Biological VS statistical significance

date

Readings for effect sizes

See the PDFs in the ANGEL folder

Readings for Thursday

- We start our field guide to probability.
- For review, Dalgaard Chapters 3-4

 Primary readings Bolker Chapter 4. Gelman and Gill Chapter 2 (pages 13-26).

For more advanced readings in probability see syllabus

Goals for the day
Discuss the idea of effect sizes, and
why (with CIs) they are central to any
statistical and biological inference

Motivating example: The strength of natural selection in the wild

Is directional selection strong in nature?

Kingsolver et al 2001

The Big Picture

 The coefficients from our models are not simply estimates to be examined along with pvalues, but are probably the most important aspect of the model with respect to your ability to assess the importance of particular variables.

Salient points of the material

- There are several classes of effect sizes
 (unstandardized, scaled by pooled sd, scaled by mean, variance accounted for, odds ratios).
- Deciding which one to use may depend a fair bit on the question at hand, and what you plan to compare your results to.
- This can take a considerable amount of thought.

The Counter-null

Nakagawa & Cuthill 2007

Practical VS statistical significance

It may be significant, but is it important?

Table 1. Equations for calculating d statistics

Case	Equation		Description	References
Comparing two independent or dependent groups (i.e. both paired and unpaired <i>t</i> -test cases)	$d = \frac{m_2 - m_1}{s_{\text{pooled}}}$ $s_{\text{pooled}} = \sqrt{\frac{(n_2 - 1)s_2^2 + (n_1 - 1)s_1^2}{n_1 + n_2 - 2}}$	(1) (2)	n is sample size (in the case	Cohen (1988); Hedges (1981)
Comparing two independent groups (i.e. unpaired <i>t</i> -test case)	$d=t_{ ext{unpaired}}\sqrt{rac{n_1+n_2}{n_1n_2}}$	(3)	of dependent design, the number of data points), s^2 is variance. Alternatively, t values can be used to calculate d values; t_{unpaired} is the t value from the unpaired	Rosenthal (1994)
Comparing two dependent groups (i.e. paired, or repeated-measure <i>t</i> -test case)	$d=t_{ ext{paired}}\sqrt{rac{2(1-r_{12})}{n}}$	(4)	t-test (compare with Equation 10 in the text) t_{paired} is the t score from the paired t-test, r_{12} is correlation coefficient between two groups, and note that $n = n_1 = n_2$ not $n = n_1 + n_2$	Dunlap et al. (1996)

Free software by David B. Wilson to calculate these effect statistics is downloadable (see Table 4). Strictly speaking, Equations 1 to 4 are for Hedges's g but in the literature these formulae are often referred to as d or Cohen's d while Equation 10 is Cohen's d (see Kline, 2004, p.102 for more details; see also Rosenthal, 1994; Cortina & Nouri, 2000).

Effect size in context

Can you think of other ways to scale the measures of effect sizes?

What might we do if we have many levels to a given categorical predictor?

R²: The co-efficient of determination

- R² is probably the most commonly used quantity for model fit.
- Often described as the proportion of variation explained by the model.
- I prefer: proportion of variation *accounted* for by the model.
- I really prefer thinking about 1 -R²: proportion of variation for unaccounted for (how much are you missing the mark).

R²: The co-efficient of determination

- SS.total = SS.model + SS.residual
- (un-adjusted) $R^2 = 1$ (SS.residual/SS.Total)
 - = SS.model/SS.Total
- $0 \le R^2 \le 1$
- However, when you add more parameters to a model, at worse they do not increase SS.model (they will never decrease it).
- Effectively unadjusted R² will always increase with more parameters added to the model.
- It does not penalize more complex models (violating our parsimony principal).

Adjusted R²

- Adjust for parsimony principle
- Adjusted R²= 1 (n-1)/(n-p)(1-R²)
 =1- residual MS/total MS
- Adj. R² can decrease with increasing numbers of parameters (p).
- Information theoretic approaches are still far better ways of comparing different models.

Generalized R²

Generalized R² =
$$\frac{1 - \left(\frac{L(\text{null})}{L(\hat{\theta})}\right)^{2/n}}{1 - L(\text{null})^{2/n}}$$

Where L(null) is the log Likelihood for the null model, L(theta hat) is the log likelihood for the MLE of the model, and n is sample size.

This does not adjust for parameters.

Is R² useful?

- Yes. It is very useful in making a statement about overall model fit (% variation accounted for).
- But, it is *not useful* in the comparison between models.

Model vs predictor specific R²

- While in a glm with multiple predictors, the coefficients are adjusted for the presence of one another, this is not the case for R².
- Most statistical software provides the R² for the full model.
- So how do we assess variance accounted for at a predictor level?

Model vs predictor specific R²

 Can we just fit individual models for each predictor to calculate the R²?

Coefficient of Partial Determination Partial R²

- •We can instead adjust the R2 in a manner analogous to adjusting coefficients for other predictor variables.
- •These are called partial R² (named to provide similar meaning to partial regression coefficients.).
- •These allow you to adjust the R² for a given predictor, given all of the other predictors in the model.
- •You can do this in R using the partial.R2 function in the asbio library.

partial.R2(model.without.predictor, model.with.predictor)

Coefficient of Partial Determination Partial R²

The partial R² for X₁, given that X₂ is already in the model is calculated as

$$R_{Y1|2}^2 = \frac{SSE(X_2) - SSE(X_1, X_2)}{SSE(X_2)} = \frac{SSM(X_1 \mid X_2)}{SSE(X_2)}$$

This extends more generally.

$$R_{Y4|123}^{2} = \frac{SSM(X_{4} | X_{1}, X_{2}, X_{3})}{SSE(X_{1}, X_{2}, X_{3})}$$

SSE = Error (residual) Sum of Squares SSM = Model (regression) sum of squares (fitted)

Salient points of the material

- There are several classes of effect sizes
 (unstandardized, scaled by pooled sd, scaled by mean, variance accounted for, odds ratios).
- Deciding which one to use may depend a fair bit on the question at hand, and what you plan to compare your results to.
- This can take a considerable amount of thought.