

## spaces homeomorphic to Baire space

 ${\bf Canonical\ name} \quad {\bf Spaces Homeomorphic To Baire Space}$ 

Date of creation 2013-03-22 18:46:48 Last modified on 2013-03-22 18:46:48

Owner gel (22282) Last modified by gel (22282)

Numerical id 7

Author gel (22282) Entry type Theorem Classification msc 54E50 Related topic PolishSpace

Related topic InjectiveImagesOfBaireSpace

Baire space,  $\mathcal{N} \equiv \mathbb{N}^{\mathbb{N}}$ , is the set of all functions  $x \colon \mathbb{N} \to \mathbb{N}$  together with the product topology. This is homeomorphic to the set of irrational numbers in the unit interval, with the homeomorphism  $f \colon \mathcal{N} \to (0,1) \setminus \mathbb{Q}$  given by continued fraction expansion

$$f(x) = \frac{1}{x(1) + \frac{1}{x(2) + \frac{1}{x(2)}}}.$$

**Theorem 1.** Let I be an open interval of the real numbers and S be a countable dense subset of I. Then,  $I \setminus S$  is homeomorphic to Baire space.

More generally, Baire space is uniquely characterized up to homeomorphism by the following properties.

**Theorem 2.** A topological space X is homeomorphic to Baire space if and only if

- 1. It is a nonempty Polish space.
- 2. It is http://planetmath.org/ZeroDimensionalzero dimensional.
- 3. No nonempty open subsets are compact.

In particular, for an open interval I of the real numbers and countable dense subset  $S \subseteq I$ , then  $I \setminus S$  is easily seen to satisfy these properties and Theorem ?? follows.