Elisa Antuca Massimo Bertolotti

TITOLO TITOLOZZO **QUESTO TITOLO** È PROVVISORIOZZO E CI PIACE COSÌ

$$\beta(P_1, P_2, P_3, P_4) = \frac{\begin{vmatrix} \lambda_1 & \lambda_4 \\ \mu_1 & \mu_4 \end{vmatrix} \cdot \begin{vmatrix} \lambda_2 & \lambda_3 \\ \mu_2 & \mu_3 \end{vmatrix}}{\begin{vmatrix} \lambda_1 & \lambda_3 \\ \mu_1 & \mu_3 \end{vmatrix} \cdot \begin{vmatrix} \lambda_2 & \lambda_4 \\ \mu_2 & \mu_4 \end{vmatrix}}$$

$$\beta(P_1, P_2, P_3, P_4) = \frac{\begin{vmatrix} \lambda_1 & \lambda_4 \\ \mu_1 & \mu_4 \end{vmatrix} \cdot \begin{vmatrix} \lambda_2 & \lambda_3 \\ \mu_2 & \mu_3 \end{vmatrix}}{\begin{vmatrix} \lambda_1 & \lambda_3 \\ \mu_1 & \mu_3 \end{vmatrix} \cdot \begin{vmatrix} \lambda_2 & \lambda_4 \\ \mu_2 & \mu_4 \end{vmatrix}}$$

$$X \xrightarrow{f} Y$$

$$X/\sim \qquad \chi(S) = v - e + f$$

$$\pi_1(S^1) = \mathbb{Z}$$

$$e^A := \sum_{k=0}^{+\infty} \frac{A^k}{k!} = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots$$

Note per la lettura

"Un matematico è una macchina per trasformare caffè in teoremi."

Alfréd Rényi, studioso del teorema di Van Moka-mpen.

Senza troppe pretese di formalità, com'è intuibile dal termine dal termine tecnico manualozzo e dalle citazioni a inizio capitolo, queste note sono nate come appunti a quattro mani basati sul corso di Geometria 2 tenuto dai docenti Alberto Albano, Cinzia Casagrande ed Elena Martinengo nell'Anno Accademico 2020-2021 presso il Dipartimento di Matematica dell'Università degli Studi di Torino.

Il corso è diviso in *cinque* parti, pertanto abbiamo ritenuto opportuno dividere in altrettante parti il testo, seguendo l'ordine delle lezioni: Topologia generale, Omotopia, Classificazione delle superfici topologiche, Approfondimenti di Algebra Lineare e infine Geometria proiettiva. I prerequisiti necessari sono gli argomenti trattati nei corsi di *Geometria 1, Algebra 1 e Analisi 1*.

In aggiunta a ciò, potete trovare a fine libro delle utili *postille* con alcune digressioni interessanti, nonché tabelle ed elenchi riepilogativi dei teoremi, delle definizioni e delle proprietà affrontate.

Per quanto ci piacerebbe esserlo, non siamo *esseri infallibili*: ci saranno sicuramente sfuggiti degli errori (o degli *orrori*, la cui causa è solamente degli autori che non hanno studiato bene e non dei professori, chiaramente), per cui vi chiediamo gentilmente di segnalarceli su https://maxmaci.github.io per correggerli e migliorare le future edizioni del *manualozzo*.

I disegni sono stati realizzati da Massimo Bertolotti, l'addetto alla grafica e ai capricci di LATEX (ed è molto capriccioso, fidatevi). Chi volesse dilettarsi può cercare di distinguere chi fra i due autori ha scritto cosa, non dovrebbe essere troppo difficile.

Seconda edizione, compilato il 23 settembre 2021.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

INDICE

INDICE 11
I Passaggio al limite sotto segno di integrale 1
1 Introduzione ad Analisi 3: alla ricerca della lunghezza del- L'ellisse 3 1.1 Una domanda banale: la lunghezza di un'ellisse 3 1.1.1 La problematica dimostrazione della lunghezza dell'ellisse: la
serie di Taylor 4 1.1.2 La problematica dimostrazione della lunghezza dell'ellisse: passaggio al limite sotto segno di integrale 6 1.2 Non banali conseguenze di una domanda banale 7
Bibliografia 9
Indice analitico 11

Passaggio al limite sotto segno di integrale

CAPITOLO 1

Introduzione ad Analisi 3: alla ricerca della lunghezza dell'ellisse

"BEEP BOOP QUESTA È UNA CITAZIONE."

Marinobot, dopo aver finito le citazioni stupide.

Una circonferenza e un'ellisse a primo acchito possono sembrare molto simili: in fondo, una circonferenza non è altro che un'ellisse i cui punti focali coincidono e dunque si può vedere come una circonferenza "allungata" rispetto ad un asse. Il valore dell'area delimitata da una circonferenza (πr^2) e della lunghezza di una circonferenza $(2\pi r)$ sono ben noti già dall'antichità, con opportune formalizzazioni in epoca moderna; tuttavia, riguardo l'ellisse, ci accorgiamo di aver incontrato nel corso degli studi precedenti quasi esclusivamente il valore dell'area delimitata da essa (πab) , ma non la lunghezza dell'ellisse. Come mai?

1.1 UNA DOMANDA BANALE: LA LUNGHEZZA DI UN'ELLISSE

Partiamo col seguente *quiz*: quale delle seguenti tre espressioni è il valore, o una sua *approssimazione*, della lunghezza di un'ellisse di semiassi di lunghezza *a* e *b*?

- a) $L(a,b) = \pi ab$
- b) $L(a,b) \approx \pi(a+b) + 3\pi \frac{(a-b)^2}{10(a+b) + \sqrt{a^2 + 14ab + b^2}}$
- c) $L(a,b) \approx 2\pi a$.

Chiaramente, come abbiamo detto nell'introduzione del capitolo la lunghezza dell'ellisse *non* è una formula nota dagli studi passati e possiamo (per ora) solamente escludere la *prima risposta*, in quanto essa è la formula dell'**area** delimitata dell'ellisse.

OSSERVAZIONE. Possiamo escludere la prima risposta anche per motivi puramente dimensionali: a e b sono, dimensionalmente parlando, due lunghezze, quindi πab deve essere una lunghezza al quadrato, cioè un'area e non può essere una lunghezza!

In realtà, la domanda del quiz è mal posta: le risposte b) e c) sono entrambe corrette. Il matematico indiano Srinivasa Aiyangar Ramanujan fornì come nota a margine non commentata in un suo articolo del 1914 (Ramanujan, «Modular equations and approximations to π ») l'approssimazione b):

$$L(a,b) \approx \pi \left((a+b) + 3 \frac{(a-b)^2}{10(a+b) + \sqrt{a^2 + 14ab + b^2}} \right)$$

Vedremo fra poco che anche l'approssimazione data dalla *a*) è anch'essa lecita. Il motivo per cui diamo approssimazioni ma non formule esatte per la lunghezza dell'ellisse è dovuto al fatto che *non esiste* una formula esplicita in termini di *funzioni elementari*, bensì possiamo esprimerla soltanto come **somma di una serie**.

Teorema 1.1.1. - Lunghezza dell'ellisse di semiassi di lunghezza a e b Siano $a \ge b$ le lunghezze dei semiassi dell'ellisse e $e = e(a,b) = \frac{\sqrt{a^2 - b^2}}{a} \in [0,1)$ l'eccentricità; allora si ha

$$L(a,b) = 2\pi a \sum_{j=0}^{+\infty} \frac{1}{1-2j} \left(\frac{(2j-1)!!}{(2j)!!} e^j \right)^2$$
 (1.1)

dove!! indica il doppio fattoriale:

-(-1)!! = 0!! = 1

$$\forall n \in \mathbb{N} \quad n!! = \begin{cases} n \cdot (n-2) \cdot \dots \cdot 6 \cdot 4 \cdot 4 \cdot 2 \text{ se } n > 0 \text{ è pari} \\ n \cdot (n-2) \cdot \dots \cdot 5 \cdot 3 \cdot 2 \cdot 1 \text{ se } n > 0 \text{ è dipari} \end{cases}$$

Il primo termine della serie fornisce l'approssimazione espressa nella risposta a):

$$L(a,b) \approx 2\pi a$$

1.1.1 La problematica dimostrazione della lunghezza dell'ellisse: la serie di Taylor

Dimostriamo finalmente la lunghezza dell'ellisse. Come è noto dal corso di Analisi 2, per una curva *regolare* come l'ellisse è possibile calcolarne la lunghezza usando un'opportuna parametrizzazione.

[INSERIRE DISEGNO ELLISSE]

Poniamo $a \ge b$ le lunghezze dei semiassi ed $e = \frac{\sqrt{a^2 - b^2}}{a} \in [0, 1)$ l'eccentricità. Una parametrizzazione è

$$\vec{r}(t) = (a \sin t, b \cos t)$$
 $t \in [0, 2\pi]$

Allora

$$L = \int_0^{2\pi} \|\vec{r}''(t)\| dt = \int_0^{2\pi} \|(a\cos t, -b\sin t)\| dt = \int_0^{2\pi} \sqrt{a^2\cos^2 t + b^2\sin^2 t} dt =$$

$$= \int_0^{2\pi} \sqrt{a^2 - (a^2 + b^2)\sin^2 t} dt = a \int_0^{2\pi} \sqrt{1 - e^2\sin^2 t}$$

C'è un problema: la funzione $f(t) = \sqrt{1 - e^2 \sin^2 t}$ non è **elementarmente integrabile**, cioè non ammette primitive in termini di funzioni elementari.

Attenzione! Non essere elementarmente integrabile *non* significa che non sia integrabile! La funzione integranda f(t) è continua su $[0, 2\pi]$, dunque per il *teorema fondamentale del calcolo integrale* ammette primitive su $[0, 2\pi]$. Una di esse è

$$F(t) = \int_0^t \sqrt{1 - e^2 \sin^2 y} \, dy \quad \forall y \in [0, 2\pi]$$

Il problema è che non possiamo riscrivere F in modo esplicito usando solo funzioni elementari.

Questo tipo di integrale è detto integrale ellittico.

DIGRESSIONE. Gli *integrali ellittici* si incontrano in molti ambiti matematici. Ad esempio, appaiono nella risoluzione dell'equazione differenziale del moto di un pendolo semplice:

theta =
$$-\frac{g}{l}\sin\theta$$

Sono il motivo per cui tale equazione si studia spesso per piccole oscillazioni, in modo da poter operare una linearizzazione $\sin\theta \sim \theta$ e calcolare il moto senza passare per tali integrali non calcolabili.

Un altro esempio della loro importanza è noto agli appassionati di Geometria: infatti, la branca della Geometria Algebrica nasce anche dagli studi su tali integrali.

Potremmo limitarci a considerare l'intero integrale ellittico come una nuova funzione, ma al più potremmo calcolarne il valore tramite metodi dell'Analisi Numerica. Invece, proviamo a riscrivere l'integrale utilizzando uno **sviluppo in serie** della funzione integranda.

Poniamo $x = -e^2 \sin^2 t$ e osserviamo che

$$\sqrt{1 - e^2 \sin^2 t} = \sqrt{1 + x} = (1 + x)^{1/2} = (1 + x)^{\alpha}$$
 dove $\alpha = \frac{1}{2}$

Poichè $(1+x)^{\alpha}$ è una funzione di classe \mathscr{C}^{∞} in un intorno di x=0, si può approssimare localmente col **polinomio di Taylor** di ordine n centrato in x=0, $\forall n \geq 0$. Se il polinomio in questione è

$$P_{n,0}(x) = \sum_{j=0}^{n} {\alpha \choose j} x^j \quad \forall n \ge 0$$

 $con {\alpha \choose j}$ il **coefficiente binomiale generalizzato**¹, allora l'approssimazione dell'integranda data dal polinomio di Taylor è proprio

$$(1+x)^{1/2} \approx \sum_{j=0}^{n} {1/2 \choose j} x^j \quad \forall n \ge 0$$

Risostituendo $x = -e^2 \sin^2 t$ abbiamo un'approssimazione dell'integranda. Tuttavia, noi vorremmo un *risultato esatto*.

Sappiamo intuitivamente che più termini si hanno nello sviluppo di Taylor, più accurata

¹Nelle "Note aggiuntive", a pagina XXX è possibile trovare la definizione e le proprietà del binomiale generalizzato.

è l'approssimazione; cosa succede per $n \to \infty$? Dobbiamo studiare la somma di serie

$$\sum_{j=0}^{+\infty} \binom{1/2}{j} x^j$$

Già ci dobbiamo porre nuove domande: la serie *converge* e per quali valori di x? Supponendo che la serie converga per opportuni valori di x, la serie converge proprio a $(1+x)^{1/2}$? In generale, per $f \in \mathcal{C}^{\infty}$ qualsiasi **NO**, la serie di Taylor non converge proprio e se converge non converge ad f! Tuttavia, in questo caso siamo particolarmente fortunati: $\forall x \in (-1,1)$ la serie converge² e vale

$$(1+x)^{\frac{1}{2}} = \sum_{j=0}^{+\infty} {\binom{1/2}{j}} x^j \quad \forall n \ge 0 \quad \forall x \in (-1,1)$$

In questa prima parte della dimostrazione abbiamo capito che è importante determinare quando è possibile passare dalla semplice *approssimazione* di una funzione con il *polinomio di Taylor* a poter riscrivere una funzione come una **serie di Taylor** di funzioni opportune.

1.1.2 La problematica dimostrazione della lunghezza dell'ellisse: passaggio al limite sotto segno di integrale

Torniamo al problema originale. Ricordando che $x = -e^2 \sin^2 t$, poiché $t \in [0, 2\pi]$ si ha che $x \in [-e^2, 0] \subseteq (-1, 1)$ dato che $e^2 < 1$. Possiamo riscrivere l'integranda come il suo sviluppo in *serie di Taylor*:

$$\left(1 - e^2 \sin^2 t\right)^{1/2} = \sum_{j=0}^{+\infty} {1/2 \choose j} \left(-e^2 \sin^2 t\right)^j = \sum_{j=0}^{+\infty} {1/2 \choose j} (-1)^j e^{2j} \sin^{2j} t \quad \forall t \in [0, 2\pi]$$

Sostituiamo nell'integrale; poiché la funzione è pari e simmetrica, possiamo ricondurci a studiare l'integrale su $[0, \pi/2]$:

$$L = a \int_0^{2\pi} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \sum_{j=0}^{+\infty} {1/2 \choose j} (-1)^j e^{2j} \sin^{2j} t dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt = 4a \int_0^{\frac{\pi}{2}} \left(1 - e^2 \sin^2 t\right)^{1/2} dt =$$

Incontriamo un nuovo problema: cos'è l'**integrale di una serie**? Se avessimo una somma di un numero *finito* di termini per la *linearità* dell'integrale potremmo scambiare la sommatoria con l'integrale, ma è possibile farlo nel caso di una serie?

Riscriviamo l'espressione precedente con la definizione di serie come *limite* per $n \to +\infty$ delle *ridotte*:

$$= 4a \int_0^{\frac{\pi}{2}} \lim_{n \to +\infty} \left(\sum_{j=0}^n {\binom{1/2}{j}} (-1)^j e^{2j} \sin^{2j} t \right) dt$$

Il problema precedente si può riformulare come "È possibile scambiare integrale e limite?". Tale questione è come il problema del **passaggio al limite sotto segno di integrale**. In generale, la risposta è **NO**: non è possibile scambiare limite e integrale. Ciò nonostante

²Nelle "Note aggiuntive", a pagina XXX è possibile trovare la dimostrazione di tale convergenza.

anche questa volta siamo particolarmente fortunati e il passaggio è lecito³ e si ha

$$L = 4a \lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} \sum_{j=0}^n \binom{1/2}{j} (-1)^j e^{2j} \sin^{2j} t dt$$

$$= 4a \lim_{n \to +\infty} \sum_{j=0}^n \int_0^{\frac{\pi}{2}} \binom{1/2}{j} (-1)^j e^{2j} \sin^{2j} t dt$$

$$= 4a \sum_{j=0}^{+\infty} \binom{1/2}{j} (-1)^j e^{2j} \int_0^{\frac{\pi}{2}} \sin^{2j} t dt$$

Completando il calcolo dell'integrale⁴ si ottiene la formula della lunghezza scritta precedentemente.

1.2 NON BANALI CONSEGUENZE DI UNA DOMANDA BANALE

Abbiamo finalmente raggiunto una *risposta*, seppur assolutamente non banale, alla domanda che ci eravamo posti originalmente: qual è la *lunghezza dell'ellisse*? Nel far ciò ci siamo imbattuti in tutta una serie di problemi: esplicitare integrali non *elementarmente* risolvibili, la *convergenza* di *serie di Taylor* di funzioni ad una funzione specifica, il *passaggio al limite* sotto segno di *integrale*. La teoria matematica che tratteremo a partire dai capitoli successivi *nasce* proprio da questi problemi apparsi nell'*insidiosa ricerca* di una formula della lunghezza dell'ellisse.

In particolare, per capire quando era possibile il passaggio al limite sotto segno di integrale domanda sono stati sviluppati diversi *teoremi*, più o meno vantaggiosi da utilizzare, le cui ipotesi variano sensibilmente fra di loro: alcuni si inseriscono nella già nota *teoria Riemanniana degli integrali*, mentre altri richiedono ipotesi completamente diverse. È da questi innumerevoli approcci al problema che, storicamente parlando, fu tale quesito a dare un *impeto* fondamentale allo sviluppo della **teoria degli integrali di Lebesgue**.

³Nelle "Note aggiuntive", a pagina XXX è possibile trovare la dimostrazione che in questo caso il passaggio è lecito.

⁴Nelle "Note aggiuntive", a pagina XXX è possibile trovare tale calcolo.

BIBLIOGRAFIA

[Ram14] S. A. Ramanujan. «Modular equations and approximations to π ». In: *Quarter-ly Journal of Mathematics* XLV (1914), pp. 350–372.

Indice analitico

```
coefficiente binomiale
generalizzato, 5
doppio fattoriale, 4
eccentricità, 4
integrale
ellittico, 5
polinomio di Taylor, 5
serie di Taylor, 6
```