3.3.2 — Исследование вольт-амперной характеристики вакуумного диода.

Цель работы. Определение удельного заряда электрона на основе закона «трёх вторых». В работе используются: вакуумный диод, микроамперметр, вольтметр, стабилизированные источники тока.

Теоретическая часть. В основе работы вакуумного диода лежит явление термоэлектронной эмиссии, при которой электрон совершает работу выхода с поверхности твердого тела за счёт кинетической энергии теплового движения. Диод имеет простое устройство и состоит из двух частей – катода и анода. На катод подается некоторый ток, называемый *током накала*, за счёт которого он нагревается и эмитирует электроны. Между катодом и анодом подается постоянное напряжение, иными словами, создается постоянное электрическое поле, увлекающее к аноду эмитированные электроны – возникает электрический ток. При постоянной температуре катода количество эмитируемых в единицу времени электронов постоянно, благодаря чему при некотором напряжении $U_{\text{нас}}$ возникает эффект насыщения. Более того, сила тока зависит от напря-

Рис. 1: Схема вакуумного диода

жения отнюдь не по линейному закону, поскольку поток электронов в пространстве между катодом и анодом создает некоторое дополнительное электрическое поле. Эта зависимость имеет степенной характер и называется законом «mp"ex вторых»:

$$I = cV^{\frac{3}{2}}. (1)$$

Приведём её упрощенный вывод. Рассмотрим плоский диод (см. рисунок), направим ось x перпендикулярно катоду в сторону анода. Тогда суть задачи сводится к решению одномерного уравнения Пуассона

$$\frac{\mathrm{d}^2 \varphi}{\mathrm{d}x^2} = -\frac{\rho}{\varepsilon_0}.\tag{2}$$

Плотность тока есть $j=\rho v$, скорость электронов определим из уравнения $\frac{mv^2}{2}=e\varphi$. При этом мы считаем, что потенциал катода нулевой, и пренебрегаем начальными тепловыми скоростями. Отсюда имеем дифференциальное уравнение

$$\frac{\mathrm{d}^2\varphi}{\mathrm{d}x^2} = \sqrt{\frac{m}{2e\varphi}}j$$

с начальными условиями $\varphi(0)=0$ и $\frac{\mathrm{d} \varphi}{\mathrm{d} x}(0)=0$. Отсюда получаем

$$I = \frac{4\varepsilon_0 S}{9d^2} \sqrt{\frac{2e}{m}} V^{\frac{3}{2}},\tag{3}$$

где d — расстояние между электродами, а S — площадь катода. Мы видим, что исследование вольт-амперной характеристики вакуумного диода позволят нам определить удельный заряд электрона!

Оказывается, указанная степенная зависимость I(V) не зависит от геометрии диода, а вот постоянный множитель ещё как. Решение похожей (малоинтересной) задачи для используемого в нашей лаборатории цилиндрического диода даёт следующий результат:

$$I = \frac{8\sqrt{2}\pi\varepsilon_0 l}{9} \sqrt{\frac{e}{m}} \frac{1}{r_a \beta^2} V^{\frac{3}{2}},\tag{4}$$

где r_a — радиус анода, l — расстояние между электродами, β^2 — некая волшебная функция, возникающая при решении дифференциального уравнения.

Рис. 2: Схема экспериментальной установки

Результаты эксперимента. Исследование проводилось на диоде 2Ц2С, его параметры: l=9мм, $r_a=9.5$ мм, $\beta^2=0.98$. Схема экспериментальной установки на рисунке. Вольт-амперная характеристика снималась для разных значений тока накала; впрочем, влияния температуры катода на результат эксперимента не наблюдается. Для каждого значения тока строим график $I=f(V^{\frac{3}{2}})$ и строим линейную

аппроксимацию; иными словами, мы ищем зависимость в виде $I = kV^{\frac{3}{2}}$.

$I_{ m Hak}=1.3~{ m A}$		$I_{\scriptscriptstyle m HAK} = 1.4~{ m A}$		$I_{ m \scriptscriptstyle Hak} = 1.5~{ m A}$		$I_{\scriptscriptstyle m HAK} = 1.6~{ m A}$	
I, MKA	U, B	I, MKA	U, B	I, MKA	U, B	I, MKA	U, B
3.88	0.5	6.74	0.5	13.1	0.5	23.2	0.5
12.39	1	16.71	1	25.8	1	37.1	1
22.78	1.5	28.81	1.5	41.7	1.5	56.7	1.5
38.34	2	44.2	2	59.4	2	75.2	2
54.5	2.5	62.8	2.5	79.4	2.5	95.4	2.5
72.6	3	82.5	3	95.4	3	117	3
90.7	3.5	102.2	3.5	123.7	3.5	142	3.5
111	4	126	4	145	4	166	4
134	4.5	148.6	4.5	165	4.5	194	4.5
156.1	5	174.1	5	196	5	221	5
183	5.5	198	5.5	223	5.5	246	5.5
205	6	226	6	249	6	278	6
261.5	7	283	7	309	7	339	7
320	8	344	8	378	8	410	8
390	9	413	9	446	9	480	9
454	10	485	10	556	10	598	10
893	15	942	15	990	15	1045	15
1400	20	1468	20	1535	20	1600	20
2006	25	2090	25	2160	25	2242	25
2663	30	2755	30	2850	30	2943	30
3368	35	3484	35	3589	35	3690	35
4136	40	4265	40	4393	40	4502	40
4954	45	5192	45	5324	45	5448	45
5896	50	6090	50	6235	50	6372	50

Таблица 1: Экспериментальные данные.

Current-voltage characteristic of a vacuum tube diode, cathode's current = 1.3A

Рис. 3: $I_{\text{нак}} = 1.3 \text{ A}, k = 16.54 \pm 0.06 \text{ мкA/B}^{\frac{3}{2}}.$

Current-voltage characteristic of a vacuum tube diode, cathode's current = 1.4A

Рис. 4: $I_{\text{нак}} = 1.4 \text{ A}, k = 17.13 \pm 0.05 \text{ мкA/B}^{\frac{3}{2}}.$

Current-voltage characteristic of a vacuum tube diode, cathode's current = 1.5A

Рис. 5: $I_{\text{нак}} = 1.5 \text{ A}, k = 17.53 \pm 0.04 \text{ мкA/B}^{\frac{3}{2}}.$

Current-voltage characteristic of a vacuum tube diode, cathode's current = 1.6A

Рис. 6: $I_{\text{нак}}=1.6 \; \text{A}, \, k=17.89 \pm 0.03 \; \text{мкA/B}^{\frac{3}{2}}.$

Усредняя результаты, мы получаем значение удельного заряда электрона, используя формулу 4:

$$k = 17.27 \pm 0.04 \text{ мкA/B}^{\frac{3}{2}} \quad \Rightarrow \quad \frac{e}{m} = (2.4 \pm 0.6) \times 10^{11} \text{ Кл/кг}.$$

Заметим, что табличное значение удельного заряда составляет $1.7 \times 10^{11}~{\rm K}_{\rm Л}/{\rm k}_{\rm F}$; таким образом, наш метод дает вполне приемлемую точность.

Вывод. Справедливость закона «трёх-вторых» проверена экспериментально для частного случая геометрии вакуумного диода. Показано, как данный метод может быть использован для измерения удельного заряда электрона; полученные данные в пределах точности измерений хорошо соответствуют известным табличным значениям.