An Overview of ALD Equipment for Semiconductor Applications

J. Nie 05/2021

What is ALD?

Categories

ALD Mechanism

dividing CVD to two half-reactions

ASM 2020 Annual Report

ALD Applications

- Microelectronics
- Display
- Medical

A Brief History: From Academia to Industry

Valentin Aleskovsky, USSR Physical Chemist (1912-2006) 1952 Hypothesis, doi:10.1002/cvde.201502013

With Stanislav Koltsov (1931-2003)
Experiments at LTI, USSR
1965, Molecular Layering Technique

Built the foundation of Modern ALD

Year	Reaction
1970	TiO2/Si
1970	SiO2/Si
1978	High-k HfO2 & ZrO2
1979	MOS Diodes Cr2O5, V2O5/Si
1985	SiN
1985	Carbon

Aarik, J, et al. VPHA, 2014

Two independent origins for two paths

Tuomo Suntola, Finland Physicist (1943-)

At Instrumentarium, Finland **1974**, ZnS, Atomic Layer Epitaxy *doi: 10.1016/S0920-2307(89)80006-4*

World's first ALE Stack thin-film electroluminescent displays in **1980**

Mass production by Lohja, Finland in **mid-1980s**

A Brief History: From Academia to Industry

Mass production by Lohja, Finland in **mid- 1980s**

I Thin Film Display
I remained the only
I industrial app. of ALD
for ~10 years

Tuomo and Sven Lindfors (1945-2017)

<u>Microchemistry Ltd.</u> for other ALD app. **1987 – 1990s**, <u>doi: 10.1116/1.4816548</u>

Founded Picosun in **1996**

PIC SUNAGILE ALD

More on power electronics, MEMS, sensors, LEDs, lasers, optics, and 5G components.

Photovoltaic Devices

Heterogeneous Catalyst

Semiconductors

In 2000s, a lot more players joined the game. For example,

Why or Why not use ALD?

ALD Advantages

Good uniformity and conformality

- Low defects
- Low damage to substrate

ALD disadvantage

- Low throughput
- Require high purity (substrate, chemicals)
- High equipment upfront cost
- Chemicals needs to be volatile (a disadvantage vs. PVD)

Logic Applications

Fischer K. 2016, IEEE

NOW

Lam Tech Blog

FUTURE

MORE LAYERS

Lam Tech Blog

Memory Applications

ALD for DRAM

- Dielectric and Electrode for Capacitors (High Aspect Ratio, Controlled electric performance)
- Sacrificial Layers

NOW

NAND

- High Aspect Ratio + Lateral Filling
 - W Metal
 - Trap Layer
 - Blocking Layer

Lam Tech Blog

Kessels E, 2019

FUTURE

- Higher aspect ratio
- Maintaining electrical performance
- Lower tool cost

HVM Leader - ASMI

Prompt decision making on disruptive tech

Jorijn van Duijn, Futures of High Tech, 2019

- In 1999 Jan, ASM C-level confirmed interest within 1 week after initial meeting
- In 1999 July, ASM finalized the acquisition.

Technology (w ~40ish employees)

global infrastructure, Customer resources, Engineering team

Product	Pulsar	EmerALD	Synergis (2018)		
Application	High-k dielectric	Metal gate electrode	Metal, Metal oxide, Metal nitride		
<mark>Platform</mark>		XP	XP8		

4-Module Platform
Parallel processing / Sequential steps

8-Module Platform
Upgrade of XP with higher productivity

Drivers of ALD Equipment market Growth

^{*} Incldues Lithography, Etch, Deposition, Clean, etc.

Competition Schemes

- Bottom up Competition on high-k layer
 - Differentiated mainly by chamber designs

AMAT Olympia

- Top Down Competition on barrier, seed layer
 - In-situ barrier, seed layer + Metal
 - Developed based on CVD Chamber + Pulsing

Lam Altus Family: ALD + CVD Capability

AMAT Centura®
iSprint, ALD +
CVD Capability

Market of ALD Equipment for Semiconductor App.

	Metal Gate Layer	Low-Temp Ox.	Capacitor Electrode	High-k Dielectric	Insulating Liner	Diffusion Barrier	Metal Seed Layer	In-situ Metal
ASM	EMERALD®	EMERALD®	EMERALD®	PULSAR®	PULSAR® SYNERGIS®	SYNERGIS®	SYNERGIS®	SYNERGIS®
Lam				Striker	Striker	ALTUS	ALTUS	ALTUS
AMAT				Olympia			Centura® iSprint	Centura® iSprint
Veeco					Firebird	Firebird	Firebird	
TEL*				NT333™		NT333™		
Picosun		Morpher (200mm)		Sprinter, Morpher (200mm)	Sprinter, Morpher (200mm)	Sprinter, Morpher (200mm)	Sprinter, Morpher (200mm)	Morpher (200mm)
etc.								

ALD Equipment Market Outlook

	Logic/Foundry + Memory				
Market Trend					
	 ALD Equipment market is expected to outperformance overall WFE due to higher involvement of advanced node and advanced memory structures 				
	 Major competition could be on memory side as tradition CVD players pursuing ALD capabilities. 				
Competition	 High throughput is expected to be the key for winning the competition. 				
	 Integration solution will affect the purchase decisions 				