# Logic and Proof

University of Cambridge

Ashwin Ahuja

Computer Science Tripos Part IB Paper 6

# Contents

| 1        | Propositional Logic                                | 2               |
|----------|----------------------------------------------------|-----------------|
|          | 1.1 Formal Language                                | 2               |
|          | 1.3 Equivalences                                   | 3               |
|          | 1.4 Normal Forms                                   | 3               |
|          | 1.5 Gentzen's Natural Deduction Systems            | 4               |
|          | 1.6 Sequent Calculus                               | 4               |
|          | 1.6.1 Rules                                        | 4               |
|          |                                                    |                 |
| <b>2</b> | First-Order Logic                                  | 5               |
|          | 2.1 Semantics                                      | 5               |
|          | 2.2 Truth                                          | 5               |
|          | 2.2.1 Free vs Bound Variables                      | 5               |
|          | 2.2.2 Equivalences involving quantifiers           | 6               |
|          | 2.2.3 Sequent Rules for Quantifiers                | 6               |
| 3        | Clause Methods for Propositional Logic             | 6               |
| _        | 3.1 DPLL Method                                    | 6               |
|          | 3.2 Resolution Rule                                | 7               |
|          | 3.3 Saturation Algorithm                           | 7               |
|          |                                                    |                 |
| 4        | Skolem Functions, Herbrand Theorem and Unification | 7               |
|          | 4.1 FOL to Propositional Logic                     | 7               |
|          | 4.2 Skolemisation                                  | 7               |
|          | 4.3 Herbrand Interpretations                       | 8               |
|          | 4.3.1 Herbrand Universe for a Set of Clauses S     | 8               |
|          | 4.3.2 Herbrand Semantics of Predicates             | 8               |
|          | 4.3.3 Herbrand's Theorem                           | 8               |
|          | 4.4 Unification                                    | 8               |
| 5        | First-Order Resolution and Prolog                  | 8               |
|          | 5.1 Binary Resolution Rule                         | 8               |
|          | 5.2 Factoring Rule                                 | 8               |
|          | 5.3 Equality                                       | 9               |
|          | 5.4 Prolog                                         | 9               |
|          | 5.5 Automatic Theorem Provers                      | 9               |
|          |                                                    |                 |
| 6        |                                                    | 10              |
|          | 6.1 Decision procedures and Problems               |                 |
|          |                                                    | $\frac{10}{10}$ |
|          | •                                                  | 10<br>10        |
|          |                                                    | $\frac{10}{10}$ |
|          | 0.9 Satisfiability Modulo Theories                 | 10              |
| 7        | Binary Decision Diagrams                           | 11              |
|          | <u> </u>                                           | 11              |
|          | 7.2 Optimisations                                  | 11              |
|          |                                                    |                 |
| 8        |                                                    | 11              |
|          |                                                    | 12              |
|          | v                                                  | $\frac{12}{16}$ |
|          | 8.3 S4 Sequent Calculus Rules                      | 12              |
| 9        | Tableaux-Based Methods                             | 13              |
| ,        |                                                    | 13              |
|          |                                                    | 13              |
|          |                                                    | 13              |
|          |                                                    |                 |

# 1 Propositional Logic

**Logic** concerns relationships statement (which can be true, false or meaningless)in some language, whether that be natural language or formal. Logical proofs model human reasoning.

**Statements** are declarative assertions.

Interpretation maps variables onto real objects. A statement is valid if all interpretations satisfy the statement. Interpretation I satisfies a formula A if it evaluates to 1 (true), written as  $\vDash_I A$ . Tautology if every interpretation satisfies A, written as  $\vDash A$ . Satisfiable if some interpretation satisfies every formula in S

$$A \rightarrow B \ means \ \neg A \lor B$$
 
$$A \vDash B \ means \ if \vDash_I A \ then \ \vDash_I B \ \forall \ interpretations \ I$$
 
$$A \vDash B \ iff \ \vDash A \rightarrow B$$

A set of statements is consistent (**satisfiable**) if some interpretation satisfies all elements of the set at the same time - otherwise the set is inconsistent.

A set of statements entails A if every interpretation that satisfies all elements of S also satisfies A - written as  $S \models A$ 

 $S \vDash Aiff\{\neg A\}$  sup S is inconsistent. If S is inconsistent then  $S \vDash A \forall A$ .  $\vDash A$  iff A is valid, iff  $\{\neg A\}$  Inference: Proving a statement that says A is valid, but we can't test infinitely many cases.

 $\{A_1,\ldots,A_n\} \vDash B$ . If  $A_1,\ldots,A_n$  are true then B must be true - this is written as:

$$\frac{A_1...A_n}{B} \tag{1}$$

Schematic Inference Rules

$$\frac{X \ part \ of \ Y \quad Y \ part \ of \ Z}{X \ part \ of \ Z} \tag{2}$$

### 1.1 Formal Language

Why: Formal language prevents ambiguity

### Formal Logics

- 1. Propositional Logic: Traditional boolean algebra
- 2. First-Order Logic: Can say  $\forall$  and  $\exists$
- 3. **Higher-Order Logic**: Reasons about sets and functions
- 4. Modal / Temporal Logic: Reason about what must, or may, happen
- 5. **Type Theories**: Support constructive mathematics

### 1.2 Syntax of Propositional Logic

- P, Q, R: propositional letter
- **t**: true
- **f**: false
- ¬**A**: not A
- $A \wedge B$ : A and B
- $A \vee B$ : A or B
- $A \to B$ : if A then B
- $A \leftrightarrow B A \text{ iff B}$

| A | В | ¬ A | $A \wedge B$ | $A \vee B$ | $A \rightarrow B$ | $A \leftrightarrow B$ |
|---|---|-----|--------------|------------|-------------------|-----------------------|
| 1 | 1 | 0   | 1            | 1          | 1                 | 1                     |
| 1 | 0 | 0   | 0            | 1          | 0                 | 0                     |
| 0 | 1 | 1   | 0            | 1          | 1                 | 0                     |
| 0 | 0 | 1   | 0            | 0          | 1                 | 1                     |

### 1.3 Equivalences

- 1.  $A \simeq B$  means  $A \models B$  and  $B \models A$
- 2.  $A \simeq B \text{ iff } A \leftrightarrow B$
- 3.  $A \wedge A \simeq A$
- 4.  $A \wedge B \simeq B \wedge A$
- 5.  $(A \wedge B) \wedge C \simeq A \wedge (B \wedge C)$
- 6.  $A \lor (B \land C) \simeq (A \lor B) \land (A \lor C)$
- 7.  $A \wedge \mathbf{f} \simeq \mathbf{f}$
- 8.  $A \wedge \mathbf{t} \simeq A$
- 9.  $A \wedge \neg A \simeq \mathbf{f}$

### 1.4 Normal Forms

## **Negation Normal Form**

- 1. Negation Normal Form
  - (a) Get rid of  $\leftrightarrow$  and  $\rightarrow$ , leaving just  $\land, \lor, \neg$

$$A \leftrightarrow B \simeq (A \to B) \land (B \to A)$$
  
$$A \to B \simeq \neg A \lor B$$

(b) Push negations in, using de Morgan's laws

$$\neg \neg A \simeq A$$
$$\neg (A \land B) \simeq \neg A \lor \neg B$$
$$\neg (A \lor B) \simeq \neg A \land \neg B$$

- 2. Getting it into Conjunctive Normal Form
  - (a) Push disjunctions in, using distributive laws

$$A \lor (B \land C) \simeq (A \lor B) \land (A \lor C)$$
$$(B \land C) \lor A \simeq (B \lor A) \land (C \lor A)$$

- (b) Simplify
  - Delete any disjunction containing P and  $\neg P$
  - Delete any disjunction that includes another: in  $(P \vee Q) \wedge P$ , delete  $P \vee Q$
  - Replace  $(P \vee A) \wedge (\neg P \vee A)$  by A
- (c) If you get to a specific result, you can find out it if the statement is a tautology

**Deducibility**: A is deducible from the set S if there is a finite proof of A starting from elements of S, can be written as  $S \vdash A$ 

- 1. Soundness Theorem: If  $S \vdash A$ , then  $S \models A$
- 2. Completeness Theorem: If  $S \vDash A$  then  $S \vdash A$
- 3. **Deduction Theorem**: If  $S \sup \{A\} \vdash B$  then  $S \vdash A \rightarrow B$

# 1.5 Gentzen's Natural Deduction Systems

Introduction Rule for  $\wedge$ :

$$\frac{A \quad B}{A \wedge B}$$

Elimination Rule for  $\wedge$ :

$$\frac{A \wedge B}{A}, \frac{A \wedge B}{B}$$

# 1.6 Sequent Calculus

 $A_1, \ldots, A_m \Rightarrow B_1, \ldots, B_n$  means that if  $A_1 \wedge \ldots \wedge A_m$  then  $B_1 \vee \ldots \vee B_n$ 

- Assumptions:  $A_1, \ldots, A_m$
- Goals:  $B_1, \dots, B_n$
- $\Gamma$  and  $\Delta$  are sets in  $\Gamma \Rightarrow \Delta$
- Basic Sequent:  $A, \Gamma \Rightarrow A, \Delta$  is trivially true

### 1.6.1 Rules

1. **Cut** 

$$\frac{\Gamma\Rightarrow\Delta,A\quad A,\Gamma\Rightarrow\Delta}{\Gamma\Rightarrow\Delta}$$

 $2. \neg l$ 

$$\frac{\Gamma \Rightarrow \Delta, A}{\neg A, \Gamma \Rightarrow \Delta}$$

 $3. \neg r$ 

$$\frac{A,\Gamma\Rightarrow\Delta}{\Gamma\Rightarrow\Delta,\neg A}$$

 $4. \wedge l$ 

$$\frac{A,B,\Gamma\Rightarrow\Delta}{A\wedge B,\Gamma\Rightarrow\Delta}$$

5.  $\wedge r$ 

$$\frac{\Gamma\Rightarrow\Delta,A\quad\Gamma\Rightarrow\Delta,\mathbf{B}}{\Gamma\Rightarrow\Delta,A\wedge\mathbf{B}}$$

 $6. \ \lor l$ 

$$\frac{A,\Gamma\Rightarrow\Delta\quad B,\Gamma\Rightarrow\Delta}{A\vee B,\Gamma\Rightarrow\Delta}$$

7.  $\vee r$ 

$$\frac{\Gamma \Rightarrow \Delta, A, \mathbf{B}}{\Gamma \Rightarrow \Delta, A \vee \mathbf{B}}$$

8.  $\rightarrow l$ 

$$\frac{\Gamma\Rightarrow\Delta,A\quad \mathcal{B},\Gamma\Rightarrow\Delta}{A\to B,\Gamma\Rightarrow\Delta}$$

9.  $\rightarrow r$ 

$$\frac{A,\Gamma\Rightarrow\Delta,B}{\Gamma\Rightarrow\Delta,A\to B}$$

# 2 First-Order Logic

Function Symbol stands for an n-place function, Constant Symbol is a 0-place function symbol, a variable ranges over all individuals, term is a variable, constant or a function application. Considered as  $f(t_1, ..., t_n)$  where f is an n-place function symbol and  $t_1, ..., t_n$  are terms

**Relation Symbol** stands for an n-place relation, **Equality** is the 2-place relation symbol '=', **atomic formula** has the form  $R(t_1, ..., t_n)$  where R is an n-place relation symbol and the ts are terms. A **formula** is built from atomic formulae using negation, OR, AND, quantifiers, etc.

### 2.1 Semantics

Allows different interpretations of symbols depending on the circumstances. An interpretation  $\mathcal{I} = (D, I)$  defines the semantics of a first-order language where:

- D is domain non-empty set
- I maps symbols to real elements, functions and relations

c is constant:  $I[c] \in D$ 

f is an n-place function symbol:  $I[f] \in D^n \to D$ 

P is an n-place relation symbol:  $I[P] \in D^n \to \{1,0\}$ 

**Valuation**: V : Var  $\to$  D supplies values of free variables. V and  $\mathcal{I}$  determines the value of any term t, by recursion. This value is written as  $I_V[t]$  with the following recursion rules:

- 1.  $I_V[x] \stackrel{\text{def}}{=} V(x)$  if x is a variable
- 2.  $I_V[c] \stackrel{\text{def}}{=} I[c]$
- 3.  $I_V[f(t_1, ..., t_n)] \stackrel{\text{def}}{=} I[f](I_V[t_1], ..., I_V[t_n])$

### 2.2 Truth

**Tarski Truth-Definition**: Interpretation  $\mathcal{I}$  and valuation function V specify the truth value (1 or 0) of any formula A. The only issue with this is quantifiers as they bind variables. V[a/x] is the valuation that maps x to a and is otherwise like V.

Define  $\vDash_{\mathcal{I},V}$  by recursion:

- 1.  $\vDash_{\mathcal{I},V} P(t)$  if  $I[P](\mathcal{I}_V[t])$  equals 1 (is true)
- 2.  $\vDash_{\mathcal{I},V} t = u$  if  $\mathcal{I}_V[t] = \mathcal{I}_V[u]$
- 3.  $\models_{\mathcal{I},V} A \wedge B$  if  $\models_{\mathcal{I},V} A$  and  $\models_{\mathcal{I},V} B$
- 4.  $\vDash_{\mathcal{I},V} \exists xA$  if  $\vDash_{\mathcal{I},V\{m/x\}} A$  holds for some  $m \in D$
- 5.  $\vDash_{\mathcal{I}} A$  if  $\vDash_{\mathcal{I},V} A$  holds for all V

Closed formula A is satisfiable if  $\vDash_{\mathcal{I}} A$  for some  $\mathcal{I}$ 

### 2.2.1 Free vs Bound Variables

- Occurrences of x in  $\forall xA$  and  $\exists xA$  are bound can rename bound variables without affecting the meaning
- x is free if it not bound
- A[t/x] means substitute t for x in A. When substituting A[t/x], no variable of t may be bound in A

### 2.2.2 Equivalences involving quantifiers

- 1.  $\neg(\forall xA) \simeq \exists x \neg A$
- 2.  $\forall xA \simeq \forall xA \wedge A[t/x]$
- 3.  $(\forall xA) \land (\forall xB) \simeq \forall x(A \land B)$

### If x is not free in B

- 4.  $(\forall x A) \land B \simeq \forall \chi (A \land B)$
- 5.  $(\forall x A) \lor B \simeq \forall x (A \lor B)$
- 6.  $(\forall xA) \to B \simeq \exists x(A \to B)$

### 2.2.3 Sequent Rules for Quantifiers

1.  $\forall l$ : can create many instances of  $\forall x A$ 

$$\frac{A[t/x], \Gamma \Rightarrow \Delta}{\forall x A, \Gamma \Rightarrow \Delta}$$

2.  $\forall r$ : holds, provided x is not free in the conclusion

$$\frac{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow \Delta, \forall x A}$$

3.  $\exists l$ : holds provided x is not free in the conclusion

$$\frac{A, \Gamma \Rightarrow \Delta}{\exists x A, \Gamma \Rightarrow \Delta}$$

4.  $\exists r$ : can create many instances of  $\exists x A$ 

$$\frac{\Gamma \Rightarrow \Delta, A[t/x]}{\Gamma \Rightarrow \Delta, \exists x A}$$

# 3 Clause Methods for Propositional Logic

A clause is a disjunction of literals:  $\neg K_1 \lor \cdots \lor \neg K_m \lor L_1 \lor \cdots \lor L_n$ 

- 1. Set Notation:  $\{\neg K_1, \dots, \neg K_m, L_1, \dots, L_n\}$
- 2. Kowalski Notation:

$$\begin{array}{l} K_1, \cdots, K_m \rightarrow L_1, \cdots, L_n \\ L_1, \cdots, L_n \leftarrow K_1, \cdots, K_m \end{array}$$

3. Empty Clause:  $\{\}$  or  $\square$ 

**Proving A**: Obtain contradiction from  $\neg$  A

- 1. Translate  $\neg$  A into CNF as  $A_1 \wedge \cdots \wedge A_m = \text{clauses } A_1, \ldots, A_m$
- 2. Transform clause set, preserving consistency
- 3. An empty clause set means  $\neg$  A is satisfiable otherwise, obtain contradiction

### 3.1 DPLL Method

- : Decision procedure, either finds a contradiction or a model
  - 1. Delete tautological clauses:  $P, \neg P$
  - 2. For each unit clause: (1) delete all clauses containing L, (2) delete ¬ L from all clauses
  - 3. Delete all clauses containing pure literals
  - 4. Perform case split on some literal and stop if a model is found

### 3.2 Resolution Rule

Allows us to say  $B \lor A \land \neg B \lor C \implies A \lor C$ 

1.

$$\frac{\{\mathbf{B}, \mathbf{A}_1, \dots, \mathbf{A}_{\mathbf{m}}\} \quad \{\neg \mathbf{B}, \mathbf{C}_1, \dots, \mathbf{C}_{\mathfrak{n}}\}}{\{A_1, \dots, A_m, C_1, \dots, C_n\}}$$

2.

$$\frac{\{B\} \quad \{\neg B, C_1, \dots, C_n\}}{\{C_1, \dots, C_n\}}$$

3.

$$\frac{\{B\} \quad \{\neg B\}}{\sqcap}$$

# 3.3 Saturation Algorithm

- At the start, all clauses are passive
  - 1. Transfer a clause (current) from passive to active
  - 2. Form all resolvents between current and active clause
  - 3. Use new clauses to simplify both passive and active
  - 4. Put the new clauses into passive
- Repeat until a contradiction is found or if the passive becomes empty

### Heuristics

- 1. Orderings to focus search on specific literals
- 2. Subsumption: deleting redundant clauses
- 3. Indexing: elaborate data structures for speed
- 4. **Preprocessing**: removing tautologies and symmetries
- 5. Weighting: Giving priority to good clauses over those containing unwanted constants

# 4 Skolem Functions, Herbrand Theorem and Unification

### 4.1 FOL to Propositional Logic

**NNF**: Eliminate all connectives except  $\vee$ ,  $\wedge$  and  $\neg$ 

**Skolemize**: Remove quantifiers, preserving consistency

Herbrand Models: Reduce the class of interpretations

Herbrand's THM: Contradictions have finite, ground proofs

**Unification**: Automatically find the correct instantiations

### 4.2 Skolemisation

- 1. Start with formula in NNF, with quantifiers nested
- 2. Choose fresh k-place function symbol, say f
- 3. Delete  $\exists y$  and replace y with  $f(x_1, x_2, ..., x_k)$
- 4. Repeat until no ∃ quantifiers remain

### Correctness:

- Formula  $\forall x \exists y A$  is consistent
- Holds in some interpretation:  $\mathcal{I} = (D, I)$
- $\forall x \in D \exists y \in D \text{ st } A \text{ holds}$
- Some function  $\hat{f}$  in D  $\rightarrow$  D yields suitable values of y
- A[f(x)/y] holds in some  $\mathcal{I}'$  extending  $\mathcal{I}$  so that f denotes  $\hat{f}$
- Formula  $\forall x A[f(x)/y]$  is consistent

### 4.3 Herbrand Interpretations

### 4.3.1 Herbrand Universe for a Set of Clauses S

$$H_0 \stackrel{\text{def}}{=} \text{ set of constants in S}$$

$$H_{i+1} \stackrel{\mathrm{def}}{=} H_i \cup \{ \mathfrak{f}\left(\mathfrak{t}_1, \ldots, \mathfrak{t}_{\mathfrak{n}}\right) | \mathfrak{t}_1, \ldots, \mathfrak{t}_{\mathfrak{n}} \in H_i \ \text{ and } f \text{ is an } n\text{-place function symbol in } S \ \}$$

$$\mathit{HerbrandUniverse}(\mathit{H}) \ \stackrel{\mathrm{def}}{=} \ \bigcup_{i > 0} \mathit{H}_i$$

H consists of the terms in S that contains no variables (ground terms).  $H_i$  contains the terms with at most i nested function applications

#### 4.3.2 Herbrand Semantics of Predicates

Herbrand interpretation defines an n-place predicate P to denote the truth-valued function in  $H^n \to \{1,0\}$  making  $P(t_1,...,t_n)$  true iff formula  $P(t_1,...,t_n)$  holds in desired interpretation of the clauses. Hence, Herbrand interpretation can imitate any other interpretation.

### 4.3.3 Herbrand's Theorem

S is a set of clauses, S is unsatisfiable  $\iff$  there is a finite unsatisfiable set S' of ground instances of clauses of S

- Finite: can be computed
- Instance: result of substituting for variables
- Ground: no variables remain it is propositional

### 4.4 Unification

Finding a common instance of two terms - generalisation of pattern-matching, used for:

- 1. Prolog and other logic programming languages
- 2. Theorem proving
- 3. Tools for reasoning with equations or satisfying constraints
- 4. Polymorphic type-checking

Output of a unification is a substitution, mapping variables to terms - where the other occurrences of the variables must also be updated - in general it yields the most general solution

# 5 First-Order Resolution and Prolog

### 5.1 Binary Resolution Rule

Where  $\sigma$  is a most general unifier of B and D st B $\sigma$  = D $\sigma$ : requires us to first rename variables apart in the clauses

$$\frac{\{B,A_1,...,A_m\} \quad \{\neg D,C_1,...,C_n\}}{\{A_1,...,A_m,C_1,...,C_n\}\sigma}$$

### 5.2 Factoring Rule

Inference collapses unifiable literals in one clause. Provided  $B_1 \sigma = ... = B_k \sigma$ 

$$\frac{\{B_1,...,B_k,A_1,...,A_m\}}{\{B_1,A_1,...,A_m\}\sigma}$$

# 5.3 Equality

Equality Axioms: these work in theory

- 1. Reflexive
- 2. Symmetric
- 3. Transitive
- 4. Substitution laws for each f st  $\{x \neq y, f(x) = f(y)\}$
- 5. Substitution laws for each P st  $\{x \neq y, \neg P(x), P(y)\}$

But in practise, need something special - paramodulation rule:

$$\frac{\left\{ \mathbf{B}\left[\mathbf{t'}\right], A_{1}, \ldots, A_{m} \right\} \quad \left\{ \mathbf{t} = \mathfrak{u}, \mathbf{C}_{1}, \ldots, \mathbf{C}_{\mathfrak{n}} \right\}}{\left\{ \mathbf{B}\left[\mathfrak{u}\right], A_{1}, \ldots, A_{m}, \mathbf{C}_{1}, \ldots, \mathbf{C}_{n} \right\} \sigma}$$

where  $t\sigma = t'\sigma$ 

### 5.4 Prolog

### Clauses

- Prolog clauses have a restricted form, with at most one positive literal
- Definite clauses form the program ie procedure B with body  $A_1, ..., A_m$  is: B  $\leftarrow A_1, ..., A_m$
- Single goal clauses is like the execution stack, with tasks to be done:  $\leftarrow A_1,...,A_m$

#### Execution

- Linear Resolution: Always resolves some program clause with the goal clause, and the result becomes the new goal clause
- Program clauses done in left-to-right order
- Left-to-right order used to solve the goal clause's literals
- Use depth-first search (performs backtracking using choice points)
- Does a unification without occurs check

**Model Elimination**: Prolog-like method to do FOL Proof that runs on fast Prolog architectures using Contrapositives where you treat the clause  $A_1, ..., A_m$  like the m clauses:

- $A_1 \leftarrow \neg A_2, ..., \neg A_m$
- $A_2 \leftarrow \neg A_3, ..., \neg A_m, \neg A_1$
- ..
- $A_m \leftarrow \neg A_1, ..., \neg A_{m-1}$

When trying to prove the goal P, we assume  $\neg P$ 

### 5.5 Automatic Theorem Provers

- 1. First-Order Resolution: E, SPASS, Vampire
- 2. Higher-Order Logic: TPS, LEO and LEO-II, Satallax
- 3. Model Elimination: Prolog, SETHEO
- 4. Parallel ME: PARTHENON, PARTEO
- 5. Tableau (Sequent) Based: LeanTAP, 3TAP

### 6 Decision Procedures and SMT Solvers

### 6.1 Decision procedures and Problems

Decision problems are any formally-stated problems:

- 1. Propositional Formulas are decidable using the DPLL algorithm
- 2. Linear Arithmetic Formulas are decidable
- 3. Polynomial Arithmetic is decidable, as is Euclidean geometry

### 6.2 Fourier-Motzkin Variable Elimination

Decides conjunctions of liner constraints over reals and rationals. It works by eliminating variables one-by-one until there is one to remain, or reaches a contradiction - resembles Gaussian elimination. It has a worst case complexity with  $O(m^{2^n})$ 

$$\bigwedge_{i=1}^{\mathfrak{m}} \sum_{j=1}^{n} \mathfrak{a}_{ij} x_{j} \le \mathbf{b}_{i}$$

#### **Process**

- 1. To eliminate variable  $x_n$ , consider constraint i, for i = 1, ..., m
- 2. Define  $\beta_i = b_i \sum_{i=1}^{\mathfrak{n}-1} \mathfrak{a}_{ij}\mathfrak{x}_j$  Rewrite the constraint i:
  - (a) If  $a_{in} > 0$  then  $x_n \leq \frac{\beta_i}{a_{in}}$
  - (b) If  $a_{in} < 0$  then  $-x_n \le -\frac{\beta_i}{a_{in}}$
  - (c) Hence,  $0 \le \frac{\beta_i}{a_{in}} \frac{\beta_i \prime}{a_i \prime_n}$
- 3. Do this for all combinations with opposite signs
- 4. Then delete the original constraints (except where  $a_{in} = 0$ )

### 6.3 Quantifier Elimination

Transforms a formula to a quantifier-free but equivalent formula - since skolemization eliminates quantifiers but only preserves consistency - can use Quantifier Elimination to do this and allows us to reach true or false - however, this yields a long formula - taking a long amount of time - hyper-exponential time complexity.

### 6.4 Other Decidable Theories

**Linear Integer Arithmetic**: use Omega test or Cooper's algorithm, but any decision algorithm has a worst case runtime of at least  $2^{2^{cn}}$ 

QE for quadratic equations:

$$\exists x \left[ ax^2 + bx + c = 0 \right] \Longleftrightarrow b^2 \ge 4ac \land (c = 0 \lor a \ne 0 \lor b^2 > 4ac)$$

You can have have decidable procedures that cooperate to decide combinations of theories - however, these procedures expect existentially quantified conjunctions. Formulas have to be converted to disjunctive normal form - therefore have to eliminate universal quantifier

### 6.5 Satisfiability Modulo Theories

The idea is that we can use DPLL for logical reasoning, using a decision procedure for theories. The clauses can have literals which are used as names. If DPLL finds a contradiction, then the clauses are unsatisfiable. Checking asserted literals:

- 1. Unsatisfiable conjunctions of literals are noted as new clauses
- 2. Case splitting is interleaved with decision procedure calls

# 7 Binary Decision Diagrams

A canonical form for boolean expressions - decision trees with sharing consisting of:

- 1. Ordered propositional symbols (variables)
- 2. Sharing of identical subtrees
- 3. Hashing and other optimisations
- 4. Dashed line is false and non-dashed line is true

Shows, (1) satisfiability (existence of models) - path to 1, (2) tautologous, (3) inconsistency.

### **Building BDDs Efficiently**

- 1. Don't expand connectives
- 2. Recursively convert operands to BDDs
- 3. Combine operand BDDs respecting ordering and sharing
- 4. Delete redundant variable tests

## 7.1 Examples

1.  $P \lor Q$ 



 $2. \ P \vee Q \rightarrow Q \vee R$ 



### 7.2 Optimisations

- 1. Never build the same BDD twice, but share pointers, allows us to (1) check if (P, X, Y) is redundant by checking if X = Y and (2) quickly simplify special cases like  $X \wedge X$
- 2. Never convert  $X \wedge Y$  twice, but keep a hash table of known canonical forms preventing redundant computations

# 8 Modal Logics

- W: set of possible worlds (machine states, future times, ...)
- R: Accessibility Relation between worlds
- (W, R) is a modal frame
- $\Box A$  means A is necessarily true  $\Diamond A$  means A is possibly true  $\Big\}$  in all worlds accessible from here
- $\bullet \neg \diamond A \simeq \Box \neg A$

## 8.1 Semantics

For a particular frame (W, R), an interpretation I maps the propositional letters to subsets of W:

 $w \mid\mid -A$  means that A is true in world w:

- $w \mid\mid -P \iff w \in I(P)$
- $w \mid \mid -A \wedge B \iff w \mid \mid -Aandw \mid \mid -B$
- $w \mid \mid \Box A \iff v \mid \mid A \forall v s t R(w, v)$
- $w \mid |- \diamond A \iff \exists vv \mid |- AstR(w, v)$

Truth and Validity: For frame (W, R) and interpretation I:

- $w \parallel A$  means A is true in world w
- $\vDash_{W,R,I} A$  means  $w \mid\mid -A \ \forall w \in W$
- $\vDash_{W,R} A$  means  $w \mid\mid -A \ \forall w \ \forall I$
- ullet  $A \text{ means } \vDash_{W,R} A \ \forall frames \text{ that is to say, A is universally valid but generally constrain R to be transitive}$

# 8.2 Hilbert-Style Modal Proof Systems

- 1. **Dist**:  $\Box(A \to B) \to (\Box A \to \Box B)$
- 2. Inference Rule necessitation:  $\frac{A}{\Box A}$
- 3. **Definition** treat  $\diamond$  as a definition:  $\diamond A \stackrel{\text{def}}{=} \neg \Box \neg A$

We can add axioms to pure modal logic (K) to constrain the accessibility relation

- 4. Reflexive:  $\Box A \rightarrow A$  (T)
- 5. Transitive:  $\Box A \rightarrow \Box \Box A \ (S4)$
- 6. Symmetric:  $A \rightarrow \Box \diamond A$  (S5)

# 8.3 S4 Sequent Calculus Rules

1.  $\Box l$ 

$$\frac{A,\Gamma\Rightarrow\Delta}{\Box A,\Gamma\Rightarrow\Delta}$$

 $2. \Box r$ 

$$\frac{\Gamma^* \Rightarrow \Delta^*, A}{\Gamma \Rightarrow \Delta, \Box A}$$

3. *◊l* 

$$\frac{A, \Gamma^* \Rightarrow \Delta^*}{\diamond A, \Gamma \Rightarrow \Delta}$$

4. *⋄r* 

$$\frac{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow \Delta, \diamond A}$$

5.  $\Gamma^* \stackrel{\text{def}}{=} \{ \Box B | \Box B \in \Gamma \}$ 

Erase all non- $\square$  assumptions

6.  $\Delta^* \stackrel{\text{def}}{=} \{ \diamond B | \diamond B \in \Delta \}$ 

Erase all non-⋄ goals

# 9 Tableaux-Based Methods

# 9.1 Simplifying the Sequent Calculus

Can simplify sequent calculus by working in Negation Normal Form which reduces required connectives from:  $\neg$ ,  $\wedge$ ,  $\vee$ ,  $\rightarrow$ ,  $\leftrightarrow$ ,  $\forall$ ,  $\exists$ ,  $\Box$ ,  $\diamond$  **to**:  $\wedge$ ,  $\vee$ ,  $\forall$ ,  $\exists$ ,  $\Box$ ,  $\diamond$ . This means that the sequents need only one side.

### 9.2 Rules

Left-side only system uses proof by contradiction while right-side only system is an exact dual

1. Basic

$$\overline{\neg A, A, \Gamma} \Rightarrow$$

2. **Cut** 

$$\frac{\neg A, \Gamma \Rightarrow A, \Gamma \Rightarrow}{\Gamma \Rightarrow}$$

 $3. \wedge l$ 

$$\frac{A,B,\Gamma\Rightarrow}{A\wedge B,\Gamma\Rightarrow}$$

 $4. \ \lor l$ 

$$\frac{A,\Gamma \Rightarrow B,\Gamma \Rightarrow}{A \vee B,\Gamma \Rightarrow}$$

5.  $\forall l$ 

$$\frac{A[t/x], \Gamma \Rightarrow}{\forall x A, \Gamma \Rightarrow}$$

6.  $\exists l$ : provided x is not free in the conclusion

$$\frac{A,\Gamma\Rightarrow}{\exists xA,\Gamma\Rightarrow}$$

7.  $\Box l$ 

$$\frac{A,\Gamma \Rightarrow}{\Box A,\Gamma \Rightarrow}$$

8. *◊l* 

$$\frac{A,\Gamma^*\Rightarrow}{\diamond A,\Gamma\Rightarrow}$$

9.  $\Gamma^* \stackrel{\text{def}}{=} \{ \Box B | \Box B \in \Gamma \}$  - erase non- $\Box$  assumptions

### 9.3 Free-Variable Tableau Calculus

 $\forall l$ : inserts a new free variable

$$\frac{A[z/x], \Gamma \Rightarrow}{\forall x A, \Gamma \Rightarrow}$$

- Lets unification instantiate any free variable
- In  $\neg A$ , B,  $\Gamma \implies$ , try unifying A with B to make a basic sequent
- Better not to use the rule ∃l instead skolemising

### Theorem Prover

```
prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,
                                                            and
        prove(A,[B|UnExp],Lits,FreeV,VarLim).
prove((A; B), UnExp, Lits, FreeV, VarLim) :- !,
                                                             or
        prove(A, UnExp, Lits, FreeV, VarLim),
        prove(B, UnExp, Lits, FreeV, VarLim).
prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,
                                                           forall
        \+ length(FreeV, VarLim),
        copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),
        append(UnExp,[all(X,Fml)],UnExp1),
        prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).
prove(Lit,_,[L|Lits],_,_) :-
                                                   literals; negation
        (Lit = -Neg; -Lit = Neg) ->
        (unify(Neg,L); prove(Lit,[],Lits,_,_)).
prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-
                                                      next formula
        prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).
```