Soft Matching Extensions of LFACS

Annemarie Friedrich

Department of Computational Linguistics, Saarland University IBM T.J. Watson Research Center, NY

August 2nd, 2011

Outline

- Introduction
- Logical Form Answer Scorer
- Soft Matching Extensions
- Evaluation
- Summary

Outline

- Introduction
- 2 Logical Form Answer Scorer
- 3 Soft Matching Extensions
- 4 Evaluation
- 5 Summary

DeepQA Architecture

Supporting Passage Retrieval

FOCUS

QUESTION: Thallium is said to look like this element.

CANDIDATE ANSWER: lead

Query Generation

Supporting Passage Retrieval

PASSAGE: Thallium is a metallic element that looks like lead.

CANDIDATE ANSWER

Supporting Passage Retrieval

FOCUS

QUESTION: Thallium is said to look like this element.

CANDIDATE ANSWER: lead

Query Generation

U Supporting Passage Retrieval

PASSAGE: Thallium is a metallic element that looks like lead.

CANDIDATE ANSWER

Task of Passage Scorers:

Determine degree to which passages justify candidate answer.

Question

The Neckar river begins its 228-mile course in **this region** aka the Schwarzwald.

Justification

Neckar, river, 228 miles long, rising in the Black Forest.

Partial Justification

Another main tributary of the Rhine is the Neckar, which drains the **Black Forest** and the Swabian Alb. Running 228 miles in length, this meandering river is celebrated for its scenery and charm.

Task of Passage Scorers:

Determine degree to which passages justify candidate answer.

Question

The Neckar river begins its 228-mile course in **this region** aka the Schwarzwald.

Justification

Neckar, river, 228 miles long, rising in the Black Forest.

Partial Justification

Another main tributary of the Rhine is the Neckar, which drains the **Black Forest** and the Swabian Alb. Running 228 miles in length, this meandering river is celebrated for its scenery and charm.

Task of Passage Scorers:

Determine degree to which passages justify candidate answer.

Question

The Neckar river begins its 228-mile course in **this region** aka the Schwarzwald.

Justification

Neckar, river, 228 miles long, rising in the Black Forest.

Partial Justification

Another main tributary of the Rhine is the Neckar, which drains the **Black Forest** and the Swabian Alb. Running 228 miles in length, this meandering river is celebrated for its scenery and charm.

Question

The Neckar river begins its 228-mile course in **this region** aka the Schwarzwald.

No Justification

Sulz am Neckar is located right between the lovely Swabian Alb and the mystic **Black Forest**.

Inter-annotator agreement

- 243 questions
- Cohen's $\kappa = 0.67$ (substantial)
- most disagreement: yes ⇔ partial

Question

The Neckar river begins its 228-mile course in **this region** aka the Schwarzwald.

No Justification

Sulz am Neckar is located right between the lovely Swabian Alb and the mystic **Black Forest**.

Inter-annotator agreement

- 243 questions
- Cohen's $\kappa = 0.67$ (substantial)
- most disagreement: yes ⇔ partial

Passage Term Match (PTM)

Example

Thallium is said to look like this element.

Thallium is a metallic element that looks like lead.

- Counts how many question terms are matched in passage.
- PTM score = decaying sum of scores for all passages.

[Murdock et al., 2011]

Outline

- 2 Logical Form Answer Scorer

Logical Form Answer Scorer (LFACS)

- Syntactic-Semantic Graphs (= Logical Forms)
- Term Matchers
- Graph Alignment with special attention to focus & candidate answer

[Murdock et al., 2011]

 Slot Grammar (grammatical relations) subj, obj, iobj, ndet,...

- Shallow Semantic Relations instanceOf, theme, experiencer
- Derivational Morphology nobj, obj
 → dm_obj_arg
- Deep Semantic Relations
 actorInOpus, bornWhen,
 nationalitvOf,...
- Coreference (Anaphora resolution)
- Predicate Argument Structure

[McCord et al., 2011]

 Slot Grammar (grammatical relations) subj, obj, iobj, ndet,...

- Shallow Semantic Relations instanceOf, theme, experiencer
- Derivational Morphology nobj, obj
 → dm_obj_arg
- Deep Semantic Relations
 actorInOpus, bornWhen,
 nationalityOf,...
- Coreference (Anaphora resolution)
- Predicate Argument Structure

[McCord et al., 2011]

 Slot Grammar (grammatical relations) subj, obj, iobj, ndet,...

- Shallow Semantic Relations instanceOf, theme, experiencer
- Derivational Morphology nobj, obj → dm_obj_arg
- Deep Semantic Relations
 actorInOpus, bornWhen,
 nationalityOf....
- Coreference (Anaphora resolution)
- Predicate Argument Structure

[McCord et al., 2011]

- Slot Grammar (grammatical relations) subj, obj, iobj, ndet,...
- Shallow Semantic Relations instanceOf, theme, experiencer
- Derivational Morphology nobj, obj → dm_obj_arg
- Deep Semantic Relations actorInOpus, bornWhen, nationalityOf,...
- Coreference (Anaphora resolution)
- Predicate Argument Structure

[McCord et al., 2011]

 Slot Grammar (grammatical relations) subj, obj, iobj, ndet,...

- Shallow Semantic Relations instanceOf, theme, experiencer
- Derivational Morphology nobj, obj → dm_obj_arg
- Deep Semantic Relations actorInOpus, bornWhen, nationalityOf,...
- Coreference (Anaphora resolution)
- Predicate Argument Structure

[McCord et al., 2011]

- Slot Grammar (grammatical relations) subj, obj, iobj, ndet,...
- Shallow Semantic Relations instanceOf, theme, experiencer
- Derivational Morphology nobj, obj → dm_obj_arg
- Deep Semantic Relations actorInOpus, bornWhen, nationalityOf,...
- Coreference (Anaphora resolution)
- Predicate Argument Structure

[McCord et al., 2011]

LFACS Algorithm

QUESTION: Thallium is said to look like this element.

PASSAGE: Thallium is a metallic element that resembles lead.

- Text Equals: same lemma
- Token Overlap: Bob Dole ⇔ Dole
- Wikipedia Redirects
- Derivational Morphology: morphological variants destroy ⇔ destruction
- Date / Time Matcher: 18th century ⇔ 1754
- WordNet Synonyms for verbs
- Geospatial Matcher: Chicago

 ⇔ United States of America
 - ⇒ Aggregate Matcher:

returns max of all term matchers

- Text Equals: same lemma
- Token Overlap: Bob Dole ⇔ Dole
- Wikipedia Redirects

- Text Equals: same lemma
- Token Overlap: Bob Dole ⇔ Dole
- Wikipedia Redirects

- Text Equals: same lemma
- Token Overlap: Bob Dole ⇔ Dole
- Wikipedia Redirects
- Derivational Morphology: morphological variants destrov ⇔ destruction

- Text Equals: same lemma
- Token Overlap: Bob Dole ⇔ Dole
- Wikipedia Redirects
- Derivational Morphology: morphological variants destrov ⇔ destruction
- Date / Time Matcher: 18th century ⇔ 1754

- Text Equals: same lemma
- Token Overlap: Bob Dole ⇔ Dole
- Wikipedia Redirects
- Derivational Morphology: morphological variants destrov ⇔ destruction
- Date / Time Matcher: 18th century ⇔ 1754
- WordNet Synonyms for verbs

- Text Equals: same lemma
- Token Overlap: Bob Dole ⇔ Dole
- Wikipedia Redirects
- Derivational Morphology: morphological variants destroy ⇔ destruction
- Date / Time Matcher: 18th century ⇔ 1754
- WordNet Synonyms for verbs
- Geospatial Matcher: Chicago ⇔ United States of America
 - ⇒ Aggregate Matcher:

returns max of all term matchers

- Text Equals: same lemma
- Token Overlap: Bob Dole ⇔ Dole
- Wikipedia Redirects
- Derivational Morphology: morphological variants destrov ⇔ destruction
- Date / Time Matcher: 18th century ⇔ 1754
- WordNet Synonyms for verbs
- Geospatial Matcher: Chicago

 ⇔ United States of America
 - ⇒ Aggregate Matcher:
 - returns max of all term matchers

LFACS Algorithm

Focus-anchored subgraph (FAS):

set of term match pairs (q_i, p_j) connected to focus / candidate through edge & term matches.

(thallium, thallium) (like, resemble) (element, lead)

LFACS score =
$$\sum_{(q_i, p_i) \in FAS} idf(q_i) * matchScore(q_i, p_j)$$

LFACS Algorithm

Focus-anchored subgraph (FAS):

set of term match pairs (q_i, p_i) connected to focus / candidate through edge & term matches.

(thallium, thallium) (like, resemble) (element, lead)

LFACS score =
$$\sum_{(q_i, p_i) \in FAS} idf(q_i) * matchScore(q_i, p_j)$$

[Murdock et al., 2011]

Outline

- Logical Form Answer Scorer
- Soft Matching Extensions

Motivation

QUESTION: The Neckar river begins its course in this region aka the Schwarzwald.

PASSAGE: Neckar, river, rising in the Black Forest.

Path Scoring Methods

Dependency Path Pair

$$\begin{array}{c} \text{RIVER} \xleftarrow{subj} \textit{rise} \xrightarrow{\textit{vprep}} \text{IN} \\ \\ \text{RIVER} \xleftarrow{subj} \textit{begin} \xrightarrow{\textit{objprep}} \textit{course} \xrightarrow{\textit{nprep}} \text{IN} \end{array}$$

- Similarity Score for Pair of Dependency Paths:
 - BSL0.5: assign 0.5 to any pair of paths
 - Omiotis: heuristic based on WordNet semantic relatedness, treats paths as bag-of-words [Tsatsaronis et al., 2009]
 - Entailment Rules [Berant et al., 2011]
 - Dependency Path Similarity Classifier
- Update LFACS Score:
 for (q_i, p_j) ∈ matching terms that not in FAS:
 add pathScore(q_i, p_i) * idf(q_i) * matchScore(q_i, p_i

Path Scoring Methods

Dependency Path Pair

- Similarity Score for Pair of Dependency Paths:
 - BSL0.5: assign 0.5 to any pair of paths
 - Omiotis: heuristic based on WordNet semantic relatedness, treats paths as bag-of-words [Tsatsaronis et al., 2009]
 - Entailment Rules [Berant et al., 2011]
 - Dependency Path Similarity Classifier
- Update LFACS Score:

Path Scoring Methods

Dependency Path Pair

$$\begin{array}{ccc} \text{RIVER} \xleftarrow{subj} \textit{rise} \xrightarrow{\textit{vprep}} \text{IN} \\ \\ \text{RIVER} \xleftarrow{subj} \textit{begin} \xrightarrow{\textit{objprep}} \textit{course} \xrightarrow{\textit{nprep}} \text{IN} \end{array}$$

- Similarity Score for Pair of Dependency Paths:
 - BSL0.5: assign 0.5 to any pair of paths
 - Omiotis: heuristic based on WordNet semantic relatedness, treats paths as bag-of-words [Tsatsaronis et al., 2009]
 - Entailment Rules [Berant et al., 2011]
 - Dependency Path Similarity Classifier
- Update LFACS Score:

Dependency Path Pair

$$\text{RIVER} \xleftarrow{subj} rise \xrightarrow{vprep} \text{IN}$$

$$\text{RIVER} \xleftarrow{subj} begin \xrightarrow{objprep} course \xrightarrow{nprep} \text{IN}$$

- Similarity Score for Pair of Dependency Paths:
 - BSL0.5: assign 0.5 to any pair of paths
 - Omiotis: heuristic based on WordNet semantic relatedness, treats paths as bag-of-words [Tsatsaronis et al., 2009]
 - Entailment Rules [Berant et al., 2011]
 - Dependency Path Similarity Classifier
- Update LFACS Score:
 for (q_i, p_j) ∈ matching terms that not in FAS:
 add pathScore(q_i, p_i) * idf(q_i) * matchScore(q_i, p_i

Path Scoring Methods

Dependency Path Pair

RIVER
$$\stackrel{subj}{\longleftarrow}$$
 rise $\stackrel{vprep}{\longrightarrow}$ IN

RIVER $\stackrel{subj}{\longleftarrow}$ begin $\stackrel{objprep}{\longrightarrow}$ course $\stackrel{nprep}{\longrightarrow}$ IN

- Similarity Score for Pair of Dependency Paths:
 - BSL0.5: assign 0.5 to any pair of paths
 - Omiotis: heuristic based on WordNet semantic relatedness, treats paths as bag-of-words [Tsatsaronis et al., 2009]
 - Entailment Rules [Berant et al., 2011]
 - Dependency Path Similarity Classifier
- Update LFACS Score:
 for (q_i, p_j) ∈ matching terms that not in FAS:
 add pathScore(q_i, p_j) * idf(q_i) * matchScore(q_i, p_j)

Berant's Entailment Rules

Example (drug) be market by (company) → (company) manufacture (drug)

- ignored types & stopwords
- Impact of Berant's rules is minor: 15 gained, 11 lost (out of 3,505)
- Lack of coverage, a lot of rules covered by WordNet relatedness matchers.

	Justification			Type Match		
	yes	partially	no	yes	no	
Gained Questions	13	2	0	1	14	

Dependency Path Pair (a) RIVER $\stackrel{subj}{\longleftarrow}$ rise $\stackrel{vprep}{\longrightarrow}$ IN (b) RIVER $\stackrel{subj}{\longleftarrow} begin \stackrel{objprep}{\longrightarrow} course \stackrel{nprep}{\longrightarrow} IN$

Term Matching: WordNet semantic relatedness

[Path (b) Terms	Path (a) Anchors	MAX por torm	
		begin	course	RIVER	WAX per term	
Path (a) Terms	rise	0.531	0.0	0.0	0.531	

		Path (a) Terms	Path (b) Anchors	MAX per term
		rise	RIVER	IVIAX per terrir
Path (b) Terms	begin	0.531	0.0	0.531
	course		0.307	0.307

Dependency Path Pair (a) RIVER $\stackrel{subj}{\longleftarrow}$ rise $\stackrel{vprep}{\longrightarrow}$ IN (b) RIVER $\stackrel{subj}{\longleftarrow}$ begin $\stackrel{objprep}{\longrightarrow}$ course $\stackrel{nprep}{\longrightarrow}$ IN

Term Matching: WordNet semantic relatedness

		Path (b) Terms		Path (a) Anchors	MAX por torm	
		begin	course	RIVER	WAX per term	
Path (a) Terms	rise	0.531	0.0	0.0	0.531	

		Path (a) Terms	Path (b) Anchors	MAX per term
		rise	RIVER	WAX per term
Path (b) Terms	begin	0.531	0.0	0.531
	course	0.0	0.307	0.307

Dependency Path Pair

(a) RIVER
$$\stackrel{subj}{\longleftarrow}$$
 rise $\stackrel{vprep}{\longrightarrow}$ IN

(b) RIVER $\stackrel{subj}{\longleftarrow}$ begin $\stackrel{objprep}{\longrightarrow}$ course $\stackrel{nprep}{\longrightarrow}$ IN

Term Matching: WordNet semantic relatedness

	Path	(b) Terms	Path (a) Anchors	MAX per term	
	begir	course	RIVER	WAX per term	
Path (a) Terms	rise 0.531	0.0	0.0	0.531	

		Path (a) Terms	Path (b) Anchors	MAX per term
		rise	RIVER	WAX per term
Path (b) Terms	begin	0.531	0.0	0.531
	course	0.0	0.307	0.307

Max Match = 0.531

Dependency Path Pair

(a) RIVER
$$\stackrel{subj}{\longleftarrow}$$
 rise (VERB) $\stackrel{vprep}{\longrightarrow}$ IN

(b) RIVER
$$\stackrel{subj}{\longleftarrow}$$
 begin (VERB) $\stackrel{objprep}{\longrightarrow}$ course (NOUN) $\stackrel{nprep}{\longrightarrow}$ IN

- NONMATCHED_POS_NOUN = 1.0
- NONMATCHED_POS_VERB = 0.0
- NONMATCHED_SLOT_SUBJ = 0.0
- ..

More features based on distributional semantics:

- TWREX_NOUNS_ON_PATHS
- TWREX VERBS ON PATHS
- TWREX_FRAME_PATHS

Dependency Path Classifier

Training Data:

- Sentences extracted from Wikipedia for DBPedia relations.
 [Wang et al., 2011].
- same relation → paths between arguments similar.
- Cleaned using heuristics / manually, kept 417 out of 7,000 relations.
 - \Rightarrow about 5,000 dependency path pairs.

Example

- (a) Kay was educated at the University of Colorado at Boulder.
- (b) Kay graduated from the University of Colorado at Boulder.

Dependency Path Classifier

Evaluation on dependency paths for relation instances.

Leaving-One-Out cross validation.

Distribution: 50% similar, 50% not similar

Version	Accuracy	P true	R true	F true
Α	63.0	64.1	60.8	62.4
В	66.2	70.8	56.4	62.8
C	67.6	71.0	60.6	65.4

- (A) MIN_MATCH, MAX_MATCH, MIN_MATCH_WITH_ANCHORS, MAX MATCH WITH ANCHORS
- (B) the above plus TWREX_NOUNS_ON_PATHS, TWREX_VERBS_ON_PATHS and TWREX_FRAME_PATHS
- (C) the above plus OMIOTIS, as well as the UNMATCHED_SLOT and UNMATCHED_POS features.

Outline

- 1 Introduction
- 2 Logical Form Answer Scorer
- 3 Soft Matching Extensions
- Evaluation
- 5 Summary

Summary

Recall Count:

correct answer available

- Fired+Exists Correct:
 non-zero score and correct answe
 candidate available
- Correct Expected: composed of
 - Correct Untied = highest score for correct answer
 - Correct Tied = highest score to correct answer & wrong answer(s
- Expected Precision = Correct
 Expected / Fired+Exists Correct
- Expected Recall = Correct
 Expected / Recall Count

	Fired+Exists Correct	Expected Precision	Expected Recall	Expected F-measure
PassageTermMatch	3009	44.6	44.6	44.6
LFACS	2425	28.7	23.1	25.6
LFACS+BSL0.5	2645	31.9	28.1	29.9
LFACS+Class	2597	30.9	26.7	28.6
LFACS+Omiotis	2617	31.7	27.5	29.5

Evaluation

- Recall Count: correct answer available
- Fired+Exists Correct:
 non-zero score and correct answer
 candidate available.
- Correct Expected: composed of
 - Correct Untied = highest score for correct answer
 - Correct Tied = highest score to correct answer & wrong answer(s)
- Expected Precision = Correct
 Expected / Fired+Exists Correct
- Expected Recall = Correct
 Expected / Recall Count

	Fired+Exists Correct	Expected Precision	Expected Recall	Expected F-measure
PassageTermMatch	3009	44.6	44.6	44.6
LFACS	2425	28.7	23.1	25.6
LFACS+BSL0.5	2645	31.9	28.1	29.9
LFACS+Class	2597	30.9	26.7	28.6
LFACS+Omiotis	2617	31.7	27.5	29.5

- Recall Count: correct answer available
- Fired+Exists Correct:
 non-zero score and correct answer
 candidate available.
- Correct Expected: composed of
 - Correct Untied = highest score for correct answer
 - Correct Tied = highest score to correct answer & wrong answer(s)
- Expected Precision = Correct
 Expected / Fired+Exists Correct
- Expected Recall = Correct
 Expected / Recall Count

	Fired+Exists Correct	Expected Precision	Expected Recall	Expected F-measure
PassageTermMatch				
LFACS	2425	28.7	23.1	25.6
LFACS+BSL0.5	2645	31.9	28.1	29.9
LFACS+Class	2597	30.9	26.7	28.6
LFACS+Omiotis	2617	31.7	27.5	29.5

Recall Count:

- correct answer available
- Fired+Exists Correct:
 non-zero score and correct answer
 candidate available.
- Correct Expected: composed of
 - Correct Untied = highest score for correct answer
 - Correct Tied = highest score to correct answer & wrong answer(s)
- Expected Precision = Correct
 Expected / Fired+Exists Correct
- Expected Recall = Correct
 Expected / Recall Count

	Fired+Exists Correct	Expected Precision	Expected Recall	Expected F-measure
	Fired+E	Expecte	Expecte	Expecte
PassageTermMatch	3009	44.6	44.6	44.6
LFACS	2425	28.7	23.1	25.6
LFACS+BSL0.5	2645	31.9	28.1	29.9
LFACS+Class	2597	30.9	26.7	28.6
LFACS+Omiotis	2617	31.7	27.5	29.5

- Recall Count: correct answer available
- Fired+Exists Correct:
 non-zero score and correct answer
 candidate available.
- Correct Expected: composed of
 - Correct Untied = highest score for correct answer
 - Correct Tied = highest score to correct answer & wrong answer(s)
- Expected Precision = Correct
 Expected / Fired+Exists Correct
- Expected Recall = Correct
 Expected / Recall Count

	Fired+Exists Correct	Expected Precision	Expected Recall	Expected F-measure
PassageTermMatch	3009	44.6	44.6	44.6
LFACS	2425	28.7	23.1	25.6
LFACS+BSL0.5	2645	31.9	28.1	29.9
LFACS+Class	2597	30.9	26.7	28.6
LFACS+Omiotis	2617	31.7	27.5	29.5

Impact on QA System

Passage Scoring Baseline Stats

· ·	ACCURACY	PREC@70
No passage scorers	55.0	69.9
PTM	58.6	72.7
LFACS	57.1	71.7
LFACS+BSL0.5*	59.0	73.8
LFACS+Class	57.8	72.8
LFACS+Omiotis*	58.2	72.9

^{*} difference VS LFACS statistically significant according to McNemar's test with Yates' correction for continuity.

Correlation Coefficient with Answer Correctness

LFACS	17.35
LFACS+BSL0.5	16.95
LFACS+Class	17.54
LFACS+Omiotis	15.27

Qualitative Analysis - Justification

Component statistics best for PTM / BSL0.5
 ⇒ more relaxed matching ⇒ more correct answers.

	Justification			
	yes	partially	no	# Questions
LFACS+BSL0.5	72.8	20.4	6.8	206
LFACS+Class	79.1	17.6	3.3	210
LFACS+Omiotis	75.7	18.8	5.5	202

 BSL0.5 seems to 'guess' more than LFACS+Class and LFACS+Omiotis.

Outline

- 1 Introduction
- 2 Logical Form Answer Scorer
- 3 Soft Matching Extensions
- 4 Evaluation
- Summary

Summary

Summary - Experimental Results

Comparison with LFACS.

More relaxed graph matching

- increases Expected F-measure by 3-4.5%
- increases accuracy of QA system (baseline configuration) by 1-2% (when using only one passage scorer).
- correlation coefficient with answer correctness:
 LFACS+Class > LFACS

Justification: Analysis for gained questions vs. LFACS

 LFACS+BSL0.5 'guesses' more than LFACS+Class and LFACS+Omiotis.

Summary - Experimental Results

Comparison with LFACS.

More relaxed graph matching

- increases Expected F-measure by 3-4.5%
- increases accuracy of QA system (baseline configuration) by 1-2% (when using only one passage scorer).
- correlation coefficient with answer correctness:
 LFACS+Class > LFACS

Justification: Analysis for gained questions vs. LFACS

 LFACS+BSL0.5 'guesses' more than LFACS+Class and LFACS+Omiotis.

Summary - Contributions

- Enhanced LFACS with soft matching methods.
- Experimented with various path matching methods.
- We can find more correct answers.
- We do so by identifying more *justifying* passages.

Summary

Summary - Future Work

- Path matching that uses edge labels.
- Gather and leverage more paraphrasing corpora.
- Test in other domains (medical).
- Using tree/sequence/graph kernels for scoring subgraphs between matching terms and focus-anchored subgraph.
 Main issue: training data.
- Improve component-level evaluation metrics for passage scoring.

Summary

Questions?

THANKS!

... and Thanks to Bill Murdock, Jennifer Chu-Carroll, Wim De Pauw, Manfred Pinkal, Dietrich Klakow, Karen Ingraffea, Aditya Kalyanpur and all the others who invested their time!

References I

Berant, J., Dagan, I., and Goldberger, J. (2011). Global learning of typed entailment rules.

In The 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland, Oregon, USA, pages 610–619.

Fellbaum, C. (1998).

WordNet: An Electronic Lexical Database.

Bradford Books.

References II

Leacock, C., Miller, G. A., and Chodorow, M. (1998). Combining local context with wordnet similarity for word sense identification, in christiane fellbaum.

In Fellbaum, C., editor, WordNet: A Lexical Reference System and its Application, chapter Combining local context with WordNet similarity for word sense identification. MIT Press, Cambridge, MA, USA.

McCord, M. C., Murdock, J. W., and Boguraev, B. (2011). Deep parsing in watson.

IBM Research and Development Journal Special Issue on DeepQA (in preparation).

References III

Murdock, J. W., Fan, J., Lally, A., Shima, H., and Boguraev, B. (2011).

Textual evidence gathering and analysis.

IBM Research and Development Journal Special Issue on DeepQA (in preparation).

Tsatsaronis, G., Varlamis, I., Vazirgiannis, M., and Nørvåg, K. (2009).

Omiotis: A thesaurus-based measure of text relatedness. In *Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: Part II*, ECML PKDD '09, pages 742–745, Berlin, Heidelberg. Springer-Verlag.

References IV

Wang, C., Fan, J., Kalyanpur, A. A., and Gondek, D. (2011). Relation extraction with relation topics.

In Conference on Empirical Methods in Natural Language Processing (EMNLP).

Wu, Z. and Palmer, M. (1994).

Verb semantics and lexical selection.

In Proc. of the 32nd annual meeting on Association for Computational Linguistics, pages 133–138.

BACKUP SLIDES

Summary 0000000

WORDNET = Thesaurus of English language Concepts connected by [Fellbaum, 1998]

- hyponomy (is-a)
- antonmy (opposite)
- synonymy
- meronymy (part-of)

$$relatedness_{LCH}(c_1,c_2) = \max \left[log \left(rac{d(c_1,c_2)}{2D}
ight)
ight]$$

$$\textit{relatedness}_{\textit{WP}}(\textit{c}_{1},\textit{c}_{2}) = \frac{2\textit{N}_{3}}{\textit{N}_{1} + \textit{N}_{2} + 2\textit{N}_{3}}$$

[Wu and Palmer, 1994], [Leacock et al., 1998]

Features for Dependency Path Classifier: Example

- (a) CONDUCT \xrightarrow{vprep} in $\xrightarrow{objprep}$ create \xrightarrow{obj} HISTORY
- (b) CONDUCT $\stackrel{objprep}{\longleftarrow}$ by $\stackrel{vprep}{\longleftarrow}$ obtain $\stackrel{obj}{\longrightarrow}$ records $\stackrel{nprep}{\longrightarrow}$ of $\stackrel{objprep}{\longrightarrow}$ **HISTORY**

	Path (b	o) Terms	Path (a) Anchors		MAX per term	
	obtain	record	CONDUCT	HISTORY	WAX per term	
Path (a) Terms create	0.531	0.0	0.470	0.0	0.531	

		Path (a) Terms	Path (b) Anchors		MAX per term
		create	CONDUCT	HISTORY	WAX per term
Path (b) Terms	obtain	0.531	0.421	0.0	0.531
	record	0.0	0.0	0.429	0.429

MIN MATCH = 0.531Max Match = 0.429

Path Scoring Methods: Omiotis

Heuristic that treats dependency paths as bag of words. [Tsatsaronis et al., 2009]

Example

$Omiotis(P_Q, P_P)$

$$=\frac{1}{2}\left[\frac{1}{|P_{Q}|}\sum_{i=1}^{|P_{Q}|}\left(\lambda_{i,x(i)}*SR(q_{i},p_{x(i)})\right)+\frac{1}{|P_{P}|}\sum_{j=1}^{|P_{P}|}\left(\lambda_{y(j),j}*SR(q_{y(j)},p_{j})\right)\right]$$

 $\lambda_{i,j}$ = harmonic mean of the normalized idfs of q_i and p_j .

$$x(i) = \underset{j \in (1, |P_Q|)}{\arg \max} [\lambda_{i,j} * SR(q_i, p_j))] \quad y(j) = \underset{i \in (1, |P_Q|)}{\arg \max} [\lambda_{i,j} * SR(q_i, p_j))].$$