Stoat: Guided, Stochastic Modelbased GUI Testing of Android Apps

Ting Su, Guozhu Meng, Yuting Chen, Ke Wu, Weiming Yang, Yao Yao, Geguang Pu, Yang Liu, Zhendong Su

Mobile Apps (Android)

Ensuring app quality is *challenging*

Existing Mobile App Testing Techniques

Approach	Tools	
Random Testing/Fuzzing	Google Monkey, Dynodroid[FSE'13]	
Symbolic Execution	ACTeve[FSE'12], JPF-Android[SSEN'12]	
Evolutionary (Genetic) Algorithm	Evodroid[FSE'14], Sapienz[ISSTA'16]	
Model-based Testing (MBT)	GUIRipper[ASE'12], ORBIT[FASE'13], A3E[OOPSLA'13],	
	SwiftHand[OOPSLA'13], PUMA[MobiSys'14],	
	MobiGuitar[IEEE Software'15], AMOLA [ASE'16], DroidBot [ICSE'17 –tool]	
Other Approaches	MonkeyLab[MSR'15], CrashScope[ICST'16],	
	TrimDroid[ICSE'16], EHBDroid [ASE'17]	

Our Approach --- Stoat

- Stoat (<u>Sto</u>chastic model <u>App Tester</u>)
 - A guided, stochastic model-based GUI testing approach
 - A *fully-automatic* tool for testing/fuzzing Android apps
- Given an app as input,
 - 1. Model Construction
 - Use dynamic/static analysis to learn a stochastic model
 - 2. Test Generation and Optimization
 - Adopt Gibbs sampling to iteratively mutate/refine the model
 - Validate apps with various user/system-level events

Evaluation & Effectiveness

- Subjects
 - 93 benchmark apps

Outperform existing techniques

17~31% higher code coverage

3X more unique crashes

Evaluation & Effectiveness

- Subjects
 - 93 benchmark apps

- 1661 Google Play apps
- Contribute to real-world apps

ID	Exception Type	Number
1	NullPointerException	1226
2	Windows Leaked Exception	255
3	ActivityNotFoundException	191
4	SQLite Related Exception	71
5	IllegalStateException	47
6	IllegalArgumentException	37
7	RuntimeException	21
8	ClassCastException	9
9	UnsatisfiedLinkError	8
10	WindowManager\$BadTokenException	4
11	Other Exceptions	233

1 bug

2 bugs

1 bug

2110 unique previously-unknown crashes from 691 apps

Contribute to the apps with *billions of users*

Evaluation & Effectiveness

- Subjects
 - 93 benchmark apps
 - 1661 Google Play apps
 - 2104 F-droid apps (total 4560 versions)

- Effective bug detection
 - Detected 3535 unique app crashes
 - Categorized into 75 types of errors

Technical Innovation

Key Technique

- Learn a behaviour model for an app
- Sample tests to optimize test generation
- Enforce various user/system interactions

Model learning

Model-based testing

https://youtu.be/v4UkJgdcWDQ
(or https://v.youku.com/v_show/id_XMzA0Nzc4MTcyNA)

https://youtu.be/Xk7A7wczLj0
(or https://v.youku.com/v show/id XMzA0Nzc4NjYxMg)

Workflow of Stoat

Phase 1. Model Construction

Test Optimization Goal

- ✓ Statement coverage
- ✓ Model coverage
- ✓ Event sequence diversity
- ✓ Inject 113+ user/system events

More details: https://tingsu.github.io/files/nasac2017-stoat.pdf

Features & Usability

- ✓ End-to-end, server-client distributed testing;
- ✓ Support *binary* and *open-source* apps on *real devices* and *emulators*
- ✓ Generate model/class/*method*/*line* coverage reports; Bug-triggering tests/screenshots

Summary

- Tool: Stoat (<u>Sto</u>chastic model <u>App Tester</u>)
 - A *Guided, Stochastic* model-based GUI testing approach
 - Tested 6000+ APKs, detected 5800+ fatal crashes
- Goal
 - Thoroughly test various usage scenarios of an app;
 - Enforce environmental interplay
- Publication
 - Guided, Stochastic Model-Based GUI Testing of Android Apps (ESEC/FSE'17)
 - FSMdroid: Guided GUI Testing of Android Apps (First Prize of ACM SRC@ICSE 2016)
 - Large-Scale Analysis of Framework-Specific Exceptions in Android Apps (*ACM SIGSOFT Distinguished Paper Award*@ICSE 2018)
- https://tingsu.github.io/files/stoat.html