Lecture 6: Interval estimation Statistical Methods for Data Science

Yinan Yu

Department of Computer Science and Engineering

November 18, 2021

Today

- Central limit theorem
 - Terminology
 - Standardization
 - Central limit theorem
- 2 Interval estimation
 - Confidence interval
 - Credible interval
- Summary

Learning outcome

- Be able to explain the following terminology:
 - Sample statistic, sampling distribution, sample mean, sample variance, standardization, z-table, t-table
 - Point estimation, interval estimation
 - Confidence interval, credible interval
- Be able to explain the central limit theorem (CLT)
- Be able to construct the following interval estimates:
 - Confidence interval for
 - ullet sample mean of i.i.d. sample with unknown σ
 - unknown sampling distribution using bootstrap
 - Credible interval for a given posterior function

Today

- Central limit theorem
 - Terminology
 - Standardization
 - Central limit theorem
- 2 Interval estimation
- Summary

Terminology

Terminology

- Sample: a random data set $\{x_1, x_2, \dots, x_N\}$; the corresponding random variables are denoted as X_1, X_2, \dots, X_N .
- i.i.d. sample: $X_1, X_2 \cdots, X_N$ are i.i.d. random variables
- Sample statistic: a statistic computed from a sample.
 For example,
 - Sample mean:

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

Sample variance:

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} - \bar{X})^{2}$$

- Sampling distribution: the probability distribution of a sample statistic that is computed from a random sample (of size N)
- ullet Asymptotic: in this context, asymptotic means $N o \infty$

Note: as usual, capital letters and small letters are used to denote random variables and the values, respectively.

Awesome properties of Gaussian random variables

- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ be a Gaussian random variable, then the following random variables are also Gaussian
 - Scaling (scale): $tX \sim \mathcal{N}(t\mu_X, t^2\sigma_X^2)$, $t \neq 0$ is a constant
 - Translation (location): $X + c \sim \mathcal{N}(\mu_X + c, \sigma_X^2)$, c is a constant
 - $tX + c \sim \mathcal{N}(t\mu_X + c, t^2\sigma_X^2)$
- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ be two independent Gaussian random variables, then the following random variables are also Gaussian
 - $X + Y \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$
 - $X Y \sim \mathcal{N}(\mu_X \mu_Y, \sigma_X^2 + \sigma_Y^2)$

Terminology
Standardization
Central limit theorem

Standardization

Standardization

- Why standardization? We want to translate and scale data into a standard "shape" so that
 we can use standard tools to compare and analyze it
- Let X be a random variable that follows any probability distribution with mean μ and standard deviation σ . The standardization of X is

$$Y = \frac{X - \mu}{\sigma}$$

Question: what is the mean and standard deviation of Y? Random variable Y has mean 0 and standard deviation 1.

Standardization

• Let X be a random variable following a Gaussian distribution with mean μ and standard deviation σ , i.e. $X \sim \mathcal{N}(\mu, \sigma^2)$. The standardization of X is

$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1) \tag{1}$$

The distribution $\mathcal{N}(0,1)$ is called a standard Gaussian (normal) distribution

Standard Gaussian distribution

- Remember how much we love Gaussian distributions? We love the standard Gaussian distribution even more! We love it so much that we gave its CDF a special name: $\Phi(z)$.
- There is a table describing the quantiles of the standard Gaussian called the z-table.

```
0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56360 0.56749 0.57142 0.57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 0.86433 0.86550 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774
1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96976 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670
```

- Each row represents the integer and the first decimal of z
- Each column represents the second decimal of z
- Each cell is the

```
P(Z \le \text{row} + \text{column}) = \Phi(\text{row} + \text{column})
= stats.norm.cdf(x=row + column, loc=0, scale=1)
```


Standard Gaussian distribution (cont.)

• There are different types for the z-table. The difference is what is inside each cell, e.g. $\Phi(\text{row} + \text{column})$, $2(1 - \Phi(\text{row} + \text{column}))$, $1 - \Phi(\text{row} + \text{column})$ or $\frac{1}{2}(1 - \Phi(\text{row} + \text{column}))$. But the principle is the same. We will come back to this later. For now we use the version with $\Phi(\text{row} + \text{column})$.

• Due to symmetry, there are only positive values for z in the z-table.

Standard Gaussian distribution (cont.)

Exercise:

Try to find the corresponding pair (p, q) = (0.975, 1.96) in the z-table (60 secs).

Standard Gaussian distribution (cont.)

Answer:

Note: the table itself is not the point; the point is to reflect on the meaning of z values and the corresponding probabilities.

Standardization
Central limit theorem

Central limit theorem

Distribution of the sample mean

- You have 1000 ducks.
- Now, you take 30 of them and measure the sample mean of their weights x_i :

$$\hat{\mu}_1 = \frac{1}{30} \sum_{i=1}^{30} x_i$$

• Then you take another 30 ducks to measure the sample mean of their weights y_i :

$$\hat{\mu}_2 = \frac{1}{30} \sum_{i=1}^{30} y_i$$

- You do this experiment 100 times and plot the histogram of these 100 sample means $\hat{\mu}_i$ for $j=1,\cdots,100$.
- Then you realize these sample means $\hat{\mu}_j$ seem to follow a Gaussian distribution.

Distribution of the sample mean (cont.)

- The colors of your 1000 ducks can be either red $t_i = 0$ or blue $t_i = 1$.
- Now, you take 30 of them and measure the sample mean of their color t_i :

$$\hat{n}_1 = \frac{1}{30} \sum_{i=1}^{30} t_i = \frac{1}{30} (1 + 1 + 0 + 1 + \dots + 1)$$

Note: here $t_i \in \{0,1\}$ has discrete value.

• You take another 30 ducks and measure the sample mean of their color t_i :

$$\hat{n}_2 = \frac{1}{30} \sum_{i=1}^{30} t_i = \frac{1}{30} (0 + 0 + 0 + 1 + \dots + 1 + 0)$$

- You do this experiment 100 times and plot the histogram of these 100 sample means \hat{n}_i .
- Then you realize these sample means n_j also seem to follow a Gaussian distribution!?

Distribution of the sample mean (cont.)

• In fact, this is true for i.i.d. samples drawn from ANY probability distribution.

- The larger the sample size N (in the previous example N=30), the "more Gaussian" it becomes
- A rule of thumb: $N \ge 30$
- If the data distribution is Gaussian-like (bell-shaped, symmetric), only a small sample size is needed for the sample mean to be Gaussian

Central limit theorem

- One of the most important results in probability theory and statistics
- Given an i.i.d. sample X_1, X_2, \dots, X_N from ANY probability distribution with finite mean μ and variance σ^2 (most distributions satisfy this!), when the sample size N is sufficiently large, the sample mean approximately follows a Gaussian distribution with mean μ and variance $\frac{\sigma^2}{N}$, i.e.

$$\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$$
 (2)

where $\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ is the sample mean.

Central limit theorem (cont.)

How to interpret this?

$$ar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$$

- ullet The sample mean $ar{X}$ is around the true mean value μ
- The "deviation" of \bar{X} from μ is $\frac{\sigma^2}{N}$; the larger N, the smaller the deviation

Central limit theorem use cases

The central limit theorem is about the sample mean. In what scenarios we care about the sample mean?

- All the time!
- Example: we want to test the effectiveness of a drug. A patient can be either cured by this drug (X=1) or not cured (X=0), i.e. we can model X using a (2 secs) Bernoulli distribution with parameter (2 second) p (cure rate) and the maximum likelihood estimation of p is the (4 secs) sample mean.
- Example: we want to compare the effectiveness of two drugs. Then we have two random variables X (for drug 1) and Y (for drug 2) tested on independent patients. The sample mean \bar{X} are \bar{Y} are the maximum likelihood of their cure rates for X and Y, respectively, and they are Gaussian. Now, we want to compare these two sample means to see if they are sufficiently different. The difference $\bar{X} \bar{Y}$ also follows a Gaussian distribution.
- In general, we are often interested in how things work "on average".

Estimation error $\bar{X} - \mu$

The sample mean \bar{X} is used to estimate the true mean value μ . We are interested in how good this estimation is.

Estimation error $X - \mu$

Random variable: X_1, \dots, X_N

Assumption: i.i.d. with known standard deviation σ and unknown mean μ

- In many use cases, we want to estimate μ using the sample mean \bar{X} and we are interested in the estimation error
- From CLT (cf. Eq. (20)), we know that for a large N, the sample mean approximately follows a Gaussian distribution $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N}) - \bar{X}$ is around the true mean μ
- Let $\mathcal{E} = \bar{X} \mu \sim \mathcal{N}(0, \frac{\sigma^2}{N})$ be the random estimation error. Can we plot the PDF of \mathcal{E} ? (5 secs) Yes σ and N are both known!

- Interpretation of the plot: (5 secs) 95% of the time, the error $\bar{X} \mu$ is within q0 = -0.64 and q1 = 0.64
- Now it's pretty cool because not only can we estimate the mean (using the sample mean), but we can also give a margin of error!
- This 95% is called the confidence level. For a given confidence level, we can find a corresponding interval (q0, q1).

Calculate the margin of error

• For a given confidence level, denoted as $1-\alpha$, how do we find this interval for the error in Python? We can use the function **ppf** from **scipy.stats**

Find a standardized expression for the margin of error

- Standardize (cf. page 10) $\mathcal E$ by $\frac{\mathcal E}{\sigma/\sqrt{N}}=\frac{\bar X-\mu}{\sigma/\sqrt{N}}\sim \mathcal N(0,1)$
- We just learned that there is a special name for the standard Gaussian distributed random variable $Z \sim \mathcal{N}(0,1)$ let $Z = \frac{\bar{X} \mu}{\sigma/\sqrt{N}}$
- Now we have an expression for the error term $\mathcal{E} = \bar{X} \mu = \mathbf{Z} \frac{\sigma}{\sqrt{N}}$
- ullet The only random variable here is $Z \sim \mathcal{N}(0,1)$

- ullet We can use a two-tailed z-table (cf. page 12) to find the values for z0 and z1
- ullet In order to find an interval for \mathcal{E} , we just need to look at

$$(z0\frac{\sigma}{\sqrt{N}}, z1\frac{\sigma}{\sqrt{N}})$$

Find a standardized expression for the margin of error (cont.)

 \bullet For example, with $1-\alpha=95\%$ confidence level, the error is within

$$\left(-1.96\frac{\sigma}{\sqrt{N}}, \ 1.96\frac{\sigma}{\sqrt{N}}\right)$$

- Generally speaking, the value z1 (denoted by $z_{\alpha/2}$) is the quantile at $1-\alpha/2$. The value of $z_{\alpha/2}$ is called the (right) critical value; $\frac{\sigma}{\sqrt{N}}$ is called the standard error. In this example, we have $z_{\alpha/2}=z1=-z0=1.96$.
- Why two-tailed z-table: there are two tails $z \leq -z_{\alpha/2}$ and $z \geq z_{\alpha/2}$.

Find a standardized expression for the margin of error (cont.)

```
• In Python
    std = 1.8
    N = 30
    alpha = 0.05
    confidence_level = 1 - alpha # 95% confidence level
    z0 = stats.norm.ppf(alpha/2, 0, 1)
    z1 = stats.norm.ppf(confidence_level+alpha/2, 0, 1)
    print(z0*std/math.sqrt(N), z1*std/math.sqrt(N))
    >> (-0.6441098917381766, 0.6441098917381766)
```


Find a standardized expression for the margin of error (cont.)

• For a given sample with an estimate \bar{x} (note: here the small letter \bar{x} denotes the value of the estimate itself instead of a random variable), it's more convenient to have this margin of error around \bar{x} instead - so that we can say: the estimated mean is \bar{x} with this uncertainty:

$$\left(\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{N}},\ \bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{N}}\right)$$

- This is called the confidence interval
- The confidence interval for the sample mean is exact when the data distribution is Gaussian, otherwise it is an approximation under the central limit theorem
- This calculation is called **interval estimation**, because it gives an interval estimate $\left(\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{N}},\ \bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{N}}\right)$ instead of a single value estimate as in MAP or MLE.

Today

- Central limit theorem
- 2 Interval estimation
 - Confidence interval
 - Credible interval
- Summary

Quick questions

- What does it mean by something being random?
 - We can use a random variable to model the data
 - The random variable has an underlying probability distribution
 - We can use distribution functions (e.g. CDF, PDF/PMF) to describe the probability distribution
- What does it mean by unknown probability distribution?
 - The family of the probability distribution is unknown, e.g. Gaussian? Uniform?
 - Or given the assumption of the family of probability distributions, the parameters of the probability distribution are unknown, e.g. a Gaussian distribution with unknown mean and variance.

More questions

- How to estimate an unknown probability distribution?
 - Q-Q plot to estimate the family of probability distributions,
 e.g. data distribution vs Gaussian distribution
 - Parameter estimation techniques (e.g. MLE, MAP) to estimate the unknown parameters
- Given a probability distribution with unknown mean value μ , is μ random?
 - In Bayesian approaches (e.g. MAP), it is assumed random
 - In Frequentist approaches (e.g. MLE), it is not assumed random; it is an unknown constant
- Is the sample mean random?
 - Yes, it is random. The sample mean is a sample statistic; a sample statistic is computed from a sample; a sample is random and hence the sample statistic is random.

Even more questions...

- Is the sample mean always the MLE for the mean?
 - It is the MLE for the mean value of Gaussian distributions, but it is not always the MLE for the mean value of all distributions.

Interval estimation

- MLE and MAP are point estimation techniques since they only return one single value, i.e. a point, for the parameter estimation.
- However, we are often interested in the uncertainty
 associated with the point estimate. A point estimate +
 uncertainty is called an interval estimate since they return an
 interval instead a single value.

Confidence interval

Confidence interval (CI)

- Data: x_1, \dots, x_N
- Random variable: X_1, \dots, X_N with i.i.d. assumption
- ullet Parameter of interest: heta, e.g. the mean μ
- Estimate: $\hat{\theta}$, e.g. the sample mean \bar{x}
- Confidence interval for a given confidence level 1α (e.g. 95%)
 - Definition:

confidence interval = $(\hat{\theta}$ - margin of error, $\hat{\theta}$ + margin of error)

where

margin of error = critical value \times standard error of $\hat{\theta}$

Calculation:

Distribution of X_i	Scenario	θ	$\hat{ heta}$ (sampling distribution)	Critical value	Standard error	Confidence interval	Note
i.i.d. Gaussian	☑ σ known	mean	sample mean \bar{x}	$z_{\alpha/2}$	$\frac{\sigma}{\sqrt{N}}$	$\left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{N}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{N}}\right)$	
	? σ unknown		(Gaussian distribution)	$t_{\alpha/2}$	<u> </u>	$\left(\bar{x} - t_{\alpha/2} \frac{s}{\sqrt{N}}, \bar{x} + t_{\alpha/2} \frac{s}{\sqrt{N}}\right)$	exact
i.i.d.	☑ σ known		sample mean \bar{x}	$z_{\alpha/2}$	$\frac{\sigma}{\sqrt{N}}$	$\left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{N}}, \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{N}}\right)$	approximate
	? σ unknown		(approximately Gaussian under CLT)	$t_{\alpha/2}$	$\frac{s}{\sqrt{N}}$	$\left(\bar{x} - t_{\alpha/2} \frac{s}{\sqrt{N}}, \bar{x} + t_{\alpha/2} \frac{s}{\sqrt{N}}\right)$	for large N
i.i.d.	<u> </u>	any	MLE (asymptotically Gaussian)	$z_{\alpha/2}$	$\frac{1}{\sqrt{NI_N(\hat{\theta})}}$	$\left(\hat{\theta} - z_{\alpha/2} \frac{1}{\sqrt{NI_N(\hat{\theta})}}, \hat{\theta} + z_{\alpha/2} \frac{1}{\sqrt{NI_N(\hat{\theta})}}\right)$	asymptotic
i.i.d.	? -	any	any statistic (any distribution)	bootstrap the error quantile		$(\hat{\theta} - \epsilon_{1-\alpha/2}, \hat{\theta} - \epsilon_{\alpha/2})$	approximate

where σ is the standard deviation of the X_i and s the sample standard deviation

Calculation of the confidence interval

Data: x_1, \dots, x_N

Random variable: X_1, \dots, X_N i.i.d. with standard deviation σ

- CI for Gaussian sampling distribution (exact, approximate, asymptotic):
 - Parameter of interest: mean value Estimation method: sample mean \bar{x}

$$\sigma$$
 known: $\left(\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{N}}, \ \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{N}}\right)$ (cf. page 28)

?
$$\sigma$$
 unknown: $\left(ar{x}-t_{lpha/2}rac{\sigma}{\sqrt{N}},\ ar{x}+t_{lpha/2}rac{\sigma}{\sqrt{N}}
ight)$

Parameter of interest: any statistic
 Estimation method: MLE (cf. lecture 3 properties of MLE)

$$\widehat{\mathbf{p}} \quad \text{[not required]} \ \left(\hat{\theta} - z_{\alpha/2} \frac{1}{\sqrt{N I_N(\hat{\theta})}}, \hat{\theta} + z_{\alpha/2} \frac{1}{\sqrt{N I_N(\hat{\theta})}} \right)$$

- CI for unknown sampling distribution
 - Parameter of interest: any parameter, e.g. median Estimation method: any method
 - ? Bootstrap $\left(\hat{\theta} \epsilon_{1-\alpha/2}, \hat{\theta} \epsilon_{\alpha/2}\right)$

CI for unknown σ

- When the standard deviation σ is known, we have shown the standardization of the error term $\frac{\mathcal{E}}{\sigma/\sqrt{N}} = \frac{X-\mu}{\sigma/\sqrt{N}} \sim \mathcal{N}(0,1)$ (cf. page. 25).
- When σ is unknown, which is the most common case, we replace σ by its estimate $\hat{\sigma}$ - the sample standard deviation S

$$\hat{\sigma} = S = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2}$$

Now the standardization becomes (random, constant):

$$\frac{\mathcal{E}}{\sigma/\sqrt{N}} o \frac{\mathcal{E}}{S/\sqrt{N}} = \frac{\bar{X} - \mu}{S/\sqrt{N}} \sim t(N-1)$$

• Compared to the case with known σ , $\frac{\bar{X}-\mu}{\sigma/\sqrt{N}}\sim\mathcal{N}(0,1)$, the distribution of $\frac{\bar{X}-\mu}{\sigma/\sqrt{N}}$ is no longer the standard Gaussian ($\frac{\mu}{S/\sqrt{N}}$ is no longer a constant because S is a random variable). Instead, it follows a **Student's t-distribution** t. The Student's t-distribution has one parameter df = N - 1 (degrees of freedom).

r CI for unknown σ (cont.)

- The Student's t-distribution is a function of the sample size: df = N 1
- Think of it as a standard Gaussian compensated for the small sample size. For a large N, they become very similar.

r CI for unknown σ (cont.)

- t-table: similar to the z-table for the standard Gaussian distribution, there is a t-table for the Student's t-distribution (image from http://www.ttable.org/).
- each cell = stats.t.ppf(q=cum.prob, df=N-1, loc=0, scale=1)
- $\alpha = \text{two-tails}$ and confidence level = 1α

one-tail 0.5 two-tails 1 of 0 of	0 0.50 0 1.000 0 0.816 0 0.763 0 0.764 0 0.725 0 0.710 0 0.700 0 0 0 0 0.700 0 0 0 0 0.700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.40 1.376 1.061 0.978 0.978 0.941 7 0.920 0.896 0.898 0.889 0.883 0.879 0.873 0.873	0.15 0.30 1.963 1.386 1.250 1.190 1.156 1.134 1.119 1.108 1.100 1.093 1.088 1.083	0.10 0.20 3.078 1.885 1.638 1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363 1.372	0.05 0.10 6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812	0.025 0.05 12.71 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262 2.228	0.01 0.02 31.82 6.965 4.541 3.747 3.365 3.143 2.998 2.896 2.821 2.764	0.005 0.01 63.66 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250	0.001 0.002 318.31 22.327 10.215 7.173 5.893 5.208 4.785 4.501 4.297	0.0005 0.001 636.62 31.599 12.924 8.610 6.869 5.959 5.408 5.041 4.781
	0 1.000 0 0.816 0 0.765 0 0.745 0 0.725 0 0.716 0 0.700 0 0.700 0 0.700 0 0.695 0 0.695	1.376 1.061 5.0978 0.978 0.941 7.0920 0.896 0.898 0.889 0.883 0.879 0.876 0.873	1.963 1.386 1.250 1.190 1.156 1.134 1.119 1.108 1.100 1.093 1.088	3.078 1.886 1.638 1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363	6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812	12.71 4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262	31.82 6.965 4.541 3.747 3.365 3.143 2.998 2.896 2.821	63.66 9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250	318.31 22.327 10.215 7.173 5.893 5.208 4.785 4.501	636.62 31.599 12.924 8.610 6.869 5.959 5.408 5.041
1 0.00 2 0.00 3 0.00 3 0.00 4 0.00 6	0 0.816 0 0.76 0 0.74 0 0.72 0 0.71 0 0.71 0 0.70 0 0.70 0 0.70 0 0.69 0 0.69 0 0.69	1.061 0.978 0.941 0.920 0.896 0.896 0.883 0.883 0.879 0.876 0.873 0.873	1.386 1.250 1.190 1.156 1.134 1.119 1.108 1.100 1.093 1.088 1.083	1.886 1.638 1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363	2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812	4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262	6.965 4.541 3.747 3.365 3.143 2.998 2.896 2.821	9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250	22.327 10.215 7.173 5.893 5.208 4.785 4.501	31.599 12.924 8.610 6.869 5.959 5.408 5.041
2 0000 4 0.00 5 0000 6 0 00000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 00000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 00000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 00000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 00000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 00000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 00000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 00000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 00000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 00000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 00000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 00000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 0000 6 0 00000 6 0 0	0 0.816 0 0.76 0 0.74 0 0.72 0 0.71 0 0.71 0 0.70 0 0.70 0 0.70 0 0.69 0 0.69 0 0.69	1.061 0.978 0.941 0.920 0.896 0.896 0.883 0.883 0.879 0.876 0.873 0.873	1.386 1.250 1.190 1.156 1.134 1.119 1.108 1.100 1.093 1.088 1.083	1.886 1.638 1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363	2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812	4.303 3.182 2.776 2.571 2.447 2.365 2.306 2.262	6.965 4.541 3.747 3.365 3.143 2.998 2.896 2.821	9.925 5.841 4.604 4.032 3.707 3.499 3.355 3.250	22.327 10.215 7.173 5.893 5.208 4.785 4.501	31.599 12.924 8.610 6.869 5.959 5.408 5.041
3 0.00 4 0.00 6 0.00 8 0.00 8 0.00 10 0.00 11 0.00 11 0.00 11 0.00 11 0.00 11 0.00 11 0.00 12 0.00 13 0.00 14 0.00 15 0.00 16 0.00 17 0.00 18	0 0.763 0 0.744 0 0.723 0 0.716 0 0.706 0 0.706 0 0.706 0 0.693 0 0.693	0.978 0.941 0.920 0.996 0.896 0.883 0.883 0.879 0.876 0.873 0.873	1.250 1.190 1.156 1.134 1.119 1.108 1.100 1.093 1.088 1.083	1.638 1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363	2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812	3.182 2.776 2.571 2.447 2.365 2.306 2.262	4.541 3.747 3.365 3.143 2.998 2.896 2.821	5.841 4.604 4.032 3.707 3.499 3.355 3.250	10.215 7.173 5.893 5.208 4.785 4.501	12.924 8.610 6.869 5.959 5.408 5.041
4 0.00 6 0.00 6 0.00 7 0.00 8 0.00 10 0.00 11 0.00 12 0.00 13 0.00 14 0.00 15 0.00 16 0.00 17 0.00 18 0.00 18 0.00 19 0.00 19 0.00 19 0.00 20 0.00 20 0.00 22 0.00 22 0.00 23 0.00 24 0.00 25 0.00 27 0.00 28 0.00 29 0.00 29 0.00 20	0 0.74* 0 0.72* 0 0.71* 0 0.70* 0 0.70* 0 0.70* 0 0.69* 0 0.69* 0 0.69*	0.941 0.920 0.906 0.896 0.889 0.883 0.879 0.876 0.873 0.870	1.190 1.156 1.134 1.119 1.108 1.100 1.093 1.088 1.083	1.533 1.476 1.440 1.415 1.397 1.383 1.372 1.363	2.132 2.015 1.943 1.895 1.860 1.833 1.812	2.776 2.571 2.447 2.365 2.306 2.262	3.747 3.365 3.143 2.998 2.896 2.821	4.604 4.032 3.707 3.499 3.355 3.250	7.173 5.893 5.208 4.785 4.501	8.610 6.869 5.959 5.408 5.041
5 0.00 7 0.00 8 0.00 8 0.00 10 0.00 11 0.00 11 0.00 11 0.00 11 0.00 11 0.00 11 0.00 11 0.00 12 0.00 13 0.00 14 0.00 15 0.00 15 0.00 16 0.00 17 0.00 18 0.00 20	0 0.721 0 0.711 0 0.701 0 0.700 0 0.700 0 0.700 0 0.691 0 0.691	0.920 0.906 0.896 0.889 0.883 0.879 0.876 0.873 0.870	1.156 1.134 1.119 1.108 1.100 1.093 1.088 1.083	1.476 1.440 1.415 1.397 1.383 1.372 1.363	2.015 1.943 1.895 1.860 1.833 1.812	2.571 2.447 2.365 2.306 2.262	3.365 3.143 2.998 2.896 2.821	4.032 3.707 3.499 3.355 3.250	5.893 5.208 4.785 4.501	5.959 5.408 5.041
6 0.00 8 0.00 8 0.00 9 0.00 10 0.00 11 0.00 12 0.00 14 0.00 15 0.00 17 0.00 18 0.00 18 0.00 20 0.00 21 0.00 22 0.00 23 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 20	0 0.718 0 0.719 0 0.708 0 0.708 0 0.708 0 0.698 0 0.698	0.906 0.896 0.889 0.883 0.879 0.876 0.873 0.870	1.134 1.119 1.108 1.100 1.093 1.088 1.083	1.440 1.415 1.397 1.383 1.372 1.363	1.943 1.895 1.860 1.833 1.812	2.447 2.365 2.306 2.262	3.143 2.998 2.896 2.821	3.707 3.499 3.355 3.250	5.208 4.785 4.501	5.959 5.408 5.041
7 0.00 8 0.00 9 0.00 10 0.00 11 0.00 12 0.00 13 0.00 14 0.00 15 0.00 17 0.00 18 0.00 19 0.00 20 0.00 22 0.00 22 0.00 23 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 28 0.00 29 0.00 29 0.00 29 0.00 20 0.00	0 0.71° 0 0.70° 0 0.70° 0 0.70° 0 0.69° 0 0.69° 0 0.69°	0.896 0.889 0.883 0.879 0.876 0.873 0.870	1.119 1.108 1.100 1.093 1.088 1.083	1.415 1.397 1.383 1.372 1.363	1.895 1.860 1.833 1.812	2.365 2.306 2.262	2.998 2.896 2.821	3.499 3.355 3.250	4.785 4.501	5.408
8 0.00 9 0.00 10 0.00 11 0.00 12 0.00 13 0.00 14 0.00 16 0.00 17 0.00 19 0.00 20 0.00 21 0.00 22 0.00 23 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 20 0.00	0 0.708 0 0.700 0 0.700 0 0.693 0 0.694 0 0.694	0.889 0.883 0.879 0.876 0.873 0.870	1.108 1.100 1.093 1.088 1.083	1.397 1.383 1.372 1.363	1.860 1.833 1.812	2.306 2.262	2.896 2.821	3.355 3.250	4.501	5.041
9 0.00 10 0.00 11 0.00 12 0.00 13 0.00 14 0.00 15 0.00 17 0.00 18 0.00 19 0.00 20 0.00 22 0.00 22 0.00 22 0.00 23 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00 20 0.00	0 0.700 0 0.700 0 0.690 0 0.690 0 0.694	0.883 0.879 0.876 0.873 0.870	1.100 1.093 1.088 1.083	1.383 1.372 1.363	1.833 1.812	2.262	2.821	3.250		
10 0.00 11 0.00 12 0.00 13 0.00 14 0.00 15 0.00 16 0.00 17 0.00 18 0.00 20 0.00 21 0.00 22 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 28 0.00 29 0.00 29 0.00 20 0.0	0 0.700 0 0.693 0 0.693 0 0.694	0.879 0.876 0.873 0.870	1.093 1.088 1.083	1.372 1.363	1.812					
11 0.00 12 0.00 13 0.00 14 0.00 15 0.00 16 0.00 17 0.00 19 0.00 20 0.00 21 0.00 22 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 29 0.00 30 0.00 30 0.00 40 0.00	0 0.695 0 0.695 0 0.694	0.876 0.873 0.870	1.088	1.363		2.228				
12 0.00 13 0.00 14 0.00 15 0.00 17 0.00 18 0.00 20 0.00 21 0.00 22 0.00 23 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 20 0.0	0.69	0.873 0.870	1.083					3.169	4.144	4.587
13 0.00 14 0.00 15 0.00 16 0.00 17 0.00 19 0.00 20 0.00 21 0.00 22 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 29 0.00 30 0.00 40 0.00	0.694	0.870				2.201	2.718	3.106	4.025	4.437
15 0.00 16 0.00 17 0.00 18 0.00 20 0.00 21 0.00 22 0.00 23 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 30 0.00 40 0.00					1.782	2.179	2.681	3.055	3.930	4.318
15 0.00 16 0.00 17 0.00 18 0.00 19 0.00 21 0.00 22 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 30 0.00 40 0.00			1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
16 0.00 17 0.00 18 0.00 19 0.00 20 0.00 21 0.00 22 0.00 23 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 30 0.00 40 0.00			1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
17 0.00 18 0.00 19 0.00 20 0.00 21 0.00 22 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 28 0.00 29 0.00 30 0.00 40 0.00			1.074	1.341	1.753	2.131	2.602	2.947	3.733	4.073
18 0.00 20 0.00 21 0.00 22 0.00 23 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 40 0.00			1.071	1.337	1.746	2.120	2.583	2.921	3.686	4.015
19 0.00 20 0.00 21 0.00 22 0.00 23 0.00 24 0.00 25 0.00 27 0.00 27 0.00 28 0.00 29 0.00 40 0.00			1.069	1.333	1.740	2.110	2.567	2.898	3.646	3.965
20 0.00 21 0.00 22 0.00 23 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 40 0.00			1.067	1.330	1.734	2.101	2.552	2.878	3.610	3.922
21 0.00 22 0.00 23 0.00 24 0.00 25 0.00 27 0.00 28 0.00 29 0.00 30 0.00 40 0.00			1.066	1.328	1.729	2.093	2.539	2.861	3.579	3.883
22 0.00 23 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 30 0.00 40 0.00			1.064	1.325	1.725	2.086	2.528	2.845	3.552	3.850
23 0.00 24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 30 0.00 40 0.00			1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
24 0.00 25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 30 0.00 40 0.00			1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
25 0.00 26 0.00 27 0.00 28 0.00 29 0.00 30 0.00 40 0.00			1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
26 0.00 27 0.00 28 0.00 29 0.00 30 0.00 40 0.00			1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
27 0.00 28 0.00 29 0.00 30 0.00 40 0.00			1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
28 0.00 29 0.00 30 0.00 40 0.00			1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
29 0.00 30 0.00 40 0.00			1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
30 0.00 40 0.00			1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
40 0.00			1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
			1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
			1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60 0.00			1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80 0.00 100 0.00			1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100 0.00 1000 0.00			1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
Z 0.00	0.677		1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
09	0.67	60%	70%	80%	90% dence Le	95%	98%	99%	99.8%	99.9%

Summary

Data: x_1, \dots, x_N

Random variable: X_1, \dots, X_N i.i.d. with standard deviation σ CI for unknown σ with Gaussian sampling distribution

$$\left(\bar{x}-t_{\alpha/2}\frac{s}{\sqrt{N}},\bar{x}+t_{\alpha/2}\frac{s}{\sqrt{N}}\right)$$

CI for unknown sampling distribution

- Sample mean approximately follows a Gaussian distribution under the central limit theorem, but most other statistics do not have such luxury
- When the sampling distribution is unknown, we cannot use the t-table or z-table to find the critical values
- Recall the definition of CI: confidence interval = $(\hat{\theta} \text{margin of error})$
- One solution is to approximate the margin of error using bootstrap

Bootstrap

- Data: x_1, \dots, x_N
- Random variables: X_1, \dots, X_N i.i.d. from any distribution
- Parameter of interest: any θ
- Estimation method: any method
- Confidence interval: $(\hat{\theta} \epsilon_{1-\alpha/2}, \hat{\theta} \epsilon_{\alpha/2})$, where ϵ_p denotes the quantile of the error term at p

The idea of bootstrap is to approximate the error ϵ_p directly from data

Bootstrap example

Given a data set $\mathcal{X} = \{1, 2, 3, 4, 5\}$ with size N = 5 and $\hat{\theta} = median(\mathcal{X}) = 3$ estimated from this data set, construct CI with 95% confidence level:

- Sample with replacement
 - Step 1.1: Randomly choose 5 elements from \mathcal{X} : $\mathcal{X}_1^* = \{1, 2, 1, 1, 4\}$
 - Step 1.2: Compute the median from \mathcal{X}_1^* : $m_1 = 1.0$
 - Step 2.1: Randomly choose 5 elements from \mathcal{X} : $\mathcal{X}_2^* = \{2, 5, 2, 4, 4\}$
 - Step 2.2: Compute the median from \mathcal{X}_2^* : $m_2 = 4.0$

- Repeat this 100 times and get the set $\{m_1, \dots, m_{100}\}$
- Compute $\epsilon^i = m_i 3$ for $i = 1, \dots, 100$
- Compute 0.025-quantile $\epsilon_{0.025}$ and 0.975-quantile $\epsilon_{0.975}$ from the set $\{\epsilon^1,\cdots,\epsilon^{100}\}$
- The 95% CI is constructed as $(3 \epsilon_{0.975}, 3 \epsilon_{0.025})$
- Intuition:
 - $\hat{\theta} = 3$ is approximating the true median θ
 - m_i is approximating $\hat{\theta} = 3$
 - We can use $m_i 3$ to approximate 3θ

Lecture 6: Interval estimation

Bootstrap example (cont.)

CI for unknown sampling distribution using bootstrap

- Steps Given a data set $\mathcal X$ with size N and a statistic $\hat{\theta}$ computed from this data set, construct CI with $1-\alpha$ confidence level:
 - Choose a large n
 - For $i = 1, \dots, n$, repeat
 - Sample N elements from $\mathcal X$ with replacement: $\mathcal X_i^*$
 - Estimate the parameter of interest from \mathcal{X}_i^* : $\hat{\theta}_i$
 - Compute $\epsilon^i = \hat{\theta}_i \hat{\theta}$
 - Compute $\alpha/2$ -quantile $\epsilon_{\alpha/2}$ and $1-\alpha/2$ -quantile $\epsilon_{1-\alpha/2}$ from the set $\{\epsilon^1,\cdots,\epsilon^n\}$
 - ullet The 1-lpha CI is constructed as $\left(\hat{ heta}-\epsilon_{1-lpha/2},\hat{ heta}-\epsilon_{lpha/2}
 ight)$
- Intuition:
 - $\hat{\theta}$ is approximating θ
 - $\hat{\theta}_i$ is approximating $\hat{\theta}$
 - We can use $\hat{\theta}_i \vec{\hat{\theta}}$ to approximate $\hat{\theta} \theta$
- Note: there are many alternative methods for bootstrap; the exact method needs to be described when you talk about bootstrap

Confidence interval interpretation

- Confidence interval is random (data is random; statistic is random); the true parameter value θ is not random (illustrated in the image)
- ullet A 95% confidence interval means that 95% of the time, the interval covers the true value heta

- Question 1: with the same problem setup, the larger the confidence level,
 - A. the wider the confidence interval
 - B. the narrower the confidence interval

Answer: A

- Question 2: for a given confidence level, a good estimate has
 - A. a wide confidence interval
 - B. a narrow confidence interval

Answer: B

Confidence level interpretation

- If we compare 60% CI with 99.99% CI, the 60% CI does not always cover the true value $\theta=5$ (it only covers it 60% of the time). On the other hand, the 99.99% CI covers the true value pretty much all the time. From this perspective, 99.99% CI is more meaningful to use as a quality measure.
- However, 99.99% CI can be very wide of course since it promises to cover the true value 99.99% of the time. A wide interval might not be meaningful sometimes, e.g. if you claim that you have estimated $\hat{\theta}=4.3$ and you are 100% sure that the interval $(4.3-\infty,4.3+\infty)$ contains the true value, your client might get mad.

Credible interval

Credible interval for Bayesian approach

- In maximum a posteriori estimation, the parameter of interest θ is modeled as a random variable θ is generated from an underlying probability distribution described by $f(\theta)$
- Technically, any interval (a, b) with $P(a \le \Theta \le b) = 0.95$ is a 95% credible interval, but not all of them make sense, e.g.

There are different techniques for choosing this interval

Credible interval for Bayesian approach (cont.)

• In Python, for a given posterior (e.g. a standard Gaussian distribution $\mathcal{N}(0,1)$), the interval method computes the interval with equal areas around the median:

```
posterior = stats.norm(loc=0, scale=1)
credible_interval = posterior.interval(0.95)
```


Recap

Today

- Central limit theorem
- 2 Interval estimation
- Summary

Summary

So far:

- Data types and data containers
- Descriptive data analysis: descriptive statistics, visualization
- Probability distributions, events, random variables, PMF, PDF, parameters
- CDF, Q-Q plot, how to compare two distributions (data vs theoretical, data vs data)
- Modeling
- Parameter estimation: maximum likelihood estimation (MLE) and maximum a posteriori estimation (MAP)
- Classification, multinomial naive Bayes classifier, Gaussian naive Bayes classifier
- Central limit theorem, interval estimation

Next:

Hypothesis testing

Before next lecture:

Standardization, confidence interval, z-table, t-table

See you next week!

