$$(\frac{a}{b^2+ab}-\frac{a-b}{a^2+ab}):(\frac{b^2}{a^3-ab^2}+\frac{1}{a+b})$$

и найдите его значение при a = 84; b = 162.

A)
$$-\frac{1}{2}$$

$$A) - \frac{1}{2}$$
 $B) - \frac{13}{27}$ $C) \frac{1}{2}$ $D) - \frac{13}{14}$

$$C) \frac{1}{2}$$

$$D) - \frac{13}{14}$$

E) нет правильного ответа

2. Найдите натуральное число, заданное выражением

$$\frac{(\sqrt{5} - \sqrt{11})\sqrt{16 + 2\sqrt{55}}}{1 - \sqrt{9}}$$

$$C)$$
 3

E) нет правильного ответа

3. Найдите значение выражения

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{99}+\sqrt{100}}$$

A) 1

- B)9
- C) 99
- D) 101
- E) нет правильного ответа

4. Решите уравнение

$$(x^2 - 3x)^2 - 14x^2 + 42x + 40 = 0$$

В ответе укажите сумму всех найденных решений.

$$A) - 12$$

$$B) - 3$$

$$C)$$
 6

E) нет правильного ответа

5. Найдите множество решений неравенства

$$\frac{(x+1)^3(-x^2-2x+8)}{(x+1)(x+3)} \le 0$$

A)
$$(-\infty; -4] \cup (-3; -1) \cup (-1; 2)$$
 B) $[-4; -3) \cup \{-1\} \cup [2; +\infty)$

B)
$$[-4; -3) \cup \{-1\} \cup [2; +\infty]$$

 $(C) [-4; -3) \cup [2; +\infty)$

$$D) (-\infty; -4] \cup (-3; -1) \cup [2; +\infty)$$
 $E)$ нет правильного ответа

6. Решите неравенство

$$\frac{\sqrt{6+x-x^2}}{x^2+3x-4} \ge 0$$

В ответе укажите сумму целых чисел, входящих в решение этого неравенства.

- A) 2
- B) 3
- C) 4
- D) 5
- E) нет правильного ответа

7. Решите систему уравнений

$$\begin{cases} x^2y + xy^2 = 2 - 2x - 2y \\ x + y + 5 = -xy \end{cases}$$

В ответе укажите сумму координат всех решений. Например, если (1; 2) и (3; 4) — решения системы, то в ответе нужно указать 1+2+3+4=10.

$$A) - 6$$

$$B) - 3$$

$$C)$$
 2

E) нет правильного ответа

8. Область задана на плоскости системой неравенств

$$\begin{cases} x^2 + y^2 \ge 4 \\ y^2 \le 4 \\ y \ge |x| \end{cases}$$

Найдите её площадь.

A)
$$4 - \pi$$

B)
$$8 - \pi$$
 C) $4 - 2\pi$

$$(C) 4 - 2$$

$$D) 8 - 2\pi$$

$$E$$
) нет правильного ответа

9. Найдите область определения функции

$$y = \log_{\frac{1}{2}} \left(\frac{-\sqrt{-x+7}}{-2x^2 + 17x - 8} \right)$$

$$(\frac{1}{2};7)$$

$$B) (8; +\infty)$$

$$C)$$
 $(-\infty)$

$$D) (-\infty; \frac{1}{2})$$

 $A)(\frac{1}{2};7)$ $B)(8;+\infty)$ $C)(-\infty;7]$ $D)(-\infty;\frac{1}{2})$ E) нет правильного ответа

10. Найдите наибольшее и наименьшее значения функции
$$f(x) = \sin^2(x) + \cos(2x) - \frac{1}{2}$$
.

$$A) \frac{3}{2}$$
 и $-\frac{3}{4}$ $B) \frac{1}{2}$ и $-\frac{1}{2}$ $C) \frac{3}{2}$ и $-\frac{3}{2}$ $D) \frac{3}{4}$ и $-\frac{1}{2}$ $E)$ нет правильного ответа

11. Найдите
$$\cos{(\frac{5\pi}{2} + 2\alpha)}$$
, если $\cos{\alpha} = \frac{3}{5}$, $-\frac{\pi}{2} < \alpha < 0$.

$$A) - \frac{24}{25}$$

$$B) - \frac{7}{2}$$

$$C) \frac{7}{25}$$

$$D) \frac{24}{25}$$

 $A) - \frac{24}{25}$ $B) - \frac{7}{25}$ $C) \frac{7}{25}$ $D) \frac{24}{25}$ E) нет правильного ответа

12. Прямая l задана на плоскости уравнением 3y - 4x - 5 = 0. Укажите уравнение прямой, перпендикулярной прямой l и проходящей через точку A(2;-1).

$$A) 4y - 3x + 10 = 0$$

$$B) \ 4y + 3x - 2 = 0$$

$$C) -\frac{1}{3}y + \frac{1}{4}x - \frac{5}{6} = 0$$

$$D) \, - rac{1}{3}y + rac{1}{4}x + rac{1}{5} = 0$$
 $E)$ нет правильного ответа

$$E$$
) нет правильного ответа

13. График функции $f(x) = 3x^2 - 18x + 32$ сдвинули на 2 единицы влево и на 3 единицы вниз, получив при этом график функции g(x). Какой вид может иметь g(x)?

A)
$$3x^2 - 10x + 77$$

B)
$$3x^2 - 6x + 5$$

C)
$$3x^2 - 10x + 83$$

$$D) 3x^2 - 6x + 11$$

$$E$$
) нет правильного ответа

$$14.\ a_n$$
 — возрастающая арифметическая прогрессия, причем $a_1>0.$ Найдите $a_4,$ если $a_2a_6=105$ и $a_3a_5=117.$

$$C)$$
 13

E) нет правильного ответа

- (а) Для любого треугольника центр вписанной в него окружности совпадает с центром описанной вокруг него окружности;
- (b) Диагонали ромба перпендикулярны и точкой пересечения делятся пополам;
- (с) Биссектрисы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.

$$E$$
) нет правильного ответа

16.	В трапеции $ABCD$ с основаниями $AD BC$ диагонали пересекаются в точке $O.$ Известны
	площади $S(ABCD)=32$ и $S(\Delta BCO)=2$. Найдите площадь треугольника AOD .

- A) 6
- B) 8
- C) 16
- D) 18
- E) нет правильного ответа
- 17. Из точки M провели прямую, касающуюся окружности в точке A. Перпендикуляно AMпровели секущую, проходящую через точку M. Оказалось, что AM=12, а внутренняя часть секущей равна 10. Найдите радиус окружности.
 - A) 12
- B) 13
- C) 17
- D) $2\sqrt{61}$
- E) нет правильного ответа
- 18. Отрезки AM и BH соответственно медиана и высота остроугольного треугольника ABC. Известно, что AH = 1 и $2 \angle MAC = \angle MCA$. Найдите сторону BC.
 - A) 0.5
- B) 1
- C) 2
- D) 3
- E) нет правильного ответа

- 19. Найдите остаток от деления 2^{100000} на 31.
 - A) 1
- B) 3
- C) 13
- D) 30
- E) нет правильного ответа
- 20. При каких значениях параметра a корни уравнения $x^2 + 8x + 2a = 0$ существуют и все принадлежат отрезку [-6, -3]?
 - A) [6; 8)
- B) (7,5;8] C) [6;8] D) [7,5;8]
- E) нет правильного ответа
- 21. Функция f(x) определена для $x \geq 0$, причем для любых положительных a и b верно, что f(ab) = f(a) + f(b). Найдите f(2024), если $f(\frac{1}{2024}) = 1$.
- A) -1 B) $\frac{1}{2024}$ C) 2024
- D) 1
- E) нет правильного ответа

$$||4 - x^2| - x^2| = 1$$

- B) $\{\pm\sqrt{\frac{3}{2}}\}$
- $C) \{\sqrt{\frac{3}{2}}; \sqrt{\frac{5}{2}}\}$

- D) $\{\pm\sqrt{\frac{3}{2}};\pm\sqrt{\frac{5}{2}}\}$
- E) нет правильного ответа
- 23. Братья Игорь и Костя привезли в чемоданах сладости на Выездную школу ЭМШ. Когда школа закончилась, оказалось, что общий вес чемоданов братьев за время школы уменьшился на 10%. При этом вес чемодана Игоря уменьшился на 15%, а вес чемодана Кости — на 6%. Известно также, что в конце Выездной школы чемодан Кости весил на 7 кг больше, чем чемодан Игоря в начале школы. Определите первоначальный вес чемоданов Игоря и Кости. В ответе укажите их сумму.
 - A) 60 кг
- В) 70 кг
- C) 80 кг
- D) 90 кг
- E) нет правильного ответа
- 24. Александр вчетверо старше Николая. Сумма их возрастов 80 лет. Через сколько лет Александр будет втрое старше Николая?
 - A) 6
- B) 9
- C) 12
- D) 15
- E) нет правильного ответа

- 25. Катя ехала от экономического факультета до пансионата «Фейерверк», а Влад наоборот. Они встретились, когда Катя проехала 10 км и еще четверть оставшегося ей до пансионата пути, а Влад проехал 20 км и треть оставшегося ему до экономического факультета пути. Какое расстояние между экономическим факультетом и пансионатом «Фейерверк»?
 - A) 50 км
- В) 60 км
- C) 70 км
- D) 80 км
- E) нет правильного ответа
- 26. Школьники, обладающие одинаковой производительностью решения задач, собрались на досуге решить 360 задач по геометрии (каждую задачу решает 1 человек 1 раз). К сожалению, один из школьников приболел, поэтому вместо него задачи отправился решать студент Саша, производительность решения задач которого в три раза больше производительности каждого из школьников. Поэтому каждый школьник в действительности решил на 6 задач меньше, чем планировалось. Все школьники и Саша решали задачи одинаковое время. Сколько школьников в действительности решало задачи?
 - A) 6
- B)9
- C) 10
- D) 12
- E) нет правильного ответа
- 27. На вступительных тестах ЭМШ все школьники в аудитории сели так, что за каждой партой их оказалось по двое. Парт, за которыми сидят две девочки, втрое больше, чем парт, за которыми сидят мальчик с девочкой. А парт, за которыми сидят двое мальчиков. вдвое больше, чем парт, за которыми сидят две девочки. Сколько в аудитории мальчиков, если известно, что девочек там 14?
 - A) 20
- B) 22
- C) 24
- D) 26
- E) нет правильного ответа
- 28. Преподаватели курса в ЭМШ решили проверить у школьников ДЗ, состоящее из кейса. кроссворда и эссе. Среди 43 школьников курса кейс решили 12, кроссворд -15, а написали эссе — 12 человек. Кроме того, кейс и эссе сделали 3 человека, эссе и кроссворд -5 человек, а кейс и кроссворд -4 человека. Наконец, все 3 задания выполнил только 1 человек. Сколько на курсе школьников, которые вообще не сделали ДЗ?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 29. Кате очень понравилась лекция про чётность и нечётность на одном из курсов в ЭМШ. После пары она записала на доске несколько последовательных натуральных чисел и подсчитала количество четных и нечетных. Оказалось, что 48% чисел на доске нечетные. Сколько всего четных чисел записано на доске?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 30. Аня выяснила, что подарочных стикеров ЭМШ осталось 525, а книг ЭМШ 735. Она решила составить из них одинаковые наборы, причем так, чтобы раздать их наибольшему количеству детей и использовать все книги и все стикеры. Сколько наборов сможет собрать Аня?
 - A) 35
- B) 75
- C) 105
- D) 125
- E) нет правильного ответа

$$(\frac{a}{b^2+ab}-\frac{a-b}{a^2+ab}):(\frac{b^2}{a^3-ab^2}+\frac{1}{a+b})$$

и найдите его значение при a = 84; b = 162.

A)
$$-\frac{1}{2}$$

$$A) - \frac{1}{2}$$
 $B) - \frac{13}{27}$ $C) \frac{1}{2}$ $D) - \frac{13}{14}$

$$C) \frac{1}{2}$$

$$D) - \frac{13}{14}$$

E) нет правильного ответа

2. Найдите натуральное число, заданное выражением

$$\frac{(\sqrt{5} - \sqrt{11})\sqrt{16 + 2\sqrt{55}}}{1 - \sqrt{9}}$$

$$B)$$
 2

$$C)$$
 3

E) нет правильного ответа

3. Найдите значение выражения

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{99}+\sqrt{100}}$$

B)9

D) 101

E) нет правильного ответа

4. Решите уравнение

$$(x^2 - 3x)^2 - 14x^2 + 42x + 40 = 0$$

В ответе укажите сумму всех найденных решений.

$$A) - 12$$

$$B) - 3$$

$$C)$$
 6

D) 12

E) нет правильного ответа

5. Найдите множество решений неравенства

$$\frac{(x+1)^3(-x^2-2x+8)}{(x+1)(x+3)} \le 0$$

A)
$$(-\infty; -4] \cup (-3; -1) \cup (-1; 2)$$
 B) $[-4; -3) \cup \{-1\} \cup [2; +\infty)$

B)
$$[-4; -3) \cup \{-1\} \cup [2; +\infty)$$

 $(C) [-4; -3) \cup [2; +\infty)$

$$D) (-\infty; -4] \cup (-3; -1) \cup [2; +\infty)$$
 $E)$ нет правильного ответа

6. Решите неравенство

$$\frac{\sqrt{6+x-x^2}}{x^2+3x-4} \ge 0$$

В ответе укажите сумму целых чисел, входящих в решение этого неравенства.

$$A) - 2$$

$$B)$$
 3

$$C)$$
 4

$$D)$$
 5

E) нет правильного ответа

7. Решите систему уравнений

$$\begin{cases} x^2y + xy^2 = 2 - 2x - 2y \\ x + y + 5 = -xy \end{cases}$$

В ответе укажите сумму координат всех решений. Например, если (1; 2) и (3; 4) — решения системы, то в ответе нужно указать 1+2+3+4=10.

$$A) - 6$$

$$B) - 3$$

E) нет правильного ответа

8. Область задана на плоскости системой неравенств

$$\begin{cases} x^2 + y^2 \ge 4\\ y^2 \le 4\\ y \ge |x| \end{cases}$$

Найдите её площадь.

A)
$$4 - \pi$$
 B) 8

B)
$$8 - \pi$$
 C) $4 - 2\pi$

$$D) 8 - 2\pi$$

$$E$$
) нет правильного ответа

9. Найдите область определения функции

$$y = \log_{\frac{1}{2}} \left(\frac{-\sqrt{-x+7}}{-2x^2 + 17x - 8} \right)$$

$$(\frac{1}{2};7)$$
 B) (8

$$B)$$
 $(8; +\infty)$

$$C)$$
 $(-\infty;$

$$D) (-\infty; \frac{1}{2})$$

 $A)(\frac{1}{2};7)$ $B)(8;+\infty)$ $C)(-\infty;7]$ $D)(-\infty;\frac{1}{2})$ E) нет правильного ответа

10. Найдите наибольшее и наименьшее значения функции
$$f(x) = \sin^2(x) + \cos(2x) - \frac{1}{2}$$
.

$$A) \frac{3}{2}$$
 и $-\frac{3}{4}$ $B) \frac{1}{2}$ и $-\frac{1}{2}$ $C) \frac{3}{2}$ и $-\frac{3}{2}$ $D) \frac{3}{4}$ и $-\frac{1}{2}$ $E)$ нет правильного ответа

11. Найдите
$$\cos{(\frac{5\pi}{2} + 2\alpha)}$$
, если $\cos{\alpha} = \frac{3}{5}$, $-\frac{\pi}{2} < \alpha < 0$.

$$A) - \frac{24}{25}$$

$$B) - \frac{7}{2}$$

$$C) = \frac{1}{2}$$

$$D) \frac{2}{2}$$

 $A) - \frac{24}{25}$ $B) - \frac{7}{25}$ $C) \frac{7}{25}$ $D) \frac{24}{25}$ E) нет правильного ответа

12. Прямая l задана на плоскости уравнением 3y - 4x - 5 = 0. Укажите уравнение прямой, перпендикулярной прямой l и проходящей через точку A(2;-1).

$$A) 4y - 3x + 10 = 0$$

$$B) \ 4y + 3x - 2 = 0$$

$$C) -\frac{1}{3}y + \frac{1}{4}x - \frac{5}{6} = 0$$

$$D) \, - rac{1}{3}y + rac{1}{4}x + rac{1}{5} = 0$$
 $E)$ нет правильного ответа

$$E$$
) нет правильного ответ

13. График функции $f(x) = 3x^2 - 18x + 32$ сдвинули на 2 единицы влево и на 3 единицы вниз, получив при этом график функции g(x). Какой вид может иметь g(x)?

A)
$$3x^2 - 10x + 77$$

B)
$$3x^2 - 6x + 5$$

C)
$$3x^2 - 10x + 83$$

$$D) 3x^2 - 6x + 11$$

$$E$$
) нет правильного ответа

$$14.\ a_n$$
 — возрастающая арифметическая прогрессия, причем $a_1>0.$ Найдите $a_4,$ если $a_2a_6=105$ и $a_3a_5=117.$

$$A)$$
 7

E) нет правильного ответа

15. Укажите вариант ответа, в котором перечислены все верные утверждения:

- (а) Для любого треугольника центр вписанной в него окружности совпадает с центром описанной вокруг него окружности;
- (b) Диагонали ромба перпендикулярны и точкой пересечения делятся пополам;
- (с) Биссектрисы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.

16.	В трапеции АВСО с ост	нованиями $AD BC$	диагонали пер	есекаются в то	очке О. Известны
	площади $S(ABCD) = 32$	2 и $S(\Delta BCO) = 2$. Н	Найдите площад	дь треугольни	ка AOD .

- A) 6
- B) 8
- C) 16

- E) нет правильного ответа
- 17. Из точки M провели прямую, касающуюся окружности в точке A. Перпендикуляно AMпровели секущую, проходящую через точку M. Оказалось, что AM=12, а внутренняя часть секущей равна 10. Найдите радиус окружности.
 - A) 12
- B) 13
- C) 17
- D) $2\sqrt{61}$

D) 18

- E) нет правильного ответа
- 18. Отрезки AM и BH соответственно медиана и высота остроугольного треугольника ABC. Известно, что AH = 1 и $2 \angle MAC = \angle MCA$. Найдите сторону BC.
 - A) 0.5
- B) 1
- C) 2
- D) 3
- E) нет правильного ответа

- 19. Найдите остаток от деления 2^{100000} на 31.
 - A) 1
- B) 3
- C) 13
- D) 30
- E) нет правильного ответа
- 20. При каких значениях параметра a корни уравнения $x^2 + 8x + 2a = 0$ существуют и все принадлежат отрезку [-6, -3]?
 - A) [6; 8)

- B) (7,5;8] C) [6;8] D) [7,5;8]
- E) нет правильного ответа
- 21. Функция f(x) определена для $x \geq 0$, причем для любых положительных a и b верно, что f(ab) = f(a) + f(b). Найдите f(2024), если $f(\frac{1}{2024}) = 1$.
- A) -1 B) $\frac{1}{2024}$ C) 2024
- D) 1
- E) нет правильного ответа

22. Решите уравнение

$$||4 - x^2| - x^2| = 1$$

- B) $\{\pm\sqrt{\frac{3}{2}}\}$
- $C) \{\sqrt{\frac{3}{2}}; \sqrt{\frac{5}{2}}\}$

- D) $\{\pm\sqrt{\frac{3}{2}};\pm\sqrt{\frac{5}{2}}\}$
- E) нет правильного ответа
- 23. Братья Игорь и Костя привезли в чемоданах сладости на Выездную школу ЭМШ. Когда школа закончилась, оказалось, что общий вес чемоданов братьев за время школы уменьшился на 10%. При этом вес чемодана Игоря уменьшился на 15%, а вес чемодана Кости — на 6%. Известно также, что в конце Выездной школы чемодан Кости весил на 7 кг больше, чем чемодан Игоря в начале школы. Определите первоначальный вес чемоданов Игоря и Кости. В ответе укажите их сумму.
 - A) 60 кг
- B) 70 кг
- C) 80 кг
- D) 90 кг
- E) нет правильного ответа
- 24. Александр вчетверо старше Николая. Сумма их возрастов 80 лет. Через сколько лет Александр будет втрое старше Николая?
 - A) 6
- B) 9
- C) 12
- D) 15
- E) нет правильного ответа

- 25. Катя ехала от экономического факультета до пансионата «Фейерверк», а Влад наоборот. Они встретились, когда Катя проехала 10 км и еще четверть оставшегося ей до пансионата пути, а Влад проехал 20 км и треть оставшегося ему до экономического факультета пути. Какое расстояние между экономическим факультетом и пансионатом «Фейерверк»?
 - A) 50 км
- В) 60 км
- C) 70 км
- D) 80 км
- E) нет правильного ответа
- 26. Школьники, обладающие одинаковой производительностью решения задач, собрались на досуге решить 360 задач по геометрии (каждую задачу решает 1 человек 1 раз). К сожалению, один из школьников приболел, поэтому вместо него задачи отправился решать студент Саша, производительность решения задач которого в три раза больше производительности каждого из школьников. Поэтому каждый школьник в действительности решил на 6 задач меньше, чем планировалось. Все школьники и Саша решали задачи одинаковое время. Сколько школьников в действительности решало задачи?
 - A) 6
- B) 9
- C) 10
- D) 12
- E) нет правильного ответа
- 27. На вступительных тестах ЭМШ все школьники в аудитории сели так, что за каждой партой их оказалось по двое. Парт, за которыми сидят две девочки, втрое больше, чем парт, за которыми сидят мальчик с девочкой. А парт, за которыми сидят двое мальчиков. вдвое больше, чем парт, за которыми сидят две девочки. Сколько в аудитории мальчиков если известно, что девочек там 14?
 - A) 20
- B) 22
- C) 24
- D) 26
- E) нет правильного ответа
- 28. Преподаватели курса в ЭМШ решили проверить у школьников ДЗ, состоящее из кейса. кроссворда и эссе. Среди 43 школьников курса кейс решили 12, кроссворд -15, а написали эссе — 12 человек. Кроме того, кейс и эссе сделали 3 человека, эссе и кроссворд -5 человек, а кейс и кроссворд -4 человека. Наконец, все 3 задания выполнил только 1 человек. Сколько на курсе школьников, которые вообще не сделали ДЗ?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 29. Кате очень понравилась лекция про чётность и нечётность на одном из курсов в ЭМШ. После пары она записала на доске несколько последовательных натуральных чисел и подсчитала количество четных и нечетных. Оказалось, что 48% чисел на доске нечетные. Сколько всего четных чисел записано на доске?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 30. Аня выяснила, что подарочных стикеров ЭМШ осталось 525, а книг ЭМШ 735. Она решила составить из них одинаковые наборы, причем так, чтобы раздать их наибольшему количеству детей и использовать все книги и все стикеры. Сколько наборов сможет собрать Аня?
 - A) 35
- B) 75
- C) 105
- D) 125
- E) нет правильного ответа

$$(\frac{a}{b^2+ab}-\frac{a-b}{a^2+ab}):(\frac{b^2}{a^3-ab^2}+\frac{1}{a+b})$$

и найдите его значение при a = 84; b = 162.

A)
$$-\frac{1}{2}$$

$$A) - \frac{1}{2}$$
 $B) - \frac{13}{27}$ $C) \frac{1}{2}$ $D) - \frac{13}{14}$

$$C) \frac{1}{2}$$

$$D) - \frac{13}{14}$$

E) нет правильного ответа

2. Найдите натуральное число, заданное выражением

$$\frac{(\sqrt{5} - \sqrt{11})\sqrt{16 + 2\sqrt{55}}}{1 - \sqrt{9}}$$

$$C)$$
 3

E) нет правильного ответа

3. Найдите значение выражения

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{99}+\sqrt{100}}$$

B)9

C) 99

D) 101

E) нет правильного ответа

4. Решите уравнение

$$(x^2 - 3x)^2 - 14x^2 + 42x + 40 = 0$$

В ответе укажите сумму всех найденных решений.

$$A) - 12$$

$$B) - 3$$

$$C)$$
 6

D) 12

E) нет правильного ответа

5. Найдите множество решений неравенства

$$\frac{(x+1)^3(-x^2-2x+8)}{(x+1)(x+3)} \le 0$$

A)
$$(-\infty; -4] \cup (-3; -1) \cup (-1; 2)$$
 B) $[-4; -3) \cup \{-1\} \cup [2; +\infty)$

B)
$$[-4; -3) \cup \{-1\} \cup [2; +\infty)$$

 $(C) [-4; -3) \cup [2; +\infty)$

$$D) (-\infty; -4] \cup (-3; -1) \cup [2; +\infty)$$
 $E)$ нет правильного ответа

6. Решите неравенство

$$\frac{\sqrt{6+x-x^2}}{x^2+3x-4} \ge 0$$

В ответе укажите сумму целых чисел, входящих в решение этого неравенства.

$$A) - 2$$

$$B)$$
 3

$$C)$$
 4

$$D)$$
 5

E) нет правильного ответа

7. Решите систему уравнений

$$\begin{cases} x^2y + xy^2 = 2 - 2x - 2y \\ x + y + 5 = -xy \end{cases}$$

В ответе укажите сумму координат всех решений. Например, если (1; 2) и (3; 4) — решения системы, то в ответе нужно указать 1+2+3+4=10.

$$A) - 6$$

$$B) - 3$$

E) нет правильного ответа

8. Область задана на плоскости системой неравенств

$$\begin{cases} x^2 + y^2 \ge 4\\ y^2 \le 4\\ y \ge |x| \end{cases}$$

Найдите её площадь.

$$A) 4 - \pi$$
 B

B)
$$8 - \pi$$
 C) $4 - 2\pi$

$$C) 4 -$$

$$D) 8 - 2\pi$$

$$E$$
) нет правильного ответа

9. Найдите область определения функции

$$y = \log_{\frac{1}{2}} \left(\frac{-\sqrt{-x+7}}{-2x^2 + 17x - 8} \right)$$

$$(\frac{1}{2};7)$$
 B) (8;

$$8; +\infty)$$

$$C)$$
 $(-\infty;$

$$D) \left(-\infty; \frac{1}{2}\right)$$

 $A)(\frac{1}{2};7)$ $B)(8;+\infty)$ $C)(-\infty;7]$ $D)(-\infty;\frac{1}{2})$ E) нет правильного ответа

10. Найдите наибольшее и наименьшее значения функции
$$f(x) = \sin^2(x) + \cos(2x) - \frac{1}{2}$$
.

$$A) \frac{3}{2}$$
 и $-\frac{3}{4}$ $B) \frac{1}{2}$ и $-\frac{1}{2}$ $C) \frac{3}{2}$ и $-\frac{3}{2}$ $D) \frac{3}{4}$ и $-\frac{1}{2}$ $E)$ нет правильного ответа

11. Найдите
$$\cos{(\frac{5\pi}{2} + 2\alpha)}$$
, если $\cos{\alpha} = \frac{3}{5}$, $-\frac{\pi}{2} < \alpha < 0$.

$$A) - \frac{24}{25}$$

$$B) - \frac{7}{2}$$

$$C)\frac{1}{2}$$

$$D) \frac{2}{2}$$

 $A) - \frac{24}{25}$ $B) - \frac{7}{25}$ $C) \frac{7}{25}$ $D) \frac{24}{25}$ E) нет правильного ответа

12. Прямая l задана на плоскости уравнением 3y - 4x - 5 = 0. Укажите уравнение прямой, перпендикулярной прямой l и проходящей через точку A(2;-1).

$$A) 4y - 3x + 10 = 0$$

$$B) \ 4y + 3x - 2 = 0$$

$$C) -\frac{1}{3}y + \frac{1}{4}x - \frac{5}{6} = 0$$

$$D) \, - rac{1}{3}y + rac{1}{4}x + rac{1}{5} = 0$$
 $E)$ нет правильного ответа

$$E$$
) нет правильного ответ

13. График функции $f(x) = 3x^2 - 18x + 32$ сдвинули на 2 единицы влево и на 3 единицы вниз, получив при этом график функции g(x). Какой вид может иметь g(x)?

A)
$$3x^2 - 10x + 77$$

B)
$$3x^2 - 6x + 5$$

C)
$$3x^2 - 10x + 83$$

$$D) 3x^2 - 6x + 11$$

$$E$$
) нет правильного ответа

14.
$$a_n$$
 — возрастающая арифметическая прогрессия, причем $a_1>0$. Найдите a_4 , если $a_2a_6=105$ и $a_3a_5=117$.

$$A)$$
 7

$$C)$$
 13

E) нет правильного ответа

- (а) Для любого треугольника центр вписанной в него окружности совпадает с центром описанной вокруг него окружности;
- (b) Диагонали ромба перпендикулярны и точкой пересечения делятся пополам;
- (с) Биссектрисы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.

$$E$$
) нет правильного ответа

16.	В трапеции $ABCD$ с основаниями $AD BC$ диагонали пер	есекаются в точке О. Известны
	площади $S(ABCD)=32$ и $S(\Delta BCO)=2$. Найдите площа,	дь треугольника AOD .

- A) 6
- B) 8
- C) 16
- D) 18
- E) нет правильного ответа
- 17. Из точки M провели прямую, касающуюся окружности в точке A. Перпендикуляно AMпровели секущую, проходящую через точку M. Оказалось, что AM=12, а внутренняя часть секущей равна 10. Найдите радиус окружности.
 - A) 12
- B) 13
- C) 17
- D) $2\sqrt{61}$
- E) нет правильного ответа
- 18. Отрезки AM и BH соответственно медиана и высота остроугольного треугольника ABC. Известно, что AH = 1 и $2 \angle MAC = \angle MCA$. Найдите сторону BC.
 - A) 0.5
- B) 1
- C) 2
- D) 3
- E) нет правильного ответа

- 19. Найдите остаток от деления 2^{100000} на 31.
 - A) 1
- B) 3
- C) 13
- D) 30
- E) нет правильного ответа
- 20. При каких значениях параметра a корни уравнения $x^2 + 8x + 2a = 0$ существуют и все принадлежат отрезку [-6, -3]?
 - A) [6; 8)
- B) (7,5;8] C) [6;8] D) [7,5;8]
- E) нет правильного ответа
- 21. Функция f(x) определена для $x \geq 0$, причем для любых положительных a и b верно, что f(ab) = f(a) + f(b). Найдите f(2024), если $f(\frac{1}{2024}) = 1$.
- A) -1 B) $\frac{1}{2024}$ C) 2024
 - D) 1
- E) нет правильного ответа

$$||4 - x^2| - x^2| = 1$$

A) нет решений

- B) $\{\pm\sqrt{\frac{3}{2}}\}$
- $C) \{\sqrt{\frac{3}{2}}; \sqrt{\frac{5}{2}}\}$

- E) нет правильного ответа
- 23. Братья Игорь и Костя привезли в чемоданах сладости на Выездную школу ЭМШ. Когда школа закончилась, оказалось, что общий вес чемоданов братьев за время школы уменьшился на 10%. При этом вес чемодана Игоря уменьшился на 15%, а вес чемодана Кости — на 6%. Известно также, что в конце Выездной школы чемодан Кости весил на 7 кг больше, чем чемодан Игоря в начале школы. Определите первоначальный вес чемоданов Игоря и Кости. В ответе укажите их сумму.
 - A) 60 кг
- В) 70 кг
- C) 80 кг
- D) 90 кг
- E) нет правильного ответа
- 24. Александр вчетверо старше Николая. Сумма их возрастов 80 лет. Через сколько лет Александр будет втрое старше Николая?
 - A) 6
- B) 9
- C) 12
- D) 15
- E) нет правильного ответа

- 25. Катя ехала от экономического факультета до пансионата «Фейерверк», а Влад наоборот. Они встретились, когда Катя проехала 10 км и еще четверть оставшегося ей до пансионата пути, а Влад проехал 20 км и треть оставшегося ему до экономического факультета пути. Какое расстояние между экономическим факультетом и пансионатом «Фейерверк»?
 - A) 50 км
- В) 60 км
- C) 70 км
- D) 80 км
- E) нет правильного ответа
- 26. Школьники, обладающие одинаковой производительностью решения задач, собрались на досуге решить 360 задач по геометрии (каждую задачу решает 1 человек 1 раз). К сожалению, один из школьников приболел, поэтому вместо него задачи отправился решать студент Саша, производительность решения задач которого в три раза больше производительности каждого из школьников. Поэтому каждый школьник в действительности решил на 6 задач меньше, чем планировалось. Все школьники и Саша решали задачи одинаковое время. Сколько школьников в действительности решало задачи?
 - A) 6
- B)9
- C) 10
- D) 12
- E) нет правильного ответа
- 27. На вступительных тестах ЭМШ все школьники в аудитории сели так, что за каждой партой их оказалось по двое. Парт, за которыми сидят две девочки, втрое больше, чем парт, за которыми сидят мальчик с девочкой. А парт, за которыми сидят двое мальчиков. вдвое больше, чем парт, за которыми сидят две девочки. Сколько в аудитории мальчиков, если известно, что девочек там 14?
 - A) 20
- B) 22
- C) 24
- D) 26
- E) нет правильного ответа
- 28. Преподаватели курса в ЭМШ решили проверить у школьников ДЗ, состоящее из кейса. кроссворда и эссе. Среди 43 школьников курса кейс решили 12, кроссворд -15, а написали эссе — 12 человек. Кроме того, кейс и эссе сделали 3 человека, эссе и кроссворд -5 человек, а кейс и кроссворд -4 человека. Наконец, все 3 задания выполнил только 1 человек. Сколько на курсе школьников, которые вообще не сделали ДЗ?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 29. Кате очень понравилась лекция про чётность и нечётность на одном из курсов в ЭМШ. После пары она записала на доске несколько последовательных натуральных чисел и подсчитала количество четных и нечетных. Оказалось, что 48% чисел на доске нечетные. Сколько всего четных чисел записано на доске?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 30. Аня выяснила, что подарочных стикеров ЭМШ осталось 525, а книг ЭМШ 735. Она решила составить из них одинаковые наборы, причем так, чтобы раздать их наибольшему количеству детей и использовать все книги и все стикеры. Сколько наборов сможет собрать Аня?
 - A) 35
- B) 75
- C) 105
- D) 125
- E) нет правильного ответа

$$(\frac{a}{b^2+ab}-\frac{a-b}{a^2+ab}):(\frac{b^2}{a^3-ab^2}+\frac{1}{a+b})$$

и найдите его значение при a = 84; b = 162.

$$A) - \frac{1}{2}$$

$$A) - \frac{1}{2}$$
 $B) - \frac{13}{27}$ $C) \frac{1}{2}$ $D) - \frac{13}{14}$

$$C) \frac{1}{2}$$

$$D) - \frac{13}{14}$$

E) нет правильного ответа

2. Найдите натуральное число, заданное выражением

$$\frac{(\sqrt{5} - \sqrt{11})\sqrt{16 + 2\sqrt{55}}}{1 - \sqrt{9}}$$

- B) 2
- C) 3
- D) 4
- E) нет правильного ответа

3. Найдите значение выражения

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{99}+\sqrt{100}}$$

- B)9
- C) 99

C) 6

- D) 101
- E) нет правильного ответа

4. Решите уравнение

$$(x^2 - 3x)^2 - 14x^2 + 42x + 40 = 0$$

В ответе укажите сумму всех найденных решений.

$$A) - 12$$

B) - 3

- D) 12
- E) нет правильного ответа

5. Найдите множество решений неравенства

$$\frac{(x+1)^3(-x^2-2x+8)}{(x+1)(x+3)} \le 0$$

A)
$$(-\infty; -4] \cup (-3; -1) \cup (-1; 2)$$
 B) $[-4; -3) \cup \{-1\} \cup [2; +\infty)$

B)
$$[-4; -3) \cup \{-1\} \cup [2; +\infty)$$

C)
$$[-4; -3) \cup [2; +\infty)$$

$$D)\;(-\infty;-4]\cup(-3;-1)\cup[2;+\infty)$$
 $E)$ нет правильного ответа

6. Решите неравенство

$$\frac{\sqrt{6+x-x^2}}{x^2+3x-4} \ge 0$$

В ответе укажите сумму целых чисел, входящих в решение этого неравенства.

- A) 2
- B) 3
- C) 4
- D) 5
- E) нет правильного ответа

7. Решите систему уравнений

$$\begin{cases} x^2y + xy^2 = 2 - 2x - 2y \\ x + y + 5 = -xy \end{cases}$$

В ответе укажите сумму координат всех решений. Например, если (1; 2) и (3; 4) — решения системы, то в ответе нужно указать 1+2+3+4=10.

$$A) - 6$$

- B) 3
- C) 2
- D) 4
- E) нет правильного ответа

8. Область задана на плоскости системой неравенств

$$\begin{cases} x^2 + y^2 \ge 4\\ y^2 \le 4\\ y \ge |x| \end{cases}$$

Найдите её площадь.

A)
$$4 - \pi$$

- B) 8π C) $4 2\pi$
- D) $8 2\pi$
- E) нет правильного ответа

9. Найдите область определения функции

$$y = \log_{\frac{1}{2}} \left(\frac{-\sqrt{-x+7}}{-2x^2 + 17x - 8} \right)$$

$$(\frac{1}{2};7)$$
 1

$$B)$$
 $(8; +\infty)$

$$C)$$
 $(-\infty;$

$$D) (-\infty; \frac{1}{2}$$

A) $(\frac{1}{2};7)$ B) $(8;+\infty)$ C) $(-\infty;7]$ D) $(-\infty;\frac{1}{2})$ E) нет правильного ответа

10. Найдите наибольшее и наименьшее значения функции
$$f(x) = \sin^2(x) + \cos(2x) - \frac{1}{2}$$
.

$$A) \frac{3}{2}$$
 и $-\frac{3}{4}$ $B) \frac{1}{2}$ и $-\frac{1}{2}$ $C) \frac{3}{2}$ и $-\frac{3}{2}$ $D) \frac{3}{4}$ и $-\frac{1}{2}$ $E)$ нет правильного ответа

11. Найдите
$$\cos{(\frac{5\pi}{2} + 2\alpha)}$$
, если $\cos{\alpha} = \frac{3}{5}$, $-\frac{\pi}{2} < \alpha < 0$.

$$A) - \frac{24}{25}$$

$$B) - \frac{7}{25}$$

$$C) \frac{7}{25}$$

$$D) \frac{2}{2}$$

 $A) - \frac{24}{25}$ $B) - \frac{7}{25}$ $C) \frac{7}{25}$ $D) \frac{24}{25}$ E) нет правильного ответа

12. Прямая l задана на плоскости уравнением 3y - 4x - 5 = 0. Укажите уравнение прямой, перпендикулярной прямой l и проходящей через точку A(2;-1).

$$A) 4y - 3x + 10 = 0$$

$$B) \ 4y + 3x - 2 = 0$$

$$C) -\frac{1}{3}y + \frac{1}{4}x - \frac{5}{6} = 0$$

$$D) \, - rac{1}{3}y + rac{1}{4}x + rac{1}{5} = 0$$
 $E)$ нет правильного ответа

$$E$$
) нет правильного ответа

13. График функции
$$f(x) = 3x^2 - 18x + 32$$
 сдвинули на 2 единицы влево и на 3 единицы вниз, получив при этом график функции $g(x)$. Какой вид может иметь $g(x)$?

A)
$$3x^2 - 10x + 77$$

B)
$$3x^2 - 6x + 5$$

C)
$$3x^2 - 10x + 83$$

$$D) 3x^2 - 6x + 11$$

$$E$$
) нет правильного ответа

14.
$$a_n$$
 — возрастающая арифметическая прогрессия, причем $a_1>0$. Найдите a_4 , если $a_2a_6=105$ и $a_3a_5=117$.

- B) 11
- C) 13
- D) 17
- E) нет правильного ответа

- (а) Для любого треугольника центр вписанной в него окружности совпадает с центром описанной вокруг него окружности;
- (b) Диагонали ромба перпендикулярны и точкой пересечения делятся пополам;
- (с) Биссектрисы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.
- A) a
- B) a, b
- C) b, c
- D) b
- E) нет правильного ответа

- 16. В трапеции ABCD с основаниями AD||BC диагонали пересекаются в точке O. Известны площади S(ABCD) = 32 и $S(\Delta BCO) = 2$. Найдите площадь треугольника AOD.
 - A) 6
- B) 8
- C) 16
- D) 18
- E) нет правильного ответа
- 17. Из точки M провели прямую, касающуюся окружности в точке A. Перпендикуляно AMпровели секущую, проходящую через точку M. Оказалось, что AM=12, а внутренняя часть секущей равна 10. Найдите радиус окружности.
 - A) 12
- B) 13
- C) 17
- D) $2\sqrt{61}$
- E) нет правильного ответа
- 18. Отрезки AM и BH соответственно медиана и высота остроугольного треугольника ABC. Известно, что AH = 1 и $2 \angle MAC = \angle MCA$. Найдите сторону BC.
 - A) 0.5
- B) 1
- C) 2
- D) 3
- E) нет правильного ответа

- 19. Найдите остаток от деления 2^{100000} на 31.
 - A) 1
- B) 3
- C) 13
- D) 30
- E) нет правильного ответа
- 20. При каких значениях параметра a корни уравнения $x^2 + 8x + 2a = 0$ существуют и все принадлежат отрезку [-6, -3]?
 - A) [6; 8)

- B) (7,5;8] C) [6;8] D) [7,5;8]
- E) нет правильного ответа
- 21. Функция f(x) определена для $x \geq 0$, причем для любых положительных a и b верно, что f(ab) = f(a) + f(b). Найдите f(2024), если $f(\frac{1}{2024}) = 1$.
- A) -1 B) $\frac{1}{2024}$ C) 2024 D) 1
- E) нет правильного ответа

$$||4 - x^2| - x^2| = 1$$

- B) $\{\pm\sqrt{\frac{3}{2}}\}$
- $C) \{\sqrt{\frac{3}{2}}; \sqrt{\frac{5}{2}}\}$

- D) $\{\pm\sqrt{\frac{3}{2}};\pm\sqrt{\frac{5}{2}}\}$
- E) нет правильного ответа
- 23. Братья Игорь и Костя привезли в чемоданах сладости на Выездную школу ЭМШ. Когда школа закончилась, оказалось, что общий вес чемоданов братьев за время школы уменьшился на 10%. При этом вес чемодана Игоря уменьшился на 15%, а вес чемодана Кости — на 6%. Известно также, что в конце Выездной школы чемодан Кости весил на 7 кг больше, чем чемодан Игоря в начале школы. Определите первоначальный вес чемоданов Игоря и Кости. В ответе укажите их сумму.
 - A) 60 кг
- B) 70 кг
- C) 80 кг
- D) 90 кг
- E) нет правильного ответа
- 24. Александр вчетверо старше Николая. Сумма их возрастов 80 лет. Через сколько лет Александр будет втрое старше Николая?
 - A) 6
- B) 9
- C) 12
- D) 15
- E) нет правильного ответа

- 25. Катя ехала от экономического факультета до пансионата «Фейерверк», а Влад наоборот. Они встретились, когда Катя проехала 10 км и еще четверть оставшегося ей до пансионата пути, а Влад проехал 20 км и треть оставшегося ему до экономического факультета пути. Какое расстояние между экономическим факультетом и пансионатом «Фейерверк»?
 - A) 50 км
- В) 60 км
- C) 70 км
- D) 80 км
- E) нет правильного ответа
- 26. Школьники, обладающие одинаковой производительностью решения задач, собрались на досуге решить 360 задач по геометрии (каждую задачу решает 1 человек 1 раз). К сожалению, один из школьников приболел, поэтому вместо него задачи отправился решать студент Саша, производительность решения задач которого в три раза больше производительности каждого из школьников. Поэтому каждый школьник в действительности решил на 6 задач меньше, чем планировалось. Все школьники и Саша решали задачи одинаковое время. Сколько школьников в действительности решало задачи?
 - A) 6
- B) 9
- C) 10
- D) 12
- E) нет правильного ответа
- 27. На вступительных тестах ЭМШ все школьники в аудитории сели так, что за каждой партой их оказалось по двое. Парт, за которыми сидят две девочки, втрое больше, чем парт, за которыми сидят мальчик с девочкой. А парт, за которыми сидят двое мальчиков. вдвое больше, чем парт, за которыми сидят две девочки. Сколько в аудитории мальчиков если известно, что девочек там 14?
 - A) 20
- B) 22
- C) 24
- D) 26
- E) нет правильного ответа
- 28. Преподаватели курса в ЭМШ решили проверить у школьников ДЗ, состоящее из кейса. кроссворда и эссе. Среди 43 школьников курса кейс решили 12, кроссворд -15, а написали эссе — 12 человек. Кроме того, кейс и эссе сделали 3 человека, эссе и кроссворд -5 человек, а кейс и кроссворд -4 человека. Наконец, все 3 задания выполнил только 1 человек. Сколько на курсе школьников, которые вообще не сделали ДЗ?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 29. Кате очень понравилась лекция про чётность и нечётность на одном из курсов в ЭМШ. После пары она записала на доске несколько последовательных натуральных чисел и подсчитала количество четных и нечетных. Оказалось, что 48% чисел на доске нечетные. Сколько всего четных чисел записано на доске?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 30. Аня выяснила, что подарочных стикеров ЭМШ осталось 525, а книг ЭМШ 735. Она решила составить из них одинаковые наборы, причем так, чтобы раздать их наибольшему количеству детей и использовать все книги и все стикеры. Сколько наборов сможет собрать Аня?
 - A) 35
- B) 75
- C) 105
- D) 125
- E) нет правильного ответа

$$(\frac{a}{b^2+ab}-\frac{a-b}{a^2+ab}):(\frac{b^2}{a^3-ab^2}+\frac{1}{a+b})$$

и найдите его значение при a = 84; b = 162.

A)
$$-\frac{1}{2}$$

A)
$$-\frac{1}{2}$$
 B) $-\frac{13}{27}$ C) $\frac{1}{2}$ D) $-\frac{13}{14}$

$$C) \frac{1}{2}$$

$$D) - \frac{13}{14}$$

E) нет правильного ответа

2. Найдите натуральное число, заданное выражением

$$\frac{(\sqrt{5} - \sqrt{11})\sqrt{16 + 2\sqrt{58}}}{1 - \sqrt{9}}$$

- B) 2
- C) 3
- D) 4
- E) нет правильного ответа

3. Найдите значение выражения

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{99}+\sqrt{100}}$$

- A) 1
- B)9
- C) 99
- D) 101

D) 12

E) нет правильного ответа

4. Решите уравнение

$$(x^2 - 3x)^2 - 14x^2 + 42x + 40 = 0$$

В ответе укажите сумму всех найденных решений.

$$A) - 12$$

- B) 3
- C) 6

E) нет правильного ответа

5. Найдите множество решений неравенства

$$\frac{(x+1)^3(-x^2-2x+8)}{(x+1)(x+3)} \le 0$$

A)
$$(-\infty; -4] \cup (-3; -1) \cup (-1; 2)$$
 B) $[-4; -3) \cup \{-1\} \cup [2; +\infty)$

B)
$$[-4; -3) \cup \{-1\} \cup [2; +\infty)$$

$$C) [-4; -3) \cup [2; +\infty)$$

$$D)\;(-\infty;-4]\cup(-3;-1)\cup[2;+\infty)$$
 $E)$ нет правильного ответа

6. Решите неравенство

$$\frac{\sqrt{6+x-x^2}}{x^2+3x-4} \ge 0$$

В ответе укажите сумму целых чисел, входящих в решение этого неравенства.

- A) 2
- B) 3
- C) 4
- D) 5
- E) нет правильного ответа

7. Решите систему уравнений

$$\begin{cases} x^2y + xy^2 = 2 - 2x - 2y \\ x + y + 5 = -xy \end{cases}$$

В ответе укажите сумму координат всех решений. Например, если (1; 2) и (3; 4) — решения системы, то в ответе нужно указать 1+2+3+4=10.

$$A) - 6$$

- B) 3
- C) 2
- D) 4
- E) нет правильного ответа

8. Область задана на плоскости системой неравенств

$$\begin{cases} x^2 + y^2 \ge 4\\ y^2 \le 4\\ y \ge |x| \end{cases}$$

Найдите её площадь.

A)
$$4-\pi$$
 B

- B) 8π C) $4 2\pi$
- D) $8 2\pi$
- E) нет правильного ответа

9. Найдите область определения функции

$$y = \log_{\frac{1}{2}} \left(\frac{-\sqrt{-x+7}}{-2x^2 + 17x - 8} \right)$$

A)
$$(\frac{1}{2};7)$$

$$C)$$
 $(-\infty;$

 $A)(\frac{1}{2};7)$ $B)(8;+\infty)$ $C)(-\infty;7]$ $D)(-\infty;\frac{1}{2})$ E) нет правильного ответа

10. Найдите наибольшее и наименьшее значения функции
$$f(x) = \sin^2(x) + \cos(2x) - \frac{1}{2}$$
.

$$A) \frac{3}{2}$$
 и $-\frac{3}{4}$ $B) \frac{1}{2}$ и $-\frac{1}{2}$ $C) \frac{3}{2}$ и $-\frac{3}{2}$ $D) \frac{3}{4}$ и $-\frac{1}{2}$ $E)$ нет правильного ответа

11. Найдите
$$\cos{(\frac{5\pi}{2} + 2\alpha)}$$
, если $\cos{\alpha} = \frac{3}{5}$, $-\frac{\pi}{2} < \alpha < 0$.

$$A) - \frac{24}{25}$$

$$B) - \frac{7}{2!}$$

$$C) \frac{7}{25}$$

$$D) \frac{24}{25}$$

 $A) - \frac{24}{25}$ $B) - \frac{7}{25}$ $C) \frac{7}{25}$ $D) \frac{24}{25}$ E) нет правильного ответа

12. Прямая l задана на плоскости уравнением 3y - 4x - 5 = 0. Укажите уравнение прямой, перпендикулярной прямой l и проходящей через точку A(2;-1).

$$A) 4y - 3x + 10 = 0$$

$$B) \ 4y + 3x - 2 = 0$$

$$C) -\frac{1}{3}y + \frac{1}{4}x - \frac{5}{6} = 0$$

$$D) \, - rac{1}{3}y + rac{1}{4}x + rac{1}{5} = 0$$
 $E)$ нет правильного ответа

$$E$$
) нет правильного ответ

13. График функции
$$f(x) = 3x^2 - 18x + 32$$
 сдвинули на 2 единицы влево и на 3 единицы вниз, получив при этом график функции $g(x)$. Какой вид может иметь $g(x)$?

A)
$$3x^2 - 10x + 77$$

B)
$$3x^2 - 6x + 5$$

C)
$$3x^2 - 10x + 83$$

$$D) 3x^2 - 6x + 11$$

$$E$$
) нет правильного ответа

14.
$$a_n$$
 — возрастающая арифметическая прогрессия, причем $a_1>0$. Найдите a_4 , если $a_2a_6=105$ и $a_3a_5=117$.

- B) 11
- C) 13
- D) 17
- E) нет правильного ответа

- (а) Для любого треугольника центр вписанной в него окружности совпадает с центром описанной вокруг него окружности;
- (b) Диагонали ромба перпендикулярны и точкой пересечения делятся пополам;
- (с) Биссектрисы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.
- A) a
- B) a, b
- C) b, c
- D) b
- E) нет правильного ответа

16.	В трапеции $ABCD$ с основаниями $AD BC$ диагонали пересекаются в точке $O.$ Известны	
	площади $S(ABCD)=32$ и $S(\Delta BCO)=2$. Найдите площадь треугольника AOD .	

- A) 6
- B) 8
- C) 16
- D) 18
- E) нет правильного ответа
- 17. Из точки M провели прямую, касающуюся окружности в точке A. Перпендикуляно AMпровели секущую, проходящую через точку M. Оказалось, что AM=12, а внутренняя часть секущей равна 10. Найдите радиус окружности.
 - A) 12
- B) 13
- C) 17
- D) $2\sqrt{61}$
- E) нет правильного ответа
- 18. Отрезки AM и BH соответственно медиана и высота остроугольного треугольника ABC. Известно, что AH = 1 и $2 \angle MAC = \angle MCA$. Найдите сторону BC.
 - A) 0.5
- B) 1
- C) 2
- D) 3
- E) нет правильного ответа

- 19. Найдите остаток от деления 2^{100000} на 31.
 - A) 1
- B) 3
- C) 13
- D) 30
- E) нет правильного ответа
- 20. При каких значениях параметра a корни уравнения $x^2 + 8x + 2a = 0$ существуют и все принадлежат отрезку [-6, -3]?
 - A) [6; 8)
- B) (7,5;8] C) [6;8] D) [7,5;8]
- E) нет правильного ответа
- 21. Функция f(x) определена для $x \geq 0$, причем для любых положительных a и b верно, что f(ab) = f(a) + f(b). Найдите f(2024), если $f(\frac{1}{2024}) = 1$.
- A) -1 B) $\frac{1}{2024}$ C) 2024 D) 1
- E) нет правильного ответа

$$||4 - x^2| - x^2| = 1$$

- B) $\{\pm\sqrt{\frac{3}{2}}\}$
- $C) \{\sqrt{\frac{3}{2}}; \sqrt{\frac{5}{2}}\}$

- D) $\{\pm\sqrt{\frac{3}{2}};\pm\sqrt{\frac{5}{2}}\}$
- E) нет правильного ответа
- 23. Братья Игорь и Костя привезли в чемоданах сладости на Выездную школу ЭМШ. Когда школа закончилась, оказалось, что общий вес чемоданов братьев за время школы уменьшился на 10%. При этом вес чемодана Игоря уменьшился на 15%, а вес чемодана Кости — на 6%. Известно также, что в конце Выездной школы чемодан Кости весил на 7 кг больше, чем чемодан Игоря в начале школы. Определите первоначальный вес чемоданов Игоря и Кости. В ответе укажите их сумму.
 - A) 60 кг
- В) 70 кг
- C) 80 кг
- D) 90 кг
- E) нет правильного ответа
- 24. Александр вчетверо старше Николая. Сумма их возрастов 80 лет. Через сколько лет Александр будет втрое старше Николая?
 - A) 6
- B) 9
- C) 12
- D) 15
- E) нет правильного ответа

- 25. Катя ехала от экономического факультета до пансионата «Фейерверк», а Влад наоборот. Они встретились, когда Катя проехала 10 км и еще четверть оставшегося ей до пансионата пути, а Влад проехал 20 км и треть оставшегося ему до экономического факультета пути. Какое расстояние между экономическим факультетом и пансионатом «Фейерверк»?
 - A) 50 км
- В) 60 км
- C) 70 км
- D) 80 км
- E) нет правильного ответа
- 26. Школьники, обладающие одинаковой производительностью решения задач, собрались на досуге решить 360 задач по геометрии (каждую задачу решает 1 человек 1 раз). К сожалению, один из школьников приболел, поэтому вместо него задачи отправился решать студент Саша, производительность решения задач которого в три раза больше производительности каждого из школьников. Поэтому каждый школьник в действительности решил на 6 задач меньше, чем планировалось. Все школьники и Саша решали задачи одинаковое время. Сколько школьников в действительности решало задачи?
 - A) 6
- B)9
- C) 10
- D) 12
- E) нет правильного ответа
- 27. На вступительных тестах ЭМШ все школьники в аудитории сели так, что за каждой партой их оказалось по двое. Парт, за которыми сидят две девочки, втрое больше, чем парт, за которыми сидят мальчик с девочкой. А парт, за которыми сидят двое мальчиков. вдвое больше, чем парт, за которыми сидят две девочки. Сколько в аудитории мальчиков, если известно, что девочек там 14?
 - A) 20
- B) 22
- C) 24
- D) 26
- E) нет правильного ответа
- 28. Преподаватели курса в ЭМШ решили проверить у школьников ДЗ, состоящее из кейса. кроссворда и эссе. Среди 43 школьников курса кейс решили 12, кроссворд -15, а написали эссе — 12 человек. Кроме того, кейс и эссе сделали 3 человека, эссе и кроссворд -5 человек, а кейс и кроссворд -4 человека. Наконец, все 3 задания выполнил только 1 человек. Сколько на курсе школьников, которые вообще не сделали ДЗ?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 29. Кате очень понравилась лекция про чётность и нечётность на одном из курсов в ЭМШ. После пары она записала на доске несколько последовательных натуральных чисел и подсчитала количество четных и нечетных. Оказалось, что 48% чисел на доске нечетные. Сколько всего четных чисел записано на доске?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 30. Аня выяснила, что подарочных стикеров ЭМШ осталось 525, а книг ЭМШ 735. Она решила составить из них одинаковые наборы, причем так, чтобы раздать их наибольшему количеству детей и использовать все книги и все стикеры. Сколько наборов сможет собрать Аня?
 - A) 35
- B) 75
- C) 105
- D) 125
- E) нет правильного ответа

$$(\frac{a}{b^2+ab}-\frac{a-b}{a^2+ab}):(\frac{b^2}{a^3-ab^2}+\frac{1}{a+b})$$

и найдите его значение при a = 84; b = 162.

A)
$$-\frac{1}{2}$$

$$A) - \frac{1}{2}$$
 $B) - \frac{13}{27}$ $C) \frac{1}{2}$ $D) - \frac{13}{14}$

$$C) \frac{1}{2}$$

$$D) - \frac{13}{14}$$

E) нет правильного ответа

2. Найдите натуральное число, заданное выражением

$$\frac{(\sqrt{5} - \sqrt{11})\sqrt{16 + 2\sqrt{55}}}{1 - \sqrt{9}}$$

$$B)$$
 2

$$C)$$
 3

E) нет правильного ответа

3. Найдите значение выражения

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{99}+\sqrt{100}}$$

A) 1

C) 99

D) 101

E) нет правильного ответа

4. Решите уравнение

$$(x^2 - 3x)^2 - 14x^2 + 42x + 40 = 0$$

В ответе укажите сумму всех найденных решений.

$$A) - 12$$

$$B) - 3$$

D) 12

E) нет правильного ответа

5. Найдите множество решений неравенства

$$\frac{(x+1)^3(-x^2-2x+8)}{(x+1)(x+3)} \le 0$$

A)
$$(-\infty; -4] \cup (-3; -1) \cup (-1; 2)$$
 B) $[-4; -3) \cup \{-1\} \cup [2; +\infty)$

B)
$$[-4; -3) \cup \{-1\} \cup [2; +\infty)$$

 $(C) [-4; -3) \cup [2; +\infty)$

$$D) (-\infty; -4] \cup (-3; -1) \cup [2; +\infty)$$
 $E)$ нет правильного ответа

6. Решите неравенство

$$\frac{\sqrt{6+x-x^2}}{x^2+3x-4} \ge 0$$

В ответе укажите сумму целых чисел, входящих в решение этого неравенства.

- A) 2
- B) 3
- C) 4
- D) 5

E) нет правильного ответа

7. Решите систему уравнений

$$\begin{cases} x^2y + xy^2 = 2 - 2x - 2y \\ x + y + 5 = -xy \end{cases}$$

В ответе укажите сумму координат всех решений. Например, если (1; 2) и (3; 4) — решения системы, то в ответе нужно указать 1+2+3+4=10.

$$A) - 6$$

$$B) - 3$$

$$C)$$
 2

E) нет правильного ответа

8. Область задана на плоскости системой неравенств

$$\begin{cases} x^2 + y^2 \ge 4 \\ y^2 \le 4 \\ y \ge |x| \end{cases}$$

Найдите её площадь.

A)
$$4 - \pi$$
 B) 8

B)
$$8 - \pi$$
 C) $4 - 2\pi$

$$D) 8 - 2\pi$$

E) нет правильного ответа

9. Найдите область определения функции

$$y = \log_{\frac{1}{2}} \left(\frac{-\sqrt{-x+7}}{-2x^2 + 17x - 8} \right)$$

$$(\frac{1}{2};7)$$
 B) (8

$$B) (8; +\infty)$$

$$C)$$
 $(-\infty;$

$$D) \left(-\infty; \frac{1}{2}\right)$$

A) $(\frac{1}{2};7)$ B) $(8;+\infty)$ C) $(-\infty;7]$ D) $(-\infty;\frac{1}{2})$ E) нет правильного ответа

10. Найдите наибольшее и наименьшее значения функции
$$f(x) = \sin^2(x) + \cos(2x) - \frac{1}{2}$$
.

$$A) \frac{3}{2}$$
 и $-\frac{3}{4}$ $B) \frac{1}{2}$ и $-\frac{1}{2}$ $C) \frac{3}{2}$ и $-\frac{3}{2}$ $D) \frac{3}{4}$ и $-\frac{1}{2}$ $E)$ нет правильного ответа

11. Найдите
$$\cos{(\frac{5\pi}{2} + 2\alpha)}$$
, если $\cos{\alpha} = \frac{3}{5}$, $-\frac{\pi}{2} < \alpha < 0$.

$$A) - \frac{24}{25}$$

$$B) - \frac{7}{2}$$

$$C) \frac{7}{25}$$

$$D) \frac{2}{2}$$

 $A) - \frac{24}{25}$ $B) - \frac{7}{25}$ $C) \frac{7}{25}$ $D) \frac{24}{25}$ E) нет правильного ответа

12. Прямая l задана на плоскости уравнением 3y - 4x - 5 = 0. Укажите уравнение прямой, перпендикулярной прямой l и проходящей через точку A(2;-1).

$$A) 4y - 3x + 10 = 0$$

$$B) \ 4y + 3x - 2 = 0$$

$$C) -\frac{1}{3}y + \frac{1}{4}x - \frac{5}{6} = 0$$

$$D) \, - rac{1}{3}y + rac{1}{4}x + rac{1}{5} = 0$$
 $E)$ нет правильного ответа

$$E$$
) нет правильного ответа

13. График функции $f(x) = 3x^2 - 18x + 32$ сдвинули на 2 единицы влево и на 3 единицы вниз, получив при этом график функции g(x). Какой вид может иметь g(x)?

A)
$$3x^2 - 10x + 77$$

B)
$$3x^2 - 6x + 5$$

C)
$$3x^2 - 10x + 83$$

$$D) 3x^2 - 6x + 11$$

$$E$$
) нет правильного ответа

14.
$$a_n$$
 — возрастающая арифметическая прогрессия, причем $a_1>0$. Найдите a_4 , если $a_2a_6=105$ и $a_3a_5=117$.

E) нет правильного ответа

15. Укажите вариант ответа, в котором перечислены все верные утверждения:

- (а) Для любого треугольника центр вписанной в него окружности совпадает с центром описанной вокруг него окружности;
- (b) Диагонали ромба перпендикулярны и точкой пересечения делятся пополам;
- (с) Биссектрисы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.

16.	В трапеции АВСД	с основаниями $AD BC$ диагонали пересекаются в точке $O.$ Известны	1
	площади $S(ABCD)$	$=32$ и $S(\Delta BCO)=2$. Найдите площадь треугольника AOD .	

- A) 6
- B) 8
- C) 16
- D) 18
- E) нет правильного ответа
- 17. Из точки M провели прямую, касающуюся окружности в точке A. Перпендикуляно AMпровели секущую, проходящую через точку M. Оказалось, что AM=12, а внутренняя часть секущей равна 10. Найдите радиус окружности.
 - A) 12
- B) 13
- C) 17
- D) $2\sqrt{61}$
- E) нет правильного ответа
- 18. Отрезки AM и BH соответственно медиана и высота остроугольного треугольника ABC. Известно, что AH = 1 и $2 \angle MAC = \angle MCA$. Найдите сторону BC.
 - A) 0.5
- B) 1
- C) 2
- D) 3
- E) нет правильного ответа

- 19. Найдите остаток от деления 2^{100000} на 31.
 - A) 1
- B) 3
- C) 13
- D) 30
- E) нет правильного ответа
- 20. При каких значениях параметра a корни уравнения $x^2 + 8x + 2a = 0$ существуют и все принадлежат отрезку [-6, -3]?
 - A) [6; 8)

- B) (7,5;8] C) [6;8] D) [7,5;8]
- E) нет правильного ответа
- 21. Функция f(x) определена для $x \geq 0$, причем для любых положительных a и b верно, что f(ab) = f(a) + f(b). Найдите f(2024), если $f(\frac{1}{2024}) = 1$.
- A) -1 B) $\frac{1}{2024}$ C) 2024
- D) 1
- E) нет правильного ответа

$$||4 - x^2| - x^2| = 1$$

A) нет решений

- B) $\{\pm\sqrt{\frac{3}{2}}\}$
- $C) \{\sqrt{\frac{3}{2}}; \sqrt{\frac{5}{2}}\}$

- E) нет правильного ответа
- 23. Братья Игорь и Костя привезли в чемоданах сладости на Выездную школу ЭМШ. Когда школа закончилась, оказалось, что общий вес чемоданов братьев за время школы уменьшился на 10%. При этом вес чемодана Игоря уменьшился на 15%, а вес чемодана Кости — на 6%. Известно также, что в конце Выездной школы чемодан Кости весил на 7 кг больше, чем чемодан Игоря в начале школы. Определите первоначальный вес чемоданов Игоря и Кости. В ответе укажите их сумму.
 - A) 60 кг
- В) 70 кг
- C) 80 кг
- D) 90 кг
- E) нет правильного ответа
- 24. Александр вчетверо старше Николая. Сумма их возрастов 80 лет. Через сколько лет Александр будет втрое старше Николая?
 - A) 6
- B) 9
- C) 12
- D) 15
- E) нет правильного ответа

- 25. Катя ехала от экономического факультета до пансионата «Фейерверк», а Влад наоборот. Они встретились, когда Катя проехала 10 км и еще четверть оставшегося ей до пансионата пути, а Влад проехал 20 км и треть оставшегося ему до экономического факультета пути. Какое расстояние между экономическим факультетом и пансионатом «Фейерверк»?
 - A) 50 км
- В) 60 км
- C) 70 км
- D) 80 км
- E) нет правильного ответа
- 26. Школьники, обладающие одинаковой производительностью решения задач, собрались на досуге решить 360 задач по геометрии (каждую задачу решает 1 человек 1 раз). К сожалению, один из школьников приболел, поэтому вместо него задачи отправился решать студент Саша, производительность решения задач которого в три раза больше производительности каждого из школьников. Поэтому каждый школьник в действительности решил на 6 задач меньше, чем планировалось. Все школьники и Саша решали задачи одинаковое время. Сколько школьников в действительности решало задачи?
 - A) 6
- B)9
- C) 10
- D) 12
- E) нет правильного ответа
- 27. На вступительных тестах ЭМШ все школьники в аудитории сели так, что за каждой партой их оказалось по двое. Парт, за которыми сидят две девочки, втрое больше, чем парт, за которыми сидят мальчик с девочкой. А парт, за которыми сидят двое мальчиков. вдвое больше, чем парт, за которыми сидят две девочки. Сколько в аудитории мальчиков, если известно, что девочек там 14?
 - A) 20
- B) 22
- C) 24
- D) 26
- E) нет правильного ответа
- 28. Преподаватели курса в ЭМШ решили проверить у школьников ДЗ, состоящее из кейса. кроссворда и эссе. Среди 43 школьников курса кейс решили 12, кроссворд -15, а написали эссе — 12 человек. Кроме того, кейс и эссе сделали 3 человека, эссе и кроссворд -5 человек, а кейс и кроссворд -4 человека. Наконец, все 3 задания выполнил только 1 человек. Сколько на курсе школьников, которые вообще не сделали ДЗ?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 29. Кате очень понравилась лекция про чётность и нечётность на одном из курсов в ЭМШ. После пары она записала на доске несколько последовательных натуральных чисел и подсчитала количество четных и нечетных. Оказалось, что 48% чисел на доске нечетные. Сколько всего четных чисел записано на доске?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 30. Аня выяснила, что подарочных стикеров ЭМШ осталось 525, а книг ЭМШ 735. Она решила составить из них одинаковые наборы, причем так, чтобы раздать их наибольшему количеству детей и использовать все книги и все стикеры. Сколько наборов сможет собрать Аня?
 - A) 35
- B) 75
- C) 105
- D) 125
- E) нет правильного ответа

$$(\frac{a}{b^2+ab}-\frac{a-b}{a^2+ab}):(\frac{b^2}{a^3-ab^2}+\frac{1}{a+b})$$

и найдите его значение при a = 84; b = 162.

A)
$$-\frac{1}{2}$$

A)
$$-\frac{1}{2}$$
 B) $-\frac{13}{27}$ C) $\frac{1}{2}$ D) $-\frac{13}{14}$

$$C) \frac{1}{2}$$

$$D) - \frac{13}{14}$$

E) нет правильного ответа

2. Найдите натуральное число, заданное выражением

$$\frac{(\sqrt{5} - \sqrt{11})\sqrt{16 + 2\sqrt{55}}}{1 - \sqrt{9}}$$

- B) 2
- C) 3
- D) 4
- E) нет правильного ответа

3. Найдите значение выражения

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{99}+\sqrt{100}}$$

- A) 1
- B)9
- C) 99
- D) 101
- E) нет правильного ответа

4. Решите уравнение

$$(x^2 - 3x)^2 - 14x^2 + 42x + 40 = 0$$

В ответе укажите сумму всех найденных решений.

- A) 12
- B) 3
- C) 6
- D) 12

E) нет правильного ответа

5. Найдите множество решений неравенства

$$\frac{(x+1)^3(-x^2-2x+8)}{(x+1)(x+3)} \le 0$$

A)
$$(-\infty; -4] \cup (-3; -1) \cup (-1; 2)$$
 B) $[-4; -3) \cup \{-1\} \cup [2; +\infty)$

B)
$$[-4; -3) \cup \{-1\} \cup [2; +\infty)$$

$$C) [-4; -3) \cup [2; +\infty)$$

$$D)\;(-\infty;-4]\cup(-3;-1)\cup[2;+\infty)$$
 $E)$ нет правильного ответа

6. Решите неравенство

$$\frac{\sqrt{6+x-x^2}}{x^2+3x-4} \ge 0$$

В ответе укажите сумму целых чисел, входящих в решение этого неравенства.

- A) 2
- B) 3
- C) 4
- D) 5
- E) нет правильного ответа

7. Решите систему уравнений

$$\begin{cases} x^2y + xy^2 = 2 - 2x - 2y \\ x + y + 5 = -xy \end{cases}$$

В ответе укажите сумму координат всех решений. Например, если (1; 2) и (3; 4) — решения системы, то в ответе нужно указать 1+2+3+4=10.

$$A) - 6$$

- B) 3
- C) 2
- D) 4
- E) нет правильного ответа

8. Область задана на плоскости системой неравенств

$$\begin{cases} x^2 + y^2 \ge 4 \\ y^2 \le 4 \\ y \ge |x| \end{cases}$$

Найдите её площадь.

A)
$$4-\pi$$

- B) 8π C) $4 2\pi$
- D) $8 2\pi$
- E) нет правильного ответа

9. Найдите область определения функции

$$y = \log_{\frac{1}{2}} \left(\frac{-\sqrt{-x+7}}{-2x^2 + 17x - 8} \right)$$

A)
$$(\frac{1}{2};7)$$

$$C)$$
 $(-\infty;$

 $A)(\frac{1}{2};7)$ $B)(8;+\infty)$ $C)(-\infty;7]$ $D)(-\infty;\frac{1}{2})$ E) нет правильного ответа

10. Найдите наибольшее и наименьшее значения функции
$$f(x) = \sin^2(x) + \cos(2x) - \frac{1}{2}$$
.

$$A) \frac{3}{2}$$
 и $-\frac{3}{4}$ $B) \frac{1}{2}$ и $-\frac{1}{2}$ $C) \frac{3}{2}$ и $-\frac{3}{2}$ $D) \frac{3}{4}$ и $-\frac{1}{2}$ $E)$ нет правильного ответа

11. Найдите
$$\cos{(\frac{5\pi}{2} + 2\alpha)}$$
, если $\cos{\alpha} = \frac{3}{5}$, $-\frac{\pi}{2} < \alpha < 0$.

$$A) - \frac{24}{25}$$

$$B) - \frac{7}{2}$$

C)
$$\frac{7}{25}$$

$$D)\frac{2}{2}$$

 $A) - \frac{24}{25}$ $B) - \frac{7}{25}$ $C) \frac{7}{25}$ $D) \frac{24}{25}$ E) нет правильного ответа

12. Прямая l задана на плоскости уравнением 3y - 4x - 5 = 0. Укажите уравнение прямой, перпендикулярной прямой l и проходящей через точку A(2;-1).

$$A) 4y - 3x + 10 = 0$$

$$B) \ 4y + 3x - 2 = 0$$

$$C) -\frac{1}{3}y + \frac{1}{4}x - \frac{5}{6} = 0$$

$$D) \, - rac{1}{3}y + rac{1}{4}x + rac{1}{5} = 0$$
 $E)$ нет правильного ответа

$$E$$
) нет правильного ответ

13. График функции
$$f(x) = 3x^2 - 18x + 32$$
 сдвинули на 2 единицы влево и на 3 единицы вниз, получив при этом график функции $g(x)$. Какой вид может иметь $g(x)$?

A)
$$3x^2 - 10x + 77$$

B)
$$3x^2 - 6x + 5$$

C)
$$3x^2 - 10x + 83$$

$$D) 3x^2 - 6x + 11$$

$$E$$
) нет правильного ответа

$$14.\ a_n$$
 — возрастающая арифметическая прогрессия, причем $a_1>0.$ Найдите $a_4,$ если $a_2a_6=105$ и $a_3a_5=117.$

$$A)$$
 7

- B) 11
- C) 13
- D) 17
- E) нет правильного ответа

- (а) Для любого треугольника центр вписанной в него окружности совпадает с центром описанной вокруг него окружности;
- (b) Диагонали ромба перпендикулярны и точкой пересечения делятся пополам;
- (с) Биссектрисы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.
- A) a
- B) a, b
- C) b, c
- D) b
- E) нет правильного ответа

16.	В трапеции $ABCD$	с основаниями AD	O BC диагонали	пересекаются	в точке О. Изве	стны
	площади $S(ABCD)$	$=32$ и $S(\Delta BCO)$ =	= 2. Найдите пло	ощадь треуголи	ьника AOD .	

- A) 6
- B) 8
- C) 16
- D) 18
- E) нет правильного ответа
- 17. Из точки M провели прямую, касающуюся окружности в точке A. Перпендикуляно AMпровели секущую, проходящую через точку M. Оказалось, что AM=12, а внутренняя часть секущей равна 10. Найдите радиус окружности.
 - A) 12
- B) 13
- C) 17
- D) $2\sqrt{61}$
- E) нет правильного ответа
- 18. Отрезки AM и BH соответственно медиана и высота остроугольного треугольника ABC. Известно, что AH = 1 и $2 \angle MAC = \angle MCA$. Найдите сторону BC.
 - A) 0.5
- B) 1
- C) 2
- D) 3
- E) нет правильного ответа

- 19. Найдите остаток от деления 2^{100000} на 31.
 - A) 1
- B) 3
- C) 13
- D) 30
- E) нет правильного ответа
- 20. При каких значениях параметра a корни уравнения $x^2 + 8x + 2a = 0$ существуют и все принадлежат отрезку [-6, -3]?
 - A) [6; 8)

- B) (7,5;8] C) [6;8] D) [7,5;8]
- E) нет правильного ответа
- 21. Функция f(x) определена для $x \geq 0$, причем для любых положительных a и b верно, что f(ab) = f(a) + f(b). Найдите f(2024), если $f(\frac{1}{2024}) = 1$.
- A) -1 B) $\frac{1}{2024}$ C) 2024
 - D) 1
- E) нет правильного ответа

$$||4 - x^2| - x^2| = 1$$

A) нет решений

- B) $\{\pm\sqrt{\frac{3}{2}}\}$
- $C) \{\sqrt{\frac{3}{2}}; \sqrt{\frac{5}{2}}\}$

- E) нет правильного ответа
- 23. Братья Игорь и Костя привезли в чемоданах сладости на Выездную школу ЭМШ. Когда школа закончилась, оказалось, что общий вес чемоданов братьев за время школы уменьшился на 10%. При этом вес чемодана Игоря уменьшился на 15%, а вес чемодана Кости — на 6%. Известно также, что в конце Выездной школы чемодан Кости весил на 7 кг больше, чем чемодан Игоря в начале школы. Определите первоначальный вес чемоданов Игоря и Кости. В ответе укажите их сумму.
 - A) 60 кг
- В) 70 кг
- C) 80 кг
- D) 90 кг
- E) нет правильного ответа
- 24. Александр вчетверо старше Николая. Сумма их возрастов 80 лет. Через сколько лет Александр будет втрое старше Николая?
 - A) 6
- B) 9
- C) 12
- D) 15
- E) нет правильного ответа

- 25. Катя ехала от экономического факультета до пансионата «Фейерверк», а Влад наоборот. Они встретились, когда Катя проехала 10 км и еще четверть оставшегося ей до пансионата пути, а Влад проехал 20 км и треть оставшегося ему до экономического факультета пути. Какое расстояние между экономическим факультетом и пансионатом «Фейерверк»?
 - A) 50 км
- В) 60 км
- C) 70 км
- D) 80 км
- E) нет правильного ответа
- 26. Школьники, обладающие одинаковой производительностью решения задач, собрались на досуге решить 360 задач по геометрии (каждую задачу решает 1 человек 1 раз). К сожалению, один из школьников приболел, поэтому вместо него задачи отправился решать студент Саша, производительность решения задач которого в три раза больше производительности каждого из школьников. Поэтому каждый школьник в действительности решил на 6 задач меньше, чем планировалось. Все школьники и Саша решали задачи одинаковое время. Сколько школьников в действительности решало задачи?
 - A) 6
- B)9
- C) 10
- D) 12
- E) нет правильного ответа
- 27. На вступительных тестах ЭМШ все школьники в аудитории сели так, что за каждой партой их оказалось по двое. Парт, за которыми сидят две девочки, втрое больше, чем парт, за которыми сидят мальчик с девочкой. А парт, за которыми сидят двое мальчиков. вдвое больше, чем парт, за которыми сидят две девочки. Сколько в аудитории мальчиков если известно, что девочек там 14?
 - A) 20
- B) 22
- C) 24
- D) 26
- E) нет правильного ответа
- 28. Преподаватели курса в ЭМШ решили проверить у школьников ДЗ, состоящее из кейса. кроссворда и эссе. Среди 43 школьников курса кейс решили 12, кроссворд -15, а написали эссе — 12 человек. Кроме того, кейс и эссе сделали 3 человека, эссе и кроссворд -5 человек, а кейс и кроссворд -4 человека. Наконец, все 3 задания выполнил только 1 человек. Сколько на курсе школьников, которые вообще не сделали ДЗ?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 29. Кате очень понравилась лекция про чётность и нечётность на одном из курсов в ЭМШ. После пары она записала на доске несколько последовательных натуральных чисел и подсчитала количество четных и нечетных. Оказалось, что 48% чисел на доске нечетные. Сколько всего четных чисел записано на доске?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 30. Аня выяснила, что подарочных стикеров ЭМШ осталось 525, а книг ЭМШ 735. Она решила составить из них одинаковые наборы, причем так, чтобы раздать их наибольшему количеству детей и использовать все книги и все стикеры. Сколько наборов сможет собрать Аня?
 - A) 35
- B) 75
- C) 105
- D) 125
- E) нет правильного ответа

$$(\frac{a}{b^2+ab}-\frac{a-b}{a^2+ab}):(\frac{b^2}{a^3-ab^2}+\frac{1}{a+b})$$

и найдите его значение при a = 84; b = 162.

$$A) - \frac{1}{2}$$

A)
$$-\frac{1}{2}$$
 B) $-\frac{13}{27}$ C) $\frac{1}{2}$ D) $-\frac{13}{14}$

$$C) \frac{1}{2}$$

$$D) - \frac{13}{14}$$

E) нет правильного ответа

2. Найдите натуральное число, заданное выражением

$$\frac{(\sqrt{5} - \sqrt{11})\sqrt{16 + 2\sqrt{55}}}{1 - \sqrt{9}}$$

B) 2

$$C)$$
 3

D) 4

E) нет правильного ответа

3. Найдите значение выражения

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{99}+\sqrt{100}}$$

A) 1

B)9

C) 99

D) 101

E) нет правильного ответа

4. Решите уравнение

$$(x^2 - 3x)^2 - 14x^2 + 42x + 40 = 0$$

В ответе укажите сумму всех найденных решений.

A) - 12

$$B) - 3$$

C) 6

D) 12

E) нет правильного ответа

5. Найдите множество решений неравенства

$$\frac{(x+1)^3(-x^2-2x+8)}{(x+1)(x+3)} \le 0$$

A)
$$(-\infty; -4] \cup (-3; -1) \cup (-1; 2)$$
 B) $[-4; -3) \cup \{-1\} \cup [2; +\infty)$

B)
$$[-4; -3) \cup \{-1\} \cup [2; +\infty)$$

 $(C) [-4; -3) \cup [2; +\infty)$

$$D)\;(-\infty;-4]\cup(-3;-1)\cup[2;+\infty)$$
 $E)$ нет правильного ответа

6. Решите неравенство

$$\frac{\sqrt{6+x-x^2}}{x^2+3x-4} \ge 0$$

В ответе укажите сумму целых чисел, входящих в решение этого неравенства.

- A) 2
- B) 3
- C) 4
- D) 5

E) нет правильного ответа

7. Решите систему уравнений

$$\begin{cases} x^2y + xy^2 = 2 - 2x - 2y \\ x + y + 5 = -xy \end{cases}$$

В ответе укажите сумму координат всех решений. Например, если (1; 2) и (3; 4) — решения системы, то в ответе нужно указать 1+2+3+4=10.

$$A) - 6$$

B) - 3

C) 2

D) 4

E) нет правильного ответа

8. Область задана на плоскости системой неравенств

$$\begin{cases} x^2 + y^2 \ge 4 \\ y^2 \le 4 \\ y \ge |x| \end{cases}$$

Найдите её площадь.

A)
$$4 - \pi$$
 B) 8

$$\pi$$

B)
$$8 - \pi$$
 C) $4 - 2\pi$

$$D) 8 - 2\pi$$

$$E$$
) нет правильного ответа

9. Найдите область определения функции

$$y = \log_{\frac{1}{2}} \left(\frac{-\sqrt{-x+7}}{-2x^2 + 17x - 8} \right)$$

$$(\frac{1}{2};7)$$
 $B)$

$$C)$$
 $(-\infty;$

A) $(\frac{1}{2};7)$ B) $(8;+\infty)$ C) $(-\infty;7]$ D) $(-\infty;\frac{1}{2})$ E) нет правильного ответа

10. Найдите наибольшее и наименьшее значения функции
$$f(x) = \sin^2(x) + \cos(2x) - \frac{1}{2}$$
.

$$A) \frac{3}{2}$$
 и $-\frac{3}{4}$ $B) \frac{1}{2}$ и $-\frac{1}{2}$ $C) \frac{3}{2}$ и $-\frac{3}{2}$ $D) \frac{3}{4}$ и $-\frac{1}{2}$ $E)$ нет правильного ответа

11. Найдите
$$\cos{(\frac{5\pi}{2} + 2\alpha)}$$
, если $\cos{\alpha} = \frac{3}{5}$, $-\frac{\pi}{2} < \alpha < 0$.

$$A) - \frac{24}{25}$$

$$B) - \frac{6}{2}$$

$$C) \ \frac{7}{25}$$

$$D) \frac{24}{25}$$

 $A) - \frac{24}{25}$ $B) - \frac{7}{25}$ $C) \frac{7}{25}$ $D) \frac{24}{25}$ E) нет правильного ответа

12. Прямая l задана на плоскости уравнением 3y - 4x - 5 = 0. Укажите уравнение прямой, перпендикулярной прямой l и проходящей через точку A(2;-1).

$$A) 4y - 3x + 10 = 0$$

$$B) \ 4y + 3x - 2 = 0$$

$$C) -\frac{1}{3}y + \frac{1}{4}x - \frac{5}{6} = 0$$

$$D) \, - rac{1}{3}y + rac{1}{4}x + rac{1}{5} = 0$$
 $E)$ нет правильного ответа

$$E$$
) нет правильного ответ

13. График функции $f(x) = 3x^2 - 18x + 32$ сдвинули на 2 единицы влево и на 3 единицы вниз, получив при этом график функции g(x). Какой вид может иметь g(x)?

A)
$$3x^2 - 10x + 77$$

B)
$$3x^2 - 6x + 5$$

C)
$$3x^2 - 10x + 83$$

$$D) 3x^2 - 6x + 11$$

$$E$$
) нет правильного ответа

14. a_n — возрастающая арифметическая прогрессия, причем $a_1 > 0$. Найдите a_4 , если $a_2a_6 = 105$ и $a_3a_5 = 117$.

$$A)$$
 7

B) 11

C) 13

D) 17

E) нет правильного ответа

15. Укажите вариант ответа, в котором перечислены все верные утверждения:

- (а) Для любого треугольника центр вписанной в него окружности совпадает с центром описанной вокруг него окружности;
- (b) Диагонали ромба перпендикулярны и точкой пересечения делятся пополам;
- (с) Биссектрисы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.

B) a, b

C) b, c

D) b

16.	трапеции $ABCD$ с основаниями $AD BC$ диагонали пересекаются в точке $O.$ Известн	ы
	лощади $S(ABCD)=32$ и $S(\Delta BCO)=2$. Найдите площадь треугольника AOD .	

- A) 6
- B) 8
- C) 16
- D) 18 E) нет правильного ответа
- 17. Из точки M провели прямую, касающуюся окружности в точке A. Перпендикуляно AMпровели секущую, проходящую через точку M. Оказалось, что AM=12, а внутренняя часть секущей равна 10. Найдите радиус окружности.
 - A) 12
- B) 13
- C) 17
- D) $2\sqrt{61}$
- E) нет правильного ответа
- 18. Отрезки AM и BH соответственно медиана и высота остроугольного треугольника ABC. Известно, что AH = 1 и $2 \angle MAC = \angle MCA$. Найдите сторону BC.
 - A) 0.5
- B) 1
- C) 2
- D) 3
- E) нет правильного ответа

- 19. Найдите остаток от деления 2^{100000} на 31.
 - A) 1
- B) 3
- C) 13
- D) 30
- E) нет правильного ответа
- 20. При каких значениях параметра a корни уравнения $x^2 + 8x + 2a = 0$ существуют и все принадлежат отрезку [-6, -3]?
 - A) [6; 8)
- B) (7,5;8] C) [6;8] D) [7,5;8]
- E) нет правильного ответа
- 21. Функция f(x) определена для $x \geq 0$, причем для любых положительных a и b верно, что f(ab) = f(a) + f(b). Найдите f(2024), если $f(\frac{1}{2024}) = 1$.
- A) -1 B) $\frac{1}{2024}$ C) 2024
- D) 1
- E) нет правильного ответа

$$||4 - x^2| - x^2| = 1$$

A) нет решений

- B) $\{\pm\sqrt{\frac{3}{2}}\}$
- $C) \{\sqrt{\frac{3}{2}}; \sqrt{\frac{5}{2}}\}$

- E) нет правильного ответа
- 23. Братья Игорь и Костя привезли в чемоданах сладости на Выездную школу ЭМШ. Когда школа закончилась, оказалось, что общий вес чемоданов братьев за время школы уменьшился на 10%. При этом вес чемодана Игоря уменьшился на 15%, а вес чемодана Кости — на 6%. Известно также, что в конце Выездной школы чемодан Кости весил на 7 кг больше, чем чемодан Игоря в начале школы. Определите первоначальный вес чемоданов Игоря и Кости. В ответе укажите их сумму.
 - A) 60 кг
- В) 70 кг
- C) 80 кг
- D) 90 кг
- E) нет правильного ответа
- 24. Александр вчетверо старше Николая. Сумма их возрастов 80 лет. Через сколько лет Александр будет втрое старше Николая?
 - A) 6
- B) 9
- C) 12
- D) 15
- E) нет правильного ответа

- 25. Катя ехала от экономического факультета до пансионата «Фейерверк», а Влад наоборот. Они встретились, когда Катя проехала 10 км и еще четверть оставшегося ей до пансионата пути, а Влад проехал 20 км и треть оставшегося ему до экономического факультета пути. Какое расстояние между экономическим факультетом и пансионатом «Фейерверк»?
 - A) 50 км
- В) 60 км
- C) 70 км
- D) 80 км
- E) нет правильного ответа
- 26. Школьники, обладающие одинаковой производительностью решения задач, собрались на досуге решить 360 задач по геометрии (каждую задачу решает 1 человек 1 раз). К сожалению, один из школьников приболел, поэтому вместо него задачи отправился решать студент Саша, производительность решения задач которого в три раза больше производительности каждого из школьников. Поэтому каждый школьник в действительности решил на 6 задач меньше, чем планировалось. Все школьники и Саша решали задачи одинаковое время. Сколько школьников в действительности решало задачи?
 - A) 6
- B)9
- C) 10
- D) 12
- E) нет правильного ответа
- 27. На вступительных тестах ЭМШ все школьники в аудитории сели так, что за каждой партой их оказалось по двое. Парт, за которыми сидят две девочки, втрое больше, чем парт, за которыми сидят мальчик с девочкой. А парт, за которыми сидят двое мальчиков. вдвое больше, чем парт, за которыми сидят две девочки. Сколько в аудитории мальчиков если известно, что девочек там 14?
 - A) 20
- B) 22
- C) 24
- D) 26
- E) нет правильного ответа
- 28. Преподаватели курса в ЭМШ решили проверить у школьников ДЗ, состоящее из кейса. кроссворда и эссе. Среди 43 школьников курса кейс решили 12, кроссворд -15, а написали эссе — 12 человек. Кроме того, кейс и эссе сделали 3 человека, эссе и кроссворд -5 человек, а кейс и кроссворд -4 человека. Наконец, все 3 задания выполнил только 1 человек. Сколько на курсе школьников, которые вообще не сделали ДЗ?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 29. Кате очень понравилась лекция про чётность и нечётность на одном из курсов в ЭМШ. После пары она записала на доске несколько последовательных натуральных чисел и подсчитала количество четных и нечетных. Оказалось, что 48% чисел на доске нечетные. Сколько всего четных чисел записано на доске?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 30. Аня выяснила, что подарочных стикеров ЭМШ осталось 525, а книг ЭМШ 735. Она решила составить из них одинаковые наборы, причем так, чтобы раздать их наибольшему количеству детей и использовать все книги и все стикеры. Сколько наборов сможет собрать Аня?
 - A) 35
- B) 75
- C) 105
- D) 125
- E) нет правильного ответа

$$(\frac{a}{b^2+ab}-\frac{a-b}{a^2+ab}):(\frac{b^2}{a^3-ab^2}+\frac{1}{a+b})$$

и найдите его значение при a = 84; b = 162.

A)
$$-\frac{1}{2}$$

$$A) - \frac{1}{2}$$
 $B) - \frac{13}{27}$ $C) \frac{1}{2}$ $D) - \frac{13}{14}$

$$C) \frac{1}{2}$$

$$D) - \frac{13}{14}$$

E) нет правильного ответа

2. Найдите натуральное число, заданное выражением

$$\frac{(\sqrt{5} - \sqrt{11})\sqrt{16 + 2\sqrt{55}}}{1 - \sqrt{9}}$$

$$C)$$
 3

E) нет правильного ответа

3. Найдите значение выражения

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{99}+\sqrt{100}}$$

B)9

D) 101

E) нет правильного ответа

4. Решите уравнение

$$(x^2 - 3x)^2 - 14x^2 + 42x + 40 = 0$$

В ответе укажите сумму всех найденных решений.

$$A) - 12$$

$$B) - 3$$

$$C)$$
 6

D) 12

E) нет правильного ответа

5. Найдите множество решений неравенства

$$\frac{(x+1)^3(-x^2-2x+8)}{(x+1)(x+3)} \le 0$$

A)
$$(-\infty; -4] \cup (-3; -1) \cup (-1; 2)$$
 B) $[-4; -3) \cup \{-1\} \cup [2; +\infty)$

B)
$$[-4; -3) \cup \{-1\} \cup [2; +\infty]$$

 $(C) [-4; -3) \cup [2; +\infty)$

$$D) (-\infty; -4] \cup (-3; -1) \cup [2; +\infty)$$
 $E)$ нет правильного ответа

6. Решите неравенство

$$\frac{\sqrt{6+x-x^2}}{x^2+3x-4} \ge 0$$

В ответе укажите сумму целых чисел, входящих в решение этого неравенства.

$$A) - 2$$

B) 3

C) 4

D) 5

E) нет правильного ответа

7. Решите систему уравнений

$$\begin{cases} x^2y + xy^2 = 2 - 2x - 2y \\ x + y + 5 = -xy \end{cases}$$

В ответе укажите сумму координат всех решений. Например, если (1; 2) и (3; 4) — решения системы, то в ответе нужно указать 1+2+3+4=10.

$$A) - 6$$

B) - 3

C) 2

D) 4

E) нет правильного ответа

8. Область задана на плоскости системой неравенств

$$\begin{cases} x^2 + y^2 \ge 4\\ y^2 \le 4\\ y \ge |x| \end{cases}$$

Найдите её площадь.

$$A) 4 - \pi$$
 $B)$

B)
$$8 - \pi$$
 C) $4 - 2\pi$

$$(C) 4 - 2$$

$$D) 8 - 2\pi$$

$$E$$
) нет правильного ответа

9. Найдите область определения функции

$$y = \log_{\frac{1}{2}} \left(\frac{-\sqrt{-x+7}}{-2x^2 + 17x - 8} \right)$$

$$(\frac{1}{2};7) B)$$

$$B) (8; +\infty)$$

$$C)$$
 $(-\infty;$

$$D) (-\infty; \frac{1}{2})$$

 $A)(\frac{1}{2};7)$ $B)(8;+\infty)$ $C)(-\infty;7]$ $D)(-\infty;\frac{1}{2})$ E) нет правильного ответа

10. Найдите наибольшее и наименьшее значения функции
$$f(x) = \sin^2(x) + \cos(2x) - \frac{1}{2}$$
.

$$A) \frac{3}{2}$$
 и $-\frac{3}{4}$ $B) \frac{1}{2}$ и $-\frac{1}{2}$ $C) \frac{3}{2}$ и $-\frac{3}{2}$ $D) \frac{3}{4}$ и $-\frac{1}{2}$ $E)$ нет правильного ответа

11. Найдите
$$\cos{(\frac{5\pi}{2} + 2\alpha)}$$
, если $\cos{\alpha} = \frac{3}{5}$, $-\frac{\pi}{2} < \alpha < 0$.

$$A) - \frac{24}{25}$$

$$B) - \frac{7}{2}$$

$$C) \frac{7}{25}$$

$$D) \frac{2}{2}$$

 $A) - \frac{24}{25}$ $B) - \frac{7}{25}$ $C) \frac{7}{25}$ $D) \frac{24}{25}$ E) нет правильного ответа

12. Прямая l задана на плоскости уравнением 3y - 4x - 5 = 0. Укажите уравнение прямой, перпендикулярной прямой l и проходящей через точку A(2;-1).

$$A) 4y - 3x + 10 = 0$$

$$B) \ 4y + 3x - 2 = 0$$

$$C) -\frac{1}{3}y + \frac{1}{4}x - \frac{5}{6} = 0$$

$$D) \, - rac{1}{3}y + rac{1}{4}x + rac{1}{5} = 0$$
 $E)$ нет правильного ответа

$$E$$
) нет правильного ответ

13. График функции $f(x) = 3x^2 - 18x + 32$ сдвинули на 2 единицы влево и на 3 единицы вниз, получив при этом график функции g(x). Какой вид может иметь g(x)?

A)
$$3x^2 - 10x + 77$$

B)
$$3x^2 - 6x + 5$$

C)
$$3x^2 - 10x + 83$$

$$D) 3x^2 - 6x + 11$$

$$E$$
) нет правильного ответа

$$14.\ a_n$$
 — возрастающая арифметическая прогрессия, причем $a_1>0.$ Найдите $a_4,$ если $a_2a_6=105$ и $a_3a_5=117.$

$$A)$$
 7

B) 11

D) 17

E) нет правильного ответа

15. Укажите вариант ответа, в котором перечислены все верные утверждения:

- (а) Для любого треугольника центр вписанной в него окружности совпадает с центром описанной вокруг него окружности;
- (b) Диагонали ромба перпендикулярны и точкой пересечения делятся пополам;
- (с) Биссектрисы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.

16.	В трапеции $ABCD$ с основаниями $AD BC$ диагонали пересекаются в точке $O.$ Известны	
	площади $S(ABCD)=32$ и $S(\Delta BCO)=2$. Найдите площадь треугольника AOD .	

- A) 6
- B) 8
- C) 16
- D) 18 E) нет правильного ответа
- 17. Из точки M провели прямую, касающуюся окружности в точке A. Перпендикуляно AMпровели секущую, проходящую через точку M. Оказалось, что AM=12, а внутренняя часть секущей равна 10. Найдите радиус окружности.
 - A) 12
- B) 13
- C) 17
- D) $2\sqrt{61}$
- E) нет правильного ответа
- 18. Отрезки AM и BH соответственно медиана и высота остроугольного треугольника ABC. Известно, что AH = 1 и $2 \angle MAC = \angle MCA$. Найдите сторону BC.
 - A) 0.5
- B) 1
- C) 2
- D) 3
- E) нет правильного ответа

- 19. Найдите остаток от деления 2^{100000} на 31.
 - A) 1
- B) 3
- C) 13
- D) 30
- E) нет правильного ответа
- 20. При каких значениях параметра a корни уравнения $x^2 + 8x + 2a = 0$ существуют и все принадлежат отрезку [-6, -3]?
 - A) [6; 8)

- B) (7,5;8] C) [6;8] D) [7,5;8]
- E) нет правильного ответа
- 21. Функция f(x) определена для $x \geq 0$, причем для любых положительных a и b верно, что f(ab) = f(a) + f(b). Найдите f(2024), если $f(\frac{1}{2024}) = 1$.
- A) -1 B) $\frac{1}{2024}$ C) 2024
 - D) 1
- E) нет правильного ответа

$$||4 - x^2| - x^2| = 1$$

- B) $\{\pm\sqrt{\frac{3}{2}}\}$
- $C) \{\sqrt{\frac{3}{2}}; \sqrt{\frac{5}{2}}\}$

- D) $\{\pm\sqrt{\frac{3}{2}};\pm\sqrt{\frac{5}{2}}\}$
- E) нет правильного ответа
- 23. Братья Игорь и Костя привезли в чемоданах сладости на Выездную школу ЭМШ. Когда школа закончилась, оказалось, что общий вес чемоданов братьев за время школы уменьшился на 10%. При этом вес чемодана Игоря уменьшился на 15%, а вес чемодана Кости — на 6%. Известно также, что в конце Выездной школы чемодан Кости весил на 7 кг больше, чем чемодан Игоря в начале школы. Определите первоначальный вес чемоданов Игоря и Кости. В ответе укажите их сумму.
 - A) 60 кг
- В) 70 кг
- C) 80 кг
- D) 90 кг
- E) нет правильного ответа
- 24. Александр вчетверо старше Николая. Сумма их возрастов 80 лет. Через сколько лет Александр будет втрое старше Николая?
 - A) 6
- B) 9
- C) 12
- D) 15
- E) нет правильного ответа

- 25. Катя ехала от экономического факультета до пансионата «Фейерверк», а Влад наоборот. Они встретились, когда Катя проехала 10 км и еще четверть оставшегося ей до пансионата пути, а Влад проехал 20 км и треть оставшегося ему до экономического факультета пути. Какое расстояние между экономическим факультетом и пансионатом «Фейерверк»?
 - A) 50 км
- В) 60 км
- C) 70 км
- D) 80 км
- E) нет правильного ответа
- 26. Школьники, обладающие одинаковой производительностью решения задач, собрались на досуге решить 360 задач по геометрии (каждую задачу решает 1 человек 1 раз). К сожалению, один из школьников приболел, поэтому вместо него задачи отправился решать студент Саша, производительность решения задач которого в три раза больше производительности каждого из школьников. Поэтому каждый школьник в действительности решил на 6 задач меньше, чем планировалось. Все школьники и Саша решали задачи одинаковое время. Сколько школьников в действительности решало задачи?
 - A) 6
- B)9
- C) 10
- D) 12
- E) нет правильного ответа
- 27. На вступительных тестах ЭМШ все школьники в аудитории сели так, что за каждой партой их оказалось по двое. Парт, за которыми сидят две девочки, втрое больше, чем парт, за которыми сидят мальчик с девочкой. А парт, за которыми сидят двое мальчиков. вдвое больше, чем парт, за которыми сидят две девочки. Сколько в аудитории мальчиков, если известно, что девочек там 14?
 - A) 20
- B) 22
- C) 24
- D) 26
- E) нет правильного ответа
- 28. Преподаватели курса в ЭМШ решили проверить у школьников ДЗ, состоящее из кейса. кроссворда и эссе. Среди 43 школьников курса кейс решили 12, кроссворд -15, а написали эссе — 12 человек. Кроме того, кейс и эссе сделали 3 человека, эссе и кроссворд -5 человек, а кейс и кроссворд -4 человека. Наконец, все 3 задания выполнил только 1 человек. Сколько на курсе школьников, которые вообще не сделали ДЗ?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 29. Кате очень понравилась лекция про чётность и нечётность на одном из курсов в ЭМШ. После пары она записала на доске несколько последовательных натуральных чисел и подсчитала количество четных и нечетных. Оказалось, что 48% чисел на доске нечетные. Сколько всего четных чисел записано на доске?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 30. Аня выяснила, что подарочных стикеров ЭМШ осталось 525, а книг ЭМШ 735. Она решила составить из них одинаковые наборы, причем так, чтобы раздать их наибольшему количеству детей и использовать все книги и все стикеры. Сколько наборов сможет собрать Аня?
 - A) 35
- B) 75
- C) 105
- D) 125
- E) нет правильного ответа

$$(\frac{a}{b^2+ab}-\frac{a-b}{a^2+ab}):(\frac{b^2}{a^3-ab^2}+\frac{1}{a+b})$$

и найдите его значение при a = 84; b = 162.

A)
$$-\frac{1}{2}$$

$$A) - \frac{1}{2}$$
 $B) - \frac{13}{27}$ $C) \frac{1}{2}$ $D) - \frac{13}{14}$

$$C) \frac{1}{2}$$

$$D) - \frac{13}{14}$$

E) нет правильного ответа

2. Найдите натуральное число, заданное выражением

$$\frac{(\sqrt{5} - \sqrt{11})\sqrt{16 + 2\sqrt{58}}}{1 - \sqrt{9}}$$

- B) 2
- C) 3
- D) 4
- E) нет правильного ответа

3. Найдите значение выражения

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{99}+\sqrt{100}}$$

- B)9
- C) 99
- D) 101
- E) нет правильного ответа

4. Решите уравнение

$$(x^2 - 3x)^2 - 14x^2 + 42x + 40 = 0$$

В ответе укажите сумму всех найденных решений.

$$A) - 12$$

- B) 3
- C) 6
- D) 12

E) нет правильного ответа

5. Найдите множество решений неравенства

$$\frac{(x+1)^3(-x^2-2x+8)}{(x+1)(x+3)} \le 0$$

A)
$$(-\infty; -4] \cup (-3; -1) \cup (-1; 2)$$
 B) $[-4; -3) \cup \{-1\} \cup [2; +\infty)$

B)
$$[-4; -3) \cup \{-1\} \cup [2; +\infty)$$

$$(C) [-4; -3) \cup [2; +\infty)$$

$$D) (-\infty; -4] \cup (-3; -1) \cup [2; +\infty)$$
 $E)$ нет правильного ответа

6. Решите неравенство

$$\frac{\sqrt{6+x-x^2}}{x^2+3x-4} \ge 0$$

В ответе укажите сумму целых чисел, входящих в решение этого неравенства.

- A) 2
- B) 3
- C) 4
- D) 5
- E) нет правильного ответа

7. Решите систему уравнений

$$\begin{cases} x^2y + xy^2 = 2 - 2x - 2y \\ x + y + 5 = -xy \end{cases}$$

В ответе укажите сумму координат всех решений. Например, если (1; 2) и (3; 4) — решения системы, то в ответе нужно указать 1+2+3+4=10.

$$A) - 6$$

- B) 3
- C) 2
- D) 4
- E) нет правильного ответа

8. Область задана на плоскости системой неравенств

$$\begin{cases} x^2 + y^2 \ge 4 \\ y^2 \le 4 \\ y \ge |x| \end{cases}$$

Найдите её площадь.

A)
$$4 - \pi$$
 B) 8

- B) 8π C) $4 2\pi$
- D) $8 2\pi$
- E) нет правильного ответа

9. Найдите область определения функции

$$y = \log_{\frac{1}{2}} \left(\frac{-\sqrt{-x+7}}{-2x^2 + 17x - 8} \right)$$

A)
$$(\frac{1}{2};7)$$

$$C)$$
 $(-\infty;$

 $A)(\frac{1}{2};7)$ $B)(8;+\infty)$ $C)(-\infty;7]$ $D)(-\infty;\frac{1}{2})$ E) нет правильного ответа

10. Найдите наибольшее и наименьшее значения функции
$$f(x) = \sin^2(x) + \cos(2x) - \frac{1}{2}$$
.

$$A) \frac{3}{2}$$
 и $-\frac{3}{4}$ $B) \frac{1}{2}$ и $-\frac{1}{2}$ $C) \frac{3}{2}$ и $-\frac{3}{2}$ $D) \frac{3}{4}$ и $-\frac{1}{2}$ $E)$ нет правильного ответа

11. Найдите
$$\cos{(\frac{5\pi}{2} + 2\alpha)}$$
, если $\cos{\alpha} = \frac{3}{5}$, $-\frac{\pi}{2} < \alpha < 0$.

$$A) - \frac{24}{25}$$

$$B) - \frac{7}{25}$$

C)
$$\frac{7}{25}$$

$$D) \frac{24}{25}$$

 $A) - \frac{24}{25}$ $B) - \frac{7}{25}$ $C) \frac{7}{25}$ $D) \frac{24}{25}$ E) нет правильного ответа

12. Прямая l задана на плоскости уравнением 3y - 4x - 5 = 0. Укажите уравнение прямой, перпендикулярной прямой l и проходящей через точку A(2;-1).

$$A) 4y - 3x + 10 = 0$$

$$B) \ 4y + 3x - 2 = 0$$

$$C) -\frac{1}{3}y + \frac{1}{4}x - \frac{5}{6} = 0$$

$$D) \, - rac{1}{3}y + rac{1}{4}x + rac{1}{5} = 0$$
 $E)$ нет правильного ответа

$$E$$
) нет правильного ответ

13. График функции
$$f(x) = 3x^2 - 18x + 32$$
 сдвинули на 2 единицы влево и на 3 единицы вниз, получив при этом график функции $g(x)$. Какой вид может иметь $g(x)$?

A)
$$3x^2 - 10x + 77$$

B)
$$3x^2 - 6x + 5$$

C)
$$3x^2 - 10x + 83$$

$$D) 3x^2 - 6x + 11$$

$$E$$
) нет правильного ответа

14.
$$a_n$$
 — возрастающая арифметическая прогрессия, причем $a_1>0$. Найдите a_4 , если $a_2a_6=105$ и $a_3a_5=117$.

- B) 11
- C) 13
- D) 17
- E) нет правильного ответа

- (а) Для любого треугольника центр вписанной в него окружности совпадает с центром описанной вокруг него окружности;
- (b) Диагонали ромба перпендикулярны и точкой пересечения делятся пополам;
- (с) Биссектрисы треугольника точкой пересечения делятся в отношении 2:1, считая от вершины.
- A) a
- B) a, b
- C) b, c
- D) b
- E) нет правильного ответа

16.	В трапеции АВСО	с основаниями $AD BC$ диагонали пересекаются в точке $O.$ Известны	
	площади $S(ABCD)$	$=32$ и $S(\Delta BCO)=2$. Найдите площадь треугольника AOD .	

- A) 6
- B) 8
- C) 16
- D) 18
- E) нет правильного ответа
- 17. Из точки M провели прямую, касающуюся окружности в точке A. Перпендикуляно AMпровели секущую, проходящую через точку M. Оказалось, что AM=12, а внутренняя часть секущей равна 10. Найдите радиус окружности.
 - A) 12
- B) 13
- C) 17
- D) $2\sqrt{61}$
- E) нет правильного ответа
- 18. Отрезки AM и BH соответственно медиана и высота остроугольного треугольника ABC. Известно, что AH = 1 и $2 \angle MAC = \angle MCA$. Найдите сторону BC.
 - A) 0.5
- B) 1
- C) 2
- D) 3
- E) нет правильного ответа

- 19. Найдите остаток от деления 2^{100000} на 31.
 - A) 1
- B) 3
- C) 13
- D) 30
- E) нет правильного ответа
- 20. При каких значениях параметра a корни уравнения $x^2 + 8x + 2a = 0$ существуют и все принадлежат отрезку [-6, -3]?
 - A) [6; 8)

- B) (7,5;8] C) [6;8] D) [7,5;8]
- E) нет правильного ответа
- 21. Функция f(x) определена для $x \geq 0$, причем для любых положительных a и b верно, что f(ab) = f(a) + f(b). Найдите f(2024), если $f(\frac{1}{2024}) = 1$.
- A) -1 B) $\frac{1}{2024}$ C) 2024 D) 1
- E) нет правильного ответа

$$||4 - x^2| - x^2| = 1$$

- B) $\{\pm\sqrt{\frac{3}{2}}\}$
- $C) \{\sqrt{\frac{3}{2}}; \sqrt{\frac{5}{2}}\}$

- D) $\{\pm\sqrt{\frac{3}{2}};\pm\sqrt{\frac{5}{2}}\}$
- E) нет правильного ответа
- 23. Братья Игорь и Костя привезли в чемоданах сладости на Выездную школу ЭМШ. Когда школа закончилась, оказалось, что общий вес чемоданов братьев за время школы уменьшился на 10%. При этом вес чемодана Игоря уменьшился на 15%, а вес чемодана Кости — на 6%. Известно также, что в конце Выездной школы чемодан Кости весил на 7 кг больше, чем чемодан Игоря в начале школы. Определите первоначальный вес чемоданов Игоря и Кости. В ответе укажите их сумму.
 - A) 60 кг
- В) 70 кг
- C) 80 кг
- D) 90 кг
- E) нет правильного ответа
- 24. Александр вчетверо старше Николая. Сумма их возрастов 80 лет. Через сколько лет Александр будет втрое старше Николая?
 - A) 6
- B) 9
- C) 12
- D) 15
- E) нет правильного ответа

- 25. Катя ехала от экономического факультета до пансионата «Фейерверк», а Влад наоборот. Они встретились, когда Катя проехала 10 км и еще четверть оставшегося ей до пансионата пути, а Влад проехал 20 км и треть оставшегося ему до экономического факультета пути. Какое расстояние между экономическим факультетом и пансионатом «Фейерверк»?
 - A) 50 км
- В) 60 км
- C) 70 км
- D) 80 км
- E) нет правильного ответа
- 26. Школьники, обладающие одинаковой производительностью решения задач, собрались на досуге решить 360 задач по геометрии (каждую задачу решает 1 человек 1 раз). К сожалению, один из школьников приболел, поэтому вместо него задачи отправился решать студент Саша, производительность решения задач которого в три раза больше производительности каждого из школьников. Поэтому каждый школьник в действительности решил на 6 задач меньше, чем планировалось. Все школьники и Саша решали задачи одинаковое время. Сколько школьников в действительности решало задачи?
 - A) 6
- B)9
- C) 10
- D) 12
- E) нет правильного ответа
- 27. На вступительных тестах ЭМШ все школьники в аудитории сели так, что за каждой партой их оказалось по двое. Парт, за которыми сидят две девочки, втрое больше, чем парт, за которыми сидят мальчик с девочкой. А парт, за которыми сидят двое мальчиков. вдвое больше, чем парт, за которыми сидят две девочки. Сколько в аудитории мальчиков, если известно, что девочек там 14?
 - A) 20
- B) 22
- C) 24
- D) 26
- E) нет правильного ответа
- 28. Преподаватели курса в ЭМШ решили проверить у школьников ДЗ, состоящее из кейса. кроссворда и эссе. Среди 43 школьников курса кейс решили 12, кроссворд -15, а написали эссе — 12 человек. Кроме того, кейс и эссе сделали 3 человека, эссе и кроссворд -5 человек, а кейс и кроссворд -4 человека. Наконец, все 3 задания выполнил только 1 человек. Сколько на курсе школьников, которые вообще не сделали ДЗ?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 29. Кате очень понравилась лекция про чётность и нечётность на одном из курсов в ЭМШ. После пары она записала на доске несколько последовательных натуральных чисел и подсчитала количество четных и нечетных. Оказалось, что 48% чисел на доске нечетные. Сколько всего четных чисел записано на доске?
 - A) 12
- B) 13
- C) 14
- D) 15
- E) нет правильного ответа
- 30. Аня выяснила, что подарочных стикеров ЭМШ осталось 525, а книг ЭМШ 735. Она решила составить из них одинаковые наборы, причем так, чтобы раздать их наибольшему количеству детей и использовать все книги и все стикеры. Сколько наборов сможет собрать Аня?
 - A) 35
- B) 75
- C) 105
- D) 125
- E) нет правильного ответа