Udacity-Project--Exploring Weather Trends

Step 1

Extracting data from the provided Database

I want to know how many Belgium cities are in the list

SELECT * FROM city_list WHERE country like 'Belgium';

Only Brussels is in the cities list.

Step 2

I renamed columns for joining

ALTER TABLE global_data RENAME COLUMN avg_temp to global_avg_temp;

ALTER TABLE city_data RENAME COLUMN avg_temp to city_avg_temp;

Step 3

-- Downloaded the joined tables

SELECT global_data.year, global_data.global_avg_temp, city_avg_temp FROM global_data INNER JOIN city_data ON global_data.year=city_data.year WHERE city like 'Brussels';

-- I saved as weather_project.csv

```
In [21]:
```

```
# Now I use python
# Importing libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

# Import the dataset
df = pd.read_csv("weather_project.csv")
```

```
In [22]:
```

```
# look the head of the dataframe

df.head(10)
```

Out[22]:

	year	global_avg_temp	city_avg_temp
0	1750	8.72	10.73
1	1751	7.98	10.52
2	1752	5.78	6.55
3	1753	8.39	9.86
4	1754	8.47	9.54
5	1755	8.36	9.30
6	1756	8.85	9.77
7	1757	9.02	9.61
8	1758	6.74	9.31
^	1750	7 00	10.06

```
year global avg temp city avg temp
```

```
In [23]:
```

```
# look the tail of the dataframe
df.tail(10)
```

Out[23]:

	year	global_avg_temp	city_avg_temp
254	2004	9.32	10.94
255	2005	9.70	11.16
256	2006	9.53	11.48
257	2007	9.73	11.52
258	2008	9.43	10.90
259	2009	9.51	11.00
260	2010	9.70	9.74
261	2011	9.52	11.69
262	2012	9.51	10.68
263	2013	9.61	10.36

In [24]:

```
#To learn the shape of the data df.shape
```

Out[24]:

(264, 3)

In [25]:

```
#Find describtion of the dataset
df.describe()
```

Out[25]:

	year	global_avg_temp	city_avg_temp
count	264.000000	264.000000	264.000000
mean	1881.500000	8.359394	9.876932
std	76.354437	0.575184	0.733044
min	1750.000000	5.780000	6.550000
25%	1815.750000	8.077500	9.435000
50%	1881.500000	8.365000	9.880000
75%	1947.250000	8.700000	10.332500
max	2013.000000	9.730000	11.690000

In [26]:

```
#Defined Calculating function
def dfMean(windowRolling, df_in):
    df_out = df_in.rolling(window = windowRolling, center=False, on = "year").mean().dropna()
    return df_out
```

```
df1 = 150
df_movingAverage = dfMean(df1, df)
```

Tn [28]:

```
# Drawing graph in matplotlib library

plt.plot(df_movingAverage['year'], df_movingAverage['global_avg_temp'], label='Global')
plt.plot(df_movingAverage['year'], df_movingAverage['city_avg_temp'], label='Brussels')
plt.legend()
plt.xlabel("Years")
plt.ylabel("Temperature (°C)")
plt.title("Brussels vs Global Average Temperature".format(df1))
plt.show()
```


Observations

I checked in general the dataset and look the tables, the head and the tail and its describtion, it seems that always Brussels was in higher average temperature than the global. If we also look inside the last 10 years say from 2004 to 2013 the global average temperature was not less than 9.32 as for Brussels was always higher than the global and not less than 9.74.

References

I used https://miktex.org/howto/install-miktex with pandoc to convert the ipynb jupyter notebook to PDF.