

UNIT 8: Exponentials and logarithms Exponential functions and natural logarithms (6.1) (6.2) (6.3) (6.4) (6.5) (6.6) (6.7)

Teaching time 12 hours

Return to overview

SPECIFICATION REFERENCES

- Know and use the function a^x and its graph, where a is positive Know and use the function e^x and its graph
- Know that the gradient of e^{kx} is equal to ke^{kx} and hence understand why the exponential model is suitable in many applications
- Know and use the definition of $\log_a x$ as the inverse of a^x , where a is positive and $x \ge 0$ Know and use the function $\ln x$ and its graph Know and use $\ln x$ as the inverse function of e^x
- **6.4** Understand and use the laws of logarithms:

$$\begin{split} \log_a x + \log_a y &= \log_a (xy) \\ \log_a x - \log_a y &= \log_a \left(\frac{x}{y}\right) \\ k \log_a x &= \log_a x^k \text{(including, for example, } k = -1 \text{ and } = -\frac{1}{2}) \end{split}$$

- 6.5 Solve equations of the form $a^x = b$
- 6.6 Use logarithmic graphs to estimate parameters in relationships of the form $y = ax^n$ and $y = kb^x$, given data for x and y
- 6.7 Understand and use exponential growth and decay; use in modelling (examples may include the use of e in continuous compound interest, radioactive decay, drug concentration decay, exponential growth as a model for population growth); consideration of limitations and refinements of exponential models

PRIOR KNOWLEDGE

Covered so far

• Indices

GCSE (9-1) in Mathematics at Higher Tier

R16 Compound interest

KEYWORDS

Exponential, exponent, power, logarithm, base, initial, rate of change, compound interest

AS Mathematics: Pure Mathematics

OBJECTIVES

By the end of the sub-unit, students should:

- know and be able to use the function a^x and its graph, where a is positive;
- know and be able to use the function e^x and its graph;
- know that the gradient of e^{kx} is equal to ke^{kx} and hence understand why the exponential model is suitable in many applications;
- know and be able to use the definition of $\log_a x$ as the inverse of a^x , where a is positive and $x \ge 0$;
- know and be able to use the function ln x and its graph;
- know and be able to use $\ln x$ as the inverse function of e^x ;
- understand and use the laws of logarithms:

$$\log_a x + \log_a y = \log_a (xy)$$

$$\log_a x - \log_a y = \log_a \left(\frac{x}{y}\right)$$

$$k \log_a x = \log_a x^k \text{ (including, for example, } k = -1 \text{ and } k = -\frac{1}{2})$$

- be able to solve equations of the form $a^x = b$;
- be able to use logarithmic graphs to estimate parameters in relationships of the form $y = ax^n$ and $y = kb^x$, given data for x and y;
- understand and be able to use exponential growth and decay in modelling, giving consideration to limitations and refinements of exponential models.

TEACHING POINTS

When sketching the graph of a^x students should understand the difference in shape between a < 1 and a > 1. Explain to students that e^x is a special case of a^x . Graphs of the function e^x should include those in the form $y = e^{ax+b} + c$.

Students should realise that when the rate of change is proportional to the *y*-value, an exponential model should be used.

An ability to solve equations of the form $e^{ax+b} = p$ and $\ln(ax+b) = q$ is expected.

Students can use the laws of indices to prove the laws of logarithms and show that $\log_a a = 1$.

In solving equations students may use the change of base formula. Solving equations questions may be in the form $2^{3x-1} = 3$.

Students should be able to plot $\log y$ against $\log x$ and obtain a straight line where the intercept is $\log a$ and the gradient is n and plot $\log y$ against x to obtain a straight line where the intercept is $\log k$ and the gradient is $\log k$. There should be discussion about why this is an appropriate model and why it is only an estimate.

Contexts for modelling should could include the use of e in continuous compound interest, radioactive decay, drug concentration decay, exponential growth as a model for population growth. Students should be familiar with terms such as initial, meaning when t = 0. They may need to explore the behaviour for large values of t or to consider whether the range of values predicted is appropriate. Consideration of a second improved model may be required.

OPPORTUNITIES FOR REASONING/PROBLEM SOLVING

Students can look at different models for population growth using the exponential function.

Use graphing software to investigate varying the parameters of a population model.

AS Mathematics: Pure Mathematics

COMMON MISCONCEPTIONS/EXAMINER REPORT QUOTES

Errors seen in exam questions where students have to sketch exponential curves include: stopping the curve at x = 0; getting the wrong y-intercept; and believing the curve levels off to y = 1 for x < 0.

When using laws of logs to answer proof or 'show that' questions, students must show all the steps clearly and not have jumps in their working out.