Ein UPN Rechner für reelle und komplexe Zahlen

Andreas Thadewald

28. Februar 2024

Berchnung von Wechselstromschaltungen und mehr!

Inhaltsverzeichnis

1	Der Rechner 1.1 Die umgekehrte polnische Notation (UPN)	2
2	Die komplexen Zahlen	4
3	Anmerkungen zur Bedienung	5
	3.1 Trigonometrische Funktionen	5
	3.2 Homers letzter Satz	6
4		7
	4.1 Schaltung mit Wirkwiderständen	7
	4.2 Schaltung mit komplexen Widerständen	8
	4.3 Schaltung mit Wirk- und Blindwiderständen	

1 Der Rechner

So erhält man die Werte in dem oberen Bild:

1 Enter 30 cplx Enter 1
$$e^x$$

1.1 Die umgekehrte polnische Notation (UPN)

Erst die Zahlen eingegeben, dann den Operator (+, * ...). Beispiel: 35 Enter 14.7 +

Field	Stack	
T	0.0000	not visible
U	0.0000	not visible
Y	0.0000	visible
X	0.0000	visible

Calculate (35+14.7)*7/(22.7-3.14)

T	0.0000		0.0000		0.0000		0.0000		0.0000	
U	0.0000		0.0000		0.0000		0.0000		0.0000	
Y	0.0000		0.0000		35.0000		35.0000		0.0000	
X	0.0000	35	35	Enter	35.0000	14.7	14.7	+	49.7000	7

T	0.0000		0.0000		0.0000		0.0000	
U	0.0000		0.0000		0.0000		347.9000	
Y	49.7000		0.0000		347.9000		22.7000	
X	7	*	347 9000	22.7	22.7	Enter	22.7000	3.14

T	0.0000		0.0000		0.0000
U	347.9000		0.0000		0.0000
Y	22.7000		347.9000		0.0000
X	3.14	_	19.56	/	17.7863

2 Die komplexen Zahlen

Komplexe Zahlen bestehen aus zwei Komponenten, dem Realteil und dem Imaginärteil. Das Rechnen ist so ähnlich wie mit binomischen Formeln.

$$(a+b)^2=a^2+2ab+b^2$$
 binomische Formel
$$(a+ib)^2=a^2+i2ab-b^2=a^2-b^2+i2ab$$
 komplexe Zahl

Das $-b^2$ entsteht durch das Quadrieren der imaginären Einheit i.

$$i^2 = -1$$

Komplexe Zahlen können auf zwei Arten dargestellt werden.

- Rechtwinklige Koordinaten (a + ib) (Rect)
- Polarkoordinaten $|r| * e^{i\varphi}$ mit $|r| = \sqrt{a^2 + b^2}$ (Pol)

Abbildung 1: Komplexe Zahlenebene

3 Anmerkungen zur Bedienung

Es soll die komplexe Zahl 3 + i5 eingegeben werden (Einstellung Rect):

Der Realteil 3 muss im Y-Feld und der Imaginärteil 5 im X-Feld stehen .

3.1 Trigonometrische Funktionen

Wenn man sich die komplexe Zahlenebene anschaut, sieht man ein rechtwinkliges Dreieck. Es gibt folgende Zusammenhänge für den Einheitskreis mit dem Radius r = 1.

$$\cos^2 a + \sin^2 b = 1$$

Die 'Eulersche Formel':
 $e^{i \cdot \varphi^{\circ}} = \cos(\varphi^{\circ}) + i \sin(\varphi^{\circ})$

Möchte man den Sinus-, Cosinus- und Tangenswert von $\phi=30^\circ$ berechnen erreicht man das über die Eingabe

mit der Taschenrechnereinstellung auf Pol und Deg.

Stellt man jetzt auf Rect um, erhält man den Sinus- und Cosinuswert. Das ergibt sich aus der 'Eulerschen Formel'.

Die vollständige Eingabe mit der Einstellung am Rechner auf Pol und Deg:

Eingaben	X-Feld	Y-Feld
1	1	0.0000
Enter	1.0000	1.0000
30	30	1.0000
cplx	1.0000 \(\alpha 30.0000 \)	0.0000
Rect	0.8660i0.5000	0.0000
cplx	0.5000	0.8660
x⇔y	0.8660	0.5000
/	0.5774	0.0000

Der $\sin(30^\circ)=0.5$, der $\cos(30^\circ)=0.866$. Der letzte Wert in der Tabelle wäre der $\tan(30^\circ)=0.5774$.

Hieraus den Winkel wieder zurückrechnen (arctan) mit der Einstellung am Rechner auf Rect

und Deg:

Eingaben	X-Feld	Y-Feld
1	1	0.5774
x⇔y	0.5774	1.0000
cplx	1.0000 i0.5774	0.0000
Pol	$1.1547 \angle 30.0000$	0.0000

3.2 Homers letzter Satz

Rechnen mit großen Zahlen. In einer Sendung aus der amerikanischen Comic-Serie 'Die Simpsons' hatte Homer Simpson den Fermatschen Satz widerlegt.

$$3987^{12} + 4365^{12} = 4472^{12}$$

Einer der Autoren der Serie mit mathematisch-naturwissenschaftlicher Ausbildung hatte ein C-Programm geschrieben, um diese Gleichung zu finden.

Eingaben	X-Feld	Y-Feld	U-Register
3987	3987	0.0000	
Enter	3987.0000	3987.0000	
12	12	3987.0000	
y^x	1.6134e+43	0.0000	
4365	4365	1.6134e+43	
Enter	4365.0000	4365.0000	1.6134e+43
12	12	4365.0000	1.6134e+43
y^x	4.7842e+43	1.6134e+43	
+	6.3977e+43	0.0000	
4472	4472	6.3977e+43	
Enter	4472.0000	4472.0000	6.3977e+43
12	12	4472.0000	6.3977e+43
y^x	6.3977e+43	6.3977e+43	

Die linke und die rechte Seite der Gleichung ist identisch. Die Betätigung der prec Taste zeigt aber, dass der letzte Fermatsche Satz durch diese Gleichung nicht widerlegt wird. Das X- und das Y-Feld werden durch das Drücken dieser Toggle-Taste mit einer höheren Genauigkeit angezeigt.

4 Berechnung von Widerstandsschaltungen

4.1 Schaltung mit Wirkwiderständen

Es soll der Erstatzwiderstand R_{ges} berechnet werden.

Abbildung 2: Widerstandsnetz

$$R_{ges} = 2\Omega + \frac{1}{\frac{1}{5\Omega} + \frac{1}{3\Omega + \frac{1}{\frac{1}{7\Omega} + \frac{1}{1\Omega + 4\Omega}}}}$$

Eingaben	X-Feld	Y-Feld
1	1	0.0000
Enter	1.000	1.0000
4	4	1.0000
+	5.0000	0.0000
1/ _X	0.2000	0.0000
7	7.0000	0.2000
1/ _X	0.14286	0.2000
+	0.34286	0.0000
1/ _X	2.91667	0.0000
3	3	2.9167
+	5.9167	0.0000
1/ _X	0.1690	0.0000
5	5	0.1690
1/ _X	0.2000	0.1690
+	0.3690	0.0000
1/ _X	2.7099	0.0000
2	2	2.7099
+	4.7099	0.0000

4.2 Schaltung mit komplexen Widerständen

Es soll der Erstatzwiderstand und der Strom berechnet werden (Rect und Deg ist gewählt).

$$U = 5V$$

$$Z_1 = 200\Omega + i100\Omega$$

$$Z_2 = 100\Omega - i50\Omega$$

$$Z_3 = 150\Omega + i150\Omega$$

$$U$$

Zuerst wird der Ersatzwiderstand berechnet:

$$Z_{ges} = Z_1 + \frac{1}{\frac{1}{Z_2} + \frac{1}{Z_3}}$$

Mit diesem Wert kann der Strom berechnet werden:

$$I = \frac{U}{Z_{ges}}$$

Die Eingabe der Werte in den Rechner (Deg und Rect gewählt) zeigt die folgende Tabelle:

Eingaben	X-Feld	Y-Feld	U-Register
100	100	0.0000	
Enter	100.0000	100.0000	
50	50	100.0000	
+/_	-50	100.0000	
cplx	100 <i>i</i> -50	0.0000	
1/ _x	0.0080i0.0040	0.0000	
150	150	0.0080i0.0040	
Enter	150.0000	150.0000	0.0080i0.0040
cplx	150.0000i150.0000	0.008i0.004	
1/ _X	0.0033i- 0.0033	0.008i0.004	
+	0.00113i0.0007	0.0000	
1/ _X	87.9310 <i>i</i> -5.1724	0.0000	
200	200	87.9310 <i>i</i> -5.1724	
Enter	200.0000	200.0000	87.9310 <i>i</i> -5.1724
100	100	200.0000	87.9310 <i>i</i> -5.1724
cplx	200 <i>i</i> 100	87.9310 <i>i</i> -5.1724	
+	287.9310 <i>i</i> 94.8276	0.0000	
5	5	287.9310 <i>i</i> 94.8276	
x⇔y	287.9310 <i>i</i> 94.8276	5.0000	
/	0.0157 <i>i</i> -0.0052	0.0000	
Pol	0.0165	0.0000	

 $Z_{ges} = 287.9310\Omega + i94.8276\Omega$

 $I = 16.5 mA * e^{-18.2288}$

4.3 Schaltung mit Wirk- und Blindwiderständen

Es soll der Erstatzwiderstand berechnet werden (Rect ist gewählt).

$$\omega = 100Hz$$

$$L1 = 0.5H, L2 = 1H$$

$$C1 = 500\mu F, C2 = 100\mu F$$

$$R1 = 20\Omega, R2 = 50\Omega, R3 = 50\Omega, R4 = 30\Omega$$

$$Z_1 = X_{C_2} || (X_{L_2} + R_3) : 200 i - 100$$

 $Z_2 = [(Z_1 + R_4) || R_2] || X_{C_1} : 7.3442 i - 16.0160$
 $Z_{total} = Z_2 + R_1 + X_{L_2} : 27.3442 i 33.9840$

Die Eingaben in den Rechner:

- 100 Enter 100E6 +/- * cplx
- 0 Enter $100 \text{ cplx } 50 + \frac{1}{x} + \frac{1}{x}$
- $30 + \frac{1}{x} \cdot 50 \cdot \frac{1}{x} + 0 \cdot \text{Enter} \cdot 100 \cdot \text{Enter} \cdot 500E6 + \frac{1}{x} \cdot \text{cplx} + \frac{1}{x}$
- 20 + 0 Enter 100 Enter 0.5 * Cplx +