Relatório descritivo analisador sintático

Julia Rodrigues Gubolin Docente: Renata Spolon Lobato Disciplina: Compiladores Bacharelado em Ciência da Computação UNESP - IBILCE

05 de janeiro

Introdução

Neste relatório, será descrita a linguagem aceita pelo analisador sintático gerado, as expressões aceitas e seus formatos.

Analisador léxico

Algumas alterações no analisar anterior foram feitas, de forma que agora temos alguns novos tokens que são aceitos, além de que são apenas emitidas mensagens de erro, e não mensagens de cada token.

Agora, temos a estrutura de repetição **do while**, 2 operadores lógicos, que são o \mathbf{OU} e o \mathbf{E} , e o ID, que são valores que unem letras e números. Além disso, são aceitos também: (,), $\{,\}$. Os comentários com # foram retirados.

Expressões aceitas

São aceitos pelo analisador sintático: comandos de declaração, atribuição, prints, estruturas condicionais e de repetição. Além disso, temos ainda a distinção entre números reais e inteiros, as expressões aritiméticas e expressões lógicas.

Tokens

Na imagem 1, estão os tokens que estão declarados no arquivo flex/lex "fonte.l" e que serão usados pelo Bison:

Estrutura geral

Na imagem 2, temos a estrutura geral do programa com os comandos possíveis que foram listados acima. O programa principal possui o início, estes comandos e o final.

```
Declaração dos tokens*
%token INICIO_PROGRAMA
%token FIM PROGRAMA
%token IF
%token FOR
%token DO
%token ELSE
%token ELSEIF
%token WHILE
%token RETURN
%token TIPOS VARIAVEIS
%token NUMERO_INTEIRO
%token NUMERO_REAL
%token OPERADORES_ARITMETICOS
%token OPERADORES RELACIONAIS
%token OPERADORES LOGICOS
%token PONTO E VIRGULA
%token VIRGULA
%token ABRE_PARENTESES
%token FECHA_PARENTESES
%token ABRE CHAVES
%token FECHA CHAVES
%token ATRIBUICAO
%token STRING
%token PRINT
```

Figura 1: Tokens.

Declaração de variáveis e tipos numéricos

Na imagem 3, temos os tipos de números (reais e inteiros), além da estrutura de declaração, que pode ser feita de duas formas: a primeira com algum tipo de variável (integer, double, char e boolean), seguida do ID, que representa o nome das variáveis e do ; e a segunda também possui o tipo de variável e o ID, porém após este podemos fazer uma atribuição com o = e uma expressão.

Atribuição e parâmetros

Na imagem 4, temos a maneira como a atribuição mencionada acima é feita. Neste caso, ela pode ser de 3 tipos: após o = podemos encontrar um número e novos valores separados por vígula com ou sem mais atribuições.

Expressões

Na imagem 5, temos as expressões aritméticas e expresões lógicas. As expressões aritméticas podem ser compostas por outras expressões entre parêntesis, apenas por números e relacionados com expressões através de operadores aritméticos

Figura 2: Estrutura geral.

Figura 3: Declaração e tipos numéricos.

(+, -, *, /). Já as expressões lógicas possuem tanto operadores relacionais quanto lógicos.

Estruturas condicionais e de repetição

Na imagem 6, temos as estruturas condicionais (if, elseif, else) e de repetição (for, while, do while).

Printar

Na imagem 7, temos o printf sem as aspas.

Figura 4: Atribuição e parâmetros.

Figura 5: Expressões.

Figura 6: Estruturas.

```
printar: PRINT ABRE_PARENTESES comandos FECHA_PARENTESES PONTO_E_VIRGULA;
```

Figura 7: Estruturas.