Predicting Property Value

Sakava Kiv	Alex Thibeaux	
William Jones	Chris Mathew	

TABLE OF CONTENTS

OI Purpose & -Background -

Purpose of this project and What is property value

O2 EDA

Initial look into the data, regressions, and KNN

 \supset 3 Database \longrightarrow

Relational database design and implementation

Purpose & Background

01.

Purpose

To gain experience applying data science techniques on real-world datasets and implementing a database

Gain insights in the real estate market

Predicting the property value

What is property value?

- Probable price of a given property at a given time
- It is important for real estate deals and assessing the property tax
- There are many factors that affect the property value i.e. location, size, condition of building

Available Data

taxamount
landtaxvaluedollarcnt
taxvaluedollarcnt
structuretaxvaluedollarcount
saleprice

PROPERTY

bathrooment bathrooment calculatedbathnbr calculatedfinshedsquarefeet finishedsquarefeet12 fips lotsizesquarefeet roomcnt yearbuilt assessmentyear latitude longitude fullbathroomcnt

Identification

parcelid
propertycountylandusecode
propertycountylandusetypeid
rawcensustractandblock
regionidcity
regionidcounty
regionidzip

Exploratory Data Analysis O2.

Missing Values

From a random sample of 10,000 observations, it was determined that there were 30 parameters that could not be used in the analysis due to missing data. Imputation is not helpful for parameters that are missing more than 10% of data.

Assumptions: Multi-Linear Regression

- 1) linearity
- 2) homoskedasticity
- independence of errors
- 4) normality
- 5) independence of independent variables

Simple Linear Regression

Bathrooms

Bedrooms

Finished Sq. Ft.

Simple Linear Regression

Longitude

Zip Code

Finished Sq. Ft.

Location & History Data

Zip Code

County

Year Built

Categorical Parameters

Zip Code

County

Property Land use Type

Model RMSE

Full Model

RMSE: 0.674

Logged Model, 2017

RMSE: 0.669

Logged Model, 2016

RMSE: 0.678

K-Nearest Neighbors

RMSE: 0.725

Relational Database

03.

SQL Schema Design: Raw vs Cleaned Data

Four Tables

58 Columns

Number of columns in *raw* data tables

24 Columns

Number of columns in *cleaned* data tables

Importing the Data into MySQL Database

- Easier user-interface
- Slower loading speed

```
LOAD DATA LOCAL INFILE "C:/Users/Chris/Documents/smu grad/database/project/properties_2016.csv"
INTO TABLE properties_2016
FIELDS TERMINATED BY "

ENCLOSED BY ""

LINES TERMINATED BY '\n'

IGNORE 1 ROWS ('parcelid', 'airconditioningtypeid', 'architecturalstyletypeid', 'basementsgft', 'bathroomcnt', 'bedroomcnt', 'buildingclasstypeid',
```

LOAD DATA Statement

- More configurable
- Faster loading speed

Errors and Obstacles during Database Implementation

Managing
 Load Speeds

2. DeterminingColumn DataTypes

3. Error while loading Data using LOAD DATA statement

LOAD DATA LOCAL INFILE

Convert CSV to SQL

Error Code: 3948. Loading local data is disabled; this must be enabled on both the client and server sides

Summary Statistics with SQL

```
-- Summary Statistics:
-- Retrieve summary statistics about the home values to get an overview of the data:
-- => Total properties in three counties (Los Angeles, Orange and Ventura, California) data in 2016 = 2985217
-- => min home value = 0, max home value = 282786000, Average home value = 414485.6639, Standard deviation home value = 722871.73

SELECT

COUNT(*) AS total_properties,
MIN(taxvaluedollarcnt) AS min_home_value,
MAX(taxvaluedollarcnt) AS max_home_value,
AVG(taxvaluedollarcnt) AS avg_home_value,
STDDEV(taxvaluedollarcnt) AS stdev_home_value
FROM properties_2016;
```

	total_properties	min_home_value	max_home_value	avg_home_value	stdev_home_value
•	2985217	0	282786000	414485.6639	722871.7307041432

Average Value for Property types SQL

```
-- Average Property Value by Property Type:
-- This query calculates the average property value
-- for each property type (e.g., residential, commercial, etc.).
SELECT
  propertylandusetypeid,
  CASE propertylandusetypeid
    WHEN 0 THEN 'Unknown/Not Specified'
    WHEN 31 THEN 'Commercial/Office/Residential Mixed Used'
    WHEN 47 THEN 'Industrial'
    WHEN 246 THEN 'Triplex (3 units)'
    WHEN 247 THEN 'Quadruplex (4 units)'
    WHEN 248 THEN 'Double Wide'
    WHEN 260 THEN 'Residential General'
    WHEN 261 THEN 'Single Family Residential'
    WHEN 263 THEN 'Mobile Home'
    WHEN 264 THEN 'Townhouse'
    WHEN 265 THEN 'Cluster Home'
    WHEN 266 THEN 'Condominium'
    WHEN 267 THEN 'Multi-Family (2-4 units)'
    WHEN 269 THEN 'Cooperative'
    WHEN 270 THEN 'Condominium, Duplex (2 units)'
    WHEN 275 THEN 'Planned Unit Development (PUD)'
   ELSE 'Unknown' -- Handles any other value not listed above
  END AS property type,
  AVG(taxvaluedollarcnt) AS avg property value
FROM properties 2016
GROUP BY propertylandusetypeid;
```

	propertylandusetypeid	property_type	avg_property_value
	47	Industrial	2297121.0582
	260	Residential General	1960105.8671
	31	Commercial/Office/Residential Mixed	Used 691333.4876
	264	Townhouse	475094.8578
	248	Double Wide	471168.1080
	269	Cooperative	470533.0984
•	261	Single Family Residential	437828.2185
	247	Quadruplex (4 units)	379340.5007
	266	Condominium	348295.8650
	246	Triplex (3 units)	344641.4541
	267	Multi-Family (2-4 units)	323832.4518
	265	Cluster Home	273258.3506
	275	Planned Unit Development (PUD)	173421.2614
	263	Mobile Home	19593.9638
	0	Unknown/Not Specified	0.0000
	270	Condominium, Duplex (2 units)	0.0000

Los Angeles, California Vs Dallas, Texas

Average Single Family home of \$437,828 for California counties combined

Average Value for Property Trends (Year Built) SQL

- -- Average Property Value Trend Over Years:
- -- This query calculates the average property value based on the year
- -- the properties were built, providing insights into how property values
- -- have changed over the years.

SELECT

yearbuilt,

AVG(taxvaluedollarcnt) AS avg property value

FROM properties_2016

GROUP BY yearbuilt

ORDER BY yearbuilt;

yearbuilt	avg_property_value
)	275432.5542
1801	537285.0000
1805	268630.0000
1806	287696.5000
1807	66851.0000
1808	109836.5000
1810	167898.0000
1812	468763.8000
1815	288879.0000
1819	172396.0000
1821	154795.0000
1823	35449.0000
1824	226361.0000
1825	42240.0000
1827	94978.0000
1828	503556.0000
1829	96150.0000
1831	301264.0000
1833	285864.0000
1834	199836.0000

List continues to 2015...

Image of a single family home built in the 1900's in Los Angeles California

Feature Analysis SQL

```
-- To gain insights about the price of properties with pools vs. properties without pools,
-- you can use a SQL query to calculate various statistics such as the average, minimum,
-- and maximum property prices for each group. Here's how you can do it:

SELECT

poolcnt,

COUNT(*) AS property_count,

AVG(taxvaluedollarcnt) AS avg_property_value,

MIN(taxvaluedollarcnt) AS min_property_value,

MAX(taxvaluedollarcnt) AS max_property_value

FROM properties_2016

GROUP BY poolcnt;
```

Result Grid		ows:	: Export: 🔛 Wrap Cell Conten		
	poolcnt	property_count	avg_property_value	min_property_value	max_property_value
•	1	517534	633229.1619	0	149613482
	0	2467683	368609.7562	0	282786000

- Our model was not able to fit the data set well due to missing data in some crucial columns.
- Having a home built closer to current date increases property value
- When building the RDBMS loading the data using the LOAD DATA statement was faster than using the data import wizard.

Future Works

- Inquire to data collectors about missing data.
- Develop a stronger model by integrating different data science techniques together

Conclusion

THANKS!

DO YOU HAVE ANY QUESTIONS?

Alex Thibeaux athleeaux athleeaux

Chris Mathew

William Jones Wijones@smu.edu

Sakava Kiv skiv@smu.edu

