Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Телекоммункационные технологии

Отчет по лабораторной работе №1 Сигналы телекоммуникационных систем

> Работу выполнил:

Соболь В.О.

Группа: 33501/4 **Преподаватель:**

Богач Н.В.

Содержание

1.	. Цель работы	2
2.	. Программа работы	2
3.	. Теоретическая информация	2
4.	. Ход выполнения работы	2
	4.1. Визуализация дискретного сигнала	
	4.2. Генерация кусочных зависимостей	3
	4.2.1. Прямоугольный импульс	3 4
	4.2.2. Треугольный импульс	
	4.2.3. Импульс с ограниченной полосой частот	4 5
		8
	4.3.1. Последовательность прямоугольных импульсов	
	4.4. Сигнал с меняющейся частотой	9
	4.4.1. Линейная зависимость	
	4.4.2. Квадратичная зависимость	10
	4.4.3. Экспоненциальная зависимость	10
5 .	. Вывод	11
6.	. Приложение	12
	6.1. Листинг	12

1. Цель работы

Познакомиться со средствами генерации и визуализации сигналов.

2. Программа работы

В коммандном окне MATLAB и в среде Simulink промоделировать сигналы из Главы 3, сс. 150-170 (А.Б. Сергиенко Цифровая обработка сигналов).

3. Теоретическая информация

Основной задачей цифровой обработки сигналов является переход от аналогового сигнала, который является непрерывной функцией времени, к дискретному сигналу. Для этого задаются частотой дискретизации, на её основе формируют временной ряд и считают значения сигнала в дискретные моменты времени (отсчёты).

При анализе сигналов часто используют спектр сигнала. Для получения спектра сигнал, который является функцией времени, переводят в функцию частоты. Для этого используется преобразование Фурье.

4. Ход выполнения работы

4.1. Визуализация дискретного сигнала

Рисунок 4.1. Различные виды представления дискретного сигнала

Рисунок 4.2. Многоканальный сигнал

4.2. Генерация кусочных зависимостей

Моделирование отсчётов сигнала, который описывается разными функциями для разных промежутков времени.

Рисунок 4.3. Одиночные импульсы

4.2.1. Прямоугольный импульс

$$y = \begin{cases} 1, & \text{если } -\frac{width}{2} \le t < \frac{width}{2} \\ 0, & \text{если } t < -\frac{width}{2}, t \ge \frac{width}{2} \end{cases}$$
 (1)

Рисунок 4.4. Прямоугольный импульс

4.2.2. Треугольный импульс

$$y = \begin{cases} \frac{2t + width}{width(skew + 1)}, & -\frac{width}{2} \le t < \frac{width * skew}{2} \\ \frac{2t - width}{width(skew - 1)}, & \frac{width * skew}{2} \le t < \frac{width}{2} \\ 0, & |t| > \frac{width}{2} \end{cases}$$
(2)

Рисунок 4.5. Треугольный импульс

4.2.3. Импульс с ограниченной полосой частот

Сигнал имеет прямоугольный, то есть ограниченный по частоте спектр.

$$y = \frac{\sin(\pi x)}{\pi x} \tag{3}$$

Рисунок 4.6. Ограниченный по частоте импульс

Рисунок 4.7. Амплитудный спектр сигнала

4.2.4. Импульс Гаусса

$$y = \exp(-\alpha t^2)\cos(2\pi f t) \tag{4}$$

$$y = \exp(-\alpha t^2) \cos(2\pi f t)$$

$$\alpha = -\frac{5(2\pi f * bw)^2}{bwr * \log 10}$$

$$(5)$$

В этих формулах: t - значение времени, f - несущая частота, bw - относительная ширина спектра, bwr - уровень в децибелах, покоторому производится измерение ширины спектра.

Рисунок 4.8. Импульс Гаусса

Рисунок 4.9. Амплитудный спектр сигнала

4.3. Генерация последовательности импульсов

Рисунок 4.10. Последовательность треугольных импульсов

Рисунок 4.11. Последовательность синусоидальных импульсов

4.3.1. Последовательность прямоугольных импульсов

Рисунок 4.12. Последовательность прямоугольных импульсов

4.3.2. Последовательность треугольных импульсов

Рисунок 4.13. Последовательность треугольных импульсов

4.3.3. Функция Дирихле

$$diric(x) = \frac{\sin(nx/2)}{n\sin(x/2)} \tag{6}$$

В этой функции n - целое положительное число и определяет порядок. Вид функции дирихле при нечётном порядке (n=7)

Рисунок 4.14. Функция Дирихле при ${\bf n}=7$

Вид функции дирихле при чётном порядке (n = 8)

Рисунок 4.15. Функция Дирихле при n=8

4.4. Сигнал с меняющейся частотой

Сигналы разделяются по типу зависимости мнгновенной частоты от времени.

4.4.1. Линейная зависимость

$$f(t) = f_0 + \beta t \tag{7}$$

$$\beta = \frac{f_1 - f_0}{t_1} \tag{8}$$

Рисунок 4.16. Спектр сигнала при линейной зависимости

4.4.2. Квадратичная зависимость

$$f(t) = f_0 + \beta t^2$$

$$\beta = \frac{f_1 - f_0}{t_1^2}$$
(9)

Рисунок 4.17. Спектр сигнала при квадратичной зависимости

4.4.3. Экспоненциальная зависимость

$$f(t) = f_0 + \exp(\beta t) \tag{11}$$

$$f(t) = f_0 + \exp(\beta t)$$

$$\beta = \frac{\ln(f_1 - f_0)}{t_1}$$
(11)

Рисунок 4.18. Спект сигнала при экспоненциальной зависимости

5. Вывод

В ходе работы были рассмотрены различные способы визуализации сигналов, способы получения спектра сигнала и методы генерации сигналов с разнообразными характеристиками. Так же были рассмотрены сигналы различного вида.

6. Приложение

6.1. Листинг

Листинг 1: lab1.m

```
close all;
   clc;
 4
 4|Fs = 8e3;
 5
  t = 0:1/Fs:1;
 6
  t = t';
 8
 8
  A_{=}2;
9| f0 = 1e3;
10 phi = pi /4;
11 \mid s1 = A*cos(2*pi*f0*t+phi);
12 | alpha = 1e3;
|13| s2 = \exp(-alpha * t) . * s1;
15
15 | figure ();
16 | \text{subplot}(2,2,1);
17 plot (s2 (1:100));
19
19 subplot (2,2,2);
20 plot (s2 (1:100), '.');
22
22
  subplot(2,2,3);
23 | stem (s2 (1:100));
25
25 subplot (2,2,4);
  stairs (s2(1:100));
26
28
28
  figure();
29
   plot (t(1:100), s2(1:100))
33
33
33
33 \mid f = [600 \quad 800 \quad 1000 \quad 1200 \quad 1400];
34
  s3 = \cos(2*pi*t*f);
36
36
  figure();
  plot(t(1:100),s3(1:100,:))
37
39
39 | T_{=} 10e - 3;
40 \mid s = zeros(size(t));
41 \mid \text{inds} = (t = 0);
42 | s_exp(inds) = A*exp(-alpha*t(inds));
44
44 s_rect_=_zeros(size(t));
45 | s_{rect}(abs(t)) > = T/2) = A;
47
47 \mid s \mid asym = zeros(size(t));
48 | inds = (t = 0) & (t = T);
49 | s_asym(inds) = A_* t(inds)/T;
51
51 | figure ();
52
  subplot(2,2,1);
  plot(s_exp(1:100));
53
55
```

```
55 subplot (2,2,2);
    plot(s rect(1:100));
 56
 58
 58 | \text{subplot}(2,2,3);
 59 | plot(s_asym(1:100));
 62
 62
 62 | Fs = 1e3 ;
 63 t = -40e - 3:1 / Fs:40e - 3;
 64 | T_{=} 20e - 3;
 65 | A = 5;
 66 | s = A * rectpuls (t+T/2,T) + A * rectpuls (t-T/2,T);
 68
 68 figure ()
 69 plot (t,s)
 70 | y \lim ([-6 , 6])
 72
 72 | T2 = 60 e - 3;
 73 | s=A*(T2*tripuls(t,T2)-T*tripuls(t,T))/(T2-T);
 75
 75 figure ()
 76 plot (t,s)
 78
 78 \mid t = -0.1:1 / Fs : 0.1;
 79 \mid f0 = 10;
 80|T_{=}1/f0;
 81 \mid s = rectpuls(t,T) \cdot *cos(2*pi*f0*t);
 82 | f = -50:50;
 83 | \text{sp} = T/2*(\sin c ((f-f0)*T) + \sin c ((f+f0)*T));
 85
 85 figure ()
 86 plot (t,s)
 87 | ylim([-1.1, 1.1])
 88 figure ()
 89 plot (f, abs (sp))
 93
 93
 93
 93 | Fs = 16e3 ;
 94 t=-10e-3:1/Fs:10e-3;
 95 Fc=4e3;
 96 | bw = 0.1;
 97 | \text{bwr} = -20;
 98 s=gauspuls (t, Fc, bw, bwr);
 99 Nfft = 2^n \text{nextpow2} (\text{length}(s));
100 | \text{sp} = \text{fft} (\text{s}, \text{Nfft});
101 | \text{spdb} = 20 * \log 10 (abs (sp));
102 | f = (0: Nfft - 1) / Nfft *Fs;
103 | \text{spmaxdb} = 20 * \log 10 (\max(abs(sp)));
104 | edges = Fc*[1-bw/2];
105 figure ()
106 plot (t,s)
107 figure ()
108 plot (f (1: Nfft /2), spdb (1: Nfft /2))
109 hold_on
110 plot (edges, spmaxdb([1 1])+bwr, 'o')
111
    hold_off
114
114
114| \text{ fs } = 1e3;
```

```
115 | t = 0.1 / fs : 0.5;
116 | tau = 20e - 3;
117 | d_{=}[20.80.160.260.380] * 1e-3;
118 | d(:,2) = 0.8.^{(0:4)};
119 | y_=_ pulstran (t,d, 'tripuls', tau);
120 figure ()
121 plot (t, y)
124
124
124 | fs0 = 400;
125 | tau = 60e - 3;
126 | t0 = 0:1 / fs0 : tau;
127 | s0 = \sin(pi * t0 / tau) . ^2;
129
129 | fs = 1e3 ;
130 t = 0.1 / fs : 0.5;
131 d_{=}(1:6) *64e-3;
132 d(:,2) = 0.6.^{(0:5)};
133 | y = pulstran(t, d, s0, fs0);
134 figure ()
135 plot (t,y)
138
138
138 | Fs = 1e3;
139 | t = -10e - 3:1 / Fs:50e - 3;
140 | a=3;
141 f0 = 50;
142 | tau = 5e - 3;
143 | s = (square(2*pi*t*f0, f0*tau*100)+1)*a/2;
144 figure ()
145 plot (t,s)
146 ylim ([0 5])
149
149
149 | t = -25e - 3:1 / Fs:125e - 3;
150 | a=5;
151 | T_{=} 50e - 3;
152 | t1 = 5e - 3;
153 | s = (sawtooth(2*pi*t/T,1-t1/T))*a/2;
155
155 figure ()
156 plot (t,s)
159
159
159 | x = 0.0.01:15;
160 figure ()
161 plot (x, diric(x,7))
162 grid_on
|163| title ('diric, n = 7')
164 figure ()
165 | \operatorname{plot}(x, \operatorname{diric}(x, 8)) |
166 grid_on
|167| \text{ title ('diric', } n = 8')
170
170
170 | \text{fs} = 8e3;
171 \mid t = 0:1 / fs:1;
172 | f0=1e3;
173 | t1 = 1;
174 | f1 = 2e3;
```

```
175 | s1_=_chirp(t,f0,t1,f1,'linear');
176 | s2_=_chirp(t,f0,t1,f1,'quadratic');
177 | s3_=_chirp(t,f0,t1,f1,'logarithmic');
179
179 figure ()
180 specgram (s1,[], fs)
181 title ('linear')
182 colormap_gray
184
184 figure ()
185 specgram (s2, [], fs)
186 title ('quadratic')
187 colormap_gray
189
189 figure ()
190 specgram (s3,[], fs)
191 title ('logarithmic')
192 colormap_gray
```