Self-Attention

Shusen Wang

Self-Attention

- Self-Attention: attention beyond Seq2Seq models.
- The original self-attention paper uses LSTM.
- To make teaching easy, I replace LSTM by SimpleRNN.

Original paper:

 Cheng, Dong, & Lapata. Long Short-Term Memory-Networks for Machine Reading. In EMNLP, 2016.

SimpleRNN:

$$\mathbf{h}_1 = \tanh\left(\mathbf{A} \cdot \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{h}_0 \end{bmatrix} + \mathbf{b}\right)$$

 \mathbf{c}_0

SimpleRNN:

$$\mathbf{h}_1 = \tanh\left(\mathbf{A} \cdot \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{h}_0 \end{bmatrix} + \mathbf{b}\right)$$

$$\mathbf{h_1} = \tanh\left(\mathbf{A} \cdot \begin{bmatrix} \mathbf{X_1} \\ \mathbf{c_0} \end{bmatrix} + \mathbf{b}\right)$$

First context vector: $c_1 = h_1$.

$$\mathbf{c}_0$$
 $\mathbf{c}_1 = \mathbf{h}_1$

 \mathbf{c}_1

Weights: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{c}_1)$.

Weights: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{c}_1)$.

Weights:
$$\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{c}_1)$$
.

Weights: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{c}_2)$.

Weights: $\alpha_i = \text{align}(\mathbf{h}_i, \mathbf{c}_2)$.

Weights:
$$\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{c}_2)$$
.

Weights: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{c}_3)$.

Weights: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{c}_3)$.

Weights:
$$\alpha_i = \text{align}(\mathbf{h}_i, \mathbf{c}_3)$$
.

$$\mathbf{c}_1 \qquad \mathbf{c}_2 \qquad \mathbf{c}_3 \qquad \mathbf{c}_4 = \alpha_1 \mathbf{h}_1 + \alpha_2 \mathbf{h}_2 + \alpha_3 \mathbf{h}_3 + \alpha_4 \mathbf{h}_4.$$

Weights: $\alpha_i = \operatorname{align}(\mathbf{h}_i, \mathbf{c}_4)$.

 $\mathbf{c_1}$ $\mathbf{c_2}$ $\mathbf{c_3}$ $\mathbf{c_4}$ $\mathbf{c_5} = \alpha_1 \mathbf{h}_1 + \alpha_2 \mathbf{h}_2 + \dots + \alpha_5 \mathbf{h}_5.$

Summary

• With self-attention, RNN is less likely to forget.

Summary

- With self-attention, RNN is less likely to forget.
- Pay attention to the context relevant to the new input.

```
The
The FBI
    FBI is
The
    FBI is chasing
The
The
    FBI is
            chasing a
    FBI is
The
            chasing a criminal
    FBI is
The
            chasing a
                       criminal on
             chasing a
    FBI is
                       criminal on the
The
                       criminal on
    FBI is
             chasing a
                                   the run
The
The
    FBI
             chasing a
                       criminal
                                on
                                   the run .
```

Figure is from the paper "Long Short-Term Memory-Networks for Machine Reading."

Thank you!