La cellule est composée de :

Noyau Cytosol Membrane plasmique

Organites compartiments isolés dans le cytosol.

Le cytosol contient :

Organites à membrane (5)	Inclusions (10)
Mitochondries	Gouttelettes lipides
Réticulum endoplasmique	Granules de glycogène
Appareil de Golgi	Ribosomes
Lysosomes	Particules de Vault
Peroxysomes	Protéasomes
	Cytosquelettes
	Centrioles
	Centrosome
	Cils
	Flagelles

La composition du cytosol

Le milieu intra et extra cellulaire n'ont pas la même composition. La concentration est plus élevée dans le milieu :

Extracellulaire en Na ⁺ , Ca ₂ ⁺ , Mg ₂ ⁺ ,	Intracellulaire en K ⁺ , HPO ₄ ²⁻ ,
Cl ⁻ , HCO ₃ ⁻	protéines

La membrane plasmique et les systèmes membranaires intercellulaires

La membrane plasmique

La membrane plasmique est soutenue par le cytosquelette. Elle permet notamment :

- D'assurer la communication avec l'environnement.
- De réguler les échanges avec l'extérieur.
- D'assurer la jonction avec les autres cellules.

Les échanges

La cellule échange avec son environnement des :

lons	Eau	Déchets métaboliques	Produits de	Nutriments
			synthèse	

La communication

Récepteurs de messagers chimiques (hormones, neurotransmetteurs) Récepteurs à l'environnement (pH, MEC (matrice extracellulaire), pression, lumière, champs électriques...

Jonction cellulaire

Trois types de jonctions

Serré Trou	Adhésion
------------	----------

Composition et structure de la membrane plasmique

En moyenne, la membrane plasmique des cellules est composée de

Lipides (49%)	Protéines (43%)	Glucides (8%)
---------------	-----------------	---------------

Rmq: La composition varie en fonction du type cellulaire.

Les radeaux

La membrane est un système complexe et dynamique radeaux lipides. Régionalisation fonctionnelle de la membrane plasmique

Riches en sphingolipide et cholestérol

Les glucides

Les glucides sont soit attaché à une

Protéine (glycoprotéines)	Lipide (glycolipides)
1	

La membrane plasmique est associée au cytosquelette par des protéines membranaires.

Ils servent principalement:

• À stabiliser les structures.

- Dans les mécanismes de reconnaissance cellulaire.
- Dans la réponse immunitaire.

Les lipides

Les lipides sont de types :

Phospholipides	50-60%	Tête polaire (glycérol ou sphingosine)
		Queue apolaire
		Exemples : les glycérophospholipides,
		sphingolipides
Cholestérol	17-23%	Favorise l'imperméabilité et rigidification
Glycolipides	7%	

Les protéines membranaires

Il y a deux types de protéines membranaires :

Transmembranaires	Périphériques
Récepteur	Enzyme
Protéine de transport	Protéine de structure

Le transport membranaire

Les types de transports de la cellule :

Diffusion simple	Diffusion facilitée	Transport actif
Rmq : Ce sont des protéi	nes membranaires qui as	ssurent la diffusion
facilitée et le transport ac	tif.	

La n

La diffusion facilitée répond à des problèmes de vitesse.

Diffusion simple

La diffusion : une molécule se déplacera aléatoirement. Ce sont les rencontres et chocs avec les autres molécules qui détermineront sa trajectoire.

Une population de molécules aura une direction.

Elle se dissiper son gradient de concentration indépendamment des autres composés présents Éparpillement.

En fonction du type de molécule, la membrane plasmique constitue un obstacle

- Infranchissable
- Suffisamment important pour ne pas permettre aux composés chimiques dont a besoin la cellule de gagné de rentrer ou de sortir suffisamment rapidement.

Une substance se diffuse indépendamment des autres composés présents de sorte à

La diffusion est spontanée

Diffusion facilitée

Vitesse de diffusion

Trop volumineuse la

Perméabilité de la membrane influence sur la

La diffusion d'un soluté est lié au mouvement

Évolution du système vers un état d'équilibre tel que :

- ·C1 = C2 (à l'équilibre)
- ·Dissipation du gradient chimique

Gradient chimique

Osmose

La diffusion simple de la bicouche lipidique est permise à certaines molécules

Hydrophobicité Taille Charge Différence de concentration

Flux selon la 1 ère loi de Fick

Gaz CO₂, N₂, O₂ petites molécules (éthanol, urea)

Loi de Fick :

Osmose

Diffusion facilitée

Gradient chimique : protéines porteuses ne forme jamais de canal ouvert. La liaison au substrat provoque un changement de conformation. Le mouvement se fait du milieu vers celui avec un gradient plus...

Exemple pour le glucose

Gradient électrochimique : canaux ioniques

Osmose de l'eau : aquaporines Osmose Aquaporine canaux ouverts

Transporteurs (Glut) Canaux ioniques Aquaporines

Phénomènes passifs

Gradient chimique (ΔC): solutés neutres

Gradient électrochimique : ions

Transport actif

La principale lutte contre le gradient nécessite l'utilisation d'énergie.

Symport uniport et antiport

Transport actif I (énergie)

Transport actif II (énergie)

Pompe Na⁺/K⁺ ATPase Pompe à protons Pompe SERCA (calcium)

3 Na+ sortants 2 K+ entrants Conso d'ATP (40% du métabolisme

Le gradient chimique

Le gradient chimique est la différence du potentiel électrochimique entre le milieu intérieur et extérieur

Potentiel électrochimique : $\mu_i = \mu_0 + R.T.\ln[S] + z.F.E$

 μ J.mol⁻¹

z = 0 pour un soluté non chargé

Loi de Fick

Physiologie neuromusculaire

Se le propage le long du neurone des dendrites vers l'axone. La dendrite est recouverte à sa surface de petits récepteurs.

Le passage du potentiel d'un neurone à un autre se faire par l'utilisation d'agents chimiques, les neuromédiateurs (ou neurotransmetteur).

Inversion du potentiel électrique de la membrane

Jusqu'à l'extrémité de l'axone où se trouve des vésicules de sécrétions contenant des neuromédiateurs. Ces dernières sont libérées dans l'espace et activent des neurorécepteurs du neurone voisin.

Le muscle peut se décomposer en fascicules, fibres musculaires, myofibrilles, myofilaments.

Jonction neuro-musculaire moteur

L'axone est rattaché à plusieurs cellules musculaires.

Les mitochondries sont présentes dans tout le cytosol des neurones de dendrites à l'axone.

Le développement du neurone. La cellule va se déplacer en étirant l'axone. Leur longueur varie de quelques mm à 1m.

L'axone est recouvert par une gaine de myéline qui est une succession de cellules mesurant 1 à 2mm enroulé autour de l'axone. La gaine de myéline protège et accélère la propagation du signal électrique.

La structure du neurone

L'axone est maintenu par une structure filamenteuse constituée de microfilaments et de microtubules. Elle permet à l'axone de se déployer dans l'espace et des intervenant dans le transport.

Soma (péricaryon ou corps cellulaire) partie centrale d'un neurone.

Il y a 2 types de transports :

Antérogrades : Soma vers les	Rétrograde : des terminaisons vers
terminaisons	le soma

Potentielle membranaire

Actif passif

Le fonctionnement d'un neurone

Neurogenèse apparition et développement du système nerveux

Les dendrites

La communication des

Alternance de signaux électriques sur de longue distance et de chimie électrique entre les neurones.

L'information est traitée par des réseaux de neurones plus complexes souvent regroupés dans structures particulières

Ganglion et encéphale

Le message nerveux arrive par les dendrites et

Un neurone possède un seul axone avec une extrémité ramifiée on trouve à

L'extrémité est jointes à d'autre cellules par synapse. Le passage de message nerveux se fait au moyen de neurotransmetteur récepteur sur l'extrémité des dendrites.

chaque dendrite ramifications 100 000

le potentiel de la membrane -70mV potentiel de repos.

Pompe a sodium et potassium 3 Na⁺ et 2K⁺ gradient de concentration

K⁺ cirucle facilement

Na⁺ pore fermé

Cl⁻ pas de diffusion simple

Équation entre les gradients électrique et gradient de concentration

E_{ion} équilibre lorsque la charge à l'intérieur dépasse de 90 mV celle de l'extérieur Pas d'équilibre dans le neurone.

$$E_{ion} = 62 \times log \frac{[ion]_{ext}}{[ion]_{int}}$$