

TOWARD THE FUTURE OF MANNED SPACE EXPLORATION

A NOVEL WEARABLE INTERFACE FOR OPTIMAL HUMAN-ROBOT COLLABORATION

Avinash Baskaran and Chad G. Rose Department of Mechanical Engineering, Auburn University

BACKGROUND

- · Human-Robot interaction (HRI) can help astronauts during dangerous or taxing EVAs by providing assistive forces and torques to reduce neuromuscular load
- Sub-optimal interaction between humans and robots produces antagonistic forces and torques, diminishing control stability and degrading performance

(left: Astronaut Sunita Williams using a high torque hand-held tool, right: A robotic hand device for assistance during space walks).

METHODS

3D printed flexible electrodes embedded in a fabric sleeve will be used to estimate fatigue and movement intent for more optimal human-robot collaboration

BACKGROUND

Modeling fatigue: For non-isometric tasks, sEMG time-frequency spectral characteristics correlate to fatigue **Estimating intent:** Decomposition of sEMG signal gives muscles contributions $(W_{[i,j]})$ to intended movements, $(H_{[i,j]})$.

Intent Prediction Process

$$\begin{split} H_{[i,j]}^{n+1} &= H_{[i,j]}^{n} \frac{((W^{n})^{T} V)_{[i,j]}}{((W^{n})^{T} W^{n} H^{n})_{[i,j]}} \\ W_{[i,j]}^{n+1} &= W_{[i,j]}^{n} \frac{(V(H^{n+1})^{T})_{[i,j]}}{(W^{n} H^{n+1} (H^{n+1})^{T})_{[i,j]}} \end{split}$$

Fatigue Estimation Process

$$C(t,f) = \frac{1}{4\pi^2} \int_{-\infty}^{\infty} f\left(u + \frac{\tau}{2}\right) f^*\left(u - \frac{\tau}{2}\right) e^{-2\pi i \tau f} d\tau$$

$$< f^0 t >= \int_{-\infty}^{\infty} C(t,\omega) d\omega = |a_i(t)|^2$$

$$< f^1 t >= \int_{-\infty}^{\infty} \frac{C(t,\omega)}{c^0 + c^0} \omega d\omega = f_{in}(t)$$

Experimental Validation Protocol

Stage 1. Validation

Stage 2. Comprehensive human subjects trial

Stage 3. Trial with spacesuit alove

BACKGROUND

Preliminary results suggest that the interface is able to model both neuromuscular fatigue and movement intent accurately, advancing the state of the art in HRI

This work meets practical needs in space-suit mounted robotics and human robot interaction more broadly, as no other work has presented such an approach. Future work will include a comprehensive system usability study

- [2] O. Cellk, M. O'Malley, C. Boake, H. Levin, N. Yozbatiran, and T. Reistetter. Normalized movement quality measures for therapeutic robots strongly correlate with clinical motor impairment measures. IEEE Trans. on Neural Systems and Rehab. Engineering, 2010.

 [4] M. L. Gemhardt, J. A. Jones, R. A. Scheuring, A. F. Abercromby, J. A. Tuxhorn, and J. R. Norcross. Risk of compromised eva performance and crew health due to inadequate eva suit systems. 2009.
- [5] E. Jovanov, I. K. Small, T. D. Rolin, H. Ganegoda, and C. Hill. Long term monitoring of respiration and CO2 using flexible printed sensors. 2020.
- [6] K. E. Madden, A. Deshpande, B. J. Peters, J. M. Rogers, E. A. Laske, and E. McBryan. The influence of robotic assistance on reducing euromuscular effort and fatigue during extravehicular activity glove use. 2017.
- [7] J. Massion, V. Gurfinkel, M. Lipshits, A. Obadia, and K. Popov. [strategy and synergy: two levels of equilibrium control during movement. effects of the microgravity). Comptes rendus de l'Academie des sciences. Serie III. Sciences de la vie. 1992.
- [8] K. Min, D. Shin, J. Lee, and S. Kakei. Electromyogram refinement using muscle synergy based regulation of uncertain information. Jour biomechanics, 2018.
- [9] S. A. Overduin, A. d'Avella, J. Roh, and E. Bizzi. Modulation of muscle synergy recruitment in primate grasping. J. of Neuroscience, 2008. 10] J. Rogers, B. Peters, E. Laske, and E. McBryan. Development and testing of robotically assisted extravehicular activity gloves. 47th International Conference on Environmental Systems, 2017
- 11] C. G. Rose and M. O'Malley. Hybrid rigid-soft hand exoskeleton to assist functional dexterity. IEEE Rotcs. and Automtn. Letters, 2019. [12] S. A. Safavynia, G. Torres-Oviedo, and L. Ting. Muscle synergies: Implications for clinical evaluation and rehabilitation of movement. Topics in spinal cord injury rehabilitation, 2011

unded by: NASA Space Grant Consortium

Human-robot interaction plays a key role in healthcare, automation, and military infrastructure, and will continue to enhance human performance in these and other areas.

No standard interface has yet been developed to evaluate and predict muscle fatigue and movement intent.

Toward the Future of Manned Space Exploration: A Novel Wearable Interface for Optimal Human-Robot Collaboration

Avinash Baskaran and Dr. Chad G. Rose Department of Mechanical Engineering, Auburn University

BACKGROUND

Robots can assist astronaut during dangerous or taxing EVAs by providing assistive forces and torques to reduce neuromuscular load.

Sub-optimal interaction between humans and robots due to produces antagonistic forces and torques, diminishing control stability and degrading performance

(left: Astronaut Sunita Williams using a high torque hand-held tool, right: A robotic hand device for assistance during space walks)

METHODS

A wearable interface embedded with surface electrodes allow for analysis of neuromuscular characteristics including fatigue and intent

Flexor digitorum superficialis (left), extensor digitorum (middle), flexor pollicis brevis (right)

IMPLEMENTATION

Processing of the muscle signals includes joint analysis of the probability density of sEMG signal amplitude, a_i(t), and instantaneous frequency, f_{in}(t) to model and predict fatique. Decomposition of sEMG signal matrices will quantify contributions of muscles (W_{fin}) to intended movements models (Hfi.il).

Non-negative Matrix Factorization

$$H_{[i,j]}^{n+1} = H_{[i,j]}^{n} \frac{((W^{n})^{T}V)_{[i,j]}}{((W^{n})^{T}W^{n}H^{n})_{[i,j]}}$$

$$W_{[i,j]}^{n+1} = W_{[i,j]}^{n} \frac{(V(H^{n+1})^{T})_{[i,j]}}{(W^{n}H^{n+1}(H^{n+1})^{T})_{[i,j]}}$$

Joint time-frequency distribution

$$\langle f^{0}|t\rangle = \int_{-\infty}^{\infty} \mathcal{C}(t,\omega) \, d\omega = |ai(t)|^{2}$$

$$\langle f^{1}|t\rangle = \int_{-\infty}^{\infty} \frac{\mathcal{C}(t,\omega)}{\langle f^{0}|t\rangle} \omega \, d\omega = f_{in}(t)$$

Intent estimation

Fatigue estimation

CONCLUSIONS

This work presents a novel human-robot interface which analyzes user fatigue and movement intent using surface electromyography.

reduces garment, It generates and communicates control parameters to wearable robots to minimize their response latency and minimize user fatigue. No other work has presented such an approach, and this work meets a need not only in the literature, but also a felt need in areas such as tele-health and rehabilitation, to Space-suit mounted robotic assistance. Future work includes a comprehensive system usability and efficacy study in a human-subjects context.

REFERENCES

[1] S. Boyas and A. Gu evel. Neuromuscular fatigue in healthy muscle: Underlying factors and adaptation mechanisms. Annals of Phys. and Rehab. Med., 2011. [2] O. Celik, M. O'Malley, C. Boake, H. Levin, N. Yozbatiran, and T. Reistetter. Normalized movement quality measures for therapeutic robots strongly correlate with clinical motor impairment measures. IEEE Trans. on Neural Systems and Rehab. Engineering, 2010.

[4] M. L. Gernhardt, J. A. Jones, R. A. Scheuring, A. F. Abercromby, J. A. Tuxhorn, and J. R. Norcross. Risk of compromised eva performance and crew health

due to inadequate eva suit systems. 2009.
[5] E. Jovanov, I. K. Small, T. D. Rolin, H. Ganegoda, and C. Hill. Long term monitoring of respiration and co2 using flexible printed sensors. 2020.

uning extraveneous activity gove use 2u17.

[7] J. Massion, V. Gurfinkel, M. Lipshits, A. Obadia, and K. Popov. [strategy and synergy: two levels of equilibrium control during movement. effects of the microgravity [Compites rendus of Academie des sciences. Serie III, Sciences de la vie, 314 2:87–92, 1992.

[8] K. Min, D. Shin, J. Lee, and S. Kakel. Electromyogram refinement using muscle synergy based regulation of uncertain information. Journal of biomechanics, 72:126–133, 2016.

[9] S. A. Overduin, A. d'Avella, J. Roh, and E. Bizzi. Modulation of muscle synergy recruitment in primate grasping. J. of Neuroscience, 28:880 – 892, 2008.
[10] J. Rogers, B. Peters, E. Laske, and E. McBryan. Development and testing of robotically assisted extravehicular activity gloves. 47th International Conference of

[6] K. E. Madden, A. Deshpande, B. J. Peters, J. M. Rogers, E. A. Laske, and E. McBryan. The influence of robotic assistance on reducing neuromuscular effort and

111 C. G. Rose and M. O'Malley. Hybrid rigid-soft hand exoskeleton to assist functional dexterity. IEEE Robotics and Automation Letters 4:73–80, 2019. [12] S. A. Safavynia, G. Torres-Oviedo, and L. Ting. Muscle synergies: Implications for clinical evaluation and rehabilitation of movement. Topics in spinal cord injury rehabilitation, 17 1:16-24, 2011.

