

Business Proposal

Credit Risk Management System Development

CONTENTS

1 Industrial Background

2 As-Is Analysis

3 Performance Indicator

4 Model Selection

5 Conclusion

Industry Background

Personal loans between 2017 and 2019 in the UK

^{*}Total write-offs: business accounting expense reported to account for unreceived payments or losses on assets.

Source: Lilly, C., 2021. Personal loan statistics 2021: Interest rates, total amount lent & more. [online] Finder UK.

As-Is Analysis (1/3)

Percentage of default client vs repay client

The average amount per client by client default status

^{*}Average Total Bill: Average of bill statement from period X-5 to period X

^{**}Average Total Payment: Average of pay amount from period X-5 to period X

As-Is Analysis (2/3)

Average pay amount by client default status

As-Is Analysis (3/3)

The repayment status in period X

X axis represents ...

- -2: No consumption/transaction
- -1: Paid in full
- 0: small payment
- 1: payment delay for one period
- 2: payment delay for two periods

...

- 8: payment delay for eight periods
- 9: payment delays for nine periods and above

Performance Indicator(1/2)

Confusion Matrix		Actual		
		Repay	Default	
Predict	Repay (Approve Ioan)	A	С	
	Default (Deny Ioan)	В	D	

- A Approve the loan and customer pay back
- B Deny the loan but customer can pay back ➤ Opportunity Cost
- C Approve the loan but customer would default ▶ Loss on default
- D Deny the loan and customer would default

Performance Indicator(2/2)

German credit data [Michie et al., 1994]

- Cost of B:C = 1:5
- Expected Cost = Probability(B) * 1 + Probability(C) * 5
- Find the minimum Expected Cost

Machine Learning Models

Created by Becris. From Noun Project

Logistic Regression

Created by sachin modgekar from the Noun Project

Support Vector Machine(SVM)

Created by Knut M. Synstad From Noun Project

Decision Tree

Created by sachin modgekar from the Noun Project

Random Forest

Gradient Boosting Machine(GBM)

Expected Cost for each models

What is Gradient Boosting Machine?

GBM aggregates an ensemble of individual models to obtain a more accurate final model.

sources: https://medium.com/analytics-vidhya/what-is-gradient-boosting-how-is-it-different-from-ada-boost-2d5ff5767cb2 https://www.researchgate.net/figure/A-simple-example-of-visualizing-gradient-boosting_fig5_326379229 [accessed 5 Dec, 2021] https://github.com/bgreenwell

Model Development > Data Preparation (1/2)

Change in payment status

Assumption: Customers' payment statuses will worsen over time if they are likely to default

- If payment status worsens by comparing previous period then assign 1, else assign 0
- PY1: The repayment status in period X
- PY2: The repayment status in period (X-1)

. . .

- PY6: The repayment status in period (X-5)
- PY1D = IF(PY1 > PY2, 1, 0)
- SumPYD = PY1D+PY2D+PY3D+PY4D+PY5D

<u>Example</u>

PY1	PY2	PY3	PY4	PY5	PY6	New Variable
3	1					PY1D = 1
	1	0				PY2D = 1
		0	0			PY3D = 0
			0	-1		PY4D = 1
				-1	-1	PY5D = 0
						SumPYD = 3

Model Development > Data Preparation (2/2)

Change in payment status

Change in payment status in given time

100% 90% 80% 70% 60% 50% 40% 30% 21.97% 15.86% 15.19% 20% 12.76% 12.76% 10% 0% PY1D PY2D PY3D PY4D PY5D ■ Repay | Payment status not worse ■ Repay | Payment status worse Default | Payment status not worse Default | Payment status worse

Sum of change in payment status

Model Development > Result

Confusion Matrix		Actual		
		Repay	Default	
Predict	Repay (Approve Ioan)	3625	451	
	Default (Deny Ioan)	1033	853	

```
Expected Cost = Probability(B) * 1 + Probability(C) * 5
= 1033/5965 *1 + 451/5965 *5
= 34.45 %
```


Expected Cost Assumption

Loss from default customer for Universal Plus

(\$849,117,680) Total Loan ambunt Collateral **Paid Principal and** Interest

Limit

Loss from Default Customer

Cost Matrix for Universal Plus

Cost Matrix		Actual	
		Repay	Default
Predict	Repay (Approve loan)		(C) 5
	Default (Deny Ioan)	(B) 1	

- Cost of B:C = 1:5
 - **=** \$169,823,536 : \$849,117,680

Expected Cost Reduction

Deployment Plan

Accuracy < 70% ► Tuning

Thank you