Packet Switching

Kameswari Chebrolu

Recap

- Switching as a solution to scale networks
- Circuit Switching: Assign dedicated resources to users
- Packet Switching: Assign resources based on demand
 - Statistical Multiplexing
 - Store and Forward design

Packet Forwarding

- How are packets forwarded to the right port?
 - Packets carry information (in headers)
- Different types of packet switching
 - Datagram
 - Virtual Circuit
 - Source Routing

Datagram Switching

- Connection-less approach
- Each packet carries a destination address
 - Sender address also included so that receiver can reply
- Use destination address to determine port
 - Needs a forwarding table (maps addresses to ports)
 - How are forwarding table entries filled?
 - There are specific protocols that run in background (learning bridges, routing protocols)

Example

Destination	Port
A	0
В	0
С	0
D	0
E	0
F	1
G	1
Н	2
I	3
J	3

Host F Host G Host A Host B Switch-1 Host H Switch-2 Host I Host C Host D Host E Switch-3 Host J

Forwarding Table at Switch-2

Characteristics

- Can send a packet anywhere and at any time (no call set-up delay or per-connection state)
- No guarantees of packet delivery
 - Receiver may be down
- Possibility of reordering
 - Packets can take different routes
- Fault-tolerant
 - Alternate routes possible

Virtual Circuit Switching

- Tradeoff between Packet and circuit switching
 - ATM, Frame Relay, X.25 technologies
- Connection-oriented: A virtual connection set up over a packet switching core
 - Can reserve resources if needed
 - Virtual circuit identifier (VCI tag) carried inside the header of packets

Connection Setup

- Before sending data, set up connection
- At each switch between source and destination
 - Based on destination address, create a mapping of incoming VCI/Port to outgoing VCI/Port
 - At a switch, for each connection, VCI on a port is unique (local not global scope)
 - VCI field can be much smaller than address field

Characteristics

- Resources can be reserved during setup phase
 - Buffer space, link bandwidth
- At least one RTT before one can send data
- Reduced packet overhead per packet
- In case of failure at a switch, old connection needs to be torn down and new connection needs to be established

Source Routing

• Source provides all information to forward the packet

• In practice, rarely used

Characteristics

- Source needs to determine the route (not practical in many situations)
- Variable header length
- Both datagram and virtual circuit networks can support this feature
- Two Categories: "strict" vs "loose"
 Strict: Full path specified
 - Loose: Subset of nodes specified

duku Ho

Tradeoffs

bal [connection teste

Metric	Datagram	Pure Circuit	Virtual Circuit
Forwarding Cost	High	None	Low
Bandwidth Utilization	High	Low	Flexible

Metric	Datagram	Pure Circuit	Virtual Circuit
Forwarding Cost	High	None	Low
Bandwidth Utilization	High	Low	Flexible
Per-packet overhead	High address	None	Low VCJ

Metric	Datagram	Pure Circuit	Virtual Circuit
Forwarding Cost	High	None	Low
Bandwidth Utilization	High	Low	Flexible
Per-packet overhead	High	None	Low
Resource reservation	Not possible	Possible	Flexible

Metric	Datagram	Pure Circuit	Virtual Circuit
Forwarding Cost	High	None	Low
Bandwidth Utilization	High	Low	Flexible
Per-packet overhead	High	None	Low
Resource reservation	Not possible	Possible	Flexible
Initial delay	None	High	High

Metric	Datagram	Pure Circuit	Virtual Circuit
Forwarding Cost	High	None	Low
Bandwidth Utilization	High	Low	Flexible
Per-packet overhead	High	None	Low
Resource reservation	Not possible	Possible	Flexible
Initial delay	None	High	High
Reordering	Possible	None	None

Metric	Datagram	Pure Circuit	Virtual Circuit
Forwarding Cost	High	None	Low
Bandwidth Utilization	High	Low	Flexible
Per-packet overhead	High	None	Low
Resource reservation	Not possible	Possible	Flexible
Initial delay	None	High	High
Reordering	Possible	None	None
Robustness	High	Low	Low

Summary

- Three types of Packet Switching: Difference is in how packets are forwarded
 - Datagram, Virtual Circuit and Source Routing
 - Inherent tradeoffs
- Ahead: Ethernet Switching