

1 Ersatzspannungsquelle

Es sei $R_1 = 20\Omega$; $R_2 = 10\Omega$ und $I_0 = 600$ mA.

- a) Bestimmen Sie die Leerlaufspannung U_{ab} der Ersatzspannungsquelle.
- b) Wie groß muß der Lastwiderstand R_L für den Fall der Leistungsanpassung sein?

- c) Bestimmen Sie rechnerisch den Arbeitspunkt für $R_L = 25 \Omega$?
- d) Bestimmen Sie die Ersatzstromquelle der Schaltung (ohne R_L) und stellen Sie die Kennlinie der Ersatzstromquelle in einem Diagramm dar. Ergänzen Sie die Lastkennlinie für R_L = 25 Ω und bestimmen Sie den Arbeitspunkt graphisch.
- [a) $U_{ab} = 3 \text{ V}$, b) $R_L = R_i = 15 \Omega$, c) 75 mA, 1.875 V, d) wie c)]

2 Ersatzspannungsquelle

 a) Bestimmen Sie die Leerlaufspannung U₀ und den Innenwiderstand R_i in Bezug auf die Klemmen A und B als Funktion von R und U₂.

Es sei $U_2 = 17V$ und $R = 153\Omega$.

- b) Bestimmen Sie den Arbeitspunkt für eine Last $R_{AB} = 2R$ und $R_{AB} = 4R$.
- c) Welche Leistung wird in b) in dem Lastwiderstand umgesetzt?

d) Die Spannung U₂ wird halbiert. Welche Leistung wird in diesem Fall bei unverändertem R in R_{ab} umgesetzt?

[Lösung a) 4U₂/17; 36R/17; b) AP1(1,943V; 6,35mA); AP2(2,615V;4,27mA); c) 12,33mW; 11,18mW, d) 3,08mW, 2,80mW]

3 Ersatzspannungsquelle

 a) Bestimmen Sie die Ersatzspannungsquelle bezüglich der Klemmen
1 und 2 in allgemeiner Form.

Es sei $U_0 = 52V$, $R_1 = R_2 = 10\Omega$ und $R_3 = 15\Omega$.

- b) Bestimmen Sie die maximal in R₄ umsetzbare Leistung.
- c) Welche Leistung wird bei $R_4 = 60\Omega$ in R_4 umgesetzt.

[Lösung: b) 8,45W, c) 6,34 W]

4 Leistungsanpassung

Es sei $G_1 = 2mS$, $R_2 = 1k\Omega$,

 $I_1 = 3mA \text{ und } U_2 = 1,2V.$

- a) Wählen Sie R₃, so dass in R₃ maximale Leistung umgesetzt wird.
- b) Bestimmen Sie für Fall a) die Leistung in R₃.

[Lösung: a) $R_3 = 1.5 \text{ k}\Omega$, b) $P_{R3}=1.215 \text{ mW}$]