

Exercise 6.3

$$\Rightarrow \angle DCE = 92^{\circ}$$
.

Therefore, we can conclude that $\angle DCE = 92^{\circ}$.

Q4. In the given figure, if lines PQ and RS intersect at point T, such that \angle PRT = 40°, \angle RPT = 95° and \angle TSQ = 75°, find \angle SQT.

Ans. We are given that $\angle PRT = 40^{\circ}$, $\angle RPT = 95^{\circ}$ and $\angle TSQ = 75^{\circ}$

We need to find the value of $\angle SQT$ in the figure.

From the figure, we can conclude that in $^{\Delta RTP}$

$$\angle PRT + \angle RTP + \angle RPT = 180^{\circ}$$
 (Angle sum property)

$$40^{\circ} + \angle RTP + 95^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle RTP + 135^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle RTP = 45^{\circ}$$
.

From the figure, we can conclude that

$$\angle RTP = \angle STQ = 45^{\circ}$$
 (Vertically opposite angles)

From the figure, we can conclude that in ΔSTQ

$$\angle SQT + \angle STQ + \angle TSQ = 180^{\circ}$$
 (Angle sum property)

$$\angle SQT + 45^{\circ} + 75^{\circ} = 180^{\circ} \Rightarrow \angle SQT + 120^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle SQT = 60^{\circ}$$
.

Therefore, we can conclude that $\angle SQT = 60^{\circ}$.

Q5. In the given figure, if $PQ \perp PS$, PQ || SR, $\angle SQR = 28^{\circ}$ and $\angle QRT = 65^{\circ}$, then find the values of x and y.

Ans. We are given that

$$PQ \perp PS, PQ \parallel SR, \angle SQR = 28^{\circ} \text{ and } \angle QRT = 65^{\circ}$$

We need to find the values of x and y in the figure.

We know that "If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of the two interior opposite angles."

From the figure, we can conclude that

$$\angle SQR + \angle QSR = \angle QRT$$
, or

$$28^{\circ} + \angle QSR = 65^{\circ} \Rightarrow \angle QSR = 37^{\circ}$$

From the figure, we can conclude that

$$x = \angle QSR = 37^{\circ}$$
 (Alternate interior angles)

From the figure, we can conclude that $^{\Delta PQS}$

$$\angle PQS + \angle QSP + \angle QPS = 180^{\circ}$$
 (Angle sum property)

$$\angle QPS = 90^{\circ} \quad (PQ \perp PS)$$

$$x + y + 90^{\circ} = 180^{\circ} \Rightarrow x + 37^{\circ} + 90^{\circ} = 180^{\circ}$$

$$\Rightarrow x + 127^{\circ} = 180^{\circ} \Rightarrow x = 53^{\circ}$$

Therefore, we can conclude that

$$x = 53^{\circ} \text{ and } y = 37^{\circ}$$

Q6. In the given figure, the side QR of Δ PQR is produced to a point S. If the bisectors of \angle PQR and \angle PRS meet at point T, then prove

that
$$\angle QTR = \frac{1}{2} \angle QPR$$

Ans. We need to prove that $\angle QTR = \frac{1}{2} \angle QPR$ in the figure given below.

We know that "If a side of a triangle is produced, then the exterior angle so formed is equal to the sum of the two interior opposite angles."

From the figure, we can conclude that in $\Delta \mathcal{Q} \textit{TR}$,

 $\angle TRS$ is an exterior angle

$$\angle QTR + \angle TQR = \angle TRS$$
, or

$$\angle QTR = \angle TRS - \angle TQR$$
 ...(i)

From the figure, we can conclude that in $^{\Delta QTR}$, $^{\angle TRS}$ is an exterior angle

$$\angle QPR + \angle PQR = \angle PRS$$
.

We are given that QT and RT are angle bisectors of $\angle PQR$ and $\angle PRS$.

$$\angle QPR + 2\angle TQR = 2\angle TRS$$

$$\angle QPR = 2(\angle TRS - \angle TQR).$$

We need to substitute equation (i) in the above equation, to get

$$\angle QPR = 2\angle QTR$$
, or

$$\angle QTR = \frac{1}{2} \angle QPR$$
.

Therefore, we can conclude that the desired result is proved.

********* END ********