به نام خدا

کد کمک پردازنده:

به دو بخش کنترلر و دیتاپث تقسیم می شود:

```
module Coprocessor (
     input logic clk,
     input logic reset,
     input logic start,
     input logic [7:0] x0,
     input logic [7:0] y0,
     input logic Op, // 0 for GCD, 1 for LCM
     output logic Done,
     output logic [7:0] result
L);
     logic [7:0] x, y;
     logic load x, load y, subtract x, subtract y, add x, add y;
     Co datapath datapath inst (
          .clk(clk),
          .reset (reset),
          .x0(x0),
          .y0 (y0),
          .load x (load x),
          .load y(load y),
          .subtract x (subtract x),
          .subtract y(subtract y),
          .add x (add x),
          .add y (add y),
          .x(x),
          .y(y)
     );
     Co controller controller inst (
          .clk(clk),
          .reset (reset),
          .start(start),
          .x(x),
          .y(y),
          .Op (Op),
          .load x (load x),
          .load y(load y),
          .subtract x(subtract x),
          .subtract y (subtract y),
          .add x (add x),
          .add y (add y),
          .Done (Done),
          .result(result)
     );
 endmodule
```

```
module Co_controller(
input logic clk,
           input logic reset, input logic start,
          input logic [7:0] x,
input logic [7:0] y,
input logic Op, // 0 for GCD, 1 for LCM
output logic load_x,
           output logic load_y,
output logic subtract_x,
           output logic subtract_y
output logic add_x,
           output logic add_y,
output logic Done,
           output logic [7:0] result
  L);
          typedef enum logic [2:0] {
    IDLE1, COMPARE_LCM, COMPARE_GCD, SUBTRACT_X, SUBTRACT_Y, ADD_X, ADD_Y
           } state_t;
           state_t state, next_state;
          always_ff @(posedge clk or posedge reset) begin
   if (reset) begin
                state <= IDLE1;
end else begin
                state <= next_state;
end</pre>
          always_comb begin
  load_x = 0;
  load_y = 0;
  subtract_x = 0
 曱
                 subtract_y = 0;
                add_x = 0;
add_y = 0;
Done = 0;
result = 8'b0;
                 next_state = state;
                 if (start) begin
                       case (state)
IDLE1: begin
                                   load_x = 1;
load_y = 1;
                                   if (Op)
                                          next_state = COMPARE_LCM; // LCM mode
                                   else
                                    next_state = COMPARE_GCD; // GCD mode
                             COMPARE_GCD: begin
                                   if (x == y) begin
    result = x; // GCD computation
    next_state = IDLE1;
    Done = 1;
end else if (x > y) begin
                                   subtract_x = 1;
next_state = SUBTRACT_X;
end else begin
                                         subtract_y = 1;
next_state = SUBTRACT_Y;
                                   end
                             end
COMPARE_LCM: begin
                                   if (x == y) begin
    result = x; // LCM computation
    next_state = IDLE1;
                                         Done = 1;
                                   end else if (x < y) begin add_x = 1;
                                   next_state = ADD_X;
end else begin
add_y = 1;
                                         next_state = ADD_Y;
SUBTRACT_X: begin
next_state = COMPARE_GCD;
                             SUBTRACT_Y: begin
next_state = COMPARE_GCD;
                             ADD_X: begin
next_state = COMPARE_LCM;
                             ADD Y: begin
                                   next_state = COMPARE_LCM;
                             default: next_state = IDLE1;
                       endcase
```


دیتایث: وظیفه محاسبه GCD و LCM را دارد

```
module Co datapath(
     input logic clk,
     input logic reset,
     input logic [7:0] x0,
     input logic [7:0] y0,
     input logic load x,
     input logic load y,
     input logic subtract x,
     input logic subtract y,
     input logic add x,
     input logic add y,
     output logic [7:0] x,
     output logic [7:0] y
L);
     always ff @(posedge clk or posedge reset) begin
          if (reset) begin
              x <= 8'b0;
              y <= 8'b0;
          end else begin
              if (load x) x \le x0;
              if (load y) y <= y0;</pre>
              if (subtract x) x <= x - y;</pre>
              if (subtract y) y <= y - x;</pre>
              if (add x) x \le x + x0;
              if (add y) y <= y + y0;</pre>
          end
     end
 endmodule
```

کوپروسسور به گونه ای کار می کند که ابتدا باید با سیگنال ریست، تمام خروجی ها صفر شود و به استیت Idel برود.

سپس ورودی های x0 و y0 مقداردهی می شوند.

مقدار op نمایانگر حالت محاسبه 0)gcd می باشد.

به محض دریافت سیگنال start پردازنده شروع به محاسبه می کند.

```
module tb Coprocessor;
    // Inputs
    logic clk;
    logic reset;
    logic start;
    logic [7:0] x0;
    logic [7:0] y0;
    logic Op;
    // Outputs
    logic Done;
    logic [7:0] result;
    // Instantiate the Coprocessor module
    Coprocessor dut (
         .clk(clk),
        .reset (reset),
        .start(start),
        .x0(x0),
        .y0(y0),
         .Op (Op),
         .Done (Done) ,
         .result(result)
    );
    // Clock generation
    always #5 clk = ~clk;
    // Initialize inputs
    initial begin
        clk = 0;
        reset = 1;
        start = 0;
        x0 = 12; // Example input values
        y0 = 18;
        Op = 0; // Compute GCD (change to 1 for LCM)
        #10 reset = 0;
        #10 start = 1;
        #100;
        $display("Result: %d", result);
        $display("Done: %b", Done);
         $finish;
    end
endmodule
```

سیمولیشن پردازنده: طبق ورودی ها result مورد نظر 6 می باشد.

سنتز کمک پردازنده-تایم-مساحت:

ath #1: Delay is 10.599									
Path Summary Statistics		s [Oata Path						
	Total	Incr	RF	Type	Fanout	Location	Element		
1	× 10.599	10.599					data path		
1	0.000	0.000			1	PIN_AF26	start		
2	0.000	0.000	FF	IC	1	IOIBUF_X89_Y4_N78	start~input i		
3	0.866	0.866	FF	CELL	38	IOIBUF_X89_Y4_N78	start~input o		
4	3.441	2.575	FF	IC	1	LABCELL_X83_Y4_N9	controller_inst result[7]~8 datac		
5	3.917	0.476	FF	CELL	1	LABCELL_X83_Y4_N9	controller_inst result[7]~8 combout		
6	7.446	3.529	FF	IC	1	IOOBUF_X80_Y0_N53	result[7]~output i		
7	10.599	3.153	FF	CELL	1	IOOBUF_X80_Y0_N53	result[7]~output o		
8	10.599	0.000	FF	CELL	0	PIN AH24	result[7]		

Resource	Usage	9
Logic utilization (ALMs needed / total ALMs on device)	32 / 41,910	< 1
ALMs needed [=A-B+C]	32	
[A] ALMs used in final placement [=a+b+c+d]	33 / 41,910	< 1
[a] ALMs used for LUT logic and registers	11	
[b] ALMs used for LUT logic	21	
[c] ALMs used for registers	1	
[d] ALMs used for memory (up to half of total ALMs)	0	+
[B] Estimate of ALMs recoverable by dense packing	1 / 41,910	< '
		_
[C] Estimate of ALMs unavailable [=a+b+c+d]	0 / 41,910	0 9
[a] Due to location constrained logic	0	_
[b] Due to LAB-wide signal conflicts	0	
[c] Due to LAB input limits	0	
[d] Due to virtual I/Os	0	
Difficulty packing design	Low	
		-
Total LABs: partially or completely used	5 / 4,191	< 1
	5	+
Logic LABs		_
Memory LABs (up to half of total LABs)	0	
Combinational ALUT usage for logic	56	
7 input functions	0	
6 input functions	6	
5 input functions	30	
4 input functions	12	
<=3 input functions	8	
Combinational ALUT usage for route-throughs	0	
Dedicated logic registers	23	
By type:		
Primary logic registers	23 / 83,820	< 1
Secondary logic registers	0 / 83,820	0 9
By function:		_
Design implementation registers	23	+
	0	+
Routing optimization registers	U	+
Virtual pins	0	
I/O pins	29 / 314	9 9
Clock pins	1/8	13
Dedicated input pins	0 / 21	0 9
Hard processor system peripheral utilization		
Boot from FPGA	0/1(0%)	_
Clock resets	0/1(0%)	_
		+
Cross trigger	0/1(0%)	_
S2F AXI	0/1(0%)	
F2S AXI	0/1(0%)	
		_
AXI Lightweight	0/1(0%)	
AXI Lightweight SDRAM	0/1(0%)	
SDRAM	0/1(0%)	
SDRAM Interrupts	0/1(0%)	
SDRAM Interrupts JTAG	0/1(0%) 0/1(0%) 0/1(0%)	
SDRAM Interrupts JTAG Loan I/O	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%)	
SDRAM Interrupts JTAG Loan I/O MPU event standby	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%)	
SDRAM Interrupts JTAG Loan I/O MPU event standby MPU general purpose	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%)	
SDRAM Interrupts JTAG Loan I/O MPU event standby MPU general purpose STM event	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%)	
SDRAM Interrupts JTAG Loan I/O MPU event standby MPU general purpose	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%)	
SDRAM Interrupts JTAG Loan I/O MPU event standby MPU general purpose STM event	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%)	
SDRAM Interrupts JTAG Loan I/O MPU event standby MPU general purpose STM event TPIU trace	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%)	
SDRAM Interrupts JTAG Loan I/O MPU event standby MPU general purpose STM event TPIU trace DMA CAN	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%)	
SDRAM Interrupts JTAG Loan I/O MPU event standby MPU general purpose STM event TPIU trace DMA CAN EMAC	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/2(0%)	
SDRAM Interrupts JTAG Loan I/O MPU event standby MPU general purpose STM event TPIU trace DMA CAN EMAC I2C	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/2(0%) 0/2(0%) 0/4(0%)	
SDRAM Interrupts JTAG Loan I/O MPU event standby MPU general purpose STM event TPIU trace DMA CAN EMAC I2C NAND Flash	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/2(0%) 0/2(0%) 0/4(0%) 0/1(0%)	
SDRAM Interrupts JTAG Loan I/O MPU event standby MPU general purpose STM event TPIU trace DMA CAN EMAC I2C NAND Flash QSPI	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/2(0%) 0/2(0%) 0/4(0%) 0/1(0%)	
SDRAM Interrupts JTAG Loan I/O MPU event standby MPU general purpose STM event TPIU trace DMA CAN EMAC I2C NAND Flash	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/2(0%) 0/2(0%) 0/4(0%) 0/1(0%)	
SDRAM Interrupts JTAG Loan I/O MPU event standby MPU general purpose STM event TPIU trace DMA CAN EMAC I2C NAND Flash QSPI	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/2(0%) 0/2(0%) 0/4(0%) 0/1(0%)	
SDRAM Interrupts JTAG Loan I/O MPU event standby MPU general purpose STM event TPIU trace DMA CAN EMAC I2C NAND Flash QSPI SDMMC	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/2(0%) 0/2(0%) 0/4(0%) 0/1(0%) 0/1(0%)	
SDRAM Interrupts JTAG Loan I/O MPU event standby MPU general purpose STM event TPIU trace DMA CAN EMAC I2C NAND Flash CSPI SDMMC SPI Master	0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/1(0%) 0/2(0%) 0/2(0%) 0/4(0%) 0/1(0%) 0/1(0%)	

Fitter Resource Usage Summary

M10K blocks	0 / 553	0 %
Total MLAB memory bits	0	
Total block memory bits	0 / 5,662,720	0 %
Total block memory implementation bits	0 / 5,662,720	0 %
Total DSP Blocks	0 / 112	0 %
Fractional PLLs	0 / 6	0 %
Global signals	1	
Global clocks	1 / 16	6 %
Quadrant clocks	0 / 66	0 %
Horizontal periphery clocks	0 / 18	0 %
SERDES Transmitters	0 / 100	0 %
SERDES Receivers	0 / 100	0 %
JTAGs	0 / 1	0 %
ASMI blocks	0 / 1	0 %
CRC blocks	0 / 1	0 %
Remote update blocks	0 / 1	0 %
Oscillator blocks	0 / 1	0 %
Impedance control blocks	0 / 4	0 %
Hard Memory Controllers	0 / 1	0 %
Average interconnect usage (total/H/V)	0.0% / 0.0% / 0.0%	
Peak interconnect usage (total/H/V)	1.2% / 1.3% / 1.0%	
Maximum fan-out	38	
Highest non-global fan-out	38	
Total fan-out	428	
Average fan-out	3.10	

سیستم ریسک فایو در کنار کمک پردازنده:

ادرس دیکودر: مقداردهی enable

```
module addressD(
 input logic [6:0] op,
 output logic MemWrite
L);
 logic control;
 assign MemWrite = control;
 always_comb
case (op)
 7'b0000011: control = 0; // lw
 7'b0100011: control = 1; // sw
 7'b0110011: control = 0; // R-type
 7'b1100011: control = 0; // beq/bne
 7'b0010011: control = 0; // I-type
 7'b11011111: control = 0; // jal
 7'b1100111: control = 0; // jalr
 7'b00000000: control = 0; // GCD
 7'b1111111: control = 0; // LCM
 default: control = 0; // ???
 endcase
 endmodule
```

سیگنال های جدید:

```
logic cp_op;
logic IO;
```

Cp_op نوع دستور gcd را از lcm تمایز می دهد

10 سیگنالی است که نشاندهنده نیازمندی به استفاده از 10 می باشد

از این سیگنال ها در دیکودر و دیتایث استفاده می کنیم

```
module maindec(input logic [6:0] op,
                     output logic [1:0] ResultSrc,
                     output logic nop,
                     output logic Branch, ALUSrc,
                     output logic RegWrite, Jump,
                     output logic [1:0] ImmSrc,
                     output logic [1:0] ALUOp,
                     output logic PCTargetSRC, cp_op, IO
                     );
 logic [13:0] controls;
  assign {IO ,cp_op, RegWrite, ImmSrc, ALUSrc, nop,ResultSrc, Branch, ALUOp, Jump,PCTargetSRC} = controls;
  always comb
case (op)
  // RegWrite_ImmSrc_ALUSrc_MemWrite_ResultSrc_Branch_ALUOp_Jump
  7'b00000011: controls = 14'b0_x_1_00_1_0_01_0_00_0_x; // lw
7'b0100011: controls = 14'b0_x_0_01_1_1_xx_0_00_0_x; // sw
7'b0110011: controls = 14'b0_x_1_xx_0_0_00_10_0_x; // R-type
  7'b1100011: controls = 14'b0_x_0_10_0_0_xx_1_01_0_0; // beq/bne
  7'b0010011: controls = 14'b0_x_1_00_1_0_00_0_10_0_x; // I-type
  7'b1101111: controls = 14'b0_x_1_11_x_0_10_0_xx_1_0; // jal
  7'b1100111: controls = 14'b0_x_0_00_1_0_10_0_xx_1_1; // jalr
 7'b0000000: controls = 14'b1_0_1_xx_x_0_11_0_xx_0_0; // GCD
7'b1111111: controls = 14'b1_1_1_xx_x_0_11_0_xx_0_0; // LCM
 default: controls = 14'bx_x_xx_x_x_xx_xx_xx_x; // ???
 endmodule
```

سیگنال های جدید برای کنترل ورودی کمک پردازنده:

```
logic [31:0] cp_result;
logic cp_r=0;
logic cp_s=0;
logic cp_done;
logic enable=1;
```

از cp_r برای ریست کردن استفاده می کنیم

از cp_s برای استارت کردن استفاده می کنیم

Cp_done خروجی پردازنده هست و اعلام می کند که نتیجه یا result آماده می باشد

نحوه هندل کردن کمک پردازنده:

```
Coprocessor cop(clk, cp_r, cp_s, SrcA, WriteData, cp_op, cp_done, cp_result);
 logic reset done=0;
 logic start_done=0;
always ff @ (posedge clk) begin
     if(IO) begin
     $display("IO is 1");
         if(!reset_done) begin
             cp r = 1;
             reset done = 1;
             $display("reset signal sent");
         end else if(!start_done) begin
             $display("src A: %b", SrcA);
             $display("src B: %b", SrcB);
             cp_r = 0;
             cp_s = 1;
             start_done = 1;
             $display("start signal sent");
always_comb begin
     if(IO) begin
         if(!cp_done)begin
             enable = 0;
             $display("pc is halted");
         end else begin
             enable = 1;
             $display("pc is started");
             end
     end else enable =1;
end
 endmodule
```

برای هندل و کنترل کردن کمک پردازنده به دو بلاک always نیازمندیم.

always_ff: این بلاک تشخیصمی دهد که آیا به استفاده IO نیاز داریم یا خیر در این صورت در یک کلاک اقدام به ریست کردن کمک پردازنده و در کلاک بعدی اقدام به استارت آن می کند.

always_comb: این بلاک پس تشخیص نیازمندی به IO، رجیستر PC/PCnext را غیز فعال یا disable می کند و پس از پایان کار کمک پردازنده سیستم به روال قبل بر می گردد.

:top

:CP

اجزای cp:

کنترلر cp:

ديتا cp :

سنتز كمك پردازنده-تايم-مساحت:

Pat	h #1: Delay is	16.614					
Path Summary		Statistics Data Path					
	Total	Incr	RF	Type	Fanout	Location	Element
1	× 16.614	16.614					data path
1	0.000	0.000			1	FF_X79_Y16_N32	riscvsingle:rvsingle datapath:dp flopr:pcreg q[4]~DUPLICATE
2	0.000	0.000	RR	CELL	11	FF_X79_Y16_N32	rvsingle dp pcreg q[4]~DUPLICATE q
3	0.318	0.318	RR	IC	1	LABCELL_X79_Y16_N48	imem RAM~14 datab
4	0.875	0.557	RF	CELL	4	LABCELL_X79_Y16_N48	imem RAM~14 combout
5	1.099	0.224	FF	IC	1	LABCELL_X79_Y16_N51	imem RAM~15 dataf
6	1.184	0.085	FF	CELL	33	LABCELL_X79_Y16_N51	imem RAM~15 combout
7	2.546	1.362	FF	IC	1	LABCELL_X75_Y13_N42	rvsingle dp rf rf~1198 datac
8	3.060	0.514	FF	CELL	3	LABCELL_X75_Y13_N42	rvsingle dp rf rf~1198 combout
9	4.169	1.109	FF	IC	2	LABCELL_X77_Y16_N54	rvsingle dp alu Add0~69 dataf
10	5.284	1.115	FF	CELL	1	LABCELL_X77_Y16_N54	rvsingle dp alu Add0~69 cout
11	5.284	0.000	FF	IC	2	LABCELL_X77_Y16_N57	rvsingle dp alu Add0~73 cin
12	5.284	0.000	FF	CELL	1	LABCELL_X77_Y16_N57	rvsingle dp alu Add0~73 cout
13	5.284	0.000	FF	IC	2	LABCELL_X77_Y15_N0	rvsingle dp alu Add0~77 cin
14	5.810	0.526	FF	CELL	1	LABCELL_X77_Y15_N0	rvsingle dp alu Add0~77 sumout
15	6.754	0.944	FF	IC	1	LABCELL_X79_Y13_N15	rvsingle dp alu Mux12~0 dataf
16	6.837	0.083	FF	CELL	2	LABCELL_X79_Y13_N15	rvsingle dp alu Mux12~0 combout
17	13.471	6.634	FF	IC	1	IOOBUF_X38_Y81_N53	DataAdr[19]~output i
18	16.614	3.143	FF	CELL	1	IOOBUF_X38_Y81_N53	DataAdr[19]~output o
19	16.614	0.000	FF	CELL	0	PIN D8	DataAdr[19]

Fitter Resource Usage Summary		
Resource	Usage	%
Logic utilization (ALMs needed / total ALMs on device)	1,453 / 41,910	3 %
ALMs needed [=A-B+C]	1,453	
[A] ALMs used in final placement [=a+b+c+d]	1,865 / 41,910	4 %
[a] ALMs used for LUT logic and registers	355	
[b] ALMs used for LUT logic	680	
[c] ALMs used for registers	830	
[d] ALMs used for memory (up to half of total ALMs)	0	
[B] Estimate of ALMs recoverable by dense packing	418 / 41,910	< 1 %
[C] Estimate of ALMs unavailable [=a+b+c+d]	6 / 41,910	< 1 %
[a] Due to location constrained logic	0	
[b] Due to LAB-wide signal conflicts	4	
[c] Due to LAB input limits	2	
[d] Due to virtual I/Os	0	
Difficulty packing design	Low	
T-t-11 AD	204 / 4 404	0.0/
Total LABs: partially or completely used	321 / 4,191	8 %
Logic LABs	321	
Memory LABs (up to half of total LABs)	0	
Combinational ALUT usage for logic	1,366	
7 input functions	15	
6 input functions	935	
5 input functions	79	
4 input functions	76	
<=3 input functions	261	
Combinational ALUT usage for route-throughs	1,065	
Dedicated logic registers	2,708	
By type:		
Primary logic registers	2,369 / 83,820	3 %
Secondary logic registers	339 / 83,820	< 1 %
By function:		
Design implementation registers	2,683	
Routing optimization registers	25	
Virtual pins	0	
I/O pins	67 / 314	21 %

Clock pins	4 / 8	50 %
Dedicated input pins	0 / 21	0 %
Hard processor system peripheral utilization	0.44.000	
Boot from FPGA	0/1(0%)	
Clock resets	0/1(0%)	
Cross trigger	0/1(0%)	
S2F AXI	0/1(0%)	
F2S AXI	0/1(0%)	
AXI Lightweight	0/1(0%)	
SDRAM	0 / 1 (0 %)	
Interrupts	0/1(0%)	
JTAG	0/1(0%)	
Loan I/O	0/1(0%)	
MPU event standby	0/1(0%)	
MPU general purpose	0/1(0%)	
STM event	0/1(0%)	
TPIU trace	0/1(0%)	
DMA	0/1(0%)	
CAN	0/2(0%)	
EMAC	0/2(0%)	
I2C	0/4(0%)	
NAND Flash	0/1(0%)	
QSPI	0/1(0%)	
SDMMC	0/1(0%)	
SPI Master	0/2(0%)	
SPI Slave	0/2(0%)	
UART	0/2(0%)	
USB	0/2(0%)	
M10K blocks	0 / 553	0 %
Total MLAB memory bits	0	
Total block memory bits	0 / 5,662,720	0 %
Total block memory implementation bits	0 / 5,662,720	0 %
Total DSP Blocks	0 / 112	0 %
Fractional PLLs	0 / 6	0 %

Global signals	1	
Global clocks	1 / 16	6 %
Quadrant clocks	0 / 66	0 %
Horizontal periphery clocks	0 / 18	0 %
SERDES Transmitters	0 / 100	0 %
SERDES Receivers	0 / 100	0 %
JTAGs	0 / 1	0 %
ASMI blocks	0 / 1	0 %
CRC blocks	0 / 1	0 %
Remote update blocks	0 / 1	0 %
Oscillator blocks	0 / 1	0 %
Impedance control blocks	0 / 4	0 %
Hard Memory Controllers	0 / 1	0 %
Average interconnect usage (total/H/V)	2.0% / 2.0% / 2.0%	
Peak interconnect usage (total/H/V)	37.0% / 37.1% / 36.6%	
Maximum fan-out	2708	
Highest non-global fan-out	293	
Total fan-out	16533	
Average fan-out	3.13	

سیمولیشن سیستم: رایت کردن دو مقادر در حافظه و خواندن آن ها و سپس محاسبه GCD و LCM

```
🔚 risc.txt 🗵
      addi s1, zero, 0
  1
      addi s2, zero, 6
  3
      addi s3, zero, 7
      sw s2, 0(s1)
  4
      sw s3, 4(s1)
  5
      lw s4, 0(s1)
  6
      lw s5, 4(s1)
  7
  8 GCD s6, s5, s4
      LMC s7, s5, s4
  9
```

باینری کردن دو دستور جدید:

```
015a0b00
015a0bff

0000 000/1 0101 /1010 0/000 /1011 0/000 0000

0000 000/1 0101 /1010 0/000 /1011 1/111 1111
```

```
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
// State enumeration

= typedef enum {
    IDEM COMPARE_LCM, COMPARE_GCD, SUBTRACT_X, SUBTRACT_Y, ADD_X, ADD_Y state_t;
}
    // Coprocessor struct to hold state and variables typedef struct {
 uint0_t x, y;
state_t state, next_state;
hool Done;
uint0_t rdsult;
} Coprocessor;
void Coprocessor_reset(Coprocessor *cp) {
    printf("op reseted)n");
    cp->tate = IDLE1;
    cp->Done = felse;
void Coprocessor_start(Coprocessor *cp, wint8_t x0, wint8_t y0, bool Cp) {
   cp->x = x0;
   cp->y = y0;
   cp->bone = false;
   cp->state = IDLE1;
             while (!cp->Done) {
    cp->next_state = cp->state; // Default to hold state
                    cp->next_state = COMPARE_GCD; // GCD mode
break;
                           case COMPARE_LCM:

printf("anta-ad LCM compare\n");

if (cp->x = cp->y) {
    cp->eault = cp->x; // LCM computation
    cp->nest_state = IDEE;
    cp->bose = true;
    printf("as as doma\n");
} also if (cp->x < cp->y) {
    cp->nest_state = ADD_X;
    printf("not dome yet\n");
} also {
    cp->nest_state = ADD_Y;
    printf("not dome yet\n");
}
}
                                      break:
                             case SUBTRACT_X:
    printf("subtracting\n");
    cp->x -= op->y;
    cp->nex_state = COMFARE_GCD;
    break;
                             case SUBTRACT_Y:
    p=inif("subt=acting\n");
    cp->y -= cp->x;
    cp->nax_state = COMPARE_GCD;
    break;
                             case ADD_X:
    p=intf("adding\n");
    cp->x += x0;
    cp->next_state = COMPARE_LCM;
    break;
                             case ADD_Y:
    printf("adding\n");
    cp->n + y0;
    cp->next_state = COMPARE_LCM;
    break;
                          default:
    cp->next_state = IDLE1;
    break;
                    cp->state = cp->next_state;
int main() {
    Coprocessor op;
    uint8_t x0 = 6, y0 = 7;
    bool Op = 0; // 0 for GCD, 1 for LCM
            Coprocessor_reset(scp);
Coprocessor_start(scp, x0, y0, Op);
            printf("Result: %d\n", cp.result);
           printf("Result: %d\n", cp.result);
return 0;
```

سيموليشن:

