DSA5105 Principles of Machine Learning

Supervised Learning

Empirical Risk Minimization (ERM) The learning process aims to find a function $f \in \mathcal{H}$ that minimizes the empirical risk, $R_{\text{emp}}(f) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, f(x_i))$, where $y_i = f^*(x_i)$.

Loss Function To quantify how well a function f fits the data, we use a loss function $L(y, \hat{y})$, where y is the true output, and $\hat{y} = f(x)$ is the predicted output. Common loss functions include the mean squared error (MSE) for regression tasks: $L(y, \hat{y}) = \frac{1}{2}(y - \hat{y})^2$, cross-entropy loss for classification task: $L(y, p) = -\sum_i y_i \log(p_i)$, and huber

loss for robust regression: $L_{\delta}(y, \hat{y}) = \begin{cases} \frac{1}{2}(y - \hat{y})^2 & \text{if } |y - \hat{y}| \\ \delta |y - \hat{y}| - \frac{1}{2}\delta^2 & \text{otherwise} \end{cases}$ if $|y - \hat{y}| \leq \delta$

Softmax Function For a multi-class classification problem with K classes, the softmax function is defined as:softmax $(z_i) = \frac{\sum_{j=1}^{K} (z_j)}{\sum_{j=1}^{K} (z_j)}$

General Ordinary Least Squares Formula Consider $x \in \mathbb{R}^d$ and the new hypothesis space \mathcal{H}_M = $\left\{f: f(x) = \sum_{j=0}^{M-1} w_j \varphi_j(x)\right\} \quad \text{Each } \varphi_j: \mathbb{R}^d \to \mathbb{R} \text{ is called a basis function or feature map.}$

We can rewrite the ERM $\min_{w \in \mathbb{R}^M} \frac{1}{2N} \sum_{i=1}^N \left(\sum_{j=0}^{M-1} w_j \varphi_j(x_i) - y_i \right)^2$ into $\min_{w \in \mathbb{R}^M} \frac{1}{2N} \|\Phi w - y\|^2$. Solving by setting $\nabla R_{\text{emp}}(\hat{w}) = 0$, we have $\hat{w} = (\Phi^{\top} \Phi)^{-1} \Phi^{\top} y$, given invertible $\Phi^T \Phi$.

For cases where $\Phi^T \Phi$ is not invertible, the formula using the Moore-Penrose pseudoinverse is: $\hat{w}(u) = \Phi^{\dagger} y +$

Regularization: To prevent overfitting, regularization techniques add a penalty to the loss function: $\min_{w \in \mathbb{R}M} \ \frac{1}{2N} \|\Phi w - y\|^2 + \lambda C(w) \frac{1}{2N} \|\Phi w - y\|^2 + \lambda C(w). \text{ Minimizing the ERM we get } \hat{w} = \left(\Phi^\top \Phi + \lambda I_M\right)^{-1} \Phi^\top y$

Common regularization terms: L2 (Ridge) regularization: $\lambda \sum_{j=1}^p w_j^2$, L1 (Lasso) regularization: $\lambda \sum_{j=1}^p |w_j|$

Reformulation of Ridge Regression We rewrite the regularized least squares solution in another way: $\hat{w} = (\Phi^{\top} \Phi + \lambda I_M)^{-1} \Phi^{\top} y = \Phi^{\top} (\Phi \Phi^{\top} + \lambda I_N)^{-1} y$

Reformulation of Ridge Regression

 $\hat{f}(x) = \sum_{i=1}^{N} \alpha_i \varphi(x_i)^{\top} \varphi(x) \stackrel{-}{\alpha} = (G + \lambda I_N)^{-1} y \quad \text{where} \quad G_{ij} = \varphi(x_i)^{\top} \varphi(x_j) \text{ is the gram matrix } i = (G + \lambda I_N)^{-1} y$

Kernel Ridge Regression Essentially, the reformulation computes the similarity score between x and x', which can be replaced by a kernel function $K(x_i, x_j)$, allowing computation in high-dimensional feature spaces without explicit feature transformations. The solution to kernel ridge regression is: $f(x) = \sum_{i=1}^N \alpha_i K(x_i, x)$ where α_i are coefficients

determined based on the training data and the kernel.

Mercer's Theorem and SPD Kernels Suppose k is a SPD kernel. Then, there exists a feature space \mathcal{H} and a feature map $\varphi : \mathbb{R}^d \to \mathcal{H}$ such that $k(x, x') = \varphi(x)^\top \varphi(x')$

SPD kernels properties: K(x, x') = K(x', x) (Symmetry) For any n and $\{x_1, \ldots, x_n\}$, the Gram matrix $G_{ij} = k(x_i, x_j)$ is positive semi-definite. (Recall: a matrix G is positive semi-definite if $c^T G c \geq 0$ for any vector c) (Positive Semi-definiteness)

Examples of SPD Kernels: Linear Kernel: $K(x, x') = x^{\top}x'$ Polynomial Kernel: $K(x, x') = (1 + x^{\top}x')^d$ Gaussian RBF Kernel: $K(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right)$

Constructing kernels Given valid kernels $k_1(x,x')$ and $k_2(x,x')$, the following new kernels will also be valid: $k(x,x')=ck_1(x,x')$ $k(x,x')=f(x)k_1(x,x')f(x')$ $k(x,x')=q(k_1(x,x'))$ $k(x,x')=\exp(k_1(x,x'))$

 $k(x, x') = k_1(x, x') + k_2(x, x')$ $k(x, x') = k_1(x, x')k_2(x, x')$ $k(x, x') = k_3(\varphi(x), \varphi(x'))$ $k(x, x') = x^{\top} A x' \qquad k(x, x') = k_a(x_a, x'_a) + k_b(x_b, x'_b) \qquad k(x, x') = k_a(x_a, x'_a) k_b(x_b, x'_b)$

SVM Max Margin Formulation $\max_{\mathbf{w},b} \frac{1}{\|\mathbf{w}\|} \min_{i=1,\dots,N} |\mathbf{w}^T\mathbf{x}_i + b|$ subject to $y_i(\mathbf{w}^T\mathbf{x}_i + b) > 0 \quad \forall i$

Optimization Problem $\min_{w,b} \frac{1}{2} \|w\|^2$ subject to: $y_i(w^\top x_i + b) \ge 1 \quad \forall i$. Introducing Lagrange multipliers $\alpha_i \ge 0$, the Lagrangian is: $\mathcal{L}(w, b, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{N} \alpha_i [y_i(w^\top x_i + b) - 1]$

Karush-Kuhn-Tucker (KKT) Conditions: Define the Lagrangian $\mathcal{L}(z,\mu) = F(z) + \mu^T G(z)$. Then, under technical conditions, for each locally optimal \hat{z} , there exists Lagrange multipliers $\hat{\mu} \in \mathbb{R}^m$ such that:

stationarity $\nabla_z \mathcal{L}(\hat{z}, \hat{\mu}) = 0$ Primal Feasibility $G(\hat{z}) \leq 0$ Dual Feasibility $\hat{\mu} \geq 0$ Complementary Slackness $\hat{\mu}_i G_i(\hat{z}_i) = 0$

 $\mathbf{Dual\ Problem\ } \max_{\mu \geq 0} \, \tilde{F}(\mu) \quad \text{where} \quad \tilde{F}(\mu) = \min_{z} \, \mathcal{L}(z,\mu) \mathcal{L}(z,\mu) = F(z) + \mu^T G(z)$

- KKT conditions for SVM [noitemsep, topsep=0pt] 1. From Stationarity $\hat{w} = \sum_{i=1}^{N} \hat{\mu}_i y_i x_i, \quad 0 = \sum_{i=1}^{N} \hat{\mu}_i y_i$ 2. From Dual Feasibility $\hat{\mu}_i \geq 0$ for $i = 1, \dots, N$
- 3. From Complementary Slackness $\hat{\mu}_i = 0 \quad \text{or} \quad y_i(\hat{w}^Tx_i + \hat{b}) = 1$
- 4. The multipliers $\hat{\mu}$ can be found by the dual problem $\max_{\mu \in \mathbb{R}^N} \sum_{i=1}^N \mu_i \frac{1}{2} \sum_{i,j} \mu_i \mu_j y_i y_j (x_i^T x_j)$

 $\hat{\mu} = \arg\max_{\mu \in \mathbb{R}^N} \sum_{i=1}^N \mu_i - \frac{1}{2} \sum_{i,j} \mu_i \mu_j y_i y_j (x_i^T x_j) \text{ Subject to: } \hat{\mu} \geq 0 \quad \text{and} \quad \sum_{i=1}^N \hat{\mu}_i y_i = 0$

Decision function: $\hat{f}(x) = \operatorname{sgn}\left(\sum_{i=1}^{N} \mu_i y_i x_i^T x + \hat{b}\right)$ Complementary slackness: $\hat{\mu}_i = 0$ or $1 = y_i(\hat{w}^T x_i + \hat{b})$

 $\hat{\mu} = \arg\max_{\mu \in \mathbb{R}^N} \sum_{i=1}^N \mu_i - \frac{1}{2} \sum_{i,j=1}^N \mu_i \mu_j y_i y_j k(x_i,x_j) \text{ Subject to: } \hat{\mu} \geq 0 \quad \text{and} \quad \sum_{i=1}^N \hat{\mu}_i y_i = 0$

Decision function: $\hat{f}(x) = \mathrm{sgn}\left(\sum_{i=1}^{N} \hat{\mu}_i y_i k(x_i, x) + \hat{b}\right)$

Only support vectors satisfying $1=y_i(\hat{w}^T\varphi_i(x)+\hat{b})$ matter for predictions. This is a sparse kernel method.

Lecture 4

Classification and Regression Trees Suppose that the input space is \mathcal{X} . A partition of \mathcal{X} is a collection of subsets $\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_J$ such that $\mathcal{R}_i \cap \mathcal{R}_j = \emptyset$ for $i \neq j$ and $\bigcup_{i=1}^J \mathcal{R}_j = \mathcal{X}$

The general decision tree hypothesis space is: $\mathcal{H} = \left\{ f: f(x) = \sum_{j=1}^{J} a_j \mathbb{I}_{x \in \mathcal{R}_j}, \{\mathcal{R}_j\} \text{ is a partition of } \mathcal{X}, a_j \in \mathcal{Y} \right\}$

where
$$\mathbb{I}_{x \in \mathcal{R}_j} = \begin{cases} 1, & \text{if } x \in \mathcal{R}_j \\ 0, & \text{otherwise} \end{cases}$$

A decision tree model $f(x) = \sum_{j=1}^J a_j \mathbb{I}_{x \in \mathcal{R}_j}$ depends on both a_j and \mathcal{R}_j . For regression we take the **average** label

 $\text{values } a_j = y_j = \frac{\sum_i y_i \mathbb{I}_{x \in \mathcal{R}_j}}{\sum_i \mathbb{I}_{x \in \mathcal{R}_j}}; \text{For classification we take the } \mathbf{mode} \text{ label values } a_j = \text{mode}\{y_i : x_i \in \mathcal{R}_j\}$

Loss function for Decision Trees Classification Entropy: $-\sum_{k=1}^{K}\sum_{j=1}^{J}p_{jk}\log p_{jk}$

Gini Impurity: $\sum_{k=1}^K \sum_{j=1}^J p_{jk} (1-p_{jk})$ where p_{jk} is the proportion of samples in \mathcal{R}_j belonging to class k.

Model Ensembling Bagging reduces the variance by aggregating predictions from multiple models trained on different random subsamples of the data: Regression $\bar{f}(x) = \frac{1}{m} \sum_{j=1}^{m} f_j(x)$ Classification $\bar{f}(x) = \text{Mode}\{f_j(x) : j = 1, \dots, m\}$ Boosting works by training weak learners sequentially, where each learner focuses on correcting the mistakes of the previous ones. The combined model is a weighted sum of the weak learners: $f(x) = \sum_{t=1}^{T} \alpha_t f_t(x)$ where α_t are coefficients based on each learner's performance. Boosting helps reduce bias.

Key Ideas of AdaBoost 1. Initialize with uniform weight across all training samples

- 2. Train a classifier/regressor f_1
- 3. Identify the samples that f_1 got wrong (classification) or has large errors (regression)
- 4. Weight these samples more heavily and train f_2 on this reweighted dataset
- AdaBoost Implementation
 - Data: $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$
 - Initialize $w_i^{(1)} = \frac{1}{N}$ for all $i = 1, \dots, N$; For $j = 1, \dots, m$ do
 - - 1. Obtain f_i from: $f_i = \arg\min_{f \in \mathcal{H}} \sum_{i=1}^N w_i^{(j)} \mathbb{I}_{u_i \neq f(x_i)}$
 - $\text{2. Compute combination coefficients: } \delta_j = \frac{\sum_{i=1}^{N} w_i^{(j)} \mathbb{I}_{y_i \neq f_j(x_i)}}{\sum_{i=1}^{N} w_i^{(j)}} \ \alpha_j = \log\left(\frac{1-\delta_j}{\delta_j}\right)$
 - 3. Update weights: $w_i^{(j+1)} = w_i^{(j)} \exp\left(\alpha_j \mathbb{I}_{y_i \neq f_i(x_i)}\right)$
 - Return: $\bar{f}(x) = \operatorname{Sign}\left(\sum_{j=1}^{m} \alpha_j f_j(x)\right)$

Cross-Validation Cross-validation is essential for tuning model hyperparameters. In k-fold cross-validation, the data is split into k subsets. The model is trained on k-1 subsets and validated on the remaining one. This process is repeated k-times, and the average performance is evaluated. Cross-validation ensures model generalizability.

Sigmoid: $\sigma(z) = \frac{1}{1 + e^{-z}}, [0, 1]$ Tanh: $\sigma(z) = \tanh(z), [-1, 1]$ ReLU $\sigma(z) = \max(0, z), [0, \inf], \text{ leaky ReLU}$:

Gradient Descent $w^{(t+1)} = w^{(t)} - \eta \frac{\partial L}{\partial w}$ When η is too small, updates are slow; When η is too large, the updates

 $\textbf{Stochastic Gradient Descent (SGD): } \theta_{k+1} = \theta_k - \eta \frac{1}{B} \sum_{i \in I_B} \nabla \Phi_i(\theta_k), \text{ this diminishes the probability of stucking } \theta_i(\theta_k) = \theta_i(\theta_k) + \theta_i(\theta_k)$ at local minima as the main drawback for GD.

 $\textbf{Convex function is a function satisfying: } \Phi(\lambda\theta + (1-\lambda)\theta') \leq \lambda\Phi(\theta) + (1-\lambda)\Phi(\theta') \text{ for all } \theta, \ \theta' \in \mathbb{R}^p \text{ and } \lambda \in [0,1]$ Deep Neural Networks (DNNs)Deep neural networks are an extension of shallow networks. The idea is to stack r hidden layers together and forward pass the x sequentially.

Back-propagation Algorithm

- Initialize $x_0 = x \in \mathbb{R}^d$.
- For t = 0, 1, ..., T: $x_{t+1} = g_t(x_t, W_t) = \sigma(W_t x_t)$
- Set $p_{T+1} = \nabla_x L(x_{T+1}, y)$. For $t = T, T 1, \dots, 1$:

$$- \ \nabla_{W_t} \Phi = \boldsymbol{p}_{t+1}^T \nabla_W \boldsymbol{g}_t(\boldsymbol{x}_t, W_t)$$

$$- p_t = [\nabla_x g_t(x_t, W_t)]^T p_{t+1}$$

Return {∇_W Φ : t = 0, . . . , T}.

Neural Network Architecture Example The architecture of the network consists of: $x=\begin{bmatrix}x_1\\x_2\end{bmatrix},\quad x_1\in\mathbb{R},\quad x_2\in\mathbb{R}$ Input layer: $x_0=x=\begin{bmatrix}x_1\\x_2\end{bmatrix}\in\mathbb{R}^2$ 1st hidden layer with 2 neurons. 2nd hidden layer with 3 neurons. Output: Scalar.

1st Hidden Layer
$$x_1 = W_0 x_0 + b_0$$
 $W_0 \in \mathbb{R}^{2 \times 2}$, $b_0 \in \mathbb{R}^{2 \times 1}$ $x_1 = \begin{bmatrix} x_{11} \\ x_1 \end{bmatrix}$, $x_1 \in \mathbb{R}^{2 \times 1}$ $x_1 = \text{ReLU}(x_1)$

 $\textbf{1st Hidden Layer} \ x_1 = W_0 x_0 + b_0 \qquad W_0 \in \mathbb{R}^{2 \times 2}, \quad b_0 \in \mathbb{R}^{2 \times 1} \qquad x_1 = \begin{bmatrix} x_{11} \\ x_{12} \end{bmatrix}, \quad x_1 \in \mathbb{R}^{2 \times 1} \qquad x_1 = \mathrm{ReLU}(x_1)$

2nd Hidden Layer $x_2 = W_1x_1 + b_1$ $W_1 \in \mathbb{R}^{3 \times 2}$, $b_1 \in \mathbb{R}^{3 \times 1}$ $x_2 = \text{ReLU}(x_2)$, $x_2 \in \mathbb{R}^{3 \times 1}$ Back-propagation Example Computation

The model is defined as: $y(x) = v\delta(w_1\delta(w_0x)), \quad x, w_0, w_1, v \in \mathbb{R}, \text{ where } \delta \text{ is the identity function, i.e., } \delta(z) = z.$ The loss function is: $L = (y(x) - y)^2$ We want to compute the gradients: $\frac{\partial L}{\partial v}$, $\frac{\partial L}{\partial w_1}$, $\frac{\partial L}{\partial w_0}$

Forward pass: $x_1 = w_0 x \ x_2 = v w_1 x_1 \ L = (x_2 - y)^2$

Backward pass:

$$p_2 = \frac{\partial L}{\partial x_2} = 2(x_2 - y) \quad \frac{\partial L}{\partial v} = \frac{\partial L}{\partial x_2} \cdot \frac{\partial x_2}{\partial v} = 2(x_2 - y)w_1x_1 \qquad \frac{\partial L}{\partial w_1} = \frac{\partial L}{\partial x_2} \cdot \frac{\partial x_2}{\partial w_1} = 2(x_2 - y)vx_1$$

$$p_1 = \frac{\partial L}{\partial x_1} = \frac{\partial L}{\partial x_2} \cdot \frac{\partial x_2}{\partial x_1} = 2(x_2 - y)vw_1 \qquad \frac{\partial L}{\partial w_0} = \frac{\partial L}{\partial x_1} \cdot \frac{\partial x_1}{\partial w_0} = 2(x_2 - y)vw_1x$$

Unsupervised Learning

Lecture 6

PCA Algorithm Implementation

- Data: $\mathcal{D} = \{x_i\}_{i=1}^N, x_i \in \mathbb{R}^d \text{ for all } i.$ Hyper-parameters: m (reduction dimension).
 Compute sample covariance matrix $S = \frac{1}{N} \sum_{i=1}^N x_i x_i^T$.
 Compute the first m eigenvectors $\{u_1, \dots, u_m\}$ and eigenvalues $\{\lambda_1, \dots, \lambda_m\}$.
 Form $d \times m$ matrix U_m whose j^{th} column is u_j .

- Compute $Z_m = XU_m$. Return Principal component scores Z_m , Eigenvalues, and eigenvectors λ_j , u_j for $j=1,\ldots,m$.

PCA in Feature Space

- Data: $\mathcal{D} = \{x_i\}_{i=1}^N, x_i \in \mathbb{R}^d \text{ for all } i$
- Hyper-parameters: m (reduction dimension), φ (feature maps);
- Compute design matrix Φ_{ij} = φ_j(x_i);
- Center design matrix $\Phi_{ij} \leftarrow \Phi_{ij} \frac{1}{N} \sum_{i=1}^{N} \Phi_{ij}$;
- Compute sample covariance matrix $S_{\phi} = \frac{1}{N} \Phi^{\top} \Phi$;
- Compute the first m eigenvectors $\{u_1,\ldots,u_m\}$ and eigenvalues $\{\lambda_1,\ldots,\lambda_m\}$ of S_{ϕ} ;

Form d × m matrix U_m whose jth column is u_j;
Compute Z_m = ΦU_m;
Return: Principal component score Z_m, Eigenvalues and eigenvectors λ_j, u_j for j = 1,..., m.
PCA whitening transform Principal component scores are given by Z = XU where X is the original features and U is the matrix of eigenvectors. The transformation $X' = XU\Lambda^{-\frac{1}{2}}$, where Λ is the matrix of eigenvalues makes cov(X') = I.

Useful derivatives
$$\frac{\partial}{\partial x} \left(x^T A x \right) = 2 A x \qquad \frac{\partial}{\partial x} \left(A^T x \right) = A$$