Analysis 1

S.-J. Kimmerle

Practical example: isothermal compression of an ideal gas

(Source: lernhelfer.de)

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Practical example: isothermal compression of an ideal gas

Example (Isothermal compression of an ideal gas)

The work W carried out on a closed (but non isolated) system for the isothermal compression of an ideal gas from $V_1 = s_1 A$ to $V_2 = s_2 A$ is

$$W=-\int_{s_1}^{s_2} p A ds.$$

For an ideal gas we have pV = nRT = const. Here V = sA.

Thus we may compute:

$$W = -\int_{s_1}^{s_2} p A ds = -\int_{s_1}^{s_2} \frac{nRT}{s} ds = -nRT \left(\ln(s_2) - \ln(s_1) \right) = nRT \ln\left(\frac{s_1}{s_2}\right).$$

Let $s_2 = 0.9s_1$, R = 8.31 J/mol/K, n = 0.22 mol (5l oxygen) and T = 300 K, then

$$W = 0,22 \cdot 8,31 \cdot 300 \cdot \ln(10/9) \text{ J} \approx 57,8 \text{ J}$$
.

(In general:
$$W = -\int_{V_1}^{V_2} \frac{nRT}{V} dV = -(nRT \ln(V_2) - \ln(V_1)) = RT \ln(\frac{V_1}{V_2})$$
)

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Analysis 1

S.-J. Kimmerle

Some exercises

1. Compute a primitive for:

- a) $\int (2x+1) dx$, b) $\int \exp(x) dx$, c) $\int \frac{3}{1+x^2} dx$, d) $\int 2(\cos(x) + ax) dx$, e) $\int (3x-2)^2 dx$, f) $\int (1+t^2) dx$,
- g) $\int (11 + \sqrt{17}) \sqrt{x} \, dx$.

2. Compute <u>all</u> primitives for:

a) $f(t) = 2e^t - \frac{5}{t} + 1$, b) $f(x) = 3\exp(x) - \cos(x)$, c) $f(u) = 3\sin(u) - \frac{6}{u} + 7u^2$.

3. Which values have the following definite integrals?

- a) $\int_{1}^{e} \frac{1}{t} dt$, b) $\int_{\pi}^{2} \cos(\psi) d\psi$, c) $\int_{1}^{2} 5x^{1/4}$, d) $\int_{0}^{4} (4s^{5} 6s^{3} + 8x^{2} + 5) ds$.
- 4. Based on the velocity-time law

$$v(t)=gt+v_0, \quad t\geq 0,$$

compute a time law for the falling path s(t) of a free falling body. Use v(t) = s'(t).

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral
Integral: definition and

Primitive functions

Practical computation of integrals

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Summary - outlook and review

Integrand f has to be necessarily bounded on [a, b]

For instance, all continuous functions are (Riemann) integrable

Analysis 1

S.-J. Kimmerle

Regulated integral:

f bounded, f limit of step functions w.r.t. sup norm

Other constructions of integrals

Riemann integral:

generalizes the regulated integral by considering sequences of uniformly convergent integrands

Partition only of the domain of definition ("vertical stripes")

Lebesgue integral:

- More arbitrary partitions are possible
- Any regulated function is also Lebesgue integrable
- Characteristic functions of bounded sets are Lebesgue integrable,
 other measures as the geometrical length (are, ...) are possible
- Stieltjes, Bochner, and Birkhoff integral ...

Here integrable means Riemann integrable.

Small differences that are, e.g., important in probability theory

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral Integral: definition and

Primitive functions

Practical computation of integrals

Analytical:

- By the fundamental theorem, tables, calculation rules
- (Directly by Riemann sums)
- By an expansion of the integrand into a power series

Numerical (so-called quadrature):

- Midpoint rule (like Riemann sum with t_i in the midpoint of the subinterval)
- Simpson's rule (Kepler's barrel rule)
- Romberg method
- Newton-Cotes formulas

or by computer algebra systems (Maple, Matlab Symbolic Toolbox, Mathematica . . .)

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Since integration and differentiatin are coupled, we consider how differentiation rules transfer to integration rules.

- Substitution rule (follows from the chain rule)
- Integration by parts (follows from the product rule)

Moreover, we consider

- Integration of rational functions: Partial fraction expansion
- Improper integrals

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral Integral: definition and

Primitive functions

Practical computation of integrals

Theorem (Substitution rule)

Let $I \subseteq \mathbb{R}$ an interval,

 $h: I \to \mathbb{R}$ a continuous function and

 $f:[a,b] \to \mathbb{R}$ a continuously differentiable function with

 $f([a,b])\subseteq I$,

then

$$\int_a^b h(f(t))f'(t) dt = \int_{f(a)}^{f(b)} h(x) dx.$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Important special cases of the substitution rule

Analysis 1

S.-J. Kimmerle

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Product rule for integration

Theorem (Integration by parts)

Let a < b and $f, g : [a, b] \rightarrow \mathbb{R}$ continuously differentiable functions,

then

$$\int_{a}^{b} f(x)g'(x) \, dx = [f(x)g(x)]_{a}^{b} - \int_{a}^{b} f'(x)g(x) \, dx$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Revision: polynomial division with remainder I

Analysis 1

S.-J. Kimmerle

Consider a rational function

$$r: A \to \mathbb{R}, x \mapsto \frac{p(x)}{q(x)} := \frac{\sum_{i=0}^{n} a_i x^i}{\sum_{i=0}^{m} b_i x^i}, \quad a_n \neq 0, b_m \neq 0$$

where $A := \{x \in \mathbb{R} \mid \sum_{i=0}^{m} b_i x^i \neq 0\}.$

If $n \ge m$, then we set

$$p_1: \mathbb{R} \to \mathbb{R}, x \mapsto p(x) - \frac{a_n}{b_m} x^{n-m} \cdot q(x)$$

and obtain the following representation

$$r(x) = \frac{p(x)}{q(x)} = \frac{a_n}{b_m} x^{n-m} + \frac{p_1(x)}{q(x)}$$
 for all $x \in A$

where p_1 is either the zero function or a polynomial of degree smaller than n.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

This procedure may be iterated for k steps that produce a polynomial p_k

until the degree of p_k is less than n.

We end up with

$$\frac{p(x)}{q(x)} = g(x) + \frac{p_k(x)}{q(x)},$$

g a polynomial.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Before integrating a rational function $r : A \to \mathbb{R}$ as defined above,

we carry out a polynomial division:

$$\int r(x) dx = \int g(x) dx + \int \frac{p_k(x)}{q(x)} dx$$

We know how to integrate the polynomial g.

For the remainder $\frac{p_k(x)}{q(x)}$, we consider the partial fraction expansion, i.e., the rational function is decomposed into a sum of fractions (yielding only a short list of cases with explicit formulas).

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Partial fraction expansion II

Let again $r: A \to \mathbb{R}, x \mapsto \frac{p(x)}{q(x)}$ as defined above, but w.l.o.g. let degree p < degree q. Moreover, let

$$q(x) = x(x - b_1)^{k_1} \cdot (x - b_2)^{k_2} \cdot \ldots \cdot (x - b_r)^{k_r} \cdot q_1(x)^{l_1} \cdot \ldots \cdot q_2(x)^{l_2}$$

with pairwise distinct zeros b_i of multiplicity k_i and pairwise distinct quadratic polynomials q_i that do not have zeros in \mathbb{R} .

Then there exists real numbers $A_1^{[1]}, \dots, A_1^{[k_1]}, \dots, A_r^{[1]}, \dots, A_r^{[k_r]},$ $B_1^{[1]}, \dots, B_1^{[l_1]}, \dots, B_s^{[l_s]}, \dots, B_s^{[l_s]}, C_1^{[1]}, \dots, C_1^{[l_1]}, \dots, C_s^{[1]}, \dots, C_s^{[l_s]}$ s.t.

$$\frac{p(x)}{q(x)} = \sum_{i=1}^{r} \sum_{i=1}^{k_i} \frac{A_i^{[j]}}{(x-b_i)^j} + \sum_{i=1}^{s} \sum_{i=1}^{l_i} \frac{B_l^{[j]} + C_i^{[j]} x}{(q_i(x))^j} \quad \text{for all } x \in A.$$

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Thus we only have to figure out how to integrate functions of the type

 $\frac{\zeta}{(x-x_0)^k}, \quad \frac{\xi+\mu x}{(q_i(x))^{\tilde{k}}}, \quad k, \tilde{k} \in \mathbb{N}:$

Let $[a, b] \subset A$:

1)

$$\int_{a}^{b} \frac{1}{x - x_{0}} dx = [\ln(|x - x_{0}|)]_{a}^{b}, \quad x_{0} \notin [a, b]$$

2)

$$\int_{a}^{b} \frac{1}{(x-x_0)^k} dx = \frac{-1}{k-1} \left[\frac{1}{(x-x_0)^{k-1}} \right]_{a}^{b}, \quad k > 1, x_0 \notin [a,b]$$

If $4\beta - \alpha < 0$, then $q(x) = x^2 + \alpha x + b$ has no real zeros.

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Introduction

Basics (sets, mappings, and numbers)

Proof techniques

Sequences and series

Functions

Differentiation in 1d

Integration in 1d

Riemann integral

Integral: definition and properties

Primitive functions

Practical computation of integrals

Summary - outlook and review

Let $4\beta - \alpha^2 < 0$ and k > 1.

3

$$\int_{a}^{b} \frac{1}{x^{2} + \alpha x + \beta} dx = \left[\frac{2}{\sqrt{4\beta - \alpha^{2}}} \arctan\left(\frac{2x + \alpha}{\sqrt{4\beta - \alpha^{2}}} \right) \right]_{a}^{b}$$

4)

$$\int_{a}^{b} \frac{ax+b}{x^2+\alpha x+\beta} dx = \left[\frac{a}{2} \ln\left(\left|x^2+\alpha x+\beta\right|\right)\right]_{a}^{b} + \left(b-\frac{a\alpha}{2}\right) \int_{a}^{b} \frac{1}{x^2+\alpha x+\beta} dx$$

5)

$$\int_{a}^{b} \frac{1}{(x^{2} + \alpha x + \beta)^{k}} dx = \left[\frac{2x + \alpha}{(k-1)(4\beta - \alpha^{2})(x^{2} + \alpha x + \beta)^{k-1}} \right]_{a}^{b} + \frac{2(2k-3)}{(k-1)(4\beta - \alpha^{2})} \int_{a}^{b} \frac{1}{(x^{2} + \alpha x + \beta)^{k-1}} dx$$

6)

$$\int_{a}^{b} \frac{ax+b}{(x^{2}+\alpha x+\beta)^{k}} dx = \left[\frac{-a}{2(k-1)(x^{2}+\alpha x+\beta)^{k-1}}\right]_{a}^{b} + \left(b-\frac{a\alpha}{2}\right) \int_{a}^{b} \frac{1}{(x^{2}+\alpha x+\beta)^{k}} dx$$