1	
	a) True
	6) True
	c) True
	d, False
ι.	6) True
12	Fo Folse
(4	for Folse for True

2.	
	i= 1 to A.leigth -1
	-m/n - i
	for j=i+1 to A.lenok if Aljj < Almin) min=j
	it Ali) < Almin
	win=)
	ACi) A[min] = A[min] ACi)
(b) fr	Before the start of each iteration of the order loop, the subcarround ALI) to ALI-1) contains the smallest elements of the original array is sorted. The next of the array contains the remaining elements is particular order.
m	particular order.
(C)	The best-cose and worst-case running times of selection sort age $O(n^2)$ since every element is compared with every other element
007	O(n²) since every element is compound with every other element
	0 /

3 .
in det hovE(n, start end):
it n== 1;
PRINT (stort end)
else:
mid = 6-start-end
MOVE (n-1, start, mid)
PRINT(start end)
MOVE (n-1, mid, end)
<u>'</u>
(b) f(n)= 2f(n-1) t/
Since fil)= 1=2-1 f(2)=2f(1)+1=2-2+1=2=1
f(2)=2 f(1)+1=2-2+1=)2-1
$\int_{3}^{3} 2f(2x+1) = 2-2+(2-2)^{3}$
f(n)= 2n -1

4.
$$(a_1 T(n) = 2T(n-\alpha) + T(\omega)$$

1b $a = \sqrt{n}$
 $(a_1) T(n) = 2T(n-\alpha) + T(\omega)$

1c $a = \sqrt{n}$
 $(a_1) T(n) = 2^{n} - 1$
 $(a_1) T(n) = 2^{n} - 1$