Final Project

甘文迪 PB19030801

2022-6

考虑数值求解如下的优化问题

$$\min_{u(x)\in C_0^1([0,1])} \int_0^1 \left\{ \frac{1}{2} (u'(x))^2 + \frac{\alpha}{4} u^4(x) - f(x)u(x) \right\} dx \tag{1}$$

令 $h=\frac{1}{n}$ $x_i=ih, i=0,\ldots,n$ 。记 $f_i=f(x_i)$, u_i 为 $u(x_i)$ 的数值逼近,则 $u_0=u_n=0$ 。用如下数值积分格式

$$\min_{\{u_1,\dots,u_{n-1}\}} \sum_{i=1}^{n} \frac{1}{2} \left(\frac{u_i - u_{i-1}}{h} \right)^2 h + \sum_{i=1}^{n-1} \left(\frac{\alpha}{4} u_i^4 - f_i u_i \right) h \tag{2}$$

分别记 $u_h = (u_1, \ldots, u_{n-1})^T$, $f_h = (f_1, \ldots, f_{n-1})^T$ 。 试回答如下问题

1 当 $\alpha=0$ 时, 推导 u_1,\ldots,u_{n-1} 满足的线性方程组 $A_hu_h=f_h$

$$T = \sum_{i=1}^{n} \frac{1}{2} \left(\frac{u_i - u_{i-1}}{h} \right)^2 h + \sum_{i=1}^{n-1} \left(\frac{\alpha}{4} u_i^4 - f_i u_i \right) h$$
$$\frac{\partial T}{\partial u_k} = 0$$

$$\frac{\partial T}{\partial u_k} = \frac{\partial}{\partial u_k} \left(\frac{1}{2} \left(\frac{u_k - u_{k-1}}{h} \right)^2 h + \frac{1}{2} \left(\frac{u_{k+1} - u_k}{h} \right)^2 h + \left(\frac{\alpha}{4} u_k^4 - f_k u_k \right) h \right)
= \frac{u_k - u_{k-1}}{h} - \frac{u_{k+1} - u_k}{h} + \left(\alpha u_k^3 - f_k \right) h = 0
2u_k - u_{k+1} - u_{k-1} + \left(\alpha u_k^3 - f_k \right) h^2 = 0$$

当
$$\alpha = 0$$
 时,

$$2u_k - u_{k+1} - u_{k-1} = f_k h^2$$

$$A_h = \begin{bmatrix} 2 & -1 & 0 & 0 & \cdots & 0 & 0 \\ -1 & 2 & -1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 2 & -1 & \cdots & 0 & 0 \\ 0 & 0 & -1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 2 & -1 \\ 0 & 0 & 0 & 0 & \cdots & -1 & 2 \end{bmatrix} / h^2$$

$$A_h u_h = f_h$$

2 当 $f(x) = \pi^2 \sin(\pi x)$, n = 10, 20, 40, 80, 160 时,分别利用 Jacobi 和 Gauss-Seidel 方法求解 $A_h u_h = f_h$ (迭代法的终止准则 $\varepsilon = 10^{-10}$),并比较 u_h 与精确解 $u_e(x) = \sin(\pi x)$ 之间的误差 $e_h = ||u_h - u_e(x)||_2$,记录在一张表中

当 n=10 时,用 Jacobi 方法求出的解为

$$\begin{cases} u_1 = 0.3115711487 \\ u_2 = 0.5926435426 \\ u_3 = 0.8157038572 \\ u_4 = 0.9589173951 \\ u_5 = 1.0082654171 \\ u_6 = 0.9589173951 \\ u_7 = 0.8157038572 \\ u_8 = 0.5926435426 \\ u_9 = 0.3115711487 \end{cases}$$

表 1: Jacobi 和 Gauss-Seidel 方法求解 $A_h u_h = f_h$ 的误差 e_h

1 0:00 00 00 00 00 00 00 00 00 00 00 00 0		
h	Jacobi	Gauss-Seidel
$\frac{1}{10}$	0.018482	0.018482
$\frac{1}{20}$	0.006510	0.006510
$\frac{1}{40}$	0.002300	0.002300
$\frac{1}{80}$	0.000813	0.000813
$\frac{1}{160}$	0.000287	0.000288

3 假设 (2) 中的 u_h 对 (1) 的逼近误差满足 $e_h = \Theta(h^\beta)$,基于上表中的数据试利用最小二乘法找到 β

作预处理,对两边求对数

$$e_h = ah^{\beta}$$

$$\ln e_h = \ln a + \beta \ln h$$

计算 β , 得到

• Jacobi: $\beta = 1.5015$

• Gauss-Seidel: $\beta = 1.5013$

图 1: Jacobi 方法求解的误差 e_h 的拟合曲线

4 对 n = 10, 20, 40, 80, 160, 分别记录 Jacobi 和 Gauss-Seidel 迭代法收敛所需要的迭代次数在同一张表中,从中你能得到什么结论?

表 2: Jacobi 和 Gauss-Seidel 迭代法求解 $A_h u_h = f_h$ 的迭代次数

n	Jacobi	Gauss-Seidel
10	421	203
20	1619	776
40	6157	2939
80	23296	11087
160	87806	41652

Gauss-Seidel 方法达到一定精度所需的迭代次数更少,大约是 Jacobi 方法的一半。通过拟合,Jacobi 和 Gauss-Seidel 的迭代次数的增长阶大约是 1.91,接近二次。

5 当 $\alpha = 1$, 推导 u_1, \ldots, u_{n-1} 满足的非线性方程组

$$2u_k - u_{k+1} - u_{k-1} + (\alpha u_k^3 - f_k) h^2 = 0$$

当 $\alpha = 1$ 时,

$$2u_k - u_{k+1} - u_{k-1} + (u_k^3 - f_k) h^2 = 0$$

$$\begin{cases} 2u_1 - u_2 - u_0 + (u_1^3 - f_1)h^2 = 0 \\ 2u_2 - u_3 - u_1 + (u_2^3 - f_2)h^2 = 0 \\ \vdots \\ 2u_{n-1} - u_n - u_{n-2} + (u_{n-1}^3 - f_{n-1})h^2 = 0 \end{cases}$$

6 当 $f(x) = \pi^2 \sin(\pi x) + \sin^3(\pi x)$, n = 10, 20, 40, 80, 160 时,利用牛顿迭代法求解上一小题中的非线性方程组,并比较 u_h 与精确解 $u_e(x) = \sin(\pi x)$ 之间的误差 $e_h = ||u_h - u_e(x)||_2$,记录在一张表中,并利用最小二乘法找出该情形下算法的收敛阶

当 n=10 时,用牛顿迭代法求出的解为

$$\begin{cases} u_1 = 0.31114144 \\ u_2 = 0.59179025 \\ u_3 = 0.81446878 \\ u_4 = 0.95740830 \\ u_5 = 1.00665582 \\ u_6 = 0.95740830 \\ u_7 = 0.81446878 \\ u_8 = 0.59179025 \\ u_9 = 0.31114144 \end{cases}$$

表 3: 牛顿迭代法求解 $A_h u_h = f_h$ 的误差 e_h

n	e_h
10	0.015018
20	0.005301
40	0.001873
80	0.000662
160	0.000234

用最小二乘法求出的收敛阶为 $\beta = 1.5007$

图 2: 牛顿迭代法求解的误差 ең 的拟合曲线

