Latent Variable Models

Saturday, June 23, 2018 12:11 AM

Latent Variable Models Expectation Maximization

Week 2

- What is a latent variable, why do we need it, and how to use it
- Common latent variable models (clustering and dimensionality reduction)
- How to train them with Expectation Maximization algorithm

 □ Maximization
- Extensions of Expectation Maximization such as handling missing data

	High school grade
John	4.0
Helen	3.7
Jack	3.2
Emma	2.9

	High school grade	University grade
John	4.0	4.0
Helen	3.7	3.6
Jack	3.2	N/A
Emma	2.9	3.2

	High school grade	University grade	IQ score
John	4.0	4.0	120
Helen	3.7	3.6	N/A
Jack	3.2	N/A	112
Emma	2.9	3.2	N/A

	High school grade	University grade	IQ score	Phone Interview	Onsite interview
John	4.0	4.0	120	3/4	?
Helen	3.7	3.6	N/A	4/4	?
Jack	3.2	N/A	112	2/4	?
Emma	2.9	3.2	N/A	3/4	?
	High school grade	University grade	IQ score	Phone Interview	Onsite interview
Sophia	3.5	3.6	N/A	4/4	85/100

	High school grade	University grade	IQ score	Phone Interview	Onsite interview
John	4.0	4.0	120	3/4	,
Helen	3.7	3.6	N/A	4/4	?
Jack	3.2	N/A	112	2/4	?
Emma	2.9	3.2	N/A	3/4	?
	High school grade	University grade	IQ score	Phone Interview	Onsite interview
Sophia	3.5	3.6	N/A	4/4	85/100

				Myzy	g values
	High school grade	University grade	IQ score	Phone Interview	Onsite interview
John	4.0	4.0	120 /	3/4	?
Helen	3.7	3.6	N/A	4/4	?
Jack	3.2	(N/A	112	2/4	?
Emma	2.9	3.2	(N/A)	3/4	?

High school	GPA	IQ	Phone Interview	Onsite Interview	Probability
1.0	1.0	1	0/4	1/100	0.001
1.0	1.0	1	0/4	2/100	0.0023
4.0	4.0	180	4/4	100	0.000001

$$\underbrace{p(x_1, x_2, x_3, x_4, x_5)}_{p(x_1, x_2, x_3, x_4, x_5)} = \underbrace{\frac{exp(-w^{\mathsf{T}}x)}{Z}}_{z}$$

$$p(x_1, x_2, x_3, x_4, x_5) = \frac{exp(-w^{\mathsf{T}}x)}{Z} \qquad \text{sum of all possible}$$

$$\text{Vontiguration ! Crigantic Gum}$$

Probabilistic model IQ GPA score Intelligence Phone High school Interview grade Onsite interview

$$p(x_1, x_2, x_3, x_4, x_5) = \sum_{I=1}^{100} p(x_1, x_2, x_3, x_4, x_5 \mid \underline{I}) p(\underline{I})$$

Add.
Reduce model comprexiz

Do you think it is always a good idea to introduce latent variables?

Correct! If for example, a student is doing 2 tests in the same day, it doesn't make sense to assume that these two grades are caused only by his intelligence and doesn't influence each other directly. Even if we know that he is very smart, if he failed the first test he is more likely to fail the second one because he may have a headache or maybe he didn't have time to prepare the day before.

No, if we don't have a variable in the training dataset we cannot add it as a latent variable

Un-selected is correct

No, sometimes there is no need for them

Correct! For example fitting a dataset into a Gaussian distribution is easy enough. By

Latent variable models

✓ No, sometimes there is no need for them
Correct
Correct! For example fitting a dataset into a Gaussian distribution is easy enough. By
Latent variable models
Dunas
Pros:
Simpler models (less edges)

Hyperparameter tuning

Generating new data points

Interesting

Generate take whebring facesby by probabilistic model for clustering

Junbo Zhao, https://arxiv.org/pdf/1609.03126.pdf

HSE Adv ML Page 34

Summary

Want to cluster data in a soft way

- Allows to tune hyper parameters
- Generative model of the data

Probabilistic model of data

Probabilistic model of data

$$p(x \mid \theta) = \mathcal{N}(x \mid \mu, \Sigma)$$
$$\theta = \{\mu, \Sigma\}$$

$$p(x \mid \theta) = \pi_1 \mathcal{N}(x \mid \mu_1, \Sigma_1) + \pi_2 \mathcal{N}(x \mid \mu_2, \Sigma_2) + \pi_3 \mathcal{N}(x \mid \mu_3, \Sigma_3)$$

$$\underline{p(x \mid \theta)} = \pi_1 \mathcal{N}(x \mid \mu_1, \Sigma_1) + \pi_2 \mathcal{N}(x \mid \mu_2, \Sigma_2) \\
+ \pi_3 \mathcal{N}(x \mid \mu_3, \Sigma_3)$$

$$\theta = \{\pi_1, \pi_2, \pi_3, \mu_1, \mu_2, \mu_3, \Sigma_1, \Sigma_2, \Sigma_3\}$$

veighted sum Jansity.

GMM vs Guassian

Gaussian

GMM

Flexibility

of parameters

Parameters

$$\mu, \Sigma$$

$$\{\pi_1, \pi_2, \pi_3\}$$

$$\{\mu_1, \mu_2, \mu_3\}$$

$$\{\Sigma_1, \Sigma_2, \Sigma_3\}$$

Recall that the density of the mixture is defined as follows

What are the parameters of the two components of 1-dimensional Gaussian Mixture Model which density is plotted above?

This should not be selected

Almost correct, but note that if $\phi_1 = \phi_2 = 0.5$, the right Gaussian would be much higher than the lest Gaussian because of the difference in variances.

 $p(x \mid \pi_1, \pi_2, \mu_1, \mu_2, \sigma_1^2, \sigma_2^2) = \pi_1 \mathcal{N}(x \mid \mu_1, \sigma_1^2) + \pi_2 \mathcal{N}(x \mid \mu_2, \sigma_2^2)$

 $\bigcirc \ \pi_1 = 0.8, \pi_2 = 0.2, \mu_1 = -3, \mu_2 = 2, \sigma_1 = 1, \sigma_2 = 3$

$$\Gamma_1 = 0.8, \pi_2 = 0.2, \mu_1 = -3, \mu_2 = 2, \sigma_1 = 3, \sigma_2 = 1$$

$$\max_{\theta} p(X \mid \theta) = \prod_{i=1}^{N} p(x_i \mid \theta)$$

$$\max_{\theta} \prod_{i=1}^{N} p(x_i \mid \theta) = \prod_{i=1}^{N} (\pi_1 \mathcal{N}(x_i \mid \mu_1, \Sigma_1) + \ldots)$$

$$\max_{\theta} \prod_{i=1}^{N} p(x_i \mid \theta) = \prod_{i=1}^{N} (\pi_1 \mathcal{N}(x_i \mid \mu_1, \Sigma_1) + \ldots)$$

subject to
$$\underline{\pi_1 + \pi_2 + \pi_3 = 1}$$
; $\pi_k \ge 0$; $k = 1, 2, 3$.

Continues to discrete - to 3 n 23 & 21 23.

aining GMM
$$\max_{\theta} \prod_{i=1}^{N} p(x_i \mid \theta) = \prod_{i=1}^{N} \left(\pi_1 \mathcal{N}(x_i \mid \mu_1, \Sigma_1) + \ldots \right)$$

subject to
$$\pi_1 + \pi_2 + \pi_3 = 1$$
; $\pi_k \ge 0$; $k = 1, 2, 3$.

$$\sum_{k} > 0$$
; matrix always semi-definite

subject to $\pi_1 + \pi_2 + \pi_3 = 1$; $\pi_k \ge 0$; k = 1, 2, 3.

 $\prod_{i=1}^N p(x_i\mid\theta) = \prod_{i=1}^N \left(\pi_1\mathcal{N}(x_i\mid\mu_1,\Sigma_1) + \ldots\right) \qquad \qquad \text{con use SGI)} \ ;$ to $\pi_1+\pi_2+\pi_3=1 \colon \pi \cdot \text{ } \uparrow \text{ }$

= 1,2,3.

- Adam (tuned LR)
- Ground Truth

Constrainty

$$\max_{\theta} \quad \prod_{i=1}^{N} p(x_i \mid \theta) = \prod_{i=1}^{N} (\pi_1 \mathcal{N}(x_i \mid \mu_1, \Sigma_1) + \ldots)$$

subject to $\pi_1 + \pi_2 + \pi_3 = 1$; $\pi_k \ge 0$; k = 1, 2, 3.

EM worles

So much bester.

E even bester than ground

truth)

Summary

- Gaussian Mixture Model is a flexible probability distribution
- It is hard to fit (train) with SGD

$$p(x \mid \theta) = \pi_1 \mathcal{N}(x \mid \mu_1, \Sigma_1) + \pi_2 \mathcal{N}(x \mid \mu_2, \Sigma_2) + \pi_3 \mathcal{N}(x \mid \mu_3, \Sigma_3)$$

$$p(t=c|t) = Tc$$

$$p(x|t=c|t) = H(x|\mu_t, Z_t).$$

$$p(x \mid \theta) = \pi_1 \mathcal{N}(x \mid \mu_1, \Sigma_1) + \pi_2 \mathcal{N}(x \mid \mu_2, \Sigma_2) + \pi_3 \mathcal{N}(x \mid \mu_3, \Sigma_3)$$

$$p(t = c \mid \theta) = \pi_c$$

$$p(x \mid \theta) = \pi_1 \mathcal{N}(x \mid \mu_1, \Sigma_1) + \pi_2 \mathcal{N}(x \mid \mu_2, \Sigma_2) + \pi_3 \mathcal{N}(x \mid \mu_3, \Sigma_3)$$

$$p(t = c \mid \theta) = \pi_c$$
$$p(x \mid t = c, \theta) = \mathcal{N}(x \mid \mu_c, \Sigma_c)$$

$$p(x \mid \theta) = \pi_1 \mathcal{N}(x \mid \mu_1, \Sigma_1) + \pi_2 \mathcal{N}(x \mid \mu_2, \Sigma_2) + \pi_3 \mathcal{N}(x \mid \mu_3, \Sigma_3)$$

$$t \longrightarrow x$$

$$p(t = c \mid \theta) = \pi_c$$
$$p(x \mid t = c, \theta) = \mathcal{N}(x \mid \mu_c, \Sigma_c)$$

$$p(x\mid\theta) = \sum_{c=1}^{3} p(x\mid t=c,\theta) p(t=c\mid\theta) \qquad \text{Marginalize out t}.$$

Introduce (atent variable)

(atent variable introduced for chistering!

exactly same form as the versions
before introducing latent variable.

How to estimate parameter θ ?

How to estimate parameter θ ?

If sources $\underline{\underline{t}}$ are known, easy:

$$p(x \mid t = 1, \theta) = \mathcal{N}(x \mid \mu_1, \sigma_1^2)$$

$$\mu_1 = \frac{\sum_{\text{blue } i} x_i}{\text{# of blue points}} \qquad \sigma_1^2 = \frac{\sum_{\text{blue } i} (x_i - \mu_1)^2}{\text{# of blue points}}$$

$$\mu_1 = \frac{\sum_{i} p(t_i = 1 \mid x_i, \theta) x_i}{\sum_{i} p(t_i = 1 \mid x_i, \theta)}$$

If we know for each point from which Gaussian (cluster) it was generated, then to compute the mean parameter of the first Gaussian we may use the following expression:

$$\mu_1 = rac{\sum_{i ext{ from 1st Gaussian}} x_i}{\# ext{ points from the 1st Gaussian}}$$

So we essentially find the sample mean across all the points from the first Gaussian.

What if now we know about each point its posterior distribution on the latent variable ti: $p(t_i \mid x_i, \theta)$, that is we don't know exactly from which cluster this point came, but we have a distribution. How can we compute the mean parameter of the first Gaussian in this case?

If you don't know how to compute the answer, don't worry and just give your best guess!

$$\mu_1 = \frac{\sum_i x_i}{N}$$

$$\mu_1 = \frac{\sum_i p(t_i=1|x_i,\theta)x_i}{N}$$

•
$$\mu_1 = \frac{\sum_i p(t_i=1|x_i,\theta)x_i}{\sum_i p(t_i=1|x_i,\theta)}$$

Expectation Maximization

What if we don't know the sources?

Given:
$$p(x \mid t=1, \theta) = \mathcal{N}(-2, 1)$$

Find:
$$p(t=1\mid x,\theta)$$

What if we don't know the sources?

If we know parameters $\underline{\theta}$, easy:

$$p(t = 1 \mid x, \theta) = \frac{p(x \mid t = 1, \theta) p(t = 1 \mid \theta)}{Z}$$

what's 0 = 3 m. 2

Chicken and egg problem

- Need Gaussian parameters to estimate sources
- Need sources to estimate Gaussian parameters

Chicken and egg problem

- Need Gaussian parameters to estimate sources
- Need sources to estimate Gaussian parameters

EM algorithm

- 1. Start with 2 randomly placed Gaussians parameters θ
- 2. Until convergence repeat:
 - a) For each point compute $\,p(t=c\mid x_i,\theta)\,$: does x_i look like it came from cluster c?
 - b) Update Gaussian parameters θ to fit points assigned to them

gmm3

Chicken and egg problem

- Need Gaussian parameters to estimate sources
- Need sources to estimate Gaussian parameters

EM algorithm

- 1. Start with 2 randomly placed Gaussians parameters θ
- 2. Until convergence repeat:
 - a) For each point compute $p(t=c\mid x_i,\theta)$: does x_i look like it came from cluster c?
 - b) Update Gaussian parameters θ to fit points assigned to them

GMM EM example

GMM EM example

GMM EM example

Summary

- Gaussian Mixture Model is a flexible probabilistic approach to clustering problem
- Expectation Maximization algorithm can train GMM faster than Stochastic Gradient Descent and also handles complicated constraint
- Expectation Maximization suffers from local maxima (the exact solution is NP-hard)

How can we choose the best run among several training attempts with different random initializations? Choose all answers that make sense.

Choose the global maximum (while ignoring local maximums)

Un-selected is correct

Choose the one with the highest training log-likelihood

Correct

This is the standard way to deal with local maximums of any objective: among several runs choose the one that has the highest value of the objective.

Correct

This is a valid approach, although it feels a little bit weird: we are basically tunning the random seed on the validation set.

Colothor from different mittal