Oversikt—Spenntrær

IN2010 – Algoritmer og Datastrukturer

Uke 39, 2020

Institutt for Informatikk

Sammenhengende grafer

En graf G = (V, E) kalles for sammenhengende hvis det finnes en sti mellom hvert par av noder

- "alle noder kan nå hverandre"
- Men hvordan forbinde nodene slik at man bruker minst mulige ressurser?
- f.eks. koble sammen hus med fibernett og bruke minst mulig kabel

Spenntrær

For en sammenhengende graf G = (V, E) er et *spenntre* et tre $G_T = (V_T, E_T)$ der $V = V_T$, og $E_T \subseteq E$.

Liten påminnelse:

- et tre er en graf uten sykler
- trær er sammenhengende
- så et spenntre av *G* består av alle noder og akkurat nok kanter til å forbinde alle disse nodene

• å legge til en vilkårlig kant fra G som ikke er i E_T vil føre til en sykel

Spenntrær: Noen observasjoner

- Man kan vise: Hvis en graf har flere kanter enn noder, så inneholder grafen en sykel
- dermed har spenntrær |V| 1 kanter.
- Når grafen er uvektet, så kan vi bruke DFS og BFS til å gi oss et spenntre

• men hva hvis kantene er vektet, altså hver kant e får en vekt w(e)? Hvordan finne minimal spenntre: et spenntre som har minimal vekt?

Minimale spenntrær

Vi skal se på tre såkalte "grådige" algoritmer, hvor vi :

- Prims algoritme (grådig valg av noder)
- Kruskals algoritme (grådig valg av kanter)
- Borůvkas algoritme (grådig valg av kanter, parallelliserbar)

Alle algoritmer tar en vektet, sammenhengende graf G og returnerer et minimalt spenntre T.

Prims algoritme (grådige noder)

Prims algoritme: Pseudokode

Algorithm 1: Prims algoritme 1 Procedure Prim(G) initialize T as empty tree, Q as empty heap for each vertex u in G do $D[u] = \infty$ //Q contains (Node, Edge), where Edge has lowest weight of edges from T to Node, and uses D[u] to compare Q.add(((u, None), D[u]))pick $v \in V$, set D[v] = 0while Q not empty do (s, e) = Q.removeMin()add s and e to T // check neighbors of s in Qfor edge a = (s, z) with z in Q do 10 if w(a) < D[z] then 11 D[z] = w(a)12 Change entry of z in Q to ((z, a), D[z])13 return T 14

Analyse:

- 5 (for): for hver node i G, heap-insert $O(\log(|V|))$
 - 8,9: while loop har |V| iterasjoner, med en heap-remove $O(\log(|V|))$
- 11: gjøres totalt maksimalt |E| ganger (ingen kanter gjentas).
 Oppdatering av verdier i Q tar O(log(|V|)) tid
- Totalt: $O((|V| + |E|) \log(|V|)),$ som er $O(|E| \log(|V|)).$

Prims algoritme (grådige noder)

Kruskals algoritme: Pseudokode

Algorithm 2: Kruskals algoritme

10

11

return T

```
Procedure Kruskal(G)

initialize T as empty tree

initialize Q with all edges

for each vertex v in G do

define C(v) = \{v\}

while T has fewer than n-1 edges do

(u, v) = Q.removeMin()

if C(u) \neq C(v) then

add (u, v) to T
```

 $C(u), C(v) = C(u) \cup C(v)$

Alt tilsammen: $O(|E|\log(|V|))$

Analyse:

- 3 (initialize Q): vi kjører heap-insert (O(log(|E|))) for alle kanter, tilsammen $O(|E|\log(|E|))$, som er $O(|E|\log(|V|))$ (se heap-remove argumentet nederst)
- 4 (for): |V| iterasjoner av konstanttid operasjoner, O(|V|)
- 6 (while): |E| iterasjoner, med heap-remove $(O(\log(|E|)))$ og cluster-merging

Cluster-merge: hver cluster-merge dobler størrelsen av clusteret/halverer antall clustere. Dermed: hver node merged inn i ny cluster $\log(|V|)$ ganger. Summert: $O(|V|\log(|V|))$

Heap-remove: Vi har sett at |E| er $O(|V|^2)$. Så $O(\log(|E|))$ er $O(\log(|V|^2)) = O(2\log(|V|)) = O(\log|V|)$

Borůvkas algoritme: Pseudokode

Algorithm 3: Borůvkas algoritme

- 1 Procedure Boruvka(G)
 - initialize T as empty tree for each vertex v in G do
 - add v to T
 - for each component C in T do

 - for each vertex v in C do
 - Comp(v) = C
 - cheapest(C) = None
 - **for** each edge e = (u, v) in G **do**
 - if $Comp(u) \neq Comp(v)$ then
 - if w(e) < w(cheapest(Comp(u))) then cheapest(Comp(u)) = e
 - if w(e) < w(cheapest(Comp(v))) then
 - cheapest(Comp(v)) = e**for** each cheapest(C) \neq None **do**

add cheapest(C) to T

12 13

return T

- while T has more than one component do
- - Dermed er det $O(\log(|V|))$

Analyse:

- iterasjoner.
- 6,7 (for): itererer over noder i en

konstanttid kall i løkken,

• 5 (while): antall komponenter

(minst) halveres hver iterasjon.

- komponent, som er begrenset av
- |V|. • 10 (for): |E| iterasjoner, bare
 - dermed O(|E|).
- 16 (for): itererer over alle kanter, O(|E|)
- Totalt:

 $O(|E|\log(|V|))$

 $O((|V| + |E|)\log(|V|)) =$

14

15

16

17

18

2

Prim vs. Kruskal vs. Borůvka

Alle har samme verste tilfellet analyse...så hvilken algoritme skal man velge?

- på tynne grafer er Kruskal i praksis ofte raskere
- hvis man har tilgang til kantene sortert etter vekt: Kruskal raskere
- det er mulig å implementere Prim slik at den blir raskere (med datastruktuerer ikke dekket av pensumet), med verste tilfellet $O(|E| + |V| \log(|V|))$. Da er den mye bedre for tette grafer. **Dette er ikke pensum**
- Borůvka er lett å parallellisere