12.12 Applications of Taylor Polynomials

Two applications of Taylor polynomials are to approximate functions and use them in physics.

Approximating Functions by Polynomials

In section 12.10, we introduced the notion for $T_n(x)$ for the *n*th partial sum of this series. Since f is the sum of its Taylor series, we know that $T_n(x) \to \infty$ as $n \to \infty$ so T_n can be used as an approximation to f: $f(x) \approx T_n(x)$.

When using a Taylor polynomial T_n to approximate a function f, we have to ask the questions: How good an approximation is it? How large should we take n to be in order to achieve a desired accuracy? To answer these questions we need to look at the absolute value of the remainder:

$$|R_n(x)| = |f(x) - T_n(x)|$$

There are three possible methods for estimating the size of the error:

- 1. If a graphing device is available, we can use it to graph $|R_n(x)|$ and thereby graphing the error.
- 2. If the series happens to be an alternating series, we can use the Alternating Series Estimation Theorem.
- 3. In all cases we can use Taylor's Inequality, which says that if $|f^{(n+1)}(x)| \le M$, then

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$

Example 12.12.1.

- (a) Approximate the function $f(x) = \sqrt[3]{x}$ by a Taylor polynomial of degree 2 at a = 8.
- (b) How accurate is this approximation when $7 \le x \le 9$? Solution.

(a)
$$f(x) = \sqrt[3]{x} = x^{1/3} \qquad f(8) = 2$$

$$f'(x) = \frac{1}{3}x^{-2/3} \qquad f'(8) = \frac{1}{12}$$

$$f''(x) = -\frac{2}{9}x^{-5/3} \qquad f'(8) = -\frac{1}{144}$$

$$f'''(x) = \frac{10}{27}x^{-8/3}$$

Thus, the second-degree Taylor polynomial is

$$T_2(x) = f(8) + \frac{f'(8)}{1!}(x-8) + \frac{f'(8)}{2!}(x-8)^2$$
$$= 2 + \frac{1}{12}(x-8) - \frac{1}{288}(x-8)^2$$

The desired approximation is

$$\sqrt[3]{x} \approx T_2(x) = 2 + \frac{1}{12}(x-8) - \frac{1}{288}(x-8)^2$$

(b) The Taylor series is not alternating when x < 8, so we can't use the Alternating Series Estimation Theorem, but we can use Taylor's Inequality with n = 2 and a = 8:

$$|R_2(x)| \le \frac{M}{3!}|x - 8|^3$$

where $|f'''(x)| \leq M$. Because $x \geq 7$, we have $x^{8/3} \geq 7^{8/3}$ and so

$$f'''(x) = \frac{10}{27} \cdot \frac{1}{x^{8/3}} \le \frac{10}{27} \cdot \frac{1}{7^{8/3}} < 0.0021$$

Therefore, we can take M=0.0021. Also $7 \le x \le 9$ so $-1 \le x-8 \le 1$ and $|x-8| \le 1$. Taylor's inequality gives

$$|R_2(x)| \le \frac{0.0021}{3!} \cdot 1^3 = \frac{0.0021}{6} \le 0.0004$$

Thus, if $7 \le x \le 9$, the approximation in part (a) is accurate to within 0.0004.