Detecting Phishing Websites using Neural Networks

```
In [1]:

# Filter the uneccesary warnings
import warnings
warnings.filterwarnings("ignore")

#import Tensorflow and keras
import tensorflow as tf
from tensorflow import keras

# Import pandas and numpy
import pandas as pd
import numpy as np

In [2]:

myData =
pd.read_csv("C:\\Users\Whoopie\\Desktop\\School\\Spring_2020\\Knowledge_Based_Systems_APT_3020\\Manning_Phishing_Websites_Detection_master\\Phishing.csv")

myData.head().T

Out[2]:

0 1 2 3 4
having_IP_Address -1 1 1 1 1

INSI Length 1 1 0 0 0 0
```

	0	1	2	3	4
having_IP_Address	-1	1	1	1	1
URL_Length	1	1	0	0	0
Shortining_Service	1	1	1	1	-1
having_At_Symbol	1	1	1	1	1
double_slash_redirecting	-1	1	1	1	1
Prefix_Suffix	-1	-1	-1	-1	-1
having_Sub_Domain	-1	0	-1	-1	1
SSLfinal_State	-1	1	-1	-1	1
Domain_registeration_length	-1	-1	-1	1	-1
Favicon	1	1	1	1	1
port	1	1	1	1	1
HTTPS_token	-1	-1	-1	-1	1
Request_URL	1	1	1	-1	1
URL_of_Anchor	-1	0	0	0	0
Links_in_tags	1	-1	-1	0	0
SFH	-1	-1	-1	-1	-1
Submitting_to_email	-1	1	-1	1	1
Abnormal_URL	-1	1	-1	1	1
Redirect	0	0	0	0	0
on_mouseover	1	1	1	1	-1
RightClick	1	1	1	1	1
popUpWidnow	1	1	1	1	-1
Iframe	1	1	1	1	1
age_of_domain	-1	-1	1	-1	-1
DNSRecord	-1	-1	-1	-1	-1
web_traffic	-1	0	1	1	0
Page_Rank	-1	-1	-1	-1	-1
Google_Index	1	1	1	1	1

```
Statistical_report -1 1 -1 1 1

Result -1 -1 -1 -1 1

In [3]:

# Data dimension
myData.shape

Out[3]:
(11055, 31)
```

Finding out the distribution of the class labels and preparing a report

```
In [4]:
```

```
from collections import Counter

classes = Counter(myData['Result'].values)
classes.most_common()

class_dist = pd.DataFrame(classes.most_common(), columns=['Class', 'Num_Observations'])
class_dist
```

Out[4]:

	Class	Num_Observations	
0	1	6157	
1	-1	4898	

Links_pointing_to_page 0 1 0 -3 4

Plot bar distribution

```
In [5]:
```

Class distribution of the websites

In [6]:

```
#Find null
myData.isna().sum()
```

Out[6]:

```
having IP Address
URL Length
Shortining_Service
                               0
having At Symbol
double_slash_redirecting
Prefix_Suffix
having Sub Domain
SSLfinal_State
Domain_registeration_length
Favicon
                               0
                               0
port
HTTPS token
Request_URL
                               0
URL_of_Anchor
                               0
Links in tags
SFH
                               0
Submitting to email
Abnormal URL
                               0
Redirect
                               0
on mouseover
RightClick
                               0
                               0
popUpWidnow
Iframe
age_of_domain
                               0
DNSRecord
                               0
web traffic
                               0
                               0
Page_Rank
Google_Index
Links pointing to page
Statistical_report
                               0
Result
dtype: int64
```

Mapping the -1 values to 0 in the class labels

In [7]:

```
myData.rename(columns={'Result': 'Class'}, inplace=True)
#When inplace = True is used, it performs operation on data and nothing is returned.
#When inplace=False is used, it performs operation on data and returns a new copy of data
myData['Class'] = myData['Class'].map({-1:0, 1:1})
myData['Class'].unique()
```

Out[7]:

```
array([0, 1], dtype=int64)
```

Split data

```
In [8]:
```

```
from sklearn.model_selection import train_test_split

#iloc is integer index based, so it specifies rows and columns by their integer index
X = myData.iloc[:,0:30].values.astype(int)
y = myData.iloc[:,30].values.astype(int)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=np.random.see d(7))
```

```
In [ ]:
```

Fit training data to the Logistic Regression Classifier; suitable coz data is in -1, 0, 1.

```
In [11]:
```

```
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
```

Out[11]:

Find Accuracy

In [12]:

```
from sklearn.metrics import accuracy_score, classification_report

print('Accuracy score of the Logistic Regression classifier with default hyperparameter values {0:
    .2f}%'.format(accuracy_score(y_test, logreg.predict(X_test))*100.))
print('\n')
print('----Classification report of the Logistic Regression classifier with default hyperparameter value----')
print('\n')
print(classification_report(y_test, logreg.predict(X_test), target_names=['Phishing Websites', 'Normal Websites']))
```

Accuracy score of the Logistic Regression classifier with default hyperparameter values 93.71%

 $\operatorname{\mathsf{----Classification}}$ report of the Logistic Regression classifier with default hyperparameter value----

	precision	recall	f1-score	support
Phishing Websites Normal Websites	0.94 0.94	0.92 0.95	0.93 0.94	974 1237
accuracy macro avg weighted avg	0.94 0.94	0.94 0.94	0.94 0.94 0.94	2211 2211 2211

Hyperparameter tuning with random search

```
# Import GridSearchCV
from sklearn.model selection import RandomizedSearchCV
# Define the grid of values
#penalty: Used to specify the norm used in the penalization (regularization).
penalty = ['11', '12']
C = [0.8, 0.9, 1.0]
tol = [0.01, 0.001, 0.0001]
#max_iter : Maximum number of iterations taken to converge.
\max iter = [100, 150, 200, 250]
# Create a dictionary where tol and max_iter are keys and the lists of their values are the corres
ponding values
param grid = dict(penalty=penalty, C=C, tol=tol, max iter=max iter)
# Instantiate RandomizedSearchCV with the required parameters
random model = RandomizedSearchCV(estimator=logreg, param distributions=param grid, cv=5)
# Fit random model to the data
random model result = random model.fit(X train, y train)
# Summarize results
best_score, best_params = random_model_result.best_score_, random_model_result.best_params_
print("Best score: %.2f using %s" % (best score*100., best params))
Best score: 92.41 using {'tol': 0.0001, 'penalty': '12', 'max iter': 250, 'C': 0.9}
```

Use Neural networks

```
In [14]:
```

```
# Imports
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import *
Using TensorFlow backend.
```

In [15]:

```
# Model building using the Sequential API
#provides linear stack of layers
model = Sequential()

#activation function introduces non-linearity into the output of a neuron
model.add(Dense(40, activation='relu', kernel_initializer='uniform',input_dim=X.shape[1]))
model.add(Dense(30, activation='relu', kernel_initializer='uniform'))
model.add(Dense(1, activation='sigmoid', kernel_initializer='uniform'))
#loss measures how far from the true value the prediction is.
model.compile(loss='binary_crossentropy', optimizer=Adam(), metrics=['accuracy'])
model.summary()
```

WARNING:tensorflow:From C:\ProgramData\Anaconda3\lib\sitepackages\tensorflow\python\ops\resource_variable_ops.py:435: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version. Instructions for updating: Colocations handled automatically by placer. Model: "sequential 1"

Layer (type)	Output Shape	Param #
dense_1 (Dense)	(None, 40)	1240
dense_2 (Dense)	(None, 30)	1230
dense_3 (Dense)	(None, 1)	31

Total params: 2,501
Trainable params: 2.501

Non-trainable params: 0

In [16]:

```
from keras import callbacks
#Callbacks can help get internal states and statistics of the model during training
es cb = callbacks.EarlyStopping(monitor='loss', min delta=0.001, patience=5)
#min-delta: minimum change in the monitored quantity to modify as an improvement
#patience: number of epochs with no improvement after which training will stop
history = model.fit(X_train, y_train, batch_size=64, epochs=128, verbose=1, callbacks=[es_cb])
scores = model.evaluate(X test, y test)
print('\nAccuracy score of the Neural Network with basic hyperparameter settings {0:.2f}%'.format(
scores[1]*100))
WARNING:tensorflow:From C:\ProgramData\Anaconda3\lib\site-
packages\tensorflow\python\ops\math ops.py:3066: to int32 (from tensorflow.python.ops.math ops) is
deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Epoch 1/128
8844/8844 [============] - 1s 81us/step - loss: 0.4172 - accuracy: 0.8272
Epoch 2/128
8844/8844 [============== ] - Os 26us/step - loss: 0.2030 - accuracy: 0.9210
Epoch 3/128
8844/8844 [============] - 0s 27us/step - loss: 0.1944 - accuracy: 0.9233
Epoch 4/128
Epoch 5/128
8844/8844 [============] - 0s 27us/step - loss: 0.1859 - accuracy: 0.9274
Epoch 6/128
Epoch 7/128
8844/8844 [============== ] - 0s 27us/step - loss: 0.1786 - accuracy: 0.9271
Epoch 8/128
8844/8844 [===========] - Os 30us/step - loss: 0.1748 - accuracy: 0.9293
Epoch 9/128
Epoch 10/128
Epoch 11/128
8844/8844 [============] - 0s 27us/step - loss: 0.1600 - accuracy: 0.9331
Epoch 12/128
Epoch 13/128
8844/8844 [============] - 0s 27us/step - loss: 0.1507 - accuracy: 0.9376
Epoch 14/128
8844/8844 [============] - Os 28us/step - loss: 0.1477 - accuracy: 0.9384
Epoch 15/128
8844/8844 [============] - Os 27us/step - loss: 0.1440 - accuracy: 0.9374
Epoch 16/128
8844/8844 [=============] - Os 27us/step - loss: 0.1390 - accuracy: 0.9418
Epoch 17/128
Epoch 18/128
8844/8844 [============== ] - Os 28us/step - loss: 0.1323 - accuracy: 0.9423
Epoch 19/128
8844/8844 [============] - 0s 27us/step - loss: 0.1311 - accuracy: 0.9453
Epoch 20/128
Epoch 21/128
8844/8844 [============] - Os 27us/step - loss: 0.1276 - accuracy: 0.9445
Epoch 22/128
8844/8844 [============] - Os 27us/step - loss: 0.1257 - accuracy: 0.9453
Epoch 23/128
Epoch 24/128
8844/8844 [=============== ] - Os 28us/step - loss: 0.1205 - accuracy: 0.9464
Epoch 25/128
Epoch 26/128
```

8844/8844 [============] - 0s 29us/step - loss: 0.1172 - accuracy: 0.9480

```
Epoch 27/128
Epoch 28/128
Epoch 29/128
Epoch 30/128
8844/8844 [============] - Os 28us/step - loss: 0.1113 - accuracy: 0.9516
Epoch 31/128
8844/8844 [===========] - 0s 27us/step - loss: 0.1109 - accuracy: 0.9522
Epoch 32/128
8844/8844 [============] - 0s 28us/step - loss: 0.1104 - accuracy: 0.9531
Epoch 33/128
8844/8844 [============] - Os 28us/step - loss: 0.1076 - accuracy: 0.9539
Epoch 34/128
Epoch 35/128
8844/8844 [=============] - 0s 27us/step - loss: 0.1059 - accuracy: 0.9551
Epoch 36/128
Epoch 37/128
Epoch 38/128
8844/8844 [=============] - Os 29us/step - loss: 0.1037 - accuracy: 0.9571
Epoch 39/128
8844/8844 [============] - 0s 27us/step - loss: 0.1020 - accuracy: 0.9554
Epoch 40/128
8844/8844 [============] - Os 27us/step - loss: 0.0995 - accuracy: 0.9570
Epoch 41/128
8844/8844 [============] - 0s 27us/step - loss: 0.0978 - accuracy: 0.9570
Epoch 42/128
Epoch 43/128
Epoch 44/128
8844/8844 [=============] - 0s 28us/step - loss: 0.0933 - accuracy: 0.9608
Epoch 45/128
8844/8844 [============= ] - Os 28us/step - loss: 0.0929 - accuracy: 0.9601
Epoch 46/128
8844/8844 [============] - 0s 28us/step - loss: 0.0917 - accuracy: 0.9611
Epoch 47/128
8844/8844 [============] - 0s 28us/step - loss: 0.0946 - accuracy: 0.9608
Epoch 48/128
Epoch 49/128
Epoch 50/128
8844/8844 [===========] - 0s 28us/step - loss: 0.0867 - accuracy: 0.9608
Epoch 51/128
Epoch 52/128
8844/8844 [===========] - 0s 29us/step - loss: 0.0853 - accuracy: 0.9630
Epoch 53/128
8844/8844 [===============] - 0s 28us/step - loss: 0.0860 - accuracy: 0.9633
Epoch 54/128
8844/8844 [===========] - 0s 28us/step - loss: 0.0826 - accuracy: 0.9657
Epoch 55/128
8844/8844 [============] - 0s 29us/step - loss: 0.0863 - accuracy: 0.9626
Epoch 56/128
Epoch 57/128
8844/8844 [==============] - Os 27us/step - loss: 0.0812 - accuracy: 0.9648
Epoch 58/128
Epoch 59/128
Epoch 60/128
8844/8844 [============] - 0s 28us/step - loss: 0.0782 - accuracy: 0.9648
Epoch 61/128
8844/8844 [===========] - 0s 27us/step - loss: 0.0762 - accuracy: 0.9675
Epoch 62/128
8844/8844 [============] - Os 29us/step - loss: 0.0773 - accuracy: 0.9669
Epoch 63/128
Epoch 64/128
8844/8844 [==============] - 0s 29us/step - loss: 0.0748 - accuracy: 0.9673
Epoch 65/128
```

Accuracy score of the Neural Network with basic hyperparameter settings 96.25%

Evaluates model at the end of each epoch and gives performance. Accuracy has now improved as seen.

```
In [ ]:
```