	CH20 - Deep Generative Models - 1. Good Relian
	20.10.3: Variational Autoencoders 20.10.4: Generative Adversari Newsons
	Variational Autoencoders
	MAE = Directed model that uses bearned apprix inference or can be trained w/ gradient based methods
(Prierros goes through Autoencoder PAE draws sample 2 From code 10187 phodes (2)
	· 2 run through gen wetworks g(2)
	n Sampled from Production: 3(2) = Pu(x12)
	Ouring training, encoder uses q(zix) to
	2 Pundel (n 12) is the decoder
	VAE is elegants theo pleasing of simple :
	obtains excellent results among state of art generative modelling
	main draw baser is mages tend to be

One nice property of VAEs! Simeltaneouss train a parametric encoder in combination of generator forces the model to learn a predictable coord sys that the encoder can capture nakes it exceller manifold galgo

20.10-4 Generative Addressail Networks

GANS = Another generative model approuch based on Differentiable generator Networks

Grans based on theoretical seenano in which the generator must compete against an adverses

generator produces samples: 2 = g(2; 6(9))

Adversarg/discriminator Network: Attempts to distinguish between samples drawn from the train data & samples from generator

Discrim gives probabilits value given by d(n, 00) indic whener n is a reat training sompre

Zero-Sum game to train

generator wants to learn to "frich" the

Convergence = distrim generator output is indismiguisable

Le Disc is hen piscarded

- generator is the trained mode

Motivation for GANS
- requires neither Approx inference

- nor Approx of partinon Function

unfort, GANS are Dypicult to train when gen (g) & Pobvehe (b) one given by neural networks

2 Maxqu(g, d) is not conver

60 Non-converge causes GANS to underfix

Stabilization of SAN learning is a open

BANS perform well when model archiceline & hyperparas are carefully selected

Dropout is important for training