The Cellular Concept-System Design Fundamentals (Continued)

Trunking

- The Telephone Company uses trunking theory to determine the number of channels needed to be allocated for hundreds of users
- Each user is allocated a channel on a per call basis and upon termination of the call, the occupied channel immediately returns to the available pool of channels
- When a user requests to call, but all the channels are busy, then the user will be blocked or delayed.

Erlang

- The fundamentals of trunking theory was developed by a Danish mathematician Erlang.
- Today the measure of traffic intensity bears his name
- One Erlang represents the amount of traffic intensity carried by a fully occupied channel during a fixed time.
- For example, if one channel is busy during 30 minutes within a hour, then it is said that the traffic intensity is .5 Erlang

Grade of Service (GOS)

- Grade of Service (GOS) is a measure of congestion which is specified as the probability of a call being blocked (Erland B) or a call being delayed for a certain amount of time (Erlang C)
- GOS of 2% blocking means that the channel allocation is designed in such a way that 2 out of 100 calls will be blocked due to channel occupancy during the busiest hour.

Terminologies

- Set up time
 - The time required to allocate a trunked radio channel to a user
- Blocked call
 - A call that cannot be completed due to congestion
- Load
 - Traffic intensity over the entire trunked radio system

Terminologies

- Traffic intensity
 - Measure of channel time utilization. It is the average channel occupancy measured in Erlangs.
 - Denoted by A (dimensionless)
- Request rate
 - The average number of call requests per unit time, denoted by λ (sec⁻¹)
- Holding time
 - Average duration of a call, denoted by H (sec)

Equations

The traffic intensity offered by each user is given by
A_{..} = λH

where H is the average duration of a call and λ is the average number of call requests per unit time for a user.

A system containing U users, the total traffic intensity is given by
A = UA_u

 In a C channel trunked system, the traffic intensity per channel is given by A_c = UA_u / C

Erlang B formula

 The Erlang B formula determines blocking probability of a call

$$Pr[blocking] = \frac{\frac{A^{C}}{C!}}{\sum_{k=0}^{C} \frac{A^{k}}{k!}} = GOS$$

Table 2.4	Capacity o	f an Erlang	B System
-----------	------------	-------------	----------

Number of Channels C	Capacity (Erlangs) for GOS				
	= 0.01	= 0.005	= 0.002	= 0.001	
2	0.153	0.105	0.065	0.046	
4	0.869	0.701	0.535	0.439	
5	1.36	1.13	0.900	0.762	
10	4.46	3.96	3.43	3.09	
20 .	12.0	11.1	10.1	9.41	
24	15.3	14.2	13.0	12.2	
40	29.0	27.3	25.7	24.5	
70	56.1	53.7	51.0	49.2	
100	84.1	80.9	77.4	75.2	

Trunking Efficiency

- Trunking efficiency is a measure of the number of users which can be offered a particular GOS with a particular configuration of fixed channels.
- The way in which channels area grouped can substantially alter the number of users handled by a trunked system.
- For example, 10 channels at 1% blocking can support 4.46 Erl of traffic whereas, 2 groups of 5 channels can support 2 x 1.36 Erl = 2.72 Erl.
- Hence, allocation of channel groups has a major impact on overall system capacity.

Example #1

- An operator has a total of 48 carrier frequencies in use and SIR requirement for the system is 14 dB. Suppose the propagation exponent for the area is n = 3. How many frequencies can be used per cell (frequency reuse factor)?
- We know SIR equals $\frac{S}{I} = \frac{(\sqrt{3N})^n}{6}$

Given, SIR = $14 \text{ dB} = 10^{14/10} = 25.11$

So,
$$N = \frac{(25.11 \times 6)^{\frac{2}{3}}}{3} = 9.43$$

The nearest possible value for N is 12. Therefore the required cluster size N has to be 12.

This means that 48/12 = 4 carrier frequencies can be used in each cell.

Example #2

The maximum calls per hour in a mobile cell equals 400 and the average call holding time is 160 seconds. If the GoS is 2%, find the offered load A. How many service channels are required to handle the load?

• Traffic intensity,
$$A_u = \frac{400 \times 160}{3600} = 17.78$$

Using the Erlang B chart 25 channels give 18 Erlangs of traffic intensity at 2% blocking. So we need 25 service channels

Example #3

- How many mobile subscribers can be supported with 50 service channels at 2% GoS? Assume the average call holding time equals 120 seconds and the average busy hour call per subscriber is 1.2 calls per hour.
- From the Erlang B chart, for 50 channels at 2% blocking, the offered load is 40.26 Erlangs.

Average Traffic per channel,
$$A_u = \frac{1.2 \times 120}{3600} = .04Erl$$

Number of users,
$$U = \frac{A}{A_u} = \frac{40.26}{.04} = 100.6 \approx 1007 users$$

Coverage VS Capacity

Maximizing coverage

- Use low frequency band
- Increase antenna height
- Maximize transmission power
- Reduce quality requirements

Maximizing capacity

- Maximize frequency band
- Reduce antenna height
- Reduce C/I requirements
- Re-use frequencies

Improvement Techniques

- All the cells are different
 - No. of subscribers, path loss, geography, usage statistics etc
- Cannot have one-and-for-all design
 - Require special techniques/schemes for different cells
- Also, the number of subscribers can grow
 - Don't want to redesign the entire system
- Improvement techniques
 - Cell Splitting
 - Sectoring
 - Repeaters

Cell Splitting

- In highly congested cell, there are many subscribers in a cell
 - Not enough channels to support the desired GOS
- Subdivide a congested cell into smaller cells (microcells)
 - Increases the system capacity by reusing the frequency channels more
 - Reduce the number of subscribers per cell such that the traffic generated is under the maximum provided
 - Need to reduce the transmit power accordingly to maintain the SIR

Cell Splitting (cont'd)

- Advantages
 - Increase system capacity
 - Reduce transmission power
- Disadvantages
 - More base station
 - More handoff traffic

Macro Cell

Pico Cell

Micro Cell

Sectoring

- Use of directional antenna to divide cells to sectors
 - Normally partitioned into 3 120° sectors or 6 60° sectors
 - Co-channel cells drop from 6 to 2 for 120° sectors or 1 for 60° sectors
 - Divide the channels in 1 cell evenly among the sectors

Sectoring (cont'd)

Figure 3.11 Illustration of how 120° sectoring reduces interference from co-channel cells. Out of the 6 co-channel cells in the first tier, only two of them interfere with the center cell. If omnidirectional antennas were used at each base station, all six co-channel cells would interfere with the center cell.

Sectoring (cont'd)

- Advantages
 - Increase system capacity
 - As SIR increased ⇒ so we can reduce cluster size (N ↓) ⇒ more frequencies can be reused (M ↑) ⇒ increase system capacity (C_{svs}↑)
- Disadvantages
 - Loss of trunking efficiency
 - Channels are divided into sectors.
 - Less trunked channels ⇒ less max system traffic
 - More handoffs
 - BS can handle handoff between sectors, without MSC computation
 - Better with DCA (Dynamic Channel Allocation) because no handoff required between sectors

Repeater

- For use in hard-to-reach areas, such as buildings, tunnels
- Often used with distributed antenna system
 - A number of antennas are distributed in different spots to transmit the same signal and for reception
- Downlink / Forward Link
 - Receive signal from "outside", amplify and retransmit "inside"
- Uplink / Reverse Link
 - Receive signal from "inside", amplify and retransmit "outside"
- No increase in capacity!!!!

Repeater (cont'd)

Figure 3.12 Illustration of how a distributed antenna system (DAS) may be used inside a building. Figure produced in SitePlanner®. (Courtesy of Wireless Valley Communications Inc.)

Summary

- Cellular concept is the core of mobile communication
 - Frequency reuse
 - Channel assignment schemes
 - Handoff
- Good system design is very important
 - High system capacity
 - Good GOS with trunking
 - Low transmission power
- System improvement techniques
 - Cell splitting
 - Sectoring
 - Repeaters

Reference

- Wireless Communications: Principles and Practice Theodore S. Rappaport
 - E-Book, 1st Edition Section 2.6 2.7.2, Page 44 60
 - Paper book, 2nd Edition Section 3.6 3.7.3 Page 77 93