Matemáticas básicas

Universidad Nacional San Cristobal de Huamanga

Fisart.cf

Agradecimento a los estudiantes de la ESFAPA FGPA

A la UNSCH

Índice general

'n	dice d	e cuadros	V
ĺn	dice d	e figuras	vii
Re	sume	n	ix
[ni	trodu	cción	xi
۱.	Logi	ca	1
2.	Con	juntos	3
	2.1.		3
		2.1.1. Función proposicional	3
		2.1.2. Cuantificadores	3
		2.1.3. Negación de las proposiciones universal y existencial	4
	2.2.	Conjuntos Iguales	6
		2.2.1. Propiedades	6
	2.3.	Inclusión y subconjuntos	6
		2.3.1. Propiedades	6
	2.4.	Conjuntos disjuntos	7
	2.5.	Conjunto potencia	7
		2.5.1. Propiedades	7
	2.6.	Representación Gráfica de los Conjuntos	7
	2.7.	Operaciones entre conjuntos	7
		2.7.1. Unión	7
		2.7.2. Intersección	8
		2.7.3. Diferencia	8
		2.7.4. Complemento	8
		2.7.5. Diferencia simétrica	9
	2.8.	Número de elementos de un Conjunto. Propiedades	9
3.	Fun	ciones y relaciones	11
1.	Nun	neros reales	13
5.	Fun	ciones exponenciales logarítmicas	15

iv		Contents
6.	Inducción matemática	17
7.	Suceciones	19
8.	Números complejos	21
9.	Polinomios	23
$\mathbf{A}_{\mathbf{l}}$	péndice	23

Índice de cuadros

Índice de figuras

Resumen

www.

Introducción

www.

Logica

www.

Conjuntos

Definición 2.1 (Conjunto). Es una coleccion de elementos con caractersiticas similares

Definición 2.2 (Determinacion de conjuntos). Por extensión y comprensión

Cornutos universal, vacio, unitario

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{I}, \mathbb{R}, \mathbb{C}$$

$$\phi = \{x/x \neq x\}$$

$$A = \{a\}$$

2.1. Función proposicional y cuantificadores

2.1.1. Función proposicional

Definición 2.3 (Función proposicional). Sea x una variable P(x) un *enunciado*, P(x) es una *función proposicional* si al sustituir la variable con una constante este se convierte en una *proposición*.

Por ejemplo P(x): x es un numero par

Al conjunto de todos lo valores de x se denomina domino de la variable

2.1.2. Cuantificadores

Definición 2.4 (Cuantificador existencial).

4 2 Conjuntos

Es una generalización de la disyunción Inclusiva. Por ello, es verdadero cuando al menos un valor de x perteneciente al Dominio de A, es Verdadero. Se denota; $\exists x/P(x)$ Se lee: "Existe al menos un x", "Algunos x", "Hay x", "Existe un x", etc.

Definición 2.5 (Cuantificador universal).

 \forall

Es una generalización de la *conjunción*. Debido a esto es verdadero cuando todos los valores de x que pertenecen al Dominio de A son Verdaderos. Se denota: $\forall x; p(x)$ Se lee: "Para Todo x", "Para cada x", "Todos (as) las x", "Todo x".

Sea $A = \{1, 2, 3, 4, 5\}$ y la función proposicional 3x - 2 < 12 entonces las proposiciones

- 1. $\forall x \in A : 3x 1 < 14$
- 2. $\exists x \in A : 3x 2 < 12$

son falsa y verdadera respectivamente

Definición 2.6 (Proposición universal). Una *proposición universal* es aquella que está provista de un *cuantificador universal*, y tiene la forma:

$$\forall x \in A : p(x)$$

Definición 2.7 (Proposición existencial). Una *proposición existencial* es aquella que está provista de un *cuantificador existencial*, y tiene la forma:

$$\exists x \in A : p(x)$$

2.1.3. Negación de las proposiciones universal y existencial

Cambiando el cuantificador universal por el cuantificador existencial, o viceversa, es decir

$$\sim [\exists x \in A; P(x)] \equiv \forall x \in A; \sim P(x)$$

$$\sim [\forall x \in A; P(x)] \equiv \exists x \in A; \sim P(x)$$

La negación del *cuantificador universal* es equivalente a la *afirmación de un cuantificador existencial* respecto de la *función proposicional negada*.

La negación de un *cuantificador existencial* es equivalente a la *afirmación de un cuantificador universal* respecto de la *función proposicional negada*.

Ejemplo 2.1. Dada la proposición: "Si todos los números primos son impares, los números positivos son mayores que -1"

- Expresarla simbólicamente
- Negar oracionalmente la proposición

Solución. Sea p(x) : números primos son impares y q(x) : números positivos mayores que -1

- $\blacksquare \ \forall x : [p(x) \to q(x)]$
- Negando el item anterior

que se lee: "Todos los números primos son impares y algunos números no son mayores que -1"

Ejemplo 2.2. Dado el conjunto $A = \{x \in \mathbb{N} : -14 < x < 27\}$. Hallar el valor de verdad de

$$s = [(\sim p \land \sim q) \rightarrow (\sim q \land \sim r)] \leftrightarrow (\sim p \lor r)$$
 si $p = (\forall x \in A, \exists y \in A, \forall z \in A)[x^2 - z^2 > y^2], q = (\exists y \in A, \forall z \in A, \exists x \in A)[2x - 4y < -z] \text{ y } r = (\forall z \in A, \exists x \in A, \forall y \in A)[3x^2 - z^2 > y]$

Solución. $A=\{1,2,3,\dots,26\}$ luego el valor de $\mathbf{V}(p)=F,\,\mathbf{V}(q)=V$ y $\mathbf{V}(r)=V$ pues

- \blacksquare Si y=1 entonces $x^2-z^2>y^2\equiv x^2>1+z^2$ lo cual no es valido $\forall x,z\in A$ entonces ${\rm V}(p)=F$
- Si $y=25\in A$ y $x=1\in A$ entonces $2x-4y<-z\equiv 2+z<100$ lo cual es valido $\forall z\in A$ entonces V(q)=V
- Si $x=26 \in A$ entonces $3x^2-z^2>y\equiv 3(26)^2>z^2+y$ lo cual es valido $\forall z,y\in A$ entonces V(r)=V

por lo tanto

$$\begin{aligned} \mathbf{V}(s) &= \mathbf{V}[(\sim p \land \sim q) \Longrightarrow (\sim q \land \sim r)] \Longleftrightarrow (\sim p \lor r) \\ &= [(V \land F) \Longrightarrow (F \land F)] \Longleftrightarrow (V \lor V) \\ &= [F \Longrightarrow F] \Longleftrightarrow V \\ &= V \end{aligned}$$

Ejercicio 2.1. Dada la proposición: "Obtendré un puntaje aprobatorio si y solo si estudio concienzudamente el curso"

6 2 Conjuntos

- Expresarla simbólicamente
- Negar oracionalmente la proposición

Ejercicio 2.2. Dado el conjunto $G=\{x\in\mathbb{Z}^+: -14<2x<20\}$. Hallar el valor de verdad de

$$s = (p \land \sim q) \to [(\sim q \land \sim r) \leftrightarrow (\sim p \lor r)]$$

2.2. Conjuntos Iguales

$$A = B \Longleftrightarrow \{(x \in A \to x \in B) \land (x \in B \to x \in A)\}$$

$$\iff x \in A \leftrightarrow x \in B$$

$$A \neq B \Longleftrightarrow \{(\exists x \in A; x \notin B) \lor (\exists x \in B; x \notin A)\}$$

$$\iff x \in A \leftrightarrow x \in B$$

2.2.1. Propiedades

- \blacksquare A = A
- $\quad \blacksquare \ A=B\to B=A$
- A = B y B = C entonces A = C

2.3. Inclusión y subconjuntos

$$A \subset B \leftrightarrow \{x \in A \to x \in B\}$$
$$\leftrightarrow \{\forall x \in A, x \in B\}$$

$$A\not\subset B \leftrightarrow \exists x\in A\mid x\notin B$$

2.3.1. Propiedades

- $lacksquare A\subset A$
- $\quad \blacksquare \ A \subset B \land B \subset A \to A \subset B$
- $\quad \blacksquare \ A \subset B \land B \subset C \to A \subset C$
- $\quad \blacksquare \ \, \forall A \ \emptyset \subset A$

2.4. Conjuntos disjuntos

A disjunto de $B \leftrightarrow \nexists x \mid x \in A \land x \in B$

2.5. Conjunto potencia

$$P(A) = \{X \mid X \subset A\}$$

Observación.

- P(A) tiene 2^n elementos
- $\emptyset \in P(A)$
- $A \in P(A)$

2.5.1. Propiedades

- $P(\emptyset) = \{\emptyset\}$
- $\bullet A \subset B \leftrightarrow P(A) \subset P(B)$
- $A = B \leftrightarrow P(A) = P(B)$

2.6. Representación Gráfica de los Conjuntos

Diagrama de euler

2.7. Operaciones entre conjuntos

2.7.1. Unión

$$A \cup B = \{x/x \in A \lor x \in B\}$$

$$x \in A \cup B \leftrightarrow x \in A \lor x \in B$$

2.7.1.1. Propiedades

- $\quad \blacksquare \ A \cup A = A$
- $A \cup \emptyset = A$
- $\blacksquare A \cup U = U$
- $\blacksquare \ A \cup B = B \cup A$
- $\bullet (A \cup B) \cup C = A \cup (B \cup C)$

2.7.2. Intersección

$$A \cap B = \{x/x \in A \land x \in B\}$$

$$x \in A \cap B \leftrightarrow x \in A \land x \in B$$

2.7.2.1. Propiedades

- $\quad \blacksquare \ A\cap A=A$
- $A \cap \emptyset = \emptyset$
- $\quad \blacksquare \ A\cap U=A$
- $\quad \blacksquare \ A\cap B=B\cap A$
- $\bullet (A \cap B) \cap C = A \cap (B \cap C)$

2.7.3. Diferencia

$$A - B = \{x/x \in A \land x \notin B\}$$

$$x \in A - B \leftrightarrow x \in A \land x \notin B$$

2.7.3.1. Propiedades

- $A A = \emptyset$
- $A \emptyset = A$
- $\quad \blacksquare \ \emptyset A = \emptyset$
- $\quad \blacksquare \ A-B\subset A$
- $(A B) = (A \cup B) B) = A (A \cap B)$

2.7.4. Complemento

$$C_B A = B - A = \{x/x \in B \land x \notin A\}$$

$$x \in \mathcal{C}_B A \leftrightarrow x \in B \lor x \notin A$$

Si
$$B = U$$
 entonces $C_B A = A' = A^C = \overline{A}$

2.7.4.1. Propiedades

- $C_BA \subset B$ y $C_AB \subset A$
- $A' \cup A = U$ o $A \cup C_A B = A$
- $A \cap A' = \emptyset$ o $A \cap \mathcal{C}_A B = \emptyset$
- $U' = \emptyset$ o $\mathcal{C}_A A = \emptyset$
- $(A')' = A \circ \mathcal{C}_B(\mathcal{C}_B A) = A$
- $A B = A \cap B'$ o $A B = A \cap C_A B$

2.7.5. Diferencia simétrica

$$A\Delta B = \{x/(x \in A \land x \in B) \lor (x \in A \land x \in B)\}\$$

$$x \in A\Delta B \leftrightarrow (x \in A \land x \in B) \lor (x \in A \land x \in B)$$

2.7.5.1. Propiedades

- \bullet $A\Delta B = \emptyset$
- $\bullet \ A\Delta\emptyset = A$
- $\quad \blacksquare \ A\Delta B = B\Delta A$
- $(A\Delta B)\Delta C = A\Delta (B\Delta C)$
- $(A\Delta B) \cap C = (A\Delta C)\Delta (B\Delta C)$
- $\bullet (A\Delta B) \cup (B\Delta C) = (A \cup B \cup C) (A \cap B \cap C)$

2.8. Número de elementos de un Conjunto. Propiedades

Funciones y relaciones

Numeros reales

Funciones exponenciales logarítmicas

Inducción matemática

Suceciones

Números complejos

Polinomios

Temas de reforzamiento o conocimientos preliminares que son necesarias para entender el contenido.

A

Trasformaciones