# **Quantum Computing Results**

### **Dirac Notation:**

```
myState2=[
  (numpy.sqrt(0.1)*1.j, '101'),
  (numpy.sqrt(0.5), '000'),
  (-numpy.sqrt(0.4), '010')
]
PrettyPrintBinary(myState2)
PrettyPrintInteger(myState2)

Paste the result of running your code on the above output:
```

```
print(DiracToVec(myState2))
print(VecToDirac(DiracToVec(myState2)))

Paste the result of running your code on the above output:
```

### Quantum Simulator S

| Paste the result from rand.circuit for Simulator S                                        |
|-------------------------------------------------------------------------------------------|
|                                                                                           |
|                                                                                           |
| Oughtum Cimulator M                                                                       |
| Quantum Simulator M                                                                       |
|                                                                                           |
| My simulator II results for the three circuit tests (should agree with previous results): |
|                                                                                           |
|                                                                                           |
|                                                                                           |
| ☐ Check that simulator M-b gives the same results as la for the example.circuit:          |
| ☐ Check that simulator M-c gives the same results as S for the example.circuit (extra     |
| credit)                                                                                   |
| ☐ Check that simulator M-d gives the same results as S for the example.circuit (extra     |
| credit)                                                                                   |
|                                                                                           |
|                                                                                           |
| Doctor the custout of your time and DAM toots for the simulators you have                 |
| Paste the output of your time and RAM tests for the simulators you have                   |
|                                                                                           |
|                                                                                           |

| Paste the histogram from doing measure.circuit for simulator la |
|-----------------------------------------------------------------|
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
| Paste the output from input.circuit for Simulator la            |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
|                                                                 |
| Non-Atomic Gates                                                |
| Circuit Description for Not:                                    |
| Circuit Description for Not.                                    |
|                                                                 |
| Result of Not on  1>:                                           |
|                                                                 |

| Circuit Description for Rz:                                   |  |  |  |
|---------------------------------------------------------------|--|--|--|
|                                                               |  |  |  |
| Circuit Description for (short-range) Control-Rz:             |  |  |  |
|                                                               |  |  |  |
| Circuit Description for (short-range) Control-Phase:          |  |  |  |
|                                                               |  |  |  |
| Circuit Description for Swap(2,5) (using short-range gates):  |  |  |  |
|                                                               |  |  |  |
| 9<br>H 0<br>CPHASE 0 5 0.3<br>P 1 0.3<br>CNOT 4 7<br>SWAP 2 8 |  |  |  |

Result of running your circuit (after precompilation) on the above input:

#### Phase Estimation



As a separate graph, let  $\phi/(2\pi)=0.1432394487827058$  and graph a histogram of the probability your circuit gives back the result  $\theta_j$  (as a function of  $\theta_j$ ). Paste your histogram and mark on your histogram 0.1432:

Produce the maximally predicted  $\theta j$  plot and measured  $\theta j$  histogram for the circuit with **2 wires** on top:

Produce the maximally predicted  $\theta$ j plot and measured  $\theta$ j histogram for the circuit with **6 wires** on top. Also paste the circuit description for this phase estimate circuit.

Using  $\phi$ =0.5 and the given initial state, run the phase estimate circuit with 6 wires on top. Make a graph which histograms how often you get all 2^6 outputs for the top wires.

Paste a circuit description for the  $\phi$ =0.5, 6 top wire phase estimation circuit that uses fewer gates to represent the Quantum Fourier Transform:

Come up with your own circuit description for phase estimation with a U on the bottom wire that is made of NOTs and P gates, rather than just a single phase gate as we have been doing. Run your phase estimation circuit with this U gate and generate a histogram of the possible outputs for the top wires.

### **Quantum Fourier Transform**



Paste the circuit description for the five-qubit QFT. Demonstrate that it produces the correct output when run through your simulator. Show the output of the five-qubit QFT when run with the mylnputState input file:

### Understanding the QFT (extra credit)

Work through the three approaches for building the QFT.

### **Classical Shors**

| Show that your code successfully factors numbers up to 10 bits:                    |
|------------------------------------------------------------------------------------|
| Factor the number 33 and give the x and r you find:                                |
| Put a list of ten N, x, r where N is less than 5 bits and x and r are not trivial: |
|                                                                                    |

## How fast is classical Shor's? (extra credit)

| Plot the execution time versus k: |  |  |
|-----------------------------------|--|--|
|                                   |  |  |
|                                   |  |  |

Plot the frequency of the two failure modes as a function of k and show that they do not scale linearly with k:

# Period Finding Unitary Matrix

| Write code to produce a period finding unitary matrix for a given co-prime (x,N). Give an example of an output unitary matrix:                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                          |
| For a few different examples of x, N, generate the matrix U and find its eigenvalues e. Also, compute the period r using your Classical Shor's algorithm. For each (x,N), paste the vector of eigenvalues e, the period r, and the vector e*r, which should be integers: |
|                                                                                                                                                                                                                                                                          |
| Show that you can find the period r given a random eigenvalue of the matrix U for a particular (x,N).                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                          |
| Using the above algorithm for factoring using only the eigenvalues of the U matrix (without the help of the Classical Shor's algorithm), factor some numbers. Paste the output here:                                                                                     |

# Adding classical gates to your simulator

| Paste in your circuit descriptions that use the xyModN and control-xyModN | gates and show |
|---------------------------------------------------------------------------|----------------|
| the input and output that verifies that they work:                        |                |

## Shor's Algorithm

| Show that your quantum computing simulator running the Quantum Shor's circuit can successfully factor numbers. Try to factor 21. |  |
|----------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                  |  |

Show that your simulator runs faster with the speed-up trick.