Classifying AI LLM vs Human-Written Texts

Bryce Hiraoka & Theo Chen

Boston University, CS 365 bhiraoka@bu.edu tchen25@bu.edu

1 Introduction

- 2 The problem that we decided to work on for our 365 project was the detection of human-written
- 3 vs LLM-generated text. We used a group of six different datasets: Five of these datasets were
- 4 from Kaggle (LLM-Detect-AI-Generated-Text, PaLm-Generated-Essays, Combined-Set, AI-vs-
- 5 Human-Text, Human-vs-LLM-Corpus-Bloom-7B-and-GPT) and one dataset was from Hugging Face
- 6 (AI-Text-Detection-Pile). Multiple datasets were used in our first trained model to ensure a wide
- 7 variety of topics as well as large language models were covered by the detection model, but we
- 8 restricted further models to a single dataset to yield better individual results.
- 9 Github Link: https://github.com/theoc3/cs365-proj

10 1.1 Method & Relevant Results

- The method we decided to use was logistic regression because it is good at binary classification and
- there is lots of research solving similar problems using a logistic regression model. We achieved an
- overall accuracy of 80 percent with one of our models using a one dataset with 64000 texts and 5
- 14 unique features.

15 1.2 Why is AI detection important?

- Being able to distinguish between human-written and LLM-generated text is a problem that has grown
- 17 increasingly important as AI continues to become more integrated into every aspect of our daily lives.
- AI detection is relevant to people of all ages from kids in schools to the elderly reading the news. One
- 19 of the main applications AI detection has is its ability to protect readers from misinformation. Ever
- since the public has gained access to large language models such as ChatGPT for free, the number of
- 21 LLM-generated fake articles has increased by over 1000 percent [1]. Seeing as the amount of fake
- news being spread on the internet through the use of AI has increased, it is safe to assume that the
- 23 number of people affected by fake LLM-generated news has also increased. If an AI detection model
- 24 could be put in place to warn readers of LLM-generated news that might not be accurate, the public
- would be better protected and better informed.

26 **2 Related Work (Model and Features)**

2.1 Decision Trees (Model)

- 28 The main difference between the model we used (logistic regression) and decision trees is how it fits
- 29 itself to data. Decision trees work by fitting smaller and smaller regions while logistic regression
- 30 fits a single line to divide the space into two. The reason that we decided to use logistic regression
- instead of using decision trees is because training the model would have taken much longer than the
- 32 use of logistic regression. This is because decision trees are better for highly complex non-linear
- 33 relationships where as logistic regression is better for predicting a binary outcome which is what our

- 34 project is about. In the end the logistic regression model fit better with our end goal and the training
- 35 data set we selected.

36 2.2 Support Vector Machines (Model)

- 37 The difference between the support vector machine and logistic regression is that the support vector
- machine approach uses support vectors to find the best line to divide the data. In the end there is not
- 39 a huge difference between logistic regression and support vector machines but we decided to use
- logistic regression as it works better with the typical NLP features described by existing literature.

41 2.3 Neural Networks (Model)

- 42 The difference between neural networks and logistic regression are that logistic regression is essen-
- 43 tially one part of a neural network. Logistic regression uses one line while neural networks can have
- 44 many lines. We chose not to use neural networks because it would be complicated and we could
- 45 theoretically achieve almost as good of a result using logistic regression. Because of the complexity,
- we lacked the hardware to train the model in a reasonable time.

47 **2.4** Uppercase Word Count (Feature)

- 48 Some popular AI detectors use uppercase word count to predict whether or not a piece of text is
- 49 human or LLM generated. We decided not to include this feature in our model based on the previous
- 50 experiments in "How to Detect AI-Generated Texts?" [3]

51 2.5 Number of Parts of Speech (Feature)

- 52 Some popular AI detectors use the number of different parts of speech (nouns, verbs, adjectives, etc.)
- to identify LLM generated text. We decided not to include this feature in our model based on the
- previous experiments in "How to Detect AI-Generated Text?" [3]

55 **2.6 Readability (Feature)**

- We do have a readability score as one of our features however, we only use the Coleman Liau score
- to determine its readability. There are many other readability scores including but not limited to
- 58 Flesch, Gunning Fog, Dale Chall, etc. The reason we decided to use Coleman Liau is it was the most
- 59 accurate in deciphering whether a text was written by an LLM or a human. This was also based on
- 60 the experiments outlined in "How to Detect AI-Generated Texts?" [3]

61 3 Resources

62 3.1 Hardware

- 63 Laptop: Apple Macbook M1 Pro 2021 CPU: Apple M1 (10 Cores) Memory: 32 GB unified memory
- 64 (shared between GPU and CPU)
- 65 All programming was done in VSCode in Python, code being run on .ipynb files, pandas dataframe
- 66 manipulation and sklearn logistic regression ran on CPU.

67 3.2 Software

- 68 Python Libraries: NumPy, Matplotlib, Pandas, Seaborn, textwrap, NLTK, collections, textstat, sci-kit
- 69 learn, language-tool-python, datasets
- 70 LLM Tools Used: GitHub Copilot for writing repetitive code blocks i.e. generating graphs/statistics,
- 71 Chat-GPT for generating custom test cases

2 3.3 Datasets

73 AI-Text-Detection-Pile (Hugging Face) - 1.418m [990k:340k]

- 74 https://huggingface.co/datasets/artem9k/ai-text-detection-pile/viewer/
- 75 default/train?p=5
- 76 LLM-Detect-AI-Generated-Text (Kaggle) 27k [17k:11k]
- 77 https://www.kaggle.com/datasets/sunilthite/llm-detect-ai-generated-text-dataset
- 78 PaLm-Generated-Essays (Kaggle) 1.3k [0:1.3k]
- 79 https://www.kaggle.com/datasets/kingki19/llm-generated-essay-using-palm-from-google-gen-ai
- 80 Combined-Set (Kaggle) 87k [55k:32k]
- 81 https://www.kaggle.com/datasets/jdragonxherrera/augmented-data-for-llm-detect-ai-generated-text
- 82 AI-vs-Human-Text (Kaggle) 500k [305k:195k]
- 83 https://www.kaggle.com/datasets/shanegerami/ai-vs-human-text
- 84 Human-vs-LLM-Corpus-Bloom-7B-and-GPT (Kaggle) 800k [360k:440k]
- 85 https://www.kaggle.com/datasets/starblasters8/human-vs-llm-text-corpus
- 86 Total Dataset Distribution [1.73m:1m] [Human:AI]

87 4 Methods

8 4.1 Featurization

- 89 We used 5 standard NLP features that have the largest influence on a logistic regression binary
- 90 classifier for LLM vs Human written text. [3] [2]
- The following describes how each feature was calculated in python. Everything was done within one
- function, and applied to the dataset's dataframe using df.apply().
- The text is also tokenized, where special characters, linking words, and stop words are removed. This
- 94 is what specifies token vs word in the following.

95 4.1.1 Coleman Liau Index (Readability)

96 Using the textstat library, calculate the readability of the given text.

97 4.1.2 Word Density

98 Divide the number of characters by the number of words in the given text.

99 4.1.3 Matches (Grammatical Errors)

Using the language-tool-python library, count the number of grammatical errors in the given text.

101 4.1.4 Title Word Count

102 Count the number of tokens that start a sentence (title words) in the given text.

103 4.1.5 Text Words (Text Length)

104 The number of words in the given text.

105 4.2 Logistic Regression

- Logistic regression is a type of regression that is often used to predict classes (typically binary like in
- this case). It does so by predicting the probability of a certain outcome (or class) based on predictor
- variables. The reason it's called "logistic" regression is due to its use of the logistic or "sigmoid"
- 109 function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

where z is the linear combination of the predictor variables and their coefficients:

$$z = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_n x_n$$

- $\sigma(z)$ represents the probability that the dependent variable y belongs to the class 1 (the positive class, which in this case is LLM generated).
- Given these two equations, this is the function that is minimized in logistic regression (logistic loss) [4]:

$$f(w) = -\frac{1}{n} \sum_{i=1}^{n} \log(1 + \exp(-y_i(w^T x_i))) + \frac{\lambda}{2} ||w||^2$$

- where: w represents the weights, $\frac{\lambda}{2}|w|^2$ is the 12 regularization term, and $\log(1 + \exp(-y_i(w^Tx_i)))$
- is the logistic loss for each point (x_i, y_i) where x_i is the feature vector and y_i is the actual class. $\frac{1}{n}$ is
- done to get the mean loss across the entire dataset.
- During training, the model manipulates the coefficients w to minimize the equation.
- The model then predicts the new sample's class based on this sigmoid function using the calculated weights:

$$\hat{y} = \sigma(w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_n x_n)$$

where \hat{y} is the predicted probability and x_1, x_2, \dots, x_n are the individual features (not the feature vector) of the new sample.

5 Experimental Results

123

126

127

128

129

130

131

132

133

134

139

124 5.0.1 Dataset Selection Methodology

- We trained three separate models using three separate datasets:
 - (1) A random sample of 10000 texts from a concatenated set of all datasets listed previously (LLM-Detect-AI-Generated-Text, PaLm-Generated-Essays, Combined-Set, AI-vs-Human-Text, Human-vs-LLM-Corpus-Bloom-7B-and-GPT, AI-Text-Detection-Pile). Around 6500 essays were human written, 3500 were LLM written. This ratio is a result of the ratio of human to LLM written texts found in the total concatenated data set of around 3.1m texts.
 - (2) 20000 texts, evenly split between human and LLM-written text, randomly sampled from the AI-Text-Detection-Pile dataset.
 - (3) 64000 texts, evenly split between human and LLM-written text, randomly sampled from the Combined-Set dataset.

The models were trained in the given order, based off of intuition gained from the previous one. The first model was trained with a portion of the total concatenated dataset (due to computing power constraints). The second model was trained on the largest individual dataset, and the third model was

trained on an already curated dataset.

5.0.2 Parameters

- Each model was evaluated with a train-test split of 3:2 using the scikit-learn python library's built-
- in Logistic Regression function initialized with default parameters, with random-state set to 42
- (arbitrary) to maintain consistency between runs.
- Briefly, the default parameters are the use of the L2 penalty term, a stopping tolerance of $1e^{-4}$, a
- regularization value C=1.0, 100 max iterations, a class weight of 1 for both classes (Human vs
- LLM), and the Limited-memory BFGS (LBFGS) solver to optimize.
- From testing, changing the parameters made little tangible difference, so everything was left as
- 147 default.

148 5.1 All datasets 6500:3500

Figure 1: Mean Feature Values for all Datasets

Table 1: Logistic Regression Model w/ All Datasets Metrics

Accuracy: 0.731625
Train Loss: 0.5807722830077537
Test Loss: 0.5770358406982319

Name	Precision	Recall	f1-Score	Support
0 (Human)	0.736433	0. 894161	0.807668	25208
1 (LLM)	0.715959	0.454638	0.556130	14792
Macro Avg	0.726196	0.674399	0.681899	40000
Weight Avg	0.728862	0.731625	0.714649	40000

Table 2: Logistic Regression Model w/ AI-Text-Detection-Pile Dataset Metrics

Accuracy: 0.678875

Train Loss: 0.6397425870016508 Test Loss: 0.6450721579241364

Name	Precision	Recall	f1-Score	Support
0 (Human)	0.707965	0.615996	0.658786	4026
1 (LLM)	0.656215	0.742577	0.696730	3974
Macro Avg	0.682090	0.679286	0.677758	8000
Weight Avg	0.682258	0.678875	0.677635	8000

9 5.2 AI-Text-Detection-Pile 10000:10000

Figure 2: Mean Feature Values for AI-Text-Detection-Pile dataset

Table 3: Logistic Regression Model w/ Combined-Set Dataset Metrics

Accuracy: 0.8012890625

Train Loss: 0.42126754359148816 Test Loss: 0.42277091258149474

Name	Precision	Recall	f1-Score	Support
0 (Human)	0.799938	0.803127	0.801529	12790
1 (LLM)	0.802649	0.799454	0.801048	12810
Macro Avg	0.801293	0.801290	0.801289	25600
Weight Avg	0.801294	0.801289	0.801289	25600

5.3 Combined-Set 32000:32000

Figure 3: Mean Feature Values for Combined-Set

5.4 Results Analysis

152 5.4.1 Dataset Influence

- Based purely on the mean, all 5 features seem to have a noticeable influence on whether the text is AI-generated or Human-generated.
- 155 The worst performing model in terms of accuracy, the model trained on the AI-Text-Detection-Pile,
- had the least differentiation between the mean for all 5 features.
- The best-performing model, on the other hand, had the greatest differentiation between the mean for
- all 5 features.
- 159 Throughout all 3 models, however, the difference was the same: AI text had a higher readability
- score, greater word density, fewer grammatical errors, fewer title words (and therefore sentences),
- and shorter length. The text length is only present ultimately to determine the ratio between itself and
- the number of errors and title words, so just observing the mean in this way doesn't indicate anything.
- However, given the clear differences they indicate, the model will pick up on its influence on if the
- text is LLM or human-written.
- Undersampling was used for the second and third datasets to attempt to rectify the first model's poor
- 166 accuracy.

167 5.4.2 Accuracy and Loss

- The most accurate model with the least loss was the last model trained on the Combined-Set dataset,
- potentially due to 3 reasons:
- 170 (1) The given dataset was curated already for a text detection competition, and may have already been
- optimized for such a task
- 172 (2) The number of texts used was the largest, 64000 compared to 20000 and 10000. The first two
- models were most likely underfitting the data.
- 174 (3) The use of undersampling compared to the first dataset to prevent drastic differences in accuracy
- in classifying both texts.
- Due to time and computational power constraints, no further testing could be conducted to see how
- each of these reasons directly influenced the accuracy, but a combination of the 3 in training future
- models would likely yield better results.

179 6 Conclusion

- One approach that can be taken in the future is to use datasets with text generated exclusively by one
- LLM, as this would prevent the model from needing to compare human-written text to text written
- by several LLMs, which likely all have their own differences in features. This obviously reduces
- the use case of the individual model, but when used in conjunction with multiple models, one might
- yield better results. In addition to training on a larger dataset, this is what we believe to be the most
- effective technique based on our results.

186 References

- 187 [1] The washington post, Dec 2023.
- Lorenz Mindner, Tim Schlippe, and Kristina Schaaff. Classification of human- and ai-generated texts: Investigating features for chatgpt. In Tim Schlippe, Eric C. K. Cheng, and Tianchong Wang, editors, *Artificial Intelligence in Education Technologies: New Development and Innovative Practices*, pages 152–170, Singapore, 2023. Springer Nature Singapore.
- 192 [3] Trung Nguyen, Amartya Hatua, and Andrew Sung. How to detect ai-generated texts? pages 0464–0471, 10 2023.
- 94 [4] Mark Schmidt. Tutorial 8 logistic regression and stochastic gradient descent.