Санкт-Петербургский национальный исследовательский университет ИТМО Факультет программной инженерии и компьютерной техники

Домашняя работа №8

по дисциплине "Дискретная математика" вариант 9

Выполнил:

Мироненко Апртём Дмитриевич

группа Р3131

Работу принял:

Поляков Владимир Иванович

Санкт-Петербург

A	В
7.3	0.055

Задание 1. Ф1:

$$\begin{split} X_C &= X_A - X_B + d \\ d + P_C &= \frac{P_A + d - P_B - d}{P_C} + d \end{split}$$

$$X_C = 1 - (-1) + 64 = 66$$

 $P_C = 2$

N шага	Действие	Делимое	Частное
	M_{A}	0 0 1 1 1 0 1 0 1	0 0 0 0 0 0 0 0
0	$[-M_{ m B}]_{ m доп}$	100011111	
	R_0	1 1 0 0 1 0 1 0 0	0 0 0 0 0 0 0 0
	$\leftarrow R_0$	1 0 0 1 0 1 0 0 0	$0\ 0\ 0\ 0\ 0\ 0\ 0$
1	$[\mathrm{M_B}]_{\pi\mathrm{p}}$	0 1 1 1 0 0 0 0 1	
	R_1	000001001	0 0 0 0 0 0 0 1
	$\leftarrow R_1$	0 0 0 0 1 0 0 1 0	0 0 0 0 0 0 1 0
2	$[-M_{ m B}]_{ m доп}$	1 0 0 0 1 1 1 1 1	
	R_2	100110001	0 0 0 0 0 0 1 0
	\leftarrow R ₂	0 0 1 1 0 0 0 1 0	0 0 0 0 0 1 0 0
3	$[\mathrm{M_B}]_{\mathrm{np}}$	0 1 1 1 0 0 0 0 1	
	R_3	1 0 1 0 0 0 0 1 1	0 0 0 0 0 1 0 0
	\leftarrow R ₃	0 1 0 0 0 0 1 1 0	0 0 0 0 1 0 0 0
4	$[\mathrm{M_B}]_{\pi\mathrm{p}}$	0 1 1 1 0 0 0 0 1	
	R_4	1 0 1 1 0 0 1 1 1	0 0 0 0 1 0 0 0

	← R ₄	0 1 1 0 0 1 1 1 0	0 0 0 1 0 0 0 0
5	$[\mathrm{M_B}]_{\pi\mathrm{p}}$	0 1 1 1 0 0 0 0 1	
	R_5	1 1 0 1 0 1 1 1 1	0 0 0 1 0 0 0 0
	\leftarrow R ₅	1 0 1 0 1 1 1 1 0	0 0 1 0 0 0 0 0
6	$[\mathrm{M_B}]_{\pi\mathrm{p}}$	0 1 1 1 0 0 0 0 1	
	R_6	000111111	0 0 1 0 0 0 0 1
	\leftarrow R ₆	0 0 1 1 1 1 1 1 0	0 1 0 0 0 0 1 0
7	$[-M_{ m B}]_{ m доп}$	1 0 0 0 1 1 1 1 1	
	R_7	1 1 0 0 1 1 1 0 1	0 1 0 0 0 0 1 0
	← R ₇	1 0 0 1 1 1 0 1 0	1 0 0 0 0 1 0 0
8	$[\mathrm{M_B}]_{\mathrm{np}}$	0 1 1 1 0 0 0 0 1	
	R_8	000011011	1 0 0 0 0 1 0 1

$$C^* = (0.85)_{16} \cdot 16^2 = 133.$$

Определим абсолютную и относительную погрешности результата:

$$\Delta C = 132,72727273 - 133 = -0,27272727$$

$$\Delta C = 132,72727273 - 133 = -0,27272727$$

$$\delta C = \left| \frac{-0,27272727}{132,72727273} \right| \cdot 100\% = 0,20547945\%$$

Задание 2

Ф2:

$$\begin{split} X_C &= X_A - X_B + d \\ d + P_C &= \frac{P_A + d - P_B - d}{P_C} + d \end{split}$$

$$X_C = 3 - (-4) + 128 = 135$$

 $P_C = 7$

N шага	Действие	Делимое	Частное
	M_{A}	0 1 1 1 0 1 0 1 0	0 0 0 0 0 0 0 0
0	$[-M_{ m B}]_{ m доп}$	1 0 0 0 1 1 1 1 1	
	R_0	000001001	0 0 0 0 0 0 0 1
	$\leftarrow R_0$	0 0 0 0 1 0 0 1 0	0 0 0 0 0 0 1 0
1	$[-M_{ m B}]_{ m доп}$	1 0 0 0 1 1 1 1 1	
	R_1	1 0 0 1 1 0 0 0 1	0 0 0 0 0 0 1 0
	$\leftarrow R_1$	0 0 1 1 0 0 0 1 0	0 0 0 0 0 1 0 0
2	$[\mathrm{M_B}]_{\mathrm{np}}$	0 1 1 1 0 0 0 0 1	
	R_2	1 0 1 0 0 0 0 1 1	0 0 0 0 0 1 0 0
	$\leftarrow R_2$	0 1 0 0 0 0 1 1 0	0 0 0 0 1 0 0 0
3	$[\mathrm{M_B}]_{\mathrm{np}}$	0 1 1 1 0 0 0 0 1	
	R_3	1 0 1 1 0 0 1 1 1	0 0 0 0 1 0 0 0
	\leftarrow R ₃	0 1 1 0 0 1 1 1 0	0 0 0 1 0 0 0 0
4	$[\mathrm{M_B}]_{\mathrm{np}}$	0 1 1 1 0 0 0 0 1	
	R_4	1 1 0 1 0 1 1 1 1	0 0 0 1 0 0 0
5	$\leftarrow R_4$	1 0 1 0 1 1 1 1 0	0 0 1 0 0 0 0 0
	$[M_B]_{\pi p}$	0 1 1 1 0 0 0 0 1	
	R_5	0 0 0 1 1 1 1 1 1	0 0 1 0 0 0 0 1
6	\leftarrow R ₅	0 0 1 1 1 1 1 1 0	0 1 0 0 0 0 1 0
	$[-M_{ m B}]_{ m доп}$	1 0 0 0 1 1 1 1 1	
	R_6	1 1 0 0 1 1 1 0 1	0 1 0 0 0 0 1 0
7	\leftarrow R ₆	1 0 0 1 1 1 0 1 0	1 0 0 0 0 1 0 0
	$[M_B]_{\pi p}$	0 1 1 1 0 0 0 0 1	
	R_7	0 0 0 0 1 1 0 1 1	1 0 0 0 0 1 0 1
	$M_{\rm C} \rightarrow$		0 1 0 0 0 0 1 0 1

$$C^* = (0,10000101)_2 \cdot 2^8 = 133.$$

Определим абсолютную и относительную погрешности результата: $\Delta C = 132,72727273 - 133 = -0,27272727$ $\delta C = \left| \frac{-0,27272727}{132,72727273} \right| \cdot 100\% = 0,20547945\%$

$$\delta C = \left| \frac{-0,27272727}{132,72727273} \right| \cdot 100\% = 0,20547945\%$$

Погрешности результатов получены из-за неточного представления

операндов. В формате $\Phi 1$ и $\Phi 2$ операнды представлены одинаково точно