PLAN EXPERIMENTAL

Objetivo:

Evaluar el efecto de la raza sobre determinados parámetros la que determinan la calidad de la carne de lechazo.

Material animal:

Tres piernas de lechazo de raza Churra (peso): A1, A2 y A3; Tres de raza Assaf (peso): B1, B2 y B3

- Edad de sacrificio 25-30 días de edad
- Alimentación materna
- Misma explotación (¿misma alimentación de las madres?)
- Categoría canal A, primera, según directiva Europea
- •% grasa subcutánea Churra: , Assaf:

Determinaciones:

- Composición proximal y contenido en mioglobina
- •Análisis instrumental de CRA, Dureza, textura y Color
- Análisis sensorial de ordenación (CRA, dureza, aceptabilidad)

COMPOSICIÓN PROXIMAL

Poner tabla con la composición proximal (poner métodos)

Músculo biceps femoris, homogeneizado

Humedad Grasa intramuscular Proteína Grasa

COLOR DE LA CARNE (normalmente en carne cruda)

Contenido en mioglobina

Colorímetro de reflectancia

Análisis sensorial

Contenido en mioglobina, extracción del pigmento en acetona-agua en medio ácido (HCI) (Horsney, 1956) y lectura de la absorbancia a 512 o a 640 nm.

640 nm; D.O x 17.753 = [mg Mb / g músculo]

512 nm; D.O x 8.816 = [mg Mb / g músculo]

Poner tabla con valores músculo biceps femoris

FIGURA 1

Colorímetro de reflectancia, Obtención del espectro visible obtenido a partir de la reflexión difusa de la luz de un determinado iluminante.

CONCEPTOS:

- LUZ DIFUSA (IZDA)
- •REFLECTANCIA DIFUSA (DCHA)

Colorímetro de reflectancia (Fundamento operativo)

Ejemplo de lectura del espectro de reflectancia difusa sobre carne de distintas especies y a diferente tiempo.

Estos espectros varían según cual sea la fuente de iluminación

Colorímetro de reflectancia (Fundamento teórico-matemático)

La visión obtiene un solo color del espectro recibido de un cuerpo coloreado (varios espectros pueden dar un color similar o incluso igual al ojo humano)

El ojo tiene fotoreceptores en la retina que transforma la señal luminosa en impulsos eléctricos y estos se traducen en un color que se puede a una λ y una

luminosidad.

Colorímetro de reflectancia (Fundamento teórico-matemático)

Las siguientes funciones normalizadas relacionan matemáticamente la visión humana con tres colores (pero en lugar de usar colores primarios el sistema CIE utiliza tres variables –colores matemáticos- X, Y, Z, que se obtienen por la transformación lineal de los colores primarios).

Calcular cuanto de X, Y y Z se obtiene con estos espectros de carne cruda y cocinada (Integrar)

$$X = \int r^{-} x . d\lambda$$
, lo mismo para Y y Z

Colorímetro de reflectancia, resultados obtenido en el interior del músculo semimembranosus

- -colorímetro Minolta CM-2002
- -ángulo de observador 10 º
- -iluminante D₆₅
- -tiempo oxigenación (1 h)

	L*	a *	5*
A	47.6	4.2	10.3
A,'	49,4	2,9	10.7
Az	46,8	5.1	12.0
Az'	48.0	3.3	11.00
A ₃	46,0	4.8	10.8
A31	49.6	3.9	12.0
Bı	40.4	6.4	8.6
8,	41.4	7.1	9. ?
Bz	42,3	8.4	10.4
B'	39.7	10.4	11. \
83	41.9	9.9	12.3
B3	40.9	8.8 60.6	

Análisis sensorial (¿Hay diferencias apreciables en el color entre las muestras de músculo semimembranosus A y

B?)

