COMP 530 Quiz #3

My	name is	

Only one answer per question. If you feel that a question has more than one answer, choose the one that you feel is the best answer.

(1) Consider the following extendible hashing file:

gd = 2		ctory; ; ptr
gu – 2	0	2
	1	1
	2	3
	3	1

Data						
address	ld	(lata			
1	1		1	3	5	7
2	2		0	8	12	
3	2		2	6	22	
· ·						

Say I add the data item 9. Then, what is one possible configuration for the second and fourth entries in the directory, respectively?

- (a) 1 1 and 3 1
- (b) 1 1 and 3 3
- (c) 1 1 and 3 4
- (d) 1 2 and 3 3
- (e) None of the above, since the directory would have doubled

(2) Say I then add the data items 20, 26, and 4. At this point, what will the directory look like?

Ì	H(k)	; pt	r <i>1</i>	H(k)	; pt
	0	2		0	2
	1	1		1	1
	2	3		2	3
	3	1		3	3

(a)

<i>i(k)</i> ; pur				
2				
1				
3				
3				
	•			
	2 1 3			

H(k)); ptr
0	2
1	1
2	3
2	5
3	4

(c)

H(k); ptr				
	0	2		
	1	1		
	2	3		
	3	4		
	4	5		
	5	1		
	6	3		
	7	4		

Ì	H(k); ptr				
	0	2			
	1	1			
	2	3			
	3	4			
	4	2			
	5	1			
	6	3			
	7	5			

1	H(k); ptr			
	0	2		
	1	1		
	2	3		
	3	1		
	0	2		
	1	1		
	2	3		
	3	2		

(d)

(e)

(f)

(3) What will the global depth be at this point?

(b)

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) 4

(4) What could be the contents of bucket 2 at this point?

- (a) 8 0
- 0 12
- 0 26 (d)
- (e) 0 16

(5) If the global depth of an extendible hashing file is 5, and the local depth of a bucket (disk block) is 3, then how many pointers to that disk block will there be?

- (a) 1
- (b) 3
- (c) 4
- (d) 5
- (e) 8

(6) In the following linear hashing file, one of the records is in the wrong place. Which one is it?

	Page nur	n			A
Cursor =	000	0100	1100	1000	Hashed using 2 bits
Cursor=	001 _	0011	0101		Hashed using 1 bit
	010	1010	1111		Hashed using 2 bits
	011				+
	100				
	101				
	110				
	111				

- (a) 1100
- (b) 0101
- (c) 0011
- (d) 1010
- (e) 1111
- (7) Say that I reinsert the "incorrect" record into its correct slot, and then I add a record with key value 1101 into the file. If the maximum fill percentage for the file is 80%, then what will the contents of the second bucket or block in the file be?
- (a) It will remain unchanged
- (b) It will have items 0011, 0101, 1111, and 1101, with one of them attached via a chain
- (c) It will have items 0101 and 1101
- (d) It will have items 0011 and 0101
- (e) None of the above
- (8) Continuing the last question, say I then add the items 1011 and 0111 to the file. What will the contents of the fourth block in the file be?
- (a) It will have items 1111 and 0111
- (b) It will have items 0011 and 1011
- (c) It will have items 0011, 1111, 1011, and 0111, with one of them attached via a chain.
- (d) None of the above

- (9) Again continuing the with the same problem, what will the contents of the first block be?
- (a) It will be empty
- (b) 0100, 1100, 1000
- (c) 0100 and 1000
- (d) only 1000
- (e) None of the above
- (10) What is the big advantage of linear hashing as opposed to static hashing?
- (a) Linear hashing can handle a dynamically growing file size.
- (b) Linear hashing guarantees no more than 2 disk I/Os per lookup.
- (c) Linear hashing can more easily handle long runs of key values.
- (d) Static hashing does not require that the hash function be known beforehand.
- (11) What is the big advantage of linear hashing as opposed to extendible hashing?
- (a) Linear hashing can handle a dynamically growing file size.
- (b) Linear hashing does not require a directory file.
- (c) Extendible hashing will have big problems with long runs of identical key values.
- (d) Extendible hashing does not have to make use of chaining.
- (12) What is the big advantage of a B+-Tree as opposed to all of the various hashing schemes?
- (a) Hashing schemes cannot work with long strings as key values.
- (b) The B+-Tree can more efficiently handle insertions.
- (c) The B+-Tree can handle range queries with relative efficiency.
- (d) The B+-Tree can handle a dynamically growing file size.