Cours de Systèmes Électroniques : Filtres Actifs

A. Arciniegas F. Boucher N. Wilkie-Chancellier A. Bouzzit S. Hebaz

IUT Cergy-Pontoise, Dep GEII, site de Neuville

Plan du cours

Généralités

Filtres de 1er ordre

Généralités

Généralités

Filtre

• Système électronique servant à modifier la répartition fréquentielle du signal qui le traverse.

Filtre

- Système électronique servant à modifier la répartition fréquentielle du signal qui le traverse.
- Sert à séparer les signaux utiles des signaux parasites.

Filtre

- Système électronique servant à modifier la répartition fréquentielle du signal qui le traverse.
- Sert à séparer les signaux utiles des signaux parasites.
- Utilisé en systèmes de communication, instrumentation et automatisation.

Filtre

- Système électronique servant à modifier la répartition fréquentielle du signal qui le traverse.
- Sert à séparer les signaux utiles des signaux parasites.
- Utilisé en systèmes de communication, instrumentation et automatisation.

Technologie ancienne

• Réalisés avec des résistances, des bobines et des condensateurs.

Filtre

- Système électronique servant à modifier la répartition fréquentielle du signal qui le traverse.
- Sert à séparer les signaux utiles des signaux parasites.
- Utilisé en systèmes de communication, instrumentation et automatisation.

- Réalisés avec des résistances, des bobines et des condensateurs.
- Bon fonctionnement à hautes fréquences (f >1 MHz), mais...

Filtre

- Système électronique servant à modifier la répartition fréquentielle du signal qui le traverse.
- Sert à séparer les signaux utiles des signaux parasites.
- Utilisé en systèmes de communication, instrumentation et automatisation.

- Réalisés avec des résistances, des bobines et des condensateurs.
- Bon fonctionnement à hautes fréquences (f >1 MHz), mais...
- pour les applications basses fréquences (0 < f < 100 kHz) nécessitent des bobines de grosse taille,

Filtre

- Système électronique servant à modifier la répartition fréquentielle du signal qui le traverse.
- Sert à séparer les signaux utiles des signaux parasites.
- Utilisé en systèmes de communication, instrumentation et automatisation.

- Réalisés avec des résistances, des bobines et des condensateurs.
- Bon fonctionnement à hautes fréquences (f >1 MHz), mais...
- pour les applications basses fréquences (0 < f < 100 kHz) nécessitent des bobines de grosse taille,
- n'ont pas de gain en puissance et sont relativement difficiles à accorder, et

Filtre

- Système électronique servant à modifier la répartition fréquentielle du signal qui le traverse.
- Sert à séparer les signaux utiles des signaux parasites.
- Utilisé en systèmes de communication, instrumentation et automatisation.

- Réalisés avec des résistances, des bobines et des condensateurs.
- Bon fonctionnement à hautes fréquences (f > 1 MHz), mais...
- pour les applications basses fréquences (0 < f < 100 kHz) nécessitent des bobines de grosse taille,
- n'ont pas de gain en puissance et sont relativement difficiles à accorder, et
- sont incompatibles avec les nouvelles technologies d'assemblage de SE.

Filtre

- Système électronique servant à modifier la répartition fréquentielle du signal qui le traverse.
- Sert à séparer les signaux utiles des signaux parasites.
- Utilisé en systèmes de communication, instrumentation et automatisation.

Technologie ancienne

- Réalisés avec des résistances, des bobines et des condensateurs.
- Bon fonctionnement à hautes fréquences (f >1 MHz), mais...
- pour les applications basses fréquences (0 < f < 100 kHz) nécessitent des bobines de grosse taille,
- n'ont pas de gain en puissance et sont relativement difficiles à accorder, et
- sont incompatibles avec les nouvelles technologies d'assemblage de SE.

Technologie actuelle

Utilisés au-dessous de 1 MHz, ils ont du gain en puissance et ils sont faciles à accorder. On distingue :

Filtre

- Système électronique servant à modifier la répartition fréquentielle du signal qui le traverse.
- Sert à séparer les signaux utiles des signaux parasites.
- Utilisé en systèmes de communication, instrumentation et automatisation.

Technologie ancienne

- Réalisés avec des résistances, des bobines et des condensateurs.
- Bon fonctionnement à hautes fréquences (f > 1 MHz), mais...
- pour les applications basses fréquences (0 < f < 100 kHz) nécessitent des bobines de grosse taille,
- n'ont pas de gain en puissance et sont relativement difficiles à accorder, et
- sont incompatibles avec les nouvelles technologies d'assemblage de SE.

Technologie actuelle

Utilisés au-dessous de 1 MHz, ils ont du gain en puissance et ils sont faciles à accorder. On distingue :

• filtres Actifs RC: AOP, Résistances et Condensateurs

Filtre

- Système électronique servant à modifier la répartition fréquentielle du signal qui le traverse.
- Sert à séparer les signaux utiles des signaux parasites.
- Utilisé en systèmes de communication, instrumentation et automatisation.

Technologie ancienne

- Réalisés avec des résistances, des bobines et des condensateurs.
- Bon fonctionnement à hautes fréquences (f > 1 MHz), mais...
- pour les applications basses fréquences (0 < f < 100 kHz) nécessitent des bobines de grosse taille,
- n'ont pas de gain en puissance et sont relativement difficiles à accorder, et
- sont incompatibles avec les nouvelles technologies d'assemblage de SE.

Technologie actuelle

Utilisés au-dessous de 1 MHz, ils ont du gain en puissance et ils sont faciles à accorder. On distingue :

- filtres Actifs RC: AOP, Résistances et Condensateurs
- filtres à capacités commutées : condensateurs et AOP

Fonction

Un filtre effectue une fonction de sélection de fréquence :

Fonction

Un filtre effectue une fonction de sélection de fréquence :

• soit fait passer des signaux dont la fréquence se situe dans une plage spécifiée,

Fonction

Un filtre effectue une fonction de sélection de fréquence :

- soit fait passer des signaux dont la fréquence se situe dans une plage spécifiée,
- soit arrête des signaux dont la fréquence se trouve en dehors de cette plage.

Fonction

Un filtre effectue une fonction de sélection de fréquence :

- o soit fait passer des signaux dont la fréquence se situe dans une plage spécifiée,
- soit arrête des signaux dont la fréquence se trouve en dehors de cette plage.

Caractéristiques d'un filtre idéal

Fonction

Un filtre effectue une fonction de sélection de fréquence :

- o soit fait passer des signaux dont la fréquence se situe dans une plage spécifiée,
- soit **arrête** des signaux dont la fréquence se trouve en dehors de cette plage.

Caractéristiques d'un filtre idéal

Bande passante : fréquences pour laquelle le gain est 1

Fonction

Un filtre effectue une fonction de sélection de fréquence :

- soit fait passer des signaux dont la fréquence se situe dans une plage spécifiée,
- soit arrête des signaux dont la fréquence se trouve en dehors de cette plage.

Caractéristiques d'un filtre idéal

- Bande passante : fréquences pour laquelle le gain est 1
- Bande atténuée : fréquences pour laquelle le gain est 0

Fonction

Un filtre effectue une fonction de sélection de fréquence :

- o soit fait passer des signaux dont la fréquence se situe dans une plage spécifiée,
- soit arrête des signaux dont la fréquence se trouve en dehors de cette plage.

Caractéristiques d'un filtre idéal

- Bande passante : fréquences pour laquelle le gain est 1
- Bande atténuée : fréquences pour laquelle le gain est 0

Gabarit des filtres :

Fonction

Un filtre effectue une fonction de sélection de fréquence :

- o soit fait passer des signaux dont la fréquence se situe dans une plage spécifiée,
- soit arrête des signaux dont la fréquence se trouve en dehors de cette plage.

Caractéristiques d'un filtre idéal

- Bande passante : fréquences pour laquelle le gain est 1
- Bande atténuée : fréquences pour laquelle le gain est 0

Gabarit des filtres:

Filtre passe-bas

Fonction

Un filtre effectue une fonction de sélection de fréquence :

- o soit fait passer des signaux dont la fréquence se situe dans une plage spécifiée,
- soit arrête des signaux dont la fréquence se trouve en dehors de cette plage.

Caractéristiques d'un filtre idéal

- Bande passante : fréquences pour laquelle le gain est 1
- Bande atténuée : fréquences pour laquelle le gain est 0

Gabarit des filtres:

Filtre passe-haut

Fonction

Un filtre effectue une fonction de sélection de fréquence :

- soit fait passer des signaux dont la fréquence se situe dans une plage spécifiée,
- soit arrête des signaux dont la fréquence se trouve en dehors de cette plage.

Caractéristiques d'un filtre idéal

- Bande passante : fréquences pour laquelle le gain est 1
- Bande atténuée : fréquences pour laquelle le gain est 0

Gabarit des filtres:

Fonction

Un filtre effectue une fonction de sélection de fréquence :

- o soit fait passer des signaux dont la fréquence se situe dans une plage spécifiée,
- soit arrête des signaux dont la fréquence se trouve en dehors de cette plage.

Caractéristiques d'un filtre idéal

- Bande passante : fréquences pour laquelle le gain est 1
- Bande atténuée : fréquences pour laquelle le gain est 0

Gabarit des filtres :

Fonction

Un filtre effectue une fonction de sélection de fréquence :

- o soit fait passer des signaux dont la fréquence se situe dans une plage spécifiée,
- soit arrête des signaux dont la fréquence se trouve en dehors de cette plage.

Caractéristiques d'un filtre idéal

- Bande passante : fréquences pour laquelle le gain est 1
- Bande atténuée : fréquences pour laquelle le gain est 0

Gabarit des filtres :

N.B: L'ordre du filtre est déterminé par le nombre de capacités et/ou bobines dans le montage!

Méthode

- Étude du schéma
- 2 Étude de la fonction de transfert
- Tracé du diagramme de Bode

Filtres de 1er ordre

Filtre passe-bas (1/4)

On étudie le montage suivant :

Y a-t'il une contre-réaction ?

 \bullet Y a-t'il une contre-réaction ? oui (R_2 et C), donc l'AOP est en régime linéaire et :

$$V_+ = V_-$$

Y a-t'il une contre-réaction ? oui (R₂ et C), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

 $\bullet\;$ Que vaut Z_{eq} , c-à-d l'impédance équivalente à la mise en parallèle de R₂ et C ?

Y a-t'il une contre-réaction ? oui (R₂ et C), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

 \bullet Que vaut Z_{eq}, c-à-d l'impédance équivalente à la mise en parallèle de R_2 et C ?

$$Z_{eq} = R_2 / / Z_C = \frac{R_2 Z_C}{R_2 + Z_C} = \frac{R_2 \left(\frac{1}{j\omega C}\right)}{R_2 + \left(\frac{1}{j\omega C}\right)} = \frac{R_2}{1 + j\omega R_2 C}$$

 \bullet Y a-t'il une contre-réaction ? oui (R_2 et C), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

 $\bullet\;$ Que vaut Z_{eq} , c-à-d l'impédance équivalente à la mise en parallèle de R_2 et C ?

$$Z_{eq} = R_2 / / Z_C = \frac{R_2 Z_C}{R_2 + Z_C} = \frac{R_2 \left(\frac{1}{j\omega C}\right)}{R_2 + \left(\frac{1}{j\omega C}\right)} = \frac{R_2}{1 + j\omega R_2 C}$$

• Que vaut v_- en fonction de v_{in} , v_{out} , R_1 et Z_{eq} ?

Y a-t'il une contre-réaction ? oui (R₂ et C), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

 \bullet Que vaut Z_{eq} , c-à-d l'impédance équivalente à la mise en parallèle de R_2 et C ?

$$Z_{eq} = R_2 / / Z_C = \frac{R_2 Z_C}{R_2 + Z_C} = \frac{R_2 \left(\frac{1}{J\omega C}\right)}{R_2 + \left(\frac{1}{J\omega C}\right)} = \frac{R_2}{1 + j\omega R_2 C}$$

$$v_{-} = \frac{\frac{v_{in}}{R_1} + \frac{v_{out}}{Z_{eq}}}{\frac{1}{R_1} + \frac{1}{Z_{eq}}}$$

 \bullet Y a-t'il une contre-réaction ? oui (R_2 et C), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

 $\bullet\;$ Que vaut $Z_{eq},$ c-à-d l'impédance équivalente à la mise en parallèle de R_2 et C ?

$$Z_{eq} = R_2 / / Z_C = \frac{R_2 Z_C}{R_2 + Z_C} = \frac{R_2 \left(\frac{1}{j\omega C}\right)}{R_2 + \left(\frac{1}{j\omega C}\right)} = \frac{R_2}{1 + j\omega R_2 C}$$

$$v_{-} = \frac{\frac{v_{in}}{R_1} + \frac{v_{out}}{Z_{eq}}}{\frac{1}{R_1} + \frac{1}{Z_{eq}}}$$

Que vaut v₊ ?

 \bullet Y a-t'il une contre-réaction ? oui (R_2 et C), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

 \bullet Que vaut $Z_{\rm eq}$, c-à-d l'impédance équivalente à la mise en parallèle de R_2 et C ?

$$Z_{eq} = R_2 / / Z_C = \frac{R_2 Z_C}{R_2 + Z_C} = \frac{R_2 \left(\frac{1}{|\omega C}\right)}{R_2 + \left(\frac{1}{|\omega C}\right)} = \frac{R_2}{1 + j\omega R_2 C}$$

$$v_{-} = \frac{\frac{v_{in}}{R_1} + \frac{v_{out}}{Z_{eq}}}{\frac{1}{R_1} + \frac{1}{Z_{eq}}}$$

• Que vaut v_+ ? $v_+ = 0$, que vaut v_- ?

 \bullet Y a-t'il une contre-réaction ? oui (R_2 et C), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

 $\bullet\;$ Que vaut Z_{eq} , c-à-d l'impédance équivalente à la mise en parallèle de R_2 et C ?

$$Z_{eq} = R_2 / / Z_C = \frac{R_2 Z_C}{R_2 + Z_C} = \frac{R_2 \left(\frac{1}{j\omega C}\right)}{R_2 + \left(\frac{1}{j\omega C}\right)} = \frac{R_2}{1 + j\omega R_2 C}$$

$$v_{-} = \frac{\frac{v_{in}}{R_1} + \frac{v_{out}}{Z_{eq}}}{\frac{1}{R_1} + \frac{1}{Z_{eq}}}$$

• Que vaut v_+ ? $v_+ = 0$, que vaut v_- ? $v_- = 0$, donc

 \bullet Y a-t'il une contre-réaction ? oui (R_2 et C), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

• Que vaut $Z_{\rm eq}$, c-à-d l'impédance équivalente à la mise en parallèle de R_2 et C ?

$$Z_{eq} = R_2 / / Z_C = \frac{R_2 Z_C}{R_2 + Z_C} = \frac{R_2 \left(\frac{1}{j\omega C}\right)}{R_2 + \left(\frac{1}{j\omega C}\right)} = \frac{R_2}{1 + j\omega R_2 C}$$

$$v_{-} = \frac{\frac{v_{in}}{R_1} + \frac{v_{out}}{Z_{eq}}}{\frac{1}{R_1} + \frac{1}{Z_{eq}}}$$

• Que vaut v_+ ? $v_+ = 0$, que vaut v_- ? $v_- = 0$, donc

$$v_{-} = \frac{v_{in}}{R_{1}} + \frac{v_{out}}{Z_{eq}} = 0$$

 $\bullet\,$ Y a-t'il une contre-réaction ? oui (R_2 et C), donc l'AOP est en régime linéaire et :

$$V_{+} = V_{-}$$

 \bullet Que vaut Z_{eq} , c-à-d l'impédance équivalente à la mise en parallèle de R_2 et C ?

$$Z_{\text{eq}} = R_2 / / Z_{\text{C}} = \frac{R_2 Z_{\text{C}}}{R_2 + Z_{\text{C}}} = \frac{R_2 \left(\frac{1}{j\omega C}\right)}{R_2 + \left(\frac{1}{j\omega C}\right)} = \frac{R_2}{1 + j\omega R_2 C}$$

• Que vaut v_- en fonction de v_{in} , v_{out} , R_1 et Z_{eq} ?

$$v_{-} = \frac{\frac{v_{in}}{R_1} + \frac{v_{out}}{Z_{eq}}}{\frac{1}{R_1} + \frac{1}{Z_{eq}}}$$

• Que vaut v_+ ? $v_+ = 0$, que vaut v_- ? $v_- = 0$, donc

$$v_{-} = \frac{v_{in}}{R_{1}} + \frac{v_{out}}{Z_{eq}} = 0$$

Fonction de Transfert

$$H(j\omega) = \frac{v_{out}}{v_{in}} = -\frac{Z_{eq}}{R_1} = -\frac{R_2/R_1}{1+j\omega R_2 C}$$

Filtre passe-bas (3/4): Étude de la fonction de transfert

Fonction de Transfert

$$H(j\omega) = -\frac{R_2/R_1}{1+j\omega R_2 C}$$

Filtre passe-bas (3/4): Étude de la fonction de transfert

Fonction de Transfert

$$H(j\omega) = -\frac{R_2/R_1}{1 + j\omega R_2 C}$$

La fonction de transfert est de la forme :

$$H(j\omega) = -\frac{K}{1 + j\frac{\omega}{\omega_0}}$$

avec $K = R_2/R_1$ et $\omega_0 = \frac{1}{R_2C}$.

Filtre passe-bas (3/4): Étude de la fonction de transfert

Fonction de Transfert

$$H(j\omega) = -\frac{R_2/R_1}{1 + j\omega R_2 C}$$

La fonction de transfert est de la forme :

$$H(j\omega) = -\frac{K}{1 + j\frac{\omega}{\omega_0}}$$

avec $K = R_2/R_1$ et $\omega_0 = \frac{1}{R_2C}$. Or, nous pouvons définir :

$$H(j\omega) = -K \cdot \frac{1}{1 + j\frac{\omega}{\omega_0}} = H_1 \cdot H_2$$

Application numérique :

Si on prend : $R_1 = 6.8 \text{ k}\Omega$, $R_2 = 47 \text{ k}\Omega$, C = 30 nF,

Application numérique :

Si on prend : $R_1=6.8~k\Omega$, $R_2=47~k\Omega$, C=30~nF, alors :

• $\omega_0 \approx$

Application numérique :

Si on prend : $R_1=6.8~k\Omega$, $R_2=47~k\Omega$, C=30~nF, alors :

• $\omega_0 \approx$ 709 rad/s

Application numérique :

- $\omega_0 \approx 709 \, \mathrm{rad/s}$
- K ≈

Application numérique :

- $\omega_0 \approx$ 709 rad/s
- K ≈ 6.9

Application numérique :

- $\omega_0 \approx$ 709 rad/s
- K ≈ 6.9

Application numérique :

- $\omega_0 \approx$ 709 rad/s
- K ≈ 6.9

Application numérique :

- $\omega_0 \approx 709 \, \mathrm{rad/s}$
- K ≈ 6.9

Application numérique :

- $\omega_0 \approx 709 \text{ rad/s}$
- K ≈ 6.9

Application numérique :

- $\omega_0 \approx 709 \text{ rad/s}$
- K ≈ 6.9

Application numérique :

Si on prend : $R_1 = 6.8 \text{ k}\Omega$, $R_2 = 47 \text{ k}\Omega$, C = 30 nF, alors :

- $\omega_0 \approx$ 709 rad/s
- K ≈ 6.9

Application numérique :

- $\omega_0 \approx$ 709 rad/s
- K ≈ 6.9

Application numérique :

- $\omega_0 \approx$ 709 rad/s
- K ≈ 6.9

Filtre passe-haut (1/4)

On étudie le montage suivant :

Cette configuration concerne également un amplificateur inverseur dont la fonction de transfert est :

Cette configuration concerne également un amplificateur inverseur dont la fonction de transfert est :

$$\frac{v_{out}(j\omega)}{v_{in}(j\omega)} = -\frac{Z_2}{Z_{eo}}$$

Cette configuration concerne également un amplificateur inverseur dont la fonction de transfert est :

$$\frac{v_{out}(j\omega)}{v_{in}(j\omega)} = -\frac{Z_2}{Z_{eq}}$$

lci
$$Z_{\Theta Q}=R_1+Z_C=R_1+rac{1}{j\omega C}=rac{1+j\omega R_1\,C}{j\omega C}$$

Cette configuration concerne également un amplificateur inverseur dont la fonction de transfert est :

$$\frac{\textit{v}_{out}(\textit{j}\omega)}{\textit{v}_{in}(\textit{j}\omega)} = -\frac{\textit{Z}_2}{\textit{Z}_{eq}}$$

lci
$$Z_{\Theta Q}=R_1+Z_C=R_1+rac{1}{j\omega C}=rac{1+j\omega R_1\,C}{j\omega C}$$

Fonction de Transfert

$$H(j\omega) = \frac{v_{out}}{v_{in}} = -\frac{Z_2}{Z_{eq}} = -\frac{j\omega R_2 C}{1 + j\omega R_1 C}$$

Filtre passe-haut (3/4): Étude de la fonction de transfert

Fonction de Transfert

$$H(j\omega) = \frac{v_{out}}{v_{in}} = -\frac{Z_2}{Z_{eq}} = -\frac{j\omega R_2 C}{1 + j\omega R_1 C}$$

Filtre passe-haut (3/4): Étude de la fonction de transfert

Fonction de Transfert

$$H(j\omega) = \frac{V_{out}}{V_{in}} = -\frac{Z_2}{Z_{eq}} = -\frac{j\omega R_2 C}{1 + j\omega R_1 C}$$

On s'intéresse au cas pour lequel $R_1=R_2=R$. La fonction de transfert est de la forme :

Filtre passe-haut (3/4): Étude de la fonction de transfert

Fonction de Transfert

$$H(j\omega) = \frac{v_{out}}{v_{in}} = -\frac{Z_2}{Z_{eq}} = -\frac{j\omega R_2 C}{1 + j\omega R_1 C}$$

On s'intéresse au cas pour lequel $R_1 = R_2 = R$. La fonction de transfert est de la forme :

$$H(j\omega) = -\frac{j\frac{\omega}{\omega_0}}{1 + j\frac{\omega}{\omega_0}}$$

avec $\omega_0 = \frac{1}{RC}$. Or, nous pouvons définir :

$$H(j\omega) = -j\frac{\omega}{\omega_0} \cdot \frac{1}{1 + j\frac{\omega}{\omega_0}} = H_1 \cdot H_2$$

Application numérique :

Si on prend : $R=10~k\Omega$ et C=2,2~nF, alors $\omega_0\approx$

Application numérique :

Application numérique :

