Obsah

1. prog	Definujte strojové učení a vysvětlete rozdíl mezi strojovým učením a klasickým gramováním4
2.	Popište strojové učení s učitelem a bez učitele, uveďte příklady metod4
3. lze n	Vysvětlete princip jedné metody strojového učení s učitelem a uveďte konkrétní úlohu, v níž netodu využít4
4. lze n	Vysvětlete princip jedné metody strojového učení bez učitele a uveďte konkrétní úlohu, v níž netodu využít5
5.	Popište rozdíly mezi biologickou a umělou neuronovou sítí
6.	Popište základní architekturu a fungování umělé neuronové sítě5
7.	Jmenujte a nakreslete aktivační funkce nejčastěji používané v neuronových sítích7
8.	Popište perceptron a jeho učení
9.	Vysvětlete pojmy klasifikace a klasifikátor, popište typy klasifikace obrazu7
10.	Vysvětlete rozdíl mezi detekcí, lokalizací a segmentací (ve vztahu k obrazovým datům)8
11.	Vysvětlete, jak (pomocí čeho) se hodnotí úspěšnost klasifikačního modelu do více tříd8
12. nejb	Vysvětlete, proč klasické algoritmy strojového učení (např. náhodné lesy nebo metoda k ližších sousedů) nejsou vhodné ke zpracování obrazových dat9
13.	Vysvětlete princip konvolučních neuronových sítí9
14.	Vysvětlete pojem konvoluce (ve vztahu ke zpracování obrazu)9
15.	Popište architekturu konvoluční neuronové sítě10
16.	Popište architekturu sítě AlexNet10
17.	Popište metody segmentace obrazu10
18.	Uveďte hlavní aplikační oblasti, v nichž se uplatňují metody segmentace obrazu11
19.	Vysvětlete hlavní problémy spojené s tvorbou vlastního modelu učení z obrazových dat. 11
20.	Popište databázi ImageNet a její význam pro rozvoj metod učení z obrazových dat11
21.	Vysvětlete princip přeneseného učení (transfer learning)11
22.	Vysvětlete význam hyperparametrů při trénování neuronové sítě12
23.	Vysvětlete, v čem spočívají limity přeneseného učení13
24.	Vysvětlete pojem augmentace obrazových dat, uveďte běžné metody13
25.	Popište model VGG16
26.	Popište model U-Net14
27.	Popište model ResNet14
28.	Popište princip neuronových sítí typu GAN a jejich typické využití14
29.	Popište fungování a učení generátoru a detektoru v GAN
30.	Vysvětlete spojitost GAN s teorií her15

31.	Popište rozdíly mezi GAN a konvolučními neuronovými sítěmi16
32.	Jmenujte důležité typy sítí GAN16
33.	Popište hlavní princip transformátorů vidění (vision transformers) a jeho typické využití. 16
34.	Popište fungování mechanismu pozornosti v transformátoru vidění16
35.	Popište rozdíly mezi transformátorem vidění a konvolučními neuronovými sítěmi17
36.	Popište aktuální trendy ve vývoji metod a aplikací strojového učení z obrazových dat17
1.	Popište, čím se zabývá zpracování přirozeného jazyka
	Popište, čím se vyznačují symbolové (resp. lexikonové) metody zpracování přirozeného a a jaké mají výhody a nevýhody19
	Popište, čím se vyznačují statistické metody zpracování přirozeného jazyka a jaké mají dy a nevýhody19
	Popište, čím se vyznačují metody zpracování přirozeného jazyka založené na neuronových a jaké mají výhody a nevýhody
	Popište, čím se vyznačují transformátorové metody zpracování přirozeného jazyka a jaké výhody a nevýhody20
	Popište účel analýzy sentimentu a stručně popište proces od předzpracování textu po otnou analýzu pomocí jedné vybrané metody (kromě velkých jazykových modelů)20
7.	Popište tokenizaci a jak se používá21
8.	Popište, co je stematizace a lemmatizace, jak se liší a kde se používají21
	Popište vektorizaci, uveďte a vysvětlete princip alespoň dvou technik využívaných k rizaci21
10.	Popište naivní Bayesovský klasifikátor a jeho princip22
11.	Popište metodu podpůrných vektorů a její princip22
12.	Popište rekurentní neuronové sítě a jejich princip23
13.	Vysvětlete problém zmizelého gradientu a jak je možné mu předejít23
14.	Stručně popište proces zpracování textu velkým jazykovým modelem (LLM)24
15.	Popište embedding a jaký je jeho cíl24
16. embe	Vymyslete alespoň dva jednoduché příklady aritmetiky se slovy, kterou umožňuje word edding24
17. (LLM)	Popište, co je velikost kontextu a jak ovlivňuje využívání velkého jazykového modelu . 24
18. a co j	Popište, na jakém principu pracuje word embedding ve velkém jazykovém modelu (LLM) e jeho vstupem a výstupem25
19. získá	Popište, jak ve velkém jazykovém modelu (LLM) probíhá unembedding a jaký výstup z něj me25
20. mode	Vysvětlete alespoň jednu metodu používanou po unembeddingu ve velkém jazykovém elu (LLM) k ovlivnění výběru finálního slova či tokenu26

21. jazyko	Vysvětlete, jak a v jaké fázi procesu ovlivňuje parametr temperature výstup velkého vého modelu (LLM)	26
22.	Vysvětlete princip a účel attention vrstvy ve velkém jazykovém modelu (LLM)	26
23. význar	Vysvětlete, jak a v jaké fázi zpracování textu velkým jazykovým modelem (LLM) se mění n slova či tokenu na základě kontextu okolních slov	
24.	Vysvětlete princip a účel perceptronové vrstvy ve velkém jazykovém modelu (LLM)	27
25. genero	Vysvětlete, jak a v jaké fázi zpracování textu velkým jazykovým modelem (LLM) se do ovaného textu promítají informace a znalosti získané při trénování modelu	27
26. využíva	Vysvětlete, co pro velký jazykový model znamená počet dimenzí vektorů a jak ovlivňuje ání modelu	28
27.	Popište, co je Langchain a jaký je jeho účel.	28
28. chatov	Vysvětlete, jak ve velkém jazykovém modelu (LLM) funguje paměť a jak ji lze řešit v vacích aplikacích.	29
29.	Vysvětlete, co je RAG a k čemu se využívá.	29
30. množs	Vysvětlete, jak můžeme dát velkému jazykovému modelu (LLM) k dispozici velké ství textu či dokumentů, aniž bychom byli omezeni velikostí kontextu	29
31.	Popište, jak funguje databáze vektorů (vector store) a k čemu ji lze využít	30
32. model	Popište, co umožňují agenti (z frameworku Langchain) pro aplikace s velkými jazykovýn y (LLM)	

1. Definujte strojové učení a vysvětlete rozdíl mezi strojovým učením a klasickým programováním.

• Oblast umělé inteligence, která se zabývá vývojem algoritmů a technik, které umožňují počítačům se učit z dat a zkušeností

Klasické programování:

- Programátor ručně píše instrukce, které určují, co se má vykonat
- Programy jsou navrženy tak, aby splňovali podmínky a prováděly specifické úkoly na základě přesně daných pravidel

Strojové učení:

- Počítač sám sebe učí na základě dat
- Počítači jsou předložena data, ze kterých se učí
- Tento proces umožňuje počítačům adaptovat se na nové situace

2. Popište strojové učení s učitelem a bez učitele, uveďte příklady metod.

S učitelem:

- Vstupním datům jsou přiřazeny správné výstupy labeled data
- Existuje okamžitá zpětná vazba
- Cílem je např. najít klasifikační nebo regresní model pro predikci výstupů

Bez učitele:

- Vstupním datům nejsou přiřazené výstupy
- Zpětná vazba chybí
- Cílem je např. odhalit v datech skrytou strukturu

3. Vysvětlete princip jedné metody strojového učení s učitelem a uveďte konkrétní úlohu, v níž lze metodu využít.

Princip logistické regrese:

- Klasifikační algoritmus
- K předpovídání pravděpodobností, že určitý vstup patří do jedné z kategorií
- Na základě vstupních dat se model naučí vztah mezi těmito daty a výstupní třídou
- Model se trénuje na sadě, kde jsou známé vstupy i výstupy
- Používá logistickou funkci sigmoid, která převádí pravděpodobnost na rozmezí od 0 do 1

Úloha:

- Detekce spamu v mailu
 - o Vstupní data mohou být klíčová slova/výrazy obsažená ve spam mailech
 - Logistická regrese se na základě těchto slov naučí rozpoznávat vzory, které jsou typické pro spam

4. Vysvětlete princip jedné metody strojového učení bez učitele a uveďte konkrétní úlohu, v níž lze metodu využít.

Princip k-means:

- Používá se k rozdělení dat do k počtu skupin tak, aby data ve skupině byla co nejpodobnější
- Na začátku se vyberou náhodně centroidy a algoritmus potom:
 - o Přiřadí datový bod se přiřadí ke skupině s nejbližším centroidem
 - Aktualizace vypočítá se nový centroid každé skupiny jako průměr všech bodů v skupině
- Tento proces se opakuje, dokud se skupiny nadále nemění, nebo nedosáhneme maximálního počtu iterací

Úloha:

- Segmentace zákazníků v marketingu
 - Data mohou zahrnovat informace o chování zákazníků četnost nákupů, útrata, kategorie produktů...
 - Cílem je rozdělit zákazníky do skupin s podobnými nákupovými vzory, i když předem nevíme, kolik skupin existuje ani jak vypadají

5. Popište rozdíly mezi biologickou a umělou neuronovou sítí.

- Biologická mozek
 - Miliardy neuronů spojené synapsemi
 - Neurony komunikují pomocí elektrochemických signálů
 - o Každý neuron má velmi složitou strukturu a reaguje na chemické látky
 - o Přenáší informace pomocí elektrických impulsů
 - Učí se prostřednictvím změn synaptické síly, často ne zcela pochopeným způsobem
 - Velmi efektivní z hlediska spotřeby energie
 - o Extrémně flexibilní a dokáže se rychle přizpůsobit situacím
- Umělá
 - Z jednoduchých matematických modelů neuronů pracuje s číselnými hodnotami
 - o Spoje mezi neurony váhy, jsou vyjádřeny čísly, která určují sílu signálu
 - Struktura je výrazně zjednodušená
 - Přenos signálu je matematický využívá se součet vážených vstupů a aktivační funkce
 - Učí se pomocí algoritmů
 - Vyžaduje výrazně vyšší výpočetní výkon a energii
 - Potřebuje velké množství dat a času na trénování méně odolné vůči neznámým vstupům

6. Popište základní architekturu a fungování umělé neuronové sítě.

Architektura:

- Vstupní vrstva
 - o Přijímá vstupní data
 - o Každý neuron odpovídá jednomu prvku vstupu
- Skryté vrstvy
 - o Dochází k výpočtům a transformaci dat pomocí vah a aktivační funkce
 - o Čím více vrstev, tím "hlubší" je síť
- Výstupní vrstva
 - o Produkuje finální výstup sítě
 - o Počet neuronů závisí na typu úlohy

Fungování:

- Propagace vstupu
 - o Každý neuron předá svou hodnotu do skryté vrstvy
 - Ve skryté vrstvě spočítá vážený součet vstupů
 - o Výsledek se transformuje pomocí aktivační funkce
 - Výstup se posílá do další vrstvy
- Výstup a rozhodnutí
 - Ve výstupní vrstvě se produkuje výsledek
- Učení
 - Síť se učí pomocí zpětného šíření chyb a optimalizačního algoritmu
 - Porovná predikovaný výstup se skutečným výstupem a upraví váhy tak, aby příště byla chyba menší
- Testování
- Používání sítě
 - o Řešení úlohy naučenou sítí
 - Váhy zůstávají pevné, nebo se průběžně adaptují

7. Jmenujte a nakreslete aktivační funkce nejčastěji používané v neuronových sítích.

8. Popište perceptron a jeho učení.

- Frank Rosenblatt (1957)
- Základní model dopředné neuronové sítě, s učením, obsahuje pouze jeden neuron
- Zjištění, že je jen omezeně využitelný jen pro lineárně separabilní úlohy
- Používá se především pro binární klasifikaci

Učení:

- Učí se z dat tak, že upravuje své váhy podle chyb, které dělá
 - Zadej vstup a spočítej výstup perceptronu
 - o Porovnej výstup s očekáváním
 - o Aktualizuj váhy a bias, pokud je predikce chybná
 - Opakuj, dokud se nenaučíš správně klasifikovat

9. Vysvětlete pojmy klasifikace a klasifikátor, popište typy klasifikace obrazu.

Klasifikace:

- Metoda učení s učitelem proces kategorizace do tříd
- Obdoba predikce, kdy hodnoty závislé proměnné v nabývají malého počtu diskrétních hodnot
- Nejjednodušší je binární klasifikace 0: negativní třída, 1: pozitivní třída

Klasifikátor:

• Algoritmus, který mapuje vstupní data na kategorie

Typy:

Binární klasifikace

- o Zařazení do jedné ze dvou kategorií
- Klasifikace do více tříd
 - o Zařazení do jedné z několika kategorií
- Multi-label klasifikace
 - o Zařazení obrazu do více kategorií
- Hierarchická klasifikace
 - Zařazení do více úrovní hierarchie
- Jemnozrnná klasifikace
 - o Odlišení podobných kategorií, obrázky ve vysokém rozlišení a složité modely
- Zero-Shot klasifikace
 - Klasifikace snímků, které model dosud nezpracoval s využitím sémantických informací o nových kategoriích, výsledkem je pochopení vztahu mezi známými kategoriemi a novou kategorií

10. Vysvětlete rozdíl mezi detekcí, lokalizací a segmentací (ve vztahu k obrazovým datům).

Detekce:

• Identifikuje a lokalizuje více objektů v rámci obrazu, přičemž pro každou detekovanou položku poskytuje jak štítky, tak prostorové polohy

Lokalizace:

• Zaměřuje se na hlavní objekt s ohraničujícím rámečkem

Segmentace:

Přiřazuje každý pixel v obraze určité třídě nebo instanci objektu

11. Vysvětlete, jak (pomocí čeho) se hodnotí úspěšnost klasifikačního modelu do více tříd.

- Confusion matrix
 - o Tabulka, kde řádky představují skutečné třídy a sloupce předpovězené
- Accuracy
 - o Udává podíl správně klasifikovaných vzorků ze všech
- Precision
 - Kolik označených vzorků pro danou třídu patří do té třídy
- Recall
 - Kolik vzorků z dané třídy bylo rozpoznáno
- F1-skore
 - o Harmonický průměr mezi precision a recall
- Cross-validation
 - o Model je testován na různých podmnožinách dat

12. Vysvětlete, proč klasické algoritmy strojového učení (např. náhodné lesy nebo metoda k nejbližších sousedů) nejsou vhodné ke zpracování obrazových dat.

- · Vysoká dimenzionalita obrazových dat
 - Obrázky mají mnoho vstupních znaků pixelů
 - o Klasické algoritmy neumějí s tak rozsáhlými daty efektivně pracovat
 - Jsou náchylné na přeučení
- Nevyužívají prostorovou strukturu obrazu
 - V obrazech jsou důležité lokální vzory a struktury
 - Lesy pracují s jednotlivými vstupy nezávisle a neumí zachytit vztahy mezi sousedními pixely
 - Konvoluční sítě zpracovávají obraz jako celek a umí rozpoznat vzory
- Předzpracování dat
 - Klasické algoritmy vyžadují extrakci příznaků tedy ruční výběr a zpracování vlastností z obrazu
 - Moderní neuronové sítě se to ale mohou naučit automaticky bez zásahu
- Špatná škálovatelnost

13. Vysvětlete princip konvolučních neuronových sítí.

- Druh neuronových sítí, vhodný pro klasifikaci obrazu
- Používají konvoluční vrstvy k automatickému a adaptivnímu učení prostorových hierarchií prvků ze vstupních obrázků

14. Vysvětlete pojem konvoluce (ve vztahu ke zpracování obrazu).

 Zahrnuje vynásobení hodnot jádra – specializované filtry, s původními pixelovými hodnotami obrazu a následné sečtení výsledků

15. Popište architekturu konvoluční neuronové sítě.

- Konvoluční vrstvy
 - Aplikují na vstupní obraz řadu filtrů jader
 - o Každý filtr vytváří bodový součin mezi filtrem a místními oblastmi vstupu
 - Tato operace vytvoří mapy prvků, které zachycují různé aspekty obrazu
- Sdružovací vrstvy
 - Ke zmenšení prostorových rozměrů map prvků
 - Pomáhá snižovat výpočetní složitost
 - Zabraňuje nadměrnému přizpůsobení
 - Nejběžnější max-pooling
- Počet parametrů ve vrstvě závisí na velikosti jádra a počtu filtrů
 - Každý neuron přijímá vstupy z místní oblasti předchozí vrstvy
 - Receptivní pole
 - Pohybují se nad vstupem, počítají bodové součiny a vytvářejí konvolvovanou mapu prvků jako výstup
 - Obvykle pak tato mapa prochází aktivační funkce rektifikované lineární jednotky

16. Popište architekturu sítě AlexNet.

- Jednalo se o první architekturu, která využívala GPU ke zvýšení tréninkového výkonu
- AlexNet se skládá z 5 vrstev konvoluce, 3 vrstev s maximálním sdružováním, 2 normalizovaných vrstev, 2 plně propojených vrstev a 1 vrstvy SoftMax
- Každá konvoluční vrstva se skládá z konvolučního filtru a nelineární aktivační funkce ReLU

17. Popište metody segmentace obrazu.

- Regionální metody
 - Segmentují na základě podobnosti pixelů
 - o Vhodné pro obrazy s homogenními oblastmi
- Metody založené na hranicích
 - o Detekují hrany v obraze pomocí gradientních operátorů
 - o Pro obrazy s jasně definovanými hranicemi

- Metoda aktivních kontur
 - Používá se iterativní algoritmus, který deformuje počáteční křivku tak, aby se přizpůsobila hranicím objektu v obraze
 - Vhodné pro segmentaci složitých objektů
- Segmentace rozvodím
 - Považuje obraz za topografickou mapu, kde intenzita pixelů představuje výšku a provádí zaplavení mapy
 - Vhodné pro obrazy s různými intenzity jasu
- Metody hlubokého učení
 - o Používají CNN, jsou velmi přesné
 - o Vhodné pro autonomní řízení, nebo lékařské zpracování

18. Uveďte hlavní aplikační oblasti, v nichž se uplatňují metody segmentace obrazu.

- Autonomní vozidla
- Analýza lékařského zobrazení
- Analýza satelitních snímků
- Bezpečnostní systémy
- Moderování obsahu na sociálních mediích
- Chytré zemědělství
- Průmyslová kontrola

19. Vysvětlete hlavní problémy spojené s tvorbou vlastního modelu učení z obrazových dat.

- Je zapotřebí připravit velký objem předzpracovaných dat velké časové i finanční náklady
- Trénování vlastního modelu je náročné na výkon

Řešení:

• Použití předem trénovaných modelů, které lze upravit a doladit

20. Popište databázi ImageNet a její význam pro rozvoj metod učení z obrazových dat.

- Rozsáhlá databáze anotovaných obrázků pro trénování a testování algoritmů pro rozpoznávání a klasifikaci objektů
- Obrázky jsou ručně anotované vysoká kvalita a přesnost dat
- Klíčová databáze pro rozvoj CNN

21. Vysvětlete princip přeneseného učení (transfer learning).

- Výběr před trénovaného modelu
 - o Trénovaného na velkých datasetech
- Odstranění poslední vrstvy
 - Která obvykle slouží k predikci pro specifický úkol

- o Tím vznikne model, který funguje jako extraktor charakteristik
- Přidání nových vrstev
 - o Čímž se model přizpůsobí pro nové zadání
- Doladění
 - Tedy trénink nových vrstev na nové datové sadě
 - Při ladění se váhy před trénovaného modelu zmrazí
 - Pouze váhy nových vrstev se aktualizují
 - Váhy modelu představují jeho klíčový aspekt
 - Doladěním modelu můžeme upravit naučené funkce tak, aby lépe odpovídaly nové sadě dat a zlepšily výkon modelu

22. Vysvětlete význam hyperparametrů při trénování neuronové sítě.

- Velikost dávky
 - Určuje počet trénovacích příkladů, které jsou při aktualizaci vah sítě zpracovány najednou
 - Menší dávky
 - Častější aktualizace může vést k rychlejší konvergenci, ale také k větší variabilitě, což může způsobit nestabilitu
 - Větší dávky
 - Aktualizace vah je stabilnější
 - Vyžaduje více paměti
 - Pomalejší konvergence
- Počet epoch
 - o Určuje, kolikrát se proces učení zopakuje
 - Nastavuje se na základě sledování výsledků na validační sadě
 - Více epoch
 - Může zlepšit výkon modelu, ale roste riziko přeučení
 - Méně epoch
 - Může vést k nedotrénování modelu

23. Vysvětlete, v čem spočívají limity přeneseného učení.

- · Neshoda datových sad
 - o Přenesené učení funguje nejlépe, když jsou zdrojová a cílová doména podobné
 - Řešením je doladění na cílovém datasetu
- Velikost a kvalita dat
 - Nedostatek dat pro cílovou úlohu může snížit výkon modelu
 - Řešením je augmentace datové sady
- Přetrénování
 - Pokud je cílový dataset malý, model se "až moc naučí" a ztratí schopnost generalizace
 - Řešením je sledování výkonu
- Výpočetní náročnost
 - o Při použití hlubokých modelů anebo omezených výpočetních zdrojů
 - Řešením je optimalizace
- Interpretovatelnost
 - o Před trénované modely mohou být obtížně interpretovatelné
 - Může být problém tam, kde je nutné chápání rozhodovacích procesů modelů
 - Řešením jsou techniky pro vizualizaci aktivací nebo metody vysvětlení rozhodnutí modelu

24. Vysvětlete pojem augmentace obrazových dat, uveďte běžné metody.

Augmentace:

 Umělé rozšíření velikosti datasetu transformací původních obrázků pomáhá zlepšit generalizaci modelu a zamezit overfittingu

Metody:

 Rotace, překlopení, oříznutí, změna měřítka, posun, změna jasu/kontrastu, přidání šumu, zkreslení

25. Popište model VGG16.

 Základní vysoce přesný model pro různé úlohy klasifikace obrazů, detekce objektů a segmentace obrazů

Architektura:

- Vstup: pevná velikost vstupního obrazu 224x224 RGB
- Konvoluční vrstvy: 13 vrstev s malými 3x3 filtry
- Max-pooling: 5 max-pooling vrstev s 2x2 okny a krokem 2
- Plně propojené vrstvy: 3 vrstvy, z nichž první dvě mají 4096 kanálů a třetí 1000 kanálu pro klasifikaci do 1000 tříd
- Aktivační funkce: ReLU, je použita ve všech vrstvách
- Výstup: Softmax vrstva pro klasifikaci

26. Popište model U-Net.

- Původně navržen pro segmentaci buněk tkání v mikroskopických snímcích
- Navržen tak, aby byl efektivní i při trénování na malých datasetech
- Používá augmentaci dat

Architektura:

• Symetrická architektura písmene U, která se skládá z kontrakční a expanzní cesty

27. Popište model ResNet.

- Základní model pro detekci a segmentaci obrazu
- CNN navržená k řešení problému degradace při trénování velmi hlubokých sítí

Architektura:

- K dispozici v různých hloubkách
- ResNet18, 34, 50, 101, 512 číslo značí počet vrstev

28. Popište princip neuronových sítí typu GAN a jejich typické využití.

- Generativní protichůdné sítě
- Učení bez učitele
- Třída neuronových sítí, které se autonomně učí vzorce ve stupních datech, aby generovaly nové příklady připomínající původní datovou sadu

Aplikace:

- Syntéza obrazu
 - o Generování vysoce realistických obrazů, pokročilé úpravy, manipulace s atributy
 - Reklama, počítačová grafika
- Generování obrázku k textu
 - o Kombinace GAN s technikami zpracování přirozeného jazyka
 - Generování obrázků z textového popisu
 - Elektronické obchodování přeměna popisu produktů do vizuální reprezentace
- Generování a predikce videa
 - Syntéza realistického poutavého videa
 - Detekce deepfake, odhalování manipulací
 - o Vývoj videoher realistické postavy, scény a animace
- Adaptace domény a přenos stylu
 - Transformace obrázků do různých uměleckých stylů, přeměna fotografie na malbu, přenos stylu mezi doménami
 - o Uplatnění v designu a reklamě

29. Popište fungování a učení generátoru a detektoru v GAN.

Generátor:

- Vstup
 - o Vektor náhodného šumu s normálním nebo rovnoměrným rozdělením
- Architektura
 - Vstupní vrstva: vektor náhodného šumu
 - o Plně propojené vrstvy: upravují vektor pro další zpracování
 - Dávková normalizace: technika použita mezi vrstvami ke stabilizaci učení a normalizaci výstupu předchozí vrstvy
 - o Aktivační funkce: ReLU, Leaky ReLU
 - Transponované konvoluční vrstvy: převzorkují vstup z předchozí vrstvy do vyšší prostorové dimenze
 - o Reshaping Layers: přetvoří data do požadovaného výstupního formátu
 - Výstupní vrstva: využívá funkci aktivace tanh nebo sigmoid
- Výstup
 - Generovaný obraz nebo text
- Učení
 - o Generátor aktualizuje váhy na základě zpětné vazby od diskriminátoru
- Možný problém
 - o Kolaps: produkování omezené škály výstupů, přestože vstup je pestrý

Diskriminátor:

- Vstup
 - Vzorky skutečných a generovaných dat
- Výstup
 - Hodnota mezi 0 a 1 pravděpodobnost
- Architektura
 - o Konvoluční vrstvy: pomáhají při extrahování funkcí ze vstupních obrázků
 - Dávková normalizace: mezi vrstvami se používá ke stabilizaci učení normalizací vstupu do vrstvy
 - Aktivační funkce: ReLU
 - o Poolovací vrstvy: pro postupné snižování dimenze dat
 - Plně propojené vrstvy: ke zpracování prvků extrahovaných konvolučními vrstvami, které vyvrcholí konečnou výstupní vrstvou
 - Výstupní vrstva: typicky jeden neuron s esovitou aktivační funkcí, výstupem je hodnota pravděpodobnosti
- Možný problém
 - o Příliš silný diskriminátor
 - Rychle začne poskytovat jistý výstup pro jakýkoliv vstup, což ztěžuje generátoru učení
 - Slabý diskriminátor
 - Nedává generátoru smysluplnou zpětnou vazbu ke zlepšení

30. Vysvětlete spojitost GAN s teorií her.

- Jedná se o hru dvou hráčů generátor a diskriminátor
- Obě sítě jsou trénovány současně
 - o Pokud generátor oklame diskriminátor, diskriminátor se musí zlepšit a naopak
- Proces pokračuje, dokud generátor nevytváří data téměř nerozpoznatelná od skutečných

31. Popište rozdíly mezi GAN a konvolučními neuronovými sítěmi.

- Ztrátová funkce
 - CNN používají mnoho různých ztrátových funkcí, diskriminátor GAN vždy používá binární ztrátu křížové entropie
- Smyčky zpětné vazby
 - CNN neexistuje žádná zpětná vazba s jinou sítí během jejich trénování, diskriminátor GAN pracuje v tandemu s generátorem
- Funkce aktivace výstupu
 - diskriminátor GAN obvykle používá funkci aktivace sigmoid ve výstupní vrstvě, aby poskytl skóre pravděpodobnosti
- Hloubka a složitost
 - o diskriminátor GAN je často jednodušší a mělčí než CNN

32. Jmenujte důležité typy sítí GAN.

- Vanilla GAN
 - o Základní model
 - Generátor a diskriminátor, oba jsou postaveny pomocí vícevrstvých perceptronů,
 tj. nepoužívají konvoluční vrstvy
- Deep convolutional GAN DCGAN
 - o Integruje architektury CNN do GAN
- Conditional GAN CGAN
 - Zavádí koncept podmíněnosti, což umožňuje cílené generování dat na základě specifické dodatečné informace
- CycleGan
 - Používá dva generátory a dva diskriminátory
- Super-resolution GANS SRGAN
 - Se zaměřuji na upscaling obrázků na vysoké rozlišení

33. Popište hlavní princip transformátorů vidění (vision transformers) a jeho typické využití.

- Model hlubokého učení, který využívá mechanismus pozornosti a posuzuje význam každé části vstupních dat
- Aplikace
 - Detekce objektů, segmentace obrazu, klasifikace obrazu, generativní modely
- Obrazy reprezentovány jako sekvence a jsou předpovězeny štítky tříd pro obrázek, což umožňuje modelům naučit se strukturu obrázku nezávisle

34. Popište fungování mechanismu pozornosti v transformátoru vidění.

Výpočet dotazů, klíč hodnota:

Každé slovo ve vstupní frekvenci je převedeno na tří vektory

- Dotaz
- Klíč
- Hodnota
- Tyto vektory jsou získány pomocí lineárních transformací původních vektorových reprezentací slov

Výpočet skóre pozornosti:

- Pro každé slovo se vypočítá skóre pozornosti vůči všem ostatním slovům
- To se provádí pomocí skalárního součinu dotazu Q a klíče K
- Normalizace pomocí softmax funkce
- Výsledkem je sada váhových koeficientů, které určují relevanci slov

Vážený součet hodnot:

- Každé slovo je reprezentováno jako vážený součet hodnot všech slov v sekvenci
- Tento krok dovolí modelu zachytit kontextový vektor každého slova vzhledem k ostatním slovům

35. Popište rozdíly mezi transformátorem vidění a konvolučními neuronovými sítěmi.

- ViT může zpracovávat vstupy libovolné velikosti, aniž by bylo nutné nadále měnit návrh modelu
- ViT může objevit korelace mezi různými prvky vstupního obrázku
- ViT je výpočetně efektivnější, protože má méně parametrů než CNN

36. Popište aktuální trendy ve vývoji metod a aplikací strojového učení z obrazových dat.

Edge AI – zpracování dat v reálném čase:

- Přesun z cloudu na místní zařízení bez internetového připojení
- Aplikace
 - o Autonomní vozidla, výroba, obchod

Multimodální AI:

- Kombinace obrazu, zvuku a textu
- Aplikace
 - o Zdravotní péče, smart cities, osobní asistenti

Aplikace ViT:

- Analýza celého obrazu současně posouvá oblast rozpoznávání
- Aplikace
 - o Zabezpečení, elektronický obchod, zemědělství

Syntetická data:

- Namísto spoléhání se na obrázky z reálného světa se model může trénovat na syntetických, Al-generovaných obrázcích
- Aplikace
 - o Autonomní vozidla, zdravotní péče

1. Popište, čím se zabývá zpracování přirozeného jazyka.

- Oblast umělé inteligence zaměřené na interakci mezi počítači a lidským jazykem
- Transformace z nestrukturovaného textu na strukturovaný
- Snaha převzít informace z nestrukturovaného textu do programu nebo jinak strojově použitelné struktury
- Cílem je analyzovat, porozumět a později generovat a reagovat na lidský jazyk

2. Popište, čím se vyznačují symbolové (resp. lexikonové) metody zpracování přirozeného jazyka a jaké mají výhody a nevýhody.

- Ručně psaná pravidla pro jazykovou analýzu
- Používá formální gramatiky, pravidlové skripty, ontologie a ručně psaná pravidla
- Používané metody
 - o Regulární výrazy, syntaktická analýza, sémantické stromy
- Výhody
 - o Interpretovatelnost, přesnost na specifických úlohách
- Nevýhody
 - Složitá údržba, špatná škálovatelnost
- Turingův test a první chatboti

3. Popište, čím se vyznačují statistické metody zpracování přirozeného jazyka a jaké mají výhody a nevýhody.

- Přechod od pravidel k pravděpodobnostním modelům
- Místo ručně psaných pravidel využívá modely založené na pravděpodobnostech a statistikách získaných z rozsáhlých dat
- Rozvoj latentní sémantické analýzy a vektorových reprezentací slov
- Používané metody
 - N-gramové modely, skryté Markovovy modely, Naivní Bayesovské klasifikátory
- Výhody
 - Schopnost zobecňovat na různá data, lepší škálovatelnost
- Nevýhody
 - o Závislost na velkých datových souborech, obtížnější interpretovatelnost
- WordNet, IBM modely pro strojový překlad

4. Popište, čím se vyznačují metody zpracování přirozeného jazyka založené na neuronových sítích a jaké mají výhody a nevýhody.

- Použití neuronových sítí pro NLP
- Používané metody:
 - Rekurentní neuronové sítě, dlouhá krátkodobá paměť, latentní sémantická analýza, latentní Dirichletova alokace, Gated Recurrent Units
- Výhody
 - o Lepší reprezentace slov než u statistických metod
- Nevýhody

- Stále omezené porozumění kontextu, nižší efektivita výpočtu
- 5. Popište, čím se vyznačují transformátorové metody zpracování přirozeného jazyka a jaké mají výhody a nevýhody.
- Využití hlubokých neuronových sítí a transformerů
- Výhody
 - Vyšší přesnost, lepší kontextová analýza
- Nevýhody
 - O Vyšší výpočetní náročnost, potřeba rozsáhlých dat
- Word2Vec
 - o Neuronová síť pro word embeding
- 6. Popište účel analýzy sentimentu a stručně popište proces od předzpracování textu po samotnou analýzu pomocí jedné vybrané metody (kromě velkých jazykových modelů).

Účel:

- Někdy také "dolování názorů"
- Cílem je strojově určit subjektivní pocit nebo emoci z daného textu
- Používá se pro:
 - o Sociální sítě reakce na produkty nebo události
 - Zákaznická podpora hodnocení spokojenosti
 - o Finanční sektor predikce tržních trendů na základě zpráv a komentářů
 - o Mediální analýza pochopení veřejného mínění o určitých tématech
- Výzvy jsou:
 - o Ironie a sarkasmus
 - Dvojznačnost, idiomy, metafory
 - Doménově specifické výrazy
 - o Multimodální vstup

Proces:

- Tokenizace
- Normalizace textu
- Odstranění stop slov
- Stematizace/Lemmatizace
- Analýza sentimentu

Stematizace:

- Stemmer vrací kořen/kmen slova
- Odstraňuje předpony a koncovky
- Problémy
 - Stejný kmen pro slova s různými významy
 - o Různé kmeny slova pro slova se stejným významem

7. Popište tokenizaci a jak se používá.

- Rozdělení textu na menší jednotky tokeny
- Základní krok nutný pro mnoho dalších úloh NLP
- Token může být slovo, věta, nebo i znak dle potřeby
- V náročnějších jazycích nemusí být mezery mezi slovy
- Moderní modely používají tokeny menší než slovo
 - Přirozený jazyk → při roze ný jazyk

8. Popište, co je stematizace a lemmatizace, jak se liší a kde se používají.

- Různé tvary slov normalizuje na jeden určitý tvar, se kterými si navazující metoda snáze poradí
- Závislé na jazyce textu

Stematizace:

- Vrací kořen/kmen slova
- Odstraňuje předpony a koncovky

Lemmatizace:

- Vrací tzv. lemmu základní tvar slova
- Může doplňovat další informace o slově druh, rod, číslo, pád
- Důležité pro fulltext vyhledávání
- Řeší problémy u stematizace
- Stále možné problémy s mnohoznačností a idiomy, pokud správně nepozná kontext

9. Popište vektorizaci, uveďte a vysvětlete princip alespoň dvou technik využívaných k vektorizaci.

- Převod textových dat na číselnou reprezentaci
- Číselná reprezentace slov je pro metody NLP lépe uchopitelná, méně paměťově i výpočetně náročná
- Různé metody do vektoru kódují různé informace
 - Přítomnost/nepřítomnost slova v dokumentu
 - Četnost slov v dokumentu
 - Pořadí slov
 - Kontext slov v rámci dokumentu
 - o Význam

One-hot:

- Pro každé unikátní slovo 1 dimenze obří vektory
- Binární hodnota pak určí (ne) přítomnost daného slova v dokumentu

Bag of Words:

Tvoří slovník na základě obsahu dokumentů

Uchovává četnost slova v dokumentu

N-gramy:

- Stejný princip jako Bag of Words, ale vektorizují více slov najednou
- Bigram = 2 slova, Trigram = 3 slova
- Dokáže zachytit pořadí slov

Tf-idf:

- Stejný princip jako Bag of Words
- Ubírá váhu slovům, která se vyskytují obecně bez ohledu na třídu, do které má dokument patřit

Word embedding:

• Vektory vyjadřují význam slova – je potřeba více dimenzí

10. Popište naivní Bayesovský klasifikátor a jeho princip.

- Klasifikační metoda založená na Bayesově větě
 - Jak souvisí podmíněná pravděpodobnost nějakého jevu s otočenou podmíněnou pravděpodobností
- Naivní, protože předpokládá nezávislost všech atributů
 - o To často není pravda, ale i tak metoda vede k dobrým výsledkům
- Počítá pravděpodobnost určité třídy Ck na základě pozorovaných dat X
- Výhody
 - Rychlý a výpočetně nenáročný
 - o Nenáročný na množství testovacích dat
 - Snadno interpretovatelný
- Nevýhody
 - Naivní předpoklad nezávislosti může být v praxi porušen, snižuje se přesnost
 - o Pokud je některá pravděpodobnost nulová, může to způsobit problémy
 - o Horší výkon u složitějších vzorů, kde atributy nejsou závislé

11. Popište metodu podpůrných vektorů a její princip.

- Klasifikační metoda
- Hledání optimální hranice mezi třídami, která maximalizuje vzdálenost mezi nejbližšími body obou tříd a touto hranicí
- Pro lineární případ je hranice rovina

- Neoddělitelné třídy ale stále lineární
 - Musíme povolit nějakou toleranci chyb
 - Měkká hranice
 - Nastavuje parametr C
- Neoddělitelné třídy nelineární
 - o Když pro oddělení nestačí lineární hranice
 - Výběr jiného kernelu umožní transformaci dat o dimenzi výš, tak, aby rovina oddělila třídy

12. Popište rekurentní neuronové sítě a jejich princip.

- Navrženy pro práci se sekvenčními daty text, řeč, číselné řady
- Postupují sekvenčně jako klasické NN, kde jsou vstupy nezávislé, ale díky zpětné smyčce dokáže uchovávat stav skrytých neuronů
- Při trénování může docházet ke "zmizelému gradientu"
 - Po mnohonásobném násobení vah u prvních vrstev dojde k exponenciálnímu zmenšení oproti vahám posledních vrstev
 - o Výsledkem je nestabilita, zpomalení, nebo úplné zastavení učení
- Dlouhá krátkodobá paměť
 - o Řeší problém zmizelého gradientu
 - o Umožňuje informaci překlenout i miliony iterací
 - Vstupní, výstupní a zapomínající brány rozhodují, co uchovat a co zahodit
 - o Pro NLP využití umožňují pojmout delší kontext
- Využití
 - Strojový překlad, klasifikace, rozpoznání řeči
- Výhody
 - Schopnost modelovat sekvence
 - Při využití LSTM také dlouhodobé závislosti
- Nevýhody
 - Zdlouhavý trénink
 - o Buď problém zmizelého gradientu pro standardní RNN
 - Nebo ještě vyšší výpočetní nároky pro LSTM

13. Vysvětlete problém zmizelého gradientu a jak je možné mu předejít.

- Při trénování může docházet ke "zmizelému gradientu"
 - Po mnohonásobném násobení vah u prvních vrstev dojde k exponenciálnímu zmenšení oproti vahám posledních vrstev
 - o Výsledkem je nestabilita, zpomalení, nebo úplné zastavení učení
- Dlouhá krátkodobá paměť
 - Řeší problém zmizelého gradientu
 - Umožňuje informaci překlenout i miliony iterací
 - o Vstupní, výstupní a zapomínající brány rozhodují, co uchovat a co zahodit
 - Pro NLP využití umožňují pojmout delší kontext

14. Stručně popište proces zpracování textu velkým jazykovým modelem (LLM).

- Tokenizace a případně primitívní vektorizace
- Word embedding
- Attention vrstva
 - o Upravení významu slova podle kontextu
- Mzltilayer perceptron vrstva
 - Neuronová síť
- N opakování vrstev Attention a Perceptron
- Unembedding posledního vektoru
- Výpočet pravděpodobností slov pomocí funkce softmax a výběr jednoho následujícího slova

15. Popište embedding a jaký je jeho cíl.

- Transformace textových dat na vektory o stovkách až tisících dimenzí
- Blízké vektory = významově blízká data

Word embedding:

- Používá neuronové sítě nebo naučené matice k přiřazení hodnot vektoru každému slovu
 - První metody ještě bez LLN zohledňují kontext slova, ale různé významy "zprůměrují" do jednoho vektoru
- Transformátory se self-attention mechanismem umožňují vzít v úvahu celý kontext a okolí slova
 - o Kontextový embedding
- Vektory vyjadřující význam slova umožňující aritmetiku se slovy
- Podobnost měřená pomocí cosinové vzdálenosti

16. Vymyslete alespoň dva jednoduché příklady aritmetiky se slovy, kterou umožňuje word embedding.

• Tento klasický příklad ukazuje, že když od vektoru slova "král" odečteme pojem "muž" a přičteme "žena", získáme vektor velmi blízký slovu "královna"

vec("král") - vec("muž") + vec("žena") ≈ vec("královna")

 Tento příklad ukazuje geografické nebo geopolitické vztahy: hlavní město státu. Pokud odečteme Francii od Paříže a přičteme Itálii, získáme město, které k Itálii plní stejnou roli
 Řím

vec("Paříž") - vec("Francie") + vec("Itálie") ≈ vec("Řím")

17. Popište, co je velikost kontextu a jak ovlivňuje využívání velkého jazykového modelu (LLM).

Určuje kolik slov najednou je model schopný vzít na vstup

- Méně tokenů → vyplní se prázdnými tokeny
- Více tokenů → buď na etapy, nebo se prostě vezmou jen poslední → u chatbota zapomínání na kontext probíraný dříve

18. Popište, na jakém principu pracuje word embedding ve velkém jazykovém modelu (LLM) a co je jeho vstupem a výstupem.

- Každý model má své vlastní parametry pro embedding embeddin matice We
- Začíná náhodně, trénování na datech se nastaví
- Každé slovo je pomocí embedding matice zakódováno do vektoru s N hodnotami, kde N
 je počet dimenzí, se kterými daný model pracuje
- Kolik slov zná záleží na velikosti slovníku tokenů
- We má rozměry počet_dimenzí * velikost_slovníku

Princip:

- Ze slovníku a tokenů je nejprve vytvořena jednoduchá binární matice
- Každé slovo je označeno 1 jako při one-hot
- Pak se násobí maticí We

- Po embeddingu se k vektorům ještě přičtou hodnoty vyjadřující pozici slov
 - o Jinak ale slovo zatím zůstává bez kontextu okolí
- Poté prochází několika iteracemi střídavě
 - Self-attention vrstvy
 - Peceptron vrstvy
- Poté je potřeba rozklíčovat výstup na další následující slovo token

19. Popište, jak ve velkém jazykovém modelu (LLM) probíhá unembedding a jaký výstup z něj získáme.

- Výstupem z Attention a Perceptron vrstev je matice o rozměrech velikost_kontextu * počet_dimenzí
- Tzn. Kolekce vektorů ve stejném počtu jako na začátku, kde každý vektor byl upraven tak, aby obsahoval předpověď pro následující slovo pro danou pozici
- Pro generování slov nás zajímá jen poslední vektor, který musíme přeložit zpátky na slovo
 token
- Stejně jako na začátku přeložily vektor pomocí embedding matice We, podobná matice Wu je využita i pro překlad zpátky na tokeny
- Některé modely používají stejnou matici, jen transponovanou

Princip:

- Vypočítané vektory se neshodují přesně se slovníkem, takže výsledkem není jasné označení slova, ale spíš ohodnocení všech slov ve slovníku
- Toto hodnocení si můžeme představit jako porovnávání, jak blízko jsou jednotlivá slova k významu, který jsme získali průchodem LLM
- Vektor ohodnocení v tuto chvíli obsahuje i záporné hodnoty a také hodnoty větší než 1

20. Vysvětlete alespoň jednu metodu používanou po unembeddingu ve velkém jazykovém modelu (LLM) k ovlivnění výběru finálního slova či tokenu.

Softmax

- K výpočtům uvnitř transformátoru a na výstup pro pravděpodobnosti následujícího slova
- Transformuje hodnoty tak, aby byly mezi 0 a 1 a zároveň jejich suma byla 1
- K ovlivnění "kreativity" modelu se využívá parametr Temperature

Top-K

- Podle vektoru zpracovaného pomocí softmaxu vybere k nejvyšších ohodnocení
- Z toho výběru se nakonec vybere a použije finální následující slovo
- Pro k=1 model vybere vždy hodnotu s nejvyšší pravděpodobností

21. Vysvětlete, jak a v jaké fázi procesu ovlivňuje parametr temperature výstup velkého jazykového modelu (LLM).

- Během aplikace softmax
- Ovlivňuje výpočet pravděpodobností na výstupu
- Nízká hodnota
 - o Model vybírá spíše slova, kterými si je jistý
- Vysoká hodnota
 - o Model vybírá ze širší palety, ale více riskuje, že se netrefí bude halucinovat

22. Vysvětlete princip a účel attention vrstvy ve velkém jazykovém modelu (LLM).

- Umožňuje modelu dynamicky rozhodnout, kterým částem vstupního textu má věnovat největší pozornost
- Pro každý token se počítá vážený průměr ostatních tokenů na základě relevance, kterou určuje attention score
- Účel
 - Zachytit kontext
 - o Porozumění významu
 - o Flexibilita

23. Vysvětlete, jak a v jaké fázi zpracování textu velkým jazykovým modelem (LLM) se mění význam slova či tokenu na základě kontextu okolních slov.

- Význam slova se neinterpretuje pevně, ale dynamicky se mění v závislosti na kontextu okolních slov
- Model při každé pozici "zvažuje" jaké informace z okolních slov jsou pro daný tok důležité
- To se dělá pomocí
 - Attention mechanismu
 - Každý token získá kontextualizovanou reprezentaci na základě ostatních tokenů
 - Transformačních vrstev
 - Každá vrstva upravuje vektor tokenu tak, aby odrážel stále hlubší porozumění celkovému kontextu
- V jaké fázi
 - o Po embedování
 - Každý token je převeden na fixní vektor, který nemá kontext
 - V průběhu attention vrstev
 - V každé vrstvě mechanismus "míchá" informace mezi tokeny podle jejich relevance
 - Po několika vrstvách
 - Každý token má nový vektor, který už neznamená jen samotné slovo, ale jeho význam v dané větě

24. Vysvětlete princip a účel perceptronové vrstvy ve velkém jazykovém modelu (LLM).

- Nachází se za attention vrstvou
- Zpracování informací na úrovni jednotlivých tokenů
 - FNN pracuje s každým tokenem zvlášť a umožňuje složitější transformaci významu, než by zvládla samotná attention vrstva
- Zvyšuje výpočetní kapacitu modelu
 - o Díky nelinearitám umožňuje model učit se složitější vzory
- Posiluje kontextualizaci
 - I když FNN nepracuje s tokeny přímo, pomáhá modelu jemně doladit význam každého tokenu na základě jeho kontextem upraveného stavu z attention

25. Vysvětlete, jak a v jaké fázi zpracování textu velkým jazykovým modelem (LLM) se do generovaného textu promítají informace a znalosti získané při trénování modelu.

- LMM získává při trénování statistické znalosti o jazyce, světě, faktech a vztazích mezi slovy
- Znalosti se neukládají do databáze, ale rozprostřou se do vah neuronové sítě
 - o Ty určují, jak model reaguje na různá vstupní slova a kombinace

- Váhy určují
 - o Jaký význam přisoudit slovům na základě kontextu
 - Jaké informace a souvislosti nabídnout
 - Jaká slova navrhnout jako nejpravděpodobnější pokračování textu

Fáze:

- Při zpracování vstupu
 - Model získá vektorovou reprezentaci slov, ale samotné "vědění" ještě nevyužívá
- Během průchodů skrz vrstvy modelu
 - o Právě zde se naplno uplatňují naučené váhy
 - o Ty určují, jak model interpretuje význam slov, jak reaguje na kontext
- Při výběru dalšího tokenu
 - Na základě váhových parametrů model určí pravděpodobnosti dalších slov, a tím vybere další token do textu

26. Vysvětlete, co pro velký jazykový model znamená počet dimenzí vektorů a jak ovlivňuje využívání modelu.

- V LLM jsou slova a tokeny reprezentovány jako vektory číselné řady
- Počet dimenzí udává, kolik čísel je ve vektorové reprezentaci jednoho tokenu
- Tento styl se týká:
 - o Embedding vektorů
 - o Skrytých stavů v jednotlivých vrstvách transformeru
 - A ovlivňuje celý výpočetní tok modelu

Ovlivňuje:

- Výpočetní náročnost
 - Více dimenzí = vyšší přesnost, ale větší spotřeba paměti a zdrojů
 - Větší dimenze = vetší matice = náročnější operace
- Kapacita modelu
 - Vyšší počet dimenzí umožňuje zachytit složitější vztahy a jemnější významové nuance
 - o Model s malým počtem dimenzí může být rychlejší, ale méně chytrý
- Velikost modelu a nasazení
 - Modely s vyššími dimenzemi bývají většinou hůře se nasazující na slabší hardware
 - Menší dimenze jsou vhodné pro rychlou inferenci nebo běh na klientském zařízení

27. Popište, co je Langchain a jaký je jeho účel.

- Framework pro vytváření aplikací využívajících jazykové modely
- Umožňuje propojovat LLM s externími nástroji
- Usnadňuje tvorbu řetězců, které kombinují více kroků zpracování
- Podporuje paměť, práci s dokumenty a agentový přístup

28. Vysvětlete, jak ve velkém jazykovém modelu (LLM) funguje paměť a jak ji lze řešit v chatovacích aplikacích.

- LLM je stateless nemá paměť
- Kromě procesu učení, nezanáší do parametrů nové informace → nepamatuje si předchozí dotazy, pokud nejsou obsažené v aktuálním dotazu
- Chatovací LLM si v každém dotazu nesou i předchozí zprávy v konverzaci alespoň dokud jim stačí velikost kontextu
- Při volání LLM v python musíme do každého následujícího dotazu přiložit všechny předchozí

29. Vysvětlete, co je RAG a k čemu se využívá.

- Retreival-Augmented Generation
- LLM má k dispozici ještě jiný zdroj než jen samotný dotaz

Jak funguje:

- Dotaz přijde do systému
- Retreiver najde relevantní texty nebo dokumenty z databáze / znalostní báze
- Generátor použije vstupní dotaz + nalezené informace a vygeneruje odpověď

Slouží k:

- Odpovídání na dotazy nad vlastními daty
- Zlepšení přesnosti odpovědi
- Aktualizovatelnost
- Zachování faktické správnosti

30. Vysvětlete, jak můžeme dát velkému jazykovému modelu (LLM) k dispozici velké množství textu či dokumentů, aniž bychom byli omezeni velikostí kontextu.

- LLM mají omezenou délku kontextu např. 4000 tokenů
- Pokud chceme pracovat s větším objemem dat, používají se techniky, které umožňují přístup k dokumentů bez nutnosti je přímo "nacpat" do vstupu modelu

RAG:

- Nejčastější přístup
- Všechny dokumenty se předem rozkouskují a uloží jako vektorové reprezentace
- Když přijde dotaz, pomocí vektorových vyhledávání se najdou relevantní části
- Tyto části se vloží do promptu spolu s dotazem → šetří kontext, ale využívá velké množství dat

External memory:

- Model se propojí s databází nebo systémem, který uchovává informace
 - o Položí dotaz do DB

- Získá výsledek, který pak dále zpracuje a použije ve výstupu
- Tím se velké množství dat neukládá do kontextu, ale dotahuje se v reálném čase

Chaining:

Místo jednoho dotazu se konverzace rozkouskuje do více menších kroků

Hierarchické zpracování:

- Text se nejprve zpracuje po částech
- Každá část se shrne → tyto shrnuté části se pak opět shrnou na vyšší úrovni
- Tím vznikne kompaktní přehled, který se vejde do kontextového okna

31. Popište, jak funguje databáze vektorů (vector store) a k čemu ji lze využít.

 Speciální typ databáze, která neukládá klasická data jako text a tabulky, ale číselné vektory -> reprezentace slov, vět, dokumentů

Účel:

• Umožnit rychlé a efektivní hledání podobných významů, nikoliv jen přesnou shodu

Jak funguje:

- Vytvoří embedding
 - o Textový dokument se převede na embedding číselný vektor
- Uložení vektorů do databáze
 - o Každý embedding se uloží spolu s původním textem do vektorové DB
- Vyhledávání dotazu
 - Když uživatel zadá dotaz, převede se na embedding
 - Pak se porovná s uloženými vektory a vrátí ty, které jsou nejblíže významově nejpodobnější

K čemu:

- RAG klíčová součást
- Sémantické vyhledávání
- Chat s vlastními daty
- Doporučovací systémy
- Detekce duplicit / podobností

32. Popište, co umožňují agenti (z frameworku Langchain) pro aplikace s velkými jazykovými modely (LLM).

- Umožňují LLM provádět akce
 - o Interagovat s wikipedií, provádět vyhledávání na internetu, kalkulačka...
- Mají k dispozici nástroje, které rozšiřují jejich moznosti

Туру:

Zero shot ReAct

- o Pro jednotlivé interakce bez paměti
- Conversational ReAct
 - o Pamatuje si předchozí dotazy
 - o Ideální pro chatboty
- ReAct Docstore
 - Vyhledávání informací
 - o Na wiki, v souboru...
- Další pokročilejší agenty nabízí rozšíření LangGraph

Vyhledávací agent

- Pokud nezná odpověď, sestaví dotaz pro vyhledávač
- Z nalezených dat si vybere, co potřebuje, a uloží k dalšímu zpracování
- Opakuje, dokud nemá všechny potřebné informace k zodpovězení dotazu uživatele

Příklady aplikací:

- Extrakce informací z faktur a vytvoření přehledu
- Vytvoření článku na zadané téma
- Generování obsahu na základě obrázku
- Zhodnocení životopisů ve složce
- Analýza dat z CSV
- Vytváření SQL dotazů z textového zadání
- Řešení matematických úloh