# Ranking Fuzzy Numbers Based on Lexicographical Ordering

B. Farhadinia

Abstract—Although so far, many methods for ranking fuzzy numbers have been discussed broadly, most of them contained some short-comings, such as requirement of complicated calculations, inconsistency with human intuition and indiscrimination. The motivation of this study is to develop a model for ranking fuzzy numbers based on the lexicographical ordering which provides decision-makers with a simple and efficient algorithm to generate an ordering founded on a precedence. The main emphasis here is put on the ease of use and reliability. The effectiveness of the proposed method is finally demonstrated by including a comprehensive comparing different ranking methods with the present one.

Keywords—Ranking fuzzy numbers, Lexicographical ordering.

#### I. INTRODUCTION

S INCE ranking and comparing fuzzy numbers plays an important role in many fuzzy optimization problems and decision-making procedure, several kinds of fuzzy rankings have appeared in the literature and various methods [1][2][7][8][9][13] have been proposed to solve such problems. Many of the existing ranking methods have been thoroughly reviewed in [3] and more recently in [4]. The most commonly used technique is to map fuzzy numbers by an appropriate transformation into real numbers and subsequently realize a comparison of them. Up to now, no single existing ranking approach stands obviously superior to the others because almost each method involves different drawbacks such as the lack of discrimination, difficulty in implementing, inconsistency with human intuition and producing counterintuitive ordering. In this concern, any approach has to be judged by its own merit. At present, the specific rational properties proposed in [18] provide a boost to the comparison of fuzzy number ranking approaches. Besides, many other ranking methods have been investigated based on various concepts like the area measurement [9][10][11][14][21], the  $\alpha$ -level set [6], the centroid point of fuzzy numbers [9][17], the mean and standard deviation values [12], the radius of gyration [10], the coefficient of variance [7], Hamming distance [19], the total integral values [13], the two crisp maximizing and minimizing barriers [8], the possibility and probability measure of fuzzy events [12], the artificial neural networks [16], the area compensation [11], the area between the centroid and original points [17], the signed distance [21], and so on.

Except a few approaches, others are not simple in calculation procedure and their results are not satisfactory in every case. To overcome such problems, the purpose of this paper is to

B. Farhadinia is with the Department of Mathematics, University of Mohaghegh Ardabili, P. O. Box. 179, Ardabil, Iran, e-mail: farhadinia@uma.ac.ir, bfarhadinia@yahoo.com.au

present a ranking method based on lexicographical ordering. This present contribution is outlined as follows: Section 2 is devoted to give the definitions of fuzzy numbers and some related results of fuzzy arithmetic on LR fuzzy numbers. In Section 3 the fuzzy lexicographical ordering is introduced and then the satisfaction of some reasonable properties are stated. The latter section is completed by constructing an ordering algorithm. Finally, Section 4 presents the effectiveness of the proposed method by comparing it with the other known ranking approaches.

### II. PRELIMINARIES

To start with, it is reviewed some preliminary notions, definitions and results in fuzzy sets theory to be used throughout this article. These are stated as follows.

Definition 1. A fuzzy set  $\widetilde{A}$  in X is characterized by a membership function  $\mu_{\widetilde{A}}: X \to [0,1]$ , and denoted by

$$\widetilde{A} = \{(x, \mu_{\widetilde{A}}(x)) \mid x \in X\}.$$

Definition 2. An  $\alpha$ -cut or  $\alpha$ -level of the set  $\widetilde{A}$ , is the crisp set  $[\widetilde{A}]_{\alpha} = \{x \in X \mid \mu_{\widetilde{A}}(x) \geq \alpha\}.$ 

Definition 3. The support of a fuzzy set  $\widetilde{A}$ , is the crisp set  $\operatorname{Supp}(\widetilde{A}) = \{x \in X \mid \mu_{\widetilde{A}}(x) > 0\}.$ 

Definition 4. A fuzzy set  $\widetilde{A}$  is called a fuzzy number if the following conditions are satisfied:

- (i)  $\widetilde{A}$  is normal. It means that there exists an  $x \in X$  such that  $\mu_{\widetilde{A}}(x) = 1$ ; (ii)  $\mu_{\widetilde{A}}$  is quasi-convex. It means that for every  $x, y \in X$
- (ii)  $\mu_{\widetilde{A}}$  is quasi-convex. It means that for every  $x,y\in X$   $\mu_{\widetilde{A}}(\gamma x+(1-\gamma)y)\geq \min\{\mu_{\widetilde{A}}(x),\mu_{\widetilde{A}}(y)\},\gamma\in[0,1];$
- (iii)  $\mu_{\widetilde{A}}$  is upper semi-continuous.
- (iv) Supp $(\tilde{A})$  is bounded in X.

Let  $\mathcal{F}(R)$  be the set of all fuzzy numbers on R.

It is well known that the  $\alpha$ -level set of a fuzzy number is a closed and bounded interval  $[\underline{A}(\alpha), \overline{A}(\alpha)]$ , where  $\underline{A}(\alpha)$  and  $\overline{A}(\alpha)$  denote respectively the left- and right-hand endpoints of  $[\widetilde{A}]_{\alpha}$ .

Definition 5. Let  $L,R:[0,\infty)\to [0,1]$  be two upper semi-continuous, non-increasing functions satisfying L(0)=R(0)=1, L(1)=R(1)=0, invertible on [0,1]. Samples of L(.) and R(.) can be found in [22]. Furthermore, let  $\underline{a}$  and  $\overline{a}$  be real positive numbers. The fuzzy number  $\widetilde{a}\in\mathcal{F}(R)$  is an LR fuzzy number if

$$\widetilde{a}(x) \equiv \mu_{\widetilde{a}}(x) = \begin{cases} L(\frac{\underline{\underline{a}}-x}{\underline{a}}), & x \leq \underline{\underline{a}}, \\ 1, & \underline{\underline{a}} \leq x \leq \overline{\overline{a}}, \\ R(\frac{x-\overline{\overline{a}}}{\overline{a}}), & x \geq \overline{\overline{a}}. \end{cases}$$
(1)

It is symbolically written  $\widetilde{a}=(\underline{\underline{a}},\overline{\overline{a}},\underline{a},\overline{a})_{LR}$ , where  $\underline{\underline{a}}$  and  $\overline{\overline{a}}$  are called the mean values satisfying  $\underline{\underline{a}}\leq\overline{\overline{a}}$  and  $\underline{a},\ \overline{a}$  are the left and right spreads, respectively.

Definition 6. An LR fuzzy number  $\widetilde{a} \in \mathcal{F}(R)$  is said to be a trapezoidal fuzzy number if the functions L and R are linear. Under the latter assumption, a real-numbered quadruple  $(\underline{a}, \overline{\overline{a}}, \underline{a}, \overline{a})_{LR}$  represents a trapezoidal fuzzy number.

Definition 7. One obtains the so-called triangular fuzzy number when the mean values of a trapezoidal fuzzy number fulfilling  $\underline{a} = \overline{\overline{a}} = a$ . In this case, triple  $(a, \underline{a}, \overline{a})_{LR}$  characterizes the triangular fuzzy number  $\widetilde{a} \in \mathcal{F}(R)$ .

Remark 1. If  $\widetilde{a} \in \mathcal{F}(R)$  is a trapezoidal fuzzy number then

$$[\widetilde{a}]_{\alpha} = [\underline{a} - L^{-1}(\alpha)\underline{a}, \overline{\overline{a}} + R^{-1}(\alpha)\overline{a}], \quad 0 \le \alpha \le 1,$$
 (2)

needless to say, in the case that  $\widetilde{a} \in \mathcal{F}(R)$  is a triangular fuzzy number then

$$\begin{split} [\widetilde{a}]_{\alpha} &= [a - (1 - \alpha)\underline{a}, a + (1 - \alpha)\overline{a}], \quad 0 \leq \alpha \leq 1, \end{split}$$
 when  $L(x) = R(x) = 1 - x.$ 

#### III. FUZZY LEXICOGRAPHICAL ORDERING

Although problem of ordering of fuzzy numbers has been discussed broadly so far and many approaches have been extensively proposed, they contained some shortcomings and in some situations they may fail to exhibit the consistency of human intuition. Also most of the existing approaches are not simple in calculation procedure.

In order to overcome the mentioned problems, specially the complexity of the computational procedures, it is here presented a ranking method based on lexicographical ordering. A question to ask is why lexicographic order is implemented to compare fuzzy numbers. This is due to it providing decisionmakers with a simple and efficient algorithm that formulates an ordering founded on a precedence and also the lexicographic order is a total order on ground terms when the precedence is total. In other words, any two fuzzy numbers  $\widetilde{a}, b \in \mathcal{F}(R)$  are comparable in the sense that one has either  $\widetilde{a} \prec \widetilde{b}$  or  $\widetilde{a} \succ \widetilde{b}$  or  $\widetilde{a} \approx b$ .

Before proceeding to present the main results, a number of definitions are required in this stage.

Definition 8. Let  $\widetilde{a} \in \mathcal{F}(R)$  be a fuzzy number. Define

- $C(\widetilde{a}) = \inf\{x \in \operatorname{Supp}(\widetilde{a}); \ \widetilde{a}(x) = 1\},\$
- (ii)  $L(\widetilde{a}) = \inf \operatorname{Supp}(\widetilde{a}),$
- (iii)  $W(\widetilde{a}) = |\operatorname{Supp}(\widetilde{a})|,$
- $S(\widetilde{a}) = \int \widetilde{a}(x) dx$ (iv)
- $V(\widetilde{a}) = (C(\widetilde{a}), L(\widetilde{a}), W(\widetilde{a}), S(\widetilde{a})).$ (v)

Definition 9. For  $X, Y \in \mathbb{R}^n$ , the lexicographical ordering on  $R^n$ , denoted by  $\prec_{lex}$ , is defined by requiring

$$X = (x_1, x_2, ..., x_n) \prec_{lex} Y = (y_1, y_2, ..., y_n)$$

if and only if there is  $1 \le i \le n$  so that

$$x_j = y_j$$
 holds for  $j < i$  and  $x_i < y_i$ .

Furthermore,  $\leq_{lex}$  means that  $X \prec_{lex} Y$  or X = Y. On the basis of the latter definitions, the following fuzzy lexicographic order is established on  $\mathcal{F}(R)$ :

- $\begin{array}{lll} \widetilde{a} \prec \widetilde{b} & \text{if and only if} & V(\widetilde{a}) \prec_{lex} V(\widetilde{b}), \\ \widetilde{a} \preceq \widetilde{b} & \text{if and only if} & V(\widetilde{a}) \preceq_{lex} V(\widetilde{b}), \\ \widetilde{a} \approx & \widetilde{b} & \text{if and only if} & V(\widetilde{a}) \preceq_{lex} V(\widetilde{b}) \end{array}$ (iii) and  $V(\widetilde{a}) \succeq_{lex} V(\widetilde{b}),$ if and only if  $V(\widetilde{a}) = V(\widetilde{b})$ .

Obviously, the relations  $\widetilde{a} \succ \widetilde{b}$  and  $\widetilde{a} \succeq \widetilde{b}$  can be viewed as  $\widetilde{b} \prec \widetilde{a}$  and  $\widetilde{b} \preceq \widetilde{a}$ , respectively.

It is not hard to see that the fuzzy lexicographic order ≺ has the following reasonable properties [18]:

- (i)
- $\widetilde{a} \preceq \widetilde{a}$ , If  $\widetilde{a} \prec \widetilde{b}$  and  $\widetilde{b} \prec \widetilde{c}$ , then  $\widetilde{a} \prec \widetilde{c}$ . (ii)
- If  $\widetilde{a} \prec \widetilde{b}$ , then  $\widetilde{b} \prec \widetilde{a}$  can not hold. (iii)
- If  $\sup \operatorname{Supp}(\widetilde{a}) \leq \inf \operatorname{Supp}(\widetilde{b})$  then  $\widetilde{a} \prec \widetilde{b}$ . (iv)
- (v) If  $\widetilde{a} \leq \widetilde{b}$  and  $\widetilde{b} \leq \widetilde{a}$  then  $\widetilde{a} \approx \widetilde{b}$ .
- If  $\widetilde{a} \preceq \widetilde{b}$  then  $\widetilde{a}^* \preceq \widetilde{b}^*$  where  $\widetilde{a}^* = \widetilde{a} + \widetilde{c} \in \mathcal{F}(R)$ (vi) and  $\widetilde{b}^* = \widetilde{b} + \widetilde{c} \in \mathcal{F}(R)$ .

It is to be noted that unlike different types of the existing ranking orders, the fuzzy lexicographic order is so easy to handle the calculations. As particular case, if  $\tilde{a}$  in parametric representation is given by  $(\underline{a}, \overline{a}, \underline{a}, \overline{a})_{LR}$  then  $C(\widetilde{a}) = \underline{a}$  $L(\widetilde{a}) = \underline{\underline{a}} - \underline{\underline{a}}, W(\widetilde{a}) = \overline{\overline{a}} - \underline{\underline{a}} + \overline{\overline{a}} + \underline{\underline{a}} \text{ and } S(\widetilde{a}) = \overline{\overline{a}} - \underline{\underline{a}} + \frac{1}{2}(\overline{a} + \underline{\underline{a}}).$ Another advantage which arises from this ordering is a simple and fast algorithm to determine stepwise the precedence ordering of the fuzzy numbers. However, the algorithm may terminate successfully at step one while the comparison is complete.

Algorithm 1. (Fuzzy lexicographic order)

- Step 1: Input two fuzzy numbers  $\tilde{a}$  and  $\tilde{b}$ . Then, according to Definition 8 do:
- Step 2: Compare  $C(\widetilde{a})$  and  $C(\widetilde{b})$ . If  $C(\widetilde{a}) = C(\widetilde{b})$  then goto Step 3. Otherwise stop and the larger C(\*) is, the larger corresponding fuzzy number \* is.
- Step 3: Compare  $L(\tilde{a})$  and  $L(\tilde{b})$ . If  $L(\tilde{a}) = L(\tilde{b})$  then goto Step 4. Otherwise stop and the larger L(\*) is, the larger corresponding fuzzy number \* is.
- Step 4: Compare  $W(\widetilde{a})$  and  $W(\widetilde{b})$ . If  $W(\widetilde{a}) = W(\widetilde{b})$  then goto Step 5. Otherwise stop and the larger W(\*) is, the larger corresponding fuzzy number \* is.
- Step 5: Compare  $S(\widetilde{a})$  and  $S(\widetilde{b})$ . If  $S(\widetilde{a}) = S(\widetilde{b})$  then stop and output  $\widetilde{a} \approx b$ . Otherwise the larger S(\*) is, the larger corresponding fuzzy number \* is.

# IV. NUMERICAL EXAMPLES

In this section, the aim is to demonstrate that the results of the fuzzy lexicographic order are generally more reasonable than the outcomes when ranked with the other approaches. In order to confirm the reasonability of the propose ordering, the several experiments performed in the literature [2][5][7][8][9][20][21] are again considered in showing the capability of the approach.

Example 1. Consider the two fuzzy numbers  $\widetilde{a}=(2,2,0.1,0.1)_{LR}$  and  $\widetilde{b}=(3,3,0.9,1)_{LR}$ . One can observe from Figure 1 that  $\tilde{a}$  should be intuitively smaller than b. The ranking outcome with the CV index proposed in [7] is  $\widetilde{a} \succ \widetilde{b}$  which is not rational. It is easy to see that the

 $\begin{tabular}{l} TABLE\ I\\ Comparative\ results\ of\ Example\ 2. \end{tabular}$ 

| Fuzzy number                                            | Fuzzy lexicographic order                               | Wang                                                    |
|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| $\widetilde{a} = (6, 6, 1, 1)_{LR}$                     | $V(\widetilde{a}) = (6, 5, -, -)$                       | 0.2500                                                  |
| $\widetilde{b} = (6, 6, 0.1, 1)_{LR}$                   | $V(\widetilde{b}) = (6, 5.9, -, -)$                     | 0.5339                                                  |
| $\widetilde{c} = (6, 6, 0, 1)_{LR}$                     | $V(\widetilde{c}) = (6, 6, -, -)$                       | 0.5625                                                  |
| Results                                                 | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$ | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$ |
| Sign distance P=1                                       | Sign distance P=2                                       | Chu-Tsao                                                |
| 6.12                                                    | 8.52                                                    | 3.000                                                   |
| 12.45                                                   | 8.82                                                    | 3.126                                                   |
| 12.50                                                   | 8.85                                                    | 3.085                                                   |
| $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$ | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$ | $\widetilde{a} \prec \widetilde{c} \prec \widetilde{b}$ |
| Cheng distance                                          | CV index                                                |                                                         |
| 6.0210                                                  | 0.0280                                                  |                                                         |
| 6.3490                                                  | 0.0098                                                  |                                                         |
| 6.3519                                                  | 0.0089                                                  |                                                         |
| $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$ | $\widetilde{c} \prec \widetilde{b} \prec \widetilde{a}$ |                                                         |

fuzzy lexicographic order leads to  $\widetilde{a} \prec \widetilde{b}$  at the first step of Algorithm 1 resulting  $C(\widetilde{a}) = 2 < C(\widetilde{b}) = 3$ .

Example 2. Consider the three fuzzy numbers  $\widetilde{a}=(6,6,1,1)_{LR}$ ,  $\widetilde{b}=(6,6,0.1,1)_{LR}$  and  $\widetilde{c}=(6,6,0.1)_{LR}$ . The corresponding ranking outcomes with the methods in [17] and [1] are as the same as with the fuzzy lexicographic order, that is,  $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$ . Meanwhile, by the methods in [9] and [7] the results are respectively  $\widetilde{a} \prec \widetilde{c} \prec \widetilde{b}$  and  $\widetilde{c} \prec \widetilde{b} \prec \widetilde{a}$ . However, as follows from Figure 2, the two latter relations are not rational and reasonable. More comparative results are available in Table 1.

*Example 3.* Consider the sets of three fuzzy numbers as follows:

Set 1:  $\widetilde{a} = (0.5, 0.5, 0.1, 0.5)_{LR}$ ,  $\widetilde{b} = (0.7, 0.7, 0.3, 0.3)_{LR}$  and  $\widetilde{c} = (0.9, 0.9, 0.5, 0.1)_{LR}$ .

Set 2:  $\widetilde{a} = (0.4, 0.7, 0.1, 0.2)_{LR}$ ,  $\widetilde{b} = (0.7, 0.7, 0.4, 0.2)_{LR}$  and  $\widetilde{c} = (0.7, 0.7, 0.2, 0.2)_{LR}$ .

Set 3:  $\widetilde{a}=(0.5,0.5,0.2,0.2)_{LR},\ \widetilde{b}=(0.5,0.8,0.2,0.1)_{LR}$  and  $\widetilde{c}=(0.5,0.5,0.2,0.4)_{LR}.$ 

Set 4:  $\widetilde{a} = (0.4, 0.7, 0.4, 0.1)_{LR}$ ,  $\widetilde{b} = (0.5, 0.5, 0.3, 0.4)_{LR}$  and  $\widetilde{c} = (0.6, 0.6, 0.5, 0.2)_{LR}$ .

The fuzzy numbers considered in Set 1-4 are depicted in Figure 3-6, respectively. A comparison with other methods is provided in Table 2.

# V. CONCLUSION

The argument of this application explained that how the fuzzy lexicographical ordering makes the method easier to program and the ranked results more intuitively to produce. Particular emphasis was put on the ease of use and reliability. In addition, it was presented a comprehensive experimental study comparing different ranking methods to demonstrate the effectiveness of the proposed method.

 $\begin{tabular}{l} TABLE\ II\\ Comparative\ results\ of\ Example\ 3. \end{tabular}$ 

|                         |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Authors/method          | Fuzzy number                                                                                | Set 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Set 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Choobineh-Li            | $\dfrac{\widetilde{b}}{\widetilde{c}}$                                                      | 0.3330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | $\overset{b}{\sim}$                                                                         | 0.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                             | 0.6670<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.6670<br>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                         | Results                                                                                     | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         |                                                                                             | Set 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Set 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                             | 0.3330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                             | 0.4167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                             | $\stackrel{0.5417}{\sim} \stackrel{\sim}{\sim} \sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.6111<br>~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                         |                                                                                             | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Yager                   | $\widetilde{a}$                                                                             | 0.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.575                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | $\dfrac{a}{\widetilde{b}}$                                                                  | 0.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | $\widetilde{c}$                                                                             | 0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         | Results                                                                                     | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         |                                                                                             | Set 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Set 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                             | 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                             | 0.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                             | 0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                             | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chen                    | $\widetilde{a}$                                                                             | 0.3375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | $\dfrac{a}{\widetilde{b}}$                                                                  | 0.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | $\overset{\circ}{\widetilde{c}}$                                                            | 0.6670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.6250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | Results                                                                                     | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | Results                                                                                     | Set 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Set 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                             | 0.3750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                             | 0.4250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.5700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                             | 0.5500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.6250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                             | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Baldwin-Guild           | ~                                                                                           | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Daiuwiii-Guiiu          | $\widetilde{\widetilde{b}}_{\widetilde{c}}$                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         | $\stackrel{o}{\sim}$                                                                        | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.27<br>0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         |                                                                                             | 0.44<br>~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         | Results                                                                                     | $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\widetilde{a} \approx \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                         |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                         |                                                                                             | Set 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Set 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                         |                                                                                             | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                         |                                                                                             | 0.27<br>0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.40<br>0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                         |                                                                                             | 0.27<br>0.37<br>0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.40<br>0.42<br>0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Cl. T                   | ~                                                                                           | $0.27$ $0.37$ $0.45$ $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $0.40$ $0.42$ $0.42$ $\widetilde{a} \prec \widetilde{b} \approx \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Chu-Tsao                | ~ a ~ ~ ~                                                                                   | $0.27$ $0.37$ $0.45$ $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$ $0.29900$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $0.40$ $0.42$ $0.42$ $\widetilde{a} \prec \widetilde{b} \approx \widetilde{c}$ $0.28470$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chu-Tsao                | $\widetilde{a}$ $\widetilde{b}$ $\widetilde{c}$                                             | 0.27<br>0.37<br>0.45<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>0.29900<br>0.35000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.40<br>0.42<br>0.42<br>$\widetilde{a} \prec \widetilde{b} \approx \widetilde{c}$<br>0.28470<br>0.32478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chu-Tsao                | $\frac{\widetilde{a}}{\widetilde{b}}$                                                       | 0.27<br>0.37<br>0.45<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>0.29900<br>0.35000<br>0.39930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.40$ $0.42$ $0.42$ $\widetilde{a} \prec \widetilde{b} \approx \widetilde{c}$ $0.28470$ $0.32478$ $0.35000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chu-Tsao                | $\widetilde{a}$ $\widetilde{b}$ $\widetilde{c}$ $\widetilde{c}$ Results                     | 0.27<br>0.37<br>0.45<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>0.29900<br>0.35000<br>0.39930<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.40$ $0.42$ $0.42$ $\widetilde{a} \prec \widetilde{b} \approx \widetilde{c}$ $0.28470$ $0.32478$ $0.35000$ $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Chu-Tsao                |                                                                                             | $0.27$ $0.37$ $0.45$ $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$ $0.29900$ $0.35000$ $0.39930$ $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$ Set 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $0.40$ $0.42$ $0.42$ $\widetilde{a} \prec \widetilde{b} \approx \widetilde{c}$ $0.28470$ $0.32478$ $0.35000$ $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$ Set 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Chu-Tsao                |                                                                                             | 0.27<br>0.37<br>0.45<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>0.29900<br>0.35000<br>0.39930<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>Set 3<br>0.25000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $0.40$ $0.42$ $0.42$ $\widetilde{a} \prec \widetilde{b} \approx \widetilde{c}$ $0.28470$ $0.32478$ $0.35000$ $\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$ $\cot 4$ $0.24402$                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Chu-Tsao                |                                                                                             | 0.27<br>0.37<br>0.45<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>0.29900<br>0.35000<br>0.39930<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>Set 3<br>0.25000<br>0.31526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \widetilde{a} \prec \widetilde{b} \approx \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.28470 \\ 0.32478 \\ 0.35000 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 4} \\ 0.24402 \\ 0.26243 \end{array}$                                                                                                                                                                                                                                                                                                                                                      |
| Chu-Tsao                |                                                                                             | 0.27<br>0.37<br>0.45<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>0.29900<br>0.35000<br>0.39930<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>Set 3<br>0.25000<br>0.31526<br>0.27475                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.40<br>0.42<br>0.42<br>$\widetilde{a} \prec \widetilde{b} \approx \widetilde{c}$<br>0.28470<br>0.32478<br>0.35000<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>Set 4<br>0.24402<br>0.26243<br>0.26190                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         |                                                                                             | $\begin{array}{c} 0.27 \\ 0.37 \\ 0.45 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.29900 \\ 0.35000 \\ 0.39930 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.25000 \\ 0.31526 \\ 0.27475 \\ \widetilde{a} \prec \widetilde{c} \prec \widetilde{b} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \widetilde{a} \prec \widetilde{b} \approx \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.28470 \\ 0.32478 \\ 0.35000 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 4} \\ 0.24402 \\ 0.26243 \\ 0.26190 \\ \widetilde{a} \prec \widetilde{c} \prec \widetilde{b} \end{array}$                                                                                                                                                                                                                                                                                  |
| Chu-Tsao<br>Yao-Wu      | Results                                                                                     | $\begin{array}{c} 0.27 \\ 0.37 \\ 0.45 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.29900 \\ 0.35000 \\ 0.39930 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.25000 \\ 0.31526 \\ 0.27475 \\ \widetilde{a} \prec \widetilde{c} \prec \widetilde{b} \\ \end{array}$ $\begin{array}{c} 0.600 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.40<br>0.42<br>0.42<br>$\widetilde{a} \prec \widetilde{b} \approx \widetilde{c}$<br>0.28470<br>0.32478<br>0.35000<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>Set 4<br>0.24402<br>0.26243<br>0.26190                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | Results                                                                                     | $\begin{array}{c} 0.27 \\ 0.37 \\ 0.45 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.29900 \\ 0.35000 \\ 0.39930 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.25000 \\ 0.31526 \\ 0.27475 \\ \widetilde{a} \prec \widetilde{c} \prec \widetilde{b} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \widetilde{a} \prec \widetilde{b} \approx \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.28470 \\ 0.32478 \\ 0.35000 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 4} \\ 0.24402 \\ 0.26243 \\ 0.26190 \\ \widetilde{a} \prec \widetilde{c} \prec \widetilde{b} \\ \end{array}$ $\begin{array}{c} 0.575 \\ 0.650 \\ \end{array}$                                                                                                                                                                                                                              |
|                         |                                                                                             | 0.27<br>0.37<br>0.45<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>0.29900<br>0.35000<br>0.39930<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>Set 3<br>0.25000<br>0.31526<br>0.27475<br>$\widetilde{a} \prec \widetilde{c} \prec \widetilde{b}$<br>0.600<br>0.700<br>0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \widetilde{a} \prec \widetilde{b} \approx \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.28470 \\ 0.32478 \\ 0.35000 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 4} \\ 0.24402 \\ 0.26243 \\ 0.26190 \\ \widetilde{a} \prec \widetilde{c} \prec \widetilde{b} \\ \end{array}$ $\begin{array}{c} 0.575 \\ 0.650 \\ 0.700 \\ \end{array}$                                                                                                                                                                                                                     |
|                         | Results                                                                                     | $\begin{array}{c} 0.27 \\ 0.37 \\ 0.45 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.29900 \\ 0.35000 \\ 0.39930 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.25000 \\ 0.31526 \\ 0.27475 \\ \widetilde{a} \prec \widetilde{c} \prec \widetilde{b} \\ \end{array}$ $\begin{array}{c} 0.600 \\ 0.700 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \widetilde{a} \prec \widetilde{b} \approx \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.28470 \\ 0.32478 \\ 0.35000 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 4} \\ 0.24402 \\ 0.26243 \\ 0.26190 \\ \widetilde{a} \prec \widetilde{c} \prec \widetilde{b} \\ \end{array}$ $\begin{array}{c} 0.575 \\ 0.650 \\ \end{array}$                                                                                                                                                                                                                              |
|                         | Results $\frac{\widetilde{a}}{\widetilde{b}}$ $\frac{\widetilde{c}}{\widetilde{c}}$         | 0.27<br>0.37<br>0.45<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>0.29900<br>0.35000<br>0.39930<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>Set 3<br>0.25000<br>0.31526<br>0.27475<br>$\widetilde{a} \prec \widetilde{c} \prec \widetilde{b}$<br>0.600<br>0.700<br>0.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \widetilde{a} \prec \widetilde{b} \approx \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.28470 \\ 0.32478 \\ 0.35000 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 4} \\ 0.24402 \\ 0.26243 \\ 0.26190 \\ \widetilde{a} \prec \widetilde{c} \prec \widetilde{b} \\ \end{array}$ $\begin{array}{c} 0.575 \\ 0.650 \\ 0.700 \\ \end{array}$                                                                                                                                                                                                                     |
|                         | Results $\frac{\widetilde{a}}{\widetilde{b}}$ $\frac{\widetilde{c}}{\widetilde{c}}$         | $\begin{array}{c} 0.27 \\ 0.37 \\ 0.45 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.29900 \\ 0.35000 \\ 0.39930 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.25000 \\ 0.31526 \\ 0.27475 \\ \widetilde{a} \prec \widetilde{c} \prec \widetilde{b} \\ \end{array}$ $\begin{array}{c} 0.600 \\ 0.700 \\ 0.800 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.500 \\ \end{array}$                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \widetilde{a} \prec \widetilde{b} \approx \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.28470 \\ 0.32478 \\ 0.35000 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 4} \\ 0.24402 \\ 0.26243 \\ 0.26190 \\ \widetilde{a} \prec \widetilde{c} \prec \widetilde{b} \\ \end{array}$ $\begin{array}{c} 0.575 \\ 0.650 \\ 0.700 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 4} \\ 0.475 \\ \end{array}$                                                                                                    |
|                         | Results $\frac{\widetilde{a}}{\widetilde{b}}$ $\frac{\widetilde{c}}{\widetilde{c}}$         | $\begin{array}{c} 0.27 \\ 0.37 \\ 0.45 \\ \overline{a} \prec \overline{b} \prec \overline{c} \\ \end{array}$ $\begin{array}{c} 0.29900 \\ 0.35000 \\ 0.39930 \\ \overline{a} \prec \overline{b} \prec \overline{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.25000 \\ 0.31526 \\ 0.27475 \\ \overline{a} \prec \overline{c} \prec \overline{b} \\ \end{array}$ $\begin{array}{c} 0.600 \\ 0.700 \\ 0.800 \\ \overline{a} \prec \overline{b} \prec \overline{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.500 \\ 0.625 \\ \end{array}$                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \hline {a \prec b} \approx \overline{c} \\ \hline 0.28470 \\ 0.32478 \\ 0.35000 \\ \hline {a \prec b} \prec \overline{c} \\ \hline \\ Set 4 \\ 0.24402 \\ 0.26243 \\ 0.26190 \\ \hline {a \prec c} \prec \overline{c} \prec \overline{b} \\ \hline 0.575 \\ 0.650 \\ 0.700 \\ \hline {a \prec b} \prec \overline{c} \\ \hline \\ \\ Set 4 \\ \hline \\ 0.2525 \\ \hline \end{array}$                                                                                                                                                                                                                                    |
|                         | Results $\frac{\widetilde{a}}{\widetilde{b}}$ $\frac{\widetilde{c}}{\widetilde{c}}$         | 0.27<br>0.37<br>0.45<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>0.29900<br>0.35000<br>0.39930<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>Set 3<br>0.25000<br>0.31526<br>0.27475<br>$\widetilde{a} \prec \widetilde{c} \prec \widetilde{b}$<br>0.600<br>0.700<br>0.800<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>Set 3<br>0.5000<br>0.0500<br>0.0500<br>0.0500                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \hline{a} \prec \widetilde{b} \approx \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.28470 \\ 0.32478 \\ 0.35000 \\ \overline{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 4} \\ 0.24402 \\ 0.26243 \\ 0.26190 \\ \overline{a} \prec \widetilde{c} \prec \widetilde{b} \\ \end{array}$ $\begin{array}{c} 0.575 \\ 0.650 \\ 0.700 \\ \overline{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 4} \\ 0.475 \\ 0.525 \\ 0.525 \\ \end{array}$                                                                                         |
|                         | Results $\frac{\widetilde{a}}{\widetilde{b}}$ $\frac{\widetilde{c}}{\widetilde{c}}$         | $\begin{array}{c} 0.27 \\ 0.37 \\ 0.45 \\ \overline{a} \prec \overline{b} \prec \overline{c} \\ \end{array}$ $\begin{array}{c} 0.29900 \\ 0.35000 \\ 0.39930 \\ \overline{a} \prec \overline{b} \prec \overline{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.25000 \\ 0.31526 \\ 0.27475 \\ \overline{a} \prec \overline{c} \prec \overline{b} \\ \end{array}$ $\begin{array}{c} 0.600 \\ 0.700 \\ 0.800 \\ \overline{a} \prec \overline{b} \prec \overline{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.500 \\ 0.625 \\ \end{array}$                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \hline {a \prec b} \approx \overline{c} \\ 0.28470 \\ 0.32478 \\ 0.35000 \\ \hline {a \prec b \prec c} \\ \hline \\ Set 4 \\ 0.24402 \\ 0.26243 \\ 0.26190 \\ \hline {a \prec c \prec b} \\ \hline \\ 0.575 \\ 0.650 \\ 0.700 \\ \hline {a \prec b \prec c} \\ \hline \\ \\ Set 4 \\ 0.2525 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                      |
|                         | Results $\frac{\widetilde{a}}{\widetilde{b}}$ $\frac{\widetilde{b}}{\widetilde{c}}$ Results | 0.27<br>0.37<br>0.45<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>0.29900<br>0.35000<br>0.39930<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>Set 3<br>0.25000<br>0.31526<br>0.27475<br>$\widetilde{a} \prec \widetilde{c} \prec \widetilde{b}$<br>0.600<br>0.700<br>0.800<br>$\widetilde{a} \prec \widetilde{b} \prec \widetilde{c}$<br>Set 3<br>0.5000<br>0.0500<br>0.0500<br>0.0500                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \hline{a} \prec \widetilde{b} \approx \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.28470 \\ 0.32478 \\ 0.35000 \\ \overline{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 4} \\ 0.24402 \\ 0.26243 \\ 0.26190 \\ \overline{a} \prec \widetilde{c} \prec \widetilde{b} \\ \end{array}$ $\begin{array}{c} 0.575 \\ 0.650 \\ 0.700 \\ \overline{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 4} \\ 0.475 \\ 0.525 \\ 0.525 \\ \end{array}$                                                                                         |
| Yao-Wu                  | Results $\frac{\widetilde{a}}{\widetilde{b}}$ $\frac{\widetilde{b}}{\widetilde{c}}$ Results | $\begin{array}{c} 0.27 \\ 0.37 \\ 0.45 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.29900 \\ 0.35000 \\ 0.39930 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.25000 \\ 0.31526 \\ 0.27475 \\ \widetilde{a} \prec \widetilde{c} \prec \widetilde{b} \\ \end{array}$ $\begin{array}{c} 0.600 \\ 0.700 \\ 0.800 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.500 \\ 0.625 \\ 0.550 \\ \widetilde{a} \prec \widetilde{c} \prec \widetilde{b} \\ \end{array}$                                                                                                                                                                                                                                   | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \overline{a} \prec \widetilde{b} \approx \widetilde{c} \\ 0.28470 \\ 0.32478 \\ 0.35000 \\ \overline{a} \prec \widetilde{b} \prec \widetilde{c} \\ \\ \overline{c} \\ 0.26243 \\ 0.26190 \\ \overline{a} \prec \widetilde{c} \prec \widetilde{b} \\ 0.575 \\ 0.650 \\ 0.700 \\ \overline{a} \prec \widetilde{b} \prec \widetilde{c} \\ \\ \overline{c} \\ 0.475 \\ 0.525 \\ 0.525 \\ \overline{a} \prec \widetilde{b} \approx \widetilde{c} \\ \end{array}$                                                                                                                                                             |
| Yao-Wu<br>Sign distance | Results $\frac{\widetilde{a}}{\widetilde{b}}$ $\frac{\widetilde{c}}{\widetilde{c}}$         | $\begin{array}{c} 0.27 \\ 0.37 \\ 0.45 \\ \overline{a} \prec \overline{b} \prec \overline{c} \\ \end{array}$ $\begin{array}{c} 0.29900 \\ 0.35000 \\ 0.39930 \\ \overline{a} \prec \overline{b} \prec \overline{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.25000 \\ 0.31526 \\ 0.27475 \\ \overline{a} \prec \overline{c} \prec \overline{b} \\ \end{array}$ $\begin{array}{c} 0.600 \\ 0.700 \\ 0.800 \\ \overline{a} \prec \overline{b} \prec \overline{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.500 \\ 0.625 \\ 0.550 \\ \overline{a} \prec \overline{c} \prec \overline{b} \\ \end{array}$ $\begin{array}{c} \text{I.20} \\ 1.40 \\ 1.60 \\ \end{array}$                                                                                                                                                                                    | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \hline {a} \prec {b} \approx {\overline c} \\ \\ 0.28470 \\ 0.32478 \\ 0.35000 \\ \overline {a} \prec {b} \prec {\overline c} \\ \\ \hline \text{Set 4} \\ 0.24402 \\ 0.26243 \\ 0.26190 \\ \overline {a} \prec {\overline c} \prec {\overline b} \\ \\ \hline 0.575 \\ 0.650 \\ 0.700 \\ \overline {a} \prec {\overline b} \prec {\overline c} \\ \\ \hline \text{Set 4} \\ 0.155 \\ 0.525 \\ 0.525 \\ \overline {a} \prec {\overline b} \approx {\overline c} \\ \\ \hline 1.15 \\ 1.30 \\ 1.40 \\ \end{array}$                                                                                                       |
| Yao-Wu<br>Sign distance | Results $\frac{\widetilde{a}}{\widetilde{b}}$ $\frac{\widetilde{b}}{\widetilde{c}}$ Results | $\begin{array}{c} 0.27 \\ 0.37 \\ 0.45 \\ \overline{a} \prec \overline{b} \prec \overline{c} \\ \end{array}$ $\begin{array}{c} 0.29900 \\ 0.35000 \\ 0.39930 \\ \overline{a} \prec \overline{b} \prec \overline{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.25000 \\ 0.31526 \\ 0.27475 \\ \overline{a} \prec \overline{c} \prec \overline{b} \\ \end{array}$ $\begin{array}{c} 0.600 \\ 0.700 \\ 0.800 \\ \overline{a} \prec \overline{b} \prec \overline{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.500 \\ 0.625 \\ 0.550 \\ \overline{a} \prec \overline{c} \prec \overline{b} \\ \end{array}$ $\begin{array}{c} \text{I.20} \\ 1.40 \\ 1.60 \\ \end{array}$                                                                                                                                                                                    | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \hline {a} \prec {b} \approx {\overline c} \\ \\ 0.28470 \\ 0.32478 \\ 0.35000 \\ \overline {a} \prec {b} \prec {\overline c} \\ \\ \hline \text{Set 4} \\ 0.24402 \\ 0.26243 \\ 0.26190 \\ \overline {a} \prec {\overline c} \prec {\overline b} \\ \\ \hline 0.575 \\ 0.650 \\ 0.700 \\ \overline {a} \prec {\overline b} \prec {\overline c} \\ \\ \hline \text{Set 4} \\ 0.155 \\ 0.525 \\ 0.525 \\ \overline {a} \prec {\overline b} \approx {\overline c} \\ \\ \hline 1.15 \\ 1.30 \\ 1.40 \\ \end{array}$                                                                                                       |
| Yao-Wu<br>Sign distance | Results                                                                                     | $\begin{array}{c} 0.27 \\ 0.37 \\ 0.45 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} 0.29900 \\ 0.35000 \\ 0.39930 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.25000 \\ 0.31526 \\ 0.27475 \\ \widetilde{a} \prec \widetilde{c} \prec \widetilde{b} \\ \end{array}$ $\begin{array}{c} 0.600 \\ 0.700 \\ 0.800 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.500 \\ 0.625 \\ 0.550 \\ \widetilde{a} \prec \widetilde{c} \prec \widetilde{b} \\ \end{array}$ $\begin{array}{c} \text{I.20} \\ 1.40 \\ 1.60 \\ \widetilde{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$                                                                                                            | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \overline{a} \prec \widetilde{b} \approx \widetilde{c} \\ 0.28470 \\ 0.32478 \\ 0.35000 \\ \overline{a} \prec \widetilde{b} \prec \widetilde{c} \\ \\ \overline{c} \\ 0.26190 \\ \overline{a} \prec \widetilde{c} \prec \widetilde{b} \\ 0.26190 \\ \overline{a} \prec \widetilde{c} \prec \widetilde{c} \\ 0.575 \\ 0.650 \\ 0.700 \\ \overline{a} \prec \widetilde{b} \prec \widetilde{c} \\ \\ \overline{c} \\ 0.525 \\ 0.525 \\ \overline{a} \prec \widetilde{b} \approx \widetilde{c} \\ \\ 1.15 \\ 1.30 \\ 1.40 \\ \overline{a} \prec \widetilde{b} \prec \widetilde{c} \\ \end{array}$                           |
| Yao-Wu<br>Sign distance | Results                                                                                     | $\begin{array}{c} 0.27 \\ 0.37 \\ 0.45 \\ \overline{a} \prec \overline{b} \prec \overline{c} \\ \end{array}$ $\begin{array}{c} 0.29900 \\ 0.35000 \\ 0.39930 \\ \overline{a} \prec \overline{b} \prec \overline{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.25000 \\ 0.31526 \\ 0.27475 \\ \overline{a} \prec \overline{c} \prec \overline{b} \\ \end{array}$ $\begin{array}{c} 0.600 \\ 0.700 \\ 0.800 \\ \overline{a} \prec \overline{b} \prec \overline{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.500 \\ 0.625 \\ 0.550 \\ \overline{a} \prec \overline{c} \prec \overline{b} \\ \end{array}$ $\begin{array}{c} \text{I.20} \\ 1.40 \\ 1.60 \\ \end{array}$                                                                                                                                                                                    | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \hline {a} \prec {b} \approx {\overline c} \\ \\ 0.28470 \\ 0.32478 \\ 0.35000 \\ \overline {a} \prec {\overline b} \prec {\overline c} \\ \\ \hline \text{Set 4} \\ 0.24402 \\ 0.26243 \\ 0.26190 \\ \overline {a} \prec {\overline c} \prec {\overline b} \\ \\ \hline 0.575 \\ 0.650 \\ 0.700 \\ \overline {a} \prec {\overline b} \prec {\overline c} \\ \\ \hline \text{Set 4} \\ 0.155 \\ 0.525 \\ 0.525 \\ \overline {a} \prec {\overline b} \approx {\overline c} \\ \\ \hline 1.15 \\ 1.30 \\ 1.40 \\ \end{array}$                                                                                             |
| Yao-Wu<br>Sign distance | Results                                                                                     | $\begin{array}{c} 0.27 \\ 0.37 \\ 0.45 \\ \hline{a} \prec \overrightarrow{b} \prec \overrightarrow{c} \\ \end{array}$ $\begin{array}{c} 0.29900 \\ 0.35000 \\ 0.39930 \\ \hline{a} \prec \overrightarrow{b} \prec \overrightarrow{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.25000 \\ 0.31526 \\ 0.27475 \\ \hline{a} \prec \overrightarrow{c} \prec \overleftarrow{b} \\ \end{array}$ $\begin{array}{c} 0.600 \\ 0.700 \\ 0.800 \\ \hline{a} \prec \overrightarrow{b} \prec \overrightarrow{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.500 \\ 0.625 \\ 0.550 \\ \hline{a} \prec \overrightarrow{c} \prec \overleftarrow{b} \\ \end{array}$ $\begin{array}{c} \text{I.20} \\ 1.40 \\ 1.60 \\ \hline{a} \prec \overrightarrow{b} \prec \overrightarrow{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 1.00 \\ 1.25 \\ \end{array}$           | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \hline {a \prec b} \approx \overline{c} \\ \hline \\ 0.28470 \\ 0.32478 \\ 0.35000 \\ \hline {a \prec b} \prec \overline{c} \\ \hline \\ Set 4 \\ 0.24402 \\ 0.26243 \\ 0.26190 \\ \hline {a \prec c} \prec \overline{c} \prec \overline{b} \\ \hline \\ 0.575 \\ 0.650 \\ 0.700 \\ \hline {a \prec b} \prec \overline{c} \\ \hline \\ \\ Set 4 \\ \hline \\ 0.475 \\ 0.525 \\ \hline \\ \\ 0.525 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                        |
| Yao-Wu<br>Sign distance | Results                                                                                     | $\begin{array}{c} 0.27 \\ 0.37 \\ 0.45 \\ \hline{a} \prec \overrightarrow{b} \prec \overrightarrow{c} \\ \end{array}$ $\begin{array}{c} 0.29900 \\ 0.35000 \\ 0.39930 \\ \hline{a} \prec \overrightarrow{b} \prec \overrightarrow{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.25000 \\ 0.31526 \\ 0.27475 \\ \hline{a} \prec \overrightarrow{c} \prec \overleftarrow{b} \\ \end{array}$ $\begin{array}{c} 0.600 \\ 0.700 \\ 0.800 \\ \hline{a} \prec \overrightarrow{b} \prec \overrightarrow{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.5500 \\ 0.625 \\ 0.5550 \\ \hline{a} \prec \overrightarrow{c} \prec \overleftarrow{b} \\ \end{array}$ $\begin{array}{c} \text{1.20} \\ 1.40 \\ 1.60 \\ \hline{a} \prec \overrightarrow{b} \prec \overrightarrow{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 1.00 \\ 1.25 \\ 1.10 \\ \end{array}$ | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \hline {a} \prec {b} \approx {\overline c} \\ 0.28470 \\ 0.32478 \\ 0.35000 \\ \overline {a} \prec {\overline b} \prec {\overline c} \\ \hline \\ \text{Set 4} \\ 0.26243 \\ 0.26190 \\ \overline {a} \prec {\overline c} \prec {\overline b} \\ \hline \\ 0.575 \\ 0.650 \\ 0.700 \\ \overline {a} \prec {\overline b} \prec {\overline c} \\ \hline \\ \text{Set 4} \\ 0.475 \\ 0.525 \\ 0.525 \\ \overline {a} \prec {\overline b} \approx {\overline c} \\ \hline \\ 1.15 \\ 1.30 \\ 1.40 \\ \overline {a} \prec {\overline b} \prec {\overline c} \\ \hline \\ \text{Set 4} \\ 0.95 \\ 1.05 \\ \hline \end{array}$ |
| Yao-Wu<br>Sign distance | Results                                                                                     | $\begin{array}{c} 0.27 \\ 0.37 \\ 0.45 \\ \hline{a} \prec \overrightarrow{b} \prec \overrightarrow{c} \\ \end{array}$ $\begin{array}{c} 0.29900 \\ 0.35000 \\ 0.39930 \\ \hline{a} \prec \overrightarrow{b} \prec \overrightarrow{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.25000 \\ 0.31526 \\ 0.27475 \\ \hline{a} \prec \overrightarrow{c} \prec \overleftarrow{b} \\ \end{array}$ $\begin{array}{c} 0.600 \\ 0.700 \\ 0.800 \\ \hline{a} \prec \overrightarrow{b} \prec \overrightarrow{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 0.500 \\ 0.625 \\ 0.550 \\ \hline{a} \prec \overrightarrow{c} \prec \overleftarrow{b} \\ \end{array}$ $\begin{array}{c} \text{I.20} \\ 1.40 \\ 1.60 \\ \hline{a} \prec \overrightarrow{b} \prec \overrightarrow{c} \\ \end{array}$ $\begin{array}{c} \text{Set 3} \\ 1.00 \\ 1.25 \\ \end{array}$           | $\begin{array}{c} 0.40 \\ 0.42 \\ 0.42 \\ \hline {a \prec b} \approx \overline{c} \\ \hline \\ 0.28470 \\ 0.32478 \\ 0.35000 \\ \hline {a \prec b} \prec \overline{c} \\ \hline \\ Set 4 \\ 0.24402 \\ 0.26243 \\ 0.26190 \\ \hline {a \prec c} \prec \overline{c} \prec \overline{b} \\ \hline \\ 0.575 \\ 0.650 \\ 0.700 \\ \hline {a \prec b} \prec \overline{c} \\ \hline \\ \\ Set 4 \\ \hline \\ 0.475 \\ 0.525 \\ \hline \\ \\ 0.525 \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                        |



Fig. 1. Fuzzy numbers in Example 1.



Fig. 2. Fuzzy numbers in Example 2.



Fig. 3. Fuzzy numbers in Example 3, Set 1.

# 1.5

## REFERENCES

- [1] S. Abbasbandy, T. Hajjari, A new approach for ranking of trapezoidal fuzzy numbers, Computers and Mathematics with Applications, In press.
- J. Baldwin and N. Guild, Comparison of fuzzy sets on the same decision space, Fuzzy Sets and Systems, Vol. 2, (1979), 213-233.
- [3] G. Bortolan and R. Degani, A review of some methods for ranking fuzzy numbers, Fuzzy Sets and Systems, Vol. 15, (1985), 1-19.
- [4] S. J. Chen and C. L. Hwang, Fuzzy Multiple Attribute Decision Making: Methods and Applications, Springer-Verlag, Berlin, (1992).
- [5] S.-H. Chen, Ranking fuzzy numbers with maximizing set and minimizing set, Fuzzy Sets and Systems, Vol. 17, (1985), 113129.
- [6] C. H. Cheng and D. L. Mon, Fuzzy system reliability analysis by confidence interval, Fuzzy Sets and Systems, Vol. 56, (1993), 29-35.
- [7] C. H. Cheng, A new approach for ranking fuzzy numbers by distance method, Fuzzy Sets and Systems, Vol. 95, (1998), 307-317.
- [8] F. Choobineh and H. Li, An index for ordering fuzzy numbers, Fuzzy Sets
- and Systems, Vol. 54, (1993), 287294. T. C. Chu and C. T. Tsao, Ranking fuzzy numbers with an area between the centroid point and original point, Computers and Mathematics with
- Applications, Vol. 43, (2002), 111-117. [10] Y. Deng, Z. Zhenfu and L. Qi, Ranking fuzzy numbers with an area method using radius of gyration, Computers and Mathematics with Applications, Vol. 51, (2006), 1127-1136.
- [11] P. Fortemps and M. Roubens, Ranking and defuzzification methods based on area compensation, Fuzzy Sets and Systems, Vol. 82, (1996), 319-330.
- [12] E. S. Lee and R. J. Li, Comparison of fuzzy numbers based on the probability measure of fuzzy events, Computers and Mathematics with Applications, Vol. 15, (1988), 887-896.
- [13] T. S. Lious and M. J. Wang, Ranking fuzzy numbers with integral value, Fuzzy Sets and Systems, Vol. 50, (1992), 247-255.
- [14] X. Liu, Measuring the satisfaction of constraints in fuzzy linear programming, Fuzzy Sets and Systems, Vol. 122, (2001), 263-275.
- [15] B. Matarazzo and G. Munda, New approaches for the comparison of LR fuzzy numbers: a theoretical and operational analysis, Fuzzy Sets and Systems, Vol. 118, (2001), 407-418.
- [16] I. Reguena, M. Delgado and J. I. Verdegay, Automatic ranking of fuzzy numbers with the criterion of decision-maker learnt by an artificial neural network, Fuzzy Sets and Systems, Vol. 73, (1995), 185-199.



Fig. 4. Fuzzy numbers in Example 3, Set 2.



Fig. 5. Fuzzy numbers in Example 3, Set 3.



Fig. 6. Fuzzy numbers in Example 3, Set 4.

- [17] Y. J. Wang and H. S. Lee, The revised method of ranking fuzzy numbers with an area between the centroid and original points, Computers and Mathematics with Applications, Vol. 55, (2008), 2033-2042.
- [18] X. Wang, E. E. Kerre, Reasonable properties for the ordering of fuzzy quantities (I), Fuzzy Sets and Systems, Vol. 118, (2001), 375-385.
- [19] R.R. Yager, On choosing between fuzzy subsets, Kybernetcs, Vol. 9, (1980), 151-154.
- [20] R. R. Yager, A procedure for ordering fuzzy subsets of the unit interval, Information Sciences, Vol. 24, (1981), 143-161.
- [21] J.-S. Yao and K. Wu, Ranking fuzzy numbers based on decomposition principle and signed distance, Fuzzy Sets and Systems, Vol. 116, (2000), 275-288.
- [22] H. J. Zimmermann, Fuzzy set theory and its applications, Fourth Edition, Kluwer Academic Publishers, (1998).