Particle spectrograph

Wave operator and propagator

Quadratic (free) Lagrangian density
$-\frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2} a_0 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\chi}_{\beta\chi} + h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \partial_{\beta}h_{\alpha\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\gamma} \partial_{\gamma}h_{\alpha\chi} - \frac{1}{2} a_0 \Gamma^{\alpha\gamma} \partial_$
$\frac{1}{4} a_0 \Gamma^{\alpha}_{\alpha}^{\beta} \partial_{\beta} h^{\chi}_{\chi} + \frac{1}{4} a_0 \Gamma^{\alpha\beta}_{\alpha} \partial_{\beta} h^{\chi}_{\chi} - \frac{1}{4} a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha}_{\alpha}^{\beta} + \frac{1}{4} a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} -$
$\frac{1}{2} a_0 h_{\alpha\chi} \partial_{\beta} \Gamma^{\alpha\beta\chi} + \frac{11}{2} a_1 \partial^{\alpha} \Gamma^{\chi\delta}{}_{\delta} \partial_{\beta} \Gamma_{\chi\alpha}{}^{\beta} + \frac{1}{2} a_1 \partial^{\alpha} \Gamma_{\chi\alpha}{}^{\beta} \partial_{\beta} \Gamma^{\chi\delta}{}_{\delta} -$
$19 a_1 \partial^{\alpha} \Gamma^{\chi \delta}_{\chi} \partial_{\beta} \Gamma_{\delta \alpha}^{\beta} + \frac{1}{4} a_0 h^{\alpha \beta} \partial_{\beta} \partial_{\alpha} h^{\chi}_{\chi} - \frac{1}{8} a_0 \partial_{\beta} h^{\chi}_{\chi} \partial^{\beta} h^{\alpha}_{\alpha} +$
$\frac{1}{2} a_0 \Gamma^{\alpha}_{\alpha}^{\beta} \partial_{\chi} h_{\beta}^{\chi} + \frac{1}{4} a_0 \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\chi} h_{\beta}^{\chi} + \frac{37}{4} a_1 \partial_{\beta} \partial_{\alpha} h^{\delta}_{\delta} \partial_{\chi} \Gamma^{\alpha\beta\chi} +$
$\frac{3}{4} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\chi} \partial_{\alpha} h^{\delta}_{\delta} - \frac{1}{2} a_0 h^{\alpha\beta} \partial_{\chi} \partial_{\beta} h_{\alpha}^{\chi} + \frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\chi} \partial_{\beta} h^{\beta\chi} +$
$\frac{1}{4} a_0 h^{\alpha\beta} \partial_{\chi} \partial^{\chi} h_{\alpha\beta} - \frac{1}{4} a_0 h^{\alpha}_{\alpha} \partial_{\chi} \partial^{\chi} h^{\beta}_{\beta} - \frac{1}{4} a_0 \partial_{\beta} h_{\alpha\chi} \partial^{\chi} h^{\alpha\beta} + \frac{1}{8} a_0 \partial_{\chi} h_{\alpha\beta} \partial^{\chi} h^{\alpha\beta} +$
$\frac{1}{2} a_0 h_{\beta \chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\delta}_{\chi}{}^{\delta} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\delta}_{\delta \chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} +$
$\frac{1}{2} a_1 \partial_{\chi} \Gamma_{\beta \delta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\beta \delta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\delta \beta}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\delta} \partial^{\chi} \Gamma_{\alpha}^{\delta$
$\frac{3}{4} a_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{ \delta} \partial^{\chi} \Gamma^{\alpha}_{ \beta} - \frac{11}{2} a_1 \partial_{\beta} \Gamma^{ \delta}_{ \delta} \partial^{\chi} \Gamma^{\alpha\beta}_{ \alpha} + \frac{19}{2} a_1 \partial_{\beta} \Gamma^{\delta}_{ \chi \delta} \partial^{\chi} \Gamma^{\alpha\beta}_{ \alpha} +$
$\frac{11}{2} a_1 \partial_{\chi} \Gamma_{\beta}^{\ \delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\ \alpha} - \frac{1}{2} a_1 \partial_{\chi} \Gamma^{\delta}_{\ \beta\delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\ \alpha} - \frac{37}{4} a_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{\ \delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\ \alpha} +$
$a_1 \partial_{\alpha} \Gamma_{\chi}^{\delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\beta} - a_1 \partial_{\chi} \Gamma_{\alpha}^{\delta} \partial^{\chi} \Gamma^{\alpha\beta}_{\beta} - \frac{9}{2} a_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{\delta} \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} +$
$\frac{17}{8} a_1 \partial_{\chi} \partial_{\beta} h^{\delta}_{\delta} \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} - \frac{1}{2} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha\beta}^{\delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha\chi}^{\delta} -$
$\frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\alpha \chi}^{\ \delta} + \frac{19}{2} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \Gamma_{\beta\alpha}^{\ \delta} + a_1 \partial^{\chi} \Gamma^{\alpha \beta}_{\ \alpha} \partial_{\delta} \Gamma_{\beta \chi}^{\ \delta} +$
$\frac{1}{2} a_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \Gamma_{\chi\beta}{}^{\delta} + \frac{1}{2} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \Gamma_{\chi\beta}{}^{\delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi}_{\lambda} \partial_{\delta} \Gamma_{\chi}{}^{\delta}_{\alpha} +$
$\frac{1}{2} a_1 \partial^{\chi} \Gamma_{\beta\alpha}^{\ \beta} \partial_{\delta} \Gamma_{\chi}^{\ \delta\alpha} + a_1 \partial^{\chi} \Gamma_{\alpha}^{\alpha \beta} \partial_{\delta} \Gamma_{\chi \beta}^{\ \delta} - \frac{1}{2} a_1 \partial_{\beta} \Gamma_{\alpha}^{\alpha \beta} \partial_{\delta} \Gamma_{\chi}^{\chi \delta} +$
$a_1 \partial_{\beta} \Gamma^{\alpha}_{\ \alpha}{}^{\beta} \partial_{\delta} \Gamma^{\chi\delta}_{\ \chi} - \frac{1}{2} a_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\ \alpha} \partial_{\delta} \Gamma^{\chi\delta}_{\ \chi} - \frac{37}{4} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\alpha} h_{\beta}{}^{\delta} -$
$\frac{3}{4} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\alpha} h_{\chi}^{\delta} - \frac{37}{4} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\beta} h_{\alpha}^{\delta} + \frac{3}{8} a_1 \partial_{\chi} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\alpha}^{\delta} +$
$\frac{37}{8} a_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} + \frac{3}{4} a_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} + \frac{37}{4} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} -$
$\frac{3}{8} a_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} + \frac{13}{4} a_1 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial_{\beta} h_{\chi}^{\delta} - \frac{3}{4} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial_{\chi} h_{\alpha}^{\delta} -$
$\frac{43}{8} a_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\delta} + \frac{3}{4} a_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}^{\beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\delta} + \frac{37}{4} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial_{\chi} h_{\beta}^{\delta} +$
$\frac{77}{8} a_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h_{\beta}^{\delta} - \frac{29}{4} a_1 \partial^{\chi} \partial^{\beta} h_{\alpha}^{\alpha} \partial_{\delta} \partial_{\chi} h_{\beta}^{\delta} + a_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial_{\chi} h^{\chi\delta} -$
$a_1 \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial_{\chi} h^{\chi\delta} - \frac{1}{2} a_1 \partial_{\beta} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial_{\chi} h^{\chi\delta} + a_1 \partial_{\beta} \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial_{\chi} h^{\chi\delta} +$
$\frac{37}{4} a_1 \partial_{\chi} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial^{\delta} h_{\alpha\beta} + \frac{17}{8} a_1 \partial_{\chi} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\alpha\beta} + \frac{3}{4} a_1 \partial_{\beta} \Gamma^{\alpha\beta\chi} \partial_{\delta} \partial^{\delta} h_{\alpha\chi} +$
$\frac{1}{4} a_1 \partial_{\alpha} \partial^{\chi} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{3}{4} a_1 \partial^{\chi} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - \frac{37}{4} a_1 \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} -$
$\frac{73}{8} a_1 \partial^{\chi} \partial_{\alpha} h^{\alpha\beta} \partial_{\delta} \partial^{\delta} h_{\beta\chi} + \frac{17}{4} a_1 \partial^{\chi} \partial^{\beta} h^{\alpha}_{\alpha} \partial_{\delta} \partial^{\delta} h_{\beta\chi} - a_1 \partial_{\beta} \Gamma^{\alpha}_{\alpha}{}^{\beta} \partial_{\delta} \partial^{\delta} h^{\chi}_{\chi} +$
$a_1 \partial_{\beta} \Gamma^{\alpha\beta}{}_{\alpha} \partial_{\delta} \partial^{\delta} h^{\chi}{}_{\chi} - \frac{1}{2} a_1 \partial_{\beta} \partial^{\beta} h^{\alpha}{}_{\alpha} \partial_{\delta} \partial^{\delta} h^{\chi}{}_{\chi} + \frac{1}{2} a_1 \partial_{\alpha} \Gamma_{\beta \chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} +$
$a_1 \partial_\alpha \Gamma_{\beta \delta \chi} \partial^\delta \Gamma^{\alpha \beta \chi} + a_1 \partial_\alpha \Gamma_{\chi \beta \delta} \partial^\delta \Gamma^{\alpha \beta \chi} + \frac{1}{2} a_1 \partial_\alpha \Gamma_{\chi \delta \beta} \partial^\delta \Gamma^{\alpha \beta \chi} +$
$a_1 \partial_\alpha \Gamma_{\delta\beta\chi} \partial^\delta \Gamma^{\alpha\beta\chi} + a_1 \partial_\alpha \Gamma_{\delta\chi\beta} \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_1 \partial_\beta \Gamma_{\alpha\chi\delta} \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_1 \partial_\beta \Gamma_{\alpha\delta\chi} \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_2 \partial_\beta \Gamma_{\alpha\delta\chi} \partial^\delta \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_3 \partial_\beta \Gamma_{\alpha\delta\chi} \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \partial_\beta \Gamma_{\alpha\delta\chi} \partial^\delta \Gamma^{\alpha\delta\chi} + \frac{1}{2} \partial_\beta \Gamma_{\alpha\delta\chi} \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \partial_\beta \Gamma_{\alpha\delta\chi} \partial^\delta \Gamma^{\alpha\delta\chi} - \frac{1}{2} \partial_\beta \Gamma_{\alpha\delta\chi} \partial^\delta \Gamma^{\alpha\delta\chi} + \frac{1}{2} \partial_\beta \Gamma_{\alpha\delta\chi} \partial^\delta \Gamma^{\alpha\delta\chi} + \frac{1}{2} \partial_\beta \Gamma_{\alpha\delta\chi} \partial^\delta \Gamma^{\alpha\delta\chi} + \frac{1}{2} \partial_\beta \Gamma^{\alpha\delta\chi} \partial^\delta \Gamma^{\alpha\delta\chi} + \frac{1}{2} \partial_\beta \Gamma^{\alpha\delta\chi} \partial^\delta \Gamma^$
$\frac{1}{2} a_1 \partial_{\beta} \Gamma_{\chi \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{3}{2} a_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} - \frac{1}{2} a_1 \partial_{\chi} \Gamma_{\alpha \beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$
$\frac{1}{2} a_1 \partial_{\chi} \Gamma_{\beta \alpha \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} + a_1 \partial_{\chi} \Gamma_{\beta \delta \alpha} \partial^{\delta} \Gamma^{\alpha \beta \chi} + \frac{3}{2} a_1 \partial_{\chi} \partial_{\alpha} h_{\beta \delta} \partial^{\delta} \Gamma^{\alpha \beta \chi} -$
$a_1 \partial_{\delta} \Gamma_{\alpha\beta\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - a_1 \partial_{\delta} \Gamma_{\alpha\chi\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_1 \partial_{\delta} \Gamma_{\beta\alpha\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_1 \partial_{\delta} \Gamma_{\beta\chi\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_2 \partial_{\delta} \Gamma_{\beta\chi\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_3 \partial_{\delta} \Gamma_{\beta\chi\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_4 \partial_{\delta} \Gamma_{\beta\chi\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{1}{2} a_5 \partial_{\delta} \Gamma_{\alpha\chi\beta} \partial^{\delta} \Gamma^{\alpha\gamma} - \frac{1}{2} a_5 \partial_{\delta} \Gamma_{\alpha\chi\beta} \partial^{\delta} \Gamma^{\alpha\gamma} - \frac{1}{2} \partial_{\delta} \Gamma_{\alpha\gamma} \partial^{\delta} \Gamma^{\alpha\gamma} - \frac{1}{2} \partial_{\delta} \Gamma_{\alpha\gamma} \partial^{\delta} \Gamma^{\alpha\gamma} - \frac{1}{2} \partial_{\delta} \Gamma^{\alpha\gamma} - \frac{1}{2} \partial_{\delta} \Gamma^{\alpha\gamma} - \frac{1}{2} \partial_{\delta} \Gamma^{\alpha\gamma} - \frac{1}{2} \partial_{\delta} \Gamma^{\alpha\gamma} - \frac{1}{2} $
$\frac{1}{2} a_1 \partial_{\delta} \Gamma_{\chi\beta\alpha} \partial^{\delta} \Gamma^{\alpha\beta\chi} + \frac{3}{2} a_1 \partial_{\delta} \partial_{\beta} h_{\alpha\chi} \partial^{\delta} \Gamma^{\alpha\beta\chi} - \frac{3}{2} a_1 \partial_{\delta} \partial_{\chi} h_{\alpha\beta} \partial^{\delta} \Gamma^{\alpha\beta\chi} -$
$\frac{11}{2} a_1 \partial_{\beta} \Gamma_{\delta \alpha}^{ \beta} \partial^{\delta} \Gamma^{\alpha \chi}_{ \chi} - \frac{1}{2} a_1 \partial^{\alpha} \Gamma_{\delta \alpha}^{ \beta} \partial^{\delta} \Gamma_{\beta \ \chi}^{ \chi} + \frac{1}{2} a_1 \partial_{\beta} \Gamma_{\delta \alpha}^{ \beta} \partial^{\delta} \Gamma^{\chi \alpha}_{ \chi} -$
$\frac{3}{4} a_1 \partial_{\beta} \partial_{\alpha} h_{\chi \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} + \frac{3}{2} a_1 \partial_{\chi} \partial_{\beta} h_{\alpha \delta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta} - \frac{3}{4} a_1 \partial_{\delta} \partial_{\chi} h_{\alpha \beta} \partial^{\delta} \partial^{\chi} h^{\alpha \beta}$

$\Delta_{1^-}^{\#6}{}_{lpha}$ ${\mathcal T}_{1^-}^{\#1}{}_{lpha}$	0 0		0 0			$ \begin{array}{c} 0\\ 0\\ 0\\ 50\sqrt{\frac{2}{3}}a_1k^2\\ a_0^2-33a_0a_1k^2 \end{array} $	$ \begin{array}{c} 0\\ 0\\ 0\\ \frac{50\sqrt{\frac{2}{3}}a_1k^2}{a_0^2-33a_0a_1k^2}\\ -\frac{a_0-28a_1k^2}{6a_0^2-198a_0a_1k^2} \end{array} $	$ \begin{array}{c} 0\\ 0\\ 50\sqrt{\frac{2}{3}}a_1k^2\\ a_0^2-33a_0a_1k^2\\ -\frac{a_0-28a_1k^2}{6a_0^2-198a_0a_1k^2}\\ -\frac{\sqrt{5}}{6a_0^2-33a_1k^2)} $	$ \begin{array}{c} 0\\ 0\\ 50\sqrt{\frac{2}{3}}a_1k^2\\ a_0^2-33a_0a_1k^2\\ -\frac{a_0-28a_1k^2}{6a_0^2-198a_0a_1k^2}\\ -\frac{\sqrt{5}}{6(a_0-33a_1k^2)}\\ -\frac{7(a_0+2a_1k^2)}{3\sqrt{2}a_0(a_0-33a_1k^2)}\\ \end{array} $	$ \begin{array}{c} 0\\ 0\\ $
$\Delta_{1^{-}\alpha}^{\#4} \qquad \qquad \Delta_{1^{-}\alpha}^{\#5}$	0 0	0 0		0 0		$\frac{a_1 k^2}{0 a_1 k^2} \frac{10 a_1 k^2 (-11)}{\sqrt{3} a_0^2 (a_1 k^2)}$				
$\Delta_{1^{-}lpha}^{\#3}$	0	0		0	0	.0-236 a ₁ k ²)	2 k4			
$\Delta_{1^{-}\alpha}^{\#2} \qquad \qquad \Delta_{1^{-}\beta}^{\#3}$	0 0	0 0		0 0		$\frac{+401a_1^2k^4)}{z_1k^2}$				
$\Delta_{1^{-}lpha}^{\#1}$ $\Delta_{1}^{\#}$	0	0				101				
$\Delta_1^{\#3}$	0	$\frac{40\sqrt{2}a_1k^2}{a_0^2-29a_0a_1k^2}$	$\frac{4}{a_0-29a_1k^2}$	÷ >	0					
$\Delta_{1}^{\#2}_{\alpha\beta}$	$-\frac{2\sqrt{2}}{a_0}$	$\frac{2 \left(a_0^2 - 14 a_0 a_1 k^2 - 35 a_1^2 k^4\right)}{a_0^2 \left(a_0 - 29 a_1 k^2\right)}$	40 √2 a ₁ k ² a ₀ ² -29a ₀ a ₁ k ²	1 >	0	0	0	0		
$\Delta_1^{\#1}{}_+\alpha\beta$	0	$\frac{2\sqrt{2}}{a_0}$	0		0	0 0	0 0 0	0 0 0	0 0 0 0	0 0 0 0 0

Γ ″ 1 †'	$\alpha\beta\chi$ $\frac{1}{2}$		¹ αβχ - 7 α ₁	<i>k</i> ²)	Δ ₃ -1	† ^{αβχ}	$\Delta_3^{\#1} - \frac{2}{a_0 + 7}$			
$h_{1}^{\#1}$	0	0	0	0	0	0	0	0	0	0
$\Gamma_{1}^{\#6}{}_{\alpha}$	0	0	0	$-\frac{5a_1k^2}{\sqrt{3}}$	0	$\frac{1}{6} (-a_0 + 20 a_1 k^2)$	$\sqrt{\frac{5}{2}} (a_0 + 16a_1k^2) - \frac{1}{6} \sqrt{5} (a_0 - 5a_1k^2)$	$\frac{a_0+40a_1k^2}{6\sqrt{2}}$	$\frac{5}{12} (a_0 - 17 a_1 k^2)$	0
$\Gamma_{1^{-}\alpha}^{\#5}$	0	0	0	$5\sqrt{\frac{3}{2}}a_1k^2$	0	$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6}\sqrt{\frac{5}{2}} (a_0 + 16a_1 k^2)$	<u>40</u> 3	$\frac{a_0 + 40 a_1 k^2}{6 \sqrt{2}}$	0
$\Gamma_{1^-}^{\#4}$	0	0	0	$-\frac{5}{2}\sqrt{\frac{5}{3}}a_1k^2$	0	$\frac{1}{6} \sqrt{5} (a_0 - 8a_1 k^2)$	$\frac{1}{3}(a_0 + 7a_1k^2)$	$-\frac{1}{6}\sqrt{\frac{5}{2}}(a_0+16a_1k^2)$	$-\frac{1}{6}\sqrt{5}(a_0-5a_1k^2)$	0
$\Gamma_{1}^{\#3}{}_{\alpha}$	0	0	0	$\frac{5}{2}\sqrt{3}a_1k^2$	0	- <u>40</u>	$\frac{1}{6}\sqrt{5}(a_0-8a_1k^2)$	$-\frac{a_0}{6\sqrt{2}}$	$\frac{1}{6} \left(-a_0 + 20 a_1 k^2 \right)$	0
$\Gamma_{1^{^-}\alpha}^{\#2}$	0	0	0	$\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0
$\Gamma_{1^-\alpha}^{\#1}$	0	0	0	$\frac{1}{4} \left(-a_0 - 3 a_1 k^2 \right) \left \frac{a_0}{2 \sqrt{2}} \right $	$\frac{a_0}{2\sqrt{2}}$	$\frac{5}{2} \sqrt{3} a_1 k^2$	$-\frac{5}{2}\sqrt{\frac{5}{3}}a_1k^2$	$5\sqrt{\frac{3}{2}}a_1k^2$	$-\frac{5a_1k^2}{\sqrt{3}}$	0
$\Gamma_{1}^{\#3}$	$5a_1k^2$	0	$\frac{1}{4} (a_0 - 29 a_1 k^2)$	0	0	0	0	0	0	0
$\Gamma_{1}^{\#2}_{+}$	$-\frac{a_0}{2\sqrt{2}}$	0	0	0	0	0	0	0	0	0
$\Gamma_{1}^{\#1}_{\alpha\beta}$	$^{+}_{+} +^{\alpha\beta} \frac{1}{4} (-a_0 - 15 a_1 k^2)$	$\frac{a_0}{2\sqrt{2}}$	$5a_1k^2$	0	0	0	0	0	0	0
	$+\alpha\beta$	$^{:2}_{+} + \alpha \beta$;3 † αβ +	$\frac{*1}{1}$	#2 †α 1-1	#3 †α 1-	-#4 †α 1-	#5 †α 1-	#e +α 1-	$_{1}^{\#1}$ \dagger^{α}

								ors .	Mu	1	1	3	3	8	
$\Gamma_{2}^{#2} \alpha \beta \chi$	0	0	0	0	0	$\frac{1}{4}(a_0-5a_1k^2)$		instraints/gauge generato	sda		$_{0}^{*4} + 3 \Delta_{0}^{#2} = 0$		$\Delta_{1}^{\#4\alpha}+2~\Delta_{1}^{\#5\alpha}+\Delta_{1}^{\#3\alpha}$	straints:	
$\Gamma_{2^{-}}^{\#1}\alpha\beta\chi$	0	0	0	0	$\frac{1}{4} (a_0 - a_1 k^2)$	_		Source co	50(3) irre	$T_0^{\#2} == 0$	$\Delta_{0}^{#3} + 2 \Delta_{0}^{7}$	$\mathcal{T}_{1}^{\#1}{}^{\alpha} == 0$	$2 \Delta_{1}^{\#6\alpha} +$	Total con	
$h_2^{\#1}$	$-\frac{11ia_1k^3}{4\sqrt{2}}$	$\frac{5ia_1k^3}{\sqrt{3}}$	$-\frac{5ia_1k^3}{\sqrt{6}}$	$\frac{1}{8}k^2(a_0-11a_1k^2)$	0	0				0		0			0 0
$\Gamma_{2}^{\#3}$	$\frac{5a_1k^2}{\sqrt{3}}$	$-\frac{a_1 k^2}{6 \sqrt{2}}$	$\frac{1}{2} (3 a_0 + a_1 k^2)$	$\frac{5ia_1k^3}{\sqrt{6}}$	0	0		$\mathcal{T}_{2}^{\#1}$ 1		$-\frac{44 i \sqrt{2} a_1 k}{a_0^2}$				-a ₀ ²	- 8 (a ₀
$\Gamma_{2}^{#2}$	$\sqrt{\frac{2}{3}} a_1 k^2$	$3a_0 + a_1 k^2$	$-\frac{a_1k^2}{6\sqrt{2}}$	$-\frac{5ia_1k^3}{\sqrt{3}}$	0	0		$\Delta_{2}^{\#3}$	ر		_				$\frac{80 i \sqrt{\frac{2}{3}} a_1 k}{a_0^2}$
$\Gamma_{2}^{\#1}$	$(a_0 + 11 a_1 k^2)$.1 k ²	$\frac{5a_1k^2}{\sqrt{3}}$	$\frac{11ia_1k^3}{4\sqrt{2}}$	0	0			7	40 $\sqrt{3}$		$\frac{\sqrt{\frac{2}{3}} a_1 k^2}{a_0^2} = \frac{1}{a_0}$	'		$\frac{44i\sqrt{2}a_1k}{a_0^2} \qquad \frac{80ia_1k}{\sqrt{3}a_0^2}$
	$\Gamma_{2}^{#1} + \alpha \beta$	$\Gamma_{2}^{#2} + \alpha \beta$	$\Gamma_{2}^{#3} + \alpha \beta$	$h_{2}^{#1} + \alpha \beta$	$\Gamma_{2}^{#1} + \alpha \beta \chi$	$\Gamma_2^{#2} + \alpha \beta \chi$				$\Delta_2^{#1} + \alpha \beta \boxed{\frac{4}{2}}$		$\Delta_{2}^{#2} + \alpha^{\beta}$	Λ#3 +αβ	- + ² -	$\mathcal{T}_{2}^{\#1} \dagger^{\alpha eta}$
		- #:	1	- #:	2	- #	3			- #	4				ı.#1
⊢ #1	+ 1 (2							$h_0^{\#1}$ $5ia_1k^3$
			.5u ₁ K		1	· · ·									$\frac{5 i a_1 k^3}{2 \sqrt{2}}$
			a 1.2						3	a ₀ +4	6 <i>a</i> ₁	k ²		10	0) i a 1 k ³
0+		$10\sqrt{\frac{3}{3}}$	$a_1 R^2$	2		3				6	√2				$\frac{0 i a_1 k^3}{\sqrt{3}}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} -\frac{1}{4} & -\frac{1}{4} \\ -\frac{1}{4} & -\frac{1}{4} \end{bmatrix} = \begin{bmatrix} -\frac{\pi^{2}}{4} & -\frac{\pi^{2}}{4} \\ -\frac{\pi^{2}}{4} & -\frac{\pi^{2}}{4} \end{bmatrix} = \begin{bmatrix} -\frac{\pi^{2}}{4} & -\frac{\pi^{2}}{4} \\ -\frac{\pi^{2}}{4} & -\frac{\pi^{2}}{4} \end{bmatrix} = \begin{bmatrix} -\frac{\pi^{2}}{4} & -\frac{\pi^{2}}{4} \\ -\frac{\pi^{2}}{4} & -\frac{\pi^{2}}{4} \end{bmatrix} = 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} \frac{1}{2} + \alpha & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} + \alpha & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} + \alpha & \frac{1}{2} & \frac{1}{2} + \alpha & \frac{1}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

 $\left| -\frac{a_0}{2\sqrt{2}} \right| -\frac{3a_0 + 46a_1 k^2}{6\sqrt{2}}$

 $5 i \sqrt{\frac{2}{3}} a_1 k^3$

 $0 \quad \frac{1}{2} \left(-a_0 + a_1 \, k^2 \right)$

 $-5 i \sqrt{\frac{2}{3}} a_1 k^3 \qquad \frac{1}{4} k^2 (a_0 + 25 a_1 k^2) \quad 0$

 $\frac{1}{6} (3 a_0 + 23 a_1 k^2)$

$\Delta_{0}^{\#1}$	0	0	0	0	0	0	$-\frac{2}{a_0 \cdot a_1 k^2}$
${\mathcal T}_{0}^{\#2}$	0	0	0	0	0	0	0
${\mathcal T}_{0}^{\#1}$	$-\frac{50i\sqrt{2}a_1k}{a_0^2}$	$\frac{20i\sqrt{3}a_1k}{a_0^2}$	$-\frac{20ia_1k}{\sqrt{3}a_0^2}$	$-\frac{20i\sqrt{\frac{2}{3}}a_1k}{a_0^2}$	$\frac{4(a_0-25a_1k^2)}{a_0^2k^2}$	0	0
$\Delta_{0}^{\#4}$	$-\frac{20a_1k^2}{\sqrt{3}a_0^2}$	$-\frac{a_0-23a_1k^2}{2\sqrt{2}a_0^2}$	$-\frac{3a_0+23a_1k^2}{6\sqrt{2}a_0^2}$	$\frac{3a_0 - 23a_1 k^2}{6a_0^2}$	$\frac{20i\sqrt{\frac{2}{3}}a_1k}{a_0^2}$	0	0
$\Delta_{0}^{\#3}$	$-\frac{10\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$\frac{5a_0 + 23a_1 k^2}{4a_0^2}$	$-\frac{9a_0+23a_1k^2}{12a_0^2}$	$-\frac{3a_0 + 23a_1k^2}{6\sqrt{2}a_0^2}$	$\frac{20ia_1 k}{\sqrt{3} a_0^2}$	0	0
$\Delta_0^{\#2}$	$\frac{10\sqrt{6}a_1k^2}{a_0^2}$	$-\frac{3(a_0+23a_1k^2)}{4a_0^2}$	$\frac{5a_0 + 23a_1 k^2}{4a_0^2}$	$-\frac{a_0 - 23 a_1 k^2}{2 \sqrt{2} a_0^2}$	$-\frac{20i\sqrt{3}a_1k}{a_0^2}$	0	0
$\Delta_0^{\#1}$	$-\frac{2(a_0+25a_1k^2)}{a_0^2}$	$\frac{10\sqrt{6}a_1k^2}{a_0^2}$	$-\frac{10\sqrt{\frac{2}{3}}a_1k^2}{a_0^2}$	$-\frac{20a_1k^2}{\sqrt{3}a_0^2}$	$\frac{50i\sqrt{2}a_1k}{a_0^2}$	0	0
	$\Delta_{0}^{#1}$ †	$\Delta_{0}^{#2} +$	Δ ^{#3} †	Δ ₀ ^{#4} †	$\mathcal{T}_{0}^{\#1}$ †	$\mathcal{T}_{0}^{\#2} \uparrow$	$\Delta_{0}^{\#1} \uparrow$

Massive and	d mass	less s	pect
-------------	--------	--------	------

** MassiveAnalysisOfSector...Null

Unitarity conditions