GEOMETRIA Y TOPOLOGIA

FRANCISCO URBANO

December 18, 2020

Chapter 1

VARIEDADES DIFERENCIABLES

1.1 Generalización del concepto de superficie: subvariedades del espacio Euclídeo

Definición 1.1.1 Una superficie es un subconjunto $S \subset \mathbb{R}^3$ tal que para cada $p \in S$ existen un abierto $U \subset \mathbb{R}^2$, un entorno abierto V de p en \mathbb{R}^3 y una aplicación diferenciable $X: U \to \mathbb{R}^3$ verificando:

- 1. $X(U) = V \cap S$.
- 2. $X: U \to V \cap S$ es un homeomorfismo.
- 3. $dX_q: \mathbb{R}^2 \to \mathbb{R}^3$ es inyectiva para todo $q \in U$.

Definición 1.1.2 Una subvariedad de dimensión n de \mathbb{R}^N es un subconjunto $M \subset \mathbb{R}^N$ tal que para cada $p \in M$ existen un abierto $U \subset \mathbb{R}^n$, un entorno abierto V de p in \mathbb{R}^N y una aplicación diferenciable $X: U \to \mathbb{R}^N$ verificando:

- 1. $X(U) = V \cap M$.
- 2. $X:U\to V\cap M$ es un homeomorfismo.
- 3. $dX_q: \mathbb{R}^n \to \mathbb{R}^N$ es inyectiva para todo $q \in U$.

Observemos que la condición 3 dice que $n \leq N$. A N-n se le llama la codimensión de la subvariedad. Tambén conviene poner de manifiesto que todo abierto de una subvariedad del Euclídeo es una subvariedad del Euclídeo de la misma dimensión.

Ejemplo 1.1.1 Grafo de una aplicación diferenciable.

Sea $F:O\subset\mathbb{R}^n\to\mathbb{R}^{N-n}$ una aplicación diferenciable. Entonces el grafo de F

$$Graf F = \{(x, F(x)) \in \mathbb{R}^n \times \mathbb{R}^{N-n} \equiv \mathbb{R}^N / x \in O\}$$

es una subvariedad de dimensión n de \mathbb{R}^N .

Una sencilla utilización del teorema de la función inversa (o de la función implícita) nos permite probar el siguiente resultado (ya visto para superficies), el cual nos proporcionará gran cantidad de ejemplos de subvariedades.

Proposición 1.1.1 Sea $F:O\subset\mathbb{R}^N\to\mathbb{R}^p$ (N>p) una aplicación diferenciable definida en un abierto O de \mathbb{R}^N y $a\in\mathbb{R}^p$ un valor regular de F, esto es un punto $a\in\mathbb{R}^p$ tal que para todo $x\in F^{-1}(a)$, $dF_x:\mathbb{R}^N\to\mathbb{R}^p$ es sobre. Entonces, si $F^{-1}(a)\neq\emptyset$, $M=F^{-1}(a)$ es una subvariedad de dimensión n=N-p de \mathbb{R}^N .

Ejemplo 1.1.2 Esferas. Sea $a = (a_1, \ldots, a_{n+1}) \in \mathbb{R}^{n+1}$ y r un número real positivo. Entonces

$$\mathbb{S}_a^n(r) = \{x = (x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} / \sum_{i=1}^{n+1} (x_i - a_i)^2 = r^2 \}$$

es una subvariedad de dimensión n de \mathbb{R}^{n+1} , a la que se llamaremos esfera de dimensión n, centro a y radio r de \mathbb{R}^{n+1} .

Ejemplo 1.1.3 Toros. $Si r_1, \ldots, r_n$ son números reales positivos, entonces

$$T^{n} = \{(z_{1}, \dots, z_{n}) \in \mathbb{C}^{n} \equiv \mathbb{R}^{2n} / |z_{i}|^{2} = r_{i}^{2}, i = 1, \dots, n\}$$

es una subvariedad de dimensión n de \mathbb{R}^{2n} , a la que llamamos toro n-dimensional.

Ejemplo 1.1.4 Grupo Ortogonal. Sea $\mathfrak{gl}(n,\mathbb{R}) \equiv \mathbb{R}^{n^2}$ el espacio vectorial de las matrices cuadradas de orden n con coeficientes reales. Entonces

$$O(n) = \{ A \in \mathfrak{gl}(n, \mathbb{R}) / AA^t = I \}$$

es una subvariedad de dimensión n(n-1)/2 de $\mathfrak{gl}(n,\mathbb{R})$, a la que llamamos el grupo ortogonal de orden n.

$$SO(n) = \{ A \in O(n) / \det A = 1 \}$$

es un subgrupo de O(n) (el grupo de las rotaciones) el cual es abierto y cerrado de O(n), y en consecuencia una subvariedad de $\mathfrak{gl}(n,\mathbb{R})$ de dimensión n(n-1)/2.

Ejemplo 1.1.5 Grupo Especial Lineal. Sea $Gl(n, \mathbb{R}) = \{A \in \mathfrak{gl}(n, \mathbb{R}) / \det A \neq 0\}$ el grupo lineal de orden n, el cual es un abierto del espacio Euclídeo $\mathfrak{gl}(n, \mathbb{R})$. Consideremos el grupo especial lineal de orden n

$$Sl(n, \mathbb{R}) = \{ A \in \mathfrak{gl}(n, \mathbb{R}) / \det A = 1 \} \subset Gl(n, \mathbb{R}).$$

Entonces $Sl(n,\mathbb{R})$ es una subvariedad de dimensón n^2-1 de $\mathfrak{gl}(n,\mathbb{R})$.

Ejemplo 1.1.6 Grupo Unitario. Sea $\mathfrak{gl}(n,\mathbb{C}) \equiv \mathbb{C}^{n^2} \equiv \mathbb{R}^{2n^2}$ el espacio vectorial complejo de las matrices cuadradas de orden n con coeficientes complejos. Entonces

$$U(n) = \{ A \in \mathfrak{gl}(n, \mathbb{C}) / A\bar{A}^t = I \}$$

es una subvariedad de dimensión n^2 de $\mathfrak{gl}(n,\mathbb{C})$, a la que llamamos el grupo unitario de orden n.

Ejemplo 1.1.7 Grupo Especial Unitario. Sea

$$SU(n) = \{ A \in U(n) / \det A = 1 \}.$$

Entonces SU(n) es una subvariedad de dimensión $n^2 - 1$ de $\mathfrak{gl}(n,\mathbb{C})$, a la que llamamos el grupo especial unitario de orden n.

Proposición 1.1.2 Sea $M \subset \mathbb{R}^N$ una subvariedad de dimensión n y X_i : $U_i \subset \mathbb{R}^n \to \mathbb{R}^N$ parametrizaciones de M tal que $O = X_1(U_1) \cap X_2(U_2) \neq \emptyset$. Entonces

$$X_2^{-1} \circ X_1 : X_1^{-1}(O) \to X_2^{-1}(O)$$

es un difeomorfismo al que se llama cambio de parámetros.

Definición 1.1.3 Sea $M \subset \mathbb{R}^N$ una subvariedad de dimensión n. Una aplicación $f: M \to \mathbb{R}$ se llama **diferenciable en un punto** p si existe una parametrización $X: U \subset \mathbb{R}^n \to \mathbb{R}^N$ con $p \in X(U)$ tal que $f \circ X: U \subset \mathbb{R}^n \to \mathbb{R}$ es diferenciable en $X^{-1}(p)$.

La independencia de la definición de la parametrización es una consecuencia del cambio de parámetros (Proposición 2).

1.2 Concepto de variedad diferenciable. Ejemplos.

Definición 1.2.1 Sea M un espacio topológico Hausdorff. Una estructura diferenciable sobre M es una familia $\mathcal{D} = \{(U_i, \phi_i), i \in I\}$ verificando

- 1. $\{U_i, i \in I\}$ es un recubrimiento abierto de M.
- 2. Existe un entero $n \geq 1$ tal que para todo $i \in I$, ϕ_i es un homeomorfismo de U_i sobre un abierto de \mathbb{R}^n .
- 3. Si $i, j \in I$ con $U_i \cap U_j \neq \emptyset$, entonces la aplicación

$$\phi_i \circ \phi_i^{-1} : \phi_i(Ui \cap U_i) \to \phi_i(U_i \cap U_i)$$

es un difeomorfismo.

4. La familia \mathcal{D} es maximal en el sentido de que si (U,ϕ) es un par formado por un abierto de M y un homeomorfismo ϕ de U sobre un abierto de \mathbb{R}^n tal que para todo $i \in I$ con $U \cap U_i \neq \emptyset$, $\phi \circ \phi_i^{-1}$ es un difeomorfismo entonces $(U,\phi) \in \mathcal{D}$.

A M se le llama variedad diferenciable de dimensión n. A un par (U, ϕ) se le llama entorno coordenado o carta de la variedad y a un recubrimiento (no necesariamente maximal) $\{(U_i, \phi_i), i \in I\}$ de M por cartas se le llama atlas de M. Si a los cambios de coordenadas, esto es a los difeomorfismos de 3., solo le exigimos que sean difeomorfismos de C^k , a la estructura diferenciable se le llama de C^k .

Las siguientes afirmaciones son fáciles de probar:

- Sea M un espacio topológico Hausdorff y $\mathcal{A} = \{(U_i, \phi_i), i \in I\}$ un atlas sobre M. Entonces existe una única estructura de variedad diferenciable sobre M que contiene al atlas \mathcal{A} . Representaremos a dicha estructura diferenciable por $\mathcal{D}(\mathcal{A})$.
- Si \mathcal{A}_1 y \mathcal{A}_2 son dos atlas sobre un mismo espacio topológico, entonces $\mathcal{D}(\mathcal{A}_1) = \mathcal{D}(\mathcal{A}_2)$ si y sólo si para todo $(U_1, \phi_1) \in \mathcal{A}_1$ y $(U_2, \phi_2) \in \mathcal{A}_2$ con $U_1 \cap U_2 \neq \emptyset$, $\phi_2 \circ \phi_1^{-1}$ es un difeomorfismo.
- Toda subvariedad n-dimensional de \mathbb{R}^N es una variedad diferenciable de dimensión n.

ullet Sea M una variedad diferenciable de dimensión n con estructura diferenciable \mathcal{D} y O un abierto de M. Entonces

$$\mathcal{D}_O = \{ (V \cap O, \phi/(V \cap O)) / (V, \phi) \in \mathcal{D} \}$$

define una estructura de variedad diferenciable de dimensión n en O. A O se le llama subvariedad abierta de M.

Ejemplo 1.2.1 Espacio Proyectivo Real

En $\mathbb{R}^{n+1}/\{0\}$ se considera la relación de equivalencia \mathbb{R} dada por

$$xRy \Leftrightarrow \exists un \ n\'umero \ real \ \lambda \neq 0 \ tal \ que \ y = \lambda x.$$

En el espacio proyectivo real de dimensión $n: \mathbb{RP}^n = (\mathbb{R}^{n+1}/\{0\})/R$ se considera la topología cociente y representamos por $\Pi: \mathbb{R}^{n+1}/\{0\} \to \mathbb{RP}^n$ la proyección.

Para cada $i \in \{1, ..., n+1\}$ sea O_i el abierto de $\mathbb{R}^{n+1}/\{0\}$ definido por

$$O_i = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} / x_i \neq 0\},\$$

 $y\ V_i = \Pi(O_i)$ el correspondiente abierto en \mathbb{RP}^n . Si $\phi_i: V_i \to \mathbb{R}^n$ es la aplicación dada por

$$\phi_i(\Pi(x_1,\ldots,x_{n+1})) = (\frac{x_1}{x_i},\ldots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\ldots,\frac{x_{n+1}}{x_i}),$$

entonces $\{(V_i, \phi_i) / i \in \{1, \dots, n+1\}\}$ define un atlas sobre \mathbb{RP}^n que lo convierte en una variedad diferenciable de dimensión n.

Si $i: \mathbb{S}^n \to \mathbb{R}^{n+1}/\{0\}$ es la inclusión $y \pi: \mathbb{S}^n \to \mathbb{RP}^n$ la aplicación dada por $\pi = \Pi \circ i$, entonces $\pi(\mathbb{S}^n) = \mathbb{RP}^n$. En particular \mathbb{RP}^n es una variedad compacta.

1.3 Aplicaciones diferenciables. Difeomorfismos.

Definición 1.3.1 Sean M^n y N^m variedades diferenciables. Una aplicación continua $F: M \to N$ se llama **diferenciable** si para todo punto $p \in M$ existen una carta (V, ϕ) de M con $p \in V$, una carta (U, ψ) de N con $F(p) \in U$ tal que

$$\psi \circ F \circ \phi^{-1} : \phi(V \cap F^{-1}(U)) \to \psi(V),$$

es diferenciable como aplicación entre abiertos de \mathbb{R}^n y \mathbb{R}^m .

- **Observación 1.3.1** La independencia de la definición de las coordenadas alrededor de p y F(p) nos lo asegura la Definición 4.3.
- La continuidad de F es necesaria para que $F^{-1}(U)$ sea abierto de M y en consecuencia $\phi(V \cap F^{-1}(U))$ sea abierto de \mathbb{R}^n .
- Si M o N son abiertos de \mathbb{R}^n o \mathbb{R}^m entonces, para cualquier punto $p \in M$, las cartas pueden ser tomadas así: $(V, \phi) = (\mathbb{R}^n, Id)$ o $(U, \psi) = (\mathbb{R}^m, Id)$. En particular cuando M y N son abiertos de \mathbb{R}^n y \mathbb{R}^m , el nuevo concepto de diferenciablidad coincide con el del análisis.
- **Definición 1.3.2** Un difeomorfismo entre las variedades M y N es un homeomorfismo $F: M \to N$ tal que F y F^{-1} son aplicaciones diferenciables. En particular las dimensiones de ambas variedades coinciden.
- **Proposición 1.3.1** 1. La aplicaciones constantes entre variedades diferenciables son diferenciables.
 - 2. La identidad de una variedad diferenciable en si misma es un difeomorfismo.
 - 3. La composición de aplicaciones diferenciables entre variedades diferenciables es diferenciable. En particular la composición de difeomorfismos es un difeomorfismo.
 - 4. Si O es un abierto de una variedad diferenciable M entonces la inclusión $i:O\to M$ es diferenciable, y si $F:M\to N$ es diferenciable entonces $F/O:O\to N$ también es diferenciable.
 - 5. Si (V, ϕ) es una carta de una variedad diferenciable M^n , entonces $\phi: V \to \phi(V)$ es un difeomorfismo. Representando por $p_i: \mathbb{R}^n \to \mathbb{R}$ a las proyecciones, las aplicaciones diferenciables $x_i: V \to \mathbb{R}$ definidas por $x_i = p_i \circ \phi$ son llamadas las funciones coordenadas de la carta (V, ϕ) .

Proposición 1.3.2 Sea $M^n \subset \mathbb{R}^N$ una subvariedad. Probar:

- 1. La inclusión $i: M \to \mathbb{R}^N$ es diferenciable.
- 2. Una aplicación continua $F:N\to M$ es diferenciable si y sólo si $i\circ F:N\to\mathbb{R}^N$ es diferenciable.

3. Si O es un abierto de \mathbb{R}^N con $M \subset O$ y $F: O \to N$ una aplicación diferenciable, entonces $F/M: M \to N$ es diferenciable.

Lema 1.3.1 Existencia de funciones diferenciables no constantes.

Sea M^n una variedad, $U \subset M$ un abierto y p un punto de U. Entonces existe una función diferenciable $f: M \to \mathbb{R}$ verificando f=1 sobre un entorno abierto relativamente compacto V de p con $\bar{V} \subset U$ y soporte $(f) = clausura \{p \in M \mid f(p) \neq 0\} \subset U$. A una tal función f le llamaremos función meseta.

Corolario 1.3.1 Sea M una variedad, U un abierto de M y K un compacto de M con $K \subset U$. Entonces existe una función $f: M \to \mathbb{R}$ tal que f = 1 sobre K y tiene soporte contenido en U.

Ejemplo 1.3.1 a) La proyección $\Pi : \mathbb{R}^{n+1}/\{0\} \to \mathbb{RP}^n$ es diferenciable, $y \in \mathbb{RP}^n \to M$ es diferenciable si y sólo si $F \circ \Pi : \mathbb{R}^{n+1}/\{0\} \to M$ es diferenciable.

b) $F: \mathbb{RP}^n \to M$ es diferenciable si y sólo si $F \circ \pi: \mathbb{S}^n \to M$ es diferenciable.

Ejemplo 1.3.2 La proyección $\Pi : \mathbb{R}^2 \to \mathbb{BK}$ es diferenciable, $y F : \mathbb{BK} \to M$ es diferenciable si y sólo si $F \circ \pi : \mathbb{R}^2 \to M$ es diferenciable.

1.4 Espacio Tangente. La Diferencial de una aplicación diferenciable.

Sea M^n una variedad diferenciable. Representamos por $C^{\infty}(M)$ al siguiente conjunto:

$$C^{\infty}(M) = \{ f : M \to \mathbb{R} \mid f \text{ es diferenciable} \}.$$

Si $f,g \in C^{\infty}(M)$ y $a,b \in \mathbb{R}$, entonces definiendo $af + bg, fg : M \to \mathbb{R}$ por

$$(af + bq)(p) = af(p) + bq(p)$$
, $(fq)(p) = f(p)q(p)$,

es claro que af + bg, $fg \in C^{\infty}(M)$, y así $C^{\infty}(M)$ tiene estructura de álgebra con identidad la aplicación $\mathbf{1}: M \to \mathbb{R}$ dada por $\mathbf{1}(p) = 1$ para cada $p \in M$.

Proposición 1.4.1 Sea $p \in \mathbb{R}^n$ y

$$\mathcal{V}_p = \{ w : C^{\infty}(\mathbb{R}^n) \to \mathbb{R} / wes \ lineal \ y \ w(fg) = w(f)g(p) + f(p)w(g) \}.$$

Entonces la aplicación $\lambda: \mathbb{R}^n \to \mathcal{V}_p$, dada por

$$\lambda(v)(f) = \frac{d}{dt}\bigg|_{0} f(p+tv),$$

es un isomorfismo de espacios vectoriales considerando en V_p la estructura natural de espacio vectorial real que posee.

Definición 1.4.1 Sea p un punto de M^n . Un vector tangente a M en p es una función $v: C^{\infty}(M) \to \mathbb{R}$ satisfaciendo

- 1. (Linealidad) v(af + bg) = av(f) + bv(g), y
- 2. (Regla del producto) v(fg) = v(f)g(p) + f(p)v(g),

para todo $f, g \in C^{\infty}(M)$ y $a, b \in \mathbb{R}$.

- **Lema 1.4.1** 1. Si v es un vector tangente a M en p y $f, g \in C^{\infty}(M)$ coinciden en algún entorno de p, entonces v(f) = v(g).
 - 2. Si v es un vector tangente a M en p y $f \in C^{\infty}(M)$ es constante en algún entorno de p, entonces v(f) = 0.

Si $U \subseteq M$ es un abierto y $f \in C^{\infty}(M)$, entonces $f/U \in C^{\infty}(U)$. Dado un punto $p \in M$, representemos por $C^{\infty}(p)$ al conjunto de funciones diferenciables valuadas en \mathbb{R} que están definidas en algún entorno abierto de p(funciones diferentes pueden tener dominios de definición diferentes). La estructura algebráica de $C^{\infty}(p)$ es la misma que la de $C^{\infty}(M)$ con la salvedad de que si $f, g \in C^{\infty}(p)$ y $a, b \in \mathbb{R}$ con f definida en un entorno abierto U_1 de p y g definida en un entorno abierto U_2 de p, entonces af + bg y fg están definidas en $U_1 \cap U_2$.

Es claro que $C^{\infty}(M)\subseteq C^{\infty}(p)$. Así un operador $v:C^{\infty}(p)\to\mathbb{R}$ que satisfaga las condiciones 1 y 2 de la Definición 1.4.1, es un vector tangente a M en p.

Lema 1.4.2 v es un vector tangente a M en p si y sólo si v es una función de $C^{\infty}(p)$ en \mathbb{R} verificando las propiedades 1 y 2 de la definición 1.4.1.

Así podemos ver los vectores tangentes a una variedad M en un punto p como operadores lineales verificando la regla del producto o bien sobre $C^{\infty}(M)$ o bien sobre $C^{\infty}(p)$. El espacio tangente a M en p, que se representará por T_pM , se define como el conjunto de todos los vectores tangentes a M en p. T_pM tiene una estructura natural de espacio vectorial real sin más que definir v + w y av por

$$(v+w)(f) = v(f) + v(g) \qquad (av)(f) = av(f),$$

para $v, w \in T_p M$, $a \in \mathbb{R}$ y $f \in C^{\infty}(M)$ o $f \in C^{\infty}(p)$.

Observación 1.4.1 Sea $O \subseteq M$ un abierto de una variedad diferenciable M y $p \in O$ un punto de M. Entonces T_pO es isomorfo a T_pM de la manera natural.

Sea $\alpha: I \to M$ una aplicación diferenciable de un intervalo abierto I de \mathbb{R} , a la que llamaremos **curva diferenciable** en M. Sea $t_0 \in I$ y $p = \alpha(t_0)$. Definimos la aplicación $\alpha'(t_0): C^{\infty}(p) \to \mathbb{R}$ por

$$\alpha'(t_0)(f) = \frac{d}{dt}\Big|_{t_0} (f \circ \alpha)(t).$$

Entonces $\alpha'(t_0)$ es un vector tangente a M en $\alpha(t_0) = p$, esto es $\alpha'(t_0) \in T_pM$, al que llamamos el vector tangente o velocidad de α en t_0 .

Definición 1.4.2 Sea (V, ϕ) una carta de una variedad M^n con funciones coordenadas $x_i = p_i \circ \phi$, i = 1, ..., n, donde p_i son las proyecciones en \mathbb{R}^n . Definimos $\frac{\partial}{\partial x_i}\Big|_{n} : C^{\infty}(p) \to \mathbb{R}$ por

$$\frac{\partial}{\partial x_i}\Big|_{p}(f) = \frac{\partial}{\partial r_i}\Big|_{\phi(p)}(f \circ \phi^{-1}),$$

siendo $\{r_1, \ldots, r_n\}$ las coordenadas en \mathbb{R}^n . A partir de ahora representaremos la imagen de la función f por el anterior vector simplemente por $\frac{\partial f}{\partial x_i}(p)$. Conviene notar que $\frac{\partial x_i}{\partial x_j}(p) = \delta_{ij}$.

Es claro que $\frac{\partial}{\partial x_i}\Big|_p \in T_pM$ y que es el vector tangente a la curva

$$\alpha_i(t) = \phi^{-1}(r_1^0, \dots, r_i^0 + t, \dots, r_n^0),$$

en t = 0, donde $(r_1^0, \dots, r_n^0) = \phi(p)$.

Teorema 1.4.1 Sea M^n una variedad diferenciable, p un punto de M y (V,ϕ) una carta de M, con $p \in V$ y funciones coordenadas x_i , $i=1,\ldots,n$. Entonces $\left\{\frac{\partial}{\partial x_i}\Big|_p, i=1,\ldots,n\right\}$ es una base de T_pM . Además, para cada vector $v \in T_pM$,

$$v = \sum_{i=1}^{n} v(x_i) \left. \frac{\partial}{\partial x_i} \right|_p.$$

En particular T_pM es para cualquier punto p un espacio vectorial real de dimensión finita n.

Proposición 1.4.2 Sea M una variedad y p un punto suyo.

1. Si (V, ϕ) y (U, ψ) son cartas de M con funciones coordenadas $\{x_i\}$ e $\{y_i\}$ y con $p \in V \cap U$, entonces

$$\left. \frac{\partial}{\partial y_j} \right|_p = \sum_{i=1}^n \frac{\partial x_i}{\partial y_j}(p) \left. \frac{\partial}{\partial x_i} \right|_p.$$

2. Si $v \in T_pM$ entonces existe una curva α en M, definida en algún intervalo alrededor del 0, tal que $v = \alpha'(0)$.

Definición 1.4.3 Sea $F: M \to N$ una aplicación diferenciable y p un punto de M. Se define la **diferencial de** F **en** p y se representa por dF_p o F_{*_p} como la aplicación $dF_p: T_pM \to T_{F(p)}N$ dada por

$$dF_p(v)(f) = v(f \circ F), \quad \forall v \in T_p M \quad y \quad f \in C^{\infty}(F(p)).$$

Es claro que $dF_p(v) \in T_{F(p)}N$ y que dF_p es una aplicación lineal.

Proposición 1.4.3 1. Si $F: M \to N$ es una aplicación constante, entonces $dF_p = 0$ para todo p de M.

- 2. Si $I: M \to M$ es la aplicación identidad, entonces dI_p es también la identidad para todo p de M.
- 3. Regla de la cadena. $Si\ F: M \to N\ y\ G: N \to P\ son\ aplicaciones$ diferenciables, entonces

$$d(G \circ F)_p = dG_{F(p)} \circ dF_p,$$

para todo punto p de M.

- 4. Si $F: M \to N$ es un difeomorfismo, entonces dF_p es un isomorfismo para todo punto p de M.
- 5. Sea $F: M \to N$ una aplicación diferenciable $y \ v \in T_pM$. Si $\alpha: (-\epsilon, \epsilon) \to M$ es una curva diferenciable con $\alpha(0) = p \ y \ \alpha'(0) = v$, entonces

$$dF_p(v) = (F \circ \alpha)'(0).$$

6. Si $\alpha:(-\epsilon,\epsilon)\to M$ es una curva diferenciable, entonces

$$d\alpha_0 \left(\frac{d}{dt} \Big|_{0} \right) = \alpha'(0).$$

7. Si $F: O \subseteq \mathbb{R}^n \to \mathbb{R}^m$ es una aplicación diferenciable y p un punto de O, entonces $dF_p: \mathbb{R}^n \to \mathbb{R}^m$ (definición clásica) y $dF_p = F_{*p}: T_pO \to T_{F(p)}\mathbb{R}^m$ están relacionadas por

$$F_{*p} \circ \lambda = \lambda \circ dF_p,$$

donde λ es el isomorfismo dado en la Proposición I.4.1. En consecuencia coinciden salvo la identificación dada por λ .

Proposición 1.4.4 Si $M \subset \mathbb{R}^N$ una subvariedad e i la correspondiente inclusión, entonces di_p es un monomorfismo para todo $p \in M$. Así se identificará T_pM con $(\lambda^{-1} \circ di_p)(T_pM) \subseteq \mathbb{R}^N$ para todo p de M.

Además un vector $v \in \mathbb{R}^N$ pertenece al subespacio $(\lambda^{-1} \circ di_p)(T_pM)$ sí y solo si $v = (\alpha'_1(0), \dots, \alpha'_N(0))$, donde $\alpha : (-\epsilon, \epsilon) \to M \subset \mathbb{R}^N$ es una curva diferenciable con $\alpha(0) = p$.

Ejemplo 1.4.1 1. Sea \mathbb{S}^n la esfera unidad en \mathbb{R}^{n+1} . Entonces, bajo la identificación dada en la Proposición 1.4.4,

$$T_p S^n \equiv \{ v \in \mathbb{R}^{n+1} / \langle v, p \rangle = 0 \},$$

para todo $p \in \mathbb{S}^n$.

2. Si O(n) es el grupo ortogonal, entonces bajo la identificación dada en la Proposición I.4.4,

$$T_A O(n) = \{ AX / X \in \mathfrak{gl}(n, \mathbb{R}) \operatorname{con} X + X^t = 0 \}$$

= $\{ XA / X \in \mathfrak{gl}(n, \mathbb{R}) \operatorname{con} X + X^t = 0 \},$

para toda $A \in O(n)$.

3. Si $Sl(n, \mathbb{R})$ es el grupo especial unitario, entonces bajo la identificación dada en la Proposición I.4.4,

$$T_A Sl(n \mathbb{R}) = \{ XA / X \in \mathfrak{gl}(n, \mathbb{R}) \ y \ TrazaX = 0 \}$$
$$= \{ AX / X \in \mathfrak{gl}(n, \mathbb{R}) \ y \ TrazaX = 0 \},$$

para toda $A \in Sl(n, \mathbb{R})$.

Ejemplo 1.4.2 Sea \mathbb{RP}^n el espacio proyectivo real $y \Pi : \mathbb{R}^{n+1}/\{0\} \to \mathbb{RP}^n$ la proyección. Si $p \in \mathbb{RP}^n$ entonces para todo $x \in \Pi^{-1}(p)$,

$$d\Pi_x : \{v \in \mathbb{R}^{n+1} / \langle v, x \rangle = 0\} \to T_p \mathbb{RP}^n,$$

es un isomorfismo.

Además, si $\pi: \mathbb{S}^n \to \mathbb{RP}^n$ es la correspondiente proyección, entonces

$$d\pi_x: T_p\mathbb{S}^n \to T_{\pi(x)}\mathbb{RP}^n$$

es un isomorfismo para todo $x \in \mathbb{S}^n$.

1.5 Difeomorfismos locales.

Proposición 1.5.1 Sea $F: M^n \to N^n$ una aplicación diferenciable. Entonces son equivalentes las siquientes propiedades:

- 1. $\forall p \in M, dF_p : T_pM \to T_{F(p)}N$ es un isomorfismo.
- 2. $\forall p \in M$ existen abiertos $U \subset M$, $V \subset N$, con $p \in U$, tal que $F: U \to V$ es un difeomorfismo.

A tales aplicaciones se les llama difeomorfismos locales.

1.6 Particiones de la unidad.

Lema 1.6.1 Sea M^n una variedad diferenciable cuya topología es ANII, esto es posee una base numerable de abiertos. Entonces existe una sucesión numerable de abiertos de $M: \{G_n / n \in \mathbb{N}\}$ cumpliendo las siguientes propiedades:

$$1. \ \cup_{n=1}^{\infty} G_n = M,$$

- 2. G_n es relativamente compacto, esto es \bar{G}_n es compacto, para todo n, y
- 3. $\bar{G}_n \subset G_{n+1}$ para todo n.

Definición 1.6.1 Una partición de la unidad en una variedad diferenciable M es una familia numerable de funciones diferenciables $\{\Theta_n : M \to \mathbb{R} \mid n \in \mathbb{N}\}$ cumpliendo las siguientes propiedades:

- 1. Para todo $p \in M$ existe un entorno abierto suyo U tal que soporte $(\Theta_n) \cap U = \emptyset$ para todos n excepto para un número finito de ellos.
- 2. $0 \le \Theta(p) \le 1$ para todo $p \in M$.
- 3. $\sum_{n=1}^{\infty} \Theta_n = 1.$

Teorema 1.6.1 Sea M una variedad (cuya topología es ANII) y $\mathcal{U} = \{U_{\alpha} / \alpha \in \mathcal{A}\}$ un recubrimiento abierto de M. Entonces existe una partición de la unidad $\{\Theta_n / n \in \mathbb{N}\}$ en M cumpliendo:

- 1. Θ_n tiene soporte compacto para todo n.
- 2. Para cada n existe $\alpha_n \in \mathcal{A}$ tal que soporte $(\Theta_n) \subset U_{\alpha_n}$.

A tal partición se le llama subordinada al recubrimiento abierto \mathcal{U} .

Corolario 1.6.1 Sea $M \subset \mathbb{R}^N$ una subvariedad tal que M es un subconjunto cerrado de \mathbb{R}^N . Si $f: M \to \mathbb{R}$ es una aplicación diferenciable, entonces existe una extensión diferenciable suya a \mathbb{R}^N , esto es existe una aplicación diferenciable $F: \mathbb{R}^N \to \mathbb{R}$ tal que F/M = f.

Corolario 1.6.2 Lema de Urysohn

Sean F y O un cerrado y un abierto de una variedad M con $F \subset O$. Entonces existe una aplicación diferenciable $f: M \to \mathbb{R}$ cumpliendo f = 1 sobre F y f = 0 sobre M/O.

Chapter 2

CAMPOS Y FORMAS DIFERENCIABLES

2.1 Campos de Vectores. Álgebra de Lie de los campos de vectores.

Si M^n es una variedad diferenciable de dimensión n y

$$TM := \cup_{p \in M} T_p M,$$

representamos por $\Pi:TM\to M$ a la proyección natural, esto es $\Pi(v)=p$ si $v\in T_pM$.

Definición 2.1.1 Un campo de vectores en M es una aplicación $X: M \to TM$ tal que $\Pi \circ X = Id$. A la imagen de un punto p por X se le representará por X_p .

Observación 2.1.1 • Si X, Y son campos de vectores en $M, f: M \to \mathbb{R}$ una función (no necesariamente diferenciable) y $\lambda \in \mathbb{R}$, entonces X + Y, λX y fX definidos por

$$(X+Y)_p = X_p + Y_p, \quad (\lambda X)_p = \lambda X_p \quad y \quad (fX)_p = f(p)X_p,$$

son también campos de vectores en M.

• $Si \{U, \phi, x_i, i = 1, ..., n\}$ es un sistema de coordenadas en M, entonces $\frac{\partial}{\partial x_i} : U \to TU \subset TM$ dada por

$$\frac{\partial}{\partial x_i}(p) = \frac{\partial}{\partial x_i}\Big|_p, \quad \forall p \in U,$$

es un campo de vectores en U para cada i = 1, ..., n.

• Si X es un campo en M y $\{U, \phi, x_i, i = 1, ..., n\}$ un sistema de coordenadas, entonces existen funciones $f_i : U \to \mathbb{R}$ para i = 1, ..., n, tal que la restricción de X a U es dada por

$$X/U = \sum_{i=1}^{n} f_i \frac{\partial}{\partial x_i}.$$

Definición 2.1.2 Un campo de vectores X de M se llama **diferenciable** si existe un atlas $\{(U_{\alpha}, \phi_{\alpha}, x_i^{\alpha}, i = 1, ..., n), \alpha \in A\}$ en M tal que las funciones $f_i^{\alpha}: U_{\alpha} \to \mathbb{R}$ dadas por

$$X/U_{\alpha} = \sum_{i=1}^{n} f_{i}^{\alpha} \frac{\partial}{\partial x_{i}^{\alpha}},$$

son diferenciables para todo i = 1, ..., n y todo $\alpha \in A$. Esta definición es correcta, ya que no depende del atlas escogido en M.

Observación 2.1.2 • Si $\{U, \phi, x_i, i = 1, ..., n\}$ es un sistema de coordenadas en M, entonces $\{\frac{\partial}{\partial x_i}, i = 1, ..., n\}$ son campos de vectores diferenciables en U.

• $Si~X,Y~son~campos~de~vectores~diferenciables~en~M,~\lambda \in \mathbb{R}~y~f:M \to \mathbb{R}~una~función~diferenciable,~entonces~X+Y,~\lambda X~y~fX~son~también~campos~de~vectores~diferenciables~en~M.$

Representaremos al conjunto de campos diferenciables sobre M por $\aleph(M)$. Es claro que $\aleph(M)$ tiene estructura de espacio vectorial real y de módulo sobre el anillo $C^{\infty}(M)$.

Sea $\mathcal{V} = \{F : C^{\infty}(M) \to C^{\infty}(M) \mid F \text{ es una derivación}\}, \text{ esto es } F \text{ cumple}$

$$F(f+g) = F(f) + F(g)$$
 y $F(fg) = F(f)g + fF(g)$, $\forall f, g \in C^{\infty}(M)$.

Es claro que si $F,G\in\mathcal{V}$ and $f\in C^{\infty}(M)$, entonces F+G y fF, dadas por

$$(F+G)(h) = F(h) + G(h), \quad (fF)(h) = fF(h), \quad \forall h \in C^{\infty}(M),$$

pertenecen a \mathcal{V} y por tanto \mathcal{V} también tiene estructura de espacio vectorial real y módulo sobre $C^{\infty}(M)$.

Proposición 2.1.1 La aplicación $T: \aleph(M) \to \mathcal{V}$ dada por

$$T(X)(f): M \to \mathbb{R}$$

 $T(X)(f)(p) = X_p(f),$

for any $X \in \aleph(M)$ and any $f \in C^{\infty}(M)$, es un isomorfismo de espacios vectoriales y módulos, cuya inversa es dada por

$$(T^{-1}(F))_p : C^{\infty}(p) \to \mathbb{R}$$
$$(T^{-1}(F))_p(f) = F(\widetilde{f})(p),$$

donde $\widetilde{f} \in C^{\infty}(M)$ and $\widetilde{f} = f$ en un entorno abierto de p.

Usando la anterior identificación, se puede dotar a $\aleph(M)$ de una estructura de álgebra como sigue:

$$\aleph(M) \times \aleph(M) \to \aleph(M)
(X,Y) \mapsto [X,Y],$$

donde

$$[X,Y](f) = X(Y(f)) - Y(X(f)), \quad \forall f \in C^{\infty}(M).$$

Este producto tiene las siguientes propiedades:

- 1. [aX + bY, Z] = a[X, Z] + b[Y, Z], [X, aY + bZ] = a[X, Y] + b[X, Z],
- 2. [X, Y] = -[Y, X],
- 3. [fX, qY] = fq[X, Y] + fX(q)Y qY(f)X,
- 4. [[X,Y],Z] + [[Z,X],Y] + [[Y,Z],X] = 0,

 $\forall X, Y, Z \in \aleph(M), a, b \in \mathbb{R}, f, g \in C^{\infty}(M).$

El producto anterior dota a $\aleph(M)$ de una estructura de álgebra de Lie.

Proposición 2.1.2 Sea $F: M^n \to M^n$ un difeomorfismo. Entonces la aplicación $F_*: \aleph(M) \to \aleph(M)$ definida por

$$F_*(X)_{F(p)} = dF_p(X_p), \quad \forall X \in \aleph(M), \quad \forall p \in M,$$

define un isomorfismo de álgebras de Lie.

Si $A: \mathbb{S}^n \to \mathbb{S}^n$ es la aplicación antípoda, esto es el difeomorfismo de \mathbb{S}^n dado por $A(p) = -p, \forall p \in \mathbb{S}^n$, entonces como $A \circ A = Id$, se tiene que $A_* \circ A_* = Id$, y por tanto el automorfismo A_* de $\aleph(\mathbb{S}^n)$ tiene por valores propios 1 y -1. Por tanto

$$\aleph(\mathbb{S}^n) = \aleph_+(\mathbb{S}^n) \oplus \aleph_-(\mathbb{S}^n),$$

siendo $\aleph_{\pm}(\mathbb{S}^n) = \{X \in \aleph(\mathbb{S}^n) / A_*(X) = \pm X\}.$

En estas condiciones es posible probar que si $\pi:\mathbb{S}^n\to\mathbb{RP}^n$ es la proyección, entonces existe un isomorfismo

$$G: \aleph_+(\mathbb{S}^n) \to \aleph(\mathbb{RP}^n),$$

tal que $G(X)_{\pi(p)} = d\pi_p(X_p)$, $\forall p \in \mathbb{S}^n$. Aunque la definición de G es formalmente la de π_* , conviene notar que π_* no está definido al no ser π un difeomorfismo.

Ejemplo 2.1.1 1. Usando la identificación entre $T_p\mathbb{R}^n$ y \mathbb{R}^n dada en la Proposición 1.4.1, para cualquier abierto O de \mathbb{R}^n ,

$$\aleph(O) \to C^{\infty}(O, \mathbb{R}^n)$$
$$X \mapsto \{F(p) = \lambda^{-1}(X_p)\},\$$

es un isomorfismo de módulos.

2. Sea $M^n \subset \mathbb{R}^N$ una subvariedad. Usando la identificación entre T_pM y el subespacio V_p de \mathbb{R}^N dado en la Proposición 1.4.4,

$$\aleph(M) \to \{ F \in C^{\infty}(M, \mathbb{R}^N), F(p) \in V_p, \forall p \in M \}$$
$$X \mapsto \{ F(p) = \lambda^{-1}(X_p) \},$$

es un isomorfismo de módulos.

Ejemplo 2.1.2 1. Sea $a \in \mathbb{S}^n$ un vector fijo. Definimos un campo $X_a \in \mathbb{N}(\mathbb{S}^n)$ como el que se identifica a la función $F(p) = a - \langle p, a \rangle p$, siendo \langle , \rangle el producto Euclídeo en \mathbb{R}^{n+1} .

Si n=2, podemos definir otro campo $Y_a \in \aleph(\mathbb{S}^2)$ como el que se identifica a la función $G(p)=p\times a$, siendo \times el producto vectorial en \mathbb{R}^3 .

2. Los campos de \mathbb{RP}^n pueden identificarse con el espacio siguiente

$$\aleph(\mathbb{RP}^n) \equiv \{ F \in C^{\infty}(\mathbb{S}^n, \mathbb{R}^{n+1}) / \langle F(p), p \rangle = 0 \ y F(-p) = -F(p) \ \forall p \in \mathbb{S}^n \}.$$

3. Sea X una matriz antisimétrica de orden n. Entonces las funciones $F, G: O(n) \to \mathfrak{gl}(n, \mathbb{R})$ dadas por

$$F(A) = AX$$
 $G(A) = XA$, $\forall A \in O(n)$,

definen campos de vectores en O(n), que tienen la particularidad de no tener ceros en ningún punto de O(n).

4. Sea X una matriz de orden n y con traza cero. Entonces las funciones $F, G: Sl(n, \mathbb{R}) \to \mathfrak{gl}(n\mathbb{R})$ dadas por

$$F(A) = AX$$
 $G(A) = XA$, $\forall A \in Sl(n, \mathbb{R})$,

definen campos de vectores in $Sl(n,\mathbb{R})$, que vuelven a tener la propiedad de no tener ningún cero.

2.2 1-formas diferenciables

Si M^n es una variedad diferenciable de dimensión n y

$$T^*M := \cup_{p \in M} (T_p M)^*,$$

donde $(T_pM)^*$ es el espacio vectorial dual de T_pM , representamos por Π : $T^*M \to M$ a la proyección natural, esto es $\Pi(\lambda) = p$ si $\lambda \in T_p^*M$.

Definición 2.2.1 Una 1-forma en M es una aplicación $\alpha: M \to T^*M$ tal que $\Pi \circ X = Id$. A la imagen de un punto p por α se le representará por α_p .

Observación 2.2.1 • Si α, β son 1-formas en M, $f: M \to \mathbb{R}$ una función (no necesariamente diferenciable) y $\lambda \in \mathbb{R}$, entonces $\alpha + \beta$, $\lambda \alpha$ y $f \alpha$ definidos por

$$(\alpha + \beta)_p = \alpha_p + \beta_p, \quad (\lambda \alpha)_p = \lambda \alpha_p \quad y \quad (f\alpha)_p = f(p)\alpha_p,$$

son también 1-formas en M.

• $Si\ f: M \to \mathbb{R}$ es una función diferenciable y p un punto de M, entonces usando la identificación dada en la Proposición 1.4.1,

$$df_p: T_pM \to \mathbb{R}$$

 $df_p(v) = v(f).$

Como df_p es lineal, se tiene que $df_p \in T_p^*M$, y así $p \in M \mapsto df_p \in T_p^*M$ define una 1-forma a la que llamamos la **diferencial de f** y representamos por df.

- $Si \{U, \phi, x_i, i = 1, ..., n\}$ es un sistema de coordenadas en M, entonces dx_i son 1-formas sobre U, y ademas $\{(dx_i)_p, i = 1, ..., n\}$ es la base dual en T_p^*M de la base $\{\frac{\partial}{\partial x_i}\Big|_{p}, i = 1, ..., n\}$.
- Si α es una 1-forma en M y $\{U, \phi, x_i, i = 1, ..., n\}$ un sistema de coordenadas, entonces existen funciones $f_i: U \to \mathbb{R}$ para i = 1, ..., n, tal que la restricción de α a U es dada por

$$\alpha/U = \sum_{i=1}^{n} f_i \, dx_i.$$

Definición 2.2.2 Una 1-forma α en M se llama **diferenciable** si existe un atlas $\{(U_{\alpha}, \phi_{\alpha}, x_i^{\alpha}, i = 1, \dots, n), \alpha \in \mathcal{A}\}$ en M tal que las funciones f_i^{α} : $U_{\alpha} \to \mathbb{R}$ dadas por

$$\alpha/U_{\alpha} = \sum_{i=1}^{n} f_i^{\alpha} \, dx_i,$$

son diferenciables para todo i = 1, ..., n y todo $\alpha \in A$. Esta definición es correcta, ya que no depende del atlas escogido en M.

Observación 2.2.2 • Si $f: M \to \mathbb{R}$ es diferenciable, entonces df es una 1-forma diferenciable.

• Si α, β son 1-formas diferenciables en M, $\lambda \in \mathbb{R}$ y $f: M \to \mathbb{R}$ una función diferenciable, entonces $\alpha + \beta$, $\lambda \alpha$ y $f \alpha$ son también 1-formas diferenciables en M.

Representaremos al conjunto de 1-formas diferenciables sobre M por $\Omega^1(M)$. Es claro que $\Omega^1(M)$ tiene estructura de espacio vectorial real y de módulo sobre el anillo $C^{\infty}(M)$.

Observemos que la diferencial de funciones define un operador $d: C^{\infty}(M) \to \Omega^1(M)$ cumpliendo

$$d(f+g) = df + dg, \quad d(fg) = fdg + gdf, \quad \forall f, g \in C^{\infty}(M).$$

Definimos

$$\mathcal{W} = \{ F : \aleph(M) \to C^{\infty}(M) \mid F(X+Y) = F(X) + F(Y), \ F(fX) = fF(X), \\ \forall X \in \aleph(M), \ \forall f \in C^{\infty}(M) \}$$

Es claro que si $F, G \in \mathcal{W}$ and $f \in C^{\infty}(M)$, entonces F + G y fF, dadas por

$$(F+G)(X) = F(X) + G(X), \quad (fF)(X) = fF(X), \quad \forall X \in \aleph(M),$$

pertenecen a W y por tanto W también tiene estructura de espacio vectorial real y módulo sobre $C^{\infty}(M)$.

Proposición 2.2.1 La aplicación $T: \Omega^1(M) \to \mathcal{W}$ dada por

$$T(\omega)(X): M \to \mathbb{R}$$

 $T(\omega)(X)(p) = \omega_p(X_p),$

for any $\omega \in \Omega^1(M)$ and any $X \in \aleph(M)$, es un isomorfismo de espacios vectoriales y módulos, cuya inversa es dada por

$$(T^{-1}(F))_p: T_pM \to \mathbb{R}$$

 $(T^{-1}(F))_p(v) = F(V)(p),$

donde $V \in \aleph(M)$ y $V_p = v$.

Lema 2.2.1 Sea $\Phi: M \to N$ una aplicación diferenciable. Entonces $\Phi^*: \Omega^1(N) \to \Omega^1(M)$ dado por

$$\Phi^*(\alpha)_p(v) = \alpha_{\Phi(p)}(d\Phi_p(v)), \quad \forall \alpha \in \Omega^1(N), \quad \forall v \in T_pM, \quad \forall p \in M,$$

es un homomorfismo bien definido de espacios vectoriales que además cumple:

1.
$$\Phi^*(f\alpha) = (f \circ \Phi)\Phi^*\alpha$$
, $\forall \alpha \in \Omega^1(N)$, $\forall f \in C^\infty(N)$.

2.
$$\Phi^*(df) = d(f \circ \Phi), \quad \forall f \in C^{\infty}(N).$$

- 3. Si $\Psi: N \to P$ es otra aplicación diferenciable, entonces $(\Psi \circ \Phi)^* = \Phi^* \circ \Psi^*$.
- 4. $Id^* = Id$.
- 5. If $\Phi: M \to N$ es un difeomorfismo, entonces Φ^* es un isomorfismo.

2.3 El álgebra exterior. Formas diferenciables

Sea V un espacio vectorial real de dimensión n y $k \ge 1$ un entero. Sea

$$\mathcal{T}^k(V) = \{A : V \times .^k . \times V \to \mathbb{R}, A \text{ es multilineal}\}.$$

Las operaciones

$$(A+B)(v_1,...,v_k) = A(v_1,...,v_k) + B(v_1,...,v_k)$$

 $(aA)(v_1,...,v_k) = aA(v_1,...,v_k),$

dan estructura de espacio vectorial real a $\mathcal{T}^k(V)$. Notemos que $\mathcal{T}^1(V) = V^*$ y por conveniencia tomaremos $\mathcal{T}^0(V) = \mathbb{R}$.

Si $T:V\to W$ es un homomorfismo de espacios vectoriales sobre $\mathbb{R},$ definimos

$$T^*: \mathcal{T}^k(W) \to \mathcal{T}^k(V),$$

por $T^*(A)(v_1,\ldots,v_k)=A(T(v_1),\ldots,T(v_k))$. Entonces T^* define un homomorfismo de espacios vectoriales.

Dados $A \in \mathcal{T}^k(V)$ y $B \in \mathcal{T}^l(V)$ definimos el **producto tensorial** $A \otimes B \in \mathcal{T}^{k+l}(V)$ por

$$(A \otimes B)(v_1, \dots, v_{k+l}) = A(v_1, \dots, v_k) B(v_{k+1}, \dots, v_{k+l}).$$

Proposición 2.3.1 El producto tensorial está bien definido, esto es $A \otimes B \in \mathcal{T}^{k+l}(V)$, y cumple las siguientes propiedades:

1.
$$(A_1 + A_2) \otimes B = A_1 \otimes B + A_2 \otimes B$$
, $(aA) \otimes B = a(A \otimes B)$

2.
$$A \otimes (B_1 + B_2) = A \otimes B_1 + A \otimes B_2$$
, $A \otimes (aB) = a(A \otimes B)$

3.
$$A \otimes (B \otimes C) = (A \otimes B) \otimes C$$

4.
$$T^*(A \otimes B) = (T^*A) \otimes (T^*B)$$

Debido a la asociatividad del producto tensorial, se puede definir sin ambiguedad el producto tensorial $A_1 \otimes \cdots \otimes A_m$ de un número finito de aplicaciones multilineales.

Lema 2.3.1 Si $\{e_1, \ldots, e_n\}$ es una base de V y $\{e_1^*, \ldots, e_n^*\}$ es la base dual de $V^* = \mathcal{T}^1(V)$, entonces para cualquier entero no negativo k,

$$\{e_{i_1}^* \otimes \cdots \otimes e_{i_k}^*, 1 \leq i_1, \ldots, i_k \leq n\},$$

es una base de $\mathcal{T}^k(V)$. En particular, dim $\mathcal{T}^k(V) = n^k$. Además cualquier $A \in \mathcal{T}^k(V)$ es dado por

$$A = \sum_{i_1, \dots, i_k=1}^n A(e_{i_1}, \dots, e_{i_k}) e_{i_1}^* \otimes \dots \otimes e_{i_k}^*.$$

Lema 2.3.2 Si $A \in \mathcal{T}^k(V)$ y representamos por S_k al grupo de las permutaciones de $\{1, \ldots, k\}$, entonces son equivalentes las siguientes propiedades:

- 1. $A(v_{\sigma(1)}, \ldots, v_{\sigma(v_k)}) = sig(\sigma) A(v_1, \ldots, v_k)$, donde $sig(\sigma)$ representa el signo de la permutación σ .
- 2. $A(v_1, \ldots, v_j, \ldots, v_i, \ldots, v_k) = -A(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_k), \forall v_i, \ldots, v_k \in V \ y \ para \ todo \ 1 \leq i, j \leq k \ con \ i \neq j.$
- 3. $A(v_1, \ldots, v_i, \ldots, v_j, \ldots, v_k) = 0, \forall v_i, \ldots, v_k \in V \ y \ para \ todo \ 1 \leq i, j \leq k \ siempre \ que \ v_i = v_j.$

Una aplicación multilineal $A \in \mathcal{T}^k(V)$ que cumpla una de las tres anteriores propiedades equivalentes se llama **antisimétrica o alternada**. Es claro que

$$\Lambda^k(V) = \{ A \in \mathcal{T}^k(V), A \text{ es alternada} \},$$

es un subespacio vectorial de $\mathcal{T}^k(V)$. Observemos que $\Lambda^1(V) = \mathcal{T}^1(V)$ y que $\Lambda^0(V) = \mathcal{T}^0(V) = \mathbb{R}$.

Definimos un homomorfismo $Alt: \mathcal{T}^k(V) \to \mathcal{T}^k(V)$ por

$$Alt(A)(v_1, \dots, v_k) = \frac{1}{k!} \sum_{\sigma \in S_k} \operatorname{sig}(\sigma) A(v_{\sigma(1)}, \dots, v_{\sigma(k)}).$$

Lema 2.3.3 Para cada entero $k \ge 0$ se tiene

- 1. $A \in \mathcal{T}^k(V) \Rightarrow Alt(A) \in \Lambda^k(V)$.
- 2. $\alpha \in \Lambda^k(V) \Rightarrow Alt(\alpha) = \alpha$.

3.
$$A \in \mathcal{T}^k(V) \Rightarrow Alt(Alt(A)) = Alt(A)$$
.

Lema 2.3.4 1. Si $A \in \mathcal{T}^k(V)$ y Alt(A) = 0, entonces $Alt(A \otimes B) = Alt(B \otimes A) = 0$, para todo $B \in \mathcal{T}^l(V)$.

2. Si $\alpha \in \Lambda^k(V)$, $\beta \in \Lambda^l(V)$ $y \gamma \in \Lambda^s(V)$, entonces

$$Alt(\alpha \otimes Alt(\beta \otimes \gamma)) = Alt(Alt(\alpha \otimes \beta) \otimes \gamma) = Alt(\alpha \otimes \beta \otimes \gamma).$$

Definición 2.3.1 Se define el producto exterior de aplicaciones multilineales y alternadas sobre V por

$$\wedge : \Lambda^{k}(V) \times \Lambda^{l}(V) \longrightarrow \Lambda^{k+l}(V)$$

$$(\alpha, \beta) \longmapsto \alpha \wedge \beta = \frac{(k+l)!}{k! ! !!} Alt(\alpha \otimes \beta).$$

Usando la definición de Alt se tiene que

$$(\alpha \wedge \beta)(v_1, \dots, v_{k+l}) = \frac{1}{k!l!} \sum_{\sigma} \operatorname{sig}(\sigma) (\alpha \otimes \beta)(v_{\sigma(1)}, \dots, v_{\sigma(k+l)})$$
$$= \frac{1}{k!l!} \sum_{\sigma} \operatorname{sig}(\sigma) \alpha(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \beta(v_{\sigma(k+1)}, \dots, v_{\sigma(k+l)})$$

Teorema 2.3.1 Sean $\alpha, \alpha_1, \alpha_2 \in \Lambda^k(V)$, $\beta, \beta_1, \beta_2 \in \Lambda^l(V)$, $\gamma \in \Lambda^s(V)$ y $a \in \mathbb{R}$. Entonces

1.
$$(\alpha_1 + \alpha_2) \wedge \beta = \alpha_1 \wedge \beta + \alpha_2 \wedge \beta$$

2.
$$\alpha \wedge (\beta_1 \wedge \beta_2) = \alpha \wedge \beta_1 + \alpha \wedge \beta_2$$

3.
$$(a\alpha) \wedge \beta = \alpha \wedge (a\beta) = a(\alpha \wedge \beta)$$

4.
$$\beta \wedge \alpha = (-1)^{kl} \alpha \wedge \beta$$

5.
$$(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma) = \frac{(k+l+s)!}{k! l! s!} Alt(\alpha \otimes \beta \otimes \gamma)$$

6. Si $T:V\to W$ es una aplicación lineal, $\alpha\in\Lambda^k(W)$ y $\beta\in\Lambda^l(W)$, entonces

$$T^*(\alpha \wedge \beta) = T^*(\alpha) \wedge T^*(\beta).$$

Debido a la asociatividad del producto exterior, se puede definir sin ambiguedad el producto exterior $\alpha_1 \wedge \cdots \wedge \alpha_m$ de un número finito de aplicaciones multilineales y alternadas.

Como consecuencia del teorema 2.3.2, también conviene observar que dadas $\alpha \in \Lambda^k(V)$ y $\beta \in \Lambda^l(V)$ se tiene que $\alpha \wedge \beta = \beta \wedge \alpha$ si k o l son pares, que $\alpha \wedge \beta = -\beta \wedge \alpha$ si k y l son impares, y que $\alpha \wedge \alpha = 0$ si k es impar. Reiterando la fórmula del apartado 5 en el anterior teorema se obtiene que si $\alpha_1, \ldots, \alpha_m \in \Lambda^1(V)$, entonces

$$\alpha_1 \wedge \cdots \wedge \alpha_m = m! \operatorname{Alt} (\alpha_1 \otimes \cdots \otimes \alpha_m).$$

Lema 2.3.5 Sea $\{e_1, \ldots, e_n\}$ una base del espacio vectorial V y $\{e_1^*, \ldots, e_n^*\}$ la base dual de $\Lambda^1(V)$. Entonces para cada $k = 1, \ldots, n$,

$$\{e_{i_1}^* \wedge \cdots \wedge e_{i_k}^* / 1 \le i_1 < \cdots < i_k \le n\},$$

es una base de $\Lambda^k(V)$. En consecuencia, $\dim \Lambda^k(V) = \binom{n}{k}$. Si $\alpha \in \Lambda^k(V)$, escribiremos

$$\alpha = \sum_{i_1 < \dots < i_k} \lambda_{i_1 \dots i_k} e_{i_1}^* \wedge \dots \wedge e_{i_k}^*.$$

Lema 2.3.6 Si $\alpha_1, \ldots, \alpha_k \in \Lambda^1(V)$, entonces $\{\alpha_1, \ldots, \alpha_k\}$ son linealmente independientes en $\Lambda^1(V)$ si y sólo si $\alpha_1 \wedge \cdots \wedge \alpha_k \neq 0$ in $\Lambda^k(V)$.

Debemos indicar que para k > n, $\Lambda^k(V)$ es trivial, y que dim $\Lambda^n(V) = 1$. Así cualquier elemento no nulo de $\Lambda^n(V)$ genera dicho espacio.

En el caso del espacio vectorial \mathbb{R}^n , podemos definir un elemento no nulo de $\Lambda^n(\mathbb{R}^n)$ muy especial. Definimos

$$\det: \mathbb{R}^n \times \mathbb{R}^n \longrightarrow \mathbb{R}$$
$$\det(v_1, \dots, v_n) = \det A,$$

donde A es la matriz dada por $v_i = \sum_{i=1}^n A_{ij} e_j$, siendo $\{e_1, \dots, e_n\}$ la base canónica de \mathbb{R}^n .

Proposición 2.3.2 Sea $\{e_1, \ldots, e_n\}$ una base de un espacio vectorial V y $\alpha \in \Lambda^n(M)$. Si $v_i = \sum_{i=1}^n A_{ij}e_j$, entonces

$$\alpha(v_1,\ldots,v_n)=(\det A)\,\alpha(e_1,\ldots,e_n).$$

En particular $(e_1^* \wedge \cdots \wedge e_n^*)(v_1, \dots, v_n) = \det A$.

Además si $T:V\to V$ es una aplicación lineal, entonces $T^*:\Lambda^n(V)\to\Lambda^n(V)$ es dado por

$$T^*(\alpha) = (\det T) \alpha,$$

para cada $\alpha \in \Lambda^n(V)$.

Si M^n es una variedad diferenciable de dimensión n, k un entero positivo y

$$\Lambda^k(M) := \cup_{p \in M} \Lambda^k(T_p M),$$

representamos por $\Pi: \Lambda^k(M) \to M$ a la proyección natural, esto es $\Pi(\lambda) = p$ si $\lambda \in \Lambda^k(T_pM)$.

Definición 2.3.2 Una k-forma en M es una aplicación $\alpha: M \to \Lambda^k(M)$ tal que $\Pi \circ X = Id$. A la imagen de un punto p por α se le representará por α_p .

Observación 2.3.1 • Si α, β son k-formas en M, $f: M \to \mathbb{R}$ una función (no necesariamente diferenciable) y $\lambda \in \mathbb{R}$, entonces $\alpha + \beta$, $\lambda \alpha$ y $f \alpha$ definidos por

$$(\alpha + \beta)_p = \alpha_p + \beta_p, \quad (\lambda \alpha)_p = \lambda \alpha_p \quad y \quad (f\alpha)_p = f(p)\alpha_p,$$

son tambi'en k-formas en M.

• Si α es una k-forma en M y β una l-forma en M, entonces $\alpha \wedge \beta$ definida por

$$(\alpha \wedge \beta)_p = \alpha_p \wedge \beta_p,$$

es una (k+l)-forma en M.

- Si $\{U, \phi, x_i, i = 1, ..., n\}$ es un sistema de coordenadas en M, entonces $\{dx_{i_1} \wedge \cdots \wedge dx_{i_k}, 1 \leq i_1 < \cdots < i_k \leq n\}$ son k-formas en U, que al particularizarlas en un punto p dan una base en $\Lambda^k(T_pM)$.
- Si α es una k-forma en M y $\{U, \phi, x_i, i = 1, ..., n\}$ un sistema de coordenadas, entonces existen funciones $f_{i_1...i_k}: U \to \mathbb{R}$ para $1 \leq i_1 < \cdots < i_k \leq n$, tal que la restricción de α a U es dada por

$$\alpha/U = \sum_{1 \le i_1 < \dots < i_k \le n} f_{i_1 \dots i_k} \, dx_{i_1} \wedge \dots \wedge dx_{i_k}.$$

Definición 2.3.3 Una k-forma α en M se llama **diferenciable** si existe un atlas $\{(U_{\alpha}, \phi_{\alpha}, x_{i}^{\alpha}, i = 1, ..., n), \alpha \in \mathcal{A}\}$ en M tal que las funciones $f_{i_{1}...i_{k}}^{\alpha}$: $U_{\alpha} \to \mathbb{R}$ dadas por

$$\alpha/U_{\alpha} = \sum_{1 \le i_1 < \dots < i_k \le n} f_{i_1 \dots i_k}^{\alpha} \, dx_{i_1}^{\alpha} \wedge \dots \wedge dx_{i_k}^{\alpha}$$

son diferenciables para todo $1 \leq i_1 < \cdots < i_k \leq n$ y todo $\alpha \in \mathcal{A}$. Esta definición es correcta, ya que no depende del atlas escogido en M.

Observación 2.3.2 Si α, β son k-formas diferenciables en $M, \lambda \in \mathbb{R}$ y $f: M \to \mathbb{R}$ una función diferenciable, entonces $\alpha + \beta, \lambda \alpha$ y $f \alpha$ son también k-formas diferenciables en M. Además, si α es una k-forma diferenciable en M y β una l-forma diferenciable en M, entonces $\alpha \wedge \beta$ es una (k+l)-formas diferenciable en M.

Representaremos al conjunto de k-formas diferenciables sobre M por $\Omega^k(M)$. Usando el teorema 2.3.1, es claro que $\Omega^k(M)$ tiene estructura de espacio vectorial real y de módulo sobre el anillo $C^{\infty}(M)$. Como $\Omega^k(M) = 0$ si k > n, y $\Omega^0(M) = C^{\infty}(M)$, representando

$$\Omega^*(M) = \bigoplus_{k=0}^n \Omega^k(M),$$

es claro, usando de nuevo el teorema 2.3.1, que el producto exterior de formas dá a $\Omega^*(M)$ estructura de álgebra graduada.

Definimos

$$\mathcal{W} = \{ F : \aleph(M) \times \stackrel{k}{\dots} \aleph(M) \to C^{\infty}(M) \mid F \text{ is multilineal y alternado}$$
con respecto a la estructura de módulo de $\aleph(M) \}$

Es claro que si $F, G \in \mathcal{W}$ and $f \in C^{\infty}(M)$, entonces F + G y fF, dadas por

$$(F+G)(X_1,...,X_k) = F(X_1,...,X_k) + G(X_1,...,X_k),$$

 $(fF)(X_1,...,X_k) = fF(X_1,...,X_k), \quad \forall X_1,...X_k \in \aleph(M),$

pertenecen a W y por tanto W también tiene estructura de espacio vectorial real y módulo sobre $C^{\infty}(M)$.

Proposición 2.3.3 La aplicación $T: \Omega^k(M) \to \mathcal{W}$ dada por

$$T(\omega)(X_1,\ldots,X_k):M\to\mathbb{R}$$
$$T(\omega)(X_1,\ldots,X_k)(p)=\omega_p((X_1)_p),\ldots,(X_k)_p),$$

for any $\omega \in \Omega^k(M)$ and any $X_1, \ldots, X_k \in \aleph(M)$, es un isomorfismo de espacios vectoriales y módulos, cuya inversa es dada por

$$(T^{-1}(F))_p: T_pM \times \stackrel{k}{\dots} \times T_pM \to \mathbb{R}$$
$$(T^{-1}(F))_p(v_1, \dots, v_k) = F(V_1, \dots, V_k)(p),$$

donde $V_i \in \aleph(M)$ y $(V_i)_p = v_i$ para todo $1 \le i \le k$.

Lema 2.3.7 Sea $\Phi: M \to N$ una aplicación diferenciable. Entonces $\Phi^*: \Omega^k(N) \to \Omega^k(M)$ dado por

$$\Phi^*(\alpha)_p(v_1,\ldots,v_k) = \alpha_{\Phi(p)}(d\Phi_p(v_1),\ldots,d\Phi_p(v_k)), \quad \forall \alpha \in \Omega^k(N),$$

donde v_1, \ldots, v_k son vectores de T_pM y p un punto de M, es un homomorfismo bien definido de espacios vectoriales que además cumple:

- 1. $\Phi^*(f\alpha) = (f \circ \Phi)\Phi^*\alpha$, $\forall \alpha \in \Omega^1(N)$, $\forall f \in C^\infty(N)$.
- 2. $\Phi^*(\alpha \wedge \beta) = \Phi^*(\alpha) \wedge \Phi^*(\beta)$.
- 3. $Si \ \Psi : N \to P$ es otra aplicación diferenciable, entonces $(\Psi \circ \Phi)^* = \Phi^* \circ \Psi^*$.
- 4. $Id^* = Id$.
- 5. Si Φ es un difeomorfismo, entonces Φ^* es un isomorfismo y $(\Phi^{-1})^* = (\Phi^*)^{-1}$.

2.4 Orientación en variedades

Sea V un espacio vectorial real de dimensión n y representemos por \mathcal{B} al conjunto de bases **ordenadas** de V. En dicho conjunto se define una relación de equivalencia R por

$$\{v_1,\ldots,v_n\}$$
 $R\{w_1,\ldots,w_n\}$ \Leftrightarrow det $A>0$,

siendo A la matriz dada por $w_i = \sum_{i=1}^n A_{ij} v_j$, $i = 1, \ldots, n$. Como las matrices de cambio de base en V son regulares, esto es su determinante es no nulo, es claro que el conjunto cociente \mathcal{B}/R tiene dos elementos. Una **orientación** en V es un elemento de \mathcal{B}/R . Así en V hay dos orientaciones.

En $\Lambda^n(V)/\{0\}$ definimos también una relación de equivalencia R por

$$\alpha R \beta \Leftrightarrow \beta = a \alpha, \cos a > 0.$$

Como $\Lambda^n(V)$ tiene dimensión 1, el conjunto cociente $(\Lambda^n(V)/\{0\})/R$ tiene también dos elementos. Si $\{v_1, \ldots, v_n\}$ es una base de V, entonces del lema 2.3.6, se sigue que $v_1^* \wedge \cdots \wedge v_n^* \in \Lambda^n(V)/\{0\}$. Además si $\{w_1, \ldots, w_n\}$ es otra base, se sigue de la proposición 2.3.2 que

$$w_1^* \wedge \cdots \wedge w_n^* = (\det A) v_1^* \wedge \cdots \wedge v_n^*,$$

siendo A la matriz dada por $w_i = \sum_{i=1}^n A_{ij} v_j$, i = 1, ..., n. Es claro que se tiene definida una biyección

$$F: \mathcal{B}/R \longrightarrow \Lambda^n(V)/\{0\}$$
$$F([\{v_1, \dots, v_n\}]) = [v_1^* \wedge \dots \wedge v_n^*].$$

Por tanto una orientación en V es también una clase de equivalencia en $(\Lambda^n(V)/\{0\})/R$, que tiene por representante un elemento no nulo de $\Lambda^n(V)$. Observemos que $F([\{v_1,\ldots,v_n\}])=[\alpha]$ si y sólo si $\alpha(v_1,\ldots,v_n)>0$.

Definición 2.4.1 Una variedad diferenciable M^n de dimensión n se llama orientable si existe $\alpha \in \Omega^n(M)$ tal que $\alpha_p \neq 0$ en todo punto p de M.

Observemos que α_p define un elemento de $\Lambda^n(T_pM)/\{0\}$, y en consecuencia una orientación en T_pM . La diferenciablidad de α puede interpretarse por el hecho de que se ha escogido una orientación "diferenciable" en todos los puntos de M.

Sea M^n una variedad orientable y $\mathcal{A} = \{ \alpha \in \Omega^n(M) / \alpha_p \neq 0, \forall p \in M \}$. Definimos una relación de equivalencia R en \mathcal{A} por

$$\alpha R \beta \Leftrightarrow \beta = f\alpha,$$

donde $f \in C^{\infty}(M)$ con f > 0.

Definición 2.4.2 Una orientación en una variedad orientable M es una clase de equivalencia en A/R.

A partir de ahora se identificará una orientación de una variedad orientable con una n-forma sin ceros que la represente. Es claro que sobre una variedad orientable y conexa existen exactamente dos orientaciones.

Ejemplo 2.4.1 • \mathbb{R}^n es orientable, pues la n-forma $dx_1 \wedge \cdots \wedge dx_n$ no tiene ceros. Haciendo uso de la típica identificación entre vectores tangentes a \mathbb{R}^n con los propios vectores de \mathbb{R}^n , se tiene que la anterior n-forma viene dada en cada punto por la aplicación multilineal y alternada det, la cual proporciona una aplicación multilineal y alternada respecto a la estructura de módulo que tienen los campos de \mathbb{R}^n dada por

$$\det: C^{\infty}(\mathbb{R}^n, \mathbb{R}^n) \times \mathbb{R}^n \times C^{\infty}(\mathbb{R}^n, \mathbb{R}^n) \longrightarrow C^{\infty}(\mathbb{R}^n)$$
$$\det(X_1, \dots, X_n) = \det A,$$

donde $A: M \to \mathfrak{gl}(n, \mathbb{R})$ es dada por $X_i(p) = \sum_{j=i}^n A_{ij}(p)e_j$, siendo $\{e_1, \dots, e_n\}$ la base standart de \mathbb{R}^n .

- Todo abierto de una variedad orientable es orientable.
- Si una variedad tiene un atlas con dos cartas cuya intersección es conexa, entonces es orientable.
 - \mathbb{S}^n es orientable, pues α_0 dada por

$$(\alpha_0)_p(v_1,\ldots,v_n) = \det(p,v_1,\ldots,v_n),$$

para cualesquiera $v_1, \ldots, v_n \in T_p \mathbb{S}^n$, define una n-forma diferenciable en \mathbb{S}^n , esto es $\alpha_0 \in \Omega^n(\mathbb{S}^n)$, tal que $(\alpha_0)_p \neq 0$, $\forall p \in \mathbb{S}^n$. A la orientación definida por α_0 le llamaremos la orientación canonica en \mathbb{S}^n .

• Sea $S \subset \mathbb{R}^3$ una superficie. Entonces S es orientable si y sólo si existe un campo diferenciable unitario y normal a S.

Sea $A: \mathbb{S}^n \to \mathbb{S}^n$ la aplicación antípoda. Como A es un difeomorfismo de \mathbb{S}^n ,

$$A^*: \Omega^k(\mathbb{S}^n) \to \Omega^k(\mathbb{S}^n), \quad 0 \le k \le n$$

es un isomorfismo. Además, como $A^2 = Id$, entonces $(A^*)^2 = Id$ y así A^* tiene por valores propios 1 y -1. Por tanto si

$$\Omega_{+}^{k}(\mathbb{S}^{n}) = \{ \alpha \in \Omega^{k} / A^{*}(\alpha) = \pm \alpha \},\$$

se tiene que $\Omega^k(\mathbb{S}^n) = \Omega^k_+(\mathbb{S}^n) \oplus \Omega^K_-(\mathbb{S}^n)$.

Sea $\pi: \mathbb{S}^n \to \mathbb{RP}^n$ la proyección sobre el espacio proyectivo real. Entonces, como $\pi \circ A = \pi$, se tiene que $\pi^*(\beta) \in \Omega^k_+(\mathbb{S}^n)$ para cada $\beta \in \Omega^k(\mathbb{RP}^n)$. No es dificil comprobar que la aplicación lineal

$$\pi^*: \Omega^k(\mathbb{RP}^n) \to \Omega^k_+(\mathbb{S}^n),$$

es un isomorfismo.

Proposición 2.4.1 El espacio proyectivo real \mathbb{RP}^n es orientable si y sólo si n es impar. Además en este caso una orientación α viene definida por la única n-forma α en \mathbb{RP}^n tal que $\pi^*(\alpha) = \alpha_0$, siendo $\pi: \mathbb{S}^n \to \mathbb{RP}^n$ la proyección.

Definición 2.4.3 Una métrica de Riemann sobre una variedad M^n es una correspondencia

$$p \in M \longmapsto g_p \in \mathcal{T}^2(T_pM),$$

tal que:

- a) g_p es simétrica para todo $p \in M$
- b) g_p es definida positiva para todo $p \in M$, esto es $g_p(v,v) \ge 0 \ \forall v \in T_pM$ y la igualdad se dá si y sólo si v = 0.
- c) g es diferenciable en el sentido de que para toda carta $(U, \phi, x_i, i = 1, ..., n)$, las funciones $g_{ij}: U \to \mathbb{R}$ definidas por

$$g/U = \sum_{i,j=1}^{n} g_{i,j} \, dx_i \otimes dx_j,$$

son diferenciables.

Al par (M^n, g) se le llama variedad de Riemann.

Como ocurre siempre basta con que la propiedad c) se cumpla para los entornos cooedenados de un atlas.

Proposición 2.4.2 Sea (M^n, g) una variedad de Riemann orientada. Entonces existe una única n-forma α_0 definiendo la orientación dada, tal que

$$(\alpha_0)_p(e_1,\ldots,e_n)=1,$$

para toda base ortonormal positivamente orientada de T_pM y $\forall p \in M$. A α_0 le llamaremos la **forma de volumen** de la variedad de Riemann orientada M.

Como el poder hablar de bases ortonormales es debido a la existencia de g, la forma de volumen está asociada a la métrica g y a la orientación. Cambiando la métrica (por ejemplo tomando $\tilde{g} = hg$ con h una función diferenciable y positiva) cambia la forma de volumen. Al cambiar la orientación por la opuesta solo cambia el signo de la forma de volumen.

Ejemplo 2.4.2 a) Sea O(n) el grupo ortogonal y para cada $A \in O(n)$ consideremos $L_{A^{-1}}: O(n) \to O(n)$ el difeomorfismo dado por $L_{A^{-1}}(B) = A^{-1}B$. Si $T_A = (dL_{A^{-1}})_A: T_AO(n) \to T_IO(n)$ es el correspondiente isomorfismo, consideremos el isomorfismo

$$(T_A)^*: \Lambda^k(T_IO(n)) \longrightarrow \Lambda^k(T_AO(n)).$$

Dado un elemento $\lambda \in \Lambda^k(T_IO(n))$, la correspondencia

$$A \in O(n) \longmapsto (T_A)^*(\lambda) \in \Lambda^k(T_AO(n))$$

define una k-forma diferenciable en O(n). Como consecuencia O(n) es una variedad orientable.

b) Un argumento similar prueba también que el grupo especial lineal $Sl(n,\mathbb{R})$ es orientable.

Chapter 3

DIFERENCIACION EXTERIOR. COHOMOLOGÍA DE deRHAM

3.1 Construcción de la diferencial exterior de formas diferenciables

En el capítulo 2 vimos que la diferencial de una función diferenciable definida sobre una variedad M y valuada real es una 1-forma sobre M. Así se tiene definida una aplicación lineal

$$d: C^{\infty}(M) = \Omega^{0}(M) \longrightarrow \Omega^{1}(M)$$
$$f \longmapsto df,$$

donde la 1-forma df es dada por df(X) = X(f), $\forall X \in \aleph(M)$, o en un sistema de coordenadas $(U, \phi, x_1, \dots, x_n)$ por $df = \sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i$. El objetivo principal de este capítulo es extender esta construcción a for-

El objetivo principal de este capítulo es extender esta construcción a formas de grado mayor, y contruir así el complejo de deRham que nos permitirá definir la cohomología de deRham de la variedad.

Teorema 3.1.1 Existencia y unicidad de la diferencial exterior.

Sea M^n una variedad diferenciable. Entonces para cada $k=0,\ldots,n-1$ existe una única aplicación

$$d: \Omega^k(M) \longrightarrow \Omega^{k+1}(M)$$

cumpliendo las siguientes propiedades:

- a) d es lineal, esto es $d(a\alpha + b\beta) = ad\alpha + bd\beta \quad \forall \alpha, \beta \in \Omega^k(M), a, b \in \mathbb{R}.$
- b) Para k = 0, $d: \Omega^0(M) = C^{\infty}(M) \to \Omega^1(M)$ es la diferencial ordinaria de funciones, esto es $df(X) = X(f) \quad \forall f \in C^{\infty}(M), X \in \aleph(M)$.
 - c) $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^k \alpha \wedge d\beta$, con $\alpha \in \Omega^k(M)$.
- d) $d^2 = d \circ d : \Omega^k(M) \to \Omega^{k+2}(M)$ es la aplicación lineal trivial, esto es $d^2 = 0$.

Además dicha aplicación viene dada por:

1.

$$(d\alpha)(X_0, X_1, \dots, X_k) = \sum_{i=0}^k (-1)^i X_i \left(\alpha(X_0, \dots, \hat{X}_i, \dots, X_k) \right) + \sum_{0 \le i < j \le k} (-1)^{i+j} \alpha([X_i, X_j], X_0, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_k),$$

siendo X_i , i = 0, ..., k campos sobre M y donde \hat{X} indica la supresión del campo X.

2. Si en un sistema de coordenadas $(U, \phi, x_1, ..., x_n)$ la k-forma α es dada por

$$\alpha = \sum_{1 \le i_1 < \dots < i_k \le n} f_{i_1 \dots i_k} \, dx_{i_1} \wedge \dots \wedge dx_{i_k},$$

entoneces en dicho sistema de coordenadas, su diferencial d α es dada por

$$d\alpha = \sum_{1 \le i_1 < \dots < i_k \le n} df_{i_1 \dots i_k} \wedge dx_{i_1} \wedge \dots \wedge dx_{i_k}.$$

La demostración consta de tres pasos.

I. Unicidad. Sea d^1 un operador cumpliendo a), b), c) y d). Si $\omega \in \Omega^k(M)$, entonces $d^1\omega \in \Omega^{k+1}(M)$. Si p es cualquier punto de M y $(V, x_i | 1 \le i \le n)$ una carta con $p \in V$, entonces

$$\omega_{/V} = \sum_{1 \le i_1 \le \dots \le i_k \le n} f_{i_1 \dots i_k} \, dx_{i_1} \wedge \dots \wedge dx_{i_k}.$$

Sean $\widetilde{f}_{i_1,\dots i_k}, \widetilde{x}_i, 1 \leq i \leq n$ extensiones diferenciables a M de las funciones $f_{i_1,\dots i_k}, x_i, 1 \leq i \leq n$ que coinciden en un abierto $W \subset V$ con $p \in W$.

Definimos $\alpha \in \Omega^k(M)$ por

$$\alpha = \sum_{1 \le i_1 < \dots < i_k \le n} \widetilde{f}_{i_1 \dots i_k} \, d\widetilde{x}_{i_1} \wedge \dots \wedge d\widetilde{x}_{i_k}.$$

Si h es una función meseta con soporte contenido en W y valiendo 1 en un entorno $\hat{W} \subset W$ de p, entonces $h(\omega - \alpha) \in \Omega^k(M)$ es identicamente 0 y por tanto

$$0 = d^{1}(h(\omega - \alpha)) = dh \wedge (\omega - \alpha) + hd^{1}(\omega - \alpha)$$

Así, sobre \hat{W} se tiene que

$$d^{1}\omega = d^{1}\alpha = \left(\sum_{1 \leq i_{1} < \dots < i_{k} \leq n} d\widetilde{f}_{i_{1}\dots i_{k}} \wedge d\widetilde{x}_{i_{1}} \wedge \dots \wedge d\widetilde{x}_{i_{k}}\right)_{/\hat{W}}$$
$$= \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} df_{i_{1}\dots i_{k}} \wedge dx_{i_{1}} \wedge \dots \wedge dx_{i_{k}}.$$

Esta fórmula prueba la unicidad de d^1 , pues dicha expresión es independiente del operador d^1 .

II. La expresión anterior nos permite también definir el operador localmente. Sea $(V, x_1, ..., x_n)$ un entorno coordenado de M. Definimos $d_V: \Omega^k(V) \to \Omega^{k+1}(V)$ por

$$d_V(fdx_{i_1} \wedge \cdots \wedge dx_{i_k}) := df \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_k}, \quad f \in C^{\infty}(V),$$

y lo extendemos linealmente. No es dificil comprobar que d_V cumple las propiedades anteriores.

III. Se define
$$d: \Omega^k(M) \to \Omega^{k+1}(M)$$
 por

$$d\alpha/V := d_V(\alpha/V)$$
, para todo abierto coordenado $(V, x_1 \dots, x_n)$.

El que d esté bien definido es una consecuencia de I. Además por II, d cumple las propiedades a), b), c) y d).

A $\Omega(M) = \left(\bigoplus_{k=0}^{n} \Omega^{k}(M), d \right)$ se le llama el complejo de deRham de la variedad M.

Proposición 3.1.1 Sea $\Phi: M^n \to N^m$ una aplicación diferenciable. Entonces para cada k el siguiente diagrama es conmutativo:

$$\begin{array}{ccc} \Omega^{k}(N) & \stackrel{\Phi^{*}}{\longrightarrow} & \Omega^{k}(M) \\ d \downarrow & d \downarrow \\ \Omega^{k+1}(N) & \stackrel{\Phi^{*}}{\longrightarrow} & \Omega^{k+1}(M) \end{array}$$

esto es $d \circ \Phi^* = \Phi^* \circ d$.

3.2 Complejo de cocadenas de deRham de una variedad. Formas diferenciables cerradas y exactas. Álgebra de cohomología de deRham. El lema de Poincaré.

Si M^n es una variedad diferenciable, para cada $k \in \{0, ..., n\}$ definimos

$$Z^{k}(M) = \{\alpha \in \Omega^{k}(M) / d\alpha = 0\}$$

$$B^{k}(M) = \{\alpha \in \Omega^{k}(M) / \alpha = d\beta \text{ con } \beta \in \Omega^{k-1}(M)\}.$$

Entonces $Z^k(M)$ y $B^k(M)$ son subespacios vectoriales de $\Omega^k(M)$ y a sus elementos le llamaremos k-formas cerradas y exactas respectivamente. La propiedad de la diferencial exterior $d^2 = 0$ significa que $B^k(M)$ es un subespacio de $Z^k(M)$, esto es que toda k-forma exacta es cerrada, y en consecuencia se tiene definido el espacio vectorial cociente:

$$H^{k}(M) := \frac{Z^{k}(M)}{B^{k}(M)}, \text{ para } k = 0, \dots, n,$$

al que se llama el k-esimo espacio vectorial de cohomología de deRham de M. A sus elementos se les llama clases de cohomología de deRham de M y se les representa por $[\alpha]$ con $d\alpha = 0$. Usando la propiedad 3 del Teorema 3.1.1, es claro que el producto exterior de formas cerradas es cerrada y que el siguiente producto está bien definido

$$[\alpha] \wedge [\beta] = [\alpha \wedge \beta],$$

proporcionando un producto

$$\wedge: H^k(M) \times H^s(M) \longrightarrow H^{k+s}(M)$$

que convierte a $H^*(M)=\bigoplus_{k=0}^n H^k(M)$ en un álgebra graduada a la que llamaremos el álgebra de cohomología de deRham de M.

Conviene observar que trivialmente todas la *n*-formas son cerradas, esto es $Z^n(M) = \Omega^n(M)$, y que $B^0(M) = 0$. En consecuencia

$$H^{n}(M) = \frac{\Omega^{n}(M)}{B^{n}(M)}, \quad H^{0}(M) = Z^{0}(M).$$

Pero $Z^0(M) = \{ f \in C^{\infty}(M) / df = 0 \}$, por lo que $H^0(M)$ es un espacio vectorial real de dimensión el número de componentes conexas de M.

Lema 3.2.1 Lema de Poincaré.

Si U es un subconjunto abierto de \mathbb{R}^n estrellado desde un punto suyo p, esto es para todo $q \in U$ el segmento de recta que une p con q está contenido en U, entonces $H^k(U) = 0$ para todo $k = 1, \ldots, n$.

3.3 Homomorfismos inducidos por aplicaciones diferenciables. Invarianza homotópica de la cohomología de deRham.

Si $\Phi: M^n \to N^m$ es una aplicación diferenciable y $\alpha \in \Omega^k(N)$ es cerrada, esto es $d\alpha = 0$, entonces de la Proposición 3.1.1 se sigue que $\Phi^*\alpha$ también es una k-forma cerrada en M. Analogamente si α es exacta, esto es $\alpha = d\beta$ con $\beta \in \Omega^{k-1}(M)$, entonces $\Phi^*\alpha$ también es exacta. Así podemos definir una aplicación

$$\Phi^{\#}: H^{k}(N) \longrightarrow H^{k}(M)$$
$$\Phi^{\#}([\alpha]) = [\Phi^{*}\alpha],$$

que es una aplicación lineal. Además, si $\Psi: N \to P$ es otra aplicación diferenciable, del Lema 2.4.7 se sigue que $(\Psi \circ \Phi)^{\#} = \Phi^{\#} \circ \Psi^{\#}$, y es claro que $Id^{\#} = Id$. Por tanto si $\Phi: M^n \to N^n$ es un difeomorfismo, $\Phi^{\#}: H^k(N) \to H^k(M)$ es un isomorfismo de espacios vectoriales para todo $k \in \{0, \ldots, n\}$.

Como consecuencia de esta propiedad y del Lema de Poincaré, se tiene que para todo punto p de una variedad diferenciable M existe un abierto V de M que contiene a p tal que $H^k(V) = 0$ para $1 \le k \le n$. Por tanto, toda k forma cerrada de M es localmente exacta para $1 \le k \le n$.

Chapter 4

Integración de n-formas sobre una variedad orientada de dimensión n. Teorema de Stokes

Sea O un abierto de \mathbb{R}^n y $dx_1 \wedge \cdots \wedge dx_n$ la n-forma básica. Es claro que dada una n-forma (no necesariamente diferenciable) α sobre O, se tiene que $\alpha = f dx_1 \wedge \cdots \wedge dx_n$ para cierta función f sobre O. En estas condiciones diremos que:

- 1. α es medible si f es medible.
- 2. α es integrable si f es integrable.

En este caso, definimos

$$\int_{O} \alpha := \int_{O} f.$$

Es claro que las propiedades de la integración de Lebesgue en \mathbb{R}^n son trasladables a la integración de n-formas. Pero hay una, la fórmula del cambio de variable, que conviene destacar.

En efecto, sea $F: O \to O'$ un difeomorfismo entre abiertos conexos de \mathbb{R}^n . Entonces el Jacobiano de F es una función diferenciable sin ceros, y por tanto o es siempre positiva o siempre negativa. En el primer caso diremos que F conserva la orientación de \mathbb{R}^n y en el segundo que F invierte la orientación. La fórmula del cambio de variable dice que si $f: O' \to \mathbb{R}$ es integrable, entonces $(f \circ F)|JacF|$ es una función integrable en O y

$$\int_{O'} f = \int_{O} (f \circ F) |JacF|.$$

Sea ahora $\alpha = f dx_1 \wedge \cdots \wedge dx_n$ una *n*-forma integrable en O'. Entonces

$$F^*\alpha = (f \circ F) F^*(dx_1 \wedge \dots \wedge dx_n) = (f \circ F) d(x_1 \circ F) \wedge \dots \wedge d(x_n \circ F)$$
$$= (f \circ F) (JacF) dx_1 \wedge \dots \wedge dx_n.$$

Por tanto la fórmula del cambio de variable se traduce en:

"Si α es una n-forma integrable en O', entonces $F^*\alpha$ es una n-forma integrable en O y

$$\int_{O'} \alpha = \pm \int_{O} F^* \alpha,$$

dependiendo de que F conserve o invierta la orientación de \mathbb{R}^{n} ".

Sea M^n una variedad orientada y $\omega \in \Omega^n(M)$ una n-forma diferenciable sin ceros representando a la orientación. Un sistema de coordenadas $(U, \phi, x_1, \ldots, x_n)$ con U conexo se dice compatible con la orientación si

$$dx_1 \wedge \cdots \wedge dx_n = f\omega$$
, con $f > 0$.

Observemos que esta definición no depende de la n-forma que represente a la orientación pero si del orden de las funciones coordenadas, por lo que las funciones coordenadas las tomaremos ordenadas.

- \bullet Existen atlas de M^n constituidos por sistemas de coordenadas compatibles con la orientación.
- Si $(U, \phi, x_1, \dots, x_n)$ y $(V, \psi, y_1, \dots, y_n)$ son sistemas de coordenadas compatibles con la orientación, entonces

$$\det\left(\frac{\partial y_i}{\partial x_i}\right): U \cap V \longrightarrow \mathbb{R}$$

es una función positiva.

Definición 4.0.1 Un subconjunto $A \subset M$ se dice de **medida nula** si para todo sistema de coordenadas (U, ϕ) , $\phi(A \cap U)$ es de medida nula en \mathbb{R}^n .

Proposición 4.0.1 Un subconjunto A de M es de medida nula si y sólo si existe un atlas de M, $\{(U_{\alpha}, \phi_{\alpha}), \alpha \in A\}$, tal que $\phi(A \cap U_{\alpha})$ es de medida nula en \mathbb{R}^n para todo $\alpha \in A$.

Si \mathcal{F} es la familia de los subconjuntos de medida nula de M y \mathcal{T} la topología de M, sea \mathcal{A} la σ -álgebra generada por $\mathcal{F} \cup \mathcal{T}$.

Definición 4.0.2 Un subconjunto A de M se dice medible si $A \in \mathcal{A}$.

Proposición 4.0.2 Un subconjunto A de M es medible si y sólo si para todo sistema de coordenadas (U, ϕ) , $\phi(A \cap U)$ es medible segun Lebesgue en \mathbb{R}^n .

Definición 4.0.3 Una n-forma ω sobre una variedad orientada M^n se dice **medible** si, para todo sistema de coordenadas $(U, \phi, x_1, \ldots, x_n)$ compatible con la orientación, la n-forma $(\phi^{-1})^*\alpha$ es medible en el abierto $\phi(V)$ de \mathbb{R}^n .

Proposición 4.0.3 Una n-forma ω sobre una variedad orientada M^n es medible si y sólo si, existe un atlas en M $\{(U_{\alpha}, \phi_{\alpha}, \alpha \in A\}$ compatible con la orientación, tal que las n-formas $(\phi_{\alpha}^{-1})^*\alpha$ son medibles segun Lebesgue.

Si ω es una *n*-forma sobre una variedad orientada M^n , se define el soporte de ω y se representa por sop ω a

$$\operatorname{sop} \omega = \overline{\{p \in M / \omega_p \neq 0\}}.$$

Definición 4.0.4 Integral de una n-forma. Definición I.

Sea α es una n-forma medible de soporte compacto de una variedad orientada M^n con sop $\alpha \subset U$, donde $(U, \phi, x_1, \dots, x_n)$ es un sistema de coordenadas compatible con la orientación. α se dice **integrable** sobre U (y también sobre M) si $(\phi^{-1})^*\alpha$ es integrable en $\phi(U)$. En tal caso, definimos la integral de α por

$$\int_{M} \alpha = \int_{U} \alpha := \int_{\mathbb{R}^{n}} (\phi^{-1})^* \alpha = \int_{\phi(U)} (\phi^{-1})^* \alpha.$$

Proposición 4.0.4 La definición anterior no depende del sistema de coordenadas compatible con la orientación que contenga al soporte de ω . Además si ω_1 y ω_2 son n-formas integrables para la definición I, entonces

1. $\omega_1 + \omega_2$ también es integrable según la definición I y

$$\int_{M} \omega_1 + \omega_2 = \int_{M} \omega_1 + \int_{M} \omega_2.$$

2. Si ω_1 y ω_2 son iguales excepto en un subconjunto de medida nula, entonces

$$\int_{M} \omega_{1} = \int_{M} \omega_{2}.$$

Definición 4.0.5 Integral de una n-forma. Definición II. Sea ω es una n-forma medible de una variedad orientada M^n , $\{(U_\alpha, \phi_\alpha, x_1^\alpha, \dots, x_n^\alpha), \alpha \in A\}$ un recubrimiento de M compatible con la orientación y $\{\Theta_m / m \in \mathbb{N}\}$ una partición de la unidad subordinada al recubrimiento. ω se dice integrable si para todo $m \in \mathbb{N}$, $\Theta_m \omega$ es integrable (según la definición I) y la serie

$$\sum_{m\in\mathbb{N}}\int_M\Theta_m\omega$$

converge absolutamente. En tal caso

$$\int_{M} \omega := \sum_{m \in \mathbb{N}} \int_{M} \Theta_{m} \omega.$$

Conviene observar que, aunque ω no tenga soporte compacto, la suma $\sum_{m\in\mathbb{N}} \Theta_m \omega$ es localmente finita $y \omega = \sum_{m\in\mathbb{N}} \Theta_m \omega$.

Esta definición es independiente del recubrimiento de M compatible con la orientación y de la partición de la unidad subordinada a dicho recubrimiento.

Observación 4.0.1 Si ω tiene soporte compacto contenido en un entorno coordenado, la definiciónes I y II de n-forma integrable y de su integral coinciden.

Si ω tiene soporte compacto (no necesariamente contenido en un entorno coordenado), entonces las anteriores sumas son finitas y la convergencia absoluta está asegurada. En particular este es siempre el caso cuando la variedad M es compacta.

Definición 4.0.6 Sea ω una n-forma medible y A un subconjunto medible de una variedad orientada M^n . ω se dice **integrable sobre** A si $\chi_A\omega$ es integrable, siendo χ_A la función característica de A. En tal caso

$$\int_{A} \omega = \int_{M} \chi_{A} \omega.$$

Proposición 4.0.5 Propiedades de la integración.

Sea M^n una variedad orientada.

1. Si ω_1 y ω_2 son n-formas integrables sobre M y $a, b \in \mathbb{R}$, entonces $a \omega_1 + b \omega_2$ es integrable sobre M y

$$\int_{M} a \,\omega_1 + b \,\omega_2 = a \int_{M} \omega_1 + b \int_{M} \omega_2.$$

2. Si ω_1 es integrable en M y ω_2 coincide con ω_1 salvo en un subconjunto de M de medida nula, entonces ω_2 es integrable sobre M y

$$\int_{M} \omega_{1} = \int_{M} \omega_{2}.$$

3. Si ω es integrable sobre un subconjunto medible A y A' coincide con A salvo en un subconjunto de medida nula, entonces ω también es integrable sobre A' y

$$\int_{A} \omega = \int_{A'} \omega.$$

4. Si ω es integrable sobre un subconjunto medible A y $A = A_1 \cup A_2$, donde A_1 y A_2 son medibles y $A_1 \cap A_2$ es de medida nula, entonces ω es integrable sobre A_1 y A_2 y

$$\int_{A} \omega = \int_{A_1} \omega + \int_{A_2} \omega.$$

Definición 4.0.7 Sea $F: M^n \to N^n$ un difeomorfismo entre las variedades orientadas M y N. Si $\omega \in \Omega^n(M)$ y $\beta \in \Omega^n(N)$ representan las orientaciones, entonces $F^*(\beta) = f\omega$ para cierta función $f \in C^\infty(M)$. Es claro que esta función no tiene ceros. Se dice que F conserva la orientación si f > 0 y se dice que F invierte la orientación si f < 0. Esta definición es correcta, es decir es independiente de las n-formas que representan a las orientaciónes. También es claro que si la variedades son conexas, entonces f ha de ser positiva o negativa, y así en este caso todo difeomorfismo conserva o cambia la orientación.

Teorema 4.0.1 Fórmula del cambio de variable. Sean M^n y N^n variedades orientadas y $F: M \to N$ un difeomorfismo que conserve la orientación. Si ω es una n-forma integrable sobre N, entonces $F^*(\omega)$ es integrable sobre M y

 $\int_{M} F^{*}(\omega) = \int_{N} \omega.$

Si F invierte la orientación, entonces $F^*(\omega)$ también es integrable sobre M, pero

 $\int_{M} F^{*}(\omega) = -\int_{N} \omega.$

Proposición 4.0.6 Sea M^n una variedad orientada y α una n-forma integrable en M. Si (U, ϕ) es un sistema de coordenadas compatible con la orientación y M-U es de medida nula, entonces

$$\int_{M} \alpha = \int_{\phi(U)} (\phi^{-1})^* (\alpha_{|U}).$$

Proposición 4.0.7 (Integración en polares) Sea $\omega = f dx_1 \wedge \cdots \wedge dx_n$ una n-forma integrable en la bola unidad $B = \{x \in \mathbb{R}^n \mid |x| < 1\}$. Sea $\sigma \in \Omega^{n-1}(\mathbb{S}^{n-1})$ dada por

$$\sigma_p(v_1, \dots, v_{n-1}) = \det\{p, v_1, \dots, v_{n-1}\}.$$

 $Si\ g: \mathbb{S}^{n-1} \to \mathbb{R} \ es \ dada \ por$

$$g(p) = \int_0^1 t^{n-1} f(tp) dt,$$

entonces $g\sigma$ es una (n-1) forma integrable en \mathbb{S}^{n-1} y

$$\int_{B} \omega = \int_{\mathbb{S}^{n-1}} g\sigma.$$

4.1 Dominios con borde diferenciable de una variedad orientada. Orientación inducida en el borde

Si M^n es una variedad orientada. Un subconjunto D de M se llama un dominio con borde diferenciable si, para cada $p \in M$, una de las siguientes propiedades se cumplen:

- 1. Existe un entorno abierto de p en M que está contenido en M/D (tales puntos son llamados exteriores a D).
- 2. Existe un entorno abierto de p en M que está contenido en D (tales puntos son llamados *interiores* a D).
- 3. Existe una carta $(U, \phi, x_1 \dots, x_n)$ de M con $p \in U$ y $\phi(p) = 0$ tal que $\phi(U \cap D) = \phi(U) \cap \mathbb{R}^n_+$, donde $\mathbb{R}^n_+ = \{(x_1, \dots, x_n) \in \mathbb{R}^n \mid x_n \geq 0\}$.

Al conjunto de puntos cumpliendo 3 se le representa por ∂D y se le llama el borde de D.

Conviene comentar que $\partial D \subset D$ y que cabe la posibilidad de que $\partial D = \emptyset$. La definiciones anteriores tienen sentido incluso cuando n = 1, aunque en este caso ∂D es un conjunto de puntos aislados.

También es claro que las tres condiciones anteriores son mutuamente excluyentes y que D es un subconjunto cerrado de M. Además $D=\operatorname{int} D\cup\partial D$, por lo que ∂D también es cerrado en M. En particular, si M es compacta, ∂D también será compacto.

No es dificil comprobar que si $(U, \phi, x_1, \dots, x_n)$ es un sistema de coordenadas de los descritos en 3, entonces

$$\phi(U \cap \partial D) = \phi(U) \cap \{(x_1, \dots, x_n) \in \mathbb{R}^n / x_n = 0\}.$$

Como $\{(x_1,\ldots,x_n)\in\mathbb{R}^n\,/\,x_n=0\}\equiv\mathbb{R}^{n-1}$, es claro que la restricción a ∂D de los sistemas de coordenadas descritos en 3, proporcionan un atlas en ∂D que lo convierte en una variedad diferenciable de dimensión n-1. A continuación vamos a ver que ∂D es también orientable y vamos a fijar una orientación en ∂D a partir de la orientación en M.

Sea $p \in \partial D$ y $(U, \phi, x_1, \dots, x_n)$ un sistema de coordenadas en las condiciones 3, esto es $\phi(p) = 0$, $\phi(U \cap D) = \phi(U) \cap \mathbb{R}_+^n$ y $\phi(U \cap D) = \phi(U) \cap \{(x_1, \dots, x_n) / x_n = 0\}$. Por tanto $\{\frac{\partial}{\partial x_1}\Big|_p, \dots, \frac{\partial}{\partial x_n}\Big|_p\}$ es una base de T_pM y $\{\frac{\partial}{\partial x_1}\Big|_p, \dots, \frac{\partial}{\partial x_{n-1}}\Big|_p\}$ es una base de $T_p\partial D$. Así un vector $u = \sum_{i=1}^n a_i \frac{\partial}{\partial x_i}\Big|_p \in T_pM/T_p\partial D$ es caracterizado por la propiedad de que $a_n \neq 0$. En estas condiciones u se dice que apunta hacia fuera si $a_n < 0$ y que apunta hacia adentro si $a_n > 0$. No es dificil comprobar que la propiedad de que un vector transverso a $T_p\partial D$ apunte hacia fuera o hacia adentro es independiente del sistema de coordenadas en p dado en 3.

Ahora orientamos $T_p\partial D$ de la siguiente manera: Una base $\{v_1,\ldots,v_{n-1}\}$ de $T_p\partial D$ es positivamente orientada si $\{u,v_1,\ldots,v_{n-1}\}$ es una base orientada de T_pM , siendo u un vector que apunta hacia fuera. Esta orientación de $T_p\partial D$ es independiente del vector u que apunta hacia fuera. Esto orienta todos los espacios tangentes $T_p\partial D$ con $p\in \partial D$. A continuación orientaremos globalmente ∂D . Para ello vamos a construir una (n-1)-forma diferenciable sin ceros sobre ∂D que induzca en cada $T_p\partial D$ la orientación anterior.

Proposición 4.1.1 Si D es un dominio con borde diferenciable de una variedad orientada M^n , entonces existe un entorno abierto U de ∂D y un campo de vectores $X \in \aleph(U)$ tal que $X/\partial D$ apunta hacia fuera en todos los puntos de ∂D . Además, si $\omega \in \Omega^n(M)$ representa una orientación de M, entonces la (n-1)-forma sobre U dada por

$$\tilde{\omega}(X_1, \dots, X_{n-1}) = \omega(X, X_1, \dots, X_{n-1}), \quad X_1, \dots, X_{n-1} \in \aleph(U)$$

define, al restringirla a ∂D , una (n-1)-forma diferenciable sin ceros sobre ∂D que induce en cada punto $p \in \partial D$ la orientación definida anteriormente.

4.2 Teorema de Stokes

Teorema 4.2.1 Teorema de Stokes: Primera versión. Sea M^n una variedad orientada y $\omega \in \Omega^{n-1}(M)$ una (n-1)-forma diferenciable de soporte compacto. Entonces

$$\int_{M} d\omega = 0.$$

Teorema 4.2.2 Teorema de Stokes. Sea M^n una variedad orientada, D un dominio con borde diferenciable $e: \partial D \hookrightarrow M$ la inclusión. Dotado ∂D de la orientación inducida, $si \omega \in \Omega^{n-1}(M)$ es una (n-1)-forma con soporte compacto, entonces

$$\int_D d\,\omega = \int_{\partial D} i^*\omega.$$

4.3 Algunas consecuencias: Teorema de Green, teorema de la divergencia y teorema clásico de Stokes.

Algunas consecuencias sencillas del Teorema de Stokes son los clásicos teoremas de Green y de la divergencia que pasamos a enunciar ahora.

Teorema 4.3.1 Teorema de Green. Sea D un dominio compacto y conexo de \mathbb{R}^2 cuyo borde diferenciable es una unión finita de curvas de Jordan parametrizadas con la orientación inducida por $\gamma_i: [a_i,b_i] \to \partial D$, $i=1,\ldots,n$. Si $p,q \in C^{\infty}(\mathbb{R}^2)$ son funciones diferenciables, entonces

$$\int_{D} \left(\frac{\partial q}{\partial x} - \frac{\partial p}{\partial y} \right) dx dy = \sum_{i=1}^{n} \int_{a_{i}}^{b_{i}} \left(p_{i}(t) x_{i}'(t) + q_{i}(t) y_{i}'(t) \right) dt,$$

siendo $\gamma_i(t) = (x_i(t), y_i(t)), p_i(t) = p(\gamma_i(t)) y q_i(t) = q(\gamma_i(t)).$

Corolario 4.3.1 Sea Ω el dominio (compacto) interior determinado por una curva de Jordan $\gamma: [a,b] \to \mathbb{R}^2$ dotada de la orientación inducida. Entonces el área de Ω viene dada por

$$Area(\Omega) = \frac{1}{2} \int_{a}^{b} \det{\{\gamma, \gamma'\}} dt.$$

Corolario 4.3.2 Fórmula integral de Cauchy. Si F(z) es una función holomorfa definida en un abierto U del plano complejo \mathbb{C} y γ es una curva de Jordan en U que no pasa por un punto $a \in U$, entonces

$$\int_{\gamma} \frac{F(z)}{z - a} dz = 2\pi i F(a).$$

Teorema 4.3.2 Teorema de la divergencia. Sea D un dominio compacto de \mathbb{R}^3 con borde diferenciable y conexo y representemos por S a la superficie borde de D. Sea $X \in \aleph(\mathbb{R}^3)$ un campo diferenciable y ω_0 la 2-forma de área en S. Entonces

$$\int_{D} div X = \int_{S} \langle N, X/S \rangle \,\omega_{0},$$

donde div X es la divergencia del campo $X = (X_1, X_2, X_3)$ definida por

$$div X = \frac{\partial X_1}{\partial x} + \frac{\partial X_2}{\partial y} + \frac{\partial X_3}{\partial z}$$

y N es el normal exterior unitario a S. ω_0 viene dada por

$$(\omega_0)_p(v,w) = \det\{N_p, v, w\},\$$

para todo $v, w \in T_pS$ y todo $p \in S$.

Teorema 4.3.3 Teorema clásico de Stokes. Sea D un dominio compacto con borde diferenciable de una superficie orientada S de \mathbb{R}^3 y ω_0 la 2-forma de área de S. Si X es un campo diferenciable definido en un entorno abierto U de S en \mathbb{R}^3 , entonces

$$\int_{D} \langle \operatorname{rot} X/S, N \rangle \, \omega_0 = \int_{\partial D} i^* \omega,$$

donde rot X indica el rotacional de X, N es el normal exterior unitario a S y ω es la 1-forma en U definida por $\omega(Y) = \langle X, Y \rangle$ para todo $Y \in \aleph(U)$.