Esercizi sui Processi Stocastici

Consideriamo il processo:

$$y(t) = e(t) + \frac{1}{2}e(t-1),$$
 $e(t) \sim WN(m_e, \lambda^2)$

con

$$m_e = 0 \lambda^2 = 3$$

Classificazione del processo 1.1

La forma ricorsiva di questo processo è una somma pesata di campioni di un white noise e quindi è un processo Moving Average. Inoltre, nella somma compaiono termini fino a t-1 e quindi il processo è un Moving Average di ordine uno: MA(1).

In particolare, ricordando la forma generale di un MA(1), si ha:

$$y(t) = c_0 e(t) + c_1 e(t-1)$$

con:

$$c_0 = 1 \qquad \qquad c_1 = \frac{1}{2}$$

1.2 Stazionarietà del processo

Teorema. Dato un processo stocastico y(t) ottenuto dalla risposta a regime di un sistema dinamico y(t) alimentato un processo stocastico e(t), si ha che y(t) è un processo stazionario in senso debole se e solo se:

- il sistema H(z) è asintoticamente stabile;
- il processo e (t) è stazionario in senso debole.

Nel nostro caso:

$$y(t) = e(t) + \frac{1}{2}e(t-1)$$

$$= e(t) + \frac{1}{2}e(t)z^{-1}$$

$$= \left(1 + \frac{1}{2}z^{-1}\right)e(t)$$

$$= \frac{z + \frac{1}{2}}{z}e(t)$$

$$H(z)$$

quindi:

$$H(z) = 1 + \frac{1}{2}z^{-1} = \frac{z + \frac{1}{2}}{z}$$

che è un processo dinamico asintoticamente stabile perchè ha solo un polo in 0 e |0| < 1. Inoltre questo sistema è alimentato da e(t) che essendo un white noise è stazionario per definizione. Quindi y(t) è un processo stazionario in senso debole.

1.3 Media del processo

$$m_y = \mathbb{E} [y(t)]$$

$$= \mathbb{E} \left[e(t) + \frac{1}{2} e(t-1) \right]$$

$$= \mathbb{E} [e(t)] + \frac{1}{2} \mathbb{E} [e(t-1)]$$

$$= 0 + \frac{1}{2} \cdot 0$$

$$= 0$$

che non dipende dal tempo perchè il processo è stazionario, come visto nel punto prima.

1.3.1 Sfruttando la rappresentazione dinamica

Dato che y(t) è l'uscita a regime del sistema dinamico H(z), è possibile ricavare la media usando il guadagno statico di H(z):

$$m_y = m_e \cdot H(1)$$
$$= 0 \cdot H(1)$$
$$= 0$$

1.4 Funzione di autocovarianza

1.4.1 Metodo diretto

Dato che il processo è stazionario, ci basta calcolare la funzione di autocovarianza per ogni intervallo temporale.

$$\gamma_{yy}(0) = \mathbb{E}\left[\left(y(t) - my\right)^{2}\right]$$

$$= \mathbb{E}\left[\left(e(t) + \frac{1}{2}e(t-1)\right)^{2}\right]$$

$$= \mathbb{E}\left[e(t)^{2} + \frac{1}{4}e(t-1)^{2} + e(t)e(t-1)\right]$$

$$= \mathbb{E}\left[e(t)^{2}\right] + \frac{1}{4}\mathbb{E}\left[e(t-1)^{2}\right] + \mathbb{E}\left[e(t)e(t-1)\right]^{0}$$

$$= 3 + \frac{1}{4} \cdot 3$$

$$= \frac{15}{4}$$

$$\gamma_{yy}(1) = \mathbb{E}\left[\left(y(t) - my\right)\left(y(t-1) - my\right)\right]$$

$$= \mathbb{E}\left[\left(e(t) + \frac{1}{2}e(t-1)\right)\left(e(t-1) + \frac{1}{2}e(t-2)\right)\right]$$

$$= \mathbb{E}\left[e(t)e(t-1) + \frac{1}{2}e(t)e(t-2) + \frac{1}{2}e(t-1)^{2} + \frac{1}{4}e(t-1)e(t-2)\right]$$

$$= \mathbb{E}\left[e(t)e(t-1)\right] + \frac{1}{2}\mathbb{E}\left[e(t)e(t-2)\right] + \frac{1}{2}\mathbb{E}\left[e(t-1)^{2}\right] + \frac{1}{4}\mathbb{E}\left[e(t-1)e(t-2)\right]$$

$$= \frac{1}{2} \cdot 3$$
$$= \frac{3}{2}$$

$$\gamma_{yy}(2) = \mathbb{E}\left[\left(y(t) - m_y\right)\left(y(t-2) - m_y\right)\right]$$

$$= \mathbb{E}\left[\left(e(t) + \frac{1}{2}e(t-1)\right)\left(e(t-2) + \frac{1}{2}e(t-3)\right)\right]$$

$$= \mathbb{E}\left[e(t)e(t-2) + \frac{1}{2}e(t)e(t-3) + \frac{1}{2}e(t-1)e(t-2) + \frac{1}{4}e(t-1)e(t-3)\right]$$

$$= \mathbb{E}\left[e(t)e(t-2)\right] + \frac{1}{2}\mathbb{E}\left[e(t)e(t-3)\right] + \frac{1}{2}\mathbb{E}\left[e(t-1)e(t-2)\right] + \frac{1}{4}\mathbb{E}\left[e(t-1)e(t-3)\right]$$

si può intuire che $\gamma_{yy}(\tau)$ per $\tau > 2$ sia sempre uguale a 0 in quanto è sempre una somma di autocovarianza tra campioni di white-noise prese a istanti diversi.

1.5 Densità spettrale di potenza

1.5.1 Metodo diretto

Usando la definizione di densità spettrale di potenza:

$$\Gamma_{yy}(\omega) = \sum_{\tau = -\infty}^{\tau = \infty} \gamma_{yy}(\tau) e^{-j\omega\tau}$$

$$= \gamma_{yy}(-1) e^{-j\omega(-1)} + \gamma_{yy}(0) e^{-j\omega(0)} + \gamma_{yy}(1) e^{-j\omega(1)}$$

$$= \frac{3}{2} e^{j\omega} + \frac{15}{4} \cdot 1 + \frac{3}{2} e^{-j\omega}$$

$$= \frac{15}{4} + \frac{3}{2} \underbrace{(e^{j\omega} + e^{-j\omega})}_{2\cos(\omega)}$$

$$= \frac{15}{4} + 3\cos(\omega)$$

1.5.2 Sfruttando la rappresentazione dinamica

Dato che y(t) è l'uscita a regime del sistema dinamico H(z), è possibile ricavare la media usando la risposta in frequenza di H(z):

$$\Gamma_{yy}(\omega) = \lambda^{2} \cdot \left| H\left(e^{j\omega}\right) \right|^{2}$$

$$= 3 \cdot \left| 1 + \frac{1}{2} \left(e^{j\omega}\right)^{-1} \right|^{2}$$

$$= 3 \cdot \left| 1 + \frac{1}{2} e^{-j\omega} \right|^{2}$$

$$= 3 \cdot \left(1 + \frac{1}{2} e^{-j\omega} \right) \left(1 + \frac{1}{2} e^{-j\omega} \right)^{*}$$

$$= 3 \cdot \left(1 + \frac{1}{2} e^{-j\omega} \right) \left(1 + \frac{1}{2} e^{j\omega} \right)$$

$$= 3 \cdot \left(1 + \frac{1}{2}e^{-j\omega} + \frac{1}{2}e^{j\omega} + \frac{1}{4} \cdot 1\right)$$

$$= 3 \cdot \left(\frac{5}{4} + \frac{1}{2}\underbrace{\left(e^{j\omega} + e^{-j\omega}\right)}_{2\cos(\omega)}\right)$$

$$= \frac{15}{4} + 3\cos(\omega)$$

Disegno della densità spettrale di potenza

Per disegnare la $\Gamma_{yy}\left(\omega\right)$ è possibile ricavare qualche valore del dominio e poi unire i punti:

$$\Gamma_{yy}(0) = \frac{15}{4} + 3\cos(0) = \frac{27}{4} = 6.75$$

$$\Gamma_{yy}\left(\frac{\pi}{2}\right) = \frac{15}{4} + 3\cos\left(\frac{\pi}{2}\right) = \frac{15}{4} = 3.75$$

$$\Gamma_{yy}(\pi) = \frac{15}{4} + 3\cos(\pi) = \frac{3}{4} = 0.75$$

dato che la funzione è pari:

$$\Gamma_{yy}\left(-\frac{\pi}{2}\right) = \Gamma_{yy}\left(\frac{\pi}{2}\right) = 3.75$$

$$\Gamma_{yy}\left(-\pi\right) = \Gamma_{yy}\left(\pi\right) = 0.75$$

quindi:

come si può vedere le basse frequenze sono più rilevanti e quindi ci aspettiamo realizzazioni con componenti ad bassa frequenza che variano lentamente.

1.7 Cosa succede se $m_e = 1$?

Se $m_e = 1$, allora il white-noise e(t) non ha media nulla, quindi la media di y(t) diventa (usando il terzo metodo):

$$m_y = m_e \cdot H(1)$$

= $1 + \frac{1}{2}1^{-1}$
= $\frac{3}{2}$

quindi il processo non ha più media nulla.

La funzione di autocovarianza

$$\gamma_{yy}(\tau) = \mathbb{E}\left[\left(y(t) - m_y\right)\left(y(t - \tau) - m_y\right)\right]$$

diventa più complicata da calcolare perchè $m_y \neq 0$. Tuttavia, come si è visto nella teoria, per analizzare la funzione di autocovarianza conviene depolarizzare il processo, ossia sfruttare la proprietà tale per cui:

$$\gamma_{yy}\left(\tau\right) = \gamma_{\tilde{y}\tilde{y}}\left(\tau\right)$$

dove $\tilde{y}(t)$ è un processo che differisce da y(t) solo per un bias, ossia un valore costante sommato:

$$\tilde{y}\left(t\right) = y\left(t\right) + h$$

Quindi, selezionando h tale per cui $\tilde{y}(t)$ ha media nulla, è possibile ricavare la funzione di autocovarianza in modo più semplice. In particolare, in questo caso, il processo depolarizzato è quello analizzato prima. Quindi la funzione di autocovarianza non cambia con il cambiare della media del white-noise in ingresso.

Consideriamo il processo:

$$y(t) = e(t) + \frac{1}{2}y(t-1) - \frac{1}{4}y(t-2),$$
 $e(t) \sim WN(m_e, \lambda^2)$

con

2.1 Classificazione del processo

La forma ricorsiva di questo processo è una somma pesata dei campioni passati del processo sommati con un white-noise e quindi il processo è Auto-Regressive. Inoltre, nella forma ricorsiva, si sfruttano due campioni passati dell'uscita e quindi il processo ha ordine 2: AR(2).

In particolare, ricordando la forma generale di un AR(2), si ha:

$$y(t) = e(t) + a_1y(t-1) + a_2y(t-2)$$

con:

$$a_1 = \frac{1}{2}, a_2 = -\frac{1}{4}$$

2.2 Stazionarietà del processo

Teorema. Dato un processo stocastico y(t) ottenuto dalla risposta a regime di un sistema dinamico H(z) alimentato da un processo stocastico e(t), si ha che y(t) è un processo stazionario in senso debole se e solo se:

- il sistema H(z) è asintoticamente stabile;
- il processo e (t) è stazionario in senso debole.

Sfruttando direttamente il teorema, conviene ricavare la funzione di trasferimento tra white-noise e(t) e processo y(t):

$$y(t) = e(t) + \frac{1}{2}y(t-1) - \frac{1}{4}y(t-2)$$

$$y(t) = e(t) + \frac{1}{2}y(t)z^{-1} - \frac{1}{4}y(t)z^{-2}$$

$$y(t) - \frac{1}{2}y(t)z^{-1} + \frac{1}{4}y(t)z^{-2} = e(t)$$

$$\left(1 - \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2}\right)y(t) = e(t)$$

$$y(t) = \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2}$$

$$y(t) = \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2}$$

Dato che $e\left(t\right)$ è un white-noise e quindi un processo stazionario, bisogna solo controllare che $H\left(z\right)$ sia asintoticamente stabile.

Per farlo bisogna ricavare i poli del sistema, ossia le radici del denominatore.

NOTA: è sempre necessario scrivere la funzione di trasferimento con le potenze positive, prima di calcolare le radici. Quindi:

$$H(z) = \frac{1}{1 - \frac{1}{2}z^{-1} + \frac{1}{4}z^{-2}} = \frac{z^2}{z^2 - \frac{1}{2}z + \frac{1}{4}}$$

che ha poli in:

$$p_{1,2} = \frac{\frac{1}{2} \pm \sqrt{\frac{1}{4} - 4 \cdot 1 \cdot \frac{1}{4}}}{\frac{2}{2}}$$
$$= \frac{\frac{1}{2} \pm \sqrt{-\frac{3}{4}}}{2}$$
$$= \frac{1}{4} \pm j\frac{\sqrt{3}}{4}$$

quindi il sistema ha una coppia di poli complessi coniugati. Per controllare la stabilità, possiamo ricavarne il modulo: NOTA: i due poli hanno lo stesso modulo, dato che sono complessi coniugati.

$$|p_{1,2}| = \left| \frac{1}{4} \pm j \frac{\sqrt{3}}{4} \right|$$

$$= \sqrt{\frac{1}{16} + \frac{3}{16}}$$

$$= \frac{2}{4}$$

$$= \frac{1}{2} < 1$$

quindi H(z) è asintoticamente stabile e y(t) è stazionario in senso debole.

Media del processo

Dato che la media del white noise in ingresso è uguale a 0 anche la media del processo è anch'essa uguale a 0. In alternativa:

$$m_{y} = \mathbb{E} [y(t)]$$

$$m_{y} = \mathbb{E} \left[e(t) + \frac{1}{2}y(t-1) - \frac{1}{4}y(t-2) \right]$$

$$m_{y} = \mathbb{E} [e(t)] + \frac{1}{2}\mathbb{E} [y(t-1)] - \frac{1}{4}\mathbb{E} [y(t-2)]$$

$$m_{y} = 0 + \frac{1}{2}m_{y} - \frac{1}{4}m_{y}$$

$$m_{y} \left(1 - \frac{1}{2} + \frac{1}{4} \right) = 0$$

$$m_{y} = \frac{0}{1 - \frac{1}{2} + \frac{1}{4}}$$

$$m_{y} = 0$$

Funzione di autocovarianza

Il metodo più covieniente per procedere è il calcolo diretto:

$$\gamma_{yy}\left(0\right) = \mathbb{E}\left[\left(y\left(t\right) - yy\right)^{2}\right]$$

$$\gamma_{yy}\left(0\right) = \mathbb{E}\left[\left(e\left(t\right) + \frac{1}{2}y\left(t-1\right) - \frac{1}{4}y\left(t-2\right)\right)^{2}\right]$$

$$\gamma_{yy}(0) = \mathbb{E}\left[e(t)^{2} + \frac{1}{4}y(t-1)^{2} + \frac{1}{16}y(t-2)^{2} + e(t)y(t-1) - \frac{1}{2}e(t)y(t-2) - \frac{1}{4}y(t-1)y(t-2)\right]$$

$$\gamma_{yy}(0) = \mathbb{E}\left[e(t)^{2}\right] + \frac{1}{4}\mathbb{E}\left[y(t-1)^{2}\right] + \frac{1}{16}\mathbb{E}\left[y(t-2)^{2}\right] + \mathbb{E}\left[e(t)y(t-1)\right] - \frac{1}{2}\mathbb{E}\left[e(t)y(t-2)\right] - \frac{1}{4}\mathbb{E}\left[y(t-1)y(t-2)\right]$$

$$\gamma_{yy}(0) = 1 + \frac{1}{4}\gamma_{yy}(0) + \frac{1}{16}\gamma_{yy}(0) - \frac{1}{4}\gamma_{yy}(1)$$

quindi:

$$1 + \frac{1}{4}\gamma_{yy}(0) + \frac{1}{16}\gamma_{yy}(0) - \gamma_{yy}(0) - \frac{1}{4}\gamma_{yy}(1) = 0$$

$$\left(\frac{1}{4} + \frac{1}{16} - 1\right)\gamma_{yy}(0) - \frac{1}{4}\gamma_{yy}(1) = -1$$

$$-\frac{11}{16}\gamma_{yy}(0) - \frac{1}{4}\gamma_{yy}(1) = -1$$

$$\frac{11}{16}\gamma_{yy}(0) + \frac{1}{4}\gamma_{yy}(1) = 1$$

di conseguenza per calcolare γ_{yy} (0) è necessario conoscere γ_{yy} (1), quindi:

$$\gamma_{yy}(1) = \mathbb{E}\left[\left(y(t) - m_y\right)\left(y(t-1) - m_y\right)\right]
\gamma_{yy}(1) = \mathbb{E}\left[\left(e(t) + \frac{1}{2}y(t-1) - \frac{1}{4}y(t-2)\right)y(t-1)\right]
\gamma_{yy}(1) = \mathbb{E}\left[e(t)y(t-1) + \frac{1}{2}y(t-1)^2 - \frac{1}{4}y(t-2)y(t-1)\right]
\gamma_{yy}(1) = \mathbb{E}\left[e(t)y(t-1)\right] + \frac{1}{2}\mathbb{E}\left[y(t-1)^2\right] - \frac{1}{4}\mathbb{E}\left[y(t-2)y(t-1)\right]
\gamma_{yy}(1) = \frac{1}{2}\gamma_{yy}(0) - \frac{1}{4}\gamma_{yy}(1)$$

quindi:

$$\gamma_{yy}(1) + \frac{1}{4}\gamma_{yy}(1) = \frac{1}{2}\gamma_{yy}(0)$$

$$\frac{5}{4}\gamma_{yy}(1) = \frac{1}{2}\gamma_{yy}(0)$$

$$\gamma_{yy}(1) = \frac{4}{5} \cdot \frac{1}{2}\gamma_{yy}(0)$$

$$\gamma_{yy}(1) = \frac{2}{5}\gamma_{yy}(0)$$

quindi abbiamo due equazioni lineari a due incognite:

$$\begin{cases} \frac{11}{16} \gamma_{yy}(0) + \frac{1}{4} \gamma_{yy}(1) = 1\\ \gamma_{yy}(1) = \frac{2}{5} \gamma_{yy}(0) \end{cases}$$

questo sistema lineare può essere risolto facilmente sostituendo la seconda equazione nella prima:

$$\begin{cases} \frac{11}{16} \gamma_{yy}\left(0\right) + \frac{1}{4} \cdot \frac{2}{5} \gamma_{yy}\left(0\right) = 1\\ - \end{cases}$$

quindi:

$$\begin{cases} \left(\frac{11}{16} + \frac{1}{10}\right) \gamma_{yy}(0) = 1 \\ - \\ \end{cases}$$
$$\begin{cases} \gamma_{yy}(0) = \frac{1}{\frac{11}{16} + \frac{1}{10}} = \frac{80}{63} \\ - \end{cases}$$

infine:

$$\begin{cases} \gamma_{yy}(0) = \frac{80}{63} \\ \gamma_{yy}(1) = \frac{2}{5} \cdot \frac{80}{63} = \frac{32}{63} \end{cases}$$

Ora è possibile proseguire per calcolare i successivi campioni della funzione di autocovarianza.

$$\begin{split} \gamma_{yy} &(2) = \mathbb{E}\left[\left(y(t) - m_y \right) \left(y(t-2) - m_y \right) \right] \\ &= \mathbb{E}\left[\left(e(t) + \frac{1}{2}y(t-1) - \frac{1}{4}y(t-2) \right) y(t-2) \right] \\ &= \mathbb{E}\left[e(t) y(t-2) + \frac{1}{2}y(t-1) y(t-2) - \frac{1}{4}y(t-2)^2 \right] \\ &= \mathbb{E}\left[e(t) y(t-2) \right] + \frac{1}{2} \mathbb{E}\left[y(t-1) y(t-2) \right] - \frac{1}{4} \mathbb{E}\left[y(t-2)^2 \right] \\ &= \frac{1}{2} \cdot \frac{32}{63} - \frac{1}{4} \cdot \frac{80}{63} \\ &= -\frac{4}{63} \end{split}$$

provando a tenere τ generico (con $\tau > 1$) si ha:

$$\begin{split} \gamma_{yy}\left(\tau\right) &= \mathbb{E}\left[\left(y\left(t\right) - m_{y}\right)\left(y\left(t-\tau\right) - m_{y}\right)\right] \\ &= \mathbb{E}\left[\left(e\left(t\right) + \frac{1}{2}y\left(t-1\right) - \frac{1}{4}y\left(t-2\right)\right)y\left(t-\tau\right)\right] \\ &= \mathbb{E}\left[\left(e\left(t\right)y\left(t-\tau\right) + \frac{1}{2}y\left(t-1\right)y\left(t-\tau\right) - \frac{1}{4}y\left(t-2\right)y\left(t-\tau\right)\right] \\ &= \mathbb{E}\left[\left(e\left(t\right)y\left(t-\tau\right)\right] + \frac{1}{2}\mathbb{E}\left[y\left(t-1\right)y\left(t-\tau\right)\right] - \frac{1}{4}\mathbb{E}\left[y\left(t-2\right)y\left(t-\tau\right)\right] \\ &= \frac{1}{2}\gamma_{yy}\left(\tau-1\right) - \frac{1}{4}\gamma_{yy}\left(\tau-2\right) \end{split}$$

quindi, dati γ_{yy} (0) e γ_{yy} (1), è possibile ricavare tutti gli altri ricorsivamente. Inoltre, si può notare che questi non raggiungeranno mai 0, ma si avvicineranno asintoticamente.

2.5 Densità spettrale di potenza

Dato che la funzione di autocovarianza non va mai a 0 conviene utilizzare la rappresentazione dinamica. Quindi abbiamo visto a lezione 8 che si può calcolare come:

$$\Gamma_{yy}(\omega) = \lambda^2 \cdot \left| H\left(e^{j\omega}\right) \right|^2$$

$$= 1 \cdot \left| \frac{1}{1 - \frac{1}{2} (e^{j\omega})^{-1} + \frac{1}{4} (e^{j\omega})^{-2}} \right|^{2}$$

$$= \frac{1}{\left| 1 - \frac{1}{2} e^{-j\omega} + \frac{1}{4} e^{-2j\omega} \right|^{2}}$$

$$= \frac{1}{\left(1 - \frac{1}{2} e^{-j\omega} + \frac{1}{4} e^{-2j\omega} \right) \cdot \left(1 - \frac{1}{2} e^{-j\omega} + \frac{1}{4} e^{-2j\omega} \right)^{*}}$$

$$= \frac{1}{\left(1 - \frac{1}{2} e^{-j\omega} + \frac{1}{4} e^{-2j\omega} \right) \cdot \left(1 - \frac{1}{2} e^{j\omega} + \frac{1}{4} e^{2j\omega} \right)}$$

$$= \frac{1}{1 - \frac{1}{2} e^{-j\omega} + \frac{1}{4} e^{-2j\omega} - \frac{1}{2} e^{j\omega} + \frac{1}{4} e^{-j\omega} + \frac{1}{4} e^{2j\omega} - \frac{1}{8} e^{j\omega} + \frac{1}{16}$$

$$= \frac{1}{21 - \frac{1}{2} (e^{-j\omega} + e^{j\omega})}$$

$$= \frac{1}{2\cos(\omega)}$$

$$= \frac{1}{21 - \cos(\omega) + \frac{1}{2} \cos(2\omega) - \frac{1}{4} \cos(\omega)}$$

$$= \frac{1}{21 - \frac{5}{4} \cos(\omega) + \frac{1}{2} \cos(2\omega)}$$

$$= \frac{16}{21 - 20 \cos(\omega) + 8 \cos(2\omega)}$$

Considera il seguente processo:

$$y(t) = \frac{2 + 3z^{-1} - 2z^{-2}}{1 + \frac{1}{3}z^{-1}} \eta(t), \qquad \eta(t) \sim WN(1, 9)$$

3.1 Classificazione del processo

La funzione di trasferimento del processo presenta sia zeri che poli e quindi il processo è un ARMA. In particolare, l'ordine auto-regressivo è pari a 1, mentre l'ordine MA è pari a 2. Quindi, il processo è un ARMA (1, 2).

3.2 Stazionarietà del processo

Per controllare la stazionarietà, bisogna ricavare i poli del sistema.

NOTA: è sempre necessario scrivere la funzione di trasferimento con le potenze positive, prima di calcolare le radici.

$$H(z) = \frac{2 + 3z^{-1} - 2z^{-2}}{1 + \frac{1}{3}z^{-1}}$$
$$= \frac{2z^2 + 3z - 2}{z\left(z + \frac{1}{3}\right)}$$

quindi i poli sono in:

$$p_1 = -\frac{1}{3}$$
 $p_2 = 0$

che, in modulo, sono minori di 1. Quindi H(z) è asintoticamente stabile e y(t) stazionario in senso debole.

3.3 Media del processo

Dato che abbiamo a disposizione il processo scritto in forma dinamica con la funzione di trasferimento conviene calcolare la media utilizzando il guadagno statico del sistema. Dato che si ha:

$$m_y = m_\eta \cdot H(1)$$

$$= 1 \cdot \frac{2+3-2}{1\left(1+\frac{1}{3}\right)}$$

$$= \frac{9}{4}$$

3.4 Varianza del processo

Per calcolare la varianza del processo conviene passare all'equazione ricorsiva:

$$y(t) = \frac{2 + 3z^{-1} - 2z^{-2}}{1 + \frac{1}{3}z^{-1}} \eta(t)$$
$$y(t) \left(1 + \frac{1}{3}z^{-1}\right) = \left(2 + 3z^{-1} - 2z^{-2}\right) \eta(t)$$
$$y(t) + \frac{1}{3}y(t-1) = 2\eta(t) + 3\eta(t-1) - 2\eta(t-2)$$

$$y(t) = 2\eta(t) + 3\eta(t-1) - 2\eta(t-2) - \frac{1}{3}y(t-1)$$

Dato che la media del processo è non-nulla conviene depolarizzare. Quindi consideriamo il processo:

$$\tilde{y}(t) = y(t) - m_y$$

$$\tilde{y}(t) = y(t) - \frac{9}{4}$$

$$\tilde{y}(t) = 2\eta(t) + 3\eta(t-1) - 2\eta(t-2) - \frac{1}{3}y(t-1) - \frac{9}{4}$$

per semplificare questa espressione, definiamo il white-noise:

$$\tilde{\eta}(t) = \eta(t) - m_{\eta}$$

$$\tilde{\eta}(t) = \eta(t) - 1$$

$$\tilde{\eta}(t) + 1 = \eta(t)$$

quindi:

$$\begin{split} \tilde{y}(t) &= 2\left(\tilde{\eta}(t) + 1\right) + 3\left(\tilde{\eta}(t - 1) + 1\right) - 2\left(\tilde{\eta}(t - 2) + 1\right) - \frac{1}{3}\left(\tilde{y}(t - 1) + \frac{9}{4}\right) - \frac{9}{4} \\ &= 2\tilde{\eta}(t) + 3\tilde{\eta}(t - 1) - 2\tilde{\eta}(t - 2) - \frac{1}{3}\tilde{y}(t - 1) + \underbrace{2 + 3 - 2 - \frac{1}{3} \cdot \frac{9}{4} - \frac{9}{4}}_{0} \\ &= 2\tilde{\eta}(t) + 3\tilde{\eta}(t - 1) - 2\tilde{\eta}(t - 2) - \frac{1}{3}\tilde{y}(t - 1), \qquad \tilde{\eta}(t) \sim WN(0, 9) \end{split}$$

quindi:

$$\begin{split} \gamma_{yy} &(0) = \gamma_{\tilde{y}\tilde{y}} (0) \\ &= \mathbb{E} \left[\left(2\tilde{\eta} \left(t \right) + 3\tilde{\eta} \left(t - 1 \right) - 2\tilde{\eta} \left(t - 2 \right) - \frac{1}{3}\tilde{y} \left(t - 1 \right) \right)^{2} \right] \\ &= 4\mathbb{E} \left[\tilde{\eta} \left(t \right)^{2} \right] + 9\mathbb{E} \left[\tilde{\eta} \left(t - 1 \right)^{2} \right] + 4\mathbb{E} \left[\tilde{\eta} \left(t - 2 \right)^{2} \right] + \frac{1}{9} \mathbb{E} \left[\tilde{y} \left(t - 1 \right)^{2} \right] + \\ &+ 12\mathbb{E} \left[\tilde{\eta} \left(t \right) \tilde{\eta} \left(t - 1 \right) \right] - 8\mathbb{E} \left[\tilde{\eta} \left(t \right) \tilde{\eta} \left(t - 2 \right) \right] - \frac{4}{3}\mathbb{E} \left[\tilde{\eta} \left(t \right) \tilde{y} \left(t - 1 \right) \right] + \\ &- 12\mathbb{E} \left[\tilde{\eta} \left(t - 1 \right) \tilde{\eta} \left(t - 2 \right) \right] - 2\mathbb{E} \left[\tilde{\eta} \left(t - 1 \right) \tilde{y} \left(t - 1 \right) \right] + \frac{4}{3}\mathbb{E} \left[\tilde{\eta} \left(t - 2 \right) \tilde{y} \left(t - 1 \right) \right] \\ &= 4 \cdot 9 + 9 \cdot 9 + 4 \cdot 9 + \frac{1}{9} \cdot \gamma_{yy} \left(0 \right) - 2\mathbb{E} \left[\tilde{\eta} \left(t - 1 \right) \tilde{y} \left(t - 1 \right) \right] + \frac{4}{3}\mathbb{E} \left[\tilde{\eta} \left(t - 2 \right) \tilde{y} \left(t - 1 \right) \right] \end{split}$$

analizzando i due termini «strani», si ha:

$$\mathbb{E}\left[\tilde{\eta}\left(t-1\right)\tilde{y}\left(t-1\right)\right] = \mathbb{E}\left[\tilde{\eta}\left(t\right)\tilde{y}\left(t\right)\right]$$

$$= \mathbb{E}\left[\tilde{\eta}\left(t\right)\left(2\tilde{\eta}\left(t\right) + 3\tilde{\eta}\left(t-1\right) - 2\tilde{\eta}\left(t-2\right) - \frac{1}{3}\tilde{y}\left(t-1\right)\right)\right]$$

$$= \mathbb{E}\left[2\tilde{\eta}\left(t\right)^{2} + 3\tilde{\eta}\left(t-1\right)\tilde{\eta}\left(t\right) - 2\tilde{\eta}\left(t-2\right)\tilde{\eta}\left(t\right) - \frac{1}{3}\tilde{y}\left(t-1\right)\tilde{\eta}\left(t\right)\right]$$

$$= 2\mathbb{E}\left[\tilde{\eta}\left(t\right)^{2}\right] + 3\mathbb{E}\left[\tilde{\eta}\left(t-1\right)\tilde{\eta}\left(t\right)\right] - 2\mathbb{E}\left[\tilde{\eta}\left(t-2\right)\tilde{\eta}\left(t\right)\right] - \frac{1}{3}\mathbb{E}\left[\tilde{y}\left(t-1\right)\tilde{\eta}\left(t\right)\right]$$

$$= 2 \cdot 9$$
$$= 18$$

$$\mathbb{E}\left[\tilde{\eta}(t-2)\,\tilde{y}(t-1)\right] = \mathbb{E}\left[\tilde{\eta}(t-1)\,\tilde{y}(t)\right] \\ = \mathbb{E}\left[\tilde{\eta}(t-1)\left(2\tilde{\eta}(t) + 3\tilde{\eta}(t-1) - 2\tilde{\eta}(t-2) - \frac{1}{3}\tilde{y}(t-1)\right)\right] \\ = \mathbb{E}\left[2\tilde{\eta}(t)\,\tilde{\eta}(t-1) + 3\tilde{\eta}(t-1)^2 - 2\tilde{\eta}(t-2)\,\tilde{\eta}(t-1) - \frac{1}{3}\tilde{y}(t-1)\,\tilde{\eta}(t-1)\right] \\ = 2\mathbb{E}\left[\tilde{\eta}(t)\,\tilde{\eta}(t-1)\right] + 3\mathbb{E}\left[\tilde{\eta}(t-1)^2\right] - 2\mathbb{E}\left[\tilde{\eta}(t-2)\,\tilde{\eta}(t-1)\right] - \frac{1}{3}\mathbb{E}\left[\tilde{y}(t-1)\,\tilde{\eta}(t-1)\right] \\ = 3 \cdot 9 - \frac{1}{3}\mathbb{E}\left[\tilde{y}(t)\,\tilde{\eta}(t)\right] = 27 - \frac{1}{3} \cdot 18 = 27 - 6 = 21$$

quindi:

$$\gamma_{yy}(0) = 153 + \frac{1}{9} \cdot \gamma_{yy}(0) - 2 \cdot 18 + \frac{4}{3} \cdot 21$$

$$\gamma_{yy}(0) - \frac{1}{9} \gamma_{yy}(0) = 153 - 36 + 28$$

$$\gamma_{yy}(0) \left(1 - \frac{1}{9}\right) = 145$$

$$\gamma_{yy}(0) = 145 \cdot \frac{9}{8} = \frac{1305}{8}$$

3.5 Densità spettrale di potenza

Abbiamo visto a lezione 8 che si può calcolare come:

$$\begin{split} &\Gamma_{yy}\left(\omega\right) = \lambda_{\eta}^{2} \cdot \left| H\left(e^{j\omega}\right) \right|^{2} \\ &= 9 \cdot \left| \frac{2 + 3\left(e^{j\omega}\right)^{-1} - 2\left(e^{j\omega}\right)^{-2}}{1 + \frac{1}{3}\left(e^{j\omega}\right)^{-1}} \right|^{2} = 9 \cdot \frac{\left| 2 + 3e^{-j\omega} - 2e^{-2j\omega} \right|^{2}}{\left| 1 + \frac{1}{3}e^{-j\omega} \right|^{2}} \\ &= 9 \cdot \frac{\left(2 + 3e^{-j\omega} - 2e^{-2j\omega}\right)\left(2 + 3e^{j\omega} - 2e^{2j\omega}\right)}{\left(1 + \frac{1}{3}e^{-j\omega}\right)} \\ &= 9 \cdot \frac{4 + 6e^{-j\omega} - 4e^{-2j\omega} + 6e^{j\omega} + 9 - 6e^{-j\omega} - 4e^{2j\omega} - 6e^{j\omega} + 4}{1 + \frac{1}{3}e^{-j\omega} + \frac{1}{3}e^{j\omega} + \frac{1}{9}} \\ &= 9 \cdot \frac{4 + 9 + 4 - 4\left(e^{-2j\omega} + e^{2j\omega}\right)}{1 + \frac{1}{3}\left(e^{-j\omega} + e^{j\omega}\right) + \frac{1}{9}} = 9 \cdot \frac{17 - 8\cos\left(2\omega\right)}{\frac{10}{9} + \frac{2}{3}\cos\left(\omega\right)} \\ &= 9 \cdot \frac{17 - 8\cos\left(2\omega\right)}{\frac{10}{9} + \frac{2}{3}\cos\left(\omega\right)} = 9^{2} \cdot \frac{17 - 8\cos\left(2\omega\right)}{10 + 6\cos\left(\omega\right)} = \frac{9^{2}}{2} \cdot \frac{17 - 8\cos\left(2\omega\right)}{5 + 3\cos\left(\omega\right)} \end{split}$$

3.6 Disegno della densità spettrale di potenza

Per disegnare la $\Gamma_{yy}(\omega)$ è possibile ricavare qualche valore del dominio e poi unire i punti:

$$\Gamma_{yy}(0) = \frac{9^2}{2} \cdot \frac{17 - 8\cos(0)}{5 + 3\cos(0)} = \frac{9^2}{2} \cdot \frac{17 - 8 \cdot 1}{5 + 3 \cdot 1} = \frac{9^2}{2} \cdot \frac{9}{8} = \frac{729}{16} = 45.5625$$

$$\Gamma_{yy}\left(\frac{\pi}{2}\right) = \frac{9^2}{2} \cdot \frac{17 - 8\cos\left(2 \cdot \frac{\pi}{2}\right)}{5 + 3\cos\left(\frac{\pi}{2}\right)} = \frac{9^2}{2} \cdot \frac{17 - 8 \cdot (-1)}{5 + 3 \cdot 0} = \frac{9^2}{2} \cdot \frac{25}{5} = \frac{2025}{10} = 202.5$$

$$\Gamma_{yy}(\pi) = \frac{9^2}{2} \cdot \frac{17 - 8\cos(2\pi)}{5 + 3\cos(\pi)} = \frac{9^2}{2} \cdot \frac{17 - 8 \cdot 1}{5 + 3 \cdot (-1)} = \frac{9^2}{2} \cdot \frac{9}{2} = \frac{729}{4} = 182.25$$

dato che la funzione è pari:

$$\Gamma_{yy}\left(-\frac{\pi}{2}\right) = \Gamma_{yy}\left(\frac{\pi}{2}\right) = 202.5$$

$$\Gamma_{yy}\left(-\pi\right) = \Gamma_{yy}\left(\pi\right) = 182.25$$

quindi:

come si può vedere le alte frequenze sono più rilevanti e quindi ci aspettiamo realizzazioni con componenti ad alta frequenza che variano velocemente.

Considera le seguenti funzioni di autocovarianza:

$$\gamma_{1}(\tau) = \begin{cases}
-2 & \text{se } \tau = 0 \\
1 & \text{se } \tau = 1 \\
1 & \text{se } \tau = -1 \\
0 & \text{se } |\tau| > 1
\end{cases}$$

$$\gamma_{2}(\tau) = \begin{cases}
3 & \text{se } \tau = 0 \\
2 & \text{se } \tau = 1 \\
1 & \text{se } \tau = -1 \\
0 & \text{se } |\tau| > 1
\end{cases}$$

$$\gamma_{3}(\tau) = \begin{cases}
2 & \text{se } \tau = 0 \\
3 & \text{se } \tau = 1 \\
3 & \text{se } \tau = 1 \\
0 & \text{se } |\tau| > 1
\end{cases}$$

$$\gamma_{4}(\tau) = \begin{cases}
5 & \text{se } \tau = 0 \\
2 & \text{se } \tau = 1 \\
2 & \text{se } \tau = -1 \\
0 & \text{se } |\tau| > 1
\end{cases}$$

calcolare la forma dinamica dei corrispettivi processi (supponendo una media nulla).

4.1 Primo caso

La funzione di autocovarianza del primo caso non è valida perchè $\gamma_1(0) < 0$ e quindi non corrisponde a nessun processo.

4.2 Secondo caso

La funzione di autocovarianza del secondo caso non è valida perchè $\gamma_1(1) \neq \gamma_1(-1)$ e quindi non corrisponde a nessun processo.

4.3 Terzo caso

La funzione di autocovarianza del terzo caso non è valida perchè $\gamma_1(0) < \gamma_1(1)$ e quindi non corrisponde a nessun processo.

4.4 Quarto caso

La funzione del quarto caso è valida e quindi è possibile ricavarne la forma dinamica.

Per prima cosa, si può notare che il processo ha memoria finita e in particolare di 1. Quindi il processo è un MA (1):

$$y\left(t\right)=c_{0}e\left(t\right)+c_{1}e\left(t-1\right), \qquad \qquad e\left(t\right)\sim WN\left(0,\lambda^{2}\right)$$

di cui sappiamo da lezione 9 che:

$$\gamma_4(0) = \lambda^2 (c_0^2 + c_1^2)$$

 $\gamma_4(1) = \lambda^2 c_0 c_1$

quindi, si ottiene il sistema a tre incognite e due equazioni:

$$\begin{cases} \gamma_4 (0) = \lambda^2 (c_0^2 + c_1^2) \\ \gamma_4 (1) = \lambda^2 c_0 c_1 \end{cases}$$

$$\begin{cases} 5 = \lambda^2 \left(c_0^2 + c_1^2 \right) \\ 2 = \lambda^2 c_0 c_1 \end{cases}$$

per risolverlo è necessario fare un'assunzione su uno dei tre parametri. Per convenienza poniamo:

NOTA: non è possibile mettere nessuno dei tre parametri a 0 perchè dalla seconda equazione si nota che devono essere tutti e 3 diversi da 0.

$$\lambda^2 = 1$$

quindi:

$$\begin{cases} 5 = c_0^2 + c_1^2 \\ 2 = c_0 c_1 \end{cases}$$

$$\begin{cases} - \\ c_1 = \frac{2}{c_0} \end{cases}$$

$$\begin{cases} 5 = c_0^2 + \frac{4}{c_0^2} \\ - \end{cases}$$

$$\begin{cases} 5c_0^2 = c_0^4 + 4 \end{cases}$$

per risolvere la prima equazione, poniamo $\boldsymbol{x} = c_0^2$ ottenendo:

$$x^2 - 5x + 4 = 0$$

$$x_{1,2} = \frac{5 \pm \sqrt{25 - 16}}{2}$$
$$= \frac{5 \pm 3}{2}$$

quindi:

$$x_1 = 4 \rightarrow c_0 = \pm 2$$

 $x_2 = 1 \rightarrow c_0 = \pm 1$

di conseguenza esistono quattro diverse soluzioni:

$$\begin{cases} c_0 = 2 \\ c_1 = \frac{2}{2} = 1 \end{cases} \qquad \begin{cases} c_0 = -2 \\ c_1 = \frac{2}{-2} = -1 \end{cases} \qquad \begin{cases} c_0 = 1 \\ c_1 = \frac{2}{1} = 2 \end{cases} \qquad \begin{cases} c_0 = -1 \\ c_1 = \frac{2}{-1} = -2 \end{cases}$$

Si consideri il seguente processo:

dove
$$\eta(t) = 3$$
, $e(t) \sim WN\left(0, \frac{1}{3}\right)$ e $\alpha, \beta \in \mathbb{R}$.

5.1 Classificazione del processo

Per prima cosa si può osservare che $\eta(t)$ non è un processo stocastico, ma una costante. Di conseguenza, a regime, w(t) è anch'esso un segnale costante. In particolare, il suo valore è:

$$w(t) = \eta(t) \cdot \mu_1$$

dove μ_1 è il guadagno statico del sistema dinamico del prima blocco (quello tra $\eta(t)$ e w(t)). Quindi:

$$w(t) = 3 \cdot \frac{1+\beta}{1+\frac{1}{2}}$$
$$= 3 \cdot \frac{2}{2+1} \cdot (1+\beta)$$
$$= 2 \cdot (1+\beta)$$

Invece, e(t) è un processo stocastico e di conseguenza anche d(t) lo è. In particolare:

$$d(t) = \frac{z+3}{z+\frac{1}{3}}e(t)$$

è possibile notare che la funzione di trasferimento tra e(t) e d(t) è simile a un filtro passa-tutto. In dettaglio, possiamo scrivere:

$$d(t) = 3 \cdot \frac{1}{3} \cdot \frac{z+3}{z+\frac{1}{3}}e(t)$$

$$\underbrace{z+\frac{1}{3}}_{\text{passa-tutto}}$$

$$= 3 \cdot e(t)$$

quindi:

$$d(t) \sim WN\left(0, \frac{1}{3} \cdot 3^2\right) = WN(0, 3)$$

Dal blocco sommatore, si nota che:

$$u(t) = w(t) + d(t)$$

= 2 \cdot (1 + \beta) + d(t)

ossia:

$$u(t) \sim WN(2 \cdot (1 + \beta), 3)$$

Infine, osservando il terzo blocco:

$$y(t) = \frac{z + \frac{1}{3}}{z - \alpha} \cdot u(t)$$
$$= \frac{1 + \frac{1}{3}z^{-1}}{1 - \alpha z^{-1}} \cdot u(t)$$

da cui si può ottenere la forma ricorsiva

$$y(t) (1 - \alpha z^{-1}) = \left(1 + \frac{1}{3} z^{-1}\right) u(t)$$

$$y(t) - \alpha y(t-1) = u(t) + \frac{1}{3} u(t-1)$$

$$y(t) = \alpha y(t-1) + u(t) + \frac{1}{3} u(t-1)$$

quindi il tipo di processo dipende dal valore di α . Se $\alpha=0$, si ha:

$$y(t) = \frac{1 + \frac{1}{3}z^{-1}}{1 + 0} \cdot u(t)$$
$$= \left(1 + \frac{1}{3}z^{-1}\right) \cdot u(t)$$

che è un MA (1). Invece, se $\alpha \neq 0$, il processo è un ARMA (1, 1).

5.2 Stazionarietà del processo

Per prima cosa si può notare che il valore di β influisce sulla media di u(t) e di conseguenza non influisce sulla stazionarietà del processo. Viceversa, α agisce su un polo del sistema dinamico tra y(t) e il processo stazionario u(t) e quindi agisce anche sulla stazionarietà del processo stesso.

In particolare, il processo y(t) è stazionario se e solo se la funzione di trasferimento:

$$H(z) = \frac{z + \frac{1}{3}}{z - \alpha}$$

è asintoticamente stabile. Questo avviene se e solo se:

$$-1 < \alpha < 1$$

5.3 Calcolare i valori di α e β tali per cui la media del processo m_{ij} è -1

Per prima cosa, si può ricavare il valore di m_y con α e β generici.

$$m_{y} = \mathbb{E}\left[y\left(t\right)\right]$$

$$m_{y} = \mathbb{E}\left[\alpha y (t-1) + u (t) + \frac{1}{3}u (t-1)\right]$$

$$m_{y} = \alpha \underbrace{\mathbb{E}\left[y (t-1)\right]}_{m_{y}} + \underbrace{\mathbb{E}\left[u (t)\right]}_{2(1+\beta)} + \frac{1}{3}\underbrace{\mathbb{E}\left[u (t-1)\right]}_{2(1+\beta)}$$

$$= \alpha m_{y} + 2 (1+\beta) + \frac{2 (1+\beta)}{3}$$

$$m_{y} - \alpha m_{y} = 2 (1+\beta) \left(1 + \frac{1}{3}\right)$$

$$m_{y} (1-\alpha) = \frac{8}{3} (1+\beta)$$

$$m_{y} = \frac{8}{3} \cdot \frac{1+\beta}{1-\alpha}$$

quindi:

$$-1 = \frac{8}{3} \cdot \frac{1+\beta}{1-\alpha}$$

$$-3(1-\alpha) = 8(1+\beta)$$

$$-3+3\alpha = 8+8\beta$$

$$3\alpha - 11 = 8\beta$$

$$\beta = \frac{3\alpha - 11}{8}$$

quindi tutte le copie di valori che rispettano questa ugualianza e mantengono la stazionarietà del sistema garantiscono che la media del processo sia –1. Quindi, la soluzione è:

$$(\alpha, \beta) = \left\{ \left| \left(x, \frac{3x - 11}{8} \right) \right| - 1 < x < 1 \right\}$$

5.4 Calcolare i valori di α e β tali per cui $m_u = -1$ e la varianza è minima

Per prima cosa è possibile calcolare la varianza del processo al variare di α e β . Dato che la media del processo è diversa da 0, bisogna depolarizzare il processo. In questo modo si considera il processo:

$$\tilde{y}(t) = y(t) - m_y$$

$$\tilde{y}(t) = y(t) - (-1)$$

$$\tilde{y}(t) = y(t) + 1$$

$$\tilde{y}(t) - 1 = y(t)$$

per semplificare questa espressione, definiamo il white-noise:

$$\tilde{u}(t) = u(t) - m_u$$

$$\tilde{u}(t) = u(t) - 2 \cdot (1 + \beta)$$

$$\tilde{u}(t) = u(t) - 2 \cdot \left(1 + \frac{3\alpha - 11}{8}\right)$$

$$\tilde{u}(t) = u(t) - \frac{3\alpha - 3}{4}$$

$$\tilde{u}(t) + \frac{3}{4}(\alpha - 1) = u(t)$$

quindi:

$$\tilde{y}\left(t\right) = y\left(t\right) + 1$$

$$\begin{split} &=\alpha y\left(t-1\right)+u\left(t\right)+\frac{1}{3}u\left(t-1\right)+1\\ &=\alpha\left(\tilde{y}\left(t-1\right)-1\right)+\left(\tilde{u}\left(t\right)+\frac{3}{4}(\alpha-1)\right)+\frac{1}{3}\left(\tilde{u}\left(t-1\right)+\frac{3}{4}(\alpha-1)\right)+1\\ &=\alpha \tilde{y}\left(t-1\right)+\tilde{u}\left(t\right)+\frac{1}{3}\tilde{u}\left(t-1\right)-\alpha+\frac{3}{4}(\alpha-1)+\frac{1}{\beta}\cdot\frac{\beta}{4}\cdot(\alpha-1)+1\\ &=\alpha \tilde{y}\left(t-1\right)+\tilde{u}\left(t\right)+\frac{1}{3}\tilde{u}\left(t-1\right)+\frac{-4\alpha+3\alpha-3+\alpha-1+4}{4}\\ &=\alpha \tilde{y}\left(t-1\right)+\tilde{u}\left(t\right)+\frac{1}{3}\tilde{u}\left(t-1\right) \end{split}$$

quindi, sfruttando il fatto che:

$$\gamma_{yy}\left(0\right) = \gamma_{\tilde{y}\tilde{y}}\left(0\right)$$

si ottiene:

$$\begin{split} \gamma_{yy}\left(0\right) &= \mathbb{E}\left[\left(\alpha\tilde{y}\left(t-1\right) + \tilde{u}\left(t\right) + \frac{1}{3}\tilde{u}\left(t-1\right)\right)^{2}\right] \\ &= \mathbb{E}\left[\alpha^{2}\tilde{y}\left(t-1\right)^{2} + \tilde{u}\left(t\right)^{2} + \frac{1}{9}\tilde{u}\left(t-1\right)^{2} + 2\alpha\tilde{y}\left(t-1\right)\tilde{u}\left(t\right) + \frac{2}{3}\alpha\tilde{y}\left(t-1\right)\tilde{u}\left(t-1\right) + \frac{2}{3}\tilde{u}\left(t\right)\tilde{u}\left(t-1\right)\right] \\ &= \alpha^{2}\underbrace{\mathbb{E}\left[\tilde{y}\left(t-1\right)^{2}\right]}_{\gamma_{yy}\left(0\right)} + \underbrace{\mathbb{E}\left[\tilde{u}\left(t\right)^{2}\right]}_{3} + \frac{1}{9}\underbrace{\mathbb{E}\left[\tilde{u}\left(t-1\right)^{2}\right]}_{3} + 2\alpha\mathbb{E}\left[\tilde{y}\left(t-1\right)\tilde{u}\left(t\right)\right] + \frac{2}{3}\alpha\mathbb{E}\left[\tilde{y}\left(t-1\right)\tilde{u}\left(t-1\right)\right] + \frac{2}{3}\mathbb{E}\left[\tilde{u}\left(t\right)\tilde{u}\left(t-1\right)\right] \\ &\gamma_{yy}\left(0\right) = \alpha^{2}\gamma_{yy}\left(0\right) + 3 + \frac{3}{9} + \frac{2}{3}\alpha\mathbb{E}\left[\tilde{y}\left(t-1\right)\tilde{u}\left(t-1\right)\right] \end{split}$$

analizzando l'addendo «strano»:

$$\mathbb{E}\left[\tilde{y}\left(t-1\right)\tilde{u}\left(t-1\right)\right] = \mathbb{E}\left[\tilde{y}\left(t\right)\tilde{u}\left(t\right)\right]$$

$$= \mathbb{E}\left[\left(\alpha\tilde{y}\left(t-1\right)+\tilde{u}\left(t\right)+\frac{1}{3}\tilde{u}\left(t-1\right)\right)\tilde{u}\left(t\right)\right]$$

$$= \mathbb{E}\left[\alpha\tilde{y}\left(t-1\right)\tilde{u}\left(t\right)+\tilde{u}\left(t\right)^{2}+\frac{1}{3}\tilde{u}\left(t-1\right)\tilde{u}\left(t\right)\right]$$

$$= \alpha\mathbb{E}\left[\tilde{y}\left(t-1\right)\tilde{u}\left(t\right)\right] + \mathbb{E}\left[\tilde{u}\left(t\right)^{2}\right] + \frac{1}{3}\mathbb{E}\left[\tilde{u}\left(t-1\right)\tilde{u}\left(t\right)\right]$$

$$= 3$$

ottenendo:

$$\gamma_{yy}(0) = \alpha^{2} \gamma_{y}(0) + 3 + \frac{1}{3} + \frac{2}{3} \cdot \alpha \cdot \beta$$

$$\gamma_{yy}(0) - \alpha^{2} \gamma_{yy}(0) = \frac{10}{3} + 2\alpha$$

$$(1 - \alpha^{2}) \gamma_{yy}(0) = \frac{10}{3} + 2\alpha$$

$$\gamma_{yy}(0) = \frac{\frac{10}{3} + 2\alpha}{1 - \alpha^{2}}$$

$$\gamma_{yy}\left(0\right) = \frac{1}{3} \cdot \frac{10 + 6\alpha}{1 - \alpha^2}$$

NOTA: il valore di β non influisce sul valore della varianza di processo. Questo è capibile intuitivamente dal fatto che β agisce solamente sulla media del processo d'ingresso u (t) e di conseguenza non influisce sulla varianza dell'uscita y (t) per conseguenza del concetto dietro alla depolarizzazione.

Quindi bisogna trovare il valore di α che minimizza il valore della varianza e che mantenga il sistema stazionario. Quindi è possibile ricavare la derivata nei confronti di α .

$$\frac{d}{d\alpha}\gamma_{yy}(0) = \frac{d}{d\alpha} \left(\frac{1}{3} \cdot \frac{10 + 6\alpha}{1 - \alpha^2} \right)
= \frac{1}{3} \cdot \frac{d}{d\alpha} \left(\frac{10 + 6\alpha}{1 - \alpha^2} \right)
= \frac{1}{3} \cdot \frac{\frac{d}{d\alpha} \left(10 + 6\alpha \right) \cdot \left(1 - \alpha^2 \right) - \left(10 + 6\alpha \right) \cdot \frac{d}{d\alpha} \left(1 - \alpha^2 \right)}{\left(1 - \alpha^2 \right)^2}
= \frac{1}{3} \cdot \frac{6 \cdot \left(1 - \alpha^2 \right) - \left(10 + 6\alpha \right) \cdot \left(-2\alpha \right)}{\left(1 - \alpha^2 \right)^2}
= \frac{1}{3} \cdot \frac{6 - 6\alpha^2 + 20\alpha + 12\alpha^2}{\left(1 - \alpha^2 \right)^2}
= \frac{1}{3} \cdot \frac{6\alpha^2 + 20\alpha + 6}{\left(1 - \alpha^2 \right)^2}
= \frac{2}{3} \cdot \frac{3\alpha^2 + 10\alpha + 3}{\left(1 - \alpha^2 \right)^2}$$

di cui vogliamo trovarne lo zero

Nota: il denominatore è sempre > 0 perchè, per garantire la stazionarietà del processo, $\alpha^2 \in [0,1)$.

$$\frac{d}{d\alpha}\gamma_{yy}(0) = 0$$

$$\frac{2}{3} \cdot \frac{3\alpha^2 + 10\alpha + 3}{\left(1 - \alpha^2\right)^2} = 0$$

$$3\alpha^2 + 10\alpha + 3 = 0$$

$$\alpha_{1,2} = \frac{-10 \pm \sqrt{100 - 4 \cdot 3 \cdot 3}}{6}$$

$$= \frac{-10 \pm \sqrt{100 - 36}}{6}$$

$$= \frac{-10 \pm \sqrt{64}}{6}$$

$$= \frac{-10 \pm 8}{6}$$

$$\alpha_1 = \frac{-10 + 8}{6} = -\frac{1}{3}$$

$$\alpha_2 = \frac{-10 - 8}{6} = -3$$

dato che α_2 è fuori dal range che garantisce la stazionarietà, lo escludiamo. Bisogna però capire se α_1 è un minimo o un massimo. Per farlo si calcola la derivata seconda:

$$\frac{d}{d\alpha} \frac{d}{d\alpha} \gamma_{yy}(0) = \frac{d}{d\alpha} \left[\frac{2}{3} \cdot \frac{3\alpha^2 + 10\alpha + 3}{(1 - \alpha^2)^2} \right]$$

$$= \frac{2}{3} \cdot \frac{\frac{d}{d\alpha} \left[3\alpha^2 + 10\alpha + 3 \right] \left(1 - \alpha^2 \right)^2 - \left(3\alpha^2 + 10\alpha + 3 \right) \frac{d}{d\alpha} \left[\left(1 - \alpha^2 \right)^2 \right]}{(1 - \alpha^2)^4}$$

$$= \frac{2}{3} \cdot \frac{(6\alpha + 10) \left(1 - \alpha^2 \right)^2 - \left(3\alpha^2 + 10\alpha + 3 \right) 2 \left(1 - \alpha^2 \right) \left(-2\alpha \right)}{(1 - \alpha^2)^4}$$

$$= \frac{2}{3} \cdot \frac{\left(1 - \alpha^2 \right) \left[(6\alpha + 10) \left(1 - \alpha^2 \right) + 4\alpha \left(3\alpha^2 + 10\alpha + 3 \right) \right]}{(1 - \alpha^2)^4}$$

$$= \frac{2}{3} \cdot \frac{\left[(6\alpha + 10) \left(1 - \alpha^2 \right) + 4\alpha \left(3\alpha^2 + 10\alpha + 3 \right) \right]}{(1 - \alpha^2)^3}$$

$$= \frac{2}{3} \cdot \frac{\left[6\alpha + 10 - 6\alpha^3 - 10\alpha^2 + 12\alpha^3 + 40\alpha^2 + 12\alpha \right]}{(1 - \alpha^2)^3}$$

$$= \frac{2}{3} \cdot \frac{\left[6\alpha^3 + 30\alpha^2 + 18\alpha + 10 \right]}{(1 - \alpha^2)^3}$$

$$= \frac{4}{3} \cdot \frac{3\alpha^3 + 15\alpha^2 + 9\alpha + 5}{(1 - \alpha^2)^3}$$

Dato che l'unica soluzione accettabile è $\alpha_1=-\frac{1}{3}$, si valuta la derivata seconda in α_1 :

$$\frac{4}{3} \cdot \frac{3\left[-\frac{1}{3}\right]^{3} + 15\left[-\frac{1}{3}\right]^{2} + 9\left[-\frac{1}{3}\right] + 5}{\left(1 - \left[-\frac{1}{3}\right]^{2}\right)^{3}} > 0$$

$$\frac{4}{3} \cdot \frac{-\frac{1}{9} + \frac{5}{3} - 3 + 5}{\left(1 - \frac{1}{9}\right)^{3}} > 0$$

$$\frac{4}{3} \cdot \frac{-\frac{1}{9} + \frac{5}{3} - 3 + 5}{\left(1 - \frac{1}{9}\right)^{3}} > 0$$

$$\frac{4}{3} \cdot \frac{\frac{-1 + 15 + 18}{9}}{\frac{512}{729}} > 0$$

$$\frac{4}{3} \cdot \frac{\frac{32}{9}}{\frac{512}{729}} > 0$$

$$\frac{27}{729} > 0$$

Quindi α_1 è un minimo. Dato che si vuole avere $m_y = -1$ e quello che abbiamo calcolato al punto precedente, β si calcola come:

$$\beta = \frac{3\alpha_1 - 11}{8}$$

$$= \frac{3\left(-\frac{1}{3}\right) - 11}{8}$$
$$= -\frac{3}{2}$$

in questa condizione, la varianza del sistema vale:

$$\gamma_{yy}(0) = \frac{1}{3} \cdot \frac{10 + 6\alpha_1}{1 - \alpha_1^2}$$

$$= \frac{1}{3} \cdot \frac{10 + 6\left(-\frac{1}{3}\right)}{1 - \left(-\frac{1}{3}\right)^2}$$

$$= \frac{1}{3} \cdot \frac{10 - 2}{1 - \frac{1}{9}}$$

$$= \frac{1}{3} \cdot \frac{9}{9 - 1}$$

$$= \frac{1}{3} \cdot \frac{9}{9 - 1}$$

Si consideri il processo (generato dalla somma di due sistemi astinsoticamente stabili):

dove:

- $e_1(t) \sim WN(0, \lambda_1^2)$
- $e_2(t) \sim WN(0, \lambda_2^2)$
- $e_1(t) \perp e_2(t) \Leftrightarrow \mathbb{E}\left[e_1(t)e_2(t-\tau)\right] = 0 \ \forall t, \tau$

6.1 Calcolare l'autocovarianza

Il processo è caratterizzato da due input.

$$\begin{split} \gamma_{yy}(\tau) &= \mathbb{E}\left[y(t)y(t-\tau)\right] \\ &= \mathbb{E}\left[\left(w_{1}(t) + w_{2}(t)\right)\left(w_{1}(t-\tau) + w_{2}(t-\tau)\right)\right] \\ &= \mathbb{E}\left[w_{1}(t)w_{1}(t-\tau) + w_{1}(t)w_{2}(t-\tau) + w_{2}(t)w_{1}(t-\tau) + w_{2}(t)w_{2}(t-\tau)\right] \\ &= \underbrace{\mathbb{E}\left[w_{1}(t)w_{1}(t-\tau)\right]}_{\gamma_{w_{1}w_{1}}(\tau)} + \underbrace{\mathbb{E}\left[w_{2}(t)w_{2}(t-\tau)\right]}_{\gamma_{w_{2}w_{2}}(\tau)} + \mathbb{E}\left[w_{1}(t)w_{2}(t-\tau)\right] + \mathbb{E}\left[w_{1}(t)w_{2}(t-\tau)\right] \\ &= \gamma_{w_{1}w_{1}}(\tau) + \gamma_{w_{2}w_{2}}(\tau) + \mathbb{E}\left[w_{2}(t)w_{1}(t-\tau)\right] + \mathbb{E}\left[w_{1}(t)w_{2}(t-\tau)\right] \end{split}$$

Dato che vale $e_1(t) \perp e_2(t)$ allora si ha $w_1(t) \perp w_2(t)$.

Come visto a lezione 9, tutti i processi stocastici possono essere visti come $MA\left(\infty\right)$, ovvero:

$$w_1(t) = c_{01}e_1(t) + c_{11}e_1(t-1) + c_{21}e_1(t-2) + ...$$

 $w_2(t) = c_{02}e_2(t) + c_{12}e_2(t-1) + c_{22}e(t-2) + ...$

allora si ha che:

$$\mathbb{E}\left[w_{1}(t) w_{2}(t-\tau)\right] = \mathbb{E}\left[\left(c_{01}e_{1}(t) + c_{11}e_{1}(t-1) + ...\right) \left(c_{02}e_{2}(t-\tau) + c_{12}e_{2}(t-1-\tau) +\right)\right]$$

$$= c_{01}c_{02}\mathbb{E}\left[e_{1}(t) e_{2}(t-\tau)\right] + c_{01}c_{12}\mathbb{E}\left[e_{1}(t) e_{2}(t-1-\tau)\right] +$$

$$= 0$$

Vale anche per:

$$\mathbb{E}\left[w_2\left(t\right)w_1\left(t-\tau\right)\right]=0$$

Quindi:

$$\gamma_{yy}(\tau) = \gamma_{w_1w_1}(\tau) + \gamma_{w_2w_2}(\tau)$$

6.2 Calcolare la densità spettrale di potenza

Usando la definizione di densità spettrale di potenza:

$$\Gamma_{yy}(\omega) = \sum_{\tau = -\infty}^{+\infty} \gamma_{yy}(\tau) e^{-j\omega\tau}$$

$$= \sum_{\tau = -\infty}^{+\infty} \gamma_{w_1 w_1}(\tau) e^{-j\omega\tau} + \sum_{\tau = -\infty}^{+\infty} \gamma_{w_2 w_2}(\tau) e^{-j\omega\tau}$$

$$= \Gamma_{w_1 w_1}(\omega) + \Gamma_{w_2 w_2}(\omega)$$

Applicando la definizione dinamica di densità spettrale di potenza (vedi lezione 8), si ottiene:

$$\Gamma_{yy}(\omega) = \left| W_1 \left(e^{j\omega} \right) \right|^2 \lambda_1^2 + \left| W_2 \left(e^{j\omega} \right) \right|^2 \lambda_2^2$$

Si consideri il processo y(t) generato dal seguente schema:

7.1 Stazionarietà del processo avendo $d(t) \perp e(t) \perp \eta(t)$, $d(t) \sim WN(0,1)$, $e(t) \sim WN(0,2)$, $\eta(t) \sim WN(0,1)$

Per controllare la stazionarietà di z(t), bisogna ricavare i poli del sistema $W_1 = \frac{z+1}{z+0.5}$, dato che e(t) è un white noise.

$$z + 0.5 = 0$$
$$z = -0.5$$

Il polo è all'interno del cerchio unitario, perciò $z\left(t\right)$ è stazionario in senso debole. Poichè:

- $d(t) \perp e(t) \perp \eta(t)$ (e quindi $d(t) \perp \eta(t) \perp z(t)$),
- d(t) ed $\eta(t)$ sono white noise,
- z(t) è stazionario in senso debole,

allora y(t) è un processo stocastico stazionario in senso debole.

7.2 Densità spettrale di potenza

Dato che vale $d(t) \perp e(t) \perp \eta(t)$, la densità spettrale di potenza di y(t) è:

$$\begin{split} \Gamma_{yy}\left(\omega\right) &= \Gamma_{zz}\left(\omega\right) + \Gamma_{dd}\left(\omega\right) + \Gamma_{\eta\eta}\left(\omega\right) \\ &= \Gamma_{zz}\left(\omega\right) + 1 + 1 \\ &= \Gamma_{zz}\left(\omega\right) + 2 \end{split}$$

Abbiamo visto a lezione 8 che si può calcolare come:

$$\Gamma_{zz}(\omega) = \lambda_e^2 \cdot \left| W_1(e^{j\omega}) \right|^2$$

$$= 2 \cdot \left| \frac{1 + (e^{j\omega})^{-1}}{1 + 0.5(e^{j\omega})^{-1}} \right|^2$$

$$= 2 \cdot \frac{\left| 1 + e^{-j\omega} \right|^2}{\left| 1 + 0.5e^{-j\omega} \right|^2}$$

$$= 2 \cdot \frac{\left(1 + e^{-j\omega} \right) \left(1 + e^{j\omega} \right)}{\left(1 + 0.5e^{-j\omega} \right) \left(1 + 0.5e^{j\omega} \right)}$$

$$= 2 \cdot \frac{1 + e^{j\omega} + e^{-j\omega} + 1}{1 + 0.5e^{j\omega} + 0.5e^{-j\omega} + 0.25}$$

$$= 2 \cdot \underbrace{\frac{2 + \left(e^{j\omega} + e^{-j\omega}\right)}{1.25 + 0.5 \left(e^{j\omega} + e^{-j\omega}\right)}}_{2\cos(\omega)} = 2 \cdot \frac{2 + 2\cos(\omega)}{1.25 + \cos(\omega)}$$
$$= 4 \cdot \frac{1 + \cos(\omega)}{1.25 + \cos(\omega)}$$

Quindi:

$$\Gamma_{yy}(\omega) = \Gamma_{zz}(\omega) + 2$$
$$= 4 \cdot \frac{1 + \cos(\omega)}{1.25 + \cos(\omega)} + 2$$

7.3 Disegno della densità spettrale di potenza

Per disegnare la $\Gamma_{yy}\left(\omega\right)$ è possibile ricavare qualche valore del dominio e poi unire i punti:

$$\Gamma_{yy}(0) = 4 \cdot \frac{1 + \cos(0)}{1.25 + \cos(0)} + 2 = 4 \cdot \frac{1+1}{1.25+1} + 2 = \frac{8}{2.25} + 2 = \frac{12.5}{2.25} = 5.\overline{5}$$

$$\Gamma_{yy}\left(\frac{\pi}{2}\right) = 4 \cdot \frac{1 + \cos\left(\frac{\pi}{2}\right)}{1.25 + \cos\left(\frac{\pi}{2}\right)} + 2 = 4 \cdot \frac{1+0}{1.25+0} + 2 = \frac{4}{1.25} + 2 = \frac{6.5}{1.25} = 5.2$$

$$\Gamma_{yy}(\pi) = 4 \cdot \frac{1 + \cos(\pi)}{1.25 + \cos(\pi)} + 2 = 4 \cdot \frac{1-1}{1.25-1} + 2 = 2$$

dato che la funzione è pari:

$$\Gamma_{yy}\left(-\frac{\pi}{2}\right) = \Gamma_{yy}\left(\frac{\pi}{2}\right) = 5.2$$

$$\Gamma_{yy}\left(-\pi\right) = \Gamma_{yy}\left(\pi\right) = 2$$

7.4 Stazionarietà del processo avendo $d(t) = -e(t-1), d(t) \perp \eta(t), e(t) \sim WN(0,1), \eta(t) \sim WN(0,1)$

Si noti che avendo d(t) = -e(t-1), lo schema diventa:

Si calcola la funzione di trasferimento $F(z) = \frac{V(z)}{E(z)}$

$$F(z) = \frac{z+1}{z+0.5} - z^{-1}$$
$$= \frac{z^2 + z - z - 0.5}{z(z+0.5)}$$
$$= \frac{z^2 - 0.5}{z(z+0.5)}$$

Si valuta ora l'asintotica stabilità di F(z)

$$z (z + 0.5) = 0$$

$$p_1 = 0$$

$$p_2 = -0.5$$

Il polo è all'interno del cerchio unitario, perciò $v\left(t\right)$ è un processo stazionario in senso debole. Poichè:

- $e(t) \perp \eta(t)$ (e quindi $v(t) \perp \eta(t)$),
- $\eta(t)$ è white noise,
- v(t) è stazionario in senso debole,

allora $y\left(t\right)$ è un processo stocastico stazionario in senso debole.

7.5 Densità spettrale di potenza

Dato che vale $e(t) \perp \eta(t)$, la densità spettrale di potenza di y(t) è:

$$\Gamma_{yy}(\omega) = \Gamma_{vv}(\omega) + \Gamma_{\eta\eta}(\omega)$$
$$= \Gamma_{vv}(\omega) + 1$$

Si valuta $\Gamma_{vv}(\omega)$ con la sua rappresentazione dinamica come (vedi lezione 8):

$$\begin{split} &\Gamma_{vv}\left(\omega\right) = \lambda_{e}^{2} \cdot \left|F\left(e^{j\omega}\right)\right|^{2} \\ &= 1 \cdot \left|\frac{\left(e^{j\omega}\right)^{2} - 0.5}{e^{j\omega}\left(e^{j\omega} + 0.5\right)}\right|^{2} \\ &= \frac{\left|\left(e^{j\omega}\right)^{2} - 0.5\right|^{2}}{\left|\left(e^{j\omega}\right)^{2} + 0.5e^{j\omega}\right|^{2}} \\ &= \frac{\left(e^{2j\omega} - 0.5\right)\left(e^{-2j\omega} - 0.5\right)}{\left(e^{2j\omega} + 0.5e^{j\omega}\right)\left(e^{-2j\omega} + 0.5e^{-j\omega}\right)} \\ &= \frac{1 - 0.5e^{2j\omega} - 0.5e^{-2j\omega} + 0.25}{1 + 0.5e^{j\omega} + 0.5e^{-j\omega} + 0.25} \\ &= \frac{1.25 - 0.5\left(e^{2j\omega} + e^{-2j\omega}\right)}{1.25 + 0.5\left(e^{j\omega} + e^{-j\omega}\right)} \\ &= \frac{1.25 - \cos\left(2\omega\right)}{1.25 + \cos\left(\omega\right)} \end{split}$$

7.6 Disegno della densità spettrale di potenza

Per disegnare la $\Gamma_{yy}\left(\omega\right)$ è possibile ricavare qualche valore del dominio e poi unire i punti:

$$\Gamma_{yy}(0) = \frac{1.25 - \cos(0)}{1.25 + \cos(0)} + 1 = \frac{1.25 - 1}{1.25 + 1} + 1 = \frac{2.5}{2.25} = 1, \overline{1}$$

$$\Gamma_{yy}\left(\frac{\pi}{2}\right) = \frac{1.25 - \cos\left(2\frac{\pi}{2}\right)}{1.25 + \cos\left(\frac{\pi}{2}\right)} + 1 = \frac{1.25 + 1}{1.25} + 1 = \frac{3.5}{1.25} = 2.8$$

$$\Gamma_{yy}(\pi) = \frac{1.25 - \cos(2\pi)}{1.25 + \cos(\pi)} + 1 = \frac{1.25 - 1}{1.25 - 1} + 1 = 2$$

dato che la funzione è pari:

$$\Gamma_{yy}\left(-\frac{\pi}{2}\right) = \Gamma_{yy}\left(\frac{\pi}{2}\right) = 2.8$$

$$\Gamma_{uy}\left(-\pi\right) = \Gamma_{uu}\left(\pi\right) = 2$$

