සියලු ම හිමිකම් ඇව්රිනි / ලාලාට පුනිට්පුලිකගපුනෙදානු / $All\ Rights\ Reserved$

ே ලංකා විතාග දෙපාර්තමේන්තුව ලී ලංකා විතාග දෙපා**ර්ත වෙනත්, විනුද්ධාල උපාර්ත වෙනත්**වර්ත දෙපාර්තමේන්තුව ලී ලංකා විතාග දෙපාර්තමේන්තුව ලී ලංකා විතාග දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் தினைக்களம் இலங்கைப் பரீட்சைத் தினைக்களும் இலங்கைப் பரீட்சைத் தினைக்களும் Department of Examinations, Sri Lanka Department **இலங்கைப் : பரிம்கைச்சு**ள **தினைல் க்கனம**ைs, Sri Lanka Department of Examinations, Sri Lanka இலங்கைப் பரீட்சைத் தினைக்களும் இலங்கை**ப் பரீட்சைத் தினைக்களைந்து இலங்கைப் பரீட்சைத் தினைக்களும் இலங்கைப் பரீட்சைத் தினைக்களும்**

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ந் General Certificate of Education (Adv. Level) Examination, August 2018

රසායන විදනාව இரசாயனவியல் I Chemistry

2018.08.15 / 0830 - 1030

පැය දෙකයි

இரண்டு மணித்தியாலம் Two hours

උපදෙස්:

- * ආවර්තිතා වගුවක් සපයා ඇත.
- * මෙම පුශ්න පතුය පිටු 09 කින් යුක්ත වේ.
- * සියලු ම පුශ්නවලට පිළිතුරු සපයන්න.
- ※ ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * උත්තර පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- * උත්තර පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත් ව කියවන්න.
- st f 1 සිට f 50 තෙක් එක් එක් පුශ්නයට f (1), f (2), f (3), f (4), f (5) යන පිළිතුරුවලින් **නිවැරදි හෝ ඉතාමත් ගැළපෙන** හෝ පිළිතුර තෝරා ගෙන, එය **උත්තර පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක්** (X) **යොද දක්වන්න.**

සාර්වනු වායු නියතය $R = 8.314 \, \mathrm{J \ K^{-1} \ mol^{-1}}$ ඇවගාඩ්රෝ නියතය $N_A = 6.022 \times 10^{23}\,\mathrm{mol}^{-1}$ ප්ලෑන්ක්ගේ නියතය $h^2 = 6.626 \times 10^{-34} \text{ J s}$ ආලෝකයේ පුවේගය $c = 3 \times 10^8 \,\mathrm{m \ s^{-1}}$

- ${f 1.}$ භූමි අවස්ථාවේ පවතින වායුමය ${f Co}^{3+}$ අයනයක ඇති යුගලනය නොවූ ඉලෙක්ටුෝන සංඛාාව වනුයේ,
- (3) 3

- $oldsymbol{2}$. පරමාණුවක පරමාණුක කාක්ෂිකයක හැඩය හා ආශුිත වන්නේ කුමන ක්වොන්ටම් අංකය/අංක $(n,\,l,\,m_{_{l'}},\,m_{_{s}})$ ද?
 - (1) l
- (3) $n \otimes l$
- (4) $n \cos m$
- (5) $l \infty m$

පහත දක්වා ඇති සංයෝගයේ IUPAC නාමය කුමක් ද?

$$\begin{array}{c} \mathrm{CH_{3}CH_{2}CH-C} = \mathrm{CHCO_{2}H} \\ \mathrm{Br} \quad \mathrm{NO_{2}} \end{array}$$

- (1) 4-bromo-3-nitro-2-hexenoicacid
- (2) 4-bromo-3-nitro-2-hexenoic acid
- (3) 3-nitro-4-bromo-2-hexenoicacid
- (4) 3-nitro-4-bromo-2-hexenoic acid
- (5) 3-bromo-4-nitro-4-hexenoic acid
- 4. O_2 , H_2O_2 , OF_2 හා O_2F_2 (H_2O_2 වලට සමාන වසුහයක් ඇත.) යන අණු, ඔක්සිජන්හි (O) ඔක්සිකරණ අවස්ථා අඩු වන පිළිවෙළට සැකසූ විට නිවැරදී පිළිතුර වනුයේ,
 - (1) $O_2F_2 > OF_2 > O_2 > H_2O > H_2O_2$
- (2) $H_2O > H_2O_2 > O_2 > O_2F_2 > OF_2$
- $(3) \ \ H_2O_2>O_2F_2>O_2>OF_2>H_2O$
- (4) $OF_2 > O_2F_2 > O_2 > H_2O > H_2O_2$
- (5) $OF_2 > O_2F_2 > O_2 > H_2O_2 > H_2O_3$
- 5. තයෝසයනේට් අයනය SCN සඳහා **වඩාත්ම** පිළිගත හැකි ලුවිස් ව**පුහය වනුයේ**,

- 6. ඝනත්වය $1.03~{
 m g~cm}^{-3}$ හා ස්කන්ධය අනුව NaI 3% වන NaI දුාවණයක මවුලිකතාව (mol ${
 m dm}^{-3}$) වනුයේ, (Na = 23, I = 127)
 - (1) 0.21
- (2) 0.23
- (3) 0.25
- (4) 0.28
- (5) 0.30

7. AgI හා AgBr හි අවක්ෂේප ආසුැත ජලය සුළු පුමාණයකට එකතු කරන ලදී. මෙම මිශුණය $25~^{\circ}C$ හි දී සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. සමතුලිතතාවයේ දී ඝනයන් දෙකම පද්ධතියෙහි තිබෙන බව නිරීක්ෂණය කරන ලදී. පහත සඳහන් කුමන සම්බන්ධතාව මෙම දුාවණය සඳහා යෙදිය හැකි ද?

$$(25 \text{ °C } \otimes \xi \text{ } K_{\text{sp(AgI)}} = 8.0 \times 10^{-17} \text{ mol}^2 \text{ dm}^{-6}, K_{\text{sp(AgBr)}} = 5.0 \times 10^{-13} \text{ mol}^2 \text{ dm}^{-6})$$

- (1) $[Br^-] = \sqrt{5.0 \times 10^{-13}} \mod dm^{-3} \iff [I^-] = \sqrt{8.0 \times 10^{-17}} \mod dm^{-3}$
- (2) $[Br^{-}][I^{-}] = [Ag^{+}]^{2}$
- (3) $[Ag^+] = (\sqrt{5.0 \times 10^{-13}} + \sqrt{8.0 \times 10^{-17}}) \text{ mol dm}^{-3}$
- (4) $\frac{[Br^-]}{[I^-]} = \frac{5.0}{8.0} \times 10^4$
- (5) $[Ag^+] = [Br^-] = [I^-]$
- 8. පහත සඳහන් කුමන පුකාශය අසතෘ වේ ද?
 - (1) ආවර්තිතා වගුවේ දෙවන කාණ්ඩයේ සියලු ම ලෝහවල කාබනේට ජලයේ අදුාවා වුව ද ඒවායේ බයිකාබනේට දුාවාය වේ.
 - (2) ආවර්තිතා වගුවේ දෙවන කාණ්ඩයේ සියලු ම ලෝහවල හයිඩොක්සයිඩ ජලයේ දුාවා වේ.
 - (3) ආවර්තිතා වගුවේ දෙවන කාණ්ඩයේ සියලු ම ලෝහවල නයිටේට ජලයේ දුාවා වේ.
 - (4) Na සහ Mg වල ඔක්සයිඩ සහ හයිඩෙුොක්සයිඩ භාස්මික ගුණ පෙන්වන අතර Al හි ඔක්සයිඩය සහ හයිඩොක්සයිඩය උභයගුණි ලක්ෂණ පෙන්නුම් කරයි.
 - (5) Si සහ S වල හයිඩුයිඩ දුර්වල ආම්ලික ගුණ පෙන්නුම් කරයි.
- 9. පරමාණුක අරයයන් **වැඩි වන** පිළිවෙළට මූලදුවා දී ඇත්තේ (වමේ සිට දකුණට) පහත කුමන ලැයිස්තුවෙහි ද?
 - (1) Li, Na, Mg, S

- (2) C, Si, S, Cl
- (3) B, C, N, P

(4) Li, Na, K, Ca

- (5) B, Be, Na, K
- $oldsymbol{10.}$ A හා $oldsymbol{B}$ දුව පරිපූර්ණ දුාවණයක් සාදයි. නියත උෂ්ණත්වයෙහි ඇති සංවෘත දෘඪ බඳුනක් තුළ වාෂ්පය සමග සමතුලිතතාවයෙහි ඇති A හා B දුවයන්හි මිශුණයක් සලකන්න. P_A^o හා P_B^o යනු පිළිවෙළින් A හා B හි සන්තෘප්ත වාෂ්ප පීඩන වන අතර බඳුනෙහි මුළු පීඩනය P හා වාෂ්ප කලාපයෙහි A හි මවුල භාගය $X_{\scriptscriptstyle A}^{
 m g}$ වේ. මෙම පද්ධතිය සම්බන්ධයෙන් පහත සඳහන් කුමක් නිවැරදි වේ ද?

 - (1) $P = (P_A^o P_B^o) X_A^g + P_B^o$ (2) $\frac{1}{P} = (\frac{1}{P_A^o} \frac{1}{P_B^o}) X_A^g + \frac{1}{P_B^o}$ (3) $P = (P_A^o + P_B^o) X_A^g P_B^o$
 - (4) $\frac{1}{P} = \left(\frac{1}{P_p^0} \frac{1}{P_A^0}\right) \frac{1}{X_A^g}$ (5) $\frac{1}{P} = \left(\frac{1}{P_A^0} \frac{1}{P_D^0}\right) \frac{1}{X_A^g}$
- 11. පහත සඳහන් දුවායන්හි තාපාංක වැඩි වන පිළිවෙළ වනුයේ,

- (5) $\text{He} < \text{CH}_4 < \text{CCl}_4 < \text{SiH}_4 < \text{CBr}_4$
- පහත දැක්වෙන ඒවායින් නිවැරදි පුකාශය හඳුනාගන්න.
 - (1) හයිඩුජන් පරමාණුවක $n=2 \longrightarrow n=1, n=3 \longrightarrow n=2$ සහ $n=4 \longrightarrow n=3$ ඉලෙක්ටුෝන සංකුමණ අතුරෙන් වැඩිම ශක්තියක් පිටකරනුයේ $n=3 \longrightarrow n=2$ වල දී ය.
 - (2) OF_2 , OF_4 සහ SF_4 විශේෂ අතුරෙන් අඩුවෙන්ම ස්ථායි වන්නේ SF_4 ය.

 - (3) $\text{Li}, \overset{2}{\text{C}}, \overset{4}{\text{N}}, \overset{4}{\text{Na}}$ සහ $\overset{4}{\text{P}}$ මූලදුවා අතුරෙන් විදුහුත් සෘණතාව අඩුම මූලදුවාය Li වේ. (4) (Li සහ F), (Li^{\dagger} සහ C^{2}) සහ (C^{2} සහ F) යුගල වල, අරයයන්හි වැඩිම වෙනස ඇත්තේ Li^+ සහ O^{2-} අතර ය.
 - (5) CH₂Cl₂ වල දුව කලාපයෙහි පවතින එකම අන්තර් අණුක බල වර්ගය වන්නේ ද්විධුැව-ද්විධුැව බල වේ.

<u>AL/2</u>	2018/02/S-I - 3 -
13.	$\mathrm{CH}_4(\mathrm{g}) \longrightarrow \mathrm{CH}_3(\mathrm{g}) + \mathrm{H}(\mathrm{g})$ පුතිකිුයාව සලකන්න.
	ඉහත පුතිකිුයාවේ සම්මත එන්තැල්පි වෙනස වනුයේ, (1) මීතේන්හි පළමු C—H බන්ධනයෙහි විඝටනය සඳහා සම්මත එන්තැල්පි වෙනසයි. (2) මීතේන්හි සම්මත පරමාණුකරණ එන්තැල්පි වෙනසයි. (3) මීතේන්හි සම්මත පළමු අයනීකරණ එන්තැල්පි වෙනසයි. (4) මීතේන්හි සම්මත බන්ධන විඝටන එන්තැල්පි වෙනසයි. (5) මීතේන්හි මුක්තබණ්ඩක සෑදීමේ සම්මත එන්තැල්පි වෙනසයි.
14.	පීඩනය P_c සහ පුතිකියාවේ ශීසුතාව ආරම්භක අගයෙන් 50% වන විට පීඩනය P_t වේ. පහත සඳහන් කුමක් මගින් $\frac{P_t}{P_c}$ සඳහා නිවැරදි අගය ලැබේ ද?
D.	(1) $\frac{P_t}{P_o} = \frac{1}{2}$ (2) $\frac{P_t}{P_o} = \frac{1}{\sqrt{2}}$ (3) $\frac{P_t}{P_o} = \frac{1+\sqrt{2}}{2\sqrt{2}}$ (4) $\frac{P_t}{P_o} = \frac{\sqrt{2}}{1+\sqrt{2}}$ (5) $\frac{P_t}{P_o} = \frac{\sqrt{2}-1}{1+\sqrt{2}}$
15.	pK අගයයන් පිළිවෙළින් 4.7 හා 5.0 වන HA හා HB දුබල අම්ලවල සමමවුලික ජලීය දුාවණයක් (එක් එක්
	අම්ලයෙන් 1.0 mol dm ⁻³ වන) සමතුලිකකාවයේ ඇත.
:	$\log\!\left(\!rac{[\mathrm{A}^-]}{[\mathrm{B}^-]}\! ight)$ හි අගය ආසන්න වශයෙන් සමාන වනුයේ,
	(1) 23.5 (2) -0.3 (3) 0.3 (4) 0.94 (5) 1.06
16.	පහත සඳහන් කුමන වගන්තිය ${ m C}_6{ m H}_5{ m OH}$ පිළිබඳ ව අසත ${ m a}$ වේ ද?
	(1) CH ₃ COCl සමග පුතිකිුයා කර ෆීනයිල් එස්ටරයක් සාදයි.
	(2) බෝමීන් දියර සමග පුතිකිුයා කර සුදු පැහැති අවක්ෂේපයක් ලබා දේ.
	(3) NaHCO ₃ සමග පිරියම් කළ විට CO ₂ වායුව පිට කරයි.
	(4) NaOH හමුවේ $C_6^{}H_5^{}N_2^{\dagger}Cl^-$ සමග පිරියම් කළ විට වර්ණවත් සංයෝගයක් ලබා දේ. (5) උදාසීන FeCl_3 සමග පිරියම් කළ විට වර්ණවත් (දම් පැහැයට හුරු) දුාවණයක් ලබා දේ.
1.77	
17.	පුතිකිුිිිිිිිිිිිිිිි සැමවීටම පුතිකිිිිිිිිිිිිිිිිිිිිිිිි සැමවීටම පුතිකිිිිිිිිිිිිිිිිිිිි සැමවීටම ශීඝුතා නියතය මත රඳා පවතී. (2) සැමවීටම ශීඝුතා නියතය මත රඳා පවතී. (3) සැමවීටම පුතිකිිිියාවෙහි පෙළින් ස්වායත්ත වේ. (4) සැමවීටම උෂ්ණත්වයෙන් ස්වායත්ත වේ. (5) මුළු පුතිකිිිියා කාලය මෙන් දෙගුණයකට සමාන වේ.
18.	විදයුත් රසායනික කෝෂයක විදයුත්ගාමක බලය රඳා නොපචතින්නේ , (1) විදයුත් විච්ඡේදායේ ස්වභාවය මත ය. (2) උෂ්ණත්වය මත ය. (3) විදයුත් විච්ඡේදා වල සාන්දුණ මත ය. (4) ඉලෙක්ටෝඩ වල පෘෂ්ඨික ක්ෂේතුඵල මත ය.
	(5) ඉලෙක්ටුෝඩ සාදන ලෝහ වර්ග මත ය.
19.	$(0.50~{ m mol~dm}^{-3})$ දුංචණයක් $25.0~{ m cm}^3$ හි අඩංගු ${ m Na_2SO_3}$ පුමාණය සම්පූර්ණයෙන් ${ m Na_2SO_4}$ බවට ඔක්සිකරණය කිරීමට අවශා වන ${ m KIO_3}$ ස්කන්ධය $1.07~{ m g}$ වේ. ${ m (O=16,~K=39,~I=127)}$
	පුතිකිුයාව සම්පූර්ණ වූ පසු අයඩීන්හි අවසාන ඔක්සිකරණ අවස්ථාව වනුයේ, $(1) -1$ $(2) 0$ $(3) +1$ $(4) +2$ $(5) +3$
1	$(1) -1 \qquad (2) 0 \qquad (3) +1 \qquad (4) +2 \qquad (5) +3$

20. ආවර්තිතා වගුවේ s-ගොනුවේ මූලදුවා පිළිබඳ ව පහත කුමන වගන්තිය **අසත**න වන්නේ ද?

- (1) I කාණ්ඩයේ සියලු ම මූලදවා ජලය සමග පුතිකිුයා කර H_2 වායුව නිදහස් කරයි.

- (2) Li හැර I කාණ්ඩයේ අනිකුත් සියලු ම මූලදවා N_2 වායුව සමග පුතිකියා කරයි.
 (3) II කාණ්ඩයේ සියලු ම මූලදවා N_2 වායුව සමග පුතිකියා කරයි.
 (4) වැඩිපුර O_2 සමග N_2 පුතිකියා කර N_2O_2 ලබා දෙන අතර K, KO_2 ලබා දෙයි.
 (5) s-ගොනුවේ සියලු ම මූලදවා හොඳ ඔක්සිහාරක වේ.

21. පරිපූර්ණ වායුවක් අඩංගු දෘඪ බඳුන් දෙකකින් සමන්විත පද්ධතියක් රූපසටහනෙහි දක්වා ඇත. කපාටය විවෘත කිරීමෙන් බඳුන් එකිනෙක හා සම්බන්ධ කළ හැකි වේ. කපාටය විවෘත කළ විට පද්ධතිය ${f A}$ සැකසුමේ සිට ${f B}$ සැකසුම දක්වා වෙනස් වේ. සාමානායෙන් $n,\,P,\,V$ සහ T මගින් පිළිවෙළින් මවුල සංඛාාව, පීඩනය, පරිමාව හා උෂ්ණත්වය නිරූපණය කෙරේ.

සැකසුම 🗛 (කපාටය වසා ඇත)

සැකසුම B (කපාටය විවෘතව ඇත)

මෙම පද්ධතිය පිළිබඳ ව පහත දැක්වෙන කුමන සම්බන්ධය **නිවැරදි** වේ ද?

$$(1) \quad P_1 V_1 = P_2 V_2$$

(2)
$$\frac{P_3T_1}{P_1} + \frac{P_3T_2}{P_2} = 2T_3$$

(3)
$$\frac{T_1}{P_1} = \frac{T_2}{P_2}$$

(4)
$$P_1T_1 = P_2T_2$$

(5)
$$P_1V_1 + P_2V_2 = P_3(V_1 + V_2)$$

- **22.** ආවර්තිතා වගුවේ 3d-මූලදුවා පිළිබඳ ව පහත කුමන වගන්තිය **අසත** වන්නේ ද?
 - (1) පරමාණුක අරයයන්, එම ආවර්තයේ ඇති s-ගොනුවේ මූලදුවෳයන්හි පරමාණුක අරයයන්ට වඩා කුඩා වේ.
 - (2) ඝනත්වය, එම ආවර්තයේ ඇති s-ගොනුවේ මූලදුවාසයන්හි ඝනත්වයට වඩා වැඩි වේ.
 - (3) $V_2^{}O_5^{}$, $CrO_3^{}$ හා $Mn_2^{}O_7^{}$ ආම්ලික ඔක්සයිඩ වේ.
 - (4) පළමු අයනීකරණ ශක්ති, එම ආවර්තයේ ඇති s-ගොනුවේ මූලදුවාංයන්හි පළමු අයනීකරණ ශක්තිවලට වඩා අඩු වේ.
 - (5) කොබෝල්ට් සංයෝගවල කොබෝල්ට් හි වඩාත්ම සුලභ ඔක්සිකරණ අවස්ථා වනුයේ +2 හා +3 ය.
- **23.** එකිනෙකට වෙනස් උෂ්ණත්ව දෙකක දී $MO(s) \longrightarrow M(s) + rac{1}{2}O_2(g)$ පුතිකිුයාව සඳහා සම්මත ගිබ්ස් ශක්ති චෙනස පහත දී ඇත.

T/K	ΔG°/kJ mol
1000	-100.2
2000	-148.6

පුතිකියාවෙහි සම්මත එන්ටෙුාපි වෙනස වනුයේ,

- (1) $248.8 \text{ J K}^{-1} \text{ mol}^{-1}$
- (2) $-248.8 \text{ J K}^{-1} \text{ mol}^{-1}$
- (3) $-48.4 \text{ J K}^{-1} \text{ mol}^{-1}$

- (4) 348.4 J K⁻¹ mol⁻¹
- (5) $48.4 \text{ J K}^{-1} \text{ mol}^{-1}$
- **24.** සාන්දු HNO_3 / සාන්දු $\mathrm{H}_2\mathrm{SO}_4$ මගින් බෙන්සීන් නයිටුෝකරණ යන්තුණයේ දී **නිවැරදි** පියවරක් දක්වන්නේ පහත සඳහන් කුමකින් ද?

$$(1) \bigcirc \stackrel{+}{\bigcirc}^{NO_2} \longrightarrow \bigcirc \stackrel{H}{\longrightarrow}^{NO_2}$$

$$(2) \bigcirc^{\uparrow}_{H^{\circ}_{2}} \longrightarrow \bigcirc^{\uparrow}_{H}$$

$$(3) \bigcirc^{NO_2} \longrightarrow \bigcirc^{H}_{\downarrow} NO_2$$

$$(4) \bigcirc_{+}^{\text{H}} \stackrel{\text{HSO}_{4}^{-}}{\longrightarrow} \bigcirc_{2}^{\text{NO}_{2}} + \text{H}_{2}\text{SO}_{2}$$

$$(5) \qquad \begin{array}{c} \stackrel{+}{\underset{\text{H}}{\bigvee}} \text{NO}_{2} \\ \stackrel{+}{\underset{\text{H}}{\bigvee}} \text{HSO}_{4} \end{array}$$

More Past Papers at

tamilguru.lk

ඉහත සඳහන් පුතිකිුයා අනුපිළිවෙළෙහි X සහ Y හි වසුහ පිළිවෙළින් වනුයේ,

$$(1) \bigcirc CO_2H \\ CH_2CH_2CHCH_3 \\ OH$$

$$(3) \bigcirc \begin{array}{c} CO_2H \\ CH_2CH_2CHCH_3 \\ OH \end{array}$$

(4)
$$\bigcirc CO_2H$$
 $CH_2CH_2CHCH_3$
OH

- $(NH_4)_2CO_3(s), (NH_4)_2Cr_2O_7(s)$ හා $NH_4NO_3(s)$ රත් කළ විට ලැබෙන නයිටුජන් අඩංගු සංයෝග පිළිවෙළින්
 - (1) NH₃, N₂ to NO₂ (4) N₂, N₂O to NH₃
- $\begin{array}{lll} \text{(2)} & \text{N$_2$O}, \, \text{N$_2$ and } \text{NH}_3 \\ \text{(5)} & \text{N$_2$}, \, \text{NH}_3 \text{ and } \, \text{N$_2$O} \end{array}$
- (3) NH₃, N₂ to N₂O

- ${f 27.}$ සන්තෘප්ත ${f AgCl}$ දුාවණයක් හා ${f AgCl(s)}$ අඩංගු බීකරයක ${f Zn}$ කූරක් හා ${f Ag}$ කූරක් රූපයේ දැක්වෙන පරිදි ගිල්වා ලෝහ කුරු දෙක සන්නායකයක් මගින් සම්බන්ධ කළ විගස පහත සඳහන් කුමක් සිදු වේ ද?

 $Zn^{2+}(aq) + e \longrightarrow Zn(s) \quad E^{\circ} = -0.76 \text{ V}$

 $Ag^{+}(aq) + e \longrightarrow Ag(s) E^{\circ} = 0.80 V$

- (1) Zn දිය වේ,
- Ag තැන්පත් වේ, AgCl(s) දිය වේ.
- (2) Zn දිය වේ,
- Ag දිය වේ, AgCl(s) දිය වේ.
- (3) Zn දිය වේ,
- Ag දිය වේ,
- AgCl(s) තැන්පත් වේ.
- (4) Zn තැන්පත් වේ, Ag දිය වේ,
- AgCl(s) දිය වේ.
- (5) දුාවණයෙහි ක්ලෝරයිඩ සාන්දුණය අඩු වේ.

 ${f 28.}$ පහත දැක්වෙන පුතිකිුයා අනුපිළිවෙළෙහි ${f P}$ සහ ${f Q}$ හි වූ3හ පිළිවෙළින් වනුයේ,

$$C_6H_5C\equiv CH \xrightarrow{Hg^{2+}/m$$
නුක $H_2SO_4 \rightarrow P \xrightarrow{En/Hg} Q$

- (5) $C_6H_5C=CH_2$, $C_6H_5CHCH_3$
- **29.** පහත සඳහන් කුමන වගන්තිය බහුඅවයවක පිළිබඳ ව **වැරදී** ද?
 - (1) බේක්ලයිට් තාප ස්ථාපන බහුඅවයවයකි.
 - (2) ටෙෆ්ලෝන් තාප සුවිකාර්ය බහුඅවයවයකි.
 - (3) නයිලෝන් 6,6 සෑදී ඇත්තේ 1, 6-ඩයිඇමයිනොහෙක්සේන් සහ හෙක්සේන්ඩයිඔයික් අම්ලය අතර ආකලන බහුඅවයවීකරණය මගිනි.
 - (4) ටෙරිලීන් සෑදී ඇත්තේ එතිලීන් ග්ලයිකෝල් සහ ටෙරිතැලික් අම්ලය අතර සංඝනන බහුඅවයවීකරණය
 - (5) ස්වාභාවික රබර් cis-පොලිඅයිසොපීන් දාමවලින් සමන්විත ය.
- $S_2O_3^{2^-}(aq) + 2H^+(aq) \longrightarrow H_2O(l) + SO_2(g) + S(s)$ යන පුතිකියාවෙහි $S_2O_3^{2^-}$ අනුබද්ධයෙන් පෙළ (m)සෙවීම සඳහා පරීක්ෂණයක් සිදු කරන ලදී. අම්ල දාවණයකට $0.01~{
 m mol~dm}^{-3}~{
 m S_2^2O_3^{2-}}$ විවිධ පරිමාවන් $({
 m v})$ එකතු කරමින් පුතිකිුයාවෙහි ආරම්භක ශීඝුතාව (R) මනින ලදී. පුතිකිුයා මිශුණයෙහි H^+ සාන්දුණය නියතව පවත්වා ගත් නමුත් මුළු පරිමාව (V) වෙනස් වීමට ඉඩ හරින ලදී. පුතිකියාවෙහි ආරම්භක ශීඝුතාව පිළිබඳ ව පහත සඳහන් කුමන සම්බන්ධය නිවැරදි වේ ද?
 - (1) $R \propto \left(\frac{v}{V}\right)^m$ (2) $R \propto v^m$ (3) $R \propto v^{\frac{1}{m}}$ (4) $R \propto \left(\frac{v}{V}\right)^{\frac{1}{m}}$ (5) $R \propto V^m$

- අංක 31 සිට 40 තෙක් එක් එක් පුශ්නය සඳහා දී ඇති (a),(b),(c) සහ (d) යන පුතිචාර හතර අතුරෙන්, එකක් හෝ වැඩි සංඛ්යාවක් හෝ නිවැරදි ය. නිවැරදි පුතිචාරය/පුතිචාර කවරේ දැ'යි තෝරා ගන්න.
 - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
 - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
 - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
 - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

වෙනත් පුතිචාර සංඛාහවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද

උත්තර පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

ඉහත උපදෙස් සම්පිණ්ඩනය

(1)	(2)	(3)	(4)	(5)
(a) සහ (b)	(<i>b</i>) සහ (<i>c</i>)	(c) සහ (d)	(<i>d</i>) සහ (<i>a</i>)	වෙනත් පුතිචාර
පමණක්	පමණක්	පමණක්	පමණක්	සංඛ ා වක් හෝ
නිවැරදියි	නිවැරදියි	නිවැරදියි	නිවැරදියි	සංයෝජනයක් හෝ නිවැරදියි

- 31. දුබල අම්ලයක් (නියත පරිමාවක්) හා පුබල භස්මයක් අතර අනුමාපනයක් සලකන්න. පහත සඳහන් කුමක්/කුමන ඒවා දුබල අම්ලයෙහි සාන්දුණයෙන් ස්වායක්ත වේ ද?
 - (a) සමකතා ලක්ෂායේ දී pH අගය
 - (b) අන්ත ලක්ෂාය කරා ළඟා වීමට අවශා පුබල භස්මයෙහි පරිමාව
 - (c) දුබල අම්ලයෙහි විඝටන නියතය
 - (d) අනුමාපන ප්ලාස්කුවෙහි ඇති දුාවණයේ $[\operatorname{H}^+] imes [\operatorname{OH}^-]$ අගය

32. පහත දී ඇති අණුව පිළිබඳ ව පහත කුමන වගන්තිය/වගන්ති **සත**ෂ වේ ද?

$$CH_3$$
 $-C \equiv C - CHO$
 a b c d

- (a) කාබන් පරමාණු හතරම එකම තලයේ පිහිටයි.
- (b) $\mathrm{C_d}$ $\mathrm{-H}$ සහ $\mathrm{C_d}\mathrm{-C_c}$ බන්ධන අතර කෝණය දළ වශයෙන් 120° වේ.
- (c) $\operatorname{C}_{\mathbf{b}}$ සහ $\operatorname{C}_{\mathbf{c}}$ අතර σ -බන්ධන දෙකක් සහ π බන්ධනයක් ඇත.
- (d) $\operatorname{C}_{\mathbf{b}}$ සහ $\operatorname{C}_{\mathbf{c}}$ අතර σ -බන්ධනයක් සහ π -බන්ධන දෙකක් ඇත.
- **33.** Na $_{
 m 2}$ CO $_{
 m 3}$ නිෂ්පාදනය පිළිබඳ ව **සහ**න වන්නේ පහත සඳහන් කුමන වගන්තිය/වගන්ති ද?
 - (a) භාවිත කරන එක අමුදුවාංගක් CO_2 වේ.
 - (b) $\mathrm{NH_{3}}$ වලින් සන්තෘප්ත ජලීය NaCl හා $\mathrm{CO_{2}}$ අතර පුතිකිුයාව තාපාවශෝෂක වේ.
 - (c) නිෂ්පාදන කිුියාවලිය අදියර පහකින් සමන්විත වේ.
 - (d) කිුිියාවලියේ දී භාවිත වන NH_3 වැඩි පුමාණයක් නැවත ලබාගත හැක.
- 34. මූලික පුතිකියාවක පෙළ පරීක්ෂණාත්මකව නිර්ණය කිරීමේ දී උෂ්ණත්වය නියත අගයක පවත්වා ගත යුතු වන්නේ,
 - (a) පුතිකුියාවෙහි පෙළ උෂ්ණත්වය මත රඳාපවතින නිසා a.
 - (b) සකුියන ශක්තිය උෂ්ණක්වය සමග වෙනස් වන නිසා ය.
 - (c) ප්‍රතිකි්යාවෙහි යන්තුණය උෂ්ණත්වය සමග වෙනස් වන නිසා ය.
 - (d) ශීඝුතා නියතය උෂ්ණත්වය සමග වෙනස් වන නිසා ය.
- 35. පහත සඳහන් කුමන වගන්තිය/වගන්ති එකීන් සහ එකයින් පිළිබඳ ව \(\mathbf{c}\) කත්ෂ වේ ද?
 - (a) CaC_2 ජලය සමග පුතිකිුයා කර එතයින් සාදයි.
 - (b) CaC_{2} ජලය සමග පුතිකිුිිිිිිිිිි කර එතීන් සාදයි.
 - (c) ඇමෝනිකෘත $\operatorname{AgNO}_{\mathfrak{q}}$ සමග එතීන් පුතිකිුයා කර අවක්ෂේපයක් ලබා දේ.
 - (d) ඇමෝනිකෘත $\operatorname{Cu}_2\operatorname{Cl}_2$ සමග එතයින් පුතිකිුයා කර අවක්ෂේපයක් ලබා දේ.
- 36. හැලජන පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති සත‍‍‍ වන්නේ ද?
 - (a) කාණ්ඩයේ පහළට හැලජනවල තාපාංක වැඩි වේ.
 - (b) අනෙකුත් හැලජන මෙන් නොව, ෆ්ලුවොරීන්ට F_{γ} හි හැර, අන් සැමවිටම (-1) ඔක්සිකරණ අවස්ථාව ඇත.
 - (c) සියලු ම හැලජන හොඳ ඔක්සිහාරක වේ.
 - (d) ආවර්තිතා වගුවේ සියලු ම මූලදවා අතරින් ෆ්ලුවොරීන් වඩාත්ම පුතිකිුයාශීලි වන නමුත් එය නිෂ්කිුය වායු සමග පුතිකිුිිිියා නොකරයි.
- 37. සංවෘත දෘඪ බඳුනක් තුළ සිදුවන $C(s) + CO_2(g) \rightleftharpoons 2CO(g)$ පුතිකිුයාව සඳහා $700~^{\circ}C$ හා $800~^{\circ}C$ හි දී CO(g) ඵල පුතිශත අනුපිළිවෙළින් 60% හා 80% වේ. පහත සඳහන් කුමන වගන්තිය/වගන්ති ඉහත පුතිකිුයාව සම්බන්ධයෙන් **නිවැරදි** වේ ද?
 - (a) පුතිකියාව තාපාවශෝෂක වේ.
 - (b) පුතිකිුියාව තාපදායක වේ.
 - (c) උෂ්ණත්වය අඩු කිරීම ආපසු පුතිකිුිිිියාවට හිතකර වේ.
 - (d) C(s) ඉවත් කිරීම මගින් සමතුලිතතාව පුතිකියක දෙසට නැඹුරු කළ හැක.
- |38. සයික්ලොපොපේන් \longrightarrow පොපීන් මූලික පුතිකිුයාවකි.

පහත සඳහන් කුමන වගන්තිය/වගන්ති ඉහත පුතිකිුයාව සම්බන්ධයෙන් **නිවැරදි** වේ ද?

- (a) පුතිකිුයාවෙහි අර්ධ ආයු කාලය සයික්ලොපොපේන් සාන්දුණය මත රඳා පවතී.
- (b) පුතිකිුයාවෙහි ශීඝුතාව පුොපීන් සාන්දුණය මත රඳා නොපවතී.
- (c) සකුියන ශක්තියට වඩා වැඩි ශක්තියක් ඇති සයික්ලොපොපේන් අණුවල භාගය, උෂ්ණත්වය වැඩි වීමත් සමග වැඩි වේ.
- (d) පුතිකිුිිියාව ද්විඅණුක ගැටුමක් හරහා සිදු වේ. (අණුකතාව =2)
- 39. පහත සඳහන් කුමන වගන්තිය/වගන්ති 3-හෙක්සීන් පිළිබඳ ව සත්‍‍‍ වේ ද?
 - (a) ජාහමිතික සමාවයවිකතාව තොපෙන්වයි.
 - (b) පුකාශ සමාවයවිකතාව පෙන්වයි.
 - (c) $m H_2/Pd$ සමග පුතිකිුිිිියා කරවූ විට ලැබෙන සංයෝගය පුකාශ සමාවයවිකතාව නොපෙන්වයි.
 - (d) HBr සමග පුතිකිුයා කරවූ විට ලැබෙන සංයෝගය පුකාශ සමාවයවිකතාව පෙන්වයි.

- **40.** නයිටුජන් චකුය පිළිබඳ ව පහත සඳහන් කුමන වගන්තිය/වගන්ති **නිවැරදි** වන්නේ ද?
 - (a) වායුගෝලයේ ඇති N_2 තිර වන්නේ වායුගෝලීය හා කාර්මික තිර කිරීමෙන් පමණි.
 - (b) වායුගෝලීය තිර කිරීමේ දී N_2 ඔක්සිහරණය වේ.
 - (c) කාර්මික තිර කිරීමේ දී N_2 ඔක්සිකරණය වේ.
 - (d) වායුගෝලීය තිර කිරීමේ දී සෑදෙන නයිවේට හා නයිටුයිට වර්ෂාපතනය නිසා පොළොව මත තැන්පත් වූ විට ඒවා පුෝටීන් සෑදීමට ශාක මගින් යොදා ගනී.
- අංක 41 සිට 50 තෙක් එක් එක් පුශ්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින්ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1),(2),(3),(4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දැ'යි තෝරා උත්තර පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

පුතිචාරය	පළමුවැනි පුකාශය	දෙවැනි පුකාශය						
(1)	සතා වේ.	සතා වන අතර, පළමුවැනි පුකාශය නිවැරදි ව පහදා දෙයි.						
(2)	සතා වේ.	සකා වන නමුත් පළමුවැනි පුකාශය නිවැරදි ව පහදා නොදෙයි .						
(3)	සතා3 වේ.	අසතා මේ.						
(4)	අසතා වේ.	සතා වේ.						
(5)	අසතා වේ.	අසතා වේ.						

	පළමුවැනි පුකාශය	දෙවැනි පුකාශය
41.	MgCO ₃ වලට වඩා BaCO ₃ තාපස්ථායි වේ.	දෙවන කාණ්ඩයේ කැටායනවල ධුැවීකරණ බලය කාණ්ඩයේ පහළට යන විට අඩු වේ.
42.	ඇමීනයක නයිටුජන් මත ඇති එකසර ඉලෙක්ටුෝන යුගලය H ⁺ සමග බන්ධනයක් සෑදීමට ඇති පුවණතාව ඇල්කොහොලයක ඔක්සිජන් මත ඇති එකසර ඉලෙක්ටුෝන යුගලයට වඩා අඩු ය.	අඩු ය.
43.	පුතිකිුිිියාවක් ඉදිරියට (එනම් සමතුලිත ලක්ෂාය දකුණට විස්ථාපනය කිරීම) පෙළඹවීම කළ හැක.	උත්පේුරකය මගින් ඉදිරි පුතිකිුයාව සඳහා පමණක් අඩු සකිුයන ශක්තියක් ඇති මාර්ගයක් සපයයි.
44.	CO_3^{2-} හා SO_3^{2-} අයනවලට සමාන හැඩයන් ඇත.	CO_3^{2-} හා SO_3^{2-} යන දෙකෙහිම මධා පරමාණුවේ එකසර ඉලෙක්ටුෝන යුගල් ඇත.
45.	CH ₃ CH ₂ CH ₂ OH හි තාපාංකය CH ₃ CH ₂ CHO හා CH ₃ COCH ₃ හි තාපාංකවලට වඩා වැඩි ය.	කාබන් ඔක්සිජන් ද්විත්ව බන්ධනය, කාබන් ඔක්සිජන් තනි බන්ධනයට වඩා ශක්තිමත් ය.
46.	ඒකලිත පද්ධතියක් තුළ ස්වයංසිද්ධව සිදු වන පුතිකිුයාවක් සඳහා සැමවිටම සෘණ ගිබ්ස් ශක්ති වෙනසක් ඇත.	
47.	තෙල් හා මේද සමග NaOH හෝ KOH පුතිකිුිිිියාවෙන් සෑදෙන මේද අම්ලවල සෝඩිිිිිිිිිි හෝ පොටෑසිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි	ජලීය NaOH හෝ KOH සමග එස්ටරයක් පුතිකිුිිිියාවෙන් කාබොක්සිලික් අම්ලයේ සෝඩිිිිියම් හෝ පොටෑසිිිියම් ලවණය හා මදාාසාරය ලැබේ.
48.	$\mathrm{C}_6^{}\mathrm{H}_5^{}\mathrm{OH}$ සැදීමට NaOH සමග $\mathrm{C}_6^{}\mathrm{H}_5^{}\mathrm{Br}$ පහසුවෙන් පුතිකියා නොකරයි.	ෆීනයිල් කාබොකැටායනය ඉතා ස්ථායි වේ.
49.	දුබල අම්ලයක ජලීය දුාවණයක් කනුක කරන විට විඝටනය වූ අම්ල අණුවල භාගය හා මාධායේ pH අගය යන දෙකම වැඩි වේ.	දුබල අම්ල අණුවල විඝටනය සිදු වන්නේ අම්ල විඝටන නියතය K ූ නියතව පවතින පරිදි ය.
50.	සූර්යාලෝකය ඇති විට හරිත ශාක තුළ CO ₂ තිර වේ.	වායුගෝලයේ CO ₂ මට්ටම ඉහළ යාම හරිත ශාක මගින් පාලනය කළ නොහැක.

ආවර්තිතා වගුව

	1																	2
1	H																	He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	0	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Аг
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn_	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					

57 La	58 Ce			1	l	l	64 Gd	l	1			69 Tm	'	71 Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

සියලු ම හිමිකම් ඇවිරිණි/(மුඟුට් பුනිට්பුලිකෙරානුට/All Rights Reserved]

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේකුතුව රාක්ෂ පිටිස්තිය සුළුවා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව මුණාගතසට පාර්ධානේ නිකානාස්සභාග මුණාගතයට පාර්ධානේ නිකානාස්සභාග පාර්ධානේ නිකානාස්සභාග පාර්ධානේ නිකානාස්සභාග පාර්ධානයට පාර්ධාන

අධානයන පොදු සහතික පසු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

<mark>රසායන විදපාව II</mark> இரசாயனவியல் II Chemistry II

2018.08.17 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම් කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

විභාග අංකය :

අමතර කියච්මි කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිව්මේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

- * ආවර්තිතා වගුවක් 16 වැනි පිටුවෙහි සපයා ඇත.
- 🔆 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * සාර්වතු වායු නියකය, $R = 8.314 \,\mathrm{J} \,\mathrm{K}^{-1} \,\mathrm{mol}^{-1}$
- * ඇවගාඩ්රෝ නියතය, $N_A=6.022 imes 10^{23}~\mathrm{mol}^{-1}$
- * මෙම පුශ්න පතුගට පිළිතුරු සැපයීමේ දී ඇල්කයිල් කාණ්ඩ සංක්ෂිප්ත ආකාරයකින් නිරුපණය කළ හැකි ය.

- A කොටස වපුහගත රචනා (පිටු 2 8)
- * සියලු ම පුශ්නවලට මෙම පුශ්න පතුයේ ම පිළිතුරු සපයන්න.
- ※ ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිව්ය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.
 - 👊 B කොටස සහ C කොටස රවනා (පිටු 9 15)
- * එක් එක් කොටසින් පුශ්න දෙක බැගින් තෝරා ගනිමින් පුශ්න හතරකට පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න.
- * සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු A,B සහ C කොටස් තුනට පිළිතුරු, A කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B සහ f C කොටස් **පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරික්ෂකවරුන්ගේ පුයෝජනය සඳහා පමණි

කොටස	පුශ්න අංකය	ලැබූ ලකුණු
	1	
, [2	
A	3	
	4	
	5	
В	6	
	7	
	8	
c	9	
	10	
එකතුව		
පුතිශතය		

අවසාන ලකුණ

ඉලක්කමෙන්	
අකුරින්	<u> </u>

සාංකේත අංක

උත්තර පතු පරීක්ෂක 1	
උත්තර පතු පරීක්ෂක 2	
පරීක්ෂා කළේ :	
අධීක්ෂණය කළේ :	

A කොටස - වපුහගත රචනා

පුශ්න **හතරට ම** මෙම පතුයේ ම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය **10** කි.)

මෙම තීරයේ කිසිවක් නො ලියන්න

- $oldsymbol{1}$. (a) පහත සඳහන් පුකාශ **සත** $oldsymbol{z}$ ද නැතහොත් **අසතoldsymbol{z}** ද යන බව සඳහන් කරන්න. (හේතු අවශා **නැත**.)
 - (i) විශාලත්වය වැඩිවීමත් සමග හේලයිඩ අයනවල ධුැවණශීලීතාවය වැඩි වේ.
 - (ii) NO_2 හි O-N-O බන්ධන කෝණය NO_2^- හි එම කෝණයට වඩා විශාල වේ.
 - (iii) ${
 m CCl}_4$ අණු අතර ලන්ඩන් අපකිරණ බල ${
 m SO}_3$ අණු අතර ලන්ඩන් අපකිරණ බලවලට වඩා කුඩා වේ.

 - $({
 m v})$ පරමාණුවක සියලු ම 3d පරමාණුක කාක්ෂික $(n,l,m_l)\,3,2,1$ යන ක්වොන්ටම අංකවලින් නිරූපණය වේ.
 - (vi) වායුමය පොස්පරස් පරමාණුවකට ඉලෙක්ටුෝනයක් එක් කිරීම තාපදායක කියාවලියක් වන අතර වායුමය නයිටුජන් පරමාණුවක් සඳහා එය තාප අවශෝෂක වේ.

(ලකුණු 2.4 යි)

(b) (i) ${
m SF}_3{
m N}$ අණුව සඳහා **වඩාත් ම** පිළිගත හැකි ලුවිස් වාුහය අඳින්න.

(ii) C_3O_2 (කාබන් සබ්ඔක්සයිඩ්) අණුව සඳහා වඩාත් ම ස්ථායි ලුවිස් වනුහය පහත දක්වා ඇත. මෙම අණුව සඳහා තවත් ලුවිස් වනුහ (සම්පුයුක්ත වනුහ) **දෙකක්** අඳින්න.

(**යැ. යූ.**: අෂ්ටක තියමයට අනුකූල නොවන ලුවිස් ව<u>ා</u>හවලට ලකුණු පුදානය කරනු නොලැබේ.) $\ddot{\mathbf{O}} = \mathbf{C} = \mathbf{C} = \ddot{\mathbf{O}}$

- (iii) පහත සඳහන් ලුවිස් වුෘුහය පදනම් කරගෙන පහත වගුවේ දක්වා ඇති C,N හා P පරමාණුවල
 - I. පරමාණුව වටා VSEPR යුගල්
- II. පරමාණුව වටා ඉලෙක්ටුෝන යුගල් ජාාමිතිය
- III. පරමාණුව වටා හැඩය
- IV. පරමාණුවේ මුහුම්කරණය

සඳහන් කරන්න.

පහත දැක්වෙන පරිදි පරමාණු අංකනය කර ඇත.

$$F - C^{1} - N^{2} - C^{3} - P^{4} - CI$$

		C^1	N^2	C^3	\mathbf{P}^4
I.	VSEPR යුගල්				
II.	ඉලෙක්ටුෝන යුගල් ජාාාමිතිය				
III.	හැඩය				
IV.	මුහුම්කරණය				

										මෙව තීරයේ
	(iv)	ඉහස පරම	ත (iii) කොට ෙ වාණුක/මුහුම්කා	සහි	විස් ව ූ හයෙ න. (පරමාණුදි	හි පහත : වල අංකන	සඳහන් σ බ ය (iii) කොට	න්ධන සෑදී® සෙහි ආකා	මට සහභාගි ව: රයට වේ.)	න සියිවක් නො ලියන්න
		I.	F — C^1	F		²¹		••••		
		II.	C^1 — N^2	C ¹	N	J ²		••••		
		III.	N^2 — C^3	N ²		³				
		IV.	$C^3 - P^4$	C ³	F	y ⁴				
			P ⁴ —Cl	P ⁴						
	(v)	ඉහ. පරම	ා (iii) කොට මාණුක කාක්ෂික	සහි දෙන ලද ලු ා හඳුනාගන්න. (t	ුවිස් ව <u>ා</u> ුහයෙ පරමාණුවල අ	ාහි පහත අංකනය (i	සඳහන් π බ ii) කොටසෙ	න්ධන සෑදී(හි ආකාරය	මට සහභාගි ව ට වේ.)	ත
		I.	N^2 — C^3	N ²		⁷³				
		II.	$C^3 - P^4$	C ³	I	× ⁴			(ලකුණු 5.2 යි))
(c				ගුණය වැඩිවන පි		ත සඳහන්	දෑ සකසන්	න. (හේතු අ	වශා නොවේ .)	
	(i)	B, N	Na, P, Be, N (ප	ළමුවන අයනීකර	රණ ශක්තිය)					
				<						
	(ii)	NH	, NOCI, NO	$_{1}^{\circ}$ CI, NH $_{4}^{+}$, F $_{3}$ C-	–NC (නයිටු:	ජන්වල විද	යුත් සෘණතා	ව)		
			< .	<		<		<	,	
	(iii)	පරම්	වාණුවක ඉලෙස	්ටුෝනවල ක්වෙ	ාන්ටම් අංක	(n, l, m_l, r)	$n_{\rm s}$)			
		(3,1)	$(1,0,-\frac{1}{2}),(3,0)$	$(0, +\frac{1}{2}), (2, 0, 0)$	$(2, +\frac{1}{2}), (2, 1,$	$+1,+\frac{1}{2}$,	$\left(3, 2, -1, +\frac{1}{2}\right)$	$\left(\frac{1}{2}\right)$ (ඉලෙක්	ටෝනයේ ශක්ති	යා \ <u> </u>
			< .	<	:	<		<	 (ලකුණු 2.4 යි)
2 . (a	ඔස පප	ත්සික ාසුවේ	රණ අවස්ථා ප වත් දුවණය වී ස	වේ <i>p</i> -ගොනුවේ රාසයක් පෙන් නු හාස්මික දාවණය හරයි. Y නිෂ්පාදැ	ුම් කරයි. X ක් ලබා දෙයි	හි වඩාත් . ¥ ඔක්සි:	ම සුලභ හ කාරකයක්, ම	ායිඩුයිඩය `\ ඛක්සිහාරකය	I වේ. $f Y$ ජලයෙ	ාහි
	(i)	X	සහ Y හඳුනාග	න්න.						
		X	ζ =		Y =		•••••			
	(ii)	X &	යි ද්විපරමාණුක	වායුව සාමානාප	යෙන් නිෂ්කිය	යැයි සල	කනු ලැබේ.	කෙටියෙන්	පහදන්න.	
		• • • •					• • • • • • • • • • • • • • • • • • • •			
				••••						
	(iii)		හි ඔක්සයිඩ තු ව වන්න.	ාක රසායනික සූ	තු ලියා එම	එක් එක්	සංයෝගයේ	් X හි ඔක්	සිකරණ අවස්ථ	ාව
				••••						
		••••				**********		• • • • • • • • • • • • • • • • • • • •		
		• • • •								_
	(iv)	සමී	කරණය බැගින්	-						ජක <u> </u>
				ායක් ලෙස						.
		\mathbf{H}	. Y ඔක්සිහාරක	යක් ලෙස				· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • • •	•

(v) \mathbf{X} අඩංගු කාණ්ඩයේ මූලදුවාවල \mathbf{Y} ට අනුරූප හයිඩුයිඩ සලකන්න. මෙම හයිඩුයිඩවල $(\mathbf{Y}$ ද ඇතුළුව $)$ ්ස	මම ප්රයේ සිවස නා ද්
තාපාංකය ^	
> හයිඩුයිඩය (vi) ඉහත (v) කොටසෙහි තාපාංකවල විචලනයට හේතු දක්වන්න.	
$({ m vii})$ $I.$ $f Y$ හි ජලීය දාවණයකින් වැඩිපුර පුමාණයක් ${ m Al}_2({ m SO}_4)_3$ දාවණයකට එක් කළ විට ඔබ කුමක් නිරීක්ෂණය කරන්නේ දැයි ලියන්න.	
II. ඉහත I කොටසෙහි ඔබගේ නිරීක්ෂණයට හේතු කාරක වන විශේෂයෙහි රසායනික සූතුය ලියන්න.	
(viii) Y හඳුනාගැනීමට එක් රසාගනික පරීක්ෂාවක් දෙන්න.	
පරික්ෂාව:	
තිරීක්ෂණය:	
$({ m i} {f x})$ ${f Z}$ යනු ${f X}$ හි ඔක්සො-අම්ලයක් හා පුබල ඔක්සිකාරකයකි.	
I. Z හඳුනාගන්න.	
$\mathrm{II.}$ සල්ෆර් සමග උණු සාන්දු \mathbf{Z} පුතිකිුයා කළ විට ලැබෙන ඵල සඳහන් කරන්න.	
(ලකුණු 6.0 සි)	
(b) ${f A}$ හා ${f B}$ යනු ආවර්තිතා වගුවේ එකම කාණ්ඩයට අයත් p - ගොනුවේ මූලදුවා දෙකක සංයෝග වේ. කාමර උෂ්ණත්වයේ දී හා වායුගෝලීය පීඩනයේ දී අවර්ණ, ගඳක් නොමැති දුවයක් ලෙස ${f A}$ පවතී. එය වායු හා සන අවස්ථාවන්හි ද දක්නට ලැබේ. ${f A}$ හි සන අවස්ථාව එහි දුව අවස්ථාවට වඩා සනත්වයෙන් අඩු වේ. අයනික හා ධුැවීය සංයෝග පහසුවෙන් ${f A}$ හි දුවණය වේ.	
කාමර උෂ්ණත්වයේ දී හා වායුගෝලීය පීඩනයේ දී $f B$ අවර්ණ වායුවක් වේ. ලෙඩ ඇසිටේට්වලින් තෙත් කරන ලද පෙරහන් කඩදාසියක් $f B$ මගින් පිරියම් කළ විට කළු පැහැයට හැරේ.	
(i) A හා B හඳුනාගන්න.	
$A = \dots B = \dots$	

3.

(ii)	අවශා ස්ථානවල එකසර ඉලෙක්ටුෝන යුගල් පෙන්වා $f A$ හා $f B$ හි හැඩවල දළ සටහන් අඳින්න.	මෙව තීරයේ කිපිවක් නො ලියන්න
(iii)	වඩා විශාල බන්ධන කෝණය ඇත්තේ ${f A}$ ට ද ${f B}$ ට ද යන්න හේතු දක්වමින් සඳහන් කරන්න.	
(iv)	පහත සඳහන් එක් එක් අවස්ථාවේ දී $f A$ හි කිුයාකාරිත්වය පෙන්නුම් කිරීම සඳහා තුලිත රසායනික සමීකරණය බැගින් දෙන්න.	
	I. A අම්ලයක් ලෙස :	
	II. A භස්මයක් ලෙස :	
(v)	ජලීය ලෙඩ ඇසිවේට් සමග ${f B}$ හි පුතිකිුයාව සඳහා තුලිත රසායනික සමීකරණය ලියන්න.	
(vi)	$I. \ \mathbf{A}$ හා \mathbf{B} වෙන වෙනම ආම්ලිකෘත BiCl_3 දාවණයකට එක් කළ විට ඔබ කුමක් නිරීක්ෂණය කරන්නේ දැයි ලියන්න.	5 6
	f A (වැඩිපුර) සමග: $f B$ සමග:	
	II. ඉහත I කොටසෙහි ඔබගේ නිරීක්ෂණ සඳහා තුලිත රසායනික සමීකරණ ලියන්න.	// ·
		$\sqrt{\frac{100}{100}}$
	(ලකුණු 4.0 යි.)	
A , 0.10	$\Rightarrow 2{ m C} + { m D}$ (දෙදිශාවටම මූලික පුතිකිුයා වේ.) යන පුතිකිුයාව $25~{ m ^{\circ}C}$ හි දී සිදුකරන ලදී. ආරම්භයේ දී lmol හා ${ m B}, 0.10~{ m mol}$ ආසුැත ජලයෙහි දුවණය කිරීමෙන් (මුළු පරිමාව $100.00~{ m cm^3}$) පුතිකිුයා මිශුණය සාදනලය සමග මෙම දුාවණයෙහි ${ m A}$ හි සාන්දුණයෙහි වෙනස් වීම පුස්තාරයෙහි දක්වා ඇත.	
	සාන්දුණය (mol dm ⁻³) ූ ූ ූ ූ	
	†	
	1.0	
	[A]	
	0.5	
	0.0 <u> </u>	
(i) 858	තිකිුයාවේ පළමු මිනිත්තු 4.0 තුළ දී පුතිකිුයා කරන ලද $f A$ පුමාණය (මවුලවලින්) ගණනය කරන්න.	
<i>↔</i> 9*		
••		
••		

	3/02-S-II(A) - 6 -	
(ii)	මිනිත්තු 4.0 ට පසු ඉදිරි පුතිකිුයාවෙහි ශීඝුතාව පසු පුතිකිුයාවෙහි ශීඝුතාවට වඩා අඩු වේ ද? ඔබ පිළිතුර පැහැදිලි කරන්න.	ග් ස
		.
		.
		.
(iii)	ඉදිරි පුතිකියාවෙහි ශීඝුතා නියතය ($k_{ m forward}$) $18.57~{ m mol}^{-1}~{ m dm}^3~{ m min}^{-1}$ බව දී ඇත් නම්, ඉදිරි පුතිකියාවෙස් ආරම්භක ශීඝුතාව ගණනය කරන්න.	ନ୍ତ
	සමතුලිතතාවයේ දී \mathbf{C} හා \mathbf{D} හි සාන්දුණ ගණනය කරන්න. කාලය සමග \mathbf{C} හා \mathbf{D} වල සාන්දුණයන්හි වෙනස් වීම දක්වන අදාළ වකු ඉහත පුස්තාරයෙහි ඇඳ ඒව නම් කරන්න.	ıo
(v)	ඉහත පුතිකිුයාවෙහි සමතුලිතතා නියතය $K_{ m C}$ සඳහා පුකාශනය ලියා එහි අගය ගණනය කරන්න.	
		f
(vi)	පසු පුතිකිුයාව සඳහා ශීඝුතා නියතයෙහි ($k_{ m reverse}$) අගය ගණනය කරන්න.	

(vii)	සමතුලිතතාවට එළැඹී පසු, ආසුැත ජලය $100.00\mathrm{cm}^3$ එකතු කිරීමෙන් දුාවණයෙහි පරිමාව දෙගුණ කරන ලදී. දුාවණයෙහි පරිමාව දෙගුණ කළ විගස සමස්ත පුතිකිුයාවෙහි දිශාව, සුදුසු ගණනය කිරීමක් මගින් පුරෝකථනය කරන්න.	
(viii)	ඉහත පරීක්ෂණය 25 °C ට අඩු උෂ්ණත්වයක දී සිදු කළේ යැයි සලකන්න. මෙය පසු පුතිකියාවෙහි ශීඝුතාව කෙරෙහි බලපාන්නේ කෙසේ ද? ඔබගේ පිළිතුර හේතු දක්වමින් පහදන්න.	
	······································	
	(ලකුණු 10.0 සි.)	100
4 . (a) ((i) C ₅ H ₁₀ O අණුක සූතුය සහිත A, B සහ C යන සංයෝග එකිනෙකෙහි ව්යුහ සමාවයවික වේ. සංයෝග තුනම 2,4-DNP සමග කහ-තැඹිලි අවක්ෂේප ලබා දේ. ඉන් එකක්වත් රිදී කැටපත් පරීක්ෂාවේදී රිදී කැටපතක් නොදේ. A, B සහ C වෙන වෙනම NaBH ₄ සමග පුතිකුියා කරවූ විට පිළිවෙළින් D, E සහ F යන සංයෝග ලබා දුනි. E සහ F පමණක් පුකාශ සමාවයවිකතාව පෙන්වයි. B සහ C වෙන වෙනම CH ₃ CH ₂ CH ₂ MgBr සමග පුතිකුියා කරවා, ඉන්පසු ජලවිච්ඡේදනය කළ විට පිළිවෙළින් G සහ H යන සංයෝග ලබා දුනි. G පමණක් පුකාශ සමාවයවිකතාව පෙන්නුම් කරයි. A, B, C, D, E, F, G සහ H වල වුහුහ පහත දී ඇති කොටුතුළ අදින්න. (තුිමාන සමාවයවික ආකාර පෙන්වීම අවශා නැත.)	
	D E F	
	G H	
(i	ii) පහත සඳහන් පුතිකිුියාවේ ඵලයේ වාුුහය අඳින්න.	
	A (1) 2,4 – DNP (2) විජලනය (ලකුණු 4.5 යි.)	

(b) පහත දී ඇති එක් එක් පුතිකිුියාවේ **පුධාන** කාබනික **එලගෙහි** ව<u>පු</u>හය අඳින්න.

(iv)
$$C_6H_5-N_2^{\oplus}CI^{\ominus}$$
 $\xrightarrow{H_3PO_2}$ $\xrightarrow{\Delta}$

$$(v)$$
 $C_2H_5CONH_2$ ජලීය $NaOH$

(vi)
$$CH_3CH = CH_2$$
 සාන්දු H_2SO_4

(viii)
$$C_2H_5CO_2H$$
 $\xrightarrow{PCl_5}$

(ix)
$$C_2H_5OH$$
 $H^+/KMnO_4$

(x)
$$C_2H_5COCH_3$$
 HCN

(ලකුණු **3.5** සි)

(c) අාලෝකය හමුවේ දී ${
m CH}_4$ සමග ${
m Cl}_2$ පුතිකිුයාවේ එක් එලයක් ${
m CH}_3{
m Cl}$ වේ. ${
m CH}_3{
m Cl}$ සැදෙන ආකාරය පෙන්වන පුතිකිුයාවේ යන්තුණයේ පියවර ලියන්න. ඉලෙක්ටුෝන සංකුමණය වකු ඊතල/වකු අර්ධ ඊතල $({\mbox{$\sim$}}/{\mbox{$\sim$}})$. මගින් දක්වන්න.

(ලකුණු 2.0 යි)

100

තිසිවක් නො ලිය සියලු ම හිමිකම් ඇව්රිනි / முழுப் பதிப்புரிமையுடையது / $All\ Rights\ Reserved$]

ලි ලංකා විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තම අවරක් ලෙසින් ලෙසින් සම්බන්ත ප්රධානය අදහර්තමේන්තුව ලි ලංකා විභාග දෙපාර්තමේන්තුව මුහත්කයේ පුර්ධනයේ නිශාක්ෂයණාර මුහත්කයේ පාර්ධනයේ නිශාක්ෂයණාර මුහත්කයේ පුර්ධනයේ නිශාක්ෂයණාර මුහත්කයේ ප්රධානයේ සිටි Department of Examinations, Sri Lanka Department o**ලිනාග්කයෝ** ප්රධාන සමුගත්කයේ ප්රධානයේ සිටි විභාග දෙපාර්තමේන්තුව ලි ලංකා විභාග ප්රධානයේ සිටියේ සිටි

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஒகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

රසායන විදනවIIஇரசாயனவியல்IIChemistryII

* සාර්වනු වායු නියනය $R=8.314~{
m J~K^{-1}~mol^{-1}}$ * ඇවගාඩමරෝ නියනය $N_{
m A}=6.022~{
m \times}~10^{23}~{
m mol^{-1}}$

B කොටස — රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

(a) පහත සඳහන් ප්‍රතිකියා සලකන්න.

$$M(CO_3)_2.nH_2O(s) \rightarrow M(CO_3)_2(s) + nH_2O(g)$$

$$M(CO_3)_2(s) \rightleftharpoons MO_2(s) + 2 CO_2(g)$$

පරිමාව $0.08314\,\mathrm{m}^3$ වූ රේචනය කරන ලද දෘඪ බඳුනක $\mathrm{M(CO_3)_2\cdot nH_2O(s)}$ සුළු පුමාණයක් $(0.10~\mathrm{mol})$ ඇත. බඳුනේ උෂ්ණත්වය $400~\mathrm{K}$ දක්වා වැඩි කරන ලදී. මෙම උෂ්ණත්වයේ දී $\mathrm{M(CO_3)_2}$ ලෝහ කාබනේටය වියෝජනය නොවන නමුත් ස්ඵටිකීකරණය වූ ජලය සම්පූර්ණයෙන් වාෂ්පීකරණය වේ. බඳුනෙහි පීඩනය $1.60\times10^4~\mathrm{Pa}$ බව මැන ගන්නා ලදී. ඝන දුවා මගින් අයත් කරගන්නා පරිමාව නොසලකා හැරිය හැකි වේ.

 $M(CO_3)_2.nH_2O(s)$ සූතුයෙහි ඇති 'n' හි අගය නිර්ණය කරන්න.

(ලකුණු 2.0 යි.)

- (b) ඉහත පද්ධතියෙහි උෂ්ණත්වය ඉන්පසු $800~{
 m K}$ දක්වා වැඩි කරන ලදී. මෙවිට ඝන ලෝහ කාබනේටයෙන් යම් පුමාණයක් වියෝජනය වී වායු කලාපය සමග සමතුලිතව ඇති බව නිරීක්ෂණය කරන ලදී. බඳුනෙහි පීඩනය $4.20 imes 10^4~{
 m Pa}$ බව මැනගන්නා ලදී.
 - (i) 800 K හි දී බඳුන තුළ ඇති ජලවාෂ්පයෙහි අාංශික පීඩනය ගණනය කරන්න.
 - (ii) 800 K හි දී බඳුන තුළ ඇති CO₂ හි අාංශික පීඩනය ගණනය කරන්න.
 - (iii) ${
 m M(CO_3)_2(s)}$ හි වියෝජනයට අදාළ පීඩන සමතුලිකතා නියතය, $K_{
 m P}$ සඳහා පුකාශනයක් ලියන්න. $800~{
 m K}$ හි දී $K_{
 m P}$ ගණනය කරන්න.
 - (iv) 800 K හි දී ලෝහ කාබනේටයෙහි වියෝජනය වූ මවුල පුතිශතය ගණනය කරන්න.
 - (v) ඉහත තත්ත්ව යටතේ ලෝහ කාබතේටයෙහි වියෝජනය සඳහා එන්තැල්පි වෙනස (ΔH) $40.0~{
 m kJ}~{
 m mol}^{-1}$ වේ. අනුරූප එන්ටොපි වෙනස (ΔS) ගණනය කරන්න.
 - $(vi)\ M(CO_3)_2(s)$ හි වියෝජන පුතිකිුයාව ඉදිරි දිශාවට යොමු කිරීම සඳහා කුම **දෙකක්** යෝජනා කරන්න.

(ලකුණු 6.5 යි.)

(c) තාප රසායනික චකු හා වගුවෙහි දී ඇති දත්ත ආධාරයෙන් පහත සඳහන් පුශ්නවලට පිළිතුරු සපයන්න.

විශේෂය	සම්මත උත්පාදන එන්තැල්පිය $({f \Delta H}_f^\circ)({ m kJmol}^{-1})$
M(s)	0.0
M(g)	800.0
O ₂ (g)	0.0
O(g)	249.2
MO ₂ (g)	-400.0

- (i) $MO(g) + \frac{1}{2} O_2(g)$ → $MO_2(g) \Delta H^\circ = -50.0 \text{ kJ mol}^{-1}$ බව දී ඇත්නම් MO(g) හි සම්මත උත්පාදන එන්තැල්පිය ගණනය කරන්න.
- (ii) MO(g) හි M—O බන්ධන විඝටන එන්තැල්පිය ගණනය කරන්න.

- (iii) $\mathrm{MO}_2(\mathrm{g})$ හි $\mathrm{M-O}$ බන්ධන විඝටන එන්තැල්පිය ගණනය කරන්න.
- (iv) සම්මත තත්ත්ව යටතේ දී හා $2000~{\rm K}$ හි දී ${\rm MO}_2({\rm g}) \to {\rm MO}({\rm g}) + \frac{1}{2}~{\rm O}_2({\rm g})$ පුතිකුියාව ස්වයංසිද්ධ වේ දැයි සුදුසු ගණනය කිරීමක් මගින් පුරෝකථනය කරන්න. මෙම පුතිකුියාවෙහි සම්මත එන්ටොපි වෙනස $30.0~{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$ වේ. (ලකුණු $6.5~{\rm G}$.)
- 6. (a) අමිශු දුව පද්ධතියක් සාදන ජලය $({f A})$ හා කාබනික දාවකයක් $({f B})$ අතර, අයඩීන් $({f I}_2)$ හි වහාප්ති සංගුණකය නිර්ණය කිරීම සඳහා පරීක්ෂණයක් සිදු කරන ලදී. ${f I}_2$ මවුල 'n' සංඛාහාවක් අඩංගු ${f B}$ හි $20.00~{
 m cm}^3$ සමග ${f A}$ හි $20.00~{
 m cm}^3$ මිශු කර කාමර උෂ්ණත්වයේ දී

ස්මතුලිතතාවයට එළඹීමට ඉඩහරින ලදී.

 ${f A}$ කලාපයෙන් $5.00~{
m cm}^3$ නියැදියක් ඉවත් කර එය $0.005~{
m mol}~{
m dm}^{-3}~{
m Na}_2{
m S}_2{
m O}_3$ දාවණයක් සමග අනුමාපනය කිරීමෙන් ${f A}$ කලාපයේ ${f I}_2$ සාන්දුණය නිර්ණය කරන ලදී. අන්ත ලක්ෂාය ලබා ගැනීමට අවශා වූ ${
m Na}_2{
m S}_2{
m O}_3$ පරිමාව $22.00~{
m cm}^3$ විය. ${f B}$ කලාපයෙහි ${f I}_2$ සාන්දුණය $0.040~{
m mol}~{
m dm}^{-3}$ බව නිර්ණය කරන ලදී.

- (i) $\mathrm{Na_2S_2O_3}$ හා $\mathrm{I_2}$ අතර පුතිකිුයාව සඳහා තුලිත රසායනික සමීකරණය ලියන්න.
- (ii) ${f A}$ කලාපයෙහි ${f I}_2$ සාත්දුණය ගණනය කරන්න.
- (iii) වාහාප්ති සංගුණකය K_D හි අගය ගණනය කරන්න. $K_D = \frac{\left[\mathbf{I}_2\right]_{\mathbf{B}}}{\left[\mathbf{I}_2\right]_{\mathbf{A}}}$ වේ.
- $({
 m iv})$ ${f A}$ හා ${f B}$ කලාප දෙකෙහි ඇති මුළු ${
 m I}_2$ මවුල පුමාණය ගණනය කරන්න.

(ලකුණු 4.5 යි.)

- (b) $\bf A}$ කලාපයට $\bf I^-$ අයන එකතු කර, ඉහත පරීක්ෂණය එම තත්ත්ව යටතේ දී ම එනම් එම උෂ්ණත්වයේ දී හා එම $\bf I_2$ පුමාණය හා එම පරිමාවන් භාවිතයෙන් නැවත සිදු කරන ලදී. පද්ධතිය හොඳින් කළතා සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. $\bf A$ කලාපයෙහි $5.00~{\rm cm}^3$ නියැදියක ඇති $\bf I_2$ අනුමාපනය කිරීම සඳහා අවශා වූ $0.005~{\rm mol~dm}^{-3}~{\rm Na}_2{\rm S}_2{\rm O}_3$ දාවණ පරිමාව $\bf 41.00~{\rm cm}^3$ විය. මෙවිට $\bf B$ කලාපයෙහි $\bf I_2$ සාන්දුණය $0.030~{\rm mol~dm}^{-3}$ බව නිර්ණය කරන ලදී.
 - (i) ${f A}$ හා ${f B}$ කලාප අතර ${f I}_2$ හි වාාප්තිය සඳහා වාාප්ති සංගුණකය පදනම් කර ගනිමින් ${f A}$ කලාපයෙහි $5.00~{
 m cm}^3$ හි තිබිය යුතු යැයි බලාපොරොත්තු වන ${f I}_2$ පුමාණය (මවුල) ගණනය කරන්න.
 - (ii) ඉහත අනුමාපනයේ දී ${
 m Na_2S_2O_3}$ සමග පුතිකියා කරන ලද ${
 m I_2}$ පුමාණය (මවුල) ගණනය කරන්න.
 - $({
 m iii})$ ඉහත (b) $({
 m i})$ හා (b) $({
 m ii})$ කොටස් සඳහා ලබාගත් පිළිතුරු එකිනෙකින් චෙනස් වන්නේ මන්දැයි ${f A}$ කලාපයෙහි ඇති විවිධ අයඩීන් විශේෂ සලකමින් පැහැදිලි කරන්න.

(ලකුණු 3.5 යි.)

(c) \mathbf{X} හා \mathbf{Y} යන දුව රඌල් නියමය අනුගමනය කරන පරිපූර්ණ දුාවණයක් සාදයි.

රූපයේ පෙන්වා ඇති පරිදි රේචනය කරන ලද දෘඪ බඳුනකට මුලින් \mathbf{X} දුවය පමණක් ඇතුළු කරන ලදී. දුව මට්ටම l හි පවත්වා ගනිමින් පද්ධතිය $400~\mathrm{K}$ හි දී සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. බඳුනෙහි පීඩනය $3.00 \times 10^4~\mathrm{Pa}$ ලෙස මැන ගන්නා ලදී. දුව මට්ටම l හි ඇති විට වාෂ්ප කලාපයේ පරිමාව $4.157~\mathrm{dm}^3$ විය.

ඉන් පසු ${f Y}$ දුවය බඳුන තුළට ඇතුළු කර ${f X}$ දුවය සමග මිශු කර පද්ධතිය $400~{f K}$ හි දී සමතුලිකතාවයට එළඹීමට ඉඩ හරින ලදී. දුව මට්ටම l හි පවත්වා ගන්නා ලදී. දුව කලාපයෙහි ${f X}:{f Y}$ මවුල අනුපාතය 1:3 බව සොයාගන්නා ලදී. බඳුනෙහි පීඩනය $5.00\times 10^4~{f Pa}$ බව මැනගන්නා ලදී.

- (i) $400~{
 m K}$ හි දී ${
 m X}$ හි සන්තෘප්ත වාෂ්ප පීඩනය කුමක් වේ ද?
- (ii) සමතුලිතතාවයේ දී දුව කලාපයේ ${f X}$ හා ${f Y}$ හි මවුල භාග ගණනය කරන්න.
- (iii) Y එකතු කළ පසු සමතුලිතතාවයේ දී X හි ආංශික පීඩනය ගණනය කරන්න.
- (iv) සමතුලිතතාවයේ දී Y හි ආංශික පීඩනය ගණනය කරන්න.
- (v) Y හි සන්නෘප්ත වාෂ්ප පීඩනය ගණනය කරන්න.
- (vi) වාෂ්ප කලාපයෙහි ඇති X හා Y හි පුමාණ (මවුලවලින්) ගණනය කරන්න.
- (vii) X හා Y දුව මිශුණයක් භාගික ආසවනයට භාජනය කළ විට භාගික ආසවන කුළුණින් කුමන සංයෝගය මුලින් ආසවනය වී පිට වේ දැයි සඳහන් කරන්න. ඔබගේ පිළිතුරට හේතුව/හේතු දක්වන්න.

(ලකුණු 7.0 යි.)

7. (a) ලැයිස්තුවේ දී ඇති රසායන දුවා පමණක් භාවිත කර ඔබ පහත සඳහන් පරිවර්තනය සිදු කරන්නේ කෙසේ දැයි පෙන්වන්න.

$$C_2H_5CH_2CHO \longrightarrow C_2H_5COCH_3$$

රසායන දුවා ලැයිස්තුව ජලීය NaOH, HBr, මදාසාරිය KOH, NaBH $_4$, $\operatorname{H}^+/\mathrm{KMnO}_4$

ඔබගේ පරිවර්තනය පියවර 7 කට වඩා වැඩි නොවිය යුතු ය.

(ලකුණු 6.0 යි.)

(b) පහත සඳහන් පුතිකිුයා පටිපාටිය සම්පූර්ණ කිරීම සඳහා \mathbf{R}_1 — \mathbf{R}_4 සහ \mathbf{X}_1 — \mathbf{X}_4 සහ \mathbf{Y}_1 , \mathbf{Y}_2 හඳුනාගන්න.

(c) (i) පහත සඳහන් පුතිකිුයාවේ යන්තුණය දෙන්න.

(ලකුණු 6.0 යි.)

$$C_2H_5OH + HBr \longrightarrow C_2H_5Br + H_2O$$

- (ii) ඉහත සඳහන් පුතිකිුයාව නාාෂ්ටිකාමී (nucleophilic) ආදේශ පුතිකිුයාවක් ද නැතභොත් ඉලෙක්ටුෝනකාමී (electrophilic) ආදේශ පුතිකිුයාවක් ද යන්න සඳහන් කරන්න. අදාළ පරිදි නියුක්ලියොෆයිලය හෝ ඉලෙක්ටුොෆයිලය හඳුනාගන්න.
- (iii) පීනෝල් (C_6H_5OH) සහ එතනෝල් (C_2H_5OH) යන සංයෝග දෙක අතරින් වඩා ආම්ලික වන්නේ කුමක් දැයි හේතු දක්වමින් සඳහන් කරන්න. (ලකුණු ${\bf 3.0}$ යි.)

C කොටස — රවනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

8. (a) P නම් ජලීය දාවණයක කැටායන **දෙකක්** හා ඇනායන **දෙකක්** අඩංගු වේ. මෙම කැටායන හා ඇනායන හඳුනාගැනීම සඳහා පහත සඳහන් පරීක්ෂණ සිදු කරන ලදී.

කැටායන

	පරීක්ෂණය	නිරීක්ෂණය
0	තනුක HCl මගින් ${f P}$ ආම්ලිකෘත කර දුාවණය තුළින් ${f H}_2{f S}$ බුබුලනය කරන ලදී.	පැහැදිලි දුාවණයක් ලැබුණි.
0	$ m H_2S$ සියල්ල ම ඉවත් වන තුරු ඉහත දුාවණය නටවන ලදී. සාන්දු $ m HNO_3$ බිංදු කිහිපයක් එකතු කර දුාවණය තවදුරටත් රත් කරන ලදී. ලැබුණු දාවණය සිසිල් කර, $ m NH_4Cl/NH_4OH$ එකතු කරන ලදී.	දුඹුරු පැහැති අවක්ෂේපයක් (Q) සෑදුණි.
3	${f Q}$ පෙරා ඉවත් කර පෙරනය තුළින් ${f H}_2{f S}$ බුබුලනය කරන ලදී.	ලා-රෝස පැහැති අවක්ෂේපයක් (R) සෑදුණි.
4	${f R}$ පෙරා ඉවත් කර ${ m H_2S}$ සියල්ල ම ඉවත් වන තුරු පෙරනය නටවන ලදී. දුාවණයට ${ m (NH_4)_2CO_3}$ එකතු කරන ලදී.	පැහැදිලි දුාවණයක් ලැබුණි.
⑤	P හි අලූත් කොටසකට තනුක NaOH එකතු කරන ලදී.	කැත-කොළ පැහැති අවක්ෂේපයක් සහ සුදු අවක්ෂේපයක් සැදුණි.

${f Q}$ හා ${f R}$ අවක්ෂේප සඳහා පරීක්ෂණ:

	පරීක්ෂණය	නිරික්ෂණය
	තනුක HNO_3 හි \mathbf{Q} දවණය කර, සැලිසිලික් අම්ල දුාවණයක් එක් කරන ලදී.	ලා-දම් පැහැති දුාවණයක් ලැබුණි.
0	තනුක අම්ලයක ${f R}$ දුවණය කර, දුාවණයට තනුක ${f NaOH}$ එක් කරන ලදී.	සුදු පැහැති අවක්ෂේපයක් සෑදුණි. කල් තැබීමේ දී එය දුඹුරු පැහැයට හැරුණි.

ඇනායන

		පරීක්ෂාච	නිරීක්ෂණය
8	I	BaCl_2 දාවණයක් ${f P}$ වලට එකතු කරන ලදී.	සුදු අවක්ෂේපයක් සැදුණි.
	II	සුදු අවක්ෂේපය පෙරා වෙන් කර අවක්ෂේපයට තනුක HCl එක් කරන ලදී.	සුදු අවක්ෂේපය දුවණය නොවුණි.
9	® එක	II හි පෙරනයෙන් කොටසකට Cl_2 දියරය හා ක්ලෝරෆෝම් තු කර මිශුණය හොඳින් සොලවන ලදී.	ක්ලෝරෆෝම් ස්තරය කහ-දුඹුරු පැහැයට හැරුණි.

- (i) ${f P}$ දුාවණයෙහි ඇති කැටායන **දෙක** හා ඇනායන **දෙක** හඳුනාගන්න. (හේතු අවශා **නැත**.)
- (ii) ${f Q}$ හා ${f R}$ අවක්ෂේපවල රසායනික සූතු ලියන්න.
- (iii) පහත සඳහන් දේවල් සඳහා හේතු දෙන්න:
 - I. කැටායන සඳහා $extbf{Q}$ පරීක්ෂණයේ දී H_2S ඉවත් කිරීම
 - ${
 m II.}$ කැටායන සඳහා ${
 m f Q}$ පරීක්ෂණයේ දී සාත්දු ${
 m HNO_3}$ සමග රත් කිරීම

(b) ලෙඩ්, කොපර් හා නිෂ්කිය දුවායක් ${f X}$ නියැදියෙහි අඩංගු වේ. ${f X}$ හි ඇති ලෙඩ් හා කොපර් විශ්ලේෂණය කිරීම සඳහා පහත කියාවලිය සිදු කරන ලදී.

කියාචලිය

 ${f X}$ හි 0.285 g ස්කන්ධයක් තනුක ${f HNO_3}$ මඳක් වැඩි පුමාණයක දුවණය කරන ලදී. පැහැදිලි දුාවණයක් ලැබුණි. ලැබුණු පැහැදිලි දුාවණයට ${f NaCl}$ දුාවණයක් එක් කරන ලදී. සුදු අවක්ෂේපයක් ${f (Y)}$ සෑදුණි. අවක්ෂේපය පෙරා වෙන් කර අවක්ෂේපය ${f (Y)}$ හා පෙරනය ${f (Z)}$ වෙන වෙනම විශ්ලේෂණය කරන ලදී.

අවක්ෂේපය (\mathbf{Y})

අවක්ෂේපය උණු ජලයෙහි දුවණය කරන ලදී. K_2CrO_4 දාවණයකින් වැඩිපුර එක් කරන ලදී. කහ පැහැති අවක්ෂේපයක් සැදුණි. අවක්ෂේපය පෙරා වෙන් කර තනුක HNO_3 හි දුවණය කරන ලදී. තැඹිලි පැහැති දාවණයක් ලැබුණි. මෙම දාවණයට වැඩිපුර KI එක් කර, පිටවූ I_2 , දර්ශකය ලෙස පිෂ්ටය යොදා, $0.100~mol~dm^{-3}~Na_2S_2O_3$ සමග අනුමාපනය කරන ලදී. අන්ත ලක්ෂාය ලැබීම සඳහා අවශා වූ $Na_2S_2O_3$ පරිමාව $27.00~cm^3$ විය. (අනුමාපනයට NO_3^- අයන බාධා **නොකරන** බව උපකල්පනය කරන්න.)

පෙරනය (\mathbf{Z})

පෙරනය උදාසීන කර එයට වැඩිපුර KI එක් කරන ලදී. පිටවූ I_2 , දර්ශකය ලෙස පිෂ්ටය යොදා, $0.100~{
m mol~dm^{-3}}~{
m Na}_2{
m S}_2{
m O}_3$ සමග අනුමාපනය කරන ලදී. අන්ත ලක්ෂාය ලැබීම සඳහා අවශා වූ ${
m Na}_2{
m S}_2{
m O}_3$ පරිමාව $15.00~{
m cm}^3$ විය.

(**සැ.යූ.**: නිෂ්කිුය දවාසය තනුක HNO_3 හි දවණය වේ යැයි හා එය පරීක්ෂණයට බාධා **නොවේ** යැයි උපකල්පනය කරන්න.)

- (i) X හි අඩංගු ලෙඩි හා කොපර් ස්කන්ධ පුතිශත ගණනය කරන්න. අදාළ අවස්ථාවන් හි තුලිත රසායනික සමීකරණ ලියන්න.
- (ii) Y අවක්ෂේපය විශ්ලේෂණයේ දී කරන අනුමාපනයෙහි අන්ත ලක්ෂායේ දී ලැබෙන වර්ණ විපර්යාසය කුමක් ද?

(Cu = 63.5, Pb = 207)

(ලකුණු 7.5 යි.)

- 9. (a) පහත සඳහන් පුශ්න පරිසරය සහ ඊට අදාළ ගැටලු මත පදනම් වේ.
 - (i) ගෝලීය උණුසුම්කරණයට දායක වන හරිතාගාර වායු **තුනක්** හඳුනාගන්න. ගෝලීය උණුසුම්කරණය නිසා ඇති වන පුතිවිපාක **දෙකක්** සඳහන් කරන්න.
 - (ii) ගල් අඟුරු බලාගාර නිසා ඇති වන ගෝලීය පාරිසරික ගැටලු හොඳින් පුකට වී ඇත. ගංගා සහ ජලාශ වල සමහර ජල තත්ත්ව පරාමිතියන් වෙනස් වීම සඳහා සැලකීය යුතු ලෙස දායක වන එවැනි එක් ගැටලුවක් හඳුනාගන්න.
 - (iii) ඉහත (ii) හි හඳුනාගන්නා ලද පාරිසරික ගැටලුව සඳහා හේතු වන රසායනික විශේෂය නම් කරන්න. මෙම ගැටලුව නිසා බලපෑමට ලක් විය හැකි ජල තත්ත්ව පරාමිතියන් **තුනක්** සඳහන් කරන්න.
 - (iv) වායුගෝලයේ ඕසෝන් මට්ටම වෙනස් කරන (වැඩි කරන හෝ අඩු කරන) පාරිසරික ගැටලු **දෙකක්** හඳුනාගෙන මෙම වෙනස් වීම් සිදුවන්නේ කෙසේ දැයි තුලිත රසායනික සමීකරණ ආධාරයෙන් කෙටියෙන් පැහැදිලි කරන්න.
 - (v) I. "උත්පේරක පරිවර්තක (catalytic converters) මගින් වාහන පිටාර වායුවෙහි ඇති අහිතකර වායු බහුතරයක්, සාපේක්ෂව අහිතකර බවින් අඩු වායු බවට පරිවර්තනය කරනු ලැබේ." මෙම පුකාශය කෙටියෙන් පැහැදිලි කරන්න.
 - II. උත්පේරක පරිවර්තකයක් මගින් අහිතකර බවින් අඩු වායුවක් බවට පරිවර්තනය නොවන අහිතකර වායුව (CO_2 හැර) නම් කරන්න. මෙම අහිතකර වායුව වාහන එන්ජිම තුළ නිපදවෙන්නේ කෙසේ දැයි කෙටියෙන් සඳහන් කරන්න.

(b) ${f P}_1$ හා ${f P}_2$ යන වැදගත් සංයෝග දෙකක් හා ඒවායින් ව්යුත්පන්න කරනු ලබන ${f P}_3$, ${f P}_4$ හා ${f P}_5$ යන තවත් වැදගත් සංයෝග තුනක් නිපදවන අයුරු පහත දී ඇති ගැලීම් සටහනෙහි දැක්වේ. ${f Na}_2{f CO}_3$ නිෂ්පාදනයේ දී ${f P}_1$ අමුදවායෙක් ලෙස භාවිත වේ. ${f P}_1$ හා ${f P}_2$ අතර පුතිකියාවෙන් ${f P}_3$ නිෂ්පාදනය කළ හැක. ${f P}_3$ පොහොරක් ලෙස හා ස්ඓා්ටකයක් ලෙස භාවිත වේ. බහුල වශයෙන් භාවිත වන පොහොරක් වන ${f P}_4$ නිෂ්පාදනයේ දී ද ${f P}_1$ භාවිත වේ. වැදගත් තාපස්ථාපන බහු අවයවකයක් වන ${f P}_5$ සංශ්ලේෂණයේ දී ${f P}_4$ භාවිත වේ.

 M
 නිෂ්පාදන කි්යාවලිය
 PC
 අමුදුවා ලබා ගැනීම සඳහා
 R
 අමුදුවා

 P
 ඵලය
 S
 අමුදුවා සඳහා පුභවය

(X) පුතිකියා නොකළ අමුදුවාය (අමුදුවා)/ භෞතික භා/හෝ රසායනික කියාවලියේ දී වායුගෝලයට මුදාහැරෙන දුවා

ඉහත ගැලීම් සටහන පදනම් කරගනිමින් පහත පුශ්නවලට පිළිතුරු සපයන්න.

- $(i)\ P_1,\ P_2,P_3,P_4$ හා P_5 හඳුනාගන්න.
- (ii) $old R_1, \ old R_2$ හා $old R_3$ හඳුනාගන්න.
- $(iii)\ oldsymbol{X_1, X_2}}$ හා $oldsymbol{X_3}$ හඳුනාගන්න.
- (iv) S හඳුනාගන්න.
- (v) අදාළ අවස්ථාවලදී තුලිත රසායනික සමීකරණ දෙමින් \mathbf{PC}_1 හා \mathbf{PC}_2 හි සිදු වන කියාවලි කෙටියෙන් සඳහන් කරන්න.
- $({
 m vi})$ ${f M}_1,{f M}_2$ හා ${f M}_3$ නිෂ්පාදන කිුයාවලි හඳුනාගන්න. (උදා: ස්පර්ශ කුමය හෝ ${f H}_2{
 m SO}_4$ නිෂ්පාදනය.)
- (vii) ${f M}_1, {f M}_2$ හා ${f M}_3$ හි සිදු වන පුතිකියා සඳහා තුලිත රසායනික සමීකරණ සුදුසු තත්ත්ව සමග දෙන්න.
- (viii) I. $\mathbf{P_1}$ හා $\mathbf{P_2}$ යන එක් එක් සංයෝගය සඳහා ඉහත සඳහන් කර නොමැති එක් පුයෝජනයක් බැගින් දෙන්න.
 - II . අමුදුවා3යක් ලෙස භාවිත කිරීම හැර, $\mathbf{P_1}$ නිෂ්පාදන කිුිිියාවලියෙහි $\mathbf{R_1}$ හි එක් පුයෝජනයක් දෙන්න.

10.(a) A හා B යනු අෂ්ටතලීය ජනාමිතියක් ඇති සංකීර්ණ අයන (එනම්, ලෝහ අයනය හා එයට සංගත වී ඇති ලිගන) වේ. ඒවාට එකම පරමාණුක සංයුතිය වන $\mathrm{MnC}_5\mathrm{H}_3\mathrm{N}_6$ ඇත. එක් එක් සංකීර්ණ අයනයෙහි ලිගන වර්ග දෙකක් ලෝහ අයනයට සංගත වී ඇත. A අඩංගු ජලීය දාවණයක් පොටෑසියම් ලවණයක් සමග පිරියම් කළ විට C සංගත සංයෝගය සැදෙයි. ජලීය දාවණයේ දී C මගින් අයන හතරක් ලැබේ. B අඩංගු ජලීය දාවණයක් පොටෑසියම් ලවණයක් සමග පිරියම් කළ විට D සංගත සංයෝගය සැදෙයි. ජලීය දාවණයේ දී D මගින් අයන තුනක් ලැබේ. C හා D දෙකටම අෂ්ටතලීය ජනාමිතියක් ඇත.

(සැ.යූ.: පොටෑසියම් ලවණය සමග පිරියම් කළ විට ${f A}$ හා ${f B}$ හි ඇති මැන්ගනීස් හි ඔක්සිකරණ අවස්ථා වෙනස් නොවේ.)

- (i) A හා B හි මැත්ගනීස්වලට සංගත වී ඇති ලිගන හඳුනාගන්න.
- (ii) A, B, C හා D හි වසුන දෙන්න.
- (iii) A හා B හි මැන්ගනීස් අයනයන්හි ඉලෙක්ටෝනික විනාහසයන් ලියන්න.
- (iv) C හා D හි IUPAC නම් ලියන්න.

(ලකුණු 7.5 යි.)

- (b) (i) I. $Ag(s) \mid AgCl(s) \mid Cl^-(aq)$ ඉලෙක්ටෝඩයට අදාළ ඔක්සිහරණ අර්ධ පුතිකියාව ලියන්න.
 - II. $Ag(s) \mid AgCl(s) \mid Cl^-(aq)$ හි ඉලෙක්ටුෝඩ විභවය දුාවණයෙහි Ag^+ සාන්දුණය මත රඳාපවතින්නේ දැයි සඳහන් කරන්න. ඔබගේ පිළිතුර පැහැදිලි කරන්න.
 - (ii) පහත පුතිකිුයාව සලකන්න.

$$Fe(s) + 2H^{+}(aq) + \frac{1}{2}O_{2}(g) \rightarrow Fe^{2+}(aq) + H_{2}O(1)$$

- ඉහත පුතිකිුිිිියාවට අදාළ ඔක්සිකරණ හා ඔක්සිහරණ අර්ධ පුතිකිුිියා ලියන්න.
- II. ඉහත පුතිකිුයාව විදාුුුත් රසායනික කෝෂයක කෝෂ පුතිකිුයාව බව දී ඇත් නම් එම කෝෂයෙහි සම්මත විදාුුුත් ගාමක බලය නිර්ණය කරන්න.

$$E_{Fe^{2+}(aq)/Fe(s)}^{\circ} = -0.44V$$
 $E_{H^{+}(aq)/O_{2}(g)/H_{2}O(1)}^{\circ} = 1.23V$

(iii) රූපයේ දැක්වෙන පරිදි $0.10~{
m mol~dm^{-3}~CaBr_2}$ ජලීය දුාවණයක $100.00~{
m cm^3}$ තුළින් $100~{
m mA}$ වූ නියත ධාරාවක් යවන ලදී. පද්ධතියේ උෂ්ණත්වය $25~{
m ^{\circ}C}$ හි පවත්වා ගන්නා ලදී.

More Past Papers at tamilguru.lk

- ඉලෙක්ටුෝඩවල සිදු වන ඔක්සිකරණ සහ ඔක්සිහරණ පුතිකියා ලියන්න.
- II. $\operatorname{Ca(OH)}_2(s)$ අවක්ෂේප වීම ආරම්භ වීමට ගත වන කාලය ගණනය කරන්න. $25~^{\circ}\mathrm{C}$ හි දී $\operatorname{Ca(OH)}_2$ හි දුාවානා ගුණිතය $1.0 \times 10^{-5}~\mathrm{mol}^3~\mathrm{dm}^{-9}$ වේ. ජලයෙහි අයනීකරණය නොසලකා හරින්න. ජලීය කලාපයෙහි පරිමාව නියතව පවතින බව උපකල්පනය කරන්න.

ආවර්තිතා වගුව

	r -	1						-										
	1																	2
1	H		_															He
	3	4											5	6	7	8	9	10
2	Li	Be											B	C	N	0	F	Ne
	11	12	1										13	14	15	16	17	18
3	Na	Mg											Al	Si	P		1	1 1
				T			<u> </u>	Ι	т —		Τ.		Al	31	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	<u>K</u>	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6		D.	т	TTE	ı	l	i.			1		ŀ		1				00
U	Cs	Ba	Lu	Hf	Ta	W	Re	Os	_Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113					
7	<u>Fr</u>	Ra	_Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub	Uut					

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr