Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Aufgabe 13.1

In einer Dampfkraftanlage verlässt der Dampf den isobaren Dampferzeuger mit $p_1=60\,\mathrm{bar}$ und $T_1=500\,^\circ\mathrm{C}$. Die reversibel adiabate Expansion führt ins Nassdampfgebiet. Im isobaren Kondensator herrscht ein Dampfdruck von $p_2=0.1\,\mathrm{bar}$. Die Kesselspeisepumpe saugt siedende Flüssigkeit (3) an und fördert diese reversibel adiabat auf den Verdampferdruck (4). Es wird $q_{41}=3225\,\mathrm{kJ/kg}$ Wärme bei einer Mit-

teltemperatur von $T_{\rm m}=244.22\,^{\circ}{\rm C}$ isobar zugeführt. Die Umgebungstemperatur beträgt $T_{\rm a}=20\,^{\circ}{\rm C}.$

- a) Zeichnen Sie den reversiblen Prozess qualitativ richtig in ein T-s-Diagramm ein.
- b) Bestimmen Sie die spezifische Nutzarbeit für den reversiblen Prozess
- c) Bestimmen Sie den thermischen Wirkungsgrad für den reversiblen Prozess
- d) Bestimmen Sie den exergetischen Wirkungsgrad für den reversiblen Prozess

Stoffdaten von Wasser:

$$h_1(T_1 = 500 \,^{\circ}\text{C}, p_1 = 60 \,\text{bar}) = 3423 \,\text{kJ/kg};$$

 $s_1(T_1 = 500 \,^{\circ}\text{C}, p_1 = 60 \,\text{bar}) = 6.8824 \,\text{kJ/(kg K)}$

T	p	h'	h''	s'	s''	v'
$[^{\circ}C]$	[bar]	[kJ/kg]	[kJ/kg]	[kJ/(kg K)]	[kJ/(kg K)]	$[dm^3/kg]$
45.81	0.100	191.81	2583.9	0.649 24	8.148 75	1.0103

Kritischer Punkt: $T_c = 373, 9^{\circ}\text{C}$; $p_c = 220.64 \,\text{bar}$; $v_c = 0.003 \,106 \,\text{m}^3/\text{kg}$

Thermc
Prof. Dr.-Ing. habil. Jadran Vrabe

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Aufgabe 13.2

Überhitzter Wasserdampf strömt in eine Turbine mit $p_1 = 100$ bar und $T_1 = 550$ °C. Der Dampf expandiert reversibel adiabat auf $p_2 = 10$ bar und wird dann in einem Zwischenüberhitzer isobar auf $T_3 = 500$ °C erwärmt. In der zweiten Turbinenstufe expandiert der Dampf ebenfalls reversibel adiabat weiter ins Nassdampfgebiet auf $p_4 = 0.08$ bar. Anschließend wird isobar Wärme abgeführt. Die Kesselspeisepumpe saugt siedende Flüssigkeit an und fördert diese adiabat auf den Verdampferdruck p_6 . Die Wärmezufuhr im Überhitzer \dot{Q}_{61} erfolgt isobar.

Das flüssige Wasser ist inkompressibel $(v = v'(41.51 \,^{\circ}\text{C}) = 1.0085 \,\text{dm}^{3}/\text{kg}).$

- a) Bestimmen Sie die spezifische Arbeit der beiden Turbinenstufen, den thermischen Wirkungsgrad und den Dampfgehalt am Austritt der zweiten Turbine.
- b) Wie verändern sich die Enthalpie und die Temperatur am Austritt der zweiten Turbinenstufe, wenn die Expansion mit einem isentropen Wirkungsgrad von $\eta_{s,T,34}=85\,\%$ verläuft?

Stoffdaten von Wasser:

T [°C]	p [bar]	h' [kJ/kg]	h'' [kJ/kg]	s' [kJ/(kg K)]	s'' [kJ/(kg K)]				
179.88	10.00	762.52	2777.1	2.13806	6.58502				
41.51	0.08	173.85	2576.2	0.59251	8.22730				
			h [kJ/kg]		s [kJ/(kg K)]				
45.00	0.08		2582.9		8.2486				
50.00	0.08		2592.5		8.3079				
210	10.00		2852.2		6.7456				
220	10.00		2875.5		6.7934				
500	10.00		3479.0		7.7640				
550	100.00		3501.9		6.7584				