GSS Abgabe 02

Carolin Konietzny, Paul Bienkowski, Julian Tobergte, Oliver Sengpiel, Lars Thoms 28. April 2015

1 (Grundlagen von Betriebssystemen)

- a) Abstraktion: Das Betriebssystem bietet ein "schönes" (aufgeräumt, übersichtlich, verständlich, standardisiert) Interface zur Kommunikation mit der Hardware. Dies macht es Anwendungsentwicklern einfacher damit zu interagieren.
 - Resourcenmanagement: Das Betriebssystem weist den Programmen Speicher und Rechenzeit zu. Es verwaltet Gerate und Dateien.
- Abstraktion: Verschiedene Hardwaremodule des gleichen Typs (z.B. USB-Sticks versch. Hersteller oder WLAN/Ethernetkarte als verschiedene Netzwerkadapter) können über die gleiche Schnittstelle angesprochen werden. Damit wird die Komplexität der eigentlichen Maschine versteckt.
 - Resourcenmanagement: Der Hauptspeicher wird verwaltet, den Programmen werden verschiedene Speicherbereiche zugewiesen. Die Festplatte wird in logische Segmente unterteilt, das Dateisystem verwaltet Dateien als logische, benannte Einheiten.

2 (Prozess und Threads)

3 (n-Adressmaschine)

Wir dürfen keine Hilfsregister verwenden, benötigen aber in einer 2-Adress-Maschine mindestens 2 Register um Berechnungen durchzuführen. Daher bennen wir unsere Register R1 und R2, als Hilfsspeicherzelle verwenden wir H1.

Befehl			R_1	R_2	H_1	Z
LOAD	a_1	R_1	a_1			
LOAD	a_2	R_2	÷	a_2		
ADD	R_1	R_2	÷	$a_1 + a_2$		
LOAD	a_3	R_1	a_3	:		
DIV	R_2	R_1	$\frac{a_1 + a_2}{a_3}$:		
STORE	R_1	H_1	:	:	$\frac{a_1 + a_2}{a_3}$	
LOAD	b_1	R_1	b_1	:	:	
LOAD	b_2	R_2	:	b_2	:	
ADD	R_1	R_2	i :	$b_1 + b_2$	•	
LOAD	b_3	R_1	b_3	:	•	
DIV	R_2	R_1	$\frac{b_1+b_2}{b_3}$:	•	
LOAD	H_1	R_2	:	$\frac{a_1+a_2}{a_3}$:	
ADD	R_2	R_1	$\frac{a_1+a_2}{a_3} + \frac{b_1+b_2}{b_3}$:	:	
STORE	R_1	Z	i :	:	•	$\frac{a_1+a_2}{a_3} + \frac{b_1+b_2}{b_3}$

Leseoperationen: 7 Schreiboperationen: 2 Rechenbefehle: 5

Berechnungszeit: (7+2) * 20 + 5 = 185 FLOP