Uma Análise da Utilização de HTTPS no Brasil (versão estendida arXiv)

Maurício M. Fiorenza^{2,3}, Diego Kreutz^{1,2,3}, Thiago Escarrone^{1,3}, Daniel Temp^{2,3,4}

¹Laboratório de Estudos Avançados (LEA)

² Mestrado Profissional em Engenharia de Software (MPES)

³ Universidade Federal do Pampa (UNIPAMPA)

⁴ Instituto Federal Farroupilha (IFFar)

{Nome.Sobrenome}@gmail.com^{1,4}, {Nome.Sobrenome}@unipampa.edu.br^{2,3}

Abstract. HTTPS is essential to grant the security of communications that use HTTP protocol over the Internet. However, although the increasing adoption of HTTPS, many sites still don't implement correctly digital certificates and do not support the TLS version 1.3. This paper presents an analysis of the use of HTTPS in Brazil. We selected 434 sites from public and private institutions, including sites from the federal, state, and municipal government, financial and e-commerce institutions. The results show that 100% of websites use or support older versions of TLS/SSL, which contain known and exploitable vulnerabilities by malicious agents, and only 17% support TLS version 1.3.

Resumo. O HTTPS é essencial para garantir a segurança das comunicações que utilizam o protocolo HTTP na Internet. Entretanto, apesar da crescente adoção do HTTPS, muitos sites ainda não implementam da maneira correta os certificados digitais e não suportam a versão 1.3 do TLS. Este trabalho apresenta uma análise da utilização do HTTPS no Brasil. Foram selecionados 434 sites de instituições públicas e privadas, incluindo sites das esferas governamentais federal, estadual e municipal, de instituições financeiras e de comércio eletrônico. Os resultados demonstram que 100% dos sites utilizam ou suportam versões antigas do TLS/SSL, que contém vulnerabilidades conhecidas e passíveis de exploração por agentes maliciosos, e apenas 17% deles suportam a versão 1.3 do TLS.

1. Introdução

A maioria dos usuários acredita que está utilizando um canal de comunicação seguro quando navega na Internet utilizando o HTTPS (Hyper Text Transfer Protocol Secure), isto é, HTTP (HyperText Transfer Protocol) sobre SSL (Secure Sockets Layer)/TLS (Transport Layer Security). Na verdade, os próprios navegadores contribuem para esta sensação de segurança quando apresentam um cadeado verde ou fechado ao lado do endereço eletrônico, mais conhecido como URL (Uniform Resource Locator), que o usuário está acessando. Entretanto, pesquisas demonstram que muitas vezes o ecossistema do HTTPS é, diferentemente do imaginado (ou do senso comum), inseguro [Bokslag 2016, Frost et al. 2019, Samarasinghe and Mannan 2019]. Os desafios e problemas de segurança são muitos e podem ocorrer em diferentes partes do ecossistema HTTPS, incluindo falhas na especificação ou implementação dos protocolos, falhas na configuração dos certificados digitais nos servidores Web, falhas na geração dos certificados digitais,

vulnerabilidades na Infraestrutura de Chaves Públicas (ICP), entre outras vulnerabilidades [Bokslag 2016, Frost et al. 2019, Samarasinghe and Mannan 2019, Matsumoto and Reischuk 2015, Merzdovnik et al. 2016].

Quando o navegador inicia uma conexão HTTPS, é realizado o *handshake* do TLS entre navegador e o servidor Web [Dierks 2008]. Durante o *handshake*, o servidor apresenta o seu certificado digital X.509¹, que é utilizado para atestar que uma organização é realmente quem ela se diz ser através de uma chave pública.

Um certificado é atestado e emitido por uma Autoridade Certificadora (AC)². As ACs fazem parte das ICPs [Durumeric et al. 2013]. No Brasil, há infraestruturas de chaves públicas mantidas por instituições como o SERPRO (https://www.serpro.gov.br/) e a RNP (https://www.rnp.br).

Considerando um serviço online que utiliza HTTPS, como é possível obter mais informações sobre a segurança do certificado digital e das futuras conexões com o site? Que versões do SSL/TLS o site suporta? As versões suportadas pelo site possuem vulnerabilidades conhecidas? Existem estudos que tentam responder a este tipo de questões em contextos específicos, como sites da China, sites do Alexa Top 1 milhão e aplicativos bancários no Reino Unido [Samarasinghe and Mannan 2019, Vratonjic et al. 2013, Huang et al. 2019, Chothia et al. 2017]. Resultados das pesquisas apontam que ainda há um número significativo de sites e sistemas com vulnerabilidades relacionadas aos certificados digitais e versões de protocolos suportados e utilizados na prática.

O presente estudo tem dois objetivos principais: (a) identificar ferramentas disponíveis livremente que permitam a análise dos certificados e protocoles utilizados pelo HTTPS; e (b) realizar um estudo amplo da utilização do HTTPS no Brasil. Diferentemente dos trabalhos relacionados citados anteriormente, neste estudo são utilizadas ferramentas que proporcionam um diagnóstico mais detalhado, como a testssl.sh, que permitem identificar e catalogar também falhas dos protocolos e dos certificados utilizados pelos sites.

Este trabalho é uma evolução de um paper curto publicado no WRSeg 2019 [Escarrone et al. 2019], onde o escopo da análise foi limitado a apenas 44 sites. As principais contribuições deste trabalho podem ser resumidas em: (a) uma comparação e discussão sobre as principais ferramentas de análise de sites HTTPS disponíveis gratuitamente na Internet; (b) a análise de um número significativo e representativo de sites, cobrindo, por exemplo, todas as instituições financeiras filiadas a Febraban e os 80 maiores sites de comércios eletrônico do Brasil; e (c) uma discussão sobre ataques e desafios do ecossistema HTTPS.

O restante do trabalho está organizado como segue. Na seção 2 são apresentadas as ferramentas de análise de ecossistemas HTTPS. Os resultados das análises realizadas sobre os 434 sites estão disponíveis na seção 3. Finalmente, a seção 5 apresenta uma discussão sobre alguns dos ataques e desafios do ecossistema HTTPS.

https://tools.ietf.org/html/rfc2459

²https://tools.ietf.org/html/rfc5280.html

2. Ferramentas de análise de certificados

Existe um variado número de ferramentas projetadas especificamente para analisar problemas na instalação de certificados digitais em sites e detectar falhas de protocolos e na emissão dos certificados. Ferramentas como a SSL Checker³ e Observatory⁴, apresentam informações sucintas sobre os certificados, como a AC que emitiu e a validade do certificado. Por outro lado, ferramentas como a SSL Labs⁵ e testssl.sh⁶, realizam uma análise mais detalhada dos certificados e dos servidores, apresentando também as versões dos protocolos suportados e as vulnerabilidades conhecidas.

A Tabela 1 traz a compilação das principais características identificadas para cada umas das dez ferramentas analisadas. A categoria **Modo de operação** é relativa à interface utilizada para a execução das análises. Existem ferramentas que podem ser utilizadas via Web, diretamente no navegador, que tendem a ser mais simples de utilizar. Entretanto, limitam o processo de análise pelo fato de permitir apenas testes manuais, isto é, um site por vez. Outras ferramentas, como a testssl.sh, são operadas via terminal, o que aumenta o grau de dificuldade de utilização para usuários leigos. Por outro lado, essas ferramentas permitem a criação e execução de testes em lote, isto é, para centenas ou até milhares de sites sem a necessidade de intervenção manual.

A categoria **Informações do certificado** apresenta as informações do certificado identificadas por cada ferramenta, onde constam a AC emissora, validade e os domínios ao qual o certificado pertence. Como pode ser observado, com exceção da ferramenta Wormly, todas as demais apresentam todas as informações do certificado.

Na categoria **Protocolo** encontram-se as informações como versões e vulnerabilidades conhecidas para os protocolos suportados pelos sites. Por fim, a **Cadeia do certificado** é analisada através da validade, AC emissora e AC raiz (órgão que autoriza uma AC a emitir certificados) para determinar se o certificado é confiável ou não. Nestas duas últimas categorias, apenas as ferramentas SSL Labs, ImmuniWeb7, Digicert e testssl.sh informam as vulnerabilidades das versões do TLS/SSL suportadas pelo site e a cadeia do certificado.

Tabela 1. Ferramentas de análise de certificados

	Modo de o	operação	Informa	ações do ce	rtificado		Protocolo	
Ferramenta	Navegador	Terminal	Emissor	Validade	Domínio	Versão	Vulnerabilidades	Cadeia do certificado
SSL Labs ⁵	1		1	✓	✓	1	✓	✓
SSL Checker ³	1		1	✓	✓			
ImmuniWeb ⁷	1		1	✓	✓	1	✓	✓
Digicert ⁸	1		1	✓	✓	1	✓	✓
Wormly ⁹	1			✓	✓	1		
Geekflare TLS Scanner ¹⁰	✓					1		
CryptCheck ¹¹	1					1		
Observatory ⁴	✓		1	✓	✓	1		
Cipherscan ¹²		✓				1		
testssl.sh ⁶		✓	1	✓	✓	/	✓	✓

³https://www.sslshopper.com/ssl-checker.html

⁴https://observatory.mozilla.org/

⁵https://www.ssllabs.com/ssltest

⁶https://testssl.sh

⁷https://www.immuniweb.com/ssl/

Em termos de profundidade técnica das análises, as quatro ferramentas que se destacaram são SSL Labs, ImmuniWeb, Digicert e a testssl.sh. Estas são as únicas ferramentas que apresentam em seus relatórios informações sobre todas as categorias da Tabela 1. Estas quatro ferramentas passaram por uma segunda fase de testes, onde foram analisadas outras características, como (a) o tempo médio de execução, (b) o suporte à análise em lote de sites, (c) a atribuição de notas aos resultados, facilitando a utilização e compreensão por parte de usuários leigos, e (d) a informação do algoritmo e tamanho de chave utilizado para criptografia.

 Ferramenta
 Tempo médio de execução
 Execução em lote
 Atribuição de notas
 Algoritmo e chave

 SSL Labs
 204s
 ✓
 ✓

 ImmuniWeb
 67s
 ✓
 ✓

 Digicert
 16s
 ✓

 testssl.sh
 92s
 ✓
 ✓

Tabela 2. Análise das ferramentas

Para validação das ferramentas, foram executadas análises em 10 sites. A Tabela 2 traz o resultado desta análise. Como pode ser observado, apenas a ferramenta testssl.sh permite a realização de testes em lotes, motivo pelo qual foi escolhida para realizar a análise dos 434 sites selecionados. Vale ressaltar que, para análises pontuais ou utilização por parte de usuários leigos, as ferramentas SSL Labs e ImmuniWeb são recomendadas. A ferramenta Digicert não apresenta atribuição de notas qualitativas aos recursos identificados no site HTTPS.

3. Análise do Ecossistema HTTPS no Brasil

Para as análises, foi implementado um *script bash* que permite a execução da ferramenta testssl.sh, de forma automática e simples, para lotes de sites. Os testes foram executados em 434 (quatrocentos e trinta e quatro) sites, selecionados para análise da utilização do HTTPS no Brasil, divididos em cinco conjuntos: (a) 20 (vinte) sites do governo federal (e.g., presidência da república, ministérios, agências); (b) 108 (cento e oito) sites oficiais dos 26 estados da federação mais o Distrito Federal (e.g., site principal, mais três secretarias de cada estado); (c) 127 (cento e vinte e sete) sites de prefeituras brasileiras (e.g., capitais dos estados, mais quatro cidades por estado escolhidas pseudo-aleatoriamente); (d) 99 (noventa e nove) sites de bancos e instituições financeiras filiados à Febraban¹³; (e) 80 (oitenta) sites de vendas online pertencentes aos cinquenta maiores *e-commerces* segundo a Sociedade Brasileira de Varejo e Consumo¹⁴.

Na primeira etapa da análise, foi identificado que 70 (16,12%) dos 434 sites não utilizam HTTPS, sendo 52 deles portais de instituições públicas, e 18 sites ligados a

⁸https://www.digicert.com
9https://www.wormly.com/

¹⁰https://qf.dev/tls-test

¹¹https://tls.imirhil.fr/

¹²https://github.com/mozilla/cipherscan

¹³https://portal.febraban.org.br/pagina/3164/12/pt-br/associados

¹⁴http://sbvc.com.br/wp-content/uploads/2018/12/ranking_

ecommerce-2018.pdf

organizações financeiras. Para os 364 sites remanescentes, foram realizadas diferentes análises, conforme discriminado a seguir.

3.1. Análise dos certificados

Um certificado digital somente é considerado como confiável quando ele apresenta: (a) o nome da AC que o assinou; (b) o domínio ao qual pertence; e (c) a data de validade [Vratonjic et al. 2013]. Obviamente, as três informações devem estar corretas. As análises realizadas mostram que 12,08% dos sites quebram a cadeia do certificado, ou seja, a AC que assinou o certificado não é reconhecida pelo navegador como uma entidade confiável. Este é o caso dos sites governamentais que utilizam ACs de ICPs não reconhecidas pelos navegadores, como a do SERPRO e da RNP.

A cadeia do certificado também é quebrada quando a própria empresa assina o certificado, caracterizando-o como auto-assinado. Em 6,86% dos sites (todos eles governamentais) não existe uma AC confiável que assine o certificado, ou os certificados são assinados pelo próprio órgão, o que impede os navegadores de validar de forma automática e transparente a autenticidade do certificado.

Quando o nome do domínio do certificado difere do nome do domínio do site, o certificado também é identificado como não-confiável. Este caso ocorre em 14,83% dos certificados analisados. Já a data de validade do certificado é apresentada da seguinte forma: *Not before and Not after*. Se for identificada qualquer data fora deste intervalo explícito, o certificado é considerado como expirado, como foi o caso de 4,39% dos certificados analisados.

Em resumo, 34% dos sites analisados apresentam algum problema relacionado ao HTTPS, seja a sua não utilização ou problemas ligados ao certificado em uso. Isto demonstra a evidente urgência no processo de revisão e atualização dos certificados digitais das instituições, com especial atenção para a base legal em novas leis como a Lei Geral de Proteção de Dados Pessoais (LGPD), nº 13.709¹⁵, que entra em vigor em 2020.

3.2. Versões dos protocolos SSL/TLS

Nesta etapa, o objetivo foi identificar as versões dos protocolos SSL/TLS em uso por cada site. Cabe ressaltar que um site pode suportar diversas versões do SSL/TLS ao mesmo tempo. Isto é geralmente utilizado para garantir compatibilidade com navegadores mais antigos ou desatualizados. Entretanto, por outro lado, pode levar a riscos de segurança desnecessários. A Tabela 3 mostra que a maioria dos sites suportam versões antigas dos protocolos, ficando suscetíveis a ataques conhecidos. Novamente, o cenário apresentado é crítico pelo fato de grande parte dos sites (67,03%) ainda suportar versões absolutamente desaconselhadas do SSL/TLS, como a versão 1.0 do TLS.

O gráfico da Figura 1 demonstra a utilização de protocolos distribuída por grupo analisado. É possível identificar que versões não recomendadas, como a SSLv2 e SSLv3, tem seu uso praticamente restrito as esferas municipal e estadual, enquanto os sites de instituições financeiras e comércio eletrônico se destacam por utilizar versões mais atuais, como a TLS 1.2 e TLS 1.3.

¹⁵ http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/Lei/L13709.htm

Tabela 3. Versões dos protocolos e respectivas vulnerabilidades

Versão	Sites que suportam	Ataques conhecidos
SSLv2	4	DROWN
SSLv3	25	POODLE, BEAST
TLS 1.0	244	BEAST
TLS 1.1	262	POODLE
TLS 1.2	351	Logjam
TLS 1.3	74	-

Figura 1. Protocolos utilizados por grupos

Os ataques destacados na Tabela 3 exploram vulnerabilidades conhecidas nas versões dos protocolos para interceptar as informações trocadas entre cliente e servidor, comprometendo a confidencialidade e a integridade dos dados. O ataque Beast (abreviação de *Browser Exploit Against SSL/TLS*), foi descoberto em 2002 e aplicado na prática em 2011 [Duong and Rizzo 2011]. Este ataque explora uma vulnerabilidade no *cipher block chaining* (CBC) do protocolo TLS v1.0 e permite acesso a informações essenciais da conexão, como os *cookies*, permitindo que a sessão seja sequestrada pelo atacante.

A vulnerabilidade POODLE (*Padding Oracle On Downgraded Legacy Encryption*) acontece quando sistemas que utilizam diferentes versões de protocolos de segurança (i.e., SSLv3 e TLS 1.1) fazem o *handshake* para estabelecer uma comunicação. Esta troca de informações, para evitar problemas de interoperabilidade, é realizada através de um protocolo anterior, o SSLv3, o que possibilita o ataque através das brechas de segurança desta versão [Möller et al. 2014].

Logjan [Kerner 2015], vulnerabilidade descoberta em 2015, pode ser utilizada para ataques específicos ao algoritmo Diffie-Hellman. Este algoritmo, imprescindível para muitos protocolos de segurança como o TLS, tem por princípio a troca uma chave compartilhada para que os participantes negociem uma conexão segura [Bokslag 2016]. O ataque, que possibilita que o invasor faça o *downgrade* de conexões TLS para um nível de criptografia inseguro, permitindo que o mesmo leia e modifique quaisquer dados transmitidos pela conexão.

Descoberto em 2016, o ataque DROWN (*Decrypting RSA with Obsolete and Weakened eNcryptation*) [Aviram et al. 2016], afeta conexões HTTPS baseadas em SSLv2, ou conexões TLS que compartilhem chaves de criptografia com outros serviços implementados com SSLv2, como SMTP ou OpenVPN. Com o ataque DROWN, após a descoberta da chave, é possível decifrar as mensagens trocadas entre cliente e servidor via HTTPS. Na época da descoberta, estimava-se que 33 % dos servidores WEB estavam vulneráveis.

3.3. Algoritmos e funções criptográficas

A segunda parte do estudo consistiu em analisar os algoritmos e funções criptográficas utilizadas pelas unidades certificadoras para emissão dos certificados, incluindo algoritmos de assinatura, tamanho das chaves RSA (*Rivest, Shamir, and Adelman*) e funções de *hash* criptográfica.

A Figura 2 resume os algoritmos *hash* e os tamanhos das chaves RSA que as ACs utilizam para assinar os certificados analisados. Como pode ser observado, 93,40% certificados utilizam a combinação do algoritmo de *hash* SHA-256 (SHA2¹⁶) com o tamanho da chave RSA recomendada de 2048 bits¹⁷. Os demais certificados se dividem chaves com tamanhos superiores ao recomendado (e.g., 3072 e 4096 bits) e inferiores ao apontado como ideal (e.g., 256 e 384 bits). Além disso, destacam-se dois sites governamentais, onde os certificados ainda utilizam SHA1, o que é fortemente desaconselhado pela comunidade de segurança desde 2010.

Figura 2. Algoritmos de assinatura

 $^{^{16} {\}rm https://csrc.nist.gov/projects/hash-functions/nist-policy-on-hash-functions}$

 $^{^{17}}_{\rm https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-57pt3r1.pdf}$

3.4. Sites governamentais versus iniciativa privada

Tanto sites de órgãos governamentais como de empresas privadas permitem conexões utilizando versões dos protocolos SSL/TLS com vulnerabilidades conhecidas, expondo os usuários (e seus respectivos dados) a incidentes de segurança e privacidade.

Sites do Governo Federal. De um total de 20 sites do governo federal analisados, entre eles o site principal da presidência da república e dos principais ministérios, dois não utlizam HTTPS. Assim como, 75% estão vulneráveis aos ataques BEAST e POODLE, e 100% dos sites são suscetíveis ao ataque Logjam.

Sites dos governos estaduais. No contexto estadual, o cenário é ainda pior. Primeiro, 26,85% dos sites sequer utiliza HTTPS. Segundo, 29 dos 108 sites analisados possuem problemas relacionados ao domínio indicado no certificado, que não corresponde ao domínio acessado. Outros 26,85% dos sites possuem a cadeia de certificados quebrada, onde a maioria deles são certificados auto-assinados, ou estão com data de validade expirada. Não bastasse isso, mais de 65,74% dos sites suporta TLS 1.0, ou seja, são vulneráveis a ataques como o BEAST.

Sites dos governos municipais. Nos sites de governos municipais a situação dos certificados não é diferente. O estudo mostrou que 16,53% dos sites deste grupo não utilizam HTTPS em suas conexões. Outros 14,96% apresentam o domínio do site diferente do domínio registrado no certificado, o que configura uma quebra na cadeia do certificado. No que diz respeito aos ataques, dois dos sites suportam SSLv2 sendo suscetíveis ao ataque DROWN, enquanto 64,56% dos sites são vulneráveis aos ataques POODLE E BEAST por suportarem versões anteriores ao TLS 1.1.

Sites da iniciativa privada. O cenário na iniciativa privada, considerando instituições financeiras e *e-commerces*, também é bastante preocupante. Em 70% dos sites bancários, os usuários podem estar em risco devido ao fato de suportar versões do SSL/TLS vulneráveis a ataques como o BEAST e o POODLE. Para os *e-commerces*, estes números se assemelham, com 50% dos sites suportando versões anteriores ao TLS 1.1. De forma análoga ao cenário governamental, 100% dos sites da iniciativa privada analisados são suscetíveis ao ataque Logjam.

Finalmente, nenhum dos sites, sejam eles de organizações públicas ou privadas, suporta exclusivamente TLS 1.3, o que aumentaria a segurança das comunicações para os usuários e instituições.

4. Análise dos Sites da Abcomm

Os gráficos 3, 4, 5, 6, 7, 8, 9, 10, 11 e 12 apresentam as estatísticas iniciais da análise dos 4.283 sites em funcionamento da Associação Brasileira de Comércio Eletrônico (ABComm – https://abcomm.org). Segundo nossa primeira análise, a ABComm conta com uma lista pública de 6.937 registros de sites de comércio eletrônico. Foram implementados diferentes códigos, disponíveis no GitHub (https://github.com/https-br/https-br), para identificar e testar automaticamente a lista completa de sites da ABComm.

Como pode ser observado no gráfico 6, praticamente 50% dos certificados já estão sendo emitidos através do Let's Encrypt (https://letsencrypt.org/). Vale

também destacar o crescimento de entidades certificadoras como a Amazon e o Site Blindado. Este último, uma autoridade certificadora brasileira.

O gráfico 10 mostra que aproximadamente 25% dos sites ainda suportam a versão 1.0 do TLS ou inferior. Sabe-se que estas versões representam riscos de segurança bastante elevados. É interessante observar também que cerca de 65% dos sites ainda não suporta a versão 1.3 do TLS. Consequentemente, a maioria dos usuários, apesar de possivelmente ter os seus navegadores atualizados, ainda continua vulnerável a diferentes ataques.

Vale ressaltar o grande número de sites que apresentam alguma vulnerabilidade, como resumido no gráfico 12. As quatro vulnerabilidades que se sobressaem são SWEET32 (CVE 2016), LOGJAM (CVE 20154), BEAST (CVE 201133) e LUCKY13 (CVE 2013). Estas vulnerabilidades atingem de 25% a 95% dos sites, aproximadamente.

Figura 3. Validade dos certificados

Figura 4. Status da cadeia de certificados

Figura 5. Ciphers suportados

Figura 6. Emissor dos certificados

Figura 7. Tipo e tamanho da chave

Figura 8. Oferece PFS (Perfect Forward Secrecy)

Figura 9. Algoritmo de assinatura

Figura 10. Versões dos protocolos SSL/TLS suportados

Figura 11. Confiança no nome do host

HeartbleedCVE201 37 CCSCVE20140224 46 TicketbleedCVE201 145 SecureClientInitiate 85 CRIMETLSCVE201 55 POODLESSLCVE20 124 SWEET32CVE2016 1212 FREAKCVE201502 67 DROWNCVE20160 73 1513 LOGJAMCVE20154 3214 BEASTCVE201133 LUCKY13CVE2013 4002 RC4CVE20132566 300 TLS FALLBACK S 397 BREACHCVE20133 2876 SecureRenegotiatio 725 0 1000 2000 3000 4000 5000

Figura 12. Número de sites com vulnerabilidades

5. Discussão

A utilização de certificados digitais, para viabilizar conexões HTTPS, por si só, não garante segurança e privacidade aos usuários e instituições. Como visto nos resultados apresentados na seção 3, a maioria absoluta dos sites analisados são vulneráveis a ataques conhecidos. Os problemas vão desde falhas de configuração dos sistemas até problemas mais específicos, inerentes à geração dos certificados digitais.

Os profissionais de tecnologia, responsáveis pela instalação dos certificados e manutenção dos sites, precisam estar minimamente cientes da importância e da criticidade das suas tarefas. Por exemplo, um certificado digital qualquer, instalado sem o mínimo de cuidados técnicos, não traz segurança aos usuários do sistema. Como ocorre frequentemente, o uso de HTTPS leva a uma falsa sensação de segurança aos usuários e instituições.

As análises realizadas neste trabalho, observando a utilização de certificados digitais e protocolos suportados nas conexões HTTPS do ecossistema da Internet do Brasil, mostram que ainda há um longo caminho pela frente para oferecer, efetivamente, segurança e privacidade aos usuários e instituições. Alternativas gratuitas para geração de certificados válidos e de qualidade, como o Let's Encrypt (https://letsencrypt.org/), podem representar uma alternativa atrativa para entidades que não possuem o conhecimento técnico ou os recursos financeiros para adquirir e gerenciar certificados de ACs tradicionais, reconhecidas pelos navegadores. Certificados emitidos pelo Let's Encrypt são reconhecidos e autenticados pela maioria dos navegadores.

Outro ponto que merece destaque são as novas formas de ataque ao HTTPS, que independem do certificado ou protocolo utilizado. Um exemplo é o *Malware Reduc*-

tor¹⁸, um *malware* disseminado através da Internet com objetivo de afetar a segurança do HTTPS diretamente na máquina cliente. Ao infectar o dispositivo da vítima, o *malware* manipula os certificados digitais utilizados para estabelecer conexões seguras, permitindo ao atacante acessar os dados do usuário.

Por fim, vale ressaltar que o usuário também tem a sua parcela de responsabilidade na segurança dos seus dados. A maioria das ferramentas apresentadas na seção 2 são de fácil utilização. Algumas delas atribuem nota ao nível de segurança do site analisado, o que simplifica a análise para o usuário final. Além disto, os próprios navegadores já realizam notificações em casos críticos de segurança dos certificados, cabendo ao usuário desconfiar da confiabilidade do site em questão. Finalmente, cabe também aos profissionais de tecnologia da informação difundir o conhecimento e criar uma cultura saudável e positiva de segurança da informação dentro de suas instituições.

Referências

- Aviram, N., Schinzel, S., Somorovsky, J., Heninger, N., Dankel, M., Steube, J., Valenta, L., Adrian, D., Halderman, J. A., Dukhovni, V., et al. (2016). {DROWN}: Breaking {TLS} using sslv2. In 25th {USENIX} Security Symposium ({USENIX} Security 16), pages 689–706.
- Bokslag, W. (2016). The problem of popular primes: Logjam. arXiv preprint ar-Xiv:1602.02396.
- Chothia, T., Garcia, F. D., Heppel, C., and Stone, C. M. (2017). Why Banker Bob (still) Can't Get TLS Right: A Security Analysis of TLS in Leading UK Banking Apps. In *Int. Conf. on Financial Cryptography and Data Security*, pages 579–597. Springer.
- Dierks, T. (2008). The transport layer security (tls) protocol version 1.2.
- Duong, T. and Rizzo, J. (2011). Here come the ninjas. Unpublished manuscript, 320.
- Durumeric, Z., Kasten, J., Bailey, M., and Halderman, J. A. (2013). Analysis of the https certificate ecosystem. In *ACM IMC*, pages 291–304. ACM.
- Escarrone, T., Kreutz, D., and Fiorenza, M. (2019). Uma Primeira Analise do Ecosistema HTTPS no Brasil. In *4o Workshop Regional de Segurança da Informação e de Sistemas Computacionais*, Alegrete-RS, Brasil.
- Frost, V., Tian, D. J., Ruales, C., Prakash, V., Traynor, P., and Butler, K. R. B. (2019). Examining DES-based Cipher Suite Support Within the TLS Ecosystem. In *2019 ACM AsiaCCS*, pages 539–546. ACM.
- Huang, J., Zhang, Z., Li, W., and Xin, Y. (2019). Assessment of the impacts of TLS vulnerabilities in the HTTPS ecosystem of China. *Procedia computer science*, 147:512–518.
- Kerner, S. (2015). Logjam ssl/tls vulnerability exposes cryptographic weakness retrieved august 10, 2015.
- Matsumoto, S. and Reischuk, R. M. (2015). Certificates-as-an-insurance: Incentivizing accountability in ssl/tls. In *USENIX NDSS WSENT*.
- Merzdovnik, G., Falb, K., Schmiedecker, M., Voyiatzis, A. G., and Weippl, E. (2016). Whom You Gonna Trust? A Longitudinal Study on TLS Notary Services. In *Data and Applications Security and Privacy*, pages 331–346. Springer.

¹⁸https://bit.ly/2EDp1fk

- Möller, B., Duong, T., and Kotowicz, K. (2014). This poodle bites: exploiting the ssl 3.0 fallback. *Security Advisory*.
- Samarasinghe, N. and Mannan, M. (2019). Another look at TLS ecosystems in networked devices vs. Web servers. *Computers & Security*, 80:1 13.
- Vratonjic, N., Freudiger, J., Bindschaedler, V., and Hubaux, J.-P. (2013). The inconvenient truth about web certificates. In *Economics of information security and privacy iii*, pages 79–117. Springer.