

LYCÉE LA MARTINIÈRE MONPLAISIR LYON

SCIENCES INDUSTRIELLES POUR L'INGÉNIEUR

CLASSE PRÉPARATOIRE M.P.S.I.

ANNÉE 2021 - 2022

C1 : Performances statiques et cinématiques des systèmes composés de chaine de solides

TD 11 - Performances cinématiques des systèmes : détermination des lois d'entrée-sortie (C5-1)

1 Fevrier 2022

Compétences

- Analyser
 - o Associer les fonctions aux constituants.
- Modéslier
 - Vérifier la cohérence du modèle choisi en confrontant les résultats analytiques et/ou numériques aux résultats expérimentaux.
- Résoudre
 - o Déterminer les relations entre les grandeurs géométriques ou cinématiques.
 - Mener une simulation numérique.

Exercice 1 : Modélisation d'un pantographe de TGV

Source: EPITA 2014

1 Présentation

Le pantographe est un système liant la caténaire (câble électrique), assurant l'alimentation en électricité de la rame (motrice), au circuit électrique du train.

Il est essentiellement constitué d'un archet (figure 1(b)), frottant sur la caténaire, articulé autour de deux bras inférieur et supérieur et de deux bielles. La mise en mouvement du pantographe et la maintien de l'archet sur la caténaire est assurée par un coussin pneumatique et d'une came (non représentée).

Ce système a permis de répondre à un ensemble d'exigences rassemblées au sein d'un cahier des charges dont un extrait est fourni figure 2 sous forme d'un diagramme d'exigences.

2 Déploiement du pantographe

Objectif: Modéliser le pantographe afin de valider les exigences 111 et 122.

La modélisation et le paramétrage du pantographe sont donnés par la figure 3.

On considère que le point A est le point le plus haut de la motrice.

(b) Description d'un pantographe

FIGURE 1

FIGURE 2 – Diagramme d'exigences extrait du cahier des charges du système pantographe

- Q 1 : Peut-on considérer que le pantographe se comporte comme un système plan? Justifier.
- Q 2 : Réaliser le graphe des liaisons associé à la modélisation du pantographe.
- Q 3 : Réaliser les figures géométrales (figures planes de projection) associées aux paramètres angulaires des quatre liaisons pivot.
 - Q 4 : Écrire la fermeture géométrique entre les points A, E et C en projection selon \vec{y}_0 .
 - Q 5 : En déduire la relation scalaire qui lie les paramètres l, θ_1 et θ_2 , et les constantes du système.
 - **Q** 6 : Déterminer la relation entre les paramètres θ_2 et θ_2' en fonction de α .
 - Q7: Écrire la fermeture géométrique en passant par les points A, C, D et B.
 - **Q 8 :** En déduire la relation entrée/sortie qui lie le paramètre θ_1 au paramètre θ_2 .

La résolution de l'équation mathématique associée à la loi entrée/sortie du système est difficile à résoudre. Une simulation du comportement du pantographe a été réalisée et a permis de tracer l'évolution de la hauteur *l* en fonction

FIGURE 3 – Paramétrage du modèle associé au pantographe

de l'angle d'entrée θ_1 (figure 4).

Figure 4 – Évolution de la hauteur l en fonction de l'angle θ_1

L'évolution de la norme de la vitesse d'impact archet/caténaire est donnée sur la 5 en fonction du paramètre angulaire θ_1 pour une vitesse d'entrée $\dot{\theta}_1 = 20^\circ/s$.

Q9: Les exigences 111 et 122 sont-elles vérifiées? Justifier.

FIGURE 5 – Évolution de la vitesse d'impact archet/caténaire en fonction de θ_1 pour $\dot{\theta}_1 = 20^{\circ} s$

Exercice 2 : Système de dépose de composant

Source: e3a PSI 2011

1 Présentation

Le système étudié permet de déposer automatiquement des composants électroniques sur un circuit. On s'intéresse ici à la modélisation d'un seul axe (selon la direction notée \vec{y}_0) actionné par un moteur électrique et utilisant un mécanisme de transformation de mouvement "*vis-écrou*".

Hypothèses:

- le référentiel associé au repère $R_0 = (O_0, \vec{x}_0, \vec{y}_0, \vec{z}_0)$ est supposé galiléen;
- les solides seront supposés indéformables;
- la position de G_3 est définie par $\overrightarrow{O_0G_3} = y \cdot \overrightarrow{y}_0 + z \cdot \overrightarrow{z}_0$
- les liaisons sont supposées parfaites (sans jeu ni frottement).
- Les axes $(O_1, \vec{y}_0) = (O_0, \vec{y}_0)$ sont les axes de la liaison pivot entre S_0 et S_1 et de la liaison hélicoïdale entre S_2 et S_1 .
- Le point A est le centre de la liaison sphère cylindre entre S_2 et S_3 .
- On donne $\overrightarrow{AO_1} = H\overrightarrow{z}_0$.

- *S*₀ : poutre transversale considérée comme fixe par rapport au bâti;
- *S*₁ : vis à billes (hélice à droite) et arbre moteur;
- *S*₂ : écrou de la vis à billes (inertie négligeable) ;
- S_3 : chariot supportant la tête de dépose (masse M_3);

Données numériques associées au système :

- Pas de la vis à billes : p = 20mm.
- Diamètre de la vis à billes : D = 25mm.

On pourra noter le torseur cinématique associé à la liaison entre les solides S_i et S_j par :

$$\left\{\mathcal{V}_{\left(S_{i}/S_{j}\right)}\right\} = \left\{\begin{array}{cc} p_{ij} & u_{ij} \\ q_{ij} & v_{ij} \\ r_{ij} & w_{ij} \end{array}\right\}_{R_{0}}$$

Objectif 1:

L'objectif de cette étude est de relier les grandeurs liées à l'actionneur du système (moteur avec une vitesse de rotation de S_1/S_0 : $\overrightarrow{\Omega}(S_1/R_0) = \dot{\theta} \cdot \overrightarrow{y}_0$. à celles liées à l'effecteur (tête de dépose S_3 : $\overrightarrow{V}(G_3 \in S_3/R_0) \cdot \overrightarrow{y}_0 = \dot{y}$).

2 Modélisation du système

- Q 10 : Tracer le graphe de liaisons du système
- Q 11 : Exprimer les torseurs cinématiques de chaque liaison en faisant apparaître leur lieu d'invariance.
- Q 12: Exprimer la fermeture cinématique et choisir un point pour l'exprimer.
- Q 13: Déplacer tous les torseurs au même point choisi précédemment.
- Q 14 : Écrire les équations qui découlent de la fermeture cinématique
- Q 15: Résoudre ce système d'équations et déterminer la loi d'entrée sortie

Q 16: Déterminer la vitesse de rotation du moteur en tour/min pour respecter le cahier des charges.

Exercice 3 : Transmission mécanique du système exosquelette : Joint Cardan

Source: CCS PSI 2010

1 Présentation

Le support de cette étude est une orthèse portable (figure 6), de type exosquelette (squelette externe), qui contribue, entre autres applications, au développement de la tonicité musculaire de l'épaule et du bras.

(a) Orthèse d'épaule

(b) Diagramme des exigences partiel de l'orthèse portable exosquelette

FIGURE 6 - Présentation du support d'étude

2 Étude de la chaine d'énergie d'une articulation

La figure 7(a) donne une représentation tridimensionnelle de la transmission utilisée. Le schéma de principe proposé en figure 7(b) peut se décomposer en quatre sous-ensembles distincts :

- l'axe du moteur est relié par l'intermédiaire de deux joints de Cardan et d'une tige cylindrique intermédiaire I à l'axe 24 d'une petite roue dentée;
- par un système de courroie crantée 25, la petite roue dentée entraîne une grande roue dentée fixée sur l'axe 16 du dispositif hélicoïdal;
- le dispositif hélicoïdal assure la transformation du mouvement de rotation de l'axe 16 en un mouvement de translation du câble 4;

• le câble 4 par l'intermédiaire de plusieurs poulies entraîne en rotation l'axe que l'on souhaite commander.

FIGURE 7 – Représentation de la transmission

On s'intéresse à la transmission du mouvement de rotation entre l'axe du moteur et l'axe 24 de la petite roue dentée par l'intermédiaire des deux joints de Cardan. Il est donc nécessaire de déterminer la relation cinématique d'entrée-sortie dans un seul joint de Cardan dont le schéma cinématique est donné sur la figure 8 avec le paramétrage suivant imposé :

- L'arbre d'entrée E est en liaison pivot d'axe (O_E, \vec{y}_E) avec le bâti (S_0) fixe associé au repère $R_0 = (O_E, \vec{x}_0, \vec{y}_0, \vec{z}_0)$ avec $\theta_E = (\vec{x}_0, \vec{x}_0) = (\vec{z}_0, \vec{z}_E)$.
- L'arbre de sortie S est en liaison pivot d'axe (O_S, \vec{y}_S) avec le bâti (S_0) fixe associé au repère $R_0 * = (O_S, \vec{x}_0 *, \vec{y}_0 *, \vec{z}_0)$ avec $\theta_S = (\vec{x}_0 *, \vec{x}_S) = (\vec{z}_0 *, \vec{z}_S)$.
- On note φ l'angle constant que forment les axes des deux arbres qui sont reliés par le joint de Cardan avec $\varphi = (\vec{x}_0, \vec{x}_0*) = (\vec{y}_0, \vec{y}_0*)$

Le joint cardan se compose:

- d'une fourchette FE lié à l'arbre d'entrée E d'axe $(O_E, \overrightarrow{y}_E)$ disposant de deux alésages d'axe commun $(I, \overrightarrow{z}_E)$;
- d'une fourchette **FS** lié à l'arbre de sortie **S** d'axe (O_S, \vec{y}_S) disposant de deux alésages d'axe commun (I, \vec{x}_S) ;
- d'un croisillon C, en liaisons pivots d'axes (I, \vec{z}_E) et (I, \vec{x}_S) respectivement avec les fourchettes FE et FS.
- Q 17 : Construire le graphe de liaisons du système.
- Q 18: Représenter les figures planes de projection.
- Q 19 : Par construction, les deux axes du croisillon sont orthogonaux : après avoir identifié les deux directions de ces axes, écrire, en utilisant cette propriété, une équation liant les deux paramètres angulaires θ_E , θ_S et l'angle constant φ .

Q 20 : En déduire la relation exprimant la vitesse angulaire de sortie $\omega_S = \dot{\theta}_S$ en fonction de la vitesse angulaire d'entrée $\omega_E = \dot{\theta}_E$ et de l'angle φ . Tracer l'allure de la vitesse de rotation ω_S en fonction du temps, dans le cas où la vitesse ω_E est constante; on précisera les valeurs minimale et maximale de ω_S au cours du temps en fonction de ω_E et φ .

FIGURE 8 - Schéma cinématique d'un joint cardan

Dans la transmission étudiée, les deux joints de Cardan sont reliés par une tige cylindrique intermédiaire I selon la géométrie de la figure 9. Les axes du moteur et de la petite roue dentée sont parallèles, de sorte que l'axe de la tige cylindrique I soit contenu dans le plan caractérisé par les deux axes précédents, et forme un angle φ avec chacun de ces axes.

Remarque 1:

on remarque que, dans cette configuration, les deux cardans sont placés de manière symétrique, les deux arbres de sortie des cardans simples étant reliés, l'arbre d'entrée du 1^{er} cardan servant d'entrée globale et l'arbre d'entrée du 2^{ème} cardan de sortie globale de ce système à double cardan.

Q 21 : À l'aide des résultats de la question précédente, exprimer le rapport des vitesses angulaires :

- ω_I/ω_M , où $\omega_I = \dot{\theta}_I$ et $\omega_M = \dot{\theta}_M$ sont respectivement les vitesses angulaires de la tige intermédiaire I et du moteur;
- ω_I/ω_P , où $\omega_P = \dot{\theta}_P$ est la vitesse angulaire de la petite roue dentée liée à l'axe 24.

Q 22 : En déduire la relation entre les vitesses ω_P et ω_M . Conclure sur l'intérêt d'employer deux joints de Cardan dans cette configuration spécifique plutôt qu'un seul, et caractériser la propriété ainsi réalisée par les deux joints de Cardan.

FIGURE 9 – Disposition des deux joints de Cardan dans la transmission étudiée