#### Distributies

## Distributions Definition

A probability distribution is:

A mathematical description



### Distributions Definition

A probability distribution is:

- A mathematical description
- Of a random phenomenon



### Distributions Definition

A probability distribution is:

- A mathematical description
- Of a random phenomenon
- In terms of all its possible outcomes and their associated probabilities



#### Distributions

- In this image, what are:
  - All the possible outcomes?
  - The associated probabilities?



## Distributions Types

The main types of distributions are:

- Discrete: when an outcome can only take discrete values (e.g. number of birds)
- Continuous: when outcomes take continuous values (e.g. blood pressure)



#### Distributions

#### Basic visualisation type

**Every** horizontal line you draw can be interpreted as a continuous distribution. **Every** barplot as a discrete distribution.

<u>All</u> the distributions we are going to discuss are variations of these two basic types!



#### Distributions

#### Basic visualisation type

For *parametric distributions*, we have a formula that describes the line / bars. You just put in the parameters, and the output is the line / bars.



### Discrete distributions PMF

A probability mass function (pmf) describes the probability distribution of discrete variables.

Consider a toin coss:

$$f(x) = \begin{cases} 0.5 & x \text{ is head} \\ 0.5 & x \text{ is tails} \end{cases}$$

This is the pmf of the Bernoulli distribution



## Conditions for a PMF Plain English

1. An event cannot have a negative probability

## Conditions for a PMF Plain English

- 1. An event cannot have a negative probability
- 2. The sum of probabilities of all events must be 1

### Conditions for a PMF Plain English

- 1. An event cannot have a negative probability
- 2. The sum of probabilities of all events must be 1
- 3. The probability of a subset X of outcomes T is the same as adding the probabilities of the individual elements.

#### Conditions for a PMF

#### Mathematical

The probability is a function f over the sample space  $\mathcal{S}$  of a discrete random variable X, which gives the probability that X is equal to a certain value.

$$f(x) = P(X = x)$$

Each pmf satisfies these conditions:

- 1.  $f(x) \ge 0, \forall x \in X$
- $2. \ \Sigma_{x \in \mathcal{S}} f(x) = 1$
- 3. For a collection  $\mathcal{A}$ ,  $P(\mathcal{A} \in \mathcal{S}) = \sum_{x_i \in \mathcal{A}} f(x_i)$

For continuous distributions, we use a probability density function (pdf)



For continuous distributions, we use a probability density function (pdf)

1. 
$$f(x) > 0, \forall x \in X$$

- 2. The integral of the probabilities of all possible events must be 1 (area under the curve)
- 3. The probability X of values in the interval [a,b] is the integral from a to b



This might look like unnecessary mathematical details. But it is actually important to understand the difference.

Example: can you answer the question "What is the probability your body temperature is 37.0 C?"

The answer might be unexpected: 0!

Let's say your answer is 25%. But what if your temperature is 37.1? does that count? Or 37.01?

- Because the distribution is continuous you can only say something about the range
- "What is the probability your temperature is between 36.5 and 37.2 C?"

#### Quiz time



### Normal distributions Central limit theorem

#### The central limit theorem states that:

- the distribution of a normalized version of the sample mean converges to a standard normal distribution.
- This holds even if the original variables themselves are not normally distributed.



### Normal distributions Central limit theorem

The Normal distribution is one of the distributions that is used most often.

A major reason for this is, that if you keep sampling and **adding** from a population you *always* end up with a normal distribution.



### Normal distributions Central limit theorem

Take a persons height.

- This is determined by a combination of 180 genes.
- One gene will contribute to a longer neck, the other to longer legs
- If we assume the genes contribute independently, height equals the sum of 180 genes.

Thus, height will be normally distributed. So will the weight of wolves or the length of a penguins wing.



#### Log Normal distribution

However, multiplying values will give you a long tail!

This is the case when variables interact in some way, and are not independent.

$$4+4+4+4=16$$

but

$$4 \times 4 \times 4 \times 4 = 256$$



#### Log Normal distribution

Multiplying should be expected if variables interact with each other.

Examples are stock prices, failures of machines, ping times on a network, income distribution.



#### Log Normal distribution

multiplying values will give you a fat-tail distribution! This will typically be a log-normal distribution:

If X is log-normal distibuted, then

$$y = log(X)$$

will be a normal distribution.



- The shaded area is the 99% confidence interval of the linear regression.
- What is your conclusion about the data?



- The shaded area is the 99% confidence interval of the linear regression.
- Does your conclusion change if I tell you that the x axis is the amount of hours invested in study, and the y axis is the average grade of a student? Why?



- The shaded area is the 99% confidence interval of the linear regression.
- the *x* axis is the amount of hours invested in study, and the *y* axis is the average grade of a student
- Does changing the colors change your conclusion?
- If so, should you have changed your inital conclusion, even without this extra information?



- Simpson's paradox is a phenomenon in which a trend appears in several groups of data but **disappears** or **reverses** with different groups.
- This result is often encountered in social-science and medical-science statistics
- It is particularly problematic when frequency data are undeservedly given causal interpretations



## The Simpsons paradox UC Berkely Gender Bias (admission fall 1973)

|       | AII        |          | Men        |          | Women      |          |
|-------|------------|----------|------------|----------|------------|----------|
|       | Applicants | Admitted | Applicants | Admitted | Applicants | Admitted |
| Total | 12,763     | 41%      | 8,442      | 44%      | 4,321      | 35%      |

# The Simpsons paradox UC Berkely Gender Bias (admission fall 1973)

| Donartmont | AII        |          | Men        |          | Women      |          |
|------------|------------|----------|------------|----------|------------|----------|
| Department | Applicants | Admitted | Applicants | Admitted | Applicants | Admitted |
| A          | 933        | 64%      | 825        | 62%      | 108        | 82%      |
| В          | 585        | 63%      | 560        | 63%      | 25         | 68%      |
| С          | 918        | 35%      | 325        | 37%      | 593        | 34%      |
| D          | 792        | 34%      | 417        | 33%      | 375        | 35%      |
| E          | 584        | 25%      | 191        | 28%      | 393        | 24%      |
| F          | 714        | 6%       | 373        | 6%       | 341        | 7%       |
| Total      | 4526       | 39%      | 2691       | 45%      | 1835       | 30%      |
|            |            |          |            |          |            |          |