

What is claimed is:

1. A decoding method for retrieving information bits encoded in a printed image comprising the steps of:
 - a) receiving an input electronic image as a scanned version of the printed image;
 - b) extracting a region of interest in the image;
 - c) estimating, for said region, amount of K colorant present, denoted K_H ;
 - d) obtaining, for said region, a color value;
 - e) determining the GCR used for encoding that region using K_H and said obtained color value; and
 - f) retrieving encoded information bits based on said determined GCR.
2. A decoding method, as in **claim 1**, wherein estimated K_H is evaluated conditional to a capacity signal K_L and a luminance signal L.
3. A decoding method, as in **claim 2**, further comprising deriving from said obtained RGB data the values of K_H , K_L , and L, wherein K_H is estimated from a high resolution scan, and K_L and L are estimated from a down-scaled image, respectively.
4. A decoding method, as in **claim 2**, wherein the capacity signal K_L and the luminance signal L are derived from said obtained color value.
5. A decoding method, as in **claim 2**, further comprising determining K_L by:
 - a) applying a suitable operator S to reduce the image from scanner resolution to the watermark resolution;
 - b) converting the obtained color values to CMY estimates; and
 - c) using said estimates to determine K-colorant amount by $K_L = \min(C, M, Y)$

6. A decoding method, as in **claim 2**, further comprising determining K-capacity amount, K_L , by:
 - a) converting said obtained color values to CMY estimates;
 - b) applying a suitable operator S to reduce the image from scanner resolution to the watermark resolution; and
 - c) using said estimates to determine K-colorant amount by $K_L = \min(S(C), S(M), S(Y))$.
7. A decoding method, as in **claim 2**, wherein L is described by a linear combination of scan signals RGB, such that $L = k_1S(R) + k_2S(G) + k_3S(B)$.
8. A decoding method, as in **claim 1**, further comprising K_H by:
 - a) converting said obtained color values to CMY estimates;
 - b) using said CMY estimates to determine K-colorant amount at each pixel by $K = \min(C, M, Y)$; and
 - c) applying a suitable operator S to reduce the image from scanner resolution to the watermark resolution, $K_H = S \min(C, M, Y)$.
9. A decoding method, as in **claim 8**, wherein the operator S is a sequence of blurring filters followed by sub-sampling.
10. A decoding method, as in **claim 8**, further comprising converting the said obtained color values to CMY estimates by inverting scanner RGB values, such that $C=1-R$, $M=1-G$, and $Y=1-B$, such that $K_H = S \min(C, M, Y) = S[1-\max(R, G, B)]$.
11. A decoding method, as in **claim 8**, wherein said obtained color values are converted to CMY estimates by a 3×3 linear transformation M of scan RGB values followed by inverting, such that $CMY = 1 - (M \times RGB)$.

12. A decoding method, as in **claim 8**, further comprising calibrating the system by:
 - a) printing a set of patches of known CMY values;
 - b) scanning said patches;
 - c) determining RGB values of said patches;
 - d) building a transformation between RGB scan values and input CMY values; and
 - e) using said estimates to determine K_H such that $K_H = \min(C, M, Y)$.
13. A decoding method, as in **claim 12**, wherein the transformation is a 3x3 linear transformation M of RGB values followed by inverting, such that $CMY = 1 - (M \times RGB)$.
14. A decoding method as in **claim 1**, wherein K_H is estimated from a high-resolution scan by a method of thresholding the scan pixels representing the printed K dots.
15. A decoding method, as in **claim 10**, wherein the thresholding is performed in lightness, and dark pixels are considered part of a K-dot.
16. A decoding method, as in **claim 10**, wherein the thresholding is performed in chroma and lightness, and dark, non-chromatic pixels are considered part of a K-dot.
17. A decoding method, as in **claim 10**, wherein the threshold level for K-dots is varied relative to the average darkness of the patch.

18. A decoding method, as in **claim 2**, wherein determining one out of N -GCRs comprises:
- determining one region of said input that was processed with each GCR; and
 - for each region:

computing $\beta(n, K_L, L) = E(K_H | K_L, L, GCR=n)$;

determining β that is the closest to K_H ;

creating a threshold $\tau(K_L, L) = (1/2)[\beta(1, K_L, L) + [\beta(2, K_L, L)]$; and

comparing K_H to threshold $\tau(K_L, L)$.
19. A decoding method, as in **claim 1**, wherein K_H is evaluated conditional to the average said obtained color value of the decoding region, RGB.
20. A decoding method, as in **claim 19**, further comprising deriving from said RGB data the values of K_H , R, G, B, wherein K-colorant amount, K_H , is estimated from a high resolution scan, and R, G, and B are estimated from a down-scaled image, respectively.
21. A decoding method, as in **claim 19**, wherein estimating one out of N -GCRs comprises:
- determining one region of said input that was processed with each GCR; and
 - for each region,

computing $\square(n, R, G, B) = E(K_H | R, G, B, GCR=n)$;

determining \square that is the closest to K_H ;

creating a threshold $\square(R, G, B) = (1/2)[\square(1, R, G, B) + [\square(2, R, G, B)]$; and

comparing K_H to threshold $\square(R, G, B)$.

22. A decoding method, as in **claim 1**, wherein determining said GCR is accomplished by processing said estimated K-colorant amount, K_H , and said color value through a look-up table.
23. A decoding method, as in **claim 22**, wherein the look-up table has as inputs a transformation of scanner values.
24. A decoding method, as in **claim 23**, wherein the look-up table has output the estimated K-colorant amount for each of N possible GCR strategy, K_1, K_2, \dots, K_N .
25. A decoding method, as in **claim 24**, wherein estimating the GCR comprises:
 - a) mapping the average scanned color of the region of interest through the lookup table to obtain K estimates for each possible GCR function, K_1, K_2, \dots, K_N , for N -GCR strategies;
 - b) comparing the K-colorant amount estimated from the region of interest, K_H , to each of the said K estimates from the lookup table mapping; and
 - c) selecting the GCR function whose K estimate is closest to K_H .
26. A decoding method, as in **claim 24**, in which two GCR strategies are used wherein the look-up table has as its output the threshold K-colorant value, K_T , for differentiating between the two strategies, which equal $\frac{1}{2}(K_1+K_2)$.

27. A decoding method, as in **claim 25**, wherein estimating the GCR comprises:
 - a) mapping the average scanned color of the region of interest through the lookup table to said obtain K_T ;
 - b) comparing said estimated K_H for the region of interest to K_T ; and
 - c) selecting said GCR function corresponding to whether $K_H > K_T$ or $K_H < K_T$.
28. A decoding method, as in **claim 22**, wherein an additional output of the look-up table expresses a confidence in the ability to differentiate among the different GCRs for that particular local color.
29. A decoding method, as in **claim 23**, wherein an additional input to the look-up table is K_H and wherein the look-up table has as its output a discrete number Q that indicates which GCR was used to print that given scanned pixel.
30. A decoding method, as in **claim 29**, wherein the derivation of Q comprises:
 - a) dividing the RGBK hyper-cube into N cells;
 - b) for every pixel in the image:
 - finding said pixel's RGBK cell; and
 - filling in said pixel's Q value; and
 - c) for each of said cells:
 - computing the histogram of the set of said Q values; and
 - associating said cell with the most popular Q value for that cell.

31. A decoding method, as in **claim 30**, wherein estimating the GCR comprises for every pixel in the low resolution image:
 - a) computing RGBK_H quadruple;
 - b) entering said obtained RGB and said estimated K_H into the cell LUT; and
 - c) retrieving Q thereby indicating the GCR estimation.
32. A decoding method, as in **claim 22**, wherein construction of the look-up table comprises:
 - a) deriving a set of CMY data;
 - b) processing said CMY data through each of said N -GCR functions to produce N sets of CMYK data;
 - c) generating at least one target of patches corresponding to the said N sets of CMYK data sets;
 - d) printing said at least one target;
 - e) scanning said at least one target using the scanner to be used in the decoding of subsequent watermarked images;
 - f) for each patch in the scanned image, estimating the amount of K-colorant, K_H , present;
 - g) deriving a relationship between a function of said scanned signals and said amount of K_H present for each patch; and
 - h) estimating the GCR used for encoding said image region by using the said relationship in conjunction with the said K and average scanned color for the input electronic image.
33. A decoding method, as in **claim 32**, wherein the target generation comprises building a separate target for each GCR function.
34. A decoding method, as in **claim 32**, wherein the target generation comprises building a single target that includes multi-partite patches, wherein each part of a patch is determined from a different GCR function.