Определение постньютоновского параметра γ из обработки суточной РСДБ сессии

Курдубов С.Л., Миронова С.М.

Институт прикладной астрономии Российской академии наук, Санкт-Петербург, Россия

1 октября 2018 года

Формула для расчета производной задержки по $\Pi\Pi\Pi$ параметру γ

$$\frac{\partial \tau_{v}}{\partial \gamma} = \frac{\frac{\partial T_{grav}}{\partial \gamma} + (\overrightarrow{u} \overrightarrow{b}) \frac{GM_{\odot}}{|\overrightarrow{x}_{\odot}| c^{2}}}{1 + \frac{\overrightarrow{u} \overrightarrow{v}_{\odot} + \overrightarrow{u} \overrightarrow{w}_{2}}{c}}$$
(1)

$$\frac{\partial T_{grav}}{\partial \gamma} = \sum_{A=M,\odot,J,H} \frac{GM_A}{c^2} \ln \frac{|\overrightarrow{R}_{1A}| + \overrightarrow{w} \overrightarrow{R}_{1A}}{|\overrightarrow{R}_{2A}| + \overrightarrow{w} \overrightarrow{R}_{2A}} + \frac{GM_{\oplus}}{c^2} \ln \frac{|\overrightarrow{x}_1| + \overrightarrow{w} \overrightarrow{x}_1}{|\overrightarrow{x}_2| + \overrightarrow{w} \overrightarrow{x}_2} + \sum_{A=M,\odot,J,H} (2+2\gamma) \left(\frac{GM_A}{c^2}\right)^2 \frac{\overrightarrow{b} \cdot \frac{\overrightarrow{R}_{1A}}{|\overrightarrow{R}_{1A}|} + \overrightarrow{b} \cdot \overrightarrow{w}}{\left(|\overrightarrow{R}_{1A}| + \overrightarrow{w} \cdot \overrightarrow{R}_{1A}\right)^2} \tag{2}$$

где \overrightarrow{b} — вектор базы; \overrightarrow{u} — единичный вектор в направлении источника;

 x_{M} , x_{\odot} , x_{J} , x_{H} , x_{\oplus} – барицентрические координаты Луны, Солнца, Юпитера, Сатурна, Земли в CRS;

 v_{\oplus} – барицентрическая скорость Земли в CRS.

 $[\]overrightarrow{x}_{1,2}$ – геоцентрические положения 1, 2 станций;

 $[\]overrightarrow{w}_{1.2}^{-,-}$ – геоцентрические скорости 1, 2 станций в CRS;

 $[\]overrightarrow{R}_{1\ \Delta}$ — вектор от гравитирующего тела к 1, 2 станциям; M_A — масса гравитирующего тела.

Вычисление ППН параметра γ из глобального уравнивания

γ	$\Delta \gamma$	год	автор	задержки
1.008	0.005	1984	Robertson	$4 \cdot 10^4$ с 1980 по 1984
1.0002	0.002	1991	Robertson	$3\cdot 10^5$ с 1980 по 1990
0.9996	0.0017	1995	Lebach	$2\cdot 10^4$ в 1987
0.99983	0.0004	2004		$2 \cdot 10^6$ с 1979 по 1999
1.00031	0.00035	2009	Lambert	$4\cdot 10^6$ с 1979 по 2008
0.99992	0.00012	2011	Lambert	$7 \cdot 10^6$ с 1979 по 2010

Обработка сессий AUA020 и AOV022

Определяемые параметры:

- влажная задержка в зените
- рассинхронизация часов
- координаты станций
- ightharpoonup ППН параметр γ

Способы обработки:

- удаление скачка (Hobart26 / Yarra12M)
- удаление станции
- исправление скачка

Результаты обработки сессий AUA020 и AOV022, параметр $(\gamma-1)*10^{-3}$

	AUA020	AOV022
исправнение скачка	4.504 0.285	-3.214 0.467
удаление скачка	4.283 0.280	-3.178 0.484
удаление станции	2.018 0.332	-2.226 0.532

Определение ППН параметра γ по одному источнику, $(\gamma \pm \Delta \gamma) \cdot 10^{-3}$

	AUA020	AOV022
все источники	2.018 0.332	-2.226 0.532
без 0229+131	6.256 0.529	11.944 1.229
без 0235+164	-8.727 0.882	-13.900 0.972
без 0229+131, 0235+164	11.867 12.283	-10.566 11.940
структура (n)	1.942 0.415	-2.189 0.597
структура (2)	1.537 0.484	-2.112 1.101

Перевзвешивание наблюдений, $(\gamma \pm \Delta \gamma) \cdot 10^{-3}$

	AUA020	χ^2	AOV022	χ^2
с перевзвешиванием	2.257 0.342	2.66	-4.263 0.500	5.03
без них	2.257 0.209		-4.263 0.223	
без них, без сигналов	-1.157 0.084		-3.628 0.078	

Близкий к единице χ^2 , сессия AUA020

	$\gamma \pm \Delta \gamma$	χ^2
с перевзвешиванием	2.051 0.249	1.030

Сравнение с результатами Титова, сессия AUA020

	$(\gamma \pm \Delta \gamma) \cdot 10^{-3}$	χ^2
OCCAM	0.056 0.115	0.34
OCCAM 0235+164	0.134 0.158	0.34
OCCAM 0229+131	-0.154 0.341	0.34
Calc/Solve	-0.022 0.110	0.84
Calc/Solve 0235+164	0.185 0.148	0.84
Calc/Solve 0235+164	-0.684 0.253	0.84

Выводы

- 1. Результаты определения ППН параметра γ по сеансам с близким прохождением источника около Солнца сравнимы с результатами, получаемыми из обработки всех доступных наблюдений, уступая им в 1.5-2 раза.
- 2. Неперевзвешенные оценки ошибки примерно соответствуют оценке из Титову и др. из метода СКК при делении на корень из их χ^2 .
- 3. Неперевзвешенные ошибки при отключении стохастических сигналов соответствуют таковым из CalcSolve.