## LaPIS Diagnostic Test Workbook - Mathematics

Name : Abhinav S

Class: 7

Section : B

School : AKV Public School

Login ID : AKV131

## Abhinav S's Performance Report



Score: 26/40 Percentage: 65.0%

# Abhinav S's Study Planner

| Date | Topics Planned  | Q. Numbers   | Teacher Remark    | Teacher Sign  | Parent Sign |
|------|-----------------|--------------|-------------------|---------------|-------------|
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 | Teacher's Fe | edback to Student |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      |                 |              |                   |               |             |
|      | Class Teacher S | Signature    | Princi            | pal Signature |             |

## Basic arithmetic

| Topics to be Improved |             |  |  |
|-----------------------|-------------|--|--|
| LCM                   | Finding LCM |  |  |

Hi, here in this video you will learn **LCM** 



Question: 1

Fill the hexagon with factors and multiples of 10.



......

Answer:

A \_\_\_\_\_ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

| 10 x 1 = | x = 10 |
|----------|--------|
| 2 x = 10 | x = 10 |

Let's find the multiple of 10

| 10 x 1 = | 10 x 4 = |
|----------|----------|
| 10 x 2 = | 10 x 5 = |
| 10 x 3 = | 10 x 6 = |

Therefore, factors of 10 are \_\_\_\_\_ and multiples of 10 are \_\_\_\_.

Question: 2

Find the LCM of 50, 100.

#### Answer:

Complete the division using least common multiple.

| 50 | , 100 |  |
|----|-------|--|
|    |       |  |
|    |       |  |
|    |       |  |
|    |       |  |

The LCM of 50, 100 is 2 x 2 x \_\_\_\_ x \_\_\_.

Question: 3

Every number is the multiple of \_\_\_\_\_

Answer:

Let's find the first ten multiple of random numbers,

Multiple of  $1 = \underline{\hspace{1cm}}$ 

Multiple of  $2 = \underline{\hspace{1cm}}$ 

Multiple of 13 =

Multiple of 20 = \_\_\_\_\_

Here, \_\_\_\_\_ is the common factor of every number.

## Data handling

| Topics to be Improved            |                       |  |  |  |
|----------------------------------|-----------------------|--|--|--|
| Range Finding the range          |                       |  |  |  |
| Chance of probability            | Basis of probability  |  |  |  |
| Arithmetic mean, mode and median | Mean, Median and Mode |  |  |  |

| Hi.  | here  | in  | this  | video | vou | will   | learn  | Range |
|------|-------|-----|-------|-------|-----|--------|--------|-------|
| ттт, | 11C1C | TII | 01110 | viaco | you | ** 111 | 1Carri | range |



| Question:  | 4                     |
|------------|-----------------------|
| q account. | $\boldsymbol{\gamma}$ |

### Answer:

The difference between highest value and lowest value is \_\_\_\_\_.

Example: Find the range of 10, 5, 30, 23, 54, 39 and 16

 $Highest value = \underline{\hspace{1cm}}$ ,  $Lowest value = \underline{\hspace{1cm}}$ .

 $Range = \underline{\hspace{1cm}} - \underline{\hspace{1cm}} = \underline{\hspace{1cm}}.$ 

### Question: 5

Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9

$$-20+51$$
  $\frac{-38-51}{2}$   $51+38$ 

$$\frac{-38-5}{2}$$

$$51 + 38$$

.....

.....

......

$$\frac{51+20}{2}$$

#### Answer:

 $Range = \_$ 

Arranging the data in ascending order, \_\_\_\_\_

In the given data,

 $Highest \ value = \underline{\hspace{1cm}}$ ,  $Lowest \ value = \underline{\hspace{1cm}}$ ,  $Range = \underline{\hspace{1cm}}$ 

## Question: 6

Find the range of first 10 multiple of 5.

#### Answer:

First 10 multiple of 5 =

Therefore.

 $Highest \ value = \underline{\hspace{1cm}}$ ,  $Lowest \ value = \underline{\hspace{1cm}}$ ,  $Range = \underline{\hspace{1cm}}$ 

Hi, here in this video you will learn Basics of probability



| <u>Question: 7</u>                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identify the sure events and impossible events                                                                                                                                                                           |
| (i) The sun rises in the west.                                                                                                                                                                                           |
| (ii) Water is colourless.                                                                                                                                                                                                |
| (iii) Clock rotates in clock wise direction.                                                                                                                                                                             |
| (iv) Ball is square in shape.                                                                                                                                                                                            |
| Answer:                                                                                                                                                                                                                  |
| Events that always occur are called (sure/ impossible) events.                                                                                                                                                           |
| Events that cannot occur are called (sure/ impossible) events.                                                                                                                                                           |
| Here, The sun rises in the west is event. Water is colourless is                                                                                                                                                         |
| event.  Clock rotates in clock wise direction is event. Ball is square in shape is event.                                                                                                                                |
| <u>Question: 8</u>                                                                                                                                                                                                       |
| Probability of sure events is (greater / smaller) than probability of impossible events.                                                                                                                                 |
| Answer:                                                                                                                                                                                                                  |
| Probability of sure event = $\_\_\_(0/1/\text{ any number})$ .<br>Probability of impossible event = $\_\_\_(0/1/\text{ any number})$ .<br>Therefore, Probability of sure event $\_\_\_$ Probability of impossible event. |
| Question: 9                                                                                                                                                                                                              |
| Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.                                                                          |
| Answer:                                                                                                                                                                                                                  |
| Things Raju have                                                                                                                                                                                                         |
| Hi, here in this video you will learn Mean, Median, Mode                                                                                                                                                                 |
| <u>Question: 10</u>                                                                                                                                                                                                      |
| Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.                                                                                                                   |
| Answer:                                                                                                                                                                                                                  |
| Mode is the number that occurs (frequently / rarely) in a given list of observations.  Arranging the data in ascending order: occurs most number of times. Then, mode of the given data is                               |

| Question: | 11 |
|-----------|----|
| Q account |    |

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1









#### Answer:

| Median is the(first/central/l              | ast) value of a data when the data | is arranged in |
|--------------------------------------------|------------------------------------|----------------|
| ascending or descending order.             |                                    |                |
| Arrange the given data in ascending order: |                                    | -              |
| Central value of the given data is         | and it is the                      | of a data.     |

### Question: 12

| Marks scored       | 100 | 90 | 80 | 70 |
|--------------------|-----|----|----|----|
| Number of students | 4   | 5  | 2  | 1  |

 $Mean = \underline{\hspace{1cm}}$ ,  $Median = \underline{\hspace{1cm}}$  and  $Mode = \underline{\hspace{1cm}}$ .

#### Answer:

 $\mathrm{Mean} = \frac{\phantom{Mean} \phantom{Mean} \phantom{Mean}$ 

Here s sum of all observation = \_\_\_\_\_\_, number of observation = \_\_\_\_\_\_

Therefore, mean = \_\_\_\_\_

Arrange the data in ascending order:

Here,  $median = \underline{\hspace{1cm}}$ ,  $mode = \underline{\hspace{1cm}}$ .

## Geometry

| Topics to be Improved                        |                                |  |  |  |  |  |  |  |
|----------------------------------------------|--------------------------------|--|--|--|--|--|--|--|
| Sum of lengths of two sides of a triangle    | Sum of two sides of a triangle |  |  |  |  |  |  |  |
| Right angle triangle and pythagoras property | Basics of Pythagoras property  |  |  |  |  |  |  |  |
| Related angles                               | Complementary angles           |  |  |  |  |  |  |  |

Hi, here in this video you will learn Sum of the length of sides of the triangle



Question: 13

Find the greatest distance to reach C from A in the given diagram.



| The sides of the given triangle are                                                   |
|---------------------------------------------------------------------------------------|
| The possible way to reach point C from point A are and AB then to                     |
|                                                                                       |
| $Side AC = \underline{\hspace{1cm}}$                                                  |
| Side AB + BC = + =                                                                    |
| Therefore, the greatest distance to reach C from A in the given diagram is            |
| Question: 14                                                                          |
| (Sum of / Difference between) the length of any two sides of a triangle is smaller    |
| than the length of the third side.                                                    |
| Answer:                                                                               |
| There are sides in a triangle.                                                        |
| The sum of the two sides of a triangle is than the other side of the triangle.        |
| The difference of the two sides of a triangle is than the other side of the triangle. |
| Example: In triangle XYZ,                                                             |



The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

### Answer:

- 1. The sum of the two sides of a triangle is \_\_\_\_\_\_\_ than the third side of the triangle. Therefore, the third side should be \_\_\_\_\_\_ (less/ greater) than sum of other two sides. Here, sum of the two sides = \_\_\_\_\_ + \_\_\_\_ = \_\_\_\_ Therefore, the length of the third side is less than \_\_\_\_\_\_
- 2. The difference of the two sides of a triangle is \_\_\_\_\_\_ than the third side of the triangle.

  Therefore, the third side should be \_\_\_\_\_\_ (less/ greater) than sum of other two sides.

  Here, difference of the two sides = \_\_\_\_\_ \_\_\_ = \_\_\_\_ = \_\_\_\_

  Therefore, the length of the third side is greater than \_\_\_\_\_\_

Therefore, length of the third side is greater than \_\_\_\_\_\_ but less than \_\_\_\_\_.

Hi, here in this video you will learn Pythagoras property



| Question: 16 | 3 | <br> |  |
|--------------|---|------|------|------|------|------|------|------|------|------|------|------|------|--|
|              |   |      |      |      |      |      |      |      |      |      |      |      |      |  |

In a right angled triangle, square of the \_\_\_\_\_ = sum of the squares of the legs.

#### Answer:

Pythagoras theorem is only applicable for \_\_\_\_\_\_ triangle.

Longest side of the triangle is \_\_\_\_\_ (hypotenuse/ legs) and other two sides are called \_\_\_\_\_ (hypotenuse/ legs).

Pythagoras theorem states that \_\_\_\_\_ ...

## Question: 17

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.



Pythagoras theorem states that square of the \_\_\_\_\_ = sum of the squares of its

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$ 

Base and altitude are \_\_\_\_\_ (hypotenuse/legs) of the triangle.

Therefore, hypotenuse of the triangle is \_\_\_\_\_.

Question: 18 .....

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

#### Answer:



Pythagoras theorem states that square on the \_\_\_\_\_ = sum of the squares on

Is Pythagoras theorem applicable in rectangle?  $\_$  ( yes/ no).

Given: breadth = \_\_\_\_\_, length of diagonal = \_\_\_\_\_

By Pythagoras theorem,  $(____)^2 = (___)^2 + (___)^2$  $= __ + ___$ 

Therefore, diagonal of the rectangle is \_\_\_\_\_

Hi, here in this video you will learn Related Angles



Question: 19

| 1  | Two             | angles | ara com | plementary | if | thoir | gum | ic | ognal | to |             |
|----|-----------------|--------|---------|------------|----|-------|-----|----|-------|----|-------------|
| Ι. | $\mathbf{I}$ WO | angles | are com | риешепцагу | Ш  | шеп   | Sum | 1S | equai | ιO | <del></del> |

2. Two angles are supplementary if their sum is equal to \_\_\_\_\_.

Answer:

- 1. When sum of the two angles is equal to 90°, they are called as \_\_\_\_\_ angle. Example:  $45^{\circ}$  and  $45^{\circ}$ , \_\_\_\_\_, and \_\_\_\_\_.
- 2. When sum of the two angles is equal to 180°, they are called as \_\_\_\_\_ angle. Example: 90° and 90°, \_\_\_\_\_, and \_\_\_\_\_.

Question: 20 .....

Shade the complementary angles.





Answer:

Two angles are said be complementary if the sum of their angles are equal to \_\_\_\_\_

$$85^{\circ} + 95^{\circ} =$$
 \_\_\_\_\_ and this is \_\_\_\_\_ (a / not a) complementary angles.

$$45^{\circ} + 45^{\circ} =$$
 \_\_\_\_\_ and this is \_\_\_\_\_ angles.

$$6^{\circ} + 84^{\circ} =$$
 and this is \_\_\_\_\_ angles.

$$73^{\circ} + 107^{\circ} =$$
 and this is angles.

$$36^{\circ} + 64^{\circ} =$$
 and this is \_\_\_\_\_ angles.

$$90^{\circ} + 90^{\circ} =$$
 and this is \_\_\_\_\_ angles.

..... Question: 21

Find the complement and supplement of 15° and 90°

Answer:

One angle is \_\_\_\_\_ (complements / supplements) to other angle, when sum of the two angles is equal to 90°.

One angle is \_\_\_\_\_ (complements / supplements) to other angle, when sum of the two angles is equal to 180°.

Complement of 
$$15^{\circ} =$$
\_\_\_\_\_\_\_,

Complement of 
$$90^{\circ} =$$
\_\_\_\_\_.

Supplement of 
$$15^{\circ} = \underline{\hspace{1cm}}$$
,

Supplement of 
$$90^{\circ} = \underline{\hspace{1cm}}$$

## Number system

| Topics to be Improved                  |                                             |  |  |  |  |  |  |
|----------------------------------------|---------------------------------------------|--|--|--|--|--|--|
| Positive and negative rational numbers | Identification of positive rational numbers |  |  |  |  |  |  |
| Operations on rational numbers         | Subtraction of rational numbers             |  |  |  |  |  |  |
| Exponents                              | Solving exponents                           |  |  |  |  |  |  |

| Hi,  | here ir | n this | video    | you | will | learn | Positive | and | Negative | ra- |
|------|---------|--------|----------|-----|------|-------|----------|-----|----------|-----|
| tion | nal nu  | mbei   | <b>S</b> |     |      |       |          |     |          |     |



Question: 22

Segregate positive and negative rational number.



.....

#### Answer:

- If both the numerator and the denominator of a rational number are \_\_\_\_\_\_ (positive/negative), then it is positive rational number.
- If either the numerator and the denominator of a rational number are negative, then it is \_\_\_\_\_ (positive/negative) rational number.

In the given circle, positive rational numbers are \_\_\_\_\_ and negative rational numbers are

*Question: 23* 

 $\frac{-3}{-4}$  is a \_\_\_\_\_ (positive / negative / neither positive nor negative) rational number.

| 1                | nswe  | n. |
|------------------|-------|----|
| $\boldsymbol{A}$ | .nswe | r: |

−3 is a \_\_\_\_\_ number, −4 is a \_\_\_\_ number.

Division of  $\frac{-3}{-4} = \square$  and this \_\_\_\_\_ rational number.

(Positive / Negative / Neither positive nor negative rational number)

### Question: 24

The product of a positive rational number and a negative rational number is \_\_\_\_\_\_rational number. (Positive/ Negative/ neither positive nor negative)

......

......

.....

### Answer:

Examples for positive rational numbers: \_\_\_\_\_

Examples for negative rational numbers:

Positive rational number × Negative rational number = \_\_\_\_ × \_\_\_ = \_\_\_ and this is \_\_\_\_ rational number

Hi, here in this video you will learn **Operation on rational numbers** 



Question: 25

Solve:  $\frac{-3}{3} + \frac{1}{3}$ 

#### Answer:

Fractions with same denominators are called \_\_\_\_\_\_ (like/ unlike) fractions. Fraction can be added only if they are \_\_\_\_\_ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{\phantom{-3}}{\phantom{-3}} =$$

Question: 26

Find the addition of shaded part of box A and shaded part of box B.





### Answer:

Total number of square in box  $A = \underline{\hspace{1cm}}$ .

Number of shaded square in box  $A = \underline{\hspace{1cm}}$ 

Shaded part of box A in fraction =  $\_$ 

Total number of square in box  $B = \underline{\hspace{1cm}}$ .

Number of shaded square in box  $B = \underline{\hspace{1cm}}$ . Shaded part of box B in fraction = \_\_\_\_\_. Shaded part of box A + Shaded part of box B =  $\_\_$  +  $\_\_$  =  $\_$ Question: 27 ...... Find the missing values in the given figure. Answer: One litre =  $\underline{\hspace{1cm}}$  ml  $\frac{7}{10}$  of one liter =  $\frac{7}{10}$  x  $\underline{\hspace{1cm}}$  ml =  $\underline{\hspace{1cm}}$  ml Given:  $1 = \frac{7}{10} +$ \_\_\_\_\_ Transposing  $\frac{7}{10}$  to other sides,  $1 = \frac{7}{10} =$ \_\_\_\_\_ Therefore, result is \_\_\_\_\_. Hi, here in this video you will learn Exponents and power Question: 28 ...... Find the exponential form of 1000. Answer: \_\_ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as \_\_\_\_\_ (Base / Power). 1000 can be written as =  $10 \times$ 10 is raised to the power of  $\underline{\hspace{1cm}} = (10)^{\overline{\hspace{1cm}}}$ Question: 29 ......

#### Answer:

\_\_\_\_\_ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Find the value of  $(-2)^3$ .

| In this exponential form | $(-2)^3$ , | base = |   | power = |  |
|--------------------------|------------|--------|---|---------|--|
| $(-2)^3 = $              | ×          | ×      | = |         |  |

Question: 30 .....

- (i) Tenth power of 100 is  $((10)^{100})$  or  $(100)^{10}$ ).
- (ii) k is raised to the power of 5 is  $((k)^5)$  or  $(5)^k$ .

### Answer:

Exponential form = (Base)

- (i) Tenth power of 100: Base = \_\_\_\_, Power/Exponents = \_\_\_\_, exponential form = \_\_\_\_.
- (ii) k is raised to the power of 5 : Base = \_\_\_\_, Power/Exponent = \_\_\_\_, exponential form = \_\_\_\_.

# Comparing Quantities

|                            | Topics to be Improved             |  |
|----------------------------|-----------------------------------|--|
| Simple interest            | Calculation of simple interest    |  |
| Hi, here in this video you | will learn <b>Simple Interest</b> |  |

Question: 31



Match the following.

|     | Column A        |
|-----|-----------------|
| i   | Principle(P)    |
| ii  | Amount (A)      |
| iii | Rate (R)        |
| iv  | Time period (T) |

|   | Column B                          |  |  |  |  |  |  |  |
|---|-----------------------------------|--|--|--|--|--|--|--|
| a | Interest calculated based on this |  |  |  |  |  |  |  |
| b | Total sum you borrow              |  |  |  |  |  |  |  |
| c | Number of years                   |  |  |  |  |  |  |  |
| d | Total sum with interest           |  |  |  |  |  |  |  |

| <u>Answer:</u>                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formula for calculating simple interest =  Interest calculated based on  Total sum you borrow is known as  Number of years is Total sum with interest is |
| Question: 32                                                                                                                                             |
| Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she earned.                                                 |
| Answer:                                                                                                                                                  |
| Given:  Amount =, Principle =, Time period =  If Amount and principle is given, then formula for calculating interest is  Interest = =                   |
| Question: 33                                                                                                                                             |
| The simple interest on Rs.5000 for 3 years is Rs.1350. Find the rate of interest.                                                                        |
| Answer:                                                                                                                                                  |
| $\label{eq:continuous_period} \text{Interest} = \underline{\hspace{1cm}} \text{, Principal} = \underline{\hspace{1cm}}.$                                 |
| Rate of interest $= \frac{\underline{\qquad} x \ 100}{\text{Principal x } \underline{\qquad}}$                                                           |

Substituting values in the formula,

Rate of interest  $= \frac{x \cdot 100}{\text{Principal x}}$ 

 ${\rm Rate\ of\ interest} = \underline{\hspace{1cm}}$ 

Therefore, the rate of interest is \_\_\_\_\_\_ %

## Algebra

|                                                  | Topics to be Improved                |
|--------------------------------------------------|--------------------------------------|
| subtraction of algebraic expressions             | subtraction of algebraic expressions |
| Basics of simple equation                        | Formating of simple equation         |
| Monomials, binomials, trinomials and polynomials | Types of algebraic expression        |

| Hi, | here | in | this | video | you | will | $\operatorname{learn}$ | ${\bf Subtraction}$ | on | expression |
|-----|------|----|------|-------|-----|------|------------------------|---------------------|----|------------|
|-----|------|----|------|-------|-----|------|------------------------|---------------------|----|------------|



| Question: | 2  | , |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-----------|----|---|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Question. | 04 | 7 | <br> |

Find the sum of two expressions a + b + c and b + c + d

#### Answer:

| The given two expressions are and                                                          |
|--------------------------------------------------------------------------------------------|
| The two terms will get added only if they are( Like/ Unlike) terms.                        |
| The sum of two expressions $=$ $\underline{\hspace{1cm}}$ $+$ $\underline{\hspace{1cm}}$ . |
| The answer is                                                                              |

#### Question: 35

|                    | School A | School B |
|--------------------|----------|----------|
| Number of boys     | 100b     | 250b     |
| Number of girls    | 150g     | 200g     |
| Number of teachers | 25t      | 45t      |

.....

- (i) Total number of boys in school A and B is \_\_\_\_\_
- (ii) Total number of students in school B is \_\_\_\_\_
- (iii) How many more teachers are there in school B than school A? \_\_\_\_\_

(i) Number of boys in school A = \_\_\_\_\_,

Number of boys in school  $B = \underline{\hspace{1cm}}$ 

Total number of boys in school A and school B is  $\_\_\_$  +  $\_\_\_$  =  $\_\_\_$ 

(ii) Number of boys in school B = \_\_\_\_\_,

Number of girls in school  $B = \underline{\hspace{1cm}}$ .

Total number of students in school B is  $\_\_\_$  +  $\_\_\_$  =  $\_\_\_$ .

(iii) Number of teachers more in school B than school A = Teachers in school B - Teachers in school A =  $\_\_$ .

Question: 36 .....

Solve the following:

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

Answer:

The two terms will get added only if they are \_\_\_\_\_ (like/unlike) terms.

$$\begin{array}{c|c}
13x + \underline{\hspace{1cm}} \\
(+) & 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Hi, here in this video you will learn Solving an equation using application



Question: 37



......

Box B contains \_\_\_\_\_ times the number of chocolates in Box A

Answer:

Box A contains \_\_\_\_\_ chocolates.

Box B contains \_\_\_\_\_ chocolates.

No. of chocolates in Box  $B = \underline{\hspace{1cm}} \times (No. of chocolates in Box A)$ 

Question: 38 .....

Write the equation for the following statement.

Subtracting four times of m from 4 is n

| Four times of $m = \underline{\hspace{1cm}}$<br>Subtracting four times of $m$ from $4 = \underline{\hspace{1cm}}$                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The equation is                                                                                                                                                                                |
| Question: 39                                                                                                                                                                                   |
| Compare the given two statements $(<,>,=)$<br>Sum of $2a$ and $9$ Add $9$ to the product of $a$ and $2$<br>Answer:                                                                             |
| Sum of $2a$ and $9 = \underline{\hspace{1cm}}$ Product of $a$ and $2 = \underline{\hspace{1cm}}$ Add $9$ to the product of $a$ and $2 = \underline{\hspace{1cm}}$                              |
| Therefore, sum of $2a$ and $9$ $\square$ Add $9$ to the product of $a$ and $2$                                                                                                                 |
| Hi, here in this video you will learn <b>Types of expression</b> Question: $40$ There are terms in the expression $7x + 3y + m + 5$ .                                                          |
|                                                                                                                                                                                                |
| Answer:  In algebraic expression, (variables/ terms) are connected together with operations of addition.  The terms in the expression are,, and  Therefore, there are terms in the expression. |
| Question: 41                                                                                                                                                                                   |
| Classify the following expression into monomial, binomial and polynomial.                                                                                                                      |
| 1. $7m + n + 2$                                                                                                                                                                                |
| 2. $8x^2 + 0$                                                                                                                                                                                  |
| 3. 7xy + 4m                                                                                                                                                                                    |
| Answer:  1. The terms in expression $8x^2 + 0$ are                                                                                                                                             |
| Here, expression has term and it is a                                                                                                                                                          |

| 2. The terms in expression $7xy + 4m$ are<br>Here, expression has term and it is a                          |
|-------------------------------------------------------------------------------------------------------------|
| 3. The terms in expression $7m + n + 2$ are<br>Here, expression has term and it is a                        |
| Question:~42                                                                                                |
| $6m^2 + m + 0$ is a expression. (Monomial/ Binomial/ Trinomial)                                             |
| $\underline{Answer:}$                                                                                       |
| The terms in expression $5m^2 + m + 0$ are<br>Here, the expression has terms and it is called a expression. |