Mecánica de fluidos

BMJIvan

14 de septiembre de 2021

1. Conceptos fundamentales

$$\begin{array}{c} {\rm T\'ecnicas\;o} \\ {\rm m\'etodos\;o\;anal\'iticos} \end{array} \left\{ \begin{array}{c} {\rm Anal\'iticos} \\ {\rm Experimentales} \\ {\rm Computacionales} \end{array} \right. \left\{ \begin{array}{c} {\rm Diferenciales} \\ {\rm Diferenciales} \end{array} \right.$$

Presión, esfuerzo normal: Genera deformaciones lineales

$$P = \lim \frac{\Delta F_n}{\Delta A} = \frac{dF_n}{dA}$$

Esfuerzo cortante: Genera deformaciones angulares

$$\tau = \lim \frac{\Delta F_t}{\Delta A} = \frac{dF_t}{dA}$$

1.1. Propiedades de los fluidos

Densidad

$$\rho = \frac{m}{v} \left[{^{kg}}/{_{m^3}}.^{lbm}/_{pie^3}, {^{slug}}/_{pie^3} \right]$$

Peso especifico

$$\gamma = \frac{W_g}{v} = \frac{mg}{v} = \rho g \left[{^N/_{m^3}, ^{lb}/_{pie^3}} \right]$$

Densidad relativa

$$sg = GE = \rho_r = \frac{\rho_{fluido}}{\rho_{H_2O\ T=4^{\circ}C}}$$

Viscosidad dinámica o absoluta

$$\mu = \frac{\tau}{d\vec{u}/dy} \ \ \frac{\text{Esfuerzo cortante}}{\text{Gradiente de velocidad}}$$

$$\mu = \frac{\tau y}{\vec{u}} \ \left[{^{N \cdot s}/m^2, ^{lb \cdot s}/pie^2} \right]$$

Viscosidad cinemática

$$u = \frac{\mu}{\rho} \left[{m^2/s,^{pie^2}/s} \right]$$

1.2. Gases ideales

Proceso adiabático: Aquel proceso en el que no se gana ni pierde calor, es decir, cuenta con un aislamiento térmico.

En proceso adiabático reversible no hay transferencia de calor y por lo tanto el proceso es isoentrópico.

Un proceso adiabático irreversible no es isoentropico.

 \forall : Volumen

$$\nu$$
: volumen especifico $\frac{\forall}{m} = \frac{1}{\rho}$

1. Ley de Boyle y Mariotte

Si
$$T = constante$$

$$P \alpha \frac{1}{\forall}$$

$$P \forall = C$$

$$P_1 \forall_1 = P_2 \forall_2$$

2. Ley de Charles

Si
$$P = constante$$

$$\forall \alpha T$$

$$\frac{\forall}{T} = C$$

$$\frac{\forall_1}{T_1} = \frac{\forall_2}{T_2}$$

3. Ley de Gay - Lussac

Si
$$\forall = constante$$

$$P \alpha T$$

$$\frac{P}{T} = C$$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

4.

$$\begin{split} \frac{P\forall}{T} &= C \\ \frac{P_1 \forall_1}{T_1} &= \frac{P_2 \forall_2}{T_2} \\ \frac{P\nu}{T} &= nR_u \\ R_u &= \frac{P\forall}{Tn} \end{split}$$

Donde

$$\begin{split} P &= 1 \text{ atmósfera} \\ T &= 0^{o}C = 273,\!15K \\ n &= 1 \text{ kmol} \\ \forall &= 22,\!413m^{3} \\ R_{u} &= 8,\!314^{kJ}/_{kmol\cdot K} \\ n &= \frac{m}{M} \frac{\text{masa}}{\text{masa molar}} \\ R &= \frac{R_{u}}{M} \text{ constante del gas} \end{split}$$

Entonces

$$R_{u} = \frac{P\forall}{T^{m}/M} = \frac{MP\forall}{Tm}$$

$$m\frac{R_{u}}{M} = \frac{P\forall}{T}$$

$$\frac{P\forall}{T} = mR$$

$$P\forall = TmR$$

$$P\frac{\forall}{m} = TR$$

$$P\nu = TR$$

$$P = \frac{1}{\nu}TR = \rho TR$$

$$\frac{P}{\rho} = TR$$

1.3. Velocidad sonica o acústica y viscosidad

A partir de 1

$$dp \ \alpha \ -\frac{d\forall}{\forall}dp = -E_v \frac{d\forall}{\forall}$$

Donde E_v es el modulo de compresibilidad o modulo volumétrico. De la definición de masa

$$\begin{split} m &= \rho \forall \\ dm &= \rho dv + d\rho \forall, \ dm = 0 \\ -\rho d \forall &= d\rho \forall \\ -\frac{d \forall}{\forall} &= \frac{d\rho}{\rho} \end{split}$$

por lo tanto

$$dp = E_v \frac{d\rho}{\rho}$$

$$C = \sqrt{\frac{dp}{d\rho}} = \sqrt{\frac{E_v}{\rho}} \quad \text{Velocidad del sonido a trav\'es de l\'iquidos}$$

$$K = \frac{C_p}{C_\nu} = 1,4$$

$$R = C_p - C_\nu \quad {k_J/kg \cdot K \brack R} = .287^{kJ}/kg \cdot K$$

$$C = \sqrt{\frac{k_p}{\rho}} = \sqrt{KTR}$$

$$E_v = P \quad \text{Proceso isot\'ermico}$$

$$E_v = KP \quad \text{Proceso isoentropico}$$

Líquidos incompresibles $\rho = constante$ Líquidos compresibles $\rho \neq constante$

$$\begin{array}{ll} \text{Mach} & = \frac{\vec{v}}{C} \; \frac{\text{velocidad fluido}}{\text{velocidad de sonido}} \\ \text{Mach} & \leq ,3 \; \text{flujo de gas incompresible} \\ \text{Mach} & \geq ,3 \; \text{flujo compresible} \end{array}$$

$$\underbrace{\frac{\mu}{\rho}}_{\text{Dinámica}} = \underbrace{v}_{\text{Cinemática}}$$

 $\mu = \text{constante o 0 ideal o no viscoso}$ $\mu \neq \text{constante o 0 real o viscoso}$

Fluido de acuerdo al comportamiento de la
$$\mu$$

$$\begin{cases}
\tau & \alpha \xrightarrow{d\theta \text{ deformación}} \rightarrow \text{ley de viscosidad} \\
\text{de Newton} & \frac{d\theta}{dt} = \frac{d\vec{v}}{dy}
\end{cases}$$
No Newtoniano
$$\begin{cases} \tau & \text{no } \alpha \xrightarrow{d\theta} \rightarrow \text{Series de potencias} \\ \text{Visco-elástico} \\ \text{Vinco-elástico} \\ \text{Vinco-elástico} \end{cases}$$
On Newtoniano
$$\begin{cases} \tau & \text{no } \alpha \xrightarrow{d\theta} \rightarrow \text{Series de potencias} \\ \text{Vinco-elástico} \\ \text{Vinco-elástico} \end{cases}$$

Número de Raynolds

$$NR_E = \frac{\text{Fuerzas de inercia}}{\text{Fuerzas viscosas}} = \frac{\overbrace{\rho \vec{v} D}^{\text{Dinámica}}}{\mu} = \underbrace{\overbrace{\vec{v} D}^{\text{Cinemática}}}_{\forall}$$

Flujo viscoso
$$\begin{cases} \text{ flujo laminar} \left\{ \begin{array}{l} NR_E \leq 2000 \ \ (2300) \\ \\ \text{flujo transición} \left\{ \begin{array}{l} 2000 \leq NR_E \leq 4000 \end{array} \right. \\ \\ \text{puede ser laminar o turbulento} \\ \\ NR_E \geq 4000 \end{cases}$$

$$P_{abs} = P_{atm} \pm P_{rel} \rightarrow P_{\rm manom\acute{e}trica}$$

Mach > 1 supersónico

Mach > 5 hipersónico

Mach < 1 sursónico

Mach = 1 sónico

 $Mach \leq 1$ transónico

$$\dot{\forall} = \frac{\forall}{t} = \vec{v}A \rightarrow \text{caudal}$$

$$\rho_{gasolina} = 680^{kg}/_{m^3} E_v = 1.3 \times 10^{9 N}/_{m^2}$$

$$\rho_{Hg} = 13600^{kg}/_{m^3} E_v = 2.85 \times 10^{10 N}/_{m^2}$$

$$\rho_{H_2O\ mar} = 1030^{kg}/_{m^3} E_v = 2.34 \times 10^{9 N}/_{m^2}$$

1.4. Esfuerzo cortante

$$\tau \alpha \frac{du}{dt} = \frac{\vec{v}}{dy}$$

$$\tau = \mu \frac{d\vec{v}}{dy}$$

$$\tau \int_0^h dy = \mu \int_0^{\vec{v}}$$

$$\tau h = \mu \vec{v}$$

$$\tau = \mu \frac{\vec{v}}{h}$$

$$\tau = \lim_{\Delta A \to 0} \frac{\Delta F_t}{\Delta A} = \frac{dF_t}{dA}$$

$$\tau = \frac{F_t}{A}$$

Donde F_v es la fuerza viscosa o tangente

$$\mu \frac{\vec{v}}{h} = \frac{F_v}{A}$$
$$F_v = \frac{\mu \vec{v} A}{h}$$

caso 1:

$$A = \pi dL$$

$$h = \frac{D - d}{2}$$

$$F_v = \frac{2\pi dL\vec{v}\mu}{D - d}$$

caso 2:

$$F_v = W \sin \theta$$
$$h = \frac{\mu \vec{v} A}{W \sin \theta}$$

*tablas líquidos y gases: mecánica de fluidos Pottev

1.5. Tensión o esfuerzo superficial

$$\sigma_s = \frac{F_{\text{tensión}}}{l} \left[\frac{W}{m}, \frac{lb}{pie} \right]$$

$$\sum F_y = 0$$

$$F_{rsy} - Wg = 0$$

$$\sigma_s \pi D \cos \theta - \rho \forall g = 0$$

$$\sigma_s \pi D \cos \theta - \rho g \frac{\pi D^2}{4} h = 0$$

$$\sigma_s \cos \theta = \frac{\rho g D h}{4}$$

$$h = \frac{4\sigma_s \cos \theta}{\rho g D}$$