ДЗ 1 задача 4

Юдина Екатерина БПИ198

Вариант 1

Условие:

Файл «youtube_1.csv» содержит следующие сведения о видеороликах на YouTube (сто роликов):

n — номер наблюдения,

id — идентификатор ролика,

framerate — число кадров в секунду,

frames — общее число кадров в видео,

bitrate — битрейт, Кбит/сек.

duration — продолжительность, сек.

size — размер видеофайла, байт.

- 1)Для признаков framerate, frames, bitrate, duration и size рассчитайте две корреляционные матрицы на основании коэффициентов Пирсона и Спирмена.
- 2)Оцените значимость каждого коэффициента (проверьте гипотезу об отсутствии корреляции)
- 3)Представьте полученные результаты в виде таблицы

Коэффициенты корреляции Пирсона.

	framerate	frames	bitrate	duration	size	
framerate	1.00	0.08	-0.02	0.04	0.02	
frames	0.08	1.00	0.12	0.45**	0.29*	
bitrate	-0.02	0.12	1.00	-0.03	0.72***	
duration	0.04	0.45**	-0.03	1.00	0.36**	
size	ize 0.02		0.72***	0.36**	1.00	

^{* —} коэффициент значим на уровне 5%,

Коэффициенты, не отмеченные звёздочками, незначимы (нет оснований отвергнуть гипотезу об отсутствии корреляции на уровне 5%).

P.S. Сравните коэффициенты Пирсона и Спирмена, обратите внимание на случаи, когда два этих коэффициента существенно расходятся, если такие есть. Что такое «существенно», решайте сами. В случае существенного расхождения постройте диаграммы разброса для тех пар признаков, тесноту связи между которыми коэффициенты измеряют по-разному, и попытайтесь объяснить причину расхождения. Если вы не видите никаких существенных расхождений между двумя

^{** —} коэффициент значим на уровне 1%,

^{*** —} коэффициент значим на уровне 0.1%.

матрицами, просто постройте диаграмму рассеяния для случая, где разность коэффициентов Пирсона и Спирмена наибольшая.

Решение

▶Пирсон

♦ Рассчитаем коэффициенты Пирсона по формуле:

$$r_{X,Y} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2 * \sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

Будем называть $r_{X,Y}$ (выборочным) коэффициентом корреляции Пирсона или выборочной корреляцией

Все вычисления производились в google.colab

♦ Коэффициенты Пирсона:

$$r_{framerate}$$
, $framerate$ = 1.0000
 $r_{framerate}$, $framerate$ = 0.2676
 $r_{framerate}$, $frames$ = 0.2360
 $r_{framerate}$, $framerate$, $framerate$, $framerate$, $frames$ = 0.1919
 r_{frames} , $frames$ = 1.0000
 r_{frames} , $frames$ = 0.1752
 r_{frames} , $frames$ = 0.8747
 $r_{bitrate}$, $frames$ = 1.0000
 $r_{bitrate}$, $frames$ = 0.1160
 $r_{bitrate}$, $frames$, $frames$ = 1.0000
 $frames$, $frames$ = 0.4582
 $frames$, $frames$ = 0.7800
 $frames$, $frames$ = 0.7800
 $frames$, $frames$ = 0.7800

 ◆ Проверим гипотезы о независимости признаков (об отсутствии корреляции) с помощью коэффициента корреляции Пирсона.

Пусть $\rho = Corr(X_i, Y_i)$ — истинный (т.е. теоретический, не выборочный) коэффициент корреляции между (X_i, Y_i)

Гипотезы:

$$H_0$$
 - $ho=0$ (X_i и Y_i независимы)

$$H_{A}$$
 - $ho \neq 0$ (X_{i} и Y_{i} зависимы)

Условие:

Пусть $X_i \sim N(\mu_X, \sigma_X^2)$, $Y_i \sim N(\mu_Y, \sigma_Y^2)$, все случайные величины независимы. Тогда воспользуемся следующей статистикой..

Статистика:

$$t = \frac{r_{X,Y} \sqrt{n-2}}{\sqrt{1-r_{X,Y}^2}}$$

Критическое правило:

Основная гипотеза, отвергается, если $|t| \geq t_{n-2,\frac{\alpha}{2}}$, где — α уровень значимости

 $[t_{n-2},rac{lpha}{2}$ -- распределение Стьюдента :)].

♦ Рассчитаем статистики для всевозможных пар признаков видеороликов с youtube

$$t_{12(framerate, frames)} = 2.75$$

$$t_{13(framerate, bitrate)} = 2.40$$

$$t_{14(framerate, duration)} = 0.90$$

$$t_{15(framerate, size)} = 1.94$$

$$t_{23(frames, bitrate)} = 1.76$$

$$t_{24(frames, duration)} = 28.99$$

$$t_{25(frames, size)} = 17.86$$

$$t_{34(bitrate, duration)} = 1.16$$

$$t_{35(bitrate, size)} = 5.10$$

$$t_{45(duration, size)} = 12.34$$

◆Теперь для каждой статистики сделаем вывод (примем или отвергнем основуню гипотезу) на уровне значимости 5%,1%,0.1%.

Табличные значения:

$$t_{n-2}, \frac{\alpha}{2} = t_{98}, \frac{0.05}{2} = 1.98$$

$$t_{n-2}, \frac{\alpha}{2} = t_{98}, \frac{0.01}{2} = 2.63$$

$$t_{n-2}, \frac{\alpha}{2} = t_{98}, \frac{0.001}{2} = 3.39$$

♦ Составим таблицу согласно полученным значениям

На диагонали будут стоять единицы (так как диаганальные значения отражают связь между одним и тем же признаком связь прямая и строго линейная)

Коэффициент корреляции Пирсона								
	framerate frames		bitrate	duration	size			
framerate	1	0.2676 **	0.236 *	0.0908	0.1919			
frames	0.2676 **	1	0.1752	0.9464 ***	0.8747 ***			
bitrate	0.236 *	0.1752	1	0.116	0.4582 ***			
duration	0.0908 0.9464 ***		0.116	1	0.78 ***			
size	0.1919 0.8747		0.4582 ***	0.78 ***	1			
*	значим на 5 %	ó						
**	значим на 1 %	Ď						
***	значим на 0.1	%						
незначим (нет оснований отвергнуть гипотезу об отсутствии корреляции на уровне 5 %)								

◆ Пример вывода для таблицы Пирсона

1. Для параметров duration (продолжительность) и frames (общее число кадров)

Есть достаточные основания отвергнуть основную гипотезу и считать что велечины зависимы на уровне значимости 0.1%. (Корреляция значима на уровне 0.1%). Связь между продолжительностью видео и общим числом кадров почти линейна.

1. Для параметров size и framerate (число кадров в секунду)

Нет оснований отвергнуть основную гипотезу и считать, что размер видеофайла зависит от его числа кадров в секунду в этом ролике. Корреляция между размером и числом кадров в секунду не отличается значимо от нуля на уровне 5%. (Корреляция не значима на уровне 5%)

Мы не можем сделать вывод, что связи между размером и числом кадров в секунду нет. Скорее, у нас просто недостаточно наблюдений, чтобы с уверенностью говорит о наличии связи, или могли произойти выбросы .. так как например, критерий Спирмена все-таки дает нам основание отвергнуть основную гипотезу для данной пары.. но об этом во второй части нашего выпуска.

► Спирмен

Проделаем аналогичные шаги для построения таблицы Спирмена

◆ Коэффициент ранговой корреляции Спирмена между признаками X и Y — это коэффициент Пирсона между рангами наблюдений по X и по Y:

$$r_{X,Y}^{S} = r_{rank(X), rank(Y)} = \frac{\sum_{i=1}^{n} (rank(X_i) - rank(X))(rank(Y_i) - rank(Y))}{\sqrt{\sum_{i=1}^{n} (rank(X_i) - rank(X))^2 * \sum_{i=1}^{n} (rank(Y_i) - rank(Y))^2}}$$

Здесь $\mathit{rank}(X_i)$ и $\mathit{rank}(Y_i)$ — ранги наблюдения по X и по Y соответственно.

Все вычисления производились в google.colab

♦ Коэффициенты ранговой корреляции Спирмена:

$$r_{11(framerate,framerate)}^{S} = 1.0000$$
 $r_{12(framerate,frames)}^{S} = 0.3655$
 $r_{13(framerate,frames)}^{S} = 0.3655$
 $r_{13(framerate,bitrate)}^{S} = 0.4343$
 $r_{14(framerate,duration)}^{S} = 0.1063$
 $r_{15(framerate,size)}^{S} = 0.3823$
 $r_{23(frames,bitrate)}^{S} = 0.1745$
 $r_{24(frames,duration)}^{S} = 0.9391$
 $r_{25(frames,size)}^{S} = 0.6728$
 $r_{34(bitrate,duration)}^{S} = 0.0215$
 $r_{35(bitrate,size)}^{S} = 0.7849$
 $r_{45(duration,size)}^{S} = 0.5793$

♦ Проверим гипотезы о независимости признаков с помощью коэффициента корреляции Спирмена.

Пусть $\rho = Corr(X_i, Y_i)$ — истинный (т.е. теоретический, не выборочный) коэффициент корреляции между (X_i, Y_i)

Гипотезы:

$$H_0$$
 - ho = 0 (X_i и Y_i независимы)

$$H_A$$
 - $\rho \neq 0$ (X_i и Y_i зависимы)

Условие:

Пусть в выборке $(X_1,Y_1),\dots(X_N,Y_N)$ пары (X_i,Y_i) независимы и одинаково распределены. Тогда воспользуемся следующей статистикой

Статистика:

$$= \frac{r_{X,Y}^S \sqrt{n-2}}{\sqrt{1 - (r_{X,Y}^S)^2}}$$

Критическое правило:

Основная гипотеза, отвергается, если $|t| > t_{n-2,\frac{\alpha}{2}}$, где — α уровень значимости

$$[t_{n-2}, \frac{\alpha}{2}]$$
 -- распределение Стьюдента :)].

◆ Рассчитаем статистики (с использованием коэффициента Спирмена) для всевозможных пар признаков видеороликов с voutube

$$t_{12(framerate,frames)} = 3.89$$
 $t_{13(framerate,bitrate)} = 4.77$
 $t_{14(framerate,duration)} = 1.06$
 $t_{15(framerate,size)} = 4.10$
 $t_{23(frames,bitrate)} = 1.75$
 $t_{24(frames,duration)} = 27.06$
 $t_{25(frames,size)} = 9.00$
 $t_{34(bitrate,duration)} = 0.21$
 $t_{35(bitrate,size)} = 12.54$
 $t_{45(duration,size)} = 7.04$

Коэффициент корреляции Спирмена								
* *	framerate	frames	bitrate	duration	size			
framerate	1	0.3655 ***	0.4343 ***	0.1063	0.3823 ***			
frames	0.3655 ***	1	0.1745	0.9391 ***	0.6728 ***			
bitrate	0.4343 ***	0.1745	1	0.0215	0.7849 ***			
duration	0.1063	0.9391 ***	0.0215	1	0.5793 ***			
size	0.3823 ***	0.6728 ***	0.7849 ***	0.5793 ***	1			
* значим на 5 %		ó						
**	значим на 1 %	ó						
*** значим на 0.1 %								

незначим (нет оснований отвергнуть гипотезу об отсутствии корреляции на уровне 5 %)

◆ Пример вывода для таблицы Спирмена

1. Для параметров duration (продолжительность) и frames (общее число кадров)

Есть достаточные основания отвергнуть основную гипотезу и считать что велечины зависимы на уровне значимости 0.1%. (Корреляция значима на уровне 0.1%). Связь между продолжительностью видео и общим числом кадров монотонна (почти строго монотонна) и значения сосредоточены тесно ().

1. Для параметров size (размер) и framerate (число кадров в секунду)

Есть достаточные основания отвергнуть основную гипотезу и считать что размер и число кадров в секунду зависимы на уровне значимости 0.1%.

В данном случае мы сделали противоположный вывод, тому что получислось при исследовании с помощью коэффициента Пирсона. Коэффициента Спирмена нечувствителен к выбросам в отличие от коэффициента Пирсона.

Для наглядности построим график рассеяности в третьей части нашей программы..

▶ Сравним таблицы:

Коэффициент корреляции Пирсона (r)				Коэффиц	иент корре	еляции Спи	рмена (rs)				
	framerate	frames	bitrate	duration	size	*_*	framerate	frames	bitrate	duration	Ī
framerate	1	0,2676	0,236	0,0908	0,1919	framerate	1	0,3655	0,4343	0,1063	1
frames	0,2676	1	0,1752	0,9464	0,8747	frames	0,3655	1	0,1745	0,9391	
bitrate	0,236	0,1752	1	0,116	0,4582	bitrate	0,4343	0,1745	1	0,0215	
duration	0,0908	0,9464	0,116	1	0,78	duration	0,1063	0,9391	0,0215	1	
size	0,1919	0,8747	0,4582	0,78	1	size	0,3823	0,6728	0,7849	0,5793	
	_										
	Разница	между коэс		ми r-rs			значим на 5 %	•			
0_0	framerate	frames	bitrate	duration	size		значим на 1 %				
framerate	0	0,0979	0,1983	0,0155	0,1904		значим на 0.1 %				
frames	0,0979	0	0,0007	0,0073	0,2019		незначим на уровне 5 %				
bitrate	0,1983	0,0007	0	0,0945	0,3267						
duration	0,0155	0,0073	0,0945	0	0,2007						
size	0,1904	0,2019	0,3267	0,2007	0						

Можем заметить, что в принципе значения доволно близкие и иногда даже различаются меньше чем на тысячную. Но также присутствуют и расхождения, они чаще всего отмечаются там, где существуют так называемые 'выбросы' -значения которые выбиваются из общей массы.

Самые большие разницы между значениями коэффициентов присутствуют в парах, в которые входит параметр 'size', также доволно-таки сильно изменилось значение коэффициента 'bitrates+frames'

Поробуем выяснить причину, посмотрев на диаграммы рассеивания

Рассмотрим одну из них с ('size,bitrate', так как судя по вычисленным разницам, здесь самое большое расхождение)

Действительно существуют выбросы, которые лежат поодаль от общей массы значений, что повлияло на значение коэффициента Пирсона.

Bce \$_\$.

PS Hy, и еще один график для параметров size (размер) и framerate (число кадров в секунду) (те параметры для которых получились разные выводы при использовании разных коффицентов:

Можем увидеть небольшую тенденцию показывающую зависмость этих двух параметров на первом графике рассеивания, и относительно монотоноое распределение величин на втором и именно это показывает коэффициент Пирсона.