

Wykres i własności funkcji cosinus

- Wprowadzenie
- Przeczytaj
- Aplet
- Sprawdź się
- Dla nauczyciela

Poznałeś już podstawowe własności funkcji $y=\cos x$ związane z obliczaniem wartości tej funkcji; są to wzory redukcyjne. W tej lekcji zastosujemy je do konstrukcji wykresu funkcji $y=\cos x$ oraz opisu jej pozostałych własności.

Twoje cele

- Nauczysz się rysować wykres funkcji $y = \cos x$ oraz opisywać jej własności.
- Dowiesz się, jak wykorzystać wykres funkcji $y=\cos x$ do rozwiązywania zadań.

Przeczytaj

Tę lekcję rozpoczniemy od konstrukcji wykresu funkcji $y = \cos x$, gdzie $x \in \mathbb{R}$.

W tym celu wykorzystamy wzór redukcyjny: $\cos x = -\sin\left(\frac{3\pi}{2} - x\right) = \sin\left(x - \frac{3\pi}{2}\right)$, który jest prawdziwy dla dowolnej liczby $x \in \mathbb{R}$.

Równość $\cos x = \sin \left(x - \frac{3\pi}{2}\right)$ oznacza, że aby otrzymać wykres funkcji $y = \cos x$ wystarczy przesunąć wykres funkcji $y = \sin x$ o wektor $\overrightarrow{w} = \left[\frac{3\pi}{2}, 0\right]$.

Zobacz na poniższym rysunku, jak w wyniku przesunięcia z wykresu funkcji $y=\sin x$ powstaje wykres funkcji $y=\cos x$.

Twierdzenie: o własnościach funkcji cosinus

Na podstawie własności funkcji sinus oraz obserwacji wykresu funkcji cosinus możemy opisać wszystkie własności funkcji $y=\cos x$.

- 1. Funkcja cosinus jest funkcją okresową o okresie zasadniczym $T=2\pi$, gdyż dla każdej liczby $x\in\mathbb{R}$ zachodzi równość $\cos(x+2\pi)=\cos x$.
- 2. Funkcja cosinus jest funkcją parzystą, gdyż dla każdego $x\in\mathbb{R}$ zachodzi równość $\cos(-x)=\cos x.$
- 3. Zbiorem wartości funkcji cosinus jest przedział $\langle -1, 1 \rangle$.
- 4. Wartość największą równą 1 funkcja cosinus osiąga dla argumentów: $x=2k\pi$, gdzie $k\in\mathbb{Z}.$
- 5. Wartość najmniejszą równą (-1) funkcja osiąga dla argumentów: $x=\pi+2k\pi$, gdzie $k\in\mathbb{Z}.$

- 6. Miejscami zerowymi funkcji cosinus są argumenty: $x = \frac{\pi}{2} + k\pi$, gdzie $k \in \mathbb{Z}$.
- 7. Funkcja jest rosnąca w przedziałach: $\langle -\pi + 2k\pi, 2k\pi \rangle$, gdzie $k \in \mathbb{Z}$.
- 8. Funkcja jest malejąca w przedziałach: $\langle 2k\pi, \pi+2k\pi \rangle$, gdzie $k \in \mathbb{Z}$.

Opiszmy własności geometryczne wykresu funkcji cosinus:

Twierdzenie: o własnościach geometrycznych wykresu funkcji cosinus

- 1. Osią symetrii wykresu funkcji cosinus jest każda prosta o równaniu $x=k\pi$, gdzie $k\in\mathbb{Z}.$
- 2. Środkiem symetrii wykresu funkcji cosinus jest każdy punkt o współrzędnych $\left(\frac{\pi}{2}+k\pi,0\right)$, gdzie $k\in\mathbb{Z}$.

Dowód

1. Aby udowodnić tę własność skorzystamy z następującej faktu dotyczącego osi symetrii wykresu funkcji:

Prosta x=a jest osią symetrii wykresu funkcji y=f(x) wtedy i tylko wtedy, gdy dla dowolnej liczby x z dziedziny zachodzi równość f(x)=f(2a-x).

Zatem w przypadku funkcji cosinus chcemy wykazać, że dla dowolnej liczby $x \in \mathbb{R}$ zachodzi równość: $\cos x = \cos(2k\pi - x)$.

Najpierw skorzystamy z zależności $\cos(-x) = \cos x$. Zatem

$$\cos(2k\pi - x) = \cos(x - 2k\pi)$$

a następnie wykorzystamy okresowość funkcji cosinus:

$$\cos(x - 2k\pi) = \cos x.$$

Ostatecznie otrzymujemy:

$$\cos(2k\pi - x) = \cos(x - 2k\pi) = \cos x,$$

co kończy dowód.

2. Aby udowodnić tę własność skorzystamy z następującego warunku istnienia środka symetrii wykresu funkcji:

Punkt o współrzędnych (a, b) jest środkiem symetrii wykresu funkcji y = f(x) wtedy i tylko wtedy, gdy dla dowolnej liczby x z dziedziny zachodzi równość:

$$2b - f(x) = f(2a - x).$$

Zatem musimy sprawdzić, że dla dowolnej liczby rzeczywistej x zachodzi równość:

$$2 \cdot 0 - \cos x = \cos \left(2 \cdot \left(\frac{\pi}{2} + k\pi\right) - x\right).$$

czyli

$$-\cos x = \cos(\pi + 2k\pi - x).$$

Najpierw skorzystamy z okresowości funkcji cosinus: $\cos(\pi+2k\pi-x)=\cos(\pi-x)$, a następnie ze wzoru redukcyjnego: $\cos(\pi-x)=-\cos(x)$.

Zatem mamy:

$$\cosig(2\cdotig(rac{\pi}{2}+k\piig)-xig)=\cos(\pi+2k\pi-x)=\cos(\pi-x)=-\cos(x),$$

co kończy dowód.

Przykład 1

Podamy okres zasadniczy funkcji:

$$1. y = 3\cos x$$

$$2. y = \cos 4x$$

$$3. y = |\cos x|$$

$$4. y = \cos(x+2)$$

Rozwiązanie:

- 1. Okresem zasadniczym funkcji $y=3\cos x$ jest $T=2\pi$, gdyż $3\cos(2\pi+x)=3\cos x$.
- 2. Okresem zasadniczym funkcji $y=\cos 4x$ jest $T=\frac{\pi}{2}$, gdyż $\cos 4\left(\frac{\pi}{2}+x\right)=\cos(2\pi+4x)=\cos 4x$.
- 3. Okresem zasadniczym funkcji $y=|\cos x|$ jest $T=\pi$, gdyż $|\cos(\pi+x)|=|-\cos x|=|\cos x|$.
- 4. Okresem zasadniczym funkcji $y=\cos(x+2)$ jest $T=2\pi$, gdyż $\cos((2\pi+x)+2)=\cos(2\pi+x+2)=\cos(x+2)$.

Przykład 2

Podamy miejsca zerowe funkcji:

$$1. y = 3\cos x$$

$$2. y = \cos 4x$$

$$3. y = |\cos x|$$

4.
$$y = \cos(x+2)$$

Rozwiązanie:

- 1. Równanie $3\cos x=0$ ma takie same rozwiązania jak równanie $\cos x=0$, a zatem miejscami zerowymi funkcji $y=3\cos x$ są: $x=\frac{\pi}{2}+k\pi$, gdzie $k\in\mathbb{Z}$.
- 2. Rozwiązaniami równania $\cos 4x=0$ są wszystkie liczby x, dla których $4x=\frac{\pi}{2}+k\pi$, czyli $x=\frac{\pi}{8}+\frac{k\pi}{4}$, gdzie $k\in\mathbb{Z}$.
- 3. Równanie $|\cos x|=0$ ma takie same rozwiązania jak równanie $\cos x=0$, a zatem miejscami zerowymi funkcji $y=|\cos x|$ są: $x=\frac{\pi}{2}+k\pi$, gdzie $k\in\mathbb{Z}$.
- 4. Rozwiązaniami równania $\cos(x+2)=0$ są wszystkie liczby $x+2=\frac{\pi}{2}+k\pi$, czyli $x=\frac{\pi}{2}-2+k\pi$, gdzie $k\in\mathbb{Z}.$

Przykład 3

Która wartość jest większa: $\cos\left(-\frac{\pi}{9}\right)$ czy $\cos\frac{3\pi}{28}$?

Rozwiązanie:

Korzystając z parzystości funkcji cosinus mamy: $\cos\left(-\frac{\pi}{9}\right) = \cos\frac{\pi}{9}$.

Zauważmy, że $\frac{\pi}{9} \in \left<0, \frac{\pi}{2}\right>$ oraz $\frac{3\pi}{28} \in \left<0, \frac{\pi}{2}\right>$. Ponadto $\frac{\pi}{9} > \frac{3\pi}{28}$. Ponieważ funkcja cosinus w przedziale $\left<0, \frac{\pi}{2}\right>$ jest malejąca, zatem $\cos\frac{\pi}{9} < \cos\frac{3\pi}{28}$.

Przykład 4

Podamy zbiory wartości funkcji:

$$1. y = 2\cos(x-1)$$

$$2. y = 3|\cos(2x+1)| + 2$$

Rozwiązanie:

- 1. Ponieważ liczba x-1 jest dowolną liczbą rzeczywistą, zatem zbiorem wartości funkcji $y=\cos(x-1)$ jest przedział $\langle -1,1\rangle$. Wobec tego zbiorem wartości funkcji $y=2\cos(x-1)$ jest przedział $\langle -2,2\rangle$.
- 2. Ponieważ liczba 2x+1 jest dowolną liczbą rzeczywistą, zatem zbiorem wartości funkcji $y=\cos(2x+1)$ jest przedział $\langle -1,1\rangle$. Wobec tego zbiorem wartości funkcji

 $y=|\cos(2x+1)|$ jest przedział $\langle 0,1 \rangle$. W konsekwencji zbiorem wartości funkcji $y=3|\cos(2x+1)|+2$ jest przedział $\langle 2,5 \rangle$.

Słownik

oś symetrii wykresu funkcji

prosta x=a jest osią symetrii wykresu funkcji y=f(x) wtedy i tylko wtedy, gdy dla dowolnej liczby x z dziedziny zachodzi równość f(x)=f(2a-x)

środek symetrii wykresu funkcji

punkt o współrzędnych (a,b) jest środkiem symetrii wykresu funkcji y=f(x) wtedy i tylko wtedy, gdy dla dowolnej liczby x z dziedziny zachodzi równość 2b-f(x)=f(2a-x)

Aplet

Już wiesz, że funkcja $y=\cos ax$, gdzie a jest liczbą rzeczywistą różną od 0, jest funkcją okresową. Jej okres zasadniczy jest równy $T=\frac{2\pi}{a}$.

Wynika to z dwóch faktów:

- 1. $\cos\left(a\left(x+\frac{2\pi}{a}\right)\right)=\cos(ax+2\pi)=\cos ax$, czyli liczba $\frac{2\pi}{a}$ jest okresem funkcji $y=\cos ax$,
- 2. jeżeli liczba t ma taką własność, że $0 < t < \frac{2\pi}{a}$, to $\cos(a(x+t)) = \cos(ax+at) \neq \cos ax$, gdyż okresem zasadniczym funkcji cosinus jest liczba 2π , która jest większa od liczby at, ponieważ $0 < t < \frac{2\pi}{a}$.

Zatem liczba $T=\frac{2\pi}{a}$ jest okresem zasadniczym $y=\cos ax$.

Polecenie 1

Czy funkcja $y=\cos ax+\cos bx$ jest okresowa, gdzie $a,\ b \neq 0$? Jaki jest jej okres zasadniczy?

Obejrzyj poniższą symulację interaktywną i spróbuj postawić hipotezę dla liczb $a,\ b\in\mathbb{Z}.$

Zasób interaktywny dostępny pod adresem https://zpe.gov.pl/a/DCbaizDaR

Polecenie 2

Uzasadnij, że okresem zasadniczym funkcji $y=\cos 3x+\cos 2x$ jest $T=2\pi.$

Polecenie 3

Uzasadnij, że $y=\cos ax+\cos bx$, gdzie $a,\ b\in\mathbb{N}_+$ jest funkcją okresową i podaj jej okres zasadniczy.

Sprawdź się

Pokaż ćwiczenia: 🗘 🕕 🌘

Ćwiczenie 1

Najmniejszą wartością funkcji $y=-2\cos\left(3x-\frac{\pi}{3}
ight)$ jest:

- \bigcirc 2
- \bigcirc -2
- \bigcirc -3
- \bigcirc 1
- \bigcirc -1
- \bigcirc 3

Ćwiczenie 2

Połącz w pary funkcję i zbiór jej miejsc zerowych.

$$y = \cos 2x$$

$$y = 3|\cos x|$$

$$y = -2\cos 3x$$

$$y = \cos^2 4x$$

$$x=rac{\pi}{8}+rac{k\pi}{4}$$
, gdzie $k\in\mathbb{Z}$

$$x=rac{\pi}{4}+rac{k\pi}{2}$$
, gdzie $k\in\mathbb{Z}$

$$x=rac{\pi}{6}+rac{k\pi}{3}$$
, gdzie $k\in\mathbb{Z}$

$$x=rac{\pi}{2}+k\pi$$
, gdzie $k\in\mathbb{Z}$

 $y = 3\cos x + 2$

 $y = 3\cos(2x+1) - 8$

Ćwiczenie 5

Połącz w pary funkcję i jej zbiór wartości.

$$y = \frac{1}{\cos 3x - 4}$$

$$\langle -3, -1 \rangle$$

$$y = \left|\cos 3x - \frac{1}{2}\right| + 2$$

$$\left\langle -\frac{1}{3}, -\frac{1}{5} \right\rangle$$

$$y = 2\cos^2 x - 2$$

$$\langle -2,0\rangle$$

$$y = \cos(3x - 5) - 2$$

$$\left\langle 2, \frac{7}{2} \right\rangle$$

Ćwiczenie 6

Zaznacz wszystkie liczby dodatnie.

- $\cos \frac{23\pi}{2}$

- $\cos \frac{20\pi}{13}$
- $\cos\left(-\frac{4\pi}{9}\right)$

Ćwiczenie 7

Uzasadnij, że prosta o równaniu $x=rac{3}{2}+\pi$ jest osią symetrii wykresu $y=5\cos(3-x)-2$.

Ćwiczenie 8

Uzasadnij, że punkt o współrzędnych $\left(\frac{5\pi}{18},1\right)$ jest środkiem symetrii wykresu funkcji $y=\cos\left(3x-\frac{\pi}{3}\right)+1.$

Dla nauczyciela

Autor: Jacek Dymel

Przedmiot: Matematyka

Temat: Wykres i własności funkcji cosinus

Grupa docelowa:

Szkoła ponadpodstawowa, liceum ogólnokształcące, technikum, zakres rozszerzony

Podstawa programowa:

Treści nauczania - wymagania szczegółowe:

VII. Trygonometria. Zakres podstawowy. Uczeń:

Zakres rozszerzony 2) posługuje się wykresami funkcji trygonometrycznych: sinus, cosinus, tangens;

Zakres rozszerzony 3) wykorzystuje okresowość funkcji trygonometrycznych;

Kształtowane kompetencje kluczowe:

- kompetencje w zakresie rozumienia i tworzenia informacji;
- kompetencje matematyczne oraz kompetencje w zakresie nauk przyrodniczych, technologii i inżynierii;
- kompetencje cyfrowe;
- kompetencje osobiste, społeczne i w zakresie umiejętności uczenia się.

Cele operacyjne:

Uczeń:

- rysuje wykres funkcji $y = \cos x$ oraz opisuje jej własności;
- analizuje i wykorzystuje wykres funkcji $y = \cos x$ do rozwiązywania zadań.

Strategie nauczania:

- · konstruktywizm;
- konektywizm.

Metody i techniki nauczania:

- odwrócona klasa;
- wykład;
- dyskusja.

Formy pracy:

- praca indywidualna;
- praca w parach;
- praca w grupach;
- praca całego zespołu klasowego.

Środki dydaktyczne:

- komputery z głośnikami, słuchawkami i dostępem do internetu;
- zasoby multimedialne zawarte w e-materiale;
- tablica interaktywna/tablica, pisak/kreda.

Przebieg lekcji

Przed lekcją:

1. Nauczyciel prosi uczniów o zapoznanie się z zagadnieniami, które będą poruszane podczas lekcji.

Faza wstępna:

1. Nauczyciel prosi wybraną osobę o odczytanie tematu lekcji tj. "Wykres i własności funkcji cosinus", a następnie określa cele i kryteria sukcesu.

Faza realizacyjna:

- 1. Nauczyciel wyświetla zawartość sekcji "Aplet", czyta treść polecenia nr 1 "Czy funkcja $y=\cos ax+\cos bx$ jest okresowa, gdzie $a,b\neq 0$? Jaki jest jej okres zasadniczy? Obejrzyj poniższą symulację interaktywną i spróbuj postawić hipotezę dla liczb $a,b\in\mathbb{Z}$ ". Po zapoznaniu się uczniów z materiałem omawia ewentualne problemy związane z jego niezrozumieniem.
- 2. Uczniowie wykonują wspólnie na forum klasy ćwiczenia nr 1-2.
- 3. Kolejny etap to liga zadaniowa uczniowie wykonują w grupach na czas ćwiczenia 3-5 z sekcji "Sprawdź się", a następnie omawiają je na forum.
- 4. Ćwiczenia numer 6, 7 i 8 uczniowie wykonują indywidualnie, a następnie omawia je nauczyciel.

Faza podsumowująca:

1. Omówienie ewentualnych problemów z rozwiązaniem ćwiczeń z sekcji "Sprawdź się".

Praca domowa:

1. Uczniowie wykonują ćwiczenia interaktywne, które nie zostały dokończone na zajęciach.

• Wykresy i własności funkcji trygonometrycznych

Wskazówki metodyczne:

• Medium w sekcji "Aplet" można potraktować jako zadania domowe dotyczące analizy problemu w temacie "Wykres i własności funkcji cosinus".