



### CSC 211 - Digital Logic Design عال ـ تصميم المنطق الرقمي 211

### First Term - 1439/1440 Lecture #8

Dr. Hazem Ibrahim Shehata

Assistant Professor

College of Computing and Information Technology

### Administrivia

### >Midterm #1:

- Exam/Solution is available on the website.
- Marks were posted to the website.

### >ILMS:

- Will replace the website.
- Please contact Mr. Nayaar to activate your accounts.

Website: <a href="http://hshehata.github.io/courses/su/cs211">http://hshehata.github.io/courses/su/cs211</a>







Chapter 4: Boolean Algebra ... (... Continuing ...)

DR. HAZEM SHEHATA CS 211 - DIGITAL LOGIC DESIGN 3

### Karnaugh Map

### >Purpose:

- Systematic method for simplifying Boolean expressions.
- Produce simplest SOP/POS expression → minimum SOP/POS.
- Suitable for expressions containing 5 variables at most!

### > Properties:

- Array of cells arranged in a way so simplification becomes a matter of grouping these cells!
- Each cell represents one row in truth table.
  - Number of cells =  $2^n$  (where n is the number of variables).







| 0                       | 1                                                  |
|-------------------------|----------------------------------------------------|
| $\bar{A}\bar{B}\bar{C}$ | $\bar{A}\bar{B}C$                                  |
| ĀBĒ                     | ĀBC                                                |
| $AB\overline{C}$        | ABC                                                |
| $Aar{B}ar{C}$           | $A\overline{B}C$                                   |
|                         | $\overline{ABC}$ $\overline{ABC}$ $AB\overline{C}$ |

| AB $CL$ | 00                 | 01                | 11                | 10                                      |
|---------|--------------------|-------------------|-------------------|-----------------------------------------|
| 00      | ĀĒCD               | ĀĒŪ               | ĀĒCD              | $\overline{A}\overline{B}C\overline{D}$ |
| 01      | ĀBCD               | ĀBĒD              | ĀBCD              | $\overline{A}BC\overline{D}$            |
| 11      | ABCD               | ABCD              | ABCD              | $ABCar{D}$                              |
| 10      | $Aar{B}ar{C}ar{D}$ | $A\overline{BCD}$ | $A\overline{B}CD$ | $A\overline{B}C\overline{D}$            |

2-Variable (A,B)

3-Variable (A,B,C)

4-Variable (A,B,C,D)

### 2-, 3-, and 4-Variable Karnaugh Maps

# Cell Adjacency

- Cells in a Karnaugh map are arranged so that there is only a single-variable change between adjacent cells.
  - Cells that differ by 1 variable are adjacent.
    - Example: 0011 & 0111, 0100 & 0110
  - Cells with values that differ by 2<sup>+</sup> variables are not adjacent.
    - Example: 1101 & 0111





- ➤ Goal: Simplify a SOP expression (standard or non-standard) to its minimum form → Minimum SOP!
  - Minimum SOP expression contains the fewest possible product terms with the fewest possible variables per term!!

### ➤ Method:

- 1. Map SOP expression on a Karnaugh map.
- 2. Combine the 1's on the map into maximum groups.
- 3. Determine minimum product term for each group, and combine minimum product terms to form a minimum SOP.





- Map SOP
   expression on a
   Karnaugh map.
  - Determine binary values of product terms.
  - Place 1's in corresponding cells.

**Example (1):** Standard-SOP → K-Map

 $^{\circ}X = \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + AB\bar{C} + A\bar{B}\bar{C}$ 





- 1. Map SOP expression on a Karnaugh map.
  - Determine binary values of product terms.
  - Place 1's in corresponding cells.

**Example (1):** Non-Standard-SOP → K-Map





- 2. Combine the 1's into max. groups.
  - Each group contains  $2^x$  adjacent cells.
  - Every 1 must belong to at least 1 group.

### **Examples:**









3. Determine minimum product terms (1 term per group) and combine them to form a minimum SOP.











# Mapping Directly from a Truth Table

 The 1's in the output column are mapped directly into the cells corresponding to the values of the associated input variable combinations.

### **Example:** Truth Table → K-Map

$$X = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C} + AB\overline{C} + ABC$$

| Inputs | Output | AB $C$ $0$ $1$                                                                                     |
|--------|--------|----------------------------------------------------------------------------------------------------|
| A B C  | X      |                                                                                                    |
| 0 0 0  | 1      |                                                                                                    |
| 0 0 1  | 0      | 01                                                                                                 |
| 0 1 0  | 0      |                                                                                                    |
| 0 1 1  | 0      | $11 \left[ \begin{array}{c c} 1 \end{array} \right] \left[ \begin{array}{c} 1 \end{array} \right]$ |
| 1 0 0  | 1      |                                                                                                    |
| 1 0 1  | 0      | 10 1                                                                                               |
| 1 1 0  | 1      |                                                                                                    |
| 1 1 1  | 1      |                                                                                                    |



# "Don't Care" Conditions

- If some input combinations are not allowed, we mark their corresponding output value by X's.
- "X" means we "don't care" about the output value in this case, and hence it can be set to 0 or 1.

### **Example:**

| Inputs | Output |
|--------|--------|
| ABCD   | Y      |
| 0000   | 0      |
| 0001   | 0      |
| 0010   | 0      |
| 0011   | 1      |
| 0100   | 1      |
| 0101   | 0      |
| 0110   | 0      |
| 0111   | 1      |
| 1000   | 0      |
| 1001   | 0      |
| 1010   | X      |
| 1011   | X      |
| 1100   | X      |
| 1101   | X      |
| 1110   | X      |
| 1111   | X      |

#### Without Don't cares

$$Y = \overline{A}B\overline{C}\overline{D} + \overline{A}CD$$

$$AB = 00 \qquad 01 \qquad 10$$

$$00 \qquad 1 \qquad 1$$

$$11 \qquad X \qquad X \qquad X$$

$$10 \qquad Y = B\overline{C}\overline{D} + CD$$

With Don't cares



# POS Minimization Using Karnaugh Maps

- ➤ Goal: Simplify a POS expression (standard or non-standard) to its minimum form → Minimum POS!
  - Minimum POS expression contains the fewest possible product terms with the fewest possible variables per term!!

### ➤ Method:

- 1. Map POS expression on a Karnaugh map.
- 2. Combine the 0's on the map into maximum groups.
- 3. Determine minimum sum term for each group, and combine minimum sum terms to form a minimum POS.





- Map POS
   expression on a
   Karnaugh map.
  - Determine binary values of sum terms.
  - Place 0's in corresponding cells.

**Example:** POS → K-Map

 $^{\circ} X = (A + B + C)(A + B + \overline{C})(\overline{A} + B + \overline{C})$ 





- 2. Combine the 0's into max. groups.
  - Each group contains  $2^x$  adjacent cells.
  - Every 0 must belong to at least 1 group.

### **Example:**

$$^{\circ}X = (A + B + C)(A + B + \bar{C})(\bar{A} + B + \bar{C})$$





3. Determine minimum sum terms (1 term per group) and combine them to form a minimum POS.

### **Example:**





# Conversion: POS → SOP Using Karnaugh Maps

 After placing the 0's in the map, fill the rest of the cells with 1's and follow the steps to construct minimum SOP from K-maps.



$$^{\circ}X = (A+B+C)(A+B+\bar{C})(\bar{A}+B+\bar{C})$$

$$\rightarrow X = (A+B)(B+\bar{C})$$

$$\rightarrow X = B + A\bar{C}$$





# Reading Material

- Floyd, Chapter 4:
  - Pages 199 212



