Ispit iz Diskretne matematike 1 15.9.2020.

1. (8 bodova) Neka je $\alpha \in \mathbb{R}$. Dokažite da funkcija izvodnica niza binomnih koeficijenata,

$$a_n = \binom{\alpha}{n}, \quad n \in \mathbb{N}_0,$$

glasi
$$f(x) = (1+x)^{\alpha}$$
.

2. (8 bodova) Riješite rekurzivnu relaciju

$$a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3} + 8n, \quad n \geqslant 3,$$

uz početne uvjete $a_0 = 2$, $a_1 = 13$, $a_2 = 23$.

3. (8 bodova) Nađite stablo najkraćih putova od vrha A na grafu sa slike. Algoritam obavezno provedite!

4. (8 bodova) Graf G je zadan na sljedećoj slici

- (a) Odredite kromatski broj od G.
- (b) Odredite kromatski indeks od G.

5. (8 bodova)

- (a) Definirajte tranzitivan turnir.
- (b) Dokažite da je turnir tranzitivan ako i samo ako ne sadrži ciklus.
- (c) Koliko ima tranzitivnih turnira s 4 vrha? Obrazložite svoj odgovor.
- 6. (8 bodova) Nadopunite zadani latinski pravokutnik do latinskog kvadrata.

1	2	3	4	5	6
4	6	2	1	3	5
2	3	5	6	1	4

Ispit se piše 150 minuta. Korištenje kalkulatora niti formula nije dozvoljeno. Sretno!

Rješenja

- 1. Skripta, str. 12, primjer 1.2.
- **2.** $a_n = 10 9 \cdot 2^n + 3^n + 2n^2 + 16n$.
- 3. Dijkstrinim algoritmom dobivamo stablo najkraćih putova od vrha A na slici:

4. (a) Budući da u G postoji ciklus duljine 3, za njegov kromatski broj vrijedi $\chi(G) \geqslant 3$. Jedno 3-bojanje vrhova tog grafa je dano na donjoj slici pa zaključujemo da je $\chi(G)=3$.

(b) Budući da je najveći stupanj nekog vrha grafa G jednak $\Delta=3$, prema Vizingovom teoremu slijedi $\Delta=3\leqslant \chi'(G)\leqslant 4=\Delta+1$.

Pokušajmo naći neko 3-bojanje bridova. Najprije ćemo obojati dva "središnja" brida grafa:

Zatim obojimo sve bridove koji s prethodna dva imaju zajednički vrh te dva "vertikalna" brida (tu ćemo morati uvesti treću boju):

Neovisno o načinu bojanja, vidimo da dva preostala brida imaju zajednički vrh s bridovima svih dosad korištenih boja. Zato njih moramo obojati četvrtom bojom pa slijedi $\chi'(G) = 4$.

- 5. (a), (b) Skripta, str. 180, zadatak 9.6.
 - (c) Do na izomorfizam postoje 4 takva turnira, od čega je samo jedan tranzitivan (svi ostali sadrže cikluse).

6.

1 2 3 4 5 6 4 6 2 1 3 5 2 3 5 6 1 4 5 4 1 2 6 3 3 1 6 5 4 2 6 5 4 3 2 1						
2 3 5 6 1 4 5 4 1 2 6 3 3 1 6 5 4 2	1	2	3	4	5	l
5 4 1 2 6 3 3 1 6 5 4 2	4	6	2	1	3	5
3 1 6 5 4 2	2	3	5	6	1	4
	5	4	1	2	6	3
6 5 4 3 2 1	3	1	6	5	4	2
	6	5	4	3	2	1