

Data Acquisition and Preprocessing

- Data Acquisition:
 - ♦ Class data 1844 images
 - ♦ MNIST data added 13,013 more images
- Preprocessing:
 - ♦ Integer label encoding
 - Gray scaling provided data
 - ♦ Reduces dimensionality by factor of 3
 - Standardizing grayscale data
 - ♦ This data has mean 0, unit variance
 - ♦ Training and Test Split
- Other preprocessing methods performed poorly in validation
 - ♦ PCA, HOG, and LDA

Model Selection

- ♦ In Lab 3 we trained and validated these classifiers:
 - LDA, KNN, Decision Trees, Random Forests, SVM, and MLPs
- ♦ The highest accuracy classifier was an MLP with 74% test accuracy
- Then we investigated deep learning options for the classifier and decided to go with a Convolutional Neural Net for our model

	Algo	Accuracies	
0	LDA	0.308943	
1	KNN	0.634146	
2	Decision Tree	0.346883	
3	Random Forest	0.430894	
4	SVM	0.092141	
5	MLP	0.739837	

Our CNN

- ♦ Following online tutorials and other resources, we created a CNN class with the following parameters kept constant:
 - Output activation function
 - ♦ Softmax activation function since this is a multiclass problem
 - ♦ Softmax activation outputs a distribution of probabilities the index with the highest probability is the predicted label
 - Objective function
 - ♦ Literature also revealed that minimizing the Cross-Entropy loss function works well along with the Softmax function
 - ♦ Learning Rate
 - ♦ Initialized to 0.001 based on PyTorch documentation
 - Gradient Descent Optimizer
 - ♦ Used Adam since it is the most common method used
 - ♦ This results in an adaptive learning rate

$$\operatorname{Softmax}(x_i) = rac{\exp(x_i)}{\sum_j \exp(x_j)}$$

$$\mathrm{loss}(x, class) = -\log\left(rac{\mathrm{exp}(x[class])}{\sum_{j}\mathrm{exp}(x[j])}
ight) = -x[class] + \log\left(\sum_{j}\mathrm{exp}(x[j])
ight)$$

https://pytorch.org/docs/stable/nn.html

Tuning CNN Parameters

- ♦ We did testing to find optimal values for the following parameters:
 - Number of convolutional layers
 - ♦ Kernel size
 - ♦ Number of inputs to first linear layer
 - ♦ Training set
 - ♦ Batch size
 - ♦ Number of epochs

♦ Testing methodology:

- ♦ Train CNNs with different values for the parameter in question, other parameters kept constant
- ♦ Score CNNs on validation partition of the grayscale provided dataset representative of the real test set
- ♦ Keep parameter values which maximize validation accuracy

Tuning The CNN cont.

♦ Kernel Size

- ♦ Tested kernel sizes 3 and 5, found that 3x3 was better
- Convolutional Layers
 - ♦ Tested 3 and 4 convolutional layers 3 layers performed much better
- Number of Inputs to First Linear Layer
 - ♦ Reducing number of outputs in last convolutional layer lead to much worse performance
- ♦ Training Data
 - ♦ 3 datasets grayscale provided set, MNIST combined with grayscale set, grayscale & standardized provided set
 - ♦ MNIST data didn't help makes sense since the MNIST set is not representative of the real test data
 - ♦ Standardized dataset performed very poorly
 - ♦ The model performed best with data with just the grayscale provided dataset

Tuning The CNN cont.

- Batch Size and Epochs
 - ♦ Tested 19 different combinations with small to large values for both parameters found that batch size 128 and 1000 epochs gave us the best model
 - ♦ More epochs might lead to increased accuracy, but execution time was already very long this made it difficult to do more tests
- ♦ Examining training and validation accuracy over 1000 epochs:

Results

- ♦ The best model we obtained had an overall accuracy of 89.7%
- ♦ The confusion matrix and the accuracy for each letter for this model are shown below:

Letter	Accuracy	Letter	Accuracy
A	89.1%	F	92.7%
В	90.2%	G	81.8%
C	92.9%	H	92.1%
D	90.0%	I	88.2%
E	90.9%		

Possible Improvements

- There were a few parameters we didn't vary that could potentially be optimized through further testing:
 - ♦ Loss function
 - ♦ There are others besides cross-entropy that work with multiclass problems
 - ♦ Optimizer
 - ♦ AdaGrad and RMSProp are alternative adaptive learning rate optimizers
- ♦ Could also have researched alternative preprocessing methods for feature extraction generation besides the ones we tried in Lab 2

Conclusions

- ♦ We made a CNN with 3 convolutional layers using 3x3 kernels, 2D pooling layers, and 2 linear layers
- We determined most parameters for our model through incremental experimentation while the constant parameter choices were based on the literature and resources
- ♦ Training this CNN on the grayscale provided data with a batch size of 128 for 1000 epochs, we used the Adam optimizer to minimize cross-entropy loss
- ♦ Testing this CNN on a realistic test set, we got an overall accuracy of 89.7%, with 6 out of the 9 letters being classified with at least 90% accuracy