- (1) p を正の定数とし,点 F(0,p) を焦点にもち,y=-p を準線とする放物線を C とする.C 上の点 $Q(x_0,y_0)$ (ただし $x_0\neq 0$)を考え,点 Q と F を通る直線を l_1 ,点 Q を通り放物線 C の主軸に平行な直線を l_2 とする.このとき点 Q における C の接線 l は, l_1 と l_2 のなす角を 2 等分することを示せ.
- (2) 放物線 $y=x^2-2\sqrt{2}\,x+4$ 上の点 $R(a,\,b)\;(a>\sqrt{2})$ における接線と直線 x=a のなす角を $\theta\;(0^\circ<\theta<90^\circ)$ とする.点 R を通り傾きが $\frac{1-\tan^2\theta}{2\tan\theta}$ である直線は a によらない定点を通ることを示し,その定点の座標を求めよ.