Importance Sampling in BRDF Evaluation

Advanced Monte Carlo Techniques for Realistic Rendering

Team: Z_Buffer: 2005076, 2005106, 2005110

BUET CSE 409: Computer Graphics

August 10, 2025

Exploratory Presentation on Advanced Graphics Topics

The Rendering Challenge (Why sampling?)

Goal: Compute outgoing light toward the camera.

Rendering equation (single bounce):

$$L_o(\hat{\mathbf{v}}) = \int_{\Omega^+} f_r(\hat{\mathbf{l}}, \hat{\mathbf{v}}) L_i(\hat{\mathbf{l}}) (\hat{\mathbf{n}} \cdot \hat{\mathbf{l}}) d\hat{\mathbf{l}}$$

Why sample?

- Light can come from any direction on the hemisphere.
- Exact integration is rarely possible.
- Use Monte Carlo: estimate with random samples.

BRDF: the surface's reflection rule

BRDF $f_r(\hat{\mathbf{l}}, \hat{\mathbf{v}})$ says: given incoming direction $\hat{\mathbf{l}}$ and view direction $\hat{\mathbf{v}}$, how much light is reflected?

Three simple specular models (non-IS):

Phong:
$$f_r = \max(\hat{\mathbf{r}} \cdot \hat{\mathbf{v}}, 0)^n$$
, $\hat{\mathbf{r}} = \text{reflect}(-\hat{\mathbf{l}}, \hat{\mathbf{n}})$ Specular loberwidth:

Blinn-Phong:
$$f_r = \max(\hat{\mathbf{n}} \cdot \hat{\mathbf{h}}, 0)^n$$
, $\hat{\mathbf{h}} = \frac{\hat{\mathbf{l}} + \hat{\mathbf{v}}}{\|\hat{\mathbf{l}} + \hat{\mathbf{v}}\|}$

Cook–Torrance:
$$f_r \propto D(\theta) F(\theta) G(\theta)$$

Meaning:

- $n = \text{shininess (larger } n \Rightarrow \text{tighter highlight)}.$
- D = microfacet distribution, F = Fresnel, G
 = geometry (shadowing/masking).

Monte Carlo: estimating the integral

Integral:

$$I = \int_{\Omega^+} f(\omega) d\omega \quad \approx \quad \frac{1}{N} \sum_{i=1}^N \frac{f(\omega_i)}{p(\omega_i)} \qquad (\omega_i \sim p)$$

Uniform

$$p(\omega) = rac{1}{2\pi}$$
 (hemisphere)

Simple but wastes samples where f is small.

Importance sampling

$$p(\omega) \propto f(\omega)$$

More samples where contribution is large \Rightarrow less noise, faster.

Importance Sampling PDFs (simple, slide-ready)

1) Phong

$$f_r^{\mathsf{Phong}}(\theta_R) = \cos^n(\theta_R)$$

$$f_r^{\mathsf{Phong}}(\theta_R) = \cos^n(\theta_R)$$
, $p_{\mathsf{Phong}}(\theta_R) = \frac{n+1}{2\pi} \cos^n(\theta_R)$

Sampling: $\theta_R = \arccos(u_1^{1/(n+1)}), \ \phi = 2\pi u_2.$

2) Blinn-Phong

$$f_r^{\text{Blinn-Phong}}(\theta_H) = \cos^n(\theta_H)$$
,

$$p_{\mathsf{Blinn-Phong}}(\theta_H) = \frac{n+1}{2\pi} \cos^n(\theta_H)$$

Sampling: $\theta_H = \arccos(u_1^{1/(n+1)}), \ \phi = 2\pi u_2.$

3) Cook-Torrance (microfacet)

$$|f_r^{\mathsf{Cook} ext{-}\mathsf{Torrance}}(heta)| \propto |D(heta)|F(heta)|G(heta)|,$$

$$p_{\mathsf{Cook-Torrance}}(\theta) \propto D(\theta) \cos \theta$$

Pick a distribution D (e.g., GGX or Beckmann) and normalize over the hemisphere.

Variables (quick guide)

- $\hat{\mathbf{n}}$ surface normal (up direction at the point).
- $\hat{\mathbf{I}}$ incoming light direction.
- $\hat{\mathbf{v}}$ view (camera) direction.
- $\hat{\mathbf{r}}$ perfect mirror reflection of $-\hat{\mathbf{l}}$ about $\hat{\mathbf{n}}$.
- $\hat{\mathbf{h}}$ halfway direction between $\hat{\mathbf{l}}$ and $\hat{\mathbf{v}}$.
- θ_R angle to the reflection direction $\hat{\mathbf{r}}$ (Phong).
- θ_H angle to the halfway direction $\hat{\mathbf{h}}$ (Blinn–Phong).
- θ angle from the normal (used in microfacet $D(\theta)$).
- n shininess exponent (higher n = tighter highlight).
- D, F, G microfacet distribution, Fresnel, geometry terms.

Why importance sampling reduces noise

$$L_o \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f_r(\hat{\mathbf{l}}_i, \hat{\mathbf{v}}) L_i(\hat{\mathbf{l}}_i) (\hat{\mathbf{n}} \cdot \hat{\mathbf{l}}_i)}{\rho(\hat{\mathbf{l}}_i)}$$

If $p(\omega)$ is large where $f_r(\omega)$ is large, the ratio is stable \Rightarrow lower variance and faster convergence.

Implementation hint

- Build a local frame aligned to the axis you sample around (reflection for Phong, normal for Blinn/Cook).
- Convert (θ, ϕ) to a direction in the local frame, then rotate to world.
- Always clamp dot products with $max(\cdot, 0)$.

When to use which

Phong / Blinn-Phong

- Simple highlights, teaching, previews.
- IS PDF: $\frac{n+1}{2\pi}\cos^n(\cdot)$.

Cook-Torrance

- Modern PBR look (metals, roughness).
- IS PDF: $p(\theta) \propto D(\theta) \cos \theta$ (normalize).

Conclusion

- Importance sampling = sample more where the BRDF is strong.
- Use the simple PDFs shown for each model.
- Keep variables straight: θ_R (Phong), θ_H (Blinn), $D(\theta)$ for Cook–Torrance.