Ordre sur des suites croissantes d'entiers

Pour tout couple (n,p) d'entiers naturels, on note $\binom{n}{p}$ le cardinal de l'ensemble des parties à p éléments d'un ensemble à n éléments. On rappelle que si n < p alors $\binom{n}{p} = 0$.

Partie I

- 1. Soit (n, p) un couple d'entiers naturels non nuls.
 - Etablir une relation entre $\binom{n}{p}$, $\binom{n-1}{p}$ et $\binom{n-1}{p-1}$.
- 2. Montrer que, pour tout entier naturel non nul n et pour tout entier naturel $p:\binom{n}{p} \ge \binom{n-1}{p}$ Dans quel cas y a-t-il égalité ?

Partie II

Soient n un entier naturel non nul, E l'ensemble $[\![1,n]\!]$ des entiers naturels non nuls et inférieurs à n, k un élément de E, et F l'ensemble des suites $s=(a_1,a_2,\ldots,a_k)$ de k éléments de E telles que : $a_1 < a_2 < \cdots < a_k$.

- 1. Calculer le cardinal q de F en fonction de n et de k.
- 2. Soit \preccurlyeq la relation binaire dans F définie par les couples (s,t) où $s=(a_1,a_2,...,a_k)$ et $t=(b_1,b_2,...,b_k)$ satisfaisant à l'une des conditions ci-dessous : a) s=t ,
 - b) il existe $h \in [1, k]$ tel que, pour tout i de [1, h-1], $a_i = b_i$ et tel que $a_h < b_h$.
- 2.a Montrer que ≼ est une relation d'ordre.
- 2.b Montrer que cet ordre est total.
- 3. On suppose l'ensemble F muni de la relation d'ordre précédentes. On range les q éléments de F en une suite strictement croissante indexée par l'intervalle $[\![1,q]\!]$ de $\mathbb N$.

On appelle rang d'un élément $s\,$ de $F\,$ et on note $r(s)\,$ l'indice de $s\,$.

Ainsi, le plus petit élément de F, à savoir $(1,2,\ldots,k-1,k)$, a pour rang 1; l'élément $(1,2,\ldots,k-1,k+1)$ a pour rang $2,\ldots,$ l'élément $(1,2,\ldots,k-1,n)$ a pour rang $n-k+1,\ldots,$ l'élément $(n-k+1,n-k+2,\ldots,n)$ a pour rang q.

Expliciter l'application r lorsque n=5 et k=3 puis lorsque n=5 et k=4.

4. Soit $s = (a_1, a_2, ..., a_k)$ un élément de F.

Montrer que le cardinal de l'ensemble des éléments t de F strictement supérieurs à s est égal à $\sum_{k=1}^k \binom{n-a_k}{k-h+1}.$

En déduire r(s).

5. Application numérique :

Calculer q et r(s) lorsque n = 16 et que s = (3,4,7,9,10,11,12,13,14,16).

Partie III

Soit n' un entier naturel et k un entier naturel non nul.

- 1. Montrer que l'ensemble des entiers naturels z tels que $\binom{z}{k} \le n'$ admet un plus grand élément, soit y. Calculer y lorsque n' = 0 et aussi lorsque k = 1.
- 2. On considère la suite $(y_1, y_2, ..., y_k)$ telle que $y_k = y$ et que, pour tout élément h = k-1, k-2, ..., 1, y_k soit le plus grand entiers naturels z tels que : $\binom{z}{h} \le n' \binom{y_k}{k} \binom{y_{k-1}}{k} \cdots \binom{y_{h+1}}{h+1}$.
- 2.a Montrer que $y_1 < y_2 < \dots < y_k$.

Années d'utilisation:

- 2.b Justifier que $\binom{y_1}{1} + \binom{y_2}{2} + \dots + \binom{y_k}{k} = n'$.
- 3. On suppose n' < q.
- 3.a Etablir que $y_k < n$.
- 3.b On considère la suite $s=(n-y_k,n-y_{k-1},\ldots,n-y_1)$ qui est élément de F . Calculer le rang de s .
- 4. Déduire de ce qui précède une démarche permettant de déterminer une suite s connaissant son rang.
- 5. Application numérique :

Expliciter s lorsque n = 16, k = 10 et r(s) = 2003.

On pourra utiliser la table suivante qui donne $\binom{n}{p}$:

	(1)								
$n \setminus p$	2	3	4	5	6	7	8	9	10
1									
2	1								
3	3	1							
4	6	4	1						
5	10	10	5	1					
6	15	20	15	6	1				
7	21	35	35	21	7	1			
8	28	56	70	56	28	8	1		
9	36	84	126	126	84	36	9	1	
10	45	120	210	252	210	120	45	10	1
11	55	165	330	462	462	330	165	55	11
12	66	220	495	792	924	792	495	220	66
13	78	286	715	1287	1716	1716	1287	715	286
14	91	364	1001	2002	3003	3432	3003	2002	1001
15	105	455	1365	3003	5005	6435	6435	5005	3003
16	120	560	1820	4368	8008	11440	12870	11440	8008