Схемы оценивания 10 класс

Код работы_____

Задание 1. Цирковая разминка

Пункт	Содержание	Всего	Всего	Баллы	Оценки
		за	3a		
		часть	пункт		
Задача	1. Девочка на шаре	15	<u> </u>		
1.1	Условия равновесия:		4		
	- сумма сил равна нулю;			1	
	- сумма моментов сил равна нулю;			1	
	- условие устойчивости равновесия;			2	
	Энергетический поход:		11		
	- потенциальная энергия минимальна;			3	
	- потенциальная энергия пропорциональна				
	высоте центра масс;			1	
	- рисунок (с указанием положения ЦМ);			2	
	- вычисление высоты ЦМ формула (1);			2 2 2	
	- разложение по малому углу отклонения (4);			2	
	- условие равновесия (5);			1	
	Альтернатива: расчет моментов;		11		
	- моменты рассчитываются относительно				
	точки касания;			1	
	- момент силы тяжести – «возвращающий»;			2	
	- рисунок с указанием сил и их плеч;			2 2	
	- расчет плеча силы тяжести;			1	
	- условие равновесия (4):			2 2	
	- приближение малых углов;			2	
	- условие равновесия (5).			1	
Задача	2. Канатоходцы	20			
2.0	Расчет удлинения проволоки (1);		9	1	
	Приближение малого провисания (2);			2	
	Относительное удлинение (3);			1	
	Условие равновесия (4);			2	
	Приближение малого угла (5);			1	
	Связь силы упругости и удлинения (6)			2	
2.1	Доказательство линейности деформации;		7	2	
	Формула для силы (8)			1	
	Уравнение (9);			1	
	Формула для провисания (10);			2	
	Численное значение х			1	
2.2	Использование предельной точки;		4	1	
	Использование уравнения (6);			1	
	Максимальная масса:				
	- формула;			1	
	- численное значение;			11	
	За не правильное округление -1 балл				
	ВСЕГО за задание 1	35			

Задание 2. Газовые законы

Пункт	Содержание	Всего	Всего	Баллы	Оценки
11,111(1	СОДОРЖИНИС	3a	3a	Builibi	одении
		часть	пункт		
Часть	1. Горизонтальный сосуд.	35			
1.0	Уравнение состояния газа;		6	2	
	1 закон термодинамики;			2	
	Выражение для внутренней энергии газа.			2	
1.1	Условия термодинамического равновесия (1)-(2)		13	2	
	Уравнения состояния (2)-(3)			2	
	Значения объемов V_{1a}, V_{1b}			2	
	Уравнение закона сохранения энергии (7)			2	
	Газ работы не совершает			1	
	Значения давлений (8)			2	
	Значения температуры (10)			2	
1.2	Значения объемов и параметров в части b неизменны		9	2	
	Изменение энергии равно количеству теплоты Уравнение (13)			2	
	Значение давления (15)			3	
	Значение температуры (17)			2	
1.3	Условия равновесия (18)		7	1	
	Значение давлений (20)			3	
	Значения температур (22)			3	
Часть 2	2. Вертикальный сосуд.	15			
2.1	Значения начальных объемов		15	1	
	Значения конечных объемов			1	
	Уравнение 1 закона термодинамики (27)			1	
	Разность давлений постоянна			1	
	Вычисление работы газа (28)			2	
	(изменение потенциальной энергии поршня)				
	Вычисление изменения внутренней энергии (29)			3	
	Вычисление ΔP			2	
	Выражение для изменения внутренней энергии (33)			2	
	Окончательное выражение для количества теплоты (34)			2	
	ВСЕГО за задание (2)	50			

Задание 3. Поле в диэлектрике

Пункт	Содержание	Всего	Всего	Баллы	Оценки
11/11111	Содержине	3a	3a	Buildi	одении
		часть	пункт		
Часть	. Нормальное поле	40			
1.1	Определение емкости конденсатора		6	1	
	выражение для заряда на обкладке			1	
	выражение для разности потенциалов			2	
	Формула для напряженности (3)			2	
1.2	Основная идея – суперпозиция полей		7	2	
	Уравнение (4)			1	
	Уравнение (5)			1	
	Формула для поверхностной плотности (6)			2	
	Формула (7)			1	
1.3	Суперпозиция полей (7)		7	2	
	Связь между полями (8)			2	
	Использование «определения» ε			1	
	формула для плотности заряда (9)			2	
1.4	Напряженности полей вне и внутри пластины (10)-(11):		20	2	
1.4.1	формулы для плотностей зарядов; правильные знаки		4	2 2	
1.4.2	Емкость конденсатора		4		
	Расчет разности потенциалов (13)			2	
	Формула для емкости конденсатора (14)			2	
1.4.3	Давление поля		10		
	формула для давления (16)			2	
	Учет напряженности только внешних полей			3	
	формула (17)			2	
	окончательное выражение (18)			2	
	Пластина растягивается			1	
Часть	2. Наклонное поле	25			
2.1.1	Постоянство тангенциальных составляющих (обоснование)		7	2 1	
	Условие для нормальных составляющих (20)			2	
	Использование «тангенсов»			1	
	Закон преломления (22)			1	
2.1.2	Выражение для модуля поля внутри пластины (23)		3	2	
	Выражение для отношения полей (24)			1	
2.2.1	Выбор траектории для расчета разности потенциалов		10	2	
	Выражение для разности потенциалов (25)			1	
	Формула для разности потенциалов (28)			4	

	Формула для заряда на обкладках			1	
	Формула для емкости (29)			2	
2.2.2	Использование разложения косинуса		5	1	
	Преобразования (30)			2	
	Окончательный результат (31)			2	
	ВСЕГО за задание 3	65			

Итоговая ведомость

Код	работы	

	Задание 1	Задание 2	Задание 3	Всего за ТТ
Оценки после проверки				
Подпись проверяющего				
Изменения после ознакомления				
Итоговые баллы				
Подпись участника				
Подпись члена жюри				