Model Theory: An Introduction

David Marker

December 18, 2019

Contents

1	Structures and Theories		2
	1.1	Languages and Structures	2
	1.2	Theories	4
	1.3	Definable Sets and Interpretability	5

1 Structures and Theories

1.1 Languages and Structures

Definition 1.1. A language \mathcal{L} is given by specifying the following data

- 1. A set of function symbols \mathcal{F} and positive integers n_f for each $f \in \mathcal{F}$
- 2. a set of relation symbols \mathcal{R} and positive integers n_R for each $R \in \mathcal{R}$
- 3. a set of constant symbols C

Definition 1.2. An \mathcal{L} -structure \mathcal{M} is given by the following data

- 1. a nonempty set M called the **universe**, **domain** or **underlying set** of \mathcal{M}
- 2. a function $f^{\mathcal{M}}: M^{n_f} \to M$ for each $f \in \mathcal{F}$
- 3. a set $R^{\mathcal{M}} \subseteq M^{n_R}$ for each $R \in \mathcal{R}$
- 4. an element $c^{\mathcal{M}} \in M$ for each $c \in \mathcal{C}$

We refer to $f^{\mathcal{M}}, R^{\mathcal{M}}, c^{\mathcal{M}}$ as the **interpretations** of the symbols f, R and c. We often write the structure as $\mathcal{M} = (M, f^{\mathcal{M}}, R^{\mathcal{M}}, c^{\mathcal{M}} : f \in \mathcal{F}, R \in \mathcal{R}, c \in \mathcal{C})$

Definition 1.3. Suppose that $\mathcal M$ and $\mathcal N$ are $\mathcal L$ -structures with universes M and N respectively. An $\mathcal L$ -embedding $\eta:\mathcal M\to\mathcal N$ is a one-to-one map $\eta:M\to N$ that

- 1. $\eta(f^{\mathcal{M}}(a_1,\ldots,a_{n_f}))=f^{\mathcal{N}}(\eta(a_1),\ldots,\eta(a_{n_f}))$ for all $f\in\mathcal{F}$ and $a_1,\ldots,a_{n_f}\in\mathcal{M}$
- 2. $(a_1, \ldots, a_{m_R}) \in R^{\mathcal{M}}$ if and only if $(\eta(a_1), \ldots, \eta(a_{m_R})) \in R^{\mathcal{N}}$ for all $R \in \mathcal{R}$ and $a_1, \ldots, a_{m_R} \in M$
- 3. $\eta(c^{\mathcal{M}}) = c^{\mathcal{N}} \text{ for } c \in \mathcal{C}$

A bijective \mathcal{L} -embedding is called an \mathcal{L} -isomorphism. If $M\subseteq N$ and the inclusion map is an \mathcal{L} -embedding, we say either \mathcal{M} is a **substrcture** of \mathcal{N} or that \mathcal{N} is an **extension** of \mathcal{M}

The **cardinality** of \mathcal{M} is |M|

Definition 1.4. The set of \mathcal{L} -terms is the smallest set \mathcal{T} s.t.

- 1. $c \in \mathcal{T}$ for each constant symbol $c \in \mathcal{C}$
- 2. each variable symbol $v_i \in \mathcal{T}$ for i = 1, 2, ...
- 3. if $t_1, \ldots, t_{n_f} \in \mathcal{T}$ and $f \in \mathcal{F}$ then $f(t_1, \ldots, t_{n_f}) \in \mathcal{T}$

Suppose that \mathcal{M} is an \mathcal{L} -structure and that t is a term built using variables from $\bar{v}=(v_{i_1},\ldots,v_{i_m})$. We want to interpret t as a function $t^{\mathcal{M}}:M^m\to M$. For s a subterm of t and $\bar{a}=(a_{i_1},\ldots,a_{i_m})\in M$, we inductively define $s^{\mathcal{M}}(\bar{a})$ as follows.

- 1. If s is a constant symbol c, then $s^{\mathcal{M}}(\bar{a}) = c^{\mathcal{M}}$
- 2. If s is the variable v_{i_i} , then $s^{\mathcal{M}}(\bar{a}) = a_{i_i}$
- 3. If s is the term $f(t_1,\ldots,t_{n_f})$, where f is a function symbol of $\mathcal L$ and t_1,\ldots,t_{n_f} are terms, then $s^{\mathcal M}(\bar a)=f^{\mathcal M}(t_1^{\mathcal M}(\bar a),\ldots,t_{n_f}^{\mathcal M}(\bar a))$

The function $t^{\mathcal{M}}$ is defined by $\bar{a} \mapsto t^{\mathcal{M}}(\bar{a})$

Definition 1.5. ϕ is an **atomic** \mathcal{L} -**formula** if ϕ is either

- 1. $t_1 = t_2$ where t_1 and t_2 are terms
- 2. $R(t_1, \ldots, t_{n_R})$

The set of $\mathcal{L}\text{-}\text{formulas}$ is the smallest set \mathcal{W} containing the atomic formulas s.t.

- 1. if $\phi \in \mathcal{W}$, then $\neg \phi \in \mathcal{W}$
- 2. if $\phi, \psi \in \mathcal{W}$, then $(\phi \land \psi), (\phi \lor \psi) \in \mathcal{W}$
- 3. if $\phi \in \mathcal{W}$, then $\exists v_i \phi, \forall v_i \phi \in \mathcal{W}$

We say a variable v occurs freely in a formula ϕ if it is not inside a $\exists v$ or $\forall v$ quantifier; otherwise we say that it's **bound**. We call a formula a **sentence** if it has no free variables. We often write $\phi(v_1, \ldots, v_n)$ to make explicit the free variables in ϕ

Definition 1.6. Let ϕ be a formula with free variables from $\bar{v} = (v_{i_1,...,v_{i_m}})$ and let $\bar{a} = (a_{i_1},...,a_{i_m}) \in M^m$. We inductively define $\mathcal{M} \models \phi \bar{a}$ as follows

- 1. If ϕ is $t_1 = t_2$, then $\mathcal{M} \models \phi(\bar{a})$ if $t_1^{\mathcal{M}}(\bar{a}) = t_2^{\mathcal{M}}(\bar{a})$
- 2. If ϕ is $R(t_1, \dots, t_{m_R})$ then $\mathcal{M} \models \phi(\bar{a})$ if $(t_1^{\tilde{\mathcal{M}}}(\bar{a}), \dots, t_{m_R}^{\mathcal{M}}(\bar{a})) \in R^{\mathcal{M}}$
- 3. If ϕ is $\neg \psi$ then $\mathcal{M} \models \phi(\bar{a})$ if $\mathcal{M} \not\models \psi(\bar{a})$
- 4. If ϕ is $(\psi \wedge \theta)$ then $\mathcal{M} \models \phi(\bar{a})$ if $\mathcal{M} \models \psi(\bar{a})$ and $\mathcal{M} \models \theta(\bar{a})$
- 5. If ϕ is $(\psi \vee \theta)$ then $\mathcal{M} \models \phi(\bar{a})$ if $\mathcal{M} \models \psi(\bar{a})$ or $\mathcal{M} \models \theta(\bar{a})$
- 6. If ϕ is $\exists v_i \psi(\bar{v}, v_i)$ then $\mathcal{M} \models \phi(\bar{a})$ if there is $b \in M$ s.t. $\mathcal{M} \models \psi(\bar{a}, b)$
- 7. If ϕ is $\forall v_i \psi(\bar{v}, v_i)$ then $\mathcal{M} \models \phi(\bar{a})$ if $\mathcal{M} \models \psi(\bar{a}, b)$ for all $b \in M$

If $\mathcal{M} \models \phi(\bar{a})$ we say that \mathcal{M} satisfies $\phi(\bar{a})$ or $\phi(\bar{a})$ is true in \mathcal{M}

Proposition 1.7. Suppose that \mathcal{M} is a substructure of \mathcal{N} , $\bar{a} \in M$ and $\phi(\bar{v})$ is a quantifier-free formula. Then $\mathcal{M} \models \phi(\bar{a})$ if and only if $\mathcal{N} \models \psi(\bar{a})$

Proof. Claim If
$$t(\bar{v})$$
 is a term and $\bar{b} \in M$ then $t^{\mathcal{M}}(\bar{b}) = t^{\mathcal{N}}(\bar{b})$.

Definition 1.8. We say that two \mathcal{L} -strctures \mathcal{M} and \mathcal{N} are {elementarily equivalent} and write $\mathcal{M} \equiv \mathcal{N}$ if

$$\mathcal{M} \models \phi$$
 if and only if $\mathcal{N} \models \phi$

for all \mathcal{L} -sentences ϕ

We let $Th(\mathcal{M})$, the **full theory** of \mathcal{M} be the set of \mathcal{L} -sentences ϕ s.t. $\mathcal{M} \models \phi$

Theorem 1.9. Suppose that $j: \mathcal{M} \to \mathcal{N}$ is an isomorphism. Then $\mathcal{M} \equiv \mathcal{N}$

Proof. Show by induction on formulas that $\mathcal{M} \models \phi(a_1, \ldots, a_n)$ if and only if $\mathcal{N} \models \phi(j(a_1), \ldots, j(a_n))$ for all formulas ϕ

1.2 Theories

Let \mathcal{L} be a language. An \mathcal{L} -theory T is a set of \mathcal{L} -sentences. We say that \mathcal{M} is a **model** of T and write $\mathcal{M} \models T$ if $\mathcal{M} \models \phi$ for all sentences $\phi \in T$. A theory is **satisfiable** if it has a model.

A class of \mathcal{L} -structures \mathcal{K} is an **elementary class** if there is an \mathcal{L} -theory T s.t. $\mathcal{K} = \{\mathcal{M} : \mathcal{M} \models T\}$

Example 1.10 (Groups). Let $\mathcal{L} = \{\cdot, e\}$ where \cdot is a binary function symbol and e is a constant symbol. The class of groups is axiomatized by

$$\forall x \ e \cdot x = x \cdot e = x$$
$$\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$$
$$\forall x \exists y \ x \cdot y = y \cdot x = e$$

Example 1.11 (Rings and Fields). Let \mathcal{L}_r be the language of rings $\{+, -, \cdot, 0, 1\}$, where +, - and \cdot are binary function symbols and 0 and 1 are constants. The axioms for rings are given by

$$\forall x \forall y \forall z \ (x - y = z \leftrightarrow x = y + z)$$

$$\forall x \ x \cdot 0 = 0$$

$$\forall x \forall y \forall z \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

$$\forall x \ x \cdot 1 = 1 \cdot x = x$$

$$\forall x \forall y \forall z \ x \cdot (y + z) = (x \cdot y) + (x \cdot z)$$

$$\forall x \forall y \forall z \ (x + y) \cdot z = (x \cdot z) + (y \cdot z)$$

We axiomatize the class of fields by adding

$$\forall x \forall y \ x \cdot y = y \cdot x$$
$$\forall x \ (x \neq 0 \to \exists y \ x \cdot y = 1)$$

We axiomatize the class of algebraically closed fields by adding to the field axioms the sentences

$$\forall a_0 \dots \forall a_{n-1} \exists x \ x^n + \sum_{i=1}^{n-1} a_i x^i = 0$$

for $n = 1, 2, \dots$ Let ACF be the axioms for algebraically closed fields.

Let ψ_p be the \mathcal{L}_r -sentence $\forall x$ $\underbrace{x + \cdots + x}_{p\text{-times}} = 0$, which asserts that a

field has characteristic p. For p>0 a prime, let $ACF_p=ACF\cup\{\psi_p\}$ and $ACF_0=ACF\cup\{\neg\psi_p:p>0\}$ be the theories of algebraically closed fields of characteristic p and zero respectively

Definition 1.12. Let T be an \mathcal{L} -theory and ϕ an \mathcal{L} -sentence. We say that ϕ is a **logical consequence** of T and write $T \models \phi$ if $\mathcal{M} \models \phi$ whenever $\mathcal{M} \models T$

Proposition 1.13. 1. Let $\mathcal{L} = \{+, <, 0\}$ and let T be the theory of ordered abelian groups. Then $\forall x (x \neq 0 \rightarrow x + x \neq 0)$ is a logical consequence of T

2. Let T be the theory of groups where every element has order 2. Then $T \not\models \exists x_1 \exists x_2 \exists x_3 (x_1 \neq x_2 \land x_2 \neq x_3 \land x_1 \neq x_3)$

Proof. 1. $\mathbb{Z}/2\mathbb{Z} \models T \land \neg \exists x_1 \exists x_2 \exists x_3 (x_1 \neq x_2 \land x_2 \neq x_3 \land x_1 \neq x_3)$

1.3 Definable Sets and Interpretability

Definition 1.14. Let $\mathcal{M}=(M,\ldots)$ be an \mathcal{L} -structure. We say that $X\subseteq M^n$ is **definable** if and only if there is an \mathcal{L} -formula $\phi(v_1,\ldots,v_n,w_1,\ldots,w_m)$ and $\bar{b}\in M^b$ s.t. $X=\{\bar{a}\in M^n:\mathcal{M}\models\phi(\bar{a},\bar{b})\}$. We say that $\phi(\bar{v},\bar{b})$ **defines** X. We say that X is X-definable or definable over X if there is a formula X-formula X

A number of examples using \mathcal{L}_r , the language of rings

• Let $\mathcal{M}=(R,+,-,\cdot,0,1)$ be a ring. Let $p(X)\in R[X]$. Then $Y=\{x\in R: p(x)=0\}$ is definable. Suppose that $p(X)=\sum_{i=0}^m a_i X^i$. Let $\phi(v,w_0,\ldots,w_n)$ be the formula

$$w_n \cdot \underbrace{v \cdots v}_{n\text{-times}} + \cdots + w_1 \cdot v + w_0 = 0$$

Then $\phi(v, a_0, \dots, a_n)$ defines Y. Indeed, Y is A-definable for any $A \supseteq \{a_0, \dots, a_n\}$

• Let $\mathcal{M}=(\mathbb{R},+,-,\cdot,0,1)$ be the field of real numbers. Let $\phi(x,y)$ be the formula

$$\exists z(z \neq 0 \land y = x + z^2)$$

Because a < b if and only if $\mathcal{M} \models \phi(a,b)$, the ordering is \emptyset -definable

• Consider the natural numbers $\mathbb N$ as an $\mathcal L=\{+,\cdot,0,1\}$ structure. There is an $\mathcal L$ -formula T(e,x,s) s.t. $\mathbb N\models T(e,x,s)$ if and only if the Turing machine with program coded by e halts on input x in at most s steops. Thus the Turing machine with program e halts on input x if and only if

 $\mathbb{N} \models \exists s \ T(e, x, s)$. So the halting computations is definable

Proposition 1.15. Let \mathcal{M} be an \mathcal{L} -structure. Suppose that D_n is a collection of subsets of M^n for all $n \geq 1$ and $\mathcal{D} = (D_n : n \geq 1)$ is the smallest collection s.t.

- 1. $M^n \in D_n$
- 2. for all n-ary function symbols f of \mathcal{L} , the graph of $f^{\mathcal{M}}$ is in D_{n+1}
- 3. for all n-ary relation symbols R of \mathcal{L} , $R^{\mathcal{M}} \in D_n$
- 4. for all $i, j \leq n$, $\{(x_1, \dots, x_n) \in M^n : x_i = x_j\} \in D_n$
- 5. if $X \in D_n$, then $M \times X \in D_{n+1}$
- 6. each D_n is cloed under complement, union and intersection
- 7. if $X \in D_{n+1}$ and $\pi : M^{n+1} \to M^n$ is the projection $(x_1, \dots, x_{n+1}) \mapsto (x_1, \dots, x_n)$, then $\pi(X) \in D_n$
- 8. if $X \in D_{n+m}$ and $b \in M^m$, then $\{a \in M^n : (a,b) \in X\} \in D_n$ Thus $X \subseteq M^n$ is definable if and only if $X \in D_n$

Proposition 1.16. Let \mathcal{M} be an \mathcal{L} -structure. If $X \subset M^n$ is A-definable, then every \mathcal{L} -automorphism of \mathcal{M} that fixes A pointwise fixes X setwise(that is, if σ is an automorphism of M and $\sigma(a) = a$ for all $a \in A$, then $\sigma(X) = X$)

Proof.

$$\mathcal{M} \models \psi(\bar{v}, \bar{a}) \leftrightarrow \mathcal{M} \models \psi(\sigma(\bar{v}), \sigma(\bar{a})) \leftrightarrow \mathcal{M} \models \psi(\sigma(\bar{v}), \bar{a})$$

In other words, $\bar{b} \in X$ if and only if $\sigma(\bar{b}) \in X$

Definition 1.17. A subset S of a field L is **algebraically independent** over a subfield K if the elements of S do not satisfy any non-trivial polynomial equation with coefficients in K

Corollary 1.18. The set of real numbers is not definable in the field of complex numbers

Proof. If $\mathbb R$ where definable, then it would be definable over a finite $A\subset \mathbb C$. Let $r,s\in \mathbb C$ be algebraically independent over A with $r\in \mathbb R$ and $s\not\in \mathbb R$. There is an automorphism σ of $\mathbb C$ s.t. $\sigma|A$ is the identity and $\sigma(r)=s$. Thus $\sigma(\mathbb R)\neq \mathbb R$ and $\mathbb R$ is not definable over A

We say that an \mathcal{L}_0 -structure \mathcal{N} is **definably interpreted** in an \mathcal{L} -structure \mathcal{M} if and only if we can find a definable $X\subseteq M^n$ for some n and we can interpret the symbols of \mathcal{L}_0 as definable subsets and functions on X so that the resulting \mathcal{L}_0 -structure is isomorphic to \mathcal{M}