Сходимость случайных величин

Во втором задании вы будете моделировать сходимость случайных величин. Нашей целью будет моделирование предельных законов, изученных в курсе, а также иллюстрация иллюстрация характера сходимости указанных в них последовательностей.

1 Научитесь строить гистограмму

Напишите программу, которая:

- 1. Даёт выбор из, по крайней мере, 7 различных распределений;
- 2. Даёт ввести размер выборки n.
- 3. Предлагает ввести параметры выбранного распределения и использует их для моделирования последовательности X_1, X_2, \ldots, X_n ;
- 4. Рисует на одном графике гистограмму этой выборки и плотность соответствующего распределения.

2 Закон больших чисел

Нам известно, что если вам дана бесконечная последовательность независимых и одинаково распределённых случайных величин X_1, X_2, \dots с конечным математическим ожиданием, то

$$\frac{X_1 + \ldots + X_n}{n} \underset{n \to \infty}{\to} \mathbb{E} X_1.$$

Вашей задачей будет в этом убедиться. Напишите программу, которая:

- 1. Даёт выбор из, по крайней мере, 7 различных распределений;
- 2. Предлагает ввести параметры выбранного распределения и использует их для моделирования последовательности X_1, X_2, \ldots ;
- 3. Рисует график ломанной, соединяющий точки $(k, \frac{X_1 + ... + X_k}{k})$ и демонстрирующий, что она сходится к $\mathbb{E}X_1$. Предельное значение k выберите сами.

Добавьте также распределение Коши с плотностью

$$f_X(t) = \frac{1}{\pi} \frac{1}{1 + t^2}.$$

Как ведёт себя график ломанной для этого распределения?

3 Центральная предельная теорема

Если дополнительно нам известно, что $\mathbb{D}X_1 < \infty$, то верна следующая сходимость в слабом смысле:

$$\frac{X_1 + \ldots + X_n - n\mathbb{E}X_1}{\sqrt{n\mathbb{D}X_1}} \underset{n \to \infty}{\longrightarrow} Y \sim \mathcal{N}_{0,1}.$$

Напишите программу, которая:

- 1. Даёт выбор из, по крайней мере, 7 различных распределений;
- 2. Предлагает ввести параметры выбранного распределения и использует их для моделирования последовательности X_1, X_2, \ldots ;
- 3. Рисует график, соединяющий точки $\left(k, \frac{X_1 + \ldots + X_k k\mathbb{E}X_1}{\sqrt{k\mathbb{D}X_1}}\right)$. Предельное значение k выберите сами.

Видна ли здесь сходимость к какой-либо константе? Для ответа на этот вопрос выведите и сравните значения $\frac{X_1+\ldots+X_n-n\mathbb{E}X_1}{\sqrt{n\mathbb{D}X_1}}$ для $n=10,10^2,10^3,10^4,10^5,10^6,\ldots$ Объясните происходящее.

3.1 Гистограмма стандартного нормального распределения

Смоделировав X_1,\ldots,X_n и посчитав однажды значение величины

$$Y = \frac{X_1 + \ldots + X_n - n\mathbb{E}X_1}{\sqrt{n\mathbb{D}X_1}}$$

мы получаем лишь одну реализацию стандартной нормальной случайной величины. Чтобы "пощупать" нормальное распределение, нам нужно повторить этот эксперимент несколько раз.

Вашей последней задачей будет именно это - смоделируйте N разных последовательностей $X_{1,j},\ldots,X_{n,j},\ j=1,\ldots,N$ и по каждой получите свою собственную

$$Y_j = \frac{X_{1,j} + \ldots + X_{n,j} - n\mathbb{E}X_1}{\sqrt{n\mathbb{D}X_1}}.$$

После чего постройте гистограмму по выборке Y_1, \ldots, Y_N и нарисуйте её на одном графике с плотностью стандартного нормального закона.