Lecture 11-a

Unconventional Algorithms and Hardware for Neural Networks

Artificial Neural Networks

Artificial Neural Networks

Computing power used in training AI systems $% \label{eq:computing} % \label{eq:computing}$

Selected systems, floating-point operations, log scale

Sources: Sevilla et al., 2023; Our World in Data

Reservoir Computing

- Consists of high-dimensional, fixed, non-linear connections for transforming data, only output weights are optimized.
- Especially useful for fast operation and low training cost
- Can be realized by high dimensional and nonlinear physical systems.

EPFL

Computing with Spatiotemporal Nonlinearities of MMFs

Computing with Spatiotemporal Nonlinearities of MMFs

• In multimode fibers light propagate in discrete channels, depending on their properties MMFs can support up to millions of channels: $E(x, y, \omega) = \sum_{n=0}^{N} A_n F_n(x, y, \omega)$

 At high intensities modes start to couple each other due to light-matter interactions.

llker Oguz, LO and LAPD, EPFL

Computing with Spatiotemporal Nonlinearities of MMFs

EPFL (

Computing with Spatiotemporal Nonlinearities of MMFs

Programming Propagation inside MMFs

llker Oguz, LO and LAPD, EPFL

Programming Propagation inside MMFs

Programming Propagation inside MMFs

EPFL

llker Oguz, LO and LAPD, EPFL

Optimization of Programming Parameters

Surrogate Model: Simple function(RBFs) to fit to experimental results

New Sampling Points for Exploring/ Exploiting a Solution

Outputs from Experiment for Refining the Surrogate Model

Experiment: Unknown function, costly to evaluate, tens of parameters

Forward-Forward Algorithm

The Forward-Forward Algorithm: Some Preliminary Investigations

Geoffrey Hinton

Google Brain geoffhinton@google.com

Training with FF:

for i in layerCount:

1- optimize W_{ij} such that goodness is high for positive samples and low for negative samples:

$$p(positive) = \sigma(\sum_{j} y_{j}^{2} - \theta)$$
, where $y_{j} = f(\sum_{i}^{N} W_{ij} x_{i})$

2- Normalize $\sum_j y_j^2$'s for each sample before passing it to the next layer

Forward-Forward Algorithm

Forward-Forward Algorithm

- The connections between layers can be unknown transforms → Can be used by very-low power analog computing devices
- Each layer is updated at a time → No need to save all activations → Less memory consumption
- Biologically plausible
- Can be used by very-low power analog computing devices

llker Oguz, LO and LAPD, EPFL

Forward-Forward Algorithm on MNIST

- 8's are labelled as positive and 3's are labelled as negative data
- Fully connected layer with 1024 neurons are trained FFA
- Thresholding activations: 92.7 %
- Backprop training: 96.5 %

llker Oguz, LO and LAPD, EPFL

Feedback Alignment

 Instead of backpropagating errors with same weights as the forward pass, feedback alignment uses random backward connection.

 When w and B matrices are from similar distribution, convergence is observed.

 Dataset

 MNIST Fashion MNIST

 BP
 0.91
 9.20

 FA
 1.7
 13.06

 DFA
 1.61
 12.81

An Alternative:Reinforcement Learning

Hafiz, Abdul Mueed. "Image Classification by Reinforcement Learning With Two-State Q-Learning." *Handbook of Intelligent Computing and Optimization for Sustainable Development* (2022): 171-181.

Ilker Oguz, LO and LAPD, EPFL

Programming Propagation for MNISTFashion

Programming Propagation for MNISTFashion

EPFL

Programming Propagation for MNISTFashion

Complex Field Control

Convolution with Kernel

Programming Propagation for AllOptical Classification

Programming Propagation for AllOptical Classification

EPFL

Programming Propagation for AllOptical Classification

Network Structure	Total Number	Operations per	Accuracy on	Accuracy
	of Parameters	Sample on Digital	Melanoma dataset	on COVID-
		Computer (FLOP)	(%)	19 dataset
				(%)
LeNet-5	82826	1175640	64.9	74.6
MMF + classification with	55	2029	61.3	77.0
output location (with				
programming)				

lker Oguz, LO and LAPD, EPFL

Transferring Programming Parameters between Different Tasks

- Current method requires ~300 iterations over the dataset for programming to converge.
- For 1500 samples at 50 images per second, full programming corresponds to ~3 hours of training.

Transferring Programming Parameters between Different Tasks

Comparison with GPU-based NNs

	Network Structure	Total Number of	Operations per Sample on Digital	Test Accuracy on Age Task	Test Accuracy on Gender Task
		Parameters	Computer (FLOP)		
Digital	LeNet-5	~82k	~1.2M	63.0	75.2
	7-layer Convolutional NN	~410k	~65M	65.3	80.1
Optical + Digital	MMF + linear output layer	2026	4050	59.0	69.0
	Programmed MMF for Age Task + linear output layer	2078	6075	67.0	76.0
	Programmed MMF for Gender Task + linear output	2078	6075	64.7	76.3

llker Oguz, LO and LAPD, EPFL

THE LOTTERY TICKET HYPOTHESIS: FINDING SPARSE, TRAINABLE NEURAL NETWORKS

Jonathan Frankle MIT CSAIL Michael Carbin MIT CSAIL

TRAINING BATCHNORM AND ONLY BATCHNORM: ON THE EXPRESSIVE POWER OF RANDOM FEATURES IN CNNs

EPFL

Ari S. Morcos Facebook AI Research arimorcos@fb.com

