

Localização 5G - CSI

Grupo/Eixo Temático: 1 - Localização e Sensoriamento

Participante: Paulo Francisco da Conceição

Coordenador do Grupo: Henrique Pires Corrêa

Data: 22/11/2024

Introdução ao CSI no 5G

· O que é CSI?

- Channel State Information (CSI) refere-se a um conjunto de coeficientes complexos que representam as características do canal de comunicação entre o transmissor e o receptor.
- Ele é composto por informações de amplitude e fase para cada subportadora de um sistema OFDM (Orthogonal Frequency Division Multiplexing).
- O CSI é crucial para equalização de canal, beamforming, adaptação de taxa de transmissão e aplicações avançadas como localização indoor.

Como o CSI é extraído no 5G?

- No 5G NR, o CSI pode ser obtido a partir de sinais de referência (Reference Signals - RS) transmitidos periodicamente pelo gNB (gNodeB, ou estação base 5G).
- Principais fontes de CSI no 5G:
 - Demodulation Reference Signal (DMRS) → Utilizado para equalização de canal durante a recepção de dados.
 - CSI Reference Signal (CSI-RS) → Projetado especificamente para medição de qualidade do canal e adaptação de link.
 - Synchronization Signal Block (SSB) → Usado para descoberta de célula, mas também pode ser aproveitado para estimar o CSI.
- A extração do CSI pode ser feita via hardware SDR (Software-Defined Radio), como a USRP X310, ou por um equipamento comercial 5G com acesso ao PHY layer.

Comparação dos Artigos sobre Extração do CSI no 5G

- Amarisoft (Tech Academy)
 - Foco: Explicação técnica sobre a estrutura do CSI no 5G Standalone (SA).
 - Método de Extração: Explica como os sinais DMRS, CSI-RS e SSB podem ser utilizados para recuperar o CSI. Detalha como extrair os coeficientes de canal de cada subportadora a partir de sinais de referência em um sistema OFDM.
 - Requisitos de Hardware:
 - Apenas rede comercial 5G → Não menciona a necessidade de SDRs.
 - Pode ser utilizado diretamente em UEs (User Equipment) que permitam acesso ao PHY layer.

Comparação dos Artigos sobre Extração do CSI no 5G

- Hi-Loc: Hybrid Indoor Localization via Enhanced 5G NR CSI
 - Foco: Utilização do CSI para localização indoor.
 - Método de Extração:
 - CSI extraído do DMRS do PBCH de um gNodeB comercial.
 - Utiliza um Software-Defined Radio (SDR) como receptor para captar os sinais downlink e estimar o CSI.
 - Requisitos de Hardware:
 - 1 USRP (Software-Defined Radio) + Rede 5G Comercial → O receptor SDR escuta os sinais da rede sem modificá-la.
 - Alternativa: Se for possível acessar o CSI do UE diretamente, um SDR pode não ser necessário.

Comparação dos Artigos sobre Extração do CSI no 5G

- iPos-5G: Indoor Positioning via Commercial 5G NR CSI
 - Foco: Melhorar a estabilidade da localização indoor com CSI.
 - Método de Extração:
 - CSI extraído do DMRS do PBCH de um gNodeB comercial.
 - Aplica filtros de qualidade para remover ruídos e melhorar a precisão da extração.
 - Requisitos de Hardware:
 - 1 USRP (Software-Defined Radio) + Rede 5G Comercial → O receptor SDR escuta os sinais da rede sem modificá-la.
 - Alternativa: Se for possível acessar o CSI do UE diretamente, um SDR pode não ser necessário.

Como os artigos realizam a localização com o CSI?

Hi-Loc

 Método: Fingerprinting baseado em CNN e BiLSTM com atenção dupla.

– Como funciona:

- O CSI é transformado em um conjunto de características espaciais e temporais.
- 2. Uma CNN (Convolutional Neural Network) aprende padrões espaciais no CSI.
- Uma BiLSTM (Bidirectional Long Short-Term Memory) aprende padrões temporais.
- 4. O sistema prediz a localização baseada na similaridade do CSI com um banco de dados pré-coletado.

Como os artigos realizam a localização com o CSI?

iPos-5G

 Método: Fingerprinting baseado em aprendizado profundo + fusão de amplitude e fase.

Como funciona:

- 1. O CSI passa por pré-processamento para remoção de ruído (filtros de qualidade).
- 2. Um autoencoder não supervisionado reconstrói as características do CSI.
- 3. Um modelo de função de base radial (RBF) calcula a similaridade com os pontos de referência.
- 4. Uma fusão de informações de amplitude e fase melhora a precisão.

Equipamentos no CERISE

- Infraestrutura Disponível:
 - 1 USRP X310 → Para capturar o CSI do downlink.
 - Estação Amarisoft→ Pode atuar como gNodeB 5G, controlando a transmissão dos sinais de referência.

PoC - Métodos de Extração de CSI

- Opção 1: Captura Passiva da Rede 5G
 Comercial
 - Configurar a USRP X310 como um receptor passivo.
 - Sincronizar com a rede comercial para escutar os sinais downlink (DMRS ou SSB).
 - Utilizar software como GNU Radio, srsRAN ou OpenAirInterface (OAI) para extrair o CSI.
 - Desafios:
 - Precisa de autorização para escutar sinais da rede comercial.
 - Pode haver restrições no acesso ao PHY layer.

PoC - Métodos de Extração de CSI

- Opção 2: Uso da Estação Amarisoft como gNodeB
 - Configurar a Amarisoft como um gNodeB privado.
 - Controlar a transmissão dos sinais SSB, DMRS e CSI-RS.
 - Capturar os sinais no USRP X310.
 - Processar o CSI utilizando scripts em Python ou MATLAB.
 - Vantagens:
 - Controle total da transmissão do CSI.
 - Pode configurar diferentes cenários para experimentação.
 - Permite testar múltiplas configurações de MIMO, largura de banda e frequência.
 - Desafios:
 - Requer configuração avançada do gNodeB e sincronização com o USRP.

Próximos Passos

- Decidir o método de extração do CSI:
 - Captura passiva da rede comercial
 - Uso da Amarisoft Ultimate como gNodeB.
- Configurar o USRP X310 para captura de sinal:
 - Definir frequência e largura de banda compatíveis.
 - Testar extração de CSI via srsRAN, GNU Radio ou OAI.
- Definir o modelo de localização:
 - Testar fingerprinting (Hi-Loc/iPos-5G)
 - Explorar abordagem geométrica (TOA, AOA).
- Realizar experimentos iniciais e coletar CSI.
- Comparar resultados e validar a abordagem.

X310

OBRIGADO

pfrancisco43@gmail.com

(62) 985440202

www.cerise.ufg.br

