Assignment 2 Example

Last updated: 9/17/2019, Andrew Therriault

This notebook gives an example of what a completed Week 2 assignment might look like.

Setting up the environment

Setting the working directory

```
In [1]: import os
os.chdir('c:/working/')
```

Importing numpy and pandas for analysis and setting display options for pandas

```
In [2]: import numpy as np
    import pandas as pd
    pd.options.display.max_colwidth = 1000
    pd.options.display.max_columns = 1000
    pd.options.display.max_rows = 1000
```

Importing seaborn and matplotlib for plotting

Also invoking matplotlib inline cell magic so that all plots will display inline in the notebook (otherwise it only displays one at a time)

```
In [3]: import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set(style="whitegrid")
sns.set_color_codes("pastel")
```

Loading Ohio voter file from TargetSmart

This is a 10% sample of the Ohio voter file, with several additional appends from TargetSmart (including their VoterBase demographics and model scores).

```
In [4]: vf = pd.read_csv('ohio_voterfile_10pct.csv', low_memory=False)
```

Exploring the dataset

Looking at the dimensions (rows, columns)

```
In [5]: vf.shape
Out[5]: (760097, 159)
```

Looking at some sample records

	193937	728929	232322	735524	544988
voterbase_id	OH-000001878359	OH-000002704362	OH-000002123672	OH-10557322	OH-000004984672
tsmart_city	HOLLAND	CINCINNATI	PAINESVILLE	SHADE	CAMDEN
tsmart_state	ОН	ОН	ОН	ОН	ОН
tsmart_zip	43528	45248	44077	45776	45311
vf_reg_cass_city	HOLLAND	CINCINNATI	PAINESVILLE	SHADE	CAMDEN
vf_reg_cass_state	ОН	ОН	ОН	ОН	ОН
vf_reg_cass_zip	43528	45248	44077	45776	45311
vf_registration_date	19870316.0	19890717.0	19640917.0	20121106.0	20020515.0
vf_earliest_registration_date	19870316.0	19890717.0	19640917.0	20121106.0	20020515.0
vf_party	Unaffiliated	Unaffiliated	Unaffiliated	Unaffiliated	Unaffiliated
vf_county_code	95	61	85	9	135
vf_county_name	LUCAS	HAMILTON	LAKE	ATHENS	PREBLE
vf_cd	5	1	14	15	8
vf_sd	11	8	18	30	5
vf_hd	46	30	61	94	43
vf_township	SPRINGFIELD UNINCORP	GREEN	PAINESVILLE	LODI	GRATIS
vf_ward	nan	nan	nan	nan	nan
vf_precinct_id	48ASR	31BGP	43AGR	05ABY	68AAN
vf_precinct_name	SPRINGFIELD 12 (48ASR)	GREEN CC (31-BGP)	PAINESVILLE TWP I (43AGR)	LODI TOWNSHIP (05ABY)	GRATIS NORTH (68AAN)
vf_national_precinct_code	OH_LUCAS_48ASR	OH_HAMILTON_31BGP	OH_LAKE_43AGR	OH_ATHENS_05ABY	OH_PREBLE_68AAN
vf_county_council	nan	nan	nan	nan	nan
vf_city_council	nan	nan	nan	nan	nan
vf_municipal_district	nan	nan	nan	nan	nan
vf_school_district	SPRINGFIELD LOCAL SD (LUCAS)	OAK HILLS LOCAL SD (HAMILTON)	RIVERSIDE LOCAL SD (LAKE)	ALEXANDER LOCAL SD (ATHENS)	PREBLE SHAWNEE LOCAL SD (PREBLE)
vf_judicial_district	nan	nan	nan	nan	nan
reg_census_id	3909500000000000.0	3906100000000000.0	3908520000000000.0	3901000000000000.0	391355000000000.0
reg_dma	547.0	515.0	510.0	535.0	542.0
reg_dma_name	Toledo OH	Cincinnati OH	Cleveland-Akron (Canton) OH	Columbus OH	Dayton OH
reg_place	nan	3921742.0	nan	nan	nan
reg_place_name	nan	Dent	nan	nan	nan
tsmart_county_code	95.0	61.0	85.0	9.0	135.0
tsmart_county_name	LUCAS	HAMILTON	LAKE	ATHENS	PREBLE
tsmart_cd	5.0	1.0	14.0	15.0	8.0
tsmart_sd	11.0	8.0	18.0	30.0	5.0
tsmart_hd	46.0	30.0	61.0	94.0	43.0
tsmart_township	SPRINGFIELD UNINCORP	GREEN	PAINESVILLE	LODI	GRATIS
tsmart_ward tsmart precinct id	nan	nan 31BGP	nan	nan	nan 68AAN
tsmart_precinct_name	48ASR SPRINGFIELD 12 (48ASR)	GREEN CC (31-BGP)	43AGR PAINESVILLE TWP I (43AGR)	05ABY LODI TOWNSHIP (05ABY)	GRATIS NORTH (68AAN)
tsmart_county_council	(46ASR)	nan	nan	(OSABT)	nan
tsmart_city_council	nan	nan	nan	nan	nan
tsmart_municipal_district	nan	nan	nan	nan	nan
	SPRINGFIELD LOCAL	OAK HILLS LOCAL SD	RIVERSIDE LOCAL	ALEXANDER LOCAL	PREBLE SHAWNEE
tsmart_school_district	SD (LUCAS)	(HAMILTON)	SD (LAKE)	SD (ATHENS)	LOCAL SD (PREBLE)
tsmart_judicial_district	nan	nan	nan	nan	nan
tsmart_census_id	3909500000000000.0	3906100000000000.0	390852000000000.0	3901000000000000.0	391355000000000.0
tsmart_dma	547.0	515.0	510.0	535.0	542.0
tsmart_dma_name	Toledo OH	Cincinnati OH	Cleveland-Akron (Canton) OH	Columbus OH	Dayton OH
tsmart_place	nan	3921742.0	nan	nan	nan
tsmart_place_name	nan	Dent	nan	nan	nan
vf <u>g</u> 2018	Υ	Υ	Y	nan	Υ
vf_g2017	Υ	Υ	Υ	nan	Υ

		93937	728929	232322	735524	544988
vf_ç	2016	Υ	Υ	Υ	Υ	Υ
vf_ç	2015	Υ	Υ	Υ	Υ	Υ
vf_ç	2014	Υ	Υ	Υ	nan	nan
vf_ç	2013	nan	Υ	Υ	nan	nan
vf_ç	2012	Υ	Υ	Υ	Υ	Y
vf_ç	2011	Υ	Υ	Υ	nan	Y
vf_ç	2010	Υ	Υ	Υ	nan	Υ
vf_ç	2009	Υ	Υ	Υ	nan	Υ
vf_ç	2008	Υ	Υ	Υ	nan	Υ
vf_ç	2007	Υ	Υ	nan	nan	nan
	2006	Υ	Υ	Υ	nan	nan
	2005	Υ	Υ	Υ	nan	nan
	2004	Υ	Υ	Υ	nan	Y
	2003	Y	Y	Y	nan	nan
	2002	Υ	Y	Y	nan	nan
	2001	Y	Y	Y	nan	nan
		Y	Y	Y		
	2000				nan	nan
	2019	nan	nan	nan	nan	nan
vf_p2019_		nan	nan	nan	nan	nan
	2018	nan	Y	Y	nan	nan
vf_p2018_		nan	R	D	nan	nan
vf_p	2017	nan	Υ	nan	nan	Y
vf_p2017_	party	nan	nan	nan	nan	nan
vf_p	2016	Υ	Υ	Υ	Υ	Y
vf_p2016_	party	R	R	D	D	R
vf_p	2015	nan	nan	nan	nan	nan
vf_p2015_	party	nan	nan	nan	nan	nan
vf_r	2014	nan	Υ	Υ	nan	nan
vf_p2014_	party	nan	R	D	nan	nan
vf_r	2013	nan	nan	nan	nan	nan
vf_p2013_	party	nan	nan	nan	nan	nan
vf_r	2012	Υ	Υ	Υ	nan	nan
vf_p2012_	party	R	R	D	nan	nan
vf_r	2011	nan	nan	Υ	nan	nan
vf_p2011_		nan	nan	nan	nan	nan
	2010	Υ	Υ	Υ	nan	nan
 vf_p2010_		R	R	D	nan	nan
	2009	nan	nan	nan	nan	nan
۰۲_p - vf_p2009		nan	nan	nan	nan	nan
	2008	nan	Y	Y	nan	Y
vf_p2008_		nan	R	D	nan	, D
	2007					
		nan	nan	nan	nan	nan
vf_p2007_		nan	nan	nan	nan	nan
	2006	Υ	nan	Y	nan	Y
vf_p2006_		nan	nan	D	nan	nan
vf_p	2005	nan	nan	Υ	nan	nan
vf_p2005_		nan	nan	nan	nan	nan
vf_p	2004	nan	Υ	Υ	nan	nar
vf_p2004_	party	nan	R	D	nan	nar
vf_r	2003	nan	nan	Υ	nan	nar
vf_p2003_	party	nan	nan	nan	nan	nar
vf_r	2002	nan	Υ	nan	nan	nar
vf_p2002_	party	nan	R	nan	nan	nar
	2001	nan	nan	nan	nan	nan
ντ <u>_</u> μ						
vr_p _vf_p2001	party	nan	nan	nan	nan	nan

	193937	728929	232322	735524	544988
vf_p2000_party	R	R	D	nan	nan
vf_m2019	nan	nan	nan	nan	nan
vf_m2018	nan	nan	nan	nan	nan
vf_m2017	nan	nan	nan	nan	nan
vf_m2016	nan	nan	nan	nan	nan
vf_m2015	nan	nan	nan	nan	nan
vf_m2014	nan	nan	nan	nan	nan
vf_m2013	nan	nan	nan	nan	nan
vf_m2012	nan	nan	nan	nan	nan
vf_m2011	nan	nan	nan	nan	nan
vf_m2010	nan	nan	nan	nan	nan
vf_m2009	nan	nan	nan	nan	nan
vf_m2008	nan	nan	nan	nan	nan
- vf_m2007	nan	nan	nan	nan	nan
vf_m2006	nan	nan	nan	nan	nan
- vf_m2005	nan	nan	nan	nan	nan
_ vf_m2004	nan	nan	nan	nan	nan
vf m2003	nan	nan	nan	nan	nan
vf_m2002	nan	nan	nan	nan	nan
vf m2001	nan	nan	nan	nan	nan
vf_m2000	nan	nan	nan	nan	nan
vf_pp2020	nan	nan	nan	nan	nan
vf_pp2020_party	nan	nan	nan	nan	nan
vi_pp2020_party vf_pp2016	nan			nan	
- ·		nan	nan		nan
vf_pp2016_party	nan	nan	nan	nan	nan
vf_pp2012	nan	nan	nan	nan	nan
vf_pp2012_party	nan	nan	nan	nan	nan
vf_pp2008	nan	Y	Υ	nan	Y
vf_pp2008_party	nan	nan	nan	nan	nan
vf_pp2004	nan	nan	nan	nan	nan
vf_pp2004_party	nan	nan	nan	nan	nan
vf_pp2000	nan	nan	nan	nan	nan
vf_pp2000_party	nan	nan	nan	nan	nan
tsmart_partisan_score	1.2	1.2	99.2	99.3	9.7
tsmart_presidential_general_turnout_score	98.6	98.4	97.5	85.7	95.9
tsmart_midterm_general_turnout_score	90.7	96.6	95.7	31.3	81.1
tsmart_midterm_general_enthusiasm_score	85.4	86.6	90.6	22.9	49.1
tsmart_offyear_general_turnout_score	84.0	89.8	86.3	11.1	62.7
tsmart_presidential_primary_turnout_score	78.5	92.0	90.4	38.7	56.0
tsmart_non_presidential_primary_turnout_score	37.0	76.3	73.1	6.3	27.4
voterbase_age	66.0	62.0	82.0	30.0	56.0
voterbase_gender	Male	Female	Female	Male	Male
voterbase_race	Caucasian	Caucasian	Caucasian	Caucasian	Caucasian
voterbase_marital_status	Married	Married	Married	Unmarried	Married
vf_voter_status	Active	Active	Active	Active	Active
voterbase_deceased_flag	nan	nan	nan	nan	nan
deceased_flag_date_of_death	nan	nan	nan	nan	nan
voterbase_mailable_flag	Yes	Yes	Yes	Yes	Yes
vf_missing_occupancy_flag	nan	nan	nan	nan	nan
vf_absentee_status	nan	nan	nan	nan	nan
vf_early_voter_status	nan	nan	nan	nan	nan
vf_pav	nan	nan	nan	nan	nan

```
In [7]: vf.voterbase_age.describe()
Out[7]: count
                 760085.000000
        mean
                     49.902715
        std
                     18.508834
        min
                     17.000000
        25%
                     34.000000
        50%
                     50.000000
                     64.000000
        75%
                    115.000000
        max
        Name: voterbase_age, dtype: float64
```

Note that for the seaborn distribution plot, we need to limit to non-null values.

```
In [8]: f, ax = plt.subplots(1, figsize=(12,6))
sns.distplot(vf.voterbase_age[vf.voterbase_age.notnull()])
```

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x1bb84e99ef0>

Filling in null values with "Missing" for calculating proportions across the full population

```
In [9]: for i in ['gender','race','marital_status','deceased_flag']:
            print('\nProportions by {}'.format(i))
            print(vf['voterbase_{{}}'.format(i)].fillna('Missing').value_counts(normalize=True))
        Proportions by gender
        Female
                   0.486867
                   0.453746
        Male
        Unknown
                   0.059387
        Name: voterbase_gender, dtype: float64
        Proportions by race
                            0.876057
        Caucasian
        African-American
                            0.092105
        Uncoded
                            0.022166
        Hispanic
                            0.006036
        Asian
                            0.003513
        Native American
                            0.000124
        Name: voterbase_race, dtype: float64
        Proportions by marital_status
                     0.503740
        Unmarried
        Married
                     0.442940
                     0.053321
        Name: voterbase_marital_status, dtype: float64
        Proportions by deceased_flag
                    0.999471
        Missing
        Deceased
                    0.000529
        Name: voterbase_deceased_flag, dtype: float64
```

```
In [10]: for i in ['voter_status', 'absentee_status', 'g2018', 'g2016', 'p2018_party']:
             print('\nProportions by {}'.format(i))
             print(vf['vf_{{}}'.format(i)].fillna('Missing').value_counts(normalize=True))
         Proportions by voter_status
                     0.899237
                     0.100763
         Inactive
         Name: vf_voter_status, dtype: float64
         Proportions by absentee\_status
         Missing
                    0.864488
                    0.135512
         Name: vf_absentee_status, dtype: float64
         Proportions by g2018
                    0.582862
         Missing
                    0.403435
         Z
                    0.008625
         R
                     0.002542
         В
                    0.001558
                    0.000950
                    0.000028
         Name: vf_g2018, dtype: float64
         Proportions by g2016
                     0.669586
         Missing
                     0.294211
                     0.026668
         R
                     0.004481
         В
                    0.002933
                    0.002094
         S
                    0.000028
         Name: vf_g2016, dtype: float64
         Proportions by p2018_party
                    0.794933
         Missing
                    0.111803
         R
         D
                    0.092745
                    0.000520
         G
         Name: vf_p2018_party, dtype: float64
In [11]: print(vf.tsmart_partisan_score.describe())
          f, ax = plt.subplots(1, figsize=(12,6))
         sns.distplot(vf.tsmart_partisan_score)
                  760097.000000
         count
                      48.399587
         mean
                      38.356573
         std
         min
                       0.500000
         25%
                       9.900000
         50%
                      41.400000
         75%
                      93.300000
                      99.900000
         max
         Name: tsmart_partisan_score, dtype: float64
Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x1bb80935128>
          0.08
          0.07
```



```
In [12]: print(vf.tsmart_presidential_general_turnout_score.describe())
          f, ax = plt.subplots(1, figsize=(12,6))
          \verb|sns.distplot(vf.tsmart_presidential_general_turnout_score)|\\
                   760097.000000
                       74.766173
          mean
                       26.097281
          std
                        1.100000
         min
                       55.000000
          25%
                       87.600000
          50%
         75%
                       96.600000
                       99.400000
         Name: tsmart_presidential_general_turnout_score, dtype: float64
Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x1bb808c6d68>
           0.08
           0.06
           0.04
           0.02
           0.00
                                     20
                                                                    60
                                                                                   80
                                                                                                  100
                                              tsmart_presidential_general_turnout_score
In [13]: print(vf.tsmart_midterm_general_turnout_score.describe())
          f, ax = plt.subplots(1, figsize=(12,6))
          sns.distplot(vf.tsmart_midterm_general_turnout_score)
                   760097.000000
         count
                       53.346607
         mean
                       34.278661
          std
         min
                        0.400000
          25%
                       20.100000
                       58.400000
          50%
                       87.400000
         75%
                       97.400000
         max
         Name: tsmart_midterm_general_turnout_score, dtype: float64
Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x1bb80ab0400>
          0.05
          0.04
          0.03
          0.02
          0.01
          0.00
```

Question 1: How do the 2016 and 2018 electorates vary in terms of demographics from the overall registered voter populations?

tsmart_midterm_general_turnout_score

```
In [14]: vf['voted16'] = (vf.vf_g2016.notnull())
    vf['eligible16'] = (vf.vf_earliest_registration_date <= 20161108)
    vf['voted18'] = (vf.vf_g2018.notnull())
    vf['eligible18'] = (vf.vf_earliest_registration_date <= 20181106)</pre>
```

Calculating distributions for each demographic category

```
In [15]: for i in ['gender', 'race', 'marital_status']:
    print('\nBy {}:'.format(i))
             x = pd.DataFrame()
             for j in ['voted16', 'eligible16', 'voted18', 'eligible18']:
                x[j] = vf.loc[vf[j],'voterbase_{}'.format(i)].value_counts(normalize=True).sort_index()
         By gender:
                   voted16 eligible16 voted18 eligible18
         Female 0.512006 0.495024 0.503062
                                                   0.486324
                  0.451911
                             0.457755 0.460482
                                                   0.455502
         Male
         Unknown 0.036082 0.047222 0.036456
                                                   0.058174
         By race:
                           voted16 eligible16 voted18 eligible18
         African-American 0.077386
                                      0.090700 0.073003
                                                            0.090368
                          0.003016
                                      0.003138 0.003231
                                                            0.003490
         Asian
                          0.897409
                                      0.880237 0.903080
                                                            0.877808
         Caucasian
                          0.004153
                                      0.005834 0.003189
                                                            0.006152
         Hispanic
         Native American 0.000110
                                      0.000124 0.000106
                                                            0.000124
         Uncoded
                          0.017927
                                      0.019966 0.017391
                                                            0.022058
         By marital_status:
                    voted16 eligible16 voted18 eligible18
                   0.445340
         Married
                               0.045799 0.035949
                   0.040012
                                                     0.044108
         Unknown
                             0.045/99 0.55
0.493994 0.417879
                                                   0.510551
         Unmarried 0.434740
```

Calculating distributions by age

Question 2: Compare partisanship scores across Dem primary voters in 2018, Rep primary voters, and those who didn't vote in a primary

```
In [17]: dem_voter_scores = vf[vf.vf_p2018_party=='D'].tsmart_partisan_score
    print(dem_voter_scores.describe())
    f, ax = plt.subplots(1, figsize=(12,6))
    sns.distplot(dem_voter_scores)
```

```
count
         70495.000000
            79.656075
mean
            31.400597
std
             0.700000
min
25%
            64.700000
50%
            98.800000
75%
            99.300000
max
            99.900000
Name: tsmart_partisan_score, dtype: float64
```

Name: Camar C_par C13an_3core, acype: 110aco4

Out[17]: <matplotlib.axes._subplots.AxesSubplot at 0x1bb80f87d68>

In [18]: rep_voter_scores = vf[vf.vf_p2018_party=='R'].tsmart_partisan_score
 print(rep_voter_scores.describe())
 f, ax = plt.subplots(1, figsize=(12,6))
 sns.distplot(rep_voter_scores)

```
84981.000000
count
mean
            14.150463
std
            22.809783
min
             0.600000
             1.300000
25%
50%
             2.300000
            16.600000
75%
            99.700000
max
```

Name: tsmart_partisan_score, dtype: float64

Out[18]: <matplotlib.axes._subplots.AxesSubplot at 0x1bb80d4d710>


```
In [19]: non_voter_scores = vf[vf.vf_p2018_party.isnull()].tsmart_partisan_score
    print(non_voter_scores.describe())
    f, ax = plt.subplots(1, figsize=(12,6))
    sns.distplot(non_voter_scores)
```

count	604226.000000		
mean	49.563015		
std	37.163721		
min	0.500000		
25%	12.700000		
50%	44.400000		
75%	91.900000		
max	99.900000		
Name:	tsmart_partisan_score,	dtype:	float64

Out[19]: <matplotlib.axes._subplots.AxesSubplot at 0x1bb80f63b00>

Question 3: How are partisanship scores correlated with demographics?

Splitting ages into groups

```
In [20]: vf['voterbase_age_group'] = pd.qcut(vf.voterbase_age,5).astype(str)
```

Describing scores by group

```
In [21]: for i in ['gender', 'race', 'marital_status', 'age_group']:
              print('\nBy {}:'.format(i))
              x = pd.DataFrame()
              for j in sorted(vf['voterbase_{{}}'.format(i)].unique()):
                 x[j] = vf.loc[vf['voterbase_{}'.format(i)]==j,'tsmart_partisan_score'].describe()
         By gender:
                        Female
                                         Male
                                                     Unknown
                                344891.000000
         count 370066.000000
                                               45140.000000
         mean
                     52.479572
                                    41.511753
                                                   67.577448
         std
                     38.477440
                                     37.359184
                                                   33.247574
                      0.600000
                                     0.500000
                                                    0.600000
         min
         25%
                     12.500000
                                     7.100000
                                                   38.800000
         50%
                     51.900000
                                     27.300000
                                                   82.600000
                     95.700000
                                    83.900000
                                                   97.100000
         75%
                                    99.900000
                     99.900000
                                                   99.900000
         max
         By race:
                 African-American
                                          Asian
                                                     Caucasian
                                                                   Hispanic \
                     70009.000000
                                   2670.000000
                                                 665888.000000
                                                                4588.000000
         count
                        94.498537
                                     60.929775
                                                     42.857654
                                                                  81.939037
         mean
                                     32.205449
         std
                        13.904150
                                                     36.807006
                                                                  24.306787
                         1.100000
                                      0.900000
                                                      0.500000
                                                                   0.800000
         min
                                                                   79.800000
                        95.900000
                                      32.500000
                                                      7.800000
         25%
         50%
                        97.900000
                                      68.500000
                                                     31.900000
                                                                  92.100000
         75%
                        99.200000
                                      91.300000
                                                     82.100000
                                                                  96.900000
         max
                        99.900000
                                      99.800000
                                                     99.900000
                                                                  99.800000
                 Native American
                                        Uncoded
                       94.000000 16848.000000
         count
         mean
                       66.572340
                                     64.658060
         std
                       33.692932
                                      32.457174
         min
                        1.100000
                                      0.700000
         25%
                       44.400000
                                      38.100000
         50%
                       80.500000
                                      75.400000
                                     94.300000
         75%
                       95.875000
                       99.600000
                                     99.900000
         max
         By marital_status:
                       Married
                                     Unknown
                                                   Unmarried
         count 336677.000000 40529.000000
                                              382891.000000
                     35.453749
                                   55.610923
                                                   59.019576
         mean
         std
                     36.875594
                                   36,652535
                                                   36.291559
                      0.500000
                                    0.700000
                                                    0.600000
         min
                      3.400000
                                   18.900000
                                                   22.800000
         25%
         50%
                     18.500000
                                   58,700000
                                                   66.900000
         75%
                     66.800000
                                   94.800000
                                                   96.000000
                     99.900000
                                    99.900000
                                                   99.900000
         max
         By age_group:
                 (16.999, 31.0]
                                  (31.0, 43.0]
                                                  (43.0, 56.0]
                                                                  (56.0, 67.0] \
         count
                 160721.000000
                                 144541.000000
                                                 160339.000000
                                                                 147479.000000
         mean
                      57.525450
                                     52.050759
                                                     44.032095
                                                                     44,146287
         std
                      34.984921
                                      36.694011
                                                     38.118733
                                                                     39.520413
                       0.600000
                                       0.500000
                                                      0.600000
                                                                      0.600000
         25%
                      22.400000
                                      15.500000
                                                      7.800000
                                                                      5.200000
         50%
                      63.600000
                                      50.100000
                                                     31.200000
                                                                     30.200000
                      93.000000
                                     92.900000
                                                     90.300000
                                                                     94.000000
         75%
                      99.900000
                                      99.900000
                                                     99.800000
                                                                     99.800000
         max
                 (67.0, 115.0]
                 147005.000000 12.000000
         count
                     43.862363
                                55.458333
         mean
                     40.367439
                                36.712135
         std
                      0.600000
                                 2.200000
         min
                                27,475000
                      3.100000
         25%
                     29.000000
         50%
                                64.850000
         75%
                     95.700000
                                89.350000
                     99.800000 98.900000
```

Question 4: Graph new / updated registrations by month over the past 8 years

Extracting month and year from registration dates and limiting to last 8 years

```
In [22]: reg_dates = vf.vf_registration_date.astype(str).map(lambda x: x[:6])
reg_dates = reg_dates[(reg_dates.astype(float) > 201107)]
reg_by_month = reg_dates.value_counts().sort_index()
```

Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x1bb93546f98>

Question 5: How does the population of inactive registrants vary across counties?

Calculating percentage of inactives by county

Plotting across counties

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x1bb9353ca58>

