Homework #1: Finite Analysis

ELEN E6880: RMT with Applications

- 1. Let **H** be a 2×2 Gaussian matrix with i.i.d. $h_{ij} \sim \mathcal{N}(0,1)$ entries and $\mathbf{W} \triangleq \mathbf{H}\mathbf{H}^T$ be a Wishart matrix.
 - (a) Explicitly write the joint distribution of the entries of the matrix **H**.

Let $\mathbf{H} \triangleq \mathbf{L}\mathbf{Q}$, where \mathbf{L} is a 2×2 lower-triangular matrix and \mathbf{Q} is a 2×2 orthogonal matrix.

(b) Compute the Jacobian of the transformation $\mathbf{H} \mapsto (L, Q)$ and use it for writing down the joint distribution of \mathbf{L} and \mathbf{Q} . **Hint:** You may assume that \mathbf{L} and \mathbf{Q} are of the form:

$$\mathbf{L} = \left(\begin{array}{cc} a & 0 \\ b & c \end{array} \right)$$

and that

$$\mathbf{Q} = \begin{pmatrix} \cos(u) & \sin(u) \\ -\sin(u) & \cos(u) \end{pmatrix},$$

where $a, c \geq 0, b \in \mathbb{R}$ and $u \in [0, 2\pi]$.

From the LQ decomposition, we obtain $\mathbf{W} = \mathbf{H}\mathbf{H}^T = \mathbf{L}\mathbf{L}^T$.

- (c) Compute the Jacobian of the transformation $L \mapsto W$ and infer the joint distribution of the entries of W.
- 2. Let **H** be an $n \times n$ complex matrix with i.i.d. $h_{ij} \sim \mathcal{CN}(0,1)$ entries and **Q** be an $n \times n$ deterministic and positive semi-definite matrix. We would like to determine the joint distribution of the eigenvalues of the $n \times n$ matrix $\mathbf{W} \triangleq \mathbf{HQH}^H$.
 - (a) Show that W is positive semi-definite.

- (b) Let $\mathbf{M} \triangleq \operatorname{diag}(\mu_1, \dots, \mu_n)$, where μ_1, \dots, μ_n are the positive eigenvalues of \mathbf{Q} . Show that \mathbf{W} and $\mathbf{H}\mathbf{M}\mathbf{H}^H$ have the same distribution.
 - **Hint:** Recall \mathbf{H} and $\mathbf{H}\mathbf{V}$ have the same distribution for any unitary matrix \mathbf{V} .
- (c) Compute the joint distribution of the entries of $\tilde{\mathbf{H}} \triangleq \mathbf{H}\mathbf{M}^{1/2}$. **Hint:** $\mathbf{M}^{1/2} = \operatorname{diag}(\sqrt{\mu_1}, \dots, \sqrt{\mu_n})$.
- (d) Compute the joint distribution of the entries of the matrix $\tilde{\mathbf{W}} \triangleq \tilde{\mathbf{H}}^H \tilde{\mathbf{H}}$.
 - **Hint:** Recall the Jacobian of $\tilde{\mathbf{H}} \mapsto \tilde{\mathbf{W}}$ is a constant.
- (e) What can you say about the joint eigenvalue distributions of the matrices \mathbf{W} and $\tilde{\mathbf{W}}$?
- 3. Prove the Kernel Lemma's properties (b) and (c) ((a) is obvious) based on the orthogonality relations of the Laguerre polynomials¹.

¹For solving this you may need to wait to the class about the marginal eigenvalue distribution of Wishart random matrices.