Millimetre Wave and Short-Range Propagation

Sana Salous Assignment Project Exam Help School of Engineering and Comupting Sciences

Durham Universityhttps://tutorcs.com
Sana.salous@durham.ac.uk

WeChat: cstutorcs

Outline

- 1. Why Mm wave band
- 2. Candidate Gregign wheelt Project Exam Help
- 3. Working Groups https://tutorcs.com
- 4. Possible use scenarios: Point to point and point to multi-point WeChat: cstutorcs
- 5. Propagation in the mm wave band
- 6. Wideband channel functions, and extraction of relevant channel parameters such as delay spread, and Doppler spread
- 7. Estimation of channel parameters

Mm wave band

Assignment Project Exam Help
MM wave band (1 cm-1 mm): Extra High Frequency (EHF) 30-300 GHz

https://tutorcs.com

Research is focussed on > 6 GHz to 100 GHz

WeChat: cstutorcs

Primary motivation

- Projected increase in mobile data traffic
- Availability of large contiguous spectrum in the mm wave band
- RF and transaging the state of the RF and transag
- Small wavelength enables beamforming through the use of large antenna arrays

Summary of bands identified by Ofcom as having potential for 5G

Ofcom frequency bands > 6 GHz

Frequency	Assignment	20 749;64 7	Ex 49-60 1914 10	60-100 GHz
Range	1 10018			
Specific	10.125-10.225	31.8-33.4	40.5-43.5	66-71
bands	10.47 5-110.3575 //	tutores.co	m	
identified	•		45.5-48.9	
Potential	2 x100 MHz ha	1.6 GHz	5.8 GHz	5 GHz
bandwidth	WECH	ii. Csiuioi	CS	

WRC15 bands

WRC15 Band (GHz)	Designation
24.25-27.5	roject Exam Help
31.8h3364://tut	orcs.com
37-43.5	III
45.5 % Chat:	cstutorqs
50.4-52.6	V
66-76	VI
81-86	VII

Working Groups

1. IEEE 802.11 Next Generation 60 GHz ISM band (NG60) Study Group

Assignment Project Exam Help

2. NIST formed the corner alliance for 5G mm wave-channel model Next Generation 60 GHz TEEP 802.11 TO ay S. COM

WeChat: cstutorcs

3. ITU: CG 5 on Radio Measurement Equipment and CG6 on channel modelling above 6 GHz

NG60 Indoor P2P Scenarios

Applications and Characteristics	Propagation conditions	Throughput	
Ultra Short Range (USR) Communications -Static,D2D, -Streaming/Downloading	LOS <10cm	~10Gbps	
8K UHD Wireless Transfer at Smart Home - Uncompressed 8K UHD Streaming	Projects Exan	n Help	
Augmented Reality and Virtual Reality -Low Mobility, Depttps://tu	itopesteom	~20Gbps	

WeChat: cstutorcs

NG60 Indoor P2P/P2MP Scenarios

Data Center NG60 Inter-Rack		
Connectivity	LOS <10m	~20Gbps
-Indoor Backhaul with multi-hop*		
Video/Mass-Data Distribution/Video		
on Demand System	Indoor, LOS/NLOS	> 20Clara
- Multicast Streaming/Downloading	<100m	>20Gbps
- Dense Hotspots A	D : .	-4 T

Train

Bus

Aeroplane

Class room

Exhibition

Conference

NG60 Outdoor P2P/P2MP Scenarios

Applications and Characteristics	Propagation conditions	Throughput	R R
Mobile Front-hauling	Outdoor, LOS <200m	~20Gbps	H
Wireless Backhauling with Single Hop -Small Cell Backhauling with Single hop	Outdoor, LOS Snment Pro	je ²⁰⁶⁶ Ex	R
Wireless Backhauling with Multi- hop -Small Cell Backhauling with multi- hop	1ttps://tost01	_	Base Band Unit (BBU)
AP AP	WeChat: cs	tutores	Backhaul
Durham University	Multi-hop		Single hop

Radio Resopragration to Examination Resources

https://tutorcs.com

WeChat: cstutorcs

Propagation mechanisms

Line of sight (LOS)

https://tutorcs.com

Diffraction transmission path is obstructed by a dense body with large dimensions compared to the wavelength of by Strike With large irregularities.

Scattering wave incident on surface with dimensions on the order of a wavelength or less). Irregularities such as in tropospheric scatter.

Refraction: variations of refractive index such as in the troposphere and in the ionosphere. light in a prism. Important for HF frequencies

Measured penetration loss

Frequency dependence of penetration loss

Assignment Project Exam Help Three wall partition between antennas

900 MHz	https://tutous.com	28.8 GHz
18.9 dB	WeChat ²⁶ c ⁸ tutorcs	36.2 dB

Report by the

National Telecommunications and Information Administration, US

mm wave penetration loss

Frequency 60 GHz	Plastic 0.8 cm	Plywood 0.8 cm	Wood 1.8 cm	Tampered glass 0.7 cm
Vertical polarisation		ent Project E	_	4 dB
Horizontal polarisation	4. h 4tps	s://tut@#@s.con	n 8.48	3.97

WeChat: cstutorcs

IEEE 802.11 report on Transmission and Reflection Measurements

Diffraction and exattering

https://thords.com

WeChat: cstutorcs

mm wave band diffraction loss

Empirical model from measurements at 28 GHz for 90° edge around a building:

L = 6.5 dB $0 \ge Assignment Project Exam Help$

$$L = 5ln\theta_d + 18$$
 $0.1^o \frac{\text{https://stutoro}}{5}$

$$L = 0.74\theta_d + 75$$
 $5^o \ge \theta_d \ge 40$ t: cst

Rain scattering in mm wave

Rain drop scattering. Rayleigh criterion

 $\pi D/\lambda <<1$ where A is the diameter of the particle $\pi nD/\lambda <<1$ where n is the refractive index.

Example: D=1mm, at 6hclbs.withutorcs.com¹

 $\pi n D/\lambda = 0.2 << 1$

WeChat: cstutorcs

Rayleigh scattering

Mie scattering

Scattering loss

Scattering power to free space

$$10 \log \left(P_r^{scat} / P_A^{fs}\right)$$
 ighner for deleger the log $S - 20 \log d - 81$ https://tutorcs.com

Wischenfrequency in GHz

R is the rain rate in mm/hour

V is the common volume in km³

S is a correction for non Rayleigh effects above 10 GHz

S=0 for f<10 GHz, f>10 GHz 10log S = R0.4 4x10-3 (f - 10)1.6

d distance between transmitter and receiver

Specifics of propagation characteristics in mm band

Assignment Project Exam Help

Gaseous pand train Absorption

WeChat: cstutorcs

ITU-R recommendations

ITU-R P676-10: Gaseous absorption

Model input parameters: Project Exam Help temperature, ambient pressure, and water vapour density.

Use can be made of https://tutorcs.com

ITU-R P.836-5 water vapour density

ITU-R P1510 mean annual surface emperature

ITU-R P.840-6: Fog absorption

ITU-R P838-3: Rain absorption

ITU-R P 837-6: Rain rates

Rain attenuation model ITU-R P838-3

At 60 GHz

Rain:10 dB/km at 25 mm/hr increasing to 30 dB/km at 100 mm/hr rainfall

Gaseous absorption

Gaseous: 0.3-0.5 dB/km for frequencies up to 38 GHz and 70-100 GHz

Fog absorption

as high as 5dB/km at 100 GHz for 1g/m³

Propagation in the built environment

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

ITU-R Study Group 3 Correspondence Groups

CG 3K-6: ITU-R P.1238-10 and ITU-R P. 1411-10 Model hampgization of path loss amphels (Samsung Korea)

https://tutorcs.com

CG 3J-3K-3M-8:WFEBRE csturers Building entry loss model (UK)

CG 3K-3M-12: ITU-R P. 2108-0 Clutter loss prediction (Ofcom, Intel)

FMCW Channel Sounder

Rubidium unit DDS and 2.2-2.95 GHz

mm Transmitter Receiver mm

WRC15/WRC19 frequency bands

WRC15 Band (GHz)	Bandwidth (GHz)
24.25-27.5	3.25
31.8-33.4	1.6
As §7g43 ment Proj	ect ExampHelp
45.5-50.2 45.5-47,4405-48.2	4.7
50.4.52.6 hat: cst	-
66-76	10
66-71	5
81-86	5

With 14.75 GHz harmonized worldwide, ~ 85% of global harmonization

CG 3K-6: ITU-R P 1411Environments

- 1. Urban very high rise: high density 10's floors
- 2. Urban high rise: several floors over rooftop propagation Assignment Project Exam Help
- 3. Urban low rise Author Postersy
- 4. Residential: single/double storey
- 5. Rural: small houses large gardens

Outdoor mm wave measurements

Outdoor mm wave measurements

Path loss model

Single frequency vs multiple frequency

Assignment Project Exam Help

$$PL_{logDist}(d) = 10\alpha \log_{10}(d) + \beta dB$$

https://tutorcs.com

$$PL(d, f) = 10\alpha \log_{10}(h) + gstutorcog_{10}(f) dB$$

with an additive zero mean Gaussian random variable $N(0, \sigma)$ with a standard deviation σ (dB)

Environments: UK, Japan, Korea

Multi-band Residential NLOS Measurements

Adopted model for below rooftop

Frequency range (GHz)	Distance range ∆ s ⟨₧}nm	Type of environment Project Furban high-rise,	LoS/ NLoS	α He	β	γ	σ
0.8-73	5-660	Urban high-rise, Urban low-rise/ S:// butora 8.CO	LoS	2.12	29.2	2.11	5.06
0.8-38	30-715	Urban high-rise		4.00	10.2	2.36	7.60
10-73	30-2We	Chraten estriter Suburban	S LoS	5.06	-4.68	2.02	9.33
0.8-73	30-170	Residential	NLoS	3.01	18.8	2.07	3.07

ITU-R 1238-10 measurement scenarios

Indoor Ceiling height to user, Tx=2.35 m, Rx=1.5 m

Towards a new model: corridor

Adopted model for 1238-11

Environment	LoS	Frequency	Distance	α	β	γ	σ
	Assig	nment Pro (GHz)	ject Ex	am F	Help		
Office	LoS 1	0.3+83.5	2-27	1.46	34.62	2.03	3.76
	NLoS	11p _{0.3} -/82.001	CS ₄ C37111	2.46	29.53	2.38	5.04
Corridor	LoS	0.3-83.5	2–160	1.63	28.12	2.25	4.07
	NLoS V	/ 61613283.CS	tutogcs	2.77	29.27	2.48	7.63
Industrial	LoS	0.625-70.28	2–101	2.31	24.52	2.06	2.69
	NLoS	0.625-70.28	5–108	3.79	21.01	1.34	9.05

CG 3J-3K-3M-8: ITU-R P. 2109-1 Building entry loss model

Building classification

Assignment Project Exam Help

https://tutorcs.com

Thermally-efficient: metallised glass, foil-backed paners Chat: cstutorcs

Traditional' buildings without such materials

Type of properties measured

Traditional

Modern

Assignment Project Exam Help

Victorian House

80s build

Üserhuus

Weinerberger-E4

Building Research Establishment (BRE) in Watford, UK

CG 3K-3M-12: Clutter loss prediction ITU-R P. 2108 Clutter Loss Measurements UK

Combined Clutter Loss and BEL Wideband Measurement Scenario

Combined Clutter and BEL measurements

FIGURE 5

Scenario side view

Measurement scenarios

On body: dismounted soldier

Transmitter

Assignment Project Exam Help

Indoor: WiFi

Receiver

TX=2.35 m, Rx=1.5 m

Outdoor:

back haul building to building, lamp post to user, cellular

Example of Measurements

Durham University On body

Indoor

rms 0.69 ns at 20dB vs 10.65 at 30 dB ns

Impact of precipitation

Future plans: 5G/6G

> WRC23: 140-170 GHz, and genment Project Exam Help 235-300 GHz https://tutorcs.com **-**н₂о > Models: IndooWeChar: estutores outdoor, 10¹ Frequency 10^{2} GHz Precipitation measurements

