CRETIN

Session 7

Howard Scott

Session topics

Line radiation transport

- Physics considerations
 - what is important / different about lines?
 - material coupling and convergence
 - important physical effects
- Code options
 - setting up frequency meshes
 - options for including physical effects
 - methods for achieving convergence

What is important about lines?

- Transitions between levels in the same charge state
- Narrow frequency range → strong localized absorption / emission
- Radiation is strongly coupled to bound electrons
- Most radiation emission from multi-electron atoms is due to lines
- At low densities, line effects can dominate the kinetics

Probability (per unit time) of

- Spontaneous emission: A_{21}
- Absorption:
- Stimulated emission:

Stimulated emission:
$$B_{21}$$

 $g_1B_{21} = g_2B_{12}$, $A_{21} = \frac{2hv_0^3}{c^2}B_{21}$

 A_{21} , B_{12} , B_{21} are Einstein coefficients

Two energy level system

Line radiation is critical to non-LTE physics

A simple example – low density H

Lines become optically thick before the continuum

A mid-Z example – Kr sphere

Line radiation dominates the escaping flux

Coupling to material – effective scattering

- Line radiation couples directly to just the two levels involved
- Line radiation "scatters" by resonant absorption / emission
- Upper level decays
 - Radiatively with rate A_{21}
 - Collisionally with rate $n_e C_{21}$
- The fraction $\varepsilon \approx n_e C_{21} / A_{21}$ of photons are destroyed / thermalized
- The fraction $(1-\varepsilon)$ of photons are "scattered"
 - > energy changes only slightly (mostly Doppler shifts)
 - → undergo many "scatterings" before being thermalized
- Convergence by lambda iteration takes $\sim \tau^2$ iterations

Two energy level system

 $\varepsilon \ll 1$ is the condition for a strongly non-LTE transition and is easily satisfied for low density or high ΔE !

Line profiles

Bound-bound absorption cross section:

$$\sigma(v) = \frac{hv_0}{4\pi} B_{21} \phi(v) = \frac{\pi e^2}{mc} f_{12} \phi(v)$$
 $\frac{\pi e^2}{mc} = 0.02654 \text{ cm}^2/\text{s}$

- Oscillator strength f_{12} relates the quantum mechanical result to the classical treatment of a harmonic oscillator
 - Strong transitions have $f^{\sim}1$

$$\int_0^\infty \phi(v) \, dv = 1$$

The line profile $\phi(v)$ describes the frequency dependence of the absorption coefficient

$$\alpha_{v} = n_{1} \frac{\pi e^{2}}{mc^{2}} f_{12} \phi(v) \left[1 - \frac{g_{1} n_{2}}{g_{2} n_{1}} \right]$$

$$\eta_{v} = \left(\frac{2hv^{3}}{c^{2}}\right) n_{2} \frac{\pi e^{2}}{mc^{2}} f_{12} \phi(v)$$

- $\alpha_v = n_1 \frac{\pi e^2}{mc^2} f_{12} \phi(v) \left| 1 \frac{g_1 n_2}{g_2 n_1} \right|$ This assumes absorption and emission profiles are the same profiles are the same
 - If line width is small ($\Delta v \ll v_0$), can replace v by v_0

Cretin line transport assumes $\Delta v \ll v_0$

Line profiles

Line profiles are determined by multiple effects:

• Natural broadening (A_{12})

- Lorentzian
- Collisional broadening (n_e, T_e)
- Lorentzian

• Doppler broadening (T_i)

- Gaussian

 Γ = destruction rate

 $\phi(v) = \frac{\Gamma/4\pi^2}{(v-v_0)^2 + (\Gamma/4\pi)^2}$

Stark effect (plasma microfields) - complex

The convolution of Gaussian and Lorentzian shapes gives the Voigt profile:

- Gaussian core
- Lorentzian wings

$$\phi(v) = \frac{1}{\Delta v_D \sqrt{\pi}} H(a, x) , H(a, x) = \frac{a}{\pi} \int_{-\infty}^{\infty} \frac{e^{-y^2}}{(x - y)^2 + a^2} dy$$

$$a = \frac{\Gamma}{4\pi\Delta v_D} , \Delta v_D = \frac{v_0}{c} \sqrt{\frac{2kT_i}{m_i}}$$

$$\frac{\partial v_D}{\partial v_D} = \frac{v_0}{c} \sqrt{\frac{2kT_i}{m_i}}$$

$$\frac{\partial v_D}{\partial v_D} = \frac{v_0}{c} \sqrt{\frac{2kT_i}{m_i}}$$

a = Voigt parameter

Configuration "broadening"

For multi-electron ions, multiple atomic states are combined into "levels" representing

• LSJ-configurations $1s^22p^6 3s^2 3p_{3/2}$

LS-configurations
 1s²2p⁶ 3s² 3p

Superconfigurations (1)²(2)⁶(3)³

A single transition between levels represents many transitions between states

UTA – unresolved transition array

The screened-hydrogenic models dca_xx use superconfigurations for levels + multiple UTAs between levels for transitions

Tm (Z=69) 3d-4f C. Smith (1995)

Configuration broadening often dominates high-Z spectra

Example – Hydrogen Ly-α

- Uniform conditions: $T_e = 1 \text{ eV}$, $n_e = 10^{14} \text{ cm}^{-3}$
- Moderate optical depth $\tau \sim 5$
- Viewing angles 90° and 10° show optical depth broadening

photon energy w.r.t. line center (eV)

Example – Hydrogen Ly-α

- Uniform conditions: $T_e = 1 \text{ eV}$, $n_e = 10^{14} \text{ cm}^{-3}$
- Self-consistent solution displays effects of
 - Radiation trapping / pumping
 - Non-uniformity due to boundaries

Redistribution

- The emission profile ψ_{ν} is determined by multiple effects:
 - coherent scattering, elastic scattering, Doppler broadening
- It is related to the absorption profile through the redistribution function

$$\int_{0}^{\infty} R(v,v') dv = \phi(v') , \quad \psi(v) = \int_{0}^{\infty} R(v,v')J(v') dv' / \int_{0}^{\infty} \phi(v')J(v') dv'$$

- Complete redistribution (CRD): $\psi_v = \phi_v$
- Doppler broadening is only slightly different from CRD, while coherent scattering gives $R(v,v') = \phi(v)\delta(v-v')$
- A good approximation for partial redistribution (PRD) is often

$$R(v,v') = (1-f)\phi(v')\phi(v) + f R_{II}(v,v')$$

• where f (<<1 for X-rays) is the ratio of elastic scattering and de-excitation rates, R_{II} includes coherent scattering and Doppler broadening

PRD effects become stronger with increasing optical depth

Example – Hydrogen Ly-α with Partial Redistribution

- Uniform conditions: $T_e = 1 \text{ eV}$, $n_e = 10^{14} \text{ cm}^{-3}$
- Optical depth τ ~ 5
- Voigt parameter a ~ 0.0003

Radiation transport for 2-level atom

Rate equation for two levels in steady state:

$$n_1(B_{12}\overline{J}_{12} + C_{12}) = n_2(A_{21} + B_{21}\overline{J}_{12} + C_{21})$$

$$\overline{J}_{12} = \int_0^\infty J_v \phi_{12}(v) dv$$
, $C_{12} = \frac{g_2}{g_1} e^{-hv_0/kT} C_{21}$

Absorption / Emission:

$$\alpha_{v} = \frac{hv}{4\pi} (n_{1}B_{12} - n_{2}B_{21})\phi_{12}(v) , \eta_{v} = \frac{hv}{4\pi} n_{2}A_{21}\phi_{12}(v)$$

Two energy level system

Source function:

$$S_{v} = \frac{n_{2}A_{21}}{n_{1}B_{12} - n_{2}B_{21}} = (1 - \varepsilon)\overline{J}_{12} + \varepsilon B_{v} , \frac{\varepsilon}{1 - \varepsilon} = \frac{C_{21}}{A_{21}} \left(1 - e^{-hv_{0}/kT}\right)$$

Including multiple transitions and separate emission profiles is straightforward

Calculating \overline{J} is the focus of line radiation transport

Example – Hydrogen Ly-α

- Source iteration (green curves) approaches self-consistent solution slowly
- Linearization achieves convergence in 1 iteration since the source function is a linear function of \overline{J} $S_{ij} = a + b \overline{J}_{ij}, \overline{J}_{ij} = \int J_{\nu} \phi_{\nu} \, d\nu$

Velocity gradients

- Absorption / emission is (usually) isotropic in the fluid frame
- Doppler shifts make these anisotropic in the laboratory frame
- This effect becomes significant when $v/c \sim dE / E_0$
- For thermal velocities: $\frac{\mathrm{v}}{\mathrm{c}} \sim \sqrt{\frac{2kT_i}{m_ic^2}} \sim 0.0015\sqrt{\frac{T_i}{A_i}}$ T_i in keV
- For Doppler-broadening lines, sound speed bulk velocities become important

Uniformly expanding spherical annulus

Uniformly expanding spherical annulus

