ÉQUATION TRIGONOMÉTRIQUE (4)

Résoudre dans l'intervalle $]-\pi$; π] l'équation $\cos(3x) = \sin(2x)$.

On remarque que $cos(a) = sin(\frac{\pi}{2} \pm a)$. On peut donc écrire :

$$\cos(3x) = \sin(2x) = \sin\left(\frac{\pi}{2} \pm 3x\right) \Rightarrow 2x + 2k\pi = \frac{\pi}{2} \pm 3x \text{ avec } k \in \mathbb{Z}.$$

On obtient deux ensembles de solutions :

i)
$$2x + 2k\pi = \frac{\pi}{2} + 3x \Rightarrow x = 2k\pi - \frac{\pi}{2}$$
 avec $k \in \mathbb{Z}$.

Les solutions sont cherchées sur l'intervalle $]-\pi; \pi]$, c'est à dire que l'on doit avoir la double inégalité :

$$-\pi < 2k\pi - \frac{\pi}{2} \le \pi \Rightarrow -\frac{\pi}{2} < 2k\pi \le 3\frac{\pi}{2} \Rightarrow -\frac{1}{4} < k \le \frac{3}{4}$$
, et comme $k \in \mathbb{Z}$, la seule solution

possible pour k est k = 0, d'où une seule solution pour x: $x = -\frac{\pi}{2}$

ii)
$$2x + 2k\pi = \frac{\pi}{2} - 3x \Rightarrow x = \frac{\pi}{10} - \frac{2k\pi}{5}$$
, avec $k \in \mathbb{Z}$.

Cela conduit pour k à la double inégalité suivante :

$$-\pi < \frac{\pi}{10} - \frac{2k\pi}{5} \le \pi \Longrightarrow -\frac{11\pi}{20} < -\frac{k\pi}{5} \le \frac{2\pi}{5} \Longrightarrow \frac{-11}{4} < -k \le 2 \Longrightarrow -2 \le k < \frac{11}{4}.$$

Finalement, puisque $k \in \mathbb{Z}$, on obtient $-2 \le k \le 2$, ce qui aboutit aux cinq solutions données dans le tableau suivant :

k	- 2	- 1	0	1	2
x	$\frac{9\pi}{10}$	$\frac{\pi}{2}$	$\frac{\pi}{10}$	$-\frac{3\pi}{10}$	$-\frac{7\pi}{10}$

Donc en tout six solutions sur $]-\pi$; π] représentées ci-dessous sur le cercle trigonométrique :

