TRABAJO DE FIN DE GRADO

Eduardo Gayo

Alba Morejón

DESPLIEGUE DE UN CLÚSTER CON KUBERNETES EN LA NUBE

ÍNDICE

- 1 RESUMEN
- 2 MOTIVACIÓN
- 3 CONCEPTOS
- 4 DESPLIEGUE EN LOCAL
- 5 DESPLIEGUE EN LA NUBE
- 6 CONCLUSIONES

MOTIVACIÓN

CONCEPTOS

DESPLIEGUE EN LOCAL

DESPLIEGUE EN LA NUBE

CONCLUSIONES

- Acercamiento al software de Kubernetes.
- Despliegue de un clúster en local con tres máquinas virtuales.
- Creación de red de contenedores para permitir la comunicación entre los nodos de Kubernetes.
- Pruebas de alta disponibilidad y replicación.
- Despliegue del clúster en la nube en IBM Cloud.

MOTIVACIÓN

CONCEPTOS

DESPLIEGUE EN LOCAL

DESPLIEGUE EN LA NUBE

Se fundamenta en la necesidad de simplificar el aprendizaje y la adopción de Kubernetes y proporcionar un recurso educativo valioso, apoyar a las empresas en su transformación digital.

Este proyecto no solo enriquece el conocimiento y las habilidades de los estudiantes, sino que también proporciona una herramienta práctica y valiosa para la industria.

Proporcionará experiencia practica y conocimientos técnicos en el uso de recursos en la nube, así como en el despliegue, mantenimiento y monitorización del software de Kubernetes.

CONCLUSIONES

MOTIVACIÓN

CONCEPTOS

DESPLIEGUE EN LOCAL

DESPLIEGUE EN LA NUBE

CONCLUSIONES

Contenerización

Kubernetes

Arquitectura Kubernetes

Relevancia y ventajas

Alternativas Kubernetes

¿Que es la nube?

IBM Cloud y alternativas

Relevancia

Contenerización

Kubernetes

- Empaquetado de código software con lo necesario para ejecutar el código.
- Permite desplegar aplicaciones de forma rápida y segura.
- Permite desplegar aplicaciones en diferentes sistemas operativos.
- Más eficientes que las máquinas virtuales.
- Docker, Containerd, Podman.

Relevancia

Contenerización

Kubernetes

Contenerización

Kubernetes

Arquitectura

- Software que funciona como orquestador de contenedores.
- Gestiona el número de contenedores según la demanda y en que nodo deben ejecutarse.
- Proporciona herramientas para gestionar el despliegue, la escalabilidad y la alta disponibilidad de las aplicaciones, facilitando así la gestión de entornos de nube complejos.

Kubernetes

Arquitectura

Alternativas

Pods

- Unidad de computación desplegable más pequeña que se puede crear y gestionar en Kubernetes.
- Un pod es un grupo de uno o más contenedores.
- El contenido del pod está co-localizado y co-programado, ejecutándose en un contexto compartido

Kubernetes

Arquitectura

Alternativas

Nodos

- Los nodos son los servidores individuales que forman parte de la infraestructura.
- Cada nodo ejecuta los contenedores de las aplicaciones y proporciona los recursos computacionales necesarios, como memoria y CPU.
- Los servicios de un nodo son Container Runtime, Kubelet y Kube-Proxy.

Kubernetes

Arquitectura

Alternativas

Nube

Nodos

Kubernetes

Arquitectura

Alternativas

Control Plane

- El "Control Plane" es el conjunto de componentes que supervisan y gestionan el clúster.
- La comunicación del API de Kubernetes es de Hub and Spoke.
- Todo el tráfico pasa a través del nodo maestro o "Control Plane"

Kubernetes

Arquitectura

Alternativas

Control Plane

Kubernetes

Arquitectura

Alternativas

Nube

IBM Cloud

Alternativas

Nube

IBM Cloud

Los servicios en la nube son plataformas, infraestructuras o software que proveedores externos ponen a disposición de los usuarios a través de internet.

La nube ofrece escalabilidad, accesibilidad, alta disponibilidad, protección contra desastres y reducción de costes a corto plazo.

Genera dependencia del proveedor y supone un aumento de costes a largo plazo.

Alternativas

Nube

IBM Cloud

Modelos de servicios

- Plataforma como servicio (PaaS): Ofrece a los desarrolladores una plataforma para crear aplicaciones sin preocuparse por la infraestructura, como Google App Engine y Heroku.
- Software como servicio (SaaS): Distribuye aplicaciones a través de internet sin necesidad de instalación local, con ejemplos como Gmail y Office 365.
- Infraestructura como servicio (laaS): Proporciona recursos de almacenamiento, computación y redes bajo demanda, ofrecidos por empresas como AWS, Google Cloud, Azure e IBM Cloud.

Nube

IBM Cloud

Relevancia

IBM Cloud

Relevancia

Contenerización

- Kubernetes tiene la capacidad de automatizar la gestión de aplicaciones, ofrecer escalabilidad y flexibilidad, todo ello mejora la eficiencia operativa y reduce errores.
- La computación en la nube proporciona elasticidad, reducción de costos y acceso a tecnologías avanzadas, facilitando la innovación y permitiendo a las empresas responder rápidamente.

Juntas, estas tecnologías impulsan la transformación digital, permitiendo a las organizaciones competir y prosperar liberando recursos para la innovación y el desarrollo.

MOTIVACIÓN

CONCEPTOS

DESPLIEGUE EN LOCAL

DESPLIEGUE EN LA NUBE

CONCLUSIONES

Demostración de despliegue de Kubernetes en local

MOTIVACIÓN

CONCEPTOS

DESPLIEGUE EN LOCAL

Demostración de despliegue de Kubernetes en la nube

DESPLIEGUE EN LA NUBE

CONCLUSIONES

MOTIVACIÓN

CONCEPTOS

DESPLIEGUE EN LOCAL

DESPLIEGUE EN LA NUBE

Kubernetes es un software muy completo que nos permite gestionar nuestros contenedores a través de pods y tener control de nuestros nodos y los eventos que ocurren en ellos de una forma bastante sencilla.

En lo referente a los servicios en la nube, son un recurso excepcional para la computación a día de hoy, poniendo al alcance del público medio recursos bajo demanda que permiten iniciar negocios online sin tener que preocuparse del hardware que conlleva detrás.

CONCLUSIONES

Turno de preguntas