Gradient Dynamics Relaxiation Method

Ahmed Elgailani - July, 19, 2020

Last update:

July 20, 2020

1 The motivating idea behind GD

Suppose we have a potential field $\phi = \phi(\mathbf{x})$, where \mathbf{x} is the postion vector of all the degrees of freedom (dof) of the system, and we are interested in finding the minimum of ϕ . The GD method is motivated by the fact that at the minimum potential energy the system is at equilibrium, meaning $\mathbf{F} = \mathbf{0}$, where \mathbf{F} is the net force vector (also known as the residual when we are looking for equilibrium). We also know for a conservative system that $\mathbf{F} = -\nabla_{\mathbf{x}}\phi$. The idea of GD is to move the system, from an initial guess, in the direction of $-\nabla_{\mathbf{x}}\phi$, the direction of the maximum decrease of $\phi(\mathbf{x})$, to get to a local minimum or in the opposite direction $+\nabla_{\mathbf{x}}\phi$, the direction of the maximum increase of $\phi(\mathbf{x})$, to reach a maxima. In other words, moving the dof in a direction proportional to the forces, or $\mathbf{x}_{t+1} = \mathbf{x}_t + \gamma \mathbf{F}_t$, $\gamma \in \mathbf{R}^+$, we are guaranteed to reach a local minima, provided that we choose small enough values of γ at each step and ϕ is not pathological within the problem domain. γ is also referred to as the time step Δt for obvious reasons, although it is a numerical parameter and not the physical time step precisely.

2 The algorithm of GD

Starting from an initial point $x = x_o$ at t = 0:

- Calculate $\boldsymbol{F}_t = -\nabla_{\boldsymbol{x}}\phi(\boldsymbol{x}_t)$
- Check for convergence. For example if L2Norm(F_t) $\leq Tol$, then break
- Take a time step, $x_{t+1} = x_t + \gamma F_t$
- t = t + 1
- Repeat