# Лабораторная работа № 5

# Вычислительный эксперимент

## «Исследование колебаний механической системы»

Работу выполнили: Стецук Максим

Сафин Рамаз

# Оглавление:

- Отчёт Стецук Максима: стр. 3-7;
- Отчёт Сафина Рамаза: стр. 8-12;
- Ссылка на скринкаст: стр. 13.

## Отчет по Лабораторной работе №5 Стецук Максима

## Цель работы

Организовать и провести вычислительный эксперимент для исследования колебаний механической системы.

## Используемое оборудование

ΠΚ, Microsoft Excel, Microsoft Word

Задание 1

Построить график зависимости смещения x от времени t(x = x(t)).

#### Математическая модель:

$$x(t) = \frac{mg}{k} * (1 - \cos(\omega 0t)) \tag{1}$$

где

х – смещение;

т – масса груза;

g – ускорение свободного падения;

k – жёсткость пружины;

 $\omega 0$  – циклическая частота;

t – время.

#### Начальные значения:

| Масса груза                  | m  | 10  |
|------------------------------|----|-----|
| Ускорение свободного падения | g  | 9,8 |
| Жёсткость пружины            | k  | 100 |
| Циклическая частота          | ω0 | 11  |

Для построения графика зависимости смещения от времени, воспользуемся формулой (1), подставив в неё начальные значения, и подставляя различные значения параметра t(времени):



Полученные значения х в зависимости от времени:

| t  | x(t)   |
|----|--------|
| 0  | 0      |
| 1  | 0,9757 |
| 2  | 1,96   |
| 3  | 0,993  |
| 4  | 0,0002 |
| 5  | 0,9583 |
| 6  | 1,9597 |
| 7  | 1,0104 |
| 8  | 0,0006 |
| 9  | 0,941  |
| 10 | 1,959  |
| 11 | 1,0277 |
| 12 | 0,0014 |
| 13 | 0,9236 |
| 14 | 1,9581 |
| 15 | 1,045  |

Мы вычислили значения х и построили график, который описывает колебания пружинного маятника. Из полученного графика и полученных значений мы выяснили, что функция х(t) является правильной косинусойдой, а значит, система совершает гармонические колебания с размахом колебаний не превышающим 2.

Также из полученных значений мы можем сказать, что данная система совершает колебания около x=0.98

Анализируя данную работу и прошлую, можно прийти к выводу, что и в механической системе и в электромагнитной системе колебания происходят из-за перехода одного вида в другой и обратно, а именно:

#### Механическая система:

В механической системе данный процесс возникает из-за периодического изменения потенциальной и кинетической энергии. В точке равновесия системы тело имеет максимальную скорость, а значит, кинетическая энергия максимальна, а в точке максимального отклонения, скорость тела равна нулю, а значит кинетическая энергия минимально. С потенциальной энергией всё наоборот, ведь в точке равновесия системы она минимальна, а в точке максимального отклонения она максимальна.

#### Электромагнитная система:

В электрической цепи происходят аналогичные превращения, только из-за энергии электрического поля и магнитного поля. При разряженном конденсаторе энергия электрического поля равна нулю, а энергия магнитного поля максимально, но при заряде конденсатора энергия электрического поля будет возрастать, а энергия электромагнитного поля будет падать.

# Математическая модель для описания движения данной колебательной системы (пружинного маятника), используя закон сохранения энергии:

Потенциальная энергия для упругодеформированного тела с коэффициентом жёсткости k:

$$Ep = \frac{kx^2}{2}$$

Кинетическая энергия:

$$Ek = \frac{mV^2}{2}$$

Закон сохранения энергии:

Ep+Ek=const

Значит:

$$(Ek + Ep)' = 0 (2)$$

Найдём производные для потенциальной и кинетической энергии:

$$Ek' = \left(\frac{mV^2}{2}\right)' = mVa$$
  $Ep' = \left(\frac{kx^2}{2}\right)' = kxV$ 

Тогда, подставив в формулу (2) получаем:

$$mVa + kxV = 0$$

Значит:

$$x = -\frac{ma}{k}$$

Математическая модель для описания движения колебательной системы (математического маятника), используя закон сохранения энергии:

Потенциальная энергия:

$$Ep = mgl * \frac{x^2}{2}$$

Кинетическая энергия:

$$Ek = \frac{mV^2}{2}$$

Закон сохранения энергии:

$$Ep+Ek=const$$

Значит(аналогично 1-му случаю):

$$(Ek + Ep)' = 0$$

Найдём производные для потенциальной и кинетической энергии:

6

$$Ep' = mglx$$

$$Ek' = mVa$$

Тогда, подставив в формулу (2) получаем:

$$mglx + mVa = 0$$

Значит:

$$x = -\frac{Va}{glx}$$

#### Вывод:

В данной работе мы исследовали колебательный процесс, происходящий в механической системе на примере движения пружинного маятника. Мы построили график смещения от времени x(t), а также, проанализировав его и полученные значения, мы ответили на дополнительные вопросы. Также мы разработали математические модели с помощью 3СЭ для данного маятника и простейшего математического маятника.

## Отчет по Лабораторной работе №5 Сафина Рамаза

## Цель работы

Организовать и провести вычислительный эксперимент для исследования колебаний механической системы.

### Используемое оборудование

ΠΚ, Microsoft Excel, Microsoft Word

Задание 1

Построить график зависимости смещения x от времени t(x = x(t)).

#### Математическая модель:

$$x(t) = \frac{mg}{k} * (1 - \cos(\omega 0t)) \tag{1}$$

где

х – смещение;

т – масса груза;

g – ускорение свободного падения;

k – жёсткость пружины;

 $\omega 0$  – циклическая частота;

t – время.

#### Начальные значения:

| Масса груза                  | m  | 10  |
|------------------------------|----|-----|
| Ускорение свободного падения | g  | 9,8 |
| Жёсткость пружины            | k  | 100 |
| Циклическая частота          | ω0 | 11  |

Для построения графика зависимости смещения от времени, воспользуемся формулой (1), подставив в неё начальные значения, и подставляя различные значения параметра t(времени):



Полученные значения х в зависимости от времени:

| t  | x(t)   |
|----|--------|
| 0  | 0      |
| 1  | 0,9757 |
| 2  | 1,96   |
| 3  | 0,993  |
| 4  | 0,0002 |
| 5  | 0,9583 |
| 6  | 1,9597 |
| 7  | 1,0104 |
| 8  | 0,0006 |
| 9  | 0,941  |
| 10 | 1,959  |
| 11 | 1,0277 |
| 12 | 0,0014 |
| 13 | 0,9236 |
| 14 | 1,9581 |
| 15 | 1,045  |

Мы вычислили значения х и построили график, который описывает колебания пружинного маятника. Из полученного графика и полученных значений мы выяснили, что функция х(t) является правильной косинусойдой, а значит, система совершает гармонические колебания с размахом колебаний не превышающим 2.

Также из полученных значений мы можем сказать, что данная система совершает колебания около x=0.98

Анализируя данную работу и прошлую, можно прийти к выводу, что и в механической системе и в электромагнитной системе колебания происходят из-за перехода одного вида в другой и обратно, а именно:

#### Механическая система:

В механической системе данный процесс возникает из-за периодического изменения потенциальной и кинетической энергии. В точке равновесия системы тело имеет максимальную скорость, а значит, кинетическая энергия максимальна, а в точке максимального отклонения, скорость тела равна нулю, а значит кинетическая энергия минимально. С потенциальной энергией всё наоборот, ведь в точке равновесия системы она минимальна, а в точке максимального отклонения она максимальна.

#### Электромагнитная система:

В электрической цепи происходят аналогичные превращения, только из-за энергии электрического поля и магнитного поля. При разряженном конденсаторе энергия электрического поля равна нулю, а энергия магнитного поля максимально, но при заряде конденсатора энергия электрического поля будет возрастать, а энергия электромагнитного поля будет падать.

# Математическая модель для описания движения данной колебательной системы (пружинного маятника), используя закон сохранения энергии:

Потенциальная энергия для упругодеформированного тела с коэффициентом жёсткости k:

$$Ep = \frac{kx^2}{2}$$

Кинетическая энергия:

$$Ek = \frac{mV^2}{2}$$

Закон сохранения энергии:

Ep+Ek=const

Значит:

$$(Ek + Ep)' = 0 (2)$$

Найдём производные для потенциальной и кинетической энергии:

$$Ek' = \left(\frac{mV^2}{2}\right)' = mVa$$
  $Ep' = \left(\frac{kx^2}{2}\right)' = kxV$ 

Тогда, подставив в формулу (2) получаем:

$$mVa + kxV = 0$$

Значит:

$$x = -\frac{ma}{k}$$

Математическая модель для описания движения колебательной системы (математического маятника), используя закон сохранения энергии:

Потенциальная энергия:

$$Ep = mgl * \frac{x^2}{2}$$

Кинетическая энергия:

$$Ek = \frac{mV^2}{2}$$

Закон сохранения энергии:

$$Ep+Ek=const$$

Значит(аналогично 1-му случаю):

$$(Ek + Ep)' = 0$$

Найдём производные для потенциальной и кинетической энергии:

11

$$Ep' = mglx$$

$$Ek' = mVa$$

Тогда, подставив в формулу (2) получаем:

$$mglx + mVa = 0$$

Значит:

$$x = -\frac{Va}{glx}$$

## Вывод:

В данной работе мы исследовали колебательный процесс, построили график смещения от времени x(t), а также, проанализировав его и полученные значения, мы ответили на дополнительные вопросы. Также мы разработали математические модели с помощью 3СЭ для данного маятника и простейшего математического маятника.

# Ссылка на скринкаст:

https://drive.google.com/file/d/1Npjlwzz79Dw2Y\_3P1h3AMW-x6oWgQ5GR/view