

microscopy

Carla Carmelo Rosa, FCUP/INESC TEC ccrosa@fc.up.pt

light and radiation

electromagnetic spectrum...

light

sources

Spectra From Common Sources of Visible Light

transfer of energy/information

wave guides

lenses

image formation

pin-hole camera

- small apertures
- lensless image formation

@kaskadenoz.blogspot

@ abelardomorell.net

image formation

lens

- refraction
- focal length f

human vision

- relaxed eye
- accommodated eye

accommodation

image formation

lens

human vision

- refraction
- focal length f

- relaxed eye
- accommodated eye

ray tracing and facts!

focal position

chromatic aberration

focal spot

- finite size, due to diffraction!
- depth of focus, due to diffraction

interference

wave nature of light and matter + coherent sources (lasers)

interference \sim

wave nature of light and matter

target

multiple slits

- separation d
- slit width

interference

• when $\lambda \sim d$

geometry

- small objects or small apertures
- $\lambda \sim d$

diffraction manifestations

lens focal spot

diffraction limited

Airy disk

intensity at focal point

• Ist minimum location

$$r_{\text{Airy}} = 1.22 \frac{\lambda}{NA}$$

numerical aperture

$$NA = n\sin\theta$$

$$r_{\text{Airy}} = 1.22 \frac{\lambda}{NA}$$
 $NA = n \sin \theta$

important notes regarding imaging systems

point spread function (PSF)

• ideal: Airy disc

the real case... an example

- imersion oil objectives
 - improve lateral resolution

Object \otimes PSF = Image

convolution

imaging thin samples

light crosses the object

- ullet microstructures, $\lambda \sim d$
 - diffraction/interference occurs!

objects composed by a single spatial frequency

imaging thin samples

objects in the Fourier (spectral) space

Each Fourier component (sinusoidal object) diffracts its own beam

objects in the Fourier (spectral) space

Fourier

transform

Object in real space

x-space

Object in spectral space

x-spatial frequency

removing high frequency components

Inverse

Fourier

transform

x-spatial frequency

Object in real space

