Module #3 - Sets

Izmir Institute of Technology

CENG 115
Discrete Structures

Slides are based on the Text

Discrete Mathematics & Its Applications (6th Edition)

by Kenneth H. Rosen

Introduction to Set Theory

- A set is an unordered collection of objects.
- The objects in a *set* are called the *elements*. A set is said to *contain* its elements.
- Set theory deals with operations between, relations among, and statements about sets.
- Sets are ubiquitous (frequently seen) in computer science and systems.

Naive Set Theory

- Basic definition: Any collection of objects that we can describe constitutes a set.
- This intuitive definition may lead to *paradoxes* or *logical inconsistencies*, shown by B. Russell.
- These "sets" mathematically *cannot* exist. E.g. let $S = \{X | X \notin X\}$. Is $S \in S$?
- More sophisticated set theories fix this problem.
- For this course, we do not use sophisticated theories, but use the intuitive one, also known as the *naive set theory*.

Bertrand Russell 1872-1970

Basic notations for sets

- We can denote a set *S* in writing by listing all of its elements in curly braces:
 - {1, 2, 3,..., 99} is the set of positive integers less than 100.
- Set builder notation: For any predicate and domain, {x|P(x)} is the set of all x such that P(x).
 E.g. O={x ∈ Z⁺| x is odd and x<10} is the set of odd positive integers less than 10.

Definition of Set Equality

- Two sets are declared to be equal *if and only if* they contain <u>exactly the same</u> elements.
- It does not matter how the set is defined.
- For example: The set {1, 2, 3, 4} =
 {x | x is an integer where x>0 and x<5} =
 {x | x is a positive integer whose square is greater than 0 and less than 25}
- {a, b, c} = {a, c, b} = {b, a, c} since the sets are inherently *unordered*.

Cardinality and Finiteness

- |S| (read "the *cardinality* of S") is a measure of how many different elements S has.
- E.g., $|\varnothing|=0$, $|\{1,2,3\}|=3$, $|\{a,b\}|=2$, $|\{\{1,2,3\},\{4,5\}\}|=\underline{2}$
- If $|S| \in \mathbb{N}$, then we say S is *finite*. Otherwise, we say S is *infinite*.
- Can you give an example of an infinite set?

Module #3 - Sets

Some Infinite Sets

• Symbols for some special infinite sets:

 $N = \{0, 1, 2, ...\}$ The natural numbers.

 $Z = \{..., -2, -1, 0, 1, 2, ...\}$ The integers.

R = The "real" numbers.

Venn Diagrams

John Venn 1834-1923

U, the universal set, contains all the objects under consideration.

Basic Set Relations: Element of

- $x \in S$ ("x is in S") is the proposition that object x is an $\in lement$ or member of set S.
 - -e.g. $3 \in \mathbb{N}$, "a" $\in \{x \mid x \text{ is a letter of the alphabet}\}$
 - $-S=T \leftrightarrow (\forall x: x \in S \leftrightarrow x \in T)$ "Two sets are equal iff they have all the same members."
- $x \notin S := \neg(x \in S)$ "x is not in S"

The Empty Set

- \emptyset ("null", "the empty set") is the unique set that contains no elements whatsoever.
- $\emptyset = \{\}$
- No matter the domain of discourse, we have the axiom $\neg \exists x : x \in \emptyset$.

Module #3 - Sets

Subsets

- $S \subseteq T$ ("S is a subset of T") means that every element of S is also an element of T.
- $S \subseteq T \Leftrightarrow \forall x \ (x \in S \to x \in T)$
- Ø⊆S, S⊆S.
- $S \nsubseteq T$ means $\neg (S \subseteq T)$, i.e. $\exists x (x \in S \land x \notin T)$

Proper (Strict) Subsets

- $S \subset T$ ("S is a proper subset of T") means that $S \subseteq T$ and $T \nsubseteq S$.
- $\forall x (x \in S \rightarrow x \in T) \land \exists x (x \in T \land x \notin S)$

Example: $\{1,2\} \subset \{1,2,3\}$

Venn Diagram equivalent of $S \subset T$

Sets Are Objects, Too!

- The objects that are elements of a set may *themselves* be sets.
- E.g. let $S = \{x \mid x \subseteq \{1,2,3\}\}$ then $S = \{\emptyset,$ $\{1\}, \{2\}, \{3\},$ $\{1,2\}, \{1,3\}, \{2,3\},$ $\{1,2,3\}\}$
- Note that $\{1,3\} \neq \{\{1\},\{3\}\}$

The Power Set Operation

- The *power set* P(S) of a set S is the set of all subsets of S. $P(S) = \{x \mid x \subseteq S\}$.
- $E.g. P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}.$
- Note that for finite S, $|P(S)| = 2^{|S|}$.
- It turns out that |P(N)| > |N|. There are different sizes of infinite sets!

Review: Set Notations So Far

- Variable objects x, y, z; sets S, T, U.
- Set builder notation, $\{x|P(x)\}.$
- \in relational operator, and the empty set \emptyset .
- Set relations =, \subseteq , \subset , $\not\subset$, etc.
- Venn diagrams.
- Cardinality |S| and infinite sets N, Z, R.
- Power sets P(S).

Ordered *n*-tuples

- These are like sets, except that duplicates matter, and the order makes a difference.
- For $n \in \mathbb{N}$, an ordered n-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection that the *first* element is a_1 , the *second* element is a_2 , etc.
- Note $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, ..., *n*-tuples.

Cartesian Products of Sets

- For sets A, B, their Cartesian product $A \times B :\equiv \{(a, b) \mid a \in A \land b \in B \}.$
- $E.g. \{a,b\} \times \{1,2\} = \{(a,1),(a,2),(b,1),(b,2)\}$
- Note that for finite A, B, $|A \times B| = |A| \cdot |B|$.
- A subset R of $A \times B$ is called a **relation** from set A to set B.
- Extends to $A_1 \times A_2 \times ... \times A_n$...

René Descartes (1596-1650)

Start § 2.2: The Union Operator

- For sets A, B, their \cup nion $A \cup B$ is the set containing all elements that are either in A, or (" \vee ") in B (or, of course, in both).
- Formally, $\forall A,B: A \cup B = \{x \mid x \in A \lor x \in B\}.$
- E.g. $\{2,3,5\} \cup \{3,5,7\} = \{2,3,5,7\}$

The Intersection Operator

- For sets A, B, their intersection $A \cap B$ is the set containing all elements that are simultaneously in A and $(``\wedge")$ in B.
- Formally, $\forall A,B: A \cap B \equiv \{x \mid x \in A \land x \in B\}.$
- $A \cap B$ is a subset of A and it is a subset of B: $\forall A, B : (A \cap B \subseteq A) \land (A \cap B \subseteq B)$
- $\{a,b,c\} \cap \{2,3\} = \emptyset$
- $\{2,4,6\} \cap \{3,4,5\} = \underline{\{4\}}$

Disjoint sets

- Two sets A, B are called *disjoint* (*i.e.*, unjoined) iff their intersection is empty. $(A \cap B = \emptyset)$
- Example: the set of even integers is disjoint with the set of odd integers.

Inclusion-Exclusion Principle

- How many elements are in $A \cup B$? $|A \cup B| = |A| + |B| - |A \cap B|$
- Example: How many students speak English or German? Consider set $L = E \cup G$, $E = \{s \mid s \text{ speaks English}\}$ $G = \{s \mid s \text{ speaks German}\}$
- Some students speak both! $|L| = |E \cup G| = |E| + |G| |E \cap G|$

Set Difference

- For sets A, B, the difference of A and B, written A-B, is the set of all elements that are in A but not in B.
- $A B := \{x \mid x \in A \land x \notin B\}$ = $\{x \mid \neg(x \in A \rightarrow x \in B)\}$
- Also called: The *complement of B with respect to A*.

Set Difference

- $\{1,2,3,4,5,6\} \{2,3,5,7,9,11\} = \underline{\{1,4,6\}}$
- $\mathbf{Z} \mathbf{N} = \{\dots, -3, -2, -1\}$

Set Complement

- We have seen the universal set *U* to define the *universe of discourse*.
- When the context clearly defines U, we say that for any set $A \subseteq U$, the *complement* of A, written \overline{A} , is the complement of A w.r.t. U, *i.e.*, it is U A.
- *E.g.*, If U=N, $\{3,5\} = \{0,1,2,4,6,7,...\}$

Set Complement

• An equivalent definition:

$$\overline{A} = \{x \mid x \notin A\}$$

Set Identities

- Identity: $A \cup \emptyset = A \quad A \cap U = A$
- Domination: $A \cup U = U$ $A \cap \emptyset = \emptyset$
- Idempotent: $A \cup A = A = A \cap A$
- Double complement: $(\overline{A}) = A$
- Commutative: $A \cup B = B \cup A$ $A \cap B = B \cap A$
- Associative: $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$
- Distributive: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

De Morgan's Law for Sets

• Exactly analogous to (and derivable from) De Morgan's law for propositions.

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Proving Set Identities

To prove statements about sets, of the form $E_1 = E_2$ (where Es are set expressions), here are three useful techniques:

- Prove $E_1 \subseteq E_2$ and $E_2 \subseteq E_1$ separately. (show each side is a subset of the other)
- Use set builder notation & logical equivalences.
- Use a membership table.

Method 1: Proving subset relation in both directions

Example: Show $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

- Show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
 - Assume $x \in A \cap (B \cup C)$, & show $x \in (A \cap B) \cup (A \cap C)$.
 - We know that $x \in A$, and either $x \in B$ or $x \in C$.
 - Case 1: $x \in B$. Then $x \in A \cap B$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Case 2: $x \in C$. Then $x \in A \cap C$, so $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $x \in (A \cap B) \cup (A \cap C)$.
 - Therefore, $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$.
- Show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$...

Method 2: Builder notation and logical equivalences

Example: Show $A \cap B = \overline{A} \cup \overline{B}$.

•
$$A \cap B = \{x \mid x \notin (A \cap B)\}$$

•
$$A \cap B = \{x \mid \neg(x \in (A \cap B))\}$$

•
$$A \cap B = \{x \mid \neg(x \in A \land x \in B)\}$$

•
$$\overline{A \cap B} = \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$$

•
$$A \cap B = \{x \mid x \notin A \lor x \notin B\}$$

•
$$\overline{A \cap B} = \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$$

•
$$\overline{A \cap B} = \{x \mid x \in (\overline{A} \cup \overline{B})\}$$

•
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Method 3: Membership Tables

- Just like truth tables for propositional logic.
- Columns for different set expressions.
- Rows for all combinations of memberships in constituent sets.
- Use "1" to indicate membership in the derived set, "0" for non-membership.
- Prove equivalence with identical columns.

Membership Table Example

Prove $(A \cup B) - B = A - B$.											
	A	B	$A \cup B$	$(A \cup B) - B$			A– B				
	0	0	0		0			0			
	0	1	1		0			0			
	1	0	1		1			1			

1 1 1

Membership Table Exercise

Prove $(A \cup B) - C = (A - C) \cup (B - C)$.

ABC	$A \cup B$	$(A \cup B) - C$	A– C	B-C	$(A-C)\cup(B-C)$
0 0 0					
0 0 1					
0 1 0					
0 1 1					
1 0 0					
1 0 1					
1 1 0					
1 1 1					