Probabilités 1 - CC1 - Lundi 9 octobre 2023

Exercice 1 On dit qu'un réel x est un nombre algébrique s'il existe $d \in \mathbb{N}^*$ et des entiers relatifs a_0, \ldots, a_d avec $a_d \neq 0$ tels que $a_d x^d + \cdots + a_1 x + a_0 = 0$. Lorsque c'est le cas, le plus petit entier d vérifiant cette propriété est appelé degré de x.

- 1. Quels sont les nombres algébriques de degré 1?
- 2. Soit $d \in \mathbb{N}^*$. Démontrer que l'ensemble des nombres algébriques de degré d est dénombrable.
- 3. Démontrer que l'ensemble des nombres algébriques est dénombrable.

Correction 1

- 1. Les nombres algébriques de degré 1 sont les rationnels. En effet : si x = p/q avec p, q dans $\mathbb{Z} \times \mathbb{Z}^*$ alors x est racine de qX p. Réciproquement si x vérifie $a_1x + a_0 = 0$ avec $a_1 \neq 0$ alors $x = -a_0/a_1$ appartient à \mathbb{Q} .
- 2. Pour tout d+1-uplet $a=(a_0,\cdots,a_d)$ d'entiers l'ensemble R_a des racines du polynôme $a_dX^d+\cdots+a_1X+a_0$ a au plus d racines réels. L'ensemble E_d des d-uplets d'entiers est dénombrable et l'ensemble

$$R_d = \bigcup_{a \in E_d} R_a$$

est donc dénombrable comme union dénombrable d'ensembles finis.

3. L'ensemble $R = \bigcup_{d \geq 1} R_d$ est dénombrable comme union dénombrable d'ensembles dénombrables.

Exercice 2

- 1. Montrer qu'une intersection dénombrable d'événements presque-sûrs est un événement presque-sûr.
- 2. Soit E un ensemble dénombrable et $\mathcal{C} \subset \mathcal{P}(E)$ une collection de parties telle que tout singleton de E appartient à \mathcal{C} .
 - (a) Rappeler la définition de $\sigma(\mathcal{C})$.
 - (b) Montrer que $\sigma(\mathcal{C}) = \mathcal{P}(E)$.
- 3. Donner la définition d'une variable aléatoire. Soit $c \in \mathbb{R}$ et X une fonction définie sur un espace probabilisé et constante égale à c. Montrer que X est une variable aléatoire.

Correction 2

1. Soit A_n , $n \ge 1$ une suite d'événements tel que $P(A_n) = 1$ pour tout $n \ge 1$. On a donc pour tout n, $P(A_n^c) = 0$ et $P(\cup A_n^c) \le \sum_{n \ge 1} P(A_n^c) = 0$. On en déduit

$$P(\cap A_n) = 1 - P(\cup A_n^c) = 1.$$

- 2. (a) La tribu $\sigma(\mathcal{C})$ est la plus petite tribu contentant \mathcal{C} .
 - (b) On a bien sûr $\sigma(\mathcal{C}) \subset \mathcal{P}(E)$. Réciproquement, si $A \subset E$ alors $A = \bigcup_{x \in A} \{x\} \in \sigma(\mathcal{C})$ par stabilité par union dénombrable.
- 3. Pour la définition voir le cours. Soit $c \in \mathbb{R}$ et X constante égale à c. Pour tout borelien B, $\{X \in B\}$ est égal à \emptyset si $c \notin B$ et Ω si $c \in B$. Comme \emptyset et Ω sont dans toutes tribus, ils sont dans \mathcal{F} et X est bien une variable aléatoire.

Exercice 3 Soit n un entier supérieur ou égal à 2. On considère une urne contenant n jetons numérotés de 1 à n. On prélève ces jetons au hasard, un par un et sans remise.

1. Proposer un espace probabilisé pour cette expérience aléatoire.

Pour $1 \le k \le n$, on dit que k est un record si le k-ème jeton tiré a un numéro supérieur aux jetons précédents. Par convention on dit que 1 est un record.

- 2. Écrire mathématiquement les événements suivants puis calculer leur probabilité :
 - (a) A: "il y a un seul record"
 - (b) B: "il y a n records"
 - (c) C : "k est un record"

Correction 3

- 1. On peut prendre pour Ω l'ensemble des bijections de $\{1, \dots, n\}$ dans $\{1, \dots, n\}$ (appelées permutations mais on n'avait pas besoin de le savoir). Ainsi pour $\sigma \in \Omega$ et $1 \leq i \leq n$, $\sigma(i)$ désigne le numéro du *i*-ème jeton. Comme Ω est fini on prend $\mathcal{F} = \mathcal{P}(\Omega)$ et enfin pour P la probabilité uniforme. On note que $Card(\Omega) = n!$.
- 2. On note que:
 - (a) Soit $\sigma \in A$. Comme $\sigma^{-1}(n)$ est un record on doit avoir $\sigma(1) = n$. On vérifie ensuite facilement que tout σ satisfaisant $\sigma(1) = n$ a un seul record. On obtient $A = \{\sigma \text{ tel que } \sigma(1) = n\}$ donc Card(A) = (n-1)! et P(A) = 1/n.
 - (b) On vérifie que σ définie par $\sigma(i)=i$ pour tout $1 \leq i \leq n$ est dans B. Réciproquement si $\sigma \in B$ alors $\sigma^{-1}(1)=1$ pour être un record et par récurrence $\sigma^{-1}(i)=i$ pour tout i. On en déduit que $B=\{Id_{\{1,\cdots,n\}}\}$ donc B est de cardinal 1 et P(B)=1/n!.
 - (c) On peut écrire pour tout $2 \le i \le n$

$$C = \{ \sigma \in \Omega, \ \sigma(k) > \sigma(j) \text{ pour tout } j \leq k - 1 - 1 \}.$$

On note que

$$C = \bigcup_{E \subset \{1,\dots,n\}, Card(E) = k} \{ \sigma \text{ tel que } \{\sigma(1),\dots,\sigma(k)\} = E \} \cap A_k.$$

Soit $E \subset \{1, \dots, n\}$ de cardinal k. Pour tout $\sigma \in C$ tel que $\{\sigma(1), \dots, \sigma(k)\} = E$, $\sigma(k) = \max E$. Il y a donc (k-1)!(n-k)! élément $\sigma \in C$ tels que $\{\sigma(1), \dots, \sigma(k)\} = E$. On obtient

$$Card(C) = \binom{n}{k}(k-1)!(n-k)!$$

 et

$$P(C) = 1/k.$$