Dimesion Reduction

2022-11-07

Load packages, clean environment, and set working directory

```
# Libraries for preparing data for analysis
library(ape)
library(dplyr)
library(nlme)
library(tidyverse)
library(vroom)
library(readxl)
library(ggplot2)
# Libraries for PCA (principal components analysis)
library(vegan)
library(factoextra) #fviz_eig
#Libraries for NMF (non-negative matrix factorization)
# if (!requireNamespace("BiocManager", quietly = TRUE))
  install.packages("BiocManager")
# BiocManager::install("Biobase", version = "3.16")
library(Biobase)
library(NMF)
#libraries for MCA
library(FactoMineR)
library(dplyr)
library(factoextra) #fviz_eig
#Clean environment
rm(list=ls())
graphics.off()
#Set working directory
setwd("~/Library/CloudStorage/OneDrive-WashingtonStateUniversity(email.wsu.edu)/Fernandez Lab/Projects
```

Prepare genomic data for dimension reduction

Let's clean our sequence data and explore the variability in the data!

```
#Load genome annotations and trim
genes <- read_xlsx("OPVnew_nowwithVirus.xlsx", sheet="PoxHost")
#Rename variables and exclude unnecessary variables</pre>
```

```
genes <- plyr::rename(genes, c("Virus"="VirusSpecies","Host Genus"="HostGenus","Host Species"="HostSpec
genes <- subset(genes, select=-c(HostSpecies))</pre>
#Correct sequence MT903347_1 - 'HostGenus' var lists Family name instead of Genus
genes$HostGenus <- ifelse(genes$HostGenus=="Gliridae", "Graphiurus", genes$HostGenus)</pre>
#Add unique identifier
genes$rownames <- rownames(genes)</pre>
genes$Sequence <- paste(genes$Genome,genes$VirusSpecies,genes$HostGenus,sep="_",genes$rownames)</pre>
genes$rownames=NULL
genes <- genes %>% dplyr::select(Sequence, everything())
#View frequency of various virus species
prop_table <- subset(genes, select=-c(Sequence,Genome))</pre>
prop_table$Frequency = 1
prop_table <- aggregate(Frequency ~ VirusSpecies + HostGenus, data=prop_table, FUN=sum)</pre>
prop_table <- prop_table[order(prop_table[,c("VirusSpecies")],prop_table[,c("HostGenus")]) ,]</pre>
prop_table$Perc <- prop_table$Frequency/sum(prop_table$Frequency)*100</pre>
print(prop_table)
```

##		VirusSpecies		HostGenus	Frequency	Perc
##	29	${\tt Abatino\ macacapox}$	virus	Macaca	1	0.5076142
##	2	Akhmeta	virus	Apodemus	3	1.5228426
##	22	Akhmeta	virus	Homo	3	1.5228426
##	23	Alaskapox	virus	Homo	1	0.5076142
##	6	Camelpox	virus	Camelus	6	3.0456853
##	44	Cetaceanpox	virus	Tursiops	1	0.5076142
##	1	Cowpox	virus	Acinonyx	6	3.0456853
##	5	Cowpox	virus	Callithrix	1	0.5076142
##	8	Cowpox	virus	Castor	1	0.5076142
##	12	Cowpox	virus	Cynomys	1	0.5076142
##	14	Cowpox	virus	Dolichotis	1	0.5076142
##	15	Cowpox	virus	Elephas	2	1.0152284
##	16	Cowpox	virus	Equus	1	0.5076142
##	18	Cowpox	virus	Felis	24	12.1827411
	21	Cowpox	virus	Herpailurus	2	1.0152284
	24	Cowpox	virus	Homo	25	12.6903553
	33	Cowpox	virus	Microtus	3	1.5228426
	35	Cowpox		Mungos	1	0.5076142
	37	Cowpox		Myodes	1	0.5076142
	40	Cowpox		Procyon	1	0.5076142
##	42	Cowpox		Rattus	9	4.5685279
##		Cowpox		Saguinus	1	0.5076142
	45	Cowpox		Vicugna	5	2.5380711
	25	Ectromelia		Homo	1	0.5076142
	36	Ectromelia	virus	Mus	2	1.0152284
##	7	Monkeypox	virus	Canis	1	0.5076142
##	10	Monkeypox	virus	Cricetomys	1	0.5076142
##	11	Monkeypox	virus	Crocidura	1	0.5076142
##	13	Monkeypox		Cynomys	3	1.5228426
	19	Monkeypox	virus	Funisciurus	2	1.0152284
	20	Monkeypox		Graphiurus	2	1.0152284
##	26	Monkeypox	virus	Homo	57	28.9340102

```
## 28
              Monkeypox virus
                                Ictidomys
                                                  2 1.0152284
                                                  2 1.0152284
## 30
              Monkeypox virus
                                   Macaca
## 31
              Monkeypox virus Malacomys
                                                  1 0.5076142
                                                  1 0.5076142
## 38
              Monkeypox virus
                                      Pan
## 41
             Raccoonpox virus
                                 Procyon
                                                   2 1.0152284
## 32
               Skunkpox virus Mephitis
                                                  1 0.5076142
## 3
               Vaccinia virus
                                                  2 1.0152284
                                                  4 2.0304569
               Vaccinia virus
## 4
                                  Bubalus
## 9
               Vaccinia virus Chlorocebus
                                                  1 0.5076142
## 17
               Vaccinia virus
                                    Equus
                                                  1 0.5076142
## 27
               Vaccinia virus
                                     Homo
                                                  8 4.0609137
                                                   1 0.5076142
## 34
                Volepox virus
                                 Microtus
## 39
                Volepox virus Peromyscus
                                                   1 0.5076142
#Save frequency table to Output folder
# write.csv(table, "Output/gene_freq_table.csv")
#Create function (mode.prop) to assess variation in the presence/absence of OPV genes
mode.prop <- function(x) {</pre>
  ux <- unique(x[is.na(x)==FALSE])</pre>
                                           # creates array of unique values
  tab <- tabulate(match(na.omit(x), ux)) # creates array of the frequency a unique value appears in a
                                           # max-frequency / number of elements in each column that are
  max(tab)/length(x[is.na(x)==FALSE])
}
# Assess variation across columns (2 indicates columns)
vars=data.frame(apply(genes,2,function(x) mode.prop(x)),
                apply(genes,2,function(x) length(unique(x)))) # number of unique elements in each column
vars$variables=rownames(vars)
colnames(vars) <- c("var", "uniq", "column")</pre>
# Trim
vars \leftarrow vars [-c(1,2),]
# Any variables with no variation? If so drop
which(vars$var==1)
## integer(0)
# vars <- subset(vars, vars$var<1)</pre>
# Visualize distribution of variation
#png("Output/gene_variation.png", width=4,height=4,units="in",res=600)
gene_var <- ggplot(vars,</pre>
       aes(var))+
  geom_histogram(bins=50)+
  geom_vline(xintercept=0.70,linetype=2,size=0.5)+
  theme_bw()+
  theme(panel.grid.major=element_blank(),panel.grid.minor=element_blank())+
  theme(axis.title.x=element_text(margin=margin(t=10,r=0,b=0,l=0)))+
  theme(axis.title.y=element_text(margin=margin(t=0,r=10,b=0,l=0)))+
  labs(y="frequency",
       x="variation in the presence/absence of genes across genome sequences")+
  scale_x_continuous(labels=scales::percent)
```

Warning: Using 'size' aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use 'linewidth' instead.

```
#dev.off()
gene_var
```


variation in the presence/absence of genes across genome sequences

```
# Clean environment
rm(prop_table, vars, gene_var, mode.prop)
```

(1) PCA of viral accessory genes

Using principal components analysis, can we distill the variables down to their most important features? Which genes contribute the most to each feature?

```
# Subset data and reformat as numeric matrix
# genes_mat <- subset(genes, select=-c(Genome, VirusSpecies, HostGenus))
# mat <- as.matrix(genes_mat[,-1])
# rownames(mat) <- genes_mat[,1] %>% pull()
# class(mat) <- "numeric"

#Apply PCA using stats::prcomp
pca1 <- prcomp(genes[,5:985])  #scaling/centering not appropriate
relvar <- pca1$sdev^2 / sum(pca1$sdev^2)
relvar_per <- round(relvar*100,1)</pre>
```

```
#View summary results
# summary(pca1)
# View(pca$x) #sequence (individuals)
# View(pca$rotation) #genes (variables)
#Table of importance of components: Eigenvalue, SD, Proportion of Variance, Cumulative Prop
importance <- as.data.frame(t(summary(pca1)$importance))</pre>
importance$Eigenvalue <- importance$`Standard deviation`^2</pre>
importance <- importance %>% dplyr::relocate(Eigenvalue)
importance <- importance[c(1:10),]</pre>
### Eigenvalue: the variance explained by each PC
#Table of loadings: $rotation is the matrix of variable loadings where columns are eigenvectors
loadings <- as.data.frame(pca1$rotation)</pre>
loadings <- loadings[,c(1:10)]</pre>
loadings <- abs(loadings) #get absolute values</pre>
### Why are some loadings > |1|? Loading is the covariances/correlations b/w original vars and unit-sca
#For each dimension, create df of accessory genes
for(i in 1:ncol(loadings)){
  assign(colnames(loadings)[i], data.frame(loadings[,i]))
}
#Create list of dataframes of PC loadings
list <- colnames(loadings)</pre>
list_df = lapply(list, get)
#To each dataframe in that list, add corresponding gene name and sort in descending order (genes with h
for (i in 1:length(list)) {
  colnames(list_df[[i]]) <- "Loadings"</pre>
  list_df[[i]]$Gene <- rownames(loadings)</pre>
  list_df[[i]]=list_df[[i]][order(-list_df[[i]]$Loadings),]
#Drop loadings (only need ranking of genes)
for(i in 1:length(list)) {
 list_df[[i]]$Loadings=NULL
}
#Save PC gene rankings as table
rank_loadings <- data.frame(matrix(ncol=ncol(loadings), nrow=nrow(loadings)))</pre>
colnames(rank_loadings) <- colnames(loadings)</pre>
for(i in 1:length(list)) {
 rank_loadings[,i] = list_df[[i]]
print("Top 20 accessory genes with the largest loadings")
## [1] "Top 20 accessory genes with the largest loadings"
head(rank_loadings,20)
             PC1
                         PC2
                                    PC3
                                                PC4
                                                           PC5
                                                                       PC6
##
```

```
SNB57677.1 AGR37027.1 AXN75245.1 URK21303.1 URK21279.1 SNB56391.1
## 2 SNB50228.1 SNB48500.1 AGY98600.1 SNB56391.1 CUI02483.1 URK21279.1
## 3 AGZ00427.1 SPN68915.1 AGZ00715.1 ATB56114.1 AGY97404.1 AKJ93648.1
## 4 AZY91520.1 UEC93297.1 AGY99636.1 ADZ30436.1 SNB49818.1 AOP31461.1
     AGZ01043.1 ADZ29950.1 URF91580.1 AAY97376.1 UPV00262.1 AOP31711.1
## 6 AGZ00855.1 AZY91082.1 AGY98413.1 BDQ10418.1 QKE59858.1 AOP31501.1
## 7 SNB48439.1 QNP13069.1 BDQ10542.1 QJQ40180.1 AGY98413.1 AOP31502.1
## 8 ADZ29563.1 ATB55769.1 SNB49818.1 QNP13044.1 ADZ29563.1 AOP31289.1
     SNB63702.1 QNP12693.1 UPV00262.1 ARR30464.1 QNP12533.1 AKJ93661.1
## 10 AGY97210.1 AGR37221.1 SNB48426.1 SNB58018.1 AZY89284.1 AKJ93663.1
## 11 ADZ30410.1 USG71453.1 AGY97404.1 AGR37813.1 URK21282.1 AOP31729.1
## 12 AZY91526.1 AGR37033.1 AGF36621.1 AAY97012.1 AZY89555.1 AOP31760.1
## 13 QCY54139.1 SNB57100.1 SNB50673.1 AGR38581.1 SNB63702.1 AOP31374.1
## 14 SNB48849.1 AGY98361.1 AGY99938.1 AAL40474.1 SNB48426.1 AOP31821.1
## 15 ADZ29558.1 AGZ00866.1 ADZ29950.1 SNB50029.1 SNB50029.1 AOP31412.1
## 16 QEQ49763.1 UPV00452.1 AGR35818.1 QKE59858.1 CRL86950.1 AKJ93790.1
## 17 AZY91347.1 SNB54318.1 AXN75207.1 AZY91520.1 QQA05472.1 AOP31428.1
## 18 SNB50795.1 QNP14477.1 SNB49398.1 SPN68107.1 AXN75245.1 AOP31857.1
## 19 ARR30773.1 ADZ29296.1 QEQ49504.1 AGZ01043.1 AGF36696.1 ADP31647.1
## 20 DAD53541.1 ADZ24189.1 AGY97427.1 QEQ49955.1 AGR38581.1 AOP31860.1
##
              PC7
                          PC8
                                     PC9
                                               PC10
## 1
        SNB50029.1 AGR37033.1 ARR30464.1 SNB50747.1
## 2
        ADX22669.1 SNB57100.1 QNP12533.1 AGZ00866.1
## 3
        AGR38581.1 AZY89555.1 AGZ00866.1 AGF36621.1
## 4
       QKE59858.1 URK21282.1 AAY97012.1 SNB50157.1
## 5
        QNP12533.1 AZY89284.1 AAL40474.1 US009134.1
## 6
        ARR30464.1 AZY90595.1 SNB50029.1 SPN68107.1
## 7
        QJQ40180.1 AZY90734.1 AGR38581.1 QEQ49763.1
## 8
        AAL40474.1 AGY99032.1 ATB55273.1 BDQ10517.1
## 9
     CAB5514210.1 QNP14477.1 SPN68114.1 BDQ10418.1
## 10
       QGQ59741.1 QQA05060.1 QQA05677.1 UEC93542.1
## 11
        AAY97012.1 SPN68915.1 SPN68107.1 QNP13044.1
## 12
       URG34914.1 SNB50673.1 ADZ24189.1 QKE59817.1
        AGR34497.1 AGY99378.1 AZY89067.1 AAY97407.1
## 13
## 14
        AGR37744.1 CRL86950.1 QNP13567.1 SOU90190.1
## 15
       SNB50747.1 SNB49398.1 QQA05666.1 ADZ24189.1
## 16
        AGR37813.1 AYN64771.1 AGR37813.1 QGQ59741.1
## 17
       SNB49712.1 QQA05666.1 QNP14477.1 AGY97210.1
       BDQ10517.1 AGY97342.1 AFH54710.1 ATB55769.1
## 18
## 19
       CUIO2483.1 QNP13044.1 ATB56114.1 AZY91526.1
## 20
        SPN68107.1 QNP12344.1 QEQ49955.1 AGY98712.1
rm(list=ls(pattern="^PC"), list_df, loadings, importance, rank_loadings, i, list)
```

(1) PCA visualizations

Do all of the dimensions spark joy?

```
#Vizualize variance: screeplots, cumulative variance, etc.

#Vizualize individuals/scores

#Vizualize variables/loadings: by virus family, etc.

#Vizualize centroid

#Visualize scores by cluster via hierarchical cluster analysis (k-means)
```

```
#Screeplot variance (eigenvalues) to show the decreasing rate at which variance is explained by additio
screeplot(pca1, type="lines", npcs=15, main="Scree plot of Eigenvalues for the first 10 PCs")
abline(h=1, col="red", lty=5)
legend("topright", legend=c("Eigenvalue = 1"), col=c("red"), lty=5, cex=1)
```

Scree plot of Eigenvalues for the first 10 PCs


```
### suggests cutoff at PC10

#Screeplot cumulative variance to show the % variance explained by additional PCs
screeplot <- barplot(relvar_per[1:10], xlab='PC', ylab='Percentage of explained variances', main='Screet
text(screeplot, 0, y=relvar_per[1:10], label=relvar_per[1:10], cex=0.8, pos=3, col="red")</pre>
```

Screeplot of explained variances


```
# fviz_eig(pca, choice=c("variance"), main = "Scree plot of explained variances") # these values agree
#Plot cumulative variance to show the proportion of variance explained with each add'l PC
cumpro <- cumsum(pca1$sdev^2 / sum(pca1$sdev^2))
plot(cumpro[0:15], xlab = "Dimension", ylab = "Proportion of explained variance", main = "Cumulative value" abline(v = 10, col="blue", lty=5)
abline(h = 0.7, col="blue", lty=5)
legend("topleft", legend=c("Cut-off @ PC10"), col=c("blue"), lty=5, cex=1)</pre>
```

Cumulative variance plot

#Plot sequences
fviz_pca_ind(pca1) + ggtitle("PCA Plot of Sequences")


```
#Plot sequences by virus species for dim 1 and 2
library(ggfortify)
autoplot(pca1, data = genes, colour = 'VirusSpecies') + ggtitle("Plot of Sequences by Virus Species")
```

Plot of Sequences by Virus Species

Warning: ggrepel: 943 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Plot of Gene Loadings for Dimensions 1 and 2

Warning: ggrepel: 955 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Plot of Gene Loadings for Dimensions 3 and 4

Warning: ggrepel: 152 unlabeled data points (too many overlaps). Consider ## increasing max.overlaps

Warning: ggrepel: 979 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Biplot of Sequences and Gene Loadings

Warning: ggrepel: 18 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Warning: ggrepel: 9 unlabeled data points (too many overlaps). Consider ## increasing max.overlaps

rm(cumpro)

(2) PCA Alternative Analysis

What happens when we exclude accessory genes present in only one virus species?

```
#Drop accessory genes that are present in only one virus species (all 0's except for one)
genes2 <- genes[c(1:4,4 + which(colSums(genes[-(1:4)])>1))]
### 985 variables to 686 variables

#Apply PCA using stats::prcomp
pca2 <- prcomp(genes2[,5:686])

#Plot cumulative variance to show the proportion of variance explained with each add'l PC
cumpro <- cumsum(pca2$sdev^2 / sum(pca2$sdev^2))
plot(cumpro[0:15], xlab = "Dimension", ylab = "Proportion of explained variance", main = "Cumulative variabline(v = 10, col="blue", lty=5)
abline(h = 0.7, col="blue", lty=5)
legend("topleft", legend=c("Cut-off @ PC10"), col=c("blue"), lty=5, cex=1)</pre>
```

Cumulative variance plot

Biplot of Sequences and Gene Loadings

Warning: ggrepel: 18 unlabeled data points (too many overlaps). Consider ## increasing max.overlaps

Warning: ggrepel: 9 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Summary: Compared to PCA.1, there's an increase in the proportion of variance explained by the firs

(3) PCA Alternative Analysis

What happens when we drop duplicate observations within the same host-virus links (sequences with the same identical presence/absence of accessory genes as another sequence of the same host-virus link)?

```
pca3 <- prcomp(genes3[,5:985])

#Plot cumulative variance to show the proportion of variance explained with each add'l PC
cumpro <- cumsum(pca3$sdev^2 / sum(pca3$sdev^2))
plot(cumpro[0:15], xlab = "Dimension", ylab = "Proportion of explained variance", main = "Cumulative variabline(v = 10, col="blue", lty=5)
abline(h = 0.7, col="blue", lty=5)
legend("topleft", legend=c("Cut-off @ PC10"), col=c("blue"), lty=5, cex=1)</pre>
```

Cumulative variance plot

Warning: ggrepel: 15 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Warning: ggrepel: 16 unlabeled data points (too many overlaps). Consider ## increasing max.overlaps

Summary: Compared to PCA.1, there is a decrease in the proportion of variance explained by the firs

(4) PCA Alternative Analysis

What happens if we exclude the potential outliers from PCA, and then predict their scores and loadings?

```
#Create df excluding outliers identified in PCA.3
genes4_in <- genes[!grepl("MT724769_1|MN346703_1|MT724770_1|DQ011155_1", genes$Genome),]
#Create df of outliers
genes4_out <- genes[grepl("MT724769_1|MN346703_1|MT724770_1|DQ011155_1", genes$Genome),]
#Apply PCA using stats::prcomp
pca4_in <- prcomp(genes4_in[,5:985])
relvar <- pca4_in$sdev^2 / sum(pca4_in$sdev^2)
relvar_per <- round(relvar*100,1)

#Prediction of PCs for outliers
pred <- predict(pca4_in, newdata=genes4_out)
pca4_pred <- pca4_in
pca4_pred$x <- rbind(pca4_pred$x, pred)

#Plot of individuals w/ outliers in shaded bullets
COLOR <- c(1:length(unique(genes$VirusSpecies)))
PCH <- c(1,16)</pre>
```

2D PCA-plot

NULL

Warning: ggrepel: 169 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

 $\mbox{\tt \#\#}$ Warning: ggrepel: 978 unlabeled data points (too many overlaps). Consider $\mbox{\tt \#\#}$ increasing max.overlaps

Warning: ggrepel: 17 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

 $\mbox{\tt \#\#}$ Warning: ggrepel: 9 unlabeled data points (too many overlaps). Consider $\mbox{\tt \#\#}$ increasing max.overlaps


```
#Clean environment
rm(list=setdiff(ls(), c("genes", "pca1")))
### Summary: Predicted scores of outliers cluster in the fourth quadrant with other sequences. As in pr
```

PCA Hierarchical Cluster Analysis

```
#Extract coordinates for individual sequences
ind.coord <- pca1$x
rownames(ind.coord) <- 1:nrow(ind.coord)
db <- cbind(genes$VirusSpecies, ind.coord)

#HCA on a set of dissimilarities for objects being clustered, wherein each object is assigned its own c
clusters <- hclust(dist(db[,2:3]))
plot(clusters)
abline(h = 8, col="red", lty=5)
abline(h = 4, col="blue", lty=5)</pre>
```

Cluster Dendrogram

dist(db[, 2:3]) hclust (*, "complete")

```
#Cluster cut
clusterCut <- cutree(clusters, 6)
table(clusterCut)

## clusterCut
## 1 2 3 4 5 6
## 13 69 21 64 25 5

#Prop tables by virus species
mytable<-table(clusterCut, genes$VirusSpecies)
mytable2 <- data.frame(prop.table(mytable,2))
ggplot(mytable2, aes(x = Var2, y = Freq, fill = clusterCut)) +
    geom_col() +
    labs(fill='Cluster') +
    theme(axis.title.x = element_blank(), axis.text.x = element_text(angle=45,hjust=1)) +
    ggtitle("Distribution by Virus Species")</pre>
```

Distribution by Virus Species


```
#Re-run PCA to color by cluster
  #add cluster to original db
  genes1<-data.frame(cbind(genes,clusterCut))</pre>
 genes1$clusterCut <- as.factor(genes1$clusterCut)</pre>
#Run PCA as before, but now grouping by cluster
pca1 <- prcomp(genes1[,5:985]) #scaling/centering not appropriate</pre>
# pca_relvar <- pca$sdev^2 / sum(pca$sdev^2)</pre>
# pca_relvar_per <- round(pca_relvar*100,1)</pre>
fviz_pca_ind(pca1, geom.ind = "point", pointshape = 21,
             pointsize = 2,
             fill.ind = genes1$clusterCut,
             col.ind = "black",
             addEllipses = TRUE,
             label = "var",
             col.var = "black",
             palette = "rickandmorty",
             repel = TRUE,
             legend.title = "Cluster",
             alpha.ind = 0.5) +
  ggtitle("PCA Plot of Sequences by Cluster") +
  theme(plot.title = element_text(hjust = 0.5))
```


Warning: ggrepel: 980 unlabeled data points (too many overlaps). Consider
increasing max.overlaps


```
db.vf <- dplyr::select(genes1, Sequence, clusterCut)
# write.csv(db.vf, "clusters.csv", row.names = F)
#Clean environment
rm(clusters, db, db.vf, genes1, ind.coord, pca1, clusterCut, mytable, mytable2)</pre>
```

Non-Negative Matrix Factorization

PCA: Goal is to reduce dimensions while maintaining maximal variance - Each PC is a linear combination of uncorrelated attributes/features - # of PCs is limited by # of samples using the eigenvalue decomposition method (?) NMF: Like PCA, except coefficients in linear combination (weight of each base) must be non-negative - Explains the dataset through factoring into two non-negative matrices in such a way that the distance between the original matrix and subset matrices are minimized - Update rule implemented by NMF algorithms are multiplicative instead of additive - multiplicative update rules can hold nonnegativity easily with nonnegativity initialization - The number of learned basis experiments is not as limited by number of samples - NMF is stochastic (PCA is deterministic) - Can be much more stable and well-specified reconstruction when assumptions are appropriate - Excellent for separating out additive factors

```
#Resources: https://rpubs.com/JanpuHou/300168; https://aarmey.github.io/ml-for-bioe/public/Wk4-Lecture7
#Run NMF defaulting to 'brunet' algorithm and 'random' seed on initialization
genes_mat <- subset(genes, select=-c(Genome, VirusSpecies, HostGenus))
mat <- as.matrix(genes_mat[,-1])
rownames(mat) <- genes_mat[,1] %>% pull()
```

```
class(mat) <- "numeric"</pre>
start_time <- Sys.time()</pre>
# nmf \leftarrow nmf(genes[,5:10], 6, "brunet") #Time difference of 0.2662811 secs
nmf <- nmf(genes[,5:100], 96, "brunet") #Time difference of 17.2904 secs
end_time <- Sys.time()</pre>
end_time - start_time
## Time difference of 18.08848 secs
#Summarize results
nmf #explore object
## <Object of class: NMFfit>
## # Model:
    <Object of class:NMFstd>
##
## features: 197
## basis/rank: 96
   samples: 96
##
## # Details:
##
   algorithm: brunet
##
    seed: random
##
    RNG: 10403L, 568L, ..., 2033055286L [b2dbe2d415da902b53105edcb4c4184d]
##
    distance metric: 'KL'
##
    residuals: 1.025041
##
    Iterations: 2000
##
    Timing:
##
       user system elapsed
##
     16.935 0.137 17.080
fit(nmf) #retrieve fitted model
## <Object of class:NMFstd>
## features: 197
## basis/rank: 96
## samples: 96
V.hat <- fitted(nmf) #retrieve estimated target matrix and its dimensions
dim(V.hat)
## [1] 197 96
summary(nmf)
              {\tt rank\ sparseness.basis\ sparseness.coef\ silhouette.coef}
##
       96.00000000 0.27598885 0.26161709 -0.03010824
## silhouette.basis
                         residuals
                                              niter
                                                                  cpu
       -0.06725388
                        1.02504111
                                       2000.00000000 16.93500000
##
           cpu.all
                               nrıın
       16.93500000 1.00000000
##
```

```
#Perform multiple runs to achieve stability because the seeding method is stochastic (random): the retu
start_time <- Sys.time()</pre>
nmf_multi <- nmf(genes[,5:100], 96, nrun=5, .opt='v') #.opt='v' tries to run in parallel using all core
## NMF algorithm: 'brunet'
## Multiple runs: 5
## Mode: parallel (7/8 core(s))
## Runs: |
                                                                     Runs: |
## System time:
      user system elapsed
    97.876
            1.950 28.128
end_time <- Sys.time()</pre>
end_time - start_time #Time difference of 25.05052 secs
## Time difference of 28.6035 secs
nmf <- nmf(genes[,5:100], 95, .opt='t')</pre>
plot(nmf)
```

NMF Residuals Method: brunet – Rank: 95


```
NMFscores <- nmf_multi@fit@W
NMFloadings <- nmf_multi@fit@H

plot(NMFscores[,1:2],  # x and y data
    pch=21,  # point shape
    cex=1.5,  # point size
    main="Scores"  # title of plot
)</pre>
```

Scores


```
plot(NMFloadings[,1:2],  # x and y data
    pch=21,  # point shape
    bg="black",  # point color
    cex=1,  # point size
    main="Loadings"  # title of plot
)
```

Loadings

MCA of viral accessory genes

Multiple Correspondence Analysis (MCA) for dimension reduction of categorical variables.

```
#Subset data and reformat gene variables as factor
###Note: Actual data for MCA is pending. For the purposes of this exercise, I am manipulating the prese
genes_cat <- subset(genes, select=-c(Genome, VirusSpecies, HostGenus))
genes_cat[] <- lapply(genes_cat, as.character)
rownames <- genes$Sequence
genes_cat[,-1] <- lapply(genes_cat[,-1], factor)
genes_cat$Sequence=NULL
rownames(genes_cat) <- rownames</pre>
```

Warning: Setting row names on a tibble is deprecated.

```
#str(genes_cat)

#Apply MCA using FactoMineR::MCA
mca = MCA(genes_cat, graph = FALSE)

# pca_relvar <- pca$sdev^2 / sum(pca$sdev^2)

# pca_relvar_per <- round(pca_relvar*100,1)

#List and summarize MCA results
print(mca)</pre>
```

```
## **Results of the Multiple Correspondence Analysis (MCA)**
## The analysis was performed on 197 individuals, described by 981 variables
## *The results are available in the following objects:
##
##
     name
                       description
## 1 "$eig"
                       "eigenvalues"
## 2 "$var"
                       "results for the variables"
                        "coord. of the categories"
## 3 "$var$coord"
## 4
     "$var$cos2"
                        "cos2 for the categories"
## 5 "$var$contrib"
                        "contributions of the categories"
## 6 "$var$v.test"
                        "v-test for the categories"
## 7 "$ind"
                        "results for the individuals"
## 8 "$ind$coord"
                        "coord, for the individuals"
## 9 "$ind$cos2"
                       "cos2 for the individuals"
## 10 "$ind$contrib"
                        "contributions of the individuals"
## 11 "$call"
                        "intermediate results"
## 12 "$call$marge.col" "weights of columns"
## 13 "$call$marge.li" "weights of rows"
# summary(mca)
head(mca$ind$coord) #sequence (individuals)
                                             Dim 4
          Dim 1
                      Dim 2
                                  Dim 3
##
## 1 -0.07348303 0.002279623 -0.07993247 0.07256654 0.006247373
## 2 -0.05469522 0.010009442 -0.18044039 0.06687608 -0.002436931
## 3 -0.05469522 0.010009442 -0.18044039 0.06687608 -0.002436931
## 4 -0.05469522 0.010009442 -0.18044039 0.06687608 -0.002436931
## 5 -0.06100347 0.004533480 -0.19985039 0.07484893 0.001739553
## 6 -0.06100347 0.004533480 -0.19985039 0.07484893 0.001739553
head(mca$var$coord) #genes (variables)
                     Dim 1
                                  Dim 2
                                                Dim 3
                                                              Dim 4
## BDQ10419.1_0 7.54493918 -1.439016813 0.1672657656 -0.0461567526 -0.0516897146
## BDQ10419.1_1 -0.07738399 0.014759147 -0.0017155463 0.0004734026 0.0005301509
## AAY97278.1 0 2.93728181 0.696055379 -0.3359158345 -6.0877394658 -0.4089330107
## AAY97278.1_1 -0.04542188 -0.010763743 0.0051945748 0.0941403010 0.0063237064
## BDQ10401.1_0 4.13293482 -0.459503058 -0.0274152067 -0.7827244719 -0.0577198941
## BDQ10401.1_1 -0.08565668 0.009523379 0.0005681908 0.0162222688 0.0011962672
#Screeplot - Variance (Eigenvalues)
#mca$eiq
fviz_eig(mca, addlabels = TRUE, ylim = c(0, 25))
```


#Plots of individuals
fviz_mca_ind(mca, repel=TRUE)

Warning: ggrepel: 187 unlabeled data points (too many overlaps). Consider
increasing max.overlaps


```
#Plots of MCA variables 1 and 2
fviz_mca_var(mca, repel = TRUE) ##
```

 $\mbox{\tt \#\#}$ Warning: ggrepel: 1961 unlabeled data points (too many overlaps). Consider $\mbox{\tt \#\#}$ increasing max.overlaps


```
#Biplot
fviz_mca_biplot(mca, repel = TRUE)
```

 $\mbox{\tt \#\#}$ Warning: ggrepel: 190 unlabeled data points (too many overlaps). Consider $\mbox{\tt \#\#}$ increasing max.overlaps

Warning: ggrepel: 1961 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

fviz_mca_biplot(mca, repel = FALSE, select.ind=list(contrib=20), select.var=list(contrib=20))


```
#Clean environment
rm(genes,genes_cat,genes_mat,genes_tax,mat,mca,pc_cutoff)
```

```
## Warning in rm(genes, genes_cat, genes_mat, genes_tax, mat, mca, pc_cutoff):
## object 'genes_tax' not found
## Warning in rm(genes, genes_cat, genes_mat, genes_tax, mat, mca, pc_cutoff):
## object 'pc_cutoff' not found
```