PROBLEMY I ALGORYTMY

Na wstępie należy zdefiniować podstawowe pojęcia jakimi będziemy się posługiwać, a mianowicie pojęcia **problemu** i **algorytmu**.

Definicja 1 Problem jest to zbiór danych wejściowych i ich definicje oraz pytanie lub polecenie do wykonania.

Problemy będziemy najczęściej oznaczać symbolem π (np. π_1 , π_2 , itd.) lub literą P (np. P_1 , P_2 , itd.)

Przykłady problemów

Ogólny problem optymalizacji:

Dane: Funkcja $f: X \to \mathbb{R}$, zbiór X

Polecenie: Znaleźć $x^* \in X$ takie, że $f(x^*) = \min_{x \in X} f(x)$.

Problem programowania liniowego:

Dane: Funkcja $f: X \to \mathbb{R}$ taka, że $f(x) = c^T x$,

zbiór $X = \{x \in \mathbb{R}^n : Ax \leq b\}$, gdzie

 $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$ i $A \in \mathcal{M}_{m \times n}$ oraz $n, m \in \mathbb{Z}$.

Polecenie: Znaleźć $x^* \in X$ takie, że $f(x^*) = \min_{x \in X} f(x)$.

Przykłady problemów optymalizacji kombinatorycznej

Problem Komiwojażera (PK)

Dane:

n - liczba miast, $n \in \mathbf{Z}^+$, $c := i, i \in \{1, \dots, n\}, i \neq i$ - odległość miedzy miastem

$$c_{ji},\ i,j\in\{1,\ldots,n\},\ i\neq j$$
 – odległość między miastem i a miastem j , $c_{ji}=c_{ij},\ c_{ji}\in\mathbf{R}^+.$

Zadanie:

Znaleźć permutację miast π^* , dla której

$$TC(\pi^*) = \sum_{j=1}^{n-1} c_{\pi^*(j)\pi^*(j+1)} + c_{\pi^*(n)\pi^*(1)} \longrightarrow \min.$$

 $n, c_{ij} \ (i, j \in \{1, \dots, n\})$ – parametry PK; permutacja π – rozwiązanie PK (π^* – rozwiązanie optymalne); TC – funkcja celu.

Przykładowa instancja PK

Przykładowe rozwiązanie $\pi_{_{\! 1}}$ instancji PK

$$\pi_{1} = < 1, 2, 5, 4, 3 >$$

$$c_{12} = 9$$

$$c_{23} = 4$$

$$c_{13} = 7$$

$$c_{34} = 6$$

$$c_{34} = 6$$

$$c_{45} = 10$$

$$TC(\pi_1) = 9 + 10 + 10 + 6 + 7 = 42$$

Rozwiązanie $\pi_{_2}$

$$\pi_2 = < 1, 3, 2, 5, 4 >$$

$$TC(\pi_2) = 37 < TC(\pi_1) = 42$$

Problem Plecakowy (PP)

Dane:

 $A = \{a_1, a_2, \dots, a_n\}$ – zbiór n przedmiotów, $n \in \mathbf{Z}^+$, $s_j, j = 1, \dots, n$ – rozmiar przedmiotu $a_j, s_j \in \mathbf{Z}^+$, $w_j, j = 1, \dots, n$ – wartość przedmiotu $a_j, w_j \in \mathbf{Z}^+$, B – rozmiar plecaka.

<u>Zadanie:</u> Znaleźć podzbiór $A'\subseteq A$ zbioru przedmiotów taki, że

$$TS = \sum_{j \in A'} s_j \le B$$
 oraz

$$TW = \sum_{j \in A'} w_j \longrightarrow \max.$$

$$n, A, s_j, w_j \ (j=1,\ldots,n)$$
 — parametry PP; podzbiór A' — rozwiązanie PP; — funkcja celu $(TS$ — dodatkowe ograniczenie).

Przykładowa instancja PP

$$n = 5$$
, $A = \{a_1, a_2, a_3, a_4, a_5\}$,

$\int j$	1	2	3	4	5
$oxed{s_j}$	5	3	2	4	5
$\mid w_j \mid$	3	4	2	6	1

$$B = 10.$$

Rozwiązanie (dopuszczalne) optymalne: $A'=\{a_2,a_3,a_4\},$ $\sum_{j\in A'}s_j=9\leq B=10,$ $\sum_{j\in A'}w_j=12.$

Problem szeregowania zadań $1|r_j|C_{ m max}$

Dane:

 $J=\{J_1,J_2,\ldots,J_n\}$ – zbiór n zadań, $n\in\mathbf{Z}^+$, pojedynczy procesor mający zrealizować wszystkie zadania J_1,\ldots,J_n , $p_j,\ j=1,\ldots,n$ – czas wykonywania (długość) zadania $J_j,\ p_j\in\mathbf{R}^+$, $r_j,\ j=1,\ldots,n$ – termin dostępności zadania $J_j,\ r_j\in\mathbf{R}^+\cup\{0\}$,

 $\underline{Zadanie:}$ Znaleźć permutację zadań π^* , dla której

$$\mathbf{C}_{\max} = \max_{j \in J} \{ C_{\pi^*(j)} \} \longrightarrow \min,$$

gdzie $C_{\pi^*(j)}=S_{\pi^*(j)}+p_{\pi^*(j)}$ jest czasem zakończenia wykonywania zadania zajmującego j-tą pozycję w π^* ; $S_{\pi^*(j)}=\max\{C_{\pi^*(j-1)},r_{\pi^*(j)}\}$ – czas rozpoczęcia wykonywania zadania $\pi^*(j)$, $C_{\pi^*(0)}=0$, $j=1,\ldots,n$.

Przykłady problemów cd.

Problem podziału zbioru (PARTITION):

Dane Zbiór $N=\{1,...,m\}$ m elementów o wartościach $x_j>0$, $j\in N$, taki, że $\sum_{j=1}^m x_j=2B$.

Pytanie: Czy istnieje podzbiór $X \in N$ taki, że $\sum_{i \in X} q_i = B$?

Problem spełnialności wyrażeń logicznych (boolowskich) (SATISFIABILITY):

Dane: Funkcja boolowska $f:\{0,1\}^n \to \{0,1\}$ (innymi słowy $f(x_1,...,x_n)$ jest funkcją boolowską zmiennych logicznych $x_1,...,x_n$)

Pytanie: Czy istnieje przyporządkowanie wartości 0 i 1 (logicznego fałszu i prawdy) do zmiennych $x_1,...,x_n$ takie, że $f(x_1,...,x_n) = 1$?

Na czym polega trudność rozwiązania problemów optymalizacji kombinatorycznej?

Liczność zbioru rozwiązań ${f X}$ większości realnie istniejących problemów jest tak duża, że:

- (a) procedura polegająca na sprawdzeniu wszystkich możliwych rozwiązań problemu (tzw. przegląd zupełny), i wyznaczenie wśród nich rozwiązania optymalnego, wymaga nieakceptowalnie długiego czasu (np. milionów lat);
- (b) skonstruowanie algorytmów wyznaczających optymalne (bądź chociaż bliskie optymalnym) rozwiązania tych problemów w sensownym czasie jest zadaniem nietrywialnym.

ALGORYTMY

Definicja 2 Algorytm jest to procedura (krok po kroku) działająca w skończonym czasie, rozwiązująca dany problem π .

Algorytmy będziemy oznaczać literami A, np. A_1 , A_2 , itd.

Przykład:

Problem: Znajdź wszystkie wartości $x \in \mathbb{C}$ spełniające równanie

$$ax^2 + bx + c = 0,$$

gdzie $a,b,c\in\mathbb{R}$.

Algorytm rozwiązania:

Krok 1. Jeżeli a=0 i b=0, to równanie nie ma rozwiązania lub jest tożsamością. STOP.

Krok 2. Jeżeli a=0 i $b\neq 0$, to równanie ma jedno rozwiązanie $x_1=-c/b$. STOP.

Krok 3. Wyznacz $\Delta = b^2 - 4ac$.

Krok 4. Jeżeli $\Delta=0$, to równanie ma jedno rozwiązanie $x_1=-\frac{b}{2a}$. STOP.

Krok 5. Jeżeli $\Delta \neq 0$, to równanie ma dwa rozwiązania $x_1 = -\frac{b+\sqrt{\Delta}}{2a}$ i $x_2 = -\frac{b-\sqrt{\Delta}}{2a}$, $x_1, x_2 \in \mathbb{C}$.

INSTANCJE PROBLEMU

Definicja 3 Instancją problemu jest konkretny problem z ustalonymi wartościami danych wejściowych.

Instancje problemu będziemy oznaczać literą I np. I_1 , I_2 , itd.

Zbiór wszystkich instancji problemu π będziemy oznaczać przez D_{π} .

Należy rozróżniać problemy i instancje problemu!!!

Przykład

Problem π jest zdefiniowany następująco:

Znajdź wszystkie wartości $x \in \mathbb{C}$ spełniające równanie

$$ax^2 + bx + c = 0,$$

gdzie $a,b,c\in\mathbb{R}$.

Instancją tego problemu jest przykładowo:

 I_1 : Znajdź wszystkie wartości $x\in\mathbb{C}$ spełniające równanie

$$x^2 - 5x + 6 = 0.$$

lub I_2 : Znajdź wszystkie wartości $x\in\mathbb{C}$ spełniające równanie

$$3x^2 + 7x + 12 = 0.$$

FAKT: Istnieje algorytm rozwiązywanie równania kwadratowego.

PYTANIA:

- 1.Czy istnieje algorytm znajdowania pierwiastków równania trzeciego stopnia?
- 2. Czy istnieje algorytm znajdowania pierwiastków równania czwartego stopnia?
- 3. Czy istnieje algorytm znajdowania pierwiastków równania stopnia piątego?
- 4. Czy istnieje algorytm znajdowania pierwiastków równania stopnia n > 5?

ODPOWIEDZI NA PYTANIA:

- 1.Czy istnieje algorytm znajdowania pierwiastków równania trzeciego stopnia? **TAK.** (Cardano 1545r.)
- 2.Czy istnieje algorytm znajdowania pierwiastków równania czwartego stopnia? **TAK.** (S. del Ferro 1545r.)
- 3. Czy istnieje algorytm znajdowania pierwiastków równania stopnia piątego? **NIE.** (P. Ruffini 1813r.)
- 4. Czy istnieje algorytm znajdowania pierwiastków równania stopnia n > 5? **NIE.** (N. H. Abel 1827r.)

PODSTAWOWY PODZIAŁ PROBLEMÓW

Problemy dzielą się na dwie grupy:

- 1. **Problemy rozstrzygalne, rozwiązywalne**: Problemy dla których istnieją algorytmy ich rozwiązania.
- 2. **Problemy nierozstrzygalne, nierozwiązywalne**: Problemy dla których nie istnieją algorytmy ich rozwiązania. Przy czym problem nierozstrzygalny jest to problem dla którego wykazano, że algorytm jego rozwiązania nie istnieje.

PRZYKŁAD PROBLEMU NIEROZSTRZYGALNEGO

Dziesiąty problem Hilberta: Dane jest równanie diofantyczne dowolnej liczby zmiennych. Czy równanie to jest rozwiązywalne w liczbach całkowitych?

Równanie diofantyczne jest to równanie postaci:

$$p(x_1, ..., x_n) = 0,$$

gdzie $p:\mathbb{Z}^n\to\mathbb{Z}$ jest wielomianem o całkowitych współczynnikach.

Przykład 1: $a^2 + b^2 = c^2$

Odpowiedź: TAK, np. a=3, b=4, c=5

Przykład 2: 2x + 4y = 1

Odpowiedź: NIE

Przykład 3: $a^n + b^n = c^n$, a, b, c > 0, $n \ge 3$

Odpowiedź: ?

J. Matjasiewicz (1970r.) udowodnił, że 10 problem Hilberta jest nierozstrzygalny.

Funkcja złożoności obliczeniowej algorytmu $oldsymbol{A}$

 $f_A(N(I)) = \max\{t: t-\text{ilość operacji (jednostek czasu) potrzebnych do rozwiązania dowolnej instancji <math>I$ problemu o rozmiarze N(I) przez algorytm $A\}$

$$(N(I) = n)$$

W praktyce ważny jest tylko <u>kształt funkcji</u> $f_A(N(I))$ (tzn. jej zachownie dla rosnących wartości rozmiaru problemu N(I)), a <u>nie konkretny czas</u> (konkretne wartości funkcji f_A).

Notacja $O(\cdot)$ — funkcja f(n) jest rzędu O(g(n)) jeśli

$$\bigvee_{c,N} \bigwedge_{n \geq N} 0 \leq f(n) \leq c \cdot g(n), \text{ czyli}$$

$$rac{f(n)}{g(n)} \longrightarrow c ext{ dla } n o \infty,$$

(tzn. dla $n \to \infty$ funkcje f(n) i g(n) zachowują się podobnie).

Notacja O

Definicja 4 Funkcja f(n) = O(g(n)) jeżeli:

$$\exists M > 0 : n > M \ \exists C \geq 0 : f(n) \leq Cg(n).$$

Inaczej:

$$f(n) = O(g(n))$$
 jeżeli

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \le C.$$

Zapis f(n) = O(g(n)) czytamy: "funkcja f(n) jest O(g(n))łub "funkcja f(n) jest rzędu funkcji g(n)".

Notacja O pozwala nam opisać w jaki sposób zmienia się dana funkcja dla dużych wartości n.

Przykładowo: $3n^2 - n + 1 = O(n^2)$,

bo

$$\lim_{n\to\infty}\frac{3n^2-n+1}{n^2}\leq 3.$$

Czyli funkcja $3n^2-n+1$ zmienia się tak jak funkcja n^2 dla dużych wartości n.

Własności notacji O

- 1. Jeżeli f(n) = O(a(n)) i g(n) = O(b(n)), to $f(n) + g(n) = O(a(n) + b(n)) = O(\max\{a(n), b(n)\})$.
- 2. Jeżeli f(n) = O(a(n)) i g(n) = O(b(n)), to f(n)g(n) = O(a(n)b(n)).
- 3. Jeżeli p(n) jest wielomianem stopnia k to $p(n) = O(n^k)$

Hierarchia przykładowych ciągów (każdy z nich jest O od wszystkich na prawo od niego):

1,
$$\log n, ..., \sqrt{n}, n, n \log n, n\sqrt{n}, n^2, n^3, ..., 2^n, n!, n^n$$

Przykłady:

f(n)	O(g(n))
$n^2 - 2n + 5$	$O(n^2)$
$\frac{1}{2}n \cdot \pi \log \frac{n}{2}$	$O(n \log n)$
$\frac{1}{2}n^{\pi}\log\frac{n}{2}$	$O(n^{\log n})$
2^{3n-8}	$O(2^n)$
$n! - 100n^{25} + 0,3n^{0,3}$	O(n!)

Czasy działania algorytmów o określonych funkcjach złożoności obliczeniowej, przy założeniu, że jedna operacja matematyczna zajmuje $1\mu s$.

$f_A(n)$	\boldsymbol{n}					
	10	20	30	40	50	60
O(n)	0,00001 s	0,00002 s	0,00003 s	0,00004 s	0,00005 s	0,00006 s
$O(n^2)$	0,0001 s	0,0004 s	0,0009 s	0,0016 s	0,0025 s	0,0036 s
$O(n^5)$	0,1 s	3,2 s	24,3 s	1,7 min	5,2 min	13 min
$O(n^{10})$	2,7 h	118,5 dni	18,7 lat	3,3	30,9	192
				wieków	wieków	wieki
$O(2^n)$	0,001 s	1,0 s	17,9 min	12,7 dni	35,7 lat	366
						wieków
$O(3^n)$	0,59 s	58 min	6,5 roku	3855	2 * 10 ⁸	$1,3 * 10^{13}$
				wieków	wieków	wieków
O(n!)	3,6 s	770	8,4 *10 ¹⁶	$2.5 * 10^{32}$	9,6 * 10 ⁴⁸	2,6 * 19 ⁶⁶
		wieków	wieków	wieków	wieków	wieków

Wpływ wzrostu szybkości komputerów na czasy działania algorytmów o określonych funkcjach złożoności obliczeniowej.

$f_A(n)$	Rozmiar instancji rozwiązywany	Rozmiar instancji rozwiązywany
	w określonym czasie przez	w tym samym czasie przez
	"wolny komputer"	komputer 1000 razy szybszy
O(n)	n_1	$1000 \cdot n_1$
$O(n^2)$	n_2	$31,62 \cdot n_2$
$O(n^5)$	n_3	$3,98 \cdot n_3$
$O(n^{10})$	n_4	$1,99 \cdot n_4$
$O(2^n)$	n_5	n_5+10
$O(3^n)$	n_6	n_6+6
		$n_7 + 3$ dla $n_7 \le 10$
O(n!)	n_7	$n_7 + 2$ dla $10 < n_7 \le 30$
		$n_7 + 1$ dla 30 $< n_7 \le 1000$

Rodzaje algorytmów ze względu na złożoność obliczeniową:

Algorytmy <u>wielomianowe</u> – algorytmy, których funkcja złożoności obliczeniowej f(n) jest rzędu O(p(n)), gdzie p(n) jest pewnym wielomianem zależnym od rozmiaru problemu n, np. O(n), $O(n^2)$, $O(n \log n)$ (algorytmy **efektywne** obliczeniowo).

Algorytmy wykładnicze (ponadwielomianowe) – algorytmy, których funkcji złożoności obliczeniowej f(n) nie da się ograniczyć żadnym wielomianem p(n), np. $O(2^n)$, $O(n^{\log n})$, O(n!) (algorytmy nieefektywne obliczeniowo).

Klasy złożoności algorytmów:

- 1. **Klasa P** zawiera wszystkie problemy, dla których skonstruowano wielomianowe algorytmy optymalne.
- 2. **Klasa NP** zawiera wszystkie problemy, dla których skonstruowano wykładnicze algorytmy optymalne.
 - $P \subset NP$, ponieważ jeśli dla pewnego problemu mamy alg. wielomianowy, zawsze możemy skonstruować alg. mniej efektywny (wykładniczy), np. przegląd zupełny.
- 3. **Klasa problemów NP-trudnych** podklasa NP problemów wielomianowo ekwiwalentnych, dla których (najprawdopodobniej) <u>nie można</u> skonstruować algorytmów <u>wielomianowych</u>.
 - NP-trudne $\subset NP$, ale $P \cap NP$ -trudne= \emptyset .
- Klasa problemów silnie NP-trudnych podklasa problemów NPtrudnych, których <u>nie można</u> rozwiązać optymalnie w czasie <u>pseudo-</u> wielomianowym.

Dokładne określenie przynależności danego problemu do klasy złożoności pozwala skonstruować **najodpowiedniejsze algorytmy** jego rozwiązania.

W tym celu:

- (i) albo szukamy dla danego problemu optymalnego <u>algorytmu wielomianowego</u> (klasa P),
- (ii) albo udowadniamy jego (silną) NP-trudność,

przy czym nie ma reguły, od którego z punktów należy zacząć analizę.

Problemy, dla których nie skonstruowano algorytmów wielomianowych (i) ani nie udowodniono (silnej) NP-trudności (ii), tworzą **klasę tymczasową** (tzw. problemów otwartych).

W praktyce:

9% istniejących problemów należy do klasy P,

84% należy do klasy problemów NP-trudnych,

z czego 79% należy do klasy problemów silnie NP-trudnych,

7% to problemy <u>otwarte</u>.

Rodzaje algorytmów (metod) optymalnych:

- Wielomianowe algorytmy dokładne (dedykowane) tylko dla problemów z klasy P.
- Programowanie dynamiczne głównie dla problemów NP-trudnych w zwykłym sensie (tzn. nie silnie NP-trudnych).
- Programowanie całkowitoliczbowe.
- Metoda podziału i ograniczeń głównie dla problemów (silnie) NPtrudnych.
- Przegląd zupełny.

Rodzaje algorytmów (metod) przybliżonych:

- Algorytmy konstrukcyjne i zachłanne głównie dla problemów NPtrudnych.
- Algorytmy typu popraw głównie dla problemów (silnie) NP-trudnych:
 - lokalnego poszukiwania (np. poszukiwanie zstępujące, poszukiwanie losowe),
 - metaheurystyczne (np. poszukiwanie z zabronieniami (tabu search), symulowane wyżarzanie, poszukiwanie genetyczne (ewolucyjne), poszukiwanie mrówkowe).
- Wielomianowe i w pełni wielomianowe schematy aproksymacyjne głównie dla problemów NP-trudnych.