Matemáticas Actuariales del Seguro de Personas II

Jorge Luis Reyes García

Universidad Nacional Autónoma de México Facultad de Ciencias

jorgeluis.reyes@ciencias.unam.mx

Diciembre 2021

Prólogo

Este trabajo ha sido el resultado de un esfuerzo constante por más 10 años en mi labor como docente impartiendo las materias de Matemáticas Actuariales del Seguro de Personas I y II.

El objetivo de las notas es facilitar la comprensión y entendimiento de las matemáticas actuariales aplicadas los seguros de vida bajo tres enfoques:

- Clásico: a partir de tablas de mortalidad y valores conmutados.
- Probabilístico: Considerando variables aleatorias discretas y continuas.
- Estocástico: a partir de cadenas de Markov en tiempo discreto y tiempo continúo.

En cada capítulo encontrarán explicaciones, demostraciones y aplicaciones.

Contenido

Vidas Múltiples

Es la combinación de un conjunto de personas y se define que el estatus se mantiene vigente, siempre y cuando las muertes ocurran en un orden establecido inicialmente.

En el momento que una persona no muera en el orden definido, en ese momento se rompe el status.

A las probabilidades con orden de fallecimiento también se les conoce como probabilidades contingentes.

Probabilidad de que (x) muera antes que (y) en los próximos n años.

$$_{n}q_{xy}^{1} = \mathbb{P}(T_{x} \leqslant T_{y}, T_{x} \leq n)
 = \int_{0}^{n} \int_{u}^{\infty} f_{T_{x}T_{y}}(u, v) dv du$$

Supongamos que T_x y T_y son independientes.

$$_{n}q_{xy}^{1}=\int_{0}^{n}\int_{u}^{\infty}f_{T_{x}}(u)f_{T_{y}}(v)dvdu=\int_{0}^{n}f_{T_{x}}(u)\int_{u}^{\infty}f_{T_{y}}(v)dvdu=\int_{0}^{n}f_{T_{x}}(u)S_{T_{y}}(u)du$$

Por lo tanto,

$$_{n}q_{xy}^{1}=\int_{0}^{n}f_{\mathcal{T}_{x}}(t)S_{\mathcal{T}_{y}}(t)dt$$

En notación actuarial:

$$_{n}q_{xy}^{1}=\int_{0}^{n}{}_{t}p_{x}\cdot\mu_{x+t}\cdot{}_{t}p_{y}dt$$

Analogamente, para la vida (y) tenemos:

$$_{n}q_{yx}^{1}=\int_{0}^{n}{}_{t}p_{y}\cdot\mu_{y+t}\cdot{}_{t}p_{x}dt$$

Probabilidad de que (x) muera antes que (y)

$$\int_{0}^{\infty} q_{xy}^{1} = \mathbb{P}(T_{x} < T_{y}) = \int_{0}^{\infty} \int_{u}^{\infty} f_{T_{x}T_{y}}(u, v) dv du$$

Supongamos que T_x y T_y son independientes.

$$\int_{0}^{\infty} q_{xy}^{1} = \int_{0}^{\infty} \int_{u}^{\infty} f_{T_{x}}(u) f_{T_{y}}(v) dv du$$
$$= \int_{0}^{\infty} f_{T_{x}}(u) \int_{u}^{\infty} f_{T_{y}}(v) dv du$$
$$= \int_{0}^{\infty} f_{T_{x}}(u) S_{T_{y}}(u) du$$

Por lo tanto,

$$_{\infty}q_{xy}^{1}=\int_{0}^{\infty}f_{\mathcal{T}_{x}}(t)S_{\mathcal{T}_{y}}(t)dt$$

En notación actuarial:

$$_{\infty}q_{xy}^{1}=\int_{0}^{\infty}{}_{t}p_{x}\cdot\mu_{x+t}\cdot{}_{t}p_{y}dt$$

Analogamente, para la vida (y) tenemos:

$$_{\infty}q_{xy}^{1}=\int_{0}^{\infty}{}_{t}p_{y}\cdot\mu_{y+t}\cdot{}_{t}p_{x}dt$$

Probabilidad de que (x) muera en segundo lugar o que muera después que (y) en los próximos n años.

$$_{n}q_{xy}^{2}=\mathbb{P}(0\leq T_{y}\leq T_{x}\leq n)=\int_{0}^{n}\int_{0}^{u}f_{T_{x}T_{y}}(u,v)dvdu$$

Supongamos que T_x y T_y son independientes,

$$_{n}q_{xy}^{2} = \int_{0}^{n} \int_{0}^{u} f_{T_{x}}(u) f_{T_{y}}(v) dv du = \int_{0}^{n} f_{T_{x}}(u) \int_{0}^{u} f_{T_{y}}(v) dv du
 = \int_{0}^{n} f_{T_{x}}(u) F_{T_{y}}(u) du$$

Por lo tanto,

$$_{n}q_{xy}^{2}=\int_{0}^{n}f_{T_{x}}(t)F_{T_{y}}(y)dt$$

En notación actuarial,

$$_{n}q_{xy}^{2}=\int_{0}^{n}{}_{t}p_{x}\cdot\mu_{x+t}\cdot{}_{t}q_{y}dt$$

Analogamente, para la vida (y) tenemos:

$$_{n}q_{xy}^{2}=\int_{0}^{n}{}_{t}p_{y}\cdot\mu_{y+t}\cdot{}_{t}q_{x}dt$$

Probabilidad que (x) muera después que (y):

$$d_{\infty}q_{xy}^2 = \mathbb{P}(T_y < T_x) = \int_0^{\infty} \int_0^u f_{T_x T_y}(u, v) dv du$$

Supongamos que T_x y T_y son independientes

$$\int_{0}^{\infty} q_{xy}^{2} = \int_{0}^{\infty} \int_{0}^{u} f_{T_{x}}(u) f_{T_{y}}(v) dv du = \int_{0}^{\infty} f_{T_{x}}(u) \int_{0}^{u} f_{T_{y}}(v) dv du$$
$$= \int_{0}^{\infty} f_{T_{x}}(u) F_{T_{y}}(u) du$$

Por lo tanto

$$_{\infty}q_{xy}^2=\int_0^{\infty}f_{T_x}(u)F_{T_y}(u)du$$

En notación actuarial.

$$_{\infty}q_{xy}^2 = \int_0^{\infty} {_tp_x \cdot \mu_{x+t} \cdot {_tq_y}dt}$$

Análogamente para la vida (y) tenemos:

$$_{\infty}q_{xy}^{2}=\int_{0}^{\infty}{}_{t}p_{y}\cdot\mu_{y+t}\cdot{}_{t}q_{x}dt$$

Relaciones de equivalencia entre probabilidades contingentes y estatus de vidas conjuntas y último sobreviviente.

Por lo tanto,

Además, tenemos:

$$\bullet _{\infty}q_{xy}^1 + {_{\infty}q_{xy}^{-1}} = 1$$

$$\bullet _{\infty}q_{xy}^1 = {_{\infty}q_{xy}}^2$$

En general, podemos definir cualquier orden de fallecimiento para un conjunto de vidas:

$$_{n}q_{x_{1}x_{2}x_{3}x_{4}}^{1}$$
 / $_{n}q_{x_{1}x_{2}x_{3}}^{2}/_{n}q_{x_{1}x_{2}x_{3}x_{4}}^{4}$

Cada una de estas probabilidades genera un espacio o región donde se deberá de integrar la función de densidad conjunta.

Contenido

Vidas Múltiples

Bibliografia

- Título: Models for Quantifying Risk. Autor: Stephen Camilli
- Título: Actuarial Mathematics for Life Contingent Risks. Autor: David Dickson
- Título: Actuarial Mathematics. Autor: Newton Bowers
- Título: Basic Life Insurance Mathematics Autor: Ragnar Norberg
- Título: Actuarial Mathematics and Life-Table Statistics Autor: Eric Slud
- Título: Life Contingencies Autor: Chester Wallace Jordan
- Título: Matemáticas Actuariales y Operaciones de Seguros Autor: Sandoya

Matemáticas Actuariales del Seguro de Personas II

Jorge Luis Reyes García

Universidad Nacional Autónoma de México Facultad de Ciencias

jorgeluis.reyes@ciencias.unam.mx

Diciembre 2021