(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出頗公開番号

特開平6-68505

(43)公開日 平成6年(1994)3月11日

(51)Int.CL5

識別記号

庁内整理番号

FΙ

技術表示箇所

GIIB 7/095

C 2106-5D

審査請求 未請求 請求項の数1(全 8 頁)

(21)出類番号

特類平4-217969

(22)出頭日

平成 4年(1992) 8月17日

(71)出願人 000005016

パイオニア株式会社

東京都自県区目黒1丁目4番1号

(72)発明者 栗林 祐基

埼玉県鶴ヶ島市富士見6丁目1番(号 バ

イオニア株式会社総合研究所内

(72)発明者 横川 文彦

埼玉県鶴ヶ島市営士見6丁目1番1号 バ

イオニア株式会社総合研究所内

(74)代理人 弁理士 石川 泰男 (外1名)

(54)【発明の名称】 トラッキングエラー信号生成装置

(57)【要約】

【目的】 トラッキングビットの記録位置のずれ等の影 響を受けずに正しいトラッキングエラー信号を生成する トラッキングエラー信号生成装置を提供する。

【構成】 記録トラックが形成され、記録トラック内に データ情報記録用のデータ情報領域と、サーボ制御情報 記録用のサーボ制御情報領域と、を有し、サーボ制御情 級領域にトラッキングエラー信号生成に用いるトラッキ ングビットが設けられたサンブルドサーボ方式の光ディ スクの再生信号からトラッキングエラー信号を生成する トラッキングエラー信号生成装置であって、トラッキン グビットの検出タイミングを含む所定時間幅を有する検 出期間で再生信号のトラッキングピットに対応するピー クレベルを検出保持してビークホールド信号として出力 するビークホールド回路と、ピークホールド信号に基づ いてトラッキングエラー信号を生成し出力するトラッキ ングエラー信号生成手段と、を備えて構成する。

【特許請求の範囲】

【請求項1】 記録トラックが形成され、前記記録トラ ック内にデータ情報記録用のデータ情報領域と、サーボ 制御情報記録用のサーボ副御情報領域と、を有し 前記 サーボ制御情報領域にトラッキングエラー信号生成に用 いるトラッキングピットが設けられたサンプルドサーボ 方式の光ディスクの再生信号からトラッキングエラー信 号を生成するトラッキングエラー信号生成装置であっ Υ

前記トラッキングピットの領出タイミングを含む所定時 10 ラック(B)になると PWL。のように 4 ビット目に移 間帽を有する検出期間で前記再生信号の前記トラッキン グビットに対応するピークレベルを検出保持してビーク ホールド信号として出力するピークホールド回路と、 前記ピークホールド信号に基づいてトラッキングエラー 信号を生成し出力するトラッキングエラー信号生成手段 と、を、値えたことを特徴とするトラッキングエラー信 号生成装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、トラッキングエラー信 20 号生成装置に係り、特にサンフルドサーボ方式(sample) d servo method) を用いた高密度記録の光ディスクから トラッキングエラー信号を生成するトラッキングエラー 信号生成装置に関する。

[00002]

【従来の技術】従来の光ディスクの記録フォーマットと して、サンプルドサーボ方式の記録フォーマットが知ら れている。

【0003】図4に、サンブルドサーボ方式の光ディス クの記録フォーマットを示す。サンプルドサーボ方式の 30 光ディスクは、光ディスクの記録膜上にプリグループ (案内法) は設けられておらず、1トラック中の137 6個所にサーボ領域(フィールド)がプリフォーマット されている。サンプルドサーボ方式の光ディスクは、こ のプリフォーマットによりトラッキングエラーや記録/ 再生用のクロック等をサンプリングで生成できる点に特 徴を有している。

【0004】光ディスクDKのプログラム鎖域PAに は、図4に示すように、光ディスクDKの内園側から外 形成されている。1トラックは32個のセクタに分割さ れている。各1つのセクタは43個のセグメントからな り、 巻1つのセグメントは18バイトからなる。1セク タの最初のセグメント# ()には、セクタ単位で同期をと るためのセクタ同期信号5...。(2ビット)およびその セクタのアドレスを示すためのセクタアドレスS

**** (16ビット) がプリフォーマットされている。ブ リフォーマットは、当該光ディスクDKのマスタリング の過程で行われる。セグメント#1~#42のそれぞれ は、2パイトのサーボ領域F。と16パイトのデータ領 50 (T。)をとると、Aの場合は零となり、Bの場合は負

域F。との合計18バイトの領域からなる。

【①①05】図5に、サーボ領域下。の記録フォーマッ トを示す。2バイトのサーボ領域下、は1バイトずつサ ーボバイト#1. #2の2つに分けられている。サーボ バイト#1中の3ビット目には第1のウォブルビットP 8ビット目には第2のウォブルビットPagがそれぞ れプリフォーマットされている。この第1のウォブルビ ットP...の位置は、図5に示すように、16トラック (A) のときはPMA のように3ビット目だが、16ト る。このように16トラックごとに第1ウォブルビット P.,,の位置が切替わることにより、サーチ中の横切り上 ラック数が正確に検出できる。

【0006】第1のウォブルピットP...と第2のウォブ ルピットPっとはトラックセンターTCを鏡にトレース 方向左右(追記形光ディスクDKの径方向)にトラック ピッチの1/4だけずらして配置され、第1のウォブル ピットPwiでの戻り光畳と第2のウォブルピットPwiで の戻り光畳の差によってトラッキングエラー検出を行う よろになっている。サーボバイト#2の12ビット目に は同期用のクロックピットCPがプリフォーマットされ ている。第2のウォブルビットP...とクロックビットC Pとの間は19チャンネルクロック長の間隔を有する鏡 面とされており、この間に19チャンネルクロックをカ ウントして各セグメントごとの同期をとるようになって おり、かつ、この同期検出期間でフォーカスエラー検出 も行われる。以上のサーボ領域下。をレーザ光で読取っ たトラッキング用信号Sr, (Srix 又はSria) セク タ同期信号S...。を図5に示している。

【0007】次に、図6を用いて、ウォブルピットによ るトラッキングエラー検出の方法を説明する。Aは、一 対のウォブルビットP…をP…との中心輔(トラック中 心軸)上を該取りビームが通過した場合で、その場合の RF信号はS。として示される。ピット近傍を通過した 場合には光の回新作用により反射光量は少なく暗くな り、図のようにクロックビットCPの直上を通過すると 最も暗くなる。Bは、譲取りピームがトラック中心軸の 内閣側を通過した場合でありそのときのRF信号はS。 として示される。この場合には、ウォブルピットPれの 週側に展開するスパイラル(螺旋)状の信号トラックが 40 直上を通過するため、ウォブルピットP*1による暗部は ウォブルピットPススによる暗部よりさらに暗くなる。C は、読取りビームがトラック中心軸の外周側を通過した。 場合であり、この場合のRF信号はS。として示され、 この場合はS。と逆の波形を示す。

> 【0008】ととで、ウォブルピットPLの時点で信号 サンプリングを行って得られる信号値をSAMPLE (T。)とも、ウォブルビットP。2の時点で信号サンプ リングを行って得られる信号値をSAMPLE(T)) として、両者の差SAMPLE(T。)-SAMPLE

3

の値、Cの場合は正の値となる。従って、SAMPLE $\{T_i\}$ - SAMPLE $\{T_i\}$ = TE ξ ξ ξ . TE をトラッキングエラー信号として利用することができ

[0009]

【発明が解決しようとする課題】上記従来のサンブルサ ーボ方式によれば、サーボ用のウォブルピットP。、、P ぬやクロックビットCPを光ディスク上にあらかじめ形 成しておき(プリピット)、これらのピット列からトラ

【①①10】情報を読取る場合、信号ピットPTの部分 で反射されたレーザ光はビットにより回折され光ビック アップに戻る光量が少なくなり暗部としてとらえられ る。逆に、信号ビットPT同士の中間部は鏡面となって おりレーザ光は全部反射されるので戻り光量は多くなり 明部としてとらえられる。サーボ情報を正確に読取るた めには、これらの明暗を誤りなく読取る必要があるが、 そのためには従来、図7(a)に示すように、トラック ピッチT。はレーザ光のスポット径B。より大きく 6 μ m程度) することが必要であった。

【①①11】この場合において、光ディスクDKの記録 密度を向上させるために、図7(b)または図7(c) に示すように、トラックビッチ T。を従来の1/2

(1). 8 µ m) 程度に短縮した場合を考えると、レーザ ビーム中心が記録トラック軸中心上にあるオントラック 状態の場合と、レーザビーム中心が記録トラック軸中心 から外れたオフトラック状態の場合との光置差が小さく なり、正確なサーボが行えなくなるという問題点が生 じ、トラックビッチを狭くするには眼界が生じていた。 【①①12】これを解決するため、出願人はウォブルビ ットを聞引いて記録するものを提案している(特願平り 3-64978号)。図8は、出願人の提案している倍 密度記録方法に用いるCAV光ディスクのトラック及び ピットの構成を示したものである。

【0013】図8に示すよろに、第2k番目記録トラッ クには記録トラック中心軸からしだけ互いに逆方向に離 して、いわゆる千鳥状にウォブルピットP。(2k-) 1) とウォブルビットP。(2k) とを設け、同期ピッ トPsyncと記録トラック識別用ピットPoer とが記録ト ラック軸上に設けられ、その後にデータ領域が続く構成 となっている。次の第(2k+1)番目記録トラック は、第2k番目記録トラックとは逆の千鳥状にウォブル ピットP。 $\{2k\}$ とウォブルピットP。 $\{2k+1\}$ を有する構成となり、同期ピットPsyncが記録トラック **軸上に設けられるが記録トラック識別用ピットP。。。。 は** 設けられていない構成となっている。

【①①14】との場合、第2k番目記録トラックについ ては、ウォブルビットP。(2k-1)が第1ウォブル ピットP**に組当し、ウォブルピットP* (2k)が第一50 じる。すなわち、第(2k+1)番目記録トラックにオ

2ウォブルピットPwzに組当しているが、第(2 k+ 1)番目記録トラックについては、ウォブルピット P_w (2 k + 1)が第1ウォブルピットP。に相当し、ウォ ブルビットP、(2k)が第2ウォブルビットに組当す ることになる。

【①①15】とのように、第2 K香目記録トラックと第 (2k+1) 番目記録トラックとが互いにウォブルピッ トP、(2k)を共有する形となる。従って、このこと は千鳥状のウォブルピットのうち、いずれか一方を各記 ッキングエラー信号等、サーボ用の各種情報を得ること 10 録トラックについて聞引いたことに帰し、結果として記 録トラックピッチ幅下。=2Lとなり、下。=4Lであ った従来例(図? (a)) と此べ記録トラックビッチT 。は1/2と短縮される。従って、記録しうる記録トラ ック数は2倍に増加するので記録密度は2倍となるので ある。

> 【①①16】図9に図8の光ディスクの記録信号を再生 する再生装置の基本構成を示す。再生装置10円は、設 取ビームLBの再生信号Sょ。(=RF信号)をデコード して再生データDeaを出力するデコーダ11と、図示し 20 ないPLL回路を有し再生信号Seaに基づいてクロック 信号CLK を出力するクロック抽出回路12と、クロック 信号CLK に基づいてサンプリング信号Aの第1サンプリ ング信号SMPP1 、サンプリング信号Bの第2サンプリン グ信号SMPP2 およびトラッキングエラー信号TEの極性 を切換える(反転する)ための極性切換信号POLを出 力するタイミング制御回路13と、第1サンプリング信 号信号SMPP1 に基づいて再生信号SP8をサンプリングし て保持し、サンプリング信号A。を出力する第1サンプ リングホールド回路31と、第2サンプリング信号SMPP 30 2 に基づいて再生信号Spaをサンプリングして保持し、 サンプリング信号B。を出力する第2サンプリングホー ルド回路32と、第1サンプリングホールド回路31お よび第2 サンプリングホールド回路32の出力サンプリ ング信号の差を取り、原トラッキングエラー信号TB として出力する減算器33と、原トラッキングエラー信 号TELの極性を切換えてトラッキングエラー信号TE として出力する極性切換回路20と、を備えて構成され ている。

【① 0 1 7 】 この場合において、ウォブルピットをプリ - フォーマットとして記録する際に、記録装置において回 転ジッタ等が生じ、例えば図10に示すように、第2 k 香目記録トラックのウォブルピットの記録位置と第(2 k+2) 香目記録トラックのウォブルビットの記録位置 とが同一半径線上ではなくずれてしまうと(ずれ量=ム x) 盒にサンプリングタイミングはクロック信号のバ ルス番号=3.5(図中、丸数字で示す。)に固定され ているため、サンプリングタイミングのずれにより第 (2 k + 1) 番目記録トラックの再生を行う際に正しい トラッキングエラー信号を得ることができない場合が生

ン記録トラックの状態でもトラッキングエラー信号TE = Oとはならず正しいトラッキングエラー信号TEを得 ることができない。

【①①18】そこで本発明の目的は、高密度記録のため に記録トラックピッチを読取用レーザビームスポット径 より狭くしてもトラッキングエラー信号を容易に得るこ とができるとともに、トラッキングエラー信号生成用の トラッキングビットの記録位置が記録装置に起因してず れている場合等でも正しいトラッキングエラー信号を生 提供することにある。

[0019]

【課題を解決するための手段】上記課題を解決するた め、本発明は、記録トラックが形成され、前記記録トラ ック内にデータ情報記録用のデータ情報領域と、サーボ 制御情報記録用のサーボ副御情報領域と、を有し、前記 サーボ制御情報領域にトラッキングエラー信号生成に用 いるトラッキングピットが設けられたサンブルドサーボ 方式の光ディスクの再生信号からトラッキングエラー信 号を生成するトラッキングエラー信号生成装置であっ て、前記トラッキングピットの検出タイミングを含む所 定時間幅を有する検出期間で前記再生信号の前記トラッ キングピットに対応するピークレベルを検出保持してビ ークホールド信号として出力するピークホールド回路 と、前記ピークホールド信号に基づいてトラッキングエ ラー信号を生成し出力するトラッキングエラー信号生成 手段と、を、備えて構成する。

[0020]

【作用】本発明によれば、ビークホールド回路は、トラ する検出期間で再生信号のトラッキングピットに対応す るピークレベルを検出保持してピークホールド信号とし てトラッキングエラー信号生成手段に出力する。

【0021】トラッキングエラー信号生成手段は、この ピークホールド信号に基づいてトラッキングエラー信号 を生成し出力する。したがって、トラッキングビットの 記録位置がずれているような場合でも、再生信号からト ラッキングピットに対応するピークレベルを容易に検出 することができ、確実に正しいトラッキングエラー信号 を得ることができる。

[0022]

【実施例】次に図面を参照して本発明の好適な実施例を 説明する。図1に実施例の光ティスク再生装置の主要部 の構成図を示す。

【0023】光ディスク再生装置10は、再生信号S。。 をデコードして再生データDegとして出力するデコーダ 11と、再生信号Seaからクロック信号CLK を抽出し出 力するPLL回路12と、クロック信号CLK に基づい で、リセット信号RST、第1サンプリングタイミング 信号SMP1、第2サンプリングタイミング信号SMP2および「50」回路15は、ビークホールド信号PHのサンプリングを

極性切換信号POLを出力するタイミング制御回路!3 と、リセット信号RSTに基づいてトラッキングビット であるウォブルビットに対応するピークレベルを検出し 保持してビークホールド信号P目を出力するピークホー ルド回路14と、第1サンプリングタイミング信号SMP1 に基づいてピークホールド信号P目のサンプリングを行 い第1サンプリング信号Aとして出力する第1サンプリ ングホールド回路15と、第2サンプリングタイミング 信号SMP2に基づいてピークホールド信号P目のサンプリ 成することができるトラッキングエラー信号生成装置を 10 ングを行い第2サンプリング信号Bとして出力する第2 サンンプリングホールド回路16と、第1サンプリング 信号Aおよび第2サンプリング信号Bに基づいて原トラ ッキングエラー信号TE'を出力する滅算器17と、極 性切換信号POLに基づいて、原トラッキングエラー信 号の極性反転/非反転を行いトラッキングエラー信号下 Eとして出力する極性切換回路18と、を備えて構成さ れている。

> 【①024】次に図2を参照してトラッキングエラー信 号生成動作について説明する。まず、 図2(a)に示す 20 よろに、読取ビームが記録トラックTR」。...上をトレー スする場合について説明する。この場合において、ウォ ブルビット記録時の記録装置の回転ジッタ等により各サ ーボ用ビットの位置ずれ(ずれ置:△x)が起っている ものとする。

【①①25】はじめに記録トラックTR」。を譲取ビーム LBにより再生した時に得られるQK 信号に対応するサ ンプリングタイミング信号 SMPP1 、SMPP2 (図2(c) 参照) に基づいて再生信号 See をサンプリングした場合 を考慮してみると、図2(b)の再生信号Seeの曲線上 ッキングピットの検出タイミングを含む所定時間帽を有 30 に "×"印で示すように、ウォブルビットPW。 につ いてはサンプリングタイミングがずれることとなり、正 しいトラッキングエラー信号TEを得ることができな Ĺì.

> 【0026】そこで、本実施例においては、ピークホー ルド回路14により、再生信号Seaをウォブルビットに 対応するピーク検出タイミングを含む所定時間幅のサン プリング時間でサンプリングし、ウォブルピットに対応 するビーク値を検出保持し、これに基づいてトラッキン グエラー信号TEを生成している。したがって、ウォブ 40 ルピットに対応するピーク位置を厳密に考慮することな くトラッキングエラー信号を得ることができる。

【0027】具体的には、時刻も、にリセット信号RS 干が立上がると、ピークホールド回路 1.4 は、ウォブル ピットPW、このピークレベルのサンプリングを開始 し、サンプリング値に対応するピークホールド信号P目 を出力する。とのピークホールド信号P目は時刻 t 。に 最大値となり、その値を保持することとなる。

【①①28】その後、時刻も。に第1サンプリングタイ ミング信号SMP1が立上がると第1サンプリングホールド

行い、ウォブルビットPW、 に対応する再生信号See のビーク値をサンプリング信号Aとして出力する。

【①029】次に時刻も、になると再びリセット信号R STが立上がり、ピークホールド信号P貝はりにリセッ トされるとともに、今度はウォブルビットPW。のビー クレベルのサンプリングを開始し、サンプリング値に対 応するピークホールド信号P目を出力する。このピーク ホールド信号PHは時刻も、に最大値となり、その値を 保持することとなる。

ミング信号SMP2が立上がると第2サンプリングホールド 回路 16は、ビークホールド信号PHのサンプリングを 行い、ウォブルビットPW。に対応する再生信号Seaの ピーク値をサンプリング信号Bとして出力する。

【①①31】これにより、減算器17は次式により原下 ラッキングエラー信号TE'を求め出力する。

TE' = A - B

この原トラッキングエラー信号TETは、光ディスクが 図2(a)に示すような構成の場合。光ビームしBがト (2n. 2n+2、…) の場合と、記録トラック番号が奇数 (2n+1, 2n+3, …) の場合とでは、読取ビームしBのト レースしている記録トラックからのずれ方向による符号 が反転する。すなわち、偶数番号の記録トラックでは、 図面上、上側に読取ビームしBがずれた場合には、原ト ラッキングエラー信号TE゛>0となり、逆に下側に読 取ビームLBがずれた場合には、原トラッキングエラー 信号く()となるが、奇数番号の記録トラックでは、図面 上、上側に該取ビームLBがずれた場合には、原トラッ キングエラー信号TE「<)となり」逆に下側に読取じ、30、ピークレベルを容易に検出することができ、確実に正し ームLBがずれた場合には、原トラッキングエラー信号 > () となる。

【0032】そこで、タイミング制御回路13は現在ト レースしている記録トラックが偶数番号の記録トラック または奇数香号の記録トラックのいずれかであるかに基 づいて、極性切換信号POLにより極性切換回路 18を 制御し、偶数番号を有する記録トラックでは、

TE = TE

とし、奇数香号を有する記録トラックでは、

TE = -TE

として、鴬に読取ビームしBのずれ方向に対応する極性 を有するトラッキングエラー信号TEを出力させること ができる。

【0033】その後、時刻も,に、再びリセット信号R STが立上がり、ピークホールド信号P耳はりにリセッ トされることとなる。以上の説明のように、本実能例に よれば、ウォブルビットのようなトラッキングビットの 記録位置の位置ずれが生じていたとしても、ピークホー ルド回路14のサンプリング時間中にトラッキングピッ トに対応する再生信号S<footnote>のピーク検出タイミングが含 50 説明する図である。

まれれば、容易にトラッキングエラー信号TEを得るこ とができる。

【①①34】以上の実施例においては、偶数番号の記録 トラックにウォブルピットを設けていたが、奇数番号の 記録トラックにウォブルビットを設けるように構成する ことも可能である。この場合、極性切換回路 18の極性 切換えを上述の説明の場合と反対にする必要がある。

【0035】また、以上の説明においては、トラッキン グ用ビットとしてウォブルビットを用いる場合について [0030] その後、時刻も。に第2サンプリングタイ 10 説明したが、図3(a)に示すように、記録トラックが 1本の螺旋曲線状に形成されているとともに、隣接する 復数(図3(a)では4個)の記録トラック間で相異な る半径線上かつ各記録トラック上にトラッキングビット TPを形成する場合についても、本発明の適用が可能で ある。この場合、トレースしている記録トラック毎にリ セット信号の発生タイミングを変更する必要がある。

【①036】さらに、以上の説明においては、記録トラ ックが1本の螺旋曲線状に形成されている場合について 説明したが、例えば、図3(り)に示すように、3本の レースしている記録トラックの記録トラック番号が偶数 20 並行する記録トラックが螺旋曲線状に形成され(いわゆ る。3本スパイラル構造)、 中央の記録トラックTRm 、にのみトラッキングピットTPが形成される様な場合 にも本発明の適用が可能である。

[0037]

【発明の効果】本発明によれば、ピークホールド回路で 検出したトラッキングピットに対応するピークレベルに 基づいてトラッキングエラー信号を生成し出力するの。 で、トラッキングピットの記録位置がずれているような 場合でも、再生信号からトラッキングビットに対応する いトラッキングエラー信号を得ることができる。

【図面の簡単な説明】

【図1】光ディスクの再生装置の概要構成を示すプロッ ク図である。

【図2】トラッキングエラー信号の生成を説明する図で ある。

【図3】本発明の他の真施例を説明する図である。

【図4】サンプルドサーボ方式の記録フォーマットを説 明する図である。

【図5】従来のサーボ領域の記録フォーマットを説明す る図である。

【図6】従来のウォブルビットによるトラッキングエラ 一検出を説明する図である。

【図7】従来の問題点を説明する図である。

【図8】従来の問題点を解決するための提案を説明する 図である。

【図9】図8の提案に対応する再生装置の概要構成を示 すブロック図である。

【図】()】図8の提案における改良すべき点を説明する

19

【符号の説明】

10…再生装置

11…デコーダ

12…PLL回路

13…タイミング制御回路

14…ピークホールド回路

15…第1サンプリングホールド回路

9

16…第2サンプリングホールド回路

17…減算器

18…極性切換回路

A…サンプリング信号

* B…サンプリング信号

Q.K …クロック信号

D_{Fe}…再生データ

PH…ピークホールド信号

POL…極性切換信号

RST…リセット信号

Sra…再生信号

SMP1…第1 サンプリングタイミング信号

SMP2…第2サンプリングタイミング信号

10 TE…トラッキングエラー信号

* TE'…原トラッキングエラー信号

[201]

10:元元スク再生装置

[図3]

[図4]

(b) [3 ホスパイフル構造]

[図5]

_

[図7]

ABSTRACT OF THE DISCLOSURE

PROBLEM TO BE SOLVED: To prevent instability of tracking control due to deviation of balance of a tracking error signal caused by movement of a field of vision of an object lens.

SOLUTION: Tracking support control is performed by a hysteresis tracking error signal Teh generated by masking a signal of a half period of an off-track of a tracking error signal. A transistor 146 is turned off by an inverse ENABLE signal indicating a time immediately after thread high speed feed for a tracking error signal TPP (TE) calculated by a tracking error calculation circuit 60, when a validated mirror signal MIRR is a high level indicating detrack, a transistor 144 is turned on, a hysteresis tracking error signal Teh reducing the tracking error signal to a ground level is generated, and tracking servo control is performed. Any component of the tracking error signal is reduced to a half, and oscillation of tracking servo control can be prevented.