DELFT UNIVERSITY OF TECHNOLOGY

FACULTY OF AEROSPACE ENGINEERING ROTOR / WAKE AERODYNAMICS - AE4135

Rotor / wake Aerodynamics Assignment 1: Blade Element Theory

Instructor: Prof. Dr.ir. C.J. Simao Ferreira Julian Gonzalez, 6281486 Stijn Hersbach, 4857054 Pim Haanen, 5092795 March 21, 2024

Contents

1	Nomenlacture	3
2	Introduction	4
3	Flow diagram of the code 3.1 Assumptions	5 5
4	Results (axial flow)	6
	4.1 Reference Data (for cl(alpha) and cd(alpha))	6
	4.2 Corrections	6
	4.3 Angles	7
	4.4 Induction factors	8
	4.5 Forces	10
	4.6 Circulation	11
	4.7 Static Pressure	13
	4.8 Total pressure	14
	4.9 Thrust and torque vs TSR	15
	4.10 Thrust vs number of annuli	15
	4.11 Effect of spacing method on convergence	17
5	Conclusion	19
6	Python Script	20

Nomenlacture

```
angle of attack at blade element (-)
                   blade twist angle at blade element (-)
                   tip speed ratio (-)
                   fluid density (kg \cdot m<sup>-3</sup>)
                   circulation at blade element (m^2 \cdot s^{-1})
                   perceived-wind inflow-angle at blade element (-)
                   rotor rotational velocity (rad \cdot s<sup>-1</sup>)
                   axial induction factor (-)
                   azimuthal induction factor (-)
                   blade element chord (m)
                   drag coefficient (-)
             C_d
             C_l
                  lift coefficient (-)
                   thrust coefficient (-)
            C_T
                   drag force per unit span (N \cdot m^{-1})
          Drag
                  lift force per unit span (N \cdot m^{-1})
           Lift
                   azimuthal/tangential force per unit span (N \cdot m^{-1})
          F_{\rm azim}
                   axial force per unit span (N \cdot m^{-1})
          F_{\text{axial}}
                   number of blades (-)
        N_{\rm blades}
                    axial velocity perceived by blade element, axial velocity at rotor (m \cdot s^{-1})
V_{\text{axial}} = U_{\text{rotor}}
                   velocity perceived by blade element (m \cdot s^{-1})
                   azimuthal/tangential velocity perceived by blade element (m \cdot s^{-1})
           V_{\rm tan}
```

Table 2.1: Wind turbine geometrical specifications

Variable	Value
Radius (R)	50 [m]
Number of Blades	3
Blade starts at	$0.2~\mathrm{r/R}$
Twist	14*(1-r/R) [degrees]
Blade Pitch	-2 [degrees]
Chord Distribution	3*(1-r/R)+1 [m]
Airfoil	DU 95-W-180
Rotor yaw angle	0, 15 and 30 [degrees]

Table 2.2: Wind turbine operational specifications

Variable	Value
Wind speed (U0)	10 [m/s]
Tip speed ratio (λ)	6, 8, 10
Rotor yaw angle	0, 15, 30 [degrees]

Figure 2.1: Caption

Flow diagram of the code

Figure 3.1: Flow diagram of the code

3.1 Assumptions

- Steady Flow: the flow characteristics are assumed to be independent of time.
- Inviscid Flow: the flow is assumed to be inviscid. This means no viscous effects are taken into account.
- Incompressible Flow: the flow is assumed to be incompressible. This means the density throughout the streamtube is constant. This enables the use of Bernoulli's equation in locations of a continuous pressure distribution. This also results in the product of area and flow velocity being constant over the flow.
- 2D Flow: it is assumed that the flow characteristics can accurately be modeled using 2 dimensional flow characteristics.
- Constant Internal Energy: it is assumed that the internal energy within the streamtube is constant so there no radiation, convection or conduction occurring.
- Independent annulus: the annuli are considered independently of one another. In reality, flow characteristics on one annulus will influence the characteristics on another (cross flow), this effect is ignored.
- Circular Discs: the actuator disc in the model is assumed to be of circular shape. In reality slight changes in the shape could occur, these are neglected.
- Root-section: it is assumed that the root section till r/R = 0.2 has no influence on the performance of the turbine and can be neglected.

4.1 Reference Data (for cl(alpha) and cd(alpha))

Figure 4.1: Lift Curve and Drag Curve

4.2 Corrections

Figure 4.2: Glauert correction

Figure 4.3: Prandtl correction

4.3 Angles

Figure 4.4: Span-wise distribution of Angle of Attack and Inflow Angle for Tip Speed Ratio of 6

Figure 4.5: Span-wise distribution of Angle of Attack and Inflow Angle for Tip Speed Ratio of 8

Figure 4.6: Span-wise distribution of Angle of Attack and Inflow Angle for Tip Speed Ratio of 10

4.4 Induction factors

Figure 4.7: Span-wise distribution for Axial and Tangential Induction for Tip Speed Ratio of 6

Figure 4.8: Span-wise distribution for Axial and Tangential Induction for Tip Speed Ratio of 8

Figure 4.9: Span-wise distribution for Axial and Tangential Induction for Tip Speed Ratio of 10

4.5 Forces

Figure 4.10: Normalized Normal and Tangential Force for Tip Speed Ratio of $6\,$

Figure 4.11: Normalized Normal and Tangential Force for Tip Speed Ratio of 8

Figure 4.12: Normalized Normal and Tangential Force for Tip Speed Ratio of 10

4.6 Circulation

Figure 4.13: Normilzed Circulation for Tip Speed Ratio of 6

Figure 4.14: Normilzed Circulation for Tip Speed Ratio of 8

Figure 4.15: Normilzed Circulation for Tip Speed Ratio of 10

4.7 Static Pressure

Figure 4.16: Span-wise Static Pressure Distribution for Tip Speed Ratio of 6

Figure 4.17: Span-wise Static Pressure Distribution for Tip Speed Ratio of 8

Figure 4.18: Span-wise Static Pressure Distribution for Tip Speed Ratio of 10

4.8 Total pressure

Figure 4.19: Span-wise Total Pressure Distribution for Tip Speed Ratio of $6\,$

Figure 4.20: Span-wise Total Pressure Distribution for Tip Speed Ratio of 8

Figure 4.21: Span-wise Total Pressure Distribution for Tip Speed Ratio of 10

4.9 Thrust and torque vs TSR

Figure 4.22: Thrust and Torque function of Tip Speed Ratio

4.10 Thrust vs number of annuli

Figure 4.23: Thrust function of Annuli for Tip Speed Ratio of 6

Figure 4.24: Thrust function of Annuli for Tip Speed Ratio of 8

Figure 4.25: Thrust function of Annuli for Tip Speed Ratio of 10

4.11 Effect of spacing method on convergence

Figure 4.26: Thrust Convergence for Tip Speed Ratio of 6

Figure 4.27: Thrust Convergence for Tip Speed Ratio of 8

Figure 4.28: Thrust Convergence for Tip Speed Ratio of 10

Conclusion 5

Python Script 6