Noisy Channel Model for Spelling Correction

Pawan Goyal

CSE, IITKGP

Week 2: Lecture 3

Noisy Channel

We see an observation x of the misspelled word

Find the correct word w

$$\hat{w} = \underset{w \in V}{\arg\max} P(w|x)$$

Noisy Channel

We see an observation x of the misspelled word

Find the correct word w

$$\hat{w} = \underset{w \in V}{\arg \max} P(w|x)$$

$$= \underset{w \in V}{\arg \max} \frac{P(x|w)P(w)}{P(x)}$$

Noisy Channel

We see an observation x of the misspelled word

Find the correct word w

$$\hat{w} = \underset{w \in V}{\arg \max} P(w|x)$$

$$= \underset{w \in V}{\arg \max} \frac{P(x|w)P(w)}{P(x)}$$

$$= \underset{w \in V}{\arg \max} P(x|w)P(w)$$

Words with similar spelling

Small edit distance to error

Words with similar pronuncitation

Small edit distance of pronunciation to error

Words with similar spelling

Small edit distance to error

Words with similar pronuncitation

Small edit distance of pronunciation to error

Damerau-Levenshtein edit distance

Minimum edit distance, where edits are:

Words with similar spelling

Small edit distance to error

Words with similar pronuncitation

Small edit distance of pronunciation to error

Damerau-Levenshtein edit distance

Minimum edit distance, where edits are:

Insertion, Deletion, Substitution,

Words with similar spelling

Small edit distance to error

Words with similar pronuncitation

Small edit distance of pronunciation to error

Damerau-Levenshtein edit distance

Minimum edit distance, where edits are:

Insertion, Deletion, Substitution,

Transposition of two adjacent letters

Words within edit distance 1 of acress

Error	Candidate Correction	Correct Letter	Error Letter	Туре
acress	actress	t	_	deletion
acress	cress	-	a	insertion
acress	caress	ca	ac	transposition
acress	access	C	r	substitution
acress	across	0	е	substitution
acress	acres	-	s	insertion
acress	acres	_	s	insertion

Candidate generation

- 80% of errors are within edit distance 1
- Almost all errors within edit distance 2

Candidate generation

- 80% of errors are within edit distance 1
- Almost all errors within edit distance 2

Allow deletion of space or hyphen

- thisidea \rightarrow this idea
- inlaw \rightarrow in-law

Computing error probability: confusion matrix

- del[x,y]: count (xy typed as x)
- ins[x,y]: count (x typed as xy)
- sub[x,y]: count (x typed as y)
- trans[x,y]: count(xy typed as yx)

Computing error probability: confusion matrix

- del[x,y]: count (xy typed as x)
- ins[x,y]: count (x typed as xy)
- sub[x,y]: count (x typed as y)
- trans[x,y]: count(xy typed as yx)

Insertion and deletion are conditioned on previous character

Channel model

$$P(x|w) = \begin{cases} \frac{\operatorname{del}[w_{i-1}, w_i]}{\operatorname{count}[w_{i-1}w_i]}, & \text{if deletion} \\ \frac{\operatorname{ins}[w_{i-1}, x_i]}{\operatorname{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\operatorname{sub}[x_i, w_i]}{\operatorname{count}[w_i]}, & \text{if substitution} \\ \frac{\operatorname{trans}[w_i, w_{i+1}]}{\operatorname{count}[w_iw_{i+1}]}, & \text{if transposition} \end{cases}$$

Channel model for acress

Candidate Correction	Correct Letter	Error Letter	x w	P(x word)
actress	t	-	c ct	.000117
cress	-	a	a #	.00000144
caress	ca	ac	ac ca	.00000164
access	С	r	r c	.000000209
across	0	е	e o	.0000093
acres	-	s	es e	.0000321
acres	_	s	ss s	.0000342

Noisy channel probability for acress

Candidate Correction	Correct Letter	Error Letter	x w	P(x word)	P(word)	10 ⁹ *P(x w)P(w)
actress	t	-	c ct	.000117	.0000231	2.7
cress	_	a	a #	.00000144	.000000544	.00078
caress	ca	ac	ac ca	.00000164	.00000170	.0028
access	С	r	r c	.000000209	.0000916	.019
across	0	е	e o	.0000093	.000299	2.8
acres	_	s	es e	.0000321	.0000318	1.0
acres	_	s	ss s	.0000342	.0000318	1.0

• " ... versatile acress whose ..."

- " ... versatile acress whose ..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing

- " ... versatile acress whose ..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress|versatile) = 0.000021, P(across|versatile) = 0.000021

- " ... versatile acress whose ..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress|versatile) = 0.000021, P(across|versatile) = 0.000021
- P(whose|actress) = 0.0010, P(whose|across) = 0.000006

- " ... versatile acress whose ..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress|versatile) = 0.000021, P(across|versatile) = 0.000021
- P(whose|actress) = 0.0010, P(whose|across) = 0.000006
- P("versatile actress whose") = $0.000021 * 0.0010 = 210 \times 10^{-10}$

- " ... versatile acress whose ..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress|versatile) = 0.000021, P(across|versatile) = 0.000021
- P(whose|actress) = 0.0010, P(whose|across) = 0.000006
- P("versatile actress whose") = $0.000021 * 0.0010 = 210 \times 10^{-10}$
- P("versatile across whose") = $0.000021 * 0.000006 = 1 \times 10^{-10}$

Real-word spelling errors

- The study was conducted mainly **be** John Black
- The design **an** construction of the system ...

Real-word spelling errors

- The study was conducted mainly be John Black
- The design **an** construction of the system ...

25-40% of spelling errors are real words

Noisy channel for real-word spell correction

Given a sentence
$$X = w_1, w_2, w_3 \dots, w_n$$

- Candidate $(w_1) = \{w_1, w'_1, w''_1, w'''_1, \ldots\}$
- Candidate $(w_2) = \{w_2, w'_2, w''_2, w'''_2, \ldots\}$
- Candidate $(w_3) = \{w_3, w'_3, w''_3, w'''_3, \ldots\}$

Noisy channel for real-word spell correction

Given a sentence $X = w_1, w_2, w_3 \dots, w_n$

- Candidate $(w_1) = \{w_1, w'_1, w''_1, w'''_1, \ldots\}$
- Candidate $(w_2) = \{w_2, w'_2, w''_2, w'''_2, \ldots\}$
- Candidate $(w_3) = \{w_3, w'_3, w''_3, w'''_3, \ldots\}$

Choose the sequence W that maximizes P(W|X)

Noisy channel for real-world spell correction

Simplification: One error per sentence

Choose among all possible sentences with one word replaced

two of thew

- w_1, w''_2, w_3 two **off** thew
- w_1, w_2, w'_3 two of **the**
- w'''_1, w_2, w_3 **too** of thew

Simplification: One error per sentence

Choose among all possible sentences with one word replaced

two of thew

- w_1, w''_2, w_3 two **off** thew
- w_1, w_2, w'_3 two of **the**
- w'''_1, w_2, w_3 **too** of thew

Choose the sequence W that maximizes P(W|X)

Noisy Channel

$$\hat{W} = \underset{W \in S}{\arg\max} P(W|X)$$

where X is the observed sentence and S is the set of all the possible sequences from the candidate set

Noisy Channel

$$\hat{W} = \underset{W \in S}{\arg\max} P(W|X)$$

where X is the observed sentence and S is the set of all the possible sequences from the candidate set

$$= \underset{W \in S}{\arg \max} P(X|W)P(W)$$

Noisy Channel

$$\hat{W} = \underset{W \in S}{\arg \max} P(W|X)$$

where X is the observed sentence and S is the set of all the possible sequences from the candidate set

$$= \underset{W \in S}{\arg \max} P(X|W)P(W)$$

P(X|W)

Same as for non-word spelling correction

Noisy Channel

$$\hat{W} = \underset{W \in S}{\arg\max} P(W|X)$$

where X is the observed sentence and S is the set of all the possible sequences from the candidate set

$$= \underset{W \in S}{\arg \max} P(X|W)P(W)$$

P(X|W)

- Same as for non-word spelling correction
- Also require proabability for no error P(w|w)

Probability of no error

What is the probability for a correctly typed word? P("the"|"the")

Probability of no error

What is the probability for a correctly typed word? P("the"|"the")

It may depend on the source text under consideration

- 1 error in 10 words \rightarrow 0.9
- 1 error in 100 words \rightarrow 0.99

Computing P(W)

Use Language Model

- Unigram
- Bigram
- ..