EE 569 Discussion

Zohreh Azizi 03/05/2021

Announcements

• HW3

Due: 03/11/21 11:59PM

Announcements

Preview of Discussion Sessions:

- ...
- Week 8 (Mar. 5): Morphological Processing (HW3, Problem 3)
- Week 9 (Mar. 12): No Discussion USC Spring 2021 Wellness Day
- Week 10 (Mar. 19): HW4 part 1
- Week 11 (Mar. 26): HW4 part 2
- ...

Overview

- Basic Morphological Processing
- Solution to the maze
- Defect detection and count

Basic Morphological Processing

- Shrinking: central pixel
- Thinning: central line
- Skeletonizing: skeleton containing edges

Basic Morphological Processing

• Shrinking:

Objects without holes \rightarrow a point

Objects with holes \rightarrow a connected ring halfway between each hole and the outer boundary.

• Thinning:

Object without holes \rightarrow a minimally connected stroke

Object with holes \rightarrow a connected ring halfway between each hole and the outer boundary.

Skeletonizing:

Removes pixels on the boundaries of objects but does not allow objects to break apart. The remaining pixels make up the image skeleton.

Basic Morphological Processing (P. 3a)

- Implement: Look up Table
- 2-pass filter

- Table 14.3-1 Shrink /Thin /Skeleton conditional LUT
- Table 14.3-2 Shrink/ Thin unconditional LUT
- Table 14.3-3 Skeleton unconditional LUT

Basic Morphological Processing (P. 3a)

Table 14.3-1 Shrink, Thin and Skeletonize Conditional Mark Patterns (M=1 if hit)

Type	Bond		Patterns								
S	1	001	100	000	0 0 0						
		010	010	010	010						
		000	$0\ 0\ 0$	100	001						
S	2	000	010	000	0 0 0						
		011	010	110	010						
		000	000	000	010						
S	3	0 0 1	0 1 1	110	100	0 0 0	000	0 0 0	0 0 0		
		0 1 1	010	010	110	110	010	010	0 1 1		
		000	000	000	000	100	110	011	0 0 1		
		1									

Table 14.3-2 Shrink and Thin Unconditional Mark Patterns

Spur	0	0	M	M	0	0								
	0	M	0	0	M	0								
	0	0	0	0	0	0								
Single	0	0	0	0	0	0								
4-connection	0	M	0	0	M	M								
	0	M	0	0	0	0								
	0	0	M	0	M	M	M	M	0	M	0	0		
L Cluster	0	M	M	0	M	0	0	M	0	M	M	0		
	0	0	0	0	0	0	0	0	0	0	0	0		

Table 14.3-3 Skeletonize Unconditional Mark Patterns

Spur	0	0	0	0	0	0	0	0	M	M	0	0	
	0	M	0	0	M	0	0	M	0	0	M	0	
	0	0	M	M	0	0	0	0	0	0	0	0	
Single	0	0	0	0	0	0	0	0	0	0	M	0	
4-connection	0	M	0	0	M	M	M	M	0	0	M	0	
	0	M	0	0	0	0	0	0	0	0	0	0	
L Corner	0	M	0	0	M	0	0	0	0	0	0	0	
	0	M	M	M	M	0	0	M	M	M	M	0	
	0	0	0	0	0	0	0	M	0	0	M	0	

1. Image: Do zero padding

2. M = zeros()

3. Table 14.3-1 on image: if match, mark on M \rightarrow 1

4. \rightarrow M = zeros and ones

5. Tables 14.3-2 & 14.3-3 on M:

- If match, keep the pixel in image
- If not match, change pixel to 0 in image

6. Repeat steps 2-5, until no more pixel is changed to 0, in step 5.

Solution to the maze

- Do shrinking so that the solution to the maze appears to you.
- Track and report the intermediate steps.

(1) Count the number of disconnected defects:

- Method 1:
 - 1. Do shrinking
 - 2. Count the white loops
- Method 2:
 - 1. Inverse the image
 - 2. Do shrinking
 - 3. Count the white dots

(2) Different sizes and their frequency:

• Size:

Hint: how many shrinking operation you applied? Or other ideas...

Frequency:
 Histogram of the number of each size

(2) Defect clearing:

 Hint: thinning on the inverse image gives the approximate location of the defects.
Or other ideas...

(4) Connected Component Labeling (CCL):

Binary:

o Object: 1

Background: 0

Raster scan:

Zero pad

(4) **1**st **pass** of CCL:

- 1. Start scanning through the whole image (raster scan).
- 2. If the element is not a background;
 - i. See the neighboring element's labels:

- ii. If there is no neighboring labels, assign a new label to current element.
- iii. If there are neighbors with labels, assign current element with minimum neighboring label.

2	0	0	
0	X		

iv. Update equivalence table:

1st pass of CCL:

Zohreh Azizi EE 569 15

(4) 2nd pass of CCL: Update labels according to equivalence table.

References

Yao Zhu, EE569 Spring 2020 discussion 6 & 7

