

Linear regression

1. A new research tries to find a relation between ages of two siblings and the the number of times they talk to each other in an average week. Here is the data collected so far:

Older sibling	Younger sibling	Times talked
31	22	2
22	21	3
40	37	8
26	25	12

- A. Assuming the research hypothesis is that there is a linear connection i.e. $h_{\theta}(x_1, x_2) = \theta_1 x_1 + \theta_2 x_2$, find the best θ_1, θ_2 using an analytic closed calculation.
- B. A research assistant suggested to add a strange feature: a vector of ones, i.e. $x_{3,i} = 1 \ \forall i$. Can this improve the fitting? if it will not, explain why. If it will, calculate the new lf it will, calculate the new $\theta_1, \theta_2, \theta_3$, and also explain what is the meaning of this new feature. (hint: start by writing what is the new $h_{\theta}(x_1, x_2, x_3)$).
- C. Another research assistant suggested to add the square of the age difference as a feature i.e. $x_3 = (x_1 = x_2)^2$. Can this improve the fitting? If it will, calculate the new θ_1 , θ_2 , θ_3 , if it will not, explain why.
- D. A third research assistant suggested to add a strange feature: a vector of ones, i.e. x3,i = 1 \forall i. Can this improve the fitting? if it will not, explain why. If it will, calculate the new If it will, calculate the new θ_1 , θ_2 , θ_3 and also explain what is the meaning of this new feature. (hint: start by writing what is the new h_{θ} (x1, x2, x3)).
- E. Try adding or combining features to see if you can make a better prediction.

Gradient descent

1. Consider a supervised learning model with only one input feature and a standard MSE loss function.

Let the hypothesis class be $h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$.

And we have 3 data points in our training set:

Х	Υ
0	1
1	3
2	7

We want to optimize the weights using full batch gradient descent. Starting point is (2,2,0).

- A. Find the loss at the starting point and after 200 iterations, using the following learning rates: 0.01, 0.1, 1
- B. For each learning rate, explain why did the gradient descent succeed/fail?
- C. Repeat the process using LR=0.1, but this time with momentum $\gamma=0.9$.