

Estatística Descritiva

Resumindo e Descrevendo Variáveis Quantitativas

Estatística Aplicada

Ana Maria Nogales Vasconcelos

Maria Teresa Leão Costa

MTLC - 2020

Dados Agrupados

Como determinar as medidas resumo??

DISTRIBUIÇÃO DO NÚMERO DE FALHAS EM UM SISTEMA DE COMUNICAÇÃO POR DIA -CIA, FACILCOM SÃO PAULO – DEZEMBRO DE 2019

NÚMERO	
DE FALHAS	N°∙ de Dias
0	4
1	5
2	7
3	8
4	4
5	2
TOTAL	30

Fonte: Dados Fictícios

CONSUMO MENSAL DE ENERGIA ELÉTRICA LOCALIDADE "CLARIDADE" - 2019

CONSUMO	N ^{o.} de Usuários
10 15	3
15 20	5
20 25	10
25 30	15
30 35	8
35 40	6
40 45	3
-	
TOTAL	50

Fonte: Dados Fictícios

Medidas Resumo para Dados Agrupados

Medidas Posição para Dados **Agrupados**

Média

DISTRIBUIÇÃO DO NÚMERO DE FALHAS EM UM SISTEMA DE COMUNICAÇÃO POR DIA -CIA. FACILCOM SÃO PAULO - DEZEMBRO DE 2019

NÚMERO DE FALHAS	N° de Dias
0	4
1	5
2	7
3	8
4	4
5	2
TOTAL	30

Fonte: Dados Fictícios

unis - IE Departamento de Estatústica Média

X-variável quantitativa em estudo

X; - i-ésimo valor distinto da variável X ou ponto médio da *i-ésima* classe

 f_i - frequência do *i-ésimo valor distinto* da variável **X** ou da *i-ésima* classe

k - número de valores distintos ou de classes (observado da população ou da amostra)

Média populacional:

Em uma população de tamanho N, a média é dada por:

$$\mu = \frac{\sum_{i=1}^{k} x_i \times f_i}{N} \quad e \quad \sum_{i=1}^{k} f_i = N$$

$$\overline{X} = \frac{\sum_{i=1}^{k} x_i \times f_i}{n} \quad e \quad \sum_{i=1}^{k} f_i = n$$

Média da Amostra:

Em uma amostra de tamanho **n**, a média é dada por:

$$\overline{X} = \frac{\sum_{i=1}^{k} x_i \times f_i}{n} \quad e \quad \sum_{i=1}^{k} f_i = n$$

Média - Distribuição de Frequência por classes

CONSUMO MENSAL DE ENERGIA ELÉTRICA

LOCALIDADE "CLARIDADE" - 2019

CONTRIBUTE CENTRIFIED		
CONSUMO	N ^{o.} de Usuários	
10 15	3	
15 20	5	
20 25	10	
25 30	15	
30 35	8	
35 40	6	
40 45	3	
TOTAL	50	

Fonte: Dados Fictícios

Classes xi*fi 10 |-- 15 12,5 37.5 15 |-- 20 17,5 87,5 20 |-- 25 22,5 225 25 |-- 30 412.5 30 |-- 35 260 35 |-- 40 225 40 |-- 45 127,5 TOTAL 1375

Média - Distribuição de Frequência por valores

DISTRIBUIÇÃO DO NÚMERO DE FALHAS EM UM SISTEMA DE COMUNICAÇÃO POR DIA -CIA, FACILCOM SÃO PAULO – DEZEMBRO DE 2019

NÚMERO DE FALHAS	N° de Dias
0	4
1	5
2	7
3	8
4	4
5	2
TOTAL	20

Fonte: Dados Fictícios

xi	fi	xi*fi
0	4	0
1	5	5
2	7	14
3	8	5 14 24 16
4	4	16
5	2	10
TOTAL	30	69
		6

 $\bar{x} = \frac{\sum_{i=1}^{\kappa} x_i f_i}{1 - \frac{69}{30}} = 2,3 \text{ falhas } p / dia$

UnB. IE Variância Variância

X-variável quantitativa em estudo

X; - i-ésimo valor distinto da variável X ou ponto médio da *i-ésima* classe

 f_i - frequência do $\emph{i-ésimo valor distinto}$ da variável $\emph{\textbf{X}}$ ou da *i-ésima* classe

k - número de valores distintos ou de classes (observado da população ou da amostra)

Variância populacional:

Em uma população de tamanho Nr:

$$\sigma^{2} = \frac{\sum_{i=1}^{k} x_{i}^{2} f_{i} - N \mu^{2}}{N} \quad e \quad N = \sum_{i=1}^{k} f_{i} \qquad S^{2} = \frac{\sum_{i=1}^{k} x_{i}^{2} f_{i} - n \overline{x}^{2}}{n-1} \quad e \quad n = \sum_{i=1}^{k} f_{i}$$

Variância da amostra:

Em uma amostra de tamanho n:

$$S^{2} = \frac{\sum_{i=1}^{k} x_{i}^{2} f_{i} - n\overline{x}^{2}}{n-1} \quad e \quad n = \sum_{i=1}^{k} f_{i}$$

Vamos trabalhar com os dados?

Considerando os dados referentes as variáveis:

- •número de falhas p/dia do sistema de comunicação
- •Consumo de energia elétrica em kwh

apresentados de forma agrupada, determine para cada caso :

- 1.as medidas de variabilidade
- 2.a medidas de assimetria.

Analise os resultados obtidos.

OBS: Baixar o arquivo com o exercício (Medidas para Dados Agrupados) no espaço da disciplina no Aprender 3.

90

Mediana - Distribuição de Frequência por valores

DISTRIBUIÇÃO DO NÚMERO DE FALHAS EM UM SISTEMA DE COMUNICAÇÃO POR DIA -CIA, FACILCOM

SÃO PAULO - DEZEMBRO DE 2019

NÚMERO DE FALHAS	N° de Dias
0	4
1	5
2	7
3	8
4	4
5	2
TOTAL	30

xi	fi	Fi	
0	4	4	
1	5	9	
2	7	16 🛑	
3	8	16 —— 24 28 30	
4	4	28	
5	2	30	
TOTAL	30		

Fonte: Dados Fictícios

$$\frac{n}{2} = \frac{30}{2} = 15 \rightarrow \begin{cases} 15^{a} \ posição : x_{(15)} = 2\\ 16^{a} \ posição : x_{(15)} = 2 \end{cases}$$

$$Md = \frac{2+2}{2} = 2 \, falhas \, p \, / \, dia$$

Mediana

♦ Distribuição de frequências por valores

n impar : – Mediana é valor que ocupa a posição $\frac{n+1}{2}$

n par: - Mediana é a média dos valores que ocupam

as posições
$$\left(\frac{n}{2}\right)e\left(\frac{n}{2}+1\right)$$

91

Mediana - Distribuição de Frequência por classes

Classes

CONSUMO MENSAL DE ENERGIA ELÉTRICA LOCALIDADE "CLARIDADE" - 2019

CONSUMO	N° de Usuários
10 15	3
15 20	5
20 25	10
25 30	15
30 35	8
35 40	6
40 45	3
TOTAL	50

10 15	3	3
15 20	5	8
20 25	10	18
25 30	15	33
30 35	8	41
35 40	6	47
40 45	3	50
TOTAL	50	

Fonte: Dados Fictícios

93

Mediana

Distribuição de frequências por classes

Mediana - Distribuição de Frequência por classes

CONSUMO MENSAL DE ENERGIA ELÉTRICA

LOCALIDADE "CLARIDADE" - 2019

CONSUMO	N° de Usuários
10 15	3
15 20	5
20 25	10
25 30	15
30 35	8
35 40	6
40 45	3
TOTAL	50

Fonte: Dados Fictícios

Classes	fi	Fi
10 15	3	3
15 20	5	8
20 25	10	18
25 30	15	33
30 35	8	41
35 40	6	47
40 45	3	50
TOTAL	50	

$$\frac{n}{2} = \frac{50}{2} = 25 \rightarrow 25^a posição$$

$$Md = 25 + 5\frac{(50/2 - 18)}{15} = 25 + 5 \times \frac{7}{15} = 25 + 2,33 = 27,33kwh$$

Mediana

♦ Distribuição de frequências por classes

$$Md = l_i + a_i \frac{\left(\frac{n}{2} - F_{i-1}\right)}{f_i}$$

onde:

 l_i – limite inferior da classe que contem a mediana

a; – amplitude da classe que contem a mediana

F_{i-1} – frequencia acumulada da classe anterior a que contem a mediana

f_i - frequencia absoluta da classe que contem a mediana

95

Quantis de ordem p

Distribuição de frequências por classes

$$q(p) = l_i + a_i \frac{\left(n \times p - F_{i-1}\right)}{f_i}$$

onde:

 l_i – limite inferior da classe que contém o quantil

a; – amplitude da classe que contém o quantil

 F_{i-1} – frequência acumulada da classe anterior a que contém o quantil

f_i- frequencia absoluta da classe que contém o quantil

Moda - Distribuição de Frequência por valores

DISTRIBUIÇÃO DO NÚMERO DE FALHAS EM UM SISTEMA DE COMUNICAÇÃO POR DIA -CIA. FACILCOM SÃO PAULO – DEZEMBRO DE 2019

NÚMERO DE FALHAS	N° de Dias
0	4
1	5
2	7
3	8
4	4
5	2
TOTAL	30
Fonte: Dados Fict	ícios

Mo = 3 falhas p / dia

98

Moda - Distribuição de Frequência por classes

CONSUMO MENSAL DE ENERGIA ELÉTRICA

LOCALIDADE "CLARIDADE" - 2019

CONSUMO	N° de Usuários
10 15	3
15 20	5
20 25	10
25 30	15
30 35	8
35 40	6
40 45	3
TOTAL	50

Fonte: Dados Fictícios

99

Moda de Czuber

 $Mo = l_i + a_i \frac{\Delta_1}{\Delta_1 + \Delta_2}$

onde:

 l_i – limite inferior da classe que contém a moda

a_i – amplitude da classe que contém a moda

 Δ_1 – frequência ou densidade da classe modal-frequência da classe anterior

 Δ_2 – frequência ou densidade da classe modal-frequência da classe posterior

101

Moda - Distribuição de Frequência por classes

CONSUMO MENSAL DE ENERGIA ELÉTRICA

LOCALIDADE "CLARIDADE" - 2019

Classe	
modal	
modai	

	DO C.ILII	=017		
	Classes	fi	ai	densidade
	10 15	3	5	0,6
	15 20	5	5	1,0
	20 I 25	10	5	2,0
ŀ	25 30	15	5	3,0
Ī	30 35	8	5	1,6
	35 40	6	5	1,2
	40 45	3	5	0,6
	TOTAL	50		

$$l_i = 25$$
 $a_i = 30 - 25 = 5$ $\Delta_1 = 3 - 2 = 1$
$$\Delta_2 = 3 - 1, 6 = 1, 4$$

$$Mo = l_i + a_i \frac{\Delta_1}{\Delta_1 + \Delta_2} = 25 + 5 \times \frac{1}{1 + 1, 4} = 25 + \frac{5 \times 1}{2, 4} = 25 + 2,08 = 27,08 \text{kwh}$$

