

Home Page

Title Page

Page 1 of 20

Go Back

Full Screen

Close

Home Page

Title Page

>>

Page 2 of 20

Go Back

Full Screen

Close

Home Page

Title Page

Page 3 of 20

Go Back

Full Screen

Close

模型 各向同性的物体,内部有热源,与周围介质有热交换,求物体内部的温度分布。

模型 各向同性的物体,内部有热源,与周围介质有热交换,求物体内部的温度分布。 物理规律

• (1) 能量守恒: 在物体 Ω 内任取一部分 $V\subset \Omega$,任取时间段 $[t_1,t_2]$,则有

 $[t_1, t_2]$ 时段内V中增加的热量 = $[t_1, t_2]$ 时段内通过边界 ∂V 流入的热量 + $[t_1, t_2]$ 时段内由内部热源产生的热量

模型 各向同性的物体,内部有热源,与周围介质有热交换,求物体内部的温度分布。 物理规律

• (1) 能量守恒: 在物体 Ω 内任取一部分 $V\subset \Omega$,任取时间段 $[t_1,t_2]$,则有

 $[t_1, t_2]$ 时段内V中增加的热量 = $[t_1, t_2]$ 时段内通过边界 ∂V 流入的热量 + $[t_1, t_2]$ 时段内由内部热源产生的热量

• (2) Fourier热力学定律: 热流密度 $\mathbf{q} = -k \nabla u$,即热流量与温度的梯度成正比,两者方向相反,k是热传导系数

- (2) Fourier热力学定律: 热流密度 $\mathbf{q} = -k \nabla u$,即热流量与温度的梯度成正比,两者方向相反,k是热传导系数
- ρ 表示物体的密度,u表示温度,c表示比热,q表示热流密度, f_0 表示热源强度。假设物体的密度不随时间变化,物体是各向同性的,所以c(x,t)=c为常数

- (2) Fourier热力学定律: 热流密度 $\mathbf{q} = -k \nabla u$,即热流量与温度的梯度成正比,两者方向相反,k是热传导系数
- ρ 表示物体的密度,u表示温度,c表示比热,q表示热流密度, f_0 表示热源强度。假设物体的密度不随时间变化,物体是各向同性的,所以c(x,t)=c为常数
- 在[t1, t2]时段内V中因温度升高而增加的热量为

$$Q = \iiint_{V} c\rho(u|_{t=t_2} - u|_{t=t_1}) dx dy dz$$
$$= \iiint_{V} (\int_{t_1}^{t_2} u_t dt) c\rho dx dy dz.$$

Home Page

Title Page

Page 4 of 20

Go Back

Full Screen

Close

- (2) Fourier热力学定律: 热流密度 $\mathbf{q} = -k \nabla u$,即热流量与温度的梯度成正比,两者方向相反,k是热传导系数
- ρ 表示物体的密度,u表示温度,c表示比热,q表示热流密度, f_0 表示热源强度。假设物体的密度不随时间变化,物体是各向同性的,所以c(x,t)=c为常数
- 在[t1, t2]时段内V中因温度升高而增加的热量为

$$Q = \iiint_{V} c\rho(u|_{t=t_2} - u|_{t=t_1}) dx dy dz$$
$$= \iiint_{V} (\int_{t_1}^{t_2} u_t dt) c\rho dx dy dz.$$

Home Page

Title Page

Page 4 of 20

Go Back

Full Screen

Close

• 在dt时间段通过V的边界 ∂V 上小块进入区域V的热量为 $-q \cdot ndSdt$,所以 $[t_1,t_2]$ 时间段通过边界 $\partial V = S$ 流入V的热量为

● 在dt时间段通过V的边界 ∂V 上小块进入区域V的热量为 $-q \cdot ndSdt$,所以 $[t_1,t_2]$ 时间段通过边界 $\partial V = S$ 流入V的热量为

$$Q_1 = -\int_{t_1}^{t_2} (\oint_S \mathbf{q} \cdot \mathbf{n} dS) dt = \int_{t_1}^{t_2} (\oint_S k \nabla u \cdot \mathbf{n} dS) dt$$

Home Page

Title Page

Page 5 of 20

Go Back

Full Screen

Close

• 在dt时间段通过V的边界 ∂V 上小块进入区域V的热量为 $-q \cdot ndSdt$,所以 $[t_1,t_2]$ 时间段通过边界 $\partial V = S$ 流入V的热量为

$$Q_1 = -\int_{t_1}^{t_2} (\oint_S \mathbf{q} \cdot \mathbf{n} dS) dt = \int_{t_1}^{t_2} (\oint_S k \nabla u \cdot \mathbf{n} dS) dt$$

• 内部热源产生的热量为

$$Q_2 = \int_{t_1}^{t_2} (\iiint_V \rho f_0 dx dy dz) dt$$

Home Page

Title Page

Page 5 of 20

Go Back

Full Screen

Close

• 在dt时间段通过V的边界 ∂V 上小块进入区域V的热量为 $-q \cdot ndSdt$,所以 $[t_1,t_2]$ 时间段通过边界 $\partial V = S$ 流入V的热量为

$$Q_1 = -\int_{t_1}^{t_2} (\oint_S \mathbf{q} \cdot \mathbf{n} dS) dt = \int_{t_1}^{t_2} (\oint_S k \nabla u \cdot \mathbf{n} dS) dt$$

• 内部热源产生的热量为

$$Q_2 = \int_{t_1}^{t_2} (\iiint_V \rho f_0 dx dy dz) dt$$

• 假设 $u_t, u_{xx}, u_{yy}, u_{zz}$ 连续,利用Stokes公式推出

$$Q_1 = \int_{t_1}^{t_2} (\iiint_V \nabla \cdot (k\nabla u) dx dy dz) dt$$

Home Page

Title Page

Page 5 of 20

Go Back

Full Screen

Close

能量守恒关系用数学公式表达出来就是

$$\iiint_{V} (\int_{t_{1}}^{t_{2}} u_{t} dt) c \rho dx dy dz = \int_{t_{1}}^{t_{2}} (\iiint_{V} \nabla \cdot (k \nabla u) dx dy dz) dt$$

$$+\int_{t_1}^{t_2}(\int\int\int_V \rho f_0 dx dy dz) dt$$

Home Page

Title Page

Page 6 of 20

Go Back

Full Screen

Close

能量守恒关系用数学公式表达出来就是

$$\iiint_{V} (\int_{t_{1}}^{t_{2}} u_{t}dt) c\rho dx dy dz = \int_{t_{1}}^{t_{2}} (\iiint_{V} \nabla \cdot (k\nabla u) dx dy dz) dt$$

$$+\int_{t_1}^{t_2}(\int\int\int_V \rho f_0 dx dy dz) dt$$

利用Fubini交换积分次序定理以及V和 t_1, t_2 的任意性(命题1的结论),可得

$$c\rho u_t - \nabla \cdot (k\nabla u) = \rho f_0.$$

上式称为三维热传导方程.

Home Page

Title Page

Page 6 of 20

Go Back

Full Screen

Close

能量守恒关系用数学公式表达出来就是

$$\iiint_{V} \left(\int_{t_{1}}^{t_{2}} u_{t} dt \right) c \rho dx dy dz = \int_{t_{1}}^{t_{2}} \left(\iiint_{V} \nabla \cdot (k \nabla u) dx dy dz \right) dt$$

$$+ \int_{t_1}^{t_2} (\int\!\!\!\int\!\!\!\int_V \rho f_0 dx dy dz) dt$$

利用Fubini交换积分次序定理以及V和 t_1, t_2 的任意性(命题1的结论),可得

$$c\rho u_t - \nabla \cdot (k\nabla u) = \rho f_0.$$

上式称为三维热传导方程.如果物体是均匀的,则c, ρ , k为常数,上式又可以写成

$$u_t - a^2 \Delta u = f(x, t),$$

其中
$$a^2 = \frac{k}{c\rho}$$
, $f = \frac{f_0}{c}$. $\Delta u = u_{xx} + u_{yy} + u_{zz}$

Home Page

Title Page

Page 6 of 20

Go Back

Full Screen

Close

求泛函的极值问题称为变分问题

Close

求泛函的极值问题称为变分问题 *1.极小曲面问题

Home Page

Title Page

Page 7 of 20

Go Back

Full Screen

Close

求泛函的极值问题称为变分问题

*1.极小曲面问题

设 Ω 是平面上的一个有界区域,边界 $\partial\Omega$ 充分光滑, $\partial\Omega$ 作为平面曲线方程为 $x=x(t),y=y(t),0\leq t\leq t_0$ 在 $\partial\Omega$ 上给定一条空间闭曲线

$$\Gamma: \begin{cases} x = x(t), \\ y = y(t), & 0 \le t \le t_0 \\ \phi = \phi(t), \end{cases}$$

Home Page

Title Page

Page 7 of 20

Go Back

Full Screen

Close

求泛函的极值问题称为变分问题

*1.极小曲面问题

设 Ω 是平面上的一个有界区域,边界 $\partial\Omega$ 充分光滑, $\partial\Omega$ 作为平面曲线方程为 $x=x(t),y=y(t),0\leq t\leq t_0$ 在 $\partial\Omega$ 上给定一条空间闭曲线

$$\Gamma: \begin{cases} x = x(t), \\ y = y(t), \\ \phi = \phi(t), \end{cases} 0 \le t \le t_0$$

问题 求一张定义在 $\bar{\Omega}$ 上的光滑曲面 \sum ,使得:

- (1) \sum 以 Γ 为边界;
- (2) 下的表面积最小

Home Page

Title Page

Page 7 of 20

Go Back

Full Screen

Close

求泛函的极值问题称为变分问题

*1.极小曲面问题

设 Ω 是平面上的一个有界区域,边界 $\partial\Omega$ 充分光滑, $\partial\Omega$ 作为平面曲线方程为 $x=x(t),y=y(t),0\leq t\leq t_0$ 在 $\partial\Omega$ 上给定一条空间闭曲线

$$\Gamma: \begin{cases} x = x(t), \\ y = y(t), \\ \phi = \phi(t), \end{cases} 0 \le t \le t_0$$

问题 求一张定义在 $\bar{\Omega}$ 上的光滑曲面 \sum ,使得:

- (1) \sum 以 Γ 为边界;
- (2) 下的表面积最小

Home Page

Title Page

Page 7 of 20

Go Back

Full Screen

Close

● 记曲面 \sum 的方程是u = u(x, y),则曲面的面积为

$$J(u) = \iint_{\Omega} (1 + u_x^2 + u_y^2)^{\frac{1}{2}} dx dy.$$

Home Page

Title Page

Page 8 of 20

Go Back

Full Screen

Close

• 记曲面 \sum 的方程是u = u(x, y),则曲面的面积为

$$J(u) = \iint_{\Omega} (1 + u_x^2 + u_y^2)^{\frac{1}{2}} dx dy.$$

• 把 Γ 的方程写成 $\phi = \phi(x,y), (x,y) \in (\partial\Omega)$ 。因为曲面以 Γ 为边界,所以 $u|_{\partial\Omega} = \phi(x,y)$,记

$$M_{\phi} = \{ u \in C^1(\bar{\Omega}) : u|_{\partial\Omega} = \phi(x, y) \},$$

则 $J: M_{\phi} \rightarrow R^{1}$ 称为定义在 M_{ϕ} 上的泛函

• 记曲面 \sum 的方程是u = u(x,y),则曲面的面积为

$$J(u) = \iint_{\Omega} (1 + u_x^2 + u_y^2)^{\frac{1}{2}} dx dy.$$

$$M_{\phi} = \{ u \in C^1(\bar{\Omega}) : u|_{\partial\Omega} = \phi(x, y) \},$$

则 $J: M_{\phi} \rightarrow R^1$ 称为定义在 M_{ϕ} 上的泛函

● 希望求一个函数 $u \in \Omega_{\phi}$,使得

$$J(u) = \min_{v \in M_{\phi}} J(v), \tag{1.1.14}$$

这个u就是泛函J在集合 M_{ϕ} 上达到极小值的点。

Home Page

Title Page

Page 8 of 20

Go Back

Full Screen

Close

• 记曲面 \sum 的方程是u=u(x,y),则曲面的面积为

$$J(u) = \iint_{\Omega} (1 + u_x^2 + u_y^2)^{\frac{1}{2}} dx dy.$$

• 把 Γ 的方程写成 $\phi = \phi(x,y), (x,y) \in (\partial\Omega)$ 。因为曲面以 Γ 为边界,所以 $u|_{\partial\Omega} = \phi(x,y)$,记

$$M_{\phi} = \{ u \in C^1(\bar{\Omega}) : u|_{\partial\Omega} = \phi(x, y) \},$$

则 $J: M_{\phi} \rightarrow R^1$ 称为定义在 M_{ϕ} 上的泛函

● 希望求一个函数 $u \in \Omega_{\phi}$,使得

$$J(u) = \min_{v \in M_{\phi}} J(v), \tag{1.1.14}$$

这个u就是泛函J在集合 M_{ϕ} 上达到极小值的点。

• 这种求一个泛函的极小问题为**变分问题**,函数集合 M_{ϕ} 称为变分问题的容**许函数类**,u称为变分问题的解。

• 记曲面 \sum 的方程是u=u(x,y),则曲面的面积为

$$J(u) = \iint_{\Omega} (1 + u_x^2 + u_y^2)^{\frac{1}{2}} dx dy.$$

• 把 Γ 的方程写成 $\phi = \phi(x,y), (x,y) \in (\partial\Omega)$ 。因为曲面以 Γ 为边界,所以 $u|_{\partial\Omega} = \phi(x,y)$,记

$$M_{\phi} = \{ u \in C^1(\bar{\Omega}) : u|_{\partial\Omega} = \phi(x, y) \},$$

则 $J: M_{\phi} \rightarrow R^1$ 称为定义在 M_{ϕ} 上的泛函

● 希望求一个函数 $u \in \Omega_{\phi}$,使得

$$J(u) = \min_{v \in M_{\phi}} J(v), \tag{1.1.14}$$

这个u就是泛函J在集合 M_{ϕ} 上达到极小值的点。

• 这种求一个泛函的极小问题为**变分问题**,函数集合 M_{ϕ} 称为变分问题的容**许函数类**,u称为变分问题的解。

先导出и满足的方程.

Home Page

Title Page

Page 9 of 20

Go Back

Full Screen

Close

先导出и满足的方程.

• 对任意的 $v \in M_0 = \{v \in C^1(\bar{\Omega}) : v|_{\partial\Omega} = 0\}$,以 及 $\epsilon \in R^1$,有 $u + \epsilon v \in M_{\phi}$.

Home Page

Title Page

Page 9 of 20

Go Back

Full Screen

Close

先导出u满足的方程.

- 对任意的 $v \in M_0 = \{v \in C^1(\bar{\Omega}) : v|_{\partial\Omega} = 0\},$ 以 及 $\epsilon \in R^1$,有 $u + \epsilon v \in M_{\phi}$.
- $i \exists j(\epsilon) = J(u + \epsilon v), \mathbf{M}$

$$j(\epsilon) = J(u + \epsilon v) \ge J(u) = j(0), \forall \epsilon \in \mathbb{R}^1$$

即函数 $j(\epsilon)$ 作为 ϵ 的函数在 $\epsilon = 0$ 达到最小值,

Home Page

Title Page

Page 9 of 20

Go Back

Full Screen

Close

先导出u满足的方程.

- 对任意的 $v \in M_0 = \{v \in C^1(\bar{\Omega}) : v|_{\partial\Omega} = 0\},$ 以 及 $\epsilon \in R^1$,有 $u + \epsilon v \in M_{\phi}$.
- $i \exists j(\epsilon) = J(u + \epsilon v), \mathbf{M}$

$$j(\epsilon) = J(u + \epsilon v) \ge J(u) = j(0), \forall \epsilon \in \mathbb{R}^1$$

即函数 $j(\epsilon)$ 作为 ϵ 的函数在 $\epsilon = 0$ 达到最小值,

• 从而有

$$j'(0) = \iint_{\Omega} \frac{u_x v_x + u_y v_y}{(1 + u_x^2 + u_y^2)^{1/2}} dx dy = 0, \forall v \in M_0.$$
(1.1.15)

Home Page

Title Page

Page 9 of 20

Go Back

Full Screen

Close

假设 $u \in C^1(\bar{\Omega}) \cup C^2(\Omega)$,利用(1.1.15)以及Green公式

$$\int_{\Omega} \left[\frac{\partial}{\partial x} \left(\frac{u_x}{(1 + u_x^2 + u_y^2)^{1/2}} \right) + \frac{\partial}{\partial y} \left(\frac{u_y}{(1 + u_x^2 + u_y^2)^{1/2}} \right) \right] v dx dy$$

利用1.1.15的结果,上式可写成

Home Page

Title Page

Page 10 of 20

Go Back

Full Screen

Close

假设 $u \in C^1(\bar{\Omega}) \cup C^2(\Omega)$,利用(1.1.15)以及Green公式

$$\int_{\Omega} [\frac{\partial}{\partial x} (\frac{u_x}{(1+u_x^2+u_y^2)^{1/2}}) + \frac{\partial}{\partial y} (\frac{u_y}{(1+u_x^2+u_y^2)^{1/2}})] v dx dy$$

利用1.1.15的结果,上式可写成

$$= \int_{\Omega} \left[\frac{\partial}{\partial x} \left(\frac{u_x}{(1 + u_x^2 + u_y^2)^{1/2}} \right) + \frac{\partial}{\partial y} \left(\frac{u_y}{(1 + u_x^2 + u_y^2)^{1/2}} \right) \right] v dx dy + \int_{\Omega} \frac{u_x v_x + u_y v_y}{(1 + u_x^2 + u_y^2)^{1/2}} dx dy$$

分别把关于x,y求导的项结合一下

$$= \int_{\Omega} \left[\frac{\partial}{\partial x} \left(\frac{u_x v}{(1 + u_x^2 + u_y^2)^{1/2}} \right) + \frac{\partial}{\partial y} \left(\frac{u_y v}{(1 + u_x^2 + u_y^2)^{1/2}} \right) \right] v dx dy$$

利用Green公式(或者Stokes公式中n=1)

$$= \int_{\partial\Omega} \left[\frac{v}{(1 + u_x^2 + u_y^2)^{1/2}} u_x \cos(\mathbf{n}, x) + \frac{v}{(1 + u_x^2 + u_y^2)^{1/2}} u_y \cos(\mathbf{n}, y) \right] dl$$
$$= \int_{\partial\Omega} \frac{v}{(1 + u_x^2 + u_y^2)^{1/2}} \frac{\partial u}{\partial \mathbf{n}} dl = 0$$

Home Page

Title Page

Page 10 of 20

Go Back

Full Screen

Close

 $v \in M_0$ 即 $v|_{\partial\Omega} = 0$,利用函数v的任意性(利用命题2的结论)即可得

$$\begin{cases} \frac{\partial}{\partial x} \left(\frac{u_x}{(1 + u_x^2 + u_y^2)^{1/2}} \right) + \frac{\partial}{\partial y} \left(\frac{u_y}{(1 + u_x^2 + u_y^2)^{1/2}} \right) = 0, \ x \in \Omega \\ u|_{\partial\Omega} = \phi(x, y). \end{cases}$$
(1.1.16)

Home Page

Title Page

Page 11 of 20

Go Back

Full Screen

Close

 $v \in M_0$ 即 $v|_{\partial\Omega} = 0$,利用函数v的任意性(利用命题2的结论)即可得

$$\begin{cases} \frac{\partial}{\partial x} \left(\frac{u_x}{(1 + u_x^2 + u_y^2)^{1/2}} \right) + \frac{\partial}{\partial y} \left(\frac{u_y}{(1 + u_x^2 + u_y^2)^{1/2}} \right) = 0, \ x \in \Omega \\ u|_{\partial\Omega} = \phi(x, y). \end{cases}$$
(1.1.16)

现在要问: (1.1.16)式是否是一个充分条件?即边值问题(1.1.16)的解是否是变分问题(1.1.14)的解?回答是肯定的,因为

$$j'(0) = 0$$

$$j''(\epsilon) = \int_{\Omega} \frac{v_x^2 + v_y^2 + [v_y(u_x + \epsilon v_x) - v_x(u_y + \epsilon v_y)]^2}{[1 + (u_x + \epsilon v_x)^2 + (u_y + \epsilon v_y)^2]^{3/2}} dxdy > 0$$

Home Page

Title Page

→

Page 11 of 20

Go Back

Full Screen

Close

 $v \in M_0$ 即 $v|_{\partial\Omega} = 0$,利用函数v的任意性(利用命题2的结论)即可得

$$\begin{cases} \frac{\partial}{\partial x} \left(\frac{u_x}{(1 + u_x^2 + u_y^2)^{1/2}} \right) + \frac{\partial}{\partial y} \left(\frac{u_y}{(1 + u_x^2 + u_y^2)^{1/2}} \right) = 0, \ x \in \Omega \\ u|_{\partial\Omega} = \phi(x, y). \end{cases}$$
(1.1.16)

现在要问: (1.1.16)式是否是一个充分条件?即边值问题(1.1.16)的解是否是变分问题(1.1.14)的解?回答是肯定的,因为

$$j'(0) = 0$$

$$j''(\epsilon) = \int_{\Omega} \frac{v_x^2 + v_y^2 + [v_y(u_x + \epsilon v_x) - v_x(u_y + \epsilon v_y)]^2}{[1 + (u_x + \epsilon v_x)^2 + (u_y + \epsilon v_y)^2]^{3/2}} dxdy > 0$$

结论: 若 $u \in C^1(\bar{\Omega}) \cup C^2(\Omega)$ 是边值问题(1.1.16)的解,则u必是变分问题(1.1.14)的解。反之亦然

Home Page

Title Page

Page 11 of 20

Go Back

Full Screen

Close

 $v \in M_0$ 即 $v|_{\partial\Omega} = 0$,利用函数v的任意性(利用命题2的结论)即可得

$$\begin{cases} \frac{\partial}{\partial x} \left(\frac{u_x}{(1 + u_x^2 + u_y^2)^{1/2}} \right) + \frac{\partial}{\partial y} \left(\frac{u_y}{(1 + u_x^2 + u_y^2)^{1/2}} \right) = 0, \ x \in \Omega \\ u|_{\partial\Omega} = \phi(x, y). \end{cases}$$
(1.1.16)

现在要问: (1.1.16)式是否是一个充分条件?即边值问题(1.1.16)的解是否是变分问题(1.1.14)的解?回答是肯定的,因为

$$j'(0) = 0$$

$$j''(\epsilon) = \int_{\Omega} \frac{v_x^2 + v_y^2 + [v_y(u_x + \epsilon v_x) - v_x(u_y + \epsilon v_y)]^2}{[1 + (u_x + \epsilon v_x)^2 + (u_y + \epsilon v_y)^2]^{3/2}} dxdy > 0$$

结论: 若 $u \in C^1(\bar{\Omega}) \cup C^2(\Omega)$ 是边值问题(1.1.16)的解,则u必是变分问题(1.1.14)的解。反之亦然这样就把变分问题转化成一个偏微分方程的边值问题

Home Page

Title Page

Page 11 of 20

Go Back

Full Screen

Close

Home Page

Title Page

Page 12 of 20

Go Back

Full Screen

Close

1.2 偏微分方程的基本概念 1.2.1 定义

- 含有未知函数的偏导数的方程叫偏微分方程

1.2 偏微分方程的基本概念 1.2.1 定义

- 含有未知函数的偏导数的方程叫偏微分方程
- 方程的个数是一个的称为方程式

1.2 偏微分方程的基本概念 1.2.1 定义

- 含有未知函数的偏导数的方程叫偏微分方程
- 方程的个数是一个的称为方程式
- 方程的个数多于1个的称为方程组

1.2.1 定义

- 含有未知函数的偏导数的方程叫偏微分方程
- 方程的个数是一个的称为方程式
- 方程的个数多于1个的称为方程组
- 方程的个数少于未知函数的个数, 称方程组是**欠 定的**

1.2.1 定义

- 含有未知函数的偏导数的方程叫偏微分方程
- ◆ 方程的个数是一个的称为方程式
- 方程的个数多于1个的称为方程组
- ◆ 方程的个数少于未知函数的个数, 称方程组是欠 定的
- 方程的个数多于未知函数的个数,称方程组是超 定的

Home Page

Title Page

Page 12 of 20

Go Back

Full Screen

1.2.1 定义

- 含有未知函数的偏导数的方程叫偏微分方程
- ◆ 方程的个数是一个的称为方程式
- 方程的个数多于1个的称为方程组
- ◆ 方程的个数少于未知函数的个数,称方程组是欠 定的
- ◆ 方程的个数多于未知函数的个数, 称方程组是超 定的
- 方程(组)中出现的未知函数的最高阶偏导数的阶数 称为方程(组)的阶数

1.2.1 定义

- 含有未知函数的偏导数的方程叫偏微分方程
- ◆ 方程的个数是一个的称为方程式
- 方程的个数多于1个的称为方程组
- ◆ 方程的个数少于未知函数的个数,称方程组是欠 定的
- ◆ 方程的个数多于未知函数的个数, 称方程组是超 定的
- 方程(组)中出现的未知函数的最高阶偏导数的阶数 称为方程(组)的阶数

●如果方程(组)中的项关于未知函数及其各阶偏导数的全体都是线性的,就称方程(组)为线性,否则称为非线性的。

- 如果方程(组)中的项关于未知函数及其各阶偏导数的全体都是线性的,就称方程(组)为线性,否则称为非线性的。
- 非线性又分为半线性、拟线性和完全非线性

- 如果方程(组)中的项关于未知函数及其各阶偏导数的全体都是线性的,就称方程(组)为线性,否则称为非线性的。
- ●非线性又分为半线性、拟线性和完全非线性
- ●拟线性PDE: PDE中对最高阶导数是线性的,例如:

- 如果方程(组)中的项关于未知函数及其各阶偏导数的全体都是线性的,就称方程(组)为线性,否则称为非线性的。
- 非线性又分为半线性、拟线性和完全非线性
- 拟线性PDE: PDE中对最高阶导数是线性的,例如:

$$u_t + uu_x = e^u$$

- ●如果方程(组)中的项关于未知函数及其各阶偏导数的全体都是线性的,就称方程(组)为线性,否则称为非线性的。
- 非线性又分为半线性、拟线性和完全非线性
- ●拟线性PDE: PDE中对最高阶导数是线性的,例如:

$$u_t + uu_x = e^u$$

● 半线性PDE:拟线性PDE中,最高阶导数的系数仅为自变量的函数,例如:

- 如果方程(组)中的项关于未知函数及其各阶偏导数的全体都是线性的,就称方程(组)为线性,否则称为非线性的。
- 非线性又分为半线性、拟线性和完全非线性
- ●拟线性PDE: PDE中对最高阶导数是线性的,例如:

$$u_t + uu_x = e^u$$

● 半线性PDE:拟线性PDE中,最高阶导数的系数仅为自变量的函数,例如:

$$a(x,y)(u_{xx} + u_{yy}) = e^{u}(u_x + u_y)$$

●完全非线性PDE: PDE中对最高阶导数不是线性的,例如:

Home Page

Title Page

Title Page

Page 13 of 20

Go Back

Full Screen

Close

- 如果方程(组)中的项关于未知函数及其各阶偏导数的全体都是线性的,就称方程(组)为线性,否则称为非线性的。
- 非线性又分为半线性、拟线性和完全非线性
- ●拟线性PDE: PDE中对最高阶导数是线性的,例如:

$$u_t + uu_x = e^u$$

● 半线性PDE:拟线性PDE中,最高阶导数的系数仅为自变量的函数,例如:

$$a(x,y)(u_{xx} + u_{yy}) = e^{u}(u_x + u_y)$$

●完全非线性PDE: PDE中对最高阶导数不是线性的,例如:

$$u_x^2 + u_y^2 = u^2$$

Home Page

Title Page

Page 13 of 20

Go Back

Full Screen

Close

● 常微分方程中,通解只要求满足方程,即满足某种物理定律,而不能完全确定一个物理状态,这种通解通常有无穷多个; 特解除了要求满足方程还要满足给定的外加条件。

Home Page

Title Page

Itle Page

Itle Page

Go Back

Full Screen

Close

- 常微分方程中,通解只要求满足方程,即满足某种物理定律,而不能完全确定一个物理状态,这种通解通常有无穷多个;特解除了要求满足方程还要满足给定的外加条件。
- 对偏微分方程也是一样的,为了完全确定一个物理状态,只有相应的偏微分方程是不够的,必须给出它的初始状态和边界状态,即给出外加的特定条件,这种特定条件称为定解条件。

- 常微分方程中,通解只要求满足方程,即满足某种物理定律,而不能完全确定一个物理状态,这种通解通常有无穷多个;特解除了要求满足方程还要满足给定的外加条件。
- 对偏微分方程也是一样的,为了完全确定一个物理状态,只有相应的偏微分方程是不够的,必须给出它的初始状态和边界状态,即给出外加的特定条件,这种特定条件称为定解条件。

 \mathbb{P}^{DE} 定解问题 $\left\{ egin{array}{ll} PDE \\ \mathbb{E}^{\mathbf{p}} & \mathbb{E}^{\mathbf{p}} \end{array} \right.$ 边界条件

Home Page

Title Page

Page 14 of 20

Go Back

Full Screen

Close

- 常微分方程中,通解只要求满足方程,即满足某种物理定律,而不能完全确定一个物理状态,这种通解通常有无穷多个;特解除了要求满足方程还要满足给定的外加条件。
- 对偏微分方程也是一样的,为了完全确定一个物理状态,只有相应的偏微分方程是不够的,必须给出它的初始状态和边界状态,即给出外加的特定条件,这种特定条件称为定解条件。

$$\mathbb{P}^{DE}$$
 定解问题 $\left\{ egin{array}{ll} PDE \\ \mathbb{E}^{\mathbf{p}} & \mathbb{E}^{\mathbf{p}} \end{array} \right.$ 边界条件

● 描述初始时刻物理状态的定解条件称为初始条件或初值条件

- 常微分方程中,通解只要求满足方程,即满足某种物理定律,而不能完全确定一个物理状态,这种通解通常有无穷多个;特解除了要求满足方程还要满足给定的外加条件。
- 对偏微分方程也是一样的,为了完全确定一个物理状态,只有相应的偏微分方程是不够的,必须给出它的初始状态和边界状态,即给出外加的特定条件,这种特定条件称为定解条件。

$$\mathbb{P}^{DE}$$
 定解问题 $\left\{ egin{array}{ll} PDE \\ \mathbb{E}^{\mathbf{p}} & \mathbb{E}^{\mathbf{p}} \end{array} \right.$ 边界条件

- 描述初始时刻物理状态的定解条件称为初始条件或初值条件
- 描述边界上物理状态的条件称为边界条件或边值条件.

Home Page

Title Page

Itle Page

Itle Page

Go Back

Full Screen

- 常微分方程中,通解只要求满足方程,即满足某种物理定律,而不能完全确定一个物理状态,这种通解通常有无穷多个;特解除了要求满足方程还要满足给定的外加条件。
- 对偏微分方程也是一样的,为了完全确定一个物理状态,只有相应的偏微分方程是不够的,必须给出它的初始状态和边界状态,即给出外加的特定条件,这种特定条件称为定解条件。

$$\mathbb{P}^{DE}$$
 定解问题 $\left\{ egin{array}{ll} PDE \\ \mathbb{E}^{\mathbf{p}} & \mathbb{E}^{\mathbf{p}} \end{array} \right.$ 边界条件

- 描述初始时刻物理状态的定解条件称为初始条件或初值条件
- 描述边界上物理状态的条件称为边界条件或边值条件.
- 一个方程匹配上定解条件就构成定解问题.

Home Page

Title Page

Page 14 of 20

Go Back

Full Screen

$$u_{tt} - a^2 u_{xx} = f(x, t), 0 < x < l, t > 0.$$

Home Page

Title Page

Page 15 of 20

Go Back

Full Screen

Close

$$u_{tt} - a^2 u_{xx} = f(x, t), 0 < x < l, t > 0.$$

初 值 条 件 是 初 始 时 刻(t = 0)的 位 移 和 速 度: $\begin{cases} u(x,0) = \phi(x) \\ u_t(x,0) = \psi(x). \end{cases}$

Home Page

Title Page

Page 15 of 20

Go Back

Full Screen

Close

$$u_{tt} - a^2 u_{xx} = f(x, t), 0 < x < l, t > 0.$$

初值条件是初始时刻(t=0)的位移和速度: $\begin{cases} u(x,0)=\phi(x)\\ u_t(x,0)=\psi(x). \end{cases}$

边界条件一般有三种

Home Page

Title Page

Page 15 of 20

Go Back

Full Screen

Close

$$u_{tt} - a^2 u_{xx} = f(x, t), 0 < x < l, t > 0.$$

初 值 条 件 是 初 始 时 刻(t = 0)的 位 移 和 速 度: $\begin{cases} u(x,0) = \phi(x) \\ u_t(x,0) = \psi(x). \end{cases}$

边界条件一般有三种

● 第一类边界条件(Dirichlet边界条件):

Go Back

Full Screen

Close

$$u_{tt} - a^2 u_{xx} = f(x, t), 0 < x < l, t > 0.$$

初 值 条 件 是 初 始 时 刻(t=0)的 位 移 和 速 度: $\begin{cases} u(x,0) = \phi(x) \\ u_t(x,0) = \psi(x). \end{cases}$

边界条件一般有三种

● 第一类边界条件(Dirichlet边界条件):

已知端点x = a(a = 0或a = l)处弦的位移u(a,t) = g(t).当g(t) = 0时,表示弦在该端点处弦是固定的;

Home Page

Title Page

Page 15 of 20

Go Back

Full Screen

Close

$$u_{tt} - a^2 u_{xx} = f(x, t), 0 < x < l, t > 0.$$

初 值 条 件 是 初 始 时 刻(t=0)的 位 移 和 速 度: $\begin{cases} u(x,0) = \phi(x) \\ u_t(x,0) = \psi(x). \end{cases}$

边界条件一般有三种

● 第一类边界条件(Dirichlet边界条件):

已知端点x = a(a = 0或a = l)处弦的位移u(a,t) = g(t).当g(t) = 0时,表示弦在该端点处弦是固定的;

Home Page

Title Page

Page 15 of 20

Go Back

Full Screen

Close

已知端点处弦所受的垂直于弦线的外力:

$$-Tu_x(0,t) = g_0(t) \mathbf{\vec{g}} Tu_x(l,t) = g_l(t)$$

当 $g_0(t) = 0$ 或 $g_l(t) = 0$ 时,表示弦在该端点处(x = 0或x = l)自由滑动

已知端点处弦所受的垂直于弦线的外力:

$$-Tu_x(0,t) = g_0(t) \mathbf{\vec{y}} Tu_x(l,t) = g_l(t)$$

当 $g_0(t) = 0$ 或 $g_l(t) = 0$ 时,表示弦在该端点处(x = 0或x = l)自由滑动

● 第三类边界条件(混合边界条件或Robin边界条件):

已知端点处弦所受的垂直于弦线的外力:

$$-Tu_x(0,t) = g_0(t) \mathbf{\vec{y}} Tu_x(l,t) = g_l(t)$$

当 $g_0(t) = 0$ 或 $g_l(t) = 0$ 时,表示弦在该端点处(x = 0或x = l)自由滑动

● 第三类边界条件(混合边界条件或Robin边界条件):

已知端点处弦的位移和所受的垂至于弦线的外力之和,即

其 中 k_0 , k_l 分 别 表 示 两 端 支 承 的 弹 性 系 数 , 当 $g_0(t) \equiv 0$ 或 $g_l(t) \equiv 0$ 时,表示弦在该端点处被 固定在一个弹性支承上。

Home Page

Title Page

Page 16 of 20

Full Screen

Close

*2热传导方程

$$u_t - a^2 \triangle u = f(\mathbf{x}, t), \mathbf{x} \in \Omega \subset \mathbb{R}^n, t > 0$$

Home Page

Title Page

Page 17 of 20

Go Back

Full Screen

Close

*2热传导方程

$$u_t - a^2 \triangle u = f(\mathbf{x}, t), \mathbf{x} \in \Omega \subset \mathbb{R}^n, t > 0$$

初值条件——已知初始时刻的温度分布: $u(\mathbf{x},0) = \phi(\mathbf{x}), \mathbf{x} \in \Omega$.

Home Page

Title Page

Page 17 of 20

Go Back

Full Screen

Close

*2热传导方程

$$u_t - a^2 \triangle u = f(\mathbf{x}, t), \mathbf{x} \in \Omega \subset \mathbb{R}^n, t > 0$$

初值条件——已知初始时刻的温度分布: $u(\mathbf{x},0) = \phi(\mathbf{x}), \mathbf{x} \in \Omega$.

边界条件——根据边界上温度受周围介质的影响情况,分三种:

Home Page

Title Page

Page 17 of 20

Go Back

Full Screen

Close

THE STREET

*2热传导方程

$$u_t - a^2 \triangle u = f(\mathbf{x}, t), \mathbf{x} \in \Omega \subset \mathbb{R}^n, t > 0$$

初值条件——已知初始时刻的温度分布: $u(\mathbf{x},0) = \phi(\mathbf{x}), \mathbf{x} \in \Omega$.

边界条件——根据边界上温度受周围介质的影响情况,分三种:

● 第一类边界条件:

Close

THE STREET, WE STREET,

*2热传导方程

$$u_t - a^2 \triangle u = f(\mathbf{x}, t), \mathbf{x} \in \Omega \subset \mathbb{R}^n, t > 0$$

初值条件——已知初始时刻的温度分布: $u(\mathbf{x},0) = \phi(\mathbf{x}), \mathbf{x} \in \Omega$.

边界条件——根据边界上温度受周围介质的影响情况,分三种:

● 第一类边界条件:已知边界上的温度分布:

$$u|_{\partial\Omega\times(0,\infty)} = g(x,t)|_{\partial\Omega\times(0,\infty)}$$

当 $g \equiv$ 常数时,表示物体表面恒温。

Go Back

Page 17 of 20

Full Screen

Close

● 第二类边界条件:

Home Page

Title Page

Page 18 of 20

Go Back

Full Screen

Close

$$k \frac{\partial u}{\partial \mathbf{n}}|_{\partial \Omega \times (0,\infty)} = g(x,t)|_{\partial \Omega \times (0,\infty)}$$

Home Page

Title Page

Page 18 of 20

Go Back

Full Screen

Close

$$k \frac{\partial u}{\partial \mathbf{n}}|_{\partial \Omega \times (0,\infty)} = g(x,t)|_{\partial \Omega \times (0,\infty)}$$

k是 热 传 导 系 数 , n是 $\partial\Omega$ 上 的 单 位 外 法 向 量 。 当 $g \equiv 0$ 时,表示物体表面绝热。

$$k \frac{\partial u}{\partial \mathbf{n}}|_{\partial \Omega \times (0,\infty)} = g(x,t)|_{\partial \Omega \times (0,\infty)}$$

k是 热 传 导 系 数 , n是 $\partial\Omega$ 上 的 单 位 外 法 向 量 。 当 $g \equiv 0$ 时,表示物体表面绝热。

● 第三类边界条件:

$$k \frac{\partial u}{\partial \mathbf{n}}|_{\partial \Omega \times (0,\infty)} = g(x,t)|_{\partial \Omega \times (0,\infty)}$$

k是 热 传 导 系 数 , \mathbf{n} 是 $\partial\Omega$ 上 的 单 位 外 法 向 量 。 当 $g \equiv 0$ 时,表示物体表面绝热。

● 第三类边界条件:通过边界物体与周围介质有热 交换

$$(k\frac{\partial u}{\partial \mathbf{n}} + \alpha u)|_{\partial\Omega\times(0,\infty)} = \alpha g_0|_{\partial\Omega\times(0,\infty)},$$

Home Page

Title Page

Page 18 of 20

Go Back

Full Screen

Close

$$k \frac{\partial u}{\partial \mathbf{n}}|_{\partial \Omega \times (0,\infty)} = g(x,t)|_{\partial \Omega \times (0,\infty)}$$

k是 热 传 导 系 数 , n是 $\partial\Omega$ 上 的 单 位 外 法 向 量 。 当 $g \equiv 0$ 时,表示物体表面绝热。

● 第三类边界条件:通过边界物体与周围介质有热 交换

$$(k\frac{\partial u}{\partial \mathbf{n}} + \alpha u)|_{\partial\Omega\times(0,\infty)} = \alpha g_0|_{\partial\Omega\times(0,\infty)},$$

其中k > 0是热传导系数, $\alpha > 0$ 是热交换系数, g_0 是周围介质的温度。

Home Page

Title Page

Page 18 of 20

Go Back

Full Screen

Close

$$-a^2 \Delta u = f(x), x \in \Omega \subset \mathbb{R}^n$$

Home Page

Title Page

Page 19 of 20

Go Back

Full Screen

Close

$$-a^2 \Delta u = f(x), x \in \Omega \subset \mathbb{R}^n$$

只有边界条件,没有初值条件。

Page 19 of 20

Go Back

Full Screen

Close

$$-a^2 \Delta u = f(x), x \in \Omega \subset \mathbb{R}^n$$

只有边界条件,没有初值条件。

$$-a^2 \Delta u = f(x), x \in \Omega \subset \mathbb{R}^n$$

只有边界条件,没有初值条件。

注意:对于波动方程和热传导方程。若 $\Omega \equiv R^n$,则 Ω 没有边界,当然也没有边界条件,只有初值条件.

● 偏微分方程+初值条件+边界条件, 称为**初边值问** 题或混合问题

$$-a^2 \Delta u = f(x), x \in \Omega \subset \mathbb{R}^n$$

只有边界条件,没有初值条件。

- 偏微分方程+初值条件+边界条件, 称为**初边值问** 题或混合问题
- 偏微分方程+初值条件, 称为初值问题或叫做Cauchy问题

只有边界条件,没有初值条件。

- 偏微分方程+初值条件+边界条件, 称为**初边值问** 题或混合问题
- 偏微分方程+初值条件, 称为初值问题或叫做Cauchy问题
- ●偏微分方程 + 边界条件, 称为边值问题

只有边界条件,没有初值条件。

- 偏微分方程+初值条件+边界条件, 称为**初边值问** 题或混合问题
- 偏微分方程+初值条件, 称为初值问题或叫做Cauchy问题
- ●偏微分方程 + 边界条件, 称为边值问题

*1.2.3定解问题的适定性 对不同的物理问题,一般来讲其定解条件也是不同的。从数学上看,一个定解问题提的是否合理,即是否能够完全描述一个给定的物理状态,一般来讲有以下三个标准:

Home Page
Title Page

Go Back

Full Screen

Close

*1.2.3定解问题的适定性 对不同的物理问题,一般来讲其定解条件也是不同的。从数学上看,一个定解问题提的是否合理,即是否能够完全描述一个给定的物理状态,一般来讲有以下三个标准:

● 解的存在性: 所给的定解问题有解

*1.2.3定解问题的适定性 对不同的物理问题,一般来讲其定解条件也是不同的。从数学上看,一个定解问题提的是否合理,即是否能够完全描述一个给定的物理状态,一般来讲有以下三个标准:

● 解的存在性: 所给的定解问题有解

● 解的唯一性: 所给的定解问题只有一个解

- *1.2.3定解问题的适定性 对不同的物理问题,一般来讲其定解条件也是不同的。从数学上看,一个定解问题提的是否合理,即是否能够完全描述一个给定的物理状态,一般来讲有以下三个标准:
 - 解的存在性: 所给的定解问题有解
 - 解的唯一性: 所给的定解问题只有一个解
 - 解的稳定性: 当定解条件以及方程中的系数有微小变动时, 相应的解也只有微小变动。

Home Page

Title Page

I description of 20

Go Back

Full Screen

Close

- *1.2.3定解问题的适定性 对不同的物理问题,一般来讲其定解条件也是不同的。从数学上看,一个定解问题提的是否合理,即是否能够完全描述一个给定的物理状态,一般来讲有以下三个标准:
 - 解的存在性: 所给的定解问题有解
 - 解的唯一性: 所给的定解问题只有一个解
 - 解的稳定性: 当定解条件以及方程中的系数有微小变动时, 相应的解也只有微小变动。

解的存在性,唯一性和稳定性,三者合起来称为解的 适定性

Home Page

Title Page

I title Page

Go Back

Full Screen