Math 40 FP1 - Vectors and Vector Spaces Fri. 1/20, 2016

1.2{ 17, 18, 52, 56, 58, 60 }

17 If **u**, **v**, and **w** are vectors in \mathbb{R}^n , $n \ge 2$, and c is a scalar, explain why the following expressions make no sense:

- (a) $\|\mathbf{u} \cdot \mathbf{v}\|$
- (b) $\mathbf{u} \cdot (\mathbf{v} \cdot \mathbf{w})$
- (c) $\mathbf{u} \cdot \mathbf{v} + \mathbf{w}$
- (d) $c \cdot (\mathbf{u} + \mathbf{w})$

18 Determine whether the angle between $\mathbf{u} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ is acute, obtuse or a right angle.

52 Under what conditions are the following true for vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 or \mathbb{R}^3 ?

- (a) $\|u + v\| = \|u\| + \|v\|$
- (b) $\|\mathbf{u} + \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\|$

_

56 Prove $d(\mathbf{u}, \mathbf{w}) \le d(\mathbf{u}, \mathbf{v}) + d(\mathbf{v}, \mathbf{w})$ for all vectors \mathbf{u}, \mathbf{v} , and \mathbf{w} .

58 Prove that $\mathbf{u} \cdot c\mathbf{v} = c(\mathbf{u} \cdot \mathbf{v})$ for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n and all scalars c.

60 Suppose we know that $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$. Does it follow that $\mathbf{v} = \mathbf{w}$? If it does, give a proof that is valid in \mathbb{R}^n ; otherwise, give a *counterexample* (i.e., a *specific* set of vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} for which $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$ but $\mathbf{v} \neq \mathbf{w}$).