Lesson 4: Graphing Functions with Transformations

You can graph functions of the form g(x) = af |k(x-d)| + c by applying the appropriate transformations to the key points of the parent function f(x). Always apply a and k before d and c, since transformations should follow the same order of operations as numerical expressions.

To assist in transforming key points, we will use a "Mapping Rule." This rule tells us what operations to perform on the x- and y-coordinates of each key point.

Parameter	Description of Transformation	Mapping Rule
a	Vertical Dilation by a factor of a If $a > 1$ or $a < -1$ the graph is stretched vertically If $-1 < a < 1$ the graph is compressed vertically If $a < 0$ the graph is Reflected in the x -axis	$(x,y) \rightarrow (x,ay)$
k	Horizontal Dilation by a factor of $\frac{1}{k}$ If $k > 1$ or $k < -1$ the graph is compressed horizontally If $-1 < k < 1$ the graph is stretched horizontally If $k < 0$ the graph is Reflected in the y-axis	$(x,y) \Rightarrow \frac{(x,y)}{k}$
d	Horizontal Translation (Shift) left or right d units If $d > 0$ the graph shifts right If $d < 0$ the graph shifts left	$(x, y) \rightarrow (x + d, y)$
C	Vertical Translation (Shift) up or down c units If $c > 0$ the graph shifts up If $c < 0$ the graph shifts down	$(x, y) \rightarrow (x, y + c)$

Jan 31-9:35 PM

Ex 1) Given the function
$$g(x) = -2f\left[\frac{1}{3}(x+3)\right] + 5$$
 $A = -2$ $K = \frac{1}{3}$ $\therefore K = 3$

- a) State the transformations that have been applied to f(x)
 - RITXA
- vertically stretch bafo 2 horizontally stretched bafo 3. horizontally translated 3 units left.
- vertically translated up 5 units
- b) State the mapping rule

$$recall: (X, y) \rightarrow (\frac{1}{K}x + d, ay + c)$$

$$(X,y) \rightarrow (3x-3,-2y+5)$$

c) The point (2, 5) is a point on the graph of f(x). Determine the coordinates of the transformed point.

$$(2,5) \rightarrow (3(2)-3,-2(5)+5)$$

U4L4 D1 - Graphing Functions with Transformations DAY 1 DONE.notebook April 29, 2019

Equations of transformed functions with parameters a, k, d & c:

Linear:
$$g(x) = a[k(x-d)] + c$$
 Quadratic: $g(x) = a[k(x-d)]^2 + c$

Reciprocal:
$$g(x) = \frac{a}{k(x-d)} + c$$

Square Root:
$$g(x) = a\sqrt{k(x-d)} + c$$
 Absolute Value: $g(x) = a|k(x-d)| + c$

If you have both a horizontal dilation/reflection AND a horizontal shift, you must FACTOR out k!

Apr 25-12:21 PM

b) Using a mapping rule, graph both functions on the grid provided. Include the asymptotes. $(x, y) \rightarrow (-4x - 4, 2y + 3)$

mainpoints:

$$(-1,-1) \rightarrow (4(-1)^{-4},2(-1)+3) \rightarrow (0,1)$$

$$(1,1) \rightarrow (-4(1)-4,2(1)+3) \rightarrow (-8,5)$$

$$X = 0 \rightarrow X = -4(0)-4 \rightarrow X = -4$$

$$Y = 0 \rightarrow Y = 2(0)+3 \rightarrow Y = 3$$
c) Write the equation for $g(x)$ and

c) Write the equation for g(x) and

$$g(x) = \frac{2}{-\frac{1}{4}(x+4)} + 3$$

Apr 25-12:29 PM

HW U4L4 Day 1:

- 1. p. 70 #1, 2, 6, 7c, 8c, 9c, 10abde, 12, 16, 17
- 2. study parent functions in preparation for the quiz Wednesday