Advanced quantum theory, May 30th 2019 Resolvents

Problem 1 Krein formula

Recall from the lecture that given the Hamiltonian H, the resolvent is

$$R(z) = (H - z)^{-1}. (1)$$

If the Hamiltonian H can be written as $H = H_0 + V$, then

$$R(z) - R_0(z) = -R(z)VR_0(z). (2)$$

In this exercise we will simplify (2) for the case of a rank-1 perturbation, that is,

$$H = H_0 + \lambda |\phi\rangle\langle\phi|, \quad \|\phi\| = 1. \tag{3}$$

- 1. Iterate (2) to obtain R(z) as a power series in $VR_0(z)$.
- 2. Define $f_0 = \langle \phi, R_0(z)\phi \rangle$. Using the result from the previous subexercise, show that for $V = \lambda |\phi\rangle\langle\phi|$

$$R(z) = R_0(z) - \frac{\lambda}{1 + \lambda f_0(z)} R_0(z) |\phi\rangle\langle\phi| R_0(z)$$
(4)

Problem 2 Eigenstates and poles of perturbed Hamiltonian

1. Consider a free Hamiltonian $H_0 = p^2$ and $V = \lambda |\phi\rangle\langle\phi|$. From the time independent Schrödinger equation obtain

$$\psi(p) = -\lambda \langle \phi | \psi \rangle \frac{\phi(p)}{p^2 - \mu} \tag{5}$$

for the eigenstate ψ with energy μ .

2. Take the inner product of (5) with $\langle \phi |$ to get

$$1 = -\lambda \int dp \frac{|\phi(p)|^2}{p^2 - \mu}.$$
 (6)

Observe that this condition is equivalent to $1 + \lambda f_0(\mu) = 0$ which gives poles in the expression (4).

- 3. Observe that the right hand side of (6) goes to 0 when $\mu \to -\infty$ and to infinity when $\mu \to p_0^2$ such that $\phi(p_0) \neq 0$. Conclude that for negative λ there exists a bound state.
- 4. Consider the Hamiltonian $H = H_0 + V = (\sum_n \epsilon_n |n\rangle\langle n|) + \lambda |\phi\rangle\langle \phi|$. Following the same logic as above, obtain

$$\psi_n = -\lambda \langle \phi | \psi \rangle \frac{\phi_n}{\epsilon_n - \mu} \tag{7}$$

for the eigenvalue μ .

5. By taking the inner product, conclude that

$$1 = -\lambda \sum_{n} \frac{|\phi_n|^2}{\epsilon_n - \mu}.$$
 (8)

Observe that the right hand side goes to $\pm \infty$ if μ approaches ϵ_n and the right hand side is monotone between ϵ_n and ϵ_{n+1} . Conclude that H has exactly one eigenvalue between ϵ_n and ϵ_{n+1} .

Problem 3 Compactness of product

Let Q be a position operator and P its conjugate momentum. We would like to show that f(P)g(Q) is compact if f and g are sufficiently smooth operator-valued functions and have compact support.

1. Let $\hat{f}(x)$ be the Fourier transform of f(p). Use that $(f(P)\psi)(x) = \int dy \hat{f}(x-y)\psi(y)$ to get the kernel K(x,y) in

$$f(P)g(Q)\psi(x) = \int dy K(x,y)\psi(y). \tag{9}$$

2. Use smoothness to show that

$$tr(K^*K) = ||K||_2^2 < \infty. (10)$$

Conclude, that f(P)g(Q) is compact.