## We claim:

glay

10

15

- 1. A method for modifying, in an animal, metabolism of glucagon-like poptide 1 (GLP-1), comprising administering to the animal a composition including one or more inhibitors of a dipeptidylpeptidase which inactivates GLP-1, which inhibitor(s) are administered in an amount sufficient to inhibit the dipeptidylpeptidase proteolysis of GLP-1.
- 2. A method for modifying glucose metabolism of an animal, comprising administering to the animal a composition including one or more protease inhibitors which inhibit DPIV-mediated proteolysis with a Ki of 1nM or less.
- 3. A method for modifying glucose metabolism of an animal, comprising administering to the animal a composition including one or more protease inhibitors which inhibit the proteolysis of glucagon-like peptide 1 (GLP-1) and accordingly increase the plasma half-life of GLP-1.
- 4. A method for treating Type II diabetes, comprising administering to an animal a composition including one or more inhibitors dipeptidylpeptidase IV (DPIV).

20

- 5. The method of claim 1, wherein dipoptidylpeptidase is DPIV.
- 6. The method of claim 3, wherein protease inhibitor is an inhibitor of DPIV.
- 7. The method of claim 2 or 3 wherein administering the inhibitor reduces one or more of insulin resistance, glucose intolerance, hyperglycemia, hyperinsulinemia, obesity, hyperlipidemia, hyperlipidemia.
- 8. The method of claim 1, 2, 3 or 4, wherein the inhibitor has an EC50 for modification of glucose metabolism which is at least one order of magnitude less than its EC50 for immunosuppression.

15

- 9. The method of claim 1, 2, 3 or 4, wherein the inhibitor has an EC50 for inhibition of glucose tolerance in the nanomolar or less range
- 5 10. The method of claim 1, 2, 3 or 4, wherein the inhibitor has an EC50 for immunosuppression in the μM or greater range.
  - 11. The method of claim 4, 5 or 6, wherein the inhibitor has a Ki for DPIV inhibition of 1.0 nm or less.
  - 12. The method of claim 1, 2, 3 or 4, wherein the inhibitor is peptidomimetic of a peptide selected from the group consisting Pro-Pro, Ala-Pro, and (D)-Ala-(L)-Ala.
  - 13. The method of claim 1, 2, 3 or 4, wherein the inhibitor has a molecular weights less than 7500 amu.
  - 14. The method of claim 1, 2, 3 or 4, wherein the inhibitor is orally active.
- The method of claim 1, 2, 3 or 4, wherein the inhibitor is represented by the general formula;



wherein

A represents a 4-8 membered heterocycle including the N and the Cα carbon;

10

15

20

25

Z represents C or N;

W represents a functional group which reacts with an active site residue of the targeted protease,

R<sub>1</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C-terminally linked peptide or peptide analog, or an amino-protecting group, or

$$R_6-C-$$
,  $R_6-C-$ ,  $R_6-S-$ ;

 $R_2$  is absent or represents one or more substitutions to the ring A, each of which can independently be a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido,  $-(CH_2)_m - R_7$ ,  $-(CH_2)_m - OH$ ,  $-(CH_2)_m - O-lower$  alkyl,  $-(CH_2)_m - O-lower$  alkenyl,  $-(CH_2)_m - O-(CH_2)_m - R_7$ ,  $-(CH_2)_m - SH$ ,  $-(CH_2)_m - S-lower$  alkenyl,  $-(CH_2)_m - S-(CH_2)_m - R_7$ .

if X is N, R<sub>3</sub> represents hydrogen, if X is C, R<sub>3</sub> represents hydrogen or a halogen, a lower alkyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido,  $-(CH_2)_m-R_7$ ,  $-(CH_2)_m-OH$ ,  $-(CH_2)_m-OH$  over alkyl,  $-(CH_2)_m-OH$  alkenyl,  $-(CH_2)_m-CH_2$  over alkyl,  $-(CH_2)_m-CH_2$  over alkenyl,  $-(CH_2)_m-CH_2$  over alkyl,  $-(CH_2)_m-CH_2$  over alkyl,  $-(CH_2)_m-CH_2$  over alkyl,  $-(CH_2)_m-CH_2$ 

 $R_6$  represents hydrogen, a halogen, a alkyl, a alkenyl, a alkynyl, an aryl,  $-(CH_2)_m$ - $R_7$ ,  $-(CH_2)_m$ -O-alkyl,  $-(CH_2)_m$ -O-alkenyl,  $-(CH_2)_m$ -O-alkynyl,  $-(CH_2)_m$ -O-alkynyl,

R<sub>7</sub> represents, for each occurrence, a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle;

m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to 8.

16. The method of claim 15, wherein W represents -CN,-CH=NR<sub>5</sub>,

 $R_5$  represents H, an alkyl, an alkenyl, an alkynyl,  $-C(X_1)(X_2)X_3$ ,  $-(CH_2)m-R_7$ , -(CH<sub>2</sub>)n-OH, -(CH<sub>2</sub>)n-O-alkyl, -(CH<sub>2</sub>)n-O-alkenyl, -(CH<sub>2</sub>)n-O-alkynyl, -(CH<sub>2</sub>)n-O- $(CH_2)m-R_7$ ,  $-(CH_2)n-S-alkyl$ ,  $-(CH_2)n (CH_2)n-S-(CH_2)m-R_7, -C(O)C(O)NH_2, -C(O)C(O)OR'_7;$ 

R'7 represents, for each occurrence, hydrogen, or a substituted or unsubstituted alkyl, alkenyl, aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle; and

 $Y_1$  and  $Y_2$  can independently or together be OH, or a group capable of being hydrolyzed to a hydroxyl group, including cyclic derivatives where Y<sub>1</sub> and Y<sub>2</sub> are connected via a ring having from 5 to 8 atoms in the ring structure (such as pinacol or the like),

R<sub>50</sub> represents O or S;

R<sub>51</sub> represents N<sub>3</sub>, SH<sub>2</sub>, NH<sub>2</sub>, NO<sub>2</sub> or OR'<sub>7</sub>;

R<sub>52</sub> represents hydrogen, a lower alkyl, an amine, OR'<sub>7</sub>, or a pharmaceutically acceptable salt, or R51 and R52 taken together with the phosphorous atom to which they are attached complete a heterocyclic ring having from 5 to 8 atoms in the ring structure

X<sub>1</sub> represents a halogen;

 $X_2$  and  $X_3$  each represent a hydrogen or a halogen

5

10

15

The second of the second of the second

į

1,17

The method of claim 16, wherein the ring A is represented by the formula

wherein n is an integer of 1 or 2.

Rive 25 The method of claim 16, wherein W represents —  $B_{Y_2}^{Y_1}$  or Q. The method of claim 16, wherein R1 represents

wherein

5

R36 is a small hydrophobic group and R38 is hydrogen, or, R36 and R38 together form a 4-7 membered heterocycle including the N and the  $C\alpha$  carbon, as defined for A above; and

R40 represents a C-terminally linked amino acid residue or amino acid analog, or a C-terminally linked peptide or peptide analog, or an amino-protecting group

The method of claim 16, wherein R2 is absent, or represents a small hydrophobic 10 group.

The method of claim 16, wherein R3 is a hydrogen, or a small hydrophobic group.

The method of claim 16, wherein R5 is a hydrogen, or a halogentated lower alkyl.

The method of claim 16, wherein X1 is a fluorine, and X2 and X3, if halogens, are fluorine.

The method of claim 16, wherein the inhibitor is represented by the general formula:

wherein

C-

20

 $R_1$  represents a C-terminally linked amino acid residue or amino acid analog, or a terminally linked peptide or peptide analog, or  $R_6$ —C—,  $R_6$ —C—,  $R_6$ —C—,  $R_6$ —C—, C—, C—

15

8.

 $R_6$  represents hydrogen, a halogen, a alkyl, a alkenyl, a alkynyl, an aryl,  $-(CH_2)_m$ - $R_7$ ,  $-(CH_2)_m$ -O-alkyl,  $-(CH_2)_m$ -O-alkyl,  $-(CH_2)_m$ -O-alkynyl,  $-(CH_2)_m$ -O-alkynyl, -

$$-(CH_2)_m - N$$
 $R_9$ 
 $-(CH_2)_n - C - N$ 
 $-(CH_2)_n - C - N$ 
 $-(CH_2)_n - C - N$ 
 $-(CH_2)_n - C - N$ 

R<sub>7</sub> represents an aryl, a cycloalkyl, a cycloalkenyl, or a heterocycle;

 $R_8$  and  $R_9$  each independently represent hydrogen, alkyl, alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -C(=O)-alkyl, -C(=O)-alkynyl, -C(=O)-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>,

or R<sub>8</sub> and R<sub>9</sub> taken together with the N atom to which they are attached complete a heterocyclic ring having from 4 to 8 atoms in the ring structure;

 $R_{11}$  and  $R_{12}$  each independently represent hydrogen, a alkyl, or a pharmaceutically acceptable salt, or  $R_{11}$  and  $R_{12}$  taken together with the O-B-O atoms to which they are attached complete a heterocyclic ring having from 5 to 8 atoms in the ring structure;

m is zero or an integer in the range of 1 to 8; and h is an integer in the range of 1 to

The method of claim 16, wherein the inhibitor is represented by the general formula

wherein

R<sub>1</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a

terminally linked peptide or peptide analog, or 
$$R_6$$
— $C$ — $R_6$ — $C$ —,  $R_6$ — $C$ —,  $R_6$ — $C$ —,  $R_6$ — $C$ —,  $C$ —,

R<sub>6</sub> represents hydrogen, a halogen, a alkyl, a alkynyl, an aryl, -(CH<sub>2</sub>)<sub>m</sub>- $R_7, \ -(CH_2)_m - OH, \ -(CH_2)_m - O-alkyl, \ -(CH_2)_m - O-alkyl, \ -(CH_2)_m - O-alkynyl, \ -(CH_2)_m - O-alkynyl,$  $(CH_2)_m$ -R<sub>7</sub>,  $-(CH_2)_m$ -SH,  $-(CH_2)_m$ -S-alkyl,  $-(CH_2)_m$ -S-alkenyl,  $-(CH_2)_m$ -S-alkynyl,  $-(CH_2)_m$ -S  $(CH_2)_m$ -S- $(CH_2)_m$ -R<sub>7</sub>,

5

R<sub>7</sub> represents an aryl, a cycloalkyl, a cycloalkenyl, or a heterocycle;

10

R<sub>8</sub> and R<sub>9</sub> each independently represent hydrogen, alkyl, alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -C(=O)-alkyl, -C(=O)-alkenyl, -C(=O)-alkynyl, -C(=O)-( $CH_2$ )<sub>m</sub>- $R_7$ ,

or R<sub>8</sub> and R<sub>9</sub> taken together with the N atom to which they are attached complete a heterocyclic ring having from 4 to 8 atoms in the ring structure; and

m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to

15

8.

LM

The method of claim 16, wherein the inhibitor is represented by the general formula:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ X_3 & & \\ & & & \\ & & & \\ X_2 & & \\ & & & \\ \end{array}$$

wherein

20

R<sub>1</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a

C-

terminally linked peptide or peptide analog, or 
$$R_6 - C - \sqrt{R_6 - C} - \sqrt{R_6 - C} - \sqrt{R_6 - C} = \frac{O}{|I|}$$

or given given given given for the form the first of the first given given for the first given given

 $R_6$  represents hydrogen, a halogen, a alkyl, a alkenyl, a alkynyl, an aryl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-O-alkyl -(CH<sub>2</sub>)<sub>m</sub>-O-alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkynyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkynyl,

5

R<sub>7</sub> represents an aryl, a cycloalkyl, a cycloalkenyl, or a heterocycle;

10

15

 $R_8$  and  $R_9$  each independently represent hydrogen, alkyl, alkenyl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -C(=O)-alkyl, -C(=O)-alkenyl, -C(=O)-alkynyl, -C(=O)-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>,

or R<sub>8</sub> and R<sub>9</sub> taken together with the N atom to which they are attached complete a heterocyclic ring having from 4 to 8 atoms in the ring structure;

X<sub>1</sub>, X<sub>2</sub> and X<sub>3</sub> each represent a hydrogen or a halogen; and

8.

m is zero or an integer in the range of 1 to 8; and n is an integer in the range of 1 to

R.1267

The method of claim 16, wherein the inhibitor is represented by the general formula:

20

wherein

R32 is a small hydrophobic group; and

R30 represents a C-terminally linked amino acid residue or amino acid analog, or a C-terminally linked peptide or peptide analog, or an amino-protecting group.

Risk?

The method of claim 16, wherein the inhibitor is represented by the general formula:

wherein

W represents a functional group which reacts with an active site residue of the targeted protease, as for example, -CN, -CH=NR<sub>5</sub>,

$$\begin{array}{c} O \\ II \\ S \\ O \end{array}, \quad \begin{array}{c} O \\ II \\ P \\ P \\ X_1 \end{array}, \quad \begin{array}{c} O \\ II \\ Y_2 \\ \end{array}, \quad \begin{array}{c} R_{50} \\ P \\ R_{51} \end{array} \quad \text{or} \quad \begin{array}{c} O \\ II_{50} \\ P \\ R_{51} \end{array}$$

R<sub>1</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C-terminally linked peptide or peptide analog, or an amino-protecting group, or

$$R_6-C--$$
,  $R_6-C--$ ,  $R_6-C--$ ,  $R_6-C--$ ;

10

15

20

 $R_3$  represents hydrogen or a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido,  $-(CH_2)_m-R_7$ ,  $-(CH_2)_m-OH$ ,  $-(CH_2)_m-O-lower$  alkyl,  $-(CH_2)_m-O-lower$  alkenyl,  $-(CH_2)_m-C-(CH_2)_m-R_7$ ,  $-(CH_2)_m-SH$ ,  $-(CH_2)_m-S-lower$  alkyl,  $-(CH_2)_m-S-lower$  alkenyl,  $-(CH_2)_m-S-lower$  alkenyl,  $-(CH_2)_m-S-lower$ 

 $R_5$  represents H, an alkyl, an alkenyl, an alkynyl,  $-C(X_1)(X_2)X_3$ ,  $-(CH_2)m-R_7$ ,  $-(CH_2)n-OH$ ,  $-(CH_$ 

 $R_6$  represents hydrogen, a halogen, a alkyl, a alkenyl, a alkynyl, an aryl,  $-(CH_2)_m$ - $R_7$ ,  $-(CH_2)_m$ -O-alkyl,  $-(CH_2)_m$ -O-alkenyl,  $-(CH_2)_m$ -O-alkynyl,  $-(CH_2)_m$ -O-alkynyl,

25 R<sub>7</sub> represents, for each occurrence, a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle;

R'<sub>7</sub> represents, for each occurrence, hydrogen, or a substituted or unsubstituted alkyl, alkenyl, aryl, aralkyl, cycloalkenyl, or heterocycle;

R<sub>61</sub> and R<sub>62</sub>, indepedently represent small hydrophobic groups;

 $Y_1$  and  $Y_2$  can independently or together be OH, or a group capable of being hydrolyzed to a hydroxyl group, including cyclic derivatives where  $Y_1$  and  $Y_2$  are connected via a ring having from 5 to 8 atoms in the ring structure (such as pinacol or the like),

R<sub>50</sub> represents O or S;

R<sub>51</sub> represents N<sub>3</sub>, SH<sub>2</sub>, NH<sub>2</sub>, N $\phi_2$  or OR'<sub>7</sub>;

R<sub>52</sub> represents hydrogen, a lower alkyl, an amine, OR'<sub>7</sub>, or a pharmaceutically acceptable salt, or R<sub>51</sub> and R<sub>52</sub> taken together with the phosphorous atom to which they are attached complete a heterocyclic ring having from 5 to 8 atoms in the ring structure

X<sub>1</sub> represents a halogen;

X<sub>2</sub> and X<sub>3</sub> each represent a hydrogen of a halogen

m is zero or an integer in the range of 1\to 8; and n is an integer in the range of 1 to

A method for modifiying, in an animal, metabolism of peptide hormone, comprising administering to the animal a composition including one or more inhibitors of dipeptidylpeptidase IV (DPIV) in an amount sufficient to increase the plasma half-life of a peptide hormone, which peptide hormone is selected from the group consisting of glucagon-like peptide 2 (GLP-2), growth hormone-releasing factor (GHRF), vasoactive intestinal peptide (VIP), peptide histidine isoleucine (PHI), pituitary adenylate cyclase activating peptide (PACAP), gastric inhibitory peptide (GIP), helodermin, Peptide YY and neuropeptide Y.

A method for modifying glucose metabolism of an animal, comprising administering to the animal a composition including boronyl peptidomimetic of a peptide selected from the group consisting Pro-Pro, Ala-Pro, and (D)-Ala-(L)-Ala.

The method of claim 31, wherien the boronyl peptidomimetic is represented in the general formula:

ան հոր հայ հոր ան ան հար ասել \_\2**/2**ում տե

25

20

5

10

15

n.126

R.126

15

20

25

5 wherein

each A independently represents a 4-8 membered heterocycle including the N and the Cα carbon;

R<sub>2</sub> is absent or represents one or more substitutions to the ring A, each of which can independently be a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkenyl, -(CH<sub>2</sub>)<sub>n</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkenyl, -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>;

R<sub>3</sub> represents hydrogen or a halogen, a lower alkyl, a lower alkenyl, a lower alkynyl, a carbonyl (such as a carboxyl, an ester, a formate, or a ketone), a thiocarbonyl (such as a thioester, a thioacetate, or a thioformate), an amino, an acylamino, an amido, a cyano, a nitro, an azido, a sulfate, a sulfonate, a sulfonamido, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-lower alkenyl, -(CH<sub>2</sub>)<sub>n</sub>-O-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-lower alkenyl, -(CH<sub>2</sub>)<sub>n</sub>-S-(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>;

 $R_5$  represents H, an alkyl, an alkenyl, an alkynyl,  $-C(X_1)(X_2)X_3$ ,  $-(CH_2)m-R_7$ ,  $-(CH_2)n-O-alkyl$ ,  $-(CH_2)n-O-alkyl$ ,  $-(CH_2)n-O-alkynyl$ , -

 $R_6$  represents hydrogen, a halogen, a alkyl, a alkenyl, a alkynyl, an aryl, -(CH<sub>2</sub>)<sub>m</sub>-R<sub>7</sub>, -(CH<sub>2</sub>)<sub>m</sub>-OH, -(CH<sub>2</sub>)<sub>m</sub>-O-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-O-alkyl, -(CH<sub>2</sub>)<sub>m</sub>-S-alkyl, -

R<sub>7</sub> represents, for each occurrence, a substituted or unsubstituted aryl, aralkyl, cycloalkyl, cycloalkenyl, or heterocycle;

R<sub>30</sub> represents a C-terminally linked amino acid residue or amino acid analog, or a C-terminally linked peptide or peptide analog, or an amino-protecting group, or

$$R_6 - C - , R_6 - C - , R_6 - C - , R_6 - C - ;$$

10 R<sub>32</sub> and R<sub>61</sub>, indepedently, represent small hydrophobic groups, preferably lower alkyls, and more preferably methyl;

Y<sub>1</sub> and Y<sub>2</sub> can independently or together be OH, or a group capable of being hydrolyzed to a hydroxyl group, including cyclic derivatives where Y<sub>1</sub> and Y<sub>2</sub> are connected via a ring having from 5 to 8 atoms in the ring structure (such as pinacol or the like),

m is zero or an integer in the range of 1 to 8 and n is an integer in the range of 1 to 8.

R 126 333.

20

The method of claim 32, wherein administering the boronyl peptidomimetic reduces one or more of insulin resistance, glucose intolerance, hyperglycemia, hyperinsulinemia, obesity, hyperlipidemia, hyperlipoproteinemia.

R 136 ...

The method of claim -32, wherein the boronyl peptidomimetic has an EC50 for modification of glucose metabolism which is at least one order of magnitude less than its EC50 for immunosuppression.

R(126 25 34 35:

The method of claim 32, wherein the boronyl peptidomimetic has an EC50 for inhibition of glucose tolerance in the nanomolar or less range

ρ.126 ° μ° 3

The method of claim 32, wherein the boronyl pertidomimetic has an EC50 for immunosuppression in the  $\mu M$  or greater range.

2,176 3

The method of claim 32, wherein the boronyl peptidomimetic is orally active.

R126

A method for modifying glucose metabolism of an animal, comprising administering to the animal a composition including boronyl inhibitor of peptidomimetic of a peptide selected from the group consisting Pro-Pro, Ala-Pro, and (D)-Ala-(L)-Ala.

High fifth fifth fifth of the companies to the state and the state of the state of

l.a