

Databend Stream 设计与实现

张祖前

Content

- 01 背景介绍
- 02 实现细节
- 03 最佳实践

Part 1

背景介绍

什么是CDC

CDC即变更数据捕获,用于实时或近实时检测和捕获数据库中数据的变更(包括插入、更新和删除操作)。

它能够捕获源数据库中数据的变更事件,并将这些变更应用到目标数据库或数据仓库中,从而保持数据的一致性和同步。

方案	支持实时	侵入性	特点
时间戳	否	否	实现简单,变更延迟,难以捕获删除
触发器	是	否	实时精准捕获变更,性能影响
快照	否	否	实现简单,实时性差,资源消耗
日志	是	是	实时精准捕获变更,维护复杂

Databand Stream

启发自Snowflake SIGMOD'23 论文 What's the Difference? Incremental Processing with Change Queries in Snowflake

旨在提供一种更高效、简洁、且与云服务高度集成的数据变更捕获方法

Part 2

实现细节

自动变更追踪

column	默认值	说明
_origin_block_id	Null	该行第一次被添加到表时所属的数据块(block)的 ID
_origin_block_row_num	Null	该行第一次被添加时在数据块中的行号
_origin_version	Null	该行第一次移动时事务所基于的 table version
_row_version	0	该行的版本信息

自动变更追踪

- Insert
- Delete
- Compact
- Recluster
- Update

```
mysql> insert into t values(1, 1),(2, 2);
[Query OK, 2 rows affected (0.08 sec)
mysql> select a, b, _origin_block_id,_origin_block_row_num,_origin_version,_row_version from t;
           | _origin_block_id | _origin_block_row_num | _origin_version | _row_version
                           NULL |
2 rows in set (0.03 sec)
[Read 2 rows, 274.00 B in 0.005 sec., 440.17 rows/sec., 58.89 KiB/sec.
mysql> update t set a = 0 where b = 1;
[Query OK, 1 row affected (0.13 sec)
mysql> select a, b, _origin_block_id,_origin_block_row_num,_origin_version,_row_version from t;
                                                       | _origin_block_row_num | _origin_version | _row_version
    1 | -168313755496731310539518324155007614376 |
           2 | -168313755496731310539518324155007614376 |
[2 rows in set (0.05 sec)
Read 2 rows, 101.00 B in 0.008 sec., 251.07 rows/sec., 12.38 KiB/sec.
mysql> insert into t values(3, 3), (4,4);
Query OK, 2 rows affected (0.08 sec)
mysql> optimize table t compact;
Query OK, 4 rows affected (0.11 sec)
mysql> select a, b, _origin_block_id,_origin_block_row_num,_origin_version,_row_version from t;
                                                       | _origin_block_row_num | _origin_version | _row_version
 a | b | _origin_block_id
           1 | -168313755496731310539518324155007614376
                                                                                            166
                                                                                                            1 |
           2 | -168313755496731310539518324155007614376
                                                                                            166
                                                                                                             0 |
           3 | 103622614062755752182794218109030081480
                                                                                            173
                                                                                                             0 |
                103622614062755752182794218109030081480
                                                                                            173 |
                                                                                                            0 |
4 rows in set (0.06 sec)
Read 4 rows, 197.00 B in 0.006 sec., 615.71 rows/sec., 29.61 KiB/sec.
```


变更捕获

```
\begin{split} &\Delta_{\mathsf{insert}} = \big\{ \forall r \in \mathsf{A} : \\ &\neg \big( r.\mathit{origin\_version} \, \mathsf{IS} \, \, \mathsf{NOT} \, \, \mathsf{NULL} \, \land \\ & \left( \big( r.\mathit{origin\_version} < v_0 \big) \vee \big( r.\mathit{origin\_version} \geq v_0 \wedge r.\mathit{origin\_block\_id} \in \mathsf{delete\_block\_ids} \big) \big) \right) \Big\} \\ & \Delta_{\mathsf{update}} = \big\{ \forall r \in \mathsf{A} \, \cup \, \mathsf{D} : \\ & \left( A.r.\mathit{row\_id} = D.r.\mathit{row\_id} \, \wedge A.\mathit{row\_version} > D.\mathit{row\_version} \big) \big\} \\ & \Delta_{\mathsf{delete}} = \big\{ r \in \mathsf{D} \, \wedge \, r \notin \mathsf{A} \, \big\} \end{split}
```


Stream

·创建 Stream: CREATE STREAM [IF NOT EXISTS] [<database_name>.]<stream_name> ON TABLE [<database_name>.]<table_name>

[AT (STREAM => <stream_name>)] [append_only = true | false] [COMMENT = '<comment>']

Append only Stream

·Standard Stream

Stream Columns

Append only Stream

()1 只追踪和记录新添加到表中的行

02 忽略周期内多次更新

Standard Stream

Part 3

最佳实践

最佳实践

Thank you!