HW1

Due date: 04/06/2018

- 1. Durrett excercise 5.2.2
- 2. Complete the steps of Durrett example 5.2.4 (if you use the Borel-Cantelli lemma, explain why you can use it)
- 3. Durrett excercise 5.2.13
- 4. Let τ be a stopping time with respect to a filtration $\{\mathcal{F}_n\}$. Show that
 - (a) $\mathcal{F}_{\tau} = \{ A \in \sigma(\cup_n \mathcal{F}_n) \mid A \cap \{ \tau \leq n \} \in \mathcal{F}_n \text{ for all } n \} \text{ is a } \sigma\text{-field}$
 - (b) σ is another stopping time such that $\sigma \leq \tau$ a.s. then $\mathcal{F}_{\sigma} \subset \mathcal{F}_{\tau}$
 - (c) If X_n is adapted to $\{\mathcal{F}_n\}$, then X_{τ} is \mathcal{F}_{τ} -measurable
- 5. Let $\{X_n\}$ be a martingale with $\sup_n E|X_n| < \infty$. Show that there is a representation $X_n = Y_n Z_n$ where $\{Y_n\}$ and $\{Z_n\}$ are both non-negative martingales with $\sup_n E|Y_n| < \infty$ and $\sup_n E|Z_n| < \infty$.
- 6. Let $\{X_n\}$ and $\{Y_n\}$ be positive integrable processes adapted to a filtration $\{\mathcal{F}_n\}$ such that $\sum_{n\geq 1}Y_n<\infty$ a.s. and $E(X_{n+1}|\mathcal{F}_n)\leq (1+Y_n)X_n+Y_n$. Prove that X_n converges a.s. to a finite limit as $n\to\infty$.