Module 12.3: Forests, Trees, Leaves MCIT Online - CIT592 - Professor Val Tannen

LECTURE NOTES

Connected components as graphs

Let G = (V, E) be a graph. We defined **connected components** (cc's) as subsets $C \subseteq V$ and observed that they form a **partition** of V.

Now, we regard a cc C as a graph, namely the subgraph of G **induced** by the set of vertices in C. The cc's also partitions the set of edges E:

Proposition. Every edge $\{u, v\} \in E$ belongs to **exactly one** of the subgraphs induced by the cc's of G.

Proof. Indeed, both u and v must be in the same cc.

Proposition. To count the number of paths of length k in G we add up the number of paths of length k in each of its connected components. Similar for cycles.

Acyclic graphs and trees

A graph in which there are no cycles is called **acyclic**. The cc's of an acyclic graph are also acyclic.

A graph that is both connected and acyclic is called a **tree**.

Consequently, an acyclic graph is also called a **forest** since all its cc's are trees!

Proposition. Let G_1 and G_2 be two **isomorphic** graphs, $G_1 \simeq G_2$. Then:

- G_1 is acyclic iff G_2 is acyclic.
- G_1 is connected iff G_2 is connected.
- G_1 is a tree iff G_2 is a tree.

(A formal proof would be tedious and these facts are intuitively obvious as we think of isomorphism as "copy".)

How many edges in a tree/forest?

Proposition. A tree has one more vertex than edges. That is, if G = (V, E) is a tree then |E| = |V| - 1.

Corollary. If G = (V, E) is a forest then |E| = |V| - |CC| where CC is the set of cc's of G.

Proof. Let's say that G has two cc's, (V_1, E_1) and (V_2, E_2) . The cc's partition both vertices and edges: $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$.

$$|V| = |V_1| + |V_2|$$
 $|E| = |E_1| + |E_2|$

The two cc's must be trees so by the proposition:

$$|E_1| = |V_1| - 1$$
 $|E_2| = |V_2| - 1$

Put together the equalities: |E| = |V| - 2 = |V| - |CC| since here we have just two cc's. The general case is similar.

Vertices and edges in a tree

Proposition. Any tree with n vertices has n-1 edges.

Proof. By induction on the number n of vertices.

(BC) n = 1: An edgeless graph with one vertex is a tree. (It is the only edgeless tree!) It has 0 edges. Check.

(IS) Let k be an arbitrary natural number ≥ 1 . Assume (IH) that every tree with k vertices has k-1 edges.

Now we want to prove that any tree, G, with k + 1 vertices has k edges.

To apply the IH we would like to delete a vertex from G. But which one? And how do we insure that after the deletion we still have a tree?

Trees have leaves

In a graph a **leaf** is a node of degree 1.

Lemma. Every tree with edges has at least one leaf (actually, at least two!).

Proof. Consider the set $L \subseteq \mathbb{N}$ of lengths of paths (not walks!) in G. Since paths cannot have length more than the total number of edges, L is finite. The **Well-Ordering Principle** implies that L has a greatest element.

Therefore, there exists a path W of maximum length.

Claim. The endpoints u and v of W are leaves.

Indeed, suppose, toward a contradiction, that u is not a leaf. Then it has degree ≥ 2 . Thus W can be extended by one more edge. The other end of that edge is not in W since there are no cycles. Thus W does not have maximum length. Contradiction.

Remove a leaf

We considered an arbitrary $k \ge 1$. We assumed (IH) that every tree with k vertices has k-1 edges. Then we took an arbitrary tree, G, with k+1 vertices and wanted to show it has k edges.

Since $k + 1 \ge 2$, G has edges. By the lemma it has at least one leaf. Let G' be the graph obtained by removing this leaf. Nicely:

Lemma. Removing a leaf from a tree with edges leaves again a tree.

Proof. The resulting graph is still acyclic. It is also still connected because the only paths affected have the removed leaf as an endpoint.

Vertices and edges in a tree (finale)

We considered an arbitrary $k \geq 1$. We assumed (IH) that every tree with k vertices has k-1 edges. Then we took an arbitrary tree, G, with k+1 vertices and wanted to show it has k edges. We removed a leaf from G obtaining G' and showed that G' is still a tree.

G' has k+1-1=k nodes, so we can apply the IH.

By IH, G' has k-1 edges.

When we removed the leaf from G we removed exactly one edge, because the degree of the leaf is 1.

Hence G has one more edge that G', i.e., it has k-1+1=k edges. Done.

Quiz

I have a tree and in my tree all nodes have the same degree! Then my tree has:

- (A) Two edges.
- (B) Strictly more than two edges.
- (C) Strictly less than two edges.

Answer

- (A) Two edges. Incorrect. Any tree with two edges will have a node with degree 1 (i.e. a leaf) and a node with degree equal to 2.
- (B) Strictly more than two edges.

 Incorrect. Any tree with more than two edges will have a node with degree equal to 1 (i.e. a leaf) and a node of degree at least 2.
- (C) Strictly less than two edges.
 Correct. The tree consists of two nodes connected by one edge, as shown below:

