Deep Learning

Advanced Machine Learning 26 September 2024 Profs. Luigi Cinque, Fabio Galasso and Marco Raoul Marini

Basics of Digital Imaging

Pinhole Camera (Model)

- (simple) standard and abstract model today
 - box with a small hole in it

Digital Images

- Imaging Process:
 - ► (pinhole) camera model
 - digitizer to obtain digital image

Digital Image Processing

- Image Filtering
 - take some local image patch (e.g. 3x3 block)
 - image filtering: apply some function to local image patch

10	5	3
4	5	1
1	1	7

Some function

7

Local image data

Modified image data

Image Filtering

- Some Examples:
 - what assumptions are you making to infer the center value?

Image Filtering: 2D Signals and Convolution

- Image Filtering
 - to reduce noise,
 - to fill-in missing values/information
 - to im in imeening variation in the

2	3	3		2	3	3
3	20	2	\longrightarrow	3	3	2
3	2	3		3	2	3

- to extract image features (e.g. edges/corners), etc.
- Simplest case:
 - linear filtering: replace each pixel by a linear combination of its neighbors
- 2D convolution (discrete):

n1

discrete Image:

l[m,n]

filter 'kernel':

g[k,l]

► 'filtered' image: f[m,n]

e	f	[,	m,	7	i	

18

 $egin{array}{c|c} I[k,l] \ \hline 8 & 5 \end{array}$

8	5	2
7	5	3
9	4	1

 $f[m,n] = I \otimes g = \sum I[m-k,n-l]g[k,l]$

$$\otimes$$
 -1

$$\begin{array}{c|cccc}
-1 & 0 & 1 \\
-1 & 0 & 1 \\
-1 & 0 & 1
\end{array}$$

can be expressed as matrix multiplication!

Image Filtering: 2D Signals and Convolution

• 2D convolution (discrete):
$$f[m,n] = I \otimes g = \sum_{k,l} I[m-k,n-l]g[k,l]$$

• discrete Image: $I[m,n]$

$$\sum_{1 < ln < +1} I[m-k, n-l]g[k, l] \quad (m, n)$$

- -1 < k < +1
- -1 < l < +1

- swipe it across the image
 - multiply and sum

$$=I[m+1,n+1]g[-1,-1]$$

$$+I[m+1,n]g[-1,0]$$

$$+I[m+1, n-1]g[-1, +1]$$

$$(k = -1, l = -1)$$

$$(k = -1, l = 0)$$

$$(k = -1, l = +1)$$

<u>+..</u>

Image Filtering: 2D Signals and Convolution

- 2D convolution (discrete): $f[m,n] = I \otimes g = \sum_{k,l} I[m-k,n-l]g[k,l]$ discrete Image: I[m,n]
 - ► filter 'kernel': g[k,l]

$$f[m,n]$$
 $I[k,l]$ $g[k,l]$ 18 $= egin{array}{c|c|c} 8 & 5 & 2 & -1 & 0 & 1 \ \hline 18 & 5 & 3 & 0 & -1 & 0 & 1 \ \hline 9 & 4 & 1 & -1 & 0 & 1 \ \hline \end{array}$

- special case:
 - convolution (discrete) of a 2D-image with a 1D-filter

$$f[m,n] = I \otimes g = \sum_{k} I[m-k,n]g[k]$$

$$\begin{array}{|c|c|} g[k] \\ \hline -1 \\ \hline 0 \\ \hline 1 \\ \end{array}$$

Linear Filtering (warm-up slide)

$$f[m,n] = I \otimes g = \sum_{k} I[m-k,n]g[k]$$

original

1

(

= f

Linear Filtering (warm-up slide)

$$f[m,n] = I \otimes g = \sum_{k} I[m-k,n]g[k]$$

original

I

Filtered (no change) = f

$$f[m,n] = I \otimes g = \sum_{k} I[m-k,n]g[k]$$

original I

 \otimes 9

$$= f$$

$$f[m,n] = I \otimes g = \sum I[m-k,n]g[k]$$

original

I

Pixel offset

 \otimes

g

shifted = f

$$f[m,n] = I \otimes g = \sum_{k} I[m-k,n]g[k]$$

original

I

 \otimes

g

= f

Blurring

$$f[m,n] = I \otimes g = \sum_{k} I[m-k,n]g[k]$$

k 0.3Pixel offset

original

I

 \otimes

g

Blurred (filter applied in both dimensions).

Blurring Examples

Linear Filtering (warm-up slide)

$$f[m,n] = I \otimes g_1 - I \otimes g_2 = I \otimes (g_1 - g_2)$$

?

original

Linear Filtering (warm-up slide)

$$f[m,n] = I \otimes g_1 - I \otimes g_2 = I \otimes (g_1 - g_2)$$

original

Filtered (no change)

$$f[m,n] = I \otimes g_1 - I \otimes g_2 = I \otimes (g_1 - g_2)$$

(remember blurring)

original

Blurred (filter applied in both dimensions).

Sharpening

original

Sharpened original

Sharpening Example

Sharpening

before after

Linear Systems

Basic Properties:

- homogeneity
 T[a X] = a T[X]
- additivity $T[X_1 + X_2] = T[X_1] + T[X_2]$
- superposition $T[aX_1 + bX_2] = a T[X_1] + b T[X_2]$
- linear systems <=> superposition

examples:

- matrix operations (additions, multiplication)
- convolutions

Average Filter

- Average Filter
 - replaces each pixel with an average of its neighborhood
 - Mask with positive entries that sum to 1
- if all weights are equal, it is called a BOX filter

$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

Gaussian Averaging (An Isotropic Gaussian)

- Rotationally symmetric
- Weights nearby pixels more than distant ones
 - this makes sense as 'probabilistic' inference

the pictures show a smoothing kernel proportional to

$$g(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

Smoothing with a Gaussian

Example:

Smoothing with a Gaussian

Another Example:

Original image

Gaussian Blur applied

Efficient Implementation

- Both, the BOX filter and the Gaussian filter are separable:
 - first convolve each row with a 1D filter
 - then convolve each column with a 1D filter

$$(f_x \otimes f_y) \otimes I = f_x \otimes (f_y \otimes I)$$

- remember:
 - convolution is linear associative and commutative
- Example: separable BOX filter

Edges & Derivatives...

1st derivative

2nd derivative

"zero crossings" of second derivative

Compute Derivatives

$$\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \approx f(x+1) - f(x)$$

- we can implement this as a linear filter:
 - direct:

$$-1$$
 1

or symmetric:

$$-1 | 0 | 1$$

Edge-Detection

- based on 1st derivative:
 - smooth with Gaussian
 - calculate derivative
 - finds its maxima

Edge-Detection

Simplification:

- $\frac{d}{dx}(g\otimes f) = \left(\frac{d}{dx}g\right)\otimes f$
- saves one operation

Sigma = 50

Basics of Automatic Speech Recognition (ASR)

History of Automatic Speech Recognition

- Early 1970s: Dynamic Time Warping (DTW) to handle time variability
 - Distance measure for spectral variability

Source: http://publications.csail.mit.edu/abstracts/abstracts06/malex/seg_dtw.jpg

History of Automatic Speech Recognition

- Early 1970s: Dynamic Time Warping (DTW)
- Mid-Late 1970s: Hidden Markov Models (HMMs) become popular
 - statistical models of spectral variations, for discrete speech signals
- Mid 1980s: HMMs are the dominant technique for ASR

History of Automatic Speech Recognition

- Early 1970s: Dynamic Time Warping (DTW)
- Mid-Late 1970s: Hidden Markov Models (HMMs) become popular
- Mid 1980s: HMMs are the dominant technique for ASR
- 1990s: Large vocabularies and continuous dictation
- 2000s: Discriminative training (minimize word/phone error rate)
- 2010s: Deep learning significantly reduces error rate

George E. Dahl, et al. Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition. IEEE Trans. Audio, Speech & Language Processing, 2012.

Automatic Speech Recognition

 Find the most likely sentence (word sequence) W, which transcribes the speech audio A:

$$\widehat{W} = \underset{W}{\operatorname{argmax}} P(W|A) = \underset{W}{\operatorname{argmax}} P(A|W)P(W)$$

- Acoustic model P(A|W)
- ▶ Language model P(W)
- Training: optimize the acoustic and language models separately
 - Speech Corpus: speech waveform and human-annotated transcriptions
 - Language model: with extra data (prefer daily expressions corpus for spontaneous speech)

Basics of Text Analysis and Natural Language Processing (NLP)

Word Similarity

Task: given two words, predict how similar they are

The Distributional Hypothesis:

You shall know a word by the company it keeps

(John Firth, 1957)

Distributional Hypothesis (J.R. Firth 1957)

- Words that occur in similar contexts tend to have similar meanings
 - "You shall know a word by the company it keeps"
 - "If A and B have almost identical environments"
- Words which are synonyms tend to occur in the similar context

Intuition of distributional word similarity

Suppose I asked you what is tesgüino?

A bottle of **tesgüino** is on the table Everybody likes **tesgüino Tesgüino** makes you drunk

- From context words, humans can guess tesgüino an alcoholic beverage like beer
- Intuition for the algorithm:
 - Two words are similar if they have similar word contexts

Vector semantics

- Goal: Learning representations (embeddings) of the meaning of words, directly from their distributions in text
- Important for NLP applications that make use of meaning
 - Question Answering, Summarization, Detecting paraphrases or plagiarism and dialogue

Term-document matrix

- Count of word w in a document d:
 - Each document in a count vector in N^v

Document

		Y		
	As You Like It	Twelfth N	ight Julius Caes	sar Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Word / Term

Word-word matrix

- Instead of an entire document, use smaller contexts
 - Paragraph
 - Window of +-4 words
- Word is now defined by counts of context words

	aardvark	•••	computer	data	result	pie	sugar	
cherry	0	•••	2	8	9	442	25	
strawberry	0	•••	0	0	1	60	19	
digital	0	•••	1670	1683	85	5	4	
information	0	•••	3325	3982	378	5	13	

TF-IDF: Weighting terms in the vector

- Not all words are equally important
 - Some words just co-occur frequently with many different words (e.g. the, they, it)
- Term Frequency: Words that occur nearby frequently (maybe pie nearby cherry) are more important.
- **Inverse Document Frequency:** Words that are too frequent may be unimportant (e.g. *the*, *it*, *he*, she).

Measuring similarity

- We have words w and v
- How do we measure their similarity?
- Dot product or inner product from linear algebra

$$dot\text{-}product(\vec{v}, \vec{w}) = \vec{v} \cdot \vec{w} = \sum_{i=1}^{N} v_i w_i$$

- High when two vectors have large values in same dimensions
- Low (actually 0) for orthogonal vectors

Next-word prediction task

input # 1

input # 2

output

Thou shalt

Thou shalt not make a machine in the likeness of a human mind

Sliding window across text

	thou	shalt	not	make	а	machine	
--	------	-------	-----	------	---	---------	--

Dataset

input 1	input 2	output
thou	shalt	not

Thou shalt not make a machine in the likeness of a human mind

Sliding window across text

thou	shalt	not	make	а	machine	
thou	shalt	not	make	а	machine	

Dataset

input 1	input 2	output
thou	shalt	not
shalt	not	make

Thou shalt not make a machine in the likeness of a human mind

Sliding window across text

thou	shalt	not	make	а	machine	
thou	shalt	not	make	а	machine	
thou	shalt	not	make	а	machine	
thou	shalt	not	make	а	machine	

Dataset

input 1	input 2	output
thou	shalt	not
shalt	not	make
not	make	a
make	a	machine

Thank you

Acknowledges: some slides and material from Bernt Schiele, Mario Fritz, Michael Black, Bill Freeman, Fei-Fei, Justin Johnson, Serena Yeung, Yining Chen, Anand Avati, Andrew Ng

