Multimedia

§4 Lossless Compression

Prof. Dr. Georg Umlauf

Content

- §4.1 Run-length coding
- §4.2 Entropy coding
- §4.3 Arithmetic coding
- §4.4 LZW coding

Run-Length Encoding (RLE)

Properties:

- Makes use of multiple repetitions of identical symbols.
- Very fast.
- Uses very little resources.
- Works well for graphics
 - Part of BMP, JPEG, TIFF and PCX

Example

Symbol sequence

AAAABBBAABBBBCCCCCCCCDABCBAAABBBBCCCD

can be compressed to

4A3B2A5B8C1D1A1B1C1B3A4B3C1D

which means

4-times A, 3-times B, 2-times A, 5-timeds B, etc.

- Compression rate: 38/28 ≈1,357...
- Saving: $(=1-\frac{1}{\text{compression rate}})$

8-Bit RLE (1)

- Code consist of 2-byte blocks
- Each block codes one run, i.e. a sequence of identical symbols.
 - First block (counter) stores the run-length, i.e. the length of the sequence.
 - Second block (value) stores the run-value, i.e. the symbol that is repeated.

8-Bit RLE (2)

- Properties:
 - Length of runs is in the range of 1 to 256 symbols, since length 0 is not used.
 - Runs of length >256 are split into several parts.
 - For runs of length 1, the data size is doubled.
 - In the worst case this means a doubling of the total data volume.

8-Bit RLE Variant (1)

- Allow also un-coded runs.
- Most significant bit of counter marks un-coded runs:
 - 0

 coded run
 second block stores a run-value
 - 1 → un-coded run
 subsequent bytes store an un-coded run
- Lower 7 Bit of the counter store for
 - a coded run
 length of the run
 - an un-coded run in number of un-coded symbols

	run 1				run 2			
	С	ounter	value	С	ounter	Wert		_
range	0	0-127	0-255	0	0-127	0-255		

	run 1					
С	ounter	value	value	value		
1	0-127	0-255	0-255	0-255		

8-Bit RLE Variant (2)

- Properties:
 - Length of runs is in the range of 1 to 128 symbols, since length 0 is not used.
 - Runs of length >128 are split into several parts.
 - Well suited for data with many runs of length 1.
 - Works well e.g. for images with 8-bit color depth.

Example

Symbol sequence

AAAABBBAABBBBCCCCCCCCDABCBAAABBBBCCCD

compressed with 8-bit RLE

4A3B2A5B8C1D1A1B1C1B3A4B3C1D

and compressed with 8-Bit RLE variant

4A3B2A5B8C<u>5</u>DABCB3A4B3C1D

Compression rate: 38/28 ≈1,357... rsp. 38/24 ≈1,583...

Saving: 26,3% rsp. 36,8%

1-Bit RLE (1)

- Code consists of 1-byte blocks:
 - Most significant bit stores the value.
 - Lower 7 bits store the counter.
- Works well e.g. for mono-chrome graphics, binary data, etc.

Content

- §4.1 Run-length coding
- §4.2 Entropy coding
- §4.3 Arithmetic coding
- §4.4 LZW coding

Discrete memoryless source (DMS)

- Source: Sender of a message or producer of information.
- Discrete: Only a finite number of unique symbols from a socalled alphabet U is necessary to represent the message.
 - Example:
 - lacksquare U is the alphabet of Latin letters of ASCII-symbols,
 - $U = \{0,1\}$ for binary data,...
- Memoryless: The occurrence of a symbol does not depend on the occurrence of other symbols.
- Source without memory

Problem

- Given: A DMS
 - with alphabet $U = \{u_1, \dots, u_n\}$ of symbols and
 - their probability to occur $P_U(u_i) = p_i$, $u_i \in U$.
- Wanted: A code
 - for the symbols u_i to binary code words w_i ,
 - that minimizes the length of the binary code for any sequence of symbols from \boldsymbol{U} and
 - allows for a perfect de-coding.

Example: Message of 66 symbols and entropy 2,66.

Symbol	а	е	i	S	t	space	newline
Frequency	10	15	11	7	9	12	2

Code trees

- Restriction to binary codes for the symbols, where the encoding scheme can be represented by a code tree.
- Symbols are given in the leaves of the code tree.

Example

Binary code with constant bit length						<u> </u>
t ler	Symbol	Code		Symbol	Code	Binary
it bi	a	000	á e í s ť sp nl	a	0000	8
star	e	001		e	0001	code With
con	i	010		j	0010	
/ith	S	011		S	0011	variable
y Ne	t	100		t	010	able
200	sp	101	nl nl	sp	011	100
ıary	nl	110	A e i s	nl	1	length
Bin			a C 3			gth

Entropy

- Which binary code is more efficient constant or variable bit length?
- How many bits are at least necessary to code all symbols, in order to
 - distinguish all symbols uniquely from each other and
 - compress the message with minimal size?
- Entropy is a measure for the information content of a source:
 - Infrequent symbols have a larger self-information $I(p_i) := -\log_2(p_i)$ than frequent ones.
 - Entropy: $H = \sum_i p_i \cdot I(p_i)$. Expected value of the self-information.

Entropy coding

- **Entropy coding:** Use binary code with variable bit length, where frequent symbols u_i get a shorter code word w_i .
- Average code word length is a measure for the efficiency of a coding $L = \sum_i p_i \cdot \ell_i$, where ℓ_i is the length [bit] of w_i .
- **Redundancy:** (L H)/H.
- Examples: Shannon code, Shannon-Fano code, Huffman code
- Problem: How to distinguish the symbols from each other?
 - It can happen that a short code word is part (e.g. beginning) of another code word.
 - Solution: delimiter symbol? >> NO!

Fano condition (prefix-condition)

A code satisfies the Fano condition, if there is no code word of a symbol that is the prefix (beginning) of the code word for another symbol.

prefix-free code

- Codes, that can be represented by code trees, always satisfy the Fano condition.
- Codes, that satisfy Fano condition, can be de-coded uniquely.

Example

De-code the following a e i s binary sequence using the above code tree: 0010110110100010

Symbol	Code
а	0000
е	0001
i	0010
S	0011
t	010
sp	011
nl	1

nl

Kraft inequality

- **Goal:** Construct for source coding a code with variable bit length code words that can be de-coded, i.e. which is prefix-free.
- **Question:** Given a certain combination of code word lengths $\ell_1, \ell_2, \dots, \ell_n$, does a corresponding prefix-free code exist?
- Answer: Kraft-(McMillan) inequality

A binary prefix-free code with code word lengths $\ell_1, \ell_2, \dots, \ell_n$ exists, if and only if (iff)

$$\sum_{i=1}^n 2^{-\ell_i} \le 1.$$

Prefix-free codes

- The proof for the Kraft inequality yields an algorithm to construct a prefix-free code from given code word lengths:
- (1) Sort the code word lengths ascending $\ell_1 \leq \ell_2 \leq ... \leq \ell_n$.
- (2) Construct a complete binary tree with height $h=\ell_n$ and set i=1.
- (3) Choose an arbitrary knot of depth ℓ_i , that has not yet been processed, and prune the tree.
- (4a) If i = n, stop,
- (4b) otherwise, increase i by one and go back to (2).

Shannon code

- Idea: Construct a prefix-free code, such that a symbol u_i with frequency p_i , is coded using as many bits as given by the self-information $I(u_i) = -\log_2 p_i$, i.e. $\ell_i = [-\log_2 p_i]$.
- For this idea the Kraft inequality is satisfied, i.e. such a code exists.
- For the average code word length L(U) of a Shannon code for the alphabet U with entropy H(U) this yields:

$$H(U) \le L(U) \le H(U) + 1.$$

Example

Example (Entropy 2,6644...)

Symbol	Fre- quency	Self- infor- mation	Code word length	Code
а	10	2,7225	3	000
е	15	2,1375	3	001
i	11	2,5850	3	010
S	7	3,2370	4	1010
t	9	2,8745	3	011
sp	12	2,4594	3	100
nl	2	5,0444	6	101100

- Average code word length: 3,1969...
- Why use for "nl" six instead of four bits?
- **Remark:** Shannon codes are not optimal!

Code tree

Properties of optimal prefix-free codes (1)

1. For an optimal code, the code tree does not have unused leaves.

Shannon-Fano codes

- Idea: Improve the balance of the code tree to avoid unused leaves.
- (1) Sort the symbols by their frequency.
- (2) Subdivide the symbols in this sequence into a left and right group, such that the sum of frequencies are as close as possible in both groups.
 - The two groups correspond to a left and a right subtree in the code tree.
- (3) Repeat (2) for both groups until there is only one symbol left in the group.
- Application: zip-compression (implode-Mode)
- Remark: Shannon-Fano codes are not optimal.

Example

Step(1): Sort by frequency, symbols and frequencies as weight (blue)

Symbol	Frequency
а	10
е	15
i	11
S	7
t	9
sp	12
nl	2

Step(2) iterated:
Subdivide into two groups of roughly equal cumulated frequency.

Shannon-Fano code

Symbol	Frequency	Code
а	10	10
е	15	00
i	11	011
S	7	1110
t	9	110
sp	12	010
nl	2	1111

Properties of optimal prefix-free codes (1)

- 1. For an optimal code, the code tree does not have unused leaves.
- 2. There is an optimal prefix-free code, such that the code words of the two symbols u_{n-1} and u_n with least frequency differ only in the last bit.

Huffman codes (1)

Idea:

- a) Sort the symbols u_1, \dots, u_n by frequency in descending order,
- b) combine the two least frequent symbols to a new symbol u'_{n-1} with cumulated frequency $p'_{n-1} = p_n + p_{n-1}$,
- c) repeat this for the new alphabet $U' = \{u_1, \dots, u_{n-2}, u'_{n-1}\}$ and
- d) stop when there is only one symbol left.

David Albert Huffman

Huffman codes (2)

- (1) Start with a forest of code trees, where each tree holds initially only one symbol.
 - Each tree has a weight p, that is the sum of the frequencies of its symbols.
- (2) Choose the two trees t_1 and t_2 with smallest weights p_1 and p_2 and combine them to a new tree with weight $p = p_1 + p_2$:

- (3) Repeat (2) until, there is only one tree left.
 - This tree represents an optimal binary code for the given symbols and frequencies.

Example

Step(1):

Forest of trees holding exactly one symbol and frequency as weight (blue)

Symbol	Frequency
а	10
е	15
i	11
S	7
t	9
sp	12
nl	2

Step(2) iterated:

Combine the two trees with smallest weights to one common tree.

b)

h) done!

Huffman code:

Symbol	Frequency	Code
а	10	101
е	15	00
i	11	100
S	7	1110
t	9	110
sp	12	01
nl	2	1111

Properties

- Huffman codes are optimal, i.e. there is no coding that is shorter (under the given restrictions).
- The run time to compute a Huffman code for an alphabet with n symbols is $O(n \log n)$.
- Problem: Where do the frequencies/probabilities come from?
 - Two-Pass-Approach:
 - 1) Determine the frequencies of the symbols of the source.
 - 2) Do the Huffman coding.
 - ... or adaption, see references...

Comparison for example text with 66 symbols and entropy 2,66.

Symbol	Frequency	3-Bit-Code	Shannon Code	Shannon- Fano Code	Huffman Code
а	10	000	000	10	101
е	15	001	001	00	00
i	11	010	010	011	100
S	7	011	1010	1110	1110
t	9	100	011	110	110
sp	12	101	100	010	01
nl	2	110	101100	1111	1111
Lengt	Length of message		211	182	180
Average cod	e word length	3	3,19	2,76	2,73

Exercise

- a) Construct for the source below a 3-bit-code, a Shannon code, a Shannon-Fano code and a Huffman code.
- b) Compare the resulting codes with respect to their efficiency.

Symbol	а	b	С	d	е	f
Probability	0,05	0,1	0,15	0,2	0,23	0,27

Source coding theorem

- Improve the efficiency of e.g. Shannon codes: Combine N symbols to a vector, i.e. construct the alphabet $U \times U \times \cdots \times U = U^N =: \mathcal{U}$.
- → The probability distribution of the new symbols is given (provided the source is memoryless) by

$$P_{\mathcal{U}} = P_{U_1} \cdot P_{U_2|U_1} \cdot P_{U_3|U_1U_2} \dots = P_{U_1} \cdot P_{U_2} \cdot P_{U_3} \dots \cdot P_{U_N}$$

Source coding theorem

The symbol sequence of a discrete memoryless source with entropy H(U) can be encoded by a binary prefix-free code of tuples of N source symbols, such that the average code word length for $N \to \infty$ converges to H(U) bits per symbol.

§4.2 Entropy coding

Extended Huffman Code

The efficiency of a Huffman code can be improved by simultaneous coding of multiple symbols together, analog to the source coding theorem.

§4.2 Entropy coding

Example: Alphabet $U = \{a, b\}$, with entropy 0,469.

Symbol	P_U	Code	Symbol	P_{U^2}	Code	Symbol	P_{U^3}	Code
а	0,9	0	aa	0,81	0	aaa	0,729	0
b	0,1	1	ab	0,09	10	aab	0,081	100
			ba	0,09	110	aba	0,081	101
			bb	0,01	111	baa	0,081	110
						abb	0,009	11100
						bab	0,009	11101
						bba	0,009	11110
						bbb	0,001	11111
	ACWL	1			1,290			1,598
Bits pe	r symbol	1			0,645			0,533
Red	undancy	113%	_		37%			13%

§4.2 Entropy coding

Problems of extended Huffman codes

- Extended Huffman codes are rarely applicable.
 - Example:
 - The probability for "a" in the US constitution is 0,057.
 - The probability for ten "a"s is not 0,057¹0, but in reality 0.
- For an alphabet of 256 symbols and symbol sequences of length 3 the resulting alphabet has 2^{8·3}=16,777,216 new symbols.

Content

- §4.1 Run-length coding
- §4.2 Entropy coding
- §4.3 Arithmetic coding
- §4.4 LZW coding

Remarks

- Arithmetic codes belong to the class of entropy codes.
- Huffman codes are a special case of arithmetic codes.
- Arithmetic codes have almost no redundancy and can outperform any other lossless compression method.
- Today rarely used due to many patents (IBM) that limit its use.

- Disadvantage of Huffman codes: Every symbol is mapped to an integer number of bits.
 - The symbols are mapped individually depending on their probability to code words.
 - If a symbol has a probability, that is not a power of ½, the corresponding "fracture of a bit" has to be filled to the next bit position.
 - There is redundancy for every symbol.
- **Disadvantage of extended Huffman codes:** For an alphabet of 256 symbols and symbol sequences of length 3 the resulting new alphabet consists of 2^{8·3}=16.777.216 new symbols.

- Idea: Code complete words or messages using intervals.
 - Internally fractional bit positions can be used.
 - → There is only redundancy for the complete message.

Approach for arithmetic coding

■ Given: Message $a_{i_1}a_{i_2}...a_{i_m} \in \Sigma^m$ from the

Alphabet $\Sigma = \{a_1, ..., a_n\}$ equipped with

Occurrence probabilities $P(a_i) = p_i$ for the symbols.

- 1. Compute first an intermediate numerical representation $\in [0,1)$ for the message.
- 2. Compute binary code for this intermediate numerical representation.

Compute the intermediate numerical representation (1)

- Every symbol has an occurrence probability p_i .
- ightharpoonup These occurrence probabilities sum to one, i.e. $\sum p_i = 1$.
- \rightarrow The occurrence probabilities partition the interval [0,1].
- → Using the cumulated probabilities $F(i) = \sum_{k=1}^{i} p_k \in [0,1]$ the following partition is defined

▶ To represent the symbol a_{i_k} of the message, choose the interval that contains $a_{i_{\nu}}$.

Compute the intermediate numerical representation (2)

- Iterate this approach:
 - The (k-1)-th interval is partitioned according to the occurrence probabilities.
 - The smaller the interval, the less likely is the symbol sequence and correspondingly the information content is high.
 - Many bits are necessary to code this small interval (entropy coding).
- The corresponding intervals can be determined recursively:

$$k = 1$$
: $I^1 = [l^1, u^1)$ with $l^1 = F(i_1 - 1)$ and $u^1 = F(i_1)$. $k = 2, ..., m$: $I^k = [l^k, u^k)$ with $l^k = l^{k-1} + (u^{k-1} - l^{k-1})F(i_k - 1)$ and $u^k = l^{k-1} + (u^{k-1} - l^{k-1})F(i_k - 1)$

Compute the intermediate numerical representation (3)

Example: Message $abb \in \Sigma^3$ from the alphabet $\Sigma = \{a, b, c\}$ with occurrence probabilities for the symbols

$$P(a) = 0.7,$$

$$P(b) = 0.2,$$

$$P(c) = 0.1.$$

→ The interval [0.588; 0.616) codes every message, that begins with *abb*.

Compute the intermediate numerical representation (4)

Common numerical representation by interval midpoint

$$T(a_{i_1}a_{i_2}...a_{i_m}) = \frac{l^m + u^m}{2}.$$

The only information required to de-code $T(a_{i_1}a_{i_2} \dots a_{i_m})$ is the cumulated probability distribution F.

```
Initialize l^0=0 and u^0=1; for k=1,\ldots,m do { Find i_k such that F(i_k-1)\leq T< F(i_k); output (a_{i_k}); Update l^k and u^k; }
```

Binary representation of the numerical representation

Self-information of the message

$$\ell(a_{i_1}a_{i_2} \dots a_{i_m}) = \left[\log_2 \frac{1}{p_{i_1} \cdot p_{i_2} \cdot \dots \cdot p_{i_m}}\right] + 1.$$

- **Binary code:** Use as code $C(a_{i_1}a_{i_2} \dots a_{i_m})$ the first $\ell(a_{i_1}a_{i_2} \dots a_{i_m})$ leading bits of the numerical representation $T(a_{i_1}a_{i_2} \dots a_{i_m})$.
- **Example:** $\Sigma = \{a, b\}, P(a) = 0.9, P(b) = 0.1, m = 2.$

word x	T(x)	binary <i>T</i>	$\ell(x)$	code C
aa	0.405	0.0110011110	2	01
ab	0.855	0.1101101011	5	11011
ba	0.945	0.1111000111	5	11110
bb	0.995	0.1111111010	8	11111110

Properties

- How effective is arithmetic coding?
 The arithmetic codes of two different messages are prefix-free.
- How efficient is arithmetic coding?

For the average code word length $L(\Sigma)$ per symbol of an arithmetic code with parameter m and an alphabet with entropy $H(\Sigma)$ the following inequality holds:

$$H(\Sigma) \le L(\Sigma) \le H(\Sigma) + 2/m$$
.

(compare to Shannon-Codes)

Problem: Accuracy of the computation, because the length of the intervals converges to zero.

Re-scaling (1)

Solution: Re-scaling of the intervals by factor 2:

(1) $I \subseteq [0,0.5)$: Multiply l^k, u^k by 2 and output bit "0".

(2) $I \subseteq [0.5,1)$: Translate l^k, u^k by -0.5, multiply by 2 and output bit "1".

Re-scaling (2)

(3) $I \subseteq [0.25,0.75)$: Translate l^k, u^k by -0.25, multiply by 2 and withhold output of any bit.

0.25 0.0

a) After re-scaling case (1) occurs, then re-scale as in case (1) and output bits "01".

b) After re-scaling case(2) occurs, then re-scale as in case (2) and output bits "10".

Re-scaling (3)

- (3) $I \subseteq [0.25, 0.75)$: ...
 - a) ...
 - b) ...
 - c) After re-scaling case (3) occurs, then re-scale as in case (3), withhold output of any bit and iterate...
- (4) otherwise: no re-scaling and withhold output of any bit.

Example: $\Sigma = \{a, b, c\}, \ P(a) = 0.8, \ P(b) = 0.02, \ P(c) = 0.18.$

Encode message acba.

Arithmetic coding with re-scaling (1)

```
// btf = bits to follow
Input: Message a_{i_1}a_{i_2}...a_{i_m} \in \Sigma^m;
l = 0; u = 1; btf=0;
                                    // Initialization
while (There are still un-coded symbols) do {
  Read a_{i_k}; d = u - l; u = l + d \cdot F(i_k); l = l + d \cdot F(i_k - 1);
   while (1) {
                                    // Cases (1)-(4)
      if (u \le 0.5) {
                                    // Case (1)
         output(0); while (btf>0) { output(1); btf--; }
         l = 2l; u = 2u; // Re-scale [0, 0, 5] \rightarrow [0, 1]
      else if (l \ge 0.5) { // Case (2)
         output(1); while (btf>0) { output(0); btf--; }
         l = 2l - 1; u = 2u - 1; // Re-scale [0.5, 1) \rightarrow [0, 1)
      else ...
```

Arithmetic coding with re-scaling (2)

```
... // Initialization while (There are still un-coded symbols) do { ... while (1) { // Cases (1)-(4) } ... else if ([l,u) \subseteq [0.25,0.75)) { // Case (3) btf++; l = 2l - 0.5; u = 2u - 0.5; // Re-scale [0.25,0.75) \rightarrow [0,1) } else break; // Case (4) } ... }
```

Re-scaling (4)

- (5) **Termination of coding:** There are no un-coded symbols left, but there are bits left for output.
 - a) $\frac{l^m + u^m}{2}$ < 0.5: output bits "01...1".

b) $\frac{l^m + u^m}{2} \ge 0.5$: output bits "10...0".

Arithmetic coding with re-scaling (3)

Example

ovmbol	interval			0000	b+f	autaut
symbol	l	u	d	case	btf	output
а	0.0	0.8	0.8	(4)	0	
С	0.656	0.8	0.144	(2)	0	1
	0.312	0.6	0.288	(3)	1	
	0.124	0.7	0.576	(4)	1	
b	0.5848	0.59632	0.01152	(2)	0	10
	0.1696	0.19264	0.02304	(1)	0	0
	0.3392	0.38528	0.04608	(1)	0	0
	0.6784	0.77056	0.09216	(2)	0	1
	0.3568	0.54112	0.18432	(3)	1	
	0.2136	0.58224	0.36864	(4)	1	
а	0.2136	0.508512	0.294912	(4)	1	
	0.2136	0.508512	0.294912	(5)	2	011

```
Input: Message a_{i_1}a_{i_2}...a_{i_m} \in \Sigma^m;
l = 0; u = 1; btf=0;
                                                        // Initialization
while (There are still un-coded symbols) do {
    Read a_{i_k}; d = u - l; u = l + d \cdot F(i_k); l = l + d \cdot F(i_k - 1);
    while (1) {
                                                        // Cases (1)-(4)
         if (u < 0.5) {
                                                        // Case (1)
             output(0); while (btf>0) { output(1); btf--; }
             l = 2l; u = 2u;
                                                       // Re-scale [0, 0.5) \rightarrow [0, 1)
         else if (l \ge 0.5) {
                                                        // Case (2)
             output(1); while (btf>0) { output(0); btf--; }
             l = 2l - 1; \quad u = 2u - 1;
                                                       // Re-scale [0.5,1) \rightarrow [0,1)
         else if ([l,u) \subseteq [0.25,0.75)) {
                                         // Case (3)
             btf++;
             l = 2l - 0.5; u = 2u - 0.5;
                                              // Re-scale [0.25, 0.75) \rightarrow [0, 1)
         else break:
                                                        // Case (4)
    btf++;
                                                       // End of coding
    T = (l + u)/2;
    if (T < 0.5) {
         output(0); while (btf>0) { output(1); btf--; }
    else {
         output(1); while (btf>0) { output(0); btf--; }
```

De-coding (1)

- The de-coder works exactly like the coder.
- Additionally the parameter m must be transmitted first (i.e. the length of the coded symbol sequences) or the method defines a constant m apriori.
 - The de-coder has to output exactly m symbols (or less, if the termination symbol is known).
- Problem of termination.
 - Solution 1: The length of the last sequence of symbols has to be transmitted separately, or
 - Solution 2: A special termination symbol is added to the alphabet endowed with a low probability.

De-coding(2)

- The de-coder needs a parameter for the accuracy of the representation (i.e. number of digits h in the binary representation) of the interval bounds for the tests, to detect the interval containing the code word.
- How to choose this parameter?
- → The number of digits h must be large enough to separate the intervals sufficiently from each other, i.e.

$$\min_i p_i > 2^{-h+2}.$$

De-coding(3)

```
Input: Code word c_1c_2...c_n \in \{0,1\}^n and number of digits h;
l = 0; u = 1; r = 1;
                                          // Initialization
for (k = 1, ..., m)
   d = u - l:
   Find i_k such that l + d \cdot F(i_k - 1) \leq 0. c_r c_{r+1} ... c_{r+h} < u + d \cdot F(i_k);
   u = l + d \cdot F(i_k); \quad l = l + d \cdot F(i_k - 1);
   output (a_{i\nu});
   while (1) {
                                           // Cases (1)-(4)
      if (u < 0.5)
                                          // Case (1)
         r + +; l = 2l; u = 2u;
                                          // Re-scale [0,0.5) \rightarrow [0,1)
      else if (l \ge 0.5) { // Case (2)
          r++; l=2l-1; u=2u-1; // Re-scale [0.5,1) \rightarrow [0,1)
      else ...
    } }
```

De-coding(4)

```
for (k = 1, ..., m) {

while (1) {

else if ([l, u) \subseteq [0.25, 0.75)) {

(l = 2l - 0.5; u = 2u - 0.5; (2se (4))}

}

limitialization

// Cases (1)-(4)

// Case (3)

Re-scale (0.25, 0.75) \rightarrow (0.1)

// Case (4)

}
```

```
Input: Code word c_1c_2...c_n \in \{0,1\}^n and number of digits h;
l = 0; u = 1; r = 1;
                                                    // Initialization
for (k = 1, ..., m)
    d = u - l:
    Find i_k such that l + d \cdot F(i_k - 1) \leq 0. c_r c_{r+1} ... c_{r+h} < u + d \cdot F(i_k);
    u = l + d \cdot F(i_k); \quad l = l + d \cdot F(i_k - 1);
    output (a_{i_k});
    while (1) {
                                                   // Cases (1)-(4)
        if (u < 0.5)
                                                 // Case (1)
            r + +; l = 2l; u = 2u;
                                     // Re-scale [0,0.5) 
ightarrow [0,1)
        else if (l \ge 0.5)
           se if (l \ge 0.5) { // Case (2) r++; l=2l-1; u=2u-1; // Re-scale [0.5,1) \to [0,1)
        else if ([l,u) \subseteq [0.25,0.75)) { // Case (3)
           r + +; c_r = 1 - c_r;
            l = 2l - 0.5; u = 2u - 0.5;
                                         // Re-scale [0.25, 0.75) \rightarrow [0, 1)
        else break;
                                                    // Case (4)
```

Content

- §4.1 Run-length coding
- §4.2 Entropy coding
- §4.3 Arithmetic coding
- §4.4 LZW coding

- For Shannon and Huffman codes the statistic of the source needs to be known a-priori for the construction of the code.
 - If the statistic is unknown, the code itself needs to be transmitted.
- ▶ Universal source coding: Methods that work without a-priori information about the source statistic and learn the source statistic during input of the message.

Dictionary-based compression methods

- Besides the different frequencies of symbols in the text, also use frequencies of symbol sub-sequences (e.g. words) in the text.
- Dictionary: Coding of words instead of coding of individual symbols.
- Source with memory.
- Static: Dictionary is defined before coding starts and will not be changed in the process.
- Dynamic: Dictionary adapts itself to the actual text, that needs to be compressed, dynamically.

Lempel-Ziv's Idea

Construct the dictionary simultaneously with the coding of the text.

Welch's Idea

Initialize the dictionary with the symbols of the alphabet.

- Remark: There are many variants of the Lempel-Ziv method, which are known as LZ77, LZ78, LZW, LZSS, ROLZ, LZMA, etc.
 - We will discuss here only LZW as a representative member for this class of compression methods.

Examples:

Lempel-Ziv: zip, TIFF (Image File Format)

• Lempel-Ziv-Welch: Compress in Unix

Lempel-Ziv-Markov: 7-zip

Example ("Monster in the mirror", Sesame street)

Text: wabba wabba wabba woo woo Dictionary:

1. wabba	wabba	wabba	wabba	WOO	WOO	WOO
A						

2. wabba wabba wabba woo woo

3. wabba wabba wabba woo woo

 \blacktriangle

4. wabba wabba wabba woo woo

5. wabba wabba wabba woo woo

6. wabba wabba wabba woo woo

7. wabba wabba wabba woo woo

8. . . .

index	entry	output
1		
2	а	
3	b	
4	0	
5	W	
6	wa	5
7	ab	5 2
8	bb	5 2 3
9	ba	5233
10	a_	52332
11	_w	523321
12	wab	5233216

Output:

5233216810129 11 7 16 5 4 4 11 21 23 4

Final dictionary:

index	entry	index	entry
1	_	14	a_w
2	a	15	wabb
3	b	16	ba_
4	0	17	_wa
5	W	18	abb
6	wa	19	ba_w
7	ab	20	wa
8	bb	21	00
9	ba	22	0_
10	a_	23	_wo
11	_w	24	00_
12	wab	25	_woo
13	bba		

LZW coding

```
Input: Text T=t_1...t_n over the alphabet U
Output: Coding of T
Initialize dictionary D using the symbols of U;
Initialize string s=t<sub>1</sub>;
while (There are still un-read symbols in T) do
  read next symbol c of T;
  if (s+c is beginning of an entry in D)
  then s=s+c; // determine the actual match
  else { return code word for s;
          add s+c to D;
          s=c; }
end while;
Return code word for s:
```

Example ("Monster in the mirror", Sesame street)

Dictionary: 8 10 12 9 11 7... 6 8 10 12 9 11 7 16 5 4... index output entry 6 8 10 12 9 11 7 16 5 4... a 3 b **3.** 5 2 3 3 2 1 6 8 10 12 9 11 7 16 5 4... 4 0 5 2 1 6 8 10 12 9 11 7 16 5 4... W 6 wa wa 6 8 10 12 9 11 7 16 5 4... ab wab 8 bb wabb 6 8 10 12 9 11 7 16 5 4... 9 wabba ba 10 wabba а **7.** 5 2 3 3 2 1 6 8 10 12 9 11 7 16 5 4... 11 wabba_wa W 12 wabba_wabb wab

LZW de-coding

```
Input: Sequence of code words c_1...c_m
Output: Sequence of symbols over the alphabet U
Initialize dictionary D using the symbols of U;
Read i=c_1 and return symbol D[i], that is coded by i;
while (There are still un-read code words) do
  Read next code word j;
  if (j is in D)
  then { Add D[i] + firstchar(D[j]) to D;
         return D[j]
  else { Add D[i] + firstchar(D[i]) to D;
         return D[i] + firstchar(D[i]) ; }
  i=j;
end while;
```

Exercise

a) De-code the LZW code 1 2 4 3 5 8 using the following dictionary.

Index	Entry
1	а
2	b
3	С

b) Test your result, by encoding the de-coded text using LZW coding.

Properties

- Dictionary adapts dynamically to the target text.
 - It will contain finally the most frequently occurring symbol sequences.
- Dictionary needs to be transmitted, too.
 - Only the initial dictionary of the alphabet needs to be known, all the rest is generated dynamically in the process of en-/de-coding.
- Coding and de-coding can be done in linear run-time.
- LZW codes yield in general better compression rates than Huffman codes.

Goals

- What is lossless compression? Which methods do you know?
- How do RLE or LZW work?
- What is entropy coding?
- How do you compute a Huffman code and what is the run-time for this algorithm?
- How do Huffman coding or arithmetic coding work?

