

Arithmetic Progressions Ex 9.3 Q21

Answer:

A.P: a, a+d, a+2d ..

Here, we first need to write the expression for $a_n - a_k$

Now, as we know,

 $a_n = a + (n-1)d$

So, for nth term,

 $a_n = a + (n-1)d$

Similarly, for kth term

 $a_k = a + (k-1)d$

So,

 $a_n - a_k = (a + nd - d) - (a + kd - d)$

$$= a + nd - d - a - kd + d$$
$$= nd - kd$$

$$= na - ka$$

 $= (n-k)d$

So,
$$a_n - a_k = (n-k)d$$

(i) In the given problem, we are given 11th and 13th term of an A.P.

We need to find the common difference. Let us take the common difference as d and the first term as

Here,

 $a_{11} = 5$

 $a_{13} = 79$

Now, we will find a_{11} and a_{13} using the formula $a_n = a + (n-1)d$

So.

$$a_{11} = a + (11-1)d$$

$$5 = a + 10d$$
(1)

Also,

$$a_{13} = a + (13-1)d$$

$$79 = a + 12d$$
(2)

Solving for a and d

On subtracting (1) from (2), we get

$$79-5=(a+12d)-(a+10d)$$

$$74 = a + 12d - a - 10d$$

$$74 = 2d$$

$$d = \frac{74}{2}$$

$$d = 37$$

Therefore, the common difference for the A.P. is d = 37.

(ii) We are given, $a_{10} - a_5 = 200$

Here

Let us take the first term as a and the common difference as d Now, as we know,

$$a_n = a + (n-1)d$$

Here, we find a₃₀ and a₂₀.

So, for 10th term,

$$a_{10} = a + (10 - 1)d$$

 $= a + (9)d$
Also, for 5th term,
 $a_5 = a + (5 - 1)d$
 $= a + (4)d$
So,
 $a_{10} - a_5 = (a + 9d) - (a + 4d)$
 $200 = a + 9d - a - 4d$
 $200 = 5d$
 $d = \frac{200}{5}$
 $d = 40$

Therefore, the common difference for the A.P. is d = 40

(iii) In the given problem, the 20^{th} term is 10 more than the 18^{th} term. So, let us first find the 20^{th} term and 18^{th} term of the A.P.

Here

Let us take the first term as a and the common difference as d

Now, as we know,

$$a_n = a + (n-1)d$$

So, for 20^{th} term (n = 20),

$$a_{20} = a + (20 - 1)d$$

= a + 19d

Also, for 18^{th} term (n = 18),

$$a_{18} = a + (18 - 1)d$$

$$= a + 17d$$

Now, we are given,

$$a_{20} = a_{18} + 10$$

On substituting the values, we get,

$$a+19d = a+17d+10$$

$$19d - 17d = 10$$

$$2d = 10$$

$$d = \frac{10}{2}$$

$$d = 5$$

Therefore, the common difference for the A.P. is d = 5