Listing of Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1. (Previously Presented) A compound of formula I:

wherein A is

 $R^3,\ R^4$, R^5 and R^6 are each, independently, H, halogen, $NO_2,$

 $C_{1\text{--}10^{\text{--}}}$ alkyl, optionally substituted by halogen up to perhaloalkyl,

 $C_{1\text{--}10}\text{--alkoxy}$, optionally substituted by halogen up to perhaloalkoxy,

 $C_{1\text{--}10^-}$ alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,

 C_{6-12} aryl, optionally substituted by C_{1-10} alkyl or C_{1-10} alkoxy, or

 $C_{5\text{-}12}$ hetaryl, optionally substituted by $C_{1\text{-}10}$ alkyl or $C_{1\text{-}10}$ alkoxy,

2

and either

two adjacent of R^3 , R^4 , R^5 and R^6 together are an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C_{1-10} -alkyl, , halo-substituted C_{1-10} -alkyl up to perhaloalkyl, C_{1-10} -alkoxy, halo-substituted C_{1-10} -alkoxy up to perhaloalkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl, C_{6-12} -aryl, C_{5-12} -hetaryl; C_{6-12} -aralkyl, C_{6-12} -alkaryl, halogen; NR^1R^1 ; $-NO_2$; $-CF_3$; $-COOR^1$; $-NHCOR^1$; $-CONR^1R^1$; $-SO_2R^2$; $-SOR^2$; $-SOR^2$; $-SOR^2$;

in which

R1 is H or C1-10-alkyl, optionally substituted by halogen up to perhaloalkyl and

R² is C₁₋₁₀-alkyl, optionally substituted by halogen, up to perhaloalkyl,

 $R^{3'}, R^{4'}, R^{5'}$ and $R^{6'}$ are independently H, halogen,

C1 - C10 alkyl, optionally substituted by halogen up to perhaloalkyl,

 C_1 – C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of R^3 , R^4 , R^5 and R^6 , together with the base phenyl, form a naphthyl group, optionally substituted by halogen up to perhalo, $C_{1:10}$ alkyl, $C_{1:10}$ alkoxy, $C_{3:10}$ cycloalkyl, $C_{2:10}$ alkenyl, $C_{1:10}$ alkanoyl, $C_{6:12}$ aryl, $C_{5:12}$ hetaryl or $C_{6:12}$ aralkyl;

L¹ is phenyl, substituted by C₁₋₁₀-alkoxy, OH, -SCH₃, or by

 $pyridyl,\,optionally\,substituted\,\,by\,\,C_{1\text{--}10}\text{--alkyl},\,C_{1\text{--}10}\text{--alkoxy},\,halogen,\,\,OH,\quad \text{-}SCH_3\,,\,or\,\,NO_2,$

naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrazine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrimidine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzopyridine, optionally substituted by C_{1-10} -alkyl, one C_{1-10} -alkoxy, halogen, -OH, -SCH₃ or NO₂, or

benzothiazole, optionally substituted by, C_{1^-10} alkyl C_{1^-10} alkoxy, halogen, OH, -SCH $_3$ or NO $_2$, and wherein the compound of formula I has a pKa greater than 10,

or a pharmaceutically acceptable salt thereof.

2. (Cancelled)

3. (Previously Presented) A compound according to claim 1, wherein

 $R^3 \ is \ H, \ halogen \ or \ C_{1\text{--}10\text{--}} \ alkyl, \ optionally \ substituted \ by \ halogen, \ up \ to \ perhaloalkyl;$

R4 is H, halogen or NO2;

R5 is H, halogen or C1-10- alkyl;

R⁶ is H, C₁₋₁₀- alkoxy, thiophene, pyrole or methyl substituted pyrole,

R3' is H, halogen, C410-alkyl, or CF3 and

R6' is H, halogen, CH3, CF3 or -OCH3.

- 4. (Previously Presented) A compound according to claim 1, wherein
- R3' is C4-10-alkyl, Cl, F or CF3;
- $R^{4'}$ is H, Cl or F;
- R5' is H, Cl, F or C410-alkyl; and
- R6' is H or OCH3.
- 5. (Previously Presented) A compound according to claim 4, wherein $R^{3'}$ or $R^{5'}$ is t-butyl.
- (Previously Presented) A compound according to claim 1, wherein M is -CH₂-, -N(CH₃)- or -NHC(O)-.
- 7. (Previously Presented) A compound according to claim 6, wherein L^1 is phenyl or pyridyl.
- 8. (Previously Presented) A compound according to claim 1, wherein M is -O-.
- 9. (Previously Presented) A compound according to claim 8, wherein L^1 is phenyl, pyridyl, pyridyl,

- 10. (Previously Presented) A compound according to claim 1, wherein M is -S-.
- $\mbox{\bf 11.} \quad \mbox{\bf (Previously Presented)} \qquad \mbox{A compound according to claim 10, wherein L^1 is phenyl or pyridyl. }$
- 12. (Previously Presented) A compound of the formula

- 13. (Original) A pharmaceutical composition comprising a compound of claim 1, and a physiologically acceptable carrier.
- **14. (Original)** A pharmaceutical composition comprising a compound of claim 12, and a physiologically acceptable carrier.
- 15. (Cancelled)

16. (Previously Presented) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula IIa:

wherein A is

R³, R⁴, R⁵ and R⁶ are each independently H, halogen, NO₂,

 $C_{1\text{-}10^-}$ alkyl, optionally substituted by halogen up to perhaloalkyl,

 $C_{1\text{--}10}$ -alkoxy, optionally substituted by halogen up to perhaloalkoxy,

C₁₋₁₀- alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,

 $C_{6\text{-}12}$ aryl, optionally substituted by $C_{1\text{-}10}$ alkyl or $C_{1\text{-}10}$ alkoxy, or

 $C_{5\text{-}12}\,$ hetaryl, optionally substituted by $C_{1\text{-}10}\,\text{alkyl}\,$ or $C_{1\text{-}10}\,\text{alkoxy},$

and either

two adjacent of R^3 , R^4 , R^5 and R^6 together are an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C_{1-10} -alkyl, halo-substituted C_{1-10} -alkyl up to perhaloalkyl, C_{1-10} -alkoxy, halo-substituted C_{1-10} -alkoxy up to perhaloalkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkoxyl to perhaloalkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkanoyl; C_{6-12} -alkaryl, halogen; $-NR^1R^1$; $-NO_2$; $-CF_3$; $-COOR^1$; $-NHCOR^1$; -CN; $-CONR^1R^1$; $-SO_2R^2$; $-SOR^2$; $-SR^2$;

in which

R1 is H or C1-10-alkyl, optionally substituted by halogen, up to perhalo and

R2 is C1-10-alkyl, optionally substituted by halogen,

 R^3 , R^4 , R^5 and R^6 are independently H, halogen, C_1 - C_{10} alkyl, optionally substituted by halogen up to perhaloalkyl, C_1 - C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of R^3 , R^4 , R^5 and R^6 , together with the base phenyl, form a naphthyl group optionally substituted by halogen up to perhalo, C_{1-10} alkyl, C_{1-10} alkoxy, C_{3-10} cycloalkyl, C_{2-10} alkenyl, C_{1-10} alkanoyl, C_{6-12} aryl, C_{5-12} hetaryl or C_{6-12} aralkyl, halogen up to perhalo;

 $L^{1} \quad \text{is phenyl, pyridyl, naphthyl, pyridone, pyrazine, pyrimidine, benzodiaxane, benzopyridine or } \\ \text{benzothiazole, each optionally substituted by C_{1-10}-alkyl, C_{1-10}-alkoxy, halogen, OH, $-$SCH_{3}$, NO_{2} or, where Y is phenyl, by } \\$

or a pharmaceutically acceptable salt thereof.

17. (Previously Presented) A method according to claim 16, wherein

 R^3 is halogen or $\,C_{1\text{-}10^-}$ alkyl, optionally substituted by halogen, up to perhaloalkyl;

R4 is H, halogen or NO2;

R5 is H, halogen or C1-10- alkyl;

 R^6 is H , C_{1-10} - alkoxy, thiophene, pyrole or methylsubstituted pyrole

 $R^{3'}$ is H, halogen, $C_{4\cdot 10}$ -alkyl, or CF_3 and

 $R^{6^{\circ}}$ is H, halogen, CH_3 , CF_3 or OCH_3 .

- $\begin{tabular}{ll} \textbf{18.} & \textbf{(Previously Presented)} & A method according to claim 16, wherein M is -CH$_2-,-S-, -N(CH$_3)- or -NHC(O)- and L^1 is phenyl or pyridyl. \end{tabular}$
- 19. (Previously Presented) A method according to claim 16, wherein M is -0- and L^1 is phenyl, pyridone, pyrimidine, pyridyl or benzothiazole.
- 20. (Cancelled)
- 21. (Previously Presented) A compound of formula I:

wherein A is

wherein

R³ is H, halogen or C₁₋₁₀- alkyl, optionally substituted by halogen, up to perhaloalkyl;

R4 is H, halogen or NO2;

R5 is H, halogen or C1-10- alkyl;

R⁶ is H, C₁₋₁₀- alkoxy, thiophene, pyrole or methyl substituted pyrole,

R3' is H, Cl, F, C4-10-alkyl, or CF3 and

R4' is H, Cl or F;

R5' is H, Cl, F or C4-10-alkyl; and

R6 is H, halogen, CH3, CF3 or -OCH3,.

and one of R3, R4, and R5 is -M-L1; wherein

M is $-CH_{2}$ -, -S-, $-N(CH_{3})$ -, -NHC(O)- $-CH_{2}$ -S-, -S- $-CH_{2}$ -, -C(O)-, or -O-; and

L¹ is phenyl, substituted by C₁₋₁₀-alkoxy, OH, -SCH₃, or by

pyridyl, optionally substituted by $C_{1\cdot10}$ -alkyl, $C_{1\cdot10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, naphthyl, optionally substituted by $C_{1\cdot10}$ -alkyl, $C_{1\cdot10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by $C_{1\cdot10}$ -alkyl, $C_{1\cdot10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrazine, optionally substituted by $C_{1\cdot10}$ -alkyl, $C_{1\cdot10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrimidine, optionally substituted by $C_{1\cdot10}$ -alkyl, $C_{1\cdot10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by $C_{1\cdot10}$ -alkyl, $C_{1\cdot10}$ -alkoxy, halogen, OH, -SCH₃ or NO₂, benzopyridine, optionally substituted by $C_{1\cdot10}$ -alkyl, one $C_{1\cdot10}$ -alkoxy, halogen, -SCH₃ or NO₂, or

benzothiazole, optionally substituted by, $C_{1^{-1}0}$ alkyl $C_{1^{-1}0}$ alkoxy, halogen, -SCH₃ or NO₂, and wherein the compound of formula I has a pKa greater than 10,

or a pharmaceutically acceptable salt thereof.

22. (Previously Presented) A compound according to claim 21, wherein $R^{3'}$ or $R^{5'}$ is t-butyl.

23. (Previously Presented)
N(CH₃)- or –NHC(O)-.

A compound according to claim 21, wherein $M\ \ is$ –CH $_{2^{-}}$, -

24. (Previously Presented) pyridyl.

A compound according to claim 21, wherein $\ L^1$ is phenyl or

25. (Previously Presented)

A compound according to claim 21, wherein M is -S-.

26. (Previously Presented) pyridyl.

A compound according to claim 25, wherein $\boldsymbol{L}^{\boldsymbol{1}}$ is phenyl or

27. (Previously Presented)

A compound of formula I:

wherein A is

R³, R⁴, R⁵ and R⁶ are each, independently, H, halogen, NO₂,

C₁₋₁₀- alkyl, optionally substituted by halogen up to perhaloalkyl,

C₁₋₁₀-alkoxy, optionally substituted by halogen up to perhaloalkoxy,

C1-10- alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,

 C_{6-12} aryl, optionally substituted by C_{1-10} alkyl or C_{1-10} alkoxy, or

 $C_{5\text{-}12}\,$ hetaryl, optionally substituted by $C_{1\text{-}10}\, alkyl\,$ or $C_{1\text{-}10}\, alkoxy,$

and either

one of
$$R^3$$
, R^4 , and R^5 is $-M-L^1$; or

two adjacent of R^3 , R^4 , R^5 and R^6 together are an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C_{1-10} -alkyl, , halo-substituted C_{1-10} -alkyl up to perhaloalkyl, C_{1-10} -alkoxy, halo-substituted C_{1-10} -alkoxy up to perhaloalkoxy, C_{3-10} -cycloalkyl, C_{2-10} -alkenyl, C_{1-10} -alkoxyl, C_{6-12} -aryl, C_{5-12} -hetaryl; C_{6-12} -arlkyl, C_{6-12} -alkaryl, halogen; NR^3R^3 ; $-NO_2$; $-CF_3$; $-COOR^3$; $-NHCOR^3$; $-CONR^3R^3$; $-SOR^2$; $-SOR^$

in which

 R^1 is H or $C_{1:10}$ -alkyl, optionally substituted by halogen up to perhaloalkyl and R^2 is C_{187} alkyl, optionally substituted by halogen, up to perhaloalkyl,

R3', R4', R5' and R6' are independently H, halogen,

C₁ - C₁₀ alkyl, optionally substituted by halogen up to perhaloalkyl,

 C_1 – C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of R^3 , R^4 , R^5 and R^6 , together with the base phenyl, form a naphthyl group, optionally substituted by halogen—up to perhalo, $C_{1:10}$ alkyl, $C_{1:10}$ alkoxy, $C_{3:10}$ cycloalkyl, $C_{2:10}$ alkenyl, $C_{1:10}$ alkanyl, $C_{6:12}$ aryl, $C_{5:12}$ hetaryl or $C_{6:12}$ aralkyl;

M is -CH2-, -S-, -N(CH3)-, -NHC(O)- -CH2-S-, -S-CH2-, -C(O)-, or -O-; and

L¹ is phenyl, substituted by C₁₋₁₀-alkoxy, OH, -SCH₃, or by

pyridyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrazine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrimidine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzopyridine, optionally substituted by C_{1-10} -alkyl, one C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, or

benzothiazole, optionally substituted by, $C_{1^{-10}}$ alkyl $C_{1^{-10}}$ alkoxy, halogen, OH, -SCH₃ or NO₂, or a pharmaceutically acceptable salt thereof.

28.	(Previously Presented)	A method according to claim 16, wherein lung carcinoma is
treated.		

(Previously Presented) A method according to claim 16, wherein pancreas carcinoma
is treated.

30. (**Previously Presented**) A method according to claim 16, wherein thyroid carcinoma is treated.

31. (Previously Presented) A method according to claim 16, wherein bladder carcinoma is treated.

32. (Previously Presented) A method according to claim 16, wherein colon carcinoma is treated.

33. (**Previously Presented**) A method according to claim 16, wherein myeloid leukemia is treated.

34. (Previously Presented) A compound according to claim 27, wherein

L1 is phenyl, substituted by C1-10-alkoxy, -SCH3, or by

pyridyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, -SCH₃ or NO₂, naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, -SCH₃ or NO₂, pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, -SCH₃ or NO₂, pyrazine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, -SCH₃ or NO₂, pyrimidine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, -SCH₃ or NO₂, benzodioxane, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, -SCH₃ or NO₂, benzopyridine, optionally substituted by C_{1-10} -alkyl, one C_{1-10} -alkoxy, halogen, -SCH₃ or NO₂,

benzothiazole, optionally substituted by, C1-10 alkyl C1-10 alkoxy, halogen, -SCH3 or NO2.

35. (New) A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula II:

Π

or a pharmaceutically acceptable salt thereof wherein

A is

or

B is a substituted or unsubstituted, up to bicyclic aryl or heteroaryl moiety of up to 12 carbon atoms with at least one 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is substituted it is substituted by one or more substituents selected from the group consisting of halogen, up to per-halo, and W_n , wherein n is 0-3 and each W is independently selected from the group consisting of -CN, - CO_2R^7 , $-C(O)NR^7R^7$, $-C(O)R^7$, $-NO_2$, $-OR^7$, $-SR^7$, $-NR^7R^7$, $-NR^7C(O)OR^7$, $-NR^7C(O)R^7$, C_1 - C_{10} alkenyl, C_2 - C_{10} alkenyl, C_1 - C_{10} alkenyl, C_1 - C_{10} alkenyl, C_1 - C_{10} alkenyl, C_2 - C_{10} alkenyl, C_3 - C_{10} alkoxy; C_7 - C_{24} alkaryl, optionally substituted with halogen, C_1 - C_{10} alkyl, or C_1 - C_{10} alkoxy; C_3 - C_{13} heteroaryl, optionally substituted with halogen, C_1 - C_{10} alkoxy; C_4 - C_{23} alkheteroaryl, optionally substituted with halogen, C_1 - C_{10} alkoxy; substituted C_1 - C_{10} alkoxy, substituted C_2 - C_{10} alkenyl, or C_1 - C_{10} alkoxy; substituted C_2 - C_{10} alkenyl, substituted C_1 - C_{10} alkoxy, substituted C_3 - C_{10} cycloalkyl, substituted C_4 - C_{23} alkheteroaryl and -M- L^1 ;

wherein if W is a substituted group which does not contain aryl or hetaryl moieties, it is substituted by one or more substituents independently selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)R^7$, $-C(O)NR^7R^7$, $-OR^7$, $-SR^7$, $-NR^7R^7$, NO_2 , $-NR^7C(O)R^7$, $-NR^7C(O)OR^7$ and halogen up to per-halo;

wherein each R^7 is independently selected from H, C_1 - C_{10} alkyl, C_2 - C_{10} alkenyl, C_3 - C_{10} cycloalkyl, C_6 - C_{14} aryl, C_3 - C_{13} hetaryl, C_7 - C_{24} alkaryl, C_4 - C_{23} alkheteroaryl, up to perhalosubstituted C_1 - C_{10} alkyl, up to perhalo substituted C_2 - C_{10} alkenyl, up to perhalosubstituted C_3 - C_{10} cycloalkyl, up to perhalosubstituted C_3 - C_{10} aryl and up to perhalosubstituted C_3 - C_{13} hetaryl,

 $-NR^7C(0)\ NR^7R^7, -NR^7C(0), -C(0)NR^7, -(CH_2)_mS-, -(CH_2)_mN(R^7)-, -O(CH_2)_m-, \\ -CHX^a, -CX^a_{_2}-, -S-(CH_2)_m- \ and -N(R^7)(CH_2)_m-, \\$

m = 1-3, and X^a is halogen; and

 L^1 is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, which is unsubstituted or substituted by halogen up to per-halo and optionally substituted by Z_{a1} , wherein a_1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)NR^7R^7$, $-C(O)-NR^7$, $-NO_2$, $-OR^7$, $-SR^7$, $-NR^7R^7$, $-NR^7C(O)R^7$, $-C(O)R^7$, $-NR^7C(O)R^7$, alkheteroaryl, substituted C_1-C_{10} alkyl, substituted C_3-C_{10} cycloalkyl, substituted C_3-C_{10} alkerial and substituted C_3-C_{10} alkheteroaryl; wherein the one or more substituents of Z is selected from the group consisting of -CN, $-CO_2R^7$, $-C(O)NR^7R^7$, $-OR^7$, $-SR^7$, $-NO_2$, $-NR^7R^7$, $-NR^7C(O)R^7$ and $-NR^7C(O)R^7$.

wherein R^3 , R^4 , R^5 and R^6 are each independently H, halogen, $C_{1:10}$ -alkyl, optionally substituted by halogen up to perhaloalkyl, C_1 – C_{10} alkoxy, optionally substituted by halogen up to perhaloalkoxy or two adjacent of R^3 , R^4 , R^5 and R^6 together with the base phenyl, form a naphthyl group, optionally substituted by halogen up to perhalo, $C_{1:10}$ alkyl, $C_{1:10}$ alkoxy, $C_{3:10}$ cycloalkyl, $C_{2:10}$ alkenyl, $C_{1:10}$ alkanyl, $C_{6:12}$ aryl, $C_{5:12}$ hetaryl or $C_{6:12}$ aralkyl.

36. (New) A compound of formula I, which is in crystalline form or in a solvated form:

wherein A is

$$\begin{array}{c}
R^{3} \\
R^{5}
\end{array}$$

R³, R⁴, R⁵ and R⁶ are each, independently, H, halogen, NO₂,

C₁₋₁₀- alkyl, optionally substituted by halogen up to perhaloalkyl,

C₁₋₁₀-alkoxy, optionally substituted by halogen up to perhaloalkoxy,

C1-10- alkanoyl, optionally substituted by halogen up to perhaloalkanoyl,

 $C_{6\text{-}12}$ aryl, optionally substituted by $C_{1\text{-}10}$ alkyl or $C_{1\text{-}10}$ alkoxy, or

 $C_{5\text{--}12}\,$ hetaryl, optionally substituted by $C_{1\text{--}10}$ alkyl $\,$ or $C_{1\text{--}10}$ alkoxy,

and either

one of
$$R^3$$
, R^4 , and R^5 is $-M-L^1$; or

two adjacent of R^3 , R^4 , R^5 and R^6 together are an aryl or hetaryl ring with 5-12 atoms, optionally substituted by $C_{1:10}$ -alkyl, , halo-substituted $C_{1:10}$ -alkyl up to perhaloalkyl, $C_{1:10}$ -alkoxy, halo-substituted $C_{1:10}$ -alkoxy up to perhaloalkoxy, $C_{3:10}$ -cycloalkyl, $C_{2:10}$ -alkenyl, $C_{1:10}$ -alkonyl, $C_{6:12}$ -aryl, $C_{5:12}$ -hetaryl; $C_{6:12}$ -arlkyl, $C_{6:12}$ -alkaryl, halogen; NR^1R^1 ; $-NO_2$; $-CF_3$; $-COOR^1$; $-NHCOR^1$; -CN; $-CONR^1R^1$; $-SO_2R^2$; $-SOR^2$; $-SOR^2$; $-SR^2$;

in which

 R^1 is H or $C_{1\text{--}10}\text{--alkyl},$ optionally substituted by halogen up to perhaloalkyl and

R2 is C1-10-alkyl, optionally substituted by halogen, up to perhaloalkyl,

R3', R4', R5' and R6' are independently H, halogen,

C1 - C10 alkyl, optionally substituted by halogen up to perhaloalkyl,

 C_1 – C_{10} alkoxy optionally substituted by halogen up to perhaloalkoxy or two adjacent of R^3 , R^4 , R^5 and R^6 , together with the base phenyl, form a naphthyl group, optionally substituted by halogen up to perhalo, $C_{1:10}$ alkyl, $C_{1:10}$ alkoxy, $C_{3:10}$ cycloalkyl, $C_{2:10}$ alkenyl, $C_{1:10}$ alkanyl, $C_{6:12}$ aryl, $C_{5:12}$ hetaryl or $C_{6:12}$ aralkyl;

M is -CH2-, -S-, -N(CH3)-, -NHC(O)- -CH2-S-, -S-CH2-, -C(O)-, or -O-; and

L¹ is phenyl, substituted by C₁₋₁₀-alkoxy, OH, -SCH₃, or by

pyridyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, naphthyl, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyridone, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrazine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, pyrimidine, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzodioxane, optionally substituted by C_{1-10} -alkyl, C_{1-10} -alkoxy, halogen, OH, -SCH₃ or NO₂, benzopyridine, optionally substituted by C_{1-10} -alkyl, one C_{1-10} -alkoxy, halogen, -OH, -SCH₃ or NO₂, or

benzothiazole, optionally substituted by, $C_{1^{-10}}$ alkyl $C_{1^{-10}}$ alkoxy, halogen, OH, -SCH₃ or NO₂, and wherein the compound of formula I has a pKa greater than 10,

or a pharmaceutically acceptable salt thereof.

- 37. (New) A compound according to claim 1, which has an IC₅₀ value of between 1 nM and 10 µM in an in vitro raf kinase assay.
- 38. (New) A method for treating cancer comprising administering a compound according to claim 36 to a subject in need thereof in an effective amount, which compound is in crystalline form.
- 39. (New) A method for treating cancer comprising administering a compound according to claim 36 to a subject in need thereof in an effective amount, which compound is in solvated form.