CHM102A: Problem Set 1

- 1. Identify the species present in aqueous solution of potash alum upon dissociation.
- **2.** Predict the type(s) of isomerism shown by the following complexes. Also draw the structures or formula of the possible isomers.

(a) CrCl₃.6H₂O

(b) $[Co(NH_3)_4(NO_2)Cl]Cl$

(c) $[Pt(NH_3)(py)(Cl)(Br)]$ (py = pyridine)

(d) $[Co(en)_3]Cl_3$ (en = ethylenediamine)

(e) [Pt(NH₃)₄][PtCl₆]

(f) [Rh(PPh₃)₂(CO)(NCS)₂]

- (g) $[Cr(NH_3)_6][Cr(SCN)_6]$
- **3.** Draw the possible coordination modes of glycine to a metal ion?
- **4.** Suggest a simple analytical test to distinguish between the hydrate isomers of CrCl₃·6H₂O Three possible hydrate isomers are [CrCl₂(H₂O)₄]Cl.2H₂O, [CrCl(H₂O)₅]Cl₂.H₂O, [Cr(H₂O)₆]Cl₃.
- **5.** Draw the geometrical isomers of $[Co(NH_3)_3Cl_3]$ and $[Co(dien)_2]^{3+}$ and appropriately designate them.
- **6.** Draw the possible stereoisomers for MA₂B₂C₂. Which one of these have enantiomer.
- **7.** Apply the concept of crystal field theory to a set of *p*-orbitals for a specific interaction along *Z*-axis. Draw the splitting diagram with labelling and energy values.
- **8.** Consider the coordination complexes (a) NaFeCl₄ and (b) $K_4[Fe(CN)_6]$, and answer the following questions. Atomic number of Fe = 26.
 - (a) Show the crystal field splitting diagram with appropriate labelling and filling up of the electrons in these orbitals.
 - (b) Calculate the Crystal Field Stabilization Energy (CFSE) for both the compounds (you may ignore the pairing energy).
 - (c) Calculate the spin only magnetic moments for both the complexes.

- 9. Which of the following complexes will have larger crystal field splitting (Δ) in the given series? Give exact explanation for your choice.
 - (i) $[Co(en)_3]^{3+}$, $[Ir(en)_3]^{3+}$, $[Rh(en)_3]^{3+}$
 - $(ii) \ [Cr(H_2O)_6]^{3+}, \ [Cr(H_2O)_6]^{2+}, [Cr(NH_3)_6]^{3+}, [Cr(CN)_6]^{3-}$
 - (iii) $[CoF_6]^{3-}$, $[Co(H_2O)_6]^{3+}$, $[Co(NH_3)_6]^{3+}$
 - (iv) $[Fe(H_2O)_6]^{2+}$, $[Fe(CN)_6]^{4-}$, $[FeCl_4]^{2-}$
- 10. The complexes $[NiCl_2(PPh_3)_2]$ and $[PdCl_2(PPh_3)_2]$ are paramagnetic and diamagnetic respectively. Predict their structures from this observation.