Combinational Circuits

AND-OR Logic

 Figure shows an AND-OR circuit consisting of two 2-input AND gates and one 2-input OR gate

AND-OR Logic

- The truth table for a 4input AND-OR logic circuit is shown in the Table below.
- The intermediate AND gate outputs (the AB and CD columns) are also shown in the table.

	Inputs					Output
A	B	C	D	AB	CD	X
0	0	0	0	0	0	0
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	0	1	1	0	1	1
0	1	0	0	0	0	0
0	1	0	1	0	0	0
0	1	1	0	0	0	0
0	1	1	1	0	1	1
1	0	0	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	0	0	0
1	0	1	1	0	1	1
1	1	0	0	1	0	1
1	1	0	1	1	0	1
1	1	1	0	1	0	1
1	1	1	1	1	1	1

AND-OR-Invert Logic

 When the output of an AND-OR circuit is complemented (inverted), it results in an AND-OR-Invert circuit.

$$X = (\overline{A} + \overline{B})(\overline{C} + \overline{D}) = (\overline{AB})(\overline{CD}) = (\overline{\overline{AB}})(\overline{CD}) = \overline{\overline{AB}} + \overline{\overline{CD}} = \overline{\overline{AB}} + \overline{\overline{CD}}$$

Exclusive-OR Logic

 Although this circuit is considered a type of logic gate with its own unique symbol, it is actually a combination of two AND gates, one OR gate, and two inverters, as shown below

• Let's examine the following Boolean expression: X = AB + CDE

let's implement the following expression:

$$X = AB\left(C\overline{D} + EF\right)$$

- A breakdown of this expression shows that the terms AB and $(C\overline{D} + EF)$ are ANDed.
- The term $(C \overline{D} + E F)$ is formed by first ANDing C and \overline{D} and ANDing E and F, and the Oring these two terms.

- Before you can implement the final expression, you must create the sum term
- $(C \overline{D} + E F)$ but before you can get this term; you must create the product terms $C \overline{D}$ and EF;
- but before you can get the term $C\overline{D}$ you must create \overline{D} .
- The logic gates required to implement

$$X = AB\left(C\overline{D} + EF\right)$$

are as follows

- One inverter to form $\,D\,$
- Two 2-input AND gates to form $C\overline{D}$ and EF
- One 2-input OR gate to form $(C \overline{D} + E F)$
- One 3-input AND gate to form X

- Notice that there is a maximum of four gates and an inverter between an input and output in this circuit (from input D to output).
- Often the total propagation delay time through a logic circuit is a major consideration.
- Propagation delays are additive, so the more gates or inverters between input and output, the greater the propagation delay time.

 It is usually best to reduce a circuit to its SOP form in order to reduce the overall propagation delay time.

$$X = AB(C\overline{D} + EF) = ABC\overline{D} + ABEF$$

 If you begin with a truth table instead of an expression, you can write the SOP expression from the truth table and then implement the logic circuit.

	Inputs		Output	
\boldsymbol{A}	B	C	X	Product Term
0	0	0	0	30
0	0	1	0	
0	1	0	0	
0	1	1	1	ĀBC
1	0	0	1	\overline{ABC} $A\overline{BC}$
1	0	1	0	
1	1	0	0	
1	1	1	0	

- The Boolean SOP expression obtained from the truth table by ORing the product terms
- for which X = 1 is $X = \overline{ABC} + A\overline{BC}$

 Design a logic circuit to implement the operation specified in the truth table

	Inputs		Output	
A	В	C	X	Product Term
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	ĀBC
1	0	0	0	
1	0	1	1	$A\overline{B}C$
1	1	0	1	$A\overline{B}C$ $AB\overline{C}$
1	1	1	0	

- Notice that X = 1 for only three of the input conditions. Therefore, the logic expression is $X = \overline{ABC} + \overline{ABC} + \overline{ABC}$
- The logic gates required are three inverters, three 3-input AND gates and one 3-input OR gate.

• Reduce the combinational logic circuit in below to a minimum form.

Solution

The expression for the output of the circuit is

$$X = (\overline{A}\overline{B}\overline{C})C + \overline{A}\overline{B}\overline{C} + D$$

Applying DeMorgan's theorem and Boolean algebra,

$$X = (\overline{A} + \overline{B} + \overline{C})C + \overline{A} + \overline{B} + \overline{C} + D$$

$$= AC + BC + CC + A + B + C + D$$

$$= AC + BC + C + A + B + C + D$$

$$= C(A + B + 1) + A + B + D$$

$$X = A + B + C + D$$

NAND Logic

$$X = \overline{(AB)(\overline{CD})}$$

$$= \overline{(A + B)(\overline{C} + \overline{D})}$$

$$= \overline{(A + B)} + (\overline{C} + \overline{D})$$

$$= \overline{AB} + \overline{C}\overline{D}$$

$$= AB + CD$$

$$A = G_2$$

$$B = G_3$$

$$C = G_3$$

$$C = G_3$$

$$C = G_3$$

$$C = G_3$$

Try 1

- Determine the output (in terms of Boolean expressions) F.
- Complete the truth table for the function F.
- From the truth table, write the 'sum of products' expression for the function F

Try 2

- Determine the output F in the circuit shown
- By utilizing Boolean algebra, show that the function F obtained above is also equivalent to $(\overline{A} + B) \bullet (C + \overline{D})$

Try 3

- The circuit shown below in Figure 3 has a two-input logic gate hidden from view. By inspection of the output function F, identify the hidden logic gate
- Draw a truth table for the function F given in part (A) above.
- Derive an alternative 'sum of products' expression for

 The half-adder accepts two binary digits on its inputs and produces two binary digits on its outputs—a sum bit and a carry bit.

Half-adder truth table.

A B		C_{out}	Σ	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

 $\Sigma = sum$

 $C_{\text{out}} = \text{output carry}$

A and B = input variables (operands)

 Notice that the output carry (Cout) is a 1 only when both A and B are 1s; therefore, Cout can be expressed as the AND of the input variables.

$$C_{out} = AB$$

 Now observe that the sum output is a 1 only if the input variables, A and B, are not equal.
 The sum can therefore be expressed as the exclusive-OR of the input variables.

$$\sum = A \oplus B$$

The Full-Adder

 The full-adder accepts two input bits and an input carry and generates a sum output and an output carry.

The Full-Adder

Full-adder truth table.

A	\boldsymbol{B}	C_{in}	Cout	Σ
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

 $C_{\text{in}} = \text{input carry, sometimes designated as } CI$ $C_{\text{out}} = \text{output carry, sometimes designated as } CO$ $\Sigma = \text{sum}$

A and B = input variables (operands)

The Full-Adder Logic

• For each of the three full-adders determine the outputs for the inputs shown.

The Full-Adder Logic

(a) The input bits are A = 1, B = 0, and $C_{in} = 0$.

$$1+0+0=1$$
 with no carry

Therefore, $\Sigma = 1$ and $C_{\text{out}} = 0$.

(b) The input bits are A = 1, B = 1, and $C_{in} = 0$.

$$1+1+0=0$$
 with a carry of 1

Therefore, $\Sigma = 0$ and $C_{\text{out}} = 1$.

(c) The input bits are A = 1, B = 0, and $C_{in} = 1$.

$$1+0+1=0$$
 with a carry of 1

Therefore, $\Sigma = 0$ and $C_{\text{out}} = 1$.