<u>Семинар 1</u>

(Найти скорость и ускорение, перемещение, путь, уравнение траектории и среднюю путевую скорость материальной точки, зная закон ее движения. Движение материальной точки по окружности: зная закон изменения угла поворота и радиус окружности найти угловую скорость, угловое ускорение, линейную скорость, тангенциальное, нормальное и полное ускорение точки.)

1. Закон движения материальной точки имеет вид

 $\vec{r} = \alpha t \vec{i} + (\beta + \gamma t^2) \vec{j}$ [м], где $\alpha = 5$ м/с, $\beta = 2$ м, $\gamma = 1$ м/с². Найти скорость и ускорение точки в момент времени t_1 =2 с. Определить перемещение точки за вторую секунду движения. Написать уравнение траектории.

Перемещение за вторую секунду $\Delta \vec{r} = \alpha \vec{i} + 2\gamma \vec{j} = 5\vec{i} + 2\vec{j};$ $\Delta r = \sqrt{29} \approx 5.4$ м.

- 2. (1.26) Материальная точка движется так, что координаты зависят от времени по законам x = t(1-t) [м], y = t(1+2t) [м]. В момент времени $t_1 = 1$ с определить ускорение точки и угол между векторами скорости и ускорения.
- **3.** (1.44) Материальная точка движется по закону $\vec{r} = (1 3t + t^2)\vec{\iota}$ [м]. Найти среднюю путевую скорость за три секунды после начала движения.

$$v_{\rm cp} = 1.5 \,{\rm m/c}$$

4. (1.63) Диск радиуса R=0,1 м вращается вокруг закрепленной оси так, что его угол поворота меняется по закону $\varphi = 0.1t^3 - t$ [рад]. Найти нормальное, тангенциальное и полное ускорения точек, лежащих на расстоянии R/4 от края диска в момент времени t = 10c.

$$a_n = \frac{0.09t^2R}{4} = 0.225 \frac{M}{C^2}; \quad a_\tau = \frac{0.6tR}{4} = 0.15 \text{ M/c}^2, \quad a = 0.27 \text{ M/c}^2$$

- **5** (1.29). Координаты частицы зависят от времени по законам $x = Acos(\omega t)$ [м], $y = Acos(2\omega t)$ [м], где A, ω - постоянные. Найти уравнение траектории и зависимости от времени векторов скорости и ускорения.
- **6**. (1.39) Материальная точка движется по закону $\vec{r} = \alpha t^3 \vec{l} + \beta t \vec{l}$ [м], где $\alpha = 0.03$ м/с², β =0,02м/с. Чему будет равен радиус кривизны траектории в момент времени $t_1 = 2$ с?

Д.З. 1.24, 1.25, 1.31, 1.62, 1.64

<u>Семинар 2</u> Динамика поступательного движения.

- (2-й закон Ньютона. Силы в механике. Определение ускорения, скорости и радиус-вектора материальной точки, зная силу, действующую на точку и её массу. Импульс и изменение импульса материальной точки. Закон сохранения импульса.)
- 1. (2.26) Брусок массы m тянут за нить так, что он движется с постоянной скоростью по горизонтальной плоскости с коэффициентом трения μ . Найти угол α , при котором натяжение нити будет наименьшим. Чему оно равно?

$$\mu = tg \propto; \quad T_{min} = \frac{\mu mg}{\sqrt{1 + \mu^2}}$$

2. (2.27) Тело пущено вверх по наклонной плоскости с начальной скоростью v_0 . Коэффициент трения между телом и плоскостью μ . Определить угол α , при котором время подъема минимально, а также это минимальное время.

$$\mu = ctg\alpha; \qquad t = \frac{v_0\sqrt{1+\mu^2}}{g(1+\mu^2)}$$

3. (2.37) Определить закон движения материальной точки массой m, если на нее действует сила $\vec{F}=\alpha \vec{j}+\beta t \vec{k}$, где α , β постоянные и при t=0, $\vec{r}=0$, $\vec{v}=v_0 \vec{\iota}$. $\vec{r}=v_0 t \vec{\iota}+\frac{\propto t^2}{2m} \vec{j}+\frac{\beta t^3}{6m} \vec{k}$

$$\vec{r} = v_0 t \vec{i} + \frac{\propto t^2}{2m} \vec{j} + \frac{\beta t^3}{6m} \vec{k}$$

Импульс. Закон сохранения импульса.

- **4.** Материальная точка массой m = 3 кг, двигаясь равномерно, описывает четверть окружности радиусом R = 2 м в течение времени t = 3 с. Найти изменение импульса точки.
- **5**. (3.54) Материальная точка массой $m_{_1}$ = 2 кг, движущаяся со скоростью $\vec{v}_1 = 3\vec{\iota} + 2\vec{\jmath} - \vec{k}$ [м/с], испытывает неупругое столкновение с материальной точкой массой $m_2 = 3$ кг, имеющей в момент столкновения скорость $\vec{v}_1 = 3\vec{\iota} + 2j - \vec{k}$ [м/с]. Определить скорость и тел после удара.

$$\vec{u} = (2\vec{j} + 2\vec{k}) \text{ M/c}$$

6* (3.18). На материальную точку массой m=1 кг действовала сила, изменяющаяся по закону $\vec{F} = At \vec{i} + (At + Bt^2) \vec{j}$ [H], A = 1H/c, B = 1H/c. В начальный момент времени точка имела скорость $\vec{v} = \alpha \vec{j}$, где $\alpha = 2$ м/с. Определить импульс тела спустя время t = 1 с после начала действия силы.

$$\vec{p} = \frac{1}{2}\vec{i} + \frac{17}{6}\vec{j} \quad [\text{KF} \cdot \text{M/c}]$$

Д.З. 2.11, 2.14, 3.12, 3.59, 3.14

<u>Семинар 3</u> Динамика вращательного движения.

(Расчет момента инерции твердого тела в простейших случаях. Основной закон динамики вращательного движения твердого тела относительно неподвижной оси. Закон сохранения момента импульса.)

1. (4.9)Тонкий однородный стержень длины 3l = 30 см согнут под прямым углом и может вращаться относительно вертикальной оси O_1O_2 . определить момент инерции стержня относительно оси O_1O_2 , если масса единицы длины стержня $m_0=3$ кг/м.

2. (4.19) Найти момент инерции тонкого диска массой m и радиусом R относительно оси, совпадающей с его диаметром

3.(4.23) Маховик в форме сплошного диска имеет массу $m=50~\kappa z$ и радиус R=0,2~m. Маховику сообщили начальную угловую скорость $\omega=160\pi$ рад/с. Под влиянием силы трения, приложенной по касательной к ободу, маховик останавливается. Найти силу трения, если маховик останавливается через время t=50~c.

$$F = \frac{mR\omega_0}{2t}$$

4.(4.29) К точке, радиус-вектор которой относительно начала координат O равен $\vec{r} = a \vec{i} + b \vec{j}$, приложена сила $\vec{F} = A \vec{i} + B \vec{j}$, где a, b, A, B = const. Найти момент \vec{M} силы \vec{F} относительно точки O.

$$\vec{M} = (aB - bA)\vec{k}$$

5. (4.38) Две гири с массами $m_1 = 2$ кг и $m_2 = 1$ кг соединены невесомой и нерастяжимой нитью и перекинуты через блок массой $m_3 = 1$ кг. Найти: 1) ускорение a, с которым движутся гири; 2) натяжения T_1 и T_2 нитей, к которым подвешены гири. Блок считать однородным диском. Трением пренебречь.

$$a = \frac{(m_1 - m_2)g}{m_1 + m_2 + m_3/2} = 2.8 \text{ M/}c^2$$

$$T_1 = \frac{m_1 g(2m_2 + m_3/2)}{m_1 + m_2 + m_3/2} = 14H; \quad T_2 = \frac{m_2 g(2m_1 + m_3/2)}{m_1 + m_2 + m_3/2}$$

6.(4.67) Горизонтальная платформа массой $m_1 = 120$ кг вращается вокруг вертикальной оси, проходящей через центр платформы, делая $n_1 = 8$ об/мин. Человек массой $m_2 = 60$ кг стоит при этом на краю платформы. С какой частотой начнет вращаться платформа, если человек перейдет от края платформы в точку, расположенную от центра платформы на расстоянии половины ее радиуса? Считать платформу круглым однородным диском, а человека - материальной точкой.

$$n_2 = rac{(m_1 + 2m_2)n_1}{m_1 + rac{m_2}{2}} pprox 12,8 \, ext{of/мин}$$

Д.З. 4.11, 4.21, 4.22, 4.28, 4.45, 4.36

Семинар 4-5

Работа. Энергия. Законы сохранения в механике

(Работа постоянной и переменной силы. Связь силы и потенциальной энергии. Кинетическая энергия поступательного и вращательного движений твердого тела. Закон сохранения механической энергии.)

1.(3.20) Материальная точка массой m=2 кг двигалась под действием некоторой силы, направленной вдоль оси OX, по закону $x=\alpha+\beta t+\gamma t^2$, где $\alpha=3$ м, $\beta=2$ м/с 2 , $\gamma=1$ м/с. Определить работу этой силы за первые 2 с.

$$A = 32 \, \text{Дж}$$

2.(3.28) Частице массой m=1 $\kappa 2$ сообщили начальную скорость и она начинает двигаться по шероховатой горизонтальной поверхности, причем коэффициент трения μ ее об эту поверхность линейно зависит от координаты x: $\mu = \alpha x$, где $\alpha = 10^{-3}$ м⁻¹. Какую работу совершит сила трения к моменту, когда частица будет иметь координату x=5 м?

$$A = -\frac{\alpha mgx^2}{2}$$

- 3.(4.25). С наклонной плоскости, составляющей с горизонтом угол α = 30° , скатывается обруч. Длина наклонной плоскости l=4 м. Найти скорость обруча в конце наклонной плоскости.
- **4**. (3.25). Потенциальная энергия частицы имеет вид $U = \alpha(x^2/y y^2/z)$ [Дж], где $\alpha = \text{const.}$ Определить: силу, действующую на частицу; работу A, совершаемую над частицей силами поля при переходе частицы из точки $M_1 = \{3, 2, 1\}$ [м], в точку $M_2 = \{1, 2, 3\}$ [м].
- **5**.(4.37). Тонкий однородный стержень массы m=1 кг и длины l=1 м падает без начальной скорости из вертикального положения в горизонтальное. Найти момент импульса стержня, когда он составляет с вертикалью угол $\beta=60$ °.

$$l = \frac{L}{\sqrt{3}}$$

6.(4.61) Тонкий стержень массой m и длиной L подвешен за один конец и может вращаться без трения вокруг горизонтальной оси. К той же оси подвешен на нити длиной l шарик такой же массы m. Шарик отклоняется на некоторый угол и отпускается. При какой длине нити шарик после удара о стержень остановится? Считать удар абсолютно упругим.

$$L = ml\sqrt{gl(1-\cos\beta)/3} \approx 1.3 \text{ кг} \cdot \text{м}^2/\text{c}$$

7. Однородный тонкий стержень длиной L=1 м может свободно вращаться относительно горизонтальной оси, проходящей вблизи его торца. Стержень отклонили от положения равновесия на угол $\alpha=\pi/3$ и отпустили. Определить угловую скорость стержня и скорость его центра масс C в момент прохождения им положения равновесия.

$$\omega = \sqrt{3g/2L} = 3.83 \text{ рад/c}, \ \ v = \sqrt{3gL/8} = 1.92 \text{ м/c}$$

Д.З. 3.26, 3.29, 3.31, 4.57, 4.68, 4.70

Семинар 6

Механические колебания.

(Гармонические колебания. Маятники. Энергия точки, совершающей гармоническое колебание. Спожение колебаний.)

- **1**.(6.14) Точка совершает гармонические колебания по закону синуса. Максимальное смещение точки A=100 см, максимальная скорость $v_{max}=20$ см/с. Записать дифференциальное уравнение гармонических колебаний, его решение и найти максимальное ускорение точки.
- 2. (6.61) На горизонтальной пружине жесткостью k=800 Н/м укреплено тело массой M=4 кг, лежащее на гладкой горизонтальной поверхности. Другой конец пружины прикреплён к вертикальной стене. Пуля, массой m=10 г, летящая с горизонтальной скоростью v_0 = 600 м/с, попадает в тело и застревает в нем. Пренебрегая массой пружины и сопротивлением воздуха, определить: 1) амплитуду колебаний тела, 2) период колебаний тела.

- 3. Получить формулу периода колебаний математического маятника (из закона динамики вращательного движения).
- **4**.(6.64) На стержень длиной l=30 см укрепили грузика один в середине стержня, другой на одном из его концов. Стержень с грузиками колеблется около горизонтальной оси, проходящей через свободный конец стержня. Определить приведенную длину l_{np} и период T колебаний такой системы. Массой стержня пренебречь
- **5**. Точка совершает гармонические колебания, уравнения которых имеет вид $x = 5 \sin(2t)$ см. В момент, когда возвращающая сила впервые достигла значения F = 5мкH, точка обладала потенциальной энергией 10 мкДж. Найти этот момент времени и соответствующую ему фазу колебаний.

$$t$$
=0,463 с, φ =0,927 рад.

6. (6.42) Найти графически амплитуду колебаний, которые возникают при сложении следующих колебаний одного направления.

$$x_1 = 3\cos(\omega t + \pi/3), \qquad x_2 = 5\sin(\omega t + \pi/6)$$

Д.З. 6.24, 6.27, 6.33, 6.55, 6.71

Семинар 7

CTO

(Поступаты ТО. Преобразования Лоренца, следствия из преобразований Лоренца. Релятивистская масса, связь энергии и импульса)

1.(7.14) Найти собственную длину стержня, если в лабораторной системе отсчета его скорость v = c/2, длина l = 1 м, угол между ним и направлением движения $\alpha = 45^{\circ}$.

$$l_0 = l\sqrt{\frac{(1-\beta^2 \sin^2 \alpha)}{(1-\beta^2)}} = 1,08$$
 м, где $\beta = v/c$;

- 2.(7.8) Мезон, входящий в состав космических лучей, движется со скоростью, составляющей 95% скорости света. Какой промежуток времени $\Delta \tau$ по часам неподвижного наблюдателя соответствует одной секунде "собственного времени" мезона? $\Delta \tau = 3.2 \ {
 m c}$
- **3**. (7.33) Масса движущегося протона в 1,5 раза больше его массы покоя. Определить полную E и кинетическую T энергии этого протона.

$$E = 1410 \text{ M} \cdot \text{B}; T = 470 \text{ M} \cdot \text{B}$$

Контрольная работа на 45 мин (3 задачи по теме «Механика»)

Семинар 8

Уравнение состояния идеального газа

- **1.** (1.42) Из баллона выпустили $\Delta m = 2$ г идеального газа, в результате чего давление уменьшилось на $\alpha = 10\%$. Определить объем баллона, если вначале плотность газа была равна $\rho = 2 \cdot 10^{-4} \, \text{г/см}^3$. Температура газа постоянна.
- **2**. Газ массой 12 г занимает объём 4л при температуре 70С. После нагревания газа при постоянном давлении его плотность стала равной 0,6 кг/м3. До какой температуры нагрели газ.
- 3. Внутри закрытого с обоих торцов горизонтального цилиндра находится в равновесии тонкий поршень. С одной стороны поршня находится 2г водорода (µ₁ =0,002кг/моль), с другой 14г азота (µ₂=0,028кг/моль). Какую часть объёма цилиндра занимает азот, если температуры газов одинаковы?

$$\propto = \frac{m_2 \mu_1}{m_1 \mu_2 + m_2 \mu_1} = \frac{1}{3}$$

4. (1.76) В баллоне объемом V = 7,5 л при температуре T = 300 К находится смесь газов: $v_1 = 0,1$ моля кислорода ($\mu_1 = 0,032$ кг/моль), $v_2 = 0,2$ моля азота ($\mu_2 = 0,028$ кг/моль) и $v_3 = 0,3$ моля углекислого газа ($\mu_3 = 0,044$ кг/моль). Считая газы идеальными, определить: 1) давление смеси; 2) молярную массу смеси.

P=0,2 MΠa;
$$\mu = \frac{\nu_1 \mu_1 + \nu_2 \mu_2 + \nu_3 \mu_3}{\nu_1 + \nu_2 + \nu_3}$$

- **5.** (1.61) Идеальный газ сначала изотермически сжимают в k=4 раза, а затем изобарически расширяют в n=3 раза. Построить этот процесс на $P-V,\,P-T$ и V-T диаграммах
- **6**. (1.64) Идеальный газ, находящийся при температуре $t_1 = 127^{\circ}$ С и давлении $P_1 = 4 \cdot 10^5$ Па, занимает первоначально объем $V_1 = 2$ л. Этот газ изотермически сжимают, затем изохорически охлаждают до температуры $t_3 = -73^{\circ}$ С и далее изотермически доводят его объем до $V_4 = 1$ л. Определить установившееся давление P_4 газа.
- 7. (1.65) В вертикальном сосуде под поршнем находится m=1 г азота. Площадь поршня $S=10~\text{см}^2$, масса поршня M=1~кг. Азот нагревают на T=10~K. На сколько при этом поднимется поршень? Давление над поршнем нормальное $P_0=10^5~\text{Па}$. Молярная масса азота $=0{,}028~\text{кг/моль}$. Трением пренебречь.
- **8**. (1.83) В сосуде находится идеальный двухатомный газ. При увеличении температуры в n=3 раза давление увеличилось в k=3,15 раза. Сколько процентов молекул от их первоначального количества распалось на атомы?

Семинары 9-10

Распределение Максвелла. Распределение Больцмана

1. (4.19) Найти температуру азота (μ =0,028кг/моль), при которой скоростям молекул v_1 =300 м/с и v_2 =600 м/с соответствуют одинаковые значения функции распределения по модулю скорости.

$$T = \frac{\mu(v_2^2 - v_1^2)}{4R \ln(v_2/v_1)} = 328 \text{ K}$$

2. (4.21) Определить скорость молекул идеального газа, при которой значение функции распределения по модулю скорости для температуры T_0 будет таким же, как и для температуры в η раз больше. Молярная масса газа μ .

$$v = \sqrt{\frac{3RT_0}{\mu} \cdot ln(\eta) \frac{\eta}{\eta - 1}}$$

3. (4.57) Какая часть молекул воздуха при температуре $t=17^{\circ}$ C обладает скоростями, отличающимися не более чем на $\Delta v=\pm0.5$ м/с от наиболее вероятной скорости $v_{\rm B}$? Молярная масса воздуха $29\cdot10^{-3}$ кг/моль.

$$\frac{\Delta N}{N} = 8 \sqrt{\frac{2\mu}{\pi RT}} e^{-1} \cdot |\Delta v| = 4,07 \cdot 10^{-3}$$

- **4.** Распределение вероятностей значений некоторой величины х описывается функцией f=Ax(a-x) при 0 < x < a. Вне этого интервала f=0. Здесь A и a постоянные. Считая, что a задано, найти: a) наиболее вероятное значение x и соответствующее значение функции f; б) средние значения x и x^2 .
- **5.** (**4.34**) Рассчитать среднее значение обратной скорости молекул кислорода при температуре t = 50°C и сравнить полученную величину с величиной, обратной средней арифметической скорости для этого газа. Молярная масса кислорода = $32 \cdot 10^{-3}$ кг/моль.
- **6. (4.41)** Используя функцию распределения Максвелла по импульсам, найти наиболее вероятное значение импульса p_B для молекул азота при температуре $t=10^{\circ}C$. Молярная масса азота $=28\cdot10^{-3}$ кг/моль.
- 7. (4.86) На какой высоте h над уровнем моря плотность воздуха уменьшится: а) в 2 раза; б) в е раз? Считать, что температура воздуха T и ускорение свободного падения g не зависят от высоты h. Молярная масса воздуха μ = 29 ·10⁻³ кг/моль, температура T = 273К.

Домашнее задание

- 1. (4.14) Найти среднюю арифметическую, среднюю квадратичную и наиболее вероятную скорости молекул идеального газа, у которого при давлении P=300 мм. рт. ст. плотность $\rho=0.3~{\rm kr/m}^3$.
- 2. (4.15) Определить температуру водорода, при которой средняя квадратичная скорость молекул больше их наиболее вероятной скорости на $\Delta v = 400$ м/с. Найти среднюю арифметическую скорость молекул водорода при этой температуре. Молярная масса водорода = $2 \cdot 10 3$ кг/моль.

- 3. (4.22) Смесь азота (μ_1 =28 г/моль) и кислорода (μ_2 =32 г/моль) находится при температуре t=100°C. При каком значении скоростей молекул, значения функции распределения по модулю скорости f(v) будут одинаковы для обоих газов.
- 4. (4.60) В сосуде находится идеальный газ в количестве 2 моля. Определить число молекул газа, скорости которых меньше, чем $0.01~v_{\rm B}$ ($v_{\rm B}$ наиболее вероятная скорость молекул).

Семинар 11

Первое начало термодинамики. Изопроцессы в газах. Адиабатический процесс. Теплоемкость. Второе начало термодинамики. Энтропия. Циклы.

1. (2.18) Определить изменение внутренней энергии идеального одноатомного газа в процессе, изображённом на рисунке. $P_0=0,1$ МПа, $V_0=2\pi$.

$$\Delta U = 5.25 P_0 V_0 = 1.05 кДж$$

2. (2.29) Определить работу ν молей идеального одноатомного газа при расширении от объема V_1 до объема V_2 в процессе, при котором температура изменяется по закону $T=\alpha V^2$, где α - положительная постоянная.

$$A = \frac{\alpha}{2} \nu R (V_2^2 - V_1^2)$$

3. (2.37) Азот (μ =0,028кг/моль) массой 2г, имевший температуру 300 K, был адиабатически сжат так, что его объём уменьшился в n=10 раз. Определите конечную температуру газа и работу сжатия.

$$T_2=T_1 n^{\gamma-1}=754$$
 К; $A=rac{5}{2}rac{m}{\mu}R(T_2-T_1)=674$ Дж; где $\gamma=1.4$

4. (2.39) Некоторую массу водорода сжали в = 5 раз (по объему) один раз адиабатически, другой раз изотермически. Начальные давление, объем и температура газа в обоих случаях одинаковы. Найти отношение соответствующих работ, затраченных на сжатие.

$$\frac{A_2}{A_1} = \frac{\eta^{\gamma - 1} - 1}{(\gamma - 1)\ln\eta} = 1,4;$$
 где $\gamma = 1,4$

5. (2.43) Азот массой m=5 кг нагрели на T=150 К при постоянном объеме. Определить количество теплоты Q, сообщенное газу; изменение внутренней энергии U; совершенную газом работу A. Молярная масса азота =0,028 кг/моль.

$$A = 0$$
; $\Delta U = Q = 556$ кДж

6. Один моль некоторого идеального газа изобарически нагрели на ΔT =72 K, сообщив ему количество тепла Q=1,6 кДж. Найти совершенную газом работу, приращение его внутренней энергии и величину $\gamma = c_p/c_v$

Домашнее задание

1. (2.27) Некоторый идеальный газ расширяется от объёма V_1 =1л до объёма V_2 =11 л. Давление при этом изменяется по закону P= αV , где α =4 $\Pi a/m^3$. Определить работу, совершаемую газом.

$$A = \frac{\alpha}{2}R(V_2^2 - V_1^2) = 2.4 \cdot 10^{-4}$$
Дж

2. (2.40) Некоторое количество идеального газа с трёхатомными жесткими молекулами перешло адиабатически из состояния с температурой T_1 =280 К в состояние, характеризуемое значениями параметров T_2 =320 К, P_2 =2·10⁵ Па, V_2 =50 л. Какую работу совершил газ при этом?

$$A = -3P_2V_2\left(1 - \frac{T_1}{T_2}\right)$$
=-3,75 кДж

3. (2.47) Азот нагревался при постоянном давлении, причем ему было сообщено количество теплоты Q=21 кДж. Определить работу A, которую совершил при этом газ, и изменение его внутренней энергии U.

$$A = \frac{2Q}{7} = 6$$
 кДж; $\Delta U = \frac{5Q}{7} = 15$ Дж

4. Азот массой m=200 г расширяется изотермически при температуре T=280 K, причем объем газа увеличивается в два раза. Найти: а) изменение ΔU внутренней энергии газа; б) совершенную при расширении газа работу A; в) количество теплоты Q, полученное газом. Молярная масса азота $\mu = 28 \cdot 10^{-3}$ кг/моль.

а)
$$\Delta U = 0$$
; б) $A = 11.6 \text{ кДж}$; в) $Q = 11.6 \text{ кДж}$

5. (2.69) Каковы удельные теплоёмкости при постоянном объёме и при постоянном давлении смеси газов, содержащей кислород (μ_1 =0,032кг/моль) массой m_1 =10г и азот (μ_2 =0,028кг/моль) массой m_2 =20г?

$$(\mu_2=0,028$$
кг/моль) массой $m_2=20$ г?
$$c_V^{yд}=\frac{5R(m_1\mu_2+m_2\mu_1)}{2\mu_1\mu_2(m_1+m_2)}=711~\text{Дж/(кг}\cdot\text{K)}; \quad c_P^{yд}=1~\text{кДж/(кг}\cdot\text{K)}$$

Семинар 9

Второй закон термодинамики. Энтропия. Циклы.

1. (3.68) Найти изменение ΔS энтропии азота массой m=4 г при изобарическом расширении от объема $V_1=5$ л до объема $V_2=9$ л. Молярная масса азота $=28\cdot 10^{-3}$ кг/моль.

$$\Delta S = \frac{m}{\mu} \frac{7}{2} R ln \left(\frac{V_2}{V_1} \right) = 1,74$$
 Дж/К

- 2. Во сколько раз следует увеличить изотермически объем v=4 моля идеального газа, чтобы его энтропия испытала приращение $\Delta S=23~\text{Дж/K}$?
- 3. Два моля идеального газа сначала изохорически охладили, а затем изобарически расширили так, чтобы температура газа стала равна первоначальной. Найти приращение энтропии газа, если его давление в данном процессе изменилось в 3,3 раза.
- 4. Кусок меди массой m_1 =300г при температуре t_1 =97° С поместили в калориметр, где находится вода массой m_2 =100г при температуре t_2 = 7° С. Найти приращение энтропии системы к моменту выравнивания температур. Теплоемкостью калориметра пренебречь.
- 5. Найти КПД цикла Карно, если при адиабатическом расширении: 1) объем газа увеличивается в 2 раза; 2) давление уменьшается в 2 раза.

- 6. Изобразить для идеального газа примерные графики изохорического, изобарического, изотермического и адиабатического процессов на диаграммах (S,T); (S,V); (S,p).
- 7. Одноатомный идеальный газ совершает цикл, изображённый на рисунке. Найти КПД цикла, если в процессе 2-3 давление газа уменьшается в два раза.

Домашнее задание

- 1. (3.60) В результате изохорического нагревания водорода массой m=1 г давление газа увеличилось в n=2 раза. Определить изменение энтропии газа. Молярная масса водорода $=2\cdot 10^{-3}$ кг/моль.
- 2. Гелий массы m=1,7 г адиабатически расширили в 3 раза и затем изобарически сжали до первоначального объема. Найти приращение энтропии газа в этом процессе.
- 3. Найти приращение энтропии при превращении m=200г льда, находившегося при температуре 10.7° С в воду при 0° С.
- 4. Идеальный газ с показателем адиабаты γ, совершает цикл, изображенный на рисунке. Найти КПД этого цикла.

Семинар 13

Явления переноса

Контрольная работа на 45 мин