



# BanditSpec: Adaptive Speculative Decoding via Bandit Algorithms

Yunlong Hou\*<sup>1</sup>, Fengzhuo Zhang\*<sup>1</sup>, Cunxiao Du\*<sup>2</sup>, Xuan Zhang\*<sup>3</sup>, Jiachun Pan<sup>1</sup>, Tianyu Pang<sup>2</sup>, Chao Du<sup>2</sup>, Vincent Y. F. Tan<sup>1</sup>, Zhuoran Yang<sup>4</sup>

<sup>1</sup>National University of Singapore <sup>2</sup>Sea Al Lab <sup>3</sup>Singapore Management University





**Main Message** 

Q: How can we *adaptively* select hyperparameters for speculative decoding?

A: BanditSpec views the text generation process as an *online decision-making problem*. It adaptively selects hyperparameters using Multi-Armed Bandit algorithms.

Training-Free with Theoretical Guarantees!



#### **Problem Formulation**

• Accelerate the inference of LLMs while maintaining high generation quality.  $Draft \rightarrow Verify \rightarrow Accept$ 

$$T_{\rm spec} = T_{\rm draft} \times L + T_{\rm target} + T_{\rm accept} \times n_{\rm accepted} \approx T_{\rm target}$$

Total time saved

$$T_{\mathrm{target}} \times \mathbb{E} \left[ \tau_{\mathrm{c}} - \tau_{\mathrm{spec}} \right]$$

 $T_{
m target}$ : the time of one forward pass of the target model.

 $au_c$  : the number of canonical decoding rounds.

 $au_{
m spec}$  : the number of speculative decoding rounds.

#### The BANDITSPEC Framework

Algorithm 1 Speculative Decoding with Bandits (BanditSpec) Inputs: arm selection algorithm ALG, initial prompt  $\operatorname{pt}_0 = \operatorname{pt} \in \mathcal{X}^*$ , bandit configuration  $\nu = (P, \mathcal{S} = \{S_i\}_{i \in [K]}, L)$ .

- Procedures:
- 1:  $t = 0, \mathcal{H}_0 = \emptyset, I_0 = 1, x_{I_0,0} = \emptyset.$ 2: while EOS  $\notin x_{I_t,t}$  do
- 3: t = t + 1.
- Select a hyperparameter index  $I_t = ALG(\mathcal{H}_{t-1})$ .
- 5:  $x_{I_t,t} = \text{SpecDecSub}(\text{pt}_{t-1}, P, S_{I_t}, L).$
- 6:  $\operatorname{pt}_{t} = \operatorname{concat}(\operatorname{pt}_{t-1}, x_{I_{t}, t}).$
- 7:  $\mathcal{H}_t = \operatorname{concat}(\mathcal{H}_{t-1}, (I_t, x_{I_t,t})).$
- 8: end while
- 9: return  $ST(ALG, pt, \nu) = t$ ,  $pt_{ST(ALG, pt, \nu)} = pt_t$ .
- Objective: Devise an arm selection rule ALG to minimize the stopping time regret

$$\operatorname{Reg}(\mathsf{ALG},\operatorname{pt},\nu) := \mathbb{E}\left[\operatorname{ST}(\mathsf{ALG},\operatorname{pt},\nu)\mid\operatorname{pt},\nu\right] - \mathbb{E}\left[\operatorname{ST}(\mathsf{ALG}_{i^*(\operatorname{pt},\nu)},\operatorname{pt},\nu)\mid\operatorname{pt},\nu\right]$$

Desired result:

$$\operatorname{Reg}(\mathtt{ALG},\operatorname{pt},
u) = o\left(\mathbb{E}[\operatorname{len}(\operatorname{pt}_{\tau_c})]\right) \text{ or } o\left(\mathbb{E}[\tau_c]\right).$$

### **Main Results**

Stationary Mean Values assumption: There exist K values  $\{\mu_i\}_{i\in[K]}\subset[1,L+1]$ , such that conditioned on the history  $\mathcal{H}_{t-1}$  and the chosen arm  $I_t$  at time t, the expected number of the accepted tokens  $\mathbb{E}[Y_{I_t,t}|\mathcal{H}_{t-1},I_t]=\mu_{I_t}$ .

Adversarial Mean Values assumption: Let the number of accepted tokens generated by hyperparameter  $S_i$  at time step t be  $y_{i,t} = \text{len}(X_{i,t})$ . We assume  $\{y_{i,t}\}_{i \in [K], t \in \mathbb{N}}$  is fixed by the environment before the algorithm starts.

### **Under the Stationary Mean Values assumption,**

ALG = UCBSpec achieves a regret upper bound as

$$\operatorname{Reg}(\mathsf{ALG},\operatorname{pt},\nu) = O\left(\mathsf{H}(\operatorname{pt},\nu)\cdot L^2\cdot \log \mathbb{E}[\operatorname{len}(\operatorname{pt}_{\tau_{\operatorname{c}}})]\right).$$

Additionally, for any algorithm ALG, if the acceptance token length follows the truncated geometric distribution, then

$$\liminf_{m \to \infty} \frac{\operatorname{Reg}(\mathsf{ALG}, \mathsf{pt}^m, \nu)}{\log(\operatorname{len}(\mathsf{pt}^m_{\tau_c}))} \ge \mathsf{H}(\mathsf{pt}^m, \nu) \cdot \frac{p_{i^*}(1 - p_{i^*}^L)}{(1 - p_{i^*})}.$$

Under the Adversarial Mean Values assumption,

ALG = EXP3Spec achieves a regret upper bound as

$$\operatorname{Reg}(\operatorname{ALG},\operatorname{pt},\nu) \leq 2L \cdot O\left(\sqrt{\min_{i \in [K]} \operatorname{ST}(\operatorname{ALG}_i)K \log K}\right).$$

## Algorithm



### Algorithm 2 UCBSpec

Inputs: number of hyperparameter specifications K, history  $\mathcal{H}_t = \left((I_s, X_{I_s,s})\right)_{s=1}^t$ , confidence parameter  $\delta$ . Procedures:

- 1: **if**  $t \le K 1$  **then return**  $I_{t+1} = t + 1$ .
- 2: Compute the lengths  $Y_{I_s,s} = \operatorname{len}(X_{I_s,s})$  for all  $s \in [t]$ .
- 3: Set the statistics  $\{\hat{\mu}_{i,t}\}_{i\in[K]}$ ,  $\{\mathrm{UCB}_{i,t}=\hat{\mu}_{i,t}+\mathrm{cr}_{i,t}\}_{i\in[K]}$ , where

$$\operatorname{cr}_{i,t} = \frac{L}{2} \sqrt{\frac{1 + n_{i,t}}{n_{i,t}^2} \left(1 + 2\log \frac{Kt^2 (1 + n_{i,t})^{\frac{1}{2}}}{\delta}\right)},$$

4: **return** index  $I_{t+1} = \operatorname{argmax}_{i \in [K]} \operatorname{UCB}_{i,t}$ .

#### **Experiments**





Figure 1. Throughtput comparison of speculation lengths  $\gamma \in [4]$  and the canonical decoding ( $\gamma = 0$ ).

Table 1. Empirical Comparisons measured by Mean Accepted Tokens (MAT) (†) and Tokens/s (†).

| Methods     | Spec Bench  |             | Alpaca      |               | Code Editor |             | Debug Bench |               |
|-------------|-------------|-------------|-------------|---------------|-------------|-------------|-------------|---------------|
|             | MAT(†)      | Tokens/s(†) | MAT(†)      | Tokens/s(↑)   | MAT(†)      | Tokens/s(↑) | MAT(†)      | Tokens/s(↑)   |
| LLaMA3-8E   | 3-Instruct  | <u> </u>    |             |               |             |             |             |               |
| Vanilla     | 1.00        | 35.73       | 1.00        | 35.92         | 1.00        | 36.32       | 1.00        | 36.89         |
| PLD         | 1.46        | 43.96       | 1.53        | 53.06         | 2.13        | 82.61       | 1.67        | 82.76         |
| Rest        | 1.29        | 40.67       | 1.48        | 52.40         | 1.33        | 51.32       | 1.29        | 48.49         |
| Suffix Tree | 1.83        | 55.10       | 1.71        | 64.02         | 2.30        | 90.21       | 2.13        | 77.56         |
| Eagle-2     | <u>3.94</u> | 98.15       | 4.04        | 110.00        | <u>4.79</u> | 128.76      | 4.78        | 119.12        |
| EXP3Spec    | 3.65        | 102.10      | <u>4.23</u> | <u>120.38</u> | 4.36        | 137.29      | 4.50        | <u>132.25</u> |
| UCBSpec     | 3.98        | 105.72      | 4.35        | 125.78        | 4.83        | 138.27      | <u>4.60</u> | 135.34        |