

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000082987 A

(43) Date of publication of application: 21 . 03 . 00

(51) Int. CI

H04B 7/26 H01Q 3/26 H04L 5/00

(21) Application number: 10269603

(22) Date of filing: 24 . 09 . 98

(30) Priority: 24 . 06 . 98 JP 10177640

(71) Applicant:

SANYO ELECTRIC CO LTD

(72) Inventor:

DOI YOSHIHARU IINUMA TOSHINORI

(54) METHOD FOR CONTROLLING DIREC'SVITY OF ANTENNA AND ITS CONTROLLER

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain the direction of a terminal based on a connection request signal from the terminal, to turn a null point where a radio wave area containing spurious radiation does not exist in the direction and to realize communication.

SOLUTION: Connection request signals from a terminal Z, which are received by an array antenna 2, are supplied to an adaptive array 14 and a parameter estimation unit 15. The parameter estimation unit 15 detects information in the direction of the terminal Z with the output of the adaptive array 14 and the signal supplied from the antenna 2 and it is temporarily stored in a memory 16. A signal from a terminal A in which a directivity area is previously installed is received by the array antenna 2 and it is supplied to a signal synthesizer 17. The signal synthesizer 17 synthesizes the signal of the terminal A and information of the terminal Z, which is stored in the memory 16. Then, the null point of the antenna directivity, where a radio wave does not exist in the direction of the terminal Z, is turned without changing the directivity area against the terminal A.

COPYRIGHT: (C)2000, JPO

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-82987 (P2000-82987A)

(43)公開日 平成12年3月21日(2000.3.21)

(51) Int.Cl.7		識別記号	FΙ			テーマコード(参考)
H 0 4 B	7/26		H 0 4 B	7/26	В	
H01Q	3/26		H01Q	3/26	С	
					Z	
H04L	5/00		H 0 4 L	5/00		
			審査	東京 有	請求項の数6 (OL (全8頁)

(71)出願人 000001889 (21)出顯番号 特願平10-269603 三洋電機株式会社 大阪府守口市京阪本通2丁目5番5号 (22)出願日 平成10年9月24日(1998.9.24) (72)発明者 土居 義晴 大阪府守口市京阪本通2丁目5番5号 三 (31)優先権主張番号 特願平10-177640 洋電機株式会社内 (32)優先日 平成10年6月24日(1998.6.24) 日本 (JP) (72)発明者 飯沼 敏範 (33)優先権主張国 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (74)代理人 100076794 弁理士 安富 耕二 (外1名)

(54) 【発明の名称】 アンテナの指向性制御方法及びその装置

(57)【要約】

【課題】 端末からの接続要求信号に基づき端末の方向を求め、この方向に対して不要輻射を含む電波エリアが存在しないヌル点を向け、通信を可能とする。

【解決手段】 アレイアンテナ2より受信された端末2からの接続要求信号をアダプティブアレイ14及びパラメータ推定器15に供給する。パラメータ推定器15はアダプティブアレイ14の出力とアンテナ2から供給された信号とにより、端末2の方向の情報を検出し、メモリ16に一時記憶する。次に、既に指向性エリアを設けている端末Aからの信号がアレイアンテナ2より受信され、信号合成器17に供給される。信号合成器17は端末Aの信号とメモリ16に記憶されている端末2の情報とを合成し、端末Aに対する指向性エリアを変更することなく端末2の方向に対し電波が存在しないアンテナ指向性のヌル点を向ける。

20

【特許請求の範囲】

【請求項1】 指向性を有するアンテナを備えた装置の 制御方法に於いて、

1

端末より接続要求があった場合に、該端末方向にアンテナ指向性のヌル点を向けることを特徴とするアンテナの 指向性制御方法。

【請求項2】 指向性を有するアンテナを備えた装置の 制御方法に於いて、

一方の端末に対して指向性電波エリアを形成している状態で、異なる他方向の端末からの接続要求があった場合に、前記一方の端末の通信品質を所定レベル以上に保ち、前記異なる他方の端末の方向にアンテナ指向性のヌル点を向けることを特徴とするアンテナの指向性制御方法。

【請求項3】 請求項1及び請求項2に於いて、

前記指向性を有するアンテナを備えた装置は、PHS基 地局であること特徴とするアンテナの指向性制御方法。

【請求項4】 請求項3に於いて、

前記端末は、PHS端末であること特徴とするアンテナ の指向性制御方法。

【請求項5】 指向性を有するアンテナと、

該アンテナから受信した信号に基づき該信号を発信した 装置の位置方向を検出する検出手段と、

該検出手段により検出された信号発信装置の方向にアンテナ指向性のヌル点を向ける制御を行う制御手段とを設けたことを特徴とするアンテナの指向性制御装置。

【請求項6】 指向性を有するアンテナと、

該アンテナから受信した接続要求信号に基づき該接続要求信号を発信したPHS端末装置の位置方向を検出する 検出手段と、

該検出手段により検出された信号発信装置の方向にアンテナ指向性のヌル点を向ける制御を行うアンテナ制御手段と、

該アンテナ制御手段によりアンテナ指向性のヌル点を向けた前記PHS端末装置とPHS通信制御を行うPHS通信制御手段とを設けたことを特徴とするアンテナの指向性制御装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、SDMA (Space Divison Multiple Access) 通信システムに関し、アンテナ指向性の制御方法に関する。

[0002]

【従来の技術】近年、PHS (Personal Handy-phone System)が普及し始めている。PHSの通信方式としては、1フレーム(5ms)に送信受信の夫々4スロット(1スロット:625 μ s)からなるフレームを基本単位としたTDMA (Time Division Multiple Access)方式が採用されており、「第二世代コードレス電話システム」として標準化がなされている。

【0003】このPHSは、同期確立の制御手順の際に U波測定処理を行っている。U波測定については、PH Sの規格である第二世代コードレス電話システム標準規 格RCR STD-28 (発行:(社)電波産業会)に詳 しく開示されているので、ここでは図5の処理シーケン スフローに基づき簡単に説明する。まず、PHS端末か らCチャネルを用いてリンクチャネル確立要求信号を基 地局に対し送信する。PHS基地局は、空きチャネル

(空きTチャネル)を検出し(キャリアセンス)、Cチャネルを用いて空きTチャネルを指定するリンクチャネル割当信号をPHS端末側に送信する。PHS端末側では、PHS基地局から受信したリンクチャネル情報に基づき、指定されたTチャネルにある一定以上のパワーの信号が受信されていないか測定(U波測定)し、一定のパワー以上の信号が検出されない場合、即ち他のPHS基地局が使用していない場合には、指定されたTチャネルを用いて同期バースト信号を基地局に送信し、同期確立を完了する。また、指定されたTチャネルに、ある一定以上のパワーの信号が検出されていた場合、即ち使用中の場合には、PHS端末は再度リンクチャネル確立要求信号から制御手順を繰り返すこととなる。

【0004】また、近年、PHSや携帯電話等の移動通信システムの無線基地局として、アレイアンテナを用いたアダプティブアレイ(adaptive array)無線基地局が考えられている。この様なアダプティブアレイ無線基地局の動作原理については、例えば下記の文献に説明されている。

- B. Widrow, et al.: "Adaptive Antenna Systems," Proc. IEEE, Vol. 56, No. 12, pp. 2143-2159 (Dec. 1967).
- 30 S. P. Applebaum: "Adaptive Arrays", IEEE Trans. An tennas & Propag., Vol. AP-24, No. 5, pp. 585-598 (Sep t. 1976).
 - O. L. Frost, III: "Adaptive Least Squares Optimization Subject to Linear Equality Constraints, "SEL-70-055, Technical Report, No. 6796-2, InformationSystem Lab., Stanford Univ. (Aug. 1970).
 - B. Widrow and S. D. Stearns: "Adaptive Signal Processing," Prentice-Hall, Englewood Cliffs (1985).
 - R. A. Monzingo and T. W. Miller: "Introduction to Adaptive Arrays," Jone Wiley & Sons, New York (198 0).
 - J. E. Hudson: "Adaptive Array Principles," Peter P eregrinus Ltd., London (1981).
 - R. T. Compton, Jr.: "Adaptive Antennas Concepts and Performance," Prentice-Hall, Englewood Cliffs (1988).
 - E. Nicolau and D. Zaharia: "Adaptive Arrays," Else vier, Amsterdam (1989).

このアダプティブアレイ無線基地局の概念図を図6に示50 す。このアダプティブアレイは所定方向への指向性を有

(3)

するため、移動端末の方向へ電波エリアの指向性を向け ることによりノイズや波形歪みのない信号を得るように したものである。

【0005】しかし、現在のPHS基地局や、アダプテ ィプアレイを用いたPHS基地局では、PHS基地局を 中心とした所定範囲内、例えば、PHS基地局を中心と した半径500mのエリアで3端末しか利用できない (図6参照)という問題を有していた。この問題に対 し、SDMA (Space Divison Multiple Access) 通信 技術を用いたものが考えられている。SDMAとは、同 ーセル内で同一チャネルを複数のユーザに割り当て、チ ャネルの利用効率をあげる方式で、3素子アダプティブ アレーを用いたSDMA方式の呼損率特性 信学技法 A. P97-214, RCS97-252,MW97-197(1998-02)(発行:(社) 電子情報通信学会) 等に詳しく開示されているので詳細 な説明は省略する。また、SDMA方式は、PDMA (Path Division Multiple Access) 方式とも称され る。このSDMA通信技術を、アダプティブアレイを用 いたPHS基地局に用いることにより、1つのSDMA - PHS基地局71で複数のPHS端末を収容すること が可能となる (図7参照)。

【0006】しかし、実際にはアダプティブアレイを用 いた場合、一方向の指向性だけを代表して概念図化して みると (図8) 、指定方向(主方向)へ電波エリアの指 向性を向けることが出来るが、それと同時に、指定方向 へ指向性を向けた電波エリアから派生する不要輻射(副 方向への指向性電波エリア)も生じる。例えば、73a の指向性を作り出すと、ハッチング領域で示す73b、 73 cへの不要輻射が生じることとなる。

【0007】ここで、PHS端末Aが指向性エリア73 a でTチャネルを使用して通信を行っているときに、不 要輻射の発生領域73cに、PHS端末Zが入りPHS 通信を行おうとした場合(図9参照)、PHS端末2は PHS端末Aが使用しているTチャネルとは時刻と周波 数が異なるCチャネルを用いてリンクチャネル確立要求 信号をSDMA-PHS基地局71に対し送信する。こ の時、図9の様に基地局から見たPHS端末AとPHS 端末2の方向差が十分大きな場合、たとえPHS端末A とPHS端末Zが同じチャネルを使用してSDMA-P HS基地局71と信号を送受信しても、SDMA-PH S基地局71はそれぞれの端末に対し、相互干渉を抑圧 できる指向性エリアを形成するため、SDMA-PHS 基地局71は、PHS端末2に対してCチャネルを用い て通信チャネルを、PHS端末Aが使用しているTチャ ネルと同一のTチャネルに指定するリンクチャネル割当 信号を送信する。PHS端末Zでは、SDMA-PHS 基地局71から受信したリンクチャネル情報に基づき、 指定されたTチャネルのU波測定、つまり、指定された Tチャネルに一定以上のパワーの信号が受信されていな いか測定する。この時、PHS端末Zが位置する場所に 50 はPHS端末A方向に向けられた指向性電波の不要輻射 電波73cが存在するため、指定されたTチャネルにお いて、所定値以上のパワーの信号が検出されるため、P HS端末2は同期バースト信号を送信することができ ず、PHS端末ZとSDMA-PHS基地局71とのP HS通信が不可能となるという問題点を有する。

[0008]

【発明が解決しようとする課題】本発明は、前記問題点 に鑑みてなされたものであり、SDMA-PHS基地局 が指向性エリアを形成している状態で、異なる方向のP HS端末からのリンクチャネル確立要求信号(接続要求 信号) が到来した場合、該PHS端末の方向を求め、該 方向に対して不要輻射を含む電波エリアが存在しないア ンテナ指向性のヌル方向を向けることにより、SDMA - PHS基地局が指向性エリアを形成している状態で も、異なる方向のPHS端末との通信を可能とする制御 方法及び装置を提供することを目的とする。

[0009]

20

30

40

【課題を解決するための手段】本発明は、請求項1で は、指向性を有するアンテナを備えた装置の制御方法に 於いて、端末より接続要求があった場合に、該端末方向 にアンテナ指向性のヌル点を向けることを特徴とする。 請求項2では、指向性を有するアンテナを備えた装置の 制御方法に於いて、一方の端末に対して指向性電波エリ アを形成している状態で、異なる他方向の端末からの接 続要求があった場合に、前記一方の端末の通信品質を所 定レベル以上に保ち、前記異なる他方の端末の方向にア ンテナ指向性のヌル点を向けることを特徴とする。

【0010】請求項3では、請求項1及び請求項2に於 いて、前記指向性を有するアンテナを備えた装置は、P HS基地局であること特徴とする。請求項4では、請求 項3に於いて、前記端末は、PHS端末であること特徴 とする。請求項5では、指向性を有するアンテナと、該 アンテナから受信した信号に基づき該信号を発信した装 置の位置方向を検出する検出手段と、該検出手段により 検出された信号発信装置の方向にアンテナ指向性のヌル 点を向ける制御を行う制御手段とを設けたことを特徴と する。

【0011】請求項6では、指向性を有するアンテナ と、該アンテナから受信した接続要求信号に基づき該接 続要求信号を発信したPHS端末装置の位置方向を検出 する検出手段と、該検出手段により検出された信号発信 装置の方向にアンテナ指向性のヌル点を向ける制御を行 うアンテナ制御手段と、該アンテナ制御手段によりアン テナ指向性のヌル点を向けた前記PHS端末装置とPH S通信制御を行うPHS通信制御手段とを設けたことを 特徴とする。

[0012]

【発明の実施の形態】本発明の一実施の形態を図1乃至 図4に基づいて説明する。図1は、従来例でも示したよ

5

うに、SDMA-PHS基地局1 (以下SDMA基地局 と称す)がPHS端末A方向(主方向)に対して指向性 電波エリア3aを形成している状態で、それと同時に発 生する不要輻射エリア3 b、3 c (副方向への指向性電 波エリア) にPHS端末Zが入りPHS通信を行おうと する場合の模式図である。図2は、SDMA基地局1の 機能プロック図であり、n本のアンテナ#1、#2、# 3、#4、…#nからなるアレイアンテナ2 (本実施の 形態では4本とする)と、アレイアンテナ2からの入力 信号がCチャネル信号の場合には後述するスイッチSW 13b側に、入力信号が Tチャネル信号の場合には後述 する信号合成器側に高速切換え可能なスイッチ SW13 aと、アレイアンテナ2からの入力信号がCチャネル信 号の場合にはスイッチSW13aと後述するアダプティ ブアレイ14を、入力信号がTチャネル信号の場合には 後述する信号合成器と後述するアダプティブアレイ14 を接続する高速切換え可能なスイッチSW13bと、T チャネル信号と後述するメモリ16に格納されている情 報とを合成する信号合成器17と、Cチャネルの情報若 しくは信号合成器17から出力される情報から端末から 送信された信号を抽出するアダプティブアレイ14と、 Cチャネルの情報とアダプティブアレイ14から出力さ れる情報とから応答ベクトルを求めるパラメータ推定器 15と、パラメータ推定器15から出力される情報を一 時格納するメモリ16により構成されている。尚、図示 していないが、アレイアンテナ2とスイッチSW13と の間にA/D変換器が設けられている。

【0013】SDMA基地局1からの指向性電波エリア3aから派生する不要輻射エリア3cに入ってきたPHS端末Zが通話を開始しようとすると、PHS端末ZからSDMA基地局1に対しCチャネルを用いてリンクチャネル確立要求信号(接続要求信号)を送信する。SDMA基地局1では、Cチャネル信号を受信する場合にはスイッチSW13がアダプティブアレイ14側に接続され、アレイアンテナ2を介してCチャネル信号をアダプティブアレイ14に供給する。尚、アレイアンテナ2から出力される信号線はアンテナ夫々に設けられており、アンテナがn本の場合、アダプティブアレイ14に供給される信号線、パラメータ推定器15に供給される信号線、パラメータ推定器15に供給される信号線、信号合成器17に供給される信号線はn本となる。本実施の形態では、アレイアンテナ2は4本であるため信号線は4本となる。

【0014】まず、PHS端末ZからのCチャネル信号を $Sc_z(t)$ とすると、第1のアンテナ#1でのCチャネル受信信号 $Xc_z(t)$ は、次式の様に表される。

*Xc₁(t) = a₁×Sc₂(t) + n₁(t) ここで、a₁は、後述するようにリアルタイムで変化す る係数である。次に、第2のアンテナ#2でのCチャネ ル受信信号Xc₂(t)は、次式の様に表される。

[0015]

 $X c_2(t) = a_2 \times S c_1(t) + n_2(t)$ ここで、 a_2 も同様にリアルタイムで変化する係数である。次に、第3のアンテナ#3でのCチャネル受信信号 $X c_3(t)$ は、次式の様に表される。

10 X c, (t) = a,×S c, (t) + n, (t) ここで、a,も同様にリアルタイムで変化する係数である。

【0016】次に、第4のアンテナ#4でのCチャネル受信信号X c . (t) は、次式の様に表される。X c . (t) = a . \times S c . (t) + n . (t) ここで、a 4 も同様にリアルタイムで変化する係数である。同様に、n 本のアンテナがあった場合、第n のアンテナ#n でのCチャネル受信信号X c . (t) は、次式の様に表される。

0 [0017]

 $Xc_n(t) = a_n \times Sc_n(t) + n_n(t)$ ここで、 a_n も同様にリアルタイムで変化する係数である。上記係数 a_1 、 a_2 、 a_3 、 a_4 、 \cdots 、 a_n は、PHS 端末Zからの電波信号に対し、アレイアンテナ2を構成するアンテナ#1、#2、#3、#4、 \cdots 、#nのそれぞれの相対位置が異なるため(本実施の形態では、各アンテナ同士は互いに、電波信号の波長の5倍、即51 m 程度の間隔をあけて配されている)、それぞれのアンテナでの受信信号強度及び受信信号位相に差が生じることを表している。各PHS端末は移動しているため、これらの係数はリアルタイムで変化する。また、上記 n_1 、 n_2 、 n_3 、 n_4 \cdots 、 n_n は各アンテナ及び受信回路で発生する雑音である。

【0018】それぞれのアンテナで受信された Xc_1 、 Xc_2 、 Xc_3 、 Xc_4 は、Pダプティブアレイ14に供給され、PHS端末ZからのC チャネル信号である Sc_2 (t)が求められ出力される。また、アンテナで受信された Xc_1 、 Xc_2 、 Xc_3 、 Xc_4 は、パラメータ推定器15にも供給され、Pダプティブアレイ14からの出力信号と、受信信号 Xc_1 、 Xc_2 、 Xc_3 、 Xc_4 との相関値 C_1 、 C_2 、 C_3 、 C_4 を計算することにより、次式により各アンテナのアレイ応答ベクトルを求めることができる。

[0019]

【数1】

$$C_1 = \frac{\sum_{t=1}^{T} \left\{ a_1 S_{CZ}(t) \times S_{CZ}(t) + n_1(t) \times S_{CZ}(t) \right\}}{T \times |X_{C1}| \times |S_{CZ}(t)|} = a_1$$

$$C_{2} = \frac{\sum_{t=1}^{T} \{a_{2}S_{CZ}(t) \times S_{CZ}(t) + n_{2}(t) \times S_{CZ}(t)\}}{T \times |X_{CZ}| \times |S_{CZ}(t)|} = a_{2}$$

$$C_{3} = \frac{\sum_{t=1}^{T} \{a_{3}S_{CZ}(t) \times S_{CZ}(t) + n_{3}(t) \times S_{CZ}(t)\}}{T \times |X_{C3}| \times |S_{CZ}(t)|} = a_{3}$$

$$C_{4} = \frac{\sum_{t=1}^{T} \{a_{4}S_{CZ}(t) \times S_{CZ}(t) + n_{4}(t) \times S_{CZ}(t)\}}{T \times |X_{C4}| \times |S_{CZ}(t)|} = a_{4}$$

$$C_{n} = \frac{\sum_{t=1}^{T} \left\{ a_{n} S_{CZ}(t) \times S_{CZ}(t) + n_{n}(t) \times S_{CZ}(t) \right\}}{T \times |X_{Cn}| \times |S_{CZ}(t)|} = a_{n}$$

【0020】これにより、パラメータ推定器15から、各アンテナにおけるアレイ応答ベクトルai、ai、aiが求められ、出力される。パラメータ推定器15から出力されるアレイ応答ベクトルai、ai、ai、aiは、メモリ16に供給され、一時格納される。次に、SDMA基地局1は、Cチャネルを用いてリンクチャネル確立要求信号を送信してきたPHS端末Zに対し、接続可能なTチャネルを指定するリンクチャネル割当信号をCチャネルを用いてPHS端末Zに送信する。この時、SDMA基地局1は、PHS端末Aが使用しているTチャネルと同一のTチャネルで且つ同一の周波数を指定しているものとする。

【0021】PHS端末Zは、SDMA基地局1から受信したリンクチャネル情報に基づき、指定されたTチャネルのU波測定、つまり、指定されたTチャネルにおいて一定以上のパワーの信号が受信されていないか測定する。この時、PHS端末Zが位置する場所にはPHS端末A方向に向けられた指向性電波の不要輻射電波が存在するため、指定されたTチャネルに、所定値以上のパワーの信号が検出でき、同期バースト信号を送信できない状態となる。つまりこの時、PHS端末AはPDMA基地局1と既に接続されているので、Tチャネルを用いて通信を行っている。

【0022】 PDMA基地局1では、Tチャネル信号を受信する場合にはスイッチSW13が信号合成器17側に接続され、アレイアンテナ2を介してTチャネル信号を信号合成器17に供給する。まず、PHS端末AからのTチャネル信号をSt $_{A}$ (t) とすると、第1のアンテナ#1でのTチャネル受信信号Xt $_{1}$ (t) は、次式の様に表される。

[0023]

 $X t_1(t) = b_1 \times S t_1(t) + n_1(t)$ ここで、 b_1 は、後述するようにリアルタイムで変化す る係数である。次に、第2のアンテナ#2でのTチャネル受信信号Xt₂(t)は、次式の様に表される。

20 X t₂(t) = b₂×S t₄(t) + n₂(t) ここで、b₂も同様にリアルタイムで変化する係数であ ス

【0024】次に、第3のアンテナ#3でのTチャネル 受信信号Xt₃(t)は、次式の様に表される。

 $X t_{s}(t) = b_{s} \times S t_{s}(t) + n_{s}(t)$ ここで、 b_{s} も同様にリアルタイムで変化する係数である。次に、第4のアンテナ#4でのTチャネル受信信号 $X t_{s}(t)$ は、次式の様に表される。

[0025]

30 X t₄(t) = b₄×S t₄(t) + n₄(t) ここで、b₄も同様にリアルタイムで変化する係数である。同様に、n本のアンテナがあった場合、第nのアンテナ#nでのTチャネル受信信号X t₆(t) は、次式の様に表される。

 $Xt_n(t) = b_n \times St_n(t) + n_n(t)$ ここで、 b_n も同様にリアルタイムで変化する係数である。

【0026】上記係数 b₁、b₂、b₃、b₄、…、b₄。は、PHS端末Aからの電波信号に対し、アレイアン 5ナ2を構成するアンテナ#1、#2、#3、#4、 …、#nのそれぞれの相対位置が異なるため、それぞれのアンテナでの受信信号強度及び受信信号位相に差が生じることを表している。各PHS端末は移動しているため、これらの係数はリアルタイムで変化する。また、上 記n₁、n₂、n₃、n₄、…、n₆は各アンテナ及び受信回路で発生する雑音である。

【0027】それぞれのアンテナで受信されたXt₁、 Xt₂、Xt₃、Xt₄は、信号合成器17に供給され る。信号合成器17は、メモリ16に一時格納されてい 50 た各アンテナにおけるPHS端末Zのアレイ応答ベクト

10

ル a_1 、 a_2 、 a_3 、 a_4 と、メモリ16に予め内部で作成され記憶されているPHS端末Zの擬似的なTチャネル信号S t_* (t)とにより、各アンテナに於ける擬似的なPHS端末ZからのTチャネル情報を生成し、アンテナ2で受信されたPHS端末AのTチャネル受信信号X t_1 、X t_2 、X t_3 、X t_4 と合成し、次式で表される各アンテナでのPHS端末AとPHS端末Zとの合成信号X t_1 '、X t_2 '、X t_3 '、X t_4 'としてアダプティブアレイ 14 に供給される。尚、メモリ 16 には、送信されてくると予測されるPHS端末ZのTチャネル信号 10 S t_* (t)を予め内部で作成し記憶しているものとする。

【0028】まず、第1のアンテナ#1での合成信号X t_1 '(t)は、次式の様に表される。

 $X t_1' (t) = b_1 \times S t_A (t) + a_1 \times S t_Z (t) + n_1 (t)$

次に、第2のアンテナ#2での合成信号X t_2 '(t)は、次式の様に表される。

 $[0\ 0\ 2\ 9]\ X\ t_2'\ (t) = b_2 \times S\ t_A\ (t) + a_2 \times S\ t_Z\ (t) + n_2\ (t)$

次に、第3のアンテナ#3での合成信号X t ¾'(t) は、次式の様に表される。

 $X t_3$ ' (t) = $b_3 \times S t_A$ (t) + $a_3 \times S t_z$ (t) + n_3 (t)

次に、第4のアンテナ#4での合成信号X t ₄'(t)は、次式の様に表される。

[0030] $X t_4$ ' (t) = $b_4 \times S t_A$ (t) + $a_4 \times S t_Z$ (t) + $a_4 \times S t_Z$ (t)

同様に、n本のアンテナがあった場合、第nのアンテナ #nでの合成信号X t,'(t)は、次式の様に表される。

 $X t_n' (t) = b_n \times S t_A (t) + a_n \times S t_Z (t) + n_n (t)$

これにより、アダプティブアレイ 14に入力される合成信号X t_1 '(t)、X t_2 '(t)、X t_3 '(t)、X t_4 '(t) は、PHS端末 Z からの入射信号 $b_1 \times S$ t_4 (t)、 $b_2 \times S$ t_4 (t)、 $b_3 \times S$ t_4 (t)、 $t_4 \times S$ t_4 (t) と $t_4 \times S$ $t_4 \times$

【0031】この合成信号は、PHS基地局が指定した Tチャネルにおいて、通話中のPHS端末Zに加えて、 実際にはTチャネルで電波を送信していないPHS端末 Zからの電波が入射した場合の信号が加えられている。 アダプティブアレイアンテナを例えばRLS(Recursive e Least Square)アルゴリズムで動作させた場合、所望 信号には主方向の指向性を向け、干渉信号にはヌル点を 形成する。

【0032】よって、アダプティブアレイ14は、PH S端末AとPHS端末Zとの合成信号を用いて指向性を 50 制御するため、図3に示す様に、PHS端末A方向(主方向)に対する指向性を調整し、PHS端末Aに対する通信品質を所定レベル以上に保つよう指向性電波エリアを維持したまま、不要輻射(副方向への指向性電波エリア)も含めて、PHS端末Z方向に対し電波が飛んでいないアンテナ指向性のヌル点αを向ける。

【0033】これにより、U波測定を行うPHS端末2が位置するところにはSDMA基地局1から送信される電波が一定レベル以下になり、PHS端末2におけるU波測定が正常に完了でき、Tチャネルを使用する同期バースト信号の送信以降の処理が可能となる。そしてSDMA基地局1は、TチャネルにおいてPHS端末2から送信された同期バースト信号を含む信号を受信し、この同期バースト信号を抽出するように指向性制御を行うことにより、PHS端末2方向に指向性エリア4aを形成することができ、PHS端末2とSDMA基地局1はTチャネルを使用して通信することが出来るようになる(図4参照)。

[0034]

20 【発明の効果】本発明を用いると、接続要求があった端末方向にアンテナ指向性のヌル点を向けることができるため、端末とアンテナを備えた装置との接続が容易となる。また、既に接続している端末の通信品質を所定レベル以上に保ちながら、異なる他方の端末の方向にアンテナ指向性のヌル点を向けることができるため、接続している端末の通信を妨害することなく、異なる方向の端末とアンテナを備えた装置との接続が容易となる。

【0035】また、1つのPHS基地局で複数のPHS端末を収容することができる。

【図面の簡単な説明】

30

【図1】SDMA基地局がPHS端末A方向(主方向)に対して指向性エリアを形成している状態で、それと同時に発生する不要輻射エリア(副方向への指向性電波エリア)にPHS端末Zが入りPHS通信を行おうとする場合の模式図である。

【図2】本発明のSDMA基地局の一実施の形態を示す機能プロック図である。

【図3】PHS端末Aに対する指向性制御を調整し、PHS端末Z方向に対し電波が飛んていないアンテナ指向 40 性のヌル点 α を向けた状態の一実施の形態を説明する模式図である。

【図4】PHS端末AとPHS端末Zとに対してそれぞれ指向性エリアを形成した状態の一実施の形態を説明する模式図である。

【図5】PHSの同期確立の際のU波測定の処理シーケンスフローチャートである。

【図 6 】アダプティブアレイ無線基地局の概念図である。

【図7】SDMA通信技術をアダプティブアレイ無線基 地局に用いた場合の概念図である。 * 10

12

【図8】アダプティブアレイを用いた場合の一方向の指 向性を示す概念図である。

11

【図9】SDMA基地局がPHS端末A方向(主方向)に対して指向性エリアを形成している状態で、それと同時に発生する不要輻射エリア(副方向への指向性電波エリア)にPHS端末Zが入りPHS通信を行おうとする場合の模式図である。

【符号の説明】

SDMA-PHS基地局
アレイアンテナ

端末A方向指向性電波エリア * 3 a 端末A方向指向性電波の不要輻射エリ 3 b 、 3 c 7 13a、13b スイッチSW アダプティブアレイ 14 パラメータ推定器 15 メモリ 16 1 7 信号合成器 アンテナ指向性のヌル点 α A, Z PHS端末

【図2】

【図1】

[図3]

[図8]

【図9】

【図5】

【図6】

【図7】

