习题课6-三重积分

March 15, 2018

一. 选择题

- 1. 设 $\Omega_1: x^2+y^2+z^2 \leq R^2, \Omega_2: x^2+y^2+z^2 \leq R^2, z \geq 0,$ $\Omega_3: x^2+y^2+z^2 \leq R^2, x \geq 0, y \geq 0, z \geq 0,$ 则下列等式成立的是
- (A) $\iiint_{\Omega_{1}} f(x, y, z) dxdydz = 2 \iiint_{\Omega_{2}} f(x, y, z) dxdydz$
- (B) $\iiint_{\Omega_1} f(x^2, y, z) dx dy dz = 2 \iiint_{\Omega_2} f(x^2, y, z) dx dy dz$
- (C) $\iiint_{\Omega_1} f(x, y, z^2) dxdydz = 2 \iiint_{\Omega_2} f(x, y, z^2) dxdydz$
- (D) $\iiint_{\Omega_{2}} f(x, y^{2}, z) dxdydz = 8 \iiint_{\Omega_{2}} f(x, y^{2}, z) dxdydz$

2. 设 Ω 为由 $z = x^2 + y^2$, y = x, y = 0, z = 1在第一卦限所围成的闭区域,f(x,y,z)在 Ω 上连续,则 $\iiint_{\Omega} f(x,y,z) dx dy dz =$

(A)
$$\int_{0}^{1} dy \int_{y}^{\sqrt{1-y^2}} dx \int_{x^2+y^2}^{1} f(x, y, z) dz$$

(B) $\int_{0}^{\frac{\sqrt{2}}{2}} dx \int_{y}^{\sqrt{1-y^2}} dy \int_{x^2+y^2}^{1} f(x, y, z) dz$
(C) $\int_{0}^{\frac{\sqrt{2}}{2}} dy \int_{y}^{\sqrt{1-y^2}} dx \int_{x^2+y^2}^{1} f(x, y, z) dz$
(D) $\int_{0}^{\frac{\sqrt{2}}{2}} dy \int_{y}^{\sqrt{1-y^2}} dx \int_{0}^{1} f(x, y, z) dz$

3. 设
$$\Omega$$
: $x^2 + y^2 + z^2 \le 1$, 则 $\iiint_{\Omega} (x^2 + y^2 + z^2) dx dy dz =$

(A)
$$\int_{0}^{2\pi} d\theta \int_{0}^{1} r dr \int_{-\sqrt{1-r^2}}^{\sqrt{1-r^2}} 1 dz = \Omega$$
的体积

(B)
$$\int_0^{2\pi} d\varphi \int_0^{2\pi} \sin\theta d\theta \int_0^1 r^4 dr$$

(C)
$$\int_0^{\pi} d\varphi \int_0^{2\pi} \sin\theta d\theta \int_0^1 r^4 dr$$

(D)
$$\int_0^{2\pi} d\varphi \int_0^{\pi} \sin\theta d\theta \int_0^1 r^4 dr$$

二. 计算三重积分

1.
$$\iiint_{\Omega} z \sqrt{x^2 + y^2} dx dy dz, \, \Omega \exists y = \sqrt{2x - x^2}, \, z = 0, \, y = 0,$$
 $z = a(a > 0)$ 围成

二. 计算三重积分

1.
$$\iiint_{\Omega} z \sqrt{x^2 + y^2} dx dy dz$$
, $\Omega 曲 y = \sqrt{2x - x^2}$, $z = 0$, $y = 0$, $z = a(a > 0)$ 围成

2.
$$\iiint_{\Omega} \sqrt{x^2 + y^2 + z^2} dx dy dz$$
, Ω 是由 $x^2 + y^2 + z^2 = 2z$ 围成的区域

二. 计算三重积分

1.
$$\iiint_{\Omega} z \sqrt{x^2 + y^2} dx dy dz$$
, $\Omega \oplus y = \sqrt{2x - x^2}$, $z = 0$, $y = 0$, $z = a(a > 0)$ 围成

2.
$$\iiint_{\Omega} \sqrt{x^2 + y^2 + z^2} dx dy dz$$
, Ω 是由 $x^2 + y^2 + z^2 = 2z$ 围成的区域

3.
$$\iiint_{\Omega} (x^2 + y^2) dx dy dz$$
, Ω 是由 $\begin{cases} y^2 = 2z \\ x = 0 \end{cases}$ 绕 z 轴旋转一周而成的曲面与平面 $z = 2$, $z = 8$ 所围成的区域

竞赛题

1. 求由抛物线y = (4 - x)x与直线y = x所围成的平面区域绕直线y = x旋转一周所得旋转体的体积。(10'竞赛题)

历年试题

1. (08期中)

则当 $R \rightarrow 0^+$ 时,I(R)

(A) 是R的一阶无穷小

(C) 是R的三阶无穷小

(B) 是R的二阶无穷小

(D) 至少是R的三阶无穷小

2. (13期中) 设
$$\Omega = \{(x,y,z)|x^2+y^2+z^2 \leq 1\}$$
,则三重积分 $\iint_{\Omega} e^{|x|} dv =$ (A) $\frac{\pi}{2}$ (B) π (C) $\frac{3}{2}\pi$ (D) 2π

3. (13期中) 设函数
$$f(u)$$
满足: $f(0) = 0$, $f'(0) = 1$, $\Omega = \{(x, y, z) | x^2 + y^2 + z^2 \le 2tz\}$, 计算
$$\lim_{t \to 0^+} \frac{\iiint_{\Omega} f(x^2 + y^2 + z^2) dv}{t^5}$$

◆□▶◆圖▶◆臺▶◆臺▶ 臺 ∽Q@