Qeury-Driven Central Slot-Values Extraction for Wikipedia Entities at Web Scale

Morteza Shahriari Nia, Christan Grant, Yang Peng, Daisy Zhe Wang*, Milenko Petrovic†

{msnia, cgrant, ypeng, daisyw}@cise.ufl.edu, mpetrovic@ihmc.us

Abstract

In this paper we address extracting central slot values from internet pertinent to entities in wikipedia, which is the most popular web-based, colaborative multilingual encyclopieda on the internet. This is comparable to Freebase in a query-driven manner. Our contributions are two fold, first we design a system to efficiently find central documents on the internet that contain directly citable information regarding a given wikipedia entity; second, we design a system to extract specific features of that entity from central documents which is refered to as slot filling. Our results demonstrate that the system is very efficient in the web scale nature of the problem: being highly memory and I/O efficient and that we can achieve high accuracy and recall for given slot values.

Introduction

In this paper we develop an efficient query-driven slot value extraction for certain wikipedia entities from a timely stream of documents on internet. Entities from three categories of *person*, *organization* and *facility* are considered. This can be regarded as an automatic way to expand and automate Wikipedia citation system and a way to automatically populate knowledge bases such as freebase. The challenges that we address are the scale, precision and recall of the extent we can extract slot values from internet for entities of interest. Examples of these facts are 'Who a person has met during a certain period of time?', 'Who are the employees of this organization?', 'Who has met who in this facility at a certain time?'

An important challenge in maintaining Wikipedia.org (WP), the most popular web-based, collaborative, multilingual knowledge base on the internet, is making sure its contents are up-to-date. Presently, there is considerable time lag between the publication date of cited news and the date of an edit to WP creating the citation. The median time lag for a sample of about 60K web pages cited by WP articles in the *living-people* category is over a year and the distribution has a long and heavy tail Frank et al. (2013). Also, the majority of WP entities have

Copyright © 2013, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

updates on their associated article much less frequently than their mention frequency. Such stale entries are the norm in any large knowledge base (KB) because the number of humans maintaining the KB is far fewer than the number of entities. Reducing latency keeps KBs such as WP relevant and helpful to it users.

Given an entity page, possible citations may come from a variety of sources. The actual citable information is a small percentage of the total documents that appear on the web. We develop a system to read streaming data and filter out articles that are candidates for citations. Given these documents, we extract the pairs of information in the article that is recommended for citations for each entity page in WP. Some of the challenges that we face in this regard includes: having to balance between infamous and obscure entities, ambiguous entities (entities of exact same name that are differnet in real life), facts that can very broad (e.g. things that an entity is affiliated with) or very specific (such as cause of death of a *person* entity).

Our system contains three main components. First, we pre-process the data and build models representing the knowledge base entries. Next, we use the models to filter a stream of documents so they only contain candidate recommendations. Lastly, we processes sentences from candidate extractions and return specific information to be cited. The system can handle infrequent entities, but adding of new entities requries going thorugh full dataset.

In this paper, we describe the system we built to process the data. We built this system as part of a formal task described in Section . Our approach to this task is to build a modular system that allows us to explore the nuances of the training data and queries. Overall, we contribute the following:

- Introduce a method to build models of name variations
- Built a system to filter a large amount of diverse documents
- Extract entity-slot-value triples of information to be added to KB
- Filter the final results using deduplication and inference
- Self-evaluate our results over a 4.5 TB data set

Figure 1: The GatorDSR team System Architecture. Components are logically groups with dotted boxes. Color details the programing language implementation of components.

System Overview

In this section, we introduce the main components of the system. Our system is built with a pipeline architecture in mind giving it the advantage to run each section separately to allow stream processing without blocking the data flow of components (Figure 1). The three logical components include sections for performing preprocessing to prepare the required data, Cumulative Citation Recommendation to annotate cite-worthy documents, Streaming Slot Filling to generate the actual slot values and PostProcessing to increase precision/recall. We work on a streaming data set and entities are from Twitter or WP to query.

To walk you through the steps we take, assume we only care about on single WP entity, the first step is to extract aliases of the entity. We use several approaches to get as many viable aliases as possible. Then we look into the stream of content that is being generated on the internet, apply two levels of filtering to finally end up with the documents are central to that entity. To extract the relevnat slot values we perform pattern matching in each sentence or coreferent sentence to see if we can find a match. As a match is found from the content of the sentence to the patterns that we have generated regarding slot name, the associated slot value is extracted as a final result.

As mentioned before the time lag from an event occurance until it is cited in WP is in average over a year due to the fact that human maintainers are much less than the number of entities in WP and that the frequency of news update on entities escalates this difference. Hence having an automatic way to extract this knowldge for entities can be a very valuable asset.

Preprocessing. The contest prohibits Wikipedia entities to have any manual aliases being added and only allows automatic ways. We use Wikipedia API backlink references (redirects to a wiki entity) as aliases of the entity. We also extract aliases from within the text of a wiki entity, which will be described in Section. This whole process is referred to as Alias Extraction. The manual extraction rule is lifted and participants are allowed to manually add aliases for Twitter entities. This is allowed because the Twitter website does not provide an example page from the beginning of the document stream. This process of extracting aliases for Twitter entities is referred to as Manual Alias Extraction.

Once aliases are available we pass them through rules of generating proper name orders which will produce various forms of writing a name. As a basic example Bill Gates can be written as Gates, Bill. This will allow the system to capture various notation forms of aliases. We refer to this part as *Name Order Generator*.

Cumulative Citation Recommendation. The main goal of CCR is to have an aggregate list of documents that are worthy of being cited in a Wikipedia page. We perform exact string matching and treat all the documents that mention an entity equally likely to be citable. One of the reasons for this is that in former TREC KBA reports Frank et al. (2013) there were observations of how non-mentioning documents have a low chance of being citable in Wikipedia. So we take on that and ignore non-citing documents.

Streaming Slot Filling. The purpose of SSF is to extract proper values for relations of interest, which can be found in Table 6. This is called Stream Slot Filling because data is being generated as time goes on and for each extraction we should only consider current or past data. In Figure 1 we refer to this as Streaming Slot Value Extraction. Stream slot filling is done by pattern matching documents with manually produced patterns for slots of interest. The way we do this is by observing a sentence that has a mention of the entity or one of its coreferences. An anchor word in the sentence related to the slot name is located and we match either left or right of the anchor word for potential slot values.

Post Processing Algorithm. The SSF output of many extractions is noisy. The data contains duplicates and incorrect extractions. We can define rules to sanitize the output only using the information present in the SSF file. The file is processed in time order, in a tuple-at-time fashion to minimize the impact on accuracy. We define two classes of rules deduplication rules and inference rules. In our diagram we refer to this component as **High Accuracy Filter**.

Implementation

We extract aliases for entities from Wikipedia automatically both using API and using the actual page content, then apply pattern matching rules for slot value extraction. Our contribution is that we perform pattern matching that conforms to each slot value along with post-processings to eliminate noisy outputs.

Figure 2: Pattern Matching with Slot Value on the Right Side of Entity.

Alias Generation

We consider some generic first name last name order swapping conventions such as Bill Gates \rightarrow Gates, Bill. Meanwhile, William Henry Gates is an alias for Bill Gates in WP as a backlink reference. These kinds of aliases are also included in matching entities. We use Wikipedia API to get these aliases automatically. This is done by retrieving backlink references (redirects of a wiki entity). Unfortunately this is not good enough and to enhance recall we need more aliases. To have better use of a wiki page we parse HTML DOM of the page, then use regular expressions to extract the bold phrases of the first paragraph as alias of the actual entity. Based on our observation this is a very accurate heuristic and provides us with lots of famous aliases of the entities. As an example of when this might not wirk, is that there might be occasions that some other topic is written in bold typesetting in the first paraph apart from the entity aliases itself but these are very rare

Cumulative Citation Recommendation

Our pipeline of processing the corpus consists of a two layer indexing system referred to as Chunk Files Index Generator and StreamItems Index Generator. Chunk Files Index Generator will generate indexes of the chunk files that contain a mention of any of the desired entities. StreamItems Index Generator on the other hand will index StreamItems that contain a mention of a given entity respectively. This two level indexing will eliminate the need to process each and every Chunk-File/StreamItem for every entity. The reason for splitting this task into two steps is that not all chunk files contain any mention of the entities and we want to get rid of them as soon as possible. Chunk Files Index Generator which discards non-mentioning chunk files and will stop further processing a chunk file as soon as it finds a mention there. Each chunk file can contain up to thousands of SIs which can be so time consuming if we were to process them in our Java base code. Processing StreamItems on the other hand is done in Java with ideas in mind for later on extensibility by adding other Java libraries.

Streaming Slot Value Extraction

In the data set, we are given a date range of documents as training data. Instead of building a classifier we use pattern matching methods to find corresponding slot values for entities. Pattern matching is simple to manipulate results and implement. Additionally, a classifier approach is more difficult to evaluate and explain results.

With the StreamItem indexes generated by the CCR, we first fetch the sentences containing entites by using alias names and coreference information provided by Lingpipe tags. Then use these senteces to match patterns and when patterns matched, generate SSF results.

Algorithm 1 Streaming Slot Value Extraction Pseudocode

```
List of entities \mathcal{E} = \{e_0, \dots, e_{170}\}

List of patterns P = \{p_0, \dots, p_{|P|}\}

List of streamitems containing entities \mathcal{S} = \{s_0, \dots, s_{|\mathcal{S}|}\}

for si \in \mathcal{S} do

for sentence \in si do

for entity \in \mathcal{E} do

if Contains(sentence, entity) then

for pattern \in P suitable for entity do

if Satisfies(sentence, pattern) then

Emit(sentence, pattern)
```

Format of patterns A pattern is defined as a record representing knowledge going to be added to a knowledge base. A pattern \mathcal{P} is represented as a five-tuple $\mathcal{P} = \langle p_1, p_2, p_3, p_4, p_5 \rangle$.

The first value, p_1 represents the type of entity. These entity types are in the set {FAC, ORG, PER} where FAC represents a type of facility, ORG represents an organization and PER represents a person. FAC, ORG and PER are Lingpipe entity types. The p_2 represents a slot name. A list of slot names is present in Table 6. The third element p_3 is the pattern content. This is a string found in the sentence. The extractor looks for this exact string or pattern in a sentence. The pattern evaluator uses a direction (left or right) found in p_4 to explore sentence. The final element p_5 represent the slot value of a pattern. This The type of slot value may be the entity type tagged by Lingpipe, a noun phrase (NP) tagged by OpenNLP or a hard-coded phrase. For these three kinds of patterns, we implement them in different ways accordingly. Next, we explain the patterns with more details, an example can be found in Figure 2.

Types of patterns There are three types of patterns distinguished by different types of slot values in the patterns. The matching methods using these three types of patterns are implemented according to the different information and structures of slot values.

Type I. This pattern type is driven by the slot value type, a pattern tagged by Lingpipe. For example, pattern $\langle PER, FounderOf, founder, right, ORG \rangle$. PER means that the entity we are finding slot values for a PER entity; FounderOf means this is a

pattern for FounderOf slot. *founder* is the anchor word we are match in a sentence; right means that we are going to the right part of the sentence to match the pattern and find the slot value; ORG means the slot value should be a ORG entity.

Type II. This pattern type is unique because it only looks for a slot value tagged as noun phrase (NP) by OpenNLP. For example, pattern (PER, AwardsWon, awarded, right, NP). This pattern can be interpreted as that we are looking for a noun phrase after the awarded since that noun phrase may represent an award. Titles and awards are usually not the Lingpipe entities, hence the use of the OpenNLP noun phrase chunker to fetch the noun phrases.

Type III. Some relations are best discovered by hard coding the slot values. Examples of these include time phrases: $\langle \text{PER}, \text{DateOfDeath}, \textit{died}, \text{right}, \textit{last night} \rangle$. In this pattern, *last night* means we are looking for exactly the phrase *last night* to the right of *died*. This pattern is inspired by the intuition that in news articles, people often mention that somebody died last night instead of mentioning the accurate date information and Lingpipe tends not to tag phrases like *last night* as a DATE entity.

A short discussion We sampled documents from the training data period to generate an initial set of patterns. We then use these patterns to generate SSF results. By manully looking at these results, we prune some patterns with poorperformance and add more patterns that we identified from these results. We use several iterations to find the best patterns. We found that it is time consuming to identity quality pattern.

We found three major classes of accuracy errors: incorrect entities selected, incorrect tags by Lingpipe and incorrect pattern extractions. The first issue is ameliorated by generating better aliases (Section). And we use post-processing to reduce the second and third types of errors (Section). We didn't use more advanced NLP packages such as Stanford NLP because of the large size of the data set. The post-processing step to improve the results is discussed in the next section.

High Accuracy Filter

The SSF output of streaming slot value extraction is noisy. The data contains duplicates and incorrect extractions. We can define rules to sanitize the output only using the information present in the SSF file. The file is processed in time order, in a tuple-at-a-time fashion to minimize the impact on accuracy. We define two classes of rules: *deduplication* and *inference* rules.

The output contains many duplicate entries. As we read the list of extracted slots we create rules to define "duplicate". Duplicates can be present in a window of rows; we use a window size of 2 meaning we only be adjacent rows. Two rows are duplicates if they have the same exact extraction, or if the rows have the same slot name and a similar slot value or if the extracted sentence for a particular slot types come from the same sentence.

New slots can be deduced from existing slots by defining inference rules. For example, two slots for the task are "FounderOf" and "FoundedBy". A safe assumption is these slot names are biconditional logical connectives with the entities and slot values. Therefore, we can express a rule "X FounderOf Y" equals "Y FoundedBy X" where X and Y are single unique entities. Additionally, we found that the slot names "Contact_Meet_PlaceTime" could be inferred as "Contact_Meet_Entity" if the Entity was a FAC and the extracted sentence contained an additional ORG/FAC tag. We also remove erronious slots that have extractions that are several pages in length or tool small. Errors of extracting long sentences can typically be attributed to poor sentence parsing of web documents. We have some valid "small" extractions. For example a comma may separate a name and a title (e.g. "John, Professor at MIT"). But such extraction rules can be particularly noisy, so we check to see if the extracted values have good entity values.

Evaluation

Our system was developed on a 32-core server described in Table 2. The corpus is a snapshot of the web in English. Each document is annotated using lingpipe and is called StreamItem, a bundle of StreamItems are put together and serialized as Apache Thrift objects, then compressed using xz compression with LempelZivMarkov chain algorithm (LZMA2) and finally encrypted using GNU Privacy Guard (GPG) with RSA asymmetric keys. The total size of the data after XZ compression and GPG encryption is 4.5TB and just over 500M StreamItems s3. Data is stored in directories the naming of which is date-hour combination: from 2011-10-05-00 (5th of October 2011, 12am) until 2013-02-13-23 (13th of Feburary 2013, 11pm), which consists of 11952 date-hour combinations, 4 months of data (October 2011 - February 2012) is for training purposes. This corpora consists of various media types the distribution of which can be found in Table 1. To have a sense of the scale of objects and compression as an example a 6mb gpg.xz files would become 45 mb thrift objects which can contain a couple of thousand StreamItems depending on their size. Some of the documents have null values for their annotation fields. The first portion of the data which ranges from October 2011 to February 2012 is considered as training data. The source code of our system is stored as an open source project where enthusiasts can also contribute to git, also the relevant discussion mailing list is accessible here goo.

We have 135 extraction patterns coverin each slotname/entity-type combinations. Our final submission was named *submission_infer*. Our results are as follows: Document extraction using query entity matching with aliases, sentence extraction using alias matching and coreference. Slot extraction using patterns, NER tags and NP tags. 158,052 documents with query entities, 17885 unique extracted slot values for 8 slots and 139 entities, 4 slots and 31 entities missing. Table 1: Document Chunks Distribution

# of Documents	Document Type
10988	arxiv (full text, abstracts in StreamItem.other_content)
34887	CLASSIFIED (spinn3r)
77674	FORUM (spinn3r)
12947	linking (reprocessed from kba-stream-corpus-2012, same stream_id)
141936	MAINSTREAM_NEWS (spinn3r)
4137	MEMETRACKER (spinn3r)
280629	news (reprocessed from kba-stream-corpus-2012, same stream_id)
6347	REVIEW (spinn3r)
688848	social (reprocessed from kba-stream-corpus-2012 plus extension, same stream_id)
740987	WEBLOG (spinn3r)

Table 2: Benchmark Server Specifications

Spec	Details
Model	Dell xxx 32 cores
OS	CentOS release 6.4 Final
Software Stack	GCC version 4.4.7, Java 1.7.0 ₋₂₅ ,
	Scala 2.9.2, SBT 0.12.3
RAM	64GB
Drives	2x2.7TB disks, 6Gbps, 7200RPM

Table 3: SSF Performance Measure on initial_submission

 Correct
 Incorrect
 Incorrect

 Entity name
 Value

 Sampling #1
 55%
 17%
 27%

 Sampling #2
 54%
 15%
 31%

On the performance of our initial submission run we performed random sampling via two processes, the results of which are according to Table 3. You can view that we have had an accuracy of around 55%, and about 15% wrong entity identified and 30% incorrect value extracted across all entities and slot types. Most of our issues for this submission were regarding poor slot value extraction patterns and incomplete aliases whih were tried to be mtigated later on. For our final submission, we provide a more detailed statistics, which has been elaborated in Table 4 and Table 5. Table 4 shows the extent of search outreach for each slot name. You can see that Affiliate has been the slot name with highest hits and CauseOfDeath our lowest hit with 0 instances found matching our patterns, after that AwardsWon has been the next with 38 instances found. Affiliate is a very generic term and extracting real affiliates can be quite challenging using the extraction patterns provided. This can lead to noisy results. On the other hand for more precise terms our accuracy increases but we have less recall. Table 5 addresses the relative accuracy measure per slot value. There you can view that we have had the highest accuracy of 63.6% for AssociateOf and the lowest of 1% - 5% for Affiliate, Contact_Meet_PlaceTime and EmployeeOf.

Discussions & Conclusion

Table 4 show a varied distribution of extracted slot names. Some slots naturally have more results than other slots. For example, AssociateOf and Affiliate have more slot values than DateOfDeath and CauseOfDeath, since there are only so few entities that are deceased. Also, some patterns are more general causing more extractions. For example, for Affiliate, we use *and*, *with* as anchor words. These words are more common than *dead* or *died* or *founded* in other patterns.

When we evaluate the results of slot extraction, we find three kinds of problems for accuracy: 1) wrong entities found; 2) wrong tags by the Lingpipe; 3) wrong results matched by the patterns. We also have recall problems: 1) not enough good alias names to find all the entities. 2) not enough and powerful patterns to capture all the slot values. We will use entity resolution methods and other advanced methods to improve the accuracy and recall of entity extraction part.

For slot extraction, to improve the performance, we need: 1) Using multi-class classifiers instead of pattern matching method to extract slot values in order to increase both recall and accuracy for slots "Affiliate", "AssociateOf", "FounderOf", "EmployeeOf", "FoundedBy", "TopMembers", "Contact_Meet_Entity" and so on. 2) For special slots, like "Titles", "DateOfDeath", "CauseOfDeath", "AwardsWon", using different kind of advanced methods, e.g. classifiers, matching methods. 3) Using other NLP tools or using classifiers to overcome the drawbacks of the LingPipes inaccurate tags. The first and second tasks are the most important tasks we need to do.

About 50% of twitter entities are not found by the system. One reason is those entities are not popular. For example, a 'Brenda Weiler' Google search result has 860,000 documents over the whole web. For our small portion of the web it might make sense. The histogram of the entities shows that more than half of the entities have appeared in less than 10 StreamItems. A good portion have appeared only once.

Alltogether, We experimented through different tools and approaches to best process the massive amounts of data on the platform that we had available to us. We generate aliases for wikipedia entities using Wiki API

Table 4: Recall Measure on *submission_infer*: Generic slot names like affiliate had the most recall, compared to less popular slot names e.g. DateOfDeath

Slot Name	Total instances of slot	# of entities covered by slot	
	value found	value	
Affiliate	108598	80	
AssociateOf	25278	106	
AwardsWon	38	14	
CauseOfDeath	0	0	
Contact_Meet_Entity	191	8	
Contact_Meet_PlaceTime	5974	109	
DateOfDeath	87	14	
EmployeeOf	75	16	
FoundedBy	326	30	
FounderOf	302	29	
Titles	26823	118	
TopMembers	314	26	

Table 5: SSF Accuracy Measure on *submission_infer*: Accuracy of AffiliateOf was the best and Affiliate applied poorly due to ambiguity of being an affiliate of somebody/something

Slot Name	Correct	Incorrect Entity name	Incorrect Value
Affiliate	1%	95%	5%
AssociateOf	63.6%	9.1%	27.3%
AwardsWon	10%	10%	80%
CauseOfDeath	0%	0%	0%
Contact_Meet_Entity	21%	42%	37%
Contact_Meet_PlaceTime	5%	20%	85%
DateOfDeath	29.6%	71%	25%
EmployeeOf	5%	30%	65%
FoundedBy	62%	17%	21%
FounderOf	50%	0%	50%
Titles	55%	0%	45%
TopMembers	33%	17%	50%

and extract some aliases from wikipedia pages text itself. On twitter entities we extract aliases manually as it is part of the rule of the KBA track. We process documents that mention entities for slot value extraction. Slot values are determined using pattern matching over coreferences of entities in sentences. Finally post processing will filter, cleanup and infers some new slot values to enhance recall and accuracy.

We noticed that some tools that claim to be performant for using the hardware capabilities at hand sometimes don't really work as claimed and you should not always rely on one without a thorough A/B testing of performance which we ended up in generating our inhouse system for processing the corpus and generating the index. Furthermore, on extracting slot values, pattern matching might not be the best options but definitely can produce some good results at hand. We have plans on generating classifiers for slot value extraction purposes. Entity resolution on the other hand was a topic we spent sometime on but could not get to stable grounds for it. Entity resolution will distinguish between entities of the same name but different contexts. Further improvements on this component of the system are required.

Acknowledgements

Christan Grant is funded by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-0802270.

References

Ace (automatic content extraction) guidelines annotation for events. http://projects.ldc.upenn.edu/ace/docs/English-Events-Guidelines_v5.4.3.pdf.

Frank, J. R.; Kleiman-Weiner, M.; Roberts, D. A.; Niu, F.; Zhang, C.; Ré, C.; and Soboroff, I. 2013. Building an entity-centric stream filtering test collection for trec 2012. In 21th Text REtrieval Conference (TREC'12). National Institute of Standards and Technology.

Gatordsr opensource project. https://github.com/cegme/gatordsr.

mailing Gatordsr list. https://groups.google.com/forum/#!forum/gatordsr.

Ji, H., and Grishman, R. 2011. Knowledge base population: Successful approaches and challenges. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies - Volume 1, HLT '11, 1148-1158. Stroudsburg, PA, USA: Association for Computational Linguistics.

Trec kba http://awsstream corpora. publicdatasets.s3.amazonaws.com/trec/kba/index.html.

KBA Task Background

The National Institute of Standards (NIST) hosted the Text REtrieval Conference (TREC) — Knowledge Base Acceleration challenge in 2013. The task contains two main sections designed for this track, Cumulative Citation Recommendation and Streaming Slot Filling. Due to the importance of knowledge bases, both of these tracks aim to accelerating populating them, hence the title Knowledge Base Acceleration (KBA). Below we describe each of these tracks and their purposes.

Cumulative Citation Recommendation (CCR)

For this track, assessors were instructed to "use the Wikipedia article to identify (disambiguate) the entity, and then imagine forgetting all info in the WP article and asking whether the text provides any information about the entity" Frank et al. (2013). Documents are divided according if an entity is mentioned and a relevance level to the entity.

More specifically, a document may have a mention or be without a mention.

- Mention: Document explicitly mentions target entity, such as full name, partial name, nickname, pseudonym, title, stage name.
- **Zero-mention:** Document does not directly mention target. Could still be relevant, e.g. metonymic references like "this administration" \rightarrow "Obama". See also synecdoche. A document could also be relevant to target entity through relation to entities mentioned in document – apply this test question: can I learn something from this document about target entity using whatever other information I have about entity?

The relevance of a document to a query is split into the four classifications.

- Garbage: not relevant, e.g. spam.
- Neutral: Not relevant, i.e. no info could be deduced about entity, e.g., entity name used in product name, or only pertains to community of target such that no information could be learned about entity, although you can see how an automatic algorithm might have thought it was relevant.
- Relevant: Relates indirectly, e.g., tangential with substantive implications, or topics or events of likely impact on entity.
- Central: Relates directly to target such that you would cite it in the WP article for this entity, e.g. entity is a central figure in topics/events.

Streaming Slot Filling (SSF)

The task is that given certain WP or Twitter entities (wiki/twitter URLs) and certain relations of interest (given in Table 6), extract as many triple relations as possible (hence, slot filling). This can be used to automatically populate knowledgebases such as free-base or DBPedia or even fill-in the information boxes at Tac kbp slots. http://www.nist.gov/tac/2012/KBP/task_guidelines/finediabpBs1818. vou some examples of what it means to fill in a slot value; in each example

there is a sentence of interest that we wish to extract slot values from, an entity that the slot value is related to, and a slot name which can be thought of as the topic of the slot value:

Example 1: "Matthew DeLorenzo and Josiah Vega, both 14 years old and students at Elysian Charter School, were honored Friday morning by C-SPAN and received \$1,500 as well as an iPod Touch after winning a nationwide video contest."

Entity: http://en.wikipedia.org/wiki/Elysian_Charter_School

Slot name: Affiliate

Possible slot values: "Matthew DeLorenzo", "Josiah Vega"

Incorrect slot values: "C-SPAN", "iPod Touch"

Example 2: "Veteran songwriters and performers Ben Mason, Jeff Severson and Jeff Smith will perform on Saturday, April 14 at 7:30 pm at Creative Cauldron at ArtSpace, 410 S. Maple Avenue."

Entity: http://en.wikipedia.org/wiki/Jeff_Severson

Slot name: Affiliate

Possible slot values: "Ben Mason", "Jeff Severson", "Jeff Smith"

Incorrect slot values: "Creative Caldron", "Art Space"

Example 3: "Lt. Gov. Drew Wrigley and Robert Wefald, a retired North Dakota district judge and former state attorney general, unveiled the crest Friday during a ceremony at the North Dakota Capitol."

Entity: http://en.wikipedia.org/wiki/Hjemkomst_Center Slot name: Contact_Meet_PlaceTime

Slot value: "Friday during a ceremony at the North Dakota Capitol"

In *streaming* slot filling, we are only interested in new slot values that were not substantiated earlier in the stream corpus. In Table 6 you can view some slot values and their types, the comprehensive description of which can be found at tac and aec. The details of the metric for SSF will favor systems that most closely match the changes in the ground truth time line of slot values. This is done by searching for other documents that mentioned an entity and exactly matched the slot fill strings selected by the assessors.

For similar approaches regarding last year's track you can refer to Ji and Grishman (2011).

Table 6: Ontology of Slot Name Categories

PER	FAC	ORG
Affiliate		
AssociateOf		
Contact_Meet_PlaceTime		
AwardsWon	Affiliate	Affiliate
DateOfDeath	Contact_Meet_Entity	TopMembers
CauseOfDeath	·	FoundedBy
Titles		_
FounderOf		
EmployeeOf		