Box Cox transform: Guerrero method

Time series decomposition

Contents

BOX COX TRANSFORM

GUERRERO METHOD TO SELECT LAMBDA

Box Cox recap

- Some forecasting & decomposition methods perform better if the variance of the time series does not change with the level of the time series (e.g., ARIMA).
- The Box Cox transform is defined as:

$$y^{(\lambda)} = \frac{y^{\lambda} - 1}{\lambda};$$
 if $\lambda \neq 0$
= log(y); if $\lambda = 0$

- Different values of λ correspond to different kinds of transforms.
- How do we pick a good value for λ?

Coefficient of variation

- The coefficient of variation is a scaled measure of variability of a dataset.
- Coefficient of variation:

$$C_V = \frac{\text{standard deviation}}{\text{mean}} = \frac{\sigma}{\mu}$$

• It allows us to compare the variability across datasets on different scales.

Statistic	Sample 1	Sample 2
Raw data	[1, 10, 3, 50, 3, 7]	[1000, 1030, 1110, 900, 999]
Mean	12.33	1007.80
Standard deviation	17.10	67.37
Coefficient of variation	1.39	0.07

Time-series analysis supported by Power Transformations

VICTOR M. GUERRERO Instituto Tecnológico Autónomo de México, México

ABSTRACT

This paper presents some procedures aimed at helping an applied timeseries analyst in the use of power transformations. Two methods are proposed for selecting a variance-stabilizing transformation and another for bias-reduction of the forecast in the original scale. Since these methods are essentially model-independent, they can be employed with practically any type of time-series model. Some comparisons are made with other methods currently available and it is shown that those proposed here are either easier to apply or are more general, with a performance similar to or better than other competing procedures.

KEY WORDS ARIMA models Bias reduction Forecasting Taylor series approximation Time-series models Variance-stabilizing

- We want to pick λ so that the variance of $y_t^{(\lambda)}$ is constant.
- Guerrero [1] showed that this requirement implies that:

$$\frac{\sigma[y_t]}{E[y_t]^{1-\lambda}} = constant$$

for all time steps t.

• In practice, we have one observation at each t. How do we calculate $\sigma[y_t]$ and $E[y_t]$?

• Split the time series into H evenly sized buckets (aka subseries), labelled by h.

- Split the time series into H evenly sized buckets (aka subseries), labelled by h.
- Compute $\sigma[y_t] \& E[y_t]$ within each subseries.
- Compute $\frac{\sigma[y_t]}{E[y_t]^{1-\lambda}} = S_h(\lambda)$ for each subseries.
- How do we measure how constant $S_h(\lambda)$ is across the time series? Use the coefficient of variation of $S_h(\lambda)$ across all subseries, $C_V(\lambda)$!
- If $C_V(\lambda)$ is low, it means that $S_h(\lambda)$ is "more constant" across the time series.

$$C_V(\lambda) = \frac{\sigma}{\mu} = \frac{\sigma[S_h(\lambda)]}{E[S_h(\lambda)]}$$

• Compute $C_V(\lambda)$ at multiple values of λ between -5 and 5.

$$C_V(\lambda) = \frac{\sigma}{\mu} = \frac{\sigma[S_h(\lambda)]}{E[S_h(\lambda)]}$$

- Compute $C_V(\lambda)$ at multiple values of λ between -5 and 5.
- Pick $\lambda = \lambda_{min}$ which minimizes $C_V(\lambda)$.

$$C_V(\lambda) = \frac{\sigma}{\mu} = \frac{\sigma[S_h(\lambda)]}{E[S_h(\lambda)]}$$

- Compute $C_V(\lambda)$ at multiple values of λ between -5 and 5.
- Pick $\lambda = \lambda_{min}$ which minimizes $C_V(\lambda)$.
- This value of λ creates a time series where $\frac{\sigma[y_t]}{E[y_t]^{1-\lambda}}$ is the "most constant" across time.
- Which implies it's the best λ to use to cause the variance of $y_t^{(\lambda)}$ to be constant.

$$C_V(\lambda) = \frac{\sigma}{\mu} = \frac{\sigma[S_h(\lambda)]}{E[S_h(\lambda)]}$$

- Compute $C_V(\lambda)$ at multiple values of λ between -5 and 5.
- Pick $\lambda = \lambda_{min}$ which minimizes $C_V(\lambda)$.
- This value of λ creates a time series where $\frac{\sigma[y_t]}{E[y_t]^{1-\lambda}}$ is the "most constant" across time.
- Which implies it's the best λ to use to cause the variance of $y_t^{(\lambda)}$ to be constant.

- Main parameter is the number of subseries,
 H, to split the original time series into.
- If the data has seasonality then split the subseries by the seasonal period (e.g., one subseries for each year if monthly data).
- If no seasonality, then split the timeseries into consecutive groups of size 2 to minimize loss of information caused by grouping.

Why use the Guerrero method?

- Does not make any assumptions about the distribution of the data.
- Directly tries to stabilize the variance across the time series.
- Therefore, more relevant for our time series tasks (i.e., forecasting and decomposition).

Box Cox implementation in sktime

BoxCoxTransformer

class BoxCoxTransformer(bounds=None, method='mle', sp=None)

[source]

Box-Cox power transform.

Box-Cox transformation is a power transformation that is used to make data more normally distributed and stabilize its variance based on the hyperparameter lambda. [1]

The BoxCoxTransformer solves for the lambda parameter used in the Box-Cox transformation given *method*, the optimization approach, and input data provided to *fit*. The use of Guerrero's method for solving for lambda requires the seasonal periodicity, *sp* be provided. [2]

Parameters: bounds : tuple

Lower and upper bounds used to restrict the feasible range when solving for the value of lambda.

method: {"pearsonr", "mle", "all", "guerrero"}, default="mle"

The optimization approach used to determine the lambda value used in the Box-Cox transformation.

sp : int

Seasonal periodicity of the data in integer form. Only used if method="guerrero" is chosen. Must be an integer >= 2.

from sktime.transformations.series.boxcox import BoxCoxTransformer
transformer = BoxCoxTransformer(method='querrero', sp=12)

```
transformer = BoxCoxTransformer(method='guerrero', sp=12)
data['y_g'] = transformer.fit_transform(data['y'])
transformer.lambda_
```

-0.10000000000001741

Summary

Forecasting and decomposition methods sometimes work better if the variance is stable across the whole time series.

A Box Cox transform can stabilize the variance, but we need to pick a good value for the parameter λ .

Guerrero method selects λ that makes the variance of $y^{(\lambda)}$ constant by minimizing the coefficient of variation.

Appendix: Guerrero method

- We denote the Box Cox Transform of a variable Y as T(Y).
- We want the variance of the transformed variable to be constant:

$$Var[T(Y)] = c$$

• Taylor expand T(Y) about the mean of Y, E[Y], to first order:

$$T(Y) \approx T(E[Y]) + T'(E[Y])(E[Y] - Y) \text{ where } T'(Y) = \frac{\partial T}{\partial Y} = Y^{\lambda - 1}$$

$$\Rightarrow Var[T(Y)] \approx T'(E[Y])^2 Var[Y] = c$$

$$\Rightarrow \frac{Var[Y]^{\frac{1}{2}}}{E[Y]^{1-\lambda}} = \sqrt{c} = a$$