JBH 7-24-00

10

() ()15

())

.[]20 |--

25

30

This application claims the benefit of provisional application 18 No- 60/044, 692, filed on Apr. 18, 1997.

LOCAL DELIVERY OF RAPAMYCIN FOR TREATMENT OF PROLIFERATIVE SEQUELAE ASSOCIATED WITH PTCA PROCEDURES,
INCLUDING DELIVERY USING A MODIFIED STENT 1

Field of the Invention:

Delivery of rapamycin locally, particularly from an intravascular stent, directly from micropores in the stent body or mixed or bound to a polymer coating applied on stent, to inhibit neointimal tissue proliferation and thereby prevent restenosis. This invention also facilitates the performance of the stent in inhibiting restenosis.

Background of the Invention:

Re-narrowing (restenosis) of an artherosclerotic coronary artery after percutaneous transluminal coronary angioplasty (PTCA) occurs in 10-50% of patients undergoing this procedure and subsequently requires either further angioplasty or coronary artery bypass graft. exact hormonal and cellular processes promoting restenosis are still being determined, our present understanding is PTCA. process of besides opening the the that also injures artherosclerotically obstructed artery, resident coronary arterial smooth muscle cells (SMC). response to this injury, adhering platelets, infiltrating macrophages, leukocytes, or the smooth muscle cells (SMC) factors with themselves release growth cell derived subsequent proliferation and migration of medial SMC through the internal elastic lamina to the area of the vessel intima. Further proliferation and hyperplasia of

intimal SMC and, most significantly, production of large amounts of extracellular matrix over a period of 3-6 months results in the filling in and narrowing of the vascular space sufficient to significantly obstruct coronary blood flow.

10

[] [] []5

Several recent experimental approaches to preventing promise althrough proliferation have shown SMC mechanisms for most agents employed are still unclear. Heparin is the best known and characterized agent causing inhibition of SMC proliferation both in vitro and animal models of balloon angioplasty-mediated injury. mechanism of SMC inhibition with heparin is still not known but may be due to any or all of the following: reduced expression of the growth regulatory protooncogenes c-fos and c-myc, 2) reduced cellular production of tissue plasminogen activator; are 3) binding and dequestration of growth regulatory factors such as fibrovalent growth factor (FGF).

25

Other agents which have demonstrated the ability to reduce myointimal thickening in animal models of balloon vascular injury are angiopeptin (a somatostatin analog), calcium channel blockers, angiotensin converting enzyme cyclosporin Α, cilazapril), (captopril, inhibitors trapidil (an antianginal, antiplatelet agent), terbinafine (antitubulin taxol colchicine and (antifungal), and c-myb antinsense antiproliferatives), and c-myc oligonucleotides.

30

10

Additionally, a goat antibody to the SMC mitogen platelet derived growth factor (PDGF) has been shown to be effective in reducing myointimal thickening in a rat model of balloon angioplasty injury, thereby implicating PDGF directly in the etiology of restenosis. Thus, while no yet proven successful clinically as therapy has preventing restenosis after angioplasty, in vivo the experimental success of several agents known to inhibit SMC growth suggests that these agents as a class have the capacity to prevent clinical restenosis and deserve careful evaluation in humans.

20 Company of the com

25

30

Coronary heart disease is the major cause of death in men over the age of 40 and in women over the age of fifty in the western world. Most coronary artery-related deaths are due to atherosclerosis. Atherosclerotic lesions which limit or obstruct coronary blood flow are the major cause of ischemic heart disease related mortality and result in 500,000-600,000 deaths in the United States annually. To arrest the disease process and prevent the more advanced disease states in which the cardiac muscle itself is compromised, direct intervention has been employed via percutaneous transiuminal coronary angioplasty (PTCA) or coronary artery bypass graft (CABG).

PTCA is a procedure in which a small balloon-tipped catheter is passed down a narrowed coronary artery and then expanded to re-open the artery. It is currently performed in approximately 250,000-300,000 patients each

year. The major advantage of this therapy is that patients in which the procedure is successful need not undergo the more invasive surgical procedure of coronary artery bypass graft. A major difficulty with PTCA is the problem of post-angioplasty closure of the vessel, both immediately after PTCA (acute reocclusion) and in the long term (restenosis).

10

The mechanism of acute reocclusion appears to involve several factors and may result from vascular recoil with resultant closure of the artery and/or deposition of blood platelets along the damaged length of the newly opened blood vessel followed by formation of a fibrin/red blood cell thrombus. Recently, intravascular stents have been examined as a means of preventing acute reclosure after PTCA.

Restenosis (chronic reclosure) after angioplasty is a more gradual process than acute reocclusion: 30% of patients with subtotal lesions and 50% of patients with chronic total lesions will go on to restenosis after angioplasty. While the exact mechanism for restenosis is still under active investigation, the general aspects of the restenosis process have been identified:

30

25

In the normal arterial will, smooth muscle cells (SMC) proliferate at a low rate (<0.1%/day; ref). SMC in vessel wall exists in a 'contractile' phenotype characterized by 80-90% of the cell cytoplasmic volume occupied with the contractile apparatus. Endoplasmic

reticulum, golgi bodies, and free ribosomes are few and located in the perinuclear region. Extracellular matrix surrounds SMC and is rich in heparin-like glycosylaminoglycans which are believed to be responsible for maintaining SMC in the contractile phenotypic state.

10

Upon pressure expansion of an intracoronary balloon catheter during angioplasty, smooth muscle cells within the arterial wall become injured. Cell derived growth factors such as platelet derived growth factor (PDGF), basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), etc. released from platelets (i.e., PDGF) adhering to the damaged arterial luminal surface, invading macrophages and/or leukocytes, or directly from SMC (i.e., BFGF) provoke a proliferation and migratory response in These cells undergo a phenotypic change from medial SMC. the contractile phenotyope to a 'synthetic' phenotype characterized by only few contractile filament bundles but extensive rough endoplasmic reticulum, golgi and free Proliferation/migration usually begins within ribosomes. 1-2 days post-injury and peaks at 2 days in the media, declining thereafter (Campbell et al., rapidly Vascular Smooth Muscle Cells in Culture, Campbell, J.H. and Campbell, G.R., Eds, CRC Press, Boca Ration, 1987, pp. and Schwartz, S.M., Circ. Res. 39-55); Clowes, A.W. 56:139-145, 1985).

30

25

Finally, daughter synthetic cells migrate to the intimal layer of arterial smooth muscle and continue to proliferate. Proliferation and migration continues until

the damaged luminal endothelial layer regenerates at which proliferation ceases within the intima, usually The remaining increase in within 7-14 days postinjury. intimal thickening which occurs over the next 3-6 months is due to an increase in extracellular matrix rather than Thus, SMC migration and proliferation is an cell number. acute response to vessel injury while intimal hyperplasia is a more chronic response. (Liu et al., Circulation, 79:1374-1387, 1989).

Patients with symptomatic reocclusion require either

Because

undergoing PTCA will experience restenosis, restenosis has

clearly limited the success of PTCA as a therapeutic

artery

proliferation and migration are intimately involved with

response prevention of SMC proliferation and migration represents a

target for pharmacological intervention in the prevention

30-50%

disease.

to

of

arterial

Because

patients

10

[] []5

([1 ļ.£ 43

25

Summary of the Invention:

PTCA

approach to

of restenosis.

or

pathophysiological

Novel Features and Applications to Stent Technology

CABG.

coronary

30

clinical the improve to attempts Currently, performance of stents have involved some variation of either applying a coating to the metal, attaching a covering or membrane, or embedding material on the surface include designed to A stent ion bombardment. via

reservoirs is a new approach which offers several important advantages over existing technologies.

Local Drug Delivery from a Stent to Inhibit Restenosis

10

is desired to deliver a In this application, it therapeutic agent to the site of arterial injury. to incorporate the has been approach therapeutic agent into a polymer material which is then The ideal coating material must be coated on the stent. able to adhere strongly to the metal stent both before and after expansion, be capable of retaining the drug at a sufficient load level to obtain the required dose, be able to release the drug in a controlled way over a period of and be as thin as possible so several weeks, In addition, the minimize the increase in profile. coating material should not contribute to any adverse response by the body (i.e., should be non-thrombogenic, To date, the ideal coating non-inflammatory, etc.). material has not been developed for this application.

25

An alternative would be to design the stent to contain reservoirs which could be loaded with the drug. A coating or membrane of biocompatable material could be applied over the reservoirs which would control the diffusion of the drug from the reservoirs to the artery wall.

30

One advantage of this system is that the properties of the coating can be optimized for achieving superior

biocompatibility and adhesion properties, without the addition requirement of being able to load and release the drug. The size, shape, position, and number of reservoirs can be used to control the amount of drug, and therefore the dose delivered.

10

Description of the Drawings:

 The invention will be better understood in connection with the following figures in which Figures 1 and 14 are top views and section views of a stent containing reservoirs as described in the present invention;

Figures 2a and 2b are similar views of an alternate embodiment of the stent with open ends;

Figures 3a and 3b are further alternate figures of a device containing a grooved reservoir; and

Figure 4 is a layout view of a device containing a reservoir as in Figure 3.

Detailed Description of the Invention

30

25

11

Pharmacological attempts to prevent restenosis by pharmacologic means have thus far been unsuccessful and all involve systemic administration of the trial agents. Neither aspirin-dipyridamole, ticlopidine, acute heparin warfarin (6 months) administration, chronic preventing been effective in methylprednisolone have inhibitors have been restenosis although platelet

reocclusion after acute preventing effective in The calcium antagonists have also been angioplasty. unsuccessful in preventing restenosis, although they are still under study. Other agents currently under study include thromboxane inhibitors, prostacyclin mimetics, platelet membrane receptor blockers, thrombin inhibitors angiotensin converting enzyme inhibitors. agents must be given systemically, however, and attainment of a therapeutically effective dose may not be possible; antiproliferative (or anti-restenosis) concentrations may exceed the known toxic concentrations of these agents so that levels sufficient to produce smooth muscle inhibition may not be reached (Lang et al., 42 Ann. Rev. Med., 127et al., 84 Circulation, 1426-1436 (1991); Popma 132

Additional clinical trials in which the effectiveness for preventing restenosis of dietary fish oil supplements, thromboxane receptor antagonists, cholesterol lowering agents, and serotonin antagonists has been examined have shown either conflicting or negative results so that no pharmacological agents are as yet clinically available to prevent post-angioplasty restenosis (Franklin, S.M. and Faxon, D.P., 4 Coronary Artery Disease, 232-242 (1993); Serruys, P.W. et al., 88 Circulation, (part 1) 1588-1601, (1993).

Conversely, stents have proven useful in preventing reducing the proliferation of restenosis. Stents, such as the stent 10° seen in layout in Figure 4, balloon-

JJI-43

5

10

The same was the same of the s

Ö

25

30

(1991)).

10

15

25

30

expandable slotted metal tubes (usually but not limited to stainless steel), which when expanded within the lumen of structural angioplastied coronary artery, provide This support is helpful in support to the arterial wall. maintaining an open path for blood flow. randomized clinical trials, stents were shown to increase increase the stenosed angiographic success after PTCA, blood vessel lumen and to reduce the lesion recurrence at 6 months (Serruys et al., 331 New Eng Jour. Med, 495, (1994); Fischman et al., 331 New Eng Jour. Med, 496-501 Additionally, in a preliminary trial, (1994).coated stents appear to possess the same benefit of stenosis diameter at follow-up in reduction observed with non-heparin coated stents. Additionally, heparin coating appears to have the added benefit of producing a reduction in sub-acute thrombosis after stent implantation (Serruys et al., 93 Circulation, 412-422, 1) sustained mechanical expansion of a Thus, (1996).stenosed coronary artery has been shown to provide some measure of restenosis prevention, and 2) coating of stents with heparin has demonstrated both the feasibility and the clinical usefulness of delivering drugs to local, injured tissue off the surface of the stent.

actively studied being agents are Numerous antiproliferative agents for use in restenosis and have shown some activity in experimental animal models. These fragments (Clowes and and heparin heparin include: Karnovsky, 265 Nature, 25-626, (1977); Guyton, J.R. et al. 46 Circ. Res., 625-634, (1980); Clowes, A.W. and Clowes,

5

M.M., 52 Lab. Invest., 611-616, (1985); Clowes, A.W. and Clowes, M.M., 58 Circ. Res., 839-845 (1986); Majesky et al., 61 Circ Res., 296-300, (1987); Snow et al., 137 Am. Okada, Т. et al., (1990);313-330 J. Pathol., Neurosurgery, 92-898, (1989) colchicine (Currier, J.W. et (1989),taxol Circulation, 11-66, 80 agiotensin converting enzyme (ACE) inhibitors (Powell, et al., 245 Science, 186-188 (1989), angiopeptin (Lundergan, C.F. et al., 17 Am. J. Cardiol. (Suppl. B); 132B-136B (1991), Cyclosporin A (Jonasson, L. et. al., 85 Proc. Nati, Acad. Sci., 2303 (1988), goat-anti-rabbit PDGF antibody (Ferns, G.A.A., et al., 253 Science, 1129-1132 (1991), terbinafine (Nemecek, G.M. al., et Pharmacol. Exp. Thera., 1167-11747 (1989), trapidil (Liu, M.W. et al., 81 <u>Circulation</u>, 1089-1093 (1990), interferongamma (Hansson, G.K. and Holm, 84 J. Circulation, 1266-1272 (1991), steroids (Colburn, M.D. et al., 15 J. Vasc. Surg., 510-518 (1992), see also Berk, B.C. et al., 17 J. Am. Coll. Cardiol., 111B-1 17B (1991), ionizing radiation (ref), fusion toxins (ref) antisense oligonucleotides (ref), gene vectors (ref), and rapamycin (see below).

30

ij

Ü

25

Of particular interest in rapamycin. Rapamycin is a macrolide antibiotic which blocks IL-2- mediated T-cell proliferation and possesses antiinflammatory activity. While the precise mechanism of rapamycin is still under active investigation, rapamycin has been shown to prevent the G_1 to S phase progression of T-cells through the cell cycle by inhibiting specific cell cyclins and cyclindependent protein kinases (Siekierka, Immunol. Res. 13:

10

13

25

30

The antiproliferative action of rapamycin 110-116, 1994). is not limited to T-cells; Marx et al. (Circ Res 76:412-1995) have demonstrated that rapamycin prevents proliferation of both rat and human SMC in vitro while Poon et al. have shown the rat, porcine, and human SMC migratin can also be inhibited by rapamycin (J Clin Invest 2277-2283, 1996). Thus, rapamycin is capable of inhibiting both the inflammatory response known to occur after arterial injury and stent implantation, as well as hyperproliferative response. the In fact, combined effects of rapamycin have been demonstrated to result in a diminished SMC hyperproliferative response in a rat femoral artery graft model and in both rat and porcine arterial balloon injury models (Gregory et al., Transplantation 55:1409-1418, 1993; Gallo et These observations clearly support the press, (1997)). potential use of rapamycin in the clinical setting of post-angioplasty restenosis.

Although the ideal agent for restenosis has not yet some desired properties are clear: been identified, inhibition of local thrombosis without the risk systemic bleeding complications and continuous and prevention of arterial injury, including local of dequale the prevention smooth muscle sustained inflammation and proliferation at the site of angioplasty without serious Inasmuch as stents prevent at systemic complications. least a portion of the restenosis process, an agent which

and the proliferation

of

SMC

JJI-43

prevents inflammation

combined with a stent may provide the most efficacious treatment for post-angioplasty restenosis.

Experiments

10

5

Agents: Rapamycin (sirolimus) structural analogs (macrocyclic lactones) and inhibitors of cell-cycle progression.

Delivery Methods:

These can vary:

- Local delivery of such agents (rapamycin) from the struts of a stent, from a stent graft, grafts, stent cover or sheath.
- Involving comixture with polymers (both degradable and nondegrading) to hold the drug to the stent or graft.

25

- or entrapping the drug into the metal of the stent or graft body which has been modified to contain micropores or channels, as will be explained further herein.

30

- or including covalent binding of the drug to the stent via solution chemistry techniques (such as via the Carmeda process) or dry chemistry techniques (e.g. vapour

deposition methods such as rf-plasma polymerization) and combinations thereof.

1 0

10

Catheter delivery intravascularly from a tandem

-

Extravascular delivery by the advential

Extravascular delivery by the pericardial route

application of sustained release formulations.

balloon or a porous balloon for intramural uptake

<u>Us</u> prevent

<u>Uses:</u> for inhibition of cell proliferation to

prevent neointimal proliferation and restenosis.

prevention of tumor expansion from stents

prevent ingrowth of tissue into catheters and

shunts inducing their failure.

25

15

1. Experimental Stent Delivery Method - Delivery from Polymer Matrix:

30

Solution of Rapamycin, prepared in a solvent miscible with polymer carrier solution, is mixed with solution of polymer at final concentration range 0.001 weight % to 30 weight % of drug. Polymers are biocompatible (i.e., not elicit any negative tissue reaction or promote mural thrombus formation) and degradable, such as lactone-based copolyesters, polylactide, polyesters or e.q., polycaprolacton-glycolide, polyorthoesters, polyanhydrides; polyphosphazenes; poly-aminoacids; polysaccharides; poly(ether-ester) copolymers, e.g., PEO-PLLA, or blends

Nonabsorbable biocompatible polymers are also thereof. Polymers such as polydimethylsuitable candidates. poly(ethylene-vingylacetate); acrylate based siolxane; poly(hydroxyethyl e.g., copolymers, polymers or methylmethacrylate, polyvinyl pyrrolidinone; fluorinated polytetrafluoroethylene; cellulose polymers such as esters.

10

Polymer/drug mixture is applied to the surfaces of the stent by either dip-coating, or spray coating, or brush coating or dip/spin coating or combinations thereof, and the solvent allowed to evaporate to leave a film with entrapped rapamycin.

2. Experimental Stent Delivery Method - Delivery from Microporous Depots in Stent Through a Polymer Membrane Coating:

channels is dipped into a

been modified

contain

solution of

A solution

to

25

to saturated, in organic wt% 0.001 Rapamycin, range methylene chloride, acetone or solvent such as sufficient time to allow solution to permeate into the (The dipping solution can also be compressed to improve the loading efficiency.) After solvent has been allowed to evaporate, the stent is dipped briefly in fresh

solvent to remove excess surface bound drug.

Stent, whose body has

micropores or

30

of polymer, chosen from any identified in the first experimental method, is applied to the stent as detailed

above. This outerlayer of polymer will act as diffusioncontroller for release of drug.

3. Experimental Stent Delivery Method - Delivery via lysis of a Covalent Drug Tether

Rapamycin is modified to contain a hydrolytically or enzymatically labile covalent bond for attaching to the surface of the stent which itself has been chemically derivatized to allow covalent immobilization. Covalent bonds such as ester, amides or anhydrides may be suitable for this.

4. Experimental Method - Pericardial Delivery

Polymeric Sheet Rapamycin is combined A: previously highlighted, with concentration range degradable polymer such as poly(caprolactone-gylcolide) or non-degradable polymer, e.g., polydimethylsiloxane, mixture cast as a thin sheet, thickness range 10µ to The resulting sheet can be wrapped perivascularly 1000u. Preference would be for the on the target vessel. absorbable polymer.

B: Conformal Coating: Rapamycin is combined with a polymer that has a melting temperature just above 37°C, range 40°-45°C. Mixture is applied in a molten state to the external side of the target vessel. Upon cooling to body temperature the mixture solidifies conformally to the

JJI-43

10

25

30

vessel wall. Both non-degradable and absorbable biocompatible polymers are suitable.

As seen in the figures it is also possible to modify currently manufactured stents in order to adequately provide the drug dosages such as rapamycin. As seen in Figures 1a, 2a and 3a, any stent strut 10, 20, 30 can be modified to have a certain reservoir or channel 11, 21, Each of these reservoirs can be open or closed as 31. These reservoirs can hold the drug to be desired. delivered. Figure 4 shows a stent 40 with a reservoir 45 created at the apex of a flexible strut. Of course, this reservoir 45 is intended to be useful to deliver rapamycin or any other drug at a specific point of flexibility of the stent. Accordingly, this concept can be useful for "second generation" type stents.

In any of the foregoing devices, however, it is useful to have the drug dosage applied with enough specificity and enough concentration to provide an effective dosage in the lesion area. In this regard, the reservoir size in the stent struts must be kept at a size of about 0.0005" to about 0.003". Then, it should be possible to adequately apply the drug dosage at the desired location and in the desired amount.

These and other concepts will are disclosed herein. It would be apparent to the reader that modifications are possible to the stent or the drug dosage applied. In any event, however, the any obvious modifications should be

JJI-43

5

10

25

30

perceived to fall within the scope of the invention which is to be realized from the attached claims and their equivalents.