13.	- (- <u>.</u>	x) is same as						
	(a)	- x	(b)	x	(c)	$\frac{1}{x}$	(d)	$\frac{-1}{x}$
14.	The	multiplicativ	e inv	verse of $-1\frac{1}{7}i$	s			
	(a)	$\frac{8}{7}$	(b)	$\frac{-8}{7}$	(c)	$\frac{7}{8}$	(d)	7 -8
15 .	If x	be any ration	ıal n	umber then \flat	c + C) is equal to		
	(a)	X	(b)	0	(c)	- x	(d)	Not defined
16.	The	reciprocal of	1 is					
	(a)	1	(b)	-1	(c)	0	(d)	Not defined
17.	The	reciprocal of	-1 is	S				0,
	(a)	1	(b)	-1	(c)	0	(d)	Not defined
18.	The	reciprocal of	0 is					
	(a)	1	(b)	-1	(c)	0	(d)	Not defined
19.	The	reciprocal of	any	rational num	ber	$\frac{p}{q}$, where p a	nd q	q are integers
	and	$q \neq 0$, is						
	(a)	$\frac{p}{q}$	(b)	1	(c)	0	(d)	$\frac{q}{p}$
20 .	If y	be the recipr	ocal	of rational n	uml	ber x, then th	ie re	ciprocal of y
	will	be			>,			
	(a)			y	(c)	$\frac{x}{y}$	(d)	$\frac{y}{x}$
21.	The	reciprocal of	$\frac{-3}{8}$	$\times \left(\frac{-7}{13}\right)$ is				
	(a)	$\frac{104}{21}$	(b)	$\frac{-104}{21}$	(c)	$\frac{21}{104}$	(d)	$\frac{-21}{104}$
22 .		ich of the fo ltiplication ov				le of distribu al numbers.	ıtive	property of
	(a)	$-\frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\}$	1)} =	$= \left[-\frac{1}{4} \times \frac{2}{3} \right] + \left[-\frac{1}{4} \times 2$	$-\frac{1}{4} \times$	$\left(\frac{-4}{7}\right)$		

- **9.** Which of the following is a linear expression: (a) $x^2 + 1$ (b) $u + u^2$ (c) 4 **10.** A linear equation in one variable has
 - (a) Only one solution
 - (b) Two solutions (c) More than two solutions
 - (d) No solution
- 11. Value of S in $\frac{1}{3}$ + S = $\frac{2}{5}$

 - (a) $\frac{4}{5}$ (b) $\frac{1}{15}$
- 12. $\frac{-4}{2}y = -\frac{3}{4}$, then y =

 - (a) $-\left(\frac{3}{4}\right)^2$ (b) $-\left(\frac{4}{3}\right)^2$

number is

(a) 11b + 30

(a) 3(x-3)

(c)3x - 9

(c) 10

(d) 1 + z

- **13.** The digit in the tens place of a two digit number is 3 more than the
 - digit in the units place. Let the digit at units place be b. Then the
- (b) 10b + 30 (c) 11b + 3 (d) 10b + 314. Arpita's present age is thrice of Shilpa. If Shilpa's age three years ago
 - was x. Then Arpita's present age is (b) 3x + 3(d) 3(x+3)

1.	If three angles of a qua angle is	drilateral are each equal to 75°, the fourth
	(a) 150° (b) 135°	(c) 45° (d) 75°
2.	For which of the followi	ng, diagonals bisect each other?
	(a) Square	(b) Kite
	(c) Trapezium	(d) Quadrilateral
3.	For which of the followi	ng figures, all angles are equal?
	(a) Rectangle	(b) Kite
	(c) Trapezium	(d) Rhombus
4.	For which of the follow each other?	ing figures, diagonals are perpendicular to
	(a) Parallelogram	(b) Kite
	(c) Trapezium	(d) Rectangle
5 .	For which of the followi	ng figures, diagonals are equal?
	(a) Trapezium	(b) Rhombus
	(c) Parallelogram	(d) Rectangle
6.	Which of the following f	igures satisfy the following properties?
	- All sides are congruen	t.
	- All angles are right an	gles.
	- Opposite sides are par	allel.

- **7.** Which of the following figures satisfy the following property?
 - Has two pairs of congruent adjacent sides.

- 8. Which of the following figures satisfy the following property?
 - Only one pair of sides are parallel.

- **9.** Which of the following figures do not satisfy any of the following properties?
 - All sides are equal.
 - All angles are right angles.
 - Opposite sides are parallel.

- 10. Which of the following properties describe a trapezium?
 - (a) A pair of opposite sides is parallel.

```
(b) The diagonals bisect each other.
     (c) The diagonals are perpendicular to each other.
     (d) The diagonals are equal.
11. Which of the following is a property of a parallelogram?
     (a) Opposite sides are parallel.
     (b) The diagonals bisect each other at right angles.
     (c) The diagonals are perpendicular to each other.
     (d) All angles are equal.
     What is the maximum number of obtuse angles that a quadrilateral
     can have?
     (a) 1
                                          (c) 3
                    (b) 2
```

5.							covering a d over a distan		ice of 297 km. f 550 km is
	(a)	100 litı	es	(b) 50) litres	(c)	25.16 litres	s (d)	25 litres
6.	cert	ain jou	_	n 10 h	ours. T	o cove	-		ar can finish a ace in 8 hours,
	(a)	60 km	ı/h	(b) 8	30 km	/h (c)	30 km/h	(d)	40 km/h
7.		which o		ollowii	ng case	e, do th	ie quantities	s vary	y directly with
	(a)	х	0.5	2	8	32			

(a)	х	0.5	2	8	32
	у	2	8	32	128

(b)	p	1^{2}	2^2	3^2	42
	q	1^{3}	2^{3}	3^3	43

(c)	r	2	5	10	25	50
	s	25	10	5	2	0.5

(d)	и	2	4	6	9	12
	υ	18	9	6	4	3

- 8. Which quantities in the previous question vary inversely with each other?
 - (a) x and y (b) p and q(c) r and s(d) u and v
- 9. Which of the following vary inversely with each other?
 - (a) speed and distance covered.
 - (b) distance covered and taxi fare.
 - (c) distance travelled and time taken.
 - (d) speed and time taken.
- **10.** Both x and y are in direct proportion, then $\frac{1}{x}$ and $\frac{1}{u}$ are
 - (a) in indirect proportion.
 - (b) in inverse proportion.
 - (c) neither in direct nor in inverse proportion.
 - (d) sometimes in direct and sometimes in inverse proportion.

4.	Which of the following will have 4 at the units place?							
	(a)	14^{2}	(b)	62^{2}	(c)	27^{2}	(d)	35^{2}
5 .	Hov	w many natui	al n	umbers lie be	etwe	en 5^2 and 6^2 ?	•	
	(a)	9	(b)	10	(c)	11	(d)	12
6.	Wh	ich of the foll	owin	ng cannot be a	a pe	rfect square?		
	(a)	841	(b)	529	(c)	198		
	(d)	All of the ab	ove					
7.	The	one's digit o	f the	cube of 23 is	3			
	(a)	6	(b)	7	(c)	3	(d)	9
8.		quare board i e of the board		an area of 14	4 s	quare units. 1	How	long is each
	(a)	11 units	(b)	12 units	(c)	13 units	(d)	14 units
9.	Wh	ich letter bes	t rep	resents the lo	ocati	ion of $\sqrt{25}$ or	nan	number line?
	(a)	A	(b)	В	(c)	C	(d)	D
			A ←	B 0 1 2 3 4	C 5	$\stackrel{D}{\underset{6}{\longmapsto}}$		
10.		ne member o mbers are	of a	pythagorean		let is 2m, the	en tl	he other two
		0 -				. (/ , \		
	(a)	m, m^2+1						
		m, m^2+1 m^2+1, m^2-1	(
	(b)				2			
	(b) (c)	m ² +1, m ² -1	(2			
11.	(b) (c) (d)	m ² +1, m ² -1 m ² , m ² -1 m ² , m+1	essiv	ve odd numbe	ers 1	., 3, 5, 7, 9, 1	1, 1	3 and 15 is
11.	(b) (c) (d) The	m ² +1, m ² -1 m ² , m ² -1 m ² , m+1	essiv			., 3, 5, 7, 9, 1 49	1, 13 (d)	
	(b) (c) (d) The (a)	m ² +1, m ² -1 m ² , m ² -1 m ² , m+1 sum of succ	(b)		(c)	49		
	(b) (c) (d) The (a)	m ² +1, m ² -1 m ² , m ² -1 m ² , m+1 sum of succ	(b)	64 d natural nu	(c) mbe	49	(d)	
12.	(b) (c) (d) The (a) The (a)	$m^{2}+1, m^{2}-1$ $m^{2}, m^{2}-1$ $m^{2}, m+1$ e sum of succ 81 e sum of first 2n+1	(b) <i>n</i> od (b)	64 d natural nu	(c) mbe (c)	49 ers is n²-1	(d)	36
12.	(b) (c) (d) The (a) The (a) Wh	$m^{2}+1, m^{2}-1$ $m^{2}, m^{2}-1$ $m^{2}, m+1$ e sum of succ 81 e sum of first 2n+1	(b) n od (b) owin	64 d natural nu n^2	(c) mbe (c) a p	49 ers is n²-1	(d) (d)	36
12. 13.	(b) (c) (d) The (a) The (a) Wh (a)	m^2+1 , m^2-1 m^2 , m^2-1 m^2 , $m+1$ e sum of succ 81 e sum of first 2n+1 ich of the follows	(b) n od (b) owin (b)	64 d natural num n^2 ag numbers is	(c) mbe (c) s a p (c)	49 ors is n^2-1 erfect cube? 392	(d) (d) (d)	36 n²+1 8640
12. 13. 14.	(b) (c) (d) The (a) The (a) Wh (a) The (a)	m^2+1 , m^2-1 m^2 , m^2-1 m^2 , $m+1$ e sum of succ 81 e sum of first 2n+1 ich of the foll 243 e hypotenuse 5x	(b) n od (b) owin (b) of a (b)	64 d natural num n^2 ag numbers is 216 right triangle $7x$	(c) mbe (c) a p (c) c wit (c)	49 rs is n²-1 erfect cube? 392 th its legs of 1 16x	(d) (d) (d) engt (d)	36 $n^{2}+1$ 8640 $3x \times 4x$ is $25x$
12. 13. 14.	(b) (c) (d) The (a) The (a) Wh (a) The (a) The	m^2+1 , m^2-1 m^2 , m^2-1 m^2 , $m+1$ e sum of succ 81 e sum of first 2n+1 ich of the foll 243 e hypotenuse 5x	(b) n od (b) owin (b) of a (b) mbe	64 Id natural num In 12 Ig numbers is Ig 216 Iright triangle	(c) mbe (c) a p (c) e wit (c) aber	49 rs is n²-1 erfect cube? 392 th its legs of 1 16x	(d) (d) (d) engt (d) 9, 1	36 $n^{2}+1$ 8640 $3x \times 4x$ is $25x$

7. Which of the following is a binomial?

(a) $7 \times a + a$ (b) $6a^2 + 7b + 2c$

(c) $4a \times 3b \times 2c$ (d) $6(a^2 + b)$

8. Sum of a - b + ab, b + c - bc and c - a - ac is

(a) 2c + ab - ac - bc (b) 2c - ab - ac - bc

(c) 2c + ab + ac + bc (d) 2c - ab + ac + bc

9. Product of the following monomials 4p, $-7q^3$, -7pq is

(a) $196 p^2 q^4$ (b) $196 pq^4$ (c) $-196 p^2 q^4$ (d) $196 p^2 q^3$

10. Area of a rectangle with length 4ab and breadth $6b^2$ is

(a) $24a^2b^2$ (b) $24ab^3$ (c) $24ab^2$ (d) 24ab

11. Volume of a rectangular box (cuboid) with length = 2ab, breadth = 3ac and height = 2ac is

(a) $12a^3bc^2$ (b) $12a^3bc$ (c) $12a^2bc$ (d) 2ab+3ac+2ac

- 13. Latika bought a teapot for Rs 120 and a set of cups for Rs 400. She sold teapot at a profit of 5% and cups at a loss of 5%. The amount received by her is
 - (a) Rs 494 (b) Rs 546 (c) Rs 506 (d) Rs 534
- **14.** A jacket was sold for Rs 1,120 after allowing a discount of 20%. The marked price of the jacket is
- (a) Rs 1440 (b) Rs 1400 (c) Rs 960 (d) Rs 866.66 **15.** A sum is taken for two years at 16% p.a. If interest is compounded

after every three months, the number of times for which interest is

- charged in 2 years is
 (a) 8 (b) 4 (c) 6 (d) 9
- **16.** The original price of a washing machine which was bought for Rs 13,500 inclusive of 8% VAT is
 - (a) Rs 12,420 (b) Rs 14,580 (c) Rs 12,500 (d) Rs 13,492

surface areas of the original cubes and cut-out cubes? (b) 1:3 (c) 1:4 (a) 1:2 (d) 1:6 **3.** A circle of maximum possible size is cut from a square sheet of board.

2. A cube of side 4 cm is cut into 1 cm cubes. What is the ratio of the

- Subsequently, a square of maximum possible size is cut from the resultant circle. What will be the area of the final square? (a) $\frac{3}{4}$ of original square. (b) $\frac{1}{2}$ of original square.
- (c) $\frac{1}{4}$ of original square. (d) $\frac{2}{3}$ of original square.
- **4.** What is the area of the largest triangle that can be fitted into a rectangle of length *l* units and width *w* units? (a) lw/2(b) lw/3(c) lw/6
 - (d) lw/4
- **5.** If the height of a cylinder becomes $\frac{1}{4}$ of the original height and the radius is doubled, then which of the following will be true?
 - (a) Volume of the cylinder will be doubled.
 - (b) Volume of the cylinder will remain unchanged.
 - (c) Volume of the cylinder will be halved.
 - (d) Volume of the cylinder will be $\frac{1}{4}$ of the original volume.

11.	displays data that changes continuously over periods of
	time.
12 .	The relation between dependent and independent variables is shown
	through a
13.	We need coordinates for representing a point on the graph
	sheet.
14.	A point in which the x -coordinate is zero and y -coordinate is non-
	zero will lie on the
15.	The horizontal and vertical line in a line graph are usually called
	and
16.	The process of fixing a point with the help of the coordinates is
	known as of the point.
17.	The distance of any point from the y -axis is the coordinate.
18.	All points with y -coordinate as zero lie on the
19.	For the point (5, 2), the distance from the x -axis is units.
20.	The x -coordinate of any point lying on the y -axis will be
21.	The y -coordinate of the point (2, 4) is
22 .	In the point (4, 7), 4 denotes the