浅谈cswin-transformers

论文链接:https://arxiv.org/abs/2107.00652

论文代码:https://github.com/microsoft/CSWin-Transformer

1. 出发点

- 基于global attention的transformer效果虽然好但是计算量太大了。
- 基于local attention的transformer的会限制每个token的感受野的交互,减缓感受野的增长。

2. 怎么做

- 提出了Cross-Shaped Window self-attention机制,可以并行计算水平和竖直方向的self-attention,可以在更小的计算量条件下获得更好的效果。
- 提出了Locally-enhanced Positional Encoding(LePE), 可以更好的处理局部位置信息, 并且支持任意形状的输入。

3. 模型结构

模型整体结构如上所示,由token embeeding layer和4个stageblock所堆叠而成,每个stage block后面都会接入一个conv层,用来对featuremap进行下采样。和典型的R50设计类似,每次下采样后,会增加dim的数量,一是为了提升感受野,二是为了增加特征性。下面详解每个部分的构成。

3.1. Convolutional Token Embeeding

顾名思义,用convolution来做embeeding,为了减少计算量,本文直接采用了7x7的卷积核,stride为4的卷积来直接对输入进行embeeding,假设输入为H imes W imes 3,那么输出为 $\frac{H}{4} imes \frac{W}{4} imes C$ 。

3.2. Cross-Shaped Window Self-Attention

尽管有很强的长距离上下文建模能力,但原始的global self-attention的计算复杂度与特征图大小平方 (H==W的情况)成正比的。因此,对于以高分辨率特征图为输入的视觉任务,如物体检测和分割,计算 成本会非常大。为了缓解这个问题,现有的工作Swin等建议使用local windows self-attention,通过shift 窗口来扩大感受野。然而,每个Transformer块内的token依旧是有限的注意区域,需要堆叠更多的block 来实现全局感受野。为了更有效地扩大注意力区域和实现全局性的自我注意,有了Cross-shaped Window Self-attention,下面细讲是怎么做的以及代码实现。

(a) Cross-Shaped Window Self-Attention

看图说话,很简单,假设原始的featuremap为 $H \times W \times C$,设置windows的大小为 $S_W \times S_H$,如果我们希望做行attention,设置 S_W 为W,设置 S_H 为s,那么就可以获得一个 $s \times W$ 的局部窗口,同理,如果我们希望做列attention,设置 S_H 为H,设置 S_W 为s,可以获得一个 $H \times s$ 的窗口。同时,对应的dim一分为2,一部分用于计算行attention,另一部分用于计算列attention,最后在concat起来,实现并行处理。由于transformers在计算attention的时候是采用mutilhead的,为了保持计算量,本文对head一分为2,一部分用于行attention,一部分用于列attention。以行attention为例,公式如下:

$$X \in R^{(H imes W) imes C} \ X = [X^1, X^2, ..., X^M], where \ X^i \in R^{(sw imes W) imes C} \ and \ M = H/sw \ Y^i_k = Attention(X^iW^Q_k, X^iW^K_k, X^iW^V_k), where \ i = 1, ..., M \ Hattention_k(X) = [Y^1_k, Y^2_k, ..., Y^M_k] \ CSWinattn(X) = Concat(head1, ..., headK)W^O \ head_k = \begin{cases} Hattention_k(X) & \text{k=1,...,K/2} \ Vattention_k(X) & \text{k=K/2+1,...,K} \end{cases}$$

其中,窗口大小为(sw,H),相比于标准的self-attention,区别在于H,或者W是部分的而不是全部的,如下图所示。

• 标准的self-attention

• (行or列)self-attention

• 自己的思考

其实乍一看很像ACNet和RepVGG,只不过他们是全都要,本文的话只要行和列的计算。在 Transformers的attention中,Q实际上起指导的作用,K则是用来做token之间的交互,那么对于一个 $X \in (N \times L)$ 的矩阵,会得到一个 $(N \times N)$ 的attention map,意义就是再Q的指导下得到的关于K的attention。很多的时候我们会发现这个attention map 高亮的部分往往都是集中于对角线区域以及周围的部分区域,也就是自己attention自己和对自己有用的token。那么我们是不是就可以拆解这两部分,构造两个attention,一个用于自己attn自己,一个用于attn对自己有价值的位置。那么先拆解为 $X \in (1 \times L)$ 表示的是第一个token,得到 (1×1) 的atten结果,那么意义就是当前的token于其他的token之间的相似度。反过来, $X \in (L \times 1)$ 表示的每个token,同样得到 (1×1) 的atten结果,但是意义为每个token指导第一个token的embeeding的变化。两者结合,就是找对自己有用的token。

Q&A

Question: 本文的另一个核心思想是增大感受野,那么怎么才能增大感受野呢?

Answer: 首先明确一点, cross-shaped windows self-attention, 并不是基于一个H和W相等的 window来做attention的, 实际的窗口大小是随着featuremap和滑动步长的改变而变化的。我们知道 R50是通过1/32的下采样来获得很大的感受野, cross-shaped也是如此, 通过降采样图像大小, 同时增加窗口滑动步长, 最终从local-attention 变为 global-attention, 实现扩张感受野。(这里说感受野不准, 应该表示为长距离依赖)

3.3. Locally-Enhanced Positional Encoding(LePE)

$$X \longrightarrow X' \xrightarrow{V} SoftMax(\frac{QK^T}{\sqrt{D}})V$$

$$X \longrightarrow X \xrightarrow{V} SoftMax(\frac{QK^T}{\sqrt{D}})V$$

$$X \longrightarrow X \xrightarrow{V} SoftMax(\frac{QK^T}{\sqrt{D}})V$$

$$X \longrightarrow X \xrightarrow{V} FK \longrightarrow SoftMax(\frac{QK^T}{\sqrt{D}})V$$

$$X \longrightarrow X \xrightarrow{V} FK \longrightarrow SoftMax(\frac{QK^T}{\sqrt{D}})V$$

$$Y \longrightarrow LePE(V)$$

$$X \longrightarrow X \xrightarrow{V} FK \longrightarrow SoftMax(\frac{QK^T}{\sqrt{D}})V$$

$$Y \longrightarrow LePE(V)$$

$$Y \longrightarrow LePE(V)$$

$$Y \longrightarrow LePE(V)$$

$$Y \longrightarrow LePE(V)$$

上图所示,左边为VIT模型的PE,使用的绝对位置编码或者是条件位置编码,只在embeeding的时候与token一起进入transformer,中间的是Swin,CrossFormer等模型的PE,使用相对位置编码偏差,不再和输入的embeeding一起进入transformer,通过引入token图的权重,来和attention一起计算,灵活度更好相对APE效果更好。最后就是本文所提出的LePE,相比于RPE,本文的方法更加直接,直接作用在value上,公式如下:

$$Attention(Q, K, V) = SoftMax(QK^T/\sqrt{d})V + EV$$

这里,E表示的是Value的位置权重,有 $e_{ij}^{V}\in E$ 。

但是直接去计算E, 还是有一定程度的计算量,假设对于输入,对其影响大的元素只在他的附近,所以改写公式为:

$$Attention(Q, K, V) = SoftMax(QK^T/\sqrt{d})V + DWConv(V)$$

这样,LePE可以友好地应用于将任意输入分辨率作为输入的下游任务。

3.4. CSWin Transformer Block

CSwin的block很简单,有两个prenorm堆叠而成,一个是做LayerNorm和Cross-shaped window self-attention并接一个shortcut,另一个则是做LayerNorm和MLP,相比于Swin和Twins来说,block的计算量大大的降低了(swin,twins则是有两个attention+两个MLP堆叠一个block)。公式如下:

$$\hat{X}^l = CSWinAttention(LN(X^{l-1})) + X^{l-1} \ X^l = MLP(LN(\hat{X}^l)) + \hat{X}^l$$

3.5. code review

```
class LePEAttention(nn.Module):
    def __init__(self, dim, resolution, idx, split_size=7, dim_out=None, num_heads=8, attn_drop=
        super(). init ()
        self.dim = dim
        self.dim out = dim out or dim
        self.resolution = resolution
        self.split size = split size
        self.num_heads = num_heads
        head dim = dim // num heads
        # NOTE scale factor was wrong in my original version, can set manually to be compat with
        self.scale = qk_scale or head_dim ** -0.5
        if idx == -1: # global attenton
            H_sp, W_sp = self.resolution, self.resolution
        elif idx == 0: # row attention
            H sp, W sp = self.resolution, self.split size
        elif idx == 1: # column attention
           W sp, H sp = self.resolution, self.split size
        else:
            print ("ERROR MODE", idx)
            exit(0)
        self.H sp = H sp
        self.W_sp = W_sp
        stride = 1
        self.get v = nn.Conv2d(dim, dim, kernel size=3, stride=1, padding=1,groups=dim)
        self.attn_drop = nn.Dropout(attn_drop)
    def im2cswin(self, x):
       B, N, C = x.shape
       H = W = int(np.sqrt(N))
       \# (B, N, C) -> (B, C, N) -> (B, C, H, W)
       x = x.transpose(-2,-1).contiguous().view(B, C, H, W)
        x = img2windows(x, self.H_sp, self.W_sp) # (B*(H//h_sp, W//w_sp), h_sp * w_sp, C)
        # (B*(H//h_sp, W//w_sp), h_sp * w_sp, C) -> (B*(H//h_sp, W//w_sp), h_sp*w_sp, h, C//h) -
        x = x.reshape(-1, self.H_sp* self.W_sp, self.num_heads, C // self.num_heads).permute(0,
        return x
    def get_lepe(self, x, func):
        B, N, C = x. shape
       H = W = int(np.sqrt(N))
       x = x.transpose(-2,-1).contiguous().view(B, C, H, W)
       H_sp, W_sp = self.H_sp, self.W_sp
       x = x.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
        x = x.permute(0, 2, 4, 1, 3, 5).contiguous().reshape(-1, C, H_sp, W_sp) ### B', C, H', h
        lepe = func(x) ### B', C, H', W' # dw conv
        # (B', C, H', W') -> (B, h, C//h, h_sp * w_sp) -> (B, h, h_sp*w_sp, C//h)
        lepe = lepe.reshape(-1, self.num_heads, C // self.num_heads, H_sp * W_sp).permute(0, 1,
```

```
x = x.reshape(-1, self.num_heads, C // self.num_heads, self.H_sp* self.W_sp).permute(0,
    return x, lepe
def forward(self, qkv):
   x: B L C
    0.00
    q,k,v = qkv[0], qkv[1], qkv[2]
   ### Img2Window
   H = W = self.resolution
    B, L, C = q.shape
    assert L == H * W, "flatten img_tokens has wrong size"
    q = self.im2cswin(q)
   k = self.im2cswin(k)
   v, lepe = self.get_lepe(v, self.get_v)
    q = q * self.scale
    attn = (q @ k.transpose(-2, -1)) # B head N C @ B head C N --> B head N N
    attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype)
    attn = self.attn_drop(attn)
   x = (attn @ v) + lepe # B head N N @ B head N C
   # (B, h, N, C//h) --> (B, N, C)
    x = x.transpose(1, 2).reshape(-1, self.H_sp* self.W_sp, C)
   ### Window2Img
   x = windows2img(x, self.H_sp, self.W_sp, H, W).view(B, -1, C) # B (H' W') C
    return x
```

代码很简单,对于滑窗后的处理,都是把外循环并入到了batch的维度了,可以并行处理。因为是按照 dim来进行分水平和竖直的, 所以对应的heads也进行相应的分发处理。

4. 实验

4.1. 模型设计

Models	#Channels	#Blocks in 4 stages	sw in 4 stages	#heads in 4 stages	#Param.	FLOPs
CSWin-T	64	[1, 2, 21, 1]	[1, 2, 7, 7]	[2, 4, 8, 16]	23M	4.3G
CSWin-S	64	[2, 4, 32, 2]	[1, 2, 7, 7]	[2, 4, 8, 16]	35M	6.9G
CSWin-B	96	[2, 4, 32, 2]	[1, 2, 7, 7]	[2, 4, 8, 16]	78 M	15.0G
CSWin-L	144	[2, 4, 32, 2]	[1, 2, 7, 7]	[6,12,24,48]	173M	31.5G

还是按照FLOPs的分布,来设计了四种模型,CSWin-T,CSWin-S,CSWin-B,CSwin-L,这里的FLOPs都是在224x224条件下计算的。

4.2. imagenet结果

ImageNet-1		trained i		_	ImageNet-1K 2242 trained modelsMethod#Param. FLOPs Top-1			ImageNet-1K 2242 trained modelsMethod#Param. FLOPs Top-1				
Reg-4G [42]	21M	4.0G	80.0	Reg-8G [42]	39M	8.0G	81.7	Reg-16G [42]	84M	16.0G	82.9	
Eff-B4* [52]	19M	4.2G	82.9	Eff-B5* 521	30M	9.9G	83.6	Eff-B6* [52]	43M	19.0G	84.0	
DeiT-S [54]	22M	4.6G	79.8	PVT-M [59]	44M	6.7G	81.2	DeiT-B [54]	87M	17.5G	81.8	
PVT-S [59]	25M	3.8G	79.8	PVT-L [59]	61M	9.8G	81.7	PiT-B [25]	74M	12.5G	82.0	
T2T-14 671	22M	5.2G	81.5	T2T-19 671	39M	8.9G	81.9	T2T-24 [67]	64M	14.1G	82.3	
ViL-S [70]	25M	4.9G	82.0	T2T _t -19 [67]	39M	9.8G	82.2	$T2T_t$ -24 [67]	64M	15.0G	82.6	
TNT-S [21]	24M	5.2G	81.3	ViL-M [70]	40M	8.7G	83.3	CPVT-B 131	88M	17.6G	82.3	
CViT-15 [4]	27M	5.6G	81.0	MViT-B 201	37M	7.8G	83.0	TNT-B [21]	66M	14.1G	82.8	
Visf-S [8]	40M	4.9G	82.3	CViT-18 41	43M	9.0G	82.5	ViL-B [70]	56M	13.4G	83.2	
LViT-S [37]	22M	4.6G	80.8	$CViT_c$ -18 [4]	44M	9.5G	82.8	Twins-L [12]	99M	14.8G	83.7	
CoaTL-S [65]	20M	4.0G	81.9	Twins-B [12]	56M	8.3G	83.2	Swin-B [39]	88M	15.4G	83.3	
CPVT-S [13]	23M	4.6G	81.5	Swin-S [39]	50M	8.7G	83.0	CSWin-B	78M	15.0G	84.2	
Swin-T [39]	29M	4.5G	81.3	CvT-21 [61]	32M	7.1G	82.5					
CvT-13 [61]	20M	4.5G	81.6	CSWin-S	35M	6.9G	83.6					
CSWin-T	23M	4.3G	82.7									
ImageNet-1K	384 ² fi	netuned	models	ImageNet-1K	384 ² fi	netuned	models	ImageNet-1K	384 ² fi	netuned	models	
CvT-13 [61]	20M	16.3G	83.0	CvT-21 [61]	32M	24.9G	83.3	ViT-B/16 18	86M	49.3G	77.9	
T2T-14 [67]	22M	17.1G	83.3	CViT _c -18 [4]	45M	32.4G	83.9	DeiT-B [54]	86M	55.4G	83.1	
CViT _c -15 [4]	28M	21.4G	83.5	CSWin-S	35M	22.0G	85.0	Swin-B 391	88M	47.0G	84.2	
CSWin-T	23M	14.0G	84.3					CSWin-B	78M	47.0G	85.4	
(a)	(a) Tiny Model			(b) S	Small N	/Iodel		(c) I	Base M	odel		

224表示的是模型再224x224的输入下,使用imagenet1k的数据来训练得到的结果,384表示的是在384x384上进行微调后的结果,可以看到CSWin取得了比较SOTA的结果。

Method	#Param.	Input Size	FLOPs	Top-1	Method	#Param.	Input Size	FLOPs	Top-1
R-101x3 35	388M	384 ²	204.6G	84.4	R-152x4 [35]	937M	480^{2}	840.5G	85.4
ViT-B/16 [18]	86M	384^{2}	55.4G	84.0	ViT-L/16 35	307M	384^{2}	190.7G	85.2
ViL-B [70]	56M	384^{2}	43.7G	86.2					
Swin-B [39]	88M	$\frac{224^2}{384^2}$	15.4G 47.1G	85.2 86.4	Swin-L 39	197M	$\frac{224^2}{384^2}$	34.5G 103.9G	86.3 87.3
CSWin-B(ours)	78M	$\frac{224^2}{384^2}$	15.0G 47.0G	85.9 87.0	CSWin-L(ours)	173M	$\frac{224^2}{384^2}$	31.5G 96.8G	86.5 87.5

Table 3: ImageNet-1K fine-tuning results by pre-training on ImageNet-21K datasets.

使用imagenet21k做pretrain后在imagenet1k上微调的结果,可以发现用更多的数据训练出来的模型做pretrain对于所有模型都有提升,cswin无论是224和384尺度训练都取得了SOTA。

4.3. 检测和分割结果

Backbone	#Params (M)	FLOPs (G)				$\begin{array}{c} \mathbf{R}\text{-}\mathbf{C}\mathbf{N} \\ AP^m \end{array}$		
Res50 [23]	82	739	46.3	64.3	50.5	40.1	61.7	43.4
Swin-T [39]	86	745	50.5	69.3	54.9	43.7	66.6	47.1
CSWin-T	80	757	52.5	71.5	57.1	45.3	68.8	48.9
X101-32 [64]	101	819	48.1	66.5	52.4	41.6	63.9	45.2
Swin-S [39]	107	838	51.8	70.4	56.3	44.7	67.9	48.5
CSWin-S	92	820	53.7	72.2	58.4	46.4	69.6	50.6
X101-64 64	140	972	48.3	66.4	52.3	41.7	64.0	45.1
Swin-B 39	145	982	51.9	70.9	56.5	45.0	68.4	48.7
CSWin-B	135	1004	53.9	72.6	58.5	46.4	70.0	50.4

Table 5: Object detection and instance segmentation performance on the COCO val2017 with Cascade Mask R-CNN.

Backbone	#Params	FLOPs		Mas	k R-CN	N 1x sch	edule			Mask R	-CNN 3	x + MS	schedule	;
Backbone	(M)	(G)	AP^b	AP_{50}^{b}	AP_{75}^b	AP^m	AP_{50}^m	AP_{75}^m	AP^b	AP_{50}^{b}	AP_{75}^b	AP^m	AP_{50}^m	AP_{75}^m
Res50 [23]	44	260	38.0	58.6	41.4	34.4	55.1	36.7	41.0	61.7	44.9	37.1	58.4	40.1
PVT-S 59	44	245	40.4	62.9	43.8	37.8	60.1	40.3	43.0	65.3	46.9	39.9	62.5	42.8
ViL-S [70]	45	218	44.9	67.1	49.3	41.0	64.2	44.1	47.1	68.7	51.5	42.7	65.9	46.2
TwinsP-S [12]	44	245	42.9	65.8	47.1	40.0	62.7	42.9	46.8	69.3	51.8	42.6	66.3	46.0
Twins-S 12	44	228	43.4	66.0	47.3	40.3	63.2	43.4	46.8	69.2	51.2	42.6	66.3	45.8
Swin-T 39	48	264	42.2	64.6	46.2	39.1	61.6	42.0	46.0	68.2	50.2	41.6	65.1	44.8
CSWin-T	42	279	46.7	68.6	51.3	42.2	65.6	45.4	49.0	70.7	53.7	43.6	67.9	46.6
Res101 [23]	63	336	40.4	61.1	44.2	36.4	57.7	38.8	42.8	63.2	47.1	38.5	60.1	41.3
X101-32 64	63	340	41.9	62.5	45.9	37.5	59.4	40.2	44.0	64.4	48.0	39.2	61.4	41.9
PVT-M [59]	64	302	42.0	64.4	45.6	39.0	61.6	42.1	44.2	66.0	48.2	40.5	63.1	43.5
ViL-M [70]	60	261	43.4			39.7			44.6	66.3	48.5	40.7	63.8	43.7
TwinsP-B 12	64	302	44.6	66.7	48.9	40.9	63.8	44.2	47.9	70.1	52.5	43.2	67.2	46.3
Twins-B 12	76	340	45.2	67.6	49.3	41.5	64.5	44.8	48.0	69.5	52.7	43.0	66.8	46.6
Swin-S 39	69	354	44.8	66.6	48.9	40.9	63.4	44.2	48.5	70.2	53.5	43.3	67.3	46.6
CSWin-S	54	342	47.9	70.1	52.6	43.2	67.1	46.2	50.0	71.3	54.7	44.5	68.4	47.7
X101-64 [64]	101	493	42.8	63.8	47.3	38.4	60.6	41.3	44.4	64.9	48.8	39.7	61.9	42.6
PVT-L [59]	81	364	42.9	65.0	46.6	39.5	61.9	42.5	44.5	66.0	48.3	40.7	63.4	43.7
ViL-B [70]	76	365	45.1			41.0			45.7	67.2	49.9	41.3	64.4	44.5
TwinsP-L [12]	81	364	45.4			41.5								
Twins-L [12]	111	474	45.9			41.6								
Swin-B [39]	107	496	46.9		—-	42.3			48.5	69.8	53.2	43.4	66.8	46.9
CSWin-B	97	526	48.7	70.4	53.9	43.9	67.8	47.3	50.8	72.1	55.8	44.9	69.1	48.3

Table 4: Object detection and instance segmentation performance on the COCO val2017 with the Mask R-CNN framework. The FLOPs (G) are measured at resolution 800×1280 , and the models are pre-trained on the ImageNet-1K dataset. ResNet/ResNeXt results are copied from [59].

Daaldaaa	Sen	nantic FPN 80)k		Upernet 1	160k
Backbone	#Param.(M)	FLOPs(G)	mIoU(%)	#Param.(M)	FLOPs(G)	mIoU/MS mIoU(%)
Res50 [23]	28.5	183	36.7			—-/—-
PVT-S [59]	28.2	161	39.8			/
TwinsP-S [12]	28.4	162	44.3	54.6	919	46.2/47.5
Twins-S [12]	28.3	144	43.2	54.4	901	46.2/47.1
Swin-T [39]	31.9	182	41.5	59.9	945	44.5/45.8
CSWin-T (ours)	26.1	202	48.2	59.9	959	49.3/50.4
Res101 [23]	47.5	260	38.8	86.0	1029	/44.9
PVT-M [59]	48.0	219	41.6			/
TwinsP-B [12]	48.1	220	44.9	74.3	977	47.1/48.4
Twins-B [12]	60.4	261	45.3	88.5	1020	47.7/48.9
Swin-S [39]	53.2	274	45.2	81.3	1038	47.6/49.5
CSWin-S (ours)	38.5	271	49.2	64.6	1027	50.0/50.8
X101-64 [64]	86.4	_	40.2			—-/—-
PVT-L [59]	65.1	283	42.1			/
TwinsP-L [12]	65.3	283	46.4	91.5	1041	48.6/49.8
Twins-L [12]	103.7	404	46.7	133.0	1164	48.8/50.2
Swin-B [39]	91.2	422	46.0	121.0	1188	48.1/49.7
CSWin-B (ours)	81.2	464	49.9	109.2	1222	50.8/51.7
Swin-B† [39]				121.0	1841	50.0/51.7
Swin-L [†] [39]				234.0	3230	52.1/53.5
CSWin-B† (ours)				109.2	1941	51.8/52.6
CSWin-L† (ours)		_	-	207.7	2745	54.0/55.7

Table 6: Performance comparison of different backbones on the ADE20K segmentation task. Two different frameworks semantic FPN and Upernet are used. FLOPs are calculated with resolution 512×2048 . ResNet/ResNeXt results and Swin FPN results are copied from [59] and [12] respectively. † means the model is pretrained on ImageNet-21K and finetuned with 640×640 resolution.

下游任务上,均有着非常sota的表现。

4.4. 消融实验

• 模型结构+trick

		ImageNet			COCC				ADE20K		
	#Param.	FLOPs	Top1(%)	#Param.	FLOPs	AP^b	\mathbf{AP}^m	#Param.	FLOPs	mIoU(%)	
CSWin-T	23M	4.3G	82.7	42M	279G	46.7	42.2	26M	202G	48.2	
Increasing $sw \to \text{Fixed } sw = 1$	23M	4.1G	81.9	42M	258G	45.2	40.8	26M	179G	47.5	
Parallel SA \rightarrow Sequential SA	23M	4.3G	82.4	42M	279G	45.1	41.1	26M	202G	46.2	
Deep-Narrow → Shallow-Wide Arch	30M	4.8G	82.2	50M	286G	45.8	41.8	34M	209G	46.6	
Overlapped→Non-Overlapped CTE	21M	4.2G	82.6	41M	276G	45.4	41.3	25M	199G	47.0	

Table 7: Ablation study of each component to better understand CSWin Transformer. "SA", "Arch", "CTE" denote "Self-Attention", "Architecture", and "Convolutional Token Embedding" respectively.

- 1. 滑动窗口的步长从每个stage增长改为每个stage固定为1,发现性能下降了0.8个点,说明感受野的大小会影响模型的结果
- 2. 并行attention改成序列化attention,性能降低了0.3%个点。
- 3. 模型的设计,从深窄变成矮胖结构,性能下降了0.5%个点,这一点实际上在CNN都已经有过证明了。
- 4. 卷积获取embeeding改为非重叠切片获取embeeding,性能下降了0.1%个点,说明overlap和非overlap对于token来说意义不大,因为最终也是可以看到全局的。
- · attention&position embeeding

	ImageNet Top1(%)		OCO AP ^m	ADE20K mIoU(%)
Sliding window [44]	81.4	_	_	
Shifted window [39]	81.3	42.2	39.1	41.5
Spatially Sep [12]	81.5	42.7	39.5	42.9
Sequential Axial [26]	81.5	40.4	37.6	39.8
Cross-shaped window(ours)	82.2	43.4	40.2	43.4

	ImageNet	COCO	ADE20K
	Top1(%)	AP^b AP	m mIoU(%)
No PE	82.5	44.8 41.	1 47.0
APE [18]	82.6	45.1 41.	1 45.7
CPE [13]	82.2	45.8 41.	6 46.1
CPE* [13]	82.4	45.4 41.	3 46.6
RPE [47]	82.7	45.5 41.	3 46.6
LePE	82.7	46.7 42.	2 48.2

- (a) Comparison of different self-attention mechanisms.
- (b) Comparison of different positional encoding mechanisms.
- 本文提出的Cross-shaped window self-attention机制,不仅在分类任务上超过之前的attention,同时检测和分割这样的dense任务上效果也非常不错,说明对于感受野的考虑是非常正确的。
- 虽然RPE和LePE在分类的任务上性能类似,但是对于形状变化多的dense任务上,LePE更深一筹。

5. 结论

在本文中,提出了CSWin Transformer。CSWin Transformer的核心设计是CSWin Self-Attention,它通过将多头分成平行组来执行水平和垂直条纹的自我注意。这种多头分组设计可以有效地扩大一个Transformer块内每个token的注意区域。同时,进一步将局部增强的位置编码引入CSWinTransformer,可以更有效的用于下游任务。大量的实验证明了CSWin Transformer的有效性和高效性。