Octobre 2016

PRENOM

GROUPE : CL

Contrôle 1 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

Exercice 1 (4 points)

On considère, dans un repère orthonormé de base $(\vec{u}_x, \vec{u}_y, \vec{u}_z)$, les trois vecteurs :

 \vec{U} , \vec{V} et \vec{W} de composantes respectives: $\vec{U}(-4x,-2,+4)$; $\vec{V}(-1,+2,+3)$; $\vec{W}(-2,+4y,+6)$ a) Calculer la norme de chacun des vecteurs pour x=0 et y=-1.

04 20

Pour
$$x = 0$$
 et $y = -1$ on a $\vec{v}(0; -2; u) \vec{v}(-1; 2; 3)$ et $\vec{w}(-2; -4; 6)$
Alors $|\vec{v}| = \sqrt{50} = 2\sqrt{5}$
 $|\vec{v}| = \sqrt{56} = 2\sqrt{10}$

b) Calculer le produit scalaire $\vec{U}.\vec{V}$, donner la valeur de x pour laquelle \vec{U} est orthogonal à \vec{V} .

2- Calculer le produit vectoriel : $\vec{V} \wedge \vec{W}$, pour quelle valeur de y les vecteurs \vec{V} et \vec{W} sont colinéaires.

Priville de valeur du y pour laquelle les verteurs sont -6+6 Colinéaires est 1: (11)

-44+4)

Priville 12-12

O

-4+4

O

-4+4

Exercice 2

Composition de vecteurs (5 points)

Calculer la norme de la résultante \vec{R} des vecteurs forces dans les cas suivants (1) et (2) :

1)
$$F_1 = 4N$$

$$F_2 = 3N$$

$$\alpha = (\vec{F}_1, \vec{F}_2) = 90^\circ$$

$$F_2 = 2N$$

$$\alpha = (\vec{F}_1, \vec{F}_2) = 60^\circ$$

3) a- Donner les expressions littérales des composantes R_x et R_y de la résultante \vec{R} des forces représentées sur le schéma ci-dessous, en fonction de F₁, F₂, F₃, F₄, α et β.

b- En déduire l'expression littérale de la norme de la résultante \vec{R} en fonction des normes F_1, F_2, F_3 , F_4 , α et β .

Exercice 3 Cinématique (Sur 6 points)

Dans le repère $(O, \vec{u}_x, \vec{u}_y)$, la position d'un point M est définie à chaque instant t par les équations horaires: $\begin{cases} x(t) = 2t \\ y(t) = \sqrt{4(1-t^2)} \end{cases}$

1- Retrouver l'équation de la trajectoire. Préciser sa nature.

OM = Et + July-te)
Monvement rectilique uniforme

2- a) Déterminer les composantes cartésiennes du vecteur vitesse. Exprimer sa norme.

b) En déduire les composantes a_T et a_N du vecteur accélération dans la base de Frenet

3- a) Déterminer les composantes cartésiennes du vecteur accélération. Exprimer sa norme.

an= 0 ay =

b) En déduire que le module du vecteur accélération est indépendant du repère d'étude.

Exercice 4 Cinématique (5 points)

On considère le mouvement d'un point matériel sur une spirale tracée sur un cône. Les équations horaires du mouvement en coordonnées cylindriques sont données par :

$$\begin{cases} \rho(t) = \rho_0 \exp(\omega t) \\ z(t) = a\rho_0 \exp(\omega t) \end{cases}$$
 (a, ρ_0 , ω sont des constantes positives et $\theta = \omega$)

1- Donner le vecteur position \vec{OM} en coordonnées cylindriques.

2- Exprimer le vecteur vitesse en coordonnées cylindriques. En déduire sa norme.

3- Exprimer les composantes du vecteur accélération dans les mêmes coordonnées. En déduire sa norme.