

DATA SCIENCE

By: Michel Samir Zaki

Supervised vs Unsupervised

one of them uses labeled data to predict outcomes, while the other

does not.

• **Supervised Learning** is the machine learning approach defined by its use of labeled datasets to train algorithms to classify data and predict outcomes.

Supervised Learning

Labelled Dataset: Feature columns + label (class) column

≥ad Location	Gender	Lead Company size	Lead Revenues	Number od emails	Client
UK	F	5	500000	3	NO
Ireland	F	6	600000	2	NO
UK	М	6	600000	5	YES
USA	F	10	1000000	12	YES
USA	F	3	300000	4	YES
USA	M	5	500000	7	YES
`ermany	M	6	600000	1	NO

Supervised Machine Learning Methods

Classification

In classification problems, our output typically consists of classes or categories

2. Regression

In regression problems, the predicted output values are real numbers

Classification

Binary Classification

- Spam
- Not spam

Multiclass Classification

- Dog
- Cat
- Horse
- Fish
- Bird
- ...

Multi-label Classification

- Dog
- Cat
- Horse
- Fish
- Bird
- ...

Regression

Simple Regression

- Used to predict a continuous dependent variable based on a single independent variable.
- Simple linear regression should be used when there is only a single independent variable.

· Multiple Regression

- Used to predict a continuous dependent variable based on multiple independent variables.
- Multiple linear regression should be used when there are multiple independent variables.

· NonLinear Regression

- Relationship between the dependent variable and independent variable(s) follows a nonlinear pattern.
- Provides flexibility in modeling a wide range of functional forms.

Forest.

Supervised Learning

Supervised Machine Learning Applications

Support Vector Machines (SVM), Logistic Regression, Naive Bayes, Neural Networks, K-nearest neighbor (KNN), and Random

Unsupervised Learning

• Unsupervised Learning is a type of machine learning in which the algorithms are provided with data that does not contain any labels.

• It is a kind of self-learning where the algorithm can **find previously hidden patterns** in the unlabeled datasets.

Unsupervised Machine Learning Methods

1. Clustering

We find hidden patterns in the data based on their similarities or differences and are used to group data items or create clusters.

2. Association

We can find the relationship of one data item to another data item.

3. Dimensionality reduction

The algorithm works to reduce the dimensions of the data. It is used for feature extraction

Unsupervised Learning

Uses of unsupervised learning algorithms

Clustering

Association

Dimensionality reduction

Supervised vs Unsupervised

Supervised learning

Input data is labeled

Has a feedback mechanism

Data is classified based on the training dataset

Divided into Regression & Classification Unsupervised learning

Input data is unlabeled

Has no feedback mechanism

Assigns properties of given data to classify it

Divided into Clustering & Association

Supervised vs Unsupervised

Used for prediction

Algorithms include: decision trees, logistic regressions, support vector machine

A known number of classes

Used for analysis

Algorithms include: k-means clustering, hierarchical clustering, apriori algorithm

A unknown number of classes

