ShipinskyKS 30112024-110328

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров на некоторой частоте:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.5	0.454	-148.5	19.134	92.6	0.027	56.3	0.340	-68.9

Требуется выбрать согласованный аттенюатор с *минимальным* затуханием, подключения которого будет *достаточно*, чтобы обеспечить безусловную устойчивость всего устройства на этой частоте.

- 1) аттенюатор с затуханием 1.5 дБ, подключённый к плечу 2;
- 2) аттенюатор с затуханием 1.5 дБ, подключённый к плечу 1;
- 3) аттенюатор с затуханием 1 дБ, подключённый к плечу 1;
- 4) аттенюатор с затуханием 2.5 дБ, подключённый к плечу 2.

Дано значение коэффициента передачи диссипативной цепи коррекции, выполненной в виде цепи постоянного входного сопротивления 50 Ом: $s_{21} = -10.1 \text{ дБ}.$

Ко входу этой цепи подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью 4.1 дБм.

Какая мощность рассеивается внутри цепи коррекции?

- 1) 2.3 mB_T
- 2) 0.3 mB_T
- 3) 1.1 mBT
- 4) 0.4 mBT

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа). (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 1 – Частотная характеристика модуля коэффициента отражения

Какой из предложенных рисунке 2 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) а 2)
b 3) с 4) d

Рисунок 2 – Различные реализаци и Г-образной цепи согласования

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.322	-156.3	13.493	93.2	0.037	68.9	0.353	-56.5
1.5	0.339	-173.0	8.997	82.0	0.052	67.9	0.261	-65.7
2.0	0.354	177.1	6.620	74.5	0.066	66.1	0.207	-76.1
3.0	0.369	162.4	4.344	62.9	0.096	61.6	0.167	-95.0
5.5	0.398	137.8	2.371	38.3	0.168	46.2	0.121	-126.9
8.0	0.480	114.2	1.631	14.9	0.231	28.8	0.087	138.9

Выбрать Γ -образный четырёхполюсник (см. рисунок 3), который может обеспечить согласование со стороны плеча 2 на частоте 1.5 $\Gamma\Gamma$ ц.

Рисунок 3 – Различные реализации Г-образного четырёхполюсника

- 1) A
- 2) B
- 3) C
- 4) D

Дано значение коэффициента отражения от входа реактивной цепи коррекции $s_{11} = -0.01\text{-}0.28\mathrm{i}.$

Найти модуль (в дБ) коэффициента передачи s_{21} .

- 1) -0.7 дБ
- 2) -0.9 дБ
- 3) -1.9 дБ
- 4) -0.4 дБ

Найти неравномерность усиления в полосе, ограниченной частотами $f_{\rm H}=1.2~\Gamma\Gamma$ ц и $f_{\rm B}=1.9~\Gamma\Gamma$ ц, используя рисунок 4.

Рисунок 4 – Частотная характеристика усиления

- 1) 0.7 дБ
- 2) 1.3 дБ
- 3) 0.3 дБ
- 4) 0.1 дБ