

7. Naïve Bayes

Table of Contents

- Naïve Bayes with sklearn.
 - Gaussian Naïve Bayes
 - Multinomial Naïve Bayes
 - Custom implementation

Naïve Bayes

Problem setting

- Data: $D = \{(X,Y)^n\}_{n=1}^N$
- Input features: $X = (x_1, ..., x_k)$
- Output: Y ∈ {1, ..., L}
- Hypothesis: $\underset{Y}{\operatorname{argmax}} P(Y|X) = \widehat{Y}$

Naïve Bayes Model

•
$$\hat{Y} = \underset{Y}{\operatorname{argmax}} P(Y|X)$$

•
$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)} = \frac{P(X|Y)P(Y)}{\sum P(X|Y)P(Y)}$$

•
$$P(X|Y) = P(x_1,...,x_k|Y) =$$

$$\prod_i P(x_i|Y)$$

Assuming that all features are independent.

Sklearn.naïve_bayes.GaussianNB

- Assuming that each feature is independent and can be modeled as Gaussian distribution.
- Let's do with Irish dataset.

$$P(x_i \mid y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} \exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}\right)$$

Sklearn.naïve_bayes.MultinomialNB

- Assuming that features are under multinomial distribution (ex, word frequency).
- Let's do with Text dataset.

Custom implementation

- If features are categorical, previous two dataset is not available.
- Can you implement your own version?

