Atelier Machine Learning

Transfer apprentissage pour détection de scènes acoustiques biologiques sous-marine

Paul Nguyen et Dorian Cazau

Transfer learning

"the situation where what has been learned in one setting is exploited to improve generalization in another setting"

Useful when

- small annotated datasets
- events are inherently rare

Different settings of transfer

inductive transfer learning (task adaptation)

transductive transfer learning (domain adaptation)

Google Audio set

Big but "weakly labeled" SOURCE audio dataset

Weakly labeled data (= "somewhere within this temporal region there is a sound of interest occurring")

2,084,320 YouTube videos over 527 classes Cs

Sound reproduction

Cs = Bird vocalization, Insect, Chirp, Cricket

Cs = Music, Speech, Female singing, Child singing

Music mood

Kumar2018: State-ofthe-art in DCASE

Number of filters: {B1:16, B2:32, B3:64, B4:128, B5:256, B6:512}

Results

Simple trick, huge improvement!

(slat = strong label assumption training)

Methods	Mean
	Accuracy
Piczak [20]	64.5 %
Tokozume [30]	71.0 %
Aytar [16]	74.2 %
Proposed (F1)	83.5 %

Network	F1		F2		
	max()	avg()	max()	avg()	
$\mathcal{N}_{\mathbf{S}}$	82.8	81.6	65.5	64.8	
$\mathcal{N}_{\mathbf{T}}^{\mathbf{I}}$	83.5	81.3	-	-	
$\mathcal{N}_{\mathrm{T}}^{\mathrm{II}}$	83.5	81.8	81.9	81.5	
$\mathcal{N}_{\mathbf{T}}^{\mathbf{III}}$	83.3	82.6	82.6	81.9	

Target tasks

- Acoustic Event Classification (ESC-50 dataset: 50 class events from broad categories, Animals, Natural Soundscapes and Water Sounds, Human Non Speech..)
- Acoustic Scene Classification (DCASE2016 dataset: 30 seconds examples for 15 acoustic scenes)

Network	F	1	F	2	Network	F	1	F	2
	max()	avg()	max()	avg()		max()	avg()	max()	avg()
$\mathcal{N}_{\mathbf{S}}$	72.2	69.8	59.1	60.4	$\mathcal{N}_{\mathbf{T}}^{\mathbf{II}}$	75.5	73.0	73.8	73.9
$\mathcal{N}_{\mathbf{T}}^{\mathbf{I}}$	75.2	73.7		_	$\mathcal{N}_{\mathbf{T}}^{\mathbf{III}}$	76.6	73.7	72.5	73.3

A weakly labeled underwater acoustic scene

Fabio Cassiano

??

Datasets	Chagos	Synthetic
Sampling rate	16000Hz	3200 Hz
WAV file duration / recording campaign duration	11min09s / ~6mois	1h / 1 year

Long term spectrogram: having an overview of acoustic activity (spectrum daily-averaged)

Experiments (domain adaptation):

- Who's the best?
 - Thresholding (rule-based decision)
 - Supervised machine learning algorithm: Support Vector Machine (SVM) [1]
 - ◆ Unsupervised machine learning algorithm: Kmeans
 - Supervised Deep Learning algorithm: Convolutional Recurrent Neural Network (CRNN)
- → Real world VS Synthetic audio data?

WHY DO WE NEED SYNTHETIC DATA

- small annotated datasets
- events are inherently rare

BUT...

- Difficulty in generating synthetic data
- Quality of the data model?
- Inconsistencies when trying to replicate complexities within original datasets
- Difficulty in tracking all necessary features required to replicate the data
- The presence of bias within the synthetic data
- May require validation against real world data
- Simplified representations within datasets can have hidden effects on the performance of an algorithm when used in a real world setting

Thresholding (baseline)

SVM [1]

Computing energy on the whole audio file Divide presence/absence groups only with the energy

 $D_{im_{ension}}^{^{-10}}$

Dimension 1

Clustering samples

Benchmark

Synthetic -> Chagos: predictions: only zeroes...

CRNN

"Capacity to learn the acoustic units of the events with CNN, while the specific temporal order within the events is captured by the following recurrent layers." [2] Event based but applied with sliding window for scene detection

RNN Layer

GRU Layer:

3 gates:

- update: how much of the past information should be propagated in the future.
- reset: how much of the past information should be omitted
- output: new internal memory state

Pink Multiplication: store the relevant information from the past.

CRNN

Some issues with underwater audio classification

- Sampling rate
- Duration
- Annotation
- Synthetic data too easy to classify
- Difficult to model underwater environments and sounds