CH100 使用手冊

IMU/VRU/AHRS姿態測量模組, Rev 1.0

晶片版本

模組版本

目錄

CH100 使用手冊

晶片版本

模組版本

目錄

簡介

主要特性

硬體及介面參數

硬體參數

尺寸及幾何中心位置

介面定義

座標系定義

效能指標

姿態角輸出精度

陀螺儀

加速度計

磁感測器參數

氣壓計參數

模組數據接口參數

```
感測器校準
```

加速度計和陀螺儀

地磁校準

關於地磁干擾的更多知識

6軸和9軸模式區別

移動機器人案例

串列埠通訊協議

串列埠數據包

數據包總覽

產品支援數據包列表

0X91(IMUSOL)

出廠預設數據包

數據幀結構示例

數據幀配置為 0x91 數據包

AT指令

AT+ID

AT+INFO

AT+ODR

AT+BAUD

AT+EOUT

AT+RST

AT+SETYAW

AT+MODE

AT+URFR

CAN通訊協議

CANopen 預設設定

CANopen TPD0

使用上位機連線CAN裝置

CANOpen介面常用命令舉例

- 1. 使能數據輸出(開啟非同步觸發)
- 2. 配置CAN波特率·輸出速率和輸出幀資訊

附錄A - 韌體升級與恢復出廠設定

簡介

CH100是一款高效能、小體積、低延時的慣性測量單元(IMU)·本產品整合了三軸加速度計、三軸陀螺儀和一款微控制器。可輸出經過 感測器融合演算法計算得到的基於當地地理座標的三維方位數據·包含有絕對參考的航向角·俯仰角和橫滾角。同時也可以輸出校準過 的原始的感測器數據。

CH100可以測量無人車(AGV) 和機器人底盤的運動,提供慣性定位參考,提升定位精度和可靠性,輸出實時測量的姿態角資訊,進而推算出底盤的空間位置。它可與鐳射雷達或二維碼導航形成互補,增強在狹窄空間內的定位精度,並減小對外界參考物體的依賴。

典型應用:

- 機器人/AGV DR SLAM應用/車輛測量姿態檢測
- 無人駕駛/組合導航用IMU

主要特件

- 小型表貼封裝:尺寸:20 x 25 x 3mm
- 板載感測器:三軸陀螺儀,三軸加速度計,三軸磁場感測器,氣壓感測器
- 強抗振效能,6軸模式下任何磁場干擾無影響。
- 陀螺儀零偏穩定性:2.5°/h
- 數據輸出:可輸出原始加速度·角速度·模組解算的姿態角·四元數·時間戳等數據。最高輸出幀率:400Hz
- 通訊介面:TTL串列埠·CAN介面(CANopen協議),多項參數可配置·提供完善的Linux/ROS/MCU驅動程式碼
- PC端上位機程式,提供實時數據顯示,波形,校準及excel 數據記錄及濾波分析功能

硬體及介面參數

硬體參數

參數	描述
輸出數據接口	TTL串列埠(1.8V - 5.0V)
工作電壓	3.3 - 5V
工作電流	<50mA(5V)
溫度範圍	-20°C - 85°C
尺寸	20 x 25 x 3mm (W x L x H)

尺寸及幾何中心位置

介面定義

引 腳 號	名稱	說明
1	VCC	電源 3.3V
2	GND	GND
3	EN	使能 高電平有效・內部上拉・不需要可懸空
4	SYNC_IN	數據輸入同步: 內部上拉·當模組檢測到下降沿時, 會輸出一幀數據。不使用時需懸空
5	SYNC_OUT	數據輸出同步,內部上拉·無數據輸出時為高電平(空閑)·一幀數據開始發送時變為低電平·一幀數據發送完成後·返回高電平(空閑)。不使用時需懸空
6	RXD2	保留,必須懸空
7	TXD2	保留,必須懸空
8	GND	GND
9	105	保留,必須懸空
10	RSV1	保留,必須懸空
11	TXD1	模組串列埠發送 UART TXD (接 MCU 的 RXD)
12	RXD1	模組串列埠接收 UART RXD(接 MCU 的 TXD)
13	RSV2	保留,必須懸空
14	CAN_RX	CAN_RX
15	CAN_TX	CAN_TX
16	RSV3	保留,必須懸空
17	RSV4	保留,必須懸空
18	NRST	復位,內部上拉。>10uS 低電平復位模組。無需外接阻容,建議接到MCU的GPIO引腳以實現軟體復位

座標系定義

載體系使用 右-前-上(RFU)座標系, 地理座標系使用 東-北-天(ENU)座標系。

加速度和陀螺儀軸向如下圖所示。

歐拉角旋轉順序為東-北-天-312(先轉Z軸·再轉X軸·最後轉Y軸)旋轉順序。具體定義如下:

- 繞 Z 軸方向旋轉: 航向角\Yaw\psi(ψ) 範圍: -180° 180°
- 繞 X 軸方向旋轉:俯仰角\Pitch\theta(heta) 範圍: -90°-90°
- 繞 Y 軸方向旋轉: 橫滾角\Roll\phi(ϕ)範圍: -180°-180°

如果將模組視為飛行器的話。Y軸正方向應視為機頭方向。當感測器系與慣性系重合時、歐拉角的理想輸出為:Pitch = 0°, Roll = 0°, Yaw = 0°

效能指標

姿態角輸出精度

姿態角	典型值	備註
横滾角 (俯仰角 - 靜態誤差	<0.2°	靜止
橫滾角\俯仰角 - 動態誤差	<0.8°	低機動運動, 無長時間加減速行為
航向角	<1°(1h內)	靜止
航向角	<8°(0.5h內)	6軸模式‧低機動運動,無長時間加減速行為
航向角	<2°	9軸模式‧周圍磁場環境乾淨‧並且經過地磁校準

陀螺儀

參數	值	備註
測量範圍	±500°/s	
分頻率	0.01°/s	
內部採樣頻率	1KHz	
零偏穩定性	2.5°/hr	@25°C,1σ
零偏重複性	0.05°/s	@25°C,1σ
非正交誤差	±0.1%	@25°C,1σ
隨機遊走	0.3 $^{\circ}/\sqrt{hr}$	@25°C,1σ
刻度非線性度	±0.1%	滿量程時(最大)
刻度係數誤差	±0.4%	出廠前校準后
加速度敏感性	0.1°/s/g	

加速度計

參數	值	備註
測量範圍	±8G (1G = 1x 重力加速度)	
解析度	106	
內部採樣頻率	1KHz	
零偏穩定性	30uG	@25°C,1 σ
零偏重複性	1.8mG	@25°C,1 σ
非正交誤差	±0.1%	±0.1%
隨機遊走	0.04 $m/s\sqrt{h}$	@25°C,1 σ
刻度係數誤差	±0.3% (滿量程時)	出廠前校準后
全溫範圍溫度變化	2mg	-20 - 85°

加速度Allan方差曲線

磁感測器參數

參數	值
測量範圍	±8G(Gauss)
非線性度	±0.1%
解析度	0.25mG

氣壓計參數

參數	值
測量範圍	300 - 1200 hPa
解析度	± 0.006 hPa (or ±5 cm)
精度	± 0.06 hPa (or ±50 cm)
內部採樣頻率	64Hz

模組數據接口參數

參數	值
串列埠輸出波特率	9600/115200/460800/921600可選
幀輸出速率	1/50/100/200/400Hz 可選
啟動時間	<2.5s
最大輸出速率	400Hz原始數據(加速度,陀螺儀,姿態角), 100Hz磁場原始數據, 64Hz氣壓計數據

感測器校準

加速度計和陀螺儀

加速度計和陀螺儀在出廠前經過比例因子誤差,非正交誤差和零偏誤差校準,校準參數儲存在模組內部。其中陀螺儀出廠前還經過溫補校準,校準參數儲存在模組內部。

地磁校準

磁感測器(部分型號支援)出廠前經過橢球校準,但磁感測器很容易受到外界環境磁場干擾,一般都需要客戶重新校準:

模組內部自帶主動地磁校準系統,該系統不需要使用者發送任何指令,該系統在後臺自動採集一段時間內地磁場數據,並做分析比較,剔除異常數據,一旦數據足夠,就會嘗試地磁校準。所以,當使用9軸模式時,不需要使用者任何干預即可完成地磁校準。但是模組仍然提供介面來讓使用者檢查目前校準狀態。自動校準的前提是需要有足夠程度姿態機動(模組姿態的變化)並且維持一定時間,內部校準系統才能蒐集不同姿態下的地磁場資訊,從而完成校準,靜止狀態下是無法進行地磁校準的。

首當使用模組並且需要使用9軸模式時,應進行如下校準操作:

- 1. 檢查周圍是否磁乾淨:室內,實驗室桌子旁,大型鐵/剛框架結構附近。都屬於常見的干擾區域。建議將模組拿到室外空曠處,即 使沒有條件拿到室外,儘量將模組遠離(>0.5m)實驗室桌子/電腦等容易產生干擾的物體。
- 2. 在儘量小範圍內(位置不動,只是旋轉),緩慢的讓模組旋轉,讓模組經歷儘量多的姿態位置(每個軸至少都旋轉360°,持續約1分鐘)。一般情況下即可完成校準。如果始終沒能成功校準模組,說明周圍地磁場干擾比較大。
- 3. 校準的成功與否可用AT指令來檢視:發送 AT+INFO=HSI 指令,模組會列印目前地磁校準系統狀態:

只需關心fiterr一項:0.03以下說明校準結果已經足夠好。如果fiterr始終>0.1·說明地磁干擾很大,需要再次校準以期得到更好的校準結果。擬合殘差會隨著時間緩慢增長。

- 4. 雖然地磁參數估計可以線上自動採集數據·自動的動態擬合地磁校準參數。但是如果周圍地磁環境改變(比如需要到另外房間或者室內室外切換·或者是模組被安裝/焊接到了新的環境中)·還需重複執行1-3.
- 5. 雖然地磁校準無需手動開啟或停止,模組自動在後臺自動執行該系統,但是使用者仍然可以手動控制地磁校準系統的開啟與否,使用 AT+MCALCTL=0 來關閉地磁校準系統,使用 AT+MCALCTL=1 來開啟地磁校準系統,該命令立即生效,掉電儲存。使用者可以開啟地磁校準后使 AT+INFO=HSI 來判斷校準質量,一旦校準成功完成,使用L AT+MCALCTL=0 來關閉校準系統,並鎖定校準值。一般情況下,只要在無磁區域校準成功過一次,後面是無需再次校準的。
- 6. 如果客戶安裝位置改變(比如上一次校準是拿著模組單獨去校準的,使用的時候卻是安裝在目標裝置上)。則需要帶著目標裝置進行 重新校準,詳見移動機器人案例。

關於地磁干擾的更多知識

種類	定義	典型干擾源	影響	措施
空間磁場干擾 (Distortions that do not move with sensor)	干隨器而動處界系不測動 而世標	各種固定的磁干擾源、傢俱、家用電器、電纜、房屋內的鋼筋結構等。一切不隨磁感測器運動而運動的干擾源	無論磁場感測器是否校準的好‧這些空間磁場的干擾(或者說環境磁場不均勻)都會使得空間地磁場發生畸變。地磁補償會錯誤並且無法獲得正確的航向角。他們是造成室內地磁融合難以使用的主要元兇。這種干擾不能被校準,會嚴重影響地磁效能。空間磁場干擾在室內尤其嚴重。	只能儘量避免這種干擾源
感測器座標系下 的干擾 (Distortions that move with sensor)	干擾源 隨感測 器運動 而運動	模組PCB·與模組固定在一起的板子·儀器裝置·產品等。他們和磁感測器視為同一個剛體·隨磁感測器運動而運動	對感測器造成硬磁 / 軟磁干擾。這些干擾可以通過地磁校準 演算法加以很好的消除。	模組自動地磁校準

Distortions that move with the sensor	Distortions that do not move with the sensor
 Calibration errors Hard iron effects Soft iron effects Etc. 	 Spatial distortions Temporal distortions Etc.

下圖是一個典型的室內磁場分佈圖。可以看到:一般室內環境的空間磁場畸變是比較嚴重的(屬於空間地磁干擾,無法校準補償)

注意

在室內環境下,空間磁場干擾尤其嚴重,而且空間磁干擾並不能通過校準來消除。在室內環境下,儘管模組內建均質磁場檢測及遮蔽機制,但9軸模式航向角的準確度很大程度上取決於室內磁場畸變程度,如果室內磁場環境很差(如電腦機房旁,電磁實驗室,車間,地下車庫等等),即使校準后, 9軸的航向角精度可能還不如8軸甚至會出現大角度誤差。

6軸和9軸模式區別

正因為地磁場非常容易受到空間干擾,所以使用9軸模式時應非常注意。下表列舉了不同的使用場合和工況下的使用建議

模式	適用環境	典型應用	優點	缺點	注意事項
6軸模式	各種環境	雲臺等低動態姿態檢測・室內機器人	1. 姿態角 輸出穩定性 好 2. 完全 不受磁場干 擾	航向角隨時間緩慢漂移	航向角會隨時間緩慢飄移且無法補償
9軸模式	無磁干擾環境	1.指南針·尋北系統 2. 空 曠且磁干擾較少的室內·模組 基本不會大範圍在室內移動 (典型的如攝影棚內動作捕 捉·且被測者不會做大範圍走 動)	1. 航向角 不會隨時間 漂移 2. 旦檢測到快 磁場正航向角 指北	任何磁干擾都會出現航向角準確度下降。 室內干擾嚴重情況下 航向角無法指向正 確方向。另外,移動機器人的金屬結構和 電機執行時會產生非常強的磁干擾,所以 移動機器人平臺不適用于9軸模式。	首次使用前需要校準地磁感測器

模組的自動地磁校準系統只能處理和模組安裝在一起的,固定的磁場干擾。安裝環境如果有磁場干擾,這種干擾必須是固定的,並且這個干擾磁場與模組 安裝之後不會再發生距離變化(例:模組安裝在一個鐵材料之上,因為鐵會有磁場干擾, 這時就需要把鐵與模組一起旋轉校準,並且這個鐵在使用當中是不會和羅盤再分開的(發生相對位移),一 旦分開是需要再重新校準。如果這個鐵大小是不固定的,或與羅盤的距離變化也不是固定的,這種干擾是無法校準,即使校準成功,也會精度非常差,只能避而遠之安裝。安全距離控制在 40CM 以上)。

移動機器人案例

假設客戶想在移動機器人上使用9軸模式獲得準確,不漂移的航向角,模組安裝在機器人上(看做一個剛體):

- 由於機器人本身由於金屬結構(部件,電路)的存在會有一個很大的硬磁干擾,相當於上文提到的"感測器座標系下的干擾"。這部分 干擾可以被校準。
- 由於機器人的電機啟動停止·以及機器人在室內經過各種房間的磁干擾導致空間磁場改變·會產生上文中提到的"空間磁場干擾"。 這部分干擾不能被校準。

兩種干擾同時存在並且都可能很大·給9軸模式造成了很大挑戰。這時候建議客戶用6軸模式·如果9軸模式必須使用則要做到如下幾點:

1. 校準: 必須帶著機器人一起校準(機器人足夠小·大型機器人很難做到帶著機器人一起校準)·單獨把模組拿下來校準好再安裝上去是不正確的做法。必須將機器人和模組視做同一剛體去校準才能得到正確的校準結果·具體校準環節請參考上文·校準成功後重新上電(復位)生效。

- 2. 由於室內磁環境複雜‧即使校準正確完成可能還是會出現較大的航線誤差‧尤其是電機啟停‧功率改變時‧對磁場影響巨大
- 3. 城市建築,地下建築,橋樑和其他鋼鐵結構會引起區域性磁場異常,特別是在車輛使用直流電驅動的區域內,9軸模式根本無法使用。當直流驅動的機車行駛過時,附近的車輛立即被磁化,所有原來的校準參數全部失效,車體也不會恢復到原來的磁場結構。

串列埠通訊協議

模組上電后,預設按出廠幀率(通常為100)輸出幀數據,幀格式如下:

- 1 串列埠數據幀結構:
- 2 <幀頭(0x5A)><幀型別(0xA5)><長度><CRC校驗><數據域>

域名稱	值	長度(位 元組)	說明
幀頭	0x5A	1	固定為0x5A
幀型 別	0xA5	1	固定為0xA5
長度	1- 512	2	幀中數據域的長度·低位元組在前。長度表示數據域的長度(不包含幀頭,幀型別,長度,CRC)
CRC 校驗	-	2	除CRC 本身外其餘所有欄位(幀頭,幀型別,長度,數據域)的16 位CRC 校驗和。LSB(低位元組在前)
數據 域	-	1-512	一幀攜帶的數據。由若干個 子數據包 組成。每個數據包包含數據包標籤和數據兩部分。標籤 決定了數據的型別及長度。

CRC實現函式:

```
1 /*
        currectCrc: previous crc value, set 0 if it's first section
 2
 3
        src: source stream data
       lengthInBytes: length
 4
 5 */
   static void crc16_update(uint16_t *currectCrc, const uint8_t *src, uint32_t lengthInBytes)
 6
 7
      uint32_t crc = *currectCrc;
8
       uint32_t j;
9
        for (j=0; j < lengthInBytes; ++j)</pre>
10
11
            uint32_t i;
12
13
           uint32_t byte = src[j];
            crc ^= byte << 8;
14
           for (i = 0; i < 8; ++i)
15
16
                uint32_t temp = crc << 1;</pre>
17
18
                if (crc & 0x8000)
19
                {
                   temp ^= 0x1021;
20
21
22
                crc = temp;
            }
23
24
        }
25
        *currectCrc = crc;
26 }
```

串列埠數據包

數據包總覽

數據包標籤	數據包長度(包含標籤1位元組)	名稱	備註
0x91	76	IMUSOL(IMU數據集合)	

產品支援數據包列表

0X91(IMUSOL)

共76位元組。整合了IMU的感測器原始輸出和姿態解算數據。

位元 組偏 移	型別	大小	單位	說明
0	uint8_t	1	-	數據包標籤:0x91
1	uint8_t	1	-	ID
2	-	2	-	保留
4	float	4	Pa	氣壓(部分型號支援)
8	uint32_t	4	ms	節點本地時間戳資訊,從系統開機開始累加,每毫秒增加1
12	float	12	16(16 = 1 重力加速度)	經過出廠校準后的加速度,順序為:XYZ
24	float	12	deg/s	經過出廠校準后的角速度,順序為: XYZ
36	float	12	υT	磁強度,順序為: XYZ
48	float	12	deg	節點歐拉角 順序為:橫滾角(Roll, -180°~180°)·俯仰角(Pitch· -90°~90°)·航向角(Yaw, -180°~180°)
60	float	16	-	節點四元數集合,順序為WXYZ

出廠預設數據包

出廠預設一幀中攜帶數據包數據定義如下:

產品	預設輸出數據包
CH100	91
CH110	91

數據幀結構示例

數據幀配置為 0x91 數據包

使用串列埠助手採樣一幀數據,共82位元組,前6位元組為幀頭,長度和CRC校驗值。剩餘76位元組為數據域。假設數據接收到C語言陣列 buf 中。如下所示:

5A A5 4C 00 6C 51 91 00 A0 3B 01 A8 02 97 BD BB 04 00 9C A0 65 3E A2 26 45 3F 5C E7 30 3F E2 D4 5A C2 E5 9D A0 C1 EB 23 EE C2 78 77 99 41 AB AA D1 C1 AB 2A 0A C2 8D E1 42 42 8F 1D A8 C1 1E 0C 36 C2 E6 E5 5A 3F C1 94 9E 3E B8 C0 9E BE BE DF 8D BE

• 第一步:判斷幀頭,得到數據域長度和幀CRC:

幀頭:5A A5

幀數據域長度:4℃ 00: (0x00<<8) + 0x4C = 76

幀CRC校驗值:6C 51:(0x51<<8) + 0x6C = 0x516C

第二步: 校驗CRC

```
1
        uint16_t payload_len;
2
       uint16_t crc;
3
       crc = 0;
4
5
        payload_len = buf[2] + (buf[3] << 8);
6
7
        /* calulate 5A A5 and LEN filed crc */
8
       crc16_update(&crc, buf, 4);
9
        /* calulate payload crc */
10
11
        crc16_update(&crc, buf + 6, payload_len);
```

得到CRC值為0x516C, 與幀中攜帶CRC值相同,幀CRC校驗通過。

• 第三步:接收數據

從 0x91 開始為數據包的數據域。在C語言中可以定義結構體來方便的讀取數據:

定義0x91數據包結構體如下:

```
1
   __packed typedef struct
2 {
                                    /* 數據標籤:0x91 */
3
      uint8_t
                 tag;
                 id;
                                    /* 模組ID */
4
       uint8_t
      uint8_t rev[2];
float prs;
5
                                    /* 氣壓 */
6
      uint32_t ts;
7
                                    /* 時間戳 */
      float acc[3];
float gyr[3];
float mag[3];
8
                                    /* 加速度 */
9
                                    /* 角速度 */
                                    /* 地磁 */
10
                 eul[3];
                                    /* 歐拉角: Roll, Pitch, Yaw */
       float
11
12
       float
                 quat[4];
                                    /* 四元數 */
13 |}id0x91_t;
```

__packed 為編譯器關鍵字(Keil下)·表示結構體按位元組緊對齊·結構體每一個元素——對應0x91數據包的結構定義。接收數據 時將接收到的陣列直接memcpy到結構體即可:(注意定義結構體時必須4位元組對齊),其中 buf 指向幀頭,buf[6]指向幀中數據域

```
/* 接收數據並使用0x91數據包結構定義來解釋數據 */
2 __align(4) id0x91_t dat; /* struct must be 4 byte aligned */
memcpy(&dat, &buf[6], sizeof(id0x91_t));
```

最後得到dat數據結果:

```
      1
      id
      : 0

      2
      timestamp
      : 310205

      3
      acc
      : 0.224
      0.770
      0.691

      4
      gyr
      : -54.708
      -20.077
      -119.070

      5
      mag
      : 19.183
      -26.208
      -34.542

      6
      eul(R/P/Y)
      : 48.720
      -21.014
      -45.512

      7
      quat
      : 0.855
      0.310
      -0.310
      -0.277
```

AT指令

當使用串列埠與模組通訊時,模組支援AT 指令集配置/檢視模組參數。AT 指令總以ASCII 碼 AT 開頭·後面跟控制字元·最后以回車換行\r\n 結束。

使用上位機輸入AT指令:

使用串口調適助手進行測試:

通用模組 AT指令如下

指令	功能	掉電儲存(Y) 掉電不儲存 (N)	立即生效(Y) 復位生效 (R)	備註
AT+ID	設定模組使用者ID	Υ	R	
AT+INFO	列印模組資訊	N	Υ	
AT+ODR	設定模組串列埠輸出幀頻率	Υ	R	
AT+BAUD	設定串列埠波特率	Υ	R	
AT+EOUT	數據輸出開關	N	Υ	
AT+RST	復位模組	N	Υ	
AT+TRG	單次輸出觸發	N	Υ	部分型號支 援
AT+SETPTL	設定輸出數據包	Υ	Υ	部分型號支援
AT+MODE	設定模組工作模式	Υ	R	部分型號支援
AT+GWID	設定無線閘道器ID	Υ	R	部分型號支援

AT+ID

設定模組使用者ID

例 AT+ID=1

AT+INFO

列印模組資訊,包括產品型號,版本,韌體發佈日期等。

AT+ODR

設定模組串列埠輸出速率。 掉電儲存,復位模組生效

例 設定串列埠輸出速率為100Hz: AT+0DR=100

注意:當0DR設定為比較高時(如200),預設的115200波特率可能不滿足輸出頻寬要求·此時需要將模組波特率設高(如921600)后·模組才能按設定的0DR輸出數據幀。輸出幀率可以為1,2,5,10,20,50,100,200,400Hz。

AT+BAUD

設定串列埠波特率,可選值:9600/115200/460800/921600`

例 AT+BAUD=115200

注意

- 使用此指令需要特別注意,輸入錯誤波特率後會導致無法和模組通訊
- 波特率參數設定好后掉電儲存,復位模組生效。上位機的波特率也要做相應修改。
- 升級韌體時,需要切換回115200 波特率。

AT+EOUT

串列埠輸出開關

例 打開串列埠輸出 AT+EOUT=1 關閉串列埠輸出 AT+EOUT=0

AT+RST

復位模組

例 AT+RST

AT+SETYAW

設定航向角,格式為AT+SETYAW=<MODE>,<VAL>

- MODE=0 絕對模式:將航向角直接設定為VAL的值。如 AT+SETYAW=0,90將航向角直接設定為90°
- MODE=1 相對模式:將原航向角遞增VAL值。如 AT+SETYAW=1,-10.5 將航向角遞增-10.5°,如原來為30°,發送命令后航向 角變為19.5°。

AT+MODE

設定模組工作模式

例

- 設定模組工作在6軸模式(無磁校準) AT+MODE=0
- 設定模組工作在9軸模式(地磁場感測器參與航向角校正) AT+MODE=1

AT+URFR

這條指令提供了旋轉感測器XYZ軸的介面,可用於任意角度的垂直安裝。

AT+URFR=C00, C01, C02, C10, C11, C12, C20, C21, C22

其中 C_{nn} 支援浮點數

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{U} = \begin{bmatrix} C00 & C01 & C02 \\ C10 & C11 & C12 \\ C20 & C21 & C22 \end{bmatrix} \cdot \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{B}$$

其中
$$egin{pmatrix} X \ Y \ Z \end{pmatrix}_U$$
 為旋轉后的 感測器座標系下 感測器數據 $\cdot egin{pmatrix} X \ Y \ Z \end{pmatrix}_B$ 為旋轉前 感測器座標系下 感測器數據

下面是幾種常用旋轉舉例:

- 新感測器座標系為 繞原座標系X軸 旋轉 90°(適用於垂直安裝:Y軸正方向朝下) · 輸入命令: AT+URFR=1,0,0,0,0,1,0,-1,0
- 新感測器座標系為 繞原座標系X軸 旋轉-90°(適用於垂直安裝:Y軸正方向朝上) · 輸入命令: AT+URFR=1,0,0,0,0,-1,0,1,0
- 新感測器座標系為 繞原座標系X軸 旋轉180° · 輸入命令: AT+URFR=1,0,0,0,-1,0,0,0,-1
- 新感測器座標系為 繞原座標系Y軸 旋轉 90°(適用於垂直安裝:X軸正方向朝上) · 輸入命令: AT+URFR=0,0,-1,0,1,0,1,0,0
- 新感測器座標系為 繞原座標系Y軸 旋轉-90°(適用於垂直安裝:X軸正方向朝下) · 輸入命令: AT+URFR=0,0,1,0,1,0,-1,0,0
- 新感測器座標系為 繞原座標系Y軸 旋轉180°・ 輸入命令: AT+URFR=-1,0,0,0,1,0,0,0,-1
- 新感測器座標系為 繞原座標系Z軸 旋轉90° · 輸入命令: AT+URFR=0,-1,0,1,0,0,0,0,1
- 新感測器座標系為 繞原座標系Z軸 旋轉-90° · 輸入命令: AT+URFR=0,1,0,-1,0,0,0,0,1
- 恢復出廠預設值: AT+URFR=1,0,0,0,1,0,0,0,1

CAN通訊協議

本產品CAN介面遵循以下標準:

- CAN介面符合CANopen協議,所有通訊均使用標準數據幀,只使用PT01-4 傳輸數據,所有傳輸均採用標準數據幀,不接收遠端幀和拓展數據幀
- 所有PTO採用非同步定時觸發模式。

CANopen 預設設定

CANopen預設配置	值
CAN 波特率	500KHz
CANopen節點ID	8
初始化狀態	Operational
心跳包	無
TPD0輸出速率	10Hz - 200Hz(每個TPDO)

CANopen TPD0

PT0通 道	PTO 幀ID	長度 (DLC)	PTO 傳 輸方式	非同步 輸出頻 率 (Hz)	發 送 數 據	說明
TPD01	0x180+ID	6	非同步 定時 (0xFE)	100	加 速 度	數據型別為(int16,低位元組在前·每個軸2位元組·共6位元組)·分別為X,Y,Z軸加速度·單位為mG(0.001重力加速度)
TPD02	0x280+ID	6	非同步 定時 (0xFE)	100	角速度	數據型別為(int16,低位元組在前·每個軸2位元組·共6位元組)·分別為X,Y,Z軸角速度·單位為0.1DPS(°/s)
TPD03	0x380+ID	6	非同步 定時 (0xFE)	100	歐 拉 角	數據型別為(int16,低位元組在前·每個軸2位元組·共6位元組)·順序分別為 橫滾角:Roll, 俯仰角:Pitch, 航向角:Yaw。單位為0.01°
TPD04	0x480+ID	8	非同步 定時 (0xFE)	100	四 元 數	數據型別為(int16,低位元組在前,每個元素2位元組 \cdot 共8位元組) \cdot 分別為 q_w q_x q_y q_z 。單位四元數擴大10000倍后結果。如四元數為1,0,0,0時,輸出10000,0,0,0。
TPD05	0x680+ID	4	非同步 定時 (OxFE)	20	氣壓	單位Pa

使用上位機連線CAN裝置

使用上位機CHCenter· 選擇專門配合上位機評估用的USB-CAN轉接器·會彈出統計/配置頁面·選擇CANopen節點ID號(預設8)點選設定(Set/Read Config),即可搜索並連線模組·同時在接收框(Rx Message)中會顯示收到的CAN訊息及幀率·如下圖所示:

CANOpen介面常用命令舉例

1. 使能數據輸出(開啟非同步觸發)

發送標準CANopen協議幀,使用NMT: Start Remote Node命令:

ID=0x000, DLC=2, DATA=0x01, 0x08

其中 0x01為Start Remote Node指令, 0x08為節點ID

2. 配置CAN波特率,輸出速率和輸出幀資訊

數據字典以下位置存放廠商參數配置數據, 可通過CANopen 發送快速SDO指令修改·掉電儲存·重新上電生效。

數據字典位置	子偏移	名稱	值型別	預設值	說明
0x2100	0	CAN_BAUD	INTEGER32	500000	CAN匯流排波特率
0x2101	0	NodeID	INTEGER32	8	節點ID

以上配置操作均使用快速SDO來寫數據字典, 其中TPDO通道與其對應的參數索引為:

PT0通道	PTO 幀ID	TPDO參數索引地址(CANopen協議預設定義)
TPD01	0x180+ID	0x1800
TPD02	0x280+ID	0x1801
TPD03	0x380+ID	0x1802
TPD04	0x480+ID	0x1803
TPD05	0x680+ID	0x1804

修改CAN波特率

1. 修改波特率:

將CAN波特率修改爲125K, 則發送:

ID=0x608 ,DLC=8,DATA=23,00,21,00,48,E8,01,00(ID=0x608, 長度為8的標準數據幀)

- ID=0x608為快速寫SD0地址,其中8為預設節點ID·修改節點ID后要做相應修改,如CANopenID改為9后,ID=0x609.
- 0x23為SD0寫四個位元組指令
- 0x00, 0x21為寫0x2100索引
- 0x00 子索引位置,預設0
- (4-7)0x00, 0x01, 0xE8, 0x48 = (0x00 << 24) + (0x01 << 16) + (0xE8 << 8) + 0x48 = 125000

將CAN波特率修改爲250K, 發送:

23,00,21,00,90,D0,03,00

將CAN波特率修改爲1M,發送:

23 00 21 00 40 42 0F 00

2. 重新上電生效

修改節點ID

1. 如將裝置CANopen節點ID改為9, 則發送:

ID=0x608 ,DLC=8,DATA=23,01,21,00,09,00,00,00

- 0x23為SD0寫四個位元組指令
- 0x01, 0x21為寫0x2101索引
- 0x09 0x00, 0x00, 0x00 = (0x00 << 24) + (0x00 << 16) + (0x00 << 8) + 0x09 = 9
- 2. 重新上電牛效
- 3. 注意:ID修改範圍:1-64· 生效后發送啟動節點命令(比如節點啟動命令數據變為01 09)和SDO指令(發送CAN幀ID變為0x609) 時注意為新的地址

修改/開啟/關閉 數據輸出速率

1. 發送標準CANopen協議幀,使用標準快速SDO指令:(此項配置立即生效)

修改TPD03(歐拉角)輸出速率為20Hz(每50ms輸出一次):

ID=0x608 ,DLC=8,DATA=2B,02,18,05,32,00,00,00

其中

- 0x2B為SD0寫兩個位元組指令
- 0x02, 0x18為寫0x1802索引,
- 0x05為子索引
- 0x00, 0x32= (0x00<<8) + 0x32 = 50(單位為ms)・後面不足補0.

將TPD01(加速度)輸出速率修改爲10Hz(每100ms輸出一次):

2B 00 18 05 64 00 00 00

將TPD02(角速度)輸出速率修改爲5Hz(每200ms輸出一次):

2B 01 18 05 C8 00 00 00

也可以通過修改輸出速率來關閉TPDO輸出(每0ms輸出一次代表關閉):

將TPD02(角速度)定時輸出為0

2B,01,18,05,00,00,00,00

將TPD01(加速度)輸出速率為0

2B 00 18 05 00 00 00 00

將TPD03(歐拉角)輸出速率為0

2B 02 18 05 00 00 00 00

將TPD04(四元數)輸出速率為0

2B 03 18 05 00 00 00 00

2. 重新上電生效

開啟/關閉站點

可以使用 NMT命令StartRemoteNode和 StopRemoteNode來開啟關閉節點:

開啟節點: ID:0,DLC:2,DATA:01 08 其中01為開啟節點命令 · 08為節點ID(出廠預設為8)
 關閉節點: ID:0,DLC:2,DATA:02 08 其中02為關閉節點命令 · 08為節點ID(出廠預設為8)

配置TPD0為同步模式

先按示例4 中關閉所有TPDO(設定TPDO輸出速率為0), 然後發送CANopen同步幀即可:

CANopen 同步幀: ID:80 DLC:0, DATA:空

附錄A - 韌體升級與恢復出廠設定

本產品支援升級韌體,正常使用下不需要自行升級韌體。 韌體升級步驟:

- 連線模組,打開上位機,將模組和上位機波特率都設定為115200,打開韌體更新視窗
- 點選連線按鈕,如出現模組連線資訊。則說明升級系統準備就緒,點選"開啟"選擇附檔名為.hex 的韌體,然後點"寫入"。
- 完成後會提示完成,此時關閉串列埠,重新給模組上電,模組升級完成。

