School of Computer Science Engineering and Technology

Course-B. Tech	Type- General Elective	
Course Code- CSET-335	Course Name- Deep Leaning	
Year- 2024	Semester- Even	
Date- 05/02/2024	Batch- 2023-2024	

CO-Mapping

	CO1	CO2	CO3
Q1	\checkmark		
Q2	√		
Q3	√		
Q4	\checkmark		
Q5	√		
Q6	\checkmark		
Q7	√		
Q8	√		

Objectives:

CO1: To explain the fundamentals of deep learning, Convolution neural network.

CO2: To articulate different problem of classification, detection, segmentation, generation and understand existing solutions/ deep learning architectures.

CO3: To implement a solution for the given problem and improve it using various methods transfer learning, hyperparameter optimization.

Assignment-2

Goal: To implement Feed Forward Network (FFN) using Scikit-learn to classify images in MNIST dataset of handwritten digits.

- Q1. Download the dataset from https://www.openml.org/d/554
 - The MNIST database contains a total of 70000 examples of handwritten digits of size 28x28 pixels, labelled from 0 to 9. You can use the function **fetch_openml("mnist_784")** to directly download.
- **Q2. Fetch_openml** function returns a data bunch. Using its attributes, print the **shape of the input data** and target data. It should be (70,000, 784) and (70,000,) respectively.
- **Q3. Display** the top ten images using matplotlib. You will be required to reshape the dataset temporarily into (70,000, 28, 28) dimensions. Define **X** matrix (70,000, 784) and **y** vector (target feature).
- **Q4. Transform: FFN** is sensitive to feature scaling, so it is highly recommended to scale your data.

School of Computer Science Engineering and Technology

For example, scale each attribute on the input vector X to [0, 1] or [-1, +1], or standardize it to have mean 0 and variance 1.

Q6. Split the dataset into 70% for training and the rest 30% for testing.

Hint: sklearn.model_selection.train_test_split function

- **Q7. Train** FFN using built-in function on the training set MLPclassifier() constructor with following settings:
 - A. only one hidden layer consisting of just 32 neurons.
 - B. Set the max iter to a very low value such as 5.

(Use sklearn.neural_network import MLPClassifier)

- **Q8.** Use the trained model to **predict** on the **test set** and then:
 - A. Print 'Accuracy' obtained on the testing dataset i.e. (sklearn.metrics.accuracy_score function)
 - B. Precision, Recall and F1 scores (sklearn.metrics.precision_recall_fscore_support)