Machine Learning

Lecture 4 - Cost Function, Binary Classifier and Performance Measurement

Dr SHI Lei

- Generalisation
- Training & Test Set
- Representation

Generalisation

The big picture

- Goal: to predict well on new data drawn from (hidden) true distribution.
- Issue: we don't see the truth, but we only get to sample from it.
- If it fits current sample well, how can we trust it will predict well on other new samples?

Generalisation

Three basic assumptions:

- We draw examples <u>independently</u> and <u>identically</u> (<u>i.i.d.</u>) at random from the distribution.
- 2. The distribution is stationary it doesn't change over time.
- 3. We always pull from the same distribution, including training, validation, and test sets.

Training & Test Set

Divide into two sets:

- Training set
- Test set

Training Set

Test Set

Do not train on test data

Training & Test Set

Better Workflow: Use a Validation Set

Representation

crossing

Today

- Cost Functions
- Binary Classifier
- Performance Measures

Supervised Learning Problem

- Collection of n p-dimensional feature vectors: $\{x_i\}$, i = 1, n
- Collection of observed responses: $\{y_i\}$, i = 1, n
- Aims to construct a response surface: h(x)

Describes how well the current response surface h(x) fits the available data (on a given data set):

$$J(y_i, h(x_i))$$

observed predicted

- Smaller values of the cost function correspond to a better fit.
- Machine learning goal: construct h(x) such that J is minimised.
- In regression, h(x) is usually directly interpretable as predicted response.

Least Squares Deviation Cost _v

Defined as

$$J(y_i, h(x_i)) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h(x_i))^2$$

$$r_i \text{ (residual)}$$

- Nice mathematical properties
- Problem with outliers

Least Absolute Deviation Cost, 1

Defined as

$$J(y_i, h(x_i)) = \left[\frac{1}{n}\right]_{i=1}^{n} \frac{|y_i - h(x_i)|^2}{r_i}$$

- More robust with respect to outliers
- May pose computational challenges

Huber-M Cost

Defined as

$$J(y_i, h(x_i)) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0.5(\underline{y_i - h(x_i)})^2, if |\underline{y_i - h(x_i)}| < \delta \\ \delta(|\underline{y_i - h(x_i)}| - 0.5\delta), otherwise \end{cases}$$

- Combines the best qualities of the LS and LAD losses
- Parameter δ is usually set automatically to a specific percentile of absolute residuals

Today

- Cost Functions
- Binary Classifier
- Performance Measures

Binary Classifier

Binary Classifier

- Observed response y takes only two possible values + and -
- Define relationship between h(x) and y
- Use the decision rule: $\hat{y} = \begin{cases} +, & h(x) \ge t \\ -, & otherwise \end{cases}$

Performance Measures

Performance Measures

- Precision & Recall
- ROC Curve
- Gains & Lift

Performance Measures - Precision & Recall

How well did we capture the + group for the given threshold?

Performance Measures - Precision & Recall

How well did we capture the + group for the given threshold?

• Precision

$$\frac{tp}{tp+fp} > 1$$

Recall (Sensitivity)

$$\frac{tp}{tp+fn}$$
 > 1

Prediction Success

(Confusion Matrix)

Performance Measures - Precision & Recall

How well did we capture the + group for the given threshold?

• Precision
$$\frac{tp}{tp + fp}$$

• Recall $\frac{tp}{tp + fn}$

Performance Measures

- Precision & Recall
- ROC Curve
- Gains & Lift

- Recall tp (Sensitivity) tp + fn
- Specificity

• Recall
$$\frac{tp}{tp + fn}$$

• Specificity $\frac{tn}{tn + fp}$

- Recall $\frac{tp}{(Sensitivity)} \frac{tp}{tp + fn}$
- Specificity $\frac{tn}{tn+fp}$

Performance Measures

- Precision & Recall
- ROC Curve
- Gains & Lift

Performance Measures - Gains & Lift

- Sensitivity (Recall) $Se = \frac{tp}{tp + fn}$
- Support $Su = \frac{tp + fp}{n}$

Performance Measures - Gains & Lift

$$Se = \frac{tp}{tp + fn}$$

 Support (% pop)

$$Su = \frac{tp + fp}{n}$$

• Base Rate
$$Br = \frac{tp + fn}{n}$$

Gains:

$$\{Su, Se\}$$

Lift:

$$\{Su, \frac{Se}{Su}\}$$

ROC:

$$\{\frac{Su-Br\cdot Se}{1-Br}, Se\}$$

Nosummary