华东师范大学期末考试试卷(A)卷 2017-2018学年 第二学期

课程性质: 学科基础课

课程名称: 概率论与数理统计

专 业: 年级/班级: 姓 名: 学 묵: ★ 答案请写在答题纸上. 试题共5页,含3页统计表. **一.** 判断题(正确打 √,错误打×; 每题2分, 共10分) 1. 样本标准差S是总体标准差的无偏估计. () 2. 随机变量X与Y都服从正态分布 $N(\mu, \sigma^2)$, 则X与Y独立当且仅当Corr(X, Y) = 0. ()3. 二维均匀分布的边际分布为一维均匀分布. () 4. 在假设检验中, 当原假设 H_0 为假时, 若根据样本接受了 H_0 , 则犯了第一类错误. ()5. 设随机变量X服从几何分布Ge(p),则方差 $Var X = 1/p^2$. () 二. 填空题 (无需过程, 只写最后答案即可; 每题3分, 共30分) 6. 设随机变量X和Y相互独立, 且X服从指数分布Exp(1), Y服从指数分布Exp(2), 则随机 变量min{X,Y}服从____分布(注明参数). 7. 设有三张卡片, 第一张两面皆为红色, 第二张两面皆为黄色, 第三张一面是红色一面 是黄色. 随机地选择一张卡片并随机地选择其中一面. 如果已知此面是红色, 则另一 面也是红色的概率为____(用最简分数表示). 8. 设随机变量X服从参数为 λ 的Poisson分布, 已知X的二阶原点矩为2, 则 $\lambda = 1$

9. 设随机变量X的概率密度函数为 $p(x) = \max\{1 - |x|, 0\}$, 则概率 $P(X \le 1/2) = 1/2$

本, \overline{X} 和 S^2 分别是样本均值和样本方差, 则p的极大似然估计为_____.

e 和Φ表示).

10. 设总体X服从二项分布b(m,p), 其中p未知. 设 X_1,\ldots,X_n 是来自该总体的简单随机样

11. 设随机变量X服从正态分布 $N(\theta, \theta^2)$, 记 $X^+ = \max\{X, 0\}$, 则数学期望 $EX^+ = \ldots$ (用 θ, π ,

- 12. 设 $X_1, ..., X_n$ 是来自均匀分布总体 $U[0, \theta]$ 的简单随机样本, 其中 θ 未知. 设 cY_n 是 θ 的无偏估计, 其中 $Y_n = \max\{X_1, ..., X_n\}$, 则c =
- 13. 从0,1,2,3四个数字中随机地取两个不同的数相乘,用X表示它们的乘积,则随机变量X的分布函数为F(x)有_____个间断点.
- 14. 设 X_1, \ldots, X_5 是来自正态总体 $N(0, \sigma^2)$ 的简单随机样本, 当 $a = \ldots$ 时, $\frac{a(X_2 + X_4)}{\sqrt{X_1^2 + X_3^2 + X_5^2}}$ 服从t分布.
- 15. 某电子计算机主机有100个终端,每个终端有80%的时间被使用. 若各个终端是否被使用是相互独立的,利用中心极限定理计算至少有15个终端空闲的概率____(需**修正**, 结果保留至小数点后两位).
- 三. 解答题 (必须给出必要的解题过程; 第16-19题每题10分, 第20题20分, 共60分)
- 16. 设随机变量X具有概率密度函数 $p(x) = \begin{cases} cx^2e^{-2x}, & x \geq 0; \\ 0, & \text{其他.} \end{cases}$ 求常数c和X的数学期望EX.
- 17. 设随机变量X的分布函数为 $F_X(x)$, a与b都是已知的实数, 求随机变量Y = aX + b的分布函数 $F_Y(y)$.
- 18. 从某年级随机抽取25名学生的数学成绩, 求得平均值 \overline{X} = 75, 标准差S = 5. 设该年级数学成绩服从正态分布 $N(\mu, \sigma^2)$, 求 σ^2 的95%的置信区间(结果保留至小数点后两位).
- 19. 一种罐装饮料采用自动生产线生产, 每罐的容量服从正态分布, 均值是255毫升, 标准差为5毫升. 为检验每罐容量是否符合要求,质检人员在某天生产的饮料中随机抽取了40罐进行检验, 测得每罐平均容量为255.8毫升. 试在显著性水平 $\alpha=0.05$ 下检验该天生产的饮料容量是否符合标准要求(提示: 考虑假设检验问题 $H_0: \mu=255$ vs $H_1: \mu \neq 255$).
- 20. 设随机变量(X,Y)的概率密度函数为

$$p(x,y) = \begin{cases} e^{-y}, & 0 < x < y, \\ 0, & 其他. \end{cases}$$

求

- (1)概率 $P(X + Y \leq 3)$,
- (2)随机变量X的概率密度函数 $p_X(x)$,
- (3)随机变量T = X Y的概率密度函数 $p_T(t)$,
- (4)随机变量X与Y的协方差Cov(X,Y).

附表1 标准正态分布函数表

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

x	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.877	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9990	0.9990	0.9990

附表2 t分布 $1-\alpha$ 分位数表 $P(t > t_{1-\alpha}(n)) = \alpha$

n	0.005	0.01	0.025	0.05	0.10	0.25
1	63.6567	31.8205	12.7062	6.3138	3.0777	1.000
2	9.9248	6.9646	4.3027	2.92	1.8856	0.8165
3	5.8409	4.5407	3.1824	2.3534	1.6377	0.7649
4	4.6041	3.7469	2.7764	2.1318	1.5332	0.7407
5	4.0321	3.3649	2.5706	2.015	1.4759	0.7267
6	3.7074	3.1427	2.4469	1.9432	1.4398	0.7176
7	3.4995	2.998	2.3646	1.8946	1.4149	0.7111
8	3.3554	2.8965	2.306	1.8595	1.3968	0.7064
9	3.2498	2.8214	2.2622	1.8331	1.383	0.7027
10	3.1693	2.7638	2.2281	1.8125	1.3722	0.6998
11	3.1058	2.7181	2.201	1.7959	1.3634	0.6974
12	3.0545	2.681	2.1788	1.7823	1.3562	0.6955
13	3.0123	2.6503	2.1604	1.7709	1.3502	0.6938
14	2.9768	2.6245	2.1448	1.7613	1.345	0.6924
15	2.9467	2.6025	2.1314	1.7531	1.3406	0.6912
16	2.9208	2.5835	2.1199	1.7459	1.3368	0.6901
17	2.8982	2.5669	2.1098	1.7396	1.3334	0.6892
18	2.8784	2.5524	2.1009	1.7341	1.3304	0.6884
19	2.8609	2.5395	2.093	1.7291	1.3277	0.6876
20	2.8453	2.528	2.086	1.7247	1.3253	0.687
21	2.8314	2.5176	2.0796	1.7207	1.3232	0.6864
22	2.8188	2.5083	2.0739	1.7171	1.3212	0.6858
23	2.8073	2.4999	2.0687	1.7139	1.3195	0.6853
24	2.7969	2.4922	2.0639	1.7109	1.3178	0.6848
25	2.7874	2.4851	2.0595	1.7081	1.3163	0.6844
26	2.7787	2.4786	2.0555	1.7056	1.315	0.684
27	2.7707	2.4727	2.0518	1.7033	1.3137	0.6837
28	2.7633	2.4671	2.0484	1.7011	1.3125	0.6834
29	2.7564	2.462	2.0452	1.6991	1.3114	0.683
30	2.75	2.4573	2.0423	1.6973	1.3104	0.6828
31	2.744	2.4528	2.0395	1.6955	1.3095	0.6825
32	2.7385	2.4487	2.0369	1.6939	1.3086	0.6822
33	2.7333	2.4448	2.0345	1.6924	1.3077	0.682
34	2.7284	2.4411	2.0322	1.6909	1.307	0.6818
35	2.7238	2.4377	2.0301	1.6896	1.3062	0.6816
36	2.7195	2.4345	2.0281	1.6883	1.3055	0.6814
37	2.7154	2.4314	2.0262	1.6871	1.3049	0.6812
38	2.7116	2.4286	2.0244	1.686	1.3042	0.681
39	2.7079	2.4258	2.0227	1.6849	1.3036	0.6808
40	2.7045	2.4233	2.0211	1.6839	1.3031	0.6807

附表3 χ^2 分布 $1 - \alpha$ 分位数表 $P(\chi^2 > \chi^2_{1-\alpha}(n)) = \alpha$

n	0.005	0.01	0.025	0.05	0.10	0.90	0.95	0.975	0.99	0.995
1	7.8794	6.6349	5.0239	3.8415	2.7055	0.0158	0.0039	0.0010	0.0002	0.0000
2	10.5966	9.2103	7.3778	5.9915	4.6052	0.2107	0.1026	0.0506	0.0201	0.0100
3	12.8382	11.3449	9.3484	7.8147	6.2514	0.5844	0.3518	0.2158	0.1148	0.0717
4	14.8603	13.2767	11.1433	9.4877	7.7794	1.0636	0.7107	0.4844	0.2971	0.2070
5	16.7496	15.0863	12.8325	11.0705	9.2364	1.6103	1.1455	0.8312	0.5543	0.4117
6	18.5476	16.8119	14.4494	12.5916	10.6446	2.2041	1.6354	1.2373	0.8721	0.6757
7	20.2777	18.4753	16.0128	14.0671	12.0170	2.8331	2.1673	1.6899	1.2390	0.9893
8	21.9550	20.0902	17.5345	15.5073	13.3616	3.4895	2.7326	2.1797	1.6465	1.3444
9	23.5894	21.6660	19.0228	16.9190	14.6837	4.1682	3.3251	2.7004	2.0879	1.7349
10	25.1882	23.2093	20.4832	18.3070	15.9872	4.8652	3.9403	3.2470	2.5582	2.1559
11	26.7568	24.7250	21.9200	19.6751	17.2750	5.5778	4.5748	3.8157	3.0535	2.6032
12	28.2995	26.2170	23.3367	21.0261	18.5493	6.3038	5.2260	4.4038	3.5706	3.0738
13	29.8195	27.6882	24.7356	22.3620	19.8119	7.0415	5.8919	5.0088	4.1069	3.5650
14	31.3193	29.1412	26.1189	23.6848	21.0641	7.7895	6.5706	5.6287	4.6604	4.0747
15	32.8013	30.5779	27.4884	24.9958	22.3071	8.5468	7.2609	6.2621	5.2293	4.6009
16	34.2672	31.9999	28.8454	26.2962	23.5418	9.3122	7.9616	6.9077	5.8122	5.1422
17	35.7185	33.4087	30.1910	27.5871	24.7690	10.0852	8.6718	7.5642	6.4078	5.6972
18	37.1565	34.8053	31.5264	28.8693	25.9894	10.8649	9.3905	8.2307	7.0149	6.2648
19	38.5823	36.1909	32.8523	30.1435	27.2036	11.6509	10.1170	8.9065	7.6327	6.8440
20	39.9968	37.5662	34.1696	31.4104	28.4120	12.4426	10.8508	9.5908	8.2604	7.4338
21	41.4011	38.9322	35.4789	32.6706	29.6151	13.2396	11.5913	10.2829	8.8972	8.0337
22	42.7957	40.2894	36.7807	33.9244	30.8133	14.0415	12.3380	10.9823	9.5425	8.6427
23	44.1813	41.6384	38.0756	35.1725	32.0069	14.8480	13.0905	11.6886	10.1957	9.2604
24	45.5585	42.9798	39.3641	36.4150	33.1962	15.6587	13.8484	12.4012	10.8564	9.8862
25	46.9279	44.3141	40.6465	37.6525	34.3816	16.4734	14.6114	13.1197	11.5240	10.5197
26	48.2899	45.6417	41.9232	38.8851	35.5632	17.2919	15.3792	13.8439	12.1981	11.1602
27	49.6449	46.9629	43.1945	40.1133	36.7412	18.1139	16.1514	14.5734	12.8785	11.8076
28	50.9934	48.2782	44.4608	41.3371	37.9159	18.9392	16.9279	15.3079	13.5647	12.4613
29	52.3356	49.5879	45.7223	42.5570	39.0875	19.7677	17.7084	16.0471	14.2565	13.1211
30	53.6720	50.8922	46.9792	43.7730	40.2560	20.5992	18.4927	16.7908	14.9535	13.7867

参考答案

- 1-5. $\times \times \times \times \times$
 - 6. *Exp*(3)
 - 7.2/3
 - 8. 1
 - 9. 7/8
- 10. $\frac{\overline{X}}{m}$
- 11. $\theta \left(\frac{1}{\sqrt{2\pi e}} + \Phi(1) \right)$
- $12. \ \frac{n+1}{n}$
- 13. 4
- 14. $\frac{\sqrt{6}}{2}$ 或 $-\frac{\sqrt{6}}{2}$ (给出两者之一即可得3分)
- 15. 0.92
- 16. 由概率密度函数的正则性,

$$1 = \int p(x) dx = \int_0^\infty cx^2 e^{-2x} dx = \frac{c}{4},$$

解得c = 4.

由定义, X的数学期望为

$$EX = \int xp(x)dx = \int_0^\infty x \cdot 4x^2 e^{-2x} dx = \frac{3}{2}.$$

17. 由分布函数的定义,

$$F_{Y}(y) = P(aX + b \le y) = \begin{cases} P\left(X \le \frac{y - b}{a}\right), & a > 0; \\ P\left(X \ge \frac{y - b}{a}\right), & a < 0; \\ P(b \le y), & a = 0. \end{cases} \begin{cases} F_{X}\left(\frac{y - b}{a}\right), & a > 0; \\ 1 - F_{X}\left(\frac{y - b}{a} - 0\right), & a < 0; \\ 1, & a = 0, y \ge b, \\ 0, & a = 0, y < b. \end{cases}$$

18. 总体 $X \sim N(\mu, \sigma^2)$, 参数 μ 未知, 故参数 σ^2 的置信水平为1 – α 的置信区间为

$$\left[\frac{(n-1)S^2}{\chi^2_{1-\alpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{\alpha/2}(n-1)}\right].$$

当n = 25, $1 - \alpha = 95$ %时, 查表得 $\chi^2_{0.975}(24) = 39.3641$, $\chi^2_{0.025}(24) = 12.4012$. 将其与样本方差 $S^2 = 5^2$ 代入计算得, 参数 σ^2 的置信水平为95%的置信区间为

$$\left[\frac{(25-1)5^2}{39.3641}, \frac{(25-1)5^2}{12.4012}\right] = [15.24, 48.38].$$

19. 总体 $X \sim N(\mu, \sigma^2)$, 考虑假设检验问题 $H_0: \mu = \mu_0 = 255 \text{ vs } H_1: \mu \neq 255$. 参数 $\sigma = 5$ 已 知, 采用检验统计量为 $U = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$, 在显著性水平 α 之下的拒绝域为

$$\{|U|\geq u_{1-\alpha/2}\}.$$

当 $\alpha=0.05, u_{1-\alpha/2}=u_{0.975}=1.96,$ 将样本观测值 $\overline{X}=255.8$ 和n=40代入计算得

$$U = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n} = \frac{255.8 - 255}{5} \sqrt{40} = 1.01 < 1.96.$$

故显著性水平 $\alpha = 0.05$ 之下接受原假设 H_0 ,即认为该天生产的饮料容量符合标准要求.

20. $idD^* = \{(x, y) : 0 < x < y\}.$ (1) $idD = \{(x, y) : x + y \le 3\}, \bigcup$

$$D \cap D^* = \{(x, y) : 0 < x < \frac{3}{2}, x < y \le 3 - x\}.$$

故所求概率为

$$P(X + Y \le 3) = P((X, Y) \in D) = \iint_D p(x, y) dx dy = \iint_{D \cap D^*} e^{-y} dx dy$$
$$= \int_0^{3/2} dx \int_x^{3-x} e^{-y} dy = 1 - 2e^{-3/2} + e^{-3}.$$

(2)当x > 0时,p(x,y)作为y的函数为 $p(x,y) = \begin{cases} e^{-y}, & y > x, \\ 0, & y \le x. \end{cases}$

当 $x \le 0$ 时, p(x, y)作为y的函数为p(x, y) = 0.

故X的概率密度函数为

$$p_X(x) = \int p(x, y) dy = \begin{cases} \int_x^{\infty} e^{-y} dy, & x > 0, \\ 0, & x \le 0 \end{cases} = \begin{cases} e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

(3)由卷积公式, T = X - Y的概率密度函数为

$$p_T(t) = \int p(t+y, y) \mathrm{d}y.$$

上述积分中被积函数p(t+y,y)的非零区域为

$$\{(t, y) : 0 < t + y < y\} = \{(t, y) : t < 0, y > -t\}.$$

故T = X - Y的概率密度函数为

$$p_T(t) = \int p(t+y,y) dy = \begin{cases} \int_{-t}^{\infty} e^{-y} dy, & t < 0, \\ 0, & t \ge 0 \end{cases} = \begin{cases} e^t, & t < 0, \\ 0, & t \ge 0 \end{cases}$$

(4)由数学期望的定义和性质,

$$EX = \iint xp(x,y)dxdy = \iint_{D^*} x \cdot e^{-y}dxdy = \int_0^\infty dy \int_0^y x \cdot e^{-y}dx = 1,$$

$$EY = \iint yp(x,y)dxdy = \iint_{D^*} y \cdot e^{-y}dxdy = \int_0^\infty dy \int_0^y y \cdot e^{-y}dx = 2,$$

$$EXY = \iint xyp(x,y)dxdy = \iint_{D^*} xy \cdot e^{-y}dxdy = \int_0^\infty dy \int_0^y xy \cdot e^{-y}dx = 3.$$

于是,协方差

$$Cov(X, Y) = EXY - EXEY = 3 - 1 \cdot 2 = 1.$$