Diskretna matematika

Zadaci za vježbu - prvi ciklus 2008/2009

- 1. Odredite g = nzd(a, b) i nađite cijele brojeve x, y takve da je ax + by = g ako je
 - a) a = 777, b = 629;
 - b) a = 1643, b = 901;
 - c) a = 1105, b = 481.
- 2. Odredite s koliko nula završavaju brojevi 713! i 1713! .
- 3. Riješite kongruenciju:
 - a) $311x \equiv 7 \pmod{7}$;
 - b) $153x \equiv 71 \pmod{391}$;
 - c) $213x \equiv 75 \pmod{333}$.
- 4. Riješite sustav kongruencija:
 - a) $x \equiv 1 \pmod{5}$, $x \equiv 2 \pmod{6}$, $x \equiv 3 \pmod{7}$;
 - b) $x \equiv 5 \pmod{7}$, $x \equiv 9 \pmod{13}$, $x \equiv 8 \pmod{11}$;
 - c) $x \equiv 1 \pmod{4}$, $x \equiv 7 \pmod{9}$, $x \equiv 22 \pmod{25}$.
- 5. Nađite sva rješenja jednadžbe $\varphi(n) = 30$.
- 6. Nađite sva rješenja jednadžbe $\varphi(n) = 58$.
- 7. a) Nađite najmanji primitivni korijen modulo 61.
 - b) Riješite (pomoću indeksa) kongruenciju: $x^7 \equiv 24 \pmod{61}$.
- 8. a) Nađite najmanji primitivni korijen modulo 67.
 - b) Riješite (pomoću indeksa) kongruenciju: $x^5 \equiv 61 \pmod{67}$.

- 9. Izračunajte Legendreove simbole:
 - a) $(\frac{51}{97});$
 - b) $(\frac{321}{991});$
 - c) $\left(\frac{-31}{101}\right)$;
 - d) $(\frac{58}{269})$.
- 10. Odredite sve proste brojeve p takve da je $\left(\frac{6}{p}\right) = 1$.
- 11. Odredite sve proste brojeve p takve da je $\left(\frac{90}{p}\right) = 1$.

Diskretna matematika

Rješenja zadataka za vježbu - prvi ciklus 2008/2009

1.a)
$$q = 37$$
, $x = -4$, $y = 5$

1.b)
$$g = 53, x = -6, y = 11$$

1.c)
$$g = 13, x = -10, y = 23$$

- **2.** Broj 713! završava sa 176, a 1713! s 425 nula.
- **3.a)** $x \equiv 343$ $\pmod{401}$
- **3.b)** Kongruencija nema rješenja jer nzd(153, 391) = 17 ne dijeli 71.
- **3.c)** $x \equiv 41, 152, 263 \pmod{333}$

4.a)
$$x \equiv 206 \pmod{210}$$

4.b)
$$x \equiv 789 \pmod{1001}$$

4.c)
$$x \equiv 97 \pmod{900}$$

5.
$$n = 31,62$$

6.
$$n = 59,118$$

- 7.a) Najmanji primitivni korijen modulo 61 je 2.
- **7.b)** $x \equiv 38 \pmod{61}$
- **8.a)** Najmanji primitivni korijen modulo 61 je 2.

8.b)
$$x \equiv 12 \pmod{67}$$

9.a)
$$(\frac{51}{97}) = -1$$

9.b)
$$(\frac{321}{991}) = -1$$

9.c)
$$(\frac{-31}{121}) = 1$$

$$\begin{array}{l} \textbf{9.a)} \ \left(\frac{51}{97}\right) = -1 \\ \textbf{9.b)} \ \left(\frac{321}{991}\right) = -1 \\ \textbf{9.c)} \ \left(\frac{-31}{101}\right) = 1 \\ \textbf{9.d)} \ \left(\frac{58}{269}\right) = 1 \end{array}$$

10.
$$p \equiv 1, 5, 19, 23 \pmod{24}$$

11.
$$p \equiv 1, 3, 9, 13, 27, 31, 37, 39 \pmod{40}$$