

Sección Técnica de Enseñanza

NOMENCLATURA Y FORMULACIÓN INORGÁNICA Normas IUPAC 2005

Las recomendaciones que se recogen en este documento para la enseñanza de la nomenclatura y formulación de los compuestos inorgánicos en los niveles de enseñanza no universitaria, son la síntesis de las propuestas realizadas y las opiniones recogidas durante el Taller de Formulación y Nomenclatura realizado en Oviedo los días 7, 13 y 21 de noviembre de 2013 y 28 de octubre de 2014 en la sede del Colegio Oficial de Químicos de Asturias y León y la Asociación de Químicos del Principado de Asturias, con la participación de 121 profesores de Educación Secundaria y Bachillerato

Coordinador:

Rodríguez Blanco, José Luis

Ponentes:

Fernández Colinas, José Manuel García González, Luis Ignacio

ÍNDICE

A. RE	SUME	N DE LAS NORMAS DE FORMULACIÓN Y NOMENCLATURA INORGÁNICA. IUPAC 201	05 4
1.	INTF	ODUCCIÓN	5
2.	OBJ	ETIVOS DE LA NOMENCLATURA QUÍMICA	5
3.	FÓR	MULAS DE LOS COMPUESTOS	5
	3.1.	Criterios para la escritura de los símbolos:	5
		Electronegatividad	5
		Orden alfanumérico.	5
	3.2.	Tipos de fórmulas	6
		Fórmula empírica	6
		Fórmula molecular	6
		Fórmulas de clases específicas de compuestos.	6
4.	MÉT	ODOS DE LA NOMENCLATURA INORGÁNICA	7
	4.1.	Nomenclatura de sustitución	
		Nombres progenitores de los hidruros mononucleares	
		Hidruros progenitores homopolinucleares (excepto los de boro y carbono)	8
		Derivados de hidruros progenitores.	8
		Cationes derivados de hidruros progenitores por adición de un hidrón(H+)	9
		Aniones derivados de los hidruros progenitores por pérdida de uno o más hidrones	9
	4.2.	Nomenclatura de adición	9
		Entidades mononucleares	9
		Ácidos inorgánicos y sus derivados.	9
		Nombres vulgares aceptados y nombres sistemáticos (de adición) de oxoácidos y estrurelacionadas	
		Nomenclatura de hidrógeno.	12
	4.3.	Nomenclatura de composición	13
		Nombres estequiométricos de los elementos	13
		Nombres estequiométricos de cationes y aniones	14
		Nombres estequiométricos de los compuestos binarios. (AxBy)	15
		Nomenclatura de las combinaciones binarias del oxígeno con los halógenos	16
		Constituyentes monoatómicos múltiples frente a constituyentes homopoliatómicos	16
		Nombres estequiométricos de sales	16
		Compuestos de adición	17
B. RE	COME	NDACIONES DIDÁCTICAS	18
1.	INTRO	DUCCIÓN	19
		MENDACIONES PARA 3º DE ESO	
3.	RECO	MENDACIONES PARA 4º DE ESO	21
		MENDACIONES PARA BACHILLERATO	
		S DE OXIDACIÓN MÁS USUALES DE ALGUNOS ELEMENTOS (3º ESO)	
N	ÚMERC	S DE OXIDACIÓN MÁS USUALES DE ALGUNOS ELEMENTOS (4º ESO)	24
		S DE OXIDACIÓN MÁS USUALES DE ALGUNOS ELEMENTOS (Bachillerato)	
		DO DE LA ENCUESTA AL PROFESORADO	
D. RE	CURS	OS	29

A. RESUMEN DE LAS NORMAS DE FORMULACIÓN Y NOMENCLATURA INORGÁNICA. IUPAC 2005

1. INTRODUCCIÓN

La IUPAC es el organismo internacional encargado de elaborar las normas y recomendaciones relativas a la nomenclatura en Química.

En el caso concreto de la nomenclatura en Química Inorgánica, estas recomendaciones están recogidas en **Nomenclatura de Química Inorgánica. Recomendaciones IUPAC 2005** (Libro Rojo 2007)

El objetivo de este taller es utilizar el Libro Rojo 2005 para establecer las pautas de aplicación de estas recomendaciones, con las matizaciones oportunas, a lo largo del período formativo que comprende la enseñanza no universitaria, en concreto en la ESO y el Bachillerato.

2. OBJETIVOS DE LA NOMENCLATURA QUÍMICA

El fin principal de la nomenclatura química es proporcionar una metodología para asignar nombres y fórmulas a las sustancias químicas, de manera que puedan identificarse sin ambigüedad.

Aunque no debemos ser muy estrictos en cuanto a exigir un nombre único para cada sustancia, el número de nombres aceptables para cada sustancia debe minimizarse.

Un sistema útil de nomenclatura debe ser identificable, preciso y general. Por tanto, debe rechazarse el uso de nombres locales y de abreviaturas en el lenguaje científico formal.

3. FÓRMULAS DE LOS COMPUESTOS

3.1. Criterios para la escritura de los símbolos:

Electronegatividad

Los símbolos se escriben según las electronegatividades relativas de los elementos representados, de manera que se coloca en primer lugar el elemento menos electronegativo y a su derecha el resto de elementos en orden creciente de electronegatividad.

Por convenio, el elemento menos electronegativo es el más próximo al final en la tabla I al recorrerla por completo en el sentido que indican las flechas.

Tabla I. Secuencia de los elementos químico según su electronegatividad (Libro Rojo 2005)

Orden alfanumérico.

Símbolos atómicos.

- Los símbolos de una sola letra anteceden siempre a los de dos letras con la misma letra inicial (B antes que Be)
- Los símbolos de dos letras se ordenan alfabéticamente entre ellos (Ba precede a Be).

Agrupaciones atómicas.

- Los símbolos de dos letras se ordenan alfabéticamente entre ellos (Ba precede a Be).
- La ordenación se realiza de forma alfanumérica, según el orden de los símbolos atómicos y el de sus subíndices.

Ejemplo: B antes que BH antes que BO antes que B2O3

Ejemplo: Orden de colocación en la fórmula de izquierda a derecha

 N_3^- , NH_2^- , NH_3 , NO_2^- , NO_2^{2-} , NO_3^- , $N_2O_2^{2-}$, N_3^- , Na, NaCl, NH_4 Cl (el NH_4^+ se toma como una entidad individual y por eso va al final de esta lista después de Na)

3.2. Tipos de fórmulas

Fórmula empírica

El orden de citación de los símbolos en las fórmulas obedece al orden alfabético de los símbolos atómicos, excepto para los compuestos que contienen carbono, en los que el C e H se citan, respectivamente, el primero y el segundo.

Ejemplos: BrClH₃N₂NaO₂Pt C₁₀H₁₀ClFe

Fórmula molecular

Se aplican criterios de ordenación según el tipo de compuesto.

Ejemplos:

Fórmula empírica	Fórmula molecular
S	S ₈
S	s _n
F ₆ S	SF ₆
HgCl	Hg ₂ Cl ₂
NO ₂	N ₂ O ₄
НО	НООН

Fórmulas de clases específicas de compuestos.

Compuestos binarios. Se aplica el criterio de orden basado en la electronegatividad.

Ejemplos: NH₃; OF₂; RbBr; H₂S; Hidróxido: IUPAC (HO)⁻. Aceptado OH⁻

Especies ternarias, cuaternarias,...

- En la fórmula, el símbolo del átomo central (o de los átomos centrales) se coloca en primer lugar; le siguen los símbolos o fórmulas de los átomos o grupos terminales.
- El orden de escritura de los átomos centrales se basa en el criterio de electronegatividad.
- Los átomos o grupos terminales se escriben siguiendo el orden alfabético del primer símbolo de la fórmula del átomo o grupo terminal.

Ejemplos: PBrCl₂; SbCl₂F; ClO₄⁻

Excepciones

 Los <u>fragmentos</u> formados por átomos diferentes, que se encuentran en una serie de compuestos, pueden considerarse como una entidad que actúa como átomo central.

Ejemplos: (PO), se escribe $POBr_3$ y no PBr_3O ; (UO2); se escribe UO_2Cl_2 y no UCl_2O_2

 En los <u>derivados de hidruros progenitores</u> no se observa el orden alfabético de los átomos o grupos terminales ya que los átomos de hidrógeno no sustituidos son los primeros átomos que se colocan en la fórmula.

Ejemplos: GeH₂F₂ procede del hidruro progenitor GeH₄; SiH₂BrCl procede del hidruro progenitor SiH₄

 En los <u>oxoácidos inorgánicos</u> existe la ordenación tradicional en las fórmulas de tal manera que se escriben primero los átomos de hidrógeno "ácidos" o "reemplazables".

Ejemplos: HNO₃; H₂PHO₃; H₂PO₄⁻

 En los <u>compuestos en cadena</u> que contienen tres o más elementos diferentes, la secuencia de símbolos atómicos en la fórmula molecular debe hacerse en el orden en que están unidos los átomos en la molécula o ión.

Ejemplos: NCS ó SCN no es [C(N)S]; HOCN ácido ciánico; HONC ácido fulmínico

 En las <u>fórmulas de sales</u> los constituyentes se ordenan de menor a mayor electronegatividad, de izquierda a derecha en la fórmula.

Se utiliza el orden alfabético dentro de cada grupo (grupo de iones positivos o constituyentes menos electronegativos que precede al grupo de iones negativos o constituyentes más electronegativos).

Ejemplos: $Na[HPHO_3]$; $NaNH_4[HPO_4]$; $KMgF_3NaTI(NO_3)$; FeO(OH); MgCI(OH)

 En las fórmulas de los <u>compuestos de adición</u> las fórmulas de las entidades o moléculas componentes se escriben en orden creciente de su número.

Si se encontrasen en igual número, se escribirán de acuerdo con el criterio de orden alfabético.

Ejemplo: Al₂(SO₄)·K₂SO₄·24H₂O

 En los compuestos de adición que contienen agua, esta se escribe convencionalmente la última.

Ejemplos: Na₂CO₃·10H₂O; 3CdSO₄·8H₂O

4. MÉTODOS DE LA NOMENCLATURA INORGÁNICA.

La denominación sistemática de una sustancia inorgánica implica la construcción de un nombre a partir de entidades (nombres de los elementos o las raíces que de ellos derivan o de sus equivalentes en latín) que se manejan según procedimientos definidos que proporcionan información sobre la composición y/o estructura de la sustancia.

Estos procedimientos se conocen como Sistemas de Nomenclatura.

En Química Inorgánica, los tres sistemas de nomenclatura más importantes son:

- Nomenclatura de sustitución.
- Nomenclatura de adición.
- Nomenclatura de composición.

4.1. Nomenclatura de sustitución

En la nomenclatura de sustitución los nombres se basan en los de los hidruros progenitores en los que se ha realizado la sustitución de átomos de hidrógeno por grupos sustituyentes. Este sistema de nomenclatura se recomienda solamente para los derivados de los hidruros progenitores cuyos nombres se encuentran en la siguiente tabla y para los derivados de los hidruros polinucleares que contienen solamente estos elementos.

Este tipo de nomenclatura supone conocer la estructura de la molécula, por lo que no es recomendable su utilización en los cursos de ESO y en primer curso de Bachillerato.

Nombres de los hidruros progenitores mononucleares.

	Grupo 14	Grupo 15	
Fórmula	Nombre	Fórmula	Nombre
CH ₄	Metano	NH ₃	Azano ; Amoniaco
SiH ₄	Silano	PH ₃	Fosfano*
GeH ₄	Germano	AsH ₃	Arsano*
SnH ₄	Estannano	SbH ₃	Estibano*
PbH ₄	Plumbano	BiH ₃	Bismutano*

^{*} No se aceptan los nombres fosfina, arsina y estibina.

0	Grupo 16	Grupo 17	
Fórmula	Nombre	Fórmula	Nombre
H ₂ O Oxidano ; Agua		HF Fluorano***	
H ₂ S	Sulfano**	HCI	Clorano***
H ₂ Se	Selano**	HBr	Bromano***
H ₂ Te	Telano**	HI	Yodano***

^{**} Los hidruros sin sustituir pueden nombrarse de acuerdo con la nomenclatura de composición: Sulfuro de dihidrógeno.

Hidruros progenitores homopolinucleares (excepto los de boro y carbono).

Los nombres se construyen añadiendo el prefijo multiplicador apropiado (di-, tri-, tetra-,...), que corresponde al número de átomos de la cadena unidos en serie, delante del nombre del hidruro mononuclear correspondiente, cuya terminación es "-ano".

HOOH Dioxidano, Peróxido de hidrógeno.

H₂NNH₂ Diazano, **Hidrazina.**

H₂PPH₂ Difosfano.

Derivados de hidruros progenitores.

 SiH_3OH : silanol; $PbEt_4$: tetraetilplumbano; PH_2CI : clorofosfano

^{***} Los hidruros sin sustituir pueden nombrarse de acuerdo con la nomenclatura de composición: Fluoruro de hidrógeno.

Cationes derivados de hidruros progenitores por adición de un hidrón(H⁺).

La adición formal de un hidrón (H⁺) a un hidruro progenitor origina un catión cuyo nombre se obtiene añadiendo el sufijo "-io" al nombre del hidruro progenitor, con elisión de la "a" u "o" finales.

NH₄⁺ Azanio; **amonio** (no sistemático aceptado por la IUPAC).

N₂H₅⁺ Diazanio o hidrazinio

H₃O⁺ Oxidanio; **oxonio** (no sistemático aceptado por la IUPAC). **NO es hidronio.**

Aniones derivados de los hidruros progenitores por pérdida de uno o más hidrones.

Se nombran añadiendo el sufijo "**–uro**" ó "**–diuro**" al nombre del progenitor, elidiendo la "o" o la vocal terminal solamente cuando esta va delante de "**–uro**".

NH₂ Azanuro o amida

NH^{2−} Azanodiuro o imida

SH⁻ Sulfanuro

4.2. Nomenclatura de adición

La utilización de este tipo de nomenclatura supone conocer la estructura de la molécula y, por consiguiente, se desaconseja su utilización en los estudios no universitarios. Opcionalmente se puede abordar la formulación de ácidos inorgánicos de uso común mediante este sistema de nomenclatura, como ejemplos ilustrativos de la sistemática a seguir, en el segundo curso de Bachillerato.

Los nombres de adición se construyen colocando los nombres de los átomos o grupos terminales (ligandos) como prefijos del nombre del átomo central.

Entidades mononucleares.

Los nombres de las especies que poseen un único átomo central se forman citando los prefijos pertinentes para los átomos o grupos terminales en orden alfabético, delante del nombre del átomo central.

Cuando hay varios átomos o grupos terminales, se agrupan mediante prefijos multiplicadores ("di", "tri", "tetra"...) en el caso de sustituyentes sencillos, o "bis", "tris", "tetraquis"... para sustituyentes más complejos.

Los prefijos multiplicadores no forman parte de átomo o grupo terminal y, por tanto, no afectan al orden alfabético.

Ejemplos: Si(OH)₄ tetrahidroxidosilicio; [PF₆⁻] hexafluorofosfato(1–)

Ácidos inorgánicos y sus derivados.

El objetivo de este apartado es, por un lado, mostrar el protocolo a seguir para asignar un nombre sistemático a las sustancias denominadas habitualmente ácidos y, por otro lado, proporcionar una lista de los nombres de ácidos que aún están aceptados debido a su uso habitual.

Para la nomenclatura de los ácidos inorgánicos en los niveles no universitarios, se recomienda la utilización de la nomenclatura derivada de la utilización de los sufijos —oso para la valencia baja e — ico para la valencia alta. Si hay más de dos valencias, se añaden hipo....oso para la más baja y per...ico para la más alta.

En la estructura de los oxoácidos inorgánicos aparecen, en general, ligandos óxido (O), hidróxido (OH) e hidrógeno (H). De acuerdo con la nomenclatura de adición (nombre sistemático) el primer paso consiste en escribir la fórmula estructural entre corchetes, con el átomo central en primer lugar y a continuación los ligandos en orden alfabético: en primer lugar H, luego O y OH con sus correspondientes proporciones estequiométricas como subíndices.

El nombre de adición se construye colocando los nombres de los ligandos, por orden alfabético, como prefijos del nombre del átomo central.

Ejemplos: [SO₂(OH)₂]: dihidroxidodioxidoazufre (sin tildes en los prefijos),

[PO(OH)₃]: trihidroxidooxidofósforo.

Este sistema de nomenclatura es especialmente útil en el caso de los ácidos fosforoso y fosfónico, ambos con una fórmula empírica "H₃PO₃". Las estructuras de los dos compuestos son:

Ácido fosforoso

Fórmula sistemática (adición)

[P(OH)₃]: Tres hidrógenos ácidos

Nombre sistemático

Trihidroxidofósforo

Ácido fosfónico

Fórmula sistemática (adición)

[PHO(OH)2]: Dos hidrógenos ácidos

Nombre sistemático

Dihidroxidohidrurooxidofósforo

Nombres vulgares aceptados y nombres sistemáticos (de adición) de oxoácidos y estructuras relacionadas.

GRUPO 13

Fórmula	Nombre sistemático de adición	Nombre común aceptado
$H_3BO_3=[B(OH)_3]$	Trihidroxidoboro	Ácido bórico
$H_2BO_3 = [BO(OH)_2]^-$	Dihidroxidooxidoborato(1-)	Dihidrógenoborato
$HBO_3^{2-} = [BO_2(OH)]^{2-}$	Hidroxidodioxidoborato(2-)	Hidrógenoborato
[BO ₃] ³⁻	Trioxidoborato(3-)	Borato

GRUPO 14

Fórmula	Nombre sistemático de adición	Nombre común aceptado
$H_2CO_3 = [CO(OH)_2]$	Dihidroxidooxidocarbono	Ácido carbónico
$HCO_3^- = [CO_2(OH)]^-$	Hidroxidodioxidocarbonato(1-)	Hidrógenocarbonato
[CO ₃] ²⁻	Trioxidocarbonato(2-)	Carbonato

GRUPO 15

Fórmula	Nombre sistemático de adición	Nombre común aceptado
$HNO_3 = [NO_2(OH)]$	Hidroxidodioxidonitrógeno	Ácido nítrico
[NO ₃] ⁻	Trioxidonitrato(1–)	Nitrato
$HNO_2 = [NO(OH)]$	Hidroxidooxidonitrógeno	Ácido nitroso
[NO ₂] ⁻	Dioxidonitrato(1–)	Nitrito
$H_3PO_4 = [PO(OH)_3]$	Trihidroxidooxidofósforo	Ácido fosfórico
$H_2PO_4^- = [PO_2(OH)_2]^-$	Dihidroxidodioxidofosfato(1-)	Dihidrógenofosfato
$HPO_4^{2-} = [PO_3(OH)]^{2-}$	Hidroxidotrioxidofosfato(2-)	Hidrógenofosfato
PO ₄ ³⁻	Tetraoxidofosfato(3-)	Fosfato
$H_2PHO_3 = [PHO(OH)_2]$	Dihidroxidohidrurooxidofósforo	Ácido fosfónico
[PHO ₂ (OH)] ⁻	Hidroxidohidrurodioxidofosfato(1–)	Hidrógenofosfonato
[PHO ₃] ²⁻	Hidrurotrioxidofosfato(2–)	Fosfonato
$H_3PO_3=[P(OH)_3]$	Trihidroxidofósforo	Ácido fosforoso
$H_2PO_3^- = [PO(OH)_2]^-$	Dihidroxidooxidofosfato(1-)	Dihidrógenofosfito
$HPO_3^{2-} = [PO_2(OH)]^{2-}$	Hidroxidodioxidofosfato(2-)	Hidrógenofosfito
[PO ₃] ³⁻	Trioxidofosfato(3–)	Fosfito
$H_2PHO_2 = [PH(OH)_2]$	Dihidroxidohidrurofósforo	Ácido fosfonoso
$HPH_2O_2 = [PH_2O(OH)]$	Hidroxidodihidrurooxidofósforo	Ácido fosfínico

GRUPO 16

Fórmula	Nombre sistemático de adición	Nombre común aceptado
$H_2SO_4 = [SO_2(OH)_2]$	Dihidroxidodioxidoazufre	Ácido sulfúrico
$HSO_4^- = [SO_3(OH)]^-$	Hidroxidotrioxidosulfato(1-)	Hidrógenosulfato
$[SO_4]^{2-}$	Tetraoxidosulfato(2-)	Sulfato
$HSHO_3 = [SHO_2(OH)]$	Hidroxidohidrurodioxidoazufre	Ácido sulfónico
$H_2SO_3 = [SO(OH)_2]$	Dihidroxidooxidoazufre	Ácido sulfuroso
$HSO_3^- = [SO_2(OH)]^-$	Hidroxidodioxidosulfato(1-)	Hidrógenosulfito
[SO ₃] ²⁻	Trioxidosulfato(2-)	Sulfito
HSHO ₂ = [SHO(OH)]	Hidroxidohidrurooxidoazufre	Ácido sulfínico

GRUPO 17

Fórmula	Nombre sistemático de adición	Nombre común aceptado
$HCIO_4 = [CIO_3(OH)]$	Hidroxidotrioxidocloro	Ácido perclórico
[CIO ₄] ⁻	Tetraoxidoclorato(1-)	Perclorato
$HCIO_3 = [CIO_2(OH)]$	Hidroxidodioxidocloro	Ácido clórico
[CIO ₃] ⁻	Trioxidoclorato(1–)	Clorato
$HCIO_2 = [CIO(OH)]$	Hidroxidooxidocloro	Ácido cloroso
[CIO ₂] ⁻	Dioxidoclorato(1-)	Clorito
HCIO = [CI(OH)]	Hidroxidocloro	Ácido hipocloroso
[CIO] ⁻	Clorurooxigenato(1-)	Hipoclorito

Para el bromo y el yodo, las fórmulas son similares.

En los niveles no universitarios se recomienda no utilizar las reglas tradicionales de **orto**– y **meta**– para los ácidos más y menos hidratados (más grupos OH), respectivamente, por el carácter ambiguo y conflictivo de esta regla.

Nomenclatura de hidrógeno.

Esta nomenclatura se desarrolla para nombrar sustancias que no tienen características ácidas, aunque se pudieran derivar de un hipotético ácido.

- La palabra "hidrogeno" está unida al resto del nombre.
- Se tiene que especificar el número de hidrógenos por medio de un prefijo multiplicativo.
- La parte aniónica debe colocarse entre signos de inclusión.
- Debe especificarse la carga neta de la estructura que se va a nombrar.

Ejemplos

Fórmula	Nomenclatura de hidrógeno	Nombre aceptado
HMnO ₄	Hidrogeno(tetraoxidomanganato)	
${\rm MnO_4}^-$	Tetraoxidomanganato(1-)	Permanganato
H_2MnO_4	Dihidrogeno(tetraoxidomanganato)	
$\mathrm{HMnO_4}^-$	Hidrogeno(tetraoxidomanganato)(1-)	
MnO_4^{2-}	Tetraoxidomanganato(2-)	Manganato
$\rm H_2Cr_2O_7$	Dihidrogeno(heptaoxidodicromato)	
Cr ₂ O ₇ ²⁻	Heptaoxidodicromato(2-)	Dicromato
H_2CrO_4	Dihidrogeno(tetraoxidocromato)	
HCrO ₄ ⁻	Hidrogeno(tetraoxidocromato)(1-)	
CrO ₄ ²⁻	Tetraoxidocromato(2-)	Cromato

Las sales tienen una fórmula general: [catión]_X[anión]_y, se nombran citando primero el anión y luego el catión: numeral(nombre del anión) de numeral(nombre del catión)

Ejemplo:

(NH₄)₂(HPO₄): hidrogenofosfato de diamonio; hidroxidotrioxidofosfato(2–) de amonio

4.3. Nomenclatura de composición

En la nomenclatura de composición la construcción de un nombre está basada únicamente en la composición de las sustancias o especies que se van a nombrar. Se trata de un nombre estequiométrico que solamente refleja las proporciones de los constituyentes en la fórmula empírica o en la fórmula molecular.

Este sistema de nomenclatura es el que debe prevalecer en los estudios no universitarios, al menos en el nivel de la ESO y con aportaciones de los otros dos sistemas en el nivel de Bachillerato.

Las proporciones de los elementos constituyentes en los nombres estequiométricos se unen a ellos sin espacios ni guiones. Estas proporciones pueden indicarse de tres maneras: i) mediante prefijos multiplicadores; ii) números de oxidación, y iii) números de carga.

Prefijos multiplicadores.

1 (mono) 2 (di); (bis) para nombres compuestos

3 (tri) (tris) 4 (tetra) (tetrakis)

5 (penta) (pentakis) 6 (hexa) (hexakis), etc.

Las vocales finales de los prefijos numéricos no deben elidirse, con excepción de "monóxido"

Ejemplo: $Ca(HCO_3)_2$: bis(hidrogenocarbonato) de calcio.

Número de oxidación.

Se indica con un número romano encerrado entre paréntesis que sigue inmediatamente al nombre del elemento al que se refiere, modificado si fuese necesario. El número de oxidación puede ser positivo, negativo o cero (0).

El signo positivo no se usa nunca. Los números de oxidación fraccionarios no se usan en nomenclatura.

```
Ejemplos: FeSO<sub>4</sub>: sulfato de hierro(II); Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>: sulfato de hierro(III)
```

 Fe_3O_4 : óxido de hierro(II) y dihierro(III)

Número de carga.

El número de carga es un número cuya magnitud representa la carga iónica. Se escribe entre paréntesis inmediatamente después del nombre de un ión y sin espacio entre ellos. La carga se escribe con números arábigos seguidos de su signo.

```
Ejemplos: Na+: sodio(1+); Cu+: cobre(1+)
```

Nombres estequiométricos de los elementos.

El nombre del elemento se forma añadiendo el prefijo multiplicador pertinente al nombre del elemento.

S₈: octaazufre N₂: dinitrógeno N: mononitrógeno

O₂: dioxígeno (oxígeno) O₃: trioxígeno (ozono) H₂: dihidrógeno

Nombres estequiométricos de cationes y aniones

Cationes monoatómicos.

Se indica el nombre del elemento seguido del número de carga entre paréntesis y sin separación alguna

 Na^+ : sodio(1+) Cr^{3_+} : cromo(3+) Cu^+ : cobre(1+)

 Cu^{2+} : cobre(2+) I^+ : yodo(1+) H^+ : hidrógeno(1+), hidrón

Cationes homopoliatómicos.

Se indica el número de átomos presentes y la carga como se citó anteriormente. No se recomienda el uso de los números de oxidación al nombrar iones homopoliatómicos para evitar ambigüedades.

 O_2^+ : dioxígeno(1+) Hg_2^{2+} : dimercurio(2+)

Hg₂²⁺: dimercurio(I). Recomendado <u>dimercurio(2+)</u>

O₂²⁻: dióxido(-I). Recomendado <u>dióxido(2-)</u>

Cationes heteropoliatómicos.

Se nombran generalmente mediante nomenclatura de sustitución.

 NH_{Δ^+} : Azanio, **amonio** (no sistemático aceptado por la IUPAC).

H₃O⁺: Oxidanio. **oxonio** (no sistemático aceptado por la IUPAC). (NO es hidronio).

 PH_{A}^{+} : Fosfanio.

Aniones.

La carga de un anión se indica en el nombre usando el número de carga, o utilizando el número de oxidación del átomo central, o átomos centrales.

Las terminaciones de los nombres de los aniones son: "-uro" para las especies monoatómicas, homopoliatómicas o heteropoliatómicas cuyo nombre procede de un hidruro progenitor .

CI $^-$: cloruro(1–) o cloruro S_2^{2-} : disulfuro(2–)

PH₂⁻: fosfanuro PH₂⁻: fosfanodiuro

"-ato" para especies heteropoliatómicas nombradas por adición. (Ver tabla de oxoácidos y estructuras relacionadas).

 ClO_{Δ}^{-} : tetraoxidoclorato(1–) o perclorato.

"-ito" se acepta todavía pero no deriva de la nomenclatura sistemática actual.

NO₂⁻: dioxidonitrato(1–) o nitrito.

Nombres de aniones según el sistema estequiométrico y su nombre no sistemático aceptado por la IUPAC

Anión	Nombre estequiométrico	Nombre alternativo aceptado por la IUPAC
02	Óxido(2–)	Óxido(2–)
02	Dióxido(1–)	Superóxido
022-	Dióxido(2–)	Peróxido
03-	Trióxido(1–)	Ozónido
c ₂ ²⁻	Dicarburo(2-)	Acetiluro
N ₃ ⁻	Trinitruro(1–)	Azida

Nombres estequiométricos de los compuestos binarios. (AxBy)

El nombre se construye: numeral(nombre de B)-uro de numeral(nombre de A)

Fórmula	Nombre(s)	Fórmula	Nombre(s)
NaCl	Cloruro de sodio (no sódico)	Al ₂ O ₃	Trióxido de dialuminio Óxido de aluminio
N_2O_4	Tetraóxido de dinitrógeno	NO ₂	Dióxido de nitrógeno
NH ₄ CI	Cloruro de amonio (no amónico)	Fe(HS) ₂	Bis[hidrogeno(sulfuro)] de hierro Sulfanuro de hierro(II)
AICI	Monocloruro de aluminio	AICI ₃	Tricloruro de aluminio
BiCl ₃	Tricloruro de bismuto Cloruro de bismuto(III)	BaO ₂	Dióxido(2–) de bario Peróxido de bario
K ₂ O	Óxido de dipotasio	K ₂ O ₂	Dióxido(2–) de dipotasio Peróxido de potasio
KO ₂	Dióxido(1–) de potasio Superóxido de potasio	ко ₃	trióxido(1–) de potasio Ozónido de potasio
MnO	Monóxido de manganeso Óxido de manganeso(II)	Mn_2O_3	Trióxido de dimanganeso Óxido de manganeso(III)
MnO ₂	Dióxido de manganeso Óxido de manganeso(IV)	Mn ₂ O ₇	Heptaóxido de dimanganeso Óxido de manganeso(VII)
SiO ₂	Dióxido de silicio	UO ₂	Dióxido de uranio
TiO	Monóxido de Titanio Óxido de titanio(II)	NaOH	Hidróxido de sodio
Ca(OH) ₂	Hidróxido de calcio	Cd(OH) ₂	Hidróxido de cadmio
Co(OH) ₃	Trihidróxido de cobalto Hidróxido de cobalto(3+) Hidróxido de cobalto(III)	Fe(OH) ₂	Dihidróxido de hierro Hidróxido de hierro(2+) Hidróxido de hierro(II)
Hg ₂ (OH) ₂	Dihidróxido de dimercurio Dihidróxido de (dimercurio) Hidróxido de dimercurio(2+)	Hg(OH) ₂	Dihidróxido de mercurio Hidróxido de mercurio(II)
CaC ₂	Dicarburo(2–) de calcio Acetiluro de calcio	NaN ₃	Trinitruro(1–) de sodio Azida de sodio
Ca ₃ P ₂	Difosfuro de tricalcio Fosfuro de calcio	Ca(PH)	Fosfanodiuro de calcio [hidrogeno(fosfuro)] de calcio
(PH ₄)Br	Bromuro de fosfanio		

Nomenclatura de las combinaciones binarias del oxígeno con los halógenos

De acuerdo con la nueva secuencia de elementos propuesta por la IUPAC, el oxígeno es menos electronegativo que los halógenos, por lo que las combinaciones binarias de estos elementos deben considerarse como halogenuros de oxígeno.

Recomendamos que las combinaciones binarias del oxígeno con los halógenos sigan siendo consideradas como "óxidos" desde el punto de vista de la nomenclatura. Este tipo de nomenclatura es la que se utiliza en la actualidad.

IUPAC		No	mbre habitual
oci ₂	Dicloruro de oxígeno	Cl ₂ O	Óxido de dicloro
O ₂ CI	Cloruro de dioxígeno	CIO ₂	Dióxido de cloro

Constituyentes monoatómicos múltiples frente a constituyentes homopoliatómicos.

Debe tenerse cuidado con algunas fórmulas que pueden dar lugar a errores notable. Así, la fórmula TII₃ puede representar dos compuestos diferentes:

- 1. TII₃: tris(yoduro) de talio; yoduro de talio(III); yoduro de talio(3+).
 - En este caso, los tres nombres hacen referencia a la existencia del ión yoduro, (l¯) y el catión es el talio(3+)
- 2. Tl(I₃) triyoduro(1–) de talio; triyoduro de talio(1); triyoduro de talio(1+).
 - En este caso el ion presente es el triyoduro(-1) (I₃-) y el catión es el talio(1+)

Otros ejemplos:

- Na₂S₃ trisulfuro de disodio; trisulfuro(2–) de sodio. (Anión poliatómico)
- Fe₂S₃ tris(sulfuro) de dihierro; sulfuro de hierro(III). (Anión monoatómico)
- HgCl₂ dicloruro de mercurio; cloruro de mercurio(II); cloruro de mercurio(2+).
- Hg₂Cl₂ dicloruro de dimercurio; dicloruro de (dimercurio); cloruro de dimercurio(2+).

Nombres estequiométricos de sales.

Las sales tienen de fórmula general $[catión]_x[anión]_y$. Los nombres de los aniones derivan de los ácidos correspondientes haciendo la transformación de las terminaciones -oso e -ico de los ácidos por -ito y -ato en los aniones. Los cationes se nombran de acuerdo con las normas dadas anteriormente.

Fórmula		Nombre(s)
Na ₂ HPO ₄	Na ₂ [PO ₃ (OH)]	Hidrogenofosfato de sodio Hidroxidotrioxidofosfato(2–) de sodio
Ca(HPO ₃)	Ca(PHO ₃)	Fosfonato de calcio Hidrurotrioxidofosfato(2–) de calcio
Ca(H ₂ PO ₂) ₂	Ca(PH ₂ O ₂) ₂	Fosfinato de calcio Dihidrurodioxidofosfato(1–) de calcio
BaCO ₃		Carbonato de bario Trioxidocarbonato de bario

Fórmula		Nombre(s)
NaClO₄		Perclorato de sodio
4		Tetraoxidoclorato de sodio
Ca(NO ₃) ₂		Nitrato de calcio
3.2		Bis(trioxidonitrato) de calcio
$Co(NO_3)_3$		Nitrato de cobalto(III)
0.0		Tris(trioxidonitrato) de cobalto
Fe(NO ₂) ₂		Nitrito de hierro(II)
2.2		Bis(dioxidonitrato) de hierro
Fe(HSO ₃) ₂	Fe[SO ₂ (OH)] ₂	Hidrogenosulfito de hierro(II)
. 5/2	- 2. /-2	Bis(hidroxidodioxidosulfato)(1–) de hierro
$NH_4H_2PO_4$	$NH_4[PO_2(OH)_2]$	Dihidrogenofosfato de amonio
7 2 7	T 2 2	Dihidroxidodioxidofosfato(1–) de amonio
Mg(HCO ₃) ₂	Mg[CO ₂ (OH)] ₂	Hidrogenocarbonato de magnesio Bis(hidrogenocarbonato) de magnesio
3(- 3/2	31 - 2(- 712	Bis(hidroxidodioxidocarbonato)(1–) de magnesio
Na ₂ Cr ₂ O ₇		Dicromato de sodio
Na ₂ CrO ₄		Cromato de sodio
KMnO ₄		Permanganato de potasio
K_2MnO_4		Manganato de potasio
$\text{Cu}(\text{ClO}_3)_2$		Clorato de cobre(II) Bis(trioxidoclorato)(1–) de cobre
CuBrO ₂		Bromito de cobre(I) Dioxidobromato(1–) de cobre

Compuestos de adición.

Los nombres de cada uno de los componentes individuales de un compuesto de adición se construyen mediante el sistema de nomenclatura apropiado: composición, sustitución o adición. El nombre completo del compuesto se forma conectando los nombres de los componentes con guiones extralargos.

Las proporciones de los componentes se indican después del nombre por medio de un descriptor estequiométrico que está formado por números arábigos separados por una barra o barras. Este descriptor, que se coloca entre paréntesis, está separado del nombre del compuesto por un espacio.

El orden de los nombres de los componentes individuales es, primero, según el número creciente de los componentes y, segundo, el alfabético. Como única excepción, el nombre del componente agua se cita el último.

Fórmula	Nombre(s)
BF ₃ ⋅2H ₂ O	Trifluoruro de boro—agua (1/2)
CaCl ₂ ⋅8NH ₃	Cloruro de calcio—amoníaco (1/8)
8Kr⋅46H ₂ O	Kriptón—agua (8/46)
$2Na_2CO_3\cdot 3H_2O_2$	Carbonato de sodio—peróxido de hidrógeno (2/3)
Na ₂ SO ₄ ·10H ₂ O	Sulfato de sodio—agua (1/10) Sulfato de sodio decahidratado
Co ₂ O ₃ ·nH ₂ O	Óxido de cobalto(III)—agua (1/n)

NOMENCI	ATLIDAY	CODMIII	A CIÓN	INIODO	Á NII C ∧

B. RECOMENDACIONES DIDÁCTICAS

"Es necesario un método constante de denominación que ayude a la inteligencia y alivie la memoria." **Guyton de Morveau**

1. INTRODUCCIÓN

Con estas recomendaciones se pretende:

- √ Adoptar criterios lógicos (que ayuden a la inteligencia), adaptados a la edad de nuestros alumnos y a sus capacidades.
- ✓ Considerar la nomenclatura y formulación como un sistema que sirva para entendernos (aliviando la memoria) a la hora de utilizar compuestos químicos.
- ✓ Recomendar una programación espiral, de forma que en cada nivel se vayan introduciendo, de forma gradual, la nomenclatura y formulación de compuestos más complejos.
- ✓ Tratar de conciliar la nueva nomenclatura con la que realmente se usa, evitando la introducción de novedades de dudosa permanencia.
- ✓ No usar nomenclatura errónea.

Las recomendaciones se formulan en tres niveles distintos:

1. Lo que (como mínimo) ha de hacerse.

Se indica lo que se considera deberían saber nuestros alumnos/as para cada uno de los niveles de enseñanza (3º ESO, 4º ESO y Bachillerato)

2. Lo que (como ampliación) puede hacerse.

Se incluyen los conocimientos que podríamos considerar como ampliación para cada nivel. Qué se dé, dependerá del planteamiento didáctico del profesor/a, del nivel del grupo y de las necesidades planteadas.

3. Lo que se desaconseja hacer.

Se detalla lo que no está aconsejado hacer, bien porque ese tipo de nomenclatura está considerada incorrecta en la actualidad, o porque se estima que pedagógicamente no es recomendable. Por esta razón no se aconseja mezclar la nomenclatura de composición (sistemática o estequiométrica) con la que utiliza el número de oxidación del elemento entre paréntesis en los niveles de la ESO [p.e óxido de hierro(III)], ya que la determinación del número de oxidación de un elemento en un compuesto es una dificultad añadida. Es más recomendable que se afiance la nomenclatura de composición.

De forma resumida se recomienda:

- 1. Adoptar la nomenclatura de composición (sistemática o estequiométrica) para las combinaciones binarias e hidróxidos.
- 2. Renunciar a la opción de nombrar los compuestos binarios poniendo el número de oxidación entre paréntesis, al menos en los cursos de 3º y 4º de la ESO. Este tipo de nomenclatura puede introducirse en los cursos de bachillerato.
- 3. Recurrir a la nomenclatura tradicional para nombrar oxoácidos y oxosales (ácido sulfúrico, carbonato de sodio... etc), admitida por la IUPAC, ya que el uso de la nomenclatura de adición requiere unos conocimientos estructurales que nuestros alumnos no poseen.
- 4. Adoptar los nombres de fosfano, arsano y estibano.
- 5. El dilema planteado con los óxidos de los halógenos (¿halogenuros de oxígeno?) se resuelve no poniendo ejemplos de estos compuestos. Las combinaciones del oxígeno con los halógenos permanecerán en un limbo indefinido para no vulnerar la norma ni introducir una nomenclatura difícilmente asimilable.
- 6. Reservar para el Bachillerato la nomenclatura y formulación de peróxidos, oxoácidos del P, y B y la nomenclatura y formulación de sales ácidas y sales hidratadas.

2. RECOMENDACIONES PARA 3º DE ESO

1

Lo que (como mínimo) ha de hacerse

Ejemplos		
СО	Monóxido de carbono	
Fe ₂ O ₃	Trióxido de dihierro	
Na₂O	Monóxido de disodio	
CoH₃	Tihidruro de cobalto	
MgH ₂	Dihidruro de magnesio	
HCI	Monocloruro de hidrógeno	
PCI ₃	Tricloruro de fósforo	
SF ₆	Hexafluoruro de azufre	
AgBr	Monobromuro de plata	
PbS	Monosulfuro de plomo	

2

Lo que (como ampliación) puede hacerse

Ejemplos		
K ₂ O	Óxido de potasio	
Al ₂ O ₃	Óxido de aluminio	
CaO	Óxido de calcio	
HF	Ácido fluorhídrico	
HCI	Ácido clorhídrico	
NaNO₃	Nitrato de sodio	
K ₂ SO ₄	Sulfato de potasio	
CaCO ₃	Carbonato de calcio	

3

Lo que se desaconseja hacer

- ✓ Nombrar y formular compuestos binarios e hidróxidos utilizando exclusivamente la nomenclatura de composición (sistemática o estequiométrica).
- ✓ Usando únicamente este sistema de nomenclatura se puede prescindir de la utilización de tablas de números de oxidación.

Las combinaciones binarias del hidrógeno con los elementos carbonoideos y nitrogenoideos no se nombran como hidruros. Todos ellos tienen nombres especiales no sistemáticos:

CH 4: Metano

SiH₄: Silano

NH₃: Amoniaco

PH₃: Fosfano⁽¹⁾
AsH₃: Arsano ⁽²⁾

SbH₃: Estibano (3)

- (1) No está permitido fosfina
- (2) No está permitido arsina
- (3) No está permitido estibina
- Nombrar compuestos binarios sin prefijos numerales en el caso de los elementos con un único estado de oxidación, dado que en estos casos no existe ambigüedad. Para formular estos compuestos los alumnos deberán conocer, al menos, los números de oxidación de los metales con estado de oxidación fijo (Li, Na, K, Ag, Mg, Ca, Zn y Al)
- Considerar los nombres de ácido fluorhídrico, clorhídrico, bromhídrico y yodhídrico para las disoluciones de los halogenuros de hidrógeno en agua.
- ✓ Introducir, exclusivamente, tres oxoácidos:

HNO₃: Ácido nítrico

H₂SO₄: Ácido sulfúrico

H₂CO₃: Ácido carbónico

 Introducir las oxosales correspondientes utilizando solo metales con número de oxidación fijo.

- Nombrar los óxidos no metálicos como anhídridos y utilizar la nomenclatura tradicional (terminación oso e ico) en compuestos binarios e hidróxidos.
- ✓ Nombrar compuestos binarios con el número de oxidación entre paréntesis [óxido de hierro(III)].
- Utilizar la nomenclatura sistemática para oxoácidos (tetraoxosulfato(VI) de hidrógeno) y oxosales (trioxonitrato(V) de potasio)

3. RECOMENDACIONES PARA 4º DE ESO

1

Lo que (como mínimo) ha de hacerse

Ejemplos		
CO ₂	Dióxido de carbono	
Co ₂ O ₃	Trióxido de dicobalto	
Na ₂ O	Óxido de sodio	
Al ₂ O ₃	Óxido de aluminio	
MgH ₂	Dihidruro de magnesio	
HCI	Cloruro de hidrógeno Acido clorhídrico	
NaNO ₃	Nitrato de sodio	
K ₂ SO ₄	Sulfato de potasio	
CI-	Cloruro	
Cu ²⁺	Cobre(2+)	

- √ Combinaciones binarias, ídem 3º ESO.
- ✓ Nombrar compuestos binarios sin prefijos numerales en el caso de los elementos con un único estado de oxidación, dado que en estos casos no existe ambigüedad. Para formular estos compuestos los alumnos deberán conocer, al menos, los números de oxidación de los metales con estado de oxidación fijo (Li, Na, K, Ag, Mg, Ca, Zn y Al)
- ✓ Considerar los nombres de ácido fluorhídrico, clorhídrico, bromhídrico y yodhídrico para las disoluciones de los halogenuros de hidrógeno en agua.
- √ Conocer los tres oxoácidos:

HNO₃: Ácido nítrico
H₂SO₄: Ácido sulfúrico
H₂CO₃: Ácido carbónico

- ✓ Introducir las oxosales correspondientes utilizando solo metales con número de oxidación fijo.
- Conocer la nomenclatura de aniones y cationes monoatómicos.

2

Lo que (como ampliación) puede hacerse ¡

Ejemplos		
HCIO	Ácido hipocloroso	
HClO ₂	Ácido cloroso	
HCIO ₃	Ácido clórico	
HCIO ₄	Ácido perclórico	
CuSO ₄	Sulfato de cobre(II)	
Co(NO ₃) ₂	Nitrato de níquel(II)	
Fe ₂ (CO ₃) ₃	Carbonato de hierro(III)	
SO ₄ ²⁻	Anión sulfato	

- ✓ Introducir la nomenclatura de los ácidos de los halógenos (hipo...oso, oso, ico, per... ico)
- Introducir las oxosales utilizando metales con número de oxidación variable.
- Deberán conocer una tabla de estados de oxidación más usuales.
- ✓ Introducir la nomenclatura de aniones poliatómicos.

3

Lo que se desaconseja hacer

- ✓ Nombrar los óxidos no metálicos como anhídridos y utilizar la nomenclatura tradicional (terminación oso e ico) en compuestos binarios e hidróxidos.
- ✓ Nombrar compuestos binarios con el número de oxidación entre paréntesis [óxido de hierro(III)].
- Utilizar la nomenclatura sistemática para oxoácidos (tetraoxosulfato(VI) de hidrógeno) y oxosales (trioxonitrato(V) de potasio)

4. RECOMENDACIONES PARA BACHILLERATO

1

Lo que (como mínimo) ha de hacerse

Ejemplos		
Co ₂ O ₃	Trióxido de dicobalto Óxido de cobalto(III)	
CaO ₂	Peróxido de calcio	
Al ₂ O ₃	Óxido de aluminio	
HCI	Cloruro de hidrógeno Acido clorhídrico.	
H ₃ PO ₄	Ácido fosfórico	
NaMnO ₄	Permanganato de sodio	
K ₂ Cr ₂ O ₇	Dicromato de potasio	
NaHCO ₃	Hidrógeno carbonato de sodio	
NH ₄ +	Amonio	
NO ₂ -	Nitrito	

2

- Combinaciones binarias, nomenclatura de composición (sistemática). Incluir los peróxidos de los metales alcalinos y alcalino-térreos.
- ✓ Introducir la nomenclatura de compuestos binarios con el número de oxidación entre paréntesis [óxido de hierro(III)].
- ✓ Deberán conocer una tabla de estados de oxidación más usuales.
- ✓ Nombrar compuestos binarios sin prefijos numerales en el caso de los elementos con un único estado de oxidación, dado que en estos casos no existe ambigüedad.
- ✓ Considerar los nombres de ácido fluorhídrico, clorhídrico, bromhídrico y yodhídrico para las disoluciones de los halogenuros de hidrógeno en agua.
- ✓ Nomenclatura de los oxoácidos, incluyendo los de los halógenos (hipo...oso, oso, ico, per... ico) y los del P (ácido fosfórico: H₃PO₄) y B (ácido bórico: . H₃BO₃)
- √ Nomenclatura de las oxosales incluyendo manganatos, permanganatos, cromatos y dicromatos.
- ✓ Nomenclatura de las oxosales ácidas e hidratadas.
- √ Conocer la nomenclatura de aniones y cationes monoatómicos y poliatómicos.

Lo que (como ampliación) puede hacerse

Introducir la nomenclatura de adición para los oxoácidos, oxosales e iones poliatómicos.

Ejemplos		
HNO ₃	Hidroxidodioxidonitrogeno Hidrogeno(trioxidonitrato)	
HCIO ₂	Hidroxidooxidocloro	
	Hidrogeno(dioxidoclorato) Dihidroxidodioxidoazufre /	
H ₂ SO ₄	Dihidrogeno(tetraóxidosulfato)	
Na ₂ CO ₃	Trioxidocarbonato de disodio	
KH ₂ PO ₄	Dihidroxidodioxidofosfato de potasio	
NO ₃ -	Trioxidonitrato(1-)	

3

Lo que se desaconseja hacer

- ✓ Nombrar los óxidos no metálicos como anhídridos y utilizar la nomenclatura tradicional (terminación oso e ico) en compuestos binarios e hidróxidos..
- ✓ Utilizar la nomenclatura sistemática para oxoácidos (tetraoxosulfato(VI) de hidrógeno) y oxosales (trioxonitrato(V) de potasio)

3º ESO

NÚMEROS DE OXIDACIÓN MÁS USUALES DE ALGUNOS ELEMENTOS (3º ESO)

METALES			
Número de oxidación	Elementos		
+1	Li, Na, K y Ag		
+2	Mg, Ca y Zn		
+3	Al		
	NO METALES		
+1	Н		
-1	H (hidruros),		
	F, Cl, Br, I (fluoruros, cloruros, bromuros y yoduros)		
2	O (óxidos)		
-2	S (sulfuros)		

4º ESO

NÚMEROS DE OXIDACIÓN MÁS USUALES DE ALGUNOS ELEMENTOS (4º ESO)

En negrita figuran los elementos cuyos estados de oxidación es necesario conocer

METALES				
Número de oxidación	Elementos			
+1	Li, Na, K, Ag, Rb y Cs			
+2	Be, Mg, Ca, Zn, Sr, Ba ; y Cd			
+3	Al			
+1, +2	Cu y Hg			
+1, +3	Au			
+2, +3	Fe, Co, Ni, Cr			
+2, +4	Pt, Pb, Sn			
	NO METALES			
Número de oxidación	Elementos			
-1	F			
-1, +1	Н			
-2	0			
-2 , +4, +6	S , Se, Te			
-3, +3, +5,	N, P, As, Sb			
+4	C , Si			
-1 , +1, +3, +5, +7	CI, Br, I			

Bachillerato

NÚMEROS DE OXIDACIÓN MÁS USUALES DE ALGUNOS ELEMENTOS (Bachillerato)

METALES				
Número de oxidación	Elementos			
+ 1	Li, Na, K, Rb, Cs y Ag			
+2	Be, Mg, Ca, Sr, Ba ; Zn y Cd			
+3	Al			
+1, +2	Cu y Hg			
+1, +3	Au			
+2, +3	Fe, Co, Ni			
+2, +3, +6 (cromatos y dicromatos)	Cr			
+2, +4, +6 (manganatos), +7 (permanganatos)	Mn			
+2, +4	Pt, Pb, Sn			
NO METALES				
Número de oxidación	Elementos			
–1	F			
-1 , +1	Н			
-2	0			
-2 , +4 , +6	S, Se, Te			
-3, +3, +5,	N, P, As, Sb			
- 4, +4	C, Si			
-1, +1, +3, +5, +7	CI, Br, I			
GRUPOS POLIATÓMICOS				
+1 NH ₄ ⁺ ión (catión) amon				
–1	CN ⁻ ión (anión) cianuro			

C. RESULTADO DE LA ENCUESTA AL PROFESORADO

La encuesta pasada a los 121 profesores participantes en la Jornada de Formulación y Nomenclatura, arrojó los resultados que se citan y comentan a continuación.

El número de respuestas por nivel se recoge en la tabla 1 y los resultados se desglosan en los contenidos que se imparten en cada curso (tabla 2 y gráfica A) y el tipo de nomenclatura usado (tabla 3 y gráfica B).

Tabla 1. Profesores que han respondido la encuesta

3º ESO	4º ESO	1º BCH	2º BCH
95	92	82	69

Tabla 2. Contenidos trabajados en diferentes cursos (%)

CONTENIDOS	3º ESO	4º ESO	1º BCH	2º BCH
Elementos	100	99	100	100
Números de oxidación	58	80	89	99
lones monoatómicos	59	83	96	99
lones poliatómicos	21	63	94	99
Óxidos	85	99	100	100
Peróxidos	19	63	95	94
Combinaciones de H (1-)	81	99	100	100
Combinaciones de H (1+)	76	98	100	100
Metal – No metal (Sales binarias)	81	98	100	100
No metal – No metal	56	82	94	96
Hidróxidos	67	98	100	100
Oxoácidos	33	92	100	100
Oxosales neutras	22	84	99	99
Sales ácidas	2	25	90	94
Óxidos dobles, sales hidratadas, etc.)	1	5	37	54

Gráfica A. Contenidos trabajados en diferentes cursos (%)

La diferencia más grande entre los distintos cursos la marca 3º de ESO en el que se puede observar que:

— Más del 80 : trabajan elementos, óxidos, combinaciones del hidrógeno y sales binarias.

- Entre el 50 y 80 : trabajan iones monoatómicos, combinaciones no metal no metal e hidróxidos
- Por debajo del 30 : Trabajan peróxidos, iones poliatómicos, oxoácidos. oxosales, etc. Aunque se matiza en muchas ocasiones: "sólo algunos ácidos"; "algunas sales de uso en el laboratorio"

Sin embargo, apenas hay diferencias entre 4º de ESO y el Bachillerato (salvo sales ácidas y compuestos de adición en que en 4º de ESO apenas se dan), incluso el 63 % de los encuestados trabajan iones poliatómicos en 4º de ESO.

Por supuesto, no hay diferencias notables entre los dos cursos de bachillerato pudiendo, por tanto, deducir que en 2º de bachillerato se trabaja como un repaso de lo trabajado en el primer curso.

Tabla 3. Tipo de nomenclatura trabajada en diferentes cursos (%)

NOMENCLATURA	3º ESO	4º ESO	1º BCH	2º BCH
Sustitución	17	17	12	14
Adición	2	8	6	4
De hidrógeno	7	11	11	9
Composición	66	78	73	71
Tradicional	32	38	37	48
Sistemática	24	27	24	23
Stock	26	28	27	33
Otras (citar)	6	9	7	10

Gráfica B. Tipo de nomenclatura trabajada en los diferentes cursos 0% 20% 40% 60% 80% Sustitución

Respecto al tipo de nomenclatura usada, mayoritariamente se usa la de composición. Aunque no se preguntaba directamente en la encuesta, de los comentarios escritos y de las matizaciones en otras, se han incluido tres más que aparecían con frecuencia: sistemática, Stock y tradicional. No sabemos hasta que punto se identifica sistemática con la de composición.

Además debe tenerse en cuenta que, en muchas ocasiones, se solapan en el mismo curso diferentes nomenclaturas (en función del tipo de sustancias a nombrar)

D. RECURSOS

RECURSOS

• Nomenclature of Inorganic Chemistry. IUPAC Recommendations 2005

Editado por:

N.G. Connelly, T. Damhus, R.M. Hartshorn and A.T. Hutton

The Royal Society of Chemistry, 2005 [ISBN 0 85404 438 8]

http://bit.ly/1jIDItu (4,13 Mb) se puede descargar gratuitamente de modo legal.

Correcciones: http://bit.ly/1cNstgQ y http://bit.ly/lgtWTV

• Nomenclatura de Química Inorgánica. Recomendaciones IUPAC 2005. Versión española de Miguel A. Ciriano y Pascual Román Polo. Prensas Universitarias de Zaragoza, junio 2007. http://puz.unizar.es

· Recursos en la red

1. FISQUIWEB (Luis Ignacio García González-IES La Magdalena, Avilés). http://bit.ly/z39G8

Web de uno de los autores de este trabajo, es una de las mejores webs de Física y Química de España, usada como referencia por otras webs de la materia.

La formulación está adaptada a las normas vigentes y tiene, además de consideraciones didácticas, un tutorial sobre formulación en flash, test en Excel y apuntes sobre formulación en Word y PDF. http://bit.ly/1b2SD0J

2. Salvador Olivares Campillo (IES Floridablanca, Murcia). http://bit.ly/17TsdNY

Trabajo que presenta en un pdf las recomendaciones IUPAC. Aunque está dirigido a Bachillerato, no es demasiado difícil adaptarlo a la ESO

3. Diego Lozano Calero (IES Jacaranda, Churriana). http://bit.ly/Zv3s2g

Web dedicada a las normas 2005, contiene varios pdfs que van desde conceptos generales hasta ejercicios resueltos

Proyecto Ulloa (Recursos en Química). http://bit.ly/fv8TaO

Proyecto del Ministerio de Educación que ha generado recursos en Química. Tiene ejercicios interactivos o para hacer con lápiz y papel. Se puede descargar un disco ISO para trabajar sin conexión

Proyecto Newton (MEC). http://bit.ly/1iRCnTM

Planteado como un juego educativo, desarrolla la formulación de modo interactivo (apuntes en pdf)

6. Carlos Alonso (Vigo). http://bit.ly/RuX3Em

Tiene múltiples recursos no sólo de formulación inorgánica, sino que abarcan a toda la química. Tiene una introducción histórica a la nomenclatura y formulación con reseña de textos desde Guyton de Morveau y Lavoisier hasta la actualidad, pudiendo leer esos textos clásicos.

7. José Antonio Navarro Domínguez (IES Al Ándalus, Sevilla). http://bit.ly/ls06vm

Tiene aplicaciones en flash para todos los cursos

8. Rincón didáctico de Física y Química (Consejería de Educ., Extremadura) http://bit.ly/17WQrsE

Redirecciona a webs que tratan de formulación (algunas de las citadas aquí). Buena para ahorrarse buscar recursos.

- 9. Test y juegos para aprender formulación (Consejería de Educación, Extremadura) http://bit.ly/1jIEAhN
- Formulación Inorgánica (Departamento de Física y Química, IES Sierra de San Quílez Binefar) http://bit.ly/18GcoKY

Web que abarca toda la formulación inorgánica de modo bastante interactivo.

11. Salvador López Castejón (IES Carrús, Elche). http://bit.ly/1jJntfZ

Blog que contiene no sólo ejercicios de formulación inorgánica sino muchos otros temas de Química.