

Mahindra University Hyderabad

École Centrale School of Engineering End-semester Regular Examination

Program: B. Tech. Branch: Computation & Mathematics Year: Second Semester: Second Subject: Computer Organization (MA 2211)

Date: 05/06/2023 Start Time: 10: 00 PM
Time Duration: 03: 00 Hours Max. Marks: 100

Instructions:

1) All questions are compulsory.

- 2) Start each answer on a new page and number your answers clearly. Answer all parts of the same question together and in sequence.
- 3) An explanation of every step is essential. Correct outcomes without description will not be evaluated.

Question 01: Select the correct choice for the following questions with a proper explanation. Correct choices without valid justification will not be considered. $[02 \times 20]$

pranacioni dorrecten	rees without valid j	abelificacion with froc b	c considered. [or			
A) If $(B2F8)_{16} = (?)_{10}$. What will be the value of "Question Mark"?						
a) 51246	b) 45817	c) 32678	d) No ne of these			
B) In a half adder, the carry output is high if the inputs are:						
1,1	b) 0, 0	c) 0,1	d) 1,0			
C) A variable on its own or in its complemented form is known as a						
a) Product term	b) # iteral	c) Sum term	d) Word			
D) Which of the following is equivalent to the Boolean expression $A(A + B)$?						
a) AB	b) 1	c) $(1 + AB)$	A A			
E) De Morgan's theorem states that						
(AB)' = A' + B'		b) $(A + B)' = A' * B$				
c) $A' + B' = A'B'$		d) (AB)' = A' + B				

- F) What is the primary motivation for using Boolean algebra to simplify logic expressions?
 - a) It may make it easier to understand the overall function of the circuit
 - b) It may reduce the number of gates
 - c) It may reduce the number of inputs required

All of the above

O) If inputs (a, b) is (0,0) for a 2×1 MUX with selector '0'. Then the output is?						
U)		/	c) X	d) None of these		
(a) 1	b) 0/		u) None et alle		
P) Any combinational circuit can be designed using only						
	a) AND Gates	b) OR Gates	c) XOR Gates	dy NOR Gates		
How many 3×8 line decoders with an enable input line are needed to construct 6×64 line decoder without using any other logic gate?						
_	a) 7	b) 8	c) 9	d) 10		
(R)	converts bin	ary-coded information	on to unique outputs	such as decimal, octal		
	digits, etc.			w		
1	a) Decoder	b) Demultiplexing	c) Multiplexing	d Encoder		
S) One of De Morgan's theorems states that $(A + B)' = A' \cdot B'$. Simply stated, this means that logically there is no difference between:						
A NOR and an AND gate with inverted inputs						
b) A NAND and an OR gate with inverted inputs						
c) An AND and a NOR gate with inverted inputs						
d) A NOR and a NAND gate with inverted inputs						
In the S-R latch, when the SET input is made high, output Q becomes:						
	1 0		b) 1			
	c) No change		d) Application not all	owed		
Ques	tion 02: Answer the f	following questions.	It is highly desirable	to our late		
Question 02: Answer the following questions. It is highly desirable to explain each step. Each question is worth six marks. $[06 \times 05]$						
B	Convert the following	Binary Numbers into	their rooms stires Co			
	a)/110110	b) 1 1 0 0 1 0		Codes.		
B€	^/	s in digital server	10			
What are complements in digital computers. What are the different complements used for any number system with base r? Find the 9's and 10's complement of (25.639) ₁₀ .						
A committee of three individuals decides is and 10's complement of (25.639) ₁₀ .						
A committee of three individuals decides issues for an organization. Each individual votes either yes or no for each proposal that arises. A proposal is passed if it receives at least two yes votes. Design a circuit that determines whether a proposal passes.						

- D) What is Excess-3 (or EX-3 code or XS-3) code? Convert the decimal numbers 23 and 15.46 to Excess-3 code.
- E) Find the output M in the following 4×1 multiplexer, if $c_1 = 0$ and $c_0 = 1$ is given.

Question 03: It is highly desirable to provide an explanation for each step in the following questions. Each question consists of ten marks. $[10 \times 03]$

- A) Write the truth table and simplified Boolean expression with four inputs and one output for the following instances. Finally, design the combinational circuit for them.
 - a) The output is 1 when the binary value of the inputs is greater than five but less than or equal to ten.
 - The output is 1 when the binary value of the inputs is divisible by four.
- B) Use K-maps to minimize the following Sum of Product (SOP) expansions:

(a)
$$xy\overline{z} + x\overline{y}\overline{z} + \overline{x}yz + \overline{x}\overline{y}\overline{z}$$

/6)
$$xy\overline{z} + x\overline{y}\overline{z} + (\overline{x}\overline{y}z) + \overline{x}\overline{y}\overline{z}$$

c)
$$wxyz + wxy\overline{z} + wx\overline{y}\overline{z} + w\overline{x}yz + w\overline{x}\overline{y}z + w\overline{x}\overline{y}\overline{z} + \overline{w}x\overline{y}z + \overline{w}\overline{x}yz + \overline{w}\overline{x}yz + \overline{w}\overline{x}yz$$

C) Explain combinational and sequential circuits with suitable examples. Give some applications for both of them. Also highlight some of the significant differences between combinational and sequential circuits.