

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

FAKULTÄT FÜR PHYSIK

R: RECHENMETHODEN FÜR PHYSIKER, WISE 2024/25

DOZENT: JAN VON DELFT

ÜBUNGEN: MARKUS FRANKENBACH

https://moodle.lmu.de → Kurse suchen: 'Rechenmethoden'

Sheet 01: Mathematical Foundations

Central Tutorial: Th 17.10.27 Posted: Mo 14.10.24 Due: Th 24.10.24, 14:00 (b)[2](E/M/A) means: problem (b) counts 2 points and is easy/medium hard/advanced Suggestions for central tutorial: example problems 9, 10, 4, 3. Videos exist for example problems 9 (C2.3.1), 10 (C2.3.3).

Example Problem 1: Composition of maps [2]

Points: (a)[1](E); (b)[1](E).

Let \mathbb{N}_0 denote the set of all natural numbers including zero, and \mathbb{Z} the set of all integers. Consider the following two maps:

$$A: \mathbb{Z} \to \mathbb{Z}, \qquad n \mapsto A(n) = n+1,$$

 $B: \mathbb{Z} \to \mathbb{N}_0, \qquad n \mapsto B(n) = |n| \equiv n \cdot \operatorname{sign}(n).$

- (a) Find the composite map $C = B \circ A$, i.e. specify its domain, image and action on n.
- (b) Which of the above maps A, B and C are surjective? Injective? Bijective?

Example Problem 2: The abelian group \mathbb{Z}_2 [3] Points: (a)[2](E); (b)[1](E).

(a) Show that $\mathbb{Z}_2 \equiv (\{0,1\}, +)$, where the addition operation + is defined by the adjacent composition table, is an abelian group.

+	0	1
0	0	1
1	1	0

(b) Construct a group isomorphic to \mathbb{Z}_2 , using two integers as group elements and standard multiplication of integers as group operation. Set up the corresponding composition table.

Example Problem 3: Permutation groups [4]

Points: (a)[3](E); (b)[0,5](E); (c)[0,5](E).

A map which reorders n labelled objects is called a **permutation** of these objects. For example, $1234 \xrightarrow{[4312]} 4312$ is a permutation of the four numbers in the string 1234, where we use [4312] as shorthand for the map $1 \mapsto 4$, $2 \mapsto 3$, $3 \mapsto 1$ and $4 \mapsto 2$. Similarly, if the same permutation is applied to the string 2314, it yields 2314 $\stackrel{[4312]}{\longleftrightarrow}$ 3142. (In general, [P(1)...P(n)] denotes the map $j \mapsto P(j)$ which replaces j by P(j), for j = 1, ..., n.) Two permutations performed in succession again yield a permutation. For example, acting on 1234 with P = [4312] followed by P' = [2413]yields $1234 \xrightarrow{[4312]} 4312 \xrightarrow{[2413]} 3124$, thus the resulting permutation is $P' \circ P = [3124]$.

The set of all possible permutations of n numbers, denoted by S_n , contains n! elements. Viewing $P' \circ P$ (perform first P, then P') as a group operation,

$$\circ: S_n \times S_n \to S_n, \qquad (P', P) \mapsto P' \circ P,$$

we obtain a group, (S_n, \circ) , the **permutation group**, usually denoted simply by S_n .

(a) Complete the adjacent composition table for S_3 , in which the entries $P' \circ P$ are arranged such that those with fixed P' sit in the same row, those with fixed P in the same column.

$P' \circ P$	[123]	[231]	[312]	[213]	[321]	[132]
[123]	[123]	[231]	[312]	[213]	[321]	[132]
[231]		[312]	[123]	[321]	[132]	[213]
[312]			[231]	[132]	[213]	[321]
[213]					[312]	[231]
[321]						[312]
[132]						

- (b) Which element is the neutral element of S_3 ? How can we see from the multiplication table that every element has a unique inverse?
- (c) Is S_3 an abelian group? Justify your answer.

Example Problem 4: Algebraic manipulations with complex numbers [4]

Points: (a-c)[0,5](E); (d)[0,5](M); (e)[0,5](E); (f)[0,5](E); (g)[1](M); (h)[1](M).

For $z=x+\mathrm{i}y\in\mathbb{C}$, bring each of the following expressions into standard form, i.e. write them as (real part) + i(imaginary part):

(a)
$$z + \bar{z}$$
,

(b)
$$z-\bar{z}$$
,

(c)
$$z \cdot \bar{z}$$
.

(d)
$$\frac{z}{\bar{z}}$$

(e)
$$\frac{1}{z} + \frac{1}{\bar{z}}$$

(a)
$$z + \overline{z}$$
, (b) $z - \overline{z}$, (c) $z \cdot \overline{z}$, (d) $\frac{z}{\overline{z}}$,
 (e) $\frac{1}{z} + \frac{1}{\overline{z}}$, (f) $\frac{1}{z} - \frac{1}{\overline{z}}$, (g) $z^2 + z$, (h) z^3 .

(g)
$$z^2 + z$$
,

(h)
$$z^3$$

[Check your results for x=2, y=1: (a) 4, (b) i2, (c) 5, (d) $\frac{3}{5}+i\frac{4}{5}$, (e) $\frac{4}{5}$, (f) $-i\frac{2}{5}$, (g) 5+i5, (h) 2 + i11.

Example Problem 5: Multiplication of complex numbers - geometrical interpretation

Points: (a)[2](E); (b)[2](E)

(a) Consider the polar representation, $z_j = (\rho_j \cos \phi_j, \rho_j \sin \phi_j)$, of two complex numbers, z_1 and z_2 , with $\phi_i \in [0, 2\pi)$. Show that multiplying them, $z_3 = z_1 z_2$, yields the relations $\rho_3 = \rho_1 \rho_2$ and $\phi_3 = (\phi_1 + \phi_2) \mod(2\pi)$. [The $\mod(2\pi)$ is needed since we restricted polar angles to lie in the interval $[0, 2\pi)$.] To this end, the following trigonometric identities are useful:

$$\cos \phi_1 \cos \phi_2 - \sin \phi_1 \sin \phi_2 = \cos (\phi_1 + \phi_2),$$

$$\sin \phi_1 \cos \phi_2 + \cos \phi_1 \sin \phi_2 = \sin (\phi_1 + \phi_2).$$

(b) For $z_1=\sqrt{3}+i$, $z_2=-2+2\sqrt{3}i$, compute the product $z_3=z_1z_2$, as well as $z_4=1/z_1$ and $z_5=\bar{z}_1$. Find the polar representation (with $\phi\in[0,2\pi)$) of all five complex numbers and sketch them in the complex plane (in one diagram). Is your result for z_3 consistent with (a)?

Example Problem 6: Differentiation of trigonometric functions [1]

Points: (a)[0,5](E); (b)[0,5](E).

Show that the trigonometric functions

$$\tan x = \frac{\sin x}{\cos x}, \qquad \csc x = \frac{1}{\sin x}, \qquad \sec x = \frac{1}{\cos x}, \qquad \cot x = \frac{\cos x}{\sin x} = \frac{1}{\tan x},$$

satisfy the following identities:

(a)
$$\frac{d}{dx} \tan x = 1 + \tan^2 x = \sec^2 x$$
,

(a)
$$\frac{d}{dx} \tan x = 1 + \tan^2 x = \sec^2 x$$
, (b) $\frac{d}{dx} \cot x = -1 - \cot^2 x = -\csc^2 x$.

Example Problem 7: Differentiation of powers, exponentials, logarithms [2] Points: [3](E).

Compute the first derivative of the following functions.

[Check your results against those in square brackets, where [a, b] stands for f'(a) = b.]

(a)
$$f(x) = -\frac{1}{\sqrt{2x}}$$

$$\left[2,\frac{1}{8}\right]$$

(b)
$$f(x) = \frac{x^{1/2}}{(x+1)^{1/2}}$$
 $\left[3, \frac{1}{16\sqrt{3}}\right]$

$$\left[3, \frac{1}{16\sqrt{3}}\right]$$

(c)
$$f(x) = e^x(2x - 3)$$

[1,e] (d)
$$f(x) = 3^x$$

$$\left[-1, \frac{\ln 3}{3}\right]$$

(e)
$$f(x) = x \ln x$$

(f)
$$f(x) = x \ln(9x^2)$$

$$[\frac{1}{2}, 2]$$

Example Problem 8: Differentiation of inverse trigonometric functions [4]

Points: (a)[1](E); (b)[1](M); (c)[2](M).

Compute the following derivatives of inverse trigonometric functions, f^{-1} . For each case, make a qualitative scetch showing f(x) and $f^{-1}(x)$. If f is non-monotonic, consider domains with positive or negative slope separately. [Check your results: [a,b] stands for $(f^{-1})'(a)=b$.]

(a)
$$\frac{d}{dx} \arcsin x$$
 $\left[\frac{1}{3}, \frac{3}{\sqrt{8}}\right]$ (b) $\frac{d}{dx} \arccos x$ $\left[\frac{1}{2}, \frac{2}{\sqrt{3}}\right]$ (c) $\frac{d}{dx} \arctan x$ $\left[1, \frac{1}{2}\right]$

(b)
$$\frac{\mathrm{d}}{\mathrm{d}x} \arccos x$$

)
$$\frac{d}{dx} \arctan x$$
 $\left[1, \frac{1}{2}\right]$

Hint: The identity $\sin^2 x + \cos^2 x = 1$ is useful for (a) and (b), $\sec^2 x = 1 + \tan^2 x$ for (c).

Example Problem 9: Integration by parts [6]

Points: [6](M)

Integrals of the form $I(z)=\int_{z_0}^z \mathrm{d}x\ u(x)v'(x)$ can be written as $I(z)=\left[u(x)v(x)\right]_{z_0}^z-\int_{z_0}^z \mathrm{d}x\ u'(x)v(x)$ using integration by parts. This is useful if u'v can be integrated — either directly, or after further integrations by parts [see (b)], or after other manipulations [see (e,f)]. When doing such a calculation, it is advisable to clearly indicate the factors u, v', v and u'. Always check that the derivative I'(z) = dI/dz of the result reproduces the integrand! If a single integration by parts suffices to calculate I(z), its derivative exhibits the cancellation pattern I' = u'v + uv' - u'v = uv' [see (a,c,d)]; otherwise, more involved cancellations occur [see (b,e,f)].

Integrate the following integrals by parts. [Check your results against those in square brackets, where [a, b] stands for I(a) = b.

(a)
$$I(z) = \int_0^z dx \ x \ e^{2x}$$
 $\left[\frac{1}{2}, \frac{1}{4}\right]$

(b)
$$I(z) = \int_0^z dx \ x^2 e^{2x}$$
 $\left[\frac{1}{2}, \frac{e}{8} - \frac{1}{4}\right]$

$$\left[\frac{1}{2}, \frac{e}{8} - \frac{1}{4}\right]$$

(c)
$$I(z) = \int_0^z dx \ln x$$
 [1, -1]

(d)
$$I(z) = \int_{0}^{z} dx \ln x \frac{1}{\sqrt{x}}$$
 [1, -4]

$$[1, -4]$$

(e)
$$I(z) = \int_0^z dx \sin^2 x$$
 $\left[\pi, \frac{\pi}{2}\right]$

(f)
$$I(z) = \int_0^z dx \sin^4 x$$
 $\left[\pi, \frac{3\pi}{8}\right]$

$$\left[\pi, \frac{3\pi}{8}\right]$$

Example Problem 10: Integration by substitution [4]

Points: [4](M)

Integrals of the form $I(z) = \int_{z_0}^z \mathrm{d}x \ y'(x) f(y(x))$ can be written as $I(z) = \int_{y(z_0)}^{y(z)} \mathrm{d}y f(y)$ by using the substitution y = y(x), dy = y'(x)dx. When doing such integrals, it is advisable to explicitly write down y(x) and dy, to ensure that you correctly identify the prefactor of f(y). Always check that the derivative I'(z) = dI/dz of the result reproduces the integrand! You'll notice that the factor y'(z) emerges via the chain rule for differentiating composite functions.

Calculate the following integrals by substitution. [Check your results against those in square brackets, where [a, b] stands for I(a) = b.

(a)
$$I(z) = \int_0^z \mathrm{d} x \, x \cos(x^2 + \pi)$$
 $\left[\sqrt{\frac{\pi}{2}}, -\frac{1}{2}\right]$ (b) $I(z) = \int_0^z \mathrm{d} x \sin^3 x \cos x$ $\left[\frac{\pi}{4}, \frac{1}{16}\right]$

(c)
$$I(z) = \int_0^z dx \sin^3 x$$
 $\left[\frac{\pi}{3}, \frac{5}{24}\right]$ (d) $I(z) = \int_0^z dx \cosh^3 x$ $\left[\ln 2, \frac{57}{64}\right]$

[Total Points for Example Problems: 34]

Homework Problem 1: Composition of maps [2]

Points: (a)[0,5](E); (b)[0,5](E); (c)[0,5](E); (d)[0,5](E).

- (a) Consider the set $S = \{-2, -1, 0, 1, 2\}$. Find its image, T = A(S), under the map $n \mapsto$ $A(n) = n^2$. Is the map $A: S \to T$ surjective? Injective? Bijective?
- (b) Find the image, U = B(T), of the set T from part (a) under the map $n \mapsto B(n) = \sqrt{n}$.
- (c) Find the composite map $C = B \circ A$.
- (d) Which of the above maps A, B and C are surjective? Injective? Bijective?

Homework Problem 2: The groups of addition modulo 5 and rotations by multiples of $72 \, \, \text{deg} \, \, [3]$

Points: (a)[1](E); (b)[1](E); (c)[0,5](E); (d)[0,5](E).

(a) Consider the set $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$, endowed with the group operation

$$+: \mathbb{Z}_5 \times \mathbb{Z}_5 \to \mathbb{Z}_5, \qquad (p, p') \mapsto p + p' \equiv (p + p') \mod 5.$$

Set up the composition table for the group $(\mathbb{Z}_5, +)$. Which element is the neutral element? For a given $n \in \mathbb{Z}$, which element is the inverse of n?

(b) Let $r(\phi)$ denote a rotation by ϕ degrees about a fixed axis, with $r(\phi + 360) = r(\phi)$. Consider the set of rotations by multiples of 72 deg,

4

$$\mathcal{R}_{72} = \{r(0), r(72), r(144), r(216), r(288)\},\$$

and the group $(\mathcal{R}_{72}, \bullet)$, where the group operation \bullet involves two rotations in succession:

•:
$$\mathcal{R}_{72} \times \mathcal{R}_{72} \to \mathcal{R}_{72}$$
, $(r(\phi), r(\phi')) \mapsto r(\phi) \cdot r(\phi') \equiv r(\phi + \phi')$.

Set up the multiplication table for this group. Which element is the neutral element? Which element is the inverse of $r(\phi)$?

- (c) Explain why the groups $(\mathbb{Z}_5, +)$ and $(\mathcal{R}_{72}, \cdot)$ are isomorphic.
- (d) Let $(\mathbb{Z}_n, +)$ denote the group of integer addition modulo n of the elements of the set $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$. Which group of discrete rotations is isomorphic to this group?

Homework Problem 3: Decomposing permutations into sequences of pair permutations [2]

Consider the permutation group S_n . Any permutation can be decomposed into a sequence of **pair permutations**, i.e. permutations which exchange just two objects, leaving the others unchanged. Examples:

The last three lines illustrate that a given permutation can be pair-decomposed in several ways, and that these may or may not involve different numbers of pair exchanges. However, one may convince oneselve (try it!) that all pair decompositions of a given permutation have the same **parity**, i.e. the number of exchanges is either always **even** or always **odd**.

To find a 'minimal' (shortest possible) pair decomposition of a given permutation, say [2413], we may start from the naturally-ordered string 1234 and rearrange it to its desired form, 2413, one pair permutation at a time, bringing the 2 to the first slot, then the 4 to the second slot, etc. This yields $1234 \stackrel{[2134]}{\longrightarrow} 2134 \stackrel{[4231]}{\longrightarrow} 2431 \stackrel{[3214]}{\longrightarrow} 2413$, hence $[2413] = [3214] \circ [4231] \circ [2134]$.

Find a minimal pair decomposition and the parity of each of the following permutations:

Homework Problem 4: Algebraic manipulations with complex numbers [3] Points: (a)[1](E); (b)[1](M); (c)[1](E).

For $z = x + iy \in \mathbb{C}$, bring each of the following expressions into standard form:

(a)
$$(z+i)^2$$
, (b) $\frac{z}{z+1}$,

[Check your results for x=1, y=2: (a) $-8+\mathrm{i}6$, (b) $\frac{3}{4}+\mathrm{i}\frac{1}{4}$, (c) $-\frac{1}{2}-\mathrm{i}\frac{3}{2}$.]

Homework Problem 5: Multiplication of complex numbers – geometrical interpretation [2]

Points: [2](E)

For $z_1=\frac{1}{\sqrt{8}}+\frac{1}{\sqrt{8}}i$, $z_2=\sqrt{3}-i$, compute the product $z_3=z_1z_2$, as well as $z_4=1/z_1$ and $z_5=\bar{z}_1$. Find the polar representation (with $\phi \in [0, 2\pi)$) of all five complex numbers and sketch them in the complex plane (in one diagram).

Homework Problem 6: Differentiation of hyperbolic functions [2]

Points: (a)[0,5](E); (b,c)[0,5](E); (d)[0,5](E); (e)[0,5](E).

Show that the hyperbolic functions

$$\sinh x = \frac{1}{2}(e^x - e^{-x}), \qquad \cosh x = \frac{1}{2}(e^x + e^{-x}), \qquad \tanh x = \frac{\sinh x}{\cosh x},$$

$$\operatorname{csch} x = \frac{1}{\sinh x}, \qquad \operatorname{sech} x = \frac{1}{\cosh x}, \qquad \operatorname{coth} x = \frac{\cosh x}{\sinh x} = \frac{1}{\tanh x},$$

satisfy the following identities:

(a)
$$\cosh^2 x - \sinh^2 x = 1,$$

(b)
$$\frac{d}{dx} \sinh x = \cosh x$$
, (c) $\frac{d}{dx} \cosh x = \sinh x$

(b)
$$\frac{d}{dx} \sinh x = \cosh x$$
, (c) $\frac{d}{dx} \cosh x = \sinh x$.
(d) $\frac{d}{dx} \tanh x = 1 - \tanh^2 x = \operatorname{sech}^2 x$, (e) $\frac{d}{dx} \coth x = 1 - \coth^2 x = -\operatorname{csch}^2 x$.

Homework Problem 7: Differentiation of powers, exponentials, logarithms [2]

Points: [2](E) (Solve any 4 subproblems; beyond that: 0.25 bonus per subproblem.)

Compute the first derivative of the following functions.

[Check your results against those in square brackets, where [a, b] stands for f'(a) = b.]

(a)
$$f(x) = \sqrt[3]{x^2}$$
 [8, $\frac{1}{3}$] (b) $f(x) = \frac{x}{(x^2 + 1)^{1/2}}$ [1, $\frac{1}{\sqrt{8}}$] (c) $f(x) = -e^{(1-x^2)}$ [1, 2] (d) $f(x) = 2^{x^2}$ [1, $4 \ln 2$]

(c)
$$f(x) = -e^{(1-x^2)}$$
 [1, 2] (d) $f(x) = 2^{x^2}$ [1, 4 ln 2]

Homework Problem 8: Differentiation of inverse hyperbolic functions [2]

Points: [2](M) (Solve subproblem, (b); beyond that: 0.5 bonus points per subproblem.)

Compute the following derivatives of inverse hyperbolic functions, f^{-1} . For each case, make a qualitative sketch showing f(x) and $f^{-1}(x)$. If f is non-monotonic, consider domains with positive or negative slope separately. [Check your results: [a,b] stands for $(f^{-1})'(a)=b$.]

(a)
$$\frac{d}{dx} \operatorname{arcsinh} x$$
 $\left[2, \frac{1}{\sqrt{5}}\right]$ (b) $\frac{d}{dx} \operatorname{arccosh} x$ $\left[2, \frac{1}{\sqrt{3}}\right]$ (c) $\frac{d}{dx} \operatorname{arctanh} x$ $\left[\frac{1}{2}, \frac{4}{3}\right]$

Hint: The identity $\cosh^2 x = 1 + \sinh^2 x$ is useful for (a) and (b), $\operatorname{sech}^2 x = 1 - \tanh^2 x$ for (c).

Homework Problem 9: Integration by parts [4]

Points: [4](M) (Solve any 4 subproblems; beyond that: 0.5 bonus per subproblem.)

Integrate the following integrals by parts. [Check your results against those in square brackets, where [a, b] stands for I(a) = b.

(a)
$$I(z) = \int_0^z dx \ x \sin(2x)$$
 $\left[\frac{\pi}{2}, \frac{\pi}{4}\right]$ (b) $I(z) = \int_0^z dx \ x^2 \cos(2x)$ $\left[\frac{\pi}{2}, -\frac{\pi}{4}\right]$

(c)
$$I(z) = \int_0^z dx \; (\ln x) \; x$$
 $\left[1, -\frac{1}{4}\right]$ (d) $I(z) \stackrel{[n>-1]}{=} \int_0^z dx \; (\ln x) \; x^n$ $\left[1, \frac{-1}{(n+1)^2}\right]$

(e)
$$I(z) = \int_0^z dx \cos^2 x$$
 $\left[\pi, \frac{\pi}{2}\right]$ (f) $I(z) = \int_0^z dx \cos^4 x$ $\left[\pi, \frac{3}{8}\pi\right]$

Homework Problem 10: Integration by substitution [3]

Points: [3](M) (Solve any 3 subproblems; beyond that: 0.5 bonus per subproblem.)

Calculate the following integrals by substitution. [Check your results versus those in square brackets, where [a, b] stands for I(a) = b.

(a)
$$I(z) = \int_0^z dx \, x^2 \, \sqrt{x^3 + 1}$$
 [2, $\frac{52}{9}$] (b) $I(z) = \int_0^z dx \sin x \, e^{\cos x}$ [$\frac{\pi}{3}$, $e - \sqrt{e}$]

[Total Points for Homework Problems: 25]