Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Московский физико-технический институт (государственный университет)» Факультет управления и прикладной математики Кафедра информатики и вычислительной математики

На правах рукописи УДК 519.6

Гринин Виктор Олегович

Моделирование многофазных реагирующих фильтрационных течений с равновесными химическими реакциями

Выпускная квалификационная работа (бакалаврская работа) Направление подготовки: 03.03.01 «Прикладные математика и физика»

Заведующий кафедрой:	
д.фм.н., члкорр. РАН	 Петров Игорь Борисович
Научный руководитель: к.фм.н.	Цыбулин Иван Владимирович
Выполнил:	
Студент 373 группы	 Гринин Виктор Олегович

Содержание

Bı	ведение	3
1	Математическая модель 1.1 Уравнения химических реакций	
2	Численный метод и программный модуль 2.1 Метод Ньютона с ограничением шага	
3	Результаты 3.1 Верификация написанного модуля	10 10 11
4	Выводы	14
Cı	писок использованных источников	15

Введение

В настоящей работе рассматриваются многофазные фильтрационные течения, в которых наряду с реакциями с конечной кинетикой присутствуют равновесные химические реакции. Одним из приложений данных задач является изучение способов хранения углекислого газа в естественных подземных резервуарах. Для этого углекислый газ закачивают под давлением в водоносный горизонт, где газ будет находиться несколько сот лет. При этом газ может химически прореагировать с окружающей горной породой, что позволяет эффективно его связать. В данном случае химические превращения становятся важным аспектом такого фильтрационного течения.

Система химических реакций, описывающих взаимодействие углекислого газа с породой, обычно записывается в виде уравнений балансов отдельных ионов и веществ. Данные реакции имеют равновесный характер: их характерные времена существенно меньше характерных времен фильтрации. Это обстоятельство осложняет учет реакций в разностной схеме, так как их нельзя учитывать последовательно с помощью метода расщепления: равновесие, достигнутое после учета только одной реакции будет нарушено при учете второй и так далее. Из-за этого все равновесные реакции требуется учитывать одновременно в единой системе уравнений.

При взаимодействии углекислого газа с породой, последняя растворяется, образуя дополнительный поровый объем. Это означает, что в модель фильтрационного течения должна быть заложена возможность учитывать изменяющуюся пористость резервуара. В имеющемся программном комплексе для моделирования многофазных многокомпонентных неизотермических течений, разработанном в лаборатории флюидодинамики и сейсмо-акустики МФТИ, такая возможность имеется, так как в нем скелет рассматривается как отдельная фаза, участвующая в фазовых и химических превращениях. При таком подходе пористость является производным параметром, равным доле объёма, приходящейся на подвижные фазы.

Цель данной работы заключалась в усовершенствовании указанного программного комплекса в направлении учета равновесных химических реакций, а также проведения численных экспериментов по закачке углекислого газа в модельный водный резервуар.

1 Математическая модель

Основными уравнениями, заложенными в программный комплекс [1], которые описывают течение многофазной многокомпонентной среды являются уравнения балансов количества вещества и энергии, имеющие вид

$$\frac{\partial N_i}{\partial t} + \operatorname{div} \mathbf{Q}_i = S_i,$$
$$\frac{\partial E}{\partial t} + \operatorname{div} \mathbf{J} = R.$$

Здесь N_i — молярные концентрации компонент, E — плотность энергии среды. Химические реакции учитываются в математической модели течения многофазной многокомпонентной среды в виде источников количества вещества S_i и энергии R.

Молярные плотности и плотность энергии задаются соотношениями

$$N_i = \sum_{\alpha} \theta_{\alpha} n_{\alpha} x_{i,\alpha}, \qquad E = \sum_{\alpha} \theta_{\alpha} n_{\alpha} e_{\alpha},$$

где θ_{α} — объемная доля фазы α , n_{α} — концентрация фазы α , $x_{i,\alpha}$ — молярная концентрация компоненты i в фазе α , e_{α} — молярная энергия фазы α .

Потоки вещества \mathbf{Q}_i и энергии \mathbf{J} выражаются в виде

$$\mathbf{Q}_i = \sum_{\alpha} n_{\alpha} x_{i,\alpha} \mathbf{W}_{\alpha}, \qquad \mathbf{J} = \sum_{\alpha} n_{\alpha} h_{\alpha} \mathbf{W}_{\alpha},$$

где h_{α} — энтальпия фазы α , а \mathbf{W}_{α} — скорость фильтрации фазы α , задаваемая законом Дарси

$$\mathbf{W}_{\alpha} = K \frac{\kappa_{\alpha}}{\mu_{\alpha}} (-\operatorname{grad} p + \rho_{\alpha} \mathbf{g}).$$

В этом уравнении K — проницаемость скелета, κ_{α} — относительная фазовая проницаемость, μ_{α} — вязкость фазы α , p — давление, ρ_{α} — плотность фазы α , \mathbf{g} — ускорение свободного падения.

1.1 Уравнения химических реакций

Для реакций с конечной скоростью обычно используется закон Арениуса, когда скорость реакции пропорциональна концентрациям реагирующих веществ в степенях их стехеометрических коэффициентов. В случае равновесной химической реакции вместо скорости реакции имеется равновесное

соотношение

$$F(N_i) = 0,$$

выражающее собой равенство скоростей прямой и обратной химических реакций.

Если записать равновесную химическую реакцию в виде

$$\sum \nu_i X_i \rightleftharpoons 0,$$

где X_i — реагирующие вещества, а ν_i — их стехеометрические коэффициенты в реакции, то для такой реакции принимается верным закон действующих масс:

$$K = \prod_{i} N_i^{\nu_i}.$$

Здесь предполагается, что ν_i для продуктов реакции положительны, а для реагентов — отрицательны.

В качестве функции F для данной реакции можно взять

$$F = \ln K + \sum \nu_i \ln N_i.$$

Пусть в силу некоторых причин, например из-за переноса продуктов реакции течением, данное равновесие оказалось нарушено. Тогда из-за данной реакции концентрации изменяются по закону

$$\Delta N_i = \xi \nu_i,$$

где ξ — величина, характеризующая глубину реакции, одинаковая для всех участвующих компонент.

Задача определения нового равновесия заключается в поиске такого значения ξ , что $F(N_i) = 0$.

При этом, можно сделать очевидное обобщение на случай нескольких реакций

$$N_i = N_i^0 + \sum_{j=1}^M \xi_j \nu_{i,j}$$

$$F_j(N_i) = \ln(K_j) + \sum_{j=1}^M \nu_{i,j} \ln N_i = 0$$

1.2 Конкретные химические реакции

При проведении расчётов использовалась следующая система химических реакций

 $R1: OH^- + H^+ \rightleftharpoons H_2O,$

 $R2: \operatorname{HCO}_{3}^{-} + \operatorname{H}^{+} \rightleftharpoons \operatorname{H}_{2}\operatorname{O} + \operatorname{CO}_{2},$

 $R3: \operatorname{CaCO}_3 + 2\operatorname{H}^+ \rightleftharpoons \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2 + \operatorname{Ca}^{2+}.$

Эта система может быть записана в матрично-векторной форме

$$V^TY \rightleftharpoons 0,$$

где

$$V^{T} = \begin{vmatrix} -1 & 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 & 1 & -1 & 0 \\ 0 & 0 & -1 & 1 & 1 & -2 & 1 \end{vmatrix}, \quad Y = \begin{vmatrix} OH^{-} \\ HCO_{3}^{-} \\ CaCO_{3} \\ H_{2}O \\ CO_{2} \\ H^{+} \\ Ca^{2+} \end{vmatrix}$$

или в виде таблицы Мореля

	H ₂ O	H^{+}	CO_2	Ca ²⁺	$\lg K$
OH-	1	-1	0	0	-14
HCO_3^-	1	-1	1	0	-5.928
CaCO ₃	1	-2	1	1	-8.094

Данные числовые значения констант химического равновесия взяты из работы [2].

2 Численный метод и программный модуль

В основе численного метода, используемого в вычислительном комплексе, лежит полностью неявная дискретизация уравнений балансов количества вещества и энергии. Из уравнений балансов составляется единое уравнение для определения давления — уравнение пъезопроводности, решаемое на каждом шаге по времени методом Ньютона. После нахождения очередного приближения для давления производится пересчет концентраций компонент и энергии. В данном подходе химические реакции являются одним из источниковых слагаемых в правой части уравнений.

Для того, чтобы добавить химическую реакцию в программный комплекс, необходимо вычислить «глубину реакции» — количество элементарных актов реакции, которое необходимо провести, чтобы из данного состояния попасть в равновесное. Фактически, равновесная реакция моделируется как реакция со скоростью $S=\frac{\xi}{\tau}$, где ξ — глубина реакции, а τ — шаг по времени. Таким образом, выбираются такие скорости реакции, что на следующем шаге по времени концентрации веществ оказываются в равновесном состоянии.

Для решения системы, которая описывает установление химического равновесия, использовался метод Ньютона. Были рассмотрены различные способы записи данной системы и был выбран оптимальный.

2.1 Метод Ньютона с ограничением шага

Запишем приведённую раньше систему в матричной форме 1

$$\mathbf{F}(\boldsymbol{\xi}) = \ln \mathbf{K} + V^T \ln \left(\mathbf{N}^0 + V \boldsymbol{\xi} \right) = 0$$

Продифференцируем эту функцию по $\boldsymbol{\xi}$

$$\frac{\partial \mathbf{F}}{\partial \boldsymbol{\xi}} = V^T \operatorname{diag}^{-1} (\mathbf{N}^0 + V\boldsymbol{\xi}) V$$

Метод Ньютона с ограничением шага [3] имеет вид

$$\boldsymbol{\xi}^{k+1} = \boldsymbol{\xi}^k - \alpha^{(k)} [V^T \operatorname{diag}^{-1}(\mathbf{N}^0 + V\boldsymbol{\xi})V]^{-1} (\ln \mathbf{K} + V^T \ln (\mathbf{N}^0 + V\boldsymbol{\xi})) \quad (1)$$

Для обычного метода Ньютона параметр α следует брать равным единице, однако итерации с $\alpha^{(k)}=1$ могут привести к попаданию в область нефизических значений. В этом случае можно делать лишь часть шага метода Ньютона, выбирая параметр α из промежутка [0,1].

 $^{^{1}}$ Здесь и далее $\ln \mathbf{x}, \exp \mathbf{x}$ понимаются как результат покомпонентного применения функции к вектору.

При применении для численных расчётов метода Ньютона, работающего с системой уравнений, записанной в данном виде, возникает несколько проблем. Нужно выбирать начальное приближение $\boldsymbol{\xi}^0$ так, чтобы выражение под логарифмом было положительным $\mathbf{N}^0 + V\boldsymbol{\xi} > 0$. Для этого приходится решать систему линейных неравенств. Кроме того, на каждой итерации следует задавать параметр $\alpha^{(k)} \in [0,1]$ так, чтобы неравенства этой системы не нарушались.

```
1: function ChooseAlpha(N_0, V, \xi, \Delta \xi)

ightharpoonup Множитель, обеспечивающий строгое условие N>0
 2:
          \alpha = 1/\beta
 3:
          \mathbf{N} = \mathbf{N}_0 + V \boldsymbol{\xi} \triangleright Значение концентраций на текущей итерации
 4:
          \Delta \mathbf{N} = V \Delta \boldsymbol{\xi} \triangleright Поправка к концентрациям
 5:
          for i = \overline{1, n} do
 6:
               if N_i+\alpha\Delta N_i<0 then > Возможно лишь при \Delta N_i<0 \alpha=-\frac{N_i}{\Delta N_i} > Уменьшаем \alpha end if
 7:
 8:
 9:
          end for
10:
          return \beta \cdot \alpha
11:
12: end function
```

Рис. 1: Алгоритм выбора множителя шага α

Алгоритм выбора параметра α устроен таким образом, чтобы гарантировать выполнение условий:

- $\alpha \in (0,1]$.
- Для каждой компоненты i выполняется условие $N_i + \alpha \Delta N_i > 0$, причем неравенство выполняется «с запасом».
- Если для каждой компоненты i условие $N_i + \Delta N_i > 0$ выполнено с запасом, то значение α в точности равно 1, т.е. метод превращается в обычный метод Ньютона.

2.2 Метод Ньютона для расширенной системы

Перепишем систему в другом виде, для этого введём дополнительные переменные

$$\mathbf{p} = \ln\left(\mathbf{N}^0 + V\boldsymbol{\xi}\right)$$

При этом получаем расширенную систему

$$\begin{cases} \mathbf{F} = \ln \mathbf{K} + V^T \mathbf{p} = 0, \\ \exp(\mathbf{p}) = \mathbf{N}^0 + V \boldsymbol{\xi}. \end{cases}$$

Перенося все слагаемые в левую часть, получаем

$$\begin{cases} \ln \mathbf{K} + V^T \mathbf{p} = 0, \\ \mathbf{N}^0 + V \boldsymbol{\xi} - \exp(\mathbf{p}) = 0. \end{cases}$$

Эта система полностью эквивалентна исходной. Её можно записать в виде $\Phi(\mathbf{x}) = 0$, где $\mathbf{x} = [\boldsymbol{\xi}, \mathbf{p}]$

Тогда метод Ньютона принимает вид

$$\mathbf{x}^{k+1} = \mathbf{x}^k - \alpha^{(k)} \left(\frac{\partial \mathbf{\Phi}}{\partial \mathbf{x}} \right)^{-1} \mathbf{\Phi}(\mathbf{x}^k) \quad (2)$$

где

$$\frac{\partial \mathbf{\Phi}}{\partial \mathbf{x}} = \begin{vmatrix} 0 & V^T \\ V & -\operatorname{diag}(\exp(\mathbf{p})) \end{vmatrix}$$

Использование метода Ньютона, переписанного в такой форме, уже не встречает проблем, характерных предыдущей версии. Как показывает эксперимент, он сходится из любого начального приближения, при любых начальных концентрациях. Кроме того, в данном случае можно выбрать $\alpha^{(k)}=1$, что обеспечивает большую скорость сходимости.

Модуль, реализующий метод Ньютона в такой форме, был включён в симулятор многофазных фильтрационных течений.

3 Результаты

3.1 Верификация написанного модуля

Приведём результаты расчётов системы из трёх химических реакций

 $R1: OH^- + H^+ \rightleftharpoons H_2O,$

 $R2: \operatorname{HCO}_3^- + \operatorname{H}^+ \rightleftharpoons \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2,$

 $R3: \operatorname{CaCO}_3 + 2\operatorname{H}^+ \rightleftharpoons \operatorname{H}_2\operatorname{O} + \operatorname{CO}_2 + \operatorname{Ca}^{2+}.$

Будем считать, что начальные концентрации всех ионов равнялись нулю, и вектор концентраций химических веществ имел вид

$$\mathbf{N}_0^T = [0, 0, 1, 1, 1, 0, 0]$$

В методе Ньютона, записанном для равновесной системы в форме (1), начальное приближение искомых глубин реакции выбираем так, чтобы выполнялось условие

$$\mathbf{N}^0 + V\boldsymbol{\xi} > 0.$$

Пусть например,

$$\boldsymbol{\xi}_0^T = [-0.5, -0.7, 0.5]$$

Таблица 1: Концентрации веществ и выбираемый параметр α на соответствующей итерации метода Ньютона, записанного в форме (1).

	OH-	HCO_3^-	$CaCO_3$	H ₂ O	CO_2	H ⁺	Ca ²⁺	α
1	0	0	1	1	1	0	0	0.05
2	0.5	0.7	0.5	0.3	0.8	0.06	0.2	0.06
4	0.12	0.75	0.60	0.51	0.63	0.09	0.39	0.06
8	$7.8\cdot 10^{-3}$	$6.4 \cdot 10^{-1}$	$6.9 \cdot 10^{-1}$	$6.6 \cdot 10^{-1}$	$6.6 \cdot 10^{-1}$	$3.4 \cdot 10^{-2}$	$3.1 \cdot 10^{-1}$	0.09
16	$1.5\cdot 10^{-5}$	$3.6 \cdot 10^{-1}$	$8.2 \cdot 10^{-1}$	$8.2 \cdot 10^{-1}$	$8.2 \cdot 10^{-1}$	$3.3 \cdot 10^{-3}$	$1.8 \cdot 10^{-1}$	0.88
30	$5.9 \cdot 10^{-10}$	$6.7 \cdot 10^{-2}$	$9.7 \cdot 10^{-1}$	$9.7 \cdot 10^{-1}$	$9.7 \cdot 10^{-1}$	$1.6 \cdot 10^{-5}$	$3.4 \cdot 10^{-2}$	1

Видим, что в результате химических реакций концентрации исходных веществ немного уменьшаются, в результате чего образуются все входящие в реакции ионы.

На начальных итерациях выбирается $\alpha < 1$. Это говорит о том, что метод Ньютона пытается выйти за допустимую область. В результате ограничения шага в этом случае сходимость является линейной, и метод Ньютона работает как метод простой итерации.

Для расширенной системы, как уже говорилось, α выбирается равным единице. Начальные значения ξ_i можно выбрать произвольными. Пусть они будут такими же как в предыдущем случае.

Таблица 2: Концентрации веществ на соответствующей итерации метода Ньютона, записанного в форме (2).

	OH-	HCO_3^-	$CaCO_3$	H ₂ O	CO_2	H^{+}	Ca ²⁺
1	0	0	1	1	1	0	0
2	0.7	1.9	0.3	0.8	0.5	1.0	1.0
4	$6.0 \cdot 10^{-9}$	1.7	3.6	4234.8	2.3	$7 \cdot 10^{-3}$	2.2
8	$2.6 \cdot 10^{-9}$	$2.6 \cdot 10^{-1}$	$8.7 \cdot 10^{-1}$	78.1	$8.7 \cdot 10^{-1}$	$3.1 \cdot 10^{-4}$	$1.5 \cdot 10^{-1}$
12	$7.6 \cdot 10^{-10}$	$8.6 \cdot 10^{-2}$	$9.6 \cdot 10^{-1}$	2.1	$9.6 \cdot 10^{-1}$	$2.7 \cdot 10^{-5}$	$4.3 \cdot 10^{-2}$
16	$5.9 \cdot 10^{-10}$	$6.7 \cdot 10^{-2}$	$9.7 \cdot 10^{-1}$	$9.7 \cdot 10^{-1}$	$9.7 \cdot 10^{-1}$	$1.6 \cdot 10^{-5}$	$3.4 \cdot 10^{-2}$

И для исходной системы, и для расширенной метод Ньютона сходится к одному и тому же значению. При этом, в случае расширенной системы требуется меньшее количество итераций.

3.2 Применение модуля в симуляторе

Разработанный алгоритм был включён в симулятор и использован для моделирования многофазных фильтрационных течений с химическими реакциями.

Одним из расчётных сценариев стала следующая задача. В ней рассматривается вытеснение углекислым газом воды из пористой области, скелет которой составляет углекислый кальций.

Геометрия задачи такова

Имеется область длины L=500 м. Поперечное сечение области $S=10\times 100$ м². Пунктирной линией схематично показаны поры скелета, занятые водой. На концах области находятся скважины: слева — нагнетающая (inj), справа — добывающая (prod).

В области присутствуют две подвижные фазы: газовая и водная. Предполагается следующее распределение компонентов по фазам:

Водная фаза: H_2O , CO_2 , OH^- , HCO_3^- , H^+ , Ca^{2+} ,

Газовая фаза: CO_2 .

Кроме того, существует только одна неподвижная фаза, описывающая скелет и состоящая из углекислого кальция CaCO₃.

При таком подходе пористость является производным параметром — отношением объема подвижных фаз к суммарному объему всех фаз. Для рассматриваемой задачи задаётся начальная пористость $\phi = 0.05$.

Вязкости фаз считаются постоянными.

Вязкость воды — $\mu_W = 4.5 \cdot 10^{-3} \; \Pi \text{a} \cdot \text{c}$, газа — $\mu_G = 2.09 \cdot 10^{-5} \; \Pi \text{a} \cdot \text{c}$.

Относительные фазовые проницаемости задаются простым степенным законом

$$k_{\alpha} = s_{\alpha}^2$$

где s_{α} — насыщенность подвижной фазы.

Начальная температура в области равна $20^{\circ}C$, начальное давление — 100 атмосфер. Хотя моделирование проводилось в неизотермическом режиме, температура в области остаётся практически постоянной, т.е. течение можно считать изотермическим.

Нагнетающая скважина закачивает в область углекислый газ с постоянным расходом 10^4 м³/сут (на поверхности, при 1 атмосфере), который постепенно вытесняет из области воду и частично растворяется в ней. Перенос жидкости и газа сопровождается химическими реакциями, описанными в предыдущих пунктах, в результате чего скелет растворяется, образуя ионы, которые вымываются из области. На рисунке 2 представлен график пористости в области в момент времени t=70 дней. Видно, что часть скелета растворилась, образовав дополнительный поровый объем.

Рис. 2: Пористость в различных участках области

Значительная часть газа вступает в реакцию со скелетом. Это хорошо

заметно на рисунке 3, на котором приведена газонасыщенность в расчете с включенными реакциями (красный график) и без них (синий график). При этом снижается и давление в области, что показано на рисунке 4.

Рис. 3: Газонасыщенность в области (с включенными реакциями и без)

Рис. 4: Давление в области (с включенными реакциями и без)

4 Выводы

Предложенный метод Ньютона для расширенной системы уравнений равновесных химических реакций позволяет получать решения с произвольными начальными значениями глубин реакции, а также не требует корректировки длины шага.

Модуль равновесных химических реакций был встроен в программный комплекс лаборатории флюидодинамики и сейсмоакустики МФТИ для моделирования многофазных многокомпонентных течений и протестирови на задаче закачки углекислого газа в водоносный пласт.

В будущем планируется объединить модуль расчета химического и фазового равновесия в единый блок.

Список литературы

- [1] Шевченко А. В., Цыбулин И. В., Скалько Ю. И. Моделирование процессов фильтрации в коллекторах с переменной пористостью // Труды МФТИ, 2015.— Т. 7, № 2(26).— С. 60–69.
- [2] Ahusborde E., Kern M., Vostrikov V. Numerical simulation of two-phase multicomponent flow with reactive transport in porous media: application to geological sequestration of CO_2 // ESAIM: Proceedings and surveys, $2015.-\mathrm{V}.~50.-\mathrm{Pp}.~21–39.$
- [3] Kалиткин H. H., Aльшина E.A. Численные методы: в 2 кн. Кн. 1. Численный анализ. М.: Издательский центр «Академия», 2013. 304 с.