PSYC40005 - 2018 ADVANCED DESIGN AND DATA ANALYSIS

Lecture 10: Multilevel modelling 2

Geoff Saw

Melbourne School of Psychological Sciences
University of Melbourne
Redmond Barry Room 1113
gsaw@unimelb.edu.au

The agenda for this lecture

- 1. Random intercept multilevel model
- Random slope models
- 3. Some issues for MLMs

GOALS OF THIS LECTURE

- To review and extend random intercept models
- To introduce random slope models
- To present some additional issues

Section 1: Lecture 10

MORE ON RANDOM INTERCEPTS

- ☐ A review of last lecture
- ☐ Level 2 predictors
- ☐ SPSS output

Hierarchical Linear Models Multilevel models

A two stage strategy to investigate variables at two levels of analysis.

- i. Level 1: relationships among level 1
 variables estimated separately for
 each higher level (level 2) unit.
- ii. These relationships are then used as outcome variables for the variables at level 2.

Example (Heck et al, 2011 – chap 3)

- Students nested within schools
- Dataset contains a number of variables including:
 - Maths test score (math)
 - Student socio-economic status (ses).
 - Average SES per school (ses_mean)
 - Percent of students who intend to study at "4-year universities" (per4yrc)
 - Type of school (public = 1 if public, 0 otherwise)
- The goal is predict performance on the maths test

One regression model

Assumes the one model for all schools

Regression models for each class

Different linear models for 6 different schools

Random intercept model Notation

Random intercept model treats the intercepts as random but has a fixed effect for slope.

j is an index for groups
i is an index for individuals within groups

 Y_{ij} is the dependent or outcome variable

 x_{ij} is a predictor variable at individual level z_i is a predictor variable at group level

Random intercept model Equations

Random intercept model treats the intercepts as random but has a fixed effect for slope.

Level 1 equation:
$$Y_{ij} = \beta_{0j} + \beta_1 x_{ij} + \varepsilon_{ij}$$

Level 2 equations: $\beta_{0j} = \gamma_{00} + \gamma_{01} z_j + u_{0j} \leftarrow$

$$\beta_1 = \gamma_{10} \leftarrow$$
So that $Y_{ij} = \gamma_{00} + \gamma_{10} x_{ij} + \gamma_{01} z_j + u_{0j} + \varepsilon_{ij}$
Fixed slope

If we have no predictors x and z (ie set $\gamma_{10} = \gamma_{01} = 0$), then we have the random effects ANOVA – the null model

If we have no predictors z (ie set $\gamma_{01} = 0$), then we have a random intercept model with only level 1 predictors – last lecture

Last lecture

- Predict performance on the maths test from student SES
- First we fitted a null model to check the variance components (i.e. calculate an ICC) to see if we needed a multilevel model.
- Then we fitted a random intercept MLM with ses as the only predictor

Output for null model

Estimates of Fixed Effects ^a									
Parameter E			df	t	Sig.	95% Confidence Interval			
	Estimate Std. Er	Std. Error				Lower Bound	Upper Bound		
Intercept	57.674234	.188266	416.066	306.344	.000	57.304162	58.044306		

a. Dependent Variable: math.

Parameter		Estimate	Std. Error
Residual	-	66.550655	1.171618
Intercept [subject = schoode]	Variance	10.642209	1.028666

Random effects ANOVA:

$$Y_{ij} = \gamma_{00} + u_j + \varepsilon_{ij}$$

ICC = [10.64/(10.64+66.55)] = 0.138

Output for random intercept model

Model Dimensiona

		Number of Levels	Covariance Structure	Number of Parameters	Subject Variables
Fixed Effects	Intercept	1		1	
	ses	1		1	
Random Effects	Intercept ^b	1	Variance Components	1	schcode
Residual			INCOME STATE OF STATE	1	
Total		3		4	

- a. Dependent Variable: math.
- b. As of version 11.5, the syntax rules for the RANDOM subcommand have changed. Your command syntax may yield results that differ from those produced by prior versions. If you are using version 11 syntax, please consult the current syntax reference guide for more information.

Model dimension sets out the shape of the data.

Two fixed effects (the fixed intercept γ_{00} and fixed slope for ses)

One random effect (the variance of the intercept u_j) One residual effect

Four parameters: $Y_{ij} = \gamma_{00} + \gamma_{10} \text{ (SES)}_{ij} + u_j + \varepsilon_{ij}$

Output for random intercept model

Estimates of Fixed Effects^a

						95% Confide	ence Interval
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound
Intercept	57.595965	.132905	375.699	433.362	.000	57.334634	57.857296
ses	3.873861	.136624	3914.638	28.354	.000	3.605999	4.141722

a. Dependent Variable: math.

Estimates for fixed effects:

Estimate for fixed intercept $\gamma_{00} = 57.60$

Estimate for slope of ses, $\gamma_{10} = 3.87$

Both are significant.

Significant positive coefficient for *ses* predicting *math*

Four parameters:
$$Y_{ij} = \gamma_{00} + \gamma_{10} \text{ (SES)}_{ij} + u_j + \varepsilon_{ij}$$

Output for random intercept model

Estimates of Covariance Parameters^a

						95% Confidence Interval	
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound
Residual		62.807187	1.108877	56.640	.000	60.671000	65.018587
Intercept [subject = schcode]	Variance	3.469256	.538821	6.439	.000	2.558783	4.703696

a. Dependent Variable: math.

Variance:

Previous intercept variance for null model = 10.64
Intercept variance for current model = 3.47
Reduction of variance from null model = (10.64-3.47)/10.64
= 67%

So SES accounts for 67% of between group variance ICC = 3.47/(3.47+62.81) = 0.05 — much reduced compared to null model.

Today

- We want to predict performance on the maths test from student SES as well as from school level variables:
 - Average SES per school (ses_mean)
 - Percent of students who intend to study at "4-year universities" (per4yrc)
 - Type of school (public = 1 if public, 0 otherwise)
- We have already fitted a null model so we know we need a multilevel model.
- Now we fit a random intercept MLM with both individual (student) and group (school) level predictors.

Level 1 equation:
$$Y_{ij} = \beta_{0j} + \beta_1 x_{ij} + \varepsilon_{ij}$$

Level 2 equations: $\beta_{0j} = \gamma_{00} + \gamma_{01} z_j + u_{0j}$
 $\beta_1 = \gamma_{10}$
So that $Y_{ij} = \gamma_{00} + \gamma_{10} x_{ij} + \gamma_{01} z_j + u_{0j} + \varepsilon_{ij}$

Level 1 equation:

 $math_{ij} = \beta_{0j} + \beta_1 ses_{ij} + \varepsilon_{ij}$

Level 2 equations:

 $\beta_{0j} = \gamma_{00} + \gamma_{01} ses_mean_j + \gamma_{02} per4yrc_j + \gamma_{03} public_j + u_{0j}$ $\beta_1 = \gamma_{10}$

So that $math_{ij} = \gamma_{00} + \gamma_{10} ses_{ij} + \gamma_{01} ses_{mean_{j}} + \gamma_{02} per4yrc_{j} + \gamma_{03} public_{j} + u_{0j}^{16} + \varepsilon_{ij}$

	schcode	ses	math	ses_mean	per4yrc	public	
1	1	.59	47.14	27	.08	0	
2	1	.30	63.61	27	.08	0	
3	1	54	57.71	27	.08	0	
4	1	85	53.90	27	.08	0	
5	1	.00	58.01	27	.08	0	
6	1	11	59.87	27	.08	0	
7	1	33	62.56	27	.08	0	
8	1	89	47.01	27	.08	0	
9	1	.21	72.42	27	.08	0	
10	1	34	65.84	27	.08	0	
11	1	17	57.34	27	.08	0	
12	1	-1.07	62.56	27	.08	0	
13	2	11	61.95	.68	1.00	0	
14	2	1.28	70.22	.68	1.00	0	
15	2	1.06	58.78	.68	1.00	0	
16	2	.80	65.54	.68	1.00	0	
17	2	.73	59.77	.68	1.00	0	
18	2	.13	64.07	.68	1.00	0	
19	2	.68	61.95	.68	1.00	0	
20	2	.92	66.83	.68	1.00	0	
21	2	.81	69.41	.68	1.00	0	
22	2	.52	56.51	.68	1.00	0	
23	2	.46	57.22	.68	1.00	0	
24	2	.55	64.89	.68	1.00	0	
25	2	1.00	70.12	.68	1.00	0	
26	3	30	48.76	55	.33	0	
27	3	65	44.65	55	.33	0	
28	3	45	60.59	55	.33	0	
29	3	10	44.99	55	.33	0	
30	3	- 29	50 90	- 55	33	0	

This is a merged datafile from various sources.

A student file with ses and math variables.

A school data file with per4yc and public variables.

ses_mean was produced by aggregation and added to the school datafile

The school level variables were disaggregated and merged into the student level file.

We saw how to do aggregation and disaggregation last lecture.

17

Analyze -> Mixed Models -> Linear...

Note here that *public* is treated as a covariate because it is a binary variable (i.e coded 0,1). Binary variables are OK in regressions but variables with three or more categories, as well as dichomotous variables coded (say) 1,2, would have to be treated as factors (a little bit more complicated – I prefer to use binary variables if I can.

Model Dimensiona

		Number of Levels	Covariance Structure	Number of Parameters	Subject Variables
Fixed Effects	Intercept	1		1	
	ses	1		1	
	ses_mean	1		1	
	per4yrc	1		1	
	public	1		1	
Random Effects	Intercept ^b	1	Variance Components	1	schcode
Residual				1	
Total		6		7	

- a. Dependent Variable: math.
- b. As of version 11.5, the syntax rules for the RANDOM subcommand have changed. Your command syntax may yield results that differ from those produced by prior versions. If you are using version 11 syntax, please consult the current syntax reference guide for more information.

Model dimension sets out the shape of the data.

Five fixed effects (the fixed intercept γ_{00} and fixed slope for each predictor)

One random effect (the variance of the intercept u_{0i})

One residual effect (the variance of the error term ε_{ij})

Seven parameters:

$$math_{ij} = \gamma_{00} + \gamma_{10} ses_{ij} + \gamma_{01} ses_{mean_{j}} + \gamma_{02} per4yrc_{j} + \gamma_{03} public_{j} + u_{0j}^{23} + \varepsilon_{ij}$$

Estimates of Fixed Effects ^a										
95% Confidence Interva										
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound			
Intercept	56.441552	.474433	421.055	118.966	.000	55.509001	57.374104			
ses	3.190801	.157803	6448.937	20.220	.000	2.881455	3.500147			
ses_mean	2.473244	.306897	709.247	8.059	.000	1.870709	3.075779			
per4yrc	1.419812	.471391	413.879	3.012	.003	.493192	2.346432			
public	164264	.275903	409.345	595	.552	706627	.378098			

a. Dependent Variable: math.

Estimates for fixed effects:

Estimate for fixed intercept $\gamma_{00} = 56.44^*$ Estimate for slope of ses, $\gamma_{10} = 3.19^*$ of ses_mean, $\gamma_{01} = 2.47^*$ of per4yrc, $\gamma_{02} = 1.42^*$ of public, $\gamma_{03} = -0.16$

$$math_{ij} = \gamma_{00} + \gamma_{10} ses_{ij} + \gamma_{01} ses_{mean_{j}} + \gamma_{02} per4yrc_{j} + \gamma_{03} public_{j} + u_{0j}^{24} + \varepsilon_{ij}$$

Estimates of Covariance Parametersa

						95% Confide	ence Interval
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound
Residual		62.630370	1.102966	56.784	.000	60.505479	64.829885
Intercept [subject = schcode]	Variance	2.395178	.443654	5.399	.000	1.665987	3.443531

Dependent Variable: math.

Variance:

Previous intercept variance for null model = 10.64

Intercept variance for current model = 2.40

Reduction from null model = (10.64-2.40)/10.64 = 77%

So the predictors account for 77% of level 2 variance (between groups)

Residual (level 1) variance in null model = 66.55

Residual variance here = 62.63

Reduction from null model = (66.55-62.63)/66.55 = 6%

So, student SES accounts for 6% of level 1 variance in individual math performance.

Section 2: Lecture 10

RANDOM SLOPE MODELS

- ☐ Basic ideas
- ☐ SPSS output
- ☐ Predicting slopes
- ☐ More SPSS output

Regression models for each class

Different linear models for 6 different schools


```
Level 1 equation: Y_{ii} = \beta_{0i} + \beta_{1i} x_{ii} + \varepsilon_{ii}
Level 2 equations: \beta_{0i} = \gamma_{00} + \gamma_{01} z_i + u_{0i}
                                            \beta_{1i} = \gamma_{10} + u_{1i}
so that
Y_{ii} = (\gamma_{00} + \gamma_{01} z_i + u_{0i}) + (\gamma_{10} + u_{1i}) x_{ii} + \varepsilon_{ii}
Y_{ij} = \gamma_{00} + \gamma_{10} x_{ij} + \gamma_{01} z_{i} + u_{0i} + u_{1i} x_{ij} + \varepsilon_{ij}
```

Level 1 equation:

 $math_{ii} = \beta_{0i} + \beta_{1i} ses_{ii} + \varepsilon_{ii}$

Level 2 equations:

 $\beta_{0i} = \gamma_{00} + \gamma_{01} ses_mean_i + \gamma_{02} per4yrc_i + \gamma_{03} public_i + u_{0i}$ $\beta_{1i} = \gamma_{10} + u_{1i}$

So that

 $math_{ij} = \gamma_{00} + \gamma_{10} ses_{ij} + \gamma_{01} ses_{mean_{j}} + \gamma_{02} per4yrc_{j} + \gamma_{03} public_{j} + u_{0j} + u_{1i} ses_{ij}^{28} + \varepsilon_{ij}$

Level 1 equation:

$$math_{ij} = \beta_{0j} + \beta_{1j} ses_{ij} + \varepsilon_{ij}$$

Level 2 equations:

$$\beta_{0j} = \gamma_{00} + \gamma_{01} ses_mean_j + \gamma_{02} per4yrc_j + \gamma_{03} public_j + u_{0j}$$

 $\beta_{1j} = \gamma_{10} + u_{1j}$

So that

$$math_{ij} = \gamma_{00} + \gamma_{10} ses_{ij} + \gamma_{01} ses_{mean_j} + \gamma_{02} per4yrc_j + \gamma_{03} public_j + u_{0j} + u_{1j} ses_{ij} + \varepsilon_{ij}$$

ses is now both a fixed effect (as before)
AND a random effect

Analyze -> Mixed Models -> Linear...

Why variance components?

- The slopes could be correlated with the intercepts!
- Variance components does not include a parameter for the correlation.
- If you want to investigate whether the slopes and intercepts might be correlated, you can try "Unstructured".
 - This does not impose any constraints on the random effects covariance matrix, whereas variance components assumes it is diagonal.
- However, "unstructured" can result in warning messages about lack of convergence.
 - If you get one of these, drop some variables or go back to Variance components

Model Dimension ^a									
		Number of Levels	Covariance Structure	Number of Parameters	Subject Variables				
Fixed Effects	Intercept	1		1					
	ses	1		1					
	ses_mean	1		1					
	per4yrc	1		1					
	public	1		1					
Random Effects	Intercept + ses ^b	2	Variance Components	2	schcode				
Residual				1					
Total		7		8					

a. Dependent Variable: math.

Model dimension sets out the shape of the data.

Five fixed effects (the fixed intercept γ_{00} and fixed slope for each predictor)

Two random effects

One residual effect

Eight parameters:

$$math_{ij} = \gamma_{00} + \gamma_{10} ses_{ij} + \gamma_{01} ses_{mean_{j}} + \gamma_{02} per4yrc_{j} + \gamma_{03} public_{j} + u_{0j} + u_{1j} ses_{ij} + \varepsilon_{ij}^{36}$$

b. As of version 11.5, the syntax rules for the RANDOM subcommand have changed. Your command syntax may yield results that differ from those produced by prior versions. If you are using version 11 syntax, please consult the current syntax reference guide for more information.

Estimates of Fixed Effects^a

						95% Confidence Interval	
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound
Intercept	56.469785	.471568	419.501	119.749	.000	55.542854	57.396716
ses	3.163898	.168888	635.541	18.734	.000	2.832252	3.495544
ses_mean	2.659588	.313631	698.064	8.480	.000	2.043815	3.275361
per4yrc	1.360179	.467933	410.212	2.907	.004	.440334	2.280025
public	119986	.274402	407.915	437	.662	659405	.419433

a. Dependent Variable: math.

Estimates for fixed effects:

Estimate for fixed intercept $\gamma_{00} = 56.47^*$ Estimate for slope of ses, $\gamma_{10} = 3.16^*$ of ses_mean, $\gamma_{01} = 2.66^*$ of per4yrc, $\gamma_{02} = 1.36^*$ of public $\gamma_{03} = -0.12$

 $math_{ij} = \gamma_{00} + \gamma_{10} ses_{ij} + \gamma_{01} ses_{mean_{j}} + \gamma_{02} per4yrc_{j} + \gamma_{03} public_{j} + u_{0j} + u_{1j} ses_{ij} + \varepsilon_{ij}^{37}$

Estimates of Covariance Parameters^a

						95% Confide	ence Interval
Parameter		Estimate	Std. Error	Wald Z	Sig.	Lower Bound	Upper Bound
Residual		62.114614	1.111312	55.893	.000	59.974229	64.331386
Intercept [subject = schcode]	Variance	2.112261	.445499	4.741	.000	1.397075	3.193563
ses [subject = schcode]	Variance	1.314246	.566455	2.320	.020	.564675	3.058824

a. Dependent Variable: math.

Variance:

Much of the results here are as in the random intercept model, but now there is a significant slope variance of 1.31.

So we have evidence that the slopes vary across the schools in the sample.

Can we explain this variation?

More complex random slope models

Level 1 equation:
$$Y_{ij} = \beta_{0j} + \beta_{1j} x_{ij} + \varepsilon_{ij}$$

Level 2 equations: $\beta_{0j} = \gamma_{00} + \gamma_{01} z_j + u_{0j}$
 $\beta_{1j} = \gamma_{10} + u_{1j}$

More complex random slope models

Level 1 equation:
$$Y_{ij} = \beta_{0j} + \beta_{1j} x_{ij} + \varepsilon_{ij}$$

Level 2 equations: $\beta_{0j} = \gamma_{00} + \gamma_{01} z_j + u_{0j}$
 $\beta_{1j} = \gamma_{10} + \gamma_{11} z_j + u_{1j}$

so that

$$Y_{ij} = (\gamma_{00} + \gamma_{01} z_j + u_{0j}) + (\gamma_{10} + \gamma_{11} z_j + u_{1j}) x_{ij} + \varepsilon_{ij}$$

$$= \gamma_{00} + \gamma_{10} x_{ij} + \gamma_{01} z_j + \gamma_{11} z_j x_{ij} + u_{0j} + u_{1j} x_{ij} + \varepsilon_{ij}$$

A fixed effect that is the interaction of the group and individual effects

So that

$$math_{ij} = \gamma_{00} + \gamma_{10} ses_{ij} + \gamma_{01} ses_{mean_{j}} + \gamma_{02} per4yrc_{j} + \gamma_{03} public_{j} + \gamma_{11} (ses_{mean} *ses) + \gamma_{12} (per4yrc *ses) + \gamma_{13} (public *ses) + \gamma_{14} (per4yrc *ses) + \gamma_{15} (per4yrc *ses) + \gamma_{16} (per4yrc *ses) + \gamma_{17} (per4yrc *ses) + \gamma_{18} (per4yrc *s$$

Before we had ...

$$math_{ij} = \gamma_{00} + \gamma_{10} ses_{ij} + \gamma_{01} ses_{mean_{j}} + \gamma_{02} per4yrc_{j} + \gamma_{03} public_{j} + \gamma_{11} (ses_{mean} *ses) + \gamma_{12} (per4yrc *ses) + \gamma_{13} (public *ses) + \gamma_{14} (ses_{ij} + \varepsilon_{ij})$$

Model Dimension ^a							
		Number of Levels	Covariance Structure	Number of Parameters	Subject Variables		
Fixed Effects	Intercept	1		1			
	ses	1		1			
	ses_mean	1		1			
	per4yrc	1		1			
	public	1		1			
	ses * per4yrc	1		1			
	ses * ses_mean	1		1			
	ses * public	1		1			
Random Effects	Intercept + ses ^b	2	Variance Components	2	schcode		
Residual				1			
Total		10		11			

Model dimension sets out the shape of the data.

It's the same as before EXCEPT that now we have the three interaction effects.

Eleven parameters:

$$math_{ij} = \gamma_{00} + \gamma_{10} ses_{ij} + \gamma_{01} ses_{mean_{j}} + \gamma_{02} per4yrc_{j} + \gamma_{03} public_{j} + \gamma_{11} (ses_{mean} *ses) + \gamma_{12} (per4yrc *ses) + \gamma_{13} (public *ses) + \gamma_{14} (public *ses) + \gamma_{15} (public *ses) + \gamma_{16} (public *ses) + \gamma_{17} (public *ses) + \gamma_{18} (public *ses) + \gamma_{18} (public *ses) + \gamma_{19} (public *ses) + \gamma_{$$

		_
Estimates	of Fiscord	Cff a at a d
Felimates	or Fixed	FILECTS.
	0 1/00	

						95% Confide	ence Interval
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound
Intercept	56.505254	.485329	450.229	116.427	.000	55.551462	57.459046
ses	3.757343	.605681	518.400	6.203	.000	2.567451	4.947235
ses_mean	2.706473	.324107	759.554	8.351	.000	2.070222	3.342724
per4yrc	1.361887	.479336	439.899	2.841	.005	.419814	2.303960
public	119925	.274238	405.467	437	.662	659031	.419182
ses * per4yrc	130132	.592163	479.307	220	.826	-1.293688	1.033423
ses * ses_mean	136539	.298571	303.798	457	.648	724069	.450990
ses * public	668237	.331145	404.838	-2.018	.044	-1.319216	017258

a. Dependent Variable: math.

Estimates for fixed effects:

Same significant main effects as before, but only one significant interaction – ses*public

We can remove the non-significant interactions for a more parsimonious model

Simpler model

$$\begin{aligned} math_{ij} &= \gamma_{00} + \gamma_{10} \, ses_{ij} + \gamma_{01} \, ses_mean_j + \gamma_{02} \, per4yrc_j + \gamma_{03} \, public_j \\ &+ \gamma_{13} \, (public^*ses) + \\ &+ u_{0j} + u_{1j} \, ses_{ij} + \varepsilon_{ij} \end{aligned}$$

	Model Dimension ^a								
		Number of Levels	Covariance Structure	Number of Parameters	Subject Variables				
Fixed Effects	Intercept	1		1					
,	ses	1		1					
,	ses_mean	1		1					
<u> </u>	per4yrc	1		1					
<u> </u>	public	1		1					
	ses * public	1		1					
Random Effects	Intercept + ses ^b	2	Variance Components	2	schcode				
Residual				1					
Total		8		9					

Model dimension sets out the shape of the data.

Nine parameters:

$$math_{ij} = \gamma_{00} + \gamma_{10} ses_{ij} + \gamma_{01} ses_{mean_{j}} + \gamma_{02} per4yrc_{j} + \gamma_{03} public_{j} + \gamma_{13} (public*ses) + v_{13} (public*ses) + v_{13} ses_{ij} + \varepsilon_{ij}$$

Estimates of Fixed Effects^a

						95% Confide	ence Interval
Parameter	Estimate	Std. Error	df	t	Sig.	Lower Bound	Upper Bound
Intercept	56.440337	.470907	418.862	119.855	.000	55.514701	57.365972
ses	3.659485	.292123	461.438	12.527	.000	3.085429	4.233542
ses_mean	2.659142	.313166	697.326	8.491	.000	2.044280	3.274004
per4yrc	1.404177	.467536	410.165	3.003	.003	.485112	2.323242
public	123093	.273888	406.624	449	.653	661507	.415320
ses * public	682460	.328354	395.850	-2.078	.038	-1.327996	036925

a. Dependent Variable: math.

Estimates for fixed effects:

Same significant main effects as before, and a significant slope effect for public, estimated at – 0.68.

Remember *public* = 1 indicates a public school.

So, the slope is *lower* for public schools.

Higher SES students in public schools get lower marks Lower SES students in public schools get higher marks

At school level Extreme school performance

At individual level

Interpreting the results

Fixed effects in the model

 $math = 56.4 + 3.7 ses + 2.7 ses_mean + 1.4 per4yrc - 0.12 public - 0.68 (public*ses)$

Descriptive Statistics

	Minimum	Maximum
ses	-2.41	1.87
ses_mean	-1.30	1.44
per4yrc	.00	1.00

Overall, estimated average performance on the test is 56.4.

Suppose everything else is equal:

- 1. Compare two students from lowest and highest ses-mean school: Expected difference in scores = $2.7 \times 1.44 2.7 \times (-1.3) = 7.4$
- 2. Two students from lowest and highest *per4yrc* schools Expected difference in scores = $1.4 \times 1.0 1.4 \times (0) = 1.4$
- 3. Two students with lowest and highest ses scores
 - Both in public school
 3.7 X 1.87 0.68 X 1.87 [3.7X (-2.41) 0.68 X (-2.41)] = 12.9
 - Both in private school

$$3.7 \times 1.87 - 3.7 \times (-2.41) = 15.8$$

Summary of results

- The final model suggests the following effects
- Student maths performance:
 - is positively predicted by student Socio Economic Status
 - and positively predicted by average SES of the school
 - as well as by the percentage of students in the school with ambitions towards obtaining more prestigious tertiary degrees
 - (as measured by intention to attend universities with a 4 year undergraduate program)
- The significant random slope effect suggests that higher SES students will perform better in non-public schools and that lower SES students will perform better in public schools.

Section 3: Lecture 10

ADDITIONAL ISSUES

- Centring
- ☐ Assumptions
- Estimation
- ☐ Covariance structures

Additional issues for MLM

- Centring: It is often recommended that continuous predictors in MLMs be mean-centred, especially if they are going to appear in an interaction.
 - Grand mean centring: Compute a new variable by subtracting the overall mean from it.
 - Group mean centring: Compute a new variable by subtracting the group mean from it.
 - (You can do this by calculating the group mean for each group – see last week, re aggregation – and then subtract one variable from the other.)
- One point of centring is easier interpretation. A zero score is then the mean value.

Additional issues for MLM

- Assumptions: (Pretty much) all the assumptions of regression still apply. Additionally, the random effects are assumed normally distributed.
- Estimation: In the examples we have used Restricted maximum likelihood (REML), rather than maximum likelihood (ML). In most circumstances this won't make much difference, but ML needs to be used if you are going to compare fit across different models.
- Covariance structures: In this and previous lectures, we have not looked closely at different covariance structures for the random effects.
 - In effect we have assumed that the random effects are uncorrelated with each other. This may not be the case.
 - If you are using MLMs for your own research, you may need to consider this. Check out Field, 2009, p. 737, or Heck et al, p. 94.

Additional issues for MLM

Covariance structures: 4 popular flavours (of 17 offered by SPSS)

Variance components

Diagonal 🯺

$$\begin{bmatrix} \sigma_1^2 & 0 & 0 \\ 0 & \sigma_2^2 & 0 \\ 0 & 0 & \sigma_3^2 \end{bmatrix}$$

AR1 – autoregressive

$$\sigma_{arepsilon}^{2}egin{bmatrix} 1 &
ho &
ho^{2} \
ho & 1 &
ho \
ho^{2} &
ho & 1 \end{bmatrix}$$

Summary

IN THIS LECTURE, you

- extended knowledge of random intercept models from the previous lecture
- learnt about random slope models
- learnt how to fit these models in SPSS
- were provided with summary information on some additional issues