Soit u une suite définie par

- $u_0 = 1$
- $u_{n+1} = 3u_n 2n$
- 1. La suite u est-elle définie explicitement ou par récurrence?
- 2. Calculer u_1 , u_2 et u_3 .
- 3. La suite u est-elle arithmétique? Géométrique?
- 4. On définit la suite v telle que pour tout $n \ge 0$, $v_n = u_n n 0.5$. Calculer v_0 , v_1 , v_2 et v_3 .
- 5. Montrer que v est une suite géométrique, dont on précisera la raison.

CORRECTION

- 1. Par récurrence.
- 2. $u_1 = 3$, $u_2 = 7$ et $u_3 = 17$.
- 3. Ni l'un ni l'autre.
- 4. $v_0 = 0.5$, $v_1 = 1.5$, $v_2 = 4.5$ et $v_3 = 13.5$.
- 5.

$$\begin{split} \frac{v_{n+1}}{v_n} &= \frac{u_{n+1} - n - 1 - 0.5}{u_n - n - 0.5} \\ &= \frac{3u_n - 2n - n - 1.5}{u_n - n - 0.5} \\ &= \frac{3u_n - 3n - 1.5}{u_n - n - 0.5} \\ &= 3\frac{u_n - n - 0.5}{u_n - n - 0.5} \\ &= 3 \end{split}$$

Donc v est géométrique de raison 3.

