HIGH POWER SWITCHING USE

INSULATED TYPE

4th-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

APPLICATION

Traction drives, High Reliability Converters / Inverters, DC choppers

HIGH POWER SWITCHING USE INSULATED TYPE

4th-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

MAXIMUM RATINGS

Symbol	Item	Conditions		Ratings	Unit
VCES	Collector-emitter voltage	VGE = 0V, Tj = 25°C		1700	V
VGES	Gate-emitter voltage	VCE = 0V, Tj = 25°C		±20	V
Ic	Collector current	Tc = 75°C		1200	Α
Ісм	Collector current	Pulse	(Note 1)	2400	Α
IE (Note 2)	Emitter current			1200	Α
IEM (Note 2)	Emiller current	Pulse	(Note 1)	2400	Α
PC (Note 3)	Maximum power dissipation	Tc = 25°C, IGBT part		6500	W
Tj	Junction temperature			− 40 ~ +150	°C
Тор	Operating temperature			− 40 ~ +125	°C
Tstg	Storage temperature			− 40 ~ +125	°C
Viso	Isolation voltage	RMS, sinusoidal, f = 60Hz, t = 1min.		4000	V
tpsc	Maximum short circuit pulse width	Vcc = 1200V, Vces ≤ 1700V, VgE = 15V Tj = 125°C		10	μs

ELECTRICAL CHARACTERISTICS

Symbol	Item	O and this are	Limits			I I a la
		Conditions		Тур	Max	Unit
ICES	Collector cut-off current	VCE = VCES, VGE = 0V, Tj = 25°C	_	_	4	mA
VGE(th)	Gate-emitter threshold voltage	IC = 120mA, VCE = 10V, Tj = 25°C	6.0	7.0	8.0	٧
IGES	Gate leakage current	VGE = VGES, VCE = 0V, Tj = 25°C	_	_	0.5	μΑ
Vor.	Collector-emitter	IC = 1200A, VGE = 15V, Tj = 25°C (Note 4)	_	2.15	2.80	V
VCE(sat)	saturation voltage	IC = 1200A, VGE = 15V, Tj = 125°C (Note 4)	_	2.40	_	V
Cies	Input capacitance	Vo= 10V f 100VI-	_	176	_	nF
Coes	Output capacitance	VCE = 10V, f = 100kHz	_	9.6	_	nF
Cres	Reverse transfer capacitance	VGE = 0V, Tj = 25°C	_	2.8	_	nF
Qg	Total gate charge	Vcc = 850V, Ic = 1200A, VGE = 15V, Tj = 25°C	_	6.8	_	μС
VEO (Note 0)	Emitter-collector voltage	$IE = 1200A, VGE = 0V, Tj = 25^{\circ}C$ (Note 4)	_	2.60	3.30	V
VEC (Note 2)		IE = 1200A, VGE = 0V, Tj = 125°C (Note 4)	_	2.30	_	
td(on)	Turn-on delay time	VCC = 850V, IC = 1200A, VGE = ±15V	_	1.00	_	μs
tr	Turn-on rise time	RG(on) = 1.3Ω , Tj = 125° C, Ls = 150 nH	_	0.40	_	μs
Eon	Turn-on switching energy	Inductive load	_	380	_	mJ/pulse
td(off)	Turn-off delay time	Vcc = 850V, Ic = 1200A, VGE = ±15V	_	1.20	_	μs
tf	Turn-off fall time	RG(off) = 3.3Ω , Tj = 125° C, Ls = 150 nH	_	0.30	_	μs
Eoff	Turn-off switching energy	Inductive load	_	360	_	mJ/pulse
trr (Note 2)	Reverse recovery time	Voc. 050V lo. 4000A Voc. 145V	_	1.00	_	μs
Irr (Note 2)	Reverse recovery current	- Vcc = 850V, Ic = 1200A, VGE = ±15V RG(on) = 1.3Ω, Tj = 125°C, Ls = 150nH Inductive load	_	560	_	Α
Qrr (Note 2)	Reverse recovery charge		_	300	_	μС
Erec (Note 2)	Reverse recovery energy		_	220	_	mJ/pulse

Note 1. Pulse width and repetition rate should be such that junction temperature (Tj) does not exceed Topmax rating (125°C).

2. The symbols represent characteristics of the anti-parallel, emitter to collector free-wheel diode (FWDi).

3. Junction temperature (Tj) should not exceed Tjmax rating (150°C).

4. Pulse width and repetition rate should be such as to cause negligible temperature rise.

HIGH POWER SWITCHING USE INSULATED TYPE

4th-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

THERMAL CHARACTERISTICS

Symbol	Item	Conditions	Limits			Unit
			Min	Тур	Max	Unit
Rth(j-c)Q	Thermal resistance	Junction to Case, IGBT part, 1/2 module	_	_	19.0	K/kW
Rth(j-c)R		Junction to Case, FWDi part, 1/2 module	_	_	42.0	K/kW
Rth(c-f)	Contact thermal resistance	Case to Fin, λgrease = 1W/m·K, 1/2 module	_	16.0	_	K/kW

MECHANICAL CHARACTERISTICS

Symbol	ltem	Conditions	Limits			1.1
			Min	Тур	Max	Unit
М	Mounting torque	M8 : Main terminals screw	7.0		20.0	N·m
		M6 : Mounting screw	3.0	_	6.0	
		M4 : Auxiliary terminals screw	1.0	_	3.0	
_	Mass		_	0.8	_	kg
CTI	Comparative tracking index		600	_	_	_
da	Clearance distance in air		9.5		_	mm
ds	Creepage distance along surface		15.0	_	_	mm
LC-E(int)	Internal inductance	IGBT part	_	30	_	nΗ
Rc-E(int)	Internal lead resistance	Tc = 25°C	_	0.28	_	mΩ

HIGH POWER SWITCHING USE INSULATED TYPE

4th-Version HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Modules

PERFORMANCE CURVES

HIGH POWER SWITCHING USE INSULATED TYPE

HIGH POWER SWITCHING USE INSULATED TYPE

HALF-BRIDGE

FREE-WHEEL DIODE REVERSE RECOVERY CHARACTERISTICS (TYPICAL)

TRANSIENT THERMAL

COLLECTOR CURRENT (A)

REVERSE BIAS SAFE OPERATING AREA

