			Page 1
Name:			
Roll No	:	$\operatorname{\mathbf{Dept.}}_{\operatorname{e.g. CSE}}$	

Deadline: November 8, 2024

Total: 40 marks

Problem 1. (10 points)

Consider the following state machine over the set of atomic propositions $\{a, b\}$:

Decide for each of the following LTL specifications whether the model satisfies it. For the positive outcome, provide a proof. For the negative outcome, provide a counterexample trace.

Note that the symbols \bigcirc , \square , \diamondsuit , and U represent the "next", "always", "eventually", and "until" temporal operators respectively.

- (a) $\bigcirc \bigcirc \bigcirc a$
- (b) □ *b*
- (c) $\Box \Diamond a$
- (d) $\square(b \, \mathbf{U} \, a)$
- (e) $\Diamond (a \cup b)$

	Page 2	
Name:		Indian Institute of Technology Kanpur CS637 Embedded and Cyber-Physical Systems
Roll No: e.g. 170001	Dept.: e.g. CSE	Homework Assignment 3 Deadline: November 8, 2024

		Page	3
Name:			Ind CS637 Em
Roll No	:	Dept.: e.g. CSE	

e 4
Indian Institute of Technology Kanpur CS637 Embedded and Cyber-Physical Systems
Homework Assignment 3 Deadline: November 8, 2024

		Page 5
Name:		
Roll No: e.g. 170001	Dept.: e.g. CSE	

		Page 6
Name:		
Roll No:	Dept.:	

Deadline: November 8, 2024

Problem 2. (10 points)

Consider the two state machines in Figure 1 and answer the following questions:

Figure 1

- (a) Does the state machine M_1 simulate the state machine M_2 ? If yes, provide the simulation relation. If no, provide a transition of M_2 that M_1 cannot match.
- (b) Does the state machine M_2 simulate the state machine M_1 ? If yes, provide the simulation relation. If no, provide a transition of M_1 that M_2 cannot match.
 - (c) Are the two state machines bisimilar? If yes, provide the bisimulation relation. If no, provide one reason.

	Page 7	
Name:		Indian Inst
Roll No	: Dept. : e.g. CSE	

			Page 8
Name:			
Roll No	:	Dept.:	

	Page 9	
Name:		Indian CS637 Embedd
Roll No e.g. 170001	Dept.: e.g. CSE	

Indian Institute of Technology Kanpur CS637 Embedded and Cyber-Physical Systems Homework Assignment 3

Name:		
Roll No:	Dept.:	

Deadline: November 8, 2024

Problem 3. (10 points)

Consider the processes P_1 and P_2 with the shared variables b_1 , b_2 , and x. Variables b_1 and b_2 are Boolean variables, while variable x can take either the value 1 or 2. Initially, each process P_i is in the non-critical section (i.e., P_i is in location $noncrit_i$). The scheduling strategy for giving the processes access to the critical section is realized using x as follows. If both processes want to enter the critical section (i.e., P_i is in location $wait_i$), the value of variable x decides which of the two processes may enter its critical section: if x = i, then P_i may enter its critical section $crit_i$ (for i = 1, 2). On entering location $wait_1$, process P_1 performs x := 2, thus giving privilege to process P_2 to enter the critical section. The value of x thus indicates which process has its turn to enter the critical section. Symmetrically, P_2 sets x to 1 when starting to wait. The variables b_i provide information about the current location of P_i . More precisely, b_i is set when P_i starts to wait, and is reset when the process exits the critical section. In pseudocode, P_1 performs as follows (the code for process P_2 is similar):

Page 11

P_1	loop forever	
	÷	(*noncritical actions*)
	$b_1 := true; x := 2$	
	wait until $(x = 1 \lor \neg b_2)$	(*request*)
	do critical section od	
	$b_1 := false$	(*release*)
	:	(*noncritical actions*)
	end loop	

- (a) Draw the state machines for P_1 and P_2 .
- (b) Show the state machine that is obtained by asynchronous composition of P_1 and P_2 .
- (c) How many total states are there in the composed state machine? How many of them are reachable?
- (d) Provide an LTL formula that captures the requirement that the process P_1 and P_2 will not enter the critical section simultaneously. Using the composed state machine, determine whether the two systems satisfy the formula (property).

Indian Institute of Technology Kanpur CS637 Embedded and Cyber-Physical Systems Homework Assignment 3

Indian Institute of Technology Kanpur CS637 Embedded and Cyber-Physical Systems Homework Assignment 3

Indian Institute of Technology Kanpur CS637 Embedded and Cyber-Physical Systems Homework Assignment 3

Page 15

Name:

| Dept.: | e.g. CSE | |

Indian Institute of Technology Kanpur CS637 Embedded and Cyber-Physical Systems Homework Assignment 3

Page 16

Name:		
Roll No	Dept.:	

Indian Institute of Technology Kanpur CS637 Embedded and Cyber-Physical Systems Homework Assignment 3

Deadline: November 8, 2024

```
Problem 4. (10 points)
```

```
Consider the following program:
```

```
int count (int a, int b)
{
    int count;
    for (count = 0; count < 2; count++)
    {
        if (a > b)
            b = a + 1;
        else
            b = a - 1;
    }
    return b;
}
```

- (a) Draw a control flow graph for the program.
- (b) How many paths are there in the program? How many paths are feasible?
- (c) Assume the following:
- An assignment statement (for example, count = 0) requires 2 unit time for execution.
- A statement involving an arithmetic operation followed by an assignment (for example, count + +, b = a + 1) requires 6 unit time for execution.
- A comparison statement (for example, count < 2) requires 4 unit time for execution.

Compute a tight bound on the worst-case execution time for the program.

Page 17 Indian Institute of Technology Kanpur Name: CS637 Embedded and Cyber-Physical Systems Homework Assignment 3 Roll No: e.g. 170001 $\underset{\mathrm{e.g.\ CSE}}{\mathbf{Dept.}}:$

Indian Institute of Technology Kanpur CS637 Embedded and Cyber-Physical Systems Homework Assignment 3

Indian Institute of Technology Kanpur CS637 Embedded and Cyber-Physical Systems Homework Assignment 3

Indian Institute of Technology Kanpur CS637 Embedded and Cyber-Physical Systems Homework Assignment 3