National Cheng Kung University Department of Electrical Engineering

Introduction to VLSI CAD (Spring 2024)

Lab Session 5

FSM&Synthesis of Sequential Logic

Name	Student ID		
鄭喆嚴	E14096724		
Practical Sections	Points	Marks	
Lab in class	15		
Prob A	20		
Prob B	10		
Prob C	15		
Report	35		
File hierarchy, namingetc.	5		
Notes:	•		

Due Date: 14:59, April 4, 2024 @ moodle

Deliverables

- 1) All Verilog codes including testbenches for each problem should be uploaded. NOTE: Please **DO NOT** include source code in the paper report!
- 2) All homework requirements should follow the naming rule in this file hierarchy or you will not get the full credit.
 - NOTE: Please DO NOT upload waveforms!
- 3) Important! TA will use the command in Appendix A to check your design under SoC Lab environment, if your code can not be recompiled by TA successfully using the commands, you will not get the full credit.
- 4) If you upload a dead body, which we cannot even compile, you will get **NO** credit!
- 5) All Verilog file before synthesizing should get at least 95% Superlint Coverage.
- 6) Lab5_Student_ID.tar (English alphabet of Student_ID should be capital.)

Fig.1 File hierarchy for Homework submission

1) Design a Moore machine circuit that can be synthesized. The following is Moore machine module's specification. (Do NOT add or delete I/O ports, but you can change their behavior.)

Current	Next	4	
State	din=0	din=1	qout
S0=00	S1	S2	0
S1=01	S0	S1	0
S2=10	S2	S3	1
S3=11	S1	S3	1

Signal	Туре	Bits	Description
clk	input	1	Clock pin.
rst	input	1	Reset pin. Reset all of the flip flops to zeros.
din	input	1	Control signal for fsm.
qout	output	1	1:when current state==S1 or current state==S3 0: when current state==S0 or current state==S2

2) Please describe your FSM in detail

Explanation about your FSM						
S0/0 0 S1/0 S3/1 1 S2/1	atata	next_	4			
	state	din = 0	din = 1	output		
	S0	S1	S2	q = 0		
	S1	S0	S1	q = 0 $q = 0$		
	S2	S2	S3	q = 1		
	S3	S1	S3	q = 1		

3) After synthesizing your design, you may have some information about the circuit. Please fill in the following form.

Timing (slack)	Area (total cell area)	Power (total)
0.32	4.147200	6.7439e-03mW

Your waveform:

Applications Places System Applications Places S

Synthesis:

Explanation of your waveform:

波形圖中 error 一直都為 0,代表全部的測資皆正確,波行中還可以看到這是一個 moore machine,state 隨著輸出改變,而 output 只隨著 state 改變,可以看到 state 和 output 的結果皆與 state diagram 和 state table 相符。

ProbA: Design a circuit "detecting pattern 101011"

1) Design a pattern seq-detecting circuit that can be synthesized with moore machine. The following is det_seq module's specification. (Do NOT add or delete I/O ports, but you can change their behavior.)

Signal	Туре	Bits	Description
clk	input	1	clock
rst	input	1	reset, active high
d	input	1	pattern bit
q	output	1	When detect pattern 101011, q pulls to high at next clock posedge. Otherwise, q is low.
num	output	3	Count the number of pattern 101011

2) Please describe your FSM in detail

Explanation about your FSM						
0	state	next_state		outout	atata information	
50/0	State	d = 0	d = 1	output	state information	
S6/1 1 S1/0	S0	S0	S1	q = 0	initial	
S5/0 0 1 S2/0 S3/0 S3/0	S1	S2	S1	q = 0	receive 1	
	S2	S0	S3	q = 0	receive 10	
	S3	S4	S1	q = 0	receive 101	
	S4	S0	S5	q = 0	receive 1010	
	S5	S4	S6	q = 0	receive 10101	
0	S6	S2	S1	q = 1	receive 101011	

3) After synthesizing your design, you may have some information about the circuit. Please fill in the following form.

Timing (slack)	Area (total cell area)	Power (total)
0.30	12.286080	1.4213e-02mW

Your waveform:

Explanation of your waveform:

波形圖中 error 一直都為 0,代表全部的測資皆正確,波行中還可以看到這是一個 moore machine,state 隨著輸出改變,而 output 只隨著 state 改變,可以看到 state 和 output 的結果皆與 state diagram 和 state table 相符。

ProbB: Design a 2-bit branch prediction

1) Design a 2-bit branch prediction with moore machine. The following is 2-bit branch prediction module's specification. (Do NOT add or delete any I/O ports, but you can change their behavior.)

2) Please describe your FSM in detail.

Explanation about your FSM						
Taken						
S0/1 Not taken S1/1	next_		_state		state information	
	state	taken = 0	taken = 1	output	State IIIIOIIIIatioii	
Taken Not taken	S0	S1	S0	p_taken = 1	Predict Taken 2	
S3/0 Not taken S2/0	S1	S2	S0	p_taken = 1	Predict Taken 1	
Taken	S2	S2	S3	$p_{taken} = 0$	Predict Not Taken 2	
Not taken	S3	S2	S0	$p_{taken} = 0$	Predict Not Taken 1	
-						

3) After synthesizing your design, you may have some information about the circuit. Please fill in the following form.

Timing (slack)	Area (total cell area)	Power (total)
0.33	3.784320	5.6621e-03mW

Your waveform:

Synthesis

Explanation of your waveform:

波形圖中 error 一直都為 0,代表全部的測資皆正確,波行中還可以看到這是一個 moore machine,state 隨著輸出改變,而 output 只隨著 state 改變,可以看到 state 和 output 的結果皆與 state diagram 和 state table 相符。

ProbC: Design a pattern generator

1) Design a pattern generator which can create the following pattern and use mealy machine. The following is pattern generator specification.

sel [2:0]	pattern
000	0000
001	0001
010	0010
011	0011
100	1100
101	1101
110	1110
111	1111

Signal	Bits	Туре	Description
clk	1	input	clock
rst	1	input	reset, active high
en	1	input	When en is high, the system will start to make pattern. The pattern will be created once. If the host want to create the next pattern, it should pull down the en to 0,then restart en.
sel	3	input	According different sel signal to make different pattern
pattern	1	output	Pattern output
valid	1	output	When valid is 1, pattern's value is valid.

2) Please describe your FSM in detail.

3) After synthesizing your design, you may have some information about the circuit. Please fill in the following form.

Timing (slack)	Area (total cell area)	Power (total)
0.91	6.428160	9.2515e-03mW

單純使用 Clock Specification 為 1ns,未使用 DC.sdc

Synthesis

Explanation of your waveform:

波形圖中 error 一直都為 0,代表全部的測資皆正確,波行中還可以看到這是一個 mealy machine,state 隨著輸出改變,而 output 隨著 state 和 input 改變,可以看到 state 和 output 的結果皆與 state diagram 和 state table 相符。

5) At last, please write the lessons learned from this lab session, or some suggestions for this lab session. Thank you.

這次的實驗讓我學習到了如何實作一個 moore machine 和 mealy machine,moore machine 和 mealy machine 在我之前都有在邏輯系統課程中學過,在實作過後我更加了解了 moore machine 和 mealy machine 的輸入和輸出在波型上的差別,還有更加了解了 moore machine 和 mealy machine 在 verilog 中的細節,在用完 superlint 後把每個 warning 都看過並修正,這讓我學習了很多也更熟悉如何寫 verilog。

 $Appendix\,A: Commands\ we\ will\ use\ to\ check\ your\ homework$

Problem		Command	
Lab	Compile	% vcs -R moore.v -full64	
	RTL-sim	% vcs -R moore_tb.v -debug_access+all -full64 +define+FSDB	
	Gate-sim	% vcs -R moore_tb.v -debug_access+all -full64 +define+FSDB+syn	

Problem		Command	
ProbA	Compile	% vcs -R det_seq.v -full64	
	RTL-sim	% vcs -R det_seq_tb.v -debug_access+all -full64 +define+FSDB	
	Gate-sim	% vcs -R det_seq_tb.v -debug_access+all -full64 +define+FSDB+syn	
ProbB	Compile	% vcs -R branch_pred.v -full64	
	RTL-sim	% vcs -R branch_pred_tb.v -debug_access+all -full64 +define+FSDB	
	Gate-sim	% vcs -R branch_pred_tb.v -debug_access+all -full64 +define+FSDB+syn	
ProbC	Compile	% vcs -R pattern_gen.v -full64	
	RTL-sim	% vcs -R pattern_gen_tb.v -debug_access+all -full64 +define+FSDB	
	Gate-sim	% vcs -R pattern_gen_tb.v -debug_access+all -full64 +define+FSDB+syn	