模式识别 作业1

中国科学院大学 2020E8017182032

雜尧

University of Chinese Academy of Sciences

Question 1
が聞: ·: P(wilx) > P(wjlx) 所以在wi有最大反射概率.
(1) ① 若在特征集X,则判别难证案的所有损失为二入s 弄 P(w;1x) = 入s [1- P(w:1x
差选为非洋的k美,风险为 λs森P(wj1x)=λs []-P(wr1x)]> λs []-P(wi1x)]
、在非拒绝情况下,判为w;风险损失最小.
② 差 λγ ≤ λs [1-P(w;1x)] 即 P(w;1x)≤1- 兴 则拒绝风险最小.
城上:在P(wilx) > P(wilx) > 1-1/2/2 到为wi, 否则拒绝。
(2) 若 Ny = 0 则拒绝情况下两风险也为 0, 那对任意 j, 判以或拒绝均可.
(3) 若 /y> >>> 则恒有 P(Wilx)>1- 兴,则判为Wi风险最小,不会拒绝。
Question 2
(a) Pe = P(x-u1 > x-u2 w1) P(w1) + P(x-u1 < x-u2 w2) P(w2)
= p(x> 1/2 w1) P(w1) + p(x< 1/2 w2) P(w2)
$= p(x>\frac{M_1+M_2}{2} W_1)$
$= \frac{1}{\sqrt{2\pi}} \int_{u_1 + u_2}^{\infty} e^{-\frac{1}{2} \left(\frac{x - u_1}{\sigma} \right)^2} dx \qquad \left(\frac{3}{3} u = \frac{x - u_1}{\sigma} \right)$
$= -\frac{1}{\sqrt{2}} \int_{\frac{1}{\sqrt{2}}}^{\infty} e^{-\frac{u^2}{2}} \cdot u' du (u' = \frac{1}{6})$
ALIA - I CARLO - ALIA -
$= \frac{1}{\sqrt{2}} \int_{\alpha}^{\infty} e^{-\frac{u^2}{2}} du \qquad \left(\alpha = \frac{\left(u_2 - M_1\right)}{2\sigma}\right)$
(b) $\frac{1}{2} \frac{ y_1 - y_2 }{\sqrt{2}} \rightarrow 0$ In $\alpha \rightarrow \infty$, $\frac{1}{\sqrt{2}} \alpha e^{-\frac{\alpha^2}{2}} \rightarrow 0$
: Pe = √ √ √ a e - ½ du = √ du = √ du = √ 2 Pe → 0
Question 3
$\frac{1}{10000000000000000000000000000000000$
μ = ε ε x 7 = ∫ x p (x) dx $=$
$\Sigma = \{ \sum (x-\mu)(x-\mu)^t \} = \int (x-\mu)(x-\mu)^t p(x) dx$

(b) (a)
$$\Sigma_{i} = \widehat{\text{fit}}_{i}$$
 $g_{i}(x) = x^{t} \text{Wi} x + w_{i}^{t} x + w_{i}^{t} 0$
 $W_{i} = -\frac{1}{2} \Sigma_{i}^{t} \quad w_{i} = \Sigma_{i}^{t} \mu_{i}$
 $W_{i0} = -\frac{1}{2} \mu_{i}^{t} \Sigma_{i}^{t} \mu_{i} - \frac{1}{2} \ln |\Sigma_{i}| + \ln |C_{w_{i}}|$
 $g_{i}(x) = -\frac{1}{2} (x - \mu_{i})^{t} \Sigma_{i}^{t} (x - \mu_{i}) + \ln |C_{w_{i}}|$
 $g_{i}(x) = w_{i}^{t} x + w_{i0}$
 $w_{i0} = -\frac{1}{2} \mu_{i}^{t} \Sigma_{i}^{t} \mu_{i} + \ln |C_{w_{i}}| + \ln |C_{w_{i}}|$

(c) 录矩阵响伪道、特征降维、扩大非构关样本等。

Question 4

 $|M| |M| |M| |X_{i0}| = \frac{1}{2} (\mu_{i} + \mu_{i}) - \frac{\ln |C_{w_{i}}|}{(\mu_{i} - \mu_{i})^{t} \Sigma_{i}^{t} |W_{i}|} + \frac{1}{2} \frac{1}{2}$

中国科学院大学

2020E8017782032

University of Chinese Academy of Sciences

$$\frac{1}{\hat{p}(w_i)} \sum_{k=1}^{n} z_{ik} = \frac{1}{1 - \hat{p}(w_i)} \sum_{k=1}^{n} (1 - z_{ik})$$

$$(1 - \hat{p}(w_i)) \sum_{k=1}^{n} z_{ik} = n \hat{p}(w_i) - \hat{p}(w_i) \sum_{k=1}^{n} z_{ik}$$

$$\hat{p}(w_i) = \frac{1}{n} \sum_{k=1}^{n} z_{ik}$$

Question 6.

(a) $\hat{\mu}_{n+1} = \frac{1}{n+1} \sum_{k=1}^{n+1} (x_k = \frac{1}{n+1}) \left(\frac{n}{k} x_k + x_{n+1} \right) = \frac{n}{n+1} \left(\frac{1}{n} \sum_{k=1}^{n} x_k \right) + \frac{1}{n+1} x_{n+1}$ $= \frac{n+1-1}{n+1} \hat{\mu}_n + \frac{1}{n+1} x_{n+1} = \hat{\mu}_n + \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n)$ $= \frac{1}{n+1} \sum_{k=1}^{n+1} (x_k - \hat{\mu}_{n+1}) (x_k - \hat{\mu}_{n+1})^T$ $= \frac{1}{n+1} \sum_{k=1}^{n+1} (x_k - \hat{\mu}_{n+1}) (x_k - \hat{\mu}_{n+1})^T + \frac{1}{n+1} \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+1} (x_{n+1} - \hat{\mu}_n) \right] \left[x_{n+1} - \hat{\mu}_n - \frac{1}{n+$