Category Theory

 $Hoyan\ Mok^1$

October 19, 2022

 $^{^1}$ hoyanmok@outlook.com

Preface

Preface.

Contents

Pı	reface	i
Contents		ii
1	Category §1 Category	1 1
2	Functors §2 Functors	3 3
A	Appendix	4
Index		5

Chapter 1

Category

§1 Category

Definition 1.1 (Category). A *category* C consists of three ingredients:

- 1. A class obj(C), called the **objects**;
- 2. For any $A, B \in \text{obj}(\mathcal{C})$, a set of **morphisms** Hom(A, B);
- 3. A function $\operatorname{Hom}(A,B) \times \operatorname{Hom}(B,C) \to \operatorname{Hom}(A,C)$, called the **composition**, for any $A,B,C \in \operatorname{obj}(\mathcal{C})$, denoted as $(f,g) \mapsto gf$,

and they follow the following axioms:

- (i) If $(A, B) \neq (A', B')$, then $\operatorname{Hom}(A, B) \cap \operatorname{Hom}(A', B') = \emptyset$;
- (ii) Associativity: the composition is associative, i.e. h(gf) = (hg)f;
- (iii) *Identity*: For any $A \in \text{obj}(\mathcal{C})$, there is an identity morphism $\text{id}_A \in \text{Hom}(A, A)$, such that $f \text{id}_A = f = \text{id}_A f$, for any $B \in \text{obj}(\mathcal{C})$ and $f \in \text{Hom}(A, B)$.

A morphism can be shown by:

$$A \xrightarrow{f} B$$

Examples of categories: Set, Grp, Ab, Top, Ord, Ring, Mod, ... If $obj(\mathcal{C})$ is a set, then \mathcal{C} is called a *small category*. If (X, \leq) is a preorder set, then $\forall x, y \in X$,

$$\operatorname{Hom}(x,y) = \begin{cases} \varnothing & x > y, \\ \{(x,y)\} & x \le y, \end{cases} \tag{1-1}$$

and (y, z)(x, y) = (x, z). With this we can say that X is a category. The morphism (x, y) is also denoted by i_y^x .

Definition 1.2 (Subcategory). We say S a *subcategory* of C, if

- (i) $obj(S) \subseteq obj(C)$;
- (ii) $\forall A, B \in \text{obj}(S), \text{Hom}_{S}(A, B) \subseteq \text{Hom}_{C}(A, B);$
- (iii) $\forall A, B, C \in \text{obj}(\mathcal{S}),$

$$A \xrightarrow{f} B \xrightarrow{g} C$$

then gf is the same in both $\operatorname{Hom}_{\mathcal{S}}(A,C)$ and $\operatorname{Hom}_{\mathcal{C}}(A,C)$,

(iv) $\forall A \in \text{obj}(S)$, $\text{id}_A \in \text{Hom}_S(A, A)$ is the same in $\text{Hom}_{\mathcal{C}}(A, A)$.

Definition 1.3 (Full subcategory). Let S be a subcategory of C. If $\forall A, B \in \text{obj}(S)$, $\text{Hom}_{S}(A, B) = \text{Hom}_{C}(A, B)$, then S is called a **full subcategory** of C.

Definition 1.4 (Generated full subcategory). For any subclass $S \subseteq \text{obj}(\mathcal{C})$, one can find a full subcategory \mathcal{S} of \mathcal{C} s.t. $\text{obj}(\mathcal{S}) = S$, which is called the full subcategory generated by S.

 Top_2 is the full subcategory of Top that is generated by the class of all Hausdorff spaces.

Chapter 2

Functors

§2 Functors

Definition 2.1 (Functor). Let C and D be categories. A *functor* $F: C \to D$ is a function that satisfies the following axioms:

- (i) $\forall A \in \text{obj}(\mathcal{C}), F(A) \in \text{obj}(\mathcal{D});$
- (ii) $\forall A, B \in \text{obj}(\mathcal{C}), \forall f \in \text{Hom}_{\mathcal{C}}(A, B), F(f) \in \text{Hom}_{\mathcal{D}}(F(A), F(B));$
- (iii) $\forall A, B, C \in \text{obj}(\mathcal{C}),$

$$A \xrightarrow{f} B \xrightarrow{g} C$$

then F(gf) = F(g)F(f).

(iv) $\forall A \in \text{obj}(\mathcal{C}), F(\text{id}_A) = \text{id}_{F(A)}.$

Appendix A Appendix

Index

 $\begin{array}{ccc} {\rm category,\ 1} & {\rm morphisms,\ 1} \\ {\rm composition,\ 1} & & \\ {\rm objects,\ 1} & & \\ {\rm full\ subcategory,\ 2} & {\rm small\ category,\ 2} \\ {\rm functor,\ 3} & {\rm subcategory,\ 2} & \\ \end{array}$