МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Организация ЭВМ и систем»

Тема: Трансляции, отладка и выполнение программ на языке Ассемблера.

Студент гр. 0382	Злобин А. С.
Преподаватель	Евфремов М. А

Санкт-Петербург

Цель работы.

Изучить трансляцию, отладку и выполнение программ на языке Ассемблера

Задание.

Вариант 2

Часть 1

- 1. Просмотреть программу hello1.asm, которая формирует и выводит на экран приветствие пользователя с помощью функции ОС MSDOS, вызываемой через прерывание с номером 21H (команда Int 21h). Выполняемые функцией действия и задаваемые ей параметры следующие: обеспечивается вывод на экран строки символов, заканчивающейся знаком "\$"; требуется задание в регистре аh номера функции, равного 09h, а в регистре dx смещения адреса выводимой строки; используется регистр ах и не сохраняется его содержимое.
- 2. Разобраться в структуре и реализации каждого сегмента программы. Непонятные фрагменты прояснить у преподавателя. Строку-приветствие преобразовать в соответствии со своими личными данными.
 - 3. Загрузить файл hello1.asm из каталога Задания в каталог Masm.
- 4. Протранслировать программу с помощью строки > masm hello1.asm с созданием объектного файла и файла диагностических сообщений (файла листинга). Объяснить и исправить синтаксические ошибки, если они будут обнаружены транслятором. Повторить трансляцию программы до получения объектного модуля.
- 5. Скомпоновать загрузочный модуль с помощью строки > link hello1.obj с созданием карты памяти и исполняемого файла hello1.exe.
- 6. Выполнить программу в автоматическом режиме путем набора строки > hello1.exe убедиться в корректности ее работы и зафиксировать результат выполнения в протоколе.
- 7. Запустить выполнение программы под управлением отладчика с помощью команды > afd hello1.exe 4 Записать начальное содержимое сегментных регистров CS, DS, ES и SS. Выполнить программу в пошаговом

режиме с фиксацией используемых регистров и ячеек памяти до и после выполнения каждой команды.

Часть 2

Выполнить пункты 1 - 7 части 1 настоящего задания применительно к программе hello2.asm, приведенной в каталоге Задания, которая выводит на экран приветствие пользователя с помощью процедуры WriteMsg, а также использует полное определение сегментов. Сравнить результаты прогона под управлением отладчика программ hello1 и hello2 и объяснить различия в размещении сегментов.

Выполнение работы.

Часть 1

- 1) Изучена программа hello1.asm. Строка приветствия была изменена в соответствии с личными данными.
- 2) Выполнена трансляция hello1.asm в hello1.obj с созданием файла листинга. Трансляция прошла без ошибок.
- 3) Выполнена компоновка объектного файла с созданием карты памяти и исполняемого файла hello.exe
- 4) Выполнен запуск исполняемого файла в автоматическом режиме. Результатом работы является строка: "hello everybody, its Andrew Zlobin from 0382"
- 5) Выполнен запуск исполняемого файла с помощью отладчика.

Таблица 1. Результаты выполнения hello1.exe в отладчике

Начальные значения сегментных регистров: (CS) = 1A05, (DS) = 19F5, (ES) = 19F5, (SS) = 1A0A

команды ий код	Символическ	16-ричный код команды	Содержимое регистров и ячеек памяти	
	ий код команды		до выполнения	после выполнения
0010	MOV AX, 1A07	B8071A	(AX) = 0000 (IP) = 0010	(AX) = 1A07 (IP) = 0013

0013	MOV DS, AX	8ED8	(DS) = 19F5 (IP) = 0013	(DS) = 1A07 (IP) = 0015
0015	MOV DX, 0000	BA0000	(DX) = 0000 (IP) = 0015	(DX) = 0000 (IP) = 0018
0018	MOV AH, 09	B409	(AX) = 1A07 (IP) = 0018	(AX) = 0907 (IP) = 001A
001A	INT 21	CD21	(IP) = 001A	(IP) = 001C
001C	MOV AH, 4C	B44C	(AX) = 0907 (IP) = 001C	(AX) = 4C07 (IP) = 001E
001E	INT 21	CD21	(IP) = 001E	(IP) = 0010

Часть 2. Проделаем аналогичные шаги для программы hello2.exe

При запуске на экран было выведено: "Hello Worlds! \n Student from 0382 - Andrew Zlobin"

Начальное значение сегментных регистров:

$$(CS) = 1A0A, (DS) = 19F5, (ES) = 19F5, (SS) = 1A05$$

Адрес	команды код команды	16-ричный код команды	Содержимое регистров и ячеек памяти	
команды			До выполнения	После выполнения
0005	PUSH DS	1E	(IP) = 0005 (DS) = 19F5 (SP) = 0018 Stack +0 0000 +2 0000 +4 0000 +6 0000	(IP) = 0006 (DS) = 19F5 (SP) = 0016 Stack +0 19F5 +2 0000 +4 0000
0006	SUB AX, AX	2BC0	(AX) = 0000 (IP) = 0006	(AX) = 0000 (IP) = 0008

0008	PUSH AX	50	(AX) = 0000 (SP) = 0016 (IP) = 0008 Stack:+0 19F5	(AX) = 0000 (SP) = 0014 (IP) = 0009 Stack: +0 0000 Stack:+2 19F5
0009	MOV AX,1A07	B8071A	(AX) = 0000 (IP) = 0009	(AX) = 1A07 (IP) = 000C
000C	MOV DS, AX	BED8	(DS) = 19F5 (AX) = 1A07 (IP) = 000C	(DS) = 1A07 (AX) = 1A07 (IP) = 000E
000E	MOV DX, 0000	BA0000	(DX) = 0000 (IP) = 000E	(DX) = 0000 (IP) = 0011
0011	CALL 0000	E8ECFF	(SP) = 0014 (IP) = 0011 Stack: +0 0000 Stack:+2 19F5	(SP) = 0012 (IP) = 0000 Stack: +0 0014 +2 0000 +4 19F5
0000	MOV AH, 9	B409	(AX) = 1A07 (IP) = 0000	(AX) = 0907 (IP) = 0002
0002	INT 21	CD21	(IP) = 0002	(IP) = 0004
0004	RET	СЗ	(IP) = 0004 (SP) = 0012 Stack: +0 0014 +2 0000 +4 19F5	(IP) = 0014 (SP) = 0014 Stack: +0 0000 +2 19F5
0014	MOV DX, 0010	BA1000	(DX) = 0000 (IP) = 0014	(DX) = 0010 (IP) = 0017
0017	CALL 0000	E6FF	(SP) = 0014 (IP) = 0017 Stack: +0 0000 +2 19F5	(SP) = 0012 (IP) = 0000 Stack:+0 001A +2 0000 +4 19F5
0000	MOV AH, 9	B409	(AX) = 1A07 (IP) = 0000	(AX) = 0907 (IP) = 0002
0002	INT 21	CD21	(IP) = 0002	(IP) = 0004

0004	RET	С3	(IP) = 0004 (SP) = 0012 Stack:+0 001A +2 0000 +4 19F5	(IP) = 001A (SP) = 0014 Stack:+0 0000 +2 19F5
001A	RET Far	СВ	(IP) = 001A (SP) = 0014 (CS) = 1A0B Stack:+0 0000 +2 19F5	(IP) = 0000 (SP) = 0018 (CS) = 19F5 Stack:+0 0000 +2 0000
0000	INT 20	CD 20	(IP) = 0000	(IP) = 0005

Выводы.

Были изучены основные элементы синтаксиса ассемблера и правила написания программ на нём. Та же были рассмотрены процессы трансляции, компоновки и выполнения программы.

Приложение А

Исходный код программы

Название файла: hello1.asm

```
; HELLO1.ASM - упрощенная версия учебной программы лаб.раб. N1
              по дисциплине "Архитектура компьютера"
 ****************
 Назначение: Программа формирует и выводит на экран приветствие
             пользователя с помощью функции ДОС "Вывод строки"
             (номер 09 прерывание 21h), которая:
              - обеспечивает вывод на экран строки символов,
;
               заканчивающейся знаком "$";
              - требует задания в регистре ah номера функции=09h,
               а в регистре dx - смещения адреса выводимой
               строки;
              - использует регистр ах и не сохраняет его
               содержимое.
 ******************
   DOSSEG
                                             ; Задание сегментов под
ДОС
    .MODEL SMALL
                                                          ; Модель
памяти-SMALL (Малая)
   .STACK 100h
                                              ; Отвести под Стек 256
байт
   .DATA
                                            ; Начало сегмента данных
Greeting LABEL BYTE
                                            ; Текст приветствия
  DB 'hello everybody, its Andrew Zlobin from 0382',13,10,'$'
   .CODE
                                     ; Начало сегмента кода
  mov ax, @data
                                      ; Загрузка в DS адреса начала
                                     ; сегмента данных
  mov ds, ax
  mov dx, OFFSET Greeting
                                      ; Загрузка в dx смещения
                                     ; адреса текста приветствия
DisplayGreeting:
  mov
      ah, 9
                                      ; # функции ДОС печати строки
      21h
  int
                                     ; вывод на экран приветствия
   mov ah, 4ch
                                          ; # функции ДОС завершения
программы
   int 21h
                                      ; завершение программы и выход
в ДОС
  END
    Название файла: hello2.asm
```

```
; HELLO2 — Учебная программа N2 лаб.раб.#1 по дисциплине "Архитектура компьютера"
; Программа использует процедуру для печати строки
;
; ТЕКСТ ПРОГРАММЫ

ЕОFLine EQU '$' ; Определение символьной константы
; "Конец строки"
```

```
; Стек программы
ASSUME CS:CODE, SS:AStack
AStack
          SEGMENT STACK
          DW 12 DUP('!') ; Отводится 12 слов памяти
AStack
        ENDS
; Данные программы
DATA
        SEGMENT
; Директивы описания данных
         DB 'Hello Worlds!', OAH, ODH, EOFLine
HELLO
GREETING DB 'Student from 0382 - Andrew Zlobin $'
DATA
         ENDS
; Код программы
          SEGMENT
; Процедура печати строки
WriteMsg PROC NEAR
          mov
              AH,9
          int 21h ; Вызов функции DOS по прерыванию
          ret
WriteMsg ENDP
; Головная процедура
Main
         PROC FAR
          push DS ;\ Сохранение адреса начала PSP в стеке sub AX, AX ;> для последующего восстановления по push AX :/ комачие тот
          push AX
                        ;/ команде ret, завершающей процедуру.
          mov AX, DATA
                                     ; Загрузка сегментного
          mov DS, AX
                                     ; регистра данных.
                                   ; Вывод на экран первой
          mov DX, OFFSET HELLO
          call WriteMsg
                                     ; строки приветствия.
          mov DX, OFFSET GREETING; Вывод на экран второй
          call WriteMsg
                                    ; строки приветствия.
                                     ; Выход в DOS по команде,
          ret
                                     ; находящейся в 1-ом слове PSP.
Main
         ENDP
CODE
         ENDS
```

END Main