Содержание

1	Лин	нейная алгебра.	
	1.1	Введение.	
	1.2	Фактор-пространства	
	1.3	Матрицы.	
	1.4	Системы линейных уравнений.	
2	Теория типов.		
	2.1	Основы математической логики. Классическое исчисление высказываний.	
	2.2	Интуиционистское исчисление высказываний. Естественный вывод.	
	2.3	Исчисление предикатов.	
	2.4	λ — исчисления	
	2.5	Просто — типизированное λ — исчисление.	
	2.6	Нормализуемость λ_{\rightarrow} . Система F	
		Экзистенциальные типы. Система НМ.	

1 Линейная алгебра.

1.1 Введение.

Пример. $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$

 $A \times B = \{(a, b) | a \in A, b \in B\}$

F — поле, 2 операции, обе обратимы.

Векторное пространство V над F: (V,+,*)

- 1. $\forall v, u, w \in V$: (v + u) + w = v + (u + w)
- 2. $\forall v, u \in V: v + u = u + v$
- 3. $\exists v \in V : \forall v \in V : 0 + v = v$
- 4. $\forall v \in V : \exists "-v" : v + "-v" = 0$
- 5. $\forall v \in V; \alpha, \beta \in F: \alpha * (\beta * v) = (\alpha \beta) * v$
- 6. $\forall v \in V; \alpha, \beta \in F: (\alpha + \beta) * v = \alpha * v + \beta * v$
- 7. $\forall v, w \in V; \alpha \in F: \alpha * (v + w) = \alpha * v + \alpha * w$
- 8. $\forall v \in V : 1 * v = v$

Утв. Если v, w — векторное пространство над F, то и $v \times w$ — тоже векторное пространство над F V — векторное пространство над F.

Опр. $W \subseteq V$ — подпространство.

- 1. $\forall w_1, w_2 \in W : w_1 + w_2 \in W$
- 2. $\forall w \in W; \alpha \in F: \alpha w \in W$

 $V = R \times R, W = \{v \in V | x + y = 0\}$

Опр. Линейное отображение:

- 1. f(x) + f(y) = f(x + y)
- 2. $f(\alpha x) = \alpha f(x)$

1.2 Фактор-пространства.

Опр. Поле $F, W \subseteq V$ — векторное пространство; V/W — факторизация. Отношение \sim на $V: v \sim u \Leftrightarrow u - v \in W$.

- 1. $u u = 0 \in W$
- $2. \ u-v \in W \Leftrightarrow v-u \in W$
- 3. $(u-v) \in W \land (v-w) \in W \Rightarrow (u-v) + (v-w) \in W \Rightarrow u-w \in W$

[v] — класс эквивалентности вектора v.

- 1. [v] + [u] = [v + u]
- 2. $\alpha[v] = [\alpha v]$

 $v_1 \sim v_2 \Rightarrow u + v_1 \sim u + v_2$

 $v_1 \sim v_2 \Rightarrow \alpha v_1 \ \alpha v_2$

Отображение векторного пространства.

V,W — векторные пространства над F.

 $f: V \to W$ — линейная, если

- 1. $\forall v_1, v_2 \in V : f(v_1) + f(v_2) = f(v_1 + v_2)$
- 2. $\forall v \in V, \alpha \in F : \alpha f(v) = f(\alpha v)$

Если f — биекция, то f — изоморфизм, V и W — изоморфны.

1. Рефлективна $f = id\ V \to V : v \to v$

- 2. Симметрична $V \xrightarrow{f} W f^{-1}$ обратное отображение: $f^{-1}(x) + f^{-1}(y) = f^{-1}(x+y)$
- 3. $V \xrightarrow{f} W, W \xrightarrow{g} U. \ f,g$ линейная биекция, $f \circ g$ линейная биекция.

$$\mathbb{R}^n = (x_1, x_2, \dots, x_n), \, \mathbb{R}^m = (y_1, y_2, \dots, y_m)$$
Табличка $n \times m$: $\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$
Отображение $\mathbb{R}^n \to \mathbb{R}^m$ (линейное): $(x_1, \dots, x_n) \to \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ a_{21}x_1 + \dots + a_{2n}x_n \\ \vdots & \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix}$
Опр. V — векторное пространство над F . Набор v_1, \dots, v_k . $\sum \alpha_i v_i, \alpha_i \in F \to$ конечное число $\alpha_i \neq 0$. Все линейные комбинации образуют векторное полиространство $span(v_1, \dots, v_k, \dots)$.

комбинации образуют векторное подпространство $span(v_1,\ldots,v_k,\ldots)$.

Опр. v_1, \ldots, v_k, \ldots — линейно независимая $\Leftrightarrow \sharp$ нетривиальных линейных комбинаций (не все коэффициенты равны 0), те все коэффициенты равны 0, и других решений нет. Линейно зависимая иначе.

Опр. v_1,\ldots,v_k,\ldots — порождающая система, если $span(v_1,\ldots,v_k,\ldots)=V$ (span() — множество всех возможных линейных комбинаций).

Опр. Базис — линейно независимая + порождающая система. Базис — максимальная линейно независимая система векторов в пространстве V.

Опр. V — конечномерное $\Leftrightarrow \exists$ конечная порождающая система.

Возьмем минимальную (по включению) порождающую систему. v_1, \dots, v_e . Пусть оказалась линейно зависимой. $\sum \alpha_i v_i =$

Возьмем минимальную (по вклю теплю) порождающей, в выминуть.

0. НУО $\alpha_1 \neq 0$. $v_1 = \sum \frac{-d_j}{d_1} v_j$. Тогда можем выкинуть.

(!) Любой базис одинакового размера. e_1, \ldots, e_k ; f_1, \ldots, f_m . m > k. Хотим e_i : (e_i, f_2, \ldots, f_m) — линейно независимая система. Пусть нет. Тогда $\forall i \exists \alpha_1, \ldots, \alpha_m : \alpha_1 e_i + \alpha_2 f_2 + \cdots + \alpha_m f_m = 0 \Rightarrow e_i = \sum \beta_{ij} f_j \Rightarrow f_2 - f_m$ — порождают все ?! Значит (e_1, f_2, \ldots, f_m) — линейно независимая система. $e_1 = \sum \alpha_j f_j \Rightarrow \alpha \neq 0 \Rightarrow f_1 = \frac{1}{\alpha_1} e_1 - \sum_{j \neq 1} \frac{\alpha_j}{\alpha_1} f_j \Rightarrow (e_1, f_2, \ldots, f_m)$ —

базис.

Опр. $\dim V = \text{количество элементов базиса.}$

 $A \xrightarrow{J} B$: f(A) — векторное подпространство в B.

Утв. Линейное независимые системы не бывают больше, чем базис.

 $e_1,\ldots,e_k;\,f_1,\ldots,f_{k+1}.$ Рассмотрим наборы $(e_1,f_2,\ldots,f_{k+1});\,(e_1,\ldots,e_k,f_{k+1})$ — линейно независимая систе-

Теорема. V — векторное пространство над полем $F \Rightarrow V \cong F^{\dim V}$. Доказательство:

fix базис e_1, \ldots, e_n , где $n = \dim V$. Лемма. $\forall v \in V \exists !(\alpha_1, \ldots, \alpha_k) : V = \sum \alpha_k e_k$. Доказательство:

Пусть есть два набора $(\alpha_1, \ldots, \alpha_k)$ и $(\beta_1, \ldots, \beta_k)$. $0 = V - V = \sum (\alpha_k - \beta_k)e_k \Rightarrow \alpha_k = \beta_k \forall k$.

$$\begin{array}{l} f:F^n \to V \\ (x_1,\ldots,x_n) \to \sum x_i e_i \\ (y_1,\ldots,y_n) \to \sum y_i e_i \\ (x_1+y_1,\ldots,x_n+y_n) \to \sum (x_i+y_i) e_i \\ f(\lambda(x_1,\ldots,x_n)) = \sum (\lambda x_i) e_i = \lambda(\sum x_i e_i) \\ \underline{\text{Инекция.}} \ f(x_1,\ldots,x_n) = f(y_1,\ldots,y_n) \Rightarrow (x_1,\ldots,x_n) = (y_1,\ldots,y_n) \\ \underline{\text{Сюръекция.}} \ V = \sum \alpha_i e_i \Rightarrow v = f(\alpha_1,\ldots,\alpha_n) \end{array}$$

1.3Матрицы.

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

$$(x_1, \dots, x_n) \to \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ a_{21}x_1 + \dots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix}$$

$$e_1 = (1, 0, \dots, 0) \to (b_{11}, b_{21}, \dots, b_{m1})$$

$$e_{2} = (0, 1, \dots, 0) \rightarrow (b_{12}, b_{22}, \dots, b_{m2})$$

$$\vdots$$

$$e_{n} = (0, 0, \dots, 1) \rightarrow (b_{1n}, b_{2n}, \dots, b_{mn})$$

$$f((x_{1}, x_{2}, \dots, x_{n})) = x_{1}f(e_{1}) + x_{2}f(e_{2}) + \dots + x_{n}f(e_{n}) = x_{1}(b_{11}, b_{21}, \dots, b_{m1}) + x_{2}(b_{12}, \dots, b_{m2}) + \dots = (x_{1}b_{11} + x_{2}b_{12} + \dots + x_{n}b_{1n}, x_{1}b_{21} + x_{2}b_{22} + \dots + x_{n}b_{2n}, \dots, x_{1}b_{m1} + \dots + x_{n}b_{mn})$$

Сложение матриц.

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, B = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix}; X - \text{ матрица, } f_X - \text{ линейное отображение.}$$

$$f_A : (x_1, \dots, x_n) \to \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix}, f_B : (x_1, \dots, x_n) \to \begin{pmatrix} b_{11}x_1 + \dots + b_{1n}x_n \\ \vdots \\ b_{m1}x_1 + \dots + b_{mn}x_n \end{pmatrix}$$

$$f_A + f_B : (x_1, \dots, x_n) \to \begin{pmatrix} (a_{11} + b_{11})x_1 + \dots + (a_{1n} + b_{1n})x_n \\ \vdots \\ (a_{m1} + b_{m1})x_1 + \dots + (a_{mn} + b_{mn})x_n \end{pmatrix}$$

$$A + B := (a_{ij} + b_{ij})$$

$$\lambda A := (\lambda a_{ij})$$

Произведение матриц (композиция).

$$\mathbb{R}^n \xrightarrow{f_A} \mathbb{R}^m \xrightarrow{f_B} \mathbb{R}^k$$
 f_A и f_B построены по матрицам $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$ и $B = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix}$ $f_C(V) = f_B(f_A(V))$ $C := B \cdot A$ $e_1 = (1,0,\dots,0); \ f_A(e_1) = (a_{11},\dots,a_{m1})$ 1 столбец: $f_B(a_{11},\dots,a_{m1}) = (b_{11}a_{11} + b_{12}a_{21} + \dots + b_{1m}a_{m1}, b_{21}a_{11} + b_{22}a_{21} + \dots + b_{2m}a_{m1}, \vdots,$ $b_{k1}a_{11} + b_{k2}a_{21} + \dots + b_{km}a_{m1})$ $f_A(e_i) = (a_{1i},\dots,a_{mi})$ i столбец: $f_B(f_A(e_i)) = (b_{11}a_{1i} + b_{12}a_{2i} + \dots + b_{1m}a_{mi}, b_{21}a_{1i} + b_{22}a_{2i} + \dots + b_{2m}a_{mi}, \vdots,$ $b_{k1}a_{1i} + b_{k2}a_{2i} + \dots + b_{km}a_{mi})$ $C = \begin{pmatrix} c_{11} & \dots & c_{1n} \\ \vdots & \vdots \\ c_{k1} & \dots & c_{kn} \end{pmatrix}$ $c_{ij} = b_{i1}a_{1j} + b_{i2}a_{2j} + \dots + b_{im}a_{mj} = \sum_{\alpha=1}^m b_{i\alpha}a_{\alpha j}$

Опр. $F^n \xrightarrow{f_a} F^m$, $f_a(v) = Av$. $Imf = \{u \in F^m | \exists v \in F^n : u = f(v)\}$. $Kerf = \{u \in F^n | f(u) = 0\}$. Утв. Imf и Kerf — линейные подпространства.

Теорема о гомоморфизме. $V/Kerf\cong Imf;\ V=F^n.$

Доказательство:

 e_1, \ldots, e_k — базис в Kerf. Дополним его до базиса в V: e_{k+1}, \ldots, e_n . Базис переходит:

$$e_1 \rightarrow 0$$

$$e_2 \rightarrow 0$$

$$\vdots$$

$$e_k \rightarrow 0$$

$$e_{k+1} \rightarrow g_{k+1}$$

$$\vdots \\ e_n \to q_n$$

g — линейно независимая система, тк $\sum \beta_i g_i = 0$ и $f(\sum \beta_i g_i) = 0$. Тогда $\sum \beta_i e_i \in Kerf$. $Imf = Lin(g_{k+1}, \ldots, g_n)$, тк $Imf \Leftrightarrow X = f(\sum \alpha_i e_i) = \sum \alpha_i g_i$.

Утв. $V/Kerf \xrightarrow{g} Imf, [v] \xrightarrow{g} f(v)$. Тогда:

- $[v] \xrightarrow{g} f(v)$ корректно заданное отображение.
- $v_1 v_2 \in Kerf \Rightarrow f(v_1) = f(v_2) \Leftrightarrow f(v_1 v_2) = 0$, the $g([v]) = 0 \Rightarrow v \in Kerf \Rightarrow [v]$.
- $u \in Imf \Rightarrow \exists u = f(v) \Rightarrow u = g([v]).$

Опр. $rankA := \dim(ImA)$, где A — матрица. Также это размерность линейного замыкания пространства столбцов матрицы. ImA = линейное замыкания пространства столбцов, тк $u \in ImA = f(\sum \alpha_i e_i) = \sum \alpha_i f(e_i)$. $f(e_i) - i$ -ый столбец матрицы.

Опр. Множество всех матриц $n \times m$ над полем F обозначается $M_{n \times m}(F)$. Это множество кольцо с 1 (ассоциативность сложение, нейтральный элемент сложения, обратимость сложения, коммутативность сложения, ассоциативность умножения, дистрибутивность, нейтральный элемент умножения).

Опр. Верхне-треугольная матрица — матрица, в которой под диагональю все нули. Аналогично нижне-треугольная. Они образуют линейное подпространство. Матрица, которая и верхне-треугольная, и нижне-треугольная — диагональная.

Опр. Симметричная матрица — $a_{ij} = a_{ji}$.

Утв. $\dim(Lin(U \cup W)) + \dim(u \cap w) = \dim(u) + \dim(v)$.

Утв. rank(AB) = min(rankA, rankB).

Утв. $T^{-1}ATT^{-1}BT = T^{-1}(AB)T$.

Опр. Матрица перехода A из базиса e в базис f такова, что $\forall v \in V: v = \sum \alpha_i e_i \Rightarrow v = \sum \beta_i f_i$, где верно, что $A \begin{pmatrix} \alpha_1 \\ \vdots \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \vdots \end{pmatrix}$

1.4 Системы линейных уравнений.

Опр. Система линейных уравнений — $\begin{cases} a_{11}x_1+\cdots+a_{1n}x_n=b_1\\ \vdots\\ a_{m1}x_1+\cdots+a_{mn}x_n=b_m \end{cases} \Leftrightarrow Av=b,\ v=\begin{pmatrix} x_0\\ \vdots\\ x_n \end{pmatrix}.$ Как устроенно множество решений:

- Ø
- v_0 единственное решение.
- ullet Решений много \Rightarrow это $v_0+L:=\{v_0+l|l\in L\}$, где v_0 какое-то решение, L линейное подпространство (L=KerA).

 $Av_0 = b; Av_1 = b \Leftrightarrow A(v_1 - v_0) = 0 \Leftrightarrow (v_1 - v_0) \in KerA$

Опр. Присоединение матриц. $(A|b) = \begin{pmatrix} a_{11} & \dots & a_{1n} & |b_1| \\ a_{21} & \dots & a_{2n} & |b_2| \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} & |b_n| \end{pmatrix}$

Теорема Кронекера-Капелли. Система имеет решение $\Leftrightarrow rank(A) = rank(A|b)$.

Доказательство:

$$ImA=\{Av|v\in F^n\}.\ Im(A|b)=\{Av+\alpha b|v\in F^n, \alpha\in F\}.\ B\ ImA$$
 есть базис $u_1,\ldots,u_k.\ u_1,\ldots,u_k\in Im(A|b)\Rightarrow u_1,\ldots,u_k$ — базис в $Im(A|b).\ A(\sum \beta_i u_i)=\sum \beta_i (Av_i)=\sum \beta_i u_i=b.$

 \Rightarrow :

 \Leftarrow :

$$b=Av_0\Rightarrow \{Av+\alpha b|v\in F^n,\alpha\in F\}=\{Av|v\in F^n\}, \text{ th }Av+\alpha b=Av+\alpha(Av_0)=A(v+\alpha v_0)\in ImA.$$

Метод Гаусса. Приводит матрицу к виду, в котором понятно, решается она или нет. Можно:

- Умножать строку на ненулевое число.
- Переставить две строчки.
- Заменить строку на сумму ее и какой-то другой.
- Прибавить ко второй строке $\alpha\cdot$ первую.

2 Теория типов.

2.1 Основы математической логики. Классическое исчисление высказываний.

Приоритет операций: $\neg \land \lor \rightarrow$.

$$f: P \to \{\text{True, False}\}. \ \llbracket \alpha \rrbracket^f = \begin{cases} f(X) & \alpha = X \\ \text{True} & \alpha = \beta \wedge \gamma, \llbracket \beta \rrbracket = \llbracket \gamma \rrbracket = \text{True} \\ \text{True} & \alpha = \beta \vee \gamma, \llbracket \beta \rrbracket = \text{True}/\llbracket \gamma \rrbracket = \text{True} \end{cases}$$

Опр. α — общезначимое, если при любой $f: [\![\alpha]\!]^f = \mathrm{True.} \vDash \alpha$

Аксиомы:

1.
$$\alpha \to \beta \to \alpha$$

2.
$$(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to \alpha \to \gamma$$

3.
$$\alpha \to \beta \to \alpha \land \beta$$

4.
$$\alpha \wedge \beta \rightarrow \alpha$$

5.
$$\alpha \wedge \beta \rightarrow \beta$$

6.
$$\alpha \to \alpha \lor \beta$$

7.
$$\beta \to \alpha \vee \beta$$

8.
$$(\alpha \to \gamma) \to (\beta \to \gamma) \to \alpha \lor \beta \to \gamma$$

9.
$$(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$

10.
$$\neg \neg \alpha \rightarrow \alpha$$

Утв. $A \rightarrow A$.

Доказательство:

1.
$$A \rightarrow A \rightarrow A$$

2.
$$(A \to A \to A) \to (A \to (A \to A) \to A) \to (A \to A)$$

 $\alpha = A, \ \beta = A \to A, \ \gamma = A$

3.
$$(A \to (A \to A) \to A) \to A \to A$$
. Modus Ponens из 1 и 2.

4.
$$A \rightarrow (A \rightarrow A) \rightarrow A$$

 $\alpha = A, \beta = A \rightarrow A$

5.
$$A \rightarrow A$$

Опр. $\vdash \alpha$ — есть доказательство α . $\gamma_1, \gamma_2, \dots \vdash \alpha$ — есть доказательство α из $\gamma_1, \gamma_2, \dots$

Теорема о дедукции. Γ , $\alpha \vdash \beta$ ттт $\Gamma \vdash \alpha \rightarrow \beta$.

Утв. $\vdash \alpha$ ттт $\models \alpha$.

Утв. Если из $\models \alpha$ следует $\vdash \alpha$, то оценка полна. Если из $\vdash \alpha$ следует $\models \alpha$, то оценка корректна. Доказательство корректности:

Индукция по длине доказательства $\Gamma \vdash \alpha$.

Если α — гипотеза, то очевидно, что следует $\Gamma \vDash \alpha$.

Если α — аксиома, то нужно проверить все аксиомы. На примере 9 аксиомы:

$$(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$$

Если $\llbracket \alpha \rrbracket = \text{False}$, то True, тк в конце $\lnot \alpha$.

Если $[\![\alpha]\!]=$ True, то либо первая либо вторая скобка — False.

Переход:

Аксиома — понятно, тк она аксиома. Гипотеза — тоже понятно, тк доказана по ИП. Modus Ponens — понятно, тк то, из чего он получен — истино.

Доказательство полноты:

Используем:
$$A \lor \lnot A$$
, $(\alpha \to \beta) \to (\lnot \alpha \to \beta) \to \beta$, и если $\Gamma, \alpha \vdash \beta$ и $\Gamma, \lnot \alpha \vdash \beta$, то $\Gamma \vdash \beta$ fix $f \colon x_1 := \operatorname{True}, x_2 := \operatorname{False}, x_3 := \operatorname{False}, \ldots$ $x_1, x_2, x_3, \cdots \vdash \alpha$
$$\begin{cases} x_1, x_2, \dots, x_n \vdash \alpha \\ x_1, x_2, \dots, \lnot x_n \vdash \alpha \\ \vdots \end{cases}$$
 $\exists \gamma \models \begin{cases} \gamma & \llbracket \gamma \rrbracket = \operatorname{True} \\ \lnot \gamma & \llbracket \gamma \rrbracket = \operatorname{False} \end{cases}$ Это надо, чтобы либо утверждение, либо его отрицание точно были доказуемые.

Внимание! Какие-то челики поменяли 10 аксиому на эту: $\alpha \to \neg \alpha \to \beta$.

Новая оценка: $]X\subset\mathbb{R}.\ X$ — открыто, если $\forall x\in X\exists r>0: (x-r;x+r)\subset X.\ IntX=\{x\in X|\exists r>0(x-r;x+r)\subset X\}$ $\llbracket \alpha \wedge \beta \rrbracket = \llbracket \alpha \rrbracket \cap \llbracket \beta \rrbracket$ $\llbracket \alpha \vee \beta \rrbracket = \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket$ $\llbracket \alpha \to \beta \rrbracket = Int(\mathbb{R} \setminus \llbracket \alpha \rrbracket \cup \llbracket \beta \rrbracket)$ $\llbracket \neg \alpha \rrbracket = Int(\mathbb{R} \setminus \llbracket \alpha \rrbracket)$

Интуиционистское исчисление высказываний. Естественный вывод. 2.2

Правила вывода:

1.
$$\overline{\Gamma, \alpha \vdash \alpha}$$

$$2. \ \frac{\Gamma, \alpha \vdash \beta}{\Gamma \vdash \alpha \to \beta}$$

$$\Gamma \vdash \alpha \rightarrow \beta \quad \Gamma \vdash \alpha$$

$$3. \ \frac{\Gamma \vdash \alpha \to \beta \quad \Gamma \vdash \alpha}{\Gamma \vdash \beta}$$

$$\underline{\Gamma \vdash \alpha \quad \Gamma \vdash \beta}$$

4.
$$\Gamma \vdash \alpha \land \beta$$

$$\Gamma \vdash \alpha \land \beta$$

5.
$$\Gamma \vdash \alpha$$

$$\underline{\Gamma \vdash \alpha \land \beta}$$

6.
$$\Gamma \vdash \beta$$

$$7. \ \frac{\Gamma \vdash \alpha \to \gamma \quad \Gamma \vdash \beta \to \gamma \quad \Gamma \vdash \alpha \vee \beta}{\Gamma \vdash \gamma}$$

8.
$$\frac{\Gamma \vdash \alpha}{\Gamma \vdash \alpha \lor \beta}$$

9.
$$\frac{\Gamma \vdash \beta}{\Gamma \vdash \alpha \lor \beta}$$

10.
$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \alpha}$$
в ИИВ; $\frac{\Gamma, \alpha \to \bot \vdash \bot}{\Gamma \vdash \alpha}$ в КИВ

2.3 Исчисление предикатов.

Логические переменные — пропозициональные. Численные — предметные.

Квантор — $\forall a$.; функция — f(a); предикат — принимает не логическое выражение, возвращает логическое.

Если φ — функциональный символ, нужно $F\varphi: D^n \to D$.

Если p — предикатный символ, нужно $Tp: D^n \to \{\text{True}, \text{False}\}.$

Если x — переменная, то $E(x) \in D$.

$$\llbracket p(\theta_1, \dots, \theta_n) \rrbracket = Tp(\llbracket \theta_1 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$$

$$\llbracket \varphi(\theta_1, \dots, \theta_n) \rrbracket = F \varphi(\llbracket \theta_1 \rrbracket, \dots, \llbracket \theta_n \rrbracket)$$

 $[\![\forall x.\alpha]\!] = \text{True},$ если для всех $d \in D : E(x) = d,$ то $[\![\alpha]\!] = \text{True}.$

 $\alpha[x:=\theta]$ — заменяет все свободные x на θ .

Опр. θ называется свободным для подстановки в α вместо x, если $\alpha[x:=\theta]$ не сделает свободные вхождения в θ связанными.

1.
$$x \notin FV(\Gamma) \mid \frac{\Gamma \vdash \alpha}{\Gamma \vdash \forall x.\alpha}$$

2. Нужна свобода для подстановки |
$$\frac{\Gamma \vdash \forall x.\alpha}{\Gamma \vdash \alpha[x:=\theta]}$$

3. Нужна свобода для подстановки |
$$\frac{\Gamma \vdash \alpha | x := \theta}{\Gamma \vdash \exists x . \alpha}$$

4.
$$x \notin FV(\Gamma, \beta) \mid \frac{\Gamma \vdash \exists x.\alpha \quad \Gamma, \alpha \vdash \beta}{\Gamma \vdash \beta}$$

Теорема. Если $\Gamma \vdash \alpha$ в классическом исчислении предикатов, то $\Gamma \vDash \alpha$ в двоичной оценки для предикатов. Доказательство:

Индукция по длине доказательства.

База.

$$\overline{\Gamma, \alpha \vdash \alpha}$$
 очевидно $\Gamma, \alpha \vDash \alpha$

Переход.

$$\label{eq:continuous_problem} \begin{split} &\frac{\Gamma \vdash \alpha \land \beta}{\Gamma \vdash \alpha} \text{. Есть } \Gamma \vDash \alpha \land \beta \text{, надо } \Gamma \vDash \alpha \text{.} \\ &\frac{\Gamma, \alpha \to \bot \vdash \bot}{\Gamma \vdash \alpha} \text{. Есть } \Gamma, \alpha \to \bot \vDash \bot \text{, надо } \Gamma \vDash \alpha \text{.} \end{split}$$

2.4 λ — исчисления.

Опр. λ — исчисления — способ описать математику в программировании.

Тезис 1. Функции больше одного агрумента не нужны.

Опр. $\lambda x.P$ — принимает x и делает P.

Опр. $FV(\alpha)$ — множество свободных переменных α .

Опр. θ называется свободным для подстановки в α вместо x, если $\alpha[x:=\theta]$ не сделает свободные вхождения в θ связанными.

Опр. $P =_{\alpha} Q$, если одно из следующего:

ullet P и Q — одна и та же формула

•
$$P = A_1B_1$$
, $Q = A_2B_2$; $A_1 =_{\alpha} A_2$ и $B_1 =_{\alpha} B_2$

•
$$P = \lambda x. A_1, Q = \lambda y. A_2; A_1[x := t] =_{\alpha} A_2[y := t]$$

С этого момента любое = - это $=_{\alpha}$.

Опр. $(\lambda x.P)Q - \beta$ — редекс. $A \rightarrow_{\beta} B$, если:

•
$$A = (\lambda x. P)Q, B = P[x := Q]$$
, есть свобода

•
$$A=P_1Q_1,\,B=P_2Q_2;\,(P_1=P_2$$
 и $Q_1\to_{\beta}Q_2)$ или $(Q_1=Q_2$ и $P_1\to_{\beta}P_2)$

•
$$A = \lambda x.P_1, B = \lambda x.P_2; P_1 \rightarrow_{\beta} P_2$$

Oπp. ω = (λy.yy)(λx.xx)

Опр. $A \twoheadrightarrow_{\beta} B$ за несколь (в том числе 0) шагов.

Опр. Нормальный порядок — редуцируем самый левый β — редекс. Аппликативный порядок — из самых вложенных берем левый β — редекс.

Опр. $A \rightrightarrows_{\beta} B$, если:

$$\bullet$$
 $A = B$

•
$$A = \lambda x.P_1, B = \lambda x.P_2; P_1 \Rightarrow_{\beta} P_2$$

•
$$A = P_1Q_2$$
, $B = P_2Q_2$; $P_1 \rightrightarrows_{\beta} P_2$ и $Q_1 \rightrightarrows_{\beta} Q_2$

•
$$A=(\lambda x.P_1)Q_1, B=P_2[x:=Q_2]; P_1 \Rightarrow_{\beta} P_2$$
 и $Q_1 \Rightarrow_{\beta} Q_2$

Теорема Черча — **Россера.** Если $A \twoheadrightarrow_{\beta} B$, $A \twoheadrightarrow_{\beta} C$ и $B \neq C$, то существует D, такое что $B \twoheadrightarrow_{\beta} D$ и $C \twoheadrightarrow_{\beta} D$. Доказательство:

Лемма. Если $P_1
ightrightarrows_{eta} P_2$ и $Q_1
ightrightarrows_{eta} Q_2$, то $P_1[x:=Q_1]
ightrightarrows_{eta} P_2[x:=Q_2]$ — свобода есть.

- Случай $P_1 = P_2$ ясно.
- Индукция по длине P_1 .

$$\begin{array}{l} -P_1 = A_1B_1 \\ P_2 = A_2B_2 \\ A_1 \rightrightarrows_{\beta} A_2 \\ B_1 \rightrightarrows_{\beta} B_2 \\ A_1[x := Q_1] \rightrightarrows_{\beta} A_2[x := Q_2] \\ B_1[x := Q_1] \rightrightarrows_{\beta} B_2[x := Q_2] \\ P_1[x := Q_1] = (A_1[x := Q_1])(B_1[x := Q_1]) \\ P_2[x := Q_2] = (A_2[x := Q_2])(B_2[x := Q_2]) \\ P_1[x := Q_1] \rightrightarrows_{\beta} P_2[x := Q_2] \\ -P_1 = \lambda y.A_1 \\ P_2 = \lambda y.A_2 \\ A_1 \rightrightarrows_{\beta} A_2 \\ A_1[x := Q_1] \rightrightarrows_{\beta} A_2[x := Q_2] \\ P_1[x := Q_1] = \lambda y.(A_1[x := Q_1]) \end{array}$$

 $P_{2}[x := Q_{2}] = \lambda y.(A_{2}[x := Q_{2}])$ $P_{1}[x := Q_{1}] \rightrightarrows_{\beta} P_{2}[x := Q_{2}]$ $- P_{1} = (\lambda y.A_{1})B_{1}$ $P_{2} = A_{2}[y := B_{2}]$

 $A_1 \rightrightarrows_{\beta} A_2 \\ B_1 \rightrightarrows_{\beta} B_2$

 $A_1[x := Q_1] \Rightarrow_{\beta} A_2[x := Q_2]$ $B_1[x := Q_1] \Rightarrow_{\beta} B_2[x := Q_2]$ $(\lambda y. A_1[x := Q_1])(B_1[x := Q_1]) \Rightarrow_{\beta} ?A_2[y := B_2][x := Q_2]$ $y \in ?FV(Q_2) \text{ echalia to } y \in FV(Q_1)$

 $y \in ?FV(Q_2)$, если да, то $y \in FV(Q_1)$ $y \in FV(A_1)$ — иначе ясно.

 $g \in FV(A_1)$ — иначе ясно $y \notin FV(Q_2)$ $A_2[y:=B_2][x:=Q_2]=A[x]$

 $A_2[y:=B_2][x:=Q_2]=A[x:=Q_2][y:=B_2[x:=Q_2]]$ y=x аналогично

Лемма. Если $P \rightrightarrows_{\beta} P_1$, $P \rightrightarrows_{\beta} P_2$ и $P_1 \neq P_2$, то существует P_3 , такое что $P_1 \rightrightarrows_{\beta} P_3$ и $P_2 \rightrightarrows_{\beta} P_3$.

Индукция по элементам P.

- $P = P_1 P_3 = P_2$
- $P = \lambda x.A$, $P_1 = \lambda x.A_1 \Rightarrow P_2 = \lambda x.A_2$. $P_3 = \lambda x.A_3$. $A \Rightarrow_{\beta} A_1$, $A \Rightarrow_{\beta} A_2$, $A_1 \Rightarrow_{\beta} A_3$, $A_2 \Rightarrow_{\beta} A_3$
- $P = AB, P_1 = A_1B_1$

(I) $P_2 = A_2B_2$ $A \Rightarrow_{\beta} A_1, A \Rightarrow_{\beta} A_2; B \Rightarrow_{\beta} B_1, B \Rightarrow_{\beta} B_2.$ $\exists A_3, B_3; P_3 = A_3B_3$

(II) $P = (\lambda x.C)B, \ P_2 = C_2[x := B_2], \ P_1(\lambda x.C_1)B_1$ $A \rightrightarrows_{\beta} A_1 - \text{тогда} \ A_1 = \lambda x.C_1$ $B \rightrightarrows_{\beta} B_1, \ B \rightrightarrows_{\beta} B_2; \ C \rightrightarrows_{\beta} C_1, \ C \rightrightarrows_{\beta} C_2$ $C_3, B_3 \colon C_1 \rightrightarrows_{\beta} C_3, \ C_2 \rightrightarrows_{\beta} C_3; \ B_1 \rightrightarrows_{\beta} B_3, \ B_2 \rightrightarrows_{\beta} B_3. \ P_3 = C_3[x := B_3]$

• $P = (\lambda x.C)B, P_1 = C_1[x := B_1]$

(I) $P_2 = A_2 B_2$. (?) $C \Rightarrow_{\beta} A_2$, $B \Rightarrow_{\beta} B_2$ $C \Rightarrow_{\beta} C_1$, $C \Rightarrow_{\beta} C_2$; $B \Rightarrow_{\beta} B_1$, $B \Rightarrow_{\beta} B_2$

(II) $P_2 = C_2[x := B_2]$ $\exists C_3, B_3 \colon C_1 \Rightarrow_{\beta} C_3, C_2 \Rightarrow_{\beta} C_3; B_1 \Rightarrow_{\beta} B_3, B_2 \Rightarrow_{\beta} B_3. P_3 = C_3[x := B_3]$

 $P \rightrightarrows_{\beta} \cdots \rightrightarrows_{\beta} P_1 \rightrightarrows_{\beta} \cdots \rightrightarrows_{\beta} P_3, P \rightrightarrows_{\beta} \cdots \rightrightarrows_{\beta} P_2 \rightrightarrows_{\beta} \cdots \rightrightarrows_{\beta} P_3$ Двойной параллельный β — редекс \Longrightarrow_{β}

5 Просто — типизированное λ — исчисление.

Опр. $\alpha \to \beta$ — тип функции, которая принимает объект типа α и возвращает объект типа β . **Правила вывода:**

1.
$$\overline{\Gamma, x : \alpha \vdash x : \alpha}, x \notin \Gamma$$

$$2. \frac{\Gamma \vdash P : \alpha \to \beta \quad \Gamma \vdash Q : \alpha}{\Gamma \vdash PQ : \beta}$$

$$\Gamma, x : \alpha \vdash P : \beta$$

3.
$$\overline{\Gamma \vdash \lambda x.P: \alpha \to \beta}, \, x \not \in \Gamma - \text{по Карри.} \\ \Gamma, x: \alpha \vdash P: \beta$$

$$\frac{\Gamma, x : \alpha \vdash P : \beta}{\Gamma \vdash \lambda x^{\alpha}.P : \alpha \to \beta} - \text{по Черчу.}$$

Теорема о редукции. Если $A \twoheadrightarrow_{\beta} B$ и $\vdash A : \sigma$, то $\vdash B : \sigma$.

Теорема об ограниченном свойстве распространения типизации. Если $A woheadrightarrow_B B, \vdash A : \sigma$ и $\vdash B : \tau$, то $\tau = \sigma$. Верно только в Черче.

Утв. Полное свойство распространения типизации. $A woheadrightarrow_{\beta} B$ и $\vdash B : \sigma$, то $A : \sigma$. Неверно нигде.

Теорема о равносильности исчисления по Карри и по Черчу.

- $\Gamma \vdash P : \alpha$ Черч, стираем аннотацию и получаем доказуемое в Карри.
- $\Gamma \vdash P : \alpha$ Карри, то есть способ приписать типовые аннотации и получить доказуемое в Черче.

Теорема. Изоморфизм Карри — Ховард.

2.6Нормализуемость λ_{\rightarrow} . Система F.

Опр. Выражение называется сильно нормализуемым, если нет способа редуцировать его бесконечно.

Опр. SN — множество всех сильно нормализуемых выражений. $X \subset SN$ насыщенно, если

- Если $m_1, \ldots, m_n \in SN$, то $xm_1m_2 \ldots m_n \in X$
- Если $m_1, \ldots, m_n \in SN, M \in SN, N$ любое и $N[x := M]m_1, \ldots, m_n \in X$, то $(\lambda x. N)mm_1, \ldots, m_n \in X$

Лемма. SN — насыщенно.

A, B — множество выражений. $A \to B = \{X | \forall Y \in A. XY \in B\}$. Если A, B — насыщенные, то $A \to B$ — насыщенное.

$$\sigma - \text{тип. } [\sigma] = \begin{cases} SN & \sigma - \text{переменная} \\ [\tau_1] \to [\tau_2] & \sigma = \tau_1 \to \tau_2 \end{cases}$$

$$[\alpha \to \alpha \to \alpha] = SN \to SN \to SN.$$

Лемма. $[\sigma]$ — насыщенно из предыдущего.

Опр. ρ из переменных в λ -выражениях — оценка.

Опр. $M[x := \rho(x), y := \rho(xy), ...] = [M]^{\rho}$.

Утв. Для любой ρ такой что для всех $x:\tau\in\Gamma$ верно $\rho(x)\in[\tau]$.

Утв. $\Gamma \vDash M : \sigma$, если выполнено $\llbracket M \rrbracket^{\rho} \in [\sigma]$

Теорема. Если $\Gamma \vdash M : \sigma$, то $\Gamma \vDash M : \sigma$.

Доказательство:

Индукция по размеру дерева вывода $\Gamma \vdash M : \sigma$

Опр. Λ — принимает типовую переменную.

Новые правила вывода:

•
$$\frac{\Gamma \vdash P : \alpha}{\Gamma \vdash \Lambda x.P : \forall x.\alpha}, \ x \notin FV(\Gamma)$$

$$\Gamma \vdash P : \forall x.\alpha$$

• $\frac{\Gamma \vdash P : \forall x.\alpha}{\Gamma \vdash P\beta : \alpha[x := \beta]}$ — есть свобода.

2.7Экзистенциальные типы. Система НМ.

Опр. $\exists p.p \land (\nu \land p \rightarrow p) \land (p \rightarrow \nu \land p), \nu$ — тип натурального числа. Это стек из программирования (обозначим σ). После квантора существования — набор методов стека.

$$\Gamma \vdash : \sigma[p := \alpha]$$

$$\frac{\Gamma \vdash ??N??: \exists p.\sigma}{\Gamma \vdash N: \exists p.\sigma \quad \Gamma, x: \sigma \vdash M: \tau}$$

Опр. Тип в $\mathrm{HM}-\mathrm{тип}$ в просто-типизированном λ -исчислении. Типовая схема в $\mathrm{HM}-\mathrm{тип}$ с поверхностными кванторами в просто-типизированном λ -исчислении. Далее в этой теме: σ — схемы, au — типы.

Правила вывода в системе НМ:

•
$$\overline{\Gamma, x : \sigma \vdash x : \sigma}$$

$$\bullet \ \frac{\Gamma, x: \tau_1 \vdash P: \tau_2}{\Gamma \vdash \lambda x. P: \tau_1 \to \tau_2}, \ x \not \in \Gamma$$

$$\bullet \ \frac{\Gamma \vdash P : \tau_1 \quad \Gamma \vdash Q : \tau_1 \to \tau_2}{\Gamma \vdash PQ : \tau_2}$$

$$\bullet \qquad \qquad \Gamma \vdash PQ : \tau_2$$

$$\underline{\Gamma \vdash P : \sigma \quad \Gamma, x : \sigma \vdash Q : \tau}$$

$$\bullet \ \frac{\Gamma \vdash P : \sigma \quad \Gamma, x : \sigma \vdash Q : \tau}{\Gamma \vdash \text{let } x := P \text{ in } Q : \tau}, \, x \not \in \Gamma$$

$$\Gamma \vdash P : \sigma_1$$

$$\bullet \ \frac{\Gamma \vdash P : \sigma_1}{\Gamma \vdash P : \sigma_2}, \ \sigma_1 \sqsubseteq \sigma_2$$

$$\Gamma \vdash P : \sigma$$

$$\bullet \ \frac{\Gamma \vdash P : \sigma}{\Gamma \vdash P : \forall \alpha.\sigma, \ \alpha \not\in FV(\Gamma)}$$

Правила вывода эквирекурсивных типов:

$$\Gamma \vdash P : \mu \alpha . \tau$$

$$\bullet \ \overline{\Gamma \vdash P : \tau[\alpha := \mu \alpha . \tau]}$$

$$\Gamma \vdash P : \tau[\alpha := \mu \alpha. \tau]$$

$$\bullet \quad \overline{\Gamma \vdash P : \mu \alpha . \tau}$$

Правила вывода изорекурсивных типов:

$$\Gamma \vdash \mu \alpha. \gamma$$

•
$$\Gamma \vdash \text{unroll } P : \tau[\alpha := \mu \alpha . \tau]$$

$$\Gamma \vdash P : \tau[\alpha := \mu \alpha . \tau]$$

•
$$\Gamma \vdash \text{roll } P : \mu \alpha. \tau$$