(19) BUNDESREPUBLIK

Offenlegungsschrift **DE 3521303 A1** 

C 07 D 471/04

C 07 D 403/06

C 07 D 295/04 A 61 K 31/44



DEUTSCHLAND

**DEUTSCHES PATENTAMT**  Aktenzeichen: Anmeldetag:

P 35 21 303.5 13., 6. 85

Offenlegungstag:

31, 10, 85

- 30 Unionspriorität: 22.01.85 GB 8501542
- (7) Anmelder: Farmitalia Carlo Erba S.p.A., Mailand/Milano, IT
- (74) Vertreter: Eitle, W., Dipl.-Ing.; Hoffmann, K., Dipl.-Ing. Dr.rer.nat.; Lehn, W., Dipl.-Ing.; Füchsle, K., Dipl.-Ing.; Hansen, B., Dipl.-Chem. Dr.rer.nat.; Brauns, H., Dipl.-Chem. Dr.rer.nat.; Görg, K., Dipl.-Ing.; Kohlmann, K., Dipl.-Ing., Pat.-Anw.; Nette, A., Rechtsanw., 8000 München
- ② Erfinder:

Scarponi, Ugo, Arese, Mailand/Milano, IT; Cimaschi, Roberto; Castiglione, Roberto de; Verini, Antonietta, Mailand/Milano, IT

(4) 4,5,6,7-Tetrahydroimidazo [4,5- c] pyridinderivate, Verfahren zu deren Herstellung und Arzneimittel, welche diese enthalten

4,5,6,7-Tetrahydroimidazo 4,5-c pyridinderivate der allgemeinen Formel (I)

$$R_1 \xrightarrow{N \atop R_2} 7 \xrightarrow{6} CON \xrightarrow{R_7 \atop R_6} R_5$$
 (I)

worin die Reste R<sub>1</sub> bis R<sub>7</sub> die in der Beschreibung angegebenen Bedeutungen haben. Die neuen Verbindungen haben Antivirus-Eigenschaften. Es werden Arzneimittel, welche die neuen Verbindungen enthalten, beschrieben, sowie auch Verfahren zur Herstellung der neuen Verbindungen.

#### HOFFMANN . EITLE & PARTNER

PATENT- UND RECHTSANWALTE

3521303

PATENTANWALTE DIPL-ING. W. EITLE DR. RER. NAT. K. HOFFMANN DIPL-ING. W. LEHN
DIPL-ING. K. FÜCHSLE DR. RER. NAT. B. HANSEN DR. RER. NAT. H.-A. BRAUNS DIPL-ING. K. GÖRG
DIPL-ING. K. KOHLMANN RECHTSANWALT A. NETTE

42 166 o/wa

- 1 -

FARMITALIA CARLO ERBA S.p.A., MAILAND / ITALIEN

4,5,6,7-Tetrahydroimidazo/4,5-c7pyridinderivate, Verfahren zu deren Herstellung und Arzneimittel, welche diese enthalten

#### PATENTANSPRUCHE

1. 4,5,6,7-Tetrahydroimidazo/4,5-c/pyridinderivat der allgemeinen Formel (I)

 $\begin{array}{c|c}
R_1 & \begin{array}{c}
N & \begin{array}{c}
7 & 6 \\
\hline
\end{array} & \begin{array}{c}
R_7 \\
R_6
\end{array} \\
\end{array}$   $\begin{array}{c}
R_7 \\
R_6
\end{array}$   $\begin{array}{c}
R_7 \\
R_9
\end{array}$   $\begin{array}{c}
R_9 \\
R_9
\end{array}$   $\begin{array}{c}
R_9 \\
R_9
\end{array}$ 

10.

worin bedeuten:

 $R_1$ , gebunden an das Stickstoffatom in der 1- oder 3-Stellung, ein Wasserstoffatom, eine geradlinige oder verzweigte  $C_{1-4}$ -Alkyl- oder  $C_{2-4}$ -Alkenylgruppe oder eine Benzylgruppe, die gewünschtenfalls durch einen oder zwei Substituenten substituiert ist, ausgewählt aus (a)  $C_{1-4}$ -Alkoxy, (b)  $C_{1-4}$ -Alkylthio, (c) Fluor, (d) Chlor, (e) Brom, (f) Trifluormethyl, (g) Nitro und (h) Methylendioxy;

10 R<sub>2</sub>, R<sub>3</sub> und R<sub>4</sub> unabhängig voneinander Wasserstoff, eine lineare oder verzweigte C<sub>1-4</sub>-Alkyl- oder C<sub>2-4</sub>-Alkenylgruppe, eine C<sub>3-7</sub>-Cycloalkylgruppe, eine Phenyl- oder Benzylgruppe, die gewünschtenfalls durch einen oder zwei Substituenten substituiert ist, ausgewählt aus (a) bis (h) gemäss der vorhergehenden Definition, oder wobei R<sub>3</sub> und R<sub>4</sub> zusammen mit dem Kohlenstoffatom, an welches sie gebunden sind, einen C<sub>3-7</sub>-Ring bilden,

R<sub>6</sub> und R<sub>7</sub> unabhängig voneinander Wasserstoff, eine geradlinige oder verzweigte C<sub>1-4</sub>-Alkyl- oder C<sub>2-4</sub>-Alkenylgruppe, eine C<sub>3-7</sub>-Cycloalkylgruppe, eine Phenyl- oder Benzylgruppe, die gewünschtenfalls substituiert ist durch einen oder zwei Substituenten, ausgewählt aus (a) bis (h) gemäss der obigen Definition; eine Adamantyl- oder Adamantanmethylgruppe oder worin R<sub>6</sub> und R<sub>7</sub> zusammen mit dem Stickstoffatom, an welches sie gebunden sind, einen 5-, 6- oder 7-gliedrigen heterocyclischen Ring bilden, der einen oder mehrere Heteroatome, ausgewählt aus O und NR<sub>2</sub>, enthalten kann, worin

R<sub>2</sub> die obige Bedeutung hat, und

R<sub>5</sub> eine Gruppe der Formel -C-R<sub>2</sub>, -C-OR<sub>2</sub>, R<sub>2</sub> oder -C-NH-R<sub>6</sub> darstellt, worin R<sub>2</sub> die vorher angegebe-

ne Bedeutung hat aber keine Phenylgruppe bedeutet, wenn  $R_5$  gleich  $R_2$  ist und Y ein Sauerstoff- oder Schwefelatom bedeutet,

- sowie pharmazeutisch annehmbare Säureadditionssalze davon.
  - 2. Verbindung gemäss Anspruch 1, worin R<sub>1</sub> und R<sub>2</sub> unabhängig voneinander ein Wasserstoffatom oder eine Methyl-, Ethyl-, n-Propyl-, Isopropyl-, n-Butyl-, sek-Butyl- oder Isobutylgruppe bedeuten;

R<sub>3</sub> und R<sub>4</sub> unabhängig voneinander ein Wasserstoffatom oder eine Methyl-, Ethyl-, n-Propyl-, Isopropyl-, n-Butyl-, sek-Butyl-, Isobutyl-, Phenylgruppe (gewünschtenfalls in para-Stellung substituiert durch eine Methoxy- oder Nitrogruppe) oder zusammen einen Cyclohexan- oder Cyclopentanring bedeuten;

25

30

15

20

5

R<sub>5</sub> ein Wasserstoffatom oder eine Methyl-, Ethyl-, n-Propyl-, Isopropyl-, n-Butyl-, sek-Butyl-, Isobutyl-, Benzyl- oder Benzyloxycarbonylgruppe (gewünschtenfalls in para-Stellung substituiert durch eine Methoxy- oder Nitrogruppe), Benzoyl-, Butyryl-, Acetyl-, Propionyl-, Allyloxycarbonyl-, Methoxy-carbonyl-, Ethoxycarbonyl--, Methylaminocarbonyl-,

Ethylaminocarbonyl-, Propylaminocarbonyl-, Methylaminothiocarbonyl-, Ethylaminothiocarbonyl- oder Propylaminothiocarbonylgruppe bedeuten; und

- R<sub>6</sub> und R<sub>7</sub> unabhängig voneinander Adamantyl, Adamantylmethyl, Wasserstoff, Phenyl (gewünschtenfalls durch Fluor, Methoxy oder Trifluormethyl substituiert) bedeuten oder zusammen einen Piperazinring bilden, der substituiert ist durch Phenyl, p-Methoxyphenyl oder p-Chlorophenyl oder einen Morpholinoring bilden.
- 3. Verbindung gemäss Anspruch 1, worin R<sub>1</sub> und R<sub>2</sub> Wasserstoff bedeuten, einer der Reste R<sub>3</sub> und R<sub>4</sub> Ethyl oder Wasserstoff und der andere Wasserstoff bedeuten, R<sub>5</sub> Wasserstoff, Methyl, unsubstituiertes Benzyl oder Benzyloxycarbonyl bedeuten und einer der Reste R<sub>6</sub> und R<sub>7</sub> Adamantyl, Adamantanmethyl, unsubstituiertes Phenyl oder Wasserstoff bedeuten und der andere Rest Wasserstoff bedeutet oder R<sub>6</sub> und R<sub>7</sub> zusammen mit dem Stickstoffatom, an welches sie gebunden sind, einen Piperazinoring bilden, der substituiert ist durch Phenyl, p-Methoxyphenyl oder p-Chlorophenyl.
  - 4. Verbindung gemäss Anspruch 1, gemäss den Beispielen 2 bis 12.
- 5. Verbindung der allgemeinen Formel (I) gemäss Anspruch 1 oder ein pharmazeutisch annehmbares Säureadditionssalz davon für die Verwendung bei der

10

20

25

Behandlung des menschlichen oder tierischen Körpers.

- Verwendung einer Verbindung der allgemeinen Formel
   (I) oder eines Salzes davon, gemäss Anspruch 5,
   als Antivirusmittel.
- 7. Verfahren zur Herstellung einer Verbindung der Formel (I) gemäss Anspruch 1, oder eines pharmazeutisch annehmbaren Säureadditionssalzes davon, dadurch gekennzeichnet, dass man eine Verbindung der allgemeinen Formel (IV) oder ein reaktives Derivat davon

15 
$$R_2 \xrightarrow{N}_{R_3} R_4 \xrightarrow{COOH}_{R_8} (IV)$$

worin R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> und R<sub>4</sub> die in Anspruch 1 angegebenen Bedeutungen haben und R<sub>8</sub> eine geradlinige oder verzweigte C<sub>1-4</sub>-Alkyl- oder C<sub>2-4</sub>-Alkenylgruppe, eine C<sub>3-7</sub>-Cycloalkylgruppe, eine Benzylgruppe, die gewünschtenfalls durch einen oder zwei Substituenten, ausgewählt aus (a) bis (h) gemäss Anspruch 1, substituiert ist, oder eine Gruppe der Formel -COR<sub>2</sub>

bedeuten, worin  $R_2$  die vorher angegebene Bedeutung hat, mit einer Verbindung der allgemeinen Formel (V)

umsetzt, worin R<sub>6</sub> und R<sub>7</sub> die in Anspruch 1 angegebenen Bedeutungen haben, unter Ausbildung einer Verbindung der Formel (I), in welcher R<sub>5</sub> eine geradkettige oder verzweigte C<sub>1-4</sub>-Alkyl- oder C<sub>2-4</sub>-Alkenylgruppe, eine C<sub>3-7</sub>-Cycloalkylgruppe, eine Benzylgruppe, die gewünschtenfalls durch einen oder zwei Substituenten, ausgewählt aus (a) bis (h) gemäss der Definition in Anspruch 1, oder eine Gruppe der Formel -COR<sub>2</sub> bedeutet;

dass man gewünschtenfalls die erhaltene Verbindung der Formel (I), worin R<sub>5</sub> entweder eine Benzylgruppe bedeutet, die gewünschtenfalls durch eine p-Nitro- oder p-Methoxygruppe substituiert ist, oder eine Gruppe der Formel -COR<sub>2</sub> bedeutet, in eine

Verbindung der Formel (I) überführt, in welcher

R<sub>5</sub> ein Wasserstoffatom, eine Gruppe der Formel

-COR<sub>2</sub> oder -C-NHR<sub>2</sub> bedeutet, worin Y die in Anspruch
"Y

1 angegebene Bedeutung hat und R<sub>2</sub> die vorher angegebene Bedeutung hat, indem man die Schutzgruppe entfernt und anschliessend gewünschtenfalls mit einer Verbindung der Formel R<sub>2</sub>COX oder Y=C=N-R<sub>2</sub> umsetzt, worin R<sub>2</sub> und Y die vorher angegebenen Bedeutungen haben und X ein Halogenatom bedeutet; und gewünschtenfalls eine Verbindung der Formel (I), die auf diese Weise erhalten wurde, in ein pharmazeutisch annehmbares Säureadditionssalz überführt.

- 7 -

- 8. Verfahren zur Herstellung einer Verbindung der Formel (I) gemäss Anspruch 1 oder eines pharmazeutisch annehmbaren Säureadditionssalzes davon, dadurch gekennzeichnet, dass man das Verfahren gemäss den Beispielen 2 bis 12 durchführt.
- Arzneimittel, enthaltend als aktiven Bestandteil eine Verbindung der allgemeinen Formel (I) gemäss
   Anspruch 1 oder ein pharmazeutisch annehmbares Säureadditionssalz davon, zusammen mit einem pharmazeutisch annehmbaren Träger oder Verdünnungsmittel.

15

5

20 .

25

30

FARMITALIA CARLO ERBA S.p.A., MAILAND / ITALIEN

4,5,6,7-Tetrahydroimidazo/4,5-c/pyridinderivate, Verfahren zu deren Herstellung und Arzneimittel, welche diese enthalten

Die Erfindung betrifft 4,5,6,7-Tetrahydroimidazo $\sqrt{4}$ ,5- $\sqrt{2}$ -pyridinderivate, Verfahren zu deren Herstellung und Arzneimittel, welche diese enthalten.

Erfindungsgemäss werden 4,5,6,7-Tetrahydroimidazo-/4,5-c7pyridinderivate der allgemeinen Formel (I) zur Verfügung gestellt

worin bedeuten:



 $R_1$ , gebunden an das Stickstoffatom in der 1- oder 3-Stellung, ein Wasserstoffatom, eine geradlinige oder verzweigte  $C_{1-4}$ -Alkyl- oder  $C_{2-4}$ -Alkenylgruppe oder eine Benzylgruppe, die gewünschtenfalls durch einen oder zwei Substituenten substituiert ist, ausgewählt aus (a)  $C_{1-4}$ -Alkoxy, (b)  $C_{1-4}$ -Alkylthio, (c) Fluor, (d) Chlor, (e) Brom, (f) Trifluormethyl, (g) Nitro und (h) Methylendioxy;

 $R_2$ ,  $R_3$  und  $R_4$  unabhängig voneinander Wasserstoff, eine lineare oder verzweigte  $C_{1-4}$ -Alkyl- oder  $C_{2-4}$ -Alkenylgruppe, eine  $C_{3-7}$ -Cycloalkylgruppe, eine Phenyl- oder Benzylgruppe, die gewünschtenfalls durch einen oder zwei Substituenten substituiert ist, ausgewählt aus (a) bis (h) gemäss der vorhergehenden Definition, oder wobei  $R_3$  und  $R_4$  zusammen mit dem Kohlenstoffatom, an welches sie gebunden sind, einen  $C_{3-7}$ -Ring bilden,

 $R_6$  und  $R_7$  unabhängig voneinander Wasserstoff, eine geradlinige oder verzweigte  $C_{1-4}$ -Alkyl- oder  $C_{2-4}$ -Alkenylgruppe, eine  $C_{3-7}$ -Cycloalkylgruppe, eine Phenyl- oder Benzylgruppe, die gewünschtenfalls substituiert ist durch einen oder zwei Substituenten, ausgewählt aus (a) bis (h) gemäss der obigen Definition; eine Adamantyl- oder Adamantanmethylgruppe oder worin  $R_6$  und  $R_7$  zusammen mit dem Stickstoffatom, an welches sie gebunden sind, einen 5-, 6- oder 7-gliedrigen heterocyclischen Ring bilden, der einen oder mehrere Heteroatome, ausgewählt aus 0 und  $NR_2$ , enthalten kann, worin

R, die obige Bedeutung hat, und

R<sub>5</sub> eine Gruppe der Formel -C-R<sub>2</sub>, -C-OR<sub>2</sub>, R<sub>2</sub> oder -C-NH-R<sub>6</sub> darstellt, worin R<sub>2</sub> die vorher angegebe-

ne Bedeutung hat aber keine Phenylgruppe bedeutet, wenn  $R_5$  gleich  $R_2$  ist und Y ein Sauerstoff- oder Schwefelatom bedeutet,

sowie pharmazeutisch annehmbare Säureadditionssalze davon.

Die Konfiguration des Kohlenstoffatoms in der 4- und 6-Stellung (siehe Formel (I)) ist unabhängig R oder S, so dass die Stereochemie des Endproduktes (I) RR, SS, RS oder SR sein kann oder das Endprodukt (I) kann eine Mischung von Diastereoisomeren oder von racemischen Gemischen sein.

- Vorzugsweise bedeuten R<sub>1</sub> und R<sub>2</sub> unabhängig voneinander ein Wasserstoffatom oder eine Methyl-, Ethyl-, n-Propyl-, Isopropyl-, n-Butyl-, sek-Butyl- oder Isobutylgruppe;
- R<sub>3</sub> und R<sub>4</sub> unabhängig voneinander ein Wasserstoffatom oder eine Methyl-, Ethyl-, n-Propyl-, Isopropyl-, n-Butyl-, sek-Butyl-, Isobutyl-, Phenylgruppe (gewünschtenfalls in p-Stellung substituiert durch eine Methoxy-oder Nitrogruppe) oder zusammen einen Cyclohexan- oder
- 30 Cyclopentanring;

- 11 -

R<sub>5</sub> ein Wasserstoffatom oder eine Methyl-, Ethyl-, n-Propyl- Isopropyl-, n-Butyl-, sek-Butyl-, Isobutyl-, Benzyl- oder Benzyloxycarbonylgruppe (gewünschtenfalls in p-Stellung substituiert durch eine Methoxy-oder Nitrogruppe), Benzoyl-, Butyryl-, Acetyl-, Propionyl-, Allyloxycarbonyl-, Methoxycarbonyl-, Ethoxy-carbonyl-, Methylaminocarbonyl-, Ethylaminocarbonyl-, Propylaminocarbonyl-, Methylaminothiocarbonyl-, Ethyl-aminothiocarbonyl oder Propylaminothiocarbonylgruppe; und

R<sub>6</sub> und R<sub>7</sub> bedeuten unabhängig voneinander Adamantyl, Adamantanmethyl, Wasserstoff, Phenyl (gewünschtenfalls durch Fluor, Methoxy oder Trifluormethyl substituiert) oder zusammen einen Piperazinring, der durch Phenyl, p-Methoxyphenyl oder p-Chlorphenyl substituiert ist, oder einen Morpholinoring.

Noch bevorzugter bedeuten R<sub>1</sub> und R<sub>2</sub> Wasserstoff, einer
der Reste R<sub>3</sub> und R<sub>4</sub> bedeutet Ethyl oder Wasserstoff
und der andere der Reste Wasserstoff, R<sub>5</sub> bedeutet Wasserstoff, Methyl, unsubstituiertes Benzyl oder Benzyloxycarbonyl und einer der Reste R<sub>6</sub> und R<sub>7</sub> bedeutet
Adamantyl, Adamantanmethyl, unsubstituiertes Phenyl
oder Wasserstoff und der andere bedeutet Wasserstoff,
oder R<sub>6</sub> und R<sub>7</sub> bilden zusammen mit dem Stickstoffatom,
an welches sie gebunden sind, einen Piperazinoring,
der durch Phenyl, p-Methoxyphenyl oder p-Chlorophenyl
substituiert ist.

30

10

15

Die Erfindung betrifft auch ein Verfahren zur Herstellung einer Verbindung der Formel (I) oder eines phar-

mazeutisch annehmbaren Säureadditionssalzes davon und das Verfahren ist dadurch gekennzeichnet, dass man eine Verbindung der Formel (IV) oder ein reaktives Derivat davon, wie einem reaktiven Ester, gewünschtenfalls durch Umsetzung mit einem Aktivierungsmittel in situ erzeugt,

10 N

worin R<sub>1</sub>, R<sub>2</sub>, R<sub>3</sub> und R<sub>4</sub> die in Anspruch 1 angegebenen Bedeutungen haben und R<sub>8</sub> eine geradlinige oder verzweigte C<sub>1-4</sub>-Alkyl- oder C<sub>2-4</sub>-Alkenylgruppe, eine C<sub>3-7</sub>-Cycloalkylgruppe, eine Benzylgruppe, die gewünschtenfalls durch einen oder zwei Substituenten, ausgewählt aus (a) bis (h) gemäss Anspruch 1, substituiert ist, oder eine Gruppe der Formel -COR<sub>2</sub>

bedeuten, worin  $R_2$  die vorher angegebene Bedeutung hat, mit einer Verbindung der allgemeinen Formel (V)

 $H-N = \begin{pmatrix} R_{-} \\ R_{-} \end{pmatrix}$ 

30

25

5

- 13 -

umsetzt, worin  $R_6$  und  $R_7$  die in Anspruch 1 angegebenen Bedeutungen haben, unter Ausbildung einer Verbindung der Formel (I), in welcher  $R_5$  eine geradkettige oder verzweigte  $C_{1-4}$ -Alkyl- oder  $C_{2-4}$ -Alkenylgruppe, eine  $C_{3-7}$ -Cycloalkylgruppe, eine Benzylgruppe, die gewünschtenfalls durch einen oder zwei Substituenten, ausgewählt aus (a) bis (h) gemäss der Definition in Anspruch 1, oder eine Gruppe der Formel -COR<sub>2</sub> bedeutet;

10

15

25

30

dass man gewünschtenfalls die erhaltene Verbindung der Formel (I), worin R<sub>5</sub> entweder eine Benzylgruppe bedeutet, die gewünschtenfalls durch eine p-Nitro- oder p-Methoxygruppe substituiert ist, oder eine Gruppe der Formel -COR<sub>2</sub> bedeutet, in eine

Verbindung der Formel (I) überführt, in welcher

R<sub>5</sub> ein Wasserstoffatom, eine Gruppe der Formel

-COR<sub>2</sub> oder -C-NHR<sub>2</sub> bedeutet, worin Y die in Anspruch

1 angegebene Bedeutung hat und R<sub>2</sub> die vorher angegebene Bedeutung hat, indem man die Schutzgruppe entfernt und anschliessend gewünschtenfalls mit einer Verbindung der Formel R<sub>2</sub>COX oder Y=C=N-R<sub>2</sub> umsetzt, worin R<sub>2</sub> und Y die vorher angegebenen Bedeutungen haben und X ein Halogenatom bedeutet; vorzugsweise Chlor, Brom oder Jod; worauf man dann gewünschtenfalls eine so erhaltene Verbindung der Formel (I) in ein pharmazeutisch annehmbares Säureadditionssalz überführt.

10

15

30

Verfahren zur Herstellung einer Amidbindung sind dem Fachmann bekannt und können angewendet werden, um die gewünschten Amide (I) aus Verbindungen der Formeln (IV) und (V) zu erhalten (siehe z.B. Y.S. Klausner und M. Bodansky in Synthesis 1972, 453; Houben-Weyl, Methoden der Organischen Chemie, Bd. 15/II, S. 1, 1974).

Beispielsweise kann die Säure (IV) in einem dipolaren aprotischen Lösungsmittel, vorzugsweise wasserfreiem Dimethylformamid, in einer inerten Atmosphäre gelöst werden und mit einer kleinen Überschussmenge eines Carbonyldiimidazols, im allgemeinen innerhalb eines Temperaturbereiches von 25 bis 100°C, behandelt werden, bis die Entwicklung von Kohlendioxid aufhört, worauf die Imidazolid-Bildung vollständig ist.

Nach dem Behandelnd des Reaktionsgemisches mit einer geeigneten Verbindung

im allgemeinen bei Raumtemperatur, kann man das Amid
(I) durch übliche Aufarbeitung isolieren.

Alternativ kann man eine Aktivierung der Carbonsäure (IV) dadurch erzielen, dass man sie in einem dipolaren aprotischen Lösungsmittel, vorzugsweise wasserfreiem Dimethylformamid oder Diglyme, auflöst und eine stöchiometrische Menge von Dicyclohexylcarbodiimid und 1-Hydroxy-



benzotriazol und eine katalytische Menge von 4-Dimethylaminopyridin zugibt.

Nach Rühren bei Raumtemperatur wird die Mischung mit einer Aminoverbindung

$$R_6$$
 (V)

10

behandelt, worauf man das Produkt (I) dann durch übliche Aufarbeitung isolieren kann.

In anderen Fällen kann man die Methyl- oder Ethylester
der Säure (IV) in einem Autoklaven mit methanolischen
oder ethanolischen Lösungen der Verbindungen (V) behandeln. Nach 1- bis 3-tägigem Erhitzen auf 50 bis 100°C
kann das Amid (I) chromatografisch oder durch Kristallisation gereinigt werden.

20

Die Verbindungen der Formel (IV) kann man nach dem folgenden Syntheseweg erhalten:

25 
$$R_1$$
 $NH_2$ 
 $R_3$ 
 $R_4$ 
 $R_3$ 
 $R_4$ 
 $R_3$ 
 $R_4$ 
 $R_3$ 
 $R_4$ 
 $R_3$ 
 $R_4$ 
 $R_3$ 
 $R_4$ 
 $R_5$ 
 $R_4$ 
 $R_5$ 
 $R_4$ 
 $R_5$ 
 $R_5$ 
 $R_4$ 

30

(II)

(III)

25

worin  $R_1$ ,  $R_2$ ,  $R_3$ ,  $R_4$ ,  $R_8$  und X die vorher angegebenen Bedeutungen haben.

Die Umwandlung der Verbindung (II) in eine Verbindung

(III) wird in einem Lösungsmittel, wie Methanol, Ethanol, n-Butanol, in Gegenwart von wässrigem Alkali, gewöhnlich unter Rückflusstemperatur der Mischung, durchgeführt.

Wenn R<sub>8</sub> eine Benzylgruppe bedeutet, kann man die Verbindung der Formel (IV) auch durch Umsetzen von N-Benzylhystidin, das gewünschtenfalls substituiert sein kann, mit einer geeigneten Carbonylverbindung der Formel R<sub>3</sub>-C-R<sub>4</sub> der vorher genannten Art herstellen. Be-

deutet R<sub>8</sub> eine Alkyl-, Alkenyl- oder Cycloalkylgruppe, dann kann man die Verbindung der Formel (IV) alternativ auch gemäss T. Vitali et al, Gazz. Chim. Ital. 94, 296 (1964) herstellen.

Die erfindungsgemässen Verbindungen sind für die Behandlung des menschlichen und tierischen Körpers geeignet. Sie haben eine Antivirusaktivität und können gegen RNA-Viren beim Menschen und bei anderen Säugern verwendet werden. Zu diesem Zweck werden sie in orale Dosierungsformen, wie Tabletten, Kapseln und dergleichen, formuliert.

Die Erfindung betrifft auch pharmazeutische Zusammen-30 setzungen, welche als aktiven Bestandteil eine Verbindung der allgemeinen Formel (I) oder ein pharmazeutisch



annehmbares Säureadditionssalz davon zusammen mit einem pharmazeutisch annehmbaren Träger oder Verdünnungsmittel enthalten.

Die Verbindungen können allein oder in Kombination 5 mit den üblichen Trägern oder Verdünnungsmitteln verabreicht werden, z.B. mit Magnesiumcarbonat, Magnesiumstearat, Talkum, Zucker, Lactose, Pectin, Dextrin, Stärke, Gelatine, Tragacanth, Methylcellulose, Natriumcarboxymethylcellulose, niedrigschmelzendem Wachs, 10 Kakaobutter und dergleichen, verabreicht werden. Geschmacksmittel, löslichmachende Mittel, Gleitmittel, Suspensionsmittel, Bindemittel, Tablettenzerfallsmittel und dergleichen können angewendet werden. Die Verbindungen können mit oder ohne andere Träger einge-15 kapselt werden. In allen Fällen soll die Menge des aktiven Bestandteils in den Zusammensetzung, ob diese fest oder flüssig sind, wenigstens ausreichen, um bei einer oralen Verabreichung Antivirusaktivität aufzuweisen. Die Verbindungen können auch parenteral inji-20 ziert werden und zu diesem Zweck werden sie als sterile Lösungen angewendet, die andere Lösungsbestandteile enthalten, z.B. Kochsalz oder Glucose, um diese isotonisch einzustellen. Typischerweise wird eine Dosis von 100 bis 2.000 mg einer erfindungsgemässen Verbindung 25 pro Tag einem Patienten bei der Behandlung verabreicht.

Die Antivirusaktivität der erfindungsgemässen Verbindungen wird durch das nachfolgend näher beschriebene

Standardverfahren demonstriert. Die Antivirusaktivität der Verbindungen (I) wurde sowohl in in vitro- als auch

in vivo-Versuchen festgestellt.

In vitro-Versuche wurden durchgeführt mit Monoschichten von Hep#2-Zellen, die mit Herpes-Simplex-Virus 5 infiziert wurden, mit BHK 21-Zellen, die mit Inlfuenzavirus infiziert wurden und mit Hundenierenzellen, die mit infektiösem Kaninchenhäpatitisvirus (Adenovirus) infiziert wurden, und zwar gemäss dem Hermann's Papierscheiben-Versuch auf einem mit Agar versehenem Medium. Die Antivirusaktivität wurde bestimmt, nachdem man ent-10 weder mit Neutral-Rot oder mit Tetrazolium gefärbt hatte, durch Feststellung der Schutzzonen, d.h. der Flächen, die frei von Lysis-Plaques waren. Der Aktivitätsindex (A.I.) wurde durch den Quotienten: Aktivitäts-15 Randsaum-Durchmesser/Cytotoxizitäts-Randsaum-Durchmesser bestimmt. Darüber hinaus wurden humane amniotische Zellen, die mit Rhinovirus infiziert waren, mit einer abgestuften Verdünnung der vorliegenden Verbindungen in einem wässrigen Medium behandelt; die Antivirusaktivität wurde bewertet durch mikroskopische Beobach-20 tung des abnehmenden cytophatischen Effektes im Vergleich zu der unbehandelten infizierten Kontrolle.

Der A.I. wurde als Quotient: Konzentration, welche zwei Kreuztoxizitätswirkungen (tox. 50 %) ergibt/Minimalkonzentration, welche eine Antivirusaktivität (MIC) ergibt, bestimmt. Die Ergebnisse für einige der erfindungsgemässen Verbindungen werden in Tabelle 1, Spalte 1, gezeigt.

30

25

Bei den in vitro-Intersuchungen wurde die Cytotoxizität

als Konzentration des Arzneimittels bestimmt, die eine 50 %-ige Verminderung des Zellwachstums ergab (T-C.I.D.<sub>50</sub>) und die Aktivität bezüglich der infektiösen Virusproduktion wurde bestimmt als die Dosis, welche den Virustiter in einem zellularen Cryolysat um 50 % vermindert (I.V.I.D.<sub>50</sub>). Die Ergebnisse werden in Tabelle 1, Spalten 2 und 1, gezeigt.

Die ungefähre akute Toxizität (LD<sub>50</sub>) der erfindungsgemässen Verbindungen wurde an Mäusen bestimmt durch eine einmalige orale Verabreichung in ansteigenden Dosen, wobei man die Messungen am 7. Tag nach der Behandlung vornahm. Die Ergebnisse werden in Tabelle 1, Spalte 3, gezeigt.

15

10

5

Verbindungen, die eine niedrige akute Toxizität hatten und die die in dem in vitro-Test gezeigte Aktivität aufwiesen, wurden weiter in in vivo-Tests untersucht und zwar hinsichtlich der Wirkung auf experimentell mit Influenzavirus infizierten Mäusen. Es ist bekannt, 20 dass der intranasal injizierte Influenzavirus bei Mäusen Pneumonia verursacht, deren Schwere von der Grösse des Inokulums abhängt. Hohe Dosen verursachen den Tod und niedrigere Dosen induzieren Lungenläsionen, deren Ausmass durch Bewertung festgestellt werden kann. Die 25 Antivirusaktivität der erfindungsgemässen Verbindungen, die nach den verschiedenen Methoden injiziert wurden, wurde bewertet durch die Abnahme der Läsionen und des Virustiters in den Lungen im Vergleich zu infizierten 30 Kontrollen. Ergebnisse für die aktivste Verbindung (FCE 20028, Tabelle 1, Beispiel 3) bei oraler Verabreichung (p.o.) werden in den Tabellen 2 und 3 gezeigt.

TABELLE 1

In vitro-biologische Aktivität und akute Toxizität von ausgewählten erfindungsgemässen Verbindungen der Formel (I)

| Spalte 3 | <b>"</b>                                         | ы <sub>50</sub><br>(3)        |          | > 200 < 400                                                        | . 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | >1.400            | <b>009</b>                                                          | 000            | > 400 < 800 | 1.          | 1000                                                                                                            | \$00           | ×1000     |   |
|----------|--------------------------------------------------|-------------------------------|----------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------|----------------|-------------|-------------|-----------------------------------------------------------------------------------------------------------------|----------------|-----------|---|
| Spalte 2 | T.C.1.D.                                         | T.C.I.D. <sub>50</sub><br>(2) |          | 01                                                                 | 26-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1100              | 01.0                                                                | 00<br>1        | 81          | . 5'21      | 20-30                                                                                                           | 10-72          | 510-640   |   |
|          | A.1. (1)                                         | Rhino-<br>virus               | v        | (2(6)2                                                             | 4(7,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >2(70,0)          | . <b>v</b>                                                          | ₹              | 4(28,0)     | 10(1,25)    | ⊽                                                                                                               | 2(12,5)        | ⊽         |   |
| 1.       |                                                  | Influ-<br>enza                | 3(10,5)  | ⊽                                                                  | 6(6,5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | >4(12,5)          | (0,02)5                                                             | 4(40,0)        | ₹           | . (5'2)9    | 4(3-5)                                                                                                          | <b>4</b> (10). | 4(100)    | • |
| Spalte 1 |                                                  | Adeno-<br>virus               | 2,2      | ₹                                                                  | · 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,5(12,5)         | >4( 25 )                                                            | ⊽              | . T         | ⊽           | ₹                                                                                                               |                | ₹ .       | • |
|          | ,                                                | Herpes<br>simplex             | 1        | <u>~</u>                                                           | ₹ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ÿ                 | ₹                                                                   | · ⊽            | v           | <b>⊽</b>    | v                                                                                                               | n              | ~         |   |
| •        |                                                  | , r                           | . S. 9   | (CH <sub>2</sub> ) <sub>2</sub> -H-(CH <sub>2</sub> ) <sub>2</sub> | (영) 12년 (영) 1 | (Gi, ) - 1-(Gi, ) | (क <sub>.)2</sub> <del>  </del> (व.)2<br>(क.)2 <del>   </del> (व.)2 | =<br>Dé _<br>= | Ξ<br>Ξ      | <i>\\</i>   | _                                                                                                               |                | · .       |   |
|          | Code- Bei- R R R R R R R R R R R R R R R R R R R |                               | =        | COOCH C H 2 (C                                                     | . £                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | )<br>F<br>F                                                         | COOCH C H      | CH C 11     | COOCH C H S | 1-Amino-adamentan (Syametrei (N)<br>Ribavirin (Virazole <sup>(R)</sup> )<br>Incaiplex (Viruxan <sup>(R)</sup> ) |                | e C       |   |
|          |                                                  |                               | =        | ×                                                                  | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>=</b>          | =                                                                   | =              | °, ₹        | =           |                                                                                                                 |                | ر<br>د هم |   |
|          |                                                  |                               | =        | Ξ                                                                  | <b>=</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =                 | *                                                                   | =              | Ξ           | =           |                                                                                                                 |                | X (Vir    |   |
|          |                                                  |                               | . =      | I                                                                  | <b>E</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =                 | =                                                                   | =              | =           | т<br>—      |                                                                                                                 |                | oriple    |   |
|          |                                                  |                               | =        | <u> </u>                                                           | <b>z</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =                 | . <del>-</del>                                                      | =              | <b>x</b> ·  | =           |                                                                                                                 |                | <u> </u>  |   |
|          |                                                  |                               | 21 .     | <b>1</b>                                                           | . 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | е —               |                                                                     |                | ^           | <b>▼</b>    | zver-                                                                                                           | en:            | ·<br>.•   |   |
|          |                                                  |                               | 366/1565 | 386/1710                                                           | FCE 20027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FCE 21028         | FCE 2006A                                                           | FCE 20435      | FCE 21762   | FCE 23715   | Referenzver                                                                                                     | prugungen:     |           |   |

(1) in Klammern I.V.I.D.  $_{50}$  ( $\mu g/m1)$ 

<sup>(2)</sup> ausgedrückt in µg/ml

<sup>(3)</sup> mg/kg p.o. bei der Maus

TABELLE 2

Antivirusaktivität von FCE 20028 an der Maus bei experimentell infiziertem Influenzavirus (% Schutz von Lungenläsionen)

| Ве                                | handlung                   |                  | -              | Virusstamm                     |                                |  |  |  |
|-----------------------------------|----------------------------|------------------|----------------|--------------------------------|--------------------------------|--|--|--|
| 1                                 | Zeit<br>l. (Tag)           | mg/kg<br>p.o.    | APR8           | A <sub>1</sub> FM <sub>1</sub> | A <sub>2</sub> W <sub>29</sub> |  |  |  |
| 1                                 | +1                         | 200<br>100<br>50 | 37<br>47<br>66 | 44<br>37<br>34                 | 67<br>23<br>nb                 |  |  |  |
| 1                                 | +2                         | 200<br>100<br>50 | 33<br>36<br>32 | 26<br>29<br>26                 | 39<br>41<br>nb                 |  |  |  |
| 5                                 | +0->+4                     | 100              | 25             | 3,7                            | nb                             |  |  |  |
| I                                 | NZVERBIND<br>rin (Vira<br> |                  | 27             | nb                             | - 50                           |  |  |  |
| 5                                 | +0→ +4                     | 5.0              | 41             | nb                             | nb                             |  |  |  |
|                                   | FU 7 T3                    | 25               | 50             | nb                             | 33                             |  |  |  |
| Inosiplex (Viruxan <sup>R</sup> ) |                            |                  |                |                                |                                |  |  |  |
| 2                                 | . +1                       | 400              | nb             | 22                             | nb                             |  |  |  |
| 2                                 | +2                         | 400              | nb             | 26                             | nb                             |  |  |  |

nb = nicht bestimmt

### TABELLE 3

Antivirusaktivität von FCE 20028 bei Mäusen, die experimentell mit Influenzavirus infiziert wurden (APR8-Stamm)

|                                                          | Behand:       | lung          | % Schutz            |      |  |  |  |  |  |
|----------------------------------------------------------|---------------|---------------|---------------------|------|--|--|--|--|--|
| keine<br>Behandl.                                        | Zeit<br>(Tag) | mg/kg<br>p.o. | Lungen-<br>läsionen |      |  |  |  |  |  |
| 2                                                        | +0            | 100           | 61                  | 99,6 |  |  |  |  |  |
| 2                                                        | +1            | 100           | 58                  | 70   |  |  |  |  |  |
| 2                                                        | +2            | 100           | 35                  | 0 .  |  |  |  |  |  |
| REFERENZVERBINDUNG:<br>Inosiplex (Viruxan <sup>R</sup> ) |               |               |                     |      |  |  |  |  |  |
| 2                                                        | +0            | 300           | 52                  | 80   |  |  |  |  |  |
| 2 .                                                      | +1            | 300           | 0                   | 0    |  |  |  |  |  |

- 23 -

Die Erfindung wird in den folgenden Beispielen beschrieben.

5

#### BEISPIEL 1

## 5-Benzyloxycarbonyl-6-carboxyl-4,5,6,7-tetrahydroimidazo-/4,5-c7pyridin

10

Zu einer eisgekühlten Lösung von 38 g NaOH in 290 ml Wasser wurden nach und nach unter Kühlung und Rühren 100 ml Dioxan und 78 g 6-Carboxy-4,5,6,7-tetrahydro-imidazo/4,5-c/pyridin gegeben (siehe T. Vitali und G. Bertaccini, Gazz. Chim. Ital. 94, 296 (1964)).

15 Bert

Während eines Zeitraums von 6 Stunden wurden dann 135 ml Benzylchloroformiat tropfenweise zugegeben und der pH-Wert wurde in dem Bereich von 8,5 bis 10,5 gehalten.

- Nach dem Entfernen des Eisbades liess man das Reaktionsgemisch über Nacht stehen und stellte es dann mit 10 N NaOH stark alkalisch ein. Die wässrige Phase wurde mit zweimal 200 ml Methylenchlorid gewaschen und dann langsam durch tropfenweise Zugabe von 6 N HCl angesäuert.
- Der erhaltene weisse Niederschlag wurde mit Wasser gewaschen und getrocknet, wobei man 82 g der reinen Titelverbindung (F: 240°C) erhielt.

BEISPIEL 2 (386/1707)

# 5-Benzyloxycarbonyl-6-(4'-phenyl-1'-piperazinocarbonyl)-4,5,6,7-tetrahydroimidazo/4,5-c7pyridin

Zu einer Suspension von 3.013 g (10 mmol) 5-Benzyloxycarbonyl-6-carboxyl-4,5,6,7-tetrahydroimidzao/4,5-c7pyridin in 30 ml wasserfreiem Dimethylformamid wurden
unter Rühren 1,78 g (11 mmol) Carbonyldiimidazol gegeben. Nach 45-minütigem Erhitzen auf 100°C wurde das Reaktionsgemisch auf Raumtemperatur gekühlt. Dazu wurden
1,6 ml N-Phenylpiperazin gegeben und die Lösung wurde
über Nacht gerührt und anschliessend zur Trockne eingedampft. Zu dem Rückstand wurden 50 ml Wasser und 50 ml
Methylenchlorid gegeben und die wässrige Phase wurde
dann wiederholt extrahiert und verworfen und das organische Extrakt wurde getrocknet und im Vakuum eingedampft.

Der schaumige Rückstand wurde aus Acetonitril umkristallisiert, wobei man 3 g der reinen Titelverbindung (F: 200°C) erhielt.

#### 25 BEISPIEL 3 (FCE 20028)

6-(4'-Phenyl-1'-piperazinocarbonyl)-4,5,6,7-tetrahydroimidazo/4,5-c7pyridin

30 Eine Lösung von 3 g 5-Benzyloxycarbonyl-6-(4'-phenyl-1'-piperazinocarbonyl)-4,5,6,7-tetrahydroimidazo/4,5-c/-pyridin in 100 ml Methanol wird unter einem Wasserstoff-

druck von 2 bar bei 50°C 2 Stunden in Gegenwart von 10 % Pd/C (400 mg) hydriert. Der Katalysator wird abfiltriert und das Filtrat im Vakuum eingedampft. Der schaumige Rückstand wurde in 40 ml Methanol wiederaufgelöst und dazu wurden 4,4 ml 5 N Salzsäure in Methanol gegeben und der erhaltene Niederschlag wurde gesammelt, mit Methanol gewaschen und getrocknet, wobei man die reine Titelverbindung, kristallisiert mit 3 Molen HCl, in einer 75 %-igen Gesamtausbeute mit einem F von 215°C erhielt.

#### BEISPIEL 4 (FCE 23715)

15

10

5

# 5-Benzyloxycarbonyl-6-adamantylaminocarbonyl-4,5,6,7-tetrahydroimidazo $\sqrt{4}$ ,5-c $\sqrt{2}$ pyridin

- Eine Mischung von 10 g 5-Benzyloxycarbonyl-6-carboxyl4,5,6,7-tetrahydroimidazo/4,5-c/pyridin, 4,9 g Hydroxybenzotriazol, 7,5 g Dicyclohexylcarbodiimid, 0,2 g Dimethylaminopyridin und 100 ml wasserfreiem Dimethylformamid wurde 2 Stunden bei Raumtemperatur gerührt.
  Dann wurden 5 g Adamantanamin zugegeben und weitere

  3 Stunden gerührt und das Reaktionsgemisch wurde dann
  3 Stunden stehen gelassen. Der Niederschlag (Dicyclohexylharnstoff) wurde abfiltriert und das Filtrat
  wurde zur Trockne eingedampft.
- 30 Zu dem Rückstand wurden 100 ml Wasser und 2 N HCl gegeben und die wässrige Phase wurde wiederholt mit  $\mathrm{CH_2Cl_2}$

extrahiert. Die organischen Extrakte wurden getrocknet und zur Trockne eingedampft. Zu dem Rückstand wurden 100 ml Wasser und 2 N NaOH gegeben und die wässrige Phase wurde wiederholt mit CH<sub>2</sub>Cl<sub>2</sub> extrahiert. Die organischen Extrakte wurden getrocknet, im Vakuum eingedampft und der Rückstand aus absolutem Ethanol umkristallisiert, wobei man 10 g der reinen Titelverbindung (F: 222°C) erhielt.

10

BEISPIEL 5 (FCE 23727)

5-Benzyloxycarbonyl-6-adamantylmethylaminocarbonyl-15 4,5,6,7-tetrahydroimidazo/4,5-c7pyridin

Man arbeitet wie in Beispiel 4, verwendet jedoch 1-Adamantanmethylamin, wobei man die Titelverbindung (F: 216°C) in 40 %-iger Gesamtausbeute erhält.

20

BEISPIEL 6 (FCE 23728)

25 6-Adamantylmethylaminocarbonyl-4,5,6,7-tetrahydroimidazo/4,5-c7pyridin

Man arbeitet wie in Beispiel 3, geht jedoch von 5-Ben-zyloxycarbonyl-6-adamantylmethylaminocarbonyl-4,5,6,7-tetrahydroimidazo/4,5-c)pyridin (Beispiel 5) aus und lässt die letzte Behandlung mit Salzsäure weg. Man

erhält dabei die Titelverbindung (F: 157°C) in 80 %-iger Gesamtausbeute.

5

BEISPIEL 7 (FCE 21762)

# 4-Ethyl-5-benzyl-6-carboxamido-4,5,6,7-tetrahydroimidazo/4,5-c7pyridin

10

Zu einer Lösung von 4,9 g N-Benzylhystidin (siehe V.N. Reinhold, Y. Ishikawa, D.B. Melville, J. Med. Chem. 11, 258 (1968)) in 11 ml Wasser und 88 ml Methanol wurde eine Lösung von 3,2 g NaOH in 11 ml Wasser unter Kühlen und Rühren gegeben. Dazu wurden tropfenweise 4,5 ml 15 Propionaldehyd gegeben und die Mischung wurde über Nacht rückflussbehandelt. Dann wurden 4,5 ml Propionaldehyd und 3,2 g NaOH zugegeben und die Mischung wurde weiter rückflussbehandelt, bis man durch TLC (Merck Silicagel 60 F<sub>254</sub> TLC-Platten unter Verwendung von Chloroform/ 20 Methanol/30 %-iger wässriger Ammoniak 65:45:20 als Eluiersystem und Pauly's Sprühreagens für die Spoterkennung auf Chromatogramm) nachweisbar war. Die Mischung wurde dann mit 2 N HCl angesäuert und im Vakuum eingedampft. Der Rückstand wurde in Wasser wiederaufgelöst 25. und die Lösung mit Aktivkohle behandelt und dann durch eine Säule mit einem schwach basischen Ionenaustauscher (Amberlite<sup>R</sup> IR-45, 100 g, freie Basenform) perlen gelassen. Die Säule wurde mit Wasser, Ethanol, Wasser gewaschen und schliesslich mit 2 N HCl eluiert. Das 30 saure Eluat wurde zur Trockne eingedampft, wobei man

15

20

25

30

4-Ethyl-5-benzyl-6-carboxyl-4,5,6,7-tetrahydroimidazo-/4,5-c/pyridin-dihydrochlorid als weissen Schaum und durch TLC in reiner Form in 75 %-iger Gesamtausbeute erhielt. Zu einer Lösung der letzten Verbindung (43 g, 120 mmol) in 400 ml Methanol wurde eine Lösung von 80 ml 96 %-iger H<sub>2</sub>SO<sub>4</sub> in 400 ml Methanol tropfenweise unter Rühren und Kühlen auf einem Eis-Salz-Bad gegeben. Die Lösung wurde mit Chlorwasserstoff gesättigt und dann auf Raumtemperatur erwärmt und unter Rückfluss behandelt, bis kein Ausgangsmaterial mehr durch TLC (Merck Kieselgel  $F_{254}$  TLC-Platten unter Verwendung von Toluol/ Ethanol/35 %-iges wässriges Methylamin 6:3:1 als Eluiersystem und Pauly's Sprühreagens für Spoterkennung auf einem Chromatogramm) nachweisbar war. Die Lösung wurde gekühlt und in eine heftig gerührte Mischung von 10 %igem wässrigen Na<sub>2</sub>CO<sub>3</sub>, gestossenem Eis und Chloroform eingegossen. Die organische Schicht wurde abgetrennt und die wässrige Phase wurde gründlich mit Chloroform extrahiert. Die organischen Extrakte wurden vereint, getrocknet und im Vakuum eingedamoft, wobei man 30 g 4-Ethyl-5-benzyl-6-methoxycarbonyl-4,5,6,7-tetrahydroimidazo/4,5-c/pyridin als farbloses glasiges of in reiner Form durch TLC erhielt. Zu einer Lösung dieser Verbindung (30 g) in 1 l Methanol wurden 300 ml flüssiger Ammoniak gegeben und die Lösung wurde in einem Autoklaven 3 Tage auf 80°C erhitzt und dann gekühlt und im Vakuum eingedampft. Der Rückstand wurde über einer Kieselgelsäule (Merck 70-230 Mesh ASTM Kieselgel, 1 kg) unter Verwendung von Chloroform mit zunehmenden Mengen an Methanol als Eluiermittel chromatografiert. Die Fraktionen, welche die Titelverbindungen enthielten,

wurden vereint, im Vakuum eingedampft und der schaumige Rückstand wurde in wenig Chloroform (50 ml) aufgenommen. Man erhielt 18 g der reinen Titelverbindung (F: 150°C) als weisse Kristalle.

5

BEISPIEL 8 (FCE 20435)

10 <u>5-Benzyloxycarbonyl-6-carboxamido-4,5,6,7-tetrahydro-imidazo/4,5-c7pyridin</u>

Man arbeitet wie in Beispiel 2, verwendet jedoch flüssigen Ammoniak als Aminoverbindung und erhält die reine Titelverbindung (F: 202-204°C) in 40 %-iger Gesamtausbeute.

20 BEISPIEL 9 (FCE 20068)

5-Methyl-6-/4'-(p-methoxyphenyl)-1'-piperazinocarbonyl/-4,5,6,7-tetrahydroimidazo/4,5-c/pyridin

Man arbeitet wie in Beispiel 2, geht jedoch von 5-Methyl-6-carboxyl-4,5,6,7-tetrahydroimidazo/4,5-c/pyridin aus und verwendet als Aminoverbindung 4-(p-Methoxyphenyl)-piperazin. Man erhält die reine Titelverbindung (F: 209-211°C) in 45 %-iger Gesamtausbeute.

#### BEISPIEL 10 (FCE 20027)

5-Methyl-6-/4'-(p-chlorophenyl)-1'-piperazinocarbonyl/-4,5,6,7-tetrahydroimidazo/4,5-c/pyridin

Man arbeitet wie in Beispiel 9, verwendet jedoch als Amonikomponente 4-(p-Chlorophenyl)-piperazin und erhält dabei die Titelverbindung (F: 223-225°C) in 60 %-iger Gesamtausbeute.

10

5

#### BEISPIEL 11 (386/1710)

Man arbeitet wie in Beispiel 2, verwendet jedoch 4-(p-Chlorophenyl)-piperazin als Aminokomponente und erhält dabei die reine Titelverbindung (F 170-172°C) in 60 %-iger Gesamtausbeute.

25 BEISPIEL 12 (386/1585)

6-Phenylaminocarbonyl-4,5,6,7-tetrahydroimidazo/4,5-c7-pyridin

Man arbeitet wie in Beispielen 2 und 3, verwendet jedoch Anilin als Aminokomponente und lässt die letzte Behandlung mit Salzsäure weg, wobei man die reine Titelverbindung (F: 120-122°C) in 40 %-iger Gesamtausbeute erhält.