FRACTURE CONTROL PROCEDURES FOR AIRCRAFT STRUCTURAL INTEGRITY

HOWARD A. WOOD

AIR FORCE FLIGHT DYNAMICS LABORATORY

TECHNICAL REPORT AFFDL-TR-71-89

JULY 1971

Approved for public release; distribution unlimited.

AIR FORCE FLIGHT DYNAMICS LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

FRACTURE CONTROL PROCEDURES FOR AIRCRAFT STRUCTURAL INTEGRITY

HOWARD A. WOOD

AIR FORCE FLIGHT DYNAMICS LABORATORY

Approved for public release; distribution unlimited.

FOREWORD

This report is the result of an in-house effort under Project 1467, "Structural Analysis Methods," Task 146704, "Structural Fatigue Analysis." The manuscript was prepared for presentation at the "International Committee on Aeronautical Fatigue," (ICAF) Symposium, Miami Beach, Florida on 12-14 May 1971.

The work reported herein was conducted by Howard A. Wood,
Aerospace Engineer, Structural Analysis Group, Structures Division,
Air Force Flight Dynamics Laboratory. Mr. R.M. Bader is the Technical
Manager of the Analysis Group.

The author wishes to acknowledge the invaluable technical contributions, assistance and encouragement of Mr. Nathan Tupper of the Air Force Materials Laboratory and Mr. Charles Tiffany of the Boeing Company in the formulation of the fracture control procedures summarized in this report.

This work was presented to the International Committee on Aeronautical Fatigue, Miami Beach, Florida on May 13-14, 1971.

The manuscript was released by the author in June 1971 for publication as a technical report.

This technical report has been reviewed and is approved.

FRANCIS J. JANIK, JR. Chief, Solid Mechanics Branch

Structures Division

AF Flight Dynamics Laboratory

ABSTRACT

This report reviews the application of applied fracture mechanics in the design, analysis and qualification of aircraft structural systems. Recent service experiences are cited.

Current trends in high strength materials application are reviewed with particular emphasis on the manner in which fracture toughness and structural efficiency may affect the material selection process.

General fracture control procedures are reviewed in depth with specific reference to the impact of inspectability, structural arrangement and material on proposed analysis requirements for safe crack growth. The relative impact on allowable design stress is indicated by example.

Design criteria, material and analysis requirements for implementation of fracture control procedures are reviewed together with limitation in current available data techniques. A summary of items which require further study and attention is presented.

"Fracture Mechanics has in fact, been a boon to the metal producing industry, it has made the finite crack in a structure reputable and even fashionable."

A.M. Freudenthal Miami Beach Florida December 15-18, 1969

TABLE OF CONTENTS

SE	CTION			PAGE
	I	INTRO	DDUCTION	. 1
	II	MATER	RIALS DESIGN UTILIZATION - RESISTANCE TO FRACTURE.	. 6
	III	MATER REPEA	RIAL SELECTION - RESISTANCE TO FLAW GROWTH UNDER	. 16
	IV	FRACT	TURE CONTROL - BASIC CONSIDERATIONS	. 22
	٧	FRACT	TURE CONTROL - REQUIREMENTS	. 27
		٧.٦	Engineering Criteria - Definitions	. 33
		V.2	Design Trade Study Analysis	. 35
		V.3	Analysis - Detailed Requirements	. 38
		V.4	Alternate Scheme to Assess Remaining Life	. 46
		V.5	Verification and Demonstration	. 47
		V.6	Establishment of Inspection Procedures	. 49
		V.7	Application of Requirements	. 49
	VI	ANALY	SIS AND DATA REQUIREMENTS FOR IMPLEMENTATION	-60
		VI.1	Criteria Requirements	.60
		VI.2	Material Data Requirements	.60
		VI.3	Fracture Analysis Methods	.62
	VII	SUMMA	RY AND RECOMMENDED TOPICS FOR STUDY	.65
		REFER	ENCES	.74

SYMBOLS

а	crack size, length or depth, inches
acr	critical crack size, inches
ар	proof test crack size, inches
Δa	change in crack size, inches
B,t	thickness, inches
С	one half surface crack length, inches
E	modulus of elasticity, Ksi
f	frequency of test load application cycle/minute
K	stress intensity factor, Ksi √in
K _c	critical stress intensity factor, Ksi√in
KIC	plane strain fracture toughness, Ksi √in
KISCC	critical stress intensity factor for stress corrosion cracking, Ksi $\sqrt{\text{in}}$
Kmax	maximum stress intensity factor, Ksi (in
Kmin	minimum stress intensity factor, Ksi Jin
ΔΚ	Kmax - Kmin, Ksi√in
M, N	Number of load cycles
6	material density, lbs/in ³
R	Kmin/Kmax
ry,Ry	Radius of crack tip yield zone, inches
σ	stress, Ksi
Δσ	change in stres, Ksi
σe	limit stress, Ksi
σˈys	yield stress, Ksi

SUBSCRIPTS

0, 1, 2, 3, etc.reference values

A, B, C, D, E, F, Grefers to requirements

C = critical

AFFDL-TR-71-89

ILLUSTRATIONS

FIGURE		PAGE
1.	Typical Service Applications of Fracture Mechanics	3
2.	Trends in Toughness Variation	10
3.	Variation of Crack Length Parameter	12
4.	Crack Length Parameter Variation with Structural Efficiency Parameter	13
5.	Proof Test Concept	15
6.	Density Normalized Variation of Yield Strength with Fracture Toughness	17
7.	Trend in Fracture Mode Appearance vs Crack Tip Plastic Zone Parameter	18
8.	Nominal Critical Stress Intensities for Several Materials as a Function of Thickness	19
9.	Fatigue Crack Growth Data for Typical Aircraft Structural Materials	21
10.	Comparative Crack Growth Data	25
11.	Effect of Fracture Toughness Life for Various Shape Spectra	26
12.	Demonstration of Flaw Detection Capability	30
13.	Factors which Affect Requirements for Fracture Control	31
14.	Structural Arrangements	32
15.	Leak before Break Criteria for Positive Detection	34
16.	Fracture Control Analyses for Design Trade Studies	36
17.	Representative Flaw Shapes Found in Service	37

AFFDL-TR-71-89

ILLUSTRATIONS (cont'd)

FIGURE		PAGE
18.	Safe Crack Growth Life Requirements Class I Structure	39
19a.	Safe Crack Growth Life Requirement Class 3 Structure (any member)	40
19b.	Safe Life Requirement for Remaining Structure after Failure of Single Principal Element Requirement F Class 3 - Inspectable	41
19c.	Safe Life Requirement for Remaining Structure after Failure of Single Principal Element Requirement G Class 3 Non-Inspectable.	41
20.	Illustration of Inspection Procedure Based on Safe Crack Growth Analysis	50
21.	Spectrum Growth Data Fighter Example	54
22.	Spectrum Growth Data Fighter Example	55
23.	Spectrum Growth Data Fighter Example	58
24.	Sustained Load Growth and Spectrum Information Requirements	61
25.	Material Fracture Properties Required for Analyses and Trade Studies	63
26.	Surface Flaw Data Adjusted to a/2c = 0 & Compared with Compace Tension Data	64
27.	Yield Zone Concept for Retardation	66
28.	Modes of Retardation - AFFDL Model	67
29.	Comparison of Test and Predicted Crack Growth- Single Overload	68
30.	Comparison of Test and Predicted Crack Growth Randomized Block Spectrum Loading	69

I INTRODUCTION

Primary aircraft structural components generally contain flaws or defects of variable shape, orientation and criticality which are either inherent in the basic material or are introduced during the fabrication or assembly processes.

An industry survey (Ref. 2) concluded that the majority of cracks found in aircraft structures were initiated from tool marks, manufacturing defects and the like. When not detected, these flaws experience the combined driving forces of environment and service loading and may grow to serious proportions resulting in reduction of service life or complete loss of the aircraft. The final fracture process is most often sudden, unexpected and almost totally devoid of gross plastic deformation or yielding. While this "brittle Like" behavior is most spectacular in the so-called high strength alloys, it is seen to occur to some degree in most of the commonly used aircraft structural materials.

Recent cases of catastrophic failure in primary structure of first line aircraft have emphasized the need for a "fresh" new look at the structural integrity process currently used to design and qualify structural systems. Under such an improved process, fracture control would insure the reduction in the probability of catastrophic failure due to the presence of undetected flaws and cracks. This assurance can best be achieved by the intelligent material selection based on fracture as well as common strength considerations, and to assume the existence of flaws in "new" structures and account for

their probable growth during service.

Linear elastic fracture mechanics analysis and testing techniques have reached the state of development where they may be used with a moderate level of confidence to assess the degree of flaw criticality, to predict the extent of sub-critical flaw growth prior to fracture and to determine the resultant failure modes (Ref. 4). Much of the basic ground work for the current application of linear elastic fracture mechanics to "real" structures can be attributed to the investigation associated with fracture control of metallic pressure vessels for space applications (Ref. 3, 10). While attempts to translate this technology to aircraft usage have been moderately successful, limitations must be recognized due to the complex spectrum of loads, temperatures and chemically aggressive agents that comprise the aircraft environment.

Fail safe procedures in aircraft have resulted from civil requirements and by independent regulation within the particular air-frame company. These efforts have been beneficial on many Air Force aircraft.

Application of fracture mechanics within the Air Force has been almost exclusively "after the fact" to determine remaining safe life with cracks, residual strength, and safe inspection intervals for older systems in which flaws have developed and progressed to near critical dimensions. Some examples of service application in which the Air Force Flight Dynamics Laboratory actively participated are summarized in Figure 1. In practically all cases, however,

Typical Service Applications of Fracture Mechanics FIGURE 1

Ref.	24	14	13
Solution	Multiple Analytical estimate of remaining strength load path with relatively large cracks - stiffened heavily case stiffened "Planks" In-house experimental verification of K solution for stiffened structure simulated and actual panels	Inspection program to determine max. probable flaw sizes Analysis of spectrum growth (no retardation assumed) Estimate of residual strength 14 Laboratory tests of spectrum growth with actual flaws from service and manufactured cracks.	Estimate of stress intensity factor for complex geometry. Growth estimate for safe inspection interval.
Type of Structure	Multiple load path heavily stiffened "Planks"	Single Load Path Skin	Single Load Path
Mat'1	Alum. Sheet	Alum. Plate	Alum "TEE" Extrusion
Problem	Appearance of in-service cracks in center wing area Extremely heavy usage of aircraft due to mission change. Structure readily inspectable.	"Thunderbird" accident - discovery of small cracks in fastener holes during inspection. Structure not readily inspectable.	Main spar failure - plane strain - crack originated in fastener hole Structure moderately inspectable
System	C-130	F-100	T-37

Typical Service Applications of Fracture Mechanics (cont'd) FIGURE 1

Fatigue test failures - plane strain cases plane strain cases Single Spectrum growth tests and analysis tech- surface failure (A/C #94) Steel load path niques for determination of inspection surface flaw during manu- facture - loss of aircraft & structure not readily Forging inspectable						
Single load path cases		Fatigue test failures -			Test failure analysis	
#94) Steel load path anu- Plate cases craft & Forging		plane strain cases			Spectrum growth tests and analysis tech-	
<u>B</u>	-11	Service failure (A/C #94)	Steel	다	niques for determination of inspection intervals following proof test.	7,8,9
		facture - loss of aircraft	200			
		inspectable	55.5			

attempts to formulate reliable solutions were hampered by the lack of an adequate material-environmental data base and deficiencies in analysis techniques, particularly those techniques which must account for load interaction and environmental effects. One purpose of this paper is to review those areas of application where deficiencies in the technology exist and to offer suggestions to alleviate these deficiencies.

Under the F-111 Recovery Program (Ref. 8), basic fracture mechanics data is currently being amassed for D6ac steel by the contractor and several laboratories, including the AFFDL (Ref. 7, 15 and 12).

Specific criteria, guidelines or requirements to consider fracture mechanics principles in the design and procurement cycle for USAF aircraft have not existed in the past. Only recently have requirements been levied for new systems. It is too early to assess their impact. In the proposed revisions to the Air Force Structural Integrity Program (ASIP) (Ref. 5), damage tolerance considerations are outlined. These changes are currently being reviewed prior to being formally incorporated.

There exists a natural unwillingness amongst many to accept the "pre-existent flaw" concept in aircraft design, because of the weight penalties normally associated with damage resistant structures.

There are those who cite system performance degradation and the time and cost of implementing fracture requirements as deterrents. The inclusion of arbitrary fracture requirements should be done cautiously

until current state of the art limitations in analysis methods and testing techniques are resolved and material-environmental behavior is better understood.

In this paper, the author will summarize recent structural material utilization cases so as to indicate those problems associated with the use of high strength material. General fracture control procedures will be reviewed with specific reference to the impact of safe crack growth and remaining strength requirements on system design. Examples will be cited including recent laboratory efforts in the analysis of crack growth under variable amplitude spectrum loading. Limitations in basic design criteria, material data and analysis will be reviewed.

II MATERIALS UTILIZATION IN STRUCTURAL DESIGN - RESISTANCE TO FRACTURE

With the advent of higher performance air vehicles, weight minimization has necessitated optimum design and construction techniques and greater utilization of the high strength, high efficiency and limited ductility materials. The process also has evolved increased operating stresses and, thus, lower tolerance to flaws and cracks.

These applications have resulted in critical flaw dimensions on the order of the material thickness making positive detection by current NDI practice questionable. Current trends in the structural design utilization of high strength alloys for resistance to catastrophic fracture can be evaluated by examining trends in two basic material parameters, the plane strain fracture toughness index, $K_{\rm IC}$, and the

conventional yield strength, σ_{ys} .

For a specific application, the designer must select a material of reasonably high strength in order to meet static strength requirements and still achieve minimum weight. A parameter for evaluating structural efficiency (σ_{ys} /material density) will be mentioned later. In the selection process, however, fracture toughness must be a consideration. The achievement of maximum yield strength and maximum fracture toughness is often difficult as is illustrated in Figure 2. It is generally recognized that within certain material groups, toughness decreases with increasing yield strength. This trend is illustrated in Figure 2 for aluminum, titanium and several selected steels where material data from Table 1 have been plotted. Variations in K_{IC} can be expected for any given alloy and strength level and these variations are generally due to metallurgical aspects, impurities or manufacturing processing. This variability makes the selection of a "design allowable" extremely difficult.

In specifying a particular material and strength level (minimum acceptable σ_{ys}), the designer usually would not be concerned about those quantities of material which possessed strength levels on the upper end of the normal range. However, because of the dramatic decrease in K_{IC} , he must in many cases limit the upper bound of acceptable range of yield strength. This is current practice in specifying titanium alloys. In Figure 2, K_{IC} ranges for two common titanium alloys are noted. The data are shown at one yield strength value

TABLE I TYPICAL MATERIAL PROPERTIES (Ref: Air Force Materials Laboratory Data)

(9) (9)	K _{IC}	-	724 177(318) 777 187 872 244		910	580 230	580 280 660 350	780 260	750 350
_	sy o	-	7 / 8	000		- CJ	9 22	_	
(4)	*** KIC 72	L 33 J	.0619 .06 .08	.02	.22	.16	.23	Ε.	.22
(3)	** ** Z Z Z	7 22 1	.12038 .12 .16	.20 .04 1.22	.44	.32	.56	.22	. 44
(2)	Plane Strain Tough. K _{IC}		50-90 53 69	89 40 110-170	31	23	28 35	26	35
(1)	Yield Strength °ys (Typical)	-	205 220 247	285 294 180-190	99	58	58 66	78	75
	Material	Steels	D6ac 4340 300M	18%Ni H-11 9Ni 4Co 2C Aluminum	7075-T73 (forging)	(plate)	(ext) (2014-76	/0/5-1651 (plate)	/1/5-1/3 (forging)

TABLE I TYPICAL MATERIAL PROPERTIES (cont'd) (Ref: Air Force Materials Laboratory Data)

(9)	K _{IC}	9	270	270		312(375)	219(312) 212 156
(2)	σλο		760	750		856 988	937 1018 1050
(4)	$\frac{K_{IC}}{\sigma_{ys}}$.13	.13		.13(.19)	.05(.11) .04 .02
(3)	$\sum_{s} \frac{\kappa_{IC}}{\sigma_{ys}}$.26	.26	*	.26(.38)	.10(.22) .08 .04
(2)	Plane Strain Tough. ^K IC		27	27 30		50-60 41	35–50 34 25
(1)	Yield Strength _{oys} (Typical)		76	75 69		137 158	150 163 168
	Material	Aluminum (cont'd)	7075-T6 (plate)	(forging) 7079-T6	Titanium	Ti 6al-4V(ann) Ti 6al-4V(STA)	Ti 6af-6V-2Sn(ann) Ti 6al-6V-2Sn(STA) Ti-13V-11cr-3al(STA)

** ASTM Thickness Required for Plane Strain Fracture

*** Equivalent to a_c for $\sigma_{Limit} = .6\sigma_{ys}$

PLANE STRAIN TOUGHNESS - K_{IC} (KSi \sqrt{IN})

FIGURE 2. TRENDS IN TOUGHNESS VARIATION

to illustrate the fallacy in specifying only σ_{ys} minimum. Recent F-lll experience with D6ac steel has indicated a similar phenomenon; however, the variation of K_{IC} is dependent upon the heat treatment procedure (Ref. 8). In this case, two specimens of material from different lots might possess the same measured σ_{ys} and yet have a two to one range in K_{IC} .

The material selection process is therefore a tradeoff procedure wherein many concurrent requirements must be satisfied. For the case in point, the designer must establish a criteria for accepting either a reduced toughness or strength level. The choice might be dictated by overall flaw tolerance. This is illustrated in Figure 3 where the ordinate, $(K_{\rm IC}/\sigma_{\rm ys})^2$, a parameter indicative of crack size, is used. Since structures are designed to withstand (statically) a percentage of the yield strength, this parameter may be conveniently used to illustrate flaw tolerance sensitivity. Examination of Figure 3 indicates a more dramatic reduction in the crack length parameter, with increased yield strength.

The same trend is repeated in Figure 4; however, the yield strength has been normalized to the material density $\boldsymbol{\ell}$. The parameter $\sigma_{ys}/\boldsymbol{\ell}$ is one form of structural efficiency used to select materials. Note that material ranking has changed with titanium being superior to steel. One exception illustrated is the 18% Ni maraging steel and 9Ni 4C which fall beyond the bounds illustrated. There are recognizable limits on both the values of $(K_{IC}/\sigma_{ys})^2$ and $(\sigma_{ys}/\boldsymbol{\ell})$ for materials in use today. The bounds are illustrated in Figure 4,

FIGURE 3. VARIATION OF CRACK LENGTH PARAMETER

FIGURE 4. CRACK LENGTH PARAMETER VARIATION WITH STRUCTURAL EFFICIENCY PARAMETER

The data presented in Figure 4 clearly illustrate the relationship of non-destructive inspection (NDI) capability and material selection to resist brittle fracture. For example, a through the thickness crack will experience plane strain fracture when K = K_{IC} = $\sigma \sqrt{\pi a_C}$. If fracture is assumed to occur at the design limit stress, the value of critical crack length, a_C , can be computed. For many aircraft structures, design limit stress is of the order of $\sigma_L = 0.6\sigma_{ys}$ and $a_C = \left(\frac{KIC}{0.6\sigma_{ys}}\right)^2 \frac{1}{\pi} \approx \left(\frac{KIC}{\sigma_{ys}}\right)^2$. Thus each point on

Figure 4 might be considered the critical characteristic flaw dimension for plane strain fracture, and thus describe the sensitivity level required for fleet inspection. For this type of selection criteria, many materials may be prohibited because of the extremely small flaws which must be detected. Limits of NDI practice are not well defined.

With the technological trend in material utilization growing toward greater strength to weight ratios, it seems logical also to define more realistic limits on the material selection based on uncontrollable "human element" defects. Thus, the crack size definition of Figure 4 might indicate limits produced by normal tool marks, scratches or gouges produced during manufacture or maintenance. If these limits are recognized as sound, then more effective means of inspection may be required, such as proof testing, if use is to be made of these alloys (Fig. 5).

All the data from Table 1 has been plotted in Figure 6 with both K_{IC} and σ_{VS} normalized to density, $\pmb{\ell}$. This indicates an

FIGURE 5. PROOF TEST CONCEPT

apparent technological limit which material producers might find difficult to exceed (Ref. 4).

In the previous discussion it was assumed that plane strain fracture is dominant. Fortunately, this is not always the case because of the effect of thickness, plasticity and geometry (Fig. 7 and 8). The question does remain, however, as to what role $K_{\rm IC}$ has in the material selection and analysis process.

It is perhaps safe to conclude, that the selection of candidate materials for fracture considerations can be made on the basis of superior $K_{\rm IC}$, so long as the materials are similar. The decision, however, rests upon the thickness required to fulfill the task. In Figure 8, the variation of critical stress intensity factor with thickness is illustrated for several alloys (Ref. 4).

III MATERIAL SELECTION - RESISTANCE TO FLAW GROWTH UNDER REPEATED LOADS

In the preceding discussion, K_{IC} and σ_{ys} were shown to be effective parameters in selecting a material class and alloy to resist brittle fracture under plane strain conditions. Wide variations in strength and toughness were indicated within a given material. Toughness was seen to vary also within a given alloy group.

Material selection based on cyclic growth considerations is not as clearly defined, since observed trends in rate data, for a non-aggressive environment indicate that materials within a group or class generally fall within a narrow scatterband, with little, if

FIGURE 6. DENSITY NORMALIZED VARIATION OF YIELD STRENGTH WITH FRACTURE TOUGHNESS

FIGURE 7. TREND IN FRACTURE MODE APPEARANCE VS. CRACK TIP PLASTIC ZONE PARAMETER REF. 4

FIGURE 8. NOMINAL CRITICAL STRESS INTENSITIES FOR SEVERAL MATERIALS AS A FUNCTION OF THICKNESS (REF. 4)

any dependence on toughness. Average growth rate curves have been included in Figure 9 to illustrate the relative relationship between materials. Hahn (Ref. 14) has observed that the rate, da/dn, can be approximated for many materials as:

$$da/dn = 8\left(\frac{\Delta K}{E}\right)^{-2}$$

in the central or log linear portion of the growth rate curve. Several points are shown in Figure 9 using the Hahn expression. Because of the relationship of growth rate to modulus, E, the data can be normalized to the material density, $\boldsymbol{\varrho}$, as indicated in Fig. 10 where rate curves are seen to converge. It is apparent then, that a material's advantage can only be assessed on an individual application basis. Growth under variable amplitude spectrum loading, for example, may produce different trends in growth retardation due to the interaction of loads. Generally speaking, however, the time to failure from an initial flaw, is dependent primarily upon the toughness $K_{\rm IC}$. This is illustrated in Fig. 11, with cutoffs for several levels of toughness. The relative effect, however, may be dependent upon the shape and severity of the spectrum.

While the preceding discussion has been concerned with the cyclic flaw growth behavior, the selection of materials for repeated load application in the presence of flaws may be seriously influenced by the chemical and thermal environments in which the structure must operate. No attempt will be made in the paper to cover these trends. The reader is referred to several excellent literature publications, (Ref. 14, 15, 16 and 17).

FIGURE 9. FATIGUE CRACK GROWTH DATA FOR TYPICAL AIRCRAFT STRUCTURAL MATERIALS

IV FRACTURE CONTROL - BASIC CONSIDERATIONS

The traditional Air Force approach to structural integrity (Ref. 5) requires that "safe life" be evaluated through the cyclic test program. The success of this approach in determining the overall fatigue resistance of full scale structures has been well documented (Ref. 14, 18). The achievement of "fatigue quality" through careful workmanship, surface finishes, and detailed design (local stress levels) and the demonstration of resistance to crack initiation are basic and reasonable goals. Therefore, before presenting suggested procedures for fracture control, it is important that two basic tenets be stated:

- (a) Damage tolerant design and fracture control philosophy should not be considered as substitutes for adequate fatigue considerations.
- (b) Consideration <u>must</u> be given to the probable existence of flaws within all basic primary structure. Crack initiation resistance and fracture resistance should be considered as complementary objectives.

By virtue of its complex nature and varied operational regimes, an airframe encounters a wide variety of natural and induced environments. While this makes the application of fracture theory a rather difficult task, the general overall goals which must be achieved are rather simply stated.

(1) Encourage the intelligent selection of fracture resistant materials, manufacturing processes, etc., (2) provide an incentive to design for inspectability with damage resistant structural config-

urations, (i.e. multiple load paths), (3) aid in establishing effective and realistic inspection procedures and (4) assist in selecting and controlling safe operating stresses.

In Section II, materials data were presented to illustrate how strength-weight (efficiency) could result in the selection of material with an undesirable level of toughness. Likewise, the choice based on fatigue alone might lead to serious difficulty since many high strength materials (steels for example) may have acceptable fatigue resistance but possess low resistance to brittle fracture and subcritical flaw growth (stress corrosion cracking, for example).

Structural configurations which possess multiple load paths, crack stoppers, etc., are necessary and desirable, however, their ability to function and meet specific preassigned goals must be demonstrated early in design.

Controlling design stress levels for common structural materials can have untold benefits from both the strength and fatigue points of view and can prevent costly field maintenance problems. For example, multiple load path, redundant and "fail safe" arrangements may effectively prevent the loss of aircraft, so long as adequate and frequent inspections are planned. The sole dependence of the fail safe approach to achieving fracture control without regard to limiting design stresses may result in frequent member failures, costly unscheduled maintenance and aircraft downtime. This situation can be alleviated by requiring each member in the multiple or redundant set to be inherently resistant to flaw growth within prescribed bounds (i.e. must have a safe life with cracks).

The ability to detect and quantify flaws and cracks, both in the raw product form and the final assembled structural article, remains as the most significant measure in deterring catastrophic fracture. Because we institute fracture control procedures is, in fact, a frank admittance that serious flaws can and often do go undetected. This fact was dramatically pointed out by Packman, et al (Ref. 11) in a study for the Air Force Materials Laboratory. The data in Figure 12 has been obtained from that report and depicts the sensitivity and reliability of common NDI methods in controlled laboratory experiments. The results are quite surprising because relatively large flaws were not detected. This does not mean that all hope is lost of improving our methods and procedures. On the contrary, continued development of improved NDI techniques is mandatory.

Fracture control procedures are most beneficial if effectively implemented and managed. Implementation consists of satisfying specific requirements for analysis and test based on established ground rules and definitions of required strength, assumed damage, service life and inspection intervals. A balanced design within the goals of damage tolerance is thus insured. It is important that the basic definitions, goals and fracture requirements be established early in the design phase in order to impact trade studies. Implementation requires a firm material data base, knowledge of operational environments, design criteria and an analytical capacity to perform complex flaw growth and strength analyses.

If fracture control procedures are instituted early, they form

FIGURE 10. COMPARATIVE CRACK GROWTH DATA

FOR VARIOUS FIGURE 11. EFFECT OF FRACTURE TOUGHNESS LIFE SHAPE SPECTRA.

a portion of the basic design criteria and no weight penalties can then be attributed to their existence. Weight penalties are only recognized if the requirements are levied after the design is frozen.

V FRACTURE CONTROL - REQUIREMENTS

It should be acknowledged that the preparation of detailed step by step requirements for fracture control is a difficult task because of the numerous classes of aircraft (i.e., fighter bombers, trainers, etc.) in use today by the Air Force and because of the various types of structural arrangements which comprise these airframes. With regard to the structural aspects, the term "Damage Tolerant" is perhaps most common and is used within the Air Force (Ref. 5) to describe those configurations "...which will minimize the loss of aircraft due to the propagation of undetected flaws, cracks, or other damage."

Supplemental requirements for the ASIP (Ref. 5) and various military specifications (Ref. 19) are currently being formulated to insure the achievement of damage tolerant design. Such requirements will be applicable to all primary structures, the failure of which would reduce the strength level below specified limits and endanger the safe operational flight characteristics of the aircraft.

In general, requirements to insure adequate fracture control take on the form of specific directives in the areas of

- (a) design
- (b) analysis

(c) test

In the following discussion, a representative set of specifications for fracture control will be described to indicate the relative levels of importance placed on structural arrangements, inspections, etc..

It is generally recognized that there are two major design steps which are required to produce a damage tolerant structure

- (1) Controlled safe flaw growth (safe life with cracks)
- (2) Positive damage containment (remaining or residual strength)
 Neither of these should be considered separate and distinct, however,
 since it is the judicious combination of both that is required for
 effective fracture control.

Since the assumption is made that flaws do exist in new structures and can go undetected, full compliance with this philosophy requires that consideration be given to the probability that flaws will exist in any and/or all members, including each element of a redundant or multiple load path group. This is important because it is easy to rationalize that each member of the multiple set could be flawed. For example, if stress corrosion is responsible for the information of subsurface cracks in one member, there is no assurance that each adjoining member does not contain cracks of a similar character. The first major requirement for fracture resistance must therefore dictate that any member must have a safe life with assumed cracks present.

For any given application, the overriding factors which govern the details and complexity of the fracture requirements and demonstrations are (Figure 13):

- (a) The class or type of structure
- (b) The quality of production and assembly NDI
- (c) The accessibility of the structure
- (d) The assurance that the member will be inspected in service
- (e) The probability that a flaw of subcritical size would go undetected even though periodic inspections are made.

Most structural members can be classified by load path (Fig. 14):

- (1) Single load path
- (2) Single primary load path with auxiliary crack arrest features
- (3) Multiple and redundant load path

Class 2 includes such items as pressure cabins, pressure vessels, etc., where relatively large amounts of damage may be contained by providing tear straps, stiffeners and the like. While some load shedding does take place, the primary load path is singular. Detection of damage for such cases is likely, because of fuel or pressure leakage.

Multiple and redundant load path structures are generally designed so that some percentage of original strength is retained during and subsequent to the failure of one element (often called "fail safe"). Assurance of this capability should be mandatory by analysis and tests. The containment of damage is often produced by natural barriers such as production splices, etc..

FIGURE 13. FACTORS WHICH AFFECT REQUIREMENTS FOR FRACTURE CONTROL

FIGURE 14. STRUCTURAL ARRANGEMENTS

Accessibility and inspectability were indicated in Section IV as major items in fracture control. This point cannot be overemphasized. Not only should the structure be inspectable, but assurance must be given that it will be inspected periodically after assembly. Because of recent experiences with high strength materials, speculation has arisen whether or not sub-surface cracks of near critical size can be found in service using routine inspection procedures and equipment. A positive criteria such as "leak before break" may have to be levied in order to assure their detection. Otherwise, an inspectable structure would have to be classified as non-inspectable (Fig. 15).

V.1 Engineering Criteria - Definitions

Before specific fracture requirements for design, analysis and test can be levied, certain aspects of loading and service must be defined for each type of aircraft. In most cases, these items will be unique for each particular system and will be specified in the basic design criteria.

V.1.1 Strength Limits

The percentage of unflawed static strength which is to be maintained with prescribed amounts of damage must be established. This load is generally the limit load but may vary with aircraft types.

V.1.2 Dynamic Factors

The effect of dynamic load amplification due to the release of energy as the damage is introduced must be included.

 POSITIVE CRACK GROWTH THROUGH THICKNESS INSURES DETECTION PRIOR TO CATASTROPHIC FAILURE.

(a) UNDETECTED

FIGURE 15. LEAK BEFORE BREAK CRITERIA FOR POSITIVE DETECTION

V.1.3 Inspection Intervals

These shall be consistent with required safe crack growth intervals and the requirements for residual strength.

V.1.4 Damage Limits

The size of initial flaws which may be expected to slip by inspection must be established from NDI capability studies. Final damage limits will be based on fracture and inspection requirements. In addition, the number and locations of members which are to be considered failed for residual strength purposes must be identified. Damage limits should be established for each system based on individual requirements, materials applications, etc..

V.2 Design Trade Study Analyses

A primary function of the fracture control requirements during early design stages is to assist in the selection of damage resistant materials and structures with some incentive offered to those that are easily inspectable and those which include multiple or redundant load paths. In Figure 16, key factors which influence these trade studies are summarized. Each member is first classified as to structural type, inspectability, etc., and a candidate material selected. Limits of assumed initial damage size are assigned together with the engineering criteria for life, strength and final damage size. The analysis is then performed utilizing the appropriate cyclic and sustained loads and environments. The process is then iterated until a satisfactory combination of material and stress level is selected which fulfill the strength and life requirements. The resultant information is then incorporated with other design

FIGURE 16. FRACTURE CONTROL ANALYSES FOR DESIGN TRADE STUDIES

FIGURE 17. REPRESENTATIVE FLAW SHAPES FOUND IN SERVICE

considerations until a satisfactory design is achieved.

V.3 Analysis - Detailed Requirements

The analysis consists of determining the growth rates of initial flaws under cyclic loading and environment and insuring that these flaws remain subcritical for the specified time period. Initial flaw sizes generally reflect the NDI capability but may be influenced by such criteria as proof tests, manufacturing processes, etc.. The flaws are generally assumed normal to the maximum principle stress field. The character and shape of the flaws are usually influenced by such aspects as

- (a) Materials and processing
- (b) Manufacturing and assembly
- (c) Handling and service conditions

Experience has indicated that the flaw types shown in Figure 17 are most representative in aircraft.

In Table II, a set of hypothetical analysis requirements have been tabulated for the three classes of structure based upon whether or not the assemblies will be inspected in service*. The information from Table II has been translated into Figures 18 and 19 for clarity. As is indicated, each class is designed for a safe crack growth period from an initial flaw. The final fracture dimensions are governed by plane strain fracture at limit load unless conditions indicate that

^{*} These requirements are presented for purpose of illustration only and do not represent USAF policy

FIGURE 18. SAFE CRACK GROWTH LIFE REQUIREMENTS CLASS I STRUCTURE

FIGURE 19a. SAFE CRACK GROWTH LIFE REQUIREMENT CLASS 3 STRUCTURE (ANY MEMBER)

SAFE LIFE REQUIREMENT FOR REMAINING STRUCTURE AFTER FAILURE OF SINGLE PRINCIPAL ELEMENT REQUIREMENT CLASS 3 NON-INSPECTABLE FIGURE 19c. SAFE LIFE REQUIREMENT FOR REMAINING PRINCIPAL ELEMENT REQUIREMENT (F) STRUCTURE AFTER FAILURE OF SINGLE CLASS 3 - INSPECTABLE

FIGURE 19b.

this mode of fracture is unlikely. Some motivation to design with inspectability and with high toughness materials (and thus higher stresses) is offered ($a_3 > a_5$) and ($a_4 > a_5$). The final crack dimensions a_3 , a_4 must truly be detectable, however, otherwise, the structure should be reclassified as non-inspectable. It was previously stated that subsurface flaws most likely should be put in the non-inspectable class (for service inspections). However, in most cases, it is possible to achieve through the thickness cracks and thus "positive detection" with proper selection of materials and stresses.

A safe life period of two inspection intervals has been indicated for the Class I and 3 inspectable cases. This will result in a slight reduction in allowable design stresses, but will offer more chance to detect the sub-critical crack.

For the Class 1, single load path structure, the requirement to satisfy a safe life with cracks is easily accepted because of the consequence of losing the member. However, as previously stated, the pre-existent flaw concept requires that all members, including each member of a multiple load set be assumed flawed. It is not sufficient to simply design the multiple load path structure to a remaining strength criteria with one principal member failed. This does not insure that initial flaws in a member will not grow to critical size in a relatively short period of time and result in broken members and unscheduled, costly maintenance. Therefore, the safe life requirements C and E as listed in Table II and indicated in Figure 19 are applicable to every member of the structure. However, since there should be some

TABLE II FRACTURE CONTROL ANALYSIS REQUIREMENTS

Load Stress One Lifetime Limit $a_{1}^{(5)}$ Fig. 192 **8** Non-Inspectable Class¹ Load Stress One Lifetime Limit Fig. 18 **8 8** Load Stress Inspection period(s) Fig. 19a $a_{1}^{(5)}$ a(2) One flight Limit Load Stress Inspectable Class¹ a(3) 2 8 Load Stress Inspection period(s) Limit **a**(2) 8 a I Fig. Critical Stress (4) In the specified time of... Shall not grow to critical size Initial Flaw... Requirement Safe Crack Growth

43

TABLE II FRACTURE CONTROL ANALYSIS REQUIREMENTS (cont'd)

Non-Inspectable Class 3 One-service lifetime Limit⁽⁴⁾ Load Stress (3) Figure 19c One-inspection period F(5) Inspectable Class 3 Limit⁽⁴⁾ Load Stress Figure 19b Requirement Subsequent to failure⁽⁶⁾ of one principal member, the remaining structure shall be capable of carrying ... At the end of... Remaining strength additional safe life Class 3

TABLE II FRACTURE CONTROL ANALYSIS REQUIREMENTS (cont'd)

- (1) Class 1 = single load path Class 2 = single load path (crack arrest features) Class 3 = multiple load path
- a & a are determined by fracture considerations but must be large. and detectable (i.e., thru the thickness cracks) Otherwise, classify as uninspectable. Note: a >>a (2)
 - a must be readily inspectable, i.e., pressure loss. Otherwise, classify as non-inspectable Class 3 structure. (3)
- (4) Will vary with A/C type.
- safe crack growth requirements shall be continuous throughout the specified time periods prior to and subsequent to the failure of the Each member of Class 3 structure shall be assumed to be flawed. element. (2)
- (6) Member can fail at any time during specified period.

incentive to design for multiple load path structure, the size of the initial assumed flaws in Class 3 structure is reduced over the Class 1 structure for the non-inspectable case $(a_1 < a_2)$. By doing this, we are admitting that the design is more comfortable and that we are willing to take a larger risk of operating with cracks.

Supplemental safe life (with cracks) requirements (F & G) for the Class 3 structure are listed in Table II and are applicable to the remaining structure after the one principal member has failed. In these requirements, the assumption is made that the element could fail at any time during the life (or inspection period) and go undetected. The remaining structure (assumed flawed) would then be required to carry the maximum load for the duration of the remaining specified time period. The stresses which result from requirements F & G most likely will dominate the design. In actual practice, studies would have to be conducted to determine the most appropriate time to assume the member failure. In requirement "F", the remaining growth period would be one inspection interval regardless of when the member was assumed to have failed. As is indicated in Figure 19, the total growth in any one member is equal to the amount which occurs prior to the failure of the principal element plus the amount which occurs subsequent to the failure at an increased stress level.

V.4 Alternate Scheme to Assess Remaining Life

In the previous section, analyses F and G (Table II) were presented to satisfy the requirement for some remaining life in the multiple load structure after the failure of any principal member.

An alternate scheme, and one which may be less restrictive, has recently been prepared for use in the Air Force. The principal difference is that the remaining structure is considered to be intact (unflawed) subsequent to the failure of the principal element. The requirement is stated as follows (Ref. 19):

"Fail Safe. Primary structure that is designed fail safe shall be readily inspectable and meet the following requirements after failure of a principal structural element: (1) the remaining structure shall sustain without failure, the maximum expected load or limit load, whichever is greater, (2) the airplane shall be controllable within the design speed limits, and (3) catastrophic failure of the remaining structure will not occur under repeated load conditions during the time period to the next opportunity to detect the failure. Verification of the ability of the remaining structure to withstand the repeated loads shall be accomplished by determining the crack growth period from an initial flaw to failure of the principal element, and then insuring that the life (including a factor of four) of the remaining structure will equal or exceed the time interval established for the next inspection. Inspection intervals shall be as agreed to by the procuring agency..."

V.5 Fracture Control - Verification and Demonstration
In the preceding discussion, requirements for analysis

were presented. In certain instances, experimental verification or demonstration of compliance should be required.

(a) Safe Crack Growth Tests (Class 1 and Class 3)

Although basic growth rate data will be generated to support analysis techniques, it is desirable to augment the constant amplitude tests with spectrum crack growth tests conducted on a meaningful flight by flight basis. This is particularly true where reliance has been placed upon positive detection by surface flaws penetrating the member thickness. In most cases, these experiments can be conducted on representative coupons, or small specimens if stresses are well known. If the geometry is complex, it is more desirable to utilize prototype component structure and run the growth tests in conjunction with the static or cyclic preproduction tests.

Demonstration tests utilizing full scale structures (i.e., complete aircraft) should not be necessary since it is generally quite easy to duplicate localized conditions surrounding the crack tip.

(b) Damage Arrest (Class 2)

Demonstration of crack arrest capability and subsequent cyclic life should be required. These tests may be conducted on representative specimens or on the full scale aircraft at the conclusion of the static or fatigue test. In most cases, critical damage is introduced mechanically to simulate service condition (battle damage, etc.).

V.6 Establishment of Inspection Procedures

An additional function served by the safe crack growth analysis is the establishment of inspection procedures for individual structure or for all members in the aircraft which are manufactured from the same material. Through the use of fracture analysis procedures, we may inspect or reject with more confidence by classifying parts and regions within a part according to the required NDI sensitivity.

The development of such an inspection procedure for a typical application is illustrated in the following. Spectrum crack growth information is plotted in Figure 20a as a function of the initial crack size (a_0 is only shown) for various degrees of spectrum severity (max stress). In this example, the required safe growth period is N hours, and a_0 is the largest crack size that can be tolerated for this material application. The maximum expected spectrum stress is σ_4 . NDI procedures must insure the reliable detection of a_0 during fabrication and assembly.

This spectrum growth information is translated into more meaningful form as illustrated in Figure 20b, where for any level of design stress, the largest tolerable flaw which would grow to failure in N hours is plotted. Rather than using fracture at N hours, a criteria based on positive detection could be substituted and produce a similar diagram.

V.7 Application of Requirements

While the full impact of the proposed fracture requirements

FIGURE 20. ILLUSTRATION OF INSPECTION PROCEDURE BASED ON SAFE CRACK GROWTH ANALYSIS.

can only be assessed through an extensive design application study on an existing system, the relative severity can be assessed by examining typical examples. The following example is presented to illustrate the values of design stress for a single material which would result under each requirement listed in Table II:

Example: Tension Cover - Aircraft Type - Fighter

Material - 7075-T6

K_{IC} = 30ksi √in

Thickness = 0.375"

Initial Flaw Assumptions (Surface Flaw) (a/2c = 0.5)

 $a_1 = 0.050$ in (for all inspectable cases)

a₂ = 0.150 in (for all non-inspectable cases)

Final Flaw Size

 a_4 = minimum detectable size = 0.375 in

a₃ = minimum acceptable equivalent = 0.500 in for single load path structure

Stress Information

The fighter spectrum information is contained in Table III in terms of a unit of maximum stress value σ = 37ksi. These occurrences in Table III are the equivalent of 40 hours of flight. The maximum limit stress for design purposes is:

$$\sigma_{\ell} = 1.5\sigma = 55.5$$
ksi

Spectrum Growth Rate Data

Utilizing constant amplitude growth rate data (Ref. 20), the CRACKS computer routine (Ref. 21) and the AFFDL crack growth

retardation model (Ref. 9) the stress spectra (Table III) was translated into plots of crack depth "a" versus number of flights starting with an initial crack length $a_1 = 0.050$ (Figure 21) and $a_2 = 0.150$ (Figure 22). All levels of stress from Table III were increased or decreased proportionally to achieve the variation in growth due to spectrum severity.

Material Toughness

The cut-off line for $K_{\rm IC}$ = 30ksi in is indicated in Figures 21 and 22. The effect of varying this parameter was not investigated in this example.

Life Requirement

Service life = $160 \text{ blocks} = 160 \text{ x} \cdot 40 = 6400 \text{ hours}$. Inspection intervals are planned each 1/4 lifetime of 40 blocks = 1600 hours.

Requirement A

Initial crack depth:

a₇ = .050

Final crack depth:

 $a_3 = .500$ (based on positive detection)

Life requirement:

 N_A = 80 blocks = two inspection intervals

Design stress σ_{Δ} :

This goal cannot be achieved using this material since $K_{\rm IC}$ is limited to 30ksi $\sqrt{\,\rm in}\,$ and the inspection requirements of 0.500 is not possible. A material change would most likely be required.

TABLE III STRESS SPECTRUM - FIGHTER EXAMPLE*

=	37	367	109	-	265	34	318	9	21	374	478	46	300	20	4	4	306	15	2	230	1338	19	1546	238	114	370	7	478		
omax (ksi)	16.1	16.8	25.6	37.0	6.3	20.8	20.2	11.8	11.3	17.9	13.9	8.8	11.9	11.3	31.7	16.4	14.5	24.9	26.1	12.9	10.7	19.8	10.4	6.4	16.1	14.9	20.8	13.9		
omin (ksi)	3.64	7.57	7.15	7.91	1.63	0.79	7.81	3.68	0.0	7.18	2.01	1.59	90.0	1.59	7.91	0.0	7.57	8.26	7.98	8.19	7.98	90.0	3.85	0.0	0.48	7.08	3.85	2.01		
Layer No.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	26	22	.89		
c	63	9/	371	37	===	2	363	വ	1280	62	-	88	41	22	491	9	74	682	1376	99	34	1621	1589	1374	29	-	250	œ	2	2
omax (ksi)	16.6	27.0	13.7	26.4	17.5	25.4	14.2	28.7	10.7	22.9	16.6	17.5	21.8	19.1	14.0	13.9	17.5	13.4	10.4	16.0	17.2	8.6	11.8	9.01	8.8	28.5	22.8	22.1	13.9	34.9
omin (ksi)	90.	7.04	0.45	5.90	0.79	10.60	0.76	4.02	3.64	6.77	3.64	6.07	8.64	9.51	3.78	0.0	3.81	7.88	0.72	9.37	0.52	9.79	7.98	0.45	0.0	7.08	7.39	90.0	1.63	7.94
Layer No.	-	2	က	4	S	9	7	œ	6	10	=	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28	53	30

Single Block - Equivalent of 40 flight hours

FIGURE 21. SPECTRUM GROWTH DATA FIGHTER EXAMPLE

Requirement C:

Initial crack depth:

 $a_1 = 0.050$

Final crack depth:

 $a_{A} = 0.375$ (based on positive detection)

Life requirement:

 $N_c = 80 \text{ blocks}$

Design stress, max:

 σ_{C} (allowable) = 1.27 σ = 47ksi

Requirement D:

Initial crack depth:

 $a_2 = 0.150$

Life requirement:

 N_D = 160 blocks = one lifetime

Final crack depth:

 a_5 = plane strain fracture = > 1.0"

Design stress, max:

 σD (allowable) 0.81 σ = 31ksi

Requirement E:

Initial crack depth:

 $a_1 = 0.050$

Final crack depth:

a₅ = plane strain fracture = 0.58"

Life requirement:

 $N_F = 160 \text{ blocks}$

Design stress, max:

 σ_E (allowable) 1.08 σ = 40ksi

Requirement F:

Coupled with Requirement C is the additional requirement that the structure remaining after failure of the principal member will be capable of carrying limit load for one additional inspection period, or one quarter lifetime. The lower portion of the growth data from Figure 21 has been replotted in Figure 23.

(a) assume that the member breaks accidentally after the first flight and remains undetected until the next inspection interval. The stress is assumed to increase by 20% with the requirement being no failure at limit load in one quarter lifetime or 40 blocks. From Figure 23, we see that a stress level of approximately $1.6\sigma = 60 \text{ksi}$ would grow to failure in 40 blocks. Therefore:

$$\sigma_{\mathsf{F}_{\mathsf{a}}}$$
 (allowable) = $\frac{60}{1.20}$ = 50ksi

(b) assume the member failure at 1/4 lifetime (just subsequent to inspection). The crack in the remaining structure has grown an amount, Δa , during the first inspection period. Thus,

New initial
$$a = a_1 + \Delta a = 0.050 + \Delta a$$

This condition can be satisfied by trial and error using Figure 23. The result indicates that $\sigma_{F_b} \approx 1.2 \sigma$ = 44.4 is appropriate for this condition. Failure at any other time could be checked to see if a lower stress would result. Note that no criteria for positive detection was required since at the next inspection the broken member would be found.

FIGURE 23. SPECTRUM GROWTH DATA FIGHTER EXAMPLE

Requirement G

In a similar manner, requirement E should be checked for life after member failure.

- (a) assume failure on first flight (from Figure 21) $\sigma_E = 1.08\sigma = 40 \text{ksi}$ $\therefore \sigma_{G_a} = \sigma_E/1.2 = 33.3 \text{ksi}$
- (b) assume failure at 1/2 lifetime. The incremental growth during the first 1/2 lifetime must be added to a_1 . The requirement for 1/2 remaining life shall then be determined. From Figure 21, using trial and error, a stress level of $\sigma_{G_b} = 1.0\sigma = 37.0$ is seen to satisfy the requirements.

Summary

The following table summarizes the previous example:

Requirement	Design Stress, σ (ksi)	Condition							
Α	Not satisfied	Inspectable Class 1							
С	47	Inspectable Class 3							
D	31	Non-inspectable Class 1							
Е	40	Non-inspectable Class 3							
F _a F _b	50 44.4 }	Inspectable Class 1							
G _a G _b	33.3	Non-inspectable Class 3							

The results clearly indicate the advantages offered by designing for inspectability since the allowable stresses for

requirements C and F are greater than for G. The incentive for multiple in lieu of single load path design is seen in the resultant allowable design stresses for requirements E and G being greater than D.

VI ANALYSIS AND DATA REQUIREMENTS FOR IMPLEMENTATION

The successful implementation of the fracture control analyses requires the analytical capability for cyclic and environmental flaw growth, aircraft usage information and basic strength and fracture data for proposed candidate materials.

VI.1 Criteria Requirements

Initial considerations for fracture resistance and control of subcritical flaw growth must be established during the criteria development stage and must reflect appropriate chemical, thermal and operational loads environments. For example, recent materials usage has necessitated the generation of data on sustained load flaw growth in aggressive environments such as fuel and water (Fig. 24a). Because loading rate and dwell times are important in the assessment of environmental effects, it has become important also to generate load-time spectra of the type indicated in Figure 24b.

VI.2 Material Data Requirements

The major material strength and fracture properties required to perform the analyses and trade studies for fracture considerations are illustrated in Figure 25. In all cases (except $K_{\rm IC}$) no approved standard test methods exist to determine these

SUSTAINED LOAD GROWTH & SPECTRUM INFORMATION REQUIREMENTS FIGURE 24.

properties. Through experience, however, various test techniques and specimens have evolved (Figure 25). As is often the case, a specimen developed for one function or application is used to generate a multitude of data. Testing techniques and data interpretation may mask important material responses or indicate false reaction to stress and environment. For example, in a recent comparison of cyclic growth rate behavior in D6ac steel (Ref. 8, 12, and 15) comparative growth rates obtained from compact tension and surface flawed specimens indicated a predominant stress level effect for the surface flawed specimen, whereas, no clear dependency was observed for the compact tension case (Fig. 26). These effects are currently being investigated.

VI.3 Fracture Analysis Methods

Prediction of fracture and growth behavior requires a means of translating external applied loads into stresses in the region of the crack tip. Finite element techniques offer a vast potential in the area, particularly in complex structural arrangements (Ref. 22 and 23). A rather broad collection of stress intensity solutions exist (Ref. 10); however, their use is limited in many cases and extrapolation is often required to provide the best estimate of K.

Considerable effort is being expended in the development of computer routines to "integrate" growth rate (da/dn) data (Ref. 21), for example, and account for the retardation effect of overloads in variable amplitude spectra. As an example of this type of activity,

FIGURE 25. MATERIAL FRACTURE PROPERTIES REQUIRED FOR ANALYSES AND TRADE STUDIES

FIGURE 26: SURFACE FLAW DATA ADJUSTED TO a/2c = 0 & COMPARED WITH COMPACT TENSION DATA (REF. 15)

the AFFDL has recently developed a mathematical model for predicting the growth delay effect (Ref. 9). The basic model is concerned with the effect of the overload plastic zone on the subsequent rate of growth as indicated in Figure 27. A hypothetical residual or reduction stress is then computed which suppresses the subsequent cyclic loads. Retardation is accomplished in three modes, depending on the relative size of the overload in relation to the subsequent cyclic level (Figure 28). Effective ΔK and R values are computed and reduced rates obtained from normal da/dn, ΔK relationships. Note that growth can be completely stopped (Figure 28). An extensive testing program is being completed at AFFDL to evaluate the merit of the model. In Figure 29 are some early correlations with single overloads in aluminum (Ref. 14). Fairly good correlation is noted also with randomized block spectrum data for D6ac steel (Figure 30).

Growth analysis schemes need to be extended to include the effects of loading rate and delay time (sustained load growth). Free surface effects and flaw shape changes, including the transition of a surface flaw to a through crack must be included.

VII SUMMARY AND RECOMMENDED TOPICS FOR STUDY

The author has attempted in this paper, to present the significant impact of fracture mechanics and fracture control in the overall program of airframe structural integrity. The true weight, cost and performance trade-offs associated with the implementation of these or any requirement can best be judged by experience

LOADING

SUMMARY OF AFFDL MODEL: REF. 9

OVERLOAD σ_1 RETARDS da / dn FOR $\Delta\sigma_2$ Ry - SIZE OF YIELD ZONE

a = THE INITIAL CRACK SIZE

 a_C = THE CRACK SIZE AT ANY TIME AFTER THE OVERLOAD a_{p_1} = THE EXTENT OF THE PLASTIC ZONE, R_{Y_1} DUE TO OVERLOAD, σ_{1}

 $2~\pi~(\mathcal{O}_{\text{YIELD}})^2$ + a (PLANE STRESS)

 ullet $^{\sigma}$ ap = THE STRESS REQUIRED TO PRODUCE A PLASTIC ZONE OF EXTENT ap FOR ANY CRACK SIZE (ac + R Y c) $^{<}$ ap 1

 $^{-}$ σ_{YIELD} 2 (a p₁ $^{-}$ a c

• $\sigma_{red}^{}$ = EFFECTIVE RESIDUAL STRESS CAUSED BY OVERLOAD -VARIABLE WITH a_C = $\left[\sigma_{a_p}^{}$ - $\sigma_{2}^{}$ (MAX) $\right]$ • EFFECTIVE MAXIMUM AND MINIMUM STRESSES & LOAD RATIO, R, COMPUTED $\left[\sigma_{2}^{}$ (MAX) $\left[\sigma_{2}^{}\right]$ EFF = $\sigma_{2}^{}$ (MIN) $\left[\sigma_{2}^{}\right]$ - $\sigma_{red}^{}$ = $\sigma_{2}^{}$ (MIN) $\left[\sigma_{2}^{}\right]$ - $\sigma_{red}^{}$

FIGURE 27. YIELD ZONE CONCEPT FOR RETARDATION

FIGURE 28, MODES OF RETARDATION - AFFDL MODEL (REF. 9)

FIGURE 29. COMPARISON OF TEST AND PREDICTED CRACK GROWTH - SINGLE OVERLOAD

and application to existing systems. A fair assessment can only occur, however, if continued materials and structures development efforts are directed toward upgrading existing fracture mechanics and fracture analysis technology.

In Table IV, the author has summarized a rather extensive "shopping list" of items which require attention. In many cases, a relatively high degree of proficiency exists and application experience is all that is necessary while others require new thought and new direction.

TABLE IV Suggested Areas of Study for the Application of Fracture Mechanics in Structural Integrity

PROGRAM:

Implement rational fracture mechanics theory into the design criteria, material selection, analysis, qualification and utilization of aircraft structural systems.

TOPIC AREAS:

I Criteria

II Data Requirements and Application III Fracture Analysis Methodology

IV Qualification for Fracture Resistance
V Utilization - Structural Concepts

SUBJECT BREAKDOWN:

I Criteria

- a. Chemical and Thermal environment definition for fracture requirements.
- Review of past experience, structural failure review, etc.
- c. Catalog critical structural materials arrangements and previous design considerations in order to establish which areas require extensive investigation.
- Establish fracture criteria for material selection and trade-off studies.
- e. Establish analogous "leak before break" criteria for aircraft application.
- Assemble design data and criteria for fracture applications.
- Mission definition and analysis including estimates of time at load factor.
 Incorporation of criteria in basic
- Incorporation of criteria in basic specifications including ASIP modification.

II Data Requirements and Applications

- a. Establishment of measurable parameters K_C and K_{IC} , K_{ISCC} , da/dt, da/dn (others) including testing standards.
- b. Application of K_C , K_{IC} in design.
- c. Fatigue crack growth data.
- d. Sub-critical crack growth rate, environment, temperature.
- e. Effect of loading sequence on cyclic growth, (growth retardation).

- f. Non-propagating crack study thresh-hold of ΔK .
- g. Parametric growth data mission segments.
- h. Extension of fracture mechanics testing standards to new classes of materials.
- Study of statistically derived crack sizes and shapes based on NDI and NDT.
- j. Effect of stress state on fracture.
- k. Mixed mode fracture study.

III Fracture Analysis Methodology

- Assemblage of currently applicable K factor relationships including application.
- Guidelines for estimating K or approximate K for complex cases (include superposition).
- Development of K for complex cases elastic solutions.
- d. Finite element studies crack growth sub-critical growth development of K model crack element for finite element technique.
- e. Plasticity and free surface effects.
- Tabulation of equivalent cracks in complex flaw geometries.
- g. Analytical crack model for growth under variable loading.
- Routine for crack growth and life estimates - including environment, rates and load sequence effects.
- Analytical study of variation of flaw shape - surface flaws.
- j. Statistical analysis to establish confidence levels for toughness and life estimates - "Scatter Factor for application to analysis results.
- Residual strength static considerations.
- Handbook preparation and design guidelines.
- m. Development of semi-empirical methods for estimating K.
- Fracture arrest damage tolerant analysis methods.
- A study of the effect of crack bluntness on fracture behavior.

TABLE IV Suggested Areas of Study for the Application of Fracture Mechanics in Structural Integrity (cont'd)

IV Qualification for Fracture Resistance

- Real-time flaw growth testing including. temperature and environment (specimens).
- b. Real-time flaw growth (structures).
- Crack Growth resistance and crack arrest testing.
- d. Damage tolerance or Fail Safe Testing.
- e. Test time reduction for (a) and (b) above.
- f. Proof testing
 - repeat work of Tiffany (Boeing) for typical aircraft structures
 - extend knowledge and techniques to satisfy environment and requirements
 - statistical assessment of the risks and merits of proof testing.

V Utilization - Structural Concepts.

- a. Concepts for flaw and crack arrest.
- b. New material utilization.
- Performance and weight trade off studies.
- Fabrication of structural concepts and full scale testing.
- Inspection- fracture mechanics interface flaw classification.
- f. Proof testing full scale.

REFERENCES

- 1. Wood, H.A., "The Role of Fracture Mechanics in the Air Force Airplane Structural Integrity Program," AFFDL-TM-70-5-FDTR, June 1970.
- Donaldson, D.R., Anderson, W.E., "Crack Propagation Behavior of Some Airframe Materials," Proceedings of the Crack Propagation Symposium, Vol. II, Cranfield, Sept. 1961.
- "Fracture Control of Metallic Pressure Vessels," NASA Space Vehicle Design Criteria (Structures) NASA SP 8049, May 1970.
- 4. Wilhem, D.P., "Fracture Mechanics Guidelines for Aircraft Structural Applications," Northrop Corp., Report AFFDL-TR-69-111, December 1969.
- 5. The Air Force Airplane Structural Integrity Program (ASIP)
 Program Requirements, Technical Report ASD-TR-66-57, May 1970.
- 6. Lowndes, H.B., Wood, H.A., "Air Force Flight Dynamics Laboratory Review of Fatigue/Fracture Research in the United States," prepared for the Structures and Materials Panel Advisory Group for Aeronautical Research and Development, November 1970.
- 7. Wood, H.A., Haglage, T.L., "Crack Propagation Test Results for Variable Amplitude Spectrum Loading in Surface Flawed D6ac Steel," Air Force Flight Dynamics Laboratory Technical Memo, FBR-71-2, February 1971.
- 8. Hinders, U.A., "F-111 Design Experience Use of High Strength Steel," Aeronautical System Division, WPAFB, OH AIAA Paper, 70-884, presented at AIAA 2nd Aircraft Design and Operations Meeting, Los Angeles, CA/ July 20-22, 1970.
- Willenborg, J.D., Engle, R.M., Wood, H.A., "A Crack Growth Retardation Model Using an Effective Stress Concept," Air Force Flight Dynamics Laboratory, TM-FBR-71-1, January 1971.
- "Fracture Toughness Testing and Application," ASTM STP 381, June 1964.
- 11. Packman, P.L., Vanderbilt Universit; Pearson, H.J., Owens, J.S., Lockheed, GA; Yound, G., AFML, "The Applicability of a Fracture Mechanics NDT Design Criterion for Aerospace Structures," WESTEC Conference, March 10, 1969, Los Angeles, CA.

- 12. Harmsworth, C.L., Air Force Materials Laboratory; Cervay, R.R., University of Dayton Research Institute, "Fracture Toughness Evaluation of D6ac Steel in Support of the F-111 Aircraft Recovery Program," Air Force Materials Laboratory Technical Memorandum AFML/LAE 71-2.
- 13. Gran, R.J., Orasio, F.D., Jr., Universal Technology Corp.; Paris, P.C., Hertzberg, R., Irwin, G.R., Del Research Corp., "Investigation and Analysis Development of Early Life Aircraft Structural Failures," Air Force Flight Dynamics Laboratory TR-70-149, November 1970.
- 14. "Proceedings of the Air Force Conference on Fatigue and Fracture of Aircraft Structures and Materials," Miami Beach, FL, December 1969, AFFDL-TR-70-144.
- 15. Masters, J.N., White, J.L., The Boeing Co., "Development of Fracture Toughness Properties of D6ac Steel for F-111 Application," Air Force Materials Laboratory TR-70-310, November 1970.
- Wei, R.P., "Some Aspects of Environment Enhanced Fatigue Crack Growth," presented at ASTM Fall Meeting, Atlanta, GA, 1968.
- 17. Hartman, A., and Schijve, J., "The Effect of Environment and Load Frequency on the Crack Propagation Law for Macro Fatigue Crack Growth in Aluminum Alloys," NLR MP 68001U, 1968.
- 18. Lowndes, H.B., Jr., "Air Force Flight Dynamics Laboratory, Correlation Between Full Scale Fatigue Test and Service Experience," presented at the Eleventh Conference of the International Committee on Aeronautical Fatigue (ICAF) Stockholm, May 1969.
- "Airplane Strength and Rigidity Reliability Requirements, Repeated Loads and Fatigue," MIL A 008866 A (USAF), 31 Mar 71.
- Hudson, C.M., "Effect of Stress Ratio on Fatigue Crack Growth in 7075-T6 and 2024-T3 Aluminum Alloy Specimens," NASA TND 5390, August 1969.
- 21. Engle, R.M., Jr., "CRACKS: A FORTRAN IV Digital Computer Program for Crack Propagation Analysis," Air Force Flight Dynamics Laboratory, TR-70-107, October 1970.
- 22. Chan, S.K., Tuba, I.S., Wilson, W.K., "On the Finite Element Method in Linear Fracture Mechanics," Engineering Fracture Mechanics, 1970, Vol. 2, pp 1-17, Pergamon Press.

- 23. Byskov, E., "The Calculation of Stress Intensity Factors Using the Finite Element Methods with Cracked Elements," International Journal of Fracture Mechanics, Vol. 6, No. 2, June 1970.
- 24. Wood, H.A., "A Study of the Residual Strength of Damaged Heavily Stiffened Sheet Structure," AFFDL-TR-(to be published).

Security Classification				
Company of the second s	CUMENT CONTROL DATA	- R & D		
(Security classification of title, body of ab	stract and indexing annotation must			
1. ORIGINATING ACTIVITY (Corporate author)		28. REPORT SECURITY CLASSIFICATION		
Air Force Flight Dynamics Laboratory/FBR Wright-Patterson AFB, Ohio 45433		UNCLASSIFIED		
		2b. GROUP	200 CONTRACT	
		N/A		
(U) "Fracture Control Procedure	es For Aircraft Struct	tural Integr	rity"	
4. DESCRIPTIVE NOTES (Type of report and inclus Committee on Aeronautical Fati	gue, Miami Beach, FL M	k presented May 13-14, 1	to the International	
5. AUTHOR(S) (First name, middle initial, last name Wood, Howard A.)			
6. REPORT DATE	7a. TOTAL N	O. OF PAGES	7b. NO. OF REFS	
July 1971	76		24	
Be. CONTRACT OR GRANT NO.		TOR'S REPORT NU		
b. PROJECT NO. 1467	AFFDL-	AFFDL-TR-71-89		
^{c.} Task: 146704	9b. OTHER R this report	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)		
d. Work Unit: 146704-06				
Approved for public release,	distribution unlimite	∍d.		
11. SUPPLEMENTARY NOTES	12. SPONSOR	12. SPONSORING MILITARY ACTIVITY		
	AFFDL AFSC W-PAFF			
13. ABSTRACT				
This report reviews the application of a are cited.				
Current trends in high strength emphasis on the manner in which affect the material selection p	h fracture toughness a			
General fracture control proced	dures are reviewed in	depth with	specific reference to	

the impact of inspectability, structural arrangement and material on proposed analysis requirements for safe crack growth. The relative impact on allowable design stress is indicated by example.

Design criteria, material and analysis requirements for implementation of fracture control procedures are reviewed together with limitation in current available data techniques. A summary of items which require further study and attention is presented.

UNCLASSIFIED
Security Classification LINK A LINK B LINK C KEY WORDS ROLE WT ROLE WT ROLE WT Structural Integrity Fracture Mechanics Structural Design Criteria Fracture Control

UNCLASSIFIED