## EE3206/EE3206E INTRODUCTION TO COMPUTER VISION AND IMAGE PROCESSING

Semester 1, 2013/2014

## Tutorial Set A

- 1. Consider the three masks  $M_1$ ,  $M_2$  and  $M_3$  and the image I. (The rest of the image that is not shown is assumed to consist of 0's.)
  - (a) Show the results

$$I_1 = I * M_1, \quad I_2 = I * M_2, \quad I_3 = I * M_3,$$

where \* denotes the masking operation. Describe the effect each mask has on an image.

(b) Obtain  $I_4 = I_1 * M_2$ . Write down the mask,  $M_4$  that can be used directly on I to give  $I_4$ , i.e.  $I_4 = I * M_4$ .

$$M_1 = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$
  $M_2 = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$   $M_3 = \frac{1}{9} \begin{bmatrix} -1 & -1 & -1 \\ -1 & +9 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ 



2. Consider the image segment shown below. Let  $V = \{0, 1\}$ . Using 4-connectivity, determine the connected components that are present. Repeat using 8-connectivity.

- 3. Given the  $5 \times 5$  8-bit images  $I_1$  and  $I_2$  below, obtain
  - (a)  $A = 0.5(I_1 + I_2)$
  - (b)  $B = |I_1 I_2|$
  - (c)  $C = 0.4I_1 + 0.6I_2$

| 100 | 150 | 200 | 200 | 200 |
|-----|-----|-----|-----|-----|
| 100 | 20  | 200 | 200 | 200 |
| 100 | 20  | 200 | 200 | 200 |
| 100 | 20  | 200 | 200 | 200 |
| 100 | 150 | 200 | 200 | 200 |

 $I_1$ 

| 100 | 150 | 200 | 200 | 200 |
|-----|-----|-----|-----|-----|
| 100 | 150 | 30  | 200 | 200 |
| 100 | 150 | 30  | 200 | 200 |
| 100 | 150 | 30  | 200 | 200 |
| 100 | 150 | 200 | 200 | 200 |

 $I_2$ 

4. A flat area with centre at (0,0) is illuminated by a light source with intensity distribution

$$i(x,y) = 512 \exp(-x^2 - y^2)$$

The reflectance of the illuminated area is 1. The image is quantised uniformly into 256 gray levels, which means that the intensity range 0 to  $\Delta G$  is quantised to gray level 0,  $\Delta G$  to  $2\Delta G$  to gray level 1, and so on.

- (a) Write down the expression for the image function, f(x,y). Sketch the graph that relates the analogue intensity (0 512) to the discrete gray levels (0 255).
- (b) A 2-bit quantisation scheme is then used to quantise the image. Obtain the equation describing the profile along y = 0, ie.e, obtain f(x, 0), and sketch this. Use this to sketch the quantised imagei.

2

- 5. The figure shows an image, the intensity profile along the row indicated by the arrow, and its histogram.
  - (a) Relate the main modes (or peaks) of the histogram to the regions (A, B, C, D, E) of the image.
  - (b) If a constant gray level of 128 is added to all the pixels in the image, sketch the resultant histogram.



6. The histogram of a 16-level  $100 \times 100$  image can be approximated by

$$h_1(r_k) = A \sin\left(\frac{\pi}{15}k\right) \quad k = 0, 1, \dots, 15$$

where A is an appropriate constant. Thus, we have

$$h_1(0) = 0$$
,  $h_1(1) = A\sin(\pi/15)$ , etc.

The transformation function below is applied to  $h_1$ , resulting in histogram  $h_2$ .

- (a) Determine the value of A.
- (b) Sketch accurately the histograms  $h_1$  and  $h_2$ .
- (c) For the two histograms, calculate the mean, m, and the histogram moments  $\mu_2$  and  $\mu_3$ . Comment on the results.



- 7. This question illustrates image sampling. The figure shows the image of a triangle superimposed on the photoelements of a CCD array.
  - (a) Estimate the pixel values of the resulting digital image, assuming that a photoelement corresponds to a pixel. (The intensity values of the object and background pixels are, respectively, 80 and 20.) Sketch the result after an intensity threshold of 50 is applied.
  - (b) The triangle is rotated 30° anti-clockwise to the position shown in the second figure. The image is digitised and as before, thresholded at 50. Sketch the resulting image and compare with the one obtained earlier.



