Modelos Lineares Covariância e Correlação

Susana Faria

Notas Iniciais

- O uso destas notas como único material de estudo é fortemente desaconselhado.
- Neste capítulo começa-se por estudar a relação entre uma variável resposta Y e uma variável independente X.
 De seguida, apresentam-se a covariância e o coeficiente de correlação como medidas do grau de associação entre as duas variáveis.

Covariância e Correlação

Considere que temos *n* observações:

$$(x_1, y_1), (x_2, y_2), \ldots, (x_i, y_i), \ldots, (x_n, y_n)$$

provenientes de duas variáveis quantitativas, X e Y, e pretende-se medir o grau de associação entre essas variáveis.

O método mais simples para averiguar a relação entre a variável independente X e a variável resposta Y é construir o **diagrama de dispersão**. Este gráfico sugere-nos qual a função mais adequada a ajustar aos dados.

Formas de associação entre variáveis numéricas: lineares, exponenciais, logarítmicas ou quadráticas.

A variância duma v.a. define-se como:

$$V[X] = E[(X - E[X])^{2}] = E[X^{2}] - E^{2}[X]$$

Sejam X e Y variáveis aleatórias e a e b constantes. Então:

- E[X + a] = E[X] + a.
- E[bX] = bE[X].
- $E[X \pm Y] = E[X] \pm E[Y]$
- V[X + a] = V[X]
- $V[bX] = b^2 V[X].$
- $V[X \pm Y] = V[X] + V[Y] \pm 2Cov[X, Y]$, onde Cov[X,Y] é a covariância de X e Y.
- Se X e Y forem v.a. independentes, então $V[X \pm Y] = V[X] + V[Y]$.

Covariância

A covariância entre Y e X:

$$Cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]$$

indica a direcção da relação linear entre X e Y.

- Cov(Y, X) > 0 associação linear positiva;
- Cov(Y, X) < 0 associação linear negativa;
- Cov(Y, X) = 0 ausência de associação linear.

Propriedades:

- Cov(X, Y + Z) =
- $Cov(X, \alpha) =$
- $Cov(X, \alpha + \beta Y)$
- Cov(X,X) =

Desvantagem: Depende das unidades em que as variáveis são expressas.

Covariância amostral

Considere uma amostra bivariada $(x_1, y_1), \dots, (x_n, y_n)$, a covariância amostral é:

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_i y_i - n\overline{x} \ \overline{y} \right)$$

Exercicio: Determine a covariância entre a altura e o peso dos individuos na seguintes situações:

altura(m)	peso (kg)			
1.74	68			
1.83	80			
1.68	62			
1.89	89			
1.78	70			
1.83	78			

altura(polegadas)	peso (libras)
68.5	149.9
72	176.4
74.4	196.2
72	172
70.1	154.3
66.1	136.7

Covariância: Indicador da Associação Linear

- Associação Linear Crescente: é de esperar que indivíduos com altura abaixo da média tenham peso abaixo da média e que indivíduos com altura superior à média tenham peso superior à média.
- Associação Linear Decrescente: por exemplo, preço de um quilo de morangos e quantidade transaccionada no mercado abastecedor nesse dia, é de esperar que nos dias em que a oferta está acima da média o preço desça abaixo do preço médio, e vice-versa.

Sugerem uma regressão linear (i.e., a relação entre as duas variáveis poderá ser descrita por uma equação linear)

Existência de correlação positiva (em média, quanto maior for a altura maior será o peso) Existência de correlação negativa (em média, quanto maior for a colheita menor será o preco)

O coeficiente de correlação de Pearson:

$$\rho = \frac{Cov(X, Y)}{\sqrt{Var(X) \ Var(Y)}}$$

permite avaliar o grau de associação linear entre duas variáveis.

- O sinal de ρ indica a direcção da associação;
- O valor absoluto de ρ mede a intensidade da associação;
- $-1 \le \rho \le 1$:
 - $\rho > 0$ relação linear positiva;
 - $\rho = 0$ ausência de relação linear;
 - ho < 0 relação linear negativa;
 - ρ = 1 relação linear positiva perfeita;
 - ho = -1 relação linear negativa perfeita.

O coeficiente de correlação amostral de Pearson:

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

permite avaliar o grau de associação linear entre duas variáveis.

Notações Alternativas:

O coeficiente de correlação amostral de Pearson:

$$r = \frac{cov(X, Y)}{s_x s_y}$$

onde s_x e s_y são o desvio padrão amostral de X e Y, respectivamente.

Designando por:

$$S_{XX} = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2 = \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$S_{YY} = \sum_{i=1}^{n} y_i^2 - n\overline{y}^2 = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$S_{XY} = \sum_{i=1}^{n} x_i y_i - n\overline{x} \overline{y}$$

$$r = \frac{S_{XY}}{\sqrt{S_{XX}S_{YY}}}$$

Más Interpretações do Coeficiente de Correlação

 O coeficiente de correlação igual a zero não significa que as variáveis não estejam associadas.

- O coeficiente de correlação pode ser influenciado por um ou mais outliers
- ver site: http://www.tylervigen.com/spurious correlations

 Uma correlação forte não significa necessariamente uma relação de causa e efeito entre as variáveis.

Exemplos:

- Uma publicação anticlerical que ficou célebre mostrava claramente que o número de crimes nas cidades inglesas tinha crescido com o aumento dos pastores anglicanos, durante o século XIX.
- O número de prédios destruídos em cada fogo urbano e o número de viaturas de bombeiros utilizados no combate ao mesmo.
- Calcular o coeficiente de correlação numa população não homogénea (por exemplo, constituída por homens e mulheres) pode conduzir a más interpretações.

- Se X e Y são independentes então Cov(X,Y)=0 e consequentemente $\rho=0$. Mas, atenção, o recíproco é falso!
- No entanto, se X e Y são independentes e seguem uma distribuição normal então verifica-se a equivalência, ou seja, X e Y independentes e normais $\iff \rho = 0$

Exercicio: Determine a correlação nas seguintes situações:

Xi	$y_i=2x_i+3$	$z_i = x_i^2$
-3		
-2		
-1		
0		
1		
2		
3		

Testar a Correlação

Dado X e Y duas variáveis aleatórias de distribuição normal, testar:

$$H_0: \rho = 0$$
 vs $H_1: \rho \neq 0$

A estatística-teste é:

$$T = \frac{\sqrt{n-2}r}{\sqrt{1-r^2}} \quad \sim \quad t_{n-2}$$

A região de rejeição é:

$$RC = \{t : |t| > t_{\frac{\alpha}{2};n-2}\}$$
 em que α é o nível de significância.

Exercicio: Testar a hipótese de não existir correlação entre a altura e o peso dos individuos.

Testar a Correlação

- Se estivermos perante duas variáveis medidas apenas numa escala ordinal, ou que apresentam uma relação não linear mas monótona, o coeficiente de Pearson não pode ser aplicado.
- Se as variáveis X e Y não seguem uma distribuição normal utiliza-se o Coeficiente de Correlação de Spearman:

$$r_S = 1 - \frac{6\sum_{i=1}^n d_i^2}{n(n^2 - 1)}$$

em que d_i são as diferenças entre as ordens de x_i e y_i .

Nota: No cálculo deste coeficiente, começa-se por ordenar para cada variável as observações e atribui-se, a cada observação, um número indicando a sua posição relativa na ordenação.

 $H_0: XeY$ são independentes vs $H_1: XeY$ não são independentes A estatística-teste é:

$$z = \sqrt{n-1}|r_S| \sim N(0,1)$$

A região de rejeição é:

 $RC = \{z : |z| > z_{\frac{\alpha}{2}}\}$ em que α é o nível de significância.

Testar a Correlação

Exercício: Um individuo atribuiu uma nota de qualidade a 10 perfumes. Na tabela seguinte apresentam-se os índices de qualidade(X) definidos de 1 a 10 (sendo 10 o melhor perfume) e o preço (Y) dos 10 perfumes:

10	1	2	5	4	3	6	7	9	8	
95	60	52,5	51,5	49,5	47,5	55	48	56	53	

Podemos afirmar que o preço dos perfumes depende da qualidade?

O coeficiente de correlacção de Kendall

- Uma alternativa ao coeficiente de Spearman é o coeficiente de Kendall que se aplica nas mesmas condições;
- Se as amostras tiverem dimensão muito reduzida e valores repetidos, os resultados do teste ao coeficiente de correlação de Kendall são mais precisos;
- O coeficiente de Kendall pode ser generalizado para correlações parciais que são correlações medidas entre duas variáveis após remoção do efeito de uma possível terceira variável sobre ambas.
- Uma diferença muito importante entre os dois coeficientes (Kendall e Spearman) reside na sua interpretação e na impossibilidade de comparar directamente valores provenientes de ambos.
- O coeficiente de Kendall é muitas vezes descrito como uma medida de concordância entre dois conjuntos de classicações relativas a um conjunto de objectos ou experiências.

$$T = \frac{\text{n\'umero concord\^ancias} - \text{n\'umero discord\^ancias}}{\text{n\'umero total de pares}}$$

 Tal como para os coeficientes de Pearson e Spearman é possível efectuar um teste de hipóteses para averiguar se a associação é significativa.