Programare logică și funcțională - examen scris -

<u>Notă</u>

- 1. Subiectele se notează astfel: of 1p; A 1.5p; B 2.5p; C 2.5p; D 2.5p.
- 2. Problemele Prolog vor fi rezolvate în SWI Prolog. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare predicat folosit; (3) specificarea fiecărui predicat (semnificația parametrilor, model de flux, tipul predicatului determinist/nedeterminist).
- 3. Problemele Lisp vor fi rezolvate în Common Lisp. Se cere: (1) explicarea codului și a raționamentului; (2) modelul recursiv de rezolvare, pentru fiecare funcție folosită; (3) specificarea fiecărei funcții (semnificația parametrilor).

```
A. Fie următoarea definiție de funcție în LISP

(DEFUN F(L)

(COND

((NULL L) NIL)

((LISTP (CAR L)) (APPEND (F (CAR L)) (F (CDR L)) (CAR (F (CAR L)))))

(T (LIST(CAR L)))

)
```

Rescrieți această definiție pentru a evita dublul apel recursiv **(F (CAR L))**. Nu redefiniți funcția. Nu folosiți SET, SETQ, SETF. Justificați răspunsul.

В.	Dându-se o listă formată din numere întregi și subliste de elementele listei (inclusiv și cele din subliste) formează o : 7, 4], 2, 5, 1] rezultatul va fi true .	numere îr secvență s	ntregi, se o simetrică.	cere un progra De exemplu, p	m SWI-Prolog c entru lista [1, 5	are verifică dacă , [2,4], 7, 11, 2	á toate 5, [11,
	7, 4], 2, 5, 1] rezultatul va fi true .	·					

C. Să se scrie un program PROLOG care generează lista submulțimilor cu **N** elemente, cu elementele unei liste, astfel încât suma elementelor dintr-o submulțime să fie număr par. Se vor scrie modelele matematice și modelele de flux pentru predicatele folosite.

Exemplu- pentru lista L=[1, 3, 4, 2] și N=2 \Rightarrow [[1,3], [2,4]]

D. Un arbore n-ar se reprezintă în LISP astfel (nod subarbore1 subarbore2)
Se cere să se înlocuiască nodurile de pe nivelul **k** din arbore cu o valoare **e** dată. Nivelul rădăcinii se consideră a fi 0. Se va folosi o funcție MAP.

Exemplu pentru arborele (a (b (g)) (c (d (e)) (f))) și **e**=h

- a) k=2 => (a (b (h)) (c (h (e)) (h))) b) k=4 => (a (b (g)) (c (d (e)) (f)))