

WHAT IS CLAIMED IS:

- 1 1. A method of calculating probability of collision by birds within a wind park, the
2 method comprising:
 - 3 modeling a wind turbine to create a wind-turbine model;
 - 4 modeling a challenged bird to create a challenged-bird model;
 - 5 modeling a wind park to create a wind-park model, the wind park comprising at least one
6 of the wind turbine;
 - 7 calculating a probability of wind-turbine collision by the challenged bird; and
 - 8 wherein the step of calculating comprises using the wind-turbine model, the challenged-
9 bird model, and the wind-park model.
- 1 2. The method of claim 1, wherein the step of modeling the wind turbine comprises:
 - 2 dimensionally modeling the wind turbine; and
 - 3 inputting a speed of a rotor of the wind turbine.
- 1 3. The method of claim 2, wherein the step of dimensionally modeling the wind
2 turbine comprises:
 - 3 inputting a blade depth of the rotor;
 - 4 inputting a blade width of the rotor; and
 - 5 modeling a monopole of the wind turbine.

1 4. The method of claim 1, wherein the step of modeling the challenged bird
2 comprises:

3 modeling the challenged bird as a curved surface; and
4 wherein the challenged-bird model assumes that the challenged bird enters a plane of the
5 rotor of the wind turbine with a belly of the challenged bird facing a hub of the rotor.

1 5. The method of claim 1, wherein the step of modeling the wind park comprises
2 modeling a row of the plurality of the wind turbine.

1 6. The method of claim 5, wherein the step of modeling the wind park comprises
2 determining a number of rows in the wind park.

1 7. The method of claim 5, wherein the step of modeling the wind park comprises
2 determining an inter-wind-turbine distance.

1 8. The method of claim 1, wherein the step of calculating the probability of collision
2 by the challenged bird comprises:

3 calculating a worst-case collision probability per row by the challenged bird; and
4 calculating a best-case collision probability per row by the challenged bird.

1 9. The method of claim 8, wherein:
2 the step of calculating the worst-case collision probability per row by the challenged bird
3 is performed at a plurality of challenged-bird flight elevations; and
4 the step of calculating the best-case collision probability per row by the challenged bird is
5 performed at the plurality of challenged-bird flight elevations.

1 10. The method of claim 1, wherein the step of calculating the probability of collision
2 by the challenged bird comprises:
3 calculating a worst-case collision probability by the challenged bird for the wind park;
4 and
5 calculating a best-case collision probability by the challenged bird for the wind park.

1 11. The method of claim 10, wherein:

2 $P_{wc} = 1 - (1 - P_{wcr})^{row}$;
3 P_{wc} is the worst-case collision probability by the challenged bird for the wind park;
4 P_{wcr} is the worst-case collision probability by the challenged bird per row; and
5 row is the number of rows in the wind park.

1 12. The method of claim 11, wherein P_{wc} and P_{wcr} are each a function of the
2 challenged-bird flight elevation.

- 1 13. The method of claim 1, wherein the challenged bird is modeled as an attractor.
- 1 14. The method of claim 1, wherein the challenged bird is modeled as an avoider.
- 1 15. The method of claim 1, wherein a non-linear flight path of the challenged bird is
2 simulated by adjusting a flight speed of the challenged bird.

1 16. An article of manufacture for calculating probability of collision by birds within
2 a wind park, the article of manufacture comprising:

3 at least one computer readable medium; and
4 processor instructions contained on the at least one computer readable medium,
5 the processor instructions configured to be readable from the at least one computer readable
6 medium by at least one processor and thereby cause the at least one processor to operate as to:

7 model a wind turbine to create a wind-turbine model;
8 model a challenged bird to create a challenged-bird model;
9 model a wind park to create a wind-park model, the wind park comprising
10 at least one of the wind turbine;
11 calculate a probability of wind-turbine collision by the challenged bird;
12 and
13 wherein the calculation comprises using the wind-turbine model, the
14 challenged-bird model, and the wind-park model.

1 17. The article of claim 16, wherein the processor instructions cause the at least one
2 processor to:
3 dimensionally model the wind turbine; and
4 use a speed of a rotor of the wind turbine.

1 18. The article of claim 17, wherein the processor instructions are configured to cause
2 the at least one processor to:

3 use a blade depth of the rotor;

4 use a blade width of the rotor; and

5 model a monopole of the wind turbine.

1 19. The article of claim 16, wherein the processor instructions are configured to cause
2 the at least one processor to:

3 model the challenged bird as a curved surface; and

4 wherein the challenged-bird model assumes that the challenged bird enters a plane of the
5 rotor of the wind turbine with a belly of the challenged bird facing a hub of the rotor.

1 20. The article of claim 16, wherein the processor instructions are configured to cause
2 the at least one processor to model a row of the plurality of the wind turbine.

1 21. The article of claim 20, wherein the wind-park model comprises a number of rows
2 in the wind park.

1 22. The article of claim 20, wherein the wind-park model comprises at least one inter-
2 wind-turbine distance.

1 23. The article of claim 16, wherein the processor instructions are configured to cause
2 the at least one processor to:

3 calculate a worst-case collision probability per row by the challenged bird; and
4 calculate a best-case collision probability per row by the challenged bird.

1 24. The article of claim 23, wherein the processor instructions are configured to cause
2 the at least one processor to:

3 calculate the worst-case collision probability per row by the challenged bird at a plurality
4 of challenged-bird flight elevations; and
5 calculate the best-case collision probability per row by the challenged bird at the plurality
6 of challenged-bird flight elevations.

1 25. The article of claim 16, wherein the processor instructions are configured to cause
2 the at least one processor to:

3 calculate a worst-case collision probability by the challenged bird for the wind park; and
4 calculate a best-case collision probability by the challenged bird for the wind park.

1 26. The article of claim 25, wherein:

2 $P_{wc} = 1 - (1 - P_{wcr})^{row};$

3 P_{wc} is the worst-case collision probability by the challenged bird for the wind park;

4 P_{wcr} is the worst-case collision probability by the challenged bird per row; and

5 *row* is the number of rows in the wind park.

1 27. The article of claim 26, wherein P_{wc} and P_{wcr} are each a function of the
2 challenged-bird flight elevation.

1 28. The article of claim 16, wherein the challenged bird is modeled as an attractor.

1 29. The article of claim 16, wherein the challenged bird is modeled as an avoider.

1 30. The article of claim 16, wherein the processor instructions are configured to cause
2 the at least one processor to operate so as to simulate a non-linear flight path of the challenged
3 bird by adjusting a flight speed of the challenged bird.

1 31. A method of calculating probability of collision by animals with at least one
2 structure, the method comprising:

3 modeling a structure of the at least one structure to create a structure model;

4 modeling a challenged animal to create a challenged-animal model;

5 modeling a structure area to create a structure-area model, the structure area comprising
6 at least one of the at least one structure;

7 calculating a probability of structure collision by the challenged animal; and

8 wherein the step of calculating comprises using the structure model, the challenged-
9 animal model, and the structure-area model.

1 32. The method of claim 31, wherein the step of modeling the structure comprises
2 dimensionally modeling the structure.

1 33. The method of claim 31, wherein the step of modeling the structure area
2 comprises modeling a row of the at least one structure.

1 34. The method of claim 33, wherein the step of modeling the structure area
2 comprises determining a number of rows in the structure area.

1 35. The method of claim 31, wherein the step of calculating the probability of
2 collision by the challenged animal comprises:

3 calculating a worst-case collision probability per row by the challenged animal; and

4 calculating a best-case collision probability per row by the challenged animal.

1 36. The method of claim 31, wherein the step of calculating the probability of
2 collision by the challenged animal comprises:

3 calculating a worst-case collision probability by the challenged animal for the structure
4 area; and

5 calculating a best-case collision probability by the challenged animal for the structure
6 area.

1 37. The method of claim 36, wherein:

2 $P_{wc} = 1 - (1 - P_{wcr})^{row};$

3 P_{wc} is the worst-case collision probability by the challenged animal for the structure area;

4 P_{wcr} is the worst-case collision probability by the challenged animal per row; and

5 row is the number of rows in the structure area.

1 38. An article of manufacture for calculating probability of collision by animals
2 within a structure area, the article of manufacture comprising:
3 at least one computer readable medium; and
4 processor instructions contained on the at least one computer readable medium,
5 the processor instructions configured to be readable from the at least one computer readable
6 medium by at least one processor and thereby cause the at least one processor to operate as to:
7 model a structure to create a structure model;
8 model a challenged animal to create a challenged-animal model;
9 model the structure area to create a structure-area model, the structure area
10 comprising at least one of the at least one structure;
11 calculate a probability of structure collision by the challenged animal;
12 and
13 wherein the calculation comprises using the structure model, the
14 challenged-animal model, and the structure-area model.

1 39. The article of claim 38, wherein the processor instructions cause the at least one
2 processor to dimensionally model the structure.

1 40. The article of claim 38, wherein the processor instructions are configured to cause
2 the at least one processor to model the challenged animal as a curved surface.

1 41. The article of claim 38, wherein the processor instructions are configured to cause
2 the at least one processor to model a row of the at least one structure.

1 42. The article of claim 41, wherein the structure-area model comprises a number of
2 rows in the structure area.

1 43. The article of claim 38, wherein the processor instructions are configured to cause
2 the at least one processor to:
3 calculate a worst-case collision probability per row by the challenged animal; and
4 calculate a best-case collision probability per row by the challenged animal.

1 44. The article of claim 38, wherein the processor instructions are configured to cause
2 the at least one processor to:
3 calculate a worst-case collision probability by the challenged animal for the structure
4 area; and
5 calculate a best-case collision probability by the challenged animal for the structure area.

1 45. The article of claim 44, wherein:
2 $P_{wc} = 1 - (1 - P_{wcr})^{row}$;
3 P_{wc} is the worst-case collision probability by the challenged animal for the structure area;
4 P_{wcr} is the worst-case collision probability by the challenged animal per row; and
5 row is the number of rows in the structure area.