17 - Fluxo máximo - Edmonds-Karp - Dinic

Complexidade do método Ford-Fulkerson:

Com capacidades inteiras é O(m f), sendo m = |E(G)|, f = fluxo máximo

Problema de Ford-Fulkerson:

No pior caso, o número de iterações pode ser O(f) em que f representa o valor do fluxo máximo!

ALGORITMO PSEUDOPOLINOMIAL

Método de Edmonds-Karp:

Pode ser visto como uma implementação eficiente do método de Ford-Fulkerson. A cada interação seleciona o caminho aumentante na rede residual, que seja mais curto, utilizando o menor número de arestas. O caminho mais curto pode ser encontrado utilizando uma busca em largura, pois na busca em largura você tem os níveis que mostra a distância de um vértice até a sua raiz.

Algoritmo:

- 1. para toda aresta $e \in E(G)$ faça $f(e) \leftarrow 0$; // Inicializar fluxo
- Construir a rede residual G'(f) // Construir rede residual inicial
- 3. enquanto existir algum caminho aumentante P em G'(f) efetuar
 - a. Seja P o caminho aumentante em G'(f) com menor número de arestas
 - b. $\Delta = \min \{ u_r(e) \mid e \in P \};$
 - c. para cada aresta (v, w) ∈ P faça
 - se (v, w) for aresta direta então f(v, w) ← f(v, w) + Δ
 - ii. $\underline{\text{senão}} \ f(w, v) \leftarrow f(w, v) \Delta$
 - d. Atualizar a rede residual G'(f) // Construir nova rede residual

Exemplo:

Método de Dinic:

Dada uma rede residual $G^{\prime}(f)$, uma rede em níveis G_1 é um grafo direcionado ponderado que:

- Possui os mesmos vértices que $G^{\prime}(f)$, isto é, $V(G_1)=V(G^{\prime})$
- Para toda aresta e=(v,w) pertencente E(G') com capacidade igual a $u_r(e), G_1$ contém aresta (v,w) com a mesma capacidade se sit(w)=dist(v)+1, em que dist(v) representa a menor distância geodésica entre a fonte e o vértice v (em números de arestas).

Um fluxo de bloqueio (ou blocante) f_b representa um fluxo de G_1 que se mantidas apenas as arestas que possuem capacidade maior que f_b não existia mais um caminho aumentante em G_1 .

Se o caminho aumentante escolhido for o mais curto, então os tamanho de caminhos são não decrescentes e método termina mesmo que as capacidades não sejam inteiras. A cada interação, determina-se o fluxo de bloqueio na rede de níveis.

Pode-se mostrar que o número de níveis de um fluxo de bloqueio aumenta de pelo menos uma unidade a cada interação (logo existem |V|-1 fluxos de bloqueio, no máximo). Um fluxo de bloqueio pode ser encontrado em O(|V|*|E|).

Algoritmo:

- para toda aresta e ∈ E(G) faça f(e) ← 0; // Inicializar fluxo
 Construir a rede residual G'(f) // Construir rede residual inicial
 Construir a rede em níveis G_L a partir de G'(f) // Construir rede em níveis inicial
 enquanto dist(t) < ∞ efetuar
 - a. Determinar um fluxo de bloqueio f_b em G_L
 - b. Atualizar o fluxo f usando $f_{\rm b}$
 - c. Atualizar a rede residual G'(f) // Construir nova rede residual
 - d. Construir a rede em níveis G_L a partir de G'(f) // Construir nova rede em níveis

Exemplo:

Passos:

Continuação:

A partir desse momento não há mais caminho aumentante.

Exemplo 2:

Comparação métodos Fluxo máximo:

Algoritmo pseudopolinomial

Número máximo de caminhos aumentante é O(n m) e cada caminho pode ser encontrado em O(m)

Número máximo de fluxos de bloqueio é n − 1 e cada fluxo de bloqueio pode ser encontrado em O(n m)

Método	Tempo
Ford-Fulkerson	O(m f)
Edmonds-Karp	O(n m ²)
Dinic	O(n ² m) —

m = # de arestas f = fluxo máximo n = # de vértices