1) Sistemare il sistema iniziale

$$\max x_1 + 5x_2 + 8x_3$$

$$x_1 + x_2 + 10x_3 \le 4$$

$$15x_1 + 8x_3 \ge -10$$

$$x_2 + 3x_3 \le 1$$

$$x_1, x_2 \ge 0$$

$$x_3 \le 0$$

a. Controlliamo se il metodo del simplesso è applicabile

Per farlo dobbiamo sostituire 0, 0, 0 alle nostre variabili iniziali

E controllare se tutti i punti sono giusti

$$x_1+x_2+10x_3\leq 4\rightarrow 0\leq 4\rightarrow si$$

$$15x_1 + 8x_3 \ge -10 \rightarrow 0 \ge -10 \rightarrow si$$

$$x_2 + 3x_3 \le 1 \rightarrow 0 \le 1 \rightarrow si$$

Nel caso almeno 1 di questi fosse falso, vuol dire che il simplesso non si può applicare E quindi bisogna utilizzare il duale (metodo grafico)

b. Trasformiamo i vincoli finali da \leq a \geq

Qui abbiamo 1 sola:

$$x_3 \le 0 \rightarrow x_3 \ge 0$$

Facendo così però dobbiamo cambiare il segno di x_3 in tutte le equazioni:

$$ma x x_1 + 5x_2 - 8x_3$$

$$x_1 + x_2 - 10x_3 \le 4$$

$$15x_1 - 8x_3 \ge -10$$

$$x_2 - 3x_3 \le 1$$

$$x_1, x_2, x_3 \ge 0$$

c. Trasformare la funzione di massimo in Z negando le variabili

$$\max x_1 + 5x_2 - 8x_3 \to Z = -x_1 - 5x_2 + x_3 = 0$$

Se è una funzione di minimo non la neghiamo

d. Trasformiamo tutte le equazioni che sono \geq in \leq

Qui noi abbiamo 1 sola equazione:

$$15x_1 - 8x_3 \ge -10 \rightarrow -15x_1 + 8x_3 \le 10$$

e. Aggiungiamo le variabili di slack

$$x_1 + x_2 - 10x_3 \le 4 \rightarrow x_1 + x_2 - 10x_3 + x_4 = 4$$

$$-15x_1 + 8x_3 + x_5 = 10$$

$$x_2 - 3x_3 + x_6 = 1$$

$$x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$$

2) Creazione della tabella

Riporto il tutto per comodità

$$Z = -x_1 - 5x_2 + x_3 = 0$$

$$x_1 + x_2 - 10x_3 + x_4 = 4$$

$$-15x_1 + 8x_3 + x_5 = 10$$

$$x_2 - 3x_3 + x_6 = 1$$

$$x_i \ge 0$$

Ora dobbiamo creare una tabella costruita così:

T=L	X1	 Xi	Ris
Z			
Xbasej			
Xbase			
Xbasek			

Allora, la lunghezza di i è rappresentata da quante variabili x abbiamo

Qui noi abbiamo $x_1, x_2, ..., x_6$ quindi i = 6

L è il passaggio del nostro metodo del simplesso, io lo metto per comodità, è opzionale $j \dots k$ abbiamo, j=prima variabile slack, k=ultima variabile slack

La nostra prima variabile slack ha come valore 4, la nostra ultima 6

T=0	X1	X2	Х3	X4	X5	X6	Ris
Z							
X4							
X5							

	 		1	
37.				
V 6				
AU				

Ora dobbiamo riempire la tabella, e la rimpiamo con i valori della nostre nostre equazioni.

Nella riga Z, prendiamo la nostra equazione $Z=-x_1-5x_2+x_3=0$ e poi sostituiamo i valori nelle nostre colonne Con i rispettivi valori dei coefficenti

T=0	X1	X2	Х3	X4	X5	Х6	Ris
Z	-1	-5	1	0	0	0	0

Ora facciamo l'esempio con X5

 $-15x_1 + 8x_3 + x_5 = 10$

T=0	X1	X2	Х3	X4	X5	X6	Ris
X5	-15	0	8	0	1	0	10

Ed ora riempiamo l'intera tabella

T=0	X1	X2	Х3	X4	X5	X6	Ris
Z	-1	-5	1	0	0	0	0
X4	1	1	-10	1	0	0	4
X5	-15	0	8	0	1	0	10
Х6	0	1	-3	0	0	1	1

3) Primo passo

Prendiamo la riga Z e, tra X1 e X6 prendiamo il valore più piccolo

Il valore più piccolo è $x_2 = -5$

Ora prendiamo la colonna X2 e la chiameremo colonna pivot

La colonna pivot ha almeno 1 valore > 0?

Se non ha almeno 1 valore >0 allora il metodo del simplesso finisce con risultato impossibile

Nel nostro caso la colonna X2 ha 2 valori > 0:

X4 = 1

X6=1

o Dividiamo il risultato della riga per il valore della riga e prendiamo il valore minore

X4 = 4/1 = 4

X6=1/1=1

Il valore più piccolo è X6=1

X6 sarà la nostra riga pivot

L'intersezione tra la riga e la colonna pivot farà la nostra cella pivot, ed il nostro valore pivot è il valore della cella pivot

- Se abbiamo 2 valori uguali, scegliere in maniera casuale.
 Attenzione: è possibile in questo caso che si entri in un loop infinito, se notiamo che i valori si ripetono successivamenti finire dicendo "risultato degenere"
- o Standardizziamo la colonna

Ora che abbiamo la colonna pivot ed il valore pivot dobbiamo standardizzare la colonna secondo il seguente standard:

Nella colonna pivot TUTTE le celle devono essere 0 tranne la cella che ha il valore pivot che deve diventare 1

Esempi:

Nel nostro caso abbiamo la seguente colonna

T=0	X2
Z	-5
X4	1
X5	0
Х6	1

E dobbiamo far si che X4=1 e tutto il resto = 0

T=0	X2
Z	0
X4	1
X5	0
X6	0

Esempio non rilevante questo esercizio

T=0	X1
Z	15
X2	4

Х3	6
X4	1

Il valore pivot è X3 Quindi esso diventerà

T=0	X1
Z	0
X2	0
Х3	1
X4	0

Detto questo, per ottenere il seguente risultato dobbiamo:

- Per la riga pivot dobbiamo dividerla per il valore pivot
 Il nostro valore pivot = 1, quindi dobbiamo dividerla per 1
- Non vi sto a scrivere in maniera verbosa, vi faccio un esempio Prendiamo la nostra riga Z e la riga pivot

Z	-1	-5	1	0	0	0	0	
X2	0	1	-3	0	0	1	1	

Noi dobbiamo rendere il -5 in 0 facendo una somma riga-riga con la riga pivot Notiamo che per annullare il -5 basta moltiplicare la riga X6 per 5 e poi fare un'addizione Quindi facciamolo

Z	-1	-5	1	0	0	0	0
X2*5	0	5	-15	0	0	5	5
Nuovo Z	-1	0	-14	0	0	5	5

Ora dobbiamo fare lo stesso procedimento per ogni riga

Il risultato verrà il seguente:

T=1	X1	X2	Х3	X4	X5	X6	Ris
Z	-1	0	-14	0	0	5	5
X4	1	0	-7	1	0	1	5
X5	-15	0	8	0	1	0	10
X2	0	1	-3	0	0	1	1

4) Passi ulteriori

Ora si controlla la colonna Z

- o Ci sono valori negativi? Se si tornare al passo 3
- o In caso negativo, andare al 5 passo

Ora risolvo il tabluau fino alla fine:

T=1	X1	X2	Х3	X4	X5	X6	Ris
Z	-1	0	-14	0	0	5	5
X4	1	0	-7	1	0	1	5
X5	-15	0	8	0	1	0	10
X2	0	1	-3	0	0	1	1

Esce X3 Entra X5

2.11.47.6								
T=1	X1	X2	Х3	X4	X5	Х6	Ris	
Z	-1+(15*14)/8	0	-14	0	14/8	5	5+(15*14)/8	
X4	1-(15*7)/8	0	-7	1	7/8	1	70/8	
Х3	-15/8	0	1	0	1/8	0	10/8	
X2	-(15*3)/8	1	-3	0	3/8	1	1+30/8	

No okay col cavolo che continuo con sti valori orribili.

5) Calcolare il risultato

Alla fine non ho continuato prima siccome sarebbero usciti valori orribili Quindi, detto questo abbiamo 2 casi:

o 1 solo valore possibile

T=2	X1	X2	Х3	X4	X5	Х6	Ris	
Z	3	0	2	0	1	1	9	
X2	1	1	-1	0	1	-1	1	
X4	2	0	3	1	-1	2	3	

Lo possiamo notare quando abbiamo almeno 2 valori > 0 nella nostra Z

Noi in questo caso ne abbiamo 4: X1, X3, X5, X6

Analisi del risultato:

• Le variabili in base sono X2 e X4, che sono i nostri risultati (ciò che bisogna scrivere in esame):

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 3 \\ 0 \end{pmatrix}$$

- Il vertice è rappresentato dalle nostre variabili originale: $(x_1, x_2, x_3, x_4) = (0,1,0,0)$
- o Multipli valori (non è l'esercizio di prima)

Quando nella funzione Z abbiamo tutti 0 tranne 1 valore > 0, allora questo vuol dire che il nostro risultato si trova nello spigolo della nostra figura.

T=3	X1	X2	Х3	X4	X5	X6	Ris
Z	0	0	0	0	0	1	60
Х3	0	0	1	0	15	-2	30
X2	0	1	0	0	1	0	10
X1	1	0	0	0	-5/2	1/2	5
X4	0	0	0	1	-6	1	0

Noi quindi sappiamo che 1 risultato sarà:

$$\begin{pmatrix} 5 \\ 10 \\ 30 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Per poter l'altro risultato dobbiamo far uscire X6, e facendolo ci uscira

T=4	X1	X2	Х3	X4	X5	X6	Ris
Z	0	0	0	0	0	1	60
Х3	0	0	1/15	0	1	-2/15	2
X2	0	1	-1/15	0	0	2/1	8
X1	1	0	1/6	0	0	1/6	10
X4	0	0	6/15	1	0	3/15	12

$$\begin{pmatrix} 10 \\ 8 \\ 2 \\ 12 \\ 0 \\ 0 \end{pmatrix}$$

E per avere tutti i risultati dobbiamo fondere queste 2 matrici nel seguente modo:

$$\lambda * \begin{pmatrix} 10 \\ 8 \\ 0 \\ 12 \\ 0 \\ 0 \end{pmatrix} + (1 - \lambda) * \begin{pmatrix} 5 \\ 10 \\ 30 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\lambda \in [0, 1]$$

l E [U, I] Facendo così stiamo nassando l

Facendo così stiamo passando lo spigolo attraverso λ I nostri 2 vertici sono: < (5, 10), (10, 8) >