Corso di Laurea in Informatica 18 Luglio 2008

- 1. (2 punti) Codificare i numeri interi (a) -67 e (b) 93 in modulo e segno a 8 bit
 - 11000011 (a)
 - (b) 01011101
- 2. (2 punti) Determinare i numeri interi rappresentati dalle sequenze di bit (a) 1010101010 e (b) 1011100101 nella notazione in complemento a 2
 - (a) <u>-342</u> (b) <u>-283</u>
- 3. (2 punti) Convertire da base 16 a base 8 i seguenti numeri naturali
 - 106473 (a) 8D3B
- . **(b)** С5А9
- 4. (6 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

x_1	x_2	x_3	x_4	$f(x_1,x_2,x_3,x_4)$
0	0	0	0	1
0	0	0	1	1
0	0	1	0	
0	0	1	1	.0
0	1	0	0	-
0	1	0	1	1
0	1	1	0	1
0	1	1	1	.0
1	0	0	0	-
1	0	0	1	1
1	0	1	0	1
1	0	1	1	-0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	-

SOP	$\overline{\times}_{\underline{4}} \overline{\times}_{\underline{3}}$	+ x2	xz =	-X	¥4 -	+ ×2	XL
		<, x ₂ ×3	× 61	51	()	10	
		20	卤	3	ව	E	/ /
		01		1)	0	1	
		(1	0	0	_	0	
		10	A	1	Ð	4	
			17			1	

5. (4 punti) Disegnare il circuito combinatorio che realizza la funzione $f(x_1, x_2, x_3, x_4) = \overline{x_3} \cdot (\overline{x_1} \cdot x_4) +$ $x_3 \cdot (\overline{x_2} \cdot \overline{x_1} \cdot \overline{x_4})$) facendo uso di un solo multiplexer con 3 linee di controllo (selezione).

6. (7 punti) Disegnare il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) che restituisca in un determinato istante $i \ge 0$ uscita uguale a 1 se e solo la sequenza di bit finora letta coincide con un'alternanza completa dei bit 00 e i è pari.

SE GLUVLTIMI & BIT CETTI SOND

7. (7 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo JK. In particolare determinare tutte le funzioni booleane minimizzate e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	j_1	k_1	j_2	k_2	z
0	0	0						_	
0	0	1	1	U	1	_	-	1	1
0	1	0	1	0		U	0		1
0	1	1	1	1	_	O	سد	0	0
1	0	0						_	ļ
1	0	1	1	1	1			O	0
1	1	0	1	1	,	0	1	1	Q
1	1	1	Ô	1		1	-	O	4

 $j_1: \underbrace{1}_{j_2: \underbrace{\times y_1 y_2 + \overline{\times y_3} + \overline{\times y_2}}_{+ \overline{\times y_2}}$

 $k_1: \frac{\overrightarrow{X}\cancel{y}_2}{\overrightarrow{X}\cancel{y}_3}$

Disegno della rete:

Nome	SUNTUN	
Cognome		
Matricola.		

Corso di Laurea in Informatica 18 Luglio 2008

- 1. (2 punti) Codificare i numeri interi (a) -99 e (b) 27 in modulo e segno a 8 bit
 - (a) 11100011
 - (b) 00011011
- 2. (2 punti) Determinare i numeri interi rappresentati dalle sequenze di bit (a) 1110110011 e (b) 1101110101 nella notazione in complemento a 2
 - (a) <u>- 77</u>
 - (b) <u>-139</u>
- 3. (2 punti) Convertire da base 8 a base 16 i seguenti numeri naturali
 - (a) 43701 <u>47C1</u>
- (b) 25640 <u>2BAO</u>
- 4. (6 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabel'adi verità utilizzando il metodo delle mappe di Karnaugh:

	x_1	x_2	x_3	x_4	$f(x_1,x_2,x_3,x_4)$
	0	0	0	0	-
	0	0	0	1	0
Ì	0	0	1	0	1
	0	0	1	1	-
	0	1	0	0	1
	0	1	0	1	·0
	0	1	1	0	1
	0	1	1	1	1
	1	0	0	0	1
	1	0	0	1	0
	1	0	1	0	,-
	1	0	1	1	1
	1	1	0	0	0
	1	1	0	1	••
	1	1	1	0	0
	1	1	1	1	0

SOP	\overline{x}_{1} x_{3} + \overline{x}_{2} x_{3}	(3 +	X	ζ ₄ -	+ X2 X4
	×, ×2 ×3 ×		٥I	111	10)
	90		0	V	
	0.	1	0	1	1
	()	Q	-	0	0
	10	1	9	1	
	,			'l	

5. (4 punti) Disegnare il circuito combinatorio che realizza la funzione $f(x_1, x_2, x_3, x_4) = x_4 \cdot (\overline{x_1} \cdot \overline{x_2} \cdot \overline{x_3}) + \overline{x_4} \cdot (\overline{x_2} \cdot x_3)$ facendo uso di un solo multiplexer con 3 linee di controllo (selezione).

6. (7 punti) Disegnare il diagramma di stato di una Rete Sequenziale a singolo ingresso (x) e singola uscita (z) che restituisca in un determinato istante $i \ge 0$ uscita uguale a 1 se e solo la sequenza di bit finora letta coincide con un'alternanza completa dei bit 01 e i è pari.

7. (7 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo JK. In particolare determinare tutte le funzioni booleane minimizzate e disegnare la rete sequenziale corrispondente.

x	y_1	y_2	Y_1	Y_2	j_1	k_1	j_2	k_2	z
0	0	0							
0	0	1	0	1	0			0	1
0	1	0	1	0		0	0	-	0
0	1	1	0	1	1	1		O	1
1	0	0	<u> </u>			-		tur y	اسـ ا
1	0	1	1	0	1		_	1	0
1	1	0	1	1		0	1		1
1	1	1	1	0		0	*****	1	0

<i>i</i> ₁ : X	
j ₂ : X	
z: X J2 + X Y2	
2. 36 A JE	

 $k_1: X J_2$ $k_2: X$

Disegno della rete:

Nome	
Cognome	
Matricola	

Corso di Laurea in Informatica 18 Luglio 2008

1. (5 punti) Si assuma che un calcolatore esegua 4 tipi diversi di operazioni. Nella seguente tabella sono descritte le operazioni, il numero di cicli di clock necessari ad eseguirle (c_i) e il numero di volte che vengono eseguite da un dato programma:

Tipo Istruzione	c_i	Numero di esecuzioni
Addizione	3	$7 \cdot 10^6$
Moltiplicazione	2	$4\cdot 10^6$
Accesso in Memoria	6	$3\cdot 10^6$
Salti Condizionati	4	$4\cdot 10^6$

Calcolare il numero di esecuzioni complete del programma che riesce ad eseguire in 5 secondi una CPU avente frequenza di clock pari a 200 MHz.

Risposta	:	15
Risposta	:	

2. (9 punti) Determinare la fase di execute dell'istruzione CP1 (V),RA che ha l'effetto di copiare il contenuto del registro RA nella locazione di memoria il cui indirizzo è contenuto nella cella di memoria di indirizzo simbolico V, assumendo che nel formato in linguaggio macchina i 6 bit più significativi siano dedicati al codice operativo, i 5 bit successivi alla specifica del registro RA e i 21 bit meno significativi alla specifica dell'indirizzo V.

Numero	Segnali di Controllo
Ciclo	
T5	O" IR [20:0] OUT MARIN
16	mrd '
TT	MRD, DTR IN
18	BTROVE MARIN
TS	RAPY DTRIN SELDTRIBLE
Tlo	SKOTROL DIROW, MUR
TI	SELOTRAL DTROVE, NUR

3. (6 punti) Determinare le funzioni di selezione degli integrati di una memoria principale di 256KB assumendo che essa sia composta nell'ordine da integrati di dimensione 128KB, 64KB, 32KB e 32KB, indicando per ognuno il numero di bit necessari per specificare l'indirizzo interno.

SEL1: A bit.ii	_{nt.} 17	SEL2: Ald + Al7	bit.int(6
SEL3: AG+ A(7+AL6 bit.in	nt.15	SEL4: A(8+A/7+A16	bit.int

4. (5 punti) Si consideri una memoria a due livelli in cui il tempo di accesso al livello superiore è di 5ns e il tasso di hit pari a 0.7. Quale deve essere il tempo di accesso della memoria di secondo livello per avere un tempo di accesso medio di 12ns?

Risposta: DS MS.

5. (5 punti) In riferimento alla legge di Amdhal, si calcoli la frequenza di utilizzo di una data componente se una sua accelerazione pari a 2 provoca un accelerazione complessiva del sistema pari a 1.2

Risposta: 73

Nome	
Cognome	
Matricola	

Corso di Laurea in Informatica 18 Luglio 2008

1. (5 punti) Si assuma che un calcolatore esegua 4 tipi diversi di operazioni. Nella seguente tabella sono descritte le operazioni, il numero di cicli di clock necessari ad eseguirle (c_i) e il numero di volte che vengono eseguite da un dato programma:

Tipo Istruzione	c_i	Numero di esecuzioni
Addizione	5	$4\cdot 10^6$
Moltiplicazione	3	$2\cdot 10^6$
Accesso in Memoria	2	$5\cdot 10^6$
Salti Condizionati	8	$3 \cdot 10^{6}$

Calcolare il numero di esecuzioni complete del programma che riesce ad eseguire in 4 secondi una CPU avente frequenza di clock pari a $300~\mathrm{MHz}$

Risposta		20
Tuopoota	•	

2. (9 punti) Determinare la fase di execute dell'istruzione CP2 RA,(V) che ha l'effetto di copiare nel registro RA il contenuto della locazione di memoria il cui indirizzo è contenuto nella cella di memoria di indirizzo simbolico V, assumendo che nel formato in linguaggio macchina i 6 bit più significativi siano dedicati al codice operativo, i 5 bit successivi alla specifica del registro RA e i 21 bit meno significativi alla specifica dell'indirizzo V.

Numero	Segnali di Controllo
Ciclo	
<i>T5</i>	0" 11 1R/20:03 MARIN
T6	MRS .
TZ	MRD, DIRIN
TA	DTROW MARIN
丁ろ	MRD
T10	MRD DTRIN
TII	DTROIT RAIN
	0, 0, 1

3. (6 punti) Determinare le funzioni di selezione degli integrati di una memoria principale di 256KB assumendo che essa sia composta nell'ordine da integrati di dimensione 64KB, 32KB, 32KB e 128KB, indicando per ognuno il numero di bit necessari per specificare l'indirizzo interno.

SEL1: A(8+A/7	bit.int(6	SEL2: A(J+A17+A16	_ bit.int. <u>/5</u>
SEL3: A/J+A/7+A/6	_ bit.int. <u>15</u>	SEL4: A/J	_ bit.int.

4. (5 punti) Si consideri una memoria a due livelli in cui il tempo di accesso al livello superiore è di 7ns e il tasso di hit pari a 0.9. Quale deve essere il tempo di accesso della memoria di secondo livello per avere un tempo di accesso medio di 10ns?

Risposta: 37ms

5. (5 punti) In riferimento alla legge di Amdhal, si calcoli la frequenza di utilizzo di una data componente se una sua accelerazione pari a 3 provoca un accelerazione complessiva del sistema pari a 1.4

Risposta:

Nome	
Cognome	
Matricola	

Corso di Laurea in Informatica 18 Luglio 2008

1. (5 punti) Si assuma che un calcolatore esegua 4 tipi diversi di operazioni. Nella seguente tabella sono descritte le operazioni, il numero di cicli di clock necessari ad eseguirle (c_i) e il numero di volte che vengono eseguite da un dato programma:

Tipo Istruzione	c_i	Numero di esecuzioni
Addizione	4	$2 \cdot 10^6$
Moltiplicazione	3	$4\cdot 10^6$
Accesso in Memoria	2	$5 \cdot 10^6$
Salti Condizionati	7	$2 \cdot 10^6$

Calcolare il numero di esecuzioni complete del programma che riesce ad eseguire in 3 secondi una CPU avente frequenza di clock pari a $500~\mathrm{MHz}$

Risposta:	<u> </u>

2. (9 punti) Determinare la fase di execute dell'istruzione CP3 (V),RA che ha l'effetto di copiare il contenuto del registro RA nella locazione di memoria il cui indirizzo è contenuto nella cella di memoria di indirizzo simbolico V, assumendo che nel formato in linguaggio macchina i 6 bit più significativi siano dedicati al codice operativo, i 5 bit successivi alla specifica del registro RA e i 21 bit meno significativi alla specifica dell'indirizzo V.

	Segnali di Controllo
Ciclo	vel compito 1

3. (6 punti) Determinare le funzioni di selezione degli integrati di una memoria principale di 256KB assumendo che essa sia composta nell'ordine da integrati di dimensione 128KB, 32KB, 32KB e 64KB, indicando per ognuno il numero di bit necessari per specificare l'indirizzo interno.

SEL1: A ()	bit.int. 7	SEL2: Ald +A/Z/A/6	_ bit.int
SEL3: A(8+A(7+A6	bit.int. <u>/</u> 5	SEL4: ACF + ACF	_ bit.int./6

4. (5 punti) Si consideri una memoria a due livelli in cui il tempo di accesso al livello superiore è di 12ns e al livello inferiore di 60ns. Quale deve essere il tasso di hit per avere un tempo di accesso medio di 15ns?

Risposta	:	15/16
zoopoou	•	71.0

5. (5 punti) In riferimento alla legge di Amdhal, si calcoli la frequenza di utilizzo di una data componente se una sua accelerazione pari a 4 provoca un accelerazione complessiva del sistema pari a 1.6

Risposta:	1/2	
zotopoota .		

Risposta: ___

Nome	
Cognome	
Matricola	

Architettura degli Elaboratori

Corso di Laurea in Informatica 18 Luglio 2008

1. (5 punti) Si assuma che un calcolatore esegua 4 tipi diversi di operazioni. Nella seguente tabella sono descritte le operazioni, il numero di cicli di clock necessari ad eseguirle (c_i) e il numero di volte che vengono eseguite da un dato programma:

Tipo Istruzione	c_i	Numero di esecuzioni
Addizione	7	$4\cdot 10^6$
Moltiplicazione	6	$2 \cdot 10^6$
Accesso in Memoria	5	$3\cdot 10^6$
Salti Condizionati	2	$8 \cdot 10^{6}$

Calcolare il numero di esecuzioni complete del	l programma	che riesce	ad	eseguire in	. 2	secondi	una	CPU
avente frequenza di clock pari a 600 MHz								
16								

2	2. (9 punti) Determinare la fase di execute dell'istruzione CP4 RA,(V) che ha l'effetto di copiare nel registro
	RA il contenuto della locazione di memoria il cui indirizzo è contenuto nella cella di memoria di indirizzo
	simbolico V, assumendo che nel formato in linguaggio macchina i 6 bit piú significativi siano dedicati al
	codice operativo, i 5 bit successivi alla specifica del registro RA e i 21 bit meno significativi alla specifica
	dell'indirizzo V.

Numero Ciclo	Segnali di Controllo	Veld	ampito 2	
01010		<u> </u>	prio	

3.	(6 punti)	Determinare	le funzion	i di selezione	e degli	integra	ti di una	memoria	principa	ale di	256K	B as-
	sumendo	che essa sia	composta	nell'ordine d	la inte	grati di	dimensio	ne 32KB,	32KB,	64KE	e 12	28KB
	indicando	per ognuno	il numero d	li bit necessa	ri per s	specifica	re l'indiri	zzo intern	o			

SEL1. A(J+A(7+A6	bit.int.(S	SEL2: A(J+A(Z+A16	bit.int <i>[</i> 5_
SEL3: A18+A17		SEL4: Ald	bit.int.17

4. (5 punti) Si consideri una memoria a due livelli in cui il tempo di accesso al livello superiore è di 8ns e al livello inferiore di 40ns. Quale deve essere il tasso di hit per avere un tempo di accesso medio di 12ns?

Risposta: 7/8

5. (5 punti) In riferimento alla legge di Amdhal, si calcoli la frequenza di utilizzo di una data componente se una sua accelerazione pari a 5 provoca un accelerazione complessiva del sistema pari a 1.8

Risposta: 5/9