UML: Sequence diagram

Gianluca Pironato

Sequence diagram in UML

- Mostrano come diversi componenti interagiscono tra loro in un ordine temporale, che a loro volta possono essere intesi come parti di un sistema oppure come classi, nel caso in cui si modelli direttamente del codice.
- Evidenziano in dettaglio la sequenza di messaggi/eventi/chiamate a metodi così da facilitare l'analisi del comportamento dinamico di un sistema.
- Vengono utilizzati per documentare processi e comprendere i requisiti di un programma, al di là dei linguaggi di programmazione scelti.
- Possono aiutare anche nell'individuazione di casi d'uso (es. mi accorgo che non gestisco alcune condizioni) o, al contrario, nella comprensione a fondo dei meccanismi dietro a un certo caso d'uso (es. prima di passare alla codifica).

Elementi base

Attori e/o oggetti:

- gli attori vengono rappresentati con figure umane stilizzate e sono entità esterne che interagiscono con il sistema (come quelli dello use-case diagram);
- gli oggetti vengono invece rappresentati con rettangoli e sono le componenti interne del sistema o le classi di codice.
- ▶ se il diagramma deve rappresentare istanze specifiche di certe classi e non le classi in generale allora si pone nel rettangolo il nome dell'istanza e la si sottolinea.
- ▶ Lifeline: linea tratteggiata verticale che rappresenta l'esistenza di un attore o oggetto nel tempo; leggere il diagramma scendendo lungo la lifeline equivale a visualizzare il passare del tempo.

Messaggi

- Esprimono le comunicazioni o le interazioni (più generale) tra attori e oggetti.
- Esistono due tipi principali di messaggi:
 - messaggi di invio: rappresentati da freccia con linea continua, indicano l'invio di una richiesta o l'esecuzione di un'azione (sincrona se con punta della freccia robusta, asincrona se con punta della freccia stilizzata);
 - messaggi di ritorno: rappresentati da freccia con linea tratteggiata, indicano le risposte o restituzioni di informazioni.
- ► I messaggi vengono disposti lungo le lifeline in ordine temporale, dall'alto verso il basso e da sinistra verso destra.
- ➤ Se un'azione essenziale da indicare nel diagramma prende luogo nel contesto di un solo attore, la freccia corrispondente risulterà essere un cappio sulla lifeline dell'attore.

Messaggi

N.B. un diagramma come questo ci permette, per esempio, di dire che getAvailableReports() è un metodo della classe ReportingSystem.

Messaggi condizionali

Vedasi l'uso della guardia sul messaggio che viene inviato solo se rispettata una certa condizione.

Box di attivazione

- Gli activation boxes evidenziano quando e per quanto tempo un oggetto è attivo, ovvero sta eseguendo un processo (invia e/o riceve).
- ► Vengono disegnati lungo le lifeline e mostrano visivamente l'intervallo in cui un oggetto elabora un messaggio.
- Questo aiuta a capire il tempo di esecuzione e l'ordine delle operazioni.

Frame alt

- In situazioni in cui il flusso di messaggi varia a seconda di condizioni, si utilizzano i frame alternativi.
- Un frame alternativo delimita due scenari mutuamente esclusivi, ad esempio:
 - se la carta è valida, allora l'atm chiede il pin;
 - se la carta non è valida, allora l'atm espelle la carta.
- L'uso di frame alternativi permette di visualizzare le decisioni e di ramificare i flussi di esecuzione nel diagramma.

Frame alt

Frame opt

Se il frame alt rappresenta il costrutto if-then-else, il frame opt è invece il solo ramo vero del costrutto, ovvero if-then.

Frame loop

Infine, anche il costrutto di iterazione è disponibile (nella documentazione UML si trovano più frame).

Ulteriori dettagli

- I diagrammi di sequenza possono rappresentare interazioni molto complesse:
 - le etichette dei messaggi possono rappresentare chiamate a metodi o funzioni specifiche;
 - possono essere utilizzati per modellare interazioni asincrone o sincrone;
 - possono essere aggiunti note e commenti per chiarire il funzionamento di particolari scambi.
- Un diagramma chiaro permette di comprendere il flusso di informazioni e identificare eventuali colli di bottiglia o errori.

Conclusioni

- ▶ I diagrammi di sequenza in uml sono strumenti potenti per visualizzare aspetti comportamentali del sistema.
- Si possono utilizzare per fare documentazione di processi, per analizzare i requisiti di un sistema e comunque in diverse fasi del ciclo di vita del software.
- Comprendere la notazione è essenziale per progettare e comunicare soluzioni software efficaci.

Fonti

- Diagrammi di sequenza, IBM https://www.ibm.com/docs/ en/rsm/7.5.0?topic=uml-sequence-diagrams
- Dettaglio notazioni diagrammi di sequenza, IBM https:// developer.ibm.com/articles/the-sequence-diagram/