Московский Физико-Технический Институт (государственный университет)

Кафедра вакуумной электроники

Газоразрядный стабилизатор напряжения

Лабораторная работа по курсу Вакуумная электроника

Работу выполнил: Нехаев Александр Сергеевич 654 группа 2 марта 2018 г.

Долгопрудный 2018

Содержание

1.	Цель работы	2	
2.	Теоретические основы	2	
3.	Экспериментальная установка		
4.	Практическая часть 4.1. Задание 1 4.2. Задание 2 4.3. Задание 3	Ę	
5.	Вывод	7	
6.	Литература	8	

1. Цель работы

Рассмотреть и изучить самостоятельный тлеющий разряд и основанное на его свойствах явление стабилизации напряжения(стабиловольта). Исследовать характеристики стабиловольта, а также ознакомиться с основными физическими явлениями, обуславливающими прохождение электрического тока в газах.

2. Теоретические основы

Газовым разрядом в широком смысле слова называется всякое прохождение электрического тока через газы. Газовые разряды бывают несамостоятельные и самостоятельные. Носители тока в несамостоятельных разрядах возникают за счет внешней ионизации, не связанной с напряжением, приложенным к электродам газового промежутка. С прекращением ионизации такие разряды исчезают. Самостоятельные газовые разряды возникают в результате ионизации молекул и атомов самого газа, и их течение не зависит от внешней ионизации. В данной работе мы рассматриваем только тлеющий разряд и основанное на его свойствах явление стабилизации напряжения.

Рассмотрим основные особенности тлеющего разряда. Переход от несамостоятельного разряда к самостоятельному обычно сопровождается резким увеличением силы тока и внезапным появлением течения газа. Однако если внешнее сопротивление очень велико (порядка 10⁶ Ом), переход от несамостоятельного разряда к самостоятельному происходит постепенно, и можно наблюдать переходную форму разряда. При напряжении, равном напряжению зажигания, около анода появляется слабое свечение. При увеличении тока начинается искажение поля пространственными зарядами, а свечение начинает распространяться по направлению к катоду. При дальнейшем увеличении силы тока свечение газа начинает распадаться на характерные для тлеющего разряда части, а падение потенциала в трубке сосредоточивается в катодных частях разряда. Обычно тлеющий разряд возникает при низких давлениях (от сотых долей до десятков мм рт. ст.).

Название областей на рис. 1:

- 1) астоново темное пространство;
- 2) катодная светящаяся пленка;
- 3) катодное темное пространство;

Рис. 1. Области тлеющего разряда и распределение потенциала в газоразрядной трубке

- 4) тлеющее свечение;
- 5) темное фарадеево пространство;
- 6) область положительного столба (плазма).

Стабиловольт представляет собой газоразрядный прибор с холодным катодом. Простейший стабиловольт состоит из двух электродов, помещенных в баллон с инертным газом при пониженном давлении. Действие прибора основано на использовании тлеющего газового разряда с нормальным падением потенциала. В начале разряда используется только часть поверхности катода, а при увеличении тока рабочая поверхность катода увеличивается при почти неизменных напряжениях на приборе и плотности тока.

3. Экспериментальная установка

Принципиальная схема лабораторной вакуумной установки представлена на рис. 2.

Рис. 2. Схема лабораторной установки

4. Практическая часть

4.1. Задание 1

Снимем семейство вольтамперных характеристик стабиловольта при нормальной полярности электродов, повышая и понижая входное напряжение, используя в качестве параметра давление газа в приборе. В данном эксперименте в качестве газа используем воздух.

Построим график зависимости $U_3(P)$:

Снимем ВАХ для воздуха $f=I\left(U\right)$ при тех же условиях.

Построим график для ВАХ воздуха:

$v_{\rm h}, { m cm}^3/{ m c}$	P, Topp	U_3 , кВ
100	1.36	0.74
50	0.78	0.66
25	0.446	0.63
12.5	0.265	0.65
20	0.367	0.64
30	0.58	0.64
27.5	0.481	0.64
10	0.236	0.65
5	0.139	0.65

Таблица 1. Зависимость для воздуха $U_{3}\left(P\right)$

Рис. 3. График зависимости $U_{3}\left(P\right)$

4.2. Задание 2

Снимем аналогичные характеристики для смеси газов: воздуха и аргона.

Снимем зависимость ВАХ для смеси аргона и воздуха.

I, A	U, кВ
19	0.63
16.94	0.63
15.08	0.64
13.03	0.64
10.98	0.65
9.03	0.65
6.99	0.66
4.99	0.68
3.02	0.7
1.03	0.71

Таблица 2. ВАХ для воздуха $I\left(U\right)$

Рис. 4. График зависимости $I\left(U\right)$ при 25 $\frac{\mathrm{cm}^{3}}{\mathrm{c}}$

4.3. Задание 3

Сравним характеристики в случае воздуха и в случае воздуха, перемешанного с Аргоном. Сравнение графиков приведено на рис. 6

$v_{\rm h}, { m cm}^3/{ m c}$	P, ropp	U_3 , кВ
100	1.32	0.48
50	0.759	0.47
25	0.421	0.42
12.5	0.249	0.41
6.5	0.154	0.43
11	0.215	0.42
5	0.124	0.44
20	0.323	0.42
17	0.292	0.41
15	0.268	0.41

Таблица 3. Зависимость для смеси воздуха и аргона $U_{3}\left(P\right)$

Рис. 5. График зависимости $U_{3}\left(P\right)$

5. Вывод

Мы рассмотрели самостоятельный тлеющий разряд, сравнили характеристики при разном составе газа в стабиловольте, убедились в верности происходящих физических явлений при тлеющем газовом разряде.

I, A	U, кВ
19.03	0.41
17.07	0.42
15.02	0.42
12.99	0.42
11.08	0.42
9.01	0.46
7.02	0.48
5.01	0.48
3.	0.49
1.07	0.5
0.5	0.49

Таблица 4. ВАХ для смеси воздуха и аргона $I\left(U\right)$

Рис. 6. Сравнение графиков

6. Литература