# **Model Predictive Control**

Silvan Stadelmann - 4. August 2025 - v0.3.2

github.com/silvasta/summary-mpc



# 1 Introduction to Systems and Controls

|     | Lillealization |  |  |  |   |  |  |  |  |
|-----|----------------|--|--|--|---|--|--|--|--|
| 1.2 | Discretization |  |  |  |   |  |  |  |  |
|     |                |  |  |  | _ |  |  |  |  |

- Analysis of Discrete-Time LTI Systems . . . . . . Unconstrained Finite Horizon Control Problem
- Infinite Horizon Control Problem . . . . . . . . .
- Constrained Finite Time Optimal Control Problem

### 2 Optimization

#### 

- Convex Optimization Problems . . . . . . . . . . .

## 3 Invariance

- Control Invariance
- Computing Invariant Sets and Pre-sets . . . . . .

# 4 Optimal Control

### 5 Nominal MPC

## 6 Practical MPC

- 6.1 Steady-state Target Problem . . . . . . . . . .

# 7 Robust MPC

- 7.1 Robust Constraint-Tightening MPC . . . . . . .
- 8 Implementation

# **Requirements and Steps to MPC**

- 1 Model of the System dynamics to state space
- 2 State Estimator track trajectory and disturbance Optimal Control Problem define strategy
- 4 Optimization problem mathematical formulation
- 5 Get Optimal Control Sequenc solve optimization
- 6 Verify Closed-Loop Performance iterative tests

### Introduction to Systems and Controls

Idea Create a model by solving the systems physical equations

$$x(t) = e^{A^{c}(t-t_{0})}x_{0} + \int_{t_{0}}^{t} e^{A^{c}(t-\tau)}B^{c}u(\tau)d\tau$$

 $\forall x \in \mathbb{R}^n$ :

Discrete-Time

**Cost Function** 

Stage Cost

 $l_f(x_i, u_i)$ 

 $l_f(x_N)$ 

**Terminal Cost** 

**Cost Function** 

Terminal weight

 $P \succ 0$  symetric

 $Q \succ 0$  symetric

 $R \succ 0$  symetric

State weight

Input weight

Lyapunov equation

(Exact Solution to ODE of a Linear System)

Problem Most physical systems are nonlinear

**Trick** use First Order Taylor expansion  $f(\bar{x}) + \frac{\partial f}{\partial x^{\top}}\Big|_{\bar{x}} (x - \bar{x})$ 

#### 1.1 Linearization

Idea Nonlinear system stable enough around an equilibrium System equations  $\dot{x_s} = g(x_s, u_s) = 0$ ,  $y_s = h(x_s, u_s)$ Find stationary operating point  $x_s$ ,  $u_s$  and plug in derivative:

$$\begin{array}{ll} \Delta \dot{x} = \dot{x} - \dot{x_s} & A^c = \left. \frac{\partial g}{\partial x^T} \right|_{\substack{x_s \\ u_s}} B^c = \left. \frac{\partial g}{\partial u^T} \right|_{\substack{x_s \\ u_s}} \\ \Delta y = y - y_s & C = \left. \frac{\partial h}{\partial x^T} \right|_{\substack{x_s \\ u_s}} D = \left. \frac{\partial h}{\partial u^T} \right|_{\substack{x_s \\ u_s}} \end{array}$$

#### 1.2 Discretization

For general nonlinear systems only approximate discretization methods exist, such as Euler, quality depends on sampling time

| Notation                  |  |  |  |  |  |  |  |  |
|---------------------------|--|--|--|--|--|--|--|--|
| $x(k) := x^c(t_0 + kT_s)$ |  |  |  |  |  |  |  |  |
| $u(k) := u^c(t_0 + kT_s)$ |  |  |  |  |  |  |  |  |
|                           |  |  |  |  |  |  |  |  |

**Exact Discretization of Linear Time-Invariant Models** 

$$\begin{split} x(t_{k+1}) &= \underbrace{e^{A^c T_s}}_{=A} x(t_k) + \underbrace{\int_0^{T_s} e^{A^c (T_s - \tau)} B^c d\tau}_{B = (A^c)^{-1} (A - I) B^c} u(t_k) \\ x(k+N) &= A^N x(k) + \sum_{i=0}^{N-1} A^i B u(k+N-1-i) \end{split}$$

# 1.3 Analysis of Discrete-Time LTI Systems

**Controllabe** if rank(C) = n,  $C = \begin{bmatrix} B & \cdots & A^{n-1}B \end{bmatrix}$  $\forall (x(0), x^*) \exists$  finite time N with inputs  $\mathcal{U}$ , s.t.  $x(N) = x^*$ 

Stabilizable iff all uncontrollable modes stable

**Observable** if rank $(\mathcal{O}) = n$ ,  $\begin{bmatrix} C^{\top} & \cdots & (CA^{n-1})^{\top} \end{bmatrix}^{\top}$ 

 $y(0), \ldots, y(N-1)$  uniquely distinguish initial state x(0)

 $\forall x(0) \exists$  finite time N, s.t. the measurements

Detectable iff all unobservable modes stable

# Lyapunov

**Stability** is a property of an **equilibrium point**  $\bar{\mathbf{x}}$  of a system

 $\forall \epsilon > 0 \,\exists \, \delta(\epsilon) \, \text{s.t.} \, |x(0) - \bar{x}|_2 < \delta(\epsilon) \rightarrow |x(k) - \bar{x}|_2 < \epsilon$ 

**Batch Approach Definition 3** (Global Lyapunov function). For the equilibexpress cost function in terms of x(0) and input sequence U

rium  $\bar{\mathbf{x}} = 0$  of a system x(k+1) = q(x(k)), a function V, continuous at the origin, finite and such that

 $|x| \to \infty \Rightarrow V(x) \to \infty$ 

V(x) = 0 if x = 0 else V(x) > 0

 $V(q(x)) - V(x) \le -\alpha(x)$ 

for continuous positive definite  $\alpha:\mathbb{R}^n \to \mathbb{R}$ 

**Theorem 1.** If a system admits a Lyapunov function V(x),

Theorem 2 (Lyapunov indirect method). System linearized around  $\bar{\mathbf{x}} = 0$  with resulting matrix A and eigenvalues  $\lambda_i$ .

If  $\forall |\lambda_i| < 1$  then the origin is asymptotically stable.

If  $\exists |\lambda_i| = 1$  we can't conclude anything about stability.

**Theorem 3** (Existence of solution, DT Lyapunov equation).

The discrete-time Lyapunov equation has a unique solution

**Discrete-Time Optimal Control Problem** 

 $J(x_0,U) = \sum_{i=0}^{N-1} l(x_i,u_i) + l_f(x_N)$ 

1.4 Unconstrained Finite Horizon Control Problem **Linear Quadratic Optimal Control** 

 $J^\star(x(0)) := \min_U \, \sum_{i=0} \, \boldsymbol{x}_i^\top \boldsymbol{Q} \boldsymbol{x}_i + \boldsymbol{u}_i^\top \boldsymbol{R} \boldsymbol{u}_i + \boldsymbol{x}_N^\top \boldsymbol{P} \boldsymbol{x}_N$ 

No input or state constraints!

 $x(k+1) = Ax_k + Bu_k$ 

Only dynamics matter.

 $x_{i+1} = g(x_i, u_i)$ 

 $x_0 = x(k)$ 

 $h(x_i, u_i) < 0$  (optional)

P > 0 iff the system x(k+1) = Ax(k) is stable.

 $A^{T}PA - P = -Q, \quad Q > 0$  (1)

then  $V:\mathbb{R}^n \to \mathbb{R}$  is called **Lyapunov function**.

then  $\bar{\mathbf{x}} = 0$  is globally asymptotically stable.

if  $\exists |\lambda_i| > 1$  then origin is unstable.

$$\begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_N \end{bmatrix} = \begin{bmatrix} \mathbb{I} \\ A \\ \vdots \\ A^N \end{bmatrix} x(0) + \begin{bmatrix} 0 & \cdots & 0 \\ B & 0 & 0 \\ AB & B & 0 \\ \vdots & \ddots & 0 \\ A^{N-1}B & \cdots & B \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ \vdots \\ u_{N-1} \end{bmatrix}$$

 $X := \mathcal{S}^x x(0) + \mathcal{S}^u U \quad J(x(0), U) = X^\top \overline{Q} X + U^\top \overline{R} U$  $\overline{Q} := \mathsf{blockdiag}(Q, \dots, Q, P) \quad \overline{R} := \mathsf{blockdiag}(R, \dots, R)$ Optimal Input set  $\nabla_U J(x(0), U) = 2HU + 2F^{\top} x(0) = 0$ 

$$U^{\star}(x(0)) = -\underbrace{\left( (\mathcal{S}^u)^{\top} \overline{Q} \mathcal{S}^u + \overline{R} \right)}_{H(\mathrm{Hessian})^{-1}} \underbrace{\left( \mathcal{S}^u \right)^{\top} \overline{Q} \mathcal{S}^x}_{F^{\top}} x(0)$$

Optimal Cost  $(x_0 = x(0))$ 

$$J^{\star}(x_0) {=} x_0^{\top} (\mathcal{S}_x^{\top} \overline{Q} \mathcal{S}_x {-} \mathcal{S}_x^{\top} \overline{Q} \mathcal{S}_u (\mathcal{S}_u^{\top} \overline{Q} \mathcal{S}_u {+} \overline{R})^{-1} \mathcal{S}_u^{\top} \overline{Q} \mathcal{S}_x) x_0$$

#### **Recursive Approach**

use dynamic programming to solve problem backwards from N

$$J_j^{\star}(x(j)) := \min_{U_{j \rightarrow N}} x_N^{\intercal} P x_N + \sum_{i=j}^{N-1} x_i^{\intercal} Q x_i + u_i^{\intercal} R u_i$$

#### From Principle Of Optimality Optimal Cost-To-Go

 $J_{j}^{\star}(x_{j}) = \min_{\dots} I(x_{i}, u_{i}) + J_{j+1}^{\star}(x_{j+1}) \ J_{i}^{\star}(x_{i}) = x_{i}^{\top} P_{i} x_{i}$ Optimal Control Policy use Riccatti

$$u_i^{\star} = F_i x_i = -(B^{\top} P_{i+1} B + R)^{-1} B^{\top} P_{i+1} A \cdot x(i)$$

**Comparison of Batch and Recursive Approach** Dynamic programming yields feedback policies  $u_i^{\star} = F_i x_i$ depending on each  $x_i$ . Batch optimization returns sequence  $U^{\star}(x(0))$  of **numeric values** depending only on x(0),

#### 1.5 Infinite Horizon Control Problem

# **Linear Quadratic Regulator**

$$J_{\infty}^{\star}(x(k)) = \min_{u(\cdot)} \sum_{i=0}^{\infty} x_i^{\top} Q x_i + u_i^{\top} R u_i$$
 (4)

Optimal Input  $u^{\star}(k) = F_{\infty}x(k)$ 

$$F_{\infty}x(k) = -(B^{\top}P_{\infty}B + R)^{-1}B^{\top}P_{\infty}Ax(k)$$

**Lemma 1** (Lyapunov function for LQR). If (A, B) is stabilizable and  $Q, R \succ 0$  then  $J^{\star}(x) = x^{\top} P_{\infty} x$  is a Lyapunov function for the system  $x^+ = (A + BF_{\infty})x$ where  $F_{\infty}$  is the constant feedback matrix and  $P_{\infty} \succ 0$ solves the Riccatti equation..

**Definition 1** (Lyapunov Stability).  $\bar{\mathbf{x}}$  is **Lyapunov stable** if:

**Definition 2** (Globally asymptotic stability). If  $\bar{\mathbf{x}}$  is attractive, i.e.,  $\lim_{k\to\infty} ||x(k)-\bar{x}||=0, \ \forall x(0)$  and Lyapunov stable then  $\bar{x}$  is globally asymptotically stable.

# Choice of P

- **1** Match the infinite solution  $P_N = P_{\infty}$
- 2 Use solution of the Lyapunov Equation (1) if the system is asymptotically stable (otherwise P not positive definite). assumes no control needed after end of horizon.
- 3 Set P=0 und use instead constraint  $x_{i+N}=0$

# **CFTOC**

1.6 Constrained Finite Time Optimal Control Problem

**Cost Function** equal to Linear Quadratic Optimal Control (3) Constraints as in (3)  $+ x_N \in \mathcal{X}_f$ ,  $x_{i < N} \in \mathcal{X}$ ,  $u_i \in \mathcal{U}$ 

### **Ouadratic Cost CFTOC**

$$J(x(k)) = x_N^{\top} P x_N + \sum_{i=0}^{N-1} x_i^{\top} Q x_i + u_i R u_i$$

#### Goal: Transform into OP

$$\min_{z \in \mathbb{R}^n} \, \frac{1}{2} z^\top H z + q^\top z + r \quad \text{s.t. } Gz \leq h, \; Az = b$$

#### **Construction of QP without Substitution** Idea Keep state equations as equality constraints

Define variable  $z = \begin{bmatrix} x_1^\top & \dots & x_N^\top & u_0^\top & \dots & u_{N-1}^\top \end{bmatrix}^\top$ **Equalities** from system dynamics  $x_{i+1} = Ax_i + Bu_i$ 

$$G_{eq} = \begin{bmatrix} \mathbb{I} & & & -B \\ -A & \mathbb{I} & & -B \\ & \ddots & & & \\ & -A & \mathbb{I} & & -B \end{bmatrix} E_{eq} = \begin{bmatrix} A \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Inequalities  $G_{in}z \leq w_{in} + E_{in}x(k)$  for  $\mathcal{X}, \mathcal{U}$ 

$$\begin{array}{ll} \mathcal{X} = \{x \mid A_x x \leq \mathcal{X}_f q b_x\} \\ \mathcal{U} = \{u \mid A_u u \leq b_u\} \\ \mathcal{X}_f = \{x \mid A_f x \leq b_f\} \end{array} \qquad E_{in} = \begin{bmatrix} -A_x \\ 0 \\ \vdots \\ \vdots \\ 0 \end{bmatrix}$$



Cost Matrix  $\bar{H} = diag(Q, ..., Q, P, R, ..., R)$ 

# Finally the resulting quadratic optimization problem

$$J^{\star}(x(k)) = \min_{z} \begin{bmatrix} z^{\top} \ x(k)^{\top} \end{bmatrix} \begin{bmatrix} \bar{H} & 0 \\ 0 & Q \end{bmatrix} \begin{bmatrix} z^{\top} \ x(k)^{\top} \end{bmatrix}^{\top}$$
  
s.t  $G_{in}z < w_{in} + E_{in}x(k)$   $G_{eq}z = E_{eq}x(k)$ 

# Construction of QP with substitution

**Idea** Substitute the state equations.

Step 1 Rewrite cost as

$$J(x(k)) = U^{\top} H U + 2x(k)^{\top} F U + x(k)^{\top} Y x(k)$$
$$= \begin{bmatrix} U^{\top} & x(k)^{\top} \end{bmatrix} \begin{bmatrix} H & F^{\top} \\ F & Y \end{bmatrix} \begin{bmatrix} U^{\top} & x(k)^{\top} \end{bmatrix}^{\top}$$

**Step 2** Rewrite constraints compactly as  $GU \leq w + Ex(k)$ 

$$G = \begin{bmatrix} A_{u} & 0 & \dots & 0 \\ 0 & A_{u} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & A_{u} \\ 0 & 0 & \dots & 0 \\ A_{x}B & 0 & \dots & 0 \\ A_{x}AB & A_{x}B & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ A_{f}A^{N-1}B & A_{f}A^{N-2}B & \dots & A_{f}B \end{bmatrix}, E = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ -A_{x} \\ -A_{x}A \\ -A_{x}A^{2} \\ \vdots \\ -A_{f}A^{N} \end{bmatrix}, w = \begin{bmatrix} bu \\ bu \\ \vdots \\ bu \\ bx \\ bx \\ bx \\ \vdots \\ bf. \end{bmatrix}$$
Step 3 Rewrite constrained problem as

$$\begin{split} J^{\star}(x(k)) &= \min_{U} \begin{bmatrix} U^{\top} & x(k)^{\top} \end{bmatrix} \begin{bmatrix} H & F_{Y}^{\top} \\ F & Y \end{bmatrix} \begin{bmatrix} U^{\top} & x(k)^{\top} \end{bmatrix}^{\top} \\ \text{subj. to } GU &\leq w + Ex(k) \end{split}$$

# 2 Optimization

# **Mathematical Optimization Problem**

Decision variable  $x \in \mathbb{R}^n$ minimize f(x)**Objective function**  $f: dom(f) \to \mathbb{R}$ subject to: **Inequality constraints**  $q_i$  ( $i \in \#$ constraints) **Equality constraints**  $h_i$  ( $i \in \#$ constraints)  $h_i(x) = 0$ Fesabile set  $\mathcal{X}:=\{x|q(x)<0,h(x)=0\}$ 

**Feasible point**  $x \in dom(f)$  with  $g_i(x) \le 0$ ,  $h_i(x) = 0$ **Strictly feasible point** x with strict inequality  $q_i(x) < 0$ Optimal value  $f^*(\text{or }p^*) = \inf\{f(x)|g_i(x) < 0, h_i = 0\}$  $f^* = +\infty$ : OP infeasible,  $f^* = -\infty$ : OP unbound below **Optimizer** set:  $\operatorname{argmin}_{x \in \mathcal{X}} f(x) := \{x \in \mathcal{X} | f(x) = f^{\star}\}$ 

 $x^*$  is a Global Minimum if  $f(x^*) < f(x)$  $x^*$  is a Local Minimum if  $\exists \epsilon > 0$  s.t.  $f(x^*) < f(x)$  $\forall x \in \mathcal{X} \cap B_{\epsilon}(x^{\star})$ , open ball with center  $x^{\star}$  and radius  $\epsilon$ 

# 2.1 Convex Sets. POLYTOPES

**Definition 4** (Convex Set). Set C is convex if and only if

$$\theta x + (1 - \theta)y \in \mathcal{C}, \ \forall x, y \in \mathcal{C}, \ \forall \theta \in [0, 1]$$

Intersection  $C_1$ ,  $C_2$  cv  $\Rightarrow C_1 \cap C_2$  convex (cv)

Image under affine map  $\mathcal{C} \subseteq \mathbb{R}^n$   $\operatorname{cv} \Rightarrow \{Ax + b \mid x \in \mathcal{C}\}$   $\operatorname{cv}$ Inverse loam  $\mathcal{C} \subseteq \mathbb{R}^m$  cv  $\Rightarrow \{x \in \mathbb{R}^n \mid Ax + b \in \mathcal{C}\}$  cv

**Definition 5** (Hyperplanes).  $\{x \in \mathbb{R}^n \mid a^\mathsf{T} x = b\}$ **Definition 6** (Halfspaces).  $\{x \in \mathbb{R}^n \mid a^\mathsf{T} x < b\}$ 

can be open (strict inequality) or closed (non-strict inequality) **Definition 7** (Polyhedra). intersection of **finite** number of closed halfspaces: polyhedra  $\{x \in \mathbb{R}^n \mid A^{q \times n}x \prec b^{q \times 1}, \}$ **Definition 8** (Polytope). is a **bounded** polyhedron.

**Definition 9** (Convex hull). for  $\{v_1, ..., v_k\} \in \mathbb{R}^d$  is:  $co(\{v_1,...,v_k\}) := \{x | x = \sum_i \lambda_i v_i, \lambda \ge 0, \sum_i \lambda_i = 1\}$ 

**Definition 10** (Ellipsoid). set:  $\{x|(x-x_c)^{\top}A^{-1}(x-x_c) < 1\}$ where  $x_c$  is center of ellipsoid, A > 0 (i.e. positive definite) (Semi-axis lengths are square roots of eigenvalues of A)

**Definition 11** (Norm Ball).  $B_r(x) := \{ \xi \in \mathbb{R}^n : |\xi - x|_p < r \}$ where p defines the  $l_p$  norm,  $p = \{1|2|..|\infty\}$ Theorem 4. Minkowski-Weyl

The following statements are equivalent for  $\mathcal{P} \subseteq \mathbb{R}^d$  $\mathcal{P}$  is a polytope and there exists A, b s.t  $\mathcal{P} = \{x \mid Ax < b\}$ 

 $\mathcal{P}$  finitely generated,  $\exists$  finite set  $\{v_i\}$  s.t  $\mathcal{P} = \operatorname{co}(\{v_1, ..., v_s\})$ **Definition 12** (Minkowski Sum). For  $A, B \subset \mathbb{R}^n$ , the

**Minkowski Sum** is  $A \oplus B := \{x + y | x \in A, y \in B\}$ 

 $[a,b] \oplus [c,d] = [a+c,b+d]$ 

**Definition 13** (Pontryagin Difference). For  $A, B \subset \mathbb{R}^n$ , the Pontryagin Difference is  $A \ominus B := \{x | x + e \in A, \forall e \in B\}$ 

$$[a,b]\ominus [c,d]=[a-c,b-d]$$

#### 2.2 Convex Functions

**Definition 14** (Convex Function).  $f:\mathcal{C}_{\mathsf{convex}} o \mathbb{R}$  is convex iff  $f(\theta x + (1-\theta)y) < \theta f(x) + (1-\theta)f(y), \forall x, y \forall \theta \in [0,1]$ 

f is strictly convex if this inequality is strict. **Definition 15** (Epigraph).  $f: \mathbb{R}^n \to \mathbb{R}$  cv  $\Leftrightarrow$  epi(f) is cv set  $epi(f) := \{(x, t) \in \mathbb{R}^{n+1} | f(x) < t\}$ 

**Check Convexity** f is convex if it is composition of simple convex function with convexity preserving operations or if

 $f: \mathbb{R}^n \to \mathbb{R}$  twice differentiable,  $\partial^2 f/\partial x^2 \succeq 0 \ \forall \ x \in \mathbb{R}^n$  $q: \mathbb{R} \to \mathbb{R}$  with q(t) = f(x+tv) convex in  $t \forall x, v \in \mathbb{R}^n$  $\rightarrow f$  convex (restriction to a line)

- the point wise maximum of convex functions is convex
- the sum of convex functions is convex - f(Ax + b) is convex if f is convex
- 2.3 Optimality Conditions

# **Lagrange Duality**

Consider  $f^{\star} = \inf_{x \in \mathbb{R}^n} f(x)$  s.t.  $g(x) \leq 0, h(x) = 0$  (5)

**Lagrangian**  $\mathcal{L}(x,\lambda,\nu) = f(x) + \lambda^{\mathsf{T}} g(x) + \nu^{\mathsf{T}} h(x)$ 

**Proposition 1** (Weak Duality).  $d(\lambda, \nu) \leq f^{\star}, \forall \lambda \geq 0, \nu \in \mathbb{R}^h$ 

**Definition 16** (Constraint qualification). Slaters Condition holds if  $\exists$  at least one strictly feasible point  $\hat{x}$   $(h(\hat{x}) = 0, q(\hat{x}) < 0)$ Proposition 2 (Strong Duality). If Slater's condition holds and OP is convex  $\Rightarrow \exists \lambda \geq 0, \nu \in \mathbb{R}^{n_h}$  s.t.  $d(\lambda, \nu) = f^*$ 

# KKT Conditions (Karush-Kuhn-Tucker)

Theorem 5 (KKT Conditions). If Slater's condition holds and (5) is convex  $\to x^* \in \mathbb{R}^n$  is a minimizer of the primal (5) and  $(\lambda^{\star} > 0, \nu^{\star}) \in \mathbb{R}^{n_g} \times \mathbb{R}^{n_h}$  is a maximizer of the dual  $\Leftrightarrow$ is equivalent to the following statements:

**KKT-1** (Stationary Lagrangian)  $\nabla_x \mathcal{L}(x^*, \lambda^*, \nu^*) = 0$ **KKT-2** (primal feasibility)  $q(x^*) \le 0, h(x^*) = 0$ KKT-3 (dual feasibility)  $\lambda^{\star}, \nu^{\star} \in \mathbb{R}^{n_h} > 0$  $\lambda^{\star T} q(x^{\star}) = 0$ **KKT-4** (compenentary  $\nu^{\star T} h(x^{\star}) = 0$ slackness)

**Remark** Without Slater, KKT1-4 still implies  $x^*$  minimizes (5) and  $\lambda$ .  $\nu$  maximizes dual, but the converse is no longer true. There can be primal-minimizer/dual-maximizer not satisfy KKT.

In addition we have:  $\sup_{\lambda>0,\nu\in\mathbb{R}^{n_h}}q(\lambda,\nu)=\inf_{x\in\mathcal{C}}f(x)$ 

### 2.4 Convex Optimization Problems Theorem 6. For a convex optimization problem, any locally opti-

mal solution is globally optimal (local optima are global optima). **Linear Programming** minimize  $c^{\mathsf{T}}x$  s.t. Ax - b > 0, x > 0Step 1:  $\mathcal{L}(x, \lambda_1, \lambda_2) = c^{\mathsf{T}} x - \lambda_1^{\mathsf{T}} (Ax - b) - \lambda_2^{\mathsf{T}} x, \ \lambda_i \ge 0$ 

Step 2:  $\inf_{x\in\mathbb{R}^n}\mathcal{L}=\lambda_1^\mathsf{T} b$  , if  $c-A^\mathsf{T}\lambda_1-\lambda_2=0$  , else  $-\infty$ Step 3: Dual, maximize  $b^{\mathsf{T}}\lambda$  s.t.  $c-A^{\mathsf{T}}\lambda > 0, \lambda > 0$  (again LP)

**Ouadratic Programming** min ... 3 Invariance

**Definition 17** (Positively Invariant Set  $\mathcal{O}$ ). For an autonomous or closed-loop system, the set  $\mathcal{O}$  is positively invariant if:

$$x(k) \in \mathcal{O} \Rightarrow x(k+1) \in \mathcal{O}, \quad \forall k \in \{0, 1, \dots\}$$

**Definition 18** (Maximal Positively Invariant Set  $\mathcal{O}_{\infty}$ ). A set that contains all  $\mathcal{O}$  is the maximal positively invariant set  $\mathcal{O}_{\infty} \subset \mathcal{X}$ **Definition 19** (Pre-Sets). The set of states that in the dynamic system x(k+1) = q(x(k)) in one time step evolves into the target set S is the **pre-set** of  $S \Rightarrow \operatorname{pre}(S) := \{x \mid g(x) \in S\}$ **Theorem 7** (Geometric condition for invariance). Set  $\mathcal{O}$  is positively invariant set iff  $\mathcal{O} \subseteq \operatorname{pre}(\mathcal{O}) \Leftrightarrow \operatorname{pre}(\mathcal{O}) \cap \mathcal{O} = \mathcal{O}$ 

*Proof.* Necessary if  $\mathcal{O} \nsubseteq \operatorname{pre}(\mathcal{O})$ , then  $\exists \bar{x} \in \mathcal{O}$  s.t  $\bar{x} \notin \operatorname{pre}(\mathcal{O}) \leadsto \bar{x} \in \mathcal{O}, \bar{x} \notin \operatorname{pre}(\mathcal{O})$ , thus  $\mathcal{O}$  not positively

**Sufficient** if  $\mathcal{O}$  not pos invar set, then  $\exists \bar{x} \in \mathcal{O}$  s.t  $q(\bar{x}) \notin \mathcal{O}$  $\rightsquigarrow \bar{x} \in \mathcal{O}, \bar{x} \notin \mathsf{pre}(\mathcal{O}) \text{ thus } \mathcal{O} \notin \mathsf{pre}(\mathcal{O})$ 

# Lemma 2. Invariant Sets from Lyapunov Functions

If  $V: \mathbb{R}^n \to \mathbb{R}$  is a Lyapunov function for x(k+1) = q(x(k)), then  $Y := \{x \mid V(x) < \alpha\}$  is an invariant set for all  $\alpha > 0$ 

*Proof.* Lyapunov property V(g(x)) - V(x) < 0 implies that once  $V(x(k)) \leq \alpha$ ,  $V(x(j)) < \alpha$ ,  $\forall j \geq k \rightarrow \text{Invariance} \quad \Box$  **Example System** x(k+1) = Ax(k),  $A^{\top}PA - P \prec 0 \prec P$  (Stand resulting Lyapunov function  $V(x(k)) = x(k)^{\top}Px(k)$ 

**Goal** Find the largest  $\alpha$  s.t the invarinat set  $Y_{\alpha} \in \mathcal{X}$ 

$$Y_{\alpha} := \{ x \mid x^{\top} P x \le \alpha \} \subset \mathcal{X} := \{ x \mid F x \le f \}$$

Equivalent to  $\max_{\alpha} \alpha$  s.t.  $h_{Y_{\alpha}}(F_i) \leq f_i \ \forall i \in \{1 \dots n\}$ 

#### 3.1 Control Invariance

**Definition 20** (Control Invariant Set).  $\mathcal{C} \subseteq \mathcal{X}$  control invariant if

$$x(k) \in \mathcal{C} \Rightarrow \ \exists u(k) \in \mathcal{U} \ \text{s.t} \ g(x(k), u(k)) \in \mathcal{C} \ \forall k$$

**Definition 21** (Maximal Control Invariant Set  $\mathcal{C}_{\infty}$ ). A set that contains all  $\mathcal{C}$  is the maximal positively invariant set  $\mathcal{C}_{\infty} \subset \mathcal{X}$  **Intuition** For all states in  $\mathcal{C}_{\infty}$  exists control law s.t constraints

are never violated  $\sim$  The best any controller could ever do

$$\mathbf{Pre\text{-set}} \operatorname{pre}(\mathcal{S}) := \{x \mid \exists u \in \mathcal{U} \text{ s.t } g(x,u) \in \mathcal{S}\}$$

Set  $\mathcal C$  is control invariant iff:  $\mathcal C\subseteq \operatorname{pre}(\mathcal C)\Leftrightarrow\operatorname{pre}(\mathcal C)\cap\mathcal C=\mathcal C$ 

# Control Law from Control Invariant Set

Control law  $\kappa(x(k))$  will **guarantee** that the system with control invariant set  $\mathcal C$  satisfies constraints **for all time** if

$$x(k+1) = g(x(k), u(k)) \to g(x, \kappa(x)) \in \mathcal{C} \ \forall x \in \mathcal{C}$$

We can use this fact to **synthesize** control law  $\kappa$ 

$$\kappa(x) := \mathop{\rm argmin} \{ f(x,u) \mid g(x,u) \in \mathcal{C} \}$$

with f as any function (including f(x, u) = 0)

Does not ensure that system will converge Difficult because calculating control invariant sets is hard MPC implicitly describes  $\mathcal C$  s.t easy to represent/compute

#### 3.2 Robust Invariance

**Definition 22** (Robust Positive Invariant Set  $\mathcal{O}^{\mathcal{W}}$ ). For the autonomous system x(k+1)=g(x(k),w(k)), the set  $\mathcal{O}^{\mathcal{W}}$  is robust positive invariant if:

$$x \in \mathcal{O}^{\mathcal{W}} \Rightarrow g(x, w) \in \mathcal{O}^{\mathcal{W}}, \quad \forall w \in \mathcal{W}$$

Given set  $\Omega$  and dynamic system x(k+1)=g(x(k),w(k)) ,

$$\operatorname{pre}^{\mathcal{W}}(\Omega) := \{x \mid g(x, w)\} \in \Omega \, \forall w \in \mathcal{W}$$

**Definition 23** (Robust Pre-Sets). The set of states that in the dynamic system x(k+1)=g(x(k),w(k)) for all disturbance  $w\in\mathcal{W}$  in one time step evolves into the target set  $\Omega$  is the **pre-set** of  $\Omega\Rightarrow \operatorname{pre}^{\mathcal{W}}(\Omega):=\{x|g(x,w)\in\Omega\ \forall w\in\mathcal{W}\}$  **Theorem 8** (Geometric condition for robust invariance). Set  $\mathcal{O}^{\mathcal{W}}$  is robust positive invariant iff  $\mathcal{O}^{\mathcal{W}}\subseteq\operatorname{pre}^{\mathcal{W}}(\mathcal{O}^{\mathcal{W}})$ 

#### Minimum Robust Invariant Set

$$\mathcal{F}_{\infty} = \bigoplus_{j=0}^{\infty} A_K^j \mathcal{W}, \mathcal{F}_0 := \{0\} \Rightarrow \mathcal{F}_n = \mathcal{F}_{n+1} = \mathcal{F}_{\infty}$$

# 3.3 Computing Invariant Sets and Pre-sets

$$\begin{array}{l} \Omega_0 \leftarrow \mathcal{X} \\ \textbf{loop} \\ \Omega_{i+1} \leftarrow \operatorname{pre}(\Omega_i) \cap \Omega_i \\ \textbf{if } \Omega_{i+1} = \Omega_i \textbf{ then} \\ \textbf{return } \mathcal{O}_\infty = \Omega_i \\ \textbf{end if} \\ \textbf{end loop} \end{array}$$

(Same but much harder for control invariat sets)

# **System for Pre-Set Computation**

$$\begin{aligned} x(k+1) &= Ax(k) + Bu(k) \\ u(k) &\in \mathcal{U} := \{u|Gu \leq g\} \\ \mathcal{S} &:= \{x|Fx \leq f\} \end{aligned}$$

#### Invariant Pre-Set

$$\begin{aligned} \operatorname{pre}(S) &:= \{x \mid Ax \in S\} \\ &= \{x \mid FAx \leq f\} \end{aligned}$$

#### **Control Invariant Pre-Set**

$$\begin{split} \operatorname{pre}(S) &:= \{x \mid \exists u \in \mathcal{U}, Ax + Bu \in S\} \\ &= \{x \mid \exists u \in \mathcal{U}, FAx + FBu \leq f\} \\ &= \left\{x \mid \exists u \in \mathcal{U}, \begin{bmatrix} FA & FB \\ 0 & G \end{bmatrix} \begin{bmatrix} x \\ u \end{bmatrix} \leq \begin{bmatrix} f \\ g \end{bmatrix} \right\} \end{split}$$

This is a projection operation

#### **System for Robust Pre-Set Computation**

$$x(k+1) = Ax(k) + w(k)$$
  
$$\Omega := \{x \mid Fx < f\}$$

#### **Robust Invariant Pre-Set**

$$\begin{aligned} \operatorname{pre}^{\mathcal{W}}(\Omega) &= \{x \mid FAx + Fw \leq f\} \\ &= \{x \mid FAx \leq f - \max_{w \in \mathcal{W}} Fw\} \\ &= \{x \mid FAx \leq f - h_{\mathcal{W}^i}(F)\} \end{aligned}$$

where  $h_{\mathcal{W}^i}(F)$  is the support function

# **Ricatti Equations**

Riccati Difference Equation - RDE solved recursively  $P_i = A^\top P_{i+1} A + Q - A^\top P_{i+1} B (B^\top P_{i+1} B + R)^{-1} B^\top P_{i+1} A$ 

Algebraic Riccati Equation - ARE solved analytically  $P_{\infty} \! = \! A^{\top}P_{\infty}A \! + \! Q \! - \! A^{\top}P_{\infty}B(B^{\top}P_{\infty}B \! + \! R)^{-1}B^{\top}P_{\infty}A$ 

# 4 Optimal Control

#### 5 Nominal MPC

What can go wrong with standard MPC?

- No feasibility guarantee, the problem may not have a solution
- No stability guarantee, trajectories may not converge to origin

# **MPC Mathematical Formulation**

$$\underset{U}{\operatorname{argmin}} \sum_{i=0}^{N-1} l(x_i, u_i) + l_f(x_N) \tag{6}$$

$$\begin{array}{ll} \textbf{Constraints} & x_0 = x(k) \\ x_{i+1} = Ax_i + Bu_i \\ x_i \in \mathcal{X} \\ u_i \in \mathcal{U} \end{array}$$

 $x_N \in \mathcal{X}_f$   $l_f(\cdot) \mathrm{and} \mathcal{X}_f$  are chosen to mimic an infinite horizon.

# Stability of MPC - Main Result

## Assumptions

- 1 Stage cost is strictly positive and only zero at the origin
- **2** Terminal set is **invariant** under local control law  $\kappa_f(x_i)$ :

$$x_{i+1} = Ax_i + B\kappa_f(x_i) \in \mathcal{X}_f \ \forall \ x_i \in \mathcal{X}_f$$

All state and input **constraints are satisfied** in  $\mathcal{X}_f$ :

$$\mathcal{X}_f \in X, \kappa_f(x_i) \in U \ \forall \ x_i \in \mathcal{X}_f$$

Terminal cost is a continuous Lyapunov function s.t.

$$l_f(x_{i+1}) - l_f(x_i) \le -l(x_i, \kappa_f(x_i)) \quad \forall x_i \in \mathcal{X}_f$$

**Theorem 9.** Under the previous assumptions, the closed-loop system under the MPC control law  $u_0^\star(x)$  is asymptotically stable and the set  $\mathcal{X}_f$  is positive invariant for

$$x(k+1) = Ax(k) + Bu_0^{\star}(x(k))$$

## Finite-horizon MPC may not satisfy constraints for all time! Finite-horizon MPC may not be stable!

- An infinite-horizon provides stability and invariance.
- Infinite-horizon *faked* by forcing final state into an invariant set for which there exists invariance-inducing controller, whose infinite-horizon cost can be expressed in closed-form.
- Extends to non-linear systems, but compute sets is difficult!

#### 6 Practical MPC

### 6.1 Steady-state Target Problem

- Reference is achieved by the target state  $x_s$  if  $z_s = Hx_s = r$
- Target state should be a steady-state, i.e.  $x_s = Ax_s + Bu_s \,$

$$\begin{array}{c} x_s = Ax_s + Bu_s \\ z_s = Hx_s = r \end{array} \iff \begin{bmatrix} \mathbb{I} - A & -B \\ H & 0 \end{bmatrix} \begin{bmatrix} x_s \\ u_s \end{bmatrix} = \begin{bmatrix} 0 \\ r \end{bmatrix}$$

 $\nexists$  solution  $\to$  min $(Hx_s-r)^\top Q_s(Hx_s-r)$  (closest x to r) If  $\exists$  multiple feasible  $u_s \to$  compute min  $u_s^\top R_s u_s$  (cheapest)

$$\min_{U} |z_N - Hx_s|_{P_z}^2 + \sum_{i=1}^{N-1} |z_i - Hx_s|_{Q_z}^2 + |u_i - u_s|_R^2$$

# 6.2 Offset-free Reference Tracking Reference Tracking

$$\Delta x_{k+1} = x_{k+1} - x_s$$

$$= A\Delta x_k + Bu_k - (Ax_s + Bu_s)$$

$$= A\Delta x_k + B\Delta u_k$$

$$G_x x \le h_x$$

$$G_u x \le h_x \Rightarrow G_x \Delta x \le h_x - G_x x_s$$

$$G_u u \le h_u \Rightarrow G_u \Delta u \le h_u - G_u u_s$$

#### Convergence

Assume feasible target with  $x_s\in\mathcal{X}, u_s\in\mathcal{U}$ , choose terminal weight  $V_f(x)$  and constraint  $\mathcal{X}_f$  as in regulation case satisfying

$$V_f(x(k+1)) - V_f(x(k)) \le -l(x(k), Kx(k))$$
 and  $(A+BK)x \in \mathcal{X} \quad \forall x \in \mathcal{X}_f$  for both

If in addition the target reference  $x_s, u_s$  is such that

$$x_s \oplus \mathcal{X}_f \subseteq \mathcal{X}, K\Delta x + u_s \in \mathcal{U}, \quad \forall \Delta x \in \mathcal{X}_f$$

then the closed loop system converges to the target reference.

*Proof.* Invariance under local control law is inherited from regulation case. Constraint satisfaction is provided by extra conditions and convergence comes from the asymptotic stability of the regulation problem:  $\Delta x(k) \to 0$  for  $k \to \infty$ 

Terminal set use  $\mathcal{X}_f^{\rm scaled} = \alpha \mathcal{X}_f$  (s.t. constraints satisfied) Disturbance Cancelation

**Approach** Model the disturbance, use the measurements and model to estimate the state and disturbance and find control inputs that use the disturbance estimate to remove offset.

### **Augmented Model**

$$x_{k+1} = Ax_k + Bu_k + B_d d_k$$
$$y_k = Cx_k + C_d d_k$$

Constant disturbance  $d_{k+1} = d_k$ 

Observable iff  $\left[egin{array}{cc} A-I & B_d \\ C & C_d \end{array}
ight]$  has full rank (assuming  $n_x=n_d$ )

## Observer For Augmented Model

$$\begin{bmatrix} \hat{x}_{k+1} \\ \hat{d}_{k+1} \end{bmatrix} = \begin{bmatrix} A & B_d \\ 0 & \mathbb{I} \end{bmatrix} \begin{bmatrix} \hat{x}_k \\ \hat{d}_k \end{bmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u_k + \begin{bmatrix} L_x \\ L_d \end{bmatrix} (C\hat{x}_k + C_d\hat{d}_k - y_k)$$

**Error Dynamics**  $\Rightarrow$  choose L s.t error dynamics converge to 0

$$\left[ \begin{smallmatrix} x_{k+1} - \hat{x}_{k+1} \\ d_{k+1} - \hat{d}_{k+1} \end{smallmatrix} \right] = \left( \left[ \begin{smallmatrix} A & B_d \\ 0 & \mathbb{I} \end{smallmatrix} \right] + \left[ \begin{smallmatrix} L_x \\ L_d \end{smallmatrix} \right] \left[ \begin{smallmatrix} C & C_d \end{smallmatrix} \right] \right) \left[ \begin{smallmatrix} x_k - \hat{x}_k \\ d_k - \hat{d}_k \end{smallmatrix} \right]$$

**Lemma 3.** Steady-state of an asym. stable observer satisfies:

$$\begin{bmatrix} A - \mathbb{I} & B \\ C & 0 \end{bmatrix} \begin{bmatrix} \hat{x}_{\infty} \\ u_{\infty} \end{bmatrix} = \begin{bmatrix} -B_d \hat{d}_{\infty} \\ y_{\infty} - C_d \hat{d}_{\infty} \end{bmatrix} \; (\text{for } n_y = n_d)$$

 $\Rightarrow$  Observer output  $C\hat{x}_{\infty}+C_d\hat{d}_{\infty}$  tracks  $y_{\infty}$  without offset Reference Tracking with Distudbance Cancelation

**Goal** Track constant reference:  $Hy(k) = z(k) \rightarrow r, k \rightarrow \infty$ 

$$x_s = Ax_s + Bu_s + B_d \hat{d}_{\infty}$$
$$z_s = H(Cx_s + C_d \hat{d}_{\infty}) = r$$

$$\begin{bmatrix} A-I & B \\ HC & 0 \end{bmatrix} \begin{bmatrix} x_s \\ u_s \end{bmatrix} = \begin{bmatrix} 0 \\ r-HC_d\hat{d} \end{bmatrix}$$



# Offset-free Tracking - Main Result

**Theorem 10.** Assuming RHC recursively feasible,  $n_d=n_y$ , unconstrained for  $k\geq j$ , and the closed loop system

$$\begin{split} x(k+1) = & Ax(k) + B\kappa(\cdot) + B_d d \text{ with } (\cdot) = (\hat{x}, \hat{d}, r) \\ \hat{x}(k+1) = & (A + L_x C) \hat{x}(k) + (B_d + L_x C_d) \hat{d}(k) \\ & + B\kappa(\cdot) - L_x y(k) \\ \hat{d}(k+1) = & L_d C \hat{x}(k) + (\mathbb{I} + L_d C_d) \hat{d}(k) - L_d y(k) \end{split}$$
 converges, then  $z(k) = Hy(k) \rightarrow r$  as  $k \rightarrow \infty$ 

#### 6.3 Soft Constraints

 $l_{\epsilon}(\epsilon_i) + = v|\epsilon_i|_{1/\infty}$ 

Input constraints are dictated by physical constraints on the actuators and are usually hard

**State/output constraints** arise from practical restrictions on the allowed operating range and are **rarely hard** 

Hard state/output constraints always lead to complications in the controller implementation

## **Soft Constrained MPC**

$$\begin{aligned} & \min_{u} \sum_{i=0}^{N-1} x_{i}^{\top}Qx_{i} + u_{i}^{\top}Ru_{i} + \boldsymbol{l_{\epsilon}(\epsilon_{i})} + x_{N}^{\top}Px_{i} + \boldsymbol{l_{\epsilon}(\epsilon_{N})} \\ & \text{Quadratic penalty} \\ & \boldsymbol{l_{\epsilon}(\epsilon_{i}) = \epsilon_{i}^{\top}S\epsilon_{i}} \\ & \text{(e.g } S = Q) \\ & \text{+ linear norm penalty} \end{aligned} \qquad \begin{aligned} & \text{Constraints} \\ & x_{i+1} = Ax_{i} + Bu_{i} \\ & H_{x}x_{i} \leq k_{x} + \epsilon_{i} \\ & H_{u}u_{i} \leq k_{u} \end{aligned}$$

 $\epsilon_i > 0$  slack variable

$$\begin{array}{lll} \textbf{Original} & \min_z f(z) & \textbf{Softened} & \min_{z,\epsilon} f(z) + l_\epsilon(\epsilon) \\ & \text{s.t. } g(z) \leq 0 & \text{s.t. } g(z) \leq \epsilon \\ & \epsilon \geq 0 & \end{array}$$

**Requirement on**  $l_{\epsilon}(\epsilon)$  If the original problem has a feasible solution  $z^{\star}$ , then the softened problem should have the same solution  $z^{\star}$ , and  $\epsilon=0$ .

**Theorem 11** (Exact Penalty Funtcion).  $l_{\epsilon}(\epsilon) = v \cdot \epsilon$  satisfies requirement for any  $v > \lambda^{\star} \geq 0$ , where  $\lambda^{\star}$  is optimal Lagrange multiplier for original problem

#### 7 Robust MPC

Uncertain System  $x(k+1) = g(x(k), u(k), w(k); \theta)$ 

#### **Robust Constraint Satisfaction**

**Idea** Compute a set of tighter constraints such that if the nominal system meets these constraints, then the uncertain system will too. We then do MPC on the nominal system.

Goal Ensure constraints satisfied for the MPC sequence.

Disturbance reachable set  $\mathcal{F}_i = igoplus_{j=0}^{i-1} A^j \mathcal{W}$ 

# **Robust Open-Loop MPC**

$$\begin{aligned} & \min_{U} \sum_{i=0}^{N-1} l(x_i, u_i) + l_f(x_N) & & x_0 = x(k) \\ & x_i \in \mathcal{X} \ominus \mathcal{F}_i \\ & u_i \in \mathcal{U} \\ & \text{s.t. } x_{i+1} = Ax_i + Bu_i & & x_N \in \mathcal{X}_f \ominus \mathcal{F}_N \end{aligned}$$

#### **Closed Loop Robust MPC**

Idea Separate the available control authority into two parts:

$$z(k+1) = Az(k) + Bv(k)$$

steers noise-free nominal system to origin

$$u_i = K(x_i - z_i) + v_i$$

compensates for deviations, i.e. a *tracking* controller, to keep the real trajectory close to the nominal system.

 $\Rightarrow$  We fix the linear feedback controller K offline, and optimize over the nominal inputs  $\{v_0,...,v_{N-1}\}$  and nominal trajectory  $\{z_0,...,z_N\}$ , which results in a convex problem.

$$e_{i+1} = x_{i+1} - z_{i+1} = (A + BK)e_i + w_i$$

#### 7.1 Robust Constraint-Tightening MPC

# **Robust Constraint-Tightening MPC**

$$\begin{aligned} \min_{Z,V} \sum_{i=0}^{N-1} l(z_i,v_i) + l_f(z_N) & z_0 = x(k) \\ \sup_{z_i \in \mathcal{X}} & \cup \mathcal{F}_i \\ \text{subj. to } z_{i+1} = Az_i + Bv_i & u_i \in \mathcal{U} \ominus K(\mathcal{F}_i) \\ & z_N \in \mathcal{X}_f^{ct} \ominus \mathcal{F}_N \\ \mathcal{F}_0 := 0 & F_i := \mathcal{W} \oplus A_K \mathcal{W} \oplus \dots A_K^{i-1} \mathcal{W}, \end{aligned}$$

#### 7.2 Robust Tube MPC

**Idea** Ignore noise and plan the nominal trajectory, bound maximum error at any time with RPI set  $\mathcal{E}: \epsilon_i \in \mathcal{E} \epsilon_{i+1} \in \mathcal{E}$ 

Ideally  ${\mathcal E}$  is selected as the minimum RPI set  $F_{\infty}$ 

We know that the real trajectory stays 'nearby' the nominal onebecause we plan to apply the controllerin the future(we won't actually do this, but it's a valid sub-optimal plan)

We must ensure that all possible state trajectories satisfy the constraints This is now equivalent to ensuring that (address input constraints later)

What do we need to make this work?

#### Compute the set E that the error will remain inside

Previously we wanted the **maximum robust invariant set**, or the largest set in which our terminal control law works.

We now want the **minimum robust invariant set**, or the smallest set that the state will remain inside despite the noise.

Modify constraints on nominal trajectory  $\{z_i\}$ 

$$x_i \in z_i \oplus \mathcal{E} = \{z_i + e | e \in \mathcal{E}\}$$

# **Tube MPC**

**Theorem 12** (Robust Invariance of Tube MPC). The set  $\mathcal{Z}:=\{x|\mathcal{Z}(x)\neq\emptyset\}$  is a robust invariant set of the system  $x(k+1)=Ax(k)+B\mu_{\text{tube}}(x(k))+w(k)$  subject to the constraints  $x,u\in\mathcal{X}\times\mathcal{U}$ .

**Theorem 13** (Robust Stability of Tube MPC). The state x(k) of the system  $x(k+1) = Ax(k) + B\mu_{\text{tube}}(x(k)) + w(k)$  converges to the limit of the set  $\mathcal{E}$ .

#### **Tube MPC - Quick Summary**

To implement tube MPC:

- Offline -
- 1. Stabilizing controller K so that A+BK is (Schur) stable
- 2. Compute the minimal robust invariant set  $E=F_{\infty}$  for the system  $x(k+1)=(A+BK)x(k)+w(k), w\in \mathcal{W}^1$

- 3. Compute tightened constraints  $\bar{\mathcal{X}}:=\mathcal{X}\ominus\mathcal{E}, \bar{\mathcal{U}}:=\mathcal{U}\ominus K\mathcal{E}$
- 4. Choose terminal weight function  $l_f$  and constraint  $\mathcal{X}_f$  satisfying assumptions\*
- Online -
- 1. Measure / estimate state  $\boldsymbol{x}$
- 2. Solve optimization problem for  $(V^\star(x_0), Z^\star(x_0))$
- 3. Set the input to  $u=K(x-z_0^\star(x))+v_0^\star(x)$

# 8 Implementation

Two options:

- Iterative optimization methods
- Explicit solution

EXPLICIT:

The CFTOC problem is a **multiparametric quadratic program** (mp-QP)

Let I:=1,...,m be the set of constraint indices. **Definition 24** (Active Set). A(x) and it's complement NA(x)

$$\begin{split} A(x) := & \{ j \in I : G_j z^{\star}(x) - S_j x = w_j \} \\ NA(x) := & \{ j \in I : G_j z^{\star}(x) - S_j x < w_j \} \end{split}$$

**Definition 25** (Critical Region).  $CR_A$  is set of parameters x for which set  $A\subseteq I$  of constraints i active at the optimum. For given  $\bar{x}\in\mathcal{K}^\star$  let  $(A,NA):=(A(\bar{x}),NA(\bar{X}))$ . Then

$$CR_A:=\{x\in\mathcal{K}^\star:A(x)=A\}$$
 (states share active set)

#### Online evaluation: Point location

Sequential search

Logarithmic search

OPTIMIZATION

L-Smooth

(UN-)CONSTRAINED OPTIMIZATION

Projected Gradient Method

```
def get_next_u(y: Measurement, r: Reference):
    System handler for offset-free tracking
    # approximate state, disturbance
    x, d = estimator(y)
    # find steady state und generate delta
    x_s, u_s = target_selector(x, r, d)
    x_delta = x - x_s
    # call solver with new parameter
    u_delta = mpc_regulator(x_delta, x_s, u_s)
    u = u_delta + u_s
```