

U. C. Base de Dados

Licenciatura em Engenharia Informática

Docente:

Irene Rodrigues

Discentes:

André Baião, 48092

Gonçalo Barradas, 48402

Índice

Introdução	1
Exercícios	2
Exercício 1	2
Exercício 2	2
Exercício 3	3
Exercício 4	4
Exercício 5	4
Exercício 6	4
Exercício 7	5
Exercício 8	5
Exercício 9	5
Exercício 10	5
Exercício 10. a)	5
Exercício 10. b)	6
Exercício 10. c)	6
Exercício 10. d)	7
Exercício 10. e)	7
Exercício 10. f)	7
Exercício 10. g)	8
Exercício 10. h)	8
Exercício 10. i)	8
Exercício 10. j)	10
Exercício 10. k)	11
Exercício 10. l)	11
Exercício 10. m)	11
Exercício 10. n)	12

Exercício 10. o)	13
Exercício 10. p)	13

Introdução

Com o propósito de avaliar os conhecimentos adquiridos ao longo deste semestre referentes aos diagramas E-R (Entidade-Relação), dependências funcionais e a forma normal de Boyce Codd, e SQL, foi-nos proposto um trabalho que consiste na resolução de vários exercícios.

Um diagrama Entidade-Relação é um tipo de fluxograma que ilustra como "entidades" pessoas, objetos ou conceitos que se relacionam entre si dentro de um sistema.

As dependências funcionais permitem restringir o número de relações válidas.

Exercícios

Exercício 1

Para o problema acima, construa um diagrama Entidade-Relação que descreva a informação. No diagrama não se esqueça de indicar as restrições das relações e as chaves primárias das entidades.

Exercício 2

Transforme o modelo E-R em tabelas. Nas tabelas não se esqueça de indicar as chaves primárias e as chaves candidatas.

- **animais** (<u>registo</u>, nome, sexo, local)
- **classe_bio** (especie, classe, ordem, familia, registo)
- **captura** (<u>registo</u>, local_captura, data_captura, idade_estimada)
- cativeiro (registo, registo_mae, registo_pai)
- **espacos** (<u>registo_local</u>, area, meio, clima)

Exercício 2 (continuação)

- **funcionario** (<u>nif</u>, nome_func, inicio_func)
- **telf_funcionario** (<u>nif</u>, <u>telemovel</u>)
- **responsavel** (<u>nif_funcionario</u>, nif_responsvel)
- tratador (registo, nif)
- tratador_auxiliar (registo_local, nif)
- veterinarios (nif)
- **consultas** (<u>nif</u>, <u>data_consulta</u>, registo, registo_local, diagonostico)

Exercício 3

Defina o conjunto de dependências funcionais que a base de dados deve verificar. Exemplo, as seguintes dependências funcionais devem-se verificar neste domínio:

- o local→tratador auxiliar
- o animal→tratador
- o espécie→família
- o família→ordem
- o ordem→classe
- o animal→registo
- animal→tratador
- o espécie→família
- o família→ordem
- o ordem→classe
- o local→tratador auxiliar
- o funcionario-responsavel
- funcionario→nif
- funcionario→telefones
- o consulta→veterinario
- consulta→animal
- o consulta→local

Exercício 4

Apresente a Base de Dados na forma normal de Boyce Codd, BCNF.

```
registo → nome, sexo, local;

especie → classe, ordem, familia, registo;

registo → especie;

registo → local_captura, data_captura, idade_estimada;

registo → registo_mae, registo_pai;

registo_local → area, meio, clima;

nif → nome_func, inicio_func;

nif_funcionario → nif_responsvel;

registo → nif;

registo_local → nif;
```

Sendo $A \to B$ uma dependência funcional, podemos afirmar que a base de dados está na forma normal de Boyce-Codd visto que A é super-chave das relações demonstradas.

Exercício 5

Indique justificando se a sua base de dados tem informação redundante.

Sim, a base de dados acima apresenta informação redundante pois na tabela animais o argumento nascimento é desnecessário visto que conseguiríamos obter o seu conteúdo através de uma união com as tabelas cativeiro e captura.

Exercício 6

Indique se a base de dados que apresentou na forma normal de Boyce-Codd preserva as dependências.

A base de dados na forma normal de Boyce-Codd preserva as dependências.

Exercício 7

Para cada relação da base de dados na BCNF indique as chaves primárias,candidatas e estrangeiras.

Exercício 8

Indique os comandos SQL para a criação das tabelas que constituem esta base de dados. E construa esta base de dados no PostgreSQL.

Resposta no ficheiro em anexo.

Exercício 9

Indique as expressões em SQL para inserir a seguinte informação na sua base de dados e inseria-a.

Resposta no ficheiro em anexo.

Exercício 10

Indique a expressão em SQL para responder às seguintes perguntas (no relatório indique também o resultado).

Exercício 10. a)

Em que locais do zoo se podem visitar aves?

SELECT DISTINCT local FROM animais

NATURAL INNER JOIN classe_bio

WHERE classe LIKE 'aves'; Exercício 10;

registo_local
A6

Exercício 10. b)

Em que locais do zoo não há carnívoros?

SELECT DISTINCT local FROM animais

NATURAL INNER JOIN classe_bio

WHERE ordem NOT LIKE 'carnívoros';

registo_local	
A6	
A2	
A1	

Exercício 10. c)

Indique os irmãos da Kilu.

SELECT nome FROM animais

NATURAL INNER JOIN cativeiro

WHERE registo_pai = (

SELECT registo_pai FROM cativeiro

NATURAL INNER JOIN animais

WHERE animais.nome = 'Kilu')

OR

registo_mae = (SELECT registo_mae FROM cativeiro

NATURAL INNER JOIN animais

WHERE animais.nome = 'Kilu')

EXCEPT

SELECT nome FROM animais

WHERE nome = 'Kilu;

nome	
Kuli	

Exercício 10. d)

Indique os telefones do tratador responsável pela Kata.

SELECT numero FROM telefones

NATURAL INNER JOIN tratador

NATURAL INNER JOIN animais

WHERE animais.nome LIKE 'Kata';

numero
266787809
919999999

Exercício 10. e)

Indique os telefones do responsável pelo auxiliar responsável pela local onde está a Kata.

WITH aux AS (SELECT nif FROM tratador_auxiliar

NATURAL INNER JOIN animais

WHERE tratador_auxiliar.registo_local = animais.local AND nome = 'Kata')

SELECT numero FROM telefones

NATURAL INNER JOIN aux

NATURAL INNER JOIN responsavel

WHERE responsavel.nif_funcionario = aux.nif;

numero
919999996
266878806

Exercício 10. f)

Indique os tratamentos (data e tratamento) que a Mali já fez no zoo.

SELECT data_consulta, diagnostico FROM consultas

NATURAL INNER JOIN animais

WHERE nome LIKE 'Mali'

data_consulta	diagnostico
2005-08-12	grávida
2005-09-12	cálcio injectado
2005-12-12	parto
2006-07-12	infecção
2006-07-12	antibiótico injectado

Exercício 10. g)

Indique os nomes dos veterinários que já diagnosticaram uma gravidez a um carnívoro.

SELECT nome_func FROM funcionario

JOIN consultas ON consultas.nif = funcionario.nif

JOIN classe_bio ON consultas.registo = classe_bio.registo

WHERE ordem LIKE 'carnívoros'

AND

diagnostico LIKE 'grávida';

nome_funcionario
Pedro Vale

Exercício 10. h)

Indique para cada família da ordem artiodáctilos quantos animais tem o zoo.

SELECT familia, COUNT(ordem) AS numAnimais

FROM classe_bio

WHERE ordem LIKE 'artiodáctilos'

GROUP BY familia;

familia	numAnimais
cervídeos	5
hipopótamos	3

Exercício 10. i)

Indique para cada espécie quais os pares de animais que podem ser acasalados, sabendo que não se devem acasalar pais com filhos ou irmãos.

WITH fem(femName,registo,especie) AS (SELECT animais.nome,animais.registo, especie FROM animais

NATURAL INNER JOIN classe_bio

WHERE sexo LIKE 'feminino'

ORDER BY especie),

mas(masName, registo, especie) AS (SELECT animais.nome, registo, especie FROM animais

NATURAL INNER JOIN classe_bio

WHERE sexo LIKE 'masculino'

ORDER BY especie),

catfem(nome, registo, registo_mae, registo_pai,especie) AS

(SELECT animais.nome, animais.registo, registo_mae, registo_pai, classe_bio.especie

FROM cativeiro NATURAL INNER JOIN animais

NATURAL INNER JOIN classe_bio

Where sexo like 'feminino'),

catmas(nome, registo, registo_mae, registo_pai,especie) AS

(SELECT animais.nome, animais.registo, registo_mae, registo_pai, classe_bio.especie

FROM cativeiro NATURAL INNER JOIN animais

NATURAL INNER JOIN classe bio

Where sexo like 'masculino')

SELECT femName, masname, fem.especie FROM fem

JOIN mas ON fem.especie=mas.especie

EXCEPT

SELECT fem.femName, animais.nome, fem.especie FROM fem

JOIN cativeiro ON fem.registo = cativeiro.registo

JOIN animais ON cativeiro.registo_pai= animais.registo

EXCEPT

SELECT animais.nome, mas.masName, mas.especie FROM mas

JOIN cativeiro ON mas.registo = cativeiro.registo

JOIN animais ON cativeiro.registo_mae= animais.registo

EXCEPT

SELECT animais.nome, catmas.nome, catmas.especie FROM catmas

JOIN cativeiro on catmas.registo_mae=cativeiro.registo_mae

JOIN animais on cativeiro.registo=animais.registo

EXCEPT

SELECT animais.nome, catmas.nome ,catmas.especie FROM catmas

JOIN cativeiro on catmas.registo_pai=cativeiro.registo_pai

JOIN animais on cativeiro.registo=animais.registo

Feminino	Masculino	especie
Zula	Zará	arara-azul-pequena
Rará	Zará	arara-azul-pequena
Zura	Zará	arara-azul-pequena
Rará	Ará	arara-azul-pequena
Tapi	Hipo	hipopótamo comum
Luka	Kaki	veado
Kalu	Kaki	veado
Kalu	Kuli	veado
Mali	Mata	tigre
Mali	Cáta	tigre
Aka	Cáta	tigre
Kata	Cáta	tigre
Kata	Taji	tigre
Mali	Taji	tigre

Exercício 10. j)

SELECT ordem, COUNT(ordem) AS num

FROM class_bio

GROUP BY ordem

ORDER BY num DESC

LIMIT 1;

ordem	num
artiodáctilos	8

Exercício 10. k)

Qual é a ordem dos animais que têm mais de 5 consultas por ano (diagnóstico ou tratamento).

SELECT ordem, COUNT(ordem) FROM classe_bio

NATURAL INNER JOIN consultas

WHERE classe_bio.registo = consultas.registo

GROUP BY ordem

HAVING COUNT(ordem)>5;

ordem	count
artiodáctilos	12
psittaciformes	6

Exercício 10. l)

Indique o número de animais nascidos em cativeiro.

WITH anms AS (SELECT registo, COUNT(registo) AS cat FROM cativeiro

GROUP BY registo)

SELECT SUM(cat) FROM anms;

SUM	
10	

Exercício 10. m)

Qual é o animal (nome e espécie) mais velho do zoo?

WITH a AS (SELECT data_nascimento AS dn, registo

FROM cativeiro

UNION

SELECT idd_estimada AS dn, registo

FROM captura)

SELECT nome FROM animais

WHERE registo=

(SELECT registo

FROM a

WHERE dn=(SELECT MIN(dn)

FROM a));

maisVelho Hipo

Exercício 10. n)

Qual é o local húmido com mais mamíferos?

WITH mamiferos AS(SELECT registo FROM animais

NATURAL INNER JOIN classe_bio

WHERE classe LIKE 'mamíferos'),

mamiferosperplace AS(SELECT registo_local, COUNT(animais) AS num

FROM espacos JOIN animais

ON espacos.registo_local=animais.local

JOIN mamiferos

ON animais.registo=mamiferos.registo

WHERE espacos.clima LIKE '%húmido%'

GROUP BY registo_local)

SELECT registo_local FROM espacos

WHERE registo_local=

(SELECT registo_local

FROM mamiferosperplace

WHERE num=(SELECT MAX(num)

FROM mamiferosperplace));

registo_local A3

Exercício 10. o)

Para cada tratador indique o número de mamíferos por que é responsável?

WITH mamiferos AS(SELECT registo FROM animais

NATURAL INNER JOIN classe bio

WHERE classe LIKE 'mamíferos'),

mamiferospertratador AS (SELECT nif,registo

FROM tratador NATURAL INNER JOIN mamiferos)

SELECT nome_func, COUNT(mamiferospertratador.nif)

AS mamifpertrat

FROM funcionario JOIN mamiferospertratador

ON funcionario.nif=mamiferospertratador.nif

GROUP BY nome_func;

nome_funcionario	mamifpertrat
Manuel Santos	8
Joaquim Silva	7

Exercício 10. p)

Indique o nome dos animais que já foram tratados por todos os veterinários?

WITH constPedroVale AS (SELECT registo FROM consultas

NATURAL INNER JOIN veterinarios

NATURAL INNER JOIN funcionario

WHERE funcionario.nome func LIKE 'Pedro Vale'),

constIsabelSoares AS (Select registo FROM consultas

NATURAL INNER JOIN veterinarios

NATURAL INNER JOIN funcionario

WHERE funcionario.nome func LIKE 'Isabel Soares')

SELECT DISTINCT nome FROM animais

NATURAL INNER JOIN constPedroVale

nome Tapi

NATURAL INNER JOIN constIsabelSoares;

Zula