- 1. From the frame of the electron, the proton is orbiting the electron, creating a magnetic field at the origin. With this magnetic field, the electron spin moment will have an energy $U=-\mu \cdot \mathbf{B}$, with a negative sign due to the electron's charge.
- 2. If we take J^2 and substitute in L and S.

$$\mathbf{J}^2 = (\mathbf{L} + \mathbf{S})^2$$

$$= \mathbf{L}^2 + \mathbf{S}^2 + 2\mathbf{L} \cdot \mathbf{S}$$

$$\Rightarrow \mathbf{L} \cdot \mathbf{S} = \frac{1}{2} (\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2)$$

$$\alpha \mathbf{L} \cdot \mathbf{S} = \frac{\alpha \hbar^2}{2} [j(j+1) - \ell(\ell+1) - s(s+1)]$$

3. It'd look something like this:

	$m_j \mid m_\ell$	m_s	$m_{\ell} + 2m_s$
$j = \frac{3}{2}$	$\begin{array}{c c} \frac{3}{2} & 1 \\ \frac{1}{2} & 0 \\ -\frac{1}{2} & -1 \\ -\frac{3}{2} & -1 \end{array}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{array}$	2 1 0 -2
$j = \frac{1}{2}$	$\begin{array}{c c} \frac{1}{2} & 1 \\ -\frac{1}{2} & 0 \end{array}$	$-\frac{1}{2} \\ -\frac{1}{2}$	$\begin{vmatrix} 0 \\ -1 \end{vmatrix}$

4. For an electron with an orbital angular momentum and spin,

$$\boldsymbol{\mu} = \frac{\mu}{\hbar} \left(g_{\ell} \mathbf{L} + g_{s} \mathbf{S} \right)$$

But also, since ℓ and s couple to the total angular momentum j,

$$\frac{\mu_B}{\hbar} (g_{\ell} \mathbf{L} + g_s \mathbf{S}) = \frac{\mu_B}{\hbar} g_j \mathbf{J}$$
$$g_{\ell} \mathbf{L} + g_s \mathbf{S} = g_j \mathbf{J}$$
$$g_{\ell} \mathbf{L} \cdot \mathbf{J} + g_s \mathbf{S} \cdot \mathbf{J} = g_j J^2$$

And from $\mathbf{L} + \mathbf{S} = \mathbf{J}$, we can find the dot products above in terms of L^2 , S^2 , and J^2 ,

$$J^2 - 2\mathbf{S} \cdot \mathbf{J} + S^2 = L^2$$
$$J^2 - 2\mathbf{L} \cdot \mathbf{J} + L^2 = S^2$$

Solving for the dot products and replacing it in the earlier equation,

$$g_{\ell} \frac{J^2 + L^2 - S^2}{2} + g_s \frac{J^2 + S^2 - L^2}{2} = g_j J^2$$

Then replacing these with their expectations,

$$\frac{g_{\ell}}{2}\left[j(j+1) + \ell(\ell+1) - s(s+1)\right] + \frac{g_s}{2}\left[j(j+1) + s(s+1) - \ell(\ell+1)\right] = g_j j(j+1)$$

Solving for g_j ,

$$g_j = g_\ell \frac{j(j+1) + \ell(\ell+1) - s(s+1)}{2j(j+1)} + g_s \frac{j(j+1) + s(s+1) - \ell(\ell+1)}{2j(j+1)}$$

5. The Landé g_j factor for an electron simplifies to

$$g_j(j,\ell) = 1 + \frac{j(j+1) - \ell(\ell+1) + 3/4}{2j(j+1)}$$

So copypastaing the table from 3 with the g factor results in

	m_j	g_{j}	$g_j m_j$	m_{ℓ}	m_s	$m_{\ell} + 2m_s$
$j = \frac{3}{2}$	$ \begin{array}{c} 3 \\ 2 \\ 1 \\ 2 \\ - \frac{1}{2} \\ - \frac{3}{2} \end{array} $	4/3 $4/3$ $4/3$ $4/3$	$ \begin{array}{r} 2 \\ 2/3 \\ -2/3 \\ -2 \end{array} $	$\begin{vmatrix} 1 \\ 0 \\ -1 \\ -1 \end{vmatrix}$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \end{array}$	$\begin{array}{c} 2 \\ 1 \\ 0 \\ -2 \end{array}$
$j = \frac{1}{2}$	$\begin{array}{c} \frac{1}{2} \\ -\frac{1}{2} \end{array}$	$\frac{2}{3}$ $\frac{2}{3}$	1/3 - 1/3	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	$-\frac{1}{2} \\ -\frac{1}{2}$	0 -1

If we compare the slopes for the weak field $(g_j m_j)$ and the strong field $m_\ell + 2m_s$, it's clear why some of the lines will have an unchanged slope and some will have to curve to match the strong field case.

- 6. (a) Since the top has 3 lines and bottom has 1 line, F = 1 and F = 0. Then J = I = 1/2.
 - (b) It'd look something like this:

Although I'm a little unsure of what the g factors would be and how to rank the $m_f=0$ states.

- 7. (a) If J = 1/2, then I = 3/2 and F = 2
 - (b) Maybe something like this?

