Sprint Planning Document (Sprint 3)

March 25 - April 22 2025

Olivia Monteiro, Alicia Reed, Danny Steuer, Archer Taylor, Eli Weber

High-level Project Overview

Project Mission:

Provide a client-server architecture to develop educational systems to support
STEM interest in K-12 students

Problems We Are Solving:

- There is limited previous work in the field of quadruped research in K-12 students
- Development of interesting, child-friendly educational resources
- Develop STEM interest in young students
- Potential future use in search-and-rescue missions

Project Overview (High-Level Features):

Cloud Server

- Cloud connection to link the microphone & voice files with the PuppyPi
- Support for quadruped control, sending and receiving commands, sending and receiving sensor data

Voice Recognition Using LLM

 Using a large language model to recognize & process voice data into words to transmit as commands to PuppyPi

• Camera Recognition Using YOLOv8

 Additional goal added by project sponsor to use computer vision with the PuppyPi camera so the PuppyPi can follow commands such as "Find the blue ball"

ROS Programming

- Using action groups to take the PuppyPi through a series of preprogrammed motions
 - Sit, lay down, moonwalk, shake
- Using publisher nodes to allow PuppyPi to walk, turn, etc.
- Engineer app functionality with voice commands

Sprint 3 Planning

Sprint 3 Goals:

- 1. Create complete app functionality including camera, lidar, etc.
- 2. Implement "length of time" commands ("walk forward for 5 seconds").
- 3. Implement "stop" command / "stop" wakeword
- 4. Improve latency & transcription accuracy with noise reduction techniques to deal with ambient noise
- 5. Implement audio compression techniques to reduce the size of the payload being sent to cloud
- 6. Create handling for continuous thinking commands ("follow me")
- 7. YOLOv8/computer vision functionality object finding
- 8. Test commands/command interpretation
- 9. Implement interoperability with different types of networks (WPA Enterprise / Personal / etc...)

Sprint 3 Deliverables:

- Create complete app functionality including camera, lidar, etc.
 - o **Assigned:** Alicia Reed
 - Implement the final commands in the app that we do not have voice commands for yet
- Implement "length of time" commands ("walk forward for 5 seconds").
 - Assigned: Eli Weber, Olivia Monteiro
 - o Allows continuous commands such as walking to be timed
- Implement "stop" command / stop "wakeword"
 - o Assigned: Archer Taylor, Danny Steuer
 - Uses wake word "PuppyPi" or another word such as "stop" to stop whatever action the PuppyPi is doing and clear the queue
- Improve latency & transcription accuracy with noise reduction techniques to deal with ambient noise
 - Assigned: Archer Taylor, Danny Steuer

 Helps PuppyPi be more consistent in various environments and complete commands quicker

• Implement compression techniques to reduce the size of the payload being sent to cloud

- Assigned: Archer Taylor, Danny Steuer
- Helps reduce the size of the audio payload that is sent to the cloud for processing, thus reducing processing time

Create handling for continuous thinking commands ("follow me")

- o Assigned: Eli Weber, Olivia Monteiro, Alicia Reed
- Get the robot to follow commands that combine functionalities such as lidar & camera

YOLOv8/computer vision functionality

- Assigned: Olivia Monteiro, Eli Weber
- Using YOLOv8 or another computer vision model to use the PuppyPi's camera to "see" its environment and interact accordingly

• Test commands/command interpretation

- Assigned: All team members
- Testing various ways of calling the same commands to be sure they run appropriately

• Implement interoperability with different types of networks (WPA Enterprise / Personal / etc...)

- **Assigned:** Archer Taylor, Danny Steuer
- Allows PuppyPi to connect to different types of network, for example WPA Enterprise (such as eduroam) which requires a username and a password.