YouTube Videos Analysis

Justin Tapia Kevin MacDonald Snehal Desavle Zara Khan

Outline

- → Topic
- Questions We Hope to Answer
- → Technologies Used
- → Data Source
- → Data Exploration Phase
- → Data Analysis Phase
- → Machine Learning
- → Dashboard
- → Things We Would Have Done Differently

Topic

Why

Which YouTube video and channel metrics play the biggest role in creating a video that will gain the largest amount of views?

YouTube's dense and diverse arrays of users and content providers pose ample room for analyzing and characterizing the popularity of its videos

Problem Statement

Research Questions

Predict a YouTube video's success by analyzing the metrics of channels and videos by the topic category of the video.

What features and traits do successful videos have in common across categories?

How do meta-level features drive user engagement and popularity of a video?

Language

Dashboard

Data Storage

PostgreSQL

Data Source

YouTube Data
API v3

Data Exploration Phase

Categories

- Cooking
- Fitness
- History
- Science
- News
- Music
- Comedy
- Travel

Channels

- Grabbed the top 10 channels from each category.
- Grabbed random channels from each category
- Grabbed top 20 English language channels

Videos

From Each Channel, grab the 50 most recent uploads, and recent comments from each video

Data Source (Code)

- Get list of channels for analysis:
 - Wikipedia List of most-subscribed YouTube Channels
 - "Best YouTube Channels by Category" compiled by Clifford Chi
 - "Random Sampling" of channels compiled by Zara Khan
- Feed channel list into YouTube Data API v3

```
# for loop to get channel details
for channel in video_list:
    response = youtube.channels().list(
        part=['snippet', 'statistics', 'topicDetails', 'contentDetails'],
        id=channel
    ).execute()
    # append response to dataframe
    df = df.append(response['items'], ignore_index=True)
```

Get 50 most recent videos from each channel

```
response = youtube.channels().list(
   part=['contentDetails'],
   id=channel_id
).execute()

playlist_id = response['items'][0]['contentDetails']['relatedPlaylists']['uploads']

response = youtube.playlistItems().list(
   part=['contentDetails'],
   playlistId=playlist_id,
   maxResults=50
).execute()
```

• Get recent comments from each video

```
def get_comments(video_id):
    try:
        results = youtube.commentThreads().list(
            part="snippet",
            videoId=video_id,
            textFormat="plainText",
                maxResults=20
        ).execute()

    comments = []
    for item in results["items"]:
        comment = item["snippet"]["topLevelComment"]["snippet"]["textDisplay"]
        comments.append(comment)
        return comments
    except:
        return None
```

Get sentiment analysis for comments

Ran Channel IDs for Channel Metadata

Dropped columns: title, description, thumbnails, default language, topicIds, related Playlists, and category_title

id	object
title	object
description	object
customUrl	object
publishedAt	object
thumbnails.default.url	object
defaultLanguage	object
viewCount	int64
subscriberCount	int64
videoCount	int64
topicIds	object
topicCategories	object
relatedPlaylists.uploads	object
category_title	object
dtype: object	

Ran Channel IDs for Top 50 Videos Metadata

```
# get the 50 videos from each channel in all_channels
video_list = []
for channel in all_channels:
    video_list.append(get_50_videos(channel))

# flatten the list
video_list = [item for sublist in video_list for item in sublist]

# convert to csv
df = pd.DataFrame(video_list)
df.to_csv('video_list.csv', index=False)

video_list
```

video_id	object
channel_id	object
video_title	object
video_title_clean	object
published	datetime64[ns, UTC]
video_views	int64
video_madeforkids	bool
video_likes	int64
video_comment_count	int64
video_length	object
video_description	object
video_tags	object
dtype: object	

Dropped columns: video_title, video_madeforkids, video_description, video_tags

Data Source (Tables)

After using the YouTube API, the resulting data was contained in two tables:

Our joined dataframe contains 8603 rows and 13 columns.

Channels Table

- Channel ID
- Channel Name
- Channel Category
- View Count
- Subscriber Count
- Video Count

ld T	Custom Url ▼	Video_category	View Count ▼	Subscriber Cou	Video Count
UCVaXclURQZlal	@news19wltx	Society	150105437	249000	24026
UCQqaNnVhS1v	@channel4come	Humour	132644274	167000	726
UC6YN4FNhAKN	@queencitynew:	Society	83768935	125000	11538
UCjlgDApB1OrU	@cookingwithsh	Food	44025876	422000	453
UCf7J0vxbg6Sslj	@britishcomedy	Film	40935727	37800	951

Videos Table

- Channel ID
- Video ID
- Video Title
- Published Date
- Video Length
- Comment Count
- Like Count
- View Count

Channel_id ▼	Video_id ▼	Video_title_clea	Published T	Video_length ▲	Video_commen	Video_likes ♥	Video_views [▼]
UC0VOyT2OCBK	Sujm6756pZU	Ariana Grande m	2020-10-30 04:0	2:40	14048	300403	13537474
UCbCmjCuTUZo	hqFfJBOrvHw	Humpty Dumpty	2022-09-27 07:0	2:42	0	33185	8768272
UCbCmjCuTUZo	LA2q3QwhG54	Belly Button Dar	2022-07-05 16:0	2:42	0	105966	31790993
UC3gNmTGu-TT	686jgVnwh5M	Morbius 2022 Br	2022-10-31 15:4	2:43	12	111	5855
UC3gNmTGu-TT	RMrcKVzwqyU	Resident Evil Aft	2022-10-27 15:4	2:43	6	105	6452

Data Analysis Phase

Channels Dataframe

	id	customUrl	video_category	viewCount	subscriberCount	videoCount
0	UCVaXclURQZlakiTMzuwHvRw	@news19wltx	Society	150105437	249000	24026
1	UCQqaNnVhS1w_iTeFalJsXog	@channel4comedy	Humour	132644274	167000	726
2	UC6YN4FNhAKN3MDO5DbJSnOA	@queencitynews	Society	83768935	125000	11538
3	UCjlgDApB1OrU_3-1dLMHOZg	@cookingwithshotgunred	Food	44025876	422000	453
4	UCf7J0vxbg6SsljY9587PEiQ	@britishcomedyguide	Film	40935727	37800	951
105	UCXsQIHGuoWqukC9vz-uonrg	@collinabroadcast	Tourism	163749185	1460000	91
106	UCdPambxHRj0kdFPNoJFM98A	@georgebenson	Sport	151941207	1020000	1266
107	UC_ptyMRLOsS1Uj0a34a_xCA	@chonnyday	Food	126569583	689000	427
108	UCJsSEDFFnMFvW9JWU6XUn0Q	@seekerstories	Lifestyle	88299661	542000	257
109	UCd5xLBi_QU6w7RGm5TTznyQ	@sundayfundayz	Tourism	75488060	643000	400

2022-10-18 07:00:19+00:00

2022-03-28 15:00:24+00:00

2022-03-27 15:00:04+00:00

2022-03-26 15:00:09+00:00

2022-03-25 18:00:03+00:00

2022-03-24 15:00:11+00:00

2:39

4:49

16

16

9

8775011

311

4642

5091

31

76

46041

4

166

133

2

0

0

79

0

0

channel_id	video_id	video_title_clean	published	video_length	video_comment_count	video_likes	video_views
UCbCmjCuTUZos6Inko4u57UQ	lmH5uqwaFq8	Airplane Song CoComelon Nursery Rhymes Kids Songs	2022-11-01 07:00:15+00:00	2:59	0	19653	3425275
UCbCmjCuTUZos6Inko4u57UQ	0SY0Yn0yF9o	Wheels On The Bus More Nursery Rhymes Kids Son	2022-10-29 07:00:00+00:00	29:52:00	0	15076	2882582
UCbCmjCuTUZos6Inko4u57UQ	sNyF7BvVfxs	Bingos Bath Song CoComelon Nursery Rhymes Kids	2022-10-25 07:00:16+00:00	2:49	0	47763	8673081
LIChCmiCuTUZos6lnko4u57UO	K4kaaCzE-B4	Play Outside at the Reach Song More Nursery Ph	2022-10-22 07:00:12+00:00	1:01:21	0	57936	11744611

Halloween Song Dance Dance Party CoComelon Nur...

In Paris use the Navigo pass like locals and s...

How to save money in Paris by using the Paris ...

Magical Malta should 100 be on your bucket lis...

Is France on your bucket list shorts france tr...

Subscribe for more travel tips and inspiration...

UCbCmjCuTUZos6Inko4u57UQ

UCC7jlYxfWti7WAW8r7ef1RQ

UCC7jlYxfWti7WAW8r7ef1RQ

UCC7jlYxfWti7WAW8r7ef1RQ

UCC7jlYxfWti7WAW8r7ef1RQ

UCC7jlYxfWti7WAW8r7ef1RQ

gfZmvllWVwY

xRi8SGcRDOY

C-34plsWZPk

L2GdB1gB1ZM

89lewFGQQ6E

QS32cM-BQ6M

Joining Databases Together

```
postgres/postgres@AWS >
Query Editor
    CREATE TABLE channel_data(
        channel_id varchar NOT NULL,
        custom url varchar,
        topic_category varchar,
        channel_view_count bigint,
        subscriber_count bigint,
        channel_video_count bigint,
        PRIMARY KEY (channel id)
 9
10
    CREATE TABLE video data(
11
12
        channel_id varchar NOT NULL,
13
        video_id varchar NOT NULL,
14
        video_title_clean varchar,
15
        published_at timestamp,
16
        video length varchar,
        comment_count bigint,
17
18
        like_count bigint,
        view_count bigint,
19
    FOREIGN KEY (channel_id) REFERENCES channel_data (channel_id)
21 );
```

```
--- join tables together
47
    SELECT c.channel_id,
48
        c.custom url.
49
        c.topic category.
50
        c.channel_view_count,
51
        c.subscriber count,
52
        c.channel video count,
53
        v.video id,
54
        v.published at,
55
        v.video length,
        v.like count,
56
57
        v.comment count,
58
        v.view count
    INTO joined data
    FROM channel data AS c
60
    INNER JOIN video data AS v
61
    ON c.channel_id=v.channel_id;
62
63
    SELECT * FROM joined_data;
```

Joined Data Table

	channel_id	custom_url	topic_category	channel_view_count	subscriber_count	channel_video_count	video_id	video_length	like_count	comment_count	view_count
0	UCbCmjCuTUZos6lnko4u57UQ	@cocomelon	Music	142468175305	146000000	811	lmH5uqwaFq8	2:59	19653	0	3425275
1	UCbCmjCuTUZos6Inko4u57UQ	@cocomelon	Music	142468175305	146000000	811	0SY0Yn0yF9o	29:52:00	15076	0	2882582
2	UCbCmjCuTUZos6Inko4u57UQ	@cocomelon	Music	142468175305	146000000	811	sNyF7BvVfxs	2:49	47763	0	8673081
3	UCbCmjCuTUZos6Inko4u57UQ	@cocomelon	Music	142468175305	146000000	811	K4kqqCzF-BA	1:01:21	57936	0	11744611
4	UCbCmjCuTUZos6Inko4u57UQ	@cocomelon	Music	142468175305	146000000	811	gfZmvllWVwY	2:39	46041	0	8775011

Binned Data Sample View

channel_views_binned	subscribers_binned	video_count_binned	like_count_binned	comment_binned	video_views_binned
1 bil- 100 billion views	5-15 mil subs	5,000-10,000 videos	1,000-5,000 likes	100-500 comments	50,000-500,000
1 mil-5 mil views	10,000-500,000 subs	100-500 videos	less than 50 likes	less than 100 comments	less than 1000 views
1 bil- 100 billion views	5-15 mil subs	500-1500 videos	1,000-5,000 likes	less than 100 comments	50,000-500,000
5 mil- 100 mil	500,000- 1 mil subs	100-500 videos	50-1000 likes	100-500 comments	10,000-50,000 views
1 bil- 100 billion views	5-15 mil subs	greater than 10,000 videos	1,000-5,000 likes	1,000-10,000 comments	50,000-500,000

'Video_game_culture', 'Lifestyle', 'Hobby', 'Entertainment', 'Film', 'Knowledge', 'Food', 'Physical_fitness', 'Society', 'Technology', 'Television_program', 'Politics', 'Sport', 'Tourism', 'Humour']

['Music',

Adding Day of Week Published Column

```
#turn published at to day of week published
file["datetime"]=pd.to_datetime(file['published_at'])
file['day_of_week_published']=file['datetime'].dt.day_name()
```


Dropping Video Length

channel id object custom_url object topic_category object channel_view_count int64 subscriber_count int64 channel_video_count int64 video_id object datetime64[ns] published_at video_length object like_count int64 comment_count int64 view_count int64 day_of_week_published object dtype: object

Video_length object refuses to convert to timestamp or duration datatype

Machine Learning

Our Features

topic_category	channel_view_count	subscriber_count	channel_video_count	like_count	comment_count	day_of_week_published	vira
Lifestyle	346822518	1610000	1919	2057	86	Wednesday	
Music	17894740372	35700000	97	353367	10950	Monday	
Lifestyle	513233182	5580000	268	25982	660	Thursday	
Hobby	83311249514	102000000	1030	66433	0	Thursday	
Lifestyle	462242	2620	275	20	2	Sunday	

Target Variable

How did we get the target column?

```
#make new column that has binary classification. if view count is greather than 1,000,000 then add 1 if less than add 0
def viral(row):
    if row['view_count'] > 10000000:
        return 1
    else:
        return 0
✓ 0.1s
```

```
#add the viral column

df['viral']=df.apply(lambda row: viral(row), axis=1)

df.sample(5)

$\square$ 0.3s
```

Correlation Exploration

Encoding and Scaling

```
#encode categorical data
le = LabelEncoder()
df2 = df.copy()
df2['topic_category'] = le.fit_transform(df2['topic_category'])
df2['day'] = le.fit_transform(df2['day_of_week_published'])
df2.sample(5)
```

✓ 0.9s

	topic_category	channel_view_count	subscriber_count	channel_video_count	like_count	comment_count	day_of_week_published	viral	day
6704	6	767928	10000	461	22	7	Friday	0	0
2819	15	106661887	895000	82	17590	1398	Saturday	0	2
4364	0	10215915230	24900000	1406	27894	1097	Monday	0	1
4150	7	19286274611	110400000	250	513038	18690	Friday	1	0
6861	2	145679	1870	115	13	5	Monday	0	1

```
# Day of Week dictionary
weekday_num = {
    "Sunday": 1,
    "Monday": 2,
    "Tuesday": 3,
    "Wednesday": 4,
    "Thursday": 5,
    "Friday": 6,
    "Saturday": 7
}
```

✓ 0.1s

Custom encoding for the days of the week

```
# weekdays names encoded using the dictionary values
df2["day_of_week"] = df2["day_of_week_published"].apply(lambda x: weekday_num[x])
df2=df2.drop(columns=['day','day_of_week_published'])
df2.head()
```

	topic_category	channel_view_count	subscriber_count	channel_video_count	like_count	comment_count	viral	day_of_week
0	7	142468175305	146000000	811	19653	0	1	3
1	7	142468175305	146000000	811	15076	0	1	7
2	7	142468175305	146000000	811	47763	0	1	3
3	7	142468175305	146000000	811	57936	0	1	7
4	7	142468175305	146000000	811	46041	0	1	3

Scaling Feature Data

```
stds=StandardScaler()

df_scaled=stds.fit_transform(X.to_numpy())

df_scaled=pd.DataFrame(df_scaled,columns=['topic_category','channel_view_count','subscriber_count','channel_video_count','like_count','comment_count','day_of_week'])

df_scaled.head()
```

✓ 0.3s

	topic_category	channel_view_count	subscriber_count	channel_video_count	like_count	comment_count	day_of_week
0	0.21331	7.794011	4.370754	-0.204552	-0.148934	-0.188519	-0.613740
1	0.21331	7.794011	4.370754	-0.204552	-0.159197	-0.188519	1.578497
2	0.21331	7.794011	4.370754	-0.204552	-0.085904	-0.188519	-0.613740
3	0.21331	7.794011	4.370754	-0.204552	-0.063094	-0.188519	1.578497
4	0.21331	7.794011	4.370754	-0.204552	-0.089765	-0.188519	-0.613740

Logistic Regression

We chose this model because we wanted to use it to train on our labeled datasets and aim to predict which category the new observations (testing data) will belong to.

Our results before resampling the data.

The precision score was very low.

Accuracy Score: 0.9488609948860995

rt	suppor	f1-score	recall	precision	
94	169	0.97	0.99	0.95	0
57	45	0.87	0.79	0.96	1
51	215	0.95			accuracy
51	215	0.92	0.89	0.95	macro avg
51	215	0.95	0.95	0.95	weighted avg

Random Forest Classifier

This model is better at handling our numerous variables and big data set.

Accuracy Score: 0.9700468121494579

```
[(0.4956314070603417, 'like_count'),
  (0.18758883148965227, 'comment_count'),
  (0.11188914380045174, 'subscriber_count'),
  (0.10249570056339609, 'channel_view_count'),
  (0.06270051475775136, 'channel_video_count'),
  (0.0234488363920342, 'topic_category'),
  (0.016245565936372698, 'day_of_week')]
```

	precision	recall	f1-score	support
0	0.99	0.97	0.98	1694
1	0.89	0.97	0.93	457
accuracy			0.97	2151
macro avg	0.94	0.97	0.95	2151
weighted avg	0.97	0.97	0.97	2151

Easy Ensemble (AdaBoost) Classifier

This ML Model was used to see if we could get a better accuracy score than the Random Forest Model. Accuracy Score: 0.9558946623299119

Classification Report- Easy Ensemble (AdaBoost) Classifier

	pre	rec	spe	f1	geo	iba	sup
0	0.99	0.95	0.96	0.97	0.96	0.91	1694
1	0.85	0.96	0.95	0.90	0.96	0.91	457
avg / total	0.96	0.95	0.96	0.96	0.96	0.91	2151

Wait… Our Data is Imbalancec

Resampling using SMOTEENN

Logistic Regression

Was 94% before resampling!

```
#accuracy score
print(accuracy_score(y_test, y_pred))

0.1s

0.9539748953974896
```

Logistic Regression Classification Report

	precision	recall	f1-score	support		precision	recall	f1-score	support
0	0.95	0.99	0.97	1694	0	0.98	0.96	0.97	1694
1	0.96	0.79	0.87	457	1	0.87	0.92	0.89	457
accuracy			0.95	2151	accuracy			0.95	2151
macro avg	0.95	0.89	0.92	2151	macro avg	0.92	0.94	0.93	2151
weighted avg	0.95	0.95	0.95	2151	weighted avg	0.96	0.95	0.95	2151

Before resampling

After resampling

Random Forest Model

```
# Create a random forest classifier
from imblearn.ensemble import BalancedRandomForestClassifier

model = BalancedRandomForestClassifier(n_estimators=100, random_state=1)

# Fitting the model
model.fit(X_resampled, y_resampled)

$\square$ 2.4s
```

BalancedRandomForestClassifier(random_state=1)

Was 97.00% before resampling!

```
# List the features sorted in descending order by feature importance sorted(zip(model.feature_importances_, X.columns), reverse=True)

✓ 0.1s

[(0.5087001150346812, 'like_count'),
   (0.19153776410912765, 'comment_count'),
   (0.11684245155319044, 'subscriber_count'),
   (0.0911579778379475, 'channel_view_count'),
   (0.06393489936816082, 'channel_video_count'),
   (0.020181369871470057, 'topic_category'),
   (0.007645422225422378, 'day_of_week')]
```

Random Forest Model-Classification Report

	precision	recision recall f		support	
0	0.99	0.97	0.98	1694	
1	0.89	0.97	0.98 0.93	457	
			2 22	2323	
accuracy			0.97	2151	
macro avg	0.94	0.97	0.95	2151	
weighted avg	0.97	0.97	0.97	2151	

	precision	recall	f1-score	support	
0	0.99	0.98	0.99	1694	
1	0.93	0.97	0.95	457	
accuracy			0.98	2151	
macro avg	0.96	0.98	0.97	2151	
weighted avg	0.98	0.98	0.98	2151	

Before resampling

After resampling

Easy Ensemble (AdaBoost) Model

```
# Train the EasyEnsembleClassifier
from imblearn.ensemble import EasyEnsembleClassifier

model_eec=EasyEnsembleClassifier(n_estimators=100, random_state=1)
model_eec.fit(X_resampled, y_resampled)

/ 1m 21.9s
```

EasyEnsembleClassifier(n_estimators=100, random_state=1)

Was 95.5% before resampling!

```
# Calculated the balanced accuracy score
y_pred=model_eec.predict(X_test)

balanced_accuracy_score(y_test, y_pred)

$\square$ 3.3s

0.968535492754709
```

```
# Display the confusion matrix confusion_matrix(y_test, y_pred)

v 0.1s

array([[1643, 51],

[ 15, 442]])
```

Classification Reports- AdaBoost Model

Before resampling

	pre	rec	spe	f1	geo	iba	sup
0	0.99	0.95	0.96	0.97	0.96	0.91	1694
1	0.85	0.96	0.95	0.90	0.96	0.91	457
avg / total	0.96	0.95	0.96	0.96	0.96	0.91	2151

After resampling

	pre	rec	spe	f1	geo	iba	sup
0	0.99	0.97	0.97	0.98	0.97	0.94	1694
1	0.90	0.97	0.97	0.93	0.97	0.94	457
avg / total	0.97	0.97	0.97	0.97	0.97	0.94	2151

Dashboard

view:

Views

O Subscribers O Videos

Select metric to

Select categories:

✓American_football

✓ Christian_music

✓Classical_music

✓Electronic music

✓Entertainment

✓Film

✓Food ✓Hip_hop_music

✓ Hobby ☑Humour

✓Knowledge

✓Pop_music ✓Rock_music

✓Strategy_video_game ✓ Technology ☑Television_program ✓Tourism ✓Video_game_culture

✓Society ✓Sport

☑Lifestyle

✓ Military ✓Music ✓Physical_fitness ✓Politics

YouTube Analysis

"Group 4" Final Project Dashboard for UT-Austin Data Analytics Bootcamp

Home

Channel Category Metrics

Top Channels

Comment Sentiment Analysis

Video Publishing Metrics

Machine Learning Analysis

Additional Analysis (Tableau)

Video Metrics by Category

Images of Dashboard

view:

Views

O Subscribers

YouTube Analysis

"Group 4" Final Project Dashboard for UT-Austin Data Analytics Bootcamp

Home

Channel Category Metrics

Top Channel

Comment Sentiment Analysis

Video Publishing Metrics

Machine Learning Analysis

Additional Analysis (Tableau)

Top Channel Metrics

Select metric to

Analysis commentary: Video Count is disabled due to bug

Select metric to

Comment Sentiment

Select categories:

✓American football

☑Christian_music

☑Classical music ✓Electronic_music

✓Entertainment ✓Film

✓Hip_hop_music ✓ Hobby ✓ Humour

☑Physical_fitness ✓Politics ✓Pop_music ✓ Rock music ✓Society

✓Strategy_video_game ✓ Technology ✓Television_program ☑Tourism ✓Video_game_culture

✓Knowledge ☑Lifestyle ✓ Military ✓ Music

✓Food

✓Sport

view:

YouTube Analysis

"Group 4" Final Project Dashboard for UT-Austin Data Analytics Bootcamp

Home

Channel Category Metrics

Top Channels

Comment Sentiment Analysis

Video Publishing Metrics

Machine Learning Analysis

Additional Analysis (Tableau)

Comment Sentiment Analysis by Category

Images of Dashboard

YouTube Analysis

"Group 4" Final Project Dashboard for UT-Austin Data Analytics Bootcamp

Home

Channel Category Metrics

Top Channels

Comment Sentiment Analysis

Video Publishing Metrics

Machine Learning Analysis

Additional Analysis (Tableau)

Video Pubishing Time Metrics

Tableau Dashboard

Things We Would Have Done Differently

- More interactive elements on the Dashboard
- Included video length as a feature in machine learning component
- Included the hour video was published as a feature in our machine learning component
- We really wanted to use API to gather data, but wished we had more time exploring what the YouTube API could do before sticking with it

Any Questions?