Mapping Disasters using Twitter

Presented by:

Dae Han Sophia Alice Sonam Thakkar

Problem statement

We used **tweets** from Twitter to create **a classification model** that filters out tweets that are reporting about a fire to discover **new ways to help respond to disasters**.

These tweets were displayed on a map.

Beyond aerial, satellite imaging

Beyond aerial, satellite imaging

Tweepy

Strict scrape rate limit

Geo. coordinate 'search' not available

GetOldTweets3

No scrape rate limit

Geo. coordinate not available

Python-Twitter

Strict scrape rate limit

Geo. coordinate 'search' available

Tweepy

Strict scrape rate limit

Geo. coordinate 'search' not available

No scrape rate limit

Geo. coordinate not available

Python-Twitter

Strict scrape rate limit

Geo. coordinate 'search' available

Tweepy

Strict scrape rate limit

Geo. coordinate 'search' not available

GetOldTweets3

No scrape rate limit

Geo. coordinate not available

Model Train Set

Python-Twitter

Strict scrape rate limit

Geo. coordinate 'search' available

Tweepy

Strict scrape rate limit

Geo. coordinate 'search' not available

GetOldTweets3

No scrape rate limit

Geo. coordinate not available

Model Train Set

Python-Twitter

Strict scrape rate limit

Geo. coordinate 'search' available

Test Set / Map

Few tweets are discussing a disaster.

0: Tweets not reporting about a fire

1: Tweets reporting about a fire

2: Ambiguous tweets —> Dropped

3:7 ratio of Class 0 and 1 to reflect the real life tweets in a train set.

Modeling

Minimize false negatives

Optimize **sensitivity**

Logistic Regression

TF-IDF Vectorizer Random

Forest

TF-IDF Vectorizer Multinomial

Naive Bayes

Count Vectorizer

Modeling

Minimize false negatives

Optimize **sensitivity**

Logistic Regression

TF-IDF

Vectorizer

Random

Forest

TF-IDF

Vectorizer

Multinomial

Naive Bayes

Count Vectorizer

Logistic Regression (TF-IDF Vectorizer)

Accuracy (test set): 86 %

Sensitivity: 62%

Random Forest (TF-IDF Vectorizer)

Accuracy (test set): 76 %

Sensitivity: 21%

Multinomial Naive Bayes (Count Vectorizer)

Accuracy (test set): 84 %

Sensitivity: 90%

Flask app / demo

Conclusion

Obstacles

- Scraping takes a long time due to rate limit
- Geotags are scarce.
- Inaccurate geo-coordinates (Aka. Ocean Fire)

- Run scraper daily, ahead of the time
- Enterprise API access for real-time track
- Create a boundary line and filter out coordinates outside the boundary.
- Make rating available for users to learn which tweets were useful
 - -> feed these back to the train set

Source

- 1. http://www.newlighttechnologies.com
- 2. https://www.twitter.com
- 3. https://www.eos.org