Règles Th-bat - Fascicule matériaux Publié le 20 décembre 2017

Sommaire

1.	Introduction	1	2.5.2	Panneaux à base de bois	15
1.1	Références normatives	1	2.5.3	Panneaux de laine de bois	16
1.2	Termes et définitions,		2.5.4	Liège	16
	symboles et unités	2	2.5.5	Paille comprimée	16
1.2.1	Symboles et unités	2	2.6	Matériaux isolants manufacturés	16
1.2.2	Définitions	2	2.6.1	Balsa	16
1.3	Caractéristiques thermiques	3	2.6.2	Laines minérales	17
1.3.1	Cas général	3	2.6.3	Liège	18
1.3.2	Produits réfléchissants opaques	5	2.6.4	Matières plastiques alvéolaires	18
1.3.3	Cas particulier du sol	5	2.6.5	Plaques à base de perlite expansée	22
1.4	Maçonneries	5	2.6.6	Plaques homogènes de verre cellulaire	23
2.	Valeurs par défaut	5	2.6.7	Produits manufacturés à base de fibres végétales	23
2.1	Pierres	5	2.6.8	Produits manufacturés	20
2.1.1	Roches plutoniques et métamorphiques	5	2.0.0	à base de fibres animales	24
2.1.2	Roches volcaniques	6	2.7	Matières plastiques synthétiques	
2.1.3	Pierres calcaires	6		compactes, mastics et produits d'étanchéité	25
2.1.4	Grès	6	2.7.1	Matières synthétiques compactes	20
2.1.5	Silex, meulières et ponces	6	2.7.1	d'usage courant dans le bâtiment	25
2.2	Bétons	7	2.7.2	Mastics pour joints, étanchéité	
2.2.1	Bétons de granulats courants siliceux, silico-calcaires et calcaires	7		et coupure thermique	26
		7	2.7.3	Produits d'étanchéité	26
2.2.2	Bétons de granulats courants de laitiers de hauts fourneaux	8	2.8	Métaux	27
2.2.3	Bétons de granulats légers	8	2.9	Autres matériaux	27
2.2.4	Bétons de granulats très légers	10	2.9.1	Terre et sols	27
2.2.5	Bétons cellulaires traités à l'autoclave	11	2.9.2	Mortiers d'enduits et de joints de ciment ou de chaux	28
2.2.6	Bétons de bois	11	2.9.3	Fibres-ciment et fibres-ciment cellulose	28
2.3	Plâtres	12	2.9.4	Plaques à base de vermiculite	
2.3.1	Plâtres sans granulats	12		agglomérées aux silicates	28
2.3.2	Plâtre avec granulats légers		2.9.5	Verre	29
	ou fibres minérales	12	2.9.6	Matériaux en vrac	29
2.4	Terre cuite	13	2.9.7	Gaz	29
2.5	Végétaux	14	2.9.8	Eau	29
2.5.1	Bois	14			

1. Introduction

Ce fascicule permet la détermination des valeurs thermiques utiles des matériaux d'application générale dans le bâtiment à utiliser dans les calculs réglementaires pour la détermination des per formances énergétiques du bâtiment.

La détermination de la valeur thermique utile est faite en fonction de la valeur thermique déclarée. À défaut de pouvoir justifier une valeur selon les modalités ci-dessus, les valeurs thermiques utiles sont prises égales aux valeurs par défaut données dans le présent chapitre en fonction de leur masse volumique sèche :

- conductivité thermique utile ;
- capacité thermique massique ;
- facteur de résistance à la diffusion de vapeur d'eau.

Pour certaines familles de matériaux, plusieurs valeurs de conductivités thermiques utiles sont données en fonction de la masse volumique du matériau. Faute de connaître cette dernière, on adoptera la plus élevée des valeurs de conductivités thermiques utiles indiquées pour la famille considérée.

Les facteurs de résistance à la vapeur d'eau sont donnés en tant que valeurs en coupelle sèche et coupelle humide (cf. norme NF EN ISO 12572).

Nota : les valeurs et méthodes de détermination correspondent aux produits utilisés dans l'enveloppe des bâtiments et non aux équipements de ces bâtiments.

1.1 Références normatives

Les versions des normes suivantes en vigueur à la date de publication de ce document s'appliquent.

NF EN ISO 10077-1	Performances thermiques des fenêtres, portes et fermetures – Calcul du coefficient de transmission thermique – Partie 1 : Méthode simplifiée.
NF EN ISO 10077-2	Performances thermiques des fenêtres, portes et fermetures – Calcul du coefficient de transmission thermique – Par tie 2 : Méthode numérique pour profilés de menuiserie.
NF EN 12667	Performances thermiques des matériaux et produits pour le bâtiment. Détermination de la résistance thermique par la méthode de la plaque chaude gardée et la méthode fluxmétrique. Produits de haute et moyenne résistance thermique.
NF EN ISO 8990	Isolation thermique – Détermination des propriétés de transmission thermique en régime stationnaire – Méthodes à la boîte chaude gardée et calibrée.
NF EN ISO 7345	Isolation thermique – Grandeurs physiques et définitions.
NF EN ISO 9346	Performance hygrothermique des bâtiments et des matériaux pour le bâtiment – Grandeurs physiques pour le transfert de masse – Vocabulaire.
NF EN ISO 10456	Matériaux et produits pour le bâtiment – Propriétés hygrothermiques – Valeurs utiles tabulées et procédures pour la détermination des valeurs thermiques déclarées et utiles.

1.2 Termes et définitions, symboles et unités

1.2.1 Symboles et unités

Masse volumique sèche ρ (en kg/m³) : quotient de la masse d'un matériau apparente, à l'état sec (¹) conventionnel, par son volume.

Conductivité thermique λ . (en W/(m.K)) : flux de chaleur, par mètre carré, traversant un mètre d'épaisseur de matériau pour une différence de température de un degré entre les deux faces de ce matériau.

Capacité thermique massique C_p (en J/(kg.K)) : quantité de chaleur nécessaire pour augmenter la température de un degré un kilogramme d'un matériau.

Facteur de la résistance à la diffusion de vapeur d'eau μ : rapport de la perméabilité à la vapeur d'eau de l'air sur celle du matériau.

1.2.2 Définitions

Caractéristique thermique utile : caractéristique thermique représentative du comportement thermique des parois, éléments ou composants, une fois incorporés dans le bâtiment et ceci durant toute la durée de vie de l'ouvrage. Par conséquent, la caractéristique thermique utile doit être à la fois représentative de l'ensemble de la production dans l'espace et dans le temps et correspondre aux conditions moyennes d'utilisation rencontrées dans le bâtiment (mise en œuvre, température, humidité, vent, vieillissement, etc.).

Caractéristique thermique déclarée : caractéristique thermique établie conformément à des spécifications techniques européennes (normes harmonisées ou Document d'Evaluation Européen) ou bien dans le cadre d'une certification. La caractéristique déclarée peut être différente de la caractéristique thermique utile, notamment si les conventions servant à son élaboration ne sont pas représentatives de celles rencontrées dans le bâtiment.

Valeur thermique par défaut : valeur forfaitaire à utiliser comme caractéristique thermique utile, en absence de valeurs déclarées et sans justification particulière.

Avis Technique et Document Technique d'Application : on entend par Avis Technique et Document Technique d'Application, tout avis formulé conformément à l'arrêté du 21 mars 2012 relatif à la commission chargée de formuler des Avis Techniques et Documents Techniques d'Application sur des procédés matériaux, éléments ou équipements utilisés dans la construction, délivré en vue d'établir l'aptitude à l'emploi des procédés, matériaux, éléments ou équipements utilisés dans la construction dont la constitution ou l'emploi ne relèvent pas des savoir-faire et pratiques traditionnels ;

Evaluation Technique Européen (ETE): appréciation technique favorable de l'aptitude d'un produit à l'usage prévu, fondée sur la satisfaction des exigences essentielles prévues pour les ouvrages dans lesquels le produit doit être utilisé (directive 89/106/CEE, article 8). Il est délivré par un Organisme d'Evaluation Technique (OET), membre de l'EOTA (European Organisation for Technical Approvals), habilité et désigné par son État membre.

Certification : on entend par certification toute activité par laquelle un organisme tierce partie accrédité COFRAC, ou un autre organisme membre de la Coopération européenne pour l'accréditation et ayant signé les accords de reconnaissance mutuelle multilatéraux couvrant l'activité de certification, atteste qu'un produit, un service, ou une combinaison de produits et de services est conforme à des caractéristiques décrites dans un référentiel de certification reconnu par tous les acteurs et rendu public. La certification est régie par les articles R-433-1 à R 433-2 et L 433-3 à L 433-11 du code de la consommation.

^{1.} Sauf spécification particulière, l'état sec est défini conventionnellement comme l'état du matériau séché à 70 °C ± 5 °C avec de l'air pris dans une ambiance à 23 °C ± 2 °C et 50 ± 5 % d'humidité relative.

1.3 Caractéristiques thermiques

1.3.1 Cas général

Les caractéristiques thermiques utiles (λ_u ou R_u) des matériaux et produits de construction, à utiliser pour le calcul des caractéristiques thermiques des parois et ponts thermiques des bâtiments, sont déterminées en fonction des caractéristiques thermiques déclarées (λ_d , R_d) :

$$\lambda_{\rm u} = \lambda_{\rm d} \times (F_{\rm T} \times F_{\rm m} \times F_{\rm R}) \quad \text{ et } \quad R_{\rm u} = R_{\rm d} / (F_{\rm T} \times F_{\rm m} \times F_{\rm R}) \; ;$$

Les caractéristiques thermiques figurant dans des documents d'Avis Techniques ou dans les Documents Techniques d'Application sont considérées comme des valeurs utiles.

À défaut de pouvoir justifier une valeur selon les modalités ci-dessus, les caractéristiques thermiques utiles (λ_u ou R_u) sont prises égales aux valeurs par défaut données dans les règles Th-Bât.

 F_{T} , F_{m} , et F_{R} sont des facteurs permettant de convertir les valeurs déclarées, certifiées ou tabulées en valeurs utiles. Ils sont définis ci-dessous :

- F_T, facteur de conversion lié à la température moyenne du matériau en œuvre. Pour les applications courantes, F_T peut être pris égal à 1. Pour les applications particulières où la température moyenne du matériau en œuvre est sensiblement différente de 10 °C, F_T doit être déterminé conformément à la norme NF EN ISO 10456 (2);
- $F_{\rm m}$, facteur de conversion lié à la teneur en humidité moyenne du matériau en œuvre. Pour les applications courantes, $F_{\rm m}$ peut être pris égal à 1. Pour les applications particulières ou la teneur d'humidité du matériau est connue être sensiblement différente de la valeur conventionnelle donnée dans la norme « produit » correspondante, $F_{\rm m}$ doit être déterminé conformément à la norme NF EN ISO 10456. Les valeurs thermiques données dans les documents d'Avis Technique ou dans les Documents Techniques d'Application ou dans les certificats associés à la marque « NF » tiennent compte de l'effet de l'humidité en œuvre du matériau (prendre $F_{\rm m}=1$) ;
- F_R, coefficient de sécurité qui tient compte de la représentativité de la valeur déclarée, de l'ensemble de la production à l'usine. F_R est déterminé d'après le tableau I selon l'origine de la valeur thermique déclarée :

Tableau I : Coefficient de sécurité F_R selon l'origine de la valeur déclarée

F _R	
Marquage « CE » système 1+ (*) ou niveau équivalent	Marquage « CE » autres systèmes ^(*)
1	1,15
(*) On entend par système n de marquage « CE », le niveau n de l'évalua thermique d'un produit.	ation et de la vérification de la constance de la performance

^{2.} À défaut de calculs conformément à la norme citée, en France métropolitaine, le secteur des bâtiments à usages d'habitation et bâtiments non résidentiels est considéré correspondre aux applications courantes.

REMARQUE 1

Les conditions conventionnelles de température et d'humidité qui ont servi à la détermination des valeurs déclarées et/ou certifiées sont données dans les normes « produits » correspondantes.

Les conditions conventionnelles de température et d'humidité qui ont servi à la détermination des valeurs tabulées dans le présent fascicule sont les suivantes :

- convention de température, les conductivités thermiques des matériaux sont définies pour une température moyenne de 10 °C;
- convention d'humidité, le taux d'humidité conventionnel pour chaque matériau est défini selon la norme NF EN ISO 10456.

Pour les matériaux dont l'utilisation les met à l'abri de la pluie et de la condensation, le taux d'humidité conventionnel, sauf contre-indication en cas particuliers, est le taux d'humidité d'équilibre de ce matériau dans une ambiance à 23 °C et 50 % d'humidité relative. Ce taux d'humidité conventionnel est déterminé par séchage du matériau stabilisé à 23 °C et 50 % d'humidité relative jusqu'à masse constante. Le séchage du matériau est réalisé en étuve régulée à 70 °C \pm 5 °C avec de l'air pris dans une ambiance à 23 °C \pm 2 °C et 50 % \pm 5 % d'humidité relative. Les valeurs tabulées de la conductivité thermique tiennent également compte des dispersions de fabrication.

Il découle des conventions précédentes que les valeurs tabulées de la conductivité thermique

.

- des matériaux non hygroscopiques ou ne contenant pas d'eau de fabrication sont les valeurs de leur conductivité à l'état sec, à 10 °C;
- des matériaux hygroscopiques ou conservant de l'eau de fabrication résultent de l'application aux valeurs de leur conductivité à l'état sec, à 10 °C, d'un coefficient correcteur fixé par produit ;
- des matériaux contenant des gaz occlus autres que l'air sont des valeurs de leur conductivité thermique à l'état sec à 10 °C, après vieillissement fixé pour chaque produit.

REMARQUE 2

Les valeurs tabulées données dans le présent document priment toujours sur celles figurant dans des procèsverbaux de mesure ou dans des normes (*).

Pour ce qui concerne les procès-verbaux de mesure, il est à observer que

- les résultats de plusieurs mesures faites sur un même matériau présentent une dispersion sur les valeurs obtenues :
- pour évaluer la dispersion des caractéristiques physiques d'un matériau, il est nécessaire d'effectuer plusieurs mesures sur des échantillons choisis de façon aléatoire dans le temps et dans l'espace (position de l'échantillon vis-à-vis de l'ensemble d'une production à un jour donné);
- il peut être difficile de déterminer les caractéristiques d'un matériau ou d'une paroi dans les conditions d'humidité utile, le résultat de mesure doit alors être corrigé en appliquant un facteur de conversion;
- les caractéristiques thermiques de certains matériaux peuvent varier dans le temps, du fait par exemple de la diffusion d'un gaz occlus dans les cellules, il est alors nécessaire d'effectuer des essais de vieillissement appropriés.

Par ailleurs, une étude comparative a été menée au niveau européen et les résultats de mesures f ont montré des dispersions de ± 5 % sur les valeurs obtenues.

Pour ces diverses raisons, les valeurs tabulées données dans le présent document ont été fixées en s'appuyant sur de nombreuses mesures et en examinant avec soin comment celles-ci ont été faites et sur quels échantillons.

Des différences entre les valeurs données dans le présent document et celles figurant dans certaines normes peuvent s'expliquer du fait que ces dernières ne visent pas exclusivement l'emploi des matériaux dans des parois de bâtiment ; les conditions, notamment de température et d'humidité, auxquelles correspondent les caractéristiques thermiques figurant dans les normes, peuvent être différentes de celles auxquelles correspondent les valeurs données dans le présent document.

(*) Il s'agit dans ce cas de valeurs non certifiées par le CSTB, ou par un organisme mandaté par l'AFNOR.

1.3.2 Produits réfléchissants opaques

Les performances thermiques intrinsèques des produits réfléchissants opaques sont données soit dans un document d'Evaluation Technique Européen, soit dans un Avis Technique ou équivalent, ou si un tel avis ou évaluation n'existe pas, par des valeurs par défaut données dans le fascicule paroi opaque.

1.3.3 Cas particulier du sol

La conductivité thermique du sol doit être prise égale à :

- la valeur réelle du site lorsqu'elle est connue. Cette valeur doit être moyennée sur une profondeur égale à la largeur du bâtiment en tenant compte de la teneur normale en eau;
- la valeur correspondante tirée du tableau II si la valeur réelle n'est pas connue;
- 2,0 W/(m.K) en absence de toute autre information.

Tableau II: Conductivité thermique λ

Description	Conductivité thermique λ W/(m.K)
Argile ou limon	1,5
Sable ou gravier	2,0
Roche homogène	3,5

1.4 Maçonneries

Pour la détermination des caractéristiques thermiques utiles des éléments de parois constitués à partir des blocs de maçonnerie, de béton cellulaire, briques de terre cuite, entrevous, etc., se reporter au fascicule 4 « Parois opaques ».

2. Valeurs par défaut

2.1 Pierres

Les conductivités thermiques données dans ce paragraphe sont en fait des conductivités thermiques équivalentes tenant compte des joints.

2.1.1 Roches plutoniques et métamorphiques

Matériaux ou application	Masse volumique sèche (ρ) en kg/m³	Conductivité thermique utile (λ) en W/(m.K)	Capacité thermique massique (C _p) en J/(kg.K)	Facteur de résistance à la diffusion de vapeur d'eau (μ)	
	en kg/m² (λ) en '	(λ) en w/(m.k)	en s/(kg.k)	Sec	Humide
Gneiss, porphyres	$2\ 300 \le \rho \le 2\ 900$	3,5	1 000	10 000	10 000
Granites	$2\ 500 \le \rho \le 2\ 700$	2,8	1 000	10 000	10 000
Schistes, ardoises	$2\ 000 \le \rho \le 2\ 800$	2,2 (*)	1 000	1 000	800

^{*} Il s'agit de la conductivité correspondant à l'utilisation de ces matériaux en murs, c'est-à-dire pour un flux de chaleur parallèle aux strates.

2.1.2 Roches volcaniques

Matériaux ou application	(p)	(λ)	(C _p)	()	μ)
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Basaltes	$2700 \le \rho \le 3000$	1,6	1 000	10 000	10 000
Trachytes, andésites	$2~000 \le \rho \le 2~700$	1,1	1 000	20	15
Pierres naturelles por eus es (ex.: laves)	ρ≤1600	0,55	1 000	20	15

2.1.3 Pierres calcaires

Motérioux ou application	(ρ)	(λ)	(C _p)	(1	μ)
Matériaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Marbres	$2600 \le \rho \le 2800$	3,5	1 000	10 000	10 000
Pierres froides ou extra-dures	2 200 ≤ ρ ≤ 2 590	2,3	1 000	250	200
Pierres dures	2 000 ≤ p ≤ 2 190	1,7	1 000	200	150
Pierres fermes, demi-fermes	1 800 ≤ ρ ≤ 1 990	1,4	1 000	50	40
Pierres tendres n° 2 et 3	1 600 ≤ ρ ≤ 1 790	1,1	1 000	40	25
Pierres très tendres	ρ≤1590	0,85	1 000	30	20

2.1.4 Grès

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	μ)
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Grès quartzeux	$2600 \le \rho \le 2800$	2,6	1 000	40	30
Grès (silice)	$2\ 200 \le \rho \le 2\ 590$	2,3	1 000	40	30
Grès calcarifères	$2\ 000 \le \rho \le 2\ 700$	1,9	1 000	30	20

2.1.5 Silex, meulières et ponces

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	μ)
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Silex	$2600 \le \rho \le 2800$	2,6	1 000	10 000	10 000
Meulières	1 900 ≤ ρ ≤ 2 500	1,8	1 000	50	40
Mediteres	1 300 ≤ ρ < 1 900	0,9	1 000	30	20
Ponces naturelles	ρ ≤ 400	0,12	1 000	8	6

2.2 Bétons

2.2.1 Bétons de granulats courants siliceux, silico-calcaires et calcaires Granulats conformes aux spécifications de la norme NF P 18-540.

2.2.1.1 Béton plein

Matériaux ou application	(p)	(λ)	(C _p)	٦)	ι)
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	2 300 < p ≤ 2 600	2,00	1 000	130	80
	2 000 < ρ ≤ 2 300	1,65	1 000	120	70

2.2.1.2 Béton caverneux

Matériaux ou application	(p)	(λ)	(C _p)	()	ι)
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	1 800 < ρ ≤ 2 000	1,35	1 000	100	60
	$1600 \le \rho \le 1800$	1,15	1 000	100	60

2.2.1.3 Béton plein armé

Valeurs à prendre en compte lorsque le béton plein est armé avec un pourcentage en volume d'acier et dont au moins la moitié est disposée parallèlement au flux thermique.

Matériaux ou application	(p)	(λ)	(C _p)	٦)	ι)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Avec 1 < % d'acier ≤ 2	2 300 < p ≤ 2 400	2,3	1 000	130	80
Avec % d'acier > 2	ρ > 2 400	2,5	1 000	130	80

Pour les ouvrages dont le béton plein est armé avec moins de 1 % en volume d'acier ou n'entrant pas dans les familles ci-dessus, la valeur à prendre en compte est la valeur définie en 2.2.1.1 ci-dessus (Béton plein).

2.2.2 Bétons de granulats courants de laitiers de hauts fourneaux Granulats conformes aux spécifications de la norme NF P 18-302.

2.2.2.1 Béton plein

Matériaux ou application	(p)	(λ)	(C _p)	()	ι)
Matériaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Avec sable de rivière ou de carrière	$2~000 \leq \rho \leq 2~400$	1,4	1 000	150	120
Avec laitier granulé (granulats conformes aux spécifications de la norme NF P 18-306)		0,8	1 000	150	120

2.2.2.2 Béton caverneux

Matériaux ou application	(p)	(λ)	(C _p)	٦)	ι)
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Bétons comportant moins de 10 % de sable de rivière	1 $600 \le \rho \le 2000$	0,7	1 000	150	120

2.2.3 Bétons de granulats légers

2.2.3.1 Béton de pouzzolane ou de laitier expansé à structures caverneuses Granulats conformes aux spécifications des normes NF P 18-307 et NF P 18-308.

Matériaux ou application	(ρ)	(λ)	(C _p)	۱)	ι)
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Masse volumique apparente des granulats en vrac 750 kg/m³ environ					
- avec éléments fins ou sable	$1\ 400 \le \rho \le 1\ 600$	0,52	1 000	30	20
- avec elements lins ou sable	1 200 ≤ ρ < 1 400	0,44	1 000	30	20
- sans éléments fins de sable	1 000 ≤ ρ ≤1 200	0,35	1 000	30	20

2.2.3.2 Béton de cendres volantes frittées

Matériaux ou application	(p)	(λ)	(C _p)	۱)	ι)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Masse volumique apparente des granulats en vrac 650 kg/m³ environ	1 000 ≤ ρ ≤ 1 200	0,35	1 000	30	20

2.2.3.3 Béton de ponce naturelle

Matériaux ou application	(p)	(λ)	(C _p)	(μ)
Matériaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Masse volumique apparente des granulats en vrac 600 kg/m³ environ	950 ≤ ρ ≤ 1 150	0,46	1 000	50	40

2.2.3.4 Béton d'argile expansé ou de schiste expansé Granulats conformes aux spécifications de la norme NF P 18-309.

Matériaux ou application	(p)	(λ)	(C _p)	((μ)
Matériaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Bétons de structure					
Dosage en ciment égal ou supérieur à 300 kg/m³ et masse volumique apparente des granulats en vrac comprise entre 300 et 550 kg/m³, ou supérieure à 550 kg/m³					
– avec sable de rivière, sans sable léger	1 600 < ρ ≤1 800	1,05	1 000	8	6
- avec sable de rivière et sable léger	1 400 ≤ ρ ≤1 600	0,85	1 000	8	6
Bétons « isolants porteurs »					
Dosage en ciment égal ou supérieur à 300 kg/m³ et masse volumique apparente des granulats en vrac comprise entre 300 et 550 kg/m³					
 avec sable léger et au plus 10 % de sable de rivière 	1 200 < ρ ≤ 1 400	0,7	1 000	6	4
- avec sable léger, sans sable de rivière	1 000 $\rho \le 1$ 200	0,46	1 000	6	4
Bétons caverneux et semi- caverneux					
Dosage en ciment inférieur ou égal à 250 kg/m³ et masse volumique apparente des granulats en vrac inférieure à 350 kg/m³ ou comprise entre 350 et 550 kg/m³ pour les bétons de masse volumique comprise entre 600 et 1 000 kg/m³					
- avec sable léger, sans sable de rivière	800 < ρ ≤ 1 000	0,33	1 000	6	4
- sans sable (léger ou de rivière) et	600 ≤ ρ ≤ 800	0,25	1 000	6	4
ne nécessitant qu'un faible dosage en ciment	$\rho \leq 600$	0,20	1 000	6	4
Béton léger à base de ciment et de granulats légers artificiels ou naturels type schiste, argile, ponce, etc.					
Réalisation des voiles extérieurs banchés en façades ou en pignon de bâtiment, selon DTU 23.1 (norme NF P 18-210)	1 200 ≤ ρ < 1 400	0,70	1 000	6	4

2.2.3.5Mortier à base de granulats ou de billes de polystyrène expansé, avec ou sans vermiculite exfoliée, avec liant synthétique ou hydraulique

Matériaux au application	(ρ)	(λ)	(C _p)	(μ)
Matériaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Exemples d'application sous chape (procédure d'Avis Technique) ou pour recevoir un système d'étanchéité (norme NF P 84-204, référence DTU 43.1)	250 ≤ ρ < 400	0,20	1 200	30	25
	400 ≤ ρ < 600	0,28	1 200	30	25
	600 ≤ ρ < 800	0,36	1 200	30	25

2.2.4 Bétons de granulats très légers

2.2.4.1 Bétons de perlite ou de vermiculite grade 3 (de 3 à 6 mm) coulés en place

Matériaux ou application	(p)	(λ)	(C _p)	(μ)
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Dosage : 3/1	600 < p ≤ 800	0,31	1 000	15	10
Dosage : 6/1	400 ≤ ρ ≤ 600	0,24	1 000	15	10

2.2.4.2 Plaques de béton de vermiculite fabriquées en usine

Matériaux ou application	(p)	(λ)	(C _p)	(μ)
Matériaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	400 ≤ ρ ≤ 600	0,19	1 000	15	10

2.2.5 Bétons cellulaires traités à l'autoclave

Matériaux ou application	(ρ)	(λ)	(C _D)	(h	ı)
Valeurs utilisables pour des constructions avant 2005	en kg/m³	en W /(m.K)	en J/(kg.K)	Sec	Humide
Masse volumique nominale 800	765 < ρ ≤ 825	0,29	1 000	10	6
Masse volumique nominale 750	715 < ρ ≤ 775	0,27	1 000	10	6
Masse volumique nominale 700	665 < ρ ≤ 725	0,25	1 000	10	6
Masse volumique nominale 650	615 < ρ ≤ 675	0,23	1 000	10	6
Masse volumique nominale 600	565 < ρ ≤ 625	0,21	1 000	10	6
Masse volumique nominale 550	515 < ρ ≤ 575	0,19	1 000	10	6
Masse volumique nominale 500	465 < ρ ≤ 525	0,175	1 000	10	6
Masse volumique nominale 450	415 < ρ ≤ 475	0,16	1 000	10	6
Masse volumique nominale 400	365 < ρ ≤ 425	0,145	1 000	10	6
Valeurs utilisables pour des constructions après 2005					
Masse volumique nominale 800	775 < ρ≤ 825	0,25	1 000	10	6
Masse volumique nominale 700	675 < ρ≤ 725	0,225	1 000	10	6
Masse volumique nominale 600	575 < ρ ≤ 625	0,20	1 000	10	6
Masse volumique nominale 550	525 < ρ ≤ 575	0,18	1000	10	6
Masse volumique nominale 500	475 < ρ ≤ 525	0,16	1 000	10	6
Masse volumique nominale 450	425 < ρ ≤ 475	0,14	1 000	10	6
Masse volumique nominale 400	375 < ρ ≤ 425	0,125	1 000	10	6
Masse volumique nominale 350	325 < ρ ≤ 375	0,11	1 000	10	6

2.2.6 Bétons de bois

2.2.6.1 Béton de copeaux de bois (conforme aux documents d'Avis Technique)

Matériaux ou application	(p)	(λ)	(C _p)	()	ι)
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	450 ≤ ρ ≤ 650	0,16	1 000	15	10

2.2.6.2 Autre béton de copeaux de bois

Matériaux ou application	(p)	(λ)	(C _p)	4)	ι)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Béton de fibres végétales (fibre de chanvre)	100 ≤ ρ ≤ 200	0,1	1 000		
	200 ≤ ρ ≤ 600	0,2	1 000		

2.2.6.3 Panneaux de laine de bois (fibragglo)

Se référer au paragraphe 2.5.3 de ce fascicule.

2.3 Plâtres

Conventionnellement, la masse volumique sèche des plâtres est obtenue après séchage en étuve ventilée à $55\,^{\circ}$ C au lieu de $70\,^{\circ}$ C (cf. norme NF B 12-001).

2.3.1 Plâtres sans granulats

•		(C _p)	· ·	μ)
en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
1 200 < ρ ≤ 1 500	0,56	1 000	10	4
900 < ρ ≤ 1 200	0,43	1 000	10	4
600 ≤ ρ ≤ 900	0,30	1 000	10	4
ρ ≤ 600	0,18	1 000	10	4
1 000 ≤ ρ ≤ 1 300	0,57	1 000	10	6
ρ≤1 000	0,40	1 000	10	6
ρ≤1600	0,80	1 000	10	6
750 ≤ ρ ≤ 900 ρ < 750	0,25* 0,21	1 000 1 000	10 10	4 4
	900 < ρ ≤ 1 200 600 ≤ ρ ≤ 900 ρ ≤ 600 1 000 ≤ ρ ≤ 1 300 ρ ≤ 1 000 ρ ≤ 1 600 750 ≤ ρ ≤ 900 ρ < 750	$900 < \rho \le 1200$ $0,43$ $600 \le \rho \le 900$ $0,30$ $\rho \le 600$ $0,18$ $1000 \le \rho \le 1300$ $0,57$ $\rho \le 1000$ $0,40$ $\rho \le 1600$ $0,80$ $750 \le \rho \le 900$ $0,25^*$ $\rho < 750$ $0,21$	$900 < \rho \le 1200$ $0,43$ 1000 $600 \le \rho \le 900$ $0,30$ 1000 $\rho \le 600$ $0,18$ 1000 $1000 \le \rho \le 1300$ $0,57$ 1000 $\rho \le 1000$ $0,40$ 1000 $\rho \le 1600$ $0,80$ 1000 $750 \le \rho \le 900$ $0,25^*$ 1000 $\rho < 750$ $0,21$ 1000	$900 < \rho \le 1200$ $0,43$ 1000 10 $600 \le \rho \le 900$ $0,30$ 1000 10 $\rho \le 600$ $0,18$ 1000 10 $1000 \le \rho \le 1300$ $0,57$ 1000 10 $\rho \le 1000$ $0,40$ 1000 10 $\rho \le 1600$ $0,80$ 1000 10 $0,80$ $0,80$ $0,80$ $0,80$

2.3.2 Plâtre avec granulats légers ou fibres minérales

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	π)
Materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Plaques de plâtre à parement de carton « spéciales feu » et plaques de plâtre armées de fibres minérales	800 ≤ ρ ≤ 1 000	0,25	1 000	10	4
Plâtre d'enduit avec perlite tout-venant ou vermiculite grade 2 (de 1 à 2 mm) :					
 1 volume pour un volume de plâtre 	600 ≤ ρ ≤ 900	0,30	1 000	10	6
-2 volumes pour un volume de plâtre	500 ≤ ρ ≤ 600	0,18	1 000	10	6

2.4 Terre cuite

Terre cuite utilisée dans les éléments de maçonnerie.

Matériaux ou application	(ρ) en kg/m³	(λ) en W/(m.K)	(C _p)	(μ)	
	CII Kg/III	on 117()	en J/(kg.K)	Sec	Humide
Masse volumique nominale 2 400	2 300 < ρ ≤ 2 400	1,04	1 000	16	10
Masse volumique nominale 2 300	2 200 < ρ ≤ 2 300	0,98	1 000	16	10
Masse volumique nominale 2 200	2 100 < ρ ≤ 2 200	0,92	1 000	16	10
Masse volumique nominale 2 100	2 000 < ρ ≤ 2 100	0,85	1 000	16	10
Masse volumique nominale 2 000	1 900 < ρ ≤ 2 000	0,79	1 000	16	10
Masse volumique nominale 1 900	1 800 < ρ ≤ 1 900	0,74	1 000	16	10
Masse volumique nominale 1 800	1 700 < ρ ≤ 1 800	0,69	1 000	16	10
Masse volumique nominale 1 700	1 600 < ρ ≤ 1 700	0,64	1 000	16	10
Masse volumique nominale 1 600	1 500 < ρ ≤ 1 600	0,60	1 000	16	10
Masse volumique nominale 1 500	1 400 < ρ ≤ 1 500	0,55	1 000	16	10
Masse volumique nominale 1 400	1 300 < ρ ≤ 1 400	0,50	1 000	16	10
Masse volumique nominale 1 300	1 200 < ρ ≤ 1 300	0,46	1 000	16	10
Masse volumique nominale 1 200	1 100 < ρ ≤ 1 200	0,41	1 000	16	10
Masse volumique nominale 1 100	1 000 < ρ ≤ 1 100	0,38	1 000	16	10
Masse volumique nominale 1 000	ρ≤1000	0,34	1 000	16	10

2.5 Végétaux

On caractérise les bois par leur masse volumique normale moyenne t_n , c'est-à-dire avec une teneur en humidité t_n de 15 % selon la terminologie de la norme NF B 51-002.

La densité ainsi caractérisée est donc plus élevée que la masse volumique sèche indiquée dans la deuxième colonne.

2.5.1 Bois

On donne dans les tableaux ci-après, la conductivité thermique du bois en fonction de l'essence ou de la masse volumique.

2.5.1.1 Essence de Bois

Lorsque l'essence de bois est connue lors de l'étude thermique du projet de construction, il sera préférentiellement retenu la valeur de conductivité thermique associée au nom de l'essence.

Matériaux ou application	Conductivité thermique utile (λ) en W/(m.K)
Epicéa, Sapin blanc, Western Red Cedar	0,11
Acajou d'Afrique, Cèdre, Douglas, Framiré, Mélèze, Meranti light red, Peuplier blanc, Pin maritime, Pin noir d'Autriche et Laricio, Pin sylvestre, Western Hemlock	0,13
Bossé clair, Châtaignier, Jequitiba, Limba / Fraké, Tauari, Tiama, Tola	0,15
Iroko, Louro vermelho (Grignon franc),Makoré / Douka, Mengkulang (Palapi), Mengkulang (Palapi), Meranti dark red, Niangon, Sapelli, Sipo, Teck	0,16
Bintangor, Bossé foncé, Chêne (rouvre et/ou pédonculé), Curupixa, Doussié, Eucalyptus globulus, Eucalyptus grandis, Frêne, Hêtre, Kosipo, Kotibé, Merbau, Moabi, Movingui, Robinier (faux Acacia)	0,18

2.5.1.2 Masse volumique

Dans le cas où l'essence de bois n'est pas connue, on pourra utiliser les valeurs de conductivité thermique liées à la masse volumique moyenne ρ_n .

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	μ)
Matériaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Feuillus très lourds $\rho_n > 1 000 \text{ kg/m}^3$	ρ > 870	0,29	1 600	200	50
Feuillus Iourds $865 < \rho_n \le 1000 \text{ kg/m}^3$	750 < ρ ≤ 870	0,23	1 600	200	50
Feuillus mi-lourds 650 < ρ _n ≤ 865 kg/m³	565 < ρ ≤ 750	0,18	1 600	200	50
Feuillus Iégers $500 < \rho_n \le 650 \text{ kg/m}^3$	435 < ρ ≤ 565	0,15	1 600	200	50
Feuillus très légers 230 < ρ _n ≤ 500 kg/m³ hors balsa	200 < ρ ≤ 435	0,13	1 600	50	20
Balsa ρ _n ≤ 230 kg/m³	ρ≤200	0,057	1 600	50	20
Résineux très lourds ρ _n > 700 kg/m³	ρ > 610	0,23	1 600	50	20
Résineux Iourds $600 < \rho_n \le 700 \text{ kg/m}^3$	520 < ρ ≤ 610	0,18	1 600	50	20
Résineux mi-lourds $500 < \rho_n \le 600 \text{ kg/m}^3$	435 < ρ ≤ 520	0,15	1 600	50	20
Résineux légers ρ _n ≤ 500 kg/m³	ρ≤435	0,13	1 600	50	20

2.5.2 Panneaux à base de bois

Définis conformément à la norme PR NF EN 13986 (octobre 2000).

2.5.2.1 Panneaux contreplaqués

Définis selon les normes NF EN 313 -1 et NF EN 313 -2 et bois panneautés définis selon la norme NF EN 12775.

Matériaux ou application	(ρ)	(λ)	(C _p)	(μ)	
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Panneaux de masse volumique nominale 850 à 1 000 kg/m³	750 < ρ ≤ 900	0,24	1 600	250	110
Panneaux de masse volumique nominale 700 à 850 kg/m³	600 < ρ ≤ 750	0,21	1 600	250	110
Panneaux de masse volumique nominale 600 à 700 kg/m³	500 < ρ ≤ 600	0,17	1 600	220	90
Panneaux de masse volumique nominale 500 à 600 kg/m³	450 < ρ ≤ 500	0,15	1 600	200	70
Panneaux de masse volumique nominale 400 à 500 kg/m³	350 < ρ ≤ 450	0,13	1 600	200	70
Panneaux de masse volumique nominale 300 à 400 kg/m³	250 < ρ ≤ 350	0,11	1 600	200	50
Panneaux de masse volumique inférieure à 300 kg/m³	ρ≤250	0,09	1 600	200	50

2.5.2.2 Panneaux à lamelles longues et orientées (OSB)

Définis selon la norme NF EN 300.

Matériaux ou application	(ρ)	(λ)	(C _p)	(μ)	
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	ρ≤650	0,13	1 700	50	30

2.5.2.3 Panneaux de particules liées au ciment

Définis selon les normes NF EN 634-1 et NF EN 634-2.

Matériaux ou application	(ρ)	(λ) en W/ (m.K)	(C _p)	(μ)	
	en kg/m³		en J/(k̈́g.K)	Sec	Humide
	ρ ≤ 1 200	0,23	1 500	50	30

2.5.2.4 Panneaux de particules

Définis selon la norme NF EN 309.

Matériaux ou application	(ρ)	(λ)	(C _p)	(μ)	
	en kg/m³	en W/(m.K)	en J/(ǩg.K)	Sec	Humide
Panneaux de masse volumique nominale 700 à 900 kg/m³	640 < ρ ≤ 820	0,18	1 700	50	20
Panneaux de masse volumique nominale 500 à 700 kg/m³	450 < ρ ≤ 640	0,15	1 700	50	20
Panneaux de masse volumique nominale 300 à 500 kg/m³	270 < ρ ≤ 450	0,13	1 700	50	20
Panneaux de masse volumique nominale 200 à 300 kg/m³	180 < ρ ≤ 270	0,10	1700	50	20

2.5.2.5 Panneaux de fibres

Définis selon la norme NF EN 316.

Matériaux ou application	(ρ)	(λ)	(C _p)	(µ	ι)	
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide	
	Voir les annexes IX des arrêtés relatifs aux caractéristiques thermiques et aux exigences de performance énergétique des bâtiments nouveaux et des parties nouvelles de bâtiments, soumis à la RT 2012.					

2.5.3 Panneaux de laine de bois

Matériaux ou application	(ρ)	(λ)	(λ) (C _p)	(μ)	
Materiaux ou application	en kg/m³ en W/(m.K) en J/(kg.K)	Sec	Humide		
Panneaux de laine de bois agglomérés avec un liant hydraulique, définis conformément à la norme NF EN 13168 (WW)	Voir les annexes IX of et aux exigences de et des parties nouvel	performance én	ergétique des bât	iments nouve	

2.5.4 Liège

Défini conformément à la norme NF B 57-000.

Matériaux ou application	(ρ)	(λ)	` ' I ` p ' F	(μ)				
materiaux ou application	en kg/m³	en W/(m.K)		Sec	Humide			
– Comprimé								
-Expansé pur : se reporter au <i>paragraphe 2.6.3</i>	Voir les annexes IX des arrêtés relatifs aux caractéristiques thermiques							
- Expansé aggloméré au brai ou aux résines synthétiques : se reporter au <i>paragraphe 2.6.3</i>	et aux exigences de performance énergétique des bâtiments nouveaux et des parties nouvelles de bâtiments, soumis à la RT 2012.							

2.5.5 Paille comprimée

Matériaux ou application	(ρ)	(λ)	(C _n)	()	μ)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	Voir les annexes IX of et aux exigences de et des parties nouvell	performance én	ergétique des bâ	timents nouv	

2.6 Matériaux isolants manufacturés

Sont visés ici les matériaux dont la conductivité thermique est au plus égale à 0,065 W/(m.K), fabriqués en usine ou commercialisés sous la forme de plaques, panneaux ou rouleaux. Les caractéristiques thermiques des isolants sont données par famille d'isolants. Une famille est définie par une norme, un procédé de fabrication et, si nécessaire, des caractéristiques physiques spécifiques à cette famille. Les fabricants qui se réfèrent à une famille dans leurs documentations doivent pouvoir justifier que leurs produits satisfont aux critères d'identification indiqués. En l'absence de cette justification sont applicables les valeurs données aux paragraphes ou alinéas « autres fabrications ».

2.6.1 Balsa

Se reporter au paragraphe 2.5.1 de ce fascicule.

2.6.2 Laines minérales

Définies conformément à la norme NF EN 13162 (MW).

Les masses volumiques indiquées dans ce paragraphe sont les masses volumiques apparentes nominales telles que définies dans la norme NF EN 1602. Elles s'entendent revêtements éventuels exclus.

2.6.2.1 Laines de roches

Matériaux ou application	(ρ)	(λ)	(C _p)	(μ)	
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	15 ≤ ρ < 25	0,050	1 030	1	1
	25 ≤ ρ < 40	0,044	1 030	1	1
	40 ≤ ρ < 100	0,042	1 030	1	1
	100 ≤ ρ < 125	0,044	1 030	1	1
	125 ≤ ρ < 150	0,046	1 030	1	1
	150 ≤ ρ < 175	0,047	1 030	1	1
	175 ≤ ρ < 200	0,048	1 030	1	1

2.6.2.2 Laines de verres

Matériaux ou application	(ρ)	(λ)	(C _p)	(μ)	
Materiaux ou application	en kg/m³ en W/(m.K)	en J/(kg.K)	Sec	Humide	
	7 ≤ ρ < 10	0,055	1 030	1	1
	10 ≤ ρ < 15	0,047	1 030	1	1
	15 ≤ ρ < 20	0,044	1 030	1	1
	20 ≤ ρ < 30	0,041	1 030	1	1
	30 ≤ ρ < 40	0,039	1 030	1	1
	40 ≤ ρ < 80	0,038	1 030	1	1
	80 ≤ ρ < 120	0,039	1 030	1	1
	120 ≤ p < 150	0,040	1 030	1	1

2.6.2.3 Laines minérales en vrac (masses volumiques à l'application)

Valeur par défaut pour les produits non visés par les paragraphes 3.8.4.2 et 3.8.4.4 du fascicule « Parois opaques » des règles Th-Bat.

Matériaux ou application	(ρ)	(λ)	' `p' L	(1	μ)
Materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Laines obtenues par soufflage sur plancher de comble	10 ≤ ρ < 25	0,056	1 030	1	1
Laines obtenues par épandage manuel sur plancher de comble	10 ≤ ρ < 60	0,065	1 030	1	1
Laines obtenues par insufflation en mur, en rampant, etc.	20 ≤ ρ < 80	0,060	1 000	1	1

2.6.2.4 Autres laines minérales

Matériaux ou application	(ρ)	(λ)	(C _p)	()	μ)
Materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
		0,065	1 030	1	1

2.6.2.5 Laine de laitier ou de roche ou hydraulique appliquées

Appliquées par projection humide en sous-faces de planchers ou sous-bardages rapportés selon les spécifications du DTU 27.1 (normes NF P 15-201-1 et NF P 15-201-2).

Matériaux ou application	(ρ) en kg/m³	(λ)	(C _p)	(1	μ)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	140 ≤ ρ < 200	0,045	1 200	2	2
	200 ≤ ρ < 300	0,050	1 200	2	2
	300 ≤ ρ < 500	0,070	1 200	2	2

2.6.3 Liège

Se référer au paragraphe 2.5.4 pour les produits de masse volumique supérieure à 250 kg/m³.

Matériaux ou application	(ρ)	(λ)	(C _p)	(μ)	
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide	
Expansé pur conforme à la norme NF EN 13170 (ICB)	Voir les annexes IX des arrêtés relatifs aux caractéristiques thermiques					
Expansé aggloméré au brai ou aux résines synthétiques	et aux exigences de performance énergétique des bâtiments nouveaux et des parties nouvelles de bâtiments, soumis à la RT 2012.					

2.6.4 Matières plastiques alvéolaires

2.6.4.1 Polystyrène expansé

Dans le cas où les produits ci-dessous sont utilisés en toiture inversée, on se reportera, pour la détermination de leur conductivité thermique, aux Avis Techniques concernant ces procédés.

Matériaux ou application	(ρ)	(λ)	(C _p)	(μ)
Materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
-Plagues décounées dans des	7 ≤ ρ < 10	0,056	1 450	60	60
-Plaques découpées dans des blocs moulés et conformes	10 ≤ ρ < 13	0,050	1 450	60	60
à la norme NF EN 13163 (EPS)	13 ≤ ρ < 15	0,047	1 450	60	60
-Plaques moulées en continu et conformes à la norme	15 ≤ ρ < 19	0,044	1 450	60	60
NF EN 13163 (EPS)	19 ≤ ρ < 24	0,042	1 450	60	60
-Autres plaques moulées à	24 ≤ ρ < 29	0,040	1 450	60	60
partir de billes	$29 \le \rho < 40$	0,039	1 450	60	60
	40 ≤ ρ < 60	0,038	1 450	60	60

2.6.4.2 Plaques extrudées conformes à la norme NF EN 13164 (XPS)

2.6.4.2.1 Plaques sans gaz occlus autres que l'air et le CO2

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	u)
Matériaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Épaisseur ≤ 60 mm	28 ≤ ρ ≤ 40	0,041	1 450	150	150
Épaisseur > 60 mm	28 ≤ ρ ≤ 40	0,046	1 450	150	150

2.6.4.2.2 Plaques avec des hydrofluorocarbures HCFC (142b et/ou R22)

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	μ)
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	25 ≤ ρ ≤ 40	0,035	1 450	150	150

2.6.4.2.3 Plaques avec chlorofluorocarbures CFC (3)

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	μ)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Sans peau de surface	25 ≤ ρ ≤ 40	0,033	1 450	150	150
Avec peau de surface	25 ≤ ρ ≤ 40	0,031	1 450	150	150

2.6.4.2.4 Plaques avec des hydrofluorocarbures HFC 134a ou 152a

Matériaux ou application	(ρ)	(λ)	(C _p)	()	τ)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Épaisseur ≤ 60 mm	25 ≤ ρ ≤ 40	0,039	1 450	150	150
Épaisseur > 60 mm	25 ≤ ρ ≤ 40	0,044	1 450	150	150

2.6.4.3 Plaques expansées fabriquées à partir de polystyrène mais n'entrant pas dans les familles définies ci-dessus

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	μ)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	20 ≤ ρ ≤ 60	0,050	1 450	150	150

2.6.4.4 Mousse rigide de polychlorure de vinyle définie conformément à la norme NF T 56-202

Matériaux ou application	(ρ)	(λ)	(C _p)	()	μ)
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Q2	25 ≤ ρ ≤ 35	0,031			
Q3	35 ≤ ρ ≤ 48	0,034			

^{3.} Ces produits sont visés par le règlement CEE, portant sur les substances qui appauvrissent la couche d'ozone. En conséquence, les valeurs qui leur correspondent ne valent que pour les ouvrages réalisés avant 1996 et maintenus en l'état.

2.6.4.5 Mousse de polyuréthanne ou de polyisocyanate Plagues conformes à la norme NF EN 13165 (PUR).

On donne ici les caractéristiques thermiques des matériaux fabriqués en usine. Pour les produits projetés, se reporter au paragraphe 2.6.4.5.9.

2.6.4.5.1 Plaques moulées en continu entre revêtements souples et expansées avec des hydrochlorofluoro- carbures HCFC (141b)⁽⁴⁾ et/ou aux pentanes

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	τ)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Revêtements perméables à la diffusion	27 ≤ ρ ≤ 40	0,035	1 400	60	60
Alu > 50 µm ou reconnus étanches aux gaz	27 ≤ ρ ≤ 40	0,030	1 400	60	60

2.6.4.5.2 Plaques découpées dans des blocs moulés en continu et expansés avec des hydrochlorofluoro- carbures HCFC (141b)⁽⁴⁾ et/ou aux pentanes

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	τ)
Materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	37 ≤ ρ ≤ 65	0,041	1 400	60	60

2.6.4.5.3 Plaques moulées en continu injectées entre deux parements rigides (métal, verre, etc.)

Matériaux ou application	(ρ)	(λ)	(C _p)	()	μ)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Expansées avec des hydrochlorocarbures (4) ou du pentane	37 ≤ ρ ≤ 60	0,032	1 400	60	60
Expansées sans gaz occlus autre que l'air	37 ≤ ρ ≤ 60	0,035	1 400	60	60

2.6.4.5.4 Plaques moulées en continu projetés sur un parement rigide (plâtre, dérivés du bois, etc.) expansées avec des hydrochlorofluorocarbures⁽⁵⁾ ou aux pentanes

	Matériaux ou application	(ρ)	(λ)	(C _p)	(1	μ)
		en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
		30 ≤ ρ ≤ 50	0,035	1 400	60	60

2.6.4.5.5 Plaques moulées en continu ou découpées dans des blocs moulés expansés sans gaz occlus autres que l'air ou du CO2

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	μ)
Materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	15 ≤ ρ ≤ 30	0,040	1 400	60	60

^{4.} Ces produits sont visés par le règlement CEE, portant sur les substances qui appauvrissent la couche d'ozone. En conséquence, les valeurs qui leur correspondent ne valent que pour les ouvrages réalisés avant 1996 et maintenus en l'état.

^{5.} Ces produits sont visés par le règlement CEE, portant sur les substances qui appauvrissent la couche d'ozone. En conséquence, les valeurs qui leur correspondent ne valent que pour les ouvrages réalisés avant 1996 et maintenus en l'état.

2.6.4.5.6 Plaques conformes à la norme NF T 56-203, découpées dans des blocs moulés en discontinu avec gaz CFC (5)

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	μ)
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Référence AD	30 ≤ ρ < 35	0,030	1 400	60	60
Référence BD	35 ≤ ρ < 40	0,030	1 400	60	60
Référence CD	40 ≤ ρ < 50	0,035	1 400	60	60
Référence DD	50 ≤ ρ < 60	0,035	1 400	60	60
Référence ED	60 ≤ ρ < 70	0,040	1 400	60	60
Référence FD	70 ≤ ρ < 100	0,045	1 400	60	60

2.6.4.5.7 Plaques conformes à la norme NF T 56-203, découpées dans des blocs moulés en discontinu avec gaz CFC $^{(5)}$

Motérioux ou application	(ρ)	(λ)	(C _p)	()	μ)
Matériaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Référence AC	29 ≤ ρ < 31	0,030	1 400	60	60
Référence BC	31 ≤ ρ < 33	0,030	1 400	60	60
Référence CC	33 ≤ ρ < 37	0,035	1 400	60	60
Référence DC	37 ≤ ρ < 46	0,035	1 400	60	60
Référence EC	46 ≤ ρ < 56	0,035	1 400	60	60
Référence FC	56 ≤ ρ < 66	0,040	1 400	60	60
Référence GC	66 ≤ ρ < 75	0,040	1 400	60	60
Référence HC	75 ≤ ρ < 100	0,045	1 400	60	60

2.6.4.5.8 Plaques moulées en continu avec gaz CFC⁽⁶⁾

Matériaux ou application	(p)	(λ)	(C _p)	()	τ)
Materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	27 ≤ ρ ≤ 35	0,030	1 400	60	60

2.6.4.5.9 Plaques expansées, fabriquées à partir de polyuréthanne mais n'entrant pas dans les familles définies ci-dessus

Matériaux ou application	(ρ)	(λ)	(C _p)	()	μ)
Materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	20 ≤ ρ < 60	0,050	1 400	60	60

^{5.} Ces produits sont visés par le règlement CEE, portant sur les substances qui appauvrissent la couche d'ozone. En conséquence, les valeurs qui leur correspondent ne valent que pour les ouvrages réalisés avant 1996 et maintenus en l'état.

^{6.} Ces produits sont visés par le règlement CEE, portant sur les substances qui appauvrissent la couche d'ozone. En conséquence, les valeurs qui leur correspondent ne valent que pour les ouvrages réalisés avant 1996 et maintenus en l'état.

2.6.4.5.10 Mousse de polyuréthanne ou de polyisocyanurate ou mousse de faible densité à base d'isocyanate à cellules ouvertes

Matériaux ou application	(p)	(λ)	(C _p)	(1	u)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Application en sol in situ sous chape	20 ≤ ρ < 60	0,050	1 400	60	60
Autres applications	5 ≤ ρ < 60	0,060	1 400	60	60

2.6.4.6 Mousse phénolique rigide

On ne donne ici que les caractéristiques thermiques des matériaux fabriqués en usine.

2.6.4.6.1 Panneaux fabriqués en continu, expansés aux hydrochlorofluorocarbures (HCFC 141b) et (ou) aux hydrochlorocarbures (LBL2) et (ou) aux pentanes

Matériaux ou application	(ρ) en kg/m³	(λ) en W/(m.K)	(<i>C_p</i>) en J∕(kg.K)	()	τ)
materiaux ou application	(ρ) en kg/m	(x) en vv/(m.k)		Sec	Humide
	30 ≤ ρ ≤ 45	0,030	1 400	50	50

2.6.4.6.2 Panneaux fabriqués à partir de mousse phénolique mais n'entrant pas dans la famille cidessus

Matériaux ou application	ou application (ρ) en kg/m ³ (λ) (C	(C _n)	(1	μ)	
materiaux ou application	(β) en kg/m	en W/(m.K)	en J/(k͡g.K)	Sec	Humide
	30 ≤ ρ ≤ 60	0,050	1 400	50	50

2.6.4.7 Autres matières plastiques alvéolaires fabriquées en usine

Matériaux ou application	(a) on ka/m³	(ρ) en kg/m ³ $(λ)$ en W/(m.K)	(C) en J/(kg.K)	(C) on Wka K)	(μ)	
materiaux ou application	(ρ) en kg/m	(A) ell vv/(III.K) p		Sec	Humide	
Isolants fabriqués à partir d'autres matières plastiques alvéolaires	7 ≤ ρ ≤ 100	0,065				

2.6.5 Plaques à base de perlite expansée

2.6.5.1 Plaques comportant un pourcentage de perlite expansée et de fibres supérieur à 80 %

Matériaux ou application	ériaux ou application (ρ) en kg/m³ (λ) en W/(m.K) (C) en J/(kg.K)	()	ι)		
materiaux ou application		(A) ell VV (III.R)	(C) en o/(kg.k)	Sec	Humide
	220 ≤ ρ ≤ 275	0,062	900	5	5
	180 ≤ ρ ≤ 220	0,060	900	5	5
	150 ≤ ρ ≤ 180	0,059	900	5	5

2.6.5.2 Plaques à base de perlite expansée et de cellulose agglomérées, n'entrant pas dans la famille ci-dessus

Matériaux ou application	(ρ) en kg/m³	(λ) en W/(m.K)	(C _p) en J/(kg.K)	()	μ)
Materiaux ou application	(ρ) en kg/m²	(λ) en vv /(m.K)		Sec	Humide
	140 ≤ ρ < 260	0,064			

2.6.6 Plaques homogènes de verre cellulaire

Matériaux ou application	(a) an ka/m³	(1) on M//m (/)	(C) on I//kg K)	(1	τ)
Materiaux ou application	lication (ρ) en kg/m ³ (λ) en W/(m.K)	(C) en J/(kg.K)	Sec	Humide	
Fabrications postérieures à 1978	110 ≤ ρ ≤ 140	0,051	1 000	00	00
rabilications posterieures à 1976	140 ≤ ρ ≤ 180	0,057	1 000	00	00

2.6.7 Produits manufacturés à base de fibres végétales (laine de chanvre, laine de lin en panneaux ou rouleaux, coton, etc.)

2.6.7.1 Cellulose à base de papiers broyés

Matériaux ou application	(ρ)	(λ)	(C _p)	()	μ)	
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide	
Application par machine pneumatique	Voir les annexes IX des arrêtés relatifs aux caractéristiques thermiques					
Application manuelle par épandage	et aux exigences de performance énergétique des bâtiments nouveaux et des parties nouvelles de bâtiments, soumis à la RT 2012.					

2.6.7.2 Chanvre et lin

Matériaux ou application	(ρ)	(λ)	(C _p)	()	μ)		
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide		
Fibres liées	Voir les annexes IX des arrêtés relatifs aux caractéristiques thermiques						
Fibres non liées : en vrac	et aux exigences de performance énergétique des bâtiments nouveaux et des parties nouvelles de bâtiments, soumis à la RT 2012.						

2.6.7.3 Paille de blé comprimée

Matériaux ou application	(ρ)	(λ)	(C _p)	()	μ)		
	en kg/m³ en W/(m.K) en J/(kg.K) Sec H						
Transversalement au sens de la paille	Voir les annexes IX des arrêtés relatifs aux caractéristiques thermiques et aux exigences de performance énergétique des bâtiments nouveaux						
Dans le sens de la paille	et des parties nouvelles de bâtiments, soumis à la RT 2012.						

2.6.7.4 Autres types de paille comprimée

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	μ)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	Voir les annexes IX et aux exigences de et des parties nouve	performance én	ergétique des bâ	timents nouv	•

2.6.7.5 Autres isolants à base de fibres végétales

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	μ)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	Voir les annexes IX et aux exigences de et des parties nouve	performance én	ergétique des bât	timents nouve	•

2.6.8 Produits manufacturés à base de fibres animales (laine de mouton, etc.)

2.6.8.1 Laine de mouton

Matériaux ou application	(ρ)	(λ)	(C _p)	(µ	ι)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	Voir les annexes IX et aux exigences de et des parties nouvel	performance én	ergétique des bât	timents nouve	

2.6.8.2 Autres isolants à base de fibres animales

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	μ)	
	materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
		Voir les annexes IX of et aux exigences de et des parties nouvel	performance én	ergétique des bâ	itiments nouv	•

2.7 Matières plastiques synthétiques compactes, mastics et produits d'étanchéité

2.7.1 Matières synthétiques compactes d'usage courant dans le bâtiment

Matériaux ou application	(ρ)	(λ)	(C _p)	(μ)
Materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Naturel	910	0,13	1 100	10 000	10 000
Néoprène (polychloroprène)	1 240	0,23	2 140	10 000	10 000
Butyle (isobutène), plein/coulé à chaud	1 200	0,24	1 400	200 000	200 000
Caoutchouc mousse	60-80	0,06	1 500	7 000	7 000
Caoutchouc dur (ébonite), plein	1 200	0,17	1 400	OC	OC
Éthylène propylène diène monomère (EPDM)	1 150	0,25	1 000	6 000	6 000
Polyisobuthylène	930	0,20	1 100	10 000	10 000
Polysulfure	1 700	0,40	1 000	10 000	10 000
Butadiène	980	0,25	1 000	100 000	100 000
Acryliques	1 050	0,20	1 500	10 000	10 000
Polycarbonates	1 200	0,20	1 200	5 000	5 000
Polytétrafluoréthylène (PTFE)	200	0,25	1 000	10 000	10 000
Chlorure de polyvinyle (PVC)	1 390	0,17	1900	50 000	50 000
Polyméthylméthacrylate (PMMA)	1 180	0,18	1 500	50 000	50 000
Polyacétate	1 410	0,30	1 400	100 000	100 000
Polyamide (nylon)	1 150	0,25	1 600	50 000	50 000
Polyamide 6.6 avec 25 % de fibres de verre	1 450	0,30	1 600	50 000	50 000
Polyéthylène/polythène, haute densité	980	0,50	1 800	100 000	100 000
Polyéthylène/polythène, basse densité	920	0,33	2 200	100 000	100 000
Polystyrène	1 050	0,16	1 300	100 000	100 000
Polypropylène	910	0,22	1 800	10 000	10 000
Polypropylène avec 25 % de fibres de verre	1 200	0,25	1 800	10 000	10 000
Polyuréthanne (PU)	1 200	0,25	1 800	6 000	6 000
Résine époxy	1 200	0,20	1 400	10 000	10 000
Résine phénolique	1 300	0,30	1 700	100 000	100 000
Résine polyester	1 400	0,19	1 200	10 000	10 000

2.7.2 Mastics pour joints, étanchéité et coupure thermique

Matériaux ou application	(ρ)	(λ)	(C _p)	()	u)
Matériaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Silicagel (dessicatif)	720	0,13	1 000	œ	œ
Silicone pur	1 200	0,35	1 000	5 000	5 000
Silicone mastic	1 450	0,50	1 000	5 000	5 000
Mousse de silicone	750	0,12	1 000	10 000	10 000
Uréthane polyuréthanne (coupure thermique)	1 300	0,21	1 800	60	60
Chlorure de polyvinyle flexible avec 40 % de plastifiant	1 200	0,14	1 000	100 000	100 000
Mousse élastomère flexible	60-80	0,05	1 500	10 000	10 000
Mousse de polyuréthanne (PU)	70	0,05	1 500	60	60
Mousse de polyéthylène	70	0,05	2 300	100	100

2.7.3 Produits d'étanchéité

Les matériaux de protection, placés au-dessus de l'étanchéité ne sont pas pris en compte dans le calcul du facteur μ , sauf spécification contraire donnée dans un Avis Technique.

2.7.3.1 Asphalte

Matériaux ou application	(ρ)	(λ)	(C _p)	()	μ)
materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Asphalte pur	ρ≤2100	0,70	1 000	50 000	50 000
Asphalte sablé		1,15	1 000	50 000	50 000

2.7.3.2 Bitume

Matériaux ou application	(ρ)	(λ)	(C _p)	(1	μ)
Materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Pur	ρ≤1050	0,17	1 000	50 000	50 000
Cartons feutres et chapes souples imprégnées	1 000 ≤ ρ ≤ 1 100	0,23	1 000	50 000	50 000

2.8 Métaux

Matériaux ou application	(ρ)	(λ)	(C _p)	(μ)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Aluminium	2 700	230	880	ο¢	α
Alliages d'aluminium	2 800	160	880	α	α
Bronze	8 700	65	380	α	α
Laiton	8 400	120	380	α	α
Cuivre	8 900	380	380	α	α
Fer pur	7 870	72	450	α	α
Fer, fonte	7 500	50	450	α	α
Plomb	11 300	35	130	α	α
Acier	7 800	50	450	α	α
Acier inoxydable	7 900	17	460	α	α
Zinc	7 200	110	380	σc	œ

2.9 Autres matériaux

2.9.1 Terres et sols

2.9.1.1 Sols

Matáriaux ou application	(ρ)	(λ)	(C _p)	()	μ)
Matériaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Sable et gravier	1 700 ≤ ρ ≤ 2 200	2,0	910-1 180	50	50
Argile ou limon	1 200 ≤ ρ ≤ 1 800	1,5	1 670-2 500	50	50

2.9.1.2 Pisé, bauge, béton de terre stabilisé, blocs de terre comprimée

	Matériaux ou application	(ρ)	(λ)	(C _p)	(1	μ)
		en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
		1 770 ≤ ρ ≤ 2 000	1,1			

2.9.1.3 Revêtements de sol

Matériaux ou application	(ρ)	(λ)	(C _p)	()	μ)
Materiaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Caoutchouc	1 200	0,17	1 400	10 000	10 000
Plastique	1 700	0,25	1 400	10 000	10 000
Sous-couche, caoutchouc-mousse ou plastique cellulaire	270	0,10	1 400	10 000	10 000
Sous-couche feutre	120	0,05	1 300	20	15
Sous-couche laine	200	0,06	1 300	20	15
Sous-couche liège	ρ < 200	0,05	1 500	20	10
Plaque de liège	ρ > 400	0,065	1 500	40	20
Tapis, revêtement textile	200	0,06	1 300	5	5
Linoléum	1 200	0,17	1 400	1 000	800

2.9.2 Mortiers d'enduits et de joints de ciment ou de chaux

Les mortiers de masse volumique inférieure à 1 800 kg/m³ sont considérés comme non traditionnels.

Matériaux ou application	(ρ)	(λ)	(C _p)	()	μ)
Matériaux ou application	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	ρ > 2 000	1,8	1 000	10	6
	1 800 < ρ ≤ 2 000	1,3 (*)	1 000	10	6
	1 600 < ρ ≤ 1 800	1,0	1 000	10	6
	1 450 < ρ ≤ 1 600	0,80	1 000	10	6
	1 250 < ρ ≤ 1 450	0,70	1 000	10	6
	1 000 < ρ ≤ 1 250	0,55	1 000	10	6
	750 < ρ ≤ 1 000	0,40	1 000	10	6
	500 < ρ ≤ 750	0,30	1 000	10	6
(*) La masse volumique moyenne d'un m	ortier de pose est de 1 90	0 kg/m³.			

2.9.3 Fibres-ciment et fibres-ciment cellulose

2.9.3.1 Fibres-ciment

Matériaux ou application	(ρ)	(λ)	(C _p) (μ)		μ)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	1 800 < ρ ≤ 2 200	0,95			
	1 400 ≤ ρ ≤ 1 800	0,65			

2.9.3.2Fibres-ciment cellulose

Matériaux ou application	(ρ)	(λ)	(C _p)	()	μ)
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	1 400 < ρ ≤ 1 800	0,46			
	1 000 ≤ ρ ≤ 1 400	0,35			

2.9.4 Plaques à base de vermiculite agglomérées aux silicates

Matériaux ou application	(ρ)	(λ)	(C _p)	(μ)	
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
	400 < ρ ≤ 500	0,19			
	300 < ρ ≤ 400	0,14			
	200 < ρ ≤ 300	0,10			

2.9.5 Verre

Matériaux ou application	(ρ)	(λ)	(C _p)	(μ)	
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Verre sodo-calcaire (y compris le verre flotté)	2 500	1,00	750	œ	œ
Quartz	2 200	1,40	750	œ	œ
Pâte de verre	2 000	1,20	750	×	œ

2.9.6 Matériaux en vrac

Les caractéristiques de ces matériaux sont fonction de leur mise en œuvre ; elles sont données dans le fascicule « Parois opaques ».

2.9.7 Gaz

Matériaux ou application	(ρ)	(λ)	(C _p)	(μ)	
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Air	1,23	0,025	1 008	1	1
Dioxyde de carbone	1,95	0,014	820	1	1
Argon	1,70	0,017	519	1	1
Hexafluorure de soufre	6,36	0,013	614	1	1
Krypton	3,56	0,009	245	1	1
Xénon	5,68	0,0054	160	1	1

2.9.8 Eau

Matériaux ou application	(ρ)	(λ)	(C _p)	(μ)	
	en kg/m³	en W/(m.K)	en J/(kg.K)	Sec	Humide
Glace à −10 °C	920	2,30	2 000		
Glace à 0 °C	900	2,20	2 000		
Neige fraîchement tombée (< 30 mm)	100	0,05	2 000		
Neige souple (30-70 mm)	200	0,12	2 000		
Neige légèrement comprimée (70-100 mm)	300	0,23	2 000		
Neige compactée (< 200 mm)	500	0,60	2 000		
Eau à 10 °C	1 000	0,60	4 190		
Eau à 40 °C	990	0,63	4 190		
Eau à 80 °C	970	0,67	4 190		