● 3회차

 01 ①
 02 ③
 03 ③
 04 ①
 05 ③

 06 ③
 07 ⑤
 08 ②
 09 ①
 10 ①

 11 ③
 12 ⑤
 13 ③
 14 ④
 15 ③

16 4 17 3

[서술형 1] $\frac{7}{3}$ <x<3

[서술형 2] 12

[서술형 3] $(1)\frac{5}{7}$ (2) 5 km

- **01** ① $(-2)^2$ =4이므로 제곱근 4는 $\sqrt{4}$ =2이다. ② $\sqrt[4]{16} = \sqrt[4]{2}^4 = 2$ 따라서 옳지 않은 것은 ①이다.
- 02 $\sqrt[3]{a imes \sqrt[4]{a}} = \sqrt[3]{a} imes \sqrt[3]{\sqrt[4]{a}}$ $= \sqrt[3]{a} imes \sqrt[12]{a}$ $= a^{\frac{1}{3}} imes a^{\frac{1}{12}}$ $= a^{\frac{5}{12}}$ $= \sqrt[12]{a^5}$ 따라서 m = 5, n = 12이므로 m + n = 5 + 12 = 17
- 03 $2^x = 3$ 에서 $x = \log_2 3$ $3^y = 4$ 에서 $y = \log_3 4$ $\therefore xy = \log_2 3 \cdot \log_3 4$ $= \log_2 3 \cdot \log_3 2^2$ $= \log_2 3 \cdot 2 \log_3 2$ = 2
- 04 밑의 조건에서 $x>0, x \neq 1$ $\therefore 0 < x < 1$ 또는 x>1 ······ ① 진수의 조건에서 $16-x^2>0$ 이므로 (x+4)(x-4)<0 $\therefore -4 < x < 4$ ····· ① ①, ①의 공통 범위를 구하면 0 < x < 1 또는 1 < x < 4따라서 정수 x는 2, 3으로 2 개수는 2이다.

- **05** $\log_3 \frac{3}{4} + \log_3 24 \log_3 \frac{2}{3}$ $= \log_3 \left(\frac{3}{4} \times 24 \div \frac{2}{3} \right)$ $= \log_3 \left(\frac{3}{4} \times 24 \times \frac{3}{2} \right)$ $= \log_3 3^3$ = 3
- 06 주어진 상용로그표에서 log 3.92=0.5933, log 3.7=0.5682 이므로 log(0.392×370) = log 0.392+log 370 = log(3.92×10⁻¹)+log(3.7×10²) = log 3.92-1+log 3.7+2 = 0.5933+0.5682+1 = 2.1615
- 08 $y = \log_a(x^2 2x + 10)$ 에서 $f(x) = x^2 2x + 10$ 으로 놓으면 $y = \log_a f(x)$ 이고, $f(x) = (x-1)^2 + 9$ 이때 $0 \le x \le 1$ 에서 f(0) = 10, f(1) = 9이므로 $9 \le f(x) \le 10$ (i) 0 < a < 1일 때 함수 $y = \log_a f(x)$ 는 f(x) = 9일 때 최댓값을 가지므로 $\log_a 9 = -2$ $\therefore a = \frac{1}{3}$

(ii) a>1일 때

함수 $y = \log_a f(x)$ 는 f(x) = 10일 때 최댓값을 가지므로

 $\log_a 10 = -2$

이때 $\log_a 10 = -2$ 를 만족시키는 a > 1인 상수 a는 존재하지 않는다.

- (i),(ii)에서 $a=\frac{1}{3}$
- **09** 각 θ 를 나타내는 동경과 각 8θ 를 나타내는 동경이 y축에 대하여 대칭이므로

 $\theta+8\theta=(2n+1)\pi$ (n은 정수)

$$9\theta = (2n+1)\pi$$
 $\therefore \theta = \frac{2n+1}{9}\pi$ $\cdots \bigcirc$

 $0 < \theta < \pi$ 이므로 $0 < \frac{2n+1}{9}\pi < \pi$

$$0 < 2n+1 < 9$$
 $\therefore -\frac{1}{2} < n < 4$

이때 n은 정수이므로

n=0 또는 n=1 또는 n=2 또는 n=3

이것을 🗇에 각각 대입하면

$$\theta = \frac{\pi}{9} + \frac{\pi}{9} + \frac{\pi}{3} + \frac{\pi}{9} +$$

따라서 모든 각 θ 의 크기의 합은

$$\frac{\pi}{9} + \frac{\pi}{3} + \frac{5}{9}\pi + \frac{7}{9}\pi = \frac{16}{9}\pi$$

Lecture 두 동경이 x축, y축에 대하여 대칭일 조건

두 각 α , β 를 나타내는 동경이 다음과 같이 좌표축에 대하여 대칭일 때

x축에 대하여 대칭	y축에 대하여 대칭
$\frac{y}{\beta}$	$ \begin{array}{c} y \\ \beta \\ \alpha \\ 0 \end{array} $
$\alpha + \beta = 2n\pi$	$\alpha + \beta = (2n+1)\pi$
(<i>n</i> 은 정수)	(n은 정수)

10 $\overline{OP} = \sqrt{(-6)^2 + 8^2} = 10$ 이므로 $\sin \theta = \frac{8}{10} = \frac{4}{5}$ $\cos \theta = \frac{-6}{10} = -\frac{3}{5}$

$$\therefore \sin \theta + \cos \theta = \frac{4}{5} + \left(-\frac{3}{5}\right) = \frac{1}{5}$$

11 $\sin \theta + \cos \theta = \frac{1}{3}$ 의 양변을 제곱하면 $\sin^2 \theta + 2 \sin \theta \cos \theta + \cos^2 \theta = \frac{1}{9}$

이때 $\sin^2\theta + \cos^2\theta = 1$ 이므로

$$1+2\sin\theta\cos\theta=\frac{1}{9}$$

$$\therefore \sin \theta \cos \theta = -\frac{4}{9}$$

$$\therefore -9 \sin \theta \cos \theta = -9 \cdot \left(-\frac{4}{9}\right) = 4$$

12 함수 $y=a\sin bx+c$ 의 최댓값과 최솟값이 각각

$$-a+c=3, a+c=-1$$

위의 두 식을 연립하여 풀면

$$a = -2, c = 1$$

또 주기가 $\frac{\pi}{2}$ 이고, b>0이므로

$$\frac{2\pi}{b} = \frac{\pi}{2}$$
 $\therefore b=4$

$$\therefore a+b+c=-2+4+1=3$$

13 $\sin(-\theta) + \cos\left(\frac{\pi}{2} + \theta\right)$

$$+\cos^2\left(\frac{3}{2}\pi+\theta\right)+\cos^2(\pi-\theta)$$

$$=-\sin\theta-\sin\theta+\sin^2\theta+(-\cos\theta)^2$$

$$=$$
 $-2\sin\theta + \sin^2\theta + \cos^2\theta$

- $=1-2\sin\theta$
- **14** $0 \le x < 2\pi$ 에서 함수 $y = \tan x$ 의 그래프와 직선 $y = \sqrt{3}$ 의 교점은 다음 그림과 같으므로 구하는 방정식의 해는

$$x=\frac{\pi}{3}$$
 또는 $x=\frac{4}{3}\pi$

따라서 모든 실수 x의 값의 합은

$$\frac{\pi}{3} + \frac{4}{3}\pi = \frac{5}{3}\pi$$

15 사인법칙에 의하여

$$\frac{b}{\sin B} = \frac{a}{\sin A}$$
에서
$$\frac{b}{\sin 60^{\circ}} = \frac{2\sqrt{2}}{\sin 45^{\circ}}$$
$$\therefore b = \frac{2\sqrt{2}}{\frac{\sqrt{2}}{2}} \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3}$$

16 $2 \sin A = 3 \sin B = 2 \sin C = k (k \neq 0)$ 로 놓으면

$$\sin A = \frac{k}{2}, \sin B = \frac{k}{3}, \sin C = \frac{k}{2}$$

$$\therefore a : b : c = \sin A : \sin B : \sin C$$

$$= \frac{k}{2} : \frac{k}{3} : \frac{k}{2}$$

$$= 3 : 2 : 3$$

따라서 a=3l, b=2l, c=3l (l>0)이라 하면 $\cos B = \frac{(3l)^2 + (3l)^2 - (2l)^2}{2 \cdot 3l \cdot 3l} = \frac{14l^2}{18l^2} = \frac{7}{9}$

17 코사인법칙에 의하여

$$b^{2}=2^{2}+3^{2}-2\cdot 2\cdot 3\cdot \cos \frac{\pi}{3}$$

$$=4+9-12\cdot \frac{1}{2}=7$$

$$\therefore b=\sqrt{7} \ (\because b>0)$$

[서술형 1] 진수의 조건에서

$$x-1>0, 6-2x>0$$

 $\therefore 1 < x < 3 \qquad \cdots$

부등식 $\log_3(x-1) > \log_3(6-2x)$ 의 밑 3이 1보다 크므로

$$x-1>6-2x, 3x>7$$

$$\therefore x > \frac{7}{3}$$

①, ①의 공통 범위를 구하면

$$\frac{7}{3} < x < 3$$

채점 기준	배점
① 진수의 조건을 만족시키는 x 의 값의 범위를 구할 수 있다.	3점
② 부등식을 만족시키는 x 의 값의 범위를 구할 수 있다.	3점
③ 부등식의 해를 구할 수 있다.	1점

[서술형 2] 정사각형 ABCD의 한 변의 길이가 4이므로 점 D의 y좌표는 4이다. 즉 점 D의 좌표를 (k,4)로 놓으면 점 D(k,4)는 함수 $y=\log_2 x$ 의 그래프 위의 점이므로

 $4=\log_2 k$ $\therefore k=2^4=16$ 따라서 D(16,4)이므로 점 C의 좌표는 (16,0)이다.

이때 $\overline{\mathrm{BC}}{=}4$ 이므로 점 B의 좌표는 (16-4,0), 즉 (12,0)이다.

점 E의 좌표를 (12, l)이라 하면 점 $\mathrm{E}(12, l)$ 은 함수 $y = \log_2 x$ 의 그래프 위의 점이므로 $l = \log_2 12 = \log_2 (2^2 \times 3) = 2 + \log_2 3$ $\therefore \mathrm{E}(12, 2 + \log_2 3)$

따라서 정사각형 EFGB의 한 변의 길이는 $2+\log_2 3$ 이므로 둘레의 길이는 $4(2+\log_2 3)=8+4\log_2 3$ 즉 a=8,b=4이므로 a+b=8+4=12

채점 기준	배점
● 두 점 C, D의 좌표를 구할 수 있다.	3점
② 두 점 B, E의 좌표를 구할 수 있다.	3점
③ a+b의 값을 구할 수 있다.	1점

[**서술형 3**] (1) 삼각형 ABC에서

$$\cos B = \frac{7^2 + 6^2 - 5^2}{2 \cdot 7 \cdot 6} = \frac{5}{7}$$

(2) 삼각형 ABD에서 코사인법칙에 의하여 $\overline{AD}^2 = 7^2 + 4^2 - 2 \cdot 7 \cdot 4 \cdot \cos B$ $= 49 + 16 - 56 \cdot \frac{5}{7}$ = 25

∴ AD=5 (km) (∵ AD>0)
 따라서 두 지점 A, D 사이의 거리는 5 km이다.

채점 기준	배점	
$lue{1}$ 코사인법칙을 이용하여 $\cos B$ 의 값을 구할 수 있다.	3점	
② 코사인법칙을 이용하여 두 지점 A, D 사이의 거리를		
구할 수 있다.	3점	