

Problem 1

Let R be {(1, 1), (2, 1), (3, 2), (4, 3)}.

Find R^2 .

Then find R³.

Then find R⁴.

Problem 1 Answer Key

R = {(1, 1), (2, 1), (3, 2), (4, 3)}
R² = R
$$\circ$$
 R = {(1, 1), (2, 1), (3, 1), (4, 2)}
R³ = R² \circ R = {(1, 1), (2, 1), (3, 1), (4, 1)}
R⁴ = R³ \circ R = {(1, 1), (2, 1), (3, 1), (4, 1)}

Problem 2

Determine whether the following directed graphs are equivalence classes.

Problem 2 Answer Key

- 1. Yes
- 2. No
- 3. No

Problem 3

Let $R = \{(a, b): a, b \in N, rem(a, 2) = rem(b, 2)\}$ (the remainders of both numbers when divided by 2 are equal.

- a. Describe the elements of the set $[0]_R$ and $[1]_R$
- b. How many distinct equivalence classes of the natural numbers are created by R

Problem 3 Answer Key

- a. $[0]_R = \{x \in \mathbb{N}: \text{rem}(x, 2) = 0\}$ $[1]_R = \{x \in \mathbb{N}: \text{rem}(x, 2) = 1\}$
- b. 2; [0] and [1]

Racket Time!