

클라우드 컴퓨팅이란?

정보 활용 능력 프로그램, 2011년 9월

전체 목차

I. 클라우드 컴퓨팅이란?

II. 클라우드 컴퓨팅 서비스 이해 및 활용

III. 국외 클라우드 컴퓨팅 서비스 동향과 활용

IV. 클라우드 시대의 주도권과 미래 전략?

I. 클라우드 컴퓨팅이란?

1. IT 패러다임의 변화

2. 클라우드 컴퓨팅의 정의 및 특징

3. 서비스 모델 및 전개 모델

4. 클라우드 컴퓨팅 확산 전망

컴퓨팅, 스토리지, 소프트웨어, 네트워크과 같은 IT 자원들을 인터넷 (네트워크)을 통해 필요한 만큼 빌려 쓰고 사용한 만큼 비용을 지불하는 서비스

컴퓨팅 서비스는 80년대 Client-Server 시대를 거쳐 90년대 인터넷/웹 서비스의 활성화와 더불어 Cloud Computing으로 급격히 진화

컴퓨팅서비스의 진화 (10yrs Computing Cycle)

2011-09-03

-/

기존의 공급자 중심 방식에서 사용자 중심의 서비스 제공방식으로 고객의 선호도에 따라 개별 맞춤형 서비스가 가능

기존 방식과의 비교

Cloud Computing

기존 방식(공급자 중심)

클라우드(사용자 중심)

가상화 기술을 이용하여

IT자원의 가용률을 높이고

(Utilization 극대화)

사용자가 필요로 하는 것을 직접 (셀프 서비스)

인터넷을 통해 IT 자원을 실시간 으로 빌려 쓰며

(사용 편리성)

<u>사용한 만큼 지불</u>하는 방식 (Pay as you Go)

구매방식

IT 투자, HW임대 1 month or more

"인터넷을 통한 신청" A few Minutes

제공방식

"Manual"(구축) 1 month or more

"Automation"(주문) A few Minutes

제공단위

"물리적 장비 단위"

"Virtual Machine" Core / 시간단위 최소 기준

지불방식

"임대/HW에 따른 과금" (<)

"사용량 기반"

🔾 : 기업 이용가치 측면에서의 비교

서비스 모델

제공되는 IT자원의 성격에 따라 IaaS, PaaS, SaaS (XaaS) 등으로 분류

서비스 모델

- IaaS: 물리적 서버(CPU, Memory, O/S), 스토리지, 네트워크를 가상화하여 다수의 고객에게 유연하게 제공하는 인프라 서비스
- PaaS: Web 기반의 서비스 또는 어플리케이션 등의 개발 및 실행을 위한 표준 플 랫폼 환경을 서비스 형태로 제공
- SaaS: 구글의 Gmail이나 MS Office 365와 같이 어플리케이션(Software)을 인터 넷 및 웹브라우저를 통해 서비스로 제공

배치방식 또는 소유방식에 따라 프라이빗(Private), 퍼블릭(Public), 하이브리드 (Hybrid) 클라우드 등으로 구분

클라우드 서비스 분류

소유방식에 따라 퍼블릭, 프라이빗, 하이브리드 등으로 구분되며, 제공되는 IT자원의 성격에 따라 IaaS, PaaS, SaaS (XaaS) 등으로 분류

서비스 유형

퍼브릭 클라우드

- •인터넷 상으로 여러 사용자들에 의해 공유되는 IT 환경
- •클라우드 서비스 제공자가 서비스 제공 및 관리

프라이빗 클라우드

- 한 기업이나 기관에 의해 인트라넷상에서 배타적으로 사용되는 IT 환경
- 기업 및 기관에 의해 통제 및 관리

하이브리드 클라우드

• 한 기업이나 기관이 Private Cloud 구축 후 Public Cloud도 병행 사용

서비스 모델

SaaS (Software As A Sevice)

•기업 또는 일반 소비자가 다양한 어플리케이션(Software)을 인터넷 및 웹브라우저를 통해 서비스로 제공

PaaS (Platform As A Service)

 기업이 웹 어플리케이션 등의 어플리케이션을 개발하고 실행하기 위한 환경을 서비스 형태로 제공

laaS (Infrastructure As A Service)

물리적 서버(CPU, Memory, O/S),
스토리지, 네트워크를 가상화하여
유연하게 제공하는 인프라 서비스

13

규모의 경제, 사용자 셀프 서비스, 동적 확장성 및 사용량 기반 과금체계, IT 자원의 공동 사용을 통해 획기적인 비용절감과 새로운 비즈니스의 토대를 마련

비용 절감 – Maximize utilization, no initial cost 시간 절감 (Auto-provisioning) – 민첩성 (Time-to-market) 셀프 서비스 - 사용 편의 유연성, 탄력성, 확장성 (Flexibility, Elasticity and Scalability) 재해 예방 (Disaster Recovery and Business Continuity)

클라우드 컴퓨팅 이점

대용량 자원을 보유 및 운용할수록 비용 절감효과가 큼

구분	중소규모 데이터센터	대규모 데이터센터
네트워크 비용 (매월 1Mbit/s 전송)	\$95	\$13
스토리지 비용 (매월 1GByte 사용)	\$2.20	\$0.40
관리/운영 비용 (관리자당 운영서버수)	140 대	1000 대 이상

사용량에 따라 IT 자원을 즉시 확장/축소하고, 그 기반으로 과금

IT관리자의 간섭 없이 사용자가 직접 용이하게 구매, 설계, 설치 가능

물리적 구별 없이 Application 실행 IT 자원을 공유하여 사용

탄력성 및 확장성 (Elasticity and Scalability)

Automated Elasticity + Scalability

클라우드 도입 장점

Cloud도입에 따라 TCO절감은 물론 Process 혁신으로 효율적 투자, 편리한 관리, 신속한 사업 추진 등이 가능

고객 TCO의 획기적 절감 가능

- ·IT자원의 가시성 확보로 효율적 투자 및 예측 곤란한 IT자원의 요구에 대응 과도한 투자 발생 방지
- HW, SW유지보수, 전력료, 상면비 등 운영비용 획기적 절감 가능

System의 안정성 및 유연성 확보

- IT자원의 자동 확장/축소(Auto Provisioning & Scaling)로 갑작스런 IT자원 요구에 효율적 대처
 - Multi-Media 등 Data 증대에 따른 IT자원의 유연성 확보

Lead-Time축소로 Time to Market 실현

• 자원신청→할당으로 기존 1~2개월의 소요기간이 수 분내로 단축

전력사용량의 획기적 절감에 따른 그린 IT환경 구축에 기여

•전력 효율화 최소 4배 이상, 탄소배출량 60%~80%까지 절감 가능

뉴욕타임즈의 과거 130년 간의 신문기사 이미지를 PDF로 변환 작업 → 자사 서버로 14년이 걸릴 일을 클라우드 컴퓨팅 서비스를 통한 가상서버 100 개로, 24시간 만에, 그것도 불과 400불 정도의 비용만으로 해결

클라우드 컴퓨팅 확산 근거

Cloud 도입은 IT 리소스의 탄력적 사용으로 인한 TCO절감은 물론 Process 혁신으로 신속한 사업 추진 (Time-to-market) 가능

데이터 폭증 – 빅 데이터의 출현

- SNS와 Smart Phone 의 대중화로 개인 무선 데이터의 폭발
- 사물이 인터넷에 연결되는 IoT (Internet Of Things) 및 M2M 성장

Mobile Device의 다양화 및 활성화

- Tablet PC 와 NFC 탑재 Smart Phone 다양한 Mobile 단말의 등장
- Thin client를 넘어 Zero client 출연 VDI, 게임 기기와 Connected TV

Cloud Streaming – 음악, 게임, 비디오 처리 고성능 S/W가 서버에서 실행

• Content 소비가 소유 → 접속, Streaming 기반 on-demand Services

녹색 성장의 사회적 정책 및 산업의 핵심 가치에 부합

• 저탄소, 고효율의 Green IT를 위해 기업 자체 IT 투자 및 운용 최소화

데이터 폭발

2015년까지 Global Mobile 데이터 트래픽 예상 증가율 – CISCO VNI Mobile 2011

한국 Mobile 데이터 트래픽 증가 (2009년 중반 - 2010년 중반) - CISCO VNI 2010-2015

보수적인 접근에서의 Cloud Computing의 글로벌 매출: 2010년부터 연평균 17.9%씩 성장하여 2018년 300조를 상회할 것이라는 예상

Global Cloud Computing 매출 예상 (\$bn)

클라우드 컴퓨팅 시장 성장 전망 - KISTI (The Visions on the Clouds 2010)

감사합니다.

질문 ??

