NASA TECHNICAL NOTE

NASA TN D-5644

LOAN COPY: RETURN TO AFWL (WLOL) KIRTLAND AFB, N MEX

TESTS OF A SINGLE-TUBE-IN-SHELL WATER BOILER WITH HELICAL-WIRE INSERT, INLET NOZZLE, AND TWO DIFFERENT INLET-REGION PLUGS

by James R. Stone and Nick J. Sekas Lewis Research Center Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • FEBRUARY 1970

1.	Report No. NASA TN D-5644	2. Government Accession	on No. 3	. Recipient's Catalo	g No.
4.	Title and Subtitle	E DI CHIELL WAS		Report Date February 1970	
	TESTS OF A SINGLE-TUB WITH HELICAL-WIRE INS TWO DIFFERENT INLET-	ERT, INLET NOZZ		Performing Organiz	
7.	Author(s) James R. Stone and Nick J	. Sekas	8	Performing Organia	cation Report No.
9.	Performing Organization Name and A Lewis Research Center	Address	10	. Work Unit No. 120-27	
	National Aeronautics and S	pace Administratio	n 11	. Contract or Grant I	No.
_	Cleveland, Ohio 44135		13	. Type of Report and	d Period Covered
12.	Sponsoring Agency Name and Address National Aeronautics and S		n	Technical Note	e
	Washington, D. C. 20546	pace Administratio			. C. J.
				. Sponsoring Agency	Code
15.	Supplementary Notes				
ļ 1					
16.	Abstract	1-1 1 12 6.			
	Experimental data were ob				
	shell water boiler with full	-	•		
i	ameter, 1.90), 0.0285-in.				
	inlet-region plugs of length				
	inner diameter of 0.436 in.	. (1.11 cm) and an	effective heat	ed length of 60.	5 in. (1.54 m).
	Steady-state pressure-drop	p and heat-transfer	data were obt	ained over a ra	nge of boiling-
	fluid flow rates and pressu	res, both with and	without vapor	zation in the no	zzle. Boiler
	feed conditions ranged from	•			
	of 0.04 vapor quality. The				
	sured vapor superheat as g	_		•	j
	pressure-drop data were c	•			
	significant differences in b	_	=		
	different plug lengths.	oner pressure are	p or near trai	ibici periorman	de for the two
İ	unicione plug longuis.				
		1			
17.	Key Words (Suggested by Autho	1.00	Distribution State		
	Boiler Pressure	drop	Unclassified	- unlimited	
	Heat transfer Tube inse	rts			
	Inlet Nozzle				
19.	Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price *
	Unclassified	Unclassi	fied	47	\$3.00
1		I			l .

^{*}For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151

TESTS OF A SINGLE-TUBE-IN-SHELL WATER BOILER WITH HELICAL-WIRE INSERT, INLET NOZZLE, AND TWO DIFFERENT INLET-REGION PLUGS by James R. Stone and Nick J. Sekas Lewis Research Center

SUMMARY

Experimental data were obtained on the performance of a vertical-upflow, single-tube-in-shell water boiler with a full-length helical-wire insert, an inlet nozzle, and two different inlet-region center plugs. One plug was 1.78 inches (4.52 cm) long and the other 10 inches (25.4 cm). The boiler tube had an inner diameter of 0.436 inch (1.11 cm) and an effective heated length of 60.5 inches (1.54 m). The ratio of helical-wire pitch to tube inner diameter was 1.90. The inlet nozzle had a throat diameter of 0.0285 inch (0.72 mm).

Steady-state pressure-drop and heat-transfer data were obtained over a range of boiling-fluid flow rate from 44 to 123 pounds mass per hour (0.0055 to 0.0155 kg/sec), and from 3 to 83 psia (~20 to 570 kN/m²) boiler exit pressure, both with and without vaporization occurring in the nozzle. Boiler feed conditions ranged from a liquid subcooling of 180° F (100 K) to a flashing condition of 0.04 vapor quality. These heat-transfer and pressure-drop data were compared with correlations based on data for a boiler of the same dimensions, but with no inserts. Mean boiling-side heat-transfer coefficients agreed with the plain-tube correlation for inlet subcoolings of 47° F (26 K) or greater; coefficients were higher than plain-tube values by as much as a factor of 3 for for lower inlet subcoolings and for flashing at the inlet nozzle. The pressure-drop data agreed with the plain-tube model, but with the frictional pressure drop multiplied by 5.8 to account for the helical-wire insert. There were no significant differences in boiler heat transfer or pressure drop for the two different plug lengths.

The highest exit quality obtained was 0.98, although the measured vapor superheat was as great as 105° F (~ 58 K) in some cases. No regions of negative slope, or increasing boiler pressure drop with decreasing boiling-fluid flow rate, often associated with flow excursion instabilities, were observed. However, under some conditions flow oscillations did occur. The inlet nozzle pressure drop with vaporization occurring agreed sufficiently for design purposes with an existing correlation.

INTRODUCTION

Once-through, forced-convection boilers are more compact and lightweight than conventional natural-circulation boilers. If the boiler is properly designed, the working-fluid loop is simplified since no separator system is needed. For these reasons, once-through, forced-convection boilers are attractive for mercury and alkali-metal Rankine-cycle space power systems. In studies related to the development of boilers for mercury (refs. 1 to 4) and potassium (refs. 5 to 7), it has generally been found necessary to use inserts within the boiler tube, such as swirlers and flow-area-reducing inlet-region plugs, in order to get high exit vapor quality with steady flow; inlet pressure-drop devices have often been needed. In some cases, however, high exit quality with steady flow has been reported for sodium boiling in a tube with no inserts (ref. 8), indicating that in some cases inserts may be unnecessary.

A series of water boiling studies has been conducted at Lewis, since experiments on the boiling of alkali metals are difficult and expensive to perform. With the exception of liquid thermal conductivity, water has physical properties similar to the alkali metals. Reference 9 presents results of experiments on two boilers with no inserts and with inlet pressure drop from only an upstream throttle valve. One boiler was of the same dimensions as the boiler of reference 10 and of the present report; hence, the results of reference 9 were used as a basis for determining the effect of inserts. Reference 10 reports tests of a boiler with a full-length helical-wire insert and with inlet-region plugs, inlet orifices, and a converging-diverging inlet nozzle. The type of inlet restriction, as well as the magnitude of the pressure drop, had an effect on boiler performance. The boiler operated more stably when entrance-region plugs were used. Orifices generally minimized instabilities; however, the boiling-fluid exit temperature rose well above saturation temperature, while the exit quality was considerably less than with the other inlet devices tested. A converging-diverging nozzle inlet with an inlet-region plug performed well over a limited flow range; but the inlet nozzle was not properly sized for the lower portion of the flow range of interest. Although the role of the inlet in stabilizing the system was not fully understood, it appeared that vapor formation (cavitation) was involved; the boiler operated more stably when the inlet nozzle was cavitating. Further information on vapor formation phenomena in small nozzles was obtained on an adiabatic, transparent, converging-diverging nozzle (ref. 11); with cavitation in the nozzle, the boiler was essentially isolated from the feedline.

The purpose of the present study was to continue the work started in reference 10 on the performance of a single-tube-in-shell water-boiling heat exchanger with a converging-diverging nozzle inlet and inserts. In order to achieve stable operation at lower flow rates than in reference 10, an inlet nozzle with a 0.0285-inch (0.72-mm) throat diameter

was used instead of the 0.0305-inch (0.78-mm) throat diameter used therein. The inserts consisted of the same full-length wire helix as used in reference 10 and two different length inlet-region plugs; one plug was 10 inches (25.4 cm) long, as in reference 10, and the second was 1.78 inches (4.52 cm) long, ending at approximately the start of the heated zone, which is considered the minimum length. Boiling pressure-drop and heat-transfer data were obtained. More refined comparisons were made with data on a boiler of the same dimensions, but without inserts (ref. 9), than were attempted in reference 10. The pressure-drop characteristics of the inlet nozzle, with and without vaporization occurring, were observed and correlated.

APPARATUS

A schematic diagram of the test apparatus is shown in figure 1. With the exception of the boiler inlet modifications, this test apparatus is identical to that of reference 10. The various parts of the rig are described in the following sections.

Heat Supply Loop

The heat supply loop was designed for operation at temperatures to $350^{\rm O}$ F (450 K) and pressures to 200 psia (1.38×10⁶ N/m² abs). A centrifugal pump circulated the heating water in the closed loop. The heating fluid was heated in a tank by immersion heaters.

Test Fluid Loop

A gear pump circulated the test fluid. The flow passed through a coiled stainless-steel preheater and throttle valve into the test section inlet plenum. From the exit plenum, the flow passed through a pipe to a multiple-tube heat-exchanger condenser, which was cooled by an external cooling water system.

Test Section

Figure 2 shows a schematic diagram of the test section and plenum chambers with instrumentation. The boiling-fluid flow was vertically upward and the heating-fluid flow downward. The shell, or outer jacket, of the test section and the boiler tube were stainless steel. The helical copper wire, 1/16 inch (1.6 mm) in diameter, was brazed to

the inner surface of the tube. Heat transfer in the end sections was reduced by insulating the ends of the center tube as shown in figure 2. The effective length of the boiler was assumed to be limited to the 60.5-inch (1.54-m) uninsulated length. The outer shell of the test section was wrapped with a fiber glass insulating material.

Inlet Nozzle and Plugs

The inlet nozzle used with both configurations tested is shown in figure 3. Figure 3(a) is a diagram of the nozzle, giving important dimensions. The tapered section of the plug was considered to be part of the inlet nozzle; its presence decreased the effective diffuser angle. The extension of the diffuser and both inlet-region plugs were made of brass. A 1/16-inch- (1.6-mm-) diameter copper wire with the same pitch (0.83 in. or 2.1 cm) as in the boiler tube was bonded to the tapered section of the plug within the diffuser. The upstream end of the wire was tapered down to minimize leading-edge bluntness. A short length of stainless-steel tubing was rolled down to form the 0.0285-inch- (0.72-mm-) diameter throat section; figure 3(b) shows a nearly identical throat section cut in half. The rolling process left a small peripheral groove in the diffuser, as can be seen in figure 3(b).

The inlet region of the test section, with each of the two plugs, is shown in figure 4. The 10-inch (25.4-cm) plug is shown in figure 4(a) and the 1.78-inch (4.52-cm) plug in figure 4(b). The length is taken from the start of the constant-diameter section, since the tapered section is considered to be part of the inlet nozzle.

Instrumentation

The flow rates for both loops were measured by turbine-type flowmeters.

The pressures indicated in figure 2, as well as the throttle valve inlet pressure, were measured with Bourdon-type gages. These gages had scales from 0 to 150 psia $(0 \text{ to } 1.03\times10^6 \text{ N/m}^2 \text{ abs})$, and errors less than 1/4 percent of full scale. The smallest division was 1/2 psi $(3.45\times10^3 \text{ N/m}^2)$, and the gage faces were 8 inches (0.203 m) in diameter. The boiler-inlet and exit pressure taps were drilled through the test section end plates and boiler tube wall. The pressure gages were sufficiently damped to eliminate most high-frequency oscillations.

Copper-constantan thermocouples were installed in the boiling-fluid inlet and exit plenum chambers and in the heating-fluid inlet and exit lines. These temperatures were read from mutlipoint strip-chart recorders having a range of 0° to 400° F (255.5 to 478 K), 2° F (1.1 K) smallest division and an 11-inch (0.279-m) scale (believed accurate to at least $\pm 0.5^{\circ}$ F (0.3 K)). A Chromel-Alumel thermocouple was installed at the boiling-

fluid exit, upstream of the baffle plates, to measure the temperature as close as possible to the end of the boiler tube. This temperature was continuously recorded on a strip chart having a 6-inch (0.152-m) scale with a 10-millivolt range and 0.1-millivolt smallest division.

Calibration

Before the test data with the short plug were taken, the instrumentation was checked and calibrated. The turbine flowmeters agreed well with their factory calibration. A no-flow pressure check indicated that the gages were consistent with each other, except the boiler-exit and exit-plenum gages indicated some scatter above 50 psia (345 kN/m 2 abs). Since P_{bp} and P_{be} disagree at high pressure and P_{bp} agrees with temperature measurements, as discussed below, P_{be} is not tabulated for values over 50 psia (345 kN/m 2 abs). At this high pressure level, with the low qualities involved, P_{be} should approximately equal P_{bp} . A series of approximately isothermal runs indicated that the temperature measurements were self-consistent. To check the consistency between the temperature and pressure measurements under flowing conditions, a plot of exit-plenum temperature against exit-plenum pressure for equilibrium two-phase conditions was made, as shown in figure 5. The exit-plenum gage was used only with the short-plug data. The data agree well with the saturation temperature against pressure curve from Keenan and Keyes (ref. 12).

PROCEDURE

The long-plug configuration was tested first, and data were obtained to lower boiling-fluid flow rates than in reference 10. However, it was difficult to determine from the data with the long plug under what conditions cavitation occurred in the inlet nozzle. For this reason, the mode of operation was different with the short plug. Note that the inlet nozzle geometry was not affected by the change in plug length.

For both sets of data, with the long plug and the short plug, the conditions for each test run were established by adjusting the power to the main heater and preheater and setting pump speed, throttle valve position, and expansion tank pressures at selected values. When mean inlet and exit temperatures became constant with time, even if in some cases there were slight oscillations, the data for that run were taken. The dissolved-gas content was maintained at or below 4 parts per million by weight, with the exception of one set of runs. (Method of determining gas content is discussed in ref. 13). The operating procedure for each set of runs is described in the following sections.

Long Plug

For each series of runs, the boiling-fluid flow rate was decreased in steps, while holding essentially constant the following:

- (1) Boiling-fluid nozzle-inlet temperature
- (2) Boiling-fluid exit-plenum pressure
- (3) Heating-fluid flow rate
- (4) Heating-fluid inlet temperature

The boiling-fluid flow rate was decreased by reducing the pump speed with the throttle-valve fully opened until fairly large oscillations occurred, at which point the first part of the series was terminated. Next, to get lower boiling-fluid flow rates, the throttle valve was set to a selected position; the decreases in boiling-fluid flow rate were continued until large oscillations occurred, at which point the series was terminated. Three throttle valve positions, including fully opened, were used and were repeated as closely as possible for each series. The degree of restriction can be seen from the data listed in table I; the throttle-valve pressure drop is given by P_{vi} - P_{ni} .

Short Plug

Since it was difficult to determine under what conditions cavitation occurred in the inlet nozzle using the procedure previously described, a different procedure was adopted. For each series, the exit-plenum pressure was decreased in steps, holding essentially constant the following:

- (1) Boiling-fluid flow rate
- (2) Boiling-fluid nozzle-inlet temperature
- (3) Heating-fluid flow rate
- (4) Heating-fluid exit temperature

Thus, an increase in inlet nozzle pressure drop was taken to be an indication of cavitation. For the nonboiling runs, the heating-fluid inlet temperature was low enough that there was essentially no heat transfer in the test section. In one series, the heating-fluid flow rate was varied and the following held essentially constant:

ı

- (1) Boiling-fluid flow rate
- (2) Boiling-fluid nozzle-inlet temperature
- (3) Boiling-fluid exit-plenum pressure
- (4) Heating-fluid inlet temperature

This series was run to extend the range of heat-transfer data.

EXPERIMENTAL DATA

The experimental data for each run are given in tables I to III. The heating rate is calculated from a heat balance (heat losses were found negligible in ref. 10) as follows:

$$Q = W_h c_{Ph} (T_{hi} - T_{he})$$
 (1)

The exit vapor quality is then calculated from equation (2). (Note that $\,Q\,$ and $\,x_{e}^{}\,$ are approximate for small values of $\,T_{hi}^{}$ - $\,T_{he}^{}.\,)$

$$x_{e} = \frac{Q}{W_{b}^{\lambda}} - \frac{c_{P}(T_{be-sat} - T_{hi})}{\lambda}$$
 (2)

The nominal conditions for each series are given in the following tables:

[Boiler-exit pressure, P_{be} , 16.5 psia (114 kN/m² abs.]

Ĩ	-	e .			Lon	g plug					
Series	Part	Runs		Boiling	fluid]	Heating 1	luid ^a		Throttle-
			Flow W		Nozzle tempe:	rature,	Flow W	,	Inl temper T _l	rature,	valve setting
			lbm/hr	g/sec	o _F	К	lbm/hr	kg/sec	^o F	K	
1 2 2 3 3 4 4 5 5 6 6 6 7 7	A B A B A B A B A B A B A B A B A B A B	1 to 11 12 to 18 19 to 23 24 to 29 30 to 35 36 to 39 40 to 41 42 to 45 46 to 50 51 to 53 54 55 to 56 57 to 58 59 60 to 62	70 Varia Varia 75 Varia	8.8 able able 9.5	170 170 232 232 256 256 260 260	300 350 350 384 384 388 398 400 400	10 000	1.26	242 278 314 314 350 242 242 242 314 314 350	390 410 410 430 430 450 390 390 390 430 430 450	Open Open B Open B Open B Open A B Open A Open A
8 9 9	B A B	63 to 64 65 to 68 69 to 70	1		80 80	300 300	4 900 4 900	.62			Open B

^aExit temperature is a dependent variable.

					Sho	ort plu	g						
Series	Runs			Boili	ng fluid				Hea	ting fl	uid		
			rate,		e-inlet		t plenum	Flow	•	T	empe	eratu	re
		w	b		rature, ni		perature, ^P bp	w	h	Inle T _h		E2 T _l	rit, ne
		lbm/hr	kg/sec	o _F	к	psia	kN/m ² abs	lbm/hr	kg/sec	o _F	ĸ	o _F	к
10	71 to 74	65	8.2	66	292	v	ariable	No	significa	int hea	at tra	ansfe	r
11	75 to 79	60	7.5	219	377		1			1			
12	80 to 91	80	10.0	64	291								
13	92 to 98	80	10.0	124	324			1					ŀ
14	99 to 105	80	10.0	230	383								
15	106 to 118	100	12.6	65	292					ľ			ľ
16	119 to 131			128	326			,		-			
17	132 to 140			190	361								İ
18	141 to 147	▼	▼	220	378								l
^a 19	148 to 160	80	10.0	74	296					<u> </u>			
20	161 to 169			230	383			8000	1.0	Varia	able		384
21	170 to 177			230	383					İ		260	400
22	178 to 185			230	383							290	417
23	186 to 194			260	400					1		260	400
24	195 to 205	. ↓	JÌ	260	400		1			1		290	417
25	206 to 219	7	10.7	260	400		7	V	<u> </u>	<u> </u>		320	433
26	220 to 224	85	10.7	265	403	3.2	22	Varia	able	350	450 J	Vari	able

^aGas-saturated water.

RESULTS AND DISCUSSION

Inlet Nozzle Pressure Drop

Several series of runs (series 10 to 19) were made with no significant heat transfer in the test section. These results are presented in table II. With boiling-fluid flow rate and nozzle inlet temperature held constant, the exit-plenum pressure was decreased in steps. An increase in inlet-nozzle pressure drop was taken to indicate cavitation. The exit-plenum pressure was lowered as much as possible, in some cases, into the regime of net vaporization (flashing) in the inlet nozzle. Including the boiling runs (series 20 to 26), boiler-inlet (nozzle-exit) vapor qualities as high as about 0.04 were obtained.

One series of runs (series 19) was made with water saturated with dissolved gas. The only apparent effect was that cavitation occurred at a slightly higher pressure than for a dissolved-gas content of ~4 parts per million (by weight).

It is desirable to normalize the flow-pressure-drop data in terms of flow coefficients, in order to size similar inlet nozzles for different applications. The faired curve for flow coefficients as functions of Reynolds number was based on the short-plug data; then, the data for the long plug, where it was difficult to determine whether or not cavitation occurred, were added to the figures arbitrarily, for completeness. In this manner, all the data taken under steady conditions are compared with the normalizations.

All liquid. - In order to normalize the all-liquid pressure drop of the inlet nozzle as a function of flow rate and temperature, an overall flow coefficient (eq. (3)) is plotted against throat liquid Reynolds number in figure 6(a).

$$C = \frac{W_b}{A_{\min} \sqrt{\frac{2\rho_l g_c(P_{ni} - P_{bi})}{K}}}$$
(3)

The faired curve agrees with the data to within less than ± 10 percent.

Cavitation and flashing. - In order to show the effect of cavitation and flashing on inlet nozzle pressure drop, C values (eq. (3)) for cavitation and flashing tests are plotted against throat liquid Reynolds number in figure 6(b) and compared with the faired curve for all-liquid pressure drop from figure 6(a). It is apparent that additional factors must be considered in order to normalize cavitating and flashing data.

To normalize the performance of the inlet nozzle with two-phase flow occurring, a flow coefficient based on the inlet to throat (minimum) pressure difference (eq. (4)) is used

$$C_{t} = \frac{W_{b}}{A_{\min} \sqrt{\frac{2\rho_{l}g_{c}(P_{ni} - P_{\min})}{K}}}$$
(4)

But since the minimum pressure at the nozzle throat was not measured, it must be estimated. Burnell (ref. 14) suggests the following empirical relation:

$$P_{\min} = \left(1 - 0.264 \frac{\sigma}{\sigma_{\text{ref}}}\right) P_{\text{sat}}$$
 (5)

where σ_{ref} = 0.00288 pound force per foot (0.042 N/m). Using P_{min} from equation (5), C_t is plotted against throat liquid Reynolds number in figure 7. Values of C_t range only from 0.924 to 1.078 with no significant Re effect. Thus, although there are other

valid interpretations of the data, with lower P_{\min} and C_t less than 1.0, it appears that Burnell's correlation (ref. 14) provides an equation adequate for nozzle design.

General Performance - Short Plug

Nearly all of the boiling data for the shorter plug were taken with a boiling-fluid flow rate of approximately 80 pounds per hour (\sim 0.01 kg/sec) and a heating-fluid flow rate of approximately 8000 pounds per hour (\sim 1.0 kg/sec). These data are shown in figures 8 and 9; exit-plenum temperature, nozzle-inlet pressure, boiler-inlet pressure, boiler-exit pressure, and exit vapor quality are plotted against exit-plenum pressure for constant nozzle-inlet and heating-fluid exit temperatures as well as constant flow rates. Figure 8 shows data for a nozzle-inlet temperature of approximately 230° F (\sim 383 K) (series 20 to 22). Figure 9 shows data for a nozzle-inlet temperature of approximately 260° F (\sim 400 K) (series 23 to 25).

The results of series 26, variable heating-fluid flow rate, are shown in figure 10. Exit vapor quality, exit-plenum temperature, and nozzle-inlet, boiler-inlet, boiler exit, and exit-plenum pressures are plotted against heating-fluid flow rate.

Some observations which can be made from figures 8 to 10 are the following:

- (1) The nozzle-inlet pressure P_{ni} decreases linearly, goes through a transition region, and then becomes essentially constant as exit-plenum pressure decreases (figs. 8 and 9, also nonboiling runs of table II). This allowed the simple correlation of cavitating and flashing nozzle performance discussed in the preceding section. This insensitivity of the nozzle inlet to boiler-inlet (nozzle-exit) pressure variations tends to isolate the boiler from the feed system, when cavitating or flashing at the inlet nozzle.
- (2) The boiler-inlet pressure P_{bi} generally decreases with decreasing exit-plenum pressure. But at very low exit pressures, the boiler-inlet pressure becomes essentially constant over a range of exit pressures. This might tend to dynamically isolate the boiler inlet from pressure changes occurring near the exit.
- (3) The boiler-exit pressure P_{be} decreases with decreasing exit-plenum pressure, until the exit-plenum pressure reaches values below approximately 3.5 psia (~24 kN/m² abs). At these low pressures, there is a fairly large pressure drop between the boiler exit and the exit plenum; this effect is most pronounced at high exit qualities (see figs. 8(c), 9(b) and (c), and 10). The differences are too great to be due entirely to instrument error. This pressure drop could well be due to two-phase choking at the tube exit; with no exit vapor superheat, the data are in the range predicted from Fauske's slipequilibrium model for two-phase critical flow (ref. 15).
- (4) Vapor superheat at the exit plenum is observed for exit vapor qualities less than 1.0; this can be seen in figures 9(c) and 10. Figure 10 shows superheat as great as 105° F (~58 K). Similar results have been reported for water (refs. 10 and 16) and mercury (refs. 1 to 4).

General Performance - Long Plug

The experimental data for this configuration are shown in figures 11 to 14. Exit quality, boiler-tube pressure drop, and inlet-nozzle pressure drop are plotted against boiling-fluid flow rate. Figures 11, 12, and 13 show data for nominal nozzle inlet temperatures of 80° F (300 K) (series 1 to 4), 170° F (350 K) (series 5), and 231° to 270° F (384 to 405 K) (series 6 to 8), respectively; the latter set of data (fig. 13) exhibits flashing at the inlet nozzle (i.e., net two-phase flow into the boiler). For figures 11 to 13 the heating-fluid flow rate is approximately 10 000 pounds per hour (\sim 1.26 kg/sec). Figure 14 shows the data for series 9 ($T_{ni} \approx 80^{\circ}$ F (\sim 300 K) and $W_h \approx 4900$ lb/hr (\sim 0.62 kg/sec)).

The following observations can be made from figures 11 to 14:

- (1) Exit quality increases as boiling-fluid flow rate decreases until exit vapor superheat is observed (then decreases in some cases). As with the short plug, vapor superheating occurs at exit qualities less than 1.0. No consistent trends of quality against boiling-fluid flow rate are seen in the superheat region.
- (2) No regions of negative slope, or increasing boiler-tube pressure drop with decreasing boiling-fluid flow rate were observed over the range of this investigation. The existence of such a negative slope region could allow flow excursion instabilities. However some flow oscillations were observed, as discussed in Procedure.

Boiling Pressure Drop

The effect of the wire helix and inlet plugs on boiler-tube pressure drop is examined in this section. The experimental data are compared with a correlation of boiler-tube pressure drop with no inserts previously obtained in reference 9.

This correlation was based primarily on data for water at near atmospheric pressure with a boiler of the same dimensions as the one used in this study, but with no inserts. The correlation is based on a modification of the method of Thom (ref. 17). From this correlation the boiler-tube pressure drop is given by the sum of the inertial, gravitational, and frictional pressure drops (ΔP_I , ΔP_G , and ΔP_F). These are given in reference 9 as follows:

$$\Delta P_{I} = \frac{G^{2}}{K\rho_{l}g_{c}} \left\{ \left[1 + x_{e} \left(\sqrt{\frac{\rho_{l}}{\rho_{g}}} - 1 \right) \right]^{2} - 1 \right\}$$
 (6)

$$\Delta P_{G} = \frac{\rho_{l} L_{H} g}{K g_{c}} \left\{ \frac{\left(\sqrt{\frac{\rho_{l}}{\rho_{g}}} - \sqrt{\frac{\rho_{g}}{\rho_{l}}}\right) ln \left[1 + x_{e} \left(\sqrt{\frac{\rho_{l}}{\rho_{g}}} - 1\right)\right]}{x_{e} \left(\sqrt{\frac{\rho_{l}}{\rho_{g}}} - 1\right)^{2} + \sqrt{\frac{\rho_{g}}{\rho_{l}}} - 1} + \sqrt{\frac{\rho_{g}}{\rho_{l}}} - 1\right\}$$
(7)

$$\Delta P_{F} = \frac{f_{TP}G^{2}L_{H}}{K\rho_{\ell}g_{c}D_{1}} \left\{ \left[1 + x_{e} \left(\sqrt{\frac{\rho_{\ell}}{\rho_{g}}} - 1 \right) \right]^{2} + 1 \right\}$$
(8)

The inertial pressure drop ΔP_I is a function of inlet and exit conditions only, and is independent of the local heat-flux distribution within the boiler. Pressure losses in the unheated end sections were neglected. (These lengths are small compared with $L_{H^{\bullet}}$) Uniform heat flux and constant densities were assumed in order to obtain the gravitational and frictional pressure-drop equations. Since the heat flux was not necessarily uniform and the two-phase friction factor f_{TP} not necessarily constant (as assumed in obtaining eq. (8)), the experimental values of f_{TP} were effective-mean values. The two-phase friction factor was correlated for no inserts (ref. 9) as follows:

$$f_{TP} = 0.020 \left[\frac{D_1 G}{\mu_g} \left(\frac{x_e}{2} \right) \right]^{-0.2} \left\{ 1 + 0.027 \left[\frac{D_1 G}{\mu_l} \left(1 - \frac{x_e}{2} \right) \right]^{0.5} \right\}$$
(9)

To determine the actual frictional pressure drop from the experimental data, it was assumed that the insert affected only the frictional pressure drop. Any rotational effects, as well as any changes in ΔP_{I} and ΔP_{G} , are lumped with the actual frictional pressure drop. Inertial and gravitational pressure drops calculated from equations (6) and (7) were subtracted from experimental boiler-tube pressure drops. The resulting frictional pressure drop calculated from experimental data is plotted against a plain-tube frictional pressure drop calculated from equations (8) and (9) in figure 15(a), for data taken with no flashing at the boiler inlet. The data of reference 10, for the same boiler with a 10-inch (25.4-cm) plug, but for a larger inlet nozzle, are also shown. (The correlation of ref. 9

does not provide any direct means of accounting for inlet flashing.) The data of this report and reference 10 yield ΔP_F values about 5.8 times the plain-tube values. There were no significant differences in boiler-tube pressure drop for the two different plug lengths. Experimental data with flashing at the inlet nozzle are shown in figure 15(b). The following corrected equations account roughly for the two-phase starting condition.

$$\Delta P_{I} = \frac{G^{2}}{K\rho_{l}g_{c}} \left\{ \left[1 + x_{e} \left(\sqrt{\frac{\rho_{l}}{\rho_{g}}} - 1 \right) \right]^{2} - F \left[1 + x_{bi} \left(\sqrt{\frac{\rho_{l}}{\rho_{g}}} - 1 \right) \right]^{2} \right\}$$
(10a)

where the factor F is the inverse square of the ratio of the axial-flow area in the plug region to that in the rest of the boiler

$$\Delta P_{G} = \frac{\rho_{l} L_{H}g}{Kg_{c}} \left\{ \left(R_{2}\right)_{be} - \left[\left(R_{2}\right)_{bi} - \left(R_{2}\right)_{be}\right] \frac{x_{bi}}{x_{e} - x_{bi}} \right\}$$
(10b)

where R_2 is the parameter multiplying $\rho_l L_H g/Kg_c$ in equation (7). These corrections amounted to a total of at most 0.12-psi (0.83-kN/m²) difference from the result obtained using equations (6) and (7). Data for $P_{bi}/P_{be} > 2$ are not shown; these data show considerable deviation, probably due to compressibility effects, which are not accounted for in the equations. For the data without flashing at the inlet, no data were obtained for P_{bi}/P_{be} much greater than 2. The data with inlet flashing agree well with the data for no flashing.

Boiling Heat Transfer

The effect of the wire helix on boiler heat transfer is examined in this section. The experimental data are compared with a correlation of boiling heat transfer developed for a tube of the same dimensions, but with no inserts (ref. 9).

It is necessary to know the combined thermal resistances of the wall and the heating fluid in order to determine the boiling-side heat-transfer coefficient from experimental overall heat-transfer data. The combined wall and heating-fluid thermal resistance for this same boiler was determined in reference 10 to be

$$R_{o} = 0.00030 + 40 \left(\frac{D_{2}}{12k_{h}}\right) \left[\frac{\pi(D_{2} + D_{3})\mu_{h}}{4 \times 12W_{h}}\right]^{0.8} Pr_{h}^{-0.5}, \frac{(hr)(ft^{2})(^{0}F)}{Btu}$$
(11)

or

$$R_{0} = 0.0053 + 40 \left(\frac{D_{2}}{k_{h}}\right) \left[\frac{\pi(D_{2} + D_{3})\mu_{h}}{4W_{h}}\right]^{0.8} Pr_{h}^{-0.5}, \frac{(m^{2})(K)}{W}$$
(11a)

The correlation of mean boiling-side heat-transfer coefficients for plain tubes, previously obtained in reference 9, was based on data for water at near atmospheric pressure, primarily with a boiler of the same dimensions as the one used in this study but with no inserts. This correlation was based on an enthalpy-weighted mean temperature difference between heating and boiling fluids

$$\Delta T_{m} = \overline{\Delta T_{sc}} \left[\frac{W_{b}^{c} \mathbf{p}}{Q} \left(T_{be, sat} - T_{bi} \right) \right] + \overline{\Delta T_{B}} \left(\frac{\mathbf{x}_{e} W_{b}^{\lambda}}{Q} \right)$$
 (12)

The arithmetic mean temperature difference in the subcooled region ΔT_{sc} was averaged with the arithmetic mean temperature difference over the remainder of the boiler ΔT_{B} , with the heat loads in each region as weighting factors; pressure drop was neglected. Note that for constant heat flux ΔT_{m} is the arithmetic mean temperature difference. The correlation of boiling-side heat-transfer coefficients was given as follows:

$$\frac{h_b}{h_l} = 1 + 200 \text{ x}_e \sqrt{\frac{P_e}{P_c}}$$
 (13)

in which P_c is the critical pressure and h_l is the heat-transfer coefficient for all-liquid flow at the same flow rate and temperature, where

$$h_{l} = 0.023 \left(\frac{12k_{l}}{D_{1}}\right) \left(\frac{D_{1}G}{12\mu_{l}}\right)^{0.8} Pr_{l}^{0.5}, \frac{Btu}{(hr)(ft^{2})({}^{0}F)}$$
(14)

or

$$h_{l} = 0.023 \left(\frac{k_{l}}{D_{1}}\right) \left(\frac{D_{1}G}{\mu_{l}}\right)^{0.8} Pr_{l}^{0.5}, \frac{W}{(m^{2})(K)}$$
 (14a)

In applying this correlation to boilers with inserts, because of the larger pressure drops with the inserts, pressure drop must be accounted for in ΔT_m ; therefore,

$$\Delta T_{m} = \frac{1}{\Delta T_{sc}} \left[\frac{W_{b} c_{p} (T_{bi,sat} - T_{ni})}{Q} \right] + \frac{1}{\Delta T_{B}} \left[1 - \frac{W_{b} c_{p} (T_{bi,sat} - T_{ni})}{Q} \right]$$
(15)

for flashing at the inlet nozzle, $\Delta T_m = \Delta T_B$. Experimental values of the coefficient ratio h_b/h_l , pt, for runs showing no indications of vapor superheat or flow oscillations as great at ± 5 percent, are plotted against the parameter $x_e\sqrt{P_e/P_c}$ in figure 16(a). The data of reference 10 for the same boiler and plug, but for a larger inlet nozzle, are also shown. For inlet subcoolings of 47^O F (26 K) or greater, the experimental data agree with the plain-tube correlation. But for inlet subcoolings of 31^O F (17 K) or less and for flashing at the inlet nozzle, coefficient ratios range from plain-tube values to about 4 times as great. No appreciable effect could be noted on the heat-transfer results between the short plug, which only reached to the beginning of the heated zone, and the long plug which extended more than 8 inches (~20 cm) into the heated zone. Experimental data with exit vapor superheat are shown in figure 16(b). As might be expected, the coefficient ratios are generally less than with no indication of superheat, and no general trend can be cited.

SUMMARY OF RESULTS

- 1. With vaporization (net or local) in the inlet nozzle, the nozzle-inlet pressure became relatively insensitive to changes in nozzle-exit pressure, for constant flow rate and nozzle-inlet temperature. The relation between flow rate and nozzle-inlet pressure and temperature agreed well with Burnell's correlation.
- 2. So long as the boiler-inlet pressure was no more than about twice the boiler-exit pressure, the boiler-tube pressure drop agreed well with a modified plain-tube boiling pressure-drop correlation; the correlation was that of reference 9, with the frictional pressure drop multiplied by 5.8 to account for the helical wire insert.
- 3. No regions of negative slope, or increasing boiler-tube pressure drop with decreasing boiling-fluid flow rate, often associated with flow excursions, were observed. However, under some conditions flow oscillations did occur.

- 4. Mean boiling-side heat-transfer coefficients for the boiler with helical-wire insert were compared with the plain-tube correlation of reference 9. For inlet subcoolings of 47° F (26 K) or greater, the experimental data agree with the plain-tube correlation. But for inlet subcoolings of 31° F (17 K) or less and for flashing at the inlet noz-
- 5. The maximum boiler-exit vapor quality obtained with this 0.0285-inch (0.72-mm) throat-diameter inlet nozzle was <1.0, although exit vapor superheat as great as 105° F (58 K) was indicated. But with the 0.0305-inch (0.78-mm) throat-diameter inlet nozzle of reference 10, boiler-exit vapor qualities in excess of 1.0 were reported.
- 6. There were no significant differences in boiler-tube pressure-drop or heat-transfer performance for the two different plug lengths.

zle, coefficients range from plain-tube values to about four times as great.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, September 25, 1969, 120-27.

APPENDIX - SYMBOLS

A C	cross-sectional flow area, ft ² ; m ² overall flow coefficient, dimen-	$^{\Delta P}_{B}$	boiler-tube pressure drop, P _{bi} - P _{be} , psi; N/m ²
	sionless inlet-to-throat flow coefficient,	$\Delta P_{\mathbf{F}}$	frictional pressure drop, psi; N/m ²
c _t	dimensionless	$^{\Delta P}_{G}$	gravitational pressure drop, psi; ${ m N/m}^2$
$^{\mathrm{c}}\mathrm{P}$	liquid specific heat, Btu/(lbm)(^O F); J/(kg)(K)	$\Delta P_{f I}$	inertial pressure drop, psi; N/m ²
D F	diameter, in.; m inlet-region area factor, dimen-	ΔP_n	inlet-nozzle pressure drop, P _{ni} - P _{bi} , psi; N/m ²
	sionless two-phase friction factor, di-	$^{\Delta P}v$	throttle - valve pressure drop, P _{vi} - P _{ni} , psi; N/m ²
^t TP G	mensionless	Pr	liquid Prandtl number, $c_p \mu/k$, dimensionless
G	boiling-fluid superficial mass velocity, $4W_b/K\pi D_1^2$,	Q	heating rate, Btu/hr; W
	lbm/(hr)(ft ²); kg/(sec)(m ²)	R_{o}	combined thermal resistance of wall and heating fluid,
g	acceleration due to gravity, 4.17×10 ⁸ ft/hr ² ; 9.81 m/sec ²		$(hr)(ft^2)(^0F)/Btu; (m^2)(K)/W$
$\mathbf{g}_{\mathbf{c}}$	conversion factor, 4.17×10^8 (lbm)(ft)/(lbf)(hr ²); 1.00 (kg)(m)/	R_2	gravitational pressure-drop parameter, dimensionless
	$(N)(sec^2)$	T	temperature, ^o F; K
h	heat-transfer coefficient, $Btu/(hr)(ft^2)(^{O}F); W/(m^2)(K)$	$\overline{^{\Delta T}_{B}}$	mean temperature difference in net boiling region, ^O F; K
K	conversion factor, $(1/144)$ ft ² /in. ² ; 1.00 m ² /m ²	$\Delta T_{\mathbf{m}}$	mean temperature difference in boiler, ^O F; K
k	liquid thermal conductivity, $Btu/(hr)(ft)(^{O}F); W/(m)(K)$	$\overline{^{\Delta \mathrm{T}}_{\mathrm{sc}}}$	mean temperature difference in subcooled region, ^O F; K
L _H	heated length of test section, 60.5 in.; 1.54 m	U	average overall heat-transfer coefficient, Btu/(hr)(ft ²)(^o F);
P	pressure, psia; N/m ² abs		$W/(m^2)(K)$
$\mathbf{P_c}$	thermodynamic critical pressure,	W	mass flow rate, lbm/hr; kg/sec
	psia; N/m ² abs	x	vapor quality, dimensionless

λ	enthalpy of vaporization,	i	inlet
	Btu/lbm; J/kg	l	liquid property
μ	<pre>viscosity, lbm/(ft)(hr); kg/(m)(sec)</pre>	min	at minimum area
ρ	density, lbm/ft ³ ; kg/m ³	n	nozzle
, σ	surface tension, lbf/ft; N/m	p	exit planum
Subsc	, , ,	pt	plain tube
	-	ref	reference value
b	boiling fluid or boiler	sat	boiling-fluid saturation
calc	calculated value		J
e	exit	1	inner wall of boiler tube
C	CALL	2	outer wall of boiler tube
\mathbf{g}	gas property	•	
h	heating fluid	3	inner wall of shell tube

ш

REFERENCES

- 1. Wallerstedt, R. L.; and Miller, D. B.: Mercury Rankine Program Development Status and Multiple System Application. AIAA Specialists Conference on Rankine Space Power Systems. Vol. 1. AEC Rep. CONF-651026, vol. 1, 1965, pp. 3-51.
- 2. Gresho, P. M.; Poucher, F. W.; and Wimberly, F. C.: Mercury Rankine Program Test Experience. AIAA Specialists Conference on Rankine Space Power Systems. Vol. 1. AEC Rep. CONF-651026, vol. 1, 1965, pp. 52-102.
- 3. Gordon, R.; and Slone, H. O.: SNAP-8 Development Status September 1965.

 AIAA Specialists Conference on Rankine Space Power Systems. Vol. 1. AEC Rep.

 CONF-651026. vol. 1. 1965. pp. 103-138.
- Kreeger, A. H.; Hodgson, J. N.; and Sellers, A. J.: Development of the SNAP-8 Boiler. AIAA Specialists Conference on Rankine Space Power Systems. Vol. 1. AEC Rep. CONF-651026, vol. 1, 1965, pp. 285-306.
- 5. Peterson, J. R.: High-Performance "Once-Through" Boiling of Potassium in Single Tubes at Saturation Temperatures From 1500° to 1750° F. NASA CR-842, 1967.
- Bond, J. A.; and Converse, G. L.: Vaporization of High-Temperature Potassium in Forced Convection at Saturation Temperatures from 1800⁰ to 2100⁰ F. NASA CR-843, 1967.
- 7. Boppart, J. A.; Parker, K. O.; and Berenson, P. J.: Multiple-Tube Potassium Boiler Performance. AIAA Specialists Conference on Rankine Space Power Systems. Vol. 1. AEC Rep. CONF-651026, vol. 1, 1965, pp. 327-356.
- Lewis, James P.; Groensbeck, Donald E.; and Christenson, Harold H.: Tests of Sodium Boiling in a Single Tube-in-Shell Heat Exchanger Over the Range 1720⁰ to 1980⁰ F (1211 to 1355 K). NASA TN D-5323, 1969.
- 9. Stone, James R.; and Damman, Thomas M.: An Experimental Investigation of Pressure Drop and Heat Transfer for Water Boiling in a Vertical-Upflow Single-Tube Heat Exchanger. NASA TN D-4057, 1967.
- 10. Stone, James R.; and Sekas, Nick J.: Tests of a Single Tube-in-Shell Water-Boiling Heat Exchanger With a Helical-Wire Insert and Several Inlet Flow-Stabilizing Devices. NASA TN D-4767, 1968.
- 11. Stone, James R.; and Sekas, Nick J.: Water Flow and Cavitation in Converging-Diverging Boiler-Inlet Nozzle. NASA TM X-1689, 1968.
- 12. Keenan, Joseph H.; and Keyes, Frederick G.: Thermodynamic Properties of Steam. John Wiley & Sons, Inc., 1936.

- 13. Jeglic, Frank A.; Stone, James R.; and Gray, Vernon H.: Experimental Study of Subcooled Nucleate Boiling of Water Flowing in 1/4-Inch-Diameter Tubes at Low Pressures. NASA TN D-2626, 1965.
- 14. Burnell, J. G.: Flow of Boiling Water Through Nozzles, Orifices and Pipes. Engineering, vol. 164, Dec. 12, 1947, pp. 572-576.
- 15. Fauske, Hans K.: Contribution to the Theory of Two-Phase, One-Component Critical Flow. Rep. ANL-6633, Argonne National Lab., Oct. 1962.
- 16. Owhadi, Ali: Boiling in Self-Induced Radial Acceleration Fields. Ph.D. Thesis, Oklahoma State Univ., 1966.
- 17. Thom, J. R. S.: Prediction of Pressure Drop During Forced Circulation Boiling of Water. Int. J. Heat Mass Transfer, vol. 7, no. 7, July 1964, pp. 709-724.

TABLE I. - EXPERIMENTAL BOILING DATA WITH 10-INCH (25.4-CM) PLUG

(a) U.S. customary units

Series	Part	Run				В	oiling flu	id				Heating	He	ating fluid	
			Flow	Ten	nperature	, ⁰ F		Pressu	re, psia		Exit	rate, Q,	Flow	Tempera	ture, ^o F
			rate,	Nozzle	Boiler	Exit	Valve	Nozzle	Boiler	Boiler	quality,	Btu/hr	rate,	Inlet,	Exit,
'			W _b , lbm/hr	inlet,	exit,	plenum,	inlet,	inlet,	inlet,	exit,	×е		W _h , lbm/hr	T _{hi}	T _{he}
			IUm/nr	T _{ni}	T _{be}	T _{bp}	P _{vi}	P _{ni}	P _{bi}	P _{be}			10m/nr	m	ne
1	A	1	123.2	76.0	222.5	218	104	105	18.7	16.8	0.02	20×10 ³	10 130	242.0	240.0
		2	108.3	75.0	221.5		83	83		16.8	.07	23		243.0	240.8
		3	100.0	74.5	222.0		70.9	71.5		16.8	. 06	20		242.7	240.7
		4	86.9	75.0	221.5		58.1	58.9		16.9	. 05	16		242.0	240.4
		5	75.5		221.5		48.8	49.5	18.6		. 09	17		242, 5	240.8
1		6	69.5		220.0		44.7	45.3	18.4		. 11	17		243.2	241.5
		7	63.9		220.3		40.6	41.2	18.4		. 12	16		242.3	240.7
		8	57.9		220.3		36.8	37.0	18.4	l	. 11	14		241.8	240.4
		9	53,0		221.5		33.3	34.8	18.2	li	. 14	14		242, 2	240.8
	l l	10	48.5	7	220.7		32.4	31.6	18.1	↓	. 16	14		242.4	241.0
		11	44.7	75.5	220.7	7	30.1	29.5	18.0	•	. 13	12		242.6	241.4
2	Α	12	123.2	77.0	224.0	217.8	109	109	21.0	16.6	0.23	46×10 ³	10 070	278.0	273.5
1 1	1 '	13	108.8	76.0	222.5	217.0	85.5	87	20.9	1	. 30	47	1 1	278.6	274.0
		14	100.0	77.0	221.5	217.3	74.5	75	20.7		. 33	46		278. 2	273.7
		15	88.2	77.0	220.3	217.3	60.0	59.2	20.7		. 38	45		278.2	273.8
		16	76.9	80.0	218.0	217.0	47.8	46.8	20.4		. 44	43		278.2	274.0
		17	69.6	79.0	220.7	217.0	40.8	41.5	20.1		. 50	43		278.0	273.8
	*	18	^a 64.0	78.0	220.7	217.0	38.3	38.9	20.1		. 52	41		277.8	273.8
	В	19	77. 2	77.0	220.7	217.0	b _{85.5}	50.6	20.4		. 43	43		278.0	273.8
}		20	69.0	79.0	219.5		^b 74.5 ^b 66.7	45, 2	20.3	1	. 50	43	\ \	277.7	273.5
		21 22	64.0 57.5	78.0 79.0	220.0 220.0		b _{53.4}	42.4 35.4	20.2 20.0		.57	44 43		278.7 277.7	274.4 273.5
		23	a _{56.5}	77.0	219.5	217.3	b _{42.9}	30.8	19.7	16.5	.61	41	•	278.7	274.7
3	A	 ₂₄	117.0	76.0	221.5	217.0	100	100	26.4	16.6	0.48	71×10 ³	10 120	313.8	307.0
"	î	25	108.8	76.0	222.0	1 211.0	86.5	87.5	26.2	16.6	. 53	11~10	10 120	313.8	307.0
		26	99.8	77.0	220.7		76.5	76.5	26.0	16.5	. 59			314.0	307. 2
1 1		27	86.7	78.0	220.0		64.0	64.2	25.6	16.4	. 71			314.0	307. 2
		28	79.8	78.0	219.5	217.3	56.3	57.3	24.8	16.3	. 79			313.6	306.8
	†	29	^a 72.6	79.0	220.3	216.8	49.6	50.5	24.1	1	. 86	70		314.0	307.3
	В	30	82, 5	82.5	219.0	217.3	b _{93.5}	59.5	25.1		. 74	70		314.0	307.3
	1	31	72.1	83.5	219.5	217.5	b _{80.2}	52.0	24.3		. 87	70		314.5	307.8
i [32	68.6	85.0	228	217.8	b74.0	49.8	23.8		. 89	68	10 110	314.3	307.8
		33	63.3	85.0	243.5	230.0	^b 63.1	43.1	23.2		.91	65	10 110	314,2	308.0
		34	a _{59.3}	84.0	259.7	257.5	^b 57.0	39.8	22.6	₹	. 90	59	10 100	314.5	308.8
ļļ	*	35	^a 55.3	83.5	276.5	270.5	b _{47.9}	36	21.7	16.4	. 80	50	10 100	313.8	309.0
4	A	36	116.0	76.0	222.5	217.5	102.4	103	32.8	16.5	0.81	106×10 ³	10 100	350.7	340.7
		37	107.0	78.0	222.0	217.5	90.0	90.0	32.1	16.3	. 85	103		349.7	340.0
	[38	100.2	80.0	221.0	216.2	82.6	82.4	31.5	16.0	. 89	100		350.0	340.5
		39	^a 90.6	81.0	246.5	247.5	71.5	71.9	29.6	16.0	. 97	97		349.7	340.5
	В	40	a _{83.8}	85.0	268	267.5	^b 98	63.5	27.7	16.0	. 96	90	10 090	350.0	341.5
	В	41	² 78.4	86.0	287	283.0	ь ₈₇	60.5	27.8	16.1	.90	79	10 080	350,0	342.5

 $^{^{\}rm a} \rm Boiling\mbox{-fluid flow rate oscillation of greater than ${\rm \pm}5$ percent.} \,^{\rm b} \rm Valve\mbox{ setting B.}$

TABLE I. - Continued. EXPERIMENTAL BOILING DATA WITH 10-INCH (25.4-CM) PLUG

(a) Concluded. U.S. customary units

Series	Part	Run				В	oiling flu	id			_	Heating	Не	ating fluid	i
			Flow	Ter	nperature	, ^o F		Pressu	re, psia		Exit	rate, Q,	Flow	Temper	ature, ^O F
			rate,	Nozzle	Boiler	Exit	Valve	Nozzle	Boiler	Boiler	quality, ^x e	Btu/hr	rate, W _h ,	Inlet,	Exit,
			W _b , lbm/hr	inlet,	exit,	plenum,	inlet,	inlet,	inlet,	exit,	"e		lbm/hr	T _{hi}	The
			,	T _{ni}	T _{be}	T _{bp}	P _{vi}	P _{ni}	P _{bi}	P _{be}	ļ	ļ			
5	A	42	121.4	170.5	222.0	217.2	100.5	101	34.7	16.5	0.74	93×10 ³	10 100	350.0	341.2
	1 1	43	122.7	172.0	223.5	218.0	102	101	34.6	16.4	. 73	95	10 060	350.2	341.2
		44	112.0	170.0	224.0	218.7	88.7	89.7	33,7	16.3	.85	97	10 100	350.2	341.0
	'	45	^a 99.5	170.0	235	230	74.0	75.0	32.1	16.0	. 94	95	10 100	350.0	341.0
	в	46	a84.5	170.5	279	277.0	^b 96.5	55	29.2	16.2	. 96	83	10 080	350.2	342.3
		47	73.8	170.0	302.0	296.5	^b 73.0	48.5	27.5	16.3	. 90	68	10 130	350.0	343.6
		48	61.5	169.5	313.0	306.5	^b 57.8	40.6	25.2	16.2	. 94	59	10 180	349.8	344.3
		49	55.0	170.5	321.0	312.0	^b 50.2	36.1	24.2	16.3	. 95	53	10 180	350.5	345.5
	_ '	50	44.4	171.5	333.5	320.5	^b 38.0	30.1	22.1	16.4	95 _	43	10 170	350.7	346.7
6	A	51	108.3	c231.0	221.5	217.0	92	91	19.1	16.7	0.14	13×10 ³	10 070	243.0	241.7
1	A	52	90.6	^c 231.5	220.2	217.5	68.3	68.7	19.0	16.8	. 16	13	10 120	242.3	241.0
	Α	53	80.6	^c 232.0	219.5	217.5	56.5	57.2	18.8	16.7	. 14	10	10 120	242.8	241.8
	В	54	70.1	c _{233.0}	217.5	217.0	^d 56.3	47.7	18.5	16.7	. 18	11	10 120	242.3	241.2
	c	55	62.6	c231.0	218.0	217.0	b _{63.2}	39.4	18.3	16.8	. 22	12	10 120	242.0	240.8
	c	56	58.2	^c 231.0	217.7	216.8	^b 56.2	36.0	18.2	16.7	. 23	12	10 120	242.2	241.0
7	A	57	96.2	c _{258.0}	223.7	216.0	84.5	84	29.1	16.5	0.78	68×10 ³	10 150	314.3	307.8
	Α	58	a _{84.0}	c _{256.0}	224.5	216.3	68.7	69.7	27.7	16.4	. 85	66	10 150	314.0	307.7
	В	59	75.5	c _{256.0}	246.0	241.0	d _{95.5}	58.1	26.4	16.4	.90	63	10 150	314.5	308.5
8	A	60	99.5	c _{270.0}	262.5	260.0	98.0	99.0	34.2	16.1	0.95	86×10 ³	10 280	350.0	342.0
	A	61	88.4	^c 261.0	284.7	282.0	80.0	80.5	32.0	16.1	.97	79	10 280	350.5	343.2
1 1	A	62	^a 79.7	^c 258.0	301	296.0	65	66	29.8	16.1	. 92	68	10 260	351.0	344.7
	В	63	76.3	c _{258.0}	300.0	298.0	d _{80.5}	63.7	29.6	16.3	.95	67	10 260	350.2	344.0
	В	64	^a 70.4	^c 255.0	307.7	304.0	^d 69.7	57.8	28.1	16.3	.98	64	10 270	350.7	344.8
9	А	65	118.0	77.0	221.5	216.8	98.0	97.5	29.3	16.5	0.63	81.3×10 ³	4 920	350.0	334.2
		66	105.0	77.0	220.3	216.3	81.4	82.0	28.5	16.5	. 66	81.3		349.5	333.7
[]		67	94.5	79.0	220.3	216.8	72.7	72.7	28.0	16.3	. 75	81.3		349.8	334.0
	*	68	^a 87.5	80.0	220.7	217.0	65.3	66.3	27.4	16.3	.80	79.8	▼	349.5	334.0
	В	69	82. 3	85.0	226	216.5	b ₉₈	60	26.6	16.1	. 85	78.2	4 920	350.0	334.8
	В	70	^a 78. 2	84.0	248	245.0	b89	52	25.8	16.2	. 87	76.2	4 920	350.8	336.0

 $^{^{}a}$ Boiling-fluid flow rate oscillation of greater than ± 5 percent. $^{b}Valve$ setting B. $^{c}Flashing$ at boiler inlet. $^{d}Valve$ setting A.

TABLE I. - Continued. EXPERIMENTAL BOILING DATA WITH 10-INCH (25,4-CM) PLUG (b) SI units

Series	Part	Run				Boili	ng fluid		_			Heating	Hea	ting fluid	
			Flow	Ter	nperatur	e, K	P	ressure,	kN/m² a	bs	Exit	rate, Q,	Flow	Temper	ature, K
1			rate,		Boiler	- ·	Valve	Nozzle	Boiler	Boiler	quality,	kW	rate,		
			w _b ,	Nozzle inlet.	exit.	Exit plenum,	inlet,	inlet,	inlet.	exit.	x _e		w _h ,	Inlet,	Exit,
1			kg/sec	,	1	- ,	1 1]	kg/sec	T _{hi}	T _{he}
ļ				T _{ni}	T _{be}	T _{bp}	P _{vi}	P _{ni}	P _{bi}	P _{be}				ļ	
1	Α	1	15.52×10 ⁻³	297.6	379.0	376.5	717	724	129	116	0.02	5.9	1.276	389.8	388.7
	[] [2	13.65	297.1	378.4	1	572	572		116	.07	6.7	1	390.4	389.2
		3	12.60	296.8	378.7		489	493	l L	116	.06	5.9	ì	390.2	389.1
		4	10.95	297.1	378.4		401	406	*	117	. 05	4.7		389.8	388.9
		5	9.51	1 1	378.4		336	341	128	ĺ I	. 09	5.0		390.1	389.2
-		6	8. 76		377.6		308	312	127		. 11	5,0	İ	390.5	389.6
		7	8.05		377.8		280	284	127	1 1	.12	4.7		390.0	389.1
[!	1 1	8	7.30		377.8		254	255	127	1 1	.11	4.1	ſ	389.7	388.9
1		9	6.68		378.4		230	240	125		.14	4.1	l	389.9	389.2
		10	6.11	7	378.0	*	223	218	125		. 16	4.1	į.	390.0	389.3
ļ	1	11	5.63	297.3	378.0	_	208	203	124	, ,	.13	3.5	*	390, 2	389.5
2	А	12	15.52×10 ⁻³	298.2	379.8	376.4	752	752	145	114	0.23	13.5	1.269	409.8	407.3
	1 1	13	13, 71	297.6	379.0	375.9	590	600	144		. 30	13.8	1	410, 2	407.6
]	, , ;	14	12.60	298.2	378.4	376.1	514	517	143]]	. 33	13.5	. J	409.9	407.4
	1	15	11.11	298.2	377.8	376.1	414	408	143		. 38	13.2	1	409.9	407.5
		16	9.69	299.8	376.5	375.9	330	323	141		. 44	12.6		409.9	407.6
		17	8,77	299.3	378.0		281	286	139		. 50	12.6	i	409.8	407.5
	۲ ا	18	^a 8.06	298.7	378.0		264	268	139	} }	. 52	12.0		409.7	407.5
	В	19	9.73	298.2	378.0		^b 590	349	141		.43	12,6		409.8	407.5
		20	8,69	299.3	377.3		b ₅₁₄	312	140]]	. 50	12.6		409.6	407.3
	1	21	8.06	298.7	377.6		b ₄₆₀	292	139		. 57	12.9	Ì	410.2	407.8
		22	7, 25	299.3	377.6	₹	b368	244	138		.63	12,6	i I	409.6	407.3
ļ. ,	٧.	23	^a 7, 12	298.2	377.3	376.1	^b 296	212	136		.61	12.0	٠,	410.2	408.0
3	Α	24	14.74×10 ⁻³	297.6	378.4	375.9	690	690	182	114	0.48	20.8	1.275	429.7	425.9
		25	13.71	297.6	378.7	1	596	603	181	114	.53		1	429.7	425.9
		26	12.57	298.2	378.0	Ţ	527	527	179	114	. 59	1		429.8	426.0
l	1 1 1	27	10.92	298.7	377.6	•	441	443	177	113	. 71	1 1 1	! }	429.8	426.0
		28	10.05	298.7	377.3	376.1	388	395	171	112	. 79	1		429.6	425,8
] "	29	^a 9.15	299.3	377.8	375.8	342	348	166		. 86	20.5		429.8	426.1
	В	30	10.40	301,2	377.0	376.1	^b 645	410	173	1	.74	20.5		429.8	426.1
	li	31	9.08	301.8	377.3	376.2	^b 553	359	168		.87	20.5	\ \	430.1	426.4
	l I I	32	8.64	302.6	382.0	376.4	^b 510	343	164	l i	.89	19.9	1.274	430.0	426.4
1]]]	33	7.98	302.6	390.7	383.2	b ₄₃₅	297	160	1 1	.91	19.0	1.274	429.9	426.5
		34	^a 7.47	302.0	399.7	398.4	b ₃₉₃	274	156	▼	.90	17.3	1.273	430.1	426.9
ļ	1	35	^a 6.97	301.8	409.0	405.4	b330	248	150	113	.80	14.6	1.273	429.7	427.0
4	A	36	14.62×10 ⁻³	297.6	379.0	376.2	706	710	226	114	0.81	31.1	1.273	450.2	444.6
1		37	13.48	298.7	378.7	376.2	621	621	221	112	.85	30,2	1	449.6	444.3
1		38	12,63	299.8	378.2	375.5	570	568	217	110	.89	29.3		449.8	444.5
	7	39	^a 11.4	300.4	392.3	392.9	493	496	204	110	.97	28.4	₹	449.6	444.5
	В	40	a _{10.6}	302.6	404.3	404.0	b ₆₇₆	438	191	110	.96	26.4	1.271	449.8	445.1
	В	· 41	a _{9.88}	303.2	414.8	412.6	^b 600	417	192	111	.90	23.1	1.270	449.8	445.6
1	l _B	-41	9.88	303.2	414.8	412.6	1 600	1 417	I tas	1 111	1 .90	23.1	1.270	449.8	445.6

 $^{^{\}rm a}{\rm Boiling\mbox{-}fluid}$ flow rate oscillation of greater than ±5 percent. $^{\rm b}{\rm Valve}$ setting B.

TABLE I. - Concluded. EXPERIMENTAL BOILING DATA WITH 10-INCH (25.4-CM) PLUG

(b) Concluded. SI units

Series	Part	Run				Boil	ing fluid					Heating	Неа	ating fluid	i
			Flow	Ter	mperatui	re, K	P	ressure,	kN/m^2	abs	Exit	rate, Q,	Flow	Temper	ature, K
		i	rate, W _b , kg/sec	Nozzle inlet, T _{ni}	Boiler exit, T _{be}	Exit plenum, T _{bp}	Valve inlet, P _{vi}	Nozzle inlet, P _{ni}	Boiler inlet, P _{bi}	Boiler exit, P _{be}	quality, x _e	kW	rate, W _h , kg/sec	Inlet, T _{hi}	Exit, The
5	Α	42	15.30×10 ⁻³	350.1	378.7	376.0	693	696	239	114	0.74	27, 2	1.273	449.8	449.9
i		43	15.46	350.9	379.5	376.5	703	696	239	113	. 73	27.8	1.268	449.9	444.9
	1 1	44	14.11	349.8	379.8	376.9	612	618	232	112	.85	28.4	1.273	449.9	444.8
	7	45	^a 12.5	349.8	385.9	383.2	510	512	221	110	.94	27.8	1.273	449.8	444.8
	В	46	^a 10.6	350.1	410.4	409.3	b ₆₆₅	379	201	112	. 96	24.3	1.270	449.9	445.5
		47	9.30	349.8	423.2	420.1	^b 503	334	190	1	.90	19.9	1.276	449.8	446.3
		48	7.75	349.5	429.3	425.6	b ₃₉₉	280	174	1	.94	17.3	1.283	449.7	446.7
		49	6.93	350.1	433.7	428.7	b ₃₄₆	249	167	†	.95	15.5	1.283	450.1	447.3
		50	5.59	350.7	440.7	433.4	b ₂₆₂	208	152	113	.95	12,6	1.281	450, 2	448.0
6	A	51	13.65×10 ⁻³	^c 383.7	378.4	375.9	634	627	132	115	0.14	3.8	1.269	390.4	389.7
	Α	52	11.42	c384.0	377.7	376.2	471	474	131	116	. 16	3.8	1.275	390.0	389.3
	Α	53	10.16	^c 384.3	377.3	376.2	390	394	130	115	. 14	2.9	1	390.3	389.7
	В	54	8.83	c _{384.8}	376.2	375.9	d ₃₈₈	329	128	115	.18	3.2		390.0	389.4
	С	55	7, 89	c _{383.7}	376.5	375.9	b ₄₃₆	272	126	116	. 22	3.5		389.8	389.2
	c	56	7.33	c _{383.7}	376.3	375.8	b ₃₈₇	248	125	115	. 23	3.5	†	389.9	389.3
7	A	57	12.12×10 ⁻³	c _{398.7}	379.6	375.4	583	579	201	114	0.78	19.9	1.279	430.0	426.4
l	A	58	^a 10.6	^c 397.6	380.1	375.5	474	481	191	113	. 85	19.3	1.279	429.8	426,3
	В	59	9.51	^c 397.6	392.0	389.3	d ₆₅₈	401	182	113	.90	18.5	1.279	430.1	426.8
8	Α,	60	12.54×10 ⁻³	^c 405.4	401.2	399.8	676	683	236	111	0.95	25. 2	1.295	449.8	445.4
1	A	61	11.14	c400.4	413.6	412.1	552	555	221	111	.97	23.1	1.295	450.1	446.1
	A	62	^a 10.0	c _{398.7}	422.6	419.8	448	455	205	111	.92	19.9	1.293	450.4	446.9
	В	63	9.61	c _{398.7}	422.1	420.9	d ₅₅₅	439	204	112	.95	19.6	1.293	449.9	446.5
	В	64	^a 8.87	c397.0	426.3	424.3	d ₄₈₁	399	194	112	. 98	18.8	1.294	450.2	446.9
9	Α	65	14.87×10 ⁻³	298.2	378.4	375.8	676	672	202	114	0.63	23.8	0.620	449.8	441.0
l	- []	66	13, 23	298.2	377.8	375.6	561	565	197	114	.66	23.8	1	449.5	440.8
]		67	11.91	299.3	377.8	375.8	501	501	193	112	. 75	23.8		449.7	440.9
)	1	68	a _{11.0}	299.8	378.0	375.9	450	457	189	112	.80	23.4		449.5	440.9
-	В	69	10.37	302.6	380.9	375.7	b ₆₇₆	414	183	111	. 85	22.9		449.8	441.4
_	В	70	^a 9.85	302.1	393.2	391.5	^b 614	385	178	112	. 87	22.3	v	450.3	442.0

 $[^]a\textsc{Boiling-fluid}$ flow rate oscillation of greater than ±5 percent. $^b\textsc{Valve}$ setting B. $^c\textsc{Flashing}$ at boiler inlet. $^d\textsc{Valve}$ setting A.

TABLE II. - EXPERIMENTAL DATA FOR INLET NOZZLE, NONBOILING RUNS WITH 1.78-INCH (4.52-CM) PLUG

Ser-	Run	1	w rate,	ı	let		ılet		xit	Ser-	Run	Fl	ow rate,		let	1	let	1	xit
ies			w _b	T	rature, ni	-	ni	-	ssure, bi	ies			w _b	tempe:	rature, ni	1 -	sure ni	-	bi
		lbm hr	kg sec	° _F	к	psia	kN m ² abs	psia	kN m ² abs			lbm hr	kg sec	°F	к	psia	kN	psia	kN m ² abs
		"	500				m abs		m abs	-		" "	1	<u> </u>			m ² abs		m abs
10	71 72	64.3°	8.10×10 ⁻³ 8.16		293.1 292.0	45.9 41.3	316 285	18.6 14.2	128 98	16	119 120	99.9 100.2	12.56×10 ⁻³ 12.60		325.5 325.7	106.2 95.2	732 656	61.1	421
	73	64.9	8, 16	65.5	291.8	37.2	256	10.1	70		121	100.2	12.60	127.0	325. 9	87.1	600	50.0 41.0	345 283
	74	64.6	8.13	64.5	291.2	31.9	220	4.9	34		122	99.9	12.56	126.5	325.6	78.2	539	32.7	225
11	75	60.3	7.59×10 ⁻³	218 5	376.8	54.6	376	37.6	259		123 124	99.6 99.6	12.53 12.53	127.5 127.0	326.2 325.9	71.2 64.8	491 446	24.9 18.7	172 129
11	76	59.7	7.51	I	377.3	43.2	298	26.2	181										
	77	59.7	7. 51	ľ	377.3	37.3	257	17.4	120		125	99.6	12.53	•	326.2	79.7	550	35, 7	246
	78 79	59.7 a _{59.1}	7.51 ^a 7.43	217.5	376. 2 377. 6	33.6 32.8	232 226	12.0 7.9	83 54		126 127	100.5 100.2	12.63 12.60	128.0 129.5	326.5 327.3	63.6 61.8	438 626	18.8 14.7	130 101
	"	00.1	1.30	220.0		- 52.0	220		- 01		128	100.2	12.60	128.0	326.5	65.5	451	10.0	69
12	80	79.6	10.01×10 ⁻³	65.0	291.5	106.6	734	74.4	512	1	129	100.2	12,60	128.5	326.8	69.4	478	5.0	34
	81	79.9	10.05	64.0	290.9	90.5	623	57.7	398		130	99.3 99.6	12.50 12.53	133.0 130.0	329.3 327.6	63.8 62.1	440 428	11.0 18.3	76 126
ļ ,	82 83	79.9 80.2	10.05 10.09	63.7	290. 7 290. 6	78.2 67.7	539 467	45.6 35.0	314 241	ļ	***	_		150.0	021.0	02.1	120	10.3	'20
	84	80.2	10.09	1	1	61.0	420	28.0	193	17	132	100.2	12,60×10 ⁻³	189.0	360.4	85.2	587	42.2	291
	85	79.6	10.01			56.7	391	21.8	150		133	100.2	12.60	190.0	360.9	74.3	512	32.0	220
İ	l										134 135	100.5 99.6	12.63 12.53	188.5 187.5	360.1 359.6	74.0 68.3	510 470	29.0 24.0	200 165
	86	80.2 79.9	10.09 10.05			53.0 48.1	365 332	18.6 13.7	128 94		136	99.9	12, 56	187.5	359.6	72, 2	498	18.6	128
1	88	79.9	10.05			44.2	304	9.8	68		137	99.6	12.53	188.3	360.0	71.8	495	15.0	103
	89	79.9	10.05	7	*	45.3	312	5.0	34		138	99.9 99.6	12.56 12.53	188.0 189.0	359.8 360.4	75.8 74.0	522 510	11.1 8.0	76 55
	90	80.2 80.2	10.09 10.09	1	290.7 291.1	47.1 48.9	325 337	10.1 14.2	70 98		140	100.8	12.67	192.5	362.3	75.0	517	7.6	52
1			10.00	00		10.0						_	2				 		
13	92	80.5	10.13×10 ⁻³	123.5	324.0	70.3	484	42.0	289	18	141 142	99.9 99.9	12.56×10 ⁻³	223, 5 223, 0	379.5 379.3	98. 2 87. 8	677 605	55, 1 43, 3	380 298
	93	79.9	10.05	123.0 123.5	323. 7 324. 0	58.7 52.6	404 362	31.1 24.9	214 172		143	98.9	12.43	223.5	379.6	82.3	567	34.1	235
ļ	95		l L	123.5	324.0	46.6	321	18.8	130		144	99.3	12.50	225.0	380.4	85.3	588	25.4	175
	96		,	124.0	324.3	40.8	281	12.9	89		145	^a 100 100.5	² 12.6 12.63	223.5 220.0	379.6 377.6	85.8 83.8	591 577	18.1 11.2	125 77
	97 98	80.2 80.5	10.09 10.13	123.5 123.5	324.0 324.0	37.4 44.0	258 303	9.6 5.5	66 38		147	99.6	12.53	217.0	375.9	81.2	560	6.9	48
١		00.0	40.00.40-3						400	b ₁₉	148	80. 2	10.09×10 ⁻³	76.0	297.6	136.5	941	104.2	719
14	99 100	80.2 79.9	10.09×10 ⁻³	227.0	381.5 383.2	101.7 86.6	701 597	72.3 56.9	498 392		149	79.6	10.01	1	296.2	122.0	841	88.7	611
[101	79.6	10.01	231.0	383.7	67.8	467	37.6	259		150	80.2	10.09	ĺ	ĺl	114.3	789	78.3	540
	102	79.3	9.97	1	383.2	61.5	424	26.7	183		151 152	80.2 80.2	10.09 10.09			102.5 89.7	706 618	66.8 56.3	460 388
	103 104	80.2 79.6	10.09 10.01	229.5 234.3	382.9 385.5	59.0 58.3	407 402	17.6 12.0	121 83		153	79.6	10.01			82.4	568	46.8	322
	105	80.2	10.09	I	l .	57.2	394	8.2	57						↓		1		
1	j	İ		İ	i '						154 155	79.3	9.97	, , ,	,	75.0	517	39.3	271
15	106 107	99.3	12.50×10 ⁻³ 12.50		293.3 292.6	85.5 76.7	589 529	38.3 27.3	264 188		156	80. 5 79. 6	10.13 10.01	I	296.5 296.5	69.0 63.0	475 434	33.8 26.8	226 185
1	108	100.8	12.50		292.0	108.0	744	56.7	388		157	79.6	10.01	74.0	296.5	54.8	378	18.7	129
1	109	100.2	12.60	(291.8	97.5	672	47.4	336	ļ	158 159	79.3	9.97		296.8	49.5	341	14.0	96
	110 111	99.6 100.2	12.53 12.60		291.8 291.5	90.5 82.3	623 567	39.3 32.8	271 226		160	79.3 79.6	9.97 10.01		296.8 296.8	47.8 46.7	329 322	9.3 4.9	64 34
	***		12.00	55.5	201.0	02.3	301	J2, 0	220										
	112	100.2	12.60	64.5	291.2	77.6	535	26.0											
	113 114	97.7 100.2	12.29 12.60			71.0	489	18.7	129									1	
	115	100.2				74.5 73.2	524 505	18.7 15.0	129 103						1				
	116	100.2	12.60			72.0	496	11.3	78	1					1			1	
	117 118	100.5		*	201	71.8	495	8.3	57										
ŧ I	1 1 10	100.2	12.00	04.3	291.1	70.7	487	5.1	35	ı	I	i	I	l	L	L		L	لـــــا

^aOscillation of ±6 percent. ^bWater not degassed.

¥ ?

TABLE III. - EXPERIMENTAL BOILING DATA WITH 1.78-INCH (4.52-CM) PLUG

(a) U.S. customary units

Series	Run				Во	iling flui	.d	•			Heating	Н	eating flu	id
Flow Temperature, ^O F					, ^o F		Pressu	re, psia	ı -	Exit	rate, Q,	Flow	Temper	ature, ^o F
		rate, W _b ,	i .	1	Exit	Nozzle	Boiler	Boiler	Exit	quality,	Btu/hr	rate, W _h ,	Inlet,	Exit,
		lbm/hr	inlet,	exit,	plenum,	inlet,	inlet,	exit,	plenum,			lbm/hr	${f T_{hi}}$	T _{he}
			T _{ni}	T _{be}	${ m T}_{ m bp}$	P _{ni}	P _{bi}	P _{be}	P _{bp}					
20	161	79.9	233.0	227.3	232.0	75.3	46.6	44.2	45	Liquid		8140	231.9	232.0
	162	79.6	232.0	228.5	233.0	60.3	29.1	27.0	27.8	Liquid	0.08×10 ³	8120	233.3	233.2
	163	80.5	232.2	226.7	230.8	63.6	22.1	20.9	21.2	0.01	.8	8140	233.7	233.6
	164	80.2	230.0	214.5	221.5	62.3	18.6	17.4	17.6	.08	6	8140	231.4	230.7
	165	80.8	227.5	195.7	204.0	60.1	15.0	12.4	12.7	. 21	15	8140	233.2	231.5
	166	79.6	227.5	183.5	193.0	58.5	14.1	9.6	10.0	. 32	21	8160	233.3	230.7
	167	80.2	226.0	168.5	176.5	59.3	13.2	6.8	6.9	. 33	22	8160	235.3	232.6
	168	80.2	225.0	160.3	167.8	58.2	13.1	5.6	5.8	.39	26	8160	234.6	231.5
	169	80.2	224.0	141.5	144.0	58.5	12.8	3.3	2.9	. 44	29	8150	233.5	230.0
21	170	79.9	230.5	255.3	260.5	80.3	52.7	49.8	51	Liquid	2.4×10 ³	8040	260.2	260.0
	171	79.9	229.0	255.0	260.8	72.7	43.4	41.8	42.7	Liquid	2.6	8040	260.7	260.3
	172	80.5	223.5	242.0	249.5	61.4	30.2	28.7	29.5	0.04	5	8050	260.0	259.4
	173	80.2	229.0	213.3	221.5	62.7	20.2	17.1	17.5	. 19	14	8040	262.3	259.7
	174	80.5	230.0	193.0	204.0	61.0	17.3	12.3	12.3	.40	30	8020	265.0	261.3
	175	80.2	228.0	182.0	191.0	59.9	17.4	9.2	9.5	. 49	35	1	264.3	260.0
	176	80.5	229.3	167.5	174.5	61.2	17.2	6.4	6.4	. 51	36		265.0	260.5
	177	80.5	227.6	147.7	146.5	61.2	17.1	4.1	3. 2	. 54	38	*	266.0	261.4
22	178	79.3	234.0	289.0	291. 2	92.0	67.0		65	Liquid	4.6×10 ³	7980	291.6	291.0
22	179	79.6	235.5	285.5	286.2	80.9	55.2		53.5	0.02	5, 6	7960	290.7	290.0
	180	79.9	236.0	264.0	267.0	67.3	39.8	38.6	39.6	.10	18	7980	292.3	290.2
	181	a ₈₀	234	234.5	240	66.0	27.6	23.9	24.5	.45	34	8000	294.8	290.6
	182	79.6	230.0	216.0	222.0	63.0	23.7	17.0	17.5	.60	46	8020	294.4	288.8
	183	80.5	230.0	187.5	190.5	63.3	21.5	8.8	9. 2	.75	56	8020	295.4	288.6
	184	80.2	231.5	171.0	168.8	62.0	21.3	5.7	5.7	. 79	58	8000	297.3	290.2
	185	79.3	242.0	159.0	150.0	62.2	21.7	4.7	3.3	.83	59	8020	298.2	290.8
23	100	80.2	265.5	262.0	265.3	89.8	64.8		63.7	Liquid		8020	265.3	265.1
23	186					77.6	52.3	49.6	50.3	Liquid		8040	265.8	265.8
	187	79.6	266.5	262.0	265.8					Liquia 0	0.8×10 ³	8040	267.4	267.3
	188	80.2	262.3	262.5	267.3	78.7	42.1	40.3	41.6	0.03	2	8020	264.0	263.7
	189	79.9	258.7	255.3	260.5	73.2	35.8	34.2	35.2	. 22	15	8040	261.0	259.2
	190	79.9	253.5	228	236.3	67.4	24.2	22.4	23.0		23			259. 2 259. 2
	191	79.9	254.0	223.3	221.8	66.0	20.4	17.2	17.5	. 34	I	8040	262.0	
	192	80.8	255.0	192.3	198.0	66.2	18.1	10.7	11.0	. 49	34	8030	265.0	260.8
	193	79.9	252.5	173.0	177.3	66.0	17.5	6.7	6.7	. 54	37	8030	265.0	260.5
	194	79.0	253.5	151.5	148.5	64.0	17.0	3.8	3. 2	.61	40	8020	263.5	258.6

^aDrifting, ±8 percent.

TABLE III. - Continued. EXPERIMENTAL BOILING DATA WITH 1.78-INCH (4.52-CM) PLUG

(a) Concluded. U.S. customary units

Series	Run				Во	iling flui	d			•	Heating	Н	eating flui	id
		Flow	Te	mperature,	°F		Pressu	re, psia		Exit	rate, Q,	Flow	Tempera	iture, ^O F
		rate, W _b , lbm/hr	Nozzle inlet, T _{ni}	Boiler exit, T _{be}	Exit plenum, T _{bp}	Nozzle inlet, P _{ni}	Boiler inlet, P _{bi}	Boiler exit, P _{be}	Exit plenum, Pbp	quality, ^x e	Btu/hr	rate, W _h , lbm/hr	Inlet, T _{hi}	Exit, T _{he}
24	195	79.6	265.0	286.0	288.2	116.0	91.3		89.6	Liquid	1.9×10 ³	7990	289.3	289.0
	196	79.9	268.0	285.5	289.2	101.2	76.0		74.6	Liquid	1.8	8010	290.3	290.0
	197	b _{79.6}	269.5	285.0	289.7	91.5	66.2		64.8	Liquid	1.7	8010	290.6	290.3
	198	c ₇₉	268.5	279.3	286.2	81.5	55.2		53.8	0.04	4	8010	290.5	290.0
	199	79.3	263.5	266.0	271.3	76.7	44.0	42.8	43.7	.12	9.6	8030	290.6	289.4
	200	b _{80.5}	260.0	249	259.8	76.0	35.6	34.0	34.6	. 30	22	7990	293.2	290.5
	201	^b 80.2	253.5	229	240.0	69.4	28.4	24.2	25.0	. 46	34	[294.8	290.6
	202	81.1	252.0	210	221.0	67.3	24.2	17.1	17.5	.66	49		295.4	289.5
	203	80.2	249.5	187.5	195.0	64.0	22. 2	9.7	10.1	. 79	57	♥	296.5	289.5
	204	80.2	250.0	171	176.5	64.1	22.0	6.6	6.6	. 83	60	7970	297.8	290.5
	205	79.3	250.0	154	148.7	64.1	21.9	4.8	3.3	. 85	61	7990	298.2	290.8
25	206	80.2	262.0	317.5	318.0	124.5	97.9		96.2	Liquid	4.8×10 ³	7960	321.4	320.7
	207	79.6	265.5	313.5	315.0	109.5	83.8		82.6	0.07	9	7950	322.5	321.5
į	208	79.9	261.0	307	308.4	101.5	75.3		74.7	. 06	8	7970	320.8	319.8
	209	79.6	270.0	293	295.0	90.8	64.3		63.6	. 20	17	7980	322.6	320.6
	210	d _{80.2}	258.5	275	282.0	77.0	50.0	48.2	49.3	. 35	29	7930	324.8	321.4
	211	^d 79.6	256.5	252.5	261.5	75.7	38.8	34.8	35.5	.64	48	7930	326.2	320.4
	212	e _{79.9}	252.5	232	239.7	71.2	31.5	24.0	24.8	. 83	62	7920	326.5	319.0
	213	79.6	254.0	213	221.0	67.1	27.7	16.7	17.3	. 92	68	7960	326.7	318.5
	214	79.6	254.7	231	245.0	66.8	26.7	14.3	14.7	. 92	68	7960	328.2	320.0
	215	80.2	250.7	230	246.5	66.8	25.9	11.1	12.0	.90	67	7930	327.5	319.5
	216	80.2	250.0	228	244.5	66.7	25.4	8.1	9.3	.92	68	7930	327.8	319.5
	217	79.9	250.0	232	246.5	66.3	25.2	5.7	6.7	.92	66	7930	328.7	320.7
	218	79.9	247.5	206 to 219	239.0	67.2	25.3	4.5	4.9	. 94	68	7950	328.5	320.2
	219	79.9	249.5	210 to 224	237.3	69.1	25.1	4.2	3.4	. 96	70	7950	328.5	320.0
26	220	87.1	260.5	157.7	147.0	75.8	21.2	4.7	3.2	0.73	50×10 ³	1460	352.0	319.4
~	221	86.2	262.0	159	148.0	77. 2	24.2	4.9	-:-	.85	65	2720	349.5	326.7
	222	86.4	265.0	~173	221.0	77.3	25.8	4.3		.93	71	3860	350.0	332.3
	223	84.9	267.5	240.3	248	77. 2	26.3	4.4	♦	.92	69	4950	350.2	336.6
	224	d _{84.6}	266.0	255.7	265	77. 2	27.2	4.7	3.1	.95	72	6840	349.2	339.2

 $^{^{}b}\!Oscillations$ of ± 5 to ± 6 percent.

^cDrifting, ±8 percent. ^dOscillations of ±7 to ±9 percent.

^eOscillations of ±5 percent.

TABLE III. - Continued. EXPERIMENTAL BOILING DATA WITH 1.78-INCH (4.52-CM) PLUG
(b) SI units

Series	Run	Boiling fluid										Heating fluid		
		Flow	Temperature, K			Pressure, kN/m ² abs				Exit	rate, Q,	Flow	Temperature, K	
		rate, W _b ,	Nozzle inlet,	Boiler	Exit	Nozzle inlet,	Boiler inlet,	Boiler exit,	Exit plenum,	quality, *e	kW	rate, W _h , kg/sec	Inlet, T _{hi}	Exit, T _{he}
		kg/sec	T _{ni}	T _{be}	T _{bp}	P _{ni}	P _{bi}	P _{be}	P _{bp}			vR\ sec	""	ne
20	161	10.07×10 ⁻³	384.8	381.7	384.3	519	321	305	310	Liquid		1.026	384. 2	384.3
	162	10.03	384.3	382.3	384.8 383.6	416 438	201 152	186 144	192 146	Liquid 0.01	0.02	1.023 1.026	385.0 385.2	384.9 385.2
	163 164	10.14 10.11	384.4 383.2	381.3 374.6	378.4	430	128	120	121	.08	1.7	1.026	383.9	383.6
	165	10.11	381.8	364.1	368.7	414	103	86	88	. 21	4.4	1.026	384.9	384.0
1	166	10.18	381.8	357.3	362.6	403	97	66	69	. 32	6.2	1.028	385.0	383.6
ĺ	167	10.11	380.9	349.0	353.4	409	91	47	48	. 33	6.4	1.028	386.1	384.6
	168	10.11	380.4	344.4	348.6	401	90	39	40	. 39	7.6	1.028	385.7	384.0
	169	10.11	379.8	334.0	335.4	403	88	23	20	. 44	8.5	1.027	385.1	383. 2
21	170	10.07×10 ⁻³	383.4	397. 2	400.1	554	363	343	352	Liquid	0.70	1.013	399.9	399.8
	171	10.07	382.6	397.1	400.3	501	299	288	294	Liquid	. 76	1.013	400.2	400.0
	172	10.14	379.6	389.8	394.1	423	208	198	203	0.04	1.5	1.014	399.8	399.5
	173	10.11	382.6	373.9	378.4	432	139	118	121	. 19	4.1	1.013	401.1	399.7
	174	10.14	383.2	362.6	368.7	421	119	85	85	. 40	8.8	1.011	402.6	400.6
	175	10.11	382.1	356.5	361.5	413	120	63	66	. 49	10.3	i	402.2	399.8
	176	10.14	382.8	348.4	352.3	422	119	44	44	. 51	10.5	Ţ	402.6	400.1
	177	10.14	381.8	337.4	336.8	422	118	28	22	. 54	11.1	•	403. 2	400.6
22	178	9.99×10 ⁻³	385.4	415.9	417.2	634	462		448	Liquid	1.3	1.005	417.4	417.1
	179	10.03	386.2	414.0	414.4	558	381		369	0.02	1.6	1.003	416.9	416.5
	180	10.07	386.5	402.1	403.7	464	274	266	273	. 10	5.3	1.005	417.8	416.6
	181	^a 10.1	385.4	385.7	388.7	455	190	165	169	. 45	10.0	1.008	419.2	416.8
	182	10.03	383.2	375.4	378.7	434	163	117	121	.60	13.5	1.011 1.011	418.9	415.8
	183	10.14	383.2	359.6	361.2	436	148	61	63	. 75	16.4	1.011	419.5 420.6	415.7
	184 185	10.11 9.99	384.0 389.8	350.4 343.7	349.2 338.7	428 429	147 150	39 32	39 23	. 79 . 83	17.0 17.3	1.008	420.6	416.6 416.9
		-3	400.0	400.0	400.0		445	ļ	400	T : 2		1 011	409.0	409 7
23	186	10.11×10 ⁻³	402, 9	400.9	402.8	619	447	249	439	Liquid		1.011	402.8	402.7
	187	10.03	403.4	400.9	403.1	535	361	342	347	Liquid 0	0.2	1.013 1.013	403.1 403.9	403.1 403.9
	188 189	10.11	401.1 399.1	401.2 397.2	403.9 400.1	543 505	290 247	278 236	287 243	.03	.6	1.013	403.9	403.9
l i	190	10.07 10.07	396.2	382.1	386.7	465	167	154	159	. 22	4.4	1.011	400.4	399.4
	190	10.07	396. 2	379.4	378.6	455	141	119	121	. 34	6.7	1.013	400.9	399.4
	192	10.07	397.1	362.2	365.4	456	125	74	76	. 49	10	1.012	402.6	400.3
]]	193	10.07	395.6	351.5	353.9	455	121	46	46	. 54	11	1.012	402.6	400.1
	194	9.95	396.2	339.6	337.9	441	117	26	22	.61	12	1.011	401.8	399.1

^aDrifting, ±8 percent.

TABLE III. - Concluded. EXPERIMENTAL BOILING DATA WITH 1.78-INCH (3.52-CM) PLUG

(b) Concluded. SI units

Series	Run		Boiling fluid										Heating fluid		
		Flow rate, W _b , kg/sec	Temperature, K			Pressure, kN/m ² abs			Exit	rate, Q,	Flow	Temperature, K			
			Nozzle inlet, T _{ni}	Boiler exit, T _{be}	Exit plenum, ^T bp	Nozzle inlet, P _{ni}	Boiler inlet, P _{bi}	Boiler exit, P _{be}	Exit plenum, P _{bp}	quəlity, *e	kW	rate, W _h , kg/sec	Inlet, T _{hi}	Exit, T _{he}	
24	195 196 197 198 199 200 201 202 203	10.03×10 ⁻³ 10.07 b10.0 c10.0 9.99 b10.1 b10.1 10.22 10.11	402.6 404.3 405.1 404.6 401.8 399.8 396.2 395.4 394.0	414.3 414.0 413.7 410.6 403.2 393.7 382.6 372.1 359.6	415.5 416.1 416.3 414.4 406.1 399.7 388.7 378.2 363.7	800 698 631 562 529 524 479 464	630 524 456 381 303 245 196 167 153	 295 234 167 118 67	618 514 447 371 301 239 172 121	Liquid Liquid Liquid 0.04 .12 .30 .46 .66	0.6 .5 .5 1.2 2.8 6.4 10 14	1.007 1.009 1.009 1.009 1.012 1.007	416.1 416.7 416.8 416.8 416.8 418.3 419.2 419.5 420.1	415.9 416.5 416.7 416.5 416.2 416.8 416.9 416.2 416.2	
	204 205	10.11 9.99	394.3 394.3	350.4 340.9	353.4 338	442 442	152 151	46 33	46 23	. 83 . 85	18 18	1.004	420.8 421.1	416.8 416.9	
25	206 207 208 209 210 211 212 213 214 215 216 217 218	10.11×10 ⁻³ 10.03 10.07 10.03 d10.1 d10.0 e10.1 10.03 10.03 10.01 10.07 10.07	400.9 402.9 400.4 405.4 399.0 395.7 396.5 396.9 394.7 394.3 394.3 392.9	431.8 429.6 425.9 418.2 408.2 395.7 384.3 373.7 383.7 383.2 382.1 384.3 369.8 to 377.1 372.1 to 379.8	432.1 430.4 426.7 419.3 412.1 400.7 388.6 378.2 391.5 392.3 391.2 392.3 388.2	858 755 700 626 531 522 491 463 461 460 457 463	675 578 519 443 345 268 217 191 184 179 175 174 174	332 240 165 115 99 77 56 39 31	663 570 515 439 340 245 171 119 101 83 64 46 34	Liquid 0.07 .06 .20 .35 .64 .83 .92 .92 .90 .92 .92	1. 4 2. 6 2. 3 5. 0 8. 5 14 18 20 20 20 20 20 21	1.003 1.002 1.004 1.005 .999 .998 1.003 1.003 .999 .999 1.002	433.9 434.6 433.6 434.6 435.8 436.6 436.8 436.9 437.7 437.3 437.5 438.0 437.9	433.6 434.0 433.1 433.5 433.9 433.4 432.6 432.3 433.2 432.9 432.9 433.6 433.3	
26	220 221 222 223 224	10.97×10 ⁻³ 10.86 10.89 10.70 d _{10.7}	400.1 400.9 402.6 404.0 403.2	343.0 343.7 351.5 388.9 397.4	337.1 337.6 378.2 393.2 402.6	523 532 533 532 532	146 167 178 181 188	32 34 30 30 32	22 22 22 22 21	0.73 .85 .93 .92	15 19 21 20 21	0.184 .343 .486 .624 .862	450.9 449.6 449.8 449.9 449.4	432.8 436.9 440.0 442.4 443.8	

bOscillations of ±5 to ±6 percent.
CDrifting, ±8 percent.
dOscillations of ±7 to ±9 percent.

eOscillations of ±5 percent.

Figure 1. - Schematic diagram of test apparatus.

Figure 2. - Diagram of test section and plenum chambers, showing instrumentation. (Dimensions are in inches (cm).)

(a) Diagram of nozzle assembly, showing dimensions in inches (mm).

Figure 3. - Inlet nozzle.

Figure 4. - Inlet end of test section, showing inlet nozzle and two different-length inlet-region plugs.

Figure 5. - Comparison of exit-plenum temperature and pressure measurements for equilibrium two-phase conditions.

Figure 6. - Overall flow coefficient of inlet nozzle as function of throat Reynolds number.

Figure 7. - Nozzle inlet-to-throat flow coefficient with vaporiation (eqs. (4) and (5)) as function of throat Reynolds number.

Figure 8. - General performance of boiler with short plug (1, 78 in. or 4,52 cm) at nozzle-inlet temperature of ~230 $^{\circ}$ F (384 K). Boiling-fluid flow rate, ~80 pounds mass per hour (0,010 kg/sec); heating-fluid flow rate, ~8000 pounds mass per hour (1,0 kg/sec).

Figure 8, - Concluded,

Figure 9. - General performance of boiler with short plug (1.78 in. or 4.52 cm) at nozzie-inlet temperature of ~260° F (400 K). Boiling-fluid flow rate, ~80 pounds mass per hour (0.010 kg/sec); heating-fluid flow rate, ~8000 pounds mass per hour (1.0 kg/sec).

r"

(c) Heating-fluid exit temperature, \sim 320° F (433 K). Tailed symbols denote boiling-fluid flow rate oscillations of \pm 5 percent or greater.

Figure 9. - Concluded.

Figure 10. - General performance of boiler with short plug (1.78 in. or 4.52 cm) for variable heating-fluid flow rate. Boiling-fluid flow rate, ~85 pounds mass per hour (0.011 kg/sec); nozzle-inlet temperature, ~265° F (403 K); heating-fluid inlet temperature, ~350° F (450 K). Tailed symbols denote boiling-fluid flow rate oscillations of ±5 percent or greater.

Figure 11. - Boiler performance as function of boiling-fluid flow rate at boiling-fluid inlet temperature of ~80° F (300 K). Heating-fluid flow rate, ~10 000 pounds mass per hour (1.26 kg/sec); boiler-exit pressure, ~16.5 psia (114 kN/m²); 10-inch (25.4-cm) plug.

Figure 12. - Boiler performance as function of boiling-fluid flow rate at boiling-fluid inlet temperature of ~170° F (350 K). Heating-fluid flow rate, ~10 000 pounds mass per hour (1.26 kg/sec); heating-fluid inlet temperature, ~350° F (450 K); 10-inch (25.4-cm) plug.

Figure 13. - Boiler performance as function of boiling-fluid flow rate for flashing in inlet nozzle. Nozzle-inlet temperature, 231° to 270° F (384 to 405 K); boiler-exit pressure, \sim 16.5 psia (114 kN/m²); heating-fluid flow rate, \sim 10 000 pounds mass per hour (1.26 kg/sec); 10-inch (25.4-cm) plug.

Figure 14. - Boiler performance as function of boiling-fluid flow rate for boiling-fluid inlet temperature of ~80° F (300 K). Heating-fluid flow rate, ~4900 pounds mass per hour (0.62 kg/sec); heating-fluid inlet temperature, ~350° F (450 K); 10-inch (25.4-cm) plug.

Figure 15. - Comparison of frictional pressure drop calculated from experimental data with calculated values for a boiler of the same dimensions but with no inserts (ref. 9).

Figure 16. - Ratio of effective mean boiling-side heat-transfer coefficient to that for all-liquid turbulent flow in plain tube as function of quality-pressure parameter; comparison with plain-tube boiling (ref. 9).

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. 20546

OFFICIAL BUSINESS

FIRST CLASS MAIL

SPACE ADMINISTRATION

OBU OJI 58 SI 3DS 70033 00903 CIR FORCE WEAPURS LABORATURY /WEDL/ KIRTURED AFB, NEW MEXICO 87117

THE E. LOW SULMAN, CHIEF, TECH. LIBRARY

POSTMASTER: If I

If Undeliverable (Section 158 Postal Manual) Do Not Retui

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

— NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES! Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION DIVISION

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546