ANALOG VS DIGITAL

The Basis of all communication

Analog Communication

- Any type of communication that uses physical properties of a media to convey a signal.
 - Example:
 - Vinyl records: Each bump and dent in the disc moves the reading head in a specific way to restitute sound
 - Advantages:
 - The signal is restituted as is, if the reader is calibrated to the writer the signal will be true
 - Very low or even no restitution latency
 - Disadvantages:
 - No possibility of error control
 - Density of recording is limited to the physical properties of the media

Digital Communication

- Uses a universal coding system enabling media independent transmission and reception of data.
 - Binary is the 2-state coding system used for digital communication
 - Digital uses analog features, properties, to convey a state, a binary
 0 or 1
 - Advantages:
 - The data is media independent because it sits above analog
 - Data restitution requires assembly of the bits, process which can provide error control
 - Disadvantages:
 - Induces latency due to the decoding/translation process
 - Faults in the analog media can corrupt a whole portion of the message

Digital Coding system

- Binary values (0,1), bits, are grouped by 8 to be read and form an octet/Byte
- Each octet can then be translated to a decimal value that can be translated to a character
 - Known as UTF-8 encoding, is the most popular encoding for WWW since 2007
 - Other encoding types, such as US-ASCII, use a different number of bits
 (7) to encode characters
 - As long as source and destination agree on the reading / conversion methods, anything can be used

23/01/2013 5

Binary Translation

 To read / convert an octet to decimal you add together the weight of each bit coded to 1

The position of the bit in the octet defines the weight

Position	1	2	3	4	5	6	7	8
Weight	128	64	32	16	8	4	2	1

- In an octet the left most bit holds the weight of 128, each following value is half the weight of the previous
- Example:
 - In the octet 10100011 we will only add together the weights of the 1st,3rd,
 7th and 8th bits

23/01/2013 6

Base-2 to Base-10

- Example 10100011:
 - Octets base-2 can be converted to decimal base-10 using the conversion table :

Position	1	2	3	4	5	6	7	8	
Weight	128	64	32	16	8	4	2	1	
Example	1	0	1	0	0	0	1	1	
Result	128	+	32		+		2	+ 1	= 163

Base-2 to Base-16

- Example 10100011:
 - Octets base-2 can be converted to hexadecimal base-16 by grouping the bits by 4 and then translating them:

Position	1	2	3	4	5	6	7	8
Weight	8	4	2	1	8	4	2	1
Example	1	0	1	0	0	0	1	1
Result	8	+	2				2 + 1	
		=					:	=
	10					3		

Hexadecimal notations use 0-9 and A-F, so our result would be A3