Extra Problems

MATH 543 — Linear Algebra

Name: Ali Zafari Spring 2023

Let dim V = n. If $T \in \mathcal{L}(V)$ is nilpotent, then $T^n = 0$.

 $T^j = 0$ for some integer $j \ge 1$ thus null $T^j = V$. Growth of null T^k with increase of k (non-negative integer) stops at k = n.

- $\mathbf{j} < \mathbf{n}$: since null $T^j \subseteq \text{null } T^n$ then null $T^n = V$.
- $\mathbf{j} \geq \mathbf{n}$: having null $T^n \neq V$ is a contradiction.

therefore null $T^n = V$ so $T^n = 0$.

If λ is an eigenvalue for $T \in \mathcal{L}(V)$ then λ^n is an eigenvalue for T^n .

For $v \neq 0$ we have $Tv = \lambda v$:

$$T^{2}v = T(Tv) = T(\lambda v) = \lambda Tv = \lambda^{2}v$$

$$T^{3}v = T(T^{2}v) = T(\lambda^{2}v) = \lambda^{2}Tv = \lambda^{3}v$$

$$\vdots$$

$$T^{n}v = T(T^{n-1}v) = T(\lambda^{n-1}v) = \lambda^{n-1}Tv = \lambda^{n}v$$

thus λ^n is an eigenvalue for T^n .

If λ^n is an eigenvalue for $T^n \in \mathcal{L}(V)$ then λ is an eigenvalue for T?

For $v \neq 0$ we have $T^n v = \lambda^n v$:

$$(T^n - \lambda^n I)v = 0$$
$$p(T)v = 0$$

where $p(z) = z^n - \lambda^n \in \mathcal{P}(\mathbb{C})$.

We use factorization $p(z) = (z - \lambda)(z^{n-1} + z^{n-2}\lambda + \dots + z\lambda^{n-2} + \lambda^{n-1})$:

$$p(T)v = (T - \lambda)(T^{n-1} + \lambda T^{n-2} + \dots + \lambda^{n-2}T + \lambda^{n-1})v = 0$$

thus if $(T^{n-1} + \lambda T^{n-2} + \cdots + \lambda^{n-2}T + \lambda^{n-1})v \neq 0$, then λ must be an eigenvalue for T.