Classification – Type 1 & 2 Errors

JinYeong Bak

jy.bak@skku.edu

Human Language Intelligence Lab, SKKU

Artificial Intelligence

The intelligence exhibited by machines

Artificial Intelligence

How to create computers and computer software that are capable of intelligent behavior

Artificial Intelligence - Types

- Artificial Narrow Intelligence (ANI)
 - Weak AI
 - Specializes in one area
 - Ex) AlphaGo, Siri, Spam mail filter, Translator, etc...
- Artificial General Intelligence (AGI)
 - Strong AI (Human level AI)
 - Be as smart as a human across the board
- Artificial Super Intelligence (ASI)
 - Be smarter than the best human brains in every field

Artificial Intelligence - Types

Machine Learning

- Subfield of artificial intelligence
- Study of pattern recognition and computational learning theory
- Creating programs that can automatically learn rules from data

"Field of study that gives computers the ability to learn without being explicitly programmed" (Arthur Samuel, 1959)

Machine Learning

• Traditional: Write programs using hard-coded (fixed) rules

Machine Learning: Learn rules by looking at some training data

Machine Learning

- Supervised Learning
 - Predictive approach
 - To learn a mapping from inputs to outputs
 - Example) classification, regression
- Unsupervised Learning
 - Descriptive approach
 - To find interesting patterns in the data
 - Example) clustering, dimensionality reduction

Supervised Learning

- Given: Training data as labeled instances $\{(x^{(1)}, y^{(1)}), ..., (x^{(N)}, y^{(N)})\}$
- Goal: Learn a rule $(f: x \to y)$ to predict outputs y for new inputs x
- Example)
 - Data: ((Blue, Square, 10), yes), . . . ((Red, Ellipse, 20.7), yes)
 - Task: For new inputs (Blue, Crescent, 10), (Yellow, Circle, 12), are they yes/no?

Color	Shape	Size	Label
Blue	Square	10	1
Red	Ellipse	2.4	1
Red	Ellipse	20.7	0
Blue	Crescent	10	?
Yellow	Circle	12	?

Problem

- Data: Credit card balance, annual income, default or not {(Balance, Income), Default?}
- Task: Predict whether a person will default on his/her credit card payment

Classification Performance

- Questions
 - Which model will be best?
 - How to measure the performance of classification model?
- Answer: Confusion matrix

		Predicted		
		Yes	No	
Actual	Yes	True Positive (TP)	False Negative (FN)	
	No	False Positive (FP)	True Negative (TN)	

Classification Performance - Measurement

Accuracy

- Did the model get it right?
- -(TP+TN)/ALL
- Precision
 - How many selected items are relevant?
 - TP/Prected "yes"

Recall

- How many relevant items are selected?
- TP/Actual "yes"

F score

- Combination of precision and recall
- -2*(Precision*Recall)/(Precision+Recall)

		Predicted		
	Yes No		No	
Actual	Yes	True Positive (TP)	False Negative (FN)	
	No	False Positive (FP)	True Negative (TN)	

Classification Performance - Measurement

- Example) Predict whether a person will default, Logistic regression, 100 test data
- Accuracy
 - Did the model get it right?
 - -(TP+TN)/ALL
- Precision
 - How many selected items are relevant?
 - TP/Prected "yes"
- Recall
 - How many relevant items are selected?
 - TP/Actual "yes"
- F score
 - Combination of precision and recall
 - -2*(Precision*Recall)/(Precision+Recall)

		Predicted	
		Yes	No
Actual	Yes	70	15
	No	10	5

Type 1 & 2 Error

- Type 1 error depends on False Positive
- Type 2 error depends on False Negative

		Predicted		
		Yes	No	
Actual	Yes	True Positive (TP)	False Negative (FN)	
	No	False Positive (FP)	True Negative (TN)	