孙

存名

平市

电子科技大学研究生试卷

(考试时间: <u>16:20</u> 至 <u>18:20</u>, 共 2 小时)

教学方式 课堂讲授 考核日期 <u>2013</u>年 12 月 27 日 成绩 考核方式: (学生填写) **符号说明:** E 表示单位矩阵,Vec(A)表示矩阵 A 向量化算符, λ_i 和 σ_i 分别表示矩阵的第 i个特征值和奇异值, N(A) 和 R(A) 分别表示矩阵 A 的核和值域, rank(A)表示矩阵 A 的秩。 一. 判断题,对的打√,错得打×。(每题4分,共20分) 3. 设 $A = \begin{bmatrix} 2\pi & 0 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$,则 $\cos A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ 。..... 4. 设 *A*, *B* 为任意矩阵,则 (*A*⊗*B*)⁺ = *A*⁺⊗*B*⁺。......(5. 设 $A \in C^{n \times n}$,其奇异值为 $\sigma_1 \ge \cdots \ge \sigma_n$,特征值为 $\lambda_1, \cdots, \lambda_n$,则 $\sigma_n \le \left| \lambda_i \right| \le \sigma_1 \circ \cdots$. 二. 选择题(每题4分,共20分) 1. 若 $A ∈ C^{n × n}$ 是幂等矩阵,则下列说法**错误**的是......() A. rank(A)等于非零特征值的个数. B. 矩阵 A 可对角化. D. $C^n = R(A) \oplus N(A)$. C. N(A)=R(E-A).2. 设 $A,B \in C^{n \times n}$,下列说法#的是....... A. $\operatorname{tr}(A \otimes B) = \operatorname{tr}(A)\operatorname{tr}(B)$. B. $\operatorname{rank}(A \otimes B) = \operatorname{rank}(A)\operatorname{rank}(B)$. C. $\mathbf{Vec}(AXB) = (B \otimes A)\mathbf{Vec}(X)$. D. 若 $\mathrm{rank}(AB) = \mathrm{rank}(A)$, 则 R(A) = R(AB).

3.下列结论 <i>错误</i> 的是()
A. n 阶矩阵 A 的 n 个盖尔圆两两互不相交,则 A 为单纯矩阵.
B. λ 为 n 阶酉矩阵 U 的特征值,则 $ \lambda =1$.
C. 正规矩阵的特征值与奇异值相同.
D. n 阶方阵 A 有零特征值,则 A 不是严格对角占优矩阵.
4. 下列结论 <u>正确</u> 的是()
A. A 为 n 阶方阵,则 $r(A^HA) \ge A _1 \cdot A _{\infty}$.
B. 设 A 为正定 Hermite 矩阵,则 $A = R^H R$ 分解唯一,其中 R 为正线上三角复矩阵.
C. 若 n 阶方阵 A 满足 $A^H = A$, 则 $\sqrt{x^H A x}$ 为 C^n 上的向量范数.
D. $A 为 n 方阵,则 (A^2)^+ = (A^+)^2$.
5.关于收敛矩阵 A 等价 说法 <i>错误</i> 的是
A. $\ A\ _{2} < 1$. B. 谱半径 $r(A) < 1$. C. $\sum_{k=0}^{\infty} A^{k}$ 收敛. D. $\lim_{k \to 0} A^{k} = O$.
三. 计算和证明(共60分)
1. 设 $A \in P^{m \times n}$, 证明: 从属于向量 2 范数 $\ x\ _2$ 的算子范数为 $\ A\ _2 = \sqrt{r(A^H A)}$, 其中 $r(A^H A)$ 是
矩阵 $A^H A$ 的谱半径. (10 分)

2. 设 $A \in C^{n \times n}$, $A^H = A$, $f(x) = x^H A x$, $x \in C^n$, 证明: $a \|x\|_2 = 1$ 的情况下f(x) 有界,并求出最大值和最小值。(即证明 Rayleigh-Ritz 定理)。 (10 分)

揪

- 3. 已知矩阵 $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$,
- (1) 求矩阵 A 的最大秩分解; (2) 求 A^+ ; (3)判断方程组 Ax = b 是否有解?
- (4) 求方程组 Ax = b 的最小范数解及通解或最小二乘解通解及其最佳逼近解?(指出 所求的是哪种解).(15 分)

4. 设 $A \in C_r^{m \times n}$ (r > 0)的正奇异值为 $\sigma_1 \ge \cdots \ge \sigma_r$, $B = \left[A^+, A^+\right]$ 的正奇异值为

$$\eta_1 \geq \cdots \geq \eta_r$$
,证明: $\sum_{i=1}^r \eta_i^2 = 2\sum_{i=1}^r \frac{1}{\sigma_i^2}$ 。(10 分)

5. 设 d_i 为m个非零常数, $P = (\alpha_1, \alpha_2, \dots, \alpha_m) \in C^{n \times m}$,

$$A = d_1 \alpha_1 \alpha_1^H + d_2 \alpha_2 \alpha_2^H + \dots + d_m \alpha_m \alpha_m^H,$$

证明: 矩阵 P 列满秩的**充要条件**是 rank(A) = m. (10 分)

6. 设
$$A \in C^{n \times n}$$
,且 $\|A\|_2 < 1$,证明: $(E+A)$ 可逆,且 $\|(E+A)^{-1}\|_2 \le \frac{1}{1-\|A\|_2}$ (5分)

2013 级矩阵理论评分标准

(2)
$$A^{+} = D^{H} (DD^{H})^{-1} (B^{H}B)^{-1} B^{H} = \frac{1}{6} \begin{bmatrix} 2 & 1 & -1 \\ 2 & 1 & -1 \\ -1 & 1 & 2 \end{bmatrix} \dots 7$$

4. 证明: 矩阵
$$A$$
 的奇异值分解 $A=U\begin{pmatrix}D&0\\0&0\end{pmatrix}V$,其中 $D=diag(\sigma_1,\cdots,\sigma_r)$, ………3 分

5.证明:必要性:因为 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 线性无关,
$rank(P) = m, rank(P^{H}P) = rank(P) = m, \dots 2$
P^HP 是可逆的. $P^HAP = P^HP \begin{pmatrix} d_1 & & \\ & \ddots & \\ & & d_m \end{pmatrix} P^HP$,4分
可得, $rank(P^HAP) = m$,故有 $m = rank(P^HAP) \le rank(A) \le rank(P) \le m$,
证得 $rank(A) = m$
充分性: $rank(A) = m, A = (\alpha_1, \alpha_2, \dots, \alpha_m)$ $\begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & d_m \end{bmatrix} \begin{pmatrix} \alpha_1^H \\ \alpha_2^H \\ \vdots \\ \alpha_m^H \end{pmatrix} \dots \dots \otimes \mathcal{H}$
$P = (\alpha_1, \alpha_2, \cdots, \alpha_m)$,则 $A = P \begin{pmatrix} d_1 & & \\ & \ddots & \\ & & d_m \end{pmatrix} P^H$, $m = rank(A) \leq rank(P) \leq m$,故有,
$rank(P) = m.$ 故 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关
6. 证明:

 $\forall x \neq 0 \in C^n, ||(E+A)x||_2 = ||x+Ax||_2 \geq ||x||_2 - ||Ax||_2 \geq ||x||_2 - ||A||_2 ||x||_2$

 $(E+A)^{-1}(E+A) = E, (E+A)^{-1} = E - A(E+A)^{-1}, \dots 4$

 $\|(E+A)^{-1}\|_{2} = \|E-A(E+A)^{-1}\|_{2} \le \|E\|_{2} + \|A\|_{2} \|(E+A)^{-1}\|_{2}$

 $= ||x||_2 (1 - ||A||_2) > 0.$