Correction

1. La série numérique $\sum a_n z^n$ diverge pour z=1.

De plus, la suite $(a_n)_{n\in\mathbb{N}}$ étant bornée, la suite $(a_n1^n)_{n\in\mathbb{N}}$ est bornée.

Donc $1 \in \{r \ge 0 / (a_n r^n) \text{ est born\'ee}\}.$

Donc $R \geqslant 1$. (**)

D'après (*) et (**), R = 1.

- 2. Se montre en étudiant la fonction $x \mapsto \ln(1+x) x$.
- 3. Notons R le rayon de convergence de $\sum_{n>1} \left(\sqrt{n}\right)^{(-1)^n} \ln\left(1+\frac{1}{\sqrt{n}}\right) z^n$.

On pose, $\forall n \in \mathbb{N}^*$, $a_n = (\sqrt{n})^{(-1)^n} \ln \left(1 + \frac{1}{\sqrt{n}}\right)$.

 $\forall n \in \mathbb{N}^*, a_n \geqslant \frac{1}{\sqrt{n}} \ln \left(1 + \frac{1}{\sqrt{n}} \right) = b_n.$

Or $b_n \sim \frac{1}{n \to +\infty} \frac{1}{n}$ et $\sum_{n \ge 1} \frac{1}{n}$ est une série de Riemann à termes positifs divergente

donc $\sum_{i=1}^{n} b_n$ diverge par théorème de comparaison.

Donc, par critère de minoration pour les séries à termes positifs, $\sum a_n$ diverge

De plus, $\forall n \in \mathbb{N}^*$, $|a_n| = a_n \leqslant \sqrt{n} \ln \left(1 + \frac{1}{\sqrt{n}} \right) \leqslant 1 \text{ car } \forall x \in [0, +\infty[$,

 $\ln(1+x) \leqslant x.$

Donc $(a_n)_{n\in\mathbb{N}}$ est bornée. (****) D'après (****) et (****), on peut appliquer 2. et on en déduit que R=1.