Compost LP Formulation

i: Index of county (1, ..., n)i: Index of facilities (1,...,m)

$$CO_{2}e = \sum_{i=1}^{n} TC_{i}S_{i} + \sum_{i=1}^{n} (1 - \sum_{j=1}^{m} s_{ij})W_{i} \cdot f + \sum_{j=1}^{m} (1 - \sum_{i=1}^{n} d_{ij})TC_{i} \cdot g + \sum_{i=1}^{n} \sum_{j=1}^{m} h \cdot D_{ij}s_{ij}W_{i}$$

$$Cost = \sum_{i=1}^{n} \sum_{j=1}^{m} d \cdot D_{ij} s_{ij} W_i + \sum_{i=1}^{n} \sum_{j=1}^{m} e \cdot L_{ji} d_{ji} TC_i$$

subject to:

 $I_j \leq F_j$ $TC_i \leq C_i$ $\sum_{j=1}^{m} s_{ij} \le 1$ $\sum_{i=1}^{n} d_{ij} \le 1$ $0 \le s_{ij} \le 1$ $0 \le d_{ij} \le 1$

where

 D_{ij} : distance to haul to facility $j(f_j)$ from county $i(c_i)$

 L_{ji} : distance from f_j to c_i working land

 W_i : Waste available in county i

 F_j : Intake capacity of facility j

 C_i : Amount of output county i can take in (based on amount of land)

 s_{ij} : proportion of W_i to send to f_i

 d_{ji} : proportion of facility f_j output to send to c_i working land

and

 S_i : sequestration potential per ton (?) compost applied in county c_i

c: conversion factor of waste into compost (%)

f: emission factor for waste left in county $(\frac{C\acute{O}2_e}{ton})$

g: emission factor for compost stranded at facility $(\frac{CO2_e}{ton})$

e: cost to haul away from facility to land $(\frac{\$}{ton \cdot mi})$

d: cost to haul to facility from county $(\frac{\$^{ton}}{ton \cdot mi})$ h: transportation emission factor $(\frac{CO2_e}{ton \cdot mi})$

Intake for each facility is sum of the proportion taken in from c_i for i = 1, ..., n $I_j = \sum_{i=1}^n s_{ij} W_i$

Output of each facility is equal to intake converted into compost

$$O_j = c \cdot I_j$$

Total compost applied in each county is the sum of the proportion of output from f_j for j = 1, ..., m $TC_i = \sum_{j=1}^m d_{ij} O_j$