### **E1.4 SOLUTIONS**

## **Question 1**

a) Since the MOSFET is at pinch-off we know we can use the active mode drain current equation. So, we have  $I_D = K(V_{GS} - V_t)^2 = 0.5$  mA. With K = 2 mA/V<sup>2</sup> and  $V_t = -1.5$  V this gives  $V_{GS} = -1.5 \pm 0.5$  V. Taking the positive sign (to ensure n-ch MOSFET above threshold), we find  $V_{GS} = -1$  V, and since  $V_G = 0$  this implies  $V_S = 1$  V. The source resistance can now be obtained as  $\mathbf{R}_S = \mathbf{V}_S/\mathbf{I}_D = 2$  k $\Omega$ .

The device is at pinch-off so  $V_{DS} = V_{GS} - V_t = 0.5 \text{ V}$ . So  $V_D = 1.5 \text{ V}$ , and  $R_D = (V_{CC} - V_D)/I_D$  gives  $\mathbf{R}_D = 7 \mathbf{k} \mathbf{\Omega}$ .

b) According to the resistance reflection rule, the output resistance is given by:

$$R_o = R_S/(1+\beta) + r_e$$

With  $R_S = 10 \text{ k}\Omega$ ,  $r_e = V_T/I_E = 25 \text{ mV}/10 \text{ mA} = 2.5 \Omega$ , and  $\beta = 100$ , this gives  $\mathbf{R_0} = \mathbf{101.5 \Omega}$ .

(NB this is very quick if the student knows reflection rule; otherwise the result will need to be derived by small-signal analysis)

c) Class B push-pull output stage: Output waveform with 10 Vpp input:



When  $V_{IN}$  is positive, Q1 conducts and acts as an emitter follower, so the output follows the input but dropped down by  $V_{BE} \sim 0.7$  V. Conversely, when  $V_{IN}$  is negative, Q2 acts as the emitter follower and the output is raised above the input by  $V_{BE} \sim 0.7$  V. However, when the input voltage is near zero, neither transistor conducts and the output goes to zero. This leads to distortion in the output waveform around the zero-crossing points, as shown.

[2]

[6]

d) Assuming the small-signal approximation is adequate (as suggested by the question), and using the standard result for the small-signal differential gain, we have  $V = g_m R_D v_d$ , where  $v_d$  is the differential input voltage. The quiescent current is 0.5 mA, so  $g_m = 2\sqrt{(KI_D)} = 1$  mA/V, and with  $v_d = 200$  mV and  $R_D = 10$  k $\Omega$  we obtain V = 2 V.

(NB to use the above method students need to see that the gain result they know from BJT differential amplifiers applies equally well to a MOSFET diff pair. If they don't see this they can still obtain an answer by solving large signal equations, but this will take longer.)

[6]

e) The MOSFET has  $V_{GS}=0$ , so the I-V curve (with  $I=I_D$  and  $V=V_{DS}$ ) is just the output curve at zero gate-source voltage. An n-channel device will be active if  $V \ge -V_t$  and linear when  $V < -V_t$  (nb reverse inequalities for p-ch device). Sketch for n-channel device is:



[6]

f) Rise time: assuming transistor has been on for a long time, it will be saturated and the output voltage will be  $V_{OUT} \sim 0.2 \text{ V}$ . If it switches off at t = 0, the new steady state will be  $V_{OUT} = +5 \text{ V}$ . The trajectory of  $V_{OUT}$  will therefore be:

$$V_{OUT} = 5 + (0.2 - 5) \exp(-t/\tau)$$

where  $\tau = RC = 1$  µs is the time constant.

Putting  $V_{OUT} = 0.5$  V, the time to 10% is  $t_{10} = \tau \ln(4.8/4.5)$ . Similarly, the time to 90% is  $t_{90} = \tau \ln(4.8/0.5)$ . The rise time is therefore  $t_r = t_{90} - t_{10} = \tau \ln(4.5/0.5) = 2.2 \ \mu s$ .

Fall time: assuming the transistor has been off for a long time, the output voltage will be  $V_{OUT} = +5$  V. If it switches on at t = 0, it will initially be active with  $I_C = 43$  mA assuming  $V_{BE} = 0.7$  V. The new steady state (that would be reached if transistor remained active) is  $V_{OUT} = 5 - 0.043 \times 1k = -38$  V. The initial trajectory of  $V_{OUT}$  will therefore be:

$$V_{OUT} = -38 + (5 - -38) \exp(-t/\tau)$$

The time to 90% is  $t_{90} = \tau \ln(43/42.5)$ , and the time to 10% is  $t_{10} = \tau \ln(43/38.5)$ , so the fall time is  $t_f = t_{10} - t_{90} = \tau \ln(42.5/38.5) = 99$  ns, (Linear ramp approximation giving  $t_f = 93$  ns also acceptable.)

[8]

## **Question 2**

a) Replacing input resistor network by Thévenin equivalent, bias circuit reduces to:



$$\begin{split} &V_{BIAS} = 10 \times 33/(33 + 150) = 1.803 \ V \\ &R_B = 33k//150k = 27.0k \\ &KVL \ then \ gives: \ I_ER_E + V_{BE} + I_BR_B = V_{BIAS} \\ &\Rightarrow \ I_E = (V_{BIAS} - V_{BE})/[R_E + R_B/(1+b)] \\ &Assuming \ V_{BE} = 0.7 \ V, \\ &I_E = (1.803 - 0.7)/(2.2k + 27k/201) = 0.473 \ mA \\ &I_C = aI_E = 200 \times 473/201 = \textbf{0.470} \ mA \\ &V_{OUT} = 10 - 0.47 \times 10 = \textbf{5.30} \ V \end{split}$$

[6 + 2]

# b) SSEC:



KVL on input side:

$$i_b r_{be} + (1+\beta) i_b Z_E = v_{in}$$

KVL on output side:

$$\begin{split} -\beta i_b R_C &= v_{out} \\ \Rightarrow A_v &= v_{out}/v_{in} = -\beta R_C/[r_{be} + (1+\beta)Z_E] \\ Using \ r_e &= r_{be}/(1+\beta) \ this \ reduces \ to \\ A_v &= -\alpha R_C/(r_e + Z_E) \end{split}$$

$$r_e = V_T/I_E = 25m/0.473m = 52.9 \; \Omega$$

In mid-band, where  $Z_E \rightarrow 0$ ,  $A_v = -\alpha R_C/r_e = -188$ 

At low frequency, where 
$$Z_E \rightarrow 2.2 \text{ k}\Omega$$
,  $A_v = -\alpha R_C/(r_e + Z_E) = -4.42$  [6 (SSEC) + 3 + 3]

c) At low end of mid-band,  $Z_E \approx 1/j\omega C_E$  and a HP filter is formed with  $r_e$ . The cut-off frequency is therefore given by  $\omega_c r_e C_E = 1$  or  $f_c = 1/(2\pi r_e C_E)$ . With  $r_e = 52.9~\Omega$ , for a cut-off at 1 kHz we require  $C_E = 1/(2\pi r_e f_c) = 1/(2\pi \times 52.9 \times 1 \text{k}) = 3.0~\mu\text{F}$ 

Load capacitor  $C_L$  and output resistor  $R_C$  form a LP filter with cut-off frequency  $f_c = 1/(2\pi R_C C_L) = 1/(2\pi \times 10k \times 330p) =$  **48 kHz** 



Page 3 of 4

## **Question 3**

a) The role of the  $10~M\Omega$  is to set the operating point by forcing the condition  $V_{G1} = V_{OUT}$  at DC.

[2]

Both MOSFETs have  $V_{GD} \le 0$  and hence are active if above threshold. The drain current expressions are therefore:

$$I_{D1} = K_1(V_{OUT} - V_{t1})^2$$
;  $I_{D2} = K_2[(V_{DD} - V_{OUT})/2 - V_{t2}]^2$ 

No current flows in the 10 M $\Omega$ , and if we also neglect the current in the 1 M $\Omega$  resistors the drain currents must be equal:

$$K_1(V_{OUT} - V_{t1})^2 = K_2[(V_{DD} - V_{OUT})/2 - V_{t2}]^2$$

Taking the positive square root (to ensure both devices are above threshold) gives:

$$2\sqrt{(K_1/K_2)(V_{OUT}-V_{t1})} = V_{DD}-V_{OUT}-2V_{t2}$$

from which the required result follows.

[6]

With  $\sqrt{(K_1/K_2)} = 2$ ,  $V_{DD} = 10 \text{ V}$  and  $V_{t1} = V_{t2} = 1 \text{ V}$ , we obtain  $V_{OUT} = 12/5 = 2.4 \text{ V}$ .

Substituting for  $V_{OUT}$  in either of the drain current equations gives  $I_{D1} = I_{D2} = 0.784 \text{ mA}$ . [4]

b) SSEC (omitting MOSFET output resistances):



[6]

Ignoring the resistors (which are carrying negligible current), KCL at the output gives

$$g_{m1}v_{in} + \frac{1}{2}g_{m2}v_{out} = 0$$

from which it follows that  $A_v = -2g_{m1}/g_{m2} = -2\sqrt{(K_1/K_2)} = -4$ .

[4]

The input current is  $i_{in} = (v_{in} - v_{out})/10M = v_{in}(1 - A_v)/10M = 5v_{in}/10M$ , so the input resistance is  $\mathbf{R_{in}} = 2 \ \mathbf{M} \Omega$ . [2]

c) In the presence of a signal  $v_{in}$ , we can write the total output voltage as  $V_{out} = (2.4 - 4v_{in})$ , while the total input voltage is  $V_{in} = 2.4 + v_{in}$ . The condition for Q1 to remain active is therefore:  $2.4 - 4v_{in} \ge 2.4 + v_{in} - V_{t1}$ 

We therefore require  $v_{in} \le V_{t1}/5 = 0.2 \text{ V}$  for Q1 to remain active.

Q2 will remain active provided  $(V_{DD} - V_{OUT})/2 > V_{t2}$  or  $V_{OUT} < 8$  V. The limiting case would correspond to  $v_{in} = -1.4$  V.

So, the constraint on Q1 is the limiting factor, and range of input signal amplitudes over which both transistors will remain active is **from 0 to 0.2 V (0.4 V peak-to-peak).** 

[6]