Exercises on projections onto subspaces

Problem 15.1: (4.2 #13. *Introduction to Linear Algebra:* Strang) Suppose A is the four by four identity matrix with its last column removed; A is four by three. Project $\mathbf{b} = (1, 2, 3, 4)$ onto the column space of A. What shape is the projection matrix P and what is P?

Problem 15.2: (4.2 #17.) If $P^2 = P$, show that $(I - P)^2 = I - P$. For the matrices A and P from the previous question, P projects onto the column space of A and I - P projects onto the ______.

15.2 Suppose
$$P^2 = P$$
.
 $(I-P)^2 = I-2P+P^2$
 $= I-2P+P$
 $= I-P$

For A, P of the previous problem,

projects onto the left nullspace of A.