Stručné shrnutí semináře 9

Přenos nejistoty. Závisí-li veličina y na veličinách x_i jako $y = f(x_i)$, souvisí nejistota u_y s nejistotami u_{x_i} veličin x_i jako:

$$u_{y} = \sqrt{\sum_{i=1}^{n} \left(\frac{\partial y}{\partial x_{i}}\right)_{\mu_{i}}^{2} u_{x_{i}}^{2}}$$

kde μ_i jsou střední hodnoty veličin x_i .

Postup zpracování nepřímo měřené veličiny – viz neprime_mereni.pdf

Interpolace funkčních závislostí (fitování). Studujeme chování veličiny y v závislosti na x, máme tedy k dispozici n dvojic (x_i, y_i) ... např. naměřená data. Nejistotu nezávislé veličiny x považujeme obvykle za zanedbatelnou vůči nejistotě závislé veličiny y.

Předpokládáme nějaký konkrétní tvar funkční závislosti y=f(x) a chceme posoudit jeho platnost, resp. získat hodnoty parametrů této závislosti. K tomu lze využít **metodu nejmenších čtverců**, která spočívá v minimalizaci veličiny

 $\chi^{2}(\alpha,\beta,\gamma,...) = \sum_{i=1}^{N} \frac{\left(f(x_{i} \mid \alpha,\beta,\gamma,...) - y_{i}\right)^{2}}{\sigma_{y_{i}}^{2}}$

Hodnoty hledaných parametrů jsou ty, které minimalizují χ^2 .

Je-li f(x) **lineární** funkcí parametrů α , β , χ ..., lze pro problém minimalizace χ^2 nalézt **analytické** řešení a hovoříme o **lineární regresi**. Některé nelineární funkce lze linearizovat (exponenciálu lze zlogaritmovat).

V ostatních případech analytické řešení nemáme a minimum χ^2 je nutno hledat **numericky**. Pak jde o **nelineární regresi**, iterativní numerický proces, který je nutno uživatelsky kontrolovat. Pro složitější f(x) často velice záleží na počáteční volbě parametrů α , β , χ Při nevhodné volbě parametrů může algoritmus uvíznout v lokálním minimu χ^2 , a tak dospět k nesprávnému výsledku.