CSE435 Introduction to EDA & Testing - Spring 2022 Homework Assignment #4

Shao-Hsuan Chu - B073040018

1. (25%)

(a) (10%) For state transition fault model, explain why there are M(N-1) faults for a M-transition N-state machine. Similarly explain why there are N^M-1 multiple state transition faults.

Solution:

(b) (10%) For stuck-at fault model, explain why there are 2K single stuck-at faults. Similarly explain why there are 3^K-1 multiple stuck-at faults.

Solution:

(c) (5%) Please show the similarity and differences of (single, multiple) fault numbers between the state transition fault model and the stuck-at fault model.

Solution:

2. (20%) Prove that for combinational circuits **faults dominance is a transitive relation**, i.e. if f dominates g and g dominates h, then f dominates h.

Solution:

3. (55%) In the circuit shown in Figure 1,

Figure 1

	Solution:
` '	(25%) Applying the check point theorem (incl. fault dominance) , how many check point faults needed to be considered?
	Solution:
` /	(25%) Using fault dominance and fault equivalence relations to further reduce the number of stuck-at faults? How many remaining faults needed to be considered?
	Solution:

(a) (5%) How many single stuck-at faults needed to be considered initially?