Métodos Numéricos para Engenharia

MÓDULO 12- SPLINES - INTERPOLAÇÃO POR INTERVALOS PROFESSOR LUCIANO NEVES DA FONSECA

Splines

- Se tivermos N+1 pontos de controle, temos a opção de ajustarmos um polinômio interpolador de ordem N, que passa pelos N+1 pontos de controle. No entanto se N for muito grande, haverá oscilações (wiggling)
- Uma segunda opção seria ajustarmos um polinômio interpolador de ordem M<N, que passa 'entre' os pontos de controle, com o erro quadrático-médio minimizado. No entanto, como foi dito, este polinômio não passa pelos pontos de controle, o que pode ser um problema em algumas aplicações.
- Uma terceira opção seria ajustarmos um polinômio a cada um dos N intervalos $[x_i, x_{i+1}]$ entre os pontos de controle. Deste modo evitamos as oscilações (wiggling) e honramos os pontos de controle.
- O polinômio interpolador para cada intervalo pode ser Linear (Spline Linear), Quadrático (Spline Quadrática) ou Cúbico (Spline Cúbica).

Splines Lineares, Quadráticas e Cúbicas

- Na interpolação por splines, o polinômio interpolador para cada intervalo pode ser Linear (Splines Lineares), Quadrático (Splines Quadráticas) ou Cúbico (Splines Cúbicas).
- Sem dúvida, o melhor resultado e o resultado mais consistente é o das Splines Cúbicas. Na prática esta são a mais utilizadas.
- Estudaremos as Splines Lineares e as Quadrática por uma questão didática, de forma a facilitar o aprendizado das Splines Cúbicas.

Xi	y _i
1	2
2	5
4	7
7	6
11	1

N=4

Splines Lineares

- Se tivermos N+1 pontos de controle, teremos N intervalos.
- Será ajustado uma reta (polinômio de ordem 1) a cada intervalo.
- O polinômio 1 irá unir o ponto $[x_1,y_1]$ ao ponto $[x_2,y_2]$ e o polinômio N o ponto $[x_N,y_N]$ ao ponto $[x_{N+1},y_{N+1}]$
- Cada polinômio de ordem 1 acrescenta 2 incógnitas $p_n = a_n x + b_n$
- Como temos N polinômios, teremos 2N incógnitas.
- Precisamos de 2N equações, pois temos N intervalos, logo N polinômios.
- Cada polinômio deve honrar dois pontos de controle, o que nos fornece 2N equações.

$p_1(x_1) = a_1 x_1 + b_1 = y_1$
$p_1(x_2) = a_1 x_2 + b_1 = y_2$
$p_2(x_2) = a_2 x_2 + b_2 = y_2$
$p_2(x_3) = a_2 x_3 + b_2 = y_3$
$p_3(x_3) = a_3 x_3 + b_3 = y_3$
$p_3(x_4) = a_3 x_4 + b_3 = y_4$
$p_4(x_4) = a_4 x_4 + b_4 = y_4$
$p_4(x_5) = a_4x_5 + b_4 = y_5$

и	! =	$A^{-1}b$
$\lceil a_1 \rceil$		3.
b_1		-1.
a_2		1.
b_2	_	3.
a_3		-0.33
b_3		8.33
a_4		-1.25
$\lfloor b_4 floor$		14.75

Notar que as Splines Lineares passam pelos pontos de controle No entanto, a primeira derivada tem um descontinuidade nos pontos de controle

```
function [u,A,b]=SplineLinear(x,y)
                                                                                  s=poly(0,'s');
                                            N=length (x)-1 · // · # · de · intervalos
                                             b = a \cdot b = a \cdot a = a \cdot a \cdot zeros(2*N,1);
                                               \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} = \mathbf{A} \cdot \mathbf{A} \cdot \mathbf{A} = \mathbf{A} \cdot 
                                           index=1; \(\frac{1}{x}\) (index), \(\frac{1}{y}\) (index)
                                           col=1; -//-A(lin,col)
                                             ----//2N equações: funções passam por (xi,yi))
                                            • • • • for • lin=1:2:2*N-1
                                              \mathbf{A}(\text{lin:lin+1,col:col+1}) = [[\mathbf{x}(\text{index}) \cdots 1];
                                               11
                                               \mathbf{b} (lin:lin+1) = \mathbf{v} [\mathbf{y} (index);
                                               verver y (index+1)] ;
                                               ....index=index+1;
                                            col=col+2;
                                             - - - end
                                             u=tridiagonal (diag(A,-1), diag(A), diag(A,1),b)'
18 endfunction
```

```
function yp=InterSplineLinear(xp,x,u)

s=poly(0,'s');

yp=xp*%nan;

for (i=1:length(x)-1)

index = find(xp>=x(i) & xp<=x(i+1));

ps = poly([u(2*i),u(2*i-1)],"s","coeff")

yp(index)=horner(ps,xp(index))

end
endfunction</pre>
```

```
--> x=[1,2,4,7,11];

--> y=[2,5,7,6,1];

--> u=SplineLinear(x,y)

3.

-1.

1.

3.

-0.3333333

8.3333333

-1.2500000

14.750000
```

```
--> xp=linspace(min(x),max(x),1000);

--> plot(xp,InterSplineLinear(xp,x,u));

--> scatter(x,y)
```


Notar que as Splines Lineares passam pelos pontos de controle No entanto, a primeira derivada tem um descontinuidade nos pontos de controle

```
function Plot SplineLinear (x, y)
   [u,A,b]=SplineLinear(x,y);
   for (i=1: length(x)-1)
   ps(i) = poly([u(2*i),u(2*i-1)],"s","coeff")
   end
   printf("Matriz Aumentada [A|b]")
   disp([A b]) \cdot // \cdot u = inv(A) *b
   disp(ps)
   N=length(x)-1 // # de intervalos
   xp=linspace(min(x), max(x), 10000);
10
   plot(xp, InterSplineLinear(xp, x, u));
   scatter (x, y)
   xtitle("Interpolação Splines "+string(N)+" intervalos");
13
    endfunction
14
```

```
--> x=[1,2,4,7,11];
--> y=[2,5,7,6,1];
--> Plot SplineLinear(x,y)
Matriz Aumentada [Alb]
                                        0.
                                             5.
                                        0.
                                        0.
                                             7.
                                             7.
                                        0.
                       0.
  -1 + 3s
  3 +5
  8.3333333 -0.33333333s
 14.75 -1.25s
```


Splines Quadráticas Se tivermos N+1 pontos de controle, teremos N intervalos.

- Será ajustado uma parábola (polinômio de ordem 2) a cada intervalo.
- O polinômio 1 irá unir o ponto $[x_1, y_1]$ ao ponto $[x_2, y_2]$ e o polinômio N o ponto $[x_N, y_N]$ ao ponto $[x_{N+1}, y_{N+1}]$
- Cada polinômio de ordem 2 acrescenta 3 incógnitas $p_n = a_n x^2 + b_n x + c_n$
- Como temos N polinômios, teremos 3N incógnitas.
- Precisamos de 3N equações, pois temos N intervalos, logo N polinômios.
- Cada polinômio deve honrar dois pontos de controle, o que nos fornece 2N equações.
- Para reduzir as descontinuidades, igualamos as derivadas nos pontos internos (N-1 equações)
- Para a última equação fazemos a1=0 (o primeiro polinômio será uma reta")

Au - D	Au		b
--------	----	--	---

 $2a_3x_4 + b_3 - 2a_4x_4 - b_4 = 0$

1	0.	0.				0.	0	0.	0.	0.	0.
x_1^2	x_1	1				0.	0	0.	0.	0.	0.
							0				
0.	0.	0.				0.	0	0.	0.	0.	0.
0.	0.	0.				0.	0	0.	0.	0.	0.
0.	0.	0.				x_{3}^{2}	x_3	1	0.	0.	0.
0.	0.	0.				x_4^2	x_4	1	0.	0.	0.
0.	0.	0.				0.	0.	0.	x_{4}^{2}	x_4	1
0.	0.	0.	0.	0.	0.	0.	1.	0.	x_5^2	x_5	1
$2x_2$. 1.	0. –			. 0	. 0	. 0.	0.	0.	0.	0
0.	0.	0.	$2x_3$.		0. –	$-2x_{3}$	-1.	0	. 0.	0	. 0
0.	0.	0.	0.	0.	0.	$2x_{\lambda}$	1. 1.	0.	-2x	4-1	. 0

	a_1		ΓO
	b_1		y
	c_1	7 Sec	y
	a_2		y
	b_2		y
	c_2	_	y
Ш	a_3	10-11	y
	b_3	18	y
П	c_3		y
	a_4		(
	b_4		(
	c_4		L

n=t	5 po	ont	О	S
V=4	inte	erv	al	OS

	xi	y i
1	1	2
	2	5
	4	7
	7	6
	11	1

Splines Quadráticas

```
a_{1} = 0
p_{1}(x_{1}) = a_{1}x_{1}^{2} + b_{1}x_{1} + c_{1} = y_{1}
p_{1}(x_{2}) = a_{1}x_{2}^{2} + b_{1}x_{2} + c_{1} = y_{2}
p_{2}(x_{2}) = a_{2}x_{2}^{2} + b_{2}x_{2} + c_{2} = y_{2}
p_{2}(x_{3}) = a_{2}x_{3}^{2} + b_{2}x_{3} + c_{2} = y_{3}
p_{3}(x_{3}) = a_{3}x_{3}^{2} + b_{3}x_{3} + c_{3} = y_{3}
p_{3}(x_{4}) = a_{3}x_{4}^{2} + b_{3}x_{4} + c_{3} = y_{4}
p_{4}(x_{4}) = a_{4}x_{4}^{2} + b_{4}x_{4} + c_{4} = y_{4}
p_{4}(x_{5}) = a_{4}x_{5}^{2} + b_{4}x_{5} + c_{4} = y_{5}
2a_{1}x_{2} + b_{1} - 2a_{2}x_{2} - b_{2} = 0
2a_{2}x_{3} + b_{2} - 2a_{3}x_{3} - b_{3} = 0
2a_{3}x_{4} + b_{3} - 2a_{4}x_{4} - b_{4} = 0
```

Xi	Уi
1	2
2	5
4	7
7	6
11	1

						Au-	- <i>U</i>					
1.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
1.	1.	1.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
4.	2.	1.	0.	0.	0.	0.	0.	0.	0.	0.	0.	
0.	0.	0.	4.	2.	1.	0.	0.	0.	0.	0.	0.	
0.	0.	0.	16.	4.	1.	0.	0.	0.	0.	0.	0.	
0.	0.	0.	0.	0.	0.	16.	4.	1.	0.	0.	0.	
0.	0.	0.	0.	0.	0.	49.	7.	1.	0.	0.	0.	
0.	0.	0.	0.	0.	0.	0.	0.	0.	49.	7.	1.	
0.	0.	0.	0.	0.	0.	0.	0.	0.	121.	11.	1.	
4.	1.	0.	-4.	-1.	0.	0.	0.	0.	0.	0.	0.	
0.	0.	0.	8.	1.	0.	-8.	-1.	0.	0.	0.	0.	
0.	0.	0.	0.	0.	0.	14.	1.	0.	-14.	-1.	0.	


```
function [u, A, b] = SplineQuadratica(x, y)
         N=length(x)-1 // # de intervalos
     b = zeros(3*N,1);
     \mathbf{A} \cdot \cdot \cdot = \mathbf{zeros}(3*N, 3*N);
     index=1; //x(index),y(index)
     col=1; //-A(lin,col)
     A(1,1)=1; // la equação a1=0
     for <u>lin</u>=2:2:2*N //2N equações: funções passam por (xi,yi))
         \mathbf{A}(\underline{\text{lin}}:\underline{\text{lin}}+1,\text{col}:\text{col}+2) = [[\mathbf{x}(\underline{\text{index}})^2 - \mathbf{x}(\underline{\text{index}}) - 1];
            [x(index+1)^2 x(index+1) 1]]
      b(\underline{lin}:\underline{lin}+1) = (y(\underline{index});
      y(index+1)];
     index=index+1;
     col=col+3;
         end
         col=1;
     index=2;
17
     for lin=2*N+2:3*N //N-1 equações-1a derivadas pontos internos
       \mathbf{A}(\text{lin,col:col}+5) = \cdots [2 \times (\text{index}) \cdot 1 \cdot 0 \cdot -2 \times (\text{index}) \cdot -1 \cdot 0];
     index=index+1;
     col=col+3;
21
         end
     u=EliminacaoGaussJordan (A,b)
    endfunction
```

```
function yp=InterSplineQuadratica(xp,x,u)

s=poly(0,'s');

yp=xp*%nan;

for (i=1:length(x)-1)

index = find(xp>=x(i) & xp<=x(i+1));

ps = poly([u(3*i),u(3*i-1),u(3*i-2)],"s","coeff")

yp(index)=horner(ps,xp(index))

end
endfunction</pre>
```

- Notar que o 1° polinômio é linear!
- Há inflexões desnecessárias nos pontos de controle

```
--> x=[1,2,4,7,11];
--> y=[2,5,7,6,1];
--> u=SplineQuadratica(x,y)

0.
3.
-1.
-1.
-1.
7.
-5.
0.2222222
-2.7777778
14.555556
-0.3958333
5.8750000
-15.729167
```

```
--> xp=linspace(min(x),max(x),1000);

--> plot(xp,InterSplineQuadratica(xp,x,u));

--> scatter(x,y)
```



```
function Plot_SplineQuadratica(x,y)

[u,A,b]=SplineQuadratica(x,y);

for (i=1:length(x)-1)

ps(i) = poly([u(3*i),u(3*i-1),u(3*i-2)],"s","coeff")

end

printf("Matriz Aumentada [A|b]")

disp([A b]) // u = inv(A)*b

number of the definition of the intervalos

number of the printf(x), max(x), 10000);

plot(xp,InterSplineQuadratica(xp,x,u));

scatter(x,y)

xtitle("Interpolação Splines "+string(N)+" intervalos");

endfunction
```

```
--> x=[1,2,4,7,11];
--> y=[2,5,7,6,1];
--> Plot SplineQuadratica(x,y)
Matriz Aumentada [A|b]
                                                                        0.
                                 0.
                                      0.
                                             0.
                                                   0.
                                                                 0.
                                                                        0.
                    16.
                                      16.
                                       49.
                                      0.
                                                         121.
                                                                 0.
  -1 + 3s
  -5 + 7s - s^2
 14.555556 -2.7777778s +0.2222222s<sup>2</sup>
  -15.729167 + 5.875s - 0.3958333s^2
```

- Notar que o 1° polinômio é linear!
- Há inflexões desnecessárias nos pontos de controle

Splines Cúbicas

- Se tivermos N+1 pontos de controle, teremos N intervalos.
- Será ajustado polinômio de ordem 3 a cada intervalo.
- O polinômio 1 irá unir o ponto $[x_1, y_1]$ ao ponto $[x_2, y_2]$ e o polinômio N, do ponto $[x_N, y_N]$ ao ponto $[x_{N+1}, y_{N+1}]$
- Cada polinômio de ordem 3 acrescenta 4 incógnitas $p_n = a_n x^3 + b_n x^2 + c_n x + d_n$
- Como temos N polinômios, teremos 4N incógnitas.
- Precisamos de 4N equações, pois temos N intervalos (N polinômios).
- Cada polinômio deve honrar dois pontos de controle, o que nos fornece 2N equações.
- Para reduzir as descontinuidades, igualamos as derivadas nos pontos internos (N-1 equações)
- Para reduzir as inflexões, igualamos as segundas derivadas nos pontos internos (N-1 equações)
- Para a duas últimas equação anulamos a segunda derivadas no primeiro e no ultimo ponto (spline natural)

$$p_{1}(x_{1}) = a_{1}x_{1}^{3} + b_{1}x_{1}^{2} + c_{1}x_{1} + d_{1} = y_{1}$$

$$p_{1}(x_{2}) = a_{1}x_{2}^{3} + b_{1}x_{2}^{2} + c_{1}x_{2} + d_{1} = y_{2}$$

$$p_{2}(x_{2}) = a_{2}x_{2}^{3} + b_{2}x_{2}^{2} + c_{2}x_{2} + d_{2} = y_{2}$$

$$p_{2}(x_{3}) = a_{2}x_{3}^{3} + b_{2}x_{3}^{2} + c_{2}x_{3} + d_{2} = y_{3}$$

$$p_{3}(x_{3}) = a_{3}x_{3}^{3} + b_{3}x_{3}^{2} + c_{3}x_{3} + d_{3} = y_{3}$$

$$p_{3}(x_{4}) = a_{3}x_{4}^{3} + b_{3}x_{4}^{2} + c_{3}x_{4} + d_{3} = y_{4}$$

$$p_{4}(x_{4}) = a_{4}x_{4}^{3} + b_{4}x_{4}^{2} + c_{4}x_{4} + d_{4} = y_{4}$$

$$p_{4}(x_{5}) = a_{4}x_{5}^{3} + b_{4}x_{5}^{2} + c_{4}x_{5} + d_{4} = y_{5}$$

$$3a_{1}x_{2}^{2} + 2b_{1}x_{2} + c_{1} = 3a_{2}x_{2}^{2} + 2b_{2}x_{2} + c_{2}$$

$$3a_{2}x_{3}^{2} + 2b_{2}x_{3} + c_{2} = 3a_{3}x_{3}^{2} + 2b_{3}x_{3} + c_{3}$$

$$3a_{3}x_{4}^{2} + 2b_{3}x_{4} + c_{3} = 3a_{4}x_{4}^{2} + 2b_{4}x_{4} + c_{4}$$

$$6a_{1}x_{1} + 2b_{1} = 0$$

$$6a_{1}x_{2} + 2b_{1} = 6a_{2}x_{2} + 2b_{2}$$

$$6a_{2}x_{3} + 2b_{2} = 2a_{3}x_{3} + 2b_{3}$$

$$6a_{3}x_{4} + 2b_{3} = 2a_{4}x_{4} + 2b_{4}$$

$$6a_{3}x_{5} + 2b_{3} = 0$$

x_1^3	x_1^2	x	1 1				0	0	0	0	0	0	0	0]
x_{2}^{3}	x_2^2	x	2 1				0	0	0	0	0	0	0	0	
0	0	C) (x_2^3			0	0	0	0	0	0	0	0	
0	0	0	0	x_3^3			0	0	0	0	0	0	0	0	
0	0	0	0	0			x_{3}^{3}	x_{3}^{2}	x_3	1	0	0	0	0	1
0	0	0	0	0			x_4^3	x_{4}^{2}	x_3	1	0	0	0	0	Ŋ.
0	0	0	0				0	0	0	1	x_{4}^{3}	x_{4}^{2}	x_3	1	
0	0	0	0				0	0	0	1	x_{5}^{3}	x_{5}^{2}	x_5	1	
$3x_2^2$	2.	x_2	1 (-3			0	0	0	0	0	0	0	0	11
0	0	0	0				$-3x_3^2$	- 2.	$x_3 - $	1 0	0	0	0	0	
0	0	0	0				$3x_4^2$	$2x_{4}$	1	0	– 32	$x_4^2 - 2$	$2x_4$ -	- 1	0
$6x_1$	2	0	0				0	0	0	0		0	0	0	0
$6x_2$	2	0	0	$-6x_{2}$			0	0	0	0		0	0	0	0
0	0	0	0	$6x_3$	0	0	$-6x_{3}$	- 2	0	(0	0	0	0	0
0	0	0	0	0	0	0	$6x_4$	2	0	0	-	$-6x_{4}$	- 2	0	0
0	0	0	0	0	0	0	0	0	0	0		$6x_5$	2	0	0

1		y_1	
1		y_2	
1		y_2	
1		y_3	
2		y_3	l
2		y_4	
2		y_4	
2	_	y_5	
3	_	0	
3		0	
3		0	ı
3		0	
4		0	
4		0	
4		0	
4		0 _	

xi	Уi
1	2
2	5
4	7
7	6
11	1

```
function [u, A, b] = SplineCubica(x, y)
          s=poly(0,'s');
          N=length(x)-1··//·#·de·intervalos
          \mathbf{b} \cdot \cdot \cdot = \cdots \cdot \operatorname{zeros}(4*N,1);
          \mathbf{A} \cdot \cdot \cdot = \cdot \cdot \cdot \operatorname{zeros}(4*N, 4*N);
          index=1; //x(index),y(index)
          col=1;
          for lin=1:2:2*N-1····//2N·equações: funções passam por (xi,yi))
              \mathbf{A} (lin:lin+1,col:col+3) = \mathbf{E} [\mathbf{x} (index) \mathbf{A} · · · \mathbf{x} (index) \mathbf{A} · · · \mathbf{x} (index)
                 b(lin:lin+1) = (y(index);
                                 y(index+1)];
              index=index+1;
              col=col+4;
          end
15
16
          col=1;
17
          index=2;
          for lin=2*N+1:3*N-1 · · · // · N-1 · equações · - · 1a · derivadas · pontos · internos
              \mathbf{A}(\text{lin,col:col+7}) = [3 \times (\text{index})^2 \cdot \cdot \cdot 2 \times (\text{index}) \cdot 1 \cdot 0 \cdot -3 \times (\text{index})^2 \cdot -2 \times (\text{index}) \cdot -1 \cdot 0];
             index=index+1;
              col=col+4;
          end
          col=1;
          A(3*N,col:col+3) = · · [6*x(index) · · · 2 · · 0 · 0]; · //2a · derivada · ponto · externo
26
          index=index+1;
          for lin=3*N+1:4*N-1 · · · // · N-1 · equações · - · 2a · derivadas · pontos · internos
             \cdot A(lin,col:col+7) = \cdot \cdot \cdot \cdot [6*x(index) \cdot \cdot \cdot 2 \cdot \cdot 0 \cdot 0 \cdot -6*x(index) \cdot -2 \cdot 0 \cdot 0];
              index=index+1;
              col=col+4;
          end
          A(4*N,col:col+3) = · · · [6*x(index) · · · 2 · · 0 · 0]; // 2a · derivada · ponto · externo
          u=EliminacaoGaussJordan(A,b)
34
     endfunction
        function yp=InterSplineCubica(xp,x,u)
          s=poly(0,'s');
          yp=xp*%nan;
        for (i=1: length(x)-1)
        index = find(xp>=x(i) & xp<=x(i+1));
        ps = poly([u(4*i),u(4*i-1),u(4*i-2),u(4*i-3)],"s","coeff")
               yp (index) = horner (ps, xp (index))
        end
     endfunction
```

9

10

11

12

13

14

18

19

20

21

22

23

24

25

27

28

29

30 31

32

33

--> x=[1,2,4,7,11];


```
function Plot_SplineCubica(x,y)

[u,A,b]=SplineCubica(x,y);

for (i=1:length(x)-1)

ps(i) = poly([u(4*i),u(4*i-1),u(4*i-2),u(4*i-3)],"s","coeff"))

end

printf("Matriz Aumentada [A|b]")

disp([A b]) // u = inv(A)*b

nlength(x)-1 // # de intervalos

xp=linspace(min(x),max(x),10000);

plot(xp,InterSplineCubica(xp,x,u));

scatter(x,y)

xtitle("Interpolação Splines "+string(N)+" intervalos");

endfunction
```

-1 +2.3694064s +0.9458904s2 -0.3152968s8

-4.5671233 +7.7200913s -1.7294521s² +0.1305936s³ 3.785997 +1.4552511s -0.163242s² +0.0000761s³ -0.8082192 +3.4242009s -0.4445205s² +0.0134703s³

```
Interpolação Splines 4 intervalos
p_{3} = 0.000076x^{3} - 0.16x^{2} +1.46x + 3.79
p_{2} = 0.13x^{3} - 1.73x^{2} +7.72x - 4.57
p_{4} = 0.013x^{3} - 0.44x^{2} +3.42x - 0.81
p_{1} = -0.32x^{3} + 0.95x^{2} +2.37x - 1
Splines Cúbicas
```

- Notar que as Splines cúbicas oferecem, sem dúvida, a melhor interpolação, sem descontinuidade e sem inflexões
- No entanto a matriz A é esparsa e de ordem muito alta, o que pode inviabilizar o método se N é muito grande

Cálculo Alternativo para Splines Naturais Cúbicas

(nas Splines naturais, as segundas derivadas nos pontos externos são nulas)

$$p_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

O polinômio cúbico terá um forma alternativa, de modo que as incógnitas serão os novos coeficientes $a_i, b_i, c_i e d_i$ (e não os coeficientes u das splines cúbicas)

$$a_i = p_i(x_i) = y_i$$
 a_i é o valor do polinônio $p_i(x)$ no início do intervalo $b_i = p'_i(x_i)$ b_i é o valor $p'_i(x)$ no início do intervalo $p'_i(x) = b_i + 2c_i(x - x_i) + 3d_i(x - x_i)^2$ $c_i = \frac{1}{2}p''_i(x_i)$ c_i é a metade do valor $p''_i(x)$ no início do intervalo $p''_i(x) = 2c_i + 6d_i(x - x_i)$

Algoritmo de spline natural:

n=5 pontos

Xi

N=4 intervalos

Уi

5

6

Os coeficientes $a_i, b_i, c_i e d_i$ podem ser calculados através de uma tabela de diferenças:

 O algoritmo de spline natural constrói um spline que tem derivadas de segundo zero nos limites.

• O algoritmo envolve a resolução de um sistema linear tridiagonal para determinar os coeficientes do spline.

 O sistema linear tridiagonal é formado reforçando a continuidade da primeira e segunda derivadas em cada nó interior.

• As condições de contorno são definidas fixando as segundas derivadas em zero no primeiro e no último nós.

• A spline resultante é suave e tem um comportamento natural nos limites.

Tabela de Diferenças

				dy=	r=	
i	x_i	h=x _{i+1} -x _i	y i	$(y_{i+1}-y_i)/(x_{i+1}-xi)$	3(dy _i -dy _{i-1})	2*(h _i +h _{i-1})
1	1.00	1.00	2.00	3.00		
2	2.00	2.00	5.00	1.00	-6.00	6.00
3	4.00	3.00	7.00	-0.33	-4.00	10.00
4	7.00	4.00	6.00	-1.25	-2.75	14.00
5	11.00		1.00			

n=5 pontos N=4 intervalos

\boldsymbol{v}_{i}	(x)	$a_i +$	b:((x - 1)	(x_i) -	+ C:	(x -	$(x_i)^2$	+ d . ((x -	$(x_i)^3$
Pl		α_l		,	$\sim i J$	' '	(A	\(\lambda_i\)	ui	(n	rij

Tabela de Diferenças

Xi	Уi
1	2
2	5
4	7
7	6
11	1

				dy=	r=	
i	Xi	h=x _{i+1} -x _i	y i	$(y_{i+1}-y_i)/(x_{i+1}-xi)$	3(dy _i -dy _{i-1})	2*(h _i +h _{i-1})
1	1.00	1.00	2.00	3.00		
2	2.00	2.00	5.00	1.00	-6.00	6.00
3	4.00	3.00	7.00	-0.33	-4.00	10.00
4	7.00	4.00	6.00	-1.25	-2.75	14.00
5	11.00		1.00			

A partir da tabela de Tabela de Diferenças, podemos montar um sistema de equações tridiagonal (N-1)x(N-1) para calcular c_i , que são as segundas derivadas nos pontos internos (lembrar que no pontos externos $c_o = c_N = 0$;)

Sistema e Equações

i=2	2*(h ₁ +h ₂)	h ₂			C ₂		r ₂
i=3	h ₂	2*(h ₂ +h ₃)	h ₃	*	c ₃	=	r ₃
i=4		h ₃	2*(h ₃ +h ₄)		C ₄		r ₄
	6	2			c ₂		-6
	2	10	3	*	c ₃	=	-4
		3	14		C ₄		-2.75

Resolver

Sistema -0.946
-0.162
-0.162

Com c_i podemos calcular b_i e d_i $(a_i = y_i)$

		bi		d _i =
i	a _i =y _i	$=dy_i-h_i/3*(c_{i+1}+2c_i)$	c _i	(c _{i+1} -ci)/(3*h _i)
1	2.00	3.31530	0.00000	-0.31530
2	5.00	2.36941	-0.94589	0.13059
3	7.00	0.15297	-0.16233	0.00008
4	6.00	-0.81895	-0.16164	0.01347

```
function [a,b,c,d]=SplineNatural(x,y)
       N=length(x)-1-//-#-de-intervalos
     h = diff(x);
       dy = diff(y)./h;
      dl=h(2:N-1);
     dp = [2*(h(1:N-1)+h(2:N))];
     du=h(2:N-1);
     r=3*diff(dy)
     c=[0 tridiagonal(dl,dp,du,r) 0]';
     a=y';
10
     for (k=1:N)
     \mathbf{b}(\mathbf{k}) = \mathbf{dy}(\mathbf{k}) - \mathbf{h}(\mathbf{k}) * (2*\mathbf{c}(\mathbf{k}) + \mathbf{c}(\mathbf{k}+1)) / 3;
     \mathbf{d}(k) = (\mathbf{c}(k+1) - \mathbf{c}(k)) / (3*h(k));
    end
14
     endfunction
   function yp=InterSplineNatural(xp,x,a,b,c,d)
    s=poly(0,'s');
    yp=xp*%nan;
    for (i=1: length(x)-1)
    index = find(xp>=x(i) & xp<=x(i+1));
      ps temp=poly([a(i),b(i),c(i),d(i)],"s","coeff")
    ps=horner(ps temp, (s-x(i)))
      yp (index) = horner (ps, xp (index))
    end-
```

10 endfunction

```
--> x=[1,2,4,7,11];
--> y=[2,5,7,6,1];
--> [a,b,c,d]=SplineNatural(x,y)
   2.
   3.3152968
   2.3694064
  0.1529680
  -0.8189498
 c =
   0.
  -0.9458904
  -0.1623288
  -0.1616438
   0.
 d =
  -0.3152968
  0.1305936
   0.0000761
  0.0134703
```



```
function Plot SplineNatural (x,y)
       [a,b,c,d]=SplineNatural(x,y)
       N=length(x)-1.//.#.de.intervalos
       h = diff(x);
       dy = diff(y)./h;
       dl=h(2:N-1);
       dp=[2*(h(1:N-1)+h(2:N))];
       du=h(2:N-1);
       r=3*diff(dy)
       printf("[x·h·y·dy·r]");
10
       disp([x',[diff(x) %nan]',y',[diff(y)./diff(x) %nan]',...
11
       ..... [%nan r %nan ]', [%nan dp %nan]' ]);
12
       printf("Sistema · Tridiagonal · [dl · dp · du · | · r · = · c]");
13
       disp([diag(dp)+diag(du,1)+diag(dl,-1) r' c(2:N)]);
14
       printf("Matriz de Soluções [a b c d]");
15
       disp([a(1:N),b,c(1:N),d])
16
       printf("Splines Natural\n");
17
18
       for (i=1:N)
        printf("%.3f+(%.3f)(x-%.3f)+(%.3f)(x-%.3f)^2+(%.3f)(x-%.3f)^3\n",...
19
                a(i),b(i),x(i),c(i),x(i),d(i),x(i))
20
21
       end
       xp=linspace(min(x), max(x), 10000);
22
       plot(xp, InterSplineNatural(xp, x, a, b, c, d));
23
24
       scatter (x, y);
25
       xtitle("Interpolação Splines - "+string(N) +" - intervalos");
    endfunction
```



```
--> x=[1,2,4,7,11];
--> y=[2,5,7,6,1];
--> Plot SplineNatural(x,y)
[x h y dy r]
              2. 3.
                               Nan
                                      Nan
                                      6.
                              -6.
              7. -0.3333333
                              -4.
                                      10.
   7.
              6. -1.25
                              -2.75
                                      14.
   11.
              1.
                   Nan
        Nan
                               Nan
                                      Nan
Sistema Tridiagonal [dl dp du | r = c]
             0.
                  -6.
                         -0.9458904
        10.
                  -4.
                         -0.1623288
             14. -2.75 -0.1616438
Matriz de Soluções [a b c d]
       3.3152968
                  0.
                              -0.3152968
       2.3694064 -0.9458904 0.1305936
       0.152968 -0.1623288 0.0000761
   6. -0.8189498 -0.1616438
                               0.0134703
Splines Cúbicas
2.000+(3.315)(x-1.000)+(0.000)(x-1.000)^2+(-0.315)(x-1.000)^3
5.000+(2.369)(x-2.000)+(-0.946)(x-2.000)^2+(0.131)(x-2.000)^3
7.000+(0.153)(x-4.000)+(-0.162)(x-4.000)^2+(0.000)(x-4.000)^3
6.000+(-0.819)(x-7.000)+(-0.162)(x-7.000)^2+(0.013)(x-7.000)^3
```

- Com 11 pontos de controle (N=10), o cálculo direto dos coeficientes das splines cúbicas gera um sistema esparso de 40 equações simultâneas (4Nx4N), o que pode gerar erros de arredondamento.
- Com o cálculo alternativo, precisamos resolver apenas um sistema tridiagonal de 9 equações simultâneas (N-1 x N-1), o que é bem mais simples de ser resolvido e é mais estável numericamente.


```
--> y=[0,2,1,5,5,8,9,13,14,20,22];
--> Plot SplineNatural(x,y)
[x h y dy r]
              5.
                                -30.
                                 15.
                     1.6666667 -10.
         0.2
              9.
              13.
                                                              -31.704996
                                                              -89.134938
                                -26.957887
         9.0928765
                    -24.262098
                     31.119629
                               -52.353854
                    -31.704996
         1.292762
                     20.700356
                   -22.864521
                    54.091063
        11.721412
                   -89.134938
         9.3841627
                   77.448689
                                -140.20855
        17.997068
                   -48.739005
Splines Cúbicas
0.000+(9.093)(x-3.000)+(0.000)(x-3.000)^2+(-26.958)(x-3.000)^3
2.000+(1.814)(x-3.300)+(-24.262)(x-3.300)^2+(30.768)(x-3.300)^3
1.000+(5.929)(x-3.900)+(31.120)(x-3.900)^2+(-52.354)(x-3.900)^3
5.000+(5.695)(x-4.300)+(-31.705)(x-4.300)^2+(43.671)(x-4.300)^3
5.000+(1.293)(x-4.700)+(20.700)(x-4.700)^2+(-24.203)(x-4.700)^3
8.000+(-0.006)(x-5.300)+(-22.865)(x-5.300)^2+(42.753)(x-5.300)^3
9.000+(18.730)(x-5.900)+(54.091)(x-5.900)^2+(-238.710)(x-5.900)
13.000+(11.721)(x-6.100)+(-89.135)(x-6.100)^2+(277.639)(x-6.100)^3
14.000+(9.384)(x-6.300)+(77.449)(x-6.300)^2+(-140.209)(x-6.300)^3
20.000+(17.997)(x-6.600)+(-48.739)(x-6.600)^2+(40.616)(x-6.600)^3
```

Conteúdo Opcional

Dedução do Cálculo Alternativo para Splines Cúbicas)

Com N+1 pontos de controle x(1:N+1) e y(1:N+1), podemos definir N polinômios cúbicos interpoladores, um para cada intervalo $[x_i, x_{i+1}]$ com sendo:

$$p_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3 \quad 1 < i < N$$
 (I)

Como o polinômio $p_i(x)$ deve passar pelo ponto de controle $[x_i, y_i]$ no início do intervalo teremos:

$$p_i(x_i) = a_i = y_i$$

O polinômio $p_i(x)$ passa também pelo ponto de controle $[x_{i+1}, y_{i+1}]$ no final do intervalo. No entanto, o polinômio $p_{i+1}(x)$ passar por este mesmo ponto de controle $[x_{i+1}, y_{i+1}]$, porém no início do seu intervalo

$$p_{i+1}(x_{i+1}) = y_{i+1} = p_i(x_{i+1}) = y_i + b_i(x_{i+1} - x_i) + c_i(x_{i+1} - x_i)^2 + d_i(x_{i+1} - x_i)^3$$

Se
$$h_i = x_{i+1} - x_i$$

Temos : $y_{i+1} = y_i + b_i h_i + c_i h_i^2 + d_i h_i^3$ (II)

As primeiras derivadas nos pontos interiores devem ser iguais

$$p'_{i}(x) = b_{i} + 2c_{i}(x - x_{i}) + 3d_{i}(x - x_{i})^{2}$$

$$p'_i(x_i) = b_i$$

$$p'_{i+1}(x_{i+1}) = b_{i+1} = p'_i(x_{i+1}) = b_i + 2c_i(x_{i+1} - x_i) + 3d_i(x_{i+1} - x_i)^2$$

$$b_{i+1} = b_i + 2c_ih_i + 3d_ih_i^2$$
 (III)

Xi	Уi
1	2
2	5
4	7
7	6
11	1

As segundas derivadas nos pontos interiores devem ser iguais

$$p''_{i}(x) = 2c_{i} + 6d_{i}(x - x_{i}) (IV)$$

$$p''_{i}(x_{i}) = 2c_{i}$$

$$p''_{i+1}(x_{i+1}) = 2c_{i+1} = p''_{i}(x_{i+1}) = 2c_{i} + 6d_{i}(x_{i+1} - x_{i})$$

$$c_{i+1} = c_{i} + 3d_{i}h_{i} \rightarrow d_{i} = \frac{(c_{i+1} - c_{i})}{3h_{i}} (V)$$

Substituindo (V) em (II)

$$y_{i+1} = y_i + b_i h_i + c_i h_i^2 + \left[\frac{(c_{i+1} - c_i)}{3h_i} \right] h_i^3 = y_i + b_i h_i + \frac{(c_{i+1} + 2c_i)}{3} h_i^2 \rightarrow y_{i+1} = y_i + b_i h_i + \frac{(c_{i+1} + 2c_i)}{3} h_i^2 \quad (VI)$$

Substituindo (V) em (III)

$$b_{i+1} = b_i + 2c_i h_i + 3 \left[\frac{(c_{i+1} - c_i)}{3h_i} \right] h_i^2 = b_i + (c_{i+1} + c_i) h_i \rightarrow b_{i+1} = b_i + (c_{i+1} + c_i) h_i \quad (VII)$$

$$Se \ dy_i = \frac{y_{i+1} - y_i}{x_{i+1} - x_i} = \frac{y_{i+1} - y_i}{h_i}$$

E isolando b_i em (VI) teremos:

$$b_i = dy_i - \frac{h_i}{3}(c_{i+1} + 2c_i)$$
 (VIII)

e subtraindo 1 ao índice 'i' de (VIII) teremos:

$$b_{i-1} = dy_{i-1} - \frac{h_{i-1}}{3}(c_i + 2c_{i-1})$$
 (IX)

Subtraindo 1 do índice "i" de (VII) teremos

$$b_i = b_{i-1} + (c_i + c_{i-1})h_{i-1}$$
 (X)

Substituindo (VIII) e (IX) em (X) teremos

$$h_{i-1}c_{i-1} + 2(h_{i-1} + h_i)c_i + h_i c_{i+1} = 3(dy_i - dy_{i-1})$$
 $2 < i < N$ (XI)

Podemos iniciar a equação de recorrência (XI) com $c_1 = 0$ (segunda derivada nula nos pontos externos). Lembrar que também $c_1 = 0$

pontos externos). Lembrar que também $c_{N+1}=0$

Esta equação de recorrência pode ser então aplicada aos ponto internos (i=2:N), o que forma um sistema tridiagonal que, uma vez resolvido, nos fornecerá c(2:N).

Acrescentando os pontos $c_1 = c_{N+1} = 0$, teremos o vetor completo c(1:N+1)

$$r_i = 3(dy_i - dy_{i-1})$$
 (2 \leq i \leq N, pontos internos)
 $h_i = x_{i+1} - x_i$ (1 \leq i \leq N)

i=2	2*(h ₁ +h ₂)	h ₂			c ₂		r ₂
i=3	h ₂	2*(h ₂ +h ₃)	h ₃	*	c ₃	=	r ₃
i=4		h ₃	2*(h ₃ +h ₄)		C ₄		r ₄

Exemplo 5 pontos de controle N=4

Uma vez resolvido o sistema tridiagonal e calculados os coeficientes c_i , podemos utilizar as equações (V) e (VIII) para calcular os coeficientes d_i e b_i , e escrever o polinômio $p_i(x)$ da equação (I) (Lembrar que $a_i = y_i$).

$$p_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

Xi	Уi
1	2
2	5
4	7
7	6
11	1

				dy=	r=	
i	x_{i}	h=x _{i+1} -x _i	y i	$(y_{i+1}-y_i)/(x_{i+1}-xi)$	3(dy _i -dy _{i-1})	2*(h _i +h _{i-1})
1	1.00	1.00	2.00	3.00		
2	2.00	2.00	5.00	1.00	-6.00	6.00
3	4.00	3.00	7.00	-0.33	-4.00	10.00
4	7.00	4.00	6.00	-1.25	-2.75	14.00
5	11.00		1.00			

						1000	
i=2	2*(h ₁ +h ₂)	h ₂			c ₂		r ₂
i=3	h ₂	2*(h ₂ +h ₃)	h ₃	*	c ₃	II	r ₃
i=4		h ₃	2*(h ₃ +h ₄)		C ₄		r ₄
	6	2			c ₂		-6
	2	10	3	*	C ₃	II	-4
		3	14		C ₄		-2.75

		bi		d _i =
i	a _i =y _i	$=dy_i-h_i/3*(c_{i+1}+2c_i)$	c _i	(c _{i+1} -ci)/(3*h _i)
1	2.00	3.31530	0.00000	-0.31530
2	5.00	2.36941	-0.94589	0.13059
3	7.00	0.15297	-0.16233	0.00008
4	6.00	-0.81895	-0.16164	0.01347

$$p_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

- Os coeficientes a_i não são incógnitas, pois $a_i=y_i$, isto é, são os valor dos polinômios cúbicos no início do intervalo.
- O coeficientes c_i são as únicas incógnitas do sistema, e representam a metade das segundas derivadas do polinômio cúbico no início do intervalo, e são obtidos pela resolução do sistema tridiagonal.
- Os coeficientes b_i não são incógnitas e representam o valor do da primeira derivada do polinômio cúbico no início do intervalo, e podem ser avaliados pela equação $b_i = dy_i \frac{h_i}{3}(c_{i+1} + 2c_i)$
- Os coeficientes d_i não são incógnitas, pois podem ser obtidos pela equação $d_i = \frac{(c_{i+1}-c_i)}{3h_i}$

Spline Clamped – Controle das 1^{as} derivadas no início (dy_0) e no final (dy_n)

```
function [a,b,c,d,c]=SplineClamped(x,y,dy 0,dy n)
       N=length(x)-1.//.#.de.intervalos
      h=diff(x);
       dy=diff(y)./h;
       dl=h(2:N-1);
    dp=2*(h(1:N-1)+h(2:N));
    r=3*diff(dy);
       du=h(2:N-1);
       dp(1) = dp(1) = -h(1)/2;
        dp(N-1) = dp(N-1) - h(N)/2;
10
        r(1) = r(1) = -3/2*(dy(1) - dy 0);
     r(N-1)=r(N-1)-3/2*(dy n -dy(N));
       c=[0 tridiagonal(dl,dp,du,r)]'
13
       c(1) = 3/2*(dy(1)-dy 0) /h(1)-c(2)/2;
14
       c(N+1)=3/2*(dy_n-dy(N))/h(N)-c(N)/2;
       a=y';
     for k=1:N
    b (k) = dy(k) - h(k) * (2*c(k) + c(k+1))/3;
    \mathbf{d}(\mathbf{k}) = (\mathbf{c}(\mathbf{k}+1) - \mathbf{c}(\mathbf{k})) / (3*h(\mathbf{k}));
    end
    endfunction
```

```
function [a,b,c,d]=SplineNatural(x,y)
       N=length(x)-1 // # de intervalos
       h = diff(x);
       dy = diff(y)./h;
       dl=h(2:N-1);
       dp=[2*(h(1:N-1)+h(2:N))];
     du=h(2:N-1);
     r=3*diff(dy)
       c=[0 tridiagonal(dl,dp,du,r) 0]';
       a=y';
10
      for (k=1:N)
11
     b (k) = dy(k) - h(k) * (2*c(k) + c(k+1))/3;
     \mathbf{d}(\mathbf{k}) = (\mathbf{c}(\mathbf{k}+1) - \mathbf{c}(\mathbf{k})) / (3*h(\mathbf{k}));
14
     end
    endfunction
```

Algoritmo de campled spline:

- O algoritmo clamped spline constrói uma spline que interpola os pontos fornecidos e satisfaz as condições de contorno especificadas.
- O algoritmo também envolve a resolução de um sistema linear tridiagonal para determinar os coeficientes do spline.
- O sistema linear tridiagonal é formado reforçando a continuidade da primeira e segunda derivadas em cada nó interior, semelhante ao algoritmo natural spline.
- Entretanto, no algoritmo clamped spline, condições de contorno adicionais são especificadas no primeiro e no último nós.
- As condições de contorno normalmente fixam os valores das primeiras derivadas nos dois nós exteriores, representando inclinações ou gradientes.
- A spline resultante não apenas tem um comportamento suave, mas também corresponde às derivadas especificadas nos pontos exteriores

```
--> x=[1,2,4,7,11];

--> y=[2,5,7,6,1];

--> xp=linspace(min(x),max(x),1000);
```


Interpolação de Shannon para pontos Equiespaç<mark>ad</mark>os

- Um sinal analógico y=f(x) pode ser amostrado com período de amostragem T gerando a sequência de amostras $y_i=f[nT]$
- A ideia da interpolação de Shannon é reconstituir um sinal analógico f(x) a partir de suas amostras f[nT].
- Se um sinal amostrado é limitado em frequência, podemos reconstituí-lo através da soma de senos cardinais (sinc). Cada amostra (intervalo amostral) contribuirá com uma função sinc.

$$y_p = f(x_p) = \sum_{i=1}^{n} y_i sinc\left(\frac{\pi}{T}(x_p - x_i)\right)$$

