Question 1:

vertical 3

(2 Marks)

The slotted link is pinned at O, and as a result of the constant angular velocity $\dot{\theta} = 3 \text{ rad/s}$ it drives the peg P for a short distance along the spiral guide $r = (0.4\theta)$ m, where θ is in radians. For the instant when P is at $\theta =$ $\pi/3$ rad. Determine the following:

(Proceed according to the steps provided in solution boxes)

0.5 m $\dot{\theta} = 3 \text{ rad/s}$ $r = 0.4\theta$

(a) Determine the radial (v_r) and transverse (v_θ) components of the velocity of P at the instant $\theta = \pi/3$ rad

$$\vec{r} = 0.46$$
 $\vec{v} = 0.4 \text{ W}$
 $\vec{v} = 0.4 \times 3$
 $= 1.2 \text{ m}^{-1}$

(b) Determine the radial (a_r) and transverse (a_θ) components of the acceleration of P at the instant $\theta = \pi/3$ rad

Continue y	your solution to part	(b) here:						3.00
	your results from (b),	calculate the n	nagnitude	of total acceler	ration of P			
A =	: مر م		2.1					
,	= 0.439	~~~~	2.1					
(d) If the x	-y axes are defined a	s shown then	use the rai	dial and transv	erse comp	onents of acceler	ations oh	tained in (h) to
	eleration component						anons ou	uneu m (o) io
a = /	a, + a, = 5.	2+4.2					y	
	. 9	2						
							,	
							L	x
(e) Using y	our results from (d),	calculate the n	nagnitude	of total acceler	ation of P			
(f) Briefly	compare your results	from (c) and (e	9)					
	,							,
Answer.	s should	Su	the	Same	aj	they coordinat	re t	he
	acitro Alon	in	tus	differ	2	soo reliet	54	stems
			6.0				0	
	I							
1		1		1				

Answers: $v_r =$ $v_\theta = 1/2$ ~ 0.431 $a_\theta = 0.431$ $a_$

Index of comments

- 1.1 This was correct! Never cross out working if you're not going to replace it with something else. I'm giving you the mark anyway. Be careful in the future!!
- 1.2 Use $a_r = r_doubledot r^omega^2$ (ie. acceleration along the 'r' direction normal acceleration).
 - a_theta = r*alpha [alpha = 0] + 2*r*omega [coriolis].
- 2.1 Pythagoras