程序代写代做 CS编程辅导

ELEC3104: Mini-Project - Cochlear Signal Processing

WeChat: cstutorcs

TLT – Level 5 (High Distinction Level): Using the Level 2 FIR/ IIR cochlear filter bank model, develop a method formitign detection project regards. The puse the pitch information to extract a speaker's voice from a mixture of two voices at the input of the filter bank. Email: tutorcs@163.com

Complete TLT-Levels 2, 3 and 4 first, and ensure that you are on the right track before proceeding to TLT – Level 5 https://tutorcs.com

Prof. Eliathamby Ambikairajah, School of EE&T

Term 3, 2024

Classification of Speech Sounds: divided into two broad classes

Voiced Sound

✓ VOICED sound (e.g. /a/, /e/, /i/ ...) is produced 雅南北 (January) during the production of a sound.

Voiced speech occurs when the air flows through the later than the vocal tract in discrete "puffs" rather than as a c

✓ The vocal cords vibrate at a particular frequency, which is called the fundamental frequency (defined as pitch) of the woiced sound cstutores

50: 200 Hz for male speakers

150: 300 Hz for female speakers

200: 400 Hz for child speakers

Assignment Project Exam He

Voiced e(t) Period (P) speech NNNN Impulse train generator Vocal tract Voiced Time varying Source of resonant Excitation Speech filter v(t) Unvoiced Noise Amplitude (A_v) Generator speech

Speech Production Model

Unvoiced Sound

✓ UNVOICED speech (e.g. /s/, /f/...) is produced when vocal cords are not 163.com vibrating and they are held open and the air flows continuously through them

Vocal tract

- Vocal tract is a non-uniform acoustic tube that is terminated at one end by the vocal cords and at the other end by the lips nttps://tutor
- The vocal tract changes shape rather slowly in continuous speech and it is reasonable to assume that the vocal tract has a fixed characteristic over a time interval of the order of 10 - 20ms
- ✓ Thus once every 10 -20ms, the vocal tract configuration is varied, producing new vocal tract parameters (resonant frequencies)

Speech Production Mechanism

Example: The estimation of the pitch period, in the time domain

The waveform on the right, is for the word "cattle" 小龙写代故 CS编程辅 that each line of the plot corresponds to 100 ms of the signal:

(a) the point where the voice pitch frequence highest; and (ii) the lowest, is indicated. Vital the approximate pitch frequencies at the

(b) Is the speaker most probably a male, or a wildchat: cstutorcs How do you know?

The lowest pitch has a period of about

probably male

Email: tutores 21.5 ms corresponding to the frequency 46 Lowest Pitch Hz. This low pitch indicates the speaker is

Speech waveform of the word 'Cattle'

https://tutorcs.com

Pitch period estimation of Voiced Speech using the Parallel filter bank model

Pitch Detection

The pitch period estimation of voiced speech is norn程序代写代做 CS编程辅导 carried out in the time domain using an Autocorrelation Function or an Average Magnitude Difference functing (AMDF)

In this mini-project, we will determine the pitch per 🚻 voiced speech segment using a frequency domain technique, i.e. using the spectrum analyzer that you designed and built in the TLT-LEVEL 3 mini-project.

Periodicity in the time domain, results in useful impure Chat: cstutorcs to lead to le the frequency domain at the fundamental frequency and its harmonics. If the speech signal is periodic or quasi periodic the spectrum analyzer will show peaks in multiples of the spectrum analyzer will show peaks and the spectrum analyzer will be spectrum analyzer will be specificated and the spectrum analyzer will be fundamental frequency f_0 .

Download the voiced speech file 'voiced1_16k.wav' (in tutorcs@163.com Moodle: Resources-> 'Data for Project' folder) and divide the voiced speech signal into small frames (20ms each Gee 749389476below) and process (filtering) each segment through the spectrum analyser that is shown on the right. (You may, use, the filter command [Y, Z_f] = filter(B,A,X,Z_i) and make sure that you use the initial/final condition Z)

The outputs $(v_1 [n] to v_N [n])$ of the hair-cell model can be used to extract the fundamental frequency fo of the input voiced speech frame.

Input signal x[n]High frequency Bandpass filter Bandpass filter Bandpass filter Bandpass filter Bandpass filter $A_1(z)$ $A_2(z)$ $A_N(z)$ s₂[n] $s_1[n]$ $s_N[n]$ Spatial differentiation $d_1[n]$ $d_2[n]$ d_m[n] d₃[n] $d_N[n]$ Spatial differentiation e₂[n] e₃[n] e_m[n] e_N[n] Hair cell model Hair cell model Hair cell model Hair cell model v₁[n] $v_N[n]$ $v_2[n]$ $v_3[n]$ $v_m[n]$ Energy (E₂) Energy (E₃) Energy (E_m) Energy (E_N)

Spectrum Analyser

Pitch period estimation using the cochlear model

Pitch Detection continued...

- It is assumed that the **fundamental frequency** of **程序成写代做 CS编程辅导** speech signal (Male/Female) lies in the range of **102Hz (5th filter) to 303 Hz (36th filter)**, so only 32 filters cover this **102Hz**
- The inner hair-cell output of each filter and the confilters corresponding to its H^{th} harmonics are mathematical together in order to get the harmonic product space.

$$HPS_i = \prod_{k=1}^H v_{ik}$$

where *i* is the filter number (i = 5, 6,......36), H is the Minderbat: CS tutores harmonics (use H=4 from the table 1), v_{ik} is the hair cell output corresponding to the k^{th} harmonic.

Assignment Project

- This is carried out for all of the 32 filters within the fundamental frequency range 102Hz to 303Hz.
- Table 1 contains the number of filters corresponding to the fourth harmonics of the centre frequency of each the $\frac{32}{9389476}$ filters. Using this table, calculate HPS_i for all the 32 filters.
- In order to determine the fundamental frequency, the six tutor cs.com plotted against the filter number (5 to 36).
- A peak-picking algorithm is used to determine the position of the highest peak and that position (filter number) corresponds to the fundamental frequency of the input voiced speech frame.

Spectrum Analyser

Table 1: 2nd to 6th harmonics of the filters 1 to 36

Fundamental frequency (f0) Hz	Filter No	2nd harmonic (2f0) Filter No	3rd harmonic (3f0) Filter No	4th harmonic (4f0) Filter No	5th harmonic (5f0) Filter No	6th harmonic (6f0) Filter No
88	1	21	应必图出出	CC4党4号 株式	L 47	52
91	2	22 往	序代蜀代做	しつ郷性期	48	53
95	3	23	34	42	49	54
98	4	24	35	43	50	55
102	5	25		44	51	56
105	6	26	225 N 204 G	45	52	57
109	7	27	S A P TABLES	46	53	58
113	8	28		47	54	59
117	9	29	Tutor CS	48	55	60
121	10	30	Central Ment	49	56	61
126	11	31		50	57	62
130	12	32	43	51	58	63
135	13	33	44	52	59	64
140	14	34 \X 7	eChat45 cstut	Orce 53	60	65
145	15	35	Chat ₄₆ Cstut	OICS 54	61	66
150	16	36	47	55	62	67
155	17	37	. 48	. 56	63	68
161	18	38 A S	signment Pi	ro1ect5Exam	He 1064	69
166	19	39	signment Pr	58	65	70
172	20	40	51	59	66	71
179	21	41 F n	nail: tttores	@ 1630 com	67	72
185	22	42	ian. igiores	@103,com	68	73
192	23	43	54	62	69	74
198	24		55	63	70	75
205	25	45): 74938947	64	71	76
213	26	46	57	65	72	77
221	27	47	Q: 74958947	66	73	78
228	28	48 b ++	na. //tiptoraa	00m 67	74	79
237	29	49	ps://ttttorcs.	COIII ₆₈	75	80
245	30	50	61	69	76	81
253	31	51	62	70	77	82
263	32	52	63	71	78	83
272	33	53	64	72	79	84
282	34	54	65	73	80	85
292	35	55	66	74	81	86
303	36	56	67	76	82	87

Are you on the right track?

- The figure on the right shows one frame (20ms 程6年)呼呼呼吁S编程辅导 speech, the corresponding hair cell output and the harmonic product spectrum.
- It can be seen from the hair cell output, that it fundamental frequency position.
- When the hair cell output is processed using the sectrum (HPS), the amplitude corresponding to the function is enhanced, while the peaks corresponding to other freque ressed. The highest peak position (filter number or frequency) corresponds to the fundamental frequency of the voiced speech free Chat: cstutorcs

waveforms for a female and a male speaker. The fundamental frequency, extracted using the Harmonic Product Spectrum (HPS) method for each 20 ms frame, is also displayed. Both speakers produced the same utterance, 'We were away' which consists entirely of voiced frames, facilitating the extraction of the pitch period for each utterance

Download the 'Male16K.way' file and 'Femal16K.wav' file and implement your HPS algorithm and you should get the similar output as shown in the figure on the left.

Final Implementation - Speaker Separation

- ✓ Locate the filter corresponding to the male pitce grown previous part, as well as the filters corresponding to the male pitce grown previous part, as well as the filters corresponding to the male pitce grown previous part, as well as the filters corresponding to the male pitce grown previous part, as well as the filters corresponding to the male pitce grown previous part, as well as the filters corresponding to the male pitce grown previous part, as well as the filters corresponding to the male pitce grown previous part, as well as the filters corresponding to the male pitce grown previous part, as well as the filters corresponding to the male pitce grown previous part, as well as the filters corresponding to the male pitce grown previous part, as well as the filters corresponding to the male pitce grown previous part, as well as the filters corresponding to the male pitce grown previous part, as well as the filters corresponding to the grown previous part, as well as the filters corresponding to the grown previous part grown previous previous previous previous previ
- ✓ Set the gain k corresponding to all these filters. The gain k for all other filters to zero (see figure on the right)
- ✓ Sum the output and use the sound command to the ck layer cashetores only the male speaker
- ✓ Repeat this process for the female speaker and American hearoject Exam Help only the female speaker
- You may also experiment with different scalar values k_1 to k_N are suitable for separating the speakers.
- \checkmark Show your reconstructed signal to your lab den or italiant 389476

https://tutorcs.com

