Тема. Розв'язування задач. Самостійна робота

Мета. Вдосконалювати вміння розв'язувати задачі на застосування означення та ознак рівнобедреного трикутника, ознак рівності трикутників. Перевірити ступінь засвоєння теми

Повторюємо

- Який трикутник називають рівнобедреним?
- Які ознаки рівнобедреного трикутника ви знаєте?
- Доведіть, що рівносторонній трикутник є рівнобелреним.

Самостійна робота

Пройдіть тестування за посиланням:

https://vseosvita.ua/test/start/dod458

Розв'язування задач

Задача 1

У рівнобедреному трикутнику CFD: CF=FD, CE-бісектриса ∠DCF, DE-бісектриса ∠CDF, ∠CED=140°. Знайти ∠CFD

Розв'язання

У \triangle CED: \angle D = \angle C за умовою, отже \angle D = \angle C =(180°-140°):2=20°.

∠DCF=∠CDF =20° ·2=40° . Тоді ∠CFD =180°-40° ·2=100°.

Відповідь: 100°

Задача 2

Точки A і C лежать на одній прямій, точка B не лежить на цій прямій, але розташована на однакових відстанях від точок A і C, $\angle \alpha = 118^\circ$. Визначте вид трикутника ABC та знайдіть величину кута $\angle \beta$.

Розв'язання

 Δ ABC — рівнобедрений за означенням, так як точка В лежить на однакових відстанях від точок A і C.

За ознакою рівнобедреного трикутника та за ознакою суміжного кута

$$\angle C = \angle A = 180^{\circ} - \angle \alpha = (180^{\circ} - 118^{\circ}):2=31^{\circ}.$$

∠β =∠A = 31° як вертикальні кути.

Відповідь: Δ ABC — рівнобедрений, $\angle \beta$ =31 $^{\circ}$

Поміркуйте

- Як обчислити кут при основі рівнобедреного трикутника, якщо відомий кут при його вершині?
- Чому дорівнює кут при основі прямокутного рівнобедреного трикутника?

Домашнє завдання

- Опрацювати конспект
- Розв'язати письмово №500(1)

Фото виконаної роботи потрібно надіслати вчителю на HUMAN або на електронну пошту nataliartemiuk.55@gmail.com

Джерела

- 1. Геометрія: підруч. Для 7кл. загальноосвіт. навч. закл./ М.І.Бурда, Н.А.Тарасенкова. К.: Видавничий дім «Освіта», 2016. 208с.
- 2. Мій клас