```
$ 5. Coherent sheaves
  Def: A sheaf 7 on (X, Ox) is called a sheaf of Ux-modules
                   if & U & Top (X), F(U) is an Ux (U) - module
                and for VCI, 3(V) -> 3(V) is compatible with the
((v) x7(v) -> 3(v) / > They form a category Mod (X)
    @ Basic example: X = spec A M: A-module (i.e. ME Moda)
    · For D(f) CX with feA, Ox(D(f))
            M(D(f1) := Mf which is a Af-mobile.
 M(U) = lim Mf which is a lim Af - module - +2 eD(tp)}
                                                                    lim My lim My

DIENCE DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

DIENCE

                                                                                                                                                                          Similar to Hu case of Ospert
              For VCI,
                                                                                                                                                                 (M(DIFI)= Mf
                                                                                                                                                                      Mp = Mp
                                                                                                                            Mf, DIFICKEZI M(X) = M.
                 Mp = lim Mt = Mp
                                                                                    mit in B = Ap = lim Af
                                                                                                                                                SO Mp = M @ lin Af
             \widetilde{M}(X) = M. i.e. P(X, \widetilde{M}) = M.
```

Ms = MOAs)

PERFECTION

```
Def: 9, 9 & Mod (x)
  · 709 is the sheaf: U -> 7(U) + 9(U)
  · 9 @ 9 is the associated sheaf to the prosheaf: Is -> 3(U) &9(V)
Remark: The tensor product presheaf need not be a sheaf.
eg. Let X be a topological space { +, P, P2 } where * is the generic point and P, P2 are closed points. {(0), (x-1), (x)}
     (eg: A = { f(x)g(x) & Q(x) | g(0) + 0, g(0) + 0}, spec A is an example)
open: U= {*, P;}, U= {*, P;}, Z= {*, P;}, Z= U, NZ= {*}, X, P.
Define \mathcal{O}_X: \mathcal{O}_X(2S) = \mathcal{Q}(X_1, X_2), \mathcal{O}_X(2S_1) = \mathcal{O}_X(X) = \mathcal{Q}(X) = \mathcal{Q}, \mathcal{Q}(\phi) = 0.
       7: 9(11)=Q[x,, x2], 9(Ui)=Q[Xi], 9(X)=Q, 9(4)=0
      g: g(U)=Q[X,, X2], g(U,)=Q[X2], g(U2)=Q[X,], g(X)=Q, g(4)=0
      P is the presheef: U -> F(U)@g(U), then P(U) = Q[X, X2],
      P(U1) = Q[X,01, 10x2], P(U2) = Q[X201, 10X1], P(X) = Q, P(+)=
Find X: 01 = 10 Xi = X: Vi=1,2. but P(U1UU2)=P(X)=Q
        i.e. we can't glue X:01 and 10 Xi to a global section of P.
                                 ( s, t) - spoto is birthour
 · (389) 4 = 3/4 01. 8/4 + VE Top(X): (in givesju) - 3,0 8p
                                                  Conveying, $ 89, -> LHS
    Let P be the preshoof 25 -> 3(4) @ g(25).
                                                     (spetp) => (slav St)
     Nt is clear that (P) 1 = (Phy)
                                                   Se J(U) teg(V)
     Hence (989) | = (p+) | = (plu) = 9 | 0 9 |
```

Prop! : 1: Mod -> Mod (X) is exact, fully faithful and preserves \$\vec{M}{\operation}, \overline{\Omega}. \overline{M}\$	La
preserves \(\theta\), \(\omega\). \(\mathreal\)	
of: Given 9: M → N an A-mod homo, we have	
and $\forall \ \mathcal{U} \in Top(X), \ \varphi(\mathcal{U}) : \varprojlim M_{f} \longrightarrow \varprojlim N_{f}$ $\longrightarrow \varphi : \ \mathcal{A} \longrightarrow \mathcal{N}$ $\Longrightarrow \varphi : \ \mathcal{A} \longrightarrow \mathcal{N}$	
and Y 21 & Top (X), 4(2): lim M4 -> lim No	
DIFICU DIFICU	
2 2 2 Nf	
$\Rightarrow q: M \to N$	
· exact: 0 → M → M → M → O exact ⇒ 0 → M p → M p → O exact & p	
DO -> Mp -> Mp -> O exact &P	
24 STATE VINCENTE TO STATE OF THE STATE OF T	
$\stackrel{\Rightarrow}{\rightarrow} 0 \longrightarrow \stackrel{\longrightarrow}{M'} \longrightarrow \stackrel{\longrightarrow}{M'} \longrightarrow 0 \text{ exact}.$	
fully faithful: Hom (M, N) = Hom (M, N)	
θ(X)	
$q \qquad M \rightarrow N$	
$\frac{\partial (x)}{\partial (x)} \leftarrow \frac{\partial (x)}{\partial (x)} = \frac{\partial (x)}{\partial (x)} + \frac{\partial (x)}{\partial (x)} = \frac{\partial (x)}{\partial (x)} = \frac{\partial (x)}{\partial (x)} + \frac{\partial (x)}{\partial (x)} = \frac{\partial (x)}{\partial (x)} + \frac{\partial (x)}{\partial (x)} = \frac{\partial (x)}{\partial (x)} + \frac{\partial (x)}{\partial (x)} = \frac{\partial (x)}{\partial (x)} = \frac{\partial (x)}{\partial (x)} + \frac{\partial (x)}{\partial (x)} = \frac{\partial (x)}{\partial$	
11 ? M4 -112 Nf	
DON by the	univeral
property and the second	party of
A. M. D. N. M. (MON) A L. M. O.L. M.	1f, M+MF)
⊕: Mf ⊕ Nf = (M@N)f ⇒ lim Mf ⊕ lim Nf = lim (M@N)f	Transfer of the second
DIFFED DIFFED	
⇒ M(U) ⊕ N(U) ≅ (M⊕N)(U)	
(MON)(U)	
Ø: Mf & Nf \((M@N) f \(\overline{M}(\varphi) \(\overline{N}(\varphi) \) \(\overline{M}(\varphi) \) \(\overline{N}(\varphi) \) \(\overline{M}(\varphi) \) \(\overline{N}(\varphi) \) \(\ov	
al a to leave to the same	
MON = p -> MON	
In particular, $P \xrightarrow{M \otimes N} M \otimes N = P^{\dagger} \longrightarrow M \otimes N$ as a presheaf marphiem	
Now 4 p, (MON) = MOND = MOND = (MON) = MOND	
⇒ MoN = MoN	PERFECTION
A ·	

via Hom (f Cy, Vx) = Hom (Uy, fx Cx) $f: X \to Y$, $f^*: \mathcal{O}_Y \to f_*\mathcal{O}_X \longrightarrow f^*\mathcal{O}_Y \to \mathcal{O}_X$ f g := f g @ Ox : Ox - module. If $\varphi:A \rightarrow B$ and the inverse image of F Hact 1: f: Spec B -> spec A, NEModB, MEMODA, as an A-module For $f \in A$, $\varphi(f) \in B$, $f'(D(f)) = D(\varphi(f))$ fu : OperA (I) -> fx OsperB (I) = OsperB (f (U)) f x N (U) = N (f'(U)) = Nq(f) : Bq(f) - module ~> Af - module No as Af - module

No as Af - module

1 - 8 - MAA - MAB)

Let h be the A-mod homo. M → (MBB). which induces h: M → (MBB) h be the A-mod norm.

h: M -> fx (M & B) -> h: f M => M & B = M

Ogent-models -> h: f M @ Uspec B -> M & B @ Uspec B

f Ugent f Ugent f Ugent

f M M M M B B Pp, hp: (fM)p @ Bp ~ (M@B)p ≠ h is an isomorphism Remark: Homo (fog, 7) Hom-preshed (fog Qx, 7) = Hom Q-preshed (9, of 27)

Def: $J \in Mod(X)$ is called quasi-coherent if $\exists \{SpecAi\}_{i \in A} \text{ covers } X$ s.t. $\mathcal{F}|_{\mathcal{U}_{i}} \cong \mathcal{M}_{i}$ for some A_{i} -mod M_{i} .

(resp. $f.g. A_{i}$ -mod M_{i}) > They forms a category QCO(X) (resp. Coh(X)) Fact 1: If $X = \operatorname{Spec} A$ and $\mathcal{F} \in \operatorname{Qco}(X)$, then $\exists \{D(f_i)\}_{i=1,\dots,n}$ covers X s.t. $\mathcal{F} = \mathcal{F}_{D(f_i)} \cong \mathcal{F}_{i}$ for some $M_i \in \operatorname{Mod}_{Af_i}$. (Pf): VPEX, I SpecBCX s.t. 9/Up = M with ME Mode Now, if is spec Af Jp, then Il spec Af = i * M = M & Af & Mod Af Home X= U SpecAf: and 9 mak; = W. M. Models: U specBi with 9 specBi = Mi, Mi & Models:

Hence assume that X = U specBi with 9 specBi = Mi, Mi & Models: quasi-compact = U spac Afij with g|spac Afij = Mi BAfij = mod Afij

= U spac Afi with g|spac Afi = Mi, Mi = mod Afij Fact 2: If X = spec A, ME Mody, F & Bra(X), then Hom (M, P(X, 7)) Home (A, 7) (pf): For any $f \in A$, given $\varphi: M \longrightarrow P(X, \mathcal{F})$ $\Rightarrow \qquad \varphi': M \longrightarrow P(X, \mathcal{F}) \xrightarrow{\text{Expriso}} Q(D(f))$ \$ 41 MOAf -> 3 (D(f)) PAJ = g(D(f)) since it is a Ag-module. B 9: 19 → 9 Conversely, given 9: 9 -> 7 $\ni \ \varphi = \widetilde{\varphi}(x) \colon M \to \widetilde{g}(x).$

```
Prop 2: F & QCO(X) & V U = spec A < X, 3/2 = M with M & mody
       (X: noeth, resp. Coh(x))
   " = ": Assume that X = U specBi with IlspecBi = Mi
                      Spec B: A W < W spec A = 9 | spec Ag = M: @ Ag
         This says that 3/2 \( Qco(U).
         and this we may assume that X = spec A.
          Now set M = P(X, 7).
          By fact &
                      of: Mf -> 9(D(f)) : Af-homo.
                            \frac{S}{Fr} \longmapsto \frac{S|_{p/f}}{Fr}
  we want that
                                 Key lemma: X = Spec A, F & Qco(X), f &A.
     of in 1-1, then we need that (OV SE F(x), Slott) = 0 => f"s = 0 for some 11>0
                             (2) y + eg(D(f)), 3 ne IN & seg(X) s.t. s| = ft
     By fact &,
Of: Assume that X = UD(fi) and 3/pifi = Mi Mi & modAfi
                S € 3(X)
          o ∈ g(o(t)) g(o(t:))=Mi ≥ si f"s|o(ti)
                    3(D(ff:1)=(M.)=
                                        anst.
       te 3(D(f)) 9(D(fi))=M; ,?
                3 (D(ffw)=(M:)
```

X = Spec A Summary, ~: Mody ~ Qco(X) an equivalence P(X, ₹) ← ₹ ₹ {f.q. A-modelles} ~> Coh(X) We find that $f^{\ell}t_i|_{D(f_if_i)} = f^{\ell}t_i|_{D(f_if_i)}$ and $f^{\ell}t_i|_{D(f_if_i)} = f^{\ell}t_i|_{D(f_if_i)}$ $\Rightarrow \exists s \in \mathcal{J}(x) \text{ s.t. } S|_{\mathcal{D}(f_i)} = f^{\ell}t_i \text{ and } S|_{\mathcal{D}(f_i)} = f^{\prime\prime}t_i|_{\mathcal{D}(f_i)} \forall i$ => s|D(f) = f"t. By the key lemma, of is an isom of is an isom of of is X: noeth, Mf: = M: f.g. Af. - module and Af: noeth Af: noeth, Vi A M: noeth Similar to the prof of prop 3 in \$3. Prop 3

(verp. Coh(X) with X: north)

Goro: Let g, $g \in Q_{CO}(X)$ and $g: g \to g$.

Then • ker g, coker g, $Im g \in Q_{CO}(X)$. (resp. Coh(X))

Then • ker g, coker g, $Im g \in Q_{CO}(X)$. (resp. Coh(X)) $A^m \to A^m \to M \to 0 \to 0 \to (How_A(M, N)) \to (How_A(M, N))$ Homa (3,9) & Qco(x) (resp Cohic Of: The question is local, so we may assume X = spec A. and 9: 9 -> 9 > 4(x): M -> N > 0 -> Kon (4(x)) -> M -> N 0 -> Home of An $\Rightarrow 0 \rightarrow \text{ker}(\varphi(x)) \rightarrow M \stackrel{\varphi(x)}{+} N \qquad \text{mod}_{A} \stackrel{f.g.}{+} \text{mod}_{A} \stackrel{\text{Similarly}}{+} \stackrel{\text{f.e.}}{+} A \qquad (How_{A}(M,N))_{F} \stackrel{\text{s.e.}}{=} \\ 0 \rightarrow \text{ker}(\varphi \rightarrow g \rightarrow g \rightarrow g \qquad \text{faithful.})$ $\text{obs}_{A}(\varphi(x)) \rightarrow 0 \qquad \text{obs}_{A}(\varphi(x)) \rightarrow 0 \qquad \text{faithful.}$ $M \xrightarrow{\varphi(\mathcal{N})} N \longrightarrow \operatorname{coken}(\varphi(\mathcal{N}) \to 0 \Rightarrow \widetilde{M} \xrightarrow{\varphi(\mathcal{N})} \widetilde{N} \to \operatorname{coken}(\varphi(\mathcal{N}) \to 0) \xrightarrow{\varphi(\mathcal{N})} (\mathfrak{F}, \mathfrak{F})(0)$ 9 4 9 -> coker 9 -> 0 Hom (2/04) (3/04), 8/04) 0 → Im(4(x)) → N → coker(4(x)) → 0 For Im (4(X)) -> N -> coker (4(X)) -> 0 (Homa 0 > Im 4 -> g -> coken 9 -> 0 Floris (M/N) (D(7))


```
Core: If 0 -> 9' -> 7 -> 9" -> 0 exact and 9', 9" \ Oco(X)
                                                     (Coh(X), X: noeth)
      then g ∈ Qco(X).
                (Coh(X)).
(Pf): Assume that X = spec A.
      : 9 6 (co(X)
          0 \to P(X, 3') \to P(X, 3) \to P(X, 3'') \to 0
                   M' f.g. M. 50 M" fg.
        \Rightarrow 0 \rightarrow \widetilde{M'} \rightarrow \widetilde{M} \rightarrow \widetilde{M''} \rightarrow 0
                   J5 ← 50 J5
            0-9 - 9 - 9 7" -0
 Prop 4: Let f & Hom Sch (X, Y).
  (1) GE Qco(Y) => f"g E Qco(X)
    ( Coh (Y), X, Y: north)
                           ( Coh(xs)
  (2) Assume that X is north or f is quasi-compact & separated

g \in \Oco(X) \iff f \iff \( \oco(Y) \) \quad \quad \text{first speck CY}
(Pf): (1) Note that f & (spec B) = lim g(V) - f(spec A) Y (spec A) Spec A P (spec A)
         Assume that f: spec B -> spec A and g= M 1142 spec &
                                                         ff A-mobile
         Then the f # M = M & B: f.g B-modeler.
   (2) Assume that f: X = f'(specA) spec A = Y
                             U U: (X is north or f is quasi-compact)
       · f is separated > Win U; is still affine
          X is north = W: AU; = W Wijk , Wijk : affine
```

PERFECTION

We have

Def: . A sheaf of ideals on X is a subsheaf of Ox in Mod(X).

• i : $Y \longrightarrow X$, the ideal sheaf of $Y = \lambda_Y := \ker i^{\#}$ closed subscheme with $i^{\#}: \mathcal{C}_X \longrightarrow i_{\#}\mathcal{C}_Y$.

(i.e. $\mathcal{C}_{X_Y} \cong i_{\#}\mathcal{C}_Y$)

Prop f: (1) If $i: Y \longrightarrow X$, then $\mathcal{A}_Y \in Qeo(X)$ $(x: noeth) \qquad (Coh(X))$ for

(2) Any quasi-coherent sheaf of ideals on X => Ny via i:YCX

(pf): (1) i in quasi-compact and separated ⇒ is Uy ∈ Oco(x)

So $N_Y = |c_{1}|^{\frac{1}{2}} \in O(c_{1}(X))$.

(X : noeth, let spec $A \subset X$ with A month. Then $I = P(spec A) = N_Y |_{Y \cap Y} = P(spec A) = P($

We have supp $(f_{\bullet}O_{Z}) = f(Z) \rightarrow supp (O_{N}) = f(Z)$. (2). Given & & Oco(X) and N c> Ox, Y:= supp 1 = {pex | (%) = 0} Claim: (Y, Ox) (X, Ox) (pf): Assume that X = spec A. : N & Oco (X) ... N = I (90=3) and $Y = supp = \{ p \in spec A | (A_I)_p \neq 0 \} = V(I)$ since if PDI, then BaEI.P, (I+ I) a= I = (A) = 0 if PDI, then PpDIp = (A)p = 0 M: a sheef of Opings - module SpecA,

{ I

A }

Y

Closed subschools

Prop 56

Prop 56

Quasi-coherent sheaves of i doals on X}

We have Remark: X = specA, bpepnjs, (Mp & Mip) @ Quasi-coherent sheaves on Proj S! Let X = pwj S with S a graded ving and M = & Ms a graded 5 - module with So. Ms = Mend Given $f \in S_+$, $q_f : D_+(f) \longrightarrow Spec S_{(f)}$.

glue (ex. 1.22) · M B(4) := M(4) , M(4) : S(4) - module (X) · Mp = Mcp)

(Prif) (A(f))

(Prif) is Northerian · S: noeth, M: f.g. S-module ⇒ M ∈ Coh(X) X = UD+(f) Mets: f.g. Set, module. • $\mathcal{O}_{x} = \widetilde{S}$.

for Ox - for oz with kent on i.e. Ox/ = for Oz

```
Def: n \in \mathbb{Z}, S(n)_{d} := S_{n+d} \forall d \rightarrow S(n) is a graded S - module
M(n)_{d} := M_{n+d} \quad \forall d \quad S_{g} \cdot S(n)_{d} = S_{g} \cdot S_{n+d} = S(n)_{grad}
                           \cdot n \in \mathbb{Z}, \mathcal{O}_{\mathbf{x}}(n) := \mathbf{s}(n)
                         · L & Mod (X) is said to be invertible if it is locally isomorphic to Ox
                                                                                                                                                                                                                                                    (i.e. = { Us} covers x & Z / 2/2 = Oux)
     Remark: Let 0 ,: Our -> L/4 be an isomorphism
                                                                          Ox(Ux): Oux(Ux) -> L(Ux) = L(Ux)=Bx Oux(Ux)
                                                We write Lux = Oux Bx via
                                                                                                                                                                                                                                                      Lu,(w) = Ou,(w). Balw, w< U1.
                                                                                                                                                                                                                                                                     MON = ( PMJ) O (PNe) = D (PMJONe)

MON e MON

(SINOR-MOST SES, MEH, NEN >
Fact 4: M \otimes N = M \otimes N 

M_{\xi} \otimes N_{\xi} \otimes N_
                                                                             fd & ft -> a&b fdre
                                                                 which induces a presheaf morphism and there a sheaf morphism
                                                  MON- NON
                                          Since Mep & N(p) = (M@N)(p), HON = MON
                                    OLE S be generated by S, as So-algobra.
    Prop6: (1) Ox(n) is an invertible sheaf. wisting sheaf.
                                              (2) \mathcal{O}_{\mathbf{x}}(\mathbf{n}) \otimes \mathcal{O}_{\mathbf{x}}(\mathbf{m}) \cong \mathcal{O}_{\mathbf{x}}(\mathbf{m}+\mathbf{n})
                                              (3) \quad \widetilde{\mathcal{M}}(n) := \widetilde{\mathcal{M}} \otimes \mathcal{O}_{\chi}(n) \cong \mathcal{M}(n) .
              (1) Let x & Si. Ox(n) | D+(x) = S(n)(x)
                                            \mathcal{O}_{\chi}(n)\left(\mathcal{O}_{\zeta}(\pi)\right) = S(n)_{(\chi)} \xrightarrow{\chi} S_{(\chi)} = \mathcal{O}_{\chi}(\mathcal{O}_{\zeta}(\pi)) \Rightarrow S(n)_{(\chi)} \xrightarrow{\omega} S_{(\chi)} = \mathcal{O}_{\chi}(x)
                                                                                                               degn in Sx & Lego in Sx
                                         (2) \mathcal{O}_{\mathbf{x}}(\mathbf{n}) \otimes \mathcal{O}_{\mathbf{x}}(\mathbf{m}) = S(\mathbf{n}) \otimes S(\mathbf{m}) = S(\mathbf{n}) \otimes S(\mathbf{m}) \times S(\mathbf{n}+\mathbf{m}) = \mathcal{O}_{\mathbf{x}}(\mathbf{n}+\mathbf{m})
                                                                                                                                                                                                                                                         graded my 140 degree $8 to
```

(3) H @ Ox(n) = M @ S(n) = M@S(n) = M(n) .

```
U= ProjT - {p & ProjT | p = Q} where Q is the smallest home ideal containing 415+)
                       f(p)=q"(p): homo prine & : P> 915+) -> 97p) +5+
                f(V(I)) = {peproj T | P24(S+), P24(I)} = {peproj T | P24(I)>} NU is cloud in U.
               Remark: 9:5 T x where both are generated by deg 1 as deg 0-alg. 

$\int f: 25 \rightarrow \text{proj S}$
                                             {p∈ Proj T | p $ 4(S+) } open in proj T.
                    If NEGrmody and MEGrmods, then
                   f''\widetilde{M} \cong (\widetilde{M} \otimes T)|_{U} and f_*(\widetilde{N}|_{U}) \cong (sN)
                                                                                                                                                             f*(U(n))=f*(T(n))=(sT(n))
             f*(Ux(n)) = f*(s(n)) = s(n)@T/
                                                                                                                                                            \cong \widetilde{\mathsf{sT}}(n) \cong f_{\mathsf{f}}(\widetilde{\mathsf{T}}|_{\mathsf{U}})(n) = (f_{\mathsf{f}}(\mathcal{Q}_{\mathsf{U}})(n))
          The graded S-module associated to 7: (3) = $ 3(n)(x)
 Follow) = 5 (PA, Op (m)) = { all homogeneous polynomials of deg m in S }
\begin{array}{c} |Q_{X}(W)| \geq S \\ |Q_{X}(M)| = |X_{1}^{m} Q_{X}| \\ |Q_{X}(X_{1})| = |X_{2}^{m} Q_{X_{1}}| \\ |Q_{X_{1}}(X_{2})| = |X_{2}^{m} Q_{X_{2}}| \\ |Q_{X_{1}}(X_{2})| = |X_{2}^{m} Q_{X_{2}}(X_{2}^{m} Q_{X_{2}})| \\ |Q_{X_{1}}(X_{2}^{m} Q_{X_{2}})| = |X_{1}^{m} Q_{X_{2}^{m}}(X_{2}^{m} Q_{X_{2}^{m}})| \\ |Q_{X_{1}^{m}}(X_{2}^{m} Q_{X_{2}^{m}})| = |X_{1}^{m} Q_{X_{1}^{m}}(X_{2}^{m} Q_{X_{2}^{m}})| \\ |Q_{X_{1}^{m}}(X_{2}^{m} Q_{X_{2}^{m}})| = |X_{1}^{m} Q_{X_{1}^{m}}(X_{2}^{m} Q_{X_{2}^{m}})| \\ |Q_{X_{1}^{m}}(X_{1}^{m} Q_{X_{2}^{m}})| = |X_{1}^{m} Q_{X_{1}^{m}}(X_{1}^{m} Q_{X_{2}^{m}})| \\ |Q_{X_{1}^{m}}(X_{1}^{m} Q_{X_{1}^{m}})| + |Q_{X_{1}^{m}}(X_{1}^{m} Q_{X_{1}^{m}})| \\ |Q_{X_{1}^{m}}(X_{1}^{m} Q_{X_{1}^{m}})| + |Q_{X_{1}^{m}}(X_{1}^{m} Q_{X_{1}^{m}})| + |Q_{X_{1}^{m}}(X_{1}^{m} Q_{X_{1}^{m}})| \\ |Q_{X_{1}^{m}}(X_{1}^{m} Q_{X_{1}^{m}})| + |Q_{X_{1}^{m}}(X_{1}^{m} 
                                                          define Q|_{D_{+}(X_{L})} := F(\frac{X_{0}}{X_{L}}, - - - \frac{X_{M}}{X_{L}}) \cdot X_{L} \in \mathcal{O}_{X}(m)|_{Q(X_{L})}.
                                                                                P_{Y}^{n} := P_{Z}^{n} \times Y \xrightarrow{\pi} P_{Z}^{n}, \quad \mathcal{O}_{P_{Y}^{n}}(1) := \pi^{*}\mathcal{O}_{P_{Z}^{n}}(1)
     Def: . Y & Sch
                     X \longrightarrow Y is projective, then X = Closed immersion P_Y.
                                                                                                                                                                                                                                             the twisting
                                                                                                                                                                                                                                                sheaf
                         We define U_X(1) = i^*(\mathcal{O}_{\mathbb{P}_Y}(1)).
```

((Vx) C/2 (Opm) = Also, XmJ #: X Coul PA by prop 7, Nx is Och & Nx = Fo(Nx). X = Proj Alxo, - Xa. * A subsent X over Spec A is projective i.e. X spec A X & Proj Alxo, - xhall = Proj Alxo, - x Def: FEMod (X) is generated by global sections if = {Silied C P(X, 7) s.t. &pex, 3p = < (Si)p: ied > Up.

ex: X = Proj A(Xo, -Xo) = ied > ie and $\mathcal{F} \in Coh(X)$. Then $\mathcal{F}(m) := \mathcal{F} \otimes \mathcal{O}_X(1)^{\otimes m}$ is g.b.g.s $\forall m>>0$ Stronger key lemma: Let X be a scheme and I be an invertible shout. For $f \in P(X, \mathcal{L})$, $X_f := \{ p \in X | f_p \notin m_p \mathcal{L}_p \}$. Let $\mathcal{J} \in Q_{GO}(X)$. LIVESPACA = OH , XE MI = D(f') (1) If X is quasi-compact and $S \in P(X, \mathcal{F})$, then $S|_{X_{\mathcal{F}}} = 0 \Rightarrow f''_{\mathcal{F}} s = 0$ (2) If X= U spac A: s.t. Llu: = Uu; and U; NU; is quasi-compact, then & t & P(Xf, 7) => = n & N & S & P(X, 702°) s.t. S|xf = ft. (Note: we need (g @ 2) | 12 = 3 | u; @ 2 | u; = 3 | u; = Mi) (proof of Sarre thm): i: X => PA" sit. Ox(1) = i*(Opp (1)) => ix 9 ∈ Coh(PA), ix (3(m)) = (ix3)(m), 3(m): finitely 9.6.9.5 €) ix (7(m)): We can assume that $X = P_A^n$. Let $g|_{P_+(X_i)} \cong M_i$ with $M_i = \langle t_{ij} | j = 1, - \gamma_i \rangle_{S(X_i)}$ By lemma, & Sij & P(X, F(m)) s.t. This Sij Do(xi) = Xi motij g(m) | p(x) = M; (m) = M(m) = (x, ti) 1 j=1, -... Yi > S(x) Hence I(m) is generated by {Sij} Sij D. (Xi) PERFECTION

(for M > mo,

⇒ S[t] c> To S c> g.f of S ⇒ t is integral over S & When S is a fig. k-alg, by finiteness of integral closure, the integral closure of S in its g.f is a f.g. S-module " S is noeth ... S' is a f.g. S-module ⇒ [(X, Ox(m)) is a f.g. A-max. Step 2: M: F.g. 5- module > P(X, M) is a f.g A-mod. (Pf: Let 0 = M° ≤ M' ≤ . - ≤ M' = M with Mi-1 = 5 (n;) (I.47.4 0 > Mind > Mind > Mind > 0 $\Rightarrow 0 \rightarrow (x, M^{i-1}) \rightarrow P(x, M^{i}) \rightarrow P(x, M^{i-1})$ By step 1, T(X, \$(ni)) is a fig. A-module Then M'ok, M's o.k & M's o.k & M's o.k & M's o.k A O.K A O.K. Step 3: By prop 7, set $M = \Gamma_{*}(7)$, then $M \cong 7$ By Sorre's thm, I(m) is finitely g.b.g.s & m>>0

Locally free as flat

8 (2.(m) Then M = < si, -, Se>s - M = M' - M= 7 + H'(m) - 3(m) → M'(m) = f(m) ⇒ M'(m) & Q(-m) = g(m) & Q(-m) H Y = 7 By Step 2, [(x, 7) is a fig. A-module. Coro: If X, Y are of finite type over k and f: X -> Y is projective then & JE Coh(x) => fx JE Coh(Y) (Pf). Assume Y = spec A , A: f.g. k-alg. Already know fx I & Qco(Y)

So fx 7 = P(Y, fx 7) = P(x, 7) x f.g. A-mod.