

STP22NE10L

N - CHANNEL 100V - 0.07 Ω - 22A TO-220 STripFET™ POWER MOSFET

TYPE	V _{DSS}	R _{D(on)}	I _D
STP22NE10L	100 V	< 0.085 Ω	22 A

- TYPICAL R_{D(on)} = 0.07 Ω
- LOW THRESHOLD DRIVE
- LOGIC LEVEL DEVICE

DESCRIPTION

This Power MOSFET is the latest development of STMicroelectronics unique "Single Feature Size™" strip-based process. The resulting transistor shows extremely high packing density for low on-resistance, rugged avalanche characteristics and less critical alignment steps therefore a remarkable manufacturing reproducibility.

TO-220

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SOLENOID AND RELAY DRIVERS
- MOTOR CONTROL, AUDIO AMPLIFIERS
- DC-DC & DC-AC CONVERTERS

INTERNAL SCHEMATIC DIAGRAM

SC08140

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	100	V
V _{DGR}	Drain-gate Voltage (R _{GS} = 20 kΩ)	100	V
V _{GS}	Gate-source Voltage	± 20	V
I _D	Drain Current (continuous) at T _c = 25 °C	22	A
I _D	Drain Current (continuous) at T _c = 100 °C	14	A
I _{DM(•)}	Drain Current (pulsed)	88	A
P _{tot}	Total Dissipation at T _c = 25 °C	90	W
	Derating Factor	0.6	W/°C
E _{AS(1)}	Single Pulse Avalanche Energy	250	mJ
T _{stg}	Storage Temperature	-65 to 175	°C
T _j	Max. Operating Junction Temperature	175	°C

(•) Pulse width limited by safe operating area

(1) starting T_j = 25 °C, I_D = 22A, V_{DD} = 50V

STP22NE10L

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case	Max	1.67	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	62.5	°C/W
T _I	Maximum Lead Temperature For Soldering Purpose		300	°C

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D = 250 μA V _{GS} = 0	100			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = Max Rating V _{DS} = Max Rating T _c = 125 °C			1 10	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} I _D = 250 μA	1	1.6	2.5	V
R _{D(on)}	Static Drain-source On Resistance	V _{GS} = 10 V I _D = 15 A V _{GS} = 5 V I _D = 15 A		0.07 0.085	0.085 0.1	Ω Ω
I _{D(on)}	On State Drain Current	V _{DS} > I _{D(on)} × R _{D(on)max} V _{GS} = 10 V	22			A

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
g _{fs} (*)	Forward Transconductance	V _{DS} > I _{D(on)} × R _{D(on)max} I _D = 15 A		19		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V f = 1 MHz V _{GS} = 0		1750 165 45		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)**SWITCHING ON**

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$t_{d(on)}$ t_r	Turn-on Delay Time Rise Time	$V_{DD} = 50 \text{ V}$ $I_D = 8 \text{ A}$ $R_G = 4.7 \Omega$ $V_{GS} = 4.5 \text{ V}$ (Resistive Load, see fig. 3)		40 80		ns ns
Q_g Q_{gs} Q_{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DD} = 80 \text{ V}$ $I_D = 16 \text{ A}$ $V_{GS} = 10 \text{ V}$		24 55 11	31	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$t_{d(off)}$ t_f	Turn-off Delay Time Fall Time	$V_{DD} = 50 \text{ V}$ $I_D = 8 \text{ A}$ $R_G = 4.7 \Omega$ $V_{GS} = 4.5 \text{ V}$ (Resistive Load, see fig. 3)		45 12		ns ns
$t_{d(off)}$ t_f t_c	Off-voltage Rise Time Fall Time Cross-over Time	$V_{clamp} = 80 \text{ V}$ $I_D = 16 \text{ A}$ $R_G = 4.7 \Omega$ $V_{GS} = 4.5 \text{ V}$ (Inductive Load, see fig. 5)		12 17 35		ns ns ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
I_{SD} $I_{SDM}(\bullet)$	Source-drain Current Source-drain Current (pulsed)				22 88	A A
$V_{SD} (*)$	Forward On Voltage	$I_{SD} = 16 \text{ A}$ $V_{GS} = 0$			1.5	V
t_{rr} Q_{rr} I_{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 16 \text{ A}$ $di/dt = 100 \text{ A}/\mu\text{s}$ $V_{DD} = 40 \text{ V}$ $T_j = 150^\circ\text{C}$ (see test circuit, fig. 5)		100 300 6		ns nC A

(*) Pulsed: Pulse duration = 300 μs , duty cycle 1.5 %

(*) Pulse width limited by safe operating area

Safe Operating Area**Thermal Impedance**

STP22NE10L

Output Characteristics

Transfer Characteristics

Transconductance

Static Drain-source On Resistance

Gate Charge vs Gate-source Voltage

Capacitance Variations

Normalized Gate Threshold Voltage vs Temperature

Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics

STP22NE10L

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 2: Unclamped Inductive Waveform

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 4: Gate Charge test Circuit

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

TO-220 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.40		4.60	0.173		0.181
C	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

P011C

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 1999 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

<http://www.st.com>