Step 1: Business and Data Understanding

Key Decisions:

Answer these questions

- 1. What decisions needs to be made?
 - ➤ Should the company send out this year's catalog to 250 new customers (based on the expected more than \$10,000 profit)?
- 2. What data is needed to inform those decisions?
 - ➤ To make the decision, we need to calculate total expected profit contribution from 250 new customs. Before that we must predict the Avg_Sale_Amount for the same group.
 - We need historical data about the Sales from the last year when company send out its first catalog.
 - > All the predictor variables which could have affected the Sales last year.
 - Formula to calculate the profit for the company.
 - Probability that the customer will buy the product after receiving the catalog.

Step 2: Analysis, Modeling, and Validation

1. How and why did you select the predictor variables in your model? You must explain how your continuous predictor variables you've chosen have a linear relationship with the target variable.

Answer: In order to predict the total profit from 250 new customers, it is important for us to understand from the existing customer data that which predictor variables have a linear relationship with the Avg_Sale_Amount. For the numerical variable we can simply create a scatter plot and understand the relationship and for categorical variable this can done by calculating p-value.

Useful Numerical predictor variables in the existing customer data: Avg_Num_Products_Purchased, Years_as_Customer, Zip, Store Number

Useful Categorical predictor variables in the existing customer data: Customer_Segment, City

Conclusion from the following scatterplots: Only Avg_Num_Products_Purchased has linear relationship with Avg_Sale_Amount. Going ahead with that, City and Customer_Segment.

On the basis of the p-value for the City only Avg_Num_Products_Purchased and Customer_Segment are significant for our model.

CityAurora	-15.4086	10.736	-1.43517	0.15137
CityBoulder	-38.1792	80.032	-0.47705	0.63337
CityBrighton	-67.9209	97.739	-0.69492	0.48717
CityBroomfield	-4.2820	15.108	-0.28342	0.77688
CityCastle Pines	-85.4136	97.724	-0.87403	0.38219
CityCentennial	-6.4703	17.885	-0.36177	0.71756
CityCommerce City	-32.7602	44.501	-0.73616	0.4617
CityDenver	4.1827	10.100	0.41413	0.67881
CityEdgewater	31.2743	40.682	0.76876	0.44211
CityEnglewood	9.4544	20.368	0.46417	0.64257
CityGolden	-13.0077	32.780	-0.39681	0.69154
CityGreenwood Village	-47.3944	37.904	-1.25038	0.21128
CityHenderson	-294.1489	138.057	-2.13064	0.03322 *
CityHighlands Ranch	-19.4018	30.027	-0.64614	0.51826
CityLafayette	-41.1770	62.189	-0.66212	0.50796
CityLakewood	-5.7950	12.820	-0.45202	0.6513
CityLittleton	-21.7460	18.432	-1.17980	0.2382
CityLone Tree	77.8025	138.015	0.56373	0.573
CityLouisville	-33.7154	69.368	-0.48603	0.62699
CityMorrison	-11.8687	52.778	-0.22488	0.82209
CityNorthglenn	-16.3087	29.446	-0.55385	0.57973
CityParker	0.8353	27.904	0.02993	0.97612
CitySuperior	-55.1106	46.734	-1.17923	0.23843
CityThornton	29.4867	24.860	1.18613	0.23569
CityWestminster	-7.6342	17.316	-0.44089	0.65933
CityWheat Ridge	7.0403	20.689	0.34028	0.73367

2. Explain why you believe your linear model is a good model.

Answer: Predictors variable considered for analysis are: Avg_Num_Products_Purchased and Customer_Segment. Following is the results from the Linear Regression model.

Coefficients:				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	303.46	10.576	28.69	< 2.2e- *** 16
Customer_SegmentLoyalty Club Only	-149.36	8.973	-16.65	< 2.2e- *** 16
Customer_SegmentLoyalty Club and Credit Card	281.84	11.910	23.66	< 2.2e- *** 16
Customer_SegmentStore Mailing List	-245.42	9.768	-25.13	< 2.2e- *** 16
Avg_Num_Products_Purchased	66.98	1.515	44.21	< 2.2e- *** 16

Significance codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 137.48 on 2370 degrees of freedom Multiple R-squared: 0.8369, Adjusted R-Squared: 0.8366

F-statistic: 3040 on 4 and 2370 degrees of freedom (DF), p-value <

2.2e-16

Here is the reason, why this model is a good model:

- P-value for all the predictors variables are way less than 0.05, which means probability that coefficient for Customer_Segment and Avg_Num_Products_Purchased are zero is very less. That indicates that the model is significant.
- ➤ R-squared value for the model is .8369 which is close to 1. It means data fits very well in the created model.
- 3. What is the best linear regression equation based on the available data? Each coefficient should have no more than 2 digits after the decimal (ex: 1.28)

Answer:

Avg_Sale_Amount = 303.46 - 149.36 * Customer_Segment (Loyalty_Club_Only) + 281.84 * Customer_Segment (Loyalty_Club_And_Credit_Card) - 245.42 * Customer_Segment (Store_Mailing_List) + 0 * Customer_Segment (Credit_Card_Only) + 66.98 * Avg_Number_Products_Purchased

Step 3: Presentation/Visualization

1. What is your recommendation? Should the company send the catalog to these 250 customers?

Answer: The company should send the catalog to 250 new customers because the predicted overall profit is more than \$10,000.

2. How did you come up with your recommendation? (Please explain your process so reviewers can give you feedback on your process)

Answer:

Step 1: Predicted the Avg_Sales_Amount for 250 new customers using the linear regression model.

Step 2: Calculated the Expected profit as per the details provided in the project description: Expected_Profit = (([Avg_Sales_Amount] * [Score_Yes]) * .50) – [6.5]

Step 3: Expected profit is greater than \$10,000. Hence, its good to send the catalog.

3. What is the expected profit from the new catalog (assuming the catalog is sent to these 250 customers)?

Answer: \$ 21,987.435

