Lab 6: styczna i pochodna

Wprowadzenie

Sieczna to prosta przecinająca krzywą w dwóch punktach, styczna ma jesden punkt wspólny z krzywą.

1. Narysuj wykres funkcji $g(x) = x^2 - 2x - 5$ oraz wyznacz i narysuj sieczną przechodzącą przez punkty (2, g(2)) i

(8, g(8)), znajdź jej współczynnik nachylenia.

2. Narysuj wykres funkcji g(x) oraz wykresy siecznych przechodzących przez następujące punkty (a) (4, g(4)) i (8, g(8)),

(b) (7, g(7)) i (8, g(8)),

wyznacz ich współczynniki nachylenia.

3. Na podstawie powyższych obserwacji wywnioskuj co się dziejez sieczną przechodzącą przez punkty (x, g(x)) i

(8, g(8)), gdy x dąży do 8. Do jakiej prostej dąży ciąg siecznych, gdy $x \rightarrow 8$?

4. Jaki będzie wzór ogólny na współczynnik nachylenia siecznej przechodzącej przez punkty (x, g(x)) i (8, q(8))?

Jaki jest współczynnik nachylenia prostej, gdy x dąży do 8? Nazywamy go współczynnikiem nachylenia prostej

stycznej. Będzie on wyrażony przez pochodną funkcji q(x) w x = 8.

Pochodna funkcji w punkcie

Jak widzieliśmy powyżej pochodna funkcji f(x) w punkcie x_0 jest też współczynnikiem nachylenia prostej stycznej do wykresu funkcji w punkcie $(x_0, f(x_0))$. Współczynnik nachylenia prostej stycznej może być wyznaczony z wzoru

$$\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$$

tzn. gdy odległość między x a x_0 (oznaczana np. przez h) dąży do θ (demonstracja), więc inny sposób zapisu wzoru jest następujący

$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$

5. Dla funkcji g(x) znajdź współczynnik nachylenia prostej stycznej w punkcie (6, g(6)) korzystając z iednego z

powyższych wzorów. Wyznacz równanie prostej stycznej w tym punkcie, narysuj tę prostą wraz z wykresem

funkcji q(x).

6. Odczytaj z wykresu jaki może być współczynnik nachylenia stycznej dla *x*=1, a następnie sprawdź to i

narysuj oba wykresy w tym samym układzie współrzędnych.

- 7. Co możesz powiedzieć o pochodnej w punkcie, w którym styczna jest linią poziomą? Jaka jest pochodna w
 - punktach, w których funkcja jest rosnąca?
- 8. Znajdź g'(0) i na podstwie jej wartości wywynioskuj czy funkcja jest rosnąca czy malejąca.
- 9. Wykonaj animację rysowania się stycznej do wykresu funkcji g(x) na zadanym przedziale na wykresie. Chcemy żeby podczas animacji rysowany układ współrzędnych pozostawał bez zmian (podpowiedź: użyt **PlotRange**).

Linearyzacja

Zauważmy, że styczna do funkcji f(x) w x_0 daje bardzo dobre przybliżenie wartości funkcji dla x bardzo bliskich x_0 . Nazywamy to linearyzacjq, ponieważ przybliżamy funkcję linią prostą w małym otoczeniu x_0 .

W poniższych ćwiczeniach naszym celem będzie przybliżenie wartości $\sqrt{5}$.

- 10. Zdefinuj i narysuj wykres funkcji $f(x) = x^2 5$ (tak, aby na wykresie było widać oba pierwiastki).
- 11. Skorzystamy z tego, że jeden z pierwiastków $(\sqrt{5})$ znajduje się blisko liczby 2. Znajdź równanie stycznej do f(x) dla x=2.
- 12. Ponieważ styczna jest dobrym przybliżeniem f(x) w otoczeniu x=2, wykorzystaj pierwiastek funkcji

opisującej prostą styczną. Porównaj wynik z wartością $\sqrt{5}$, wpisz

N[Sqrt[5]]

- 13. Wyjaśnij dlaczego styczna wyznaczona w ćwiczeniu 10 nie da dobrego przybliżenia wartości $\sqrt{30}$.
- 14. Powtórz kroki z ćwiczeń 10 i 11 podstawiając *x*=2,2 zamiast *x*=2. Wyjaśnij dlaczego dostajemy lepsze

przybliżenie $\sqrt{5}$ dla x=2,2.