

Concepts and Models of Parallel and Datacentric Programming

BSPI

Lecture, Summer 2020

Dr. Christian Terboven < terboven@itc.rwth-aachen.de >

Outline

- Organization
- Foundations
- Shared Memory
- 3. GPU Programming
- 4. Bulk-Synchronous Parallelism
- Message Passing
- Distributed Shared Memory
- 7. Parallel Algorithms
- 8. Parallel I/O
- 9. MapReduce
- 10. Apache Spark

- a. Motivation
- b. BSP Computer
- c. BSP Programming Model
- d. BSP Cost Model
- e. Bulk Library

Motivation

- HPC market is at large dominated by distributed memory multicomputers: clusters and specialised supercomputers
- Nodes have no direct access to other nodes' memory and run a separate copy of the (possibly stripped down) OS

- Shared Memory
 - All processing elements (P) have direct access to the main memory block (M)

- Shared Memory
 - All processing elements (P) have direct access to the main memory block (M)

 Data exchange is achieved through read/write operations on shared variables located in the global address space

- Distributed Memory
 - Each processing element (P) has its separate main memory block (M)

Parallel Architectures – Two-Sided Communication

- Distributed Memory
 - Each processing element (P) has its separate main memory block (M)

- Data exchange is achieved through message passing over the network
- Both processes actively call send and receive function

Parallel Architectures – One-Sided Communication

- Distributed Memory
 - Each processing element (P) has its separate main memory block (M)

- Alternative: Remote Direct Memory Access (RDMA)
- Processes can directly access (put / get) mem. location of a remote process
 - Remote process does not have to call a matching function

- Distributed Memory
 - Each processing element (P) has its separate main memory block (M)
 - Data exchange is achieved through message passing over the network
 - Message passing could be either explicit (MPI) or implicit (BSP, PGAS)
 - Programs typically implemented as a set of OS entities with own (virtual) address spaces – processes
 - No shared variables
 - Usually no data races but sometimes the opposite: missing data

Writing Programs for Distributed Memory Machines

- How do we write programs for such an architecture?
- Classical approach: MPI (Message Passing Interface) → HPC lecture
 - Defines an interface for sending messages between processors
 - Point-to-Point communication, Collective communication
- More abstract approach: BSP (Bulk-Synchronous Parallel) programs
 - Defines a generic structure of a parallel program (so called "supersteps")
 - Program resp. algorithm has to be adapted to the BSP programming model
 - Provides a cost model to reason about performance
 - In practice: Often implemented on top of MPI

Literature

- Original paper on BSP: Valiant, L.G.. A Bridging Model for Parallel Computation. Communications of the ACM 33, 8 (August 1990), 103-111
 - http://doi.acm.org/10.1145/79173.79181
- Parallel Algorithms Lecture (Rob Bisseling, Utrecht University)
 - http://www.staff.science.uu.nl/~bisse101/Education/PA/pa.html

Rob H. Bisseling: Parallel Scientific Computation – A Structured Approach

using BSP and MPI, 2004, Oxford University Press

 Buurlage, J. W., Bannink, T., Bisseling, R. H., Bulk: A Modern C++ Interface for Bulk-Synchronous Parallel Programs. In EuroPar 2018 (pp. 519-532). Springer

https://doi.org/10.1007/978-3-319-96983-1_37

BSP Computer

BSP Model Components

BSP Computer

(Distributed Memory Computer)

Programming Model

(Algorithmic Framework)

Cost Model

BSP Computer

- BSP computer is a distributed memory computer
 - Consists of processors with own memory
 - Local memory accesses are fast, remote memory accesses slower
- Communication network treated as black box
 - Algorithm designer does not have to care about network details
- BSP algorithms are portable
 - Run on many different parallel computers (even on shared memory computers)

