Московский физико-технический институт

mipt_rus_text.png

Лабораторная работа по общей физике

1.2 Эффект Комптона

выполнил студент Б04-852 группы ФЭФМ Яромир Водзяновский

Содержание

1 Цель работы

- С помощью сцинтилляционного спектрометра исследовать энергетический спектр γ -квантов, рассеяных на графите
- Определяить энергию рассеяных γ -квантов в зависимости от угла рассеяния
- Определить энергию покоя частиц, на которых происходит комптоновское рассеяние

2 Оборудование

- 9BM
- ФЭУ
- Сцинилляционный счетчик
- Графитовая мишень
- Источник излучения

3 Теория

Эффект Комптона - увеличение длины волны рассеянного излучения по сравнению с падающим - интерпретируется как разультат упругого соударения двух частиц: γ -кванта (фотона) и свободного электрона.

Рассмотрим элементарный пример:

Пусть на покоящийся электрон $E=mc^2$ налетает γ -квант с энергией $\hbar\omega_0$ и импульсом $\hbar\omega_0/c$. После соударения электрон будет иметь энергию ти импульс $\gamma mc^2 \ \gamma mv$ соответственно

Запишем законы сохранения энергии и импульса:

Рис. 1: Форма спектра β -частиц при разрешенных переходах

$$mc^{2} + \hbar\omega_{0} = \gamma mc^{2} + \hbar\omega_{1}$$
$$\frac{\hbar\omega_{0}}{c} = \gamma mv\cos\phi + \frac{\hbar\omega_{1}}{c}\cos\theta$$
$$\gamma mv\sin\phi = \frac{\hbar\omega_{0}}{c}\sin\theta$$

Перейдем от частот к длинам волн и получим изменение длины рассеяного света:

$$\Delta \lambda = \lambda_1 - \lambda_0 \frac{h}{mc} (1 - \cos \theta)$$

 $\Lambda_k = \frac{h}{mc} = 2.42^{-10} ({
m cm})$ - комптоновская длина волны электрона

Перейдем от длин волн к энергии:

$$\frac{1}{\epsilon(\theta)} - \frac{1}{\epsilon_0} = 1 - \cos\theta$$

Здесь $\epsilon_0 = E_0/(mc^2)$ - выраженная в единицах mc^2 энергия γ -квантов, падающих на рассеиватель, $\epsilon(\theta)$ - энергия квантов, испытавших комптоновское рассеяние на угол θ .

4 Экспериментальная установка

Блок-схема установки изображена на рис.??. Источником излучения 1 служит ^{137}Cs , испускающий γ -лучи с энергией 662 кэВ. Он помещен в толстостенный контейнер с коллиматором. Сформированный коллиматором узкий пучок квантов подает на графитовую мишень 2.

Кванты, испытавшие комптоновское рассеяние, регистрируются сцинтилляционным счетсчиком. Он состоит из ФЭУ и сцинтиллятора. Сигналы, возникающие на аноде ФЭУ подаются на ЭВМ.

Рис. 2: Блок схема установки

Рис. 3: Блок-схема измерительного комлпекса

5 Ход работы

1. Включим установку. Устанавлиявая счетчик под разными углами от 0 до 120° снимем спектры и занесем результат в таблицу ??

Таблица 1: Номер канала от угла наблюдения

Угол θ , $^{\circ}$	0	10	20	30	40	50	60	70	80	90	100	110	120
N канала	860	891	839	777	676	608	531	489	443	404	350	332	317

2. Построим зависимость $1/N = f(1 - \cos \theta)$:

Рис. 4: График зависимости $1/N = f(1-\cos\theta)$

Согласно формуле, точки ложатся на одну прямую. Пересечение этой прямой с осью ординат опредлеяет наилучшее значение $N_{\text{наил}}(0)$. А пересечение линии с прямой $\cos \theta = 0$ позволяет найти наилучшее значение $N_{\text{полг}}(90)$.

Вернемся от переменной ϵ к энергии E, получим, что при $\theta=90^\circ$ и формула $\frac{1}{\epsilon(\theta)}-\frac{1}{\epsilon_0}=1-\cos\theta$ примет вид:

$$mc^2\left(\frac{1}{E(90)} - \frac{1}{E(0)}\right) = 1$$

Или

$$mc^2 = E(0)\frac{E(90)}{E(0) - E(90)} = E_{\gamma} \frac{N(90)}{N(0) - N(90)}$$

В этой формуле $E(0)=E_{\gamma}=662$ кэВ - энергия электонов, рассеяных вперед. Номер канала, соответствующий фотопику, пропорционален энергии кванта. Значения N возьмем из графика, чтобы снизить случайную погрешность, полученную во время эксперимента (колебания напряжения сильно влияют на величину коэффициента усиления Φ ЭУ и эл. схем)

Итак, согласно графику:

$$N(90) = 396.46 \pm 2\%$$
 $N(0) = 881.69 \pm 3.9\%$

Согласно выше выведенной формуле:

$$mc^2 = 540.9$$
кэ $B \pm 4.34\%$

6 Вывод

В ходе работы с помощью сцинтилляционного счетчика был измерен энергетический спектр γ -квантов, рассеяных на графите. Проверен эффект Комптона, получена эксперементальная зависимость энергии рассеяния от угла наблюдения. Графическим способом получено значение энергии покоя электрона.