H'S'B'

Computer Vision WS 24/25

Meilenstein 3- Single Object Tracking (SOT)

Wael Eskeif & Mohamed Tarek Dawalibi

Prof. Dr.-Ing. Jan Rexilius

INHALTE DIESER PRÄSENTATION

- 1. Rückblick
- 2. Tracking-Verfahren: Ablauf und Paramete
- 3. Ergebnisse und Evaluation
- 4. Fazit

RÜCKBLICK

Hochschule Bielefeld University of Applied Sciences and Arts

Computer Vision

Tracking Verfahren

Schritt 1: Hintergrundsubtraktion

Ziel: Isolierung des bewegten Objekts (z. B. einer Person) vom statischen Hintergrund.

Orginal

BG

Schritt 2: Konturen extrahieren

Ziel: Die größte relevante Kontur im Vordergrund finden.

Parameter:

- Mindestfläche (maxArea = 4000.0):
- Konturenfindung:

Modus: cv::RETR EXTERNAL (nur äußere Konturen).

Methode: cv::CHAIN_APPROX_SIMPLE (Reduziert unnötige Punkte).

Schritt 3: Keyponits extrahieren

Ziel: Punkte gleichmäßig entlang der Kontur auswählen, um die Form des Objekts zu repräsentieren.

Parameter:

Schrittweite (step):

Abhängig von der Anzahl der Punkte in der Kontur.

Maximale Keypoints: 100.

Step = max(1, contour.size() / 100) (max. 100 Punkte).

Schritt 4: Optical Flow

Ziel: Die Bewegung von Keypoints zwischen Frames verfolgen.

Parameter:

Lucas-Kanade Optical Flow:

Suchfenstergröße: (winSize = (21, 21)).

Pyramidenlevel: maxLevel = 2.

Termination (criteria):

Maximale Anzahl der Trackingpoints: 25.

Mindestgenauigkeit: 0.02.

Schritt 5: Kalman-Filter

Ziel: Die Bewegung der Keypoints glätten und Positionen stabilisieren.

Parameter:

Zustand:

Position (x, y) und Geschwindigkeit (dx, dy).

Messmatrix (measurementMatrix):

cv::Mat::eye(2, 4, CV_32F).

Prozessrauschen-Kovarianzmatrix (processNoiseCov):

cv::Mat::eye(4, 4, CV 32F) * 1e-2.

Statische Umgebung

Original frame

Statische Umgebung

Original frame

Bounding Box Segmentierung

Statische Umgebung

Original frame

Bounding Box Segmentierung

Bounding Box Ground Truth

Video	Average IOU
Tracking in einer statischen Umgebung	0.85

Dynamische Umgebungen

Original frame

Dynamische Umgebungen

Segmentierung

Dynamische Umgebungen

Video	Average IOU
Tracking in einer dynamischen Umgebung	0.58

Verdeckung

Original frame

Verdeckung

Original frame

Bounding Box Segmentierung

Verdeckung

Original frame

Bounding Box Segmentierung

Bounding Box Ground Truth

Video	Average IOU
Tracking unter Verdeckungsbedingung	0.80

FAZIT

- Höchste Tracking-Genauigkeit in statischen Umgebungen (IOU: 0.85).
- Geringste Genauigkeit in dynamischen Umgebungen (IOU: 0.58).
- Gute Leistung unter Verdeckungsbedingung (IOU: 0.80).

