Quelques compléments d'algèbre matricielle

Exercice 1 Matrices triangulaires élémentaires

Soit $n \in \mathbb{N}$ et on définit les matrices suivantes dans $\mathbb{R}^{n \times n}$:

- E_{ij} matrice avec un 1 dans la position (i, j) et 0 partout ailleurs;
- $-V_{ij}(\lambda) = I + \lambda E_{ij}$, $\lambda \in \mathbb{R}, i > j$;
- $-L(l_i) = I + l_i e_i^T$, $l_i \in \mathbb{R}^n$ tel que ses premières *i* composantes sont nulles.
 - 1. Quels sont les résultats des opérations suivantes sur la matrice A :

$$B = V_{ii}(\lambda)A, C = AV_{ii}(\lambda)?$$

2. Quelle est la forme de la matrice

$$V_{ij}(\lambda)V_{kj}(\lambda'), k > i$$
?

- 3. Représenter $L(l_i)$ et montrer que $L(l_i)^{-1} = L(-l_i)$.
- 4. Décomposer $L(l_i)$ comme produit de matrices de la forme $V_{km}(\lambda)$.
- 5. Calculer $L = \prod_{i=1}^{n-1} L(l_i)$ et son inverse L^{-1}
- 6. On suppose les l_i stockés dans un tableau bidimensionnel Z et $b \in \mathbb{R}^n$ stocké dans un tableau unidimensionnel B. Donner un algorithme permettant de calculer dans B la solution de Lx = b:
 - (a) en utilisant l'expression de L^{-1} ;
 - (b) en résolvant le système triangulaire.

Quelle est la conclusion?

Correction ▼ [002210]

Exercice 2 Quelques identités pour le calcul d'inverses

Démontrer l'identité

$$(A + UBV)^{-1} = A^{-1} - A^{-1}U(I + BVA^{-1}U)^{-1}BVA^{-1}$$

en précisant :

- son domaine de validité;
- les types des matrices A, U, B, V.

Quelques cas particuliers:

- 1. Supposons $B = \beta$ scalaire, $U = u \in \mathbb{R}^n$, $V = v^T \in \mathbb{R}^n$. Retrouver la formule de Shermann-Morrison qui permet le calcul de l'inverse d'une matrice qui apparait comme perturbation de rang 1 d'une matrice dont on connait l'inverse.
- 2. Soient $A \in \mathbb{R}^{n \times n}$ régulière et $u, v \in \mathbb{R}^n$ tels que $1 + v^T A^{-1} u = 0$. Montrer que

$$B = \begin{pmatrix} A + uv^T & u \\ v^T & 0 \end{pmatrix}$$
 est régulière.

Calculer B^{-1} en remarquant que

$$B = \left[\begin{array}{cc} A & 0 \\ 0 & -1 \end{array} \right] + \left[\begin{array}{c} u \\ 1 \end{array} \right] \left[\begin{array}{cc} v^T & 1 \end{array} \right]$$

3. Soit

$$D = \left[\begin{array}{cc} P & Q \\ R & S \end{array} \right] \text{ matrice inversible avec } P \in \mathbb{R}^{p \times p}, Q \in \mathbb{R}^{p \times q}, S \in \mathbb{R}^{q \times q}$$

Calculer D^{-1} en remarquant que

$$D = \left[\begin{array}{cc} P & 0 \\ R & I \end{array} \right] + \left[\begin{array}{c} Q \\ S - I \end{array} \right] \left[\begin{array}{cc} 0 & I \end{array} \right]$$

4. Calcul récursif de l'inverse : on pose

$$A_n = \begin{bmatrix} A_{n-1} & v \\ u^T & s \end{bmatrix} \text{ avec } A_{n-1} \in \mathbb{R}^{(n-1)\times(n-1)} u, v \in \mathbb{R}^{n-1}, s \in \mathbb{R}$$

Utiliser la formule précédente pour calculer A_n^{-1} en fonction de A_{n-1}^{-1} . En déduire un algorithme récursif pour le calcul de l'inverse d'une matrice carrée de taille n.

Correction ▼ [002211]

Exercice 3 Quelques propriétés des normes matricielles

- 1. Soit *A* une matrice d'ordre (m,n). Démontrer les inégalités suivantes pour les normes $p, p = 1, 2, \infty$ et la norme de Frobenius :
 - (a) $||A||_2 \le ||A|_F \le \sqrt{n} ||A|_2$
 - (b) $\max |a_{ij}| \le ||A||_2 \le \sqrt{mn} \max |a_{ij}|$
 - (c) $\frac{1}{\sqrt{n}} ||A||_{\infty} \le ||A||_2 \le \sqrt{m} ||A||_{\infty}$
 - (d) $\frac{1}{\sqrt{m}} ||A||_1 \le ||A||_2 \le \sqrt{n} ||A||_1$
- 2. Soit $u \in \mathbb{R}^m$, $v \in \mathbb{R}^n$ et $E = uv^T$. Montrer que

$$||E||_F = ||E||_2 = ||u||_2 ||v||_2$$

 $||E||_{\infty} = ||u||_{\infty} ||v||_1$

Correction ▼ [002212]

Exercice 4

Montrer que si $\rho(A) < 1$ alors

-I-A est régulière ;

$$-(I-A)^{-1} = \lim_{k \to \infty} C_k \text{ avec } C_k = I + A + \dots + A^k.$$

Correction ▼ [002213]

Exercice 5 Estimation de l'erreur dans le calcul de l'inverse

Soit A une matrice carrée d'ordre n inversible et B une approximation de A^{-1} On pose X = I - AB et on suppose que ||X|| < 1. Montrer que

$$||A^{-1} - B|| \le \frac{||BX||}{1 - ||X||}.$$

Correction ▼ [002214]

Exercice 6 Projection orthogonale sur un sous-espace vectoriel de \mathbb{R}^n

Soient

 $-H = \operatorname{span}\{v_1, \dots, v_r\}$ le sous-espace vectoriel de \mathbb{R}^n engendré par les vecteurs $\{v_i\}$ supposés indépendants;

 $-V = [v_1 \quad v_2 \quad \cdots \quad v_r]$ la matrice de type $n \times r$ dont les colonnes sont les composantes des v_i dans la base canonique $\varepsilon = (e_1, \cdots, e_n)$

Pour tout $x \in \mathbb{R}^n$ on désigne par y sa projection orthogonale sur H et par X et Y les matrices colonnnes des composantes de x et y dans la base ε . On pose

$$y = \sum_{i=1}^{r} \alpha_i v_i.$$

- 1. Montrer que la matrice $G = G(v_1, \dots, v_r) = V^T V$ est inversible.
- 2. Montrer que les α_i vérifient le système

$$G\left(\begin{array}{c}\alpha_1\\\vdots\\\alpha_r\end{array}\right) = V^T X$$

- 3. En déduire que $Y = VG^{-1}V^TX = PX$ avec $P = VG^{-1}V^T$ (P est donc la matrice de la projection orthogonale de \mathbb{R}^n sur H
- 4. Application: on considère n = 3, $v_1 = e_1$, $v_2 = e_1 + e_2 + e_3$. Déterminer la projection orthogonale sur $H = \text{span } \{v_1, v_2\}$ de $x = 2e_1 e_2 + e_3$.
- 5. Quelle est la matrice de la projection orthogonale sur $H = \text{span } \{v\}$?
- 6. Montrer que, pour $x \in \mathbb{R}^n$

$$d^{2}(x,H) = \frac{\det G(x,v_{1},\cdots,v_{r})}{\det G(v_{1},\cdots,v_{r})}$$

[002215]

Correction de l'exercice 1 A

- 1. VA remplace la ligne i par sa somme avec la ligne j multipliée par λ . AV remplace la colonne j par sa somme avec la colonne i multipliée par λ .
- 2. $V_{ij}(\lambda)V_{kj} = I + \lambda E_{ij} + \lambda' E_{kj}$
- 3. Il suffit de montrer que $(I + l_i e_i^T)(I l_i e_i^T) = I$.
- 4. $L(l_i) = V_{i+1,i}(l_{i+1,i}) \cdots V_{n,i}(l_{n,i})$
- 5. $L^{-1} = L(-l_{n-1})L(-l_{n-2})\cdots L(-l_1) \neq I l_1e_1^T \cdots l_{n-1}e_{n-1}^T$
- 6. (a) algorithme en utilisant l'expression de L^{-1}

Pour i = 1 à n - 1

calcul de $L(-l_i)b$

Pour
$$j = i + 1$$
 à n

$$b_j \leftarrow b_j - l_{ji}b_i$$

(b) algorithme en résolvant le système triangulaire

 $x_1 = b_1$

Pour i = 2 à n

$$x_i = b_i - \sum_{j=1}^{i-1} l_{ij} x_j$$

conclusion : le nombre de calculs et l'espace mémoire utilisés sont les mêmes.

Correction de l'exercice 2

Pour démontrer l'égalité il suffit de multiplier le membre de droite par 5A + UBV) et montrer que l'on obtient l'identité.

Domaine de validité : $A \in \mathcal{M}_{n \times n}$ inversible, $U \in \mathcal{M}_{n \times p}$, $B \in \mathcal{M}_{p \times q}$, $V \in \mathcal{M}_{q \times n}$, $I + BVA^{-1}U$ inversible.

1. On obtient la formule de Shermann-Morrisson :

$$(A + \beta uv^{T})^{-1} = A^{-1} - \frac{\beta}{1 + \beta v^{T} A^{-1} u} A^{-1} uv^{T} A^{-1}$$

qui permet le calcul de l'inverse d'une matrice qui apparait comme perturbation de rang 1 d'une matrice dont on connait l'inverse.

2.

$$B\begin{pmatrix} X \\ y \end{pmatrix} = 0 \Leftrightarrow \begin{cases} (A + uv^T)x + yu = 0 \\ v^Tx = 0 \end{cases} \Leftrightarrow \begin{cases} x = -yA^{-1}u \\ v^Tx = -yv^TA^{-1}u = 0 \end{cases}$$

ce qui donne x = 0, y = 0 et donc B est inversible.

3. En appliquant la formule générale on obtient

$$B^{-1} = \begin{pmatrix} A^{-1} - A^{-1}uv^{T}A^{-1} & A^{-1}u \\ v^{T}A^{-1} & 0 \end{pmatrix}$$

4. En appliquant la même formule on obtient

$$D^{-1} = \begin{pmatrix} P^{-1} + P^{-1}Q\Delta^{-1}RP^{-1} & -P^{-1}Q\Delta^{-1} \\ -\Delta^{-1}RP^{-1} & \Delta^{-1} \end{pmatrix}$$

avec $\Delta = S - RP^{-1}Q$.

5. Calcul récursif de l'inverse : on dispose de A_{n-1}^{-1} de taille $(n-1) \times (n-1)$ et on veut calculer l'inverse de

$$A_n = \begin{pmatrix} A_{n-1} & v \\ u^T & s \end{pmatrix}$$
 avec $u, v \in \mathbb{R}^{n-1}, s \in \mathbb{R}$

en utilisant la formule précédente on obtient

$$A_n^{-1} = \begin{pmatrix} A_{n-1}^{-1} + \frac{1}{\delta} A_{n-1}^{-1} v u^T A_{n-1}^{-1} & -A_{n-1}^{-1} \frac{v}{\delta} \\ -u^T A_{n-1}^{-1} / \delta & \frac{1}{\delta} \end{pmatrix}$$

avec $\delta = s - u^T A_{n-1}^{-1} v$.

et on en déduit facilement l'algorithme.

Correction de l'exercice 3

1. $||A||_2^2 = \rho(A^*A)$ rayon spectral de la matrice A^*A . D'un autre cotê on a :

$$||A||_F^2 = \operatorname{tr}(A^*A) = \sum_{i=1}^n \lambda_i(A^*A) \left\{ \begin{array}{l} \geq \rho(A^*A) \\ \leq n\rho(A^*A) \end{array} \right.$$

où tr est la trace de la matrice et λ_i ses valeurs propres.

2.

$$||A||_2 \le ||A||_F = \left(\sum_{i,j} |a_{ij}|^2\right)^{1/2} \le (mn \max_{i,j} |a_{ij}|^2)^{1/2} = \sqrt{mn} \max_{i,j} |a_{ij}|$$

Soit x tel que : si max $|a_{ij}| = |a_{i_0j_0}|$ alors on pose $x = e_{j_0}, ||x||_2 = 1$. Alors $||Ax||_2^2 = \sum_{i=1}^n |a_{i,j_0}|^2 \ge \max |a_{ij}|^2 \Longrightarrow \sup ||Ax||_2^2 \ge \max |a_{ij}|^2$

3. On rappelle que $||A||_{\infty} = \sum_{j=1}^{n} |a_{i_0j}|$ pour un certain i_0 . Alors $||A||_2^2 \le ||A||_F^2 = \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2 \le m \times \max_i \sum_{j=1}^{n} |a_{ij}|^2 \le m \max \left(\sum_{j=1}^{n} |a_{ij}|\right)^2 = m||A||_{\infty}$ Choisissons maintenant $x = (x_i)$ avec $x_i = \text{signe}(a_{i_0i})$. Alors

$$\sum_{j=1}^{n} a_{i_0 j} x_j = \sum_{j=1}^{n} |a_{i_0 j}| = ||A||_{\infty}$$

$$||x||_2 = \sqrt{n} \Rightarrow ||Ax||_2^2 = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}x_j\right)^2 \ge ||A||_{\infty}^2 \Rightarrow \frac{||Ax||_2}{||x||_2} \ge \frac{||A||_{\infty}}{\sqrt{n}}$$

ce qui implique $||A||_2 \ge ||A||_{\infty}/\sqrt{n}$

- 4. Même démonstration que précédemment ou alors constater que $||A||_1 = ||A^T||_{\infty}$.
- 5. $||E||_F^2 = \sum_{i,j} u_i^2 v_j^2 \sum_{i=1}^m \sum_{j=1}^n u_i^2 v_j^2 = ||u||_2^2 ||v||_2^2$

$$||E||_{\infty} = \max_{i} \left(\sum_{j=1}^{n} |u_{i}v_{j}| \right) = \max_{i} \left(|u_{i}| \sum_{j=1}^{n} |v_{j}| \right) = ||v||_{1} ||u||_{\infty}$$

$$||Ex||_{2}^{2} = \sum_{i=1}^{m} \left(u_{i} \sum_{j=1}^{n} v_{j}x_{j} \right)^{2} = \sum_{i=1}^{m} u_{i}^{2} \times (x, x)^{2} = ||u||_{2}^{2} (x, v)^{2}$$

$$\frac{||Ex||_{2}}{||x||_{2}} = \frac{(x, v)}{||x||_{2}} ||u||_{2} \Rightarrow \sup_{x} \frac{||Ex||_{2}}{||x||_{2}} = ||v||_{2} ||u||_{2}$$

Correction de l'exercice 4 A

 $\rho(A) < 1 \Rightarrow 1$ n'est pas valeur propre de $A \Rightarrow 0$ n'est pas valeur propre de $I - A \Rightarrow I - A$ inversible

$$(I-A)C_k = (I-A)(I+A+\cdots+A^k) = I-A^{k+1}$$

$$C_k = (I - A)^{-1}(I - A^{k+1}) \Rightarrow (I - A)^{-1} - C_k = (I - A)^{-1}A^{k+1}$$
 et conc

$$||(I-A)^{-1}-C_k|| \le ||(I-A)^{-1}|||A^{k+1}|| \le ||(I-A)^{-1}|||A||^{k+1}$$

Comme ||A|| < 1 pour au moins une norme subordonnée on obtient finalement

$$\lim_{k \to \infty} \| (I - A)^{-1} - C_k \| = 0$$

Correction de l'exercice 5
$$\triangle$$
 $AB = I - X \Rightarrow B^{-1}A^{-1} = (I - X)^{-1} \Rightarrow A^{-1} = B(I - X)^{-1} = B(I + X + X^2 + \cdots)$

$$||A^{-1} - B|| \le ||BX|| ||I + X + \dots|| \le ||BX|| (1 + ||X|| + ||X||^2 + \dots) \le \frac{||BX||}{1 - ||X||}.$$

pour ||X|| < 1