

Manutenção Preditiva de uma Máquina Industrial

Índice

- Introdução
- Cenário do Projeto
- Preparação dos Dados
- Modelação
- Avaliação
- Desenvolvimento
- Conclusão

Perfil da Empresa

- Este trabalho aborda o caso de uma unidade fabril fictícia que recolhe dados dos sensores de uma máquina (temperatura, binário, velocidade de rotação e desgaste da ferramenta) e associa estes dados a falhas ocorridas na máquina durante o processo produtivo.
- É do interesse da unidade de produção, evitar que as máquinas parem de forma inesperada devido a avaria, sendo importante estimar quando uma máquina falhará (previsão), e perceber a razão dessa falha de forma a prevenir o problema e evitar prejuízos.

n(B∩C) = 22 n(B) = 68 $n(B \cup C) = n(B) + n(C$ log_by log₅y a(bc) = (ab)ca+b=b+aa(b+c) = ab+ac2x + 2y = 20

Preparação dos Dados

SELEÇÃO

- 10.000 ocorrências que estão armazenados numa tabela com 14 variáveis;
- Os atributos udi (identificador único) e product_ID (código alfanumérica) não foram considerados;
- 5 variáveis de entrada e 6 variáveis objetivo ou de saída

$X^2 - 4X \le 0$ n(B∩C) = 22 n(B) = 68 $n(B \cup C) = n(B) + n(C$ + log₅y – log₅y a(bc) = (ab)ca(b+c) = ab+ac2x + 2y = 20

Preparação dos Dados

LIMPEZA

- Não existem valores omissos, duplicados ou mal inseridos;
- Em 9 das ocorrências de falha (machine_failure = 1) não é especificado o tipo de falha e em 24 ocorrências de falha, existe a indicação de mais de uma falha simultânea, o que pode ser origem de ambiguidade.

$X^2 - 4X + 5 \le 5$ $X^2 - 4X \le 0$ $n(B \cap C) = 22$ n(B) = 68 $n(B \cup C) = n(B) + n(C$ + log₅y – log₅y a(bc) = (ab)ca+b=b+aa(b+c) = ab+ac2x + 2y = 20

Preparação dos Dados

FORMATAÇÃO

- Renomeação de variáveis para melhor compreensão dos nomes;
- Conversão das variáveis relativas a temperaturas de Kelvin para Graus Celsius;
- Variável ordinal "quality" foi formatada para se tornar numérica;
- Normalização por padronização

ab+ac = a(b+c) $a(b) = \frac{ab}{c}$ $x^2 - 4x + 5 \le 5$ $\frac{a}{c} = \frac{a}{bc}$ $x^2 - 4x \le 0$ $\frac{a}{b} = \frac{ac}{b}$ $n(B \cap C) = 22$ $\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$ n(C) = 84 $n(B \cup C) = n(B) + n(C)$

2x + 2y = 20

Preparação dos Dados

DATASET FINAL

 $\frac{1}{2^{n-1}} = \frac{1}{2^n} =$

Por se tratar de um conjunto de dados sintético, aberto e com origem académica, conclui-se que a qualidade dos dados é bastante aceitável para iniciar o processo de Modelação.

MODELAÇÃO

SELEÇÃO DOS MODELOS

CONCEÇÃO DO TESTE DOS MODELOS

CONSTRUÇÃO DO MODELOS

ANÁLISE DOS MODELOS

SELEÇÃO DAS TÉCNICAS DE MODELAÇÃO

Neuronal

Floresta Aleatória

kNN

k-Means

Regressão Linear, Polinomial....

SVM

Árvore de Decisão

- 1. Classificação Multiclasse
- 2. Aprendizagem Supervisionada
- 3. Dados Tabulares

CONCECÃO DO TESTE DOS MODELOS

ÁRVORE DE DECISÃO


```
# 1. Arvores de Decisão
modelo = DecisionTreeClassifier(
                                             1. Criação do modelo de Árvore
    random_state = semente,
                                                   de Decisão de Base
    min_samples_split = 2,
    max_leaf_nodes = 13
# dicionário com espaco de busca de hiperparâmetros
espaco_busca = {
                                                        2. Definicão do Espaco de
    'criterion' : ['gini', 'entropy', 'log_loss'],
                                                       Busca de Hiperparâmetros
    'splitter': ['best', 'random'],
    'min_samples_leaf': (1,10000),
    'max_depth' : (2,5),
                                                   3. Criação do Classificador
                                                          dos Modelos
# sensibilidade como classificador
classificador = make_scorer(recall_score, average = 'macro', zero_division = 1)
                           Sensibilidade :
# optimizador bayesiano
                                                 4. Definicão do Optimizador
optimizador = BayesSearchCV( <
    estimator = modelo,
                                                          Bayesiano
    search_spaces = espaco_busca,
    scoring = classificador,
                                    # Validação Cruzada Estratificada, particões = 3
    cv = 3.
    random_state = semente,
    verbose = 10
                                                     5. Treino/Exploração do
                                                        Espaco de Busca
optimizador.fit(x_treino, y_treino)
```

ÁRVORE DE DECISÃO

Modelo	Árvore de Decisão		
Acurácia	97,80%	71,21%	57,44%
Precisão	96,76%	81,51%	74,11%
Sensibilidade	21,01%	71,22%	56,99%
Medida-F	21,12%	66,64%	50,77%

FLORESTA ALEATÓRIA


```
# criacão de modelo de base
modelo = RandomForestClassifier()
# espaco de busca dos hiperparâmetros
espaco_busca = {
    "max_depth": (3, 10),
    "min_samples_split": (2,10),
    "min_samples_leaf": (1,10),
    "bootstrap": [True, False],
    "criterion": ['gini', 'entropy', 'log_loss']
}
```

- Treino rápido
- Resultados relativamente bons com e sem sobreamostragem

Modelo	Floresta Aleatória		
Acurácia	98,99%	99,46%	99,39%
Precisão	99,66%	99,43%	99,39%
Sensibilidade	64,04%	99,40%	99,42%
Medida-F	69,10%	99,40%	99,39%

MÁQUINA DE SUPORTE DE VETORES


```
# criacão de modelo de base
modelo = svm.SVC()

# espaco de busca dos hiperparâmetros
espaco_busca = {
   'kernel': ['linear', 'rbf', 'sigmoid'],
   'C': (1, 70),
   'gamma': (0, 70),
   'degree': (1, 3)
   }
}
```

- Leva muito tempo a treinar para graus de liberdade maiores que 3 (rbf e poli)
- Maus resultados com dados originais, bons resultados dados sobreamostrados

Modelo	Máquinas	de Suporte d	e Vetores
Acurácia	97,64%	99,89%	99,78%
Precisão	96,54%	99,89%	99,77%
Sensibilidade	28,10%	99,89%	99,79%
Medida-F	28,86%	99,89%	99,78%

REDE NEURONAL

- Algoritmo com maior tempo de treino
- Bons resultados com conjunto de dados original

```
# Hiperparâmetros do melhor modelo com Re-Amostragem de Dados
modelo = MLPClassifier(
   hidden_layer_sizes = (50,40,25),
   learning_rate_init = 9.984412631544676e-05,
   beta_1 = 3.885425431899516e-05,
   solver='adam',
   activation = 'relu',
   verbose = 10,
   max_iter = 1000,
   n_iter_no_change = 500)
```

Modelo	Rede Neuronal		
Acurácia	99,81%	99,75%	99,66%
Precisão	98,92%	99,75%	99,66%
Sensibilidade	96,00%	99,75%	99,68%
Medida-F	97,15%	99,75%	99,66%

AVALIAÇÃO DOS RESULTADOS

- Maquina de Suporte de Vetores com tempo de predição alto
- Árvore de Decisão comm piores resultados
- Outros modelos com métricas de erro acima dos 99%

Modelo	Tempo de inferência [segundos]	
Árvore de Decisão	0,020	
Rede Neuronal	0,870	
Floresta Aleatória	2,381	
Máquinas de Suporte de Vetores	44,619	

	Resultados		
	Após Treino		De Teste
	Dados	Com	Com
	Originais	Reamostragem	Reamostragem
Modelo	Árvore de Decisão		
Acurácia	97,80%	71,21%	57,44%
Precisão	96,76%	81,51%	74,11%
Sensibilidade	21,01%	71,22%	56,99%
Medida-F	21,12%	66,64 8	50,77%
Modelo	Floresta Aleatória		
Acurácia	98,99%	99,46%	99,39%
Precisão	99,66%	99,43%	99,39%
Sensibilidade	64,04%	99,40%	99,42%
Medida-F	69,10%	99,40%	99,39%
Modelo	Máguinas	de Suporte d	de Vetores
Acurácia	97,64%	99,89%	99,78%
Precisão	96,54%	99,89%	99,778
Sensibilidade	28,10%		99,798
Medida-F	28,86%	99,89%	99,78%
Modelo		Rede Neurona	1
Acurácia	99,81%	99,75%	99,66%
Precisão	98,92%	99,75%	99,66%
Sensibilidade	96,00%	99,75%	99,689
Medida-F	97,15%	99,75%	99,669

REVISÃO DO PROJETO

Com este projeto foi possível a construção de um modelo viável, capaz de corresponder às necessidades do negócio em causa e capaz de dar resposta às problemáticas que podem ser prejudiciais no dia a dia da empresa em estudo. Assim, podemos verificar que, apesar de possíveis falhas, os riscos são baixos, e que todos os requisitos propostos do projeto foram cumpridos.

DESENVOLVIMENTO

MONITORIZAÇÃO E MANUTENÇÃO

A manutenção, monitorização e atualização do modelo em estudo ficará à responsabilidade do técnico contratado.

PLANO DE IMPLEMENTAÇÃO

Utilizámos o modelo da Rede Neuronal para colocar em produção o projeto, utilizando a plataforma Streamlit.

- O modelo que obteve melhores resultados foi a Rede Neuronal;
- Com a presença dos dados de reamostragem atingiu valores bastante superiores a 99,6%;
- Podemos ainda afirmar que utilizar o modelo da Floresta Aleatória seria também uma boa aposta face aos resultados obtidos;

