7. Metric Spaces

7.1 Metric spaces

Let X be a set, and let $d: X imes X o \mathbb{R}$ be a function such that for all $x,y,z \in X$,

1.
$$d(x,y) \geq 0$$

(nonnegativity)

2.
$$d(x,y)=0 \iff x=y$$

(identity of indiscernibles)

3.
$$d(x,y) = d(y,x)$$

(symmetry)

4.
$$d(x,z) \le d(x,y) + d(y,z)$$

(triangle inequality)

(X,d) is called a metric space.

If d is clear from constant, we write X as the metric space.

Example: (\mathbb{R},d) : d(x,y)=|x-y|, $x,y\in\mathbb{R}$

Example: $(C^0([a,b],\mathbb{R}),d)$: $C^0([a,b],\mathbb{R})$ be the set of continuous real-valued functions on [a,b]

$$d(f,g) = ||f - g||_u$$

Example: (\mathbb{R},d_n) : d_n be the evaluation norm — $x\in\mathbb{R}^n$, $||x||_p=\sqrt{\sum_{i=1}^n|x_i|^p}$

7.2 Open and closed sets & 7.3 Sequences and convergence

A sequence in a metric space (X,d) is a function $x:\mathbb{N} \to X$.

As before, we write $x_n = x(n)$ as the elements of the sequence.

 $\{x_n\}$ denotes the sequence.

We say a sequence $\{x_n\}$ in a metric space (X,d) is bounded if there exists a point $p \in X$ and $B \in \mathbb{R}$ such that $d(p,x_n) \leq B$, $\forall n \in \mathbb{N}$.

A sequence converges to some $p\in X$ if for all $\epsilon>0$, there exists $M\in\mathbb{N}$ s.t. for all $n\geq M$, $d(p,x_n)<\epsilon$.

Prop. A convergent sequence is bounded.

Let $A \subset X$ be a subset of a metric space X.

Define the open ball of radius $\delta>0$ around $p\in X$ as

$$B(p,\delta)=\{x\in X: d(p,x)<\delta\}.$$

We say $p \in X$ is an interior point of A (we write $x \in A^\circ$) if there exists $\delta > 0$ such that

$$B(p,\delta)\subset A$$

We say $p \in X$ is a limit point of A if there exists a sequence $\{x_n\}$ in A converging to p.

Prop. A is open \iff every $p \in A$ is an interior point of A

A is closed \iff A contains all of its limit points

7. Metric Spaces 1

7. Metric Spaces 2