Chapitre 3 - Équation - Inéquation

1 Égalité et Équation

1.1 Propriété des égalités

Propriété

 $a, b, c \in \mathbf{R} \text{ et } d \in \mathbf{R}^*$

- $a = b \iff a + c = b + c$
- $a = b \iff a \times d = b \times d$
- $a = b \iff a c = b c$
- $a = b \iff \frac{a}{d} = \frac{b}{d}$

Propriété

- $\bullet\,$ un produit de 2 nombres est nul s
si un de ces nombres est nul
- par exemple $6 \neq 0$ car $6 = 2 \times 3$ et $2 \neq 0$ et $3 \neq 0$

1.2 Équation

Définition

- une équation est une "égalité" en 2 expressions
- une équation contient donc le signe = pour traduire l'égalité
- \bullet une équation en fonction de x contient le signe = et des x à priori inconnu; elle peut être vraie ou fausse en fonction des valeurs de x
- \bullet résoudre une équation, c'est justement trouver les valeurs de x qui permettent d'avoir l'égalité

Remarque - Exemple

- \bullet on peut résoudre une équation sur ${\bf R}$ ou sur une partie de ${\bf R}$
- il faudra donc penser à vérifier que les valeurs trouvées par le calcul sont dans l'intervalle de recherche
- par exemple : 2x = 0 admet la solution 0 sur **R** mais n'a pas de solution sur [1; 2]
- résoudre 2x + 1 = 3x 2

1.3 Identité Remarquable

Propriété

 $a, b \in \mathbf{R}$

•
$$(a+b)^2 = a^2 + 2 \times a \times b + b^2$$

•
$$(a-b)^2 = a^2 - 2 \times a \times b + b^2$$

•
$$(a+b) \times (a-b) = a^2 - b^2$$

Exemple

•
$$(x+1)^2 = x^2 + 2 \times x \times 1 + 1^2 = x^2 + 2x + 1$$

•
$$(\sqrt{2}+1) \times (\sqrt{2}-1) = (\sqrt{2})^2 - 1^2 = 2 - 1 = 1$$

2 Inégalité et inéquation

2.1 Propriété des inégalités

Propriété

 $a, b, c \in \mathbf{R} \text{ et } d \in \mathbf{R}^*$

•
$$a < b \Longleftrightarrow a \pm c < b \pm c$$

- si d>0 alors : $a < b \Longleftrightarrow a \times d < b \times d$ et $a < b \Longleftrightarrow \frac{a}{d} < \frac{b}{d}$ on dit que le sens de l'inégalité est concervé
- si d < 0 alors : $a < b \iff a \times d > b \times d$ et $a < b \iff \frac{a}{d} > \frac{b}{d}$ on dit que le sens l'inégalité est inversé

Propriété

 $a, b, c, d \in \mathbf{R}$

• si
$$a < b$$
 et $c < d$ alors $a + c < b + d$

• si
$$0 < a < b$$
 alors $\frac{a}{b} < 1 < \frac{b}{a}$

• par exemple, montrer pour tout
$$n$$
 entier non nul:
$$\frac{1}{2} \leqslant \frac{1}{n+1} + \frac{1}{n+2} + \frac{1}{\dots} + \frac{1}{2n} \leqslant 1$$

2.2 Encadrement d'un nombre réel et arrondi

Propriété - Définition

 $x \in \mathbf{R} \text{ et } n \in \mathbf{Z}$

•
$$\exists ! a \in \mathbf{N} \text{ tel que} : \frac{a}{10^n} \leqslant x < \frac{a+1}{10^n}$$

- $\bullet\,$ c'est un encadrement de x à 10^{-n} près
- l'arrondi de x à 10^{-n} près est celui des 2 nombres $\frac{a}{10^n}$ ou $\frac{a+1}{10^n}$ qui est le plus proche de x

Exemple:

- encadrer 16,8127 puis donner une valeur approchée à 0,01 près
- encadrer 0.045578 puis donner une valeur approchée à 10^{-3} près
- encadrer 5 puis donner une valeur à 0,01 près
- encadre 0.65 puis donner une valeur à 10^{-2} près

Inéquation 2.3

Définition

- \bullet une inéquation de x est une inégalité qui peut être vraie pour certaines valeurs de x
- \bullet la résoudre revient à trouver les valeurs de x qui vérifie l'inéquation (attention à l'ensemble de recherche au départ)

Exemple

- résoudre dans \mathbf{R} , 2x + 2 < 1
- résoudre dans \mathbf{R} , $\frac{x}{1-x} < 1$

3 Un peu de python

encadrement d'un nombre

```
def balayage(epsilon):
1
2
       """ cette fonction fournie un encadrement de racine de 2
3
      par balayage, avec une précision de epsilon """
4
      x = 1
      while x ** 2 < 2:
5
           x = x + epsilon
      return (x - epsilon, x)
  print(balayage(0.1))
```

Modifier le programme pour que le paramètre d'entrée soit $n \in \mathbb{N}^*$ et que la précision soit de 10^{-n}

des résultats étonnants sur les égalités

on savait déjà qu'il y a un problème d'égalité avec :

```
1
  # problème lié au stockage binaire des nombres sur ordinateur
  print(0.3)
  print(0.1+0.2)
  en voici un autre:
  # l'exécution ne peut s'arrêter car x n'est jamais égal à 0.0
2
  x = 1.0
  while x !=0.0:
```

x = x - 0.1

3

4