ANAISE CÂNCER MANA WISCONSIN

Machine learning e estatística não-paramétrica

SOBRE OS DADOS

- Consiste em um grupo de 569 mulheres, onde 357 possuem câncer benigno e 212 câncer maligno
- As características são calculadas a partir de uma imagem digitalizada de uma Aspirativa por agulha fina de uma massa mamária. Eles descrevem características dos núcleos celulares presentes na imagem.

BENIGNO MALIGNO

SOBRE OS DADOS

- Dessa imagem são calculadas as seguintes métricas:
- Raio das células
- Textura (desvio padrão do nível de cinza)
- Perímetro
- Area
- Suavidade (variação local do comprimento do raio)
- Compacidade (perímetro^2/área -1.0)
- Concavidade
- Pontos côncavos (numero de pontos côncavos)
- Simetria
- Dimensão factral (distância da fronteira entre as células)

DESSAS MÉTRICAS SÃO
CALCULADAS SUAS MÉDIAS,
ERROS PADRÃO E MÉDIA DOS
3 MAIORES VALORES

MÉTODOS USADOS

MÉTODOS USADOS

PARA REDUÇÃO DE DIMENSIONALIDADE DOS DADOS:

Teste t para variáveis normais:

H0: As médias são iguais

H1: As médias são diferentes

 Teste de Wilcox e Mannwhitney para variáveis não normais:

H0: As medianas são iguais

H1: As medianas são diferentes

Correlação entre as covariáveis (0.95)

ALGORITMOS USADOS:

Arvore de decisão:

Assim como um fluxograma, a árvore de decisão estabelece **nós** (decision nodes) que se relacionam entre si por uma hierarquia.

• KNN:

o KNN tenta classificar cada amostra de um conjunto de dados avaliando sua distância em relação aos vizinhos mais próximos.

XGBOOST:

Se favorece de múltiplas árvores de decisão que são melhoradas a cada interação

Regressão logística:

A regressão logística é um modelo estatístico usado para determinar a probabilidade de um evento acontecer.

- Do par de variáveis a única que apresentou normalidade foi "piores pontos côncavos";
- O teste t indicou que há diferença entre as médias do diagnóstico Benigno e Maligno para essa variável (p-valor < 0,05)

 Variáveis com medianas iguais de acordo com o teste de Wilcox

 Variáveis com medianas iguais de acordo com o teste de Wilcox

 Variáveis com medianas iguais de acordo com o teste de Wilcox

• Variáveis com medianas iguais de acordo com o teste de Wilcox

Variáveis altamente correlacionadas:

		media_raio	media_perimetro	media_area	pior_raio	pior_perimetro	pior_area	errP_raio	errP_perimetro
	media_raio	1.00	1.00	0.99	0.97	0.97	0.94	0.67	0.66
*	media_perimetro	1.00	1.00	0.99	0.97	0.97	0.94	0.68	0.69
*	media_area	0.99	0.99	1.00	0.97	0.96	0.96	0.71	0.70
*	pior_raio	0.97	0.97	0.97	1.00	0.99	0.98	0.73	0.71
*	pior_perimetro	0.97	0.97	0.96	0.99	1.00	0.98	0.74	0.74
*	pior_area	0.94	0.94	0.96	0.98	0.98	1.00	0.76	0.74
*	errP_raio	0.67	0.68	0.71	0.73	0.74	0.76	1.00	0.97
	errP_perimetro	0.66	0.69	0.70	0.71	0.74	0.74	0.97	1.00

AGORA VAMOS APLICAR OS MODELOS NO PYTHON...

RESULTADOS FINAL

- O xgboost foi o melhor modelo para prever câncer de mama, acurácia de (0,95);
 - A profundidade máxima de suas árvores de decisão foi 4;
 - O knn foi o com a menor acurácia (0.91);
 - Apesar disso, todos os 4 modelos obtiveram bons resultados;

