Analysis of Complex Health Survey Data

Stas Kolenikov @StatStas

Abt Associates

Views and opinions are those of the instructor only, not those of Abt Associates or ASA

ICHPS 2020

GitHub: https://github.com/skolenik/ICHPS2020-svy

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

1/62

Target audience and objectives

This short course is aimed at the audience with general knowledge of statistics at graduate level. No knowledge of survey statistics is assumed

• but a 2 hour course won't make you an expert in it, either!

The course will cover:

- Role of survey data in today's multi-faceted world of data collection
- Basic features of survey data
- Basic principles of survey inference
- The most important peculiarities of analyzing survey data

By the end of the course, you will be better prepared to read technical reports and papers describing complex health survey data. You will be better equipped to understand the syntax of the complex health survey data analysis modules in R and Stata (self-study).

What informs health policy?

If we want to improve health outcomes of constituents of health policy, how are the differences in health outcomes related to the differences in what may potentially affect health?

- Biological pathways and experiments (pharma RCT)
- Biological pathways and observational studies
 - leading to universally applicable health policies
 - e.g., smoking and tobacco
- Socioeconomic determinants and observational studies (survey data)
 - leading to allocation of limited resources across population groups
 - e.g., targeted cancer screening or immunization campaigns

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

3 / 62

What is a complex survey?

If the methodology description of your data set contains keywords or phrases like

- stratified sampling
- multistage sampling
- random digit dialing
- nonresponse adjustment
- probability weights
- replicate weights

...it is a complex survey data set, and you are in the right workshop to learn more about them!

Korn & Graubard (1999), Heeringa et al. (2017), Lumley (2010), Chambers & Skinner (2003), Pfeffermann & Rao (2009).

Finite population surveys

- Developed initially (1920–1930s) to study finite populations with fixed characteristics
 - volume of a tree
 - last year revenue of a business
 - total grain harvest by a farm
 - person's sex
- Random variables are 0/1 indicators of being in the sample vs. not
- Inference/statistical distributions are with respect to the sampling mechanism
- 1970s and on: statistical models are incorporated and blended with sampling inference

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

5 / 62

Sample surveys vs. anything else

- Clinical trials
 - assume biology is the same, hence sample selection is not an issue
 - inference is wrt randomized assignment
- Administrative records
 - by-products of systems built by somebody else
 - created for reasons other than research (e.g., billing)
 - concepts/definitions/categories may not match the research questions
 - cannot uncover how people adapt to the admin structures
- Big Data
 - terrific at answering the "what is happening" question
 - sweeps rationale/motives for human behavior under the carpet awful at "why" question
 - ▶ ML/AI methods have \approx zero transparency

Dimensions to break down

- Human population vs. establishment population (hospitals, practices, providers)
- Sampling frames and modes
 - List of patients
 - Population register
 - ► Area sample of the general population (face-to-face/specimen interview)
 - Random digit dialing sample of the general population (phone interview)
 - Address-based sample of the general population (mail or face-to-face interview)
 - Any of the above, with screening for target population
 - Combinations: multiple frame and/or multiple mode surveys

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

7 / 62

Health surveys in the U.S.

- National Health Interview Survey (NHIS): area sample, face-to-face; CDC/NCHS
- National Health And Nutrition Examination Survey (NHANES): area sample, face-to-face, biological specimen; CDC/NCHS
- Behavioral Risk Factor Surveillance Survey (BRFSS): phone survey;
 CDC, state health agencies
- National Survey of Drug Use and Health (NSDUH): area sample, face-to-face; SAMHSA
- National Adult Tobacco Survey (NATS): phone survey; CDC/OSH
- Consumer Assessment of Healthcare Providers and Systems (CAHPS): list sample of patients, multimode; AHRQ+CMS
- Medical Expenditure Panel Survey (MEPS): three-fold survey of households, their insurers, and their medical providers; AHRQ

Abt BOLD THINKERS DRIVING REAL-WORLD IMPACT

International health surveys

- Demographic and Health Surveys (DHS) program:
 - reproductive age women
 - ightharpoonup area samples (cluster \approx village), face-to-face
 - ▶ ~90 countries, every ~3–8 years
- International Tobacco Control Policy Evaluation Project: sample design varies by country
 - phone and web in developed countries
 - anything goes in developing countries, face-to-face augmented with other modes

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

9 / 62

Language

Population $\mathcal{U}\equiv$ units for which the generalizable knowledge is sought; $|\mathcal{U}|=N.$

Observation unit \equiv the entity on which the survey measurements are taken.

Sample $S \equiv$ units that are selected for observation; |S| = n.

Frame \equiv a method to identify, and often contact, a unit from the target population; a link between the target and feasible population.

 $Coverage \equiv relation between frame(s) and population. A lot of the times, no single frame covers the entire population of interest.$

Sampling unit \equiv the entity obtained from the sampling frame with a single draw; may match the observation units, or be a group of observation units.

EPSEM design ≡ equal probability of selection method; a sampling design in which all observation units have the same probability of selection. **Does** not equate i.i.d. sample.

Features of complex surveys

The Big Four features are:

- Stratification
- Clustering
- Unequal probabilities of selection
- Weight adjustments

Other statistical features may include

- multiple phase sampling
 - subsampling respondents for specimen data collection
- multiple frames
 - all phone surveys use both landline and cell frames
- mode effect adjustments (prominent in CAHPS)

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

11 / 62

Stratification

Stratification \equiv breaking up the population/frames into mutually exclusive groups before sampling.

- Geographic regions in f2f samples
- Diagnostic groups in patient list samples

Why?

- Oversample subpopulations of interest if they can be identified on the frame(s)
- Oversample areas of higher concentration of the target rare population
- Ensure specific accuracy targets in subpopulations of interest
- Utilize different sampling designs/frames in different strata
- Balance things around/avoid weird outlying samples/spread the sample across the whole population
 - ► Deeply stratified samples: dozens/hundreds of strata, 2 PSUs per stratum

Cluster samples

Cluster, or multistage sampling design \equiv sampling groups of units rather than the ultimate observation units.

- Geographic units (e.g., census tracts) in f2f samples
- Entities in natural hierarchies (e.g., hospitals/practices and providers within a practice)

Why?

- Complete lists of all units are not available, but survey statistician can obtain lists of administrative units for which residence or health service of the ultimate observation units can be established
- Reduce interviewer travel time/cost in f2f surveys
- Interest in multilevel modeling of hierarchical structures

Terminology: $PSU \equiv primary sampling unit \approx cluster$

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

13 / 62

Unequal probabilities of selection

Why?

- Oversample (smaller) subpopulations of interest (e.g., ethnic/racial minorities)
- Oversample areas of higher concentration of the target rare population
- Result of multiple stage/cluster sampling
 - Most f2f samples are design with probability proportional to size (PPS) sampling at the first few stages, fixed sample size at last stage ⇒ approximately EPSEM
 - ▶ If measures of sizes are not accurate, or differential nonresponse is encountered, no longer EPSEM
- Unintended result of multiple frame sampling
 - dual phone users, i.e., those who have both landline and cell phone service, are more likely to be selected

Weight adjustments

Why? Corrections for...

- eligibility
- nonresponse (unavoidable in real world)
- frame noncoverage
- frame overlap in multiple frame surveys
- statistical efficiency

Kalton & Flores-Cervantes (2003), Valliant et al. (2013), Valliant & Dever (2017), Kolenikov (2016)

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

15 / 62

Sampling is about doing the best job for the \$\$\$

In the end of the day, all of the sampling features are there for 1+ of the following reasons:

- Save money
 - use cluster samples to save on travel costs
 - use stratified samples to realize statistical efficiency gains
- Cannot get the full population listing
 - ...so have to use area samples to gradually zoom down to individuals
 - ...so have to use infrastructure created for a different purpose (telecom or postal) to contact people
- Overcome the real world data collection difficulties
 - nonresponse weight adjustments

Design-based inference

Recall the finite population sampling paradigm:

- observed characteristics are fixed (e.g., person's height and weight, presence of a medical condition)
- ullet random variables are 0/1 indicators of being vs. not being in the sample

Remember $\langle \Omega, \mathcal{F}, P \rangle$ from your Billingsley-based class?

- ullet elementary outcome = particular sample, i.e., subset of the population ${\cal U}$
- probability associated with the outcome = probability to draw a particular sample
- Hence Ω is a discrete space (although combinatorially large)
- ... all events are finite unions of elementary outcomes, and
- ... all sampling distributions are essentially histograms

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

17 / 62

Design-based inference, cont.

"Easy" statistics: those linear in random variables.

We like linear statistics because expectations can be carried through, and we can produce CLT-type results through multiplication of characteristic functions.

• Trick question: is the sample mean $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ a linear statistic?

Survey statisticians think in terms of sample inclusion indicators \mathbb{I}_i , $i \in \mathcal{U}$.

• Answer to trick question: $\bar{y} = \frac{\sum_{i \in \mathcal{U}} y_i \mathbf{I}_i}{\sum_{i \in \mathcal{U}} \mathbf{I}_i}$, is a ratio of two random variables.

Design-based inference, cont.²

So, what are the linear functions of random variables? In survey statistics, these are the totals.

- Target of inference (unobserved): population total $T[y] = \sum_{i \in \mathcal{U}} y_i$
- Sample totals (with weights): $t_w[y] = \sum_{i \in S} w_i y_i \equiv \sum_{i \in U} \mathbb{I}_i w_i y_i$

How to unbiasedly estimate the population total?

- Define probability of selection $Prob[i \in S] = \pi_i$, then
- $\mathbb{E}_p t_w[y] = \sum_{i \in \mathcal{U}} \mathbb{I}_i w_i y_i = \sum_{i \in \mathcal{U}} \pi_i w_i y_i$
- To make this unbiased for T[y], irrespective of values of $\{y_i|i\in\mathcal{U}\}$, it makes sense to put $w_i = 1/\pi_i$

We just derived the Horvitz & Thompson (1952) estimator!

Note that we made no assumptions regarding $y_i \Rightarrow$

SURVEY INFERENCE IS ESSENTIALLY NONPARAMETRIC BOLD THINKERS DRIVING REAL-WORLD IMPACT

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

19 / 62

Design-based inference, cont.³

What can we say about the means of sampling distributions (point estimation)?

- To produce unbiased estimates of totals, we definitely need the Horvitz-Thompson weights.
- All other statistics are nonlinear, e.g., the weighted mean is a ratio

$$\bar{y}_w = \frac{\sum_{i \in \mathcal{S}} w_i y_i}{\sum_{i \in \mathcal{S}} w_i} \equiv \frac{t_w[y]}{t_w[1]}$$

- If some sort of LLN holds, then functions of consistently estimated quantities will be consistent, so. . .
- ... it appears to make sense to use weights for all analyses.

Design-based inference, cont.4

Weighted mean again:

$$ar{y}_w = rac{\sum_{i \in \mathcal{S}} w_i y_i}{\sum_{i \in \mathcal{S}} w_i} \equiv rac{t_w[y]}{t_w[1]}$$

From the expression for \bar{y}_w , it can be seen that it is approximately unbiased if the measurements y_i are "uncorrelated" with weights w_i ...

• ...although the sense of "uncorrelated" is very poorly defined Typically, survey statisticians exploit knowledge of the features of the population of interest in their sampling designs, so expecting that measurements and weights would be "uncorrelated" is unwarranted, if not dangerous, for producing unbiased estimates.

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

21 / 62

Design-based inference, cont.⁵

What can we say about the variances of sampling distributions (standard errors)?

- Variances are associated with second moments of random variables
- ullet The random variables in surveys are ${1 \hspace{-0.8em}
 m I}_i$, so. . .
 - $\mathbb{E} \mathbb{I}_i^2 = \mathbb{E} \mathbb{I}_i = \pi_i$
 - $\blacktriangleright \ \mathbb{E} \mathring{1}_i \mathring{1}_j \equiv \pi_{ij} = \text{Prob}[\mathsf{both} \ i, j \in \mathcal{S}]$
- Thus, sampling variances depend on the first order probabilities of selection, and especially on the joint, or second order probabilities of selection

Simple random sample without replacement (SRSWOR):

$$\pi_i = \frac{n}{N}, \pi_{ij} = \frac{n(n-1)}{N(N-1)}, v[\bar{y}] = \left(1 - \frac{n}{N}\right) \frac{s^2}{n}, s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \bar{y})^2$$

Enter Frankenstein

Common design: two-stage stratified sample (many public use microdata sets):

$$egin{aligned} v(t_w[y]) &= \sum_h (1-f_h) rac{n_h}{n_h-1} \sum_i (y_{hi} - ar{y}_h)^2 \ &+ \sum_h f_h \sum_i (1-f_{hi}) rac{m_{hi}}{m_{hi}-1} \sum_j (y_{hij} - ar{y}_{hi})^2 \end{aligned}$$

where h enumerates strata, i enumerates PSUs/clusters, j enumerates SSUs/individuals, n_h is the number of sampled PSUs, $f_h = n_h/N_h$, N_h is the number of population PSUs, \bar{y}_{hi} is the mean in cluster i of stratum h, \bar{y}_h is the main in stratum h, and m_{hi} is the size of the i-th PSU in stratum h.

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

23 / 62

Design-based inference, final

Given what we just learned about means and variances in survey sampling, what are the impacts of the survey features on analysis of survey data?

- Stratification
- Clustering
- Unequal probabilities of selection
- Weight adjustments

Impacts could be on...

- Point estimates
- Variances there is so much interest in them that survey statisticians coined a special term, design effect

$$\mathrm{DEFF} = \frac{\mathbb{V}[\hat{\theta}; \mathsf{actual design}]}{\mathbb{V}[\hat{\theta}; \mathsf{SRS}]}$$

Stratification

- Does not have impact on π_i and w_i per se, although...
- ...if different strata are sampled at different rates, weights will differ
- Samples are taken independently between strata ⇒ different expressions for the second order probabilities for units in the same vs. different strata
- In the end of the day, stratification *typically* improves precision of the estimates
 - ▶ ... but to actually get this gain in your software output, you need to know what formula to use for variance

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

25 / 62

Cluster sampling

- Does not have impact on π_i and w_i per se
- Units within the same cluster have **much** higher probabilities of joint selection than units in different clusters
- Variance is clearly affected, and it is typically affected *negatively*, i.e., cluster samples result in loss of precision vis-a-vis "flat" samples

$$\mathrm{DEFF}_{\mathrm{cluster}} = 1 + \rho_{\mathrm{ICC}}(\bar{m} - 1)$$

where

- ullet ho_{ICC} is the *intraclass correlation* pprox a fraction of total variance that is due to between-cluster variance
 - ► typically low single digit %
- ullet $ar{m}$ is the (average) number of observations per cluster

Unequal probabilities of selection

- Probabilities of selection affect weights and hence point estimates
- \bullet Second order probabilities are affected \Rightarrow variances are affected, as well

For SRS design, DEFF due to unequal weighting is

$$\text{DEFF}_{\text{uwe}} = 1 + \text{CV}_{w}^{2} = \frac{n \sum_{j \in \mathcal{S}} w_{j}^{2}}{\left[\sum_{j \in \mathcal{S}} w_{j}\right]^{2}}$$

- The second order probabilities of selection in unequal probability sampling designs are one of the most convoluted problems in sampling statistics!
- Brewer & Hanif (1983) list 50 methods of unequal probability sampling, for a good measure

 Abt BOLD THINKERS DRIVEN

 ADD THINKERS DRIVEN

 BOLD THINKE

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

27 / 62

Weight adjustments

- Weights affect point estimates
- Weight adjustments are based on the sample data
 - weights are random rather than fully-prespecified probability weights
- Sampling variability in weights is difficult to account for
 - Replicate variance estimation methods offer hope
- ullet Weight adjustments increase dispersion of weights $\Rightarrow \mathrm{DEFF}_{\mathrm{uwe}}$
- On the other hand, weight calibration improves precision of estimates

$$\mathrm{DEFF_{calib}}[\bar{y}] \approx 1 - R_{y:\mathrm{calib}}^2$$

where $R_{y:\text{calib}}^2$ is from the regression of the outcome being analyzed on the calibration variables

Deville & Särndal (1992), Devaud & Tillé (2019)

Variance estimation

- Analytical methods: linearization ⇒ sandwich estimators
- Computational methods: replicate variance estimation
 - Mimic the sampling design to create subsamples of you data
 - Utilize variability in estimates between subsamples to inform variance estimation
 - Balanced repeated replication (BRR)
 - Jackknife
 - Bootstrap
 - Successive difference (SDR)

Shao (1996), Rust & Rao (1996), Kolenikov (2010), sections of Heeringa et al. (2017), Lumley (2010).

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

29 / 62

Summary statistics

- Starting point: estimates of totals $t_w[y]$
 - ▶ Estimation of proportions: define y = 0/1 indicator
- Point estimation: functions $g(t_w[y_1], t_w[y_2], ...)$
 - $\text{ correlation: } r(x,y) = \frac{t_w[1]t_w[xy] t_w[x]t_w[y]}{\sqrt{(t_w[1]t_w[x^2] t_w[x]^2)(t_w[1]t_w[y^2] t_w[y]^2)}}$
- Variance estimation: sandwich

$$v[g(t_w[y_1], t_w[y_2], \ldots)] = \{\nabla g\}' \{v[(t_w[y_1], t_w[y_2], \ldots)]\} \{\nabla g\}$$

Regression models

Parametric statistical models have peculiar relations with survey statistics (Skinner 1989, Binder & Roberts 2003, 2009).

Census regression and normal equations:

$$y_i = Bx_i + e_i, \quad \sum_{i \in \mathcal{U}} x_i(y_i - Bx_i) = 0$$

Normal equations represent population totals (equal to zero). Plug in sample estimators:

$$\sum_{i\in\mathcal{S}}w_jx_j(y_j-bx_j)=0\Rightarrow b=(X'WX)^{-1}(X'Wy), W=\operatorname{diag}\{w_j\}$$

Inference: sandwich variance estimates (Fuller 1975, Binder 1983, Fuller 2002).

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

31 / 62

Subpopulations / domains

 $Domain \equiv subpopulation \equiv a$ nontrivial subset of the population

Variance estimation complexities:

- Sample size (denominator of s^2/n) is random even when the overall sample size is fixed by design
- Pairwise selection probabilities within the domain are not the true pairwise probabilities
- In practice, one has to work with filtering variables d_iy_i instead of y_i where d_i is the domain indicator
- The full data set has to be used; one cannot simply drop cases that are not used for the analysis

West et al. (2008)

Complex survey analysis software

R — Stata — SAS — SUDAAN — SPSS

The bare minimum:

- survey features: stratification, clustering, unequal weights
- methods: descriptive statistics (means, totals, tabulations)

Better working set:

- survey features:
 - calibrated weights
 - replicate weights
 - multistage samples
 - multiphase samples
- methods:
 - regression models
 - hooks for custom methods to ride on

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

33 / 62

Advanced topics

- Multilevel models
- Small area estimation (MRP is a method)
- Missing (and imputed) data
- Case-control studies
- Causal inference
- Survival analysis
- Bayesian methods

Do you want to collect your own survey data?

Focus on biases

Statisticians are quite good in measuring the sampling error. Thus, given there's a statistician on the team, survey methodologists concentrate on everything else (Groves et al. 2009, Groves & Lyberg 2010).

- Coverage bias
- Psychology of survey response
- Nonresponse (noncontact + refusal) bias
- Social desirability bias
- Cognitive shortcuts
- Mode effects
- Interviewer effects
- Multicultural, multilingual

Handbook of Health Survey Methods (Johnson 2015)

Additional resources

Professional organizations:

- Survey Research Methods Section of the ASA (SRMS)
- American Association for Public Opinion Research (AAPOR)

Online education:

- SRMS list of degree programs:
 http://community.amstat.org/surveyresearchmethodssection/links
- Joint Program in Survey Methodology online: https://jpsmonline.umd.edu/
- Coursera Specialization: https://www.coursera.org/specializations/data-collection

List of competencies:

• Special issue of AAPOR's *Survey Practice* online journal: http://www.surveypractice.org/index.php/SurveyPractice/issue/view/61

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

37 / 62

What I covered today

- Examples of complex survey data
- Sampling designs and complex survey features
- Impact of complex surveys on analysis
- Software for complex survey data analysis
- Advanced uses of survey data
- Collecting survey data
- Learn more

Appendix I: Software

Code examples: https://github.com/skolenik/ICHPS2020-svy

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

39 / 62

Complex survey analysis software

R — Stata — SAS — SUDAAN — SPSS

The bare minimum:

- survey features: stratification, clustering, unequal weights
- methods: descriptive statistics (means, totals, tabulations)

Better working set:

- survey features:
 - calibrated weights
 - replicate weights
 - multistage samples
 - multiphase samples
- methods:
 - regression models
 - hooks for custom methods to ride on

library(survey) — available from CRAN (Lumley 2010)
library(ReGenesees) — requires custom installation

- Declare your survey design (e.g., identifiers of units, strata, clusters; weight variables; etc.)
- ② Apply survey-aware functions provided by those packages to obtain design-correct inference

Both packages support nearly any design imaginable, as well as estimation of common statistical models (e.g. GLMs)

Overall impression: very solid

Bonus: very strong library(sampling) suite of sampling methods (Tillé 2006)

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

41 / 62

Stata

Official Stata includes the suite of svy routines.

- svyset your data (identifiers of units, strata, clusters; weight variables; calibration variables)
- prefix nearly any estimation command with svy for design-correct inference
- Oclear (but complex) ways for third-party modules to comply with svy requirements
- calibrated weights (although poorly documented)

Overall impression: very solid

Lags behind R: sampling

Heeringa et al. (2017), Kolenikov & Pitblado (2014).

The suite of SAS PROC SVYWHATEVER procedures:

- need to declare the survey features within every procedure (copy/paste errors?)
- a limited set of methods coded in SAS PROC SVYWHATEVER
- other procedures produce ridiculous results with weights

Overall impression: OK for the general 90% tasks

Lags behind R and Stata: variety of methods.

Beats Stata with PROC SURVEYSELECT.

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

43 / 62

SUDAAN

SAS-callable custom software (SUrvey DAta ANalysis)

- need to declare the survey features within every procedure (copy/paste errors?)
- a wider set of methods compared to SAS (including Cox regression)
- sophisticated weight adjustment methods

Overall impression: very strong within its limited scope; future development unclear

SPSS

- weighted procedures produce ridiculous results
- requires a separate purchase of Complex Samples module
- replicate weights are not supported
- future development unclear

Overall impression: meh

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

45 / 62

Software and rubrics

	R	Stata	SAS	SUDAAN	SPSS
Integration	library	Official	PROC	SAS-	Complex
	(survey)	svy:	SVY*	callable	Samples (\$\$)
Big three	+	+	+	+	+
Replicate	+	+	+	+	-
weights					
$Calib\ \mathbb{V}$	+	+	repw	+	-
Models	++	++	+	+	?
Note: "repw", available through replicate weights					

Abt BOLD THINKERS DRIVING REAL-WORLD IMPACT

Appendix II: Statistical models

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

47 / 62

Advanced topics

- Multilevel models
- Small area estimation
- Missing (and imputed) data
- Case-control studies
- Causal inference
- Survival analysis
- Bayesian methods

Multilevel models

$$y_{ij} \sim f(\theta_{ij})$$
 (exponential family), $\theta_{ij} = x'_{ij}\beta + Zu_i$

- Mixed models in biostatistics
- Multilevel models in social sciences
- If clusters and individuals are sampled in an informative way, variance components that are central in the maximum (quasi-)likelihood estimation may work in strange ways
- Open research question since Pfeffermann et al. (1998) as to how scale the weights at the lower levels (to tweak biases in variance estimates, efficiency gains)

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

49 / 62

Small area estimation

Try to do more with less — provide estimates for domains with insufficient sample size

• Fay & Herriot (1979) model:

$$g(poverty rate_i) = x_i'\beta + model error_i + sampling error_i$$

- Unit models (Rao & Molina 2015)
 - sample model

$$y_{ij} = \mathbf{x}'_{ij}\beta + u_i + e_{ij}$$

lacktriangle combined with known population totals \Rightarrow estimate

$$ar{Y}_i = f_i ar{y}_i + (1 - f_i) (ar{\mathbf{X}}_i' \hat{eta} + \hat{u}_i)$$

- GLM-like extensions are feasible
- Rediscovered independently in other literatures (economics: poverty mapping; political science: MRP), invariably with minor problems (Molina & Rao 2010)

Imputed data

I assume everybody knows that casewise deletion, imputation by (mean, mode, etc.), single imputation are bad. Is multiple imputation (Rubin 1996) a good answer?

- Kim et al. (2006) multiple imputation may not play well with the complex designs
- Shao & Sitter (1996) bootstrap:
 - Draw bootstrap sample reflecting complex design
 - 2 Impute once
 - Stimate, store the pseudo-value
 - Repeat 1-3 the "bootstrap" number of times (hundreds, not single digits)
 - Sombine using the bootstrap rules (although Rubin rules would be about the same)

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

51 / 62

Case-control studies

- Cases: sampled at 100% rate (or close)
- Controls: match cases, in some appropriate sense
- ullet Controls are sampled at much lower rate, pprox the condition prevalence

The interest is often in the causes of the condition — tempting to run a logistic regression with the condition as the outcome?

- Regression with weights is consistent wrt design, but likely very inefficient
- Regression without weights sounds scary as the design is very informative
- If sampling of the controls is not informative, then only the intercept is biased (Scott & Wild 2003)

Survival analysis

Nearly all of the expertise is encoded in Jerry Lawless' brain (Lawless 2003).

- Survival analysis == instantaneous hazard rates \approx moderately high frequency of observations (days); surveys \approx one time operations
- Even in longitudinal survey studies, time between data collection waves (\sim year) may contain several events
- Severe left and right censoring issues
- Proportional Cox model: Binder (1992)

NCHS linked the National Death Index (NDI) with NHIS, NHANES, some other surveys.

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

53 / 62

Bayesian methods

Mostly forced marriage:

- Bayesian methods proceed by tightening the distributions of parameters driven by the likelihood supplied by the data
- Survey inference (nonparametric!): likelihood of an SRS sample = $1/\binom{N}{n}$ and does not depend on y_i
- One can construct models and priors that allow reproducing some of the simple textbook formulae (Little 2012)

Bayesian methods work very well when complementing survey inference conditional on the sample

- Missing data imputation
- Small area estimation
- Adaptive sampling designs

Propensity score matching

- Estimate propensity scores
- Form matched pairs of "treated" with "controls" with close values of PS
- Apply an estimation method

Survey statistics issues:

- Need to weight matched T-C pairs by the inverse second order selection probabilities for point estimates, the fourth order selection probabilities for standard errors
- Nonmatched units: coverage error?

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

55 / 62

References I

- Binder, D. A. (1983), 'On the variances of asymptotically normal estimators from complex surveys', *International Statistical Review* **51**, 279–292.
- Binder, D. A. (1992), 'Fitting Cox's proportional hazards models from survey data', *Biometrika* **79**(1), 139–147.
- Binder, D. A. & Roberts, G. R. (2003), Design-based and model-based methods for estimating model parameters, *in* R. L. Chambers & C. J. Skinner, eds, 'Analysis of Survey Data', John Wiley & Sons, New York, chapter 3.
- Binder, D. A. & Roberts, G. R. (2009), Design- and model-based inference for model parameters, in D. Pfeffermann & C. R. Rao, eds, 'Sample Surveys: Inference and Analysis', Vol. 29B of *Handbook of Statistics*, Elsevier, Oxford, UK, chapter 24.

References II

- Brewer, K. & Hanif, M. (1983), Sampling with Unequal Probabilities, Springer-Verlag, New York.
- Chambers, R. L. & Skinner, C. J., eds (2003), *Analysis of Survey Data*, Wiley series in survey methodology, Wiley, New York.
- Devaud, D. & Tillé, Y. (2019), 'Deville and sarndal's calibration: revising a 25-years-old successful optimization problem (with discussion)', *Test* **28**(4), 1033–1065.
- Deville, J. C. & Särndal, C. E. (1992), 'Calibration estimators in survey sampling', *Journal of the American Statistical Association* **87**(418), 376–382.
- Fay, R. E. & Herriot, R. A. (1979), 'Estimates of income for small places: An application of James-Stein procedures to census data', *Journal of the American Statistical Association* **74**(366), 269–277.
- Fuller, W. A. (1975), 'Regression analysis for sample survey', *Sankhya Series C* **37**, 117–132.

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

57 / 62

References III

- Fuller, W. A. (2002), 'Regression estimation for survey samples (with discussion)', *Survey Methodology* **28**(1), 5–23.
- Groves, R. M., Fowler, F. J., Couper, M. P., Lepkowski, J. M., Singer, E. & Tourangeau, R. (2009), *Survey Methodology*, Wiley Series in Survey Methodology, 2nd edn, John Wiley and Sons, New York.
- Groves, R. M. & Lyberg, L. (2010), 'Total survey error: Past, present, and future', *Public Opinion Quarterly* **74**(5), 849–879.
- Heeringa, S. G., West, B. T. & Berglund, P. A. (2017), *Applied Survey Data Analysis*, Chapman & Hall/CRC Statistics in the Social and Behavioral Sciences, 2nd edn, Chapman and Hall/CRC.
- Horvitz, D. G. & Thompson, D. J. (1952), 'A generalization of sampling without replacement from a finite universe', *Journal of the American Statistical Association* **47**(260), 663–685.
- Johnson, T. P., ed. (2015), *Handbook of Health Survey Methods*, Wiley Handbooks in Survey Methodology, Wiley, Hoboken, NJ.

References IV

- Kalton, G. & Flores-Cervantes, I. (2003), 'Weighting methods', *Journal of Official Statistics* **19**(2), 81–97.
- Kim, J. K., Brick, M. J., Fuller, W. A. & Kalton, G. (2006), 'On the bias of the multiple-imputation variance estimator in survey sampling', *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* **68**(3), 509–521.
- Kolenikov, S. (2010), 'Resampling inference with complex survey data', *The Stata Journal* **10**, 165–199.
- Kolenikov, S. (2016), 'Post-stratification or non-response adjustment?', Survey Practice **9**(3). available at http://www.surveypractice.org/index.php/SurveyPractice/article/view/315.
- Kolenikov, S. & Pitblado, J. (2014), Analysis of complex health survey data, *in* T. P. Johnson, ed., 'Handbook of Health Survey Methods', Wiley, Hoboken, NJ, chapter 29.

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

59 / 62

References V

- Korn, E. L. & Graubard, B. I. (1999), *Analysis of Health Surveys*, John Wiley and Sons.
- Lawless, J. F. (2003), Event history analysis and longitudinal surveys, *in* R. L. Chambers & C. J. Skinner, eds, 'Analysis of Survey Data', Wiley, chapter 15, pp. 221–243.
- Little, R. J. (2012), 'Calibrated Bayes, an alternative inferential paradigm for official statistics', *Journal of Official Statistics* **28**(3), 309–334.
- Lumley, T. S. (2010), Complex Surveys: A Guide to Analysis Using R (Wiley Series in Survey Methodology), Wiley, New York.
- Molina, I. & Rao, J. N. K. (2010), 'Small area estimation of poverty indicators', *Canadian Journal of Statistics* **38**(3), 369–385.
- Pfeffermann, D. & Rao, C. R., eds (2009), Handbook of Statistics, Volume 29: Sample Surveys, North Holland.

References VI

- Pfeffermann, D., Skinner, C. J., Holmes, D. J., Goldstein, H. & Rasbash, J. (1998), 'Weighting for unequal selection probabilities in multilevel models', *Journal of Royal Statistical Society, Series B* **60**(1), 23–40.
- Rao, J. N. K. & Molina, I. (2015), *Small Area Estimation*, Wiley series in survey methodology, 2nd edn, John Wiley and Sons, Hoboken, NJ.
- Rubin, D. B. (1996), 'Multiple imputation after 18+ years', *Journal of the American Statistical Association* **91**(434), 473–489.
- Rust, K. F. & Rao, J. N. (1996), 'Variance estimation for complex surveys using replication techniques', *Statistical Methods in Medical Research* **5**(3), 283–310.
- Scott, A. & Wild, C. (2003), Fitting logistic regression models in case-control studies with complex sampling, in R. Chambers & C. J. Skinner, eds, 'Analysis of Survey Data', John Wiley and Sons, chapter 8.
- Shao, J. (1996), 'Resampling methods in sample surveys (with discussion)', *Statistics* **27**, 203–254.

Stas Kolenikov (Abt Associates)

Analysis of Complex Health Survey Data

ICHPS 2020

61 / 62

References VII

- Shao, J. & Sitter, R. R. (1996), 'Bootstrap for imputed survey data', Journal of the American Statistical Association **91**(435), 1278–1288.
- Skinner, C. J. (1989), Domain means, regression and multivariate analysis, in C. J. Skinner, D. Holt & T. M. Smith, eds, 'Analysis of Complex Surveys', Wiley, New York, chapter 3, pp. 59–88.
- Tillé, Y. (2006), Sampling Algorithms, Springer Series in Statistics, Springer, New York.
- Valliant, R. & Dever, J. (2017), Survey Weights: A Step-by-step Guide to Calculation, Stata Press, College Station, TX.
- Valliant, R., Dever, J. A. & Kreuter, F. (2013), *Practical Tools for Designing and Weighting Survey Samples*, Springer.
- West, B. T., Berglund, P. & Heeringa, S. G. (2008), 'A closer examination of subpopulation analysis of complex-sample survey data', *Stata Journal* **8**(4), 520–531(12).