

Master's thesis at Technische Hochschule Ingolstadt and Quantron AG

"Development of an Energy Management System for a Fuel Cell Powered Tractor Unit"

+ supporting Life Cycle Assessment

Quantron QHM FCEV

- Fuel cell: 240 kW
- Max. e-axle power cont. / peak: 420/550 kW
- HV-battery: 124 kWh
- Curb weight tractor unit: 8.5 t
- 54 kg H₂ at 700 bar
- 700 km range with 44 t

https://www.quantron.net/q-truck/q-heavy/qhm-fcev/

Key targets energy management:

- 1. Power availability
- 2. Efficiency
- 3. Lifetime of components

What is the environmental impact of this upcycling?

The impact of newly-proposed emissions standards on commercial vehicles (fleetequipmentmag.com)

Methodology

Life Cycle Assessment in accordance with ISO 14040 & ISO 14044

Phase 1: goal and scope

→ Definition of research question and boundaries

Phase 2: inventory and analysis

- → Using the *ecoinvent* database and literature
- → Generic data (not vehicle-specific) used

Phase 3: impact assessment

→ Using Activity Browser for calculation of greenhouse gas emissions

Phase 4: interpretation

(+ Phase 5: review by TUM)

Source: LCA (Life Cycle Assessment) | Fassa Bortolo

Methodology

Scope

Our LCA takes into account:

- Production of the truck
- Usage of the truck for freight transportation:
 - Fuel (Well-to-Wheel)
 - Maintenance
 - Brake, tyre and road wear
 - Road maintenance
- Disposal of the truck

GHG emissions of truck production and disposal Circular economy approach für all categories added

Note: production includes disposal/recycling at end of life!

Main driver
Steel
Carbon fiber
Aluminum
Gold
Aluminum
Platinum, plastic

^{*} Drivetrain components w/o battery and motor, e.g. inverter, converter, on-board-charger, wiring, power distribution unit

GHG emissions of truck usage Assumptions for LCA

Main parameters	Value	Source
Average payload	19.3 tons	VECTO ¹
Diesel consumption	26.3 I / 100 km	ETC 2021 ²
WTW diesel	3.07 kg CO ₂ -eq. / I	[Gu21] ³
WTT H ₂ mix (Germany)	9.01 kg CO ₂ -eq. / kg	ISE ⁴
WTT H ₂ green (PV + wind)	2.09 kg CO ₂ -eq. / kg	ISE ⁴
Indirect emissions*	1.89·10 ⁻⁵ kg CO ₂ -eq. / tkm	ecoinvent

^{1 &}lt;u>Vehicle Energy Consumption calculation TOol - VECTO - European Commission (europa.eu)</u>

² European Truck Challenge 2021

³ https://doi.org/10.1016/j.trd.2021.102757

^{4 &}lt;u>Treibhausgas-Emissionen für Batterie- und Brennstoffzellenfahrzeuge mit Reichweiten über</u> 300 km (fraunhofer.de)

^{*} maintenance; road; brake/road/tyre wear

GHG emissions of truck usage

Break-even point with ICE @ 1 million km $(H_2 \text{ mix}) \mid 70,000 \text{ km (green } H_2)$

GHG emissions of FCEV truck product life cycle

Fuel-related emissions have the major impact on life cycle emissions!

Optimized Energy Management System via Fuzzy-Logic

Simulation results - improvements

Efficiency / Range	Lifetime	TCO
0.3 - 2.3 %	22.2 - 85.7 %	11 – 30 %

Simulation results – fuel cell operation

GHG emissions of lorry usage

Impact of optimized operation strategy: 24 t CO_2 -eq. saved (H_2 -mix) | 10 t CO_2 -eq. saved (green H_2) | one fuel cell saved

Conclusions and Outlook

LCA performed in accordance with ISO 14040 & ISO 14044:

Fuel-related emissions have the major impact on life cycle emissions.

The optimized energy management system via fuzzy-logic improves fuel efficiency up to 2.3 % and expands lifetime of fuel cell up to 86 % depending on the payload.

With average payload, this saves up to 24 t of GHG emissions per truck.

Thank you for your attention! Remaining questions?

