Data Mining

Disciplina: Machine Learning

Tema da Aula: Algoritmos em Python

Coordenação:

Prof. Dr. Adolpho Walter Pimazzi Canton

Profa. Dra. Alessandra de Ávila Montini **Prof. Carlos Eduardo Martins Relvas**

Currículo

- Bacharel em Estatística, Universidade de São Paulo.
- Mestre em Estatística, Universidade de São Paulo.
- ltaú, 2010-2015. Principais atividades:
- Consultoria estatística para várias áreas do banco com foco principal em melhorias no processo de modelagem de risco de crédito.
- De 2013 a 2015, participação do projeto Big Data do banco usando tecnologia Hadoop e diversas técnicas de machine learning. Desenvolvemos diversos algoritmos em MapReduce usando R e Hadoop streaming, criando uma plataforma de modelagem estatística no Hadoop.
- Nubank, dede 2015. Principais atividades:
- Equipe de Data Science, responsável por toda a parte de modelagem da empresa, desde modelos de crédito a identificar motivos de atendimento.

Conteúdo da Aula

- Boosting
- Redes Neurais
- SVM

- Uma das ideias mais bem aceitas dos últimos anos. Consisite em criar e combinar classificadores "fracos" para criar um classificador "forte".
- Utilizado tanto para classificação quanto para regressão.
- Um classificador fraco é um classificador cuja acurácia é um pouco melhor do que o chute aleatório. A ideia do boosting é criar classificadores fracos em diferentes versões dos dados, produzindo uma sequência de classificadores $G_m(x)$, $m=1,\ldots,M$.

 Assim, o modelo final será dado por uma média ponderada dos votos de todos os classificadores:

$$G(x) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m G_m(x)\right)$$

FIGURE 10.1. Schematic of AdaBoost. Classifiers are trained on weighted versions of the dataset, and then combined to produce a final prediction.

• Para o cálculo do peso da cada classificador no modelo final $(\alpha_1, \dots, \alpha_m)$, a ideia é que classificadores melhores tenham mais peso e classificadores piores pouco peso. Assim, dependem da acurácia do seu respectivo classificador.

$$G(x) = \operatorname{sign}\left(\sum_{m=1}^{M} \alpha_m G_m(x)\right)$$

• O boosting pode ser utilizado com vários classificadores diferentes, tendo sido mais utilizado com árvores de decisão.

- E como modificamos os dados para cada classificador produzir um modelo diferente? A ideia é sempre usar todas as observações, mas atribuir pesos diferentes para observação nos diferentes classificadores. Inicialmente, para o primeiro modelo, fazemos $\omega_1, ..., \omega_N$ iguais a $^1/_N$.
- Para os próximos classificadores $m=2,3,\ldots,M$, olhamos o peso do modelo anterior e aumentamos o peso das observações que foram classificadas incorretamente. Da mesma forma, reduzimos o peso das observações classificadas corretamente. Assim, forçamos o classificador a acertar as observações que estão sendo consistemente mal classificadas.

Algorithm 10.1 AdaBoost.M1.

- 1. Initialize the observation weights $w_i = 1/N, i = 1, 2, ..., N$.
- 2. For m=1 to M:
 - (a) Fit a classifier $G_m(x)$ to the training data using weights w_i .
 - (b) Compute

$$\operatorname{err}_{m} = \frac{\sum_{i=1}^{N} w_{i} I(y_{i} \neq G_{m}(x_{i}))}{\sum_{i=1}^{N} w_{i}}.$$

- (c) Compute $\alpha_m = \log((1 \operatorname{err}_m)/\operatorname{err}_m)$.
- (d) Set $w_i \leftarrow w_i \cdot \exp[\alpha_m \cdot I(y_i \neq G_m(x_i))], i = 1, 2, \dots, N.$
- 3. Output $G(x) = \operatorname{sign} \left[\sum_{m=1}^{M} \alpha_m G_m(x) \right]$.

Boosting - Exemplo

- $X_1, X_2, ..., X_{10}$ são variáveis aleatórias normalmente distribuídas.
- Simulamos a variável resposta como: $Y = \begin{cases} 1 & \text{if } \sum_{j=1}^{10} X_j^2 > \chi_{10}^2(0.5), \\ -1 & \text{otherwise.} \end{cases}$
- 2.000 (1.000 positivas e 1.000 negativas) observações na base de treino e 10.000 observações na base de teste.
- Como classificador para ser utilizado nesta simulação, usaremos um Stump (árvore de decisão com apenas dois nós finais) com boosting. Este classificador simples apresenta um erro de 45.8% na base de teste (pouco melhor que o aleatório).

Boosting - Exemplo

FIGURE 10.2. Simulated data (10.2): test error rate for boosting with stumps, as a function of the number of iterations. Also shown are the test error rate for a single stump, and a 244-node classification tree.

Por que Boosting funciona tão bem?

 O Boosting pode ser visto como uma expansão aditiva em um conjunto de funções bases.

$$f(x) = \sum_{m=1}^{M} \beta_m b(x; \gamma_m),$$

- O que permite criar ajustes não lineares e é a mesma base de outros algoritmos, como a rede neural.
- A função de custo minimizada é a exponential.

- Parâmetros para otimizar em boosting trees:
- Complexidade da árvore (número de nós finais): J
- M, o número de iterações do algoritmo. Na base de treino sempre é melhor aumentar o valor de M, o que causa overfitting.
- É recomendável otimizar estes valores por meio de cross validation ou utilizando uma base de validação.

Boosting - Regularização

• Outra estratégia para evitar overfitting é usar um parâmetro v diminuindo o peso de cada árvore.

$$f_m(x) = f_{m-1}(x) + \nu \cdot \sum_{j=1}^{J} \gamma_{jm} I(x \in R_{jm}).$$

• Resultados empíricos mostram que é melhor utilizar υ pequeno (< 0.1) e escolher M acompanhando os resultados em uma base de validação. Isso irá necessitar de mais processamento computacional, visto que M tende a ser maior.

Boosting - Regularização

Boosting - Subsample

 Outra estratégia para otimizar o algoritmo de boosting é usar o conceito de subsample, que é muito parecido a ideia do bagging.

• Para cada classificador, ao invés de utilizarmos todas as observações, utilizamos apenas uma proporção η dos dados, escolhida aleatoriamente sem reposição.

Boosting - Subsample

Boosting - Laboratório - Regressão

Base simulada com 150 observações e 5 variáveis.

- Gastos no cartão em reais
- Idade
- Renda
- Pagamento de impostos
- Segmento

Objetivo:

Prever os Gastos no cartão com base nas outras informações.

> head(dados)

	Gastos_Cartao	Idade	Renda	Impostos	Segmento
1	510	35	1120	60	C
2	490	30	1120	60	C
3	470	32	1040	60	C
4	460	31	1200	60	C
5	500	36	1120	60	C
6	540	39	1360	120	C

Boosting - Laboratório - Regressão

Notebook de análise: Gastos_cartao.ipynb

Boosting - Laboratório - Classificação

Laboratório R - Base de Spam

 Base com 4.601 e-mails. Porcentual em que 54 palavras ou pontuações aparecem em cada e-mail. Além disso, temos o tamanho médio das palavras, tamanho da maior palavra e quantidade de palavras.

Objetivo:

Criar um detector automático de SPAM que verificará cada novo e-mail.

Disponível em: https://archive.ics.uci.edu/ml/datasets/Spambase

Boosting - Laboratório - Classificação

Notebook de análise: Spam.ipynb

Boosting - Laboratório - Exercício

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

Breast Cancer Wisconsin (Diagnostic) Data Set

Download: Data Folder, Data Set Description

Abstract: Diagnostic Wisconsin Breast Cancer Database

Data Set Characteristics:	Multivariate	Number of Instances:	569	Area:	Life
Attribute Characteristics:	Real	Number of Attributes:	32	Date Donated	1995-11-01
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	390512

Boosting - Laboratório - Exercício

Base de dados ("cancer.data") com 699 observações e 10 variáveis de pacientes com tumores. O objetivo é detectar com base em algumas informações dos tumores se é benigno ou maligno.

Variáveis:

- 1. Sample code number id number
- 2. Clump Thickness 1 10
- 3. Uniformity of Cell Size 1 10
- 4. Uniformity of Cell Shape 1 10
- 5. Marginal Adhesion 1 10
- 6. Single Epithelial Cell Size 1 10
- 7. Bare Nuclei 1 10
- 8. Bland Chromatin 1 10
- 9. Normal Nucleoli 1 10
- 10. Mitoses 1 10
- 11. Class: (2 for benign, 4 for malignant)

Boosting - Laboratório - Exercício

- 1.) Crie bases de desenvolvimento (80%) e teste (20%). Utilize seed de 42.
- 2.) Cheque e corriga possíveis problemas de missing.
- 3.) Ajuste um modelo simple de boosting com n_estimators igual a 50 e max_depth igual a 3
- 4.) Otimize os hiper-parâmetros.
- 5.) Avalie os resultados.

 Rede neural artificial é uma técnica de aprendizado utiliza uma estrutura matemática baseada em uma rede de funcionamento cerébro para produzir relações não lineares.

 Neste exemplo temos variáveis explicativas (inputs), uma camada escondida e K neurônios na camada de output. Geralmente, para problemas de regressão ou classificação binária, temos K igual a 1. Em problemas com R classes, temos que K = R, e cada neurônio assim representa a probabilidade de cada classe.

• Cada neurônio da camada escondida é uma combinação linear dos inputs (variáveis explicativas) e o output da rede é uma combinação linear dos neurônios da camada escondida. Assim, temos:

$$Z_i = f\left(\alpha_{0i} + \sum_{j=1}^p \alpha_{ji} X_j\right), i = 1, ..., M$$
 $Y_k = g\left(\beta_{0k} + \sum_{j=1}^M \beta_{jk} Z_j\right), k = 1, ..., K$

- Geralmente é utilizado a função sigmóide para f e a identidade para g, isto é:
- $f(x) = \frac{1}{(1+e^{-x})}$; g(x) = x.
- Para problemas de classificação, geralmente utilizamos a função softmax para g. $g_k(Y) = \frac{e^T k}{\sum_i e^{Y_i}}$. Estas funções são denominadas como funções de ativação.

FIGURE 11.3. Plot of the sigmoid function $\sigma(v) = 1/(1 + \exp(-v))$ (red curve), commonly used in the hidden layer of a neural network. Included are $\sigma(sv)$ for $s = \frac{1}{2}$ (blue curve) and s = 10 (purple curve). The scale parameter s controls the activation rate, and we can see that large s amounts to a hard activation at v = 0. Note that $\sigma(s(v - v_0))$ shifts the activation threshold from 0 to v_0 .

Rede Neural – Estimação

- Como estimamos os seguintes parâmetros?
 - $\succ \alpha_{0m}, \alpha_m; m = 1, 2, ..., M.$ M(p+1) parâmetros.
 - $\triangleright \beta_{0k}$, β_k ; k = 1, 2, ..., K. K(M+1) parâmetros.
- Para regressão minimizamos a seguinte função objetivo:

$$R(\theta) = \sum_{k=1}^K \sum_{i=1}^N (y_{ik} - f_k(x_i))^2$$
. Soma de erros ao quadrado

Já para classificação, minimizamos:

$$R(heta) = -\sum_{i=1}^{N}\sum_{k=1}^{K}y_{ik}\log f_k(x_i),$$
 Entropia cruzada

Rede Neural – Estimação

 A minimização das funções objetivos diretamente não é recomendada, visto que é provável o overfitting. Por isso, utilizamos regularização, seja por um termo de penalidade ou por uma estratégia de "early stopping".

 O algoritmo utilizado para a minimização da função objetivo é denominado backpropagation.

Rede Neural – Otimizações

Valores iniciais:

É recomendado utilizar como valores iniciais valores aleatórios próximos do 0.

O uso de valor 0 para todos faz com que o modelo não saia do lugar e o uso de valores grandes leva a soluções pobres.

• Escala:

As redes neurais são bastante sensíveis a diferentes escalas nas variáveis explicativas, portanto, é recomendado padronizar todas as variáveis para média 0 e variância 1, assim todas variáveis terão o mesmo peso no processo.

Rede Neural – Otimizações

Overfitting:

- Quando se usa muitos neurônios ou camadas escondidas, o overfitting é
 muito comum. Para contornar isso, podemos utilizar a técnica de early stopping,
 que consiste em parar a otimização antes de encontrar o mínimo. Podemos parar
 quando o resultado em uma base de validação a performance parar de melhorar.
- Outra abordagem é utilizar o chamamos de *weight decay* que consiste em minimizar $R(\theta) + \lambda J(\theta)$:

$$J(heta) = \sum_{km} eta_{km}^2 + \sum_{m\ell} lpha_{m\ell}^2$$

• Em que lambda é um parâmetro que controla a penalização, estimado geralmente por validação cruzada.

Rede Neural – Otimizações

Neural Network - 10 Units, No Weight Decay

Neural Network - 10 Units, Weight Decay=0.02

Rede Neural – Otimizações

Número de neurônios e camadas escondidas:

- Geralmente é melhor mais neurônios do que poucos. Com poucos, o modelo pode não ter flexibilidade suficiente para capturar todas as não lineariedades nos dados. Se for muitos neurônios, o weight decay irá restringir para 0 os que não são úteis. Geralmente utiliza-se entre 5 e 100 neurônios.
- Já utilizar mais camadas escondidas permite a construção de variáveis hierárquicas em diferentes levels de resolução.

Múltiplos mínimos:

 A função objetivo é não convexa e geralmente apresenta vários mínimos locais. Sugere-se testar diferentes valores iniciais para os pesos e utilizar o melhor modelo. Outra alternativa é utilizar a média de todas as redes construídas.

Rede Neural – Otimizações

- Note que se f e g são a função identidade, então o modelo inteiro é composto por funções lineares. Então uma rede neural é pode ser vista como uma generalização não linear de uma função linear.
- Nas primeiras versões de redes neurais os neurônios da camada escondida disparavam apenas quando o sinal total passado passava de um limitante, o que seria o mesmo ao usarmos uma "step function".
- Para classificação e utilizando entropia cruzada a função softmax, a rede neural é exatamente uma regressão logística nas camadas escondidas.

Sum of sigmoids:
$$Y = \sigma(a_1^T X) + \sigma(a_2^T X) + \varepsilon_1;$$
Radial: $Y = \prod_{m=1}^{10} \phi(X_m) + \varepsilon_2.$

 $X_1, X_2, ..., X_{10}$ são variáveis aleatórias normalmente distribuídas ε_1 e ε_2 são erros aleatórios normalmente distribuídos.

100 observaçõe foram simuladas para cada caso treinar o modelo e 10.000 observações de teste.

Erro quadrático foi utilizado como medida de performance.

FIGURE 11.6. Boxplots of test error, for simulated data example, relative to the Bayes error (broken horizontal line). True function is a sum of two sigmoids on the left, and a radial function is on the right. The test error is displayed for 10 different starting weights, for a single hidden layer neural network with the number of units as indicated.

FIGURE 11.7. Boxplots of test error, for simulated data example, relative to the Bayes error. True function is a sum of two sigmoids. The test error is displayed for ten different starting weights, for a single hidden layer neural network with the number units as indicated. The two panels represent no weight decay (left) and strong weight decay $\lambda = 0.1$ (right).

Sum of Sigmoids, 10 Hidden Unit Model

FIGURE 11.8. Boxplots of test error, for simulated data example. True function is a sum of two sigmoids. The test error is displayed for ten different starting weights, for a single hidden layer neural network with ten hidden units and weight decay parameter value as indicated.

FIGURE 11.9. Examples of training cases from ZIP code data. Each image is a 16×16 8-bit grayscale representation of a handwritten digit.

Dígitos de CEP americanos escaneados de envelopes do U.S. Postal Office.

320 dígitos na base de treino e 160 na base de teste.

- 5 tipos diferentes de redes:
- Rede 1: Sem camada escondida, equivalente a regressão logística multinomial.
- Rede 2: Uma camada escondida, 12 neurônios totalmente conectados.
- Rede 3: Duas camadas escondidas localmente conectadas.
- Rede 4: Duas camadas escondidas localmente conectadas com parâmetros compartilhados
- Rede 5: Duas camadas escondidas localmente conectadas, dois níveis de parâmetros compartilhados

FIGURE 11.11. Test performance curves, as a function of the number of training epochs, for the five networks of Table 11.1 applied to the ZIP code data. (Le Cun, 1989)

TABLE 11.1. Test set performance of five different neural networks on a hand-written digit classification example (Le Cun, 1989).

	Network Architecture	Links	Weights	% Correct
Net-1:	Single layer network	2570	2570	80.0%
Net-2: Two layer network		3214	3214	87.0%
Net-3: Locally connected		1226	1226	88.5%
Net-4: Constrained network 1		2266	1132	94.0%
Net-5:	Constrained network 2	5194	1060	98.4%

Rede Neural - Laboratório - Regressão

Base simulada com 150 observações e 5 variáveis.

- Gastos no cartão em reais
- Idade
- Renda
- Pagamento de impostos
- Segmento

Objetivo:

Prever os Gastos no cartão com base nas outras informações.

> head(dados)

	Gastos_Cartao	Idade	Renda	Impostos	Segmento
1	510	35	1120	60	C
2	490	30	1120	60	C
3	470	32	1040	60	C
4	460	31	1200	60	C
5	500	36	1120	60	C
6	540	39	1360	120	C

Rede Neural - Laboratório - Regressão

Notebook de análise: Gastos_cartao.ipynb

Rede Neural - Laboratório - Classificação

Laboratório R - Base de Spam

 Base com 4.601 e-mails. Porcentual em que 54 palavras ou pontuações aparecem em cada e-mail. Além disso, temos o tamanho médio das palavras, tamanho da maior palavra e quantidade de palavras.

Objetivo:

Criar um detector automático de SPAM que verificará cada novo e-mail.

Disponível em: https://archive.ics.uci.edu/ml/datasets/Spambase

Rede Neural - Laboratório - Classificação

Notebook de análise: Spam.ipynb

Rede Neural - Laboratório - Exercício

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

Breast Cancer Wisconsin (Diagnostic) Data Set

Download: Data Folder, Data Set Description

Abstract: Diagnostic Wisconsin Breast Cancer Database

Data Set Characteristics:	Multivariate	Number of Instances:	569	Area:	Life
Attribute Characteristics:	Real	Number of Attributes:	32	Date Donated	1995-11-01
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	390512

Rede Neural - Laboratório - Exercício

Base de dados ("cancer.data") com 699 observações e 10 variáveis de pacientes com tumores. O objetivo é detectar com base em algumas informações dos tumores se é benigno ou maligno.

Variáveis:

- Sample code number id number
- 2. Clump Thickness 1 10
- 3. Uniformity of Cell Size 1 10
- 4. Uniformity of Cell Shape 1 − 10
- 5. Marginal Adhesion 1 10
- 6. Single Epithelial Cell Size 1 10
- 7. Bare Nuclei 1 10
- 8. Bland Chromatin 1 10
- 9. Normal Nucleoli 1 10
- 10. Mitoses 1 10
- 11. Class: (2 for benign, 4 for malignant)

Rede Neural - Laboratório - Exercício

- 1.) Crie bases de desenvolvimento (80%) e teste (20%). Utilize seed de 42.
- 2.) Cheque e corriga possíveis problemas de missing.
- 3.) Ajuste uma rede neural simples com 5 neurônios na camada escondida.
- 4.) Otimize os hiper-parâmetros.
- 5.) Avalie os resultados.

SVM (Support Vector Machines)

- Vamos considerar que temos N observações (x_1, y_1) , (x_2, y_2) , ..., (x_N, y_N) . Vamos considerar que $y_i \in \{-1, 1\}$.
- Assumindo que as classes são totalmente separáveis, podemos construir um hiperplano que classifica corretamente todas as observações.

Hiperplano:
$$\{x: f(x) = x^T \beta + \beta_0 = 0\}, \ \|\beta\| = 1.$$

Classificador:
$$G(x) = \text{sign}[x^T \beta + \beta_0].$$

- A margem é a distância mínima entre os pontos positivos e os pontos negativos do hiperplano.
- O objetivo do método é classificar todos os pontos corretamente e maximizar a margem. Isto equivale a:

$$\max_{eta,eta_0,\|eta\|=1}M$$
 subject to $y_i(x_i^Teta+eta_0)\geq M,\;i=1,\ldots,N,$

- E no caso que as classes não são perfeitamente separáveis?
- Neste caso, podemos permitir na otimização que algumas observações sejam mal classificadas.
- Para tal, definimos as variáveis $\xi_1, ..., \xi_N$ e mudamos a restrição da otimização para:

$$y_i(x_i^T \beta + \beta_0) \geq M(1 - \xi_i),$$

• ξ_i representa a proporção que a predição é feita erroneamente.

- Para controlar a proporção de observações mal classificadas, colocamos uma restrição em $\sum \xi_i$. Por exemplo, impondo a restrição que $\sum \xi_i < K$, impomos que o número total de amostras mal classificadas é no máximo K.
- Portanto a função objetivo fica como:

$$\min \|\beta\|$$
 subject to
$$\begin{cases} y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i \ \forall i, \\ \xi_i \ge 0, \ \sum \xi_i \le \text{constant.} \end{cases}$$

 Repare que pontos afastados do hiperplano, acabam não tendo um peso grande em encontrá-la.

Computacionalmente é conveniente escrever a otimização como:

$$\min_{\beta,\beta_0} \frac{1}{2} \|\beta\|^2 + C \sum_{i=1}^{N} \xi_i$$

subject to $\xi_i \ge 0$, $y_i(x_i^T \beta + \beta_0) \ge 1 - \xi_i \ \forall i$,

 O parâmetro C é um parâmetro de custo que otimizamos para obtermos a melhor performance. Este parâmetro controla o tradeoff entre complexidade e overfitting.

- Até o momento, só vimos o SVM formando uma região linear de fronteira entre as classes.
- A ideia para criar regiões não lineares é transformar o espaço das variáveis explicativas por meio de kernels/splines, ou seja, alterar x_i para $h(x_i) = (h_1(x_i), h_2(x_i), ..., h_M(x_i))$
- Neste novo espaço, a fronteira é criado novamente supondo lineariedade. Ao retornarmos ao espaço original, fronteiras totalmente não lineares foram criadas.

 Aumentando a dimensão e complexidade do espaço criado, é muito fácil ocorrer overfitting.

• Otimização:

$$egin{aligned} L_D &= \sum_{i=1}^N lpha_i - rac{1}{2} \sum_{i=1}^N \sum_{i=1}^N lpha_i lpha_{i'} y_i y_{i'} \langle h(x_i), h(x_{i'})
angle. \ f(x) &= h(x)^T eta + eta_0 \ &= \sum_{i=1}^N lpha_i y_i \langle h(x), h(x_i)
angle + eta_0. \end{aligned}$$

Kernel

$$K(x, x') = \langle h(x), h(x') \rangle$$

• 3 Kernels mais populares:

dth-Degree polynomial:
$$K(x, x') = (1 + \langle x, x' \rangle)^d$$
,
Radial basis: $K(x, x') = \exp(-\gamma ||x - x'||^2)$,
Neural network: $K(x, x') = \tanh(\kappa_1 \langle x, x' \rangle + \kappa_2)$.

• Exemplo: X_1 e X_2 e um polinomial kernel de grau 2.

$$K(X, X') = (1 + \langle X, X' \rangle)^{2}$$

$$= (1 + X_{1}X'_{1} + X_{2}X'_{2})^{2}$$

$$= 1 + 2X_{1}X'_{1} + 2X_{2}X'_{2} + (X_{1}X'_{1})^{2} + (X_{2}X'_{2})^{2} + 2X_{1}X'_{1}X_{2}X'_{2}.$$

- Repare que facilmente podemos aumentar a dimensão do espaço consideravelmente. Logo, o parâmetro C é muito importante neste contexto.
- Um valor muito alto de C não irá permitir nenhum ξ_i positivo e overfitting irá ocorrer.
- Um valor muito baixo de C pode levar uma regra muito simples e má performance do modelo.
- Podemos escolher C por cross validation.

SVM - Degree-4 Polynomial in Feature Space

SVM - Radial Kernel in Feature Space

 SVM também pode ser adaptador para problemas de regressão de forma similar.

 SVM é bastante utilizado para problemas de classificação com mais de 2 classes, em que um classificador para cada classe pode ser construído.

SVM - Laboratório – Regressão

Base simulada com 150 observações e 5 variáveis.

- Gastos no cartão em reais
- Idade
- Renda
- Pagamento de impostos
- Segmento

Objetivo:

Prever os Gastos no cartão com base nas outras informações.

> head(dados)

	Gastos_Cartao	Idade	Renda	Impostos	Segmento
1	510	35	1120	60	C
2	490	30	1120	60	C
3	470	32	1040	60	C
4	460	31	1200	60	C
5	500	36	1120	60	C
6	540	39	1360	120	C

SVM - Laboratório – Regressão

Notebook de análise: Gastos_cartao.ipynb

SVM - Laboratório – Classificação

Laboratório R - Base de Spam

 Base com 4.601 e-mails. Porcentual em que 54 palavras ou pontuações aparecem em cada e-mail. Além disso, temos o tamanho médio das palavras, tamanho da maior palavra e quantidade de palavras.

Objetivo:

Criar um detector automático de SPAM que verificará cada novo e-mail.

Disponível em: https://archive.ics.uci.edu/ml/datasets/Spambase

SVM - Laboratório – Classificação

Notebook de análise: Spam.ipynb

SVM - Laboratório – Exercício

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29

Breast Cancer Wisconsin (Diagnostic) Data Set

Download: Data Folder, Data Set Description

Abstract: Diagnostic Wisconsin Breast Cancer Database

Data Set Characteristics:	Multivariate	Number of Instances:	569	Area:	Life
Attribute Characteristics:	Real	Number of Attributes:	32	Date Donated	1995-11-01
Associated Tasks:	Classification	Missing Values?	No	Number of Web Hits:	390512

SVM - Laboratório – Exercício

Base de dados ("cancer.data") com 699 observações e 10 variáveis de pacientes com tumores. O objetivo é detectar com base em algumas informações dos tumores se é benigno ou maligno.

Variáveis:

- Sample code number id number
- 2. Clump Thickness 1 10
- 3. Uniformity of Cell Size 1 10
- 4. Uniformity of Cell Shape 1 10
- 5. Marginal Adhesion 1 10
- 6. Single Epithelial Cell Size 1 10
- 7. Bare Nuclei 1 10
- 8. Bland Chromatin 1 10
- 9. Normal Nucleoli 1 10
- 10. Mitoses 1 10
- 11. Class: (2 for benign, 4 for malignant)

SVM - Laboratório – Exercício

- 1.) Crie bases de desenvolvimento (80%) e teste (20%). Utilize seed de 42.
- 2.) Cheque e corriga possíveis problemas de missing.
- 3.) Ajuste uma SVM com C igual a 1.
- 4.) Otimize os hiper-parâmetros.
- 5.) Avalie os resultados.

Referências Bibliográficas

- Hastie, T., Tibshirani, R. & Friedman, J.H. (2001) "The Elements of Statistical Learning"
- Bishop, C.M. (2007) "Pattern Recognition and Machine Learning"
- Mitchell, T.M. (1997) "Machine Learning"
- Abu-Mostafa, Y., Magdon-Ismail, M., Lin, H.T (2012) "Learning from data"
- Theodoridis, S., Koutroumbas, K., (2008) "Pattern Recognition"
- Kuhn, M., Johnson, K., (2013) "Applied Predictive Modeling"

