Problèmes du Marathon d'analyse

Daniel Cortild

November 2, 2018

Problème 1

Construire une suite $(z_n) \in \mathbb{C}^{\mathbb{N}}$ telle que $\sum \frac{1}{|z_n|^2}$ diverge et vérifiant $|z_p - z_q| \ge 1$ pour tout couple (p,q) d'entiers distincts.

Problème 2

Trouver toutes les fonctions $f:[0,1]\to\mathbb{R}^+$ continues telles que

$$\int_{0}^{1} f(x) \cdot dx = 1, \int_{0}^{1} x f(x) \cdot dx = a \text{ et } \int_{0}^{1} x^{2} f(x) \cdot dx = a^{2}$$

Où a est un réel fixé.

Problème 3

Soit
$$f \in C^0([a,b], \mathbb{R}^+)$$
. Que vaut : $\lim_{n \to +\infty} \left(\int_a^b f(x)^n dx \right)^{1/n}$?

Problème 4 (Problemath 10 de l'année 2007-2008)

Trouver toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 (càd deux fois dérivable et dont la seconde dérivée est continue) telles que

$$f'(x) = f(2008 - x) \quad \forall x \in \mathbb{R}.$$

Problème 5

Veuillez décrire l'ensemble des fonctions de $\mathbb{R} \to \mathbb{R}$ ayant les propriétés suivantes $(\epsilon, \delta, x_1, x_2) \in \mathbb{R}^4$ a) $\forall \epsilon$, $\exists \delta > 0$, $|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \epsilon$ b) $\forall \epsilon > 0$, $\exists \delta$, $|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \epsilon$ d) $\forall \epsilon > 0$, $\forall \epsilon > 0$, $\forall \epsilon > 0$, $|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \epsilon$ d) $\forall \epsilon > 0$, $|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \epsilon$ e) $\forall \epsilon > 0$, $|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \delta$ g) $\forall \epsilon > 0$, $|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \delta$ g) $\forall \epsilon > 0$, $|x_1 - x_2| < \delta \Rightarrow |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \epsilon$ o , $|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \epsilon$ o , $|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \epsilon$

Problème 6

Soit F l'ensemble des fonctions f réelles définies et continues sur $[0; +\infty[$ de carré intégrable. F est un espace vectoriel réel que l'on munit de la norme :

$$\|\cdot\|_2: f \to \sqrt{\int_0^{+\infty} f^2(t) \mathrm{d}t}$$

Soit E l'ensemble des fonctions de F du type $x \to P(e^{-x})e^{-\frac{x^2}{2}}$ avec P parcourant $\mathbb{R}[X]$ Montrer que E est dense dans F.

Problème 7 (Problemath 7 de l'année 2012-2013)

Existe-t-il une fonction continue $f: \mathbb{R} \to \mathbb{R}$ telle que l'image de tout nombre rationnel est irrationnelle et l'image de tout nombre irrationnelle et rationnelle?

Problème 8

Trouver tous les sous groupes finis de l'ensemble des bijections continues de R dans lui-même .

Problème 9 (Kürschák 2003)

Prouver que l'inégalité

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \gcd(i, j) > 4n^{2}$$

Tient pour tout n suffisament grand. (C.à.d. $\exists N$ t.q. l'inégalité est vraie $\forall n \geq N$.)

Problème 10 (Un théorème du à Riesz)

Montrer qu'un espace vectoriel normé est de dimension finie si, et seulement si sa boule unité fermée est compacte. Happy pi day !

Problème 11 (c'est entre algèbre et analyse mais comme y avait des dérivées, c'était pas très "olympique" (à part pour les Roumains)

donc je l'ai mis dans ce marathon) Soit $P \in \mathbb{R}[X]$ un polynôme scindé sur \mathbb{R} de degré n. Montrer que pour tout $x \in \mathbb{R}$:

$$(n-1)P'(x)^2 \ge nP(x)P''(x).$$

Déterminer les cas d'égalité.

Problème 12

Trouver toutes les fonctions continues en 0 de $\mathbb R$ dans $\mathbb R$ telles que pour tout réel x

$$f(2x) = 2f(x)\cos x$$

Problème 13 (Putnam 1985 B2)

Définissons les polynômes $f_n(x)$ pour $n \ge 0$ par $f_0(x) = 1$, $f_n(0) = 0$ pour $n \ge 1$ et

$$\frac{d}{dx}f_{n+1}(x) = (n+1)f_n(x+1)$$

pour $n \geq 0$. Déterminer la décomposition de $f_{100}(1)$ en un produit de puissances de nombres premiers.

Problème 14 (je ne garantis pas l'exactitude du résultat)

Montrer que pour $n \geq 3$:

$$\max \left\{ \prod_{i=1}^k x_i | k \in \mathbb{N}^*, (x_1, ..., x_k) \in (\mathbb{Q}_+^*)^k, \sum_{i=1}^k x_i = n \right\} = \left(\frac{n}{\lfloor \frac{n}{e} \rfloor}\right)^{\lfloor \frac{n}{e} \rfloor}.$$

Que se passe-t-il lorsqu'on remplace \mathbb{Q}_+^* par \mathbb{N}^* ?

Problème 15

Pour $A, B \subseteq \mathbb{R}^n$, on définit la somme de Minkowski $A + B = \{a + b \mid a \in A, b \in B\}$. Prouver ou infirmer la proposition suivante : si A et B sont fermés alors A + B est fermé.