Math135 - November 26, 2015 Reducible Polynomials - FTA

Proof: Prove that a polynomial over any field \mathbb{F} of degree $n \geq 1$ has, at most, n distinct roots.

Proof by induction.

Base case: When n = 1, f(x) = ax + c, which has the sole root, $x = -\frac{c}{a}$. The polynomial is degree one, and has at most, one root.

Inductive Hypothesis: Assume that a polynomial of degree k has at most k roots for some $k \in \mathbb{N}$.

Inductive Conclusion: Need to show: A polynomial of degree k+1 has at most k+1 distinct roots.

Let f(x) be a polynomial of degree k+1.

Assume $x = c_1$ is a root of f.

We know $(x - c_1)$ is a factor of f(x). (FT)

 $f(x) = (x - c_1)q(x)$ where q(x) is a polynomial of degree k.

q(x) is a polynomial of degree k, which, by the inductive hypothesis, has at most k roots. Combined with our root $(x - c_1)$, we have at most k + 1 roots.

 \therefore by POMI, the statement holds $\forall n \in \mathbb{N}$

Note: Its important to note that \mathbb{F} is a field. This properly does not apply in \mathbb{Z}_n with a non-prime n, or \mathbb{Z} .

Reducible / Irreducible

Let \mathbb{F} be a field. A polynomial in $\mathbb{F}[x]$ positive degree is reducible in $\mathbb{F}[x]$ if it can be written as the product of two polynomials in $\mathbb{F}[x]$ of positive degree. Otherwise, the polynomial is irreducible in $\mathbb{F}[x]$

Ex. Write $f(x) = x^4 + x^2 + 1$ as a product of irreducible factors in $\mathbb{Z}_3[x]$

In \mathbb{Z}_3 , we only have 3 numbers to check so we can just plug them in and see which produce 0.

$$f(0) = 1, f(1) = 0, f(2) = 0$$

 $\therefore x = 1, 2 \text{ are roots.}$

So, the polynomial is divisible by $(x-1)(x-2) = (x+2)(x+1) = x^2 + 2$.

$$(x^2 + 2)(x^2 + 2) = x^4 + x^2 + 1$$
 (By inspection)
= $(x + 2)^2(x + 1)^2$

x = 1, 2 are repeated roots.

Multiplicity of a Root

The multiplicity of a root c of a polynomial f(x) is the largest positive integer k such that $(x-c)^k$ is a factor of f(x).

Ex.
$$f(x) = x^2 + 1$$
 in $\mathbb{R}[x]$

This is irreducible.

Note: $(x^2 + 1)^2 = x^4 + 2x^2 + 1$ has no roots in $\mathbb{R}[x]$, but is still reducible. Roots and reducible-ness are related, but don't have an absolute 1-1 relationship.

What if we use \mathbb{C} ?

$$x^2 + 1 = (x - i)(x + i)$$

So,
$$x^4 + 2x^2 + 1 = (x - i)^2(x + i)^2$$

 $x = \pm i$ are roots with multiplicity of 2.

Fundamental Theorem of algebra

For all complex polynomials f(z) with $\deg(f(z)) \geq 1$, there exists a $z_0 \in \mathbb{C}$ such that $f(z_0) = 0$

Ex. Solve
$$x^30x^2 + x - 1 = 0$$
 in \mathbb{C}

$$x^{2}(x-1) + (x-1) = 0$$
$$(x-1)(x^{2}+1) = 0$$
$$x = 1, \pm i$$

Complex Polynomials of Degree n Have n Roots (CPN)

If f(z) is a complex polynomial of degree $n \ge 1$, then f(z) has n roots, $c_1, c_2, \ldots, c_n \in \mathbb{C}$ and can be written as:

$$c(z-c_1)(z-c_2)\dots(z-c_n)$$
 for some $c\in\mathbb{C}$