Exercício 1) Ordene as funções a seguir por ordem de crescimento, ou seja, coloque as funções da menor para a maior: n, \sqrt{n} , $n^{1.5}$, n^2 , $n \lg n$, $n \lg \lg n$, $n (\lg n)^2$, $n \lg (n^2)$, 2/n, 2^n , $2^{n/2}$, 2^{100} , $n^2 \lg n$ e n^3 .

$$2^{100}$$
, $2/m$, $2^{m/2}$, \sqrt{m} , m , $m \log(\log(m))$, $m \log(m)$, $m \log(m)$, $m \log(m)$, m^2 , m^3 , 2^m

Exercício 2) Suponha duas funções $a(n) = \mathcal{O}(f(n))$ e $b(n) = \mathcal{O}(f(n))$, quais das seguintes afirmações é (são) verdade?

i)
$$a(n) + b(n) = O(f(n))$$
?

ii)
$$\frac{a(n)}{b(n)} = \mathcal{O}(1)$$
?

$$\begin{array}{c} \text{iii) } a(n) = \mathcal{O}(b(n))? \\ \text{II-)} \\ \alpha(m) + b(m) = \mathcal{O}(f(m)) \end{array} \qquad \begin{array}{c} \text{II-)} \\ b(m) \end{array} = \mathcal{O}(1)? \end{array} \qquad \begin{array}{c} \text{II-)} \\ \Rightarrow \\ \text{II-)} \end{array} \qquad \begin{array}{c} \alpha(m) = \mathcal{O}(b(m))? \\ \Rightarrow \\ \text{II-)} \end{array}$$

Exercício 3) Determine a complexidade dos fragmentos de código abaixo, utilizando a notação assintótica \mathcal{O} :

i) int i, soma = 0;
for (i = 0; i < n; i++)
soma++;

$$\rightarrow$$
 terando de 0 a m-2

iii) int i, j, soma = 0;
for (i = 0; i < n; i++)
$$\longrightarrow M$$

for (j = 0; j < n*n; j++) $\searrow M$ $\searrow M$ $\searrow M$ $\searrow M$

iv) int i, j, soma = 0;
for (i = 0; i < n; i++)
for (j = 0; j < i; j++)
soma++;
$$()$$
 $J = 0 \rightarrow L = 0$
 $J = 0 \rightarrow L \Rightarrow 0, J$
 $J = 0 \rightarrow L \Rightarrow 0, J, J, ...$

```
v) int i, j, k, soma = 0;

for (i = 0; i < n; i++) -> m

for (j = 0; j < i*i; j++) -> m<sup>2</sup>

for (k = 0; k < j; k++) -> m<sup>2</sup>

soma++;
```