

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика, искусственный интеллект и системы управления»

КАФЕДРА «Теоретическая информатика и компьютерные технологии»

ОТЧЕТ

по лабораторной работе № 2 по курсу «Численные методы»

на тему: «Приближённое вычисление определённого интеграла»

Студент	ИУ9-61Б (Группа)	(Подпись, дата)	Афанасьев И. (И. О. Фамилия)
Преподаватель		(подпись, дата)	Домрачева А. Б.
		(Подпись, дата)	(И. О. Фамилия)

1 Постановка задачи

Найти $\int_0^1 e^x dx$ методом прямоугольников, методом трапеций и по формуле Симпсона с погрешностью $\varepsilon=0.001.$ Сравнить требуемое число разбиений для всех трёх методов.

2 Теоретический раздел

2.1 Метод прямоугольников

Метод заключается в вычислении площади под графиком подынтегральной функции с помощью суммирования площадей прямоугольников, ширина которых определяется шагом разбиения, а высота — значением подынтегральной функции в узле интегрирования.

Пусть требуется определить значение интеграла функции f(x) на отрезке [a,b]. Тогда отрезок разбивается на n равных отрезков длиной $h=\frac{b-a}{n}$. Получаем разбиение данного отрезка точками

$$x_{i-0.5} = a + (i - 0.5)h, \quad i = 1, ..., n.$$

Тогда приближённое значение интеграла на всём отрезке будет равно:

$$I^* = h \sum_{i=1}^{n} f(x_{i-0.5}) = h \sum_{i=1}^{n} f(a + (i - 0.5)h)$$

2.2 Метод трапеций

Метод заключается в вычислении площади под графиком подынтегральной функции с помощью суммирования площадей трапеций, высота которых определяется шагом разбиения, а высота — значением подынтегральной функции в узле интегрирования.

Пусть требуется определить значения интеграла функции f(x) на отрезке [a,b]. Тогда отрезок разбивается на n равных отрезков длиной $h=\frac{b-a}{n}$. Получаем разбиение данного отрезка точками

$$x_i = a + ih, \quad i = 1, ..., n.$$

Тогда приближённое значение интеграла на всём отрезке будет равно

$$I^* = h(\frac{f(a) + f(x_1)}{2} + \frac{f(x_1) + f(x_2)}{2} + \dots + \frac{f(x_{n-1}) + f(b)}{2}) =$$

$$h(\frac{f(a) + f(b)}{2} + \sum_{i=1}^{n-1} f(x_i)).$$

2.3 Метод Симпсона

Метод заключается в приближении функции на отрезке [a,b] интерполяционным многочленом второй степени функции $P_2(x)$:

$$P_2(x) = f_{i-0.5} + \frac{f_i - f_{i-1}}{h}(x_i - x_{i-0.5}) + \frac{f_i - 2f_{i-0.5} + f_{i-1}}{\frac{h^2}{2}}(x_i - x_{i-0.5})^2$$

Тогда приближённое значение интеграла на всём отрезке равняется

$$I^* = \frac{h}{6}(f(a) + f(b) + 4\sum_{i=1}^{n} f(x_{i-0.5}) + 2\sum_{i=1}^{n-1} f(x_i))$$

2.4 Уточнение значения интеграла по Ричардсону

Точное значение $I \approx I_h^* + \mathcal{O}(h^k)$, где k — порядок точности метода, I_h^* — приближённое значение интеграла, вычисленного с помощью метода с шагом h. Для метода прямоугольников и метода трапеций k=2, для метода Симпсона k=4. Считаем, что $\mathcal{O}(h^k) \approx ch^k$, где c — некоторая константа, h — шаг, и $I=I_h^*+ch^k$ для шага h, $I=I_{\frac{h}{2}}^*+c(\frac{h}{2})^k$ для шага $\frac{h}{2}$. Получаем

$$I = I_{\frac{h}{2}}^* + R,$$

где R — уточнение по Ричардсону:

$$R = \frac{I_{\frac{k}{2}}^* - I_h^*}{2^k - 1}.$$

Для приближённого вычисления интеграла с заданной точностью ε используется правило Рунге:

$$|R| < \varepsilon$$

.

3 Практический раздел

В листинге 3.1 представлен исходный код программы на языке С++.

Листинг 3.1 – Исходный код программы на языке С++

```
1 #include <cassert>
  #include <cmath>
  #include <functional>
  #include <iomanip>
  #include <iostream>
  #include <limits>
  #include <memory>
  #include <numbers>
  #include <vector>
10
  namespace {
11
12
   constexpr auto kEps = 1e-3;
13
   constexpr std::size_t kW = 15;
14
15
  struct Integral {
16
     double a, b;
17
     std::function<double(const double x)> f;
18
     double val;
19
  };
20
21
   struct Approximation {
22
     std::size_t n;
23
     double val;
24
     double r;
25
  };
26
27
   class IntegrationMethod {
28
    public:
29
     virtual ~IntegrationMethod() = default;
30
31
     virtual double Accuracy() const = 0;
32
33
     virtual double Calculate(const Integral& i, const std::size_t
34
       n) const = 0;
35
     virtual std::string_view Name() const = 0;
36
```

```
};
37
38
39
   class RectangleMethod final : public IntegrationMethod {
40
    public:
     double Accuracy() const noexcept override { return 2; }
41
42
     double Calculate(const Integral& i,
43
                        const std::size_t n) const noexcept override {
44
       const auto h = (i.b - i.a) / n;
45
46
       auto f_sum = 0.0;
47
       auto x = i.a + 0.5 * h;
48
       for (std::size_t j = 0; j < n; ++j) {</pre>
49
         f_sum += i.f(x);
50
51
         x += h;
       }
52
53
       return f_sum * h;
54
     }
55
56
     std::string_view Name() const noexcept override { return
57
        "Rectangle"; }
   };
58
59
   class TrapezoidMethod final : public IntegrationMethod {
60
    public:
61
     double Accuracy() const noexcept override { return 2; }
62
63
     double Calculate(const Integral& i,
64
                        const std::size_t n) const noexcept override {
65
       const auto h = (i.b - i.a) / n;
66
67
       auto f_sum = 0.0;
68
       auto x = i.a + h;
69
       for (std::size_t j = 1; j < n; ++j) {</pre>
70
         f_sum += i.f(x);
71
         x += h;
72
       }
73
74
       return h * (f_sum + 0.5 * (i.f(i.a) + i.f(i.b)));
75
     }
76
```

```
77
      std::string_view Name() const noexcept override { return
78
         "Trapezoid"; }
   };
79
80
   class SimpsonMethod final : public IntegrationMethod {
81
82
    public:
      double Accuracy() const noexcept override { return 4; }
83
84
      double Calculate(const Integral& i,
                        const std::size_t n) const noexcept override {
86
        const auto h = (i.b - i.a) / n;
87
88
        auto f_sum1 = 0.0;
89
        auto x = i.a + 0.5 * h;
90
        for (std::size_t j = 0; j < n; ++j) {</pre>
91
          f_sum1 += i.f(x);
92
          x += h;
93
        }
94
95
96
        auto f_sum2 = 0.0;
        x = i.a + h;
97
        for (std::size_t j = 1; j < n; ++j) {
98
          f_sum2 += i.f(x);
99
          x += h;
100
        }
101
102
        return h / 6 * (i.f(i.a) + i.f(i.b) + 4 * f_sum1 + 2 *
103
           f_sum2);
     }
104
105
106
      std::string_view Name() const noexcept override { return
        "Simpson"; }
   };
107
108
   void PrintTable(const
109
      std::vector<std::unique_ptr<IntegrationMethod>>& methods,
                     const std::vector<Approximation>& approxs) {
110
      // clang-format off
111
      std::cout << std::setw(kW) << "Method"</pre>
112
                 << std::setw(kW) << "n"
113
```

```
<< std::setw(kW) << "I"
114
                 << std::setw(kW) << "R"
115
                 << std::setw(kW) << "I + R"
116
                 << '\n';
117
118
      auto end = methods.size();
119
      assert(end == approxs.size());
120
121
122
      for (std::size_t i = 0; i < end; ++i) {</pre>
        const auto& method = *methods[i];
123
        const auto& approx = approxs[i];
124
125
        std::cout << std::setw(kW) << method.Name()</pre>
126
                   << std::setw(kW) << approx.n
127
128
                   << std::setw(kW) << approx.val
                   << std::setw(kW) << approx.r
129
                   << std::setw(kW) << approx.val + approx.r
130
131
                   << '\n';
132
133
      // clang-format on
   }
134
135
   double CalculateRichardson(const double val, const double
136
      val_freq,
137
                                  const std::size_t k) {
      return (val_freq - val) / ((2 << k) - 1);</pre>
138
   }
139
140
   Approximation CalculateApproximation(const Integral& i,
141
142
                                             const IntegrationMethod&
                                                method,
143
                                             const double eps) noexcept {
144
      std::size_t n = 1;
      double val_freq = method.Calculate(i, n);
145
146
      double val, r;
147
      do {
148
        n <<= 1;
149
150
        val = val_freq;
        val_freq = method.Calculate(i, n);
151
        r = CalculateRichardson(val, val_freq, method.Accuracy());
152
```

```
} while (std::abs(r) >= eps);
153
154
      return {n, val_freq, r};
155
   }
156
157
   }
158
      // namespace
159
   int main() {
160
      const Integral i{0, 1, [](const double x) { return
161
         std::exp(x); },
162
                        std::numbers::e - 1};
163
      std::vector<std::unique_ptr<IntegrationMethod>> methods;
164
      methods.push_back(std::make_unique < RectangleMethod > ());
165
166
      methods.push_back(std::make_unique < TrapezoidMethod > ());
      methods.push_back(std::make_unique <SimpsonMethod>());
167
168
169
      std::vector<Approximation> approxs;
      approxs.reserve(methods.size());
170
171
      for (const auto& method : methods) {
172
        approxs.push_back(CalculateApproximation(i, *method, kEps));
173
     }
174
175
176
      std::cout << "Actual value: " << i.val << '\n';</pre>
      PrintTable(methods, approxs);
177
178
   }
```

4 Тестирование

В листинге 4.1 представлены результаты работы программы.

Листинг 4.1 – Результаты работы программы

```
Actual value: 1.71828

Method n I R I + R

Rectangle 8 1.71716 0.000478341 1.71764

Trapezoid 8 1.72052 -0.000957616 1.71956

Simpson 2 1.71832 -1.74939e-05 1.7183
```