CREDIT RISK PREDICTION

Name: Hasmitha Bhutham GNumber: G01205552

Username on Miner: acchickens Rank:351, Score on Miner: 0.65

PROGRAM IMPLEMENTATION:

Main steps include:

- 1. Reading and naming the data.
- 2. Encoding using one-hot encoder.
- 3. Finding the correlation.
- 4. Splitting the target variable & resampling the data.
- 5. DecisionTreeClassifier and BaggingClassifier.
- 6. Random Forest Classifier.
- 7. Prediction and finding f1_score.

1. Reading and Naming the data:

- The data files have been read using pandas read_csv().
- The columns have been renamed as:

to make visualization easier.

2. Encoding using one-hot-encoder:

- One-hot encoder has been used on 'cgender' and 'crace'.
- get_dummies() method has been used to encode the categorical values of the train and test data.

3. Finding the correlation:

• The correlation between the columns has been found using a heatmap as below which shows c- has least feature importance so the column has been dropped.

```
n [92]: #heatmap of features
sns.heatmap(train.corr(),cmap = 'coolwarm')
plt.title('train.corr')
```

Out[92]: Text(0.5, 1, 'train.corr')

4. Splitting the target variable & resampling the data:

- The target variable has been split into two classes for 0s and 1s respectively.
- Since there is unbalanced data as shown in the graph below, resampling has been done.

• The resample() function is used here and is concatenated with the split data.

5. DecisionTreeClassifier and BaggingClassifier:

• The BaggingClassifier is used to improve the predictions by taking in the predictions from multiple trees.

- The params are: BaggingClassifier(base_estimator=DecisionTreeC lassifier(class_weight=None, criterion='gini',max_depth=None, max_features=None, max_leaf_nodes=None, min_impurity_decrea se=0.0, min_impurity_split=None,min_samples_leaf=1,min_samples_split=2, min_weight_fraction_leaf=0.0,presort=False, rand om_state=None,splitter='best'),bootstrap=True, bootstrap_features=False, max_features=1.0,max_samples=1.0, n_estimators=100, n_jobs=None, oob_score=False, random_state=7, verbose=0,warm_start=False)
- The num of trees used here 100.

6. Random Forest Classifier:

- Random Forest Classifier was also used to determine the better f1_score.
- Params are: RandomForestClassifier(bootstrap=True, class_weig ht=None, criterion='gini',max_depth=None, max_features='auto ', max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,min_samples_leaf=1, min_samples_split=2,min_weight_fracti on_leaf=0.0, n_estimators=10, n_jobs=None, oob_score=False, random_state=None,verbose=0, warm_start=Fals)
- F1 score for Rfc is 0.64

7. Prediction and F1 score:

- The prediction is done using 'test2' data and f1_score is determined for y_test2 and bp.
- The f1_score is calculated as 0.670142 for BaggingClassifier and is uploaded on miner.
- The result file is then printed in the same folder with the predictions.