Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Ans - The optimal value of alpha for lasso regression is 0, and for ridge regression it is 0.01

If we double the value of alpha -

- Coefficients will be penalized more leading to smaller weights
- R2 value may decrease

What will be the most important predictor variables after the change is implemented? will be those that still have non-zero coefficients like -

The most important variable after the changes has been implemented for ridge regression are as follows:-

- 1. MSZoning_FV
- 2. MSZoning_RL
- 3. Neighborhood Crawfor
- 4. MSZoning RH
- 5. MSZoning RM
- 6. SaleCondition Partial
- 7. Neighborhood_StoneBr
- 8. GrLivArea
- 9. SaleCondition Normal
- 10. Exterior1st_BrkFace

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Ans If we want to retain all predictors while controlling over fitting we will use chose **Ridge**, and **lasso** if we have to prioritize feature selection and we kind of analyze that out of all - there are only few predictors

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Ans After removing the five most important predictor variables in the Ridge model, the new top predictor variables are:

- 1. GrLivArea
- 2. OverallQual
- 3. OverallCond
- 4. TotalBsmtSF
- 5. GarageArea

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Ans: The model should be as simple as possible, though its accuracy will decrease but it will be more robust and generalisable. It can be also understood using the Bias-Variance trade-off. The simpler the model the more the bias but less variance and more generalizable. Its implication in terms of accuracy is that a robust and generalisable model will perform equally well on both training and test data i.e. the accuracy does not change much for training and test data.

Bias: Bias is error in model, when the model is weak to learn from the data. High bias means model is unable to learn details in the data. Model performs poor on training and testing data.

Variance: Variance is error in model, when model tries to over learn from the data. High variance means model performs exceptionally well on training data as it has very well trained on this of data but performs very poor on testing data as it was unseen data for the model. It is important to have balance in Bias and Variance to avoid overfitting and under-fitting of data.