PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-213332

(43) Date of publication of application: 06.08.1999

(51)Int.Cl.

G11B 5/3

(21)Application number: 10-010138

(71)Applicant: HITACHI LTD

(22)Date of filing: 22.01.1998

(72)Inventor: OIKAWA GEN

MORIJIRI MAKOTO

SAIKI NORIYUKI KONDO SHO

KIKUCHI HIROSHI

(54) THIN-FILM MAGNETIC HEAD AND MAGNETIC DISK DEVICE

(57) Abstract:

PROBLEM TO BE SOLVED: To enable accurate alignment of magnetic pole ends to be performed, and make strictly controllable the width and thickness thereof, and to enable a higher recording density to be obtained by using nonmagnetic metallic films of Rh, Ru, Re, Mo, Ir, Pd having a hardness equal to or higher than the hardness of first and second magnetic pole end layers or an alloy film mainly composed of these metals as a gap material.

SOLUTION: After a plating ground substrate film is adhered on a first magnetic yoke layer 5, thin film is successively plated with the first magnetic pole end 1, a gap layer 3 and the second magnetic pole end 2. The nonmagnetic films of the Rh. Ru, Re, Mo, Ir, Pd having a hardness equal to or higher than the hardness of first and second magnetic pole ends 1 and 2 consisting of FeNi or the alloy mainly composed of these metals are used as the gap layer 3. A coil structure 11, layers 8 to 10 consisting of an electrically insulating material and a second magnetic yoke layer 6 are formed on the front end part 4 of these magnetic pole ends, by which the magnetic head is constituted. As a result, the first and second magnetic pole ends 1 and 2 are precisely aligned to each other and the magnetic pole ends which are precisely equal in the track width in the gap region are obtd.

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2**** shows the word which can not be translated.

3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] In a thin film magnetic head which has an upper magnetic film, a lower magnetic film, a magnetic gap film, a conductor coil, and an insulator layer at least, A thin film magnetic head which uses an alloy film which makes a subject metal or this metal of Rh. Ru. Re. Mo. Ir. and Pd as a gap material to a gap layer of Hazama of the first pole tip layer and the second pole tip layer.

[Claim 2]A magnetic disk drive comprising:

A magnetic recording medium.

An actuator which drives this to a recording direction.

A magnetic head which consists of the Records Department and a regenerating section.

In a magnetic disk drive which has a record reproduction signal processing means for obtaining a means to which relative motion of this magnetic head is carried out to this magnetic recording medium, a record signal input to this magnetic head, and a regenerative-signal output from this magnetic head, it is the thin film magnetic head according to claim 1 as a magnetic head.

Translation done.

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[1000]

[Field of the Invention] This invention relates to the magnetic disk drive which used a thin film magnetic head and this thin film magnetic head, and relates to the pole tip structure art improved for thin film magnetic heads.
[0002]

[Description of the Prior Art]Large-scale-izing of a magnetic disk drive and a miniaturization progress quickly every year, and their development of high recording density-ized art is indispensable. Corresponding to high-recording-density-izing, it is considered as the spin valve type MR element not only using the MR element [playback head] using an anisotropic magneto resistance effect (AMR) but giant magneto-resistance (GMR), and development of the record reproduction discrete type head which used the recording head as the inductive element is progressing.

[0003]In connection with this, the width-of-recording-track narrowing of a top write-in pole and highly precise—ization are demanded about the recording head element. Although the second magnetic yoke layer is conventionally formed with electroplating, it is becoming impossible for the formation accuracy of the resist frame which forms a plating pattern to suit the width-of-recording-track accuracy demanded. In the case of the width of recording track of 2 micrometers or less, and 3-5 micrometers of pole thickness, the thickness of the resist frame in zero slow trebel, in order to secure the resist thickness on a coil and an insulator layer from the covering power of spreading resist more than plating thickness, 10-15 micrometers is required, and the aspect ratio of the resist frame in 0 slow trebel becomes five or more, and is approaching the limit of the conventional photolithography technique. The edge of a write-in pattern is curving to the upper pole side by fringing from a top write-in pole. This wrote in and expansion of the width of recording track and the fall of the reproducing output are caused. These things serve as fatal fault, in order to attain high recording density-ization.

[0004] The structure which forms the first pole tip, a gap film, and the second pole tip by electroplating using the resist frame same as a structure of a recording head element is shown in JP,6-28626, A that these problems should be solved. However, when forming a gap layer by electroplating in the above-mentioned structure, using NiP, Au, Cu, etc. as a gap material is shown. In this case, processing sagging is started as it is soft like Au or Cu in an air bearing surface (ABS) work process and hardness is about 500 or less Hv, and there is a problem that pole tip shape of a surfacing side cannot change, or gap film thickness cannot control strictly. There is a problem that will crystallize a NiP film by heat treatment and it will be magnetized.

[0005] The structure (trimming) of performing ion milling by using the second pole tip as a mask on the other hand, and demarcating the same width of recording track as the first pole tip is shown in JP,7-262519,A. If aluminum203 grade of an inorganic insulating film is used as a gap material when performing trimming, since the ion milling speed of the gap material of aluminum203 grade is slow, to magnetic films used for a write-in pole, such as nickel, Fe, and Co, A gap layer will be a mask and the first magnetic yoke layer will be etched into the undershirt side to the second magnetic yoke layer. Therefore, there is a problem that it is difficult to form precisely the size of the first pole tip width of recording track and shape.

[00006]

[Problem(s) to be Solved by the Invention]It is in the purpose of this invention providing the thin film magnetic head which selected the material of the suitable gap film to control the width, thickness, and shape of the pole tip strictly, and manufacture them.

[0007]The purpose of this invention has few medium noises, and is combining the art of positioning the thin film magnetic head and thin film magnetic head by the thin film magnetic recording medium and this invention excellent in the magnetic parametric performance of high coercive force which can record very high surface recording

density etc., It is in realizing the highly efficient magnetic disk drive of high recording density extremely. [0008]

[Means for Solving the Problem] A non-magnetic metal film of Rh, Ru, Re, Mo, Ir, and Pd in which a thin film magnetic head of this invention has the first and second pole tip layers and the hardness more than equivalent as a gap material. Or each permissible error holding a size of the pole tip and a size of the pole tip has an advantage which becomes very precise by using an alloy film which makes this metal a subject. Vickers hardness of a NiFe film is about 400 to 600 Hv, and For example, a non-magnetic metal film of Rh, Ru, Re, Mo, Ir, and Pd. Or since it was a NiFe film and the hardness more than equivalent, in surfacing side wrapping for forming predetermined throat height, as for a gap film of an alloy film which makes this metal a subject, it turned out that polish sagging can be prevented. It turned out that forming by the plating method is possible and these metal membranes are suitable to form a pole tip portion in a precise size and shape.

[0009]An actuator to which a magnetic disk drive of this invention drives a magnetic recording medium and this to a recording direction, A magnetic head which consists of the Records Department and a regenerating section, and a means to which relative motion of this magnetic head is carried out to this magnetic recording medium. In a magnetic disk drive which has a record reproduction signal processing means for obtaining a record signal input of this magnetic head, and a regenerative-signal output from this magnetic head. In a thin film magnetic head which has an upper magnetic film, a lower magnetic film, a magnetic gap film, a conductor coil, and an insulator layer at least, a magnetic head to a gap layer of Hazama of the first pole tip layer and the second pole tip layer as a gap material, It has a thin film magnetic head which uses metal of Rh, Ru, Re, Mo, Ir, and Pd, or an alloy film which makes this metal a subject.

[0010]

[Embodiment of the Invention] Hereafter, an example is concretely described using a drawing.

[0011]An example with the preferred pole tip by this invention is shown in drawing 1 and drawing 2. Drawing 1 shows the perspective view of the pole tip before wrapping a head at predetermined throat height, and drawing 2 shows the detection edge of the pole tip of ABS after wrapping predetermined throat height. <u>Drawing 3 shows the</u> thin film magnetic head completed by this example, and drawing 4 shows the sectional view of the tip part of a thin film magnetic head. **** — the figure of these shows the structure of the recording head part. As shown in drawing 4, the thin film magnetic head 12 is provided with the first magnetic yoke layer 5 made to adhere on the nonmagnetic substrate 7, and the gap layer 3 demarcates the conversion gap 30 which interacts so that it can change to magnetic media, and an air bearing may be formed as everyone knows preferably. For this reason, the nonmagnetic substrate 7 is formed as a slider which has a detection edge of the ABS13 grade which approaches recording media, such as magnetic Dix whom the magnetic Dix device rotates working, and files. Both the first magnetic voke layer 5 and the second magnetic yoke layer 6 are prolonged in the rear gap area 15 from ABS13. By ABS13, it is separated by the pole tip tip part 4, and the two magnetic yoke layers 5 and 6 contact mutually in the rear gap area 15. The two magnetic yoke layers 5 and 6 are located separately in the space of Hazama of ABS13 and the rear gap area 15, and the space for coil structure 11 is formed. The coil structure 11 and the two magnetic yoke layers 5 and 6 are separated by the layers 8, 9, and 10 of the nonmagnetic electrical insulation material. With reference to drawing 1, the coil structure 11 has two or more spiral winding 11 which has the first electric contact 31 of a center section, and external electric contact 32. The points of contact 31 and 32 are connected to external wiring and a head circuit (not shown) in order to process a data signal.

[0012] The pole tip tip part 4 is contacted and formed in the first magnetic yoke layer 5 including the first pole tip layer 1, the gap layer 3, and the second pole tip layer 2. As a magnetic pole tip part, an example (the width of recording track of 1 micrometer, 1 micrometer in thickness of the first pole tip layer 1, 0.4 micrometer in thickness of the gap layer 3, and 1 micrometer in thickness of the second pole tip layer 2) is shown below, for example. The formation method of this pole tip tip part 4 adheres the flow film for NiFe system plating in sputtering process etc. as a plating ground film on the first magnetic yoke layer 5, and patterns photoresist after a pole tip tip part—shaped opening form on it. A rectangular parallelepiped 1 micrometer in width, and [10 micrometer/ in height / 3 micrometers] in length can be used for an opening form, for example.

[0013]After carrying out plating pretreatment, first pole tip layer FeNi1micrometer, gap layer Rh0.4micrometer, and second pole tip layer FeNi1micrometer are continued and plated by electroplating next. As a gap material, the non-magnetic metal film of Ru, Re, Mo, Ir, and Pd or the alloy film which makes this metal a subject is preferred in addition to Rh. Next, the pole tip tip part 4 is completed by removing photoresist and removing unnecessary plating films other than a pole tip tip part by dry etching or wet etching. The first pole tip layer and the second pole tip layer are mutually aligned precisely by this formation method, and the precisely equal pole tip is obtained for the

width of recording track in a gap area.

[0014] Thus, to the obtained pole tip tip part, a coil, an insulator layer, and the second magnetic yoke layer are formed, and a magnetic head is constituted. The substrate with which the thin film head element was formed is completed by furthermore forming a terminal and a protective film. Then, a thin film head slider is created. This substrate is used as a thin film head slider bar by the cutting back, surfacing side machining of the ABS surface is carried out by wrapping like the usual slider creation process, and it is processed into predetermined throat height. Since that hardness is 500 or more Hv of hardness equivalent to the magnetic material of a nickel. Fe, or Co system used for the magnetic pole when Rh is used as a gap film at this time, the defect in which polish sagging of the film at the time of wrapping will be produced can be prevented. Rh can be formed with electroplating using commercial plating liquid, and the hardness can obtain 900 - 1000Hv. As for about 1300 Hv(s) and Mo, as a gap film similarly formed with electroplating, about 800 Hv(s) and Re are the hardness of about 500 Hv(s), and, as for about 1400 Hv(s) and Ir, about 1700 Hv(s) and Pd can prevent [Ru] polish sagging at the time of surfacing side wrapping. These metal membranes are metal membranes which were suitable for applying to a gap film also at the point which is not magnetized by heat treatment like NiP. The surfacing face shape of a thin film head is shown in drawing 5 and drawing 6 as other examples of this invention. Drawing 5 forms metal membranes, such as Rh or Ru, Re, Mo, Ir, and Pd, or the alloy film which makes this metal a subject as the gap layer 18 on the first magnetic yoke layer 16, and forms the second magnetic yoke layer 17 on it. Drawing 6 forms the gap layer 18 and the second magnetic yoke layer 17 by the plating method by using the same frame resist as a mask on the first magnetic yoke layer 16, it is clear by adopting a hard non-magnetic metal film as a gap film also about these examples that polish sagging can be prevented at the time of surfacing side wrapping processing for obtaining predetermined throat height.

[0015]Other examples of the thin film magnetic head by this invention are shown in drawing 7 and drawing 8. This applies this invention to the structure of the magnetic pole tip part of trimming structure. Drawing 7 shows the perspective view of the pole tip when a head is wrapped at predetermined throat height, and drawing 8 shows the detection edge of the pole tip. The formation method of the pole tip by this example is shown below. The first magnetic yoke layer 22 is made to adhere on a nonmagnetic substrate, on it, the gap layer 24 is adhered and the second magnetic yoke layer 23 is further formed by electroplating. Then, Ar ion milling is performed to the gap layer 23 and the first magnetic yoke layer 22 by using the second magnetic yoke layer 24 as a mask. It aligns precisely mutually with this formation method, and the precisely equal pole tip is obtained for the width of recording track in a gap area. Then, if Rh or Ru, Re, Mo, Ir, Pd, etc. are used as a gap material, an equivalent milling rate is taken to the first magnetic yoke layer 22 and the second magnetic yoke layer 23, and the width of recording track can be precisely demarcated as shown in drawing 8.

[00] 6]It becomes possible to constitute the magnetic Dix device of high recording density by using a thin film magnetic head with the recording head part which demarcated the above width of recording track precisely. [0017]As a characteristic check and device of the thin film magnetic head of this invention shown in the abovementioned example, a characteristic check, The thin film magnetic recording medium 203 which the very high surface recording density which has few medium noises as shown in drawing 9, and was excellent in the magnetic parametric performance of high coercive force can record. The spindle motor 202 which is an actuator which drives this to a recording direction. The thin film magnetic head 204 by this invention which consists of the Records Department and a regenerating section, and the guide arm 205 which is the means which relative motion is made for this thin film magnetic head 204 to this magnetic recording medium 203. The magnetic disk drive of composition of having the record reproduction digital disposal circuit 201 for performing output signal reproduction from the signal input and this thin film magnetic head 204 to this thin film magnetic head 204 was produced and checked. It cannot be overemphasized that composition with this thin film magnetic head 204 by two or more this inventions may be sufficient as the means 205 which the magnetic Dix device by this invention has two or more magnetic recording media 203, and this relative motion is made here. This thin film magnetic head 204 that constitutes the magnetic disk drive by this invention is applicable not only to the MR head which used the anisotropic magneto resistance effect (AMR) but the spin valve type MR head using giant magneto-resistance (GMR).

[8100]

[Effect of the Invention] According to this invention, alignment of the pole tip is carried out correctly, and the thin film magnetic head by which the width and thickness of the pole tip were controlled strictly can be provided.

[0019] The purpose of this invention, By combining the art of positioning a thin film magnetic head with the recording head which demarcated precisely the width of recording track by the thin film magnetic recording

nedium and this invention which have few medium noises and were excellent in the magnetic parametric erformance of high coercive force, and which can record very high surface recording density, and a thin film nagnetic head etc. It is in realizing the highly efficient magnetic disk drive of high recording density extremely.						
nslation done.]						***************************************

JPO and INPIT are not responsible for any damages caused by the use of this translation.

1. This document has been translated by computer. So the translation may not reflect the original precisely.

2.*** shows the word which can not be translated.

3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is a perspective view of the pole tip of a thin film magnetic head of the first example by this invention.

Drawing 2]It is a figure showing the pole tip air bearing surface of a thin film magnetic head of the first example by this invention.

[Drawing 3]It is a top view of the thin film magnetic head by this invention.

[Drawing 4]It is a sectional view in alignment with line A-A' of drawing 3.

[Drawing 5] It is a figure showing the pole tip air bearing surface of a thin film magnetic head of the second example by this invention.

[Drawing 6]It is a figure showing the pole tip air bearing surface of a thin film magnetic head of the third example by this invention.

[Drawing 7] It is a perspective view of the pole tip of a thin film magnetic head of the fourth example by this invention.

Drawing 8]It is a figure showing the pole tip air bearing surface of a thin film magnetic head of the fourth example by this invention.

[Drawing 9]It is a perspective illustration of the magnetic disk drive of one example of this invention.

[Description of Notations]

1 [— Pole tip tip part,] — The first pole tip and 2 — The second pole tip and 3 — A gap layer, 4 5 — the — The magnetic yoke layer of one, and 6 — the — The magnetic yoke layer of two, and 7 — a nonmagnetic substrate. 8 — The layer of an electrical insulation material, 9 — The layer of an electrical insulation material, 10 — The layer of an electrical insulation material, 11 — Coil structure, 12 — A thin film magnetic head and 13 — Air bearing surface, 14 — Zero slow trebel and 15 — A rear gap area, 16 — The magnetic yoke layer of the first, 17 — the — The magnetic yoke layer of two, and 18 — a gap layer and 19 — the — the magnetic yoke layer of one. 20 — the — The magnetic yoke layer of two, and 21 — a gap layer and 22 — the — the magnetic yoke layer of one. 23 — the — The magnetic yoke layer of two, and 24 — a gap layer and 30 — a conversion gap. 31 [— A spindle motor, 203 / — A magnetic recording medium and 204 / — A magnetic head, 205 / — Guide arm.] — Electric contact of a coil and external wiring, 32 — Electric contact of a coil and external wiring, 201 — A record reproduction digital disposal circuit, 202

[Translation done.]

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 3]

[Drawing 6]

[Translation done.]

(19) H本國特殊庁 (JP) (12) 公開特許公報 (A)

(11)特許出顧公開番号

特開平11-213332

(43)公開日 平成11年(1999)8月6日

(51) Int-CL*

G11B 5/31

鐵別配号

K I

G11B 5/31

 \mathbf{E}

D

神奈川県小田原市国府津2890番地株式会社

審査請求 未請求 請求項の数2 〇L (全 6 頁)

(21)出職番号	特額平10-10138	(71)的额人	(N)
			株式会社日立製作所
(22) (1) (21)	平成19年(1998) 1月22日		東京都千代田区神田駿河台四丁目 6 香地
		(72)発明者	及川 玄
			神奈川県小田原市国府津2880番地株式会社
			日立製作所ストレージシステム事業部内
		(72)発明者	森尻 誠
			神奈川県小田原市国府津2880番地株式会社
			日立製作所ストレージシステム事業部内
		(72) 発明者	资本 教行

日立製作所ストレージシステム事業部内 (74)代理人 弁理士 小川 勝男

最終質に続く

(54) [発明の名称] |雑酸磁気ヘッド及び破気ディスク装置

(57) 【要約】

【課題】破極端が正確に位置合わせされ、破極端の幅及 び厚みが厳密に制御された薄膜磁気ヘッド及びこれを用 いた磁気ディスク装置を提供する。

【解決手後】薄膜磁気ヘッドにおいて、ギャップ材とし て第一及び第二の磁極端層と同等以上の硬度をもつRh あるいは、Ru、Re、Mo、Ir、Pdの非磁性金属 膜を使用する。

【特許請求の範囲】

【請求項1】少なくとも、上部磁性膜、下部磁性膜、磁 気ギャップ膜、導体コイル、及び絶縁膜を有する薄膜磁 気ヘッドにおいて、第一の繊維端層と第二の磁極端層の 間のギャップ層に対し、ギャップ材として、Rb、R u、Re、Mo、Ir、Pdの金属あるいは、この金属 を主体とする合金酸を使用する薄膜磁気ペッド。

【請求項2】磁気記録媒体と、これを記録方向に駆動す る駆動部と、記録部と再生部からなる磁気ヘッドと、該 磁気ヘッドを該磁気記録媒体に対して相対運動させる手 10 設と、該磁気ペッドへの記録信号入力と、該磁気ペッド からの再生信号出力を得るための記録再生信号処理手段 を有する磁気ディスク装置に於いて、磁気ヘッドとして 請求項目記載の薄膜磁気ヘットを備えた磁気ディスク装 澄.

[発明の詳細な説明]

100011

【発明の属する技術分野】本発明は薄膜磁気ヘッド及び この薄膜磁気ペッドを用いた磁気ディスク装置に関する ものであり、さらに詳細には薄膜磁気ペッド用に改良さ 20 れた磁極端構造技術に関するものである。

100021

【従来の技術】磁気ディスク装置の大容量化、小型化は 年々急速に進み、高記録密度化技術の開発が必須であ る。高記録密度化に対応して、再生ヘッドを異方性磁気 抵抗効果(AMR)を用いたMR素子だけでなく、巨大 磁気抵抗効果(GMR)を利用したメビンバルブ型MR ※子とし、記録ペッドをインダクティブ素子とした記録 再生分離型ヘッドの開発が進んでいる。

【0003】これに伴い、記録ヘッド素子に関しては、 上部書き込みボールのトラック輻狭小化及び高精度化が 要求されている。従来、第三の磁気ヨーク層を電気めっ き法により形成しているが、めっきパターンを形成する レジストフレームの形成精度が、要求されるトラック幅 精度に適合できなくなってきている。トラック幅2 mm 以下、ボール模算3~5μmの場合、ゼロスロートレベ ルでのレジストフレームの機厚は、全布レジストのつき まわりからコイル及び絶縁籐上のレジスト籐厚をめっき 膜厚以上に確保する為。10~15 μ m が必要で0 スロ 8以上となり、従来のフォトリングラフィ技術の限界に 近づきつつある。また、上部書き込みボールからのフリ ンジングにより、書き込みパターンのエッチが上部ボー ル側に湾曲している。これにより書き込みトラック幅の 拡大、再生出力の低下を招いている。これらのことは高 記録密度化を達成するためには致命的な不具合となって

【0004】これらの問題を解決すべく、記録ヘッド素 子の構造としては関一のレジストフレームを用いて第一 の磁極端、ギャップ機 第二の磁極端を電気めっきによ 50

り形成する構造が特別平6-28626号公報に示され ている。しかし、上記構造において電気めっきでギャン プ層を形成する場合。ギャップ材としてNiP、Au、 Cu等を使用することが示されている。この場合、エア ペアリング表面(ABS)加工工程においてAuまたは Cuのように柔らかく。硬度が約500HV以下である と加工ダレをおこして浮上面の磁極端形状が変化した。 り、ギャップ膜厚が厳密に制御できないという問題があ る。またNiP膜は熱処理により結晶化し、磁化してし まうという問題がある。

【0005】一方、第二の磁極端をマスクとしてイオン ミリングを行い第一の磁極端と同一のトラック幅を顕定 する (トリミング) 構造が特開平で一262519号公 報に示されている。トリミングを行う場合、ギャップ材 として無機絶縁膜のA1203等を使用すると、書き込 みポールに使用されるNI、Fe、Co等の磁性膜に対 してAL203等のギャップ材のイオンミリング速度が 遅いために、ギャップ層がマスクとなり第一の磁気等一 **ク層が第二の磁気ヨーク層に対してアンダー側にエッチ** 「ングされてしまう。従って第一の磁極端トラック幅のす 法、及び形状を精密に形成することが困難であるという 問題がある。

[0006]

【発明が解決しようとする課題】本発明の目的は磁振器 の幅、厚み及び形状を厳密に制御して、製造するに好選 なギャップ膜の材料を選定した薄膜磁気ヘッドを提供す ることにある。

【0007】更に本発明の目的は、媒体ノイズの少ない かつ高保藤力の電磁変換特性に優れた極めて高い面記録 (30) 密度が記録可能な薄膜磁気記録媒体と本発明による薄膜 磁気ペッドと薄膜磁気ペッドを位置決めする技術等を組 合わせることで、極めて高記録密度の高性能磁気ディス ク装置を実現することにある。

[0008]

【課題を解決するための手段】 本発明の薄膜磁気ヘッド は、ギャップ材として、第一及び第二の磁極機器と同等 以上の硬さをもつRh、Ru、Re、Mo、It、Pd の非磁性金属膜あるいは、この金属を主体とする合金膜 を使用することにより、磁極端の寸法と磁極端の寸法を ートレベルにおけるレジストフレームのアスペクト比は 40 保持する許容額差が、いずれも非常に精密になる利点を 有している。例えばNiFe膜のビッカース硬度は約4 00~600Hv Thy, Rh, Ru, Re, Mo, I r、Paの非磁性金属膜あるいは。この金属を主体とす る合金膜のギャップ膜はNiF皮膜と同等以上の硬度で あるので、所定のスロートハイトを形成するための浮上 面ラッピングにおいて、研磨ダレを防止できる事が分か った。更にこれらの金属膜はめっき法により形成する事 が可能であり、破極端部分を精密な寸法及び形状に形成 するのに好適であることが分かった。

【0009】更に、本発明の磁気ディスク装置は、磁気

記録媒体と、これを記録方向に駆動する駆動部と、記録 部と再生部からなる磁気ヘッドと、該磁気ヘッドを該磁 気記録媒体に対して相対運動させる手段と、該磁気ヘッ 下の記録信号入力と、該磁気ヘッドからの再生信号出力 を得るための記録再生信号処理手段を有する磁気ディス ク装置に於いて、磁気ヘッドが、少なくとも上部磁性 腰。下部磁性膜、磁気ギャップ膜、導体コイル、及び絶 縁膜を有する薄膜磁気ヘッドに於いて、第一の磁極端層 と第二の磁極端層の間のギャップ層に対し、ギャップ材 として、Rh、Ru、Re、Mo、Ir、Pdの金銭あ 16 るいは、この金属を主体とする合金膜を使用した薄膜磁 気ヘッドを備えている。

[0010]

【発明の実施の形態】以下、実施例を図面を用いて具体 的に説明する。

【0011】本発明による磁機器の好ましい実施例を図 1及び図2に示す。図1はヘッドを所定のスロートハイ 下にラッピングする前の磁極端の斜視図を示し、図 2は 術室のスロートハイトにラッピングした後のABSの磁 極端の検出縁を示す。図3は本実施例により完成した薄 20 糠磁気ヘッドを楽し、図4は薄糠磁気ヘッドの先端部の 斯爾図を示す。なをこれらの図は記録ペッド部の構造を 示している。関4に示すように、薄膜磁気ハッド12は 非磁性の基板で上に付着させた第一の磁気ヨーク層5を 備え、ギャップ層3は磁気媒体に対して変換を行えるよ うに、好ましくは関知のようにエア・ベアリングが形成 されるように、相互作用する変換ギャップ30を画定す る。この為、非磁性の基板では磁気ディクス装置の動作 中に囲転する磁気ディクス等の記録媒体に近接して飛翔 する、ABSI3等の検出縁を有するスライダとして形 30 成する。第一の磁気ヨータ層5及び第二の磁気ヨーク層 らは共にABS13から後部ギャップ領域15に延び る。2つの磁気ヨーク層5と6は、ABS13で磁極端 先端部4によって分離され、後部ギャップ領域15で五 いに接触する。ABS13と後部デャップ領域15との 間の空間で2つの磁気ヨーク層5と6は隔置され、コイ ル構造11用の空間を形成している。コイル構造11と 2つの磁気ヨーク層5及び6は非磁性の電気絶縁材料の 層8、9、10によって分離されている。図1を参照す るに、コイル構造11は中央部の第一の電気接点31と 40 外部の電気接点32を有するらせん状の複数の巻線11 を有する。接点31と32はデータ信号を処理する為。 に、外部配線及びヘッド回路(図示せず)に接続されて

【0012】磁極爆先端部4は第一の磁極端層1とギャップ勝3と第三の磁極端層2を含み、第一の磁気ヨータ 勝5に接触して形成される。磁極先端部として、例えば トラック編1μm、第一の磁振端層1の厚さ1μm、ギャップ層3の厚さ0、4μm、第二の磁極端層2の厚さ 1μmの実施例を以下に示す。この磁振端先端部4の形 50 成方法は、第一の極気ヨーク圏5上にめっき下地膜としてNiFe系めっき用導通膜をスパッタリング法等で付着し、その上にフォトレジストを磁極端先端部形状の開口形にバターニングする。開口形は、例えば幅1μm、長さ10μm高さ3μmの直方体を用いる事ができる。【0013】めっき前処理をした後、次に電気めっきにより第一の磁極端層FeNilμmを連続してめっきする。ギャップ材としてはRh以外にはRu、Re、Mo、lr、Pdの非磁性金属機あるいは、この金属を主体とする合金膜が好適である。次にフォトレジストを除去し、磁極端先端部以外の不要なめっき膜をドライエッチング又はウェットエッチングにより除去することで磁極端先端部はが完成する。この形成方法により第

一の磁極端層と第三の磁極端層が互いに精密に位置合せ

され、ギャップ領域でのトラック幅が精密に等しい磁極

鑑が得られる。

【0014】このようにして得られた磁極端先端部に対 して、コイル、絶縁線及び第二の磁気ヨーク層を形成 し、磁気ヘッドを構成する。さらに端子、保護腺を形成 する事により薄膜ヘッド素子が形成された基板が完成す る。続いて薄膜ヘッドスライダーを作成する。この基板 を通常のスライダー作成工程と同様に薄膜ヘッドスライ ダーバーに切断後、ABS面をラッピングにより浮上頭 加工し、所定のスロートバイトに加工する。この時、ギ ャップ膜としてRhを用いた場合、その硬きは磁極に用 いられているNi、FeあるいはCo系の磁性材料と開 等の硬度500Hv以上であるので、ラッピング時の膜 の研磨グレを生じてしまうという欠陥を防止できる。R 上は市販のめっき液を用いて電気めっき法で形成する事 ができ。硬度は900~1000日vを得ることができ る。同様に電気めっき法で形成したギャップ膜として、 Raは約800Hv、Reは約1300Hv、Moは約 1400Hv、1rは約1700Hv、Pdは約500 Hvの硬度であり、浮上面ラッピング時の研磨タレを防 止する事ができる。また、これらの金属膜はNiPの様 に熱処理によって磁化する事はない点でも、ギャップ膜 に適用するに適した金属膜である。本発明の他の実施例 として薄膜ヘッドの浮上面形状を図5及び図6に示す。 図5は第一の磁気ヨーク層16上にギャップ層18とし てRhあるいはRu、Re、Mo、Ir、Pd等の金属 勝あるいは、この金属を主体とする合金騰を形成し、そ の上に第二の磁気ローク層17を形成したものである。 また、図6は第一の磁気ヨーク層16上にギャップ勝1 8及び第二の磁気ヨーク層17を、同一のフレームレジ ストをマスクとしてめっき法で形成したものである。こ れらの実施例についても、ギャップ際に硬い非磁性金属 | 糠を採用する事により、所定のスコートハイトを得るた めの浮上面ラッピング加工時に研磨ダレを防止できる事 が明らかである。

【0018】本発明による薄膜磁気ヘッドの他の実施例 を図7及び図8に示す。これはトリミング構造の磁振先 端部の構造に本発明を適用したものである。図7はペッ ドを所定のスロート高さにラッピングしたときの磁極端 の斜視図を示し、図8は凝極端の検出縁を示す。この実 施例による磁極端の形成方法を以下に示す。非磁性の基 板上に第一の磁気ヨーク層22を付着させ。その上にデ ャップ層24を付着し、さらに電気めっきにより第二の 磁気ヨーク層23を形成する。続いて第二の磁気ヨーク 麗24をマスクとして、ギャップ麗23と第一の磁気ヨー10-一ク層22に対してAェイオンミリングを行う。この形 成方法により互いに精密に位置合せされ、ギャップ領域 でのトラック幅が精密に等しい磁機器が得られる。そこ でキャップ材としてREあるいはRu。Re、Mo、L r、Pla等を使用すれば、第一の磁気ヨーク層22と第 三の磁気ヨーカ層23に対して開発のミリングレートを 取り、図8に示す通りトラック幅を精密に画定すること

【0016】以上の様なトラック幅を精密に画定した記 緑ハッド部を持つ、薄膜磁気ヘッドを用いることによ り、高記録密度の磁気ディクス装置を構成することが可 能になる。

【0017】 尚、厳述の実施例に示した本発明の薄膜磁 気ヘッドの特性確認及び装置として特性確認等は、図 9 に示すような、媒体ノイズの少ないかつ高保磁力の電磁 変換特性に優れた極めて高い面記録密度が記録可能な薄 膜磁気記録媒体203と、これを記録方向に駆動する駆 動部であるスピンドルモータ20.2と、記録部と再生部 からたる本発明による薄膜磁気ヘッド204と、該薄膜 磁気ヘッド204を接続気配縁媒体203に対して相対 30 運動をさせる手段であるガイドアーム205と、該薄膜 磁気ヘッド204ペの信号入力と該海膜磁気ペッド20 4からの出力信号再生を行う為の記録再生信号処理回路 201を有する構成の磁気ディスク装置を作製し確認し た。ここで、本発明による磁気ディクス装置は、複数の 磁気記録媒体203を育し、該相対運動をさせる手段2 0.5が複数の本発明による該薄膜磁気ヘッド204を有 した構成でも良いことは言うまでもない。また本発明に よる磁気ディスク装置を構成する該薄膜磁気へッド20 ドだけでなく。巨大磁気抵抗効果(GMR)を利用した スピンバルブ類MRペッドにも適用できるものである。

[0018]

【発明の効果】本発明によれほ磁極端が正確に位置合わ

せされ 磁棒端の極及び厚みが厳密に制御された薄膜鏡 気ヘッドを提供することができる。

【0019】更に本発明の目的は、媒体アイスの少ない かつ高保磁力の電磁変換特性に優れた極めて高い面記録 密度が記録可能な薄膜磁気記録媒体と本発明によるトラ ガタ幅を精密に画定した記録ペッドを持つ薄膜磁気ペッ ドと薄膜磁気ヘッドを位置決めする技術等を組合わせる。 ことで、極めて高記録密度の高性能磁気ディスク装置を 実現することにある。

【図面の簡単な説明】

【図1】 本発明による第一の実施例の、薄膜磁気ヘッド の磁極端の斜視図である。

【図2】本発明による第一の実施例の。薄膜磁気ヘッド め磁極端エア・ペアリング表面を示す図である。

【図3】本発明による薄膜磁気ヘッドの平面図である。

【図4】図3の線A-A'に合った断面図である。

【図5】本発明による第二の実施例の、薄膜磁気ヘッド の磁極端エア・ペアリング表面を示す図である。

【図6】本発明による第三の実施例の、薄膜磁気ヘッド 20 の磁極端エア・ペアリング表面を示す図である。

【図7】本発明による第四の実施例の、薄機磁気ヘッド の磁振端の斜視図である。

【図8】 本発明による第四の実施例の、薄膜磁気ペッド の磁極端エア・ペアリング表面を示す図である。

【図9】本発明の一実施例の磁気ディスク装置の斜視模 式図である。

【符号の説明】

1 一第一の磁極端、 2 一第二の磁極端。 3 --- 4 ヤップ層、4小磁極端失端部、 5一第一の磁気ヨーク 層、6~第三の磁気ヨーク層、7~非磁性の基板。 8 →電気絶縁材料の層。 9→電気絶縁材料の層、10→ - 11…コイル構造、12…薄 常気絶縁材料の層、 膜磁気ヘッド、 13~エア・ベアリング表面、 14~ゼロスロートレベル。 15~後部ギャップ額 域、16一第一の磁気ヨー2層、 - 1.7 一第二の磁気 ヨーク層、18ーギャップ層、 19一第一の磁気ヨー ケ陽、20~第二の磁気ヨーク層。 21ーギャップ 23一第三の磁気 欄、22…第一の磁気ヨーク層。 30…変換 ヨーク層、24mギャップ層、 4は、異方性磁気抵抗効果(AMR)を用いたMRペッ 40 ギャップ、31…コイルと外部配線との電気接点、32 一コイルと外部配線との電気接点、201一記録再生信 号処理回路。202…スピンドルモータ、203…磁気 204-磁気ヘッド。205-ガイ 記録媒体、 KY-A.

[29]

フロントベージの続き

(72)発明者 近藤 祥

神奈川県小田原市国育津2880番地株式会社 日立製作所ストレージンステム事業部内 (72) 発明者 菊池 廣

神奈川県横浜市戸塚区吉田町292番地株式 会社日立製作所生産技術研究所内