为了提升在小数据集上的性能,有学者让神经网络像生物一样"进化"了 | CVPR2021 Oral

作者丨二玖

审稿 | 邓富城

编辑丨极市平台

极市导读

如何在较小的数据集上训练神经网络?马里兰大学的学者提出了一种以"进化"为灵感的训练方法: Knowledge Evolution(KE)。这种名为KE的方法能像生物进化一样,巧妙地提升神经网络在小数据集上的性能。该方法已开源。 >>加入极市CV技术交流群,走在计算机视觉的最前沿

如果将深度学习比作汽车,那数据集就是石油。深度学习对于数据集的依赖是不言而喻的。那么一个深度学习领域悬而未决的挑战则是:**如何在较小的数据集上训练神经网络?**

针对这一问题,马里兰大学的学者提出了一种以"**进化**"为灵感的训练方法: **Knowledge Evolution(KE)**。这种名为KE的方法能**像生物进化一样,巧妙地提升神经网络在小数据集上的性能**。目前作者已经开源了这一方法。

Knowledge Evolution in Neural Networks

Ahmed Taha

Abhinav Shrivastava University of Maryland, College Park **Larry Davis**

KE将神经网络用两种假设进行拆分: 拟合假设和重置假设,并通过多次扰动重置假设来迭代拟合假设中知识。这种方法不仅能提升性能,还能以较低的推理成本来获取一个精简的神经网络。同时,KE能减少过拟合和数据收集的负担。不但如此,KE支持各种网络结构和损失函数,还能与残差卷积网络,以及其他正则化技术(如标签平滑)等无缝集成。

下面我们将更详细地介绍这篇论文。

KE的主要贡献

在本文中,作者尝试用神经网络复制一个这样的生物过程:基因编码了从祖先到后代的遗传信息(知识),而基因传递将遗传信息 从父母传递至其后代。虽然祖先并不一定具有更好的知识,但是遗传信息(知识)在几代人之间的发展将会促进后代更好的学习曲 线。

因此,作者将深度神经网络的知识封装在一个名为拟合假设的子网络 H^{\triangle} 中,然后将拟合假设的知识从**父母网络**传递至其后代,即下一代神经网络。并反复重复此过程,在后代网络中证明了其性能的显著提升:

如下图所示,KE将神经网络分为两个假设(子网络): 拟合假设 H^\triangle 和重置假设 $H^
abla$ 。通过重新训练多代网络来进化 H^\triangle 中的知识。而每一代都会通过扰乱 $H^
abla$ 内部的权重以鼓励 H^\triangle 学习独立的表达形式。这种知识进化方法能够提高神经网络在小数据集上的性能。

此外,为了降低推理成本,作者提出了一种为CNN量身定制的一种拆分技术,即内核级卷积感知拆分(**ke**rnel-**l**evel-convolution al-aware **s**plitting,KELS)。KELS同时支持CNN和残差网络,且既不引入超参数也不引入正则项。

知识进化方法详解

假设一个具有L层的深度网络 N。 网络 N 具有卷积滤波器F,批范数Z以及权重为W,偏置项为B的完全连接层。

知识进化(KE)首先从概念上将深度网络N分为两个互斥假设(子网络): 拟合假设 H^\triangle 和重置假设 H^∇ 。这些假设由二进制掩码M概述。 H^\triangle 为1, H^∇ 为0,即 $H^\triangle=MN$ 和 $H^\nabla=(1-M)N$ 。 随后,网络N被随机初始化,即 H^\triangle 和 H^∇ 都被随机初始化。训练e期N,并将已训练的网络称为第一代 N_1 ,其中 $H_1^\triangle=MN_1$, $H_1^\nabla=(1-M)N_1$ 。

为了学习更好的网络(下一代),作者使用 H_1^\triangle 重新初始化网络N,然后重新训练N以学习 N_2 。网络N使用卷积滤波器F和来自 N_1 的拟合假设 H_1^\triangle 中的权重W进行**重新初始化**,而网络的剩余部分 $\left(H^\nabla\right)$ 则被随机初始化。 作者使用哈达玛积重新初始化每层l,如下所示:

$$F_l = M_l F_l + (1 - M_l) F_l^r$$

类似地,作者通过它们相应的二进制掩码重新初始化权重 W_l 和偏置 B_l 。 网络架构仅在最后一个完全连接层中具有偏差项 $\left(B\in R^\mathbb{C}\right)$ 。 因此,对于这些架构,所有偏差项都属于拟合假设,即 $B\subset H^\triangle$ 。并将学习的批规范Z进行无随机化的跨代传递。

重新初始化后,训练e期N以学习第二代 N_2 。 为了学习更好的网络,反复为g代**重新初始化**以及**重新训练**N。 通过拟合假设 H^\triangle 将知识(卷积滤波器和权重)从一代传递至下一代。需要注意的是:

- 一代网络的贡献在初始化下一代后立刻结束,即每一代的训练都是独立的;
- 在训练了新一代后,两个假设中的权重都会发生变化 ,即 $H_1^\triangle \neq H_2^\triangle$, $H_1^
 abla \neq H_2^
 abla$,
- 所有网络代都使用精确的超参数,即相同的期数、优化器、学习率调度器等)进行训练。

拆分网络

KE需要进行网络拆分。 作者主要采用了两种拆分技术:

- 1. weight-leverl splitting (WELS), 能用于突出KE通用性;
- 2. kernel-level convolutional-aware splitting (KELS), 一种有效的CNN技术。

WELS技术十分简单:对每一层 l ,二进制掩码 M_l 将 l 分为两个专有部分:拟合假设 H^{\triangle} 和重置假设 H^{∇} 。给定拆分率 $0 < s_r < 1$,使用掩码 $M_l \in \{0,1\}^{|W_l|}$ 随机分配权重 $W_l \in R^{|W_l|}$,其中 $|W_l|$ 是内部权重的数量, $\operatorname{sum}(M_l) = s_r \times |W_l|$ 。WELS 技术支持完全连接,卷积,递归以及图卷积,这也印证了KE的通用性。

虽然KE通过WELS跨代提升了网络性能,但是WELS不能从CNN的连接中受益。因此,作者提出了一种既能提高性能,又能减少在小数据集上的推理成本的拆分技术,即KELS。利用CNN的连接性并引出拟合假设 H^\triangle ,对网络进行修剪。用内核遮罩替代加权遮罩,因此为内核级卷积感知分割(KELS)技术。给定一个拆分率 s_r 和一个卷积滤波器 $F_l \in R^{\hat{C}_o \times \kappa \times \kappa \times C_i}$,KELS引出拟合假设,以将第一个 $\lceil s_r \times C_i \rceil$ 内核包括在第一个 $\lceil s_r \times C_o \rceil$ 滤波器中,如下图所示。KELS保证了结果卷积滤波器之间的维度匹配。因此,KELS可以无缝集成在经典CNN(AlexNet和VGG)和具有残差连接的最新网络架构中。

KELS

知识进化的直觉

为了理解KE,作者给出了不需要KELS技术的两个互补直觉: Dropout和残差网络。

Dropout在训练过程中随机丢弃神经网络单元,使得神经网络单元减少相互依赖并学习独立表示。 类似的,在KE中通过在每一代之前随机初始化重置假设 $H^{
abla}$,我们可以在重新初始化期间丢弃 $H^{
abla}$ 。这同样让 H^{\triangle} 减少对 $H^{
abla}$ 的依赖,并学习独立表示。 通过评估各代 H^{\triangle} 的性能验证了这种直觉,且 H^{\triangle} 的性能随着代数的增加而增加。如下图所示:

Split-Nets vs Dropout

Res-Nets将连续层之间的默认映射设置为身份。但是从一个不同的角度来看,没有限制网络容量,Res-Nets在某些子网络(残差连接)中实现零映射。 类似地,KE通过跨代重复使用拟合假设 H^\triangle 来实现重置假设 H^∇ 的零映射。 在第一代N1之后,与包含随机值的 H^∇ 相比, H^\triangle 总是更趋于收敛。 因此,KE促进了新一代网络在 H^\triangle 和 H^∇ 中对前代网络的知识进化。

Split-Nets vs Res-Nets

对KE进行评估

作者在两个分类和度量学习这两个监督任务上对KE进行了评估。分类任务已有研究对深度神经网络在小型数据集上的性能进行了 广泛的探讨,因此它提供了严格的性能基准。而在度量学习上的评估则突出了KE的灵活性与普遍性。

在分类任务上对KE进行评估

下图为用带有KELS的ResNet18进行定量分类评估。 N_g 表示 g^{th} 网络代的性能。 第一代 N_1 既是KE的基准又是起点。 随着代数的增加,KE的性能提高。

Method	Flower	CUB	Aircraft	MIT	Dog
CE + AdaCos	55.45	62.48	57.06	56.25	65.34
CE + RePr	41.90	42.88	39.43	46.94	50.39
CE + DSD	51.39	53.00	57.24	53.21	63.58
$CE + BANs-N_{10}$	48.53	53.71	53.19	55.65	64.16
$\operatorname{CE}\left(N_{1}\right)$	48.48	53.57	51.28	55.28	63.83
$CE + KE-N_3$ (ours)	52.53	56.73	52.53	57.44	64.28
$CE + KE-N_{10}$ (ours)	56.15	58.11	53.21	58.33	64.56
$Smth(N_1)$	50.97	59.75	55.00	57.74	65.95
Smth + KE- N_3 (ours)	56.87	62.88	57.47	58.78	66.91
Smth + KE- N_{10} (ours)	62.56	66.85	60.03	60.42	67.06
$\overline{\text{CS-KD}(N_1)}$	55.10	67.71	58.15	57.37	69.60
$CS-KD + KE-N_3$ (ours)	61.74	71.63	59.97	58.41	70.62
$CS-KD + KE-N_{10}$ (ours)	69.88	73.39	59.08	57.96	70.81

下图为用带有WELS的DenseNet169进行的定量评估。

Method	Flower	CUB	Aircraft	MIT	Dog
CE + AdaCos	49.96	62.20	56.15	50.89	65.33
CE + RePr	39.75	47.01	36.04	49.77	55.63
CE + DSD	48.85	56.11	53.66	58.31	65.76
$CE + BANs-N_{10}$	44.92	57.30	52.56	57.66	65.49
$\operatorname{CE}\left(N_{1} ight)$	45.85	55.16	51.73	56.62	64.82
$CE + KE-N_3$ (ours)	52.44	57.75	56.70	59.67	67.06
$CE + KE-N_{10}$ (ours)	60.15	58.01	59.73	58.71	67.75
Smth (N_1)	46.34	59.93	57.74	57.81	65.12
Smth + KE- N_3 (ours)	55.46	62.53	62.86	60.27	68.21
Smth + KE- N_{10} (ours)	64.18	61.34	65.86	59.75	67.46
$\overline{\text{CS-KD}(N_1)}$	46.97	67.32	58.87	56.62	69.83
$CS-KD + KE-N_3$ (ours)	59.36	69.77	59.91	59.00	71.70
$CS-KD + KE-N_{10}$ (ours)	65.27	70.36	61.22	57.44	70.72

在度量学习任务上对KE进行评估

下图为使用标准度量学习数据集和架构进行的定量检索评估。

	ResNet50			GoogLeNet		
Datasets	NMI	R@1	R@4	NMI	R@1	R@4
CUB (N_1)	0.396	13.01	30.37	0.396	10.16	25.71
CUB + KE- N_3 (ours)	0.424	17.22	36.14	0.418	13.94	33.78
CUB + KE- N_{10} (ours)	0.429	18.25	39.40	0.419	15.34	34.30
Cars (N_1)	0.374	11.63	28.66	0.319	5.29	17.94
Cars + KE- N_3 (ours)	0.514	34.28	60.25	0.476	24.98	50.06
Cars + KE- N_{10} (ours)	0.523	42.36	68.11	0.495	32.63	58.84

消融实验

(1) Dropout与Res-Net

在VGG11_bn上使用CUB-200进行定量分类评估,下图显示了10代密集网络N和拟合假设 H^{\triangle} 的性能。

拟合假设 $H^ riangle$ 在g=1处的性能较差,但随着代数的增加,其性能也会提高。 $\widehat{H}^ riangle$ 和 $\widehat{H}^ riangle$ 表示 $H^ riangle$ 和 $H^ riangle$ 内部的平均绝对值。

(2) WELS 与 KELS

在ResNet18上使用Flower-102对KELS和WELS进行100代定量评估。下图左为密集网络N的分类性能,右为拟合假设 H^\triangle 的性能。

(3)拆分率 s_r 的tradeoffs

拆分率 s_r 控制拟合假设的大小; 小的 s_r 会降低推理成本,但是小的 s_r 会减少 H^\triangle 的容量。下图左比较了使用CUB-200和GoogLeN et的两个拆分率 $(s_r=\{0.5,0.8\})$ 的10代。两种分割率都在密集网络N上显著提升了边际量。但是,下图右显示,较大的拆分率 $s_r=0.8$ 可以帮助拟合假设 H^\triangle 更快地收敛并获得更好的性能。 因而对于大型数据集,需要大的拆分率才能使拟合假设 H^\triangle 的性能具有竞争力。

论文传递门

论文:

https://arxiv.org/abs/2103.05152

代码:

https://github.com/ahmdtaha/knowledge_evolution

推荐阅读

#极市原创作者激励访划#

极市平台深耕CV开发者领域近5年,拥有一大批优质CV开发者受众,覆盖微信、知乎、B站、微博等多个渠道。通过极市平台,您的文章的观点和看法能分享至更多CV开发者,既能体现文章的价值,又能让文章在视觉圈内得到更大程度上的推广。

对于优质内容开发者,极市可推荐至国内优秀出版社合作出书,同时为开发者引荐行业大牛,组织个人分享交流会,推荐名企就业机会,打造个人品牌 IP。

投稿须知:

- 1.作者保证投稿作品为自己的原创作品。
- 2.极市平台尊重原作者署名权,并支付相应稿费。文章发布后,版权仍属于原作者。
- 3.原作者可以将文章发在其他平台的个人账号,但需要在文章顶部标明首发于极市平台

投稿方式:

添加小编微信Fengcall(微信号: fengcall19),备注: 姓名-投稿

△长按添加极市平台小编

极市平台

专注计算机视觉前沿资讯和技术干货,官网:www.cvmart.net 624篇原创内容

公众号

△点击卡片关注极市平台,获取最新CV干货

觉得有用麻烦给个在看啦~

阅读原文

喜欢此内容的人还喜欢

15个目标检测开源数据集汇总

极市平台