Algoritmos de Aprendizaje Automático y sus aplicaciones

Trabajo de Fin de Grado

Javier Díaz Bustamante Ussia

Universidad Complutense de Madrid

16 de septiembre de 2015

Aplicaciones del Machine Learning

- Motores de búsqueda
- Reconocimiento de escritura y voz
- Reconocimiento facial
- Sistemas de recomendaciones
- Detección de mensajes SPAM
- Detección de fraudes en transacciones con tarjetas de crédito
- Conducción autónoma
- Clasificación de secuencias de ADN
- Búsqueda del bosón de Higgs
- ...

¿Cómo ayuda a buscar el Higgs?

Clasificación vs. Regresión

Supervisado o no supervisado

Métricas

	0 real	1 real
0 predicho	Verdadero negativo (TN)	Falso negativo (FN)
1 predicho	Falso positivo (FP)	Verdadero positivo (TP)

Sesgo y varianza

Curvas de decisión

K-Nearest Neigbors

x1

Logistic Regression

Naïve Bayes

$$p(C_I|\mathbf{x}) = \frac{p(C_I)p(\mathbf{x}|C_I)}{p(\mathbf{x})}$$
$$p(\mathbf{x}|C) = \prod_{j=1}^n p(x_j|C)$$
$$k = \max_I p(C_I|\mathbf{x})$$

Support Vector Machines

Support Vector Machines

Random Forest

He currado un montón

El código utilizado para los cálculos de este trabajo ha sido realizado en Python, con ayuda del paquete de Inteligencia Artificial scikit-learn. Todos los cálculos han sido llevados a cabo por un ordenador con sistema operativo Windows 7 de 64 bits, un procesador Intel[®] CoreTM i3 a 1.7 GHz, con 4 GB de memoria RAM.

Todo el código, datos y gráficas vienen recogidos en el CD con material suplementario entregado junto a la memoria del trabajo.