														,	
Y	Т	Α	Ν	F	Р	I	Ι	K	Υ	W	G	Q	Z		ÁFRICA
V	V	Υ	I	Р	C	M	R	Q	I	I	E	S	R		CASTIGOS
K	W	X	J	J	F	Α	G	М	S	S	U	Т	I		ESCRAVOS
Т	W	F	U	G	Α	S	Ε	S	N	I	V	J	В		FUGAS
Ε	Á	F	R	I	С	Α	J	S	М	Н	S	Е	С		ISABEL
S	М	Е	S	F	N	Н	Р	F	Z	U	М	В	I		JUSTIÇA
С	Н	D	0	В	K	Z	D	D	Н	С	Q	Z	С		LEI
R	I	W	D	Н	С	Α	S	Т	I	G	0	S	J		LIBERDADE
Α	G	Т	Q	I	S	Α	В	Е	L	S	X	0	М		PALMARES
V	L	I	В	Ε	R	D	Α	D	Е	R	0	D	D		QUILOMBOS
0	Р	Α	L	М	Α	R	Ε	S	Н	Z	Н	Κ	N		SENZALAS
S	L	S	Ε	Ν	Z	Α	L	Α	S	V	W	J	Т		ZUMBI
Α	Ε	Q	U	I	L	0	М	В	0	S	K	I	Н		
S	I	K	Р	Ζ	V	V	J	U	S	Т	I	Ç	Α		(bouleds)
								soativid	ad _e s. _C om						

Gerador de Caça-palavras

Lucas Mateus Fernandes

Palavras-chave: Genético, Caça-palavras, Permutação

Introdução

O problema do caça-palavras consiste em colocar o máximo de palavras em uma matriz 'N'x'M' de modo que as palavras não estejam sobrescrevendo outras palavras.

Quanto mais palavras existirem mais complexo se torna o processo.

O trabalho aqui expresso usa como técnica para resolução algoritmo genético que usa técnicas inspiradas pela biologia evolutiva como hereditariedade, mutação, seleção natural e recombinação.

Metodologia

O problema combinatório foi reduzido a um problema de permutação onde a ordem das palavras é importante para a resolução do problema.

Sempre que um individuo é criado é reposicionada todas as palavras e é calculado o fitnes ou seja o quão adaptado a solução é.

Formula do Fitnes:

$$vSentido \times \left(\sum_{i=1}^{n} (tPi \times 0.1) + n \right)$$

vSentido = Variabilidade do Sentido n= total de palavras inseridas tPi = Tamanho da Palavra atual

Formula Variabilidade do Sentido:

$$var 1 = (tD - tH)$$

 $var 2 = (tD - tH)$
 $var 3 = (tH - tV)$
 $mVar > 0.25 \Rightarrow vSentido = 1 - mVar$
 $mVar \le 0.25 \Rightarrow vSentido = 1$

tD = Total de Palavras na diagonal

tH = Total de Palavras na horizontal

tV = Total de palavras na vertical

mVar = max(var1, var2, var3) dividido pelo total de palavras

O critério de parada do algorítimo é a evolução de 'n' gerações.

Ao exceder a uma idade 'x' os indivíduos são descartados exceto o melhor individuo que persiste entre as gerações.

Para selecionar os pais foi utilizado o método da roleta a modo de evitar uma elitização precoce dos indivíduos.

Operador de cross over utilizado foi o 'Order Crossover (OX)' no qual evita que uma operação provoque a repetição de um gene no mesmo indivíduo e mantém uma ordem relativada dos genes.

Resultados e Discussões

Devido a forma como as palavras são inseridas na matriz, a palavra ocupa um retângulo, tal representação limitou a criação dos caçapalavras porem reduziu o custo para verificar a colisão entre as palavras.

Quanto mais palavras for entregue como parâmetro de entrada mais demorado será a execução do algorítimos pois influência diretamente na quantidade de genes em cada indivíduo e consequentemente reflete no calculo de colisão entre os genes.

A cada criação de um indivíduo existe um padrão para a inserção das palavras ou seja, a próxima palavra só pode ser inserida no inicio ou no final da diagonal secundaria que corta o retângulo que representa a palavra, isto gera um padrão para resolução dos caçapalavras.

Conclusões

Mesmo que a solução gerada seja sub-ótima o custo para criação acaba se tornando um pouco alto devido os cálculos feitos para factibilidade do indivíduo.

As respostas geradas seguem um padrão fácil de se detectar durante a resolução do caça palavra.

Foi observado que a quantidade de indivíduos inicial item um valor alto no processamento da solução, e talvez um critério diferente para permanência do indivíduo na população reduziria o custo total porem poderia chegar a um ótima local muito rápido.

O critério de parada do algorítimo pode ser melhorado de modo que após 'm' gerações sem melhora no fitnes o algorítimo pode encerrar, porem um 'm' muito pequeno poderia gerar um resposta sub-ótima muito rápido porem muito limitada.

Referências Bibliográficas

DE ANDRADE, Mariana Silva Faleiro et al. Um algoritmo evolutivo híbrido aplicado a solução do problema de corte bidimensional guilhotinado. XLI SBPO-Simpósio Brasileiro de Pesquisa Operacional, 2009.

POZO, Aurora et al. Computação evolutiva. Universidade Federal do Paraná, 61p.(Grupo de Pesquisas em Computação Evolutiva, Departamento de Informática-Universidade Federal do Paraná), 2005.

CDSID. META-HEURÍSTICA SIMULATED ANNEALING APLICADA AO PROBLEMA DE CORTE BIDIMENSIONAL NÃO-GUILHOTINADO. Disponível em:

http://cdsid.org.br/sbpo2015/wp-content/uploads/2015/08/143004.pdf. Acesso em: 1 jun. 2019.

