Signal Processing First

Lecture 6 Fourier Series Coefficients

9/8/2003 © 2003, JH McClellan & RW Schafer

LECTURE OBJECTIVES

Work with the Fourier Series Integral

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi k/T_0)t} dt$$

- ANALYSIS via Fourier Series
 - For <u>PERIODIC</u> signals: $x(t+T_0) = x(t)$
 - Later: spectrum from the Fourier Series

READING ASSIGNMENTS

- This Lecture:
 - Fourier Series in Ch 3, Sects 3-4, 3-5 & 3-6
 - Replaces pp. 62-66 in Ch 3 in DSP First
 - Notation: a_k for Fourier Series
- Other Reading:
 - Next Lecture: More Fourier Series

9/8/2003 © 2003, JH McClellan & RW Schafer 3

HISTORY

- Jean Baptiste Joseph Fourier
 - 1807 thesis (memoir)
 - On the Propagation of Heat in Solid Bodies
 - Heat!
 - Napoleonic era
- http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Fourier.html

9/8/2003 © 2003, JH McClellan & RW Schafer 4 9/8/2003 © 2003, JH McClellan & RW Schafer 5

Joseph Fourier lived from 1768 to 1830

Fourier studied the mathematical theory of heat conduction. He established the partial differential equation governing heat diffusion and solved it by using infinite series of trigonometric functions.

9/8/2003

Find out more at: http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Fourier.html

SPECTRUM DIAGRAM

Recall Complex Amplitude vs. Freq

© 2003, JH McClellan & RW Schafer

Harmonic Signal

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi k f_0 t}$$

PERIOD/FREQUENCY of COMPLEX EXPONENTIAL:

$$2\pi(f_0) = \omega_0 = \frac{2\pi}{T_0}$$
 or $T_0 = \frac{1}{f_0}$

Fourier Series Synthesis

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi k f_0 t}$$

$$a_k = \frac{1}{2} X_k = \frac{1}{2} A_k e^{j\varphi_k}$$

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

$$X_k = A_k e^{j\varphi_k}$$
COMPLEX AMPLITUDE

9/8/2003 © 2003, JH McClellan & RW Schafer 8 9/8/2003 © 2003, JH McClellan & RW Schafer 9

9/8/2003

Harmonic Signal (3 Freqs)

SYNTHESIS vs. ANALYSIS

- SYNTHESIS
 - Easy
 - Given (ω_k,A_k,φ_k) create x(t)
- Synthesis can be HARD
 - Synthesize Speech so that it sounds good

- ANALYSIS
 - Hard
 - Given x(t), extract
 (ω_k,A_k,φ_k)
 - How many?
 - Need algorithm for computer

9/8/2003 © 2003, JH McClellan & RW Schafer 11

STRATEGY: $x(t) \rightarrow a_k$

ANALYSIS

- Get representation from the signal
- Works for <u>PERIODIC</u> Signals
- Fourier Series

9/8/2003

Answer is: an INTEGRAL over one period

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j\omega_0 kt} dt$$

INTEGRAL Property of exp(j)

INTEGRATE over ONE PERIOD

$$\int_{0}^{T_{0}} e^{-j(2\pi/T_{0})mt} dt = \frac{T_{0}}{-j2\pi m} e^{-j(2\pi/T_{0})mt} \Big|_{0}^{T_{0}}$$
$$= \frac{T_{0}}{-j2\pi m} (e^{-j2\pi m} - 1)$$

$$\int_{0}^{T_{0}} e^{-j(2\pi/T_{0})mt} dt = 0 \qquad m \neq 0$$

© 2003, JH McClellan & RW Schafer 12 9/8/2003 © 2003, JH McClellan & RW Schafer 13

ORTHOGONALITY of exp(j)

PRODUCT of exp(+j) and exp(-j)

$$\frac{1}{T_0} \int_0^{T_0} e^{j(2\pi/T_0)\ell t} e^{-j(2\pi/T_0)kt} dt = \begin{cases} 0 & k \neq \ell \\ 1 & k = \ell \end{cases}$$

$$\frac{1}{T_0} \int_{0}^{T_0} e^{j(2\pi/T_0)(\ell-k)t} dt$$

9/8/2003 © 2003, JH McClellan & RW Schafer

Isolate One FS Coefficient

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j(2\pi/T_0)kt}$$

$$\frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi/T_0)\ell t} dt = \frac{1}{T_0} \int_0^{T_0} \left(\sum_{k=-\infty}^{\infty} a_k e^{j(2\pi/T_0)kt} \right) e^{-j(2\pi/T_0)\ell t} dt$$

$$\frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi/T_0)\ell t} dt = \sum_{k=-\infty}^{\infty} a_k \left(\frac{1}{T_0} \int_0^{T_0} e^{j(2\pi/T_0)kt} e^{-j(2\pi/T_0)\ell t} dt \right) = a_\ell$$

$$\Rightarrow a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi/T_0)kt} dt$$
Integral is zero
$$\Rightarrow a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi/T_0)kt} dt$$
except for $k = \ell$

SQUARE WAVE EXAMPLE

$$x(t) = \begin{cases} 1 & 0 \le t < \frac{1}{2}T_0 \\ 0 & \frac{1}{2}T_0 \le t < T_0 \end{cases}$$
 for $T_0 = 0.04$ sec.

© 2003, JH McClellan & RW Schafe

FS for a SQUARE WAVE $\{a_k\}$

$$a_{k} = \frac{1}{T_{0}} \int_{0}^{T_{0}} x(t)e^{-j(2\pi/T_{0})kt}dt \qquad (k \neq 0)$$

$$a_{k} = \frac{1}{.04} \int_{0}^{.02} 1e^{-j(2\pi/.04)kt}dt = \frac{1}{.04(-j2\pi k/.04)}e^{-j(2\pi/.04)kt}\Big|_{0}^{.02}$$

$$= \frac{1}{(-j2\pi k)} (e^{-j(\pi)k} - 1) = \frac{1 - (-1)^{k}}{j2\pi k}$$

/8/2003 © 2003, JH McClellan & RW Schafer

DC Coefficient: a₀

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-j(2\pi/T_0)kt} dt \qquad (k = 0)$$

$$a_0 = \frac{1}{T_0} \int_0^{T_0} x(t) dt = \frac{1}{T_0} (\text{Area})$$

$$a_0 = \frac{1}{.04} \int_0^{.02} 1 dt = \frac{1}{.04} (.02 - 0) = \frac{1}{2}$$

9/8/2003

© 2003, JH McClellan & RW Schafer

Fourier Coefficients a_k

- a_k is a function of k
 - Complex Amplitude for k-th Harmonic
 - This one doesn't depend on the period, T₀

$$a_k = \frac{1 - (-1)^k}{j2\pi k} = \begin{cases} \frac{1}{j\pi k} & k = \pm 1, \pm 3, \dots \\ 0 & k = \pm 2, \pm 4, \dots \\ \frac{1}{2} & k = 0 \end{cases}$$

9/8/2003

2003, JH McClellan & RW Schafer

Spectrum from Fourier Series

Fourier Series Integral

HOW do you determine a_k from x(t) ?

$$a_{k} = \frac{1}{T_{0}} \int_{0}^{T_{0}} x(t)e^{-j(2\pi/T_{0})kt}dt$$
Fundamental Frequency $f_{0} = 1/T_{0}$

$$a_{-k} = a_{k}^{*} \quad \text{when } x(t) \text{ is real}$$

$$a_{0} = \frac{1}{T_{0}} \int_{0}^{T_{0}} x(t)dt \quad \text{(DC component)}$$

(2003 JH McClellan & RW Schafer

9/8/2003

© 2003, JH McClellan & RW Schafer