MATRIX PROBLEMS

1. **. Matrix 1**. Cho ma trận A[][] gồm các số nguyên dương. Nhiệm vụ của bạn là quay ma trận theo chiều kim đồng hồ. Ví dụ về quay theo chiều kim đồng hồ ma trận A[][] dưới đây.

1	2	3	4	1	2
4	5	6	4 7	5	3
7	8	9	8	9	6

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: dòng đầu tiên đưa vào n, m tương ứng với số hàng, số cột của ma trận A[]; dòng tiếp theo đưa vào n×m số A[i][j]; các số được viết cách nhau một vài khoảng trống.
- T, n,m, A[i][j] thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le n$, $m \le 100$; $1 \le A[i][j] \le 10^5$.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

	<u> </u>	
Input:		Output:
2		5 1 6 2
2 2		4 12753896
1 2 5 6		
3 3		
123456789		

2. **Matrix 2**. Cho ma trận vuông A[][] cấp N. Nhiệm vụ của bạn là đưa ra số các phần tử giống nhau ở tất cả các hàng. Ví dụ với ma trận A[][] dưới đây sẽ cho ta kết quả là 2 tương ứng với số 2, 3 xuất hiện ở tất cả các hàng.

2	1	4	3
1	2	3	2
3	6	2	3
5	2	5	3

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: dòng đầu tiên đưa vào N là cấp của ma trận A[][]; dòng tiếp theo đưa vào N×N số A[i][j]; các số được viết cách nhau một vài khoảng trống.
- $\bullet \quad T,\,N,\,A[i][j] \text{ thỏa mãn ràng buộc: } 1 \leq T \leq 100;\,1 \leq N \leq 100;\,1 \leq A[i][j] \leq 10^5.$

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
1	2
4	
2143123236235253	

3. **Matrix 3**. Cho ma trận A[N][M]. Nhiệm vụ của bạn là in các phần tử của ma trận theo hình soắn ốc. Ví dụ về in ma trận theo hình soắn ốc như dưới đây: 1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10.

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: dòng đầu tiên đưa vào N, M là cấp của ma trận A[][]; dòng tiếp theo đưa vào N×M số A[i][j]; các số được viết cách nhau một vài khoảng trống.
- T, M, N, A[i][j] thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le M$, N ≤ 100 ; $1 \le A[i][j] \le 10^5$.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10
4 4	123481211109567
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
3 4	
1 2 3 4 5 6 7 8 9 10 11 12	

4. **Matrix 4**. Cho ma trận A[N][M] bao gồm các số 0 và 1. Ta gọi mỗi miền của ma trận A[][] là nhóm các số 1 được bao quanh bởi các số 0. Hãy tìm số miền của ma trận. Ví dụ số miền của ma trận A[][] là 4.

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: dòng đầu tiên đưa vào N, M là cấp của ma trận A[][]; dòng tiếp theo đưa vào N×M số A[i][j]; các số được viết cách nhau một vài khoảng trống.
- T, M, N, A[i][j] thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le M$, N ≤ 100 ; $0 \le A[i][j] \le 1$.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	2
3 3	2
110001101	
4 4	
1100001000010100	

5. **Matrix 5**. Cho ma trận vuông A[N][N]. Tìm số phép biến đổi ít nhất để tổng theo các hàng, các cột của ma trận đều bằng nhau. Biết mỗi phép biến đổi bạn chỉ được phép tăng một phần tử bất kỳ của ma trận lên 1 đơn vị. Ví dụ với ma trận

$$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ $\begin{bmatrix} 4 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: dòng đầu tiên đưa vào N là cấp của ma trận A[N][N]; dòng tiếp theo đưa vào N×N số A[i][j]; các số được viết cách nhau một vài khoảng trống.
- T, N, A[i][j] thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le N \le 100$; $1 \le A[i][j] \le 150$.

Output:

mpat.

2	4	
2	6	
1 2 3 4		
3		
123423321		

6. **Matrix 6**. Cho ma trận vuông A[N][N]. Hãy in các phần tử thuộc vùng biên.

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: dòng đầu tiên đưa vào N là cấp của ma trận A[N][N]; dòng tiếp theo đưa vào N×N số A[i][j]; các số được viết cách nhau một vài khoảng trống.
- T, N, A[i][j] thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le N \le 100$; $1 \le A[i][j] \le 150$.

Output:

Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	123458145678
4	45 48 54 21 87 70 78 15
1234567812345678	
3	
45 48 54 21 89 87 70 78 15	

7. **Matrix 7**. Cho ma trận vuông A[N][N]. Hãy in các phần tử thuộc theo hình con rắn.

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: dòng đầu tiên đưa vào N là cấp của ma trận A[N][N]; dòng tiếp theo đưa vào N×N số A[i][j]; các số được viết cách nhau một vài khoảng trống.
- T, N, A[i][j] thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le N \le 100$; $1 \le A[i][j] \le 150$.

Output:

	C
Input:	Output:
2	45 48 54 87 89 21 70 78 15
3	25 27 21 23
45 48 54 21 89 87 70 78 15	

8. **Matrix 8**. Cho số N biểu diễn cho ma trận vuông A[4*N][4*N] được điền các con số từ 1 đến 4*N*4*N theo thứ tự từ nhỏ đến lớn, từ trái qua phải. Nhiệm vụ của bạn là in các phần tử của ma trận theo hai hình cuộn dây. Ví dụ với N = 2 ta có ma trận 4×4 và hai cuộn dây sau:

```
1 2 3 4
5 6 7 8 Cuộn 1: 10 6 2 3 4 8 12 16
9 10 11 12 Cuộn 2: 7 11 15 14 13 9 5 1
13 14 15 16
```

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test là một số N được viết trên 1 dòng.
- T, N thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le N \le 10$.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:	
1	10 6 2 3 4 8 12 16	
1	7 11 15 14 13 9 5 1	

9. **Matrix 9**. Cho ma trận A[N][M] chỉ bao gồm các số 0 và 1. Hãy tìm đường đi ngắn nhất từ một phần tử bắt đầu đến phần tử đích. Biết mỗi bước đi ta chỉ được phép dịch chuyển từ phần tử có giá trị 1 đến phần tử có giá trị 1. Ví dụ với ma trận dưới đây sẽ cho ta kết quả là 11.

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: Dòng đầu tiên đưa vào 4 số N, M, phần tử bắt đầu (x, y), phần tử kết thúc (z, t); dòng tiếp là N×M các phần tử của ma trận A[][]; các phần tử được viết cách nhau một vài khoảng trống.
- T, N, M, x, y, z, t thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le N$, $M \le 10^3$; $1 \le x$, y, z, t $\le 10^3$.

Output:

Input:	Output:
1	11
4 5 0 0 4 5	
101111101011111010001	

10. **Matrix 10**. Cho ma trận A[N][M] chỉ bao gồm các số 0 và 1. Hãy sửa đổi các phần tử của ma trận A[][] theo nguyên tắc: nếu phần tử A[i][j] = 1 ta thay tất cả các phần tử của hàng i, cột i bởi 1. Ví dụ với ma trận dưới đây sẽ minh họa cho phép biến đổi:

1	0	0	1	1	1	1	1
0	0	1	0 —	→ 1	1	1	1
0	0	0	0	1	0	1	1

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: Dòng đầu tiên đưa vào hai số N, M; dòng tiếp là N×M các phần tử của ma trận A[][]; các phần tử được viết cách nhau một vài khoảng trống.
- T, N, M thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le N$, M $\le 10^3$.

Output:

Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	001111
2 3	11111100
0 0 0 0 0 1	
4.3	
10010010000	

11. **Matrix 11**. Cho ma trận A[N][M] chỉ bao gồm các số 0 và 1. Hãy tìm hình chữ nhật lớn nhất có các phần tử đều bằng 1 bằng cách tráo đổi các cột của ma trận với nhau. Ví dụ với ma trận dưới đây ta sẽ có hình chữ nhật lớn nhất có các phần tử là 1 bằng 6.

0	1	0	1	0	0	0	1	1	0
0	1	0	1	1	\longrightarrow 0	0	1	1	1
1	1	0	1	0	1	0	1	1	0

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: Dòng đầu tiên đưa vào hai số N, M; dòng tiếp là N×M các phần tử của ma trận A[][]; các phần tử được viết cách nhau một vài khoảng trống.
- T, N, M thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le N$, M ≤ 15 .

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	4
23	2
111011	
22	
1011	

12. **Matrix 12**. Cho ma trận A[N][M]. Hãy tìm hạng của ma trận A[N][M]. Hạng của ma trận (Rank Matrix) là số các cột hoặc các hàng độc lập tuyến tính. . Ví dụ hạng của ma trận dưới đây là 2 vì có hàng 1 và hàng 2 là phụ thuộc tuyến tính.

Input:

• Dòng đầu tiên đưa vào số lượng bộ test T.

- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: Dòng đầu tiên đưa vào hai số N, M; dòng tiếp là N×M các phần tử của ma trận A[][]; các phần tử được viết cách nhau một vài khoảng trống.
- T, N, M, A[i][j] thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le N$, M ≤ 15 ; $-10^2 \le A[i][j] \le 10^2$.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:	
2	2	
3 3	2	
10 20 10 20 40 20 30 50 0		
3 3		
10 20 10 -20 -30 10 30 50 0		

13. **Matrix 13**. Cho ma trận A[N][M] chỉ bao gồm các số 0 và 1. Hãy tìm hình chữ nhật lớn nhất có các phần tử đều bằng 1. Ví dụ với ma trận dưới đây ta sẽ có hình chữ nhật lớn nhất có các phần tử là 1 bằng 8.

0	1	1	0					
1	1	1	1		1	1	1	1
1	1	1	1		1	1	1	1
1	1	0	0					

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: Dòng đầu tiên đưa vào hai số N, M; dòng tiếp là N×M các phần tử của ma trận A[][]; các phần tử được viết cách nhau một vài khoảng trống.
- T, N, M thỏa mãn ràng buộc: 1≤T≤100; 1≤ N, M ≤50.

Output

• Đưa ra kết quả mỗi test theo từng dòng.

= *** - ** - ** - ** - ** - ** *** *** *				
Input:	Output:			
1	8			
4 4				
011011111111100				

14. **Matrix 14**. Cho ma trận A[N][M] chỉ bao gồm các số 0 và 1. Hãy tìm cấp ma trận vuông con lớn nhất có các phần tử đều bằng 1. Ví dụ với ma trận dưới đây ta sẽ có cấp ma trận vuông con lớn nhất có các phần tử là 1 bằng 3.

0	1	1	0	1
1	1	0	1	0
0	1	1	1	0
1	1	1	1	0
1	1	1	1	1
0	0	0	0	0

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: Dòng đầu tiên đưa vào hai số N, M; dòng tiếp là N×M các phần tử của ma trận A[][]; các phần tử được viết cách nhau một vài khoảng trống.
- T, N, M thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le N$, M ≤ 50 .

Output:

Input:	Output:
3	3
5 6	2

010101101010100111100011110111111	
2 2	
1111	

15. **Matrix 15**. Cho ma trận A[N][M] có các phần tử hoặc là ký tự ''O'' hoặc là ký tự ''X''. Hãy thay thế các miền bao quanh bởi 'X' bằng 'X'. Một miền các ký tự 'O' bị bao quang bởi ký tự 'X' nếu các ký tự 'X' xuất hiện ở phía dưới, phía trên, bên trái, bên phải các ký tự 'O'. Ví dụ với ma trận dưới đây ta sẽ có kết quả như sau:

X	X	X	X	X	X	X	X
X	O	X	X	X	X	X	X
X	O	O	X	→ X	X	X	X
X	O	X	X	X	X	X	X
X	X	O	O	X	X	O	O

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: Dòng đầu tiên đưa vào hai số N, M; dòng tiếp là N×M các phần tử của ma trận A[][]; các phần tử được viết cách nhau một vài khoảng trống.
- T, N, M thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le N$, M ≤ 20 .

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	XOXOX
15	XXXXXXXX
XOXOX	
3 3	
XXXXOXXX	

16. **Matrix 16**. Cho ma trận vuông A[N][N] có các phần tử hoặc là ký tự 'O' hoặc là ký tự 'X'. Hãy tìm cấp của ma trận vuông lớn nhất có các phần tử 'X' bao quang các phần tử 'O'. Ví dụ với ma trận dưới đây ta sẽ có kết quả là 3.

\mathbf{X}	O	X	X	X
X	\mathbf{X}	\mathbf{X}	\mathbf{X}	X
X	\mathbf{X}	O	\mathbf{X}	Ο
X	\mathbf{X}	\mathbf{X}	\mathbf{X}	X
X	X	X	O	Ο

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: Dòng đầu tiên đưa vào số N; dòng tiếp là N×N các phần tử của ma trận A[][]; các phần tử được viết cách nhau một vài khoảng trống.
- T, N thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le N \le 20$.

Output:

Input:	Output:
2	2
2	3
XXXX	
4	
XXXOXOXXXXXOXOXX	

17. **Matrix 17**. Cho ma trận vuông A[N][N] gồm các số nguyên dương và số tự nhiên K. Hãy tìm số các cách di chuyển từ phần tử đầu tiên (A[0][0] đến phần tử cuối cùng A[N-1][N-1] sao cho tổng các phần tử của phép di chuyển đúng bằng K. Biết từ phần tử A[i][j], ta chỉ được phép dịch chuyển đến phần tử A[i+1][j] hoặc A[i][j+1]. Ví dụ với ma trận dưới đây sẽ có 2 phép di chuyển theo nguyên tắc kể trên để có tổng bằng 12.

1 2 3
4 6 5 Cách 1:
$$1 \rightarrow 2 \rightarrow 6 \rightarrow 2 \rightarrow 1$$

3 2 1 Cách 2: $1 \rightarrow 2 \rightarrow 3 \rightarrow 5 \rightarrow 1$

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: Dòng đầu tiên đưa vào hai số N, K; dòng tiếp là N×N các phần tử của ma trận A[][]; các phần tử được viết cách nhau một vài khoảng trống.
- T, N, A[i][j] thỏa mãn ràng buộc: 1≤T≤100; 1≤ N ≤200; 1≤ A[i][j] ≤200.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	0
3 16	2
123465987	_
3 12	
123465321	

18. **Matrix 18**. Cho ma trận A[N][M]. Nhiệm vụ của bạn là in các phần tử của ma trận theo hình soắn ốc ngược. Ví dụ về in ma trận theo hình soắn ốc ngược như dưới đây: 10 11 7 6 5 9 13 14 15 16 12 8 4 3 2 1.

1	2	3	4
5	6	7_	8
9	10	11	12
13	14	15	16

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: dòng đầu tiên đưa vào N, M là cấp của ma trận A[][]; dòng tiếp theo đưa vào N×M số A[i][j]; các số được viết cách nhau một vài khoảng trống.
- T, M, N, A[i][j] thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le M$, N ≤ 100 ; $1 \le A[i][j] \le 10^5$.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	10 11 7 6 5 9 13 14 15 16 12 8 4 3 2 1
4 4	11 10 9 8 7 13 14 15 16 17 18 12 6 5 4 3 2 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
1	
3 6	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	

19. **Matrix 19**. Cho ma trận A[N][M]. Nhiệm vụ của bạn là in các phần tử của ma trận theo đường chéo. Ví dụ về in ma trận theo đường chéo: 1 2 5 9 6 3 4 7 10 13 14 11 8 12 15 16.

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: dòng đầu tiên đưa vào N, M là cấp của ma trận A[][]; dòng tiếp theo đưa vào N×M số A[i][j]; các số được viết cách nhau một vài khoảng trống.
- T, M, N, A[i][j] thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le M$, N ≤ 100 ; $1 \le A[i][j] \le 10^5$.

Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	124753689
3	1 2 3 4
123456789	
2	
1 2 3 4	

20. **Matrix 20**. Cho ma trận A[N][M]. Nhiệm vụ của bạn là đưa ra phần tử thứ k phép duyệt theo mô hình soắn ốc trên ma trậncủa ma trận theo hình soắn ốc. Ví dụ với k=6 của ma trận dưới đây sẽ cho ta kết quả là 12 (Phép duyệt soắn ốc: 1 2 3 4 8 12 16 15 14 13 9 5 6 7 11 10).

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

Input:

- Dòng đầu tiên đưa vào số lượng bộ test T.
- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: dòng đầu tiên đưa vào N, M là cấp của ma trận A[][] và số k; dòng tiếp theo đưa vào N×M số A[i][j]; các số được viết cách nhau một vài khoảng trống.
- T, M, N, k, A[i][j] thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le M$, N, k ≤ 100 ; $1 \le A[i][j] \le 10^5$. Output:

• Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
2	12
4 4 6	5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
3 4 5	
1 2 3 4 5 6 7 8 9 10 11 12	

21. **Matrix 21**. Cho ma trận A[N][M]. Nhiệm vụ của bạn là tìm hình chữ nhật con của A[][] có tổng các phần tử lớn nhất. Ví dụ với ma trận dưới đây ta sẽ tìm ra được ma trận con có tổng các tử lớn nhất là 29.

1	2	-1	4	-20
-8	-3	4	2	1
3	8	10	-8	3
-4	-1	1	7	-6

Input:

• Dòng đầu tiên đưa vào số lượng bộ test T.

- Những dòng kế tiếp đưa vào T bộ test. Mỗi bộ test gồm hai dòng: dòng đầu tiên đưa vào N, M; dòng tiếp theo đưa vào N×M số A[i][j]; các số được viết cách nhau một vài khoảng trống.
- T, M, N, A[i][j] thỏa mãn ràng buộc: $1 \le T \le 100$; $1 \le M$, N, k ≤ 100 ; $-10^5 \le A[i][j] \le 10^5$. Output:
 - Đưa ra kết quả mỗi test theo từng dòng.

Input:	Output:
1	29
4 5	
1 2 -1 -4 -20 -8 -3 4 2 1 3 8 10 1 3 -4 -1 1 7 -6	