Случайные процессы. Прикладной поток.

Теоретическое задание 6.

Стационарные процессы. Регрессия на гауссовских процессах.

- 1. Пусть $N = \{N(t), t \ge 0\}$ пуассоновский процесс интенсивности λ , а случайная величина η не зависит от N, причем $\mathsf{P}(\eta=1) = \mathsf{P}(\eta=-1) = 1/2$. Является ли процесс $X_t = \eta(-1)^{N_t}$ стационарным и в каком смысле?
- 2. Пусть f периодическая функция на \mathbb{R} с периодом T > 0. Случайная величина ξ равномерно распределена на [0,T]. Случайный вектор (ζ,η) не зависит от ξ . Докажите, что процесс $X_t = \zeta \cdot f(\eta t + \xi)$ стационарен в узком смысле.
- 3. Пусть $(X_t, t \geqslant 0)$ случайный процесс и $Y_t = X_{t+1} X_t$. Является ли процесс Y_t стационарным и в каком смысле, если
 - а) $X_t = W_t$ винеровский процесс;
 - б) $X_t = N_t$ пуассоновский процесс?
- 4. Пусть $X = (X_t, t \in \mathbb{R})$ стационарный гауссовский процесс с нулевой функцией среднего и ковариационной функцией $R(t) = cov(X_t, X_0)$. Даны его измерения $x_1, ..., x_n$ в моменты времени $t_1, ..., t_n$ соответственно. Докажите, что условное распределение X_t при условии $X_{t_1} = x_1, ..., X_{t_n} = x_n$ является нормальным со средним $r^T C^{-1} \overrightarrow{x}$ и дисперсией $R(0) r^T C^{-1} r$, где $C = (R(t_i t_j))_{i,j}, r = (R(t t_1), ..., R(t t_n))^T$, $\overrightarrow{x} = (x_1, ..., x_n)^T$.

При решении воспользуйтесь следующей формулой.

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} = \begin{pmatrix} A^{-1} + A^{-1}BH^{-1}CA^{-1} & -A^{-1}BH^{-1} \\ -H^{-1}CA^{-1} & H^{-1} \end{pmatrix},$$

где $H = D - CA^{-1}B$, $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{m \times n}$, $D \in \mathbb{R}^{m \times m}$.

Указание: Для нахождения условного распределения найдите логарифм условной плотности с точностью до аддитивной константы. При этом вместо знака равенства используйте знак \propto .