데이터베이스 설계 (Database Design) Lecture 06: SQL II

담당교수: 전강욱(컴퓨터공학부) kw.chon@koreatech.ac.kr

지난시간 복습

- SQL 발전역사 확인
 - □ IBM에서 개발된 SYSTEM R을 위한 언어로부터 유래
 - 이후 미국 표준 연구소인 ANSI와 국제 표준화 기구인 ISO에서 표준화 작업을 진행
 - □ 표준화가 진행될 수록 다양한 기능이 추가
- SQL은 선언적 언어이며, 원하는 데이터만을 명시하여 데이터 추출

CREATE TABLE명령

- PRIMARY KEY절은 릴레이션의 기본키를 구성하는 하나 이상의 속성을 명시
- □ UNIQUE 절은 대체키를 명시
- □ FOREIGN KEY절은 참조 무결성을 지정

■ 속성 데이터 타입과 도메인 확인

□ CREATE DOMAIN명령을 통해 도메인은 새로 생성 가능

■ 제약조건 및 디폴트 값 명시

□ NOT NULL, DEFAULT 등

- DROP 명령어: DB나 테이블 삭제
 - □ DROP SCHEMA DB명 [CASCADE|RESTRICT];
 - DROP TABLE 테이블명 [CASCADE|RESTRICT];
- ALTER 명령어: 기본 테이블의 정의를 변경
 - 속성의 추가/제거, 열 정의 변경, 테이블 제약 조건 추가/제거
- SELECT 문: DB에서 정보를 검색하는 명령어
 - □ SELECT 속성목록 FROM 테이블명 WHERE 조건;

- INSERT 명령어: 릴레이션에 하나 또는 이상의 튜플들을 삽입하는 명령어
 - □ INSERT INTO 테이블명 VALUES (추가할 레코드 값);
- DELETE 명령어: 릴레이션에서 하나 또는 이상의 튜플들을 제거하는 명령어
 - □ DELETE FROM 테이블명 WHERE 삭제조건;
- UPDATE 명령어: 튜플의 속성 값을 변경하는 명 령어
 - □ UPDATE 테이블명 SET 속성 WHERE 변경조건;

- 뷰(View)는 다른 테이블들에서 유도된 가상 테이블
 - □ 실제로 저장되지는 않음
 - □ 뷰에 대한 질의는 제한을 받지 않지 않음(갱신 연산 제외)

■ 뷰 관련 명령어

- □ 뷰 정의: CREATE VIEW 뷰이름;
- □ 뷰 삭제: DROP VIEW 뷰이름;

복습 문제

- VIEW는 물리적으로 구현되어 있는 테이블이다()
- SELECT * WHERE DEGREE="PHD" ()
- 데이터의 보안, 무결성, 회복, 병행 수행 제어 등을 정의하는 데 사용되는 언어는 DML이다 ()
- 기본키는 NOT NULL 속성을 반드시 포함한다 ()
- GROUP BY 절의 조건으로 일반적으로 WHERE 절을 사용한다 ()
- 테이블을 정의할 때 ALTER TABLE 명령어를 이용한다 ()
- 중복된 레코드가 한 번만 검색되도록 하는 명령어는 ()이다

- 뷰는 삽입, 삭제, 갱신 연산에 제약 사항이 따른다 ()
- 뷰는 데이터 접근 제어로 보안을 제공한다 ()
- 뷰는 물리적으로 구현되는 테이블이다 ()
- 뷰는 데이터의 논리적 독립성을 제공한다()
- 관계 데이터베이스에서 main table의 데이터를 삭제 시 외래키에 대해 부합되는 모든 데이터를 삭제하는 참조 무결성의 법칙은 () 이다

■ DEPENDENT 테이블에서 ESSN 속성을 중복을 제 거하고 검색하시오

■ PROJECT 테이블에서 PLOCATION이 "Houston" 인 PNAME, PNUMBER, DNUM을 검색하시오

PROJECT	PNAME	PNUMBER	PLOCATION	DNUM
	ProductX	1	Bellaire	5
	ProductY	2	Sugarland	5
	ProductZ	3	Houston	5
	Computerization	10	Stafford	4
	Reorganization	20	Houston	1
	Newbenefits	30	Stafford	4

■ EMPLOYEE 테이블에서 직원 이름(FNAME, MINT, LNAME)과 SALARY를 출력하되, SALARY에 50000달러를 더하여 UPDATED_SALARY라는 새이름으로 검색하시오

EMPLOYEE	FNAME	MINT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	John	В	Smith	123456789	09-Jan-55	Houston	М	30000	333445555	5
	Franklin	Т	Wong	333445555	08-Dec-45	Houston	М	40000	888665555	5
	Alicia	J	Zelaya	999887777	19-Jul-58	Spring	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	20-Jun-31	Bellaire	F	43000	888665555	4
	Ramesh	K	Narayn	666884444	15-Sep-52	Oak	М	38000	333445555	5
	Joyce	Α	English	453453453	31-Jul-62	Houston	F	25000	333445555	5
	Ahmad	V	Jabbar	987987987	29-Mar-59	Houston	М	25000	987654321	4
	James	Е	Borg	888665555	10-Nov-27	Houston	М	55000	NULL	1

 EMPLOYEE 테이블에서 생년월일 기준으로 내림차 순이 되도록 모든 열을 검색하시오

■ EMPLOYEE 테이블에서 ADDRESS별 평균 연봉을 검색하시오

EMPLOYEE	FNAME	MINT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	John	В	Smith	123456789	09-Jan-55	Houston	М	30000	333445555	5
	Franklin	Т	Wong	333445555	08-Dec-45	Houston	М	40000	888665555	5
	Alicia	J	Zelaya	999887777	19-Jul-58	Spring	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	20-Jun-31	Bellaire	F	43000	888665555	4
	Ramesh	K	Narayn	666884444	15-Sep-52	Oak	М	38000	333445555	5
	Joyce	Α	English	453453453	31-Jul-62	Houston	F	25000	333445555	5
	Ahmad	V	Jabbar	987987987	29-Mar-59	Houston	М	25000	987654321	4
	James	Е	Borg	888665555	10-Nov-27	Houston	М	55000	NULL	1

■ EMPLOYEE 테이블에서 SUPERSSN이 333445555 인 직원의 FNAME, SSN, BDATE를 나타내는 VIEW 를 SUPERVISED_BY_333445555 라는 이름으로 만 드시오

EMPLOYEE	FNAME	MINT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	John	В	Smith	123456789	09-Jan-55	Houston	М	30000	333445555	5
	Franklin	Т	Wong	333445555	08-Dec-45	Houston	М	40000	888665555	5
	Alicia	J	Zelaya	999887777	19-Jul-58	Spring	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	20-Jun-31	Bellaire	F	43000	888665555	4
	Ramesh	K	Narayn	666884444	15-Sep-52	Oak	М	38000	333445555	5
	Joyce	Α	English	453453453	31-Jul-62	Houston	F	25000	333445555	5
	Ahmad	V	Jabbar	987987987	29-Mar-59	Houston	М	25000	987654321	4
	James	Е	Borg	888665555	10-Nov-27	Houston	М	55000	NULL	1

NCS 정보

- 능력 단위명 : 물리 데이터베이스 설계, 데이터베이스 구현
- 능력 단위요소 : 물리 E-R 다이어그램 작성하기, 데이터베이스 오브 젝트 생성
- 학습목표(수행 준거) :
 - 3.1 논리 데이터베이스 설계에서 엔티티, 속성, 주식별자, 외래 식별자를 각각 테이블, 컬럼, 기본 키, 외래 키로 변환하여 표현할 수 있다.
 - 3.2 물리 데이터베이스 설계에 따라 데이터베이스 오브젝트를 생성하기 위한 DDL(Data Definition Language)을 작성할 수 있고 생성된 오브젝트에 대한 유효성 여부를 검사할 수 있다.
 - 3.3 엔티티 명, 속성 명에 대한 data dictionary(용어사전)를 정의하고, 테이블 명, 컬럼 명, 키 종류, NULL값 허용여부 정보를 기준으로 테이블 기술서를 작성할 수 있다.

NCS 정보 (계속)

■ 지식

- □ DDL과 DML 문법 이해 및 사용법
- □ 테이블 정의서(내부 스키마)
- 무결성 제약조건 이해

기술

- DDL로 테이블을 생성/삭제하는 능력
- □ 테이블 정의서(내부 스키마) 기술 능력

태도

- SQL문을 이해하고 활용하려는 노력
- □ 테이블 정의서(내부 스키마)를 정확히 기술하려는 태도
- □ 테이블 정의서를 준수하려는 태도
- □ 생성된 테이블이 활용도를 다각도로 테스트하려는 적극적인 태돐

세부 학습목표

- 1. 물리적 모델링의 주요 업무를 나열할 수 있다.
- 2. 릴레이션 스키마를 내부 스키마로 변환할 수 있다.
- 3. 성능 향상을 위해 물리적 구조를 변경하는 방법에 대해 설명할 수 있다.

EMPLO	OYEE	FNAME	MINT	LNAME	SSN	BDA	TE	ADDRE	SS	SEX	SALARY	SUPERSSN	DNO
		John	В	Smith	123456789	09-Jar	า-55	Houst	on	М	30000	333445555	5
COMPANY		Franklin	Т	Wong	333445555	08-De	c-45	Houst	on	М	40000	888665555	5
데이터베이	人	Alicia	J	Zelaya	999887777	19-Ju	-58	Sprin	g	F	25000	987654321	4
	_ [Jennifer	S	Wallace	987654321	20-Jur	า-31	Bellaii	·e	F	43000	888665555	4
		Ramesh	K	Narayn	666884444	15-Sep	o-52	Oak		М	38000	333445555	5
		Joyce	Α	English	453453453	31-Ju	-62	Houst	on	F	25000	333445555	5
		Ahmad	V	Jabbar	987987987	29-Ma	r-59	Houst	on	М	25000	987654321	4
		James	E	Borg	888665555	10-No	v-27	Houst	on	М	55000	NULL	1
WORKS ON	ES	SN	PNO	HOURS	DEPART	AENT .	DNA	ME	DNUN	/DED	MGRSSI	N MGRSTAI	DTDATE

SEX

F

M

F

M

M

F

F

32-DEC-78

05-May-57

	_				_		
123456789	1	32.5		Resear	ch	5	3
123456789	2	7.5		Administra	ation	4	(
666884444	3	40		Headquai	rters	1	8
453453453	1	20			DE	PT LOCATIO	N
453453453	2	20				i i_Lookiic	
333445555	2	10					
333445555	3	10					
333445555	10	10					
333445555	20	10					
999887777	30	30					
999887777	10	10	<u> </u>	ROJECT		PNAME	PN
987987987	10	35			P	ProductX	
987987987	30	5			P	ProductY	
987654321	30	20				ProductZ	
987654321	20	15			Г	TOUUCIZ	
888665555	20	null			Com	puterization	
					Reo	rganization	
					Ne	wbenefits	

DEPARTMENT NAME

Alice

Theodore

Joy

Abner

Michael

Allice

Elizabeth

DEPENDENT

ESSN

333445555

333445555

333445555

987654321

123456789

123456789

123456789

PROJE	СТ	PNAME		
		Product	<	
		Product\	1	
		ProductZ		
		Computerization		
		Reorganization		
		Newbenefits		
BDATE	REL	ATIONSHIP		
05-Apr-76	DA	AUGHTER		
25-Oct-73		SON		
03-May-48	5	SPOUSE		
29-Feb-32	5	SPOUSE		
01-Jan-78		SON		

DAUGHTER

SPOUS

	서울				
	부	산			
	대	전			
PLO	DNUM				
Ве	5				
Sug	5				
Но	5				
Sta	4				
Но	1				

4

22-May-78

01-Jan-85

19-Jun-71

DLOCATION 서울 천안

333445555

987654321

888665555

PNUMBER

2

3

10

20

30

DNUMBER

Stafford

널 값을 포함한 비교

■ 널 값의 의미

- 말려지지 않은 값 (존재하지만 알지 못하는)
- □ 이용할 수 없거나 보류해둔 값 (존재하지만 의도적으로 보류한)
- □ 적용할 수 없는 속성 (이 튜플에는 정의되지 않는)

■ 속성 값이 NULL인지 검사

- IS NULL
- IS NOT NULL

■ 질의 18

상사가 없는 모든 종업원들의 이름을 검색하시오.

SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE SUPERSSN IS NULL;

■ 중첩 질의

- □ 다른 질의의 WHERE절 내에 완전한 SELECT 질의가 나 타나는 형태
- □ 외부 질의와 내부 질의로 구분

■ 비교연산자 IN

외부 질의의 한 튜플에 대하여, 이 튜플이 임의의 튜플 집합의 원소가 되는지 비교하는 연산

■ 질의 4A

성이 'Smith'인 종업원(일반 직원 혹은 프로젝트를 담당하는 부서의 관리자)
 이 참여하는 프로젝트의 프로젝트 번호 목록을 작성하시오.

```
FROM PROJECT

WHERE PNUMBER IN ( SELECT PNUMBER

FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE DNUM=DNUMBER AND MGRSSN=SSN

AND LNAME='Smith')

OR

PNUMBER IN ( SELECT PNO

FROM WORKS_ON, EMPLOYEE

WHERE ESSN=SSN AND LNAME='Smith');
```

■ 질의 4A

성이 'Smith'인 종업원(일반 직원 혹은 프로젝트를 담당하는 부서의 관리자)
 이 참여하는 프로젝트의 프로젝트 번호 목록을 작성하시오.

```
FROM PROJECT

WHERE PNUMBER IN ( SELECT PNUMBER

FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE DNUM=DNUMBER AND MGRSSN=SSN

AND LNAME='Smith')

OR

PNUMBER IN ( SELECT PNO

FROM WORKS_ON, EMPLOYEE

WHERE ESSN=SSN AND LNAME='Smith');
```

■ 질의

□ SSN이 123456789인 사원이 일하는 프로젝트와 일한 시 간의 조합이 동일한 사원의 SSN을 검색하라.

```
SELECT DISTINCT ESSN
```

FROM WORKS_ON

WHERE (PNO, HOURS) IN (SELECT PNO, HOURS

FROM WORKS_ON

WHERE SSN='123456789');

- = ALL 연산자
 - □ 하나의 값 v가 집합 V내의 모든 값들과 같으면 참이 됨
 - ALL 앞에 >, >=, <, <=, <를 사용할 수도 있음
- = ANY(= SOME) 연산자
 - □ 하나의 값 v가 집합 V내의 어떤 하나의 값과 같으면 참이 됨
 - □ ANY(SOME) 앞에 >, >=, <, <=, <를 사용할 수도 있음

■ 질의

5번 부서에 근무하는 모든 사원보다 급여가 많은 사원을 검색하라.

```
SELECT LNAME, FNAME
FROM EMPLOYEE
WHERE SALARY > ALL ( SELECT SALARY
FROM EMPLOYEE
WHERE DNO=5);
```

■ 중첩 질의에서 속성 이름의 모호성

- 만약 외부 질의문의 FROM 절에 있는 릴레이션과 내부 질의문의 FROM 절에 있는 다른 릴레이션에 동일한 속성명이 있다면 속성 이름의 모호성이 발생
- 애매한 속성에 대한 참조규칙은 항상 가장 안쪽 가까운 질의문에 선언된 릴 레이션을 먼저 참조하는 것임
- 내부 질의에서 외부 질의에 명시된 릴레이션의 속성을 참조하려면 별명을 사용해야 함

■ 질의 16

자신의 부양가족과 이름, 성별이 같은 종업원들의 이름을 검색하시오.

```
SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E
WHERE E.SSN IN ( SELECT ESSN
FROM DEPENDENT
WHERE E.FNAME=DEPENDENT_NAME AND
E.SEX=SEX);
```

상관 중첩 질의

- 상관된 질의 (Correlated Query)
 - 내부 질의의 WHERE 절에 있는 조건에서 외부질의에 선언된 릴레이션
 의 일부 애트리뷰트를 참조하는 경우에 두 질의를 상관된 질의라고 함
- 비중첩 질의로의 변환
 - □ 중첩된 SELECT ... FROM ... WHERE... 블록과 =과 IN 비교 연산자를 이용해서 작성한 질의는 항상 단일 블록 질의로 변환할 수 있음
- 질의 16A
 - □ 자신의 부양가족과 이름, 성별이 같은 종업원들의 이름을 검색하시오.

SELECT E.FNAME, E.LNAME

FROM EMPLOYEE AS E

WHERE E.SSN IN (SELECT ESSN

FROM DEPENDENT AS D

WHERE E.FNAME=D.DEPENDENT_NAME

AND E.SEX=D.SEX);

상관 중첩질의

SELECT E.FNAME, E.LNAME

FROM EMPLOYEE AS E, DEPENDENT AS D

WHERE E.SSN=D.ESSN AND E.FNAME=DEPENDENT_NAME AND

E.SEX=D.SEX;

비중첩질의

EXISTS 함수

■ EXISTS 함수

- 상관된 중첩질의에서 내부 질의의 결과가 공집합인가를 검사함
- EXISTS(Q)
 - 질의 Q의 결과에 최소한 한 개의 튜플이 있다면 참을 반환

■ 질의 16B

자신의 부양가족과 이름, 성별이 같은 종업원들의 이름을 검색하시오.

SELECT E.FNAME, E.LNAME

FROM EMPLOYEE E

WHERE EXISTS (SELECT *

FROM DEPENDENT

WHERE E.SSN=ESSN AND SEX=E.SEX AND E.FNAME=DEPENDENT NAME);

EXISTS 함수 (계속)

NOT EXIST 함수

- 상관된 중첩질의에서 내부 질의의 결과가 공집합인가를 검사함
- NOT EXISTS(Q)
 - 질의 Q의 결과에 튜플이 없다면 참을 반환

■ 질의 6

□ 부양가족이 없는 종업원들의 이름을 검색하시오.

```
SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE NOT EXISTS ( SELECT *
FROM DEPENDENT
WHERE SSN=ESSN);
```

UNIQUE 함수

질의 Q의 결과에 중복된 튜플이 없다면 TRUE를 반환

EXISTS 함수 (계속)

■ 질의 7

부양가족이 적어도 한명 이상 있는 관리자의 이름을 검색하라.

```
SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE EXISTS (SELECT *
FROM DEPENDENT
WHERE SSN=ESSN)
AND
EXISTS (SELECT *
FROM DEPARTMENT
WHERE SSN=MGRSSN);
```

EXISTS 함수 (계속)

■ 질의

5번 부서가 담당하는 모든 프로젝트에 근무하는 사원들의 이름을 검색하라. (각 사원에 대하여 그 사원이 근무하지 않는 5번 부서가 관리하는 프로젝트가 존재하지 않는 경우에 그 사원을 검색하라)

```
SELECT
         FNAME, LNAME
FROM
         EMPLOYEE
         NOT EXISTS (
                       SELECT
WHERE
                       FROM
                                WORKS ON AS B
                       WHERE
                                (B.PNO IN (
                                              SELECT
                                                      PNUMBER
                                              FROM
                                                      PROJECT
                                                      DNUM=5))
                                              WHERE
                                AND
                                NOT EXISTS (
                                              SELECT
                                                      *
                                              FROM
                                                      WORKS ON AS C
                                              WHERE
                                                      C.PNO=B.PNO));
```

명시적 집합과 속성의 재명명

■ WHERE 절에 값들의 명시적 집합 사용 가능

■ 질의 17

□ 프로젝트 번호 1, 2, 3에서 일하는 모든 종업원들의 SSN을 검색하시오.

```
SELECT DISTINCT ESSN
FROM WORKS_ON
WHERE PNO IN (1, 2, 3);
```

명시적 집합과 속성의 재명명 (계속)

■ 질의 결과 애트리뷰트의 재명명

- 결과에 나타나는 애트리뷰트의 이름은 키워드 AS를 사용하여 원하는 새 이름으로 재명명할 수 있음
- AS를 사용하여 애트리뷰트와 릴레이션에 별명을 붙일 수 있음

■ 질의 8A

종업원에 대해, 종업원의 성과 이름, 직속 감독자의 성과 이름을 검색하시오.

SELECT E.LNAME AS EMPLOYEE_NAME,

S.LNAME AS SUPERVISOR_NAME

FROM EMPLOYEE AS E, EMPLOYEE AS S

WHERE E.SUPERSSN=S.SSN;

조인된 테이블

- FROM 절에 조인 연산의 결과를 지정
 - SQL2에서는 질의의 FROM 절에 조인연산의 결과를 지정할 수 있음

■ 질의 1A

'Research' 부서에서 일하는 모든 종업원들의 이름과 주소를 검색하시
 오.

```
SELECT FNAME, LNAME, ADDRESS
```

FROM (EMPLOYEE JOIN DEPARTMENT ON DNO=DNUMBER)

WHERE DNAME='Research';

집단 함수

■ 집단함수

- SQL에서는 COUNT, SUM, MAX, MIN, AVG 등의 집단 (or 내장) 함수를 제공함
- COUNT 함수는 질의에서 튜플이나 값의 개수를 반환함
- SUM, MAX, MIN, AVG 함수는 수치 값들의 다중집합에 적용되며, 각각합, 최대값, 최소값, 평균값을 반환함

■ 질의 19

종업원의 급여의 합, 최고 급여, 최저 급여, 평균 급여를 구하시오.

SELECT SUM (SALARY), MAX (SALARY), MIN (SALARY), AVG (SALARY) FROM EMPLOYEE;

집단 함수 (계속)

■ 집단함수

조건을 만족하는 튜플들을 대상으로 집단 함수 값들을 얻으려면, WHERE절에서 튜플의 조건을 제시할 수 있음

■ 질의 20

'Research' 부서에 있는 모든 종업원들의 급여의 합과 최고 급여 , 최소 급여, 평균 급여를 구하시오.

```
SELECT SUM (SALARY), MAX (SALARY), MIN (SALARY), AVG (SALARY)
```

FROM EMPLOYEE, DEPARTMENT

WHERE DNO=DNUMBER AND DNAME='Research';

집단 함수 (계속)

COUNT(*)

튜플의 수를 반환

■ 질의 21

□ 회사내의 총 종업원의 수를 검색하시오.

```
SELECT COUNT (*)
FROM EMPLOYEE;
```

■ 질의 22

'Research' 부서에 속해 있는 종업원의 수를 검색하시오.

```
SELECT COUNT (*)
FROM EMPLOYEE, DEPARTMENT
WHERE DNO=DNUMBER AND DNAME='Research';
```

집단 함수 (계속)

- 특정 튜플을 선택하기 위해 집단함수 이용
 - □ 중첩질의 이용

■ 질의 5

둘 이상의 부양가족이 있는 모든 사원의 이름을 검색하시오.

```
SELECT LNAME, FNAME

FROM EMPLOYEE

WHERE ( SELECT COUNT (*)

FROM DEPENDENT

WHERE SSN=ESSN ) >= 2;
```

그룹핑: Group by와 Having 절

■ 그룹화 (grouping)

- □ 특정 속성(들)의 값이 같은 튜플들을 모아서 그룹을 생성하고, 이들 그룹에 대하여 집단함수를 적용함
- 이 때, 특정 애트리뷰트들을 그룹화 애트리뷰트 라고 하며, SQL의 GROUP BY절에 지정함
- □ 대부분의 경우, SELECT절에 그룹화 애트리뷰트(들)를 지정하여 그 값과 그 값에 해당하는 튜플 그룹에 집 단함수를 적용한 결과를 동시에 반환함

■ 질의 24

각 부서에 대해서 부서 번호, 부서 내에 있는 종업원의 수, 평균 봉급은?

SELECT DNO, COUNT (*), AVG (SALARY)

FROM EMPLOYEE

GROUP BY DNO;

■ EMPLOYEE 튜플들을 DNO 값을 기준으로 분할하여 그룹들을 생성함

■ 그 다음에, 각 그룹의 튜플들에 대하여 COUNT와 AVG함수를 적용함

EMPLOYEE	FNAME	MINT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	John	В	Smith	123456789	09-Jan-55	Houston	М	30000	333445555	5
	Franklin	Т	Wong	333445555	08-Dec-45	Houston	М	40000	888665555	5
	Alicia	J	Zelaya	999887777	19-Jul-58	Spring	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	20-Jun-31	Bellaire	F	43000	888665555	4
	Ramesh	K	Narayn	666884444	15-Sep-52	Oak	М	38000	333445555	5
	Joyce	Α	English	453453453	31-Jul-62	Houston	F	25000	333445555	5
	Ahmad	V	Jabbar	987987987	29-Mar-59	Houston	М	25000	987654321	4
	James	Е	Borg	888665555	10-Nov-27	Houston	M	55000	NULL	1

COUNT(*)	AVG(SALARY)									
4	33250									
3	31000									
1	55000									
	COUNT(*) 4 3 1									

■ 질의 25

각 프로젝트에 대해서 프로젝트 번호, 프로젝트 이름,그 프로젝트에서 근무하는 사원들의 수를 검색하라.

```
SELECT PNUMBER, PNAME, COUNT (*)
```

FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO

GROUP BY PNUMBER;

■ 질의 26

두 명 이상의 사원이 근무하는 각 프로젝트에 대해서 프로젝트 번호,
 프로젝트 이름, 프로젝트에서 근무하는 사원의 수를 검색하라.

```
SELECT PNUMBER, PNAME, COUNT (*)
FROM PROJECT, WORKS ON
```

WHERE PNUMBER=PNO

GROUP BY PNUMBER;

HAVING COUNT (*) >= 2

■ 질의 27

각 프로젝트에 대해서 프로젝트 번호, 프로젝트 이름, 5번 부서에 속하면서 프로젝트에서 근무하는 사원의 수를 검색하라.

```
SELECT PNUMBER, PNAME, COUNT (*)
```

FROM PROJECT, WORKS_ON, EMPLOYEE

WHERE PNUMBER=PNO AND SSN=ESSN AND DNO=5

GROUP BY PNUMBER;

■ 질의 28

 6명 이상의 사원이 근무하는 각 부서에 대해서 부서번호와 40,000 달 러가 넘는 급여를 받는 사원의 수를 검색하라.

```
SELECT DNUMBER, COUNT (*)
FROM DEPARTMENT, EMPLOYEE
```

WHERE DNUMBER=DNO AND SALARY > 40000 AND

DNO IN (SELECT DNO

FROM EMPLOYEE

GROUP BY DNO

HAVING COUNT (*) >= 6)

GROUP BY DNUMBER;

SQL에 대한 논의와 요약

- SQL 질의는 6개의 절로 구성되지만, 필수사항은 처음의 두 개 뿐임
 - □ 질의의 평가 순서
 - FROM → WHERE절 → GROUP BY → HAVING → SELECT → ORDER BY
 - □ SELECT <애트리뷰트 목록>
 - SELECT 절은 질의 결과에 포함될 애트리뷰트들이나 함수를 나열함
 - □ FROM <테이블 목록>
 - FROM 절은 질의의 대상을 명시하는 곳으로 조인된 릴레이션이나 릴레이션(들)을 지정함
 - □ [WHERE <조건>]
 - WHERE 절은 튜플들에 대한 조건을 명시함
 - □ [GROUP BY <집단화 애트리뷰트>]
 - GROUP BY절은 그룹화 애트리뷰트들을 지정함
 - □ [HAVING <집단 조건>]
 - HAVING 절은 그룹들에 대한 조건을 지정함
 - □ [ORDER BY <애트리뷰트 목록>]
 - ORDER BY 절은 정렬 기준이 되는 애트리뷰트(들)을 지정함

뷰(view)의 개념

- 뷰는 다른 테이블들 또는 이전에 정의한 뷰에서 유도된 가상 테이블
 - □ SELECT 문의 결과를 뷰로 지정 가능
- 뷰는 가상적인 테이블이므로, 물리적인 형태로 저장되지 않음
 - □ 뷰에 적용할 수 있는 갱신 연산들은 제한
 - □ 뷰에 대한 질의는 특별한 제한이 없음

뷰의 명시

■ 뷰의 생성

- CREATE VIEW 문을 사용하여 생성
- □ 뷰이름, 속성명 리스트, 뷰의 내용을 지정하는 질의로 구성

 - e.g., CREATE VIEW WORKS_ON1 명은 FNAME, LNAME, PNAME, HOURS가 됨
 AS SELECT FNAME, LNAME, PNAME, HOURS
 FROM EMPLOYEE, PROJECT, WORKS_ON
 WHERE SSN=ESSN AND PNO=PNUMBER;

CREATE VIEW DEPT_INFO (DEPT_NAME, NO_OF_EMPS, TOTAL_SAL)
AS SELECT DNAME, COUNT (*), SUM (SALARY) 속성명 명시적으로 지정
FROM DEPARTMENT, EMPLOYEE
WHERE DNUMBER=DNO
GROUP BY DNAME;

뷰의 명시(계속)

- 뷰의 사용을 통해 질의 작성을 간단하게 할 수 있음
 - 뷰는 하나의 테이블처럼 활용
 - e.g., WORKS_ON1 뷰를 이용하여 "ProjectY" 에 참여하는 직원들의 성과 이름을 검색하시오.

SELECT PNAME, FNAME, LNAME FROM WORKS_ON1 WHERE PNAME = "ProjectY"; CREATE VIEW WORKS_ON1

AS SELECT FNAME, LNAME, PNAME, HOURS
FROM EMPLOYEE, PROJECT, WORKS_ON
WHERE SSN=ESSN AND PNO=PNUMBER;

뷰를 사용하지 않는 경우, 두 개 이상의 릴레이션들의 조인이 필요

- □ 뷰의 최신성
 - 뷰는 SQL 질의에서 참조될 때마다 기본 테이블을 활용하여 계산되므로 항상 최신 정보 제공
 - 기본 테이블의 튜플들의 갱신이 뷰에 자동적으로 반영

뷰의 명시(계속)

■ 뷰의 특성

- 뷰를 최신 정보로 유지하는 것은 사용자 관여 없이 DBMS가 관리
- □ 뷰는 보안기법의 일종으로도 사용
 - 사용자에게 관련 데이터만 제공 가능

■ 뷰의 삭제

- □ 뷰가 필요하지 않는 경우, DROP VIEW 명령으로 제거
- e.g., DROP VIEW WORKS_ON1

뷰의 구현

- 질의수정(query modification) 방식
 - □ 뷰에 대한 질의를 기본 테이블들에 대한 질의로 변환하여 처리
 - 단점: 복잡한 질의로 정의된 뷰들은 비효율적
 - 특히 짧은 시간 내에 뷰에 많을 질의가 적용될 때
- 뷰의 실체화(view materialization)
 - 임의의 뷰 테이블을 물리적으로 생성하고 유지하는 방식
 - 가정: 뷰에 다른 질의들이 사용됨
 - □ 문제점: 기본 테이블이 갱신되면 뷰 테이블도 변경해야 함
 - □ 해결방법: 오버헤드가 적은 점진적 갱신(incremental update)기 법 필요

뷰의 갱신

■ 집단함수를 사용하지 않은 단일 뷰의 갱신

 하나의 기본 릴레이션을 사용해서 정의된 뷰가 기본 릴레이션의 기본 키를 포함하면, 뷰의 각 튜플을 기본 릴레이션의 한 튜플과 정확하게 대응하므로 뷰의 갱신이 가능함

■ 조인을 포함하는 뷰의 갱신

기본 릴레이션들에 대한 갱신 동작으로 사상 가능

■ 갱신할 수 없는 뷰

- 그룹화와 집단함수를 사용하여 정의된 뷰는 베이스 테이블에 대한 갱신으로 매핑하는데 모호성이 있으므로 갱신할 수 없음
- 일반적으로 다수의 릴레이션들을 조인하여 생성한 뷰는 갱신 불 가능함

주장(Assertion)으로 제약조건 명시

■ 선언적 주장으로 확장된 제약조건 명시

- □ DDL의 CREATE ASSERTION 문을 활용
- □ 각 주장문은 제약조건 이름을 가지며, 다음에 키워드 CHECK가 오며, 데이터베이스 상태가 주장을 만족하는 여부에 따라 조건이 뒤에 옴
 - 제약조건 이름은 해당 제약조건을 참조/수정/삭제하기 위해 사용
 - 조건의 경우 어떠한 WHERE절도 사용될 수 있지만, 대부분의 경우 EXISTS나 NOT EXISTS 사용
- e.g., 사원의 급여가 자신이 근무하는 부서의 관리자의 급여보다 많을 수 없다.

SQL 트리거(Trigger)

- SQL 트리거는 조건이 발생할 때 데이터베이스를 모니터하기 위해 행동의 유형을 명시함
- 트리거는 주장과 유사한 구문으로 표기되며 다음 사항을 포함함
 - □ 사건 (e.g., 갱신 연산): 어떤 사건이 있으면 검사가 시작
 - □ 조건: 동작을 수행할 조건을 명시
 - □ 동작: 주어진 조건이 만족되면 수행
- 주장문은 주장조건을 위반하는 갱신을 금지시키는 반면에, 트리거문은 갱신을 수행하고 나서 트리거 조건이 발생하면 정의된 동작을실행함
- e.g., 어떤 부서에 있는 직원이 그 부서의 관리자보다 월급이 많다면 지정된 함수를 실행하는 트리거는 다음과 같이 지정

DEFINE TRIGGER SALARY_TRIGGER

ON EMPLOYEE E, EMPLOYEE M, DEPARTMENT D :

E.SALARY > M.SALARY **AND** E.DNO = D.DNUMBER **AND** D.MGRSSN=M.SSN

ACTION_PROCEDURE INFORM_MANAGER (D.MGRSSN);

SQL의 부가적인 기능들

■ 권한 기능

- SQL은 데이타베이스 사용자에게 권한을 부여하고 취소하는 기능을 제공함
- □ i.e., GRANT/REVORK

■ 호스트 언어와 결합되어 사용

- SQL은 C, C++, COBOL, JAVA, PASCAL 등과 같은 범용 프로그래밍 언어 내에서 사용될 수 있음
- Embedded SQL/C, C++, COBOL, JAVA, PASCAL

■ 트랜잭션 기능

SQL은 트랜잭션 제어 명령문을 가짐 (begin transaction / end transaction)

■ 기타 유용한 명령어

상용 DBMS는 SQL 명령 이외에도 물리적 데이터베이스 설계 매개변수와 릴레이션들을 위한 파일 구조, 그리고 인덱스와 같은 접근경로를 명시하기 위한 명령어의 집합을 가지고 있음

요약

■ 더 복잡한 SQL 검색 질의

■ SQL에서의 뷰

■ 주장으로 제약조건 및 트리거로 동작 명시

감사합니다!

kw.chon@koreatech.ac.kr