OSI Referenzmodell

Kommunikationsschicht N

- bietet der höheren Schicht N+1 einen Interface Dienst an. (nur der Schicht N+1)
- verwendet zu Erfüllung ihrer Aufgaben den Dienst der Schicht N-1. (nur der Schicht N-1)
- kommuniziert mit der korrespondierenden Schicht N über ein *Protokoll*.

Datenübertragung in einem Schichtenmodell

Zuverlässiger & unzuverlässiger Dienst

Zuverlässiger Dienst: Es gehen grundsätzlich keine Daten verloren.

Unzuverlässiger Dienst: Es können Daten verloren gehen.

Verbindungsorientierter & Verbindungsloser Dienst

Test

test

Aufgabe der OSI-Schichten

- 1. Physical Layer
 - i. Verbunden mit dem Übertragungsmedium.
 - ii. Codiert oder Encodiert die Daten / elektrische Signale.
- 2. Data Link Layer
 - Framing: Verpacken / Auspacken von Datenblöcken
 - ii. Fehlererkennung und -korrektur
 - iii. Fluss-Steuerung
 - iv. Adressierung
- 3. Network Layer (IP)
 - Kontrolle und gezielte Lenkung von Verkehrsströmen
- 4. Transport Layer (TCP, UDP)
 - i. Kommunikationsphasen
 - a. Verbindungsaufbau
 - b. Datenaustausch
 - c. Verbindungsabbau
 - ii. Reihenfolge der Daten

Seite 1 von 19 Nino Frei

- 5. Session Layer
 - i. Auf- und Abbau einer Session
- 6. Presentation Layer
 - i. Umwandlung der Darstellung von Daten
 - ii. Konvertierung von ASCII und Unicode
- 7. Application Layer
 - i. Anwendung für den Nutzer

Physical Layer

Verkehrsbeziehung & Kopplung

Punkt - Punkt

Shared Medium

Serielle asynchrone Übertragung

Die Daten werden einfach geschickt, der Empfänger ist zuständig für das richtige Abschätzen des Taktes.

Folgendes muss beachtet werden:

- 1. Start-Bit / Stopp-Bit gehören nicht zu den Daten-Bits
- 2. Parity-Bit ist optional

Wir empfangen: 1001 1100 \rightarrow lesen beginnend mit MSB: 0011 1001b = 0x39; ASCII Code 57 = «9».

Clock Drift, Real-World Beispiel

Angaben:

- Max. Framegrösse Ethernet: 1500 Bytes
- Genauigkeit Oszillatoren: ±50ppm → Fehler von 0.00005. Worst-Case Szenario wäre der Sender würde einen Fehler von -50ppm und der Empfänger +50ppm aufweisen.

Frage: Können in diesem Fall die Daten sicher abgetastet werden?

Antwort:

- 1500 Bytes * 8 Bit/Byte = 12'000 Bit; 100ppm Differenz zwischen Sender & Empfänger = 10^{-4}
- Pro Bit entsteht so ein Fehler von 10^{-4} Bit Zeiten $T_{\rm Bit}$.
- Die Abweichung ist somit $1.2*10^4*10^{-4} \frac{T_{\mathrm{Bit}}}{\mathrm{Bit}} = 1.2~T_{\mathrm{Bit}}$
- Eine fehlerfreie Abtastung ist nicht mehr möglich (ohne weitere Massnahmen).

Serielle synchrone Übertragung

Entweder wird parallel die Daten mit dem Takt geschickt, besser ist der Takt mit den Daten zu codieren. Somit wird nur eine Leitung benötigt.

Beispiel Leitungscode AMI

Nachteil: Wenn viele Nullen geschickt werden, kann der Takt beim Empfänger nicht rekonstruiert werden.

Prinzip der Taktrückgewinnung

Beispiel Leitungscode PAM3

Hierbei wird das Problem bei AMI berücksichtig indem für alle 4 Bit unterschiedliche Codierungen existieren, je nach Situation wird eine andere Codierung verwendet, damit es nicht zu viele 0en an einem Stück hat.

Input		Accumulated DC offset							
Hex	Binary	1		2	2	3		4	
0	0000	+0+	(+2)			0-0	(-1)		
1	0001				0 - +	(+0)			
2	0010				+-0	(+0)			
3	0011			00+	(+1)			0	(-2
4	0100				-+0	(+0)			
5	0101	0++	(+2)			-00	(-1)		
6	0110		-++	(+1)			+	(-1)	
7	0111				-0+	(+0)			
8	1000			+00	(+1)			0	(-2)
9	1001			+-+	(+1)				(-3
Α	1010		++-	(+1)			+	(-1)	
В	1011				+0-	(+0)			
С	1100	+++	(+3)			-+-	(-1)		
D	1101			0+0	(+1)			-0-	(-2)
E	1110				0 + -	(+0)			
F	1111	++0	(+2)			00-	(-1)		

Datenrate, Bandbreite und Baudrate

Begriffe

(Leitungs-)Symbol: physikalisches Signal, das mit einer bestimmten Rate seinen Wert (Amplitude)

verändert.

Bit: Informationsgehalt (des Symbols / der Nachricht), es gilt: $N_{Bit} = \log_2(Anzahl)$

Zeichen: Einheit der übertragenen Daten, z.B. ASCII Zeichen
Bitrate: = Datenübertragungsrate / = Durchsatz, Bit pro Sekunde
Baudrate: = Schrittgeschwindigkeit, (Leitungs-)Symbole pro Sekunde

Zeichenrate: Anzahl übertragene ASCII Zeichen pro Sekunde

Beispiel Bitrate / Baudrate

Beispiel ASK-4:

4-wertige Symbole, die sich nur in der Amplitude unterscheiden.

Baudrate:

$$\frac{1 \text{ Symbol}}{1 * 10^{-3} \text{ s}} = 1000 \text{ Baud} = 1 \text{ kBaud}$$

Bit pro Symbol;

2 Bit/Symbol

Bitrate:

1 kBaud * 2 Bit/Symbol = 2 kBit/s

Data Link Layer

Die Aufgabe des Data Link Layer sind:

- Die Realisierung einer zuverlässigen Verbindung zwischen direkt miteinander verbundenen Systemen.
- Einpacken der zu senden Nutzerdaten in Frames.
- Entpacken der empfangenden Datenblöcke.
- Fluss Steuerung: «langsamer» Empfänger kann «schnellen» Sender bremsen.
- Adressierung der Teilnehmer
- Medium Zugriff: Welche Station darf wann senden.

Framing: Asynchrone Übertragung

Der Beginn eines Frame wird mit einem Start-Bit markiert, im Header wird dann die Framelänge begrenzt. Stehen keine Daten zur Übertragung so wird nichts gesendet (**Ruhezustand**). Beispiel:

Framing: Synchrone Übertragung

Frames werden ohne Unterbrechung gesendet. Stehen keine Daten zur Übertragung an, so werden Flags gesendet. Jeder Frame ist mit einem Start-Flag und einem End-Flag versehen. Beispiel:

Wie wird nun verhindert dass, das vordefiniert Flag-Bitmuster in den Daten nicht vorkommt?:

Man *stopft* die gesendeten Daten mit zusätzlichen 0en. Z.B. Flag: 01111110 muss im Datenblock & Header nach jedem 5ten 1 eine 0 *gestopft* werden. Beim lesen werden diese weggeschmissen.

Fehlererkennung / Fehlerkorrektur

Definition BER / FER

BER = Bitfehlerwahrscheinlichkeit ε $BER = 1 \Rightarrow Alle \ Bits \ falsch$ $BER = 0.001 \Rightarrow Jedes \ 1000. \ Bit \ ist \ falsch$ FER = Framefehlerwahrscheinlichkeit $FER \cong N * \varepsilon$

Fehlererkennung: Hamming-Distanz

Die Hamming-Distanz gibt an wie viel Bits müssen geflippt werden zu einem nächsten gültigen Codewort. Die Grösse der Fehlererkennung ergibt sich aus:

Fehlererkennung = Hamming-Distanz -1

Beispiele Fehlererkennung

Beispiele wurden nach der stärke ihrer Fehlererkennung eingestuft.

- 1. 32-bit CRC code
- 2. Längs-/Querparität

- 3. 16-bit Check-Summe
- 4. Odd Parity & Even Parity (RS-232)

Der Unterschied von Längs- / Querparität zu Odd / Even Parity, beim Längs- / Querparität werden ganze Datenblöcke mit Odd oder Even Parity versehen.

Fehlerkorrektur: Hamming-Distanz

Aus der Hamming-Distanz können wir entnehmen die Anzahl korrigierbaren Bitfehler k:

$$k \le \frac{\text{Hamming-Distanz} - 1}{2}$$

Beispiele Fehlerkorrektur

- 1. Faltungscode
- 2. Blockcodes
- 3. Längs-/Querparität

Mit CRC Codes lässt sich keine Fehler korrigieren.

Zugriffsmechanismen

Master-Slave Verfahren

Ein Master sagt wann, welcher Slave reden kann. Wenn dieser aber ausfällt, kann keine Kommunikation stattfinden.

Token Verfahren

Durch einen Token wird definiert wer reden darf, nach einer gewissen Zeit wird dieser Token weitergegeben. Das ganze ist aber eher Aufwändig da jeder Knoten ein solcher Token unterstützen muss.

Alternative: Token Verfahren

Anstelle eines Token wird ein Frame von dem Master geschickt nun kann jeder Slave sein eigenes Pakete anhängen (mit einer korrekten Adresse), beim Weg zurück kann jeder Slave lesen was im Knoten steht.

Zeitsteuerung

Es wird definiert wann welcher Knoten reden darf. Ist aber für das Einrichten auch sehr Aufwändig.

Random Medium Zugriff

Hier sind alle Knoten gleichberechtigt und haben jederzeit Zugriff auf das Übertragungsmedium. Vor dem Senden wird abgehört ob das Übertragungsmedium frei ist, wenn ja wird gesendet.

Kollisionsbehandlung

- CSMA/CD (Collision Detection):
 Kollision entdeckt → Abbrechen und später nochmals versuchen.
- CSMA/CR (Collision Resolution):

 Erkennt eine Kollision und bricht diese kontrolliert ab.
- CSMA/CA (Collision Avoidance): Prüft ob ein Medium frei ist, sendet erst wenn Medium frei ist.

Flow Control

Explizit Start-Stopp Signalisierung

Implizite Stop & Wait - Protokoll

Ethernet

Eigenschaften LAN

Reichweite: 10m bis wenige km

Datenrate: 100Mbit/s bis 100Gbit/s, typisch heute 1Gbit/s Verbindet: Server, Workstation, PCs, Drucker, NAS ...

Topologien

Vermascht

Übertragungsarten

Unicast

Genau ein klar spezifizierter Empfänger. Frame trägt die Adresse dieses Empfängers.

Multicast

Eine Gruppe von Empfängern. Frame trägt die Multicast-Adresse der Gruppe.

Broadcast

An alle Knoten im LAN gerichtet. Frame trägt die Broadcast-Adresse des LAN.

Adressierung in LANs

IEEE MAC Adressen

- Werden nicht konfiguriert
- Sind fix einem Interface des Gerätes zugeordnet
- Bestehen aus 6 Bytes
- Darstellung in hexadezimal: **1A-2B-3C-4E- 5F-67**

Registrierung globale MAC Adressen (bei IEEE)

- Die ersten **3** Bytes identifizieren den Hersteller «OUI»

 Die letzten 3 Bytes ist die Laufnummer welche von dem Hersteller verwaltet werden.

Klassifizierung MAC Adresse

Bei den MAC Adressen sind auch die Bits vertauscht, aber nur pro Byte. Bedeutet das **erste** geschickte Byte = das **erste** gelesene Byte, <u>aber</u> das **erste** geschickte Bit = das <mark>letzte geschickte Bit des Bytes</mark>.

Individual/Group Bit:

- 0 = individual address (Normalfall)

Universally/Locally Bit:

- 0 = universally administrated address (Normalfall)
- 1 = locally administrated address

Ethernet Grundlagen / Frameformat

Datenraten:

10BASE-T: 10Mbit/s100BASE-TX: 100Mbit/s1000BASE-T: 1Gbit/s

PRE

SFD

SA

L/T

Data /

Frameformat

Pro Byte wird immer das <u>niederwertigste Bit</u> **zuerst** und das <u>höchstwertigste Bit</u> **zuletzt** übertragen. Ausnahme bei Zahlenwerte, z.B. beim Length/Type-Feld.

Ethernet Frame

64 .. 1518 Bytes

Size

Ethernet-Geräte

Repeater / Hubs

Verstärkt ankommende Signale auf einem Port und leitet sie «in bester Qualität» weiter. (Veraltet)

Switch /Bridges

Signale werden auch verstärkt und «weitergeleitet» wie beim Hub, aber prüft zusätzlich Checksummen und kann Layer 2 Adressen auswerten.

Filterung Datenbank

- Im Switch / Bridge verwaltet.
- Mapped MAC Adressen zu Ports.
- Speichert immer nur die Sender Adresse zu ihrem Port.
- Bei Unbekannten Empfänger werden alle Ports geflutet.
- Bei Bekannten Empfänger wird direkt weitergeleitet.

 Gespeicherte Adressen werden nach einer eingestellten Zeit wieder gelöscht (Aging Time)

Weg/Zeit-Diagramm für das Senden eines Frames

Redundanz (Spanning Tree)

Wenn ein Netzwerk komplexer und es mehre Wege gibt von A nach B. Werden diese Wege durch einen Spanning Tree Algorithmus definiert.

Spanning Tree Algorithmus

- 1. Initialisierung
 - Alle Ports für Nutzdaten blockiert
 - Annahme: «Ich bin Root»
 - Austausch BPDUs mit Nachbar. BPDU: Root-ID, Root-Cost, Bridge-ID, Port-ID
- 2. Aufbau des Spanning Tree (Iteration)
 - «Kleinster» Nachbar als Root gesetzt → Anzahl Hops +1. (**Beachten des Prioritätswert**)
 - So oft wiederholen bis alle dieselbe Root ID besitzen.
- 3. Setzen der Port Rollen
 - Weg zum «kleinsten» Nachbar wird bevorzugt. (ID & Anzahl Hops)
 - Alle anderen Verbindungen werden geschlossen.

Beispiel Rapid Spanning Tree

Initialisierung:

Iteration 2:

6 1/2 3 1/1 1/0

7 4 2 1/1

9 2/2 8 5 1/2

Iteration 1:

Virtuelle LANs

Der Switch ist wie folgt konfiguriert:

Welche Frames werden an welchen Ports gesendet und sind diese getagged oder ungetagged?

Frame Nr	P2	P3	P4	P5	P6	P7
1	T		Т		Т	T
2		U	Т			T
3	T				T	
4	U		U	U	U	U

Übungsbeispiel VLAN

Es werden folgende Frames gesendet:

Frame Nr	DA	tagged?	VLAN ID
1	ff:ff:ff:ff:ff	ja	2
2	ff:ff:ff:ff:ff	ja	7
3	ff:ff:ff:ff:ff	ja	4
4	ff:ff:ff:ff:ff	nein	N/A

Internet Protokolle des Network Layers

Das Internet verbindet mehrere LANs miteinander durch Router.

Router

Der Router selbst hat die Layer 1 bis 3 implementiert plus zusätzliche Router Funktionen. Ein Router verbindet immer zwei LANs miteinander oder LANs mit dem Internet.

IPv4

Eine IPv4 Adresse besteht aus 4 Bytes, je nach Subnetzmaske gehört ein Teil **Netz** und der Rest zum **Interface**. Die Adresse sieht z.B. so aus: $160.85.16.0/20 \rightarrow \text{die } 20 \text{ ist die Anzahl gesetzten}$ Bits in der Subnetzmaske.

IPv4 Netzwerk Klassen

Die Netzwerkklasse wird anhand der erste 4 Bits bestimmt:

Klasse A: 0..., B: 10..., C: 110..., D: 1110..., E: 1111...

Mögliche Werte für die Subnetzmaske:

Binär Wert 💌	Dezimal Wert 💌
1111 1111	255
1111 1110	254
1111 1100	252
1111 1000	248
1111 0000	240
1110 0000	224
1100 0000	192
1000 0000	128
0	0

Binär Wert Dezimal Wert	Binär Wert Dezimal Wert	▼ Binär Wert ▼ Dezimal Wert ▼	Binär Wert Dezimal Wert	Binär Wert Dezimal Wert
11	11 0100 52	110 0111 103	1001 1010 154	1100 1101 205
10 2	11 0101 53	110 1000 104	1001 1011 155	1100 1110 206
11 3	11 0110 54	110 1001 105	1001 1100 156	1100 1111 207
100 4	11 0111 55	110 1010 106	1001 1101 157	1101 0000 208
101 5	11 1000 56	110 1011 107	1001 1110 158	1101 0001 209
110 6	11 1001 57	110 1100 108	1001 1111 159	1101 0010 210
111 7	11 1010 58	110 1101 109	1010 0000 160	1101 0011 211
1000 8	11 1011 59	110 1110 110	1010 0001 161	1101 0100 212
1001 9	11 1100 60	110 1111 111	1010 0010 162	1101 0101 213
1010 10	11 1101 61	111 0000 112	1010 0011 163	1101 0110 214
1011 11	11 1110 62	111 0001 113	1010 0100 164	1101 0111 215
1100 12	11 1111 63	111 0010 114	1010 0101 165	1101 1000 216
1101 13	100 0000 64	111 0011 115	1010 0110 166	1101 1001 217
1110 14	100 0001 65	111 0100 116	1010 0111 167	1101 1010 218
1111 15	100 0010 66	111 0101 117	1010 1000 168	1101 1011 219
1 0000 16	100 0011 67	111 0110 118	1010 1001 169	1101 1100 220
1 0001 17	100 0100 68	111 0111 119	1010 1010 170	1101 1101 221
1 0010 18	100 0101 69	111 1000 120	1010 1011 171	1101 1110 222
1 0011 19	100 0110 70	111 1001 121	1010 1100 172	1101 1111 223
1 0100 20	100 0111 71	111 1010 122	1010 1101 173	1110 0000 224
10101 21	100 1000 72	111 1011 123	1010 1110 174	1110 0001 225
1 0110 22	100 1001 73	111 1100 124	1010 1111 175	1110 0010 226
1 0111 23	100 1010 74	111 1101 125	1011 0000 176	1110 0011 227
1 1000 24	100 1011 75	111 1110 126	1011 0001 177	1110 0100 228
1 1001 25	100 1100 76	111 1111 127	1011 0010 178	1110 0101 229
1 1010 26	100 1101 77	1000 0000 128	1011 0011 179	1110 0110 230
1 1011 27	100 1110 78	1000 0001 129	1011 0100 180	1110 0111 231
1 1100 28	100 1111 79	1000 0010 130	1011 0101 181	1110 1000 232
1 1101 29	101 0000 80	1000 0011 131	1011 0110 182	1110 1001 233
1 1110 30	101 0001 81	1000 0100 132	1011 0111 183	1110 1010 234
1 1111 31	101 0010 82	1000 0101 133	1011 1000 184	1110 1011 235
10 0000 32	101 0011 83	1000 0110 134	1011 1001 185	1110 1100 236
10 0001 33	101 0100 84	1000 0111 135	1011 1010 186	1110 1101 237
10 0010 34	101 0101 85	1000 1000 136	1011 1011 187	1110 1110 238
10 0011 35	101 0110 86	1000 1001 137	1011 1100 188	1110 1111 239
10 0100 36	101 0111 87	1000 1010 138	1011 1101 189	1111 0000 240
10 0101 37	101 1000 88	1000 1011 139	1011 1110 190	1111 0001 241
10 0110 38	101 1001 89	1000 1100 140	1011 1111 191	1111 0010 242
10 0111 39	101 1010 90	1000 1101 141	1100 0000 192	1111 0011 243
10 1000 40	101 1011 91	1000 1110 142	1100 0001 193	1111 0100 244
10 1001 41	101 1100 92	1000 1111 143	1100 0010 194	1111 0101 245
10 1010 42	101 1101 93	1001 0000 144	1100 0011 195	1111 0110 246
10 1011 43	101 1110 94	1001 0001 145	1100 0100 196	1111 0111 247
10 1100 44	101 1111 95	1001 0010 146	1100 0101 197	1111 1000 248
10 1101 45	110 0000 96	1001 0011 147	1100 0110 198	1111 1001 249
10 1110 46	110 0001 97	1001 0100 148	1100 0111 199	1111 1010 250
10 1111 47	110 0010 98	1001 0101 149	1100 1000 200	1111 1011 251
11 0000 48	110 0011 99	1001 0110 150	1100 1001 201	1111 1100 252
11 0001 49	110 0100 100	1001 0111 151	1100 1010 202	1111 1101 253
11 0010 50	110 0101 101	1001 1000 152	1100 1011 203	1111 1110 254
11 0011 51	110 0110 102	1001 1001 153	1100 1100 204	1111 1111 255

IPv4 - Header Format

Version:

4 oder 6 (IPv4 / IPv6)

IHL:

Gibt die Länge des Headers an (inkl. Options), max. $15 \rightarrow 15 * 4$ Bytes = $\underline{60}$ Bytes

DiffServ:

Erlaubt Priorisierung von IP-Datenpakete, $0-5 \rightarrow$ DSCP & $6-7 \rightarrow$ ECN

Total Length:

Länge des IP-Pakets in Bytes (inkl. Header), max. 65'535 Bytes / normal <1500 Bytes

Identification Number:

Eindeutige Erkennung des ursprünglichen IP-Pakets.

Flags:

Bestehend aus 3 Bits, 0, DF und MF. DF (=Don't Fragment), MF (=More Fragments)

Fragment Offset:

Gibt an wo in einem fragmentierten IP-Paket ein Fragment hingehört.

Time to Live:

Verbleibende Lebenszeit für ein Paket. Bei jedem Router wird dieser Wert dekrementiert.

Protocol:

1, 6 oder 17 (ICMP, TCP oder UDP)

Checksum:

16-Bit Prüfsumme über den Header. Wird bei jedem Router neu berechnet.

Source:

IP-Adresse des Hosts

Destination:

IP-Adresse des Hosts

Options / Padding:

Options werden selten verwendet, Padding um ein Vielfaches von 32 Bits aufzufüllen.

IPv4 Fragmentieren

Für die Fragmentierung sind die Felder Identification Number, Flags und Fragment Offset wichtig. Früher hat der Router übernommen heutzutage (Ipv6) werden Pakete vom Host in bereits schon passender Grösse geschickt.

Kapselung & Adressauflösung

Wenn ein IP Paket in ein Netz gerät muss dieses von dem Router in ein <u>Ethernet Frame</u> verpackt werden. Dabei wird das Typen Feld auf 0x0800 gesetzt.

Spezielle IPv4 Adressen

Private Netzadressbereiche (werden im Internet nicht weitergeleitet):

Klass	Netzadresse(Anzah	Subnetzmask
е	n)	ι	е
		Netze	
Α	10.0.0.0	1	255.0.0.0 / 8
В	172.16.0.0 –	16	255.255.0.0
	172.31.0.0		/16
С	192.168.0.0 –	256	255.255.255.0
	192.168.255.0		/24

Routing im Internet Layer

Jede Router besitzt eine Routing-Tabelle diese gibt vor mit welcher Netzadresse & Netzmaske welchen Port & Gateway erreicht wird.

ARP (Adressauflösung)

Wenn ein IP Paket an einem Router ankommt, weiss der vielleicht nicht wie die destination-address für diese IP-Adresse heisst. Dafür macht er einen ARP Request um heraus zu finden wo das <u>Ethernet</u> <u>Frame</u> (mit IP-Paket drin) hinmuss.

ARP Frame

ARP Request & Response befinden sich jeweils in einem <u>Ethernet Frame</u> mit Typ 0x0806. In den Daten wird dann folgendes hinein gesetzt:

ICMP (Internet Control Message Protocol)

Dient zur Übertragung von Fehlermeldungen im Internet Layer. Z.B:

- Wenn Time to live den Wert 0 erreichte
- Ein Host möchte testen, ob ein anderer Host «up» ist.

ICMP Meldungen werden in IP Pakete gekapselt.

Meldungstypen bei ICMP: Fehler / Information

- 3: Destination Unreachable

11: Time Exceeded0: Echo Reply

- **8**: Echo

Codes:

- 0 = net unreachable (Router)
- 1 = host unreachable (Router)
- 2 = protocol unreachable (Ziel Host)
- 3 = port unreachable (Ziel Host)
- 4 = fragmentation needed and DF set (Router)
- 13 = communication administratively prohibited (Firewall)

IPv6

Eine IPv6 Adressen haben eine Länge von 16 Byte bzw. 128 Bit. Beispiel: 2001:0620:0000:0004:0A00:20FF:FE9C:7E4A → 2001:620:0:4:A00:20FF:FE9C:7E4A (Verkürzte Schreibweise)

Transport Layer

Kapselung TCP & UDP: TCP & UDP Headers werden in einem IP Paket gekapselt.

Well-known Ports

Port	Protocol
20 / TCP	FTP - Data
21 / TCP	FTP - Control
22 / TCP	SSH
23 / TCP	Telnet
25 / TCP	SMTP
43 / TCP	WHOIS
53 / UDP/TCP	DNS
80 / TCP	HTTP
67 / UDP	BOOTPs / DHCPs
68 / UDP	BOOTPc / DHCPc
69 / UDP	TFTP
110 / TCP	POP3
143 / TCP	IMAP4
443 / TCP	HTTPS
465 / TCP	SMTPS
993 / TCP	IMAP4S
995 / TCP	POP3S

UDP-User Datagram Protocol

UDP ist **verbindungslos** & **unzuverlässig**. UDP dient dem Multiplexen und Demultiplexen der Datagramme zu den Applikationen.

UDP Header

TCP-Transmission Control Protocol

TCP ist verbindungsorientiert & zuverlässig. TCP kann vollduplexübertragen.

Verkehrssteuerung

Verbindungsaufbau

- Beim Verbindungsaufbau «horcht» der Server auf einer bestimmten Port Nummer (z.B. 80).
- Nun kommt ein Client sendet ein Frame mit einem SYN Flag und einer zufälligen Sequenznummer s1 (z.B. 15'000).
- Server bestätigt die Sequenznummer s1 mit einer Acknowledgement Nummer s1+1 (15'001) und wählt eine zufällige Sequenznummer s2 (z.B. 42'300), das Frame wird mit einem SYN/ACK Flag.
- Client bestätigt s2 mit Acknowledgement s2+1 (42'301).

Datenaustausch

- Nach dem Verbindungsaufbau können Daten geschickt werden.
- Wenn der Server oder Client Daten schickt muss von dem anderen die **Acknowledgement Nummer** mit den Anzahl Bits der geschickten Daten aktualisieren.

Verbindungsabbau

- **Beide Seiten** können den Verbindungsabbau einleiten. <u>Die Verbindung ist erst geschlossen wenn beide Seiten den Verbindungsabbau eingeleitet haben</u>.
- Eine Seite kann die Verbindung schliessen mit einem FIN/ACK Flag. Diese muss dann die andere Seite rückmelden, die Acknowledgement Nummer wird dadurch um 1 inkrementiert.

Zustandsdiagramm

Adaptive Elemente

Retransmission Time-Out (RTO)

Ist eine dynamische Anpassung der Wartezeit bis zum senden des nächsten Pakets (Überlastung des Netztes). TCP misst bei jeder aktiven Verbindung die Round-Trip Time (RTT), zur Berechnung:

$$SRTT_{neu} = (1 - \alpha) * SRTT_{alt} + \alpha * RTT,$$
 $\alpha = 0.125$
 $RTTVAR_{neu} = (1 - \beta) * RTTVAR_{alt} + \beta$
 $* |SRTT - RTT|, \qquad \beta = 0.25$
 $RTO = SRTT + 4 * RTTVAR$
 $Nino Frei$

Fluss-Steuerung / Sliding Window

Stop & Wait ist sehr ineffizient, darum ist es sinnvoll mehrere Pakete auf einmal zu schicken.

Wie gross soll nun die TCP Puffergrösse gewählt werden: BDP (bits) = RTT (sec) * Bandbreite (bps)

TCP Header

TCP Source/Destination Port:

Bezeichnet jeweils die Ports auf Sender- & Empfängerseite.

Sequence Nummer:

Wichtig für die Verkehrssteuerung.

Acknowledgement Nummer:

Wichtig für die Verkehrssteuerung.

Header Länge:

In 32-Bit Einheiten → Faktor 4

ECN Flags:

Bit 8: CWR

Bit 9: ECE

Control Bits:

Bestehend aus 6 Bits, jedes Bit kann einzeln gesetzt werden:

10	11	12	13	14	15
URG	ACK	PSH	RST	SYN	FIN

Window:

Zeigt der anderen Seite die aktuell verfügbare Puffergrösse an.

Checksumme:

16-Bit Prüfsumme über den TCP Header.

Urgent Pointer:

Falls URG-Flag gesetzt wurde: gibt Position in den Daten an wo sich die Urgent Daten befindet.

Slow Start

Beim Slow Start wird heran getastet wie gross die einzelnen Frames sein können. Auf dem Diagramm sieht das wie folgt aus:

Application Layer

Domain Name System (DNS)

Vereinfacht die Nutzung des Internet für einen Benutzer, da das Internet selbst nur IP-Adressen kennt. Darum muss eine Adresse wie: www.zhaw.ch in die IP-Adresse 160.85.104.112 übersetzten werden können und umgekehrt.

DNS ist dabei eine Verzeichnisstruktur (Baum) und wird von hinten nach vorne gelesen. Dabei hängt alles an der Root (·). Es gilt jeder Name Server kennt sicher seine direkt unterstellten Name Server & deren IP Adresse. Für eine Zone ist immer ein NS zuständig und pro Zone gibt es mindestens zwei NS.

DNS Abfragen

DNS verwendet für Abfragen <u>UDP Port 53</u>. Wenn man nach der Adresse ted.sw.eng sucht wird wie folgt abgefragt:

Anfrage an ·: Wo befindet sich eng?
 Antwort: IP

Adresse von eng.

2. Anfrage an *eng*.: Wo befindet sich sw? Antwort: IP

Adresse von sw. eng.

3. Anfrage an *sw. eng.*: Wo befindet sich *ted*? Antwort: IP

Adresse von ted. sw. eng.

Dabei wird aber nicht nur eine IP Adresse zurückgegeben. Der Record Type enthält zusätzliche Information wie zum Beispiel:

Туре	Beschreibung / Funktion
Α	IPv4 Adresse des gesuchten Hosts (32 Bit)
AAAA	IPV6 Adresse des gesuchten Hosts (128 Bit)
MX	Mail Exchange (Mail Server)
NS	Name Server (Name Server Name für eine Zone)
CNAME	Canonical Name (primärer Name) für einen Alias zum Host
TXT	Text Record, in Antworten für verschiedenste Angaben verwendet

DHCP

Wie erhält ein Konten seine IP-Adresse?

- 1. Lokal konfiguriert (statische IP Adressen)
- 2. Bezug der IP-Adresse über das Netzwerk, dies erlaubt DHCP.

Dynamische Zuweisung von IP-Adressen

- 1. Client verlangt eine IP-Adresse (DHCP Request)
- 2. DHCP-Server erteilt eine freie Adresse für definierte Lease Time, oft 10 Minuten.
- 3. Vor Ablauf der Lease Time muss der Lease (vom Client) erneuert werden.
- 4. Client, der das Netz verlässt → Lease wird nicht erneuert.

DHCP Paketformat

Network Address Translation (NAT)

Alle Hosts im privaten Netz 192.168.0.0/8 verwenden 192.168.0.1 als Default-Gateway.

Port-basierte NAT (NAPT) hat folgende Funktionen:

- Ersetzt private IP Adresse im IP Header durch eine öffentlich IP des Gateways / Routers.
- Ersetzt die private Port-Nr. des Hosts durch eine freie zulässigen Port-Nr. des Gateways / Routers.
- Erstell ein Mapping von private IP Adresse & Port-Nr. zur öffentlichen Port-Nr.
- Man kann für das Mapping auch statische Werte definieren, hier wird aber nur die Port-Nummer übernommen.

Problem mit NAT

NAT verletzt das Konzept der OSI-Layer. Um einen Port im TCP Header zu ändern muss man eigentlich die Daten im IP-Frame ändern. Bedeutet eine Netzwerk-Funktion greift auf den Transport Header zu.

Von A nach Z

Du schaltest dein PC ein und möchtest www.google.ch aufrufen. Was passiert hier alles?:

Seite 19 von 19