

Photonics Curriculum Version 7.0

Lecture Series

Introduction to Optical Amplifiers
OA1

Module Prerequisites

- Introduction to Fiber-Optic Communications I & II
- Recommended Transmitters I and Receivers I

Module Objectives

- Introduction to optical amplifiers
- How they work:
 Gain, Stimulated and Spontaneous Emission
- Performance Measures:
 Gain, Noise, SNR, Noise Figure
- Performance Limitations and Applications
- Summary

Introduction

Share some similarities with electrical amplifiers

Introduction

Similarities between optical and electrical amplifiers:

- Signal amplification
- Noise added to amplified signal
- Gain and noise can be measured and calculated

Differences between optical and electrical amplifiers:

- Large gain bandwidth

```
3 THz — 25 THz (optical)
```

2 GHz — 50 GHz (electrical)

- Noise spans the same bandwidth

How Optical Amplifiers work

LASER is a good starting point

LIGHT
 AMPLIFICATION by
 STIMULATED
 EMISSION of
 RADIATION

Energy Level diagram

How Optical Amplifiers work

- First, "Population Inversion" is needed
- "Normal", N_g = number in ground state
- "Population Inversion": $N_e > N_g$

How Optical Amplifiers work

- Signal photon enters the amplifier
- It stimulates an electron to decay to ground state, which emits an identical photon.
- This process repeats... and the signal is amplified (Gain)

Spontaneous Emission

- Electrons can decay to ground state spontaneously
- Photons emitted, random orientation, phase and λ
- "Spontaneous Emission"

Spontaneous Emission and Guided Modes

- Most of the spontaneously emitted photons are lost
- Only a portion is transmitted: those that become guided modes of the amplifier's waveguide structure

Amplified Spontaneous Emission

- Spontaneously emitted photons can (and will) get amplified
- "Amplified Spontaneous Emission" (ASE)
- Significant source of Noise

How (Noisy) Optical Amplifiers work

• A signal entering an optical amplifier will... emerge amplified... and is accompanied by ASE noise.

Optical Amplifier Performance: Gain

$$G [dB] = 10 log_{10} \left[\frac{P_{signal_out}}{P_{signal_in}} \right] dB$$

- Ratio of signal power at amplifier output to signal power at amplifier input
- Expressed in decibels (dB)

Optical Amplifier Performance: Noise

An optical amplifier will produce ASE noise

• W_{ASE} = ASE noise Power Spectral Density (PSD)

• W_{ASE} is approximately flat

Optical Amplifier Performance: Noise

ASE noise is usually reduced by optical filtering

- B_0 is the optical filter bandwidth
- Expression valid for a brickwall filter and flat W_{ASE}

Relationship between Gain and Noise

Gain & Noise depend on Population Inversion

Population Inversion or Spontaneous Emission Factor

$$n_{sp} = \frac{N_e}{N_e - N_g} > 1$$

Relationship between Gain and Noise

- n_{sp} is defined only when $N_e > N_g$ (i.e. inversion)
- Noise $\propto N_{e'}$ higher $N_e \Rightarrow$ more spont. emission
- •Absorption $\propto N_{g'}$ higher $N_g \Rightarrow$ greater absorption
- •Gain $(G) \propto N_e N_{g'}$ can only have gain if emission is greater than absorption

•An interpretation of
$$n_{sp}$$
: $n_{sp} \approx \frac{\text{Noise}}{\text{Gain}}$

Low inversion ⇒ low gain ⇒ noise dominates

Relationship between Gain and Noise

• Noise PSD (W_{ASE}) depends on n_{sp}

$$W_{ASE} = hfn_{sp}(G-1)$$

- •High inversion $\Rightarrow N_g \rightarrow 0 \Rightarrow n_{sp} \approx N_e / N_e \rightarrow 1$ amplifier less noisy as $n_{sp} \rightarrow 1$
- High inversion also desirable because $G \propto N_e N_{g'}$ $N_g \rightarrow 0 \Rightarrow n_{sp} \rightarrow 1 \Rightarrow G \rightarrow maximum \ value$
- For optical amplifiers, high inversion and high gain is the best.

Noise Performance Measures

Besides n_{sp} and Noise Power ... commonly used performance measures are:

- 1. Electrical Signal-to-Noise Ratio (SNR)
- 2. Noise Figure

- Why not n_{sp} ?

 Impossible to count number of excited atoms ...
- Why not Noise Power?
 Not useful without knowing signal power ...

Two more important differences (between optical and electrical amplifiers):

- SNR meaningful only after the signal has been detected (converted to electrical)
- 2. Optical detectors are square law devices
 - Mixing (or beating) between various frequency components of the optical signal
 - Detected electrical spectrum contains frequency difference components!

Mixing of various optical spectral components:

Mixing products in the detected photocurrent:

The SNR at a receiver with responsivity $R_{o'}$ and electrical bandwidth B_{e} :

contribution from optical amplifier

contribution from detector

Noise Figure

The Noise Figure of a device is defined as follows:

Noise Figure,
$$F = \frac{SNR \text{ at the input}}{SNR \text{ at the output}}$$

Noise Figure of an Optical Amplifier

SNR at the input of the Optical Amplifier, SNR_{in}

SNR at the output of the Optical Amplifier, SNR_{out}

Noise Figure of an Optical Amplifier

$$SNR_{in} = \frac{(R_o P_{in})^2}{2eR_o P_{in}B_e} \leftarrow$$

assuming shot noise limited detector

For a "perfect" detector with 100% Quantum Efficiency,

$$SNR_{in} = \frac{P_{in}}{2hfB_{o}}$$

$$R_{\rm o} = \frac{e}{hf}$$

Noise Figure of an Optical Amplifier

SNR_{out}:
$$P_{in}$$
 $(R_o P_{out})^2$

SNR_{out} $\approx \frac{(R_o P_{out})^2}{4R_o^2 P_{out} h f n_{sp} (G-1) B_e + 2e R_o P_{in} B_e}$

$$= \frac{GP_{in}}{4h f n_{sp} (G-1) B_e + 2h f B_e}$$
 after simplification

Noise Figure, F:

Figure, F:
$$F = \frac{SNR_{\text{in}}}{SNR_{\text{out}}} = \frac{4hfn_{sp}(G-1)B_e + 2hfB_e}{2hfB_eG} = \frac{2n_{sp}(G-1) + 1}{G}$$

Quantum-limited Noise Figure

Any worthwhile amplifier will have high gain, and

$$F = \frac{SNR_{\text{in}}}{SNR_{\text{out}}} = \frac{2n_{sp}(G-1) + 1}{G}$$

• For an amplifier with high inversion, $n_{sp} \rightarrow 1$

$$F \approx \frac{2n_{sp}G}{G} = 2 \Rightarrow 3 \text{ dB}$$

• 3 dB is the quantum limited noise figure

Applications

Power amplifier

Line amplifier

Receiver preamplifier

Summary

- Fundamental characteristics:
 - stimulated emission, amplification, spontaneous emission, ASE
- Performance measures:
 - Inversion Factor, gain, noise power, SNR and noise figure
- Performance Limitations
 - Mixing products, Quantum limit
- Basic mathematical analysis
- Applications

Proceed with the *Interactive Learning Module*