線形代数の整理帳

tomixy

2025年6月26日

目次

第	1章	ベク	トル															8
	ベクトル	レと次	元															8
	線形関係	系式																8
	線型独立	なと紡	形従	属	•						•	•	•		•	•		9
	ベクトル	レの集	合が	張る	空	間					•	•	•		•	•		12
第	2 章	線形	写像	と行	列(の)	寅舅	草										13
	行列の導	拿入																13
	線形写像	象の定	義		•						•	•	•		•	•		15
	線形写像	象の表	現行	列														17
	ℝ ² の線	形変	換の値	列 .														19
	行列の稼	責 .																20
	行列の利	口とス	カラ	一倍														22
	行列の種	責の結	i合法	則														23
	行列の反	て分け																25

	行列の転置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	26
	対称行列と交代行列	28
	三角行列	28
	対角行列	29
	正方行列のトレース	30
	行列と複素数	31
第	3章 連立一次方程式と階数	32
	掃き出し法	32
	連立一次方程式の行列表記・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32
	行基本変形	34
	成分を要にして掃き出す・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	34
	行階段行列	35
	行列の階数	36
	簡約化された行階段行列	37
	連立一次方程式を解く	38
	拡大係数行列	38
	斉次形	38
	解の存在条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
	一般解のパラメータ表示	42
	解の自由度	45
	解の一意性	46
	解のパラメータ表示の一意性	47
	非自明解の存在と有限従属性定理	48
	行列の階数と線型独立性	50
第	4章 線形写像の単射性と全射性	54
	線形写像とベクトルの線型独立性	54
	線形写像の単射性と全射性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	58
	線形写像の像と核・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	60
	像空間と全射性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61
	核空間と単射性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	61

	核空間と	解空	間																					62
第	5 章	正則	な線	形変	換	(ع	逆征	行系	<u>7</u>]															63
	線形変換	の全	単射	性																				63
	正則行列	J .																						65
	逆行列																							66
	逆行列の	性質													•			•		•				68
	逆行列の	計算	法と	線形	方	程	式																	70
	正則行列	」と転	置行	列																				71
	正則行列	」と対	角行	列																				72
第	6 章	基本	変形。	と基	本:	行	列																	74
	行基本変	形と	基本	行列																				74
	列基本変	形と	基本	行列																				77
	基本行列]の正	則性																					78
	基本行列]の積	と逆	行列																				79
	行基本変	形に	よる	階数	の	不	変	性																80
	階数標準	形																						82
	転置によ	:る階	数の	不変	性																			83
第	7章	行列:	式.																					86
212	連立方程			判別	[式	یح	U	て	のタ	行	51[=	式				_								86
	置換と互			1 4/4	_										-	-	-	-	-	-	-		-	86
	置換の符		偶奇			•		•		•					-	-	-	-	-	-	-		-	92
	置換の性																							97
	行列式の					•		•		•					-	-	-	-	-	-	-		-	99
	三角行列																							99
	行列式の					•		•		•					-	-	-	-	-	-	-		-	102
	行列式の				条	件		•		•					-	-	-	-	-	-	-			105
	基本変形				-17		-	-	-	-	-	-	-	-	-		-	-			-	-	•	107
	行列式の			•	•										-	-		-		-			•	108

	行列の積と行列	训式 .											110
	行列式と正則性	ŧ											112
	余因子展開 .												113
	余因子行列と遊	逆行列0)公:	式.									118
	クラメルの公式	₹											118
第	8 章 線形空	四間											119
	線形部分空間の	D定義											119
	基底と次元 .												124
	基底の存在 .												126
	次元の不変性												129
	線型独立なべく	フトルと	:次:	元 .									129
	線形写像の核質	控間と基	甚底							•			130
	線形写像の像名	控間と列	空	間.						•			131
	線形写像の階数	文								•			133
	次元定理												134
	線形同型												135
	線形同型の性質	重											136
	線形同型写像と	之基底											139
	座標写像												139
	線形代数におり	ける鳩の	D巣	原理	1.								142
	次元による部分	分空間 0	D比i	較.									143
	核空間・像空間	引の次え	ī										145
第	9 章 表現行	「列と基	底	变換									147
	基底に関する層	を標べく	フト	ル.									147
	一般の基底に関	員する君	長現:	行列	J .								148
	表現行列の構成	戈											149
	線形変換の表現	見行列											151
	数ベクトル空間	間の基原	宝変:	換行	列								151
	線形空間の基底	医変換行	亍列										153
	基底変換による	る表現行		の変	化								156

	基底変換と階数標準形・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	158
第	10章 直和分解と不変部分空間	159
	部分空間の共通部分・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	159
	部分空間の和・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	160
	和空間の包含関係・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	163
	直和分解	165
	和空間と直和の次元・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	167
	不変部分空間	170
	写像の制限と不変部分空間・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	171
	不変部分空間への直和分解・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	174
	一次元不変部分空間	177
竺	11 章 行列の対角化	179
疖		
	固有値と固有ベクトル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	異なる固有値に属する固有ベクトル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	固有ベクトルによる行列の対角化	
	特性多項式と特性方程式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
	固有値の重複度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	190
	相似な行列の特性多項式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	192
	対角化可能な行列の特性多項式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	195
	固有空間	196
	対角化可能性	199
	固有空間分解	202
第	12 章 内積と計量空間	203
7 3	\mathbb{R}^n 上の内積とノルム	
	\mathbb{R}^n 上の内積の性質 \dots	
	\mathbb{R}^n 上の内積と直交 \dots	
	\mathbb{C}^n 上の内積 \dots	
	転置による内積の表現	
	計量線形空間	$\angle 10$

	直交基底	211
	正規直交基底	214
	ベクトルの正射影	217
	グラム・シュミットの直交化法	218
	計量同型	222
第	13章 複素行列と対角化 2	223
	転置行列と随伴行列・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	223
	ユニタリ行列と直交行列	226
	エルミート行列と対称行列	231
	エルミート行列の固有値	231
	正規行列	235
	正規行列の対角化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	236
	実対称行列の対角化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	243
笠	14 章 計量空間上の変換 2	245
ХÞ		2 43 245
		246
		247
		247
	正規変換	247
第	15 章 三角化と行列多項式 2	248
	行列の三角化・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	248
	QR 分解	250
	ユニタリ行列による三角化	252
	行列多項式	254
	フロベニウスの定理	254
	ケイリー・ハミルトンの定理	254
	最小多項式	254
<i><u> </u></i>	16 辛,古六垟应即飞舟县	.
弗		255
	直交補空間	255

	直交補質	控間による	直和分	·解.		•							. 256
	直交射影	影と反射影											. 259
	正規直列	芝基底に よ	る表現	行列	の展	荆							. 261
	射影行列	间											. 263
第	17 章	広義固有	空間										266
第	18章	特異値と	特異値	分解									267
第	19 章	抽象線形	空間										268
	線形空間	間の公理											. 268
	線形写信	象の空間											. 269
第	20 章	横べクト	ルの空	間									271
	線形関数	数											. 271
	横べク	トルの集合	ì										. 271
	双対基層	美											. 273
	自然なん	ペアリンク	·										. 275
	線形関数	数の集合											. 276
	縦ベク	トル空間と	:横ベク	トル	空間	の対	Z対·	性					. 278
	転置写信	象											. 279

第 1 章

ベクトル

いくつかの情報の組を並べて書いたものを<mark>ベクトル</mark>という また、ベクトルに並んだ情報の個数を<mark>次元</mark>という ref: 意味がわかる線形 代数 p16~19

線形関係式

$$c_1\boldsymbol{a}_1+c_2\boldsymbol{a}_2+\cdots+c_k\boldsymbol{a}_k=\mathbf{0}$$

を、 $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_k$ の線形関係式という

特に、 $c_1=c_2=\cdots=c_k=0$ として得られる線形関係式を自明な線形関係式という

これ以外の場合、つまり $c_i \neq 0$ となるような i が少なくとも 1 つあるならば、これは非自明な線形関係式である

線型独立と線形従属

線形従属なベクトルでは、その中の 1 つのベクトルが、他のベクトルの線 形結合で表される

 $oldsymbol{a}$ 線形結合によるベクトルの表現 $oldsymbol{a}_1, oldsymbol{a}_2, \dots, oldsymbol{a}_m \in K^n$ を線型独立なベクトルとする

 K^n のベクトル \boldsymbol{a} と $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_m$ が一次従属であるとき、

 \boldsymbol{a} は $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_m$ の線形結合で表される

すなわち、 $c_1, c_2, \ldots, c_m \in K$ を用いて次のように書ける

$$\boldsymbol{a} = c_1 \boldsymbol{a}_1 + c_2 \boldsymbol{a}_2 + \cdots + c_m \boldsymbol{a}_m$$

★ 証明

 $oldsymbol{a}$, $oldsymbol{a}$ ₁, . . . , $oldsymbol{a}$ _m が一次従属であるので、少なくとも 1 つは 0 でない係数 $oldsymbol{c}$, $oldsymbol{c}$ ₁, $oldsymbol{c}$ ₂, . . . , $oldsymbol{c}$ _m を用いて

$$c\boldsymbol{a}+c_1\boldsymbol{a}_1+c_2\boldsymbol{a}_2+\cdots+c_m\boldsymbol{a}_m=\boldsymbol{0}$$

が成り立つ

もしc=0 だとすると、 c_1,c_2,\ldots,c_m のいずれかが0 でないことになり、 $oldsymbol{a}_1,oldsymbol{a}_2,\ldots,oldsymbol{a}_m$ が線型独立であることに矛盾するよって、 $c\neq 0$ である

そのため、上式をcで割ることができ、aは

$$\boldsymbol{a} = -\frac{c_1}{c} \boldsymbol{a}_1 - \frac{c_2}{c} \boldsymbol{a}_2 - \cdots - \frac{c_m}{c} \boldsymbol{a}_m$$

という $oldsymbol{a}_1, oldsymbol{a}_2, \ldots, oldsymbol{a}_m$ の線形結合で表せる

ref: 行列と行列式の基 礎 p38~40

ref: 図で整理!例題で 納得!線形空間入門 p31 ~32 ・非自明な線形関係式の存在と線形従属 ベクトルの集まりは、 それらに対する非自明な線形関係式が存在するとき、そのときに 限り線形従属である

☎ 証明

ベクトルの集まりが線型独立であることは、それらに対する線形関 係式はすべて自明であるというのが定義である

それを否定すると、「自明でない線形関係式が存在する」となる

線型独立なベクトルの線形結合は一意的である

・ 線型独立性における線形結合の一意性 線型独立性は、線形 結合の一意性

$$c_1 \boldsymbol{a}_1 + \cdots + c_k \boldsymbol{a}_k = c'_1 \boldsymbol{a}_1 + \cdots + c'_k \boldsymbol{a}_k$$

 $\Longrightarrow c_1 = c'_1, \ldots, c_k = c'_k$

と同値である

線型独立性の定義式を移項することで得られる

この定理から、

線型独立性は、両辺の係数比較ができるという性質

であるとも理解できる

→ 単一ベクトルの線型独立性と零ベクトル

a_1 が線型独立 $\iff a_1 \neq 0$

証明

 \Longrightarrow

 $m{a}_1$ が線型独立であるとする

すると、 \boldsymbol{a}_1 に対する線形関係式

$$c_1 \boldsymbol{a}_1 = \mathbf{0}$$

が成り立つのは、 $c_1 = 0$ のときだけである

ここで、 $\mathbf{a}_1 = \mathbf{0}$ と仮定すると、 $c_1 \mathbf{0} = \mathbf{0}$ が成り立つので、 c_1 は任意の値をとることができる

これは、 $oldsymbol{a}_1$ に対する線形関係式が $c_1=0$ のときだけ成り立つという線型独立性の定義に反する

よって、 $a_1 \neq 0$ である

 \leftarrow

 $a_1 \neq 0$ とする

このとき、もし \mathbf{a}_1 に対する線形関係式

$$c_1 a_1 = 0$$

が成り立つとしたら、 $oldsymbol{a}_1
eq oldsymbol{0}$ なので、 $oldsymbol{c}_1$ は必ず $oldsymbol{0}$ でなければならない

したがって、 $oldsymbol{a}_1$ に対する線形関係式は $c_1=0$ のときだけ成り立つ

これは、 $oldsymbol{a}_1$ が線型独立であることを意味する

ベクトルの集合が張る空間

ref: 行列と行列式の基 礎 p6~8

 $m{\epsilon}$ ベクトルの集合が張る空間 k 個のベクトル $m{a}_1, m{a}_2, \ldots, m{a}_k \in \mathbb{R}^n$ を与えたとき、 $m{a}_1, m{a}_2, \ldots, m{a}_k$ の線形結合全体の集合を

$$\langle \boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_k \rangle$$

によって表し、これを $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_k$ が張る空間という

第 2 章

線形写像と行列の演算

行列の導入

長方形に並んだ数の集まりを

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

などと書き、行列と呼ぶ

横の数字の並びを行、縦の数字の並びを列と呼ぶ A は m 個の行と n 個の列をもつ行列である

第i行、第j列にある数字を a_{ij} と表し、これを(i,j)成分と呼ぶ

行がm個、列がn個の行列は、m行n列の行列、あるいは $m \times n$ 型の行列であるという

 $n \times n$ 型の場合、行列は正方形なので n 次正方行列と呼ぶ

ref: 行列と行列式の基 礎 1.4 A の成分から第 j 列だけを取り出して \mathbb{R}^m のベクトルとしたものが

$$oldsymbol{a}_j = egin{pmatrix} a_{1j} \ a_{2j} \ dots \ a_{mj} \end{pmatrix} \quad (1 \leq i \leq n)$$

であり、これを A の j 番目の \overline{M} 番目の \overline{M}

A は、これらを横に並べたものという意味で

$$A = (\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_n)$$

と書くことができる

 $oldsymbol{lpha}$ 行列とベクトルの積 $m \times n$ 型の行列 $A = (oldsymbol{a}_1, oldsymbol{a}_2, \ldots, oldsymbol{a}_n)$ と $oldsymbol{v} \in \mathbb{R}^n$ との積を

$$A\boldsymbol{v} = v_1\boldsymbol{a}_1 + v_2\boldsymbol{a}_2 + \cdots + v_n\boldsymbol{a}_n$$

により定める

ここで、 v_i は \boldsymbol{v} の第 i 成分である

 $A \mathbf{v}$ を考えるとき、ほとんどの場合は、A が 1 つ与えられていて \mathbf{v} がいろいろ動くという意識が強い

それは、行列 A のことを、ベクトルを与えて別なベクトルを作る

入力ベクトル
$$\boldsymbol{v} \rightarrow$$
 出力ベクトル \boldsymbol{Av}

という装置、すなわち写像だとみなすことである

 $oldsymbol{\iota}$ 行列とベクトルの積の性質 A, B を $m \times n$ 型行列、 $oldsymbol{u}$, $oldsymbol{v} \in \mathbb{R}^n$ 、 $c \in \mathbb{R}$ とするとき、次が成り立つ

i.
$$A(\boldsymbol{u}+\boldsymbol{v})=A\boldsymbol{u}+A\boldsymbol{v}$$

ii.
$$A(c\boldsymbol{v}) = cA\boldsymbol{v}$$

[Todo 1: ref: 行列と行列式の基礎 p24 (命題 1.4.3)]

線形写像の定義

ref: 行列と行列式の 基礎 2

- 線形写像と線形性 写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ が線形写像であるとは、次の 2 つの条件が成立することである
 - i. $f(c\boldsymbol{v}) = cf(\boldsymbol{v})$ がすべての $c \in \mathbb{R}$, $\boldsymbol{v} \in \mathbb{R}^n$ に対して成り立つ
 - ii. $f(\boldsymbol{u}+\boldsymbol{v})=f(\boldsymbol{u})+f(\boldsymbol{v})$ がすべての $\boldsymbol{u},\boldsymbol{v}\in\mathbb{R}^n$ に対して成り立つ

これらの性質を写像 f の線形性という

また、m=n のとき、線形写像 $f:\mathbb{R}^n \to \mathbb{R}^n$ を \mathbb{R}^n の線形変換と呼ぶ

線形変換は空間 \mathbb{R}^n からそれ自身への写像なので、 \mathbb{R}^n 内において「ベクトルが変化している」(あるいは f が空間 \mathbb{R}^n に作用している) ニュアンスと

 $f: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像とするとき、i より、

$$f(0 \cdot \boldsymbol{v}) = 0 \cdot f(\boldsymbol{v})$$

なので、

$$f(0) = 0$$

が成り立つ

♣ 零ベクトルの像 零ベクトルは線形写像によって零ベクトル に写される

m=n=1 のときは、線形写像 $f\colon \mathbb{R}^1 \to \mathbb{R}^1$ は、通常の意味の関数である

このとき、iの性質から、

$$f(c) = f(c \cdot 1) = c \cdot f(1) \quad (c \in \mathbb{R} = \mathbb{R}^1)$$

が成り立つので、 $a = f(1) \in \mathbb{R}$ とおくと、

$$f(x) = ax$$

と書ける

+ 一次元線形写像と比例関数の同一性 線形写像 $f: \mathbb{R}^1 \to \mathbb{R}^1$ は、a を比例定数とする比例関数である

線形写像の表現行列

 $f: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像とするとき、各基本ベクトル e_j の f による像を

$$f(oldsymbol{e}_j) = oldsymbol{a}_j = egin{pmatrix} a_{1j} \ a_{2j} \ dots \ a_{mj} \end{pmatrix}$$

と書くとする

これらを横に並べることによって、m 行 n 列の行列を作る

$$A = egin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} = (m{a}_1, m{a}_2, \dots, m{a}_n)$$

この行列 A を f の表現行列という

特に、 \mathbb{R}^n の線形変換の表現行列は n 次正方行列である

 \mathbb{R}^n の一般のベクトル \boldsymbol{v} を、基本ベクトルの線型結合として

$$oldsymbol{v} = \sum_{j=1}^n v_j oldsymbol{e}_j$$

と書く

このとき、f の線形性より、

$$f(oldsymbol{v}) = \sum_{j=1}^n v_j f(oldsymbol{e}_j) = \sum_{j=1}^n v_j oldsymbol{a}_j$$

となる

このベクトルの第i成分は

$$a_{i1}v_1 + a_{i2}v_2 + \cdots + a_{in}v_n$$

と書ける

これは $A \boldsymbol{v}$ の第 i 成分である

したがって、この記法を踏まえて、次のような表記ができる

→ 線形写像とその表現行列の関係

$$f(\boldsymbol{v}) = A\boldsymbol{v}$$

比例関数が比例定数 a だけで決まるのと同じように、線形写像は表現行列 A が与えられれば決まる

零写像と零行列 $f: \mathbb{R}^n \to \mathbb{R}^m$ を、すべての $\mathbf{v} \in \mathbb{R}^n$ に対して $f(\mathbf{v}) = \mathbf{0}$ と定めたものは明らかに線形写像であり、これを零写像と呼ぶ

その表現行列はすべての成分が0である行列であるこの行列を零行列と呼び、Oで表す

 $m \times n$ 型であることを明示するために $O_{m,n}$ と書くこともあるまた、n 次正方行列の場合は、 O_n と書く

恒等写像と単位行列 $f: \mathbb{R}^n \to \mathbb{R}^n$ を、すべての $\mathbf{v} \in \mathbb{R}^n$ に対して $f(\mathbf{v}) = \mathbf{v}$ と定めたものは明らかに線形写像である これを恒等写像と呼び、 $f = \mathrm{id}_{\mathbb{R}^n}$ と書く

恒等写像の表現行列は、 $f(\boldsymbol{e}_j) = \boldsymbol{e}_j$ (1 $\leq j \leq n$) より

$$E = (\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_n) = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

であり、これを単位行列と呼ぶ

単位行列は正方行列であり、n 次であることを明示したいときは E_n と書く

線形写像 f から行列 A を作ったのとは逆に、任意の行列から線形写像を作ることができる

 $extcolor{black}{\bullet}$ 行列から線形写像を作る $m \times n$ 型行列 A に対して、

$$f(\boldsymbol{v}) = A\boldsymbol{v} \quad (\boldsymbol{v} \in \mathbb{R}^n)$$

によって写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ を定めれば、f は線形写像である

行列とベクトルの積の性質より、f は線形写像であるまた、f の定義から明らかに A は f の表現行列である

№2 の線形変換の例

[Todo 2: ref: 行列と行列式の基礎 p51 - p56]

行列の積

$$f \circ g \colon \mathbb{R}^n \xrightarrow{g} \mathbb{R}^m \xrightarrow{f} \mathbb{R}^l$$

は、 \mathbb{R}^n から \mathbb{R}^l への線形写像である

[Todo 3: ref: 行列と行列式の基礎 p56 (問 2.2)]

f と g の表現行列をそれぞれ $A=(a_{ij}),\ B=(b_{ij})$ とするA は $l\times m$ 型、B は $m\times n$ 型の行列である

このとき、 $f \circ g$ は $l \times n$ 型行列で表現される それを C と書くことにして、その成分を計算しよう そのためには、基本ベクトルの写り先を見ればよい

B を列ベクトルに分解して $B = (\boldsymbol{b}_1, \boldsymbol{b}_2, \ldots, \boldsymbol{b}_n)$ と書くとき、

$$(f \circ g)(\boldsymbol{e}_j) = f(g(\boldsymbol{e}_j)) = f(\boldsymbol{b}_j) = A\boldsymbol{b}_j \quad (1 \le j \le n)$$

なので、

$$C = (A\boldsymbol{b}_1, A\boldsymbol{b}_2, \ldots, A\boldsymbol{b}_n)$$

となる

C の (i,j) 成分は Ab_j の第 i 成分なので、

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{im}b_{mj} = \sum_{k=1}^{m} a_{ik}b_{kj}$$

により与えられる

つまり、C の (i,j) 成分を計算するときは、A の第 i 行、B の第 j 列だけを見ればよい

$$\left(egin{array}{cccc} a_{i1} & a_{i2} & \dots & a_{im} \end{array}
ight) \left(egin{array}{cccc} b_{1j} & & & dots \ b_{2j} & & dots \ b_{mj} \end{array}
ight) = \left(egin{array}{cccc} & dots \ & dots \ & \sum_{k=1}^m a_{ik} b_{kj} & \dots \ & dots \ & dots \end{array}
ight)$$

このようにして得られた $l \times n$ 型行列 C を AB と書き、A と B の積と呼ぶ

$$E_m A = A$$

 $AE_n = A$

 \clubsuit 零行列との積 A を $m \times n$ 型とするとき、次が成り立つ

$$O_m A = AO_n = O_{m,n}$$

2 つの行列の積が順番に依らない場合、2 つの行列は可換であるという

一般には、2つの行列は可換であるとは限らない

つまり、ABとBAは一般には異なる

\$

[Todo 4: ref: 行列と行列式の基礎 p58 (例 2.2.3, 2.2.4)]

行列の和とスカラー倍

A, B がともに $m \times n$ 型行列であるとき、それぞれの (i,j) 成分を足すことで行列の和 A+B を定める

→ 分配法則 積が定義できるとき、

$$A(B+C) = AB + AC$$
$$(B+C)A = BA + CA$$

・ 行列の積とスカラー倍の性質 行列 A, B の積 AB が定義 できるとき、つまり A の列の個数と B の行の個数が同じである とき、 $c \in \mathbb{R}$ に対して

$$(cA)B = A(cB) = c(AB)$$

が成り立つ

$$h(\boldsymbol{v}) = f(\boldsymbol{v}) + g(\boldsymbol{v}) \quad (\boldsymbol{v} \in \mathbb{R}^n)$$

により写像 $h: \mathbb{R}^n \to \mathbb{R}^m$ を定めるとき、h も線形写像であるまた、f,g の表現行列を A,B とするとき、h の表現行列は A+B である

なお、h = f + g と書き、f, g の和と呼ぶ

[Todo 5: ref: 行列と行列式の基礎 p59 (問 2.5)]

$$cE = \begin{pmatrix} c & 0 & \cdots & 0 \\ 0 & c & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c \end{pmatrix}$$

行列 A にスカラー行列をかけることは、

$$(cE)A = A(cE) = cA$$

のように、スカラーcをかけるのと同じである

行列の積の結合法則

・積の結合法則 積 AB, BC がともに定義できるとき、

$$(AB)C = A(BC)$$

★ 写像による証明

 $A,\ B,\ C$ がそれぞれ $q\times m,\ m\times n,\ n\times p$ 型行列だとする 線形写像の合成

$$\mathbb{R}^p \xrightarrow{h} \mathbb{R}^n \xrightarrow{g} \mathbb{R}^m \xrightarrow{f} \mathbb{R}^q$$

を考え、f, g, h の表現行列をそれぞれ A, B, C とする 一般的な写像の合成の性質として、

$$(f \circ g) \circ h = f \circ (g \circ h)$$

が成り立つから、

$$(AB)C = A(BC)$$

がしたがう

★ 積の計算規則による証明

AB の (i, l) 成分は、

$$(AB)_{il} = \sum_{k=1}^{m} a_{ik} b_{kl}$$

これを用いて、

$$((AB)C)_{ij} = \sum_{l=1}^{n} (AB)_{il} c_{lj}$$
$$= \sum_{l=1}^{n} \left(\sum_{k=1}^{m} a_{ik} b_{kl} \right) c_{lj}$$

i,j はいま固定されているので、和には関係がない動いているのは k,l だけ

ここで、次の書き換えができる

関する和をとっていると読むことができる

$$egin{aligned} \sum_{l=1}^n \left(\sum_{k=1}^m a_{ik} b_{kl}
ight) c_{lj} &= \sum_{l=1}^n \left(\sum_{k=1}^m a_{ik} b_{kl} c_{lj}
ight) \ &= \sum_{l=1}^n \sum_{k=1}^m a_{ik} b_{kl} c_{lj} \end{aligned}$$

 $\sum_{l=1}^n$ の右にある式は l に関する和をとる前のものなので、l は止まっていると考えてよく、単純な分配法則を使っているまた、括弧がなくても、k に関する和を先にとって、その後で l に

このとき、和の順番は交換してもよいので、

$$\sum_{l=1}^{n} \sum_{k=1}^{m} a_{ik} b_{kl} c_{lj} = \sum_{k=1}^{m} \sum_{l=1}^{n} a_{ik} b_{kl} c_{lj}$$

$$= \sum_{k=1}^{m} a_{ik} \left(\sum_{l=1}^{n} b_{kl} c_{lj} \right)$$

$$= \sum_{k=1}^{m} a_{ik} (BC)_{kj}$$

先ほどと同様に、 $\sum_{k=1}^{m}$ の右では k は止まっていると考えている そして、この結果は、A(BC) の (i,j) である

結合法則が成り立つことが示されたので、(AB)C または A(BC) を表すとき、括弧を書かずに単に ABC と書いても問題ない行列の個数が増えても同様である

また、A が正方行列の場合は、

$$A^2 = AA$$
$$A^3 = AAA$$

などのように書く

行列の区分け

行列を

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

のようなブロック型に区分けして計算することがよくある

A が m imes n 型のとき、 $m=m_1+m_2$, $n=n_1+n_2$ として、 A_{ij} は $m_i imes n_j$ 型である

ref: 行列と行列式の基 礎 p64 また、B が $n \times l$ 型で、 $n = n_1 + n_2$, $l = l_1 + l_2$ と区分けして

$$B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

とするとき、

$$AB = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$
$$= \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix}$$

のように A_{ij} などが行列の成分であるかのようにして(ただし積の順序は 変えずに)積が計算できる

ここで、A の列の区分けと B の行の区分けの仕方が同じであることが必要である

3 つ以上のブロックに分ける場合も同様である

行列の転置

行列 $A=(a_{ij})$ に対し、その成分の行と列の位置を交換してできる行列を転置行列という

転置行列 $A=(a_{ij})$ を $m\times n$ 型行列とするとき、(i,j) 成分が a_{ji} である $n\times m$ 型行列を A の転置行列と呼び、 ${}^t\!A$ と表す

文字 t を左肩に書くのは、右肩に書くと t 乗に見えてしまうからである t 乗と区別しつつ、右肩に書く流儀として、 A^T と書く場合もある

特別な場合として、n 次の数ベクトル $m{v}$ を $n \times 1$ 型行列とみて転置した もの $^t m{v}$ は $1 \times n$ 型行列となる

ref: 行列と行列式の基

礎 p78

ref: 長岡亮介 線形代数

入門講義 p30

すなわち、数ベクトルの転置は横ベクトルになる

このことを利用して、たとえば

$$egin{pmatrix} v_1 \ v_2 \ dots \ v_n \end{pmatrix}$$

を $^t(v_1, v_2, \ldots, v_n)$ と表記することもある

転置は「行と列の入れ替え」であるので、明らかに次が成り立つ

$$^{t}(^{t}A) = ^{tt}A = A$$

$$^{t}(AB) = {}^{t}\!B^{t}\!A$$

[Todo 6: ref: 行列と行列式の基礎 p78 命題 2.5.3]

対称行列と交代行列

正方行列 A が「転置しても元と変わらない」としたら、A の成分は左上から右下にかけての対角線に関して $\overline{\gamma}$ 称($a_{ij}=a_{ji}$)になっている

ref: 長岡亮介 線形代数 入門講義 p30

$${}^t\!A=A$$

$${}^t\!A = -A$$

三角行列

♣ 上三角行列の積 上三角行列どうしの積は上三角行列となる

[Todo 7:]

・ 正則な上三角行列の逆行列 正則な上三角行列は、その逆行
列も上三角行列である

[Todo 8:]

対角行列

ightharpoonup 対角成分 正方行列 $A=(a_{ij})$ に対して、 a_{ii} を<mark>対角成分</mark>と呼ぶ

★ 対角行列 対角成分以外の成分がすべて 0 である正方行列 を対角行列と呼ぶ

 $a_{ii} = c_i$ $(1 \le i \le n)$ である対角行列を次のように表す

$$\operatorname{diag}(c_1, c_2, \dots, c_n) = \begin{pmatrix} c_1 & 0 & \cdots & 0 \\ 0 & c_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & c_n \end{pmatrix}$$

・ 対角行列と列ベクトルのスカラー倍 右から対角行列をかけると、各列ベクトルがスカラー倍になる

tan b, $A = (\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n)$ b

$$A \cdot \operatorname{diag}(c_1, c_2, \ldots, c_n) = (c_1 \boldsymbol{a}_1, c_2 \boldsymbol{a}_2, \ldots, c_n \boldsymbol{a}_n)$$

が成り立つ

証明

[Todo 9: ref: 行列と行列式の基礎 p63 (問 2.8)]

正方行列のトレース

ref: 行列と行列式の基 礎 p64

 $rac{1}{2}$ トレース 正方行列 $A=(a_{ij})$ に対して、対角成分の和

$$\sum_{i=1}^n a_{ii}$$

を A のトレースと呼び、tr(A) と表す

♣ トレースの性質

i.
$$tr(A + B) = tr(A) + tr(B)$$

ii.
$$tr(cA) = ctr(A)$$

iii.
$$tr(AB) = tr(BA)$$

[Todo 10: ref: 行列と行列式の基礎 p64 問 2.9]

行列と複素数

$$I = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

とおき、

$$aE + bI = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \quad (a, b \in \mathbb{R})$$

という形の行列を<mark>複素数</mark>と呼ぶことにより、複素数の定義ができる この定義では、通常は a+bi と書かれるものを行列として実現している

[Todo 11: ref: 意味がわかる線形代数 p43~49]

第 3 章

連立一次方程式と階数

掃き出し法

連立一次方程式において、文字の個数や方程式の本数が増えた場合にも見 通しよく計算を進めるためには、掃き出し法と呼ばれる方法がある

ref: 行列と行列式の基 礎 p18~21

掃き出し法の基本方針は、次の形を目指すことである

$$\begin{cases} \star x_1 + *x_2 + *x_3 = * \\ \star x_2 + *x_3 = * \\ \star x_3 = * \end{cases}$$

- * はどんな数であってもよい(同じ数でなくてもよい)
- * は 0 でない数を意味する

この形の方程式は**上三角形**と呼ばれ、いつでもこの形に変形できるわけではないが、**1** つの理想形である

連立一次方程式の行列表記

ref: 行列と行列式の基

礎 p22~25

未知数 x_1, x_2, \ldots, x_n に関する連立方程式として

$$\begin{cases} a_{11}x_1 + a_{12} x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22} x_2 + \dots + a_{2n}x_n = b_2 \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

を考える

 a_{ij} などは与えられた定数であり、係数と呼ばれる i 番目の式の x_i の係数を a_{ij} と書いている

ここで、係数だけを集めて行列を作る

$$A = egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ & dots & & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

すると、先ほどの連立方程式は、ベクトル形で

$$x_1\boldsymbol{a}_1 + x_2\boldsymbol{a}_2 + \cdots + x_n\boldsymbol{a}_n = \boldsymbol{b}$$

と書ける

また、n 個の未知数 x_1, x_2, \ldots, x_n からベクトルを作る

$$oldsymbol{x} = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}$$

すると、ベクトル形の方程式の左辺のベクトルを、行列 A とベクトル x の 積と考えて、Ax と表記できる

こうして、もとの連立一次方程式は、行列形の方程式

$$A\boldsymbol{x} = \boldsymbol{b}$$

に書き換えられる

行基本変形

連立一次方程式を行列によってとり扱うとき、1 つ 1 つの方程式は行列の 行によって表されている

ref: 行列と行列式の基 礎 p25

よって、行列の行に関する次のような操作(変形)を考えることは自然である

彦 行基本変形 行列への次の3種類の操作を行基本変形という

- i. ある行の定数倍を他の行に加える
- ii. ある行に O でない数をかける
- iii. 2 つの行を交換する

原則として上三角型を目指してこのような変形を繰り返すが、いつでも上三角型にできるわけではなく、行階段行列と呼ばれる形を作っていくのが掃き出し法と呼ばれる手法である

成分を要にして掃き出す

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 4 & 5 & -3 \\ -2 & 3 & 2 \end{pmatrix}_{R_3}^{R_1}$$

まず、(1,1) 成分より下の成分が 0 になるように基本変形を適用するこのことを、 $\lceil (1,1)$ 成分を要にして、1 列を掃き出す」と表現する

$$\begin{pmatrix} \boxed{1} & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 8 & 14 \end{pmatrix} \xrightarrow{R_1} \begin{pmatrix} \boxed{1} & 2 & 3 \\ R_2 \rightarrow \begin{pmatrix} \boxed{1} & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 2 & 5 \end{pmatrix} \xrightarrow{R_1} \xrightarrow{R_2 \leftarrow R_2 - 2R_1} \xrightarrow{R_3 \leftarrow R_3 - 3R_1}$$

以降のステップでは、第1行と第1列は変化させない

ref: 行列のヒミツがわ かる! 使える! 線形代数 講義 p76~81 今度は、(2,2)成分を要にして掃き出す

$$\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 2 & 5 \end{pmatrix} \xrightarrow{R_1} \begin{pmatrix} 1 & 2 & 3 \\ R_2 \rightarrow \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1} \xrightarrow{R_2 \leftarrow R_2 - 2R_1} \xrightarrow{R_3 \leftarrow R_3 - 2R_2}$$

行階段行列

掃き出し法では、あるステップで下の成分がすべて O になって、

のような形になるのが典型例である

0 でない成分を ♠ で、任意の値をもつ成分を * で表した

一般には、成分が 0 ばかりの行が下にくる

そのような行を零行という

零行が現れない場合もあるし、複数現れる場合もある

零行でない行に対して、一番左の O でない成分 ♠ を主成分あるいは行に 関する要と呼ぶ

先ほど示した形では、行の主成分は左上から斜め右下 **45°** 方向にまっすぐ 並んでいるが、一般にはそうできるとは限らない

しかし、次のような形には必ずできる

ref: 行列と行列式の基

礎 p26~28

ref: 行列のヒミツがわ かる!使える!線形代数

講義 p81~84

- 零行でない行の主成分が、下の行ほど 1 つ以上右にある
- 零行がある場合は、まとめてすべて下にある

どんな行列も、行基本変形の繰り返しで行階段行列にできる

行列の階数

行階段行列に変形することで、重要な量が読み取れる

ref: 行列と行列式の基 礎 p28~29

変形の結果として得られる行階段行列は 1 通りとは限らないし、変形の途中の掃き出しの手順も 1 通りとは限らないが、

階数は A のみによって定まる値である

ことが後に証明できる

A が $m \times n$ 型ならば、行は m 個なので、 $\mathrm{rank}(A)$ は 0 以上 m 以下 の整数である

行階段行列において、零行でない行の個数は主成分の個数と一致するので、 階数は行階段行列に変形したときの主成分の個数でもある

行基本行列の主成分は各列に高々 1 つなので、主成分の個数は列の個数 n を超えない

したがって、次の重要な評価が成り立つ

$$0 \le \operatorname{rank}(A) \le \min(m, n)$$

必要に応じて、行階段行列をさらに変形して次のような形にする

行の主成分はすべて 1 で、主成分のある列の主成分以外の成分はすべて 0

この形を簡約化された行階段行列あるいは既約行階段行列と呼ぶ

与えられた行列 A に対して、行基本変形の繰り返しで得られる行階段行列 は一意的ではないが、簡約化された行階段行列は一意的であることを後に 議論する

そこで、簡約化された行階段行列を A。と書くことにする

変形の過程を

である

行列 $A \rightarrow$ 行階段行列 \rightarrow 簡約化された行階段行列 A。

と 2 段階にわけるのは、計算の効率以上の意味がある 行階段行列にするところまでで解決する問題(解の存在と一意性など)も あるからである ref: 行列と行列式の基

礎 p29~30

ref: 行列のヒミツがわかる!使える!線形代数

講義 p82

連立一次方程式を解く

方程式を解くということは、次のような問題に答えることである

ref: 行列と行列式の基 礎 p25

- A. 解は存在するか?
- B. 解が存在する場合、それはただ 1 つの解か?
- C. 解が複数存在する場合は、どれくらい多く存在するのか?
- D. 解全体の集合をいかにしてわかりやすく表示できるか?

拡大係数行列

A を m 行 n 列の行列、 $b \in \mathbb{R}^m$ とし、線形方程式

 $A\boldsymbol{x} = \boldsymbol{b}$

ref: 行列と行列式の基 礎 p31~32

を考える

これは、n 個の文字に関する m 本の連立方程式である

 \boldsymbol{x} は未知数 x_1, x_2, \ldots, x_n を成分とするベクトルである

このとき、A は方程式の係数行列と呼ばれる

A の右端に列ベクトル b を追加して得られる m 行 (n+1) 列の行列

$$\tilde{A} = (A \mid \boldsymbol{b})$$

を考えて、これを拡大係数行列という

斉次形

b=0 の場合、つまり

 $A\boldsymbol{x} = \mathbf{0}$

の形の線形連立方程式は斉次形であるという

斉次形の場合は $\mathbf{x} = \mathbf{0}$ が明らかに解になっていて、これを自明解というしたがって、自明解以外に解が存在するかどうかが基本的な問題である

解の存在条件

まず、一般の **b** の場合の解の存在(問題 A) について考える

拡大係数行列 $ilde{A}$ は A の右端に 1 列追加して得られるので、掃き出しの過程を考えると、 $\mathrm{rank}(ilde{A})$ は $\mathrm{rank}(A)$ と等しいか、1 だけ増えるかのどちらかであることがわかる

また、方程式の拡大係数行列の行に関する基本変形は、元の連立方程式と同値な式への変形であるため、

基本変形によって得られる方程式の解は、元の方程式の解と同じ

となる

そこで、 $\tilde{A}=(A\mid \pmb{b})$ の既約行階段形を $(P\mid \pmb{q})$ とし、 $A\pmb{x}=\pmb{b}$ の代わりに

$$Px = a$$

を解くことを考える

まず、

$$P = \begin{pmatrix} P_1 \\ O \end{pmatrix}, \quad \boldsymbol{q} = \begin{pmatrix} \boldsymbol{q}_1 \\ \boldsymbol{q}_2 \end{pmatrix}$$

とおく

ここで、 P_1 は $r \times n$ 行列($r = \operatorname{rank}(P)$)とし、 \boldsymbol{q}_1 は r 次元列ベクトル、 \boldsymbol{q}_2 は m-r 次元列ベクトルとする

 $\mathsf{tac}(P\mathbf{x} = \mathbf{q})$

$$\begin{pmatrix} P_1 \\ O \end{pmatrix} \boldsymbol{x} = \begin{pmatrix} P_1 \boldsymbol{x} \\ \boldsymbol{o} \end{pmatrix} = \begin{pmatrix} \boldsymbol{q}_1 \\ \boldsymbol{q}_2 \end{pmatrix}$$

ref: 行列のヒミツがわ かる!使える!線形代数 講義 p110~111 と表せる

このとき、この方程式が解を持つには、 $\mathbf{q}_2 = \mathbf{o}$ でなければならないたとえば、

$$q_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

だとしたら、

$$\begin{pmatrix} P_1 \boldsymbol{x} \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \boldsymbol{q}_1 \\ 0 \\ -1 \end{pmatrix}$$

となり、0 = -1 という矛盾が生じる時点で、この方程式は不能になる

このような $\mathbf{q}_2 \neq \mathbf{0}$ の場合、拡大係数行列の階数は、係数行列の階数 +1 となっている

$$P = \begin{pmatrix} 1 & 0 & 0 & * & * & 0 \\ 0 & 1 & 0 & * & * & 0 \\ 0 & 0 & 1 & * & * & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(P \mid \mathbf{q}) = \begin{pmatrix} 1 & 0 & 0 & * & * & 0 & 0 \\ 0 & 1 & 0 & * & * & 0 & 0 \\ 0 & 0 & 1 & * & * & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

一方、 $\mathbf{q}_2 = \mathbf{o}$ であれば、方程式は

$$P_1 \boldsymbol{x} = \boldsymbol{q}_1$$

となる

ここで、 P_1 は $r={\rm rank}(P)$ 個の行をもち、行数と階数が一致しているということは、すべての行に主成分が現れていることを意味する

主成分は最も左側にある 0 でない成分なので、係数拡大行列にするために右に 1 列追加したとしても、主成分の数は増えることがないすなわち、 $\mathbf{q}_2 = \mathbf{o}$ の場合は係数行列と拡大係数行列の階数が一致する

以上の考察から、連立方程式 Ax = b の解が存在する条件は、

係数行列と係数拡大行列の階数が等しい

ことだとわかる

そして、その階数 r は、係数行列の行数とも一致していたため、次の 2 つの定理が得られる

 $oldsymbol{1}$ 拡大係数行列と解の存在条件 A を $m \times n$ 型行列、 $oldsymbol{b} \in \mathbb{R}^m$ とする

$$\operatorname{rank}(\tilde{A}) = \operatorname{rank}(A) \Longleftrightarrow A\boldsymbol{x} = \boldsymbol{b}$$
 に解が存在する

証明

[Todo 12: ref: 行列と行列式の基礎 p31 (定理 1.5.1)]

 \clubsuit 解の存在条件の系 A を $m \times n$ 型行列とするとき、

 $^{orall}oldsymbol{b}\in\mathbb{R}^{m}$, $Aoldsymbol{x}=oldsymbol{b}$ の解が存在する \Longleftrightarrow rank(A)=m

証明

[Todo 13: ref: 行列と行列式の基礎 p32 (定理 1.5.2, 1.5.3)]

一般解のパラメータ表示

右端の列に主成分がない場合は、一般には無数個の解が存在する 解の集合が直線を成していたり、もっと高い次元の図形になっていること がある

ref: 行列と行列式の基 礎 p33~36

解が 1 つに定まらない場合は、解の全体像を知ることが方程式を「解く」 ことになる

係数行列 A の n 個の列が、n 個の変数に対応していることを思い出そう

たとえば、次のような既約行階段形に変形した拡大係数行列を考える

$$\tilde{A_0} = \begin{pmatrix} 1 & 3 & 4 \\ 1 & 2 & 0 & 0 & -1 & | & -3 \\ 0 & 0 & 1 & 0 & 2 & | & 1 \\ 0 & 0 & 0 & 1 & 1 & | & 2 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

変数を使って方程式の形に直すと、

$$\begin{cases} x_1 + 2x_2 + 0x_3 + 0x_4 - x_5 = -3 \\ 0x_1 + 0x_2 + x_3 + 0x_4 + 2x_5 = 1 \\ 0x_1 + 0x_2 + 0x_3 + x_4 + x_5 = 2 \end{cases}$$

主成分がある列は 1, 3, 4 列なので、主変数は x_1 , x_3 , x_4 であるそれ以外の x_2 , x_5 は自由変数となる

$$\begin{cases} x_1 + 2x_2 & -x_5 = -3 \\ x_3 & +2x_5 = 1 \\ x_4 + x_5 = 2 \end{cases}$$

において、自由変数を含む項を左辺に移行すれば、

$$\begin{cases} x_1 & = -3 - 2x_2 + x_5 \\ x_3 & = 1 - 2x_5 \\ x_4 = 2 - x_5 \end{cases}$$

となる

自由変数の値を自由に選んで、主変数の値をこの等式によって定めれば、方程式の解になる

そこで、

$$x_2=t_1, \quad x_5=t_2$$

とおけば、

$$\begin{cases} x_1 & = -3 - 2t_1 + t_2 \\ x_3 & = 1 - 2t_2 \\ x_4 = 2 - t_2 \end{cases}$$

すなわち、

$$\left\{egin{array}{lll} x_1 & & = -3 - 2t_1 + t_2 \ & x_2 & = t_1 \ & & & = 1 - 2t_2 \ & & & & = 2 - t_2 \ & & & & & & & \end{array}
ight.$$

と書ける

これをベクトル形に直すことで、一般的な解のパラメータ表示を得られる

$$\boldsymbol{x} = \begin{pmatrix} -3 \\ 0 \\ 1 \\ 2 \\ 0 \end{pmatrix} + t_1 \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t_2 \begin{pmatrix} 1 \\ 0 \\ -2 \\ -1 \\ 1 \end{pmatrix}$$

[Todo 14: ref: 長岡亮介 線形代数入門講義 p66~69]

一般化するために、 $P\boldsymbol{x} = \boldsymbol{q}$ を次のように表して考える

$$(P \mid \boldsymbol{q}) = egin{pmatrix} oldsymbol{p}_1 & q_1 \ dots & dots \ oldsymbol{p}_r & q_r \ oldsymbol{0} & q_{r+1} \ dots & dots \ oldsymbol{0} & q_m \end{pmatrix}$$

ここで、 $\boldsymbol{p}_1 \neq \boldsymbol{0}, \ldots, \boldsymbol{p}_r \neq \boldsymbol{0}$ であるとする

このとき、解を持つための条件は、

$$q_{r+1} = q_{r+2} = \cdots = q_m = 0$$

であった

さて、P において、主成分を含む列を j_1, j_2, \ldots, j_r ($r = \operatorname{rank}(P)$) とする

$$(P \mid q) = \begin{pmatrix} 1 & * & 0 & \cdots & 0 & * & * & q_1 \\ 0 & 0 & 1 & \cdots & 0 & * & * & q_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & * & * & q_r \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \end{pmatrix}$$

すると、主変数 x_{j_i} $(i=1,2,\ldots,r)$ は、次のように表される

ref: 図で整理!例題で 納得!線形空間入門 p300~301

$$egin{aligned} x_{j_i} + \sum_k \star x_k &= q_i \quad (k > j_i
abla \supset k
otin \{j_1, j_2, \dots, j_r\}) \ &\therefore x_{j_i} &= q_i - \sum_k \star x_k \end{aligned}$$

ここで、 x_k は j_i よりも右にある \star に対応する変数である 既約行階段行列では、 j_i 列の主成分以外の要素はすべて 0 であるため、 \star に対応する自由変数のみが残る(これが $k \notin \{j_1, j_2, \ldots, j_r\}$ とした意味である)

つまり、 $x_{j_1},x_{j_2},\ldots,x_{j_r}$ 以外の自由変数 x_k に勝手な数を与えるごとに、主変数 $x_{j_1},x_{j_2},\ldots,x_{j_r}$ は定まる

このような自由変数は n-r 個あるので、 $P \boldsymbol{x} = \boldsymbol{q}$ の解は、n-r 個のパラメータを用いて表せる

まとめると、解が存在する場合には、r を行列 A の階数として

$$oldsymbol{x} = oldsymbol{q} + \sum_{i=1}^{n-r} t_i oldsymbol{u}_i$$

という形の一般解の表示(問題 D の答え)が得られる

ここで、パラメータ t_i をかけた列ベクトル u_i を連立方程式のk本解と呼ぶ

また、パラメータをかけていない列ベクトル q は、連立方程式の定数項から決まる解であり、これを特殊解と呼ぶ

ref: 行列のヒミツがわ かる!使える!線形代数 講義 p103

解の自由度

連立一次方程式の一般解は、基本解の線形結合と特殊解の和で表された そして、基本解の線形結合は、基本解の個数の分だけパラメータを用いて 表された

ref: 行列のヒミツがわ かる!使える!線形代数 講義 p113~114 パラメータの個数は、自由変数の個数でもあり、基本解の個数でもある

このとき、パラメータの個数は、解を表す自由度と考えられる そこで、解を表すパラメータの個数を解の自由度と呼ぶ

解の自由度 = (変数の個数)
$$- \operatorname{rank}(A)$$

= $n - r$

解の自由度は、解全体のなす集合の大きさ、すなわち何次元の空間なのかを表している(問題 C の答え)

解の一意性

ここまでの議論で、問題 B が解決している

ref: 行列と行列式の基 礎 p37~38

解が一意的である \iff rank(A) = n

ここで、n は変数の個数である

 $\operatorname{rank}(A)=n$ であれば、解の自由度は n-n=0、すなわち自由変数が存在しないことになる

自由変数がなければ「各変数=定数」という式に変形できる ことになるので、解は明らかに一意的である ■

 \Longrightarrow

対偶 $rank(A) \neq n \Longrightarrow$ 解が一意的 を示す

 ${\sf rank}(A) \le n$ であるので、 ${\sf rank}(A) \ne n$ は ${\sf rank}(A) < n$ を意味する

 ${\sf rank}(A) < n$ であれば、自由変数が 1 つ以上存在するので解は無数にある

よって、解は一意的ではない

斉次形の場合の非自明解の存在問題も解決している

自明解しか存在しない \iff rank(A) = n

ここで、n は変数の個数である

斉次形の場合は自明解が常に存在するので、解の一意性 $\operatorname{rank}(A) = n$ は、それ以外の解がないということを意味している

解のパラメータ表示の一意性

自由変数を $x_{j_1},\ldots,x_{j_{n-r}}$ とするとき、一般解の表示

$$\boldsymbol{x} = \boldsymbol{x}_0 + t_1 \boldsymbol{u}_1 + t_2 \boldsymbol{u}_2 + \cdots + t_{n-r} \boldsymbol{u}_{n-r}$$

の j_k 番目の成分は等式

$$x_{i_k} = t_k$$

を意味するので、解が与えられたとき、パラメータの値は直接に読み取れる

このことから、

$$\mathbf{x} = \mathbf{x}_0 + t_1 \mathbf{u}_1 + t_2 \mathbf{u}_2 + \cdots + t_{n-r} \mathbf{u}_{n-r}$$

によって解を表示する際のn-r個のパラメータの値は一意的に定まることがわかる

この事実は、 $\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_{n-r} \in \mathbb{R}^m$ が線形独立であると表現される

非自明解の存在と有限従属性定理

斉次形方程式 Ax = 0 の非自明解の存在に対して、次の解釈もできる

ref: 行列と行列式の基 礎 p40~41

 $oldsymbol{\$}$ 斉次形方程式の非自明解の存在と線形従属 $m \times n$ 型行列 A の列ベクトルを $oldsymbol{a}_1, oldsymbol{a}_2, \ldots, oldsymbol{a}_n$ とするとき、

 $A oldsymbol{x} = oldsymbol{0}$ に自明でない解がある $oldsymbol{a}_1, oldsymbol{a}_2, \ldots, oldsymbol{a}_n$ が線形従属

Ax = 0 は、ベクトルの等式

$$x_1\boldsymbol{a}_1 + x_2\boldsymbol{a}_2 + \cdots + x_n\boldsymbol{a}_n = \mathbf{0}$$

と同じものである

もし自明でない解があるならば、 x_1, x_2, \ldots, x_n のうち少なくとも 1 つは 0 ではない

 $x_1 \boldsymbol{a}_1 + x_2 \boldsymbol{a}_2 + \cdots + x_n \boldsymbol{a}_n = \boldsymbol{0}$ が成り立つもとで、 $\boldsymbol{0}$ でない係数が存在するということは、 $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_n$ が線形従属であることを意味する

対偶を示す

 a_1, a_2, \ldots, a_n が線形独立であれば、

$$x_1\boldsymbol{a}_1 + x_2\boldsymbol{a}_2 + \cdots + x_n\boldsymbol{a}_n = \mathbf{0}$$

において、すべての係数 x_1, x_2, \ldots, x_n は 0 でなければならない

よって、0以外の解(非自明解)は存在しないことになる

斉次形方程式に自明でない解が存在することは、 $rank(A) \neq n$ 、すなわち解の自由度が 0 ではないことと同値であった

一般に、斉次形の線型方程式 Ax = 0 の解の自由度は、n を変数の個数とするとき $n - \operatorname{rank}(A)$ なので、次が成り立つ

 $oldsymbol{a}$ 列ベクトルの線型独立性と階数 $oldsymbol{a}_1, oldsymbol{a}_2, \dots, oldsymbol{a}_n \in \mathbb{R}^m$ に対して、 $oldsymbol{A} = (oldsymbol{a}_1, oldsymbol{a}_2, \dots, oldsymbol{a}_n)$ とおくと、

$$oldsymbol{a}_1, oldsymbol{a}_2, \ldots, oldsymbol{a}_n$$
が線型独立 \Longleftrightarrow $\operatorname{rank}(A) = n$

このことから、次の重要な結論が導かれる

「Todo 15: ref: 行列と行列式の基礎 p41 (系 1.6.6)]

この結論は、幾何的な直観からは自然だといえる 平面 \mathbb{R}^2 内の 3 つ以上のベクトルがあれば、自動的に線形従属になる

この事実は、次元の概念を議論する際の基礎になる

同じことを線型方程式の文脈に言い換えると、次のようになる

・・・・ 有限従属性定理の線型方程式版 斉次線型方程式 Ax = 0
において、変数の個数が方程式の個数よりも多いときには、非自明な解が存在する

また、次のようにも言い換えられる

・ 有限従属性定理の抽象版 $\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \in \mathbb{R}^n$ とする $\langle \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \rangle$ に含まれる k 個よりも多い個数のベクトルの 集合は線形従属である

[Todo 16: ref: 行列と行列式の基礎 p41 (問 1.14)]

次の事実は、行変形のもっとも重要な性質である

・ 行基本変形による線型独立性の不変性 行変形はベクトルの 線形関係を保つ

すなわち、行列 $A=(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)$ に行の変形を施して B=

ref: 行列と行列式の基 礎 p42~44 (b_1,\ldots,b_n) が得られたとするとき、

$$\sum_{i=1}^n c_i \boldsymbol{a}_i = \mathbf{0} \Longleftrightarrow \sum_{i=1}^n c_i \boldsymbol{b}_i = \mathbf{0}$$

特に、

 $\{\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n\}$ が線型独立 $\Longleftrightarrow \{\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n\}$ が線型独立

証明

主列ベクトル 行列 $A = (\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n)$ を行階段形に したときに、主成分のある列番号を i_1, i_2, \dots, i_r とする ここで、r は A の階数である このとき、 $\boldsymbol{a}_{i_1}, \boldsymbol{a}_{i_2}, \dots, \boldsymbol{a}_{i_r}$ を主列ベクトルという

・ 主列ベクトルと線型独立性 行列の主列ベクトルの集合は線型独立である

また、主列ベクトル以外の列ベクトルは、主列ベクトルの線形結 合である

証明

[Todo 18: ref: 行列と行列式の基礎 p43 (命題 1.6.11)]

掃き出し法は、行列の列ベクトルの中から、rank(A) 個の線型独立な列ベクトルを選び出す方法を与えていることになる

・ 列ベクトルの線形従属性と階数 行列 A の列ベクトルから rank(A) 個よりも多いベクトルを選ぶと、線形従属になる

[Todo 19: ref: 行列と行列式の基礎 p43 (命題 1.6.12)]

以上によって、行列の階数に関する次の理解が得られたことになる

・ 階数と線型独立な列ベクトルの最大個数 行列 A の階数 rank(A) は、A の列ベクトルに含まれる線型独立なベクトルの最大個数と一致する

[Todo 20: ref: 行列と行列式の基礎 p43 (定理 1.6.13)]

「行変形を繰り返して行階段形にしたときの 0 でない段の数」として導入した階数という量の、より本質的な意味がわかったことになる

特に、

行変形によって定めた階数が行変形の仕方によらない

という事実がこの定理からしたがう

♣ 2 つの行列の階数の和 A, B を同じ型の行列とするとき、

$${\rm rank}(A+B) \leq {\rm rank}(A) + {\rm rank}(B)$$

[Todo 21: ref: 行列と行列式の基礎 p44 問 1.15]

第 4 章

線形写像の単射性と全射性

線形写像とベクトルの線型独立性

 $oldsymbol{\$}$ 線形写像と線形独立性 $f\colon \mathbb{R}^n o \mathbb{R}^m$ を線形写像、 $oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_n \in \mathbb{R}^n$ とする

ベクトル $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n$ の f による像

$$f(\boldsymbol{v}_1), f(\boldsymbol{v}_2), \ldots, f(\boldsymbol{v}_n)$$

が線型独立であるとき、 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}$ も線型独立である

ref: 行列と行列式の基

礎 p65~66

ref: 図で整理!例題で 納得!線形空間入門 p71

~73

☎ 証明

 \boldsymbol{v}_1 , \boldsymbol{v}_2 , . . . , \boldsymbol{v}_n の線形結合

 $c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2+\cdots+c_n\boldsymbol{v}_n=\mathbf{0}$

を考える

この両辺を f で写すと、f の線形性と零ベクトルの像 $f(\mathbf{0}) = \mathbf{0}$

を使って

$$c_1 f(\boldsymbol{v}_1) + c_2 f(\boldsymbol{v}_2) + \cdots + c_n f(\boldsymbol{v}_n) = f(\boldsymbol{0}) = \boldsymbol{0}$$

仮定より $f(\boldsymbol{v}_1), f(\boldsymbol{v}_2), \ldots, f(\boldsymbol{v}_n)$ は線型独立なので、 $c_1 = c_2 = \cdots = c_n = 0$ であるよって、

$$c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2+\cdots+c_n\boldsymbol{v}_n=\mathbf{0}$$

を満たす c_1, c_2, \ldots, c_n は 0 しかないので、 $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n\}$ は線型独立である

次の定理は、平行なベクトルを線型写像で写した結果、平行でなくなった りはしないということを述べている

。線形写像と線形従属性 $f: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像、 $m{v}_1, m{v}_2, \ldots, m{v}_n \in \mathbb{R}^n$ とする $\{m{v}_1, \ldots, m{v}_n\}$ が線形従属ならば、 $\{f(m{v}_1), \ldots, f(m{v}_n)\}$ は線形従属である

証明

 $\{ oldsymbol{v}_1, \ldots, oldsymbol{v}_n \}$ が線形従属であるとは、少なくとも 1 つは 0 でないある定数 k_1, k_2, \ldots, k_n が存在して

$$k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots + k_n \mathbf{v}_n = \mathbf{0}$$

が成り立つことを意味する

この両辺を f で写すと、線形性より

$$k_1 f(\boldsymbol{v}_1) + k_2 f(\boldsymbol{v}_2) + \cdots + k_n f(\boldsymbol{v}_n) = f(\boldsymbol{0}) = \boldsymbol{0}$$

が成り立つ

よって、 $\{f(\boldsymbol{v}_1), f(\boldsymbol{v}_2), \ldots, f(\boldsymbol{v}_n)\}$ も線形従属である

たとえば平行四辺形の像が線分や 1 点になったりしないことなどは、 $\{m{v}_1, m{v}_2, \dots, m{v}_n\}$ が線型独立ならば、 $\{f(m{v}_1), f(m{v}_2), \dots, f(m{v}_n)\}$ も線型独立である」と表現できる

 $oldsymbol{\$}$ 単射な線型写像は線型独立性を保つ 線型写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ が単射であるとき、 $\{oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_n\}$ が線型独立ならば、 $\{f(oldsymbol{v}_1), f(oldsymbol{v}_2), \dots, f(oldsymbol{v}_n)\}$ も線型独立である

証明

 $f(\boldsymbol{v}_1)$, $f(\boldsymbol{v}_2)$, . . . , $f(\boldsymbol{v}_n)$ の線形結合

$$c_1f(\boldsymbol{v}_1)+c_2f(\boldsymbol{v}_2)+\cdots+c_nf(\boldsymbol{v}_n)=\mathbf{0}$$

を考える

f の線形性と零ベクトルの像 $f(\mathbf{0}) = \mathbf{0}$ より、次のように書き換えられる

$$f(c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n) = \mathbf{0} = f(\mathbf{0})$$

f は単射だから、上式より

$$c_1\boldsymbol{v}_1+c_2\boldsymbol{v}_2+\cdots+c_n\boldsymbol{v}_n=\mathbf{0}$$

が成り立つ

ここで、 $oldsymbol{v}_1,oldsymbol{v}_2,\ldots,oldsymbol{v}_n$ は線型独立なので、 $c_1=c_2=\cdots=c_n=0$ である

よって、 $f(\boldsymbol{v}_1), f(\boldsymbol{v}_2), \ldots, f(\boldsymbol{v}_n)$ は線型独立である

零写像と射影を除けば、fによってベクトルが「つぶれない」という性質

$\boldsymbol{v} \neq 0 \Longrightarrow f(\boldsymbol{v}) \neq \mathbf{0}$

\$

「Todo 22: ref: 行列と行列式の基礎 p55 例 2.1.15]

この条件は、実は線形写像が単射であることを意味している 対偶をとって、次のように表現できる

$$f(\boldsymbol{v}) = \mathbf{0} \Longrightarrow \boldsymbol{v} = \mathbf{0}$$

i. *f* が単射

ii.
$$f(\boldsymbol{v}) = 0 \Longrightarrow \boldsymbol{v} = 0$$

 $(i) \Longrightarrow (ii)$

零ベクトルの像は零ベクトルであることから、 $f(\boldsymbol{v}) = \mathbf{0}$ は、

$$f(\boldsymbol{v}) = f(\boldsymbol{0})$$

と書き換えられる

f の単射性により、この式から、

$$v = 0$$

がしたがう

 $(ii) \Longrightarrow (i)$

 $f(\boldsymbol{v}_1) = f(\boldsymbol{v}_2)$ を満たす $\boldsymbol{v}_1, \boldsymbol{v}_2 \in \mathbb{R}^n$ を考えるこのとき、f の線形性から、

$$f(\boldsymbol{v}_1 - \boldsymbol{v}_2) = f(\boldsymbol{v}_1) - f(\boldsymbol{v}_2)$$

となる

仮定 (ii) より、

$$f(\boldsymbol{v}_1 - \boldsymbol{v}_2) = \mathbf{0} \Longrightarrow \boldsymbol{v}_1 - \boldsymbol{v}_2 = \mathbf{0}$$

がいえるので、 $\boldsymbol{v}_1 = \boldsymbol{v}_2$ が成り立つ

 $f(\boldsymbol{v}_1) = f(\boldsymbol{v}_2)$ から $\boldsymbol{v}_1 = \boldsymbol{v}_2$ が導かれたことで、f は単

射であることが示された

線形写像の単射性と全射性

線形写像 f の単射性を表現行列 A の言葉で述べる

ref: 行列と行列式の基 礎 p67~68

- - i. f は単射
 - ii. Ax = 0 は自明な解しか持たない
 - iii. rank(A) = n

証明 証明

$(i) \iff (ii)$

線形写像 f は、表現行列 A を用いて次のように表せる

$$f(\boldsymbol{x}) = A\boldsymbol{x}$$

f が単射であることの言い換えは、

$$f(\boldsymbol{x}) = \mathbf{0} \Longrightarrow \boldsymbol{x} = \mathbf{0}$$

であり、Ax = 0 が自明解しか持たないことは、

$$A\boldsymbol{x} = 0 \Longrightarrow \boldsymbol{x} = 0$$

が成り立つということである

 $f(\mathbf{x}) = A\mathbf{x}$ であるから、これらの 2 つの条件は同値であ

る

$(ii) \iff (iii)$

斉次形の方程式 Ax = 0 に自明解しか存在しないことと

$$rank(A) = n$$

と同値であることは以前証明済み ■

i は抽象的な概念、ii は方程式論的な言葉、iii は数値的な条件であり、これらは同値な言い換えである

単射性と対比して、全射性の理解も表現行列の言葉で整理する

** 線形写像の全射性と表現行列 線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の表現行列を A とするとき、次はすべて同値

- i. *f* は全射
- ii. 任意の $\boldsymbol{b} \in \mathbb{R}^m$ に対して、 $A\boldsymbol{x} = \boldsymbol{b}$ には解が存在する
- iii. rank(A) = m

(i) ← (ii)

線形写像 f は、表現行列 A を用いて次のように表せる

$$f(\boldsymbol{x}) = A\boldsymbol{x}$$

f が全射であることの言い換えは、

$$\forall \boldsymbol{b} \in \mathbb{R}^m, \exists \boldsymbol{x} \in \mathbb{R}^n, f(\boldsymbol{x}) = \boldsymbol{b}$$

であり、これは

 $\forall \boldsymbol{b} \in \mathbb{R}^m$, $A\boldsymbol{x} = \boldsymbol{b}$ に解が存在する

と同値である

よって、これらの2つの条件は同値である

$$(ii) \iff (iii)$$

rank(A) = m が、次の条件

 $\forall \boldsymbol{b} \in \mathbb{R}^m$, $A\boldsymbol{x} = \boldsymbol{b}$ の解が存在する

ことと同値であることは、以前証明済み

線形写像の像と核

写像の像や逆像を、線形写像の場合に考える

 $Im(f) = f(V) = \{f(\boldsymbol{v}) \in W \mid \boldsymbol{v} \in V\} \subset W$

ref: 図で整理!例題で 納得!線形空間入門 p79 ~84

線形写像による像は、像空間とも呼ばれる

線形写像の核 線形写像 $f:V\to W$ に対して、f による $\{\mathbf{0}\}$ の逆像 $f^{-1}(\{\mathbf{0}\})$ を、線形写像 f の核といい、 $\mathrm{Ker}(f)$ と表記する

$$\operatorname{Ker}(f) = f^{-1}(\{\mathbf{0}\}) = \{ \boldsymbol{v} \in V \mid f(\boldsymbol{v}) = \mathbf{0} \} \subset V$$

線形写像による核は、核空間あるいはカーネルとも呼ばれる

像空間と全射性

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の全射性は、 \mathbb{R}^m の部分集合である<mark>像空間 Im(f)</mark> と関係している

ref: 行列と行列式の基 礎 p68~69

全射な写像は、定義域の元の像で値域を「埋め尽くす」

ということから、f が全射であることは、 $\operatorname{Im}(f) = \mathbb{R}^m$ と同値だとわかる

核空間と単射性

線形写像 f が単射であることは、次の条件と同値であった

$$f(\boldsymbol{v}) = \mathbf{0} \Longrightarrow \boldsymbol{v} = \mathbf{0}$$

この条件は、次のように言い換えることができる

$$Ker(f) = \{\mathbf{0}\}$$

♣ 線形写像の単射性と核の関係 f を線形写像とするとき、

$$f$$
 が単射 \iff $\operatorname{Ker}(f) = \{\mathbf{0}\}$

Ker(f) の定義は

$$\operatorname{Ker}(f) = \{ \boldsymbol{v} \in V \mid f(\boldsymbol{v}) = \boldsymbol{0} \}$$

これを踏まえて、次の2つが同値であることを示す

i.
$$f(\boldsymbol{v}) = \mathbf{0} \Longrightarrow \boldsymbol{v} = \mathbf{0}$$

ii.
$$Ker(f) = \{0\}$$

$(i) \Longrightarrow (ii)$

このとき、 $f(\boldsymbol{v}) = \mathbf{0}$ が $\boldsymbol{v} = \mathbf{0}$ を意味するので、 $\operatorname{Ker}(f)$ の元は零ベクトルのみになる

よって、 $Ker(f) = \{0\}$ が成り立つ

$(ii) \Longrightarrow (i)$

 $\operatorname{Ker}(f)=\{\mathbf{0}\}$ であれば、 $\operatorname{Ker}(f)$ の元は零ベクトルのみである

よって、 $f(\boldsymbol{v}) = \mathbf{0}$ が成り立つとき、 $\boldsymbol{v} = \mathbf{0}$ が成り立つことになる

すなわち、 $f(\boldsymbol{v}) = \mathbf{0} \Longrightarrow \boldsymbol{v} = \mathbf{0}$ が成り立つ

核空間と解空間

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の表現行列を A とするとき、

$$\mathrm{Ker}(f) = \{ \boldsymbol{v} \in \mathbb{R}^n \mid A\boldsymbol{v} = \boldsymbol{0} \}$$

と定めると、 $f(oldsymbol{v}) = Aoldsymbol{v}$ という関係から、 $\operatorname{Ker}(f)$ と $\operatorname{Ker}(A)$ は同じ ものを指す

これは、斉次形の連立線形方程式 Ax = 0 の解空間そのものである Ker(A) の元は、Ax = 0 の基本解を使ってパラメータ表示できる

第 5 章

正則な線形変換と逆行列

線形変換の全単射性

 \mathbb{R}^n からそれ自身への線形写像 f を \mathbb{R}^n の線形変換と呼ぶのだった 一般の線形写像と対比して、線形変換の大きな特徴は次が成り立つことで ある ref: 行列と行列式の基 礎 p70

- $oldsymbol{\$}$ 線形代数における鳩の巣原理 f を \mathbb{R}^n の線形変換とし、A を f の表現行列とするとき、次はすべて同値である
 - i. *f* は単射
 - ii. *f* は全射
 - iii. *f* は全単射
 - iv. rank(A) = n

≥ 証明

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ において、表現行列を A とすると、

f が単射 \iff rank(A) = n f が全射 \iff rank(A) = m

であることを以前示した

線形変換は、線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の m=n の場合であるので、f が単射であることも、全射であることも、

$$rank(A) = n$$

という条件と同値になる

つまり、線形変換は単射かつ全射であり、これは全単射であること も意味する ■

単射と全射は、一般には一方から他方が導かれるわけではない 2 つの性質だが、 \mathbb{R}^n からそれ自身への線形写像(線形変換)の場合は同値になる

先ほど示した定理は、いわば線形代数版「鳩の巣原理」である

有限集合 $X = \{1, 2, \dots, n\}$ からそれ自身への写像 f に対して、 単射と全射は同値である

この事実は鳩の巣原理と呼ばれる

鳩の巣原理は、歴史的には部屋割り論法とも呼ばれ、

n 個のものを m 個の箱に入れるとき、n>m であれば、少なくとも 1 個の箱には 1 個より多いものが中にある

ことを指す

ここで鳩の巣原理と呼んだのはこの命題そのものではないが、その変種と 考えてよい

正則行列

ref: 行列と行列式の基 礎 p71

ご 正則 線形変換 f は全単射であるとき、正則な線形変換であるという

ご 正則行列 正方行列 *A* は、それが正則な線形変換を与えるとき、正則行列であるという

「線形代数における鳩の巣原理」から、次のことがいえる

$$A$$
 が正則行列 \Longleftrightarrow $\operatorname{rank}(A) = n$

この定理は、線形変換 f (もしくは正方行列 A) が正則かどうかについて、 階数という 1 つの数値で判定できることを示している

🕹 列ベクトルの線型独立性による正則の判定 n 次正方行列

$$A = (\boldsymbol{a}_1, \cdots, \boldsymbol{a}_n)$$

に対して、次が成り立つ

A が正則行列 $\iff \boldsymbol{a}_1, \ldots, \boldsymbol{a}_n$ が線型独立

証明

 $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n\in\mathbb{R}^n$ が線型独立であることは、

$$rank(A) = n$$

と同値であることを以前示した

さらに、先ほど示した定理より、 $\operatorname{rank}(A) = n$ は A が正則行列で

あることと同値である

逆行列

写像 f が全単射であれば、逆写像 f^{-1} が存在する

ref: 行列と行列式の基 礎 p71~72

* * 逆写像の線形性 f を \mathbb{R}^n の正則な線形変換とするとき、逆写像 f^{-1} は線形である

証明

 $oldsymbol{x}$, $oldsymbol{y} \in \mathbb{R}^n$, $c \in \mathbb{R}$ とし、次の 2 つを示せばよい

i.
$$f^{-1}({m x}+{m y})=f^{-1}({m x})+f^{-1}({m y})$$

ii.
$$f^{-1}(c\mathbf{x}) = cf^{-1}(\mathbf{x})$$

(i)

 $f \circ f^{-1}$ は恒等写像であるから、

$$oldsymbol{x} = f \circ f^{-1}(oldsymbol{x}) \ oldsymbol{y} = f \circ f^{-1}(oldsymbol{y})$$

$$\boldsymbol{x} + \boldsymbol{y} = f \circ f^{-1}(\boldsymbol{x} + \boldsymbol{y})$$

また、f は線形写像であるから、

$$f \circ f^{-1}(\boldsymbol{x} + \boldsymbol{y}) = f(f^{-1}(\boldsymbol{x}) + f^{-1}(\boldsymbol{y}))$$

 $f \circ f^{-1}(\boldsymbol{v})$ は、 $f(f^{-1}(\boldsymbol{v}))$ を意味する記号なので、

$$f(f^{-1}(\boldsymbol{x} + \boldsymbol{y})) = f(f^{-1}(\boldsymbol{x}) + f^{-1}(\boldsymbol{y}))$$

両辺を f^{-1} で写すと、

$$f^{-1}(\boldsymbol{x} + \boldsymbol{y}) = f^{-1}(\boldsymbol{x}) + f^{-1}(\boldsymbol{y})$$

となり、(i) が示された

(ii)

 $f \circ f^{-1}$ は恒等写像であるから、

$$\mathbf{x} = f \circ f^{-1}(\mathbf{x}) = f(f^{-1}(\mathbf{x}))$$
$$c\mathbf{x} = f \circ f^{-1}(c\mathbf{x}) = f(f^{-1}(c\mathbf{x}))$$

 $\mathbf{x} = f(f^{-1}(\mathbf{x}))$ の両辺に c をかけた、次も成り立つ

$$c\boldsymbol{x} = cf(f^{-1}(\boldsymbol{x}))$$

さらに、f は線形写像であるから、

$$cf(f^{-1}(\boldsymbol{x})) = f(cf^{-1}(\boldsymbol{x}))$$

ここまでの cx の複数の表現により、次式が成り立つ

$$f(f^{-1}(c\boldsymbol{x})) = f(cf^{-1}(\boldsymbol{x}))$$

両辺を f^{-1} で写すと、

$$f^{-1}(c\boldsymbol{x}) = cf^{-1}(\boldsymbol{x})$$

となり、(ii) が示された

逆写像 f^{-1} が存在し、線形であるから、ある n 次正方行列 B が対応する はずである

 $f\circ f^{-1}=f^{-1}\circ f=\mathrm{id}_{\mathbb{R}^n}$ であり、線形写像の合成は行列の積に対応するから、

$$AB = BA = E$$

が成り立つ

このような B を A の逆行列と呼び、 A^{-1} と書く

逆行列の性質

・ 逆行列の一意性 正方行列 A に対して、A の逆行列が存在するならば、それは一意的である

証明

A の逆行列が B_1 と B_2 の 2 つあるとする

$$AB_1 = B_1A = E$$
 かつ $AB_2 = B_2A = E$

 $AB_2 = E$ の両辺に B_1 をかけると、

$$B_1 = B_1 A B_2 = (B_1 A) B_2 = E B_2 = B_2$$

よって、 $B_1 = B_2$ となり、逆行列は一意的である

♣ 逆行列に対する逆行列 正則行列 *A* の逆行列 *A*⁻¹ は正則であり、その逆行列は *A* である

$$(A^{-1})^{-1} = A$$

A の逆行列が A^{-1} であることから、

$$AA^{-1} = A^{-1}A = E$$

この式は、 A^{-1} が正則であり、その逆行列が A であることを示す式でもある

・ 正則行列の積に対する逆行列 正則行列 A, B の積 AB は正則であり、その逆行列は次のようになる

$$(AB)^{-1} = B^{-1}A^{-1}$$

証明

$$(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1}$$

= AEA^{-1}
= E

であり、同様に

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B$$

= $B^{-1}EB$
= E

であるので、

$$(AB)^{-1} = B^{-1}A^{-1}$$

正則行列 A に対して、方程式 Ax = b のただ 1 つの解は次で与えられる

ref: 行列と行列式の基 礎 p72~73

$$\boldsymbol{x} = A^{-1}\boldsymbol{b}$$

 A^{-1} が計算できれば、行列のかけ算によって線型方程式の解が求められる

正則行列 A の逆行列を計算するために、次の定理に注目しよう

・ 逆行列の計算法の原理 正方行列 A に対して、AB = E を満たす正方行列 B があるならば、A は正則であり、B は A の逆行列である

「Todo 23: ref: 行列と行列式の基礎 p72 命題 2.4.6]

上の定理の証明は、逆行列の計算法のヒントを含んでいる A の逆行列 B を求めるには、n 個の線形方程式

$$A\boldsymbol{b}_i = \boldsymbol{e}_i \quad (1 \leq i \leq n)$$

を解けばよい

A は階数 n の n 次正方行列なので、行変形で A から E に到達することができる

b_i を求めるには、行変形により

$$(A \mid \boldsymbol{e}_i) \rightarrow \cdots \rightarrow (E \mid \boldsymbol{b}_i)$$

とすればよい

i ごとに掃き出し法を何度も実行しないといけないのかと思いきや、一度に まとめられる

$$(A \mid E) = (A \mid \boldsymbol{e}_1, \cdots, \boldsymbol{e}_n) \rightarrow \cdots \rightarrow (E \mid \boldsymbol{b}_1, \cdots, \boldsymbol{b}_n) = (E \mid B)$$

このようにすれば、行変形は1通りで十分である

正則行列と転置行列

ref: 行列と行列式の基 礎 p88

・ 正則行列の転置の正則性 正則行列 A に対して、その転置行列 tA も正則である

証明

A が正則であることから、その逆行列 A^{-1} が存在し、

$$A^{-1}A = E$$

両辺の転置をとると、右辺の単位行列は転置しても単位行列であり、 左辺には正則行列の積に対する逆行列の公式を用いて、

$$^{t}(A^{-1}A) = {}^{t}A^{t}(A^{-1}) = E$$

この等式より、 ${}^t A$ の逆行列は ${}^t (A^{-1})$ であることがわかる

正則行列と対角行列

ref: 行列と行列式の基 礎 p74~75

・ 上三角行列の正則性 対角成分がすべて ○ でない上三角行列は正則である

☎ 証明

[Todo 24: ref: 行列と行列式の基礎 p74 命題 2.4.9]

・・プロック対角行列の正則性 次のようなブロック対角行列 M
において、対角ブロック A, B が正則であれば、M も正則である

$$M = \begin{pmatrix} & \iota & & & & & \\ & A & & O & & \\ & & & & & \\ & & O & & B & \end{pmatrix} \uparrow_{n-l}^{\iota}$$

証明 証明

A と B が正則であるから、逆行列 A^{-1} と B^{-1} が存在する それらを用いて、次のような積を考える

$$\begin{pmatrix} A & O \\ O & B \end{pmatrix} \begin{pmatrix} A^{-1} & O \\ O & B^{-1} \end{pmatrix} = \begin{pmatrix} AA^{-1} & O \\ O & BB^{-1} \end{pmatrix}$$
$$= \begin{pmatrix} E_l & O \\ O & E_{n-l} \end{pmatrix}$$
$$= E_n$$

この等式は、M の逆行列の存在を示している

$$M\begin{pmatrix} A^{-1} & O \\ O & B^{-1} \end{pmatrix} = E_n$$

つまり、対角ブロックがそれぞれ正則であれば、それらの逆行列を 並べることで全体の逆行列が構成できる

このようにして、*M* が正則であることがわかる

・ 行基本変形と対角行列 正則行列 A に対して、行のスカラー 倍以外の行基本変形を繰り返し行って対角行列にできる

[Todo 25: ref: 行列と行列式の基礎 p75 命題 2.4.12]

第6章

基本変形と基本行列

行基本変形と基本行列

基本変形を行列のかけ算によって実現することができる

基本行列 基本変形 α を単位行列 E に行った結果を E_{α} とするとき、 E_{α} を α に対応する基本行列と呼ぶ

ref: 行列と行列式の基

礎 p85~86

ref: 長岡亮介 線形代数

入門講義 p58~61

行基本変形とは、次の3種類の操作であった

- i. 2 つの行を交換する
- ii. ある行に O でない数をかける
- iii. ある行の定数倍を他の行に加える

これらに対応して、行基本変形を表現する基本行列は、次の 3 種類がある

i. F(i,j): E の i 行と j 行を交換したもの $(i \neq j)$

ii. $G(i; c) : E \circ (i, j)$ 成分を 1 から c に置き換えたもの $(c \neq 0)$

iii. H(i,j;c): $E \circ (i,j)$ 成分を 0 から c に置き換えたもの $(i \neq j)$

$$F(i,j) = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 0 & \dots & 1 & \\ & & \vdots & & \vdots & \\ & 1 & \dots & 0 & \\ & & & \ddots & \\ & & & c & \\ & & & \ddots & \\ & & & \ddots & \\ & & & \ddots & \\ & & & 1 \end{pmatrix}$$

$$G(i;c) = \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & \ddots & & \\ & & & 1 & \dots & \\ & & & 1 & \dots & \\ & & & 1 & \dots & \\ & & & & 1 & \dots & \\ & & & & 1 & \dots & \\ & & & & \ddots & \vdots & \\ & & & & 1 & \dots & \\ & & & & \ddots & \vdots & \\ & & & & 1 & \dots & \\ & & & & \ddots & \vdots & \\ & & & & 1 & \dots & \\ & & & & \ddots & \vdots & \\ & & & & 1 & \dots & \\ & & & & \ddots & \vdots & \\ & & & & 1 & \dots & \\ & & & & \ddots & \vdots & \\ & & & & 1 & \dots & \\ & & & & 1 & \dots & \\ & & & & 1 & \dots & \\ & & & & 1 & \dots & \\ & & & & 1 & \dots & \\ & & & & 1 & \dots & \\ & & & & 1 & \dots & \\ & 1 & \dots & \dots & \dots & \\ & 1 & \dots & \dots & \dots & \\ & 1 & \dots & \dots & \dots & \\ & 1 & \dots & \dots & \dots & \\ & 1 & \dots & \dots & \dots & \\ & 1 & \dots & \dots & \dots & \\ & 1 & \dots & \dots$$

行に関する基本変形は、基本行列を左からかけることに他ならない

基本行列による行基本変形の表現 行列 A に行基本変形 α を行って得られる行列を B とすると、

$$B = E_{\alpha}A$$

☎ 証明

 e_k を k 列目が 1 で他が 0 の横ベクトルとし、A の k 行目の行べクトルを a_k とする

行の交換

基本行列 F(i,j) の k 行目は、

$$(F(i,j))_{k,*} = egin{cases} oldsymbol{e}_j & (k=i) \ oldsymbol{e}_i & (k=j) \ oldsymbol{e}_k & (k
eq i,j) \end{cases}$$

よって、F(i,j)A の k 行目は、

$$(F(i,j)A)_{k,*} = egin{cases} oldsymbol{a}_j & (k=i) \ oldsymbol{a}_i & (k=j) \ oldsymbol{a}_k & (k
eq i,j) \end{cases}$$

となり、i 行目と j 行目が交換されていることがわかる

行の定数倍

基本行列 G(i;c) の k 行目は、

$$(G(i;c))_{k,*} = \begin{cases} c \boldsymbol{e}_i & (k=i) \\ \boldsymbol{e}_k & (k \neq i) \end{cases}$$

よって、G(i;c)A の k 行目は、

$$(G(i;c)A)_{k,*} = \begin{cases} c\boldsymbol{a}_i & (k=i) \\ \boldsymbol{a}_k & (k \neq i) \end{cases}$$

となり、*i* 行目が *c* 倍されていることがわかる

行の定数倍の加算

基本行列 H(i, j; c) の k 行目は、

$$(H(i,j;c))_{k,*} = egin{cases} oldsymbol{e}_i + coldsymbol{e}_j & (k=i) \ oldsymbol{e}_j & (k=j) \ oldsymbol{e}_k & (k
eq i,j) \end{cases}$$

よって、H(i,j;c)A の k 行目は、

$$(H(i,j;c)A)_{k,*} = egin{cases} oldsymbol{a}_i + coldsymbol{a}_j & (k=i) \ oldsymbol{a}_j & (k=j) \ oldsymbol{a}_k & (k
eq i,j) \end{cases}$$

となり、i 行目に j 行目の c 倍が加えられていることがわか

る

列基本変形と基本行列

行基本変形と同様に、列に関する基本変形を考えることもできる

- i. 2 つの列を交換する
- ii. ある列に O でない数をかける
- iii. ある列の定数倍を他の列に加える

列に関する基本変形は、基本行列を右からかけることで実現できる

・ 基本行列による列基本変形の表現 行列 *A* に列基本変形 α を行って得られる行列を *B* とすると、

$$B = AE_{\alpha}$$

転置すると A になるような行列 A' を考える

$$A' = {}^t(A)$$

転置すると行と列が入れ替わるので、A' に「行」基本変形を施した 行列を転置すれば、A に同じ基本変形を列に関して施した行列が得 られる ref: 行列と行列式の基

礎 p87

ref: 長岡亮介 線形代数

入門講義 p61~62

適用したい基本変形を α とし、これを列に関して施す基本行列が E_{α} なら、これを行に関して施す基本行列は $^t(E_{\alpha})$ となる よって、

$$B = {}^{t}({}^{t}(E_{\alpha})A') = {}^{t}(A'){}^{t}({}^{t}(E_{\alpha})) = AE_{\alpha}$$

というように、積の転置を取ると積の順序が入れ替わることから、行 基本変形の場合とは積の順序が逆転することがいえる ■

基本行列の正則性

行基本変形も列基本変形も、基本行列によって定式化できる この考えをさらに進めるため、基本行列の性質を述べる

🕹 基本行列の正則性 基本行列は正則である

ref: 長岡亮介 線形代数 入門講義 p62

ref: 行列と行列式の基

礎 p86

基本行列の表す変形を考えれば、

$$F(i,j)F(i,j) = E$$

$$G(i;c)G(i;\frac{1}{c}) = G(i;\frac{1}{c})G(i;c) = E$$

$$H(i,j;c)H(i;-c) = H(i,j;-c)H(i,j;c) = E$$

が成り立つことがわかる

したがって、基本行列は逆行列を持つので正則である

つまり、各々の基本変形は可逆の変形、すなわち逆に戻ることのできる変 形である

基本行列の積と逆行列

行基本変形が基本行列を左からかけることに対応することから、行基本変形 とは線形写像であり、基本行列はその表現行列であるという見方もできる

そのため、行基本変形の合成は、基本行列の積として表現できる

このことから、行についての連続する複数の基本変形の繰り返しも可逆で あることがいえる

行基本変形を $A \xrightarrow{\alpha_k} \cdots \xrightarrow{\alpha_1} B$ と合成して得られる行変形は、 $E_{\alpha_1} \cdots E_{\alpha_k}$ を左からかけることで実現されるすなわち、

$$B = E_{\alpha_1} \cdots E_{\alpha_k} A$$

が成り立つ

個々の基本行列 $E_{\alpha_1},\ldots,E_{\alpha_k}$ は正則であるので、これらの積 $P=E_{\alpha_1}\cdots E_{\alpha_k}$ も正則である

上の証明から、正則行列 P に対して、その逆行列を P^{-1} とすると、

$$P^{-1}B = P^{-1}E_{\alpha_1} \cdots E_{\alpha_k}A = P^{-1}PA = A$$

が成り立つことになる

ここで、B=E の場合を考えると、 $P^{-1}E=A$ となるので、次のことがいえる

ref: 長岡亮介 線形代数 入門講義 p62~63

ref: 行列と行列式の基

礎 p86

* * 単位行列への行変形による逆行列の構成 正方行列 A の単位行列への行変形 $A \to E$ に対応する基本変形の積は、A の逆行列を与える

つまり、任意の正方行列は行基本変形だけで単位行列に変形でき、その基本行列の積から逆行列を求めることができる

この章で得られた定理を組み合わせると、次の定理が得られる

・基本行列の積による正則行列の表現 任意の正則行列はいく つかの基本行列の積である

証明

A を正則行列とすると、A の逆行列 A^{-1} は行変形 $A \rightarrow E$ に対応する基本変形の積によって与えられる

さらに、基本行列の積による行変形の構成より、行変形 $A \rightarrow E$ に対し、

$$E = PA$$

を満たす正則行列 P が存在する

この等式より、 $A^{-1} = P$ となり、P も基本行列の積であることが

いえる

8

行基本変形による階数の不変性

ref: 行列と行列式の基

礎 p86

基本行列の積による行変形の構成から、行変形によって列ベクトルの線形 関係が保たれることに対して別の証明を与えることができる

・ 行基本変形による線型独立性の不変性(再掲) 行変形はベクトルの線形関係を保つ

すなわち、行列 $A=(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)$ に行の変形を施して $B=(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n)$ が得られたとするとき、

$$\sum_{i=1}^n c_i \boldsymbol{a}_i = \mathbf{0} \Longleftrightarrow \sum_{i=1}^n c_i \boldsymbol{b}_i = \mathbf{0}$$

特に、

 $\{\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n\}$ が線型独立 $\Longleftrightarrow \{\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n\}$ が線型独立

証明

P を基本行列の積(正則行列)とすると、B = PA が成り立つ

よって、 $\boldsymbol{b}_i = P\boldsymbol{a}_i$ であり、線形関係式

$$\sum_{i=1}^n c_i \boldsymbol{a}_i = \mathbf{0}$$

に左から P をかけることで、

$$\sum_{i=1}^n c_i \boldsymbol{b}_i = \mathbf{0}$$

が得られる

逆に、 $\sum_{i=1}^n c_i \boldsymbol{b}_i = \mathbf{0}$ が成り立つとき、 P^{-1} を左からかけることで、

$$\sum_{i=1}^n c_i \boldsymbol{a}_i = \mathbf{0}$$

が得られる

したがって、

$$\sum_{i=1}^n c_i \boldsymbol{a}_i = \mathbf{0} \Longleftrightarrow \sum_{i=1}^n c_i \boldsymbol{b}_i = \mathbf{0}$$

が成り立つ

上の事実は、行列 A の階数が A の線型独立な列ベクトルの最大個数であ ることと合わせると、次のように言い換えられる

・ 行基本変形による階数の不変性 行の基本変形で行列の階数 は変化しない

階数標準形

任意の行列 A は、行基本変形により、次のような既約行階段行列に変形で ref: 行列と行列式の基 きる

礎 p87~88

ref: 長岡亮介 線形代数 入門講義 p75~78

ここからさらに、列の交換によって、主成分のある列を左に集めることが できる

ここで、r は零行ではない行の個数、すなわち A の階数である

さらに、列の掃き出しで、左上のブロックの成分 * をすべて 0 にできる

この形を、 A の階数標準形という

この形を得るまでの過程をまとめると、次のことがいえる

・基本変形による階数標準形の構成 任意の行列は、行と列の 基本変形を繰り返すことで、階数標準形に変形できる

ここで、P を行基本変形に対応する基本行列の積、Q を列基本変形に対応する基本行列の積とすると、A の階数標準形は PAQ で与えられる

基本行列の積は任意の正則行列を表すので、次のようにまとめられる

・ 正則行列による階数標準形の構成 $m \times n$ 型行列 A に対して、行変形に対応する m 次正則行列 P、列変形に対応する n 次正則行列 Q が存在し、

$$B = PAQ$$

が階数標準形となる

転置による階数の不変性

ref: 行列と行列式の基

礎 p88

ref: 長岡亮介 線形代数 入門講義 p78~80 正則行列による階数標準形の構成を用いて、次の重要な事実を証明することができる

・ 転置に関する階数の不変性 任意の行列 A に対して、

$$rank(A) = rank(^tA)$$

☎ 証明

A の階数標準形を B とすると、B = PAQ となる正則行列 P, Q をとることができる

両辺の転置をとると、

$$^{t}B = ^{t}(PAQ) = ^{t}Q^{t}A^{t}P$$

となり、ここで、正則行列は転置をとっても正則なので、 tP , tQ も 正則行列である

よって、 tA の階数標準形は tB である

Bは階数標準形であり、その形から明らかに

$$rank(B) = rank(^tB)$$

が成り立つので、変形前の行列 A についても

$$rank(A) = rank(^tA)$$

が成り立つ

行列 *A* の階数は *A* の線型独立な列ベクトルの最大個数であったが、上の定理から次のこともいえるようになった

・ 階数と線型独立な行べクトルの最大個数 行列 A の階数 rank(A) は、A の行ベクトルに含まれる線型独立なベクトルの最大個数と一致する

上の事実を連立方程式の視点で解釈すると、

係数行列 A の階数は、

独立な(本質的に意味を持つ)方程式の最大本数

を表しているといえる

第7章

行列式

連立方程式の解の判別式としての行列式

[Todo 26:]

置換と互換

たとえば、(1, 2, 3, 4) を並び替えた列 (i, j, k, l) があるとして、

 $1 \longmapsto i$

 $2 \longmapsto j$

 $3 \longmapsto k$

 $4 \longmapsto l$

というように、番号を並び替える操作そのものを写像とみなし、置換と呼ぶ

置換 集合 $\{1,2,\ldots,n\}$ からそれ自身への写像 σ が全単射であるとき、 σ は n 次の置換であるという

ref: 行列と行列式の基

礎 p155~158

たとえば、

$$\sigma(1) = 2$$
, $\sigma(2) = 3$, $\sigma(3) = 1$

によって 3次の置換を定めることができる

この置換を、

$$\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$

と表記する

置換の積

写像とみる利点の1つは、積が定義できることである

もう1つの置換

$$\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

が与えられたとき、合成写像 $\sigma \circ \tau$ は、

$$1 \xrightarrow{\tau} 1 \xrightarrow{\sigma} 2$$
$$2 \xrightarrow{\tau} 3 \xrightarrow{\sigma} 1$$
$$3 \xrightarrow{\tau} 2 \xrightarrow{\sigma} 3$$

なので、

$$\sigma\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

である

通常、合成の記号 o を書かずに $\sigma \tau$ と表記する

なお、 $\sigma \tau$ と $\tau \sigma$ は一般に異なる

写像の合成の結合法則から、置換の積でも結合法則が成り立つ

→ 置換の積の結合法則

$$(\sigma\tau)\rho = \sigma(\tau\rho)$$

恒等置換

恒等写像

$$id: \{1, 2, \dots, n\} \longmapsto \{1, 2, \dots, n\}$$
$$id(i) = i \quad (1 \le i \le n)$$

は置換であるので、これを恒等置換と呼び、

$$e = id$$

と書く

任意の置換 σ に対して、明らかに

$$\sigma e = e\sigma = \sigma$$

が成り立つ

また、次の性質はのちに行列式の性質を議論する際に重要になる

 $oldsymbol{t}$ 恒等置換の単調性による特徴づけ $i \leq \sigma(i)$ (あるいは $i \geq \sigma(i)$) を満たす置換 σ は恒等置換しか存在しない

証明

 σ が恒等置換でないと仮定する

条件 $i \leq \sigma(i)$ より、「元の位置より後ろに移される」、すなわち「すべてが自分以上に移る」ことになる

たとえば、1 を 2 に、2 を 3 に、 \ldots 、n-1 を n に写す置換を考える

しかし、集合 $\{1,2,\ldots,n\}$ の要素は n 個しかないので、n を n+1 に写すことはできない

そこで、n を n に写すとすると、n-1 も n も n に写ることになり、これは置換が全単射であるという定義に反する

 $i \geq \sigma(i)$ の場合も、「元の位置より前に移される」、すなわち「すべてが自分以下に移る」ことになると考えると、同様の矛盾が生じる

よって、 σ は恒等置換でなければならない

逆置換

置換 σ は、定義より全単射であるので、逆写像 σ^{-1} が存在するこれを逆置換と呼ぶ

置換の集合

すべての n 次の置換からなる集合はHと呼ばれる構造を持っているこれを n 次対称Hと呼び、記号 S_n で表す

互換

置換の中で最も基本的なのは、2 文字だけを交換する置換である

三 互換 $1 \le i \ne j \le n$ のとき、 $\sigma(i) = j$, $\sigma(j) = i$ であって、 κ が i, j 以外のとき $\sigma(\kappa) = \kappa$ とすることで得られる 置換を

$$\sigma = (ij)$$

と書き、このような置換を互換という

たとえば、

$$(24) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 2 & 5 \end{pmatrix}$$

互換の逆置換

互換は (ij) と書いても (ji) と書いても同じ操作を表す i と j を交換してから j と i を交換すると元に戻るが、この (ij) と (ji) は互換としては同じなので、

である

置換の一行表示

置換を表す 2 行の表示は、下の行だけで情報としては十分なので、たと えば

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 3 & 2 & 5 \end{pmatrix}$$

を $\sigma=14325$ などと書いてしまうと便利である これを σ の一行表示と呼ぶ

互換と置換の積

一行表示を用いた場合、互換と置換の積はたとえば次のように書ける $\sigma=14325$ とすると、

$$(12)\sigma = 24315$$
, $\sigma(12) = 41325$

 $(12)\sigma$ は、 $\sigma = 14325$ に互換 (12) を作用させて、24315 となる

 σ (12) は、12345 に互換 (12) を作用させて 21345 とし、さらに置換 σ を作用させることを意味する

置換 σ は、4 と 2 を入れ替える置換なので、21345 に対して σ を作用させると、41325 となる

この例の結果を一般的に述べると、次のようになる

・ 互換と置換の積 $\sigma \in S_n$ に対して、 $\tau = (ij)$ を左からかけた $\tau \sigma$ の一行表示は、 σ の数字 i と j を交換したものであるまた、 τ を右からかけた $\sigma \tau$ の一行表示は、 σ の i 番目の数字とj 番目の数字を交換したものである

互換の積への分解

たとえば、 $\sigma = 2413$ とすると、これは、

- 1. 1234 の 3 と 4 を交換して 1243
- 2. 1243 の 1 と 2 を交換して 2143
- 3. 2143 の 2 と 3 を交換して 2413

というように、互換に分解して考えることができる 数式でまとめると、

$$\sigma = (34)(12)(23)$$

・ 互換の積への置換の分解 任意の置換 σ は、いくつかの互換 の積として書ける

証明

n に対する帰納法を用いる

n=1 のときは、互換の定義における i,j の条件を満たさず、i,j 以外の k について $\sigma(k)=k$ とすることで得られる置換に相当するので、1 つの互換とみなせる

(n-1) 次以下の置換が互換の積で書けることを仮定する σ を n 次の置換とし、 $\sigma(n)$ の値を c とする

c=n すなわち $\sigma(c)=c$ の場合、 σ は c をまったく動かしていないため、実質的に c-1 までの数字だけを並び替えていることになる

そのため、 σ は c-1 すなわち (n-1) 次の置換とみなせるため、帰納法の仮定より、互換の積として書ける

 $c \neq n$ の場合、 $\sigma(c)$ を d とし、d と c を交換する互換 $\tau = (cd)$ を考える

このとき、 $au\sigma$ は、au の数字 au と au を交換したものであるので、

$$\tau\sigma = \begin{pmatrix} 1 & 2 & \cdots & c-1 & c & \cdots & n \\ 1 & 2 & \cdots & c-1 & \sigma(c) & \cdots & n \end{pmatrix}$$

c が n に一致しないという仮定をふまえると、

$$\tau \sigma(n) = n$$

であることが読み取れる

よって、 $au\sigma$ は実質的に (n-1) 次の置換とみなせるので、帰納法の仮定より、互換の積として書ける

$$\tau \sigma = \tau_1 \tau_2 \cdots \tau_m$$

ゆえに、

$$\sigma = \tau^{-1}\tau_1\tau_2\cdots\tau_m$$

であるが、互換の逆置換は自分自身であるので、

$$\sigma = \tau \tau_1 \tau_2 \cdots \tau_m$$

と書ける

置換の符号と偶奇

すべての置換は互換の積に分解できるが、その方法は一通りではない しかし、互換の積の個数の偶奇性は、置換が与えられれば定まる

このことを証明するために、置換と多項式の関係を考察する

ref: 行列と行列式の基 礎 p177~179、p158 ~159

ref: 長岡亮介 線形代数 入門講義 p103

置換の多項式への作用

置換 $\sigma \in S_n$ と n 変数多項式 $f = f(x_1, x_2, \ldots, x_n)$ が与えられたとき、変数 x_i に $x_{\sigma(i)}$ を代入することにより、式 σf を

$$(\sigma f)(x_1,\ldots,x_n)=f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

$$(\sigma \tau)f = \sigma(\tau f)$$

証明

式 τf は、

$$(\tau f)(x_1,\ldots,x_n)=f(x_{\tau(1)},\ldots,x_{\tau(n)})$$

である

さらに σ を作用させると、 $x_{ au(i)}$ は $x_{\sigma(au(i))} = x_{(\sigma au)(i)}$ に置き換わるので、

$$(\sigma(\tau f)) = f(x_{(\sigma \tau)(1)}, \dots, x_{(\sigma \tau)(n)})$$

= $((\sigma \tau)f)(x_1, \dots, x_n)$

が成り立つ

互換の差積への作用

次のような n 変数の多項式を差積と呼ぶ

$$(x_1-x_2)$$
 (x_1-x_3) \cdots (x_1-x_n) (x_2-x_3) \cdots (x_2-x_n) \cdots $(x_{n-1}-x_n)$

彦 差積 次のような n 変数の多項式を差積と呼ぶ

$$\Delta_n = \prod_{1 \leq i < j \leq n} (x_i - x_j)$$

置換の符号を理解するために、差積を使うことができる その第一歩となるのが、次の定理である

$$\tau \Delta_n = -\Delta_n$$

証明

i < j として、 $\tau = (ij)$ とすると、各因子 $x_s - x_t$ ($1 \le s < t < n$) の変化は次のようになる

 $x_i - x_j$ は $x_j - x_i$ になる

 x_i と x_j を入れ替えることで、その差が逆転して符号が反転する

$$x_j - x_i = -(x_i - x_j)$$

よって、この項は -1 倍の効果をもたらす

s < i < j のとき、 $x_s - x_i$ と $x_s - x_j$ が入れ替わる

この場合、s は i, j より前の添字である

• 互換前: $(x_s - x_i)(x_s - x_i)$

• 互換後: $(x_s - x_i)(x_s - x_i)$

2 つの項が交換されるだけなので、積の絶対値は変わらず、符号にも影響しない

i < j < s のとき、 $x_i - x_s$ と $x_j - x_s$ が入れ替わる

この場合、s は i, j より後の添字である

• 互換前: $(x_i-x_s)(x_j-x_s)$

• 互換後: $(x_j-x_s)(x_i-x_s)$

この場合も、並び順だけが入れ替わり、符号には影響しない

この場合、s は i と j の間にある添字である

• 互換前: $(x_i-x_s)(x_s-x_j)$

• 互換後: $(x_j - x_s)(x_s - x_i)$

互換前の積を変形してみると、

$$(x_i - x_s)(x_s - x_j) = -(x_i - x_s)(x_j - x_s)$$

= $(x_s - x_i)(x_j - x_s)$
= $(x_j - x_s)(x_s - x_i)$

という形で、互換後の積が得られる よって、この場合も積の符号は変わらない

以上をふまえると、符号が反転するのは x_i-x_j の項だけであるよって、1 回の互換 (ij) によって、差積全体は (-1) 倍される

置換の符号

$$\sigma \Delta_n = (-1)^s \Delta_n$$

が成り立つ

証明

置換 σ を s 個の互換の積 $\sigma = \tau_1 \cdots \tau_s$ と書いたとき、

$$\sigma \Delta_n = (\tau_1 \cdots \tau_s) \Delta_n$$

置換作用の結合法則を用いて、

$$\sigma \Delta_n = (\tau_1 \cdots \tau_{s-1})(\tau_s \Delta_n)$$

互換による差積の符号変化を繰り返し用いると、

$$\sigma \Delta_n = (\tau_1 \cdots \tau_{s-1})(-\Delta_n)$$
$$= (-1)(\tau_1 \cdots \tau_{s-1})\Delta_n$$
$$= (-1)^s \Delta_n$$

が最終的に得られる

この定理における $\sigma \Delta_n$ は、 σ をどのような互換の積として表すかとは無関係に、 σ が与えられれば決まる多項式である

そして、 $(-1)^s$ という部分から、 σ を互換の積で表したとき、その個数 s が偶数であれば符号は + に、奇数であれば符号は - になることがわかるこのようにして、次の定理が示されたことになる

・・ 置換の符号の存在 置換 σ を互換の積として書くとき、用いられる互換の個数の偶奇は σ のみによって決まる

そこで、置換の符号を次のように定義する

置換の符号 置換 $\sigma \in S_n$ を互換の積 $\sigma = \tau_1 \cdots \tau_i$ として書いたとき、 σ の符号を

$$sgn(\sigma) = (-1)^i$$

と定義する

そして、互換の個数の偶奇をそのまま、置換の偶奇として定める

| 偶置換と奇置換 | 置換 $\sigma \in S_n$ の符号 $\mathrm{sgn}(\sigma)$ が +1 であれば σ を偶置換と呼び、-1 であれば奇置換と呼ぶ

置換の性質

ref: 行列と行列式の基 礎 p157、159

→ 逆置換の符号

$$\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$$

証明

置換 σ を互換の積として書くと、逆置換はその互換の順序を逆にしたものになる

$$\sigma^{-1} = \tau_s^{-1} \cdots \tau_1^{-1}$$

であるが、互換の逆置換は自分自身であるので、

$$\mathrm{sgn}(\sigma^{-1}) = (-1)^s = \mathrm{sgn}(\sigma)$$

が成り立つ

→ 置換の符号の乗法性

$$\operatorname{sgn}(\sigma\tau) = \operatorname{sgn}(\sigma)\operatorname{sgn}(\tau)$$

証明

それぞれを互換の積 $\sigma = \tau_1 \cdots \tau_i$ 、 $\tau = \rho_1 \cdots \rho_j$ と書くと、

$$\sigma \tau = \tau_1 \cdots \tau_i \rho_1 \cdots \rho_i$$

である

このとき、
$$\mathrm{sgn}(\sigma)=(-1)^i$$
, $\mathrm{sgn}(\tau)=(-1)^j$ なので、
$$\mathrm{sgn}(\sigma\tau)=(-1)^{i+j}=(-1)^i(-1)^j=\mathrm{sgn}(\sigma)\,\mathrm{sgn}(\tau)$$

が成り立つ

登 置換群の左右作用に対する和の不変性 f を S_n 上の関数とするとき、任意の $\tau \in S_n$ に対して、次が成り立つ

$$\sum_{\sigma \in S_n} f(\tau \sigma) = \sum_{\sigma \in S_n} f(\sigma) = \sum_{\sigma \in S_n} f(\sigma \tau)$$

証明

au を固定して、 σ をすべての置換(S_n の元)全体にわたって動かすとき、 $au\sigma$ も S_n の全体を動く

言い換えると、写像 $S_n o S_n$ を $\sigma \longmapsto au\sigma$ と定めると、これは 全単射である

したがって、

$$\sum_{\sigma \in S_n} f(\sigma) = \sum_{\sigma \in S_n} f(\tau \sigma)$$

が成り立つ

同様に、写像 $S_n \to S_n$ を $\sigma \longmapsto \sigma \tau$ と定めると、これも全単射

であるので、同様に、

$$\sum_{\sigma \in S_n} f(\sigma) = \sum_{\sigma \in S_n} f(\sigma \tau)$$

が成り立つことがわかる

行列式の定義

ある正方行列の行列式は、

- 1. 各列から 1 つずつ、行に重複がないように成分を選ぶ
- 2. それらをかけ合わせる
- 3. 符号をつけて足す

という手順で定まる値である

 $rac{1}{2}$ 行列式 $rac{1}{2}$ 次正方行列 $rac{1}{2}$ $rac{1}{2}$ に対して、

$$\sum_{\sigma \in \mathcal{S}_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{i,\sigma(i)}$$

で定められる値を A の行列式と呼び、|A| あるいは $\det(A)$ と表記する

三角行列の行列式

三角行列の場合、各列から 1 つずつ、0 でない成分を重複なく選び出す方 法は、対角成分をすべて選ぶしかない ref: 長岡亮介 線形代数 入門講義 p111~112

ref: 行列と行列式の基

ref: 長岡亮介 線形代数

入門講義 p107~108

礎 p159

ref: 行列と行列式の基

礎 p160

・ 三角行列の行列式 三角行列の行列式は、対角成分の積である

証明

行列式において、

$$a_{1,\sigma(1)}a_{2,\sigma(2)}\cdots a_{n,\sigma(n)}=0$$

となる項は、和をとったときに消えてしまうしたがって、

$$a_{1,\sigma(1)}a_{2,\sigma(2)}\cdots a_{n,\sigma(n)}\neq 0$$

すなわち

$$a_{1,\sigma(1)} \neq 0, \ldots, a_{n,\sigma(n)} \neq 0$$

となるような選び方を考える

上三角行列の場合

上三角行列の定義より、i>j ならば $a_{ij}=0$ である $a_{ij}\neq0$ とするには、 $i\leq j$ でなければならないので、 $a_{i,\sigma(i)}$ においては、

$$i \le \sigma(i)$$

である必要がある

そして、この条件を満たす置換は、恒等置換しか存在しないので、

$$\sigma(i) = i$$

より、 a_{ii} の積によって行列式の値が構成されるまた、恒等置換は O (偶数) 回の互換で構成されるので、各項の符号は正となる

下三角行列の場合

下三角行列の定義より、i < j ならば $a_{ij} = 0$ である $a_{ij} \neq 0$ とするには、 $i \geq j$ でなければならないので、 $a_{i,\sigma(i)}$ においては、

$$i \ge \sigma(i)$$

である必要がある

そして、この条件を満たす置換も、恒等置換しか存在しないので、上三角行列の場合と同様の結果が得られる ■

対角行列は、上三角行列でもあり下三角行列でもあるので、上の定理の特別な場合として次が成り立つ

・ 対角行列の行列式 対角行列の行列式は、対角成分の積である

特に、対角成分がすべて 1 の場合が単位行列である

♣ 単位行列の行列式 単位行列の行列式は1である

$$|E| = 1$$

行列式の基本性質

次の性質により、以後議論する行列式の性質が列に対して成り立つなら、行 に対しても成り立つといえるようになる

ref: 行列と行列式の基 礎 p161~166

ref: 長岡亮介 線形代数 入門講義 p113~121

→ 行列式の対称性

$$\det({}^tA) = \det(A)$$

行列式の定義より、行列 tA の行列式は、行列 A の行列式に現れる $a_{i,\sigma(i)}$ の添字を入れ替えたもの $a_{\sigma(i),i}$ の積和になる

$$\det({}^tA) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n a_{\sigma(i),i}$$

一方、 $j=\sigma(i)$ とおくと、 $i=\sigma^{-1}(j)$ となるので、添字の変数を変換して

$$\prod_{i=1}^n a_{\sigma(i),i} = \prod_{j=1}^n a_{j,\sigma^{-1}(j)}$$

よって、 $\det(^tA)$ の各項は、

$$\operatorname{sgn}(\sigma^{-1}) \prod_{j=1}^n a_{j,\sigma^{-1}(j)}$$

となるが、これは $\det(A)$ の定義式の σ^{-1} に対応する項と同じである

ここで、 $\rho = \sigma^{-1}$ とおくと、 $\sigma = \rho^{-1}$ であり、逆置換の符号から $\operatorname{sgn}(\sigma) = \operatorname{sgn}(\rho^{-1}) = \operatorname{sgn}(\rho)$ であるから、

$$\det({}^tA) = \sum_{
ho \in S_n} \operatorname{sgn}(
ho) \prod_{j=1}^n a_{j,
ho(j)} = \det(A)$$

よって、
$$\det(^tA) = \det(A)$$
 が示された

$$\det(oldsymbol{a}_1,\ldots,oldsymbol{a}_i,\ldots,oldsymbol{a}_j,\ldots,oldsymbol{a}_n)$$

$$= -\det(oldsymbol{a}_1,\ldots,oldsymbol{a}_j,\ldots,oldsymbol{a}_i,\ldots,oldsymbol{a}_n)$$
 $(1 \leq i < j \leq n)$

☎ 証明

元々の行列 A の行列式の各項が、

$$f(\sigma) = \operatorname{sgn}(\sigma) a_{\sigma(1),1} \cdots a_{\sigma(i),i} \cdots a_{\sigma(j),j} \cdots a_{\sigma(n),n}$$

であるのに対し、第i列とj列を入れ替えた行列の行列式の各項は、

$$\operatorname{sgn}(\sigma)a_{\sigma(1),1}\cdots a_{\sigma(i),j}\cdots a_{\sigma(j),i}\cdots a_{\sigma(n),n}$$

となる

ここで、 $i \in j$ に、 $j \in i$ に写す互換 $\sigma_0 = (ij)$ を考え、 $\tau = \sigma \sigma_0$ とおくと、 $\sigma(j) = \tau(i)$, $\sigma(i) = \tau(j)$ となるので、

$$f(\tau) = \operatorname{sgn}(\tau) a_{\tau(1),1} \cdots a_{\tau(i),i} \cdots a_{\tau(j),j} \cdots a_{\tau(n),n}$$

このとき、置換群の左右作用に対する和の不変性より、

$$\sum_{\sigma \in S_n} f(\sigma) = \sum_{\sigma \in S_n} f(\sigma \sigma_0) = \sum_{\tau \in S_n} f(\tau)$$

すなわち、 σ 全体の総和は τ 全体の総和に一致する

さらに、置換の符号の乗法性より、

$$sgn(\tau) = sgn(\sigma) sgn(\sigma_0) = -sgn(\sigma)$$

であるから、

$$f(\sigma) = -f(\tau)$$

よって、列の交換後、行列式全体が (-1) 倍される

♣ 行列式の列についての多重線形性 行列式を列の関数とみたとき、この関数は、どの列についても線形である

$$\det(\boldsymbol{a}_1,\ldots,\alpha\boldsymbol{u}+\beta\boldsymbol{v},\ldots,\boldsymbol{a}_n)$$

$$=\alpha\det(\boldsymbol{a}_1,\ldots,\boldsymbol{u},\ldots,\boldsymbol{a}_n)$$

$$+\beta\det(\boldsymbol{a}_1,\ldots,\boldsymbol{v},\ldots,\boldsymbol{a}_n)$$

証明

 $\sigma \in S_n$ に対応する各項について、

$$a_{\sigma(1),1}\cdots(\alpha u_{\sigma(i)}+\beta v_{\sigma(i)})\cdots a_{\sigma(n),n}$$

 $C=a_{\sigma(1),1}\cdots a_{\sigma(n),n}$ とし、 $A=lpha u_{\sigma(i)}$, $B=eta v_{\sigma(i)}$ とおくと、

$$C(A + B) = CA + CB = \alpha C u_{\sigma(i)} + \beta C v_{\sigma(i)}$$

のように展開できる

よって、

$$egin{aligned} lpha(a_{\sigma(1),1}\cdots u_{\sigma(i)}\cdots a_{\sigma(n),n}) \ &+eta(a_{\sigma(1),1}\cdots v_{\sigma(i)}\cdots a_{\sigma(n),n}) \end{aligned}$$

行列式の対称性より、次の定理も得られる

♣ 行列式の行についての多重線形性と交代性 行列式は行に関しても多重線形性と交代性をもつ

以降、列に対して成り立つ性質は行に対しても成り立つとし、列の場合の みを記載する

8

行列式の値が零になる条件

ref: 長岡亮介 線形代数 入門講義 p118

$$det(A) = 0$$

となる

証明

行列 A の列ベクトルに、共通のベクトル \boldsymbol{u} が含まれているとする

$$A = (\ldots, \boldsymbol{u}, \ldots, \boldsymbol{u}, \ldots)$$

この2つの **u** の列を入れ替えると、

$$\det(\ldots, \boldsymbol{u}, \ldots, \boldsymbol{u}, \ldots) = -\det(\ldots, \boldsymbol{u}, \ldots, \boldsymbol{u}, \ldots)$$

ところが、入れ替えの前後で行列そのものは変化していない (まったく同じ列を入れ替えても行列は同じ) ので、行列式の値も変わらないはずである

すなわち、

$$\det A = - \det A$$

が成り立つ

ここで、両辺に det(A) を足すと、

$$2 \det A = 0$$

より、
$$\det A = 0$$
 が成り立つ

$$det(A) = 0$$

となる

証明 証明

列ベクトルのうち 1 つ \boldsymbol{a}_i が、残りのいくつかの線型結合で表されるとすると、

$$\det(\ldots, \boldsymbol{a}_i, \ldots) = \det\left(\ldots, \sum_{j=1}^k c_j \boldsymbol{a}_j, \ldots\right)$$

行列式の多重線形性より、

$$\det\left(\ldots,\sum_{j=1}^k c_j \boldsymbol{a}_j,\ldots\right) = \sum_{j=1}^k c_j \det(\ldots,\boldsymbol{a}_j,\ldots)$$

ここで、 $oldsymbol{a}_i$ は $oldsymbol{a}_i$ 以外のいずれかの列ベクトルであるため、右辺の 行列式では列ベクトルの重複が生じている この定理の対偶をとることにより、次の定理が得られる

非零行列式による列ベクトルの線形独立性 $A=(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)$ の行列式の値が 0 でないならば、A の n 個の列ベクトル $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n$ は線形独立である

基本変形と行列式

行列式の性質から、行列の列や行に関する基本変形と行列式の関係が見え ref: 長岡亮介 線形代数 てくる 入門講義 p117~118

入門講義 p117~118 ref: 行列と行列式の基

礎 p162

🕹 基本変形と行列式の関係

- i. 列(行)を交換すると行列式の符号が交換される
- ii. 列(行)を定数倍すると、行列式の値も定数倍される
- iii. 列(行)に他の列(行)の定数倍を加えても行列式の値は変化しない
- (i) は行列式の交代性、(ii) は多重線形性であり、(iii) は次の定理によって示される
 - \$ 列の掃き出しに関する不変性 $i \neq j$ のとき、

$$\det(\ldots, \boldsymbol{a}_i + c\boldsymbol{a}_j, \ldots, \boldsymbol{a}_j \ldots)$$

$$= \det(\ldots, \boldsymbol{a}_i, \ldots, \boldsymbol{a}_j \ldots)$$

行列式の多重線形性より、

$$\det(\ldots, \boldsymbol{a}_i + c\boldsymbol{a}_j, \ldots, \boldsymbol{a}_j \ldots)$$

$$= \det(\ldots, \boldsymbol{a}_i, \ldots, \boldsymbol{a}_j \ldots) + c \det(\ldots, \boldsymbol{a}_j, \ldots, \boldsymbol{a}_j \ldots)$$

ここで、同じ列ベクトル \mathbf{a}_j が 2 つ含まれている行列式の値は 0 になるので、

$$\det(\ldots, \boldsymbol{a}_i + c\boldsymbol{a}_j, \ldots, \boldsymbol{a}_j \ldots) = \det(\ldots, \boldsymbol{a}_i, \ldots, \boldsymbol{a}_j \ldots)$$

だけが残る

行列式の特徴づけ

n 個の与えられた n 次実ベクトル $oldsymbol{a}_1,\ldots,oldsymbol{a}_n$ に対して、ある実数が定まるとき、これを $F(oldsymbol{a}_1,\ldots,oldsymbol{a}_n)$ と表すことにする

$$F(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)=F(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n)\det(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)$$

ref: 行列と行列式の基 礎 p162~163

ref: 長岡亮介 線形代数 入門講義 p123~127

証明

多重線形性により、

$$egin{aligned} egin{aligned} egin{aligned} F(oldsymbol{a}_1,\ldots,oldsymbol{a}_n) &= F\left(\sum_{i=1}^n a_{i_11}oldsymbol{e}_{i_1},\ldots,\sum_{i=1}^n a_{i_nn}oldsymbol{e}_{i_n}
ight) \ &= \sum_{i_1,\ldots,i_n} a_{i_11}\cdots a_{i_nn}F(oldsymbol{e}_{i_1},\ldots,oldsymbol{e}_{i_n}) \end{aligned}$$

和において、各 i_k (1 $\leq k \leq n$) は行番号なのでそれぞれ 1 から

ここで、交代性から導かれる定理より、 (i_1,\ldots,i_n) に同じ添字が2 つ以上ある場合には $F(e_{i_1},\ldots,e_{i_n})=0$ であるしたがって、この和は (i_1,\ldots,i_n) がすべて異なる場合、すなわち (i_1,\ldots,i_n) が $(1,\ldots,n)$ の置換である場合にのみ寄与する

よって、 (i_1,\ldots,i_n) にわたる和は、実際には n 次の置換

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{pmatrix} \in S_n$$

にわたる和であるとみなせる

この対応により、 (i_1,\ldots,i_n) と $\sigma \in S_n$ を同一視すると、

$$F(\boldsymbol{e}_{i_1},\ldots,\boldsymbol{e}_{i_n})=F(\boldsymbol{e}_{\sigma(1)},\ldots,\boldsymbol{e}_{\sigma(n)})$$

さらに、 $(e_{\sigma(1)},\ldots,e_{\sigma(n)})$ を (e_1,\ldots,e_n) に並び替えることを考える

すなわち、 σ の逆置換 σ^{-1} を考えることになる

交代性によって、1 回の互換につき (-1) 倍されるが、全体の符号は互換の回数によって定まるので、 $\operatorname{sgn}(\sigma^{-1}) = \operatorname{sgn}(\sigma)$ となる

$$F(\boldsymbol{e}_{\sigma(1)},\ldots,\boldsymbol{e}_{\sigma(n)}) = \operatorname{sgn}(\sigma)F(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n)$$

以上より、

$$F(\boldsymbol{a}_{1}, \dots, \boldsymbol{a}_{n})$$

$$= \sum_{\sigma \in S_{n}} a_{\sigma(1)1} \cdots a_{\sigma(n)n} F(\boldsymbol{e}_{\sigma(1)}, \dots, \boldsymbol{e}_{\sigma(n)})$$

$$= \sum_{\sigma \in S_{n}} a_{\sigma(1)1} \cdots a_{\sigma(n)n} \operatorname{sgn}(\sigma) F(\boldsymbol{e}_{1}, \dots, \boldsymbol{e}_{n})$$

$$= \left(\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \cdots a_{\sigma(n)n}\right) F(\boldsymbol{e}_{1}, \dots, \boldsymbol{e}_{n})$$

$$= \det(\boldsymbol{a}_{1}, \dots, \boldsymbol{a}_{n}) F(\boldsymbol{e}_{1}, \dots, \boldsymbol{e}_{n})$$

となり、目的の等式が示された

CCC, $F(\boldsymbol{e}_1, \ldots, \boldsymbol{e}_n) = 1$ CEC

$$F(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)=\det(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)$$

と表せることになる

この $F(e_1, \ldots, e_n) = 1$ を正規化の条件といい、行列式は

- i. 双線形性
- ii. 交代性
- iii. 正規化の条件

によって特徴づけられる

すなわち、行列式は、この3つの条件を満たすような

n 個の列ベクトル $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_n$ で定まる関数

として定義することもできる

行列式の幾何学的意味

[Todo 27:]

行列の積と行列式

行列式の特徴づけから導ける性質として、次が重要である

♣ 行列式の乗法性 A, B を同じ型の行列とするとき、

det(AB) = det(A) det(B)

ref: 行列と行列式の基 礎 p134~136、p152

ref: 長岡亮介 線形代数

 ~ 153

入門講義 p127~130

ref: 行列と行列式の基

礎 p164

ref: 長岡亮介 線形代数 入門講義 p131~132 B の列ベクトルを $\boldsymbol{b}_1, \ldots, \boldsymbol{b}_n$ とし、次の関数

$$F(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n)=\det(A\boldsymbol{b}_1,\ldots,A\boldsymbol{b}_n)$$

を考える

ここで、 \det は列ベクトルに対して交代性をもつため、この関数 F も交代性をもつ

また、 \det の多重線形性に加え、A による作用は線形写像であるから、F も多重線形性を満たす

よって、多重線形性と交代性による行列式の特徴づけより、

$$F(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n)=F(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n)\det(B)$$

一方、F の引数を単位ベクトル e_1, \ldots, e_n にしたもの

$$F(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n)=\det(A\boldsymbol{e}_1,\ldots,A\boldsymbol{e}_n)$$

を考えると、

$$F(\boldsymbol{e}_1,\ldots,\boldsymbol{e}_n)=\det(A\boldsymbol{e}_1,\ldots,A\boldsymbol{e}_n)$$

$$=\det(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)$$

$$=\det(A)$$

よって、

$$F(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n)=\det(A)\det(B)$$

ここで、 $F(\boldsymbol{b}_1,\ldots,\boldsymbol{b}_n)$ の定義を思い出すと、

$$\det(A\boldsymbol{b}_1,\ldots,A\boldsymbol{b}_n)=\det(A)\det(B)$$

左辺の行列 (Ab_1, \ldots, Ab_n) は、行列 B の各列ベクトルに対して A を左から作用させたものであり、行列 AB を意味している

したがって、

$$det(AB) = det(A) det(B)$$

が成り立つ

行列式の乗法性を繰り返し適用することで、次の定理が得られる

$$\det(A^n) = \det(A)^n$$

行列式と正則性

行列式は、正則性の判定にも利用できる

🕹 正則性と行列式の非零性

A が正則行列 \iff $\det(A) \neq 0$

ref: 行列と行列式の基

礎 p164

ref: 長岡亮介 線形代数 入門講義 p132~133

A が正則であることから、

$$AA^{-1} = E$$

両辺の行列式をとって、

$$\det(AA^{-1}) = \det(E)$$

左辺には行列式の乗法性を適用し、右辺は単位行列の行列式 の値が 1 であることから、

$$\det(A)\det(A^{-1})=1$$

もし $\det(A)=0$ だと仮定すると、0=1 という矛盾した式になる

 \leftarrow

 $\det(A) \neq 0$ であることから、行列 A の列ベクトルは線型独立である

そして、*A* の列ベクトルが線型独立であることと、*A* が正則であることは同値である ■

この定理の派生として、行列式を次の形で使うことが多い

・ 消去法の原理 A を正方行列とするとき、

$$A\mathbf{x} = \mathbf{0}$$
 に非自明解が存在する \iff $\det(A) = \mathbf{0}$

余因子展開

3次正方行列において、第1列を次のようにとらえる

$$\begin{pmatrix} a_{11} \\ a_{21} \\ a_{31} \end{pmatrix} = a_{11} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + a_{21} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + a_{31} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

これをふまえて、3次行列式を、第1列に関する線形性を用いて、次のよ

ref: 行列と行列式の基 礎 p142~144、p166 ~169

ref: 長岡亮介 線形代数 入門講義 p133~139 うな和に分解してみる

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} 0 & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} + a_{21} \begin{vmatrix} 0 & a_{12} & a_{13} \\ 1 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} 0 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 1 & a_{32} & a_{33} \end{vmatrix}$$

ここで、たとえば、

$$\begin{vmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix}$$

をどのように表せるかを考える

まず、(1,1)成分を要にして第1行の掃き出しを行えば、

$$\begin{vmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix}$$

が得られる

そこで、

$$oldsymbol{u}_1=egin{pmatrix} a_{22}\ a_{32} \end{pmatrix}$$
 , $oldsymbol{u}_2=egin{pmatrix} a_{23}\ a_{33} \end{pmatrix}$

とおき、

$$F(\boldsymbol{u}_1, \boldsymbol{u}_2) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = F(\boldsymbol{e}_1, \boldsymbol{e}_2) \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

とみなす

ここで、

$$F(\boldsymbol{e}_1, \boldsymbol{e}_2) = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 1$$

であるから、結局、

$$\begin{vmatrix} 1 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}$$

が得られる

2 項めの行列式も同様に、掃き出し法によって、

$$\begin{vmatrix} 0 & a_{12} & a_{13} \\ 1 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} 0 & a_{12} & a_{13} \\ 1 & 0 & 0 \\ 0 & a_{32} & a_{33} \end{vmatrix}$$

これを、

$$oldsymbol{u}_1=egin{pmatrix} a_{12}\ a_{32} \end{pmatrix}$$
 , $oldsymbol{u}_2=egin{pmatrix} a_{13}\ a_{33} \end{pmatrix}$

の関数 $F(\boldsymbol{u}_1, \boldsymbol{u}_2)$ とみなす

交代性より、

$$F(\mathbf{e}_1, \mathbf{e}_2) = \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{vmatrix} = \det(\mathbf{e}_2, \mathbf{e}_1, \mathbf{e}_3)$$
$$= -\det(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3) = -1$$

なので、

$$\begin{vmatrix} 0 & a_{12} & a_{13} \\ 1 & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{vmatrix} = - \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}$$

最後の項の行列式も同様にして、

$$\begin{vmatrix} 0 & a_{12} & a_{13} \\ 0 & a_{22} & a_{23} \\ 1 & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} 0 & a_{12} & a_{13} \\ 0 & 0 & 0 \\ 1 & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}$$

と表せる

以上より、3次行列式は、次のような2次行列式の和に分解できる

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{21} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} + a_{31} \begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix}$$

このような行列式の展開を一般化したものが、余因子展開である

igodesign 余因子 n 次正方行列 $A=(a_{ij})$ から、第 i 行と第 j 列を取り除いて (n-1) 次の正方行列 Δ_{ij} を作り、その行列式に符号 $(-1)^{i+j}$ をかけたものを、A の (i,j) 余因子と呼び、 \tilde{a}_{ij} と書く

$$\tilde{a}_{ij} = (-1)^{i+j} \det(\Delta_{ij})$$

♣ 余因子展開 det(A) は次のように余因子展開できる

第 j 列に関する展開

$$\det(A) = \tilde{a}_{1j}a_{1j} + \tilde{a}_{2j}a_{2j} + \cdots + \tilde{a}_{nj}a_{nj}$$

第 i 行に関する展開

$$\det(A) = \tilde{a}_{i1}a_{i1} + \tilde{a}_{i2}a_{i2} + \cdots + \tilde{a}_{in}a_{in}$$

証明 証明

列に関する展開だけを示せば、行の方は行列式の対称性よりしたがう

行列 A を $A = (\boldsymbol{a}_1, \ldots, \boldsymbol{a}_n)$ のように列ベクトル表示するすると、

$$\mathbf{a}_j = a_{1j}\mathbf{e}_1 + \cdots + a_{nj}\mathbf{e}_n$$

なので、行列式の多重線形性を用いて、

$$\det(A) = |oldsymbol{a}_1, \dots, oldsymbol{a}_j, \dots, oldsymbol{a}_n|$$

$$= \sum_{i=1}^n |oldsymbol{a}_1, \dots, oldsymbol{a}_{ij} oldsymbol{e}_i, \dots, oldsymbol{a}_n|$$

$$= \sum_{i=1}^n a_{ij} |oldsymbol{a}_1, \dots, oldsymbol{e}_i, \dots, oldsymbol{a}_n|$$

 $|\boldsymbol{a}_1,\ldots,\boldsymbol{e}_i,\ldots,\boldsymbol{a}_n|$ に対して、(i,j) 成分を要にして第 i 行を

掃き出す操作を行うと、

さらに、i 行目を 1 つ上の行と順に交換して 1 行目まで移動し、次に j 列目を 1 つ左の列と順に交換して 1 列目まで移動する

行や列の交換から生じる符号の変化は、(i-1)+(j-1) の交換を行っているので、 $(-1)^{i+j-2}=(-1)^2(-1)^{i+j}=(-1)^{i+j}$ となる

よって、次のような形が得られる

ここで現れる行列式は、第 1 行・第 1 列に移動させた第 i 行・第 j 列を取り除いた (n-1) 次正方行列の行列式であるよって、符号の部分も合わせて、余因子の定義より、次のように書

$$|{m a}_1,\ldots,{m e}_i,\ldots,{m a}_n|= ilde{a}_{ij}$$

したがって、行列 A の行列式は、

$$\det(A) = \sum_{i=1}^n a_{ij} \tilde{a}_{ij}$$

と書けることが示された

ける

余因子行列と逆行列の公式

[Todo 28:]

ref: 長岡亮介 線形代数

入門講義 p139~144

ref: 行列と行列式の基

礎 p169~172

クラメルの公式

[Todo 29:]

ref: 長岡亮介 線形代数

入門講義 p144~145

ref: 行列と行列式の基

礎 p172

第8章

線形空間

線形部分空間の定義

 \mathbb{R}^n の部分集合であって、ベクトル演算で閉じた集合について考える 原点を含み直線や平面などを一般化した概念である ref: 行列と行列式の基 礎 p93~94、p99

- 線形部分空間 \mathbb{R}^n のベクトルからなる空集合でない集合 V は、次が成り立つとき線形部分空間あるいは簡単に部分空間であるという
 - i. すべての $\boldsymbol{u}, \boldsymbol{v} \in V$ に対して $\boldsymbol{u} + \boldsymbol{v} \in V$ が成り立つ
 - ii. すべての $c \in \mathbb{R}$, $\boldsymbol{u} \in V$ に対して $c\boldsymbol{u} \in V$ が成り立つ

ある \mathbb{R}^n の線形部分空間のことを単に<mark>線形空間</mark>と呼ぶこともある 入れものの空間 \mathbb{R}^n のことはあまり意識せずに、集合 V とそのベクトル演 算に着目する考え方である

線形部分空間の例: \mathbb{R}^n 自身

たとえば、 \mathbb{R}^n 自身は明らかに \mathbb{R}^n の部分空間である

線形部分空間の例:零ベクトルだけからなる部分集合

零ベクトル $\mathbf{0}$ だけからなる部分集合 $\{\mathbf{0}\}$ も部分空間である

部分空間における零ベクトルの包含 部分空間は必ず零ベクトル 0 を含む

証明

V は空集合でないので、ある $\boldsymbol{v} \in V$ をとるとき、線形部分空間の 定義 ii より

$$0 \cdot v = 0 \in V$$

よって部分空間は必ず 0 を含む

線形部分空間の例:ベクトルが張る空間

 $oldsymbol{\cdot}$ ベクトルが張る空間は線形部分空間 $oldsymbol{v}_1,oldsymbol{v}_2,\ldots,oldsymbol{v}_k\in\mathbb{R}^n$ が張る空間 $\langleoldsymbol{v}_1,oldsymbol{v}_2,\ldots,oldsymbol{v}_k
angle$ は部分空間である

証明 証明

[Todo 30: ref: 行列と行列式の基礎 p94 命題 3.1.2]

たとえば \mathbb{R}^3 において座標を (x,y,z) とするとき、xy 平面は \mathbb{R}^3 の部分 空間である

| 座標部分空間 $\{1,2,\ldots,n\}$ の部分集合 I に対して、 $x_i~(i\in I)$ 以外の座標がすべて 0 である部分集合は \mathbb{R}^n の部分集合である

このようなものを座標部分空間といい、 \mathbb{R}^{I} と書く

$$\mathbb{R}^I = \langle \boldsymbol{e}_i \mid i \in I \rangle$$

と表すこともできる

 $oldsymbol{\psi}$ 部分空間の張る空間は部分空間 $V\subset \mathbb{R}^n$ を部分空間、 $oldsymbol{v}_1,oldsymbol{v}_2,\ldots,oldsymbol{v}_k\in V$ とすると、

$$\langle \boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k \rangle \subset V$$

証明

[Todo 31: ref: 行列と行列式の基礎 p94 命題 3.1.4]

線形部分空間の例:線形写像の像

ref: 図で整理!例題で 納得!線形空間入門 p82

和について

 $m{u},m{v}\in \mathrm{Im}(f)$ とすると、 $m{u}=f(m{v}_1),\,m{v}=f(m{v}_2)$ とお ける

よって、f の線形性より

$$\mathbf{u} + \mathbf{v} = f(\mathbf{v}_1) + f(\mathbf{v}_2)$$
$$= f(\mathbf{v}_1 + \mathbf{v}_2)$$

となり、Im(f) は和について閉じている

スカラー倍について

 $\boldsymbol{u} \in \operatorname{Im}(f)$ と $c \in \mathbb{R}$ をとると、 $\boldsymbol{u} = f(\boldsymbol{v})$ とおけるよって、f の線形性より

$$c\mathbf{u} = cf(\mathbf{v})$$
$$= f(c\mathbf{v})$$

となり、Im(f) はスカラー倍について閉じている

線形部分空間の例:線形写像の核

$$f(\mathbf{0}_V) = \mathbf{0}_W$$

ref: 図で整理! 例題で 納得!線形空間入門 p71 ~72

証明

任意の $\boldsymbol{v} \in V$, $\boldsymbol{w} \in W$ に対して、

$$0 \cdot \boldsymbol{v} = \mathbf{0}_V$$
$$0 \cdot \boldsymbol{w} = \mathbf{0}_W$$

が成り立つ

 $f(\mathbf{O}_V)$ は、f の線形性により、次のように変形できる

$$f(\mathbf{0}_V) = f(0 \cdot \boldsymbol{v}) = 0 \cdot f(\boldsymbol{v})$$

ここで、 $f(\boldsymbol{v})$ は、f による $\boldsymbol{v} \in V$ の像であるので、W に属するそこで、 $\boldsymbol{w} = f(\boldsymbol{v})$ とおくと、

$$f(\mathbf{0}_{V}) = 0 \cdot f(\mathbf{v})$$
$$= 0 \cdot \mathbf{w}$$
$$= \mathbf{0}_{W}$$

となり、目標としていた式が示された

ref: 図で整理!例題で 納得!線形空間入門 p82

証明 証明

前述の定理の主張 $f(\mathbf{0}_V) = \mathbf{0}_W$ より、零ベクトルは核空間に属する

$$\mathbf{0} \in \mathrm{Ker}(f)$$

和について

 $m{u}, m{v} \in \mathrm{Ker}(f)$ とすると、 $f(m{u}) = m{0}$ かつ $f(m{v}) = m{0}$ である

よって、fの線形性より

$$f(\boldsymbol{u} + \boldsymbol{v}) = f(\boldsymbol{u}) + f(\boldsymbol{v})$$
$$= 0 + 0 = 0$$

したがって、 $\boldsymbol{u} + \boldsymbol{v} \in \text{Ker}(f)$ である

スカラー倍について

 $\mathbf{u} \in \operatorname{Ker}(f)$ と $c \in \mathbb{R}$ をとると、 $f(\mathbf{u}) = \mathbf{0}$ であるよって、f の線形性より

$$f(c\mathbf{u}) = cf(\mathbf{u})$$
$$= c \cdot \mathbf{0} = \mathbf{0}$$

したがって、 $c\mathbf{u} \in \text{Ker}(f)$ である

基底と次元

部分空間のパラメータ表示を与えるために基準として固定するベクトルの 集合を定式化すると、**基底**という概念になる

基底は、座標空間の「座標軸」に相当するものであり、部分空間を生成する 独立なベクトルの集合として定義される ref: 行列と行列式の基 礎 p96、p99~100 ref: 図で整理!例題で 納得!線形空間入門 p33 ~35

ベクトルの集合 $\{ m{v}_1, m{v}_2, \dots, m{v}_k \} \subset V$ は、次を満たすとき V の基底であるという

i. $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k\}$ は線型独立である

ii. $V = \langle \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \rangle$

線形空間 V の基底 $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k\}$ を 1 つ見つけたら、ベクトルの個

数を数えて、V の次元が k であるとする

▶ 次元 V を線形空間とする

V の基底をなすベクトルの個数を V の次元といい、 $\dim V$ と 書く

また、 $dim{0} = 0$ と定義する

基底の例:標準基底

たとえば、基本ベクトルの集合 $\{e_1, e_2, \ldots, e_n\}$ は \mathbb{R}^n の基底であり、 ref: 図で整理!例題で これを \mathbb{R}^n の標準基底という

標準基底 $\{e_1, e_2, \ldots, e_n\}$ は n 個のベクトルからなるため、 \mathbb{R}^n の次元 は **n** である

 $\stackrel{\bullet}{\bullet}$ 数ベクトル空間の標準基底 数ベクトル空間 K^n において、 基本ベクトルの集合 $\{e_1, e_2, \ldots, e_n\}$ は K^n の基底である

証明 証明

部分空間を生成すること

任意のベクトル $\boldsymbol{v} \in K^n$ は、次のように表せる

$$\boldsymbol{v} = v_1 \boldsymbol{e}_1 + v_2 \boldsymbol{e}_2 + \cdots + v_n \boldsymbol{e}_n$$

したがって、 K^n は $\{e_1, e_2, \ldots, e_n\}$ によって生成される

線型独立であること

 e_1, e_2, \ldots, e_n の線形関係式

 $c_1\boldsymbol{e}_1+c_2\boldsymbol{e}_2+\cdots+c_n\boldsymbol{e}_n=\mathbf{0}$

納得!線形空間入門 p35

を考える

このとき、左辺は

$$c_1oldsymbol{e}_1+c_2oldsymbol{e}_2+\cdots+c_noldsymbol{e}_n=egin{pmatrix} c_1\ c_2\ dots\ c_n \end{pmatrix}$$

と書き換えられるので、これが零ベクトルになるためには、

$$c_1=0$$
, $c_2=0$, \cdots , $c_n=0$

でなければならない

よって、 $\{e_1, e_2, \ldots, e_n\}$ は線型独立である

基底と次元を定義するにあたって、次の保証が必要になる

- i. 任意の部分空間に、基底の定義を満たす有限個のベクトルが存在すること(基底の存在)
- ii. 任意の部分空間に対して、基底をなすベクトルの個数が、基底の選び方によらず一定であること(次元の不変性)

基底の存在

基底の構成と存在を示すために、次の補題を用いる

 \clubsuit 線型独立なベクトルの延長 V を K^n の $\{\mathbf{0}\}$ でない部分空間とする

このとき、V の線型独立なベクトル $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_m$ と、V に入らないベクトル \boldsymbol{a} は線型独立である

ref: 行列と行列式の基

礎 p98~99

ref: 図で整理!例題で 納得!線形空間入門 p36

~37

証明

 $oldsymbol{a}$, $oldsymbol{a}_1$, $oldsymbol{a}_2$, ..., $oldsymbol{a}_m$ が線型従属であるとするすると、定理「線形結合によるベクトルの表現」より、 $oldsymbol{a}$ は $oldsymbol{a}_1$, $oldsymbol{a}_2$, ..., $oldsymbol{a}_m$ の線形結合で表され、 $oldsymbol{V}$ に入り、矛盾するよって、 $oldsymbol{a}$, $oldsymbol{a}_1$, $oldsymbol{a}_2$, ..., $oldsymbol{a}_m$ は線型独立である

この定理は、ベクトルの集合が張る空間の記号を用いると、次のように簡 潔にまとめられる

 K^n の $\{{\bf 0}\}$ でない部分空間 V の線型独立なベクトルは、V の基底に拡張できる

 $oldsymbol{\$}$ 基底の存在 K^n の $\{oldsymbol{0}\}$ でない部分空間 V には基底が存在 する

証明

 $V \neq \{\mathbf{0}\}$ なので、V には少なくとも 1 つのベクトル $\boldsymbol{v}_1 \neq \mathbf{0}$ が存在する

定理「単一ベクトルの線型独立性と零ベクトル」より、 $\{m{v}_1\}$ は線型独立である

このとき、 $\langle {m v}_1 \rangle \subset V$ であるが、もしも $\langle {m v}_1 \rangle = V$ ならば、 $\{ {m v}_1 \}$ は V の基底である

 $\langle \pmb{v}_1 \rangle \subsetneq V$ ならば、 $\pmb{v}_2 \subsetneq \langle \pmb{v}_1 \rangle$ であるベクトルを V から選ぶことができる

補題「線型独立なベクトルの延長」より、 $\{m{v}_1,m{v}_2\}$ は線型独立である

このとき、 $\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle \subset V$ であるが、もしも $\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle = V$ ならば、 $\{\boldsymbol{v}_1, \boldsymbol{v}_2\}$ は V の基底である

 $\langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle \subsetneq V$ ならば、 $\boldsymbol{v}_3 \subsetneq \langle \boldsymbol{v}_1, \boldsymbol{v}_2 \rangle$ であるベクトルを V から選ぶことができる

補題「線型独立なベクトルの延長」より、 $\{ m v_1, m v_2, m v_3 \}$ は線型独立である

以下同様に続けると、 $\langle \pmb{v}_1, \pmb{v}_2, \dots, \pmb{v}_k \rangle = V$ となるまで、V に属するベクトルを選び続けることができる

ここで線型独立なベクトルを繰り返し選ぶ操作が無限に続かないこと(有限値 k が存在すること)は、有限従属性定理により、 K^n の中には n 個を超える線型独立なベクトルの集合は存在しないことから保証される

基底の存在証明で行った基底の構成をさらに続けることで、次の定理が得 られる ref: 行列と行列式の基 礎 p103

基底の延長 V を n 次元の線形空間とし、線型独立なベクトル $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m\in V$ が与えられたとするこのとき、(n-m) 個のベクトル $\boldsymbol{v}_{m+1},\ldots,\boldsymbol{v}_n\in V$ を追加して、 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m,\boldsymbol{v}_{m+1},\ldots,\boldsymbol{v}_n\}$ が V の基底になるようにできる

証明

基底の存在の証明において、線型独立なベクトル $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m\in V$ が得られたところからスタートし、同様の手続きを繰り返せばよい

次元の不変性

 $oldsymbol{\$}$ 次元の不変性 K^n の部分空間 V の基底をなすベクトルの 個数 (次元) は一定である

つまり、 $\{ oldsymbol{v}_1, \ldots, oldsymbol{v}_k \}$ と $\{ oldsymbol{u}_1, \ldots, oldsymbol{u}_l \}$ がともに V の基底ならば、k=l である

ref: 行列と行列式の基 礎 p99

ref: 図で整理!例題で 納得!線形空間入門 p37

~38

証明

 $m{u}_1, m{u}_2, \ldots, m{u}_l \in \langle m{v}_1, m{v}_2, \ldots, m{v}_k \rangle$ であり、 $m{u}_1, m{u}_2, \ldots, m{u}_l$ は線型独立であるから、有限従属性定理の抽象版より、 $l \leq k$ である

同様にして $k \leq l$ も成り立つので、k = l である

8

線型独立なベクトルと次元

ref: 行列と行列式の基 礎 p100 ・ 線形独立なベクトルの最大個数と空間の次元 線形空間 V 中の線型独立なベクトルの最大個数は dim V と等しい

証明

V の基底を $\{ \boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_k \}$ とすると、V には k 個の線型独立なベクトルが存在する

また、 $V = \langle \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_k \rangle$ であるため、有限従属性定理の抽象版より、V 中の線型独立なベクトルの個数は k を超えることはないつまり、k は V に含まれる線型独立なベクトルの最大個数である

♣ 線形空間を生成するベクトルの最小個数と次元 線形空間 Vを張るベクトルの最小個数は dim V と等しい

[Todo 32: ref: 行列と行列式の基礎 p100 問 3.3]

線形写像の核空間と基底

斉次形方程式 $A \boldsymbol{x} = \boldsymbol{0}$ の解の自由度を d とすると、基本解 $\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_d \in \operatorname{Ker}(A)$ が存在して、任意の $\boldsymbol{u} \in \operatorname{Ker}(A)$ に対して

ref: 行列と行列式の基 礎 p94~95

 $\boldsymbol{u} = c_1 \boldsymbol{u}_1 + c_2 \boldsymbol{u}_2 + \cdots + c_d \boldsymbol{u}_d$

を満たす $c_1, c_2, \ldots, c_d \in \mathbb{R}$ が一意的に定まる

このことは、基底の言葉で言い換えると次のようになる

・ 斉次形方程式の基本解と核空間の基底 A を m × n 型行列とし、 $\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_d$ を $A\boldsymbol{x} = \boldsymbol{0}$ の基本解とするとき、 $\{\boldsymbol{u}_1, \boldsymbol{u}_2, \ldots, \boldsymbol{u}_d\}$ は Ker(A) の基底である

線形写像の像空間と列空間

次の定理が成り立つことから、Im(A) を A の列空間と呼ぶこともある

ref: 行列と行列式の基 礎 p96~97

証明

線形写像 $f: \mathbb{R}^n \to \mathbb{R}^m$ の表現行列を $A = (\boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n)$ とするとき、 $\boldsymbol{v} \in \mathbb{R}^n$ に対して

$$f(\boldsymbol{v}) = A\boldsymbol{v} = v_1\boldsymbol{a}_1 + v_2\boldsymbol{a}_2 + \cdots + v_n\boldsymbol{a}_n$$

なので、

$$\boldsymbol{u} \in \text{Im}(f)$$

$$\iff \exists \boldsymbol{v} \in \mathbb{R}^n \ s.t. \ \boldsymbol{u} = f(\boldsymbol{v})$$

$$\iff \exists v_1, \ldots, v_n \in \mathbb{R} \text{ s.t. } \boldsymbol{u} = v_1 \boldsymbol{a}_1 + \cdots + v_n \boldsymbol{a}_n$$

$$\iff \boldsymbol{u} \in \langle \boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_n \rangle$$

したがって、

$$\operatorname{Im}(f) = \operatorname{Im}(A) = \langle \boldsymbol{a}_1, \boldsymbol{a}_2, \dots, \boldsymbol{a}_n \rangle$$

上述の証明の

 $\boldsymbol{u} \in \text{Im}(f) \Longleftrightarrow \exists \boldsymbol{v} \in \mathbb{R}^n \text{ s.t. } \boldsymbol{u} = f(\boldsymbol{v})$

という変形に着目すると、この定理は次のように線型方程式の文脈で言い 換えられる

 $oldsymbol{\$}$ 線形写像の像空間と方程式の解の存在 $oldsymbol{b} \in \mathbb{R}^m$ に対して

 $\boldsymbol{b} \in \operatorname{Im}(A) \iff$ 方程式 $A\boldsymbol{x} = \boldsymbol{b}$ が解を持つ

 $oldsymbol{b} \in \mathbb{R}^m$ が $\mathrm{Im}(A)$ に属するかどうかを調べるためには階数による判定条件が使える

一方、後に論じるように、

ある線形写像の核空間として像空間をとらえる

こともできる

扱う問題によってはそのような見方が有効になる

線形写像の像空間は表現行列の列ベクトルによって張られるが、列ベクトルの集合は一般には線型独立ではない

像空間の基底を得るためには、列ベクトルの部分集合を考えるのが自然で ある

・ 主列ベクトルによる像空間の基底の構成 行列 A の主列ベクトルの集合は Im(A) の基底である

「Todo 33: ref: 行列と行列式の基礎 p97 定理 3.1.10]

線形写像の階数

行列の階数のさらに本質的な意味を明らかにするのが次の結果である

ref: 行列と行列式の基 礎 p100

・ 行列の階数と像空間の次元の一致 行列の階数は像空間の次元である

すなわち、A を $m \times n$ 型行列とするとき、

$$rank(A) = dim Im(A)$$

証明 証明

定理「主列ベクトルによる像空間の基底の構成」より、A の主列ベクトル $oldsymbol{a}_{i_1}$, $oldsymbol{a}_{i_2}$, . . . , $oldsymbol{a}_{i_r}$ は $\mathrm{Im}(A)$ の基底を成すよってその個数 $r=\mathrm{rank}(A)$ は $\mathrm{Im}(A)$ の次元である

この定理は、*A* の階数が行変形の仕方によらずに決まることを念押しするような定理である

列ベクトルの言葉で階数の解釈を与える定理「階数と線型独立な列ベクトルの最大個数」よりも一段と抽象性が高くなっている

より抽象性を上げて、次の定義をする

つまり、 $f: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像とするとき、f の階数を

$$rank(f) = dim Im(f)$$

と定義する

次元定理

連立方程式 Ax = b の解の自由度は、

解の自由度 = (変数の個数) -
$$\operatorname{rank}(A)$$

で表された

この関係は、b=0、すなわち斉次形の場合にも成り立つ

そこで、変数の個数をnとおくと、次のようにも書き換えられる

$$\operatorname{rank}(A) = n - (A\boldsymbol{x} = \boldsymbol{0} \,$$
の解の自由度)

線型方程式と階数に関するこの関係を、線形写像と次元の言葉で言い換え たい

次のような線形写像

を考えると、

- 事像 f は、行列 A に対応する
- \bullet 変数の個数は、 \boldsymbol{x} の動く空間 \mathbb{R}^n の次元 n に対応する
- Ax = 0 の解の自由度は、写像 f で 0 になってしまうものの次元 に対応する

ref: 行列と行列式の基

礎 p101

ref: 長岡亮介 線形代数

入門講義 p82~83

という関係が読み取れる

ここで、写像 f で $oldsymbol{0}$ になってしまう縮退するものは、写像 f の $oldsymbol{k}$ Ker(f) である

このことを用いて関係式を表現し直すと、次のようになる

$$rank(f) = n - dim Ker(f)$$

 $m{\$}$ 線形写像の次元定理 $f: \mathbb{R}^n \to \mathbb{R}^m$ を線形写像とすると、次が成り立つ

$$\operatorname{rank}(f) = n - \dim \operatorname{Ker}(f)$$

証明

A を f の表現行列とし、 $\mathrm{rank}(f)=r$ とするこのとき、 $\mathrm{Ker}(f)$ の次元は $A \mathbf{x} = \mathbf{0}$ の解空間の自由度 n-r と一致するため、

$$\dim \operatorname{Ker}(f) = n - r$$

$$= n - \operatorname{rank}(f)$$

$$\therefore \operatorname{rank}(f) = n - \dim \operatorname{Ker}(f)$$

となり、定理が成り立つ

8

線形同型

線形同型は、部分空間が「同じ」であることを述べた概念である

ref: 行列と行列式の基

礎 p101

ref: 図で整理!例題で 納得!線形空間入門 p91

~92

線形同型写像 V, W を線形空間とし、線形写像 $f:V\to W$ が全単射であるとき、f は<mark>線形同型写像</mark>あるいは単に線形同型であるという

このとき、同型を表す記号 ≅ を用いて、

$$f \colon V \xrightarrow{\cong} W$$

と書くこともある

$$V \cong W$$

と書く

線形同型の性質

ここでは、線形同型写像の恒等写像、逆写像、合成写像との関係を述べる

ref: 図で整理!例題で 納得!線形空間入門 p93 ~94

線形同型と恒等写像

🕹 恒等写像の線形同型性 恒等写像は線形同型写像である

証明

恒等写像は明らかに全単射であり、線形写像でもあるため、線形同型写像である

この事実は、部分空間の線形同型に関して次のように言い換えられる

** 部分空間の自己同型性 部分空間 V は V 自身と線形同型である

すなわち、

 $V \cong V$

線形同型と逆写像

・ 線形同型写像の逆写像 線形同型写像の逆写像は線形同型写像である

「Todo 34: ref: 図で整理!例題で納得!線形空間入門 p93~94]

この事実は、部分空間の線形同型に関して次のように言い換えられる

線形同型性の対称性 部分空間 V が部分空間 W と線形同型なら、W は V と線形同型であるすなわち、

 $V \cong W \Longrightarrow W \cong V$

線形同型と合成写像

・ 線形同型写像の合成 線形同型写像の合成は線形同型写像である

[Todo 35: ref: 図で整理!例題で納得!線形空間入門 p94]

この事実は、部分空間の線形同型に関して次のように言い換えられる

すなわち、

 $V \cong W \land W \cong U \Longrightarrow V \cong U$

ここまでで登場した、部分空間の線形同型に関する性質をまとめると、

- → 線形同型の同値関係としての性質
 - i. $V \cong V$
 - ii. $V \cong W \Longrightarrow W \cong V$
 - iii. $V \cong W \land W \cong U \Longrightarrow V \cong U$

となり、これらは、

同型 ≅ が等号 = と同じ性質をもつ

ことを意味している

線形同型写像と基底

・ 線形同型写像による基底の保存 線形同型写像 f によって、
部分空間の基底は基底に写る

ref: 図で整理!例題で 納得!線形空間入門 p94

証明

単射な線型写像は線型独立性を保つことから、fの単射性により、基底の線型独立性が保たれる

また、f の全射性により、基底の生成性も保たれるよって、f によって基底は基底に写る

座標写像

 $m{\epsilon}$ 座標写像 V を線形空間とし、 $m{\mathcal{V}}=\{m{v}_1,m{v}_2,\ldots,m{v}_n\}$ を V の基底とする

ref: 行列と行列式の基

礎 p101

ref: 図で整理!例題で 納得!線形空間入門 p94

~95

このとき、 K^n から V への線形写像 $\Phi_V: K^n \to V$ を

$$\Phi_{\mathcal{V}}(oldsymbol{x}) = \sum_{i=1}^n x_i oldsymbol{v}_i \quad (oldsymbol{x} \in (x_i)_{i=1}^n \in \mathcal{K}^n)$$

を V で定まる<u>座標写像</u>と呼ぶ

このように定めた線形写像が<mark>座標写像</mark>と呼ばれる背景は、この座標写像が 線形同型であることを示し、それがどんな意味を持つのかを考えることで わかる

。 線形空間の基底によって定まる線形同型写像 V を線形空間 とし、 $V = \{ \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n \}$ を V の基底とする このとき、 K^n から V への線形写像 $\Phi_{\mathcal{V}} \colon K^n \to V$ を

$$\Phi_{\mathcal{V}}(oldsymbol{x}) = \sum_{i=1}^n x_i oldsymbol{v}_i \quad (oldsymbol{x} \in (x_i)_{i=1}^n \in \mathcal{K}^n)$$

と定めると、これは線形同型写像である

☎ 証明

線形写像 Φν が全単射であることを示す

単射であること

基底 $\{oldsymbol{v}_1,oldsymbol{v}_2,\ldots,oldsymbol{v}_n\}$ の線型独立性は、

$$\sum_{i=1}^n x_i \boldsymbol{v}_i = \mathbf{0}$$

で表される線形結合が、 $x_i=0$ を満たすことを意味する $\Phi_{\mathcal{V}}$ の定義をふまえると、この条件は、

$$Ker(\Phi_{\mathcal{V}}) = \{\mathbf{0}\}$$

と書ける

よって、線形写像の単射性と核の関係より、 $\Phi_{\mathcal{V}}$ は単射である

全射であること

基底 $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n\}$ が V を生成することは、

$$oldsymbol{u} \in V \iff oldsymbol{u} \in \langle oldsymbol{v}_1, oldsymbol{v}_2, \dots, oldsymbol{v}_n
angle$$
 $\iff \exists (x_i)_{i=1}^n \in \mathcal{K}^n \ s.t. \ oldsymbol{u} = \sum_{i=1}^n x_i oldsymbol{v}_i$
 $\iff \exists oldsymbol{x} \in \mathcal{K}^n \ s.t. \ \Phi_{\mathcal{V}}(oldsymbol{x}) = oldsymbol{u}$
 $\iff oldsymbol{u} \in \operatorname{Im}(\Phi_{\mathcal{V}})$

という言い換えにより、

$$V = Im(\Phi_{\mathcal{V}})$$

を意味する

よって、像空間と全射性の関係により、 $\Phi_{\mathcal{V}}$ は全射である

この定理を部分空間の線形同型に関して言い換えると、次のような主張になる

・・・ 有限次元部分空間と数ベクトル空間の線形同型性 任意の部分空間は次元の等しい数ベクトル空間と線形同型である

つまり、

和とスカラー倍だけに着目すれば、

どんな部分空間も数ベクトル空間と「同じ」

ということを意味する

この同型により、部分空間に座標を与えることができる

線形代数における鳩の巣原理

ref: 行列と行列式の基 礎 p102~103

- - i. f は単射
 - ii. *f* は全射
 - iii. *f* は線形同型
 - iv. rank(f) = dim V = dim W

証明

V, W をそれぞれ V, W の基底として、線形写像の合成

$$g: \mathbb{R}^n \xrightarrow{\Phi_{\mathcal{V}}} V \xrightarrow{f} W \xrightarrow{\Phi_{\mathcal{W}}^{-1}} \mathbb{R}^n$$

を考える

このとき、g は \mathbb{R}^n の線形変換である

f が単射(全射)であると仮定すると、座標写像は全単射であるので、f との合成写像 g も単射(全射)となる

逆に、g が単射(全射)であると仮定した場合について考える f は g を用いて次のように表現でき、

$$f = \Phi_{\mathcal{W}} \circ g \circ \Phi_{\mathcal{V}}^{-1}$$

座標写像は全単射であるので、g との合成写像 f も単射(全射)となる

以上より、f が単射(全射)であることと、g が単射(全射)である ことは同値である

線形変換 g に対して、線形代数における鳩の巣原理より、

$$q$$
 が単射 $\iff q$ が全射 $\iff q$ が全単射

が成り立つが、q の単射性・全射性は f についても成り立つことが わかったので、

$$f$$
 が単射 $\iff f$ が全射 $\iff f$ が線形同型

がいえる

最後に、階数に関する条件を示す

像空間と全射性の関係により、f が全射であることは、Im(f) = Wと同値であるから、

$$\dim \operatorname{Im}(f) = \dim W$$

より、

$$rank(f) = dim W = dim V$$

が得られる

次元による部分空間の比較

次の事実は、数の一致で空間の一致が結論できる有用な結果である

→ 次元の一致による部分空間の一致判定 2 つの線型空間につ $v \in V \subset W$ $x \in V$

 $\dim V = \dim W \Longrightarrow V = W$

ref: 行列と行列式の基

礎 p102

ref: 図で整理!例題で

納得!線形空間入門 p41

証明

 $oldsymbol{v} \in V$ をそのまま W の元と考えることで得られる写像を $\iota: V \to W$ とする(包含写像)

この包含写像は、V の元 \boldsymbol{v} を W の中にそのまま「埋め込む」操作を表しているため、 $\iota(\boldsymbol{v})$ は \boldsymbol{v} 自身である

$$\iota(\boldsymbol{v}) = \boldsymbol{v}$$

特に、 $\iota(\boldsymbol{v}) = \boldsymbol{0}$ は $\boldsymbol{v} = \boldsymbol{0}$ そのものを意味する

$$\iota(\boldsymbol{v}) = 0 \Longleftrightarrow \boldsymbol{v} = 0$$

したがって、零ベクトルへの写像による単射性の判定より、**ι** は単射である

また、 ι が単射であることと、仮定 $\dim V = \dim W$ を合わせると、線形代数における鳩の巣原理の抽象版より、 ι は全射であることがわかる

よって、全射の定義より、すべての $\boldsymbol{w} \in W$ に対して $\iota(\boldsymbol{v}) = \boldsymbol{w}$ となる \boldsymbol{v} が存在する

すなわち、W の元はすべて V の元であり、 $V \subset W$ もふまえると、これは V = W を意味する

** 次元による部分空間の比較 $*K^n$ の部分空間 *V, *W について、 $*V \cap *W$ ならば、

$$\dim V < \dim W$$

が成り立つ

等号が成立するのは、V = W のときに限る

証明

 $V \subseteq W$ であることから、基底の延長により、V の基底を延長して W の基底にできるので、

$$\dim V \leq \dim W$$

が成り立つ

等号が成立する場合については、前述の次元の一致による部分空間 の一致判定を参照

核空間・像空間の次元

$$f$$
 が単射 \iff dim $Ker(f) = 0$

ref: 図で整理!例題で 納得!線形空間入門 p83 ~84

≥ 証明

線形写像の単射性と核の関係より、f が単射であることは次と同値である

$$\mathrm{Ker}(f)=\{\mathbf{0}\}$$

次元の定義より、 $\{0\}$ の次元は 0 であるので、

$$\dim \operatorname{Ker}(f) = 0$$

が成り立つ ■

f が全射 \Longleftrightarrow $\dim \operatorname{Im}(f) = \dim W$

≥ 証明

線形代数における鳩の巣原理の抽象版の主張そのものである

第 9 章

表現行列と基底変換

基底に関する座標ベクトル

V を線形空間とし、 $\mathcal{V}=\{oldsymbol{v}_1,oldsymbol{v}_2,\dots,oldsymbol{v}_n\}$ をその基底とする V の任意のベクトル $oldsymbol{v}$ は、

$$oldsymbol{v} = \sum_{i=1}^n x_i oldsymbol{v}_i$$

と一意的に書ける

ここで、Φν を座標写像とすると、その定義から、

$$\Phi_{\mathcal{V}}^{-1}(oldsymbol{v}) = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} \in \mathbb{R}^n$$

このベクトルを \mathbf{v} に関する \mathbf{v} の座標ベクトルあるいは成分表示と呼び、

$$oldsymbol{v} = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}_{\mathcal{N}}$$

と書くことにする

ref: 行列と行列式の基

礎 p10

ref: 図で整理!例題で

納得!線形空間入門 p95

一般の基底に関する表現行列

V, W をそれぞれ次元が n, m の線形空間とし、f を V から W への線形写像とする

また、V, W をそれぞれ V, W の基底とする

座標写像が線形同型写像であることは、任意の部分空間が数ベクトル空間 と同型であることを意味していた

よって、V から W への線形写像 f は、数ベクトル空間との線形同型写像 (座標写像) $\Phi_{\mathcal{V}}$, $\Phi_{\mathcal{W}}$ を合成すれば、

$$f' = \Phi_{\mathcal{W}}^{-1} \circ f \circ \Phi_{\mathcal{V}} : \mathbb{R}^n \to \mathbb{R}^m$$

として、数ベクトル空間の間の写像と考えることができる

この合成を図で整理して、次のように表す

$$V \xrightarrow{f} W$$

$$\Phi_{\mathcal{V}} \uparrow \qquad \Phi_{\mathcal{W}} \uparrow$$

$$\mathbb{R}^{n} \xrightarrow{f'} \mathbb{R}^{m}$$

このような図を図式という

下辺の矢印は、合成写像

$$\Phi_{\mathcal{W}}^{-1} \circ f \circ \Phi_{\mathcal{V}} : \mathbb{R}^n \to \mathbb{R}^m$$

を表していて、この写像は \mathbb{R}^n から \mathbb{R}^m への線形写像である

左下の \mathbb{R}^n から右上の W への 2 通りの合成写像が一致するという意味 で、この図式は可換であるという

数ベクトル空間の間の写像は、行列が定める線形写像であることから、この写像 f は $m \times n$ 型行列 A により表現される

ref: 行列と行列式の基 礎 p104~106

ref: 図で整理!例題で 納得!線形空間入門 p95

~96

$$V \xrightarrow{f} W$$

$$\downarrow^{\Phi_{\mathcal{V}}} \qquad \downarrow^{\Phi_{\mathcal{W}}}$$

$$\mathbb{R}^{n} \xrightarrow{A} \mathbb{R}^{m}$$

座標ベクトルの記法を用いると、写像 f は次で与えられる

$$f: \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}_{\mathcal{V}} \mapsto \begin{pmatrix} A \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \end{pmatrix}_{\mathcal{W}}$$

このように、座標写像を用いることで、V から W への線形写像 f から、 $m \times n$ 型行列が得られるこの行列 A を、基底 V, W に関する f の表現行列というつまり、

基底 \mathcal{V} , \mathcal{W} を固定して考えるときは、f を A と同一視できる

ということになり、このとき、

表現行列は線形写像の「成分表示」

と解釈できる

表現行列の構成

数ベクトル空間の間の線形写像を定める行列は、各基本ベクトル e_j の f による像

$$f(m{e}_j) = m{a}_j = egin{pmatrix} a_{1j} \ a_{2j} \ dots \ a_{mj} \end{pmatrix} \quad (1 \leq j \leq n)$$

ref: 行列と行列式の基 礎 p105

ref: 図で整理!例題で 納得!線形空間入門 p96

~97

を用いて、

$$(f(e_1), \ldots, f(e_n)) = (a_1, \ldots, a_n) = A$$

のように構成された

この表現行列の構成を、部分空間 V, W の基底をそれぞれ $V = \{ \boldsymbol{v}_1, \ldots, \boldsymbol{v}_n \}$, $\mathcal{W} = \{ \boldsymbol{w}_1, \ldots, \boldsymbol{w}_m \}$ として一般化する

このとき、 \mathbf{a}_j は座標写像 Φ_W によって、

$$\Phi_{\mathcal{W}}(\boldsymbol{a}_j) = \sum_{i=1}^m a_{ij} \boldsymbol{w}_i \quad (1 \leq j \leq n)$$

のように W に写される

また、 e_i は座標写像 Φ_{ν} によって、

$$\Phi_{\mathcal{V}}(oldsymbol{e}_j) = \sum_{i=1}^n e_{ij} oldsymbol{v}_i \quad (1 \leq j \leq n)$$

のように V に写されるが、これは $oldsymbol{v}_j$ そのものであるたとえば、j=1 のときは、

$$\Phi_{\mathcal{V}}(oldsymbol{e}_1) = \sum_{i=1}^n e_{i1} oldsymbol{v}_i = oldsymbol{v}_1$$

となる

よって、 $e_i \mapsto a_i$ という写像は、

$$\boldsymbol{v}_j \mapsto \Phi_{\mathcal{W}}(\boldsymbol{a}_j)$$

という V から W への写像 f に対応する (この対応は、可換図式からも明らか)

記号を書き換えると、

$$f(\boldsymbol{v}_j) = \Phi_{\mathcal{W}}(\boldsymbol{a}_j) = \sum_{i=1}^m a_{ij} \boldsymbol{w}_i$$

となり、右辺はさらに、

$$\sum_{i=1}^m a_{ij} oldsymbol{w}_i = (oldsymbol{w}_1, \ldots, oldsymbol{w}_m) egin{pmatrix} a_{1j} \ dots \ a_{mj} \end{pmatrix}$$

と変形できるので、まとめると、

$$(f(\boldsymbol{v}_1),\ldots,f(\boldsymbol{v}_n))=(\boldsymbol{w}_1,\ldots,\boldsymbol{w}_m)A$$

と表せる

線形変換の表現行列

V を n 次元の線形空間とし、f を V の線形変換、すなわち V から V 自身への線形写像とする

ref: 行列と行列式の基 礎 p106~107

V の基底 $\mathcal V$ を選ぶとき、次の可換図式によって n 次正方行列 A が定められる

$$\begin{array}{ccc}
V & \xrightarrow{f} & V \\
 & & & \downarrow \\
 & & & \downarrow \\
 & & & & \downarrow \\
 & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & & & & \downarrow \\
 & & & & \downarrow \\
 & & & & & \downarrow \\
 & & & \downarrow \\$$

写像の定義される空間と、写す先の空間が同じなので、どちらに対しても 同じ基底を用いることができる

もちろん、考える問題によっては別な基底を用いても構わないが、線形変換に対しては 1 つの基底を用いるのが自然である

数ベクトル空間の基底変換行列

 $V=\mathbb{R}^n$ とし、標準基底 $oldsymbol{\mathcal{E}}$ によって行列 A で表現される線形変換を f と する

別な基底 $oldsymbol{\mathcal{V}}$ によって f を表現する行列を B とするとき、B をどうやって計算すればよいかを考える

ref: 行列と行列式の基 礎 p108~109

ref: 長岡亮介 線形代数

入門講義 p225

B を定める原理は、表現行列の構成で議論したように、

$$(f(\boldsymbol{v}_1),\ldots,f(\boldsymbol{v}_n))=(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n)B$$

ここで、 $m{v}_i$ や $f(m{v}_i)$ は \mathbb{R}^n の元なので、 $(f(m{v}_1),\ldots,f(m{v}_n))$ や $(m{v}_1,\ldots,m{v}_n)$ は n 次の正方行列であるとみなせる そこで、

$$P = (\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n)$$

とおくとき、次に示すように P は正則行列である

→ 基底変換行列の正則性 基底の変換行列は正則行列である

証明 証明

P の列ベクトルは基底であるため、線形独立である

列ベクトルの線型独立性による正則の判定で示したように、正則行列

であることは、列ベクトルが線形独立であることと同値である

また、B を決める式

$$(f(\boldsymbol{v}_1),\ldots,f(\boldsymbol{v}_n))=(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n)B$$

の左辺は、次のように書ける

$$(f(\boldsymbol{v}_1), \dots, f(\boldsymbol{v}_n)) = (A\boldsymbol{v}_1, \dots, A\boldsymbol{v}_n)$$

= $A(\boldsymbol{v}_1, \dots, \boldsymbol{v}_n)$
= AP

よって、Bを決める式は、

$$AP = PB$$

となり、P は正則である(逆行列が存在する)ので、両辺に左から P^{-1} をかけて、

$$B = P^{-1}AP$$

が得られる

行列 P は、標準基底 \mathcal{E} から基底 \mathcal{V} への基底変換行列と呼ばれる

★ 行列の相似 正方行列 A, B に対して、正則行列 P が存在して、

$$B = P^{-1}AP$$

が成り立つとき、A と B は相似であるという

A と B が相似であるとき、A と B は 1 つの線形変換 f を異なる基底によって表現して得られた行列であるという関係にある

線形空間の基底変換行列

V を線形空間とし、V の基底 $\mathcal{V}=\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}$ を別な基底 $\mathcal{V}'=\{\boldsymbol{v}_1',\ldots,\boldsymbol{v}_n'\}$ に取り替えることを考える

礎 p110~111 ref: 長岡亮介 線形代数 入門講義 p215~219

ref: 行列と行列式の基

このとき、 $\{ m v_1, \ldots, m v_n \}$ が V の基底であることから、V の元である $m v_1', \ldots, m v_n'$ は、 $\{ m v_1, \ldots, m v_n \}$ の線形結合で表される そこで、

$$oldsymbol{v}_i' = p_{1i}oldsymbol{v}_1 + p_{2i}oldsymbol{v}_2 + \cdots + p_{ni}oldsymbol{v}_n$$

すなわち、

$$(oldsymbol{v}_1',\ldots,oldsymbol{v}_n')=(oldsymbol{v}_1,\ldots,oldsymbol{v}_n)(p_{ij})$$

とおく

このとき、写像 $f: V \rightarrow V$ を

$$\begin{cases} f(\boldsymbol{v}_1) &= \boldsymbol{v}_1' \\ f(\boldsymbol{v}_2) &= \boldsymbol{v}_2' \\ \vdots & \vdots \\ f(\boldsymbol{v}_n) &= \boldsymbol{v}_n' \end{cases}$$

を満たすものとして定義する

これはすなわち、基底 ν を構成するそれぞれのベクトルを、基底 ν' を構成するベクトルに順に写す線形変換であり、

$$(f(\boldsymbol{v}_1),\ldots,f(\boldsymbol{v}_n))=(\boldsymbol{v}_1',\ldots,\boldsymbol{v}_n')$$

を満たすものである

すると、行列 $P=(p_{ij})$ を定める式は、

$$(f(\boldsymbol{v}_1),\ldots,f(\boldsymbol{v}_n))=(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n)P$$

と書ける

よって、P は基底変換 $\mathcal{V} \to \mathcal{V}'$ を表す線形写像 f の表現行列であるこの意味で、P を基底変換 $\mathcal{V} \to \mathcal{V}'$ の基底変換行列と呼ぶ

 $oldsymbol{\cdot}$ 線形空間の基底変換行列 V を線形空間とし、 $oldsymbol{\mathcal{V}}=\{oldsymbol{v}_i\}_{i=1}^n$, $oldsymbol{\mathcal{V}}'=\{oldsymbol{v}_i'\}_{i=1}^n$ を V の基底とするとき、基底変換 $oldsymbol{\mathcal{V}} ou oldsymbol{\mathcal{V}}'$ の変換行列 P は、

$$(\boldsymbol{v}_1',\ldots,\boldsymbol{v}_n')=(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n)P$$

により定まる

この行列 P は、座標写像を介して考えると、次の可換図式で定まるものである

つまり、Pは、

$$\Phi_{\mathcal{V}}^{-1} \circ \Phi_{\mathcal{V}'} \colon \mathbb{R}^n \to \mathbb{R}^n$$

の標準基底に関する表現行列である

一方、この行列 P はベクトルの成分表示の変換に用いることもできる

・ 座標ベクトルの変換則 基底変換 $\mathcal{V} \longrightarrow \mathcal{V}'$ の変換行列を P とし、ベクトル $\mathbf{a} \in V$ の \mathcal{V} , \mathcal{V}' に関する座標ベクトルをそれぞれ \mathbf{x} , \mathbf{x}' とするとき、

$$\boldsymbol{x} = P\boldsymbol{x}'$$

が成り立つ

証明 証明

ベクトル \boldsymbol{a} の 2 種類の基底 $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n$ と $\boldsymbol{v}_1',\ldots,\boldsymbol{v}_n'$ に関する成分

$$egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix}$$
 , $egin{pmatrix} x_1' \ x_2' \ dots \ x_n' \end{pmatrix}$

を考えると、 α の 2 通りの表現

$$\boldsymbol{a} = x_1 \boldsymbol{v}_1 + x_2 \boldsymbol{v}_2 + \cdots + x_n \boldsymbol{v}_n$$

$$=(oldsymbol{v}_1,\ldots,oldsymbol{v}_n)egin{pmatrix} x_1\ x_2\ dots\ x_n \end{pmatrix}$$

$$\boldsymbol{a} = x_1' \boldsymbol{v}_1' + x_2' \boldsymbol{v}_2' + \dots + x_n' \boldsymbol{v}_n'$$

$$=(oldsymbol{v}_1',\ldots,oldsymbol{v}_n')egin{pmatrix} x_1' \ x_2' \ dots \ x_n' \end{pmatrix}$$

$$egin{aligned} oxed{x_n} \ &= (oldsymbol{v}_1, \dots, oldsymbol{v}_n) P egin{pmatrix} x_1' \ x_2' \ dots \ x_n' \end{pmatrix} \end{aligned}$$

が得られる

どちらも $(\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n)$ との積の形、すなわち $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n$ の線形結合として表されている

ここで、基底 $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_n$ の線型独立性から、その線形結合は一意的であるので、係数比較ができて、

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = P \begin{pmatrix} x_1' \\ x_2' \\ \vdots \\ x_n' \end{pmatrix}$$

が成り立つ

基底変換による表現行列の変化

 $f: V \to W$ を線形写像とする

$$V \stackrel{f}{\longrightarrow} W$$

V の基底 V と W の基底 W に関する f の表現行列を A とする

$$V \xrightarrow{f} W$$

$$\Phi_{\mathcal{V}} \qquad \Phi_{\mathcal{W}} \uparrow$$

$$\mathbb{R}^{n} \xrightarrow{A} \mathbb{R}^{m}$$

また、V の基底 \mathcal{V}' と W の基底 \mathcal{W}' に基底を変えるとき、f の表現行列 を B とする

$$\begin{array}{ccc}
\mathbb{R}^n & \xrightarrow{B} & \mathbb{R}^m \\
\downarrow^{\Phi_{\mathcal{V}'}} & & \downarrow^{\Phi_{\mathcal{W}'}} \\
V & \xrightarrow{f} & W
\end{array}$$

基底変換 $\mathcal{V} \to \mathcal{V}'$ の変換行列を P、 $\mathcal{W} \to \mathcal{W}'$ の変換行列を Q とするとき、次の可換図式で整理できる

ref: 行列と行列式の基

礎 p112~113

ref: 長岡亮介 線形代数 入門講義 p215、p223

~225

ここで、行列 A によって表現される写像を F_A 、他の行列についても同様に表すと、

このとき、左上の \mathbb{R}^n から右下の \mathbb{R}^m への写像は、

$$F_A \circ F_P$$
, $F_Q \circ F_B$

という 2 通りの表現ができる すなわち、

$$F_A \circ F_P = F_Q \circ F_B$$

合成写像は行列の積に対応するので、

$$AP = QB$$

ここで、Q は $\mathbb{R}^m \to \mathbb{R}^m$ の標準基底に関する表現行列であるから、正則行列である

そこで、左から Q^{-1} をかけて、

$$B = Q^{-1}AP$$

が得られる

基底変換に伴う表現行列の変換 線形写像 $f: V \to W$ の基底 V, W に関する表現行列を A とし、同じ線形写像 f の別な基底 V', W' に関する表現行列を B とするとき、基底変換 $V \to V'$ の変換行列を $P, W \to W'$ の変換行列を Q とすると、

$$B = Q^{-1}AP$$

が成り立つ

実用上は V=W である場合が特に重要で、この場合には P=Q とすることができるので、

$$B = P^{-1}AP$$

が成り立つ

基底変換に伴う表現行列の変換(線形変換の場合) 線形変換 $f: V \to V$ の基底 \mathcal{V} に関する表現行列を A とし、同じ線形変換 f の別な基底 \mathcal{V}' に関する表現行列を B とするとき、基底変換 $\mathcal{V} \to \mathcal{V}'$ の変換行列を P とすると、

$$B = P^{-1}AP$$

が成り立つ

基底変換と階数標準形

「Todo 36: 「基本変形と基本行列」を学んでから]

ref: 行列と行列式の基 礎 p115~117

第 10 章

直和分解と不変部分空間

部分空間の共通部分

与えられた部分空間から、新しく部分空間を作ることができる

lacktriangledown 線形部分空間の共通部分は部分空間 U,W を体 K 上の V の部分空間とするとき、共通部分 $U\cap W$ は V の部分空間である

ref: 図で整理!例題で 納得!線形空間入門 p22

証明

和について

 $oldsymbol{a}$, $oldsymbol{b} \in U \cap W$ とすると、共通部分の定義より、 $oldsymbol{a}$ と $oldsymbol{b}$ は どちらも U と W の両方に属していることになる つまり、 $oldsymbol{a}$, $oldsymbol{b} \in U$ かつ $oldsymbol{a}$, $oldsymbol{b} \in W$ である

U も W も部分空間なので、部分空間の定義より、

 $a + b \in U$ $a + b \in W$

a + b が U と W の両方に属していることから、a + b は

 $U \cap W$ に属する

よって、 $U \cap W$ は和について閉じている

スカラー倍について

共通部分の定義より、 \boldsymbol{a} は \boldsymbol{U} と \boldsymbol{W} の両方に属しているので、部分空間の定義より

 $ca \in U$

 $ca \in W$

よって、ca は $U \cap W$ に属するため、 $U \cap W$ はスカラー倍について閉じている

部分空間の和

** 線形部分空間の和は部分空間 U, W を体 K 上の V の部分空間とするとき、和空間

 $U + W := \{ \boldsymbol{u} + \boldsymbol{w} \mid \boldsymbol{u} \in U, \boldsymbol{w} \in W \}$

は V の部分空間である

ref: 図で整理!例題で 納得!線形空間入門 p22 ~23

ref: 長岡亮介 線形代数 入門講義 p231~232

和について

 $a_1, a_2 \in U, b_1, b_2 \in W$ とする

UとW は部分空間なので、部分空間の定義より

$$a_1 + a_2 \in U$$
, $b_1 + b_2 \in W$

一方、和空間の定義より、 $\boldsymbol{a}_1+\boldsymbol{b}_1$, $\boldsymbol{a}_2+\boldsymbol{b}_2$ はそれぞれ U+W の元である

これらの元の和をとったときに、その和も U+W に属していれば、和空間は和について閉じているといえる

$$(a_1 + b_1) + (a_2 + b_2) = (a_1 + a_2) + (b_1 + b_2)$$

 $\in U + W$

上式で、和空間は和について閉じていることが示された

スカラー倍について

UとW は部分空間なので、部分空間の定義より

$$c\mathbf{a} \in U$$
 $c\mathbf{b} \in W$

一方、和空間の定義より、 $\alpha + b$ は U + W の元である この元をスカラー倍したときに、そのスカラー倍も U + W に属していれば、和空間はスカラー倍について閉じていると いえる

$$c(\mathbf{a} + \mathbf{b}) = c\mathbf{a} + c\mathbf{b}$$
$$\in U + W$$

上式で、和空間はスカラー倍について閉じていることが示された

3 つ以上の部分空間の和も、同様に定義される

部分空間を生成するベクトルを用いて、部分空間の和を表せる

 $oldsymbol{\cdot}$ 部分空間の和と生成ベクトル K^n の 2 つの部分空間 $U=\langle oldsymbol{u}_1,\ldots,oldsymbol{u}_m \rangle$ と $W=\langle oldsymbol{w}_1,\ldots,oldsymbol{w}_k \rangle$ に対して、和空間 U+W は

$$U+W=\langle \boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_m,\boldsymbol{w}_1,\boldsymbol{w}_2,\ldots,\boldsymbol{w}_k\rangle$$

となる

証明

和空間 U+W は

$$U + W = \{ \boldsymbol{x} \in K^n \mid \boldsymbol{x} = \boldsymbol{u} + \boldsymbol{w}, \ \boldsymbol{u} \in U, \ \boldsymbol{w} \in W \}$$

と定義される

また、 $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_m,\boldsymbol{w}_1,\ldots,\boldsymbol{w}_k$ の張る部分空間は

$$H = \langle \boldsymbol{u}_1, \ldots, \boldsymbol{u}_m, \boldsymbol{w}_1, \ldots, \boldsymbol{w}_k \rangle$$

である

これらが等しいことを示せばよい

$U+W\subseteq H$

任意の $\boldsymbol{x} \in U + W$ に対し、 $\boldsymbol{x} = \boldsymbol{u} + \boldsymbol{w}$ ($\boldsymbol{u} \in U$, $\boldsymbol{w} \in W$) と書ける

すなわち、

$$\boldsymbol{u} = a_1 \boldsymbol{u}_1 + \dots + a_m \boldsymbol{u}_m \qquad (a_i \in K)$$

 $\boldsymbol{w} = b_1 \boldsymbol{w}_1 + \dots + b_k \boldsymbol{w}_k \qquad (b_j \in K)$

よって、

$$oldsymbol{x} = \sum_{i=1}^m a_i oldsymbol{u}_i + \sum_{j=1}^k b_j oldsymbol{w}_j \in H$$

 $H \subseteq U + W$

任意の $\boldsymbol{x} \in H$ は

$$oldsymbol{x} = \sum_{i=1}^m a_i oldsymbol{u}_i + \sum_{j=1}^k b_j oldsymbol{w}_j$$

と書ける

ここで

$$oldsymbol{u} = \sum_{i=1}^m a_i oldsymbol{u}_i \in U$$
 $oldsymbol{w} = \sum_{j=1}^k b_j oldsymbol{w}_j \in W$

とすれば、

$$\boldsymbol{x} = \boldsymbol{u} + \boldsymbol{w} \in U + W$$

以上より、 $U+W\subseteq H$ と $H\subseteq U+W$ が成り立つので、U+W=H が示された

和空間の包含関係

ref: 長岡亮介 線形代数 入門講義 p233

♣ 和空間における部分空間の和集合の包含 和空間は、和集合を部分集合として包含する

すなわち、U, W を V の部分空間とするとき、

$$U+W\supset U\cup W$$

が成り立つ

証明

部分空間はいずれも零ベクトルを含むので、たとえば、 $U = \{0\}$ の場合、

 $U+W\supset W$

同様に、

 $U+W\supset U$

よって、U+W は U または W を包含することがわかる すなわち、

 $U+W\supset U\cup W$

が成り立つ

≥ 証明

V の任意の部分空間のうち、U と W の両方を包含するもの V' を考える

このとき、部分空間は和に閉じているため、V' は U+W も包含する

 $V' \supset U + W$

よって、V' の任意性から、U+W は U と W を含む部分空間のうち、最小のものとなる

このように、和空間 U+W は、U や W を部分空間として含むが、U や W より真に大きい(U, W を真部分集合として含む)とは限らない

別の角度からいうと、

$$V = W_1 + W_2$$

という関係があるだけで、「V が W_1 と W_2 の和に分解された」というのは適当ではない

和空間が持つこの欠陥を補うために、和空間の概念をより精密化したものが、次に述べる<mark>直和</mark>である

直和分解

[Todo 37: ref: テンソル代数と表現論 p6~7]

a 直和分解 線形空間 V の部分集合 W_1 , W_2 に対して、任意 の $\boldsymbol{v} \in V$ が $\boldsymbol{w}_1 \in W_1$, $\boldsymbol{w}_2 \in W_2$ によって

$$\mathbf{v} = \mathbf{w}_1 + \mathbf{w}_2$$

と一意的に表されるとき、V は W_1 と W_2 の $\overline{\underline{a}}$ 和である($\overline{\underline{a}}$ 和に分解される)といい、

$$V = W_1 \oplus W_2$$

と書く

この定義は、次のように言い換えることができる

・ 直和分解の同値条件 線形空間 V の部分集合 W_1 , W_2 に対して $V=W_1 \oplus W_2$ が成り立つことと、

ref: 行列と行列式の基 礎 p113~114

ref: 長岡亮介 線形代数 入門講義 p233~235

ref: テンソル代数と表

現論 p6~7

i.
$$V = W_1 + W_2$$

ii.
$$W_1 \cap W_2 = \{ \mathbf{0} \}$$

の両方が成り立つことは同値である

証明

(i), (ii) $\Longrightarrow V = W_1 \oplus W_2$

 $w_1, w_1' \in W_1, w_2, w_2' \in W_2$ とする 仮定 (i) と和空間の定義より、

$$v = w_1 + w_2 = w'_1 + w'_2$$

この等式は、移項によって次のように変形できる

$$w_1 - w'_1 = w'_2 - w_2$$

部分空間は和に閉じているため、左辺は W_1 に、右辺は W_2 に属する

よって、このベクトルは $W_1 \cap W_2$ に属する

仮定 (ii) より、 $W_1 \cap W_2$ の元は零ベクトルであるので、

$$m{w}_1 - m{w}_1' = m{0}$$

 $m{w}_2' - m{w}_2 = m{0}$

したがって、

$$w_1 = w'_1, \quad w_2 = w'_2$$

となり、**v** の表現の一意性が示された

$V = W_1 \oplus W_2 \Longrightarrow (i), (ii)$

和空間の定義をふまえると、(i) は直和分解の定義に含まれる

(ii) を示すため、 $\boldsymbol{v} \in W_1 \cap W_2$ とする

v は零ベクトルを用いて、

$$\boldsymbol{v} = \boldsymbol{v} + 0 = 0 + \boldsymbol{v}$$

と表せるが、直和分解の定義より、**v** の表現は一意的であるので、

$$v = 0$$

を得る

よって、 $W_1 \cap W_2 = \{0\}$ が成り立つ

3 つ以上の部分空間の直和分解も、同様に定義される

和空間と直和の次元

ightharpoonup
i

 $\dim(V+W) = \dim V + \dim W - \dim(V \cap W)$

が成り立つ

ref: 行列と行列式の基

礎 p103

ref: 図で整理!例題で 納得!線形空間入門 p39

 \sim 41

ref: 長岡亮介 線形代数 入門講義 235~236

証明

 $\dim(V) = n, \dim(W) = m$ とする

 $V \cap W$ の基底 $\mathcal{V} = \{\boldsymbol{u}_1, \dots, \boldsymbol{u}_d\}$ をとる これを基底の延長の定理に基づいて、V の基底

$$\mathcal{V} \cup \{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_{n-d}\}$$

に延長する

同様に、 $\boldsymbol{\mathcal{V}}$ を \boldsymbol{W} の基底

$$\mathcal{V} \cup \{\boldsymbol{w}_1, \ldots, \boldsymbol{w}_{m-d}\}$$

に延長する

このとき、 $\boldsymbol{u_1},\ldots,\boldsymbol{u_d},\boldsymbol{v_1},\ldots,\boldsymbol{v_{n-d}},\boldsymbol{w_1},\ldots,\boldsymbol{w_{m-d}}$ がV+Wの基底になることを示す

V + W を生成すること

 $\boldsymbol{v} \in V$, $\boldsymbol{w} \in W$ とすると、それぞれ基底の線形結合で表すことができる

$$egin{align} oldsymbol{v} &= \sum_{i=1}^d a_i oldsymbol{u}_i + \sum_{j=1}^{n-d} b_j oldsymbol{v}_j \ oldsymbol{w} &= \sum_{i=1}^d c_i oldsymbol{u}_i + \sum_{k=1}^{m-d} d_k oldsymbol{w}_k \end{aligned}$$

V + W の任意の元は、v + w と書けるので、

$$oldsymbol{v} + oldsymbol{w} = \sum_{i=1}^d (a_i + c_i) oldsymbol{u}_i + \sum_{j=1}^{n-d} b_j oldsymbol{v}_j + \sum_{k=1}^{m-d} d_k oldsymbol{w}_k$$
となり、 $\{oldsymbol{u}_1, \ldots, oldsymbol{u}_d, oldsymbol{v}_1, \ldots, oldsymbol{v}_{n-d}, oldsymbol{w}_1, \ldots, oldsymbol{w}_{m-d} \}$ の線形結合で表せる

線型独立であること

 $m{u}_1,\ldots,m{u}_d,m{v}_1,\ldots,m{v}_{n-d},m{w}_1,\ldots,m{w}_{m-d}$ が線型独立であることを示すために、次のような線形関係式を考える

$$\sum_{i=1}^d c_i \boldsymbol{u}_i + \sum_{j=1}^{n-d} c_{d+j} \boldsymbol{v}_j + \sum_{k=1}^{m-d} c_{d+n-d+k} \boldsymbol{w}_k = \mathbf{0}$$

ここで、 $c_i \in K$ はスカラーである

この式を V と W の基底の線型結合として考えると、V の基底 \boldsymbol{u}_i , \boldsymbol{v}_j に関する部分と W の基底 \boldsymbol{u}_i , \boldsymbol{w}_k に関する部分がそれぞれ線形独立であるため、結局どの項においても $c_i=0$ である必要がある

よって、 $oldsymbol{u}_1,\ldots,oldsymbol{u}_d,oldsymbol{v}_1,\ldots,oldsymbol{v}_{n-d},oldsymbol{w}_1,\ldots,oldsymbol{w}_{m-d}$ は線型独立である

以上より、 $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_d,\boldsymbol{v}_1,\ldots,\boldsymbol{v}_{n-d},\boldsymbol{w}_1,\ldots,\boldsymbol{w}_{m-d}$ はV+W の基底であることが示された

この基底をなすベクトルの個数(次元)について考えると、

$$\dim(V+W) = d + (n-d) + (m-d)$$
$$= n + m - d$$

となる

CCC, $d = dim(V \cap W)$ ΔCC ,

$$\dim(V+W) = \dim V + \dim W - \dim(V \cap W)$$

と書き換えられ、目的の式が得られた

直和分解に対して和空間の次元定理を適用すると、次のようにまとめられる

$$\dim(W_1 \oplus W_2) = \dim W_1 + \dim W_2$$

が成り立つ

証明

直和分解の定義より $W_1 \cap W_2 = \{0\}$ であるので、

$$\dim(W_1 \cap W_2) = 0$$

よって、和空間の次元の式から、 $\dim(W_1 \cap W_2)$ が消えた形にな

る

また、和空間の次元定理の証明過程を、直和分解の場合で考えることで、次

・ 直和の基底 線形空間 V が部分空間 W_1 , W_2 の直和に分解 されることと、V の基底が W_1 , W_2 の基底を合わせたものになることは同値である

▲ 証明

直和分解の場合、 $W_1 \cap W_2 = \{\mathbf{0}\}$ であるため、和空間の次元定理の証明過程において、 $W_1 \cap W_2$ の基底を考える必要がなくなる

よって、和空間の次元定理の証明と同様にして、 W_1 の基底と W_2 の基底を合わせたものが V の基底になることが示される

不変部分空間

V 上の線形変換 f について、「変換 f で写しても変わらない」という性質 を考える

 $f(W) \subset W$

すなわち、

 $\forall \boldsymbol{w} \in \mathcal{W} \Longrightarrow f(\boldsymbol{w}) \in \mathcal{W}$

が成り立つとき、W は f 不変な部分空間であるという

また、 $V=\mathbb{R}^n$ で、f が正方行列 A によって定まっているときは、f 不変な部分空間 W を A 不変な部分空間ともいう

ref: 行列と行列式の基

礎 p114

ref: 長岡亮介 線形代数 入門講義 p238~239

写像の制限と不変部分空間

・ 不変部分空間による線形変換のブロック型行列表現 V を n 次元線形空間とし、線形変換 $f:V\to V$ を考える このとき、V のある部分空間 W が f 不変ならば、V の適当な基底について、f は

という形の行列で表すことができる

ref: 行列と行列式の基 礎 p114

ref: 長岡亮介 線形代数 入門講義 p240~242、

p363~364

証明

 $\dim(W)=r$ とし、W の基底 $oldsymbol{v}_1,\ldots,oldsymbol{v}_r$ を延長して V の基底 $oldsymbol{v}_1,\ldots,oldsymbol{v}_r,oldsymbol{v}_{r+1},\ldots,oldsymbol{v}_n$ をとる

このとき、表現行列の構成法より、

$$f(oldsymbol{v}_j) = \sum_{i=1}^r a_{ij} oldsymbol{v}_i + \sum_{i=r+1}^n a_{ij} oldsymbol{v}_i \quad (1 \leq j \leq n)$$

とおける

ここで、W は f 不変であることは、 $1 \leq j \leq r$ の範囲では $f(\pmb{v}_j) \in W$ であることを意味する

W の元 $f(\boldsymbol{v}_j)$ は、W の基底だけを用いて表現できるので、

$$f(oldsymbol{v}_j) = \sum_{i=1}^r a_{ij} oldsymbol{v}_i \quad (1 \leq j \leq r)$$

すなわち、もともとの $f(\boldsymbol{v}_j)$ の式において、

$$\sum_{i=r+1}^n a_{ij} oldsymbol{v}_i = oldsymbol{0} \quad (1 \leq j \leq r)$$

となっている

 \boldsymbol{v}_i は基底なので線型独立であり、したがって、

$$a_{ij} = 0$$
 $(1 \le j \le r, r+1 \le i \le n)$

が成り立つ

この条件より、f の表現行列 (a_{ij}) は、

というような形になる

また、V の基底として、順序を変えた $oldsymbol{v}_{r+1},\ldots,oldsymbol{v}_n,oldsymbol{v}_1,\ldots,oldsymbol{v}_r$ を取ることもできる

この場合は、

$$f(oldsymbol{v}_j) = \sum_{i=1}^r a_{ij} oldsymbol{v}_i + \sum_{i=r+1}^n a_{ij} oldsymbol{v}_i \quad (r+1 \leq j \leq n)$$

とおくと、 $r+1 \leq j \leq n$ の範囲 (V の基底の後半部分) で

$$\sum_{i=1}^r a_{ij} \boldsymbol{v}_i = \mathbf{0}$$

となるので、すなわち、

$$a_{ij} = 0$$
 $(r+1 \le j \le n, 1 \le i \le r)$

よって、f の表現行列 (a_{ij}) は、

という形になる

以上より、2 通りの f の表現行列の形が得られた

V の基底を $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_r,\boldsymbol{v}_{r+1},\ldots,\boldsymbol{v}_n$ ととった場合、 $f(\boldsymbol{v}_j)\in W$ は

$$f(oldsymbol{v}_j) = \sum_{i=1}^r a_{ij} oldsymbol{v}_i \quad (1 \leq j \leq r)$$

だけで表現できた

この $1 \leq i \leq r$, $1 \leq j \leq r$ の部分は、f の表現行列

の、 A_{11} の部分に対応する

つまり、この行列 A_{11} は、 $m v_1,\dots,m v_r$ で張られる V の部分空間 W から W への線形写像 f' を、基底 $m v_1,\dots,m v_r$ について表現する行列になって いる

f' は、f の定義域を W に制限したものになっているが、W の元に限定して考える限り、実質的には f と区別がないものであるこの意味で、写像 f' を、写像 f の W への制限と呼び、 $f|_W$ と表記する

写像の制限 写像 $f: X \to Y$ において、X のある部分集合 S が与えられたとき、定義域を S に限定したものを f の S に対する制限といい、

$$f|_{S}: S \to Y$$

と表す

同様に、V の基底を $\boldsymbol{v}_{r+1},\ldots,\boldsymbol{v}_n,\boldsymbol{v}_1,\ldots,\boldsymbol{v}_r$ ととった場合、 $f(\boldsymbol{v}_j)\in W$ は

$$\sum_{i=r+1}^n a_{ij} oldsymbol{v}_i \quad (r+1 \leq j \leq n)$$

だけで表現できた

この $r+1 \le i \le n$, $r+1 \le j \le n$ の部分は、f の表現行列

$$A = (a_{ij}) = \left(egin{array}{c|c} A_{11} & O \ \hline A_{21} & A_{22} \end{array}
ight) \uparrow^{n-r}$$

の、A₂₂ の部分に対応する

つまり、この場合は、 A_{22} が変換 f の W への制限 $f|_W$ を表現する行列になっている

不変部分空間への直和分解

不変部分空間による線形変換のブロック型行列表現の証明では、W の基底 $m{v}_1,\dots,m{v}_r$ を延長したものを V の基底 $m{v}_1,\dots,m{v}_r,m{v}_{r+1},\dots,m{v}_n$ とした

ref: 長岡亮介 線形代数 入門講義 p242~245

$$\mathcal{W}' = \langle \boldsymbol{v}_{r+1}, \ldots, \boldsymbol{v}_n \rangle$$

とおくと、V の基底が W, W' の基底を合わせたものになっているため、 直和の基底に関する定理より、

$$V = W \oplus W'$$

となる

このとき、

ここで、もしW'もf不変であれば、右上の A_{12} も零行列になって、表現行列は

$$A = (a_{ij}) = \left(egin{array}{c|c} & r & & n-r & \\ \hline A_{11} & O & \\ \hline O & A_{22} & \end{array}
ight)
ight)^r$$

というブロック対角型になる

- ** 不変部分空間への直和分解 線形空間 V と、V 上の線形変換 f に対し、V が f 不変な部分空間 W_1 と W_2 の直和に分解することができれば、すなわち、
 - i. $V = W_1 \oplus W_2$
 - ii. W_1 , W_2 は f 不変な V の部分空間

となる W_1 , W_2 が存在すれば、適当な V の基底について、f は次のような形の行列で表せる

または

☎ 証明

 W_1 の基底、 W_2 の基底をこの順に並べるか、その反対の順に並べて、V の基底を構成することで、不変部分空間による線形変換のブロック型行列表現の証明と同様に示される

6

さらに、V をより細かい部分空間の直和に分解できる場合には、次のようになる

- * * 複数の不変部分空間への直和分解 線形空間 V と、V 上の線形変換 f について、
 - i. $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$
 - ii. 各部分空間 W_i は f 不変な V の部分空間

であるならば、適当な V の基底に対し、f は次のような形の行列で表せる

対角線上の各正方形の大きさは、各部分空間 W_i の次元に対応する

そこで、以上の議論を究極にまで押し進めると、次の定理になる

- - i. $V = W_1 \oplus W_2 \oplus \cdots \oplus W_n$
 - ii. W_i ($i=1,2,\ldots,n$) は f 不変な 1 次元部分空間

となるときは、f は次のような対角行列で表せる

$$\left(\begin{array}{ccc} * & & O \\ & * & \\ & & \ddots & \\ O & & * \end{array}\right)$$

一次元不変部分空間

W を一次元部分空間とすると、これは基底 $w \neq 0$ で張られる空間であるので、

ref: 長岡亮介 線形代数 入門講義 p246~247

$$W = \langle \boldsymbol{w} \rangle = \{ \alpha \boldsymbol{w} \mid \alpha \in K \}$$

この一次元部分空間 W が f 不変であるとは、定義より、

$$\forall \boldsymbol{w} \in \mathcal{W} \Longrightarrow f(\boldsymbol{w}) \in \mathcal{W}$$

であり、これで W の元は $\alpha \boldsymbol{w}$ とも $f(\boldsymbol{w})$ とも表せることになるので、

$$f(\boldsymbol{w}) = \alpha \boldsymbol{w} \quad (\alpha \in K)$$

がいえる

以上をふまえて、一次元部分空間への直和分解という定理をより具体的に 整理してみる

 $\dim(V)=n$ とすると、V 上の線形変換 f の表現行列 A を構成する式は、

$$(f(\boldsymbol{w}_1),\ldots,f(\boldsymbol{w}_n))=(\boldsymbol{w}_1,\ldots,\boldsymbol{w}_n)A$$

となるが、ここで、

$$(f(\boldsymbol{w}_1),\ldots,f(\boldsymbol{w}_n))=(\alpha_1\boldsymbol{w}_1,\ldots,\alpha_n\boldsymbol{w}_n)$$

であるので、

$$(f(\boldsymbol{w}_1),\ldots,f(\boldsymbol{w}_n))=(\boldsymbol{w}_1,\ldots,\boldsymbol{w}_n)egin{pmatrix} lpha_1 & 0 & \cdots & 0 \ 0 & lpha_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & lpha_n \end{pmatrix}$$

と書き換えられる

したがって、f は基底 $\boldsymbol{w}_1, \ldots, \boldsymbol{w}_n$ について、次の対角行列で表される

$$\begin{pmatrix} \alpha_1 & 0 & \cdots & 0 \\ 0 & \alpha_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_n \end{pmatrix}$$

ここで現れたスカラー α_i やベクトル \boldsymbol{w}_i と、線形写像 f との関係が、固有値・固有ベクトルと行列の対角化という話題に発展する

第 11 章

行列の対角化

固有値と固有ベクトル

与えられた線形写像を表現する行列を単純化(<mark>対角化</mark>)する上で、一次元不 変部分空間への直和分解が本質的な役割を果たす

一次元の f 不変部分空間 W の基底 a とは、

ある $\lambda \in K$ について $f(\boldsymbol{a}) = \lambda \boldsymbol{a}$

となるような 0 以外のベクトルだった

■ 固有値と固有ベクトル 体 K 上の線形空間 V 上の線形変換 $f: V \rightarrow V$ に対して、

$$f(\boldsymbol{a}) = \lambda \boldsymbol{a} \quad (\boldsymbol{a} \neq \boldsymbol{0})$$

となるベクトル $\boldsymbol{a} \in V$ が存在するとき、このようなスカラー $\boldsymbol{\lambda} \in K$ を、線形変換 f の固有値という

また、このようなベクトル \boldsymbol{a} を、 \boldsymbol{f} の固有値 $\boldsymbol{\lambda}$ に属する<mark>固有ベクトル</mark>という

ref: 行列と行列式の基

礎 p183~184

ref: 図で整理!例題で

納得!線形空間入門

p178~179

ref: 長岡亮介 線形代数 入門講義 p251~252 線形変換 f の表現行列を A とすると、これは正方行列であり、 $f(\boldsymbol{a}) = A\boldsymbol{a}$ と表せる

よって、固有値と固有ベクトルの定義は、次のようにも書ける

$$Aa = \lambda a \quad (a \neq 0)$$

となるベクトル \boldsymbol{a} とスカラー $\boldsymbol{\lambda}$ が存在するとき、このようなスカラー $\boldsymbol{\lambda}$ を行列 \boldsymbol{A} の固有値という

また、このようなベクトル $oldsymbol{a}$ を、行列 $oldsymbol{A}$ の固有値 $oldsymbol{\lambda}$ に属する固有ベクトルという

異なる固有値に属する固有ベクトル

 $oldsymbol{\$}$ 異なる固有値に属する固有ベクトルの非一致性 異なる固有値 $lpha_i, \, lpha_j \, (lpha_i
eq lpha_j)$ に属する固有ベクトル $oldsymbol{p}_i, \, oldsymbol{p}_j$ は異なるベクトルである

ref: 行列と行列式の基

礎 p186~187

ref: 長岡亮介 線形代数 入門講義 p265~266

₩ 証明

固有値と固有ベクトルの定義より、

$$\begin{cases} A \mathbf{p}_i = \alpha_i \mathbf{p}_i \\ A \mathbf{p}_i = \alpha_j \mathbf{p}_i \end{cases}$$

 $\mathbf{t} \cup \mathbf{p}_i = \mathbf{p}_i \text{ asid.}$

$$egin{aligned} lpha_i oldsymbol{p}_i &= lpha_j oldsymbol{p}_i \ &\therefore & (lpha_i - lpha_j) oldsymbol{p}_i &= oldsymbol{0} \end{aligned}$$

となるが、 $m{p}_i$ は固有ベクトルであり $m{0}$ ではないので、 $m{lpha}_i - m{lpha}_j = m{0}$ となる

すなわち、

$$\alpha_i = \alpha_i$$

が成立し、これは $lpha_i
eq lpha_j$ に反する よって、 $oldsymbol{p}_i
eq oldsymbol{p}_j$ でなければならない

この定理を発展させて、次のことがいえる

最なる固有値に属する固有ベクトルの線型独立性 $lpha_1,lpha_2,\ldots,lpha_k$ が行列 A の相異なる固有値であるとすると、それぞれに属する固有ベクトル $m p_1,m p_2,\ldots,m p_k$ は線型独立である

▲ 証明

固有値の個数 k についての数学的帰納法によって証明する

k=1 のとき、 $m{p}_1$ は固有ベクトルゆえ $m{0}$ ではないので、 $\{m{p}_1\}$ は 線型独立である

 $k \geq 2$ として、(k-1) 個以下の固有ベクトルについて定理の主張が成り立つと仮定する

このとき、線形関係式

$$c_1\boldsymbol{p}_1+c_2\boldsymbol{p}_2+\cdots+c_k\boldsymbol{p}_k=\mathbf{0}$$

を考える

両辺に A をかけると、 $A\mathbf{p}_i = \alpha_i \mathbf{p}_i$ より、

$$c_1\alpha_1\boldsymbol{p}_1+c_2\alpha_2\boldsymbol{p}_2+\cdots+c_k\alpha_k\boldsymbol{p}_k=\mathbf{0}$$

この等式から、初めの線形関係式の α_k 倍を引いて

$$c_1(\alpha_1 - \alpha_k) \mathbf{p}_1 + \cdots + c_{k-1}(\alpha_{k-1} - \alpha_k) \mathbf{p}_{k-1} = \mathbf{0}$$

ここで、帰納法の仮定より、 $\boldsymbol{p}_1, \boldsymbol{p}_2, \ldots, \boldsymbol{p}_{k-1}$ は線型独立であるため、係数はすべて 0 でなければならない

$$c_1(\alpha_1 - \alpha_k) = 0, \ldots, c_{k-1}(\alpha_{k-1} - \alpha_k) = 0$$

さらに、 $lpha_1,lpha_2,\ldots,lpha_k$ は相異なる固有値であるため、 $lpha_i-lpha_k
eq 0 <math>(i=1,\ldots,k-1)$ であるよって、

$$c_1 = 0, \ldots, c_{k-1} = 0$$

が成り立つ

この結果を初めの線形関係式に代入すると、

$$c_k \boldsymbol{p}_k = \mathbf{0}$$

が残るが、 \boldsymbol{p}_k は固有ベクトルであり $\boldsymbol{0}$ ではないため、 $c_k=0$ も成り立つ

以上より、 $\boldsymbol{p}_1, \boldsymbol{p}_2, \ldots, \boldsymbol{p}_k$ は線型独立である

固有ベクトルによる行列の対角化

一次元不変部分空間に関する議論で見たように、

$$f(\boldsymbol{a}_i) = \lambda_i \boldsymbol{a}_i \quad (i = 1, \dots, n)$$

となるような \boldsymbol{a}_i を基底として用いると、線形変換 f は次のような対角行

ref: 行列と行列式の基

礎 p184~185

ref: 長岡亮介 線形代数

入門講義 p264~265、

p267

列で表現できた

$$\begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

そして、このような \mathbf{a}_i を固有ベクトル、 λ_i を固有値として定義したため、

行列 A の固有ベクトルからなる基底が存在すれば、

A は対角化できる

と言い換えられる

線形変換 f の表現行列を A とすると、A は正方行列である

たとえば基底を A の固有ベクトルに変換した際に、この線形変換 f の表現行列が $P^{-1}AP$ に変化するとして、この行列 $P^{-1}AP$ が対角行列となる場合が、A が対角化できるということである

★ 対角化可能 与えられた正方行列 A が適当な正則行列 P に より

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & O \\ & \lambda_2 & & \\ & & \ddots & \\ O & & & \lambda_n \end{pmatrix}$$

と変形できるとき、A は対角化可能であるという

行列 *A* の固有ベクトルからなる基底が存在すれば、*A* は<mark>対角化可能</mark>である、ということを定式化しよう

・ 対角化可能性と固有ベクトルの線型独立性 n 次元正方行列 A が対角化可能であるための必要十分条件は、線型独立な n 個の A の固有ベクトルが存在することである

証明 証明

線型独立な A の固有ベクトルが存在 \Longrightarrow A は対角化可能

A の固有ベクトルを a_i ($i=1,\ldots,n$)、それに対応する 固有値を α_i とすると、固有値と固有ベクトルの定義より、次 式が成り立つ

$$f(\boldsymbol{a}_i) = \alpha_i \boldsymbol{a}_i \quad (i = 1, \dots, n)$$

仮定より \boldsymbol{a}_i は線型独立であり、一次元部分空間 $\{c\boldsymbol{a}_i\mid c\in$ K} は a_i によって張られる空間である

よって、 \boldsymbol{a}_i を基底として用いることができるので、一次元不 変部分空間に関する議論で見たように、A は対角行列で表現 できる

A は対角化可能 \Longrightarrow 線型独立な A の固有ベクトルが存在

A が対角化可能であることから、ある正則行列 P が存在 して、

$$P^{-1}AP = \left(\begin{array}{ccc} lpha_1 & & O \\ & lpha_2 & & \\ & & \ddots & \\ O & & & lpha_n \end{array} \right)$$

が成り立つので、両辺に P をかけて、

$$AP = P \left(egin{array}{ccc} lpha_1 & & & O \\ & lpha_2 & & \\ & & \ddots & \\ O & & & lpha_n \end{array}
ight)$$

が成り立つ

ここで、P を n 個の列ベクトル $\boldsymbol{p}_1, \boldsymbol{p}_2, \ldots, \boldsymbol{p}_n$ を横に並べたもの、すなわち、

$$P = (p_1, p_2, ..., p_n)$$

とみなせば、上の等式は、

$$\left\{egin{array}{l} Aoldsymbol{p}_1 = lpha_1oldsymbol{p}_1\ Aoldsymbol{p}_2 = lpha_2oldsymbol{p}_2\ dots\ Aoldsymbol{p}_n = lpha_noldsymbol{p}_n \end{array}
ight.$$

という関係を意味する

これはすなわち、 $m{p}_1$, $m{p}_2$, ..., $m{p}_n$ がそれぞれの固有値 $lpha_1$, $lpha_2$, ..., $lpha_n$ に属する $m{A}$ の固有ベクトルであることを意味する

さらに、P は正則であるため、その列ベクトル $\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_n$ は線型独立である

この定理と、異なる固有値に属する固有ベクトルの線型独立性から、次の定理が得られる

 $oldsymbol{\$}$ 固有値の相異性と対角化可能性 n 次正方行列 A が異なる n 個の固有値 $lpha_1,\ldots,lpha_n$ をもつならば、A は対角化可能である すなわち、ある n 次正則行列 P によって、

$$P^{-1}AP = \left(\begin{array}{ccc} lpha_1 & & O \\ & lpha_2 & & \\ & & \ddots & \\ O & & & lpha_n \end{array}
ight)$$

が成り立つ

証明 証明

n 個の異なる固有値 $lpha_1, \ldots, lpha_n$ に属する固有ベクトル $oldsymbol{p}_1, \ldots, oldsymbol{p}_n$ は線型独立である

よって、固有ベクトルの線型独立性より、対角化可能性が導かれる

ただし、この定理の逆は成立しない

つまり、n 次正方行列 A が n 個の異なる固有値を持たなくても、対角化できることがある

実際、A がすでに対角行列になっているなら、最も単純な場合として A=E をとると、A の固有値は 1 だけであるが、任意の正則行列 P に 対して $P^{-1}EP$ は対角行列 E になる

よって、対角化のために本質的なのは、n 個の異なる固有値ではなく、

n 個の線型独立な固有ベクトル

であるといえる

特性多項式と特性方程式

 λ が n 次正方行列 A の固有値であることは、

$$A\mathbf{x} = \lambda \mathbf{x} \quad (\mathbf{x} \neq \mathbf{0})$$

となるような $\mathbf{x} \in K^n$ が存在することである

ここで、 $A\mathbf{x} = \lambda \mathbf{x}$ を次のように変形することができる

$$Ax - \lambda x = 0$$
$$Ax - \lambda Ex = 0$$
$$(A - \lambda E)x = 0$$

ref: 行列と行列式の基礎 p184、p188~191 ref: 長岡亮介 線形代数入門講義 p258~260

 $oldsymbol{x}
eq oldsymbol{0}$ という条件により、 $(A - \lambda E)oldsymbol{x} = oldsymbol{0}$ は非自明な解を持つ必要がある

む 固有ベクトルの斉次形方程式による定義 固有値 λ の固有ベクトルとは、斉次形方程式

$$(A - \lambda E)\boldsymbol{x} = \mathbf{0}$$

の非自明な解のことである

固有値を求める上で重要となるこの定理は、行列式を使って言い換えることができる

 $oldsymbol{\$}$ 固有値の方程式による定義 行列 A の固有値 λ は、x についての n 次方程式

$$\det(A - xE) = 0$$

の K に含まれる解である

証明

 λ が A の固有値であることは、斉次形方程式 $(A-\lambda E) \boldsymbol{x} = \boldsymbol{0}$ が 非自明解を持つことと言い換えられる

そして、斉次形方程式が非自明解を持つことは、行列式が 0 になる ことと同値である

すなわち、

$$\det(A - \lambda E) = 0$$

が成り立ち、つまり $x=\lambda$ は方程式 $\det(A-xE)=0$ の解である

 $A=(a_{ij})$ とおいて、

$$\det(A-xE) = egin{array}{cccccc} a_{11}-x & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22}-x & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{n1} & a_{n2} & \cdots & a_{nn}-x \ \end{array}$$

を展開すると、x についての n 次式になる

特に、すべての列 (あるいはすべての行) から、x を含む成分をとった場合 の積は、

$$(a_{11}-x)(a_{22}-x)\cdots(a_{nn}-x)$$

であるので、これを展開して現れる項を中心に考察する

れ 次の項

 $(a_{11}-x)(a_{22}-x)\cdots(a_{nn}-x)$ の各因子から、-x だけを選んでかけ合わせたものが

$$(-1)^{n}x^{n}$$

であり、これが最高次の項となる

n-1次の項

 $(a_{11}-x)(a_{22}-x)\cdots(a_{nn}-x)$ のうち、1 つだけ a_{ii} を選び、残りの因子からは -x を選んでかけ合わせたものが

$$(-1)^{n-1}(a_{11}+a_{22}+\cdots+a_{nn})x^{n-1}$$

である

これは、トレースの定義より、

$$(-1)^{n-1}\operatorname{tr}(A)x^{n-1}$$

とも書き換えられる

n-2 次以下の項

行列式では、各列から 1 つずつ、行に重複がないように成分を選ぶ必要がある

そして、今取り上げている行列式ではxを含む成分が対角線上にあるので、n-1次の場合は、対角成分以外を選ぶことができなかった(対角成分以外からxでない数 a_{ij} を得ようとすると、同じ行もしくは列からxつ成分を選ぶことになってしまう)

しかし、n-2 次以下の項では、x を含まない成分を 2 個以上選ぶことができるので、対角成分以外からも成分を選ぶことができるそのため、n-2 次以下の項は、上の展開式以外からも現れることになり、単純に計算はできない

定数項

定数項は、多項式において x=0 とおくことで得られるので、 $\det(A-xE)$ に x=0 を代入した

が定数項となる

多項式の最高次の係数に $(-1)^n$ がつくのは面倒なので、 $\det(A-xE)$ の代わりに、その $(-1)^n$ 倍である

$$det(xE - A)$$

を考えることが多い

 $(-1)^n$ は x に依存しない定数であり、方程式の解の集合を変えることはないので、どちらの行列式を使っても求まる固有値(0 になる x の値)は同じである

実際、det(xE - A) を展開すると、

$$\det(xE - A) = \begin{vmatrix} x - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & x - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & x - a_{nn} \end{vmatrix}$$

となり、x の前に (-1) がつかずに済む

★ 特性多項式 A を正方行列、x を変数として、

$$\Phi_A(x) = \det(xE - A)$$

とおく

これを特性多項式あるいは固有多項式と呼ぶ

$$\Phi_A(x) = x^n - \text{tr}(A)x^{n-1} + \dots + (-1)^n \det(A)$$

⇒ 特性方程式 特性多項式 Φ_A(x) の根を求める方程式

$$\Phi_A(x) = 0$$

を、特性方程式あるいは固有方程式と呼ぶ

固有値の重複度

たとえば、次の方程式

$$(x-2)^3(x-1) = 0$$

の解は、x = 2とx = 1であるここで、左辺を、

$$(x-2)(x-2)(x-2)(x-1) = 0$$

ref: 行列と行列式の基

礎 p192

ref: 長岡亮介 線形代数

入門講義 p270

ref: テンソル代数と表

現論 p2

とみなすと、

$$x = 2$$

$$x = 2$$

$$x = 2$$

$$x = 1$$

というように解が重複していることがわかる

このように、「何回同じ解が現れるか?」を数えたものを重複度という

方程式の解の重複度 多項式 f(x) で表される方程式 f(x) = 0 において、f(x) が $(x - \alpha)^m$ で割り切れるが、 $(x - \alpha)^{m+1}$ では割り切れないような定数 α と自然数 m が存在するとき、 α はこの方程式の m 重解あるいは m 重根であるといい、m を α の重複度と呼ぶ

上の定義は難しく聞こえるが、「ちょうど m 回だけ $(x-\alpha)$ がかかっている」ということの言い換えにすぎない

たとえば、

$$(x-2)^3(x-1)$$

 $(x-2)^3$ で割ると、

$$(x - 1)$$

として割り切れるが、 $(x-2)^4$ で割ると、

$$\frac{(x-2)^3(x-1)}{(x-2)^4} = \frac{x-1}{x-2} = \frac{A}{x-1} + \frac{B}{x-2}$$

というように部分分数分解できるので、余りが出ていることがわかる(多項式の割り算における余りとは、f(x)=g(x)q(x)+r(x) の r(x) の ことである)

つまり、f(x) に因数 $(x-\alpha)$ が m 個含まれている場合、f(x) は $(x-\alpha)^m$ で割り切れるが、m 個以上は含まれていないので、 $(x-\alpha)^{m+1}$ で割ると余りが出てしまう

これはすなわち、「ちょうど m 回だけ (x-lpha) がかかっている」という ことである

ここまでの議論を応用して、固有値の重複度を定義する

▶ 固有値の重複度 特性多項式を因数分解して、

$$\Phi_A(x) = (x - \alpha_1)^{k_1} \cdots (x - \alpha_s)^{k_s}$$

とする

ここで、 $lpha_1,\dots,lpha_s$ は相異なるものとする k_i は 1 以上の整数であり、これを固有値 $lpha_i$ の $oldsymbol{1}$ の $oldsymbol{1}$ を呼ぶ $oldsymbol{\Phi}_A(x)$ は n 次多項式であるから、

$$\sum_{i=1}^{s} k_i = n$$

が成り立つ

ここで、特性多項式が

$$\Phi_{\mathcal{A}}(x) = (x - \alpha_1)^{k_1} \cdots (x - \alpha_s)^{k_s}$$

と因数分解できることは、代数学の基本定理によって保証されている

相似な行列の特性多項式

ref: 長岡亮介 線形代数 入門講義 p269~271 ref: 行列と行列式の基

礎 p190~191

行列式の乗法性により、正方行列 A, B が、ある正則行列 P に対して

$$B = P^{-1}AP$$

となる (A と B が相似である) ならば、次のように A と B の特性多項式 は一致する

$$\det(xE - B) = \det(xE - P^{-1}AP)$$

$$= \det(xPP^{-1} - P^{-1}AP)$$

$$= \det(P^{-1}P(x - A))$$

$$= \det(P^{-1}P(xE - A))$$

$$= \det(E(xE - A))$$

$$= \det(E) \det(xE - A)$$

$$= \det(xE - A)$$

・ 相似な行列の特性多項式 相似な行列の特性多項式は一致する

この事実は、すなわち次の事実を意味する

n 次元正方行列 $A=(a_{ij})$ の特性多項式が、

$$\Phi_A(x) = x^n - \text{tr}(A)x^{n-1} + \dots + (-1)^n \det(A)$$

であることを思い出すと、次のことがいえる

 * 相似な行列のトレースと行列式 A と B が相似ならば、

$$tr(A) = tr(B)$$

 $det(A) = det(B)$

さらに、A が対角化可能であるときには、

$$B = P^{-1}AP = \begin{pmatrix} \alpha_1 & 0 & \cdots & 0 \\ 0 & \alpha_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \alpha_n \end{pmatrix}$$

という行列 B と A が相似であるので、

$$\operatorname{tr}(A) = \operatorname{tr}(B) = \alpha_1 + \alpha_2 + \dots + \alpha_n$$

 $\det(A) = \det(B) = \alpha_1 \alpha_2 \dots \alpha_n$

であることがわかる

- ・ 対角化可能行列の固有値による不変量の表現 行列 A が対角 化可能であるとき、
 - *A* のトレースは *A* の固有値の和
 - A の行列式は A の固有値の積

さて、A と B が相似であるとき、A と B は 1 つの線形変換 f を異なる基底によって表現して得られた行列であるという関係にある

このとき、A と B の特性多項式が一致するということは、次のように言い換えられる

・ 特性多項式の基底不変性 線形空間 V の線形変換 f に対して、V のある基底に関する表現行列 A の特性多項式 $\Phi_A(x)$ は、基底の選び方によらず f のみによって決まる

対角化可能な行列の特性多項式

Aが Pによって対角化されたとして、

ref: テンソル代数と表 現論 p4

$$P^{-1}AP = \operatorname{diag}(c_1, \ldots, c_n)$$

とすると、A の特性多項式は、

$$\Phi_{A}(x) = \Phi_{P^{-1}AP}(x)$$

$$= \det(xE - P^{-1}AP)$$

$$= \begin{vmatrix} x - c_{1} & 0 & \cdots & 0 \\ 0 & x - c_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x - c_{n} \end{vmatrix}$$

$$= (x - c_{1})(x - c_{2}) \cdots (x - c_{n})$$

となる

一般の場合の特性多項式

$$(x-\alpha_1)^{k_1}\cdots(x-\alpha_s)^{k_s}$$

と見比べると、各 $1 \leq i \leq s$ に対して、 c_1, \ldots, c_n の中には α_i が k_i 個あることがわかる

つまり、対角成分として現れた数たち c_1, \ldots, c_n は、重複度を含めて、特性多項式 $\Phi_A(x)$ の根と一致する

・ 対角化と特性多項式の根 対角化可能な行列 A を対角化して 得られる対角行列の対角成分たちは、重複度を含めて特性多項式 の根と一致する

また、対角化可能性と固有ベクトルの線型独立性の証明過程を振り返ると、 次のようにまとめられる **針** 対角化行列の列ベクトルと固有ベクトルの対応 対角化可能 な行列 A を対角化する正則行列 P の列ベクトルはすべて A の固有ベクトルであり、固有値 α_i のものが k_i 個ある ここで、 k_i は α_i の重複度である

固有空間

線形空間 V の中に、行列の固有ベクトルが「どれくらい」あるかを調べる ため、各固有値 α に対して、 α の固有ベクトルと $\mathbf 0$ からなる V の部分集 合を考える

 α が A の固有値ならば、方程式

$$(\alpha E - A)\boldsymbol{x} = \mathbf{0}$$

の解空間、すなわち核空間 $Ker(\alpha E - A)$ は、固有値 α を持つ A の固有ベクトルのすべてと $\mathbf 0$ からなる

核空間は V の部分空間であり、これを固有値 α の固有空間と呼ぶ

$$W(\alpha) = \text{Ker}(\alpha E - A)$$

を固有値 α の固有空間と呼ぶ

ref: 図で整理!例題で 納得!線形空間入門 p182~185

ref: テンソル代数と表 現論 p2、p4~5

ref: 行列と行列式の基

礎 p187

ref: 長岡亮介 線形代数 入門講義 p251~252、 p262、p271~273

固有空間の次元

 $oldsymbol{\&}$ 固有空間の次元と固有値の重複度 A の固有値 $lpha_i$ の重複度 k_i と、固有空間 $W(lpha_i)$ の次元 $\dim W(lpha_i)$ に対し、次の不等 式が成立する

$$\dim W(\alpha_i) \leq k_i \quad (1 \leq i \leq s)$$

≥ 証明

 $W(\alpha_i)$ の基底 $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_m$ をとる

 $m{v}_1,\ldots,m{v}_m,m{v}_{m+1},\ldots,m{v}_n$ が K^n の基底となるように、n-m 個のベクトル $m{v}_{m+1},\ldots,m{v}_n$ を追加して基底を延長する

 $P = (\boldsymbol{v}_1, \dots, \boldsymbol{v}_m, \boldsymbol{v}_{m+1}, \dots, \boldsymbol{v}_n)$ とするとき、

$$AP = (A\boldsymbol{v}_1, \ldots, A\boldsymbol{v}_m, A\boldsymbol{v}_{m+1}, \ldots, A\boldsymbol{v}_n)$$

ここで、 $W(\alpha_i)$ の基底 $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_m$ は A の固有ベクトルであるので、固有値と固有ベクトルの定義より、

$$AP = (\alpha_{i} \boldsymbol{v}_{1}, \dots, \alpha_{i} \boldsymbol{v}_{m}, A \boldsymbol{v}_{m+1}, \dots, A \boldsymbol{v}_{n})$$

$$\stackrel{\boldsymbol{m}}{\longleftarrow} \stackrel{\boldsymbol{n}-\boldsymbol{m}}{\longleftarrow} \stackrel{\boldsymbol{m}}{\longleftarrow} \stackrel{\boldsymbol{m}}{\longrightarrow} \stackrel{\boldsymbol{m}}{\longleftarrow} \stackrel{\boldsymbol{m}}{\longrightarrow} \stackrel{\boldsymbol{m}}{\longleftarrow} \stackrel{\boldsymbol{m}}{\longleftarrow} \stackrel{\boldsymbol{m}}{\longleftarrow} \stackrel{\boldsymbol{m}}{\longleftarrow} \longrightarrow \stackrel{\boldsymbol{m}}{\longleftarrow} \longrightarrow \stackrel{\boldsymbol{m$$

基底の線型独立性より、線型独立な列ベクトルを並べた行列 P は正則であるので、

$$P^{-1}AP = \begin{pmatrix} \alpha_i E_m & B \\ O & C \end{pmatrix}$$

この行列の特性多項式を考えると、

$$\Phi_{P^{-1}AP}(x) = \det(xE - P^{-1}AP)$$

$$= \begin{vmatrix} x - \alpha_i & & & \\ & \ddots & & -B \\ & & x - \alpha_i \end{vmatrix}$$

$$= \begin{vmatrix} x - \alpha_i & & & \\ & \ddots & & \\ & & x - \alpha_i \end{vmatrix} \det(xE' - C)$$

$$= (x - \alpha_i)^m \det(xE' - C)$$

より、固有値 α_i の重複度 k_i は m 以上となる

$$m \leq k_i$$

m は $W(lpha)_i$ の基底を構成するベクトルの個数、すなわち $\dim W(lpha_i)$ であるので、

$$\dim W(\alpha_i) \leq k_i$$

が成り立つ

この定理の証明過程で登場した特性方程式

$$\Phi_{P^{-1}AP}(x) = (x - \alpha_i)^m \det(xE' - C)$$

において、 $\det(xE'-C)$ からも $(x-\alpha_i)$ が現れれば、 α_i の重複度 k_i は m より大きくなることがわかる

 $W(\alpha)$ の基底を構成するベクトルの個数は、固有値 α に属する線型独立な固有ベクトルの個数ともいえる

また、固有値 α の重複度が k であることは、特性方程式が $x=\alpha$ を k 重解にもつことを意味する

以上をふまえると、前述の定理は、特性方程式の視点で次のように言い換

ئ 固有値の重複度と固有ベクトルの最大数 正方行列 A の特性 方程式 $\Phi_A(x)=0$ が $x=\alpha$ を k 重解にもつとき、固有値 α に属する線型独立な固有ベクトルは、k 個以下しかとれない

対角化可能性

次の定理は、

各固有値の固有空間が「可能な限り大きい」

ときに限り、対角化可能であると述べている

 $oldsymbol{\$}$ 固有空間次元と重複度の一致による対角化可能性 A の固有値を $lpha_i$ 、その重複度を k_i とする A が対角化可能であることは、次と同値である

 $\dim W(\alpha_i) = k_i \quad (1 \le i \le s)$

ref: 行列と行列式の基

礎 p193~194

ref: 図で整理!例題で 納得!線形空間入門

p186~188

ref: 長岡亮介 線形代数 入門講義 p271~273

対角化可能 ⇒ 固有空間の次元と重複度が一致

A が対角化可能であるので、正則行列 P により $P^{-1}AP$ が 対角行列になる

このとき、P の列ベクトルからなる A の固有ベクトルの集合には、固有値 $lpha_i$ を持つものが k_i 個含まれる

各 i に対して、 k_i 個の線型独立なベクトルが $W(lpha_i)$ に含

まれることになるため、

$$\dim W(\alpha_i) > k_i$$

がいえる

一方、固有空間の次元と固有値の重複度の不等式より、

$$\dim W(\alpha_i) \leq k_i$$

したがって、

$$\dim W(\alpha_i) = k_i$$

が成り立つ

固有空間の次元と重複度が一致 => 対角化可能

 $\dim W(lpha_i) = k_i$ が成り立つとし、 $W(lpha_i)$ の基底 $oldsymbol{\mathcal{V}}_i$ をとる

 \mathcal{V}_i は k_i 個の元からなり、これらは $W(\alpha_i)$ の基底であることから、線形独立な固有ベクトルである

さらに、異なる固有値に対応する固有ベクトルは線形独立であるから、 $i \neq j$ とし \mathcal{V}_i と \mathcal{V}_j のベクトルは互いに線形独立である

そこで、すべての \mathcal{V}_i を併せた集合

$$\mathcal{V} = \bigcup_{i=1}^{s} \mathcal{V}_i$$

を考えると、 ン のベクトルは線型独立である

このとき、ンの元の個数は

$$\sum_{i=1}^{s} k_i = n$$

である

したがって、線型独立なn個の固有ベクトルが存在するため、Aは対角化可能である

次の補題をもとに、対角化可能性を特性方程式の言葉で述べることができる

・特性方程式の単根性と固有空間の次元 特性方程式 $\Phi_A(x)$ において α_i が単根ならば、すなわち $k_i=1$ ならば、

$$\dim W(\alpha_i) = 1$$

証明

 α_i は固有値なので、 $\alpha_i \neq \mathbf{0}$ より、 $W(\alpha_i) \neq \{\mathbf{0}\}$ がいえるこれはつまり、

$$\dim W(\alpha_i) \geq 1$$

ということだが、固有空間の次元と固有値の重複度に関する不等 式より、

$$\dim W(\alpha_i) \leq k_i = 1$$

も成り立つ

したがって、

$$\dim W(\alpha_i) = 1$$

である

特性方程式の単根性と対角化可能性 特性方程式 $\Phi_A(x)$ が 重根を持たなければ、A は対角化可能である

証明

重根を持たないということは、各固有値の重複度 k_i は 1 であるよって、

$$\dim W(\alpha_i)=1$$

る

固有空間分解

[Todo 38:]

ref: 行列と行列式の基

礎 p194

ref: テンソル代数と表

現論 p7~8

第 12 章

内積と計量空間

\mathbb{R}^n 上の内積とノルム

 \mathbb{R}^n にはベクトル演算という構造があるわけだが、内積という付加的な構造を定める

ref: 行列と行列式の基 礎 p76

$$(\boldsymbol{a}, \boldsymbol{b}) = \sum_{i=1}^n a_i b_i$$

を \mathbb{R}^n 上の内積と呼ぶ

特に、

$$(\boldsymbol{a}, \boldsymbol{a}) = a_1^2 + a_2^2 + \dots + a_n^2 \ge 0$$

なので、

$$\|\boldsymbol{a}\| \coloneqq \sqrt{(\boldsymbol{a}, \boldsymbol{a})} \ge 0$$

が定義できる

 \mathbb{R}^n 上のノルム \mathbb{R}^n 上のベクトル \boldsymbol{a} の長さ (ノルム) を次のように定義する

$$\|\boldsymbol{a}\| = \sqrt{(\boldsymbol{a}, \boldsymbol{a})}$$

ref: 行列と行列式の基 礎 p76

i.
$$({m u}_1 + {m u}_2, {m v}) = ({m u}_1, {m v}) + ({m u}_2, {m v})$$

ii.
$$(c\boldsymbol{u},\boldsymbol{v})=c(\boldsymbol{u},\boldsymbol{v})$$

iii.
$$(\boldsymbol{u}, \boldsymbol{v}_1 + \boldsymbol{v}_2) = (\boldsymbol{u}, \boldsymbol{v}_1) + (\boldsymbol{u}, \boldsymbol{v}_2)$$

iv.
$$(\boldsymbol{u}, c\boldsymbol{v}) = c(\boldsymbol{u}, \boldsymbol{v})$$

≥ 証明

行列のかけ算と和に関する分配法則、行列のスカラー倍についての 性質から従う ■

 $\boldsymbol{\mathfrak{U}}$ \mathbb{R}^n 上の内積の対称性 $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$ に対して、次が成り立つ

$$(\boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{v}, \boldsymbol{u})$$

証明 証明

実数同士の乗算は可換であることから、Rⁿ 上の内積の定義により

$$(oldsymbol{u},oldsymbol{v})=\sum_{i=1}^n u_i v_i=\sum_{i=1}^n v_i u_i=(oldsymbol{v},oldsymbol{u})$$

となり、明らかに成り立つ

 ${\color{blue} \bullet}$ \mathbb{R}^n 上の内積の正値性 ${\color{blue} u} \in \mathbb{R}^n$ に対して、

$$(\boldsymbol{u}, \boldsymbol{u}) \geq 0$$

であり、 $\mathbf{u} = \mathbf{0}$ のときに限り、等号が成立する

☎ 証明

内積の定義より、

$$(\boldsymbol{u}, \boldsymbol{u}) = \sum_{i=1}^n u_i^2 \geq 0$$

である

ここで現れた u_i^2 は、 u_i が 0 のときに限り 0 になるので、 ${m u}={m 0}$ のときに限り、等号が成立する

\mathbb{R}^n 上の内積と直交

ref: 行列と行列式の基

礎 p77

 $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$ 上の内積に対するコーシー・シュワルツの不等式 $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^n$ に対して、次が成り立つ

$$|(u, v)| \le ||u|| ||v||$$

証明

任意の $t \in \mathbb{R}$ に対して、

$$\|{\bf u}-t{\bf v}\|^2=({\bf u}-t{\bf v},{\bf u}-t{\bf v})>0$$

が成り立つ

ここで、内積の双線形性を用いて左辺を展開すると、

$$(\boldsymbol{u}, \boldsymbol{u}) - 2t(\boldsymbol{u}, \boldsymbol{v}) + t^2(\boldsymbol{v}, \boldsymbol{v}) \ge 0$$

 $\|\boldsymbol{u}\|^2 - 2t(\boldsymbol{u}, \boldsymbol{v}) + t^2\|\boldsymbol{v}\|^2 \ge 0$

これは t についての 2 次式であり、判別式が 0 以下であることから、次の不等式が成り立つ

$$(-2(\boldsymbol{u}, \boldsymbol{v}))^2 - 4\|\boldsymbol{u}\|^2 \|\boldsymbol{v}\|^2 \le 0$$

 $4(\boldsymbol{u}, \boldsymbol{v})^2 \le 4\|\boldsymbol{u}\|^2 \|\boldsymbol{v}\|^2$

よって、両辺を 4 で割ると

$$|(u, v)| \le ||u|| ||v||$$

が得られる

これより、 \boldsymbol{u} , \boldsymbol{v} が 0 でないとき、

$$-1 \leq \frac{(\boldsymbol{u}, \boldsymbol{v})}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \leq 1$$

なので、

$$\cos \theta = \frac{(\boldsymbol{u}, \boldsymbol{v})}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \quad (0 \le \theta \le \pi)$$

を介して \boldsymbol{u} , \boldsymbol{v} のなす角を定義できる

$$\cos \theta = \frac{(\boldsymbol{u}, \boldsymbol{v})}{\|\boldsymbol{u}\| \|\boldsymbol{v}\|} \quad (0 \le \theta \le \pi)$$

により定まる θ を \boldsymbol{u} , \boldsymbol{v} のなす角という

 $\cos \theta = 0$ は、幾何学的には \boldsymbol{u} と \boldsymbol{v} のなす角が直角であることを意味する

$$(u, v) = 0$$

が成り立つとき、 \boldsymbol{u} と \boldsymbol{v} は直交するといい、

$$\boldsymbol{u}\perp \boldsymbol{v}$$

と表記する

\mathbb{C}^n 上の内積

複素数 z = a + bi に対して、

$$(a+bi)(a-bi) = a^2 + b^2 \ge 0$$

という式が成り立つ

このとき、a-bi を z の共役複素数といい、 \overline{z} と表記するまた、 $\sqrt{a^2+b^2}$ は z の絶対値と呼ばれ、|z| と表記する

すなわち、冒頭の不等式は、

$$|z|^2 = z\overline{z} \ge 0$$

と書き換えられる

このことを利用して、 \mathbb{C}^n 上の内積は、次のように定義すると \mathbb{R}^n の場合の 自然な拡張になる

 $m{c}^n$ 上の内積(標準内積) $m{a}=(a_i)_{i=1}^n, \ m{b}=(b_i)_{i=1}^n \in \mathbb{C}^n$ に対して、

$$(oldsymbol{a},oldsymbol{b})=\sum_{i=1}^n a_i \overline{b_i}$$

を \mathbb{C}^n 上の内積と定義する

この内積は標準内積、あるいは標準エルミート内積とも呼ばれる

このように定めることで、特に、

$$(\boldsymbol{a}, \boldsymbol{a}) = \sum_{i=1}^{n} a_i \overline{a_i} = \sum_{i=1}^{n} |a_i|^2 \ge 0$$

であるので、 \mathbb{R}^n の場合と同様に、ベクトルの/ルムを定義できる

 \mathbb{R}^n 上の内積で成り立つ性質の多くは、 \mathbb{C}^n 上の内積でも成り立つが、対称性に関しては注意が必要である

 \mathcal{L} \mathbb{C}^n 上の内積の対称性 $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$ に対して、次が成り立つ

$$(\boldsymbol{u},\boldsymbol{v}) = \overline{(\boldsymbol{v},\boldsymbol{u})}$$

証明

z = z z = z z = z

$$egin{aligned} \overline{(oldsymbol{v},oldsymbol{u})} &= \overline{\sum_{i=1}^n v_i \overline{u_i}} \ &= \sum_{i=1}^n \overline{v_i} \overline{u_i} \ &= \sum_{i=1}^n \overline{v_i} u_i \ &= \sum_{i=1}^n u_i \overline{v_i} \ &= (oldsymbol{u},oldsymbol{v}) \end{aligned}$$

となり、目的の式が示された

複素数 z = a + bi において、b = 0 の場合、z は実数である このとき、a + 0i = a - 0i = a であるから、z が実数の場合、

$$\overline{z} = z$$

が成り立つ

よって、 $oldsymbol{u}$, $oldsymbol{v} \in \mathbb{R}^n$ であるなら、 \mathbb{C}^n 上の内積の対称性の式は

$$(\boldsymbol{u}, \boldsymbol{v}) = \overline{(\boldsymbol{v}, \boldsymbol{u})} = (\boldsymbol{v}, \boldsymbol{u})$$

と書き換えられ、これは \mathbb{R}^n 上の内積の対称性そのものである

つまり、 \mathbb{C}^n 上の内積の対称性は、 \mathbb{R}^n 上の内積の対称性も含んだ表現になっている

転置による内積の表現

内積は、転置を用いて表現することもできる

🕹 転置による内積の表現

$$(\boldsymbol{a}, \boldsymbol{b}) = {}^{t}\boldsymbol{a} \cdot \overline{\boldsymbol{b}} = (a_1, a_2, \ldots, a_n) \begin{pmatrix} \frac{b_1}{b_2} \\ \vdots \\ \overline{b_n} \end{pmatrix}$$

計量線形空間

内積の概念は、双線形性、対称性、正定値性を満たすものとして抽象化で きる

⇒ 計量線形空間 体 K 上の線形空間 V において、その任意の要素 a, b ∈ V に対し、次の性質

i.
$$(\boldsymbol{a}, \boldsymbol{b}_1 + \boldsymbol{b}_2) = (\boldsymbol{a}, \boldsymbol{b}_1) + (\boldsymbol{a}, \boldsymbol{b}_2)$$

 $(\boldsymbol{a}_1 + \boldsymbol{a}_2, \boldsymbol{b}) = (\boldsymbol{a}_1, \boldsymbol{b}) + (\boldsymbol{a}_2, \boldsymbol{b})$

ii.
$$(ca, b) = c(a, b)$$

iii.
$$(\boldsymbol{a}, \boldsymbol{b}) = \overline{(\boldsymbol{b}, \boldsymbol{a})}$$

iv.
$$(\boldsymbol{a}, \boldsymbol{a}) \geq 0$$
, $(\boldsymbol{a}, \boldsymbol{a}) = 0 \Longrightarrow \boldsymbol{a} = \boldsymbol{0}$

を満たす K の要素 $(\boldsymbol{a}, \boldsymbol{b})$ がただ一つ定まるとき、 $(\boldsymbol{a}, \boldsymbol{b})$ を内積と呼び、V は計量線形空間、または単に計量空間であるという

内積の定義に

$$(\boldsymbol{a},c\boldsymbol{b})=c(\boldsymbol{a},\boldsymbol{b})$$

が含まれていないことに注意しよう

この式は、(ii) と (iii) から導ける上、 $K = \mathbb{C}^n$ の場合には成り立たない

 $K = \mathbb{C}^n$ の場合を含め、一般に次が成り立つ

ref: 長岡亮介 線形代数 入門講義 p173~174 ref: 図で整理!例題で 納得!線形空間入門 p111~117 ・ 内積の共役線形性 計量空間 V の要素 \boldsymbol{a} , \boldsymbol{b} の内積と $c \in K$ について、次の性質が成り立つ

$$(\boldsymbol{a}, c\boldsymbol{b}) = \overline{c}(\boldsymbol{a}, \boldsymbol{b}) \quad (c \in K)$$

証明

計量線形空間の定義の(ii)と(iii)を用いて、

$$(\boldsymbol{a}, c\boldsymbol{b}) = \overline{(c\boldsymbol{b}, \boldsymbol{a})}$$

$$= \overline{c}(\boldsymbol{b}, \boldsymbol{a})$$

$$= \overline{c}(\boldsymbol{a}, \boldsymbol{b})$$

となる

直交基底

直交系と直交基底 計量空間 V の $\mathbf{0}$ でないベクトル $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ がどの 2 つも互いに直交する、すなわち、

$$(\boldsymbol{a}_i, \boldsymbol{a}_j) = 0 \quad (i \neq j)$$

が成り立つとき、 $oldsymbol{a}_1, oldsymbol{a}_2, \dots, oldsymbol{a}_n$ を直交系という 直交系が $oldsymbol{V}$ の基底であるとき、直交基底と呼ばれる ref: 図で整理!例題で 納得!線形空間入門 p117~118

ref: 長岡亮介 線形代数 入門講義 p181~182

直交系の線型独立性

≥ 証明

係数 $c_1, c_2, \ldots, c_n \in K$ を用いた線形関係式

$$c_1\boldsymbol{a}_1+c_2\boldsymbol{a}_2+\cdots+c_n\boldsymbol{a}_n=\mathbf{0}$$

を考える

このとき、 \mathbf{a}_j $(j=1,2,\ldots,n)$ との内積をとると、

$$(c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + \cdots + c_n \mathbf{a}_n, \mathbf{a}_i) = 0$$

内積の双線形性より、

$$c_1(\boldsymbol{a}_1, \boldsymbol{a}_j) + c_2(\boldsymbol{a}_2, \boldsymbol{a}_j) + \dots + c_n(\boldsymbol{a}_n, \boldsymbol{a}_j) = 0$$

$$\sum_{i=1}^n c_i(\boldsymbol{a}_i, \boldsymbol{a}_j) = 0$$

ここで、 a_i は直交系であることから、 $i \neq j$ の場合、

$$(a_i, a_j) = 0$$

よって、 $i \neq j$ の項はすべて 0 になり、残るのは

$$c_j(\boldsymbol{a}_j, \boldsymbol{a}_j) = 0$$

ここで、直交系の定義より、 $\mathbf{a}_j \neq \mathbf{0}$ なので、

$$(\boldsymbol{a}_i, \boldsymbol{a}_i) \neq 0$$

よって、 $c_j=0$ でなければならず、これは $oldsymbol{a}_1,oldsymbol{a}_2,\ldots,oldsymbol{a}_n$ が線型独立であることを意味する

直交基底の線型結合の係数

直交基底を用いると、基底の線形結合が内積によって簡単に計算できる

む 直交基底を用いたベクトルの表現 計量空間 V の直交基底 $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_n$ に対して、任意のベクトル $\boldsymbol{v} \in V$ は

$$oldsymbol{v} = \sum_{i=1}^n rac{(oldsymbol{v}, oldsymbol{a}_i)}{(oldsymbol{a}_i, oldsymbol{a}_i)} oldsymbol{a}_i$$

と表すことができる

≥ 証明

ベクトル ひ が次のような線形結合

$$\boldsymbol{v} = c_1 \boldsymbol{a}_1 + c_2 \boldsymbol{a}_2 + \cdots + c_n \boldsymbol{a}_n$$

で表されるとし、係数を求めることを目指す

このとき、 \mathbf{a}_i ($j=1,2,\ldots,n$) との内積をとると、

$$(\boldsymbol{v}, \boldsymbol{a}_j) = (c_1 \boldsymbol{a}_1 + c_2 \boldsymbol{a}_2 + \dots + c_n \boldsymbol{a}_n, \boldsymbol{a}_j)$$

$$= c_1(\boldsymbol{a}_1, \boldsymbol{a}_j) + c_2(\boldsymbol{a}_2, \boldsymbol{a}_j) + \dots + c_n(\boldsymbol{a}_n, \boldsymbol{a}_j)$$

$$= \sum_{i=1}^n c_i(\boldsymbol{a}_i, \boldsymbol{a}_j)$$

となるが、 $oldsymbol{a}_i$ は直交系であるため、i
eq j のとき $(oldsymbol{a}_i, oldsymbol{a}_j) = 0$ である

よって、上の式において残るのは、i = j の項だけとなり、

$$(\boldsymbol{v}, \boldsymbol{a}_j) = c_j(\boldsymbol{a}_j, \boldsymbol{a}_j)$$

ここで、直交系の定義より $\mathbf{a}_j \neq \mathbf{0}$ なので、 $(\mathbf{a}_j, \mathbf{a}_j) \neq \mathbf{0}$ であるそこで、両辺を $(\mathbf{a}_j, \mathbf{a}_j)$ で割ることができ、

$$c_j = \frac{(\boldsymbol{v}, \boldsymbol{a}_j)}{(\boldsymbol{a}_j, \boldsymbol{a}_j)}$$

が得られる

正規直交基底

正規直交系と正規直交基底 計量空間 V の $\mathbf{0}$ でないベクトル $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ が直交系であり、さらに、どのベクトルもそのノルムが 1 に等しいとき、 $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ を正規直交系という

正規直交系がVの基底であるとき、正規直交基底と呼ばれる

ref: 図で整理!例題で 納得!線形空間入門

p117~119

ref: 長岡亮介 線形代数 入門講義 p181~182

正規直交基底の線型結合の係数

直交基底を用いたベクトルの表現は、正規直交基底の場合、さらに簡単な 形になる

・・・ 正規直交基底を用いたベクトルの表現 計量空間 V の正規 直交基底 $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_n$ に対して、任意のベクトル $\boldsymbol{v} \in V$ は

$$oldsymbol{v} = \sum_{i=1}^n (oldsymbol{v}, oldsymbol{a}_i) oldsymbol{a}_i$$

と表すことができる

正規直交基底の場合、

$$(a_i, a_i) = ||a_i||^2 = 1$$

であることを用いると、直交基底を用いたベクトルの表現において 分母が 1 となり、この形が得られる ■

正規直交基底と内積

正規直交基底どうしの内積は、クロネッカーのデルタ記号を用いて、簡潔 に表現できる

ightharpoonup クロネッカーのデルタ 次のように定義される δ_{ij} をクロネッカーのデルタという

$$\delta_{ij} = egin{cases} 1 & (i=j) \ 0 & (i
eq j) \end{cases}$$

・ 正規直交基底同士の内積 計量空間 V の正規直交基底 e_1, e_2, \ldots, e_n の内積に関して、次が成り立つ

$$(e_i, e_j) = \delta_{ij}$$
 $(i, j = 1, 2, ..., n)$

証明 証明

 e_1, e_2, \ldots, e_n の直交性より、 $i \neq j$ のときは、

$$(\boldsymbol{e}_i, \boldsymbol{e}_j) = 0$$

また、 e_1, e_2, \ldots, e_n はすべてノルムが 1 であることから、i = j のときは、

$$(e_i, e_i) = ||e_i||^2 = 1$$

この場合分けとそれぞれの結果は、クロネッカーのデルタ記号の定 義と一致する ■

計量空間 V の正規直交基底を用いると、内積を標準内積のように計算できる

計量空間 V の正規直交基底を e_1, e_2, \ldots, e_n とし、任意のベクトル $ab \in V$ を

$$\mathbf{a} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \cdots + \alpha_n \mathbf{e}_n$$

 $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \cdots + \beta_n \mathbf{e}_n$

とすると、 \boldsymbol{a} と \boldsymbol{b} の内積は、

$$(oldsymbol{a},oldsymbol{b})=(\sum_{i=1}^nlpha_ioldsymbol{e}_i,\sum_{j=1}^neta_joldsymbol{e}_j)$$

内積の双線形性より、

$$(oldsymbol{a},oldsymbol{b}) = \sum_{i=1}^n \sum_{j=1}^n (lpha_i oldsymbol{e}_i,eta_j oldsymbol{e}_j)$$

内積の共役線形性に注意して、スカラーを外に出すと、

$$(oldsymbol{a},oldsymbol{b}) = \sum_{i=1}^n \sum_{j=1}^n lpha_i \overline{eta_j}(oldsymbol{e}_i,oldsymbol{e}_j)$$

ここで、正規直交基底の内積はクロネッカーのデルタ記号を用いて表現で きるので、

$$(oldsymbol{a},oldsymbol{b}) = \sum_{i=1}^n \sum_{j=1}^n lpha_i \overline{eta_j} \delta_{ij}$$

この式は、i = j のときのみ項が残り、 $\delta_{ii} = 1$ をふまえると、

$$(\boldsymbol{a}, \boldsymbol{b}) = \sum_{i=1}^{n} \alpha_i \overline{\beta_i}$$

となり、標準内積と一致する

このように、

正規直交基底を用いると、

V の内積が K^n の標準内積と同様に計算できる

ことがわかる

ベクトルの正射影

正規直交基底をつくるにあたって、次の概念が重要になる

ref: 長岡亮介 線形代数 入門講義 p184~185

ご 正射影 0 でないベクトル \boldsymbol{a} が与えられているとき、ベクトル \boldsymbol{x} に対し、

- i. **p** が **a** と平行
- ii. **ェーp** が **a** と直交

という条件を満たすベクトルp を、x のa への正射影という

北 正射影の公式 ベクトル \boldsymbol{x} のベクトル \boldsymbol{a} への正射影 \boldsymbol{p} は、次のように表される

$$p = \frac{(x, a)}{(a, a)}a = \frac{(x, a)}{\|a\|^2}a$$

証明 証明

p が **a** と平行であることから、

$$p = ka \quad (k \in K)$$

また、 $\mathbf{x} - \mathbf{p}$ が \mathbf{a} と直交することから、

$$(\boldsymbol{x} - \boldsymbol{p}, \boldsymbol{a}) = 0$$

よって、

$$(\boldsymbol{x} - k\boldsymbol{a}, \boldsymbol{a}) = 0$$

内積の双線形性より、

$$(\boldsymbol{x}, \boldsymbol{a}) - k(\boldsymbol{a}, \boldsymbol{a}) = 0$$

ここで、正射影の定義より $\mathbf{a} \neq \mathbf{0}$ なので、 $(\mathbf{a}, \mathbf{a}) \neq \mathbf{0}$ である

よって、 $(\boldsymbol{a}, \boldsymbol{a})$ で割ることができ、

$$k = \frac{(\boldsymbol{x}, \boldsymbol{a})}{(\boldsymbol{a}, \boldsymbol{a})}$$

と k が定まる

最初の式に代入すると、

$$p = \frac{(x, a)}{(a, a)}a$$

が得られる

グラム・シュミットの直交化法

計量空間 V の線型独立なベクトル $oldsymbol{a}_1, oldsymbol{a}_2, \dots, oldsymbol{a}_n$ から、正規直交系を つくる方法を考える

正規化

まずは、 $oldsymbol{a}_1$ から、ノルムが $oldsymbol{1}$ であるベクトルをつくる(正規化) そのためには、

$$\boldsymbol{e}_1 = \frac{\boldsymbol{a}_1}{\|\boldsymbol{a}_1\|}$$

とすればよい

ここで、 e_1 は a_1 をスカラー倍しただけなので、 e_1 と a_1 は平行である

直交化

次に、 e_1 と直交するような e_2 をつくる

そのために、 $m{a}_2$ から、 $m{a}_2$ の $m{e}_1$ への正射影を引いたものは、 $m{e}_1$ と直交することを利用する

 \mathbf{a}_2 の \mathbf{e}_1 への正射影は、次のように計算できる

$$\frac{(a_2, e_1)}{\|e_1\|^2}e_1 = (a_2, e_1)e_1$$

ref: 図で整理!例題で 納得!線形空間入門 p119~120 ref: 長岡亮介 線形代数 入門講義 p182~184 ref: 行列と行列式の基

礎 p82~83

そこで、

$$u_2 = a_2 - (a_2, e_1)e_1$$

とおくと、 \mathbf{u}_2 は \mathbf{e}_1 と直交する

 $oldsymbol{a}_2$ と $oldsymbol{a}_1$ が、したがって $oldsymbol{a}_2$ と $oldsymbol{e}_1$ が線型独立であることから、 $oldsymbol{u}_2
eq oldsymbol{0}$ である

なぜなら、もし $\mathbf{u}_2 = \mathbf{0}$ ならば、 \mathbf{a}_2 は \mathbf{e}_1 の線形結合で表されることになり、 \mathbf{a}_1 , \mathbf{a}_2 は線型従属になるからである

そこで、 u2 を次のように正規化することができ、

$$\boldsymbol{e}_2 = \frac{\boldsymbol{u}_2}{\|\boldsymbol{u}_2\|}$$

とすれば、 e_2 は e_1 と直交するノルムが 1 のベクトルになる

以上の手順を繰り返すことで、線型独立なベクトル $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$ から、正規直交系 $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$ を得ることができる

このような方法をグラム・シュミットの直交化法という

$$egin{aligned} oldsymbol{u}_k &= oldsymbol{a}_k - \sum\limits_{j=1}^{k-1} (oldsymbol{a}_k, oldsymbol{e}_j) oldsymbol{e}_j \ oldsymbol{e}_k &= rac{oldsymbol{u}_k}{\|oldsymbol{u}_k\|} \end{aligned}$$

ここで、 $k=1,2,\ldots,n$ である

正規直交基底の存在

さらに、次の定理により、グラム・シュミットの直交化法は、線型独立なベクトルから正規直交系を得るだけでなく、任意の基底から正規直交基底を

 $oldsymbol{\$}$ グラム・シュミットの直交化と生成空間の不変性 計量空間 V の線型独立なベクトル $oldsymbol{a}_1,\dots,oldsymbol{a}_n$ から、グラム・シュミットの直交化法を用いて得られた正規直交系を $oldsymbol{e}_1,\dots,oldsymbol{e}_n$ とすると、 $oldsymbol{a}_1,\dots,oldsymbol{a}_n$ が張る空間と $oldsymbol{e}_1,\dots,oldsymbol{e}_n$ が張る空間は一致する

$$\langle \boldsymbol{a}_1,\ldots,\boldsymbol{a}_n\rangle=\langle \boldsymbol{e}_1,\ldots,\boldsymbol{e}_n\rangle$$

証明 証明

グラム・シュミットの直交化法では、各ステップ k において、まず \boldsymbol{a}_k からその前に得られた直交ベクトル $\boldsymbol{e}_1,\ldots,\boldsymbol{e}_{k-1}$ への射影を 引くことで、 \boldsymbol{a}_k に直交するベクトルを構成する すなわち、

$$oldsymbol{u}_k = oldsymbol{a}_k - \sum_{j=1}^{k-1} (oldsymbol{a}_k, oldsymbol{e}_j) oldsymbol{e}_j$$

と定義し、その後これを正規化して e_k とする

ここで、 $oldsymbol{u}_k$ は右辺の形から明らかなように、 $oldsymbol{a}_k$ と $oldsymbol{e}_1,\ldots,oldsymbol{e}_{k-1}$ の線型結合である

そしてさらに各 $m{e}_j$ (j < k) は、それ以前の $m{a}_1, \ldots, m{a}_j$ の線型結合であることから、 $m{u}_k$ は結局 $m{a}_1, \ldots, m{a}_k$ の線型結合として書ける

したがって、 e_k も a_1, \ldots, a_k の線型結合となり、 e_1, \ldots, e_n はすべて a_1, \ldots, a_n の線型結合である

よって、すべての e_k は $\langle a_1, \ldots, a_n \rangle$ に属することになり、

$$\langle \boldsymbol{e}_1,\ldots,\boldsymbol{e}_n\rangle\subset\langle \boldsymbol{a}_1,\ldots,\boldsymbol{a}_n\rangle$$

両辺の部分空間の次元を考えると、 a_1, \ldots, a_n が線型独立であるため、 $\langle a_1, \ldots, a_n \rangle$ の次元は n である一方、 e_1, \ldots, e_n も直交系であることから線型独立であるため、 $\langle e_1, \ldots, e_n \rangle$ の次元も n であるよって、部分空間の次元が等しいことから、両者は一致する

このように、グラム・シュミットの直交化法は、内積が定められている空間 (計量空間)には正規直交基底が存在することを示している

・・・正規直交基底の存在 {0} でない任意の計量空間は正規直交基底を持つ

線形従属なベクトルに適用した場合

与えられたベクトルが線型独立でない場合にグラム・シュミットの直交化 法を適用すると、いずれ射影を引いたベクトルが **0** になる

ある \boldsymbol{a}_k が、前のベクトルたち $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_{k-1}$ の線形結合として表される、すなわち線形従属であるとする

このとき、 $oldsymbol{a}_k$ は、すでに得られた正規直交系 $oldsymbol{u}_1,\dots,oldsymbol{u}_{k-1}$ の線形結合 として表すことができる

$$oldsymbol{a}_k = \sum_{i=1}^{k-1} (oldsymbol{a}_k, oldsymbol{u}_i) oldsymbol{u}_i$$

つまり、 \boldsymbol{a}_k は、すでに得られた正規直交系 $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_{k-1}$ の線形結合に 完全に含まれている

ここで、射影をすべて引くと、次のように残りが 0 になる

$$oldsymbol{u}_k = oldsymbol{a}_k - \sum_{i=1}^{k-1} (oldsymbol{a}_k, oldsymbol{u}_i) oldsymbol{u}_i = oldsymbol{0}$$

このように、グラム・シュミットの直交化法における射影を引く操作は、す

でにある正規直交基底に重なっている成分(従属部分)を消し去ってしまう この性質により、グラム・シュミット法は線形従属な場合でも破綻せずに 使える

しかし、結果として新しい成分がゼロになる(つまり新しい情報がない)ため、得られる直交系(正規直交基底)は完全な基底にはならない

計量同型

[Todo 39:]

ref: 図で整理!例題で 納得!線形空間入門

p122~123

第 13 章

複素行列と対角化

複素正方行列 A の転置行列において、各成分をその共役複素数に置き換え ref: 長岡亮介 線形代数 た行列を随伴行列という

入門講義 p275

| 随伴行列 複素正方行列 $A = (a_{ij})$ に対し、 $\overline{a_{ji}}$ を (i,j)成分にもつ行列 ${}^t\overline{A}$ を A の随伴行列といい、 A^* と表す

実数 x の複素共役は $\overline{x} = x$ であるので、A が実行列のときは、

$$A^* = {}^t A$$

すなわち、

実行列の世界では、随伴行列は転置行列

にすぎない

転置を二回行うと元に戻ることと同様に、次が成り立つ

・ 随伴行列の自己反転性 複素正方行列 A に対し、随伴行列を

二回とると元に戻る

$$(A^*)^* = A$$

随伴行列の定義より、

$$(A^*)^* = {}^t \overline{A^*} = {}^t \overline{\overline{A}}$$

 $A = (a_{ij})$ とすると、A の各成分を共役複素数にした行列は、

$$\overline{A} = (\overline{a_{ij}})$$

これを転置すると、

$${}^{t}\overline{A} = (\overline{a_{ji}})$$

さらに、もう一度各成分の複素共役をとると、

$$t\overline{\overline{A}} = (\overline{\overline{a_{ji}}}) = (a_{ji})$$

したがって、

$$(A^*)^* = {}^{t}\overline{\overline{A}} = (a_{ij}) = A$$

が成り立つ

転置行列と複素共役の性質から、次の性質が成り立つ

♣ 積に対するエルミート共役の順序反転性 複素行列 AB の積 AB が定義できるとき、

$$(AB)^* = B^*A^*$$

[Todo 40:]

随伴行列と標準内積は、次のような関係で結ばれる

・ 随伴公式 複素行列 A と計量空間上のベクトル u, v に対し、

$$(A\boldsymbol{u},\boldsymbol{v})=(\boldsymbol{u},A^*\boldsymbol{v})$$

証明

転置を用いて内積を表すと、

$$(A\boldsymbol{u},\boldsymbol{v}) = {}^{t}(A\boldsymbol{u})\overline{\boldsymbol{v}}$$

転置と行列積の順序反転性より、 $^t(A\boldsymbol{u})=^t\boldsymbol{u}^t\!A$ なので、

$$(A\boldsymbol{u},\boldsymbol{v})=({}^t\boldsymbol{u}{}^t\!A)\overline{\boldsymbol{v}}$$

行列の積の結合法則を用いて、

$$(A\boldsymbol{u},\boldsymbol{v})={}^{t}\boldsymbol{u}({}^{t}\!A\overline{\boldsymbol{v}})$$

ここで、 \overline{tA} は、 $A=(a_{ij})$ とすると、

1.
$$\overline{A} = (\overline{a_{ij}})$$

2.
$${}^{t}\overline{A} = (\overline{a_{ji}})$$

3.
$$\overline{t}\overline{A} = (\overline{\overline{a_{ji}}}) = (a_{ji}) = {}^t A$$

となり、 tA と一致する

これを用いて書き換えると、

$$(A\boldsymbol{u},\boldsymbol{v}) = {}^{t}\boldsymbol{u}(\overline{{}^{t}\overline{A}}\overline{\boldsymbol{v}})$$

複素共役の積の性質 $\overline{z_1} \cdot \overline{z_2} = \overline{z_1 z_2}$ を用いて、

$$(A\boldsymbol{u},\boldsymbol{v}) = {}^{t}\boldsymbol{u}^{\overline{t}}\overline{\overline{A}}\boldsymbol{v}$$

この時点で、右辺を内積として書き直すと、**Av** の複素共役がなくなることに注意して、

$$(A\boldsymbol{u},\boldsymbol{v}) = (\boldsymbol{u},{}^{t}\overline{A}\boldsymbol{v})$$

随伴行列の定義 $A^* = {}^t\overline{A}$ より、

$$(A\boldsymbol{u},\boldsymbol{v})=(\boldsymbol{u},A^*\boldsymbol{v})$$

となり、目的の等式が得られた

ユニタリ行列と直交行列

■ ユニタリ行列 複素正方行列 *A* が次を満たすとき、*A* をユニタリ行列という

$$A^* = A^{-1}$$

ref: 長岡亮介 線形代数 入門講義 p275~276、 p279~282 ref: 行列と行列式の基

礎 p204

ユニタリ行列と内積

2 つのベクトルそれぞれにユニタリ行列を左からかけても、それらの内積は変わらない

 $oldsymbol{\cdot}$ ユニタリ行列の特徴づけとしての内積不変性 n 次複素行列 A がユニタリ行列であることと、任意の $oldsymbol{u}$, $oldsymbol{v} \in \mathbb{C}^n$ に対し、

$$(A\boldsymbol{u}, A\boldsymbol{v}) = (\boldsymbol{u}, \boldsymbol{v})$$

証明

ユニタリ行列ならば内積を保つ

随伴公式より、

$$(A\boldsymbol{u}, A\boldsymbol{v}) = (\boldsymbol{u}, A^*A\boldsymbol{v})$$

ここで、A がユニタリ行列であることは、

$$A^*A = E$$

と言い換えられるので、これを用いると、

$$(A\boldsymbol{u}, A\boldsymbol{v}) = (\boldsymbol{u}, \boldsymbol{v})$$

が成り立つ

内積を保つならばユニタリ行列

転置を用いて内積を表すと、

$$(A\boldsymbol{u}, A\boldsymbol{v}) = {}^{t}(A\boldsymbol{u})\overline{(A\boldsymbol{v})}$$

 $(\boldsymbol{u}, \boldsymbol{v}) = {}^{t}\boldsymbol{u}\overline{\boldsymbol{v}}$

これらが一致するというのが仮定なので、

$${}^{t}(A\boldsymbol{u})\overline{(A\boldsymbol{v})}={}^{t}\boldsymbol{u}\overline{\boldsymbol{v}}$$

この関係を用いて、行列 ${}^tA\overline{A}$ の (i,j) 成分を考えると、

$$t(Ae_i)\overline{(Ae_j)} = te_i\overline{e_j}$$

= δ_{ij}

となり、これはすなわち、

$${}^{t}A\overline{A} = E$$

よって、両辺の複素共役をとることで、

$$A^*A = E$$

したがって、*A* はユニタリ行列である

この定理において、 $\mathbf{u} = \mathbf{v}$ の場合を考えると、ユニタリ行列とノルムに関する性質が導かれる

ユニタリ行列とノルム

ユニタリ行列を左からかけても、ベクトルのノルムは変わらない

 $oldsymbol{\cdot}$ ユニタリ行列の特徴づけとしてのノルム不変性 n 次複素行列 A がユニタリ行列であることと、任意の $oldsymbol{v}\in\mathbb{C}^n$ に対し、

$$||A\boldsymbol{v}|| = ||\boldsymbol{v}||$$

が成り立つことは同値である

証明

A がユニタリ行列であることと、任意の $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{C}^n$ に対し、

$$(A\boldsymbol{u}, A\boldsymbol{v}) = (\boldsymbol{u}, \boldsymbol{v})$$

が成り立つことは同値であった

CCC, $\boldsymbol{u} = \boldsymbol{v}$ CTC

$$(A\boldsymbol{v}, A\boldsymbol{v}) = (\boldsymbol{v}, \boldsymbol{v})$$

が成り立つことになり、ノルムの定義より、

$$||A\boldsymbol{v}||^2 = ||\boldsymbol{v}||^2$$

すなわち、

$$||A\boldsymbol{v}|| = ||\boldsymbol{v}||$$

がしたがう

ユニタリ行列と直交性

A が実正方行列のときは、

$$A$$
 がユニタリ行列 \iff $^tA = A^{-1}$

となり、このような A は直交行列と呼ばれる

■ 直交行列 実正方行列 A が次を満たすとき、A を直交行列という

$${}^{t}A = A^{-1}$$

直交行列という名前の由来は、次のように考えられる

A を n 個の列ベクトルを横一列に並べたものとみなし、

$$A = (\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_n)$$

 $\forall t \in \mathcal{L}, t$

$$\begin{pmatrix} {}^t oldsymbol{a}_1 \ {}^t oldsymbol{a}_2 \ {}^t {}^t oldsymbol{a}_n \end{pmatrix} (oldsymbol{a}_1, oldsymbol{a}_2, \dots, oldsymbol{a}_n) = \begin{pmatrix} 1 & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 \ {}^t & {}^t & {}^t & {}^t & {}^t \end{pmatrix}$$

と表される

これは、ベクトル $\boldsymbol{a}_1, \boldsymbol{a}_2, \ldots, \boldsymbol{a}_n$ が、次の性質

$${}^t\boldsymbol{a}_i\boldsymbol{a}_j=(\boldsymbol{a}_i,\boldsymbol{a}_j)=\delta_{ij}$$

を満たすことを意味する

すなわち、直交行列 A の列ベクトル a_1, a_2, \ldots, a_n は、互いに直交する単位ベクトルである

この事実は、複素行列に対しても成立する

$$A$$
 がユニタリ行列 \iff ($\boldsymbol{a}_i, \boldsymbol{a}_j$) = δ_{ij}

すなわち、ユニタリ行列の列ベクトルは、互いに直交する単位ベクトルである

証明

A がユニタリ行列であることは、任意の $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{C}^n$ に対し、

$$(A\boldsymbol{u}, A\boldsymbol{v}) = (\boldsymbol{u}, \boldsymbol{v})$$

が成り立つことと同値であった

ここで、 $\boldsymbol{u} = \boldsymbol{e}_i$, $\boldsymbol{v} = \boldsymbol{e}_j$ とすると、

$$(A\boldsymbol{e}_i, A\boldsymbol{e}_j) = (\boldsymbol{e}_i, \boldsymbol{e}_j)$$

が成り立つことになる

左辺の Ae_i について考えると、

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

 Ae_j についても同様なので、

$$(A\boldsymbol{e}_i, A\boldsymbol{e}_j) = (\boldsymbol{a}_i, \boldsymbol{a}_j) = (\boldsymbol{e}_i, \boldsymbol{e}_j) = \delta_{ij}$$

 $\therefore (\boldsymbol{a}_i, \boldsymbol{a}_j) = \delta_{ij}$

となり、A がユニタリ行列であることは、 $(oldsymbol{a}_i, oldsymbol{a}_j) = \delta_{ij}$ へと同値変形できる

エルミート行列と対称行列

ref: 長岡亮介 線形代数 入門講義 p275~276

 $A^* = A$

A が実正方行列のときは、

A がエルミート行列 $\iff {}^t A = A$

となり、このような *A* は対称行列、あるいは実対称行列と呼ばれる

エルミート行列の固有値

はすべて実数である

行列の成分が実数であっても、特性方程式の根は一般には実数とは限らない つまり、固有値は一般には複素数であるが、エルミート行列については次 が成り立つ

ref: 長岡亮介 線形代数 入門講義 p282~283 ref: 行列と行列式の基 礎 p201、p203

証明

エルミート行列 A の固有ベクトルを ${\pmb v}$ とし、その固有値を $\alpha \in \mathbb{C}^n$ とすると、

 $A\mathbf{v} = \alpha \mathbf{v}$

より、次が成り立つ

$$(A\mathbf{v}, \mathbf{v}) = (\alpha \mathbf{v}, \mathbf{v})$$
$$= \alpha(\mathbf{v}, \mathbf{v})$$

一方、随伴公式から、次のようにも書ける

$$(A\boldsymbol{v},\boldsymbol{v})=(\boldsymbol{v},A^*\boldsymbol{v})$$

A がエルミート行列であることから、 $A^* = A$ なので、

$$(A\boldsymbol{v}, \boldsymbol{v}) = (\boldsymbol{v}, A\boldsymbol{v})$$

= $(\boldsymbol{v}, \alpha \boldsymbol{v})$

内積の共役線形性に注意して、

$$(A\boldsymbol{v},\boldsymbol{v}) = \overline{\alpha}(\boldsymbol{v},\boldsymbol{v})$$

ここまでで得られた (Av, v) の 2 通りの表現をまとめると、

$$\alpha(\boldsymbol{v}, \boldsymbol{v}) = \overline{\alpha}(\boldsymbol{v}, \boldsymbol{v})$$

移項して、

$$(\alpha - \overline{\alpha})(\boldsymbol{v}, \boldsymbol{v}) = 0$$

ここで、 \boldsymbol{v} は固有ベクトルなので、 $\boldsymbol{v} \neq \boldsymbol{0}$ である よって、 $(\boldsymbol{v}, \boldsymbol{v}) \neq \boldsymbol{0}$ で両辺を割ることができ、次を得る

$$\alpha = \overline{\alpha}$$

すなわち、 α は実数である

エルミート行列では、固有値が実数であることがうまく活きて、次の性質 も成り立つ **♣ エルミート行列の固有値の直交性** エルミート行列の相異なる固有値を持つ固有ベクトルは直交する

すなわち、エルミート行列 A の固有ベクトル \boldsymbol{u} , \boldsymbol{v} がそれぞれ固有値 α , $\beta \in \mathbb{R}^n$ を持つとし、 $\alpha \neq \beta$ ならば、

$$(\boldsymbol{u}, \boldsymbol{v}) = 0$$

が成り立つ

☎ 証明

固有値と固有ベクトルの定義より、

$$A\mathbf{u} = \alpha \mathbf{u}$$

$$A\boldsymbol{v} = \beta \boldsymbol{v}$$

が成り立つ

一方、随伴公式より、

$$(A\boldsymbol{u},\boldsymbol{v})=(\boldsymbol{u},A^*\boldsymbol{v})$$

であるが、A はエルミート行列なので、 $A^* = A$ が成り立つ

$$(A\boldsymbol{u},\boldsymbol{v})=(\boldsymbol{u},A\boldsymbol{v})$$

先ほどの固有値と固有ベクトルの関係を代入して、

$$(\alpha \boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{u}, \beta \boldsymbol{v})$$

ここで、 α , β は実数なので、内積の共役線形性を考慮しても、

$$\alpha(\boldsymbol{u}, \boldsymbol{v}) = \beta(\boldsymbol{u}, \boldsymbol{v})$$

として、スカラーをそのまま外に出すことができる

よって、

$$(\alpha - \beta)(\boldsymbol{u}, \boldsymbol{v}) = 0$$

であるが、 $\alpha \neq \beta$ なので、 $(\alpha - \beta) \neq 0$ で両辺を割ることができ、

$$({\bf u},{\bf v})=0$$

エルミート行列の対角化に向けた考察

H を n 次エルミート行列とすると、その固有値は n 個の実数として $lpha_1,\ldots,lpha_n$ とおける

そして、 $oldsymbol{lpha}_i$ に属する固有ベクトル $oldsymbol{v}_i$ をとると、 $oldsymbol{v}_1,\dots,oldsymbol{v}_n$ はどの $oldsymbol{2}$ つも互いに直交する

そこで、それぞれを次のように正規化する

$$oldsymbol{u}_i = rac{oldsymbol{v}_i}{\|oldsymbol{v}_i\|} \quad (i=1,\ldots,n)$$

すると、 u_1, \ldots, u_n は互いに直交する単位ベクトルであるので、

$$U = (\boldsymbol{u}_1, \ldots, \boldsymbol{u}_n)$$

とおけば、Uはユニタリ行列となる

 u_i は H の各固有ベクトル v_i をスカラー倍したものなので、

$$H\mathbf{u}_i = \alpha_i \mathbf{u}_i$$

という関係が成り立つ

つまり、U の列ベクトル $oldsymbol{u}_1,\ldots,oldsymbol{u}_n$ はそれぞれ H の固有値 $lpha_1,\ldots,lpha_n$ に属する固有ベクトルである

さらに、ユニタリ行列はその定義から明らかに正則行列であるので、対角 化行列の列ベクトルと固有ベクトルの対応を振り返ると、

エルミート行列はユニタリ行列を用いて対角化できる

という「予感」がしてくる

まだ「予感」としかいえないのは、エルミート行列の固有値 $lpha_1,\ldots,lpha_n$ が重複している可能性があるからである

正規行列

エルミート行列の対角化について議論するために、エルミート行列・ユニ タリ行列を含むより包括的な概念として正規行列を導入する

ご 正規行列 複素正方行列 A が次を満たすとき、A を正規行列という

$$AA^* = A^*A$$

ref: 図で整理!例題で 納得!線形空間入門 p197~200

ref: 長岡亮介 線形代数 入門講義 p287~292 ref: 行列と行列式の基

礎 p209

正規行列の例

A をエルミート行列とすると、 $A^* = A$ なので、

$$AA^* = A^2$$
$$A^*A = A^2$$

となり、正規行列の定義を満たす

♣ エルミート行列の正規行列性 エルミート行列は正規行列である

また、A をユニタリ行列とすると、 $A^* = A^{-1}$ なので、

$$AA^* = AA^{-1} = E$$
$$A^*A = A^{-1}A = E$$

となり、こちらも正規行列の定義を満たす

♣ ユニタリ行列の正規行列性 ユニタリ行列は正規行列である

正規行列の性質

北 正規行列と随伴によるノルム保存性 複素正方行列 A が正規行列であることは、任意の $oldsymbol{v}\in\mathbb{C}^n$ に対し、

$$||A\boldsymbol{v}|| = ||A^*\boldsymbol{v}||$$

が成り立つことと同値である

[Todo 41: ref: 行列と行列式の基礎 p262 問 6.9 (1)]

・・ 正規行列における固有ベクトルの随伴対応 A を正規行列とするとき、 \boldsymbol{v} が A の固有値 α の固有ベクトルならば、 \boldsymbol{v} は A^* の固有値 $\overline{\alpha}$ の固有ベクトルであるすなわち、

$$A\mathbf{v} = \alpha\mathbf{v} \Longrightarrow A^*\mathbf{v} = \overline{\alpha}\mathbf{v}$$

証明 証明

[Todo 42: ref: 行列と行列式の基礎 p262 問 6.9 (2)]

正規行列の対角化

ref: 長岡亮介 線形代数 入門講義 p287~292 ref: 図で整理! 例題で 納得!線形空間入門 p198~200 A の固有値 α に属する線型独立な固有ベクトルがちょうど k 個存在することは、

$$\dim\{\boldsymbol{x} \mid A\boldsymbol{x} = \alpha\boldsymbol{x}\} = k$$

と表せる

これは、固有値 α の<mark>固有空間</mark>の次元が k であること、噛み砕くと、固有値 α の固有ベクトル α の集合が部分空間であり、k 個の固有ベクトルがこの 部分空間の基底を成す (線型独立である) ことを意味する

固有空間は核空間 $Ker(A-\alpha E)$ と定義されるため、この次元がk であることは、次のようにも書ける

$$\dim \operatorname{Ker}(A - \alpha E) = k$$

正規行列について、一般に次が成り立つ

・ 正規行列における固有空間の次元と固有値の重複度の一致 n 次複素正方行列 A が正規行列であるとき、 $\Phi_A(x)$ における固有値 α の重複度 k について、次の等式が成り立つ

$$k = n - \text{rank}(A - \alpha E)$$

次元定理を用いて言い換えると、 α の固有空間 $W(\alpha)$ について、

$$\dim W(\alpha) = k$$

が成り立つ

証明

 $l=n-{\sf rank}(A-\alpha E)$ とおく(l が重複度 k に等しいことを示すことが目標)

すなわち、

$$rank(A - \alpha E) = n - l$$

であると仮定する

また、固有値 α の固有ベクトルは、斉次形方程式

$$(A - \alpha E)\boldsymbol{x} = \mathbf{0}$$

の非自明解である

この方程式の解空間は $Ker(A - \alpha E)$ であるが、次元定理より、

$$\dim \operatorname{Ker}(A - \alpha E) = n - \operatorname{rank}(A - \alpha E) = l$$

であるので、 $Ker(A-\alpha E)$ は次元 l の部分空間である

すなわち、方程式 $(A-\alpha E)\mathbf{x}=\mathbf{0}$ を満たす l 個の線型独立なベクトルが存在する

これらを $m{v}_1, m{v}_2, \ldots, m{v}_l$ とすると、これらはすべて固有値 $m{\alpha}$ の固有ベクトルである

これらが正規直交系でない場合は、グラム・シュミットの直交化法を 用いて正規直交系に変換し、それを改めて $\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_l$ とする

次に、これら \boldsymbol{l} 個のベクトルを補う形で、正規直交基底 $\boldsymbol{v}_1,\ldots,\boldsymbol{v}_l,\boldsymbol{v}_{l+1},\ldots,\boldsymbol{v}_n$ を作る

これらを用いて、行列 *U* を

$$U = (\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_l, \boldsymbol{v}_{l+1}, \dots, \boldsymbol{v}_n)$$

とおくと、 U はユニタリ行列である

さらに、 $oldsymbol{v}_1, oldsymbol{v}_2, \ldots, oldsymbol{v}_l$ は $oldsymbol{A}$ の固有値 $oldsymbol{lpha}$ に属する固有ベクトルであることから、

$$U^{-1}AU = \begin{pmatrix} & & & & & & \\ & \alpha & & & & \\ & & \ddots & & & B \\ & & & \alpha & & \\ & & & O & & C \end{pmatrix} \uparrow_{n-l}$$

ユニタリ行列 U の定義より、 $U^{-1} = U^*$ が成り立つので、

$$U^*AU = \begin{pmatrix} & & & & & & \\ & \alpha & & & & \\ & & \ddots & & & B \\ & & \alpha & & & \\ & & & O & & C \end{pmatrix} \uparrow_{n-l}$$

ここで、両辺の随伴行列をつくることを考える

左辺は、積の随伴行列をつくると積の順序が入れ替わることに注意 して、

$$(U^*AU)^* = U^*A^*(U^*)^* = U^*A^*U$$

右辺は、転置してから各成分を共役複素数に置き換えればよいので、

$$U^*A^*U = \begin{pmatrix} & & & & & & & & \\ & \overline{\alpha} & & & & & & \\ & & \ddots & & & & & \\ & & & \overline{\alpha} & & & & \\ & & & \overline{\alpha} & & & & \\ & & & B^* & & & C^* & & \end{pmatrix} \uparrow_{n-l}^{l}$$

一方、A が正規行列であることから、 $oldsymbol{v}_1,\ldots,oldsymbol{v}_l$ は、 A^* の固有値 $\overline{\alpha}$ に属する固有ベクトルでもあるので、

$$U^{-1}A^*U = U^*A^*U = \begin{pmatrix} & & & & & & & \\ & \overline{\alpha} & & & & & \\ & & \ddots & & & B' \\ & & \overline{\alpha} & & & \\ & & & O & & C' \end{pmatrix} \uparrow_{n-l}$$

とも表せる

ここで、B と C は l × (n-l) 型行列、B' と C' は (n-l) × l 型行列であり、型が一致するので成分を比較できるよって、

$$B^* = O, \quad C^* = C'$$

0 の複素共役は 0 であることから、 $B^* = O$ より、

$$B = O$$

がしたがう

このことをふまえて、あらためて U*AU を表すと、

$$U^*AU = \begin{pmatrix} & & & & & & & \\ & \alpha & & & & & \\ & & \ddots & & & & \\ & & & \alpha & & & \\ & & & O & & & C \end{pmatrix} \uparrow_{n-l}$$

となる

ここで、A と U^*AU の特性多項式は一致するので、実際に計算すると、

$$\det(xE - A) = \det(xE - U^*AU)$$

$$= \begin{vmatrix} x - \alpha & & & & \\ & \ddots & & & \\ & & x - \alpha & & \\ \hline & O & & xE_{n-l} - C \\ \\ = \begin{vmatrix} x - \alpha & & & \\ & \ddots & & \\ & & x - \alpha & \\ \\ = (x - \alpha)^l \det(xE_{n-l} - C) \\ \end{vmatrix}$$

$$= (x - \alpha)^l \det(xE_{n-l} - C)$$

また、 $\alpha E - U^*AU$ を考えると、

より、

$$\operatorname{rank}(\alpha E - U^*AU) = \operatorname{rank}(\alpha E_{n-l} - C)$$

ここで、 $A \ \ U^*AU$ は相似な行列であり、相似な行列の固有値(特性方程式の根)は重複度も含めて一致するので、

$$rank(\alpha E - U^*AU) = rank(\alpha E - A) = n - l$$

よって、

$$\operatorname{rank}(\alpha E_{n-l} - C) = n - l$$

つまり、 $\alpha E_{n-l} - C$ は行列の階数が次数 n-l に等しいので、正則行列である

ゆえにその行列式は、

$$\det(\alpha E_{n-l} - C) \neq 0$$

となることから、 $x=\alpha$ は方程式 $\det(xE_{n-l}-C)=0$ の解ではないことがわかる

よって、 $\det(xE-A)=0$ の解 $x=\alpha$ は、 $(x-\alpha)^l$ の部分から現れることになるため、 $x=\alpha$ は l 重解である

したがって、 α の重複度 k は l に等しいことが示された

固有空間の次元と重複度が一致すれば対角化可能であることから、正規行 列は対角化可能である

さらに、上の定理の証明過程から、正規行列はユニタリ行列によって対角 化できることもわかる

・・・ 正規行列のユニタリ対角化 複素正方行列 A について、A が 正規行列であることと、A がユニタリ行列を用いて対角化できる ことは同値である

正規行列 ⇒ ユニタリ行列を用いて対角化可能

正規行列における固有空間の次元と固有値の重複度の一致の 定理の証明過程より明らか

ユニタリ行列を用いて対角化可能 ==> 正規行列

A がユニタリ行列 U を用いて、次のように対角化されたとする

$$U^*AU = \begin{pmatrix} lpha_1 & O \\ & \ddots & \\ O & & lpha_n \end{pmatrix}$$

このとき、両辺に左から U をかけ、右から U^* をかけると、ユニタリ行列の定義より $U^*U = UU^* = E$ であることから、

$$A = U \begin{pmatrix} \alpha_1 & & O \\ & \ddots & \\ O & & \alpha_n \end{pmatrix} U^*$$

と変形できる

よって、*A** は、積の随伴行列をつくると積の順序が入れ替わることに注意して、

$$A^* = (U^*)^* \begin{pmatrix} \overline{\alpha_1} & O \\ & \ddots & \\ O & \overline{\alpha_n} \end{pmatrix} U^*$$
$$= U \begin{pmatrix} \overline{\alpha_1} & O \\ & \ddots & \\ O & \overline{\alpha_n} \end{pmatrix} U^*$$

以上をふまえて、 AA^* と A^*A をそれぞれ計算すると、

$$AA^* = U \begin{pmatrix} \alpha_1 & O \\ & \ddots & \\ O & \alpha_n \end{pmatrix} U^* U \begin{pmatrix} \overline{\alpha_1} & O \\ & \ddots & \\ O & \overline{\alpha_n} \end{pmatrix} U^*$$
$$= U \begin{pmatrix} \alpha_1 \overline{\alpha_1} & O \\ & \ddots & \\ O & \alpha_n \overline{\alpha_n} \end{pmatrix} U^*$$

$$A^*A = U \begin{pmatrix} \overline{\alpha_1} & O \\ & \ddots & \\ O & \overline{\alpha_n} \end{pmatrix} U^*U \begin{pmatrix} \alpha_1 & O \\ & \ddots & \\ O & \alpha_n \end{pmatrix} U^*$$
$$= U \begin{pmatrix} \overline{\alpha_1}\alpha_1 & O \\ & \ddots & \\ O & \overline{\alpha_n}\alpha_n \end{pmatrix} U^*$$

 $\forall x \in \alpha_i \overline{\alpha_i} = \overline{\alpha_i} \alpha_i \ x \in \alpha_i$

$$AA^* = A^*A$$

が成り立つ

これは、 A が正規行列であることを意味する

実対称行列の対角化

エルミート行列は正規行列なので、次のことがいえる

♣ エルミート行列のユニタリ対角化 エルミート行列はユニタリ行列を用いて対角化できる

この定理を実行列の世界にもってくると、次のようになる

ref: 長岡亮介 線形代数 入門講義 p282~284 ref: 図で整理!例題で 納得!線形空間入門 p200~201

ref: 行列と行列式の基

礎 p201

ま対称行列の直交対角化 実対称行列は直交行列を用いて対 角化できる

第 14 章

計量空間上の変換

ユニタリ変換

体 ℂ 上の計量空間において、内積を保つ線形変換をユニタリ変換という

ightharpoonup 本 ightharpoonup 上の計量空間 ightharpoonup V における線形変換 ightharpoonup f がユニタリ変換であるとは、任意の ightharpoonup u, ightharpoonup V に対し、

$$(f(\boldsymbol{u}), f(\boldsymbol{v})) = (\boldsymbol{u}, \boldsymbol{v})$$

が成り立つことである

体 ℝ 上のユニタリ変換は、直交変換と呼ばれる

ユニタリ変換の表現行列

ユニタリ行列の性質である内積不変性

$$(A\boldsymbol{u}, A\boldsymbol{v}) = (\boldsymbol{u}, \boldsymbol{v})$$

から、ユニタリ変換の表現行列はユニタリ行列であることがわかる

ref: 行列と行列式の基

礎 p77~82

ref: 図で整理!例題で

納得!線形空間入門

p126~131

このことから、ユニタリ行列の性質は、ユニタリ変換の性質として言い換 えることができる

ユニタリ変換とノルム

ユニタリ行列のノルム不変性から、

ユニタリ変換はベクトルの長さを変えない変換

でもあることがわかる

 $oldsymbol{\$}$ ユニタリ変換とノルム保存性 計量空間 V における線形変換を f がユニタリ変換であることと、任意の $oldsymbol{v} \in V$ に対し

 $||f(\boldsymbol{v})|| = ||\boldsymbol{v}||$

が成り立つことは同値である

エルミート変換

ightharpoonup エルミート変換 体 $\mathbb C$ 上の計量空間 V における線形空間 f

ref: 図で整理!例題で 納得!線形空間入門 p126~131 がエルミート変換であるとは、任意の $\boldsymbol{u}, \boldsymbol{v} \in V$ に対し、

$$(f(\boldsymbol{u}), \boldsymbol{v}) = (\boldsymbol{u}, f(\boldsymbol{v}))$$

が成り立つことである

体 ℝ 上のエルミート変換は、対称変換と呼ばれる

随伴写像

[Todo 43:]

ref: 図で整理!例題で

納得!線形空間入門

p131~133

随伴変換

[Todo 44:]

ref:図で整理!例題で 納得!線形空間入門

p202~203

正規変換

[Todo 45:]

ref: 図で整理!例題で

納得!線形空間入門

p203~204

第 15 章

三角化と行列多項式

行列の三角化

対角化の次善の策として、三角化という方法がある

・・ 三角化定理 A を n 次複素正方行列とするとき、ある正則行列 P が存在して、 $P^{-1}AP$ が上三角行列になるその対角成分は重複度を含めて A の固有値と一致する

ref: 長岡亮介 線形代数 入門講義 p293~294 ref: 行列と行列式の基

礎 p195~196

ref: 図で整理!例題で 納得!線形空間入門

p191~196

証明 証明

三角化できること

n に関する帰納法を用いる

n=1 のとき、A は 1×1 型行列なので、上三角行列である

 $n \geq 2$ のとき、 $oldsymbol{v}_1$ を A の固有ベクトルとし、その固有値を $lpha_1$ とする

 $oldsymbol{v}_2,\ldots,oldsymbol{v}_n$ を追加して、 \mathbb{C}^n の基底に延長する

 $P_1 = (\boldsymbol{v}_1, \dots, \boldsymbol{v}_n) \ \exists \exists \langle \exists \langle \exists \rangle, \dots \rangle$

$$P_1^{-1}AP_1 = \begin{pmatrix} \alpha_1 & * \\ \mathbf{0} & A_1 \end{pmatrix}$$

ここで、 A_1 は (n-1) 次正方行列である

帰納法の仮定より、(n-1) 次の正則行列 P_2 を選べば、 $P_2^{-1}A_1P_2$ は上三角行列になる

そこで、

$$P = P_1 \begin{pmatrix} 1 & {}^t \mathbf{0} \\ \mathbf{0} & P_2 \end{pmatrix}$$

とおくと、 P_2 が正則であることから、P は正則である P の逆行列は、

$$P^{-1} = \begin{pmatrix} 1 & {}^t \mathbf{0} \\ \mathbf{0} & P_2^{-1} \end{pmatrix} P_1^{-1}$$

であるので、

$$P^{-1}AP = \begin{pmatrix} 1 & {}^{t}\mathbf{0} \\ \mathbf{0} & P_{2}^{-1} \end{pmatrix} P_{1}^{-1}AP_{1} \begin{pmatrix} 1 & {}^{t}\mathbf{0} \\ \mathbf{0} & P_{2} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & {}^{t}\mathbf{0} \\ \mathbf{0} & P_{2}^{-1} \end{pmatrix} \begin{pmatrix} \alpha_{1} & * \\ \mathbf{0} & A_{1} \end{pmatrix} \begin{pmatrix} 1 & {}^{t}\mathbf{0} \\ \mathbf{0} & P_{2} \end{pmatrix}$$
$$= \begin{pmatrix} \alpha_{1} & * \\ \mathbf{0} & P_{2}^{-1}A_{1}P_{2} \end{pmatrix}$$

 $P_2^{-1}A_1P_2$ は上三角行列であるから、 $P^{-1}AP$ も上三角行列となる

対角成分が固有値と一致すること

一般に、三角行列の行列式は対角成分の積になる

このことから、n 次上三角行列 $B = (b_{ij})$ に対して、

$$\Phi_B(x) = \det(xE - B) = (x - b_{11}) \cdots (x - b_{nn})$$

が成り立つため、B の固有値は、特性方程式

$$(x-b_{11})\cdots(x-b_{nn})=0$$

の解 b_{11}, \ldots, b_{nn} となる

さて、 $P^{-1}AP$ と A は相似な行列であるので、その特性多項式は一致する

$$\Phi_A(x) = \Phi_{P^{-1}AP}(x) = \det(xE - P^{-1}AP)$$

よって、 $P^{-1}AP$ が上三角行列ならば、 $A=(a_{ij})$ とおくと、

$$\Phi_A(x) = (x - a_{11}) \cdots (x - a_{nn})$$

が成り立ち、A の固有値は A の対角成分 a_{11},\ldots,a_{nn} となる

QR 分解

任意の正則行列は、ユニタリ行列(直交行列)と上三角行列の積に分解する ことができる

この分解は QR 分解と呼ばれ、行列の数値計算等で利用されている

・ 正則行列に対する QR 分解の存在 任意の n 次複素正則行列 A に対して、A=QR となるユニタリ行列 Q と上三角行列 R が存在する

ref: 図で整理! 例題で納得! 線形空間入門 p135 ref: 長岡亮介 線形代数入門講義 p294~295

☎ 証明

A は正則行列であるので、その列ベクトルは線型独立である そこで、 $A=(\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n)$ とおくと、 $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n$ からグラム・シュミットの直交化法を用いて、正規直交基底 $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n$ を作る ことができる

このとき、次のように正規直交基底を用いた線形結合で \mathbf{a}_j を表すこ

とができる

$$oldsymbol{a}_j = \sum_{i=1}^j (oldsymbol{a}_j, oldsymbol{u}_i) oldsymbol{u}_i \quad (j=1,\ldots,n)$$

この等式は、次のように書き換えられる

$$oldsymbol{a}_j = (oldsymbol{u}_1, \dots, oldsymbol{u}_n) egin{pmatrix} (oldsymbol{a}_j, oldsymbol{u}_1) \ \vdots \ 0 \end{pmatrix}$$

そこで、

$$r_{jk} = \begin{cases} (\boldsymbol{a}_j, \boldsymbol{u}_k) & (1 \leq k \leq j) \\ 0 & (j < k \leq n) \end{cases}$$

とおくと、行列 $R=(r_{jk})$ は上三角行列である

また、 $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n$ は正規直交系であるので、これらを列ベクトル とした行列 $Q=(\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n)$ はユニタリ行列である

したがって、A = QR となる

この定理の証明において、 $\mathbf{a}_1, \ldots, \mathbf{a}_n$ から正規直交基底を構成するところを工夫すると、正則行列だけでなく、任意の複素正方行列もユニタリ行列と上三角行列の積で表せることがわかる

QR 分解の存在 任意の n 次複素正方行列 A に対して、 A = QR となるユニタリ行列 Q と上三角行列 R が存在する

証明 証明

A の列ベクトルは線型独立であるとは限らないが、グラム・シュミットの直交化法は線形従属なベクトルに対しても適用できる ただし、線形従属なベクトルにグラム・シュミットの直交化法を適

零ベクトルは基底として使うことはできないため除外し、残った正 規直交ベクトルを $oldsymbol{u}_1,\ldots,oldsymbol{u}_k$ とする

用すると、零ベクトルが得られることがある

ここに n-k 個のベクトルを補う形で、正規直交基底 $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_k,\boldsymbol{u}_{k+1},\ldots,\boldsymbol{u}_n$ を構成する

この場合も、正規直交基底を用いた線形結合で任意のベクトル \mathbf{a}_j を表すことができるので、

$$m{a}_j = (m{u}_1, \dots, m{u}_n) egin{pmatrix} (m{a}_j, m{u}_1) \ dots \ (m{a}_j, m{u}_k) \ 0 \ dots \ 0 \end{pmatrix}$$

となり、以降は A が正則な場合と同様に示すことができる

ユニタリ行列による三角化

ユニタリ行列によって対角化できる行列は正規行列であった

したがって、正規行列以外の行列は、ユニタリ行列によって対角化することはできないが、ユニタリ行列によって三角化することはできる

ref: 長岡亮介 線形代数 入門講義 p295

ref: 図で整理!例題で納得!線形空間入門 p196

 $oldsymbol{\$}$ シューア分解の存在 n 次複素正方行列 A に対して、適当なユニタリ行列 U により、 $U^{-1}AU$ を上三角行列 (A のシューア形)にすることができる

証明

任意の正則行列 P は QR 分解でき、ユニタリ行列 U と上三角行列 T を用いて、P=UT と表せる

このとき、P の列ベクトルを $\boldsymbol{p}_1, \ldots, \boldsymbol{p}_n$ 、U の列ベクトルを $\boldsymbol{u}_1, \ldots, \boldsymbol{u}_n$ とすると、

$$(\boldsymbol{p}_1,\ldots,\boldsymbol{p}_n)=(\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n)T$$

となり、P の列ベクトルは P の正則性より線型独立、U の列ベクトルは正規直交性から線型独立であるので、T は $\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n$ から $\boldsymbol{p}_1,\ldots,\boldsymbol{p}_n$ への基底変換行列とみなせるよって、基底変換行列 T は正則であるので、その逆行列を用いて、

$$U = PT^{-1}$$

と書くことができる

また、*U* はユニタリ行列であるので、その定義から正則である *U* の逆行列は、正則行列の積に対する逆行列の公式と、逆行列の逆行列をとると元に戻ることを用いて、

$$U^{-1} = (PT^{-1})^{-1} = (T^{-1})^{-1}P^{-1} = TP^{-1}$$

と計算できる

これらを用いると、

$$U^{-1}AU = (TP^{-1})APT^{-1}$$

= $T(P^{-1}AP)T^{-1}$

となり、ここで、

- T は上三角行列
- P⁻¹AP は三角化定理より、上三角行列
- T⁻¹ は上三角行列の逆行列より、上三角行列

であることと、上三角行列の積は上三角行列になることから、

 $U^{-1}AU$ も上三角行列になる

行列多項式

[Todo 46:]

ref: 長岡亮介 線形代数 入門講義 p330~333

フロベニウスの定理

[Todo 47:]

ref: 長岡亮介 線形代数 入門講義 p333~334

ケイリー・ハミルトンの定理

[Todo 48:]

ref: 長岡亮介 線形代数

入門講義 p335~338

ref: 行列と行列式の基

礎 p197~199

最小多項式

[Todo 49:]

ref: テンソル代数と表

現論 p8~12

第 16 章

直交補空間と射影

直交補空間

内積を導入すると、ベクトルの長さや直交性が利用できるようになる 直交性は、ベクトルだけでなく、部分空間に対しても拡張できる

計量空間の部分空間に直交するベクトルの集合を、直交補空間と呼ぶ

ref: 図で整理!例題で 納得!線形空間入門 p136~137

■ 直交補空間 計量空間 V の部分空間 W に対し、W の直交補空間 W^{\perp} を次のように定義する

 $W^{\perp} := \{ \boldsymbol{v} \in V \mid \forall \boldsymbol{w} \in W, (\boldsymbol{v}, \boldsymbol{w}) = 0 \}$

直交補空間もまた、計量空間の部分空間になっている

和について

 $\mathbf{a}_1, \mathbf{a}_2 \in W^{\perp}$ とすると、任意の $\mathbf{b} \in W$ に対して、

$$(a_1 + a_2, b) = (a_1, b) + (a_2, b) = 0 + 0 = 0$$

 $\forall x \in \mathcal{A}$

スカラー倍について

 $\boldsymbol{a} \in W^{\perp}$ とすると、任意のスカラー $c \in K$ と任意の $b \in W$ に対して、

$$(ca, b) = c(a, b) = c \cdot 0 = 0$$

となるので、 $ca \in W^{\perp}$ である

直交補空間による直和分解

「直交補空間」という名前は、「補集合」と同様に、何らかの集合を補う集合 ref: 図で整理!例題で であることを想起させる

実際、直交補空間 W^{\perp} は、もとの集合 W を補い、V 全体を構成するよう な性質を持つ

納得!線形空間入門 p137~139

・ 直交補空間を用いた計量空間の分解 計量空間 V の部分空 間 W に対して、

$$V = W + W^{\perp}$$

 $W = \{ \mathbf{0} \}$ の場合は、任意の $\mathbf{v} \in V$ に対して $\mathbf{0}$ との内積は $\mathbf{0}$ になることから、 W^{\perp} は V 全体となる

$$W^{\perp} = \{ \boldsymbol{v} \in V \mid (\boldsymbol{v}, \boldsymbol{0}) = 0 \} = V$$

よって、

$$V = W + W^{\perp} = \{0\} + V = V$$

が成り立つ

以降、 $W \neq \{0\}$ とする

W の基底 $\{ m{w}_1', \ldots, m{w}_k' \}$ を 1 つとり、これに対してグラム・シュミットの直交化法を適用して、正規直交基底 $\{ m{w}_1, \ldots, m{w}_k \}$ を得る

任意の $\boldsymbol{v} \in V$ をとり、次のようにおく

$$oldsymbol{u} = oldsymbol{v} - \sum_{i=1}^k (oldsymbol{v}, oldsymbol{w}_i) oldsymbol{w}_i$$

u と w_i の内積を計算すると、

$$(\boldsymbol{u}, \boldsymbol{w}_i) = \left(\boldsymbol{v} - \sum_{j=1}^k (\boldsymbol{v}, \boldsymbol{w}_j) \boldsymbol{w}_j, \boldsymbol{w}_i\right)$$

$$= (\boldsymbol{v}, \boldsymbol{w}_i) - \sum_{j=1}^k (\boldsymbol{v}, \boldsymbol{w}_j) (\boldsymbol{w}_j, \boldsymbol{w}_i)$$

$$= (\boldsymbol{v}, \boldsymbol{w}_i) - \sum_{j=1}^k (\boldsymbol{v}, \boldsymbol{w}_j) \delta_{ij}$$

$$= (\boldsymbol{v}, \boldsymbol{w}_i) - (\boldsymbol{v}, \boldsymbol{w}_i)$$

$$= 0$$

このように、任意の $i=1,\ldots,k$ に対して、 $oldsymbol{u}$ と $oldsymbol{w}_i$ の内積が 0 になることから、 $oldsymbol{u}\in W^\perp$ である

一方、 \boldsymbol{u} の定義式を \boldsymbol{v} を表す式として整理すると、

$$oldsymbol{v} = oldsymbol{u} + \sum_{i=1}^k (oldsymbol{v}, oldsymbol{w}_i) oldsymbol{w}_i$$

となるが、 \boldsymbol{w}_i が W の正規直交基底であることから、

$$\sum_{i=1}^k (oldsymbol{v}, oldsymbol{w}_i) oldsymbol{w}_i$$

の部分は、W の任意の元を表す

よって、V の任意の元 \boldsymbol{v} は、W の元と W^{\perp} の元 \boldsymbol{u} の和として表されるので、

$$V = W + W^{\perp}$$

が成り立つ

さらに、次の定理が成り立つことで、単なる空間の和ではなく、直和として 分解できることがわかる

・・ 直交補空間との交わり 計量空間 V の部分空間 W に対して、

$$W \cap W^{\perp} = \{\mathbf{0}\}$$

証明

 ${m a} \in W \cap W^\perp$ とすると、 ${m a} \in W$ かつ ${m a} \in W^\perp$ である

 $\mathbf{a} \in W^{\perp}$ より、 $\mathbf{a} \in W$ に対しても内積が 0 になるので、

$$(a, a) = 0$$

ここで、内積の性質より、

$$(a, a) = ||a||^2 \ge 0$$

であり、等号が成立するのは、a=0 のときのみであるよって、a=0 である

零ベクトルは任意のベクトルと直交し(内積が 0 になり)、また任意 の部分空間に属するので、明らかに $\mathbf{0} \in W \cap W^{\perp}$ である

 \boldsymbol{a} は $W \cap W^{\perp}$ の任意の元であり、 $\boldsymbol{a} = \boldsymbol{0} \in W \cap W^{\perp}$ である

ことがわかったので、

$$W \cap W^{\perp} = \{\mathbf{0}\}$$

がいえる

こうして、次の両方が成り立つことから、

- i. $V = W + W^{\perp}$
- ii. $W \cap W^{\perp} = \{\mathbf{0}\}$

計量空間 V は部分空間 W とその直交補空間 W^{\perp} の直和として分解できる

直和の次元公式より、次の定理が従う

・ 直交補空間と次元 計量空間 V の部分空間 W に対して、

$$\dim V = \dim W + \dim W^{\perp}$$

直交射影と反射影

 \mathbb{R}^n 上の点 P に対して、部分空間 U 上の点 $Q \in U$ のうち、 \overrightarrow{PQ} が U に直交するような点 Q を、点 P の U への<mark>直交射影</mark>あるいは正射影という

ref: 線形代数セミナー p4~5

また、 \overrightarrow{QP} を点 Q の U からの \overline{Q} 射影という

射影前のベクトルをp、射影後のベクトルをqとすると、直交射影とは、qとq-pが直交するように射影することである

このとき、次のような関係が成り立っている

$$\overrightarrow{OP} = \overrightarrow{OQ} + \overrightarrow{QP}$$

$$\overrightarrow{OQ} \in \mathcal{U}, \quad \overrightarrow{QP} \in \mathcal{U}^{\perp}$$

ここで、 U^{\perp} は部分空間 U に直交するベクトルの全体であり、U の直交補 空間と呼ばれる

 \mathbb{R}^n の部分空間 \mathcal{U} の直交補空間 \mathcal{U}^\perp も、 \mathbb{R}^n の部分空間となる

 \overrightarrow{OP} は \mathbb{R}^n の任意のベクトルを表すことから、 \mathbb{R}^n のベクトルは、 \mathcal{U} への射影 \overrightarrow{OQ} と、 \mathcal{U} からの反射影 \overrightarrow{QP} の和として表されることがわかる

このような表し方は一意的であり、 \overrightarrow{OP} の \mathcal{U} と \mathcal{U}^{\perp} への**直和分解**という

点 Q を U 上の別の点 Q' に移動した場合を考える

このとき、三平方の定理より、

$$\|\overrightarrow{PQ'}\|^2 = \|\overrightarrow{PQ}\|^2 + \|\overrightarrow{QQ'}\|^2 > \|\overrightarrow{PQ}\|^2$$

となるから、

射影した点 Q は、点 P から最短となる U 上の点

であることがわかる

正規直交基底による表現行列の展開

ベクトルの射影の概念は、射影行列を用いて表現できるが、その前に、線形 写像の表現行列について再考する

ref: 線形代数セミナー p1~3

 \mathbb{R}^n から \mathbb{R}^m への線形写像は、ある $m \times n$ 型行列 A によって表現されるこれを定める基本的な方法は、

1. 定義域 \mathbb{R}^n に一つの正規直交基底(互いに直交する単位ベクトル) $\{ oldsymbol{u}_1, \ldots, oldsymbol{u}_n \}$ を定める

2. それぞれが写像されるべき m 次元ベクトル($oldsymbol{\&}$) $oldsymbol{a}_1,\ldots,oldsymbol{a}_n$ を指定する

という手順であり、このとき、行列 A は

$$A = \begin{pmatrix} oldsymbol{a}_1 \ dots \ oldsymbol{a}_n \end{pmatrix} egin{pmatrix} oldsymbol{u}_1 & \cdots & oldsymbol{u}_n \end{pmatrix} = oldsymbol{a}_1 oldsymbol{u}_1^ op + \cdots + oldsymbol{a}_n oldsymbol{u}_n^ op$$

と書くことができる(T は転置を表す)

・正規直交基底による表現行列の展開 \mathbb{R}^n から \mathbb{R}^m への線形 写像 f の表現行列 A は、 \mathbb{R}^n の正規直交基底 $\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_n\}$ を 用いて、次のように表すことができる

$$A = \sum_{i=1}^n f(\boldsymbol{u}_i) \boldsymbol{u}_i^{\top}$$

実際、両辺に \mathbf{u}_i をかけると、

$$Aoldsymbol{u}_i = \sum_{j=1}^n oldsymbol{a}_j oldsymbol{u}_j^ op oldsymbol{u}_i = \sum_{j=1}^n oldsymbol{a}_j \delta_{ij} = oldsymbol{a}_i$$

より、

$$A\boldsymbol{u}_i = \boldsymbol{a}_i \quad (i = 1, \ldots, n)$$

が成り立つことがわかる

特に、 \mathbb{R}^n の正規直交基底として標準基底 $\{oldsymbol{e}_1,\ldots,oldsymbol{e}_n\}$ を選ぶと、行列

A は次のように表せる

$$A = \sum_{i=1}^{n} \boldsymbol{a}_{i} \boldsymbol{e}_{i}^{\top}$$

$$= \begin{pmatrix} \boldsymbol{a}_{11} \\ \vdots \\ \boldsymbol{a}_{m1} \end{pmatrix} \begin{pmatrix} 1 & \cdots & 0 \end{pmatrix} + \cdots + \begin{pmatrix} \boldsymbol{a}_{1n} \\ \vdots \\ \boldsymbol{a}_{mn} \end{pmatrix} \begin{pmatrix} 0 & \cdots & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \boldsymbol{a}_{11} & \cdots & \boldsymbol{a}_{1n} \\ \vdots & \ddots & \vdots \\ \boldsymbol{a}_{m1} & \cdots & \boldsymbol{a}_{mn} \end{pmatrix}$$

すなわち、表現行列 Aは、

像
$$\boldsymbol{a}_1,\ldots,\boldsymbol{a}_n$$
 を列として順に並べた行列 $\begin{pmatrix} \boldsymbol{a}_1 & \cdots & \boldsymbol{a}_n \end{pmatrix}$

となる

射影行列

任意のベクトル $\boldsymbol{x} \in \mathbb{R}^n$ は、 $\boldsymbol{u} \in \mathcal{U}$ 、 $\boldsymbol{u}^{\perp} \in \mathcal{U}^{\perp}$ を用いて

$$oldsymbol{x} = oldsymbol{u} + oldsymbol{u}^{\perp}$$

ref: 線形代数セミナー p5~7

と一意的に分解できる(直和分解)

ここで、 \boldsymbol{x} の $\boldsymbol{\mathcal{U}}$ への射影を表すのは、 \boldsymbol{u} である

つまり、 \boldsymbol{U} への射影とは \boldsymbol{x} のうち、 \boldsymbol{U} に含まれる成分 \boldsymbol{u} だけを取り出す操作といえる

そこで、部分空間 ひへ射影する写像を 兄ょとすると、

$$P_{\mathcal{U}}\boldsymbol{x} = \boldsymbol{u}$$

このとき、 \boldsymbol{x} がもともと \boldsymbol{U} の元である場合は、 $\boldsymbol{u}^{\perp} = \boldsymbol{0}$ の場合と考えて、

$$\boldsymbol{x} = \boldsymbol{u} + 0 = \boldsymbol{u}$$

つまり、射影しても変わらない

$$P_{\mathcal{U}}\boldsymbol{x} = \boldsymbol{u} = \boldsymbol{x} \quad (\boldsymbol{x} \in \mathcal{U})$$

一方、 \boldsymbol{x} が \boldsymbol{U} の直交補空間 \boldsymbol{U}^{\perp} の元の場合は、 $\boldsymbol{u}=\boldsymbol{0}$ の場合と考えて、

$$P_{\mathcal{U}} \boldsymbol{x} = \boldsymbol{u} = \boldsymbol{0} \quad (\boldsymbol{x} \in \mathcal{U}^{\perp})$$

まとめると、

$$P_{\mathcal{U}}oldsymbol{x} = egin{cases} oldsymbol{x} & (oldsymbol{x} \in \mathcal{U}) \ oldsymbol{0} & (oldsymbol{x} \in \mathcal{U}^{\perp}) \end{cases}$$

同様に、直交補空間 U^{\perp} へ射影する写像を $P_{U^{\perp}}$ とすると、

$$P_{\mathcal{U}^{\perp}}oldsymbol{x} = egin{cases} oldsymbol{0} & (oldsymbol{x} \in \mathcal{U}) \ oldsymbol{x} & (oldsymbol{x} \in \mathcal{U}^{\perp}) \end{cases}$$

 \mathbb{R}^n が U と U^\perp の直和に分解されることから、 \mathbb{R}^n の基底は U の基底と U^\perp の基底を合わせたものになる

そこで、部分空間 $\mathcal U$ の正規直交基底 $\{m u_1,\dots,m u_r\}$ を選ぶと、これを $\mathbb R^n$ の正規直交基底 $\{m u_1,\dots,m u_r,m u_{r+1},\dots,m u_n\}$ に拡張できる ここで、 $\{m u_{r+1},\dots,m u_n\}$ は $\mathcal U^\perp$ の正規直交基底になる

このとき、

$$P_{\mathcal{U}}oldsymbol{x} = egin{cases} oldsymbol{x} & (oldsymbol{x} \in \mathcal{U}) \ oldsymbol{0} & (oldsymbol{x} \in \mathcal{U}^{oldsymbol{oldsymbol{\perp}}}) \end{cases}$$

という式は、 $P_{\mathcal{U}}$ が \mathbb{R}^n の正規直交基底

$$\{{\bm u}_1,\ldots,{\bm u}_r,{\bm u}_{r+1},\ldots,{\bm u}_n\}$$

を、それぞれ次のように写像することを意味する

$$\{u_1, \ldots, u_r, 0, \ldots, 0\}$$

同様に、

$$P_{\mathcal{U}^{\perp}}oldsymbol{x} = egin{cases} oldsymbol{0} & (oldsymbol{x} \in \mathcal{U}) \ oldsymbol{x} & (oldsymbol{x} \in \mathcal{U}^{\perp}) \end{cases}$$

という式は、 $P_{\mathcal{U}^{\perp}}$ が \mathbb{R}^n の正規直交基底

$$\{\boldsymbol{u}_1,\ldots,\boldsymbol{u}_r,\boldsymbol{u}_{r+1},\ldots,\boldsymbol{u}_n\}$$

を、それぞれ次のように写像することを意味する

$$\{0,\ldots,0,{\bm u}_{r+1},\ldots,{\bm u}_n\}$$

ゆえに、正規直交基底による表現行列の展開より、 R_{u} と $R_{u\perp}$ は次のように表現できる

$$egin{aligned} egin{aligned} eta_{\mathcal{U}} &= oldsymbol{u}_1 oldsymbol{u}_1^ op + \cdots + oldsymbol{u}_r oldsymbol{u}_r^ op \ eta_{\mathcal{U}^\perp} &= oldsymbol{u}_{r+1} oldsymbol{u}_{r+1}^ op + \cdots + oldsymbol{u}_n oldsymbol{u}_n^ op \end{aligned}$$

 $P_{\mathcal{U}}$ と $P_{\mathcal{U}^{\perp}}$ をそれぞれ、部分空間 \mathcal{U} 、およびその直交補空間 \mathcal{U}^{\perp} への射影行列と呼ぶ

第 17 章

広義固有空間

第 18 章

特異値と特異値分解

第 19 章

抽象線形空間

線形空間の公理

線形代数の理論は線型独立性や線形写像を基礎にしている

これらは線形結合、すなわちベクトルの和とスカラー倍を用いて定義された 任意のベクトルは線形結合で表され、線形写像は線形結合を保つ写像とし て定義される

そこで、和とスカラー倍が定義された一般の集合に対しても、線型空間の 理論を適用できないか?と考える

和とスカラー倍が定義された一般の集合を、改めて<mark>線形空間</mark>として定義する そして、その集合の元を<mark>ベクトル</mark>と呼ぶことにする

和とスカラー倍が定義されていれば、線形結合によりその元を表すことが できるからだ

念 線形空間 集合 V の任意の元 a, b と体 K の任意の元 k に対して、V の元 a + b (和) が定まり、V の元 ka (スカラー倍) が定まるとする

これらの演算が次の条件を満たすとき、V を K 上の線形空間、あ

ref: ベクトル空間から はじめる抽象代数入門 p158~163

ref: 図で整理!例題で 納得!線形空間入門 p143~166

ref: テンソル代数と表

現論 p25~27

るいは K 線型空間と呼び、線型空間の元をベクトルと呼ぶ

- i. 交換法則: a + b = b + a
- ii. 結合法則: $(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}=\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c}), k(l\boldsymbol{a})=(kl)\boldsymbol{a}$
- iii. 分配法則: $k(\boldsymbol{a}+\boldsymbol{b})=k\boldsymbol{a}+k\boldsymbol{b}$ 、 $(k+l)\boldsymbol{a}=k\boldsymbol{a}+l\boldsymbol{a}$
- iv. $1\boldsymbol{a} = \boldsymbol{a}$ (1 は体 K の乗法に関する単位元)
- v. 零元の存在: $\mathbf{0}$ と書かれる特別な元が存在し、任意の $\mathbf{a} \in V$ に対して $\mathbf{a} + \mathbf{0} = \mathbf{a}$
- vi. 和に関する逆元の存在:任意の $\boldsymbol{a} \in V$ に対して $-\boldsymbol{a}$ と書かれる特別な元が存在し、 $\boldsymbol{a} + (-\boldsymbol{a}) = (-\boldsymbol{a}) + \boldsymbol{a} = \boldsymbol{0}$

線形写像の空間

V, W をともに有限次元 K 上の線形空間とする

V から W への線形写像全体の集合を $\operatorname{Hom}(V,W)$ と書く特に、V の線形変換全体の集合は $\operatorname{End}(V)$ と書く

このとき、Hom(V, W) に線型空間の構造(和とスカラー倍)を次のように導入する

② 線形写像の和とスカラー倍 線形写像 $f,g \in \text{Hom}(V,W)$ と $c \in K$ に対して、和とスカラー倍を次のように定義する

$$(f+g)(v) := f(v) + g(v)$$
$$(cf)(v) := c \cdot f(v)$$

ref: ベクトル空間から はじめる抽象代数入門 p159~160、p163

これらの演算は、再び $V \rightarrow W$ の線形写像を定めることが確認できる

・ 線形写像全体による線形空間 線形写像全体の集合 Hom(V, W) は K 上の線形空間である

証明

加法が線形性を満たす

f,g をともに線形写像とし、任意の $v_1,v_2\in V$ と $a,b\in K$ に対して、

$$(f+g)(av_1 + bv_2)$$

$$= f(av_1 + bv_2) + g(av_1 + bv_2)$$

$$= af(v_1) + bf(v_2) + ag(v_1) + bg(v_2)$$

$$= a(f(v_1) + g(v_1)) + b(f(v_2) + g(v_2))$$

$$= a(f+g)(v_1) + b(f+g)(v_2)$$

よって、f + g は線形写像である

スカラー倍が線形性を満たす

f を線形写像とし、任意の $v_1, v_2 \in V$ と $a, b, c \in K$ に対して、

$$(cf)(av_1 + bv_2) = cf(av_1 + bv_2)$$

$$= c \cdot (f(av_1 + bv_2))$$

$$= c \cdot (f(av_1) + f(bv_2))$$

$$= c \cdot (af(v_1) + bf(v_2))$$

$$= a(cf)(v_1) + b(cf)(v_2)$$

よって、cf は線形写像である

線型空間の公理をすべて満たすことも、容易に確認できる

第 20 章

横ベクトルの空間

線形関数

横ベクトル($1 \times n$ 型行列)を縦ベクトル($n \times 1$ 型行列)にかけると、 1×1 のスカラー値が得られる

ref: 行列と行列式の基 礎 p120

$$\begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = a_1 x_1 + \cdots + a_n x_n$$

これは、縦ベクトルを入力とする線形関数(\mathbb{R}^n から \mathbb{R} への線形写像)と見なすことができる

列ベクトルを \mathbf{v} 、この線形関数を ϕ とすると、

$$\phi(\boldsymbol{v}) = a_1 x_1 + \cdots + a_n x_n$$

と書ける

横ベクトルの集合

 $n \times 1$ 型行列 (n 次の縦ベクトル) 全体の集合は \mathbb{R}^n と表された

ref: 行列と行列式の基

礎 p120

 $1 \times n$ 型行列 (n 次の横ベクトル) 全体の集合を $^t\mathbb{R}^n$ と表すことにする

 $^t\mathbb{R}^n$ の元は $1\times n$ 型行列なので、 \mathbb{R}^n から \mathbb{R} への線形写像(すなわち \mathbb{R}^n 上の線形関数)を表現している行列だと考えることができる

座標関数の表現行列

基本ベクトルを転置したもの ${}^t \boldsymbol{e}_j$ を列ベクトルにかけると、 \boldsymbol{j} 番目の成分 が得られる

たとえば、n = 3, j = 2 の場合、

$${}^toldsymbol{e}_2egin{pmatrix} x_1\x_2\x_3 \end{pmatrix} = egin{pmatrix} 0 & 1 & 0 \end{pmatrix} egin{pmatrix} x_1\x_2\x_3 \end{pmatrix} = x_2$$

このように、ベクトル $oldsymbol{v} \in \mathbb{R}^n$ に対して、 $oldsymbol{j}$ 番目の成分を返す関数を $\overline{\mathbf{e}}$ 関数 $oldsymbol{x}_i$ という

横基本ベクトル ${}^t e_j \in {}^t \mathbb{R}^n$ は、座標関数 $x_j : \mathbb{R}^n \to \mathbb{R}$ の表現行列になっている

基底としての座標関数

任意の横ベクトルは、横基本ベクトルの線形結合として一意的に表現できる

$$(a_1 \cdots a_n) = a_1^t \boldsymbol{e}_1 + \cdots + a_n^t \boldsymbol{e}_n$$

これを用いると、

$$\phi = \begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 $= a_1^t \boldsymbol{e}_1 \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \cdots + a_n^t \boldsymbol{e}_n \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$
 $= a_1 x_1 + \cdots + a_n x_n$

となることから、任意の線形関数 $\phi \in {}^t\mathbb{R}^n$ は、座標関数 x_1, \ldots, x_n の線型結合として

$$\phi = a_1 x_1 + \dots + a_n x_n$$

のように一意的に書くことができる

つまり、 $\{x_1,\ldots,x_n\}$ は ${}^t\mathbb{R}^n$ の基底である

また、縦ベクトルが基底の線形結合で表現できたのと同様に、 ϕ は横ベクトル (a_1,\ldots,a_n) と同一視できる

双対基底

 \mathbb{R}^n の基底 $\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\}$ に対して、

$$\phi_i(\boldsymbol{v}_j) = \delta_{ij} \quad (i, j = 1, \dots, n)$$

を満たす線形写像 $\phi_i:\mathbb{R}^n \to \mathbb{R}$ を考える

このとき、任意のベクトル $\boldsymbol{v} \in \mathbb{R}^n$ を

$$oldsymbol{v} = \sum_{j=1}^n a_j oldsymbol{v}_j$$

とおくと、

$$\phi_i(oldsymbol{v}) = \phi_i\left(\sum_{j=1}^n a_joldsymbol{v}_j
ight) = \sum_{j=1}^n a_j\phi_i(oldsymbol{v}_j) = \sum_{j=1}^n a_j\delta_{ij} = a_i$$

となるから、 ϕ_i は基底 $\{oldsymbol{v}_1,\ldots,oldsymbol{v}_n\}$ に関する第 i 座標を表す関数である

任意の線形関数 $\phi \in {}^t\mathbb{R}^n$ は、座標関数の線型結合として一意的に表現できるから、次が成り立つ

 $^{t}\mathbb{R}^{n}$ の双対基底の存在 \mathbb{R}^{n} の基底 $\{\boldsymbol{v}_{1},\ldots,\boldsymbol{v}_{n}\}$ に対して、 $\phi_{i}(\boldsymbol{v}_{j})=\delta_{ij}$ によって $\phi_{i}\in{}^{t}\mathbb{R}^{n}$ を定めるこのとき、任意の $\phi\in{}^{t}\mathbb{R}^{n}$ を ϕ_{1},\ldots,ϕ_{n} の線形結合

$$\phi = \sum_{i=1}^n \phi(oldsymbol{v}_i) \phi_i$$

ref: 行列と行列式の基

礎 p120~121

ref: テンソル代数と表

現論 p58~59

証明

ϕ_1,\ldots,ϕ_n が線型独立

線形関係式

$$\sum_{j=1}^n c_j \phi_j = 0$$

があるとすると、

$$\left(\sum_{j=1}^n c_j \phi_j\right) (oldsymbol{v}_i) = 0$$
 ϕ の線形性 $\sum_{j=1}^n c_j \phi_j (oldsymbol{v}_i) = 0$ $\phi_j (oldsymbol{v}_i) = \delta_{ij}$ $\sum_{j=1}^n c_j \delta_{ij} = 0$

左辺の和は、 δ_{ij} の定義より、j=i の項のみ生き残って、

$$c_i = 0 \quad (i = 1, \ldots, n)$$

が得られる

$$\langle \phi_1, \ldots, \phi_n \rangle = {}^t\mathbb{R}^n$$

任意の $\boldsymbol{v} \in \mathbb{R}^n$ に対して、

$$\boldsymbol{v} = \sum_{i=1}^n c_i \boldsymbol{v}_i$$

と書く

 $\psi \in {}^t\mathbb{R}^n$ を任意にとると、 ψ と ϕ の線形性により、

$$egin{aligned} \psi(oldsymbol{v}) &= \psi\left(\sum_{i=1}^n c_i oldsymbol{v}_i
ight) \ &= \sum_{i=1}^n c_i \psi(oldsymbol{v}_i) \ &= \sum_{i=1}^n \phi_i(oldsymbol{v}) \psi(oldsymbol{v}_i) \ &= \sum_{i=1}^n \psi(oldsymbol{v}_i) \phi_i(oldsymbol{v}) \ &= \left(\sum_{i=1}^n \psi(oldsymbol{v}_i) \phi_i
ight) (oldsymbol{v}) \end{aligned}$$

よって、

$$\psi = \sum_{i=1}^n \psi(oldsymbol{v}_i) \phi_i$$

上式で、任意の $\psi \in {}^t\mathbb{R}^n$ を ϕ_1,\ldots,ϕ_n の線形結合で書けることが示せたので、 $\langle \phi_1,\ldots,\phi_n \rangle$ は ${}^t\mathbb{R}^n$ を張ることがわかる

 \mathbb{R}^n の基底 $\{ m{v}_1, \ldots, m{v}_n \}$ に対して、上の定理で定まる $^t\mathbb{R}^n$ の基底 $\{ m{\phi}_1, \ldots, m{\phi}_n \}$ を双対基底という

自然なペアリング

 $\phi \in {}^t\mathbb{R}^n$ と $\boldsymbol{v} \in \mathbb{R}^n$ に対して、

$$\langle \phi, \boldsymbol{v} \rangle = \phi(\boldsymbol{v})$$

 $\langle \phi, \boldsymbol{v} \rangle = \phi($

とおく

これは線形関数 ϕ に \boldsymbol{v} を入力して得られる値を表しているが、 ϕ を横べクトル、 \boldsymbol{v} を縦ベクトルとみれば、 $\langle \phi, \boldsymbol{v} \rangle$ は行列としての積 $\phi \cdot \boldsymbol{v}$ と一致

ref: 行列と行列式の基

礎 p120

している

左辺の記法 $\langle \phi, \boldsymbol{v} \rangle$ を用いると、見通しの良い議論ができることがあるこれを自然なペアリングと呼ぶ

線形関数の集合

 $^t\mathbb{R}^n$ 上の線形関数全体の集合を $(^t\mathbb{R}^n)^*$ と書く

ref: 行列と行列式の基 礎 p121~121

 $m{v} \in \mathbb{R}^n$ を与えたとき、 $^t\mathbb{R}^n$ 上の線形関数 $\langle -, m{v} \rangle$ が得られる (ここで、- はプレースホルダーであり、ここに具体的な値を入れられることを意味する)

 $oldsymbol{\cdot}$ 線形関数の空間の基底と次元の一致 $\{oldsymbol{v}_1,\ldots,oldsymbol{v}_n\}$ を \mathbb{R}^n の基底とするとき、 $\{\langle -,oldsymbol{v}_1 \rangle,\ldots,\langle -,oldsymbol{v}_n \rangle\}$ は $({}^t\mathbb{R}^n)^*$ の基底である

$$\dim({}^t\mathbb{R}^n)^*=\dim\mathbb{R}^n=n$$

 $({}^t\mathbb{R}^n)^*$ は、もとの縦ベクトル空間 \mathbb{R}^n と自然に同一視できる

 $oldsymbol{\iota}$ 線形関数の空間と縦ベクトル空間の同型性 写像 $\iota: \mathbb{R}^n \to ({}^t\mathbb{R}^n)^*$ を $oldsymbol{v} \mapsto \langle -, oldsymbol{v} \rangle$ と定めると、これは線形同型写像である

証明 証明

よって、

 $m{v}$ によって定まる線形関数 $m{l}_{m{v}} = \langle -, m{v} \rangle \in ({}^t\mathbb{R}^n)^*$ を考えるこのとき、写像 $m{\iota}$ は $m{v} \mapsto m{l}_{m{v}}$ と定義できる

写像しは線形

写像 $\boldsymbol{v} \mapsto l_{\boldsymbol{v}}$ は、関数を返す写像である

写した結果の関数が、和やスカラー倍と作用の順序を入れ替 えても同じになることを確認する

任意の入力 ϕ とすると、

$$egin{aligned} l_{oldsymbol{v}_1+oldsymbol{v}_2}(\phi) &= \langle \phi, oldsymbol{v}_1 + oldsymbol{v}_2
angle &= \langle \phi, oldsymbol{v}_1
angle + \langle \phi, oldsymbol{v}_2
angle \\ &= l_{oldsymbol{v}_1}(\phi) + l_{oldsymbol{v}_2}(\phi) \\ l_{coldsymbol{v}}(\phi) &= \langle \phi, coldsymbol{v}
angle = c\langle \phi, oldsymbol{v}
angle = cl_{oldsymbol{v}}(\phi) \end{aligned}$$

任意の入力に対して等しい結果になることは、関数そのもの が等しいことを意味する

和やスカラー倍を先に計算しても作用後に計算しても、同じ 関数が得られるので、写像 *ι* は線形である

写像 しは単射

写像 L が「違う入力は違う出力になる」こと、すなわち単射 であることを確認する

そのためには、 ι が零でないベクトルは零でない関数に移すこと、すなわち

$$\mathbf{v} \neq \mathbf{0} \Longrightarrow l_{\mathbf{v}} \neq 0$$

を示せばよい

 $oldsymbol{v}
eq oldsymbol{0}$ ならば、 $oldsymbol{v}$ の成分のうち少なくとも $oldsymbol{1}$ つは非零である

その成分をk番目の成分とし、横ベクトル $\phi={}^t e_k$ を考える

ここで、 ${}^t \boldsymbol{e}_k$ は k 番目の成分が 1 で他の成分が 0 の横ベクトルである

すると、

$$l_{oldsymbol{v}}(\phi) = \langle \phi, oldsymbol{v}
angle = \phi(oldsymbol{v}) = {}^toldsymbol{e}_k egin{pmatrix} v_1 \ dots \ v_n \end{pmatrix} = v_k$$

ここで、 $v_k \neq 0$ なので、 $l_{\boldsymbol{v}}(\boldsymbol{\phi}) \neq 0$ となるしたがって、 ι は単射である

写像 しは全射

$$\dim({}^t\mathbb{R}^n)^* = \dim\mathbb{R}^n = n$$
 より、 ι は全射である

以上より、 $(^t\mathbb{R}^n)^*$ と \mathbb{R}^n は同じ次元をもち、写像 $\iota: \mathbb{R}^n \to (^t\mathbb{R}^n)^*$ が単射かつ全射であることから、線形代数の鳩の巣原理より、 ι は線形同型写像である

縦ベクトル空間と横ベクトル空間の双対性

 $\{\phi_i\}_{i=1}^n$ を $^t\mathbb{R}^n$ の基底とする

写像 ι を $\boldsymbol{v}_i \mapsto \langle -, \boldsymbol{v}_i \rangle$ と定めると、

$$\psi_i(\phi_j) = \langle \phi_j, oldsymbol{v}_i
angle = \delta_{ij}$$

を満たす $\psi_i \in ({}^t\mathbb{R}^n)^*$ が、各 $1 \leq i \leq n$ に対して定まるといえる

一方で、 ι が単射であることから、 $\iota(\boldsymbol{v}_i) = \psi_i$ を満たす \boldsymbol{v}_i が一意的に存在する

単射とは、 $\iota(\boldsymbol{v}_i)=\iota(\boldsymbol{v}_j)\Longrightarrow \boldsymbol{v}_i=\boldsymbol{v}_j$ という性質であり、ある ψ_i に対して、 $\iota(\boldsymbol{v}_i)=\psi_i$ を満たす \boldsymbol{v}_i はただ一つしか存在しないことを意味する

したがって、 $\iota(\boldsymbol{v}_i)$ は、 $\phi \in {}^t\mathbb{R}^n$ に対して $\langle \phi, \boldsymbol{v}_i \rangle$ を返す線形関数である

$$\iota(\boldsymbol{v}_i) = \psi_i(\phi) = \langle \phi, \boldsymbol{v}_i \rangle$$

 $\{oldsymbol{v}_i\}_{i=1}^n$ は \mathbb{R}^n の基底であり、これを $\{oldsymbol{\phi}_i\}_{i=1}^n$ の $oldsymbol{\mathrm{N}}$ の基底という

定義を考えると、 $\{m{v}_i\}_{i=1}^n$ の双対基底は $\{m{\phi}_i\}_{i=1}^n$ になっていることがわかる

ref: 行列と行列式の基 礎 p122 このように、縦ベクトル空間と横ベクトル空間とは、表と裏のような関係 になっていて、裏の裏は表である

こういう状況を双対性と呼ぶ

転置写像

A を $m \times n$ 型行列とする

ref: 行列と行列式の基 礎 p122~123

縦ベクトルに A を左からかけることによって定まる線形写像を次のように表す

$$f_A \colon \mathbb{R}^n \to \mathbb{R}^m (\boldsymbol{v} \mapsto A\boldsymbol{v})$$

これと対照的に、横ベクトルに右から A をかけることによって定まる次の 線形写像を転置写像と呼ぶ

$$f_A^* \colon {}^t \mathbb{R}^m \to {}^t \mathbb{R}^n \ (\phi \mapsto \phi A)$$

横ベクトル $\phi A \in {}^t\mathbb{R}^n$ は、次の合成写像の表現行列である

$$\mathbb{R}^n \xrightarrow{f_A} \mathbb{R}^m \xrightarrow{\phi} \mathbb{R}$$

 $oldsymbol{\$}$ 転置写像と自然なペアリング A を m × n 型行列とし、 $\phi \in {}^t\mathbb{R}^m$, $oldsymbol{v} \in \mathbb{R}^n$ に対して、

$$\langle f_A^*(\phi), \boldsymbol{v} \rangle = \langle \phi, f_A(\boldsymbol{v}) \rangle$$

$$\langle f_A^*(\phi), \boldsymbol{v} \rangle = (\phi A)(\boldsymbol{v})$$

$$= \phi(A\boldsymbol{v})$$

$$= \phi(f_A(v))$$

$$= \langle \phi, f_A(\boldsymbol{v}) \rangle$$

 $oldsymbol{\$}$ 転置写像と座標関数 A を m × n 型行列とし、 $y_1,\ldots,y_m\in{}^t\mathbb{R}^m$ を $^t\mathbb{R}^m$ 上の座標関数とするとき、

$$f_{\mathcal{A}}^*(y_i) = \sum_{j=1}^n a_{ij} x_j \quad (1 \leq i \leq m)$$

☎ 証明

行べクトルとしての観点から見ると、 $y_i = {}^t \boldsymbol{e}_i$ として、

$$f_{\mathcal{A}}^*(y_i) = f_{\mathcal{A}}^*({}^toldsymbol{e}_i) = {}^toldsymbol{e}_i\mathcal{A} = egin{pmatrix} a_{i1} & \cdots & a_{in} \end{pmatrix}$$

これは双対基底 $x_j = {}^t \boldsymbol{e}_j$ を用いて、

$$egin{aligned} f_{A}^{*}(y_i) &= ig(a_{i1} & \cdots & a_{in}ig) \ &= \sum_{j=1}^{n} a_{ij}{}^t oldsymbol{e}_j \ &= \sum_{j=1}^{n} a_{ij} x_j \end{aligned}$$

とも書ける

 $oldsymbol{\$}$ 転置写像の表現行列 A を $m \times n$ 型行列とするとき、基底 $\{y_1,\ldots,y_m\}$, $\{x_1,\ldots,x_n\}$ に関する f_A^* の表現行列は tA である

[Todo 50: よくわからない]

表現行列は、基底 $\{y_i\}$ の各元が、写像を通してどのような線形結合で $\{x_i\}$ に写されるかを記述したものである

すなわち、写像 f_A^* の表現行列を求めることは、

$$f_A^*(y_i) = \sum_{j=1}^n a_{ij} x_j \quad (1 \leq i \leq m)$$

において、係数 a_{ij} を行列に並べることである

ここで、 $f_A^*: {}^t\mathbb{R}^m \to {}^t\mathbb{R}^n$ において、

- ullet 定義域の基底は $\{y_1,\ldots,y_m\}\subset {}^t\mathbb{R}^m$
- \bullet 値域の基底は $\{x_1,\ldots,x_n\}\subset {}^t\mathbb{R}^n$

先ほど示した等式

$$f_{\mathcal{A}}^*(y_i) = \sum_{j=1}^n a_{ij} x_j \quad (1 \leq i \leq m)$$

より、表現行列の第i列が、 $f_A^*(y_i)$ の係数ベクトル

$$\begin{pmatrix} a_{i1} & \cdots & a_{in} \end{pmatrix}$$

を転置して縦ベクトルにしたものになる

...........

Zebra Notes

Туре	Number
todo	50