Homework #10

Fall 2021 A. Stepanov

(due Friday, November 12, by 5:00 p.m. CST)

No credit will be given without supporting work.

7. Let $\psi > 0$ and let X_1, X_2, \dots, X_n be a random sample from a probability distribution with probability density function

$$f(x; \psi) = \frac{\psi}{2\psi} \cdot (2-x)^{\psi-1}, \qquad 0 < x < 2,$$
 zero otherwise.

Recall: $W = -\ln\left(1 - \frac{X}{2}\right)$ has an Exponential distribution with mean $\theta = \frac{1}{\psi}$

$$\hat{\hat{\psi}} = \frac{n-1}{\sum_{i=1}^{n} \left(-\ln\left(1 - \frac{X_i}{2}\right)\right)}$$
 is an unbiased estimator of ψ .

k) Suggest a confidence interval for ψ with $(1 - \alpha) 100 \%$ confidence level.

① Use
$$Y = \sum_{i=1}^{n} \left(-\ln\left(1 - \frac{X_i}{2}\right) \right)$$
.

- ② If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then $2T/\theta = 2\lambda T$ has a $\chi^2(2\alpha)$ distribution.
- 1) Suppose n = 3, and $x_1 = 0.62$, $x_2 = 1.54$, $x_3 = 1.86$. Use part (k) to construct a 90% confidence interval for ψ .
- m) Find a sufficient statistic $u(X_1, X_2, ..., X_n)$ for ψ .

n) Find the Fisher information $I(\psi)$.

- ① Find $Var(\hat{\psi})$. ("Hint": Recall Homework #08 problem 7 part (g).)
- 2 Find the Rao-Cramér lower bound.
- Is $\hat{\psi}$ an efficient estimator of ψ ? Does Var($\hat{\psi}$) attain the R.C.L.B.? If $\hat{\psi}$ is not efficient, find its efficiency.

8. Let $\xi > 0$ and let X_1, X_2, \dots, X_n be a random sample from a probability distribution with probability density function

$$f(x;\xi) = \frac{1}{2} \xi^4 x^{11} e^{-\xi x^3}, \quad x > 0,$$
 zero elsewhere.

Recall: $W = X^3$ has a Gamma ($\alpha = 4, \theta = \frac{1}{\xi}$) distribution.

$$\hat{\xi} = \frac{4n-1}{\sum_{i=1}^{n} X_i^3}$$
 is an unbiased estimator of ξ .

- h) Suggest a confidence interval for ξ with $(1-\alpha)100\%$ confidence level.
 - ① Use $Y = \sum_{i=1}^{n} X_{i}^{3}$.
 - ② If T has a Gamma $(\alpha, \theta = 1/\lambda)$ distribution, then $2T/\theta = 2\lambda T$ has a $\chi^2(2\alpha)$ distribution.

- i) Suppose n = 5, $x_1 = 0.3$, $x_2 = 0.6$, $x_3 = 1.2$, $x_4 = 1.3$, $x_5 = 1.8$. Use part (h) to construct a 90% confidence interval for ξ .
- j) Find a sufficient statistic $u(X_1, X_2, ..., X_n)$ for ξ .
- k) Find the Fisher information $I(\xi)$.

(After you are done with part (k), glance back at Homework #09 problem 8 part (g).)

1) Is $\hat{\xi}$ an efficient estimator of ξ ?

If $\hat{\xi}$ is not efficient, find its efficiency.

- ① Find $Var(\hat{\xi})$. ("Hint": Recall Homework #08 problem 8 part (d).)
- ② Find the Rao-Cramér lower bound.
- Is $\hat{\xi}$ an efficient estimator of ξ ? Does $Var(\hat{\xi})$ attain the R.C.L.B.? If $\hat{\xi}$ is not efficient, find its efficiency.

in STAT 410

9. Let $\lambda > 0$ and let $X_1, X_2, ..., X_n$ be a random sample from a probability distribution with probability density function

$$f(x; \lambda) = \frac{\lambda}{x^2}$$
, $x \ge \lambda$, zero otherwise.

d) Find a sufficient statistic $u(X_1, X_2, ..., X_n)$ for λ .