MA2500

FOUNDATIONS OF PROBABILITY AND STATISTICS

READING MATERIAL

2014-15

Version: 3/12/2014

Contents

2 0	The	Bivariate Normal Distribution	1
	20.1	Bivariate transformations	1
	20.2	The bivariate normal distribution	2
	20.3	Properties of the bivariate normal distribution	4
	20.4	Conditional distributions	5
	20.5	Exercises	6

Lecture 20 The Bivariate Normal Distribution

To be read in preparation for the 11.00 lecture on Wed 03 Dec in Physiology A.

20.1 Bivariate transformations	
20.2 The bivariate normal distribution	
20.3 Properties of the bivariate normal distribution	
20.4 Conditional distributions	8
20.5 Exercises	

20.1 Bivariate transformations

Definition 20.1

Let $h: \mathbb{R}^2 \to \mathbb{R}^2$ and let (u, v) = h(x, y). The *Jacobian determinant* of the transformation h is the determinant of its 2×2 matrix of partial derivatives:

$$J = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$$

Theorem 20.2

Let U and V be jointly continuous random variables, let $f_{U,V}$ be their joint PMF, let $g: \mathbb{R}^2 \to \mathbb{R}^2$ be an injective transform over the support of $f_{U,V}$ and let (X,Y)=g(U,V). Then the joint PMF of X and Y is given by

$$f_{X,Y}(x,y) = |J| f_{U,V} [g^{-1}(x,y)]$$
 where $J = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$ with $(u,v) = g^{-1}(x,y)$.

Remark 20.3

The absolute value |J| is a scale factor, which ensures that $f_{X,Y}(x,y)$ integrates to one.

Example 20.4

Let U and V be continuous random variables, and let X = U + V and Y = U - V.

- (1) Find the joint PDF of X and Y in terms of the joint PDF of U and V.
- (2) If $U, V \sim \text{Exponential}(1)$ are independent, find the joint PDF of X and Y.

Solution:

(1) • The transformation $g: \mathbb{R}^2 \to \mathbb{R}^2$ is defined by g(u, v) = (u + v, u - v).

• To compute the inverse transformation $g^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$, we solve the equations

$$x = u + v$$
 and $y = u - v$.

- This yields $u = \frac{1}{2}(x+y)$ and $v = \frac{1}{2}(x-y)$.
- Thus the inverse transformation is

$$(u,v) = g^{-1}(x,y) = \left[\frac{1}{2}(x+y), \frac{1}{2}(x-y)\right].$$

The Jacobian determinant is given by

$$J = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{vmatrix} = -\frac{1}{4} - \frac{1}{4} = -\frac{1}{2}.$$

Hence the joint PDF of X and Y is

$$\begin{split} f_{X,Y}(x,y) &= |J| f_{U,V}(u,v) \\ &= \left| -\frac{1}{2} \right| f_{U,V} \left[\frac{1}{2} (x+y), \frac{1}{2} (x-y) \right] \\ &= \frac{1}{2} f_{U,V} \left[\frac{1}{2} (x+y), \frac{1}{2} (x-y) \right]. \end{split}$$

(2) Let U and V be independent with $U, V \sim \text{Exponential}(1)$. By independence, the joint PDF of U and V is

$$f_{U,V}(u,v) = \begin{cases} e^{-(u+v)} & u,v > 0\\ 0 & \text{otherwise.} \end{cases}$$

To compute the support of $f_{X,Y}$, since u > 0 and v > 0 we have x > 0, so

- $\min(y) = \min(u v) = -x$ (which occurs when u = 0 and v = x), and
- $\max(y) = \max(u v) = x$ (which occurs when u = x and v = 0).

Thus, substituting for $u + v = \frac{1}{2}(x + y) + \frac{1}{2}(x - y) = x$, we obtain

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{2}e^{-x} & \text{for } x > 0 \text{ and } -x < y < x, \\ 0 & \text{otherwise.} \end{cases}$$

20.2 The bivariate normal distribution

Theorem 20.5

if $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$ are independent, then

$$X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$$

[Proof omitted.]

Corollary 20.6

If $U, V \sim N(0, 1)$ are independent, then $aU + bV \sim N(0, a^2 + b^2)$ for all $a, b \in \mathbb{R}$.

Definition 20.7

A pair of random variables U and V have the standard bivariate normal distribution if their joint PMF $f: \mathbb{R}^2 \to [0, \infty)$ can be written as

$$f_{U,V}(u,v) = \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)}(u^2 - 2\rho uv + v^2)\right)$$

where ρ is a constant satisfying $-1 < \rho < 1$.

Definition 20.8

A pair of random variables X and Y are said to have bivariate normal distribution with means μ_1 and μ_2 , variances σ_1^2 and σ_2^2 and correlation ρ , if their joint PMF can be written as

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right) \left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2 \right] \right)$$

The following lemma can be used to derive many properties of the bivariate normal distribution.

Lemma 20.9

Let $U, V \sim N(0, 1)$ be independent, let $\rho \in (-1, +1)$. Then the random variables

$$X = \mu_1 + \sigma_1 U,$$

$$Y = \mu_2 + \sigma_2 \left(\rho U + \sqrt{1 - \rho^2} V\right)$$

have bivariate normal distribution with means μ_1 and μ_2 , variances σ_1^2 and σ_2^2 , and correlation ρ .

Proof: To find the joint PDF of X and Y, let g(u, v) denote the transformation:

$$g(u,v) = \left[\mu_1 + \sigma_1 u, \mu_2 + \sigma_2 (\rho u + \sqrt{1-\rho^2}v)\right].$$

The inverse transformation is

$$g^{-1}(x,y) = \left(\frac{x - \mu_1}{\sigma_1}, \frac{1}{\sqrt{1 - \rho^2}} \left[\left(\frac{y - \mu_2}{\sigma_2}\right) - \rho \left(\frac{x - \mu_1}{\sigma_1}\right) \right] \right)$$

The joint PDF of X and Y is $f_{X,Y}(x,y) = |J|f_{U,V}(u,v)$, where J is the Jacobian determinant of the inverse transformation:

$$J = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} \frac{1}{\sigma_1} & 0 \\ \frac{1}{\rho\sigma_1} & \frac{1}{\sigma_2\sqrt{1-\rho^2}} \end{vmatrix} = \frac{1}{\sigma_1\sigma_2\sqrt{1-\rho^2}}$$

Because U and V are independent,

$$f_{U,V}(u,v) = f_U(u)f_V(v) = \frac{1}{2\pi} \exp\left(-\frac{1}{2}(u^2 + v^2)\right)$$
 $u, v \in \mathbb{R}$.

and since

$$u^{2} + v^{2} = \left(\frac{x - \mu_{1}}{\sigma_{1}}\right)^{2} + \frac{1}{1 - \rho^{2}} \left[\left(\frac{y - \mu_{2}}{\sigma_{2}}\right)^{2} - 2\rho \left(\frac{x - \mu_{1}}{\sigma_{1}}\right) \left(\frac{y - \mu_{2}}{\sigma_{2}}\right) + \rho^{2} \left(\frac{x - \mu_{1}}{\sigma_{1}}\right)^{2} \right]$$
$$= \frac{1}{1 - \rho^{2}} \left[\left(\frac{x - \mu_{1}}{\sigma_{1}}\right)^{2} - 2\rho \left(\frac{x - \mu_{1}}{\sigma_{1}}\right) \left(\frac{y - \mu_{2}}{\sigma_{2}}\right) + \left(\frac{y - \mu_{2}}{\sigma_{2}}\right)^{2} \right]$$

it follows that

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_1\sqrt{1-\rho^2}} \exp\left(\frac{-1}{2(1-\rho^2)} \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x-\mu_1}{\sigma_1}\right) \left(\frac{y-\mu_2}{\sigma_2}\right) + \left(\frac{y-\mu_2}{\sigma_2}\right)^2 \right] \right)$$

as required.

The following theorem shows that if X and Y have bivariate normal distribution, then any linear combination of X and Y is normally distributed.

Theorem 20.10

If $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$ then

$$aX + bY \sim N(a\mu_1 + b\mu_2, a^2\sigma_1^2 + 2ab\sigma_1\sigma_2\rho + b^2\sigma_2^2)$$

Proof: Let Z = aX + bY, let U and V be independent standard normal random variables, and let

$$X' = \mu_1 + \sigma_1 U$$

$$Y' = \mu_2 + \sigma_2 \left(\rho U + \sqrt{1 - \rho^2}V\right)$$

By Lemma 20.9, X and Y have the same joint distribution as X' and Y', so Z = aX + bY has the same distribution as

$$Z' = aX' + bY' = (a\mu_1 + b\mu_2) + (a\sigma_1 + b\sigma_2\rho)U + b\sigma_2\sqrt{1 - \rho^2}V$$

Because $U, V \sim N(0, 1)$ are independent, it follows by Corollary 20.6 that

$$Z' \sim N \left(a\mu_1 + b\mu_2, a^2\sigma_1^2 + 2ab\sigma_1\sigma_2\rho + b^2\sigma_2^2 \right),$$

so Z = aX + bY has normal distribution, as required.

20.3 Properties of the bivariate normal distribution

Theorem 20.11

Let X and Y have bivariate normal distribution with means μ_1 and μ_2 , variances σ_1^2 and σ_2^2 , and correlation ρ . Then

- (1) $X \sim N(\mu_1, \sigma_1^2)$ and $Y \sim N(\mu_2, \sigma_2^2)$,
- (2) ρ is the correlation coefficient of X and Y, and
- (3) X and Y are independent if and only if $\rho = 0$.

Proof: Let $U, V \sim N(0, 1)$ and define

$$X = \mu_1 + \sigma_1 U$$

$$Y = \mu_2 + \sigma_2 \left(\rho U + \sqrt{1 - \rho^2} V\right)$$

- (1) In the proof of Theorem 20.10:
 - taking a=1 and b=0 yields $X \sim N(\mu_1, \sigma_1^2)$, and
 - taking a = 0 and b = 1 yields $Y \sim N(\mu_2, \sigma_2^2)$.
- (2) Using the fact that Cov(aX + b, cY + d) = acCov(X, Y) for all $a, b, c, d \in \mathbb{R}$,

$$Cov(X,Y) = Cov \left[\mu_1 + \sigma_1 U, \mu_2 + \sigma_2 (\rho U + \sqrt{1 - \rho^2} V) \right]$$

$$= \sigma_1 \sigma_2 Cov(U, \rho U + \sqrt{1 - \rho^2} V)$$

$$= \sigma_1 \sigma_2 \left[\rho \mathbb{E}(U^2) + \sqrt{1 - \rho^2} \mathbb{E}(UV) \right]$$

$$= \sigma_1 \sigma_2 \rho.$$

Thus
$$\rho = \frac{\operatorname{Cov}(X)}{\sqrt{\operatorname{Var}(X)}\sqrt{\operatorname{Var}(Y)}}$$
 as required.

(3) If X and Y are independent, they are uncorrelated. If X and Y are uncorrelated then $\rho = 0$, so

the joint PDF of X and Y satisfies

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left(-\frac{1}{2} \left[\left(\frac{x-\mu_1}{\sigma_1}\right)^2 + \left(\frac{y-\mu_2}{\sigma_2}\right)^2 \right] \right)$$

$$= \frac{1}{\sqrt{2\pi}\sigma_1} \exp\left(-\frac{1}{2} \left(\frac{x-\mu_1}{\sigma_1}\right)^2 \right) \times \frac{1}{\sqrt{2\pi}\sigma_2} \exp\left(-\frac{1}{2} \left(\frac{y-\mu_2}{\sigma_2}\right)^2 \right)$$

$$= f_X(x) f_Y(y).$$

Because this holds for all $x, y \in \mathbb{R}$, it follows that X and Y are independent.

20.4 Conditional distributions

Theorem 20.12

Let X and Y have bivariate normal distribution with means μ_1 and μ_2 , variances σ_1^2 and σ_2^2 , and correlation ρ . Then the conditional distribution of Y given X = x is also normal, with conditional mean and variance given by

$$\mathbb{E}(Y|X=x) = \mu_2 + \rho \left(\frac{\sigma_2}{\sigma_1}\right)(x-\mu_1),$$

$$Var(Y|X = x) = \sigma_2^2(1 - \rho^2),$$

and the conditional mean and variance of Y given X is

$$\mathbb{E}(Y|X) = \mathbb{E}(Y) + \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(X)} [X - \mathbb{E}(X)],$$

$$Var(Y|X) = Var(Y)(1 - \rho^2).$$

Proof: Let $U, V \sim N(0, 1)$ be independent, and define the random variables

$$\begin{split} X &= \mu_1 + \sigma_1 U, \\ Y &= \mu_2 + \sigma_2 \left[\rho U + \sqrt{1 - \rho^2} V \right] \\ &= \mu_2 + \sigma_2 \left[\rho \left(\frac{X - \mu_1}{\sigma_1} \right) + \sqrt{1 - \rho^2} V \right]. \end{split}$$

If X is fixed at x, then Y is a linear transformation of V, so the conditional distribution of Y given that X = x is a normal distribution. Furthermore, since $\mathbb{E}(V) = 0$ and Var(V) = 1 we have

$$\mathbb{E}(Y|X=x) = \mu_2 + \rho\left(\frac{\sigma_2}{\sigma_1}\right)(x-\mu_1)$$

$$Var(Y|X = x) = \sigma_2^2(1 - \rho^2)$$

as required.

20.5 Exercises

Exercise 20.1

1. (a) Let X and Y be jointly continuous random variables, and let $f_{X,Y}$ be their joint PDF. Show that the PDF of the random variable X + Y can be written as

$$f_{X+Y}(t) = \int_{-\infty}^{\infty} f_{X,Y}(x, t - x) dx = \int_{-\infty}^{\infty} f_{X,Y}(t - y, y) dy.$$

- (b) Show that if $U, V \sim N(0, 1)$ are independent, then $U + V \sim N(0, 2)$. (This is a special case of Theorem 20.5.)
- 2. Let $U, V \sim N(0, 1)$. Show that the random variables X = U + V and Y = U V are independent.