

SESA6085 – Advanced Aerospace Engineering Management

Lecture 17

2024-2025

A Recap

- In the previous lecture we tackled project risk management
 - PUMP
 - Focus on quantification of uncertainty (inc. elicitation) & its use in decision making
- We assumed, for the main, that the project plan itself was a static entity
 - Our calculations of uncertainty assumed that one activity flows into another etc.
- This is often not the case!
- Project plans can themselves be dynamic and an appropriate response to uncertainty may be an adjustment of the plan
 - Scheduling!

Scheduling & Resource Management

Scheduling – Past Encounters

- Scheduling and its related concepts should (hopefully) not be new to you
- You will have had several lectures on this in FEEG2006 covering:
 - Network analysis
 - Scheduling
 - Resource planning
 - Crashing etc.
 - Uncertainty
- Hopefully, you are using these approaches in your GDPs
- Don't worry we will recap these concepts today and go a bit further

Precedence Tables

- A precedence table is a very simple tabular representation listing activities and their pre-requisite activities
 - This is the basic starting point to generate a network representation
 - In order to define the network, precedence must be established

Activity	Pre-requisite
Α	-
В	Α
С	В
D	В
E	C & D

Activity B depends on A

Activities C & D both depend on B

Activity E depends on C & D being completed

Activity Network Diagrams

- The activity network is an important project planning tool
- It clearly illustrates the interdependence of all tasks and work packages
 - The impact of issues downstream can be clearly seen
- It illustrates communication flows
- It indicates times associated with tasks and helps with overall planning
- It helps to identify critical activities those that must be completed on time
 - Also identifies those with "wiggle" room
- It helps to determine overall completion times and activity start/end times

Activity-on-Node Network

 The activity-on-node network representation for our previous precedence table is therefore

Activity	Pre-requisite	
Α	-	
В	А	
С	В	
D	В	
Е	C & D	
A	В	C E

Network Terminology

Serial activities – one activity flows into the next

 Parallel/concurrent activities – activities occurring simultaneously

Network Terminology

- Merge activity an activity with ≥2 predecessors
- Burst activity an activity with ≥2 successors

Network Terminology

- There are other terms used in the definition of such networks including:
 - Laddering overlapping sequential tasks
 - Hammock activities
 - Different forms of lag between activities
- These are summarised in the module textbook and in the FEEG2006 lectures for those who are interested
 - We don't need to go beyond basic network definition here

Duration Estimation

Deterministic

- Each activity has a fixed duration
- Total project duration is defined as the longest path from the start to the end
- This is the critical path associated activities are critical
- Non-critical activities may be delayed to some extent without impacting the total duration

Stochastic

- Durations are now defined by a PDF recall our PUMP processes
- PDFs could be derived from data or elicitation of experts
- Total project duration is now a PDF with an expected value etc.
- The critical path may no longer be fixed in its definition
- MC analysis starts to play a role

Duration Estimation - Deterministic Example

Consider the following activity network with the given times...

- We have two paths via activity B or D giving total durations of 30 or 28 respectively
 - The path "A" > "B" > "C" > "F" is, therefore, the critical path
 - "A", "B", "C" & "F" are the critical activities
 - The alternative path "A" > "D" > "E" > "F", offers 2 units of "wiggle" room

Duration Estimation – Stochastic Example

 Consider the same activity network but now with durations estimated via a normal distribution with given mean and standard deviation

- We can use Monte Carlo analysis to investigate the total time
 - Randomly define a duration for each activity based on their associated distribution
 - Determine the total project time for each random sample

Duration Estimation - Stochastic Example

Duration Estimation – Stochastic Example

 The overall project duration is therefore the maximum of either path "B" or "D"

- Expected duration ≈ 30.46
- 5th percentile ≈ 27.41
- 95th percentile ≈ 33.76

- Path "B" is only the critical path 74.1% of the time
 - Modifying path "D" carries a risk that it impacts the total duration

Returning to Project Uncertainty

- Let's put this into the context of our previous two lectures
- Determining duration is perhaps a sub-step of quantifying uncertainty
 - Dependent on what the objective(s) of the PUMP are
 - The question we may wish to ask is "What is the probability of overrunning our target project completion time of 32 days?"
- In this case the MC again comes to our rescue
 - ≈19.9%
- From an uncertainty management point of view we can then decide if this is acceptable or not and make adjustments to minimize this uncertainty

Reducing The Critical Path

- Depending on the discussions surrounding our previous estimate of the overrun probability it may be necessary to attempt to reduce the length of the critical path
- There are number of common approaches for doing this
- 1. Eliminate tasks on the critical path
 - Tasks can be eliminated if unnecessary or moved to noncritical paths with the slack to accommodate them
- 2. Re-plan serial paths to be in parallel
- 3. Overlap sequential tasks i.e. laddering
- 4. Shorten the duration of critical path tasks
 - Needs to be carefully considered links to resourcing

Reducing The Critical Path

- 5. Shorten early tasks
 - There is less uncertainty with early (ongoing) tasks meaning they can be shortened with more confidence as to the impact
- 6. Shorten the longest tasks
 - Less likely shortening longer tasks leads to scheduling problems - cuts are more easily absorbed
- 7. Shorten the easiest tasks
 - Durations for easy tasks may be inflated
- 8. Shorten tasks that cost the least to speed up
- Whichever the method careful consideration to the impact of the change and related assumptions should be given

Crashing Projects

- The process of accelerating a project is referred to as crashing
- This directly relates to resource commitment
 - The more we can commit the faster the project can be pushed
- Potential reasons to crash include
 - An initially too aggressive schedule crashing is inevitable
 - Demand for earlier completion due to changing market needs
 - The project has slipped behind schedule
 - Contractual situation provides an incentive not to slip delivery

- There are a number of options which can be considered when attempting to accelerate a project
 - Resource constraints may naturally constrain things
- 1. Improve the productivity of existing project resources
 - Finding more efficient ways of working e.g. eliminating barriers to productivity (bureaucracy etc.)
 - Perhaps better done between projects rather than in the middle of one
- 2. Change the working method
 - Altering the technology and type of resources employed

- 3. Compromise quality and/or reduce project scope
 - Sacrifice some of the original project specifications to speed up completion
 - Cheaper materials, fewer oversight/testing steps etc. often not really an option e.g. construction
 - Removal of features more manageable option
- 4. Fast-track the project
 - Parallelisation of critical path activities (see previous points)

5. Use of overtime

- Easy way of increasing productivity (in theory)
- However, drawbacks include, cost (impacting overall project budget), if used continuously it can have a detrimental impact on productivity

6. Add resources to the project team

- Including additional people in a team can reduce the total time a task takes
- Improvements in communication/coordination can also help
- For all of these options its important to consider the tradeoffs between cost and time

Brooks's Law

- Former IBM executive Fred Brooks
- Adding resources to ongoing activities only delays them further
- The additional time/training needed to bring someone new up to speed can negate any potential benefit
- Resources should instead be added to activities which are yet to start

Agile Planning

Agile Project Management?

- A highly structured approach to planning may not be appropriate for all types of projects
- This is particularly true in IT-related projects
 - The end result of a project may be difficult to visualise due to changes and the evolution in customer demands
 - Following the original plan no longer makes sense can lead to the customer crying "this is not what I meant" at the project's conclusion
- An agile approach to project management helps organisations react quickly to opportunities
 - Recall the lecture on PUMP

Agile Project Management

- Agile PM approaches the project like a rolling wave
 - Continuous plan-execute-evaluate cycles across the project
 - Each wave creates "incremental value" by steadily developing sub-features or elements of the overall project
 - Deliberately short lengths e.g. 1-4 weeks long enough to create value that a customer can evaluate but short enough to remain responsive
 - Following each "sprint" a review is held to evaluate and agree the next set of deliverables

Problems With Agile

- There are, however, potential issues with an agile approach
 - Collaboration through the scrum team can be time-consuming requiring a commitment from all involved
 - Evolving requirements can lead to scope creep a never-ending series of requested changes
 - Difficult to predict what the product will look like at the end and therefore make an effective business case
 - Testing is performed throughout the project this adds costs as in a non-agile approach these are only required at the end
 - Applying it to the wrong project i.e. one with a high level of predictability can lead to increased costs

Agile & You

- Consider your experiences, you will most certainly have worked in an agile manner and are most likely doing so now
- Individual project
 - Research-like activity
 - Perhaps unknown and evolving outcomes and requirements
 - Weekly meeting between you and your supervisor(s) to review progress and define goals for the coming "sprint"
- Group design project
 - Perhaps unknown and evolving outcomes and requirements
 - Weekly meeting between your groups and your supervisor(s) to review progress and define goals for the coming "sprint"

Resource Management

Resource Management

- We've looked at activity diagrams and how projects can be accelerated and made agile
- The reality is very different as the constraints or limitations that a project operates under get in the way
- Resource is the number one such constraint
 - Cash/budget, people, etc.
- Resource planning is critical to making those carefully laid plans actually work!

Resource Constraints

- The most common resource constraint is people
 - The simplest approach to shortening a project involves as much parallelisation as possible
 - But this assumes we have the people to do the work!
 - If we don't have the people we resort to asking them to multitask which can have a detrimental effect on productivity
- Budgetary constraints a hangover from the initial costing
- Physical constraints can be an issue
 - Environmental or contractual issues
 - Materials
 - Technical constraints e.g. access to specialised equipment or skills

Optimal Scheduling

- When including resource constraints determining an optimal project schedule can suddenly become very challenging
 - Shortest possible development time with as many tasks in parallel as possible
 - But we face an inevitable problem finding the resources for this be it people, money, materials etc.
- Of course, we can complicate this even further by introducing uncertainties into our project plan along with their implications
 - Uncertainty durations may result in penalties for overruns etc.
- We can even further complicate matters by attempting to define an optimal schedule across all projects within an organisation

Resource Loading Charts

- Introduced in FEEG2006 they can be used to visualise and reallocate resources to keep the chart as "flat" as possible
 - Being careful to observe precedences

Optimal Scheduling

- Optimal scheduling is effectively a combinatorial problem
 - Find the combinations of activities which e.g.
 - Minimise total project time
 - Minimise utilisation of a resource e.g. cost
 - Minimise slippage
 - Satisfying the desired precedences and other resource limitations
- Computers are very good at solving these types of problems
- Specialist software can deal with the above across multiple projects and in the presence of uncertainties
- Of course, the complexity of this increases by an order of magnitude when uncertainty is included!

