This Week

Monday

Recap: Project Risk Analysis

Wednesday

 Lab Exercise: Trend Estimation for Existing Liquair-Pro Customers

Topics

Simple Linear Regression

Evaluating Regression Output

Data Transformation

A Problem Solving Framework

- 1. Define the Problem
- 2. Collect and Organize Data
- 3. Characterize Uncertainty and Data Relationships
- 4. Build an Evaluation Model
 - 5. Formulate a Solution Approach
 - 6. Evaluate Potential Solutions
 - 7. Recommend a Course of Action

Regression Models

- Regression models quantify relationships between variables
- Used for: Description / Prediction / Control
- Applications in all areas of business and government:
 - Target customers for direct marketing / having low credit risk
 - Forecast sales / demand / market share / investment return
 - Set economic/monetary policy factors to control inflation

Simple Linear Regression

 A simple regression model assumes that a linear relationship exists between two variables, plus a random error term:

• The goal is to find estimates for \mathbf{a} and \mathbf{b} (denoted \hat{a} and b) that explain, or "fit", the observed data best. Intuitively, we want to find slope and intercept coefficients that result in **small residual errors**.

Residual Errors

$$Sales = a + b \cdot Advert + error$$

• A residual error e_i is defined as the difference between the observed value of a response variable (Y_i) and its fitted value on the regression line $(\hat{Y}_i = \hat{a} + \hat{b} \cdot X_i)$. Errors can be positive or negative.

Finding the "Best Fit" Line

$$Sales = a + b \cdot Advert + error$$

 To determine estimates for a and b that "fit" the data best, we find the least squares line – the line that minimizes the sum of the squared residual errors:

How Good Is the Model?

$$Sales = 22.94 + 2.16 \cdot Advert + error$$

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.83
R Square	0.70
Adjusted R Square	0.67
Standard Error	0.81
Observations	15

	Coeffts	Std Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	22.94	0.59	39.13	0.000000	21.67	24.21
Advert	2.16	0.39	5.47	0.000108	1.31	3.01

"Goodness" measures:

- Significance of explanatory variable (Advert)
- Standard Error of Estimate (s_e)
- R Square and Adjusted R Square statistics

Significance of Explanatory Variable

- Are sales related to advertising spending?
- Should Advert be in the model?
- Is the Advert coefficient significantly different from 0?

Standard Error of Estimate

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.83
R Square	0.70
Adjusted R Square	0.67
Standard Error	0.81
Observations	15

• Standard Error of Estimate or s_e : (Roughly) the standard deviation of the residual errors. The smaller the s_e , the better the model:

Excel: =STEYX(Sales, Advert) = 0.81

$$s_e = \sqrt{\frac{\displaystyle\sum_{i=1}^n e_i^2}{n-2}}$$
 Number of coefficients being estimated

R Square Statistics

SUMMARY OUTPUT

Regression Statistics	
Multiple R	0.83
R Square	0.70
Adjusted R Square	0.67
Standard Error	0.81
Observations	15

• **R Square**: R^2 , or the **coefficient of determination**, is the percentage of the variation in the response variable that is explained by the regression line: $0\% < R^2 < 100\%$. The higher the R^2 , the better the linear fit.

$$R^{2} = 1 - \left(\frac{\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}\right) = 1 - \left(\frac{\sum_{i=1}^{n} e_{i}^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}\right)$$

Excel: =RSQ(Sales, Advert) = 0.70

 Adjusted R Square: R² adjusted for the number of explanatory variables (important for multiple regression).

Using Regression Models to Predict

• Regression Model: Sales = 22.94 + 2.16 · Advert + error \hat{a} \hat{b}

 Sales *prediction* (point estimate) for a store spending \$1.5M on advertising:

$$\hat{Y}_i = \hat{a} + \hat{b} \cdot X_i$$

Sales = 22.94 + 2.16 (1.5) = 26.18

Nonlinear Data Relationships

- What can we do if a data relationship appears to be nonlinear?
 - → Variables which exhibit certain types of nonlinear relationships may be transformed into other variables which ARE linearly related.

Transforming Data

Exponential Relationship:

$$Y = a \cdot e^{bX}$$

Make a <u>new response variable</u> In(Y) which has a linear relationship with X.

$$\ln Y = \ln a + bX$$

In terms of parameters **a** and **b**: **Slope** of new model = **b Intercept** of new model = **In a**

Liquair-Pro Data

 Some of Liquair-Pro's customers exhibit demand (Y) that grows exponentially in time (t):

$$Y_t = Y_o \cdot (1 + r)^t$$
 where r is the annual growth rate.

• To get point estimates for (future) Y_t and r, as well as estimates for their standard errors, we can find the best fit exponential model $Y_t = a \cdot e^{bt}$ where $e^b = (1 + r)$.

Other Common Transformations

Nonlinear Relationship:

Logarithmic

$$Y = a + b \ln X$$

Reciprocal

$$Y = a + b/X$$

Multiplicative

$$Y = a \cdot X^b$$

Linearized form:

Fit Y against log X:

$$Y = a + b(\ln X)$$

Fit Y against (1/X):

$$Y = a + b (1/X)$$

Fit log Y against log X:

$$ln Y = ln a + b(ln X)$$

Which Transformation?

- If there are multiple possible data transformations that "straighten out the data" equally well, then use the one that is easiest to interpret:
 - Fewest explanatory variables (if multiple regression)
 - Logarithmic transformations typically have nice interpretations in terms of relating changes in X to changes in Y