Model Learning

MMCi Block 2 Matthew Engelhard

Learning (or training) our model means:

-> Finding specific values of our model parameters that predict y effectively from x in our training set

What do we mean by "predict y effectively"?

- -> We need a number that measures how well we're predicting y
- -> Then, we can set our parameters to the specific values that are best, according to this number
- -> We call this number the "loss", and try to find parameters that minimize it

In *linear* regression, the loss is the mean squared error.

Error:

$$\varepsilon_i = y_i - \hat{y}_i$$

Mean square error (MSE)

$$\frac{1}{N} \sum_{i=1}^{N} \varepsilon_i^2$$

We have two parameters: the slope, and the intercept. As we change the intercept, we can see that the MSE changes.

We're looking for the intercept that minimizes the MSE.

- Our model predicts the probability of death for each patient.
- If we change the parameters, we change the predicted probabilities for each patient.

- Suppose we predict:
 - $p_1 = .1$
 - $p_2 = .9$
 - $p_3 = .7$
- Is this a good model? Why or why not?

- Suppose we predict:
 - $p_1 = .8$
 - $p_2 = .3$
 - $p_3 = .1$
- Is this a good model? Why or why not?

- Suppose we predict:
 - $p_1 = .8$
 - $p_2 = .3$
 - $p_3 = .1$
- Is this a good model? Why or why not?
- Our parameters affect all the predictions: changing a parameter to decrease y_2 may also increase y_3

- Suppose we predict:
 - $p_1 = .8$
 - $p_2 = .3$
 - $p_3 = .1$
- What is the probability of the observed outcomes?

- Suppose we predict:
 - $p_1 = .8$
 - $p_2 = .3$
 - $p_3 = .1$
- What is the probability of the observed outcomes?
- This is called the likelihood.
 We want to find parameters that maximize it.

Probability of all the events y_1, \dots, y_N given our current model parameters

The predicted probability of y_i is:

$$\begin{cases} p_i & \text{if } i = 1\\ 1 - p_i & \text{if } i = 0 \end{cases}$$

Probability of all the events y_1, \dots, y_N given our current model parameters

The predicted probability of y_i is:

$$\begin{cases} p_i & \text{if } i = 1\\ 1 - p_i & \text{if } i = 0 \end{cases}$$

Is there a way to write this without the *if* statement? Try the following:

$$p_i^{y_i}(1-p_i)^{1-y_i}$$

Probability of all the events y_1, \dots, y_N given our current model parameters

The predicted probability of y_i is:

$$\begin{cases} p_i & \text{if } i = 1\\ 1 - p_i & \text{if } i = 0 \end{cases}$$

Is there a way to write this without the *if* statement? Try the following:

$$p_i^{y_i}(1-p_i)^{1-y_i}$$

Now we multiply all the predicted probabilities together:

$$\prod_{i=1}^{N} (p_i)^{y_i} (1 - p_i)^{1 - y_i}$$

Probability of all the events y_1, \dots, y_N given our current model parameters

Now we multiply all the predicted probabilities together:

$$\prod_{i=1}^{N} (p_i)^{y_i} (1 - p_i)^{1 - y_i}$$

Often we see $\sigma(z_i)$ substituted for p_i :

$$\prod_{i=1}^{N} \sigma(z_i)^{y_i} (1 - \sigma(z_i))^{1 - y_i}$$

Remember that for *linear* regression, we want to *minimize* the mean squared error.

Error:

$$\varepsilon_i = y_i - \hat{y}_i$$

Mean square error (MSE)

$$\frac{1}{N} \sum_{i=1}^{N} \varepsilon_i^2$$

$$\prod_{i=1}^{N} \sigma(z_i)^{y_i} (1 - \sigma(z_i))^{1 - y_i}$$

Two Final Modifications

$$\prod_{i=1}^{N} \sigma(z_i)^{y_i} (1 - \sigma(z_i))^{1 - y_i}$$

1. For numerical stability, we instead work with the *log-likelihood*:

$$\sum_{i=1}^{N} y_i \log \sigma(z_i) + (1 - y_i) \log \left(1 - \sigma(z_i)\right)$$

Two Final Modifications

$$\prod_{i=1}^{N} \sigma(z_i)^{y_i} (1 - \sigma(z_i))^{1 - y_i}$$

1. For numerical stability, we instead work with the *log-likelihood*:

$$\sum_{i=1}^{N} y_i \log \sigma(z_i) + (1 - y_i) \log \left(1 - \sigma(z_i)\right)$$

2. And by convention / for consistency, we minimize the *negative* log-likelihood rather than maximizing the positive:

$$-\sum_{i=1}^{N} y_i \log \sigma(z_i) + (1 - y_i) \log \left(1 - \sigma(z_i)\right)$$

Two Final Modifications

$$\prod_{i=1}^{N} \sigma(z_i)^{y_i} (1 - \sigma(z_i))^{1 - y_i}$$

1. For numerical stability, we instead work with the *log-likelihood*:

$$\sum_{i=1}^{N} y_i \log \sigma(z_i) + (1 - y_i) \log \left(1 - \sigma(z_i)\right)$$

2. And by convention / for consistency, we minimize the *negative* log-likelihood rather than maximizing the positive:

$$-\sum_{i=1}^{N} y_i \log \sigma(z_i) + (1-y_i) \log (1-\sigma(z_i))$$
 This is called the *cross-entropy loss.* We are looking for parameters that make it as small as possible. It is used for *all* the prediction tasks we consider in this course.

Cross-Entropy Loss

How do we minimize the loss?

 The cross-entropy loss just tells us what quantity we should be minimizing

• In some cases (e.g. linear regression), we can solve for the minimum directly

 But, we'd like to have an approach that works even for very complex models

Strategy: determine how small changes in parameters affect the loss

OVARIATES							OUTCOMES AND PREDICTIONS					
atient	age	age_normalized	female	temp	temp_normalized		mortality	predicted_log_odds	predicted_prob	prediction	correct?	loss
0	30.5	-0.5	0	105.0	2.4		1	0.00	0.50	0	0	0.301
1	74.0	1.1	1	96.7	-0.8		0	0.00	0.50	0	1	0.301
2	27.4	-0.6	0	96.1	-1.0		0	0.00	0.50	0	1	0.30
3	0.1	-1.5	1	98.5	-0.1		0	0.00	0.50	0	1	0.30
4	0.7	-1.5	1	96.5	-0.9		0	0.00	0.50	0	1	0.301
5	49.9	0.2	1	97.1	-0.6		0	0.00	0.50	0	1	0.30
6	72.9	1.0	1	100.1	0.5		1	0.00	0.50	0	0	0.301
7	29.1	-0.5	1	99.6	0.3		0	0.00	0.50	0	1	0.30
8	83.5	1.4	1	100.6	0.7		1	0.00	0.50	0	0	0.30
9	82.3	1.4	1	95.2	-1.3		1	0.00	0.50	0	0	0.30
10	23.7	-0.7	0	99.4	0.2		1	0.00	0.50	0	0	0.30
11	12.9	-1.1	0	96.6	-0.8		0	0.00	0.50	0	1	0.30
12	53.9	0.4	1	100.3	0.6		0	0.00	0.50	0	1	0.30
13	18.8	-0.9	0	98.6	0.0		0	0.00	0.50	0	1	0.30
14	51.8	0.3	0	98.5	-0.1		0	0.00	0.50	0	1	0.301
15	3.3	-1.4	0	94.6	-1.6		0	0.00	0.50	0	1	0.301
16	69.7	0.9	0	99.1	0.1		0	0.00	0.50	0	1	0.301
17	60.4	0.6	1	104.2	2.1		1	0.00	0.50	0	0	0.301
18	73.6	1.1	1	99.1	0.1		1	0.00	0.50	0	0	0.301
19	53.3	0.3	1	99.1	0.1		0	0.00	0.50	0	1	0.30
PARAMETERS		b_age	b_female		b_temp	bias				PERFORMANCE	accuracy	ave lo
ANAMIETENS	guess	0.00	_			0.00				LINGHIANCE	0.65	
	optimal	0.00	0.00		0.00	0.00					0.03	0.50