assignment 1

(due before class on 16 Oct 2020)

1. Consider the first-order reversible reaction involving two steps : $A_1 \stackrel{k_1}{\rightleftharpoons} A_2 \stackrel{k_2}{\rightleftharpoons} A_3$

Assuming that initially at time t = 0, $[A_1] = [A_1]_0$ and $[A_2]_0 = [A_3]_0 = 0$, obtain expressions for $[A_1]$, $[A_2]$ and $[A_3]$ and the equilibrium constant for the overall reaction $A_1 \rightleftharpoons A_3$

2. The reaction A+B \rightarrow C+D takes place in two steps, by the following mechanism:

$$2A \rightleftharpoons D$$

$$B+D \xrightarrow{k_2} A+C$$

The first step comes to a rapid equilibrium (constant K_1). Obtain rate of formation of C in terms of K_1 , k_2 and [A] and [B].

3. A reaction has the stoichiometry 2A + 2B \rightarrow Y + 2Z; rate of reaction, $v=k\left[A\right]^{\alpha}\left[B\right]^{\beta}$

Some results for the rate of consumption of A are shown below:

$[A]/\text{mol dm}^{-3}$	$[\mathrm{B}]/\mathrm{mol}~\mathrm{dm}^{-3}$	$v/\mathrm{mol~dm^{-3}s^{-1}}$
1.4×10^{-2}	2.3×10^{-2}	7.4×10^{-9}
2.8×10^{-2}	4.6×10^{-2}	5.92×10^{-8}
2.8×10^{-1}	4.6×10^{-2}	5.92×10^{-6}

Deduce α and β and the rate constant k.

4. (a) Integrate the rate equation for an autocatalytic reaction of the form $A \to P$, with rate law v = k[A][P], and show that

or,
$$\frac{[P]}{[P]_0} = \frac{(1+b)e^{at}}{1+be^{at}}$$
, where $a = ([A]_0 + [P]_0) k$ and $b = \frac{[P]_0}{[A]_0}$

(b) Plot $\frac{[P]}{[P]_0}$ against a.t for several values of b. Discuss the effect of autocatalysis on the shape of a plot of $\frac{[P]}{[P]_0}$ against t by comparing your results with those for a first-order process, (c) Show that the reaction rate reaches a maximum at $t_{\text{max}} = -\frac{1}{a} \ln b$.