

Functions

- **Identifying a linear function**
- Writing a function machine, using algebra
- Identifying and writing rules linking inputs and outputs
- Finding the inverse of a linear function

Keywords

You should know

explanation 1a

explanation 1b

- 1 Copy each function and find the outputs.
 - \mathbf{a} input x

input
$$x$$
 output y $-1, 0, 1, 2, 3 \longrightarrow +1 \longrightarrow \times 3 \longrightarrow \square, \square, 6, \square, \square$

b $y = \frac{12}{x}$

Input (x)	1	2	3	4
Output (y)		6		

 $\mathbf{c} \quad x \to \frac{x}{2} + 3$

d $v = x^2 + 1$

Input (x) 1 2 3 4 ◀ ■						_	4^2 is 4×4
input (x) 1 2 3 $+$ 1 $-$ 2 $+$ 2 $+$ 1	Input (x)	1	(r) 1 2	3	4	←	4 15 4 ^ 4
	input (x)	1	(1) 1 2	,]	So $4^2 + 1 = 17$
Output (y) 17	Output (v)		t (v)		17		304 +1-1/

2 Which of the functions in question **1** are linear functions? Give a reason for your answer.

3 Write each function machine as an equation.

$$\mathbf{a} \quad x \longrightarrow \times 2 \longrightarrow y$$

b
$$x \rightarrow +5 \rightarrow y$$

$$c \quad x \rightarrow -6 \rightarrow y$$

$$\mathbf{d} \quad x \longrightarrow \times 2 \longrightarrow +1 \longrightarrow y$$

e
$$q \rightarrow \div 7 \rightarrow -1 \rightarrow p$$

$$f \quad t \rightarrow +5 \rightarrow \times 4 \rightarrow j$$

$$\mathbf{g} \quad b \longrightarrow -4 \longrightarrow \div 2 \longrightarrow a$$

h
$$k \rightarrow \times 2 \rightarrow \div 3 \rightarrow j$$

explanation 2a

explanation 2b

4 What is the rule that links each set of input and output numbers? Write each rule as a function machine.

a

Input (x)	Output (y)
1	4
2	5
3	6
4	7
5	8

b

Input (x)	Output (y)
1	3
2	6
3	9
4	12
5	15

c

Input (x)	Output (y)
1	$\frac{1}{2}$
2	1
3	$1\frac{1}{2}$
4	2
5	$2\frac{1}{2}$

e	Input (x)	1	2	3	4	5
	Output (y)	5	9	13	17	21

5 Write an equation for each of your function machines in question **4**.

explanation 3a

explanation 3b

6 Find the inverse of each function. Check that it does reverse the original function using a simple pair of input and output values.

a
$$x \rightarrow x + 3$$

b
$$x \rightarrow x - 4$$

$$\mathbf{c} \quad x \to 10x$$

d
$$x \rightarrow 7x + 1$$

e
$$x \to 2x + 3$$
 f $x \to 4x - 3$

$$\mathbf{f} \quad x \to 4x - 3$$

g
$$y = 2x - 15$$

h
$$y = \frac{x}{4}$$

h
$$y = \frac{x}{4}$$
 i $y = \frac{x}{3} - 1$

j
$$y = \frac{x}{2} + 10$$

$$\mathbf{k}$$
 $x \rightarrow 2(x+5)$

k
$$x \to 2(x+5)$$
 l $x \to 3(x-1)$

$$\mathbf{m} \ x \to \frac{(x+1)}{2}$$

n
$$y = \frac{x-3}{4}$$

o
$$y = \frac{2x}{5}$$

7 Find the function that links these inputs and outputs.

input
$$x$$
 output y -1, 0, 1, 2, 3 \longrightarrow 7, 9, 11, 13, 15

- **8** Find the inverse of the function in question **7**. Check your answer.
- **9** Look at these inputs and outputs.

Input (x)	2	4	6	8	10
Output (y)	7	13	19	25	31

- What are the differences between the outputs?
- **b** What would be the difference between the outputs if the input increased by 1 each time?
- c Find the function that links the inputs and the outputs.
- **d** Find the inverse function and check your answer.
- 10 This is the table of values for a linear function.

Input (x)	0	2	4	6	8	10	12
Output (y)	2			20			

- a Copy and complete the table.
- **b** What is the linear function?
- Find the inverse function and check your answer.

- **11** Lucy writes the function y = 10 2x.
 - a Find the output when x = 3.
 - **b** Lucy then writes the function as y = -2x + 10.

Copy and complete the function machine.

$$x \rightarrow \times \square \rightarrow +\square \rightarrow y$$

- **c** Find the inverse function.
- **d** Explain how you can check that your inverse function is correct.
- **12** Find the inverse of each function.

Check that they do reverse the original functions.

$$\mathbf{a} \quad x \to 12 - 3x$$

b
$$y = 8 - 2x$$

$$c \quad x \rightarrow 2 - x$$

d
$$y = 6 - \frac{x}{2}$$

- **13** Jim writes the function y = 3 5x.
 - a i The output is the same as the input when the input value is a. Jim says that a is the solution of the equation 3 - 5a = a. Explain why he is right. Solve the equation to find a.
 - ii Find the inverse function. Check your answer.
 - b Use your answers to part **a** to write down the solution of $3 5x = \frac{3 x}{5}$. Explain how you know.
- **14 a** Copy and complete the function machine for the function $y = \frac{9-2x}{7}$.

$$x \rightarrow \times \longrightarrow + \longrightarrow \div \longrightarrow y$$

- **b** Find the outputs when x = 1, 2 and 3. Explain whether this function is linear.
- c Write the inverse function. Check your answer using the output values you found in part b.
- **d** Use your answer to part **c** to solve these equations.

$$\frac{9-2x}{7} = 8$$

ii
$$\frac{9-2x}{7}=1$$