数字信号处理

周治国

2023.10

第四章 快速傅里叶变换

§4-5 N为复合数的FFT算法——统一的FFT算法

 $N = 2^{\nu} \rightarrow 基 - 2$ *FFT* $N \neq 2^{\nu}$, 如何快速计算 *DFT*?

"无害的"?

如何理解P140

处理方法:

- (1)通过补零,使序列长度= 2^{V} → 基-2 FFT
- (2)N=ML(复合数) → 统一的FFT算法
- (3)N≠ML(素数) → Chirp-Z 变换(CZT)

一、算法原理

 $\forall x(n)$, $0 \le n \le N-1$, N = ML (复合数)

 $...N-DFT\sim N^2$

∴如果N-DFT< M^{L} -DFT $\sim M \times L^{2}$ \longrightarrow 减少了运算 L^{M} - L^{M} -L

横着进

L行M列,LxM

$$\begin{bmatrix} X(0) & X(L) & \cdots & X((M-1)L) \\ X(1) & X(L+1) & \cdots & X((M-1)L+1) \\ \vdots & & \ddots & \ddots & \vdots \\ X(L-1) & X(2L-1) & \cdots & X(ML-1) \end{bmatrix} \begin{bmatrix} X(0,0) & X(1,0) & \cdots & X(M-1,0) \\ X(0,1) & X(1,1) & \cdots & X(M-1,1) \\ \vdots & & \ddots & \ddots & \vdots \\ X(0,L-1) & X(1,L-1) & \cdots & X(M-1,L-1) \end{bmatrix}$$
 竖着出
$$X_2(k_0, k_1)$$

L行M列,LxM

M

$$X(k) = X(Lk_1 + k_0) = X(k_1, k_0)$$

$$= \sum_{n_0=0}^{N-1} x(n)W_N^{k_0}$$

$$= \sum_{n_0=0}^{N-1} \sum_{n_1=0}^{L-1} x(n_1, n_0)W_N^{k_0n_1}$$

$$= \sum_{n_0=0}^{M-1} \sum_{n_1=0}^{L-1} x(n_1, n_0)W_N^{k_0n_1} W_N^{k_0n_0} W_N^{k_0n_0} W_N^{k_0n_0}$$

$$= \sum_{n_0=0}^{M-1} \sum_{n_1=0}^{L-1} x(n_1, n_0)W_N^{k_0n_1} W_N^{k_0n_0} W_N^{k_0n_0} W_N^{k_0n_0} W_N^{k_0n_0}$$

$$= \sum_{n_0=0}^{M-1} \sum_{n_1=0}^{L-1} x(n_1, n_0)W_L^{k_0n_1} W_N^{k_0n_0} W_M^{k_1n_0} W_M^{k_0n_0} W_M^{k_0n_0} W_M^{k_0n_0}$$

$$= \sum_{n_0=0}^{M-1} \sum_{n_1=0}^{L-1} x(n_1, n_0)W_L^{k_0n_1} W_N^{k_0n_0} W_M^{k_1n_0}$$

$$= \sum_{n_0=0}^{M-1} \sum_{n_1=0}^{L-1} x(n_1, n_0)W_N^{k_0n_0} W_N^{k_0n_0} W_M^{k_1n_0}$$

$$= \sum_{n_0=0}^{M-1} \sum_{n_1=0}^{L-1} x(n_1, n_0)W_N^{k_0n_0} W_N^{k_1n_0}$$

$$= \sum_{n_0=0}^{M-1} \sum_{n_1=0}^{L-1} x(n_1, n_0)W_N^{k_0n_0} W_N^{k_0n_0} W_N^{k_1n_0}$$

$$= \sum_{n_0=0}^{M-1} \sum_{n_1=0}^{L-1} x(n_1, n_0)W_N^{k_0n_0} W_N^{k_0n_0} W_N^{k_0n$$

$$X(k) = X(Lk_1 + k_0) = X(k_1, k_0)$$
 $= \sum_{n=0}^{N-1} x(n)W_N^{kn}$
 $= \sum_{n_0=0}^{N-1} \sum_{n_1=0}^{L-1} x(n_1, n_0)W_N^{(Mn_1+n_0)(Lk_1+k_0)}$
 $= \sum_{n_0=0}^{M-1} \sum_{n_1=0}^{L-1} x(n_1, n_0)W_N^{(Mn_1+n_0)(Lk_1+k_0)}$
 $= \sum_{n_0=0}^{M-1} \sum_{n_1=0}^{L-1} x(n_1, n_0)W_N^{Mn_1k_0}W_N^{k_1n_0}W_N^{k_0n_0}W_N^{k_1n_0}$
 $= \sum_{n_0=0}^{M-1} \sum_{n_1=0}^{L-1} x(n_1, n_0)W_L^{k_0n_1}W_N^{k_0n_0}W_M^{k_1n_0}$
 $= \sum_{n_0=0}^{M-1} \sum_{n_1=0}^{L-1} x(n_1, n_0)W_L^{k_0n_1}W_N^{k_0n_0}W_M^{k_1n_0}$
 $= \sum_{n_0=0}^{M-1} \left[\underbrace{X_1(k_0, n_0)W_N^{k_0n_0}}_{N} \right]W_M^{k_1n_0}$
 $= \sum_{n_0=0}^{M-1} \left[\underbrace{X_1(k_0, n_0)W_N^{k_0n_0}}_{N} \right]W_M^{k_1n_0}$
 $= \sum_{n_0=0}^{M-1} \underbrace{X_1(k_0, n_0)W_N^{k_1n_0}}_{N} \right]W_M^{k_1n_0}$

理解:

- 1. x(n), X(k)都是一维数据; 且输 入为正序:
- 2. x(n)"横着进" 使正序输入变为 L行M列二维结构 $(x(n_1,n_0))$,经过 复合数算法对二维数据处理;
- ①若X(k)"竖着出"输出可以使二 维数据 $X_2(k_0,k_1)$ (仍然为L行M列)还 原为一维正序X(k)输出;
- ②若X(k)经过将二维数据X₂(k₀,k₁) 译序, X(k)=X(Lk₁+k₀)输出("横着 出"),这时一维X(k)输出不是正序
- ; 但经过X₂(k₀,k₁)转置成X(k₁,k₀)
- ,再将二维数据**X(k₁,k₀)**译序,
- X(k)=X(Lk₁+k₀)输出("横着出")

 $0 \le k \le N-1$

,这时一维X(k)输出是正序。

 $0 \le k_0 \le L - 1, \ 0 \le k_1 \le M - 1$

L行M列, M行L列,

中

$$X_{2}(k_{0}, n_{1}) \stackrel{\Delta}{=} \sum_{n_{0}=0}^{L-1} X_{1}'(k_{0}, n_{0}) W_{M}^{k_{1}n_{0}}$$

$$\stackrel{\Delta}{=} DFT_{n_{0}}[X_{1}'(k_{0}, n_{0})],$$

$$0 \le k_1 \le M-1, 0 \le k_0 \le L-1, \forall n_0$$

求DFT

二、运算步骤

(1)
$$x(n) \to x(n_1, n_0)$$

↑ $n_1 = 0, 1, ..., L - 1$ 行号 $n_0 = 0, 1, ..., M - 1$ 列号

(2)
$$\forall n_0$$
, $0 \le n_0 \le M - 1$ (针对每一列)

$$X_1(k_0, n_0) = DFT_{n_1}[x(n_1, n_0)] = \sum_{n_1=0}^{L-1} x(n_1, n_0) W_L^{k_0 n_1}, \qquad k_0 = 0, 1, ..., L-1$$

$$(3)X_1'(k_0, n_0) = X_1(k_0, n_0)W_N^{k_0 n_0} \qquad 0 \le k_0 \le L - 1$$
$$0 \le n_0 \le M - 1$$

(4)
$$\forall k_0, 0 \le k_0 \le L-1$$
 (针对每一行)

$$X_{2}(k_{0}, k_{1}) = DFT_{n_{0}}[X_{1}'(k_{0}, n_{0})] = \sum_{n_{0}=0}^{M-1} X_{1}'(k_{0}, n_{0})W_{M}^{k_{1}n_{0}}, \quad k_{0} = 0, 1, ..., M-1$$

(5) 译序
$$X_2(k_0, k_1) \to X(k_1, k_0) \to X(k) \qquad 0 \le k \le N - 1$$

$$\uparrow \qquad 0 \le k_0 \le L - 1$$

$$k = Lk_1 + k_0,$$
 $0 \le k_1 \le M - 1$

例: N=12=4×3, L=3, M=4 算法流图: 图4-20,P.144

图 4-20 $N=M\times L=4\times 3=12$ 时的 FFT 运算流图

同理: $\forall n_1, 0 \leq n \leq L-1$

详见(4-38) P.142

N=N1 * N2 N1=3 N2=4 4列3行 先3-DFT,再4-DFT

例: N=12=4×3, M=4, L=3 算法流图: 图4-20,P.144

N=12 组合数 N=MxL=4x3 FFT流图

图 P4-5

N=30=5x2x3 组合数 FFT流图

比较前后蝶形

图 P4-6

N=30=5x2x3 组合数 FFT流图

比较前后蝶形

图 P4-6

三、基数(指特定的分解)

- 1. N=2^V→基2 FFT算法
- 2. N≠2[∨]
 - (1)N=r₁,r₂,...,r_M M级r₁,r₂,..., r_M点DFT →混合基算法
 - $(2)r_1=r_2=...=r_M → N=r^M$ M级r-DFT → 基-r FFT算法
 - 比如: a) N=2^M →基-2 FFT
 - b) N=4^M →基-4 FFT

四、运算量估算

N=ML

(1) M
$$\uparrow$$
L-DFT: \times — M \times L²=N \times L
+— M \times L(L-1)=N(L-1)

- (2) 乘N个 $W_N^{k_0n_0}$ 因子: ×— N
- (3) L \uparrow M-DFT: \times —L \times M²=N \times M +— L \times M(M-1)=N(M-1)

N为复合数

按时间 Or 按频率

抽取 FFT算法流图?

五、统一的FFT方法与DIT、DIF

$$N=2^{\vee}$$

(1)
$$N = M \times L = 2^{v-1} \times 2$$
 2行, $v-1$ 列

(2)
$$N = M \times L = 2 \times 2^{v-1}$$
 v-1行, 2列

$$x(n) \longrightarrow x(n_1, n_0)$$

(1) N=M x L= 2^{v-1} x 2 为此,令

$$n=Mn_1+n_0$$
, $n_0=0,1,...,M-1$ — 列号 $n_1=0,1,...,L-1$ — 行号 $x(n)$ \longrightarrow $x(n_1,n_0)$

$$\begin{bmatrix} x(0) & x(1) & \cdots & x(2^{\nu-1}-1) \\ x(2^{\nu-1}) & x(2^{\nu-1}+1) & \cdots & x(2^{\nu}-1) \end{bmatrix} \longleftarrow \begin{bmatrix} x(0,0) & x(0,1) & \cdots & x(0,2^{\nu-1}-1) \\ x(1,0) & x(1,1) & \cdots & x(1,2^{\nu-1}-1) \end{bmatrix}$$

同理,对DFT的输出X(k)做类似的处理:

$$\begin{bmatrix} X(0) & X(2) & \cdots & X(2^{\nu} - 2) \\ X(1) & X(3) & \cdots & X(2^{\nu} - 1) \end{bmatrix} \longrightarrow \begin{bmatrix} X(0,0) & X(1,0) & \cdots & X(2^{\nu-1},0) \\ X(0,1) & X(1,1) & \cdots & X(2^{\nu-1},1) \end{bmatrix}$$

DIF-FFT

图4-18 N=8,DIF-FFT算法流图

五、统一的FFT方法与DIT、DIF N=2^v

(2)
$$N = M \times L = 2 \times 2^{V-1}$$

 P134 图4-11

 N=8,DIT-FFT算法流图

 输入正序,输出逆序