

Programmazione Lineare

ver 3.0.0

Fabrizio Marinelli

<u>fabrizio.marinelli@staff.univpm.it</u> tel. 071 - 2204823

- Richiami di Algebra Lineare
- Introduzione alla Prog. Lineare (PL)
- Ottimizzazione convessa e PL
- Geometria della PL
- Sistemi di eq. Lineari e PL

- Richiami di Algebra Lineare
- Introduzione alla Prog. Lineare (PL)
- Ottimizzazione convessa e PL
- Geometria della PL
- Sistemi di eq. Lineari e PL

Richiami di Algebra Lineare

(Vercellis appendice A.2)

Vettori

● [Definizione] un vettore $\mathbf{x} \in \mathbb{R}^n$ è una n-pla di numeri reali $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$ e rappresenta un punto nello spazio \mathbb{R}^n .

Ogni elemento x_i del vettore è detta componente (o coordinata).

[Esempio]

$$\mathbf{x} = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

[Definizioni]

- la trasposta di un vettore $\mathbf{x} \in \mathbb{R}^n$ (indicata con \mathbf{x}^T) è il vettore riga $[x_1 \dots x_n]$.
- Il versore \mathbf{e}_i è il vettore $[0,...,1,...0]^T$ in cui la componente *i*-esima è 1

Vettori: operazioni elementari

Somma

$$x + y = z$$

$$\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} z_1 = x_1 + y_1 \\ \vdots \\ z_n = x_n + y_n \end{bmatrix}$$

Prodotto per uno scalare

$$\beta \mathbf{x} = \mathbf{z}$$

$$\beta \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} z_1 = \beta x_1 \\ \vdots \\ z_n = \beta x_n \end{bmatrix}$$

Vettori: operazioni elementari

$$\mathbf{x} = (4,1)$$
 $\mathbf{y} = (1, 2)$
 $\beta = 2$

Combinazioni lineari

Definizione] il vettore $\mathbf{y} \in \mathbb{R}^n$ è una combinazione lineare dei k vettori $\mathbf{x}_1, ..., \mathbf{x}_k \in \mathbb{R}^n$ se esistono k valori $\alpha_1, ..., \alpha_k \in \mathbb{R}$ tali che

$$\mathbf{y} = \sum_{i=1}^{k} \alpha_i \mathbf{x}_i = \alpha_1 \begin{bmatrix} x_{11} \\ \vdots \\ x_{1n} \end{bmatrix} + \dots + \alpha_k \begin{bmatrix} x_{k1} \\ \vdots \\ x_{kn} \end{bmatrix}$$

Vettori e combinazioni lineari: esempi

[Esempio 1]

Il vettore $\mathbf{y} = (5,4)$ è combinazione lineare dei vettori $\mathbf{x}_1 = (4,1)$ e $\mathbf{x}_2 = (1,2)$? Si tratta di determinare i coefficienti α_1 e α_2 tali che

$$\begin{bmatrix} 4 \\ 1 \end{bmatrix} \alpha_1 + \begin{bmatrix} 1 \\ 2 \end{bmatrix} \alpha_2 = \begin{bmatrix} 5 \\ 4 \end{bmatrix} \quad \text{ovvero di risolvere il sistema} \quad \begin{cases} 4\alpha_1 + \alpha_2 = 5 \\ \alpha_1 + 2\alpha_2 = 4 \end{cases}$$

la cui soluzione è: $\alpha_1 = 6/7$ e $\alpha_2 = 11/7$

• [Esempio 2] E il vettore $\mathbf{y} = (-2, -1)$ è combinazione lineare di \mathbf{x}_1 e \mathbf{x}_2 ? Si tratta di determinare i coefficienti α_1 e α_2 tali che

$$\begin{bmatrix} 4 \\ 1 \end{bmatrix} \alpha_1 + \begin{bmatrix} 1 \\ 2 \end{bmatrix} \alpha_2 = \begin{bmatrix} -2 \\ -1 \end{bmatrix} \quad \text{ovvero di risolvere il sistema} \qquad \begin{cases} 4\alpha_1 + \alpha_2 = -2 \\ \alpha_1 + 2\alpha_2 = -1 \end{cases}$$

la cui soluzione è: $\alpha_1 = -3/7$ e $\alpha_2 = -2/7$

Combinazioni lineari

Spazi lineari

[Definizione] l'insieme $S \subseteq \mathbb{R}^n$ è uno spazio lineare reale (o spazio vettoriale) se è chiuso rispetto alla somma e alla moltiplicazione, cioè se ogni combinazione lineare di suoi elementi resta nell'insieme:

$$(\alpha \mathbf{x} + \beta \mathbf{y}) = \mathbf{z} \in \mathcal{S}$$
 $\forall \mathbf{x}, \mathbf{y} \in \mathcal{S}$ e $\forall \alpha, \beta \in \mathbb{R}$

• [Osservazione] ogni spazio lineare contiene il vettore nullo.

• [Definizione] $S \subset V$ è un sottospazio lineare dello spazio lineare V se e solo se S è uno spazio lineare

Indipendenza lineare

Definizione] Un insieme S di m vettori $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ si dice linearmente indipendente <u>se e solo se</u> l'unico modo per esprimere il vettore nullo come combinazione lineare di $\mathbf{x}_1, ..., \mathbf{x}_m$ è utilizzando coefficienti tutti nulli, cioè

$$\sum_{i=1}^{m} \alpha_i \mathbf{x}_i = \mathbf{0} \qquad \Leftrightarrow \qquad \alpha_i = 0 \quad \forall i$$

Indipendenza lineare

[Osservazioni]

- 1. Un sottoinsieme di un insieme S linearmente indipendente è linearmente indipendente.
- 2. L'insieme $\{\mathbf{0}_n\}$ è linearmente dipendente, quindi ogni insieme S contenente $\mathbf{0}_n$ è linearmente dipendente.
- 3. Ogni insieme S costituito da un solo elemento diverso dal vettore nullo è linearmente indipendente.

basi

Sia B una collezione di vettori qualsiasi di \mathbb{R}^n .

- **[Definizione]** L'insieme di tutte le combinazioni lineari di elementi di *B* si dice involucro lineare di *B* oppure sottospazio generato da *B* e si indica con *lin(B)*.
- **Definizione**] L'insieme B si dice base di un insieme S se i vettori di B sono linearmente indipendenti e se S = lin(B).

basi

Data una base $B = \{\mathbf{x}_1, ..., \mathbf{x}_m\}$ e un vettore $\mathbf{y} \in S \setminus B$, si definisce rappresentazione di \mathbf{y} rispetto a B il vettore $(\alpha_1, ..., \alpha_m)$ tale che

$$\mathbf{y} = \sum_{i=1}^{m} \alpha_i \mathbf{x}_i$$

- La base $B = \{\mathbf{e}_1, ..., \mathbf{e}_m\}$ formata dai versori è detta base canonica
- ▶ Data una base $B = \{\mathbf{x}_1, ..., \mathbf{x}_m\}$, l'insieme $B \cup \{\mathbf{y}\}$ con $\mathbf{y} \in S \setminus B$, è sempre un insieme linearmente dipendente.

basi

Teorema [Steinitz] Tutte le basi di un dato spazio lineare

S hanno lo stesso numero di elementi.

• [Definizione] il numero di elementi di una base di uno spazio lineare S è detto rango lineare (o dimensione) di S e si indica con rango(S).

Esercizi

- 1. Dimostrare che una qualsiasi retta passante per l'origine è un sottospazio lineare di ${\bf R}^2$
- 2. Dimostrare che ogni coppia di punti che individuano una retta che non passa per l'origine forma una base di R².
- 3. Dimostrare che nessun vettore di una base *B* può essere espresso come combinazione lineare degli altri vettori di *B*.

Matrici

Definizione] una matrice $A \in \mathbb{R}^{m \times n}$ è una tabella di $m \cdot n$ scalari organizzati in m righe e n colonne.

- $(m \times n)$ è la dimensione della matrice.
- se m = n la matrice è detta quadrate di ordine n.
- un vettore è una matrice di dimensione $(m \times 1)$.

Notazione

- \bullet A seconda dei casi una matrice **A** con *m* righe e *n* colonne può essere rappresentata
 - con un suo elemento generico

$$\mathbf{A} = [a_{ij}]$$

con la sua dimensione

$$\mathbf{A}(m \times n)$$

per esteso

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

• come collezione di vettori colonna

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 \mid & \cdots & \mid \mathbf{A}_n \end{bmatrix}$$

• come collezione di vettori riga

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_1^{\mathrm{T}} \\ \vdots \\ \overline{\mathbf{a}_m^{\mathrm{T}}} \end{bmatrix}$$

Operazioni su matrici

• Consideriamo due matrici $\mathbf{A}(m \times n)$ e $\mathbf{B}(m \times n)$

Somma:
$$\mathbf{A} + \mathbf{B} = \mathbf{C}$$
 $\begin{bmatrix} c_{ij} = a_{ij} + b_{ij} \end{bmatrix}$
$$\begin{bmatrix} 1 & -2 & 3 \\ 3 & 5 & 0 \end{bmatrix} + \begin{bmatrix} 2 & -1 & 4 \\ 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -3 & 7 \\ 4 & 7 & 0 \end{bmatrix}$$

• Prodotto per uno scalare: $\beta \mathbf{A} = \mathbf{C}$ $[c_{ij} = \beta a_{ij}]$

$$3 \cdot \begin{bmatrix} 1 & -2 & 3 \\ 3 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 3 & -6 & 9 \\ 9 & 15 & 0 \end{bmatrix}$$

Operazioni su matrici

Il prodotto tra le matrici $\mathbf{A}(m \times p)$ e $\mathbf{B}(q \times n)$, definito se e solo se p = q, è la matrice $\mathbf{C}(m \times n)$ in cui l'elemento c_{ij} è:

$$c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$
 $i = 1, ..., m$ $j = 1, ..., n$

• [Osservazione] Il prodotto scalare di due vettori **x** e **y** è in effetti un prodotto tra matrici di dimensione (1 × *m*) e (*m* × 1).

Operazioni su matrici: proprietà del prodotto

■ <u>non</u> è commutativo

in generale
$$\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$$

in particolare:

- $\mathbf{A} \cdot \mathbf{e}_i = \mathbf{A}_i$ (colonna *i*-esima di \mathbf{A})
- $\mathbf{e}_i^{\mathrm{T}} \mathbf{A} = \mathbf{a}_i \text{ (riga } i\text{-esima di } \mathbf{A})$

• è associativo

$$\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$$

• gode della prop. distributiva destra e sinistra

$$(\mathbf{A} + \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C}$$
 e
 $\mathbf{C} \cdot (\mathbf{A} + \mathbf{B}) = \mathbf{C} \cdot \mathbf{A} + \mathbf{C} \cdot \mathbf{B}$

Matrici particolari: trasposta

• La matrice trasposta \mathbf{A}^{T} di una matrice $\mathbf{A}(m \times n)$ si ottiene scambiando le righe con le colonne (per ogni elemento si ha quindi $a_{ij} \rightarrow a_{ji}$

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 3 \\ 3 & 5 & 0 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 3 \\ 3 & 5 & 0 \end{bmatrix} \qquad \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} 1 & 3 \\ -2 & 5 \\ 3 & 0 \end{bmatrix}$$

- \mathbf{A}^{T} ha dimensione $(n \times m)$
- $(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}$
- $(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}}$
- $(\mathbf{A} \cdot \mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}} \cdot \mathbf{A}^{\mathrm{T}}$

Matrici particolari: nulla

• La matrice nulla $\mathbf{O}(m \times n)$ è quella composta da tutti zero:

$$\mathbf{O}(m \times n) \qquad a_{ij} = 0 \ \forall i, j$$

$$\mathbf{O} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- A + O = A
- A A = O
- $\mathbf{O} \cdot \mathbf{A} = \mathbf{O}$

Matrici quadrate

matrice identità

$$\mathbf{I}(n \times n) \qquad a_{ii} = 1, \, a_{ij} = 0 \,\,\forall i \neq j$$

matrice diagonale

$$\mathbf{A}(n \times n) \qquad a_{ij} = 0 \ \forall i \neq j$$

matrice triangolare sup.

$$\mathbf{A}(n \times n) \ a_{ij} \ge 0 \ \forall i \le j, \ a_{ij} = 0 \ \forall i > j$$

$$\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 6 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 5 & 1 & -2 & 2 \\ 0 & 4 & 6 & 0 \\ 0 & 0 & -1 & 3 \\ 0 & 0 & 0 & 6 \end{bmatrix}$$

Matrici quadrate

matrice simmetrica

$$\mathbf{A}(n \times n) \quad a_{ij} = a_{ji}$$

$$\mathbf{A} = \begin{bmatrix} 5 & 1 & -2 & 2 \\ 1 & 4 & 6 & 0 \\ -2 & 6 & -1 & 3 \\ 2 & 0 & 3 & 6 \end{bmatrix}$$

- matrice invertibile: matrice che ammette la sua inversa

 - $(A^{-1})^{-1} = A$
 - $(A^{T})^{-1} = (A^{-1})^{T}$
 - $(\mathbf{A} \cdot \mathbf{B})^{-1} = \mathbf{B}^{-1} \cdot \mathbf{A}^{-1}$

Definizione] Data una matrice quadrata **A** di *ordine* $n \ge 2$, la matrice quadrata di ordine n - 1 che si ottiene cancellando la k-esima riga e j-esima colonna da **A** si chiama minore \mathbf{A}_{kj} di **A**

$$\mathbf{A} = \begin{bmatrix} 5 & 1 & -2 & 2 \\ 1 & 4 & 6 & 0 \\ -2 & 6 & -1 & 3 \\ 2 & 0 & 3 & 6 \end{bmatrix}$$

$$\mathbf{A}_{23} = \begin{bmatrix} 5 & 1 & 2 \\ -2 & 6 & 3 \\ 2 & 0 & 3 \end{bmatrix}$$

■ Il determinante $\det(\mathbf{A})$ di una matrice quadrata $\mathbf{A}(n \times n)$ di ordine $n \ge 1$ è una funzione lineare delle righe di \mathbf{A} a valori reali. La formula generale per calcolare $\det(\mathbf{A})$ è

$$\det(\mathbf{A}) = \sum_{j=1}^{n} a_{kj} (-1)^{k+j} \det(\mathbf{A}_{kj}) \qquad \text{per } 1 \le k \le n \text{ fissato}$$

• Il determinante $\det(\mathbf{A})$ di una matrice quadrata $\mathbf{A}(n \times n)$ di ordine $n \ge 1$ è una funzione lineare delle righe di \mathbf{A} a valori reali. La formula generale per calcolare $\det(\mathbf{A})$ è

$$\det(\mathbf{A}) = \sum_{j=1}^{n} a_{kj} (-1)^{k+j} \det(\mathbf{A}_{kj})$$
 per $1 \le k \le n$ fissato

cofattore (o complemento algebrico) dell'elemento a_{kj}

[Nota] Il cofattore di a_{kj} è il determinante della matrice che si ottiene sostituendo la k-esima riga di \mathbf{A} con il vettore unitario \mathbf{e}_i

$$\det(\mathbf{A}) = \sum_{j=1}^{n} a_{kj} (-1)^{k+j} \det(\mathbf{A}_{kj}) \qquad \text{per } 1 \le k \le n \text{ fissato}$$

Il determinante è definito ricorsivamente.

$$\mathbf{A} = [a_{11}] \qquad \det(\mathbf{A}) = a_{11}$$

$$\mathbf{A} = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \qquad \det(\mathbf{A}) = a_{11}a_{22} - a_{12}a_{21}$$

$$\det(\mathbf{A}) = \sum_{j=1}^{n} a_{kj} (-1)^{k+j} \det(\mathbf{A}_{kj}) \qquad \text{per } 1 \le k \le n \text{ fissato}$$

Il determinante è definito ricorsivamente.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$\det(\mathbf{A}) = a_{11} \det \begin{bmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{bmatrix} - a_{12} \det \begin{bmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{bmatrix} + a_{13} \det \begin{bmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

$$\det(\mathbf{A}) = \sum_{j=1}^{n} a_{kj} (-1)^{k+j} \det(\mathbf{A}_{kj}) \qquad \text{per } 1 \le k \le n \text{ fissato}$$

[casi particolari]

se A è una matrice diagonale o triangolare superiore allora

$$\det(\mathbf{A}) = a_{11} \cdot \ldots \cdot a_{nn}$$

[esercizio] quante operazioni aritmetiche richiede il calcolo del determinante di una matrice di ordine *n*?

Proprietà del determinante

1. per ogni colonna \mathbf{A}_k e $t \in \mathbb{R}$ si ha

$$\det(\mathbf{A}_1 \mid \dots \mid t\mathbf{A}_k \mid \dots \mid \mathbf{A}_n) = t \det(\mathbf{A}_1 \mid \dots \mid \mathbf{A}_k \mid \dots \mid \mathbf{A}_n)$$

2. per ogni colonna \mathbf{A}_k e $\mathbf{c} \in \mathbb{R}^n$ si ha

$$\det(\mathbf{A}_1 \mid \dots \mid \mathbf{A}_k + \mathbf{c} \mid \dots \mid \mathbf{A}_n) = \det(\mathbf{A}_1 \mid \dots \mid \mathbf{A}_k \mid \dots \mid \mathbf{A}_n) + \det(\mathbf{A}_1 \mid \dots \mid \mathbf{c} \mid \dots \mid \mathbf{A}_n)$$

- 3. $det(\mathbf{A}) = -det(\mathbf{A})$ se scambio due colonne di \mathbf{A} tra loro
- 4. $det(\mathbf{A}) = det(\mathbf{A}^{\mathrm{T}})$
- 5. $det(\mathbf{A}) \neq 0$ se e solo se tutti i vettori colonna di \mathbf{A} sono <u>linearmente indipendenti</u>
- **6.** det(I) = 1
- 7. $\det(\mathbf{A} \cdot \mathbf{B}) = \det(\mathbf{A}) \cdot \det(\mathbf{B})$
- 8. $det(\mathbf{A}^{-1}) = 1 / det(\mathbf{A})$

• In base alla 4. le proprietà 1., 2., 3. e 5. possono anche essere enunciate per righe.

Rango di una matrice

• [Definizione] $\mathbf{A}(n \times n)$ è detta matrice non singolare se $\det(\mathbf{A}) \neq 0$.

• [Definizione] Il rango di una matrice $\mathbf{A}(m \times n)$, indicato anche con rank(\mathbf{A}), è il massimo ordine tra tutte le sottomatrici non singolari di \mathbf{A} .

[Osservazioni]

- Dalla definizione segue che $rank(A) \le min(m, n)$.
- Se $rank(\mathbf{A}) = min(m, n)$ la matrice \mathbf{A} si dice di rango pieno.
- Una matrice quadrata è di rango pieno se e solo se è non singolare.

Esercizi

1. Verificare le proprietà 1-8 dei determinanti con i seguenti dati

$$\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 & 4 \\ 3 & 5 & 2 & 1 \\ 2 & -2 & 6 & 0 \\ 4 & 3 & -3 & 2 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 0 & -1 & 4 & 1 \\ -3 & 1 & 0 & 2 \\ 1 & 3 & -2 & 0 \\ -2 & 0 & -1 & 3 \end{bmatrix} \quad \mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ -1 \\ 2 \end{bmatrix} \quad t = 4$$

- 2. Dimostrare la proprietà 8 dei determinanti.
- 3. Sia \mathbf{A}' la matrice ottenuta da $\mathbf{A}(n \times n)$ sommando ad una riga $\mathbf{a}_j^{\mathrm{T}}$ una combinazione lineare delle righe di \mathbf{A} .

Dimostrare che $det(\mathbf{A}) = det(\mathbf{A'})$

Trasformazioni lineari e matrici

• [Definizione] Siano V e W due spazi lineari. Una trasformazione $T: V \to W$ è lineare se conserva l'addizione e la moltiplicazione per scalari

$$T(a\mathbf{x} + b\mathbf{y}) = aT(\mathbf{x}) + bT(\mathbf{y}) \qquad a, b \in \mathbb{R}, \quad \mathbf{x}, \mathbf{y} \in V, \quad T(\mathbf{x}), T(\mathbf{y}) \in W$$

$$T\left(\sum_{i=1}^{n} a_i \mathbf{x}_i\right) = \sum_{i=1}^{n} a_i T(\mathbf{x}_i) \qquad a_i \in \mathbb{R}, \quad \mathbf{x}_i \in V, \quad T(\mathbf{x}_i) \in W$$

● [Proposizione] Ogni trasformazione lineare $T:V \to W$ con $V \subseteq \mathbb{R}^n$ e $W \subseteq \mathbb{R}^m$ è rappresentabile da una matrice A con m righe e n colonne detta matrice associata a T

$$\mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

Trasformazioni lineari e matrici

Infatti se $\{\mathbf{e}_1, ..., \mathbf{e}_n\}$ è la base canonica di V, allora $\mathbf{x} \in V$ può essere scritto come

$$\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{e}_i$$

Se $\{\mathbf{w}_1, ..., \mathbf{w}_m\}$ è una base di W e $a_{1i}, ..., a_{mi}$ la rappresentazione di $T(\mathbf{e}_i) \in W$, si può scrivere

$$T(\mathbf{e}_i) = \sum_{j=1}^m a_{ji} \mathbf{w}_j$$

$$T(\mathbf{x}) = T\left(\sum_{i=1}^{n} x_{i} \mathbf{e}_{i}\right) = \sum_{i=1}^{n} x_{i} T(\mathbf{e}_{i}) = \sum_{i=1}^{n} x_{i} \sum_{j=1}^{m} a_{ji} \mathbf{w}_{j} = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ji} \mathbf{w}_{j} x_{i}$$

Una matrice **A** che ha *n* colonne, una per ogni *m*-pla $(a_{1i},...,a_{mi})$ che definisce $T(\mathbf{e}_i)$, è una matrice che descrive la trasformazione lineare

Trasformazioni lineari e matrici

• Quindi, se T è una trasformazione lineare da \mathbb{R}^n in \mathbb{R}^m si ha

$$y = T(x)$$
 con $x \in \mathbb{R}^n$ e $y \in \mathbb{R}^m$
o equivalentemente
 $y = Ax$ con $A(m \times n)$

• In particolare, se T è una trasformazione lineare da \mathbb{R}^n in \mathbb{R} si ha

$$T(\mathbf{x}) = \mathbf{c}^{\mathrm{T}}\mathbf{x} = y$$
 con $\mathbf{c} \in \mathbb{R}^n$

Trasformazioni lineari e determinanti: esempi

Una trasformazione lineare in generale modifica le aree. Il fattore di scala della trasformazione è il determinante della trasformazione

$$det\left(\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}\right) = 6$$

Trasformazioni lineari e determinanti: esempi

Una trasformazione lineare in generale modifica le aree. Il fattore di scala della trasformazione è il determinante della trasformazione

$$det\left(\begin{bmatrix} 2 & 1 \\ 0 & 3 \end{bmatrix}\right) = 6$$

Trasformazioni lineari e determinanti: esempi

Se il determinante è 0, perdo una o più dimensioni e l'area collassa in un segmento o in punto e di conseguenza si annulla.

[domanda] Qual è il significato geometrico di un determinante negativo?

determinante: interpretazione geometrica

$$det \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = ad - cb$$

Programmazione Lineare (introduzione)

(Vercellis cap. 3.1)

La Programmazione Lineare (PL)

Un modello di Programmazione Matematica

$$\max z = f(\mathbf{x})$$
$$\mathbf{x} \in X$$

Un modello di Programmazione Lineare

$$f(\mathbf{x}) = f(x_1, ..., x_n) = c_1 x_1 + ..., + c_n x_n = \sum_{i=1}^n c_i x_i$$
 funzione obiettivo lineare
$$X = \left\{ \mathbf{x} \in \mathbb{R}^n \mid \sum_{i=1}^n a_{ji} x_i \le b_j, \quad j = 1, ..., m \right\}$$
 insieme finito di (dis)equazioni lineari

$$\max z = \mathbf{c}^{\mathrm{T}} \mathbf{x}$$
$$\mathbf{A} \mathbf{x} \le \mathbf{b}$$

- $\mathbf{c}^{\mathrm{T}}\mathbf{x}$ funzione obiettivo
- $X = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{b} \}$ regione ammissibile

Incognite del problema

- $\mathbf{x} \in \mathbb{R}^n$ vettore delle *variabili decisionali*. Ogni $\mathbf{x} \in X$ è una soluzione ammissibile (cioè un vettore che soddisfa <u>tutti</u> i vincoli) mentre ogni $\mathbf{y} \notin X$ è una soluzione inammissibile.
- $z \in \mathbb{R}$ valore che assume la funzione obiettivo in corrispondenza di una soluzione $\mathbf{x} \in X$

Parametri del problema

- $\mathbf{c} \in \mathbb{R}^n$ vettore dei coefficienti (di *costo* o di *profitto*) della f.o.
- $\mathbf{b} \in \mathbb{R}^m$ vettore dei *termini noti* dei vincoli
- $A \in \mathbb{R}^{m \times n}$ matrice dei coefficienti dei vincoli (matrice tecnologica)

Ipotesi della Programmazione Lineare

- Un problema è rappresentato correttamente da un modello di programmazione lineare se
 - Divisibilità: variabili con valori frazionari
 - Certezza: coefficienti costanti e noti a priori
 - Linearità: relazioni esclusivamente di tipo lineare:

$$c_1 x_1 + \dots + c_n x_n$$

- Proporzionalità: contributo proporzionale al valore assunto: non ci sono economie di scala
- Additività: i contributi possono essere solo sommati

'In un'approssimazione del primo ordine il mondo è lineare"
Robert Simons

Programmazione lineare (PL): esempio

Un esempio di problema di programmazione lineare con 2 variabili e 4 vincoli:

```
max z = x_1 + 3x_2

C1: 6x_1 + 10x_2 \le 30

C2: 3x_1 + 2x_2 \ge 6

C3: x_1 - 2x_2 \ge -1

C4: x_2 \ge 1/2

Possiamo rappresentare graficamente il problema...
```

Esempio: un problema di PL in R²

Esempio: un problema di PL in R²

Esempio: un problema di PL in R²

- Isoipsa: luogo dei punti nei quali la funzione obiettivo c^Tx assume un prefissato valore \(\gamma'\) (in R² ogni isoipsa \(\hat{e}\) una retta).
 L'intersezione di una isoipsa \(\gamma' = \mathbf{c}^T x\) con la regione ammissibile determina tutte le soluzioni del problema di valore \(\gamma'\).
- Direzione di massimo miglioramento: in un problema di massimo è dato dal gradiente della funzione obiettivo:

$$\nabla z = \frac{\partial z}{\partial x_i} \qquad i = 1, \dots, n$$

Nel caso di problema di minimo è l'antigradiente

- La soluzione y rende attivo il vincolo $\mathbf{a}^{\mathrm{T}}\mathbf{x} \leq b$ se $\mathbf{a}^{\mathrm{T}}\mathbf{y} = b$
- La soluzione y rende inattivo il vincolo $\mathbf{a}^{\mathrm{T}}\mathbf{x} \leq b$ se $\mathbf{a}^{\mathrm{T}}\mathbf{y} < b$
- Il vincolo $\mathbf{a}^T \mathbf{x} \leq b$ è ridondante rispetto al sistema di vincoli $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ se ogni soluzione di $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ è anche una soluzione di $\mathbf{a}^T \mathbf{x} \leq b$

Esempio: mix produttivo

[Problema] La società *Merlin* produce i concimi *prato starter* (tipo A) e *prato estate* (tipo B) che vende rispettivamente a 25 e 28 €/Kg. Considerando la composizione dei singoli concimi e le disponibilità in magazzino (vedi tabella) quanti Kg di tipo A e B deve produrre la società (ipotizzando una domanda illimitata) per massimizzare il ricavo dal magazzino esistente?

	qtà per Kg			
	Azoto	Potassio	Magnesio	
tipo A	0.40	0.10	0.10	_
tipo B	0.24	0.31	0.00	
disponibilità	240	160	50	_

Mix produttivo: modello

Variabili decisionali

 $x_A \in R = \text{quantità}$ (in Kg) che <u>si decide</u> di produrre del concime di tipo A $x_B \in R = \text{quantità}$ (in Kg) che <u>si decide</u> di produrre del concime di tipo B

Funzione obiettivo

Il ricavo totale (che si vuole massimizzare) è dato da $25x_A + 28x_B$

Vincoli

1. La quantità totale di azoto richiesta non può essere superiore alla disponibilità di azoto in magazzino

$$0.4x_A + 0.24x_B \le 240$$

Lo stesso tipo di limitazione vale per il potassio e il magnesio

2. Le quantità che si decide di produrre non possono essere negative

$$x_A, x_B \ge 0$$

Mix produttivo: modello completo

$$z^* = \max 25x_A + 28x_B$$

C1: $0.4x_A + 0.24x_B \le 240$

C2: $0.1x_A + 0.31x_B \le 160$

C3: $0.1x_A \le 50$

C4: $x_A, x_B \ge 0$

Vincolo sulla disponibilità di azoto

Vincolo sulla disponibilità di potassio

Vincolo sulla disponibilità di magnesio

Vincoli di non negatività

Mix produttivo: soluzione geometrica

Mix produttivo: soluzione geometrica

$$z^* = \max 25x_A + 28x_B$$
C1: $0.4x_A + 0.24x_B \le 240$
C2: $0.1x_A + 0.31x_B \le 160$
C3: $0.1x_A \le 50$
C4: $x_A, x_B \ge 0$

la soluzione ottima è la soluzione del sistema

C1
$$\begin{cases} 0.4x_A + 0.24x_B = 240 \\ 0.1x_A + 0.31x_B = 160 \end{cases}$$

• Si trasla la funzione obiettivo lungo la direzione di crescita fintanto che l'intersezione con la regione ammissibile risulti non vuota. L'ultimo punto "toccato" è la soluzione ottima.

Algoritmo geometrico del simplesso (prob. max)

Step 1: definizione di regione ammissibile e funzione obiettivo

- 1. disegna la retta associata ad ogni vincolo e individua la regione del piano che soddisfa il vincolo:
 - un vincolo di uguaglianza è soddisfatto solo dai punti della retta;
 - un vincolo di \geq o \leq è soddisfatto da tutti i punti di un semipiano; per capire quale, prova il punto (0,0).
- 2. Evidenzia la regione ammissibile (l'intersezione di tutti i semipiani che soddisfano i vincoli)
- 3. Disegna la funzione obiettivo e il suo gradiente

Algoritmo geometrico del simplesso (prob. max)

Step 2: determinazione della soluzione ottima

- 1. Individua un vertice <u>x</u> di partenza e calcola il valore <u>z</u> della funzione obiettivo
- 2. Individua la coppia di vertici \underline{y} e \underline{w} adiacenti al vertice corrente e calcola i valori \underline{y} e \underline{w} della funzione obiettivo

un vertice si determina risolvendo un sistema lineare di (almeno) 2 equazioni in 2 incognite.

- 3. Se $\underline{z} \ge \underline{y}$ e $\underline{z} \ge \underline{w}$ allora \underline{x} è una soluzione ottima e \underline{z} è il valore ottimo. FINE
- 4. Se $\underline{x} < \underline{y}$ il punto \underline{y} è il nuovo vertice corrente altrimenti \underline{w} è il nuovo vertice corrente
- 5. Torna al passo 2.

Informazioni fornite dalla soluzione

- Il ricavo massimo è $z^* = 25.360 + 28.400 = 20200$ € e si ottiene producendo $x_A = 360$ Kg di *prato starter* e $x_B = 400$ Kg di *prato estate*.
- Le disponibilità critiche di magazzino sono l'azoto e il potassio, infatti i vincoli C1
 e C2 sono soddisfatti all'uguaglianza dalla soluzione ottima.
- D'altra parte il magnesio è disponibile in quantità sovrabbondante: all'ottimo si ha:
 - $0.1 \cdot 360 = 36 < 50$

e quindi avanzano 14 Kg di magnesio

Esercizi

Risolvere geometricamente i seguenti problemi di PL:

$$\max z = 6x_1 + 5x_2$$

$$\frac{5}{2}x_1 + \frac{5}{4}x_2 \le 10$$

$$\frac{5}{3}x_1 + 2x_2 \le 10$$

$$x_1, x_2 \ge 0$$

$$\max z = 5x_1 + 15x_2$$

$$x_2 \le 5$$

$$x_1 + x_2 \le 8$$

$$\frac{16}{3}x_1 + 2x_2 \le 32$$

$$x_1, x_2 \ge 0$$

$$\min z = x_1 + 4x_2 x_1 \ge 2 x_1 + 4x_2 \ge 8 x_1 - x_2 \le 4 x_1, x_2 \ge 0$$

$$\min z = x_1 + x_2$$

$$2x_1 + x_2 \ge 16$$

$$x_1 + \frac{3}{2}x_2 \ge 12$$

$$x_1, x_2 \ge 0$$

Domande

- Esiste sempre una soluzione ottima di un problema di PL? E le soluzioni ottime hanno proprietà particolari?
- Come può essere descritta la regione ammissibile di un problema di PL? E quali proprietà della regione ammissibile possono essere utilizzate per risolvere il problema?
- Esiste una procedura generale per risolvere un problema di PL? Se sì, quanto è onerosa in termini di tempo di calcolo?
- Come cambiano le soluzioni ottime quando cambiano i parametri del problema?

Programmazione lineare con n > 3 variabili

Per esempio in un problema di PL con 4 variabili

$$\max z = 4x_1 + 3x_2 + 10x_3 + 7x_4$$
C1: $5x_1 + 2x_2 + x_3 - x_4 \le 7$
C2: $2x_1 - 3x_2 + 2x_3 - x_4 \le 12$
C3: $-x_1 + 5x_2 + 3x_3 + 3x_4 \le 9$

la funzione obiettivo e i vincoli definiscono oggetti 3-dimensionali in \mathbb{R}^4 la cui intersezione... cos'è?

Esiste sempre una soluzione ottima di un problema di PL? E le soluzioni ottime hanno proprietà particolari ?

Ottimizzazione convessa e Programmazione Lineare

(Vercellis cap. 7.3)

Ottimizzazione convessa

problema di ottimizzazione convessa (in forma di minimo)

$$z = \min \left[f(\mathbf{x}) \right]$$

la funzione obiettivo

$$f: X \to \mathbb{R} \ e \ \underline{\text{convessa}}$$

la regione ammissibile X è un insieme convesso

Combinazioni convesse

[Definizione] il vettore \mathbf{w} è combinazione convessa di m vettori $\mathbf{x}_1, \dots, \mathbf{x}_m \in \mathbb{R}^n$ se e solo se può essere scritto come

$$\mathbf{w} = \sum_{i=1}^{m} \lambda_i \mathbf{x}_i \quad \text{con} \quad \sum_{i=1}^{m} \lambda_i = 1, \ \lambda_1, \dots, \lambda_m \ge 0$$

il vettore $\mathbf{w} = (4,5)$ è combinazione convessa dei vettori

$$\mathbf{x}_1 = (8,1), \mathbf{x}_2 = (2,4) \text{ e } \mathbf{x}_3 = (5,7)$$

con coefficienti

$$\lambda_1 = 1/9, \lambda_2 = 4/9, \lambda_3 = 4/9$$

Insiemi convessi

[Definizione] un insieme $Q \subseteq \mathbb{R}^n$ è convesso se $\forall x, y \in \mathbb{Q}$ con $x \neq y$ ogni loro combinazione convessa appartiene a \mathbb{Q} , cioè:

$$\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in Q$$
 per ogni $\lambda \in [0,1]$

Punti estremi

[Definizione] un punto \mathbf{w} di un insieme convesso Q si dice estremo se non esiste alcuna coppia di punti distinti $\mathbf{x}, \mathbf{y} \in Q$ tale che \mathbf{w} sia combinazione convessa *non banale* di \mathbf{x} e \mathbf{y} cioè:

$$\forall 0 < \lambda < 1 \text{ e } \forall \mathbf{x}, \mathbf{y} \in Q \text{ risulta } \mathbf{w} \neq \lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$$

L'insieme dei punti estremi di Q si indica con ext(Q).

Insiemi convessi

[Proposizione] L'intersezione di 2 insiemi convessi X e Y è un insieme convesso.

[Dim]

Siano \mathbf{x} e \mathbf{y} due punti arbitrari dell'insieme $X \cap Y$.

Per ogni $\lambda \in [0,1]$

- il punto $\mathbf{z} = \lambda \mathbf{x} + (1 \lambda)\mathbf{y} \in X$ perché X è convesso
- il punto $\mathbf{z} = \lambda \mathbf{x} + (1 \lambda)\mathbf{y} \in Y$ perché Y è convesso

quindi il punto $\mathbf{z} \in X \cap Y$

Involucro convesso

[Definizione] L'involucro convesso di $S = \{\mathbf{x}_1, ..., \mathbf{x}_m\} \subseteq \mathbb{R}^n$ è l'insieme $conv(S) \subseteq \mathbb{R}^n$ di tutte le combinazioni convesse di vettori in S.

Involucro convesso

Non è ovvio perché le definizioni sono diverse: quella di insieme convesso si basa su <u>coppie</u> di vettori mentre quella di involucro convesso considera un <u>numero finito</u> di vettori

[Teorema]

L'insieme S è convesso se e solo se S = conv(S)

[Dim]

 $S \subseteq conv(S)$: direttamente dalla definizione di involucro convesso.

 $conv(S) \subseteq S$: $sia Q = \{a_1, ..., a_k\} \subseteq S$ un insieme di vettori in S e si consideri una loro qualsiasi combinazione convessa \mathbf{y} .

Per definizione $y \in conv(S)$. Dimostriamo per induzione sulla cardinalità di Q che $y \in S$.

Se |Q| = 2 la condizione è vera poiché S è convesso.

Se |Q| = k si possono verificare 2 casi:

- $\lambda_k = 1$ e la condizione è banalmente vera poiché $\mathbf{a}_k \in S$
- y può essere visto come combinazione convessa di due vettori in S: il vettore \mathbf{a}_k , e un vettore, combinazione convessa dei primi k-1 vettori, che per induzione è in S.

Involucro convesso

[Corollari] dato un insieme S

- *conv(S)* è convesso
- conv(S) è minimale, i.e., è contenuto in tutti gli insiemi convessi che contengono S

[dim] Infatti sia $C \supseteq S$ e convesso. Segue che

$$C = conv(C) \supseteq conv(S)$$

quindi $C \supseteq conv(S)$

(conv(S)) è l'intersezione di <u>tutti</u> gli insiemi convessi che contengono S)

Funzioni convesse

[Definizione] una funzione $f: \mathbb{R}^n \to \mathbb{R}^n$ è convessa se $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\lambda \in [0,1]$ e $\mathbf{z} = \lambda \mathbf{x} + (1 - \lambda)\mathbf{y}$ si ha

$$f(\mathbf{z}) \le \lambda f(\mathbf{x}) + (1 - \lambda) f(\mathbf{y})$$

Funzioni convesse

- una funzione f è concava se -f è convessa.
- Una funzione lineare è contemporaneamente concava e convessa
- Date *m* funzioni convesse $g_i : \mathbb{R}^n \to \mathbb{R}$, l'insieme

$$X = \{ \mathbf{x} \in \mathbb{R}^n \mid g_i(\mathbf{x}) \le 0, i = 1,..., m \}$$

è un insieme convesso

Minimi locali e globali

[Proposizione] Sia P un problema di ottimizzazione convessa (in forma di minimo). Ogni minimo locale \mathbf{x}' di P è anche un minimo globale.

Sia $\mathbf{z} = \lambda \mathbf{x'} + (1 - \lambda)\mathbf{y}$ con $\lambda \in (0,1)$ una comb. convessa di $\mathbf{x'}$ e \mathbf{y} contenuta nell'intorno di ottimalità di $\mathbf{x'}$

- $\mathbf{z} \in X$
- $f(\mathbf{x'}) \le f(\mathbf{z})$
- $f(\mathbf{z}) = f(\lambda \mathbf{x'} + (1 \lambda)\mathbf{y})$ $\leq \lambda f(\mathbf{x'}) + (1 - \lambda) f(\mathbf{y})$

perché X è un insieme convesso; dato che \mathbf{x}' è un minimo locale;

dato che f è convessa;

cioè $(1 - \lambda) f(\mathbf{x'}) \le (1 - \lambda) f(\mathbf{y})$ dividendo per $(1 - \lambda) > 0$ si ottiene la tesi.

iperpiani e semispazi affini

• [Definizione] Siano $a \in \mathbb{R}^n$, $a \neq 0$, $b \in \mathbb{R}$.

L'insieme $H = \{ \mathbf{x} \in \mathbf{R}^n : \mathbf{a}^T \mathbf{x} = b \} \subseteq \mathbf{R}^n$ si dice iperpiano.

L'insieme $S = \{ \mathbf{x} \in \mathbf{R}^n : \mathbf{a}^T \mathbf{x} \le b \} \subseteq \mathbf{R}^n$ si dice semispazio (affine) chiuso.

[Esempio] In R² gli iperpiani sono rette e i semispazi affini sono semipiani. $H = \{ \mathbf{x} \in \mathbb{R}^2 : 5x_1 + 2x_2 = 10 \}$

Il vettore **a** è detto vettore normale di *H* perché è sempre ortogonale a *H*

[Dim]

- se \mathbf{x} e $\mathbf{y} \in H$ allora $\mathbf{a}^{\mathrm{T}}\mathbf{x} = b$ e $\mathbf{a}^{\mathrm{T}}\mathbf{y} = b$
- segue che $\mathbf{a}^{\mathrm{T}}(\mathbf{x} \mathbf{y}) = 0$
- cioè a è ortogonale al vettore (x y)
 che è un vettore che giace su H

iperpiani e semispazi affini: convessità

[Proposizione] un semispazio chiuso è un insieme convesso

applicazione diretta della definizione di insieme convesso

Sia $S = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \le b \} \subseteq \mathbb{R}^n$ un semispazio chiuso.

Per ogni $\mathbf{x}, \mathbf{y} \in \mathcal{S}$ e $\lambda \in [0,1]$ si ha

$$\mathbf{a}^{\mathrm{T}}(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y})$$

$$= \lambda \mathbf{a}^{\mathrm{T}}\mathbf{x} + (1 - \lambda)\mathbf{a}^{\mathrm{T}}\mathbf{y}$$

$$\leq \lambda b + (1 - \lambda)b = b$$

Quindi $\mathbf{z} = (\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \in \mathcal{S}$.

[Proposizione] un iperpiano è un insieme convesso

Un iperpiano è l'intersezione di due semispazi chiusi, e quindi convessi.

Segue che anche l'iperpiano è un insieme convesso.

Ottimizzazione convessa e PL

- [Proposizione] Un problema di PL è un problema di ottimizzazione convessa. Infatti,
 - 1. la f.o. è lineare quindi convessa;
 - 2. ogni vincolo è un iperpiano o un semispazio affine quindi un insieme convesso;
 - 3. l'intersezione di insiemi convessi è un insieme convesso.
- [Corollario] Un ottimo locale di un problema di PL è una soluzione ottima del problema
- [Corollario] Le soluzioni ottime di un problema di PL sono *punti di frontiera* della sua regione ammissibile.

Soluzione di un problema di PL

- Un problema di PL (in forma di massimo) può
 - 1. essere *ammissibile* con una o più *soluzioni ottime finite*. La soluzione $\mathbf{x} \in X$ è ottima se $\forall \mathbf{y} \in X$ $\mathbf{c}^T\mathbf{x} \geq \mathbf{c}^T\mathbf{y}$.
 - 2. essere vuoto o *inammissibile* $(X = \emptyset)$
 - 3. essere *illimitato* superiormente; ciò accade quando $\forall \delta \in \mathbb{R} \ \exists \mathbf{x} \in X : \mathbf{c}^T \mathbf{x} > \delta$

Risolvere un problema di PL significa determinare se è *illimitato* o *inammissibile*, ovvero produrre **una** soluzione *ottima finita*.

Soluzione: ottimo di valore finito

Soluzione: problema inammissibile

 L'intersezione dei tre semipiani A, B e C è vuota; nessun punto soddisfa contemporaneamente i tre vincoli del problema

Soluzione: problema illimitato

- Il valore della funzione obiettivo può crescere senza limite.
- [Nota] Un problema illimitato ha necessariamente una regione ammissibile illimitata ma in generale <u>non è vero il contrario</u>: un problema con regione ammissibile illimitata può avere una soluzione ottima finita.

Soluzione di un problema di PL (...ancora)

- Un problema di PL (in forma di minimo) può
 - 1. essere ammissibile con una o più soluzioni ottime finite. La soluzione $\mathbf{x} \in X$ è ottima se $\forall \mathbf{y} \in X$ $\mathbf{c}^T\mathbf{x} \leq \mathbf{c}^T\mathbf{y}$.
 - 2. essere vuoto o inammissibile $(X = \emptyset)$
 - 3. essere *illimitato* inferiormente; ciò accade quando $\forall \delta \in \mathbb{R} \ \exists \mathbf{x} \in X : \mathbf{c}^T \mathbf{x} < \delta$

Soluzione di un problema di PL in pratica

- Nella maggior parte dei casi pratici (<u>ma non sempre!</u>) un problema reale di ottimizzazione ammette una soluzione ottima finita (non ha molto senso un profitto che tende a +∞ o impossibile da realizzare ...). Tuttavia il modello di PL che descrive il problema potrebbe
 - 1. avere *infinite soluzioni ottime*: il modello probabilmente non tiene conto di ulteriori criteri di utilità e/o vincoli che nel problema reale sono rilevanti.
 - 2. essere *inammissibile*: alcuni vincoli sono erroneamente in contraddizione.
 - 3. essere *illimitato*: il modello non tiene conto di vincoli che nel problema reale sono rilevanti.

Equivalenza tra problemi di PL

Due problemi di PL, P_1 con regione ammissibile X_1 e P_2 con regione ammissibile X_2 , sono equivalenti se e solo se

- sono entrambi inammissibili, oppure se
- sono entrambi illimitati, oppure se
- esistono due trasformazioni $\theta: X_1 \to X_2$ e $\sigma: X_2 \to X_1$ tali che $\forall \mathbf{x} \in P_1$ esiste una soluzione $\theta(\mathbf{x})$ di P_2 di **pari costo** e $\forall \mathbf{x} \in P_2$ esiste una soluzione $\sigma(\mathbf{x})$ di P_1 di **pari costo**

[Nota] L'equivalenza dei problemi di PL non riguarda la dimensione dei problemi (numero di variabili e vincoli)

Equivalenza tra problemi di PL: esempio

$$P_1: \min z = 2 x_1$$

$$x_1 \le 3$$

$$x_1 \ge 1$$

$$\theta(x_1) = (x_1, 3 - x_1)$$

$$\sigma(x_1, x_2) = (x_1)$$

P₂: min
$$z = 2 x_1$$

$$x_1 + x_2 = 3$$

$$x_1 \ge 1$$

$$x_2 \ge 0$$

Fabrizio Marinelli - Programmazione Lineare

Trasformazioni (1)

Le seguenti regole trasformano un problema di PL in uno equivalente che tuttavia può avere un **numero diverso** di variabili e vincoli.

[Regola 1]

$$\max \mathbf{c}^{\mathrm{T}} \mathbf{x} \equiv -\min (-\mathbf{c})^{\mathrm{T}} \mathbf{x}$$

Un problema di massimo si trasforma in un problema di minimo equivalente cambiando il segno ai coefficienti di costo

[Regola 2]

$$\mathbf{a}^{\mathrm{T}}\mathbf{x} \le b \equiv \begin{cases} \mathbf{a}^{\mathrm{T}}\mathbf{x} + s = b \\ s \ge 0 \end{cases}$$

Un vincolo di \leq si trasforma in un vincolo di uguaglianza <u>sommando</u> a $\mathbf{a}^{T}\mathbf{x}$ una variabile non negativa (detta *variabile di slack*)

• [Regola 3]

$$\mathbf{a}^{\mathrm{T}}\mathbf{x} \ge b \equiv \begin{cases} \mathbf{a}^{\mathrm{T}}\mathbf{x} - s = b \\ s \ge 0 \end{cases}$$

Un vincolo di \geq si trasforma in un vincolo di uguaglianza <u>sottraendo</u> a $\mathbf{a}^{\mathrm{T}}\mathbf{x}$ una variabile non negativa (detta *variabile di surplus*)

Trasformazioni (2)

[Regola 4]

$$\mathbf{a}^{\mathrm{T}}\mathbf{x} \ge b \equiv (-\mathbf{a})^{\mathrm{T}}\mathbf{x} \le -b$$

[Regola 5]

$$\mathbf{a}^{\mathrm{T}}\mathbf{x} = b \equiv \begin{cases} \mathbf{a}^{\mathrm{T}}\mathbf{x} \leq b \\ \mathbf{a}^{\mathrm{T}}\mathbf{x} \geq b \end{cases}$$

Un vincolo di ≥ si trasforma in un vincolo di ≤ (e viceversa) cambiando il segno dei coefficienti e del termine noto

Un vincolo di uguaglianza può essere sostituito da una coppia di vincoli di \leq e \geq

[Regola 6]

$$x \in \mathbf{R} \equiv \begin{cases} x = x^{+} - x^{-} \\ x^{+} \ge 0, x^{-} \ge 0 \end{cases}$$

Una variabile non vincolata può essere rimpiazzata dalla differenza di due variabili vincolate. In alternativa *x* può essere ricavata da una equazione e sostituita negli altri vincoli.

Forme dei problemi di PL

Problema in forma generale:
$$z = \max\{\mathbf{c}^T\mathbf{x}: \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{R}^n\}$$

 $z = \min\{\mathbf{c}^T\mathbf{x}: \mathbf{A}\mathbf{x} \geq \mathbf{b}, \mathbf{x} \in \mathbb{R}^n\}$

- Problema in *forma standard*: $z = \max/\min\{\mathbf{c}^T\mathbf{x}: \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}, \mathbf{x} \in \mathbb{R}^n\}$
- Utilizzando le Regole 1 6, un problema in forma generale può sempre essere posto in forma standard e viceversa.

[Proposizione] Ogni problema di PL può essere posto in forma generale o standard.

Esempio

Si vuole trasformare il seguente problema in forma standard di max

1. Trasformo il problema in problema di massimo [Regola 1]

$$z = -\max - 5x_1 - 8x_2 + 3x_3$$

$$5x_1 - 2x_2 \le 15$$

$$x_1 + 2x_3 \ge 9$$

$$4x_1 - 7x_2 - 2x_3 = 13$$

$$x_1 \ge 0$$

$$x_3 \le 0$$

Esempio (cont.)

2. Cambio il segno alla variabile x_3 [Regola 4]

$$z = -\max - 5x_1 - 8x_2 - 3x_3$$

$$5x_1 - 2x_2 \le 15$$

$$x_1 - 2x_3 \ge 9$$

$$4x_1 - 7x_2 + 2x_3 = 13$$

$$x_1 \ge 0$$

$$x_3 \ge 0$$

3. Elimino la variabile libera x_2 [Regola 6]

$$\chi = -\max - 5x_1 - 8(x_2^+ - x_2^-) - 3x_3$$

$$5x_1 - 2(x_2^+ - x_2^-) \le 15$$

$$x_1 - 2x_3 \ge 9$$

$$4x_1 - 7(x_2^+ - x_2^-) + 2x_3 = 13$$

$$x_1, x_2^-, x_2^+, x_3^+ \ge 0$$

Esempio (cont.)

4. Trasformo il vincolo di ≤ in un vincolo di uguaglianza [Regola 2]

$$z = -\max - 5x_1 - 8x_2^{+} + 8x_2^{-} - 3x_3$$

$$5x_1 - 2x_2^{+} + 2x_2^{-} + s_1 = 15$$

$$x_1 - 2x_3^{-} \ge 9$$

$$4x_1 - 7x_2^{+} + 7x_2^{-} + 2x_3^{-} = 13$$

$$x_1, x_2^{-}, x_2^{+}, x_3, s_1^{-} \ge 0$$

5. Trasformo il vincolo di ≥ in un vincolo di uguaglianza [Regola 3]

$$\chi = -\max - 5x_1 - 8x_2^{+} + 8x_2^{-} - 3x_3$$

$$5x_1 - 2x_2^{+} + 2x_2^{-} + s_1 = 15$$

$$x_1 - 2x_3 - s_2 = 9$$

$$4x_1 - 7x_2^{+} + 7x_2^{-} + 2x_3 = 13$$

$$x_1, x_2^{-}, x_2^{+}, x_3, s_1, s_2 \ge 0$$

Come può essere descritta la regione ammissibile di un problema di PL? E quali proprietà della regione ammissibile possono essere utilizzate per risolvere il problema?

Geometria della PL: Rappresentazione di poliedri

(Vercellis capp. 3.2 e 7.3)

poliedri e politopi: rappresentazione esterna

[Definizione] Un poliedro è l'intersezione di un numero finito m di semispazi chiusi di \mathbb{R}^n .

[Definizione] Un politopo è un poliedro limitato.

Un insieme $S \subset \mathbb{R}^n$ si dice limitato se esiste una costante M tale che ogni componente di ogni elemento di S è limitato, in valore assoluto, da M.

poliedri e politopi: rappresentazione esterna

[Osservazione] Ogni sistema con un numero <u>finito</u> di equazioni/disequazioni lineari definisce un poliedro. In particolare:

- \emptyset , H, S, \mathbb{R}^n sono poliedri;
- la regione ammissibile $X = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \leq \mathbf{b}\} \subseteq \mathbb{R}^n$ di un problema di PL è un poliedro indicato con P(**A**, **b**);
- una sfera <u>non è</u> un poliedro.

poliedri e politopi: convessità

[Proposizione] Ogni poliedro $P(\mathbf{A},\mathbf{b})$ è un insieme convesso.

[dim] Un semispazio affine è un insieme convesso e l'intersezione di insiemi convessi è convesso.

Ovvero, direttamente dalla definizione di convessità:

- Se $\mathbf{u}, \mathbf{v} \in P(\mathbf{A}, \mathbf{b})$ allora $\mathbf{A}\mathbf{u} \leq \mathbf{b}$ e $\mathbf{A}\mathbf{v} \leq \mathbf{b}$ e per ogni combinazione convessa $\mathbf{z} = \lambda \mathbf{u} + (1 \lambda)\mathbf{v}$ di \mathbf{u} e \mathbf{v} si ha:
- $\mathbf{Az} = \mathbf{A}(\lambda \mathbf{u} + (1 \lambda)\mathbf{v}) = \lambda \mathbf{Au} + (1 \lambda)\mathbf{Av} \le \lambda \mathbf{b} + (1 \lambda)\mathbf{b} = \mathbf{b}$

$$\mathbf{u}, \mathbf{v} \in P(\mathbf{A}, \mathbf{b}) \text{ e } 0 \leq \lambda_i \leq 1$$

Disuguaglianze valide e iperpiani di supporto

[**Definizione**] $\mathbf{h}^{\mathrm{T}}\mathbf{x} \leq d$ è una disuguaglianza valida per un poliedro

$$P(\mathbf{A}, \mathbf{b}) = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \leq \mathbf{b}\} \subseteq \mathbb{R}^n \text{ se}$$

$$P(\mathbf{A}, \mathbf{b}) \subseteq \{\mathbf{x} \in \mathbb{R}^n : \mathbf{h}^T \mathbf{x} \leq d\}$$

$$P(\mathbf{A}, \mathbf{b}) \cap \{\mathbf{x} \mid \mathbf{h}^T \mathbf{x} \leq d\} = P(\mathbf{A}, \mathbf{b})$$

Disuguaglianze valide e iperpiani di supporto

Una disuguaglianza $\mathbf{h}^T \mathbf{x} \leq d$ valida per $P(\mathbf{A}, \mathbf{b})$ è soddisfatta da <u>ogni</u> <u>punto</u> di $P(\mathbf{A}, \mathbf{b})$, cioè

$$P(\mathbf{A}, \mathbf{b}) \cap \{\mathbf{x} \mid \mathbf{h}^T \mathbf{x} \leq d\} = P(\mathbf{A}, \mathbf{b})$$

quindi

aggiungendo $\mathbf{h}^T \mathbf{x} \leq d$ al sistema di (dis)equazioni $\mathbf{A} \mathbf{x} \leq \mathbf{b}$ che definisce $P(\mathbf{A}, \mathbf{b})$, l'insieme delle soluzioni del sistema non cambia.

vertici, spigoli e facce

[Definizione] Sia $P \subseteq \mathbb{R}^n$ e $H = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{h}^T\mathbf{x} = d\}$ un suo iperpiano di supporto. L'insieme $F = H \cap P$ si dice faccia di P.

• Se $F = \emptyset$, allora F si dice faccia vuota di P.

• Se dim(F) = 0, allora $F = \{v\}$, e il vettore v si dice vertice di P.

vertici, spigoli e facce

[Definizione] Sia $P \subseteq \mathbb{R}^n$ e $H = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{h}^T\mathbf{x} = d\}$ un suo iperpiano di supporto. L'insieme $F = H \cap P$ si dice faccia di P.

• Se dim(F) = 1, allora F si dice spigolo di P.

$$\dim(F) = 1 = \dim(P) - 1$$

vertici, spigoli e facce

[Definizione] Sia $P \subseteq \mathbb{R}^n$ e $H = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{h}^T\mathbf{x} = d\}$ un suo iperpiano di supporto. L'insieme $F = H \cap P$ si dice faccia di P.

• Se dim(F) = 1, allora F si dice spigolo di P.

• Se $\dim(F) = \dim(P) - 1$, allora F si dice faccia massimale (o *facet*) di P.

Vertici: definizione alternativa

[**Definizione**] un punto \mathbf{v} di un poliedro P si dice vertice di P se esiste un vettore \mathbf{c} tale che $\mathbf{c}^{\mathrm{T}}\mathbf{v} > \mathbf{c}^{\mathrm{T}}\mathbf{x}$ per tutti gli $\mathbf{x} \in P$ diversi da \mathbf{v}

In altre parole \mathbf{v} è un vertice di P se esiste **una qualche** funzione obiettivo $\mathbf{c}^{\mathrm{T}}\mathbf{x}$ per la quale \mathbf{v} è **l'unica** soluzione ottima del problema di PL associato a P.

Vertici e punti estremi

Nella Programmazione Lineare vertici e facce di un poliedro giocano un ruolo particolarmente importante.

[Teorema 3.2.7] L'insieme dei vertici di un poliedro P coincide con l'insieme ext(P) dei suoi punti estremi.

poliedri e politopi: rappresentazione esterna

- La rappresentazione esterna fornisce un test di appartenenza di un punto a un poliedro ma non dice come esprimere analiticamente gli (infiniti) punti di un poliedro. In particolare non dice che un poliedro può essere finitamente generato (analogamente ad uno spazio lineare)
- Utilizzando la rappresentazione esterna è possibile dimostrare che se l'insieme delle soluzioni ottime di un problema di PL non è vuoto, allora almeno una soluzione ottima si troverà in un vertice [Teorema 3.2.12]
 - ...però per avere una <u>caratterizzazione</u> dell'esistenza di una soluzione ottima occorre un altro tipo di rappresentazione.

Rappresentazione interna di un poliedro

Ogni poliedro *P* è la <u>somma vettoriale</u> di un **politopo** *Q* e di un **cono poliedrale** *C*

Combinazioni coniche

[Definizione] il vettore \mathbf{w} è combinazione conica di m vettori $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ se e solo se esistono m numeri reali tali che

$$\mathbf{w} = \sum_{i=1}^{m} \lambda_i \mathbf{x}_i \quad \text{con } \lambda_1, \dots, \lambda_m \ge 0$$

il vettore $\mathbf{w} = (6.5, 4.5)$ è combinazione conica dei vettori $\mathbf{x}_1 = (2, 0.5), \, \mathbf{x}_2 = (1, 1)$ e $\mathbf{x}_3 = (2, 3)$ con coefficienti $\lambda_1 = 2, \, \lambda_2 = 0.5, \, \lambda_3 = 1$

Involucro conico

[Definizione] L'involucro conico di $S = \{\mathbf{x}_1, ..., \mathbf{x}_m\} \subseteq \mathbb{R}^n$ è l'insieme $cone(S) \subseteq \mathbb{R}^n$ di <u>tutte e sole</u> le combinazioni coniche di vettori in S.

• ogni involucro conico contiene il vettore nullo $\mathbf{0}$ (dato che $\mathbf{0}$ è ottenibile dalla combinazione conica di qualsiasi insieme finito e non vuoto di vettori S).

Combinazioni affini

[Definizione] il vettore \mathbf{w} è combinazione affine di m vettori $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ se e solo se esistono m numeri reali $\lambda_1, ..., \lambda_m$ tali che

$$\mathbf{w} = \sum_{i=1}^{m} \lambda_i \mathbf{x}_i \quad \text{con} \quad \sum_{i=1}^{m} \lambda_i = 1$$

il vettore
$$\mathbf{w} = (4,1)$$
 è combinazione affine dei
vettori $\mathbf{x}_1 = (3,2)$ e $\mathbf{x}_2 = (1,4)$
con coefficienti
 $\lambda_1 = 1.5, \lambda_2 = -0.5$

Involucro affine

[Definizione] L'involucro affine di $S = \{\mathbf{x}_1, ..., \mathbf{x}_m\} \subseteq \mathbb{R}^n$ è l'insieme aff $(S) \subseteq \mathbb{R}^n$ di <u>tutte e sole</u> le combinazioni affini di vettori in S.

Riepilogo

Sia S un insieme di m vettori $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$

combinazione	coefficienti	insieme generato
lineare	$\lambda_i \in R$	Involucro lineare <i>lin(S)</i>
conica	$\lambda_i \geq 0$	Involucro conico cone(S)
affine	$\Sigma \lambda_i = 1$	Involucro affine <i>aff</i> (S)
convessa	$\lambda_i \geq 0, \Sigma \lambda_i = 1$	Involucro convesso <i>conv(S)</i>

Riepilogo

$$lin(S) = \{\lambda_1 \mathbf{x}_1 + \lambda_2 \mathbf{x}_2\} \equiv \mathsf{R}^2$$

Coni e poliedri

Una definizione «sensoriale»

[wikipedia] il cono è un solido di rotazione che si ottiene ruotando un triangolo rettangolo intorno a uno dei suoi cateti. L'asse del cono è il cateto intorno a cui il solido è costruito; la base del cono è altresì il cerchio ottenuto dalla rotazione dell'altro cateto. Il vertice del cono è, infine, il punto dell'asse opposto a quello dell'intersezione con la sua base.

[wikipedia] un poliedro è un solido delimitato da un numero finito di facce piane poligonali. Come primi poliedri da prendere in considerazione, per la loro semplicità, vi sono i cubi, i parallelepipedi, le piramidi e i prismi.

Coni

[Definizione 7.3.1] un insieme $C \subseteq \mathbb{R}^n$ è un cono se <u>per ogni</u> $\mathbf{x} \in C$ e per ogni $l \ge 0$ si ha $l \mathbf{x} \in C$, cioè se l'insieme $\{l \mathbf{x} : l \ge 0\}$ (che descrive una *semiretta* puntata nell'origine) è completamente contenuta in C.

Coni

- Direttamente dalla definizione segue che <u>ogni cono</u> contiene il vettore $\mathbf{0}$ e che l'insieme $\{\mathbf{0}\}$ è un cono;
- Tuttavia, un cono <u>non è in generale</u> un insieme convesso, e se è convesso <u>non è in generale</u> un poliedro

[Domande]

- Un insieme di semirette centrate nell'origine formano un cono?
- Quanti punti estremi ha un cono convesso? Quali sono?

Involucro conico

Analogamente alla considerazione fatta sugli involucri convessi, si può dimostrare che S è un cono se e solo se S = cone(S) e che l'involucro conico cone(S) di un insieme di punti $S = \{\mathbf{x}_1, ..., \mathbf{x}_m\} \subseteq \mathbb{R}^n$ è minimale, cioè è contenuto in tutti i coni che contengono S

Coni e rette

[Definizione] Il cono C contiene una retta se <u>esiste</u> un $\mathbf{x} \in C$ e un vettore <u>non nullo</u> $\mathbf{d} \in \mathbb{R}^n$ tale che per ogni $\lambda \in \mathbb{R}$ si abbia

$$\mathbf{x} + \lambda \mathbf{d} \in C$$

Coni poliedrali

[Definizione 7.3.2] un cono poliedrale è il poliedro

$$P = \{ \mathbf{x} \in \mathbf{R}^n \mid \mathbf{A}\mathbf{x} \le \mathbf{0} \}$$

Coni poliedrali e rette

[Definizione] Un cono poliedrale si dice puntato se contiene un punto estremo. In tal caso il punto estremo è unico ed è necessariamente {0}

[Teorema 7.3.1] Un cono poliedrale $P = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{0}\}$ è puntato se e solo se

- non contiene una retta, o analogamente
- $Ax \le 0$ ha *n* vettori riga linearmente indipendenti

Riassumendo...

Coni

Coni poliedrali non puntati Coni poliedrali puntati

direzioni di recessione di un insieme convesso

[Definizione 7.3.4] Un vettore $\mathbf{d} \in \mathbb{R}^n$ si dice direzione di recessione (o raggio) di un insieme convesso $Q \subseteq \mathbb{R}^n$ se <u>per ogni</u> $\mathbf{x} \in Q$ e per ogni $l \ge 0$ la <u>semiretta</u> $\mathbf{x} + l \mathbf{d}$ è completamente contenuta in Q.

Cono di recessione di un insieme convesso

[Definizione 7.3.5] L'insieme di tutte le direzioni di recessione di Q si dice cono di recessione di Q, e si indica con rec(Q).

$$Q = \{ \mathbf{x} \in \mathbb{R}^2 : x_2 \ge 0; -3x_1 + 2x_2 \le 6 \}$$

rec(Q) può essere contenuto in Q

$$Q = \{ \mathbf{x} \in \mathbb{R}^2 : x_2 \ge 1; -3x_1 + 2x_2 \le 6 \}$$

rec(Q) non è necessariamente contenuto in Q

$$Q = \{ \mathbf{x} \in \mathbb{R}^2 : x_2 \ge 1; x_1 \le 2; -3x_1 + 2x_2 \le 6 \}$$

Se
$$Q$$
 è limitato, $rec(Q) = \{0\}$

[Teorema 7.3.3] il cono di recessione rec(P) di un poliedro non vuoto $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ coincide con il cono poliedrale $C = \{x \in \mathbb{R}^n : Ax \leq 0\}$

- 1. $C \subseteq \operatorname{rec}(P)$, cioè ogni soluzione di $\mathbf{A}\mathbf{x} \leq \mathbf{0}$ è una dir. di recessione di P
- Sia $\underline{\mathbf{d}}$ una soluzione del sistema $\mathbf{A}\mathbf{x} \leq \mathbf{0}$.
- Dalla definizione, il vettore $\underline{\mathbf{d}}$ è una direzione di recessione di P se $\forall \mathbf{x} \in P$ e $\forall l > 0$ si ha $(\mathbf{x} + l \underline{\mathbf{d}}) \in P$.
- Il punto $(\mathbf{x} + l \mathbf{d}) \in P$ se $\mathbf{A}(\mathbf{x} + l \mathbf{d}) \leq \mathbf{b}$ cioè se $\mathbf{A}\mathbf{x} + l \mathbf{A}\mathbf{d} \leq \mathbf{b}$. In effetti

$$Ax + /Ad \le Ax \le b$$
dato che
$$/> 0 \text{ e } Ad < 0$$
dato che $x \in P$

- 2. $rec(P) \subseteq C$, cioè ogni dir. di recessione di P è una soluzione di $Ax \le 0$
- Per assurdo sia $\underline{\mathbf{d}}$ una dir. di recessione di P ma che però non soddisfa una delle disequazioni di $\mathbf{A}\mathbf{x} \leq \mathbf{0}$, poniamo l'*i*-esima (cioè si ha $\mathbf{a}_i^{\mathrm{T}}\underline{\mathbf{d}} > 0$).
- $\underline{\mathbf{d}} \in \operatorname{rec}(P)$ quindi $\forall \mathbf{x} \in P \in \forall l > 0$ deve essere $\mathbf{A}(\mathbf{x} + l \underline{\mathbf{d}}) \leq \mathbf{b}$ e ciò vale in particolare per l'*i*-esimo vincolo:

$$\mathbf{a}_{i}^{\mathrm{T}}(\mathbf{x} + l \mathbf{\underline{d}}) \leq b_{i}$$
 cioè $\mathbf{a}_{i}^{\mathrm{T}}\mathbf{x} + l \mathbf{a}_{i}^{\mathrm{T}}\mathbf{\underline{d}} \leq b_{i}$

dato che $\mathbf{a}_i^{\mathrm{T}}\underline{\mathbf{d}} > 0$ e b_i è una quantità finita, il vincolo non può essere soddisfatto $\forall l > 0$ ma solo per i valori $l \leq [b_i - \mathbf{a}_i^{\mathrm{T}}\mathbf{x}]/\mathbf{a}_i^{\mathrm{T}}\underline{\mathbf{d}}$.

Quindi, se $\mathbf{a}_i^{\mathrm{T}} \underline{\mathbf{d}} > 0$ allora $\underline{\mathbf{d}} \notin \operatorname{rec}(P)$

Analogamente, il cono di recessione rec(P)

- di un poliedro non vuoto $P = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \ge \mathbf{b}\}$ coincide con il cono poliedrale $C = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \ge \mathbf{0}\}$
- di un poliedro non vuoto $P = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ coincide con il cono poliedrale $C = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{0}, \mathbf{x} \geq \mathbf{0}\}$

[Corollario] dato un cono poliedrale
$$C = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \leq \mathbf{0}\}$$
 si ha che $C \equiv \operatorname{rec}(C)$

Cioè, ogni punto di un cono poliedrale è una sua direzione di recessione e viceversa

$$Q = \{ \mathbf{x} \in \mathbb{R}^2 : x_2 \ge 0; -3x_1 + 2x_2 \le 0 \}$$

se Q è un cono poliedrale allora rec(Q) coincide con Q

Coni e politopi finitamente generati

[**Definizione 7.3.17**] un cono $C \subseteq \mathbb{R}^n$ è detto finitamente generato se esiste un sottoinsieme finito $\{y_1, ..., y_r\} \subset C$ di suoi punti tale che

$$C = cone(\mathbf{y}_1, ..., \mathbf{y}_r) = \left\{ \mathbf{x} \in \mathbb{R}^n | \mathbf{x} = \sum_{i=1}^r \lambda_i \mathbf{y}_i, \lambda \geq \mathbf{0} \right\}$$

[**Definizione 7.3.18**] un politopo $P \subseteq \mathbb{R}^n$ è detto finitamente generato se esiste un sottoinsieme finito $\{\mathbf{w}_1, ..., \mathbf{w}_s\} \subset P$ di suoi punti tale che

$$P = conv(\mathbf{w}_1, ..., \mathbf{w}_s) = \left\{ \mathbf{x} \in \mathbb{R}^n | \mathbf{x} = \sum_{i=1}^s \lambda_i \mathbf{w}_i, \lambda \geq \mathbf{0}, \sum_{i=1}^s \lambda_i = 1 \right\}$$

Raggi estremi (o direzioni estreme)

[**Definizione 7.3.7**] Un raggio **d** di un cono poliedrale $C = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \le \mathbf{0}\}$ è detta estremo se rende attivi (n-1) vincoli di $\mathbf{A}\mathbf{x} \le \mathbf{0}$.

Coni poliedrali: rappresentazione interna

[Teorema 7.3.8] Un cono è poliedrale se e solo se è finitamente generato

quindi se C è un cono poliedrale allora esiste un sottoinsieme finito $\{y_1, ..., y_r\} \subset C$ di suoi punti tale che $C = cone(y_1, ..., y_r)$

[Teorema 7.3.12] Un cono poliedrale puntato coincide con l'involucro conico dei suoi raggi estremi, cioè

$$C = cone(rays(C))$$

ossia, ogni punto di C può essere espresso come combinazione conica dei suoi raggi estremi (che costituiscono un sottoinsieme finito di punti di C)

Poliedri: rappresentazione interna

[Teorema 7.3.9] Resolution Theorem (Weyl-Minkowski, 1936)

Un insieme P è un poliedro <u>se e solo se</u> è la somma vettoriale di un politopo finitamente generato e un cono finitamente generato.

Più precisamente, $P \subseteq \mathbb{R}^n$ è un poliedro se e solo se esistono 2 insiemi di vettori $\{\mathbf{y}_1, ..., \mathbf{y}_r\}$ e $\{\mathbf{w}_1, ..., \mathbf{w}_s\}$ tali che

$$P = conv(\mathbf{w}_1, ..., \mathbf{w}_s) + cone(\mathbf{y}_1, ..., \mathbf{w}_r)$$

Poliedri: rappresentazione interna

[Teorema 7.3.9] Resolution Theorem (Weyl-Minkowski, 1936)

Un insieme P è un poliedro <u>se e solo se</u> è la somma vettoriale di un politopo finitamente generato e un cono finitamente generato.

In particolare, se il poliedro $P \subseteq \mathbb{R}^n$ è un cono poliedrale basta considerare un politopo vuoto dato che

$$P = cone(\mathbf{y}_1, ..., \mathbf{w}_r)$$

Inoltre sappiamo che

$$P = cone(\mathbf{y}_1, ..., \mathbf{w}_r) \equiv rec(P)$$

ma si può dimostrare che $cone(\mathbf{y}_1, ..., \mathbf{w}_r)$ coincide con rec(P) in generale

Poliedri: rappresentazione interna

[Teorema 7.3.10] Un poliedro P può essere espresso come somma vettoriale di un politopo finitamente generato e del cono di recessione rec(P)

$$P = conv(\mathbf{w}_1, ..., \mathbf{w}_s) + rec(P)$$

Inoltre, se un poliedro P possiede almeno un punto estremo:

[Teorema 7.3.11] P può essere espresso come somma vettoriale dell'involucro dei suoi punti estremi e del cono di recessione

$$P = conv(ext(P)) + rec(P)$$

...ricapitolando

[Teorema 7.3.9] Resolution Theorem (Weyl-Minkowski, 1936)

Un insieme P è un poliedro <u>se e solo se</u> è la somma vettoriale di un politopo finitamente generato e un cono finitamente generato.

 $P \subseteq \mathbb{R}^n$ è un poliedro se e solo se esistono 2 insiemi di vettori $\{\mathbf{y}_1, ..., \mathbf{y}_r\}$ e $\{\mathbf{w}_1, ..., \mathbf{w}_s\}$ tali che

...ricapitolando

Un insieme convesso P con almeno un punto estremo è un poliedro <u>se</u> e solo se ogni punto $\mathbf{x} \in P$ può essere espresso come

$$x = u + d$$

 $con u \in conv(ext(P)) e d \in cone(rays(P))$

[Corollari]

- Un poliedro P è un politopo se e solo se $rec(P) = \{0\}$.
- Un poliedro *P* è un politopo <u>se e solo se</u> coincide con l'involucro convesso dei suoi punti estremi.

Poliedri: rappresentazione interna

Rette e Vertici

[Teorema 3.2.11] un poliedro non vuoto P ha almeno un vertice se e solo se non contiene alcuna retta

Se un problema di PL in *forma standard* ammette soluzione allora il poliedro associato ha <u>almeno</u> un vertice

Rappresentazione interna: esercizio

[Esercizio]

$$P = \{ \mathbf{x} \in \mathbb{R}^2 : -x_1 + 2x_2 \ge 2, x_1 - x_2 \ge -2, 5x_1 + 3x_2 \ge 15 \}$$

- verificare che $(3, 3) \in P$
- trovare $\mathbf{u} \in conv(ext(P))$, e una direzione di recessione \mathbf{d} tali che $(3, 3) = \mathbf{u} + \mathbf{d}$

Sia $\chi = \max\{\mathbf{c}^T\mathbf{x}: \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{R}^n\}$ un problema di PL in forma generale e P il poliedro associato, che supponiamo **non vuoto** e con **almeno un vertice**. Allora

[Teorema]

- 1. Se <u>esiste</u> una direzione di recessione d di P tale che c^Td > 0 allora il problema di PL è illimitato;
- 2. Se <u>per ogni</u> direzione di recessione d di P si ha $\mathbf{c}^{\mathrm{T}}\mathbf{d} \leq 0$ allora il problema di PL ammette ottimo finito. Inoltre, esiste una soluzione ottima che è un punto estremo di P.

[Dim 1.] Si supponga per assurdo che il problema ammetta un ottimo finito \mathbf{x}^* , cioè un \mathbf{x}^* tale che

$$\mathbf{c}^{\mathrm{T}}\mathbf{x}^{*} \neq +\infty$$
 e $\mathbf{c}^{\mathrm{T}}(\mathbf{x}^{*} - \mathbf{x}) \geq 0$ per ogni $\mathbf{x} \in P$

Per ipotesi **d** è una direzione di recessione di P cioè per ogni l > 0 e per ogni $y \in P$ si ha $y + Id \in P$. Quindi

$$\mathbf{c}^{\mathrm{T}}(\mathbf{x}^{*} - \mathbf{y} - \mathbf{d}) \ge 0 \qquad \text{per ogni } l > 0 \text{ e } \mathbf{y} \in P$$

$$\mathbf{c}^{\mathrm{T}}\mathbf{x}^{*} - \mathbf{c}^{\mathrm{T}}\mathbf{y} - \mathbf{c}^{\mathrm{T}}\mathbf{d} \ge 0$$

$$\mathbf{c}^{\mathrm{T}}\mathbf{d} \le \mathbf{c}^{\mathrm{T}}(\mathbf{x}^{*} - \mathbf{y})$$

da cui

cioè

ma questa relazione è in generale falsa. Infatti $\mathbf{c}^{\mathrm{T}}(\mathbf{x}^* - \mathbf{y})$ è una quantità finita mentre $l\mathbf{c}^{\mathrm{T}}\mathbf{d}$ può crescere senza limite dato che l > 0 e per ipotesi $\mathbf{c}^{\mathrm{T}}\mathbf{d} > 0$.

... geometricamente:

c^Td è il *prodotto scalare* tra i vettori c e d, anche definito come

 $|\mathbf{c}| |\mathbf{d}| \cos \theta$

Se $\mathbf{c}^T \mathbf{d} > 0$ (cioè se $\cos \theta > 0$) vuol dire che esiste una direzione di recessione concorde con il gradiente della funzione obiettivo

[dim 2.]

Ordiniamo i punti estremi $ext(P) = \{\mathbf{v}_1, ..., \mathbf{v}_p\}$ di P per valori non crescenti della funzione obiettivo (cioè tali che $\mathbf{c}^T\mathbf{v}_1 \ge \mathbf{c}^T\mathbf{v}_2 \ge ... \ge \mathbf{c}^T\mathbf{v}_p$).

Teorema di Weyl: ogni $\mathbf{x} \in P$ si può esprimere come $\mathbf{x} = \mathbf{u} + \mathbf{d}$, con $\mathbf{u} \in conv(ext(P))$ e \mathbf{d} direzione di recessione. Quindi

$$\mathbf{c}^{\mathrm{T}}\mathbf{x} = \mathbf{c}^{\mathrm{T}}\mathbf{u} + \mathbf{c}^{\mathrm{T}}\mathbf{d}$$
 per ogni $\mathbf{x} \in P$

$$\mathbf{c}^{\mathrm{T}}\mathbf{u} + \mathbf{c}^{\mathrm{T}}\mathbf{d} \leq \mathbf{c}^{\mathrm{T}}\mathbf{u}$$
 dato che per ipotesi $\mathbf{c}^{\mathrm{T}}\mathbf{d} \leq 0$

Siccome u è una combinazione convessa di punti estremi di P, si ha

$$\mathbf{c}^{\mathrm{T}}\mathbf{u} = \mathbf{c}^{\mathrm{T}}(\lambda_{1}\mathbf{v}_{1} + \dots + \lambda_{p}\mathbf{v}_{p}) \quad \text{con} \quad \lambda_{1} + \dots + \lambda_{p} = 1, \lambda_{1}, \dots, \lambda_{p} \ge 0$$
$$= \lambda_{1}\mathbf{c}^{\mathrm{T}}\mathbf{v}_{1} + \dots + \lambda_{p}\mathbf{c}^{\mathrm{T}}\mathbf{v}_{p}$$

e sfruttando l'ipotesi dell'ordinamento, cioè che $\mathbf{c}^T \mathbf{v}_1 \ge \mathbf{c}^T \mathbf{v}_k$ (k = 2,...,p), posso sostituire ogni $\mathbf{c}^T \mathbf{v}_k$ con $\mathbf{c}^T \mathbf{v}_1$ e scrivere

$$\mathbf{c}^{\mathrm{T}}\mathbf{u} \leq (\lambda_{1} + \ldots + \lambda_{p})\mathbf{c}^{\mathrm{T}}\mathbf{v}_{1}$$
 ma $\lambda_{1} + \ldots + \lambda_{p} = 1$ quindi $\mathbf{c}^{\mathrm{T}}\mathbf{u} \leq \mathbf{c}^{\mathrm{T}}\mathbf{v}_{1}$

Ricapitolando $\mathbf{c}^T\mathbf{x} \leq \mathbf{c}^T\mathbf{u} \leq \mathbf{c}^T\mathbf{v}_1$ per ogni $\mathbf{x} \in P$, quindi $\mathbf{v}_1 \in ext(P)$ è una soluzione ottima per P.

Teorema fondamentale della PL: riassunto

- Caso 1. regione ammissibile non vuota e limitata
 - esiste una soluzione ottima. Inoltre, esiste una soluzione ottima che è un punto estremo (cioè un vertice).
- Caso 2. regione ammissibile non vuota e non limitata
 - esiste una soluzione ottima che è un punto estremo (cioè un vertice), oppure
 - esiste una soluzione ottima ma nessuna soluzione ottima è un punto estremo (e questo può accadere solo se la regione ammissibile non ha punti estremi), oppure
 - il problema è illimitato (il valore della f.o. è $+\infty$)

Osservazioni

- Il teorema fondamentale della PL ci dice come risolvere un problema di PL non vuoto, ma per poterlo utilizzare è necessario conoscere la *rappresentazione interna* del poliedro.
- In generale però un problema di PL è descritto da un numero finito di equazioni/disequazioni lineari (*rappresentazione esterna*).
- Per problemi con al più 3 variabili si può utilizzare la soluzione geometrica, ma per risolvere problemi con più di 3 variabili è necessaria una descrizione *analitica* dei vertici.
- Se il problema è posto in forma standard $P: \max\{\mathbf{c}^T\mathbf{x}: \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \ge \mathbf{0}, \mathbf{x} \in \mathbb{R}^n\}$, una qualsiasi soluzione ammissibile di P è anche una soluzione del <u>sistema di equazioni</u> <u>lineari</u> $\mathbf{A}\mathbf{x} = \mathbf{b}$ (ma attenzione! non vale il viceversa)

Esiste una procedura generale per risolvere un problema di PL?

Programmazione lineare

(Vercellis cap. 3.2 e appendice A.3)

Un sistema di equazioni lineari in m equazioni e n incognite (con $m \le n$) ha la seguente forma:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots, + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots, + a_{2n}x_n = b_2 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots, + a_{mn}x_n = b_m \end{cases}$$

In forma compatta il sistema si scrive

$$\mathbf{A}\mathbf{x} = \mathbf{b} \qquad \text{con } \mathbf{A}(m \times n), \mathbf{x} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$$

$$\mathbf{A}_{1}x_{1} + \mathbf{A}_{2}x_{2} + \dots + \mathbf{A}_{n}x_{n} = \mathbf{b}$$

oppure

o anche
$$\begin{cases} \mathbf{a}_1^{\mathrm{T}} \mathbf{x} = b_1 \\ \vdots \\ \mathbf{a}_m^{\mathrm{T}} \mathbf{x} = b_m \end{cases}$$

La matrice **A** | **b** ottenuta giustapponendo il vettore **b** alla matrice **A** viene detta matrice estesa (o completa).

Sia $X = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{b} \}$ l'insieme delle soluzioni del sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$.

- Si dice che il sistema è incompatibile se $X = \emptyset$
- Si dice che il sistema è compatibile se $X \neq \emptyset$

Riscrivendo il sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ come

$$\mathbf{A}_1 x_1 + \mathbf{A}_2 x_2 + \dots \mathbf{A}_n x_n = \mathbf{b}$$

è facile osservare che le componenti di una soluzione $\underline{x}_1, \dots, \underline{x}_n$ del sistema corrispondono ai coefficienti di una combinazione lineare dei vettori colonna della matrice \mathbf{A} che descrive il termine noto \mathbf{b} .

[Teorema] Rouché-Capelli

Il sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$, con $\mathbf{A}(m \times n)$, è compatibile <u>se e solo se</u>

$$rank(\mathbf{A}) = rank(\mathbf{A} \mid \mathbf{b})$$

Casi

1. $rank(\mathbf{A}) = rank(\mathbf{A} \mid \mathbf{b}) = k < n$ n - k gradi di libertà: infinite soluzioni

2. rank(A) = rank(A | b) = n
A è una base di Rⁿ: soluzione unica

3. $rank(\mathbf{A}) \neq rank(\mathbf{A} \mid \mathbf{b})$ $rank(\mathbf{A}) < rank(\mathbf{A} \mid \mathbf{b})$: sistema incompatibile

Soluzione di sistemi quadrati di eq. lineari

Si vuole risolvere il sistema lineare

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
 in n eq. e n incognite e rank $(\mathbf{A}) = n$

Idea: risolvere il sistema equivale a calcolare la matrice inversa: Se rank(\mathbf{A}) = n allora det(\mathbf{A}) $\neq 0$ e esiste \mathbf{A}^{-1} . Quindi si può scrivere

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$
$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

Soluzione di sistemi quadrati di eq. lineari

Soluzione del sistema:

Metodo algebrico

$$\mathbf{A}^{-1} = \frac{(cof \ \mathbf{A})^{\mathrm{T}}}{\det(\mathbf{A})}$$

(calcolo di $n^2 + 1$ determinanti)

$$con \quad \left[cof \ a_{ij}\right] = (-1)^{i+j} \det(A_{ij})$$

Regola di Cramer

$$x_i = \frac{\det(\mathbf{A}^{(i)})}{\det(\mathbf{A})}$$

(calcolo di «soli» n + 1 determinanti)

A(*i*): matrice ottenuta sostituendo la *i*-esima colonna di **A** con il vettore **b**

[nota] Il calcolo del determinante di una matrice $\mathbf{A}(n \times n)$ richiede n! moltiplicazioni.

Operazioni elementari

[Definizione] due sistemi di (dis)equazioni sono equivalenti se e solo se hanno lo stesso insieme di soluzioni.

[Definizione] operazioni elementari su una matrice A

- moltiplicare una riga (o colonna) per una costante non nulla
- sommare ad una riga (o colonna) una combinazione lineare delle altre
- cambiare l'ordine delle righe (o delle colonne)

[Teorema] le operazioni elementari sulla matrice estesa $(\mathbf{A} \mid \mathbf{b})$ di un sistema di equazioni lineari $\mathbf{A}\mathbf{x} = \mathbf{b}$ conducono a una matrice estesa $(\mathbf{A}' \mid \mathbf{b}')$ di un sistema di equazioni lineari *equivalente*.

Metodo di Gauss-Jordan

Il metodo di Gauss-Jordan è una procedura iterativa che trasforma, tramite una serie di operazioni di *pivot*, il sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ nel sistema $\mathbf{I} \cdot \mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$

Un'operazione di pivot consiste in una serie di *operazioni elementari* sul sistema. Il pivot quindi trasforma il sistema in un sistema equivalente.

pivot sull'elemento a_{23}

1. si divide la riga 2 per a_{23}

pivot sull'elemento a₂₃

2. si somma ad ogni riga $h \neq 2$ la riga 2 ottenuta al passo precedente moltiplicata per $-a_{h3}$

pivot sull'elemento a₂₃

2. si somma ad ogni riga $h \neq 2$ la riga 2 ottenuta al passo precedente moltiplicata per $-a_{h3}$

pivot sull'elemento a₂₃

prima

$$\begin{bmatrix} 3 & -3 & 1 & 1 \\ -1 & 1 & 2 & 2 \\ 2 & 1 & -3 & 0 \end{bmatrix}$$

dopo

7/2	-7/2	0	$\begin{bmatrix} 0 \end{bmatrix}$
-1/2	1/2	1	1
1/2	5/2	0	3

Operazione di pivot

Operazione di pivot

- Il pivot sull'elemento $a_{bk} \neq 0$ della matrice **A** consiste nelle seguenti operazioni
 - 1. si divide la riga h di $(\mathbf{A} \mid \mathbf{b})$ per a_{hk}
 - 2. si somma ad ogni riga $i \neq h$ la nuova riga h ottenuta al passo precedente moltiplicata per $-a_{ik}$

lo scopo del pivot è trasformare la colonna k-esima nel versore \mathbf{e}_{b} :

- con il passo 1. si ottiene $a_{hk} = 1$
- con il passo 2. si ottiene $a_{ik} = 0$ per $i \neq h$

Interpretazione dell'operazione di pivot

Il pivot sull'elemento a_{bk} equivale a risolvere la *h*-esima equazione rispetto alla variabile x_k e sostituire x_k in tutte le altre equazioni.

[Esempio]

$$\begin{cases} 3x_1 - 3x_2 + x_3 = 1 \\ -x_1 + x_2 + 2x_3 = 2 \\ 2x_1 + x_2 - 3x_3 = 0 \end{cases}$$

$$\begin{bmatrix} 3 & -3 & 1 & 1 \\ -1 & 1 & 2 & 2 \\ 2 & 1 & -3 & 0 \end{bmatrix}$$
 pivot su a_{23}

Risolvo la seconda equazione rispetto alla variabile x_3

$$\begin{cases} 3x_1 - 3x_2 + x_3 = 1 \\ x_3 = 1 + 1/2 x_1 - 1/2 x_2 \\ 2x_1 + x_2 - 3x_3 = 0 \end{cases} \begin{bmatrix} 3 & -3 & 1 & 1 \\ -1/2 & 1/2 & 1 & 1 \\ 2 & 1 & -3 & 0 \end{bmatrix}$$

Interpretazione dell'operazione di pivot

Il pivot sull'elemento a_{bk} equivale a risolvere la *h*-esima equazione rispetto alla variabile x_k e sostituire x_k in tutte le altre equazioni.

[Esempio]

Sostituisco x_3 nella prima e terza equazione

$$\begin{cases} 3x_1 - 3x_2 + 1 + 1/2 x_1 - 1/2x_2 = 1 \\ x_3 = 1 + 1/2 x_1 - 1/2x_2 \\ 2x_1 + x_2 - 3(1 + 1/2 x_1 - 1/2x_2) = 0 \end{cases}$$

Riordino i termini

$$\begin{cases} 7/2x_1 - 7/2x_2 = 0 \\ -1/2x_1 + 1/2x_2 + x_3 = 1 \\ 1/2x_1 + 5/2x_2 = 3 \end{cases} \begin{bmatrix} 7/2 & -7/2 & 0 & 0 \\ -1/2 & 1/2 & 1 & 1 \\ 1/2 & 5/2 & 0 & 3 \end{bmatrix}$$

Metodo di Gauss-Jordan: algoritmo

Sia $(\mathbf{A}^{(0)} | \mathbf{b}^{(0)})$ la matrice estesa del sistema di partenza e $(\mathbf{A}^{(i-1)} | \mathbf{b}^{(i-1)})$ la matrice estesa al passo *i*-esimo.

Le operazioni del passo i-esimo sono:

- se l'*i*-esima riga di $\mathbf{A}^{(i-1)}$ è il vettore nullo e $b_i^{(i-1)} \neq 0$ il sistema è incompatibile;
- se l'*i*-esima riga della matrice estesa $(\mathbf{A}^{(i-1)} | \mathbf{b}^{(i-1)})$ è il vettore nullo allora l'*i*-esima equazione del sistema è ridondante e può essere eliminata;
- Individuare una colonna k tale che $a_{ik}^{(i-1)} \neq 0$ e effettuare il **pivot** su $a_{ik}^{(i-1)}$

$$\begin{cases} 3x_1 - 3x_2 + x_3 = 1 \\ -x_1 + x_2 + 2x_3 = 2 \\ 2x_1 + x_2 - 3x_3 = 1 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 & x_2 & x_3 & \mathbf{b}^{(0)} \\ 3 & -3 & 1 & 1 \\ -1 & 1 & 2 & 2 \\ \hline 2 & 1 & -3 & 1 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \hline$$

$$\begin{cases} 3x_1 - 3x_2 + x_3 = 1 \\ -x_1 + x_2 + 2x_3 = 2 \\ 2x_1 + x_2 - 3x_3 = 1 \end{cases} (\mathbf{A}^{(1)} | \mathbf{b}^{(1)}) = \begin{cases} x_1 & x_2 & x_3 & \mathbf{b}^{(1)} \\ 1 & -1 & 1/3 & 1/3 \\ 0 & 0 & 7/3 & 7/3 \\ 0 & 3 & -11/3 & 1/3 \end{cases}$$

$$= \begin{vmatrix} 0 & 0 & -1/3 & -1/3 & + \\ 1 & -1 & 1/3 & 1/3 \\ 0 & 0 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & 0 & 1 & 1 \\ -1/3 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & 0 & 11/3 & 11/3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 3 & 0 & 4 \end{vmatrix}$$

$$= (\mathbf{A}^{(3)} | \mathbf{b}^{(3)}) \begin{vmatrix} 1 & 0 & 0 & 4/3 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 4/3 \end{vmatrix}$$

$$= (\mathbf{A}^{(3)} | \mathbf{b}^{(3)}) \begin{vmatrix} 1x_1 & 0x_2 & 0x_3 & = 4/3 \\ 0x_1 & 0x_2 & 1x_3 & = 1 \\ 0x_1 & 1x_2 & 0x_3 & = 4/3 \end{vmatrix}$$

$$\begin{cases} x_1 = 4/3 \\ x_3 = 1 \\ x_2 = 4/3 \end{cases}$$

La soluzione (unica) del sistema è $x_1 = 4/3$, $x_2 = 4/3$, $x_3 = 1$

Esempio: sistema con infinite soluzioni

$$\begin{cases} x_1 + x_2 - x_3 = 4 \\ 2x_1 - x_2 + 3x_3 = 7 \\ 4x_1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 - x_3 = 4 \\ x_1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ 1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ 1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ 1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ 1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ 1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ 1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ 1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ 1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ 1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ 1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ x_1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ x_1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ x_1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ x_1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ x_1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ x_1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ x_1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ x_1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ x_1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ x_1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ x_1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ x_1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 = 15 \\ x_1 + x_2 + x_3 = 15 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 + x_2 + x_3 + x$$

Esempio: sistema con infinite soluzioni

Esempio: sistema con infinite soluzioni

$$= (\mathbf{A}^{(2)} | \mathbf{b}^{(2)}) \begin{bmatrix} 1 & 0 & 2/3 & 11/3 \\ 0 & 1 & -5/3 & 1/3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

equazione ridondante

$$= (\mathbf{A}^{(2)} | \mathbf{b}^{(2)}) \begin{vmatrix} 1x_1 & 0x_2 & 2/3x_3 & = 11/3 \\ 0x_1 & 1x_2 & -5/3x_3 & = 1/3 \\ 0x_1 & 0x_2 & 0x_3 & = 0 \end{vmatrix}$$

$$\begin{cases} x_1 + 2/3x_3 = 11/3 \\ x_2 - 5/3 x_3 = 1/3 \\ 0 = 0 \end{cases}$$

$$\begin{cases} x_1 = 11/3 - 2/3x_3 \\ x_2 = 1/3 + 5/3 x_3 \end{cases}$$

$$\begin{cases} x_1 = 11/3 - 2/3x_3 \\ x_2 = 1/3 + 5/3 x_3 \end{cases}$$

Esistono infinite soluzioni del sistema, una per ogni $x_3 \in \mathbb{R}$

Esempio: sistema incompatibile

$$\begin{cases} x_1 + x_2 - x_3 = -3 \\ 2x_1 + 2x_2 + x_3 = 0 \\ 5x_1 + 5x_2 - 3x_3 = -8 \end{cases}$$
 (**A**⁽⁰⁾ | **b**⁽⁰⁾) =

-5

1° iterazione: pivot su
$$a_{11}$$

	\mathcal{X}_1	\mathcal{X}_2	\mathcal{X}_3	$b^{(0)}$	
	1)	1	-1	-3	/ 1
=	2	2	1	0	
	5	5	-3	-8	
	1	1	-1	-3	
+	2	2	1	0	
	1	1	-1	-3	
	0	0	3	-3 6	
+	5	5	-3	-8	
	1	1	-1	-3	
	0	0	3	6	$= (\mathbf{A}^{(1)} \mathbf{b}^{(1)})$
	0	0	2.	7	

15

Esempio: sistema incompatibile

Esempio: sistema incompatibile

$$= (\mathbf{A}^{(2)} | \mathbf{b}^{(2)}) \begin{bmatrix} 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

equazione impossibile

$$= (\mathbf{A}^{(2)} | \mathbf{b}^{(2)}) \begin{vmatrix} 1x_1 & 1x_2 & 0x_3 & = -1 \\ 0x_1 & 0x_2 & 1x_3 & = 2 \\ 0x_1 & 0x_2 & 0x_3 & = 3 \end{vmatrix}$$

$$\begin{cases} x_1 + x_2 = -1 \\ x_3 = 2 \\ 0 = 3 \end{cases}$$

Il sistema non ha soluzione. Infatti $rank(\mathbf{A}) < 3$ (dato che $det(\mathbf{A}) = 0$) e $rank(\mathbf{A} \mid \mathbf{b}) = 3$

_	A		b
1	1	-1	-3
2	2	1	0
5	5	-3	-8

Calcolo della matrice inversa

Il metodo di Gauss-Jordan può essere utilizzato per ottenere la matrice inversa di una matrice A. E' sufficiente considerare la matrice [A | I] e trasformarla in [I | A⁻¹] per mezzo di al più n operazioni di pivot.

sistema $\mathbf{A}\mathbf{x} = \mathbf{b}$ di equazioni lineari:

- Si trasforma [A | b] in [I | b']
- Si deduce che la soluzione è x = b'

equazione *matriciale* AX = I

- Si trasforma [A | I] in [I | A']
- Si deduce che la soluzione è X = A' ma siccome l'equazione matriciale è AX = I si deduce che $X = A^{-1}$, quindi $A^{-1} = A'$.

Esercizi

[Esercizio] Qual è una stima ragionevole del numero di operazioni aritmetiche richieste dal metodo di Gauss-Jordan per risolvere un sistema di *n* equazioni lineari in *n* incognite?

Esercizi

Determinare i valori di k che rendono il sistema compatibile.

$$\begin{cases} 5x_1 + x_2 + 6x_4 = 4 \\ 3x_1 + x_3 + 5x_4 = 3 \\ x_1 - 4x_2 + 7x_3 + 11x_4 = k \end{cases}$$

Determinare i valori di k per i quali il sistema ammette più di una soluzione.

$$\begin{cases} x_1 + x_2 + 6x_3 = k \\ 3x_1 + x_2 + 5x_3 = 3 \\ x_1 + x_2 + kx_3 = 2 \end{cases}$$

Discutere e risolvere il seguente sistema lineare

$$\begin{cases} 3x_1 + x_2 = 2 \\ x_1 + 2x_2 = \alpha + 8 \\ (\alpha - 4)x_1 + x_2 = -10 \end{cases}$$

Si vuole risolvere il sistema lineare

$$Ax = b$$

- in m equazioni e n incognite (m < n),
- $rank(\mathbf{A}) = rank(\mathbf{A} \mid \mathbf{b})$ (sistema compatibile) e
- $rank(\mathbf{A}) = m$ (matrice $\mathbf{A}(m \times n)$ di rango pieno, ossia sistema senza equazioni ridondanti)

[Osservazione] Il metodo di Gauss-Jordan può essere facilmente adattato per risolvere sistemi non quadrati di questa forma.

Esempio: Gauss-Jordan su sistemi non quadrati

$$\begin{cases} x_1 + 2x_2 + x_4 = 7 \\ x_2 + x_3 + x_4 + x_5 = 24 \\ x_1 - 3x_3 + 2x_5 = 8 \end{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \begin{cases} x_1 & x_2 & x_3 & x_4 & x_5 & \mathbf{b} \\ 1 & 2 & 0 & 1 & 0 & 7 \\ 0 & 1 & 1 & 1 & 1 & 24 \\ 1 & 0 & -3 & 0 & 2 & 8 \end{cases}$$
pivot su a_{11}

$$(\mathbf{A}^{(1)} | \mathbf{b}^{(1)}) = \begin{cases} (\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) = \mathbf{b}^{(0)} & \mathbf{b}^{(0)} & \mathbf{b}^{(0)} = \mathbf{b}^{(0)} & \mathbf{b}^{(0)} = \mathbf{b}^{(0)} & \mathbf{b}^{(0)} & \mathbf{b}^{(0)} = \mathbf{b}^{(0)} & \mathbf{b}^{(0)} & \mathbf{b}^{(0)} = \mathbf{b}^{(0)} & \mathbf{b}^{(0)} & \mathbf{b}^{(0)} & \mathbf{b}^{(0)} = \mathbf{b}^{(0)} & \mathbf{b}^$$

Esempio: Gauss-Jordan su sistemi non quadrati

$$(\mathbf{A}^{(3)} | \mathbf{b}^{(3)}) = \begin{vmatrix} 1 & 2 & 0 & 1 & 0 & 7 \\ 0 & 4/5 & 1 & 3/5 & 0 & 47/5 \\ 0 & 1/5 & 0 & 2/5 & 1 & 73/5 \end{vmatrix}$$

$$\begin{cases} x_1 + 2x_2 + x_4 = 7 \\ 4/5x_2 + x_3 + 3/5x_4 = 47/5 \\ 1/5x_2 + 2/5x_4 + x_5 = 73/5 \end{cases} \begin{cases} x_1 = 7 - 2x_2 - x_4 \\ x_3 = 47/5 - 4/5 x_2 - 3/5 x_4 \\ x_5 = 73/5 - 1/5 x_2 - 2/5 x_4 \end{cases}$$

Ponendo $x_2 = x_4 = 0$ si ottiene la soluzione $\begin{cases} x_1 = 7 \\ x_3 = 47/5 \\ x_5 = 73/5 \end{cases}$

$$\begin{cases} x_1 = 7 - 2x_2 - x_4 \\ x_3 = 47/5 - 4/5 x_2 - 3/5 x_4 \\ x_5 = 73/5 - 1/5 x_2 - 2/5 x_4 \end{cases}$$

$$\begin{cases} x_1 = 7 \\ x_3 = 47/5 \\ x_5 = 73/5 \end{cases}$$

Esempio: Gauss-Jordan su sistemi non quadrati

$$(\mathbf{A}^{(3)} | \mathbf{b}^{(3)}) = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & \mathbf{b}^{(3)} \\ 1 & 2 & 0 & 1 & 0 & 7 \\ 0 & 4/5 & 1 & 3/5 & 0 & 47/5 \\ 0 & 1/5 & 0 & 2/5 & 1 & 73/5 \end{bmatrix}$$

Notare che questa soluzione è stata ottenuta invertendo la matrice quadrata **B** formata dai coefficienti delle variabili x_1 , x_3 e x_5

$$\begin{cases} x_1 + 2x_2 + x_4 = 7 \\ x_2 + x_3 + x_4 + x_5 = 24 \\ x_1 - 3x_3 + 2x_5 = 8 \end{cases}$$

$$(\mathbf{A}^{(0)} \,|\, \mathbf{b}^{(0)}) =$$

$$\begin{cases} x_1 + 2x_2 + x_4 = 7 \\ x_2 + x_3 + x_4 + x_5 = 24 \\ x_1 - 3x_3 + 2x_5 = 8 \end{cases}$$
 $(\mathbf{A}^{(0)} | \mathbf{b}^{(0)}) =$
$$\begin{cases} x_1 & x_2 & x_3 & x_4 & x_5 & \mathbf{b}^{(0)} \\ 1 & 2 & 0 & 1 & 0 & 7 \\ 0 & 1 & 1 & 1 & 1 & 24 \\ 1 & 0 & -3 & 0 & 2 & 8 \end{cases}$$

$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -3 & 2 \end{bmatrix}$$

Matrice di base

[Definizione] Una matrice di base è una sottomatrice quadrata **B** di $\mathbf{A}(m \times n)$ non singolare, cioè con $\det(\mathbf{B}) \neq 0$, e di ordine m.

Si dice che $\mathbf{B}(m \times m)$ è una matrice *di base* perché è formata da *m* vettori linearmente indipendenti che quindi costituiscono una base per lo spazio vettoriale \mathbf{R}^m .

$\mathbf{A}(3\times5)$					b
1	2	0	1	0	7
0	1	1	1	1	24
1	0	-3	0	2	8
X_1	\mathcal{X}_2	χ_3	\mathcal{X}_4	χ_5	

$$\mathbf{B}(\mathbf{3} \times \mathbf{3}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -3 & 2 \end{bmatrix}$$

B è una matrice *di base* perché è quadrata di ordine 3 e non singolare

Una volta individuata una matrice di base **B**, la matrice **A** può essere riscritta separando le colonne in base dalle colonne fuori base:

$$\mathbf{A} = [\mathbf{B} \mid \mathbf{N}]$$
 con $\mathbf{B}(m \times m)$ e $\mathbf{N}(m \times n - m)$

$$B(3\times3)$$
 $N(3\times2)$
 b

 1
 0
 0
 2
 1
 7

 0
 1
 1
 1
 1
 24

 1
 -3
 2
 0
 0
 8

 x_1
 x_3
 x_5
 x_2
 x_4

Coerentemente, il vettore x delle incognite può essere scritto come:

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_{\mathrm{B}} \\ \mathbf{x}_{\mathrm{N}} \end{bmatrix}$$
 m componenti: variabili di base variabili fuori base

Con questa notazione, il sistema lineare **Ax** = **b** può essere riscritto come:

$$\begin{bmatrix} \mathbf{B} \mid \mathbf{N} \end{bmatrix} \begin{vmatrix} \mathbf{x}_{\mathbf{B}} \\ \mathbf{x}_{\mathbf{N}} \end{vmatrix} = \mathbf{b} \text{ cioè}$$

$$\mathbf{B} \cdot \mathbf{x}_{\mathrm{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathrm{N}} = \mathbf{b}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -3 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 7 \\ 24 \\ 8 \end{bmatrix}$$

Applicare il metodo di Gauss-Jordan equivale a invertire **B** (l'inversa **B**⁻¹ esiste perché **B** è non singolare). Analiticamente:

$$\mathbf{B} \cdot \mathbf{x}_{\mathrm{B}} + \mathbf{N} \cdot \mathbf{x}_{\mathrm{N}} = \mathbf{b}$$
 pre-moltiplicando per \mathbf{B}^{-1}

$$\mathbf{B}^{-1} \mathbf{B} \cdot \mathbf{x}_{\mathrm{B}} + \mathbf{B}^{-1} \mathbf{N} \cdot \mathbf{x}_{\mathrm{N}} = \mathbf{B}^{-1} \mathbf{b}$$
 cioè
$$\mathbf{I} \cdot \mathbf{x}_{\mathrm{B}} + \mathbf{B}^{-1} \mathbf{N} \cdot \mathbf{x}_{\mathrm{N}} = \mathbf{B}^{-1} \mathbf{b}$$

$$(\mathbf{A}^{(3)} | \mathbf{b}^{(3)}) = \begin{bmatrix} \mathbf{I} & \mathbf{B}^{-1} \mathbf{N} & \mathbf{B}^{-1} \mathbf{b} \\ 1 & 0 & 0 & 2 & 1 & 7 \\ 0 & 1 & 0 & 4/5 & 3/5 & 47/5 \\ 0 & 0 & 1 & 1/5 & 2/5 & 73/5 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 4/5 & 3/5 \\ 1/5 & 2/5 \end{bmatrix} \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 7 \\ 47/5 \\ 73/5 \end{bmatrix}$$

$$x_1 \quad x_3 \quad x_5 \quad x_2 \quad x_4$$

$$\mathbf{I} \cdot \mathbf{x}_{\mathrm{B}} + \mathbf{B}^{-1} \mathbf{N} \cdot \mathbf{x}_{\mathrm{N}} = \mathbf{B}^{-1} \mathbf{b}$$
da cui
$$\mathbf{x}_{\mathrm{B}} = \mathbf{B}^{-1} \mathbf{b} - \mathbf{B}^{-1} \mathbf{N} \cdot \mathbf{x}_{\mathrm{N}}$$

Segue che le (infinite) soluzioni del sistema associate alla base B sono:

$$\mathbf{x} = \begin{bmatrix} \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{\mathbf{N}} \\ \mathbf{x}_{\mathbf{N}} \end{bmatrix}$$

Il sistema ha n - m > 0 gradi di libertà, dato che le n - m componenti non in base di $\mathbf{x_N}$ possono assumere valori arbitrari.

Ponendo $x_N = 0$ si ottiene la soluzione:

$$\mathbf{x} = \begin{bmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{bmatrix}$$

Soluzione di Base (Ammissibile) – SBA

[**Definizione**] La particolare soluzione $\mathbf{x} = [\mathbf{B}^{-1}\mathbf{b}, \mathbf{0}]$ del sistema, che si ottiene annullando le componenti fuori base, è detta soluzione di base associata alla matrice di base \mathbf{B}

Considerando il problema di PL in forma standard

$$P: \max\{\mathbf{c}^{\mathrm{T}}\mathbf{x}: \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}, \mathbf{x} \in \mathbb{R}^n\}$$

allora

[Definizione] Se $\mathbf{B}^{-1}\mathbf{b} \geq \mathbf{0}$ allora $\mathbf{x} = [\mathbf{B}^{-1}\mathbf{b}, \mathbf{0}]$ è *anche* una soluzione del problema P e per questo è detta soluzione di base **ammissibile**, in breve SBA, di P

Soluzione di Base (Ammissibile) – SBA

Il sistema finale rispetto alla Base
$$\mathbf{B} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -3 & 2 \end{bmatrix}$$
 è:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 4/5 & 3/5 \\ 1/5 & 2/5 \end{bmatrix} \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 7 \\ 47/5 \\ 73/5 \end{bmatrix}$$

$$\begin{cases} x_1 + 2x_2 + x_4 = 7 \\ x_3 + 4/5 x_2 + 3/5 x_4 = 47/5 \\ x_5 + 1/5 x_2 + 2/5 x_4 = 73/5 \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + x_4 = 7 \\ x_3 + 4/5 x_2 + 3/5 x_4 = 47/5 \\ x_5 + 1/5 x_2 + 2/5 x_4 = 73/5 \end{cases}$$

Ponendo
$$\mathbf{x}_{\mathbf{N}} = \mathbf{0}$$
 si ottiene

Ponendo
$$\mathbf{x_N} = \mathbf{0}$$
 si ottiene
$$\begin{cases} x_1 = 7 \\ x_3 = 47/5 \\ x_5 = 73/5 \end{cases}$$

La soluzione di base è
$$\mathbf{x} = \begin{bmatrix} 7 & 47/5 & 73/5 & 0 & 0 \end{bmatrix}$$

La soluzione è anche una soluzione di base ammissibile

Un algoritmo per la PL (... un primo tentativo)

max
$$z = x_1 + 3x_2$$

C1: $6x_1 + 10x_2 + x_3 = 30$
C2: $3x_1 + 2x_2 - x_4 = 6$
C3: $x_1 - 2x_2 - x_5 = -1$
C4: $x_1, x_2, x_3, x_4, x_5 \ge 0$

forma standard

[Osservazione] La soluzione ottima x* è un vertice del poliedro (intersezione di 2 rette) ... ma è anche una Soluzione di Base Ammissibile del problema posto in forma standard.

Un algoritmo per la PL (... un primo tentativo)


```
max z = x_1 + 3x_2

C1: 6x_1 + 10x_2 + x_3 = 30

C2: 3x_1 + 2x_2 - x_4 = 6

C3: x_1 - 2x_2 - x_5 = -1

C4: x_1, x_2, x_3, x_4, x_5 \ge 0
```

forma standard

[Esercizio]

- Qual è la soluzione del problema in forma standard corrispondente alla soluzione ottima $\mathbf{x}^* = [25/11, 18/11]$ del problema originale?
- Qual è la base associata alla soluzione $\mathbf{x}^* = [25/11, 18/11]$?

Un algoritmo per la PL (... un primo tentativo)

[Algoritmo naif]

- Poni il problema di PL in forma standard;
- Enumera tutte le basi e valuta tutte le SBA
- Seleziona la SBA con il miglior valore della funzione obiettivo

Un algoritmo per la PL: esempio

max
$$z = 5x_1 + 2x_2$$

C1: $x_1 + x_2 + s_1 = 6$
C2: $x_2 + s_2 = 3$
C3: $x_1, x_2, s_1, s_2 \ge 0$

forma standard

$$(\mathbf{A} \mid \mathbf{b}) = \begin{bmatrix} x_1 & x_2 & s_1 & s_2 & \mathbf{b} \\ 1 & 1 & 1 & 0 & 6 \\ 0 & 1 & 0 & 1 & 3 \end{bmatrix}$$

Quante sono le possibili basi?

Sono pari a tutti i modi di scegliere 2 delle 4 colonne della matrice A

$$\binom{4}{2} = \frac{4!}{2!(4-2)!} = 6$$

Un algoritmo per la PL: esempio – 1° base

max
$$z = 5x_1 + 2x_2$$

C1: $x_1 + x_2 + s_1 = 6$
C2: $x_2 + s_2 = 3$
C3: $x_1, x_2, s_1, s_2 \ge 0$

forma standard

	x_1	\mathcal{X}_2
D —	<u>[1</u>	1
B =	[0	1

Base

Gauss-J	ordan
---------	-------

Soluzione di base

valore f.o.

$$= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \qquad \begin{cases} x_1 + s_1 - s_2 = 3 \\ x_2 + s_2 = 3 \end{cases}$$

$$[\mathbf{x}, \mathbf{s}] = \begin{bmatrix} 3 \\ 3 \\ 0 \\ 0 \end{bmatrix} \quad SBA$$

$$z=21$$

Un algoritmo per la PL: esempio – 2° base

Gauss-Jordan

forma standard

$$(\mathbf{A} \mid \mathbf{b}) = \begin{array}{c|cccc} x_1 & x_2 & s_1 & s_2 & \mathbf{b} \\ \hline 1 & 1 & 1 & 0 & 6 \\ 0 & 1 & 0 & 1 & 3 \\ \hline \\ & & & \\ \hline \end{array}$$

\mathcal{X}_1	s_1	
$\mathbf{B} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	La matrice è <mark>sing</mark> o base

Base

La matrice è singolare $(\det(\mathbf{B}) = 0)$ quindi <u>non è</u> una matrice di base

Soluzione di base

valore f.o.

Un algoritmo per la PL: esempio – 3° base

$$\mathbf{B} = \begin{bmatrix} x_1 & s_2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{cases} x_1 + x_2 + s_1 = 6 \\ x_2 + s_2 = 3 \end{cases}$$

$$[\mathbf{x}, \mathbf{s}] = \begin{bmatrix} 6 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 SBA

$$z = 30$$

valore f.o.

b

6

3

Un algoritmo per la PL: esempio – 4° base

max
$$z = 5x_1 + 2x_2$$

C1: $x_1 + x_2 + s_1 = 6$
C2: $x_2 + s_2 = 3$
C3: $x_1, x_2, s_1, s_2 \ge 0$

forma standard

$$(\mathbf{A} | \mathbf{b}) = \begin{bmatrix} x_1 & x_2 & s_1 & s_2 & \mathbf{b} \\ 1 & 1 & 1 & 0 & 6 \\ 0 & 1 & 0 & 1 & 3 \end{bmatrix}$$

		_	s_1
R	_	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1]
D	_	l ₁	0]

Gauss-Jordan

Soluzione di base

valore f.o.

$$\mathbf{B} = \begin{bmatrix} x_2 & x_1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$$

Base

$$\begin{cases} x_1 + s_1 - s_2 = 3 \\ x_2 + s_2 = 3 \end{cases}$$

$$[\mathbf{x}, \mathbf{s}] = \begin{bmatrix} 0 \\ 3 \\ 3 \\ 0 \end{bmatrix} \text{ SBA}$$

$$z = 6$$

Un algoritmo per la PL: esempio – 5° base

max
$$\chi = 5x_1 + 2x_2$$

C1: $x_1 + x_2 + s_1 = 6$

C2:
$$x_2 + s_2 = 3$$

C3:
$$x_1, x_2, s_1, s_2 \ge 0$$

forma standard

$$(\mathbf{A} | \mathbf{b}) = \begin{bmatrix} x_1 & x_2 & s_1 & s_2 & \mathbf{b} \\ 1 & 1 & 1 & 0 & 6 \\ 0 & 1 & 0 & 1 & 3 \end{bmatrix}$$

Gauss-Jordan

Soluzione di base

valore f.o.

$$\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$\begin{cases} x_1 + x_2 + s_1 = 6 \\ -x_1 - s_1 + s_2 = -3 \end{cases}$$

$$[\mathbf{x}, \mathbf{s}] = \begin{bmatrix} 0 \\ 6 \\ 0 \\ -3 \end{bmatrix} \quad \text{no SBA}$$

Un algoritmo per la PL: esempio – 6° base

$$\mathbf{B} = \begin{bmatrix} x_1 & x_2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\begin{cases} x_1 + x_2 + s_1 = 6 \\ x_2 + s_2 = 3 \end{cases}$$

$$[\mathbf{x}, \mathbf{s}] = \begin{bmatrix} 0 \\ 0 \\ 6 \\ 3 \end{bmatrix} \quad SBA$$

b

6

3

$$z = 0$$

Un algoritmo per la PL: riepilogo

Base	Soluzione di base	valore f.o.	
x_1 x_2	$[\mathbf{x}, \mathbf{s}] = [3 3 0 0]$	<i>χ</i> = 21	
x_1 s_1	matrice non di base		
x_1 s_2	$[\mathbf{x}, \mathbf{s}] = [6 0 0 3]$	z = 30	Soluzione ottima
x_2 s_1	$[\mathbf{x},\mathbf{s}] = [0 3 3 0]$	z = 6	
x_2 s_2	$[\mathbf{x}, \mathbf{s}] = [0 6 0 -3]$	no SBA	
s_1 s_2	$[\mathbf{x}, \mathbf{s}] = [0 0 6 3]$	z = 0	

Domande

L'algoritmo naïf enumera basi e valuta SBA.

- 1. L'algoritmo è «corretto»? Se il problema ammette ottimo finito, <u>esiste</u> sempre una SBA soluzione ottima del problema?
- 2. L'algoritmo è completo? Risolve un qualsiasi problema di PL?
- 3. L'algoritmo è finito? Termina in un numero finito di passi?
- 4. L'algoritmo è efficiente? Quante operazioni esegue?

Correttezza: la teoria ci aiuta?

Il teorema fondamentale della PL afferma che se esiste una soluzione ottima, esiste un vertice ottimo.

Se il problema è posto in forma standard, il metodo di Gauss-Jordan permette di calcolare analiticamente una soluzione (ammissibile) di base

La correttezza dell'algoritmo dipende dal legame che esiste tra vertici e SBA

Vertici: caratterizzazione analitica

problema di PL : $P: \max \{\mathbf{c}^T \mathbf{x} : \mathbf{A} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{R}^n\}$ $\mathbf{A}(m \times n) \text{ con } m \geq n$ poliedro associato: $P(\mathbf{A}, \mathbf{b}) \subseteq \mathbb{R}^n$

Sia \mathbf{v} una soluzione ammissibile di P e \mathbf{E} la sottomatrice di \mathbf{A} dei vincoli che in \mathbf{v} sono attivi (compresi gli eventuali vincoli di <u>non negatività</u>).

[Teorema 3.2.5] di caratterizzazione analitica dei vertici Il punto \mathbf{v} è un vertice di $P(\mathbf{A}, \mathbf{b})$ se e solo se rank $(\mathbf{E}) = n$.

[Corollari]

- Un vertice \mathbf{v} di P è soluzione unica del sistema $\mathbf{E}\mathbf{x} = \mathbf{b}_E$
- Un poliedro in \mathbb{R}^n definito da una matrice $\mathbf{A}(m \times n)$ con rank $(\mathbf{A}) < n$ non possiede vertici.

Vertici: esempio (1)

$$\max z = x_1 + 3x_2$$

$$6x_1 + 10x_2 \le 30$$

$$3x_1 + 2x_2 \ge 6$$

$$x_1 - 2x_2 \ge -1$$

$$x_2 \ge 1/2$$

 $\mathbf{w} = [5/3, 1/2]$ è una soluzione ammissibile che rende attivi il 2° e 4° vincolo.

La matrice **E** è

$$\begin{bmatrix} 3 & 2 \\ 0 & 1 \end{bmatrix}$$

 $rank(\mathbf{E}) = 2$ quindi \mathbf{w} è un vertice

Vertici: esempio (2)

$$\max z = x_1 + 3x_2$$

$$6x_1 + 10x_2 \le 30$$

$$3x_1 + 2x_2 \ge 6$$

$$x_1 - 2x_2 \ge -1$$

$$x_2 \ge 1/2$$

 $\mathbf{w} = [2, 1/2]$ è una soluzione ammissibile che rende attivo il solo 4° vincolo.

La matrice **E** è

$$\begin{bmatrix} 0 & 1 \end{bmatrix}$$

 $rank(\mathbf{E}) = 1$ quindi w non è un vertice

Vertici: esempio (3)

$$\max z = x_1 + 3x_2$$

$$6x_1 + 10x_2 \le 30$$

$$3x_1 + 2x_2 \ge 6$$

$$x_1 - 2x_2 \ge -1$$

$$x_2 \ge 1/2$$

 $\mathbf{w} = [2, 1]$ è una soluzione ammissibile che non rende attivo alcun vincolo.

La matrice \mathbf{E} è vuota, rank(\mathbf{E}) = 0 quindi \mathbf{w} non è un vertice

Vertici: osservazioni

- $rank(\mathbf{E}) = n$ significa che \mathbf{E} ha <u>almeno</u> n righe, ma può averne anche di più. Il teorema quindi dice che un vertice soddisfa all'uguaglianza <u>almeno</u> n vincoli.
- In R² un punto di un poliedro è un vertice se e solo se è l'intersezione di *almeno* 2 rette.

$$\max z = x_1 + 3x_2$$

$$6x_1 + 10x_2 \le 30$$

$$3x_1 + 2x_2 \ge 6$$

$$x_1 - 2x_2 \ge -1$$

$$x_2 \ge 1/2$$

$$x_2 \le 18/11$$

$$\max z = x_1 + 3x_2$$

$$6 \cdot 25/11 + 10 \cdot 18/11 = 30$$

$$3 \cdot 25/11 + 2 \cdot 18/11 > 6$$

$$25/11 - 2 \cdot 18/11 = -1$$

$$18/11 > 1/2$$

$$18/11 = 18/11$$

Fabrizio Marinelli - Programmazione Lineare

Vertici e SBA

problema di PL : $P: \max \{\mathbf{c}^T \mathbf{x} : \mathbf{A} \mathbf{x} \leq \mathbf{b}, \mathbf{x} \in \mathbb{R}^n\}$ $\mathbf{A}(r \times n) \operatorname{con} r \geq n$ poliedro associato: $P(\mathbf{A}, \mathbf{b}) \subseteq \mathbb{R}^n$

Supponiamo che i *r* vincoli siano *m* di uguaglianza e *n* di non negatività (cioè che il problema sia in <u>forma standard</u>)

$$P: \max \mathbf{c}^{\mathrm{T}} \mathbf{x}$$

$$\mathbf{A}' \mathbf{x} = \mathbf{b}' \qquad \mathbf{A}' (m \times n)$$

$$\mathbf{I} \mathbf{x} \geq \mathbf{0} \qquad \mathbf{I} (n \times n)$$

Vertici e SBA

Sia \mathbf{B} ($m \times m$) una base ammissibile e $\mathbf{p} = [\mathbf{B}^{-1}\mathbf{b}, \mathbf{0}]$ la SBA corrispondente.

```
P: \max \mathbf{c}^{\mathsf{T}} \mathbf{x}
\mathbf{A'p} = \mathbf{b'} \qquad m \text{ vincoli di uguaglianza} + \mathbf{p_N} = \mathbf{0} \qquad n-m \text{ vincoli di uguaglianza} + \mathbf{E} = \begin{bmatrix} \mathbf{A'} \\ \mathbf{I} \end{bmatrix} \begin{pmatrix} m \times n \\ (n-m+k \times n) \end{pmatrix}
m + k \text{ vincoli di uguaglianza}
```

- p è una soluzione ammissibile
- la sottomatrice E dei vincoli che p rende attivi ha almeno n righe ed è di rango pieno.

per il teorema di caratterizzazione dei vertici p è un vertice

Vertici e SBA: esempio

$$\max z = 5x_1 + 2x_2$$

$$x_1 + x_2 + x_3 = 6$$

$$x_2 + x_4 = 3$$

$$x_1, x_2, x_3, x_4 \ge 0$$

$$\mathbf{B}(\mathbf{2} \times \mathbf{2}) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \text{ è la base associata alle variabili } x_1 \text{ e } x_2$$

 $\mathbf{p} = [3, 3, 0, 0]$ è la SBA corrispondente.

$$\max z = 5x_1 + 2x_2$$

$$3 + 3 + 0 + 0 = 6$$

$$3 + 0 + 0 = 3$$

$$3 > 0$$

$$0 = 0$$

$$0 = 0$$

$$\mathbf{E} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \text{rank}(\mathbf{E}) = 4$$

p è un vertice

Vertici e SBA

[Teorema] Un vettore \mathbf{v} è una SBA di un problema P di PL $\underline{\mathbf{se}}$ e $\underline{\mathbf{solo}}$ $\underline{\mathbf{se}}$ è un vertice del poliedro associato $P(\mathbf{A}, \mathbf{b})$.

Enumerare le SBA di P <u>equivale</u> a enumerare i <u>vertici</u> del poliedro $P(\mathbf{A}, \mathbf{b})$

Nonostante le variabili siano continue, un problema di PL ha una struttura discreta: se esiste, si può ottenere una soluzione ottima generando esplicitamente tutte le SBA

Domande

L'algoritmo naïf enumera basi e valuta SBA.

- OK L'algoritmo è «corretto»: enumerare le SBA coincide con enumerare i vertici
- 2. L'algoritmo è completo? Risolve un qualsiasi problema di PL?
- 3. L'algoritmo è finito? Termina in un numero finito di passi?
- 4. L'algoritmo è efficiente? Quante operazioni esegue?

L'algoritmo è completo?

$$\max z = x_1 + 3x_2$$

$$3x_1 + 2x_2 \ge 6$$

$$x_1 - 2x_2 \ge 1$$

$$x_1, x_2 \ge 0$$

Il problema è evidentemente illimitato superiormente

$$(\mathbf{A} \mid \mathbf{b}) = \begin{bmatrix} x_1 & x_2 & s_1 & s_2 & \mathbf{b} \\ 3 & 2 & -1 & 0 & 6 \\ 1 & -2 & 0 & -1 & 1 \end{bmatrix}$$

forma standard

L'algoritmo è completo?

Base	Soluzione di base	valore f.o.
x_1 x_2	$[\mathbf{x}, \mathbf{s}] = [7/4 3/8 0 0]$	
x_1 s_1	$[\mathbf{x}, \mathbf{s}] = [1 0 -3 0]$	no SBA
x_1 s_2	$[\mathbf{x},\mathbf{s}] = [2 0 0 1]$	z = 2
x_2 s_1	$[\mathbf{x}, \mathbf{s}] = [0 -1/2 -7 0]$	no SBA
x_2 s_2	$[\mathbf{x},\mathbf{s}] = [0 3 0 -7]$	no SBA
s_1 s_2	$[\mathbf{x},\mathbf{s}] = [0 0 -6 -1]$	no SBA

Domande

L'algoritmo naïf enumera basi e valuta SBA.

- 1. L'algoritmo è «corretto»? Se il problema ammette ottimo finito, <u>esiste</u> sempre una SBA soluzione ottima del problema?
- NO L'algoritmo non è completo: non è in grado di riconoscere un problema illimitato.
- 4. L'algoritmo è efficiente? Quante operazioni esegue?

Un algoritmo per la PL: finitezza

Il numero di basi (e di SBA) è <u>al più</u> pari ai possibili modi di scegliere m tra le n colonne della matrice $\mathbf{A}(m \times n)$ – le combinazioni semplici. Questa quantità è data dal coefficiente binomiale

$$C_{(n,m)} = \binom{n}{m} = \frac{n!}{m!(n-m)!}$$

 $C_{(n,m)}$ è un **numero finito** che rappresenta una **limitazione superiore** al numero di SBA (in generale non tutte le sottomatrici $m \times m$ sono matrici di base e non tutte le matrici di base sono ammissibili).

SBA sono in corrispondenza biunivoca con vertici, quindi

[Teorema] Ogni poliedro ha un numero finito di vertici.

Domande

L'algoritmo naïf enumera basi e valuta SBA.

- 1. L'algoritmo è «corretto»? Se il problema ammette ottimo finito, <u>esiste</u> sempre una SBA soluzione ottima del problema?
- 2. L'algoritmo è completo? Risolve un qualsiasi problema di PL?

OK L'algoritmo è finito

4. L'algoritmo è efficiente? Quante operazioni esegue?

Un algoritmo per la PL: efficienza

Domande

L'algoritmo naïf enumera basi e valuta SBA.

- 1. L'algoritmo è «corretto»? Se il problema ammette ottimo finito, <u>esiste</u> sempre una SBA soluzione ottima del problema?
- 2. L'algoritmo è completo? Risolve un qualsiasi problema di PL?
- 3. L'algoritmo è finito? Termina in un numero finito di passi?
- Nel caso peggiore, l'algoritmo effettua un numero esponenziale di iterazioni

Testi di approfondimento

- A. Sassano
 Modelli e Algoritmi della Ricerca Operativa
 Franco Angeli, Milano, 1999
- M. Fischetti
 Lezioni di Ricerca Operativa
 Edizioni Libreria Progetto Padova, 1999
- 3. D. Bertsimas and J.N. Tsitsiklis *Introduction to Linear Optimization*Athena Scientific, Belmont, Massachusetts
- 4. Nemhauser G.L. and L. A. Wolsey *Integer and Combinatorial Optimization*John Wiley & Sons, Inc, New York, 1988.

Appendice:

Spazi affini

Vettori affinemente dipendenti

- Una combinazione affine è una particolare combinazione lineare.
- [Definizione] I vettori $\mathbf{x}_1, ..., \mathbf{x}_m \in \mathbb{R}^n$ si dicono affinemente dipendenti se e solo se esistono m numeri reali $\lambda_1, ..., \lambda_m$ tali che:

$$\lambda_1 + \ldots + \lambda_m = 1$$
 e $\lambda_1 \mathbf{x}_1 + \ldots + \lambda_m \mathbf{x}_m = 0$

I vettori
$$\mathbf{a}_1 = (1, 1)$$
, $\mathbf{a}_2 = (2, 2)$ sono affinemente dipendenti in quanto $\lambda_1 = 2$, $\lambda_2 = -1$ e $2 \mathbf{x}_1 - \mathbf{x}_2 = 0$

- Ogni insieme S contenente il vettore $\mathbf{0}$ è affinemente **dipendente**.
- Ogni insieme S costituito da un solo elemento diverso da 0 è affinemente indipendente.

Dipendenza affine e lineare

- La dip. affine implica la dip. lineare (ma non viceversa)
 - o equivalentemente
- L'indip. lineare implica l'indip. affine (ma non viceversa)

dipendenza affine ⇒ dipendenza lineare

 $\lambda_1 + ... + \lambda_m = 1$ sono anche coeff. di una combinazione lineare

indipendenza lineare ⇒ indipendenza affine

 $\lambda_1 = ... = \lambda_m = 0$ non sono i coeff. di una combinazione affine

I vettori $\mathbf{a}_1 = (1, 1)$, $\mathbf{a}_2 = (2, 0)$ sono linearmente indipendenti e quindi affinemente indipendenti.

Dipendenza affine e lineare

- La dip. affine implica la dip. lineare (ma non viceversa)
 o equivalentemente
- L'indip. lineare implica l'indip. affine (ma non viceversa)

dipendenza lineare ≠ dipendenza affine

indipendenza affine ≠ indipendenza lineare

I vettori $\mathbf{a}_1=(3/2,2),\,\mathbf{a}_2=(1,2)$ e $\mathbf{a}_3=(2,2)$ sono palesemente linearmente dipendenti ($\lambda_1=-2,\,\lambda_2=\lambda_3=1$) ma affinemente indipendenti:

$$\begin{cases} 3/2\lambda_1 + \lambda_2 + 2\lambda_3 = 0 \\ 2\lambda_1 + 2\lambda_2 + 2\lambda_3 = 0 \\ \lambda_1 + \lambda_2 + \lambda_3 = 1 \end{cases}$$
 è palesemente incompatibile

Spazio affine

[Definizione] l'insieme $S \subseteq \mathbb{R}^n$ è uno spazio affine se ogni combinazione affine di suoi elementi è un elemento di S.

A differenza delle combinazioni lineari, non è sempre possibile ottenere il vettore nullo mediante combinazione affine dato che $\lambda_1 + ... + \lambda_m = 1$.

Il vettore **0** può **non** far parte di un sottospazio affine

Spazio affine

[Definizione] l'insieme $S \subseteq \mathbb{R}^n$ è uno spazio affine se ogni combinazione affine di suoi elementi è un elemento di S.

una retta **non** passante per l'origine è un sottospazio affine di R²

Uno spazio affine non vuoto è la traslazione di uno spazio lineare.

Spazio affine

• Sia $S \subseteq \mathbb{R}^n$ uno spazio affine non vuoto. Per ogni $\mathbf{w} \in S$, l'insieme

$$S' = S - \{\mathbf{w}\} = \{\mathbf{x} - \mathbf{w} : \mathbf{x} \in S\}$$

è uno spazio lineare.

Esercizi

• Dimostrare che l'insieme delle soluzioni di un sistema di m equazioni omogenee in n incognite $\mathbf{A}\mathbf{x} = \mathbf{0}$ è uno spazio lineare di dimensione n – rank(\mathbf{A}).

• Dimostrare che l'insieme delle soluzioni di un sistema di m equazioni in n incognite $\mathbf{A}\mathbf{x} = \mathbf{b}$ è uno spazio affine di dimensione n – rank(\mathbf{A}).

Insiemi e involucri

Dato un insieme $S \subseteq \mathbb{R}^n$

- S è uno spazio affine se e solo se coincide con aff(S)
- S è un cono convesso se e solo se coincide con *cone*(S)
- S è un insieme convesso se e solo se coincide con conv(S)