SoC Design Laboratory

Lab3 AXI4_Lite & AXI4_Stream interface design

111061560 電機碩二 吳俊鋌

一、Block Diagram:

二、Describe operation:

FSM:

這次 lab 的計算方式為參考 lab_2 C code 的 BRAM shift data 的方式設計,共分為 6 個 state: TAP、READ、R_BRAM、W_BRAM、ADD、OUTPUT,TAP state 為初始化 coefficient 使用,當 TAP 接收完畢,則 ap_start 升起,進入 READ state 接收 data 值,在進入下一個 state,接下來則為 R_BRAM、W_BRAM、ADD 三個 state 的循環,從 R_BRAM 讀取第(n-1)筆資料,在 W_BRAM state 寫入第(n)筆,在將讀取出的資料在 ADD state 進行相乘,不斷重複直到完成所有卷積計算後,進入 OUTPUT state,sm_tvalid 升起,等 待輸出。

TAP AXI4 lite:

Tap 傳遞採用 Axi4_lite protocol,當收到 awvalid 為 1 時,awready 會在下一個 clock 升為 1,當 awvalid 與 awready 皆為 1 時,接收 awaddr 存入 BRAM(tap_A),同時將 wready 設為 1 並關閉 awready,等待 wvalid 升起,當 wvalid 與 wready 同時為 1,則接收 wdata 存入 BRAM(tap_Di),並關閉 wready。

DATA AXI4_Stream:

Data 傳遞採用 AXI4_stream protocol,當收到 ss_tvalid 訊號,將 ss_tready 設為 1,當 ss_tvalid 與 ss_tready 皆為 1 時,接收 ss_tdata 存入 data_temp,同時將 ss_tready 關閉,計算完畢時則將 sm_tvalid 升起,若 sm_tvalid 與 sm_tready 皆為 1,輸出 sm_tdata 訊號,並關閉 sm_tvalid,若

輸出為最後一筆時,則 sm tlast 升起。

Shift RAM & TAP RAM:

TAP RAM 分成兩個 state 進行,分別為 TAP state 與 R_BRAM state,TAP state 進行讀寫 tap 的動作,當 awaddr>20 且 awvalid 與 awready 皆為 1 時,tap_A 存入 awaddr-20 的位置,確保可以存在 BRAM 的第一位,同時寫入 tap_Di 的值,在 R_BRAM state 則只進行讀的動作,將要讀出的位置寫入,在 W_BRAM state 時,在將 tap 讀出,完成 TAP BRAM 讀寫的動作。

Shift RAM 則是分別在 R_BRAM 寫入 address,下一個 clock 將 data 讀出,與 W_BRAM 同時寫入 address 與 R_BRAM state 讀出的 data,達到 RAM shift 的效果。

ap control:

當 awaddr 為 0 且 wdata 為 1 時,ap_start 升起。 ap_start 升起後,ap_idle 歸 0,直到 ss_tlast 輸入,ap_idle 改為 1。 ap_done 在最後一筆資料(count+1=data_length)時,ap_done 設為 1,並在傳遞出去後,awaddr 為 0 且 rdata 為 2 或 6 時,ap_done 關為 0,結束整個計算。

三、Resource usage:

FF number : 176 LUT number : 315

Site Type		Used	1	Fixed	 -	Prohibited		Available	٠.	
 Slice LUTs*	i	315	i	0	i	0	i	53200	i	0.59
LUT as Logic	1	315	I	0	I	0	I	53200	I	0.59
LUT as Memory	1	0	I	0	I	0	I	17400	I	0.00
Slice Registers	1	176	I	0		0	I	106400		0.17
Register as Flip Flop	1	176		0		0	I	106400		0.17
Register as Latch	1	0		0		0	I	106400		0.00
F7 Muxes	1	0		0		0	I	26600		0.00
F8 Muxes	I	0	Ţ	0	I	0	ļ	13300	I	0.00

四、Timing Report:

Max frequency: 90.909 MHz Clock period: 11 ns (0.000 5.500)

Clock	Waveform(ns)	Period(ns)	Frequency (MHz)
axis_clk	{0.000 5.500}	11.000	90.909

```
Max Delay Paths
                                          0.312ns (required time - arrival time) FSM_onehot_state_reg[3]/C
 Slack (MET) :
                                            (rising edge-triggered cell FDCE clocked by axis_clk {rise@0.000ns fall@5.500ns period=11.000ns})
    Destination:
                                          product_reg[31]/D
                                            (rising edge-triggered cell FDCE clocked by axis_clk {rise@0.000ns fall@5.500ns period=11.000ns})
                                          axis_clk
Setup (Max at Slow Process Corner)
    Path Group:
    Path Type:
                                         Jecupy (max at 510W Frucess Corner)
11.000ns (axis_clk rise@1.000ns - axis_clk rise@0.000ns)
10.551ns (logic 7.856ns (74.454%) route 2.695ns (25.546%))
9 (CARRY4=4 DSP46E1=2 LUT2=2 LUT3=1)
-0.145ns (DCD - SCD + CPR)
ay (DCD): 2.128ns = (13.128 - 11.000)
    Requirement:
Data Path Delay:
   Logic Levels: 9 (CARRY
Clock Path Skew: -0.145ns
Destination Clock Delay (DCD):
       Source Clock Delay (SCD):
Clock Pessimism Removal (CPR):
                                                            2.456ns
0.184ns
                                          0.035ns ((TSJ<sup>2</sup> + TIJ<sup>2</sup>)<sup>1/2</sup> + DJ) / 2 + PE
(TSJ): 0.071ns
    Clock Uncertainty:
       Total System Jitter
Total Input Jitter
Discrete Jitter
                                             (TIJ):
                                                             0.000ns
                                                             0.000ns
                                                           0.000ns
       Phase Error
                                               (PE):
```

Location	Delay type	Incr(ns)	Path(ns)	Netlist Resource(s)
	(clock axis_clk rise ed	ge)		
		0.000	0.000 r	
		0.000	0.000 r	axis_clk (IN)
	net (fo=0)	0.000	0.000	axis_clk
			r	axis_clk_IBUF_inst/I
	IBUF (Prop ibuf I O)	0.972	0.972 r	axis clk IBUF inst/O
	net (fo=1, unplaced)	0.800	1.771	axis clk IBUF
			r	axis clk IBUF BUFG inst/I
	BUFG (Prop bufg I O)	0.101	1.872 r	axis clk IBUF BUFG inst/O
	net (fo=176, unplaced)	0.584	2.456	axis clk IBUF BUFG
	FDCE			FSM_onehot_state_reg[3]/C
	FDCE (Prop fdce C Q)	0.478	2 934 -	FSM_onehot_state_reg[3]/Q
	net (fo=113, unplaced)	0.414		FSM onehot state reg n 0 [3]
	es (10-110, unplaceu)	0.414		product0 0 i 1/I1
	LUT2 (Prop lut2 I1 0)	0.295		product00_i_1/10
	net (fo=1, unplaced)			read bramdata[16]
	net (10-1, unplaced)	0.500		product0 0/A[16]
	DSP48El (Prop dsp48el A	[16] DCOUT!4		produceo_o/R[16]
	DSF40E1 (FIOP_dsp40E1_A	4.036		product0 0/PCOUT[47]
	net (fo=1, unplaced)	0.055		product00/PCO01[4/] product00_n_106
	net (10-1, unplaced)	0.055		product00_n_10e product0 1/PCIN[47]
	DCD40E1 (Dana dan40a1 D	CTN1471 DIOI		producto1/PCIN[4/]
	DSP48E1 (Prop_dsp48e1_P			d+0 1/B(01
				product01/P[0]
	net (fo=2, unplaced)	0.800		product01_n_105
				product[19]_i_5/I0
	LUT2 (Prop_lut2_I0_O)	0.124		product[19]_i_5/0
	net (fo=1, unplaced)	0.000		product[19]_i_5_n_0
			r	product_reg[19]_i_2/S[1]
	CARRY4 (Prop_carry4_S[1			
				product_reg[19]_i_2/C0[3]
	net (fo=1, unplaced)	0.009		product_reg[19]_i_2_n_0
			r	product_reg[23]_i_2/CI
	CARRY4 (Prop_carry4_CI_			
				product_reg[23]_i_2/C0[3]
	net (fo=1, unplaced)	0.000		product_reg[23]_i_2_n_0
			r	product_reg[27]_i_2/CI
	CARRY4 (Prop_carry4_CI_	CO[3])		
		0.117	11.752 r	product_reg[27]_i_2/C0[3]
	net (fo=1, unplaced)	0.000	11.752	product_reg[27]_i_2_n_0
			r	product_reg[31]_i_3/CI
	CARRY4 (Prop_carry4_CI_0	0[3])		
			12.083 r	product_reg[31]_i_3/0[3]
	net (fo=1, unplaced)	0.618	12.701	product reg[31] i 3 n 4
				product[31] i 2/I2
	LUT3 (Prop lut3 I2 O)	0.307		product[31] i 2/0
	net (fo=1, unplaced)			product[31] i 2 n 0
	FDCE	5.500		product reg[31]/D
	PDGE			product_reg[or]/D

11.000 r
11.000 r
11.000 axis_clk (IN)
11.000 axis_clk | BUF_inst/I
11.838 r axis_clk | BUF_inst/O
12.598 axis_clk | BUF_BUF_inst/O
12.699 r axis_clk | BUF_BUF_inst/O
13.128 axis_clk | BUF_BUF_inst/O
13.128 axis_clk | BUF_BUF_G
r product_reg[31]/C
13.311
13.276 (clock axis_clk rise edge) 11.000 net (fo=0) 0.000 IBUF (Prop_ibuf_I_0)
net (fo=1, unplaced) 0.838 0.760 BUFG (Prop_bufg_I_O) net (fo=176, unplaced) FDCE clock pessimism 0.091 0.439 0.184 clock uncertainty
FDCE (Setup_fdce_C_D) -0.035 0.044 13.320 product_reg[31] 13.320 -13.008 required time arrival time 0.312

五、Simulation Waveform:

AXI_Lite

AXI_Stream:

Tap Bram:

Data Bram:

FSM:

AP Control: clock cycle cost:(215305-1000)/11 = 19482 clock cycle

補充(遲交原因):

雖然這次清大停電頻繁,由於住在宿舍略有受影響,但我還是趕在 10/22 之前就已完成本次作業,不過要繳交時發現助教有發公告提到延期到 10/25 日,想說寧可交出一份衝忙趕出來的作業,不如多花時間優化電路,提高 clock frequency,因此花了一些時間修改設計,今天早上有去課堂與教授討論遲交原因,有獲得教授同意,以上為這次受到停電影響無法準時繳交的因素,希望教授可以諒解,謝謝教授。