Brain Tumor Grade Classification in MR images using Deep Learning

Eleftheria Chatzitheodoridou

Supervisor: Anders Eklund

External Supervisors: Iulian Emil Tampu

Neda Haj-Hosseini

Overview

- Motivation
- Background
- Aim
- Data Overview
- Research Questions
- Pre-processing pipeline
- Results
- Conclusion

Motivation

Brain Tumor

- High morbidity
- Difficult to diagnose

Diagnostic tools

- Biopsy
- MR images (radiology)

Deep Learning

- Automated feature extraction
- Fast inference

Biopsy

- Invasive
- Riskful
- Expensive

Computer-Aided Diagnosis (CAD)

 Deep Learning implemented on MR imaging

Background

Gliomas: primary brain tumor, classified into 4 grades (WHO 2021)

- G1 → Benign tumor
- G2 • C3 Low-Grade Glioma
- G4 } High-Grade Glioma

Malignancy

Magnetic Resonance Imaging: uses non-ionizing radiation, offers high-spatial resolution images of different tissue contrast with varying repetition times by means of powerful magnets

Background

DL algorithms:

- inspired by structure + function of human brain
- provide state-of-the-art results in image classification
- can perform automatic feature extraction

Convolutional Neural Networks (CNNs):

- subclass of DL, used with great success in analysis of images
- require minimal preprocessing + little prior knowledge
- can achieve great levels of abstraction by stacking many layers

Aim

To classify the grade of brain tumor in MR images of different modalities from adult patients using deep learning

Data Overview

Source: The Cancer Genome Atlas (TCGA) → G2, G3 Brain Tumor Segmentation (BraTS 2020) → G4

- 142 subjects (47 \times G4, 45 \times G2, 50 \times G3)
- All images are: anonymized, registered to T1-weighted image, skull-stripped, bias-field corrected
- 3D volumes of 240 \times 240 \times 155 voxels with 1mm^3 isotropic resolution
- 155 slices for each subject
- Each subject has images of 4 MRI modalities (T1-weighted, T1-weighted post-contrast, T2-weighted, Fluid Attenuated Inversion Recovery (FLAIR))

TCGA dataset: https://portal.gdc.cancer.gov

BraTS 2020 dataset: https://arxiv.org/abs/1811.02629

Data Example – Grade 4 T1-weighted

Axial view (x-y plane)

Coronal view (x-z plane)

Sagittal view (y-z plane)

Data Example – Grade 4 (axial view)

Data Example – Grade 2 (axial view)

Data Example – Grade 4 (axial view)

T2-weighted

Annotated ROI

Research Questions

- 1. Which of the popular CNN models performs best for brain tumor grade classification on the available dataset?
- 2. Which combination of MRI modalities yields the best results for classification?
- 3. Is it possible to construct representations of model explainability?

Challenges:

- Little data available → need for data augmentation
- Images come from 19 different institutions ⇒ need for intensity normalization
- Classification of grades in multiple classes as relatively new concept ⇒ not many experiments conducted, little supporting literature

Pre-processing pipeline — Data collection

Tumor segmentation with nnU-Net on Grade 3 case - result (1)

Tumor segmentation with nnU-Net on Grade 3 case — result (2)

Pre-processing pipeline

Extraction of tumor slices from 3D image for a Grade 4 case

Extraction of tumor slices from 3D image for a Grade 4 case

Intensity normalization on Grade 4 case, T2-w, axial view

Original image

Normalized 2D slice

Pre-processed 2D image dataset

Grade	Frontal/coronal slices	Sagittal slices	Transversal/Axial slices
G2	8,131	5,415	6,591
G3	9,959	7,910	7,978
G4	15,613	11,470	12,485
Total	33,703	24,795	27,054

Contains tumor for all 4 modalities (before partition)

Grade	Train	Validation	Test
G2	1,364	393	103
G3	1,661	293	173
G4	2,034	609	166
Total	5,059	1,295	442

Contains T2, T1ce, FLAIR images on the sagittal plane

Pre-processing pipeline — CNN Implementation

Pre-processing pipeline — Implementation of VGG-19

- Data augmentation: Increased brightness (usually within [0.5, 1.25] range)
- Dropout for regularization in Dense nodes ⇒ reduced overfitting
- Early stopping after 15 epochs, lr = 1e-05 with ReduceLROnPlateau callback

Pre-processing pipeline — Implementation of ResNet50

Data augmentation: Increased brightness (usually within [0.5, 1.25] range)
Horizontal+vertical flip

45∘ rotation with fill_mode = 'constant'

- Dropout for regularization in Dense nodes ⇒ reduced overfitting
- Early stopping after 15 epochs, lr = 1e-05 with ReduceLROnPlateau callback

Pre-processing pipeline **Evaluation methods** Step 7 — Training loss Validation loss 0.70 -0.65Accur 0.55 -0.50 -0.45 - Training accuracy Validation accuracy 0.40 **Best Classifier** Epochs Epochs 13 28 - 80 - 60 35 **Grad-CAM** G2 (AUC = 0.64) - 30 25G3 (AUC = 0.79)

Grade 3

Predicted values

Grade 2

- 20

Grade 4

0.2

0.4

False Positive Rate

G4 (AUC = 0.84)

0.8

Summary (1)

Model	MR Modality	Grade	AUC	Test accuracy
VGG-19	T1)	G2	0.85	77.86%
		G3	0.84	
		G4	0.91	
	T1ce	G2	0.60	75.00%
		G3	0.90	
		G4	0.90	
ResNet50	T1	G2	0.53	71.35%
		G3	0.80	
		G4	0.74	
	T1ce	G2	0.63	77.34%
		G3	0.93	
		G4	0.90	

Combinations of 2 modalities

Summary (2)

Model	MR Modality	Grade	AUC	Test accuracy
VGG-19	T1, FLAIR	G2	0.77	71.09%
		G3	0.83	
		G4	0.91	
	T1ce, FLAIR	G2	0.64	74.48%
		G3	0.79	
		G4	0.84	
ResNet50	T1, FLAIR	G2	0.57	67.71%
		G3	0.89	
		G4	0.92	
	T1ce, FLAIR	G2	0.59	63.54%
		G3	0.87	
		G4	0.71	

Summary (3)

Model	MR Modality	Grade	AUC	Test accuracy
VGG-19	T1, T1ce, FLAIR	G2	0.72	73.70%
		G3	0.83	
		G4	0.86	
	T2, T1ce, FLAIR	G2	0.60	75.78%
		G3	0.90	
		G4	0.90	
ResNet50	T1, T1ce, FLAIR	G2	0.65	72.40%
		G3	0.87	
		G4	0.72	
	T2, T1ce, FLAIR	G2	0.66	61.46%
		G3	0.68	
		G4	0.89	

Results – Grad-CAM on T2 images (coarse localization maps)

GT 2 - Pred ['0.18', '0.13', '0.70']

GT 2 - Pred ['0.00', '0.00', '1.00']

Results – Grad-CAM on T2, T1ce, FLAIR images (coarse localization maps)

GT 2 - Pred ['0.07', '0.05', '0.88']

GT 2 - Pred ['0.05', '0.44', '0.51']

_{0.50} ResNet50

Conclusion

1. Which of the popular CNN models performs best for brain tumor grade classification on the available dataset?

VGG-19 outperforms ResNet50 in most cases.

2. Which combination of MRI modalities yields the most optimal results for classification?

T1ce, FLAIR and T2, T1ce, FLAIR.

3. Is it possible to construct representations of model explainability?

Yes, in terms of visualizing the regions of the image used for the model's decision.

Thank you!

