

REVIEW OF MACHINE LEARNING

WHAT IS MACHINE LEARNING?

Machine learning allows computers to learn and infer from data.

TYPES OF MACHINE LEARNING

SUPERVISED

Data points have known outcome

UNSUPERVISED

Data points have unknown outcome

TYPES OF SUPERVISED LEARNING

REGRESSION

Outcome is continuous (numerical)

CLASSIFICATION

Outcome is a category

MACHINE LEARNING VOCABULARY

- Target: predicted category or value of the data (column to predict)
- Features: properties of the data used for prediction (non-target columns)
- Example: a single data point within the data (one row)
- Label: the target value for a single data point

MACHINE LEARNING VOCABULARY (SYNONYMS)

- Target: Response, Output, Dependent Variable, Labels
- **Features:** Predictors, Input, Independent Variables, Attributes
- Example: Observation, Record, Instance, Datapoint, Row
- Label: Answer, y-value, Category

SUPERVISED LEARNING OVERVIEW

REGRESSION: NUMERICAL ANSWERS

CLASSIFICATION: CATEGORICAL ANSWERS

CLASSIFICATION: CATEGORICAL ANSWERS

THREE TYPES OF CLASSIFICATION PREDICTIONS

- Hard Prediction: Predict a single category for each instance.
- Ranking Prediction: Rank the instances from most likely to least likely. (binary classification)
- Probability Prediction: Assign a probability distribution across the classes to each instance.

METRICS FOR CLASSIFICATION

- Hard Prediction: Accuracy, Precision, Recall (Sensitivity),
 Specificity, F1 Score
- Ranking Prediction: AUC (ROC), Precision-Recall Curves
- Probability Prediction: Log-loss (aka Cross-Entropy), Brier Score

METRICS FOR REGRESSION

Root Mean Square Error (RMSE)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Mean Absolute Deviation

$$MAD = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

FITTING TRAINING AND TEST DATA

TRAINING DATA

fit the model

TEST DATA

measure performance

- predict label with model
- compare with actual value
- measure error

Fit the model

Make predictions

HOW WELL DOES THE MODEL GENERALIZE?

UNDERFITTING VS OVERFITTING

BIAS—VARIANCE TRADEOFF

GRADIENT DESCENT

Start with a cost function $J(\beta)$:

Then gradually move towards the minimum.

- Now imagine there are two parameters (β_0, β_1)
- This is a more complicated surface on which the minimum must be found
- How can we do this without knowing what $J(\beta_0, \beta_1)$ looks like?

- Compute the gradient, $\nabla J(\beta_0, \beta_1)$, which points in the direction of the biggest increase!
- $-\nabla J(\beta_0, \beta_1)$ (negative gradient) points to the biggest decrease at that point!

 The gradient is the a vector whose coordinates consist of the partial derivatives of the parameters

$$\nabla J(\beta_0, \dots, \beta_n) = \langle \frac{\partial J}{\partial \beta_0}, \dots, \frac{\partial J}{\partial \beta_n} \rangle$$

Then use the gradient (\$\nabla\$) and the cost function to calculate the next point (\$\omega\$_1) from the current one (\$\omega\$_0):

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left(\left(\beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$

• The learning rate (α) is a tunable parameter that determines step size

 Each point can be iteratively calculated from the previous one

$$\omega_{2} = \omega_{1} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left(\left(\beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$

$$\omega_{3} = \omega_{2} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left(\left(\beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$

STOCHASTIC GRADIENT DESCENT

 Use a single data point to determine the gradient and cost function instead of all the data

$$\omega_1 = \omega_0 - \alpha \nabla \frac{1}{2} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2$$

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \left(\left(\beta_{0} + \beta_{1} x_{obs}^{(0)} \right) - y_{obs}^{(0)} \right)^{2}$$

STOCHASTIC GRADIENT DESCENT

 Use a single data point to determine the gradient and cost function instead of all the data

$$\omega_1 = \omega_0 - \alpha \nabla \frac{1}{2} \left(\left(\beta_0 + \beta_1 x_{obs}^{(0)} \right) - y_{obs}^{(0)} \right)^2$$

 $\omega_4 = \omega_3 - \alpha \nabla \frac{1}{2} \left(\left(\beta_0 + \beta_1 x_{obs}^{(3)} \right) - y_{obs}^{(3)} \right)^2$

 Path is less direct due to noise in single data point—"stochastic"

MINI BATCH GRADIENT DESCENT

 Perform an update for every n training examples

$$\omega_{1} = \omega_{0} - \alpha \nabla \frac{1}{2} \sum_{i=1}^{n} \left(\left(\beta_{0} + \beta_{1} x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^{2}$$

Best of both worlds:

- Reduced memory relative to "vanilla" gradient descent
- Less noisy than stochastic gradient descent

