

Dependable Systems Group D. Nowotka, P. Fleischmann

Christian-Albrechts-Universität zu Kiel

Technische Fakultät

Example solution for Series #5

Exercise 1 10 Points You get for each correct answer 1 point, but you will lose 1 point for an incorrect answer. a) Semantic Tableau is a decision procedure for satisfiability in propositional logic. X true () false b) The or-elimination rule is assumption based. X true O false c) *Ex falso quodlibet* is a rule for implication. \times true \bigcirc false d) The contradiction rule is based on the fact that we only have two truth values. X true O false e) *Reductio ad absurdum* and ¬-introduction are two different rules. \bigcirc true \boxtimes false f) Tertium non datur is a theorem. □ true () false \boxtimes false g) Logically equivalence is not implied by provable equivalence. \bigcirc true h) \(\lambda\)-introduction has two premises. X true () false i) If one is not able to find a proof for a claim then the claim is wrong. ∅ false \bigcirc true j) If a claim is a logical consequence then there exists a proof. X true \bigcirc false **Exercise 2** 5 Points Give the following definitions and notations: a) Sequent. b) And-elimination rule ($\land e_2$) (1P) c) Modus-Ponens. (1P) d) Soundness-Theorem of Propositional Logic. (1P) e) Completeness-Theorem of Propositional Logic. (1P) **Solution:** a) *S* is a sequent iff it is of the form $\varphi_1, \ldots, \varphi_n \vdash \psi$ for formulae $\varphi_1, \ldots, \varphi_n, \psi \in \Phi$, $n \in \mathbb{N}$. (1P) b) $\frac{\varphi \wedge \psi}{\psi} (\wedge e_2)$ (1P) c) $\frac{\varphi \qquad \varphi \to \psi}{\psi}$ (mp)

Exercise 3

19.5 Points

a) Prove the transitivity of \rightarrow by natural deduction.

d) For an $n \in \mathbb{N}_0$, $\varphi_1, \ldots, \varphi_n \vdash \psi$ implies $\varphi_1, \ldots, \varphi_n \models \psi$.

e) For an $n \in \mathbb{N}_0$, $\varphi_1, \dots, \varphi_n \models \psi$ implies $\varphi_1, \dots, \varphi_n \vdash \psi$.

(4P)

(1P)

(1P)

(1P)

b) Prove $\neg p \lor q \dashv \vdash p \to q$ by natural deduction.

(12.5P)

Logical and Theoretical Foundation of CS

c) Prove the case that the last applied rule is $(\neg \neg i)$ in the proof of the soundness theorem for propositional logic.

Solution:

a)	Let $\varphi, \psi, \chi \in \Phi$.	(0.5P)
	We have the premise $\varphi \to \psi$. (1)	(0.5P)
	We have the premise $\psi \to \chi$. (2)	(0.5P)
	Since we want to prove $\varphi \to \chi$, last applied rule needs to be the implication introduction.	(0.5P)
	This rule has an assumption based premise and thus we assume φ . (3)	(0.5P)
	Modus ponens applied on (1) and (3) gives ψ . (4)	(0.5P)
	Modus ponens applied on (2) and (4) gives χ . (5)	(0.5P)
	Implication introduction leads to $\varphi \to \chi$.	(0.5P)
b)	We have to prove two parts, namely $\neg p \lor q \vdash p \to q$ and $p \to q \vdash \neg p \lor q$.	(1P)
	first part: $\neg p \lor q \vdash p \rightarrow q$.	
	We have the premise $\neg p \lor q$. (1)	(0.5P)
	Since we want to prove $p \rightarrow q$, last applied rule needs to be the implication introduction.	(0.5P)
	This rule has an assumption based premise and thus we assume p . (2)	(0.5P)
	By the or-elimination rule we have two assumptions. (3)	(0.5P)
	Assume $\neg p$. (3.1)	(0.5P)
	And-introduction on (3) and (3.1) leads to $p \land \neg p$.	(0.5P)
	This leads to \perp by (cd).	(0.5P)
	By (efq) we get q . (3.1.1)	(0.5P)
	Assume q . (3.2)	(0.5P)
	Thus q holds. (3.2.1)	(0.5P)
	Since in both cases (3.1.1) and (3.2.1) we get q , by \vee -elimination we get q .	(0.5P)
	By implication introduction we get $p \rightarrow q$.	(0.5P)
	second part: $p \rightarrow q \vdash \neg p \lor q$	
	We have the premise $p \rightarrow q$. (1)	(0.5P)
	The last applied rule needs to be \vee -introduction.	(0.5P)
	Thus we have to prove that $\neg p$ or q holds.	(0.5P)
	By tertium non datur we have $p \lor \neg p$.	(0.5P)
	We apply \vee -elimination on that and get two cases.	(0.5P)
	case 1: $\neg p$ holds.	(0.5P)
	By \vee -introduction we get $\neg p \vee q$. (2)	(0.5P)
	case 2: p holds	(0.5P)
	By modus ponens and (1) we get q .	(0.5P)
	\vee -introduction on q gives us $\neg p \vee q$.	(0.5P)
	Since in both cases we get $\neg p \lor q$, the claim is proven.	(0.5P)
c)	If the last applied rule is $(\neg \neg i)$, we have $\psi = \neg \neg \psi_1$.	(0.5P)
,	ψ_1 occurs up in the proof.	(0.5P)
	This implies $\varphi_1, \ldots, \varphi_n \models \psi_1$.	(0.5P)
	By (IH) we have $\varphi_1, \ldots, \varphi_n \models \psi_1$.	(0.5P)
	By a truth tabel we get $\varphi_1, \ldots, \varphi_n \models \neg \neg \psi_1 = \psi$.	(0.5P)

Winter Semester 2019/20 Example solution for Series #5