Tutoriat 9 - Rezolvări Inele. Polinoame.

Savu Ioan Daniel, Tender Laura-Maria

- 22 ianuarie 2021 -

Exercițiul 1

Fie I submulțimea lui $\mathbf{Z}[X]$ formată din toate polinoamele care au termenul liber divizibil cu 6.

- (1) Demonstrați că I este un ideal al lui $\mathbf{Z}[X]$.
- (2) Dați un exemplu de polinom de grad 4 din I.
- (3) Arătați că I = (6, X). Este I ideal principal? Justificați.
- (4) Determinați toți divizorii lui zero din inelul factor $\mathbf{Z}[X]/I$.
- (5) Arătați că $\mathbf{Z}[X]/I$ este un inel finit si gasiți-i numărul de elemente.
- (6) Are loc izomorfismul de inele unitare $\mathbf{Z}[X]/I \cong \mathbf{Z_2} \times \mathbf{Z_3}$? Justificați.

Rezolvare

(1)

Exercițiul 2

- 1. Fie $x,y,z\in\mathbf{C}$ astfel încât $\begin{cases} x+y+z=3\\ x^2+y^2+z^2=5\\ x^3+y^3+z^3=6 \end{cases}$ Calculați $x^5+y^5+z^5.$
- 2. Aflați polinomul monic $P \in Z[T]$ care are ca rădăcini pe x, y, z.
- 3. Studiați ireductibilitatea lui P peste $\mathbf{Q}, \mathbf{Z}_2, \mathbf{Z}_5$.

Examen seria 13, 31.01.2020

Rezolvare

1. Polinomul are cărui rădăcini sunt x,y,z are gradul 3. Vom rescrie sistemul cu notațiile din formulele lui Newton $p_i=X_1^i+X_2^i+\ldots+X_n^i$.

$$\begin{cases} p_1 = 3 \\ p_2 = 5 \\ p_3 = 6 \end{cases}$$

Cunoaștem că $p_0 = 3$ și $s_1 = p_1$. $x^5 + y^5 + z^5 = p_5$ și îl vom afla folosind formulele lui Newton. Intâi vom afla valorile lui s_2, s_3 , apoi ale lui p_4, p_5 .

$$p_2 - p_1 s_1 + 2s_2 = 0$$

$$s_2 = \frac{p_1 s_1 - p_2}{2} = \frac{9 - 5}{2} = 2$$

$$p_3 - p_2 s_1 + p_1 s_2 - 3s_3 = 0$$

$$s_2 = \frac{p_3 - p_2 s_1 + p_1 s_2}{3} = \frac{6 - 15 + 6}{3} = -1$$

$$p_4 - p_3 s_1 + p_2 s_2 - p_1 s_3 = 0$$

$$p_4 = p_3 s_1 - p_2 s_2 + p_1 s_3 = 18 - 10 - 3 = 5$$

$$p_5 - p_4 s_1 + p_3 s_2 - p_2 s_3 = 0$$

$$p_5 = p_4 s_1 - p_3 s_2 + p_2 s_3 = 15 - 12 - 5 = -2$$

Deci, $x^5 + y^5 + z^5 = p_5 = -2$.

2. Polinomul monic $P \in Z[T]$ care are rădăcini x,y,z este $T^3 - s_1 T^2 + s_2 T - s_3.$

$$T^3 - 3T^2 + 2T + 1$$

3. Dacă polinomul este reductibil peste Q, atunci fie se descompune în 3 polinoame de gradul 1, fie într-un polinom de gradul 1 și unul de gradul al 2-lea. Cum în ambele cazuri există cel puțin un polinom de gradul întâi, dacă P este reductibil atunci are cel puțin o rădăcină $\in \mathbf{Q}$. Fie $\frac{m}{n}, (m,n) = 1, m \in \mathbf{Z}, n \in \mathbf{N}^*$ astfel încât $P(\frac{m}{n}) = 0$ rădăcină a lui P(T). Atunci m|1 și n|1. deci $\frac{m}{n} \in \{+1, -1\}$.

$$P(1) = 1 - 3 + 2 + 1 = 1 \neq 0$$

$$P(-1) = -1 - 3 - 2 + 1 = -5 \neq 0$$

Deci P(T) nu are nicio rădăcină rațională deci este ireductibil peste \mathbf{Q} . În \mathbf{Z}_2 polinomul se poate rescrie astfel:

$$P(T) = T^3 + T^2 + \widehat{1}$$

Analog cazului anterior, întrucât polinomul are gradul 3, pentru a fi reductibil trebuie să aibă cel puțin o rădăcină în \mathbb{Z}_2 . Aceasta poate fi $\widehat{0}$ sau $\widehat{1}$.

Dar $P(\widehat{0}) = \widehat{1}$, iar $P(\widehat{1}) = \widehat{1}$. Astfel polinomul nu are rădăcină în \mathbb{Z}_2 , deci este ireductibil peste \mathbb{Z}_2 . În \mathbb{Z}_5 polinomul se poate rescrie astfel:

$$P(T) = T^3 + 2T^2 + 2T + 1$$

. Vom căuta o rădăcină.

$$P(\widehat{0}) = \widehat{1}$$

$$P(\widehat{1}) = 1 + \widehat{2+2} + 1 = \widehat{1}$$

$$P(\widehat{2}) = 8 + \widehat{8+4} + 1 = \widehat{1}$$

$$P(\widehat{3}) = P(\widehat{-2}) = -8 + \widehat{8-4} + 1 = \widehat{2}$$

$$P(\widehat{4}) = P(\widehat{-1}) = -1 + \widehat{2-2} + 1 = \widehat{0}$$

. Deci 4 este rădăcină.

$$P(T) = T^3 + T^2 + T^2 + T + T + \widehat{1}$$

.

$$P(T) = T^{2}(T+\hat{1}) + T(T+\hat{1}) + (T+\hat{1})$$

$$P(T) = (T+\hat{1})(T^{2} + T + \hat{1})$$

 $\widehat{4}$ este singura rădăcină a lui P. Şi cum aceasta nu este rădăcină multiplă $T^2+T+\widehat{1}$ nu are $\widehat{4}$ rădăcină, atunci forma ireductibilă a lui P(T) peste \mathbf{Z}_5 este

$$P(T) = (T + \hat{1})(T^2 + T + \hat{1})$$

.

Exercițiul 3

Fie inelul Z[X] și I submulțimea formată din toate polinoamele care au termenul liber și coeficientul lui X numere divizibile cu 3.

- (1) Demonstrați că I este un ideal al lui Z[X].
- (2) Determinați un sistem de generatori pentru I. Este I ideal principal?
- (3) Este inelul $\mathbf{Z}[X]/I$ integru? Dacă nu, determinați toți divizorii lui zero.
- (4) Arătați că $\mathbf{Z}[X]/I$ este un inel finit și găsiț-i numărul n de elemente.
- (5) Are loc izomorfismul de inele unitare $\mathbf{Z}[X]/I \cong \mathbf{Z_n}$?

Rezolvare