1.3. Неметрические подходы к задаче классификации

1. Поиск логических закономерностей

Идея: моделирование принятия решения человеком: на основании логики, рассуждений, обобщения фактов

Вопросы:

- Что такое закономерность?
- Как найти закономерность в данных?
- Как классифицировать новые данные?

Постановка задачи

Пусть объект o описывается переменными $X_1,...,X_j,...,X_n$; D_j область определения X_j . Типы переменных:

- 1. Категориальные: $D_j = \{b_1, ..., b_{l_j}\}$ некоторое множество символов, $l_i \ge 2$.
- 2. Вещественные: $D_{j} = \mathbf{R}_{j}$ это множество вещественных чисел.

Y – целевая категориальная переменная $D_{Y} = \{\omega_{1},...,\omega_{K}\};$

Набор данные $\{x_j^{(i)}, y^{(i)}\}, i = 1,...,N$.

Необходимо:

- найти логическую закономерность, описывающую зависимость между \boldsymbol{X} and \boldsymbol{Y} ;
- использовать ее для предсказания Y для новых объектов.

Рассмотрим простую форму для логического утверждения об объекте o:

Конъюнкция

$$S(o) = J(o, E_{j_1}) \& ... \& J(o, E_{j_m}),$$

где $J(o, E_{i}) \in \{false, true\}$ это предикат,

$$J(o, E_j) \approx "X_j(o) \in E_j$$
"

 E_{j} это интервал $[a_{j},b_{j}]\subset D_{j}$ для вещественной X_{j} или любое подмножество для категориальной X_{j} .

Рассмотрим область

$$E = E_1 \times ... E_j \times ... \times E_n,$$

где $E_{i}=D_{i}$ for $j\not\in J$. Тогда утверждение

$$S(o) = S(o, E)$$

эквивалентно утверждению " $X(o) \in E$ ".

Логическое утверждение S о классе ω : $S = "Ecnu \ x \in E \ , mor \partial a \ Y = \omega"$ \Leftrightarrow <область $E \subset D$, решение $Y = \omega >$

 $S = "ECЛИ X_1 \in [c,d] \ U \ X_2 \in [a,b], TOГДА Y = \omega_1"$

Эвристическое определение закономерности:

Утверждение S называется логической закономерностью, которая характеризует класс ω , если выполняются неравенства

$$\frac{N(\omega,S)}{N(\omega)} \ge \delta, \quad \frac{N(\overline{\omega},S)}{N(\overline{\omega})} \le \beta,$$

где $N(\omega, S)$ это число наблюдений класса ω , для которых выполняется утверждение S,

 $N(\omega)$ - общее число объектов класса ω ,

 $N(\overline{\omega},S)$ - число объектов других классов для которых верно утверждение S ,

 $N(\overline{\omega})$ - общее число наблюдений других классов, δ и β это некоторые параметры, $0 \le \beta < \delta \le 1$.

Чем больше δ и меньше β , тем более "мощная" закономерность.

Алгоритм ТЕМР (Г.С. Лбов, 1976)

Пусть класс ω фиксирован. обозначим множество всех логических закономерностей как S^* .

Конъюнкция S(o,E) называется *потенциальной логической* закономерностью, если выполняются следующие неравенства:

$$\frac{N(\omega,S)}{N(\omega)} \ge \delta, \quad \frac{N(\overline{\omega},S)}{N(\overline{\omega})} > \beta.$$

Обозначим через S' множество потенциальных логических закономерностей.

Если для некоторой конъюнкции S(a,E) выполняется неравенство

$$\frac{N(\omega,S)}{N(\omega)} < \delta$$

то S не является логической закономерностью и не может ей стать, сколько бы предикатов мы не добавляли к ней. Обозначим их через \overline{S} .

Любая конъюнкция S(a,E) принадлежит одному из множеств: S^* , S' and \overline{S} .

Шаг 1. Рассмотрим все возможные конъюнкции длины 1:

$$S(a, E) = J(a, E_j), j = 1,...,n.$$

- Если $S(a,E) \in S^*$, тогда конъюнкция включается в список найденных логических закономерностей и область E_j исключается из дальнейшего рассмотрения;
- Если $S(a, E) \in S'$, тогда E_j остается для дальнейшего поиска;
- Если S(a,E) $\in \overline{S}$ тогда E_j исключается из дальнейшего поиска.

Пусть $W_{\!\scriptscriptstyle 1}$ это множество областей $E_{\scriptscriptstyle j}$ оставшихся после шага 1.

Шаг 2. Рассматриваются все возможные конъюнкции длины 2:

$$S(o, E) = J(o, E_i) \& J(o, E_j), i \neq j; E_i \in W_1, E_j \in W_1$$
.

Если $S \in S^*$, тогда она присоединяется к списку найденных закономерностей.

Формируется множество $W_{1,2}$ потенциальных логических закономерностей. Во время этого процесса, если $S\in S^*$ или $S\in \overline{S}$, то $E_i,\ E_j$ исключаются из $W_{1,2}$.

STEP 3. Рассматриваются все возможные конъюнкции длины 3:

$$S(o, E) = J(o, E_i) \& J(o, E_j) \& J(o, E_k),$$

 $i \neq j \neq k, (E_i, E_j) \in W_{1,2}, E_k \in W_1,$

Далее рассматриваются конъюнкции длины 4, 5 и т.д. подобным образом.

Алгоритм работает до тех пор, пока не будут найдены все логические закономерности или будет достигнута максимальная длина конъюнкции M_{max} .

2. Деревья решений (Hoveland, Hunt ~ 1950)

Как классифицировать новые данные, используя логические закономерности?

Деревья решений - это удобная форма представления решающей функции в виде логических правил.

Дерево - это связный ненаправленный граф без циклов. Дерево может иметь корень - произвольную выбранную вершину.

Вершины: внутренние и терминальные (листья). Из каждой внутренней вершины выходят две или более ветви (ребра).

Дерево решения - это дерево, в котором

- каждый внутренний узел B соответствует признаку X_{j} ;
- каждая ветвь $b=(B,B_q),\ q=1,...,L$ представляет реализацию проверки условия " $x_j\in E_q$ ", где $E_q\subset D_j$, D_j это область определения X_j и $E_1,...,E_L$ это разбиение D_j ;
- E_q это:
- в случае числовой переменной X_j : интервал [a,b), (-∞,a), [a,+ ∞);
- в случае категориальной переменной: множество значений;
- каждый лист представляет метку класса (решение) $Y^{(m)}$.

Дерево решений с M листьями \Rightarrow разделение пространства признаков на M непересекающихся областей $E^{(1)},...,E^{(M)};$ Каждый m-й лист соответствует области $E^{(m)}$.

Путь от корня до m-го листа \Rightarrow логическое утверждение " $IF\ x_{j_1}\in E_{j_1}\ AND\cdots AND\ x_{j_q}\in E_{j_q}$, $Then\ Y=Y^{(m)}$ ".

Пусть $N_m^{(k)}$ обозначает число объектов k-го класса, попавших в $E^{(m)}$.

Ошибка классификации
$$N_{er} = \frac{1}{N} \sum_{m=1}^{M} \sum_{\omega=1, \, \omega \neq Y^{(m)}}^{K} N_m^{(\omega)}$$
.

Если $Y^{(m)} = \arg\max_{\omega=1,\dots,K} N_m^{(\omega)}$, тогда ошибка минимальна.

Построение оптимального дерева решений

Дискретизация количественных переменных → задача дискретной оптимизации:

найти наилучшее дерево по критерию качества среди всех

комбинаций переменных и их значений.

- Если некоторые наблюдения для X_j пропущены, то эти значения не рассматриваются при дискретизации X_j . Основные типы алгоритмов:
- Полный перебор;
- Динамическое программирование;
- Метод ветвей и границ;
- Жадный алгоритм.

Полный перебор невозможен при большой размерности, например, для бинарного дерева и n переменных число возможных вариантов:

$$n((n-1)^2)\cdot((n-2)^4)\cdot...\cdot 1 = n!(n-1)!\cdot...\cdot 1.$$

Алгоритм поэтапного ветвления

Пусть M^* - максимально возможное число листьев, N_{\min} - минимально возможное число объектов в узле, N_{er} допустимая величина ошибки в листе.

Шаги:

1. Делим корень на новые узлы перебирая переменные $X_1,...,X_n$ и оставляя наилучший вариант по некоторому критерию;

- 2. Проверяем необходимость деления новых узлов: Если ветвление не требуется (число объектов в узле $< N_{\min}$), или узел однородный (ошибка меньше, чем N_{er}), тогда ветвление не выполнятся, узел объявляется листом и наиболее частый класс присваивается этому листу.
- 3. Оставшиеся узлы делятся по тому же принципу, что и на шаге 1.

4. Шаги 2,3 повторяются до тех пор, пока не останется больше узлов, в которых необходимо выполнить разветвление или достигнута необходимая сложность дерева.

Критерии качества разделения

Уменьшение ошибки

$$\Delta P_{er} = \sum_{\substack{\omega=1,\\ \omega\neq Y^{(0)}}}^K N^{(\omega)} - \sum_{\substack{\omega=1,\\ \omega\neq Y^{(1)}}}^K N_1^{(\omega)} - \sum_{\substack{\omega=1,\\ \omega\neq Y^{(2)}}}^K N_2^{(\omega)};$$

$$\Delta P_{er} \rightarrow \text{max}$$

Критерий Хи-квадрат (алгоритм CHAID, G.Kass, 1980)

Основная гипотеза: разделение на группы (листья) не зависит от разделения на классы.

К

В общем случае, получаем таблицу сопряженности $K \times L$:

$$S = \begin{pmatrix} N_1^{(1)} & \dots & N_L^{(1)} \\ \vdots & N_l^{(\omega)} & \vdots \\ \vdots & \ddots & \ddots \\ N_1^{(K)} & \dots & N_L^{(K)} \end{pmatrix}.$$

Пуст $N^{(\omega)} = \sum_l N_l^{(\omega)}$, $N_l = \sum_\omega N_l^{(\omega)}$ - это маргинальные частоты строк и колонок.

Независимость строк и колонок означает, что $\Rightarrow \ p_l^{(\omega)} = p^{(\omega)} p_l$

Ожидаемой число объектов в ячейке:

$$\overline{N}_l^{(\omega)} = p_l^{(\omega)} N = \frac{N^{(\omega)} N_l}{N}.$$

Обозначим $d_l^{(\omega)} = N_l^{(\omega)} - \bar{N}_l^{(\omega)}$ это отклонение от независимости.

Пусть

$$X^{2} = \sum_{\omega=1}^{K} \sum_{l=1}^{L} \frac{(d_{l}^{(\omega)})^{2}}{\bar{N}_{l}^{(\omega)}} = N \left(\sum_{\omega,l} \frac{\left(N_{l}^{(\omega)}\right)^{2}}{N^{(\omega)}N_{l}} - 1 \right).$$

Если H_0 верна, тогда $X^2 \approx \chi^2$ -распределение с (K-1)(L-1) степенями свободы.

Variants of splitting can be compared with *p*-value

$$p_{value} = P(\chi^2 > x_{observed}^2 \mid H_0 \text{ is true}).$$

Наилучший вариант соответствует наибольшему значению X^2 .

Информационный критерий

Пусть
$$H(0) = -\sum_{\omega=1}^K \frac{N^{(\omega)}}{N} \log \frac{N^{(\omega)}}{N}$$
 это энтропия в делимом узле,
$$H(L) = -\sum_{l=1}^L \frac{N_l}{N} \sum_{\omega=1}^K \frac{N_l^{(\omega)}}{N_l} \log \frac{N_l^{(\omega)}}{N_l}$$

- условная энтропия.

Чем меньше энтропия, тем больше информации.

Мера полезности деления:

$$gain = H(0) - H(L).$$

Индекс Джини

$$G(L) = \sum_{l=1}^{L} \frac{N_l}{N} \left(1 - \sum_{\omega=1}^{K} \left(\frac{N_l^{(\omega)}}{N_l} \right)^2 \right)$$

- оценивает распределение классов в дочерних вершинах. Меньшее значение соответствует лучшему разбиению.

Algorithm ID3 (Quinlan, 1986)

Первоначально использовался для номинальных переменных. Алгоритм:

- последовательное ветвление;
- число дочерних вершин = числу значений переменной;
- информационный критерий качества;
- остановка при достижении заданной глубины дерева.

Algorithm C4.5 (Quinlan, 1993)

Усовершенствованная версия ID3:

- позволяет работать с количественными переменными;
- недостаток предыдущего критерия предпочитает варианты с большим числом дочерних вершин.
- нормированный информационный критерий:

$$gain \ ratio = \frac{H(0) - H(L)}{-\sum_{l=1}^{L} \frac{N_l}{N} \log \frac{N_l}{N}}$$

- процедура редуцирования (pruning, усечение): обучающая выборка случайным образом делится на две части (пропорция деления параметр алгоритма).
- Первая часть построение дерева жадным алгоритмом.
- Параметры алгоритма такие, чтобы обеспечить максимально возможную точность решения («переобученное» дерево).

Вторая часть – для редуцирования (усечения, упрощения) полученного дерева таким образом, чтобы минимизировать частоту ошибки распознавания. Так как выборки независимы – частота ошибки для любого поддерева близка к вероятности ошибки.

Сравниваются всевозможные поддеревья исходного дерева; выбирается вариант, для которого частота ошибки по второй части выборки минимальна

Algorithm CART (Breiman, 1984)

Особенности:

- Распознавание + регрессионный анализ;
- Критерий качества ветвления:
 при распознавании индекс Gini;
 при регрессионном анализе дисперсия;
- Бинарное дерево;
- Процедура редуцирования дерева;
- Механизм обработки пропусков в данных.

Для номинальной переменной – полный перебор вариантов разбиения.

Деревья решений: достоинства

- автоматический отбор наиболее информативных переменных;
- для каждого объекта решение принимается по своему, как правило, небольшому набору переменных > повышение статистической устойчивости решений;
- линейная трудоемкость («жадный» алгоритм);
- решение набор легко интерпретируемых логических закономерностей;
- возможность анализа разнотипных переменных, пропущенных значений;
- непараметрический подход к анализу данных; Недостатки
- достаточно грубая аппроксимация непрерывных дискриминантных функций;
- использование простейших типов предикатов (<,>,=,?);
- трудоемкость перебора вариантов (для «нежадных» алгоритмов).