- 1. [12 points] Let R and S be relations on the set A, where $A = \{1,2,3,4,5\}$, $R = \{(1,2),(2,2),(2,4),(4,3),(3,3),(3,5)\}$, $S = \{(2,2),(3,5),(5,3)\}$.
 - a) Find the symmetric closure of $R \circ S$

计算问题, 矩阵的布尔积运算。

- b) Find the following relations, and determine whether it is reflexive, symmetric, asymmetric, antisymmetric, and/or transitive?
- (1)R-S 性质判定, 记不清楚,
- .
- (2) S-R
- .
- (3) $(R \cap S)^{-1}$.

Inverse, 作业中定义, 就是把序偶倒过来。{(2,2),(5,3)}。

 $(4) R^2$

Page 1 of 8.

2. [8 points]Use Warshall's algorithm to find the transitive closure of R, where the zero-one matrix of R is

I

3. [3 points] Find the smallest equivalence relation on the set {1, 2, 3, 4, 5,6} containing the relation {(1, 2), (2, 3),(4,5)}.

```
3. [3 points] Find the smallest equivalence relation on the set {1, 2, 3, 4, 5,6} containing the relation {(1, 2), (2, 3), (4,5)}.

① Y(尺) = 「(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,2), (2,3), (4,5), (5,4)]
② S(r(尺)) = 「(1,1), (2,2), (3,3), (4,4), (5,5), (6,6), (1,2), (3,2), (4,5), (4,5), (5,6), (1,2), (3,2), (4,5), (5,6), (1,2), (3,2), (4,5), (5,6), (1,2), (3,2), (4,5), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (1,2), (5,6), (5,6), (1,2), (5,6), (5,6), (1,2), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6), (5,6),
```

- 4. [7 points] Let R be the relation on the set of ordered pairs of positive integers such that $((a, b), (c, d)) \in R$ if and only if a + d = b + c.
 - a) Show that R is an equivalence relation.
 - b) What are the equivalence classes of R?

a) ① 国页:
$$\forall (a,b), (a,b)$$
 a, $b \in \mathcal{X}^+$ 6. [3 [3] [25] 网有 $a+b=b+a$, $P((a,b), (a,b)) \in \mathbb{R}$.

②对称: $\forall ((a,b), (c,d)) \in \mathbb{R}$.

((c,d), (a,b)) $\in \mathbb{R}$.

((c,d), (a,b)) $\in \mathbb{R}$.

((a,b), (c,d)) $\in \mathbb{R}$, ((c,d), (e,f)) $\in \mathbb{R}$.

((a,b), (e,f)) $\in \mathbb{R}$.

- 5. [7 points] Set $A = \{1, 2, 3, 4, 6, 9, 12, 24\}$. R is the divisibility on the set A.
- a) Draw the Hasse diagram for the poset $\langle A,R \rangle$.
- b) Subset $B=\{3,4,6\}$. Find the minimal elements, least element and least upper bound of B.

e!

- 6. [3 points] Posets $\langle L,R \rangle$ consisting of the following sets L, Where R is defined as: let $n_1, n_2 \in L$, $n_1 R n_2$ if and only if n_1 is a factor of n_2 . Which posets are lattices?
 - a) $L=\{1,2,3,4,6,12\}$
 - b) $L=\{1,2,3,4,6,8,12,14\}$
 - c) $L=\{1,2,3,4,5,6,7,8,9,10,11,12\}$
- 7. [3 points] Complete the operational table so that * is a commutative binary operation.

T

- 8. [7 points] Let $(S_1, *_1)$, $(S_2, *_2)$, and $(S_3, *_3)$ be semigroups and $f: S_1 \to S_2$ and $g: S_2 \to S_3$ be homomorphisms. Prove that $g^{\circ}f$ is a homomorphism from S_1 to S_3 .
- 9. [10 points] S = Z with ordinary addition and R defined by a R b if and only if $a \equiv b \pmod{3}$.
 - a) Prove the relation R on the semigroup (S,\pm) is a congruence relation.
 - b) Write the operation table of the quotient semigroup S/R.
- 10. [10 points] Let $R^* = R_{-}\{0\}$,
 - a) Show the (R^*, \times) be a group. \times is ordinary multiplication.
 - b) Determine whether the function $f: R^* \to R^*$ defined by $f(x) = x^2$, for $x \in R^*$, is a homomorphism, and give your reason.

11. [10 points] Write the multiplication table for the group $Z_2 \times Z_3$. And find all the normal subgroups.

Arithmetic Modulo m

Definitions: Let \mathbf{Z}_m be the set of nonnegative integers less than $m: \{0, 1, ..., m-1\}$

- less than $m: (0,1,\dots,m-1)$ The operation $1,\dots,m-1$ be defined as $a+_mb=(a+b)$ mod m. This is addition modulo m. The operation m is defined as $a\cdot_mb=(a*b)$ mod m. This is multiplication modulo m. Using these operations is said to be doing arithmetic modulo m.

modulo m. Example: Find $7 +_{11} 9$ and $7 \cdot_{11} 9$. Solution: Using the definitions above: $-7 +_{11} 9 = (7 + 9) \mod 11 = 16 \mod 11 = 8$ $-7 \cdot_{11} 9 = (7 \cdot 9) \mod 11 = 63 \mod 11 = 8$

p243,上学期给了定义, 本学期只是使用。

Table 9.10 Multiplication Table of $Z_2 \times Z_2$

	$(\overline{0},\overline{0})$	$(\overline{1}, \overline{0})$	$(\overline{0},\overline{1})$	$(\overline{1},\overline{1})$
$(\overline{0}, \overline{0})$	$(\overline{0},\overline{0})$	$(\overline{1}, \overline{0})$	$(\overline{0}, \overline{1})$	$(\overline{1},\overline{1})$
$(\overline{1},\overline{0})$	$(\overline{1},\overline{0})$	$(\overline{0}, \overline{0})$	$(\overline{1},\overline{1})$	$(\overline{0}, \overline{1})$
(0, 1)	$(\overline{0},\overline{1})$	$(\overline{1},\overline{1})$	$(\overline{0},\overline{0})$	$(\overline{1}, \overline{0})$
(1, 1)	$(\overline{1},\overline{1})$	$(\overline{0}, \overline{1})$	$(\overline{1},\overline{0})$	(0, 0)

Arithmetic Modulo m

Definitions: Let \mathbf{Z}_m be the set of nonnegative integers less than m: $\{0,1,...,m-1\}$

- The operation +_m is defined as a +_m b = (a + b) mod m.
 This is addition modulo m.
- The operation · m is defined as a · m b = (a * b) mod m. This is multiplication modulo m.
- · Using these operations is said to be doing arithmetic modulo m.

Example: Find $7 +_{11} 9$ and $7 \cdot_{11} 9$.

Solution: Using the definitions above:

- $-7 +_{11} 9 = (7 + 9) \mod 11 = 16 \mod 11 = 5$
- $-7 \cdot _{11}^{11} 9 = (7 \cdot 9) \mod 11 = 63 \mod 11 = 8$

 $Z_2 \times Z_3 = \{0, 1\} \times \{0, 1, 2\}$

_2	, (
ø.	(0, 0)	(0, 1)	(0, 2)	(1, 0).	(1, 1).	(1, 2)
(0, 0)	(0, 0)	(0, 1)	(0, 2)	(1, 0)	(1, 1) .	(1, 2) .
(0, 1).	(0, 1)	(0, 2)	(0, 0)	(1, 1)	(1, 2).	(1, 0)
(0, 2).	(0, 2)	(0, 0)	(0, 1)	(1, 2)	(1, 0).	(1, 1) .
(1, 0).	(1, 0).	(1, 1)	(1, 2)	(0, 0)	(0, 1)	(0, 2)
(1, 1)	(1, 1)	(1, 2)	(1, 0)	(0, 1)	(0, 2)	(0, 0)
(1, 2)	(1, 2).	(1, 0)	(1, 1)	(0, 2)	(0, 0)	(0, 1) .

Page 6 of 8.

- 1 最小的{(0,0)}
- 2 最大的{

(0, 0) . (0, 1) .	(0, 2)	(1, 0)	(1, 1)	(1, 2)
-------------------	--------	--------	--------	--------

} .

3 三阶群

4 二阶群。

$$\{ (0, 0), (1, 0) \}.$$

- 12. [8 points] Consider the (2,5) encoding function $e: B^2 \to B^5$ defined by $e(00) = 00000 \quad e(01) = 01100 \quad e(10) = 10101 \quad e(11) = 11001$
- a) Show that the (2,5) encoding function e is a group code.
- b) Find the minimum distance of the (2, 5) encoding function e_1
- c) Determine the number of errors that <u>e</u> will **detect** and its associated decoding function will **correct**.