# Signals and Systems

**Lab 5 Report** 

Erkan Tiryakioğlu

# **Part 1: Sampling at Different Rates**

```
Editor - C:\Users\asus\Desktop\SignalsAndSystems Lab5\part1.m
    part1.m × +
                  fs_orig = 1000;
                                                                                                                                                                                           0
                  f_{signal} = 50;
                 t = 0:1/fs_orig:0.1;
   3
                 x = sin(2*pi*f_signal*t);
   4
                 fs1 = 200;
fs2 = 100;
   6
                 fs3 = 50;
   8
   9
  10
                 n1 = 0:1/fs1:0.1; x1 = sin(2*pi*f_signal*n1);
                 n2 = 0:1/fs2:0.1; x2 = sin(2*pi*f_signal*n2);
n3 = 0:1/fs3:0.1; x3 = sin(2*pi*f_signal*n3);
  11
  12
  13
  14
                  figure;
                 subplot(3,1,1); plot(t, x, 'b', n1, x1, 'ro'); title('Above Nyquist Rate');
subplot(3,1,2); plot(t, x, 'b', n2, x2, 'ro'); title('At Nyquist Rate');
subplot(3,1,3); plot(t, x, 'b', n3, x3, 'ro'); title('Below Nyquist Rate');
  15
  16
  17
  18
```



# **Part 2: Observing Aliasing Effect**

```
Editor - C:\Users\asus\Desktop\SignalsAndSystems Lab5\part2.m
   part1.m 🗶
                 part2.m × +
               fs = 100;
                                                                                                                                                        0
              f_signal = 75;
              t = 0:1/1000:0.1;
              x = sin(2*pi*f_signal*t);
              n = 0:1/fs:0.1;
   6
              x_sampled = sin(2*pi*f_signal*n);
   8
   9
              plot(t, x, 'b', n, x_sampled, 'ro');
title('Aliasing Effect: Sampling Below Nyquist Rate');
  10
  11
              xlabel('Time (s)'); ylabel('Amplitude');
legend('Original Signal', 'Sampled Signal');
  12
  13
  14
```



# **Part 3: Reconstructing Signal Using Interpolation**

```
part1.m × part2.m × part3.m × +
           fs = 200;
  1
  2
           f_signal = 50;
           t = 0:1/1000:0.1;
  3
  4
           x = sin(2*pi*f_signal*t);
           n = 0:1/fs:0.1;
           x_sampled = sin(2*pi*f_signal*n);
  8
  9
           t_recon = 0:1/1000:0.1;
           x_recon = interp1(n, x_sampled, t_recon, 'spline');
 10
 11
 12
           figure;
           plot(t, x, 'b', t_recon, x_recon, 'r--');
 13
           title('Reconstruction Using Interpolation');
 15
           xlabel('Time (s)'); ylabel('Amplitude');
           legend('Original Signal', 'Reconstructed Signal');
 16
```



## **Questions**

### **Nyquist Sampling Theorem**

A signal must be sampled at a rate at least twice its highest frequency component to be accurately reconstructed.

## **Effect of Sampling Below Nyquist Rate**

Aliasing occurs, leading to misrepresentation of the signal's frequency components.

### **Limitations of Sinc Interpolation**

Practical implementations use an approximation of the sinc function, which may cause inaccuracies.

## **Avoiding Aliasing in Practice**

Use appropriate sampling rates above the Nyquist rate and employ anti-aliasing filters before sampling.