Maximal Update Parametrization

Why?

Maximal Update Parametrization (μ P)

"Transfer" = optimal hyperparameter remains stable with model size

- hyperparameter tuning for a large model is computationally expensive
- it is possible to tune
 hyperparameters on a
 smaller model and then
 transfer them to a wider
 model, using Maximal
 Update Parametrization

μ Transfer: Zero-Shot Hyperparameter Transfer

- Preserves hyperparameter optimum across width
- Allows zero-shot hyperparameter transfer
- Efficient tuning
- Can tune enormous models only on a single GPU
- Very fast

μ Transfer: Zero-Shot Hyperparameter Transfer

Algorithm 1 Tuning a Large Target Model via μ Transfer

- 1: Parametrize target model in Maximal Update Parametrization (μ P)
- 2: Tune a smaller version (in width and/or depth) of target model
- 3: Copy tuned hyperparameters to target model

Standard Parametrization

Maximal Update Parametrization (μP)

Gradient Explosion or No Feature Learning

Neural Tangent Kernel

The naive first-order Taylor expansion is given by:

$$f(x;\theta) - f(x;\theta_0) \approx \langle \nabla_{\theta} f(x;\theta_0), \theta - \theta_0 \rangle$$
$$K(x,z) = \langle \nabla_{\theta} f(x;\theta_0), \nabla_{\theta} f(z;\theta_0) \rangle$$
$$f_t - f_{t-1} \approx -\eta K \mathcal{L}'(f_t, y)$$

Why NTK doesn't learn features?

A Caricature of **Space of Parametrizations**

- Feature learning
- Function evolution cannot be described purely in the function space

by functional equation for $f_{t+1} - f_t = -\eta K \mathcal{L}'(f_t)$

No feature learning

Figure 5: Logits and attention logits, but not word embeddings, of a Transformer blow up with width in SP after 1 step of training. In contrast, all three are well-behaved with width in μ P. Here we measure how much different values change coordinatewise from initialization over 4 steps of Adam updates, as a function of width. Specifically, we plot the standard deviation of the coordinates of $x_t - x_0$, for $t = 0, \ldots, 4$, and $x \in \{\text{logits, attention logits, word embeddings}\}$, where t = 0 indicates initialization.

Standart Parametrization doesn't learn features

Intuition why

- The last layer weights get too much gradient, relative to weights in the body
- We want to use larger learning rate to enable feature learning, but then the logits would blow up.

Maximal Update Parametrization

- Modify Standard Param to get Maximal Update Param
 - Last layer: divide logits by \sqrt{n} and use $\Theta(1)$ learning rate
 - i.e. $a_{L+1} = \frac{1}{2}$, c = 0
 - i.e. $f(\xi) = \frac{1}{\sqrt{n}} w^{L+1} x^L(\xi)$ where $w_{\alpha\beta}^{L+1} \sim \mathcal{N}\left(0, \frac{1}{n}\right)$
 - This alone suffices to enable feature learning
 - First layer: increase the gradient by n by setting $a_1=-\frac{1}{2}$, $b_1=1/2$
 - i.e. $h^1(\xi) = \sqrt{n}w^1\xi$ where $w^1_{\alpha\beta} \sim \mathcal{N}\left(0, \frac{1}{n}\right)$
 - Needed to enable feature learning in every layer

An abc-parametrization is given by a set of numbers $\{a_l, b_l\}_l \cup \{c\}$ s.t.

- a) Parametrize each $W^l = n^{-a_l} w^l$ where w^l is trained instead of W^l
- b) Initialize each $w_{\alpha\beta}^l \sim \mathcal{N}(0, n^{-2b_l})$
- c) SGD learning rate is ηn^{-c} for some width-independent η .

	Definition	NTK	Standard	Standard ($1/n$ LR)	Mean Field ($L=1$)	Maximal Update
a_l	$= n^{-a_l} w^l$	$\begin{cases} 0 & \text{if } l = 1\\ \frac{1}{2} & \text{if } l > 1 \end{cases}$	0	0	$\begin{cases} 0 & \text{if } l = 1 \\ 1 & \text{if } l = 2 \end{cases}$	$\begin{cases} -\frac{1}{2} & \text{if } l = 1\\ 0 & \text{if } 2 \le l \le L\\ \frac{1}{2} & \text{if } l = L + 1 \end{cases}$
b_l	$w_{\alpha\beta}^l \sim \mathcal{N}(0, n^{-2b_l})$	0	$\begin{cases} 0 & \text{if } l = 1 \\ \frac{1}{2} & \text{if } l > 1 \end{cases}$	$\begin{cases} 0 & \text{if } l = 1 \\ \frac{1}{2} & \text{if } l > 1 \end{cases}$	0	1/2
С	$LR = \eta n^{-c}$	0	0	1	-1	0