ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Работа 2.1.2. Определение $\frac{C_p}{C_v}$ методом адиабатического расширения газа

Работу выполнил: Долгов Александр Алексеевич, группа Б01-106 Долгопрудный, 2022

Содержание

1	Аннотация	3
2	Экспериментальная установка	3
3	Теоретические сведения	3
4	Оборудование и экспериментальные погрешности	5
5	Обработка полученных результатов	6
	5.1 Получение оценки для величины Δt_{T}	6
	5.2 Измерение показателя адиабаты	6
6	Вывод	7
7	Приложения	8

1 Аннотация

В данной работе было определено отношение $\frac{C_p}{C_v}$ путём проведения многократных измерений давления в сосуде, наполненном воздухом, над которым совершался адиабатический процесс с последующим нагреванием газа до комнатной температуры.

2 Экспериментальная установка

В работе используется установка, состоящая из стеклянного сосуда A (объёмом ≈ 20 л), снабжённого краном K, U-образного жидкостного манометра. Схема установки показана на рисунке 1. Избыточное давление создаётся с помощью резиновой груши, соединённой с сосудом трубкой с краном K_1

Рис. 1. Установка для определения C_p/C_v методом адиабатического расширения газа

3 Теоретические сведения

В начале опыта в сосуде находится воздух при комнатной температуре и давлении, превышающем атмосферное. После открытия крана К давление и температура газа будут понижаться. Такой процесс приближённом можно считать адиабатическим. Такое утверждение основано на

том, что равновесие по давлению устанавливается значительно быстрее, чем по температуре. Поэтому

$$\Delta t_{P} \ll \Delta t_{T},$$
 (1)

где Δt_P и Δt_T - соответственно времена выравнивания давления и температуры.

Если открыть кран K на время Δt , удовлетворяющее условию:

$$\Delta t_P \ll \Delta t \ll \Delta t_T$$
 (2)

то теплообменом через стенки сосуда за время Δt можно пренебречь и считать процесс адиабатическим.

Индексом "1" будем обозначать состояние газа после повышения давления с сосуде и выравнивания температуры с комнатной, индексом "2" - сразу после открытия крана и выравнивания давления с атмосферным.

Из уравнения адиабаты и уравнения Менделеева-Клапейрона получим:

$$TV^{\gamma-1} = const, PV = \nu RT \Rightarrow \frac{T^{\gamma}}{P^{\gamma-1}} = const \tag{3}$$

Откуда получаем:

$$\left(\frac{P_1}{P_2}\right)^{\gamma - 1} = \left(\frac{T_1}{T_2}\right)^{\gamma} \tag{4}$$

Давление P_2 после адиабатического расширения газа равно атмосферному давлению P_0 , а температура T_2 будет ниже комнатной температуры T_1 .

После того, как кран K будет закрыт, произойдёт медленное изохорное нагревание газа до комнатной температуры со скоростью, определяемой теплопроводностью стеклянных стенок сосуда. Система достигнет равновесия за время порядка Δt_T . Давление в этом состоянии равно P_3 . Изохорный процесс описывается законом Гей-Люссака:

$$\frac{P_2}{T_2} = \frac{P_3}{T_1} \Rightarrow \frac{T_1}{T_2} = \frac{P_3}{P_2} \tag{5}$$

Подставим (5) в (4) и учтём, что $P_2 = P_0$:

$$\left(\frac{P_1}{P_0}\right)^{\gamma-1} = \left(\frac{P_3}{P_0}\right)^{\gamma} \Rightarrow \tag{6}$$

Отсюда получаем:

$$\gamma = \frac{\ln{(P_1/P_0)}}{\ln{(P_1/P_3)}}\tag{7}$$

В условия данной работы давления P_1 и P_3 отличаются от атмосферного давления P_0 на малую величину, измеряемую жидкостным манометром. Введём обозначения: $P_1=P_0+\rho g\Delta h_1$, $P_3=P_0+\rho g\Delta h_2$, где ρ -плотность жидкости (воды), g- ускорение свободного падения, $\Delta h_1, \Delta h_2$ - разница в высоте водяных столбов в соседних коленьях манометра.

$$\gamma = \frac{ln(1 + \rho g \Delta h_1/P_0)}{ln(1 + \rho g \Delta h_1/P_0) - ln(1 + \rho g \Delta h_2/P_0)} \approx \frac{\Delta h_1}{\Delta h_1 - \Delta h_2} \tag{8}$$

Пусть высота столба воды в колене манометра, соединённом с сосудом равна h, а во втором колене - h', тогда справедливы уравнения: $h'-h=2\Delta h$ и $h+h'=2h_0$, где h_0 - высота столбов воды в том случае, когда она одинакова для обоих столбов. Отсюда получаем: $\Delta h=h_0-h$. В работе производилось измерение именно величины h, а не Δh . Окончательно получаем:

$$\gamma = \frac{h_0 - h_1}{h_2 - h_1} \tag{9}$$

4 Оборудование и экспериментальные погрешности

В качестве прибора, измеряющего высоту водяного столба использовалась шкала, являющаяся частью U-образной трубки манометра.

Погрешность измерения данной шкалы равна половине цены деления:

$$\sigma_h = 0.5 \text{ MM}$$

Была измерена величина h₀:

$$h_0 = (181.0 \pm 0.5) \text{ MM}$$

Для установления зависимости h(t) использовалась камера мобильного телефона, оборудованная встроенным секундомером. Его погрешностью мы пренебрегаем, так как нахождение зависимости h(t) нужно лишь для оценки порядка величины Δt_{T} .

5 Обработка полученных результатов

5.1 Получение оценки для величины Δt_T

Сосуда А был наполнен воздухом до давления, превышающего атмосферное. Затем проводилось измерение зависимости высоты h водяного столба в колене, сообщенном с сосудом, от времени. Результаты измерений приведены в таблице 1. и визуально отражены на графике 1.

Из полученных данных видно, что давление в сосуде перестало понижаться по прошествии времени $\Delta t_T \approx 50$ с.

5.2 Измерение показателя адиабаты

Проводилось 3 серии измерений. В первой кран K открывался приблизительно на время $\Delta t=0,5$ с, во второй - на $\Delta t=1$ с, в третьей - на $\Delta t=1,5$ с. Результаты измерений величин $h_1,\ h_2,$ а также результаты расчёта величины γ и её погрешности для указанных значений Δt приведены в таблице 2. По средним значениям величины γ (усреднение по всем измерениям в серии) построен график 1.

Линейной аппроксимацией экспериментальных точек получена зависимость:

$$\gamma = A\Delta t + B$$

$$A = (-0,063 \pm 0,013) \frac{1}{c}$$

$$B = 1,43 \pm 0,01$$

При $\Delta t \approx 0,1$ с давление уже почти сравнивается с атмосферным, но теплопроводностью ещё можно пренебречь. Найдём $\gamma(0,1$ с):

Случайную погрешность величины γ найдём по формуле:

$$\sigma_{\gamma} = \sqrt{\left(\frac{\partial \gamma}{\partial A}\sigma_{A}\right)^{2} + \left(\frac{\partial \gamma}{\partial B}\sigma_{B}\right)^{2}} = \sqrt{\left(\sigma_{A}\Delta t\right)^{2} + \left(\sigma_{B}\right)^{2}}$$

Систематическую погрешность искать не будем, так как искомое значение γ получается экстраполяцией экспериментальных данных.

$$\gamma = \gamma(0, 1 \text{ c}) \approx 1,43 \pm 0,01$$

$$\frac{\sigma_{\gamma}}{\gamma} \approx 0,7\%$$

6 Вывод

В ходе данной работы получено значение показателя адиабаты для воздуха. Автором было найдено табличное значение $\gamma=1,4$ для воздуха при $T=20^{\circ}C$ (википедия). Таким образом, найденное в работе значения отличается от истинного на $\approx 2\%$, что больше относительной погрешности γ .

Считаю, что подобное отклонение от "истинного" значения вызвано неточностью значений промежутков времени, в течение которых был открыт кран К. Данное время в ходе работы не было измерено точно, а лишь оценивалось по личным ощущениям (в силу малости промежутков времени как-либо их измерить затруднительно). Таким образом, именно погрешность величины Δt вносит наибольший вклад в погрешность σ_{γ} , но этот вклад не был рассчитан.

Для улучшения точности измерений оптимальным вариантом является создание или применение уже готового механизма, который открывал бы кран K (или любым другим способом сообщал бы сосуд с атмосферой) на строго определённое время.

7 Приложения

 ${f Ta}$ блица 1. Зависимость ${f h}(t)$ после прекращения накачки воздуха

t, c	h, cм
0	4,9
5	5
10	5,1
15	5,15
20	5,2
25	5,2
30	5,25
35	5,25
40	5,25
45	5,25
50	5,3
55	5,3
60	5,3
65	5,3
70	5,3
75	5,3
80	5,3
85	5,3
90	5,3

 Γ рафик 1. Зависимость h(t) после прекращения накачки воздуха

Таблица 2. Измерения высоты водяного столба

Δt ≈ 0,5 c			۸.,	4115	A < 1.15
h₁, мм	h₂, mm	γ	Δγ	<γ>	Δ<γ>
53	144	1,407	0,009		
67	149	1,390	0,01		
48	144	1,385	0,009		
64	147	1,410	0,01	1,41	0,01
58	143	1,447	0,01		
44	143	1,384	0,009		
55	144	1,416	0,01		
Δt ≈ 1 c			Δ	4.15	A < 115
h₁, мм	h₂, mm	γ	Δγ	Δγ <γ>	Δ<γ>
64	148	1,390	0,014		
67	151	1,360	0,014	1,37	
68	151	1,360	0,014		
68	151	1,360	0,014		0,01
47	146	1,350	0,012		
41	144	1,360	0,011		
52	146	1,370	0,012		
Δt ≈ 1,5 c		γ	Λ.,	A11	A < 115
h₁, mm	h ₁ , мм h ₂ , мм		Δγ	<γ>	Δ<γ>
50	148	1,340	0,014		
37	144	1,350	0,014		
48	146	1,360	0,014	1 24	0.01
40	144	1,360	0,014	1,34	0,01
55	150	1,330	0,012		
84	157	1,330	0,011		

График 2. $\gamma(\Delta t)$

