		¥.	
4. 设 $\int_{3}^{3} c dx = 18$, 则 $c = 4$	12.)		_ 11 1t 4 11
A. 0: B. 1: C. 2;	D. 3.		
5. $z = f(x, y)$ 在点 (x_0, y_0) 处	上两个偏导数。	$f_{\nu}'(x_0,y_0) = f_{\nu}'(x_0,y_0)$	(o, yo) to
在,是 $z = f(x, y)$ 在该点		D)条件.	
A. 无关: B. 充分必要:	C. 充分:	D. 必要.	
第二题	(8) 3 10	か, (8,7)7年。。 、 (8,7)7年。。	佛多在自
分	如外报线	(a) p	
二、填空(每空3分, 共30分)			
1. $z = \arcsin(x^2 + y^2 - 3)$ 的定	义域是	< 22+42< 4	
2. $\int_{1}^{3} \frac{x^{5} \arctan x^{2}}{e^{\cos x}} dx = 0$		da - Ni K	
。	,]],		-:
$d \int_{0}^{\infty} f(t)dt = \int_{0}^{\infty} \frac{dt}{t} \int_{0}^{\infty} \frac{dt}{t} dt$?a)		
. 设 $u = x^3 y^4 z^5$,则 $du = 35^2 y^4$	1475 dx + 4x	303254+54	3 ME de
$\int_{27.3\%} \sum_{n=0}^{\infty} (-1)^n$, i	

__(x的幂级数).

1 :	# th pl (=
	西安财经学院试题(卷)纸
I	命题教师 马金萍 学期 2018 — 2019 学年第 II 学期 使用班级 统计
#	7 to 1 0 7 34 44 1
	课程名称 高等数学 (4 课时) 阅卷教师签名
	一 一 一 四 五 六 七 八 九 十 首分
おいけら	(科分)
Fig.	注意專項:
36,	教师 2. 数订线以外的各项的由金属数据结果 A4 纸张。
	看生 一一一次的 对 以 " 次是" " 你
	2. 一律用黑色的签字笔答题, 否则试卷无效。
班 (订	第一题 1 2 3 4 5 得分 答案
	1. 当(A)时,广义积分 $\int_{x''}^{\infty} \frac{dx}{x''}$ 发散. \rightarrow $\int_{x'}^{1-P} \sqrt{x''}$
\$\frac{1}{2} \cdots	A. $p \le 1$; B. $p > 1$; C. $p > 0$; D. $p \ge 0$.
公然 2	. " $f_r'(P_0) = f_r'(P_0) = 0$ " 是" $P_0 \to f(x, y)$ 的极值点"的(D)条件.
	A. 充分: B. 无关: C. 充分必要; D. 必要
3.	下列级数中收敛的是(人)
1 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
,	

```
4. 设 \int_{1}^{1} c dx = 18, 则 c = ( ) ).
    A. O: B. I: C.2: D. 3.
 5. z = f(x, y) 在点 (x_0, y_0) 处两个偏导数
    在,是z = f(x, y)在该点连续的(
   二、填空(每空3分,共30分)
1. z = arcsin(x² + y² - 3) 的定义域是____
 d\int_{a}^{x} f(t)dt = \frac{1}{\sqrt{(b)-f(a)}}
```

5. 交换积分次序 $\int_0^z dx \int_0^x f(x,y)dy = \int_0^z dy \int_0^y f(x,y)dx$

(1) e4. = | + 48+ 37(48)2+ (1) (48)1

4. 设 ā, b 为非琴向量, 且 a//b, 则().

A. 条件收敛; B. 发散; C. 绝对收敛; D. 可能收敛也可能发散

3. 级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n\sqrt{n}}$ (

姓名 装 线 iT

西安 一								•		·			_
安	A. 41	A B			容账	第一题	注题 李 · · · · · · · · · · · · · · · · · ·	得分	是是	课程名录	使用班级	命题教师	
に 		X[3,6]	在尺点	选择题(1			1		统统计	1	H
に 		B. 充分; kdV = 4	连续是	3 分×5		2	國用五長 接近线点 过线内的		[11	整数学	1	女庫	}
に 	c.	· 》 [] · ·	f(P)在	:		3	· 完体输入 的三样外 "班级"、	· 	-	(理工学		が発	i
に)无关: = (P。点可微				. 打印用 . 其官各 . "学号"、				: :	沙 阿 阿	
田		D. 充)	的(5	正规 A4 组 项均由创 "姓名": "姓名":			阅卷教/		デ の の の の の の の の の の の の	
中		分必要.	(%				强。 四数师填写 三栏由考生		-	市俗名	母类		
			华.			絡	, 不得欄搏。 亦人填写。				が二二十次 田業筆法		

	1		3		
		55			
(A)有极限但不连续; B. 无定义;	$(1, x^2 + y^2 = 0)$	函数 $f(x,y) = \begin{cases} \frac{1}{x^2 + y^2}, x^2 + y^2 \neq 0 \end{cases}$	$\int \tan(x^2 + v^2)$	$A. \ \vec{a} + \vec{b} = 0; \ B. \ \vec{a} - \vec{b} = 0; \ C. \ \vec{a} \cdot \vec{b} = 0;$	
C. 无极限;	2 = 0	^{,2} ≠ 0 在点(0,0)处	. (
D. 连续.),0)处($(D) \vec{a} \times \vec{b} = 0.$	
	•	<u> </u>		2	

PO'TO CHIMINAL TINES

第二题

二、填空(3分×10):

3. 交换积分次序 $\int dy \int_{\Pi_y} f(x,y) dx = \int_0^1 d\chi \int_1^{e^x} f(x,y) dy$

4. 曲面 $z=x^2+y^2$ 在 $P_0(1,2,5)$ 处的法线方程为 $\frac{x_2}{2}-\frac{y_2}{4}=\frac{4x_3}{1}$

5. 级数 \(\sum_{\text{in}}^{\infty} \frac{(-1)^n}{n^p} \text{\tinit}}}}} \ext{\texi}\text{\text{\text{\texi}\text{\text{\texi}\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{ P£0

町条件改敛, 当<u>/・し</u> 町炭敷、メ2/11 6. sin x = <u>X - X + X + 1 … + (-1) / (2011)/</u> (x 的降级数) 7. 以(1,2,3) 为球心, 华径为 3 的球面方程为(X-1) 1(9-2) 1(2-3) 是 0

tunx (x+>0)

3/2 - 3/2 3/2 + 3/2 3/2 - 3/1/9 + 3/2 2x · y · 9 設ニー f(xy,x²y²), f 有二阶连续偏导数, 求 <u>ð²z</u> 於(=x'd, V=x'y² <u>ð\$</u> - <u>ð£ ðu</u> † <u>ðy</u> ðy : - 双引动外、刚泰(是)-彖(水分水)技) ニスジナイ 6メリナンナンスツェウナナナウ 部川部

内与路径无关,并计算其值、解: 征助)、 全パスツ)=2メリーり当つ

Q(x,y)= x2-4xy>

3、证明曲线积分 (1.0) (2xy-y⁴+3) dx+(x²-4xy³) dy 在 xoy 平面

2. $\int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 + y^2}{y = R(050)} \right\} = \int \frac{1}{2} \left\{ \frac{x^2 +$ = Ju do J, REdx

显然 Pix.s),Qix,s)在整4x09面内具有一价连续偏器

表表 0844064

 $\int_{(1,0)}^{(1,1)} (2xy-y^{4}t^{3})dx + (x^{2}+xy^{3})dy$ Mid d p(x,か)=1x-4り3= d R(X) = 1x-4り3 55年整个XVJ面内,木只有一定多位无关 =), [2(411)4-4,43]q(241)+(841); -4121) Agg =Jd (ayitay-9itstytayt1-49i 49i)dy - 56 (-544-447 397+49+4)dy

- (-y5-y4+y+2y+4y)|0 = (-1-1+1+2+4)

=3 NF 11-31

(1-11/4), 4-1)

= 211. 8 (15-1)

= (17 (8 R 3 /1) dB

: S(x)=AVC tanx X (-(-5,1)

 $4. \int_{L} 5x^{2}dy - 3ydx, L: y = x^{4}, A(0,0) \to B(2,16).$ $2x^{2}dy - 3ydx = \int_{L} 5x^{2} + x^{3}dx - 3x^{4}dx$ $= \int_{L} (10x^{5} - 3x^{5})dx$ $= \frac{10}{6}x^{6} - \frac{3}{5}x^{5}\Big|_{0}^{2}$ $= \frac{10}{6} \cdot 64 - \frac{3}{5}x^{5}\Big|_{0}^{2}$ $= \frac{15}{15} - \frac{9}{15} = \frac{15}{15}$ 1/2 | 1/1/2 | 1/1/2 | 2/1/2 | 2/1/2 | 1/1/2 | 1/2/2 | 5(x)=(-1) X M= = (-1. X') = +x (-1<///> 外只方月章 S(x)-S(o)=Sx ナス・dx= ar(tanx

 $= \int_{0}^{1} \frac{1}{(1-x)^{4}} \frac{1}{dx}$ $= \int_{0}^{1} \frac{1}{(1-x)^{4}} \frac{1}{(1-x$

6. $\iiint y^2 dV$, Ω 由坐标平面及x+y+z=1 围成 #: 555 y dv= fdx fox dy for y d2

= Jbd(x) (-xy by by) = d =

100

 $= \frac{1}{(x-1)^{4}} \frac{1}{x^{2}} \frac{1}{x^{2}} = \frac{1}{(x-1)^{4}} \frac{1}{x^{2}} \frac{1}{x^{2}} \frac{1}{x^{2}} = \frac{1}{(x-1)^{4}} \frac{1}{x^{2}} = \frac{1}{(x-1)^{4}$

自與得

四、证明(9分)	得分	第四题
9 (#):		解

设 $f(x,y) = g(r), r = \sqrt{x^2 + y^2}, g$ 二阶可导,则

 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = g''(r) + \frac{1}{r} g'(r).$ 证明: $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = g''(r) + \frac{1}{r} g'(r).$

\frac{d}{dx} \left(\frac{d\frac{d}{dx}}{dx} \right) = 9"(\frac{d}{x})\frac{d}{x} \frac{d}{x} \frac{d}{x} \frac{d}{y} \frac{d}{x} \frac{d}{y} \frac{d}{x} \frac{d}{y} \frac{d}{x} \frac{d}{

: 0+(2=g"(r)+pg'(r)

得分	第五题
	絡名

五、应用(10分): 设某工厂生产甲、乙两种产品,产量分别为和(千

件), 利润函数为 $L(x,y) = 6x - x^2 + 16y - 4y^2 - 2$ (万元), 已知 生产这两种产品时,每千件产品均需消耗某种原料 2000kg,现有该 原料12000kg, 问两种产品各生产多少时, 总利润最大?

15甲生字X,乙生字9 网络约河经沙马生专为在生分来条件下

7 (x,y)=X+y-6=0 F

\$1 L(x,y)=6x-x=16y-4y=169\$水值

1年 杉立木らき月日 砂巻5 - (メ・リ・ハ) = 6 x - x + 16 y - 4y - 2 - ハ (x ty)-6)=p 一角建度—角星 (x=0,5 { 2x=6-2x-7=0

二岁中儿多0.5个件,55个件

1		
	西安财经学院试题05卷	4 10 4 AdS = 48s. NA = ().
=	使用斑蝥 医工类多令业 毒辣方式 甲酚加达	A. 6 ₁ B. 12 ₁ C. 3 ₁ D. 9.
2	88.68 <u>8388</u> 88868	5. 说 $\sum_{n=1}^{\infty} a_n^2$ 收敛,则级数 $\sum_{n=1}^{\infty} \frac{a_n}{n}$ ().
	■号 - 二三 西 五 六 七 八 九 十 8分	A. 发数: B. 可能收敛也可能发数: C. 条件收载: D. 绝对收敛.
	2 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	第二題 签名
	◆整 上型器等至等之。安徽输入、有容等至数以积度。整理 上架工程以外等各项等令器表件编写、不得编辑。	母分
	李皇 上教《魏本郎》"张敬"、"参号"、"世名"、"时间"都否由考生本人情况。 上一张司器合作是字形称题,亦即以卷五效。	二、填空题(3 分×8):
-	至 1 1 3 4 5 得分 签名	1. 方程 $2x-3y^2-3z^2=0$ 表示的自图为
	\$ x	$2. \Re u = x^{T} + y^{T}, \ M du = \underline{\hspace{1cm}}$
	 一、単項政策差 G 分 X S : 1 正数 := 1	3. 台画 z ¹ - z + xy = 6 在点(2,3,1) 处的切平而方程为 , 法线方程为
17111	$Ax=y=0$; $B.y=\pm x$; $C.y=x$; $B.y=-x$.	
5	1. 设定=1, b =√2, 且ē×b=2, 與ē·b= ().	4. 銀数 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^s}$ 当
A CONTRACTOR	A ±2, B.2, C2, A.0.	条件收敛。当时发飲。
	1. $f(P)$ 在 P , 应可偏导是 $f(P)$ 在 P , 点连续的()条件.	5. 交换积分次序 $\int_{0}^{1} dr \int_{0}^{r} f(x, y) dx =$
	& 克分亞曼。 B. 元美。 C. 克分; D. 多要.	
2		

4. 设 u = f(x, xy, xyz), f 有二阶连续偏导数, 求 $\frac{\partial^2 u}{\partial x \partial y}$.

6. 求幂级数 $\sum_{n=1}^{\infty} n(n+3)x^n$ 的收敛域及和函数.

62.

5. 求微分方程 y'' + y = 9x - 4 的通解.

解:

解:

	-
ш	-
H	-
華	The second name of
少以时间	
班级订	
姓名	

第四	盟	签名
得分		

四、应用(10分)

设A(0,5), 求抛物线 $2y = 4-3x^2$ 上一点P, 使PA最短.

解:

第五题		签名
得分		

五、证明(9分): 设u = xf(x+y) + yg(x+y), f,g二阶可导,则

$$\frac{\partial^2 u}{\partial x^2} - 2 \frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0.$$

证明: