MEĐUISPIT IZ DIGITALNE LOGIKE

Grupa D

1	Napon napajanja digitalnog sklopa je 5 V. Frekvencija takta je 100 MHz. Ako je poznato da
	ugradnjom većeg hladnjaka dozvoljenu disipaciju sklopa možemo udvostručiti, na kojoj
	maksimalnoj frekvenciji signala takta može raditi taj sklop ako napon napajanja spustimo na 3,3 V?
	Ponuđeni odgovori zaokruženi su na jednu decimalu.

a) 200 MHz

c) 459,1 MHz

e) 918,3 MHz

b) 150 MHz

d) 229,6 MHz

f) ništa od navedenoga

- 2 Koji se od navedenih produkata može koristiti za ocjenu dobrote integriranog sklopa?
 - a) umnožak vremena kašnjenja i disipirane snage
 - b) umnožak napona napajanja i frekvencije takta
 - c) umnožak disipirane snage i napona napajanja
 - d) umnožak vremena kašnjenja i broja tranzistora
 - e) umnožak napona napajanja i broja osnovnih sklopova
 - f) ništa od navedenoga

- Zadana je funkcija $f(A, B, C, D) = \sum m(8,9,10,12,13,14)$. S koliko se minimalno NMOS tranzistora u CMOS sklopu može realizirati ova funkcija?
 - a) 10
- b) 5
- c) 3
- d) 4
- e) 7
- f) ništa od navedenoga

- Dekoder 6/64 moguće je ostvariti uporabom:
 - a) 4 dekodera 4/16

- b) 5 dekodera 2/4
- c) 4 dekodera 4/16 i jednog dekodera 2/4
- d) 32 dekodera 1/2

e) 34 dekodera 1/2

- f) ništa od navedenoga
- U nekom digitalnom sustavu dekadske znamenke prikazuju se XS-3 kodom. Uporabom jednog dekodera 4/16 s invertiranim izlazima i jednog NI-sklopa potrebno je ostvariti sklop koji će na izlazu dati 1 ako je na ulaz dovedena dekadska znamenka koja je djeljiva s 3. Koje izlaze dekodera je potrebno spojiti na ulaze NI-sklopa?
 - a) 4, 5, 7, 8, 10, 11
- c) 0, 3, 6, 9

e) 3, 6, 9, 12

- b) 1, 2, 4, 5, 7, 8, 10, 11
- d) 0, 1, 2, 13, 14, 15
- f) ništa od navedenoga

Koju funkciju obavlja sklop na slici?

- a) f = B
- b) f = 0
- c) f = 1
- d) $f = AB + \overline{C}$
- e) $f = AB\overline{C} + \overline{A} \overline{B}$
- f) ništa od navedenoga
- Na ulaz nekog digitalnog sustava dovodi se četverobitni podatak B₃B₂B₁B₀ koji predstavlja BCD znamenku. Sustav na izlazu daje paritetni bit za zaštitu takve BCD znamenke parnim paritetom. Ako je sustav potrebno realizirati uporabom jednog multipleksora 4/1 (korištenjem netrivijalnih rezidualnih funkcija) čijim selekcijskim (adresnim) ulazima upravljaju bitovi B₃ (adresni ulaz veće težine) i B₂ (adresni ulaz manje težine), što je potrebno dovesti na ulaz "2" tog multipleksora?
 - a) 1

c) $B_1 \oplus B_0$

b) 0

d) $\overline{B_1 \oplus B_2}$

- f) ništa od navedenoga
- Koji od sljedećih izraza definira neutralni element?
 - a) $(\forall a \in K)(\exists \overline{a} \in K \mid a + \overline{a} = 1)$
- b) $(\forall a \in K)(a = (\overline{a}))$

c) $(\forall a \in K)(a+1=1)$

d) $(\exists 0 \in K)(\forall a \in K \mid a+0=a)$

e) $(\exists 0 \in K)(0+0=0)$

- f) ništa od navedenoga
- 10 Funkciju $f(A, B, C) = \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + A B C$ prikažite u potpunom konjunktivnom normalnom obliku:
 - a) $f(A,B,C) = (A+B+C)\cdot (A+\overline{B}+C)\cdot (A+\overline{B}+\overline{C})\cdot (\overline{A}+\overline{B}+C)$
 - b) $f(A,B,C) = (A+B+\overline{C}) \cdot (\overline{A}+B+C) \cdot (\overline{A}+B+\overline{C}) \cdot (\overline{A}+\overline{B}+\overline{C})$
 - c) $f(A,B,C) = (\overline{A} + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) \cdot (A + \overline{B} + C) \cdot (A + B + \overline{C})$
 - d) $f(A,B,C) = (\overline{A} + \overline{B} + \overline{C}) \cdot (\overline{A} + B + \overline{C}) \cdot (\overline{A} + B + C) \cdot (A + B + C)$
 - e) $f(A,B,C) = (A+B+C)\cdot(\overline{A}+B+C)\cdot(\overline{A}+B+\overline{C})\cdot(\overline{A}+\overline{B}+C)$
 - f) ništa od navedenoga
- 11 Funkciju f(A,B,C) = NI(NI(A,B,NI(C,C)), NI(A,NI(B,B),C), NI(NI(A,B),B,C)) prikažite u potpunom sustavu funkcija I,ILI,NE.
 - a) f(A, B, C) = ILI(NE(I(A, B, NE(C))), NE(I(A, NE(B), C)), NE(I(NE(A), B, C)))
 - b) f(A, B, C) = ILI(I(A, B, NE(C)), I(A, NE(B), C), I(NE(A), B, C))
 - c) f(A, B, C) = NE(ILI(I(A, B, NE(C)), I(A, NE(B), C), I(NE(A), B, C)))
 - d) f(A,B,C) = NE(I(ILI(A,B,NE(C)),ILI(A,NE(B),C),ILI(NE(A),B,C)))
 - e) f(A,B,C) = I(ILI(A,B,NE(C)),ILI(A,NE(B),C),ILI(NE(A),B,C))
 - f) ništa od navedenoga
- 12 Odredite dualnu funkciju f_D funkcije $f(A, B, C) = \sum m(0,1,5,6)$

- a) $f_D(A, B, C) = \sum m(2,3,6,7)$ c) $f_D(A, B, C) = \sum m(1,2,6,7)$ e) $f_D(A, B, C) = \sum m(0,3,4,5)$ b) $f_D(A, B, C) = \sum m(2,3,4,7)$ d) $f_D(A, B, C) = \sum m(0,1,5,6)$ f) ništa od navedenoga

13	Koji je rezultat zbrajanja BCD brojeva 001100010010 i 001101111000 ako je rezultat zbrajanja izražen u XS-3 kodu?							
	a) 101010101		,	1000011	,	0101011000		
	b) 011010010	0001	d) 00110	010111101011	f) nis	sta od navedenoga		
14	Predajnik i prijemnik razmjenjuju poruke koje sadrže 1 bit informacije i koje su zaštićene Hammingovim kodom uz parni paritet. Neka je prijemnik s komunikacijskog kanala očitao y ₁ y ₂ y ₃ (uz uobičajen razmještaj zaštitnih i podatkovnih bitova). Neka s ₂ (y ₁ ,y ₂ ,y ₃) predstavlja najviše značajan bit pripadnog sindroma. Kako glasi zapis te funkcije u standardnome obliku?							
	a) $\sum m(1,2,6)$,7)	c) $\sum m(0,3,4,7)$		e) $\sum m(3,4,5)$			
	b) $\overline{\prod} M(1,2,$	6,7)	d) $\prod M(0,3,4,7)$		f) ništa od navedenoga			
15	Oktalni broj 135272 ₈ zapisan kao heksadekadski glasi:							
	a) BABA	b) ABBA	c) DEDA	d) DECA	e) 1F5E	f) ništa od navedenoga		
16	Hornerova shema je princip korišten kod:							
	a) uklanjanja statičkog-1 hazarda b) množenja							
	/ I U I	ozitivnog parit		/ -		ere negativnog pariteta		
	e) uklanjanja statičkog-0 hazarda f) ništa od navedenoga							
17	Za sklop na slici zadano je kašnjenje prvog NI sklopa $t_{\rm d1}$ =5 ns te kašnjenje drugog NI sklopa $t_{\rm d2}$ =10							
	ns. Varijabla A može mijenjati stanje iz 0 u 1 i može mijenjati stanje iz 1 u 0. Sklop pokazuje pojavu hazardnog prijelaza: t_{d1} =5 ns							
	a) statički-0 hazard, za prijelaz varijable A iz 0 u 1 b) statički-0 hazard, za prijelaz varijable A iz 1 u 0 c) statički-1 hazard, za prijelaz varijable A iz 1 u 0 d) statički-1 hazard, za prijelaz varijable A iz 0 u 1 e) statički-1 hazard na obje vrste promjena f) ništa od navedenoga							
18	Zadana je funk	cija $f(A, B, C)$	$(D) = \sum m(0, 1)$	4,7,8,12,14,15).	Označimo s X	K broj implikanata, s Y broj		
	bitnih primarn	bitnih primarnih implikanata i sa Z broj minimalnih oblika. Zadana funkcija ima X/Y/Z:						
	a) 13/12/2	b) 13/2/1	c) 15/3/1	d) 12/1/2	e) 15/2/2	f) ništa od navedenoga		
19	Minimizirati funkciju $f(A, B, C, D) = \sum m(0, 2, 3, 8, 9, 10, 12, 13, 15)$ K tablicom. Minimizirani oblik ne sadrži:							
	a) $A\overline{C}$	b) $AB\overline{C}$	c) $\overline{A}\overline{B}C$	d) $\overline{B}\overline{D}$	e) <i>ABD</i>	f) ništa od navedenoga		
20	b) primarni irc) implikant ld) implikant l	nplikant koji jo nplikant koji p koji sadrži pari koji ima najma nplikant koji jo	okriva najveć tetni bit nji broj literal	i broj implikana a	nta funkcije			

Zadatak 21

Ovaj zadatak potrebno je riješiti na zasebnom papiru koji je potrebno staviti kao prvi papir u košuljicu. Rješenje će se ručno pregledati i bodovati. Zadatak se boduje s maksimalnim brojem bodova (koji je jednak kao i kod drugih zadataka) ako je u cijelosti točan; inače nosi 0 bodova.

Sklop S na svojem izlazu generira dekadske znamenke u kodu Excess-3. Povremeno se, međutim, može dogoditi da se na njegovu izlazu pojavi bilo kakva kombinacija bitova. Na izlaz tog sklopa spojen je pretvornik koda Excess-3 u 7-segmentni kôd na koji je potom spojen 7-segmentni prikaznik kako je prikazano na slici.

Uz prikazani način spajanja, svjetleća dioda će svijetliti samo ako je izlaz pretvornika na koji je spojena u logičkoj nuli. Odredite Booleovu funkciju koja određuje izlaz f pretvornika koji upravlja svjetlećom diodom segmenta f; gdje postoji sloboda u izboru, funkciju je potrebno odrediti na način da se minimizira potrošnja (tj. da se minimizira broj slučajeva u kojima diode svijetle i troše energiju). Uporabom minimalno potrebnog broja osnovnih logičkih sklopova (I, ILI, NE, Ex-ILI) **nacrtajte shemu sklopa** koji ostvaruje tu funkciju. U vašem rješenju mora biti vidljiv i postupak kojim ste došli do tog sklopa.

Zadatak 22

Ovaj zadatak potrebno je riješiti na zasebnom papiru koji je potrebno staviti kao drugi papir u košuljicu. Rješenje će se ručno pregledati i bodovati. Zadatak se boduje s maksimalnim brojem bodova (koji je jednak kao i kod drugih zadataka) ako je u cijelosti točan; inače nosi 0 bodova.

Koristeći samo sklopove isključivo-ILI **nacrtajte sklop** koji obavlja pretvorbu trobitnog binarnog broja u Grayev kôd. U vašem rješenju mora biti vidljiv i postupak kojim ste došli do tog sklopa.