GPU-Acceleration of Hejhal's Algorithm

Alex Karlovitz

A graphics processing unit (GPU) is a specialized electronic circuit originally designed for efficient computer graphics and image processing. GPUs support parallel computation on large blocks of data, making them useful for large-scale linear algebra routines. In this document, we go through the details for running Hejhal's algorithm on a GPU. The software is implemented in PyTorch, a python library for machine learning which supports GPU operations.

Appendix: Series Expansion of the K-Bessel Function

The K-Bessel function is a solution to the modified Bessel's equation

$$x^{2}y'' + xy' - (x^{2} + \nu^{2})y = 0$$
(1)

where ν is a (complex) parameter. Specifically, one defines a pair of standard solutions I_{ν} and K_{ν} to (1) as follows.

$$I_{\nu}(x) = \left(\frac{x}{2}\right)^{\nu} \sum_{k=0}^{\infty} \frac{1}{k!(\nu+1)_k} \left(\frac{x}{2}\right)^{2k}$$

where $(a)_n$ is the rising Pochhammer symbol. K_{ν} is the solution to (1) with the asymptotic

$$K_{\nu}(x) \sim \sqrt{\pi/(2x)}e^{-x}$$

as $x \to \infty$. To write down a series expansion, we can use the formula

$$K_{\nu}(z) = \frac{1}{2}\pi \frac{I_{-\nu}(z) - I_{\nu}(z)}{\sin(\nu \pi)}$$

Note: this formula is valid only for non-integer ν ; however, the limit exists as ν approaches integers, so we can extend the formula in this manner.

In any case, ν will not be an integer in the applications to Hejhal's algorithm, so we can directly use the relation to I_{ν} to derive a series expansion for K_{ν} . Combining the series expansions for $I_{-\nu}$ and I_{ν} , this gives

$$K_{\nu}(z) = \frac{\pi}{2\sin(\nu\pi)} \sum_{k=0}^{\infty} \frac{(z/2)^{2k}}{k!} \left(\frac{(z/2)^{-\nu}}{(1-\nu)_k} - \frac{(z/2)^{\nu}}{(1+\nu)_k} \right)$$