

HOLY ANGEL UNIVERSITY

College of Engineering and Architecture DEPARTMENT OF ELECTRONICS ENGINEERING

 EXPERIMENT # _ P EXPERIMENT TITLE: _	Wirent pains on Transistrice Warauteristics of common con itter & common collector
COURSE:	스 나 나 나 나 나 나 나 나 나 나 나 나 나 나 나 나 나 나 나
SCHEDULE (Day/Time/Room): NAME: GROUP No.:	M 1:20-4:20 PM E(E Laborator/ Alcandara , Sodi Sanchez , Helaena To, mian PeJeses, John Tan, Audrey 6
DATE PERFORMED: DUE DATE:	03/24/24
DATE SUBMITTED:	09/08/24
INSTRUCTOR:	Enar (herry Vavaco

SCORE SHEET

CRITERIA		SCORE				
Participation	h teammates;					
well prepared	l in class; and time	e manag	gement skills]			
1-4	Superficial	9-12	Satisfactory	17-20	Excellent	•
5-8	Ordinary	13-16	Very Good			
Data and Res	ults (40%)					
Discussion of	uestions (15%) Findings (25%) [A		The second second			
skill; Commur					·	
1-5						
6-10	Deficient	16-20	Very Good			
					TOTAL	

INSTRUCTOR'S SIGNATURE:	
-------------------------	--

2

HOLYANGELUNIVERSITY SCHOOLOF ENGINEERING&ARCHITECTURE DEPARTMENTOFELECTRONICSENGINEERING AngelesCity

BASIC ELECTRONICS

EXPERIMENT 7

DATAANDRESULTS

Part1

Table7-1.TestDataforMeasuringAlpha

STEP	I _E ,mA	l _c ,r	nA	Effectsin I _c ofincreasingI _E
2	Minimum	0.0	5	Ic increases along with I
2	Maximum	0.0	δ	
Step	I _E ,mA	I _{B,} µA	I _c ,mA	CollectorVoltage
4	2	a _D	1.99 mA	4
4	2.4	24	2.38 mA	4
4	a=10/1= 0.99			

Table7-2.TestDataforMeasuringBeta

Step	I _{B,} µA	I _C ,mA	Effectsin I _c ofincreasingI _B
8	10	1	Increasing IB increases I
9	Maximum	4.91	J
Step	I _{B,} µA	I _c ,ma	CollectorVoltage
10	25	2.5	4
11	30	3.0	4
12	β=I _C /I _B = 100		

Part2

Table7-3.Inputcharacteristicsof the common emitter configuration

	V _{CE} =3V		V _{CE} =5V				
V _{BE}	V _{RB} (mV)	I _B =V _{RB} /R _B (μA)	V _{BE}	V _{RB} (mV)	I _B =V _{RB} /R _B (μA)		
0.63V	50	50	0.63V	39	39		
0.64V	10	30	0.64V	60	60		
0.65V	80	80	0.65V	81	81		
0.66V	100	100	0.66V	119	110		

HOLYANGELUNIVERSITY SCHOOLOF ENGINEERING&ARCHITECTURE DEPARTMENTOFELECTRONICSENGINEERING AngelesCity

BASIC ELECTRONICS

Table7-4.OutputCharacteristicsof theCommonEmitter

	I _B =1	I _B =10μA		I _B =20μA		I _B =30μA		I _B =40μA		50μA
V _{CE}	V _{RC} (mV)	I _C =V _{RC} (mA)R _C	V _{RC} (mV)	I _C =V _{RC} (mA)R _C	V _{RC} (mV)	I _C =V _{RC} (mA)R _C	V _{RC} (mV)	IC=V _{RC} (mA)R _C	V _{RC} (mV)	I _c =V _{RC} (mA)R _c
0.2V	98.41	0.9839	196.860	1.96	201.90	2.07	388.01	3.88	459.98	4.59
0.4V	101-507	1.013	204.349	The Control	300 - 10	3.00	400.17	4.00	476.10	4.76
V8.0	101.509	1.015	204.359		300 - 10	3.00	400-18	4.00	480.87	4.80
1.0V	101-519	1.0 31	204.359	2.04	360-10	3.60	400-18	4.60	480.87	4.80
3.0V	161.510	1.0150	204.359	2.04	300.10	3.00	400.18	4.00	480.87	4.80
5.0V	101.510	1.61510	204.359	2.04	30.10	3.00	40.18	4.00	480.87	4-80

Table7-5.InputCharacteristicsofCommonCollector

	V _{CE} =3V		V _{CE} =5V			V _{CE} =7V		
V _{CB}	V _{RB} (mV)	I _B =V _{RB} /R _B (μA)	V _{CB}	V _{RB} (mV)	I _B =V _{RB} /R _B (μA)	V _{св}	V _{RB} (mV)	I _B =V _{RB} /R _B (μΑ)
2.4V	2.390	2-316	4.4V	4.396	4-396	6.4V	6.43	6.43
2.38V	2-375	2.375	4.38V	4-577	4-319	6.39V	4.388	6-388
2.36V	a-370	2-310	4.36V	4.355	4.355	6.38V	6.574	6.274
2.34V	Q. 335	2-335	4.34V	4.341	4.341	6.36V	6-358	6.358

STEP8

Figure7-5.InputCharacteristicof theCommonEmitterBiasCircuit

HOLYANGELUNIVERSITY SCHOOLOF ENGINEERING&ARCHITECTURE DEPARTMENTOFELECTRONICSENGINEERING AngelesCity

BASIC ELECTRONICS

REVIEWQUESTIONS

- 1.DefineBeta
- Describeindetailaprocedureforgettingbeta.
- 3. Whatis the significance of getting beta?

III A CONTRACTOR	1-10				
Answ	1210	ARAV	OWO	IDet	nne
WII 244	0121	01/64	GAA CA	นธอเ	IUIIO

AnswerstoRevie	and the second of the second of the second of	C 12 12 12 12 12 12 12 12 12 12 12 12 12	:1100	.1	LED IS A Ken so	
of bipolar	iunction trac	cictors (BJT)	. It shows t	the nation as the	hft. 15 a key para collector current (10)	to the base
2.	U v · O · · · · I · VI	31310 0 (1777)		no rano 4 mo		COLLEGE CIT
·						- In a BJT whe - emitter curer
3						_ 1s kept cons
						-
DISCUSSIONOFF				27.00		
					current	- A -
amplificati	on factor	alpha in	order to	observe	the effects	_
of varying	the e	mitter curr	ent (1E)	on the	collector current	_
					and investigat	

ame of CIC the effects of changing the base current (1B) on 1c. in order to aid in circuit optimization and performance evaluation, the experiment also aims to create input and output characteristics for both bigsing configurations. This will enable a thorough visualization of transister behavior under various operating rituations the examination of current gain in common emitter and common collector configurations highlighted the amplification characteristics of the transister, which are crucial for guaranteeing signal integrity and Fidelity in practical applications, Lastly, this work contributes to our developing understanding of transister behavior and offers insightful advice on building and refining transister based circuits for a wide range of electronic uses.

HOLYANGELUNIVERSITY SCHOOLOF ENGINEERING&ARCHITECTURE DEPARTMENTOFELECTRONICSENGINEERING AngelesCity

BASIC ELECTRONICS

STEP9

Figure 7-6. Output Characteristic of the Common Emitter Bias Circuit

STEP10

Figure7-7.InputCharacteristicof theCommonCollectorBiasCircuit

- 2. To determine the beta, the basic transistor circuit must find be set up with a BT, suitable resistors and a power supply. Apply a small base current (IB) to the transistor while measuring the equivalent (ollector current (IC). Repeat this process for several different values of IB to establish the relationship between IB and IC. Plot there values with IC on the y-axis and IB on the X-axis. The slope of the resulting curve represents the beta value.
- The importance of obtaining beta lies in its note as a crucial parameter in understanding and analyzing the behavior of bipolar junction transisters. Beta directly affects the gain characteristics of the transistor circuit and determines the magnitude of the output current (IC) relative to the input current (IB). Knowing the beta phase allows the engineer to design and optimize circuits for specific applications, ensuring the desired gain and efficiency. In addition, beta affects the stability and linearity of transistor circuits, affecting factors such as dictortion and signal fidelity.