PERFORMANCE OF MULTILAYER PERCEPTRONS ON ECG ANALYSIS

CS615: DEEP LEARNING

DAVID EVERLY

6/8/2025

BACKGROUND

- US Healthcare System substantially behind in basic safety,
- Annually, 98,000 deaths due to medical errors in US hospitals,
- IOM encouraged use of IT₂
 - Simplify workflow processes
 - Reduce waste
 - Improve healthcare access

BACKGROUND

- Effective treatment of Acute Coronary Syndrome (ACS) is time sensitive
- Current guidelines identify ACS on ECG by:
 - ST-segment elevation (STEMI)
 - Elevated biomarker detection (NSTEMI)
- 24-35% of those with NSTEMI need emergent catheterization
 - Delayed while awaiting biomarker elevation due to inability to detect on ECG

PREVIOUS WORK

- Literature Review 2022
 - 59 Deep Learning studies analyzing ECG data
 - Convolutional Neural Networks and ResNet best performing
 - Reported over 97% accuracy
 - ECG data is noisy
 - May be more suited to DL than ML

PREVIOUS WORK

- 2023 prospective, observational
 - 2023 prospective, observational cohort
 - 12-Lead ECG Data
 - 10 different ML classifiers
 - Random Forest Model achieved AUROC 0.91(95% CI = 0.87-0.96)
 - Outperformed practicing clinicians and commercial ECG systems

PURPOSE

 To analyze the performance of MLP classification models on identifying abnormal heart rhythms and myocardial ischemia on ECG data at various degrees of complexity

QUESTION

 Can a MLP classification model accurately identify cardiac dysrhythmias and myocardial ischemia from ECG tracings?

DATA

- ECG 200¹
 - N = 200
 - 1D time series of ECG tracing, single cycle
 - Classes: Normal vs Abnormal
- MIT-BIH³
 - N = 47 subjects
 - 2 lead ECG tracing, 30 minutes long
 - Classes: Normal vs Ischemia

- ECG 5000²
 - N = 5000
 - 1D time series of ECG tracing, single cycle
 - Classes:
 - Normal
 - R-on-T PVC
 - PVC
 - Escape Beat
 - Ventricular Fusion

1 (DAU, ET AL., 2018) 2 (GOLDBERGER ET AL., 2000)

3 (MOODY & MARK, 2001)

DATA

- Compare our model against Al-Zaiti's 2023 RF Model
 - 12-Lead ECG Data
 - Random Forest Model achieved AUROC 0.91(95% CI = 0.87-0.96)
 - AUROC 0.91 = Benchmark for our Model

PRE-PROCESSING

- ECG 200 and ECG5000 data
 - Available from author cleaned and split 50/50 training/validation sets
 - Data were re-combined, shuffled, and split 75/25 training/validation
 - ECG5000 class outcomes were one-hot-encoded
 - Significant oversampling of normal tracings

PRE-PROCESSING

- MIT-BIH data
 - Much more complicated; 2 lead ECG tracing over time
 - Sliding window was created to take 6 second snapshot of tracing
 - Any observation with missing data was omitted
 - Each lead data within a window was concatenated together to form single observation
 - 3000 features per observation
 - Subsample of 1725 observations; 861 normal and 864 ischemia

PRE-PROCESSING

- Full ECG data (Al-Zaiti)
 - Data features taken AS-IS
 - No randomization or shuffling. We used their training/validation data, as published
 - N = 7313 -> Training = 4026, Validation = 3287
 - 74 features, including patient demographics
 - BUT very imbalanced distribution, very high majority of class normal
 - Approximately 370 of each class in both training and validation set
 - Missingness is a problem
 - Extreme outliers (> 5 SD) were removed
 - All NaN values were replaced by column mean after removing extreme outliers

METHODS

- On each dataset, compare performance of
 - Shallow MLP (5 Layers); INPUT -> FCC -> TANH -> LOGSIG -> LOG LOSS
 - Deep MLP (22 Layers); INPUT -> (FCC -> TANH) x 9 -> FCC -> LOGSIG -> LOGLOSS
 - Deep MLP with Skip residuals
 - Same 22 Layers as Deep but each FCC->TANH sequence is wrapped with skip residuals and batch normalization layer
 - FCC use hidden state size funneling; dimension size -2 every other skip layer block
 - TANH is prone to dead activations, skip layer should attenuate that problem
 - TANH proved too unstable for Full ECG data, so we switched all TANH to ReLU
 - BATCHNORM layer just before final LOGSIG for added stability

METHODS

- Hyperparameter Tuning
 - Hidden State (FCC output dimension) and learning rate
 - Optimized by painful trial and error for each model
 - Iterative breadth-search
 - All permutations of Eta = $[10^{-3}, 10^{-4}, 10^{-5}]$ and Hidden State Size [8,16,32,64]
 - ECG200 -----> Eta = .00001, Hidden State Size = 32
 - ECG5000 -----> Eta = .0001, Hidden State Size = 32
 - ECG5000 Multiclass -----> Eta = .0001, Hidden State Size = 32
 - ECG5000 Subsampled -----> Eta = .00001, Hidden State Size = 32
 - MIT-BIH -----> Eta = .00001, Hidden State Size = 32
 - FULL ECG -----> Eta = .00032, Hidden State Size = 16
 - All FCC use ADAM except the FULL ECG pipeline
 - Removed due to instability

METHODS

- FCC weight and bias initialization
 - Random, uniformly distributed, Xavier

•
$$\left[-\sqrt{\frac{6}{h_{in}+h_{out}}},\sqrt{\frac{6}{h_{in}+h_{out}}}\right]$$

RESULTS-ECG200

Shallow - Trained Well

Deep - Exploding Gradient

Skip Residuals Fix it! Still overfit

RESULTS-ECG200

Shallow Accuracy = 86%

Deep Accuracy = 81%

Deep with Skip Accuracy = 91%

RESULTS-ECG5000 NORMAL VS ABNORMAL

Shallow - Good

Deep - Better

Skip Residuals - Best

RESULTS-ECG5000 NORMAL VS ABNORMAL

Shallow Accuracy = 98%

Deep Accuracy = 98%

Deep with Skip Accuracy = 98%

RESULTS-ECG5000 MULTICLASS

Shallow - Good

Deep - Better

Skip Residuals - Best

RESULTS-ECG5000 MULTICLASS

Shallow Accuracy = 92%

Deep Accuracy = 95%

Deep with Skip Accuracy = 95%

BUT THAT'S A LOT OF NORMAL CASES...

• Does it perform well just because of oversampled normal cases?

RESULTS-ECG5000 SUBSAMPLED NORMAL VS ABNORMAL

Shallow

Deep

Deep with Skip

RESULTS-ECG5000 SUBSAMPLED NORMAL VS ABNORMAL

Shallow Accuracy = 98%

Deep Accuracy = 99%

Deep with Skip Accuracy = 95%

RESULTS MIT-BIH

Shallow – Very overfit

Deep - Exploding Gradient

Skip Residuals... at least the line is pointing in the right direction

I RAN THIS FOR ANOTHER 10000 EPOCHS...
IT DOES NOT IMPROVE

RESULT MIT-BIH

Shallow Accuracy = 67%

Deep Accuracy = 61%

Deep with Skip Accuracy = 56%

RESULT-FULL ECG

Shallow - Learned Something?

Deep – Overfit

Deep with Skip - Guesses

RESULTS-FULL ECG

Shallow Accuracy = 72%

Deep Accuracy = 48%

Deep with Skip Accuracy = 75%

ANALYSIS – THE GOOD!

- Our MLP was effectively trained to identify normal vs ischemic single-cycle ECG tracing with an accuracy of 91%, made possible with the addition of skip residuals
- Our MLP was effective at identifying normal vs abnormal single-cycle ECG tracings. The shallow model performed with an accuracy of ***, leaving little motivation for more complex models or skip residuals

ANALYSIS – THE NOT SO GOOD...

 More complex datasets were not effectively analyzed by our MLP, despite numerous architecture modifications and optimizations, including a breadth search for optimal hyperparameters and attenuation of data missingness

DISCUSSION

- While MLP may be suitable for many classification problems, feature rich data may still prove too complex for this method.
- No globally-optimal model exists
- Multi-lead ECG data may be better classified using more complex models, such as Convolutional Neural Networks, Transformers, or Random Forest Models
- Future work is recommended to evaluate these datasets using more complex models

REFERENCES

Al-Zaiti, S. S., Martin-Gill, C., Zègre-Hemsey, J. K., Bouzid, Z., Faramand, Z., Alrawashdeh, M. O., Gregg, R. E., Helman, S., Riek, N. T., Kraevsky-Phillips, K., Clermont, G., Akcakaya, M., Sereika, S. M., Van Dam, P., Smith, S. W., Birnbaum, Y., Saba, S., Sejdic, E., & Callaway, C. W. (2023). Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction. *Nature Medicine*, *29*(7), 1804–1813. https://doi.org/10.1038/s41591-023-02396-3

Dau, H. A., Keogh, E., Kamgar, K., Yeh, C.-C. M., Zhu, Y., Gharghabi, S., Ratanamahatana, C. A., et al. (2019). The UCR Time Series Classification Archive. University of California, Riverside. https://www.cs.ucr.edu/~eamonn/time series data 2018/

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. *Circulation*, 101(23), e215–e220. https://doi.org/10.1161/01.CIR.101.23.e215

Institute of Medicine (Ed.). (2000). To err is human: Building a safer health system. National Academies Press. http://www.nap.edu/catalog/9728

Institute of Medicine (Ed.). (2009). Crossing the quality chasm: A new health system for the 21st century (9. print). National Acad. Press.

Moody, G.B., & Mark, R.G. (2001). The impact of the MIT-BIH Arrhythmia Database. IEEE Engineering in Medicine and Biology Magazine, 20(3), 45–50. doi:10.1109/51.932724

Xiong, P., Lee, S. M.-Y., & Chan, G. (2022). Deep Learning for Detecting and Locating Myocardial Infarction by Electrocardiogram: A Literature Review. *Frontiers in Cardiovascular Medicine*, 9, 860032. https://doi.org/10.3389/fcvm.2022.860032