Recitation #21: Taylor series

Warm up:

Find the Taylor series for:

- (a) $27x^2 3x + 17$ about a = 1.
- (b) $\sin(2x)$ about $a = \frac{\pi}{8}$.

Group work:

Problem 1 Find a power series (and interval of convergence) for each of the following functions

(a)
$$f(x) = x^3 \sin(x^5)$$

(c)
$$f(x) = \frac{1}{(3 - 5x^2)^4}$$

(b)
$$f(x) = \frac{1}{(1+x)^4}$$

(d)
$$f(x) = \sin^{-1}(x^5)$$

Problem 2 Find a function (closed expression) for the following series and the interval on which the function and the series are equal.

$$x + x^4 + \frac{1}{2}x^7 + \frac{1}{6}x^{10} + \frac{1}{24}x^{13} + \dots$$

Problem 3 Compute the sum of the following series (Hint: You should use Taylor series.)

(a)
$$1 - \ln 2 + \frac{(\ln 2)^2}{2!} - \frac{(\ln 2)^3}{3!} + \dots$$

(b)
$$3 + \frac{9}{2!} + \frac{27}{3!} + \frac{81}{4!} + \dots$$