Estatística descritiva (1ed) Apostilas de aula com exemplos em R

Djuri Vieira Luis Francisco Gómez López

2023-12-19

Índice

Bem-vindos	1
Prefácio	3
I Estatística e dados	5
1 Visão geral	7
2 Dados	9
II Visualização de dados	11
III Medidas-resumo	13
3 Medidas de tendência central	15
4 Medidas de posição	17
5 Medidas de dispersão	19
6 Medidas de forma	21
IV Probabilidades	23
V Variáveis aleatórias	25
7 Distribuições de probabilidade discretas	27
8 Distribuições de probabilidade contínuas	29

iv	ÍI	NDICE
Ref	Perências	31
$\mathbf{A}\mathbf{p}$	êndices	33
\mathbf{A}	Introdução ao R	33
	Feoria ingênua dos conjuntos B.1 Conjuntos	35 35

Bem-vindos

2 Bem-vindos

Prefácio

4 Prefácio

Parte I Estatística e dados

Visão geral

Dados

Parte II Visualização de dados

Parte III Medidas-resumo

Medidas de tendência central

Medidas de posição

Medidas de dispersão

Medidas de forma

Parte IV Probabilidades

Parte V Variáveis aleatórias

Distribuições de probabilidade discretas

Distribuições de probabilidade contínuas

Referências

Halmos, Paul R. 1974. *Naive Set Theory*. Editado por S. Axler, F. W. Gehring, e K. A. Ribet. Undergraduate Texts em Mathematics. New York, NY: Springer New York. https://doi.org/10.1007/978-1-4757-1645-0.

32 Referências

Apêndice A

Introdução ao R

Apêndice B

Teoria ingênua dos conjuntos

A teoria dos conjuntos é um ramo da matemática que lida com coleções chamadas conjuntos. Compreender a teoria dos conjuntos é essencial, pois ela forma a base fundamental da teoria da probabilidade, que por sua vez é crucial para o estudo de estatísticas. No entanto, um entendimento básico da teoria dos conjuntos é suficiente para compreender os princípios essenciais da probabilidade e estatística, evitando a necessidade de usar um formalismo excessivo ¹.

B.1 Conjuntos

Definição B.1 (Conjunto). Um conjunto é uma coleção não ordenada de elementos únicos, ou pode ser uma coleção vazia, sem nenhum elemento.

Podemos denotar um conjunto usando uma letra arbitrária como A e descrevêlo listando seus elementos entre chaves. Por exemplo, $A = \{1,2\}$ é o conjunto cujos elementos são os números 1 e 2. Com base em Definição B.1 e na notação anterior, é importante fazer as seguintes observações:

• $A = \{1,2\}$ e $B = \{2,1\}$ são o mesmo conjunto porque conjuntos são coleções não ordenadas onde a ordem não é definida.

 $^{^1\}mathrm{Para}$ uma apresentação detalhada e clara da teoria dos conjuntos, você pode consultar (Halmos 1974)