Redes Neuronales

Sistemas de Inteligencia Artificial Grupo 7

Función propuesta

$$f(x) = \sin(x) + 6 (\cos(x)^2) \cos x [-15, 15]$$

Objetivo

- Construir el perceptrón
- Enseñarle a partir de patrones de entrenamiento
- Testear el buen funcionamiento del aprendizaje

 Estimar la función propuesta por la cátedra

Notación

 [1 2 4 1] = representa la arquitectura que tiene dos capas ocultas de 2 y 4 neuronas respectivamente, más el umbral

Funciones de activación

a. La tangente hiperbólica (g1):

$$g(h) = \tanh(\beta h)$$
 para unidades entre - 1 y 1.

b. La función exponencial (g2):

$$g(h) = 1/(1 + \exp(-2\beta h))$$
 para unidades entre 0 y 1.

Implementación

Función: MultiLayerPerceptron

Parámetros: Values, layerSizes, eta, gValue, beta, error, momentum, etaAdaptativo, a, b.

Conjuntos de entrenamiento

Se entrenó al perceptrón con:

Puntos de la función con una separación de 0.1

Conjunto con más densidad en los extremos

Se utilizaron los patrones en orden aleatorio

Error

Error cuadrático medio

$$E(W) = \frac{1}{2} \sum_{i\mu} (S_i^{\mu} - o_i^{\mu})^2$$

Mejoras

Momentum

 Se eligieron los valores 0.5 y 0.9 para los valores de alfa, utilizando la siguiente fórmula:

$$\Delta w_{pq}(t+1) = -\eta \frac{\partial E}{\partial w_{pq}} + \alpha \Delta w_{pq}(t)$$

Eta adaptativo

 Eta adaptativo: busca corregir el factor de aprendizaje.

$$\Delta \eta = \begin{cases} +a & si \ \Delta E < 0 \ consistent emente \\ -b \eta & si \ \Delta E > 0 \\ 0 & en \ otro \ caso \end{cases}$$

Resultados

Comparación de betas

$$\beta$$
 = 1.0

$$\beta = 0.5$$

Tabla comparativa: 1 capa oculta

#Capas Ocultas	Capas			Momentum	Adaptativo	a	b	Error	Épocas- g1	Épocas- g2
	[1 5 1]	0.01	0.5	0	0	0	0	1	(+6500)	(+6500)
	[1 10 1]	0.01	0.5	0	0	0	0	1	1692	944
	[1 20 1]	0.01	0.5	0	0	0	0	1	2496	3249
1	[1 100 1]	0.001	1	0.5	0	0	0	1	5241	5541

Tabla comparativa: 2 capas ocultas

	[1 10 5 1]	0.01	0.5	0	0	0	0	1	719	3630
	[1 10 5 1]	0.01	0.5	0.5	0	0	0	1	347	2729
	[1 10 6 1]	0.01	0.5	0.5	0	0	0	1	283	565
2	[1 10 8 1]	0.01	0.5	0.5	0	0	0	1	446	534
	[1 10 9 1]	0.01	0.5	0.5	0	0	0	1	459	1077
	[1 10 10 1]	0.01	0.5	0.5	0	0	0	1	467	1426
	[1 10 6 1]	0.01	0.5	0.5	0	0	0	1	298	1587
	[1 15 5 1]	0.01	0.5	0.5	0	0	0	1	243	1124
	[1 15 6 1]	0.01	0.5	0.5	0	0	0	1	497	911
	[1 15 8 1]	0.01	0.5	0.5	0	0	0	1	423	480
2	[1 15 10 1]	0.01	0.5	0.5	0	0	0	1	376	642
	[1 15 11 1]	0.01	0.5	0.5	0	0	0	1	299	858
	[1 15 12 1]	0.01	0.5	0.5	0	0	0	1	338	406
	[1 15 13 1]	0.01	0.5	0.5	0	0	0	1	297	714
	[1 15 14 1]	0.01	0.5	0.5	0	0	0	1	382	573

Tablas comparativas: múltiples capas ocultas

				η				Epocas-	
Capas	η	β	Momentum	Adaptativo	a	b	Error	g1	Tiempo(s)
	0,0001	0.75	0.5	0	0	0	1	843	596,84
	0,0001	0.5	0.5	0	0	0	1	1180	1.612,75
[1 512 256 128 64 32 16 8 1]	0,0001	1	0.5	0	0	0	1	1000	2.000,00
[1 312 230 126 64 32 16 6 1]	0,0001	0,75	0.9	0	0	0	1	2785	5.369,93
	0,0002	0,75	0,5	0	0	0	1	1348	2.381,78
	0,00005	0,75	0.5	0	0	0	1	1110	1.675,20
	0,0001	0.75	0.5	0	0	0	1	1248	454,18
	0,0001	0.5	0.5	0	0	0	1	3041	1.798,37
[4 254 420 420 44 22 44 4]	0,0001	1	0.5	0	0	0	1	1687	1.649,02
[1 256 128 128 64 32 16 1]	0,0001	0,75	0.9	0	0	0	1	3655	3.218,92
	0,0002	0.75	0.5	0	0	0	1	1569	1.562,52
	0,00005	0.75	0.5	0	0	0	1	1974	1.604,96
	0,0001	0,75	0,5	0	0	0	1	810	914,504
	0,0001	0,5	0,5	0	0	0	1	1568	2982,73
[4 542 254 420 44 22 44 4]	0,0001	1	0,5	0	0	0	1	1344	2955,16
[1 512 256 128 64 32 16 1]	0,0001	0,75	0,9	0	0	0	1	1753	3767,68
	0,0002	0,75	0,5	0	0	0	1	958	1914,35
	0,00005	0,75	0,5	0	0	0	1	952	1290,56

Arquitectura: múltiples capas ocultas

Distribución de patrones de aprendizaje:

 $\hbox{\tt [[-15:0.05:-12.5] [-12.5:0.25:-5] [-5:0.5:5] [5:0.25:12.5] [12.5:0.05:15]]}$

Capas			Momentum	Adaptativo	а	b	Error	Épocas	Tiempo(segundos)
[1 256 128 128 64 32 16 1]	0,0001	0,75	0,5	0	0	0	1	1180	283,16
[1 512 256 128 64 32 16 8 1]	0,0001	0,75	0,5	0	0	0	1	852	722,40
[1 512 256 128 64 32 16 1]	0,0001	0,75	0,5	0	0	0	1	903	773,41

Arquitecturas óptimas: 1

- 6 capas ocultas ([1 256 128 128 64 32 16 1])
- Épocas: 810
- Rango -15:15

- Distribución de puntos: Mayor densidad en los extremos
- $\beta = 0.75$
- $\eta = 0.00005$

Gráfico arquitectura óptima 1

Arquitecturas óptimas: 2

- 6 capas ocultas ([1 256 128 128 64 32 16 1])
- Épocas: 593
- Rango -15:15
- Distribución de puntos: Mayor densidad en los extremos

- $\beta = 0.75$
- $\eta = 0.0001$

Arquitecturas óptimas: 2

```
1.000000000000000e-04

    □ Figure 1

      1.86041339990870
                                                File
                                                     Edit
      580
age =
         1.00000000000000e-04
      3.50216618797937
     585
         1.000000000000000e-04
      2.69846622840732
age = 590
         1.000000000000000e-04
age = 593
err = 0.789024895796158
                                                       0
layerSizes =
                                                       -15
                                                                 -10
                                                                           -5
                                                                                     0
                                                                                                        10
                                                                                                                  15
                     128
               128
                                          16
         1.000000000000000e-04
                                                     2500
oetaValue = 0.750000000000000
                                                     2000
etaAdaptativo = 0
       5.00000000000000e-04
                                                    1500
 = 0.100000000000000
                                                    1000
time = -1430034561.52624
                                                      500
                                                                                                                  600
                                                        0
                                                                 100
                                                                           200
                                                                                     300
                                                                                              400
                                                                                                        500
He Aprendido!!
                                                                                    epoca
Ingrese el valor a probar
                                               A G D D 2
                                                                 199 73 24551
```

Eta adaptativo

Conclusiones

- ullet Más grande es la arquitectura, cantidad de neuronas o mayor η
- Se deben utilizar varias capas para resolver funciones más complejas.
- Se deben modelar las capas ocultas del perceptrón como un triángulo
- \bullet η adaptativo hace al algoritmo más lento ya que descarta todas las iteraciones que aumentan el error.
- El momentum ayuda en la mayoría de los casos si se usa un valor de alpha de 0,5
- Error con la fórmula de error cuadrático medio de la clase, llegamos a la conclusión de que el error depende de la cantidad de patrones que se estén evaluando, por lo tanto resultaría más acorde dividir por n y no por 2.