

DECK: a package for presentations

Deck is a package written in Go

That uses a singular markup language

With elements for text, lists, code, and graphics

All layout and sizes are expressed as percentages

Clients are interactive or create formats like PDF or SVG

Elements

Hello, World

A block of text, word-wrapped to a specified width. You may specify size, font, color, and opacity.

```
package main
import "fmt"
func main() {
    fmt.Println("Hello, World")
}
```

<text>...</text>

bullet

Point A

Point B

Point C

Point D

plain

First item

Second item

The third item

the last thing

number

1. This

2. That

3. The other

4. One more

</

height

width

<image .../>

height (relative to element or canvas width)

width

<rect .../>

height (relative to element or canvas width)

width

<ellipse .../>

<.../>

angle2 (90 deg)

x, y angle1 (0 deg)

<arc .../>

control

<curve .../>

Markup and Layout

```
Start the deck
                    <deck>
                      <canvas width="1024" height="768" />
Set the canvas size
Begin a slide
                      <slide bg="white" fg="black">
                           <image xp="70" yp="60" width="256" height="179" name="work.png" caption="Desk"/>
Place an image
Draw some text
                           <text xp="20" yp="80" sp="3">Deck uses these elements</text>
Make a bullet list
                           <list xp="20" yp="70" sp="2" type="bullet">
                              text, list, image
                              line, rect, ellipse
                              arc, curve
End the list
                           </list>
                           line
                                    xp1="20" yp1="10" xp2="30" yp2="10"/>
Draw a line
                                    xp="35" yp="10" wp="4" hr="75" color="rgb(127,0,0)"/>
Draw a rectangle
                           <rect
                           <ellipse xp="45" yp="10" wp="4" hr="75" color="rgb(0,127,0)"/>
Draw an ellipse
                                    xp="55" yp="10" wp="4" hp="3" a1="0" a2="180" color="rgb(0,0,127)"/>
Draw an arc
                           <arc
Draw a quadratic bezier
                                    xp1="60" yp1="10" xp2="75" yp2="20" xp3="70" yp3="10" />
                           <curve
                      </slide>
End the slide
End of the deck
                    </deck>
```

Anatomy of a Deck

Deck uses these elements

- text, list, image
- line, rect, ellipse
- arc, curve

Desk

Text and List Markup

```
Position, size <text xp="..." yp="..." sp="...">

Block of text ... type="block">

Lines of code <text ... type="code">

Attributes <text ... color="..." opacity="..." font="..." align="...">
```

```
Position, size <list xp="..." yp="..." sp="...">

Bullet list <list ... type="bullet">

Numbered list <list ... type="number">

Attributes <list ... color="..." opacity="..." font="..." align="...">
```

Common Attributes for text and list

```
xp horizontal percentage
yp vertical percentage
sp font size percentage
type "bullet", "number" (list), "block", "code" (text)
align "left", "middle", "end"
color SVG names ("maroon"), or RGB "rgb(127,0,0)"
opacity percent opacity (0-100, transparent - opaque)
font "sans", "serif", "mono"
```

Graphics Markup


```
<line xp1="5" yp1="75" xp2="20" yp2="70" sp="0.2"/>
```

```
<rect xp="10" yp="60" wp="15" hr="66.6" color="red"/>
<rect xp="15" yp="55" wp="10" hr="100" color="blue" opacity="30"/>
```



```
<ellipse xp="10" yp="35" wp="15" hr="66.66" color="green"/>
<ellipse xp="15" yp="30" wp="10" hr="100" color="blue" opacity="30"/>
```



```
<curve xp1="5" yp1="10" xp2="15" yp2="20" xp3="15" yp3="10" sp="0.3" color="red"/>
<arc xp="22" yp="10" wp="10" wp="10" a1="0" a2="180" sp="0.2" color="blue"/>
```


Percentage-based layout

bullet

Point A

Point B

Point C

Point D

plain

First item

Second item

The third item

the last thing

number

1. This

2. That

3. The other

4. One more

</

Clients

```
package main
import (
    "log"
    "github.com/ajstarks/deck"
func main() {
    presentation, err := deck.Read("deck.xml", 1024, 768) // open the deck
    if err != nil {
        log.Fatal(err)
    for _, slide := range presentation.Slide {
    for . t := range slide.Text {
        // for every slide...
        // process the text elements
             x, y, size := deck.Dimen(presentation.Canvas, t.Xp, t.Yp, t.Sp)
             slideText(x, y, size, t)
        for _, l := range slide.List { // process the list elements
             x, y, size := deck.Dimen(presentation.Canvas, l.Xp, l.Yp, l.Sp)
             slideList(x, y, size, l)
```



```
func main() {
    benchmarks := []Bardata{
        {"Macbook Air", 154.701},
        {"MacBook Pro (2008)", 289.603},
        {"BeagleBone Black", 2896.037},
        {"Raspberry Pi", 5765.568},
    }
   ts := 2.5
    hts := ts / 2
   x := 10.0
    bx1 := x + (ts * 12)
    bx2 := bx1 + 50.0
   y := 60.0
    maxdata := 5800.0
    linespacing := ts * 2.0
    text(x, y+20, "Go 1.1.2 Build and Test Times", ts*2, "black")
    for _, data := range benchmarks {
        text(x, y, data.label, ts, "rgb(100,100,100)")
        bv := vmap(data.value, 0, maxdata, bx1, bx2)
        line(bx1, y+hts, bv, y+hts, ts, "lightgray")
        text(bv+0.5, y+(hts/2), fmt.Sprintf("%.1f", data.value), hts, "rgb(127,0,0)")
        y -= linespacing
```

Go 1.1.2 Build and Test Times

Macbook Air

MacBook Pro (2008)

BeagleBone Black

Raspberry Pi

154.7

289.6

2896.0

\$ (echo '<deck><slide>'; go run deckbc.go; echo '</slide></deck>')

go get github.com/ajstarks/deck/vgdeck

go get github.com/ajstarks/deck/pdfdeck

go get github.com/ajstarks/deck/svgdeck

pdfdeck [options] file.xml...

- -sans, -serif, -mono [font] specify fonts
- -pagesize [w,h, or Letter, Legal, Tabloid, A2-A5, ArchA, Index, 4R, Widescreen]
- -stdout (output to standard out)
- -outdir [directory] directory for PDF output
- -fontdir [directory] directory containing font information
- -author [author name] set the document author
- -title [title text] set the document title
- -grid [percent] draw a percent grid on each slide

svgdeck [options] file.xml...

- -sans, -serif, -mono [font] specify fonts
- -pagesize [Letter, Legal, A3, A4, A5]
- -pagewidth [canvas width]
- -pageheight [canvas height]
- -stdout (output to standard out)
- -outdir [directory] directory for PDF output
- -title [title text] set the document title
- -grid [percent] draw a percent grid on each slide

vgdeck [options] file.xml...

- -loop [duration] loop, pausing [duration] between slides
- -slide [number] start at slide number
- -w [width] canvas width
- -h [height] canvas height
- -g [percent] draw a percent grid

vgdeck Commands

```
+, Ctrl-N, [Return]
                                      Next slide
-, Ctrl-P, [Backspace]
                                      Previous slide
^, Ctrl-A
                                      First slide
$, Ctrl-E
                                      Last slide
r, Ctrl-R
                                      Reload
x, Ctrl-X
                                      X-Ray
/, Ctrl-F [text]
                                      Search
s, Ctrl-S
                                      Save
                                      Quit
q
```

Deck Web API

sex -dir [start dir] -listen [address:port] -maxupload [bytes]

GET		List the API
GET	/deck/	List the content on the server
GET	<pre>/deck/?filter=[type]</pre>	List content filtered by deck, image, video
POST	<pre>/deck/content.xml?cmd=1s</pre>	Play a deck with the specified duration
POST	<pre>/deck/content.xml?cmd=stop</pre>	Stop playing a deck
POST	<pre>/deck/content.xml?slide=[num]</pre>	Play deck starting at a slide number
DELETE	/deck/content.xml	Remove content
POST	/upload/ Deck:content.xml	Upload content
POST	<pre>/table/ Deck:content.txt</pre>	Generate a table from a tab-separated list
POST	<pre>/table/?textsize=[size]</pre>	Specify the text size of the table
POST	/media/ Media:content.mov	Play the specified video

Display

is innovative
makes a product useful
is aesthetic
makes a product understandable
is unobtrusive
is honest
is long-lasting
is thorough down to the last detail
is environmentally-friendly
is as little design as possible

Controller

- > list
- > upload
- > play/stop
- > delete

Design Examples

hello, world

Top

Left

Right

30%

70%

Header (top 20%)

Summary (30%)

Detail (70%)

Footer (bottom 20%)

bullet

- Point A
- Point B
- Point C
- Point D

plain

First item

Second item

The third item

the last thing

number

- 1. This
- 2. That
- 3. The other
- 4. One more

</

BOS

Virgin America 351 Gate B38

4

8:35am

SFO

On Time

JFK

US Airways 1207 Gate C31C 5:35pm

Delayed

AAPL 503.73 -16.57 (3.18%)

AMZN 274.03 +6.09 (2.27%)

GOOG 727.58 -12.41 (1.68%)

Two Columns

One

Two

Three

Four

Tree and Sky

Five

Six

Seven

Eight

Rocks

build	compile packages and dependencies
clean	remove object files
env	print Go environment information
fix	run go tool fix on packages
fmt	run gofmt on package sources
get	download and install packages and dependencies
install	compile and install packages and dependencies
list	list packages
run	compile and run Go program
test	test packages
tool	run specified go tool
version	print Go version
vet	run go tool vet on packages

go

Rich Can't buy me love Bliss Worse Better Misery We have each other Poor

Code Output

```
package main
import (
    "github.com/ajstarks/svgo"
func main() {
    canvas := svg.New(os.Stdout)
   width, height := 500, 500
   a, ai, ti := 1.0, 0.03, 10.0
   canvas.Start(width, height)
   canvas.Rect(0, 0, width, height)
    canvas.Gstyle("font-family:serif;font-size:144pt")
   for t := 0.0; t <= 360.0; t += ti {
        canvas.TranslateRotate(width/2, height/2, t)
        canvas.Text(0, 0, "i", canvas.RGBA(255, 255, 255, a))
        canvas.Gend()
        a -= ai
    canvas.Gend()
    canvas.End()
```


A few months ago, I had a look at the brainchild of a few serious heavyweights working at Google. Their project, the Go programming language, is a static typed, c lookalike, semicolon-less, self formatting, package managed, object oriented, easily parallelizable, cluster fuck of genius with an unique class inheritance system. It doesn't have one.

The Go Programming Language

is a static typed,
c lookalike,
semicolon-less,
self formatting,
package managed,
object oriented,
easily parallelizable,
cluster fuck of genius
with an unique class inheritance system.

The Go Programming Language

is a static typed,
c lookalike,
semicolon-less,
self formatting,
package managed,
object oriented,
easily parallelizable,
cluster fuck of genius
with an unique class inheritance system.

The Go Programming Language

is a static typed, c lookalike, semicolon-less, self formatting, package managed, object oriented, easily parallelizable, cluster fuck of genius with an unique class inheritance system.

It doesn't have one.

So, the next time you're about to make a subclass, think hard and ask yourself

what would Go do

Python and Ruby programmers come to Go because they don't have to surrender much expressiveness, but gain performance and get to play with concurrency.

Less is exponentially more Rob Pike

FOR, LO,

the winter is past,
the rain is over and gone;
The flowers appear on the earth;
the time for the singing of birds is come,
and the voice of the turtle is heard in our land.

Good Design

is innovative makes a product useful is aesthetic makes a product understandable is unobtrusive is honest is long-lasting is thorough down to the last detail is environmentally-friendly is as little design as possible

Dieter Rams

github.com/ajstarks/deck

ajstarks@gmail.com @ajstarks