Topologie des espaces métriques

Pr Toussaint SOHOU

14 Décembre 2021

Chapitre I. Espaces métriques

1.1. Distances

- **1.1.1. Définition :** Soit E un ensemble non vide. On appelle distance sur E, toute application $d: E \times E \to \mathbb{R}^+$ vérifiant les conditions suivantes :
 - i) $\forall (x,y) \in E \times E, d(x,y) = 0 \iff x = y$
 - ii) $\forall (x, y) \in E \times E, d(x, y) = d(y, x)$ (symétrie)
 - iii) $\forall (x, y, z) \in E^3$, $d(x, z) \leq d(x, y) + d(y, z)$ (inégalité triangulaire).
- **1.1.2.** Définition : On appelle espace métrique, tout ensemble E muni d'une distance d.

Exemples:

- 1) Sur \mathbb{R} (respectivement \mathbb{C}), l'application d définie par d(x,y) = |x-y| est une distance appelée la distance usuelle de \mathbb{R} (respectivement \mathbb{C}).
 - 2) Soit E un ensemble non vide. On pose $\forall (x,y) \in E \times E$

$$d(x,y) = \begin{cases} 1 \text{ si } x \neq y \\ 0 \text{ si } x = y \end{cases}$$

Alors d est une distance sur E. Cette distance est appelée la distance discrète.

1.1.3. Proposition: Soit (E, d) un espace métrique.

$$\forall (x, y, z) \in E^3, |d(x, z) - d(y, z)| \le d(x, y).$$

Preuve:

$$\begin{array}{l} d\left(x,z\right) \leq d\left(x,y\right) + d\left(y,z\right) \Longrightarrow d\left(x,z\right) - d\left(y,z\right) \leq d\left(x,y\right) \\ d\left(y,z\right) \leq d\left(y,x\right) + d\left(x,z\right) \Longrightarrow d\left(y,z\right) - d\left(x,z\right) \leq d\left(y,x\right). \text{ Or } d\left(x,y\right) = d\left(y,x\right). \\ \text{Alors } \left|d\left(x,z\right) - d\left(y,z\right)\right| \leq d\left(x,y\right). \end{array}$$

1.1.4. Distances équivalentes

Définition : Deux distances d_1 et d_2 sur un ensemble E sont dites équivalentes s'il existe $\alpha, \beta \in \mathbb{R}_+^*$ tels que $\forall (x, y) \in E \times E$

$$\alpha d_1(x,y) \leq d_2(x,y) \leq \beta d_1(x,y)$$
.

Remarque: De l'inégalité précédente on déduit que $\forall (x,y) \in E \times E$

$$\frac{1}{\beta}d_{2}\left(x,y\right) \leq d_{1}\left(x,y\right) \leq \frac{1}{\alpha}d_{2}\left(x,y\right).$$

1.1.5. Sous-espaces métriques

Définition : Soit F une partie non vide d'un espace métrique (E,d). La restriction $d_F = d_{|F \times F|}$ de la distance d à $F \times F$ est une distance sur F et (F, d_F) est un espace métrique appelé sous-espace métrique de (E,d).

Exemples: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ sont des sous-espaces métriques de \mathbb{R} pour la distance usuelle.

1.1.6. Espaces métriques produits

Proposition et définition : Soient $(E_1, d_1), ..., (E_n, d_n)$ des espaces métriques. Soit $E = E_1 \times ... \times E_n$. Soient $\delta_{\infty}, \delta_1$ et δ_2 définies par $\forall x = (x_1, ..., x_n) \in E, \forall y = (y_1, ..., y_n) \in E$

$$\delta_{\infty}(x,y) = \sup_{1 \le i \le n} d_i(x_i, y_i)$$

$$\delta_1(x,y) = \sum_{i=1}^n d_i(x_i, y_i)$$

$$\delta_2(x,y) = \left[\sum_{i=1}^n d_i^2(x_i, y_i)\right]^{1/2}$$

Alors δ_{∞} , δ_1 et δ_2 sont des distances sur E et elles sont équivalentes.

E muni de l'une de ces trois distances est appelé espace métrique produit de $(E_1, d_1), ..., (E_n, d_n)$.

Remarque: Pour l'équivalence des trois distances, on a par exemple

$$\delta_{\infty} \le \delta_1 \le \sqrt{n}\delta_2 \le n\delta_{\infty}$$

Exemple: \mathbb{R}^n (ou \mathbb{C}^n) est un espace métrique produit, les distances δ_{∞} , δ_1 et δ_2 étant définies par $\forall x = (x_1, ..., x_n) \in \mathbb{R}^n$ (ou \mathbb{C}^n), $\forall y = (y_1, ..., y_n) \in \mathbb{R}^n$ (ou \mathbb{C}^n)

$$\delta_{\infty}(x, y) = \sup_{1 \le i \le n} |x_i - y_i|$$

$$\delta_{1}(x, y) = \sum_{i=1}^{n} |x_i - y_i|$$

$$\delta_{2}(x, y) = \left[\sum_{i=1}^{n} |x_i - y_i|^{2}\right]^{1/2}$$

1.2. Normes

1.2.1. Définition : Soit E un espace vectoriel sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . On appelle norme sur E toute application $\| \cdot \| : E \to \mathbb{R}^+$ vérifiant les conditions suivantes :

$$(i) \ \forall x \in E, \ \|x\| = 0 \Longleftrightarrow x = 0$$

- (ii) $\forall \lambda \in \mathbb{K}, \forall x \in E, ||\lambda x|| = |\lambda| ||x||$ (iii) $\forall x, y \in E, ||x + y|| \le ||x|| + ||y||$.
- ${\bf 1.2.2.}$ **Définition :** On appelle *espace vectoriel normé*, tout espace vectoriel muni d'une norme.
 - **1.2.3.** Proposition : Soit (E, || ||) un espace vectoriel normé.

$$\forall x, y \in E, \ |||x|| - ||y||| \le ||x - y||.$$

Preuve:

$$x = (x - y) + y.$$
 Alors $\|x\| \leq \|x - y\| + \|y\|$. Donc $\|x\| - \|y\| \leq \|x - y\|$. De même $\|y\| - \|x\| \leq \|y - x\|$. Et comme $\|x - y\| = \|y - x\|$, on conclut que $|\|x\| - \|y\|| \leq \|x - y\|$.

1.2.4. Définition : Soit E un espace vectoriel. Deux normes N_1 et N_2 sur E sont dites équivalentes s'il existe $\alpha, \beta \in \mathbb{R}_+^*$ tels que $\forall x \in E$

$$\alpha N_2(x) \leq N_1(x) \leq \beta N_2(x)$$
.

1.2.5. Exemples

- 1) Sur $E = \mathbb{R}$ ou \mathbb{C} , l'application $x \in E \longmapsto |x| \in \mathbb{R}^+$ est une norme appelée la norme usuelle de \mathbb{R} ou \mathbb{C} .
- 2) Soit E un espace vectoriel de dimension n sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit $(e_1, ..., e_n)$ une base de E. Soient ν_{∞}, ν_1 et ν_2 définies sur E par $\forall x = \sum_{i=1}^n x_i e_i$, où $x_i \in \mathbb{K}, \forall i = 1, ..., n$

$$\nu_{\infty}(x) = \sup_{1 \le i \le n} |x_i|$$

$$\nu_1(x) = \sum_{i=1}^n |x_i|$$

$$\nu_2(x) = \left[\sum_{i=1}^n |x_i|^2\right]^{1/2}$$

Alors ν_{∞} , ν_1 et ν_2 sont trois normes équivalentes sur E.

1.2.6. Proposition et définition : Soit $(E, \|.\|)$ un espace vectoriel normé. On définit une distance d sur E en posant

$$\forall (x,y) \in E \times E, \ d(x,y) = ||x - y||.$$

Cette distance d est appelée la distance associée à la norme $\|.\|$ (ou distance induite par la norme $\|.\|$).

On déduit de cette proposition les remarques suivantes :

1.2.7. Remarques:

- 1) Tout espace vectoriel normé est un espace métrique. Mais une distance n'induit pas nécessairement une norme.
 - 2) Deux normes sont équivalentes si et seulement si les distances associées sont équivalentes.

1.2.8. Espace vectoriel normé produit

1.2.8.1. Proposition et définition : Soient $(E_1, ||.||_1), ..., (E_n, ||.||_n)$ des espaces vectoriels normés. Soient N_{∞}, N_1 et N_2 définies sur l'espace vectoriel produit $E = E_1 \times ... \times E_n$ par $\forall x = (x_1, ..., x_n) \in E$

$$N_{\infty}(x) = \sup_{1 \le i \le n} ||x_{i}||_{i}$$

$$N_{1}(x) = \sum_{i=1}^{n} ||x_{i}||_{i}$$

$$N_{2}(x) = \left[\sum_{i=1}^{n} ||x_{i}||_{i}^{2}\right]^{1/2}$$

Alors N_{∞} , N_1 et N_2 sont trois normes sur E et elles sont équivalentes.

L'espace vectoriel produit E muni de l'une de ces trois normes est appelé espace vectoriel normé produit de $(E_1, \|.\|_1), ..., (E_n, \|.\|_n)$.

1.2.8.2. Exemple : La structure usuelle d'espace vectoriel normé de \mathbb{R}^n ou \mathbb{C}^n est obtenue en prenant l'une des trois normes usuelles équivalentes définies par $\forall x=(x_1,...,x_n)\in\mathbb{R}^n$ ou \mathbb{C}^n

$$N_{\infty}(x) = \sup_{1 \le i \le n} |x_i|$$

$$N_1(x) = \sum_{i=1}^n |x_i|$$

$$N_2(x) = \left[\sum_{i=1}^n |x_i|^2\right]^{1/2}$$

1.3. Topologie des espaces métriques

1.3.1. Boules dans un espace métrique

1.3.1.1. Définition : Soit (E, d) un espace métrique. Soit $a \in E$ et soit $r \in \mathbb{R}^+$. On appelle *boule ouverte* de centre a et de rayon r l'ensemble

$$B(a,r) = \{x \in E / d(a,x) < r\}.$$

On appelle $boule\ ferm\'ee$ de centre a et de rayon r l'ensemble

$$B_{f}\left(a,r\right)=\left\{ x\in E\ /\ d\left(a,x\right)\leq r\right\} .$$

On appelle $sph\`ere$ de centre a et de rayon r l'ensemble

$$S(a,r) = \{x \in E / d(a,x) = r\}.$$

1.3.1.2. Remarque : Si r = 0, alors $B(a, r) = \emptyset$, $B_f(a, r) = \{a\}$, $S(a, r) = \{a\}$.

1.3.1.3. Exemple : Dans \mathbb{R} muni de la distance usuelle,

$$B(a,r) =]a-r, a+r[$$

 $B_f(a,r) = [a-r, a+r]$
 $S(a,r) = \{a-r, a+r\}$

1.3.2. Diamètre d'une partie

1.3.2.1. Définition : Soit A une partie non vide d'un espace métrique (E, d). On appelle diamètre de A, et on note $\delta(A)$, l'élément de $\mathbb{R}^+ \cup \{+\infty\}$ défini par

$$\delta\left(A\right) = \sup\left\{d\left(x,y\right) \ \middle/ \ \left(x,y\right) \in A \times A\right\}.$$

On dit que A est bornée si $\delta(A)$ est fini.

1.3.2.2. Remarque : Si $A = \emptyset$ on pose $\delta(A) = 0$.

1.3.2.3. Proposition : Soit A une partie non vide d'un espace métrique (E,d).

A est bornée si et seulement si A est contenue dans une boule (ouverte ou fermée) de (E,d) .

Preuve:

CN: Supposons A bornée. Alors $\delta(A) \in \mathbb{R}^+$. Soit $a \in A$. Alors, pour tout $x \in A$, $d(a, x) \leq \delta(A)$.

Donc $A \subset B_f(a, \delta(A))$.

CS: Supposons $A \subset B(a,r)$. Alors $\forall (x,y) \in A \times A, d(x,y) \leq d(x,a) + d(a,y) < 2r$. Donc l'ensemble $\{d(x,y) \mid (x,y) \in A \times A\}$ est une partie non vide et majorée de \mathbb{R} . Alors il admet une borne supérieure M dans \mathbb{R} .

Et comme $\forall (x,y) \in A \times A$, $0 \leq d(x,y) \leq M$, alors $M \in \mathbb{R}^+$. Donc $\delta(A) = M \in \mathbb{R}^+$. Par conséquent A est bornée.

- **1.3.2.4. Définition :** Soit X un ensemble. Soit (E,d) un espace métrique. Soit $f: X \to E$ une application. On dit que f est une application bornée si f(X) est une partie bornée de (E,d). On dit que f est bornée sur une partie A de X si f(A) est une partie bornée de (E,d).
- 1.3.2.5. Proposition et définition : Soit X un ensemble. Soit (E, d) un espace métrique. Soit $\mathcal{F}_b(X, E)$ l'espace des applications bornées de X dans E. On pose $\forall f, g \in \mathcal{F}_b(X, E)$,

$$d_{\infty}(f,g) = \sup_{x \in X} d(f(x), g(x)).$$

Alors d_{∞} est une distance sur $\mathcal{F}_b(X, E)$ appelée la distance de la convergence uniforme.

Preuve: Soient $f, g \in \mathcal{F}_b(X, E)$. Alors

 $\exists r_1 > 0 \text{ et } \exists y_1 \in E \text{ tels que } \forall x \in X, \ d(y_1, f(x)) < r_1 \text{ et }$

 $\exists r_2 > 0 \text{ et } \exists y_2 \in E \text{ tels que } \forall x \in X, \ d(y_2, g(x)) < r_2. \text{ Donc}$

$$\forall x \in X, \ d(f(x), g(x)) \le d(f(x), y_1) + d(y_1, y_2) + d(y_2, g(x)) < r_1 + r_2 + d(y_1, y_2).$$

Alors

$$\sup_{x \in X} d(f(x), g(x)) \le r_1 + r_2 + d(y_1, y_2).$$

Donc $\forall f, g \in \mathcal{F}_b(X, E), d_{\infty}(f, g) \in \mathbb{R}^+$.

Montrer les autres conditions pour avoir une distance.

1.3.3. Ouverts, fermés d'un espace métrique

1.3.3.1. Définition : Soit (E, d) un espace métrique. On dit qu'une partie O de E est un ouvert de (E, d) si pour tout $a \in O$, il existe une boule ouverte de centre a et de rayon r > 0 contenue dans O.

On dit qu'une partie F de E est un fermé de (E,d) si son complémentaire dans E est un ouvert de (E,d).

Un ouvert est aussi appelé une partie ouverte. Un fermé est aussi appelé une partie fermée.

1.3.3.2. Proposition : Soit (E, d) un espace métrique. Alors E et \emptyset sont des ouverts de (E, d).

Preuve : $\neg \forall a \in E, B(a,1) \subset E$. Donc E est un ouvert. (On remarque que $\forall r > 0, B(a,r) \subset E$).

- La proposition : " $\forall a \in \emptyset$, $\exists r > 0$ tel que $B(a,r) \subset \emptyset$ " est vraie car sa négation est fausse. Donc \emptyset est un ouvert.

- **1.3.3.3.** Corollaire : Soit (E,d) un espace métrique. Alors E et \emptyset sont des fermés de (E,d).
- **1.3.3.4.** Proposition : Toute boule ouverte d'un espace métrique (E, d) est un ouvert de (E, d).

Preuve : Soit B(a, r) une boule ouverte de (E, d).

- Si r = 0 alors $B(a, r) = \emptyset$ donc c'est un ouvert.
- Si r > 0, soit $x \in B(a, r)$. Posons $\epsilon = r d(a, x)$. Alors $B(x, \epsilon) \subset B(a, r)$.

En effet, $\forall y \in B(x, \epsilon), d(a, y) \leq d(a, x) + d(x, y) < d(a, x) + \epsilon = r$.

Donc $y \in B(a, r)$. Par conséquent B(a, r) est un ouvert.

1.3.3.5. Proposition : Toute boule fermée d'un espace métrique (E,d) est un fermé de (E,d).

Preuve : Soit $B_f(a,r)$ une boule fermée de (E,d).

- Si r=0 alors $B_f(a,r)=\{a\}$. Soit $x\in C_E^{\{a\}}$. Posons $\epsilon=\frac{1}{3}d\,(a,x)$. Alors $a\notin B\,(x,\epsilon)$. Donc $B\,(x,\epsilon)\subset C_E^{\{a\}}$. Par conséquent $C_E^{\{a\}}$ est ouvert. Donc $\{a\}$ est un fermé.

- Si r > 0, soit $x \in C_E^{B_f(a,r)}$. Alors d(a,x) > r. Posons $\epsilon = d(a,x) - r$. $\forall y \in B(x,\epsilon), d(x,y) < \epsilon = d(a,x) - r$.

Alors $r < d(a, x) - d(x, y) = |d(a, x) - d(x, y)| \le d(a, y)$. Donc $y \in C_E^{B_f(a, r)}$.

Par conséquent $B(x,\epsilon) \subset C_E^{B_f(a,r)}$. Alors $C_E^{B_f(a,r)}$ est ouvert. Donc $B_f(a,r)$ est un fermé.

- **1.3.3.6.** Remarque : Nous venons de montrer que tout singleton $\{a\}$ d'un espace métrique (E,d) est un fermé de (E,d).
 - 1.3.3.7. Proposition: Dans \mathbb{R} muni de sa distance usuelle,
 - (i) tout intervalle ouvert est un ouvert
 - (ii) tout intervalle fermé est un fermé.

Preuve: (i) Soit I un intervalle ouvert de \mathbb{R} .

- Si $I=\left]a,b\right[$ avec $a,b\in\mathbb{R},$ alors $I=B\left(c,r\right)$ où $c=\frac{a+b}{2}$ et $r=\frac{b-a}{2}.$

Donc I est un ouvert.

- Si $I =]a, +\infty[$ avec $a \in \mathbb{R}$, pour tout $c \in I$ posons $r = \frac{1}{2}d(a, c)$. Alors $B(c, r) \subset I$.

En effet, $\forall x \in B(c,r)$, d(c,x) < r < d(a,c) i.e. |x-c| < |c-a| = c-a. Alors a-c < x-c < c-a. Donc a < x et ainsi $x \in I$. Alors $B(c,r) \subset I$. Donc I est un ouvert.

- Si $I =]-\infty, a[$ avec $a \in \mathbb{R}$, de façon analogue au cas précédent, on montre que I est un ouvert.
 - Si $I =]-\infty, +\infty[$ alors $I = \mathbb{R}$ qui est un ouvert.
 - (ii) Soit J un intervalle fermé de \mathbb{R} .
 - Si J = [a, b] avec $a, b \in \mathbb{R}$, alors $J = B_f(c, r)$ où $c = \frac{a+b}{2}$ et $r = \frac{b-a}{2}$.

Donc J est un fermé.

- Si $J=[a,+\infty[$ avec $a\in\mathbb{R},$ alors $C_{\mathbb{R}}^{J}=]-\infty, a[$ qui est un ouvert, donc J est un fermé.
- De même si $J=]-\infty,a]$ avec $a\in\mathbb{R},$ alors J est un fermé.
- **1.3.3.8.** Remarque : La négation de "A est un ouvert" n'est pas "A est un fermé" !
- Il existe des parties qui ne sont ni ouvertes, ni fermées.

Exemple: Dans \mathbb{R} muni de sa distance usuelle, A = [0, 1[n'est ni ouvert, ni fermé.

A n'est pas un ouvert car $\forall r > 0, B(0,r) \nsubseteq A$.

 $C_{\mathbb{R}}^{A}=]-\infty,0[\cup[1,+\infty[$ n'est pas un ouvert car $\forall r>0,\ B\left(1,r\right)\nsubseteq C_{\mathbb{R}}^{A}.$ Donc A n'est pas un fermé.

- Il existe des parties qui sont à la fois ouvertes et fermées.

Exemple: Dans un espace métrique (E,d), E et \emptyset sont à la fois ouverts et fermés.

- 1.3.4. Propriétés des ouverts et des fermés
- 1.3.4.1. Proposition: La réunion d'une famille quelconque d'ouverts est un ouvert.

Preuve : Soit $(O_i)_{i \in I}$ une famille quelconque d'ouverts d'un espace métrique (E, d).

Posons $O = \bigcup_{i \in I} O_i$. Si $O = \emptyset$ alors c'est un ouvert.

Si $O \neq \emptyset$, soit $x \in O$. Alors $\exists i \in I$ tel que $x \in O_i$. Comme O_i est un ouvert, $\exists r > 0$ tel que $B(x,r) \subset O_i$.

Alors $B(x,r) \subset O$. Donc O est un ouvert.

1.3.4.2. Corollaire: Dans un espace métrique (E,d), la sphère S(a,r) est un fermé.

Preuve : $C_E^{S(a,r)} = B\left(a,r\right) \cup C_E^{B_f(a,r)}$ qui est un ouvert car réunion d'ouverts. Donc S(a,r) est un fermé.

1.3.4.3. Proposition: L'intersection d'un nombre fini d'ouverts est un ouvert.

Preuve : Soient $O_1, ..., O_n$ un nombre fini d'ouverts d'un espace métrique (E, d).

Posons $O = \bigcap_{i=1}^n O_i$. Si $O = \emptyset$ alors c'est un ouvert. Si $O \neq \emptyset$, soit $x \in O$. Alors $x \in O_i$, $\forall i = 1, ..., n$. Comme O_i est ouvert, $\exists r_i > 0$ tel que $B(x,r_i)\subset O_i$.

Posons $r = \min_{1 \le i \le n} r_i$. Alors r > 0 et $B(x, r) \subset O_i$, $\forall i = 1, ..., n$. Donc $B(x, r) \subset O$. Par conséquent O est un ouvert.

1.3.4.4. Remarque: Une intersection quelconque d'ouverts n'est pas nécessairement un ouvert.

Par exemple dans \mathbb{R} muni de sa distance usuelle, soit $I_n = \left[-\frac{1}{n}, \frac{1}{n} \right[, n \in \mathbb{N}^*$. Alors $\bigcap_{n\in\mathbb{N}^*} I_n = \{0\}.$

En effet, soit $x \in \bigcap_{n \in \mathbb{N}^*} I_n$. Alors $-\frac{1}{n} < x < \frac{1}{n}$, $\forall n \in \mathbb{N}^*$. Donc en passant à la limite lorsque n tend vers $+\infty$, on obtient $0 \le x \le 0$. Alors x = 0.

 $\{0\}$ n'est pas un ouvert car $\forall r > 0$, $B(0,r) =]-r, r[\not\subseteq \{0\}$.

En passant aux complémentaires et en utilisant les résultats :

$$C_E^{\left(\bigcap\limits_{i\in I}A_i
ight)}=\bigcup\limits_{i\in I}C_E^{A_i}\quad \mathrm{et}\quad C_E^{\left(\bigcup\limits_{i\in I}A_i
ight)}=\bigcap\limits_{i\in I}C_E^{A_i}$$

on obtient:

1.3.4.5. Proposition:

- (i) L'intersection d'une famille quelconque de fermés est un fermé.
- (ii) La réunion d'un nombre fini de fermés est un fermé.
- 1.3.4.6. Remarque: Nous avons vu les trois propriétés fondamentales suivantes des ouverts d'un espace métrique (E, d):
 - 1) E et \emptyset sont des ouverts.
 - 2) Toute réunion d'ouverts est un ouvert.
 - 3) Toute intersection finie d'ouverts est un ouvert.

Pour ces trois propriétés, on dit que l'ensemble \mathcal{O} des ouverts d'un espace métrique (E,d)définit une topologie sur E ou que (E, \mathcal{O}) est un espace topologique.

De façon générale, on a la définition suivante :

1.3.4.7. Définition : Soit E un ensemble et \mathcal{T} une famille de parties de E vérifiant les conditions suivantes:

- 1) E et \emptyset sont des éléments de \mathcal{T} .
- 2) Toute réunion d'éléments de \mathcal{T} est un élément de \mathcal{T} .
- 3) Toute intersection finie d'éléments de \mathcal{T} est un élément de \mathcal{T} .

On dit que \mathcal{T} définit une topologie sur E ou que (E,\mathcal{T}) est un espace topologique.

Les éléments de \mathcal{T} sont appelés les ouverts de (E, \mathcal{T}) .

- **1.3.4.8.** Exemples : 1) Si $\mathcal{T} = \mathcal{P}(E)$ l'ensemble de toutes les parties de E, alors $(E, \mathcal{P}(E))$ est un espace topologique. La topologie obtenue est appelée la topologie discrète de E.
 - 2) Si $\mathcal{T} = \{E, \emptyset\}$ la topologie obtenue est appelée la topologie grossière de E.

1.3.5. Voisinages d'un point

1.3.5.1. Définition : Soit (E, d) un espace métrique et soit $a \in E$. On dit qu'une partie V de E est un voisinage de a s'il existe un réel r > 0 tel que $B(a, r) \subset V$.

On note V(a) l'ensemble des voisinages de a.

Exemples: 1) $\forall \rho > 0$, $B(a, \rho)$ est un voisinage de a.

- 2) Tout ouvert contenant a est un voisinage de a.
- **1.3.5.2.** Proposition : Soit (E, d) un espace métrique et soit $a \in E$. Soit V une partie de E.

V est un voisinage de a si et seulement si il existe un ouvert O de E tel que $a \in O \subset V$.

Preuve:

- \mathbf{CN} : Si V est un voisinage de a, alors il existe r>0 tel que $B(a,r)\subset V$. Comme B(a,r) est un ouvert, alors en prenant O=B(a,r), on a bien $a\in O\subset V$.
- **CS**: S'il existe un ouvert O de E tel que $a \in O \subset V$, alors il existe r > 0 tel que $B(a,r) \subset O$. Donc $B(a,r) \subset V$. Par conséquent V est un voisinage de a.
 - **1.3.5.3.** Propriétés : Soit (E, d) un espace métrique et soit $a \in E$.
 - (i) Tout voisinage de a contient a.
 - (ii) Si V est un voisinage de a et si $V \subset W$, alors W est un voisinage de a.
 - (iii) Une intersection finie de voisinages de a est un voisinage de a.
- (iv) Si a et b sont deux points distincts de l'espace métrique (E,d), alors il existe un voisinage V de a et un voisinage W de b tels que $V \cap W = \emptyset$.

Pour cette propriété (iv), on dit qu'un espace métrique est un espace séparé.

Preuve:

- (i) Vraie par définition d'un voisinage.
- (ii) Si $V \in \mathcal{V}(a)$ alors il existe r > 0 tel que $B(a, r) \subset V$. Si $V \subset W$, alors $B(a, r) \subset W$. Donc W est un voisinage de a.
 - (iii) Soient $V_1, ..., V_n$ un nombre fini de voisinages de a.

Alors il existe $r_i > 0$ tel que $B(a, r_i) \subset V_i, \forall i = 1, ..., n$.

Posons $r = \min_{1 \le i \le n} r_i$. Alors r > 0 et $B(a, r) \subset B(a, r_i) \subset V_i, \forall i = 1, ..., n$.

Donc $B(a,r) \subset \bigcap_{i=1}^{n} V_i$. Par conséquent $\bigcap_{i=1}^{n} V_i$ est un voisinage de a.

(iv) Soient $a, b \in E$ tels que $a \neq b$. Alors d(a, b) > 0. Posons $r = \frac{1}{3}d(a, b)$.

Alors B(a,r) est un voisinage de a et B(b,r) est un voisinage de b.

Supposons qu'il existe $x \in B(a, r) \cap B(b, r)$.

Alors $3r = d(a, b) \le d(a, x) + d(x, b) < 2r$. Contradiction.

Par conséquent $B(a,r) \cap B(b,r) = \emptyset$.

1.3.5.4. Proposition : Soit O une partie d'un espace métrique (E, d).

O est un ouvert si et seulement si O est un voisinage de chacun de ses points.

Preuve:

CN: Si O est un ouvert, alors $\forall x \in O$, il existe r > 0 tel que $B(x, r) \subset O$. Donc O est un voisinage de $x, \forall x \in O$.

CS: Si O est un voisinage de chacun de ses points, alors $\forall x \in O$, il existe r > 0 tel que $B(x,r) \subset O$. Donc O est un ouvert.

1.4. Intérieur, adhérence d'une partie

1.4.1. Intérieur d'une partie

1.4.1.1. Définition : Soit (E, d) un espace métrique et soit A une partie de E.

On dit qu'un point x de E est intérieur à A si A est un voisinage de x.

On appelle $intérieur\ de\ A,$ et on note $\overset{\circ}{A}$, l'ensemble des points de E qui sont intérieurs à A.

Exemple : Dans \mathbb{R} muni de la distance usuelle, si A = [a, b[alors $\overset{\circ}{A} =]a, b[$.

Remarque : $\overset{\circ}{A} \subset A$.

1.4.1.2. Propriété : Soit (E, d) un espace métrique et soit A une partie de E. $\overset{\circ}{A}$ est un ouvert et c'est le plus grand ouvert de E contenu dans A.

Preuve:

- $\forall x \in A$, il existe r > 0 tel que $B(x,r) \subset A$. $\forall y \in B(x,r)$, on a $y \in B(x,r) \subset A$. Alors A est un voisinage de chacun des points de B(x,r). Donc $B(x,r) \subset A$. Par conséquent A est un ouvert.
 - $A \subset A$.
- Soit O un ouvert de E contenu dans A. $\forall x \in O$, il existe r > 0 tel que $B(x,r) \subset O$. Alors $B(x,r) \subset A$. Donc A est un voisinage de x. Alors $x \in A$. Par conséquent $O \subset A$.

1.4.1.3. Corollaire: A est un ouvert si et seulement si A = A.

Preuve:

- Si A est un ouvert alors dans ce cas le plus grand ouvert de E contenu dans A est A. Donc $\overset{\circ}{A}=A$.

- Si $\overset{\circ}{A} = A$, alors A est un ouvert car $\overset{\circ}{A}$ est un ouvert.

Exemple : Dans \mathbb{R}^2 muni de la distance euclidienne δ_2 si $D\left(a,r\right)$ est un disque ouvert, alors $\overset{\circ}{D}=D$.

1.4.2. Adhérence d'une partie

1.4.2.1. Définition : Soit (E,d) un espace métrique et soit A une partie de E. On dit qu'un point x de E est $adh\acute{e}rent$ à A si pour tout réel r>0, $B(x,r)\cap A\neq\emptyset$. On appelle $adh\acute{e}rence$ de A, et on note \overline{A} , l'ensemble des points de E qui sont adhérents à A.

Exemple : Dans \mathbb{R} muni de la distance usuelle, si A = [a, b] alors $\overline{A} = [a, b]$.

Remarque : $A \subset \overline{A}$.

1.4.2.2. Proposition : Soient (E, d) un espace métrique, A une partie de E et $x \in E$. $x \in \overline{A} \iff$ pour tout voisinage V de x, $V \cap A \neq \emptyset$.

Preuve:

CN: Supposons que $x \in \overline{A}$. Soit V un voisinage de x. Alors $\exists r > 0$ tel que $B(x,r) \subset V$. Comme $x \in \overline{A}$, $B(x,r) \cap A \neq \emptyset$. Donc $V \cap A \neq \emptyset$.

CS: Supposons que pour tout voisinage V de x, $V \cap A \neq \emptyset$. Alors $\forall r > 0$, $B(x,r) \cap A \neq \emptyset$ car B(x,r) est un voisinage de x. Par conséquent, $x \in \overline{A}$.

1.4.2.3. Proposition : Soit (E, d) un espace métrique et soit A une partie de E. Alors

$${\sf C}_E^{\overline{A}} = {\stackrel{\circ}{\widehat{\sf C}_E^A}}$$

Preuve:

$$x \in \mathbb{C}_{E}^{\overline{A}} \iff \exists r > 0 \text{ tel que } B(x,r) \cap A = \emptyset$$
 $\iff \exists r > 0 \text{ tel que } B(x,r) \subset \mathbb{C}_{E}^{A}$
 $\iff \mathbb{C}_{E}^{A} \text{ est un voisinage de } x$
 $\iff x \in \widehat{\mathbb{C}_{E}^{A}}$

1.4.2.4. Proposition : Soit (E, d) un espace métrique et soit A une partie de E. Alors \bar{A} est un fermé et c'est le plus petit fermé de (E, d) qui contient A.

Preuve : * On a : $C_E^{\bar{A}} = \widehat{C_E^A}$. Donc $C_E^{\bar{A}}$ est un ouvert. Par conséquent \bar{A} est un fermé.

* $A \subset \overline{A}$.

* Soit F un fermé de (E,d) tel que $A \subset F$. Alors $\mathcal{C}_E^F \subset \mathcal{C}_E^A$. Donc $\overbrace{\mathcal{C}_E^F}^\circ \subset \overbrace{\mathcal{C}_E^A}^\circ$.

Or \mathcal{C}_E^F est un ouvert et $\mathcal{C}_E^{\bar{A}} = \overbrace{\mathcal{C}_E^A}$. Alors $\mathcal{C}_E^F \subset \mathcal{C}_E^{\bar{A}}$. Donc $\overline{A} \subset F$.

Par conséquent \bar{A} est le plus petit fermé de E contenant A.

1.4.2.5. Corollaire : A est un fermé ssi $\bar{A} = A$.

Preuve:

CN : Si A est un fermé, alors le plus petit fermé de E contenant A est lui même; donc $\bar{A} = A$. CS : Si $\bar{A} = A$ alors A est fermé car \bar{A} est fermé.

1.4.2.6. Définition : Soit (E,d) un espace métrique.

Une partie A de E est dite partout dense dans E si $\bar{A} = E$.

1.4.2.7. Exemple: Dans \mathbb{R} muni de la distance usuelle $\overline{\mathbb{Q}} = \mathbb{R}$. Donc \mathbb{Q} est partout dense dans \mathbb{R} .

1.4.3. Frontière d'une partie

1.4.3.1. Définition:

Soit (E,d) un espace métrique et $A \subset E$.

On appelle frontière de A l'ensemble $F_r(A) = \bar{A} \cap \overline{\mathbb{C}_E^A}$

1.4.3.2. Exemple:

Dans \mathbb{R} muni de la distance usuelle, si $A = [1, 5[\text{ alors } F_r(A) = [1, 5] \cap (] - \infty, 1] \cup [5, +\infty[)$ $F_r(A) = \{1, 5\}.$

1.4.4. Points isolés-Points d'accumulation

1.4.4.1. Définition :

Soient (E, d) un espace métrique et $A \subset E$ tel que $A \neq \emptyset$.

On dit qu'un point $x \in A$ est un point isolé de A s'il existe un voisinage V de x tel que $V \cap A = \{x\}.$

On dit qu'un point $x \in E$ est un point d'accumulation de A si tout voisinage de x contient une infinité de points de A.

1.4.3.2. Exemple : Dans \mathbb{R} muni de la distance usuelle, si $A =]-3, 2[\cup \{7\}]$ alors 7 est un point isolé de A, car]6, 8[est un voisinage de 7 tel que $A \cap]6, 8[= \{7\}]$; -3 est un point d'accumulation de A, car $\forall r > 0, [-3 - r, -3 + r] \cap A$ est infini.

1.5. Topologie induite - Topologie produit

1.5.1. Topologie induite

1.5.1.1. Définition :

Soient (E, d) un espace métrique, A une partie non vide de E et $d_A = d_{|A \times A}$. La topologie du sous-espace métrique (A, d_A) est appelée la topologie induite sur A.

1.5.1.2. Proposition : Soient (E, d) un espace métrique, A une partie non vide de E et $d_A = d_{|A \times A|}$.

Soient
$$a \in A$$
 et $r \in \mathbb{R}^+$. Posons $B_A(a,r) = \{x \in A / d_A(a,x) < r\}$. Alors i) $B_A(a,r) = A \cap B(a,r)$

ii) une partie ω de A est un ouvert de (A, d_A) si et seulement si il existe un ouvert Ω de (E, d) tel que $\omega = A \cap \Omega$.

Preuve:

i) Soit $x \in E$.

$$x \in B_A(a,r) \Leftrightarrow x \in A \text{ et } d_A(a,x) < r$$

 $\Leftrightarrow x \in A \text{ et } d(a,x) < r$
 $\Leftrightarrow x \in A \text{ et } x \in B(a,r)$
 $\Leftrightarrow x \in A \cap B(a,r)$

ii) **CN**: Soit ω est un ouvert de (A, d_A) .

Si $\omega = \emptyset$ alors $\Omega = \emptyset$ convient.

Si $\omega \neq \emptyset$, $\forall x \in \omega$, $\exists r_x > 0$ tel que $B_A(x, r_x) \subset \omega$. Alors

$$\omega = \bigcup_{x \in \omega} B_A(x, r_x) = \bigcup_{x \in \omega} (A \cap B(x, r_x)) = A \cap \left(\bigcup_{x \in \omega} B(x, r_x)\right).$$

On pose $\Omega = \bigcup_{x \in \omega} B(x, r_x)$ qui est un ouvert de (E, d).

CS : Soit Ω un ouvert de (E, d). Posons $\omega = A \cap \Omega$.

Si $\omega = \emptyset$, alors c'est un ouvert de (A, d_A) .

Si $\omega \neq \emptyset$, soit $x \in \omega$. Alors $\exists r > 0$ tel que $B(x,r) \subset \Omega$.

Donc $\exists r > 0$ tel que $A \cap B(x, r) \subset A \cap \Omega$.

Ainsi $\exists r > 0$ tel que $B_A(x,r) \subset \omega$. Par conséquent, ω est un ouvert de (A,d_A) .

1.5.2. Topologie produit

1.5.2.1. Définition :

Soient $(E_1, d_1), ..., (E_n, d_n)$ des espaces métriques. La topologie de l'espace produit $E = E_1 \times ... \times E_n$ muni de l'une de ses trois distances usuelles équivalentes $\delta_{\infty}, \delta_1$ ou δ_2 (définies au **1.6**) est appelée topologie produit.

1.5.2.2. Proposition : Sous les hypothèses de la définition précédente, soient r > 0 et $a = (a_1, ..., a_n) \in E = E_1 \times ... \times E_n$ et considérons sur E la distance $\delta_{\infty} = \sup_{1 \le i \le n} d_i$. Alors

$$B^{\delta_{\infty}}(a,r) = \prod_{i=1}^{n} B_{E_i}(a_i,r)$$

où $B_{E_i}(a_i, r)$ est la boule ouverte de centre a_i et de rayon r dans (E_i, d_i) .

Preuve : Soit $x = (x_1, ..., x_n) \in E$.

$$x \in B^{\delta_{\infty}}(a, r) \Leftrightarrow \sup_{1 \le i \le n} d_i(a_i, x_i) < r$$

$$\Leftrightarrow d_i(a_i, x_i) < r, \forall i = 1, ..., n$$

$$\Leftrightarrow x_i \in B_{E_i}(a_i, r), \forall i = 1, ..., n$$

$$\Leftrightarrow x \in \prod_{i=1}^n B_{E_i}(a_i, r)$$

1.5.2.3. Définition : Pour l'égalité $B^{\delta_{\infty}}(a,r) = \prod_{i=1}^{n} B_{E_{i}}(a_{i},r)$, on dit que $B^{\delta_{\infty}}(a,r)$ est un ouvert élémentaire pour la topologie produit.

Plus généralement, on appelle ouvert élémentaire de $E=E_1\times ...\times E_n$ tout ouvert Ω de E de la forme

$$\Omega = \prod_{i=1}^{n} \omega_i$$

où ω_i est un ouvert de $(E_i, d_i), \forall i = 1, ..., n$.

- **1.5.2.4.** Remarque : Tout ouvert de E n'est pas nécessairement un ouvert élémentaire de E.
 - **1.5.2.5.** Proposition : Tout ouvert de E est une réunion d'ouverts élémentaires de E.

Preuve : Soit O un ouvert de $E = E_1 \times ... \times E_n$. Alors $\forall x \in O, \exists r_x > 0$ tel que $B^{\delta_{\infty}}(x, r_x) \subset O$. Donc

$$O = \bigcup_{x \in O} B^{\delta_{\infty}}(x, r_x) = \bigcup_{x \in O} \left(\prod_{i=1}^n B_{E_i}(x_i, r_x) \right).$$

Chapitre 2 : Limites - Continuité

- 2.1. Limites
- **2.1.1.** Définition : Soient (E, d_E) et (F, d_F) deux espaces métriques.

Soient $f:(E,d_E)\to (F,d_F)$ une application, $x_0\in E$, et $l\in F$.

On dit que f(x) tend vers l lorsque x tend vers x_0 , si pour tout voisinage V de l, il existe un voisinage U de x_0 tel que $f(U) \subset V$.

Ce qui est équivalent à :

$$\forall \epsilon > 0, \exists \eta > 0 \text{ tel que } \forall x \in E, x \in B(x_0, \eta) \Rightarrow f(x) \in B(l, \epsilon)$$

et donc à

$$\forall \epsilon > 0, \exists \eta > 0 \text{ tel que } \forall x \in E, d_E(x, x_0) < \eta \Rightarrow d_F(f(x), l) < \epsilon$$

car $B(l,\epsilon)$ est un voisinage de l et tout voisinage de x_0 contient une boule ouverte centrée en x_0 .

2.1.2. Proposition : Soient $f:(E,d_E) \to (F,d_F)$ une application, $x_0 \in E$ et $l \in F$.

Si f(x) tend vers l lorsque x tend vers x_0 , alors l est unique.

On dit que l est la limite de f au point x_0 et on note

$$l = \lim_{x \to x_0} f(x).$$

Preuve: Supposons que f(x) tend vers l et l' lorsque x tend vers x_0 , avec $l \neq l'$.

 $\operatorname{Comme}(F, d_F)$ est séparé et $l \neq l', \exists V \in \mathcal{V}(l), \exists V' \in \mathcal{V}(l')$ tels que $V \cap V' = \emptyset$.

Comme f(x) tend vers l lorsque x tend vers x_0 et que $V \in \mathcal{V}(l)$,

 $\exists U \in \mathcal{V}(x_0) \text{ tel que } f(U) \subset V.$

De même, $\exists U' \in \mathcal{V}(x_0)$ tel que $f(U') \subset V'$.

Alors $U \cap U' \in \mathcal{V}(x_0)$ et donc $x_0 \in U \cap U'$.

Par conséquent $f(x_0) \in V \cap V'$. Contradiction car $V \cap V' = \emptyset$.

2.1.3. Extension de la notion de limite

Soit $f:(E,d_E)\to (F,d_F)$ une fonction d'ensemble de définition \mathcal{D}_f . Soit $A\subset \mathcal{D}_f$. Soit $x_0\in \overline{A}$. Soit $l\in F$. Soit $f_A=f_{|A}$ la restriction de f à A. On dit que $f_A(x)$ tend vers l lorsque x tend vers x_0 si

$$\forall V \in \mathcal{V}(l), \exists U \in \mathcal{V}(x_0) \text{ tel que } \forall x \in U \cap A, f(x) \in V.$$

Dans ce cas, on dit que f(x) tend vers l lorsque x tend vers x_0 sur A. Ce point l est unique et on note

$$\lim_{\substack{x \to x_0 \\ x \in A}} f(x) = l.$$

Si $A = U_0 \setminus \{x_0\}$ où U_0 est un voisinage de x_0 , on note

$$\lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = l.$$

Exemple: Dans \mathbb{R} muni de la distance usuelle,

$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{\sin x}{x} = 1.$$

Remarque : Si $\lim_{x \to x_0} f(x) = l$, alors $\lim_{x \to x_0 \atop x \in A} f(x) = l$. Mais la réciproque est fausse.

Cas particuliers : Dans \mathbb{R} muni de la distance usuelle, s'il existe $\epsilon > 0$ tel que :

$$A =]x_0, x_0 + \epsilon [\cap \mathcal{D}_f, \text{ la limite s'écrit } \lim_{x \to x_0} f(x) ;$$

$$A = [x_0, x_0 + \epsilon] \cap \mathcal{D}_f$$
, la limite s'écrit $\lim_{x \to x_0} f(x)$;

$$A =]x_0 - \epsilon, x_0[\cap \mathcal{D}_f, \text{ la limite s'écrit } \lim_{\substack{x \to x_0 \\ x < x_0}} f(x);$$

$$A =]x_0 - \epsilon, x_0] \cap \mathcal{D}_f$$
, la limite s'écrit $\lim_{\substack{x \to x_0 \\ x \le x_0}} f(x)$.

2.2. Continuité

2.2.1. Définition : Soit $f:(E,d_E) \to (F,d_F)$ une application. Soit $x_0 \in E$. On dit que f est continue au point x_0 si

$$\lim_{x \to x_0} f(x) = f(x_0).$$

Ce qui est équivalent à :

$$\forall \epsilon > 0, \exists \eta > 0 \text{ tel que } \forall x \in E, d_E(x, x_0) < \eta \Rightarrow d_F(f(x), f(x_0)) < \epsilon.$$

Si f est continue en chaque point $x_0 \in E$, on dit que f est continue sur E.

Cas particulier:

Une application $f:(\mathbb{R},|.|)\to(\mathbb{R},|.|)$ est continue en un point x_0 si

$$\forall \epsilon > 0, \exists \eta > 0 \text{ tel que } \forall x \in \mathbb{R}, |x - x_0| < \eta \Rightarrow |f(x) - f(x_0)| < \epsilon.$$

Exemple: La $i^{\grave{e}me}$ projection canonique de \mathbb{R}^n dans \mathbb{R}

$$p_{r_i}: \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $x = (x_1, ..., x_n) \mapsto x_i$

est continue sur \mathbb{R}^n pour tout i = 1, ..., n.

Prolongement par continuité : Soit $f:(E,d_E)\to (F,d_F)$ une fonction d'ensemble de définition \mathcal{D}_f . Soit $x_0\notin \mathcal{D}_f$.

Si $\lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = \hat{l} \in F$, on peut prolonger f par continuité en x_0 .

Le prolongement par continuité est la fonction g définie par g(x) = f(x) si $x \neq x_0$ et $g(x_0) = l$.

2.2.2. Proposition:

Soient E, F, G trois espaces métriques, $f: E \to F$ et $g: F \to G$ deux applications et $x_0 \in E$. Si $\lim_{x \to x_0} f(x) = l_1$ et si $\lim_{y \to l_1} g(y) = l_2$, alors $\lim_{x \to x_0} (g \circ f)(x) = l_2$.

Si f est continue en x_0 et si g est continue en $f(x_0)$, alors $g \circ f$ est continue en x_0 .

Si f est continue sur E et si g est continue sur F, alors $g \circ f$ est continue sur E.

2.2.3. Proposition:

Soit (E, d) un espace métrique. Soit (F, || ||) un espace vectoriel normé sur \mathbb{R} .

Soient $f, g: E \to F$ deux applications. Soit $a \in E$.

Si f et g sont continues en a, alors $\forall \alpha, \beta \in \mathbb{R}, \alpha f + \beta g$ est continue en a.

2.2.4. Proposition:

Soit (E,d) un espace métrique. Soient $f,g:E\to\mathbb{R}$ deux applications. Soit $a\in E$.

- 1. Si f et g sont continues en a, alors fg est continue en a.
- 2. Si g est continue en a et $g(a) \neq 0$, alors $\frac{1}{g}$ est continue en a.
- 3. Si f et g sont continues en a et si $g(a) \neq 0$ alors $\frac{f}{g}$ est continue en a.

4. Toute fonction polynôme de n variables réelles est continue sur \mathbb{R}^n .

Toute fonction rationnelle de n variables réelles est continue en chaque point de son ensemble de définition.

2.2.5. Proposition: Soient E et F deux espaces métriques. Soit $f: E \to F$ une application.

f est continue en $a \in E$ si et seulement si

$$\forall V\in\mathcal{V}\left[f\left(a\right)\right],\,f^{-1}\left(V\right)\in\mathcal{V}\left(a\right).$$

Preuve:

- CN:

Si f est continue en a, alors $\forall V \in \mathcal{V}[f(a)], \exists U \in \mathcal{V}(a) \text{ tel que } f(U) \subset V.$ Or

$$\begin{array}{ll} f(U) \subset V & \Rightarrow & f^{-1}\left[f\left(U\right)\right] \subset f^{-1}\left(V\right) \\ & \Rightarrow & U \subset f^{-1}\left[f\left(U\right)\right] \subset f^{-1}\left(V\right). \end{array}$$

Comme $U \in \mathcal{V}(a)$ et $U \subset f^{-1}(V)$, alors $f^{-1}(V) \in \mathcal{V}(a)$.

- CS:

Si $\forall V \in \mathcal{V}[f(a)], f^{-1}(V) \in \mathcal{V}(a)$, en posant $U = f^{-1}(V)$, on a $f(U) = f[f^{-1}(V)] \subset V$ et $U \in \mathcal{V}(a)$. Donc f est continue en a.

2.2.6. Proposition : Soient E et F deux espaces métriques. Soit $f: E \to F$ une application.

f est continue sur E si et seulement si pour tout ouvert Ω de F, $f^{-1}(\Omega)$ est un ouvert de E.

Preuve:

- \mathbf{CN} : Soit Ω un ouvert de F.

Si $f^{-1}(\Omega) = \emptyset$ alors c'est un ouvert de E.

Si $f^{-1}(\Omega) \neq \emptyset$, soit $x \in f^{-1}(\Omega)$. Alors $f(x) \in \Omega$, donc $\Omega \in \mathcal{V}[f(x)]$. Comme f est continue en $x, f^{-1}(\Omega) \in \mathcal{V}(x)$. Par conséquent $f^{-1}(\Omega)$ est un ouvert car voisinage de chacun de ses points.

- CS : Soit $a \in E$.

Pour tout $V \in \mathcal{V}[f(a)]$, il existe un ouvert Ω de F tel que $f(a) \in \Omega \subset V$. Alors $a \in f^{-1}(\Omega) \subset f^{-1}(V)$ et $f^{-1}(\Omega)$ est ouvert par hypothèse, donc $f^{-1}(V) \in \mathcal{V}(a)$. Par conséquent, f est continue en a.

2.2.7. Corollaire : Soient E et F deux espaces métriques. Soit $f: E \to F$ une application.

f est continue sur E si et seulement si pour tout fermé W de F, $f^{-1}(W)$ est un fermé de E.

2.2.8. Proposition : Soient E, F et G trois espaces métriques. Soient $f: E \to F$ et $g: F \to G$ deux applications. Soit $a \in E$.

Si f est continue en a et si g est continue en f(a), alors $g \circ f$ est continue en a.

Par conséquent si f est continue sur E et si g est continue sur F, alors $g \circ f$ est continue sur E.

Preuve: Soit $V \in \mathcal{V}[(g \circ f)(a)] = \mathcal{V}[g(f(a))]$. Comme g est continue en f(a), alors $g^{-1}(V)$ est un voisinage de f(a).

Comme f est continue en a, alors $f^{-1}[g^{-1}(V)] = (g \circ f)^{-1}(V)$ est un voisinage de a. Donc $g \circ f$ est continue en a.

2.2.9. Homéomorphismes

2.2.9.1. Définition : Soient E et F deux espaces métriques. Soit $f: E \to F$ une application.

On dit que f est un homéomorphisme de E sur F si f est une bijection et si f et f^{-1} sont continues.

On dit que E et F sont homéomorphes s'il existe un homéomorphisme de E sur F.

- **2.2.9.2. Définition :** On dit que deux distances d et δ sur un ensemble E sont topologiquement équivalentes si l'application $id_E : (E, d) \to (E, \delta)$ est un homéomorphisme.
- **2.2.10.** Proposition : Soit $E = \prod_{i=1}^{n} E_i$ un espace métrique produit. Alors $\forall i = 1, ..., n$, la $i^{\grave{e}me}$ projection canonique :

$$p_i: E \rightarrow E_i$$

 $x = (x_i)_{1 \le i \le n} \mapsto x_i$

est continue.

Preuve : Considérons sur E la distance δ_{∞} . Soit $a = (a_1, ..., a_n) \in E$. Soit $\epsilon > 0$. Soit $x = (x_1, ..., x_n) \in E$. Alors $\forall i = 1, ..., n$,

$$d_i(p_i(x), p_i(a)) = d_i(x_i, a_i) \le \delta_{\infty}(x, a).$$

Donc

$$\exists \eta = \epsilon > 0 \text{ tel que } \delta_{\infty}(x, a) < \eta \Rightarrow d_i(p_i(x), p_i(a)) < \epsilon.$$

Par conséquent p_i est continue au point a. Comme a est quelconque dans E, p_i est continue sur E.

2.2.11. Proposition : Soit E un espace métrique et soit $\prod_{i=1}^n F_i$ un espace métrique produit. Soit

$$f: E \rightarrow \prod_{i=1}^{n} F_{i}$$

 $x \mapsto f(x) = (f_{1}(x), f_{2}(x), ..., f_{n}(x))$

une application. Alors

f est continue si et seulement si chaque application composante f_i de f est continue.

Preuve:

- CN : Supposons f continue. Alors $\forall i = 1, ..., n, f_i = p_i \circ f$ est continue.
- CS : Soient d la distance sur E et d_i la distance sur F_i . Soit $a \in E$. Supposons chaque application composante f_i continue en a. Soit $\epsilon > 0$. Alors

$$\exists \eta_i > 0 \text{ tel que } \forall x \in E, \ d(x,a) < \eta_i \Rightarrow d_i(f_i(x), f_i(a)) < \epsilon.$$

Posons $\eta = \min_{1 \le i \le n} \eta_i$. Alors

$$d(x,a) < \eta \Rightarrow d_i(f_i(x), f_i(a)) < \epsilon, \ \forall i = 1, ..., n.$$

Donc

$$d(x, a) < \eta \Rightarrow \delta_{\infty}(f(x), f(a)) < \epsilon.$$

Par conséquent f est continue au point a. Comme a est quelconque dans E, f est continue sur E.

2.2.12. Proposition : Soit $E = \prod_{i=1}^{n} E_i$ un espace métrique produit. Soit F un espace métrique.

Si $f: E = \prod_{i=1}^n E_i \to F$ est une application continue en $a = (a_i)_{1 \le i \le n} \in E$, alors $\forall i = 1, ..., n$, sa $i^{\grave{e}me}$ application partielle en a:

$$\varphi_i: E_i \to F$$

$$x_i \mapsto f(a_1, ..., a_{i-1}, x_i, a_{i+1}, ..., a_n)$$

est continue en a_i .

Preuve : Supposons f continue en a. $\forall i = 1, ..., n$, soit

$$\psi_i: E_i \to E
x_i \mapsto (a_1, ..., a_{i-1}, x_i, a_{i+1}, ..., a_n)$$

Alors ψ_i est continue car chacune de ses composantes est continue. Comme $\varphi_i = f \circ \psi_i$ alors φ_i est continue en a_i .

Remarque : La réciproque est fausse. Exemple : Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

Les applications partielles de f en (0,0) sont continues car f(x,0)=0=f(0,y). Mais f n'est pas continue en (0,0) car $\lim_{\substack{x\to 0\\x\neq 0}} f(x,x)=\frac{1}{2}$.

2.3. Applications uniformément continues

2.3.1. Définition : Soit $f:(E,d_E) \to (F,d_F)$ une application.

On dit que f est uniformément continue sur E, si

$$\forall \epsilon > 0, \exists \eta > 0 \text{ tel que } \forall (x,y) \in E^2, \ d_E(x,y) < \eta \Rightarrow d_F(f(x),f(y)) < \epsilon.$$

2.3.2. Proposition: Toute application uniformément continue est continue.

Remarque: La réciproque est fausse.

Exemple: L'application

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^2$$

est continue sur \mathbb{R} mais n'est pas uniformément continue sur \mathbb{R} .

2.3.3. Définition : Soit $f:(E,d_E) \to (F,d_F)$ une application. On dit que f est *lipschitzienne* s'il existe une constante k > 0 telle que

$$\forall x, y \in E, d_F(f(x), f(y)) \le k d_E(x, y).$$

On dit alors que f est lipschitzienne de rapport k ou f est k-lipschitzienne.

2.3.4. Proposition : Toute application lipschitzienne de rapport k est uniformément continue.

Preuve: $\forall \epsilon > 0, \exists \eta = \frac{\epsilon}{k} > 0$ tel que $\forall x, y \in E, \ d_E(x, y) < \eta \Rightarrow d_F(f(x), f(y)) < \epsilon$. Donc f est uniformément continue.

2.3.5. Définition : Soit $f:(E,d_E)\to (F,d_F)$ une application. On dit que f est une isométrie si

$$\forall x, y \in E, \ d_F(f(x), f(y)) = d_E(x, y).$$

Remarque: Toute isométrie est une application lipschitzienne.

Chapitre III. Suites de points d'un espace métrique

3.1. Convergence

3.1.1 Définition:

Soit $(x_n)_{n\in\mathbb{N}}$ une suite de points d'un espace métrique (E,d). On dit que $(x_n)_{n\in\mathbb{N}}$ converge vers un point $x\in E$ si :

$$\forall V \in \mathcal{V}(x), \exists N \in \mathbb{N} \text{ tel que } n \geq N \Rightarrow x_n \in V.$$

Ce qui est équivalent à $\forall \epsilon > 0, \exists N \in \mathbb{N}$ tel que $n \geq N \Rightarrow x_n \in B(x, \epsilon)$. (Car $B(x, \epsilon) \in \mathcal{V}(x)$).

C'est-à-dire $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ tel que } n \geq N \Rightarrow d(x, x_n) < \epsilon.$

Ce qui revient à dire que la suite de nombres réels $(\alpha_n)_{n\in\mathbb{N}}$ définie par $\alpha_n=d(x,x_n)$ tend vers 0 dans \mathbb{R} .

3.1.2 Proposition:

Si une suite $(x_n)_{n\in\mathbb{N}}$ de points d'un espace métrique (E,d) converge vers un point $x\in E$, alors x est unique.

On l'appelle la limite de $(x_n)_{n\in\mathbb{N}}$ et on note :

$$\lim_{n \to +\infty} x_n = x.$$

Proof. Supposons que $(x_n)_{n\in\mathbb{N}}$ converge vers x et x' avec $x\neq x'$. Comme (E,d) est séparé, il existe $V\in\mathcal{V}(x)$ et $V'\in\mathcal{V}(x')$ tels que $V\cap V'=\emptyset$.

Alors $\exists N \in \mathbb{N}$ tel que $\forall n \geq N, x_n \in V$.

De même, $\exists N' \in \mathbb{N}$ tel que $\forall n \geq N', \ x_n \in V'$.

Donc $\forall n \geq \max\{N, N'\}, x_n \in V \cap V'$. Contradiction.

3.1.3. Proposition : Soit $(x_n)_{n\in\mathbb{N}}$ une suite de points d'un espace métrique produit $E = \prod_{i=1}^k E_i$ avec $x_n = (x_n^1, x_n^2, \dots, x_n^k)$.

La suite $(x_n)_{n\in\mathbb{N}}$ converge vers $l=(l_1,l_2,\cdots,l_k)$ dans E ssi la suite $(x_n^i)_{n\in\mathbb{N}}$ converge vers l_i dans $(E_i,d_i), \forall i=1,...,k$.

Proof.

 \mathbf{CN} : Supposons que $(x_n)_{n\in\mathbb{N}}$ converge vers $l=(l_1,l_2,\cdots,l_k)$ dans E. Considérons sur E la distance $\delta_{\infty}=\sup_{1\leq i\leq k}d_i$. Alors

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} : \ \forall n \ge N, \ \delta_{\infty}(x_n, l) < \epsilon.$$

Donc $\forall n \geq N, \ d_i(x_n^i, l_i) < \epsilon, \ \forall i = 1, ..., k$. Par conséquent, la suite $(x_n^i)_{n \in \mathbb{N}}$ converge vers l_i dans $(E_i, d_i), \ \forall i = 1, ..., k$.

CS: Supposons que la suite $(x_n^i)_{n\in\mathbb{N}}$ converge vers l_i dans $(E_i,d_i), \forall i=1,...,k$. Alors

$$\forall \epsilon > 0, \ \exists N_i \in \mathbb{N} : \ \forall n \ge N_i, \ d_i(x_n^i, l_i) < \epsilon, \ \forall i = 1, ..., k.$$

Posons $N = \max_{1 \leq i \leq k} N_i$. Alors $\forall n \geq N, \ d_i(x_n^i, l_i) < \epsilon, \ \forall i = 1, ..., k$. Donc $\delta_{\infty}(x_n, l) < \epsilon$, où $l = (l_1, ..., l_k)$. Ainsi la suite $(x_n)_{n \in \mathbb{N}}$ converge vers $l = (l_1, l_2, \cdots, l_k)$ dans E.

3.1.4 Proposition:

Soit (E,d) un espace métrique et $A \subset E$ tel que $A \neq \emptyset$. Soit $x \in E$. $x \in \overline{A}$ si et seulement si il existe une suite $(a_n)_{n \in \mathbb{N}}$ de points de A qui converge vers x.

Preuve:

CN:

$$x \in \bar{A} \Rightarrow \forall V \in \mathcal{V}(x), V \cap A \neq \emptyset.$$

$$\Rightarrow \forall r > 0, B(x, r) \cap A \neq \emptyset \text{ car } B(x, r) \in \mathcal{V}(x).$$

$$\Rightarrow \forall n \in \mathbb{N}^*, B(x, \frac{1}{n}) \cap A \neq \emptyset.$$

$$\Rightarrow \forall n \in \mathbb{N}^*, \exists a_n \in A \text{ tel que } a_n \in B(x, \frac{1}{n}).$$

$$\Rightarrow \exists \text{ une suite } (a_n)_{n \in \mathbb{N}^*} \text{ de points de } A \text{ telle que}$$

$$0 \le d(a_n, x) < \frac{1}{n}$$
. Or $\lim_{n \to +\infty} \frac{1}{n} = 0$.

Alors $\lim_{n\to+\infty} d(a_n,x) = 0$. Donc $(a_n)_{n\in\mathbb{N}^*}$ converge vers x.

CS: Supposons qu'il existe une suite $(a_n)_{n\in\mathbb{N}}$ de points de A qui converge vers x. Alors $\forall V \in \mathcal{V}(x), \exists N \in \mathbb{N}$ tel que $n \geq N \Rightarrow a_n \in V$. Donc $\forall V \in \mathcal{V}(x), V \cap A \neq \emptyset$. Alors $x \in \bar{A}$.

3.2. Continuité séquentielle

Théorème : Soient (E, d_E) et (F, d_F) deux espaces métriques. Soit $f: E \to F$ une application. Soit $x \in E$.

L'application f est continue au point x si et seulement si pour toute suite $(x_n)_{n\in\mathbb{N}}$ de points de E qui converge vers x, la suite $(f(x_n))_{n\in\mathbb{N}}$ converge vers f(x).

Proof.

CN: Supposons f continue au point x. Alors $\forall V \in \mathcal{V}[f(x)], \exists U \in \mathcal{V}(x) : f(U) \subset V$. Soit $(x_n)_{n \in \mathbb{N}}$ une suite de points de E qui converge vers x. Comme $U \in \mathcal{V}(x), \exists N \in \mathbb{N} : n > N \Rightarrow x_n \in U$. Alors $f(x_n) \in f(U)$. Ainsi

$$\forall V \in \mathcal{V}[f(x)], \ \exists N \in \mathbb{N}: \ n > N \Rightarrow f(x_n) \in V.$$

Donc la suite $(f(x_n))_{n\in\mathbb{N}}$ converge vers f(x).

 $\mathbf{CS}:$ Par contraposée. Supposons f non continue au point x. Alors $\exists V \in \mathcal{V}[f(x)] : \forall U \in \mathcal{V}(x), \ f(U) \not\subset V$. Prenons $U = B(x, \frac{1}{n}), \ n \in \mathbb{N}^*$. Alors

$$\exists V \in \mathcal{V}[f(x)] : \forall n \in \mathbb{N}^*, \ \exists x_n \in B(x, \frac{1}{n}) : f(x_n) \notin V.$$

Donc on obtient une suite $(x_n)_{n\in\mathbb{N}^*}$ qui converge vers x car $0 \le d_E(x,x_n) < \frac{1}{n}$. Mais la suite $(f(x_n))_{n\in\mathbb{N}^*}$ ne converge pas vers f(x).

3.3. Valeurs d'adhérence

3.3.1. Définition:

Soit (E,d) un espace métrique. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de points de E.

On dit qu'un point $a \in E$ est une valeur d'adhérence de la suite $(x_n)_{n \in \mathbb{N}}$ ssi pour tout voisinage V de a, l'ensemble $\{n \in \mathbb{N} \mid x_n \in V\}$ est infini.

Ou ssi $\forall V \in \mathcal{V}(a), \forall N \in \mathbb{N}, \exists n \geq N \ tel \ que \ x_n \in V.$

Ou encore ssi $\forall \epsilon > 0, \ \forall N \in \mathbb{N}, \ \exists n \geq N \text{ tel que } d(x_n, a) < \epsilon.$

3.3.2. Proposition : Dans un espace métrique (E,d) si une suite $(x_n)_{n\in\mathbb{N}}$ de points de E converge, alors elle possède une seule valeur d'adhérence qui est sa limite.

Preuve:

Soit $(x_n)_{n\in\mathbb{N}}$ une suite de points de E qui converge vers a. Alors a est une valeur d'adhérence de $(x_n)_{n\in\mathbb{N}}$.

Supposons que $(x_n)_{n\in\mathbb{N}}$ possède une autre valeur d'adhérence $b\neq a$.

Alors il existe un voisinage V de a et un voisinage V' de b tels que $V \cap V' = \emptyset$ car (E, d) est séparé. Comme $(x_n)_{n\in\mathbb{N}}$ converge vers a et $V\in\mathcal{V}(a)$,

 $\exists N_1 \in \mathbb{N} \text{ tel que } n \geq N_1 \Rightarrow x_n \in V.$

Comme b est une valeur d'adhérence de $(x_n)_{n\in\mathbb{N}}$ et $V'\in\mathcal{V}(b)$, et de plus $N_1\in\mathbb{N}$ alors il existe $n_1 \geq N_1$ tel que $x_{n_1} \in V'$.

Comme $n_1 \geq N_1$ alors $x_{n_1} \in V \cap V'$. Contradiction car $V \cap V' = \emptyset$.

3.3.3. Proposition:

Si x est une valeur d'adhérence d'une suite de points de A alors $x \in \bar{A}$.

Preuve:

Supposons que x est une valeur d'adhérence d'une suite $(a_n)_{n\in\mathbb{N}}$ de points de A. Alors $\forall V \in \mathcal{V}(x), \forall N \in \mathbb{N}, \exists n \geq N \text{ tel que } a_n \in V.$

Comme $a_n \in A$ et $a_n \in V$, alors $V \cap A \neq \emptyset$.

Donc $\forall V \in \mathcal{V}(x), V \cap A \neq \emptyset$. Par conséquent $x \in \bar{A}$.

3.3.4. Théorème:

Soient (E,d) un espace métrique, $(x_n)_{n\in\mathbb{N}}$ une suite de points de E et $x\in E$. x est une valeur d'adhérence de la suite $(x_n)_{n\in\mathbb{N}}$ ssi il existe une sous-suite de la suite $(x_n)_{n\in\mathbb{N}}$ qui converge vers x.

Preuve:

CN: Supposons que x est une valeur d'adhérence de la suite $(x_n)_{n\in\mathbb{N}}$. Alors pour :

- $V = B(x, 1) \in \mathcal{V}(x)$ et $N = 1, \exists n_1 \ge 1 > 0$ tel que $d(x, x_{n_1}) < 1$.
- $V = B(x, \frac{1}{2}) \in \mathcal{V}(x)$ et $N = n_1 + 1$, $\exists n_2 \ge n_1 + 1 > n_1$ tel que $d(x, x_{n_2}) < \frac{1}{2}$.
- $V = B(x, \frac{1}{3})$ et $N = n_2 + 1$, $\exists n_3 \ge n_2 + 1 > n_2$ tel que $d(x, x_{n_3}) < \frac{1}{3}$.
- $\exists n_k \geq n_{k-1} + 1 > n_{k-1} \text{ tel que } d(x, x_{n_k}) < \frac{1}{k}$.

Alors il existe une sous-suite $(x_{n_k})_{k\in\mathbb{N}^*}$ de la suite $(x_n)_{n\in\mathbb{N}}$ telle que :

 $\forall k \in \mathbb{N}^*, \quad 0 \le d(x, x_{n_k}) < \frac{1}{k}.$ Comme $\lim_{k \to +\infty} \frac{1}{k} = 0$ alors $\lim_{k \to +\infty} d(x, x_{n_k}) = 0.$

Donc $(x_{n_k})_{k\in\mathbb{N}^*}$ converge vers x.

CS: S'il existe une sous-suite $(x_{n_k})_{k\in\mathbb{N}}$ de $(x_n)_{n\in\mathbb{N}}$ qui converge vers x, alors x est une valeur d'adhérence de $(x_{n_k})_{k\in\mathbb{N}}$ et donc de $(x_n)_{n\in\mathbb{N}}$.

3.3.5. Exemple:

Dans \mathbb{R} muni de la distance usuelle, soit $x_n = (-1)^n$, $\forall n \in \mathbb{N}$. La suite $(x_n)_{n\in\mathbb{N}}$ ne converge pas. Or $\forall p \in \mathbb{N}$,

$$x_{2p} = 1$$
$$x_{2p+1} = -1.$$

Alors -1 et 1 sont des valeurs d'adhérence de $(x_n)_{n\in\mathbb{N}}$. Les sous-suites $(x_{2p})_{p\in\mathbb{N}}$ et $(x_{2p+1})_{p\in\mathbb{N}}$ convergent respectivement vers 1 et -1.

3.3.6. Théorème : Soient (E,d) un espace métrique et $(x_n)_{n\in\mathbb{N}}$ une suite de points de E. Notons $Adh(x_n)$ l'ensemble des valeurs d'adhérence de la suite $(x_n)_{n\in\mathbb{N}}$ et $\forall n\in\mathbb{N}$, posons $X_n=\{x_p:p\geq n\}$. Alors

$$Adh(x_n) = \bigcap_{n \in \mathbb{N}} \overline{X_n}.$$

Preuve:

$$x \in Adh(x_n) \Leftrightarrow \forall V \in \mathcal{V}(x), \forall N \in \mathbb{N}, \exists n \geq N : x_n \in V$$

$$\Leftrightarrow \forall V \in \mathcal{V}(x), \forall N \in \mathbb{N}, V \cap X_N \neq \emptyset$$

$$\Leftrightarrow \forall N \in \mathbb{N}, x \in \overline{X_N}$$

$$\Leftrightarrow x \in \bigcap_{N \in \mathbb{N}} \overline{X_N}$$

3.3.7. Corollaire : $Adh(x_n)$ est fermé dans (E, d).

3.4. Suites de Cauchy

3.4.1 Définition :

Soit (E,d) un espace métrique. On dit qu'une suite $(x_n)_{n\in\mathbb{N}}$ de points de E est une suite de Cauchy si

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ tel que } p, q > N \Rightarrow d(x_n, x_q) < \epsilon.$$

3.4.2 Proposition:

Toute suite convergente de points d'un espace métrique est de Cauchy.

Preuve:

Soit $(x_n)_{n\in\mathbb{N}}$ une suite de points de (E,d) qui converge vers $x\in E$. Alors $\forall \epsilon>0, \exists N\in\mathbb{N}$ tel que $n>N\Rightarrow d(x_n,x)<\frac{\epsilon}{2}$. Si p,q>N, alors $d(x_p,x_q)\leq d(x_p,x)+d(x,x_q)<\epsilon$. Donc $(x_n)_{n\in\mathbb{N}}$ est de Cauchy.

3.4.3. Remarque:

La réciproque est fausse.

3.4.4. Proposition:

Toute suite de Cauchy est bornée.

Preuve:

Soit $(x_n)_{n\in\mathbb{N}}$ une suite de Cauchy, alors pour $\epsilon=1$

$$\exists N \in \mathbb{N} \text{ tel que } n, p > N \Rightarrow d(x_n, x_p) < 1$$

Posons p = N + 1, alors $n > N \Rightarrow d(x_p, x_n) < 1$.

Donc $\forall n > N, \ x_n \in B(x_p, 1).$

Posons $r = 1 + \max_{0 \le n \le N} d(x_p, x_n)$. Alors $\forall n \in \mathbb{N}, d(x_p, x_n) < r$.

Donc $\forall n \in \mathbb{N}, x_n \in B(x_p, r)$. Par conséquent $(x_n)_{n \in \mathbb{N}}$ est bornée.

3.4.5. Corollaire:

Toute suite convergente de points d'un espace métrique est bornée.

3.4.6. Proposition:

Soit $(x_n)_{n\in\mathbb{N}}$ une suite de points d'un espace métrique (E,d).

Si $(x_n)_{n\in\mathbb{N}}$ est de Cauchy et si elle admet une valeur d'adhérence x, alors elle converge vers cette valeur d'adhérence x.

Preuve: Soit $\epsilon > 0$.

Comme x est une valeur d'adhérence de $(x_n)_{n\in\mathbb{N}}$ alors $\forall N\in\mathbb{N}$,

$$\exists q \geq N \text{ tel que } d(x_q, x) < \frac{\epsilon}{2}.$$

 $(x_n)_{n\in\mathbb{N}}$ étant de Cauchy, alors :

$$\exists N_1 \in \mathbb{N} \text{ tel que } \forall p, n \geq N_1, d(x_p, x_n) < \frac{\epsilon}{2}.$$

Pour $N = N_1, \exists q_1 \geq N_1$ tel que $d(x_{q_1}, x) < \frac{\epsilon}{2}$, et $\forall n \geq N_1, d(x_{q_1}, x_n) < \frac{\epsilon}{2}$.

Donc $\forall n \geq N_1, d(x_n, x) \leq d(x_n, x_{q_1}) + d(x_{q_1}, x) < \epsilon.$

Alors $\forall \epsilon > 0, \exists N_1 \in \mathbb{N}$ tel que $\forall n \geq N_1, d(x_n, x) < \epsilon$.

Donc $(x_n)_{n\in\mathbb{N}}$ converge vers x.

3.5. Espaces métriques complets

3.5.1. Définition:

On dit qu'un espace métrique (E, d) est complet si toute suite de Cauchy de (E, d) converge dans (E, d).

Rappel:

3.5.2. Théorème : [Théorème de Bolzano-Weirstrass] De toute suite bornée de nombres réels, on peut extraire une sous-suite convergente.

3.5.3 Corollaire:

 \mathbb{R} muni de la distance usuelle est complet.

Preuve:

Soit $(x_n)_{n\in\mathbb{N}}$ une suite de Cauchy de $(\mathbb{R}, | \ |)$. Alors $(x_n)_{n\in\mathbb{N}}$ est bornée. D'après le théorème de Bolzano-Weirstrass, $(x_n)_{n\in\mathbb{N}}$ admet au moins une valeur d'adhérence a. Comme $(x_n)_{n\in\mathbb{N}}$ est de Cauchy et admet une valeur d'adhérence a, alors $(x_n)_{n\in\mathbb{N}}$ converge vers a.

3.5.4 Théorème :

Soient $(E_1, d_1), \dots, (E_k, d_k)$ des espaces métriques complets. Alors l'espace métrique produit $E = E_1 \times \cdots \times E_k$ est complet.

Preuve:

Soit $(x_n)_{n\in\mathbb{N}}$ une suite de Cauchy de E.

Posons: $x_n = (x_n^1, x_n^2, \dots, x_n^k)$ et prenons sur E la distance δ_{∞} .

Alors $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ tel que } \forall p, q > N, \delta_{\infty}(x_p, x_q) < \epsilon.$

Donc sup $d_i(x_p^i, x_q^i) < \epsilon$.

Alors $d_i(x_p^i, x_q^i) \leq \sup_{1 \leq i \leq k} d_i(x_p^i, x_q^i) < \epsilon$.

Donc $d_i(x_p^i, x_q^i) < \epsilon \overline{\forall i} \in \{1, \dots, k\}.$

Alors $(x_n^i)_{n\in\mathbb{N}}$ est de Cauchy dans (E_i, d_i) . Comme (E_i, d_i) est complet,

alors (x_n^i) converge vers $l_i \in E_i$.

Posons $l = (l_1, \dots, l_k)$. Alors $(x_n)_{n \in \mathbb{N}}$ converge vers l.

3.5.5. Corollaire:

 \mathbb{R}^n muni de l'une des trois distances usuelles $\delta_1, \delta_2, \delta_\infty$ est complet.

Théorème: Soit X un ensemble. Soit (E,d) un espace métrique complet. Alors $\mathcal{F}_b(X,E)$ l'espace des applications bornées de X dans E muni de la distance de la convergence uniforme d_{∞} est complet.

Preuve: Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy de $(\mathcal{F}_b(X,E),d_\infty)$. Alors

 $\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall p, q \ge N, \sup_{x \in X} d(f_p(x), f_q(x)) < \epsilon.$

Donc $d(f_p(x), f_q(x)) < \epsilon, \forall x \in X$.

Alors, $(f_n(x))_{n\in\mathbb{N}}$ est une suite de Cauchy dans (E,d).

Comme (E,d) est complet, elle converge vers $y \in E$. On définit ainsi une application $f: X \to E$ qui à $x \in X$ associe y.

Montrons que f est bornée.

Pour $\epsilon = 1, \exists N_1 \in \mathbb{N} : \forall p, q \geq N_1, d(f_p(x), f_q(x)) < 1$. Fixons $q = N_1$. Alors

 $\forall p \ge N_1, d(f_p(x), f_{N_1}(x)) < 1, \forall x \in X.$

Soit $y_0 \in E$ fixé et soit $g: X \to E$ définie par $g(x) = y_0, \forall x \in X$. Alors

$$d(g(x), f_p(x)) \le d(g(x), f_{N_1}(x)) + d(f_{N_1}(x), f_p(x)).$$

Donc

$$d(g(x), f_p(x)) < d(g(x), f_{N_1}(x)) + 1 \le d_{\infty}(g, f_{N_1}) + 1.$$

Lorsque $p \to +\infty$, on a: $d(g(x), f(x)) \le d_{\infty}(g, f_{N_1}) + 1$. Donc $\forall x \in X$,

$$d(y_0, f(x)) \le d_{\infty}(g, f_{N_1}) + 1.$$

Par conséquent $f \in \mathcal{F}_b(X, E)$.

Comme $\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall p, q \geq N, d(f_p(x), f_q(x)) < \epsilon, \forall x \in X,$ lorsque $q \to +\infty$, on obtient

$$\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall p \geq N, \ d(f_p(x), f(x)) \leq \epsilon, \ \forall x \in X.$$

Donc

$$\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall p \geq N, \ d_{\infty}(f_p, f) \leq \epsilon.$$

Alors la suite $(f_n)_{n\in\mathbb{N}}$ converge vers f dans $(\mathcal{F}_b(X,E),d_\infty)$. Donc $(\mathcal{F}_b(X,E),d_\infty)$ est complet.

3.5.7. Proposition: Soient $a, b \in \mathbb{R}$. Soit $F = C^0([a, b], \mathbb{R})$ l'ensemble des applications continues $f:[a,b]\to\mathbb{R}$. Soit d_{∞} la distance de la convergence uniforme sur F. Alors (F, d_{∞}) est complet.

3.6. Applications contractantes et théorème du point fixe

3.6.1. Définition : Soit (E, d) un espace métrique.

On dit qu'une application $f: E \to E$ est une contraction ou une application contractante s'il existe un nombre réel 0 < k < 1 tel que

$$\forall x, y \in E, d(f(x), f(y)) < kd(x, y).$$

Le nombre réel k est appelé le rapport de la contraction f. On dit qu'un point $a \in E$ est un point fixe de f si f(a) = a.

3.6.2. Théorème: Soient (E,d) un espace métrique complet et f une contraction de E. Alors f admet un point fixe et ce point fixe est unique.

Preuve:

Existence: Soit $x_0 \in E$.

Montrons que la suite $(x_n)_{n\in\mathbb{N}}$ définie par $x_{n+1}=f(x_n), \forall n\in\mathbb{N}$ est de Cauchy. Soit k le rapport de la contraction f. $\forall m, n \in \mathbb{N}^* \text{ tels que } m \geq n,$

$$d(x_n, x_m) = d[f(x_{n-1}), f(x_{m-1})] \le kd(x_{n-1}, x_{m-1}).$$

Après n applications de ce processus, on a

$$d(x_n, x_m) \le k^n d(x_0, x_{m-n}).$$

D'après l'inégalié triangulaire,

$$d(x_0, x_{m-n}) \le d(x_0, x_1) + d(x_1, x_2) + \dots + d(x_{m-n-1}, x_{m-n}).$$

Or $d(x_p, x_{p+1}) \leq k^p d(x_0, x_1)$. Alors

$$d(x_0, x_{m-n}) \le d(x_0, x_1)(1 + k + k^2 + \dots + k^{m-n-1}).$$

Donc

$$d(x_n, x_m) \le k^n d(x_0, x_{m-n}) \le k^n d(x_0, x_1) \sum_{p=0}^{+\infty} k^p = k^n d(x_0, x_1) \frac{1}{1-k}.$$

Par conséquent

$$d(x_n, x_m) \le \frac{k^n}{1 - k} d(x_0, x_1).$$

Or $\lim_{n \to +\infty} \frac{k^n}{1-k} = 0$ car 0 < k < 1. Alors la suite $(x_n)_{n \in \mathbb{N}}$ est de Cauchy. Comme (E, d) est complet, $(x_n)_{n \in \mathbb{N}}$ converge vers $x \in E$.

De plus f est continue, alors

$$f(x) = f(\lim_{n \to +\infty} x_n) = \lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} x_{n+1} = x.$$

Donc x est un point fixe de f.

Unicité: Supposons que f possède un autre point fixe $y \neq x$.

Alors

$$d(x,y) = d(f(x), f(y)) \le kd(x,y) < d(x,y).$$

Contradiction.

Chapitre IV : Espaces métriques compacts

4.1. Définitions

4.1.1. Définition : Soit (E,d) un espace métrique et $A \subset E$.

On appelle recouvrement de A toute famille $(A_i)_{i\in I}$ de sous-ensembles de E telle que $A \subset \bigcup_{i \in I} A_i.$

On dit que le recouvrement $(A_i)_{i\in I}$ est fini si I est fini.

On appelle recouvrement ouvert de A, tout recouvrement $(O_i)_{i\in I}$ de A tel que O_i est un ouvert de $(E, d) \ \forall i \in I$.

- **4.1.2.** Définition: On dit qu'un espace métrique (E,d) est compact si de tout recouvrement ouvert de E, on peut extraire un recouvrement fini de E.
 - **4.1.3.** Définition : Soit (E,d) un espace métrique et $A \subset E$.

On dit que A est compact si le sous-espace métrique (A, d_A) est compact.

Ce qui est équivalent à : de tout recouvrement ouvert de A par des ouverts de E, on peut extraire un recouvrement fini de A.

4.1.4. Exemple : Toute partie finie A d'un espace métrique (E,d) est compacte.

Si
$$A = \{a_1, \dots, a_n\}$$
, et $A \subset \bigcup_{i \in I} O_i$

alors $\forall j = 1, \dots, n, \exists i_j \in I$ tel que $a_j \in O_{i_j}$. Alors $A \subset \bigcup_{i=1}^n O_{i_j}$ donc A est compacte.

4.2. Propriétés

4.2.1. Proposition: Toute partie compacte d'un espace métrique est bornée.

Preuve : Soit K une partie compacte de (E,d), on a : $K \subset \bigcup_{x \in K} B(x,1)$.

Comme K est compacte, $\exists x_1, \dots, x_n \in K$ tel que $K \subset \bigcup_{i=1}^n B(x_i, 1)$.

 $\forall x \in K, \ \exists j \in \{1, \dots, n\} \text{ tel que } x \in B(x_j, 1).$ Alors

$$d(x, x_1) \le d(x, x_j) + d(x_j, x_1) < 1 + d(x_j, x_1).$$

Donc $d(x, x_1) < 1 + \max_{1 \le i \le n} d(x_1, x_i)$.

Posons $r = 1 + \max_{1 \le i \le n} d(x_1, x_i)$, alors $\forall x \in K, d(x, x_1) < r$ avec r > 0.

Donc $K \subset B(x_1, r)$. Par conséquent K est bornée.

4.2.2. Corollaire:

 $(\mathbb{R}, | |)$ n'est pas compact car non bornée.

 $(\mathbb{R}^n, \delta_{\infty})$ ou (\mathbb{R}^n, δ_1) ou (\mathbb{R}^n, δ_2) n'est pas compact car non bornée.

4.2.3. Proposition: Toute partie compacte d'un espace métrique (E,d) est fermée.

Preuve: Soit $K \subset E$ tel que K est compact.

- Montrons que ${\bf C}_E^K$ est ouvert.

Soit $a \in \mathcal{C}_E^K$. $\forall x \in K$, $x \neq a$. Alors d(a, x) > 0.

Posons $r_x = \frac{1}{3}d(a,x)$. Alors $r_x > 0$. On a $K \subset \bigcup_{x \in K} B(x,r_x)$.

Comme K est compact, $\exists x_1, \dots, x_n \in K$ tel que

$$K \subset \bigcup_{i=1}^{n} B(x_i, r_i) \subset \bigcup_{i=1}^{n} B_f(x_i, r_{x_i})$$

qui est un fermé.

Alors
$$\mathcal{C}_E^{\bigcup_{i=1}^n B_f(x_i, r_{x_i})} \subset \mathcal{C}_E^K$$
. Or $\forall i = 1, \dots, n, d(a, x_i) = 3r_{x_i} > r_{x_i}$.

Alors $a \notin B_f(x_i, r_{x_i}), \forall i = 1, \dots, n$.

Donc

$$a \in \mathcal{C}_E^{\stackrel{\circ}{\underset{i=1}{\cup}} B_f(x_i, r_{x_i})} \subset \mathcal{C}_E^K$$

alors $\mathbf{C}_E^K \in \mathcal{V}(a), \forall a \in \mathbf{C}_E^K$.

Donc ${\bf C}_E^K$ est un ouvert, par conséquent $\ K$ est un fermé.

4.2.4. Proposition : Si E est compact alors toute partie fermée F de E est compacte.

Preuve : Supposons que $F \subset \bigcup_{i \in I} O_i$ où O_i est un ouvert de $E, \forall i \in I$. Alors

$$E = \mathcal{C}_E^F \cup F \subset \left[\mathcal{C}_E^F \cup (\bigcup_{i \in I} O_i)\right]$$

qui est un recouvrement ouvert de E car F est fermée.

Comme E est un compact, $\exists J \ finie \subset I \ \text{tel que } E \subset \mathcal{C}_E^F \cup (\bigcup_{i \in I} O_i).$

Comme
$$F \subset E$$
 et $F \cap \mathcal{C}_E^F = \emptyset$, alors $F \subset \bigcup_{i \in I} O_i$.

Donc F est compacte.

4.3. Parties compacts de \mathbb{R}^n

4.3.1. Théorème de Borel-Lebesgue : Tout intervalle fermé borné [a, b] de \mathbb{R} est compact pour la distance usuelle de \mathbb{R} .

Preuve : Soit $(O_i)_{i \in I}$ un recouvrement ouvert de [a, b]. Posons $A = \{x \in [a, b] \text{ tel que } [a, x] \text{ est recouvert par un nombre fini de } O_i\}$.

$$a \in A \Rightarrow A \neq \emptyset$$
 et $A \subset [a, b] \Rightarrow A$ est majorée

 \Rightarrow A admet une borne supérieure M dans \mathbb{R} , alors $M \in \bar{A} \subset [a,b]$.

Donc $\exists j \in I \ tel \ que \ M \in O_j$. O_j , est un ouvert contenant M, alors $\exists h_1 > 0 \ tel \ que \]M - h_1, M + h_1[\subset O_j$. $M = \sup A \Rightarrow \exists x \in A \cap]M - h_1, M]$, alors $\exists J \ \text{fini} \subset I$ tel que $[a, x] \subset \bigcup_{i \in J} O_i$.

Donc
$$[a, M + \frac{h_1}{2}] \subset \left(\bigcup_{i \in J} O_i\right) \cup O_j$$
.

Par conséquent $M \in A$.

Supposons que M < b.

Alors $\exists h_2 > 0$ tel que $[M, M + h_2] \subset [a, b]$.

Posons $h = \min(\frac{h_1}{2}, h_2)$.

On a:
$$[a, M+h] \subset \left(\bigcup_{i \in J} O_i\right) \cup O_j$$
 et $M+h \in A$.

Contradiction car $M = \sup A$.

Alors M = b. Donc $b \in A$.

Par conséquent [a, b] est compact.

4.3.2. Corollaire : Dans \mathbb{R} muni de la distance usuelle, les parties compactes sont les parties fermées et bornées c'est-à-dire une partie K de \mathbb{R} est compacte ssi K est fermée et bornée.

Preuve:

CN : Si K est compacte, alors K est fermée et bornée.

CS: Soit K une partie fermée et bornée de \mathbb{R} . Alors $\exists a, b \in \mathbb{R}$ tels que $K \subset [a, b]$. Or [a, b] est compact et K est fermée donc K est compacte.

Exemple:

 $[-1,1] \cup [3,4]$ est compact dans \mathbb{R} car fermé et borné dans \mathbb{R} .

4.3.3. Théorème : Soient $(E_1, d_1), \dots, (E_k, d_k)$ des espaces métriques compacts, alors l'espace métrique produit $E = E_1 \times \cdots \times E_k$ est compact.

Preuve: Dans le cas de deux espaces métriques compacts (E_1, d_1) et (E_2, d_2) .

Sur $E = E_1 \times E_2$ prenons la distance $\delta_{\infty} = \max(d_1, d_2)$.

Soit $a = (a_1, a_2) \in E$ et r > 0, alors $B(a, r) = B(a_1, r) \times B(a_2, r)$.

Considérons un recouvrement ouvert de E par des boules ouvertes : $(B_i^1, B_{ij}^2)_{\substack{i \in I \\ i \in I}}$

Alors $(B_i^1)_{i \in I}$ est un recouvement ouvert de E_1 . Comme E_1 est compact, $\exists I_1$ fini tel que $I_1 \subset \bigcup_{i \in I_1} B_i^1$.

 $\forall i \in I_1, \ (B_{ij}^2)_{j \in J} \ est \ un \ recouvrement \ ouvert \ de \ E_2.$ $Comme \ E_2 \ est \ compact, \ \exists J_2 \ fini \subset J \ tel \ que \ E_2 \subset \bigcup_{i \in I_0} B_{ij}^2.$

 $Alors(E_1 \times E_2) \subset \bigcup_{i \in I_1} \left(\bigcup_{j \in J_2} B_i^1 \times B_{ij}^2 \right).$

Donc $E_1 \times E_2$ est compact.

4.3.4. Corollaire: Dans \mathbb{R}^n muni de l'une des distances $\delta_{\infty}, \delta_1, \delta_2$, les parties compactes sont les parties fermées et bornées.

C'est-à-dire une partie K de \mathbb{R}^n est compacte ssi K est fermée et bornée.

Preuve:

CN : Si K est compact, alors K est fermée et bornée.

CS: Supposons K fermée et bornée.

Comme K est bornée, $K \subset B_f(\alpha, r)$.

En prenant sur \mathbb{R}^n la distance δ_{∞} , $B_f(\alpha, r) = \prod_{i=1}^n B_f(\alpha_i, r) = \prod_{i=1}^n [a_i, b_i]$.

Comme K est fermée et $\prod_{i=1}^{n} [a_i, b_i]$ est compact, alors K est compacte.

4.4. Caractérisation de la compacité par les fermés

4.4.1. Proposition: Soient (E, d) un espace métrique.

E est compacte si et seulement si pour toute famille $(F_i)_{i\in I}$ de fermés de E telle que $\bigcap F_i = \emptyset$, il existe une partie finie J de I telle que $\bigcap F_i = \emptyset$.

Preuve:

- Supposons (E, d) compact. Soit $(F_i)_{i \in I}$ une famille de fermés de (E, d) telle que $\bigcap_{i \in I} F_i = \emptyset$.

Alors $E = \mathcal{C}_E^{\prod_{i \in I}^{F_i}} = \bigcup_{i \in I} \mathcal{C}_E^{F_i}$ qui est un recouvrement ouvert de E. Comme E est compact, il

existe une partie finie J de I telle que $E = \bigcup_{i \in J} \mathbf{C}_E^{F_i} = \mathbf{C}_E^{\bigcap F_i}$. Donc $\bigcap_{i \in J} F_i = \emptyset$.

- Réciproquement : Soit $(O_i)_{i\in I}$ un recouvrement ouvert de E. Alors $E=\bigcup_{i\in I}O_i$.

Donc
$$\emptyset = \mathcal{C}_E^{\bigcup_{i \in I} O_i} = \bigcap_{i \in I} \mathcal{C}_E^{O_i}.$$

Par conséquent, il existe une partie finie J de I telle que $\emptyset = \bigcap_{i \in I} \mathbb{C}_E^{O_i} = \mathbb{C}_E^{\bigcup_{i \in J} O_i}$.

Alors $E = \bigcup_{i \in I} O_i$. Donc E est compact.

4.4.2. Corollaire: Dans un espace métrique compact (E,d), si $(F_n)_{n\in\mathbb{N}}$ est une suite décroissante de fermés non vides de E, (i.e. $F_{n+1} \subset F_n$, et $F_n \neq \emptyset$, $\forall n \in \mathbb{N}$), alors $\bigcap_{n \in \mathbb{N}} F_n \neq \emptyset$.

Preuve : Supposons que $\bigcap_{n\in\mathbb{N}} F_n = \emptyset$. L'espace métrique (E,d) étant compact, il existe une partie finie J de \mathbb{N} telle que $\bigcap_{n\in J} F_n = \emptyset$. Soit $m = \max J$. Alors $\bigcap_{n\in J} F_n = F_m$. Donc $F_m = \emptyset$. Contradiction.

4.5. Caractérisation de la compacité par les suites

4.5.1. Théorème: Dans un espace métrique compact (E,d), toute suite $(x_n)_{n\in\mathbb{N}}$ de points de E admet au-moins une valeur d'adhérence dans E.

Preuve: Soit $(x_n)_{n\in\mathbb{N}}$ une suite de points de E. Alors

$$Adh(x_n) = \bigcap_{n \in \mathbb{N}} \overline{X_n},$$

où $X_n = \{x_p : p \ge n\}$. On a $X_0 \supset X_1 \supset ... \supset X_n \supset ...$ Donc $\overline{X_0} \supset \overline{X_1} \supset ... \supset \overline{X_n} \supset ...$ Comme $X_n \neq \emptyset$ et $X_n \subset \overline{X_n}$, alors $\overline{X_n} \neq \emptyset$. D'après la proposition précédente, $Adh(x_n) = \bigcap_{n \in \mathbb{N}} \overline{X_n} \neq \emptyset$.

- **4.5.2.** Corollaire 1: Dans un espace métrique compact (E,d), de toute suite $(x_n)_{n\in\mathbb{N}}$ de points, on peut extraire une sous-suite convergente dans E.
- 4.5.3. Corollaire 2 : [Théorème de Bolzano-Weirstrass] De toute suite bornée de nombres réels, on peut extraire une sous-suite convergente.

Preuve : Soit $(x_n)_{n\in\mathbb{N}}$ une suite bornée de nombres réels. Alors il existe $a,b\in\mathbb{R}$ tels que $x_n \in [a, b], \ \forall n \in \mathbb{N}$. Comme [a, b] est compact, $(x_n)_{n \in \mathbb{N}}$ admet au moins une sous-suite convergente d'après le théorème précédent.

4.5.4. Corollaire 3: Tout espace métrique compact est complet.

Preuve: Soient (E,d) un espace métrique compact et $(x_n)_{n\in\mathbb{N}}$ une suite de Cauchy de points de E.

Alors d'après le théorème précédent, $(x_n)_{n\in\mathbb{N}}$ admet au-moins une valeur d'adhérence $x\in E$. On en déduit qu'elle converge vers x. Donc (E, d) est complet.

4.5.5. Lemme 1 : Soient (E,d) un espace métrique et K une partie de E.

Supposons que toute suite de points de K admet au moins une valeur d'adhérence dans K. Alors pour tout $\epsilon > 0$, il existe un recouvrement de K par un nombre fini de boules ouvertes de rayon ϵ .

Preuve: Soit $\epsilon > 0$ et soit $x_1 \in K$ (si $K = \emptyset$ le résultat est immédiat).

Si $K \subset B(x_1, \epsilon)$ alors la preuve est achevée.

Si non, il existe $x_2 \in K$ tel que $x_2 \notin B(x_1, \epsilon)$.

Si $K \subset B(x_1, \epsilon) \cup B(x_2, \epsilon)$ alors la preuve est achevée.

Supposons que K ne soit pas recouverte par la réunion d'un nombre fini de boules ouvertes de rayon ϵ ainsi construites.

Alors il existe une suite $(x_k)_{k\in\mathbb{N}^*}$ de points de K telle que $d(x_p, x_q) \geq \epsilon$ pour tous $p, q \in \mathbb{N}^*$ tels que $p \neq q$.

Mais une telle suite ne possède aucune sous-suite convergente donc aucune valeur d'adhérence. Contradiction.

4.5.6. Lemme 2 : Soient (E,d) un espace métrique et K une partie de E.

Supposons que toute suite de points de K admet au moins une valeur d'adhérence dans K. Soit $(O_i)_{i\in I}$ un recouvrement ouvert de K.

Alors il existe $\epsilon > 0$ tel que pour tout $x \in K$, il existe $i \in I$ tel que $B(x, \epsilon) \subset O_i$.

Preuve: Supposons la propriété fausse. Alors

 $\forall k \in \mathbb{N}^*, \ \exists x_k \in K \text{ tel que } B(x_k, \frac{1}{k}) \text{ ne soit contenue dans aucun des } O_i.$

Soit x une valeur d'adhérence de la suite $(x_k)_{k\in\mathbb{N}^*}$ dans K. Alors il existe $i\in I$ tel que $x \in O_i$. Donc il existe r > 0 tel que $B(x,r) \subset O_i$.

Or il existe une sous-suite (y_k) de (x_k) qui converge vers x. Donc à partir d'un certain rang $m, y_m \in B(x, \frac{r}{2}).$

Alors $\forall y \in B(y_m, \frac{1}{m}), \ d(y, x) \leq d(y, y_m) + d(y_m, x) < \frac{1}{m} + \frac{r}{2} < r \text{ dès que } \frac{1}{m} < \frac{r}{2}.$ Et donc $B(y_m, \frac{1}{m}) \subset B(x, r) \subset O_i$. Contradiction.

4.5.7. Théorème : Soit (E, d) un espace métrique et soit K une partie de E.

K est compacte si et seulement si toute suite de points de K admet au moins une valeur d'adhérence dans K.

Preuve:

CN: Déjà vue.

CS: Soit $(O_i)_{i\in I}$ un recouvrement ouvert de K.

D'après le lemme 2, il existe $\epsilon > 0$ tel que pour tout $x \in K$, il existe $k \in I$ tel que $B(x,\epsilon) \subset O_k$.

D'après le lemme 1, $K \subset \bigcup_{j=1}^n B(x_j, \epsilon)$ où $x_j \in K$ pour tout j = 1, ..., n. Alors pour tout j = 1, ..., n, il existe $k_j \in I$ tel que $B(x_j, \epsilon) \in O_{k_j}$.

Donc $K \subset \bigcup_{i=1}^n O_{k_i}$. Par conséquent K est compact.

4.6. Compacité et continuité

4.6.1. Rappel:

Soit $f:(E,d_E)\to (F,d_F)$ une application. On dit que f est bornée si f(E) est une partie bornée de F. On dit que f est bornée sur une partie A de E si f(A) est une partie bornée de F.

4.6.2. Théorème: Soit $f:(E, d_E) \to (F, d_F)$ une application. Soit A une partie de E. Si f est continue sur A et si A est compacte dans E, alors f(A) est compacte dans F. En particulier, si f est continue sur E et si E est compact, alors f(E) est compacte dans F.

Preuve : Soit $(\Omega_i)_{i \in I}$ un recouvrement ouvert de f(A) dans F.

Alors $f(A) \subset \bigcup_{i \in I} \Omega_i$. Donc $\forall a \in A, \exists i \in I \text{ tel que } f(a) \in \Omega_i$.

f étant continue en a, il existe O_i un ouvert de E tel que $a \in O_i$ et $f(O_i) \subset \Omega_i$.

Alors il existe $I_1 \subset I$ tel que $A \subset \bigcup_{i \in I_1} O_i$ et $f(O_i) \subset \Omega_i$ pour tout $i \in I_1$.

A étant compacte, il existe une partie finie J de I_1 telle que $A \subset \bigcup_{i \in I} O_i$.

Alors

$$f(A) \subset \bigcup_{i \in J} f(O_i) \subset \bigcup_{i \in J} \Omega_i.$$

Donc f(A) est compacte.

4.6.3. Corollaire : Soit $f:(E,d)\to(\mathbb{R},|\cdot|)$ une application.

Si K est une partie compacte de E, et si f est continue sur K, alors f est bornée sur K et atteint ses bornes.

Preuve:

K étant compacte et f continue sur K, alors f(K) est une partie compacte de \mathbb{R} . Donc f(K) est une partie bornée et fermée de \mathbb{R} . Alors sup f(K) et inf f(K) existent et sup f(K), inf $f(K) \in \overline{f(K)} = f(K)$ car f(K) fermée.

Donc
$$\exists \alpha \in K$$
 tel que $f(\alpha) = \inf_{x \in K} f(x)$ et $\exists \beta \in K$ tel que $f(\beta) = \sup_{x \in K} f(x)$.

Remarque: Si A est une partie de \mathbb{R} , alors $M = \sup A$ ssi $\forall x \in A, x \leq M$ et $\forall \epsilon > 0$, $\exists x_0 \in A$ tel que $M - \epsilon < x_0 \leq M$. Alors $\forall \epsilon > 0, A \cap B(M, \epsilon) \neq \emptyset$. Donc $M \in \overline{A}$.

4.6.4. Théorème de Heine : Soit $f:(E,d_E) \to (F,d_F)$ une application. Si f est continue sur une partie compacte K de E, alors f est uniformément continue sur K.

Preuve : Soit $\epsilon > 0$. f étant continue en tout point de K,

$$\forall a \in K, \ \exists \eta_a > 0 : d_E(x, a) < \eta_a \Rightarrow d_F(f(x), f(a)) < \frac{\epsilon}{2}.$$

Alors $K \subset \bigcup_{a \in K} B(a, \frac{\eta_a}{2})$.

Et comme K est compacte, il existe $n \in \mathbb{N}^*$ tel que $K \subset \bigcup_{i=1}^n B(a_i, \frac{\eta_{a_i}}{2})$.

Posons

$$\eta = \min_{1 \le i \le n} \{ \frac{\eta_{a_i}}{2} \}.$$

Soient $x, y \in K$ tels que $d_E(x, y) < \eta$. Alors

$$x \in K \Rightarrow \exists i \text{ tel que } d_E(a_i, x) < \frac{\eta_{a_i}}{2} \ (1)$$

et, $d_E(a_i, y) \leq d_E(a_i, x) + d_E(x, y) < \frac{\eta_{a_i}}{2} + \eta \leq \eta_{a_i}$. (2)
D'après (1), $d_F(f(a_i), f(x)) < \frac{\epsilon}{2}$.
D'après (2), $d_F(f(a_i), f(y)) < \frac{\epsilon}{2}$.
Alors
 $d_F(f(x), f(y)) \leq d_F(f(x), f(a_i)) + d_F(f(a_i), f(y)) < \epsilon$.

Donc f est uniformément continue sur K.

Chapitre V. Espaces métriques connexes

5.1. Définition-Propriétés

- **5.1.1.** Définition : Un espace métrique (E, d) est dit *connexe* s'il n'existe aucune partition de E en deux ouverts non vides.
- **5.1.2.** Proposition : Soit (E,d) un espace métrique. Les assertions suivantes sont équivalentes :
 - (i) E est connexe.
 - (ii) Les seules parties de E à la fois ouvertes et fermées sont E et \emptyset .
 - (iii) Il n'existe aucune partition de E en deux fermés non vides.

Preuve: E non connexe

- $\Leftrightarrow \exists A, B \in \mathcal{P}(E) \setminus \{\emptyset, E\}$ ouverts tels que $E = A \cup B$ et $A \cap B = \emptyset$.
- $\Leftrightarrow \exists A \in \mathcal{P}(E) \setminus \{\emptyset, E\} \text{ tel que } A \text{ et } \mathcal{C}_E^A \text{ sont fermés.}$
- \Leftrightarrow Il existe une partition de E en deux fermés non vides.
- **5.1.3.** Proposition : Soit (E, d) un espace métrique. Considérons la paire $\{0, 1\}$ munie de la distance discrète.

E est connexe si et seulement si toute application continue $f: E \to \{0,1\}$ est constante.

Preuve:

- Par contraposée : supposons qu'il existe une application continue $f: E \to \{0, 1\}$ non constante. Alors $U = f^{-1}(0)$ et $V = f^{-1}(1)$ sont des ouverts non vides qui forment une partition de E. Donc E n'est pas connexe.
- Par contraposée : supposons que E n'est pas connexe. Alors il existe U et V deux ouverts non vides qui forment une partition de E. Considérons l'application $f: E \to \{0, 1\}$ définie par f(x) = 0 si $x \in U$ et f(x) = 1 si $x \in V$. Alors f est continue et non constante.

5.2. Parties connexes

- **5.2.1.** Définition : On dit qu'une partie A d'un espace métrique (E, d) est une partie connexe si le sous-espace métrique (A, d_A) est un espace métrique connexe.
- **5.2.2. Exemple de partie non connexe :** Dans \mathbb{R} munie de la distance usuelle, $\mathbb{Q} = (]-\infty, \sqrt{2}[\cap \mathbb{Q}) \cup (]\sqrt{2}, +\infty[\cap \mathbb{Q})$. Donc \mathbb{Q} n'est pas connexe.
- **5.2.3.** Proposition : Soit (E, d) un espace métrique et soit $(A_i)_{i \in I}$ une famille de parties connexes de E.

Si pour tous $i, j \in I$, $A_i \cap A_j \neq \emptyset$, alors $\bigcup_{i \in I} A_i$ est connexe.

Preuve : Soit $f: \bigcup_{i \in I} A_i \to \{0,1\}$ une application continue. Alors f est continue sur chaque A_i . Comme A_i est connexe, il existe une constante $c_i \in \{0,1\}$ telle que $f(A_i) = \{c_i\}$. $\forall i,j \in I$, comme $A_i \cap A_j \neq \emptyset$, $\exists t_{ij} \in A_i \cap A_j$. Alors $\forall i,j \in I$, $c_i = f(t_{ij}) = c_j$. Donc f est constante. Par conséquent $\bigcup_{i \in I} A_i$ est connexe.

5.2.4. Corollaire : Soit (E, d) un espace métrique et soit $(A_i)_{i \in I}$ une famille de parties connexes de E.

Si $\bigcap_{i \in I} A_i \neq \emptyset$, alors $\bigcup_{i \in I} A_i$ est connexe.

5.2.5. Proposition: Soit (E, d) un espace métrique et soit A une partie de E. Si A est connexe et si $A \subset B \subset \overline{A}$ alors B est connexe. En particulier si A est connexe alors \overline{A} est connexe.

Preuve : Soit $f: B \to \{0, 1\}$ une application continue. Alors f est continue sur A. Comme A est connexe, f est constante sur A. Alors $\exists c \in \{0, 1\}$ tel que $\forall a \in A$, f(a) = c. Soit $x \in B$. Alors $x \in \overline{A}$. Donc il existe une suite (x_n) d'éléments de A qui converge vers x. Alors $f(x) = f(\lim x_n) = \lim f(x_n)$ car f est continue. Donc f(x) = c. Ainsi f est constante. Par conséquent B est connexe.

5.2.6. Proposition: Une partie A de \mathbb{R} est connexe si et seulement si A est un intervalle. En particulier \mathbb{R} est connexe.

Preuve: Dans \mathbb{R} muni de la distance usuelle, soit A une partie connexe.

- Si A n'est pas un intervalle, alors il existe $a, b \in A$ et $c \notin A$ tels que a < c < b.

Alors $A=(]-\infty,c[\cap A)\cup(]c,+\infty[\cap A)$ qui est une partition de A en deux ouverts non vides. Contradiction.

- Soit A un intervalle de \mathbb{R} .

Si A est vide ou réduit à un point alors A est connexe.

Si A contient au moins deux points distincts a et b, soit $f: A \to \{0, 1\}$ une application continue. Montrons que f(a) = f(b). On peut supposer que a < b.

L'ensemble $\{f(a)\}\$ est ouvert et fermé pour la topologie discrète sur $\{0,1\}$.

Posons $B = [a, b] \cap f^{-1}(f(a))$. Alors $B \neq \emptyset$ $(a \in B)$, majoré et fermé. Donc $c = \sup B$ existe et $c \in B$.

Alors $f^{-1}(f(a))$ est un ouvert qui contient c.

Par conséquent $\exists \epsilon > 0$ tel que $]c - \epsilon, c + \epsilon[\subset f^{-1}(f(a)).$

Supposons c < b. Alors il existe $x \in \mathbb{R}$ tel que $x \in [c, b] \cap [c, c + \epsilon[$.

Donc f(x) = f(a) et $x \in B$. Or c < x et $c = \sup B$. Contradiction.

Par conséquent c = b et alors f(a) = f(c) = f(b).

Donc f est constante et alors A est connexe.

5.3. Connexité et continuité

5.3.1. Proposition: Soit E et F deux espaces métriques et $f: E \to F$ une application.

Si E est connexe et si f est continue, alors f(E) est connexe.

Preuve : Soit $\varphi : f(E) \to \{0,1\}$ une application continue. Alors $\varphi \circ f : E \to \{0,1\}$ est continue. Comme E est connexe, $\varphi \circ f$ est constante. Donc φ est constante sur f(E). Par conséquent f(E) est connexe.

5.4. Produits d'espaces connexes

Théorème : L'espace métrique produit d'une famille finie d'espaces métriques est connexe si et seulement si chacun de ces espaces est connexe.

Preuve : Soient E_1 et E_2 deux espaces métriques.

- CN : Supposons $E_1 \times E_2$ connexe. Soit $p_i : E_1 \times E_2 \to E_i$ la $i^{\grave{e}me}$ projection canonique, i=1,2. Elle est continue et surjective et $E_1 \times E_2$ est connexe. Alors $p_i (E_1 \times E_2) = E_i$ est connexe.

- CS : Supposons E_1 et E_2 connexes. Soit $f: E_1 \times E_2 \to \{0,1\}$ une application continue. Soit $(a_1,a_2) \in E_1 \times E_2$.

 $\forall (x_1, x_2) \in E_1 \times E_2$, f est continue sur $\{x_1\} \times E_2$. Or l'application

$$\psi_2: E_2 \to \{x_1\} \times E_2$$
$$y \mapsto (x_1, y)$$

est continue, surjective et E_2 connexe. Alors $\{x_1\} \times E_2$ est connexe.

Par conséquent f est constante sur $\{x_1\} \times E_2$. Donc $f(x_1, x_2) = f(x_1, a_2)$.

Par un raisonnement analogue au précédent, $E_1 \times \{a_2\}$ est connexe et f constante sur $E_1 \times \{a_2\}$. Donc $f(x_1, a_2) = f(a_1, a_2)$.

Par conséquent $f(x_1, x_2) = f(x_1, a_2) = f(a_1, a_2)$. Alors f est constante, donc $E_1 \times E_2$ est connexe.

5.5. Connexité par arcs

5.5.1. Définition : Soit (E, d) un espace métrique et soient $a, b \in E$.

On appelle *chemin* joignant a et b, toute application continue $f : [\alpha, \beta] \to E$, (où $[\alpha, \beta]$ est un intervalle de \mathbb{R}), telle que $f(\alpha) = a$ et $f(\beta) = b$.

On appelle arc d'extrémités a et b, l'ensemble $f([\alpha, \beta])$.

- **5.5.2.** Définition: On dit qu'un espace métrique (E, d) est connexe par arcs si pour tous $a, b \in E$, il existe un chemin joignant a et b.
- **5.5.3.** Exemple: \mathbb{R}^n est connexe par arcs (pour la distance induite par l'une de ses trois normes usuelles équivalentes).

En effet, $\forall a, b \in \mathbb{R}^n$, l'application

$$\begin{array}{ccc} f: & [0,1] & \to & \mathbb{R}^n \\ & t & \mapsto & (1-t) \, a + tb \end{array}$$

est un chemin joignant a et b.

5.5.4. Théorème : Tout espace métrique (E, d) connexe par arcs est connexe.

Preuve : Soit $x_0 \in E$. $\forall x \in E$, soit $f_x : [\alpha_x, \beta_x] \to E$ un chemin joignant x_0 à x. Comme $[\alpha_x, \beta_x]$ est connexe et f_x continue, alors l'arc $A_x = f_x([\alpha_x, \beta_x])$ est une partie connexe de E. Or

$$E = \bigcup_{x \in E} A_x \text{ et } x_0 \in \bigcap_{x \in E} A_x.$$

Donc E est connexe.

5.5.5. Exemple: \mathbb{R}^n est connexe car connexe par arcs.

Chapitre VI. Espaces vectoriels normés

- 6.1. Généralités
- 6.1.1. Rappels: Définitions et premiers exemples voir 1.2.
- **6.1.2. Proposition :** Soit (E, ||.||) un espace vectoriel normé sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . L'application $||.||: x \in E \mapsto ||x|| \in \mathbb{R}$ est uniformément continue.

Preuve : $\forall x, y \in E$, $| \parallel x \parallel - \parallel y \parallel | \leq \parallel x - y \parallel$. Alors l'application $\parallel . \parallel$ est 1-lipschitzienne donc uniformément continue.

6.1.3. Proposition : Soit $(E, \| . \|)$ un espace vectoriel normé sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Les applications $s: (x,y) \in E \times E \mapsto x+y \in E$ et $p: (\lambda,x) \in \mathbb{K} \times E \mapsto \lambda x \in E$ sont continues.

Preuve:

Continuité de s :

Pour tous (x, y), $(x', y') \in E \times E$, on a:

$$|| s(x', y') - s(x, y) || = || x' + y' - (x + y) || \le || x' - x || + || y' - y || = N_1((x', y') - (x, y)).$$

Alors s est 1-lipschitzienne donc uniformément continue et par conséquent continue.

Continuité de p :

Soit $(\lambda_0, x_0) \in \mathbb{K} \times E$. Pour tout $(\lambda, x) \in \mathbb{K} \times E$, on a :

$$\parallel p(\lambda, x) - p(\lambda_0, x_0 \parallel = \parallel \lambda x - \lambda_0 x_0 \parallel = \parallel \lambda x - \lambda_0 x + \lambda_0 x - \lambda_0 x_0 \parallel \leq |\lambda - \lambda_0| \parallel x \parallel + |\lambda_0| \parallel x - x_0 \parallel.$$

Or $x = x - x_0 + x_0$. Donc $||x|| \le ||x - x_0|| + ||x_0||$. Alors

$$\| \lambda x - \lambda_0 x_0 \| \le |\lambda - \lambda_0| \| x - x_0 \| + |\lambda - \lambda_0| \| x_0 \| + |\lambda_0| \| x - x_0 \|$$

Soit $\epsilon > 0$. Cherchons $\eta > 0$ tel que

$$sup(|\lambda - \lambda_0|, ||x - x_0||) < \eta \Rightarrow ||\lambda x - \lambda_0 x_0|| < \epsilon.$$

Or d'après le calcul précédent,

 $\sup(|\lambda - \lambda_0|, \|x - x_0\|) < \eta \Rightarrow \|\lambda x - \lambda_0 x_0\| < \eta^2 + (\|x_0\| + |\lambda_0|)\eta.$ Il suffit alors que $\eta^2 + (\|x_0\| + |\lambda_0|)\eta < \epsilon$. C'est-à-dire $\eta^2 + (\|x_0\| + |\lambda_0|)\eta - \epsilon < 0$. Le discriminant de cette équation est $\Delta = (\|x_0\| + |\lambda_0|)^2 + 4\epsilon > 0$. Donc η existe. Ainsi $\forall \epsilon > 0$, $\exists \eta > 0$ tel que $\forall (\lambda, x) \in \mathbb{K} \times E$,

$$N_{\infty}((\lambda, x) - (\lambda_0, x_0)) < \eta \Rightarrow \parallel p(\lambda, x) - p(\lambda_0, x_0) \parallel < \epsilon.$$

Donc p est continue au point (λ_0, x_0) .

6.2. Norme de la convergence uniforme

6.2.1. Définition : Soit X un ensemble. Soit $(E, \| . \|)$ un espace vectoriel normé sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Sur $\mathcal{F}_b(X, E)$ l'espace des applications bornées de X dans E, on définit la norme de la convergence uniforme en posant $\forall f \in \mathcal{F}_b(X, E)$,

$$\parallel f \parallel_{\infty} = \sup_{x \in X} \parallel f(x) \parallel.$$

6.2.2. Théorème : Soit X un ensemble. Soit $(E, \| . \|)$ un espace vectoriel normé sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Si $(E, \|.\|)$ est complet, alors $(\mathcal{F}_b(X, E), \|.\|_{\infty})$ est complet.

Preuve : La distance associée à la norme $\| \cdot \|_{\infty}$ est la distance de la convergence uniforme d_{∞} . Soit d la distance associée à la norme $\| \cdot \|_{\infty}$. Si $(E, \| \cdot \|)$ est complet, alors (E, d) est un espace métrique complet. Alors $(\mathcal{F}_b(X, E), d_{\infty})$ est complet. Par conséquent $(\mathcal{F}_b(X, E), \| \cdot \|_{\infty})$ est complet.

6.3. Application linéaires continues

6.3.1. Définition : Soient $(E, || \parallel_E)$ et $(F, || \parallel_F)$ deux espaces vectoriels normés sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Une application f de E dans F est dite $lin\'{e}aire$ continue si f est une application lin\'eaire de E dans F et si f est continue de (E, d_E) dans (F, d_F) où d_E est la distance associ\'ee à $\| \cdot \|_F$ et d_F la distance associ\'ee à $\| \cdot \|_F$.

Notation : L'ensemble des applications linéaires continues de E dans F sera noté : $\mathcal{L}(E,F)$.

6.3.2. Théorème : Soient $(E, || ||_E)$ et $(F, || ||_F)$ deux espaces vectoriels normés sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Soit f une application linéaire de E dans F. Les assertions suivantes sont équivalentes :

- i) f est continue sur E.
- ii) f est continue en 0_E .
- iii) Il existe une constante k > 0 telle que : $\forall x \in E, ||f(x)||_F \le k||x||_E$.

Proof.

i) \Rightarrow ii) Si f est continue sur E, alors f est continue en 0_E .

ii) \Rightarrow iii) Si f est continue en 0_E , en prenant $\epsilon = 1, \exists \eta > 0$ tel que $\forall x \in E$

$$||x||_E \le \eta \Rightarrow ||f(x)||_F \le 1 \ car \ f(0_E) = 0_F.$$

Soit $x \neq 0_E$. Posons $y = \frac{\eta}{2} \frac{x}{\|x\|_E}$. Alors $\|y\|_E = \frac{\eta}{2} < \eta$. Donc $\|f(y)\|_F \leq 1$. Alors $\|f(\frac{\eta}{2} \frac{x}{\|x\|_E})\|_F \leq 1 \Rightarrow \|f(x)\|_F \leq \frac{2}{\eta} \|x\|_E$, car f est linéaire.

Si $x = 0_E$, l'inégalité obtenue est aussi vraie. Donc $k = \frac{2}{n}$ convient.

iii) \Rightarrow i). Supposons qu'il existe k > 0 tel que $\forall x \in E, ||f(x)||_F \le k||x||_E$.

Alors $\forall x, y \in E, ||f(x) - f(y)||_F = ||f(x - y)||_F \le k||x - y||_E$.

Alors f est k-lipschitzienne. Donc f est uniformément continue, par conséquent continue.

6.3.3. Proposition: Soient $(E, \| \|_E)$ et $(F, \| \|_F)$ deux espaces vectoriels normés sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Sur $\mathcal{L}(E, F)$, on définit une norme en posant $\forall f \in \mathcal{L}(E, F)$,

$$|| f || = \sup_{\substack{x \in E \\ x \neq 0}} \frac{|| f(x) ||_F}{|| x ||_E}.$$

Et on a $\forall f \in \mathcal{L}(E, F)$,

$$|| f || = \sup_{||x||=1} || f(x) ||_F.$$

6.3.4. Corollaire $1 : \forall f \in \mathcal{L}(E, F), \forall x \in E,$

$$\parallel f(x) \parallel_F \leq \parallel f \parallel . \parallel x \parallel_E .$$

6.3.5. Corollaire 2: Soient $(E, \| \|_E)$, $(F, \| \|_F)$ et $(G, \| \|_G)$ trois espaces vectoriels normés sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Alors $\forall f \in \mathcal{L}(E, F), \forall g \in \mathcal{L}(F, G), g \circ f \in \mathcal{L}(E, G),$ et

$$||g \circ f|| \le ||g||.||f||$$

- **6.4.** Normes sur un espace vectoriel de dimension finie Voir 1.2.5.
- **6.4.1.** Normes usuelles équivalentes Voir 1.2.5.
- **6.4.2.** Proposition: Soit E un espace vectoriel de dimension n sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit $(e_1,...,e_n)$ une base de E.

Alors la boule fermée $B_f(0_E, 1)$ de E pour l'une des trois normes usuelles est compacte.

Proof. Soit $f: \mathbb{R}^n \longrightarrow E$ définie par $\forall \lambda = (\lambda_1, ..., \lambda_n) \in \mathbb{R}^n$, $f(\lambda) = x = \sum_{i=1}^n \lambda_i e_i$. Alors fest linéaire.

En considérant sur \mathbb{R}^n et E la même norme usuelle, par exemple la norme $\| \cdot \|_2$, on a

$$||f(\lambda)||_2 = ||x||_2 = ||\lambda||_2.$$

Alors f est continue. Et

$$f(B_f(0_{\mathbb{R}^n},1)) = B_f(0_E,1).$$

Or $B_f(0_{\mathbb{R}^n}, 1)$ est compacte. Donc $B_f(0_E, 1)$ est compacte.

- **6.4.3.** Théorème : Soit E un espace vectoriel de dimension finie sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Alors
 - i) Toutes les normes sur E sont équivalentes.
 - ii) Pour toute norme sur E, les parties compactes sont les parties fermées et bornées.
 - iii) Toute application linéaire f de E dans un espace vectoriel normé $(F, || \cdot ||_F)$ sur \mathbb{K} est continue.

Proof. iii) Supposons que dim E = n. Soit $\beta = (e_1, \dots, e_n)$ une base de E.

$$\forall x \in E, \ x = \sum_{i=1}^{n} x_i e_i.$$
 Alors

$$||f(x)||_F = ||\sum_{i=1}^n x_i f(e_i)||_F \le \sum_{i=1}^n |x_i| ||f(e_i)||_F.$$

Posons
$$k = \max_{1 \le i \le n} ||f(e_i)||_F$$
. Alors $||f(x)||_F \le k \sum_{i=1}^n |x_i|$.

En considérant sur E la norme N_1 , définie par $N_1(x) = \sum_{i=1}^n |x_i|$ on a :

$$\forall x \in E, ||f(x)||_F \le kN_1(x).$$

Soit $\| \|_E$ la norme sur E. Elle est équivalente à la norme N_1 . Alors il existe M > 0 tel que $N_1 \le M \| \|_E$. Donc $\forall x \in E, \|f(x)\|_F \le kM \|x\|_E$.

Par conséquent, f est continue.

- **6.4.4.** Corollaire : Toute application linéaire de \mathbb{R}^n dans \mathbb{R}^p est continue.
- 6.5. Applications multilinéaires continues
- **6.5.1. Définition :** Soient $(E_1, || ||_{E_1}), ..., (E_n, || ||_{E_n})$ et $(F, || ||_F)$ des espaces vectoriels normés sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit $f: E_1 \times E_2 \times ... \times E_n \to F$ une application.

On dit que f est multilinéaire si f est linéaire par rapport à chacune des ses n variables, les autres étant fixées, c'est-à- dire que pour tout $a = (a_1, ..., a_n) \in E_1 \times E_2 \times ... \times E_n$, chaque application partielle

$$x_i \in E_i \mapsto f(a_1, ..., a_{i-1}, x_i, a_{i+1}, ..., a_n) \in F$$

est linéaire, $\forall i = 1, ..., n$.

Si n=2, on dit que f est bilinéaire. Si n=3, on dit que f est trilinéaire.

On dit que f est multilinéaire continue si f est multilinéaire et continue pour la structure d'espace vectoriel normé produit de $E_1 \times E_2 \times ... \times E_n$ et d'espace vectoriel normé de $(F, || \cdot ||_F)$.

6.5.2. Proposition : Soient $(E_1, || ||_{E_1}), (E_2, || ||_{E_2})$ et $(F, || ||_F)$ des espaces vectoriels normés sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit $f: E_1 \times E_2 \to F$ une application bilinéaire. Sont équivalentes :

- i) f est continue sur $E_1 \times E_2$.
- ii) f est continue en $0_{E_1 \times E_2}$.
- iii) Il existe une constante k > 0 telle que : $\forall (x_1, x_2) \in E_1 \times E_2$,

$$||f(x_1, x_2)||_F \le k||x_1||_{E_1} \times ||x_2||_{E_2}.$$

- **6.5.3. Proposition :** Soient $(E_1, || ||_{E_1}), ..., (E_n, || ||_{E_n})$ et $(F, || ||_F)$ des espaces vectoriels normés sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . Soit $f: E_1 \times ... \times E_n \to F$ une application multilinéaire. Sont équivalentes :
 - i) f est continue sur $E_1 \times E_2 \times ... \times E_n$.
 - ii) f est continue en $0_{E_1 \times E_2 \times ... \times E_n}$.
 - iii) Il existe une constante k>0 telle que : $\forall (x_1,...,x_n)\in E_1\times E_2\times...\times E_n,$

$$||f(x_1,...,x_n)||_F \le k||x_1||_{E_1} \times ||x_2||_{E_2} \times ... \times ||x_n||_{E_n}.$$

Proof.

- $i) \Rightarrow ii$): Immédiat.
- $ii) \Rightarrow iii)$: Supposons f est continue en $0_{E_1 \times E_2 \times ... \times E_n}$. Considérons sur $E_1 \times E_2 \times ... \times E_n$ la norme $\| \|_{\infty}$ définie par $\forall x = (x_1, ..., x_n) \in E_1 \times E_2 \times ... \times E_n$,

$$||x||_{\infty} = \max_{1 \le i \le n} ||x_i||_{E_i}$$

En prenant $\epsilon = 1$, il existe $\eta > 0$ tel que $||x||_{\infty} \leq \eta \Rightarrow ||f(x)||_F \leq 1$. Soit $x \in E_1 \times E_2 \times ... \times E_n$ tel que $x_i \neq 0 \ \forall i = 1, ..., n$. Posons

$$y = \frac{\eta}{2} \left(\frac{x_1}{\|x_1\|_{E_1}}, ..., \frac{x_n}{\|x_n\|_{E_n}} \right).$$

Alors $||y||_{\infty} = \frac{\eta}{2} < \eta$. Donc $||f(y)||_F \le 1$. Par conséquent

$$\frac{\eta}{2} \frac{1}{\|x_1\|_{E_1} \times ... \times \|x_n\|_{E_n}} \|f(x_1, ..., x_n)\|_F \le 1$$

car f est multilinéaire. Donc

$$||f(x_1,...,x_n)||_F \le \frac{2}{\eta} ||x_1||_{E_1} \times ... \times ||x_n||_{E_n}.$$

S'il existe i tel que $x_i = 0$, alors cette inégalité est aussi vraie. Ainsi $\exists M = \frac{2}{\eta} > 0$ tel que $\forall (x_1, ..., x_n) \in E_1 \times E_2 \times ... \times E_n$,

$$||f(x_1,...,x_n)||_F \le M||x_1||_{E_1} \times ... \times ||x_n||_{E_n}.$$

 $(iii) \Rightarrow i)$: Supposons qu'il existe K > 0 tel que $\forall (x_1, ..., x_n) \in E_1 \times E_2 \times ... \times E_n$

$$||f(x_1,...,x_n)||_F \le K||x_1||_{E_1} \times ... \times ||x_n||_{E_n}.$$

Soit $a = (a_1, ..., a_n) \in E_1 \times E_2 \times ... \times E_n$. Montrons que f est continue en a. On a $f(x) - f(a) = f(x_1, ..., x_n) - f(a_1, ..., a_n)$. Alors

$$f(x)-f(a)=f(x_1-a_1,x_2,...,x_n)+f(a_1,x_2-a_2,x_3,...,x_n)+f(a_1,a_2,x_3-a_3,x_4,...,x_n)+...+f(a_1,...,a_{n-1},x_n-a_n).$$
 Donc

$$||f(x) - f(a)||_F \le ||f(x_1 - a_1, x_2, ..., x_n)||_F + ||f(a_1, x_2 - a_2, x_3, ..., x_n)||_F + ... + ||f(a_1, ..., a_{n-1}, x_n - a_n)||_F.$$

On en déduit d'après l'hypothèse que

$$||f(x) - f(a)||_F \le K||x_1 - a_1|| ||x_2|| ... ||x_n|| + K||a_1|| ||x_2 - a_2|| ||x_3|| ... ||x_n|| + ... + K||a_1|| ... ||a_{n-1}|| ||x_n - a_n||.$$

Alors
$$\lim_{x \to a} ||f(x) - f(a)||_F = 0$$
. Donc $\lim_{x \to a} f(x) = f(a)$.

Par conséquent f est continue en a.

6.6. Espaces de Banach

6.6.1. Définition : On appelle *espace de Banach* sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , tout espace vectoriel normé sur \mathbb{K} qui est complet.

Un espace de Banach réel est un espace de Banach sur \mathbb{R} .

Un espace de Banach complexe est un espace de Banach sur \mathbb{C} .

- **6.6.2. Proposition :** Tout espace vectoriel de dimension finie sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} est un espace de Banach.
- **6.6.3.** Proposition : Soit X un ensemble. Soit $(E, || ||_E)$ un espace vectoriel normé sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Si $(E, || ||_E)$ est espace de Banach, alors $(\mathcal{F}_b(X, E), || ||_{\infty})$ est un espace de Banach, où $|| ||_{\infty}$ est la norme de la convergence uniforme.

Preuve: Déjà faite au 6.2.2.

- **6.6.4.** Théorème : Soient $(E, \| \|_E)$ et $(F, \| \|_F)$ deux espaces vectoriels normés sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .
- Si $(F, || ||_F)$ est espace de Banach, alors $(\mathcal{L}(E, F), || ||_{\mathcal{L}(E, F)})$ est espace de Banach, où $\forall f \in \mathcal{L}(E, F)$,

$$|| f ||_{\mathcal{L}(E,F)} = \sup_{\substack{x \in E \\ x \neq 0}} \frac{|| f(x) ||_F}{|| x ||_E}.$$

6.6.5. Définition : Soient $(E, || \|_E)$ et $(F, || \|_F)$ deux espaces vectoriels normés sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

On dit qu'une application $f:(E, \| \|_E) \to (F, \| \|_F)$ est un isomorphisme d'espaces vectoriels normés si

- i) f est linéaire
- ii) f est bijective
- iii) f est continue
- iv) sa réciproque f^{-1} est continue.

Remarque: Si f est linéaire, sa réciproque f^{-1} est linéaire.

Notation : On note Isom(E, F) l'espace des isomorphismes d'espaces vectoriels normés de $(E, || \cdot ||_E)$ sur $(F, || \cdot ||_F)$.

6.6.6. Théorème de Banach : Soient $(E, || \parallel_E)$ et $(F, || \parallel_F)$ deux espaces vectoriels normés sur $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Si $(E, || ||_E)$ et $(F, || ||_F)$ sont des espaces de Banach, alors toute application linéaire continue et bijective $f: E \to F$ est un isomorphisme d'espaces vectoriels normés.

6.6.7. Théorème et définition : Soit $(E, || \cdot ||_E)$ un espace de Banach. Soit $f \in \mathcal{L}(E, E)$. Alors la série

$$\sum_{n>0} \frac{1}{n!} f^n$$

converge normalement, (où $f^0 = Id_E$ et $f^n = f \circ f \circ ... \circ f$, n-fois). On note exp(f) sa somme. Donc

$$exp(f) = \sum_{n=0}^{+\infty} \frac{1}{n!} f^n$$

Proof. On a $||f^n|| \le ||f||^n$ et la série $\sum_{n \ge 0} \frac{1}{n!} ||f||^n$ converge de somme

$$exp(||f||) = \sum_{n=0}^{+\infty} \frac{1}{n!} ||f||^n.$$

Donc la série

$$\sum_{n>0} \frac{1}{n!} f^n$$

converge normalement.

6.6.8. Théorème : Soit $(E, || ||_E)$ un espace de Banach. Soit $u \in \mathcal{L}(E, E)$ tel que ||u|| < 1.

Alors $Id_E - u$ est inversible dans $\mathcal{L}(E, E)$.

Proof. La série $\sum_{n\geq 0} u^n$ converge normalement car $||u^n|| \leq ||u||^n$ et la série géométrique $\sum_{n\geq 0} ||u||^n$ converge car ||u|| < 1.

Soit $v = \sum_{n=0}^{+\infty} u^n$ la somme de la série $\sum_{n\geq 0} u^n$. Alors

$$u \circ v = v \circ u = \sum_{n=1}^{+\infty} u^n = v - Id_E.$$

Donc $v \circ (Id_E - u) = (Id_E - u) \circ v = Id_E$.

Par conséquent, $Id_E - u$ est inversible d'inverse v.

6.6.9. Théorème : Soient $(E, || \cdot ||_E)$ et $(F, || \cdot ||_F)$ deux espaces de Banach. Alors

- i) Isom(E, F) est un ouvert de $\mathcal{L}(E, F)$.
- ii) L'application : $u \in Isom(E, F) \mapsto u^{-1} \in Isom(F, E)$ est continue.

Proof.

i) Soit $u_0 \in Isom(E, F)$. Soit $u \in \mathcal{L}(E, F)$. Posons

$$v = Id_E - (u_0^{-1}) \circ u = (u_0^{-1}) \circ (u_0 - u).$$

Alors $||v|| \le ||u_0^{-1}|| . ||u - u_0|| .$ (1)

Donc si $||u-u_0|| < \frac{1}{||u_0^{-1}||}$ alors ||v|| < 1. Donc $Id_E - v$ est inversible.

Dans ce cas, $(u_0^{-1}) \circ u = Id_E - v$ est inversible. Alors $(u_0^{-1}) \circ u \in Isom(E, E)$. Donc $u \in Isom(E, F)$. Ainsi

$$B(u_0, \frac{1}{\|u_0^{-1}\|}) \subset Isom(E, F).$$

Donc Isom(E, F) est un ouvert.

ii) Avec les notations du i) si $||u - u_0|| < \frac{1}{||u_0^{-1}||}$ alors $u = u_0 \circ (Id_E - v)$. Donc $u^{-1} = (Id_E - v)^{-1} \circ u_0^{-1}$. Par conséquent

$$u^{-1} - u_0^{-1} = [(Id_E - v)^{-1} - Id_E] \circ u_0^{-1}.$$

Comme ||v|| < 1, d'après le théorème précédent,

$$(Id_E - v)^{-1} = \sum_{n=0}^{+\infty} v^n \Longrightarrow (Id_E - v)^{-1} - Id_E = \sum_{n=1}^{+\infty} v^n.$$

Donc

$$||(Id_E - v)^{-1} - Id_E|| \le \sum_{n=1}^{+\infty} ||v||^n = \frac{||v||}{1 - ||v||}.$$

Alors $||u^{-1} - u_0^{-1}|| \le ||u_0^{-1}|| \frac{||v||}{1 - ||v||}$.

Lorsque $u \to u_0$, $||v|| \to 0$ d'après (1) dans i). Donc $u^{-1} \to u_0^{-1}$.

6.7. Espaces de Hilbert réels

6.7.1. Définition : Soit H un espace vectoriel sur \mathbb{R} .

On appelle produit scalaire sur H, toute forme bilinéaire symétrique définie positive $\langle .,. \rangle : H \times H \to \mathbb{R}.$

On appelle espace préhilbertien réel, tout espace vectoriel sur \mathbb{R} muni d'un produit scalaire.

6.7.2. Proposition (Inégalité de Cauchy-Schwarz : Soit (H, < ..., >) un espace préhilbertien réel. Pour tous $x, y \in H$,

$$|\langle x, y \rangle| \le \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}$$

Proof. Soient $x, y \in H$. Pour tout $\lambda \in \mathbb{R}, \langle x + \lambda y, x + \lambda y \rangle \geq 0$.

Alors $< x, x > +2\lambda < x, y > +\lambda^2 < y, y > \ge 0$. Ce polynôme du second degré en λ étant de signe fixe, son discriminant (réduit) $\Delta' = (\langle x, y \rangle)^2 - \langle x, x \rangle < y, y \rangle \leq 0$.

Donc $(\langle x, y \rangle)^2 \le \langle x, x \rangle \langle y, y \rangle$. Finalement, $|\langle x, y \rangle| \le \sqrt{\langle x, x \rangle} \sqrt{\langle y, y \rangle}$.

6.7.3. Corollaire : Soit (H, < ., .>) un espace préhilbertien réel.

On obtient une norme sur H en posant pour tout $x \in H$,

$$||x|| = \sqrt{\langle x, x \rangle}.$$

Cette norme est appelée la norme associée au produit scalaire.

L'inégalité de Cauchy-Schwarz s'écrit alors : pour tous $x, y \in H$,

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

Proof. Pour tous $x \in H$, pour tout $\lambda \in \mathbb{R}$, $||x|| = \sqrt{\langle x, x \rangle} \ge 0$ et $||\lambda x|| = |\lambda| ||x||$.

Pour tous $x, y \in H$, $||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + 2 \langle x, y \rangle + ||y||^2$.

Alors

$$||x + y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2.$$

Donc $||x + y|| \le ||x|| + ||y||$.

Ainsi on a bien une norme sur H.

6.7.4. Définition : On appelle espace de Hilbert réel, tout espace préhilbertien réel (H, <...>) qui est complet pour la norme associée au produit scalaire.

Un espace de Hilbert réel est donc un espace de Banach réel dont la norme est une norme associée à un produit scalaire.

6.7.5. Exemple : Sur \mathbb{R}^n , le produit scalaire canonique est défini par $\forall x, y \in \mathbb{R}^n$,

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i.$$

La norme associée est définie par $\forall x \in \mathbb{R}^n$,

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2} = ||x||_2.$$

Donc $(\mathbb{R}^n, <..., >)$ est un espace de Hilbert réel car $(\mathbb{R}^n, \|\ \|_2)$ est complet.