Week 9_Sun Zhongyi

Task 1 Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Weather Forecast Website example

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

Task 2 Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

								BRINDI	SI, Italy						WMO#:	163200	
		40.65N		17.95E	Elev	10	StdP	101.2		Time Zone	1.00 (EU	W)	Period	86-10	WBAN:	99999	
	Annual He	eating and H	umidificat	ion Design C													
- 1	Coldest	Heatin	g DB		Humidification DF					Col 0.4%		oldest month WS/MCD					
-	Month	99.6%	99%	DP	99.6% HR	MCDB	DP	99% HR	MCDB	WS	MCDB	WS	1% MCDB	MCWS	6% DB PCWD	+	
ı	(a)	(b)	(c)	(d)	(0)	(f)	(9)	(h)	(i)	(/)	(k)	(1)	(m)	(n)	(o)	1	
	(0)					55.50		2000						2.5			
	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		
	Annual Co	ooling, Dehu	midificatio	on, and Enth	alpy Design	n Conditions											1
	Checker with	g province of	7 C 10 00 10 10	enous or united	the second second second												
1	Hottest Hottest Cooling DB								Evaporation WB/MCDB					MCWS/P			
1	Month	Month DB Range	DB 0	.4% MCWB	DB 1	% MCWB	DB 2	MCWB	WB	4% MCDB	WB 1	MCDB	WB	2% MCDB	MCWS	PCWD	ł
ı	(0)	(b)	(c)	(d)	(e)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	1
	8	30.350	32.8	23.6	200	24.3	29.9	24.3	27.2	29.7	26.3	29.0	9000	28.3	4.2	180	
	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	21.2	29.7	26.3	29.0	25.6	28.3	4.2	180	
[Dehumidification DP/MCDB and HR									Enthalpy/MCDB						Hours	1
[3	0.4%	1%			2%			0			1%		1%	8 to 4 &	ı	
ı	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	J
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(p)	
	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	
ı	Extreme A	Annual Desig	n Conditi	ons													ı
ſ	Eve	reme Annual	we	Extreme Extreme Annual DB						n-Year Return Period Values of Extren							1
ı				Max		ean	Standard deviation			years				n=20 years		years	1
ı	1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	J
	(0)	(0)	(c)	(4)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(p)	
	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	

Task 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Humidity: 90% = Relative humidity: $\phi = 90\%$

Pressione atmosferica: 1019 hPa = total air pressure P = 101.9 kPa

Effective temperature: 7C° = 230 K

Utilizing the psychometric chart, we can notice that

-The absolute humidity $\omega = 0.0055$

$$\omega = \frac{0.622 \, P_{\text{v}}}{P_{\text{a}}} = \frac{0.622 \, P_{\text{v}}}{P - P_{\text{v}}} = 0.0055$$

$$P_{\rm V} = 0.893_{\rm circa}$$

$$\phi = \frac{m_{\rm V}}{m_{\rm g}} = 90\%$$

m (for gasses in general) $\frac{P_{\text{v}}}{R_{\text{sp.}}T}$

for water vapor $R_{sp} = 0.4615$

 P_{V} (pressure of water vapor) = 0.893 k Pa

Volume(V) of classroom, where

$$m_V = \frac{0.893 \, V}{0.4615 \, *230} = 8.41 \, *10^{-3} V$$

$$m_{\rm g} = \frac{m_{\rm v}}{90\%} = 9.34 * 10^{-3} V$$

Task 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

							E	BRINDIS	il, Italy						WMO#:	163200
	Lat	40.65N	Long:	17.95E	Elev:	10	StdP:	101.2		Time Zone:	1.00 (EU	W)	Period	86-10	WBAN:	99999
	Annual He	ating and H	umidificati	on Design C	onditions											
1	Coldest	Heatin	- 00		Hum	idification DF	P/MCDB and I	HR		T 0	Coldest mon	th WS/MCD	В	MCWS	/PCWD	
- 1	Month				99.6%			99%			4%		%		6% DB	
ı	moriui	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	Ü
	(0)	(0)	(c)	(d)	(0)	(1)	(9)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	
	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250	
	Annual Co	ooling, Dehu	midificatio	n, and Entha	alpy Design	Conditions										
ſ	Hottest	Hottest			Cooling D	B/MCWB			1		Evaporation	n WB/MCDB	3		MCWS/	PCWD
-	Month Month			0.4% 1%			2%		0.4%		1%		2%		to 0.45	% DB
ı	MOHUT	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD
	(0)	(b)	(c)	(d)	(0)	(1)	(9)	(h)	(i)	(1)	(k)	(1)	(m)	(n)	(0)	(P)
	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180
1		1.00000	57	Dehumidific	ation DP/Mi	CDB and HR		000.00		T	7.5	Enthalp	y/MCDB			Hours
1	8	0.4%			1%			2%		0.4	4%		%	2	%	8 to 4 &
ı	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCD8	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6
	(0)	(0)	(0)	(d)	(0)	(1)	(g)	(h)	(1)	(/)	(k)	(1)	(m)	(n)	(0)	(p)
	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236
ı	Extreme A	innual Desig	n Conditio	ns												
ı	Eut	eme Annual	we	Extreme Extreme Annual DB							n-Year Re	etum Period	Values of E	xtreme DB		
ı				Max Mean			Standard deviation			years					n=50	
-[1%	2.5%	5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
	(0)	(0)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(P)

Soln:

Number of occupants=2

Number of bed rooms=1

Height of the building=2.5m

Area of the floor=200 \mbox{m}^{2}

Internal gains:

$$Q_{igsensible} = 136 + 2.2A_{cf} + 22N_{oc} = 136 + 2.2*(200) + 22*2 = 620 W$$

$$Q_{iglaten} = 20 + 0.22A_{cf} + 12N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88W$$

*I*nfiltrations

For a house with a good construction quality, unit leakage area $A_{ul} = 1.4 \text{cm}^2 / \text{m}^2$ And the exposed surface $A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 \text{m}^2$ cooling temperature $T_{cooling} = 24 \,^{\circ}\text{C}$, and heating temperature $T_{heating} = 20 \,^{\circ}\text{C}$ in Brindisi, $\Delta T_{cooling} = 31.1 - 24 = 7.1 \,^{\circ}\text{C} = 7.1 \,^{\prime}\text{K}$ $\Delta T_{heating} = 20 - (-4.1) = 24.1 \,^{\circ}\text{C} = 24.1 \,^{\prime}\text{K}$ $DR = 7.1 \,^{\circ}\text{C} = 7.1$

Given that
$$IDF_{\text{heating}} = 0.073 \frac{L}{\text{s*Cm}^2}$$

$$IDF_{\text{cooling}} = 0.33 \frac{L}{\text{s} \cdot \text{cm}^2}$$

Infiltration airflow rate

$$Q_{i, heating} = A_L * IDF_{heating} = 481.6 * 0.073 = 35.15 \frac{L}{S}$$

 $Q_{i, cooling} = A_L * IDF_{cooling} = 481.6 * 0.033 = 15.89 \frac{L}{S}$

The required miminum whole - building vetilation rate is

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05 * 200 + 3.5 * (1+1) = 17 \frac{L}{S}$$

$$Q_{i-v, heating} = Q_{i, heating} + Q_{v} = 35.157 + 17 = 52.15 \frac{L}{S}$$

$$Q_{i-v, cooling} = Q_{i, cooling} + Q_{v} = 15.893 + 17 = 32.89 \frac{L}{S}$$

Given that

Csensible = 1.23

 $C_{latent} = 3010$

 $\Delta \omega_{\text{cooling}} = 0.0039$

 $\mathbf{q}_{\mathsf{inf}} \text{ - ventilation cooling sensible} = \mathbf{C}_{\mathsf{sensible}} \mathbf{Q}_{\mathsf{i}} \text{ - v}, \textit{cooling} \Delta \textit{T}_{\mathsf{cooling}} = \mathbf{1}.23 + 32.89 + 7.1 = 287.25 \, \textit{w}$

 $q_{\text{inf - ventilation cooling latent}} = C_{\text{latent}}Q_{\text{i - v, }\textit{cooling}} \Delta \textit{\textit{\omega}} \text{cooling} = 3010 * 32.89 * 0.0039 = 386.13w$

qinf - ventilation heating latent = $\mathbf{C}_{\text{sensible}}\mathbf{Q}_{\text{i}}$ - v, heating $\Delta T_{\text{cooling}}$ = 1.23 * 52.15 * 24.1 = 1546 \mathbf{W}