6 Теорема Хана-Банаха

Теорема Хана-Банаха является одним из важнейших результатов линейного функционального анализа.

Опр. Пусть f_0 – линейный функционал, заданный на подпространстве L_0 линейного пространства L. Линейный функционал f, заданный на L, называется продолжением функционала f_0 на L, если $f(x) = f_0(x)$ для всех $x \in L_0$.

Теорема 6.1. (Теорема Хана-Банаха) Пусть p – однородно-выпуклый функционал, заданный на вещественном линейном пространстве L, а f_0 – линейный функционал, заданный на подпространстве L_0 пространства L и такой, что

$$f_0(x) \leqslant p(x) \quad \forall x \in L_0.$$
 (6.1)

Тогда существует линейный функционал f, являющийся продолжением функционала f_0 на L, такой, что

$$f(x) \leqslant p(x) \quad \forall x \in L.$$
 (6.2)

Доказательство. Возьмем произвольный элемент $z \in L \setminus L_0$ и построим подпространство $L' = \mathrm{span} \{z\} \oplus L_0$. Напомним, что всякий элемент $y \in L'$ однозначно представляется в виде

$$y = tz + x, \quad t \in \mathbb{R}, \quad x \in L_0.$$

Покажем, что существует продолжение f' функционала f_0 на подпространство L' такое, что

$$f'(y) \leqslant p(y) \quad \forall y \in L'.$$
 (6.3)

Продолжение f' на L' в силу линейности обязано иметь вид

$$f'(tz+x) = tc + f_0(x) \quad \forall t \in \mathbb{R} \quad \forall x \in L_0, \tag{6.4}$$

где c = f(z).

Заметим, что при любом выборе $c \in \mathbb{R}$ функционал f' будет продолжением f_0 на L'. Выберем c так, чтобы

$$f'(tz+x) = tc + f_0(x) \leqslant p(tz+x) \quad \forall t \in \mathbb{R} \quad \forall x \in L_0.$$

При t > 0 неравенство

$$tc + f_0(x) \leq p(tz + x) \quad \forall t \in \mathbb{R} \quad \forall x \in L_0.$$

равносильно неравенству

$$c \leqslant p\left(z + \frac{1}{t}x\right) - f_0\left(\frac{1}{t}x\right) \quad \forall x \in L_0 \iff c \leqslant p\left(z + y''\right) - f_0\left(y''\right) \quad \forall y'' \in L_0,$$

а при t < 0 — неравенству

$$c \geqslant -p\left(-z - \frac{x}{t}\right) - f_0\left(\frac{x}{t}\right) \quad \forall x \in L_0 \iff c \geqslant -p\left(-z - y'\right) - f_0\left(y'\right) \quad \forall y' \in L_0.$$

Покажем, что существует число c, удовлетворяющее этим двум условиям. Заметим, что

$$f_0(y'') - f_0(y') = f_0(y'' - y') \leqslant p(y'' - y') \leqslant p(y'' + z) + p(-y' - z) \quad \forall y', y'' \in L_0.$$

Откуда

$$-p(-y'-z) - f_0(y') \leqslant p(y''+z) - f_0(y'') \quad \forall y', y'' \in L_0.$$

Как следствие,

$$c' = \sup_{y' \in L_0} \left\{ -p(-y'-z) - f_0(y') \right\} \leqslant c'' = \inf_{y'' \in L_0} \left\{ p(y''+z) - f_0(y') \right\}.$$

Поэтому можно взять любое $c \in [c', c'']$. Тогда функционал (6.4) будет линейным и будет удовлетворять на L' условию подчинения (6.3).

Итак, мы показали, что если функционал f_0 определен на подпространстве $L_0 \subset L$, $L_0 \neq L$, то он может быть продолжен на большее подпространство L' с сохранением условия подчинения (6.3).

Обозначим через \mathscr{F} совокупность всех продолжений f' функционала f_0 на какое-либо подпространство $L' \subset L$, удовлетворяющих условию подчинения (6.3).

Введем на \mathscr{F} частичную упорядоченность, положив $f_1 \leqslant f_2$, если f_2 является продолжением f_1 .

Заметим, что каждое линейно упорядоченное подмножество $\mathscr{F}_0 \subset \mathscr{F}$ обладает верхней гранью. Этой верхней гранью служит функционал \widetilde{f} , определенный на объединении всех областей определения функционалов $f_{\alpha} \in \mathscr{F}_0$ (т.е. на $\widetilde{L} = \cup L_{\alpha}$) и совпадающий с каждым из таких функционалов f_{α} на его области определения L_{α} .

Покажем, что \widetilde{L} – подпространство в L, а функционал \widetilde{f} линеен. Пусть $x,y\in\widetilde{L}$. Тогда $x\in L_{\alpha},\,y\in L_{\beta}$, где $L_{\alpha}\subset L_{\beta}$. Следовательно

$$x, y \in L_{\beta} \Rightarrow \lambda x + \mu y \in L_{\beta} \subset \widetilde{L}$$

И

$$\widetilde{f}(\lambda x + \mu y) = f_{\beta}(\lambda x + \mu y) = \lambda f_{\beta}(x) + \mu f_{\beta}(y) = \lambda \widetilde{f}(x) + \mu \widetilde{f}(y).$$

Итак, функционал \widetilde{f} является верхней гранью для \mathscr{F}_0 .

В силу леммы Цорна для элемента f_0 существует некоторый максимальный элемент $f \in \mathscr{F}$ такой, что $f_0 \leqslant f$. Он-то и представляет из себя искомый функционал. Действительно, он линеен, совпадает с f_0 на L_0 и удовлетворяет условию подчинения (6.3) на своей области определения.

Подчеркнем, что f задан на всем L, иначе его можно было бы продолжить и он не был бы максимальным.

Теорема доказана.

Комплексный вариант теоремы Хана-Банаха

Пусть f — линейный функционал, заданный на комплексном пространстве L. Тогда

$$f(x) = Re f(x) + i Im f(x)$$

И

$$f(ix) = if(x) = i[Re f(x) + i Im f(x)] = -Im f(x) + i Re f(x) = Re f(ix) + i Im f(ix).$$

Следовательно

$$f(x) = Re f(x) - i Re f(ix).$$
(6.5)

то есть **линейный функционал**, заданный на комплексном линейном пространстве, **однозначно задается своей вещественной частью**.

Опр. Неотрицательный функционал p, заданный на комплексном линейном пространстве L, называется однородно-выпуклым, если:

- 1) $p(x + y) \le p(x) + p(y)$ для всех $x, y \in L$;
- 2) $p(\lambda x) = |\lambda| p(x)$ для всех $x \in L$ и всех $\lambda \in \mathbb{C}$.

Теорема 6.2. (Комплексный вариант теоремы Хана-Банаха.)

 Π усть p — однородно-выпуклый функционал, заданный на комплексном линейном пространстве L, а f_0 — линейный функционал, заданный на подпространстве L_0 пространства L и такой, что

$$|f_0(x)| \leqslant p(x) \quad \forall x \in L_0. \tag{6.6}$$

Тогда существует линейный функционал f, являющийся продолжением функционала f_0 на L, такой, что

$$|f(x)| \leqslant p(x) \quad \forall x \in L.$$
 (6.7)

Доказательство. Обозначим через L_R и L_{0R} пространства L и L_0 , рассматриваемые как вещественные пространства (в них операция умножение на комплексное число сужена до операции умножения на вещественное число).

Ясно, что p — однородно-выпуклый функционал, заданный на L_R , а $f_{0R}=Re\,f_0$ — линейный функционал, заданный на L_{0R} и удовлетворяющий условию

$$f_{0R}(x) \leqslant p(x) \quad \forall x \in L_{0R}.$$

В силу теоремы 6.1 существует продолжение f_R функционала f_{0R} на пространство L_R такое, что

$$f_R(x) \leqslant p(x) \quad \forall x \in L_R.$$

Согласно формуле (6.5)

$$f_0(x) = f_{0R}(x) - if_{0R}(ix) \quad \forall x \in L_0.$$

Положим

$$f(x) = f_R(x) - i f_R(ix) \quad \forall x \in L.$$

Ясно, что этот функционал является продолжением функционала f_0 на L, удовлетворяющим условию

$$f_R(x) \leqslant p(x) \quad \forall x \in L.$$

Убедимся в то, что f – линейный функционал. Действительно, функционал f аддитивен, так как

$$f(x+y) = f_R(x+y) - if_R(ix+iy) = = f_R(x) + f_R(y) - if_R(ix) - if_R(iy) = f(x) + f(y)$$

Докажем однородность f. Пусть $\lambda = \alpha + i\beta \in \mathbb{C}$. Тогда

$$f(\lambda x) = f((\alpha + i\beta)x) = f(\alpha x) + f(i\beta x) =$$

$$= f_R(\alpha x) - if_R(i\alpha x) + f_R(i\beta x) - if_R(-\beta x) =$$

$$= \alpha f_R(x) - i\alpha f_R(ix) + \beta f_R(ix) + i\beta f_R(x) =$$

$$= (\alpha + i\beta)(f_R(x) - if_R(ix)) = f(\lambda x).$$

Покажем теперь, что для f справедливо неравенство (6.7).

Представим f(x) в виде $f(x) = |f(x)|e^{i\varphi}$ и положим $y = e^{-i\varphi}x$. Тогда

$$|f(x)| = e^{-i\varphi}f(x) = f(y) = f_R(y) \le p(y) = p(e^{-i\varphi}x) = p(x).$$

Теорема доказана.