

GEOMETRÍA

Capítulo 21 Ses I

ÁREA DE REGIONES CÍRCULARES

MOTIVATING | STRATEGY

Uno de los grandes inventos del hombre fue la rueda (la que denominamos círculo) cuya mayor aplicación era en el transporte; hoy en día se fabrican en serie, círculos que tienen infinitas aplicaciones y para generar dicha producción se diseñan moldes llamados matrices utilizando para ello las fórmulas de cálculo de áreas de círculo.

ÁREAS DE REGIONES CIRCULARES

Círculo.- Es la unión de la circunferencia y

O: Centro

S : Área del círculo

$$S = \pi . r^2$$

L : longitud de la circunferencia

$$\mathbf{L} = 2\pi . \mathbf{r}$$

Corona circular.-Es la región comprendida entre dos circunferencias concéntricas.

O : Centro S : Área de la corona circular

$$\mathbf{S} = \pi (\mathbf{R^2} - \mathbf{r^2})$$

$$\mathbf{S} = \pi.\mathbf{a}^2$$

$$S = \frac{\pi (AB)^2}{4}$$

HELICO | THEORY

Sector circular

Es una parte del círculo limitada por dos radios y su arco correspondiente.

O: Centro

$$S = \frac{\theta}{360} . \pi . r^2$$

Semicírculo

O: Centro

$$\mathbf{S} = \frac{1}{2} . \pi \mathbf{r}^2$$

O : Centro

Segmento circular

Es aquella porción de círculo determinada por una cuerda de dicho círculo.

O: Centro

S : Área del segmento circular

$$S = \frac{\theta}{360} \cdot \pi \cdot r^2 - \frac{1}{2} \cdot R^2 \cdot sen\theta$$

Si O es centro y T es punto de tangencia, calcule el área del círculo.

Resolución

• Piden: **S** =
$$\pi$$
. **r**² ... (1)

- Se traza OT.
- Por teorema la m≠OTE = 90°
- OTE : Notable de 53°/2

Reemplazando 2 en 1.

$$S = \pi . 53^{\circ}/2$$

$$S = 25\pi u^2$$

PROBLEMA 2

Calcule el área de un semicírculo de diámetro \overline{AC} , $B \in \widehat{AC}$, AB = 4 m y BC = 8 m.

Resolución

• Piden: **S** =
$$\frac{1}{2}\pi$$
.**r**² ... (1)

- ABC : T. Pitágoras $(2r)^{2} = 4^{2} + 8^{2}$ $4r^{2} = 80$ $r^{2} = 20$... (2)
- Reemplazando 2 en 1.

$$S = \frac{1}{2}\pi.20$$

$$S = 10\pi \text{ m}^2$$

Si O es centro del cuadrante AOB, calcule el área de la región sombreada.

Resolución

• Piden: **S**

$$S = \frac{1}{4}\pi.r^2$$
 ... (1)

• ODC : Notable de 37° y 53°

$$r = 10 \qquad \dots (2)$$

Reemplazando 2 en 1.

$$S = \frac{1}{4}\pi.10^{2}$$

$$S = 25\pi u^{2}$$

PROBLEMA 4

Calcule el área de un sector circular cuyo ángulo central mide 72° y la longitud de su radio

es 10 m.

<u>Resolución</u>

$$S = \frac{\theta}{360} . \pi . r^2$$

$$S = \frac{72^{\circ}}{360^{\circ}} \pi.10^{2}$$

$$S = \frac{1}{5}\pi.100$$

$$S = 20\pi \text{ m}^2$$

Si O₁ y O₂ son centros, calcule el área de la región sombreada.

Resolución

- Piden: **S**_x
- $S_{(mayor)} = S_x + S_{(menor)}$
- Reemplazando

$$\pi(7)^2 = \mathbf{S}_x + \pi(5)^2$$

$$49\pi = S_x + 25\pi$$

$$24\pi u^2 = S_x$$

En los semicirculos mostrados, calcule el área de la región sombreada.

Se tiene un sector AOB de centro O, mÂB = 90°, OA = 8 m, con diámetro \overline{OB} se construye una semicircunferencia interiormente, calcule el área de la región exterior al semicírculo, interior al arco AB y limitado por \overline{OA} .

Resolución

- Piden: **S**_x
- Reemplazando

$$\frac{1}{4} \cdot \pi(8)^{2} = \mathbf{S}_{x} + \frac{1}{2} \cdot \pi(4)^{2}$$

$$16\pi = \mathbf{S}_{x} + 8\pi$$

$$8\pi \text{ m}^2 = S_x$$

◎1

PROBLEMA 8

Con una plancha metálica, José fabrica un letrero de forma circular para evitar que otros autos se estacionen en la puerta de su garaje. ¿Qué área tendrá dicho

letrero?

Resolución

• Piden: S

$$S = \pi.r^2 \qquad ... (1)$$

Del gráfico:

$$2r = 40$$

 $r = 20$... (2)

Reemplazando 2 en 1.

$$S = \pi . 20^2$$

$$S = 400\pi$$
 cm²