Pulsed Neutron Source Analysis Update

Junying Huang Yashwanth Bezawada (Yash)

DUNE Collaboration Meeting 9/23/2021

Data Collection

- This analysis uses data taken at the Deuterium Deuterium generator (DD generator) test in July 2020 on ProtoDUNE-SP.
- The DD generator produce 2.5 MeV neutrons: D+D \rightarrow n+3He
- Random Trigger Mode:
 - DDG Off: E = 650 V/cm; 2 Hz Trigger Frequency
 - DDG Off: E = 350 V/cm; 5 Hz Trigger Frequency
 - DDG On: E = 650 V/cm; 2 Hz Trigger Frequency
 - DDG On: E = 350 V/cm; 5 Hz Trigger Frequency
- Pulsed Trigger Mode (Only for DDG On):
 - E = 350 V/cm, 5% duty Cycle, \sim 175 µs pulse width, \sim 4 Hz
 - E = 0 V/cm, 5% duty Cycle, ~175 μs pulse width, ~4 Hz

Data Reconstruction

- Use "protoDUNE_SP_keepup_decoder_reco.fcl" to reconstruct the raw data with the following modules:
 - "hitpdune" for reconstructing hits
 - "reco3d" for extracting spacepoints
 - "dbscan3d" for clustering spacepoints
- DBSCAN parameters:
 - epsilon = 2 cm;
 - Minimum spacepoints per cluster = 3

Unclustered Spacepoints Y vs Z plot of DDG-on run (non-Cluster Space Points) 600 400 200 400 600 z position (in cm)

Simulation

- Updated the Geant4 physics list in LArSoft.
- Modified the LArSoft geometry to include the shield.
- Text file generator: 1500 neutrons with 2.5 MeV per event
- protodune_corsika_cmc for cosmic ray
- protodunesp_39ar for Ar39
- Same reconstruction chain as data.

Cluster Size Cut

- Neutron capture events can also form relatively large clusters.
- Cluster size cut is set to be 13.

Spacepoint y Position

Neutron capture in simulation

 Simulation confirms that gammas from neutron capture are seen.

Conclusion

- Good agreement between data and MC, except at the edges
- Gammas from neutron capture are seen.
- MC seems to overestimate the activity in the detector
- Inefficiency near top of detector in data
- The fit parameter, $\beta = 0.74$

