

Budapest University of Technology and Economics Department of Electron Devices

Diode characteristics

- Forward and reverse mode operation
- Ideal characteristic
- Secondary effects

Forward operation of the diode

- Effect of forward (positive) U
 - Potential step decreases so as the electric field in the space charge region
 - ► Current balance disrupted: diffusion current became dominant, e⁻ diffusion from the n to the p region
- Majority carriers injected to the other side by diffusion

- ▶ e⁻ accumultion in the p region near the junction
- ▶ Diffusion carrier appear within the L_D distance (10um)

Forward operation of the diode

- Diffusion carrier accumulation:
 - grad(n) decreases along the depleted region → e⁻ current decreaeses in the depleted region
 - grad(n) in the p region → e⁻ that got though the junction moves further away (diff. current) from the junction towards the contact

- Diffusion carriers increase still the two current become equal
- This balanced current determines the current of the PN junciton!

Forward operation of the diode

- ► The role of the e⁻ current is taken over by the holes in the p region!
- Wide base structure
 - ► Every e⁻ that got through the junction and recombinates in the p region
- Narrow base structure
 - The thickness of p region is smaller than the diffusion lenght → only a part of the e-s recombination
- No difference in the (current) conduction!
- Electric field moves the holes from the contact to the PN junction
 - Small part of the foward voltage is dropped here

Reverse operation of the diode

- Effect of reverse (negative) U
 - Potential step increases so as the electric field in the space charge region
 - Current balance disrupted: drift current became dominant, e- drift from the p to the n region
- ▶ Drift of the minority carriers on both sides towards the other region!

- ► e⁻ concentration decreases in the p region near the junction
- PN junction behaves as a sink for the minority carriers!

Reverse operation of the diode

- Reverse current is determined by the carrier generation rate
 - ► e⁻ "supply" in the p region is determined by the generation rate.
 - ~10¹⁰...10¹² carrier/s/cm³ in Si **SLOW**
 - ▶ In the range of nA!

- ► I_R- is not affected by the U_R!
- Generation is not affected by the E in the junction!
- + Generation is a secondary effect!

Reminder – Diffusion eq.

$$\frac{dn}{dt} = \mu_n \operatorname{div}(n\overline{E}) + D_n \operatorname{divgrad} n + g_n - \frac{n}{\tau_n}$$

$$0 = D_n \frac{d^2 n}{dx^2} + \frac{n_0}{\tau_n} - \frac{n}{\tau_n}$$

$$n(x) = n_0 + (n_e - n_0) \exp(-x/\sqrt{D_n \tau_n})$$

$$L_n = \sqrt{D_n \tau_n}$$

 N_a

The ideal diode characteristic

$$n(x) = n_p + (n_0 - n_p) \exp(-x/L_n)$$

$$n_0 = n_p \exp\left(\frac{U}{U_T}\right)$$

$$J_{n}(x) = -qD_{n} \frac{dn}{dx} = -qD_{n}(n_{0} - n_{p}) \exp(-x/L_{n}) \left(\frac{-1}{L_{n}}\right)$$

$$\left|J_n\right|_{x=0} = \frac{qD_n}{L_n}(n_0 - n_p) = \frac{qD_nn_p}{L_n}\left(\exp(U/U_T) - 1\right) \left[n_0 = n_p \exp\left(\frac{q \cdot U}{k \cdot T}\right) = n_p \exp\left(\frac{U}{U_T}\right)\right]$$

$$n_0 = n_p \exp\left(\frac{q \cdot U}{k \cdot T}\right) = n_p \exp\left(\frac{U}{U_T}\right)$$

$$J_p = \frac{qD_p p_n}{L_p} (\exp(U/U_T) - 1)$$

$$I = A(J_n + J_p)$$

The ideal diode characteristic

$$J_n\big|_{x=0} = \frac{qD_n n_p}{L_n} \left(\exp(U/U_T) - 1\right)$$

$$I = I_0 \left(\exp(U/U_T) - 1 \right)$$

$$J_p = \frac{qD_p p_n}{L_p} (\exp(U/U_T) - 1)$$

 I_0 is proportional with the minority carrier concentrations

$$I = A(J_n + J_p)$$

$$I = Aq \left(\frac{D_n n_p}{L_n} + \frac{D_p p_n}{L_p} \right) (\exp(U/U_T) - 1)$$

The ideal diode characteristic

$$I = I_0 \left(\exp(U/U_T) - 1 \right)$$

$$U = U_T \ln(I/I_0 + 1)$$

Problem

Saturation current of Si diode: $I_0=10^{-13}$ A. What is U_F , if I_F is 10 mA?

$$U \cong 0.026 \cdot \ln(10^{-2} / 10^{-13}) = 0.658 \ V$$

Problem

How much should we increase the forward voltage if we want to increase the current 10x?

$$\Delta U = U_2 - U_1 \cong U_T \left(\ln(I_2 / I_0) - \ln(I_1 / I_0) \right) = U_T \ln(I_2 / I_1)$$

$$\Delta U = 0.026 \cdot \ln 10 \cong 0.06 V = 60 \, mV$$

Series resistance

Generation current

Breakdown phenomena (a bit later)

Recombination current (just mention)

The series resistance

Appears at high current levels. Reason:

Solution: epitaxial structure

Forward characteristics $I_F = f(V_F)$

The series resistance

Calculate the series resistance according to the 100°C characteristic!

$$\Delta U = 160 \ mV$$

$$I = 200 \ mA$$

$$r_{\rm s} = 160 / 200 = 0.8 \Omega$$

Forward characteristics $I_F = f(V_F)$

The generation current

In reverse region, in theory:

$$I = I_0 \left(\exp(U/U_T) - 1 \right) \Longrightarrow -I_0$$

that would result in pA only

The experince is:

$$g = \frac{n_i}{2\tau}$$

$$I_R = const \cdot n_i \sqrt{-U_R}$$

Reverse characteristics

The recombination current

Phenomenon appearing in the forward region

$$I_{Rec} \approx const \cdot n_i \cdot \exp(U / 2U_T)$$

Can be well described by the Shockley-Read-Hall model for semiconductors with indirect band

$$I = I_0 \left(\exp(U / mU_T) - 1 \right) = -I_0$$

m: non-ideality factor, between 1..2

- Space charge capacitance
- Diffusion capacitance

Space charge capacitance

dominates in the reverse region

Interpretation as a differential at a given forward voltage/current

Diffusion capacitance

in forward region only

$$C = \frac{dQ}{dU}$$

The space charge capacitance

$$S_p = \sqrt{\frac{2\varepsilon}{qN_a}} \sqrt{U_D - U}$$

Charge

$$C_{Sp} = \frac{const}{\sqrt{U_D - U}}$$

$$C_{Sp} = \varepsilon \frac{A}{S} = \varepsilon A \sqrt{\frac{qN_a}{2\varepsilon}} \frac{1}{\sqrt{U_D - U}} = A \sqrt{\frac{q\varepsilon N_a}{2}} \frac{1}{\sqrt{U_D - U}}$$

The diffusion capacitance

Where are the opposite charges?

The diffusion capacitance

$$Q_D = I\tau_{n(p)}$$

$$C_D = \frac{dQ_D}{dU} = \frac{dQ_D}{dI} \frac{dI}{dU}$$

$$C_D = \tau_{n(p)} \frac{1}{r_d} = \tau_{n(p)} \frac{I}{U_T} = const \cdot I$$

$$C_D = const \cdot I$$

Harmful! Slows down the operation.

Reduction: decrease τ, narrow base diode

Let us calculate the space charge capacitance of a Si diode if the width of the depletion layer is 0.33 μm and the cross-sectional area is 0.02 mm²!

$$C_{Sp} = \varepsilon \frac{A}{S} = 11.8 \cdot 8.86 \cdot 10^{-12} \frac{2 \cdot 10^{-8}}{0.33 \cdot 10^{-6}} = 6.34 \cdot 10^{-12} F = 6.34 \ pF$$

Let us calculate the diffusion capacitance in the operating point of I=1 mA if τ =100 ns!

$$C_D = \tau \frac{I}{U_T} = 10^{-7} \frac{10^{-3}}{0.026} = 3.85 \cdot 10^{-9} F = 3.85 nF$$

Orders of magnitude:

C_{Sp} 1-10 pF

nF-s

(for a small power diode)

Utilization

C_{Sp} tuning oscillators, microwave amplification

Operating point

- Finding the DC operating point
- Linearization in the operating point, small signal operation
- Differential resistance, capacitance
- Models

The operating point

- Characteristics: defines the current-voltage pairs that may occur during the operation.
- During the real operation the diode or any nonlinear element works in one point of the characteristics, that is the operating point, or quiescent point.
- This is determined also by the surrounding elements.

Finding the operating point

The problem: a linear element and a non-linear element connected in series:

$$I = I(U_D)$$

$$I = (U^+ - U_D)/R$$
 Graphical solution

Finding the operating point

How does the operating point change if the U⁺ supply voltage is increased?

The operating line is shifted in parallel

Finding the operating point

How does the operating line change if we change R?

It turns around point U⁺ - its slope will change

Large signal model of the diode

The computer simulation model also looks like this.

Also needed:

model equations (e.g. $I=I_0(exp(U/U_T)-1)$

model parameters (e.g., I_0 , r_s , etc.)

Linearization in the operating point

For small changes we can <u>linearize</u> the characteristics

Small signal operation of diodes

The operating point

 r_{diff} operating point dependent

Differential resistance of the diode

$$U = U_T \ln(I/I_0 + 1)$$

$$r_d = dU/dI = U_T \frac{1}{I/I_0 + 1} \frac{1}{I_0} = \frac{U_T}{I + I_0}$$

Forward region, $I >> I_0$:

$$r_d = \frac{U_T}{I}$$

If we consider the series resistance as well:

$$r_d = \frac{U_T}{I} + r_s$$

Differential resistance of the diode

Problem

The series resistance of a diode is 2 Ω . Let us calculate its differential resistance in the I=1 mA, 10 mA, 100 mA operating points!

$$r_d\big|_{1mA} = \frac{26}{1} + 2 = 28 \ \Omega$$

$$r_d \big|_{10mA} = \frac{26}{10} + 2 = 4.6 \,\Omega$$

$$r_d \big|_{100mA} = \frac{26}{100} + 2 = 2.26 \ \Omega$$

Small signal model of the diode

Element values are operating point dependent!

 $r_d = \frac{U_T}{I}$ $C_{Sp} = \frac{const}{\sqrt{U_D - U}}$ $C_D = const \cdot I$ Recall:

Temperature dependence

Temperature dependence

- ► The characteristics shows *strong temperature* dependence
- Reason: temperature dependence of the minority carriers
 - Forward voltages: V_F at I_F decreases with about 2mV for 1°C increase
 - linear temperature dependence in a large range → appropriate for temperature measurements
 - Reverse voltages: I_R at U_R decreases with ≈ 7-10% for 1°C

(that means doubling at each 10 °C)

Temperature dependence

Reverese region:

For a Si diode: $I_R \sim n_i \rightarrow \sqrt{1,15} \cong 1,075 \rightarrow 7,5 \% C$

Forward region:

$$U = U_T \ln \frac{I}{I_0} = \frac{kT}{q} \ln \frac{I}{I_0(T)} \qquad \frac{d n_i^2}{n_i^2} = \left(3 + \frac{W_g}{kT}\right) \frac{dT}{T} = \frac{dI_0}{I_0}$$

$$\frac{dU}{dT} = \frac{U}{T} + U_T \frac{I_0}{I} \left(\frac{-I}{I_0^2} \right) \frac{dI_0}{dT} = \frac{U}{T} - U_T \frac{1}{I_0} \frac{dI_0}{dT}$$

$$\frac{dU}{dT} = \frac{U}{T} - U_T \left(3 + \frac{W_g}{kT} \right) \frac{1}{T} = \frac{U - 3U_T - W_g / q}{T}$$

Temperature dependence

Forward region:

$$\frac{dU}{dT} = \frac{U - 3U_T - W_g / q}{T}$$

Problem

If U=700 mV, what is dU/dT for a Si diode?

$$\frac{dU}{dT} = \frac{700 - 3 \cdot 26 - 1120}{300} = -1.66 \ mV / ^{o} C$$

Compare with the characteristics!

Forward characteristics $I_F = f(V_F)$

Temperature dependence

$$\frac{dU}{dT} = \frac{U - 3U_T - W_g / q}{T}$$

In case of a forced current the forward voltage of a pn junction is an excellent temperature sensor...

The sensitivity slightly dependes on the I_O current

The diode in switching mode

Diodes as rectifiers

The diode was considered to be ideal!

What if this is not the case?

Diodes as rectifiers

Diodes as rectifiers

Transient phenomena

Abrupt switching from forward to reverse voltage: due to its capacitances, the diode is open for some time. This is called reverse recovery.

Reverse recovery

Transient behavior of the diode

The diffusion equation:——

We calculate n(x,t) from this

Simplification:

instead of n(x,t)

we calculate with Q(t)

net charge

Transient behavior of the diode

The charge equation

$$Q_D = f(t)$$

$$I = \frac{Q_D}{\tau_{n(p)}} + \frac{dQ_D}{dT}$$

The current is spent on

maintaining recombination depleting/supplying diffusion charge

- Avalanche
- Zener

Reason: either of

Avalanche mechanism

Zener tunneling

Punch-though

Avalanche break-down

$$I_R = M(U_R) \cdot I_{R0}$$

M – multiplication factor

$$M = \frac{1}{1 - \left(\frac{-U}{U_L}\right)^m}$$

U_L depends on the less doped side:

$$U_L \sim N^{-0.7}$$

The Zener effect

Physical reason:

tunneling

$$U_L \sim N^{-1}$$

Comparison of the two phenomena

In case of Si: below 6V – Zener, above this – avalanche.

Application: a Zener-diode

Voltage reference

Voltage stabilizer (at low power consumption)

Temperature dependence of **Zener-diodes**

The best: diodes around 5V

(Si diode)

Operating voltage variation versus junction temperature $\Delta V_Z = f(T_i); I_Z = 5 \text{ mA}$

Practical issues

- Packaging
- Data sheets

Actual realization of diodes

(IC realizations will be discussed later)

1N 4151 (BAY 95), 1N 4154 (BAY 94)

Silicon Epitaxial Planar Low-Capacitance Diodes

for very fast switching applications.

Dimensions in mm

Band: cathode

Case: DO-35

Mass: approx. 0.15 g

Absolute maximum ratings		1N 4151	1N 4154	
Reverse voltage	V_{R}	50	25	V
Peak reverse voltage	V _{RM}	75	35	V
Rectified current ¹	l _o	150		mΑ
Forward current	l _F	200		mΑ
Peak forward current	I _{FM}	450		mΑ
Surge peak forward current?	IFSM	2		Α
Junction temperature	T_I	200		°C
Storage temperature	Τ΄s	<i>–</i> 65 + 200		°C
Total power dissipation	P _{tot} ⁴	44	0	mW
	P _{tot} ⁵	50	0	mW

Forward voltage I _F = 30 mA I _F = 50 mA	V _F ⁶	- 0.88 (≤1)	0.88 (≤1) -	V V
Reverse current $V_R = 25 \text{ V}$ $V_R = 50 \text{ V}$ $V_R = 50 \text{ V}$ $V_R = 25 \text{ V}$, $V_{amb} = 150 ^{\circ}\text{C}$ $V_R = 50 \text{ V}$, $V_{amb} = 150 ^{\circ}\text{C}$	_R 6 _R 6 _R	- 14 (≤50) - ≤50	9 (≤100) - ≤100 -	nΑ nΑ μΑ μΑ
Breakdown voltage ⁶ I _R = 5 μA	$V_{(BR)}$	≥75	≥35	٧

Dynamic characteristics

$T_{amb} = 25^{\circ}C$		1N 4151	1N 4154	
Diode capacitance $V_R = 0 \text{ V}, f = 1 \text{ MHz}, V_{HF} = 50 \text{ mV}$	C _D	1.7 (≤2)	≤4	рF
Reverse recovery time	$rac{t_{rr}^{-1}}{t_{rr}^{-2}}$	≤4 ≤2	≤4 ≤2	ns ns

 $^{^{1}}$ measured at switching from $I_{F} = 10$ mA through $I_{R} = 10$ mA to $I_{R} = 1$ mA

 $^{^{2}}$ measured at switching from I_F = 10 mA through V_R = 6 V to I_R = 1 mA, R_L

Forward characteristics $I_F = f(V_F)$

Reverse characteristics

$$0 \rightarrow 100 \text{ °C}$$

 $6.5 \rightarrow 1200 \text{ nA}$

 $(1200/6.5)^0.01=1.054$

5.4 %/°C

Reverse current versus ambient temperature

 $I_R = f(T_{amb})$

 $V_R = 50 \text{ V}$: **1N 4151** $V_R = 25 V: 1N 4154$

Diode capacitance versus reverse voltage $C_D = f(V_R), f = 1 \text{ MHz}$

$$C_D = f(V_R), f = 1 MHz$$

Simulation model of the diode

Large signal, non-linear model of the diode:

Modelling equations are coded in the simulation program!

$$I = I_0 \left(\exp(U / mU_T) - 1 \right)$$

$$C_T = C_{T0} \left(\frac{U_D}{U_D - U} \right)^n$$

$$C_D = I \frac{\tau}{U_T}$$

Modell parameter are from a catalgue file!