Lecture 2

Smooth Optimization: The gradient descent method

In this lecture we will talk about first order optimization methods that are gradient based. The aim is to solve the optimization problem

$$\min_{x \in X} f(x),\tag{2.1}$$

where f is differentiable. To this purpose we rely on *iterative methods*, that is methods that builds a sequence $(x_k)_{k\in\mathbb{N}}$ iteratively, that is by starting with an initial guess x_0 and then defining x_{k+1} by applying some explicit rule on the previous x_k, \dots, x_0 .

Among the several methods, the first that comes to mind is the one that uses the current point x_k and a descent direction at that point, that is, a unit vector u along with the derivative of f at x_k is negative

$$D_u f(x_k) := \lim_{t \to 0} \frac{f(x_k + tu) - f(x_k)}{t} < 0.$$
 (2.2)

Indeed in such case, by the same definition of limit, we can find a sufficiently small $t_k > 0$ such that $f(x_k + t_k u) - f(x_k) < 0$; so defining

$$x_{k+1} = x_k + t_k u (2.3)$$

will diminish the objective function f. We note that for any unit vector u we have $D_u f(x) = \langle \nabla f(x_k), u \rangle$ and, by the Cauchy-Schwartz inequality,

$$-\|\nabla f(x_k)\| \le \langle \nabla f(x_k), u \rangle \le \|\nabla f(x_k)\|. \tag{2.4}$$

So, there exists the *steepest* descent direction which is

$$-\frac{\nabla f(x_k)}{\|\nabla f(x_k)\|},\tag{2.5}$$

since

$$\min_{\|u\|=1} \langle \nabla f(x_k), u \rangle = -\|\nabla f(x_k)\| = \left\langle \nabla f(x_k), -\frac{\nabla f(x_k)}{\|\nabla f(x_k)\|} \right\rangle.$$

Methods that uses that direction are generally called gradient descent methods. They have the form

$$x_{k+1} = x_k - \gamma \nabla f(x_k).$$

We note that if at some iteration, say k, this method does not make any progress, we have $x_k = x_k - \gamma \nabla f(x_k)$ and hence $\nabla f(x_k) = 0$, that is x_k is a minimizer of f.

2.1 Differentiability and convexity

We recall the definition of differentiable functions. Throughout the chapter X will be an Euclidean space.

Let $f: X \to]-\infty, +\infty]$ be a proper extended real-valued function and let $x_0 \in \operatorname{int}(\operatorname{dom} f)$. Then f is $(G\hat{a}teaux)$ differentiable at x_0 if there exists a vector $\nabla f(x) \in X$ such that

$$(\forall v \in X) \qquad \lim_{t \to 0} \frac{f(x_0 + tv) - f(x_0)}{t} = \langle \nabla f(x_0), v \rangle. \tag{2.6}$$

In such case $\nabla f(x)$ is called the *gradient of f at x*₀. Thus, f admits *directional derivatives* at x_0 in every direction v and the directional derivatives depend linearly from v. When f is differentiable at every point of a subset $A \subset \operatorname{int}(\operatorname{dom} f)$ we say that f is differentiable on A.

Remark 2.1.1. In case $X = \mathbb{R}^d$, if we take $v = e_i$ (the canonical basis of \mathbb{R}^d), then we get $\langle \nabla f(x_0), e_i \rangle = \partial_i f(x_0)$ and hence $\nabla f(x_0) = (\partial_1 f(x_0), \dots, \partial_d f(x_0))$.

Theorem 2.1.2 (Fermat's rule). Let $f: X \to]-\infty, +\infty]$ be a proper convex function. Let $x \in \operatorname{int}(\operatorname{dom} f)$ and suppose that f is differentiable at x. Then the following statements are equivalent:

- (i) x is a minimizer of f;
- (ii) $\nabla f(x) = 0$.

Proposition 2.1.3 (Characterizations of convexity). Let $f: X \to]-\infty, +\infty]$ be a proper extended real-valued function such that domf is open and convex. Suppose that f is differentiable on domf. Then the following are equivalent statements.

- (i) f is convex.
- (ii) For every $x, y \in \text{dom} f$, $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$.
- (iii) For every $x, y \in \text{dom } f$, $\langle \nabla f(x) \nabla f(y), x y \rangle > 0$.

In case f is twice differentiable on domf, the previous statements are equivalent to

(iv) for every $x \in \text{dom} f$ and for every $v \in X$, $\langle \nabla^2 f(x)v, v \rangle \geq 0$.

Proof. (i) \Rightarrow (ii): Let $x, y \in \text{dom } f$. Then, for every $\lambda \in]0,1]$, we have $f((1-\lambda)x + \lambda y) \leq (1-\lambda)f(x) + \lambda f(y)$ and hence

$$\frac{f(x+\lambda(y-x))-f(x)}{\lambda} \le f(y)-f(x). \tag{2.7}$$

Thus, by (2.6) and (2.7), we get $\langle \nabla f(x), y - x \rangle \leq f(y) - f(x)$.

(ii) \Rightarrow (iii): Let $x, y \in \text{dom } f$. Then we have

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle \ge 0$$

$$f(x) - f(y) - \langle \nabla f(y), x - y \rangle \ge 0.$$

Summing, we get $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0$ and hence the statement.

(iii) \Rightarrow (i): Let $x, y \in \text{dom } f$ and define $\phi \colon [0, 1] \to \mathbb{R}$, such that, $\phi(\lambda) = f(x + \lambda(y - x))$. Then $\phi(0) = f(x)$, $\phi(1) = f(y)$, and ϕ is differentiable on [0, 1] and, for every $\lambda \in [0, 1]$, $\phi'(\lambda) = \langle \nabla f(x + \lambda(y - x)), y - x \rangle$. Now, let $\lambda_1, \lambda_2 \in [0, 1]$ be such that $\lambda_1 < \lambda_2$. Then

$$\langle \nabla f(x + \lambda_2(y - x)) - \nabla f(x + \lambda_1(y - x)), (\lambda_2 - \lambda_1)(y - x) \rangle \ge 0$$

and hence $(\lambda_2 - \lambda_1)(\phi'(\lambda_2) - \phi'(\lambda_1)) \ge 0$, which yields $\phi'(\lambda_1) \le \phi'(\lambda_2)$. Therefore ϕ' is increasing. Now, let $\lambda \in [0, 1[$. We show that

$$f(x + \lambda(y - x)) \le f(x) + \lambda (f(y) - f(x)). \tag{2.8}$$

Indeed, it follows from Lagrange's theorem that there exist $\lambda_1 \in]0, \lambda[$ and $\lambda_2 \in]\lambda, 1[$ such that

$$\frac{\phi(\lambda) - \phi(0)}{\lambda} = \phi'(\lambda_1)$$
 and $\frac{\phi(1) - \phi(\lambda)}{1 - \lambda} = \phi'(\lambda_2)$.

Thus, since $\phi'(\lambda_1) \leq \phi'(\lambda_2)$, we have $(1-\lambda)(\phi(\lambda)-\phi(0)) \leq \lambda(\phi(1)-\phi(\lambda))$. Rearranging this inequality (28) follows.

(iii) \Rightarrow (iv): Let $x \in \text{dom } f$ and $v \in X$. Since dom f is open, there exists $\delta > 0$ such that, for every $t \in]0, \delta]$, $x + tv \in \text{dom } f$ and, because of (iii), $\langle \nabla f(x + tv) - \nabla f(x), tv \rangle \geq 0$, hence, dividing by t^2 ,

$$(\forall t \in]0, \delta]) \quad \left\langle \frac{\nabla f(x + tv) - \nabla f(x)}{t}, v \right\rangle \ge 0. \tag{2.9}$$

Since, by definition, $\nabla^2 f(x)v = \lim_{t\to 0} \left(\nabla f(x+tv) - \nabla f(x)\right)/t$, the statement follows. [iv] \Rightarrow [iii]: Let $x,y \in \text{dom} f$ and define $\phi \colon [0,1] \to \mathbb{R}$ as in the proof of [iii] \Rightarrow [ii]. Then, ϕ is twice differentiable and $\phi''(\lambda) = \langle \nabla^2 f(x+\lambda(y-x))(y-x), y-x \rangle \geq 0$. Therefore, ϕ' is increasing in [0,1]. Hence $\phi'(0) \leq \phi'(1)$, which means $\langle \nabla f(x), y-x \rangle \leq \langle \nabla f(y), y-x \rangle$.

Remark 2.1.4. Strict convexity can be characterized by statements (ii) and (iii) of Proposition 2.1.3, where " \geq " is replaced by ">" and $x \neq y$.

Example 2.1.5. The function $f: \mathbb{R} \to]-\infty, +\infty]$ defined as $f(x) = -\log x$ if x > 0 and $f(x) = +\infty$ if $x \le 0$ is strictly convex. Indeed if x > 0 and y > 0, with $x \ne y$, we have $(f'(x) - f'(y))(x - y) = (-1/x + 1/y)(x - y) = (x - y)^2/(xy) > 0$.

Example 2.1.6.

From Proposition 213 and Proposition 1312 we derive the following result.

Corollary 2.1.7. Let $f: X \to]-\infty, +\infty]$ be a proper extended real-valued function such that dom f is open and convex and let $\mu > 0$. Suppose that f is differentiable on dom f. Then the following statements are equivalent.

- (i) f is μ -strongly convex.
- (ii) For every $x, y \in \text{dom} f$, $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle + (\mu/2) \|y x\|^2$.

(iii) For every $x, y \in \text{dom } f$, $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu \|x - y\|^2$.

In case f is twice differentiable on dom f, the previous statements are equivalent to

(iv) for every $x \in \text{dom } f$ and for every $v \in X$, $\langle \nabla^2 f(x) v, v \rangle \ge \mu \|v\|^2$.

Example 2.1.8. Let $A: X \to Y$ be a linear operator and let $b \in Y$. Set

$$f: X \to Y \quad f(x) = \frac{1}{2} \|Ax - b\|^2.$$
 (2.10)

Suppose that A^*A is positive definite (i.e., the minimum eigenvalue of A^*A is strictly positive). Then, for every $x \in X$, $\nabla f(x) = A^*(Ax - b)$ and hence

$$(\forall x, y \in X) \quad \langle \nabla f(x) - \nabla f(y), x - y \rangle = \langle A^* A(x - y), x - y \rangle \ge \mu \|x - y\|^2,$$

where μ is the minimum eigenvalue of A^*A . Thus, by Corollary 2.17, f is μ -strongly convex.

Example 2.1.9. The function defined in Example 2.1.5 is not strongly convex. Indeed if it was so, then there would exists $\mu > 0$ such that, for every x, y > 0, $x \neq y$, we would have $(x - y)^2/(xy) = (f'(x) - f'(y))(x - y) \ge \mu(x - y)^2$, that is $1/(xy) > \mu$. But this last statement is false since $1/(xy) \to 0$ as $x \to +\infty$ and $y \to +\infty$.

Remark 2.1.10.

- (i) Corollary 2.1.7 establishes that strongly convex functions can be bounded from below at each point by tangent quadratic functions.
- (ii) Strongly convex and closed and proper functions have a unique minimizer. Indeed if f is such function, then $f = g + (\mu/2) \|\cdot\|^2$. Since g is closed too, by Theorem 4.4.2, it has an affine minimizer. Thus f is minorized by a quadratic function and hence it is coercive. So, since f is closed, Thereom 5.4 ensures that f has minimizers. Unicity comes from Theorem 5.5. Note that for the existence of minimizers closedness is necessary even for strongly convex functions. Indeed the function

$$f \colon \mathbb{R} \to]-\infty, +\infty], \qquad f(x) = \begin{cases} x^2 & \text{if } x > 0 \\ +\infty & \text{if } x \le 0 \end{cases}$$

does not have any minimizer. The problem is that, even though f is coercive, it is not closed.

(iii) Under the assumption of Corollary 2.1.7, suppose that x_* is a minimizer of f. Then, it follows from Corollary 2.1.7(iii) that, for every $x \in \text{dom} f$, $\langle \nabla f(x), x - x_* \rangle \ge \mu \|x - x_*\|^2$ and hence

$$(\forall x \in \text{dom} f) \quad \mu \|x - x_*\| \le \|\nabla f(x)\|. \tag{2.11}$$

Proposition 2.1.11. Let $f: X \to]-\infty, +\infty]$ be a proper extended real-valued function such that dom f is open and let $\mu > 0$. Suppose that f is differentiable on dom f and μ -strongly convex. Suppose that $x_* \in \text{dom } f$ is the minimizer of f. Then,

$$(\forall x \in \text{dom} f) \quad f(x) - f(x_*) \le \frac{1}{2\mu} \|\nabla f(x)\|^2.$$
 (2.12)

Proof. Let $x \in \text{dom } f$. Then Corollary 2.17(ii) yields

$$f(x_*) = \min_{y \in \text{dom} f} f(y) \ge \min_{y \in \text{dom} f} \left(f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} \|y - x\|^2 \right)$$
$$= f(x) + \min_{y \in \text{dom} f} \frac{1}{2\mu} \left(\|\mu(y - x) + \nabla f(x)\|^2 - \|\nabla f(x)\|^2 \right)$$
$$\ge f(x) - \frac{1}{2\mu} \|\nabla f(x)\|^2.$$

and the statement follows.

Example 2.1.12. Condition ($\Sigma\Sigma$) can hold even for non-strongly convex functions. Here we provide a significant example for that. Let f be as in Example $\Sigma\Sigma$ where now we do not assume A to be positive definite. Let b_* be the projection of b onto the range R(A) of A. Let $x \in X$ and $x_* \in \operatorname{argmin} f = \{x \in X \mid Ax = b_*\}$. Then by Pythagoras' theorem, we have

$$f(x) = \frac{1}{2} (\|Ax - b_*\|^2 + \|b_* - b\|^2).$$

Hence $f_* = \inf_X f = (1/2) \|b_* - b\|^2$ and

$$f(x) - f_* = \frac{1}{2} \|Ax - b_*\|^2 = \frac{1}{2} \|A(x - x_*)\|^2.$$

Moreover, $\nabla f(x) = A^*(Ax - b_*) = A^*A(x - x_*)$, and hence

$$\|\nabla f(x)\|^2 = \|A^*A(x - x_*)\|^2$$
.

Thus, inequality (222) in this case reduces to

$$(\forall x \in X) \quad \mu \|A(x - x_*)\|^2 \le \|A^*A(x - x_*)\|^2,$$

which is equivalent to

$$(\forall y \in R(A)) \quad \mu \left\| y \right\|^2 \le \left\| A^* y \right\|^2 = \langle A A^* y, y \rangle.$$

Now, we consider a singular value decomposition of A^*

$$A^*y = \sum_{i \in I} \sigma_i \langle y, b_i \rangle c_i,$$

where $(\sigma_i)_{i\in I}$ are the singular values of A^* $((\sigma_i^2)_{i\in I}$ are the nonzero eigenvalues of AA^*), $(b_i)_{i\in I}$ is an orthonormal basis of $N(A^*)^{\perp} = R(A)$ and $(c_i)_{i\in I}$ is an orthonormal basis of $R(A^*)$. Then, for every $y \in N(A^*)^{\perp}$,

$$||A^*y||^2 = \sum_{i \in I} \sigma_i^2 |\langle y, b_i \rangle|^2 \ge \sigma_{\min}^2 \sum_{i \in I} |\langle y, b_i \rangle|^2 = \sigma_{\min}^2 ||y||^2.$$

Therefore (212) holds, with $\mu = \sigma_{\min}^2$, the minimum nonzero eigenvalue of A^*A .

We now study the property of L-smoothness, which means that the gradient of the function is L-Lipschitz continuous. The following theorem provides several characterizations of L-smoothness that will be useful in analyzing the gradient descent method. The implication $(i) \Rightarrow (ii)$ is called the descent lemma, whereas the implication $(i) \Rightarrow (iv)$ is called the Baillon-Haddad theorem.

Theorem 2.1.13. Let $f: X \to \mathbb{R}$ be a convex differentiable function and let $L \in \mathbb{R}_+$. The following statements are equivalent.

- (i) For every x and y in X, $\|\nabla f(x) \nabla f(y)\| \le L \|x y\|$.
- (ii) For every x and y in X,

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle \le \frac{L}{2} \|x - y\|^2.$$
 (2.13)

(iii) For every x and y in X,

$$\frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|^{2} \le f(y) - f(x) - \langle \nabla f(x), y - x \rangle$$
 (2.14)

(iv) For every x and y in X,

$$\frac{1}{L} \|\nabla f(x) - \nabla f(y)\|^2 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle \tag{2.15}$$

- (v) For every x and y in X, $\langle \nabla f(x) \nabla f(y), x y \rangle \leq L \|x y\|^2$.
- (vi) $\frac{L}{2} \|\cdot\|^2 f$ is convex.

In case f is twice differentiable on X, the previous statements are equivalent to

- (vii) for every $x \in X$ and for every $v \in X$, $\langle \nabla^2 f(x)v, v \rangle \leq L \|v\|^2$.
- (viii) for every $x \in X$, $\|\nabla^2 f(x)\| \le L$.

Proof. (i) \Rightarrow (ii): Let $x, y \in X$ and set $\phi: [0,1] \to \mathbb{R}$, $\phi(\lambda) = f(x + \lambda(y - x))$. Then ϕ is continuously differentiable and, for every $\lambda \in [0,1]$, $\phi'(\lambda) = \langle \nabla f(x + \lambda(y - x)), y - x \rangle$.

Thus,

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle = \phi(1) - \phi(0) - \langle \nabla f(x), y - x \rangle$$

$$= \int_0^1 \phi'(\lambda) \, d\lambda - \langle \nabla f(x), y - x \rangle$$

$$= \int_0^1 \langle \nabla f(x + \lambda(y - x)) - \nabla f(x), y - x \rangle \, d\lambda \qquad (2.16)$$

$$\leq \int_0^1 \|\nabla f(x + \lambda(y - x)) - \nabla f(x)\| \|y - x\| \, d\lambda$$

$$\leq L \|y - x\|^2 \int_0^1 \lambda \, d\lambda$$

$$= \frac{L}{2} \|y - x\|^2.$$

(ii) \Rightarrow (iii): Let $x \in X$ and let $g: X \to \mathbb{R}: y \mapsto f(y) - \langle \nabla f(x), y \rangle$. Then g is convex and differentiable and, for every $y \in X$, $\nabla g(y) = \nabla f(y) - \nabla f(x)$. Since $\nabla g(x) = 0$, x is a minimizer of g. Now let $y \in X$. Using implication (i) \Rightarrow (ii) applied to g,

$$g(x) = \min_{z \in X} g(z) \le \min_{z \in X} \left(g(y) + \langle \nabla g(y), z - y \rangle + \frac{L}{2} \|z - y\|^2 \right)$$

= $g(y) - \frac{1}{2L} \|\nabla g(y)\|^2$.

Substituting the expression of g(x), g(y), and $\nabla g(y)$ into the above inequality, (214) follows.

(iii) \Rightarrow (iv): The statement follows by swapping x and y in (2.14) and summing the resulting inequality with (2.14).

(iv) \Rightarrow (i): Let x and y in X. By the Cauchy-Schwartz inequality we get

$$\frac{1}{L} \left\| \nabla f(x) - \nabla f(y) \right\|^2 \le \left\langle \nabla f(x) - \nabla f(y), x - y \right\rangle \le \left\| \nabla f(x) - \nabla f(y) \right\| \left\| x - y \right\|.$$

Thus $\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\|$.

(ii) \Rightarrow (v): It follows by swapping x and y in (213) and summing with (213).

 $[v] \Rightarrow [ii]$: Let $x, y \in X$. If we define ϕ as in the proof of $[i] \Rightarrow [ii]$, we see that [v] implies that ϕ' is continuous. Therefore, it follows from [2] that

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle = \int_0^1 \frac{1}{\lambda} \langle \nabla f(x + \lambda(y - x)) - \nabla f(x), \lambda(y - x) \rangle \, d\lambda$$

$$\leq \int_0^1 L \|y - x\|^2 \, \lambda \, d\lambda$$

$$= \frac{L}{2} \|y - x\|^2.$$

 $(v) \Leftrightarrow (vi)$: Condition (v) can be equivalently written as

$$(\forall x, y \in X) \quad \langle Lx - \nabla f(x), x - y \rangle \ge 0.$$

Since $\nabla((L/2) \|\cdot\|^2 - f)(x) = Lx - \nabla f(x)$, the statement follows from Proposition 213.

Proposition 2.1.14. Let $f: X \to \mathbb{R}$ be a differentiable function. Then the following are equivalent

(i) f is μ -strongly convex and ∇f is Lipschitz continuous with constant L.

(ii)
$$\forall x, y \in X$$
, $\frac{1}{L+\mu} \|\nabla f(x) - \nabla f(y)\|^2 + \frac{\mu L}{L+\mu} \|x - y\|^2 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle$.

Proof. Set $g = f - (\mu/2) \|\cdot\|^2$. Then $\frac{L-\mu}{2} \|\cdot\|^2 - g = (L/2) \|\cdot\|^2 - f$. Therefore It follows from Theorem 2113(vi) that (i) is equivalent to g convex and with gradient $(L-\mu)$ -Lipschitz continuous. Then, by Theorem 2113 item (iv), this latter fact can be expressed as

$$(\forall x, y \in X) \quad \frac{1}{L-\mu} \|\nabla g(x) - \nabla g(y)\|^2 \le \langle \nabla g(x) - \nabla g(y), x - y \rangle. \tag{2.17}$$

and hence, substituting the expressions of $\nabla g(x)$ and $\nabla g(y)$, as

$$(\forall x, y \in X) \frac{1}{L-\mu} \|\nabla f(x) - \nabla f(y) - \mu(x-y)\|^2 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle - \mu \|x - y\|^2.$$

The statement follows from the latter inequality, by multiplying by $L - \mu$, expanding the square norm on the left hand side and rearranging the terms.

2.2 Nonexpansive and contractive operators

Definition 2.2.1. Let X be an Euclidean space and let $T: X \to X$. Then

(i) T is nonexpansive if

$$(\forall x, y \in X) \quad ||Tx - Ty|| < ||x - y||.$$

(ii) T is a contraction if there exists $q \in [0, 1]$ such that

$$(\forall x, y \in X) \quad ||Tx - Ty|| \le q ||x - y||,$$

The first important result concerns contractive mapping.

Theorem 2.2.2 (Banach-Cacioppoli). Let $T: X \to X$ be a q-contractive mapping for some 0 < q < 1. Then there exists a unique fixed point of T, that is, a point $x_* \in X$ such that $T(x_*) = x_*$. Moreover, let $x_0 \in X$ and define, iteratively

$$x_{k+1} = T(x_k). (2.18)$$

Then,

$$(\forall k \in \mathbb{N}) \quad ||x_k - x_*|| \le q^k ||x_0 - x_*|| \quad and \quad ||x_k - x_*|| \le \frac{q^k}{1 - q} ||x_0 - x_1||. \quad (2.19)$$

Proof. We first note that

$$(\forall x, y \in X)$$
 $||x - y|| \le \frac{1}{1 - q} (||x - Tx|| + ||y - Ty||).$ (2.20)

Indeed $||x - y|| \le ||x - Tx|| + ||Tx - Ty|| + ||Ty - y|| \le ||x - Tx|| + q ||x - y|| + ||y - Ty||$, hence $(1 - q) ||x - y|| \le ||x - Tx|| + ||Ty - y||$ and (2.20) follows. Inequality (2.20) shows that there may exists at most one fixed point of T. Moreover, for every $k, h \in \mathbb{N}$,

$$||x_{k} - x_{h}|| \leq \frac{1}{1 - q} (||x_{k} - x_{k+1}|| + ||x_{h} - x_{h+1}||)$$

$$\leq \frac{1}{1 - q} (||T^{k}(x_{0}) - T^{k}(x_{1})|| + ||T^{h}(x_{0}) - T^{h}(x_{1})||)$$

$$\leq \frac{1}{1 - q} (q^{k} ||x_{0} - x_{1}|| + q^{h} ||x_{0} - x_{1}||)$$

$$\leq \frac{q^{k} + q^{h}}{1 - q} ||x_{0} - x_{1}||.$$
(2.21)

where we used that T^k is q^k -contractive. Since 0 < q < 1, q^k and q^h converge to zero as k and h go to $+\infty$. Therefore, $(x_k)_{k \in \mathbb{N}}$ is a Cauchy sequence and hence it converges, say to x_* . Then $Tx_k \to Tx_*$ and $Tx_k = x_{k+1} \to x_*$, so $Tx_* = x_*$, that is, x_* is a fixed point of T. The second inequality in (2.19) follows from (2.21) by letting $h \to +\infty$. The first equality in (2.19) follows from the following chain of inequalities

$$||x_k - x_*|| = ||Tx_{k-1} - Tx_*|| \le q ||x_{k-1} - x_*|| \le \dots \le q^k ||x_0 - x_*||.$$

Remark 2.2.3.

(i) Iterative methods of type (ZIB) are called fixed point iterations or Picard iterations.

- (ii) Nonexpansive operators, may have no fixed points. For instance, a translation T = Id + a, with $a \neq 0$, does not have any fixed point.
- (iii) For nonexpansive operators, even admitting fixed points, the Picard iteration may fail to converge. Indeed, this occurs if we take T = -Id and start with $x_0 \neq 0$. More generally rotations are nonexpansive operators admitting a fixed points.

Example 2.2.4.

(i) $\alpha \mathrm{Id}$, with $|\alpha| < 1$, is a contractive operator and its only fixed point is zero.

2.3 Convergence analysis

Now we define the gradient descent algorithm for minimizing smooth convex functions. In this section we assume that $f: X \to \mathbb{R}$ is convex differentiable with Lipschitz continuous gradient with constant L.

Algorithm 2.3.1. The gradient descent algorithm is defined as follows.

Let
$$\gamma > 0$$
 and $x_0 \in X$.
For $k = 0, 1, \dots$ (2.22)

$$| x_{k+1} = x_k - \gamma \nabla f(x_k).$$

It is important to note that some restriction on the step-size γ should be required. Indeed if we do gradient descent to the function $f(x) = (L/2) ||x||^2$, we have

$$x_{k+1} = (1 - \gamma L)x_k.$$

Thus if we take $\gamma = 2/L$, we have $x_{k+1} = -x_k$ and the sequence does not converge, unless $x_0 = 0$.

We have the following result.

Proposition 2.3.2. Let $k \in \mathbb{N}$. Then

$$\gamma \left(1 - \frac{\gamma L}{2}\right) \|\nabla f(x_k)\|^2 \le f(x_k) - f(x_{k+1}).$$
 (2.23)

Thus, if $\gamma \leq 2/L$, then $f(x_{k+1}) \leq f(x_k)$, that is, the algorithm is descending.

Proof. Since $x_{k+1} - x_k = -\gamma \nabla f(x_k)$, by Theorem 2113(ii), we have

$$f(x_{k+1}) \le f(x_k) - \gamma \langle \nabla f(x_k), \nabla f(x_k) \rangle + \frac{L}{2} \gamma^2 \|\nabla f(x_k)\|^2$$

and the statement follows.

Set $T = \operatorname{Id} - \gamma \nabla f : X \to X$, where Id is the identity operator on X. Then the gradient descent algorithm (2.22) can be written as a *Picard iteration*

$$x_{k+1} = Tx_k \tag{2.24}$$

and the minimizers of f are nothing but the fixed points of T.

We first address the question of when the gradient descent operator T is a contraction. This will provide necessary conditions for applying the Banach fixed point theorem.

Proposition 2.3.3. Let $f: X \to \mathbb{R}$ be a differentiable convex function. Suppose that for some $\gamma > 0$, the operator $T = \operatorname{Id} - \gamma \nabla f$ is a contraction. Then f is strongly convex and its gradient is Lipschitz continuous.

Proof. Let $x, y \in X$. Then

$$\begin{aligned} & \|Tx - Ty\|^{2} \leq q^{2} \|x - y\|^{2} \\ \Leftrightarrow & \|x - y - \gamma(\nabla f(x) - \nabla f(y))\|^{2} \leq q^{2} \|x - y\|^{2} \\ \Leftrightarrow & \|x - y\|^{2} + \gamma^{2} \|\nabla f(x) - \nabla f(y)\|^{2} - 2\gamma\langle\nabla f(x) - \nabla f(y), x - y\rangle \leq q^{2} \|x - y\|^{2} \\ \Leftrightarrow & (1 - q^{2}) \|x - y\|^{2} + \gamma^{2} \|\nabla f(x) - \nabla f(y)\|^{2} \leq 2\gamma\langle\nabla f(x) - \nabla f(y), x - y\rangle \\ \Rightarrow & \begin{cases} \frac{1 - q^{2}}{2\gamma} \|x - y\|^{2} \leq \langle\nabla f(x) - \nabla f(y), x - y\rangle \\ \frac{\gamma}{2} \|\nabla f(x) - \nabla f(y)\|^{2} \leq \langle\nabla f(x) - \nabla f(y), x - y\rangle \end{cases} \end{aligned}$$

So in virtue of Theorem 2113(iv) and Corollary 217(iii), f is strongly convex and ∇f is Lipschitz continuous.

Now we assume that f is strongly convex and with Lipschitz continuous gradient. Then we will prove that there exists an interval of values of γ for which T is a contraction. We will prove this first under the additional hypothesis of twice differentiability.

Theorem 2.3.4 (Convergence 1). Let $f: X \to \mathbb{R}$ be twice differentiable and suppose that f is μ -strongly convex and that ∇f is L-Lipschitz continuous. Then, for every $\gamma > 0$, $T = \operatorname{Id} - \gamma \nabla f$ is Lipschitz continuous with constant

$$q(\gamma) = \max\{|1 - \gamma\mu|, |1 - \gamma L|\} = \begin{cases} 1 - \gamma\mu & \text{if } \gamma \le \frac{2}{L + \mu} \\ 1 - \gamma L & \text{if } \gamma \ge \frac{2}{L + \mu}. \end{cases}$$
 (2.25)

So, T is a contraction if $\gamma \in]0,2/L[$. Therefore the gradient descent algorithm features the following rate of convergence

$$||x_k - x_*|| \le q(\gamma)^k ||x_0 - x_*||$$
 and $f(x_k) - f(x_*) \le \frac{L}{2} q(\gamma)^{2k} ||x_0 - x_*||^2$.

For the optimal stepsize $\gamma = 2/(L + \mu)$, we have

$$||x_k - x_*|| \le \left(\frac{L - \mu}{L + \mu}\right)^k ||x_0 - x_*||$$
 and $f(x_k) - f(x_*) \le \frac{L}{2} \left(\frac{L - \mu}{L + \mu}\right)^{2k} ||x_0 - x_*||^2$.

Proof. The mapping T is differentiable and $T'(x) = \mathrm{Id} - \gamma \nabla^2 f(x)$. By the mean value theorem

$$\forall x, y \in X \quad ||Tx - Ty|| \le q ||x - y|| \iff \forall x \in X \quad ||T'(x)|| \le q.$$

Moreover, $||T'(x)|| = \sup_{\lambda \in \sigma(\nabla^2 f(x))} |1 - \gamma \lambda|$. Since f is μ strongly convex and ∇f is L-Lipschitz continuous,

$$(\forall x \in X)(\forall u \in X) \quad \mu \|u\|^2 \le \langle \nabla f(x)u, u \rangle \le L \|u\|^2.$$

So $\sigma(\nabla^2 f(x)) \subset [\mu, L]$ and hence $||T'(x)|| \leq \max_{\lambda \in [\mu, L]} |1 - \gamma \lambda| = q(\gamma)$. It follows from (2.25) that $q(\gamma) < 1 \Leftrightarrow \gamma \in]0, 2/L[$. The inequalities on the values follow from Theorem 2.113(ii) with y = x and $x = x_*$.

The hypothesis of twice differentiability can indeed be removed.

Remark 2.3.5. The following two properties are equivalent to Proposition 2114(ii)

(a)
$$\|(\mathrm{Id} - T)x - (\mathrm{Id} - T)y\|^2 + \gamma^2 \mu L \|x - y\|^2 \le \gamma (\mu + L) \langle (\mathrm{Id} - T)x - (\mathrm{Id} - T)y, x - y \rangle$$
.

(b)
$$||Tx - Ty||^2 \le \left(1 - \frac{2\gamma\mu L}{\mu + L}\right) ||x - y||^2 - \left(\frac{2}{\gamma(\mu + L)} - 1\right) ||(\mathrm{Id} - T)x - (\mathrm{Id} - T)y||^2.$$

Indeed, multiplying (ii) by $\gamma^2(L+\mu)$ and replacing $\gamma \nabla f$ by Id -T, (a) follows. Moreover the equivalence between (a) and (b) follows again from identity (6.6). Note that if $\gamma(L+\mu)/2 \leq 1$, then (b) yields

$$||Tx - Ty|| \le \left(1 - \frac{2\gamma\mu L}{\mu + L}\right)^{1/2} ||x - y||,$$
 (2.26)

where

$$0 < \frac{2\gamma\mu L}{L+\mu} \le \frac{4\mu L}{(L+\mu)^2} - 1 + 1 = 1 - \left(\frac{L-\mu}{L+\mu}\right)^2 < 1.$$

Therefore, for every $\gamma \in]0, 2/(L+\mu)]$, T is a contraction with the constant given in (2.26). Note that this constant is always worse than that given in (2.25) in the interval $[0, 2/(L+\mu)]$.

Theorem 2.3.6 (Convergence 2). Suppose that f is strongly convex with modulus $\mu > 0$ and let x_* be the minimizer of f. Suppose that $0 < \gamma \le 2/(L + \mu)$. Then, for every $k \in \mathbb{N}$,

$$||x_{k+1} - x_*|| \le \left(1 - \frac{2\gamma\mu L}{L+\mu}\right)^{k/2} ||x_0 - x_*||,$$
 (2.27)

where $(1-2\gamma\mu L/(L+\mu)) < 1$. Moreover, the optimal step size in (2.27) is $\gamma = 2/(L+\mu)$ and in such case

$$||x_{k+1} - x_*|| \le \left(\frac{L - \mu}{L + \mu}\right)^k ||x_0 - x_*||,$$
 (2.28)

$$f(x_k) - f(x_*) \le \frac{L}{2} \left(\frac{L-\mu}{L+\mu}\right)^{2k} \|x_0 - x_*\|^2,$$
 (2.29)

Proof. In Remark 2.3.5 we saw that T is a contraction with constant $(1 - 2\gamma\mu L/(L + \mu))^{1/2}$. Since x_* is a fixed point of T, (2.27) follows from Theorem 2.2.2. The minimum value of $(1 - 2\gamma\mu L/(L + \mu))$ is reached for γ maximum, that is, $\gamma = 2/(L + \mu)$. In such case, the constant becomes $(1 - 4\gamma\mu L/(L + \mu)^2)^{1/2} = (L - \mu)/(L + \mu)$. Finally, it follows from Theorem 2.113(ii), with $x = x_*$ and $y = x_k$ that

$$f(x_k) - f(x_*) \le \frac{L}{2} \|x_k - x_*\|^2$$

and (229) follows.

Remark 2.3.7. Under the hypotheses of Theorem 2.3.6, a linear rate (but with a worse constant) can be derived also if $\gamma < 2/L$. Indeed, let $k \in \mathbb{N}$. Then, it follows from Proposition 2.3.2 and Corollary 2.1.11 that

$$f(x_{k+1}) \le f(x_k) - \gamma \left(1 - \frac{L\gamma}{2}\right) \|\nabla f(x_k)\|^2$$

$$\le f(x_k) - \gamma \mu (2 - L\gamma) (f(x_k) - f(x_*)).$$

Therefore

$$f(x_{k+1}) - f(x_*) \le q^2 (f(x_k) - f(x_*)), \tag{2.30}$$

where

$$0 \le q := (1 - \gamma \mu (2 - L\gamma))^{1/2} < 1, \tag{2.31}$$

since $0 < \gamma \mu(2 - L\gamma) \le \gamma L(2 - \gamma L) = -(\gamma L - 1)^2 + 1 \le 1$ (we used $\mu \le L$ in the second inequality). In the end, recalling also ($\square \square \square$), we have that, for every $k \in \mathbb{N}$,

$$f(x_k) - f(x_*) \le q^{2k} (f(x_0) - f(x_*))$$
 $||x_k - x_*|| \le \sqrt{\frac{2}{\mu}} q^k \sqrt{f(x_0) - f(x_*)}.$ (2.32)

Note that the best (smallest) value of q in (2.31) is given for $\gamma = 1/L$ and it is $q = (1 - \mu/L)^{1/2}$. Comparing this result with that given in Theorem 2.3.6, we have that

$$1 - \frac{2\gamma\mu L}{L + \mu} \le 1 - \gamma\mu(2 - \gamma L) \iff \gamma \in \left[\frac{2}{L} \frac{\mu}{L + \mu}, \frac{2}{L} \right].$$

and $1/L > 2\mu/(L(L+\mu))$. So this analysis provides worse constant than that in Theorem 2.3.6 on the interval [1/L, 2/L].

Example 2.3.8. The first inequality in (2.32) holds also for non-strongly convex functions, provided that inequality (2.12) holds. This is the case of the function considered in Example 2.112. Moreover the second inequality in (2.32) is replace by

$$\operatorname{dist}(x_k, \operatorname{argmin} f) \le \sqrt{\frac{2}{\mu}} q^k \sqrt{f(x_0) - f(x_*)}.$$