线性代数 物理学院学术辅导

王逸飞

北京大学物理学院

December 1, 2019

Click https://github.com/Florestan-Eusebius/Linear-Algebra to get the newest version.

王逸飞

一些不严谨且 没用的闲话 线性空间

次 (工工) 一 准备概念 线性空间的概念 线性空间与手空间的直 子空间与子空间的直 和 线性空间的同构

建议 对偶空间,内 1 一些不严谨且没用的闲话

2 线性空间

- 准备概念
- 线性空间的概念
- 线性空间的基与维数
- 子空间与子空间的直和
- 线性空间的同构
- ■商空间
- 3 建议
- 4 对偶空间, 内积和 Dirac 符号

王逸飞

一些不严谨且 没用的闲话

线性空间

准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的克

线性空间的同构

建议

对偶空间,内积和 Dirac 名

Section 1

一些不严谨且没用的闲话

线性关系

线性代数

王逸飞

一些不严谨且 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和 线性空间的同构 商空间

建议 对偶空间,内 积和 Dirac や

问题

我们见过的最简单数量关系是什么? 我们见过的最简单的那些几何对象是什么? 它们有怎样的性质和联系?

问题

面对不那么简单的关系和对象, 我们怎样处理?

线性关系

线性代数

王逸飞

一些不严谨且 没用的闲话

手段 任务

- 研究线性关系.
- 研究更丰富的关系.

- 代数方法 → 线性代数.
- 分析方法 → 微积分.

线性关系

线性代数

王逸飞

一些不严谨且 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和 线性空间的同构

建议

对偶空间, 内 积和 Dirac 符 문

任务

- 研究线性关系。
- 研究更丰富的关系.

手段

- 代数方法 → 线性代数.
- 分析方法 → 微积分.

问题

什么是关系?什么是代数?

请站稳扶好, 注意安全

线性代数

王逸飞

一些不严谨且 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 线性空间与子空间的直 和 维性空间的同构

线性空间的同构 商空间

建以

对偶空间,内 积和 Dirac 名 好了,废话说完了,让我们进入抽象的世界.

王逸飞

一些不严谨且 没用的闲话

线性空间

准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和

线性空间的同构 商空间

建议

对偶空间,内 积和 Dirac 符 므

Section 2

线性空间

王逸飞

一些不严谨且 没用的闲话

线性空间

准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的II 和

线性空间的同构 商空间

建议

对偶空间,内积和 Dirac 符

Subsection 1

准备概念

复数

线性代数

王逸飞

一些不严谨且 没用的闲话

线性空间

准备概念 线性空间的概念 线性空间的基与维

线性空间的基与维数 子空间与子空间的重和 级性空间的同构 商空间

建议

对偶空间,内 积和 Dirac 名 문

定义 (复数)

- 1 复数,复数集 ℂ
- 2 加法和乘法

性质 (复数)

- 1 加法交换律
- 2 加法结合律
- 3 单位元 (加法单位元 0 和乘法单位元 1)
- 4 加法逆元
- 5 乘法逆元
- 6 分配律

王逸飞

一些不严谨」 没用的闲话

线性空

准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直和 组件空间的同构

线性空间的同构 商空间

建议

对偶空间,内 积和 Dirac 符 문

定义 (list)

 (x_1,\cdots,x_n) .

定义 (\mathbb{F}^n)

 $\mathbb{F}^n = \{(x_1, \cdots, x_n) : x_i \in \mathbb{F} \ \forall j = 1, \cdots, n\}.$

Remark

ℙ 是所谓"数域", 指 ℂ 或 ℝ. 我们暂不讨论其他域.

\mathbb{F}^n 上的运算

线性代数

王逸飞

一些不严谨. 没用的闲话

经胜穴间

准备概念 线性空间的

线性空间的概念 线性空间的基与维数 子空间与子空间的直 和

线性空间的同构 商空间

建议

对偶空间,内 积和 Dirac 符 므

定义 (加法)

 $(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n).$

性质 (加法交换律)

定义(0)

定义 (加法逆元)

定义(数乘)

域 (补充)

线性代数

王逸飞

一些不严谨且 没用的闲话

线性空间

准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直

和 线性空间的同构 商空间

建议

对偶空间,内 积和 Dirac 名

定义(环)

定义了加法和乘法运算的非空集合被称为环当且仅当这两个 运算满足

- 1 加法结合律
- 2 加法交换律
- 3 存在零元
- 4 存在加法逆元 (负元)
- 5 乘法结合律
- 6 乘法对加法的左分配律和右分配律

定义(域)

有单位元且非零元可逆的交换环.

王逸飞

一些不严谨且 没用的闲话

线性空间 #8概念

线性空间的概念 线性空间的基与维数

和

线性空间的同构

商空间

建议

对偶空间,内 积和 Dirac 符

Subsection 2

线性空间的概念

线性空间

线性代数

王逸飞

线性空间的概念

定义(加法和数乘)

定义(线性空间)

定义了加法和数乘的集合称为线性空间如果其运算满足

- 1 加法交换律
- 加法和乘法的结合律
- 3 加法零元存在
- 4 加法逆元存在
- 5 域的单位元是数乘单位元
- 6 左分配律和右分配律

向量 线性空间举例

线性代数

王逸飞

一些不严谨且 没用的闲话

线 注 空 问 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直

子空间与子空间的直和 我性空间的同构 商空间

对偶空间,内 积和 Dirac 符 号

定义(向量)

线性空间中的元素称为向量.

例 (什么是线性空间)

- \mathbb{F}^n 对于我们之前定义的加法和数乘.
- \mathbb{R}^3 对于我们高中学过的矢量的加法和数乘 (实际上是上一条的特例,但这是最直观的例子,所以单独列出).¹
- 定义某个区间某个区间上的可导函数.
- 定义在某个区间上的黎曼可积函数.

¹当我们说一个集合是线性空间时,我们必须指出加法和乘法运算分别是什么,但由于我实在码不动字了,在后面几个例子中,对于平凡的加法和乘法不再做特殊说明.

线性空间举例

线性代数

王逸飞

一些不严谨」 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与

子空间与子空间的直 和 线性空间的同构 商空间

建议

对偶空间,内 积和 Dirac 名 号

例 (什么是线性空间.cont)

- 域上的多项式.
- 齐次线性方程组的解。
- 线性微分方程的解.
- 量子力学中的态空间.

例 (什么不是线性空间)

- 起点在原点终点在一球面上的矢量, 对于矢量的加法和数乘.
- 非齐次方程的解.

研究线性空间的几个途径

线性代数

王逸飞

一些不严谨E 没用的闲话

线性空间 准备概念

线性空间的概念 线性空间的基与维数 子空间与子空间的直 和

线性空间的同构 商空间

建议

对偶空间,内 积和 Dirac 符

- 从元素的角度
- 从子集的角度
- 从集合划分的角度
- 从线性空间之间关系的角 度

- 基与维数
- 子空间与子空间的直和
- 等价类,商集和商空间
- 众多线性空间之相同的结构相同的结构

王逸飞

一些不严谨且 没用的闲话

线性空间

准备概念 线性空间的概

线性空间的基与维数 子空间与子空间的直

和 线性空间的同构

线性空间的同样 商空间

建议

对偶空间,内 积和 Dirac 符

Subsection 3

线性空间的基与维数

向量组

线性代数

王逸飞

一些不严谨且 没用的闲话 线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和 线性空间的同构 定义

向量组 线性组合 线性表出 有限维线性空间 线性无关 (线性独立) 线性相关 极大线性无关组

性质

向量组 A 线性表出线性无关的 B 则 A 中向量个数大于等于 B.

向量组的不同极大线性无关组所含向量个数相等.

Remark

我们目前仅讨论有限维线性空间.2

基与维数

线性代数

王逸飞

一些不严谨且 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和

商空间建议

积和 Dir. 号

定义

基 维数

性质

展开的唯一性

基的存在性.3

基中所含向量个数个数的唯一性.(由此可以定义维数) 维数与线性空间中线性无关向量组的规模. $(n \leq \dim V)$

Remark

从展开的唯一性看"线性独立"的意义。

³注意我们已经强调我们仅讨论有限维线性空间.这一定理对无穷维线性空间也是成立的,其证明需要用到佐恩引理或类似的集合论中的基本定理(公理).

基变换和坐标变换

线性代数

王逸飞

一些不严谨且 没用的闲话

线性全间 准备概念 线性空间的概念

线性空间的基与维数 子空间与子空间的直 和

线性空间的同构 商空间

建议

对偶空间,内 积和 Dirac 符 므

定理(基变换与坐标变换)

设 A 是 $n \times n$ 的可逆矩阵, $(\mathbf{e}_1, \cdots, \mathbf{e}_n)$ 和 $(\mathbf{e}_1', \cdots, \mathbf{e}_n')$ 是两 组基且满足

$$(\mathbf{e}_1', \cdots, \mathbf{e}_n') = (\mathbf{e}_1, \cdots, \mathbf{e}_n) A,$$
 (1)

矢量 $\mathbf{x} = (\mathbf{e}_1, \dots, \mathbf{e}_n) x = (\mathbf{e}_1', \dots, \mathbf{e}_n') x'$, 其中 x, x' 为坐标, 是列向量, 则有坐标变换⁴

$$x = Ax'. (2)$$

例题

线性代数

王逸飞

一些不严谨」 没用的闲话

线性空间

准备概念 线性空间的概念

线性空间的基与维数

子空间与子空间的 和 线性空间的同构

商空间

对偶空间,内

例

证明 \mathbb{R} 上的 n 级对称矩阵构成线性空间, 并求出它的维数.

王逸飞

一些不严谨」 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和

线性空间的同构 商空间

对偶空间,

例

在定义域为实数集 $\mathbb R$ 的所有实值函数形成的线性空间 $\mathbb R^{\mathbb R}$ 中

- 题干的表述有什么问题?
- $2 \sin x, \cos x, e^x \sin x$ 是否线性无关?
- ③ 对其中 n 个 n-1 阶连续可导函数 $f_1(x), \dots, f_n(x)$ 定义 朗斯基行列式为

$$W(x) = \begin{vmatrix} f_1(x) & f_2(x) & \cdots & f_n(x) \\ f'_1(x) & f'_2(x) & \cdots & f'_n(x) \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \cdots & f_n^{(n-1)}(x) \end{vmatrix}$$

证明若存在 $x_0 \in \mathbb{R}$ 使得 $W(x_0) \neq 0$, 则这些函数线性无关.

王逸飞

一些不严谨且 没用的闲话

线性空间 准备概念

准备概念 线性空间的概念 线性空间的基与约

子空间与子空间的直 和

线性空间的同构 充空间

建议

对偶空间,内积和 Dirac 符

Subsection 4

子空间与子空间的直和

子空间 子空间的和

线性代数

王逸飞

子空间与子空间的直

定义

子空间 子空间的和

性质

- 加法和数乘封闭的子集为子空间.
- 两个子空间的交仍是子空间。
- 两个子空间的和仍是子空间, 维数为 $\dim(V_1 + V_2) = \dim V_1 + \dim V_2 - \dim(V_1 \cap V_2)$.

直和

线性代数

王逸飞

一些不严谨』 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直

和 线性空间的同构 商空间

建议

对偶空间,内 积和 Dirac 符

定义

子空间的直和.(分解的唯一性) 补空间

性质 (直和的等价表述)

- 1 $V_1 + V_2$ 是直和.
- $V_1 + V_2$ 中零向量的表示唯一.
- 3 $V_1 \cap V_2 = 0$.
- $\dim(V_1 + V_2) = \dim V_1 + \dim V_2.$
- 5 V_1 的一个基与 V_2 的一个基合起来是 $V_1 + V_2$ 的一个基

性质

补空间存在.5

⁵有限维的证明是容易的.

直和

线性代数

王逸飞

一些不严谨」 没用的闲话

线性空间

线性空间的概念 线性空间的基与维数 子空间与子空间的直

线性空间的同构 商空间

建议

对偶空间,内 积和 Dirac 符

性质 (多个子空间直和的等价表述)

- 1 $V_1 + \cdots + V_s$ 是直和.
- $V_1 + \cdots + V_s$ 中零向量的表示唯一.
- $V_i \cap \left(\sum_{j \neq i} V_j \right) = 0.$
- $\operatorname{dim}(V_1 + \cdots + V_s) = \operatorname{dim} V_1 + \cdots + \operatorname{dim} V_s.$
- 5 V_1 的一个基, V_2 的一个基, \cdots , V_s 的一个基合起来是 $V_1 + \cdots + V_s$ 的一个基.

王逸飞

一些不严谨且 没用的闲话

线性空间

线性空间的概念 线性空间的基与维数 子空间与子空间的直

线性空间的同构

※ 本本語

建议

对偶空间,内积和 Dirac 和

Subsection 5

线性空间的同构

线性空间的同构

线性代数

王逸飞

一些不严谨且 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直

线性空间的同构 商空间

建议

对偶空间,内 积和 Dirac 符 문

定义

同构映射 (保持加法和数乘的双射) 同构

性质

同构保持了以下关系:

- ■零元
- 负元
- 线性表出和线性相关性
- ■基
- 维数
- 子空间

有限维线性空间的结构

线性代数

王逸飞

一些不严谨**፤** 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和 线性空间的同构

线性空间的同构 商空间

マップ 対偶空间、F 积和 Dirac

定理

Remark

 \mathbb{F} 上所有 n 维线性空间都与 \mathbb{F}^n 同构.

例题

线性代数

王逸飞

一些不严谨E 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直

线性空间的同构 商空间

建议

对偶空间,内 积和 Dirac 符 므

例

设集合 $X=\{x_1,\cdots,x_n\}$, 求 X 到 $\mathbb F$ 上所有映射构成的 $\mathbb F$ 上线性空间 $\mathbb F^X$ 的一个基和维数. 并写出 $f\in\mathbb F^X$ 在这组基下的坐标.

王逸飞

一些不严谨且 没用的闲话

线性空间

供會概念 线性空间的概念 线性空间的基与维数

线性空间的同志

商空间

建议

对偶空间,内积和 Dirac 名

Subsection 6

商空间

等价关系 等价类 商集

线性代数

王逸飞

一些不严谨且 没用的闲话 线性空间

准备概念 线性空间的概念 线性空间的基与维数 线性空间与子空间的直 和 线性空间的同构 **商空间**

建议
对偶空间,原

只和 Dirac 符 号

定义 (等价关系 ~)

如果一个非空集合 S 的一个二元关系 R 满足

1 反身性: $aRa, \forall a \in S$ **2** 对称性: $aRb \Rightarrow bRa$

3 传递性: $aRb, bRc \Rightarrow aRc$

则称 R 是一个等价关系.⁶

定义(划分 等价类)

定义 (商集 S/\sim)

等价类作元素构成的集合.

⁶等价关系通常记作 ~, 所以我在标题中写这个符号并不是为了卖萌. 匆&@

商空间

线性代数

王逸飞

一些不严谨且 没用的闲话 线性空间 ^{准备概念} ^{线性空间的概念}

线性空间的基与维数 子空间与子空间的直 和 线性空间的同构 **商空间**

建议

对偶空间,内 积和 Dirac 彳

定义

设 $U \in V$ 的子空间, 定义 V 上的等价关系 $\alpha \sim \beta$: $\alpha - \beta \in U$, 我们将 α 所在的等价类记为 $\alpha + U$, 称其 为 W 的一个陪集. 定义陪集的加法和数乘:

- $(\alpha + W) + (\beta + W) := (\alpha + \beta) + W$
- $k(\alpha + W) := k\alpha + W$

定义(商空间)

上面定义的等价关系定出线性空间 V 的一个商集,这个商集对于上面定义的加法和数乘构成线性空间,称为商空间。记作V/U.

商空间

线性代数

王逸飞

一些不严谨且 沒用的闲话 线性空间 准备概念 线性空间的概念 线性空间与子空间的至与推致 于和 线性空间的两构 商空间

Remark

商空间 V/U 中的向量 (元素) 是 V 的子集 (等价类), 而不是 V 中的向量.

性质

商空间的维数。 商空间与补空间的同构。

例

非齐次线性方程组的解集是商空间的元素。

例题

线性代数

王逸飞

一些不严谨」 没用的闲话

线性空间

准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直

商空间

建议

对偶空间,内 积和 Dirac 名 证明上一页写出的性质.

王逸飞

一些不严谨且 没用的闲话

线性空间

准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直和 线性空间的同构

商空间

建议

对偶空间,内 积和 Dirac 符 므

Section 3

建议

一些建议

线性代数

王逸飞

一些不严谨且 沒用的概念 线性空间 准备概念 线性空间的概念 线性空间的与子空间的 开空间与子空间的同构 有效。

建议 对偶空间,内 积和 Dirac 名 线性空间的梳理已经结束了,很显然我们的时间不够把所有内容这样详细地梳理一遍,但我希望我们之前做的事情可以给大家一些提示:对于线性代数其他部分的知识,你也可以用类似的方式自己梳理一遍,梳理的时候注意不同模块之间的联系及其在理论体系中的位置.注意:总结梳理的工作不能做得像搭积木,一块一块地堆砌,而应该像织毛衣,在各种内容之间建立起联系.

下面提供一个联系不同内容的实例.

王逸飞

一些不严谨且 没用的闲话

线性空间

线性空间的概念 线性空间的基与维数 子空间与子空间的直

线性空间的同构

建议

对偶空间,内积和 Dirac 符

Section 4

对偶空间, 内积和 Dirac 符号

对偶空间 狄拉克符号

线性代数

王逸飞

一些不严谨! 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间与子空间的基 子空间与子空间的面构 组性空间的同构

对偶空间,内积和 Dirac 符

定义 (对偶空间)

 $V' = \operatorname{Hom}(V, \mathbb{F})^7$

定义 (Dirac 符号)

线性空间 V 称为右矢空间,其中的元素称为右矢 (ket),记作 $|v\rangle \in V$;其对偶空间称为左矢空间,其中的元素称为左矢 $(bra)^8$,记作 $\langle v| \in V'$.

问题

上面的记号中, $|v\rangle$ 和 $\langle v|$ 有没有确定的联系或对应?

⁷我故意使用和教材上不一样的符号,一是为了向著名青年数学家,教我线代的方博汉老师致敬,二是为了让你们习惯表达同一数学概念有各种不同的符号这一事实.

⁸它就是左矢, 没有其他意思, 你们千万不要多想. 这个名称的来源是把 bracket 拆开, 左边表示左矢, 右边表示右矢. ▲□ ▶ ▲② ▶ ▲② ▶ ▲② ▶ ◆② ◆ ◆

对偶基, 对偶对应

线性代数

王逸飞

对偶空间,内 积和 Dirac 符

定义 (对偶基)

设 $|v_1\rangle$, \cdots , $|v_n\rangle$ 是 V 的一组基, 则我们定义 $\langle v_1|$, \cdots , $\langle v_n|$ 是其对偶基, 如果 $\langle v_i|v_j\rangle=\delta_{ij}$

定义 (对偶对应)

基于对偶基可以定义对偶对应: $\forall \lambda_i, \lambda_i \in \mathbb{F}$,

$$\lambda_i^* \langle v_i | + \lambda_j^* \langle v_j | \stackrel{\text{D.C.}}{\longleftrightarrow} \lambda_i | v_i \rangle + \lambda_j | v_j \rangle.$$

⁹容易证明这个对应对实数域上线性空间是同构映射, 对复数域上线性空间, 它是一种结构类似于同构映射的双射, 不妨称其为共轭同构映射, 这样定义的好处, 我们很快就将看出.

线性映射在 bra 和 ket 上的分解

线性代数

王逸飞

一些不严谨』 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直和 线性空间的同构

建议

对偶空间,内 积和 Dirac 符

例(线性函数在对偶基上分解)

我们知道,给出一个线性函数在每个基 $|v_i\rangle$ 上的值 f_i ,这个函数随即确定.显然, $f=f_i\left\langle v_i
ight
vert ^{10}$

例(一般线性映射的分解)

设 $A \in \text{Hom}(V, W), A |v_i\rangle = a_{ii} |w_i\rangle,$ 则

$$A = a_{ij} |w_i\rangle \langle v_i|.$$

¹⁰从这里开始,如无特殊声明,我们使用 Einstein 求和约定. 《夏》 夏 夕久で

对偶映射

线性代数

王逸飞

一些不严谨』 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和 线性空间的同构 商空间

对偶空间,内 积和 Dirac 符

定义 (对偶映射)

 $A\in \mathrm{Hom}\,(\,V,\,W),\,A$ 的对偶映射 $A'\in \mathrm{Hom}\,(\,W',\,V')$ 满足

$$A'(\langle w'|) | v \rangle = \langle w| (A' | v \rangle).$$

Remark

我们只要使 Dirac 符号满足结合律,即 $(\langle w|A)|v\rangle=\langle w|(A|v\rangle)$,并且要求作用在 bra 上的线性映射写在右边,作用在 ket 上的线性映射写在左边,我们就可以用完全一样的 Dirac 记号表示一个映射和它的对偶映射.

定理

 $\dim \operatorname{Im} A = \dim \operatorname{Im} A'$.

映射的矩阵表示

线性代数

王逸飞

一些不严谨! 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直 和 线性空间的同构 音空间

建议

对偶空间,内积和 Dirac 符

 $A \in \mathrm{Hom}\,(V,W)$,若选取了 V 和 W 的一组基,一个线性映射将坐标 $(x_i,\cdots,x_n)^T$ 表示的向量映射到 $(y_1,\cdots,v_m)^T$ 表示的向量,则线性映射的矩阵 \tilde{A} 满足

$$(y_1,\cdots,y_m)^T = \tilde{A}(x_1,\cdots,x_n)^T,$$

或 $y_i = a_{ij}x_j$.

定理

映射的矩阵和其对偶映射的矩阵互为转置.

矩阵的秩

线性代数

王逸飞

一些不严谨! 没用的闲话

线性空间 准备概念 线性空间的概念 线性空间的基与维数 子空间与子空间的直和

和 线性空间的同构 商空间

建议

对偶空间,内 积和 Dirac 符

定义(矩阵的行秩和列秩)

定理

矩阵的列秩与它表示的线性映射的象的维数相等。

定理

矩阵的行秩等于列秩.

内积

线性代数

王逸飞

对偶空间, 内 积和 Dirac 符

定义(内积)

 \mathbb{F} 上的线性空间 V 中的元素形成有序的元素对 $(|u\rangle, |v\rangle)$, 元 素对到 \mathbb{F} 上的映射被称为内积如果它有如下性质:

- 1 正定性;
- 2 对第一个元素的线性性;
- 3 共轭对称.

有了内积,就可以选取标准正交基,按照之前的定义建立对偶 对应. 此时不同标准正交基下都满足 $\langle v_i | v_i \rangle = \delta_{ii}$. 此时可以 验证 $(u, v) = \langle v | u \rangle$.