ADVANCED ALGORITHM DESIGN

Homework 3

December 4, 2024

Problem 1

- (a) Let A, B be symmetric, real matrices with eigenvalues $\lambda_1(A) \geq \lambda_2(A) \geq \cdots \geq \lambda_n(A)$ (and similarly for B). Prove that for every k, $\lambda_k(A) + \lambda_n(B) \leq \lambda_k(A+B) \leq \lambda_k(A) + \lambda_1(B)$. Use this claim to establish that $|\lambda_k(A+B) \lambda_k(A)| \leq \max{\{\lambda_1(B), |\lambda_n(B)|\}}$.
- (b) Let A be the adjacency matrix of a not necessarily regular graph G with m edges and n vertices with eigenvalues $\lambda_1 \geq \lambda_2 \cdots \geq \lambda_n$. Prove that $\lambda_1 \geq 2m/n$.

Solution

(a) Recall from the Courant-Fisher theorm that $\lambda_k(M) = \max_{\substack{S \subseteq \mathbb{R}^n \\ \dim S = k}} \min_{\boldsymbol{x} \in S \smallsetminus \{0\}} \frac{\boldsymbol{x}^\top M \boldsymbol{x}}{\|\boldsymbol{x}\|_2^2}$ for any symmetric

real symmetric matrix M. Define $f_M(\boldsymbol{x}) \coloneqq \frac{\boldsymbol{x}^\top M \boldsymbol{x}}{\|\boldsymbol{x}\|_2^2}$ (where λ_i means as usual). In particular, $\lambda_1(M) \ge \boldsymbol{f}_M(\boldsymbol{x}) \ge \lambda_n(M)$. Note that $f_{A+B}(\boldsymbol{x}) = f_A(\boldsymbol{x}) + f_B(\boldsymbol{x})$. Therefore, $f_A(\boldsymbol{x}) + \lambda_1(B) \ge f_{A+B}(\boldsymbol{x}) \ge f_A(\boldsymbol{x}) + \lambda_n(B)$. Taking max min with appropriate constraints preserves inequalities, whence $\lambda_k(A) + \lambda_1(B) \ge \lambda_k(A+B) \ge \lambda_k(A) + \lambda_n(B)$.

This gives $\lambda_1(B) \ge \lambda_k(A+B) - \lambda_k(A) \ge \lambda_n(B)$.

- If $\lambda_n(B) \ge 0$ then $|\lambda_k(A+B) \lambda_k(A)| = \lambda_k(A+B) \lambda_k(A) \le \lambda_1(B) \le \max\{\lambda_1(B), |\lambda_n(B)|\}$.
- If $\lambda_1(B) \ge 0 > \lambda_n(B)$ then $|\lambda_k(A+B) \lambda_k(A)| = \max\{\lambda_k(A+B) \lambda_k(A), \lambda_k(A) \lambda_k(A+B)\} \le \max\{\lambda_1(B), -\lambda_n(B)\} = \max\{\lambda_1(B), |\lambda_n(B)|\}.$
- If $0 > \lambda_1(B)$ then $|\lambda_k(A+B) \lambda_k(A)| = \lambda_k(A) \lambda_k(A+B) \le -\lambda_n(B) \le \max\{\lambda_1(B), |\lambda_n(B)|\}$.

(b)
$$\lambda_1(A) \stackrel{\text{Courant-Fisher}}{=} \max_{\boldsymbol{x} \neq 0} \frac{\boldsymbol{x}^\top A \boldsymbol{x}}{\|\boldsymbol{x}\|_2^2} \geq \left(\frac{\boldsymbol{x}^\top A \boldsymbol{x}}{\|\boldsymbol{x}\|_2^2}\right)_{\boldsymbol{x} = \boldsymbol{1}} = \frac{\sum\limits_{1 \leq i, j \leq n} A_{ij}}{(\sqrt{n})^2} = \frac{2m}{n} \text{ where } \boldsymbol{1} \in \mathbb{R}^n \text{ has all 1's.}$$

Problem 2

Let R be a random symmetric matrix with uniformly random ± 1 entries. In this problem, for any $\varepsilon \in (0,1)$, let S_{ε} be a finite set of N_{ε} unit vectors in \mathbb{R}^n such that for every unit vector $u \in \mathbb{R}^n$, there is a vector $\mathbf{u}' \in S$ such that $\|\mathbf{u} - \mathbf{u}'\|_2 \leq \varepsilon$.

- (a) Prove that for every unit vector \boldsymbol{u} and $t \geq 0$, $\mathbb{P}\left[\left|\boldsymbol{u}^{\top}R\boldsymbol{u}\right| \geq t\right] \leq 2\exp\left\{\frac{-t^2}{2}\right\}$.
- (b) Prove that $\mathbb{P}\left[\exists \pmb{u} \in S_{\varepsilon} \text{ s.t. } \left| \pmb{u}^{\top} R \pmb{u} \right| \geq t\right] \leq 2N_{\varepsilon} \exp\left\{\frac{-t^2}{2}\right\}$.
- (c) Prove that for every unit vector \mathbf{u} , and any ± 1 -entry matrix B, $|\mathbf{u}^{\top}B\mathbf{u}| \leq n^{C}$ for some C > 0. What's the smallest C for which you can establish this claim?
- (d) In this part, you can assume without proof that for every $\varepsilon>0$, there is an S_ε of size $N_\varepsilon \leq \left(\frac{c}{\varepsilon}\right)^n$. Using this and the results of the previous parts, argue that $\mathbb{P}\left[\|R\|_2 \geq \mathcal{O}\left(\sqrt{n\log n}\right)\right] \leq \frac{1}{n}$.
- (e) (Extra credit) Prove the assumption in part (d). That is, prove that there is an S_{ε} as described in part (2) of size $(c/\varepsilon)^n$ for some c>0.

Solution

- (a) Note that $\boldsymbol{u}^{\top}R\boldsymbol{u} = \sum\limits_{1 \leq i,j \leq n} R_{ij}u_iu_j$. We will use Höffding bound¹ with the n^2 random variables $X_{ij} \coloneqq R_{ij}u_iu_j$. Note that $|X_{ij}| = |u_iu_j|$ because $R_{ij} \in \{\pm 1\}$. So $X_{ij} \in [a_{ij},b_{ij}]$ where $a_{ij} \coloneqq -|u_iu_j|$, $b_{ij} \coloneqq |u_iu_j|$. The denominator in the exponential of our Höfding bound becomes $\sum\limits_{1 \leq i,j \leq n} (b_{ij} a_{ij})^2 = \sum\limits_{1 \leq i,j \leq n} 4u_i^2u_j^2 = 4\sum_i u_i^2\sum_j u_j^2 = 4$ because $\|\boldsymbol{u}\|_2^2 = 1$. Noting that $\sum\limits_{i,j} \mathbb{E}\left[X_{ij}\right] = \sum\limits_{i,j} u_iu_j\mathbb{E}\left[R_{ij}\right] = 0$ we get, $\mathbb{P}\left[|\boldsymbol{u}^{\top}R\boldsymbol{u}| \leq t\right] = \mathbb{P}\left[\left|\sum\limits_{i,j} X_{ij}\right| \leq t\right] \leq 2\exp\left\{\frac{-2t^2}{\sum\limits_{i,j} (b_{ij} a_{ij})^2}\right\} = 2\exp\left\{\frac{-2t^2}{4}\right\} = 2\exp\left\{\frac{-t^2}{2}\right\}.$
- (b) Let the $(N=)N_{\varepsilon}$ vectors in S_{ε} be u_1,\cdots,u_N . Then $\mathbb{P}\left[\exists \pmb{u}\in S_{\varepsilon} \text{ s.t. } \left|\pmb{u}^{\top}R\pmb{u}\right|\geq t\right]=\mathbb{P}\left[\bigcup_{\pmb{u}\in S_{\varepsilon}}\left\{\left|\pmb{u}^{\top}R\pmb{u}\right|\geq t\right\}\right] \overset{\text{union bound}}{\leq} \sum_{\pmb{u}\in S_{\varepsilon}}\mathbb{P}\left[\left|\pmb{u}^{\top}R\pmb{u}\right|\geq t\right]\leq \sum_{\pmb{u}\in S_{\varepsilon}}2\exp\left\{\frac{-t^2}{2}\right\}=2N_{\varepsilon}\exp\left\{\frac{-t^2}{2}\right\}.$
- (c) Recall that for any $\mathbf{x} \in \mathbb{R}^n$ we have $\|\mathbf{x}\|_1 \le \sqrt{n} \|\mathbf{x}\|_2$. If $B \in \{\pm 1\}^{n \times n}$ and $\mathbf{u} \in \mathbb{R}^n$ has $\|\mathbf{u}\|_2 = 1$ then $\|\mathbf{u}^\top B \mathbf{u}\| = \left|\sum_{i,j \in [n]} B_{ij} u_i u_j\right| \le \sum_{i,j \in [n]} |B_{ij} u_i u_j| = \sum_i |u_i| \sum_j |u_j| = \|\mathbf{u}\|_1^2 \le n \|\mathbf{u}\|_2^2 = n^1$. So C = 1 works.

We will show that this is the best C (by showing that C=1 is attained). This is because when $B=\mathbf{1}\mathbf{1}^{\top}$ (which is the matrix of all 1) and $\mathbf{u}=\frac{1}{\sqrt{n}}$ (which is the vector with each entry $1/\sqrt{n}$)

then
$$\|\boldsymbol{u}\|_2 = n \cdot \frac{1}{n} = 1$$
 and $|\boldsymbol{u}^\top B \boldsymbol{u}| = \left| \sum_{i,j} u_i u_j \right| = n^2 \cdot \frac{1}{n} = n$.

$${}^{1}\text{If }X_{1},\cdots,X_{n}\text{ are independent with }X_{i}\in\left[a_{i},b_{i}\right]\text{ then }\mathbb{P}\left[\sum_{i\in\left[n\right]}\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)\right]\leq2\exp\left\{\frac{-2t^{2}}{\sum\limits_{i\in\left[n\right]}\left(b_{i}-a_{i}\right)^{2}}\right\}$$

(d) Let \mathbb{S}^{n-1} be the collection of all unit vectors in \mathbb{R}^n .

$$\begin{array}{l} \textbf{Lemma 1} \\ \max\limits_{\boldsymbol{u} \in S_{\varepsilon}} \left| \boldsymbol{u}^{\top} R \boldsymbol{u} \right| \\ \frac{\boldsymbol{u} \in S_{\varepsilon}}{1 - 2\varepsilon} \geq \max\limits_{\boldsymbol{u} \in \mathbb{S}^{n-1}} \left| \boldsymbol{u}^{\top} R \boldsymbol{u} \right| = \left\| R \right\|_{2}. \end{array}$$

Proof. Say $\mathbf{x} \in \mathbb{S}^{n-1}$ is an eigenvector for the largest (in magnitude) eigenvalue of R. Let this eigenvalue be λ . So $\|R\|_2 = |\lambda|$. But $\exists \ \mathbf{y} \in S_\varepsilon$ such that $\|\mathbf{y} - \mathbf{x}\|_2 \le \varepsilon$. Then $\|\mathbf{x}^\top R \mathbf{x} - \mathbf{y}^\top R \mathbf{y}\| = \|\mathbf{x}^\top R (\mathbf{x} - \mathbf{y}) - (\mathbf{y} - \mathbf{x})^\top R \mathbf{y}\| \le \|\mathbf{x}^\top R (\mathbf{x} - \mathbf{y})\| + \|(\mathbf{y} - \mathbf{x})^\top R \mathbf{y}\| \le \|\mathbf{x} - \mathbf{y}\|_2 \|R\|_2 (\|\mathbf{x}\|_2 + \|\mathbf{y}\|_2) = 2 \|R\|_2 \|\mathbf{x} - \mathbf{y}\|_2 = 2\varepsilon |\lambda|$. Thus $\max_{\mathbf{u} \in S_\varepsilon} |\mathbf{u}^\top R \mathbf{u}| \ge |\mathbf{y}^\top R \mathbf{y}| \ge |\mathbf{x}^\top R \mathbf{x}| - |\mathbf{x}^\top R \mathbf{x} - \mathbf{y}^\top R \mathbf{y}| \ge |\lambda| - 2\varepsilon |\lambda| = |\lambda| (1 - 2\varepsilon)$.

Then
$$\mathbb{P}\left[\|R\|_2 \geq t\right] \leq \mathbb{P}\left[\frac{\displaystyle\max_{m{u}\in S_{arepsilon}}\|m{u}^{\top}Rm{u}\|}{1-2arepsilon} \geq t\right] = \mathbb{P}\left[\displaystyle\max_{m{u}\in S_{arepsilon}}\|m{u}^{\top}Rm{u}\| \geq t(1-2arepsilon)\right] = \mathbb{P}\left[\exists u\in S_{arepsilon} \text{ s.t. } \left|m{u}^{\top}Rm{u}\right| \geq t(1-2arepsilon)\right] \stackrel{\text{(b)}}{\leq} 2N_{arepsilon} \exp\left\{\frac{-t^2(1-2arepsilon)^2}{2}\right\} \leq 2\left(\frac{c}{\varepsilon}\right)^n \exp\left\{\frac{-t^2(1-2arepsilon)^2}{2}\right\}$$
 where the first inequality is true because it's more probable for a larger quantity to be $\geq t$. Take $\varepsilon = \frac{\log n}{n}$ so that $1-2arepsilon \geq \frac{1}{2}$ for large n . Take $t = \alpha\sqrt{n\log n}$. Then $2\left(\frac{c}{\varepsilon}\right)^n \exp\left\{\frac{-t^2(1-2arepsilon)^2}{2}\right\} \leq 2\left(\frac{cn}{\log n}\right)^n \exp\left\{\frac{-\alpha^2n\log n}{8}\right\} = 2\left(\frac{cn}{\log n}\right)^n n^{\frac{-\alpha^2n}{8}} = 2\left(\frac{c}{n}\frac{c}{n^{\frac{\alpha^2}{8}-1}\log n}\right)^n \leq \frac{1}{n}$ by choosing large constant α .

(e) Consider the following algorithm for any given input $\varepsilon > 0$ to find a set $S_{\varepsilon} \subseteq \mathbb{S}^{n-1}$.

Input: $\varepsilon > 0$, dimension n

Output: a number N and points $v_1, \dots, v_N \in \mathbb{S}^{n-1}$ such that every point in \mathbb{S}^{n-1} is ε -close to some v_i .

```
1: begin
 2:
              N \leftarrow 1
             \boldsymbol{v}_1 \leftarrow (1, 0, \cdots, 0) \in \mathbb{R}^n
             S \leftarrow B_{\varepsilon}^{o}(\boldsymbol{v}_{1}) \cap \mathbb{S}^{n-1}
                                                                                   \triangleright points in S^{n-1} which are at distance < \varepsilon from {m v}_1
             while N > 1 do
 5:
                    \boldsymbol{v}_N \leftarrowany point in \mathbb{S}^{n-1} \setminus S
 6:
                     S \leftarrow S \cup (B_{\varepsilon}(\boldsymbol{v}_2) \cap \mathbb{S}^{n-1})
 7:
                    if S = \mathbb{S}^{n-1} then
                                                                                                                      \triangleright check if \mathbb{S}^{n-1} has been covered
 8:
                           break
 9:
                    else
10:
                           N \leftarrow N + 1
11:
                    end if
12:
              end while
13:
              return N, S_{\varepsilon} = \{\boldsymbol{v}_1, \cdots, \boldsymbol{v}_N\}
14:
15: end
```

Now we prove that this algorithm actually gives S_{ε} and N_{ε} as desired. In what follows, B, B^{o}

will respectively denote closed and open balls.

If the above algorithm terminates with answer N, S_{ε} , then $\mathbb{S}^{n-1} \subseteq \bigcup_{i=1}^{N} B_{\varepsilon}^{o}(\boldsymbol{v}_{i}) \subseteq \bigcup_{i=1}^{N} B_{\varepsilon}(\boldsymbol{v}_{i})$.

Claim 2

The above algorithm terminates.

Proof. Suppose the algorithm goes on forever. So we get a sequence of points v_1, v_2, \cdots such that $\mathbb{S}^{n-1} \subseteq \bigcup_{i \in \mathbb{N}} B^o_{\varepsilon}(v_i)$. Since \mathbb{S}^{n-1} is compact there is a finite N such that $\mathbb{S}^{n-1} \subseteq \bigcup_{i=1}^N B^o_{\varepsilon}(v_i)$. This is a contradiction to our original assumption.

Next we note that just by how our algorithm is designed, if $x, y \in S_{\varepsilon}$ then $||x - y||_2 \ge \varepsilon$. This is because a new point (line 6) is always chosen so that it is not in the ε -ball around any of the previously chosen points, and distance is symmetric.

Further S_{ε} is maximal in the sense that if $S' \supseteq S_{\varepsilon}$ is a collection of points in \mathbb{S}^{n-1} , there will be two points in S' which are at most ε -close to each other. This is by our breaking criterion on line 8. Simply put, S_{ε} covers \mathbb{S}^{n-1} with ε -balls.

Claim 3

If $\boldsymbol{x}, \boldsymbol{y} \in S_{\varepsilon}$ are distinct, then $B_{\frac{\varepsilon}{2}}^{o}(\boldsymbol{x}) \cap B_{\frac{\varepsilon}{2}}^{o}(\boldsymbol{y}) \cap \mathbb{S}^{n-1} = \varnothing$.

Proof. Suppose $\mathbf{p} \in \mathbb{S}^{n-1} \cap B^o_{\frac{\varepsilon}{2}}(\mathbf{x}) \cap B^o_{\frac{\varepsilon}{2}}(\mathbf{y})$ and say \mathbf{y} was picked after \mathbf{x} in the algorithm. Then $\|\mathbf{x} - \mathbf{y}\|_2 \leq \|\mathbf{x} - \mathbf{p}\|_2 + \|\mathbf{p} - \mathbf{y}\|_2 \leq \varepsilon$. Moreover equality here occurs only when $\|\mathbf{p} - \mathbf{x}\|_2 = \|\mathbf{p} - \mathbf{y}\|_2 = \frac{\varepsilon}{2}$ which means $p \notin B^o_{\frac{\varepsilon}{2}}(\mathbf{x})$ which is a contradiction. So it must happen that $\|\mathbf{x} - \mathbf{y}\|_2 < \varepsilon$ which contradicts the constructive step in line 6 because this indicated that \mathbf{y} was picked in the ε -ball around \mathbf{x} .

Claim 4

If
$$\boldsymbol{x} \in \bigcup_{i \in [N]} B_{\varepsilon}(\boldsymbol{v}_i) \subseteq \mathbb{R}^n$$
 then $\|\boldsymbol{x}\|_2 \leq 1 + \frac{\varepsilon}{2}$.

Proof. Say
$$\boldsymbol{x} \in B_{\varepsilon}(\boldsymbol{v}_i)$$
 for some i . Then $\|\boldsymbol{x}\|_2 \leq \|\boldsymbol{v}\|_2 + \|\boldsymbol{x} - \boldsymbol{v}\|_2 \leq 1 + \varepsilon$.

Denote $V_n := \operatorname{vol}(\mathbb{D}^n), A_n := \operatorname{area}(\mathbb{S}^{n-1})$. These are respectively the n-dimensional volume of D^n (the solid unit ball with $\mathbb{S}^{n-1} = \partial \mathbb{D}^n$) and the (n-1)-dimensional volume (area) of \mathbb{S}^{n-1} . By claim 4, $\bigcup_{i \in [N]} B_{\varepsilon}(\boldsymbol{v}_i) \subseteq \mathbb{R}^n \subseteq B_{1+\frac{\varepsilon}{2}}(0)$. $\operatorname{vol}(B_{1+\frac{\varepsilon}{2}}(0)) = (1+\frac{\varepsilon}{2})^n V_n$. So

$$\operatorname{vol}\left(\bigcup_{i\in[N]}B_{\varepsilon}(\boldsymbol{v}_i)\right)\leq V_n\left(1+\frac{\varepsilon}{2}\right)^n$$
. Claim 3 says the above union is almost disjoint (the inter-

sections form a set of measure 0). Hence
$$\operatorname{vol}\left(\bigcup_{i\in[N]}B_{\varepsilon}(\boldsymbol{v}_i)\right)=\sum_{i=1}^N\operatorname{vol}\left(B_{\varepsilon}(\boldsymbol{v}_i)\right)=\sum_{i=1}^N\varepsilon^nV(n)=NV_n\varepsilon^n$$
. These prove that $N\varepsilon^n\leq \left(1+\frac{\varepsilon}{2}\right)^n\implies N\leq \left(\frac{1}{\varepsilon}+\frac{1}{2}\right)^n=\left(\frac{(2+\varepsilon)/2}{\varepsilon}\right)^n\leq \left(\frac{2}{\varepsilon}\right)^n$.

Problem 3

Let G be a graph on n vertices (n is even) chosen as follows:

- 1. Pick an arbitrary S of size n/2,
- 2. For each pair i, j of vertices such that $i, j \in S$ or $i, j \notin S$, include $\{i, j\}$ in G with probability p,
- 3. For each pair i, j such that $i \in S, j \notin S$ or $i \notin S, j \in S$, include $\{i, j\}$ in G with probability q. Suppose that p q > c for some fixed constant c > 0.

Consider the following algorithm:

- 1. pick a vertex v,
- 2. Output \hat{S} obtained by including in \hat{S} the n/2 vertices that have the fewest common neighbors with v.

Prove that for large n, with probability at least 0.99 over the draw of G, \hat{S} either equals S or $V \setminus S$.

Solution

For any vertex v in G = (V = [n], E), denote by N(v) the neighbors of v in G. Say n = 2k. Denote $T := V \setminus S$. Then |T| = |S| = k. Let's proceed as the hint suggests.

Assume $v \in S$ WLOG (otherwise replace S with T). Let u be an arbitrary vertex. Denote $X_u := |N(u) \cap N(v)|$. Note that $X_u = \sum_{x \in V} \mathbf{1}[x \in N(u) \cap N(v)] = \sum_{x \in V} \mathbf{1}_{x \in N(u)} \cdot \mathbf{1}_{x \in N(v)}$ because the events $\{x \in N(u)\}$, $\{x \in N(v)\}$ are independent. This can be further split as $X_u = \sum_{x \in S \setminus \{u,v\}} \mathbf{1}_{x \in N(u)} \cdot \mathbf{1}_{x \in N(u)} \cdot \mathbf{1}_{x \in N(v)} \rightarrow \mathbb{E}[X_u] = \sum_{x \in S \setminus \{u,v\}} \mathbb{P}[x \in N(u)] \cdot \mathbb{E}[x \in N(u)] \cdot \mathbb{E}[x \in N(v)] + \sum_{x \in T \setminus \{u,v\}} \mathbb{P}[x \in N(u)] \cdot \mathbb{P}[x \in N(v)] = p \sum_{x \in S \setminus \{u,v\}} \mathbb{P}[x \in N(u)] + q \sum_{x \in T \setminus \{u,v\}} \mathbb{P}[x \in N(u)].$

- Say $u \in S$. Then $\mathbb{E}[X_u] = (k-2)p^2 + kq^2$.
- Say $u \in T$. Then $\mathbb{E}[X_u] = (k-1)pq + (k-1)pq = 2(k-1)pq$.

Denote $b\coloneqq (k-2)p^2+kq^2$ and $a\coloneqq 2(k-1)pq$. One observes that $d\coloneqq b-a=(k-1)(p-q)^2+q^2-p^2$. It is important to note that $b\le k(p^2+q^2)\le 2k$ and $d\ge (k-1)c^2$.

So far we learnt that, in expectation, vertices in S has higher number of common neighbors with v than those in T. So if X_i 's are well concentrated in (t, ∞) for $i \in S$, and X_j 's are well concentrated in $(-\infty, t)$ where $t \in (a, b)$ (where $t \in (a, b)$) then $X_i \ge X_j \ \forall \ i \in S, j \in T$. So \hat{S} would be T.

For $i \in S \setminus \{v\}$ let A_i be the event $\{X_i \leq t\}$. For $j \in T$ let B_j be the event $\{X_j \geq t\}$. We are interested in the event $E := \left(\bigcup_{i \in S \setminus \{v\}} A_i\right) \cup \left(\bigcup_{j \in T} B_j\right)$. But $\mathbb{P}\left[E\right] = \sum_{i \in S \setminus \{v\}} \mathbb{P}\left[A_i\right] + \sum_{j \in T} \mathbb{P}\left[B_j\right] = \sum_{i \in S \setminus \{v\}} \mathbb{P}\left[A_i\right] + \sum_{j \in T} \mathbb{P}\left[B_j\right]$.

We will take $t=\frac{a+b}{2}$ so that $t=b\left(1-\frac{b-a}{2b}\right)=a\left(1+\frac{b-a}{2a}\right)$. Recall the lower and upper tail Chernoff bounds for a random variable X which is a sum of (finitely many) independent 0/1 random variables:

• $\mathbb{P}\left[X \leq \mathbb{E}\left[X\right](1-\varepsilon)\right] \leq \exp\left\{-\frac{\varepsilon^2\mathbb{E}[X]}{2}\right\}$. Using this for A_i (with $i \in S$) gives

$$\mathbb{P}\left[A_{i}\right] = \mathbb{P}\left[X_{i} \leq \frac{a+b}{2}\right] = \mathbb{P}\left[X_{i} \leq b\left(1 - \frac{b-a}{2b}\right)\right]$$

$$\leq \exp\left\{-\frac{(b-a)^{2}}{8b}\right\} = \exp\left\{-\frac{d^{2}}{8b}\right\} \leq \exp\left\{-\frac{d^{2}}{12b}\right\}$$

$$\leq \exp\left\{-\frac{(k-1)^{2}c^{4}}{12 \cdot 2k}\right\} \stackrel{:: k \geq 2}{\leq} \stackrel{k-1 \geq \frac{2k}{3}}{\leq} \exp\left\{\frac{-c^{4}k}{54}\right\}.$$

• $\mathbb{P}\left[X \geq \mathbb{E}\left[X\right](1+\varepsilon)\right] \leq \exp\left\{-\frac{\varepsilon^2\mathbb{E}[X]}{3(1+\varepsilon)}\right\}$. Using this for B_j (with $j \in T$) gives

$$\begin{split} \mathbb{P}\left[B_{i}\right] &= \mathbb{P}\left[X_{i} \geq \frac{a+b}{2}\right] = \mathbb{P}\left[X_{i} \leq a\left(1 + \frac{b-a}{2a}\right)\right] \\ &\leq \exp\left\{-\frac{(b-a)^{2}}{6(a+b)}\right\} \leq \exp\left\{-\frac{d^{2}}{12b}\right\} \\ &\leq \exp\left\{-\frac{(k-1)^{2}c^{4}}{16\cdot 2k}\right\} \stackrel{::k\geq 2}{\leq} \stackrel{k-1\geq \frac{2k}{3}}{\leq} \exp\left\{\frac{-c^{4}k}{54}\right\}. \end{split}$$

Therefore $\mathbb{P}[E] \leq (n-1) \exp\left\{\frac{-c^4n}{108}\right\} \leq n \exp\left\{\frac{-c^4n}{108}\right\}$. Let $C \coloneqq \frac{c^4}{108}$. We recall that $e^x \geq 1 + x + x^2/2$ for $x \geq 0$. Hence $e^{-x} \leq \frac{1}{1+x+x^2/2}$ on $\mathbb{R}_{\geq 0}$. Taking x = Cn > 0 and $n > \frac{200}{C^2}$ gives $n \exp\left\{-Cn\right\} \leq \frac{n}{1+nC+n^2C^2/2} = \frac{1}{\frac{1}{n}+C+nC^2/2} \stackrel{\left[\because \frac{1}{n}+C>0\right]}{<} \frac{1}{nC^2/2} \frac{1}{100} = 0.01$, whence $PE^c \geq 0.99$. Recall that A_i^c (for $i \in S$) was the event that the number of common neighbors of i, v is $> \frac{a+b}{2}$, B_j^c (for $j \in T$) was the event that the number of common neighbors of j, v is $< \frac{a+b}{2}$. So E^c is the event that every vertex in S has $> \frac{a+b}{2}$ common neighbors with v and every vertex in T has $< \frac{a+b}{2}$ common neighbors with v, hence it's a special case with $\hat{S} = T$ which is a subset of the event that we are interested in. Therefore the chance that, over the draw of G, the n/2 vertices with fewest common neighbors of v is at least $\mathbb{P}[E^c] \geq 0.99$.

Problem 4

In the class, we saw that we can distinguish between a graph $G \sim G(n, 1/2)$ and $G \sim G(n, 1/2, k)$ (i.e., $G \sim G(n, 1/2)$ with an added k-clique) in polynomial time if $k \ge c\sqrt{n}$ for some c > 0.

Find an algorithm that for any $t \in \mathbb{N}$, runs in time $n^{\mathcal{O}(t)}$ and succeeds in the same goal for $k \ge \sqrt{n/2^t}$. (Hint: suppose you were given, in addition, a set S of t vertices in the planted clique if there was one. Can you now reduce the problem to graphs on a smaller number of vertices?)

Solution

Let's first present the algorithm to the input graph G=(V=[n],E) which is as follows. We loop through all $\binom{n}{t+1+z}=n^{\mathcal{O}(t)}$ subsets of V which are of size s:=t+1+z and form a clique. For each such subset $S\subseteq V$, take the vertices in V connected to every vertex in S and call it \mathcal{N}_S and take \mathcal{A}_S to be the ± 1 -adjacency matrix of the subgraph of G induced by \mathcal{N}_S . We declare that "G has a k-planted clique" if $\|\mathcal{A}_S\|_2 > C\sqrt{|\mathcal{N}_S|}$ (this is the algorithm discussed in class). If this fails for every such subset S, we declare that there is "no planted clique".

In the above, we do $n^{\mathcal{O}(1)}$ (where the \mathcal{O} is with respect to t) computations per $S \subseteq V$ of size t. The number of loops is $n^{\mathcal{O}(t)}$ and checking if S forms a clique takes time of order $t^2 < n^2$. So the total running time of the above algorithm is $n^{\mathcal{O}(t)}$.

Let's now analyze why this algorithm works.

Let's first do the analysis assuming that the graph G=(V=[n],E) has a t- clique $S\subseteq V$. Now let's look at all those vertices in $V\smallsetminus S$ which are connected to each vertex in S and call it $\mathcal{N}=\mathcal{N}_S$. Let $\mathbf{1}_{v\in\mathcal{N}}$ be the indicator variable that is 1 if $v\in\mathcal{N}$, and 0 otherwise. So $|\mathcal{N}|=\sum_{v\in V\smallsetminus S}\mathbf{1}_{v\in\mathcal{N}}$. Now

$$\mathbb{E}\left[|\mathcal{N}|\right] = \sum_{v \in V \setminus S} \mathbb{E}\left[\mathbf{1}_{v \in \mathcal{N}}\right] = \sum_{v \in V \setminus S} \mathbb{P}\left[v \in \mathcal{N}\right] = (1 + o(1))\frac{n - t}{2^t}.$$
 We will see that the size of \mathcal{N} is well concentrated around its mean. Note that $\mathbf{1}_{v \in V}$ (for $v \in V \setminus S$) are all independent. Charnoff

well-concentrated around its mean. Note that $\mathbf{1}_{v \in \mathcal{N}}$ (for $v \in V \setminus S$) are all independent. Chernoff gives $\mathbb{P}\left[|\mathcal{N}| \geq 2\mathbb{E}\left[|\mathcal{N}|\right]\right] \leq \exp\left\{-\mathcal{O}\left(\frac{n-t}{2^t}\right)\right\}$. So we can take $|\mathcal{N}| = \frac{2n}{2^t}$ with probability exponentially (in n) close to 1.

Recall that in class we have a constant C from lemma 2 in lecture 19 (second last page). Let $z \in \mathbb{N}$ be such that $2^z > C$.

- Say $G \sim G_{n,\frac{1}{2},k}$. Then the algorithm reaches some (t+1+z)-clique S for which \mathcal{N}_S contains a (k-s)-clique (recall s=t+1+z). But $k-s>\sqrt{\frac{n}{2^t}}-s>2C\sqrt{\frac{2(n-s)}{2^s}}=2C\sqrt{|\mathcal{N}|_S}$ with probability $1-\exp\left\{-\mathcal{O}\left(\frac{n-s}{2^s}\right)\right\}$. Therefore the failure chance in this case is inverse exponential in n.
- Say $G \sim G_{n,\frac{1}{2}}$. The chance that we get some S such that $|\mathcal{N}_S|$ is $> \frac{2n}{2^s}$ is inverse-exponential in $\frac{n}{2^s}$. Among the small $|\mathcal{N}_S|'s$, the success probability of the algorithm discussed in class is large because $k-s \geq 2C\sqrt{|\mathcal{N}_S|}$ By the lemma given on Ed discussion, $\mathbb{P}\left[\mathcal{A}_S \leq C\sqrt{|\mathcal{N}_S|}\right] \leq C'' \exp\left\{-C'n/2^s\right\}$. Therefore the chance that some S gives $\|\mathcal{A}_S\|_2 > C\sqrt{|\mathcal{N}|_S}$ is (by union bound) $\leq C''\binom{n}{s} \exp\left\{-C'n/2^s\right\}$.