Table of Contents

Script for 2011 ME227 HW 1 Problem 2	1
(2.1) Linear & Nonlinear tire curves (Lateral force vs. slip angle)	
(2.2) Check tire curves	
(2.3) Linear vs. nonlinear vaw rate response	

Script for 2011 ME227 HW 1 Problem 2

Author: Ruslan Kurdyumov Date: April 6, 2011

(2.1) Linear & Nonlinear tire curves (Lateral force vs. slip angle)

(2.2) Check tire curves

```
a. The curves look smooth and don't have sudden jumps
b. The initial slopes are fairly close:
Front linear slope (N/deg):
  -30.4617
Front nonlinear slope (N/deg), 0-1 deg:
  -26.2394
Rear linear slope (N/deg):
  -24.3694
Rear nonlinear slope (N/deg), 0-1 deg:
  -20.5459
c. The final force values match exactly:
Expected final Fyf = -mu_s*b/2L*mg:
 -3.3817e+003
Actual final Fyf:
 -3.3817e+003
Expected final Fyr = -mu_s*a/2L*mg:
 -2.3744e+003
Actual final Fyr:
 -2.3744e+003
```

(2.3) Linear vs. nonlinear yaw rate response

Lateral acceleration (linear) at 4.4 degrees: 11.2062

derived from $a_y = U_y' + r*U_x$

Published with MATLAB® 7.10