18 1W013

Микроконтроллер МІКЗ2 Амур (К1948ВК018)

32-х битный микроконтроллер на основе RISC-V ядра для устройств промышленного Интернета вещей

Специализированный 32-х битный микроконтроллер MIK32 Амур с ГОСТ-криптозащитой на основе процессорного ядра RISC-V с низким энергопотреблением.

Микроконтроллер предназначен для создания устройств промышленного Интернета вещей на основе современной отечественной электронной компонентной базы с высоким уровнем защиты данных и широкими функциональными возможностями.

Параметры и конструктивные особенности:				
Вычислительное ядро	RISC-V 32-бита RV32IMC (на базе ядра SCR1 с открытым исходным кодом от компании Syntacore).			
Максимальная частота тактирования	32 МГц			
	ОППЗУ (Однократно программируемая ПЗУ) – 256 бит; ОЗУ – 16 Кбайт; ПЗУ (EEPROM) – 8 Кбайт;			
Память	Подключаемая внешняя память по интерфейсу SPI Flash (Single, Dual, Quad) с поддержкой наборов команд управления, определенных в стандарте JEDEC, прямым доступом на чтение до 2 Гбайт и 1 Кбайт кэш.			
DMA	4 канала; Режимы: память-память, периферия-периферия, память- периферия; 4 уровня приоритетов.			
Контроллер прерываний	Поддержка до 32 источников прерываний от периферий таких как: АЦП, SPI, I ² C, UART, таймеров, мониторов напряжения, встроенного датчика температуры и т.д.			
Интерфейсы	I ² C − 2 шт. с фильтрацией помех; USART − 2 шт. SPI − 2 шт.			

Порты ввода/вывода общего назначения	16×2 + 8×1 (40 выводов); 8 линий внешних прерываний по уровням и фронтам; Настраиваемые функции выводов.		
Криптографическая защита	Аппаратно-настраиваемый блок вычисления контрольной суммы (CRC32); Ускоритель симметричной криптографии с поддержкой алгоритмов шифрования по ГОСТ Р 34.12-2015 (Кузнечик и Магма) и AES 128.		
Часы реального времени	Часы реального времени с поддержкой полного календаря; Возможность тактирования от генератора с внешним резонатором 32768 Гц или от внутреннего генератора 32 кГц.		
Таймеры	Три модуля «Таймер32» с программируемым делителем и тремя режимами счета (прямой, обратный и двунаправленный). 2 таймера дополнительно имеют четыре независимых канала, способных работать в режиме захвата, сравнения или ШИМ; Три модуля «Таймер16» с программируемым делителем, поддержкой режима ШИМ и настраиваемыми входными цифровыми фильтрами.		
Сторожевые таймеры	Сторожевой таймер для формирования сигнала сброса микроконтроллера при зависании программы; Сторожевой таймер шины предотвращает блокировку системы ведомым устройством, подключенный к шинам EEPROM, SPIFI и шине периферийных устройств.		
АЦП	12-бит, 8 каналов, частота дискретизации до 800 к Γ ц; Максимальное напряжение (1,2 ± 0,1) В.		
ЦАП	12-бит, 2 канала, частота дискретизации до 1 МГц; Максимальное напряжение $(1,2\pm0,1)$ В.		
Датчик температуры	Встроенный датчик температуры с диапазоном измерения температур -40 +125 °C.		
Cxeмa Brown-out-Reset и Power-on-Reset	Детектор снижения напряжения питания ниже определенного уровня; Схема удержания контроллера в состоянии сброса до порогового напряжения включения.		

Монитор частоты системного домена	Схема контроля наличия сигнала на источниках тактирования с автоматическим переключением опорной и системной частоты, в случае их пропадания, на запасные.				
Монитор напряжения питания	Мониторы напряжения питания основной и аналоговой части с детектированием превышения верхнего и нижнего порогового значения и выработкой прерывания; Схема слежения за основным питанием VCC и переключения питания батарейного домена на резервное (батарейное) VBAT.				
Блок управления питанием	Блок управления питанием с поддержкой различных режимом энергопотребления, управлением тактовыми сигналами отдельных периферийных устройств.				
Напряжение питания	3,3 B ±10 %				
Диапазон рабочих температур	-45 +85 °C				
Корпус	64 - выводной пластиковый корпус типа QFN.				

Минимальная схема подключения микроконтроллера

Рисунок 1 - минимальная схема подключения микроконтроллера с использованием керамических конденсаторов

Все выводы VCC/VDD объединены на кристалле. На печатной плате эти выводы рекомендуется дополнительно соединять между собой с целью уменьшения разницы потенциалов на разных сторонах микросхемы.

Дополнительно, для уменьшения импульсных помех по питанию рекомендуется ставить фильтрующие конденсаторы у всех выводов как можно ближе к корпусу микроконтроллера.

Конденсатор С6 следует установить ближе к выводу 6. Конденсатор С12 необходимо разместить ближе к выводу 5.

В таблице 1 представлены конденсаторы, рекомендуемые для подключения по цепи питания.

Таблица 1 - рекомендуемые конденсаторы для подключения по цепям питания

			С применением электролитических и керамических конденсаторов		С применением только керамических конденсаторов
Вывод питания	Название	Направление	Конденсатор электролитический	Конденсатор керамический	Конденсатор керамический
5, 20, 52	VCC	вход	-	3 х 0,1 мкФ + 1 х 10 мкФ	3 х 0,1 мкФ + 1 х 10 мкФ
6, 24, 41	VDD	выход	1 x 2,2 мкФ (ESR ~ 1±0,5 Ом)	3 х 0,1 мкФ	3 х 0,1 мкФ + 2,2мкФ
8	VBAT	вход	-	1 х 0,1 мкФ	1 х 0,1 мкФ
10	VCC_BU	выход	-	1 х 0,1 мкФ	1 х 0,1 мкФ
11	VDD_BU	выход	1 x 2,2 мкФ (ESR ~ 1±0,5 Ом)	1 х 0,1 мкФ	1 х 0,1 мкФ + 2,2мкФ

В таблице 2 представлены рекомендуемые компоненты для установки.

Таблица 2 - рекомендуемые компоненты

Обозначение на схеме	Название
L1	BLM(21/18/15)(PG/HG)(221/331/4)
VD1	BAT54C

Емкость нагрузочных конденсаторов C14, C15 и C16, C17 для кварцевых резонаторов BQ1 и BQ2 рассчитывается по формуле:

$$C_{XO} = C_{XI} = 2(C_L - (C_k + C_m)),$$

Где:

 \mathcal{C}_L – нагрузочная емкость используемого кварцевого резонатора;

 C_k – суммарная емкость выводов XI и XO;

 C_m – суммарная емкость проводников на печатной плате.

В большинстве случаев для предварительной оценки можно принимать $C_k + C_m = (3...7)$ пФ. Рекомендуется использовать кварцевые резонаторы с нагрузочной емкостью $C_L = (10...15)$ пФ.

Возможно использование внешних генераторов вместо резонаторов. Для этого вывод генератора OUT подключается к выводу OSC32K_XI или OSC32M_XI микроконтроллера, а выводы OSC32K_XO и OSC32M XO можно оставить не подключенными.

При отсутствии кварцевого резонатора вывод _XI должен быть подключен к линии GND.

Схема подключения внешней памяти по SPIFI

Рисунок 2 - схема подключения внешней памяти по интерфейсу SPIFI

Рекомендованные микросхемы внешней памяти представлены в таблице 3.

Таблица 3 - рекомендованные микросхемы внешней памяти

Название	Память
W25Q16JVSIQ	16 Мбит
W25Q64JVSIQ	64 Мбит
W25Q128JVSIQ	128 Мбит
W25Q64FV	64 Мбит
W25Q128FV	128 Мбит
W25Q256FV	256 Мбит
GSN2516Y	16 Мбит

Потребление в различных режимах работы

Режим работы	Условия	Источник тактирования системы	Частота ядра	Потребление, мА
Активный	Тактирование периферий по умолчанию; Делитель АНВ = 0; Делитель АРВ_М = 0; Делитель АРВ_Р = 0.	OSC32M	F _{CPU} = 32 МГц	12,5015,00
Пониженного энергопотребления	Тактирование включено только у WU, PM, CPU, EEPROM, RAM, TCB; Источники OSC32M, OSC32K, HSI32M выключены; Делитель АНВ = 255; Делитель АРВ_М = 255; Делитель АРВ_Р = 255.	LSI32K	F _{CPU} = 125 кГц	1,501,80
	Тактирование RAM, EEPROM, SPIFI выключено записью в PM.SLEEP_MODE =	HSI32M	- F _{CPU} = 125 κΓц	3,203,84
		OCS32M		3,203,84
Спящий	Оb1110; Тактирование включено только у WU, PM, CPU, TCB; Источники OSC32M, OSC32K, OSC32K выключены; Делитель АНВ = 255; Делитель APB_M = 255; Делитель APB_P = 255.	LSI32K	F _{CPU} = 125 Гц	1,501,80
Стоп	Источники HSI32M, OSC32K, LSI32K выключены; Делитель АНВ = 255; Делитель АРВ_М = 255; Делитель АРВ_Р = 255;	OCS32M	F _{CPU} = 125 кГц Ядро в состоянии sleep	2,002,40

	•				
m	П	_	r		
	ш	$\mathbf{\Gamma}$		U	411

тифорияционизи инго	WIIK32 AWI31 Bepena. 1.1			111111111
	Источники OSC32M, HSI32M, OSC32K выключены; Делитель AHB = 255; Делитель APB_M = 255; Делитель APB_P = 255;	LSI32K	F _{CPU} = 125 Гц Ядро в состоянии sleep	0,700,84
	Источники HSI32M, OSC32K выключены; OSC32M включен; Делитель AHB = 255; Делитель APB_M = 255; Делитель APB_P = 255	LSI32K	F _{CPU} = 125 Гц Питание ядра выключено	0,500,60
Ожидание	Источники OSC32M, HSI32M, OSC32K выключены; OSC32M не установлен, вывод XI заземлен; Делитель AHB = 255; Делитель APB_M = 255; Делитель APB_P = 255.	LSI32K	F _{CPU} = 125 Гц Питание ядра выключено	0,170,20

Примечание:

В главном цикле инкрементируется переменная, программа выполняется из EEPROM.

C дополнительной информацией о микроконтроллере MIK32 можно ознакомиться на сайте $\underline{wiki.mik32.ru}$

Посадочное место под микроконтроллер

1. Все размеры указаны в миллиметрах.

Габаритные размеры корпуса микроконтроллера

Γ(40:1)

Д(40:1)

- 2.Все размеры указаны в миллиметрах.