Apresentação

Nesta aula, determinaremos as proposições recíprocas, contrárias e contrapositivas de determinada proposição, além de determinar a negação conjunta e disjunta de duas proposições.

Objetivos

- Determinar as proposições recíprocas, contrárias e contrapositivas de determinada proposição.
- Determinar a negação conjunta e disjunta de duas proposições

Introdução

Iniciaremos, neste momento, uma breve abordagem dos conceitos de Tautologia e Equivalência Lógica. Para isso, enunciaremos um teorema e deixaremos a demonstração para que você pense um pouco.

$$P(p, q,r, \ldots) \leftrightarrow Q(p, q, r...)$$

se e somente se a bicondicional:

$$P \; (p,\,q,r,\,\ldots) \leftrightarrow Q \; (p,\,q,\,r...)$$

é tautológica.

Exemplo:

Vamos mostrar que a bicondicional (p $\land \neg q) \rightarrow c$) \leftrightarrow (p \rightarrow q) em que c é uma proposição lógica cujo valor lógico é F, é tautológica. Portanto, se a bicondicional é tautológica, teremos uma equivalência lógica.

Lembre-se: para provar que uma proposição é tautológica, devemos mostrar que sua última coluna só possui o valor V.

р	q	¬q	С	p∧¬q	(p ∧ ¬q) → c	p→q	(p ∧ ¬q) → c) ↔ (p → q)
V	V	F	F	F	V	V	V
V	F	V	F	V	F	F	V
F	V	F	F	F	V	V	V
F	F	V	F	F	V	V	V

Portanto, as proposições "p $\land \neg q \to c$ " e "p $\to q$ "são equivalentes, simbolicamente Temos:

$$p \land \neg q \to c \leftrightarrow p \to q$$

Iniciaremos uma breve abordagem das proposições associadas a uma condicional. Dada a condicional $p \to q$, chamam-se proposições associadas a $p \to q$ as três proposições condicionais seguintes que contêm p e q:

- 1. Proposição recíproca de p \rightarrow q : q \rightarrow p
- 2. Proposição contrária de p → q: ¬p → ¬q
- 3. Proposição contrapositiva de p \rightarrow q: \neg q \rightarrow \neg p

Você já deve ter concluído, então, que a condicional $p \rightarrow q$ e a sua contrapositiva $\neg q \rightarrow \neg p$ são equivalentes.

No exemplo abaixo, temos a contrapositiva da condicional. Observe:

Acreditamos que já está na hora de organizar as idéias. Olhando a tabela, podemos notar duas equivalências.

Uma delas é p \rightarrow q \leftrightarrow \neg q \rightarrow \neg p e a outra é q \rightarrow p \leftrightarrow \neg p \rightarrow \neg q

Você deve estar ansioso para verificar se está entendendo esta aula, certo? Então, a melhor maneira é propor um exercício para que você possa se autoavaliar. Vamos lá? Confiamos em você!

Atividade

Determine:

- a) A contrapositiva de $q \rightarrow \neg p$ R: p --> -q
- b) A contrapositiva de $\neg q \rightarrow p$
- c) A contrapositiva da contrária de p \rightarrow q R: q-->p
- 2 Devemos, sempre, buscar algo mais e, portanto, proporemos uma nova série de exercícios.

Determine:

- a) A recíproca da contrapositiva de $\neg p \rightarrow \neg q$ R: p --> q
- b) A contrapositiva de $\neg p \rightarrow q$
- c) A contrapositiva da recíproca de p $\rightarrow \neg q$ R: -p --> q
- d) A contrapositiva de p $\rightarrow \neg q$ R: q --> -p

Negação conjunta de duas proposições

Chama-se negação conjunta de duas proposições p e q a proposição representada simbolicamente pela notação "p↓q", que se lê: "nem p e nem q", e cujo valor lógico é definido pela seguinte tabela-verdade.

р	q	p↓q
V	V	F
V	F	F
F	V	F
F	F	V

proposições são falsas.

I Negação disjunta de duas proposições

Chama-se negação disjunta de duas proposições p e q a proposição "não p ou não q", isto é, simbolicamente ¬p v ¬q. A negação disjunta de duas proposições p e q também se indica pela notação p↑q. Portanto, temos:

 $p \uparrow q \leftrightarrow \neg p \lor \neg q \Rightarrow$ Esta proposição é falsa somente no caso em que p e q são ambas verdadeiras , então , a tabela-verdade de "p \uparrow q" é a seguinte:

р	q	pîq
V	V	F
V	F	V
F	V	V
F	F	V

Notas

Título modal ¹

Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos. Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos. Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos.

Título modal ¹

Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos. Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos. Lorem Ipsum é simplesmente uma simulação de texto da indústria tipográfica e de impressos.

Referências

SOUZA, João. Lógica para ciência da computação. Ed. Elsevier.