Dennis G. Zill • Warren S. Wright

Cálculo de varias Variables

Cuarta edición

Ejercicios 15.1, página 807

1.	123 V Z			$\frac{125}{4}(4-\sqrt{2})$:	123
		6	*	6	2
			24	TT.	- 0

3. 3; 6;
$$3\sqrt{5}$$
 5. 0
7. -1; $\frac{1}{2}(\pi - 2)$; $\frac{1}{8}\pi^2$; $\frac{1}{8}\pi^2\sqrt{2}$

21.
$$-\frac{64}{3}$$
 23. $-\frac{8}{3}$ 25. 6π 27. $\frac{123}{2}$

33. Sobre cada curva la integral de línea tiene el valor
$$\frac{208}{3}$$
.
35. $k\pi$

Ejercicios 15.2, página 813

7. b)

13. a) 15.
$$-\frac{19}{8}$$

17. 16 19.
$$9\pi^2 + 6\pi$$

31.
$$\nabla f = (3x - 6y)\mathbf{i} + (12y - 6x)\mathbf{j}$$

33.
$$\nabla f = \tan^{-1} yz\mathbf{i} + \frac{xz}{1 + y^2z^2}\mathbf{j} + \frac{xy}{1 + y^2z^2}\mathbf{k}$$

35.
$$\nabla f = -e^{-y^2}\mathbf{i} + (1 + 2xye^{-y^2})\mathbf{j} + \mathbf{k}$$

41.
$$\phi(x, y) = y + \cos y + \sin x$$
 43. $\phi(x, y, z) = x + y^2 - 4z^3$

Ejercicios 15.3, página 823

5. 3 7. 330
9. 1096 11.
$$\phi = x^4y^3 + 3x + y + K$$

13. no es un campo conservativo 15.
$$\phi = \frac{1}{4}x^4 + xy + \frac{1}{4}y^4 + K$$

17.
$$\phi(x, y, z) = x^2 + y^3 - yz + K$$
 19. $3 + e^{-1}$

21.
$$\frac{315}{4}$$

23.
$$\frac{1}{4}(e - e^{-1})$$

27.
$$\frac{15}{2}\pi$$

Revisión del capítulo 14, página 796

B. 1.
$$32y^3 - 8y^5 + 5y \ln(y^2 + 1) - 5y \ln 5$$

5.
$$f(x, 4) - f(x, 2)$$

7.
$$\int_0^4 \int_{x/2}^{\sqrt{x}} f(x, y) \, dy \, dx$$
 9. $(\sqrt{2}, 2\pi/3, \sqrt{2})$

9.
$$(\sqrt{2}, 2\pi/3, \sqrt{2})$$

11.
$$z = r^2$$
; $\rho = \csc \phi \cot \phi$

C. 1.
$$-3xe^{-4xy} - 5xy + y + c_1(x)$$

3.
$$-y \cos y^2 + y \cos y^4$$
 5. $e^2 - e^{-2} + 4$

5.
$$e^2 - e^{-2} + 4$$

19. $\frac{1}{2}(1-\cos 1)$

7.
$$1 - \sin 1$$

9.
$$\frac{10}{3}$$

11.
$$320\pi$$

13.
$$\frac{37}{60}$$

15.
$$\int_0^{1/\sqrt{2}} \int_{\sqrt{1-x^2}}^{\sqrt{9-x^2}} \frac{1}{x^2 + y^2} \, dy \, dx + \int_{1/\sqrt{2}}^{3/\sqrt{2}} \int_x^{\sqrt{9-x^2}} \frac{1}{x^2 + y^2} \, dy \, dx$$

17.

21.
$$\frac{5}{8}\pi$$

23.
$$\frac{2}{3}\pi(2\sqrt{2}-1)$$

25. a)
$$\int_{0}^{1} \int_{x}^{2x} \sqrt{1 - x^{2}} \, dy \, dx$$
b)
$$\int_{0}^{1} \int_{y/2}^{y} \sqrt{1 - x^{2}} \, dx \, dy + \int_{1}^{2} \int_{y/2}^{1} \sqrt{1 - x^{2}} \, dx \, dy$$
c)
$$\frac{1}{2}$$

27.
$$\frac{41}{1.512}k$$

29.
$$8\pi$$

Ejercicios 15.1, página 807

1.
$$-\frac{125\sqrt{2}}{6}$$
; $\frac{125}{6}(4-\sqrt{2})$; $\frac{125}{2}$

3. 3; 6;
$$3\sqrt{5}$$

7. -1;
$$\frac{1}{2}(\pi - 2)$$
; $\frac{1}{8}\pi^2$; $\frac{1}{8}\pi^2\sqrt{2}$

19.
$$\frac{26}{9}$$

21.
$$-\frac{64}{3}$$

23.
$$-\frac{8}{3}$$

25.
$$6\pi$$

27.
$$\frac{123}{2}$$

33. Sobre cada curva la integral de línea tiene el valor
$$\frac{208}{3}$$
.

35.
$$k \tau$$

Ejercicios 15.2, página 813

3.

 $7. \ b)$

15.
$$-\frac{19}{8}$$

19.
$$9\pi^2 + 6\pi$$

31.
$$\nabla f = (3x - 6y)\mathbf{i} + (12y - 6x)\mathbf{j}$$

33.
$$\nabla f = \tan^{-1} yz\mathbf{i} + \frac{xz}{1 + y^2z^2}\mathbf{j} + \frac{xy}{1 + y^2z^2}\mathbf{k}$$

35.
$$\nabla f = -e^{-y^2}\mathbf{i} + (1 + 2xye^{-y^2})\mathbf{j} + \mathbf{k}$$

39.
$$d$$
)

41.
$$\phi(x, y) = y + \cos y + \sin x$$
 43. $\phi(x, y, z) = x + y^2 - 4z^3$

43.
$$\phi(x \ y \ z) = x + y^2 - 4z$$

Ejercicios 15.3, página 823

1.
$$\frac{16}{3}$$

11.
$$\phi = x^4 v^3 + 3x + v + K$$

13. no es un campo conservativo **15.**
$$\phi = \frac{1}{4}x^4 + xy + \frac{1}{4}y^4 + K$$

17.
$$\phi(x, y, z) = x^2 + y^3 - yz + K$$
 19. $3 + e^{-1}$

23.
$$8 + 2e^3$$

25. 16

27. $\pi - 4$

29. $\phi = (Gm_1m_2)/|\mathbf{r}|$

Ejercicios 15.4, página 829

1. 3

3. 0

5. 75π

7. 48π

11. $\frac{2}{3}$

13.

15. $(b-a) \times (\text{área de la región acotada por } C)$

19. $\frac{3}{9}a^2\pi$

23. $\frac{45}{2}\pi$

25. π

27. $\frac{27}{2}\pi$

29. $\frac{3}{2}\pi$

Ejercicios 15.5, página 837

1.
$$x = u, y = v, z = 4u + 3v - 2$$

3.
$$x = u, y = -\sqrt{1 + u^2 + v^2}, z = v$$

5.
$$\mathbf{r}(u, v) = u\mathbf{i} + v\mathbf{j} + (1 - v^2)\mathbf{k}, -2 \le u \le 2, -3 \le v \le 3$$

7.
$$x^2 + y^2 = 1$$
, cilindro circular

9. $x^2 = y^2 + z^2$, porción de un cono circular

11. dominio del parámetro definido por $0 \le u \le 4, 0 \le v \le \pi/2$

13. dominio del parámetro definido por $0 \le \theta \le 2\pi$, $\pi/2 \le \phi \le \pi$

15.
$$x + \sqrt{3}y = 20$$

17.
$$-6x + 10y + z = 9$$

19.
$$3x + 3y - z = 9$$

21.
$$x + 3y + 2z = 4$$

23.
$$8x + 6x - 5z = 25$$

25.
$$4\sqrt{11}$$

27.
$$\frac{1}{6}\pi(17\sqrt{17}-1)$$

29.
$$2\sqrt{5}\pi + \pi \ln(2 + \sqrt{5})$$

31.
$$x = 2 \operatorname{sen} \phi \operatorname{cos} \theta, y = 2 \operatorname{sen} \phi \operatorname{sen} \theta, z = 2 \operatorname{cos} \phi,$$

 $\pi/3 \le \phi \le \pi, 0 \le \theta \le 2\pi; 12\pi$

33.
$$x = 2 \sin \phi \cos \theta$$
, $y = 2 \sin \phi \sin \theta$, $z = 2 \cos \phi$, $0 \le \phi \le \pi/4$, $0 \le \theta \le 2\pi$; $4\pi(2 - \sqrt{2})$

Ejercicios 15.6, página 844

1.
$$\frac{26}{3}$$

5.
$$972\pi$$

7.
$$\frac{1}{15}(3^{5/2}-2^{7/2}+1)$$

9.
$$9(17^{3/2}-1)$$

11.
$$12\sqrt{14}$$

13.
$$\frac{\sqrt{3}}{12}k$$

17.
$$28\pi$$

19. 8π

21.
$$\frac{5}{2}\pi$$

23. $-8\pi a^3$

25.
$$4\pi kq$$

29. a)
$$(0, 0, \frac{4}{3})$$

27. $(1, \frac{2}{3}, 2)$ **b**) $128\sqrt{2}\pi k$

Ejercicios 15.7, página 849

1.
$$(x - y)\mathbf{i} + (x + y)\mathbf{i}$$
: 2

1.
$$(x - y)\mathbf{i} + (x + y)\mathbf{j}$$
; 2z

3. 0: 4y + 8z

5.
$$(4y^3 - 6xz^2)\mathbf{i} + (2z^3 - 3x^2)\mathbf{k}$$
; $6xy$

7.
$$(3e^{-z} - 8yz)\mathbf{i} - xe^{-z}\mathbf{j}$$
; $e^{-z} + 4z^2 - 3ye^{-z}$

9.
$$(xy^2e^y + 2xye^y + x^3yze^z + x^3ye^z)\mathbf{i} - y^2e^y\mathbf{j} + (-3x^2yze^z - xe^x)\mathbf{k};$$

 $xye^x + ye^x - x^3ze^z$

27.
$$2\mathbf{i} + (1 - 8y)\mathbf{j} + 8z\mathbf{k}$$

37. 6

Ejercicios 15.8, página 855

1.
$$-40\pi$$

5.
$$\frac{3}{2}$$

7. -3

9.
$$-\frac{3}{2}\pi$$

11. π

13.
$$-152\pi$$

15. 112

17. considere la superficie como
$$z = 0$$
; $\frac{81}{4}\pi$

Ejercicios 15.9, página 862

1.
$$\frac{3}{2}$$

3. $\frac{12}{5}a^5\pi$

9.
$$4\pi(b-a)$$

11. 128

13.
$$\frac{1}{2}\pi$$

Revisión del capítulo 15, página 863

A. 1. verdadero

3. falso

5. falso

7. verdadero

11. verdadero

B. 1.
$$\nabla \phi = -\frac{x}{(x^2 + y^2)^{3/2}} \mathbf{i} - \frac{y}{(x^2 + y^2)^{3/2}} \mathbf{j}$$

9. 4x + y - 2z = 0

C. 1.
$$\frac{56}{3}\sqrt{2}\pi^3$$

3. 12

5.
$$2 + \frac{2}{3\pi}$$

7. $\frac{1}{2}\pi^2$

11. 180π

13.
$$\frac{1}{12} (\ln 3) (17^{3/2} - 5^{3/2})$$

15. $6(e^{-3}-1)$

17.
$$-4\pi c$$

19. 0