

Proposition 7.26. Any affine morphism is separated.

Proposition 7.27. Any open or closed immersions are separated.

Lemma 7.12. Let $f: X \to Y$ be a morphism of schemes, then we have

$$f$$
 is separated. $\Leftrightarrow \Delta(X) \subseteq X \underset{V}{\times} X$.

Lemma 7.13. Let Z be a topological space. Z is Hausdorff if and only if $\Delta(Z) = \{(z, z) \mid z \in Z\} \subseteq Z \times Z$ is closed.

Proposition 7.28. A morphism $f: X \to Y$ of schemes is separated if and only if $\Delta(X) \subseteq X \underset{V}{\times} X$ is closed.

Remark 7.13. The Zariski topology on $X \underset{V}{\times} X$ is not the product topology.

Definition 7.32 (Universally closed). A morphism of scheme $f: X \to Y$ is said to be universally closed if,

Definition 7.33. A morphism $f: X \to Y$ of scheme such that

- 1. f is separated,
- 2. f is of finite type,
- 3. f is universally closed,

is said to be proper.

Example 7.25. A morphism $\mathbb{A}^1_k \to \operatorname{Spec}(k)$ is closed but not universally closed. thus not a proper morphism.

Remark 7.14. A morphism $\mathbb{P}^1_k \to \operatorname{Spec}(k)$ is proper (in fact this is projective.)

Proposition 7.29. Every finite morphisms of scheme is proper.

Example 7.26. A morphism of scheme begin

 ${\it 1. \ quasi-finite},$

- 2. separated,
- 3. finite-type,
- 4. surjective

does not imply that it is proper.

Proposition 7.30 (Nagata compactification). If a morphism $f: X \to Y$ of schemes is separated and finite type between Noetherian schemes, then there exists a scheme Z and morphisms $h: X \to Z, g: Z \to Y$ of schemes such that

$$f = g \circ h$$

with h is an open immersion, g is proper.

Proposition 7.31. Let $f: X \to Y$ be a morphism of schemes. Then we have

f is finite. $\Leftrightarrow f$ is quasi-finite and proper.

7.8 Magic Squares

Definition 7.34. Given morphisms of schemes

We define a magic square of it to be

$$\begin{array}{ccc} X_1 \underset{Y}{\times} X_2 & \longrightarrow & Y \\ & \downarrow & & \downarrow^{\Delta_{Y/Z}} \\ X_1 \underset{Z}{\times} X_2 & \longrightarrow & Y \underset{Z}{\times} Y \end{array}$$

which is a fiber product.

Proposition 7.32. Given morphisms of schems

$$X \stackrel{f}{-\!\!\!-\!\!\!-\!\!\!-} Y \stackrel{g}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-} Z$$

We have

- 1. f, g are both separated $\Rightarrow g \circ f$ is separated.
- 2. f, g are both proper \Rightarrow , $g \circ f$ is proper.

Corollary 7.9. Given morphisms of schemes

where g is separated. We have the graph

$$\Gamma_f: X \to X \underset{Z}{\times} Y$$

is a closed immersion.

Corollary 7.10. Given morphisms of schemes

where g is separated. Then we have, for the magic square

$$X_{1} \underset{Y}{\times} X_{2} \longrightarrow Y$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\Delta_{Y/Z}}$$

$$X_{1} \underset{Z}{\times} X_{2} \longrightarrow Y \underset{Z}{\times} Y$$

 Δ is a closed immersion. Hence ψ is also a closed immersion.