

2-Dimensional Smooths and Spatial Data

Noam Ross

Senior Research Scientist, EcoHealth Alliance

Interactions

$$y = \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$$

Interactions in GAMs

$$y=s(x_1,x_2)$$

Syntax for interactions

```
gam(y ~ s(x1, x2), # <-- 2 variables data = dat, method = "REML")
```


Mixing interaction and single terms

```
gam(y ~ s(x1, x2) + s(x3),
data = dat, method = "REML")
gam(y ~ s(x1, x2) + x3 + x4,
data = dat, method = "REML")
```


Interaction model outputs

```
Family: gaussian
Link function: identity
Formula:
y \sim s(x1, x2)
Parametric coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.34256 0.01646 20.82 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
          edf Ref.df F p-value
s(x1,x2) 10.82 14.9 14.37 <2e-16 *** #<-- Interaction
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.519 Deviance explained = 54.5%
GCV = 0.057564 Scale est. = 0.054161 n = 200
```


Spatial data

meuse

	X	У	cadmium	copper	lead	zinc	elev	dist	om	ffreq	soil	lime	landuse	dist.m
1	181072	333611	11.7	85	299	1022	7.909	0.00135803	13.6	1	1	1	Ah	50
2	181025	333558	8.6	81	277	1141	6.983	0.01222430	14.0	1	1	1	Ah	30
3	181165	333537	6.5	68	199	640	7.800	0.10302900	13.0	1	1	1	Ah	150
4	181298	333484	2.6	81	116	257	7.655	0.19009400	8.0	1	2	0	Ga	270
5	181307	333330	2.8	48	117	269	7.480	0.27709000	8.7	1	2	0	Ah	380
6	181390	333260	3.0	61	137	281	7.791	0.36406700	7.8	1	2	0	Ga	470
7	181165	333370	3.2	31	132	346	8.217	0.19009400	9.2	1	2	0	Ah	240
8	181027	333363	2.8	29	150	406	8.490	0.09215160	9.5	1	1	0	Ab	120
9	181060	333231	2.4	37	133	347	8.668	0.18461400	10.6	1	1	0	Ab	240
10	181232	333168	1.6	24	80	183	9.049	0.30970200	6.3	1	2	0	M	420

?sp::meuse

Let's practice!

Plotting GAM interactions

Noam Ross

Senior Research Scientist, EcoHealth Alliance

Using mgcv's plot() command with interactions.

plot (mod_2d)

Using mgcv's plot() with interactions

```
plot(mod_2d, scheme = 1)
```


Using mgcv's plot() with interactions

plot(mod_2d, scheme = 2)

Customizing interaction plots with vis.gam()

Customizing interaction plots with vis.gam()

Customizing interaction plots with vis.gam() (2)

Customizing interaction plots with vis.gam()

```
vis.gam(mod, view = c("x1", "x2"), plot.type = "contour", too.far = 0.1) vis.gam(mod, view = c("x1", "x2"), plot.type = "contour", too.far = 0.05)
```


Options for perspective plots

```
vis.gam(x = mod, view = c("x1", "x2"),
plot.type = "persp", se = 2)
```


Options for perspective plots

```
vis.gam(g, view = c("x1", "x2"), plot.type = "persp", theta = 220) vis.gam(g, view = c("x1", "x2"), plot.type = "persp", phi = 55) vis.gam(g, view = c("x1", "x2"), plot.type = "persp", r = 0.1)
```


Options for contour plots

```
vis.gam(g, view = c("x1", "x2"), plot.type = "contour", color = "gray")
vis.gam(g, view = c("x1", "x2"), plot.type = "contour", contour.col = "blue")
vis.gam(g, view = c("x1", "x2"), plot.type = "contour", nlevels = 20)
```


Now let's make some plots!

Visualizing categoricalcontinuous interactions

Noam Ross

Senior Research Scientist, EcoHealth Alliance

Categorical-continuous interactions

Factor-smooths

Factor-smooths

Plotting factor-smooths

```
plot(model4c)
vis.gam(model4c, theta = 125, plot.type = "persp")
```


Using vis.gam()

Let's practice!

Interactions with Different Scales

Noam Ross

Senior Research Scientist, EcoHealth Alliance

Interactions with one smoothing parameter

$$y=s(x_1,x_2)$$

with smoothing parameter λ

Variables with different scales or wiggliness

Numeric terms from meuse on different scales:

```
elev
                          om
1 181072 333611
                 7.91
                         13.6
2 181025 333558
                        14
 3 181165 333537
                         13
  181298 333484
                 7.66
 5 181307 333330
  181390 333260
                 7.79
 7 181165 333370
                 8.22
                         9.2
 8 181027 333363
                8.49
                         9.5
 9 181060 333231
                         10.6
                8.67
10 181232 333168 9.05
                         6.3
```


Tensor Smooths

$$y = te(x_1, x_2)$$

with smoothing parameters λ_1, λ_2

```
gam(y ~ te(x1, x2), data = data, method = "REML")
gam(y ~ te(x1, x2, k = c(10, 20)), data = data, method = "REML")
```

Actual Relationship Fit using s() Fit using te()

Tensor interactions

$$y = s(x_1) + s(x_2) + ti(x_1, x_2)$$

with smoothing parameters $\lambda_1, \lambda_2, \lambda_3, \lambda_4$

```
gam(y \sim s(x1) + s(x2) + ti(x1, x2), data = data, method = "REML")
```


Example: Tensor Interactions

```
Family: gaussian
Link function: identity
Formula:
y \sim s(x1) + s(x2) + ti(x1, x2)
Parametric coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.318698 0.008697 36.65 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Approximate significance of smooth terms:
           edf Ref.df
                     F p-value
te(x1) 4.93 6.009 23.16 < 2e-16 ***
                                           # Separate terms for
      3.42 4.242 10.35 2.75e-08 *** # each variable and
te(x2)
ti(x1,x2) 10.15 12.763 16.08 < 2e-16 *** # the interaction
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
R-sq.(adj) = 0.444 Deviance explained = 46.5%
-REML = -85.566 Scale est. = 0.037067 n = 500
```


Example: Tensor Interactions

```
gam(y \sim s(x1) + s(x2) + ti(x1, x2), data = data, method = "REML")
```


Let's practice!