Differential Equations and Linear Algebra Gilbert Strang Solutions by David A. Lee

All errors, typographical and substantive, and other offenses, are entirely my own.

Table of Contents

2 - Second Order Equations	3
2.1 - Second Derivatives in Science and Engineering	3

2 - Second Order Equations

2.1 - Second Derivatives in Science and Engineering

Question: 2.1.1

Find a cosine and a sine that solve $d^2y/dt^2 = -9y$. This is a second order equation so we expect *two constants* C and D (from integrating twice):

Simple harmonic motion
$$y(t) = C \cos(\omega t) + D \sin(\omega t)$$

What is ω ? If the system starts from rest (this means dy/dt = 0 at t = 0), which constant C or D will be zero?

Differentiating y(t) twice, we get a ω^2 term. Making the necessary substitutions, we can see that $\omega^2 = 9$, implying $\omega = 3$. Thus we have $y = \sin{(3t)}$ and $y = \cos{(3t)}$. The constants C and D are determined by the initial conditions. Assuming the system starts at rest, we must have

$$\frac{dy}{dt} = -3C\sin(3t) + 3D\cos(3t) = 0$$

which implies that $dy/dt_{t=0} = 3D = 0$, thus D = 0.

Question: 2.1.2

In Problem 1, which C and D will give the starting values y(0) = 0 and y'(0) = 1?

We have y(0) = C = 0 and y'(0) = 3D = 1, or D = 1/3.

Draw Figure 2.3 to show simple harmonic motion $y = A \cos(\omega t - \alpha)$ with phases $\alpha = \pi/3$ and $\alpha = -\pi/2$.

Question: 2.1.4

Suppose the circle in Figure 2.4 has radius 3 and circular frequency f=60 Hertz. If the moving point starts at the angle -45° , find its x-coordinate $A\cos{(\omega t-\alpha)}$. The phase lag is $\alpha=45^{\circ}$. When does the point first hit the x-axis?

The circular motion of the point is expressed by the sinusoidal

$$3\cos\left(120\pi t - \frac{\pi}{4}\right)$$

Note that since the frequency is f=60 Hertz, the angular frequency is $2\pi \cdot 60=120\pi$ radians s⁻¹. The point hits the x-axis when the argument of the cosine is zero, namely at

$$120\pi t - \frac{\pi}{4} = 0 \quad \Longrightarrow \quad t = \frac{1}{480}$$
s

Question: 2.1.5

If you drive at 60 miles per hour on a circular track with radius R=3 miles, what is the time T for one complete circuit? Your circular frequency is f= and your angular frequency is $\omega=$ (with what units?). The period is T.

Using dimensional analysis, the period is

$$T = \frac{1 \text{ hr}}{60 \text{ mi}} (3 \text{ mi}) = \frac{1}{20} \text{ hr}$$

The circular frequency is

$$f = \frac{60 \text{ mi}}{\text{hr}} \frac{1 \text{ hr}}{3600 \text{ s}} \frac{1 \text{ cycle}}{3 \text{ mi}} = \frac{1}{180} \text{ s}^{-1}$$

with angular frequency

$$\omega = 2\pi f = \frac{\pi}{90} \text{ rad s}^{-1}$$

Question: 2.1.6

The total energy E in the oscillating spring-mass system is

E =kinetic energy in mass + potential energy in spring

$$= \frac{m}{2} \left(\frac{dy}{dt}\right)^2 + \frac{k}{2} y^2$$

Compute E when $y = C \cos(\omega t) + D \sin(\omega t)$. The energy is constant!

Given y(t), we have first time-derivative

$$\frac{dy}{dt} = -\omega C \sin(\omega t) + \omega D \cos(\omega t)$$

squaring gives us

$$\left(\frac{dy}{dt}\right)^{2} = \omega^{2} \left(C^{2} \sin^{2}(\omega t) - 2CD \sin(\omega t) \cos(\omega t) + D^{2} \cos^{2}(\omega t)\right)$$

Lastly, the y^2 term is

$$y^{2} = C^{2} \cos^{2}(\omega t) + 2CD \sin(\omega t) \cos(\omega t) + D^{2} \sin^{2}(\omega t)$$

Combining our ingredients, with $\omega=\sqrt{k/m},$ observe that energy E reduces to a constant:

$$\begin{split} E &= \frac{m}{2} \left(\frac{dy}{dt} \right)^2 + \frac{k}{2} y^2 \\ &= \frac{m}{2} \left(\frac{k}{m} \right) \left(C^2 \sin^2 \left(\omega t \right) - 2CD \sin \left(\omega t \right) \cos \left(\omega t \right) + D^2 \cos^2 \left(\omega t \right) \right) \\ &+ \frac{k}{2} \left(C^2 \cos^2 \left(\omega t \right) + 2CD \sin \left(\omega t \right) \cos \left(\omega t \right) + D^2 \sin^2 \left(\omega t \right) \right) \\ &= C^2 + D^2 \end{split}$$

Another way to show that the total energy E is constant: Multiply my'' + ky = 0 by y'. Then integrate my'y'' and kyy'.

Take the first term and integrate:

$$m \int y'y'' \, dt$$

By integration by parts, let

$$u = \frac{dy}{dt}, \quad \frac{du}{dt} = \frac{d^2y}{dt^2} \implies du = \frac{d^2y}{dt^2}dt$$

Then we can rewrite the first term as

$$m\int u \, du = \frac{m}{2}u^2 + C = \frac{m}{2}(y')^2 + C$$

as for the second term:

$$k \int yy' dt = k \int y \frac{dy}{dt} dt = k \int y dy = \frac{k}{2}y^2 + C$$

Summing the two pieces (sans the constants) restores the original energy function:

$$E = \frac{m}{2} \left(\frac{dy}{dt}\right)^2 + \frac{k}{2} y^2$$

and since the derivative of a constant is zero, it must be the case that E is a constant.

Question: 2.1.8

A forced oscillation has another term in the equation and $A\cos(\omega t)$ in the solution:

$$\frac{d^2y}{dt^2} + 4y = F\cos(\omega t) \quad \text{has} \quad y = C\cos(2t) + D\sin(2t) + A\cos(\omega t)$$

- (a) Substitute y into the equation to see how C and D disappear (they give y_n . Find the forced amplitude A in the particular solution $y_p = A\cos(\omega t)$.
- (b) In case $\omega = 2$ (forcing frequency = natural frequency), what answer does your formula give for A? The solution formula for y breaks down in this case.

The second time-derivative is

$$\frac{d^2y}{dt^2} = -4C\cos(2t) - 4D\sin(2t) - \omega^2A\cos(\omega t)$$

(a) We have

$$\frac{d^2y}{dt^2}+4y=\left(4-\omega^2\right)A\cos\left(\omega t\right)=F\cos\left(\omega t\right)$$
 implying $A=\frac{F}{4-\omega^2}$.

(b) When $\omega = 2$, A is undefined.

Question: 2.1.9

Following Problem 8, write down the complete solution $y_n + y_p$ to the equation

$$m\frac{d^2y}{dt^2} + ky = F\cos(\omega t)$$
 with $\omega \neq \omega_n = \sqrt{k/m}$ (no resonance)

The answer y has free constants C and D to match y(0) and y'(0) (A is fixed by F.

Per Problem 8, we have solution

$$y = \underbrace{C\cos\left(\sqrt{\frac{k}{m}}t\right) + D\sin\left(\sqrt{\frac{k}{m}}t\right)}_{y_p} + \underbrace{\frac{F}{k - m\omega^2}\cos\left(\omega t\right)}_{y_p}$$

All this involves is dividing the equation through by m, understanding that the angular frequency of the sinusoidals in the null solution is the square root of k/m, and making the changes to our formula for A accordingly.

Question: 2.1.10

Suppose Newton's Law F=ma has the force F in the same direction as a:

$$my'' = +ky$$
 including $y'' = 4y$

Find two possible choices of s in the exponential solutions $y=e^{st}$. The solution is not sinusoidal and s is real and the oscillations are gone. Now y is unstable.

Substituting in y, we find

$$ms^2e^{st} = ke^{st}$$

This forces

$$s = \pm \sqrt{\frac{k}{m}}$$

Here is a fourth order equation: $d^4y/dt^4 = 16y$. Find four values of s that give exponential solutions $y = e^{st}$. You could expect four initial conditions on y: y(0) is given along with what three other conditions?

Equivalently, we find the four complex roots of 16:

$$s^4 = 16$$

which are $s = \pm 2, \pm 2i$.

Question: 2.1.12

To find a particular solution to $y'' + 9y = e^{ct}$, I would look for a multiple $y_p(t) = Ye^{ct}$ of the forcing function. What is that number Y? When does your formula give $Y = \infty$? (Resonance needs a new formula for Y.)

Let $y_p = Ye^{ct}$. Substituting, we find

$$Yc^2e^{ct} + 9Ye^{ct} = e^{ct}$$

Solving for Y yields $Y = \frac{1}{c^2 + 9}$. When $c \to \pm 3$, we have resonance, and $Y \to \infty$.

Question: 2.1.13

In a particular solution $y=Ae^{i\omega t}$ to $y''+9y=e^{i\omega t}$, what is the amplitude A? The formula blows up when the forcing frequency $\omega=$ what natural frequency?

Substituting, we derive

$$-\omega^2 A e^{i\omega t} + 9A e^{i\omega t} = e^{i\omega t}$$

which gives us $A = \frac{1}{9 - \omega^2}$. Resonance is when $\omega = 3$.

Equation (10) says that the tangent of the phase angle is $\tan(\alpha) = y'(0)/\omega y(0)$. First, check that $\tan(\alpha)$ is dimensionless when y is in meters and time is in seconds. Next, if that ratio is $\tan(\alpha) = 1$, should you choose $\alpha = \pi/4$ or $\alpha = 5\pi/4$? Answer:

Separately you want $R\cos(\alpha) = y(0)$ and $R\sin(\alpha) = y'(0)/\omega$

If those right hand sides are positive, choose the angle α between 0 and $\pi/2$.

If those right hand sides are negative, add π and choose $\alpha = 5\pi/4$.

Question: If y(0) > 0 and y'(0) < 0, does α fall between $\pi/2$ and π or between $3\pi/2$ and 2π ? If you plot the vector from (0,0) to $(y(0),y'(0)/\omega)$, its angle is α .

As y(0) > 0 and y'(0) < 0 requires positive cosine and negative sine, α falls between $3\pi/2$ and 2π .

Question: 2.1.15

Find a point on the sine curve in Figure 2.1 where y > 0 but v = y' < 0 and also a = y'' < 0. The curve is sloping down and bending down.

Find a point where y < 0 but y' > 0 and y'' > 0. The point is below the x-axis but the curve is sloping ____ and bending ____.

One area corresponding to the first set of conditions is $\pi/2 < t < \pi$. As for the second, we have $3\pi/2 < t < 2\pi$.

Question: 2.1.16

- (a) Solve y'' + 100y = 0 starting from y(0) = 1 and y'(0) = 10. (This is y_n .)
- (b) Solve $y'' + 100y = \cos(\omega t)$ with y(0) = 0 and y'(0) = 0. (This can be y_p .)
- (a) Let $y = c_1 \cos(10t) + c_2 \sin(10t)$. Then $y(0) = c_1 = 1$ and $y'(0) = 10c_2 = 10$ implies $c_2 = 1$. Then the null solution is

$$y_n = \cos(10t) + \sin(10t)$$

(b) Let $y_p = R \cos(\omega t)$. Substitute to find

$$-\omega^{2}R\cos\left(\omega t\right) + 100R\cos\left(\omega t\right) = \cos\left(\omega t\right)$$

Isolate R to derive

$$R = \frac{1}{100 - \omega^2}$$

The solution to this set of initial conditions requires y(0) = 0 and y'(0) = 0. Begin with

$$y(t) = c_1 \cos(10t) + c_2 \sin(10t) + \frac{1}{100 - \omega^2} \cos(\omega t)$$

From the first condition, we have $c_1 = -\frac{1}{100 - \omega^2}$. From the second, we have $c_2 = 0$. The full solution is

$$y(t) = \frac{1}{100 - \omega^2} (\cos(\omega t) - \cos(10t))$$

Question: 2.1.17

Find a particular solution $y_p = R \cos(\omega t - \alpha)$ to $y'' + 100y = \cos(\omega t) - \sin(\omega t)$.

Substituting y_p gives us

$$-\omega^2 R \cos(\omega t - \alpha) + 100R \cos(\omega t - \alpha)$$

= $(100R - \omega^2 R) [\cos(\omega t) \cos(\alpha) + \sin(\omega t) \sin(\alpha)]$

This implies that

$$R\cos(\alpha)(100 - \omega^2) = 1$$
$$R\sin(\alpha)(100 - \omega^2) = -1$$

enabling us to conclude that $\alpha = 7\pi/4$, and amplitude

$$R = \frac{\sqrt{2}}{100 - \omega^2}$$

Ergo, the particular solution is

$$y_p = \frac{\sqrt{2}}{100 - \omega^2} \cos\left(\omega t - \frac{7\pi}{4}\right)$$

Question: 2.1.18

Simple harmonic motion also comes from a linear pendulum (like a grandfather clock). At time t, the height is $A\cos{(\omega t)}$. What is the frequency ω if the pendulum comes back to the start after 1 second? The period does not depend on the amplitude (a large clock or a small metronome or the movement in a watch can all have T=1).

The angular frequency is $2\pi \cdot f = 2\pi$ radians s⁻¹.