KNN (K Nearest Neighbors) Classification

```
1 import pandas as pd
2 from sklearn.datasets import load_iris
3 iris = load_iris()
1 iris.feature_names
    ['sepal length (cm)',
'sepal width (cm)',
'petal length (cm)',
      'petal width (cm)']
1 iris.target_names
```

```
array(['setosa', 'versicolor', 'virginica'], dtype='<U10')</pre>
```

1 df = pd.DataFrame(iris.data,columns=iris.feature_names) 2 df.head()

₽	sepa	l length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	1
	0	5.1	3.5	1.4	0.2	
	1	4.9	3.0	1.4	0.2	
	2	4.7	3.2	1.3	0.2	
	3	4.6	3.1	1.5	0.2	
	4	5.0	3.6	1.4	0.2	

1 df['target'] = iris.target

2 df.head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	1
0	5.1	3.5	1.4	0.2	0	
1	4.9	3.0	1.4	0.2	0	
2	4.7	3.2	1.3	0.2	0	
3	4.6	3.1	1.5	0.2	0	
4	5.0	3.6	1.4	0.2	0	

1 df[df.target==1].head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
50	7.0	3.2	4.7	1.4	1
51	6.4	3.2	4.5	1.5	1
52	6.9	3.1	4.9	1.5	1
53	5.5	2.3	4.0	1.3	1
54	6.5	2.8	4.6	1.5	1

1 df[df.target==2].head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	1
100	6.3	3.3	6.0	2.5	2	
101	5.8	2.7	5.1	1.9	2	
102	7.1	3.0	5.9	2.1	2	
103	6.3	2.9	5.6	1.8	2	
104	6.5	3.0	5.8	2.2	2	

```
1 df['flower_name'] =df.target.apply(lambda x: iris.target_names[x])
2 df.head()
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
0	5.1	3.5	1.4	0.2	0	setosa
1	4.9	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa
3	4.6	3.1	1.5	0.2	0	setosa
4	5.0	3.6	1.4	0.2	0	setosa

1 df[45:55]

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
45	4.8	3.0	1.4	0.3	0	setosa
46	5.1	3.8	1.6	0.2	0	setosa
47	4.6	3.2	1.4	0.2	0	setosa
48	5.3	3.7	1.5	0.2	0	setosa
49	5.0	3.3	1.4	0.2	0	setosa
50	7.0	3.2	4.7	1.4	1	versicolor
51	6.4	3.2	4.5	1.5	1	versicolor
52	6.9	3.1	4.9	1.5	1	versicolor
53	5.5	2.3	4.0	1.3	1	versicolor
54	6.5	2.8	4.6	1.5	1	versicolor

```
1 df0 = df[:50]
2 df1 = df[50:100]
```

Sepal length vs Sepal Width (Setosa vs Versicolor)

```
1 plt.xlabel('Sepal Length')
2 plt.ylabel('Sepal Width')
3 plt.scatter(df0['sepal length (cm)'], df0['sepal width (cm)'],color="green",marker='+')
4 plt.scatter(df1['sepal length (cm)'], df1['sepal width (cm)'],color="blue",marker='.')
```

<matplotlib.collections.PathCollection at 0x7fa69adf7700>

Petal length vs Pepal Width (Setosa vs Versicolor)

```
1 plt.xlabel('Petal Length')
2 plt.ylabel('Petal Width')
3 plt.scatter(df0['petal length (cm)'], df0['petal width (cm)'],color="green",marker='+')
4 plt.scatter(df1['petal length (cm)'], df1['petal width (cm)'],color="blue",marker='.')
```

³ df2 = df[100:]

¹ import matplotlib.pyplot as plt

^{2 %}matplotlib inline

<matplotlib.collections.PathCollection at 0x7fa69ad65850>

Train test split

Create KNN (K Neighrest Neighbour Classifier)

```
1 from sklearn.neighbors import KNeighborsClassifier
2 knn = KNeighborsClassifier(n_neighbors=10)

1 knn.fit(X_train, y_train)
    KNeighborsClassifier(n_neighbors=10)

1 knn.score(X_test, y_test)
    0.96666666666667

1 knn.predict([[4.8,3.0,1.5,0.3]])
    /usr/local/lib/python3.8/dist-packages/sklearn/base.py:450: UserWarning: X does not have valid feature names, but KNeighborsClassifier w warnings.warn( array([0])
```

Plot Confusion Matrix

6 plt.xlabel('Predicted')

7 pltexta4216, Touth')

- 1 from sklearn.metrics import classification_report
- 3 print(classification_report(y_test, y_pred))

support	f1-score	recall	precision	
11	1.00	1.00	1.00	0
13	0.96	0.92	1.00	1
6	0.92	1.00	0.86	2
30	0.97			accuracy
30	0.96	0.97	0.95	macro avg
30	0.97	0.97	0.97	weighted avg

Colab paid products - Cancel contracts here

✓ 0s completed at 12:39 PM