

5 U.S.C. 552 (b)(2) and (b)(3).
FOIA Exemptions 2 and 3,
apply to this document.

~~OFFICIAL USE
ONLY~~

dna
Defense Nuclear Agency

HARDNESS VERIFICATION OF ANTENNA LINE PENETRATIONS

STANDARDS AND TECHNOLOGY INTEGRATION MEETING

Sanitized Version

21 SEPTEMBER 1994

W. BERREUTER, L. ROSE, T. ZWOLINSKI, B. HARLACHER

19981106 123

DISTRIBUTION STATEMENT A:
Approved for Public Release -
Distribution Unlimited

5 U.S.C. 552 (b)(2) and (b)(3).
FOIA Exemptions 2 and 3,
apply to this document.

"Test Techniques for Antenna Line Penetrations," 23 May 1994, MRC/COS-R-1394
Document No. 8/22-9/1/94 - Quik Look Data

PORTIONS OF DOCUMENT(S) RELEASED
UNDER THE FREEDOM OF INFORMATION ACT
DOJ Case No. 5-7-032

~~OFFICIAL USE
ONLY~~

dna
Defense Nuclear Agency

TYPICAL HEMP COUPLING PATH FOR ANTENNA LINES

PROCEDURES REQUIRED BY MIL-STD-188-125

1. The test waveform is a damped sinusoid ($Q=10\pm3$) with peak amplitude and fundamental frequency determined from the maximum linear dimension (L) of the antenna radiating structure by the algorithm:

```
If   300 m > L > 20 m,  then fc = 2 MHz,  
if   20 m > L > 3 m,  then fc = 30 MHz,  
if   L < 3 m,      then fc = 200 MHz,  
                                |pk = 2500 A;  
                                |pk = 900 A;  
                                |pk = 250 A.
```

2. The injections must be performed in the acceptance test and verification test configurations.

- Difficulties with implementation of MIL-STD-188-125 requirements
 - No such pulsers available
 - Test waveforms often do not represent HEMP stresses (test waveform may be inadequate in some cases)
 - Acceptance test pass/fail criteria usually cannot be met
- Most antenna line penetrations will be SPMs
- 5-step procedure proposed to test antenna lines as SPMs
- Lab and field tests to demonstrate proposed procedure

PROPOSED TEST PROCEDURE

STEP 1: VERIFY PROT. EQUIPMENT IS WORKING PER SPECIFICATIONS
(CWDD of FL, voltage step fcn test of ESA)

STEP 2: DECIDE PCI LOCATION

STEP 3: ESTIMATE LINEAR HEMP STRESS
(Wide-area CWIL, local CWIL, other)

STEP 4: SELECT PULSER(s), INJECT, AND ESTIMATE TEST COVERAGE

$\max I_{RES}^{HEMP}$ vs. $\max I_{RES}^{PCI}$

$\max I_{DEL}^{HEMP}$ vs. $\max I_{DEL}^{PCI}$

- HEMP vs. pulse induced outage time (if link is MEE)

STEP 5: REPEAT STEP 1

EVALUATION OF TEST COVERAGE (ACCEPTANCE TEST CONFIGURATION)

BELOW E S A B R E A K D O W N				A B O V E E S A B R E A K D O W N			
MAX I _{DEL}	MAX I _{RES} (e)	IS TEST COVERAGE ADEQUATE	MAX I _{DEL} (a)	OUTAGE	MAX I _{RES}	IS TEST COVERAGE ADEQUATE	
Peak (A)	RAINT (A-s.5)	Peak (A)	RAINT (A-s.5)	Peak (A-s.5)	Time (ns)	Peak (A)	
6.40E1	2.50E-2	5.60E1	2.48E-2	n.a.	2.37E3	9.86E-1	
					500	(c)	
						n.a.	
5.00E1	3.18E-2	1.65E1	4.30E-3	Maybe	2.50E3	1.68E0	
					1000	1.75E1	
						Yes	
E1 Pulser	[REDACTED]	[REDACTED]	[REDACTED]	[REDACTED]	[REDACTED]	[REDACTED]	
2MHz DS per	4.00E1	2.52E-2	2.80E0	8.42E-4	No	2.50E3	
MIL-STD-188-125						>1000 (c)	
						Yes	

TEST OBJECTIVES

- 1. Implement/demonstrate the proposed test procedures**
- 2. Evaluate the test coverage achieved with charged line pulser**
- 3. Determine feasibility of local CW illumination to estimate HEMP stresses**

*Page 9 removed
in its entirety.*

Table 2-2. Specifications of the ESA tested.

Model:	Polyphaser IS-B50LN-CO
Type:	Gas Tube
Turn-on Characteristics:	600 VDC +/- 20% 2.5 ns for 2 kV/ns input

Table 2-1. Specifications of the [REDACTED] filters tested.

**HEMP STRESS ESTIMATES
USING WIDE AREA CWIL VS. LOCAL CWIL WITH SE ANTENNAS**

Antenna	Port	Peak Curr. I_{DEL} (A)		Peak Curr. I_{RES} (A)
		Wide Area CWIL	Local CWIL	
	ESA + K&L FL:	59.2 *	76.2	13.4 *
		54.7	97.1	2.7
		35.8	76.3	1.5
		30.2	45.8	4.5
		43.3	53.2	2.9
				4.5

The site did not permit illumination testing in the HF band, except for these two measurements.

HEMP STRESS EST. METHOD #3: CALC. I_{SE}^{ANT} , MSD, Z_{ANT} - IN PROGRESS

IDEL60.PLT 09-13-94 16:46

IDEI71.PLT 09-13-94 16:45

IRES71.PLT 09-13-94 16:50

IDEL72.PLT 09-13-94 16:15

IRES72.PLT 09-13-94 16:50

IDEL41.PLT 09-13-94 16:45

IRES41.PLT 09-13-94 16:50

IDEL42.PLT 09-13-94 1645

IRES42.PLT 09-13-94 16:50

Verification Test of the [REDACTED] Antenna Penetration

Estimated HEMP Stress:

Delivered to the protection device I_{DEL} : 59.2 A
Residual on the protected side I_{RES} : 39.8 A

Pulse current injection with a 5 m long charged line pulser.

Pulser Charge Voltage (V):	Ant. line terminated in 50 ohms		Ant. line terminated in the radio	
	I_{DEL} (A)	I_{RES} (A)	I_{DEL} (A)	I_{RES} (A)
270	1.7	0.6	4.3	1.9
540	3.8	1.7	11.8	5.1
1300	9.9	4.4	21.3	8.7
2700	20.6	5.8		
5400	95.5	10.5		
7500	139.0	10.0		
10000	188.0	8.9		

Measured Currents vs. Charge Voltage
HF Filter

Measured Currents vs. Charge Voltage VHF Filter

Measured Currents vs. Charge Voltage [REDACTED] Filter

CONCLUSIONS

1. The proposed verification test procedure was implemented and demonstrated at an operational site.
2. The test coverage provided by the charged line pulser was adequate to test the HF, VHF, and UHF antenna lines.
3. HEMP stresses can be adequately estimated with local CW illumination using the SE transmit antennas.
4. The verification test configuration (antenna leg in parallel with the pulser) did not significantly reduce the test coverage.
5. The [REDACTED] operated normally even when the pulser TEE was inserted; i.e., the TEE did not interfere with the link.