PROVA A1. Análise Numérica. FGV EMAp 2020

Observações:

- Pode fazer a prova no tablet ou computador, ou a lápis/caneta.
- Ao finalizar a prova deve enviar as soluções em pdf, em arquivo único.
- A qualidade do arquivo enviado deve ser boa suficiente para que a leitura seja fácil.
- Justifique cuidadosamente todas as respostas. Em cada questão, são as justificativas que contam pontos.
- 1. (a) Seja $k \in \mathbb{N}$, determine quantos números reais do intevalo $[2^k \ 2^{k+1}]$ podem ser armazenados exatamente no computador (considerando precisão dupla). Justifique.
 - (b) O seguinte algoritmo calcula a norma euclideana de um vetor n-dimensional $x = (x_1, x_2, \dots, x_n)$:

Entrada:
$$x, n$$

 $s = 0$
for $i = 1 : n$
 $s = s + x_i^2$
end
 $s = s^{1/2}$
Saída: 'norma'= s

- i. Suponha que um programa computacional é feito com base nesse algoritmo e seja norma(x,n)a função que devolve o valor da norma euclideana de un vetor x de dimensão n, usando esse programa computacional. Seja $x_1^* = (2^{600}, 1, 1, 1, 1)$ e $x_2^* = (2^{600}, -1, -1, -1, -1)$. Qual é o valor de $d = \text{norma}(x_1^*, 5) - \text{norma}(x_2^*, 5)$? Justifique.
- ii. Modifique o algoritmo acima de tal forma que o programa computacional, feito com base nesse novo algoritmo, calcule corretamente d.
- 2. Considere o sistema linear Ax = b com

$$A = \begin{pmatrix} -3 & 4 & 0 \\ -1 & 0 & 4 \\ 3 & 1 + \cos(2\theta) & 0 \end{pmatrix}, \qquad b = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$$

e onde o parâmetro $\theta \in \mathbb{R}$.

- (a) Mostre que é possível rearranjar as linhas e colunas de A de tal modo que o método de Seidel aplicado ao sistema obtido seja convergente independentemente do valor de θ .
- (b) Obtenha as primeiras 2 iteradas do método de Seidel, para o sistema obtido em (a), começando em $x^{(0)} = (0, 0, 0)$.
- (c) Quantas iterações (independentemente do valor de θ) são necessárias para determinar a solução do sistema, com uma precisão de 0.001?. Justifique.
- 3. Considere as curvas $y=x^2$ e $y=\sin^2(x+1)$, as quais tem interseção no ponto (r,r^2) com $r\in$ I = [0, 1]. Pretende-se calcular essa interseção das curvas através da aplicação do método iterativo do ponto fixo com uma função iteradora da forma

1

$$g(x) = x - \lambda (x - \sin(x+1)); \quad \lambda \neq 0$$

- (a) Verifique que r é, de facto, ponto fixo da função g no intervalo I.
- (b) Faça $\lambda=\frac{1}{2}$ e demonstre que o método iterativo do ponto fixo associado a g converge para r, qualquer que seja a aproximação inicial $x^{(0)} \in I$.
- (c) Determine o número de iterações necessárias para se obter uma aproximação a r com um erro absoluto não superior a 10^{-6} .
- (d) Explique como pode ser utilizado o método de Newton para determinar a interseção das curvas (Não precisa provar que Newton funciona, é só explicar como pode ser usado)