TD 6 : Chaîne de Markov, classification des états

Notations : $x \leadsto y$ la relation transitive « y est accessible à partir de l'état x » $x \sim y$ la relation d'équivalence « x et y communiquent »

Exercice 1:

On considère sur $E = \{1, \dots, 6\}$ la matrice de transition P (incomplète)

$$P = \begin{pmatrix} \cdot & 0 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & \cdot & 0 & \frac{3}{4} & 0 & 0 \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 & \cdot & 0 & 0 \\ \frac{1}{4} & 0 & \frac{1}{2} & 0 & \cdot & 0 \\ 0 & 0 & 0 & 0 & 0 & \cdot \end{pmatrix}$$

- 1. Compléter la matrice P pour en faire une matrice de transition.
- 2. Représenter le graphe (orienté) de la chaîne de Markov.
- 3. Quels sont les états récurrents et transitoires de cette chaîne? Déterminer toutes les classe d'équivalences d'états pour la relation \sim .
- 4. Refaire l'exercice en changeant la valeur de P(5,6) à $\frac{1}{4}$.

Corrigé:

1. Il faut que la somme sur chaque ligne soit égale à 1, donc

$$P = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0\\ 0 & \frac{1}{4} & 0 & \frac{3}{4} & 0 & 0\\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} & 0\\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0\\ \frac{1}{4} & 0 & \frac{1}{2} & 0 & \frac{1}{4} & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

- 2. Le graphe orienté est défini à partir des états et de la matrice de transition :
 - les états sont les sommets du graphe
 - les arêtes sont les couples (x,y) vérifiants P(x,y)>0
- 3. La première ligne donne $P(1,1)=\frac{1}{2}$ et $P(1,3)=\frac{1}{2}$ donc $1\leadsto 1$ et $1\leadsto 3$. De même, on remarque que $3\leadsto 1$ et $3\leadsto 3$ puis que $5\leadsto 1$, $5\leadsto 3$ et $5\leadsto 5$. Les états $\{1,3,5\}$ communiquent entre eux mais ne conduisent à aucun autre état $i.e.\ \forall x\in\{1,3,5\}$, $\sum_{y\in\{1,3,5\}}P(x,y)=1$. Donc $\{1,3,5\}$ est une classe close irréductible.

On a aussi $2 \sim 4$ et ces 2 états ne conduisent à aucun autre. Donc $\{2,4\}$ est une classe close irréductible. Enfin l'état 6 ne conduit qu'à lui-même donc $\{6\}$ forme une classe close irréductible, on dit que 6 est un état absorbant.

L'ensemble $\{1, 2, 3, 4, 5, 6\}$ se décompose en 3 classes irréductibles $\{1, 3, 5\}, \{2, 4\}, \{6\}.$

Exercice 2:

Soit P une matrice de transition sur E dénombrable.

1. Montrer que $x \rightsquigarrow y$ si et seulement s'il existe $n \geqslant 0$ et des états a_1, \ldots, a_{n-1} de E tels que

$$P(x, a_1) > 0, P(a_1, a_2) > 0, \dots, P(a_{n-1}, y) > 0.$$

Montrer qu'il existe des états $x, a_1, \ldots, a_{n-1}, y$ tous distincts entre eux.

Soit Q une autre matrice de transition sur E vérifiant

$$\forall x, y \in E, x \neq y, \quad P(x, y) > 0 \implies Q(x, y) > 0.$$

2. Montrer que si $x \rightsquigarrow y$ pour P alors $x \rightsquigarrow y$ pour Q. En déduire que si la chaîne associée à P est irréductible alors il en est de même pour celle associée à Q.

Corrigé:

1. Par définition on a $x \leadsto y$ si et seulement s'il existe $n \geqslant 0$ tel que $P^n(x,y) > 0$ or

$$P^{n}(x,y) = \sum_{a_{1},\dots,a_{n-1} \in E} P(x,a_{1})P(a_{1},a_{2})\cdots P(a_{n-1},y).$$

Donc $P^n(x,y) > 0$ ssi au moins un des termes dans la somme précédente est strictement positif, d'où l'existence des a_i .

Soit n_0 le plus petit entier positif tel que $P^{n_0}(x,y) > 0$ alors les états a_1, \ldots, a_{n_0-1} sont tous distincs car si on a $a_i = a_j$ pour i < j alors on peut construire un chemin plus court $x, a_1, \ldots, a_{i-1}, a_j, \ldots, y$.

2. Trivial d'après la question 1.

Exercice 3:

Soit une chaîne de Markov à valeurs dans E de matrice de transition P. On suppose qu'il existe un état $x_0 \in E$ tel que

$$\begin{cases} \forall x \in E \setminus \{x_0\} \,, & x_0 \leadsto x & i.e. \ x_0 \ \text{conduit à tout autre état} \ x \\ \forall x \in E, & \mathbf{P}_x \left[\tau_{x_0} < +\infty\right] = 1, & \text{on atteint} \ x_0 \ \text{en un temps fini} \end{cases}$$

où $\tau_{x_0} = \inf\{n \ge 0, X_n = x_0\}$. Montrer que la chaîne est récurrente irréductible.

Corrigé:

Tout d'abord la chaîne est irréductible car pour tous $x,y\in E$, on a $x\leadsto x_0$ et $x_0\leadsto y$ donc $x\sim y$. Il suffit de montrer la récurrence d'un état. Montrons que l'état x_0 est récurrent. Par définition x_0 est récurrent si $\mathbf{P}_{x_0}\left[T_{X_0}<+\infty\right]$ avec $T_{x_0}=\inf\left\{n\geqslant 1, X_n=x_0\right\}$. Or on a

$$\begin{split} \mathbf{P}_{x_0}\left[T_{x_0}<+\infty\right] &= \mathbf{E}_{x_0}\left[\mathbf{1}_{\left\{T_{x_0}<+\infty\right\}}\right] \\ &= \mathbf{E}_{x_0}\left[\mathbf{E}_{x_0}\left[\mathbf{1}_{\left\{T_{x_0}<+\infty\right\}}|X_1\right]\right] \quad \text{par pr\'econditionnement.} \end{split}$$

Or d'après la propriété de Markov, le processus $(Y_n = (X_{n+1}))_{n\geqslant 0}$ est une $\delta_{X_1}-P$ chaîne de Markov et donc $\mathbf{E}_{x_0}\left[\mathbf{1}_{\left\{T_{x_0}<+\infty\right\}}|X_1\right] = \mathbf{E}_{X_1}\left[\mathbf{1}_{\left\{S_{x_0}<+\infty\right\}}\right]$, où $S_{x_0}=\inf\left\{n\geqslant 0, Y_n=x_0\right\}$. Or par hypothèse $\mathbf{P}_x\left[S_{x_0}<+\infty\right] = 1$ donc $\mathbf{P}_{X_1}\left[S_{x_0}<+\infty\right] = \int \mathbf{P}_x\left[S_{x_0}<+\infty\right] \mathbf{P}_{X_1}(\mathrm{d}x) = 1$.

Exercice 4:

On considère la chaîne de Markov $(X_n)_{n\geq 0}$ sur **N** de noyau de transition P défini par

$$\forall n \ge 0, \quad P(n,0) = p_n, \quad P(n,n+1) = 1 - p_n,$$

où pour tout $n \ge 0, p_n \in]0,1[$.

- 1. Montrer que la chaîne est irréductible.
- 2. Montrer que la chaîne est récurrente si et seulement si $\sum_{n=0}^{\infty} p_n = +\infty$ (étudier la récurrence en 0).
- 3. Etudier la récurrence dans les 3 cas : $p_n=p$ pour tout $n\geqslant 0,$ $p_n=\frac{1}{n+1}$ et $p_n=\alpha^n$ ($\alpha\in]0,1[).$

Corrigé:

- 1. Dans chaque état, la chaîne peut passer à l'état suivant ou revenir à l'état 0. Donc pour tout $n \ge 0$ on a $0 \sim n$, la chaîne est donc irréductible.
- 2. Il suffit d'étudier la récurrence en un état. Prenons l'état 0 et notons $T_0 = \inf\{n \ge 1, X_n = 0\}$. Alors pour tout $n \ge 1$,

$$\mathbf{P}_0[T_0 \geqslant n] = P(0,1)P(1,2)\cdots P(n-2,n-1) = \prod_{k=0}^{n-1} (1-p_k).$$

Comme $\mathbf{P}_0[T_0 = \infty] = \lim_n \mathbf{P}_0[T_0 \geqslant n]$, l'état 0 est récurrent ssi

$$\prod_{k=0}^{\infty} (1 - p_k) = 0.$$

On conclut aisément.

3. D'après le critère précédent, la chaîne est récurrente si $p_n = p$ et si $p_n = \frac{1}{n+1}$, et transiente si $p_n = \alpha^n$ (pour $\alpha \in]0,1[$).

Exercice 5:

On considère un serveur informatique qui reçoit des requêtes informatiques. Pour traiter ces requêtes informatiques, le serveur crée une *file d'attente* des requêtes. On suppose que le temps de traitement d'une requête est constant (le même pour toutes les requêtes) et que le serveur ne peut traîter qu'une requête à la fois. On considère que le temps est discret et l'unité de temps correspond à ce temps de traitement constant.

On note ξ_{n+1} le nombre de requêtes arrivant pendant la période de temps [n, n+1[et on suppose que la suite $(\xi_n)_{n\geqslant 1}$ est une suite i.i.d. de loi μ .

On note X_n le nombre de requêtes dans la file d'attente à l'instant n et l'on suppose X_0 indépendant de la suite $(\xi_n)_{n\geq 1}$.

- 1. Montrer que $(X_n)_{n\geqslant 0}$ est une chaîne de Markov homogène et déterminer sa matrice de transition.
- 2. Montrer que si $\mathbf{E}[\xi_1] > 1$ alors $\lim_n X_n = +\infty$ p.s. En déduire que la chaîne est transitoire.
- 3. Montrer que si $\mathbf{E}[\xi_1] < 1$ alors l'état 0 est récurrent.

Corrigé:

1. Si la file d'attente était vide en n alors l'état n+1 correspond au nombres de requêtes qui sont arrivées dans l'intervalle [n, n+1[c'est à dire ξ_{n+1} . Si la file d'attente était dans un état X_n non nul, alors 1 requête est traitée et la file sera dans l'état $X_n-1+\xi_{n+1}$ en n+1. On a donc

$$X_{n+1} = X_n - \mathbf{1}_{\{X_n \geqslant 1\}} + \xi_{n+1},$$

et $(X_n)_{n\geqslant 0}$ est une chaîne de Markov.

La matrice de transition est donnée par

$$P(x,y) = \begin{cases} \mu(y) & \text{si } x = 0\\ \mu(y - x + 1) & \text{si } x \geqslant 1 \end{cases}$$

2. D'après la définition récurrente de X_n on a

$$X_n \geqslant X_0 + \xi_1 + \dots + \xi_n - n$$

d'où $X_n \ge n \left(\frac{1}{n} \sum_{k=1}^n \xi_k - 1\right)$. Par la loi des grands nombres, si $\mathbf{E}\left[\xi_1\right] > 1$ on a $\lim_n X_n = +\infty$. Donc tout état x est transitoire.

3. Par l'absurde. Supposons 0 transitoire i.e. $\mathbf{P}_0[T_0<+\infty]<1$. Toujours d'après la définition de X_n on a

$$X_n = X_0 + \sum_{k=1}^n \xi_k - n + \sum_{k=0}^{n-1} \mathbf{1}_{\{X_k = 0\}}$$

Or par la LGN on a d'une part $\sum_{k=1}^{n} \xi_k - n \to -\infty$ p.s. et d'autre part $\sum_{k=0}^{n-1} \mathbf{1}_{\{X_k=0\}} \to N_0 < +\infty$ p.s. (si 0 est transitoire, N_0 suit une loi géométrique de paramètre $1 - \mathbf{P}_0[T_0 < +\infty]$. D'où $X_n \to -\infty$ p.s. absurdre.

Exercice 6:

Soit $(X_n)_{n\geqslant 0}$ une chaîne de Markov sur E de matrice de transition P. On note $\mathscr{F}_n=\sigma(X_0,\ldots,X_n)$ et \mathbf{F} la filtration $(\mathscr{F}_n)_{n\geqslant 0}$. On suppose la chaîne récurrente irréductible.

1. Soit $\tau = \inf\{n \ge 1, X_n \ne X_0\}$. Montrer que τ est un **F**-temps d'arrêt fini p.s. et déterminer sa loi. Déterminer la loi de X_{τ} .

On définit la suite de variables aléatoires $(\tau_n)_{n\geq 0}$ par récurrence

$$\tau_0 = 0, \quad \tau_{n+1} = \inf \{k > \tau_n, X_k \neq X_{\tau_n}\}\$$

- 2. Monter que $(\tau_n)_{n\geqslant 0}$ est une suite de **F**-temps d'arrêt finis p.s.
- 3. On pose pour tout $n \ge 0$, $Y_n = X_{\tau_n}$. Montrer que $(Y_n)_{n \ge 0}$ est une chaîne de Markov et déterminer sa matrice de transition.

Cette chaîne est-elle irréductible?

Corrigé:

1. Il est clair que τ est un **F**-temps d'arrêt car $\{\tau = n\} \in \mathscr{F}_n$.

Pour tout $n \ge 0$, $\mathbf{P}_x[\tau \ge n+1] = P(x,x)^n$ donc $\mathbf{P}_x[\tau = \infty] = 0$ car P(x,x) < 1 (sinon la chaîne ne serait pas récurrente irréductible). La loi de τ est alors

$$\forall n \ge 0, \quad \mathbf{P}[\tau = n] = P^{n-1}(x, x)(1 - P(x, x)).$$

La v.a. X_{τ} vérifie $\mathbf{P}_{x}\left[X_{\tau}=x\right]=0$ et pour tout $y\neq x$

$$\mathbf{P}_{x}[X_{\tau} = y] = \frac{P(x, y)}{1 - P(x, x)}.$$

2. Par récurrence, soit $n \ge 0$. Supposons $\tau_n < +\infty$ p.s. Alors par la propriété de Markov forte

$$\mathbf{P}_{x} \left[\tau_{n+1} < +\infty \right] = \mathbf{E}_{x} \left[\mathbf{E} \left[\mathbf{1}_{\{\tau_{n+1} < +\infty\}} \mid \tau_{n} \right] \right]$$

$$= \mathbf{E}_{x} \left[\mathbf{1}_{\{\tau_{n} < +\infty\}} \mathbf{E} \left[\mathbf{1}_{\{\tau_{n+1} < +\infty\}} \mid \tau_{n} \right] \right]$$

$$= \mathbf{E}_{x} \left[\mathbf{1}_{\{\tau_{n} < +\infty\}} \mathbf{E}_{X_{\tau_{n}}} \left[\mathbf{1}_{\{\tau < +\infty\}} \right] \right] = 1.$$

3. Si $(Y_n)_{n\geqslant 0}$ est une chaîne de Markov c'est par rapport à la filtration $(\mathscr{F}_{\tau_n})_{n\geqslant 0}$. On a pour tout $x\neq y$

$$\mathbf{P}[Y_{n+1} = y \mid X_{\tau_n} = x_n, \dots, X_0 = x] = \mathbf{P}[X_{\tau_{n+1}} = y \mid X_{\tau_n} = x_n, \dots, X_0 = x]$$
$$= \mathbf{P}_{x_n}[X_{\tau} = y].$$

Donc $(Y_n)_{n\geqslant 0}$ est une chaîne de Markov de transition \tilde{P} définie par

$$\tilde{P}(x,y) = \frac{P(x,y)}{1 - P(x,x)} \mathbf{1}_{\{x \neq y\}}$$

Si $X_{\tau_n} = x_n$ alors $X_k = x_n$ pour tout les $k \in [\tau_n, \tau_{n+1}]$ donc X a pour valeur Y_n entre les instants τ_n et $\tau_{n+1} - 1$. Tous les états visités par Y coïncident avec ceux visités par X donc Y est récurrente irréductible.

Exercice 7:

On considère une chaîne de Markov $(X_n)_{n\geqslant 0}$ sur E dénombrable de matrice P. Soit $C\subset E$. On note $\tau_C=\inf\{n\geqslant 0, X_n\in C\}$ le temps d'entrée dans C.

1. Montrer que $u(x) = \mathbf{P}_x \left[\tau_C < +\infty \right]$ est solution de

$$u(x) = \begin{cases} 1 & \text{si } x \in C \\ Pu(x) & \text{si } x \notin C \end{cases}$$

2. Montrer que $v(x) = \mathbf{E}_x [\tau_C]$ est solution de

$$v(x) = \begin{cases} 0 & \text{si } x \in C \\ 1 + Pv(x) & \text{si } x \notin C \end{cases}$$

Corrigé:

1. Tout d'abord si $X_0 = x \in C$ alors $\tau_C = 0$ et donc $\tau_C < +\infty$. D'autre part si $X_0 = x \notin C$ alors on a $\tau_C = \inf\{n \ge 1, X_n \in C\} = T_C \text{ (car } \tau_C \ge 1\text{) et }$

$$\mathbf{P}_{x}\left[\tau_{C}<+\infty\right]=\mathbf{E}_{x}\left[\mathbf{E}\left[\mathbf{1}_{\left\{T_{C}<+\infty\right\}}\mid X_{1}\right]\right]=\sum_{y\in E}P(x,y)\mathbf{E}\left[\mathbf{1}_{\left\{T_{C}<+\infty\right\}}\mid X_{1}=y\right]$$

Or par la propriété de Markov, $\mathbf{E}\left[\mathbf{1}_{\{T_C<+\infty\}} \mid X_1=y\right] = \mathbf{E}_y\left[\mathbf{1}_{\{\tau_C<+\infty\}}\right]$ où τ_C est le temps d'entrée de de la chaîne $Y_n=X_{1+n}$ (de transition P) dans C.

Ainsi on a $u(x) = \sum_{y \in E} P(x, y)u(y)$ si $x \notin C$.

2. Le cas $x \in C$ est trivial car $\tau_C = 0$. Si $x \notin C$ alors $\tau_C = 1 + T_C$. On introduit $Y_n = X_{1+n}$ la chaîne de Markov de transition P et de loi initiale δ_{X_1} (d'après la proriété de Markov) et on obtient

$$\mathbf{E}_{x}\left[T_{C}\right] = \sum_{y \in E} P(x, y) \mathbf{E}\left[T_{C} \mid X_{1} = y\right] = \sum_{y \in E} P(x, y) \mathbf{E}_{y}\left[\tau_{C}\right],$$

i.e. $v(x) = 1 + \sum_{y \in E} P(x, y) v(y)$.