Óptica xeométrica

Método e recomendacións

♦ PROBLEMAS

Espellos

- 1. Un espello ten 1,5 de aumento lateral cando a cara dunha persoa está a 20 cm dese espello.
 - a) Razoa se ese espello é plano, cóncavo ou convexo.
 - b) Debuxa o diagrama de raios.
 - c) Calcula a distancia focal do espello.

(A.B.A.U. extr. 18)

Rta.: c) f = -60 cm

Lentes

- 1. Unha coleccionista de moedas utiliza unha lupa de distancia focal 5 cm para examinalas polo miúdo.
 - a) Calcula a distancia á que ten que situar as moedas respecto da lupa se quere observalas cun tamaño dez veces maior.
 - b) Represente aproximadamente o correspondente diagrama de raios, indicando as posicións e as características do obxecto e da imaxe.

(A.B.A.U. ord. 24)

Rta.: a) s = -4.5 cm.

- 2. Un obxecto de 4 cm de altura está situado 20 cm diante dunha lente delgada diverxente de distancia focal 12 cm.
 - a) Determina a posición e o tamaño da imaxe.
 - b) Debuxa un esquema (marcha de raios) coa posición do obxecto, a lente e a imaxe.

(A.B.A.U. extr. 23)

Rta.: a) s' = -7.5 cm; y' = 1.5 cm

- 3. Situamos un obxecto de 2 cm de altura a 15 cm dunha lente de +5 dioptrías.
 - a) Debuxa un esquema (marcha de raios) coa posición do obxecto, a lente e a imaxe, e indica o tipo de lente.
 - b) Calcula a posición e o aumento da imaxe.

(A.B.A.U. ord. 23)

Rta.: a) converxente; b) y' = -60 cm, $A_L = 4.0$

- 4. Un obxecto de 4,0 cm de altura está situado a 20,0 cm dunha lente diverxente de 20,0 cm de distancia focal.
 - a) Calcula a potencia da lente e a altura da imaxe.
 - b) Realiza o diagrama de raios e indica as características da imaxe.

(A.B.A.U. extr. 21)

Rta.: a) P = -5,00 dioptrías; y' = 2,0 cm

♦ CUESTIÓNS

• Lentes.

1. A que distancia dunha lente delgada converxente de focal 10 cm se debe situar un obxecto para que a súa imaxe real se forme á mesma distancia da lente?:

A) 5 cm

- B) 20 cm
- C) 10 cm.

(A.B.A.U. extr. 24)

- 2. Un raio de luz incide dende un medio transparente sobre unha lente semicircular polo seu eixe. Se ao entrar na lente o raio se afasta da normal:
 - A) É imposible.
 - B) A lente está mal construída.
 - C) O medio que rodea a lente ten maior índice de refracción ca esta.

(A.B.A.U. extr. 22)

- 3. A imaxe que se obtén ao situar un obxecto diante dunha lente diverxente a unha distancia igual ao dobre da distancia focal é:
 - A) Virtual, dereita, igual.
 - B) Real, dereita, menor.
 - C) Virtual, dereita, menor.

(A.B.A.U. ord. 22)

- 4. Para obter unha imaxe virtual e dereita cunha lente delgada converxente, de distancia focal f, o obxecto debe estar a unha distancia da lente:
 - A) Menor que *f*.
 - B) Maior que f e menor que 2f.
 - C) Maior que 2f.

(A.B.A.U. extr. 20)

- 5. Sitúase un obxecto a unha distancia de 20 cm á esquerda dunha lente delgada converxente de distancia focal 10 cm. A imaxe que se forma é:
 - A) De maior tamaño, real, dereita.
 - B) De igual tamaño, virtual, invertida.
 - C) De igual tamaño, real, invertida.

(A.B.A.U. ord. 20)

- 6. A distancia focal dun sistema formado por unha lente converxente de 2 dioptrías e outra diverxente de 4,5 dioptrías é:
 - A) 2,5 m.
 - B) -0.65 m.
 - C) -0.4 m.

(A.B.A.U. extr. 19)

- 7. Para aumentar a potencia dunha lente biconvexa simétrica situada no aire deberiamos:
 - A) Aumentar os raios de curvatura e diminuír o índice de refracción do material da lente.
 - B) Diminuír os raios de curvatura e aumentar o índice de refracción do material da lente.
 - C) Aumentar os raios de curvatura sen variar o índice de refracción do material da lente.

(A.B.A.U. ord. 19)

- 8. Disponse dunha lente converxente e quérese obter a imaxe dun obxecto. Debuxa a marcha dos raios para determinar onde debe colocarse o obxecto para que a imaxe sexa:
 - a) Menor, real e invertida.
 - b) Maior, real e invertida.

(A.B.A.U. ord. 17)

♦ LABORATORIO

1. Cos datos das distancias obxecto, *s*, e imaxe, *s*′, dunha lente converxente representados na táboa adxunta:

a) Representa graficamente 1/s' fronte a 1/s.

exp.	1	2	3	4
s (cm)	11,5	12,7	15,4	17,2
<i>s</i> ′ (cm)	56,0	35,5	23,6	20,1

b) Determina o valor da potencia da lente.

(A.B.A.U. extr. 22)

Rta.: b) *P* = 11,3 dioptrías.

2. Medíronse no laboratorio os seguintes valores para a distancia obxecto-imaxe dunha lente converxente:

<i>s</i> (cm)	39,0	41,9	49,3	59,9	68,5
<i>s</i> ′(cm)	64,3	58,6	48,8	40,6	37,8

- a) Explica a montaxe experimental utilizado.
- a) Calcula o valor da potencia da lente.

(A.B.A.U. ord. 21)

3. Na práctica de óptica xeométrica traballas con lentes converxentes e obtés imaxes nunha pantalla variando a distancia entre o obxecto e a lente. Xustifica con diagramas de raios os casos nos que non obtés imaxes na pantalla.

(A.B.A.U. extr. 19)

4. Medíronse no laboratorio os seguintes valores para as distancias obxecto N.º exp. e imaxe dunha lente converxente:

N.° exp, 1 2 3 4 s (cm) 33,9 39,0 41,9 49,3 s (cm) 84,7 64,3 58,6 48,0

Determina o valor da potencia da lente. Estima a súa incerteza.

(A.B.A.U. ord. 18) s' (cm)

s (cm) 50 60 70 90

 Medíronse no laboratorio os seguintes valores para as distancias obxecto e imaxe dunha lente converxente:

Determina o valor da potencia da lente e estima a súa incerteza.

s' (cm) 200 125 95 70

(A.B.A.U. extr. 17)

- 6. Disponse dunha lente converxente e quérese obter a imaxe dun obxecto. Debuxa a marcha dos raios para determinar onde debe colocarse o obxecto para que a imaxe sexa:
 - a) Menor, real e invertida.
 - b) Maior, real e invertida.

(A.B.A.U. ord. 17)

Actualizado: 05/07/24

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.