08/09/2025, 13:40 Q4.ipynb - Colab

```
import pandas as pd
import numpy as np
import re
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.pipeline import Pipeline
from google.colab import files
files.upload()
     Show hidden output
df = pd.read_csv("Full-Economic-News-DFE-839861.csv", encoding='latin-1')
df.head()
₹
         _unit_id _golden _unit_state _trusted_judgments _last_judgment_at positivity positivity:confidence relevance re
      0 842613455
                                                              3
                                                                    12/5/2015 17:48:27
                                                                                                                   0.6400
                      False
                                  finalized
                                                                                              3.0
                                                                                                                                  ves
      1 842613456
                      False
                                  finalized
                                                                    12/5/2015 16:54:25
                                                                                             NaN
                                                                                                                      NaN
     2 842613457
                      False
                                  finalized
                                                             3
                                                                    12/5/2015 01:59:03
                                                                                             NaN
                                                                                                                      NaN
                                                                                                                                   no
      3 842613458
                      False
                                  finalized
                                                             3
                                                                    12/5/2015 02:19:39
                                                                                             NaN
                                                                                                                   0.0000
                                                                                                                                   no
      4 842613459
                      False
                                  finalized
                                                                    12/5/2015 17:48:27
                                                                                              3.0
                                                                                                                   0.3257
                                                                                                                                  ves
 Next steps: ( Generate code with df )
                                    View recommended plots
                                                                  New interactive sheet
pip install -U imbalanced-learn
Requirement already satisfied: imbalanced-learn in /usr/local/lib/python3.12/dist-packages (0.14.0)
     Requirement already satisfied: numpy<3,>=1.25.2 in /usr/local/lib/python3.12/dist-packages (from imbalanced-learn) (2.0.
     Requirement already satisfied: scipy<2,>=1.11.4 in /usr/local/lib/python3.12/dist-packages (from imbalanced-learn) (1.16 Requirement already satisfied: scikit-learn<2,>=1.4.2 in /usr/local/lib/python3.12/dist-packages (from imbalanced-learn)
     Requirement already satisfied: joblib<2,>=1.2.0 in /usr/local/lib/python3.12/dist-packages (from imbalanced-learn) (1.5.
     Requirement already satisfied: threadpoolctl<4,>=2.0.0 in /usr/local/lib/python3.12/dist-packages (from imbalanced-learn
    from imblearn.pipeline import Pipeline
    from imblearn.over_sampling import RandomOverSampler
    from imblearn.under_sampling import RandomUnderSampler
    IMBLEARN AVAILABLE = True
except ImportError:
    from sklearn.pipeline import Pipeline
    IMBLEARN_AVAILABLE = False
df.dropna(subset=['text'], inplace=True)
df = df[['text', 'relevance']]
df.head()
```

08/09/2025, 13:40 Q4.ipynb - Colab

```
₹
                                                     text relevance
      0 NEW YORK -- Yields on most certificates of dep...
       1 The Wall Street Journal Online</br>
/br>
The Mo...
                                                                      no
       2 WASHINGTON -- In an effort to achieve banking ...
                                                                      no
            The statistics on the enormous costs of employ...
                                                                      no
       4 NEW YORK -- Indecision marked the dollar's ton...
                                                                     ves
 Next steps: (
               Generate code with df
                                         View recommended plots
                                                                             New interactive sheet
df.shape
→ (8000, 2)
df = df[df['relevance'].isin(['yes', 'no'])]
df['relevance'] = df['relevance'].apply(lambda x: 1 if x == 'yes' else 0)
def preprocess_text(text):
     if not isinstance(text, str):
          return ""
     text = text.lower() # Lowercasing
    \label{eq:text} \begin{array}{ll} \texttt{text} = \texttt{re.sub(r'<.*?>', '', text)} \ \# \ \texttt{Remove HTML tags} \\ \texttt{text} = \texttt{re.sub(r'[^\w\s]', '', text)} \ \# \ \texttt{Remove punctuation} \\ \texttt{text} = \texttt{re.sub(r'\d+', '', text)} \ \# \ \texttt{Remove digits} \\ \end{array}
     return text
df.isnull().sum()
₹
                   a
                   0
         text
       relevance
     dtype: int64
df['clean_text'] = df['text'].apply(preprocess_text)
df.head()
₹
                                                     text relevance
                                                                                                           clean_text
                                                                                                                            丽
       0 NEW YORK -- Yields on most certificates of dep...
                                                                            new york yields on most certificates of depos...
       1 The Wall Street Journal Online</br>
/br>
The Mo...
                                                                       0
                                                                            the wall street journal onlinethe morning brie...
       2 WASHINGTON -- In an effort to achieve banking ...
                                                                            washington in an effort to achieve banking re...
            The statistics on the enormous costs of employ...
                                                                       0 the statistics on the enormous costs of employ...
       4 NEW YORK -- Indecision marked the dollar's ton...
                                                                       1 new york indecision marked the dollars tone a...
 Next steps: ( Generate code with df
                                          View recommended plots
                                                                             New interactive sheet
X = df['clean_text']
y = df['relevance']
X_train, X_test, y_train, y_test = train_test_split(
     X, y, test_size=0.2, random_state=42, stratify=y
classifiers = {
     "Naive Bayes": MultinomialNB(),
     "Logistic Regression": LogisticRegression(max_iter=1000, random_state=42),
     # Refinement: Set dual=False for performance when n_samples > n_features
     "SVM (Balanced)": LinearSVC(class_weight="balanced", max_iter=2000, random_state=42, dual=False)
}
```

```
resampling_techniques = {
   "Original": None,
}
resampling_techniques["Oversampled"] = RandomOverSampler(random_state=42)
resampling_techniques["Undersampled"] = RandomUnderSampler(random_state=42)
feature_limits = [40000, 10000, 1000]
for limit in feature_limits:
   print(f"\n{'='*35} RESULTS FOR MAX_FEATURES = {limit} {'='*35}")
   vectorizer = CountVectorizer(stop_words='english', max_features=limit)
   for resample_name, resampler in resampling_techniques.items():
       print(f"\n--- Technique: {resample_name} Data ---")
       for name, clf in classifiers.items():
           # Skip Naive Bayes for undersampled data, as it's not a good fit
           if resample_name == "Undersampled" and name == "Naive Bayes":
                print(f"\n--- Classifier: {name} (Skipped for Undersampling) ---")
                continue
           # Create the pipeline
           if resampler:
               pipeline = Pipeline([
                    ('vectorizer', vectorizer),
                   ('resampler', resampler),
('classifier', clf)
               ])
           else:
                pipeline = Pipeline([
                    ('vectorizer', vectorizer),
('classifier', clf)
               1)
           # Train and predict
           pipeline.fit(X_train, y_train)
           y_pred = pipeline.predict(X_test)
           # Avoid redundant runs for the balanced SVM with resampling
           if 'Balanced' in name and resampler is not None:
               continue
           print(f"\n--- Classifier: {name} ---")
           print(f"Accuracy: {accuracy_score(y_test, y_pred):.4f}")
           print("Classification Report:")
           print(classification\_report(y\_test, y\_pred, target\_names=['non-relevant (0)', 'relevant (1)'], zero\_division=0))
₹
     --- Technique: Original Data ---
     -- Classifier: Naive Bayes ---
    Accuracy: 0.7649
    Classification Report:
                      precision
                                   recall f1-score
                                                      support
    non-relevant (0)
                           0.88
                                     0.83
                                               0.85
                                                         1315
        relevant (1)
                           0.37
                                     0.48
                                               0.42
                                                          284
                                               0.76
                                                         1599
            accuracy
                           0.63
                                     0.65
                                                         1599
           macro avo
                                               0.64
        weighted avg
                           0.79
                                     0.76
                                               0.78
                                                         1599
    --- Classifier: Logistic Regression ---
    Accuracy: 0.7886
    Classification Report:
                      precision
                                   recall f1-score
                                                      support
    non-relevant (0)
                           0.85
                                     0.91
                                               0.88
                                                         1315
        relevant (1)
                           0.36
                                     0.25
                                               0.29
                                                         284
                                               0.79
                                                         1599
            accuracy
                           0.60
                                     0.58
                                                         1599
           macro avg
                                               0.58
        weighted avg
                                               0.77
                                                         1599
                           0.76
                                     0.79
    --- Classifier: SVM (Balanced) ---
    Accuracy: 0.7573
    Classification Report:
                      precision
                                   recall f1-score
                                                      support
                           0.85
                                                         1315
    non-relevant (0)
                                     0.86
                                               0.85
```

relevant (1)	0.31	0.30	0.30	284
accuracy macro avg weighted avg	0.58 0.75	0.58 0.76	0.76 0.58 0.76	1599 1599 1599

--- Technique: Oversampled Data ---

--- Classifier: Naive Bayes ---Accuracy: 0.6854 Classification Report:

ctassification ne	precision	recall	f1-score	support
non-relevant (0) relevant (1)	0.90 0.31	0.69 0.65	0.78 0.42	1315 284
accuracy macro avg weighted avg	0.61 0.80	0.67 0.69	0.69 0.60 0.72	1599 1599 1599

Start coding or generate with AI.