Capítulo 5.

Teorema 5.3.1 (Universalidade da Uniforme): Seja F uma CDF, uma função contínua e estritramente crescente no suporte da distribuição. Isto garante que a função inversa F^{-1} existe e é única, onde $F^{-1}:(0,1)\to\mathbb{R}$. Os seguintes resultados valem:

- 1. Seja $U \sim \text{Unif}(0,1)$ e $X = F^{-1}(U)$. Então, X é uma v.a. com CDF F.
- 2. Seja X uma v.a. com CDF F. Então, $F(X) \sim \text{Unif}(0,1)$.

Prova:

1. Tomando $X = F^{-1}(U)$, temos que

$$P(X \leq x) = P\big(F^{-1}(U) \leq x\big) = P(U \leq F(x)) = F(x).$$

2. Seja U = F(X), então

$$P(U \le u) = P(F(X) \le u) = P(X \le F^{-1}(u)) = F(F^{-1}(u)) = u.$$

Teorema (Propriedades da Normal): Seja $Z \sim N(0,1)$ com PDF $\varphi(z)$ e CDF $\Phi(z)$. Então, as seguintes propriedades valem:

- Simetria: $\varphi(z) = \varphi(-z)$
- Simetria das caudas: $\Phi(z) = 1 \Phi(-z)$
- Simetria entre Z e -Z: $\Phi_{-Z}(z) = \Phi_{Z}(z)$

Prova:

- A simetria é trivial, pois $\varphi(z)=\left(\frac{1}{\sqrt{2\pi}}\right)e^{-\frac{z^2}{2}}=\left(\frac{1}{\sqrt{2\pi}}\right)e^{-\frac{(-z)^2}{2}}=\varphi(-z).$
- A simetria das caudas é dada por $\Phi(z)=\int_{-\infty}^z \varphi(t)dt=\int_{-\infty}^z \varphi(-t)dt=-\int_{-\infty}^{-z} \varphi(u)du=\int_{-\infty}^z \varphi(u)du=1-\int_{-\infty}^{-z} \varphi(u)du=1-\Phi(-z).$

Definição 5.5.2 (Propriedade da não memória): Dizemos que uma v.a. X tem a propriedade da não memória se, para todo s,t>0, vale

$$P(X > s + t \mid X > s) = P(X > t)$$

Note que se $X \sim \text{Expo}(\lambda)$, então X tem a propriedade da não memória. Pois

$$P(X > s + t \mid X > s) = \frac{P((X > s + t) \cap (X > s))}{P(X > s)} = \frac{P(X > s + t)}{P(X > s)} = \frac{e^{-\lambda(s + t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X > t)$$

Teorema 5.5.3: Se X é uma v.a. contínua positiva com a propriedade da não memória, então X é uma v.a. exponencial.

Prova 1: Seja F a CDF de X e G(x)=P(X>x)=1-F(x). Pela propriedade da não memória, temos

$$G(s+t) = G(s)G(t)$$

pois $G(s+t)=P(X>s+t)=P(X>s+t\mid X>s)P(X>s)=P(X>t)P(X>s)=G(t)G(s)$, a segunda igualdade decorre da lei da probabilidade total e de que $P(X>s+t\mid X\leq s)=0$. Diferenciando em relação a s, temos

$$G'(s+t) = G'(s)G(t)$$

e quando s=0

$$G'(t) = G'(0)G(t)$$

resolvendo a equação diferencial, temos

$$G(t) = Ke^{-\lambda t}$$

onde
$$\lambda = -G'(0)$$
, e $K = G(0) = 1$. Portanto, $X \sim \text{Expo}(\lambda)$.

Prova 2: Usando o resultado da **prova 1**: G(s+t)=G(s)G(t), podemos mostrar que G é uma função exponencial. Note que G(0)=1, pois

$$G(0) = G(0+0) = G(0)G(0) = G(0)^{2}$$

E se G(0) = 0, então G(t) = 0 para todo t, o que é absurdo, pois G(t) = P(X > t). Portanto, G(0) = 1. Podemos encontrar G(2) da seguinte forma

$$G(2) = G(1+1) = G(1)G(1) = G(1)^{2}$$

De forma similar G(3) é

$$G(3) = G(1+2) = G(1)G(2) = G(1)G(1)^2 = G(1)^3$$

podemos provar por indução que $G(n) = G(1)^n$, para n inteiro positivo da seguinte forma

$$G(n) = G(1)^n$$

$$G(n+1) = G(n)G(1) = G(1)^n G(1) = G(1)^{n+1}.$$

Queremos estender essa propriedade para n racional, para isso observe que

$$G(1) = G\left(\underbrace{\frac{1}{n} + \dots + \frac{1}{n}}_{\text{n termos}}\right),$$

então

$$G(1) = G\left(\frac{1}{n}\right)G\left(\frac{1}{n}\right)...G\left(\frac{1}{n}\right) = G\left(\frac{1}{n}\right)^n$$

e portanto

$$G\left(\frac{1}{n}\right) = G(1)^{\frac{1}{n}}$$

e para m inteiro positivo, temos

$$G\left(\frac{m}{n}\right) = G\left(\underbrace{\frac{1}{n} + \ldots + \frac{1}{n}}_{\text{m termos}}\right) = G\left(\frac{1}{n}\right) \ldots G\left(\frac{1}{n}\right) = G\left(\frac{1}{n}\right)^m = G(1)^{\frac{m}{n}}$$

A extensão para x real positivo vem com a pré requesito de um entendimento de análise real, portanto não será feito aqui. Portanto, $G(x) = G(1)^x$. Por fim, observe que

$$G(x) = G(1)^x = e^{\ln(G(1)^x)} = e^{x\ln(G(1))}$$

Chamando $\lambda = -\ln(G(1))$, temos que $G(x) = e^{-\lambda x}$, ou seja, $X \sim \text{Expo}(\lambda)$.

Capítulo 6.

Teorema 6.1.4 (Caiu no teste uma parte): Seja X uma v.a. com média μ e mediana m. Então

- O valor c que minimiza $E(X-t)^2$ é $t=\mu$.
- O valor c que minimiza E|X-t| é t=m.

Prova: Seja $f(t)=E(X-t)^2=E\big(X^2-2Xt+t^2\big)=E\big(X^2\big)-2tE(X)+t^2$. Derivando em relação a t, temos

$$f'(t) = -2E(X) + 2t$$

e igualando a zero concluímos que

$$-2E(X) + 2t = 0 \Rightarrow t = E(X) = \mu.$$

E esse ponto é de mínimo, pois f''(t)=2>0, ou por conta da função ser uma parábola para cima.

Já para f(t) = E|X - t|, não podemos derivar diretamente. Portanto, vamos provar que $E|X - t| \ge E|X - m|$ para todo t. Podemos simplificar o problema da seguinte maneira

$$E|X-t| \ge E|X-m| \Longrightarrow E(|X-t|-|X-m|) \ge 0.$$

Assuma que t > m (o caso t < m é similar). Então, para $X \le m$ temos

$$|X - t| - |X - m| = -(X - t) - (m - X) = t - m,$$

e se X > m temos

$$|X - t| - |X - m| = X - t - (X - m) = m - t.$$

Seja Y = |X - t| - |X - m|, então, pela lei da esperança total, temos

$$\begin{split} E(Y) &= E(Y \mid X \leq m) P(X \leq m) + E(Y \mid X > m) P(X > m) \\ &= E(t-m \mid X \leq m) P(X \leq m) + E(m-t \mid X > m) P(X > m) \\ &= (t-m) P(X \leq m) + (m-t) P(X > m) \\ &= (t-m) P(X \leq m) - (t-m) (1 - P(X \leq m)) \\ &= 2(t-m) P(X \leq m) - (t-m) = (t-m) (2P(X \leq m) - 1). \end{split}$$

Como $P(X \le m) \ge \frac{1}{2}$, temos que $2P(X \le m) - 1 \ge 0$, e portanto $E(Y) \ge 0$. Concluindo que $E|X-t| \ge E|X-m|$ para todo t.

Capítulo 7.

Teorema 7.1.20: Seja f_{xy} a PDF conjunta de X e Y tal que

$$f_{xy}(x,y) = g(x)h(y)$$

para todo x e y, onde g(x) e h(y) são funções não negativas. Então X e Y são independentes. Se g ou h for uma PDF válida, então a outra também é, e a PDF conjunta é o produto das marginais.

Prova: defina

$$c = \int_{-\infty}^{\infty} h(y) dy > 0$$

podemos reescrever a PDF conjunta como

$$f_{xy}(x,y) = g(x)h(y) = cg(x)\frac{h(y)}{c}$$

então a PDF marginal de X é

$$f_X = \int_{-\infty}^{\infty} f_{xy}(x,y) dy = \int_{-\infty}^{\infty} cg(x) \frac{h(y)}{c} dy = cg(x) \int_{-\infty}^{\infty} \frac{h(y)}{c} dy = cg(x).$$

Segue que $\int_{-\infty}^{\infty}g(x)dx=1$ já que f_X é uma PDF válida. Analogamente, $\frac{h(y)}{c}$ é a PDf marginal de Y. Portanto, cg(x) e $\frac{h(y)}{c}$ são PDFs válidas, o que conclui que X e Y são independentes. \square

Teorema 7.3.2 (independente implica corr = 0): Sejam X e Y v.a. independentes. Então, corr(X,Y)=0.

Prova: Como a fórmula da correlação é

$$corr(X, Y) = \frac{cov(X, Y)}{\sqrt{var(X)var(Y)}}$$

Basta mostrar que a covariância é zero. Como X e Y são independentes, temos que

$$cov(X, Y) = E(XY) - E(X)E(Y) = E(X)E(Y) - E(X)E(Y) = 0$$

e a prova de que E(XY) = E(X)E(Y) é, no caso contínuo,

$$\begin{split} E(XY) &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{xy}(x,y) dx dy \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f_{X(x)} f_{Y(y)} dx dy \\ &= \int_{-\infty}^{\infty} x f_{X(x)} dx \int_{-\infty}^{\infty} y f_{Y(y)} dy = E(X) E(Y) \end{split}$$

E no caso discreto

$$\begin{split} E(XY) &= \sum_x \sum_y xy f_{xy}(x,y) \\ &= \sum_x \sum_y xy f_{X(x)} f_{Y(y)} \\ &= \sum_x x f_{X(x)} \sum_y y f_{Y(y)} = E(X) E(Y) \end{split}$$

Observação: A recíproca não é verdadeira, ou seja, corr(X, Y) = 0 não implica independência.

Teorema 7.5.2: Dentro de uma distribuição normal multivariada (MVN), não correlacionadas implica independência. Ou seja, se $\boldsymbol{X} \sim (\boldsymbol{X}_1, \boldsymbol{X}_2)$, onde \boldsymbol{X}_1 e \boldsymbol{X}_2 são subvetores de \boldsymbol{X} , e $\operatorname{corr}(\boldsymbol{X}_1, \boldsymbol{X}_2) = 0$, então \boldsymbol{X}_1 e \boldsymbol{X}_2 são independentes.

Prova: A prova será feita para o caso bivariado, onde a prova em maiores dimensões é análoga. Seja $\boldsymbol{X}=(X,Y)$, onde W=sX+tY é uma normal univariada para todo s,t. Lembrando que a MGF de uma normal é

$$M_W(t_1,...,t_n) = \exp \biggl(t_1 E(X_1) + ... + t_k E(X_k) + \frac{1}{2} \operatorname{Var}(t_1 X_1 + ... + t_k X_k) \biggr)$$

Então, a MGF de W é

$$M_W(s,t) = \exp\biggl(sE(X) + tE(Y) + \frac{1}{2}\operatorname{Var}(sX + tY)\biggr)$$

Chamando $E(X)=\mu_X,\, E(Y)=\mu_Y,\, \mathrm{Var}(X)=\sigma_X^2,\, \mathrm{Var}(Y)=\sigma_Y^2$ e corr $(X,Y)=\rho,$ temos

$$M_W(s,t) = \exp\biggl(s\mu_X + t\mu_Y + \frac{1}{2}\bigl(s^2\sigma_X^2 + t^2\sigma_Y^2 + 2st\rho\bigr)\biggr)$$

Se $\rho = 0$, então

$$\begin{split} M_W(s,t) &= \exp \biggl(s \mu_X + t \mu_Y + \frac{1}{2} \bigl(s^2 \sigma_X^2 + t^2 \sigma_Y^2 \bigr) \biggr) \\ &= \exp \biggl(s \mu_X + \frac{1}{2} s^2 \sigma_X^2 \biggr) \exp \biggl(t \mu_Y + \frac{1}{2} t^2 \sigma_Y^2 \biggr) \end{split}$$

Porém isto é a MGF de X e Y separadamente, o que implica que X e Y são independentes. Portanto, corr(X,Y)=0 implica independência (em multivariadas)

Capítulo 8.

Teorema 8.2.1 (Convolução): Sejam X e Y v.a.s independentes discretas, então a PMF da sua soma T = X + Y é

$$P(T=t) = \sum_{x} P(Y=t-x) P(X=x)$$

$$P(T=t) = \sum_{y} P(X=t-y) P(Y=y)$$

E para o caso contínuo, a PDF da soma é

$$f_{T(t)} = \int_{-\infty}^{\infty} f_Y(t-x) f_X(x) dx$$

$$f_{T(t)} = \int_{-\infty}^{\infty} f_X(t-y) f_Y(y) dy$$

Prova: Para o caso discreto, temos

$$P(T=t) = P(X+Y=t) \stackrel{\text{LOTP}}{=} \sum_{x} P(X+Y=t|X=x)P(X=x)$$
$$= \sum_{x} P(Y=t-x|X=x)P(X=x)$$
$$= \sum_{x} P(Y=t-x)P(X=x)$$

De forma análoga, pode-se provar para $P(T=t) = \sum_y P(X=t-y)P(Y=y)$.

Note que a terceira igualdade é verdadeira pois X e Y são independentes. Para o caso contínuo:

$$\begin{split} f_{T(t)} &= P(T \leq t) = P(X + Y \leq t) \\ &\stackrel{\text{LOTP}}{=} \int_{-\infty}^{\infty} P(X + Y \leq t | X = x) f_X(x) dx \\ &= \int_{-\infty}^{\infty} P(Y \leq t - x) f_X(x) dx \\ &= \int_{-\infty}^{\infty} f_Y(t - x) f_X(x) dx \end{split}$$

Analogamente para $f_{T(t)} = \int_{-\infty}^{\infty} f_X(t-y) f_Y(y) dy$.

Teorema 8.4.3 (Gamma = soma expo): Sejam $X_1,...,X_n$ v.a.s independentes com $X_i \sim \text{Expo}(\lambda)$. Então

$$X_1+\ldots+X_2\sim \mathrm{Gamma}(n,\lambda)$$

 $\mathbf{Prova} \colon \mathbf{A} \ \mathrm{MGF} \ \mathrm{de} \ X_i \ \mathrm{\acute{e}} \ M(t) = \frac{\lambda}{\lambda - t},$ então a MGF da soma é

$$M_{X_1+\ldots+X_n}(t)=M_{X_1}(t)\times\ldots\times M_{X_n}(t)=\left(\frac{\lambda}{\lambda-t}\right)^n$$

Para $t < \lambda$. Seja $Y \sim \operatorname{Gamma}(n, \lambda)$, então a MGF de Y é

$$\begin{split} M_Y(t) &= E(e^{tY}) = \int_0^\infty \frac{1}{\Gamma(n)} e^{ty} (\lambda y)^n e^{-\lambda y} \frac{dy}{y} \\ &= \lambda^n \int_0^\infty \frac{1}{\Gamma(n)} y^n e^{-(\lambda - t)y} \frac{dy}{y} \\ &= \frac{\lambda^n}{(\lambda - t)^n} \int_0^\infty \frac{1}{\Gamma(n)} ((\lambda - t)y)^n e^{-(\lambda - t)y} \frac{dy}{y} \\ &= \frac{\lambda^n}{(\lambda - t)^n} \end{split}$$

Na segunda igualdade apenas foi retirado o λ^n da integral. E na terceira foi multiplicado e dividido por $(\lambda-t)^n$ e nota-se que a integral restante é a PDF de uma v.a. $\operatorname{Gamma}(n,\lambda-t).$ Portanto, comos as MGFs são iguais, temos que $X_1+\ldots+X_n\sim\operatorname{Gamma}(n,\lambda).$ $\hfill \square$

Capítulo 9.

Teorema 9.1.5 (lei da esperança total): Seja $A_1,...,A_n$ uma partição do espaço amostral, onde $P(A_i)>0$ para todo i, e X uma v.a. Então

$$E(X) = \sum_{i=1}^{n} E(X|A_i)P(A_i)$$

Prova: Pelo Teorema 9.3.7 (Lei de Adão), temos que

$$E(E(X|Y)) = E(X)$$

Considerando Y uma v.a. discreta, e g(y) = E(X|Y = y), então

$$E(E(X|Y)) = E(g(Y)) = \sum_{y} g(y)P(Y = y) = \sum_{y} E(X|Y = y)P(Y = y)$$

Fazendo a relação $A_i = \{Y = i\}$, temos

$$E(E(X|Y)) = \sum_y E(X|Y=y)P(Y=y) = \sum_{i=1}^n E(X|A_i)P(A_i) = E(X)$$

Portanto, $E(X) = \sum_{i=1}^n E(X|A_i) P(A_i)$. Para o caso contínuo, a prova é análoga.

Teorema 9.3.7 (Lei de Adão): Para quaisquer v.a.s X e Y vale

$$E(E(Y|X)) = E(Y)$$

Prova: Para X e Y discretas e g(X) = E(Y|X), temos

$$\begin{split} E(g(X)) &= \sum_x g(x) P(X=x) \\ &= \sum_x E(Y|X=x) P(X=x) \\ &= \sum_x \left(\sum_y y P(Y=y|X=x) \right) P(X=x) \end{split}$$

Lembre-se que $P(A \cap B) = P(A|B)P(B)$, então

$$\begin{split} E(g(X)) &= \sum_{x} \sum_{y} y P(Y=y|X=x) P(X=x) \\ &= \sum_{y} y \sum_{x} P(Y=y \cap X=x) \\ &= \sum_{y} y P(Y=y) = E(Y) \end{split}$$

Portanto, E(E(Y|X)) = E(Y). Para o caso contínuo, a prova é análoga.

Teorema 9.5.4 (Lei de Eva): Para quaisquer v.a.s X e Y vale

$$Var(Y) = E(Var(Y|X)) + Var(E(Y|X))$$

O nome da lei vem de que a ordem de esperanças e variâncias é EVVE, onde em inglês EVE é o nome de Eva.

 ${f Prova}$: Seja g(X)=E(Y|X), então pela lei de Adão E(Y)=E(E(Y|X))=E(g(X)). Então

$$\begin{split} E(\mathrm{Var}(Y|X)) &= E\Big(E\big(Y^2|X\big) - E(Y|X)^2\Big) \\ &= E\big(E\big(Y^2|X\big)\big) - E\big(E(Y|X)\big)^2 \\ &= E\big(Y^2\big) - E\big(g(X)\big)^2 \end{split}$$

e

$$\begin{split} \operatorname{Var}(E(Y|X)) &= \operatorname{Var}(g(X)) \\ &= E\Big(g(X)^2\Big) - E(g(X))^2 \\ &= E\Big(g(X)^2\Big) - E(Y)^2 \end{split}$$

Por fim, somando as duas equações, temos

$$\begin{split} E(\operatorname{Var}(Y|X)) + \operatorname{Var}(E(Y|X)) &= E\big(Y^2\big) - E(g(X))^2 + E\big(g(X)^2\big) - E(Y)^2 \\ &= E\big(Y^2\big) - E(Y)^2 = \operatorname{Var}(Y) \end{split}$$

Capítulo 10.

vazio por hora

11. Desigualdades

Teorema 11.1 (Desigualdade de Markov): Seja X uma variável aleatória não negativa. Então, para todo a>0,

$$P(|X| \ge a) \le \frac{E(|X|)}{a}$$

 $\textbf{Prova} : \text{Seja } Y = \frac{|X|}{a} \text{ e } I_{Y \geq 1} \text{ a função indicadora de } Y \geq 1. \text{ Temos que } I_{Y \geq 1} = 1 \Leftrightarrow Y \geq 1 \text{ e } I_{Y \geq 1} = 0 \Leftrightarrow Y < 1. \text{ Isso implica que } I_{Y \geq 1} \leq Y. \text{ Logo, aplicando a esperança em ambos os lados, temos }$

$$E\big(I_{Y\geq 1}\big) \leq E(Y) \Rightarrow P(Y\geq 1) \leq E(Y) \Rightarrow P\bigg(\frac{|X|}{a} \geq 1\bigg) \leq E\bigg(\frac{|X|}{a}\bigg) \Rightarrow P(X\geq a) \leq \frac{E(|X|)}{a}$$

Teorema 11.2 (Desigualdade de Chebyshev): Seja X uma variável aleatória com média μ e variância σ^2 . Então, para todo a>0,

$$P(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$$

Prova: Seja $Y = |X - \mu|^2$, com isso temos

$$P(|X - \mu| > a) = P(|X - \mu|^2 > a^2) = P(Y > a^2)$$

Aplicando a desigualdade de Markov, temos

$$P(Y \ge a^2) \le \frac{E(Y)}{a^2} = \frac{E(|X - \mu|^2)}{a^2} = \frac{\sigma^2}{a^2}$$

Portanto

$$P(|X - \mu| \ge a) \le \frac{\sigma^2}{a^2}$$

Teorema 11.3 (Desigualdade de Chernoff): Seja X uma variável aleatória com média μ . Então, para todo a>0,

$$P(X \geq a) \leq e^{-ta} M_{X(t)} = \frac{E\big(e^{tX}\big)}{e^{ta}}$$

onde $M_{X(t)}$ é a função geradora de momentos de X.

Prova: Seja $Y = e^{tX}$, com isso temos

$$P(X > a) = P(e^{tX} > e^{ta}) = P(Y > e^{ta})$$

Aplicando a desigualdade de Markov, temos

$$P(Y \ge e^{ta}) \le \frac{E(Y)}{e^{ta}} = \frac{E(e^{tX})}{e^{ta}}$$

Portanto

$$P(X \geq a) \leq e^{-ta} M_{X(t)} = \frac{E(e^{tX})}{e^{ta}}$$

Definição 11.1 (convexidade e concavidade): Seja g uma função duas vezes diferenciável. Dizemos que g é convexa se $g''(x) \ge 0$ para todo x e concava se $g''(x) \le 0$ para todo x.

Teorema 11.4 (Desigualdade de Jensen): Seja X uma variável aleatória e g uma função convexa, então

$$g(E(X)) \le E(g(X))$$

Se g é concava, a desigualdade é invertida, ou seja,

$$g(E(X)) \ge E(g(X))$$

onde a igualdade vale se, e somente se, g(X) = a + bX com probabilidade 1.

Prova: Se g é convexa, então $g''(x) \ge 0$ para todo x. E seja a+bX a reta tangente a g em E(X), então temos

$$g(X) \ge a + bX$$

aplicando a esperança em ambos os lados, temos

$$E(g(X)) \ge a + bE(X) = g(E(X))$$

Onde a igualdade vale pois a reta é tangente em E(X).

Usando a mesma g, temos que h=-g é concava, usando a desigualdade encontrada acima, temos

$$E(-h(X)) > -h(E(X)) \Longrightarrow -E(h(X)) > -h(E(X))$$

multiplicando por -1 em ambos os lados, temos

$$E(h(X)) \le h(E(X))$$