

CPE 323: MSP430 Clocks

Aleksandar Milenkovic

Electrical and Computer Engineering The University of Alabama in Huntsville

milenka@ece.uah.edu

http://www.ece.uah.edu/~milenka

Outline

- Clocks
- MSP430 Clock System
- FLL+ Module
- FLL+ Registers
- **Demos**

MSP430xG461x Microcontroller

Demos

Clocks

- Clock: a square wave whose edges trigger hardware state changes
- Traditional clock: a crystal with frequency of a few MHz is connected to two µC pins; internally the clock may be divided by 2 or 4
- Typical application cycle in embedded systems
 - μC stays in a low-power mode until
 - An event wakes up µC to handle it
- Often need multiple clocks (fast for CPU, slow for peripherals)
- Power consumption: $P \sim CV^2f$

Clock Types

- Crystal clocks
 - Accurate (the frequency is typically within 11 part in 100,000), stable (do not change with time or temperature)
 - High-frequency (a few MHz) or low-frequency (32,768 Hz) for a real-time clock
 - Expensive, delicate, draw a relatively large current, require additional components (capacitors), take long time to start up and stabilize
- Resistor and capacitor (RC) clocks
 - Cheap, quick to start
 - Poor accuracy and stability
 - Can be external or integrated into a chip

MSP430 Clock System

- Flexible to address conflicting demands for high-performance, low-power, and a precise frequency
- 3 internal clocks from 4 possible sources: MCLK, SMCLK, ACLK
- Master clock, MCLK: used by the CPU and a few peripherals (e.g., ADC12, DMA, ...)
- Subsystem master clock, SMCLK: distributed to peripherals
- Auxiliary clock, ACLK: distributed to peripherals
- Typical configuration: MCLK and SMCLK are in the megahertz range, ACLK is 32 KHz

MSP430 Clock System

- Digitally controlled Oscillator, DCO: available in all devices; highly-controllable oscillator
 - Generated on-chip RC-type frequency controlled by SW + HW

- Low- or high-frequency crystal oscillator, LFXT1
 - LF: 32768Hz
 - XT: 450kHz 8MHz

- High-frequency crystal oscillator, XT2
- Internal very low-power, low-frequency oscillator, VLO: available in more recent MSP430F2xx devices; provides an alternative to LFXT1 when accuracy is not needed

FLL+ Clock Module (MSP430x4xx)

- FLL+ clock module: frequency-locked loop clock module
- Characteristics
 - Low system cost
 - Ultra-low power consumption
 - Can operate with no external components
 - Supports one or two external crystals or resonators (LFXT1 and XT2)
 - Internal digitally-controlled oscillator with stabilization to a multiple of the LFXT1 watch crystal frequency
 - Full software control over 4 output clocks: ACLK, ACLK/n, MCLK, and SMCLK

FLL+ Block Diagram

Demos

- LFXT1CLK: Low-frequency/highfrequency oscillator that can be used
 - either with low-frequency 32768-Hz watch crystals, or
 - standard crystals or resonators in the 450-kHz to 8-MHz range
- XT2CLK: Optional high-frequency oscillator that can be used with standard crystals, resonators, or external clock sources in the 450-kHz to 8-MHz range
- DCOCLK: Internal digitally controlled oscillator (DCO) with RC-type characteristics, stabilized by the FLL.

FLL+ Clocks

- **ACLK:** Auxiliary clock
 - The ACLK is the LFXT1CLK clock source. ACLK is software selectable for individual peripheral modules
- ACLK/n: Buffered output of the ACLK
 - The ACLK/n is ACLK divided by 1,2,4 or 8 and only used externally
- MCLK: Master clock used by the CPU and system
 - Software selectable as LFXT1CLK, XT2CLK (if available), or DCOCLK
 - MCLK can be divided by 1, 2, 4, or 8 within the FLL block
- SMCLK: Sub-main clock, used by peripheral modules
 - Software selectable as XT2CLK (if available), or DCOCLK

FLL+ Operation

- After a PUC, MCLK and SMCLK are sourced from DCOCLK at 32 times the ACLK frequency
 - When a 32,768-Hz crystal is used for ACLK, MCLK and SMCLK will stabilize to 1.048576 MHz
- Status register control bits SCG0, SCG1, OSCOFF, and CPUOFF configure the MSP430 operating modes and enable or disable components of the FLL+ clock module
- SCFQCTL, SCFI0, SCFI1, FLL_CTL0, and FLL_CTL1 registers configure the FLL+ clock module
 - FLL+ can be configured or reconfigured by software at any time during program execution.
- Example, MCLK = $64 \times ACLK = 2097152$

```
BIC #GIE, SR ; Disable interrupts
MOV.B \#(64-1), &SCFQTL; MCLK = 64 * ACLK, DCOPLUS=0
MOV.B #FN 2, &SCFIO ; Select DCO range
BIS #GIE, SR ; Enable interrupts
```


LFXT1

- Low-frequency (LF) mode (XTS_FLL=0) with 32,768 Hz watch crystal connected to XIN and XOUT
- High-frequency (HF) mode (XTS_FLL=1) with highfrequency crystals or resonators connected to XIN and XOUT (~450 KHz to 8 MHz)
- XCPxPF bits configure the internally provided load capacitance for the LFXT1 crystal (1, 6, 8, or 10 pF)
- OSCOFF bit can be set to disable LFXT1

XT2

- XT2 sources XT2CLK and its characteristics are identical to LFXT1 in HF mode, except it does not have internal load capacitors (must be provided externally)
- XT2OFF bit disables the XT2 oscillator if XT2CLK is not used for MCLK and SMCLK

DCO

- Integrated ring oscillator with RC-type characteristics
- DCO frequency is stabilized by the FLL to a multiple of ACLK as defined by N (the lowest 7 bits of the SCFQCTL register)
- DCOPLUS bit sets the f_{DCOCLK} to f_{DCO} or f_{DCO/D} (divider)
 - FLLDx bits define the divider D to 1, 2, 4 or 8
 - By default DCOPLUS=0 and D=2 (providing $f_{DCOCLK} = f_{DCO/2}$)
- DCOPLUS = 0: $f_{DCOCLK} = (N + 1) \times f_{ACLK}$
- DCOPLUS = 1: $f_{DCOCLK} = D \times (N + 1) \times f_{ACLK}$

Frequency Locked Loop

- FLL continuously counts up or down a 10-bit frequency integrator
- The output of the frequency integrator that drives the DCO can be read in SCFI1 and SCFI0. The count is adjusted +1 or −1 with each ACLK crystal period.
- Five of the integrator bits, SCFI1 bits 7-3, set the DCO frequency tap
 - Twenty-nine taps are implemented for the DCO (28, 29, 30, and 31 are equivalent), and each is approximately 10% higher than the previous
 - The modulator mixes two adjacent DCO frequencies to produce fractional taps
- SCFI1 bits 2-0 and SCFI0 bits 1-0 are used for the modulator
- The DCO starts at the lowest tap after a PUC or when SCFI0 and SCFI1 are cleared
 - Time must be allowed for the DCO to settle on the proper tap for normal operation. 32 ACLK cycles are required between taps requiring a worst case of 28 x 32 ACLK cycles for the DCO to settle

DCO Modulator

- Mixes two adjacent DCO frequencies to produce an intermediate effective frequency and spread the clock energy, reducing electromagnetic interference (EMI)
- Mixes the two adjacent frequencies across 32 DCOCLK clock cycles
- The error of the effective frequency is zero every 32. DCOCLK cycles and does not accumulate
 - Modulator settings and DCO control are automatically controlled by the FLL hardware

Fail Safe Operation

- ncorporates an oscillator-fault fail-safe feature
 - Detects an oscillator fault for LFXT1, DCO and XT2
- Available fault conditions are:
 - Low-frequency oscillator fault (LFOF) for LFXT1 in LF mode
 - High-frequency oscillator fault (XT1OF) for LFXT1 in HF mode
 - High-frequency oscillator fault (XT2OF) for XT2
 - DCO fault flag (DCOF) for the DCO

DCO Frequency Range

DCO

PARAMETER	TEST CONDITIONS	V _{cc}	MIN	TYP	MAX	UNIT
f _(DCOCLK)	N _(DCO) =01Eh, FN_8=FN_4=FN_3=FN_2=0, D = 2; DCOPLUS= 0	2.2 V/3 V		1		MHz
	EN A EN A EN A EN A A PAGELLIA A	2.2 V	0.3	0.65	1.25	
f _(DCO=2)	FN_8=FN_4=FN_3=FN_2=0 ; DCOPLUS = 1	3 V	0.3	0.7	1.3	MHz
	EN 0-EN 4-EN 0-EN 0-0, DOODLIJG - 4	2.2 V	2.5	5.6	10.5	NAL I-
f _(DCO=27)	FN_8=FN_4=FN_3=FN_2=0; DCOPLUS = 1	3 V	2.7	6.1	11.3	MHz
	EN 0-EN 4-EN 2-0 EN 2-4- DOODLUG - 4	2.2 V	0.7	1.3	2.3	NAL 1-
f _(DCO=2)	FN_8=FN_4=FN_3=0, FN_2=1; DCOPLUS = 1	3 V	0.8	1.5	2.5	MHz
	FN 8=FN 4=FN 3=0, FN 2=1; DCOPLUS = 1	2.2 V	5.7	10.8	18	MHz
f _(DCO=27)	FN_0-FN_4-FN_3-0, FN_2-1, DCOPLOS - 1		6.5	12.1	20	IVITZ
5N 0-5N 4-0 5N 0-	EN 0-FN 4-0 FN 2-4 FN 2-11 DOODLING - 4	2.2 V	1.2	2	3	NAL 1-
f _(DCO=2)	FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1	3 V	1.3	2.2	3.5	MHz
f _(DCO=27)	EN 0-EN 4-0 EN 2-4 EN 2-11 DOODLING - 4	2.2 V	9	15.5	25	MHz
	FN_8=FN_4=0, FN_3= 1, FN_2=x; DCOPLUS = 1	3 V	10.3	17.9	28.5	1011 12
	EN 9-0 EN 4-1 EN 2-EN 2-W DOODLIS-1	2.2 V	1.8	2.8	4.2	MHz
f _(DCO=2)	FN_8=0, FN_4= 1, FN_3= FN_2=x; DCOPLUS = 1	3 V	2.1	3.4	5.2	IVIHZ
	EN 0-0 EN 4-4 EN 2- EN 2-W DOODLIJG - 4	2.2 V	13.5	21.5	33	MHz
f _(DCO=27)	FN_8=0, FN_4=1, FN_3= FN_2=x; DCOPLUS = 1	3 V	16	26.6	41	IVITZ
	EN 9-4 EN 4-EN 2-EN 2-W DOODLUG - 4	2.2 V	2.8	4.2	6.2	MHz
f _(DCO=2)	FN_8=1, FN_4=FN_3=FN_2=x; DCOPLUS = 1	3 V	4.2	6.3	9.2	IVITZ
	EN 9-4 EN 4-EN 2-EN 2-W DOODLING - 4	2.2 V	21	32	46	MHz
f _(DCO=27)	FN_8=1,FN_4=FN_3=FN_2=x; DCOPLUS = 1	3 V	30	46	70	IVITZ
c	Step size between adjacent DCO taps:	1 < TAP ≤ 20	1.06		1.11	
S _n	$S_n = f_{DCO(Tap n+1)} / f_{DCO(Tap n)}$ (see Figure 16 for taps 21 to 27)	TAP = 27	1.07		1.17	
D	Temperature drift, N _(DCO) = 01Eh, FN_8=FN_4=FN_3=FN_2=0	2.2 V	-0.2	-0.3	-0.4	%/°C
Dt	D = 2; DCOPLUS = 0	3 V	-0.2	-0.3	-0.4	%0/° C
D_V	Drift with V_{CC} variation, $N_{(DCO)}$ = 01Eh, FN_8=FN_4=FN_3=FN_2=0 D = 2; DCOPLUS = 0		0	5	15	%/V

DCO Frequency as f(VCC, TA)

Demos

DCO Ranges **Controlled by FN bits**

Demos

FN_8	FN_4	FN_3	FN_2	Typical f _{DCO} Range
0	0	0	0	0.65 to 6.1
0	0	0	1	1.3 to 12.1
0	0	1	Χ	2 to 17.9
0	1	Χ	Χ	2.8 to 26.6
1	Χ	Χ	Χ	4.2 to 46

FLL+ Registers

Register	Short Form	Register Type	Address	Initial State
System clock control	SCFQCTL	Read/write	052h	01Fh with PUC
System clock frequency integrator 0	SCFI0	Read/write	050h	040h with PUC
System clock frequency integrator 1	SCFI1	Read/write	051h	Reset with PUC
FLL+ control register 0	FLL_CTL0	Read/write	053h	003h with PUC
FLL+ control register 1	FLL_CTL1	Read/write	054h	Reset with PUC
FLL+ control register 2 [†]	FLL_CTL2	Read/write	055h	Reset with PUC
SFR interrupt enable register 1	IE1	Read/write	000h	Reset with PUC
SFR interrupt flag register 1	IFG1	Read/write	002h	Reset with PUC

T MSP430F41x2, MSP430F47x3/4, and MSP430F471xx devices only.

FLL+: SCFQCTL

Demos

SCFQCTL, System Clock Control Register

SCFIO

SCFI0, System Clock Frequency Integrator Register 0

. 7	6	5	4	3	2	1	0
FLI	LDx		FN	_x		MODx	(LSBs)
rw-0	rw-1	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

FLLDx	Bits 7-6	FLL+ loop divider. These bits divide f _{DCOCLK} in the FLL+ feedback loop. This results in an additional multiplier for the multiplier bits. See also multiplier bits. 00 /1 01 /2 10 /4 11 /8
FN_x	Bits 5-2	DCO range control. These bits select the f _{DCO} operating range. 0000 0.65 to 6.1 MHz 0001 1.3 to 12.1 MHz 001x 2 to 17.9 MHz 01xx 2.8 to 26.6 MHz 1xxx 4.2 to 46 MHz
MODx	Bits 1–0	Least significant modulator bits. Bit 0 is the modulator LSB. These bits affect the modulator pattern. All MODx bits are modified automatically by the FLL+.

SCFI1

Demos

SCFI1, System Clock Frequency Integrator Register 1

. 7	6	5	4	3	2	1	0
		DCOx		MODx (MSBs)			
rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0	rw-0

DCOx Bits These bits select the DCO tap and are modified automatically by the FLL+. 7-3 MODx Bit 2 Most significant modulator bits. Bit 2 is the modulator MSB. These bits affect the modulator pattern. All MODx bits are modified automatically by the FLL+.

FLL_CTLO

7	6	5	4	3	2	1	0		
DCOPLUS	XTS_FLL	XCA	PxPF	XT2OF†	XT1OF	LFOF	DCOF		
rw–0 lot present in	rw-0 MSP430x41x,	rw-0 , MSP430x42x de	rw-0 vices	r-0	r–0	r–(1)	r–1		
OCOPLUS				SMCLK. The					
(TS_FLL		0 Low free	(1 mode select Low frequency mode High frequency mode						
(CAPxPF	5–4	Oscillator cap seen by the L high-frequenc 00 ~1 pF 01 ~6 pF 10 ~8 pF 11 ~10 pF	FXT1 crysta	l or resonato	r. Should be	set to 00 if	the		
(T2OF			fault. Not proceed to condition proceed to condition presented to co	esent	P430x41x, a	nd MSP430)x42x		
(T10F			equency oso condition pr ndition prese	esent					
-FOF			equency osc condition pr ndition prese	esent					
COF			r fault condition pr ndition prese						

FLL_CTL1

FI I	CTI 1	FILL	Control	Register 1	

	7	6	5	4	3	2	1	0
	LFXT1DIG‡	SMCLK OFF [†]	XT2OFF†	SEL	.Mx†	SELS†	FLL_	_DIVx
ľ	rw-0	rw-0	rw-(1)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)

[†] Not present in MSP430x41x, MSP430x42x devices except MSP430F41x2.

LFXT1DIG Select digital external clock source. This bit enables the input of an external digital clock signal on XIN in low-frequency mode (XTS_FLL = 0). Only supported in MSP430xG46x, MSP430FG47x, MSP430F47x, MSP430x47x3/4, and MSP430F471xx devices. Crystal input selected Digital clock input selected

SMCLKOFF Bit 6 SMCLK off. This bit turns off SMCLK. Not present in MSP430x41x and MSPx42x devices.

> SMCLK is on SMCLK is off

XT2 off. This bit turns off the XT2 oscillator. Not present in MSP430x41x and MSPx42x devices.

0 XT2 is on

XT2 is off if it is not used for MCLK or SMCLK

Select MCLK. These bits select the MCLK source. Not present in SELMx Bits MSP430x41x and MSP430x42x devices except MSP430F41x2.

00 DCOCLK 01 DCOCLK

10 XT2CLK 11 LFXT1CLK

In the MSP430F41x2 devices:

00 DCOCLK 01 DCOCLK

10 LFXT1CLK or VLO 11 LFXT1CLK or VLO

SELS Select SMCLK. This bit selects the SMCLK source. Not present in MSP430x41x and MSP430x42x devices.

> DCOCLK XT2CLK

FLL DIVx ACLK divider Bits

> 00 /1 01 /2

10 /4 11 /8

XT2OFF

Only supported by MSP430xG46x, MSP430FG47x, MSP430F47x, MSP430x47x3/4, and MSP430F471xx devices. Otherwis unused.

IFG1, IE1

7	6	5	4	3	2	1	0
						OFIFG	
						rw-0	1
	Bits 7-2	These bits ma	y be used b	y other modu	ules. See d	evice-specific	data sheet
OFIFG	Bit 1	Oscillator fault modules, it is instructions, ra 0 No interr	recommend	led to set or OV.B or CLR	clear this b	oit using BIS.	

Demo #1 (DCO @ 2.45 MHz)

```
MSP430xG46x Demo - FLL+, Runs Internal DCO at 2.45MHz
// Description: This program demonstrates setting the internal DCO to run at
// 2.45MHz with auto-calibration by the FLL+ circuitry.
   ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = (74+1) x ACLK = 2457600Hz
//
                  MSP430xG461x
//
          71\1
                           XIN|-
                              | 32kHz
//
           -- | RST
                          XOUT | -
//
//
                          P1.1|--> MCLK = 2.45MHz
//
//
                          P1.5|--> ACLK = 32kHz
//***************************
#include <msp430xG46x.h>
void main(void)
                                         // Stop watchdog timer
  WDTCTL = WDTPW + WDTHOLD;
                                          // Set load capacitance for xtal
 FLL CTL0 |= XCAP18PF;
 SCFI0 |= FN 2;
                                          // x2 DCO, 4MHz nominal DCO
                                          // (74+1) x 32768 = 2.45Mhz
 SCFQCTL = 74;
 P1DIR = 0x22;
                                          // P1.1 & P1.5 to output direction
 P1SEL = 0x22;
                                          // P1.1 & P1.5 to output MCLK & ACLK
 while(1);
                                          // Loop in place
```


Demo #2 (DCO @ 8 MHz)

```
MSP430xG46x Demo - FLL+, Runs Internal DCO at 8MHz
// Description: This program demonstrates setting the internal DCO to run at
// 8MHz with auto-calibration by the FLL+.
   ACLK = LFXT1 = 32768Hz, MCLK = SMCLK = DCO = (121+1) x 2 x ACLK = 7995392Hz
//
                  MSP430xG461x
//
         71\1
                           XIN|-
                              | 32kHz
//
           -- | RST
                          XOUT | -
//
//
                          P1.1|--> MCLK = 8MHz
//
//
                          P1.5|--> ACLK = 32kHz
//***************************
#include <msp430xG46x.h>
void main(void)
                                         // Stop watchdog timer
 WDTCTL = WDTPW + WDTHOLD;
                                         // DCO+ set, freq = xtal x D x N+1
 FLL CTL0 |= DCOPLUS + XCAP18PF;
 SCFI0 |= FN 4;
                                          // x2 DCO freq, 8MHz nominal DCO
                                          // (121+1) x 32768 x 2 = 7.99 MHz
  SCFQCTL = 121;
                                          // P1.1 & P1.5 to output direction
  P1DIR = 0x22;
                                          // P1.1 & P1.5 to output MCLK & ACLK
  P1SEL = 0x22;
 while(1);
                                          // Loop in place
```


Demo #3 (XT2)

```
MSP430xG46x Demo - FLL+, MCLK Configured to Operate from XT2 HF XTAL
    Description: Proper selection of an external HF XTAL for MCLK is
    demonstrated using HF XT2 OSC. OFIFG is polled until the HF XTAL
    is stable - only then is MCLK sourced by XT2. MCLK is buffered on P1.1.
11
                MSP430xG46x
11
         /1\1
//
                          XIN | -
11
11
           --|RST
                         XOUT | -
11
//
                        XT2IN|-
//
                             | HF XTAL (455kHz - 8MHz)
//
                       XT2OUT | -
11
11
                    P1.1/MCLK | -->MCLK = HF XTAL
//***************************
```


Demo #3 (XT2) cont'd

```
#include <msp430xG46x.h>
void main(void) {
 volatile unsigned int i;
                          // Stop WDT
 WDTCTL = WDTPW+WDTHOLD;
 // Disable LFXT1 xtal osc & FLL loop
 BIS SR(OSCOFF + SCG0 + GIE);
 // Activate XT2 high freq xtal
 FLL CTL1 &= ~XT2OFF;
 // Wait for xtal to stabilize
 do
   for (i = 5; i > 0; i--); // Time to set flag
 // OSCFault flag still set?
 while ((IFG1 & OFIFG));
 FLL CTL1 |= SELM1; // MCLK = XT2
 P1DIR |= 0x002; // P1.1 output direction
 P1SEL |= 0 \times 002;
                   // P1.1 option select
 while(1);
```

