Линейные модели классификации.

Елена Кантонистова

ПЛАН

- Метод опорных векторов
- Калибровка вероятностей

МЕТОД ОПОРНЫХ ВЕКТОРОВ

ЛИНЕЙНО РАЗДЕЛИМАЯ ВЫБОРКА

Выборка *линейно разделима*, если существует такой вектор параметров w^* , что соответствующий классификатор a(x) не допускает ошибок на этой выборке.

Цель метода опорных векторов (Support Vector Machine) – максимизировать ширину разделяющей полосы.

- $a(x) = sign((w, x) + w_0)$
- ullet Нормируем параметры w и w_0 так, что

$$\min_{x \in X} |(w, x) + w_0| = 1$$

- $a(x) = sign((w, x) + w_0)$
- Нормируем параметры w и w_0 так, что

$$\min_{x \in X} |(w, x) + w_0| = 1$$

Расстояние от точки x_0 до разделяющей гиперплоскости,

задаваемой

классификатором:

$$\rho(x_0, a) = \frac{|(w, x_0) + w_0|}{||w||}$$

• Нормируем параметры w и w_0 так, что

$$\min_{x \in X} |(w, x) + w_0| = 1$$

Тогда расстояние от точки x_0 до разделяющей гиперплоскости, задаваемой классификатором:

$$\rho(x_0, a) = \frac{|(w, x_0) + w_0|}{||w||}$$

• Расстояние до ближайшего объекта $x \in X$:

$$\min_{x \in X} \frac{|(w, x) + w_0|}{||w||} = \frac{1}{||w||} \min_{x \in X} |(w, x) + w_0| = \frac{1}{||w||}$$

РАЗДЕЛЯЮЩАЯ ПОЛОСА

ОПТИМИЗАЦИОННАЯ ЗАДАЧА SVM ДЛЯ РАЗДЕЛИМОЙ ВЫБОРКИ

$$\begin{cases} \frac{1}{2} ||w||^2 \to \min_{w} \\ y_i((w, x_i) + w_0) \ge 1, i = 1, ..., l \end{cases}$$

Утверждение. Данная оптимизационная задача имеет единственное решение.

ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

• Существует хотя бы один объект $x \in X$, что

$$y_i\big((w,x_i)+w_0\big)<1$$

ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

• Существует хотя бы один объект $x \in X$, что

$$y_i\big((w,x_i)+w_0\big)<1$$

ЛИНЕЙНО НЕРАЗДЕЛИМАЯ ВЫБОРКА

• Существует хотя бы один объект $x \in X$, что

$$y_i((w, x_i) + w_0) < 1$$

Смягчим ограничения, введя штрафы $\xi_i \ge 0$:

$$y_i((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l$$

Хотим:

- ullet Минимизировать штрафы $\sum_{i=1}^{l} \xi_i$
- Максимизировать отступ $\frac{1}{||w||}$

Хотим:

- ullet Минимизировать штрафы $\sum_{i=1}^{l} \xi_i$
- Максимизировать отступ $\frac{1}{||w||}$

Задача оптимизации:

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i ((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l \\ \xi_i \ge 0, i = 1, ..., l \end{cases}$$

Утверждение. Задача

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{l} \xi_i \to \min_{w, w_0, \xi_i} \\ y_i ((w, x_i) + w_0) \ge 1 - \xi_i, i = 1, ..., l \\ \xi_i \ge 0, i = 1, ..., l \end{cases}$$

Является выпуклой и имеет единственное решение.

СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i}((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

• Перепишем (2) и (3):

$$\begin{cases} \xi_i \ge 1 - y_i ((w, x_i) + w_0) = 1 - M_i \\ \xi_i \ge 0 \end{cases}$$

СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i}((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

• Перепишем (2) и (3):

$$\begin{cases} \xi_i \ge 1 - y_i ((w, x_i) + w_0) \\ \xi_i \ge 0 \end{cases} \Rightarrow \xi_i = \max(0, 1 - y_i ((w, x_i) + w_0))$$

СВЕДЕНИЕ К БЕЗУСЛОВНОЙ ЗАДАЧЕ

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i} ((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

• Перепишем (2) и (3):

$$\begin{cases} \xi_i \ge 1 - y_i ((w, x_i) + w_0) \\ \xi_i \ge 0 \end{cases} \Rightarrow \xi_i = \max(0, 1 - y_i ((w, x_i) + w_0))$$

Получаем безусловную задачу оптимизации:

$$\frac{1}{2}||w||^{2} + C\sum_{i=1}^{l} \max(0, 1 - y_{i}((w, x_{i}) + w_{0})) \to \min_{w, w_{0}}$$

МЕТОД ОПОРНЫХ ВЕКТОРОВ: ЗАДАЧА ОПТИМИЗАЦИИ

• На задачу оптимизации SVM можно смотреть, как на оптимизацию функции потерь $L(M) = max(0,1-M) = (1-M)_+$ с регуляризацией:

$$Q(a,X) = \sum_{i=1}^{l} \left(1 - M_i(w, w_0)\right)_+ + \frac{1}{2C} ||w||^2 \to \min_{w, w_0}$$

$$\begin{cases} \frac{1}{2} ||w||^{2} + C \sum_{i=1}^{l} \xi_{i} \to \min_{w,w_{0},\xi_{i}} (1) \\ y_{i}((w,x_{i}) + w_{0}) \ge 1 - \xi_{i}, i = 1, ..., l (2) \\ \xi_{i} \ge 0, i = 1, ..., l (3) \end{cases}$$

Положительная константа *С* является управляющим параметром метода и позволяет находить компромисс между максимизацией разделяющей полосы и минимизацией суммарной ошибки.

ТИПЫ ОБЪЕКТОВ В SVM

ЯДРОВОЙ МЕТОД ГЛАВНЫХ КОМПОНЕНТ

Пусть исходная выборка (с признаками $x_1, x_2, ..., x_n$) линейно не разделима.

Может существовать такое преобразование координат $(y_1, y_2, ..., y_N) = f(x_1, x_2, ..., x_n).$

что в пространстве новых

координат выборка становится

линейно разделимой.

• Применение преобразования координат и метода главных компонент называется ядровым методом главных компонент (kernel SVM).

РАДИАЛЬНОЕ ЯДРО

ПОЛИНОМИАЛЬНОЕ ЯДРО

1-Dimensional Linearly Inseparable Classes 1-Dimensional Linearly
Inseparable Classes transformed with
Polynomial Kernel of Degree 2

 X_1

ПРИМЕРЫ

SVC with linear kernel

SVC with RBF kernel

SVC with polynomial (degree 3) kernel LinearSVC (linear kernel)

КАЛИБРОВКА ВЕРОЯТНОСТЕЙ

КАЛИБРОВКА ВЕРОЯТНОСТЕЙ

Калибровка вероятностей - приведение ответов алгоритма к значениям, близким к вероятностям объектов принадлежать конкретному классу.

Зачем это нужно?

- Вероятности гораздо проще интерпретировать
- Вероятности могут дать дополнительную информацию о результатах работы алгоритма

КАЛИБРОВКА ПЛАТТА

• Пусть есть два класса, $Y = \{+1, -1\}$

Задача: для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

КАЛИБРОВКА ПЛАТТА

• Пусть есть два класса, $Y = \{+1, -1\}$

Задача: для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

Идея: обучаем логистическую регрессию на ответах классификатора a(x).

ПРИМЕР ИЗ SKLEARN

КАЛИБРОВКА ПЛАТТА

• Пусть есть два класса, $Y = \{+1, -1\}$

Задача: для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

Идея: обучаем логистическую регрессию на ответах классификатора a(x).

КАЛИБРОВКА ПЛАТТА

• Пусть есть два класса, $Y = \{+1, -1\}$

Задача: для классификатора a(x), предсказывающего значения из отрезка [0,1], либо предсказывающего класс (+1 или -1), сделать калибровку, чтобы предсказания были вероятностями p(y=+1|x).

Идея: обучаем логистическую регрессию на ответах классификатора a(x).

•
$$\pi(x; \alpha; \beta) = \sigma(\alpha \cdot \mathbf{a}(x) + \beta) = \frac{1}{1 + e^{-(\alpha \cdot a(x) + \beta)}}$$

Изотоническая регрессия для калибровки вероятностей

Калибровка вероятностей — это процесс преобразования выходов модели (обычно вероятностей) таким образом, чтобы они соответствовали истинным вероятностям события. Например, если модель предсказывает вероятность 0.8 для класса 1, мы хотим, чтобы примерно 80% таких объектов действительно принадлежали к классу 1.

Изотоническая регрессия используется для этого, так как она:

- 1. Обеспечивает монотонную зависимость между входными значениями (сырыми вероятностями модели) и откалиброванными значениями.
- 2. Минимизирует квадратичную ошибку на обучающих данных.

Математическая постановка

Пусть:

- \hat{p}_i предсказания модели (сырые вероятности или оценки).
- ullet $y_i \in \{0,1\}$ истинные метки классов.

Изотоническая регрессия минимизирует следующую ошибку:

$$\min_f \sum_{i=1}^n (y_i - f(\hat{p}_i))^2,$$

где f — монотонно неубывающая функция (изотоническая регрессия), которая калибрует вероятности.

После обучения, для любого нового предсказания \hat{p} , откалиброванная вероятность вычисляется как:

$$\hat{p}_{ ext{cal}} = f(\hat{p}).$$

РАЗЛИЧНЫЕ КАЛИБРОВКИ

Как это работает?

1. Сортируем предсказания.

Сначала мы располагаем все предсказания модели \hat{p} по возрастанию:

$$\hat{p}_1 \leq \hat{p}_2 \leq \cdots \leq \hat{p}_n$$
.

К каждому из них привязываем соответствующую истинную метку y (0 или 1).

2. Группируем соседей, нарушающих порядок монотонности.

Например, если модель предсказала вероятность $\hat{p}_i=0.4$, а из реальных данных видно, что только 30% таких случаев относятся к положительному классу, то это нужно исправить. Изотоническая регрессия объединяет такие точки в группы и вычисляет для них общее значение вероятности, чтобы соблюдалась монотонность.

3. Вычисляем вероятности в группах.

Для каждой группы вычисляем среднее истинных значений y (процент положительных примеров). Это значение станет откалиброванной вероятностью для всех точек в группе.

4. Создаём преобразующую функцию.

В итоге мы получаем кусочно-постоянную монотонную функцию $f(\hat{p})$, которая отображает "сырые" вероятности \hat{p} в откалиброванные.

Предположим, у нас есть следующие данные:

- Сырые вероятности модели: $\hat{p} = [0.1, 0.4, 0.35, 0.8];$
- Истинные метки классов: y = [0, 0, 1, 1].

1. Сортируем данные:

• Упорядочим \hat{p} : [0.1, 0.35, 0.4, 0.8], и соответствующие метки y: [0, 1, 0, 1].

2. Ищем нарушения монотонности:

- Для $\hat{p}=0.35$ модель ошиблась: вероятность выше, чем у $\hat{p}=0.4$, но реальная метка говорит обратное.
- Изотоническая регрессия объединяет эти точки ($\hat{p}=0.35$ и $\hat{p}=0.4$).

3. Вычисляем средние вероятности для групп:

- Для объединённой группы ($\hat{p}=0.35,0.4$): средняя истинная вероятность =(1+0)/2=0.5.
- Обновляем предсказания: $\hat{p}_{\mathrm{cal}} = [0.1, 0.5, 0.5, 1.0].$

Теперь все предсказания \hat{p}_{cal} соответствуют вероятностной интерпретации:

- $\hat{p}_{\mathrm{cal}} = 0.5$ означает, что 50% таких случаев действительно положительные.
- $oldsymbol{\hat{p}_{ ext{cal}}} = 1.0$ означает, что 100% таких случаев действительно положительные.