On L^q -spectra of Self-similar Measures

ALEX RUTAR

ABSTRACT. We investiate and discuss basic properties of the L^q -spectrum of self-similar measures in the real line.

Contents

1. Introduction and Basic Results

1.1. L^q -spectra. Let μ be a compactly-supported Borel probability measure in \mathbb{R} . Given $q \in \mathbb{R}$ and r > 0, define

$$\Theta(\mu,q;r) := \sup \bigl\{ \sum_i \mu \bigl(B(x_i,r) \bigr)^q : \{ B(x_i,r) \}_i \text{ is a centred packing of } \operatorname{supp} \mu] \bigr\}.$$

Then the L^q -spectrum of μ is the map

$$q \mapsto \tau(\mu, q) := \liminf_{r \to 0} \frac{\log \Theta(\mu, q; r)}{\log r}.$$

Proposition 1.1. Let μ be a Borel probability measure. Then $\tau(\mu, q)$ is a nondecreasing concave function of q.

Proof. Let $q_1 < q_2$ be arbitrariy. That $\tau(\mu, q)$ is non-decreasing follows since $\mu(B(x_i, r))^{q_1} \ge \mu(B(x_i, r))^{q_2}$ for any $x_i \in K$.

In addition, concavity is a standard application of Hölder's inequality: let $0 < \lambda < 1$, and then with Hölder's inequality applied to $1/\lambda$ and $1/(1-\lambda)$, we have

$$(1.1) \qquad \sum_{i} \mu(B(x_i, r))^{\lambda q_1 + (1 - \lambda)q_2} \le \left(\sum_{i} \mu(B(x_i, r))^{q_1}\right)^{\lambda} \left(\sum_{i} \mu(B(x_i, r))^{q_2}\right)^{1 - \lambda}$$

and taking suprema and logarithms yields concavity.

When $q \ge 0$, the stability of taking positive powers means that the L^q -spectrum can be calculated as a sum over half-closed dyadic intervals. Given some $k \in \mathbb{N}$, let $\mathcal{D}_m = \{[j/2^k, (j+1)/2^k) : j \in \mathbb{Z}\}$. For $q \ge 0$ $S_m(\mu, q) = \sum_{J \in \mathcal{D}_m} \mu(J)^q$ (where we implicitly sum over J with $\mu(J) > 0$), and we have the following result:

²⁰¹⁰ Mathematics Subject Classification. 28A80,37C45.

Key words and phrases. REPLACE.

This paper is in final form and no version of it will be submitted for publication elsewhere.

Proposition 1.2. Let μ be a compactly supported Borel probability measure. Then

$$\tau(\mu, q) = \liminf_{m \to \infty} \frac{-\log_2 S_m(\mu, q)}{m}.$$

Proof. We adopt this proof from [?]. Let $\{B(x_i,r)\}_i$ be a centred packing of $\sup \mu$. Let m be such that $2^{-m-1} < r \le 2^{-m}$ so that each $B(x_i,r)$ can be covered by at most 2 elements of \mathcal{D}_m , denoted by \mathcal{J}_i . Then by Jensen's inequality for the convex function x^q , we have

$$\sum_{i} \mu(B(x_{i}, r))^{q} \leq \sum_{i} \left(\sum_{J \in \mathcal{J}_{i}} \mu(J)\right)^{q} \leq \sum_{i} 2^{q-1} \sum_{J \in \mathcal{J}_{i}} \mu(J)^{q}$$
$$\leq 2^{q} \sum_{J \in \mathcal{D}_{m}} \mu(J)^{q}$$

from which it follows that

$$\tau(\mu, q) \ge \liminf_{m \to \infty} \frac{-\log_2 S_m(\mu, q)}{m}.$$

Conversely, given any m>0, enumerate $\{J\in\mathcal{D}_m:\mu(J)>0\}=\{J_i\}_{i=1}^M$, and for each i, get $x_i\in J_i\cap(\operatorname{supp}\mu)$, so that $B(x_j,2^{-m})\supseteq J$. Note that for any $j_1< j_2< j_3$, we have $B(x_{j_1},2^{-m})\cap B(x_{j_2},2^{-m})\cap B(x_{j_3},2^{-m})=\emptyset$. Thus there exists a subcollection $\{B(x_{j_i},2^{-m})\}_{i=1}^k$ such that

$$\sum_{i=1}^{k} \mu(B(x_{j_i}))^q \ge \frac{1}{3} \sum_{i=1}^{M} \mu(B(x_j, 2^{-m}))^q \ge \frac{1}{3} \sum_{I \in \mathcal{D}} \mu(J)^q.$$

(Note that the greedy choice guarantees that such a collection exists: having chosen $B(x_{j_1}, 2^{-m}), \ldots, B(x_{j_i}, 2^{-m})$, choose j_{i+1} to be the index in $\{1, \ldots, M\}$ with $B(x_{j_{i+1}}, 2^{-m})$ disjoint from the previously chosen balls with maximal measure.) We thus have

$$\Theta(\mu, q; 2^{-m}) \ge \frac{1}{3} S_m(\mu, q)$$

so that $au(\mu,q) \leq \liminf_{m \to \infty} \frac{-\log_2 S_m(\mu,q)}{m}$ and equality holds, as claimed.

Remark 1.3. Note that this proof only works for $q \ge 0$ since the sums $\Theta(\mu, q; r)$ and $S_m(\mu; q)$ are governed by the elements with largest mass. For q < 0, one may encounter issues where some dyadic interval $J \in \mathcal{D}_m$, which need not be centred in $\operatorname{supp} \mu$, intersects $\operatorname{supp} \mu$ on a set with disproportionately small measure. It can be shown that replacing the family \mathcal{D}_m by the family $\{[(j-1)/2^m, (j+2)/2^m) : j \in \mathbb{Z}\}$ (as used by Riedi [?]) one has an equivalent definition, but we do not include a proof here.

Using this equivalent formulation of the L^q -spectrum for $q \ge 0$ in terms of dyadic intervals, we have the following observation:

Corollary 1.4. We have $\tau(\mu, 0) = -\underline{\dim}_B \operatorname{supp} \mu$ and $\tau(\mu, 1) = 0$.

 L^q -spectra 3

1.2. L^q -dimensions. For any q > 1, we define the L^q -dimension of μ by

$$D(\mu, q) = \frac{\tau(\mu, q)}{q - 1}.$$

As we will see, the normalization factor 1/(q-1) is chosen since it is the ratio between q and its conjugate exponent. We can make some basic observations about L^q -dimensions:

Proposition 1.5. *Let* μ *be a compactly supported Borel probability measure.*

- (i) $D(\mu, q)$ is non-decreasing.
- (ii) We have $D(\mu, q) \in [0, 1]$.
- (iii) If μ is purely atomic, then $D(\mu, q) = 0$ for any q > 1.
- (iv) If μ is absolutely continuous with respect to Lebesgue measure with density in \mathcal{L}^q for some q > 1, then $D(\mu, q) = 1$.

Proof. For convenience, we rescale so that supp $\mu \subseteq [0,1]$.

(i) Arguing similarly to ?? in ??, with $q_1 < q_2$ and $0 < \lambda < 1$, we observe that $S_m(\mu; q_1 + (1 - \lambda)q_2) \le S_m(\mu; q_1)^{\lambda} S_m(\mu; q_2, r)^{1-\lambda}$. Now given $1 , take <math>p_1 = 1$, $p_2 = q$, and $\lambda = (p-1)/(q-1)$ so that $\lambda p_1 + (1 - \lambda)p_2 = p$ and

$$S_m(\mu, p) \le S_m(\mu, 1)^{\lambda} S_m(\mu, q)^{1-\lambda} = S_m(\mu, q)^{1-\lambda} \le S_m(\mu, q)$$

since $S_m(\mu, 1) = 1$ and $S_m(\mu, q) \leq 1$, from which the conclusion follows.

(ii) We always have $S_m(\mu, q) \le 1$ so that $D(\mu, q) \ge 0$. Then by Hölder's inequality, we have

$$1 = \sum_{J \in \mathcal{D}_m} 1 \cdot \mu(J) \le (2^m)^{(q-1)/q} S_m(\mu, q)^{1/q},$$

that is $2^{m(1-q)} \leq S_m(\mu, q)$ and $D(\mu, q) \leq 1$.

- (iii) If μ is purely atomic, then for m sufficiently large, $S_m(q)$ is constant.
- (iv) If μ has density $f \in \mathcal{L}^q$, then for any $m \in \mathbb{N}$ and $J \in \mathcal{D}_m$, we have by Hölder's inequality

$$\mu(J) \le \left(\int_J f^q \, \mathrm{d}m\right)^{1/q}$$

and thus $S_m(\mu,q) \leq \int_0^1 f^q dm \leq M < \infty$ [TODO: not quite sure how this works]

1.3. **Frostman exponents.** Frostman exponents are closely related to the L^q -spectrum of the measure μ . We say that the measure μ has *Frostman exponent s* if there exists some C>0 such that

$$\mu(B(x,r)) \le Cr^s$$

for all $x \in \operatorname{supp} \mu$ and r > 0. We emphasize here that the this inequality must hold everywhere, and not simply μ -almost everywhere. We then define

$$\dim_{\infty} \mu := \sup\{t \geq 0 : \mu \text{ has Frostman exponent } t\}.$$

ALEX RUTAR

It is clear that

4

$$t \le \inf_{x \in \text{supp } \mu} \underline{\dim}_{\text{loc}}(\mu, x) \le \overline{\dim}_B \operatorname{supp} \mu.$$

The relationship between Frostman exponents and L^q -spectra is given by the following result. The proof is due to Fraser and Jordan [?, Lem. 2.1]:

Proposition 1.6 ([?]). Let μ be a compactly supported Borel probability measure. Then

$$\dim_{\infty} \mu = \inf\{t \ge 0 : \tau(q) < tq \text{ for all } q \ge 0\}.$$

Proof. Suppose t,q>0 have $\tau(\mu,q)=tq$, and let $\epsilon>0$ be arbitrary. Then for any r>0 sufficiently small, we have

$$\Theta(\mu, q; r) < r^{(t-\epsilon)q}$$
.

Thus there exists C > 0 such that, if $x \in \operatorname{supp} \mu$ is arbitrary, we have

$$\mu(B(x,r))^q \le \Theta(\mu,q;r) < Cr^{(t-\epsilon)q}$$

so that $\dim_{\infty} \mu \geq t - \epsilon$. But $\epsilon > 0$ was arbitrary so that

$$\dim_{\infty} \mu \ge \inf\{t \ge 0 : \tau(q) < tq \text{ for all } q \ge 0\}.$$

Conversely, let $0 \le t < \dim_{\infty} \mu$ be arbitrary so there exists some C > 0 such that $\mu(B(x,r)) \le Cr^t$ for any r > 0 and $x \in \operatorname{supp} \mu$. Rescaling μ if necessary, we may assume $B(x,r) \subseteq [0,1]$ for all $x \in \operatorname{supp} \mu$ and 0 < r < 1. Let $\mathcal{B} = \{B(x_i,r)\}_i$ be a centred packing of $\operatorname{supp} \mu$. Then $\#\mathcal{B} \le r^{-1}$ so that

$$\sum_{i} \mu(B(x_i, r))^q \le Cr^{tq-1}$$

and thus $\Theta(\mu, q; r) \leq C r^{tq-1}$ and

$$\frac{\tau(\mu, q)}{q} \ge t - \frac{1}{q}.$$

But if $t_1 < t$ is arbitrary, then there is q > 0 such that $\tau(\mu, q)/q > t_1$ and thus

$$\dim_{\infty} \mu \le \inf\{t \ge 0 : \tau(q) < tq \text{ for all } q \ge 0\}$$

as claimed. \Box

Remark 1.7. *In other words, the Frostman exponent is the slope of the asymptote of* $\tau(\mu, q)$ *as* q *tends to infinity.*

2. Basic properties of L^q -spectra

Proposition 2.1. Let μ be a compactly supported Borel probability measure with L^q -spectrum $\tau(\mu, q)$ and fine multifractal spectrum

$$f(\mu, \alpha) := \dim_H \{ x \in \operatorname{supp} \mu : \overline{\dim}_{\operatorname{loc}}(\mu, x) = \underline{\dim}_{\operatorname{loc}}\mu(x) = \alpha \}.$$

Then $f(\mu, \alpha) \leq \tau^*(\mu, \alpha)$.

Proof. Translate from [?, Thm. 4.1].

 L^q -spectra 5

2.1. Concave functions.

3. L^q -SPECTRA OF SELF-SIMILAR MEASURES

3.1. **Self-similar measures.** Let \mathcal{I} be a non-empty finite set of indices. We then say that $\{S_i\}_{i\in\mathcal{I}}$ with each $S_i:\mathbb{R}\to\mathbb{R}$ is an iterated function system of similarities (IFS) if

$$S_i(x) = r_i x + d_i$$
 where $0 < |r_i| < 1$ for each $i \in \mathcal{I}$.

To any IFS there exists a unique compact set $K \subseteq \mathbb{R}$ such that

$$K = \bigcup_{i \in \mathcal{I}} S_i(K).$$

We call K a self-similar set. Moreover, if $(p_i)_{i\in\mathcal{I}}$ is a probability vector, there exists a unique Borel measure μ_{p} satisfying

$$\mu_{\mathbf{p}}(E) = \sum_{i \in \mathcal{I}} p_i \mu_{\mathbf{p}} \circ S_i^{-1}(E).$$

We refer to μ_p as a self-similar measure For non-degeneracy, we will assume throughout that the K is not a singleton and $p_i > 0$ for all $i \in \mathcal{I}$. In this case, we always have $\operatorname{supp} \mu_p = K$. Note that both K and μ_p can be realized as the fixed point of an appropriate contracting map on some compact metric space and uniqueness follows; see [?] for details.

For each $n \in \mathbb{N}$, \mathcal{I}^n is the set of words of length n and $\mathcal{I}^* = \bigcup_{i=0}^{\infty} \mathcal{I}^n$ is the set of all finite words. Given $\sigma=(i_1,\ldots,i_n)\in\mathcal{I}^*$, we write $p_\sigma=p_{i_1}\cdots p_{i_n}$, $r_\sigma=r_{i_1}\cdots r_{i_n}$ and $S_{\sigma} = S_{i_1} \circ \cdots \circ S_{i_n}$. When $n \geq 1$, we write $\sigma^- = (i_1, \dots, i_{n-1})$. If \emptyset denotes the empty word, then S_{\emptyset} is the identity map and $p_{\emptyset} = r_{\emptyset} = 1$. We denote by $[\sigma] = \{(x_j)_{j=1}^{\infty} \in \mathcal{I}^{\mathbb{N}} :$ $x_i = i_j$ for each $1 \le j \le n$.

Given some r > 0 and a Borel set $E \subseteq \mathbb{R}$, define

$$\Lambda_r = \{ \sigma \in \mathcal{I}^* : |r_{\sigma}| < r \le |r_{\sigma^-}| \}$$

$$\Lambda_r(E) = \{ \sigma \in \Lambda_r : S_{\sigma}(K) \cap E \ne \emptyset \}.$$

The following result follows directly from the definitions:

Lemma 3.1. Let r > 0. Then

- (i) $\{[\sigma] : \sigma \in \Lambda_r\}$ is a partition of $\mathcal{I}^{\mathbb{N}}$.
- (ii) $K = \bigcup_{\sigma \in \Lambda_r} S_{\sigma}(K)$ and $\mu_{\mathbf{p}} = \sum_{\sigma \in \Lambda_r} p_{\sigma} \mu_{\mathbf{p}} \circ S_{\sigma}^{-1}$. (iii) $\mu_{\mathbf{p}}(E) = \sum_{\sigma \in \Lambda_r(E)} p_{\sigma} \mu_{\mathbf{p}} \circ S_{\sigma}^{-1}(E)$.

Proof. Note that (i) follows from the observation that for any r > 0, each sequence $\overline{\sigma} \in \mathcal{I}^n$ has a unique prefix in Λ_r . Part (ii) follows by iterating the similarity properties of K and μ_p , and part (iii) follows from (ii) by removing elements of the sum for which $S_{\sigma}^{-1}(E) \cap K = \emptyset$. 6 ALEX RUTAR

3.2. Regularity and points of differentiability.

Proposition 3.2. Let μ be a Borel probability measure in \mathbb{R}^d . Suppose $\tau(\mu, q)$ is differentiable at q = 1. Then $\tau'(\mu, 1) = \dim_H \operatorname{supp}(\mu_p)$.

Proposition 3.3. Let μ be a self-similar measure. Then $\dim_H \operatorname{supp} \mu = \lim_{q \to 1^+} D(\mu, q)$.

Theorem 3.4. Let μ be a self-similar measure in \mathbb{R}^d . Suppose $\tau(\mu, q)$ is differentiable at $q \geq 1$. Then the $\dim_H K(\mu, \alpha) = \tau^*(\alpha)$.

- 3.3. Existence of limit for $q \ge 0$.
- 3.4. Frostman exponents.
- 3.5. Exact-dimensionality.
- 3.6. **Proving Differentiability.** Let μ be a compactly supported Borel probability measure. Recall that \mathcal{D}_n is the partition of \mathbb{R} into the Dyadic intervals $[k/2^n, (k+1)/2^n)$ for integer k. For convenience, we code the elements of \mathcal{D}_n in the form $I_{j_1...j_n}$ such that $I_{j_1...j_n} \in \mathcal{D}_n$ and $I_{j_1...j_n} \supset I_{j_1...j_n}$. If $I = I_{j_1...j_n} \in \mathcal{D}_n$ and $J = I_{j_{n+1}...j_{n+m}} \in \mathcal{D}_m$, we denote

$$IJ = I_{j_1...j_{n+m}} \in \mathcal{D}_{n+m}.$$

Proposition 3.5. Let μ be as above, and suppose there exists some C > 0 such that for any $I \in \mathcal{D}_n$ and $J \in \mathcal{D}_m$, we have $\mu(IJ) \leq C\mu(I)\mu(J)$.

University of St Andrews, Mathematical Institute, St Andrews KY16 9SS $\it Email\ address: alex@rutar.org$