Appl. No. 10/675,936; filed September 30, 2003 Amendment Dated November 5, 2007 Reply to Office Action Dated May 3, 2007 Attachment A, pages 1 - 9

Atty. Docket BSA 02-29 Confirmation No. 2367

ATTACHMENT A

EMD: All Categories / Novagen / Competent Cells/Media / Strains for Protein Expression / T7 Expression Host Strain Compet... Page 1 of 2

Products

Technical Resources

Literature

Ordering

Contact Us.

Product Keyword(s)

Product Category

Categories contain either sub-categories or products. The (icon will display a description about the category (not all categories have descriptions). The category name hyperlink will display more sub-categories or products for that category. When products are displayed, click on the catalog number hyperlink to view the products detail page.

All Categories - Novagen - Competent Cells/Media - Strains for Protein Expression - T7 Expression - Host Strain Competent Cells

Cat. No.	Product Name	Brand
69041	B834(DE3) Competent Cells	Novagen
69042	B834(DE3)pLysS Competent Cells	Novagen
69450	BL21(DE3) Competent Cells	Novagen
69451	BL21(DE3)pLysS Competent Cells	Novagen
69053	BLR(DE3) Competent Cells	Novagen
6995 6	BLR(DE3)pLysS Competent Cells	Novagen
69453	HMS174(DE3) Competent Cells	Novagen
69454	HMS174(DE3)pLysS Competent Cells	Novagen
69284	NovaBlue(DE3) Competent Cells	Novagen
71345	Origami™ 2(DE3) Competent Cells	Novagen
71346	Origami™ 2(DE3)pLysS Competent Cells	Novagen
70837	Origami TM B(DE3) Competent Cells	Novagen
70839	Origami™ B(DE3)pLysS Competent Cells	Novagen
70627	Origami™(DE3) Competent Cells	Novagen
71397	Rosetta™ 2(DE3) Competent Cells	Novagen
71403	Rosetta™ 2(DE3)pLysS Competent Cells	Novagen
70954	Rosetta™(DE3) Competent Cells	Novagen
70956	Rosetta™(DE3)pLysS Competent Cells	Novagen
71351	Rosetta-gami™ 2(DE3) Competent Cells *	Novagen
71352	Rosetta-gami™ 2(DE3)pLysS Competent Cells	Novagen
71136	Rosetta-gami B(DE3) Competent Cells	Novagen
71137	Rosetta-gami B(DE3)pLysS Competent Cells	Novagen
71055	Rosetta-gami™(DE3) Competent Cells	Novagen
71057	Rosetta-gami™(DE3)pLysS Competent Cells	Novagen
71059	RosettaBlue™(DE3) Competent Calls	Novagen
71034	RosettaBlue™(DE3)pLysS Competent Cells	Novagen
70623	Tuner™(DE3) Competent Cells	Novagen
70624	Tuner™(DE3)pLysS Competent Cells	Novagen
	그는 그는 이렇게 하는 경기 한 남은 모든 사회를 보고 있다면 나를 보고 있다면 내용하다는 것이 되었다.	•

Comparative information for competent cells

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1									-
我们的"我们"。"我们"的"我们"。						Ebservatile	$\tau : \Gamma : = \Gamma$		tarri.
Screens	Č.	1	Efficiency			1 m	Cas		
Routine Cloning				44000					
One Shor OmniMAX" T1 Phage-Resistant •	C8520-03	20 x 50 pl	> 5 x 10°						
One Shor* TOP10	Control of the Contro	10 x 50 pl	>1 x 10°						
One Shor* TOP10	C4040-03	20 x 50 µl	>1 x 10'						
One Short TOP10	C4040-06	40 x 50 ul	>1 x 10°						
One Shor* MAX Efficiency* DH10B* T\ Phage-Resistant *	12331-013	20 x 50 µl	>1 x 10 ⁴		•				
One Shor* MAX Efficiency* DH5a* T1 Phage-Resistant *	12297-016	-20 x 50 μl	>1 x 10*	•	•		_		-
MAX Efficiency* DH10B*	18297-010	5 x 200 µl	>1 × 10°			•	•		M -
MAX Efficiency* DH50* T1 Phage-Resistant *	12034-013	5 x 200 µl	>1 × 10°	•		0	ш.,		
MAX Efficiency* DH5α*,	18258-012	5 x 200 pl	>1 x 10'	•	•		-		-
One Shot* TOP10F	C3030-03	20 x 50 µl	>1.x.10°		10	•			-
One Shor* TOP10F*	C3030-06		>,1 x 10°		٠	•			-
One Shor* T@P10/P3 /	C5050-03	K Salapan walii lani	**************************************	•		•			
One Shor" INVoF	G2020-03	Madady fight bellied by and	>1 x (0"		•	٠			-
One Shor" INVal"	C2020-06		>1.x.10°	•					
Library Efficiency" DH5c."	and the second second	5 x 200 µl	>1 x 10*			•			
Subcloning Efficiency" DH5a"	18205-017	Recommended to the second	51 x 10						7
MC1061/P4 Ultracomp* 1	C663-03	5 x 300 pt	+1.8.10		-	_		_	
Fast Growth									
	C8620-03	exerción amportantes	> 1 × 101	•		•			
Mültislior" StrinWell Macht" (1) Phoge Resistants	C8696-01	1 plate	>12.10			•			
High-Throughput Cloning		la Julian							
MultiShot" StripWell OmniMAX" F1 Phage-Resistant #	C8595-01	I plate	>1 x 10°			111*	reconstruction		
MultiShot" StripWell Macht" T1 Phage Resistant	-C8696-01	1 plate	>1 x 10*						
Recombinant Protein Expression		e Lucia Reservi. El Turboyio				es de Marie et 279			
3L21-A1" One Shor	C6070-03	20 x 50 ml	>1 x 10*						
3L21 Star*(DE3) One Shor*	C6010-03	20 x 50 ul	>1 x 10*				double.		
3L21 Star*(DE3)pLysS One Shor*	C6020-03	20 x 50 ul	>1 x 10*			uina.			
Dae Shar* BL21 (DE3)	C6000-03	20 x 50 µl	> 1 x 10*	y) Yan 1992
One Shor* BL21(DE3)pLysS	C6060-10	10 x 50 jil	>1 × 10*		-euser		- comm	,	
One Shor* BL21 (DE3)pLysS	C6060-03	20 x 50 µl	>1 x 10°			ue.			-
Die Shar* BLZI (DE3)pLysE	C6565-03	20 x 50 pl	>1 x 10'	.ee.c	ower.		****	11 11 / 4004	
MAX Efficiency* DH5aR1Q*	18288-019	5-x 200 µl	>1 x 10"			8 b			
DNA or Genomic Library Construction Using Chemically Competent Cells									
ren kan Califfre (Marie Company) and also a 1800 and a sale of the plant of the basis is also believed the basis A company of the first and the property of the		20 x 50 ut							
One Shor* OmniMAX* T1 Phage Resistant *	C8520-U3		>5 x 10°						

a tonA confers resistance to T1 and T5 phages in Requires IPTG for blue/white screening c maxB, mrr

d GeneHogs* have been qualified with both a 7 kb and 150 kb e see www.hrvitrogen.com/gateway for more information BAC construct. Designed for cloning large constructs, BACs and PACs • Transformants/ug pUC19 DNA

Bacterial Protein Expression & Analysis

+ How do you solve protein expression problems?

GENILE, EFFECTIVE

QUANTIFY SOLUBLE

E. coli Hosts That Overcome Expression Problems

E. coli expression systems are often your first choice because they are fast, simple, and provide extremely high yields. However, sometimes E. coli expression fails. To solve this problem, we offer innovative competent cells that dramatically improve E. coli as an expression host.

BL21-CodonPlus* Cells

Recombinant protein expression in *E. coli* can be difficult because codons that are rare in *E. coli* may be used more frequently by other organisms. Common symptoms of this problem – called codon bias – include low or nonexistent protein synthesis, early termination, and misincorporation of amino acids in the expressed protein. To solve this problem, we created the BL21-CodonPlus® RIPL strain^{2,3,4} which contains extra copies of the *E. coli argU, ileY, leuW* and *proL* tRNA genes. These strains can be used to overcome expression problems from both AT- and GC-rich genomes (Figure 4). The original BL21-CodonPlus-RIL and -RP strains are optimized for AT- and GC-rich genomes respectively.

BL21-Gold Expression and Cloning Strain Saves Time

When codon bias is not a concern, we recommend cloning directly in the BL21-Gold strain. This strain lacks the EndA I nuclease, an enzyme that rapidly degrades miniprep DNA. Cloning directly in the BL21-Gold strain saves you two days of work which would otherwise be spent on sub-cloning procedures in another *endA*- strain (Figure 5). This strain also carries the Hte phenotype increasing the transformation efficiency 100-fold over the parental BL21 strain.

Figure 4 SUPERIOR EXPRESSION OF GENOMES WITH COXXII BIAS

We expressed three genes whose expression is depundent on the expression of rare codors in either BL21(DE3) cells or BL21-CodonPlus* (DE3)-RIPL competent cells. BL21-CodonPlus* (DE3)-RIPL cells diamatically improve expression of proteins by overcoming codon blas compared to parental BL21(DE3) cells.

Figure 5 DIRECT CLONING IN BL21-GOLD CELLS SAVES TWO DAYS

H-TERMINAL SOP-SET-Q EXPRESSION SYSTEM	$\odot \odot \odot$	20 µg pBEn-SBP-SET1-Q in 3 reading frames	240167
		20 µg pBEn-SBP-SET2-Q in 3 reading frames 20 µg pBEn-SBP-SET3-Q in 3 reading frames 10 x 0.1 ml BL21-Gold (DE3) LacZ- competent cells 1.25 ml streptavidin resin 100 assays Q-tag detection reagents	ZHMAGE
C-TERMINAL SEP-SET-Q EXPRESSION SYSTEM	000	20 µg pBEc-SBP-SET1-Q 20 µg pBEc-SBP-SET2-Q 20 µg pBEc-SBP-SET3-Q 10 x 0.1 ml BL21-Gold (DE3) LacZ- competent cells 1.25 ml streptavidin resin 100 assays Q-tag detection reagents	240179
N-TERMINAL SBP-SET-Q VECTOR SET	തത ം	20 µg pBEn-SBP-SET1-Q in 3 reading frames 20 µg pBEn-SBP-SET2-Q in 3 reading frames 20 µg pBEn-SBP-SET3-Q in 3 reading frames	240166
C-TERMINAL SBP-SET-Q VECTOR SET		20 µg pBEc-SBP-SET1-Q 20 µg pBEc-SBP-SET2-Q 20 µg pBEc-SBP-SET3-Q	240178
Purification and Detection Reagents			
STREPTAVIDIN RESIN		1.25 ml	240105
VARIFLEX" Q-TAG DETECTION REAGENTS		100 assays	240186
VARIFLEX BL21-GOLD LACZ- COMPETENT CELLS		10 x 0.1 ml	230135
Expression Hosts			
BL21-CODONPLUS* (DE3)-RIPL COMPETENT CELLS		10 x 0.1 ml	230280
BL21-CODONPLUS* RIL COMPETENT CELLS	errorrerrorrerrorrerrorrerrorrerrorrerrorrerrorrerrorrerrorrerrorrerrorrerrorrerrorrerrorrerrorrerrorrerrorrer	10 x 0.1 ml	230240
BL21-CODONPLUS* RP COMPETENT CELLS		10 x 0,1 mi	230250
BL21-CODONPLUS" (DE3)-RIL COMPETENT CELLS	U CALIFICATION AND AND AND AND AND AND AND AND AND AN	10 x 0.1 ml	230245
BLZ1-GOLD CELLS	······································	10 x 0.1 mi	230130
BL21-GOLD (DE3) CELLS	***************************************	10 x 0.1 mt	230132
BL21-GOLD (DE3) plyss CELLS		10 x 0.1 ml	230134
Mutagenesis Kits			
QUIKCHANGE* II SITE-DIRECTED MUTAGENESIS KIT		10 reactions	200523
QUINCHANGE" II SITE-DIRECTED MUTAGENESIS KIT	·	30 reactions	200524
QUINCHANGE" II XL SITE-DIRECTED MUTAGENESIS KIT		10 reactions	200521
QUINCHANGE" II XL SITE-DIRECTED MUTAGENESIS KIT		30 reactions	200522
QUINCHANGE" MULTI SITE-DIRECTED MUTAGENESIS KIT		Academic Version, 30 reactions	200514
QUIKCHANGE" MULTI SITE-DIRECTED MUTAGENES(S KIT		Commercial Version, 30 reactions	200513
Prolein Expression Tools			
STRATASCRIPT" FIRST STRAND CONA SYNTHESIS KIT		50 reactions	200420
STRATASCRIPT" ONE-TUBE RT-PCR SYSTEM	,	50 reactions	600168
STRATASCRIPT" TWO-TUBE RT-PCR SYSTEM		50 reactions	600170
STRATACLEAN RESIN		3 ml	400714
STRATACLEAN" RESIN	m.eigenisiooniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	9 ml	400715

LEGAL LANGUAGE

1: U.S. Patent No. 4,952,495. For academic or non-profit laboratories, an assurance fether accompanies the sale of the products. For commercial laboratories, a research use license agreement must be animed into prior to purchase of the products.

- 3. Purchase of this product is accompanied by a limited use ficense to use the product as a reagent for research purposes.
 IP Principuse Intends to use the product outside the scope of the license, he needs to enter into a Exercise Agreement with f. Hottmann-La Roche Ltd, Gentracturotresse 124, 4070 Basel, Switzerland or Hottmann-La Roche Inc.
- 4. U.S. Petent No. 6,706,525
- 5: U.S. Pittent Nex. 6,713,285, 6,391,548, 5,789,166 and 5,932,419 and patents pensing
- 6-1).5. Patent Nos. 6,489,150, 6,444,428, 6,379,553, 6,333,165, 6,183,997, 5,948,663, 5,866,395, 5,556,772, 5,545,557 and interits pending
- 7: U.S. Patent Nos. 6,706,526, 5,707,841 and 5,512,468 and patents panding and equivalent foreign palents

S. Patents Peorling
Use of the BuildChange® Multi Site-Directed Mutagenesis Kit, catalog # 200514, by commercial entities requires a compercial license from Strategene. The BuildChange® Multi Site-Directed Mutagenesis Kit, catalog # 200513, is offered for sale to commercial entities with a limited use license.

- 9. Purchate of these products is accompanied by a locating to use them in the Polymerase Claim Reaction (PCR) process in conjunction with a thermal cycler whose use in the automated performance of the PCR process is covered by the up-front license fee, aither by payment to Applied Staysteria or as suinchased, i.e., as authorized thermal cycles. 10: Patents Pending
- 11: Use of these products for certain applications may require ticenses from third parties in certain countries.
- 12: U.S. Palent No. 4,923,978

A NEW ENGLAND BioLabs:.. CONTACT NEB ABOUTUS To access your account, log in or register.

shopping cart | log in

PRODUCTS

TECHNICAL REFERENCE CUSTOMER MY NEB SERVICE ACCOUNT

SMAICH

SITE WAP

UNTERNATIONAL ORDERS LITERATURE REQUEST

FREEZIR PROGRAM

frome > Products > Competent Cells

RELATED INFORMATION

- * New Products
- * Unit Size Increases
- * FAQs for Competent Cells
- * Technical Reference for Competent Celis

FAVORITE TOOLS

- * Enzyme Finder
- * NEBcutter
- ★ NEBuffer Chart
- * Double Digest Finder
- * Isoschizomers
- DNA Sequences
- * REBASE

Competent Cells

E. coli Cloning Strains dam /dcm* Competent E. coli NEB 10-beta Competent E. coli (High Efficiency)

NEB 10-beta Electrocompetent E. coll NEB 5-alpha Competent E. coli (High ' Efficiency)

NEB 5-alpha Competent E. coll (Subcloning Efficiency)

NEB 5-alpha Electrocompetent E. coli NEB 5-alpha F' Jo Competent E. call (High Efficiency)

NES Turbo Competent E. coll (High Efficiency)

NEB Turbo Electrocompetent E. coli

K.lactis Strains

K. lactis GG799 Competent Cells

E. coli Protein Expression Strains

NEB Express I⁴ Competent E. coll (High Efficiency) NEB Express Competent E. coll (High Efficiency)

T7 Express I^Q Competent E. coll (High Efficiency)

T7 Express lysY/I[®] Competent E. coli (High Efficiency) T7 Express lysY Competent E. coli (High Efficiency)

17 Express Competent E. coll (High Efficiency)

T7 Express Crystal Competent E. coll (High Efficiency)

17 Express High Efficiency Sampler

Special Offer

Phusion** Sire-Directed Mutagenesis Kit with NEB Turbo Competent E. coll

SPECIAL OFFERS

Privacy, Limitations, Warranty, Disclaimer, Copyright and Trademark

New England Biolabs, Inc. Tel: 800-632-5227 (orders) Tel: 800-632-7799 (support) Fax: 978-921-1350 info@neb.com

Competent Cells from NEB

NEB is pleased to offer several strains of optimized electrocompetent and chemically competent cells for cloning and protein expression.

Goning Strains

NEB 5-alpha is a high efficiency derivative of DH5o, the industry standard cloning strain, it is also offered in a lac/e version for the cloning of toxic genes. NEB Turbo brings unmatchable speed to your transformations with visible colonies after just 6.5 hours. Other cloning strains include NEB 10-beta, a derivative of DH10B, an excellent strain for transforming large plasmids and BACs, as well as dam/dcm, a strain for dam and dcm methylation free plasmid growth.

Proteia Expression Strains

Try our protein expression strains for an extra level of confidence. NEB Express is an enhanced BL21 derivative available with or without the added control of IPTG induced expression of non-T7 plasmids from laci*, Several NEB strains feature the lysy gene for exceptional control of expression. LysY is a variant of T7 lysozyme lacking amidase activity making the cells less susceptible to lysis during induction, while retaining the ability to inhibit T7 RNA polymerase. Basal expression of the target gene is minimized without inhibiting IPTG-induced expression. LysY is encoded on a single-copy miniF plasmid that does not require antibiotic selection for propagation. T7 Express (an enhanced derivative of BL21, (DE3)) is available with or without the added control of lacle, and both versions can be purchased with or without the lysY feature. T7 Express lysY/l" provides the highest level of uninduced control. T7 Express Crystal is a met8 strain optimized for crystallographic experiments.

Dogyanikai Foanais

For your convenience, we offer all of these strains in two formats; 20 single-use transformation tubes or 6 tubes containing 200 µl each. Both formats are supplied with SOC outgrowth media and a pUC19 plasmid control. The most popular cloning strain, NEB 5-alpha is offered at a subcloning efficiency for substantial value. NEB 5-alpha, NEB 10-beta and NEB Turbo are also available in electrocompetent formats. See www.neb.com for protocols and tips on enhancing transformation efficiencies.

Advantages

- Extremely high efficiencies
- ↑ T1 phage resistance (fhuA2)
- Outgrowth media and control plasmid included
- A variety of convenient formats including single-use transformation tubes and, on request, 96 well formats
- Quality assurance NEB scientists have been using these strains in house for over 20 years
- Bulk sales capabilities with custom packaging formats
- Free of animal products

Strain Sciention Chart

Fastest Growth - Colonies Visible After 6.5 Hours	NEB Turbo Competent E. coll*
Versatile Cloning	NEB 5-alpha Competent E.coll*
Cloning of Toxic Genes	NEB 5-alpha F [*] /* Compatent <i>E. coll</i>
Clonlog of Large Plasmids and BACs	NEB 10-beta Competent E. coli*
Growth of Unmethylated Plasmids	dam/ntcm Competent E. coli
Most Popular Non-T7 Expression Strain	NER Express Competent E. coli
Control of IPTG Induced Expression	NEB Express & Competent & coli
Most Popular 17 Expression Strain	T7 Express Competent E. coll
Reduced Basal Expression	T7 Express / Competent E.coli
Tight Control of Protein Expression by Inhibition of T7 ANA Polymorase	T7 Express lysY Competent E. call
Highest Level of Expression Control	T7 Express lysY/# Competent E. coli
For Crystallography Experiments/SeMet Labeling	T7 Express Crystal Competent E.coli

DH5\(\alpha\) and DH1\(\OB\) are trademarks of invitrogen Corporation.

Competent Cells (10/11/07)

(See other side)

Competent Cells from NEB (continued)

Strain Properties Table

	172	e e	100		di en							
Transformation Efficiency (clu/jig)*	1-3 x 10°	1-3×10°	1-3×10*	1-3×10*	1-3×10*	0.6-1×10*	0.5-1 x 10*	0.6-1 x 10 ¹	0.6-1 x 10*	0.6-1 × 10*	0.6-1 x 10*	0.6-1 x 10°
Strain	K)2	K12	K12	K15	K12	8	8-	.	1.0	8	8	B
T1 Phage Resistant	7	7			7			1	7	7	. 7	1
Bioa/White Screening				,					Tagazatu			
ladi"	//	4	1		7		1				7	
bsy	-	***	7	-	-	- 1 - 1				1	7	
Colonies Visible aher 6.5 hours	7		1.5									
Endonuclease I Deficient	7	7	7	7	7			7	· /	1	1	1
Protesse Deficient	7								7	· 7		7
Eukaryotic DNA Cloning		312	4.2	1	2.	,	4		7		•	•
M13 Prage Capable (F1)	1				<i>4</i>				-			
FlecA Colicient	- 1	7	1	7		•			- 100 A	7		

^{*}Transformation Efficiencies given are for high efficiency chemically competent strains. TE for electrocompetent strains is 1-4 x 10% chulpg.

	n Scotter of		

NEB Turbo Competent E. coli Fastest growth – colonies visible after 6.5 hours NEB Turbo Competent E. coli (High Efficiency)	NEB 5-alpha Competent E. coll Versatile cloning strain NEB 5-alpha Competent E. coll (High Efficiency)	dam/dem Competent E. cali Grow plasmids free of dam and methylation
C2984H 20 tubes x 0.05 ml \$215.00 C2984I 6 tubes x 0.2 ml \$165.00	C2987H 20 tubes x 0.05 ml \$160.00 C2987I 6 tubes x 0.2 ml \$125.00	dam /dcm Competent E. coli C2925H 20 tubes x 0.05 ml
NEB Turbo Electrocompetent <i>E. coli.</i> C2986K 6 tubes x 0.1 ml\$200.00	NEB 5-alpha Competent E. coli (Subcloning Efficiency) C2988J 6 tubes x 0.4 ml\$55.00	C2925I 6 tubes x 0.2 ml
NEB 18-beta Competent E. cali Clone large plasmids and BACs NEB 10-beta Competent E. cali (High Efficiency)	NEB 5-alpha Electrocompetent <i>E. coli</i> C2989K 6 tubes x 0.1 ml \$150.00	SOC Outgrowth Medium 89020S 100 ml
C3019H 20 tubes x 0.05 ml, \$170.00 C3019I 6 tubes x 0.2 ml \$130.00	NEB 5-alpha F* /* Competent E. coll Clane taxic genes	
NEB 10-beta Electrocompetent <i>E. voll</i> C3020K 6 tubes x 0.1 ml \$160.00	NEB 5-alpha F* /* Competent E. coli (High Efficiency) C2992H 20 tubes × 0.05 ml\$160.00 C2992I 6 tubes × 0.2 ml\$125.00	
Frotein Experimention		and the second hards to be a second second
NEB Express Competent E. coli	T7 Express /* Competent E. coli	T7 Express High Efficiency Sam

	dar expression strain
NEB Expre	ss Competent <i>E. coli</i>
(High Effic	iency)
C2523H	20 tubes x 0.05 ml \$160.00
C25231	6 tubes x 0.2 ml \$125.00
aren éssasa	an te Communicant P and

NEB Express & Competent E. coli Control of IPTG-induced protein expression

MED EVANO	99 i. comhaic	HE C. CON	
(High Effic	iency)		
C3037H	20 tubes x	0.05 ml	\$160.0
C30371	6 tribes		\$125.0

T7 Express Competent E. coli Most popular T7 expression strain

T7 Express	Competent E. coli (High Efficiency)
C2566H	20 tubes x 0.05 ml\$160.00
C2566I	6 tubes x 0.2 ml\$125.00

Reduced basal expression

T7 Express	F Competent E. cali
(High Effic	(ency)
C3016H	20 tubes x 0.05 ml \$150.0
C3016I	6 tubes x 0.2 ml \$125,0

T7 Express lysY Competent E. coll Tight control by inhibition of T7 RNA Pol-

c expres	s lys i competent z. con
(High Effic	iency)
C3010H	20 tubes x 0.05 ml\$160.00
G3010I	6 tubes x 0.2 ml \$125.00

T7 Express /ysY/F Competent E. coli

ruguesi iei	ei ni expression comori	
T7 Express	lysY/f Competent E. col	ij
(High Effic	ency)	
C3013H	20 tubes x 0.05 ml	\$160.0
C20131	6 tubes v ft 2 ml	\$105 6

lam and dcm

uam cuom	compagnic c. con	1
C2925H	20 tubes x 0.05	ml\$200.00
C29251		ml\$155.00

SOC Outgrowth Medium) i	
890208	100 ml	\$55.0

T7 Express High Efficiency Sampler Try each of our four T7 Express strains T7 Express High Efficiency Sampler C3009l 8 tubes x 0.2 ml\$175.00

T7 Express Crystal Competent E. coli For crystallography experiments

T7 Express	Crystal Competent E. coli	
(High Effic	iency)	
C3022H	20 tubes x 0.05 ml	\$200.00
C30221	6 tubes x 0.2 ml	\$155.00

www.neb.com 800-632-5227

Catalogue data sheet of Escherichia coli CIP 107305 [Help]

Escherichia coli (Migula 1895) Castellani and Chalmers 1919 Validation or notification list: 1980, 30, 296 Pathogenicity group: 2

107305

- ← 2001, A.P. Pugsley, Inst. Pasteur, Paris, France: strain BL21 (lambda DE3)
- Genotype: F- ompT (Ion) hsdSB(rB- MB-)
 Contains DE3, a lambda prophage carrying the T7 RNA polymerase gene under control of plac
- Methods in Enzymology, 1990, 185, 60-89.
- Medium: 72, 30°C. Aerobic.

View the sequences, pictures, associated with this item.

close Print

Appl. No. 10/675,936; filed September 30, 2003 Amendment Dated November 5, 2007 Reply to Office Action Dated May 3, 2007 Attachment B, pages 1 - 12 Atty. Docket BSA 02-29 Confirmation No. 2367

ATTACHMENT B

Novagen

Competent Cells

What a difference a strain makes

EMD Biosciences

entare read a majorica en la Novace.

Inactive proteins?

Express active folded proteins with disulfide bonds in *E. coli.*

Codon bias?

Express mammalian proteins more efficiently in *E. coli* without tedious codon optimization. Use a bacterial host system that supplies 7 rare codon tRNAs.

insoluble protein?

Fine tune your expression levels to avoid aggregation.

What a difference a strain makes!

Novagen competent cells embody the widest selection available for protein expression and offer fundamental strains for cloning applications. We verify the phenotype and purity of each strain and guarantee its transformation efficiency. To meet your needs for maximized yield and activity of target proteins, we offer expression strains that allow stringent control over basal expression levels, enable disulfide bond formation in the cytoplasm, and alleviate codon usage incompatibilities. Chemically competent NovaBlue strains are an excellent choice for routine cloning. For cloning applications that require highest transformation efficiencies, our electrocompetent cell strains have a genotype optimized to construct large, complex libraries. See for yourself what a difference a strain makes!

Fernas Determine Valor Jest Comozsialier

Three factors influence protein expression, the expression vector, host cell, and growth/induction conditions. Changing one or more of these factors can dramatically influence expression levels and target protein solubility.

Vector-Host Relationship

Any number of systems may be suitable for expression of analytical amounts of some proteins for screening, yet only one combination of vector, host strain, and culture conditions may work best for other proteins, for activity assays, and for larger-scale production. If you need a high yield of active protein, it is worth testing a matrix of vector, host, and culture conditions to find the optimal result. To do this, it helps to know more about the target protein and also to empirically determine expression optima by using Novagen competent cell sets, Quarters³⁴ Competent Cells and QuarterPack³⁶ Competent Cell Arrays.

Vector-Host Compatibility

You can use Novagen host strains with many different expression vectors, as long as the plasmid replicon and antiblotic-resistance markers are distinct from corresponding elements carried by the host.

From Expolating Gride

Symptom	Possible Problem	Solution	Suggested Host
No protein Truncated protein	E coll codon usage (codon blas)	Supply rare IRNAs	Rosetta** Rosetta 2 Rosetta-gami** 2 Rosetta-gami B RosettaBine
Insoluble protein	Reduction of disulfide bonds	Minimize reduction in cyloplasm	Origami** 2 Rosetta-gami 2 Rosetta-gami B
trootspic protein	Tao much expression	Attenuate expression (titrate IPTG)	Tuner!* Rosetta-gami B
		Minimize reduction in cytoplasm	Origami**.2 Rosetta-gami 2 Rosetta-gami B
No activity	Misfolded protein	Attenuate expression (titrate IPTG)	Tuner Rosetta-gami B
Cell death	Taxic protein	More stringent control over hasal expression	pLysS hosts
Na calonies	High basal expression	More stringent control over basal expression	plys5 hesis

Orders

Phone Fax

ne 800 526 7319 866 642 0301

Web

www.emdbiosciences.com/novagen

Novagen . Competent Cells

Expression

A variety of expression hosts

Expression host strains in many different versions can be used with a variety of protein expression systems. For production of protein from target genes cloned in T7 expression vectors, lysogens of λ DE3 carry a chromosomal copy of the T7 RNA polymerase gene under the control of the *lacUV5* promoter. Look for a strain having a pLysS designation; these hosts carry a plasmid that encodes T7 lysozyme, a natural inhibitor of T7 RNA polymerase. Use these strains to suppress basal expression of T7 RNA polymerase before induction, and thereby, stabilize recombinants in pET, pRSF, and pCDF and pCOLA vectors, which encode target proteins that affect cell growth and viability. For expression from *E. coli* promoters such as *tac*, *lac*, *trc*, and p_{Lr} or for T7-based expression by infection with λ CE6, versions of these host strains that lack T7 RNA Polymerase also are available.

BL21-still the gold standard

For routine protein expression, BL21 is an ideal starting point. First commercialized in 1990, the Novagen BL21 strain has remained the gold standard among expression hosts ever since. BL21 and its derivatives are deficient in both lon and ompT proteases (1). The parental strain, B834 is a methionine auxotroph that allows high specific activity labeling of target proteins with 35S-methionine or selenomethionine for crystallography studies (2). BLR, the recA derivative of BL21, may help stabilize target plasmids containing repetitive sequences or whose products may cause the loss of the DE3 prophage (3, 4). Tuner , the lacZY deletion mutant of BL21, enables adjustable levels of protein expression throughout all cells in a culture. Its lac permease (lacY) mutation allows uniform entry of IPTG into all cells in the population, which produces a concentrationdependent, homogeneous level of induction. By adjusting the IPTG concentration, expression can be regulated from very low levels up to robust, fully induced levels commonly associated with pET hosts. Lower level expression may enhance the solubility and activity of difficult target proteins.

Technical Support

Phone 800 207 0144

E-mail novagen@emdbiosciences.com

Seven rare tRNAs

Rosetta™ and Rosetta 2 host strains are BL21 derivatives designed to enhance the expression of eukaryotic proteins that contain codons rarely used in E. coli. By supplying these rare tRNAs, the Rosetta strains provide for "universal" translation, which would otherwise be limited by the codon usage of E. coli. The original Rosetta strains carry the pRARE plasmid (5) and supply tRNAs for the codons AUA, AGG, AGA, CUA, CCC, and GGA on a chloramphenicol-resistant plasmid. Rosetta 2 strains carry the pRARE2 plasmid and supply a seventh rare tRNA for CGG. In the pLysS and pLacI derivatives of these strains. the rare tRNA genes are present on the same plasmids that carry the T7 lysozyme and lac repressor genes, respectively.

Amino	Codon	Fraction in	Fraction
acid	Cugon	all genes	in Class II
Arg	AGG	0.022	0.003
Arg	AGA	0.039	0.006
Arg	CG6	0.098	0.008
Arg	CGA	0.065	0.011
16 24 10 1	COU	0.178	0.643
TIL Day	COC	0.3981	9.200
	HUG-	0.151	0.944
Gly	GGA	0.109	0.020
The Objection	-060	7 10,337 _{5 16}	L, \$450#3.
GV	OW	0.400	0.428
lle	AUA	0.073	0.006
lis .	.AUU	0.507	0.335
	I AWC	1,430	(:659°);
LEV	HUG	0.129	0.034
	JAWA S	0.131	0.056
alta Leo grafia	cus.,	0.486(1)	0.767
leu .	CUA	0.037	0.008
iten .	GW	0.00	0.055
	CAC.	0.84	. 4 10080
	DOG.	0.525	0.739
Table Programme	COA (9.99()	11,150/15
T. Pa	COL	0.169	9.112
Pro	ccc	0,124	ome

REFERENCES

- 1. Phillips, T. A., Van Bogelen, R. A., and Neidhardt, F. C. [1984] J. Barteriol. 159, 281-287.
- 2. Leahy, D. J., Hendrickson, W. A., Aukhil, L., and Erickson, H. P. (1992) Science 258, 987-991.
- A. Roca [University of Wisconsin-Madison], personal mmunication.
- 4. Studies, F. W. (1991) J. Mol. Biol. 219, 37-44.
- Novy, R., Drott, D., Yaeger, K., and Mierendorf, R. (2001) inNovations 12, 1-3.
- Nakamura, Y., Gojobori, T., and Ikemara, T. (2000) Nucl. Acids Res. 29, 292.
- Henaut, A. and Danchin, A. (1996) in Escherichia coli and Salmonella typhimurium Cellular and Molecular Biology, Vol. 2, (Neidhardt, F., Curtiss III, R., Ingraham, J., Lin, E., Low, B., Magasanik, B., Reznikoff, W., Kiley, M., Schaechter, M., and Umbarger, H., eds). pp. 2047-2056, American Society for Microbiology, Washington, DC.

Enhanced disulfide bond formation

OrigamiTM 2 host strains are K-12 derivatives that have mutations in both the thioredoxin reductase (trxB) and glutathione reductase (gor) genes, which greatly enhance disulfide bond formation in the cytoplasm. Unlike the original Origami strains, the Origami 2 strains are kanamycin sensitive; like the original strains, the gor mutation is still selected for by tetracycline. To reduce the possibility of disulfide bond formation between molecules, hosts containing the trxB/gor mutation are recommended only for the expression of proteins that require disulfide bond formation for proper folding.

Origami B host strains are derived from a lacZY mutant of BL21 to enable precise control of expression levels by adjusting the concentration of IPTG. In addition to trxB/gor mutantions these strains include the lon and ompT deficiencies of BL21 which increase protein stability.

Rosetta-gami²⁸² 2 host strains combine the advantages of Rosetta²⁸² 2 and Origami 2 strains to alleviate codon bias and enhance disulfide bond formation in the cytoplasm when heterologous proteins are expressed in *E. coli*. These trxB/gor mutants are compatible with kanamycin-resistant vectors, and carry the chloramphenicol-resistant pRARE2 plasmid, which supplies seven rare tRNAs.

Cloning

High-efficiency electrocompetent cells

NovaXG and NovaXGF Zappers™ Electrocompetent Cells combine favorable genotype with high transformation efficiency for the most demanding cloning applications. NovaXG features deletion of genes involved in restriction of methylated DNA, [\Delta(mcrC-mrr)], and recA endA mutations, which facilitate high yields of excellent quality plasmid DNA. The $lacZ \Omega$ fragment is expressed from the chromosome and allows blue/white screening for recombinants by lacZ α-complementation with appropriate vectors. NovaXGF cells have the same genotype as NovaXG, but harbor an F' which confers tetracycline resistance and allows for infection by M13 for ssDNA production. Because the F' carries the lacl⁸ repressor gene, addition of IPTG is required for blue/white screening of recombinants in these cells. Both strains are manufactured for high transformation efficiency (> $1 \times 10^{\circ}$ cfu/µg) by electroporation to deliver a maximum number of transformants, which is especially important when working with limited amounts of DNA or when constructing large or complex libraries. The cells are packaged in a convenient two transformations per tube format to minimize thawing of excess cells.

Orders

Phone 800 526 7319

Fax

866 642 0301

Web

www.emdbiosciences.com/novagen

Chemically competent cells

NovaBlue Competent Cells are designed for ultimate convenience and reliability in plasmid transformation. NovaBlue is a K-12 strain ideally suited as an initial. cloning host due to its high transformation efficiency, blue/white screening capability (with appropriate plasmids), and recA endA mutations, which result in high yields of excellent-quality plasmid DNA. The cells are grown and made chemically competent by an optimized procedure. Select NovaBlue GigaSingles ** for applications requiring higher transformation efficiencies or NovaBlue Singles™ for more routine cloning applications. Veggieth NovaBlue Singles are maintained and manufactured with media and reagents derived from nonanimal sources, making these cells ideally suited for applications in which animal-free materials are desired. NovaBlue T12 have the same features as NovaBlue Singles, with the added benefit of being resistant to T1 and T5 phage.

New-Plue Ingos Computers: Celes Format R		Regional Sur-	Application
GigaSingles**	> 1 × 10 ⁸	50 µl	High-efficiency cloning
Singles*	> 1.5 × 10*	50 µ l	Routine cloning
Veggie"	> 1.5 x 10 ⁸	50 µt	Applications requiring nonanimal-derived materials Routine cloring
HT96"	> 1,0 × 10 ⁸	96×20μl	High-throughput claning
114	>1.5×10 ⁴	50 µ1	11/15 Phage resistant Routine cloning

Overnight Express

High-level protein expression without the need to monitor cell growth

Two Overnight Express™ Autoinduction

Systems are available, both featuring high-level protein production in the pET and other IPTG-inducible bacterial expression systems without the need to monitor cell growth or add an inducer. Cell mass and target protein yield are often increased several-fold as compared with conventional protocols using induction with IPTG.

Overnight Express Protocol

- Prepare medium
- Inoculate with a single colony
- Incubate 8 to 24 hours
- Harvest target protein

Features

- High cell densities and protein expression levels
- No need to monitor cell growth rate or add inducer
- Ideal for pET Expression System or other IPTGinducible bacterial systems
- Induction of numerous expression clones simultaneously
- Compatible with cultures grown in flasks, culture tubes, and deep-well plates
- Minimal sample handling
- Minimal lot-to-lot variability

Additional features of Overnight Express Autoinduction System 2

- Complete chemically defined medium
- Ideal for selenomethionine labeling of proteins to be crystallized for x-ray diffraction studies

	Pr	oduct		Siz	¢	Cat. No	. Price	
	1228			1 k	, a	71300-	1 \$6	ċ
	Overnight Autoinduc							***
	Aucomauc	non sy	stem i	1 k	t*	71300-	1 522	0
٠.	Overnight		p#43.	1 k	r i	71366-	3 59	8
	Autoinduc				• • •			
	, , , , , , , , , , , , , , , , , , , ,		34240 4	1 k	IC'	71366-	\$39	2

* includes enough reagents to induce 1 liter

* includes enough reagents to induce 5 liters.

Ĭ	۱va	llat	ile :	sep	ara	itel	y:							X							A CONTRACTOR
			P	rod	uct		Ņ	Ŭ,		Sia	æ			- {	Cat	۸.	lo.		Pric	e	10.7.5
										2!	SO	mg	ľ		56	5()5		5 1	21	1
	Si	clei	ion	reti	nιο	nin	c					10	ì						\$2	66	in the same

Expression and purification of target proteins from cultures induced with Overnight Express

pET recombinants encoding β-gal, NusA, and GST His*Tag* fusion proteins were transformed into BL21[DE3]. Protein expression was induced in parallel cultures either by Overnight Express System 1 or 1 mM IPTG. Cells were harvested by centrifugation and extracted with BugBuster* HT Protein Extraction fleagent plus rlysozyme* Solution. Equal volumes (7 μl) of the extract were analyzed by SDS-PAGE (10–20% gradient gel) and Coomassie blue staining (C lanes). The remainder of the extract was used for robotic affinity purification using Ni-NIA His*Bind* Resin. Samples (2 μg) of the purified fraction were loaded on the gels (P lanes).

Orders

Phone 800 526 7319 Fax 866 642 0301

Web

www.emdbiosciences.com/novagen

Antibiotics

Produc	.	Size	Cat. /	la. Price
Carbenicillin		. 5 g	69101	wastern to the season of the consequent to service
Chloramphenico		25 g 100 g	2205	51 5 37 5 134
\$76.00 CD:00		500 g 6 n	4203	\$484 11 \$42
Kanamycin Sulfi	ite	25 g	5934	\$1,60
Tetracycline Hydrochloride		10 g 25 g	203*	\$37

Accessory Products

Product	St	(e (at. No.	Price
		pka 7	1013-3	5 8
ColiRollers* Plating Be	ads į	ρkg ?	1013-4	533
Veggie" Peptone	5	DO g 7	1280-3	\$63
Veggie Yeast Extract	S Lauriet grinspasiu	gend also the bounded speed	1279-3	\$84
HT96 Isothermal Block		s de la merite reconstituit	1195-3	\$161
100 mM IPTG Solution	oloonii liikkii	organisti in aprintaga frima	0527-3	\$59
X-Gal Solution	3 x	1 mi - 7	1077-3	\$59

For more information about these products visit our website at www.emdbiosciences.com

Need a larger package size?

All of our competent cells, antibiotics, and Overnight Express™ Autoinduction Systems can be custom packaged to suit your needs. Jusk ask us!

Technical Support

Phone 600 207 0144

E-mail novagen@emdbiosciences.com

Optimized packaging

Novagen competent cells are featured in many different packaging formats. In addition to the Standard 0.2-ml volumes in 20- and 50-reaction kit sizes, several strains are available as SinglesTM Competent Cells, single-use, 50-µl volumes for extra convenience and efficiency. QuartersTM Competent Cells consist of 24 wells in a 3 × 8-well configuration that makes up one "quarter" section of a 96-well plate. Each well contains 20 µl competent cells. Quarters sections are ideal for high-throughput screening using multiple strain genotypes for optimization of target protein expression. The BL21(DE3) expression strain and the NovaBlue cloning host are available as HT96TM configurations, which contain 20-µl volumes of competent cells per well in an automation-compatible, 96-well format. For other HT96 configurations or other special packaging needs, contact our Bulk Department.

Host Features Determining Vector Compatibility

Host Strain	Extrachromosomal Replicon(s) in Host	Host Orug Resistance(s)
pLysS-containing cells	P15A	Cam
pLacI-containing cells	P15A	Cam
Rosetta#	P15A	Cam
Rosetta 2	PISA	. Cam
Origami™ 2	F	Tet + Str*
Rosetta-gami** 2	P15A + F	Cam + Tet + Str*
Rosetta-gami	P15A+F	Cam + Kan + Tet+ Str*
BL21	none	none
NovaBlue	F	Tet
Origami B	none	Kan + Tet
RosettaBlue**	P15A + F	Cam + Tet
Rosetta-gami B	PI5A .	Cam + Kan + Tet
Tuner'*	none	none
BUR	none	Tet
HMS174	none	Rif

These strains carry a mutation in ribosomal protein (rspl.) conferring resistance to streptomycin; however, streptomycin is not necessary to maintain strain genotype.

Competent Cell Kit Configurations										
Kit Component	Standa	rd Kits	Sing	les**	Quarters	QuarterPack* Array	i	lT96"	Electrocom	petent Cells
	0.4 ml	1 ml	11 rxn	22 txn			1 plate	4 plates	10 rxn	20 1xn
Competent Cells	2 x 0.2 ml	5 x 0.2 ml	11 × 50 µ1	22 × 50 µl	24×20 µl	4 × (24 × 20 µl)	96 x 20 µÎ	$4 \times (96 \times 20 \mu)$	5 x 50 µl	10×50 µl
Test Plasmid	10 µl	10 µl	10 µI	10 µl	10 jil	10 pl	10 µl	لبر 10 ×2	10 μ1	10 pJ
SOC Medium	2×2 ml	4×2ml	2×2ml	4 x 2 ml	2 x 2 ml	14 mi	14 ml	4 x 14 mi		
8-cap Strip					pkg/12	pkg/12	pkg/12	4 × (pkg/12)		
Reagent Reservoir					1	1	1.4	100		
HT96 Lids										

Protein Expression Strains	Subtype	Singles 11 reactions	Singles 22 reactions	Standard 0,4 ml	Standard 1.0 ml	Quarters** 24 reactions	
Pricing (2004)		\$87	\$170	\$70	\$129	\$87	BUL
B834	(DE3)			69041-3	69041-4		
	(DE3)pLysS			69042-3	69042-4		Need a
8121*				69449-3	69449-4	71158-3	149\$2*32*35*402*1202*85**********************************
	(DE3)	70235-3	70235-4	69450-3	69450-4	71159-3	package
	(DE3)pLysS	70236-3	70236-4	69451-3	69451-4	71160-3	
BLA				69052-3	69052-4		
	(DE3)			69053-3	69053-4		Competen
	(DE3)pLysS			69956-3	69956-4		antibiotics
HMS174				69452-3	69452-4		Overnight
	(DE9)			69453-3	69453-4		
	(DE3)pLysS			69454-3	69454-4		autoinduc
Origami™ 2		and the second of the second to		71344-3	71344-4		systems ca
	(DE3)	71408-3	71408-4	71345-3	71345-4		custom pa
	(DE3)pLysS	71409-3	71409-4	71346-3	71346-4		C0000000000000000000000000000000000000
Origami B				70836-3	70836-4	71162-3	to suit you
	(DE3)			70837-3	70837-4	71163-3	
	(DE3)pLysS			70839-3	70839-4	71164-3	Call us too
losetta"				70953-3	70953-4	71166-3	800-854-
	(DE3)			70954-3	70954-4	71167-3	HER CONSIDER STORES
	(DE3)pLysS			70956-3	70956-4	71168-3	or e-mail
Rosetta 2				71402-3	71402-4		emdbiosci
	(DE3)	71400-3	71400-4	71397-3	71397-4		
	(DE3)ptysS	71401-3	71401-4	71403-3	71403-4		
RosettaBlue™		MILES OF BOTH STATES		71058-3	71058-4		
	(DE3)			71059-3	71059-4		
	(DE3)pLys\$			71034-3	71034-4		
Rosetta-gami™ 2				71350-3	71350-4		
	(DE3)			71351-3	71361-4		
	(DEI)plysS			71352-3	71352-4		
Rosetta-gami B	and the second second			71136-3	71135-4	71170-3	
**************************************	(DE3)			71136-3	71136-4	71171-3	
	(DE3)pLysS	그렇다 하다 하다		71137-3	71137-4	71172-3	
luner'*			2012/25/01/2014	70622-3	70622-4	3,17 2 -3	
	(DE3)			70623-3	70623-4		
	(DE3)pLvsS			70624-3	70624-4		

200	
300	Darkane Cizer
	package size?
S. 11.	
W. J. M.	
1 80	
	Competent cells,
100	
100	antibiotics, and
10.5	Overnight Express™
e : : : : : : : : : : : : : : : : : : :	LIVERNIANT HYDRESS"
GNO, JOA	
	autoinduction
	H43711148781711
24. g ii.	
F 33	systems can be
345	~,~, ~, v
· 40	
S. 68	custom packaged
. 50	mountain bearing and and
- 30	
6	to suit your needs.
902 B	TO DRIE ACOUSTICEOUS
Section 200	
W 20	TO SEE THE PROPERTY OF THE PARTY OF THE PART
25.33	
W. 96	Call us today at
	wan as toacy of
1. 180	
	800-854-2855
31.00	OVO GOT LOUG
	or e-mail us: bulk@
A. W.	or commission of
S. S.	
833	emdbiosciences.com
	~ #11194 PATE PARTY PATE 1 PAT
10 W	
S	
W. 7	

Cloning Strain	Singles 11 rxn	Singles 22 rxn	GigaSingles™ 11 rxn	GigaSingles 22 rxn	Standard 0.4 ml	Standard 1.0 ml	HT96 1 plate	HT96 4 plates	Electrocompetent	Electrocompetent 20 ran
Pricing (2004)	\$87	\$170	\$105	\$204	\$70	\$129	\$306	\$1146	\$95	\$171
NovaBlue	70181-3	70181-4	71227-3	71227-4	69825-3	69825-4	71011-3	71011-4		
NovaXG									71315-3	71315-4
NovaXGF									71317-3	71317-4
NovaBlue T1 ⁸	71318-3	71318-4					3400			
Veggie** NovaBlue	71251-3	71251-4	°\$115 for Veggie I	VovaBlue Single:	i 17 ixin; 1\$22	7 for Veggie Nova	aBlue Singles	22 rxn		

For more information or to order Novagen products; contact EMD Biosciences.

Orders:

Phone 800 526 7319 Fax 866 642 0301 Technical Support:

Phone 800 207 0144

E-mail novagen@emdbiosciences.com

Visit our website:

www.emdbiosciences.com/novagen

You can also order Novagen products through our distribution partner, VWR International.

Phone 800 932 5000 Web www.vwr.com

Calbiochem, Novabiochem, and Novagen are brands of EMD Biosciences, Inc., an affiliate of Merck KGaA, Darmstadt, Germany.

Printed in the USA.

EMD Biosciences, Inc. 441 Charmany Drive Madison, WI 53719

CHANGE SERVICE REQUESTED

PRSRT STD U.S. POSTAGE PAID PERMIT NO. 47 MADISON, WI

220006 - 2004USD