Challenges in building RAGs

Robert Różański yhteys.ai

Why Retrieval Augmented Generation?

- issues with using LLMs for QA:
 - hallucinations
 - o sources
 - unseen information (new / domain specific / proprietary)
- potential solution:
 - provide context: information necessary to answer
 - o size limit can't just dump documents on LLMs
- RAGs:
 - first form context by retrieving information relevant for the question
 - o use LLM to answer to generate an answer from the context and the question

Questions are not made equal

- Zhao et al. stratification of questions
 - 1: explicit facts
 - "Where will the 2024 Summer Olympics be held?"
 - 2: implicit facts
 - "What is the majority party now in the country where Canberra is located?"
 - o 3: interpretable rationales: apply domain-specific rationales integral to the data's context
 - E.g. diagnostics questions (answers need to follow FDA guides or local equivalent)
 - 4: hidden rationales: the rationales are not explicitly documented
 - Addressing security incidents in IT context (rationales implicit in past response pattern)
- Evaluation datasets cover only 1 and 2
- Anthropomorphisation makes managing expectations difficult

What to do with the questions?

- Unchanged, straight to retrieval
- Transformations (LLM)
 - Query rewrite
 - reformulation (cleanup)
 - step-back prompting (more general question—apply the general answer)
 - split query into multiple, elementary queries
 - Translation into a formal query language (DB use)
 - HyDE: generate potential text containing relevant info
- tradeoff: dev. time, complexity, cost, time vs performance

Retrieval

- one-off
 - o go through the database and retrieve n-most relevant fragments
- multiple calls
 - o e.g. when original question was re-written
- ordering the retrieved information:
 - ranking
 - re-ranking
 - score based: combine retrieved fragments from multiple calls (frequency=score)
 - use LLM to estimate similarity/relevance for the question
- tradeoff: dev. time, complexity, cost, time vs performance

Knowledge Base

- Vectors
 - sparse: most representative keywords
 - TF-IDF: keyword frequency vs reciprocal freq.
 - BM25: keyword counts vs document length and avg. doc. length
 - dense: text embeddings (cosine similarity)
 - BERT derivatives
 - LLM2vec
- Graphs
 - NLP, ontologies, information extraction
- Challenges
 - chunking (reindexing)
 - o tradeoff: dev. time, complexity, cost, time vs performance

Preparing content for Knowledge Bases

- Loads of problems
- Multimodal
 - currently: text as the common language
 - o audio: ASR
 - pictures: text embedding
 - o video: ?
- PDFs: issues with extracting texts
- Embedded images
- Tables

More problems

- Evaluation
 - o Overall:
 - LLMs?
 - Retrieval:
 - the easiest to evaluate
 - existing datasets for evaluation
 - questions?
 - performance generalization?
- Explainability
- Data security / Privacy
 - KB with access control
 - finetuning problematic
- Legal consequences
 - client-facing systems

Some references

- evaluation of RAGs: https://arxiv.org/abs/2405.07437
- RAG deepdive: https://arxiv.org/abs/2409.14924
- neo4j RAG builder:
 - https://neo4j.com/developer-blog/graphrag-llm-knowledge-graph-builder/
 - https://llm-graph-builder.neo4jlabs.com/