Heart Attack Risk Prediction

This project aims to predict the risk of heart attacks based on various health and lifestyle factors using machine learning techniques. We preprocess the data, explore patterns, and build predictive models to analyze and identify key contributors to heart health.

Data Loading and Exploration

In this section, we load the dataset and explore its structure, including the size, sample records, and overall statistics.

```
In [2]: # Import all the tools we need
      # Regular EDA (Exploratory data analysis) and plotting libaries
       import numpy as np
       import pandas as pd
       import matplotlib.pyplot as plt
       import seaborn as sns
      # This will make all plots appear inside the notebook
      #%matplotlib inline
      # Data Preprocessing
       from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, LabelEncoder
       from sklearn.preprocessing import MinMaxScaler
       from sklearn.pipeline import Pipeline
       # Models from Scikit-Learn
       from sklearn.linear_model import LogisticRegression
       from sklearn.neighbors import KNeighborsClassifier
       from sklearn.ensemble import RandomForestClassifier
      # Model Evaluations
       from sklearn.model_selection import train_test_split, cross_val_score
       from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
       from sklearn.metrics import confusion_matrix, classification_report
       from sklearn.metrics import precision_score, accuracy_score, recall_score, f1_score
       from sklearn.metrics import RocCurveDisplay, roc_curve, roc_auc_score, auc
       heart_risk_load_df = pd.read_csv(r'heart_attack_prediction_dataset.csv')
       heart_risk_load_df.shape
       heart_risk_load_df.sample(5)
      # Let us find out how many of each class is present
       heart_risk_load_df['Heart Attack Risk'].value_counts()
       heart_risk_load_df.info()
      <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 8763 entries, 0 to 8762
     Data columns (total 26 columns):
      # Column
                                        Non-Null Count Dtype
      ---
                                        -----
                                        8763 non-null object
      0 Patient ID
      1 Age
                                        8763 non-null int64
      2 Sex
                                        8763 non-null object
                                        8763 non-null int64
      3 Cholesterol
                                        8763 non-null object
      4 Blood Pressure
                                        8763 non-null int64
      5 Heart Rate
                                        8763 non-null int64
      6 Diabetes
                                        8763 non-null int64
      7 Family History
                                        8763 non-null int64
      8 Smoking
                                        8763 non-null int64
      9 Obesity
      10 Alcohol Consumption
                                        8763 non-null int64
      11 Exercise Hours Per Week
                                        8763 non-null float64
                                        8763 non-null object
      12 Diet
      13 Previous Heart Problems
                                        8763 non-null int64
      14 Medication Use
                                        8763 non-null int64
                                        8763 non-null int64
      15 Stress Level
      16 Sedentary Hours Per Day
                                        8763 non-null float64
      17 Income
                                        8763 non-null int64
                                        8763 non-null float64
      18 BMI
      19 Triglycerides
                                        8763 non-null int64
      20 Physical Activity Days Per Week 8763 non-null int64
                                        8763 non-null int64
      21 Sleep Hours Per Day
                                        8763 non-null object
      22 Country
                                        8763 non-null object
      23 Continent
                                        8763 non-null object
      24 Hemisphere
      25 Heart Attack Risk
                                        8763 non-null int64
```

Exploratory Data Analysis (EDA)

dtypes: float64(3), int64(16), object(7)

Here, we perform visual and statistical analysis to understand the data distribution and relationships between features, including:

- Distribution of age groups
- Heart disease risk by gender

memory usage: 1.7+ MB

Country-wise and continent-wise risk distribution

```
In [3]: # Create a plot of crosstab
pd.crosstab(heart_risk_load_df['Heart Attack Risk'], heart_risk_load_df['Sex']).plot(kind='bar',
    figsize=(10, 6),
    color=['salmon', 'lightblue'])
    plt.title('Heart disease risk by Sex')
    plt.xlabel('0 = No Heart Disease Risk, 1 = Heart Disease Risk')
    plt.ylabel('Number of patients')
    plt.xticks(rotation=0)
```

Out[3]: (array([0, 1]), [Text(0, 0, '0'), Text(1, 0, '1')])

Out[4]: <Axes: ylabel='Frequency'>

In [5]: heart_risk_load_df['Country'].value_counts().plot.bar()

Out[5]: <Axes: xlabel='Country'>

In [7]: import matplotlib.pyplot as plt

plt.show()

```
# تغيلية "بيانات تغيلية"

countries = ['Argentina', 'France', 'Canada']

male = [20, 15, 30]

female = [25, 30, 20]

# الشكل |

fig, ax = plt.subplots()

ax.bar(countries, male, label='Male', alpha=0.7)

ax.bar(countries, female, label='Female', alpha=0.7, bottom=male)

# تسمية المحاور والعنوان

ax.set_title('Heart disease risk by Sex')

ax.set_xlabel('Country')

ax.set_ylabel('Frequency')

# كاضافة وسيلة إيضاح |

ax.legend()

# عرض الرسم البياني |
```

Heart disease risk by Sex

In [8]: # Create a plot of crosstab for continent pd.crosstab(heart_risk_load_df['Heart Attack Risk'], heart_risk_load_df['Continent']).plot(kind='bar', figsize=(10, 6), color=['salmon', 'lightblue', 'Yellow', 'Violet', 'Green', 'Orange']) plt.title('Heart disease risk by Continent') plt.xlabel('0 = No Heart Disease Risk, 1 = Heart Disease Risk') plt.ylabel('Number of patients') plt.xticks(rotation=0)

Out[8]: (array([0, 1]), [Text(0, 0, '0'), Text(1, 0, '1')])

Data Preprocessing

We clean the data and transform categorical and numerical features. This includes:

- Grouping age into meaningful categories.
- Categorizing physical activity levels.
- Encoding income levels and other categorical features.

In [10]: heart_risk_load_analyzed_df = pd.read_csv(r'heart_attack_prediction_dataset.csv')

```
def group_age(age):
```

This function will group people with in a range into groups. age - age of the person, integer returns below groups Babies - 0-2 Young Adult - 3-39 Middle-aged Adult 40-59 Senior - 60-99 **if** age <= 2: return 'Baby' if age > 2 and age < 40:</pre> return 'Young Adult' **if** age >= 40 **and** age < 60: return 'Middle-aged Adult' **if** age >= 60: return 'Senior'

heart_risk_load_analyzed_df['Age Group'] = heart_risk_load_analyzed_df['Age'].apply(group_age) heart_risk_load_analyzed_df.drop(columns=['Age'], inplace=True) heart_risk_load_analyzed_df

t[10]:	P	atient ID	Sex	Cholesterol	Blood Pressure	Heart Rate	Diabetes	Family History	y Smoking	Obesity	Alcohol Consumption .	Income	ВМІ	Triglycerides	Physical Activity Days Per Week	Sleep Hours Per Da	y Cour	try Contin	ent Hemisphere	Heart Attack Risk	Age Group
	0 B	3MW7812	Male	208	158/88	72	0	(0 1	0	0 .	261404	31.251233	286	0		6 Argen	ina South Ame	rica Southern Hemisphere	0	Senior
	1	CZE1114	Male	389	165/93	98	1	1	1 1	1	1 .	285768	27.194973	235	1		7 Can	ada North Ame	rica Northern Hemisphere	0	Young Adult
	2	BN19906	Female	324	174/99	72	1	(0 0	0	0 .	235282	28.176571	587	4		4 Fra	nce Euro	ppe Northern Hemisphere	0	Young Adult
	3	JLN3497	Male	383	163/100	73	1	1	1 1	0	1 .	125640	36.464704	378	3		4 Can	ada North Ame	rica Northern Hemisphere	0	Senior
	4	GFO8847	Male	318	91/88	93	1	1	1 1	1	0 .	160555	21.809144	231	1		5 Thail	and A	asia Northern Hemisphere	0	Senior
8	758	MSV9918	Male	121	94/76	61	1	1	1 1	0	1 .	235420	19.655895	67	7		7 Thail	and A	asia Northern Hemisphere	0	Senior
8	759	QSV6764	Female	120	157/102	73	1	(0 0	1	0 .	217881	23.993866	617	4		9 Can	ada North Ame	rica Northern Hemisphere	0	Young Adult
8	760	XKA5925	Male	250	161/75	105	0	1	1 1	1	1 .	36998	35.406146	527	4		4 B	azil South Ame	rica Southern Hemisphere	1	Middle-aged Adult
8	761	EPE6801	Male	178	119/67	60	1	(0 1	0	0 .	209943	27.294020	114	2		8 B	azil South Ame	rica Southern Hemisphere	0	Young Adult
8	762	ZWN9666	Female	356	138/67	75	1	1	1 0	0	1 .	247338	32.914151	180	7		4 United Kingo	om Euro	ppe Northern Hemisphere	1	Young Adult

8763 rows × 26 columns

In [11]: def physical_activity_group(exercisehoursperweek):

This function groups people by number of hours or exercise per week Input: exercisehoursperweek - float Physical activity group. Low activity <2hours Normal activity 2-3 High activity > 3 if exercisehoursperweek < 2.0:</pre> return 'Low activity' if exercisehoursperweek >= 2.0 and exercisehoursperweek <= 3.0:</pre> return 'Normal activity' if exercisehoursperweek > 3.0: return 'High activity'

heart_risk_load_analyzed_df['Physical Activity Group'] = heart_risk_load_analyzed_df['Exercise Hours Per Week'].apply(physical_activity_group) heart_risk_load_analyzed_df.drop(columns=['Exercise Hours Per Week'], inplace=True)

heart_risk_load_analyzed_df

Out[11]:	Patient ID	Sex	Cholesterol B	lood Pressure	Heart Rate D	Diabetes I	Family History	Smoking	Obesity	Alcohol Consumption	. BMI	l Triglycerides P	Physical Activity Days Per Week	Sleep Hours Per Day	Country	Continent	Hemisphere H	eart Attack Risk	Age Group P	hysical Activity Group
	0 BMW7812	Male	208	158/88	72	0	0	1	0	0	. 31.251233	3 286	0) 6	. Argentina	South America	Southern Hemisphere	0	Senior	High activity
	1 CZE1114	Male	389	165/93	98	1	1	1	1	1	. 27.194973	3 235	1	7	. Canada	North America	Northern Hemisphere	0	Young Adult	Low activity
	2 BNI9906	Female	324	174/99	72	1	0	0	0	0	. 28.176571	1 587	4	. 4	France	Europe	Northern Hemisphere	0	Young Adult	Normal activity
	3 JLN3497	Male	383	163/100	73	1	1	1	0	1	. 36.464704	378	3	4	Canada	North America	Northern Hemisphere	0	Senior	High activity
	4 GFO8847	Male	318	91/88	93	1	1	1	1	0	. 21.809144	1 231	1	5	Thailanc	Asia	Northern Hemisphere	0	Senior	High activity
	•••				•••		•••									•••				
	8758 MSV9918	Male	121	94/76	61	1	1	1	0	1	. 19.655895	67	7	7	' Thailanc	Asia	Northern Hemisphere	0	Senior	High activity
	8759 QSV6764	Female	120	157/102	73	1	0	0	1	0	. 23.993866	617	4	9	Canada	North America	Northern Hemisphere	0	Young Adult	High activity
	8760 XKA5925	Male	250	161/75	105	0	1	1	1	1	. 35.406146	5 527	4	. 4	Brazi	South America	Southern Hemisphere	1 Mi	ddle-aged Adult	High activity
	8761 EPE6801	Male	178	119/67	60	1	0	1	0	0	. 27.294020) 114	2	. 8	Brazi	South America	Southern Hemisphere	0	Young Adult	High activity
	8762 ZWN9666	Female	356	138/67	75	1	1	0	0	1	. 32.914151	I 180	7	, 4	United Kingdom	Europe	Northern Hemisphere	1	Young Adult	High activity

8763 rows × 26 columns

In [12]: def income_group(income):

This function breaks income into groups
Break them into groups.
Low-income ♥5K
Mid-income <105K
High-income > 105K

if income < 35000:

return 'Low-income'
if income >= 35000 and income < 105000:</pre>

return 'Mid-income'
if income > 105000:
 return 'High-income'

heart_risk_load_analyzed_df['Income Group'] = heart_risk_load_analyzed_df['Income'].apply(income_group)

heart_risk_load_analyzed_df.drop(columns=['Income'], inplace=True)

heart_risk_load_analyzed_df

Out[12]: Patient ID Sex Chol

[12]:	Pat	ient ID	Sex	Cholesterol	Blood Pressure	Heart Rate	Diabete	es Family	y History Smo	king (Obesity <i>i</i>	Alcohol Consumption	. Triglycerides	Physical Activity Days Per We	eek Sleep Hours Per D	Day	Country	Continen	t Hemisphere	Heart Attack Risk	Age Group	Physical Activity Group	Income Group
	0 BM	W7812	Male	208	158/88	72		0	0	1	0	0	. 286		0	6 A	rgentina	South America	Southern Hemisphere	0	Senior	High activity	High-income
	1 C	ZE1114	Male	389	165/93	98	}	1	1	1	1	1	. 235		1	7	Canada	North Americ	Northern Hemisphere	0	Young Adult	Low activity	High-income
	2 B	NI9906	Female	324	174/99	72		1	0	0	0	0	. 587		4	4	France	Europ	e Northern Hemisphere	0	Young Adult	Normal activity	High-income
	3 JI	LN3497	Male	383	163/100	73		1	1	1	0	1	. 378		3	4	Canada	North America	Northern Hemisphere	0	Senior	High activity	High-income
	4 GI	FO8847	Male	318	91/88	93		1	1	1	1	0	. 231		1	5	Thailand	Asi	Northern Hemisphere	0	Senior	High activity	High-income
8	758 M	SV9918	Male	121	94/76	61		1	1	1	0	1	. 67		7	7	Thailand	Asi	Northern Hemisphere	0	Senior	High activity	High-income
8	759 Q	SV6764	Female	120	157/102	73		1	0	0	1	0	. 617		4	9	Canada	North America	Northern Hemisphere	0	Young Adult	High activity	High-income
8	760 XI	KA5925	Male	250	161/75	105		0	1	1	1	1	. 527		4	4	Brazil	South America	Southern Hemisphere	1	Middle-aged Adult	High activity	Mid-income
8	761 E	PE6801	Male	178	119/67	60		1	0	1	0	0	. 114		2	8	Brazil	South America	Southern Hemisphere	0	Young Adult	High activity	High-income
8	762 ZW	/N9666	Female	356	138/67	75		1	1	0	0	1	. 180		7	4 United	Kingdom	Europe	e Northern Hemisphere	1	Young Adult	High activity	High-income

8763 rows × 26 columns

In [13]: def bmi_group(bmi):

This function will group the patients based on the BMI

Break into groups.
Underweight < 18.5
Normal 18.5-25

Overweight 25-30 Obese >30

if bmi >= 18.5 and bmi < 25:
 return 'Normal'</pre>

if bmi >= 25 **and** bmi < 30:

return 'Overweight'
if bmi > 30:
 return 'Obese'

heart_risk_load_analyzed_df['BMI Group'] = heart_risk_load_analyzed_df['BMI'].apply(income_group)
heart_risk_load_analyzed_df_dron(columns=['BMI']_inplace=True)

heart_risk_load_analyzed_df.drop(columns=['BMI'], inplace=True)
heart_risk_load_analyzed_df

Patient ID Sex Cholesterol Blood Pressure Heart Rate Diabetes Family History Smoking Obesity Alcohol Consumption ... Physical Activity Days Per Week Sleep Hours Per Day Continent Hemisphere Heart Attack Risk Age Group Physical Activity Group Income Group BMI Group 0 158/88 72 **0** BMW7812 Male 208 1 0 ... Argentina South America Southern Hemisphere Senior High activity High-income Low-income **1** CZE1114 Male 165/93 Canada North America Northern Hemisphere Young Adult Low activity High-income Low-income **2** BNI9906 Female 174/99 72 0 0 ... France Europe Northern Hemisphere Young Adult Normal activity High-income Low-income **3** JLN3497 Male 73 383 163/100 1 1 0 Canada North America Northern Hemisphere Senior High activity High-income Low-income **4** GFO8847 Male 91/88 93 1 1 1 0 ... Thailand Asia Northern Hemisphere Senior High activity High-income Low-income ••• **8758** MSV9918 Male 1 ... Thailand Asia Northern Hemisphere Senior High activity High-income Low-income 120 **8759** QSV6764 Female 157/102 73 0 1 0 ... Canada North America Northern Hemisphere Young Adult High activity High-income Low-income **8760** XKA5925 Male 250 161/75 105 1 ... Brazil South America Southern Hemisphere Middle-aged Adult High activity Mid-income Low-income 178 119/67 **8761** EPE6801 Male 1 0 0 ... Brazil South America Southern Hemisphere 0 Young Adult High activity High-income Low-income **8762** ZWN9666 Female 356 138/67 75 0 4 United Kingdom Europe Northern Hemisphere Young Adult High activity High-income Low-income

8763 rows × 26 columns

In [14]: # Instaniate OrdinalEncoder

diet_ordinal_encoder = OrdinalEncoder()
Fit the encoder

diet_ordinal_encoder.fit(np.asarray(heart_risk_load_analyzed_df['Diet']).reshape(-1,1))

#Transform the dataset

heart_risk_load_analyzed_df['Diet Encoded'] = diet_ordinal_encoder.transform(np.asarray(heart_risk_load_analyzed_df['Diet']).reshape(-1,1))
heart_risk_load_analyzed_df.drop(columns=['Diet'], inplace=True)

heart_risk_load_analyzed_df

out[14]:		Patient ID	Sex	Cholesterol	Blood Pressure	Heart Rate	Diabetes	Family History	Smoking	Obesity A	lcohol Consumption Sleep Hou	ırs Per Day	Country	Continent	Hemisphere	Heart Attack Risk	Age Group	Physical Activity Group	ncome Group BMI Group	Diet Encoded
	0	BMW7812	Male	208	158/88	72	0	0	1	0	0	6	Argentina	South America	Southern Hemisphere	0	Senior	High activity	High-income Low-income	0.0
	1	CZE1114	Male	389	165/93	98	1	1	1	1	1	7	Canada	North America	Northern Hemisphere	0	Young Adult	Low activity	High-income Low-income	2.0
	2	BNI9906	Female	324	174/99	72	1	0	0	0	0	4	France	Europe	Northern Hemisphere	0	Young Adult	Normal activity	High-income Low-income	1.0
	3	JLN3497	Male	383	163/100	73	1	1	1	0	1	4	Canada	North America	Northern Hemisphere	0	Senior	High activity	High-income Low-income	0.0
	4	GFO8847	Male	318	91/88	93	1	1	1	1	0	5	Thailand	Asia	Northern Hemisphere	0	Senior	High activity	High-income Low-income	2.0
	•••																			
;	8758	MSV9918	Male	121	94/76	61	1	1	1	0	1	7	Thailand	Asia	Northern Hemisphere	0	Senior	High activity	High-income Low-income	1.0
	8759	QSV6764	Female	120	157/102	73	1	0	0	1	0	9	Canada	North America	Northern Hemisphere	0	Young Adult	High activity	High-income Low-income	1.0
	8760	XKA5925	Male	250	161/75	105	0	1	1	1	1	4	Brazil	South America	Southern Hemisphere	1	Middle-aged Adult	High activity	Mid-income Low-income	0.0
1	8761	EPE6801	Male	178	119/67	60	1	0	1	0	0	8	Brazil	South America	Southern Hemisphere	0	Young Adult	High activity	High-income Low-income	2.0
	8762	ZWN9666	Female	356	138/67	75	1	1	0	0	1	4 Uni	ted Kingdom	Europe	Northern Hemisphere	1	Young Adult	High activity	High-income Low-income	1.0

8763 rows × 26 columns

heart_risk_load_analyzed_df

In [15]: # We can apply label encoder on the dataframe itself like below # Define categorical columns and apply label encoder using pipeline cat_columns = ['Sex', 'Hemisphere', 'Age Group', 'Physical Activity Group', 'Income Group', 'BMI Group'] #cat_columns = ['Sex', 'Hemisphere'] heart_risk_load_analyzed_df[cat_columns] = heart_risk_load_analyzed_df[cat_columns].apply(LabelEncoder().fit_transform) # Create a categorical transformer for either label encoder or onehot encoder # We will try label encoder #cat_transformer = Pipeline(steps=[('lbl_encode', LabelEncoder())])

Out[15]:		Patient ID	Sex Choleste	rol Blood Pro	essure Heart	Rate Diabete	es Family Histo	ory Smoki	ng Obes	ity Alcohol Consum	ption Sleep Hours Per I	Day	Country	Continent	Hemisphere	Heart Attack Risk	Age Group	Physical Activity Group	Income Group	BMI Group	Diet Encoded
	0	BMW7812	1 2	.08	158/88	72	0	0	1	0	0	6	Argentina	South America	1	0	1	0	0	0	0.0
	1	CZE1114	1 3	89 1	165/93	98	1	1	1	1	1	7	Canada	North America	0	0	2	1	0	0	2.0
	2	BNI9906	0 3	24 1	174/99	72	1	0	0	0	0	4	France	Europe	0	0	2	2	0	0	1.0
	3	JLN3497	1 3	83 16	53/100	73	1	1	1	0	1	4	Canada	North America	0	0	1	0	0	0	0.0
	4	GFO8847	1 3	18	91/88	93	1	1	1	1	0	5	Thailand	Asia	0	0	1	0	0	0	2.0
	•••			•••		•••	•••					•••	•••		•••						
	8758	MSV9918	1 1	21	94/76	61	1	1	1	0	1	7	Thailand	Asia	0	0	1	0	0	0	1.0
	8759	QSV6764	0 1	20 15	57/102	73	1	0	0	1	0	9	Canada	North America	0	0	2	0	0	0	1.0
	8760	XKA5925	1 2	50 1	161/75	105	0	1	1	1	1	4	Brazil	South America	1	1	0	0	2	0	0.0
	8761	EPE6801	1 1	78 1	119/67	60	1	0	1	0	0	8	Brazil	South America	1	0	2	0	0	0	2.0
	8762	ZWN9666	0 3	56 1	138/67	75	1	1	0	0	1	4 United	d Kingdom	Europe	0	1	2	0	0	0	1.0

8763 rows × 26 columns

Feature Transformation

In [17]: # Create a function to fit and score models

X_train : training data X_test : testing data y_train : training labels

def get_metrics(model, X_train, X_test, y_train, y_test):

Fits and evaluates given machine learning model. model : Scikit-Learn machine learning model

We apply transformations, such as encoding and scaling, to make the data suitable for machine learning algorithms.

```
In [16]: # set random seed
         np.random.seed(50)
        # Create X and y
        X = heart_risk_load_analyzed_df.drop('Heart Attack Risk', axis=1)
        y = heart_risk_load_analyzed_df['Heart Attack Risk']
        # Split the data
         X_train, X_test, y_train, y_test = train_test_split(X,
        test_size=0.2)
         len(X), len(X_train), len(X_test)
        # Let us scale the data since every in different scale
        # Use MinMaxScaler() and we can do that using pipeline or directly
        # scaler = MinMaxScaler()
        # X_train_scaled = scaler.fit_transform(X_train)
        # X_test_scaled = scaler.transform(X_test) # we dont for for X_test, just only do transform
        # Build Logistic regression classifier using pipeline
         log_reg_model = Pipeline(steps=[
         ('minmaxscaler', MinMaxScaler()),
         ('logisticregression', LogisticRegression())], verbose=True)
        # Build logistic regression classifier using pipeline
        ran_for_model = Pipeline(steps=[
         ('minmaxscaler', MinMaxScaler()),
         ('randomrorestclassifier', RandomForestClassifier())], verbose=True)
        # Build Kneighbor classifier using pipeline
        knn_model = Pipeline(steps=[
         ('minmaxscaler', MinMaxScaler()),
         ('kneighborsclassifier', KNeighborsClassifier())], verbose=True)
```

y_test : test labels # Set random seed np.random.seed(42) # Fit the model to the data model.fit(X_train, y_train) # Get Predictions y_preds = model.predict(X_test) # Evaluate the model and append its score to model_scores #return model.score(X_test, y_test) metric_dict = { 'accuracy_score' : accuracy_score(y_test, y_preds), 'precision_score' : precision_score(y_test, y_preds, average='weighted', labels=np.unique(y_preds)), 'recall_score' : recall_score(y_test, y_preds), 'f1_score' : f1_score(y_test, y_preds), 'roc_auc_score' : roc_auc_score(y_test, y_preds),

Model Building and Training && Model Evaluation

Several machine learning models are built and trained using the transformed dataset, including:

Logistic Regression

return metric_dict

- Random Forest
- K-Nearest Neighbors

Then we evaluate the performance of the models using metrics such as accuracy, precision, recall, and F1 score. The results are compared to identify the best-performing model.

```
In [18]: import pandas as pd
             import numpy as np
             from sklearn.model_selection import train_test_split
             from sklearn.linear_model import LogisticRegression
             from sklearn.ensemble import RandomForestClassifier
             from sklearn.neighbors import KNeighborsClassifier
             from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
             from sklearn.preprocessing import LabelEncoder
             دالة لحساب المقاييس #
              def get_metrics(model, X_train, X_test, y_train, y_test):
                   تقوم بتدريب النموذج على بيانات التدريب
                   وتقييمه باستخدام بيانات الاختبار.
                   model.fit(X_train, y_train)
                   y_preds = model.predict(X_test)
                   metrics = {
                        "Accuracy": accuracy_score(y_test, y_preds),
                         "Precision": precision_score(y_test, y_preds, average='weighted'),
                         "Recall": recall_score(y_test, y_preds, average='weighted'),
                        "F1 Score": f1_score(y_test, y_preds, average='weighted')
                  return metrics
             (حسب بياناتك y و X تأكد من تخصيص المتغير) تحميل البيانات #
             # X: ميزات (Features)
             # y: القيم المستهدفة (Target)
            ملاحظة: هذا مجرد مثال لبيانات وهمية #
            X = pd.read_csv(r'heart_attack_prediction_dataset.csv') # عدّل المسار حسب بياناتك #
            y = X["Heart Attack Risk"] # عدّل العمود حسب بياناتك
            X = X.drop(columns=["Heart Attack Risk", "Patient ID", "Blood Pressure", "Country"]) # إسقاط الأعمدة غير المهمة
             تحويل الأعمدة غير العددية إلى تنسيق رقمي #
             categorical_columns = X.select_dtypes(include=['object']).columns
            X = pd.get_dummies(X, columns=categorical_columns, drop_first=True)
             تقسيم البيانات إلى تدريب واختبار #
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
            التعامل مع القيم المفقودة (إن وجدت) #
             X_train = X_train.fillna(0)
             X_test = X_test.fillna(0)
             تحويل القيم المستهدفة إلى تنسيق رقمي #
             le = LabelEncoder()
            y_train = le.fit_transform(y_train)
            y_test = le.transform(y_test)
             تدريب النماذج #
             log_reg_model = LogisticRegression()
             ran_for_model = RandomForestClassifier(random_state=42)
             knn_model = KNeighborsClassifier()
             حساب الدرجات #
             log_reg_scores = get_metrics(log_reg_model, X_train, X_test, y_train, y_test)
             print("Logistic Regression Scores:", log_reg_scores)
             ran_for_scores = get_metrics(ran_for_model, X_train, X_test, y_train, y_test)
             print("Random Forest Scores:", ran_for_scores)
             knn_scores = get_metrics(knn_model, X_train, X_test, y_train, y_test)
             print("K-Nearest Neighbors Scores:", knn_scores)
           C:\Users\myarn\AppData\Local\Packages\PythonSoftwareFoundation.Python.3.11_qbz5n2kfra8p0\LocalCache\local-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\site-packages\Python311\s
           STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT.
            Increase the number of iterations (max_iter) or scale the data as shown in:
                 https://scikit-learn.org/stable/modules/preprocessing.html
            Please also refer to the documentation for alternative solver options:
                https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
              n_iter_i = _check_optimize_result(
           C:\Users\myarn\AppData\Local\Packages\PythonSoftwareFoundation.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.
             _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
            Logistic Regression Scores: {'Accuracy': 0.6417569880205363, 'Precision': 0.41185203167319073, 'Recall': 0.6417569880205363, 'F1 Score': 0.5017210642968056}
           Random Forest Scores: {'Accuracy': 0.6349115801483172, 'Precision': 0.5341793778017578, 'Recall': 0.6349115801483172, 'F1 Score': 0.511121157875615}
          K-Nearest Neighbors Scores: {'Accuracy': 0.5641756988020536, 'Precision': 0.5369982654681719, 'Recall': 0.5641756988020536, 'F1 Score': 0.5459615185126817}
```

In [19]: ran_for_model.get_params()

```
Out[19]: {'bootstrap': True,
           'ccp_alpha': 0.0,
           'class_weight': None,
           'criterion': 'gini',
           'max_depth': None,
           'max_features': 'sqrt',
           'max_leaf_nodes': None,
           'max_samples': None,
           'min_impurity_decrease': 0.0,
           'min_samples_leaf': 1,
           'min_samples_split': 2,
           'min_weight_fraction_leaf': 0.0,
           'monotonic_cst': None,
           'n_estimators': 100,
           'n_jobs': None,
           'oob_score': False,
           'random_state': 42,
```

'verbose': 0, 'warm_start': False}

Hyperparameter Tuning

Using RandomizedSearchCV, we fine-tune the hyperparameters of the Random Forest model to improve performance.

```
In [24]: from sklearn.model_selection import RandomizedSearchCV
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         from sklearn.compose import ColumnTransformer
         from sklearn.preprocessing import OneHotEncoder
         from sklearn.impute import SimpleImputer
         from sklearn.ensemble import RandomForestClassifier, IsolationForest
         from sklearn.cluster import KMeans
         from sklearn.pipeline import Pipeline
         from sklearn.model_selection import train_test_split, RandomizedSearchCV
         from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, RocCurveDisplay, PrecisionRecallDisplay
         from sklearn.decomposition import PCA
         import joblib
         تحميل البيانات #
         data = pd.read_csv('heart_attack_prediction_dataset.csv')
        y = data["Heart Attack Risk"]
        X = data.drop(columns=["Heart Attack Risk", "Patient ID", "Country"])
        معالجة البيانات (تعبئة القيم المفقودة وترميز النصوص) #
         categorical_columns = ['Blood Pressure', 'Continent']
         numeric_columns = X.select_dtypes(include=['int64', 'float64']).columns.tolist()
```

```
preprocessor = ColumnTransformer(
      transformers=[
           ('num', SimpleImputer(strategy='mean'), numeric_columns),
           ('cat', OneHotEncoder(handle_unknown='ignore'), categorical_columns)
  تقسيم البيانات #
  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
  # RandomizedSearchCV نموذج الغابة العشوائية مع
   ran_for_model = RandomForestClassifier(random_state=42)
   param_grid = {
      'n_estimators': [50, 100],
       'max_depth': [None, 10, 20],
       'min_samples_split': [2, 4],
       'min_samples_leaf': [1, 2]
   random_search = RandomizedSearchCV(
      estimator=ran_for_model,
      param_distributions=param_grid,
      n_iter=5,
      cv=3,
       verbose=2,
      random_state=42,
      scoring='accuracy'
   Pipeline بناء #
   pipeline = Pipeline(steps=[
      ('preprocessor', preprocessor),
      ('pca', PCA(n_components=10)),
      ('randomforestclassifier', random_search)
  تدريب النموذج #
  تدريب النموذج #
   pipeline.fit(X_train, y_train)
  لتقييم الأداء بدلاً من التعامل مع النموذج مباشرة Pipeline استخدام الـ #
  y_preds = pipeline.predict(X_test)
  print("Model Performance:")
  print(f"Accuracy: {accuracy_score(y_test, y_preds)}")
   print(f"Precision: {precision_score(y_test, y_preds, average='weighted')}")
   print(f"Recall: {recall_score(y_test, y_preds, average='weighted')}")
   print(f"F1 Score: {f1_score(y_test, y_preds, average='weighted')}")
  تصورات الأداء #
   RocCurveDisplay.from_estimator(pipeline, X_test, y_test)
   plt.show()
   PrecisionRecallDisplay.from_estimator(pipeline, X_test, y_test)
   plt.show()
  استخراج أفضل نموذج #
   best_model = pipeline.named_steps['randomforestclassifier'].best_estimator_
  تحويل البيانات باستخدام المعالج المسبق #
  X_test_transformed = pipeline.named_steps['preprocessor'].transform(X_test)
  طباعة أفضل المعلمات والنتيجة #
  print("Best Parameters:", random_search.best_params_)
  print("Best Score:", random_search.best_score_)
  Fitting 3 folds for each of 5 candidates, totalling 15 fits
  [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=50; total time= 1.9s
  [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=50; total time= 2.0s
  [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=2, n_estimators=50; total time= 2.0s
  [CV] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=50; total time= 2.9s
  [CV] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=50; total time= 3.0s
  [CV] END max_depth=20, min_samples_leaf=1, min_samples_split=2, n_estimators=50; total time= 3.0s
  [CV] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=50; total time= 3.0s
  [CV] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=50; total time= 3.3s
  [CV] END max_depth=None, min_samples_leaf=1, min_samples_split=2, n_estimators=50; total time= 3.1s
  [CV] END max_depth=20, min_samples_leaf=1, min_samples_split=4, n_estimators=50; total time= 3.0s
  [CV] END max_depth=20, min_samples_leaf=1, min_samples_split=4, n_estimators=50; total time= 2.9s
  [CV] END max_depth=20, min_samples_leaf=1, min_samples_split=4, n_estimators=50; total time= 3.0s
  [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=4, n_estimators=100; total time= 4.1s
  [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=4, n_estimators=100; total time= 4.3s
  [CV] END max_depth=10, min_samples_leaf=1, min_samples_split=4, n_estimators=100; total time= 3.9s
  Model Performance:
 Accuracy: 0.6400456360524814
 Precision: 0.5311838726447105
 Recall: 0.6400456360524814
 F1 Score: 0.503985059734092
0.8
   <u>₽</u> 0.6 ·
   0.2 -
```

Pipeline (AUC = 0.52)

0.2

0.4

False Positive Rate (Positive label: 1)

```
0.8
   0.2
          — Pipeline (AP = 0.37)
             0.2
                     0.4
                                0.6
                                         0.8
                                                  1.0
     0.0
                   Recall (Positive label: 1)
Best Parameters: {'n_estimators': 50, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_depth': 10}
Best Score: 0.638944269084003
Age
                                 int64
```

In [21]: print(X_train.dtypes)

int64 Cholesterol int64 Heart Rate Diabetes int64 Family History int64 int64 Smoking int64 Obesity int64 Alcohol Consumption Exercise Hours Per Week float64 Previous Heart Problems int64 Medication Use int64 Stress Level int64 Sedentary Hours Per Day float64 Income int64 float64 Triglycerides int64 Physical Activity Days Per Week int64 Sleep Hours Per Day int64 Sex_Male bool Diet_Healthy bool Diet_Unhealthy bool bool Continent_Asia bool Continent_Australia bool Continent_Europe Continent_North America bool Continent_South America bool Hemisphere_Southern Hemisphere dtype: object

Feature Importance

In []: import pandas as pd

The Random Forest model's feature importance is visualized to identify the most influential factors contributing to heart attack risk.

```
import numpy as np
 import matplotlib.pyplot as plt
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder
 from sklearn.ensemble import RandomForestClassifier
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
قراءة البيانات #
data = {
   "Patient ID": ["BMW7812", "CZE1114", "BNI9906", "JLN3497", "GF08847", "Z007941"],
   "Age": [67, 21, 21, 84, 66, 54],
   "Sex": ["Male", "Male", "Female", "Male", "Male", "Female"],
   "Cholesterol": [208, 389, 324, 383, 318, 297],
   "Blood Pressure": ["158/88", "165/93", "174/99", "163/100", "91/88", "172/86"],
   "Heart Rate": [72, 98, 72, 73, 93, 48],
   "Diabetes": [0, 1, 1, 1, 1, 1],
   "Family History": [0, 1, 0, 1, 1, 1],
    "Smoking": [1, 1, 0, 1, 1, 1],
    "Obesity": [0, 1, 0, 0, 1, 0],
    "Alcohol Consumption": [0, 1, 0, 1, 0, 1],
    "Exercise Hours Per Week": [4.17, 1.81, 2.08, 9.83, 5.80, 0.62],
    "Diet": ["Average", "Unhealthy", "Healthy", "Average", "Unhealthy", "Unhealthy"],
    "Previous Heart Problems": [0, 1, 1, 1, 1, 1],
    "Medication Use": [0, 0, 1, 0, 0, 1],
    "Stress Level": [9, 1, 9, 9, 6, 2],
    "Sedentary Hours Per Day": [6.62, 4.96, 9.46, 7.65, 1.51, 7.80],
   "Income": [261404, 285768, 235282, 125640, 160555, 241339],
    "BMI": [31.25, 27.19, 28.18, 36.46, 21.81, 20.15],
   "Triglycerides": [286, 235, 587, 378, 231, 795],
    "Physical Activity Days Per Week": [0, 1, 4, 3, 1, 5],
   "Sleep Hours Per Day": [6, 7, 4, 4, 5, 10],
    "Country": ["Argentina", "Canada", "France", "Canada", "Thailand", "Germany"],
   "Continent": ["South America", "North America", "Europe", "North America", "Asia", "Europe"],
    "Hemisphere": ["Southern Hemisphere", "Northern Hemisphere", "Northern Hemisphere", "Northern Hemisphere", "Northern Hemisphere"],
   "Heart Attack Risk": [0, 0, 0, 0, 0, 1],
df = pd.DataFrame(data)
فصل البيانات #
X = df.drop(columns=["Patient ID", "Heart Attack Risk"])
y = df["Heart Attack Risk"]
تحديد الأعمدة النصية والرقمية #
categorical_columns = ["Blood Pressure", "Sex", "Diet", "Country", "Continent", "Hemisphere"]
numeric_columns = [
   "Age", "Cholesterol", "Heart Rate", "Diabetes", "Family History", "Smoking",
   "Obesity", "Alcohol Consumption", "Exercise Hours Per Week",
   "Previous Heart Problems", "Medication Use", "Stress Level",
   "Sedentary Hours Per Day", "Income", "BMI", "Triglycerides",
   "Physical Activity Days Per Week", "Sleep Hours Per Day",
تقسيم البيانات إلى تدريب واختبار #
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
معالجة البيانات #
preprocessor = ColumnTransformer(
   transformers=[
        ("num", SimpleImputer(strategy="mean"), numeric_columns),
        ("cat", OneHotEncoder(handle_unknown="ignore"), categorical_columns),
```

```
# إنشاء نموذج Random Forest
pipeline = Pipeline(steps=[
   ("preprocessor", preprocessor),
    ("classifier", RandomForestClassifier(n_estimators=50, random_state=42)),
تدريب النموذج #
pipeline.fit(X_train, y_train)
التنبؤ وحساب الدقة #
y_pred = pipeline.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
استخراج أهمية الميزات #
feature_importances = pipeline.named_steps["classifier"].feature_importances_
encoded_columns = numeric_columns + list(
   pipeline.named_steps["preprocessor"]
    .named_transformers_["cat"]
    .get_feature_names_out(categorical_columns)
إنشاء مخطط لأهم الميزات #
imp_feature_score = pd.Series(feature_importances, index=encoded_columns)
top_features = imp_feature_score.nlargest(10)
top_features.plot(kind="barh", title="Top 10 Features by Importance", figsize=(10, 6), color="skyblue")
plt.xlabel("Importance Score")
plt.ylabel("Features")
plt.tight_layout()
plt.show()
```

Accuracy: 1.00

Accuracy: 1.00

```
In [26]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         from sklearn.cluster import KMeans
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.model_selection import train_test_split
         from sklearn.metrics import accuracy_score, classification_report
         import tkinter as tk
         from tkinter import ttk, messagebox
         from sklearn.preprocessing import OneHotEncoder
         from sklearn.compose import ColumnTransformer
         تحميل البيانات .1 #
         data = pd.read_csv('heart_attack_prediction_dataset.csv')
         تقسيم البيانات إلى مدخلات ومخرجات .2 #
         y = data["Heart Attack Risk"]
         X = data.drop(columns=["Heart Attack Risk", "Patient ID", "Country"])
         تحديد الأعمدة النصية والرقمية 3. #
         categorical_columns = X.select_dtypes(include=['object']).columns
         numeric_columns = X.select_dtypes(include=['int64', 'float64']).columns
         OneHotEncoder معالجة الأعمدة النصية باستخدام .4 #
         preprocessor = ColumnTransformer(
            transformers=[
                ('num', 'passthrough', numeric_columns),
                 ('cat', OneHotEncoder(handle_unknown='ignore'), categorical_columns)
         تحويل البيانات .5 #
         X_transformed = preprocessor.fit_transform(X)
         تقسيم البيانات .6 #
         X_train, X_test, y_train, y_test = train_test_split(X_transformed, y, test_size=0.2, random_state=42)
         تدريب نموذج الغابة العشوائية .7 #
         model = RandomForestClassifier(random_state=42)
         model.fit(X_train, y_train)
         التنبؤ بالمخاطر .8 #
         y_preds = model.predict(X_test)
         print("Model Performance:")
         print(classification_report(y_test, y_preds))
         إلى مجموعات (عالية ومنخفضة المخاطر) KMeans تجميع المرضى باستخدام .9 #
         kmeans = KMeans(n_clusters=2, random_state=42)
         risk_groups = kmeans.fit_predict(X_test)
         print(f"Shape of X_test: {X_test.shape}")
         print(f"Expected number of columns: {len(preprocessor.get_feature_names_out())}")
         للنتائج DataFrame إعداد #
         #results = pd.DataFrame(X_test, columns=preprocessor.get_feature_names_out())
         #results['Risk Group'] = risk_groups
         #results['Predicted Risk'] = y_preds
         #results['Risk Level'] = results['Risk Group'].map({0: 'Low Risk', 1: 'High Risk'})
         طباعة الأشكال للتحقق #
```

```
accuracy
         macro avg 0.54 0.50 0.40 1753
       weighted avg 0.57 0.64 0.51 1753
       Shape of X_test: (1753, 3946)
       Expected number of columns: 3946
       Shape of X_test: (1753, 3946)
      Expected columns from preprocessor: 3946
In [27]: print("X_test Transformed Preview:")
       عرض أول 5 صفوف # print(X_test[:5])
      X_test Transformed Preview:
       <Compressed Sparse Row sparse matrix of dtype 'float64'</pre>
              with 98 stored elements and shape (5, 3946)>
        Coords
                  Values
        (0, 0)
                    65.0
        (0, 1)
                    340.0
        (0, 2)
                    75.0
```

(0, 5) 1.0 (0, 6) 1.0 (0, 7) 1.0 9.870784085657094 (0, 8) (0, 9) 1.0 (0, 10) 1.0 7.0 (0, 11)5.56736308745687 (0, 12) (0, 13) 216664.0 (0, 14) 35.56128348361503 315.0 (0, 15) 4.0 (0, 17) 1.0 (0, 19) (0, 1074) 1.0 (0, 3936) 1.0 (0, 3943) 1.0 (0, 3945) 1.0 (1, 0) 77.0 361.0 (1, 1)(1, 2)46.0 (1, 3) 1.0 (1, 5)1.0 (3, 17) 9.0 (3, 19) 1.0 (3, 2386) 1.0 (3, 3935) 1.0 (3, 3939) 1.0 (3, 3944) 1.0 (4, 0) 63.0 (4, 1)173.0 98.0 (4, 2) (4, 5) 1.0 (4, 7)1.0 3.6814717164946265 (4, 8) (4, 10) 1.0 (4, 11) 1.0 (4, 12) 8.841575331400762 148437.0 (4, 13) (4, 14)21.11004423235903 (4, 15) 638.0 (4, 16) 2.0 (4, 17) 7.0 (4, 19) 1.0 (4, 168) 1.0 (4, 3937) 1.0 (4, 3941) 1.0 (4, 3944) 1.0

print(f"Shape of X_test: {X_test.shape}")

precision recall f1-score support

 0.64
 1.00
 0.78
 1125

 0.44
 0.01
 0.01
 628

Model Performance:

print(f"Expected columns from preprocessor: {len(preprocessor.get_feature_names_out())}")

Summary and Recommendations

The project highlights the key factors influencing heart health and provides a predictive framework to assess heart attack risk. Further improvements can be achieved by gathering more data and exploring advanced models.

```
In [28]: import pandos as pd

# معلونة تحول المعلونة تحول المعلون
```

```
65.0
                             340.0
                                             75.0
             77.0
                                                            1.0
                             361.0
                                              46.0
             70.0
                             341.0
                                             73.0
                                                            1.0
             47.0
                             392.0
                                             72.0
                                                            0.0
                                                            0.0
             63.0
                             173.0
                                              98.0
          num__Family History num__Smoking num__Obesity num__Alcohol Consumption \
                        0.0
                                    1.0
                                                  1.0
                                                                          0.0
                        0.0
                                     1.0
                                                  0.0
                                                                         1.0
                                                  1.0
                        1.0
                                     1.0
                                                                          0.0
                        1.0
                                     1.0
                                                  1.0
                        0.0
                                     1.0
                                                  0.0
                                                                         1.0
          9.870784
                            2.763339
                           16.325463
                                                            1.0 ...
                                                            0.0 ...
                            5.161941
                                                            0.0 ...
                            3.681472
          cat__Continent_Asia cat__Continent_Australia cat__Continent_Europe \
                        0.0
                                                0.0
                                                                     0.0
                        1.0
                                                                     0.0
                        0.0
                                                0.0
                                                                     0.0
                                                                     0.0
                        1.0
                                                0.0
                        0.0
                                                                     1.0
          cat__Continent_North America cat__Continent_South America \
                                0.0
                                                            0.0
                                 0.0
                                                            0.0
                                 0.0
                                 0.0
                                                            0.0
                                 0.0
          cat__Hemisphere_Northern Hemisphere cat__Hemisphere_Southern Hemisphere \
                                       0.0
                                                                         0.0
                                       1.0
                                                                         1.0
                                       0.0
                                                                         0.0
                                       1.0
                                       1.0
                                                                         0.0
          Risk Group Predicted Risk Risk Level
                                0 High Risk
                                0 High Risk
                                0 Low Risk
                                0 Low Risk
       [5 rows x 3949 columns]
In [29]: import pandas as pd
         import tkinter as tk
        from tkinter import ttk, messagebox
        from sklearn.preprocessing import OneHotEncoder
         from sklearn.compose import ColumnTransformer
         from sklearn.cluster import KMeans
         import numpy as np
        من البيانات (مثالك) DataFrame إنشاء .1 #
         data = {
            'Age': [25, 27, 30, 24, 28, 65, 70, 68, 72, 66],
            'Blood_Pressure': [120, 115, 130, 110, 125, 160, 170, 165, 175, 158],
            'Cholesterol': [180, 175, 200, 190, 185, 240, 250, 245, 260, 238],
            'Sex': ['Male', 'Female', 'Male', 'Female', 'Male', 'Female', 'Male', 'Female', 'Male'],
            'Heart_Attack_Risk': [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]
         df = pd.DataFrame(data)
        (y) والمخرجات (X) إعداد المدخلات .2 #
        X = df.drop(columns=['Heart_Attack_Risk'])
        y = df['Heart_Attack_Risk']
        تعريف الأعمدة النصية والرقمية .3 #
        categorical_columns = ['Sex']
        numeric_columns = ['Age', 'Blood_Pressure', 'Cholesterol']
        للأعمدة النصية OneHotEncoder تجهيز المحول مع .4 #
         preprocessor = ColumnTransformer(
           transformers=[
               ('num', 'passthrough', numeric_columns),
               ('cat', OneHotEncoder(handle_unknown='ignore'), categorical_columns)
        تطبيق التحويل على البيانات .5 #
        X_transformed = preprocessor.fit_transform(X)
        على البيانات المحولة (لتصنيف المخاطر) KMeans تدريب نموذج .6 #
        kmeans = KMeans(n_clusters=2, random_state=42)
        kmeans.fit(X_transformed)
        بناء واجهة المستخدم .7 #
         def predict_risk():
           try:
               user_input = []
                for idx, col in enumerate(numeric_columns + categorical_columns):
                   val = user_entries[idx].get()
                   if col in numeric_columns:
                       user_input.append(float(val))
                   else:
                       'Female' و 'Male' تحويل الإدخال من 0 و 1 إلى #
                       if val == '0':
                          user_input.append('Male')
                       elif val == '1':
                           user_input.append('Female')
                          raise ValueError("Sex must be 0 (Male) or 1 (Female)")
                بنفس تنسيق الأعمدة الأصلية DataFrame تحويل القائمة إلى #
               user_input_df = pd.DataFrame([user_input], columns=numeric_columns + categorical_columns)
                DataFrame تطبيق المحول على #
                user_transformed = preprocessor.transform(user_input_df)
                التنبؤ بالمجموعة #
                risk_group = kmeans.predict(user_transformed)[0]
                risk_level = 'High Risk' if risk_group == 1 else 'Low Risk'
                messagebox.showinfo("Prediction", f"The predicted risk level is: {risk_level}")
            except Exception as e:
               messagebox.showerror("Error", f"Invalid input: {str(e)}")
         root = tk.Tk()
        root.title("Heart Attack Risk Prediction")
        إنشاء واجهة إدخال بيانات المستخدم #
        labels = numeric_columns + categorical_columns
        user_entries = []
```

num__Age num__Cholesterol num__Heart Rate num__Diabetes \

for idx, col in enumerate(labels):
 ttk.Label(root, text=col).grid(row=idx, column=0, padx=5, pady=5)
 entry = ttk.Entry(root)
 entry.grid(row=idx, column=1, padx=5, pady=5)
 user_entries.append(entry)

j
ttk.Button(root, text="Predict Risk", command=predict_risk).grid(row=len(labels), column=0, columnspan=2, pady=10)

root.mainloop()