CIS 678 - Machine Learning

Optimal Number of Clusters

How many clusters better describe these data points?

How many clusters better describe these data points?

3 could be most likely answer; right?

- Elbow method
- Silhouette score based

 Elbow method (<u>notebook</u> <u>presentation</u>)

Elbow method

 Explained Variance method can be used for number of clusters selections, and also for some other applications such as number of PCA components etc.

Explained Variance: Percentage of variance explained is the ratio of the between-group variance to the total variance, also known as an F-test.

Elbow method

 Explained Variance method can be used for number of clusters selections, and also for some other applications such as number of PCA components etc.

Explained Variance: Percentage of variance explained is the ratio of the between-group variance to the total variance, also known as an F-test.

Silhouette score based

For each sample:

a: mean intra-cluster distance

b: mean nearest-cluster distance

Silhouette Score is the *mean* of the (Silhouette Coefficient for each data point)

A Collection of Clustering Concepts