Introduction to Text Representations

LING575

Yan Song

Outline

- Why?
- Encodings for Computer
- Different Represeantions for Natural Languages
 - One-hot Representation
 - Other Numerical Ones
 - Neural Representation
 - Evaluate
- Summary

Why?

- "Can machines think?"

 Computing Machinery and Intelligence, 1950
- "replace the question by another, which is closely related to it and is expressed in relatively unambiguous words"
 - Define "think"
 - Define "machine", with the tools

Alan Turing

Why?

- Natural Language Processing
 - 1950-1966 ALPAC report
 - 1966-1990 Rationalism
 - 1990-2010 Empericalism
 - 2010-nowadays Learning and Data Domination
- Methodology
 - Rule-based
 - Example-based
 - Statistical methods
 - Shallow learning
 - Deep learning

Why?

- (Written) Language is a symbol system
- Machine normally deals with numbers (0,1)
- Keep as much information as possible
- Language independent
- Efficiency and robustness

•

Encodings for Computer

What do you have in your mind?

Encodings for Computer

What computer systems do in coding texts?

(1) ASCII

- In ASCII codes each code is made of 7 bits.
- Number of possible codes $M = 2^7 = 128$ codes.
- Bit-patterns ranging from 0000000 to 1111111
- The first pattern represents (null character)
- The last pattern represents (delete character)

(2) Extended ASCII

• Is invented to make the bit-pattern length equal to 8 bits (Byte), by adding a bit to the left of the ASCII code representation.

Ex. If ASCII code is 1111111 the extended ASCII code is 01111111.

• Extended ASCII is not used because it is not standardized as each manufacturer has different 8-bits system.

(3) Unicode

- To represent more languages' character beside English, Unicode is invented
- Uses 16 bit pattern → # of codes = 2¹⁶=65536
 (almost) enough to represent all world's languages.
- Some codes are allocated for geographical and special symbols
- Java uses Unicode, Microsoft uses the first 256 symbols

(3) Unicode - UTF

(3) Unicode - UTF-8

What we need to present natural language?

- Can we use the aforementioned coding schemes in NLP
 - Yes?
 - No?
- What can be taken away?
 - One array or sequence
 - Numerical
 - Discriminative (discreet)

One-hot Representation

```
Rome Paris
Rome = [1, 0, 0, 0, 0, 0, 0, ..., 0]

Paris = [0, 1, 0, 0, 0, 0, ..., 0]

Italy = [0, 0, 1, 0, 0, 0, ..., 0]

France = [0, 0, 0, 1, 0, 0, ..., 0]
```

One-hot Representation

- Advantages?
 - Intuitionistic
 - Easy to encode
 - Categorical meaning
 - •

One-hot Representation

- Disadvantages?
 - Serious data sparseness
 - No word-word relation
 - Restricted in further utilization
 - •

More Numerical?

- What if the "1" is an "N"?
- What if there are N "1"s? a.k.a. N-hot
- Still so sparse?
 - Dense representation?

How to Give a Better Value?

- Categorical meaningful?
 - Frequency/Weights/Information bearing/Topic...
- Overall menaingful?
 - Distributed/Neural/...

Categorical Meaningful Representations

• Term Frequencies

Term	Document						
	d1	d2	d3	d4	d5	d6	d7
tl	2	1	0	0	0	0	0
t2	1	2	0	0	0	0	1
<i>t3</i>	3	1	0	0	1	1	0
t4	0	0	1	2	1	1	1
t5	0	0	1	1	1	1	1
<i>t6</i>	0	0	1	1	0	0	0

Topic Representation

	Word 1	Word 2	Word	Word N
Topic 1	$P(w_1 t_1)$	$P(w_2 t_1)$	***	$P(w_N t_1)$
Topic 2	$P(w_1 t_2)$	$P(w_2 t_2)$		$P(w_N t_1)$
Topic 3	$P(w_1 t_3)$	$P(\mathrm{w}_2 t_3)$	***	$P(w_N t_1)$
	***	***	***	
Topic K	$P(w_1 t_K)$	$P(w_2 t_M)$	***	$P(w_N t_1)$

Topic-Word Distribution

Summary

- What can you conclude from the above representations?
 - Intuitive
 - Easy to measure and evaluate
 - Static
 - •
- Are they good enough?

Neural Text Representation

- Word embedding
 - Not intuitive
 - Hard to evaluate
 - Dynamic
 - •
- Why we need that?

Neural Text Representation

Neural Text Representation

Evaluate?

- How do you know a representation is better?
- Idea: How about measure their relations instead of direct assessment
 - E.g., Euclidean distance? Distance between two v_1 and v_2 : $|v_1 v_2|$.
- Why this (or similar way) is not a good idea?
 - Serious normalization problem
- How about we look at vector angles?

Cosine Similarity

$$\text{similarity} = \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

- -1, exact opposite
- 0, orthogonality or decorrelation
- 1, exact the same

Summary

- We need text representions is a compromise with computer!
- One-dimensional array is the main format
- There are various ways to represent text
 - Depending on how you want to use it
- Conventional Methods
- What can be done with neural text representations
- How to evaluate

Homework Assignment 1

- Presentations from 3 groups (already in Canvas) for different text representation methods (40 mins)
- Topic per group (difficulties are marked with ★)
 - TF/IDF Term Frequency / Inversed Document Frequency ★
 - LSA Latent Semantic Analysis (with SVD) ★★
 - LDA Latent Dirichlet Allocation (with Gibbs sampling) ★★★
- Policy
 - Topics are "first come first occupy"
 - Topic for each team are different
 - Higher credits will be obtained if you present a difficult one

Homework Assignment 1

- Outlines for your presentation (must have items)
 - Introduction to the method
 - Alogrithm details (architecture, flow, etc...)
 - Performance (showcase)
 - Potential Application
- Requirements
 - At least two students should present
 - Everyone's work in a group should be listed in the presentation
 - NO OVERTIME allowed