Experiment #	<to be="" by<br="" filled="">STUDENT></to>	Student ID	<to be="" by<br="" filled="">STUDENT></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT] THANOS

Lab 9: Configuration of Network address translation in Cisco packet tracer	Lab	9:	Configura	ation	of Netwo	ork add	lress trai	nslation	in	Cisco	packet	tracer
--	-----	----	-----------	-------	----------	---------	------------	----------	----	-------	--------	--------

Date of the Session:	1 1	Session Time: to
Date of the pession.		

Learning outcome:

- Learners will gain a solid understanding of Network Address Translation and its role in IP address translation between private and public networks.
- Learners will acquire hands-on experience in configuring different types of NAT in Cisco Packet Tracer.

Pre-Lab Task:

1. What is Network Address Translation (NAT), and what is its primary purpose in networking?

NAT (Network Address Translation) modifies IP addresses in packet headers to enable multiple devices on a private network to access the internet using a single public IP. It conserves IPv4 addresses and enhances security by hiding internal IPs.

- 2. Explain the difference between static NAT and dynamic NAT. When would you use each of these NAT types?
- Static NAT: One-to-one mapping of private to public IP, used for servers requiring fixed public access.
- Dynamic NAT: Maps private IPs to available public IPs dynamically, used for general internet access without fixed IP needs.

Course Title	NETWORK PROTOCOLS & SECURITY	ACADEMIC YEAR: 2024-25
Course Code(s)	23EC2210R	1 P a g e

Experiment #	<to be="" by<br="" filled="">STUDENT></to>	Student ID	<to be="" by<br="" filled="">STUDENT></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT] THANOS

3. What are the benefits and challenges of using NAT in a network environment?

Benefits: Saves IPv4 addresses, enhances security, allows private IP use.

X Challenges: Breaks end-to-end connectivity, adds latency, complicates troubleshooting.

Course Title	NETWORK PROTOCOLS & SECURITY	ACADEMIC YEAR: 2024-25
Course Code(s)	23EC2210R	2 P a g e

Experiment #	<to be="" by<br="" filled="">STUDENT></to>	Student ID	<to be="" by<br="" filled="">STUDENT></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT] THANOS

In Lab Task:

Configuration of Network address translation in Cisco packet tracer

Writing space for the Problem:(For Student's use only)

Static NAT Configuration

Router(config)#int g0/0

Router(config-if)#ip nat inside

Router(config-if)#exit

Router(config)#int g0/1

Router(config-if)#ip nat outside

Router(config-if)#exit

Router(config)#ip nat inside source static 192.168.10.2 100.100.100.100

Router(config)#exit Router# debug ip nat

Configuration for PCs

PC0

IP Address: 192.168.10.2

Subnet Mask: 255.255.255.0 Default Gateway: 192.168.10.1

Server0

IP Address: 192.168.20.2

Subnet Mask: 255.255.255.0 Default Gateway: 192.168.20.1

Course Title	NETWORK PROTOCOLS & SECURITY	ACADEMIC YEAR: 2024-25
Course Code(s)	23EC2210R	3 P a g e

Experiment #	<to be="" by<br="" filled="">STUDENT></to>	Student ID	<to be="" by<br="" filled="">STUDENT></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT] THANOS

Configuration for Routers

Fast Ethernet Port Configuration (Router 1)

Router>en

Router#config t

Router(config)#int g0/0

Router(config-if)#ip address 192.168.10.1 255.255.255.0

Router(config-if)#no shut

Router(config-if)#exit

Router(config)#int g0/1

Router(config-if)#ip address 192.168.20.1 255.255.255.0

Router(config-if)#no shut

RIP Configuration (Router 2)

Router#config t
Router(config)#router rip

Router(config-router)#network 192.168.10.0

Router(config-router)#network 192.168.20.0

Course Title	NETWORK PROTOCOLS & SECURITY	ACADEMIC YEAR: 2024-25
Course Code(s)	23EC2210R	4 P a g e

Experiment #	<to be="" by<br="" filled="">STUDENT></to>	Student ID	<to be="" by<br="" filled="">STUDENT></to>
Date	<to be="" by<br="" filled="">STUDENT></to>	Student Name	[@KLWKS_BOT] THANOS

DIAGRAM

Internal Network External Network

Course Title	NETWORK PROTOCOLS & SECURITY	ACADEMIC YEAR: 2024-25
Course Code(s)	23EC2210R	5 P a g e

Experiment #	<to be="" by<br="" filled="">STUDENT></to>	Student ID	<to be="" by<br="" filled="">STUDENT></to>
Date	<to be="" by<br="" filled="">STUDENT></to>	Student Name	[@KLWKS_BOT] THANOS

VIVA-VOCE Questions (In-Lab):

- 1. What is NAT, and what is its primary purpose in computer networks?
- 2. Explain the difference between private IP addresses and public IP addresses.
- 3. What is an Access Control List (ACL), and what is its primary purpose in a network?
- 4. How does an ACL help in controlling traffic flow in a router or a switch?
- 5. What are the different types of ACLs, and how do they differ in their functionality?
- NAT (Network Address Translation): Converts private IPs to a public IP, enabling multiple devices to share a single public IP and improving security.

2. Private vs. Public IP:

- Private IPs (e.g., 192.168.x.x) are used within local networks and not routable
 on the internet.
- Public IPs are unique and assigned by ISPs for internet access.
- Access Control List (ACL): A set of rules on network devices to allow or deny traffic, enhancing security.
- ACL in Traffic Control: Filters traffic based on rules (IP, protocol, port) to allow or block packets at router interfaces.

5. Types of ACLs:

- Standard ACL: Filters by source IP only.
- Extended ACL: Filters by source, destination, protocol, and port.
- Named ACL: Uses names instead of numbers for better management.

Course Title	NETWORK PROTOCOLS & SECURITY	ACADEMIC YEAR: 2024-25
Course Code(s)	23EC2210R	6 P a g e

Experiment #	<to be="" by<br="" filled="">STUDENT></to>	Student ID	<to be="" by<br="" filled="">STUDENT></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT] THANOS

Post Lab Task:

- 1. Describe the network topology you used for configuring Network Address Translation (NAT) in Cisco Packet Tracer. What devices were involved, and how were they interconnected?
- Devices: Router, Switch, PCs, ISP Router (optional).
- Interconnections: PCs (Private IPs) → Switch → Router (Public IP) → ISP (Internet).
- NAT translates private IPs to public IPs for internet access.

- 2. Discuss the impact of NAT on network security and addressing.
- Security: Hides internal IPs, reduces attack surface, and blocks unsolicited inbound traffic.
- Addressing: Conserves IPv4 addresses but affects end-to-end connectivity.

Course Title	NETWORK PROTOCOLS & SECURITY	ACADEMIC YEAR: 2024-25
Course Code(s)	23EC2210R	7 P a g e

Experiment #	<to be="" by<br="" filled="">STUDENT></to>	Student ID	<to be="" by<br="" filled="">STUDENT></to>
Date	<to be="" by="" filled="" student=""></to>	Student Name	[@KLWKS_BOT] THANOS

- 3. Describe any specific translation rules or access control policies you implemented as part of the NAT configuration.
- Dynamic NAT / PAT: Multiple private IPs share a public IP with port-based mapping.
- ACLs: Restrict NAT to specific internal addresses and block unauthorized inbound traffic.

Evaluator Remark (if Any):	
	Marks Secured out of 50
	Signature of the Evaluator with Date

Course Title	NETWORK PROTOCOLS & SECURITY	ACADEMIC YEAR: 2024-25
Course Code(s)	23EC2210R	8 P a g e