Head-Coupled Perspective

Florian Weidner, Sergej Lopatkin

Betreuer: Ricardo Langner, Wolfgang Büschel

TU Dresden, Lehrstuhl MT, WS2013/2014

Gliederung

- 1. Einführung
- 2. Zielsetzung
- 3. Zeitplan
- 4. Vorgehen
- 5. Herausforderungen
- 6. Software
- 7. Zusammenfassung
- 8. Fazit

1. Einführung

1. Einführung

1. Einführung

2. Zielsetzung

- ⇒ Middleware
 - Empfang von Motive
 - Verarbeitung
 - Senden an Geräte
 - Modular/Wiederverwendbar
 - Plattformunabhängig

3. Zeitplan

- ✓ Bis 19.11.2013: Einarbeitung
 - ⇒ libgdx, Motive/Streaming, HCP Algorithmus
- ✓ Bis 17.12.2013: Prototypen entwickeln
 - ⇒ Dummy-Daten, Einfache Szene
- ✓ Bis 23.12.2013: Prototypen zusammenfügen
 - ⇒ Daten werden gestreamt und empfangen
- Bis 21.01.2014: HCP Implementieren
 - ⇒ Datenformat & Verarbeitung, HCP
- Bis 28.01.2014: Multi-Device Support
 - ⇒ Grundgerüst mit Multi-Device Support in der Middleware
- ✓ Bis 06.02.2014: Doku & Präsentation

4. Vorgehen

- Parallele Arbeiten:
 - 1. Florian: Middleware
 - 2. Sergej: libgdx-Anwendung (3D-Szene)

- Gemeinsame Arbeiten:
 - 1. Dokumentation/Präsentation
 - 2. Einarbeitung (Kooima[1], Francone[2])
 - 3. HCP-Algorithmus (am Ende)

5. Herausforderungen

Middleware

- Multithreading in der Middleware
- Plattformunabhängige Kommunikation
- Senden, Empfangen, HCP Berechnung
- Geeignetes Protokoll

libgdx

- Szenenerstellung
- Genauigkeit von float
- HCP Anwendung!

6. Software: Komplette Anwendung

6. Software: Middleware

6. Software: Middleware

Threading

6. Software: Middleware

- Details:
 - ca. 320Byte/Frame mit max 120 Frames/s ⇒ ca. 4kB/s
 - TCP/IP, Socket
- Erstelltes XML-Format:

6. Software: Mobile Geräte/libgdx

- Komponenten:
 - Szenen
 - Netwerk
 - HCP Utils

- Trennung der Verantwortlichkeiten
 - ⇒ HCP austauschbar
 - ⇒ Szene austauschbar

6. Software: Mobile Geräte/libgdx

Szenen

- Einfacher Würfel
- Szene mit komplexen 3D-Modell (.obj, .mtl, etc.)
- Performancetest

HCP

6. Software: Algorithmus

Lösung:

- 1. Modell platzieren ⇒ globale Koordinaten
- 2. Off-Axis-Perspektive berechnen
- 2.1 Frustum Drehung
- 2.2 Frustum auf Kopfposition anpassen
- 3. Rotation der Szene um Deviceorientierung
- 4. Rotation der Szene um Kopforientierung

7. Zusammenfassung

Funktionierende Middleware

- Wiederverwendbar/Modular
- TCP/IP, Sockets
- Config-Datei

Grundgerüst der libGdx HCP Anwendung

- Einfache HCP
- Rotationen werden behandelt
- Parallelverschiebungen

Was fehlt:

- Total Positionsinvarianz
- Performanceverbesserungen

8. Fazit: libgdx

Pro:

- Deployment auf viele Plattformen möglich
- Architektur des Frameworks übersichtlich

Con:

- Nicht ausgereifte 3D API
- "vertraute" Methoden nicht nativ verfügbar
 - glFrustum()
 - gluLookAt()
 - ...

⇒ Unity3D besser geeignet?

8. Fazit: allgemein

- Unterschätzte Komplexität des Algorithmus
- Spätes Testen mit Live-Daten
- Zeitplan suboptimal
- libgdx Anwendung mit Grund-HCP
- Deployment auf versch. Plattformen
- Stabile Middleware

Fragen?

Vielen Dank für die Aufmerksamkeit!

Quellen

- [1] Kooima, R., Generalized Perspective Projection, 2008
- [2] Francone, J. Using hte User's Point of View for Interaction on Mobile Devices, IHM '11, 2011
- [A] http://1.bp.blogspot.com/YtjbFWKAu1Y/UXchpyaSkCI/AAAAAAAAAAI/OJjp89MXYy0/s1600/HCpersp520wide.jpg
- [B] http://cdn.slashgear.com/wp-content/uploads/2009/03/lenovo_thinkcentre_a58.jpg