Cite:

B08902013 張永達 B08902127 林歆凱 B08902063 陳羿穎 B08902075 林耘平 3. Lonely Christmas

(a)

To TA:

I first think of an interesting solution, but I was convinced by peers that sol_2 is better, I'd like to make sure if sol_1 is also an acceptable solution? Could you please grade sol 2 and also tell me whether sol 1 is OK? Thanks.

Sol 1:

We can see that there will exist i* that decide H_{max} . It's trivial that the worst case $(max\ (H_{max}\ /\ OPT(I)))$ happens when $h(i^*)$ is placed while current height of all towers is same and it's placed last. Let's call the current height before i* is placed h(c). Therefore, $H_{max} = h(i^*) + h(c)$. However, $OPT(I) = max\ (h(i^*), h(c) * m / (m - 1))$ as the following figure shown. As a result, while $m \to \infty$ and $h(i^*) = h(c)$, we can see that $OPT(I) = 2 * H_{max}$ in the worst case. Otherwise, $2 * H_{max} < OPT(I)$, and thus it's a 2-approximation algorithm. The following two graphs show the worst case in the algorithm of H_{max} and OPT(I), I take m = 5 for instance.

 $OPT(I) = max (h(i^*), h(c) * m / (m - 1))$

When $m \to \infty$, and $h(i^*) = h(c)$, the maximum $(H_{max} / OPT(I))$ occurs, which is 2.

Sol 2:

I split the height of tower i* is into two part, $H_{max} = h(i^*) + (H_{max} - h(i^*))$. It's trivial to say that $h(i^*) \leq OPT(I)$. Moreover, $(H_{max} - h(i^*)) \leq \frac{sum_height_of_boxes}{number_of_boxes} \leq OPT(I)$, Thus $H_{max} \leq 2 \times OPT(I)$. It's a 2-approximation algorithm.

(b)

I consider two cases. I* in B' and i* not in B'.

First, if I* in B', then it's arranged by brute force algorithm and be placed in optimal way. Therefore, the $H_{max} = OPT(I)$ in this case.

Otherwise, if I* is not in B'. I split the height of tower i* is into two part, $H_{max} = h(i^*) + (H_{max} - h(i^*))$. It's trivial to say that $h(i^*) \le \epsilon * OPT(I)$. Moreover, $(H_{max} - h(i^*)) \le \frac{sum_height_of_boxes}{number_of_boxes} \le OPT(I)$, Thus $H_{max} \le (1 + \epsilon) \times OPT(I)$.

In both cases, $H_{max} \leq (1 + \epsilon) \times OPT(I)$, it's a $1 + \epsilon$ -approximation algorithm.

(c)

Same as (b). Let's consider two cases, i* in B and i* not in B.

First, if I* in B', which means that \forall h'(i) = $\left|\frac{h(i)}{\mu}\right| \times \mu > \left|\frac{\epsilon v}{\epsilon^2 v}\right| \times \epsilon^2 V = \left|\frac{1}{\epsilon}\right| \times \epsilon^2 V = \epsilon V$. We can see that h'(i) > ϵV , and $H_{max} \leq V$, thus, for each tower, the maximum boxes there can be placed is at most $\frac{1}{\epsilon}$. Moreover, for each box, the maximum error between h(i) and h'(i) is $|h(i) - h'(i)| < 1 * \mu = \epsilon^2 V$. Therefore, the maximum error between H_{max} come from h' and H_{max} come from h is $\frac{1}{\epsilon} \times \epsilon^2 V = \epsilon V$. Thus, as H_{max} from h' $\leq V$, H_{max} from h $\leq V + \epsilon V = (1 + \epsilon) \times V$.

Second, if I* not in B'. We split the height of tower i* is into two part, $H_{max} = h(i^*) + (H_{max} - h(i^*))$. It's trivial to say that $h(i^*) \le \epsilon V$. Moreover, $(H_{max} - h(i^*)) \le \frac{\text{all_sum_of_boxes}}{number_of_boxes} \le OPT(I) \le V$, else i* won't be placed on this tower. As a result, $H_{max} = h(i^*) + (H_{max} - h(i^*)) \le \epsilon V + V = (1 + \epsilon) \times V$.

According to two cases, $H_{max} \leq (1 + \epsilon) \times V$. QED.

(d - 1)

If h'(i) \leq V. It's trivial that $\mu = \epsilon^2 V$, and $|\vec{n}| \times \mu \leq V$. Thus $|\vec{n}| \leq \frac{V}{\mu} = \frac{1}{\epsilon^2}$. Else, if h'(i) > V, return false, no \vec{n} .

Therefore, $|\vec{n}|$ is bounded by $\frac{1}{\epsilon^2}$, QED.

$$F(\vec{n}) = \begin{cases} 1 & \text{if } \vec{n} \text{ in } U \\ 1 + \min(F(\vec{n} - \vec{u}), \forall \vec{u} \text{ in } U) & \text{if } \vec{n} \text{ not in } U \end{cases}$$

(d - 3)

Let's split the process into two steps.

First, constructing U. As there are at most $\frac{1}{\epsilon^2}$ boxes in a tower and $\frac{1}{\epsilon^2}$ kind of boxes.

Construct U takes O $\left(\frac{1}{\epsilon^2}\right)^{\frac{1}{\epsilon^2}} = O(1)$ time.

Second, fill in the dynamic programming table. As we need to calculate all possibility of $\vec{n} - \vec{u}$, it equals to $\prod_{i=1}^{\left\lfloor \frac{1}{\epsilon^2} \right\rfloor} (n_-init_i + 1) \le B^{\left\lfloor \frac{1}{\epsilon^2} \right\rfloor} = O(B^{\frac{1}{\epsilon^2}})$, as $(n_-init_i + 1) \le B$ $(n_-init_i$ means the i_{th} entry of $\overline{n_-init}$). Accordingly, the total time complexity of this algorithm is $O(1) + O(B^{\frac{1}{\epsilon^2}}) = O(B^{\frac{1}{\epsilon^2}})$.

(e)

I apply binary search on V and use function Partial_Rounded (I, V) to find a $1 + \epsilon - approximation$ algorithm. Search start from (0, max_V $\leq 2^l$), check what is the maximum V that ORACLE (I', V) won't return false, and then put all box that's not in B into the towers in greedy algorithm. Finally, I find out the answer.

For the time complexity, as $\max_{V} \leq 2^{l}$ and I use binary search in the algorithm, we can achieve an algorithm of $O(\log_2 V) * O(B^{\frac{1}{\epsilon^2}}) = O(l * B^{\frac{1}{\epsilon^2}})$, which is polynomial.