PSALTer results panel

 $\iiint \left(\frac{1}{6}\left(-4t_{3}^{2}\mathcal{A}^{\alpha_{\alpha}}\mathcal{A}^{\theta}_{\beta}+6\mathcal{A}^{\alpha\beta}\mathcal{A}^{\alpha}\right)\mathcal{A}^{\theta}_{\alpha}+6\mathcal{A}^{\alpha\beta}\mathcal{A}^{\alpha}\mathcal{A}^{\theta}_{\beta}+6\mathcal{A}^{\alpha\beta}\mathcal{A}^{\alpha}_{\alpha}+8t_{3}^{2}\mathcal{A}^{\theta}_{\alpha}\partial_{\beta}\mathcal{A}^{\theta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\theta}_{\alpha}\partial_{\beta}\mathcal{A}^{\theta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\theta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\theta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\theta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\alpha\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\beta}\partial_{\beta}\mathcal{A}^{\beta}_{\beta}+6r_{3}^{2}\partial_{\beta}\mathcal{A}^{\beta}\partial_{\beta}\mathcal{$ $r_{3}\partial_{\beta}\mathcal{R}_{_{1}\theta\alpha}\partial^{\theta}\mathcal{R}^{\alpha\beta_{1}} - 2r_{2}\partial_{_{1}}\mathcal{R}_{_{\alpha\beta\theta}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{1}} + 2r_{2}\partial_{_{\theta}}\mathcal{R}_{_{\alpha\beta_{1}}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{1}} - 4r_{2}\partial_{_{\theta}}\mathcal{R}_{_{\alpha_{1}\beta}}\partial^{\theta}\mathcal{R}^{\alpha\beta_{1}} + 6r_{2}\partial_{_{1}}\mathcal{R}_{_{0}}\partial^{\theta}\mathcal{R}^{\alpha_{1}}_{_{0}} - 6r_{2}\partial_{_{\theta}}\mathcal{R}_{_{0}}\partial^{\theta}\mathcal{R}^{\alpha_{1}}_{_{0}} + 4t_{2}\partial_{_{1}}\mathcal{R}_{_{0}}\partial^{\theta}f^{\alpha_{1}} + 2t_{2}\partial_{_{2}}f_{_{1}\theta}\partial^{\theta}f^{\alpha_{1}} - t_{2}\partial_{_{2}}f_{_{1}\theta}\partial^{\theta}f^{\alpha_{1}} - t_{2}\partial_{_{2}}f_{_{2}\theta}\partial^{\theta}f^{\alpha_{1}} - t_{2}\partial_{_{2}}f_{_{2}\theta}\partial^{\theta$ $t. \frac{\partial_{i} f_{\alpha \theta}}{\partial^{i}} \frac{\partial^{\theta} f^{\alpha i}}{\partial^{\alpha}} + t. \frac{\partial_{\theta} f_{\alpha i}}{\partial^{\alpha}} \frac{\partial^{\theta} f^{\alpha i}}{\partial^{\alpha}} - t. \frac{\partial_{\theta} f_{\alpha i}}{\partial^{\alpha}} \frac{\partial^{\theta} f^{\alpha i}}{\partial^{\alpha}} - 4t. \mathcal{A}_{\alpha \theta i} \frac{\partial^{\alpha} f^{\alpha i}}{\partial^{\alpha}} + 2t. \mathcal{A}_{\alpha \theta i} \frac{\partial^{\alpha} f^{\alpha i}}{\partial^{\alpha}} + 2t. \mathcal{A}_{\alpha \theta i} \frac{\partial^{\alpha} f^{\alpha i}}{\partial^{\alpha}} \frac{\partial^{\alpha} f^{\alpha i}}{\partial^{\alpha}} + 2t. \mathcal{A}_{\alpha \theta i} \frac{\partial^{\alpha} f^{\alpha i}}{\partial^{\alpha}} \frac{\partial^{\alpha} f^{$

Wave operator

_	${}^{0,^{+}}_{\cdot}\mathcal{F}^{\parallel}$	0 <u>.</u> +f		${}^{0}\mathcal{A}^{\parallel}$										
^{0,+} <i>Я</i> ∥†	<i>t</i> . 3	$-i\sqrt{2} kt$.	0	0										
^{0,+} <i>f</i> [∥] †	$i\sqrt{2} kt$.	$2k^2t$.	0	0										
$0.^{+}f^{\perp}$ †	0	0	0	0										
^{0.} A∥ †	0	0	0	$k^2 r. + t.$	$\overset{1^{+}}{\cdot}\mathcal{H}^{\parallel}{}_{\alpha\beta}$	$^{1.}^{+}\mathcal{A}^{\perp}{}_{lphaeta}$	$1.^+f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{H}_{lpha}^{\parallel}$	${}^1{\mathscr H}^{\scriptscriptstyle\perp}{}_{\alpha}$	$\frac{1}{2}f^{\parallel}_{\alpha}$	$^{1}f_{a}^{\perp}$			
				$^{1.}^{+}\mathcal{A}^{\parallel}\dagger^{lphaeta}$	$k^2 (2r. + r.) + \frac{2t.}{3}$	$\frac{\sqrt{2} t}{3}$	$\frac{1}{3} i \sqrt{2} kt.$	0	0	0	0			
					$\frac{\sqrt{2} t_{2}}{3}$	$\frac{t}{2}$	$\frac{i kt.}{2}$	0	0	0	0			
				$1.^+f^{\parallel}$ † $^{\alpha\beta}$	$-\frac{1}{3} i \sqrt{2} kt.$	$-\frac{1}{3}ikt$.	J		0	0	0			
				$^{1}\mathcal{A}^{\parallel}\dagger^{lpha}$	0	0	0	$k^2 \left(\frac{r}{3} + r\right) + \frac{2t}{3}$	$-\frac{\sqrt{2}\ t_{3}}{3}$	0	$-\frac{2}{3}ikt$.			
				$\frac{1}{2}\mathcal{A}^{\perp} \dagger^{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_{.3}}{3}$		0	$\frac{1}{3}i\sqrt{2}kt.$			
				$\frac{1}{2}f^{\parallel} \uparrow^{\alpha}$	0	0	0		0	0	0			
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	$\frac{2ikt.}{3}$	$-\frac{1}{3}i\sqrt{2}kt$	0	$\frac{2 k^2 t}{3}$	$^{2^{+}}\mathcal{H}^{\parallel}{}_{lphaeta}$	$2^+f^{\parallel}_{\alpha\beta}$	2 ⁻ ℋ αβχ
											$^{2^{+}}\mathcal{H}^{\parallel}\dagger^{\alpha\beta}$	$-\frac{3k^2r}{2}$	0	0
											$\overset{2^+}{\cdot}f^{\parallel} + \overset{\alpha\beta}{\cdot}$	0	0	0
											$2^{-}\mathcal{A}^{\parallel} + \alpha^{\alpha\beta\chi}$	0	0	0
	_	_												

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \frac{1}{k^{2}} \sigma^{\parallel} + \frac{\alpha \beta}{k^{2}} \frac{\frac{1}{k^{2}(2r_{3}+r_{5})} - \frac{\sqrt{2}}{k^{2}(1+k^{2})(2r_{3}+r_{5})} - \frac{i\sqrt{2}}{k(1+k^{2})(2r_{3}+r_{5})}}{\frac{\sqrt{2}}{k^{2}(1+k^{2})(2r_{3}+r_{5})} - \frac{3k^{2}(2r_{3}+r_{5})+2t_{1}}{k(1+k^{2})^{2}(2r_{3}+r_{5})+2t_{2}}} - \frac{i(3k^{2}(2r_{3}+r_{5})+2t_{1})}{k(1+k^{2})^{2}(2r_{3}+r_{5})t_{2}}} = 0 \qquad 0 \qquad 0 \qquad 0 $	
$ \frac{1}{k^{2}(2r_{3}+r_{5})} - \frac{\sqrt{2}}{k^{2}(1+k^{2})(2r_{3}+r_{5})} - \frac{i\sqrt{2}}{k(1+k^{2})(2r_{3}+r_{5})} = 0 \qquad 0 \qquad 0 $ $ \frac{1}{k^{2}(2r_{3}+r_{5})} - \frac{\sqrt{2}}{k^{2}(1+k^{2})(2r_{3}+r_{5})} - \frac{i(3k^{2}(2r_{3}+r_{5})+2t_{3})}{k(1+k^{2})^{2}(2r_{3}+r_{5})+2t_{3}} = 0 $ $ 0 \qquad 0 \qquad 0 $	
$\frac{1}{1} \tau ^{\frac{1}{4}} \tau ^{\frac{1}{4}} = \frac{i\sqrt{2}}{k(1+k^2)(2r+r)} - \frac{i(3k^2(2r+r)+2t)}{k(1+k^2)(2r+r)} - \frac{3k^2(2r+r)+2t}{(1+k^2)(2r+r)} = \frac{3k^2(2r+r)+2t}{(1+k^2)^2(2r+r)} = 0$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\frac{1}{2} \sigma^{\parallel} + \sigma^{\parallel} = 0 \qquad 0 \qquad 0 \qquad \frac{2}{k^{2} (r_{3} + 2r_{5})} \qquad \frac{2\sqrt{2}}{k^{2} (1 + 2k^{2}) (r_{3} + 2r_{5})} \qquad 0 \qquad \frac{4i}{k (1 + 2k^{2}) (r_{3} + 2r_{5})}$	
$\frac{1}{2} \sigma^{\perp} + \sigma^{\perp} = 0 \qquad 0 \qquad \frac{2\sqrt{2}}{k^{2}(1+2k^{2})(r_{3}+2r_{5})} \qquad \frac{3k^{2}(r_{3}+2r_{5})+4t_{3}}{(k+2k^{3})^{2}(r_{3}+2r_{5})t_{3}} \qquad 0 \qquad \frac{i\sqrt{2}(3k^{2}(r_{3}+2r_{5})+4t_{5})}{k(1+2k^{2})^{2}(r_{3}+2r_{5})t_{3}}$	
$\frac{1}{2} \tau^{\parallel} + \frac{\alpha}{2} = 0$ 0 0 0 0 0	
$\frac{1}{1} \tau^{\perp} + \tau^{\alpha} = 0 \qquad 0 \qquad -\frac{4i}{k(1+2k^2)(r_1+2r_2)} - \frac{i\sqrt{2}(3k^2(r_1+2r_2)+4t_1)}{k(1+2k^2)^2(r_1+2r_2)t_1} = 0 \qquad 0 \qquad \frac{6k^2(r_1+2r_2)+8t_1}{(1+2k^2)^2(r_1+2r_2)t_1}$	2. o a 2. t a
	$\frac{2}{3k^2r}$ 0
2 ⁺ τ †	0 0
$2^{-}\sigma^{\parallel}\uparrow^{lpha_{\beta}}$	0 0

Source constraints

Spin-parity form	Covariant form	Multiplicities		
0+ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}=0$	1		
$-2 \bar{l} k^{0^{+}} \sigma^{\parallel} + {}^{0^{+}} \tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta}$	1		
$2ik \frac{1}{2}\sigma^{\perp}^{\alpha} + \frac{1}{2}\tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3		
1 τ α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3		
$\bar{i} k 1^+_{\sigma^{\perp}} \sigma^{\perp}^{\alpha\beta} + 1^+_{\tau} \eta^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\sigma}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \\ \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + 2\partial_{\sigma}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \\ \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + \partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} + \\ \partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta} \partial$	3		
$\frac{2 \cdot \sigma^{\parallel^{\alpha\beta\chi}}}{2 \cdot \sigma^{\parallel^{\alpha\beta\chi}}} == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta\beta\epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta\beta}_{\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha\chi\delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\delta\alpha\chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\delta\alpha\chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta\alpha\delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta\alpha\delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\delta\alpha\delta} + 2 \partial_{\epsilon} \partial^{\kappa} \partial^{\chi} \sigma^{\delta\alpha\delta} + 2 \partial_{\kappa} \partial^{\kappa} \partial^{$	5		
	$3\partial_{\epsilon}\partial_{\delta}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon} + 3\partial_{\epsilon}\partial^{\epsilon}\partial^{\chi}\partial^{\beta}\sigma^{\delta\alpha}_{\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\beta\chi\delta} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\chi\beta\delta} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\alpha}\sigma^{\delta\beta\chi} + 2\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\delta\alpha\chi} + 4\partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\lambda\alpha\beta} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\delta}\partial^{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\delta}\partial^{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\delta}\partial^{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial_{\phi}\partial^{\delta}\partial^{\delta}\sigma^{\delta\alpha\epsilon} + 3\eta^{\alpha\chi}\partial_{\phi}\partial^{\phi}\partial^{\delta}\partial^{\delta}\partial^{\delta}$			
$2^+_{\cdot} \tau^{\parallel^{\alpha\beta}} == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau (\Delta + \mathcal{K})^{\beta \alpha} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + \mathcal{K})^{\alpha \beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau (\Delta + $	5		
Total expected gauge generators:				

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{\cdot}^{2}} > 0$
Square mass:	$-\frac{\frac{t}{2}}{\frac{r}{2}} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

Massless particle

Polarisations: 2

Unitarity conditions

 $r. < 0 \&\&t. > 0 \&\&((r. < 0 \&\&(r. < -\frac{3}{2} || r. > -2r.)) || (r. > 0 \&\& -2r. < r. < -\frac{3}{2}))$