

7. $f(x) = e^{x}$ a) When x=0, f(x) is undefined => y-introept does not exist. for x-introepts e = 0 but e" \$ 0, so no x-intercept b) as $x \rightarrow \infty$ ex gets very large to get very small but e is an exponertial => lin ex =+ 0 and $\lim_{x\to-\infty}\frac{e^{x}}{x}=0$ c) $f(x) = e^{x}$ $f'(x) = xe^{x} - e^{x}.1$ f'(x) = 0=> e"(x-1)=0 oc=1 is a stationery pt (1,e) - + (1, e) is a stationary point and is a local minimum.

 $f(x) = xe^{x} - e^{x}$ $u = xe^{x} - e^{x}$ $u' = xe^{x} + e^{x} - e^{x}$ $= xe^{x}$ $V = 2c^2$ v'= 2x $f''(x) = xe^{2x}(x^2) - (2xe^{2x} - e^{2x})2x$ $= xe^{x} - 2xe^{x} + 2xe^{x}$ $= x^{4}$ $= xe^{x}(x^2-2x+2)$ $xe^{x}(x^{2}-2x+2)=0$ 2=0 e no sol. So no inflection points. but need to look at Concare down Concare up

X < 0

2 > 0 either side of undefined tangent at x=-1 $f(-1) = -\frac{2}{e} f(-1) = -\frac{1}{e}$ y+==-2(xx1) $y = -2x - \frac{3}{e}$ or 2x + ey = -3(1, 2.718) 2 (1, 2.718) 1 -0.368)