Введение в математический анализ.

Содержание

1	Пос	следовательности	2
	1.1	Предел последовательности	2
	1.2	Арифметические операции с пределами	2
	1.3	Вещественные числа. Супремум и инфимум	3
	1.4	Определение числа e	3
	1.5	Теорема Больцано-Вейерштрасса	4
	1.6	Сходимость рядов	4
	1.7	Признаки сходимости рядов	5
	1.8	Тесты на сходимость рядов	7
2	Фу	нкции и непрерывность	8
	2.1	Предел функции	8
		2.1.1 Предельные точки множества	8
		2.1.2 Предел функции	9
		2.1.3 Арифметические действия с пределами	10
		2.1.4 Односторонние пределы	10
	2.2	Непрерывность функции	10
	2.3	Теорема Вейерштрасса	11
	2.4	Теорема Больцано-Коши	11
	2.5	Замечательные пределы	11
	2.6	Эквивалентные функции	11
3	Про	оизводные	11
	3.1^{-}	Дифференцируемость и производная	11
	3.2	Теоремы о среднем	11
	3.3	Производная и монотонность	12
	3.4	Правило Лопиталя	12
	3.5	Формула Тейлора	12
	3.6	Экстремумы функций	12
4	Инт	гегралы	12
	4.1	Первообразная и неопределённый интеграл	12
	4.2	Действия с неопределёнными интегралами	12
	4.3	Площади и определённый интеграл	12
	4.4	Теорема Барроу и формула Ньютона-Лейбница	12
	4.5	Интегральные суммы	12
	4.6	Связь между суммами и интегралами	12

1 Последовательности

1.1 Предел последовательности

Опр-е. 1.1 (Предел последовательности).

$$\lim_{n\to\infty} x_n = l$$

- При любом $\varepsilon>0$ вне интервала $(l-\varepsilon,l+\varepsilon)$ находится лишь конечное число членов последовательности
- $\forall \varepsilon > 0 \quad \exists N \quad \forall n > N \quad |x_n l| < \varepsilon$

Св-во. Свойства последовательностей:

- Не может иметь двух различных пределов
- Если имеет предел, то $|x_n| \leqslant M$
- Переход к пределу в неравенстве:

$$\lim_{n \to \infty} x_n = a, \lim_{n \to \infty} y_n = b, x_n \leqslant y_n \implies a \leqslant b$$

• Пределы можно складывать, вычитать, умножать, делить, брать модуль

Теор. 1.1 (О двух милиционерах).

$$a_n \leqslant b_n \leqslant c_n$$
, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = A \implies \lim_{n \to \infty} c_n = A$

1.2 Арифметические операции с пределами

Арифметические операции с конечными пределами...

Опр-е. 1.2 (Бесконечный предел).

$$\lim_{n \to \infty} x_n = +\infty \qquad \equiv \qquad \forall E \ \exists N \ \forall n > N \ x_n > E$$

Теор. 1.2. Ј $x_n \neq 0$. x_n – беск. большая $\iff \frac{1}{x_n}$ – беск. малая

Св-во. Свойства бесконечно малых:

- 1. Беск. малая послед. ограничена
- 2. Сумма, разность, произведение бес. малых беск. малая
- 3. Произвед. беск. малой на ограниченную беск. малая

Арифметические операции с бесконечностями...

1.3 Вещественные числа. Супремум и инфимум.

Опр-е. 1.3 (Вещественные числа).

- Аксиомы поля (9 штук)
- Аксимомы порядка (5 штук)
- Аксиома Архимеда: $\forall x, y > 0 \; \exists n \in \mathbb{N} : nx > y$
- Аксиома полноты: Пусть $[a_1,b_1]\supset [a_2,b_2]\supset [a_3,b_3]\supset$ Тогда существует число $c\in\mathbb{R},$ принадлежащее всем отрезкам: $c\in\bigcap_{n=1}^\infty [a_n,b_n]$

Теор. 1.3 (О стягивающихся отрезках).

Пусть $[a_1,b_1]\supset [a_2,b_2]\supset [a_3,b_3]\supset \dots$ и $\lim_{\substack{n\to\infty\\n\to\infty}}(b_n-a_n)=0$. Тогда пересечение всех отрезков состоит из одной точки: $\{c\}=\bigcap_{n=1}^\infty [a_n,b_n]$, причём $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c$

$$b = \sup E \iff \begin{cases} \forall x \in E & x \leq b \\ \forall \varepsilon > 0 \ \exists x \in E : \ x > b - \varepsilon \end{cases}$$

Теор. 1.4. Всякое непустое ограниченное сверху (снизу) множество имеет sup (inf) Доказательство. Делением отрезка пополам...

Teop. 1.5.

- Монотонно возрастающая ограниченная сверху последовательность сходится.
- Монотонно убывающая ограниченная снизу последовательность сходится.
- Неограниченная сверху возрастающая последовательность стремится $\kappa + \infty$.
- Неограниченная снизу убывающая последовательность стремится к $-\infty$.

1.4 Определение числа e

Лемма 1.1 (Неравенство Бернулли).

$$x > -1, n \in \mathbb{N} \implies (1+x)^n \geqslant 1 + nx$$

Доказательство. По индукции...

След-е.

$$x > -1, n \in \mathbb{N} \implies \sqrt[n]{1+x} \leqslant 1 + \frac{x}{n}$$

$$\lim_{n \to \infty} \frac{a^n}{n^k} = +\infty \quad a > 1, \ k \in \mathbb{N}$$

$$\lim_{n \to \infty} \sqrt[n]{a} = 1 \quad a > 0$$

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$

1.5 Теорема Больцано-Вейерштрасса

Св-во.

$$\{a_n\} \to A \implies \{a_{n_k}\} \to A$$

Teop. 1.6 (Больцано-Вейерштрасса). Из всякой ограниченной последовательности можно выделить сходящуюся (к конечному пределу) подпоследовательность

Teop. 1.7 (Расширение теоремы Б-В).

- Из неограниченной сверху последовательности можно выделить подпоследовательность, сходящуюся к $+\infty$.
- Из неограниченной снизу последовательности можно выделить подпоследовательность, сходящуюся к $-\infty$.

След-е. Из любой последовательности можно выделить под-последовательность, имеющую конечный *или бесконечный* предел.

Опр-е. 1.5. Последовательность фундаментальна, если $\forall \varepsilon > 0 \quad \exists N \quad \forall m, n \geqslant N \quad |x_m - x_n| < \varepsilon$

Св-во.

- 1. Фундаментальная последовательность ограничена
- 2. Сходящаяся последовательность фундаментальна
- 3. Если у фундаментальной последовательности есть сходящаяся подпоследовательность, то исходная последовательность сходится

След-е (Критерий Коши). Последовательность сходится 👄 она фундаментальна

1.6 Сходимость рядов

Опр-е. 1.6.

$$S_n = \sum_{k=1}^n a_k$$

Если последовательность $\{S_n\} \to S$, то последовательность наз. сходящейся, а S – сумма ряда. Если $\{S_n\}$ не имеет предела или **бесконечный** предел, то ряд расходится.

Теор. 1.8 (Необходимое условие сходимости ряда).

Если ряд
$$\sum_{k=1}^{n} a_k$$
 сходится, то $\lim_{n \to \infty} a_n = 0$.

Геометрическая прогрессия:

$$S_n = \sum_{k=1}^n aq^{k-1} = a\frac{1-q^n}{1-q}$$

$$\lim_{n \to \infty} S_n = \frac{a}{1-q}$$
 при $|q| < 1$

Гармонический ряд $H_n = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{n}$ расходится, т.к. $H_{2^n} \geqslant \frac{1}{2}$

Пример:

$$S_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}$$

$$\lim_{n \to \infty} S_n = 1$$

Св-во. Свойства сходящихся рядов:

- 1. Ряд не может иметь двух различных сумм
- 2. В сходящемся ряду можно произвольно расставлять скобки (т.к. это будет подпоследовательность сходящейся последовательности)
- 3. Добавление и отбрасывание конечного членов ряда не влияет на сходимость (но изменяет сумму)
- 4. Сходящиеся ряды можно складывать и вычитать
- 5. Сходящийся ряд можно домножать на константу

1.7 Признаки сходимости рядов

Св-во. Если $a_k\geqslant 0$, а последовательность S_n ограничена сверху, то ряд сходится

5

Св-во (Признак сравнения). Если $0 \leqslant a_k \leqslant b_k$, то:

- ullet если ряд $\sum_{k=1}^{\infty} b_k$ сходится, то ряд $\sum_{k=1}^{\infty} a_k$ сходится
- ullet если ряд $\sum_{k=1}^{\infty} a_k$ расходится, то ряд $\sum_{k=1}^{\infty} b_k$ расходится

Пример: ряд
$$\frac{1}{k^2}$$
 сходится. $\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$

Пример: ряд $\frac{1}{\sqrt{k}}$ расходится.

Теор. 1.9 (Признак Даламбера). Пусть $a_n > 0$. Тогда:

1. Если
$$\frac{a_{n+1}}{a_n}\leqslant d<1,$$
 то ряд $\sum_{k=1}^\infty a_k$ сходится

- 2. Если $\frac{a_{n+1}}{a_n}\geqslant 1$, то ряд расходится
- 3. Пусть $d_* = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$. Тогда:
 - Если $d_* < 1$, то ряд сходится
 - Если $d_* > 1$, то ряд расходится
 - Если $d_* = 1$, то ряд может как сходиться, так и расходиться

Теор. 1.10 (Признак Коши). Пусть $a_n > 0$. Тогда:

1. Если
$$\sqrt[n]{a_n}\leqslant d<1,$$
 то ряд $\sum_{k=1}^\infty a_k$ сходится

- 2. Если $\sqrt[n]{a_n} \geqslant 1$, то ряд расходится
- 3. Пусть $q_* = \lim_{n \to \infty} \sqrt[n]{a_n}$. Тогда:
 - Если $d_* < 1$, то ряд сходится
 - Если $d_* > 1$, то ряд расходится
 - ullet Если $d_*=1$, то ряд может как сходиться, так и расходиться

Теор. 1.11 (Факт).

Если $a_n > 0$ и существует $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$, то также существует и $\lim_{n \to \infty} \sqrt[n]{a_n}$, и они равны.

Теор. 1.12 (Признак Лейбница). Знакочередующийся ряд $a_1-a_2+a_3-a_4+\dots$ с монотонно убывающим по абсолютной величине членом $a_1\geqslant a_2\geqslant a_3\geqslant \dots>0$ сходится $\iff \lim_{n\to\infty}a_n=0$

Пример – ряд Лейбница:
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \frac{\pi}{4}$$

Опр-е. 1.7 (Абсолютная сходимость).

Ряд
$$\sum_{k=1}^{\infty} a_k$$
 сходится абсолютно, если ряд $\sum_{k=1}^{\infty} |a_k|$ сходится.

Теор. 1.13. Абсолютно сходящийся ряд сходится, причём $\left|\sum_{k=1}^{\infty}a_k\right|\leqslant\sum_{k=1}^{\infty}|a_k|$

Доказательство. Рассмотрим $0 \leqslant a_k + |a_k| \leqslant 2|a_k|$

Пример: если сходится ряд $\sum_{n=1}^{\infty} a_n^2$, то сходится и ряд $\sum_{n=1}^{\infty} \frac{a_n}{n}$.

Свойство: если ряд $\sum_{n=1}^{\infty} a_n$ сходится, а ряд $\sum_{n=1}^{\infty} b_n$ расходится, то ряд $\sum_{n=1}^{\infty} (a_n + b_n)$ расходится.

1.8 Тесты на сходимость рядов

- Если последовательность имеет конечный предел, то она ограничена.
- Монотонно возрастающая и ограниченная сверху последовательность имеет предел.
- igvee Если последовательность $\{x_n\}$ имеет предел, то $\lim_{n o\infty}x_{2n}=\lim_{n o\infty}x_n.$
- ✓ Из любой последовательности можно выбрать подпоследовательность, имеющую предел.
- o Если ряд $\sum\limits_{n=1}^{\infty}a_n$ сходится, а ряд $\sum\limits_{n=1}^{\infty}b_n$ расходится, то ряд $\sum\limits_{n=1}^{\infty}(a_n+b_n)$ расходится.
- igsim Если ряд $\sum\limits_{n=1}^{\infty}a_n$ сходится, то $\lim\limits_{n o\infty}a_n=0.$
- igsquare Если $\lim_{n o\infty}a_n=0$, то ряд $\sum_{n=1}^\infty a_n$ сходится.
- igsim Если $0\leqslant a_n\leqslant b_n$ при всех n и ряд $\sum\limits_{n=1}^\infty a_n$ расходится, то ряд $\sum\limits_{n=1}^\infty b_n$ также расходится.
- Если последовательность ограничена, то она имеет предел.
- Если последовательность не имеет предела, то она неограничена.
- oxed Если последовательность $\{|a_n|\}$ имеет предел, то последовательность $\{a_n\}$ также имеет предел.
- igsim Если предел $\lim_{n o\infty}(x_n+y_n)$ существует и конечен, то $\lim_{n o\infty}(x_n+y_n)=\lim_{n o\infty}x_n+\lim_{n o\infty}y_n$.
- Из любой последовательности можно выбрать подпоследовательность, имеющую предел.
- \square Если ряды $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ расходятся, то ряд $\sum\limits_{n=1}^{\infty}(a_n+b_n)$ также расходится.
- igsquare Если $\lim_{n o\infty}a_n=0$, то ряд $\sum_{n=1}^\infty a_n$ сходится.
- \square Если $a_n\leqslant b_n$ при всех n и ряд $\sum\limits_{n=1}^\infty b_n$ сходится, то ряд $\sum\limits_{n=1}^\infty a_n$ также сходится.

Если предел $\lim_{n o \infty} (x_n + y_n)$ существует и конечен, то $\lim_{n o \infty} (x_n + y_n) = \lim_{n o \infty} x_n + \lim_{n o \infty} y_n$.

Если ряды $\sum\limits_{n=1}^{\infty}a_n$ и $\sum\limits_{n=1}^{\infty}b_n$ расходятся, то ряд $\sum\limits_{n=1}^{\infty}(a_n+b_n)$ также расходится.

 \square Если $a_n\leqslant b_n$ при всех n и ряд $\sum\limits_{n=1}^\infty b_n$ сходится, то ряд $\sum\limits_{n=1}^\infty a_n$ также сходится.

extstyle ex

*

2 Функции и непрерывность

2.1 Предел функции

2.1.1 Предельные точки множества

 \prod Если $\displaystyle \lim_{n o\infty} a_n = 0$, то ряд $\displaystyle \sum_{n=1}^\infty a_n$ сходится.

Опр-е. 2.1. Окрестность точки U_a – любой интервал вида $(a-\varepsilon,a+\varepsilon)$ при $\varepsilon>0$

Опр-е. 2.2. Проколотая окрестность $\mathring{U}_a = U_a \setminus \{a\}$

Опр-е. 2.3. Окрестность $+\infty$ – любой луч $(E, +\infty)$

Опр-е. 2.4. Окрестность $-\infty$ – любой луч $(-\infty, E)$

Опр-е. 2.5. a – предельная точка множества $E\subset \mathbb{R},$ если $\mathring{U}_a\cap E\neq\varnothing$ для любой \mathring{U}_a

Примеры:

- 1. [a,b] множество предельных точек (a,b)
- 2. $\{a\}$ предельная точка ряда $\{a_n\} \xrightarrow[n \to \infty]{} a$
- 3. \varnothing нет предельных точек у одиночной точки $\{a\} \in \mathbb{R}$

Лемма 2.1 (Утверждение.). Следующие условия равносильны:

- 1. a предельная точка множества E
- 2. В \forall окрестности точки a найдётся бесконечно много точек из E
- 3. \exists такая последовательность точек $x_n \in E \ (x_n \neq a),$ что $\lim_{n \to \infty} x_n = a$

2.1.2 Предел функции

Опр-е. 2.6. Пусть дана функция $f \colon E \to \mathbb{R}$, заданная на множестве $E \subset \mathbb{R}$. Пусть a — предельная точка множества E. Тогда $\lim_{x\to a} f(x) = A$ (или $f(x) \xrightarrow[x\to a]{} A$), если выполнено любое из равносильных условий:

- 1. Для \forall окрестности U_A \exists такая окрестность \mathring{U}_a , что $f(\mathring{U}_a \cap E) \subset U_A$
- 2. $\forall \varepsilon > 0 \;\; \exists \delta > 0 \;\; \forall x \in E$, т.ч. $x \neq a \implies |f(x) A| < \varepsilon$ (определение по Коши)
- 3. Для \forall последовательности $\{x_n\}$ точек из E $(x_n \neq a)$, т.ч. $\lim_{n \to \infty} x_n = a \implies \lim_{n \to \infty} f(x_n) = A$ (определение по Гейне)

Замечания к определению предела функции:

- 1. Предел локальное свойство
- 2. Значение f в точке a не участвует в определении
- 3. Если в определении по Гейне \forall последовательность $f(x_n)$ имеет предел, то все эти пределы равны

Свойства пределов:

- 1. Предел единственный.
- 2. Локальная ограниченность: если $f: E \to \mathbb{R}, a$ предельная точка $E, \lim_{x \to a} f(x) = A$ и $A \in \mathbb{R}$, то \exists такая окрестность U_a , что f(x) ограничена на $U_a \cap E$.
- 3. Стабилизация знака: если $f: E \to \mathbb{R}$, a предельная точка E, $\lim_{x \to a} f(x) = A$ и $A \in \mathbb{R} \setminus \{0\}$, то \exists такая окрестность U_a , что знаки f(x) при $x \in \mathring{U}_a \cap E$ и A совпадают.

2.1.3 Арифметические действия с пределами

Пределы двух функций в точке можно складывать, вычитать, перемножать и делить (если предел нижней функции не равен 0).

Теор. 2.1 (Предельный переход в неравенстве). Если

- 1. $f,g:E\to\mathbb{R},\ a$ предельная точка E
- 2. $f(x) \leq g(x)$ при всех $x \in E \setminus \{a\}$
- 3. $\lim_{x \to a} f(x) = A$, $\lim_{x \to a} g(x) = B$

Тогда $A\leqslant B$

Teop. 2.2 (Теорема о сжатой функции (аналог теоремы о двух милиционерах)). Если

- 1. $f,g,h:E \to \mathbb{R}, \ a$ предельная точка E
- 2. $f(x) \leq g(x) \leq h(x)$ при всех $x \in E \setminus \{a\}$
- 3. $\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = A$

Тогда $\lim_{x \to a} g(x) = A$

2.1.4 Односторонние пределы

Опр-е. 2.7 (Монотонная функция). $f: E \to \mathbb{R}$ монотонно возрастает (убывает), если для $\forall x \leqslant y$ выполнено $f(x) \leqslant f(y)$ (или $f(x) \geqslant f(y)$)

Теор. 2.3. Пусть $f: E \to \mathbb{R}, \quad a$ – предельная точка множества $E_1 = E \cap (-\infty, a)$. Тогда:

- Если f возрастает и ограничена сверху, то $\exists \lim_{x \to a_-} f(x)$
- Если f убывает и ограничена снизу, то $\exists \lim_{x \to a_-} f(x)$

2.2 Непрерывность функции

Опр-е. 2.8. $f: E \to \mathbb{R}$ непрерывна в точке $a \in E$, если выполнено любое из равносильных условий:

- 1. Если a предельная точка, то $\lim_{x\to a} f(x) = f(a)$
- 2. $\forall \varepsilon > 0 \ \exists \delta > 0$ т.ч. $|x-a| < \delta \implies |f(x)-f(a)| < \varepsilon$
- 3. Для \forall окрестности $U_{f(a)}$ \exists такая окрестность U_a , что $f(U_a \cap E) \subset U_{f(a)}$
- 4. Для \forall послед. точек $\{x_n\}\subset E$ т.ч. $\lim_{n\to\infty}x_n=a\implies\lim_{n\to\infty}f(x_n)=f(a)$

Непрерываные в точке a функции можно складывать, вычитать, умножать и (если $g(a) \neq 0$) делить.

Следствия:

- 1. Многочлены $p(x) = \sum_{k=0}^{n} a_k x^k$ непрерывны на \mathbb{R} .
- 2. Рациональные функции (отношения многочленов $\frac{p(x)}{q(x)}$) непрерывны во всех точках, в которых знаменатель не обращается в ноль.

Teop. 2.4 (Теорема о стабилизации знака). Если $f: E \to \mathbb{R}$ непрерывна в точке $a \in E$ и $f(a) \neq 0$, то найдётся такая окрестность U_a , что знак f(x) совпадает с f(a).

Teop. 2.5 (Непрерывность композиции). Пусть $f: D \to \mathbb{R}, g: E \to \mathbb{R}$ $f(D) \subset E$ и f непрерывна в точке $a \in D$, а g непрерывна в точке f(a). Тогда $g \circ f$ непрерывна в точке a.

Вспомогательное нер-во: если $0 < x < \frac{\pi}{2}$, то $\sin x < x < \operatorname{tg} x$.

2.3 Теорема Вейерштрасса

Teop. 2.6 (Вейерштрасса). Непрерывная на *отрезке* функция: ① ограничена; ② принимает наибольшее и наименьшее значения

Расширение теоремы: если функция f непрерывна на $[a,+\infty]$, и \exists конечный предел $\lim_{x\to +\infty} f(x)$, то f ограничена на $[a,+\infty]$.

- 2.4 Теорема Больцано-Коши
- 2.5 Замечательные пределы
- 2.6 Эквивалентные функции

- 3 Производные
- 3.1 Дифференцируемость и производная
- 3.2 Теоремы о среднем « \mathcal{TODO} »...

- 3.3 Производная и монотонность
- 3.4 Правило Лопиталя
- 3.5 Формула Тейлора
- 3.6 Экстремумы функций

4 Интегралы

- 4.1 Первообразная и неопределённый интеграл «*TODO*»...
- 4.2 Действия с неопределёнными интегралами
- 4.3 Площади и определённый интеграл
- 4.4 Теорема Барроу и формула Ньютона-Лейбница
- 4.5 Интегральные суммы
- 4.6 Связь между суммами и интегралами

