6.1 Sum and Difference of functions

Throughout grade 11 and 12, we have expressed functions using function notation.

Ex)
$$f(x) = 2x + 1$$

$$g(x) = 2x^2 - 7x - 4$$

$$g(x) = 2x^2 - 7x - 4$$
 $h(x) = 2\sin(3x)\cos(2x)$

Functions are made of terms separated by arithmetic operators $(+, -, \times, \div)$. Because terms can be added, subtracted, multiplied, and divided and functions are made of terms, functions may be added, subtracted, multiplied, and divided.

- a) Whenever arithmetic operations are applied to functions, a new function may be created.
 - The new function is called a combined function.

Function Notation: f(x) + g(x) is often represented as (f + g)(x)f(x) - g(x) is often represented as (f - g)(x)

$$D_{f\pm g}=$$

The Superposition Principal

If f(x) and g(x) are functions then the sum of the two functions h(x) = f(x) + g(x) can be found by adding the y-coordinates at each point along the x-axis. The difference of the two functions (f-g)(x)can be found by subtracting the y-coordinates at each point along the x-axis.

Ex 1) Given the following graphs, find the graph of (f+g)(x) and (f-g)(x).

×	f(x)	g(x)	(f+g)(x)	(f-g)(x)
-8				
-7				
-4				
0				
3				
7				
9				

Ex 2) Given the following graphs, find the graph of h(x) = f(x) + g(x)

×	f(x)	g(x)	(f+g)(x)

Ex 3) Given
$$f = \{(-2,6), (-1,8), (0,5), (1,0), (2,-2)\}$$
 and $g = \{(-2,2), (-1,4), (0,-6)\}$

a) State the domain of f

b) State the domain of ${\it g}$

c) State the domain of f+g

d) State the domain of f-g

e) List f + g

f) List f - g

Ex 4) If
$$f(x) = 2x^2 - 12x + 8$$
 and $g(x) = x^2 - 5x + 12$

a) find the value(s) of x for which (f + g)(x) = 0

b) Find the optimal value of (f-g)(x)

Ex 5) If $f(x) = \frac{x}{x-1}$ and $g(x) = \frac{3}{x^2-1}$, find the value of x for which (f+g)(x) = 1

Practice: Addition and Subtraction of Functions of the Same Family

- 1. Given $f(x) = \frac{1}{4}x^2 4$ and $g(x) = -\frac{1}{2}(x-3)^2 + 8$.

 a) Graph the functions on the same set of axes with a graphing calculator and sketch the functions on the given axes with a different colour.
 - b) Complete the table below
 - c) Determine h(x) = f(x) + g(x)
 - d) Determine k(x) = f(x) g(x)

x	$f(x) = \frac{1}{4}x^2 - 4$	$g(x) = -\frac{1}{2}(x-3)^2 + 8$	h(x) = f(x) + g(x)	k(x) = f(x) - g(x)

- 2. Given $f(x) = \log_2(x+4)$ and $g(x) = \sin(x)$.
 - a) Complete the table below
 - b) Sketch h(x) = f(x) + g(x) on the grid to the left
 - c) Sketch k(x) = f(x) g(x) on the grid to the right

x	$f(x) = \log_2(x - 4)$	$g(x) = \sin(x)$	h(x) = f(x) + g(x)	k(x) = f(x) - g(x)

- 3. Given $f(x) = \frac{1}{4}x^2 4$ and $g(x) = -\frac{1}{2}(x-3)^2 + 8$. a) Complete the table below

 - b) Determine h(x) = f(x) + g(x)
 - c) Determine k(x) = f(x) g(x)

x	$f(x) = \frac{1}{4}x^2 - 4$	$g(x) = -\frac{1}{2}(x-3)^2 + 8$	h(x) = f(x) + g(x)	k(x) = f(x) - g(x)

Warm Up

1. Determine the graph of h(x) = f(x) + g(x), given the graphs of $f(x) = x^2 + x - 6$ and

 $g(x) = \sqrt{x+6}$ by creating a table of values

$g(x) = \sqrt{x} + 6$ by creating a table of values					
x	f(x)	g(x)	h(x)		
-6					
-5					
-4					
-3					
-2					
-1					
0					
1					
2					
3					

- h(x) in un-simplified form: ______ Domain of h(x):
- 2. Let $f(x) = mx^2 + 2x + 5$ and $g(x) = 2x^2 nx 2$. The functions are combined to form the new function h(x) = (f g)(x). Points (1,10) and (-1,16) satisfy the new function. Determine the values of m and n. [m=8, n=-5]