

Developments towards high resolution spectroscopy of ^{235m}U

A. Raggio¹, L. E. Reed², J. Warbinek³, I. D. Moore¹, C. Düllmann², I. Pohjalainen^{1,3} and the IGISOL group

¹Department of Physics, P.O. Box 35, FIN-40014 University of Jyväskylä, Finland ²Department Chemie - Standort TRIGA, Johannes Gutenberg-Universität Mainz, Germany ³GSI Helmholtzzentrum für Schwerionenforschung, D64220 Darmstadt, Germany

MOTIVATION

The measurement of hyperfine structures and isotope shifts with high-resolution laser spectroscopy offers access to the extraction of fundamental nuclear structure properties including spins, mean-square charge radii and electromagnetic moments. Within the LISA framework, a new measurement campaign has been started on Uranium by means of collinear laser spectroscopy at IGISOL facility. The final aim is the study of the second lowest lying isomeric state in the nuclear landscape, that of the 76-eV isomer in ²³⁵U

ALPHA RECOIL SOURCE DEVELOPMENT

To generate an isomeric beam a set of 27 molecular plated^[1] ²³⁹Pu alpha recoil sources have been produced at JGU and are currently under characterization to select the optimal one in terms of recoil effciency.

Fig. 1: Picture of a ²³⁹Pu source on a 3D printed support

Sources characterization:

- Alpha spectrometry
- Gamma spectrometry
- RBS analysis
- TOF-ERDA

ACTINIDE GAS CELL

The sources will be used in the actinide Gas Cell [2] where the recoils are stopped in a buffer gas (He) and are extracted and guided to the IGISOL beamline for laser studies.

Fig. 2: Schematic representation of the Actinide gas cell with an alpha recoil source installed

REFERENCES

- [1] Vascon, A., et al., NIM A, 696 (2012): 180-191.
- [2] Pohjalainen, I. et al., Nucl. Instr. Meth. Phys. Res. Sect. B, 376 (2016) 233-239.
- [3] De Groote, R. P. et al. Nucl. Instr. Meth. Phys. Res. Sect. B, 463 (2020) 437-440.

COLLINEAR LASER SPECTROSCOPY

Fig. 3: Details of the IGISOL collinear line [3]

Detection of laser induced fluorescence allows the measurement of isotope shift and hyperfine structures.

GROUND STATE TEMPLATE

Using an electric discharge source placed in the IGISOL target chamber more than 10 atomic transition have been studied in the three natural Uranium isotopes: 234 (0.0054%), 235 (0.72%) and 238 (99.27%)

Fig. 4: Isotope shift representation for the three natural U isotopes in the 288.91nm adn 291.34nm transitions

ISOTOPE SHIFT
$$\delta
u_i^{A,A'} = M_i \frac{A' - A}{\Delta' \Delta} + F_i \delta \langle r^2 \rangle^{A,A'}$$

Fig. 5: ²³⁵U hyperfine structure of the 305.02nm transition

HYPERFINE SPLITTING
$$\Delta E_{hfs} = \frac{1}{2} A_{hfs} C + B_{hfs} \frac{\frac{3}{2} C(C+1) - 2I(I+1)J(J+1)}{2I(2I-1)2J(2J-1)}$$
$$C = F(F+1) - I(I+1) - J(J+1)$$

