FIA - WS 2014/15

1 Introduction

1.1 Internet

- loosely hierarchical: tier 1 to tier 3
- communications infrastructure enables distributed applications
- hyper... ⇒ concentration of content (Amazon, Google, ...)

1.2 Protocol Layering

- ISO/OSI
- \bullet TCP, UDP, ICMP, UDP Like, SCTP, ...
- DHCP, NAT, ...

1.3 Analogue digital conversion

- Fourier transformation
- sampling theorem + Nyquist
- PCM-transmission
- small amplitudes are being encoded more detailed than large amplitudes

1.4 Color Coding

- monochrome, RGB, YCbCr
- RGB:
 - red, green, blue values between $[0, \{7,31,...,65535\}]$
 - nonlinear encoding of intensities
 - computer graphics
- YCbCr
 - TV and digital video
 - Y more important \Rightarrow encode with more details
 - more efficient than RGB
 - can handle downsampling better
 - YUV is based color model used in analog color TV
 - * YCbCr is scaled and offset version
 - $\ast\,$ YPbPr is the analog version of YCbCr

2 Digital coding of audio and video

2.1 Rate-Distortion Theory

- lossless compression algorithms
 - allow perfect reconstruction
 - low compression ratios
 - frequently encountered data is encoded more efficiently
- lossy compression algorithms
 - result is only a close approximation of original data
 - trade-off: distortion vs. required rate
 - much higher compression rate than lossless compression

//TODO: bild einfuegen

- rate and distortion as measures for efficiency of compression and difference between reconstructed and original data
 - goal is to minimize distortion and rate
 - basic problem:
 - * minimum expected distortion at a given rate?
 - * minimum rate to achieve given distortion?
- distortion measures
 - mean square error $\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i y_i)^2$
 - signal to noise ratio $SNR = 10log_{10} \frac{\sigma_x^2}{\sigma_d^2}$
 - peak signal to noise ratio $PSNR = 10log_{10} \frac{x_{peak}^2}{x_d^2}$
- in order to maximize efficient communication maximize mutual information between x and y
- rate distortion function

2.2 digital image

- conversion between RGB and YUV
- downsampling J:a:b
 - $-4:4:4 \stackrel{\frown}{=} \text{no downsampling}$

 - 4:2:0 =
- statistical image modeling
 - all natural images occupy a tiny and unknown sloped space of all images
 - pixel intensities are dependent and correlated to the corresponding image \Rightarrow pixel within images are highly correlated
 - correlation of pixels has high impact on image compression
- image transformations
 - negative transformations

- log transformations
- power-law transformations

• intensity:

- change in brightness \Rightarrow shift of histogram
- change in contrast \Rightarrow stretch/? of histogram
- filters based on convolution of neighbor pixels \Rightarrow enhancement, smoothing, edge, detection, ...
- the hoar transform
 - simplest useful energy compression
 - lossless retransformation is possible
 - transform original image into 4 parts (in 20)
 - 1. top-left: a+b+c+d, 4 point average, very important
 - 2. top-right: a-b+c-d, average horizontal gradient, less important
 - 3. bottom-left: a+b-c-d, average vertical gradient, less important
 - 4. bottom-right: a-b-c+d, diagonal curvature, less important
 - 1 is more expensive while 2-4 is cheaper to encode
 - reordering required to provide "typical" representation
- entropy quantifying the required bitrate
 - entropy H_x represents the mean number of bits per pixel that are required to encode the image
 - $-H_x = \sum_{i=0}^{M-1} p_i \log_2\left(\frac{1}{p_i}\right)$ where $p_i = \frac{\text{pixel in bin i}}{N}$ where N is the number of pixels
 - estimated number of bits needed is $H_x \cdot N$
- the Karkunen-Loeve transform (KLT)
 - is optimal for minimizing bitrate
 - not or seldom used in practice \Rightarrow slow and complex
- the discrete cosine transformation (DCT)
 - seems to put most energy on a small number of values
 - linear transformation
 - each real world image can be represented by a combination of the DCT bases
 - DCT bases fit better to typical images than FFT or DST
 - first coefficient of DCT is mean of values being transformed and represents average tone of the block. subsequent blocks add further detail
 - JPEG: 8×8 DCT (empirically found to be good)

• need for wavelets

- signals are available in time-domain but processing frequency information is much more easy
- transformations (e.g. FFT) translate time-domain signals into frequency domains
 - * useful for stationary signals where all frequencies are present at all times
 - * not useful for instationary signals: both information required
 - * solution: short term transformation—transformation of small fixed timewindows (similar to blocks of images)
- wavelet analysis uses different sized windows
 - * high frequency parts \Rightarrow small windows \Rightarrow good time resolution
 - * low frequency parts \Rightarrow big windows \Rightarrow good frequency resolution

2.3 JPEG compression

• joint photographic experts groups

2.4 digital video

- high corellation between successive frames
- interframe differential pulse code modulation (⇒ vgl. skript skizze)
- frame replenishment \Rightarrow pixels are only transmitted if a specified threshold is exceeded, otherwise nothing is transmitted
- change detection
 - pixel wise change detector
 - block wise change detector
 - comparision between current and previous frame
 - * substract previous frame from current one
 - * convert to absolute value
 - * generate 3×3 averages
 - * check for threshold
- motion compensated coding