Лабораторная работа №1. Изучение методов интерполяции

Цель работы. Изучить основы методов интерполяции. Осуществить сравнение двух методов интерполяции: метод полиномиальной интерполяции и метод кубической сплайн-интерполяции.

Краткие теоретические сведения

Задача интерполяции является типовой в цифровой обработке сигналов и данных. С помощью интерполяции решаются задачи расчета графиков, восстановления пропущенных данных, фильтрация сигналов, мультимедиа-сжатие данных и ряд других. Существуют различные подходы к расчету интерполирующей функции по заданному множеству узловых точек. Исторически первым методом был метод построения глобального интерполяционного полинома. Его недостатком является неустойчивость к ошибкам округления, неизбежным при расчете на вычислительных машинах. Поэтому в большинстве практических приложений используется та или иная разновидность кусочно-полиномиальной интерполяции. Наиболее употребительным методом этого типа является метод кубической сплайн-интерполяции [1]. В настоящее время в большинстве математических пакетов прикладных программ заложены стандартные функции, реализующие различные методы интерполяции. В частности, в среде MathCAD метод кубической сплайн-интерполяции реализуется при совместном применении двух встроенных функций — interp и cspline.

Варианты заданий*

Задание на выполнение работы включает получение обучающимся функции y(t), в соответствии с номером варианта задания, с последующим формированием на каждой из функций некоторого количества узловых точек на равномерной сетке по аргументу времени t (первый и последний узел совпадают с начальным и конечным значением функции) и построением двух видов интерполянтов: по методу полиномиальной интерполяции и по методу кубической сплайн-интерполяции. Параметры дискретизации функции y(t) по времени (в результате которой будет получен массив отсчетов $\{y_n\}$, n=0,1,..N-1) обучающийся производит самостоятельно.

Таблица – Варианты заданий

	таолица — Варианты задании					
Bap.	ϕ ункция $y(t)$	$\mathbf{\epsilon}_{y}$	Bap.	ϕ ункция $y(t)$	ε_y	
1	$\sin(2\pi\cdot3t);t\!\in\![0,1]$	0.01	11	$\cos^2(2\pi \cdot 3t + \pi/4) - 0.5; t \in [0,1]$	0.01	
2	$\sin(2\pi\cdot\sin(\pi t)); t\in[0,1]$	0.01	12	$64t^7 - 112t^5 + 56t^3 - 7t - 1; t \in [0, 1]$	0.02	
3	$16t^5 - 20t^3 + 4t; t \in [0,1]$	0.02	13	$\cos(2\pi \cdot t) - \cos(6\pi \cdot t); t \in [0,3]$	0.02	
4	$tg(\sin(2\pi\cdot5t)); t\in[0,1]$	0.02	14	$\sin^2(2\pi \cdot 5t + \pi/4) - 0.5; t \in [0,1]$	0.01	
5	$20t^3 - 30t^2 + 12t - 2; t \in [0, 1]$	0.02	15	$\sqrt[3]{\sin(2\pi t)}; t \in [0,3]$	0.02	
6	$\exp(\sin(2\pi\cdot 2t))-1; t\in[0,3]$	0.01	16	$\sin(2\pi \cdot 3t) - \sin(2\pi \cdot 9t); t \in [0,1]$	0.01	
7	$\sin^3(2\pi \cdot t); t \in [0,5]$	0.01	17	$\cos(2\pi \cdot t) - 0.7\cos(4\pi \cdot t) - 0.3\cos(6\pi \cdot t); t \in [0,3]$	0.02	
8	$\sin(2\pi \cdot t^2); t \in [0,2]$	0.02	18	$\exp(\cos(2\pi \cdot 5t)) - 1; t \in [0,1]$	0.01	
9	$6t^2 - 5t - 1; t \in [0, 1]$	0.01	19	$0.5t^4 - 2,25t^2 + 1; t \in [0,2]$	0.01	
10	$\ln(2-\cos(2\pi\cdot 3t)); t\in[0,2]$	0.01	20	$tg(\sin(2\pi \cdot 3t)); t \in [0,1]$	0.01	

Примечания:

*При представлении отчета после указанной предельной даты выполнения работы максимальное количество баллов за работу снижается на **2 балла в неделю**. При желании

сохранить количество баллов обучающийся должен предварительно согласовать с преподавателем и выполнить одно из индивидуальных заданий:

- 1) решить задачу с применением метода интерполяции сплайнами Эрмита;
- 2) решить задачу с применением метода интерполяции сплайнами Безье;
- 3) Написать программу для расчета данных зависимости ошибки интерполяции при использовании сплайнов от количества узловых точке и построить график зависимости ε_y от M.
 - **Аргументы тригонометрических функций полагаются заданными в радианной мере.

Для расчетов рекомендуется использовать компьютерный пакет MathCAD.

Порядок выполнения работы

- 1. Согласовать с преподавателем вариант задания во время занятия по расписанию, удостовериться в правильном понимании задания и критериев его оценки.
- 2. Осуществить дискретизацию функции y(t), выбрав самостоятельно период дискретизации T_{Δ} и объем выборки N, опираясь на требование теоремы Котельникова.
- 3. Сформировать массив, содержащий координаты узловых точек интерполяции (так, чтобы количество узлов M было значительно меньше N).
- 4. Построить график заданной функции y(t), нанести на них на них узловые точки так, чтобы обеспечить наглядность представления.
- 5. Запрограммировать два изучаемых метода интерполирования: полиномиальной интерполяции (можно использовать форму Лагранжа или Ньютона) и кубической сплайнитерполяции. При желании можно дополнительно осуществить построение интерполянта, используя ряд Котельникова. Построить графики интерполирующих функций, дискретизированных с теми же параметрами T_{Δ} и N. Оценить визуально качество интерполяции. Построить графики разностей
- 6. Построить графики разности между заданной функцией и каждым сформированным интерполянтом $\Delta y_n = y_n s_n$. Определить величину относительной среднеквадратической ошибки интерполяции $\varepsilon_v = \sigma(\Delta y)/\sigma(y)$, где σ реализуется функцией stdev в MathCAD.
- 7. Повторить п. 2-6, существенно изменив параметры дискретизации и/или количество узлов интерполяции, найдя такое сочетание параметров, при котором ошибка максимальное по модулю значение ошибки интерполяции при использовании метода сплайн-интерполяции не будет превышать заданную по варианту величину ε_v .

Содержание отчета

- 1. Цель работы.
- 2. Теоретические сведения об используемых методах интерполирования.
- 3. Программа, в которой представлена последовательности результаты обработки сигналов, с необходимыми комментариями.
- 4. Полученные графики: исходно заданной функции и двух интерполирующих функций полиномиальной интерполяции и сплайн-интерполяции, а также графики соответствующих разностей Δy_n .
- 5. Выводы, в которых отражены особенности изученных методов и свойства полученных результатов.
- 6. Список используемых источников.

Рекомендуемая литература

- 1. Цифровая обработка сигналов: учебник для ВПО /С.Н. Воробьев. М.: Академия, 2013. 320 с. [библиотечный шифр 621.391 В75]
- 2. Цифровая обработка сигналов: учебное пособие / В.А. Сериков, В.Р. Луцив; С.-Петерб. гос. ун-т аэрокосм. приборостроения. СПб: Изд-во ГУАП, 2014. 110 с. [библиотечный шифр 621.391 СЗ2]
- 3. Полиномиальная (алгебраическая) интерполяция. URL: https://studfiles.net/preview/6008218/page:12/
- 4. Полиномиальная интерполяция.
 - URL: https://studopedia.ru/9_211033_polinomialnaya-interpolyatsiya.html