

THEORY OF COMPUTATION UNIT 4

Bharati Vidyapeeth's Institute of Computer Applications and Management , New Delhi-63, by Manish Kumar

14.4

BRANCE WITHOUT WITHOUT WITH WATER

Learning Objective

- Explain the concepts of Turing Machine and its extension.
- Explain the Concept of decidability and different undecidable problems
- Understand the concept of reducibility
- Explain the concept or recursion and recursion theorem

Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar

114

Complexity Theory

- Even when a problem is decidable, it may not be solvable in practice, if the solution requires enormous amount of time or memory.
- Therefore, an investigation of time, memory or some other resources is required for solving computational problem.
- Complexity theory :
 - √ Time complexity
 - ✓ Space complexity

© Rharati Vidyanaath's Institute of Computer Annications and Managament, New Delhi-63, by Manich Kumar

Measuring Time Complexity

- Let M ne a DTM that halts on all inputs.
- The running time or time complexity of M is the function f:N->N, Where f(n) is the maximum number of steps that M uses on any input of length n.
- If f(n) is the running time of M, We say that M runs in f(n) an that M is an f(n) time Turing machine.
- "n" represents the length of input
- Exact running time of an algorithm is a complex expression so we usually estimate it.
- One convenient form of estimation is asymptotic analysis
 - ✓ big-O notation
 - ✓ small-o notation

...

big-O notation and small-o notation

• big-O notation: Let f and g be functions f, $g:N \to R^+$, Say that f(n) = O(g(n)) if positive integers c and n_0 exist such that for every integer $n >= n_0$

f(n) < = cg(n)

small-o notation: Let f and g be functions f, g:N-> R+, Say that $f(n) = O(g(n)) \text{ if } \frac{f(n)}{g(n)} = 0$

In other words, f(n) = o(g(n)) means that, for any real number c > 0, a number n_0 exist, where f(n) < cg(n) for all $n >= n_0$

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kuma

114

Complexity Measure in NTM

- Let N be a non-deterministic Turing machine. The running time of N is the function f:N->N, Where f(n) is the maximum number of steps that N uses on any branch of its computation on any input of length n.
- Let t(n) be a function where t(n) >= n. Then every t(n) time non-deterministic single tape Turing machine has an equivalent 2^{O(f(n))} time deterministic Turing machine.

Rharati Viduanaath's Institute of Computer Anniications and Management New Delhi.63, by Manish Kumar

(800).	
400.00	
HAME S	WINNEED! J.
7179451	

P Class complexity

- P is the complexity class containing decision problems which can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time.
- In other words

 $P = \bigcup_k \text{ Time } (n^k)$

• P is often taken to be the class of computational problems which are "efficiently solvable" or "tractable".

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kuma

U4.7

P Class complexity

- Problems that are solvable in theory, but cannot be solved in practice, are called *intractable*.
- There exist problems in P which are intractable in practical terms; for example, some require at least n¹⁰⁰⁰⁰⁰⁰ operations.
- P is known to contain many natural problems, including the decision versions of linear programming, calculating the greatest common divisor, and finding a maximum matching. In 2002, it was shown that the problem of determining if a number is prime is in P.

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar

IIA :

NP Class complexity

- In computational complexity theory, NP ("Nondeterministic Polynomial time") is the set of decision problems solvable in polynomial time on a nondeterministic Turing machine.
- It is the set of problems that can be "verified" by a deterministic Turing machine in polynomial time.
- All the problems in this class have the property that their solutions can be checked effectively.

© Bharati Vidyapeeth's Institute of Computer Applications and Management., New Delhi-63, by Manish Kumar

SHAME WITH WITH WITH WITH WITH WITH WITH WITH	NP Class complexity
	ass contains many problems that people would like to to solve effectively, including
■ The	Boolean satisfiability problem (SAT)
■ The	Hamiltonian path problem (special case of TSP)
■ The	Vertex cover problem.
	NP P

HARD CO.

Space Complexity

- Let M be a deterministic Turing machine that halts on all inputs. The *space complexity* of M is the function f:N->N, where f(n) is the maximum number of tape cells that M scans on any input of length n.
- If the space complexity of M is f(n), we say that M runs in space f(n)
- If M is non-deterministic Turing machine wherein all branches halt on all inputs, we define its space complexity f(n) to be the maximum number of tape cells that M scans on any branch of its computation for any input of length n.

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar

U4.1

Space Complexity Class

- Let f:N->R+ be a function. The *space complexity* classes, SPACE(f(n)) and NSPACE(f(n)) are defined as follows.
- SPACE(f(n)) = { L | L is a language decided by an O(f(n)) space deterministic Turing machine}.
- NSPACE(f(n)) = { L | L is a language decide by an O(f(n)) space nondeterministic Turing machine}

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar

		à
BHASIN	700	WINNELLIN,

L Space Complexity

- L (also known as LSPACE) is the complexity class containing decision problems which can be solved by a deterministic Turing machine using a logarithmic amount of memory space.
- Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of boolean flags and many basic logspace algorithms use the memory in this way.

© Bharati Vidyapeeth's Institute of Computer Applications and Management . New Delhi-63, by Manish Kuma

U4. 13

NL Space Complexity

- NL (Nondeterministic Logarithmic-space) is the complexity class containing decision problems which can be solved by a nondeterministic Turing machine using a logarithmic amount of memory space.
- NL is a generalization of L, the class for logspace problems on a deterministic Turing machine.
- lacksquare Since any deterministic Turing machine is also a nondeterministic Turing machine, we have that f L is contained in f NL

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar

U4.1

PSPACE Complexity

- PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space.
- The set of all problems that can be solved by Turing machines using O(t(n)) space for some function t of the input size n, then we can define **PSPACE** formally as

$$\mathbf{PSPACE} = \bigcup_{k \in \mathbb{N}} \mathbf{SPACE}(n^k).$$

 PSPACE is a strict superset of the set of contextsensitive languages.

Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar

Hierarchy Theorem

- One may have intuition that more time or more space should increase the class of problem that it can solve.
- Hierarchy theorems prove that this institution is correct.
- Hierarchy theorems are useful to prove that the time and space complexity class are not all the same.
- Complexity classes form the hierarchy whereby the large class contains more language than do the classes with smaller bounds.
- · Hierarchy theorems is broadly categorized into two
 - Space hierarchy theorem
 - Time hierarchy theorem

Theorem: (Space Hierarchy Theorem) but not in space o(f(n)).

Space Hierarchy Theorems

For any space constructible function $f: N \to N$, there exists a language A that is dicidable in space O(f(n))

Construct an O(f(n)) space algorithm B that decides a language $A \notin o(f(n))$ space

- B = "On input w:
 - 1. Let n be the length of w.
 - 2. Compute f(n) using space constructibility, and mark off this much tape. If later stages ever attempt to use more, reject.
 - 3. If w is not of the form <M>10* for some TM M, reject.
 - 4. Simulate M on w while counting the number of steps used in the simulation. If the count ever exceeds $2^{f(n)}$, reject.
 - 5. If M accepts, reject. If M rejects, accept.

Space Hierarchy Theorems

- *M* may have an arbitrary tape alphabet and *B* has a fixed tape alphabet, so we represent each cell of *M* with several cells on *B* '*s* tape.
- Thus, if M runs in g(n) space, then B uses dg(n) space to simulate M, for some constant d that depends on M
- B is a decider because it halts in a limited time. Let A be the language that B decides. A is decidable in O(f(n))

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kuma

U4, 19

Space Hierarchy Theorem

- Assume some Turing machine M decides A in space g(n), where g(n) is o(f(n)).
- Since g(n) is o(f(n)) therefore from definition of o(f(n)), some constant n₀ exists, where dg(n) < f(n) for all n >= n₀.
- As the input length is n₀ or more, the simulation of M will complete.
- Therefore D will do the opposite of M on the same input, therefore M does not decide A which contradicts our assumption.
- Therefore A is not decidedable in o(f(n)) space.

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kuma

114.20

Time Hierarchy Theorem

Theorem: (Time hierarchy Theorem) For any time constructible function $t: N \to N$, there exists a language A that is decidable in time O(t(n)) but not in time $O(\frac{t(n)}{\log t(n)})$.

proof :
B = " On input w

1. n = |w|

- 2. Store the value $\binom{t(n)}{\log t(n)}$ in a binary counter. Decrease this counter before each step used to carry out stages 3.4.5 If the counters = 0, then REJECT.
- 3. If w is not of the form $\langle M \rangle 10^*$ for some TM M , REJECT.
- 4. Simulate *M* on *w*.
- 5. If *M* accepts, then REJECT; else if *M* rejects, then ACCEPT

Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar

Savitch's Theorem

- For any function $f: N \rightarrow R^+$, where $f(n) \ge n$, we have $NSPACE(f(n)) \subseteq SPACE(f^2(n))$.
- Proof :
 - As the proof of this theorem reveals, a deterministic TM can simulate a nondeterministic TM using only a little amount of extra space.
 - That is due to the fact that space can be recycled. As time cannot be recycled, the same trick fails to work with time (otherwise we would have a proof of P=NP).

© Rharati Vidyaneeth's Institute of Computer Applications and Management New Belhi-63 by Manish Kums

114. 22

Savitch's Theorem

- Let t be a positive integer, and let c₁ and c₂ be two configurations of N.
- We cay that c₁ can yield c₂ in ≤t steps if N can go from c₁ to c₂ in t or
- fewer steps. The following is a deterministic recursive algorithm deci-
- ding the "can yield" problem when t is a power of 2 (t=2^p for some p≥0).

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar

114.2

Savitch's Theorem

- CANYIELD(c₁, c₂, 2^p) = "On input c₁, c₂ and p, where p≥0 and c₁,c₂ are configurations that use at most f(n) space (i.e. in which the head is at a ≤f(n)th cell, and all non-blank cells are among the first f(n) cells):
- 1. If p=0, then test if c₁=c₂ or c₁ yields c₂ in one step according to
 the rules of N. Accept if either test succeeds; reject if both fail.
- 2. If p>0, then for each configuration c_m of N that uses space $\leq f(n)$:
- 3. Run **CANYIELD**(**c**₁, **c**_m, **2**^{p-1}).
- 4. Run CANYIELD(c_m , c_2 , 2^{p-1}).
- 5. If steps 3 and 4 both accept, then accept.
- 6. If haven't yet accepted, reject."

Rharati Vidyanaath's Institute of Computer Anniications and Management New Belhi.63 by Manish Kun

SHAME OF WITHOUT A

Savitch's Theorem

- We assume that (or otherwise modify N so that) N clears its tape before halting and goes to the beginning of the tape, thereby entering a (fixed) configuration called c_{accept} . And we let c_{start} be the start configuration of N on input w.
- Next, where n is the length of w, we select a constant d so that N has no more than $2^{df(n)}$ configurations that use f(n) cells of the tape.
- Then 2^{df(n)} provides an upper bound on the running time of N on w
 (for otherwise a configuration would repeat and thus N would go into
 an infinite loop, contrary to our assumption that this does not happen).
- Hence, N accepts w if and only if it can get from c_{start} to c_{accept}
- within 2^{df(n)} or fewer steps. So, the following (deterministic) machine M obviously simulates N, i.e. M accepts w iff N does:

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kum

114. 25

Savitch's Theorem

- M = "On input w:
 - 1. Output the result of $CANYIELD(c_{start},\,c_{accept},\,2^{df(n)})$.'
- It remains to analyze the space complexity of M.
- Whenever CANYIELD invokes itself recursively, it stores the current stage number and the values of c₁,c₂ and p on a stack so that these values can be restored upon return from the recursive call. Each level of the recursion thus uses O(f(n)) additional space.
- Next, each level of the recursion decreases p by 1. And, as initially p starts out equal to df(n), the depth of the recursion is df(n)
- Therefore the total space used is $df(n) \times O(f(n)) = O(f^2(n))$, as promised.

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar

114.26

	Øħ.	
SHARKIT	950	someting/

Probabilistic Turing Machine

- There are several popular definitions:
 - A nondeterministic Turing Machine (TM) which randomly chooses between available transitions at each point according to some probability distribution
 - A type of nondeterministic TM where each nondeterministic step is called a coin-flip step and has two legal next moves
 - A Turing Machine in which some transitions are random choices among finitely many alternatives
- Also known as a Randomized Turing Machine

© Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kum

U4. 2

Probabilistic Turing Machine

- There are (at least) three tapes
 - 1st Tape holds the input
 - 2nd Tape (also known as the random tape) is covered randomly (and independently) with 0's and 1's
 - √½ probability of a 0
 - √½ probability of a 1
 - 3rd Tape is used as the scratch tape
- WHEN A PROBABILISTIC TM RECOGNIZES A LANGUAGE
- Accept all strings in the language
- Reject all strings not in the language
- However, a probabilistic TM will have a probability of error

Bharati Vidyapeeth's Institute of Computer Applications and Management., New Delhi-63, by Manish Kumar

U4. 2

Probabilistic Turing Machine

- Each "branch" in the TMs computation has a probability
- Can have stochastic results
- Hence, on a given input it:
 - May have different run times
 - May not halt
- Therefore, it may accept the input in a given execution, but reject in another execution
- Time and space complexity can be measured using the worst case computation branch

Bharati Vidyapeeth's Institute of Computer Applications and Management,, New Delhi-63, by Manish Kumar