

Linear regression

train

(Linear) Hypothesis

x (hours)	y (score)			
10	90	x=9 y=?	x	Υ
10	90		1	1
9	80		2	2
3	50			
			3	3
2	30			

어떤 그래프가 가장 알맞을지?

COST FUNTION Han 음수, 야수 판단 (Han-y)2

$$\frac{(H(x^{(1)}) - y^{(1)})^2 + (H(x^{(2)}) - y^{(2)})^2 + (H(x^{(3)}) - y^{(3)})^2}{3}$$

$$cost = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$

$$H(x) = Wx + b$$

$$3$$

$$\Rightarrow \frac{2}{1}$$

$$0$$

$$0$$

$$1$$

$$2$$

$$3$$

$$cost = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$

$$H(x) = Wx + b$$

가장 작은 cost값을 구하는 것이 linear 학습

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$

$$H(x) = Wx$$

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

Gradient descent algorithm (1841) (1842)

나 경사를 따라 나는 생각이 다

Start: (0,0) (or any other value) W를 바꾸며 Cost을 줄여나감

스 최저정 5달.

$$cost(W) = \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})^2$$

Х	Υ
1	1
2	2
3	3

• W=1, cost(W)=0

$$\frac{1}{3}((1*1-1)^2 + (1*2-2)^2 + (1*3-3)^2)$$

- W=0, cost(W)=4.67 $\frac{1}{3}((0*1-1)^2 + (0*2-2)^2 + (0*3-3)^2)$
- W=2, cost(W)=?

Formal definition

→ 潜程 刊也: 四岩 → 沿程 刊处

$$W:=W-lpharac{\partial}{\partial W}\underbrace{\frac{1}{2m}}_{i=1}\sum_{i=1}^m(Wx^{(i)}-y^{(i)})^2$$

$$W := W - \alpha \frac{1}{2m} \sum_{i=1}^{m} 2(Wx^{(i)} - y^{(i)})x^{(i)}$$

$$W := W - \alpha \frac{1}{m} \sum_{i=1}^{m} (Wx^{(i)} - y^{(i)})x^{(i)}$$

