SHARE

IBM MQ for z/OS – Queue Sharing Groups Help With Workload Skewing

Dorothy Quincy Dorothy. Quincy @ibm.com IBM Washington Systems Center

Lyn Elkins elkinsc@us.ibm.com IBM Washington Systems Center

Agenda

- What are shared queues briefly
- What is workload skewing and why is it a problem?
 - Why am I talking about this again?
 - What are the symptoms and causes
 - Asymmetrical Sysplex
 - Connection Skewing
 - Put to Waiting Getter
 - Overnotification
 - Local' favoritism
- Mitigation Techniques:
 - Queue Manager Clustering
 - KEYRNOTIFYDELAY
 - Gateway queue managers
 - CICS CPSM options

Briefly – What is a Shared Queue

What is MQ Workload Skewing?

 Workload skewing is detected when MQ driven work, typically transactions, is not close to being evenly distributed across the queue managers.

Why am I talking about this again?

- New Hardware (z15s, z16s) has impact
- New Software (MQ V9.3+, z/OS 2.5, etc.) may have impact
- New configurations may have impact
 - Changes to the configuration can have unexpected benefits or impact
 - A recent case included a change to improve performance by upgrading the hardware and then downgrading it by changing from dedicated to shared engines
- You need to know what is happening to evaluate changes introduced
 - We have already tried to help some folks that didn't have 'before' data figure out what has changed.
 - We can guess, but we can never know!
 - Design and build some test cases to do before and after upgrade testing to compare behavior.
 - Please see my various rants about knowing what your baseline production environment 'looks' like from a performance and throughput perspective.

Why is MQ Workload Skewing a problem?

- It can be a cost problem
 - If the MLC 'rolling average' is taken from the LPAR that is heavily favored, usage pricing is not going to reflect reality
 - Technical solutions to this problem may prove to be less efficient overall - lower throughput, slower response
 - This was the first reason it was brought to our attention.
- It can be a Responsiveness problem
 - When all messages are consumed in one LPAR, it can lead to slowdowns (and shutdowns)
 - This was the second reason workload skewing was brought to our attention, it quickly became the #1 reason it continues to come our way.

And it can be a resource problem!

- Can cause increased capacity demands in downstream workload
 - Known to produce responsiveness problems
 - Overloading the message processing programs

+ MQ Workload Skewing Causes

- Workload skewing is often a result of the efficiencies of working locally
 - z/OS, and all subsystems, try to process requests locally to take advantage of CPU efficiency
- Workload skewing may be intentional
 - Some applications may be affinity bound to an LPAR, but are using shared queues for the additional availability
 - Some applications are not yet
 Sysplex enabled
 - Software licensing agreements requiring LPAR restriction
 - Recommendation know when this is the case and document.

Asymmetric Sysplex – Hardware causes

- Asymmetric Sysplex
 - When the LPARs in the Sysplex are not equally weighted
 - Examples include:
 - Two LPARs have z16s, two have z16s
 - Two LPARs have 12 dedicated engines, two have 12 shared
 - All links to the CF are equally distant and are the same type

Physical causes of skewing – Links used to the CF

- Asymmetric Sysplex
 - Most common example One LPAR is co-located with the primary coupling facility, the others are on different CECs
 - ICC and ISC links give much better service times than ICB

1 6

Physical Skewing – CF Activity Report

STRUCTURE	NAME = QSGBUSER		TYPE	= LIST	STATUS = 1	ACTIVE		
	# REQ REQUESTS							- DE
SYSTEM	TOTAL	#	% OF	-SERV TIME (MIC) -		REASON	#	용
NAME	AVG/SEC	REQ	ALL	AVG	STD_DEV		REQ	R
MPX1	295K SYNC	295K	26.9	1 3	1.2	NO CCII	0	0
MPXI				4.3	\	NO SCH	_	
	(492.1) ASYNC	0	0.0	0.0	0.0	PR WT	0	0
	CHNGD	0	0.0	INCLUDED	IN ASYNC	PR CMP	0	0
	SUPPR	0	0.0			DUMP	0	0
MPX2	802K SYNC	802K	73.1	17.8	2.5	NO SCH	0	0
	1339 ASYNC	0	0.0	0.0	0.0	PR WT	0	0
	CHNGD	0	0.0	INCLUDED	IN ASYNC	PR CMP	0	0
	SUPPR	0	0.0			DUMP	0	0

- We (the WSC) look at the CF Activity report usually before the MQ Statistics when looking at shared queue usage
- In the example shown above it is easy to see that the MPX2 LPAR is getting a much longer service time (almost 4 times!) than the MPX1 LPAR and that MPX2 is making many more requests.
 - In this particular case, this exposed some internal workload skewing that was not apparent to the customer - except that they were missing SLAs consistently!

MQ Workload Skewing Causes - Hardware

- Location of the Coupling Facility
 - When the coupling facility is internal, LPARs on the same CEC tend to get faster response
 - When the coupling facility is external and one LPAR has more, faster, or less heavily used links it will get faster service

Connection Skewing

- Connection skewing may be historical
 - Hard-coded connections to specific queue managers
- Connection skewing may be the result of a queue manager outage
 - Connections to a QSG are routed to available queue managers

'Downstream' consequences

- We've talked about the MLC impact
- Resource use
 - Not every queue manager is sized to absorb the entire workload
 - Log impact of skewing has been seen
 - Rapid Log switches due to heavier workload increasing I/O and CPU costs
 - Bufferpool/Pageset impact
 - Filling the bufferpool, forced into I/O
 - SMDS impact
 - One queue manager in QSG gets all offloaded messages

MQ Workload Skewing Causes

- Put to waiting getter
 - In V6 a performance feature was added called 'put to waiting getter'
 - If a local put, from an application or message channel agent, is done and there is a getting application waiting the message is moved directly to the getting applications buffer
 - There is no posting to a shared queue
 - There is no notification to other available waiting applications
 - The CPU savings can be substantial

Put to Waiting Getter – SMF

• This shows messages flowing across a channel taking advantage of P2WG

	Q					
						Puts not to
		Total_Val	Total_Bytes	Total_Val	Total_Put2_Wa	Waiting
Base_Name	CF Struct	id_Gets	_Put	id_Puts	iting_Getter	Getter
SYSTEM.QSG.CHANNEL.SYNCQ	CSQSYSAP	0	0	0	0	0
SHARED.INPUT.QUEUE	APP1	0	4501092223	2095814	2012394	83420

The CPU comparison shows why it can be a good thing

		PUT_ELAPSE		PUT2_W AITING_G	Average	Average	
BASE_NAME	VALID_PUTS	D_TIME	PUT_CPU_TIME	ETTER	PUT ET	PUT CT	
QLOCAL.PUT2WG	14879	127753	117956	14793	8.59	7.93	
QLOCAL.NO.PUT2WG	41547	1025028	1010038	0	24.67	24.31	/

The CPU costs can be 3 times as high!

MQ Workload Skewing Causes

Local Favoritism

- When a message is posted to a shared queue, the queue manager where the message is put is typically notified FIRST about the availability.
- Normal processing by XCF, taking advantage of the efficiency of local processing.

Over-notification – Triggering Avalanche

- Triggering processes on shared queues can contribute to workload skewing:
 - If using shared initiation queues it can be worse
 - We (the WSC) have seen an 8 way QSG, where all 8 trigger messages were consumed by 1
 queue manager due to hardware skewing.
 - Simply, the number of trigger messages created and consumed will vary and if there is any other type of imbalance it can become worse.
 - Over-notification can also cause excessive CPU consumption:
 - For example, in an 8-way queue manager using shared triggered and init queues
 - As many as 8 trigger messages are created on every '0 to non-zero' transition
 - If 8 instances are triggered and there are fewer than 8 to consume, some (or most) will get 2033
 - The cost of initiating the excess transactions adds up, especially when applications are not well behaved

+ Skewing Mitigation Techniques

- Queue Manager Clusters
 - Clusters provide workload balancing across queue managers
 - Works with shared queues to distribute message 'puts' across queue managers in the QSG
- Connection skewing mitigation
 - Gateway queue managers
 - Re-driving connections
- CPSM mitigation

Queue Manager Clustering

- •When messages are not bound to a specific queue manager ('bind not fixed'), the messages are routed evenly across the receiving queue managers
 - Black arrows show the first message put to the clustered queue
 - Green arrows show the second message

+ Connection Skewing Mitigation

- The slides that follow outline two mitigation techniques for connection skewing:
 - Gateway queue managers
 - Re-driving connections

Connection Skewing – No Gateway queue managers

- When external queue managers or clients are passing work directly to application hosting queue managers, every attempt is made to process the work locally
- Environments that use gateway queue managers into the Queue Sharing group often eliminate connection skewing.

Gateway queue managers – the mitigation

Re-driving Connections

- When a queue manager is unavailable, inbound connections can get skewed to the other queue manager(s) in the group.
 - This is normal availability processing!
 - Once a connection is live and active, no attempt is made to balance the connections once all the queue managers are available.

Trigger Avalanche Mitigation

- KEYRNOTIFYDELAY (KRND)
 is a Coupling Facility
 attribute designed to help
 reduce over notification
- If used, when a trigger event occurs only one queue manager is initially notified
 - If the timer expires (the delay) and the queue is not empty; all other queue managers are notified.
 - For workloads that have sporadic delivery patterns, this can save a lot of CPU.
- Apply PH44368

+ **CPSM** Highlights

Solution uses proven technology for CPSM routing:

- Each TOR/QOR uses link-neutral goal algorithm
- Selects target AOR based on AOR load and health
- Does not "prefer" local (= same LPAR) AORs
- Even distribution across AORs, but ...
- ... responds to transient load/health variation
- XCF MRO for "remote" STARTs or LINKs
 - High-performance System z sysplex technology
 - Uses coupling facility (CF) instead of TCP/IP stack
- Sysplex-optimised workload routing
 - Highly responsive to transient variations
 - Uses CF to maintain current status for AORs

Continuous operation and high availability through IBM MQ shared queues:

- "Glitchless" recovery from region/LPAR/CEC outage
- "Instant" redistribution of workload
- In-flight messages backed-out, restart in another CICS region

High throughput:

- Exploits all available capacity
- Highly responsive to transient spare capacity

+ MQ Workload Balance Summary

- MQ is a message delivery system, it does not try to balance workload or distribute workload
- Balancing the workload is attempting a technical solution for what is often a pricing problem
 - Beware spending a lot of effort for a solution to a temporary problem as well!
 - Turning off performance improvements like put to waiting getter will impact all applications, not just the skewed ones
- There are some mitigation techniques that can help the overall environment
 - Clustering!
 - Gateway queue managers
 - Using CPSM to make appropriate routing decisions

Questions & Answers

