Семинар 3

Задачи:

1.	Пусть ξ – случайная величина такая, что $P(\xi=-1)=\frac{1}{4}$ и $P(\xi=2)=\frac{1}{4}$ и для любых точек $a,b\in[0,1]$ с условием $a< b$ верно $P(\xi\in[a,b])=\frac{b-a}{2}$. Нарисуйте график функции распределения $F_{\xi}(x)=P(\xi\leqslant x)$.
	Решение. Ответ:
2.	В равностороннем треугольнике ABC площади 1 выбираем точку $M.$ Найти математическое ожидание площади $ABM.$
	Peшeние. Ответ: $\frac{1}{3}$
3.	Какую наибольшую дисперсию может иметь случайная величина, принимающая значения на отрезке от 0 до 1 ?
	Peшeние. Ответ: $\frac{1}{4}$
4.	Найдите математическое ожидание числа неподвижных точек для случайной перестановки на n элементах.
	<i>Решение.</i> Ответ: 1
5.	Отрезок $[0,1]$ разбит двумя случайными точками на три части. Найдите математическое ожидание длины меньшей из частей.
	Peшeние. Ответ: $\frac{1}{18}$
6.	Рассмотрим случайную перестановку $P=(p_1,p_2,\ldots,p_n)$ натуральных чисел от 1 до n . Пару чисел (i,j) назовем «обменом», если выполняются соотношения $p_i=j,\ p_j=i$. Вычислите математическое ожидание количества обменов в перестановке P (перестановка выбирается случайно равновероятно из множества всех перестановок от 1 до n).
	$Peшeнue.$ Ответ: $\frac{1}{2}$
7.	На окружности выбираются две случайные точки A и B . Найдите математическое ожидание площади меньшего из сегментов, на которые хорда AB разбивает круг.
	$Peшение.$ Ответ: $\frac{R^2}{2} \left(\frac{\pi}{2} - \frac{1}{\pi} \right)$, где R – радиус окружности.
8.	Робот движется по клеткам бесконечной шахматной доски. Один его шаг — это перемещение на случайную из восьми соседних клеток. Найдите математическое ожидание модуля разности между количеством черных и количеством белых клеток, на которых робот побывал за n шагов (каждая клетка считается столько раз, сколько на ней побывал робот). Ответ представьте в виде компактного выражения.
	Решение. Ответ:
9.	В ряд расположены m предметов. Случайно выбираются k предметов, $k < m$. Случайная величина X равна количеству таких предметов i , что i выбран, а все его соседи не выбраны. Найдите математическое ожидание X .
	Решение. Ответ:
10.	Случайная величина X равна длине цикла, содержащего одновременно элементы 1 и 2, при случайной перестановке множества $1, 2, \ldots, n$. Если такого цикла нет, то $X = 0$. Найдите распределение случайной

величины X и ее математическое ожидание.

	Решение. Ответ:	
11.	На отрезок бросаются две точки. Найти математическое ожидание и дисперсию расстояния между ними	
	Решение. Ответ:	
12.	Найти математическое ожидание и дисперсию величины ξ с плотностью $p(x)=\frac{1}{2\alpha}e^{-\frac{ x-a }{\alpha}}.$	
	Решение. Ответ:	
13.	Найти математическое ожидание и дисперсию числа смен успеха на неуспех и неуспеха на успех в схеме Бернули.	Э
	Решение. Ответ:	
14.	Пусть ξ_1, ξ_2 — случайные пуассоновские величины с параметрами λ_1 и λ_2 соответственно, причем $\lambda_1 \leqslant \lambda_2$ Доказать, что для любого $t>0$ выполняется $P(\xi_1\leqslant t)\geqslant P(\xi_2\leqslant t).$	
	Решение.]
15.	Пусть ξ – геометрически распределенная случайная величина. Найти распределение величины $\eta=\xi \frac{1+(-1)^\xi}{2}$	٠.
	Решение. Ответ:]
16.	Пусть $\mathbb{E}\xi=0$. Доказать, что $\mathbb{E} \xi \leqslant \frac{1}{2}(\mathbb{D}\xi+1)$.	
	Решение.	
17.	Показать, что $\inf_{-\infty < a < \infty} \mathbb{E}(\xi - a)^2$ достигается при $a = \mathbb{E}\xi$ и, следовательно, $\inf_{-\infty < a < \infty} \mathbb{E}(\xi - a)^2 = \mathbb{D}\xi$.	
	Решение.	
18.	Пусть $P_{\xi}(x) = P(\xi = x)$ и $F_{\xi}(x) = P(\xi \leqslant x)$. Показать, что для $a > 0$ и $-\infty < b < \infty$	
	$P_{a\xi+b}(x) = P_{\xi}\left(\frac{x-b}{a}\right)$ и $F_{a\xi+b}(x) = F_{\xi}\left(\frac{x-b}{a}\right)$	
	Показать также, что для $y\geqslant 0$	
	$F_{\xi^2}(y) = F_{\xi}(+\sqrt{y}) - F_{\xi}(-\sqrt{y}) + P_{\xi}(-\sqrt{y})$	
	и для $\xi^+ = \max(\xi,0)$ $F_{\xi^+}(x) = \begin{cases} 0, & x<0\\ F_{\xi}(x), & x\geqslant 0 \end{cases}$	
	Решение.	
19.	Привести пример двух случайных величин ξ и η , имеющих одну и ту же функцию распределения $(F_{\xi}=F_{\eta})$ но таких, что $P(\xi\neq\eta)>0$.	,
	Решение.]
20.	Пусть ξ, η и ζ – случайные величины, причем функции распределения величин ξ и η совпадают. Верно ли что тогда функции распределения величин $\xi\zeta$ и $\eta\zeta$ совпадают?	.,
	Решение. Ответ: нет	٦