INTRODUCTION TO NUMERICAL METHODS

Professor Dr. Pramote Dechaumphai Faculty of Engineering Chulalongkorn University

WHY NEED TO STUDY NUMERICAL METHODS

- Large or complex problems can not be solved analytically.
- "Black-box programs" are expensive and incapable to solve problems needed.
- Most of future courses will include Numerical Methods to solve for solutions.
- First step toward higher-level computations, as well as higher education.

WAYS TO SOLVE PROBLEMS

- > Through Mathematics for exact solutions, or
- > Through Numerical Methods, e.g.
 - Finite Difference Method
 - Finite Element Method

for approximate solutions.

MOTIVATING EXAMPLE

Newton's second law: F = m

Here F is the net force, $F = F_1 - F_2$

MOTIVATING EXAMPLE

Where F_1 is the gravitational force, i.e.,

$$F_1 = mg$$

m is the mass of the Shuttle, g is the gravitational constant. The air resistance force F_2 may be assumed to vary linearly with the velocity v,

$$F_2 = cv$$

where c is the drag coefficient. Then the Newton's second law becomes,

$$mg - cv = ma$$

MOTIVATING EXAMPLE

Writing acceleration in term of velocity,

$$mg - cv = m\frac{dv}{dt}$$

leads to a linear ordinary differential equation,

$$\frac{dv}{dt} + \frac{c}{m}v = g$$

Here, the velocity v which is function of time t can be solved,

- (a) analytically for exact solution
- (b) numerically for approximate solution

EXACT SOLUTION

ordinary
ODE:

$$\frac{dv}{dt} = g - \frac{c}{m}v$$

Separating the variables then performing integration,

$$\int \frac{dv}{g - \frac{c}{m}v} = \int dt$$

which yields,

$$-\frac{m}{c}\ln\left(g-\frac{c}{m}v\right) = t+A$$

where A is the integrating constant that can be determined from an initial condition, e.g. v(t = 0) = 0, to get

EXACT SOLUTION

$$A = -\frac{m}{c} \ln g$$

 $A = -\frac{m}{c} \ln g$ Substitute back and rearrange terms to get exact solution,

$$v = \frac{mg}{c} \left(1 - e^{-\frac{c}{m}t} \right)$$

Note that as time t approaches infinity, which means the air resistance and the gravitational forces are equal, then

$$v(t \to \infty) = \frac{mg}{c}$$

EXACT SOLUTION

If we let
$$m = 90,000$$
 kg

 $c = 450$ kg/sec

 $g = 9.8$ m/sec²

then,

			Time t, sec	Velocity v, m/sec
			0	0
v(t)	=	$1,960(1-e^{-0.005t})$	30	273
			60	508
			90	710
			120	884
			150	1,034
			180	1,163
				• •
			•	•
			∞	1,960

NUMERICAL SOLUTION

We approximate dv/dt which is the slope by

$$\frac{\Delta v}{\Delta t} = \frac{v_2 - v_1}{t_2 - t_1}$$

i.e., as $\Delta t \rightarrow 0$ then $\Delta v/\Delta t \rightarrow dv/dt$ where Δt is called then time step

Substitute into ODE to get,

$$\frac{v_2 - v_1}{\Delta t} + \frac{c}{m}v_1 = g$$

NUMERICAL SOLUTION

Or, in a more general form,

$$\frac{v_{i+1} - v_i}{\Delta t} + \frac{c}{m}v_i = g$$

where $i = 1, 2, 3, \dots$ Rearrange terms to get,

$$v_{i+1} = v_i + \Delta t \left(g - \frac{c}{m} v_i \right)$$

With the values assigned, then

$$v_{i+1} = v_i + \Delta t (9.8 - 0.005 v_i)$$

i.e., knowing v_i we can compute v_{i+1} directly.

COMPARATIVE SOLUTIONS

			Velocity, m/sec	
i	<i>i</i> +1	t, sec	Numerical	Exact
0	1	30	294 ALINA	273
1	2	60	544	508
2	3	90	756	710
3	4	120	937	884
4	5	150	1090	1034
5	6	180	1221	1163
•	•	•	•	•
•	•	•	•	•
49	50	1500	1959	1959

Note: Time step Δt used for numerical solution is 30 sec.

จึงปรุ่งของปกับ COMPARATIVE SOLUTIONS

Note: Time step Δt used for numerical solution is 30 sec.

ADVANTAGES OF NUMERICAL METHOD

- □ Exact solution requires longer time to derive.
- □ Numerical solution easily obtained by writing a short computer program.
- ☐ More accurate solution achieved by reducing time step
- \Box If $F_2 = cv^4$, then ODE is nonlinear,

$$\int \frac{dv}{dt} + \frac{c}{m}v^4 = g$$

- -Exact solution is not easy to derive.
- Numerical solution obtained through same procedure.

COMPUTERS

Types:

- 1. Microcomputers
- 2. Work Stations
- 3. Mainframes
- 4. Supercomputers

Languages:

- 1. FORTRAN
- 2. PASCAL
- 3. C

Etc.

SAMPLE PROGRAM

27947

FORTRAN

```
PROGRAM SHUTTLE

T = 0.

DT = 30.

V = 0.

DO 10 I=1,50

V = V + DT*(9.8 - .005*V)

T = T + DT

WRITE(6,100) T, V

100 FORMAT(2F12.0)

10 CONTINUE

STOP

END
```

ひりみり

PASCAL

```
PROGRAM SHUTTLE;
VAR T,DT,V : real;
    I : integer;
BEGIN
    T := 0.;
    DT := 30.;
V := 0.;
FOR I := 1 TO 50 DO
    BEGIN
        V := V + DT*(9.8 - 0.005*V);
        T := T + DT;
        WRITELN(T : 12 : 0, V : 12 : 0)
END.
```

WRITING COMPUTER PROGRAM

Example Develop a program to compute sine and cosine for angles from zero to 180 degrees with increment every 10 degrees. Given the infinite series of sine and cosine functions,

$$sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$$

$$cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

where x is in radians.

PROGRAM AND RESULTS

c	PROGRAM SINCOS PROGRAM FOR COMPUTING SIN AND COSINE					
C	FUNCTIONS FOR ANGLES FROM 0 TO 180 DEGREES					
C	WITH INCREMENT AT EVERY 10 DEGREES					
	PI = 4.*ATAN(1.) $DEG = 0.$					
	DEL = 10.					
	WRITE(6,100)					
	FORMAT(/, 5X, 'DEGREES',					
7	* 10X, 'SIN', 12X, 'COS', /)					
	DO 10 IDEG=1,19					
	X = PI*DEG/180.					
	SUMS = X					
	SUMC = 1.					
	TERMS = X TERMC = 1.					
	SIGN =-1.					
	DO 20 N=1,100 MS = 2*N + 1					
	MS = 2*N + 1 $MC = 2*N$					
	TERMS = TERMS* $X*X/(MS*(MS-1))$					
	TERMC = TERMC $\times X \times X / (MC \times (MC-1))$					
	SUMS = SUMS + SIGN*TERMS					
	SUMC = SUMC + SIGN*TERMC					
	SIGN = -SIGN					
20	CONTINUE					
	WRITE(6,200) DEG, SUMS, SUMC					
200	FORMAT (F10.0, 2F16.6)					
	DEG = DEG + DEL					
10	CONTINUE					
	STOP					
	END					

DEGREES	SIN	cos
0.	.000000	1.000000
10.	.173648	. 984808
20.	.342020	. 939693
30.	.500000	.866025
40.	. 642788	.766044
50.	.766044	. 642788
60.	.866025	.500000
70.	. 939693	.342020
80.	. 984808	.173648
90.	1.000000	.000000
100.	. 984808	173648
110.	. 939693	342020
120.	.866025	500000
130.	.766044	642788
140.	. 642788	766044
150.	.500000	866025
160.	.342020	939693
170.	.173648	984808
180.	.000000	-1.000000

TYPES OF ERROR

GKLAL DISU

Error introduced from:

- 1. Mathematical modeling (e.g. discretization)
- 2. Propagation itself (e.g. from step to step)
- 3. Data (e.g. shuttle mass is not constant)
 4. Blunder (e.g. careless)
- 5. Truncation (e.g. chopping infinite series) for air Espect ais wat in exercision
- 6. Round-off (e.g. value of π)

ROUND-OFF ERROR

For example,

$$\pi = 3.141592653589793238462643...$$

The value of π above consists of 25 significant figures that can be stored in supercomputer, whereas a typical personal computer may store the value of π with only 10 significant figures as,

$$\pi = 3.1415926535$$

This causes round-off error which will also propagate if such value is used repeatedly in computation.

SIGNIFICANT FIGURES

 $\pi = 3.14159$ has 6 significant figures. Easier to write in form of floating point, i.e. $\pi = 0.314159 \times 10^{1}$

This means the values 0.0001278, 0.001278 0.01278 all have 4 significant figures because they can be written as 0.1278×10^{-3} , 0.1278×10^{-2} , 0.1278×10^{-1} , respectively.

TRUE ERROR

The true error, E_t , is defined by,

$$E_t = v_e - v_a$$

where v_e is the exact solution and v_a is the approximate solution.

Then the true percentage error, ε_t , is,

$$\varepsilon_t = \frac{v_e - v_a}{v_e} \times 100\%$$

For example, the true percentage error of shuttle velocity at 30 sec. is,

$$\varepsilon_t = \frac{273 - 294}{273} \times 100\% = -7.69\%$$

APPROXIMATE ERROR

For practical problems, exact solution is not available. The approximate percentage error, ε_a , is defined by,

$$\mathcal{E}_{a} = \frac{v_{new} - v_{old}}{v_{new}} \times 100\%$$

61813

For example, velocity at 30 sec using $\Delta t = 30$ sec is 294 m/sec, whereas the velocity at 30 sec using $\Delta t = 10$ sec is 280 m/sec, thus

$$\varepsilon_a = \frac{280 - 294}{280} \times 100\% = -5.00\%$$