PDEECO049 / CMU 18782 MACHINE LEARNING | 2019/2020 – 1st Semester

Assignment 03

To be solved INDIVIDUALLY or in GROUP of at most two elements

Submit by November 23, 2019, 23h59 by email to jaime.cardoso@fe.up.pt

1. Use the logistic regression implemented with the newton method as made available in the class, logRegF.

Load the height/weight data from the file heightWeightData.txt. The first column is the class label (1=male, 2=female), the second column is height, the third weight. **Remember**: the math in the class (and my code) needs 0's and 1's for the labels.

- a. Implement a logistic regression function using gradient descent, logRegG, having the same inputs and output as logRegF. Note: when doing the gradient update, use the average of the gradients over the data, not the sum of the gradients (it helps a bit setting the learning rate).
- b. Initializing the model to zero (all coefficients equal to zero) find a suitable <u>learning rate</u> and <u>total number of iterations</u> to make the model converge to the optimal model (use the output of **logRegF** as reference). Write the values you choose.
- c. Repeat b) but now but first pre-processing the data, centering the data in zero (=removing the mean of each attribute). The convergence should be facilitated. Write the values you choose.
- d. Repeat b) but now but first pre-processing the data, centering the data in zero **and** making the variance unitary for each attribute. The convergence should be facilitated. Write the values you choose.
- **2.** Several phenomena and concepts in real life applications are represented by angular data or, as is referred in the literature, directional data. Assume the directional variables are encoded as a periodic value in the range $[0, 2\pi]$.

Assume a two-class (y_0 and y_1), one dimensional classification task over a directional variable x, with equal a priori class probabilities.

- a) If the class-conditional densities are defined as $p(x|y_0) = e^{2\cos(x-1)}/(2 \pi 2.2796)$ and $p(x|y_1) = e^{3\cos(x+0.9)}/(2 \pi 4.8808)$, what's the decision at x=0?
- b) If the class-conditional densities are defined as $p(x|y_0) = e^{2\cos(x-1)}/(2\pi 2.2796)$ and $p(x|y_1) = e^{3\cos(x-1)}/(2\pi 4.8808)$, for what values of x is the prediction equal to y_0 ?
- c) Assume the more generic class-conditional densities defined as $p(x|y_0) = e^{k_0 \cos(x \mu_0)}/(2 \pi I(k_0))$ and $p(x|y_1) = e^{k_1 \cos(x \mu_1)}/(2 \pi I(k_1))$. In these expressions, k_i and μ_i are constants and $I(k_i)$ is a constant that depends on k_i . Show that the posterior probability $p(y_0|x)$ can be written as $p(y_0|x) = 1/(1 + e^{w_0 + w_1 \sin(x \Theta)})$, where w_0 , w_1 and Θ are parameters of the model (and depend on k_i , μ_i and $I(k_i)$).

JSC PAGE 1/1