

Swiss Confederation

Stochastic machine learning for atmospheric fields with generative adversarial networks

Jussi Leinonen

With contributions from Alexis Berne (EPFL), Daniele Nerini (MeteoSwiss), Tianle Yuan (NASA-GSFC/UMBC), Alexandre Guillaume (NASA-JPL)

Joint IS-ENES3/ESiWACE2 Virtual Workshop, 17.03.2021

Neural networks

- A neural network is a series of fixed mathematical operations ("layers") with trainable parameters and a training objective
- The fundamental types of layers are:
 - Affine transformations y=Wx+b, with W and b trainable
 - Nonlinearities, e.g. tanh or ReLU
- All layers are piecewise *differentiable*, so we can compute analytically the derivative of the objective w.r.t. each weight
 - We can optimize weights with gradient descent, automatic differentiation available in many packages (e.g. TensorFlow, PyTorch)

Neural networks

- Simplest neural networks repeat dense affine transformations and nonlinearities
- Deep neural networks use many layers in sequence
 - Each trainable layer learns higher-level features than the previous one

Neural networks

 Simplest neural networks repeat dense affine transformations and nonlinearities

 Deep neural networks us many layers in sequence

> Each trainable layer learns higher-level features than the previous one

Dense

ReLU

 Blocks of layers are often repeated

Convolutional networks

- Replace dense affine transforms with convolutions (can be represented as sparse matrices)
- The example on the right is image-to-image...

Convolution

Convolution block
Convolution block
Convolution block
Output image

Convolutional networks

- Add pooling layers to reduce image size
- Encode image information into high-level features, then use these features for classification

Encoder-decoder architectures

ReLU

Encode images to high-level features, then back to images

Autoencoders

- Optimize input and output to be similar
- A "bottleneck" in the middle of the network encodes the essential features of the data

Autoencoders

- Optimize input and output to be similar
- A "bottleneck" in the middle of the network encodes the essential features of the data
- Use contents of the dense block as features
 - Unsupervised learning

Input image Downsampling block Downsampling block Convolution block Dense block (bottleneck) Convolution block Upsampling block Upsampling block Output image Result

Residual blocks

- Include a skip connection in the network
 - Learn the residual of the previous block
 - Network can pass data through unused layers
 - Optimization gradients are better preserved

Recurrent units

- Used to model time-variable fields
- Learn update rules between time steps, encoded as trainable parameters
- Popular implementations include LSTM, GRU
- Typically used for time series and natural language processing, but implementations exist also for images evolving in time (ConvLSTM, ConvGRU)

Source: Shi Yan, 2015

Generative models

- Typical predictive model:
 predict y = f(x)
 - One answer per input
- Generative model: generate samples from p(x)
- Conditional generative model: generate samples from p(y|x)
 - Multiple answers per input, uncertainty modeled

Example applications:

Image generation

Domain translation

Infilling

Two competing (usually convolutional) neural networks:

- Discriminator tries to distinguish real samples from generated ones
- Generator tries to output samples that discriminator considers real
 - Leans to generate realistic samples

GAN generator: map $p(\mathbf{z}) \rightarrow p(\mathbf{x})$

Conditional GANs

CGAN generator: map $p(\mathbf{z}, \mathbf{y}) \rightarrow p(\mathbf{x}|\mathbf{y})$

Conditional probability problems

- Ubiquitous in Climate Science
- Examples: inferring...
 - p(Quantity x | quantities y)
 - p(Quantity x | measurements y)
 - p(Future state | current and/or past state)
 - p(High resolution field | low resolution field)
 - p(Complete data | incomplete data)
- Underdetermined problems, CGANs can learn to generate the conditional distribution of solutions

Dataset of collocated cloud observations

from:

 MODIS spectrometer (1D, 4 variables)

Can we train a CGAN to generate the CloudSat vertical profiles based on the MODIS data?

Cloud properties (MODIS)

Generated profile (CGAN)

Real profile (CloudSat)

Objectives:

- Demonstrate stochastic downscaling with GANs (i.e., generate high-resolution fields from low-resolution inputs)
- Generate realistic fields
- Use the non-deterministic aspect of GANs to model the uncertainty
- Model the time evolution of fields consistently
 - We need a recurrent generator

Leinonen et al. 2020

Fully convolutional generator: can be applied to larger images after training

2017-07-24 10:00 UTC

Real

Evaluation: Image quality metrics

- Single-image quality metrics don't tell us very much
 - GAN isn't trained to optimize them
- CRPS is an ensemble metric that uses multiple predictions, works better

Rank statistics

Does the distribution of values generated by the GAN match that of the observations?

 We don't know the true conditional distribution

Rank statistics

- Compute the rank of the real observation in the ensemble, normalize to 0..1
- If uncertainty is modeled perfectly, the rank should be uniformly distributed
 - We can use metrics of similarity to the uniform distribution to evaluate whether the GAN is generating the right amount of uncertainty

Rank statistics

 Rank metrics converge for longer than image quality metrics

- Snowflake classification
- Rainfall disaggregation
- Generating global climate data fields
- Downscaling of global climate model data

Other studies u

- Snowflake classification
- Rainfall disaggregation
- Generating global climate data fields
- Downscaling of global climate model data

Leinonen et al. 2020, AMT

https://doi.org/10.5194/amt-13-2949-2020

- Snowflake classification
- Rainfall disaggregation

- Snowflake classification
- Rainfall disaggregation
- Generating global climate data fields
- Downscaling of global climate model data

Besombes et al. 2020, NPG https://doi.org/10.5194/npg-2021-6

- Snowflake classification
- Rainfall disaggregation
- Generating global climate data fields
- Downscaling of global climate model data

Stengel et al. 2020, PNAS https://doi.org/10.1073/pnas.1918964117

"Should I consider GANs for my project?"

- GANs (and CGANs in particular) seem a natural fit for many Earth science data problems
 - Consider CGANs if you need realistic spatial structure and/or uncertainty modeling
 - GANs can also do unsupervised data discovery
 - Many low-hanging fruits still available to pick!
 - But tricky to work with, needs cost-benefit evaluation
- GANs model uncertainty through sample diversity
 - Ensemble forecasters have the same mindset
 - Methods from ensemble forecasting can be applied to GANs

Questions?

Interested in discussing GANs in Weather/EO/Climate applications? Email: jussi.leinonen@meteoswiss.ch, Twitter: @jsleinonen

2017-07-24 10:00 UTC

https://www.youtube.com/watch?v=3OS6hz8gYC8