线代笔记

mny

2023年10月30日

目录

1	线性	空间	2
	1.1	实数中运算的性质	2
	1.2	$(\mathbb{R}^m,+,*)$ 为一个线性空间 \dots	3
	1.3	矩阵	4
	1.4	矩阵的乘法的应用	7
		1.4.1 逆矩阵的一些性质	7
		1.4.2 线性组合的矩阵乘法表示	8
		1.4.3 矩阵方程	9
2	矩阵	的初等变换 1	.0
	2.1	初等变换的应用	LO
	2.2	用行约化阶梯形式求解线性方程组	14
3	线性	方程组的解 1	.5
	3.1	齐次线性方程解空间的性质 1	15
	3.2	一些概念 1	16
	3.3	线性代数基本定理 2	20
4	正交	投影 2	24
	4.1	投影矩阵 2	24
		4.1.1 投影矩阵的性质	25
	4.2	正交投影的应用	26
		4.2.1 最小二乘法	26
		4.2.2 线性回归 2	26

		4.2.3	正交基	. 27					
		4.2.4	<i>QR</i> 分解	. 29					
5	行列	式		29					
	5.1	行列式	【的定义和唯一性	. 29					
	5.2	行列式	【的递归定义	. 32					
	5.3	行列式	【的应用	. 36					
		5.3.1	克拉默 (Cramer) 法则求解线性方程组	. 36					
		5.3.2	用行列式求逆的公式	. 37					
6	特征值和特征向量								
	6.1	特征多	F项式的系数和特征值的关系	. 39					
	6.2	特征值	直的一些简单性质	. 40					
	6.3	特征向	可量的一些简单性质	. 40					
	6.4	相似对	†角化	. 41					

1 线性空间

线性空间 \mathbb{R}^m , m 是一个自然数. m=1 时, 是实数. 有两个代数运算 + 和 *, 有两个特殊元素 0 和 1.

1.1 实数中运算的性质

+ 满足的性质:

- 交换的, a + b = b + a
- 加法满足结合律 a + (b + c) = (a + b) + c

*满足的性质:

- 交换的 a * b = b * a
- 对于一个非 0 元素 a, 存在一个元素 b, 使得 a*b=1, $b=a^{-1}$
- 结合律 a * (b * c) = (a * b) * c

+ 和 * 满足分配律: a*(b+c) = a*b + a*c

定义
$$\mathbf{1.1.}$$
 \mathbb{R}^m 中的元素为 $\begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$, 其中 $a_1,\ldots a_m$ 为任意实数.
$$\mathbb{R}^m$$
 中的元素 $v = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$ 称为列向量. 有时一个元素表示为 $\begin{bmatrix} a_1, a_2, \cdots, a_m \end{bmatrix}$, 称作行向量.

 \mathbb{R}^m 上定义两个运算 + 和 *(用列向量来表示)

定义 1.2. + 加法: 任意两个列向量 a, b 得到一个新的列向量.

$$v + w = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_m + b_m \end{bmatrix}$$
(1.1)

例 1.1. 在
$$\mathbb{R}^2$$
 中,
$$\begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$$

定义 1.3. * 数乘: 任意一个实数 c, 以及一个列向量 v, 得到一个新的列向量 cv

$$cv = c \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix} = \begin{bmatrix} ca_1 \\ ca_2 \\ \vdots \\ ca_m \end{bmatrix}$$

$$(1.2)$$

1.2 $(\mathbb{R}^m, +, *)$ 为一个线性空间

两种运算满足:

- 交換律 v + w = w + v
- 结合律 $c_1(c_2v) = (c_1c_2)v$
- 分配律 c(v+w) = cv + cw

• 通过加法可以定义减法运算
$$v-w=\begin{bmatrix}a_1\\a_2\\\vdots\\a_m\end{bmatrix}-\begin{bmatrix}b_1\\b_2\\\vdots\\b_m\end{bmatrix}=\begin{bmatrix}a_1-b_1\\a_2-b_2\\\vdots\\a_m-b_m\end{bmatrix}.$$

• 给定一组 \mathbb{R}^m 中的向量, $(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n)$, 和一组实数 (x_1, x_2, \dots, x_n) 可以构成新的向量

$$x_1 \vec{v_1} + x_2 \vec{v_2} + \dots + x_n \vec{v_n} \tag{1.3}$$

这个新的向称为 (v_1, v_2, \ldots, v_n) 的线性组合.

1.3 矩阵

定义 1.4. $m \times n$ 矩阵,

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

$$(1.4)$$

 a_{ij} 为实数

从线性空间的角度, 矩阵可以有下列的理解:

- 从矩阵列的角度, $A = \left[\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n \right]$
- 从矩阵行的角度, $A = \begin{bmatrix} \vec{v}_1 \\ \vec{v}_2 \\ \vdots \\ \vec{v}_m \end{bmatrix}$

固定 m 和 n, 矩阵空间上可以定义两个自然的运算

定义 1.5. 矩阵加法:

$$A = (a_{ij}), \quad B = (b_{ij}), \quad (A+B)_{ij} = (a_{ij} + b_{ij})$$
 (1.5)

定义 1.6. 数乘, 任意一个实数 c, 一个矩阵 A, 得到

$$(cA)_{ij} = (ca_{ij}) (1.6)$$

定义 1.7. 矩阵乘法.

定义: 矩阵乘法是把一个 $m \times n$ 矩阵乘上一个 $n \times k$ 矩阵, 得到一个 $m \times k$ 矩阵. 运算规则:

$$(C)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{m} a_{ik}b_{kj}$$
(1.7)

矩阵乘法的性质:

• 结合律:

$$(AB) C = A (BC) \tag{1.8}$$

证明. 设 $A: m \times n, B: n \times k, C: k \times l$, 根据定义

$$[(AB)C]_{ij} = \sum_{u=1}^{k} (AB)_{iu}C_{uj} = \sum_{u=1}^{k} \sum_{v=1}^{n} a_{iv}b_{vu}c_{vj}$$
(1.9)

同样

$$[A(BC)]_{ij} = \sum_{v=1}^{n} A_{iv}(BC)_{vj} = \sum_{u=1}^{k} \sum_{v=1}^{n} a_{iv} b_{vu} c_{vj}$$
(1.10)

• 分配律:

$$A(B+C) = AB + AC \tag{1.11}$$

$$(A+B)C = AC + AB \tag{1.12}$$

• 矩阵乘法不满足交换律

$$AB \stackrel{\pi - \pm}{\neq} BA \tag{1.13}$$

不论交换有没有定义,都不一定相等.

矩阵乘法的几种理解:

- C = AB, C_{ij} 为把 A 的第 i 行和 B 的第 j 列乘起来.
- 从矩阵 A 的列向量的角度看

$$A = \left[\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n \right] \tag{1.14}$$

那么 C 的第 j 列为 A 的列向量的线性组合, 组合系数为 B 的第 j 列,

$$b_{1i}\vec{v}_1 + b_{2i}\vec{v}_2 + \dots + b_{ni}\vec{v}_n \tag{1.15}$$

• 从矩阵 B 的行向量来看

$$B = \begin{bmatrix} \vec{w}_1 \\ \vec{w}_2 \\ \vdots \\ \vec{w}_m \end{bmatrix}$$
 (1.16)

矩阵 C 的第 i 行为 B 的行向量的线性组合, 组合系数为矩阵 A 的第 i 行.

$$a_{i1}\vec{w}_1 + a_{i2}\vec{w}_2 + \dots + a_{in}\vec{w}_n \tag{1.17}$$

几种特殊矩阵:

• 方阵: 行和列数目一致, n×n

• 零矩阵: 元素都为 0

• n 阶单位矩阵:

$$\begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
 (1.18)

对角线全为1

• 上三角矩阵:

$$\begin{bmatrix}
* & * & \cdots & * \\
0 & * & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & *
\end{bmatrix}$$
(1.19)

• 下三角矩阵:

$$\begin{bmatrix}
* & 0 & \cdots & 0 \\
* & * & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \cdots & *
\end{bmatrix}$$
(1.20)

1.4 矩阵的乘法的应用

对于 $n \times n$ 的方阵 A, 可以利用矩阵的乘法来定义它的逆矩阵 A^{-1}

定义 1.8. A^{-1} 称为 A 的逆矩阵, 如果 A^{-1} 满足

$$A^{-1}A = I_{n \times n}, \, \mathbb{L}AA^{-1} = I_{n \times n}. \tag{1.21}$$

命题 1.1.

$$I_{n \times n} A = A I_{n \times n} = A \tag{1.22}$$

证明. 根据乘法的定义, 不难证明.

1.4.1 逆矩阵的一些性质

命题 1.2. 一个矩阵的逆矩阵不一定存在

例 1.2. 非平凡的例子
$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
.

证明. 假设存在 $A^{-1}=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$, 那么 A^{-1} 满足

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{1.23}$$

左侧

$$= \begin{bmatrix} c & d \\ 0 & 0 \end{bmatrix} \neq I_{2 \times 2} \tag{1.24}$$

命题 1.3. 如果逆矩阵存在, 它是唯一的.

证明. 假设 A 有两个逆矩阵 B, C, 则

$$AB = BA = AC = CA = I_{n \times n} \tag{1.25}$$

所以

$$B = B(AC) = (BA)C = C.$$
 (1.26)

命题 **1.4.** 若一个矩阵存在左逆 L, 满足 $LA = I_{n \times n}$, 那么矩阵 A 的逆矩阵存在, 且等于 L.¹ 命题 **1.5.** 如果 A 的逆为 A^{-1} , B 的逆为 B^{-1} , 则

$$(AB)^{-1} = B^{-1}A^{-1} (1.27)$$

证明.

$$(AB)B^{-1}A^{-1}$$

= $A(BB^{-1})A^{-1}$
= AA^{-1}
= $I_{n \times n}$. (1.28)

证明也可以推广到一般情况.

命题 1.6. 2×2 矩阵 $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ 的逆矩阵

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
 (1.29)

命题 1.7. 对角矩阵
$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$
 的逆为

$$D^{-1} = \begin{bmatrix} \frac{1}{d_1} & 0 & \cdots & 0\\ 0 & \frac{1}{d_2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \frac{1}{d_n} \end{bmatrix}$$
 (1.30)

这意味着 D^{-1} 存在当且仅当对角元素都不为零!

1.4.2 线性组合的矩阵乘法表示

线性组合

$$x_1 \vec{v}_1 + x_2 \vec{v}_2 + \dots + x_n \vec{v}_n, \tag{1.31}$$

¹将在后面证明.

引入两个矩阵

$$A = \begin{bmatrix} \vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n \end{bmatrix}, \quad X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
 (1.32)

其中 A 为 $m \times n$ 矩阵, X 为 $n \times 1$ 矩阵. 线性组合的矩阵表示为 AX.

1.4.3 矩阵方程

方程为 AX=b. 这个方程的解的性质取决于 A 中的向量 $\left[\vec{v}_1,\vec{v}_2,\cdots,\vec{v}_n\right]$ 和向量 b 的关系.

我们把这个方程写成分量的形式

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$
(1.33)

采用高斯 (Gauss) 消元法. 引入三种变换, 这些变换都不改变方程的解.

- 把某一个方程乘上一个系数 a.
- 消元: 第i个方程 + a × 第i个方程.
- 换行: 把第 i 行和第 j 行交换.

这三种称为矩阵的初等变换.

把第 2 个方程到第 m 个方程中的 x_1 消掉. 把第 i 个方程变为

方程
$$(i) - \frac{a_{i1}}{a_{11}} \times 方程(1)$$
 (1.34)

于是方程的增广矩阵变为

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} & b_1 \\ 0 & \cdots & a'_{2n} & b_2 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & a'_{mn} & b_m \end{bmatrix}$$

$$(1.35)$$

2 矩阵的初等变换

下面我们要将初等变换用矩阵乘法来实现.

• 倍乘变换: 矩阵 A 的第 i 行乘上 c, 其他行不变, $S_i(c)A = A'$. $S_i(c)$ 为将单位矩阵的第 i 个元素换为 c.

$$S_i(c) = \begin{bmatrix} \ddots & 0 & \cdots & 0 \\ 0 & c & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$(2.1)$$

 $S_i^{-1}(c)$ 是可逆的

$$S_i^{-1}(c) = \begin{bmatrix} \ddots & 0 & \cdots & 0 \\ 0 & \frac{1}{c} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$
 (2.2)

• 消元变换: 把第 i 行换成 第 i 行 $+ a \times$ 第 j 行. 它的形式为

$$E_{ij}(a) = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & \ddots & & \\ & a & & \ddots & \\ & & & 1 \end{bmatrix}. \tag{2.3}$$

其中的 a 位于 $E_{ij}(a)$ 的第 i 行第 j 列, 对角线元素都为 1.

 $E_{ij}(a)$ 是可逆的

$$E_{ij}^{-1}(a) = E_{ij}(-a) (2.4)$$

• 换行变换: 把第 i 行和第 j 行交换. 用一个矩阵 $P_{ij} = ($ 交换单位矩阵的 i, j 列) 来表示. 它是可逆的,

$$P_{ij}^{-1} = P_{ij}. (2.5)$$

2.1 初等变换的应用

LU 分解 把方矩阵分解成下列形式

$$A = LU, (2.6)$$

L 为下三角矩阵, U 为上三角矩阵.

方法: 通过初等变换, 把方矩阵变成一个上三角矩阵 (如果这个过程不涉及到换行的话) 那么有

$$E_1 E_2 \cdots E_n A = U \iff A = E_n^{-1} \cdots E_2^{-1} E_1^{-1} U$$
 (2.7)

由于 E_1, \dots, E_n 都是下三角矩阵, 它们的乘积也是下三角矩阵.

例 2.1. 对矩阵 A 做 LU 分解.

$$A = \begin{bmatrix} 3 & -7 & -2 & 2 \\ -3 & 5 & 1 & 0 \\ 6 & -4 & 0 & -5 \\ -9 & 5 & -5 & 12 \end{bmatrix}$$
 (2.8)

做操作

$$A \xrightarrow{E_{41}(3)E_{31}(-2)E_{21}(1)} \begin{cases} 3 & -7 & -2 & 2 \\ 0 & -2 & -1 & 2 \\ 0 & 10 & 4 & -9 \\ 0 & -16 & -11 & 18 \end{cases}$$

$$\xrightarrow{E_{42}(-8)E_{32}(5)} \begin{cases} 3 & -7 & -2 & 2 \\ 0 & -2 & -1 & 2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & -3 & 2 \end{cases}$$

$$\xrightarrow{E_{43}(-3)} \begin{cases} 3 & -7 & -2 & 2 \\ 0 & -2 & -1 & 2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{cases}$$

$$(2.9)$$

用矩阵乘法写起来

$$E_{43}(-3)E_{42}(-8)E_{32}(5)E_{41}(3)E_{31}(-2)E_{21}(1)A = U (2.10)$$

即

$$L = E_{21}(-1)E_{31}(2)E_{41}(-3)E_{32}(-5)E_{42}(8)E_{43}(-3)$$
(2.11)

计算可得

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & -5 & 1 & 0 \\ -3 & 8 & 3 & 1 \end{bmatrix}. \tag{2.12}$$

如果U的对角线都不为零,那么

$$U = DU', \quad (U')$$
 角线都为 1) (2.13)

用初等变换求逆 (Gauss-Jordan) 原理: 先找到一组初等变换来使得矩阵 A 变为单位矩阵,

$$(E_p \cdots E_1)A = I. \tag{2.14}$$

A 的逆可以这样求解:

$$AB = I (2.15)$$

在两边同时做行变换.

$$(E_p \cdots E_1)AB = (E_p \cdots E_1)I \tag{2.16}$$

即

$$B = IB = (E_p \cdots E_1)I \tag{2.17}$$

在实际操作时, 考虑增广矩阵 [A|I], 做初等变换, 变为 $[I|A^{-1}]$

例 2.2.

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \tag{2.18}$$

做初等变换

$$[A|I] = \begin{bmatrix} 2 & -1 & 0 & 1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 1 & 0 \\ 0 & -1 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{E_{12}(\frac{2}{3})E_{23}(\frac{3}{4})E_{32}(\frac{2}{3})E_{21}(\frac{1}{2})}$$

$$\begin{bmatrix} 2 & 0 & 0 & \frac{3}{2} & 1 & \frac{1}{2} \\ 0 & \frac{3}{2} & 0 & \frac{3}{4} & \frac{3}{2} & \frac{3}{4} \\ 0 & 0 & \frac{4}{3} & \frac{1}{3} & \frac{2}{3} & 1 \end{bmatrix}$$

$$\xrightarrow{S_{3}(\frac{3}{4})S_{2}(\frac{2}{3})S_{1}(\frac{1}{2})}$$

$$\begin{bmatrix} 1 & 0 & 0 & \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\ 0 & 1 & 0 & \frac{1}{2} & 1 & \frac{1}{2} \\ 0 & 0 & 1 & \frac{1}{4} & \frac{1}{2} & \frac{3}{4} \end{bmatrix}$$

$$(2.19)$$

最终的增广矩阵右侧就是 A 的逆.

$$A^{-1} = \begin{bmatrix} \frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} & \frac{3}{4} \end{bmatrix}$$
 (2.20)

行约化阶梯形及一般线性方程组的一般解

行约化阶梯形式

- 如果第 i 行都是零, 那么对于 i > i 行都是零.
- 如果第 *i* 行不都是零, 那么第一个非零元素为 1, 称为主元.
- 如果第 (i+1) 行不都是零, 那么这一行的主元在第 i 行的主元右边.
- 主元上方的元素都为零.

找到一个矩阵行约化阶梯形的方法

• 找到第一个不为零的列, 然后, 如果需要的话, 做换行操作, 使得这一列的第一个元素不为零. 之后消元操作, 把下方的元素都变为零.

$$A \to \begin{bmatrix} 0 & 0 & 1 & * & * & * \\ 0 & 0 & 0 & & & \\ 0 & 0 & 0 & & B & \\ 0 & 0 & 0 & & & B \end{bmatrix}$$
 (2.21)

- 对子矩阵 B 做同样的操作.
- 把主元上方的元素变为零.

例 2.3. 行约化阶梯形式:

$$\begin{bmatrix} 1 & 1 & 2 & 4 \\ 1 & 2 & 2 & 5 \\ 1 & 3 & 2 & 6 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 2 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 2 & 0 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 2 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(2.22)

行约化阶梯形式的一些名词

- 主元列: 如果该列有一个主元, 该列只有一个非零元素.
- 自由列: 没有主元之列.
- 主元变量, 自由变量:

对于一个方程

$$Rx = x_1 Y_1 + x_2 Y_2 + \dots + x_n Y_n, \tag{2.23}$$

如果 Y_i 为自由列,则 x_i 为自由变量.如果 Y_i 为主元列,则 x_i 为主元变量.对于例2.3, 约化后的方程为

$$\begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}, \tag{2.24}$$

其中的 x_1, x_2 为主元变量, x_3, x_4 为自由变量.

2.2 用行约化阶梯形式求解线性方程组

用行约化阶梯形式求解方程 Ax = b, 方法如下

• 考虑增广矩阵 [A|b], 做初等行变换, 把 A 变成行约化阶梯形式, 得到增广矩阵

$$[R|b'] \tag{2.25}$$

新的方程组 Rx = b' 的解空间和原来的方程一样.

• Rx = b' 的解 (如果存在) 为

$$x = x_p + x_n \tag{2.26}$$

其中 x_p 为 Rx = b' 的特解, x_n 为对应的齐次线性方程组 (b' = 0) 的所有解.

1. xp 可以求解如下: 取自由变量为零, 主元变量任意, 可以得到一个解.

例 2.4.

$$R = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}, \quad b' = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$
 (2.27)

特解为

$$x_p = \begin{bmatrix} 2\\3\\0\\0 \end{bmatrix}. (2.28)$$

2. 齐次线性方程的解可以这样求: 取某一个自由变量为 1, 其他自由变量为 0, 主元变量任意. 这样可以一共得到 n-r 个解, 记为 s_i , n 是变量数目, r 是主元数目. 则,

$$x_n = a_1 s_1 + a_2 s_2 + \dots + a_n s_n. (2.29)$$

例 2.5. 继续求解上例中的线性方程. 第一个通解:

$$\begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 1 \\ 0 \end{bmatrix} = 0$$
 (2.30)

得到
$$x_1 = -2, x_2 = 0$$
, 特解向量为 $s = \begin{bmatrix} -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}$. 另一个通解:

$$\begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ 0 \\ 1 \end{bmatrix} = 0$$
 (2.31)

解向量为
$$s_2 = \begin{bmatrix} -3 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$
.

干是原方程的所有解为

$$x = \begin{bmatrix} 2\\3\\0\\0\\0 \end{bmatrix} + a_1 \begin{bmatrix} -2\\0\\1\\0\\0 \end{bmatrix} + a_2 \begin{bmatrix} -3\\-1\\0\\1 \end{bmatrix}. \tag{2.32}$$

3 线性方程组的解

3.1 齐次线性方程解空间的性质

基本性质

• 证明: 任何一个解都可以做上面的分解. x' 为一个解, x_p 为另一个解, 那么

$$\begin{cases} Ax' = b \\ Ax_p = b \end{cases} \tag{3.1}$$

两式相减得到

$$A(x' - x_p) = 0 \tag{3.2}$$

即, $x' = x_p + x_n$ 中的 x_n 是齐次线性方程的解.

• 反之, 对于任意的齐次线性方程的解 $x_n, x_p + x_n$ 都是方程 Ax = b 的解.

证明: 因为
$$\begin{cases} Ax_p = b \\ Ax_n = 0 \end{cases} \implies A(x_p + x_n) = b.$$

为什么 Ax = b 的解可以写成这种形式

- 如果 v_1 为 Ax = 0 的解, v_2 也为解, 那么 $v_1 + v_2$ 也是方程的解.
- 如果 v 是一个解, 那么乘上一个系数 c, cv 也是方程的解. 因为 Av = 0, 那么 A(cv) = c(Av) = 0.

这证明了 Ax = 0 的解空间 N(A) 在向量加法及数乘下是封闭的.

3.2 线性子空间,线性无关,基,维数

线性子空间 \mathbb{R}^m 中的一个子空间 V, 如果 V 在加法和数乘下面是封闭的, 那么这个子空间称为线性子空间.

构造线性子空间的方法 给定一组固定的向量 (v_1, v_2, \cdots, v_n) , 考虑所有的线性组合构成的空间

$$V = \{x_1v_1 + x_2v_2 + \dots + x_nv_n\}$$
(3.3)

V 是一个线性子空间, 称之为 (v_1, v_2, \cdots, v_n) 张成的线性子空间.

线性无关

定义 3.1. 一组向量 (v_1, v_2, \dots, v_n) 称为线性无关的, 如果下列的方程

$$x_1v_1 + x_2v_2 + \dots + x_nv_n = 0 (3.4)$$

只有 0 解, 即对应的齐次线性方程 Ax = 0 只有 0 解.

例 3.1.
$$\mathbb{R}^2$$
 中的 $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, v_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 是线性无关的.

例 3.2. 如果 () 向量在这组向量中, 那么这组向量是线性相关的.

线性空间的基

定义 3.2. 一组线性无关的向量 (e_1, e_2, \dots, e_m) 称之为 V 的一组基, 如果 V 中任意一个向量都可以表示为这组向量的线性组合.

$$v = x_1 e_1 + x_2 e_2 + \dots + x_n e_n. \tag{3.5}$$

基中的向量个数称作维数.

例 3.3.
$$\mathbb{R}^2$$
 中的 $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 为一组基. 所以 \mathbb{R}^2 的维数为 2.

基的几个重要性质

• 坐标唯一性: 给定一组基 (e_1, e_2, \cdots, e_m) , 根据基的定义, 任意的向量都可以写成

$$(e_1, e_2, \cdots, e_m)$$

的线性组合,即

$$v = a_1 e_1 + a_2 e_2 + \dots + a_m e_m. \tag{3.6}$$

其中 (a_1, a_2, \dots, a_m) 称为 v 在基 (e_1, e_2, \dots, e_m) 下的坐标.

坐标是唯一的.

证明. 假设坐标不唯一, v 可以有两种展开方式:

$$v = a_1 e_1 + a_2 e_2 + \dots + a_m e_m$$

$$v = b_1 e_1 + b_2 e_2 + \dots + b_m e_m$$
(3.7)

两式相减得到

$$0 = (a_1 - b_1)e_1 + (a_2 - b_2)e_2 + \dots + (a_m - b_m)e_m$$
(3.8)

这与基的线性无关矛盾.

• 基不唯一, 但维数定义的维数一样.

证明. 反证法. 假设有两组基 $(e_1, e_2, \dots, e_m), (f_1, f_2, \dots, f_n), n > m$. 根据基的定义, (f_1, f_2, \dots, f_n) 可以写成 e_1, e_2, \dots, e_m 的线性组合.

$$f_1 = a_{11}e_1 + \cdots + a_{m1}e_m$$

$$\vdots$$

$$f_n = a_{1n}e_1 + \cdots + a_{mn}e_m$$
(3.9)

把上述过程写成矩阵乘法的形式

$$F = [f_1, f_2, \dots, f_n], \quad E = [e_1, e_2, \dots, e_m]$$
 (3.10)

并且

$$F = EA, (3.11)$$

其中 $A = (a_{ij}), A$ 为一个 $m \times n$ 的矩阵.

考虑 Ax = 0 的解, 利用之前齐次线性方程组的解的性质, 参数个数为 (n - r), r 为主元数目, 且 $r \le m$. 所以 Ax = 0 一定有非 0 的解 $(m \ne n)$.

利用方程 F = EA, 如果 Ax = 0 有非零解, 那么

$$Fx = EAx = 0 (3.12)$$

也有非零解,和假设矛盾.

• 基的变换矩阵 A 为可逆的.

证明. 有两组基 (f_1, f_2, \dots, f_m) , (e_1, e_2, \dots, e_m) ,

$$F = [f_1, f_2, \dots, f_m], \quad E = [e_1, e_2, \dots, e_m], \quad F = EA.$$
 (3.13)

A 为 $m \times m$ 矩阵. 如果 A 是不可逆的, 则 Ax = 0 有非零解即

$$\begin{bmatrix} f_1, f_2, \cdots, f_m \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = 0$$
(3.14)

这与 f_i 这组基的定义矛盾.

矩阵的转置

定义 3.3. 给定一个矩阵 A,

$$\left(A^{\mathrm{T}}\right)_{ij} = A_{ji}.\tag{3.15}$$

 A^{T} 把 A 的行变成列.

转置的一些性质

•

$$\left(A^{\mathrm{T}}\right)^{\mathrm{T}} = A. \tag{3.16}$$

•

$$(AB)^{\mathrm{T}} = B^{\mathrm{T}}A^{\mathrm{T}} \tag{3.17}$$

证明. 设 $A: m \times n, B: k \times n,$ 那么

$$(AB)_{ij} = \sum_{l=1}^{k} a_{ik} b_{lj}. \tag{3.18}$$

根据转置的定义,有

$$(AB)_{ij}^{\mathrm{T}} = (AB)_{ji} = \sum_{l=1}^{k} a_{jl} b_{li}.$$
 (3.19)

另一方面,

$$(B^{\mathrm{T}}A^{\mathrm{T}})_{ij} = \sum_{l=1}^{k} (B^{\mathrm{T}})_{li} (A^{\mathrm{T}})_{jl} = \sum_{l=1}^{k} a_{jl} b_{li}.$$
 (3.20)

•

$$(A^{\mathrm{T}})^{-1} = (A^{-1})^{\mathrm{T}}.$$
 (3.21)

证明. 因为

$$AA^{-1} = I, (3.22)$$

两边取转置得到

$$(A^{-1})^{\mathrm{T}} A^{\mathrm{T}} = I \implies (A^{\mathrm{T}})^{-1} = (A^{-1})^{\mathrm{T}}.$$
 (3.23)

特殊矩阵

对称矩阵: A^T = A.

$$A_{ij} = A_{ji}. (3.24)$$

例 3.4.

$$\begin{bmatrix} 2 & 4 \\ 4 & 3 \end{bmatrix} . \tag{3.25}$$

例 3.5.

$$\begin{bmatrix} 2 & 3 & 1 \\ 3 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} . \tag{3.26}$$

• 反对称矩阵: $A^{T} = -A$. 可知, 其对角线都为零.

例 3.6.

$$\begin{bmatrix} 0 & 1 & 1 \\ -1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}. \tag{3.27}$$

下面我们回到方程 Ax = b, A 可以定义四个线性子空间.

1. A 的列向量张成的线性子空间 C(A), 它的维数称为 A 的列秩.

例 3.7. 对于

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}.$$

$$C(A) = \begin{bmatrix} x_1 \\ x_3 \\ 0 \end{bmatrix}$$
,是三维空间的 $x-y$ 平面.

- 2. A 的行向量张成的线性子空间 $C(A^{T})$, 它的维数称为 A 的行秩.
- 3. A 的零空间 N(A). 线性方程组 Ax = 0 的所有解. N(A) 的维数为 n r, r 为主元数.
- 4. A^{T} 的零空间 $N(A^{T})$. 线性方程组 $A^{T}x = 0$ 的所有解.

3.3 线性代数基本定理

定理 3.1.

$$r_1 = r_2 = r = r'. (3.28)$$

命题 3.1. 初等行变换不改变行秩和列秩.

证明. 初等行变换对于行线性空间的影响

设矩阵
$$A = \begin{bmatrix} \vec{w}_1 \\ \vec{w}_2 \\ \vdots \\ \vec{w}_m \end{bmatrix}$$
. 把行线性子空间记为 $V(w) \subset \mathbb{R}^n$.

做倍加变换之后,新的向量组为

$$w' = (w_1, w_2, \cdots, w_i + aw_j, \cdots, w_m). \tag{3.29}$$

V(w') 为另一个线性子空间, 但是 V(w) = V(w'), 因为对于任意的一个向量 $w' \in V(w')$, 有

$$w' = x_1 w_1' + \dots + x_m w_m' = x_1 w_1 + \dots + (x_i + a x_i) w_i + \dots + x_m w_m. \tag{3.30}$$

所以有 $V(w') \subset V(w)$. 反之, 也有 $V(w) \subset V(w')$.

可得 V(w') = V(w).

初等行变换对于列向量子空间的影响

注意到, 初等行变换不改变齐次线性方程组的解, 也就是说

$$Ax = 0 \iff Bx = 0. \tag{3.31}$$

其中 B 为 A 初等行变换后的矩阵. 这也就是说,

$$x_1v_1 + \dots + x_nv_n = 0 \iff x_1v_1' + \dots + x_nv_n' = 0.$$
 (3.32)

假如 $x_1 \neq 0$, 那么 v_1 可以用其他向量线性组合表示.

所以, v 中线性独立的列向量数之和等于 v' 中线性独立的列向量数之和.

我们只需考虑行约化阶梯形式 R, 通过观察 R 的形式, 可以发现

- R 的列秩等于行秩.
- R 的行向量子空间及列向量子空间的维数等于主元数目.

因为主元列是线性无关的,自由列都可以用主元列的线性组合表示,主元行是线性无关的,而自由行是零.

定义 3.4. 矩阵的秩 (rank) 为列向量子空间 C(A) 的维数. 秩在初等行变换下不变.

例 3.8. 秩为 1 的矩阵的形式: 从列向量的角度来看,

$$A = \left[a_1 v_i, \cdots, v_i, \cdots, a_n v_i \right]. \tag{3.33}$$

(其中 v₁ 是非零向量)

定义 3.5. 一个矩阵称为满秩的, 如果秩为最大可能值 (行数列数中较小的一个).

$$\dim(N(A)) = n - r$$

$$\dim(N(A^{T})) = m - r$$

$$\dim(C(A)) = r$$

$$\dim(C(A^{T})) = r$$

$$(3.34)$$

我们给线性空间上附加一个新的结构: 内积

定义 3.6. 对于线性空间 \mathbb{R}^m 中的两个向量, 定义内积

$$\vec{v} \cdot \vec{w} = \sum_{i=1}^{m} v_i w_i. \tag{3.35}$$

把 v, w 看成 $m \times 1$ 的矩阵, 可以把内积写成矩阵乘法的形式,

$$\vec{v} \cdot \vec{w} = v^{\mathrm{T}} w = w^{\mathrm{T}} v. \tag{3.36}$$

有了内积, 可以定义一些东西

向量 v 的长度

$$|v| = \sqrt{v \cdot v} = \sqrt{v^{\mathrm{T}} v}. \tag{3.37}$$

两个向量垂直 v⊥w, 如果

$$v \cdot w = 0. \tag{3.38}$$

对于线性方程组 Ax = b, 当 b 属于 C(A) 时, 有解. 此时

$$A' = [A \ b], \quad \operatorname{rank}(A') = \operatorname{rank} A \tag{3.39}$$

无解时,

$$rank(A') = rank(A) + 1. (3.40)$$

考虑 Ax = 0 齐次线性方程组的解,

$$Ax = \begin{bmatrix} \vec{w}_1 \cdot x \\ \vec{w}_2 \cdot x \\ \vdots \\ \vec{w}_n \cdot x \end{bmatrix} = 0 \tag{3.41}$$

这意味着 Ax = 0 的解垂直于 A 的行向量子空间

$$N(A) \perp C(A^{\mathrm{T}}). \tag{3.42}$$

例 3.9. 对于两个矩阵 A, B, 有

$$\operatorname{rank}(A+B) \le \operatorname{rank} A + \operatorname{rank} B. \tag{3.43}$$

证明. 令
$$A = [v_1, v_2, \cdots, v_n], B = [w_1, w_2, \cdots, w_n],$$
则

$$A + B = \left[v_1 + w_1, v_2 + w_2, \cdots, v_n + w_n \right]. \tag{3.44}$$

这个矩阵的列空间是 A 和 B 的列空间的直和, 即 $A \oplus B$.

另一方面,

$$\operatorname{rank}(A \oplus B) \le \operatorname{rank} A + \operatorname{rank} B. \tag{3.45}$$

例 3.10. 一个矩阵 $A, A^2 = A$ 当且仅当

$$\operatorname{rank} A + \operatorname{rank} (I - A) = n. \tag{3.46}$$

证明. 因为 $A^2 = A$, 即 A(I - A) = 0, 所以 $C(I - A) \subset N(A)$, 即

$$\operatorname{rank} A + \operatorname{rank} (I - A) \le n. \tag{3.47}$$

另一方面, 因为

$$\operatorname{rank} I \ge \operatorname{rank} (I - A) + \operatorname{rank} A, \tag{3.48}$$

所以
$$\operatorname{rank} A + \operatorname{rank} (I - A) = n$$
.

4 正交投影

如果 Ax = b 无解, $b \notin C(A)$. 在这种情况, 我们寻找一个最接近的 $b' \in C(A)$, 此时 $e = \vec{b} - \vec{b}' \bot C(A)$.

定义 4.1. 上述的 b' 称为 b 在空间 C(A) 中的正交投影.

例 4.1. 下面考虑一个矢量 \vec{b} 在另一个矢量 \vec{a} 上的投影 \vec{p} .

$$\vec{p} \parallel \vec{a}, \quad |\vec{p}| = |\vec{b}| \cos \theta \tag{4.1}$$

于是

$$\vec{p} = |\vec{b}| \cos \theta \frac{\vec{a}}{|\vec{a}|} = \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|} \frac{\vec{a}}{|\vec{a}|} = \frac{\left(a^{\mathrm{T}}b\right)a}{a^{\mathrm{T}}a} = \left(\frac{aa^{\mathrm{T}}}{a^{\mathrm{T}}a}\right)b \equiv Pb. \tag{4.2}$$

上式中的的 $P = \frac{aa^{\mathrm{T}}}{a^{\mathrm{T}}a}$ 称为投影矩阵.

4.1 投影矩阵

考虑一般情况, 有一组向量 (v_1, v_2, \dots, v_n) , 这组向量张成一个线性子空间, 记为 C(A). 下面我们要将一个向量 \vec{b} 正交投影到这个空间, 投影后的向量记为 \vec{p} . 正交投影意味着 $\vec{b} - \vec{p}$ 垂直于 C(A).

回忆前面线性方程组的几何意义, $(\vec{b} - \vec{p}) \perp C(A)$ 等价于

$$A^{\mathrm{T}}\left(b-p\right) = 0. \tag{4.3}$$

因为 \vec{p} 在 C(A) 中, 可以用 (v_1, v_2, \dots, v_n) 来线性表示, 表示系数记为 \hat{x} , 具体来说,

$$p = \hat{x}_1 v_1 + \dots + \hat{x}_n v_n = \hat{x} A. \tag{4.4}$$

带入上面的垂直条件,

$$A^{\mathrm{T}}b - A^{\mathrm{T}}A\hat{x} = 0 \implies A^{\mathrm{T}}A\hat{x} = A^{\mathrm{T}}b. \tag{4.5}$$

如果 ATA 可逆, 那么我们有

$$\hat{x} = \left(A^{\mathrm{T}}A\right)^{-1}A^{\mathrm{T}}b. \tag{4.6}$$

于是我们得到

$$p = A\hat{x} = \underbrace{\left[A\left(A^{\mathrm{T}}A\right)^{-1}A^{\mathrm{T}}\right]}_{\text{投影矩阵}P}b. \tag{4.7}$$

4.1.1 投影矩阵的性质

• $P^2 = P$ $P^2 = A (A^{T}A)^{-1} A^{T} A (A^{T}A)^{-1} A^{T} = A (A^{T}A)^{-1} A^{T} = P.$ (4.8)

• $P^{\mathrm{T}} = P$

$$P^{T} = \left[A (A^{T} A)^{-1} A^{T} \right]^{T} = A \left[(A^{T} A)^{-1} \right]^{T} A^{T} = A (A^{T} A)^{-1} A^{T}.$$
 (4.9)

例 4.2. 求投影矩阵

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} . \tag{4.10}$$

计算投影矩阵 $P = A (AA^{\mathrm{T}})^{-1} A^{\mathrm{T}}$,

$$A^{\mathrm{T}}A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 (4.11)

$$(A^{\mathrm{T}}A)^{-1} = \frac{1}{1 \times 2 - 1 \times 1} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}.$$
 (4.12)

于是可得

$$P = A (A^{T}A) A^{T} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$
 (4.13)

下面我们考虑什么时候 $A^{T}A$ 可逆的问题.

命题 4.1. $A^{T}A$ 的零空间和 A 的零空间是一样的.

证明. 如果 Ax = 0, 那么两边左乘 A^{T} , 得到

$$A^{\mathrm{T}}Ax = 0. \tag{4.14}$$

反之, 如果 $A^{T}Ax = 0$, 两边左乘 x^{T} , 得到

$$x^{\mathrm{T}} A^{\mathrm{T}} A x = (Ax)^{\mathrm{T}} A x = 0.$$
 (4.15)

也就是说, Ax 的模长为零, 那它必然是零向量.

根据上述命题, 我们可以发现: 假设 $A^{\mathrm{T}}A$ 可逆 \iff $A^{\mathrm{T}}Ax=0$ 只有零解 \iff Ax=0 只有零解.

这意味着:

- A 的列向量是线性无关的.
- A 的秩为 r=n.

4.2 正交投影的应用

4.2.1 最小二乘法

在以后的学习中, 会经常遇到求以下函数的极小值

$$f(x) = |Ax - b| \tag{4.16}$$

其中的 A 是一个 $m \times n$ 的矩阵, b 是一个 $m \times 1$ 的向量.

- 如果 $b \in C(A)$, 那么 f(x) 的极小值为 0, x 的解为 Ax = b 的解.
- 如果 $b \notin C(A)$, 这时候极小值的 x 对应正交投影的坐标

$$\hat{x} = (A^{T}A)^{-1} A^{T}b. (4.17)$$

4.2.2 线性回归

收集到一些数据, $(y_1,t_1),(y_2,t_2),\cdots,(y_m,t_m)$. 假设 y 和 t 之间有一个线性关系 y=Dt+C, 用数据去估计 C 和 D.

估计方法: 考虑一个损失函数

$$L = \sum_{i=1}^{m} (y(t_i) - y_i)^2 = \sum_{i=1}^{m} (C + Dt_i - y_i)^2 = |Ax - b|^2$$
(4.18)

其中

$$A = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix}, \quad x = \begin{bmatrix} C \\ D \end{bmatrix}, \quad b = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}. \tag{4.19}$$

我们做一些计算

$$A^{\mathrm{T}}A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ t_1 & t_2 & \cdots & t_m \end{bmatrix} \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} = \begin{bmatrix} m & \sum_{i=1}^m t_i \\ \sum_{i=1}^m t_i & \sum_{i=1}^m t_i^2 \end{bmatrix}, \tag{4.20}$$

$$A^{\mathrm{T}}b = \begin{bmatrix} \sum_{i=1}^{m} y_i \\ \sum_{i=1}^{m} y_i t_i \end{bmatrix},\tag{4.21}$$

$$(A^{\mathrm{T}}A)^{-1} = \frac{1}{m\sum_{i=1}^{m} t_i^2 - (\sum_{i=1}^{m} t_i)} \begin{bmatrix} \sum_{i=1}^{m} t_i^2 & -\sum_{i=1}^{m} t_i \\ -\sum_{i=1}^{m} t_i & m \end{bmatrix}$$
 (4.22)

最后我们可以得到

$$C = \frac{\sum_{i=1}^{m} y_i \sum_{i=1}^{m} t_i^2 - \sum_{i=1}^{m} t_i \sum_{i=1}^{m} y_i t_i}{m \sum_{i=1}^{m} t_i^2 - \left(\sum_{i=1}^{m} t_i\right)^2}, \quad D = \frac{m \sum_{i=1}^{m} y_i t_i - \sum_{i=1}^{m} y_i \sum_{i=1}^{m} t_i}{m \sum_{i=1}^{m} t_i^2 - \left(\sum_{i=1}^{m} t_i\right)^2}.$$
 (4.23)

4.2.3 正交基

一组基需要满足条件:

- 线性无关.
- 任何向量都可以写成 (v_1, v_2, \cdots, v_m) 的线性组合.

定义 **4.2.** (q_1, q_2, \dots, q_n) 是一组基, 且满足

$$q_i \cdot q_j = \delta_{ij}. \tag{4.24}$$

则它们是正交归一基.

如果 q_1, q_2, \dots, q_n 是一组正交归一基, 那么对应的矩阵 $Q = \begin{bmatrix} q_1, q_2, \dots, q_n \end{bmatrix}$ 满足

$$Q^{\mathrm{T}}Q = QQ^{\mathrm{T}} = I. \tag{4.25}$$

验证:

$$Q^{\mathrm{T}}Q = \begin{bmatrix} q_1^{\mathrm{T}} \\ q_2^{\mathrm{T}} \\ \vdots \\ q_n^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} q_1^{\mathrm{T}}, q_2^{\mathrm{T}}, \cdots, q_n^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} \cdot \cdot \cdot \\ & q_j^{\mathrm{T}} q_i \\ & \cdot \cdot \cdot \end{bmatrix} = \begin{bmatrix} \cdot \cdot \cdot \\ & \delta_{ij} \\ & \cdot \cdot \cdot \end{bmatrix} = I. \tag{4.26}$$

给定一组基, 可以构造一组正交归一基 (Gram-Schmit). 方法如下:

- 1. 选一个向量 a, 令矩阵 A = [a].
- 2. 通过 b 构造一个向量 B, 要求 B 垂直于 A 的列向量. 那么,

$$B = b - A (A^{T}A)^{-1} A^{T}b. (4.27)$$

3. 通过 c 构造一个向量 C,

$$C = c - A (A^{T}A)^{-1} A^{T}c - B (B^{T}B)^{-1} B^{T}c,$$
(4.28)

下面验证它垂直于 A 和 B: 令 Q = [A B], 则

$$Q^{\mathrm{T}}Q = \begin{bmatrix} A^{\mathrm{T}} \\ B^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} A & B \end{bmatrix} = \begin{bmatrix} A^{\mathrm{T}}A & 0 \\ 0 & B^{\mathrm{T}}B \end{bmatrix}$$
(4.29)

所以

$$(Q^{\mathrm{T}}Q)^{-1} = \begin{bmatrix} \frac{1}{A^{\mathrm{T}}A} & 0\\ 0 & \frac{1}{B^{\mathrm{T}}B} \end{bmatrix}$$
 (4.30)

得到

$$Q(Q^{T}Q)^{-1}Q^{T} = \begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} \frac{1}{A^{T}A} & 0\\ 0 & \frac{1}{B^{T}B} \end{bmatrix} \begin{bmatrix} A^{T}\\ B^{T} \end{bmatrix} = A(A^{T}A)^{-1}A^{T} + B(B^{T}B)^{-1}B^{T}.$$
(4.31)

所以上面的 C 等价于将 c 减去 A, B 面内的投影, 自然 C 是垂直于 A, B 的.

4. 构造 D 垂直于 A, B, C,

$$D = d - A (A^{T}A)^{-1} A^{T}d - B (B^{T}B)^{-1} B^{T}d - C (C^{T}C)^{-1} C^{T}d.$$
(4.32)

最终可以得到一组正交的基向量, 之后将它们归一化就得到了正交归一基向量.

4.2.4 *QR* 分解

正交归一化的过程,给出了一个可逆矩阵的 QR 分解,

$$A = QR \tag{4.33}$$

其中 Q 是正交矩阵, $Q^{-1}=Q^{\mathrm{T}},$ R 是上三角矩阵. 正交归一化当中,

$$A = a \tag{4.34}$$

$$B = b - \frac{A^{\mathrm{T}}b}{A^{\mathrm{T}}A}A\tag{4.35}$$

$$C = c - \frac{A^{\mathrm{T}}c}{A^{\mathrm{T}}A}A - \frac{B^{\mathrm{T}}c}{B^{\mathrm{T}}B}B \tag{4.36}$$

整个过程可以用矩阵乘法表示. 正交归一基为

$$Q = \left[\frac{A}{|A|}, \frac{B}{|B|}, \dots \right] \tag{4.37}$$

有

$$Q = AR (4.38)$$

R 是一个上三角, 可以把原矩阵写为 $A = QR^{-1}$.

5 行列式

5.1 行列式的定义和唯一性

我们之前讨论了秩 $r: M_{n \times n} \to \mathbb{Z}_+$, 它在初等行变换下不变. 我们引入行列式

$$\delta \colon M_{n \times n} \to \mathbb{R} \tag{5.1}$$

是一个实数.

这个函数满足三个性质:

- 作用在单位阵上, $\delta(I) = 1$
- 作用在行向量上是线性的

$$\delta \begin{bmatrix} \vdots \\ cA_i + c'B_i \\ \vdots \end{bmatrix} = c\delta \begin{bmatrix} \vdots \\ A_i \\ \vdots \end{bmatrix} + c'\delta \begin{bmatrix} \vdots \\ B_i \\ \vdots \end{bmatrix}$$
(5.2)

• 如果 *A* 有两行是一样的, 那么行列式为零. 下面研究行列式在初等变换下的性质

• 倍加变换: $\delta(A') = \delta(A)$.

证明. 用到了性质三

$$\delta(A') = \delta \begin{bmatrix} \vdots \\ w_j \\ \vdots \\ w_i + aw_j \\ \vdots \end{bmatrix} = \delta \begin{bmatrix} \vdots \\ w_j \\ \vdots \\ w_i \end{bmatrix} + a\delta \begin{bmatrix} \vdots \\ w_j \\ \vdots \\ w_j \\ \vdots \end{bmatrix} = \delta(A)$$
 (5.3)

• 换行变换: $\delta(A') = -\delta(A)$.

证明.

$$0 = \delta \begin{bmatrix} \vdots \\ w_j + w_i \\ \vdots \\ w_i + w_j \\ \vdots \end{bmatrix} = \delta \begin{bmatrix} \vdots \\ w_j \\ \vdots \\ w_i \\ \vdots \\ w_i \\ \vdots \end{bmatrix} + \delta \begin{bmatrix} \vdots \\ w_i \\ \vdots \\ w_j \\ \vdots \end{bmatrix} = \delta(A') + \delta(A).$$
 (5.4)

- 倍乘变换 $\delta(A') = c\delta(A)$. 由线性性可得. 初等矩阵的行列式
- $\delta(E_{ij}(a)) = 1$

证明. 令
$$I = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix}$$
,则初等矩阵可以写为

$$E_{ij}(a) = \begin{bmatrix} \vdots \\ w_j \\ \vdots \\ w_i + aw_j \\ \vdots \end{bmatrix}. \tag{5.5}$$

于是

$$\delta(E) = \delta \begin{bmatrix} \vdots \\ w_j \\ \vdots \\ w_i + aw_j \\ \vdots \end{bmatrix} = \delta \begin{bmatrix} \vdots \\ w_j \\ \vdots \\ w_i \\ \vdots \end{bmatrix} + a\delta \begin{bmatrix} \vdots \\ w_j \\ \vdots \\ w_j \\ \vdots \\ \vdots \end{bmatrix} = \delta(I) = 1.$$
 (5.6)

- 换行 $\delta(P_{ij}) = -1$. 证明同上, 把这个矩阵写成单位阵的换行即可.
- 总结上面的结论, 我们可以发现, 对于初等矩阵 E,

$$\delta(EA) = \delta(A). \tag{5.7}$$

并且, 如果一个矩阵某一行为零, 那么行列式为零.

• 倍乘 $\delta(S_i(c)) = c$. 证明利用线性性.

命题 5.1. 满足行列式定义的三个性质的函数是唯一的.

证明. 对于任意矩阵 A, 通过初等变换可以变为一个行约化阶梯形式. 这分为两种情况.

如果 A' 为单位矩阵, 那么

$$\delta(A) = \frac{1}{\delta(E_p)\cdots\delta(E_1)}. (5.8)$$

如果 A' 不是单位矩阵, 那么 A' 的最后一行为零, 则

$$\delta(A) = 0. (5.9)$$

行列式满足的一个重要性质:

$$\delta(AB) = \delta(A)\delta(B). \tag{5.10}$$

证明. 找到变换使得 A 变为行约化阶梯形式 A'

$$A' = (E_p \cdots E_1) A, \tag{5.11}$$

如果 A' 为单位矩阵, 那么 $\delta(A') = 1$

$$\delta(B) = \delta(A'B) = \delta(E_p \cdots E_1 AB) = \delta(E_p) \cdots \delta(E_1) \delta(AB), \tag{5.12}$$

所以

$$\delta(B) = \frac{\delta(AB)}{\delta(A)} \implies \delta(AB) = \delta(A)\delta(B).$$
 (5.13)

如果 A' 不是单位矩阵, 那么 $\delta(A') = 0$, AB 也不是满秩的, 所以

$$\delta(AB) = 0 = \delta(A)\delta(B). \tag{5.14}$$

32

5.2 行列式的递归定义

定义 5.1. 余矩阵: A_{ij} : 把 A 的第 i 行第 j 列去掉, 得到一个 $(n-1) \times (n-1)$ 的矩阵.

例 5.1. 一个矩阵
$$A = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$$
,

$$A_{11} = \begin{bmatrix} 6 & 7 \\ 9 & 10 \end{bmatrix} \quad A_{21} = \begin{bmatrix} 3 & 4 \\ 9 & 10 \end{bmatrix} \quad A_{31} = \begin{bmatrix} 3 & 4 \\ 6 & 7 \end{bmatrix}. \tag{5.15}$$

行列式的递归定义:

$$\det A = a_{11} \det A_{11} - a_{21} \det A_{21} + a_{31} \det A_{31} - \dots + (-)^{1+j} a_{1j} \det A_{1j}.$$
 (5.16)

例 5.2. 1×1 矩阵行列式 $\det[a] = a$. 2×2 矩阵行列式 $\det\begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$.

行列式的几个性质:

• $\delta(A) \neq 0$, 当且仅当:

- 1. A 是可逆的
- 2. A 满秩
- 3. A 的列向量线性无关
- 4. Ax = 0 只有零解
- 5. A 可以行约化为单位矩阵
- $\delta(A) = 0$, 当且仅当:
 - 1. A 不可逆
 - 2. A 不满秩
 - 3. A 的列向量线性相关
 - 4. Ax = 0 有非零解
 - 5. A 不能行约化为单位矩阵

命题 5.2. 上文定义的行列式满足 $\det I = 1$.

证明. 可以用递归定义验证.

命题 5.3. 上文定义的行列式作用在行向量上是线性的.

读
$$D = \begin{bmatrix} \vdots \\ ca_k + c'b_k \\ \vdots \end{bmatrix}, A = \begin{bmatrix} \vdots \\ a_k \\ \vdots \end{bmatrix}, B = \begin{bmatrix} \vdots \\ b_k \\ \vdots \end{bmatrix}, 那么$$

$$\det D = c \det A + c' \det B. \tag{5.17}$$

证明. 根据上面的递归定义, 我们把 D, A, B 的行列式展开为

$$\det D = \sum (-)^{\mu+1} d_{\mu 1} \det D_{\mu 1}, \tag{5.18}$$

$$\det A = \sum (-)^{\mu+1} a_{\mu 1} \det A_{\mu 1}, \tag{5.19}$$

$$\det B = \sum (-)^{\mu+1} b_{\mu 1} \det B_{\mu 1}. \tag{5.20}$$

我们需要证明

$$d_{\mu 1} \det D_{\mu 1} = c a_{\mu 1} \det A_{\mu 1} + c' b_{\mu 1} \det B_{\mu 1}. \tag{5.21}$$

分情况讨论, 如果 $\mu=k$, 那么三个余子式是一样的, 而前面的系数满足 $d_{k1}=ca_{k1}+c'b_{k1}$ 所以等式成立.

如果 $\mu \neq k$, 那么 $d_{\mu 1} = a_{\mu 1} = b_{\mu 1}$, 有递归假设

$$\det D_{\mu 1} = c \det A_{\mu 1} + c' \det B_{\mu 1}, \tag{5.22}$$

那么

$$d_{\mu 1} \det D_{\mu 1} = c a_{\mu 1} \det A_{\mu 1} + c' b_{\mu 1} \det B_{\mu 1}. \tag{5.23}$$

命题 5.4. 如上定义的行列式, 如果 A 有两行是一样的, 那么 $\det A = 0$.

证明. 不妨设 A 的第 k 行和第 k+1 行是一样的. 那么有

$$a_{k1} = a_{k+1,1}, \quad \det A_{k1} = \det A_{k+1,1}.$$
 (5.24)

由递归假设, $\det A_{i1} = 0$, $i \neq k, k+1$.

$$\det A = (-)^{k+1} a_{k1} \det A_{k1} + (-)^{k+2} a_{k+1,1} \det A_{k+1,1} = 0.$$
 (5.25)

- 一些特殊矩阵的行列式:
- 对角矩阵的行列式等于对角线上元素的乘积.

$$\det \begin{bmatrix} d_1 & & & \\ & d_2 & & \\ & & \ddots & \\ & & & d_n \end{bmatrix} = d_1 d_2 \cdots d_n. \tag{5.26}$$

• 上三角矩阵的行列式等于对角线上元素的乘积.

$$\det \begin{bmatrix} d_1 & * & * & * \\ & d_2 & * & * \\ & & \ddots & * \\ & & & d_n \end{bmatrix} = d_1 d_2 \cdots d_n. \tag{5.27}$$

• 下三角矩阵的行列式等于对角线上元素的乘积.

$$\det \begin{bmatrix} d_1 & & & \\ * & d_2 & & & \\ * & * & \ddots & & \\ * & * & * & d_n \end{bmatrix} = d_1 d_2 \cdots d_n. \tag{5.28}$$

命题 5.5. 行列式可以用任意一行或者一列展开.

用行展开, 用A的第i行展开, 有

$$\det A = \sum_{j=1}^{n} (-)^{i+j} a_{ij} \det A_{ij}.$$
 (5.29)

用列展开, 用A的第j列展开, 有

$$\det A = \sum_{i=1}^{n} (-)^{i+j} a_{ij} \det A_{ij}.$$
 (5.30)

例 5.3. 计算

$$\det A = \det \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & 0 & 2 \end{bmatrix}$$
 (5.31)

我们对第1列展开,

$$\det A = 1 \det \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix} - 2 \det \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix} + 1 \det \begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix} = 1 \cdot 6 - 2 \cdot 4 + 1 \cdot (-7) = -9.$$
 (5.32)

对第1行展开

$$\det A = 1 \cdot 6 - 2 \cdot 3 + 3 \cdot (-3) = -9. \tag{5.33}$$

对第2行展开

$$\det A = -2 \cdot 4 + 3 \cdot (-1) - 1 \cdot (-2) = -9. \tag{5.34}$$

行列式的置换定义:

$$\det A = \sum_{n} \operatorname{sgn}(p) a_{1, p_1} a_{2, p_2} \cdots a_{n, p_n}, \tag{5.35}$$

其中的 p 为一个 n 阶置换 $p:\{1,2,\cdots,n\}\to\{1,2,\cdots,n\}$ 的一一映射, $\mathrm{sgn}\,(p)$ 为置换 p 的符号.

例 5.4. 三阶置换群的群元:

1	2	3	1	2	3	1	2	3
1	2	3	2	1	3	3	2	1
1	2	3	1	2	3	1	2	3
		_		~			~	

例 5.5. 用置换的方法计算三阶行列式.

$$\det \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \sum_{p} \operatorname{sgn}(p) a_{1, p_{1}} a_{2, p_{2}} a_{3, p_{3}}$$

$$= a_{11} a_{22} a_{33} - a_{11} a_{23} a_{32} - a_{12} a_{21} a_{33}$$

$$+ a_{12} a_{23} a_{31} + a_{13} a_{21} a_{32} - a_{13} a_{22} a_{31}.$$
(5.36)

5.3 行列式的应用

5.3.1 克拉默 (Cramer) 法则求解线性方程组

定理 5.1. 设 A 是一个 n 阶方阵, $\det(A) \neq 0$, b 是一个 n 维列向量, 那么线性方程组

$$Ax = b (5.37)$$

有唯一解

$$x_i = \frac{\det(B_i)}{\det(A)}, \quad i = 1, 2, \dots, n,$$
 (5.38)

其中 B_i 是把 A 的第 i 列换成 b 得到的矩阵,

$$A = [v_1, v_2, \dots, v_n], B_i = [v_1, v_2, \dots, b, \dots, v_n].$$
 (5.39)

证明. 对于矩阵 $A = \begin{bmatrix} v_1, v_2, \cdots, v_n \end{bmatrix}$,考虑下面的矩阵方程

$$A\left[E_1, \cdots, x, \cdots, E_n\right] = \left[v_1, v_2, \cdots, b, \cdots, v_n\right]. \tag{5.40}$$

两边取行列式,有

$$\det(A)\det\left(\left[E_1,\cdots,x,\cdots,E_n\right]\right) = \det\left(\left[v_1,v_2,\cdots,b,\cdots,v_n\right]\right). \tag{5.41}$$

我们需要计算上式左侧的行列式, 不难发现,

$$\det \begin{bmatrix} 1 & 0 & \cdots & x_1 & \cdots & 0 \\ 0 & 1 & \cdots & x_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_i & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_n & \cdots & 1 \end{bmatrix} = x_i.$$
 (5.42)

所以

$$(\det A) x_i = \det (B_i). \tag{5.43}$$

即

$$x_i = \frac{\det(B_i)}{\det(A)}. (5.44)$$

5.3.2 用行列式求逆的公式

定理 5.2. 我们构造一个代数余子式矩阵

$$M_{ij} = (-)^{i+j} \det A_{ij},$$
 (5.45)

那么 A 的逆矩阵为

$$A^{-1} = \frac{1}{\det A} M^{\mathrm{T}}.$$
 (5.46)

其中的 M^{T} 称为 A 的伴随矩阵, 记为 A^{*} .

例 5.6. 求 A 的逆矩阵,

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 3 & 1 \\ 2 & 1 & 0 \end{bmatrix}. \tag{5.47}$$

$$M = \begin{bmatrix} -1 & 2 & -2 \\ 3 & -6 & 3 \\ -7 & 11 & -5 \end{bmatrix}, \tag{5.48}$$

$$A^{-1} = -\frac{1}{3} \begin{bmatrix} -1 & 3 & -7 \\ 2 & -6 & 11 \\ -2 & 3 & -5 \end{bmatrix}.$$
 (5.49)

证明逆矩阵公式. 求 A 的逆, 假设 $A^{-1}=\left[w_1,w_2,\cdots,w_n\right]$, 那么由于 $AA^{-1}=I$,

$$A\left[w_1, w_2, \cdots, w_n\right] = I \implies \left[Aw_1, Aw_2, \cdots, Aw_n\right] = \left[E_1, E_2, \cdots, E_n\right]. \tag{5.50}$$

需要求解线性方程组,

$$Aw_i = E_i. (5.51)$$

由克拉默法则,

$$w_j = \frac{\det(B_j)}{\det(A)}. (5.52)$$

由于 B_i 是把 A 的第 i 列换成 E_i 得到的矩阵, 所以

$$\det(B_j) = (-)^{i+j} \det(A_{ij}) = M_{ij}. \tag{5.53}$$

38

6 特征值和特征向量

考虑下列线性方程组 (特征方程),

$$A\vec{x} = \lambda \vec{x}.\tag{6.1}$$

 \vec{x} 是一个非零的向量, 称为 A 的特征向量, 常数 λ 称为 A 的特征值.

例 6.1. 求矩阵的特征向量和特征值 $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

解 特征方程可以写为 $(A - \lambda I)\vec{x} = 0$, 即

$$\begin{bmatrix} 1 - \lambda & 1 \\ 0 & 1 - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \tag{6.2}$$

得到

$$\begin{cases} (1 - \lambda) x_1 + x_2 = 0\\ (1 - \lambda) x_2 = 0 \end{cases}$$
(6.3)

所以只有 $\lambda=1$ 时才有非零解. 此时, $\vec{x}=\begin{bmatrix}1\\0\end{bmatrix}$.

例 6.2. 求矩阵的特征向量和特征值 $A = \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$

解 特征方程为 $(A - \lambda I)\vec{x} = 0$, 即

$$\begin{bmatrix} 1 - \lambda & 3 \\ 1 & 2 - \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \tag{6.4}$$

得到

$$\begin{cases} (1-\lambda)x_1 + 3x_2 = 0\\ x_1 + (2-\lambda)x_2 = 0 \end{cases}$$
(6.5)

把第二个方程带入第一个方程,有

$$[(1 - \lambda)(2 - \lambda) - 3] x_2 = 0. (6.6)$$

所以 λ 有两个解.

考虑一般的特征方程,

$$(A - \lambda I)\,\vec{x} = 0. \tag{6.7}$$

39

所以 $A - \lambda I$ 的零空间维数大于等于一. 那么特征方程有非零解的充要条件就是

$$\det\left(A - \lambda I\right) = 0. \tag{6.8}$$

计算 $|\lambda I - A|$,

$$|\lambda I - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}.$$
(6.9)

这个行列式的值是一个关于 λ 的多项式, 称为特征多项式, 记为 $p(\lambda)$. 我们可以发现, λ 的最高次幂和次高次幂都来自于对角元的乘积.

我们把特征方程展开,

$$p(\lambda) = \lambda^n + c_1 \lambda^{n-1} + \dots + c_n = 0.$$
(6.10)

通过观察可以发现,

$$c_1 = -(a_{11} + a_{22} + \dots + a_{nn}) = -\operatorname{tr} A.$$
 (6.11)

$$c_n = |-A| = (-1)^n \det A.$$
 (6.12)

特征多项式有唯一分解:

$$p(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n). \tag{6.13}$$

- λ_i 可能是复数.
- λ_i 可能重合,这一个特征值的代数重数为 λ_i 在上述分解中出现的次数.
- 特征值必定存在, 至少一个.
- 所有特征值的代数重数之和等于 n.

6.1 特征多项式的系数和特征值的关系

$$\begin{cases} c_1 = -(a_{11} + a_{22} + \dots + a_{nn}) = -\operatorname{tr} A = -(\lambda_1 + \lambda_2 + \dots + \lambda_n) \\ c_n = |-A| = (-1)^n \det A = (-1)^n \lambda_1 \lambda_2 \cdots \lambda_n \end{cases}$$
(6.14)

所以,

$$\sum_{i} \lambda_{i} = \operatorname{tr} A, \quad \prod_{i} \lambda_{i} = \det A. \tag{6.15}$$

6.2 特征值的一些简单性质

• 如果 λ 为 A 的特征值, 那么 λ^k 也是 A^k 的特征值, 因为

$$A^k \vec{x} = \lambda^k \vec{x}. \tag{6.16}$$

• 如果 A 可逆, 则 $\lambda \neq 0$, 因为

$$Ax = \lambda x \implies A^{-1}x = \frac{1}{\lambda}x. \tag{6.17}$$

6.3 特征向量的一些简单性质

- 固定一个特征值, 所有对应的特征向量和零向量张成一个线性空间, 称为特征向量子空间, 记为 $V(\lambda)$.
 - 1. 加法下封闭: $\vec{x}_1, \vec{x}_2 \in V(\lambda)$

$$A(\vec{x}_1 + \vec{x}_2) = \lambda(\vec{x}_1 + \vec{x}_2) \implies \vec{x}_1 + \vec{x}_2 \in V(\lambda)$$
 (6.18)

2. 数乘下封闭: $\vec{x} \in V(\lambda)$

$$A(c\vec{x}) = c\lambda \vec{x} \implies c\vec{x} \in V(\lambda)$$
 (6.19)

- 对于一个代数重数为 p 的特征值, 对应的特征向量子空间的维数称作几何重数, 满足几何重数 < 代数重数.
- 不同特征值对应的特征向量是线性无关的.

证明. 只考虑两个特征值的情况, 设 λ_1, λ_2 为特征值, x, y 为对应的特征向量, 我们需要证明方程 $c_1x + c_2y = 0$ 只有零解.

把 A 作用到这个方程, 得到

$$c_1\lambda_1 x + c_2\lambda_2 y = 0. ag{6.20}$$

这时候得到了两个方程, 消去 x,

$$c_2 \left(\lambda_2 - \lambda_1 \right) y = 0. \tag{6.21}$$

因为
$$\lambda_1 \neq \lambda_2$$
, 所以 $c_2 = 0$, 同理 $c_1 = 0$.

6.4 相似对角化

我们之前讨论的把矩阵变为"标准形式"有

- 行变换 → 行约化阶梯形.
- 行变换, 对于可逆矩阵 A = LDU.
- 正交对角化, 对于可逆矩阵 A = QR.
 - 一般来说, 行变换是改变特征值的, 对于 $Ax = \lambda x$, 它的初等变换

$$A' = EA \tag{6.22}$$

原本的 λ 不是 A' 的特征值.

我们引进一种保持特征值的变换:相似变换.

定义 6.1. 对于一个矩阵 A, 它的相似变换为 $C = P^{-1}AP$, 其中 P 为可逆矩阵.

命题 6.1. 在相似变换下, 矩阵的特征值不变.

证明. 假设 λ 是 A 的特征值, 特征向量为 x, 有 $Ax = \lambda x$. 对于 $C = P^{-1}AP$, 有

$$C(P^{-1}x) = (P^{-1}AP)P^{-1}x = P^{-1}Ax = P^{-1}\lambda x = \lambda(P^{-1}x).$$
(6.23)

并且 $P^{-1}x$ 为非零向量.

反之, 对于 C 的一个特征值 λ 及对应的特征向量 x, $Cx = \lambda x$, 有

$$A(Px) = PCP^{-1}(Px) = PCx = P\lambda x = \lambda(Px). \tag{6.24}$$

命题 6.2. A 的特征多项式和 C 的特征多项式是一样的.

证明. 我们有 $P_A(\lambda) = \det(\lambda I - A)$.

对于 $C = P^{-1}AP$, 有

$$P_{C}(\lambda) = \det (\lambda I - P^{-1}AP) = \det (\lambda P^{-1}P - P^{-1}AP)$$

$$= \det (P^{-1}(\lambda I - A)P)$$

$$= \det (P^{-1}) \det (\lambda I - A) \det (P)$$

$$= \det (\lambda I - A) = P_{A}(\lambda).$$

$$(6.25)$$

相似变换对角化: 如果矩阵 $A_{m \times n}$ 有 n 个线性无关的特征向量,

$$Ax_i = \lambda_i x_i, \quad i = 1, 2, \dots, n. \tag{6.26}$$

那么存在一个相似矩阵 P, 使得相似变换后的矩阵为对角矩阵 $\Lambda = P^{-1}AP$, Λ 的对角元为特征值.

证明. 把 $Ax_i = \lambda_i x_i$ 写成矩阵乘法的形式, 令 $P = \left[x_1, x_2, \cdots, x_n \right]$,

$$A\underbrace{\left[x_{1}, x_{2}, \cdots, x_{n}\right]}_{P} = \underbrace{\left[x_{1}, x_{2}, \cdots, x_{n}\right]}_{P} \underbrace{\begin{bmatrix}\lambda_{1} \\ \lambda_{2} \\ & \ddots \\ & & \lambda_{n}\end{bmatrix}}_{\Lambda}.$$

$$(6.27)$$

也就是说 $\Lambda = P^{-1}AP$.

反之, 如果 A 可以相似对角化, 那么 A 有 n 个线性无关的特征向量, 特征值为矩阵的对角元素.

例 6.3. 对于矩阵
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
,它不能相似对角化.

定理 6.1. 一个特征值的几何重数小于等于它的代数重数.

证明. 假设 λ 的特征向量的几何重数为 m, 特征向量为 x_1, x_2, \dots, x_m , 且满足 $Ax_i = \lambda x_i$, $i = 1, 2, \dots, m$.

添加向量构造 \mathbb{R}^n 中的一组基 $(x_1, x_2, \cdots, x_m, e_1, e_2, \cdots, e_{n-m})$.

令 $P = [x_1, x_2, \cdots, x_m, e_1, e_2, \cdots, e_{n-m}]$, 把 $Ax_i = \lambda x_i$ 写成矩阵乘法的形式

$$A \underbrace{\begin{bmatrix} x_{1}, x_{2}, \cdots, x_{m}, e_{1}, e_{2}, \cdots, e_{n-m} \end{bmatrix}}_{P}$$

$$= \underbrace{\begin{bmatrix} x_{1}, x_{2}, \cdots, x_{m}, e_{1}, e_{2}, \cdots, e_{n-m} \end{bmatrix}}_{P} \underbrace{\begin{bmatrix} \lambda & 0 & \cdots & 0 & * & * \\ 0 & \lambda & \ddots & 0 & * & * \\ 0 & 0 & \ddots & 0 & * & * \\ \vdots & \ddots & 0 & \lambda & * & * \\ 0 & \ddots & 0 & * & * \\ 0 & 0 & \ddots & 0 & * & * \\ 0 & 0 & \cdots & 0 & * & * \\ 0 & 0 & \cdots & 0 & * & * \end{bmatrix}}_{C}.$$

$$(6.28)$$

因为 C 和 A 的特征多项式相同 (由相似变换性质), 又因为 C 至少有 m 个相同的特征值 λ (可以通过计算 C 的特征多项式很容易地看出来) \implies A 至少有 m 个为 λ 的特征值.

不是每一个矩阵都可以相似对角化的, 但是每一个矩阵都可以相似上三角化. 即, 存在可逆矩阵 P, 使得 $P^{-1}AP$ 为上三角矩阵, 且对角元为特征值.

证明. A 一定有一个特征值 λ_1 和一个特征向量 v_1 , $Av_1 = \lambda_1 v_1$.

下一步添加向量构成一组基 $(v_1, e_1, e_2, \cdots, e_{n-1})$. 令 $P = \begin{bmatrix} v_1, e_1, e_2, \cdots, e_{n-1} \end{bmatrix}$, 把特征方程写成矩阵乘法的形式.

$$A\left[v_{1}, e_{1}, e_{2}, \cdots, e_{n-1}\right] = \begin{bmatrix}v_{1}, e_{1}, e_{2}, \cdots, e_{n-1}\end{bmatrix}\begin{bmatrix} \lambda_{1} & B_{1} & B_$$

之后再对子矩阵 A_1 做相同的操作.