Department of Information Technology Data Science Lab T/W Project Semester VI: Year 2023-24

Title of the Project: Stock Market Analysis

Hypothesis: The profitability of a stock trading strategy can be optimized through reinforcement learning techniques by dynamically adjusting trading decisions based on market conditions and historical data.

Group Members:

Sr. No.	Name	Roll no.	Division
1.	Atharv Mejari	21101A0056	
2.	Amey Mali	21101A0054	TEITA
3.	Nirmal Bhange	21101A0049	TEITA
4.	Jay Patil	21101A0062	

Abstract: The project "Stock Market Analysis" aims to enhance stock trading strategies using reinforcement learning techniques. Traditional strategies may struggle to adapt to dynamic market conditions effectively. Reinforcement learning offers a framework for learning optimal trading policies directly from market data. This project explores the application of algorithms like Q-learning and deep Q-networks to optimize trading decisions. Through empirical evaluation on historical data, the effectiveness of the approach will be assessed, offering insights for improving trading performance.

Keywords: Stock Trading, Reinforcement Learning, Algorithmic Trading, Portfolio Optimization, etc.

Introduction: Our project, "Stock Market Analysis," explores the use of advanced computational techniques to enhance stock trading strategies. Leveraging reinforcement learning, a subset of machine learning, we aim to develop optimal decision-making policies for trading in the dynamic and complex stock market environment. By training our model on historical market data, we seek to identify patterns and trends that enable profitable trading decisions in real-time. This project promises to revolutionize stock trading by providing a systematic and data-driven approach to portfolio management and investment decision-making.

Literature Review:

Search and download three papers from reputed journals of the domain you selected. Papers should be from years 2024,2023,2022...

Eq. As shown below.

Sr. No.	Name of the Journal / Conference Year	Title of the paper	Author Names	Takeaways / Methods / Algorithm	Remarks (Link)
1.	Healthcare analytics, Elsevier 2023	Application of the convolutional neural networks and supervised deep-learning methods for osteosarcoma bone cancer detection	Sushopti G, Ashok B, Kshitij P, Danish S.	Uses deep learning methods and CNN models for bone cancer detection	https://www.science direct.com/science/ar ticle/pii/S277244252 3000205
2.	Volume 2, November 2022, 100117	A decision support system for selecting the most suitable machine learning in healthcare using user parameters and requirements	Yashodhan K Sushopti G	Uses various Machine Learning Algorithms for DSS	https://www.science direct.com/science/ar ticle/pii/S277244252 2000570
3.	Intelligent Systems with Applications Volume 16, November 2022, 200119	Detection of arrhythmia using weightage-based supervised learning system for COVID-19	Yashodhan K Sushopti G		https://www.science direct.com/science/ar ticle/pii/S266730532 2000576

-			ı				
					The paper proposes a		
		I 1 CE: 11			reinforcement learning		
					approach to optimize stock	https://www.scirp.or	
					trading strategies. It	g/pdf/JMF si 20221	
	4.	Journal of Financial	Stock Market Analysis	Maria C. Johnson,	utilizes techniques such as	22316194544.pdf	
		Engineering (2023)		Andrew K. Smith	Q-learning and deep Q-	2231017-13-1-1.pdf	
					networks to learn optimal		
					trading policies from		
L					historical market data.		
					The paper presents a		
					hybrid approach that	httms://pig.iooo.oug/m	
		IEEE Toons of and an			combines machine	https://cis.ieee.org/p	
		IEEE Transactions on	A Hybrid Approach for Stock		learning algorithms (such	ublications/t-neural-	
	5.	Neural Networks and	Price Prediction Using Machine	John Doe, Jane Smith	as SVM and Random	networks-and-	
		Learning Systems	Learning and Deep Learning	20111 200, 00110 2111111	Forest) with deep learning	<u>learning-systems</u>	
		(2022)	Learning and Deep Learning		models (such as LSTM		
					and GRU) for stock price		
\vdash					prediction.		
					This paper explores the		
					effectiveness of ensemble		
		The 2nd International			learning techniques,		
			Enhancing Stock Market		including bagging,	https://www.icmlde.	
		conference on	Predictions with Ensemble	Emily Wang, Michael	boosting, and stacking, in	org/	
	6.	Machine Learning		Chen	improving the accuracy of	<u>8</u>	
		and Data Engineering	Learning Techniques		stock market predictions.		
		(ICMLDE 2023)			Various base learners are		
					combined to form a robust		
					predictive model.		
\vdash							
					The paper introduces a		
					deep reinforcement		
					learning framework for	https://www.pm-	
					portfolio optimization. It		
	_	Journal of Financial	Deep Reinforcement Learning	David Lee, Sophia	leverages techniques from	research.com/content	
	7.	Data Science (2022)	for Portfolio Optimization	Johnson	deep Q-learning and	/iijjfds/4/4	
		` ′	1		policy gradient methods to		
					dynamically adjust		
					portfolio allocations based		
					on market conditions.		
-					This paper investigates the		
					use of recurrent neural		
						1	
		International			networks (RNNs), such as		
	_	Conference on	Predicting Stock Returns with	Alex Zhang, Lily	LSTM and GRU, for	.com/watch?v=UBn	
	8.	Artificial Intelligence	Recurrent Neural Networks	Wang	predicting stock returns. It	BADXjhn0	
		in Finance (2023)		,, 4115	explores different		
		III Finance (2023)			architectures and input		
					representations to enhance		
					prediction accuracy.		
					The paper proposes the		
					use of Bayesian		
					optimization techniques to	https://www.science	
					search for optimal	direct.com/journal/jo	
		Journal of Financial	Bayesian Optimization for	William Drawn Olice			
9.	9.				parameters in algorithmic	urnal-of-financial-	
		Economics (2022)	Algorithmic Trading Strategies	Davis	trading strategies. It aims	<u>economics</u>	
					to improve trading		
					performance by efficiently		
					exploring the strategy		
					space.		
					This paper presents		
					evolutionary algorithms,		
		ACM Transactions		Ethan Miller, Sophia	such as genetic algorithms	https://dl.acm.org/to	
10	10	on Intelligent	Evolutionary Algorithms for		and particle swarm	c/tist/2023/14/5	
I	10.	Systems and	Systems and P	Portfolio Selection	Wilson		
			i ortiono selection				
		Technology (2023)	1 ortione selection		optimization, for portfolio		
			Tortiono Selection		selection. It explores the use of different fitness		

_						
	11.	IEEE Transactions on Big Data (2022)	Stock Market Forecasting Using Deep Learning with Technical Indicators	Michael Brown, Jennifer Lee	functions and genetic operators to construct diversified portfolios. The paper proposes a deep learning approach that incorporates technical indicators, such as moving averages and relative strength index (RSI), for stock market forecasting. It explores the use of convolutional neural networks (CNNs) and attention mechanisms to capture complex patterns in market data.	
	12.	International Conference on Computational Finance (2023)	Reinforcement Learning for Dynamic Portfolio Management	Daniel Taylor, Sarah White	This paper applies reinforcement learning techniques to dynamic portfolio management, where the portfolio composition is adjusted over time. It explores the use of deep Q-learning and actor-critic methods to optimize trading decisions in changing market conditions.	https://iimt.ac.in/CF BA/
	13.	Journal of Financial Engineering and Management (2022)	Machine Learning Approaches for Stock Market Sentiment Analysis	Kevin Johnson, Rachel Smith	The paper investigates various machine learning approaches, including natural language processing (NLP) and	https://www.worldsc ientific.com/worldsci net/jfe

(Data Set, Link of dataset, Table of dataset parameters)

Data Set: Bank Dataset

Data Set Link:

V1. https://github.com/Amey2701/Stock market analysis/blob/main/all stocks 5yr.csv

V2. https://github.com/Amey2701/SMA/blob/main/DSMiniProj/AAPL.csv

V3. https://github.com/Amey2701/Stock-Market-Analysis-using-ML/blob/main/V3 (HDFC Stocks)/HDFC.csv

Table of dataset parameters:

V1.

Parameter	Description
Ticker Symbol	Unique identifier for a publicly traded company's stock
Company Name	Name of the company associated with the ticker symbol
Sector	The sector to which the company belongs (e.g., Technology, Healthcare)

Industry	The specific industry within the sector	
Market Cap	Market capitalization of the company (in billions or trillions)	
Price	Current price of the stock (in the currency of the exchange)	
Earnings Per Share	Company's net income divided by the number of outstanding shares	
Dividend Yield	Percentage of the current price that a company pays out annually in dividends	
Price/Earnings Ratio	Ratio of the company's stock price to its earnings per share	
Beta	Measure of a stock's volatility in relation to the market	
Volume	Number of shares traded during a given period	
52-Week High/Low	Highest and lowest prices at which a stock has traded over the past year	
Analyst Rating	Ratings assigned by financial analysts based on their assessment of the stock	
EPS Estimate	Estimated earnings per share for the upcoming fiscal period	
Forward P/E	Price-to-earnings ratio based on forecasted earnings	
Institutional Ownership	Percentage of a company's shares owned by institutions	

V2.

Parameter	Description
Ticker Symbol	Unique identifier for a publicly traded company's stock e.g., AAPL
Close	The price of a security at the end of a trading session.
High	The highest price reached by a security during a specific trading period.
Low	The lowest price reached by a security during a specific trading period.
Open	The price at which a security starts trading at the beginning of a trading session.
Volume	The total number of shares traded during a specific period.
AdjClose	The closing price adjusted for any corporate actions such as dividends or stock splits.
AdjHigh	The highest price adjusted for corporate actions.
AdjLow	The lowest price adjusted for corporate actions.
AdjOpen	The opening price adjusted for corporate actions.
AdjVolume	The volume adjusted for corporate actions.
DivCash	Dividends paid out per share.
SplitFactor	The ratio by which a stock splits, if applicable.

V3.

Parameter	Description
Date	The date of the trading day.
Symbol	The stock symbol (e.g., "HDFC").
Series	The type of stock (usually "EQ" for equity).
Prev Close	The previous day's closing price.
Open	The opening price of the current trading day.
High	The highest price during the trading day.
Low	The lowest price during the trading day.
Last	The last traded price of the day.
Close	The closing price of the current trading day.
VWAP	Volume Weighted Average Price, an average price considering both volume and price.
Volume	The total number of shares traded during the day.
Turnover	The total value of all trades during the day.
Trades	The total number of trades executed during the day.
Deliverable Volume The volume of shares actually delivered (excluding derivatives).	
% Deliverable	The percentage of the total traded volume that was actually delivered.

Algorithm Details (Minimum Apply three algorithms) (eq. Regression, SVM, Naïve Biasetc.)

V1.

1. Q-learning:

- Q-learning is a reinforcement learning algorithm that seeks to find the best action to take given the current state.
- In the context of stock trading, Q-learning can be used to learn a policy that maximizes the total reward, such as maximizing cumulative wealth.
- The algorithm learns from actions that are outside the current policy, like taking random actions, and adjusts its strategy accordingly.
- Q-learning can be applied to optimize trading decisions based on historical price data and technical indicators.

2. Recurrent Reinforcement Learning (RRL):

- Recurrent reinforcement learning involves training neural network trading systems where previous output is fed into the model as part of the input.
- This technique is suitable for building financial trading systems where sequential information is important, such as time-series data in stock markets.
- RRL can capture temporal dependencies in the data and adjust trading strategies accordingly.
- It can be particularly useful for capturing trends, patterns, and seasonality in stock price movements.

3. LSTM

- LSTMs are recurrent neural networks equipped with memory cells and gates to retain long-term dependencies in sequential data.
- They excel in tasks like speech recognition, language translation, and time series prediction due to their ability to capture and remember intricate patterns over extended sequences.
- By selectively updating memory states through gates, LSTMs effectively mitigate the vanishing gradient problem encountered in traditional RNNs.
- Their versatility extends to various domains including natural language processing, speech recognition,

and gesture recognition, making them a fundamental tool in deep learning.

V2.

i) Polynomial Regression:

- o Models' relationship between time and stock closing prices.
- o Fits polynomial function to capture nonlinear patterns.
- o Degree set to 2 for flexibility in modeling.

ii) LSTM (Long Short-Term Memory):

- o Stacked LSTM neural network used for time series forecasting.
- o Specifically designed for sequential data like stock prices.
- o Multiple LSTM layers enable capturing complex patterns.

iii) MinMaxScaler:

- o Scales stock prices to a range between 0 and 1.
- o Enhances convergence of LSTM model.
- o Ensures equal feature contribution in learning.

iv) Train-Test Split:

- o Divides dataset into training and testing subsets.
- o Enables evaluation of model performance on unseen data.

v) Root Mean Squared Error (RMSE):

- o Common metric for assessing regression model accuracy.
- o Measures difference between predicted and actual values.
- o Provides insight into model's predictive power.

vi) Plotting:

- o Utilizes Matplotlib for visualizing actual and predicted prices.
- Also plots evaluation metrics for performance assessment.
- o Offers intuitive understanding of model performance.

V3.

i) Linear Regression:

- o Linear regression is a statistical method used to model the relationship between one or more independent variables (predictors) and a dependent variable (response).
- o In the provided code, scikit-learn's LinearRegression class is used to fit a linear regression model to predict turnover based on opening and closing prices.
- O The linear regression model assumes a linear relationship between the independent variables (open and close prices) and the dependent variable (turnover).

ii) Correlation Matrix:

- A correlation matrix is a table showing correlation coefficients between variables. Each cell in the table shows the correlation between two variables.
- o The correlation matrix in the provided code is calculated using numeric_df.corr() where numeric_df contains only numeric columns from the DataFrame.
- o Correlation values range from -1 to 1, where:
 - 1 indicates a perfect positive correlation,
 - -1 indicates a perfect negative correlation, and

- 0 indicates no correlation.
- o The correlation matrix helps to identify relationships between different numeric variables in the dataset.

iii) Prediction:

- o After fitting the linear regression model, predictions are made using the predict method of the model.
- o In the provided code, a prediction is made for turnover given an 'Open' price of 2.75 and a 'Close' price of 5.3.

References:

- 1. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
- 2. Moody, J., & Saffell, M. (2001). Learning to trade via direct reinforcement. IEEE Transactions on Neural Networks, 12(4), 875-889.
- 3. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.
- 4. Arulkumaran, K., Deisenroth, M. P., Brundage, M., & Bharath, A. A. (2017). Deep reinforcement learning: A brief survey. IEEE Signal Processing Magazine, 34(6), 26-38.
- 5. Tsantekidis, A., Passalis, N., Tefas, A., & Kanniainen, J. (2017). Using deep learning for price prediction by exploiting stationary limit order book features. In Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (pp. 471-476).
- 6. Lo, A. W. (2017). The Gordon Gekko effect: The role of culture in the financial industry. Annual Review of Financial Economics, 9, 279-302.

Dr. Sushopti Gawade Faculty (AIDS Lab, SEM – VI)