

Faculty of Computing

Year 2 Semester 1 (2025)

IT2120 - Probability and Statistics

Lab Sheet 04

Exercise

Instructions: Create a folder in your desktop with your registration number (Eg: "IT......"). You need to save the R script file and take screenshots of the command prompt with answers and save it in a word document inside the folder. Save both R script file and word document with your registration number (Eg: "IT......"). After you finish the exercise, zip the folder and upload the zip file to the submission link.

1. Import the dataset ('Exercise.txt') into R and store it in a data frame called "branch_data".

4 5 6	<pre>##Question 01 branch_data <- read.table("Exercise.txt", header = TRUE, sep = ",") fix(branch_data)</pre>									
7 8	■ Data Editor —									×
9	File Edit Help									
.0	1110			*					_	
1	-	Branch		Advertising_X2		vars	var6	var7	_	
12 13	2	2	3.4 4.1	120 150	7				_	
	3	3	2.8	90	3				\dashv	
4	4	4	5	200	10				-	
.5	5	5	3.7	110	5					
.6	6	6	4.5	175	6				\dashv	
17 18 19 20 21 22	7	7	3	95	2					
	8	8	4.9	185	9					
	9	9	3.2	105	4				\dashv	
	10	10	2.5	80	1					
	11	11	3.9	130	5					
	12	12	4.2	140	7					
23	13	13	2.7	100	3					
24 ≠	14	14	3.6	125	4					
25	15	15	4.8	190	8					
26	16	16	3.3	115	5					
27	17	17	4	135	6					
28	18	18	5.1	210	12					
17	19	19	3.8	145	6					

2. Identify the variable type and scale of measurement for each variable.

```
> ##Question 02
> str(branch_data)
'data.frame':
                30 obs. of 4 variables:
$ Branch
                 : num
                        1 2 3 4 5 6 7 8 9 10 ...
                        3.4 4.1 2.8 5 3.7 4.5 3 4.9 3.2 2.5 ...
$ Sales_X1
                 : num
 $ Advertising_X2: num
                        120 150 90 200 110 175 95 185 105 80 ...
 $ Years_X3
                 : num 4 7 3 10 5 6 2 9 4 1 ...
> sapply(branch_data, class)
        Branch
                     Sales_X1 Advertising_X2
                                                   Years_X3
                                   "numeric"
     "numeric"
                    "numeric"
                                                   "numeric"
```

3. Obtain boxplot for sales and interpret the shape of the sales distribution.

```
##Question 03
boxplot(Sales_X1,main="Boxplot for sales distribution",xlab="Sales",outline=TRUE,outpch=8,horizontal=TRUE)
```

Boxplot for sales distribution

4. Calculate the five number summary and IQR for advertising variable.

```
> ##Question 04
> quantile(Advertising_X2)
      0% 25% 50% 75% 100%
80.00 101.25 132.50 158.75 210.00
>
> IQR(Advertising_X2)
[1] 57.5
```

5. Write an R function to find the outliers in a numeric vector and check for outliers in years variables.

```
> ##Question 05s
> find_outliers <- function(x) {
+   Q1 <- quantile(x, 0.25)
+   Q3 <- quantile(x, 0.75)
+   IQR <- Q3 - Q1
+
+   lower_bound <- Q1 - 1.5 * IQR
+   upper_bound <- Q3 + 1.5 * IQR
+
+   outliers <- x[x < lower_bound | x > upper_bound]
+
+   return(outliers)
+ }
>   find_outliers(Years_X3)
numeric(0)
```