

Random Graphs

CptS 591: Elements of Network Science

Outline

- Random graph as a concept
- Random variables and Expectation
- Graph invariants in random graphs
- Phase transition
- Random graphs vs real-world networks (subject of next lecture)

Motivation

(from graph theoretic perspective)

- Given a graph G,
 - the minimum length of a cycle contained in G is the girth g(G) of G
 - the maximum length of a cycle in G is its *circumference*
 - the smallest number of colors required to color G is the *chromatic number* x(G) of G
- Example:

- g(G) = 3
- circumference(G) = 6
- x(G) = 3 (in general NP-hard to compute)

Motivation (cont'd): Paraphrased Erdos theorem

- There exist graphs whose
 - 1. girth is arbitrarily large, and
 - 2. chromatic number is arbitrarily large
- These requirements work against each other:

 A graph with a large girth is tree-like (acyclic) and hence is expected to have small chromatic number
- a constructive proof for Erdos theorem is difficult (if not impossible) to come by
- Instead, Erdos used *Random Graphs* and the "*Probabilistic Method*" to prove such *existence theorems*

What is a random graph?

- Let V be a fixed set of n elements, say $V = \{1,2,...,n\}$.
 - Let \hat{G} be the set of all possible graphs on V.

(Note: there are 2^N possible graphs N = (n:2), where (n:k) denotes n choose k)

- We would like to turn \hat{G} into a probability space and be able to answer such questions as
 - What is the probability that a graph G in \hat{G} has a certain property?
 - What is the expected value of a given invariant on G?
- Consider the following random process of generating G.
 - Let [V]² denote the set of all pairs of elements drawn from V (There are (n:2) possible pairs)
 - For each e in [V]² decide using a random expt whether or not e shall be an edge of G
 - Perform the expts independently, each time accepting e to be an edge with a fixed probability p, 0<=p<= 1
- Now let G_0 be some fixed graph on V with m edges.
- Then,

$$P[G=G_0] = p^m q^{(N-m)}$$
, where $q = 1-p$ and $N=(n:2)$

What is random graph (cont'd)

- One can continue in this way to determine probabilities of all possible elementary events (all m)
- \rightarrow the probability measure of the desired space \hat{G} is determined
- One can formally show (as in Diestel) that a probability measure on \hat{G} where all individual edges occur *independently* with *probability p* exists.

• With these two assumptions, we can now calculate probabilities in the space $\hat{G} = \hat{G}(n,p)$.

Examples

- Let G in Ĝ, and H be a fixed graph on a subset U of V. Let the number of vertices in H be k, and the number of edges be 1.
- Q1: What is P[H is a subgraph of G]?
- Soln 1: Each edge of H occurs independently with a probability of p. Hence the required probability is p^{l.}
- Q2: What is P[H is an induced subgraph of G]?
- Soln2: This time, in addition to that in Q1, the r = (k:2) 1 edges missing from H are required to be missing from G too, independently with probability q = 1-p.

Hence the required probability is p^lq^r

More interesting examples

- First we define a few notions
 - Independent Set: a set of pairwise non-adjacent vertices
 - Clique: a set of pairwise adjacent vertices
 - The size of the largest IS in a graph G is its independence number $\alpha(G)$
 - The size of the largest clique in a graph is its clique number $\omega(G)$
- Lemma 1: For all integers n, k with $n \ge k \ge 2$, the probability that G in $\hat{G}(n,p)$ has an IS of size k is at most

•
$$P[\alpha(G) \ge k] \le (n:k)q^{(k:2)}$$

- Lemma 2:For all integers n, k with $n \ge k \ge 2$, the probability that G in $\hat{G}(n,p)$ contains a clique of size k is at most
 - $P[w(G) \ge k] \le (n:k)p^{(k:2)}$

Random variables and Expectation

- Let X be a random variable. Let the possible values X can assume be x_1 , x_2 , ..., x_n .
- The expected (or mean) value of X is then $E(X) = \sum_{i=1}^{n} P[X = x_i] \bullet x_i$
- Example: die tossing. (Let X be a toss. Convince yourself that E(X) = 3.5)
- The operator E, expectation, is linear
 - E(X + Y) = E(X) + E(Y) and
 - E(aX) = a E(X)

For any random variables X, Y and real number a

• In the context of random graphs, a graph invariant may be interpreted as a nonnegative random variable on $\hat{G}(n,p)$, i.e., as a function $X:\hat{G}(n,p) \rightarrow [0,\infty]$

Graph invariants in random graphs

- The expected value of X is then
 - $E(x) = \sum P(\{G\}) X(G)$ (sum over all G in \hat{G})
- Computing the mean of a random variable X can be an effective way to compute the existence of a graph G s.t.
 - (i) X(G) < a for some fixed a > 0, and
 - (ii) G has some desired property
- Idea: if E(X) is small, X(G) is small for many of the graphs in $\hat{G}(n,p)$, since $X(G) \ge 0$ for all G in \hat{G} . It is then reasonable to expect to find a graph with the desired property among these.
- This idea lies at the heart of many non-constructive existence proofs using random graphs.

Markov's Inequality

• Lemma 3: Let $X \ge 0$ be a random variable on $\hat{G}(n,p)$ and a > 0. Then, $P[X \ge a] \le E(X)/a$

• Proof:

$$E(X) = \sum P(\{G\}) X(G) \qquad \text{(sum over G in $\hat{G}(n,p)$)}$$

$$\geq \sum P(\{G\}) X(G) \qquad \text{(sum over G in $\hat{G}(n,p)$ s.t. $X(G) \geq a$)}$$

$$\geq \sum P(\{G\}) a \qquad \text{(since $X(G) \geq a$)}$$

$$= P[X \geq a] a \qquad \text{(since a is constant)}$$

Rewriting,

$$P[X \ge a] \le E(X)/a$$

The Probabilistic Method

- Basic Idea:
 - To prove the existence of an object with some desired property, define a probability space on some larger class of objects, and then show that an element of this larger space has the desired property
- Illustrate using proof of Erdos's theorem

Properties of almost all graphs and Phase transition

- Many results concerning "almost all graphs" have the common feature that the value of p (in the space $\hat{G}(n,p)$) plays no role.
- How could this happen?

• Then, what happens if p is allowed to vary with n?

G in Ĝ (n,p)

 $G \text{ in } \hat{G} (n,p)$ G a.s. has no edges G acquires more and more edges $n^{-3/2}$ Every component in G a.s. has at least two vertices p = p(n)

 $G \text{ in } \hat{G} (n,p)$ G a.s. has no edges G acquires more and more edges $n^{-3/2}$ Every component in G a.s. has at least two vertices n^{-1} - First cycles are born - One component outgrows all others $(log n) n^{-1}$ A "giant component" is born (G is connected) $(1+e) (log n) n^{-1}$ G a.s. has a Hamilton cycle p = p(n)

Random graphs vs real-world networks

- Degree Distribution
- Average Path Length
- Clustering Coefficient

We will look at these in next lecture

