Wednesday, Nov 17

Genetic Linkage (Bateson, Saunders, and Punnett)

Genetic linkage is the tendency for DNA sequences that are close on a chromosome to be inherited together. An early demonstration of linkage used two traits of sweat peas: flower color (purple or red) and pollen grain shape (long or round). If there is *no linkage* then the probabilities of each combination of traits are as shown in the table below.

		Count		
Traits	Probability	observed	expected	
Purple and Long	9/16	284		
Purple and Round	3/16	21		
Red and Long	3/16	21		
Red and Round	1/16	55		

How would we conduct a goodness-of-fit test for no linkage?

Tests of Independence

Two categorical variables are said to be **independent** if the distribution of one variable does not depend on the value of the other variable.

Example: Consider the following data where a sample of 1398 children were classified with respect to tonsil size and carrier status of *Streptococcus pyogenes*.¹

	Carrier		
Size	yes	no	Total
small	19	497	516
\mathbf{medium}	29	560	589
$_{ m large}$	24	269	293
Total	72	1326	1398

These are the *observed* counts. The table below shows the estimated *expected* counts under the assumption that tonsil size and carrier status are *independent*. How are they computed?

	Carrier		
Size	yes	no	Total
small	26.58	489.42	516
\mathbf{medium}	30.33	558.67	589
$_{ m large}$	15.09	277.91	293
Total	72	1326	1398

¹Holmes, M. C. & Willaims, R. E. O. (1954). The distribution of carriers of Streptococcus pyogenes among 2413 healthy children. *Journal of Hygiene*, 52, 165–179.

Steps of a Test of Independence

- 1. State hypotheses in terms of independence of the variables.
- 2. Check assumptions (all expected counts should be at least five).
- 3. Compute the X^2 test statistic. Estimate the expected counts using the formula

$$\frac{R\times C}{T}$$

where R and C are the sum of the observed counts in the corresponding row and column, respectively, and T is the total of all the observed counts.

- 4. Compute the p-value using (r-1)(c-1) as the degrees of freedom, where r and c are the number of rows and columns of observed counts in the table, respectively.
- 5. Make a decision/conclusion.

The Two-Sample Test of Proportions

Recall the study of the influence of applicant's sex on personnel decisions.²

	Pron	notion	
Applicant	yes	no	Total
male	21	3	24
female	14	10	24
Total	35	13	48

We could investigate the relationship between applicant sex and promotion decision by a test of the hypotheses $H_0: p_m - p_f = 0$ versus $H_a: p_m - p_f \neq 0$ using the test statistic

$$z = \frac{\hat{p}_m - \hat{p}_f}{\sqrt{\hat{p}(1-\hat{p})(1/n_m + 1/n_f)}},$$

which yields a test statistic of $z \approx 2.27$ and a p-value of about 0.02. How is this test related to the test of independence using the X^2 test statistic? How is the z test statistic limited?

²Rosen, B. & Jerdee, J. (1974). Influence of sex role stereotypes on personnel decisions. *Journal of Applied Psychology*, 59, 9–14

Comparison of Chemotherapy Treatment Strategies

Consider the following data from a randomized experiment comparing two strategies for chemotherapy. 3

	Tumor Response				
Strategy	progressive disease	no change	partial remission	complete remission	Total
sequential	32	57	34	28	151
alternating	53	51	23	21	148
Total	85	108	57	49	299

³Holtbrugge, W. & Schumacher, M. (1991). A comparison of regression models for the analysis of ordered categorical data. *Applied Statistics*, 40, 249–259.