Epidémiologie mathématique à l'heure du "Open Data'

Julien Arino

Department of Mathematics
Data Science Nexus
Visual and Automatic Disease Analytics training program
Centre for Disease Modelling (West)

University of Manitoba

Julien.Arino@umanitoba.ca

26 novembre 2019

Remarques sur ce document

Tous les liens devraient être clickables

Le code sera fourni (sur demande)

Le code est en ${\tt R}$.. j'aurais pu utiliser Python mais je hais ce language :)

Une partie de ces transparents est dynamique: ils sont produits avec Rmarkdown en utilisant des données extraites du web et à jour au jour de compilation de ce document (2022-05-02)

Pour générer ces transparents

Il vous faudra les programmes (gratuits) suivants

- R (une version réecente ≥ 3.5) (lien)
- RStudio (lien)
- Une distribution de LATEX (MiKTeX sous Windows, TeX Live sous Linux & Mac)
- Plusieurs librairies R
- Accès au web (une copie des pages/fichiers est fournie, quand même)

Principes directeurs

Nous vivons dans un monde où les données (data) sont devenues une ressource très prisée

Beaucoup de données sont accessibles librement

Un modélisateur n'est pas *obligé* d'utiliser des données, mais quand des données sont disponibles, vous devriez au moins essayer de voir de quoi il retourne

Si vous voulez "avoir un impact' ' (pouvoir influencer une politique de santé publique), oubliez la stabilité globale!

1 Les données sont partout

Exemple – Graphiose de l'orme

Données propriétaires versus données libres (open data)

Données propriétaires

- souvent générées par des compagnies, gouvernements ou laboratoires de recherche
- quand elles sont disponibles, viennent avec multiples restrictions

Open data

- souvent générées par les mêmes entités (compagnies, labos)
 mais libérées après une certaine période
- de plus en plus fréquent pour les gouvernements/entités publiques
- grande variété de licenses, donc attention
- grande variété de qualités, donc attention

Initiatives Open Data

Mouvement récent (5-10 ans): governments (locaux ou plus haut) créent des portails où les données sont centralisées et publiées

- https://data.winnipeg.ca/
- https://open.alberta.ca/opendata
- https://open.canada.ca/en/open-data
- https://data.europa.eu/euodp/data/
- http://data.un.org/
- https://data.worldbank.org/
- https://www.who.int/gho/database/en/

Méthodes de récupération des données

- A la main
- En utilisant des programmes comme Engauge Digitizer ou g3data
- En utilisant des API
- En utilisant des processeurs de langage naturel (web scraping)
- En utilisant des packages (R, Python principalement)

Exemple: la population du Sénégal

```
if (FALSE) {
    pop data CTRY <- wb(country = c("SEN"), indicator = "SP.POP.TOTL",
        mrv = 100
} else {
   pop_data_CTRY = readRDS("pop_data_CTRY_downloaded.Rds")
y_range = range(pop_data_CTRY$value)
y_axis <- make_y_axis(y_range)</pre>
pdf(file = "pop_SEN.pdf", width = 11, height = 8.5)
plot(pop_data_CTRY$date, pop_data_CTRY$value * y_axis$factor,
    xlab = "Année", ylab = "Population", type = "b", lwd = 2,
   vaxt = "n")
axis(2, at = y_axis$ticks, labels = y_axis$labels, las = 1, cex.axis =
dave <- dev.off()
```


Les données sont partout

2 Exemple – Graphiose de l'orme

Graphiose de l'orme

• Maladie fongique de l'orme

• Causée par le champignon Ophiostoma ulmi

 Transmise par le scolyte de l'orme (Scolytus scolytus) (coléoptère)

• A décimé les forêts urbaines en amérique du nord

Projects Dashboard

An interactive tool that reports on the performance of the City's open capital

Open Budget

An interactive tool to inform citizens on

the financial status of all open capital

projects.

Includes Hansards, dispositions, ward boundaries

Includes capital and operating budgets, Council expenses

Transit API

Tree ID :	Botani	Comm :	Electo	Neigh	Diame	Park :	Locati	Prope	Street	Street	х :	Y i	DED T	Locati
1000	Ulmus davi	Japanese el	Old Kildon	THE MAPLES	20	Not In Park	Boulevard	Public	Margate Rd	Massena Pl	631,154.17	5,534,693		(49.950179
10000	Fraxinus p	green ash	Daniel McI	ST. MATTH	46	Not In Park	Boulevard	Public	Ellice Av	St Matthe	631,857.53	5,528,241		(49.892025
100001	Fraxinus p	green ash	St. Boniface	NIAKWA P	39	Windsor P	Park	Public	Cottonwoo	Elizabeth Rd	636,953.38	5,525,312		(49.864546
100004	Ouercus m	bur oak	St. Boniface	NIAKWA P	34	Windsor P	Park	Public	Cottonwoo	Elizabeth Rd	636.949.99	5.525.307		(49.864501

[1] 291601

Recuperation des données des arbres

```
allTrees = read.csv("https://data.winnipeg.ca/api/views/hfwk-jp4h/rows.
Voilà ce que cela retourne:
dim(allTrees)
```

17

On nettoie un peu

```
elms_idx = grep("American Elm", allTrees$Common.Name, ignore.case = TRU
elms = allTrees[elms_idx, ]
```

ce qui nous laisse 47273 ormes américains