

Digital Experience

- As portas lógicas avançadas são portas digitais que realizam operações lógicas mais complexas, além das funções básicas realizadas com portas AND, OR e NOT
- Elas podem ser usadas em sistemas mais sofisticados, como unidades de processamento, circuitos de controle e comunicação

- Se considerarmos as portas AND, OR e NOT como sendo as portas elementares, as portas NAND e NOR podem ser consideradas portas lógicas avançadas
- Apesar de já conhecermos as portas NAND e NOR, podemos nos aprofundar ainda mais em suas funcionalidades e motivação

Universalidade de NAND e NOR

- Portas NAND e NOR podem ser usadas para construir qualquer outra porta lógica ou circuito lógico, tornando-as fundamentais para o design de circuitos digitais
- Pela combinação dessas 2 portas, é possível criar portas AND, OR,
 NOT entre outras, sem a necessidade de componentes adicionais

Universalidade de NAND e NOR

- A importância da universalidade das portas NAND e NOR no projeto de circuitos digitais é enorme!
- A universalidade oferece várias vantagens em termos de simplicidade, custo, eficiência e escalabilidade na construção de sistemas eletrônicos
 - Por exemplo: NAND e NOR usam menos transistores, então, é
 possível colocar mais circuitos em um mesmo CI

Universalidade da porta NAND

Universalidade da porta NAND

- Por que $\overline{A \cdot A} = \overline{A}$?
- Por que $\overline{\overline{A}\overline{B}} = A + B$?

Essas transformações podem ser explicadas / entendidas com o uso dos Teoremas Booleanos

Teoremas Booleanos

- São regras e propriedades usadas na álgebra booleana para simplificar e transformar expresões booleanas
- Os teoremas booleanos podem variar um pouco conforme a literatura, mas geralmente são divididos em 10 categorias

Teoremas Booleanos

- 1. Teorema da Identidade
 - $\bullet \quad A + 0 = A$
 - A · 1 = A
- 2. Teorema da Anulação
 - A+1=1
 - $\bullet \quad A \cdot 0 = 0$
- 3. Teorema da Idempotência
 - A + A = A
 - \bullet $A \cdot A = A$

- 4. Teorema do Complemento
 - \bullet A + \overline{A} = 1
 - $\bullet \quad A \cdot \overline{A} = 0$
- 5. Teorema da Involução (Dupla Negação)
 - $\overline{\overline{A}} = A$
- 6. Teorema da Comutatividade
 - A + B = B + A
 - $\bullet \quad A \cdot B = B \cdot A$

Teoremas Booleanos

7. Teorema da Associatividade

•
$$(A + B) + C = A + (B + C)$$

- $\bullet \qquad (A \cdot B) \cdot C = A \cdot (B \cdot C)$
- 8. Teorema da Distributividade

$$\bullet \qquad A \cdot (B + C) = (A \cdot B) + (A \cdot C)$$

- $A + (B \cdot C) = (A + B) \cdot (A + C)$
- 9. Teorema da Absorção
 - A + (A · B) = A
 - A ⋅ (A + B) = A

10. Teoremas de De Morgan

$$\bullet \quad (\overline{A \cdot B}) = \overline{A} + \overline{B}$$

$$\bullet \qquad (\overline{\mathsf{A} + \mathsf{B}}) = \overline{\mathsf{A}} \cdot \overline{\mathsf{B}}$$

De Morgan: matemático que propôs a simplificação de expressões em álgebra booleana. Define regras usadas para converter operações lógicas OR em AND e vice-versa

Universalidade da porta NAND

- Por que $\overline{A \cdot A} = \overline{A}$
- Por que $\overline{A} \overline{B} = A + B$

3. Teorema da Idempotência

- A + A = A
- $\bullet \quad A \cdot A = A$

10. Teoremas de De Morgan

- $\bullet \quad \overline{A \cdot B} = \overline{A} + \overline{B}$
- $\bullet \quad \overline{A + B} = \overline{A} \cdot \overline{B}$
- 5. Teorema da Involução (Dupla Negação)
 - $\overline{A} = A$

Universalidade da porta NAND

 Exemplo: Dada a Tabela Verdade, desenhar o diagrama com portas NAND somente

	S	В	Α
\rightarrow $\overline{A}.\overline{B}$	1	0	0
	0	1	0
	0	0	1
A.B	1	1	1

$$S = \overline{A}.\overline{B} + A.B$$

$$S = \overline{A}.\overline{B} + A.B$$
depois de aplicar de morgan

10

incluir

negação

Universalidade da porta NAND

• Exemplo:

$$S = (\overline{\overline{A}.\overline{B}}).(\overline{A.B})$$

Universalidade da porta NOR

Universalidade da porta NOR

 Exemplo: Dada a Tabela Verdade, desenhar o diagrama com portas NOR

Α	В	S	
0	0	1	\rightarrow $\overline{A}.\overline{B}$
0	1	0	
1	0	0	
1	1	1	A.B

Universalidade da porta NOR

 Exercício: Determine a expressão booleana e construa um circuito somente com portas NAND

 Exercício: Determine a expressão booleana e construa um circuito somente com portas NOR

- Além das portas NAND e NOR temos também outras portas lógicas avançadas, como por exemplo, as portas:
 - XOR (OR exclusivo) e
 - XNOR (coincidência)

Porta XOR (OR Exclusivo)

- Essa porta produz uma saída em nível ALTO (1) sempre que as duas entradas estiverem em níveis opostos
- Circuito da A porta XOR:

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	0

Porta XOR (OR Exclusivo)

Símbolo da porta XOR e da operação na expressão booleana

Porta XNOR (Coincidência)

- Essa porta produz uma saída em nível ALTO (1) sempre que as duas entradas coincidirem
- Circuito da porta XNOR:

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	1

Porta XNOR (Coincidência)

Símbolo da porta XNOR e da operação na expressão booleana

- Exercício: Projete um circuito que produza uma saída em nível ALTO só quando todas as três entradas do projeto estiverem no mesmo nível
 - Faça a Tabela Verdade para obter a expressão booleana
 - Faça o projeto com portas AND, OR, NOT
 - Faça o projeto considerando o uso de portas NAND somente
 - Faça o projeto considerando somente uso das portas XOR e/ou XNOR

Exercícios para entrega

Exercício 01: Determine as condições de entrada necessárias para gerar uma saída x = 1 no circuito abaixo. Exiba a Tabela Verdade.

Exercícios para entrega

Exercício 02: A porta *NOR* é universal, ou seja, é possível criar um circuito que represente qualquer lógica combinatória utilizando apenas esta porta. Assim, resolva os exercícios abaixo:

- a) Crie um circuito que representa a operação XOR, apenas utilizando Portas NOR. Exiba a Tabela Verdade do circuito criado;
- b) Crie um circuito que representa a operação XNOR, apenas utilizando Portas NOR. Exiba a Tabela Verdade do circuito criado.

Exercícios para entrega

Exercício 03: Construa um circuito somente com portas NAND

a)
$$S = \overline{ABC} + \overline{ABC} + AB\overline{C}$$

b)
$$S = \overline{AB} + \overline{ACD} + \overline{BCD}$$

Exercícios para entrega

Exercício 04: Construa um circuito somente com portas NOR

a)
$$S = \overline{ABC} + \overline{ABC} + AB\overline{C}$$

b)
$$S = \overline{AB} + \overline{ACD} + \overline{BCD}$$

c)
$$S = (\overline{A} + B + \overline{C}). (\overline{A} + \overline{B} + C)$$

Exercícios para entrega

Exercício 05: Determine a expressão booleana e construa um circuito somente com portas *NAND*

Exercícios para entrega

Exercício 06: Determine a expressão booleana e construa um circuito somente com portas *NAND*

