Conjuntos Union-Find

ESTRUTURAS DE DADOS

João Emanuel Mendonça Apóstolo
Lanna Luara Novaes Silva
Lavínia Louise Rosa Santos
Maria Eduarda Pires Possari dos Santos

Introdução

Conjuntos Disjuntos

DEFINIÇÃO DE CONJUNTOS

Um conjunto é uma reunião de elementos

CONJUNTOS DISJUNTOS

É a relação entre conjuntos que não possuem elementos em comum

B

 $A \cap B = \emptyset$

 $A \cap C = \emptyset$

 $B \cap C = \emptyset$

Questionamentos básicos

COMO UNIR DOIS CONJUNTOS DISJUNTOS?

COMO ENCONTRAR O CONJUNTO QUE DETERMINADO ELEMENTO FAZ PARTE?

01

OBJETIVO

Manter uma coleção de conjuntos disjuntos, que se modificam ao longo do tempo.

02

REPRESENTAÇÃO

Cada conjunto é identificado por seu representante.

OPERAÇÕES

03

A únicas operações permitida são a união de conjuntos e a busca de um elemento. Portanto, remover elementos de um conjunto ou partir um conjunto em dois não é permitido.

Principais Características

Vantagens

SIMPLICIDADE

No geral é uma estrutura simples de se implementar em virtude do seu estrito número de operações

UNIÃO E BUSCA EFICIENTES

Em média, a complexidade das operações de união e de busca é quase constante, o que permite que a sua eficiência não seja significativamente reduzida ao se utilizar um maior número de dados

AMPLA GAMA DE APLICAÇÕES

Essa estrutura pode ser aplicada nos mais diversos casos relacionados a conjuntos e principalmente em grafos, sendo utilizada em um grande número de algoritmos e problemas relacionas a eles

Desvantagens

USO DE MEMÓRIA

Como cada elemento em um conjunto disjunto é representado por um nó, para um grande número de dados a estrutura pode consumir uma significativa quantidade de memória

OPERAÇÕES LIMITADAS

Outras estruturas de dados podem ser mais adequadas para uso em problemas que exigem uma manipulação maior de dados, já que os conjuntos union find suportam apenas a união de conjuntos e busca de elementos

COMPLEXIDADE EM CASOS ADVERSOS

Com a implementação dessa estrutura utilizando árvore é possível que ela acabe ficando desbalanceada após serem realizadas uniões sucessivas, e o uso de otimizações seja recomendado para um melhor desempenho e eficiência da estrutura

Descrição

Três Operações Básicas

INICIALIZAÇÃO

No início, cada elemento é um conjunto único de si próprio.

BUSCA

Ela define a busca de um elemento específico de um determinado conjunto. Retorna o representante do conjunto.

UNIÃO

Essa operação une dois conjuntos, gerando assim um novo conjunto caracterizado por ser a junção de outros dois conjuntos.

Union(1, 2)

Union(2, 3)

Union(4, 5)

Union(6, 7)

Union(5, 6)

Union(2, 6)

1 2 3 4 5 6 7

R = **Representante**

T = Tamanho

L = Lista do número

• Operações realizadas:

Union(2, 3) Union(2, 4)

Union(5,6) Union(6, 8)

Union(3, 9) Union(6, 7)

Union(1, 7) Union(3, 4)

Union(3, 8)

R = Representante
T = Tamanho
L = Lista do número

Implementação Encadeada

Roteiro de Código

01

ESTRUTURA

Struct Elemento:

- valor
- apontador para o próximo elemento
- apontador para o seu representante
- apontador para o seu conjunto

Struct Conjunto:

- apontador para o elemento da cabeça
- apontador para o elemento da cauda
- tamanho

03

FIND SET

 Recebe um elemento como parâmetro e retorna seu representante 17

MAKE SET

- Recebe um valor como parâmetro : 'valor'
- Aloca memória para um conjunto e para um elemento: 'conjunto' e 'elemento'
- elemento->valor = valor
- elemento->próximo = NULL
- elemento->representante = elemento
- elemento->conjunto = conjunto
- conjunto->cabeça = elemento
- conjunto->cauda = elemento
- conjunto->tamanho = 1
- Retorna o conjunto unitário

Roteiro de Código

04

UNION SET

- Recebe dois elementos como parâmetro: A e B
- X = findset(A)->conjunto
- Y = findset(B)->conjunto
- Se X->tamanho <= Y->tamanho
- Para todo 'e' em X, e->representante = B
- Y->tamanho = X->tamanho + Y->tamanho
- X->tamanho = 0
- Y->cauda->próximo = X->cabeça
- Y->cauda = X->cauda
- X->cabeça = NULL
- X->cauda = NULL
- E se o tamanho do primeiro for maior que o do segundo faz esse mesmo passo a passo mas invertendo o primeiro com o segundo

Aplicações

01

SEGMENTAÇÃO DE IMAGENS

Permite o agrupamento de pixels com propriedades similares

02

APRENDIZADO DE MÁQUINA

Permite o agrupamento de dados com características similares

03

ALGORITMO DE KRUSKAL

Permite manter controle dos componentes conexos de um grafo e garantir que as propriedades da árvore geradora mínima em construção não sejam violadas.

Possíveis Aplicações

01

O QUE É

O Algoritmo de Kruskal é um algoritmo de otimização realizado em grafos conexos e não dirigidos

02

OBJETIVO

Seu objetivo é construir uma árvore geradora mínima de um grafo valorado que atenda aos critérios anteriores

ÁRVORE GERADORA MÍNIMA

É o subconjunto das arestas do grafo que cobre todos os vértices presentes nele de modo a soma dos pesos das arestas seja a menor possível.

Algoritmo de Kruskal

USO DA ESTRUTURA UNION FIND

04

É utilizada para verificar se a inserção de uma aresta irá ou não violar as propriedades da árvore geradora mínima

A VERIFICAÇÃO

05

A aresta apenas pode ser incluída quando os vértices conectados por elas não pertencem ao mesmo conjunto disjunto, já que se pertencessem iriam gerar um ciclo na árvore, o que não é permitido

INLCUINDO UMA ARESTA

06

Se a aresta passar pela verificação então ela é incluída e os conjuntos disjuntos aos quais seus vértices pertenciam são unidos

Algoritmo de Kruskal

Alternative Big O notation:

$$O(1) = O(yeah)$$

$$O(log n) = O(nice)$$

$$O(n) = O(ok)$$

$$O(n^2) = O(my)$$

$$O(2^n) = O(no)$$

$$O(n!) = O(mg!)$$

Complexidade do Algoritmo

O tempo de execução para as operações, na grande maioria das aplicações da estrutura, é na ordem de O(A(n)), onde A é a função inversa de Ackermann, a qual cresce de modo extremamente devagar.

Por isso, o tempo de execução é considerado constante.

Complexidade do Algoritmo Escolhido

Lista Encadeada

Na lista encadeada, a inicialização e busca sempre gastam o valor de O(1) para ser executada, ou seja, é constante.

Otimização

Podem ser feitos algumas melhorias nos Conjuntos Union-Find

01

COMPRESSÃO DE CAMINHO

Path Compression

Cada nó aponta diretamente para a raiz

02

UNIÃO POR TAMANHO

Union by rank

Raiz da menor árvore aponta para a raiz da maior árvore

Compressão de Caminho

Otimização da operação Find Atualiza o apontador de cada nó visitado para apontar diretamente para o representante do

conjunto

Diminui a altura da árvore e, consequentemente, melhora a eficiência de operações Find futuras.

União por Tamanho

É necessário manter informações sobre o tamanho de cada conjunto

Assim, durante a operação de União, o conjunto de menor tamanho sempre se unirá ao de maior tamanho.

Isso ajuda a evitar um desbalanceamento de entre conjuntos e a operação de busca seja mais rápida.

Árvore 1

Tamanho/Altura = 2

Árvore 2

Tamanho/Altura = 1

União por Tamanho

Tamanho/Altura = 2

• União sem verificar o tamanho

Tamanho/Altura = 3

Complexidade do Algoritmo com Otimização

Árvore:

Utilizando árvore e com a otimização de compressão de caminho, nós conseguimos passar de O(n) para O(log n) na busca pelo representante do elemento.

Podemos também tentar diminuir o tempo de execução da união usando a união por tamanho em que, na maioria dos cenários, será O(A(n)) e no pior O(log n). Originalmente, qualquer união levaria O(log n).

Implementação por Árvore com otimização

Referências Bibliográficas:

https://www.scaler.com/topics/data-structures/disjoint-set/

https://en.wikipedia.org/wiki/Disjoint-set_data_structure

https://www.techiedelight.com/pt/disjoint-set-data-structure-union-find-algorithm/

https://cp-algorithms.com/data_structures/disjoint_set_union.html

<u>http://desenvolvendosoftware.com.br/estruturas-de-dados/conjuntos-disjuntos.html#onde-conjuntos-disjuntos-são-usados</u>

<u>https://www.techiedelight.com/pt/kruskals-algorithm-for-finding-minimum-spanning-tree/</u>

https://www.techiedelight.com/pt/union-find-algorithm-cycle-detection-graph/