Groups and Subgroups

Sanjyot Shenoy

2021

Table of Contents:

1 Introduction 1

1 Introduction

Definition 1.1 (Binary Operation):

A binary operation * on a set G is a function $*: G \times G \to G$. We shall write *(a,b) as a*b.

Definition 1.2 (Associative Binary Operation):

A binary operation * on a set G is said to be associative if $\forall a, b, c \in G$ we have that a*(b*c) = (a*b)*c.

Definition 1.3 (Commutative Binary Operation):

A binary operation * on a set G is said to be commutative if $\forall a, b \in G$ we have a * b = b * a.

Example 1.1:

- 1. + (usual addition) is a commutative binary operation on \mathbb{Z} (or on \mathbb{Q} , \mathbb{R} , or \mathbb{C} respectively).
- 2. \times (usual multiplication) is a commutative binary operation on \mathbb{Z} (or on \mathbb{Q} , \mathbb{R} , or \mathbb{C} respectively).

Remark(s):

This is a remark.

Note. This is a note.