- 1 Let $\{A_i\}_{i\in I}$ be an infinite family of closed sets with the finite intersection property. Assuming that one member of this family is compact, show that $\bigcap_{i\in I}A_i\neq\emptyset$.
- **Solution** Let $i_0 \in I$ be such that A_{i_0} is compact. Suppose $\bigcap_{i \in I} A_i = \emptyset$. Then $\bigcup_{i \in I} A_i^c = X$. Then as each A_i is closed, $\{A_i^c\}_{i \in I}$ is an open cover for X. In particular, it is an open cover for A_{i_0} . As A_{i_0} is compact, it admits a finite subcover. So, there exists i_1, i_2, \ldots, i_n such that

$$A_{i_0} \subseteq \bigcup_{j=0}^n A_{i_j}^c \implies X \setminus A_{i_0} = \bigcap_{j=0}^n A_{i_j}.$$

Intersecting both sides with A_{i_0} yields

$$\emptyset = \bigcap_{i=0}^{n} A_{i_j}$$

which is a contradiction. Hence, $\bigcap_{i \in I} A_i \neq \emptyset$.

- **2** Let (X,d) be a metric space and let $A\subseteq X$ be a compact subset. Show that
 - a. For any $y \in X$ there exists $x \in A$ so that d(y, A) = d(y, x).
 - b. If $B \subseteq X$ and d(A, B) = 0 then $A \cap \overline{B} = \emptyset$.
- **Solution** a. Fix $y \in X$. Then define $D := d(y, A) = \inf \{ d(x, y) \mid x \in A \}$.

Note that D+1 is not a lower bound for $\{d(x,y) \mid x \in A\}$. Hence, there exists $x_1 \in A$ such that $D \leq d(x_1,y) \leq D+1$.

If $d(x_1, y) = D$, then we're done. Otherwise, $d(x_1, y)$ is not a lower bound for $\{d(x, y) \mid x \in A\}$, so there exists $x_2 \in A$ such that $D \le d(x_2, y) \le \min\{d(x_1, y), D + \frac{1}{2}\}$.

Proceeding inductively yields a sequence $\{x_n\}_{n\geq 1}\subseteq A$ with $D\leq d(x_n,y)\leq D+\frac{1}{n}$. For any $m\geq n$, we have that

$$d(x_n, x_m) \le d(x_n, y) + d(x_m, y) \le \frac{2}{n}.$$

Then clearly, $\{x_n\}_{n\geq 1}$ is Cauchy. Since A is compact, it is complete, so $x_n \xrightarrow{n\to\infty} x \in A$. Thus, taking $n\to\infty$ in the inequality $D\leq d(x_n,y)\leq D+\frac{1}{n}$ yields

$$d(x,y) = d(y,A)$$

as desired.

b. Suppose $A \cap \bar{B} \neq \emptyset$. Then there exists $x \in A \cap \bar{B}$. As $x \in \bar{B}$, $\exists \{x_n\}_{n \geq 1} \subseteq B$ with $x_n \xrightarrow{n \to \infty} x$. Then for all $\varepsilon > 0$, $\exists n_{\varepsilon} \in \mathbb{N}$ such that $\forall n \geq n_{\varepsilon}$,

$$0 \le d(x, x_n) < \varepsilon$$
.

Then clearly, $d(A, B) = \inf \{d(a, b) \mid a \in A \text{ and } b \in B\} = 0$. Otherwise, if d(A, B) > 0, then we can pick $\varepsilon < d(A, B)$, which gives us infinitely many x_n such that $d(x, x_n) < d(A, B)$.

- **3** Let (X, d_X) be a compact metric space.
 - a. Verify that

$$d_Y(f,g) = \sum_{n \in \mathbb{Z}} 2^{-|n|} d_X(f(n), g(n))$$

defines a metric on $Y = \{f : \mathbb{Z} \to X\}.$

b. Show that Y is compact.

$$\begin{aligned} \textbf{Solution} &\text{ a. } & 2^{-|n|} > 0 \text{ and } d_X(f(n),g(n)) \geq 0, \text{ so } d_Y(f,g) \geq 0 \ \forall f,g. \\ &\text{ If } f = g, d_X(f(n),g(n)) = 0 \implies d_Y(f,g) = 0. \text{ If } d_Y(f,g) = 0, \text{ then we must have that } d_X(f(n),g(n)) = 0. \end{aligned} \\ &\text{ 0. Otherwise, the sum will be greater than 0. So, } f = g. \text{ Thus, } f = g \iff d_Y(f,g) = 0. \\ & d_Y(f,g) = d_Y(g,f) \text{ trivially, since } d_X \text{ is a metric.} \\ & d_Y(f,h) + d_Y(h,g) = \sum_{n \in \mathbb{Z}} 2^{-|n|} d_X(f(n),h(n)) + \sum_{n \in \mathbb{Z}} 2^{-|n|} d_X(h(n),g(n)) \\ & \geq \sum_{n \in \mathbb{Z}} 2^{-|n|} d_X(f(n),g(n)) \end{aligned}$$

b. Let $\{f_k\}_{k\geq 1}\subseteq Y$. Then as X is compact, the sequence $\{f_k(0)\}_{k\geq 1}\subseteq X$ admits a convergent subsequence. Call this subsequence $\{f_k^{(1)}(0)\}_{k\geq 1}$ and let its limit as $k\to\infty$ be f(0).

Next, consider $\{f_k^{(1)}\}_{k\geq 1}\subseteq Y$. As X is compact, $\{f_k^{(1)}(1)\}_{k\geq 1}$ admits a convergent subsequence. Call it $\{f_k^{(2)}\}_{k\geq 1}$. We call its limit as $k\to\infty$ f(1). Note that this is the same f as from the previous paragraph, since $f_k^{(2)}(0)$ is a subsequence of the previous convergent subsequence.

Since \mathbb{Z} is countable, we can repeat this process for all $n \in \mathbb{Z}$ through induction, which gives us a subsequence $\{f_{m_k}\}_{k\geq 1}$ of $\{f_k\}_{k\geq 1}$ with $\lim_{k\to\infty} f_{m_k}=f$, and f(n) is defined for all $n\in\mathbb{Z}$. Hence, every sequence of Y admits a convergent subsequence, so Y is sequentially compact $\Longrightarrow Y$ is compact.

4 a. Show that the closed unit ball in ℓ^2 , namely,

$$A = \{ x \in \ell^2 \mid \sum_{n=1}^{\infty} |x_n|^2 \le 1 \}$$

is not compact in ℓ^2 .

b. Define $B \subseteq \ell^2$ by

$$B = \{ x \in \ell^2 \mid \sum_{n=1}^{\infty} n |x_n|^2 \le 1 \}.$$

Show that B is compact.

- Solution a. Let $\{x^{(n)}\}_{n\geq 1}\subseteq A$, where $x_i^{(n)}=\begin{cases} 1 & i=n\\ 0 & i\neq n \end{cases}$. We have $d(x^{(n)},x^{(m)})=\sqrt{2}\ \forall m\neq n$. Clearly, $\{x^{(n)}\}_{n\geq 1}$ does not admit a convergent subsequence, so A is not compact.
 - b. Let $\{x^{(n)}\}_{n\geq 1} \subseteq B$. As $\sum_{n=1}^{\infty} n|x_n^{(k)}|^2 \leq 1$, we have that $n|x_n|^2 \leq 1 \implies |x_n^{(k)}| \leq \frac{1}{\sqrt{n}}$.

Consider $\{x_1^{(k)}\}_{k\geq 1}\subseteq \mathbb{R}$. Thus, it admits a convergent subsequence, which we will denote as $\{x_1^{(1_k)}\}_{k\geq 1}$. We will also call its limit x_1 . Note that all the terms of this sequence satisfy $|x_1^{(1_k)}|\leq 1$.

Consider $\{x_2^{(1_k)}\}_{k\geq 1}\subseteq \mathbb{R}$. Thus, it admits a convergent subsequence, which we will denote as $\{x_2^{(2_k)}\}_{k\geq 1}$. We will also call its limit x_2 . Note that all the terms of this sequence satisfy $|x_1^{(1_k)}|\leq \frac{1}{\sqrt{2}}$.

We proceed inductively to attain a subsequence $\{x^{(l_k)}\}_{k\geq 1}$ with $|x_n^{(l_k)}| \leq \frac{1}{\sqrt{n}}$. Moreover, this subsequence converges to $x = \{x_n\}_{n>1}$. We will now show that x belongs to B.

$$\sum_{n=1}^{\infty} n|x_n^{(k)}|^2 \le 1$$

Taking $k \to \infty$ yields

$$\sum_{n=1}^{\infty} n|x_n|^2 \le 1 \iff x \in B.$$

Thus, every sequence in B admits a convergent subsequence, so B is compact by Heine–Borel.

5 Let A be a subset of a complete metric space. Assume that for all $\varepsilon > 0$, there exists a compact set A_{ε} so that

$$\forall x \in A, \quad d(x, A_{\varepsilon}) < \varepsilon.$$

Show that \bar{A} is compact.

Solution Since \bar{A} is closed and is a subset of a complete metric space, \bar{A} is also complete. All that is left to show is that \bar{A} is totally bounded.

By problem (2), for every $x \in A$, there exists $y \in A_{\varepsilon}$ such that $d(x,y) = d(x,A_{\varepsilon})$.

Let $\varepsilon > 0$. Then as $A_{\varepsilon/3}$ is compact, it is totally bounded, so there exists a finite collection of open balls $\{G_i\}_{i\in I}$ of radius $\frac{\varepsilon}{3}$ which cover $A_{\varepsilon/2}$. Take these balls and triple their radii so that they form the collection $\{H_i\}_{i\in I}$ of radius ε . In particular, if $x \in G_i$, then $B_{2\varepsilon/3}(x) \subseteq H_i$.

Let $x \in \bar{A}$. Then $B_{\varepsilon/3}(x) \cap A \neq \emptyset$, so pick a point y in the intersection. Then as $y \in A$, there exists $z \in A_{\varepsilon/3}$ such that $d(y,z) = d(y,A_{\varepsilon/3}) < \frac{\epsilon}{3}$. By the triangle inequality, $d(x,z) \leq d(x,y) + d(y,z) < \frac{2\varepsilon}{3}$. Hence, there exists $i \in I$ such that $x \in B_{2\varepsilon/3} \subseteq H_i$.

Hence $\{H_i\}_{i\in I}$ is a finite collection of open balls of radius ϵ which cover \bar{A} , so \bar{A} is totally bounded. By the Heine–Borel theorem, \bar{A} is compact.

6 Let (X, d_1) and (Y, d_2) be two compact metric spaces. Show that the space $X \times Y$ endowed with the 'Euclidean' distance

$$d((x_1, y_1), (x_2, y_2)) = \sqrt{d_1^2(x_1, x_2) + d_2^2(y_1, y_2)}$$

is a compact metric space.

Solution By a proposition proved in class, $(X \times Y, d)$ is indeed a metric space. We will now show that it is compact.

Let $\{a_n\}_{n\geq 1}\subseteq X\times Y$ be such that $a_n=(x_n,y_n)$ where $\{x_n\}_{n\geq 1}\subseteq X$ and $\{y_n\}_{n\geq 1}\subseteq Y$. Then as (X,d_1) is compact, $\{x_n\}_{n\geq 1}$ admits a convergent subsequence $\{x_{k_n}\}_{n\geq 1}$ which converges to $x\in X$. Similarly, $\{y_{k_n}\}_{n\geq 1}$ admits a convergent subsequence $\{y_{k_n}\}_{n\geq 1}$ which converges to $y\in Y$. As a shorthand, we will write l_n instead of k_{l_n} .

We claim that $\{a_{l_n}\}_{n\geq 1}$ is a convergent subsequence of $\{a_n\}_{n\geq 1}$ which converges to (x,y). Fix $\varepsilon > 0$. As $x_{l_n} \xrightarrow{n\to\infty} x$ and $y_{l_n} \xrightarrow{n\to\infty} y$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that for all $n \geq n_{\varepsilon}$,

$$\frac{d_1(x_n, x) < \frac{\epsilon}{2}}{d_2(y_n, y) < \frac{\epsilon}{2}} \implies d((x_n, y_n), (x, y)) < \sqrt{\frac{\epsilon^2}{4} + \frac{\epsilon^2}{4}} < \epsilon$$

Thus, by Heine–Borel, $(X \times Y, d)$ is a compact metric space.

7 Consider the Cantor set

$$K = \left\{ x \in [0, 1] \mid x = \sum_{n=1}^{\infty} a_n 3^{-n} \text{ with all } a_n \in \{0, 2\} \right\}.$$

For example, $1 \in K$ because it is represented by setting all $a_n = 2$.

- a. Show that K is compact.
- b. Show that K is uncountable.
- c. Show that no connected subset of K contains more than one point.

Solution a. Let $\{x_n\}_{n\geq 1}\subseteq K\subseteq \mathbb{R}$. By Bolzano–Weierstrass, $\{x_n\}_{n\geq 1}$ admits a convergent subsequence. Hence, K is compact by Heine–Borel.

b. Suppose K is countable. Then we can order the elements of K, so that we have

$$x_1 = \sum_{n=1}^{\infty} a_n^{(1)} 3^{-n}$$
$$x_2 = \sum_{n=1}^{\infty} a_n^{(2)} 3^{-n}$$
$$\vdots$$

Then consider $x = \sum_{n=1}^{\infty} a_n 3^{-n}$, where

$$a_n = \begin{cases} 0 & \text{if } a_n^{(n)} = 2\\ 2 & \text{if } a_n^{(n)} = 0 \end{cases}$$

This is a different set of coefficients from the others as it does not match the n-th term of the sequence of coefficients of x_n for all n. Hence, $x \neq x_n$ for all $n \geq 1$, but $x \in K$, which is a contradiction. So, K is uncountable.

c. Let A be a connected subset of K. Assume that $\{x,y\} \subseteq A$ where y > x. Then since the only connected subsets of $\mathbb R$ are intervals, we must have that $a \in A$ for all a such that x < a < y. In particular, $a = \frac{3x+y}{4}$ must be contained in the set. Then since x and y are convergent series, we have that

$$\frac{3x+y}{4} = \sum_{n=1}^{\infty} \left(\frac{3x_n + y_n}{4}\right) 3^{-n}$$

where $x = \sum_{n=1}^{\infty} x_n 3^{-n}$, $y = \sum_{n=1}^{\infty} y_n 3^{-n}$, and all $x_n, y_n \in \{0, 2\}$. Since y > x, then there exists $i \ge 1$ such that $\frac{3x_n + y_n}{4} = \frac{0+2}{4} = \frac{1}{2}$, so a cannot be in K. Hence, the only connected subsets of K contain only one point.

4