

Predicting the Impact of Parameter Adjustments on Cellular Networks

Yongqian Sun¹, Qingliang Zhang¹, Yu Luo¹, Mingjie Li^{2*}, Shenglin Zhang¹, Xiaolei Hua², Renkai Yu², Xinwen Fan², Lin Zhu², Junlan Feng², Dan Pei³

¹Nankai University ²China Mobile Research Institute ³Tsinghua University

Approach

Evaluation

Conclusion

Ensuring 5G Service Quality for Better User Experience

- Cellular networks are the backbone of internet access
- The gNBs provide connectivity to user equipments
- Operators typically adjust gNB parameters to optimize network performance
- Network stability and service quality are essential

Key Parameters and Cell Status Metrics

- Key Parameters:
 - Transmission Power (TP): TP controls the received signal strength
 - Cell Individual Offset (CIO): CIO controls handovers and achieve proper load balancing
- Key Cell Status Metrics:
 - Workload: The number and behaviors of served UEs
 - Quality of Service (Qos): Quality of Service measurements
 - Interference: The strength of irrelevant electromagnetic waves

Adjusting GNB Parameters to Optimize Performance

- Correct gNB parameter adjustments are vital for user experience
- Status feedback can be delayed by hours
- Imprecise adjustments slow optimization and harm user experience

Example of a cell parameter adjustment

Our goal is to develop a method that can model the effects of parameter adjustments before they are applied, enabling proactive and accurate network performance predictions

Background

Challenges

Evaluation

Conclusion

Limited Data for Parameter Adjustments

- Challenge 1: Limited data for parameter adjustments
 - Limited historical data hinders learning generalizable impact patterns
 - Even TP and CIO yield over 18,000 combinations, far beyond available data
 - This vast space far exceeds availabledata coverage
- Challenge 2: Complex, dynamic dependencies among multiple metrics
 - Modeling metric dependencies under cell parameter adjustments is challenging
 - 17 key metrics from China Mobile, grouped into 3 clusters
 - Dependencies are dynamic, nonlinear, and context-sensitive

PIPCell 🔊

Predictive framework
that models the effect of cell parameter adjustments
on key metrics

Background

Challenges

Evaluation

Pretraining

Pretraining

Adjustment-Free Data

&

Transformer

Prediction Task

Reconstruction Task

Pretrained Transformer

Transformer Pretraining:

- Handles long-range dependencies in multivariate time series
- Pretrained per metric cluster on adjustment-free data
- Trained with two tasks: forecasting and masked reconstruction
- Loss: average squared error, ignoring missing data

$$loss = \frac{\sum_{i=1}^{N} \sum_{j=1}^{S} \sum_{k=1}^{d} (x_{i,j,k} - \tilde{x}_{i,j,k})^{2} \omega_{i,j,k}}{\sum_{i=1}^{N} \sum_{j=1}^{S} \sum_{k=1}^{d} \omega_{i,j,k}}$$

N: number of samples

S: sequence length

d: number of metrics

 $x_{i,j,k}$ – true value (sample i, timestep j, metric k)

 $\tilde{x}_{i,j,k}$ – predicted or reconstructed value

 $\omega_{i,j,k}$ – availability mask (1 if valid, 0 if missing)

Homogeneous Cell Modeling

- Transmission power (TP) directly affects the received signal strength(RSRP)
- Cell Individual Offset (CIO) is used for load balancing
- A User equipment chooses serving cell with strongest weighted signal

- Assume uniform user density across the cell
- TP and CIO adjustments change the cell coverage area
- Workload change is estimated by the area ratio before and after adjustment

Adjusting

- Transformer predicts workload and interference without parameter adjustments
- Homogeneous Cell Parameter Effect Predictor (HC-PEP) :
 - •I ntegrates physical parameter effects (TP&CIO) into workload prediction
 - Acts as a multiplier on Transformer outputs
 - Adjusts workload based on area ratio derived from parameter changes
 - Eliminates the need for additional adjustment data

Propagating

- Parameter changes can indirectly affect multiple metrics, not just workload
- PIPCell arranges multiple Transformers according to a dependency graph
- Each Transformer predicts a metric cluster from its history and parent predictions
- Design captures complex dependencies while avoiding spurious correlations
- Example: interference is treated as independent from workload, enforced by the graph

Challenges

Experiment Setup

Research Questions (RQs)

- RQ1: How does PIPCell perform compared to baselines?
- RQ2: How much does each component contribute?
- RQ3: How well does PIPCell generalize across regions?

Dataset

- Real-world dataset from China Mobile (Aug 11–30, 2022)
- 1,045 parameter adjustment cases
- 628 samples per case, sampled every 15 minutes
- 17 monitoring metrics across 3 clusters

Experiment Setup

Baseline Methods

- GBRT: Traditional machine learning model for time-series regression
- VCNet: Deep neural model for causal effect estimation
- β-Intact-VAE: Variational autoencoder capturing latent causal factors

Evaluation Metrics

- RMSE Root Mean Squared Error
- sMAPE Symmetric Mean Absolute Percentage Error
- Train/Test Split: 50% / 50%, repeated 10 times
- Prediction horizon: 1 day (96 time steps)

RQ1: How Does PIPCell Perform Compared to Baselines?

Method	Relative RMSE		Relative sMAPE	
	mean(std)	p-value	mean(std)	p-value
GBRT	1.347(0.80)	0.007*	2.440(2.69)	0.000*
VCNet	6.739(9.53)	0.000*	5.220(11.5)	0.000*
β-Intact-VAE	4.996(10.3)	0.002*	11.693(37.5)	0.000*
PIPCell	1.000(0.00)	/	1.000(0.00)	/

^{*}Statistically significant as p < 0.05

PIPCell outperforms all baselines with significant accuracy gains and robust generalization across scenarios

RQ2: How Much Does Each Component Contribute?

Variant	Relative RMSE		Relative sMAPE	
	mean(std)	p-value	mean(std)	p-value
PIPCell	1.000(0.00)	/	1.000(0.00)	0.000*
A1	0.973(0.26)	0.189*	1.409(0.89)	0.000*
A2	1.621(0.99)	0.003*	2.005(1.34)	0.000*
B1	1.458(1.33)	0.013*	2.007(1.80)	0.000*
B2	5.219(13.7)	0.004*	13.400(44.9)	0.000*
В3	16.179(49.8)	0.001*	36.496(13.3)	0.000*

^{*}Statistically significant as p < 0.05 Model Variants:

• HC-PEP Replacements: Al – Multiplier | A2 – VCNet

• Transformer Replacements: B1 – GBRT | B2 – NLinear | B3 – Autoformer

RQ3: How Well Does PIPCell Generalize Across Regions?

Method	Relative RMSE		Relative sMAPE	
	mean(std)	p-value	mean(std)	p-value
GBRT	1.665(0.76)	0.001*	3.294(7.88)	0.002*
VCNet	7.523(14.5)	0.000*	10.313(19.7)	0.000*
β-Intact-VAE	7.259(10.7)	0.000*	14.127(27.6)	0.000*
PIPCell	1.000(0.00)	/	1.000(0.00)	/

^{*}Statistically significant as p < 0.05

PIPCell maintains high accuracy and robust performance across different regions

RQ3: How Well Does PIPCell Generalize Across Regions?

- TP reduced from 18.2 dBm to 12.2 dBm
- Graphical Transformer fails to capture impact after TP drop
- HC-PEP enables PIPCell to adapt dynamically and improve accuracy
- PIPCell outperforms best baseline GBRT, capturing real effects of parameter changes

Background

Challenges

Approach

Evaluation

Conclusion

Predicting the Impact of Parameter Adjustments

Presents PIPCell, a framework designed to predict how changes in cell parameters impact key performance metrics over time

Adjusting: HC-PEP refines workloac'

by modeling TP

and CIO effects

Propagating: Graphical Transforme

propagate

parameter impacts across

metrics

Validated performance

Consistently outperforms
baselines on real-world
datasets from China Mobile,
with experiments validating
the effectiveness of each
component

Thank you!

- This work was conducted at the **AIOps Laboratory**, School of Software, Nankai University (AIOps@NKU).
- ➤ Lab website: https://nkcs.iops.ai/
- > Contact email: cuitianyu@mail.nankai.edu.cn

Please feel free to reach out with any questions or feedback!

