

FIGURE 1: Un événement et son contraire

FIGURE 2: Union et intersection d'événements

Exemple

Au lancer d'un dé cubique, on considère les événements A : «Obtenir au moins 5», et B : «Obtenir un nombre pair». On a :

•
$$A = \{5, 6\}.$$

•
$$A \cap B = \{6\}.$$

•
$$B = \{2; 4; 6\}.$$

•
$$A \cup B = \{2; 4; 5; 6\}.$$

• $\bar{A} = \{1; 2; 3; 4\}.$

Exemple

On lance un dé à 6 faces truqué. Une étude statistique donne le tableau suivant :

Issue x_i	1	2	3	4	5	6
Probabilité p_i	0,125	0, 125	0,125	0,125	0, 2	0, 3

On s'intéresse à l'événement A : «le nombre obtenu est pair». On a :

$$p(A) = p_2 + p_4 + p_6$$

= 0, 125 + 0, 125 + 0, 3
= 0, 55

La probabilité d'obtenir un nombre pair est de 0,55.

Exemple

On lance un dé à 6 faces non truqué. Puisque le de n'est pas truqué, nous sommes dans une situation d'équiprobabilité. On s'intéresse à l'événement A: «le nombre obtenu est pair». On a :

$$p(A) = p_2 + p_4 + p_6$$

$$= \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$$

$$= \frac{3}{6}$$

$$= 0, 5$$

Dans ce cas, la probabilité d'obtenir un résultat pair est de 0,5.

Exemple

On lance un dé à 6 faces non truqué. Puisque le de n'est pas truqué, nous sommes dans une situation d'équiprobabilité. On s'intéresse à l'événement A: «le nombre obtenu est pair». On a :

$$p(A) = p_2 + p_4 + p_6$$

$$= \frac{1}{6} + \frac{1}{6} + \frac{1}{6}$$

$$= \frac{3}{6}$$

$$= 0, 5$$

Dans ce cas, la probabilité d'obtenir un résultat pair est de 0,5.