Fakultet elektrotehnike i računarstva Sveučilišta u Zagrebu **Strojno učenje**, ak. god. 2011/12. – **bilješka za predavanja** (v2.4) © 2011 Bojana Dalbelo Bašić, Jan Šnajder

Bilješka 2

Teorija vjerojatnosti

Statističko strojno učenje zasniva se na teoriji vjerojatnosti i statistici. Ovdje razmatramo koncepte koji su ključni za razumijevanje algoritama strojnog učenja.

1 Osnove teorije vjerojatnosti

Diskretno statističko obilježje interpretira se kao **diskretna slučajna varijabla** X sa zadanim skupom vrijednosti $\{x_i\}$. Vrijednost P(X=x) jest vjerojatnost da slučajna varijabla X poprimi vrijednost x, tj. vjerojatnost da se slučajna varijabla X realizira kao x. U nastavku ćemo, osim ako postoji mogućnost zabune, P(X=x) pisati kraće kao P(x). Vrijedi $P(x_i) \ge 0$ i $\sum_i P(x_i) = 1$, čime je definirana **diskretna razdioba (distribucija) vjerojatnosti**.

Vjerojatnost da slučajna varijabla X poprimi vrijednost x i da slučajna varijabla Y poprimi vrijednost y pišemo kao P(X=x,Y=y), odnosno kraće P(x,y), i nazivamo **zajednička vjerojatnost** (engl. *joint probability*). Korištenjem **pravila zbroja**

$$P(x) = \sum_{y} P(x, y) \tag{1}$$

varijablu Y možemo **marginalizirati**, odnosno možemo izračunati **marginalnu vjerojatnost** P(x) varijable X. Naravno, isto tako možemo marginalizirati varijablu X, odnosno izračunati marginalnu vjerojatnost P(y) varijable Y.

Uvjetna vjerojatnost P(y|x), odnosno vjerojatnost da varijabla Y poprimi vrijednost y, pod uvjetom da je varijabla X poprimila vjerojatnost x, definirana je kao

$$P(y|x) = \frac{P(x,y)}{P(x)} \tag{2}$$

što se često iskazuje kao pravilo umnoška

$$P(x,y) = P(y|x)P(x). (3)$$

Budući da vrijedi simetričnost P(x,y) = P(y,x), primjenom pravila umnoška na lijevu i desnu stranu jednakosti dobivamo

$$P(x|y)P(y) = P(y|x)P(x)$$

iz čega slijedi poznato Bayesovo pravilo

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)} \tag{4}$$

Ovdje treba primijetiti da se sve vrijednosti koje se pojavljuju u (4) mogu dobiti iz zajedničke vjerojatnosti P(x,y) i to marginalizacijom odnosno normiranjem. Primjenom pravila zbroja i zatim pravila umnoška, marginalna vjerojatnost P(x) može se izraziti kao

$$P(x) = \sum_{y} P(x,y) = \sum_{y} P(x|y)P(y)$$

što je vrlo pogodno jer su onda izrazi u nazivniku isti kao i oni u brojniku. (Primijetite da se marginalna vjerojatnost P(x) mogla izraziti i kao $\sum_{y} P(y|x)P(x)$, ali time ne bismo ništa dobili.) Bayesovo pravilo možemo dakle pisati kao

$$P(y|x) = \frac{P(x|y)P(y)}{\sum_{y} P(x|y)P(y)}.$$
 (5)

U gornjim razmatranjima ograničili smo se na slučaj diskretne slučajne varijable. Za kontinuiranu (neprekidnu) slučajnu varijablu definira se funkcija gustoće vjerojatnosti (engl. probability density function, PDF) p(x), za koju vrijedi¹

$$p(x) \geqslant 0 \tag{6}$$

$$p(x) \ge 0$$

$$\int_{-\infty}^{\infty} p(x) dx = 1$$
(6)

Vjerojatnost da kontinuirana slučajna varijabla X poprimi vrijednost iz intervala [a,b] $(a, b \in \mathbb{R}, a \leq b)$ dana je s

$$P(a \leqslant X \leqslant b) = \int_a^b p(x) \, \mathrm{d}x.$$

Primijetite da za kontinuiranu varijablu X vrijedi P(X=a)=0, tj. vjerojatnost da kontinuirana varijabla poprimi bilo koju pojedinačnu vrijednost jednaka je nuli. Kažemo da funkcijom gustoće vjerojatnosti p(x) definirana kontinuirana razdioba (distribucija) vieroiatnosti.2

Pravilo zbroja i pravilo umnoška vrijede i za kontinuirane varijable (a također i za mješovite razdiobe, tj. kombinacije diskretnih i kontinuiranih varijabli):

$$p(x) = \int_{-\infty}^{\infty} p(x, y) \, \mathrm{d}y \tag{8}$$

$$p(x,y) = p(y|x)p(x) (9)$$

1.1 Očekivanje i varijanca

Prosječna vrijednost diskretne slučajne varijable X čija je razdioba P(x) naziva se (matematičko) očekivanje varijable X i definira kao

$$\mathbb{E}[X] = \sum_{x} x P(x) \tag{10}$$

U slučaju kontinuirane slučajne varijable X s gustoćom vjerojatnosti p(x), očekivanje je

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \, p(x) \, \mathrm{d}x \,. \tag{11}$$

¹Funkcija gustoće vjerojatnosti u matematičkoj literaturi uobičajeno se označava s f(x). Mi ćemo u nastavku koristiti oznaku p(x), koja je tipična u literaturi za strojno učenje.

 $^{^{2}}$ U nastavku ćemo koristiti izraz "gustoća p(x)" ili (pomalo neprecizno) "razdioba p(x)", mislivši pritom na funkciju gustoće vjerojatnosti p(x). Kada mislimo na konkretnu vrijednost te funkcije u točci x, koristit ćemo izraz "vrijednost p(x)".

Vrijedi:

$$\mathbb{E}[aX+b] = a\mathbb{E}[X]+b \qquad (a,b\in\mathbb{R})$$
(12)

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y] \tag{13}$$

 $\mathbf{Varijanca}$ slučajne varijable X iskazuje koliko vrijednosti varijable variraju oko očekivane vrijednosti:

$$\operatorname{Var}(X) = \sigma_X^2 = \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - \mathbb{E}[X]^2. \tag{14}$$

(Provjerite da druga jednakost doista vrijedi.) Iz (14) slijedi

$$\operatorname{Var}(aX) = \mathbb{E}\left[(aX)^2\right] - \mathbb{E}[aX]^2 = a^2 \mathbb{E}[X^2] - a^2 \mathbb{E}[X]^2 = a^2 \operatorname{Var}(X). \tag{15}$$

Kovarijanca opisuje odnos između dviju slučajnih varijabli, odnosno opisuje u kojoj mjeri slučajne varijable zajednički variraju oko svojih očekivanih vrijednosti. Kovarijanca varijabli X i Y definirana je kao

$$Cov(X,Y) = \sigma_{X,Y} = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]. \tag{16}$$

(Provjerite da druga jednakost doista vrijedi.) Vrijedi Cov(X,Y) = Cov(Y,X) i Cov(X,X) = Var(X) odnosno $\sigma_{X,X} = \sigma_X^2$.

Za slučajne varijable X i Y za koje vrijedi $\mathrm{Var}(X)>0$ i $\mathrm{Var}(Y)>0$ definiran je koeficijent korelacije

$$\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y} \,. \tag{17}$$

Koeficijent korelacije upućuje na mjeru linearne zavisnosti među varijablama X i Y. Za savršenu pozitivnu linearnu ovisnost vrijedi $\rho_{X,Y}=1$, dok za savršenu negativnu linearnu ovisnost vrijedi $\rho_{X,Y}=-1$.

1.2 Nezavisnost varijabli

Dvije slučajne varijable X i Y su (stohastički) nezavisne akko za sve intervale A i B, $A, B \subseteq \mathbb{R}$, vrijedi

$$P(X \in A, Y \in B) = P(X \in A)P(Y \in B).$$

Konkretno, varijable X i Y su nezavisne akko:

$$P(X,Y) = P(X)P(Y)$$

što je ekvivalentno s

$$P(X|Y) = P(X)$$
 i $P(Y|X) = P(Y)$.

Intuitivno, varijable X i Y su nezavisne ako znanje o ishodu varijable Y ni na koji način ne utječe na vjerojatnost ishoda varijable X (i obrnuto).

Za nezavisne varijable X i Y vrijedi

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] \tag{18}$$

$$Var(X+Y) = Var(X) + Var(Y)$$
(19)

$$Cov(X,Y) = \rho_{X,Y} = 0 \tag{20}$$

Nezavisne varijable su nekorelirane, no obrat općenito ne vrijedi: koeficijent korelacije može biti jednak nuli, a da su varijable ipak nelinearno zavisne (koeficijent korelacije mjeri isključivo linearnu zavisnost varijabli).

U strojnom učenju važan koncept jest uvjetna nezavisnost varijabli.

Definicija 1 (Uvjetna nezavisnost.) Slučajne varijable X i Y su uvjetno nezavisne uz danu varijablu Z, što označavamo kao $X \perp Y \mid Z$, akko

$$P(X|Y,Z) = P(X|Z)$$

ili, ekvivalentno

$$P(X,Y|Z) = P(X|Z)P(Y|Z).$$

Intuitivno, varijable X i Y su uvjetno nezavisne ako, jednom kada je poznat ishod varijable Z, znanje o ishodu varijable Y ni na koji način ne utječe na ishod varijable X (i obrnuto). Općenito, nezavisnost varijabli X i Y ne implicira njihovu uvjetnu nezavisnost ni po kojoj varijabli, niti obrnuto.

1.3 Višedimenzijska slučajna varijabla

Istodobno opažanje više statističkih obilježja modeliramo n-dimenzijskim slučajnim vektorom (X_1, \ldots, X_n) . Za slučajan vektor definirana je **matrica kovarijacije**³ Σ dimenzija $n \times n$, s elementima:

$$\Sigma_{ij} = \operatorname{Cov}(X_i, X_j) = \sigma_{ij} = \mathbb{E}[(X_i - \mathbb{E}[X_i])(X_j - \mathbb{E}[X_j])] = \mathbb{E}[(X_i - \mu_i)(X_j - \mu_j)].$$

Odnosno, u matričnom računu, kovarijacijska je matrica definirana kao:

$$\Sigma = \mathbb{E} \left[(\mathbf{X} - \mathbb{E}[\mathbf{X}])(\mathbf{X} - \mathbb{E}[\mathbf{X}])^{\mathrm{T}} \right].$$
 (21)

Kovarijacijska matrica je kvadratna simetrična matrica koja na dijagonali ima varijance varijabli X_1, \ldots, X_n , a izvan dijagonale kovarijance svih parova varijabli:

$$\Sigma = \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \dots & \operatorname{Cov}(X_1, X_n) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \dots & \operatorname{Cov}(X_2, X_n) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_n, X_1) & \operatorname{Cov}(X_n, X_2) & \dots & \operatorname{Var}(X_n) \end{pmatrix}$$

$$= \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \dots & \rho_{1n}\sigma_1\sigma_n \\ \rho_{21}\sigma_2\sigma_1 & \sigma_2^2 & \dots & \rho_{2n}\sigma_2\sigma_n \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1}\sigma_n\sigma_1 & \rho_{n2}\sigma_n\sigma_2 & \dots & \sigma_n^2 \end{pmatrix}$$

Primjer 1 (Kovarijacijska matrica) Razmotrimo slučaj dvodimenzijske kontinuirane slučajne varijable, $\mathbf{X} = (X_1, X_2)$. Neka su varijance $\sigma_1^2 = 1$ i $\sigma_2^2 = 4$ te neka su varijable pozitivno korelirane s faktorom $\rho_{12} = \rho_{21} = 0.75$. Kovarijacijska matrica je

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 \\ \rho_{21}\sigma_2\sigma_1 & \sigma_2^2 \end{pmatrix} = \begin{pmatrix} 1 & 1.5 \\ 1.5 & 4 \end{pmatrix}$$

³Također kovarijancna matrica i disperzijska matrica.

Ako su varijable X_1, \ldots, X_n međusobno nezavisne, onda $\operatorname{Cov}(X_i, X_j) = 0$ i kovarijacijska je matrica dijagonalna matrica, $\Sigma = \operatorname{diag}(\sigma_i^2)$. Nadalje, ako su nezavisne varijable X_1, \ldots, X_n identično distribuirane, onda $\sigma_i^2 = \sigma^2$, pa kovarijacijska matrica degenerira u $\Sigma = \sigma^2 \mathbf{I}$. Takav slučaj nazivamo **izotropnom kovarijancom**.

2 Teorijske razdiobe

U nastavku ćemo se prisjetiti nekoliko vjerojatnosnih razdioba koje su nam potrebne u strojnom učenju.

2.1 Bernoullijeva razdioba

Bernuoullijeva razdioba jest razdioba diskretne slučajne varijable X koja ima dva moguća ishoda: događaj je ili nastupio ili nije, $x \in \{0, 1\}$. Razdioba je dana kao

$$P(X = x | \mu) = \mu^{x} (1 - \mu)^{1 - x} = \begin{cases} \mu & \text{ako } X = 1\\ 1 - \mu & \text{inače} \end{cases}$$
 (22)

gdje parametar μ definira vjerojatnost nastupanja događaja, tj. vjerojatnost P(X = 1). Iz (10), (14) i (22) slijedi da su očekivana vrijednost i varijanca

$$\mathbb{E}[X] = \mu$$

$$Var(X) = \mu(1 - \mu)$$

2.2 Multinomijalna razdioba

Razmotrimo poopćenje Bernoullijeve razdiobe na slučaj kada slučajna varijabla X može poprimiti jedno od K međusobno isključivih stanja, $K \geqslant 2$ (npr. jednu od K klasa). Takvu varijablu nazivamo **multinomijalna varijabla**. Multinomijalnu varijablu prikazujemo kao vektor indikatorskih (binarnih) varijabli

$$\mathbf{x} = (x_1, x_2, \dots, x_K)^{\mathrm{T}}$$

gdje je $x_k=1$ ako je ishod varijable k, a inače $x_k=0$. Npr. $\mathbf{x}=(0,0,1,0)$ označava da je multinomijalna varijabla poprimila treće stanje od četiri mogućih stanja. Pritom vrijedi $\sum_k x_k=1$ (ishodi su međusobno isključivi). Označimo vjerojatnost $P(X_k=1)$ sa μ_k . Razdioba je dana s

$$P(\mathbf{X} = \mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^{K} \mu_k^{x_k^{(i)}}$$
(23)

gdje je $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K)^{\mathrm{T}}$, pri čemu za parametre μ_k vrijedi $\sum_k \mu_k = 1$ i $\mu_k \ge 0$, budući da predstavljaju vjerojatnosti.

Navedena razdioba naziva se **kategorička razdioba** i zapravo je poseban slučaj **multi-nomijalne razdiobe** kod koje je broj eksperimenata jednak 1.⁴ Multinomijalnu varijablu ne treba miješati s višedimenzijskom varijablom odnosno slučajnim vektorom (premda ovdje multinomijalnu varijablu modeliramo pomoću slučajnog vektora).

⁴U strojnom učenju i nekim drugim područjima ova se razlika često zanemaruje.

2.3 Gaussova razdioba

Neprekidna slučajna varijabla X ima Gaussovu (normalnu) razdiobu sa srednjom vrijednošću μ i varijancom σ^2 , što označavamo kao $\mathcal{N}(\mu, \sigma^2)$, ako je njezina gustoća vjerojatnosti jednaka

$$p(X = x | \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}.$$
 (24)

Za normalnu razdiobu vrijedi

$$\mathbb{E}[X] = \mu \tag{25}$$

$$Var(X) = \sigma^2 \tag{26}$$

2.4 Multivarijatna Gaussova razdioba

Poopćenjem Gaussove razdiobe na n dimenzija dobivamo **multivarijatnu Gaussovu razdiobu**:

$$p(\mathbf{X} = \mathbf{x} | \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{n/2} |\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$
(27)

gdje je μ n-dimenzijski vektor srednje vrijednosti, a Σ je kovarijacijska matrica dimenzija $n \times n$. Da bi razdioba (24) bila dobro definirana, kovarijacijska matrica Σ mora biti pozitivno definitna,⁵ jer tada ima pozitivnu determinantu i nesingularna je (ima inverz). Vrijednost gustoće funkcijski zavisi o \mathbf{x} preko **kvadratne forme**⁶

$$\Delta^2 = (\mathbf{x} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

koja se javlja u eksponentu. Vrijednost Δ nazivamo **Mahalanobisova udaljenost** između \mathbf{x} i $\boldsymbol{\mu}$. Mahalanobisova udaljenost je poopćenje euklidske udaljenosti koje je neosjetljivo na razlike u varijanci između pojedinih dimenzija te na korelacije između varijabli. Mahalanobisova udaljenost svodi se na euklidsku za $\Sigma = \mathbf{I}$.

Za multivarijatnu normalnu razdiobu vrijedi

$$\mathbb{E}[\mathbf{X}] = \boldsymbol{\mu} \tag{28}$$

$$Cov(X_i, X_j) = \Sigma_{ij} \tag{29}$$

Na slici 1 prikazane su gustoće vjerojatnosti i njima odgovarajuće konture jednake gustoće za dvodimenzijsku normalno distribuiranu varijablu sa srednjom vrijednošu $\mu = (0,0)^{\rm T}$. Slika 1a prikazuje najopćenitiji slučaj u kojemu su varijance pojedinih komponenti različite i korelirane. U tom slučaju konture Gaussove razdiobe su nakošene elipse (odnosno općenito hiperelipsoidi). Slika 1b prikazuje slučaj nekoreliranih varijabli s različitim varijancama (dijagonalna kovarijacijska matrica). U tom slučaju konture Gaussove razdiobe su elipse čije su osi poravnate s apscisom i ordinatom (odnosno općenito hiperelipsoidi poravnati s osima). Slika 1c prikazuje slučaj nekoreliranih i identično distribuiranih komponenti (izotropna kovarijacijska matrica). U ovom slučaju konture Gaussove razdiobe su kružnice (odnosno općenito hipersfere).

⁵Matrica **A** je *pozitivno definitna* akko $\mathbf{x}^{\mathrm{T}}\mathbf{A}\mathbf{x} > 0$.

⁶ Za kvadratnu matricu **A** funkcija $f: \mathbb{R}^n \to \mathbb{R}$ definirana kao $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ naziva se *kvadratna forma*. Pomoću skalarnog produkta kvadratna se forma može sažetije napisati kao $\mathbf{x}^T \mathbf{A} \mathbf{x} = (\mathbf{A} \mathbf{x} | \mathbf{x}) = (\mathbf{x} | \mathbf{A} \mathbf{x})$.

Slika 1: Gustoća vjerojatnosti dvodimenzijske normalno distribuirane varijable sa srednjom vrijednošću $\boldsymbol{\mu}=(0,0)^{\mathrm{T}}$: (a) slučaj za $\sigma_1^2=1,~\sigma_2^2=4,~\rho_{12}=0.75,$ (b) za slučaj $\sigma_1^2=1,~\sigma_2^2=4,~\rho_{12}=0,$ (c) za slučaj $\sigma_1^2=\sigma_2^2=1,~\rho_{12}=0.$

3 Procjena parametara

Osnovna ideja procjene parametara jest na temelju uzorka najprije izračunati vrijednost određene slučajne varijable, tzv. **statistike**, koju koristimo kao **procjenitelj** (estimator) nepoznatog parametra θ populacije (odnosno teorijske razdiobe).

3.1 Procjenitelj

Definicija 2 (Statistika, procjenitelj i procjena) Neka je (X_1, X_2, \ldots, X_n) uzorak, odnosno n-torka slučajnih varijabli koje su iid. Slučajna varijabla $\Theta = g(X_1, X_2, \ldots, X_n)$ naziva se statistika. Statistika Θ je procjenitelj (estimator) parametra populacije θ . Vrijednost procjenitelja $\hat{\theta} = g(x_1, x_2, \ldots, x_n)$ naziva se procjena.

Statistika je dakle bilo kakva funkcija koja ovisi o uzorku, dok je procjenitelj ona statistika koja se koristi za procjenu nekog parametra populacije. Procjenitelj je slučajna varijabla, što znači da ima svoje očekivanje i varijancu. Očekivanje i varijancu procjenitelja koristimo kako bismo ocijenili kvalitetu procjenitelja, odnosno kako bismo ocijenili koliko dobro procjenitelj Θ procjenjuje parametar populacije $\theta.$

Definicija 3 (Nepristran procjenitelj) $Procjenitelj \Theta$ je nepristran (centriran) procjenitelj $parametra \theta$ $akko \mathbb{E}[\Theta] = \theta$.

Vrijednost procjenitelja $\hat{\theta}$ na konkretnom uzorku \mathcal{D} može biti različita od prave vrijednosti parametra θ , ali ako je procjenitelj nepristran, onda će se kod ponavljanja eksperimenta prosječna vrijednost procjenitelja približiti stvarnoj vrijednosti parametra. **Pristranost** procjenitelja definirana je kao

Slika 2: Pristranost i varijanca procjenitelja: θ je parametar koji treba procijeniti, $\hat{\theta}_i$ su pojedinačne procjene na različitim uzorcima, a $\mathbb{E}[\Theta]$ je očekivana vrijednost procjenitelja.

$$b_{\theta}(\Theta) = \mathbb{E}[\Theta] - \theta$$
.

Idealan procjenitelj je nepristran i ima malu varijancu. Primijetite da su ove dvije veličine nezavisne te da pristranost ovisi o vrijednosti parametra, dok varijanca ne ovisi. Pristranost i varijanca procjenitelja skicirani su na slici 2.

Dodatno poželjno svojstvo jest da s porastom veličine uzorka (odnosno broja primjera za učenje) procjena sve manje odstupa od svoje očekivane vrijednosti. Drugim riječima, želimo da s povećanjem uzorka varijanca procjenitelja teži k nuli.

Definicija 4 (Valjan procjenitelj) Nepristan procjenitelj Θ je valjan (konzistentan) procjenitelj ako $\lim_{N\to\infty} \mathrm{Var}(\Theta) = 0$.

Primjer 2 (Procjenitelj srednje vrijednosti) Neka je X slučajna varijabla s vrijednostima $x \in \mathbb{R}$. Označimo očekivanje i varijancu ove varijable s $\mathbb{E}[X] = \mu$ odnosno $\mathrm{Var}(X) = \sigma^2$. Ova se varijabla pokorava razdiobi sa srednjom vrijednošću μ i varijancom σ^2 . Neka je $\{x^{(i)}\}_{i=1}^N$ uzorak ove slučajne varijable.

Prave vrijednosti parametara μ i σ^2 nisu nam poznate, ali ih možemo procijeniti na temelju uzorka. Tako za procjenu parametra μ (srednja vrijednost razdiobe) možemo koristiti **sredinu uzorka**:

$$\hat{\mu} = \frac{1}{N} \sum_{i} x^{(i)}$$

Sredina uzorka nepristran je procjenitelj parametra razdiobe μ , budući da vrijedi

$$\mathbb{E}[\hat{\mu}] = \mathbb{E}\left[\frac{\sum_{i=1}^{N} x^{(i)}}{N}\right] = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[X^{(i)}] = \frac{N\mu}{N} = \mu.$$

Pokažimo da je $\hat{\mu}$ ujedno i valjan procjenitelj. Vrijedi

$$\operatorname{Var}(\hat{\mu}) = \operatorname{Var}\left(\frac{\sum_{i}^{N} x^{(i)}}{N}\right) = \frac{1}{N^{2}} \sum_{i}^{N} \operatorname{Var}(X^{(i)}) = \frac{N\sigma^{2}}{N^{2}} = \frac{\sigma^{2}}{N}$$
(30)

pri čemu smo iskoristili jednakost (15) te jednakost (19), koja vrijedi jer su varijable $X^{(i)}$ iid. Očito

$$\lim_{N \to \infty} \frac{\sigma^2}{N} = 0$$

pa zaključujemo da je $\hat{\mu}$ valjan procjenitelj.

Primjer 3 (Procjenitelj varijance) Neka su $x^{(i)} \in \mathbb{R}$ uzorci slučajne varijable X koja se pokorava razdiobi sa srednjom vrijednošću μ i varijancom σ^2 , tj. $\mathbb{E}[X] = \mu$ i $\text{Var}(X) = \sigma^2$. Neka je $\hat{\mu}$ nepristran procjenitelj srednje vrijednosti (v. primjer 2). Provjerimo je li procjenitelj

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \hat{\mu})^2$$

nepristran procjenitelj parametra σ^2 . Uvrštavanjem $\sum_i x^{(i)} = N\hat{\mu}$ dobivamo

$$\hat{\sigma}^2 = \frac{1}{N} \left(\sum_{i=1}^{N} (x^{(i)})^2 - 2N\hat{\mu}^2 + N\hat{\mu}^2 \right) = \frac{1}{N} \left(\sum_{i=1}^{N} (x^{(i)})^2 - N\hat{\mu}^2 \right).$$

Očekivanje je

$$\mathbb{E}[\hat{\sigma}^2] = \mathbb{E}\left[\frac{1}{N}\left(\sum_{i=1}^N (x^{(i)})^2 - N\hat{\mu}^2\right)\right] = \frac{1}{N}\left(N\mathbb{E}[(X)^2] - N\mu^2\right) = \mathbb{E}[X^2] - \mathbb{E}[\hat{\mu}^2].$$

Iz (14) slijedi $\mathbb{E}[X^2] = \text{Var}(X) + \mathbb{E}[X]^2$, pa vrijedi $\mathbb{E}[X^2] = \sigma^2 + \mu^2$. Slično, korištenjem (30), dobivamo $\mathbb{E}[\hat{\mu}^2] = \sigma^2/N + \mu^2$. Uvrštavanjem ovih jednakosti u gornju jednakost dobivamo

$$\mathbb{E}[\hat{\sigma}^2] = \sigma^2 + \mu^2 - \sigma^2/N - \mu^2 = \frac{N-1}{N}\sigma^2.$$

Budući da $\mathbb{E}[\hat{\sigma}^2] \neq \sigma^2$, zaključujemo da $\hat{\sigma}^2$ nije nepristran procjenitelj varijance σ^2 . Preciznije, $\hat{\sigma}$ **podcjenjuje** pravu varijancu jer $\hat{\sigma} < \sigma$. Pristranost procjenitelja $\hat{\sigma}$ je

$$b(\hat{\sigma}^2) = \frac{N-1}{N}\sigma^2 - \sigma^2 = -\frac{\sigma^2}{N}$$

i ona se smanjuje kako $N \to \infty$. Za manje uzorke nepristranost može predstavljati problem i tada je procjenitelj moguće korigirati (učiniti nepristranim) tako da ga se pomnoži s N/(N-1), tj. da se kao procjenitelj varijance koristi:

$$\hat{\sigma}_{\text{nepr.}}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x^{(i)} - \hat{\mu})^2$$

3.2 Pogreška procjenitelja

Za procjenitelj Θ srednju kvadratnu pogrešku definiramo kao

$$r(\Theta, \theta) = \mathbb{E}[(\Theta - \theta)^2] \tag{31}$$

i to je u stvari funkcija rizika uz kvadratnu funkciju gubitka (prisjetite se da je funkcija rizika definirana kao očekivanje funkcije gubitka). Pokažimo kako se izraz (31) može rastaviti na pristranost i varijancu. Sasvim općenito, za slučajnu varijablu X i konstantu c

vrijedi:

$$\mathbb{E}[(X-c)^{2}] = \mathbb{E}\Big[(X-\mathbb{E}[X]+\mathbb{E}[X]-c)^{2}\Big]$$

$$= \mathbb{E}\Big[((X-\mathbb{E}[X])+(\mathbb{E}[X]-c))^{2}\Big]$$

$$= \mathbb{E}\Big[(X-\mathbb{E}[X])^{2}+2(X-\mathbb{E}[X])(\mathbb{E}[X]-c)+(\mathbb{E}[X]-c)^{2}\Big]$$

$$= \mathbb{E}\Big[(X-\mathbb{E}[X])^{2}\Big]+2\underbrace{\mathbb{E}\Big[(X-\mathbb{E}[X])(\mathbb{E}[X]-c)\Big]}_{\mathbb{E}[(X-\mu)(\mu-c)]=(\mu-c)\mathbb{E}[X-\mu]=0} + \mathbb{E}\Big[(\mathbb{E}[X]-c)^{2}\Big]$$

$$= \mathbb{E}\Big[(X-\mathbb{E}[X])^{2}\Big]+(\mathbb{E}[X]-c)^{2}.$$
(32)

Navedena jednakost vrijedi jer je $\mathbb{E}[X] = \mu$ konstanta, pa vrijedi $\mathbb{E}[X - \mu] = \mathbb{E}[X] - \mu = 0$, a također $\mathbb{E}[(\mathbb{E}[X] - c)^2] = (\mathbb{E}[X] - c)^2$. Primijenimo li (32) na (31), dobivamo:

$$r(\Theta, \theta) = \underbrace{\mathbb{E}\left[(\Theta - \mathbb{E}[\Theta])^2\right]}_{\text{varianca}} + \underbrace{(\mathbb{E}[\Theta] - \theta)^2}_{\text{pristranost}^2} = \text{Var}(\Theta) + b_{\theta}(\Theta)^2.$$
 (33)

Srednja kvadratna pogreška procjenitelja može se dakle rastaviti na varijancu i kvadrat pristranosti. Pristranost nam kazuje koliko procjenitelj griješi neovisno o varijacijama u uzorku, dok varijanca kazuje koliko vrijednost procjenitelja varira oko očekivane vrijednosti kako uzorak varira. Primijetite da, ako je procjenitelj nepristran, $b_{\theta}(\Theta) = 0$, srednja kvadratna pogreška procjenitelja jednaka je njegovoj varijanci.

4 Procjenitelj najveće izglednosti

Najjednostavniji, najvažniji i u praksi najčešće korišten procjenitelj jest **procjenitelj najveće izglednosti** (engl. maximum likelihood estimation, MLE). Neka je dan skup neoznačenih primjera $\mathcal{D} = \{\mathbf{x}^{(i)}\}_{i=1}^{N}$, za koje pretpostavljamo da su nezavisni i da potječu od identične razdiobe (pretpostavka iid). Pretpostavljamo da je riječ o nekoj nama poznatoj razdiobi $p(\mathbf{x}|\theta)$, definiranoj do na parametre $\boldsymbol{\theta}$:

$$\mathbf{x}^{(i)} \sim p(\mathbf{x}|\boldsymbol{\theta})$$
.

Naš je zadatak odrediti najizglednije parametre $\boldsymbol{\theta}$, odnosno takve parametre da uzorkovanje primjera $\mathbf{x}^{(i)} \in \mathcal{D}$ bude što je vjerojatnije moguće. Naime, u nedostatku dodatnih spoznaja, jedino što opravdano možemo pretpostaviti jest da je baš za uzorak \mathcal{D} – dakle uzorak koji imamo na raspolaganju – bilo najvjerojatnije da bude izvučen iz populacije, i da je to razlog zašto je realiziran baš taj uzorak. Budući da pretpostavljamo da su primjeri $\mathbf{x}^{(i)}$ iid, to je gustoća vjerojatnosti uzorka \mathcal{D} jednaka umnošku gustoća vjerojatnosti pojedinačnih primjera:

$$p(\mathcal{D}|\boldsymbol{\theta}) = p(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}|\boldsymbol{\theta}) = \prod_{i=1}^{N} p(\mathbf{x}^{(i)}|\boldsymbol{\theta}) \equiv L(\boldsymbol{\theta}|\mathcal{D}).$$
(34)

Ovime je definirana gustoća vjerojatnosti za uzorak \mathcal{D} , parametrizirana parametrima $\boldsymbol{\theta}$ (ako je varijabla \mathbf{x} diskretna, umjesto gustoće vjerojatnosti $p(\mathbf{x}^{(i)}|\boldsymbol{\theta})$ koristi se vjerojatnost

⁷Također: metoda najveće vjerodostojnosti, metoda najveće vjerojatnosti, ML-metoda.

 $P(\mathbf{x}^{(i)}|\boldsymbol{\theta})$). Međutim, moguće je gledati i obrnuto, pa reći da je to funkcija od $\boldsymbol{\theta}$, uz zadani parametar \mathcal{D} . Tada tu funkciju nazivamo **funkcija izglednosti** (engl. *likelihood function*) i označavamo s $L(\boldsymbol{\theta}|\mathcal{D})$. Ovo su zapravo dva različita pogleda na istu stvar: funkcija gustoće $p(\mathcal{D}|\boldsymbol{\theta})$ preslikava $\mathcal{D} \mapsto p(\mathcal{D}|\boldsymbol{\theta})$, dok funkcija izglednosti preslikava $\boldsymbol{\theta} \mapsto p(\mathcal{D}|\boldsymbol{\theta})$. Treba naglasiti da funkcija izglednosti $L(\boldsymbol{\theta}|\mathcal{D})$ nije funkcija gustoće vjerojatnosti od $\boldsymbol{\theta}$ te da ona ne mora biti normirana, tj. ne mora vrijediti $\int_{\boldsymbol{\theta}} L(\boldsymbol{\theta}|\mathcal{D}) \, \mathrm{d}\boldsymbol{\theta} = 1$. Očito je da $L(\boldsymbol{\theta}|\mathcal{D})$ nije normirana budući da općenito ne vrijedi $\int_{\boldsymbol{\theta}} p(\boldsymbol{x}|\boldsymbol{y}) \, \mathrm{d}\boldsymbol{y} = 1$.

Primjer 4 (Funkcija izglednosti) U 10 bacanja novčića (N = 10), glavu (H) dobivamo 8 puta, a pismo (T) 2 puta. Ishodi bacanja novčića čine naš uzorak \mathcal{D} .

Neka je parametar μ jednak vjerojatnosti da u bacanju novčića dobijemo glavu. Vrijedi dakle $P(X = H|\mu) = \mu$ i $P(X = T|\mu) = 1 - \mu$. Primijetite da je ovdje riječ o diskretnoj varijabli koja se pokorava Bernoullijevoj razdiobi parametriziranoj parametrom μ prema (22). Funkcija izglednosti za uzorak \mathcal{D} je

$$L(\mu|\mathcal{D}) = P(\mathcal{D}|\mu) = \prod_{i=1}^{10} P(X|\mu) = \mu^8 \cdot (1-\mu)^2$$

te izgleda ovako

Možemo se, na primjer, pitati kolika je izglednost da je vrijednost parametra μ jednaka 0.5. Vidimo da $L(\mu=0.5|\mathcal{D})\approx 0.001$. Važno je naglasiti da to ne znači da je vjerojatnost da $\mu=0.5$, uz zadani \mathcal{D} , jednaka 0.001 (funkcija izglednosti nije funkcija gustoće vjerojatnosti). Međutim, vrijedi obrnuto: 0.001 jest vjerojatnost uzorka \mathcal{D} , ako $\mu=0.5$, tj. $P(\mathcal{D}|\mu=0.5)=0.001$.

Iz slike vidimo da je za uzorak najizglednije da $\mu=0.8$, i to je vrijednost parametra kojom se maksimizira realizacija uzorka.

Kod procjene metodom najveće izglednosti naš je cilj pronaći $\hat{\boldsymbol{\theta}}_{\mathrm{ML}}$ koji maksimizira funkciju izglednosti, budući da time maksimiziramo vjerojatnost pojavljivanja uzorka \mathcal{D} :

$$\hat{\boldsymbol{\theta}}_{\mathrm{ML}} = \operatorname*{argmax}_{\boldsymbol{\theta}} L(\boldsymbol{\theta}|\mathcal{D}).$$

Na slici 3 ta je ideja ilustrirana za Gaussovu razdiobu. Parametri Gaussove razdiobe su $\boldsymbol{\theta}=(\mu,\sigma^2)$, gdje je μ srednja vrijednost a σ^2 je varijanca. Gaussova razdioba koja maksimizira vjerojatnost danog uzorka je upravo ona koja je prikazana na slici 3a. Parametri te razdiobe su $\mu=5$ i $\sigma^2=7$, i to su najizgledniji parametri za dani uzorak. Bilo

Slika 3: Maksimizacija izglednosti parametara μ i σ^2 Gaussove razdiobe: (a) Gaussova razdioba $\mathcal{N}(\mu, \sigma^2)$ koja maksimizira vjerojatnost uzorka, (b) funkcija log-izglednosti $\mathcal{L}(\mu, \sigma^2|\mathcal{D})$ (njezin maksimum označen je crvenom točkom).

koji drugi parametri promijenili bi izgled Gaussove krivulje i to bi dovelo do smanjenja umnoška $\prod p(x|\mu, \sigma^2)$, dakle do smanjenja vjerojatnosti uzorka \mathcal{D} .

Umjesto maksimiziranja funkcije izglednosti, često je mnogo praktičnije maksimizirati (prirodan) logaritam te funkcije, odnosno funkciju **log-izglednosti** (engl. log-likelihood):

$$\mathcal{L}(\boldsymbol{\theta}|\mathcal{D}) \equiv \ln L(\boldsymbol{\theta}|\mathcal{D}) = \ln \prod_{i=1}^{N} p(\mathbf{x}^{(i)}|\boldsymbol{\theta}) = \sum_{i=1}^{N} \ln p(\mathbf{x}^{(i)}|\boldsymbol{\theta}).$$
 (35)

Maksimizacija funkcije log-izglednosti istovjetna je maksimizaciji funkcije izglednosti budući da ove dvije funkcije maksimum poprimaju u istim točkama (funkcija ln je monotona). Maksimizacija ove funkcije je praktičnija jer umjesto umnoška radimo sa zbrojem, a lakše je i baratati s argumentima eksponencijalne funkcije. Na slici 3b dan je primjer funkcije log-izglednosti $\mathcal{L}(\mu, \sigma^2 | \mathcal{D})$ Gaussove razdiobe.

U slučajevima kada je to moguće i kada je to učinkovito, ovu optimizaciju provodimo analitički (nalaženjem nul-točaka prve derivacije). U mnogim slučajevima međutim analitičko rješenje ili nije moguće ili je računalno prezahtjevno, i tada pribjegavamo iterativnim optimizacijskim metodama.

U nastavku ćemo izvesti procjenitelje najveće izglednosti za nekoliko nama interesantnih teorijskih razdioba. U svim slučajevima koje ćemo razmotriti optimizaciju je moguće provesti analitički.

4.1 ML-procieniteli za Bernoullijevu razdiobu

Bernoullijeva razdioba ima μ kao jedini parametar. Izvedimo njegov procjenitelj najveće izglednosti. Funkcija log-izglednosti je

$$\mathcal{L}(\mu|\mathcal{D}) = \ln \prod_{i=1}^{N} P(x|\mu) = \ln \prod_{i=1}^{N} \mu^{x^{(i)}} (1-\mu)^{1-x^{(i)}} = \sum_{i=1}^{N} x^{(i)} \ln \mu + \left(N - \sum_{i=1}^{N} x^{(i)}\right) \ln(1-\mu).$$

Deriviranjem i izjednačavanjem s nulom dobivamo

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}\mu} = \frac{1}{\mu} \sum_{i=1}^{N} x^{(i)} - \frac{1}{1-\mu} (N - \sum_{i=1}^{N} x^{(i)}) = 0$$

iz čega kao procjenitelj najveće izglednosti slijedi

$$\hat{\mu}_{\rm ML} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)} \,. \tag{36}$$

Prema tome, najizglednija procjena za μ je **relativna frekvencija** događaja u uzorku, odnosno srednja vrijednost uzorka. Kako je pokazano u primjeru 2, očekivanje tog procjenitelja jednako je srednjoj vrijednosti razdiobe, $\mathbb{E}[x]$. Budući da za Bernoullijevu razdiobu vrijedi $\mathbb{E}[x] = \mu$, to slijedi $\mathbb{E}[\hat{\mu}_{ML}] = \mu$, odnosno $\hat{\mu}_{ML}$ je nepristran procjenitelj.

Važno je naglasiti da, premda je procjenitelj $\hat{\mu}_{\rm ML}$ nepristran (a također i valjan), procjena ipak ovisi o uzorku i ona ne mora uvijek biti dobra. Na primjer, za uzorak za koji $x^{(i)} = 1$, najizglednija procjena je $\hat{\mu}_{\rm ML} = 1$, što dovodi do **prenaučenosti** modela.

4.2 ML-procjenitelj za multinomijalnu varijablu

Funkcija log-izglednosti za razdiobu (23) je

$$\mathcal{L}(\boldsymbol{\mu}|\mathcal{D}) = \ln \prod_{i=1}^{N} P(\mathbf{x}|\boldsymbol{\mu}) = \ln \prod_{i=1}^{N} \prod_{k=1}^{K} \mu_k^{x_k^{(i)}} = \sum_{k=1}^{K} \sum_{i=1}^{N} x_k^{(i)} \ln \mu_k.$$
 (37)

Kako bismo dobili ML-procjenitelj, gornji izraz potrebno je maksimizirati s obzirom na μ_k , kao što smo radili i ranije. Međutim, u ovom slučaju u obzir moramo uzeti ograničenje $\sum_{k=1}^K \mu_k = 1$; ukoliko to ne učinimo, nećemo dobiti ispravno rješenje (uvjerite se u to). Optimizaciju s ograničenjem možemo provesti **metodom Lagrangeovih multiplikatora**. Uvodimo novu varijablu, tzv. **Lagrangeov multiplikator** λ , i umjesto maksimizacije izraza (37), maksimiziramo odgovarajuću Lagrangeovu funkciju:

$$\sum_{i=1}^{K} \sum_{k=1}^{N} x_k^{(i)} \ln \mu_k + \lambda \left(\sum_{k=1}^{K} \mu_k - 1 \right).$$

Deriviranjem po μ_k i izjednačavanjem s nulom dobivamo

$$\mu_k = -\frac{1}{\lambda} \sum_{i=1}^{N} x_k^{(i)} \,. \tag{38}$$

Kako bismo izračunali vrijednost multiplikatora λ , dobiveni izraz uvrštavamo u ograničenje $\sum_k \mu_k = 1$ i tako dobivamo:

$$\sum_{k=1}^{K} \mu_k = -\frac{1}{\lambda} \sum_{k=1}^{K} \sum_{i=1}^{N} x_k^{(i)} = 1.$$

Budući da svaka multinomijalna varijabla \mathbf{x} ima jedinicu postavljenu na samo jednoj komponenti, zbroj komponenata svih varijabli jednak je broju primjera N. Vrijedi dakle $\lambda = -N$, pa uvrštavanjem u (38) za ML-procjenitelj konačno dobivamo:

$$\hat{\mu}_{k,\text{ML}} = \frac{1}{N} \sum_{i=1}^{N} x_k^{(i)} = \frac{N_k}{N}$$
 (39)

gdje smo s N_k označili broj koliko je puta varijabla u uzorku poprimila vrijednost k. Kao i kod Bernoullijeve varijable, i ovdje smo za najizgledniju procjenu dobili relativnu frekvenciju, što je očekivan rezultat. Alternativno, optimizaciju izraza (37) mogli smo provesti tako da smo multinomijalnu varijablu \mathbf{x} tretirali kao K nezavisnih realizacija binarne varijable.

4.3 ML-procjenitelji za Gaussovu razdiobu

Izvedimo procjenitelje maksimalne izglednosti za parametre μ i σ^2 normalne razdiobe. Za dani uzorak $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$ takav da $x^{(i)} \sim \mathcal{N}(\mu, \sigma^2)$, funkcija log-izglednosti je

$$\mathcal{L}(\mu, \sigma | \mathcal{D}) = \ln \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x^{(i)} - \mu)^{2}}{2\sigma^{2}}\right\} = \sum_{i=1}^{N} \left(-\frac{1}{2}\ln(2\pi) - \ln\sigma - \frac{(x^{(i)} - \mu)^{2}}{2\sigma^{2}}\right)$$
$$= -\frac{N}{2}\ln(2\pi) - N\ln\sigma - \frac{\sum_{i}(x^{(i)} - \mu)^{2}}{2\sigma^{2}}.$$

Postavljanjem $\nabla \mathcal{L}(\mu, \sigma | \mathcal{D}) = 0$ i rješavanjem po μ odnosno σ^2 dobivamo procjenitelje najveće izglednosti

$$\hat{\mu}_{\rm ML} = \frac{1}{N} \sum_{i=1}^{N} x^{(i)} \tag{40}$$

$$\hat{\sigma}_{\mathrm{ML}}^2 = \frac{1}{N} \sum_{i=1}^{N} (x^{(i)} - \hat{\mu}_{\mathrm{ML}})^2. \tag{41}$$

(Uvjerite se u ove jednakosti.) Primijetite da je procjenitelj $\hat{\sigma}_{\rm ML}^2$ izražen pomoću procjenitelja $\hat{\mu}_{\rm ML}$, zato jer nam je prava vrijednost parametra μ nepoznata.

Za procjenitelj srednje vrijednosti $\hat{\mu}_{\mathrm{ML}}$ već smo utvrdili da je to nepristran procjenitelj za koji vrijedi $\mathbb{E}[\hat{\mu}_{\mathrm{ML}}] = \mu$ i $\mathrm{Var}(\hat{\mu}_{\mathrm{ML}}) = \sigma^2/N$ (v. primjer 2). Za razliku od procjenitelja $\hat{\mu}_{\mathrm{ML}}$, koji je nepristran, procjenitelj varijance $\hat{\sigma}_{\mathrm{ML}}^2$ nije nepristran (v. primjer 3). Razlika dolazi do izražaja kod malenih uzoraka, kada je za procjenu bolje koristiti nepristran procjenitelj $N\hat{\sigma}_{\mathrm{ML}}^2/(N-1)$.

Kao što ovaj primjer ilustrira, sasvim je moguće da postupak najveće izlgednosti rezultira procjeniteljem koji nije nepristran (najveća izglednost ne znači nužno nepristranost).

4.4 ML-procjenitelji za multivarijatnu Gaussovu razdiobu

Izvedimo ML-procjenitelje za parametre μ i Σ multivarijatne Gaussove razdiobe. Logizglednost jednaka je

$$\mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\Sigma} | \mathcal{D}) = \ln \prod_{i=1}^{N} p(\mathbf{x}^{(i)} | \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$= -\frac{nN}{2} \ln(2\pi) - \frac{N}{2} |\boldsymbol{\Sigma}| - \frac{1}{2} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x}^{(i)} - \boldsymbol{\mu}). \tag{42}$$

Derivacijom po μ i izjednačavanjem s nulom dobivamo

$$\frac{\partial}{\partial \boldsymbol{\mu}} \mathcal{L}(\boldsymbol{\mu}, \boldsymbol{\Sigma} | \mathcal{D}) = \frac{1}{2} \sum_{i=1}^{N} \boldsymbol{\Sigma}^{-1} (\mathbf{x}^{(i)} - \boldsymbol{\mu}) = 0$$

iz čega kao procijenitelj najveće izglednosti slijedi

$$\hat{\boldsymbol{\mu}}_{\mathrm{ML}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}^{(i)} \,. \tag{43}$$

Maksimizacija izraza (42) po Σ nešto je složenija, no daje očekivan rezultat:

$$\hat{\mathbf{\Sigma}}_{\mathrm{ML}} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}}_{\mathrm{ML}}) (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}}_{\mathrm{ML}})^{\mathrm{T}}.$$
 (44)

Procjenitelji $\hat{\boldsymbol{\mu}}_{\mathrm{ML}}$ i $\hat{\boldsymbol{\Sigma}}_{\mathrm{ML}}$ analogni su procjeniteljima $\hat{\mu}_{\mathrm{ML}}$ odnosno $\hat{\sigma}_{\mathrm{ML}}^2$ univarijatne Gaussove razdiobe. Također vrijede ista zapažanja što se tiče nepristranosti procjenitelja: procjenitelj $\hat{\boldsymbol{\mu}}_{\mathrm{ML}}$ je nepristran, dok procjenitelj $\hat{\boldsymbol{\Sigma}}_{\mathrm{ML}}$ podcjenuje i na malim uzorcima treba ga korigirati faktorom N/(N-1).

Primjer 5 (Procjena parametara multivarijatne razdiobe) Raspolažemo uzorkom $\mathbf{X} = {\{\mathbf{x}^{(i)}\}_{i=1}^{8}}$ za koji znamo da potječe iz multivarijatne normalne razdiobe:

$$\mathbf{x}^{(1)} = (9.59, -0.75, 0.60)$$
 $\mathbf{x}^{(5)} = (2.24, 0.02, -4.72)$ $\mathbf{x}^{(2)} = (2.30, 0.37, -2.90)$ $\mathbf{x}^{(6)} = (6.59, -0.20, -0.69)$ $\mathbf{x}^{(3)} = (8.87, -0.84, -0.28)$ $\mathbf{x}^{(7)} = (3.69, 0.35, -1.84)$ $\mathbf{x}^{(4)} = (3.99, 1.92, -0.13)$ $\mathbf{x}^{(8)} = (3.10, 1.29, -0.59)$

Prema (43), ML-procjena vektora srednje vrijednosti je

$$\hat{\boldsymbol{\mu}} = \frac{1}{8} \sum_{i=1}^{8} \mathbf{x}^{(i)} \approx (5.05, 0.27, -1.32).$$

Prema (44), ML-procjena kovarijacijske matrice je

$$\hat{\mathbf{\Sigma}} = \frac{1}{8} \sum_{i=1}^{8} (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}}) (\mathbf{x}^{(i)} - \hat{\boldsymbol{\mu}})^{\mathrm{T}} \approx \begin{pmatrix} 7.47 & -1.63 & 3.20 \\ -1.63 & 0.79 & -0.01 \\ 3.20 & -0.01 & 2.68 \end{pmatrix}.$$

Kovarijacijska matrica nam govori da je varijanca najveća za prvu, najmanja za drugu varijablu. Prema (17), koeficijenti korelacije između varijabli su

$$\hat{\rho}_{X_1,X_2} = \frac{\text{Cov}(X_1, X_2)}{\sigma_{X_1}\sigma_{X_2}} = \frac{-1.63}{\sqrt{7.47 \times 0.79}} \approx -0.670$$

$$\hat{\rho}_{X_1,X_3} = \frac{\text{Cov}(X_1, X_3)}{\sigma_{X_1}\sigma_{X_3}} = \frac{3.20}{\sqrt{7.47 \times 2.68}} \approx 0.715$$

$$\hat{\rho}_{X_2,X_3} = \frac{\text{Cov}(X_2, X_3)}{\sigma_{X_2}\sigma_{X_3}} = \frac{-0.01}{\sqrt{0.79 \times 2.68}} \approx 0.007$$

Vidimo da su varijable X_1 i X_2 negativno korelirane, varijable X_2 i X_3 su pozitivno korelirane, dok varijable X_2 i X_3 gotovo da i nisu korelirane. Budući da su ovi koeficijenti računati na temelju uzorka, oni su također procjene i mogu varirati u ovisnosti o uzorku.

5 Bayesovski procjenitelj

Procjenitelj najveće izglednost najjednostavniji je način procjene parametara razdiobe. Međutim, njegov je najveći nedostatak sklonost prenaučenosti. Na primjer, ako je varijabla X Bernoullijeva, i ako se u uzorku nikada nije realizirala, najizglednija procjena za $\hat{\mu}_{\text{ML}} = P(X=1)$ jest 0. U mnogim situacijama ne možemo biti zadovoljni s takvom procjenom jer iskustveno znamo da ona nije realna i da je problem naprosto u tome što s uzorkom "nismo imali sreće". Vidjet ćemo također da procjena koja rezultira ništicom može biti loša za rad klasifikatora (npr. naivnog Bayesovog).

Uobičajen način rješavanja ovog problema jest uporaba **zaglađenih procjena** (engl. *smoothed estimates*). Zaglađena procjena preraspoređuje (zaglađuje) ukupnu masu vjerojatnosti tako da vrijednosti parametara koje bi inače imale vjerojatnost nula dobiju neku malu vjerojatnost (i obrnuto: da vrijednosti koje bi inače imale vjerojatnost 1 dobiju nešto manju vjerojatnost). Na taj se način smanjuje prenaučenost modela.

5.1 Bayesovski i frekventistički pristup

Teorijski okvir zaglađene procjene parametara daje **bayesovska statistika** (engl. Bayesian statistics). Bayesovska statistika koristi teoriju vjerojatnosti kao alat za modeliranje nesigurnosti znanja. Prema bayesovskom shvaćanju teorije vjerojatnosti, jednakost P(X=x)=0.7 odgovara izjavi "vjerujem da X=x s vjerojatnošću 0.7". Suprotno bayesovskom jest **frekventističko** shvaćanje teorije vjerojatnosti, koje vjerojatnost tumači kao vjerojatnost ishoda kod ponavljanja eksperimenata, odnosno kao relativnu frekvenciju. Prema frekventističkom shvaćanju, jednakost P(X=x)=0.7 odgovara izjavi "u 70% slučajeva vrijedi X=x".

U nekim slučajevima frekventističko tumačenje intuitivnije je od bayesovskog, dok je u nekim slučajevim obrnuto. Npr., vjerojatnost da bacajući dvije kocke dobijemo dvije šestice intuitivno je lakše tumačiti frekventistički, budući da je eksperiment moguće ponavljati. S druge strane, vjerojatnost da je neki planet naseljen inteligentnim bićima intuitivno je lakše tumačiti bayesovski, budući da tako izražavamo nesigurnost našeg znanja, a sâm eksperiment uopće nije ponovljiv.

5.2 Bayesovski procjenitelj

Ideja kod bayesovskog procjenitelja jest kombinirati apriorno znanje o mogućim vrijednostima parametra θ sa znanjem koje proizlazi iz uzorka. (Kod metode najveće izglednosti tako nešto nije moguće – ondje koristimo samo znanje koje proizlazi iz uzorka.) Ako, prije nego što uopće pogledamo uzorak, imamo neko apriorno znanje o distribuciji parametara, to je znanje vrlo korisno i treba ga iskoristiti. To je osobito slučaj ako je uzorak malen, jer tada ML-procjenitelj lako može prenaučiti model.

Naravno, točna vrijednost parametra θ nije nam poznata (inače uopće ne bismo trebali raditi procjenu na temelju uzorka), ali imamo neku predodžbu o mogućim vrijednostima tog parametra. To znanje modeliramo kao "nesigurnost", na način da parametar θ tretiramo kao slučajnu varijablu i definiramo njezinu distribuciju, $p(\theta)$. Npr., možemo reći da je vrlo vjerojatno da $\mu=0.5$, ali da je manje vjerojatno da $\mu=0$, što možemo modelirati primjerice kao $p(\mu=0.5)=0.8$ i $p(\mu=0)=0.1$. Primijetite da se ovdje zapravo radi o distribuciji nad varijablom koja je parametar druge distribucije, odnosno o distribuciji distribucije.

Sada kombiniramo apriornu razdiobu $p(\theta)$ s izglednošću $p(\mathcal{D}|\theta)$ koju smo dobili na temelju uzorka (skupa primjera) \mathcal{D} , koristeći Bayesovo pravilo:

$$p(\theta|\mathcal{D}) = \frac{p(\mathcal{D}|\theta)p(\theta)}{p(\mathcal{D})} = \frac{p(\mathcal{D}|\theta)p(\theta)}{\int p(\mathcal{D}|\theta')p(\theta')d\theta'}$$
(45)

čime smo dobili aposteriornu vjerojatnost za parametar θ za dani uzorak \mathcal{D} . Bayesovski procjenitelj definiran je kao očekivanje te vjerojatnosti:

$$\hat{\theta}_{\text{Bayes}} = \mathbb{E}[\theta|\mathcal{D}] = \int \theta \, p(\theta|\mathcal{D}) d\theta \,.$$
 (46)

Ovaj integral može biti teško izračunljiv, ovisno o obliku apriorne distribucije $p(\theta)$. Ovisno o izboru te distribucije, umnožak $p(\mathcal{D}|\theta)p(\theta)$ bit će u različitim oblicima. Najbolji oblik za $p(\theta)$ – za koji je integral analitički izračunljiv – jest onaj koji je istog oblika kao aposteriorna gustoća $p(\theta|\mathcal{D})$. Ako je to ispunjeno, distribucije $p(\theta)$ i $p(\theta|\mathcal{D})$ zovemo konjugatnim distribucijama. Nadalje, distribuciju $p(\theta)$ zovemo konjugatnom apriornom distribucijom (engl. $conjugate\ prior$) za izglednost $p(\mathcal{D}|\theta)$.

Sve razdiobe koje smo razmatrali pripadaju tzv. **eksponencijalnoj familiji distribucija** i imaju konjugatne apriorne distribucije. Konkretno, konjugatna apriorna distribucija za Gaussovu distribuciju je i sama Gaussova distribucija, dok je za multinomijalnu distribuciju konjugatna apriorna distibucija **Dirichletova distribucija**.

5.3 Laplaceovo zaglađivanje

U nastavku ćemo se usredotočiti na bayesovski procjenitelj za multinomijalnu varijablu, poznat pod nazivom **Laplaceovo zaglađivanje** (engl. Laplace smoothing). Parametar multinomijalne razdiobe, definirane s (23), jest $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K)$. Za apriornu razdiobu parametra $p(\boldsymbol{\mu})$ koristimo Dirichletovu razdiobu, konjugatnu apriornu distribuciju za multinomijalnu distribuciju. Dirichletova razdioba

$$Dir(\boldsymbol{\mu}|\boldsymbol{\alpha}) = Dir(\mu_1, \dots, \mu_K | \alpha_1, \dots, \alpha_k)$$

ima vektor parametara $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_K)$ i također je zvonolika (konkretan izraz za Dirichletovu distribuciju ovdje nas ne zanima). Parametri $\boldsymbol{\alpha}$ određuju oblik Dirichletove razdiobe i zapravo su hiperparametri našeg modela.

Uvrštavanje Dirichletove razdiobe u (45) i izračunavanjem očekivanja (46), za zaglađeni procjenitelj parametra μ_k naposlijetku dobivamo:

$$\hat{\mu}_{k,\text{Bayes}} = \frac{N_k + \alpha_k}{N + \sum_{i=1}^K \alpha_i}.$$

Usporedimo ovaj izraz s izrazom (39) za ML-procjenitelj. Vrijednost N_k/N je relativna frekvencija koju, kao i kod ML-procjenitelja, izračunavamo na temelju uzorka. Međutim, bayesovski procjenitelj dodatno kombinira relativnu frekvenciju s apriornim znanjem. Interpretacija bayesovskog procjenitelja je sljedeća: prije nego što smo opazili uzorak \mathcal{D} , "virtualno" smo opazili uzorak veličine $\sum_{i=1}^{K}$, u kojemu se slučajna varijabla realizirala s vrijednošću k ukupno α_k puta. Za virtualni uzorak veličine 0, bayesovski procjenitelj degradira na ML-procjenitelj.

Možemo pojednostaviti Dirichletovu apriornu distribuciju na način da pretpostavimo $\alpha_i = \lambda$ za svaki $i = 1, \dots, K$, tj. da koristimo apriornu distribuciju $\mathrm{Dir}(\mu_1, \dots, \mu_K | \lambda, \dots, \lambda)$. Tako dobivamo **Laplaceov (Lidstonov) procjenitelj**:

$$\hat{\mu}_{k,\text{Bayes}} = \frac{N_k + \lambda}{N + K\lambda}.$$

Odabirom različitih vrijednosti za λ dobivamo različite procjenitelje. Najčešće se uzima:

- Laplaceovo pravilo ili add-one-rule ($\lambda = 1$): $\hat{\mu}_{k,\text{Bayes}} = \frac{N_k + 1}{N + K}$,
- Jeffreys-Perksovo pravilo ($\lambda = 1/2$): $\hat{\mu}_{k,\text{Bayes}} = \frac{N_k + 1/2}{N + K/2}$,
- Schurmann-Grassbergerovo pravilo ($\lambda = 1/K$): $\hat{\mu}_{k,\text{Bayes}} = \frac{N_k + 1/K}{N+1}$.

Primjer 6 (Laplaceov procjenitelj) Neka je X multinomijalna varijabla s K=5 mogućih stanja, $x \in \{0,1,2,3,4\}$. Iz ove razdiobe dobiven je uzorak veličine N=16:

$$\mathbf{X} = (0, 1, 2, 0, 4, 1, 0, 0, 2, 2, 1, 4, 2, 1, 0, 2).$$

Prema (39), ML-procjena parametra $\mu = (\mu_1, \mu_2, \mu_3, \mu_4, \mu_5)$ je

$$\hat{\boldsymbol{\mu}}_{\mathrm{ML}} \approx (0.3125, 0.25, 0.3125, 0.0, 0.125) \,.$$

Dobivena procjena je prenaučena: vjerojatnost ishoda X=3 jednaka je nuli zbog toga što se u uzorku varijabla X nikada nije realizirala s vrijednošću d. Zaglađeni procjenitelji daju drugačije procjene:

Laplace: $\hat{\mu} \approx (0.286, 0.238, 0.286, 0.048, 0.142)$ Jeffreys-Perks: $\hat{\mu} \approx (0.298, 0.243, 0.298, 0.027, 0.135)$ Schurmann-Grassberger: $\hat{\mu} \approx (0.306, 0.247, 0.306, 0.012, 0.129)$

Iz primjera je vidljivo da je Schurmann-Grassbergerov procjenitelj "najkonzervativniji" u smislu da događaju koji se u uzorku nije realizirao dodjeljuje najmanje vjerojatnosne mase.