HEART DISEASE DETECTION USING MACHINE LEARNING

A PROJECT REPORT

Submitted by

ARUNKUMAR R	[513319104006]
NITHISH KUMAR B	[513319104022]
PANNEERSELVAM K	[513319104025]
SURYA A	[513319104041]

in partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

in

COMPUTER SCIENCE AND ENGINEERING

UNIVERSITY COLLEGE OF ENGINEERING ARNI

ANNA UNIVERSITY:: CHENNAI 600 025

MAY 2023

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report "HEART DISEASE DETECTION USING MACHINE LEARNING" is the bonafide work of "ARUNKUMAR R [513319104006], NITHISH KUMAR B [513319104022], PANNEERSELVAM K [513319104025], SURYA A [513319104041]" who carried out the project work under my supervision

Signature	Signature
Mr. D. Prabhu	Mrs. G. Julin Leeya
Head Of The Department	Supervisor
Department of CSE	Department of CSE
University College of Engineering Arni,	University College of Engineering Arni,
Thatchur, Arni – 632 326.	Thatchur, Arni – 632 326.
Submitted for the Project Viva – Voce Exar	nination held on

INTERNAL EXAMINER

EXTERNAL EXAMINER

ACKNOWLEDGEMENT

We take privilege to express few words of gratitude and respect to all those who helped us in completion of this project. We thank the almighty God for giving us the opportunity of doing this project work successfully. Our heartfelt thanks to our beloved parents for their invaluable support to do this project.

With pleasure, we express our heart filled sincere thanks to our respected Dean i/c **Dr. R. ARULARASAN M.Tech.,Ph.D.,** for giving moral support and has constant association to successful of our project. It's our privilege to express our sincere thanks to the Faculty i/c, Dept of CSE, **Mr. D. PRABHU M.E., M.B.A.,** for his encouragement.

We also thank our project supervisor Mrs.G.JULIN LEEYA M.TECH., who helped us a lot to do the project effectively and has given us a valuable guidance in completing this project successfully.

We thank our **Mr.G.DHANASEKAR M.E.**, Project Coordinator for his support and valuable suggestions during our project work.

We also extend our thanks to every member of the faculty who provided valuable academic guidance, and their co-operations to do this successful project. Finally we would like to thank to our parents, relatives and friends for their encouragement and enthusiastic Co-operation.

ABSTRACT

Heart disease is one of the major causes of life complicacies and subsequently leading to death. The heart disease diagnosis and treatment are very complex, especially in the developing countries, due to the rare availability of efficient diagnostic tools and shortage of medical professionals and other resources which affect proper prediction and treatment of patients. Inadequate preventive measures, lack of experienced or unskilled medical professionals in the field are the leading contributing factors... We develop a heart disease predict system that can assist medical professionals in predicting heart disease status based on the clinical data of patients. Our approaches include three steps. Firstly, we select 13 important clinical features, i.e., age, sex, chest pain type, trestbps, cholesterol, fasting blood sugar, resting ecg, max heart rate, exercise induced angina, old peak, slope, number of vessels colored, and Thal. We shall use few algortihms such as Logistic Regression, Decision Tree, Random Forest, KNN, SVM, Stochastic gradient descent, Adaboost, Xgb.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
NO.		NO.
	ABSTRACT	iii
	LIST OF FIGURES	viii
	LIST OF ABBREVIATIONS	X
1.	INTRODUCTION	1
	1.1 GENERAL OVERVIEW OF DATA SCIENCE	3
	1.2 DATA SCIENCE	3
	1.3 ARTIFICIAL INTELLIGENCE	4
	1.3.1 LEARNING PROCESSES	5
	1.3.2 REASONING PROCESSES	6
	1.3.3 SELF – CORRECTION PROCESS	6
	1.4 PROBLEM STATEMENT	7
2.	LITERATURE SURVEY	8
3.	METHODOLOGY	12
	3.1 EXISTING SYSTEM	12
	3.2 PROPOSED SYSTEM	12
	3.2.1 COLLECTION OF DATASET	13
	3.2.2 PREPROCESSING DATA	15
	3.2.3 SELECTION OF ATTRIBUTES	15
	3.2.4 BALANCING OF DATA	16
	3.2.5 PREDICTION OF DISEASE	17

4.	WORKING OF SYSTEM	19
	4.1 SYSTEM ARCHITECTURE	19
	4.2 MACHINE LEARNING	19
	4.2.1 SUPERVISED LEARNING	19
	4.2.2 UNSUPERVISED LEARNING	21
	4.2.3 REINFORCEMENT LEARNING	22
	4.3 ALGORITHMS	22
	4.3.1 SUPPORT VECTOR MACHINE	22
	4.3.1.1 CONCEPTS IN SVM	22
	4.3.1.2 TYPES OF SVM	23
	4.3.1.3 ADVANTAGES	23
	4.3.1.4 DISADVANTAGES	24
	4.3.2 LOGISTIC REGRESSION ALGORITHM	24
	4.3.2.1 WORKING	25
	4.3.2.2 ADVANTAGES	27
	4.3.2.3 DISADVANTAGES	27
	4.3.3 ADABOOST ALGORITHM	28
	4.3.3.1 ALGORITHMS	28
	4.3.3.2 ADVANTAGES	29
	4.3.3.3 DISADVANTAGES	29
	4.3.4 XGBOOST ALGORITHM	29
	4.3.4.1 WORKING	31
	4.3.4.2 ADVANTAGES	31
	4.3.4.3 DISADVANTAGES	32
	4.3.5 DECISION TREE	32
	4.3.5.1 SELECTION MEASURES	34
	4.3.5.2 NOTABLE TYPES OF DECISION TREE	34

4.3.5.3 WORKING	35
4.3.5.4 ALGORITHM	35
4.3.5.6 ADVANTAGES	36
4.3.5.7 DISADVANTAGES	36
4.3.6 RANDOM FOREST ALGORITHM	36
4.3.6.1 ASSUMPTIONS	38
4.3.6.2 ALGORITHM	38
4.3.6.3 ADVANTAGES	38
4.3.6.4 DISADVANTAGES	39
4.3.7 STOCHASTIC GRADIENT DESCENT	39
ALGORITHM	
4.3.7.1 MOMENTUM	41
4.3.7.2 ADVANTAGES	41
4.3.7.3 DIADVANTAGES	41
4.3.8 KNN ALGORITHM	41
4.3.8.1 ALGORITHM	42
4.3.8.2 VALUE FOR K	42
4.3.8.3 WORKING	43
4.3.8.4 ADVANTAGES	43
4.3.8.5 DISADVANTAGES	43

5	EXPERIMENTAL ANALYSIS	44
	5.1 SYSTEM ARCHITECTURE	44
	5.1.1 HARDWARE REQUIREMENTS	44
	5.2.2 SOFTWARE REQUIREMENTS	44
	5.2 DATASET DETAILS	44
	5.2.1 INPUT DATASET ATTRIBUTES	45
	5.3 PERFORMANCE ANALYSIS	47
	5.3.1 CONFUSION MATRIX	47
	5.3.2 CORRELATION MATRIX	48
	5.4 PERFORMANCE EVALUATION	49
	5.4.1 EXISTING SYSTEM	49
	5.4.2 NEW SYSTEM	50
6.	SYSTEM DESIGN	51
	6.1 GENERAL	51
	6.2 DATA FLOW DIAGRAM	51
	6.3 USE CASE DIAGRAM	52
	6.4 ACTIVITY DIAGRAM	53
	6.5 SEQUENCE DIAGRAM	54
	6.6 CLASS DIAGRAM	55
7.	CONCLUSION	56
	7.1 CONCLUSION	56
	7.2 APPENDIX	57
	7.3 SNAPSHOT	62
8.	REFERENCE	67
	8.1 REFERENCE	67

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE NO.
1.1	Symptoms of Heart Disease	2
3.1	Machine Learning	14
3.2	Pre – Processing of Data	15
3.3	Correlation matrix	16
3.4	Balancing of Data	17
3.5	Prediction Disease	18
4.1	System Architecture	20
4.2	Sigmoid Curve	26
4.3	Hyperplane	26
5.1	Dataset Attributes	45
5.2	Confusion Matrix	47
5.3	Correlation Matrix	48
5.4	Existing system performance	49
5.5	New System Performance	50
6.1	Data Flow Diagram Level 0	51
6.2	Data Flow Diagram Level 1	52
6.3	Use Case Diagram	52

6.4	Activity Diagram	53
6.5	Sequence Diagram	54
6.6	Class Diagram	55
7.1	Home Page	62
7.2	Working Page	62
7.3	Predict Page	63
7.4	About Page	64
7.5	Contact Page	64
7.6.1	Result Page	65
7.6.2	Result Page	66

LIST OF ABBREVIATIONS

1 RBC Red Blood Cell 2 AI Artificial Intelligence 3 SAS Statistical Analysis Sy 4 UCI University of Californ 5 VPA Virtual Payment Address	
3 SAS Statistical Analysis Sy 4 UCI University of California	
4 UCI University of Californ	
	stem
5 VPA Virtual Daymant Addr.	ia
J VI A VIII ayillelii Addi	ess
6 ML Machine Learning	
7 CP Chest Pain	
8 FBS Fasting Blood Sugar	
9 SVM Support Vector Machi	ne
10 KNN K-Nearest Neighbours	ı
ADA Adaptive Boosting	
12 XGB Extreme Gradient Boo	sting
SGD Stochastic Gradient De	escent
14 GBM Gradient Boosting Ma	chine
15 Chol Cholesterol	
16 CA Cardiac Arrest	
17 UML Unified Modeling Lan	guage
DFD Data Flow Diagram	
19 np Numpy	
pd Pandas	
21 plt Matplotlib.Pyplot	