6.3.1.1 の式変形を考える。式変形は [42] に詳しいとあるのでそれも参考に考える。 $m_{n,h} \in \{0,1\}$ がベルヌーイ分布 (3.20) から生成されるので、

$$p(m_{n,h}|\pi_h) = \pi_h^{m_{n,h}} (1 - \pi_h)^{1 - m_{n,h}}$$
(1)

また、 π_h はベータ分布 (3.49) から生成されるので

$$p(\pi_h) = \frac{\Gamma(\frac{\alpha\beta}{H} + \beta)}{\Gamma(\frac{\alpha\beta}{H})\Gamma(\beta)} \pi_h^{\frac{\alpha\beta}{H} - 1} (1 - \pi_h)^{\beta - 1}$$
(2)

なお、[42] では $H = H, \beta = 1$ となっている。

$$p(M) = \prod_{h=1}^{H} \prod_{n=1}^{N} p(m_{n,h}) = \prod_{h=1}^{H} \int p(\pi_h) \{ \prod_{n=1}^{N} p(m_{n,h} | \pi_h) \} d\pi_h$$

$$= \prod_{h=1}^{H} \int \frac{\Gamma(\frac{\alpha\beta}{H} + \beta)}{\Gamma(\frac{\alpha\beta}{H})\Gamma(\beta)} \pi_h^{\frac{\alpha\beta}{H} - 1} (1 - \pi_h)^{\beta - 1} \prod_{n=1}^{N} \pi_h^{m_{n,h}} (1 - \pi_h)^{1 - m_{n,h}} d\pi_h$$

$$= \prod_{h=1}^{H} \frac{\Gamma(\frac{\alpha\beta}{H} + \beta)}{\Gamma(\frac{\alpha\beta}{H})\Gamma(\beta)} \int \pi_h^{\frac{\alpha\beta}{H} - 1 + \sum_{n=1}^{N} m_{n,h}} (1 - \pi_h)^{\beta - 1 + N - \sum_{n=1}^{N} m_{n,h}} d\pi_h$$

$$=\prod_{h=1}^{H} \frac{\Gamma(\frac{\alpha\beta}{H}+\beta)}{\Gamma(\frac{\alpha\beta}{H})\Gamma(\beta)} \int \pi_{h}^{\frac{\alpha\beta}{H}-1+N_{h}} (1-\pi_{h})^{\beta-1+N-N_{h}} d\pi_{h} = \prod_{h=1}^{H} \frac{\Gamma(\frac{\alpha\beta}{H}+\beta)}{\Gamma(\frac{\alpha\beta}{H})\Gamma(\beta)} \frac{\Gamma(\frac{\alpha\beta}{H}+N_{h})\Gamma(N-N_{h}+\beta)}{\Gamma(\frac{\alpha\beta}{H}+\beta+N)}$$
(3)

最後の等式については、(3.49) のベータ分布の式を見ると、積分部分が、正規化定数の逆数になっていることがわかる。そのため、それを踏まえて、 $Beta(\frac{\alpha\beta}{H}+N_h,\beta+N-N_h)$ の正規化定数の逆数を考えれば良い。この式は [42] の (2) と同等になる。一見同等ではないが、(3.24) から $\Gamma(1)=1$ 、(3.25) から $\Gamma(x)=(x-1)\Gamma(x-1)$ を考慮して、 $\beta=1,Z=M,H=H,z_{ik}=m_{n,h},N_h=\sum_{n=1}^N z_{ik}=\sum_{n=1}^N m_{n,h}=N_h$ なので、

$$p(Z) = p(M) = \prod_{h=1}^{H} \frac{\Gamma(\frac{\alpha\beta}{H} + \beta)}{\Gamma(\frac{\alpha\beta}{H})\Gamma(\beta)} \frac{\Gamma(\frac{\alpha\beta}{H} + N_h)\Gamma(N - N_h + \beta)}{\Gamma(\frac{\alpha\beta}{H} + \beta + N)} = \prod_{h=1}^{H} \frac{\Gamma(\frac{\alpha}{H} + 1)}{\Gamma(\frac{\alpha}{H})\Gamma(1)} \frac{\Gamma(\frac{\alpha}{H} + N_h)\Gamma(N - N_h + 1)}{\Gamma(\frac{\alpha}{H} + 1 + N)}$$
$$= \prod_{h=1}^{H} \frac{\frac{\alpha}{H}\Gamma(\frac{\alpha}{H})}{\Gamma(\frac{\alpha}{H})} \frac{\Gamma(\frac{\alpha}{H} + N_h)\Gamma(N - N_h + 1)}{\Gamma(\frac{\alpha}{H} + 1 + N)} = \prod_{k=1}^{H} \frac{\frac{\alpha}{H}\Gamma(N_h + \frac{\alpha}{H})\Gamma(N - N_h + 1)}{\Gamma(N + 1 + \frac{\alpha}{H})}$$
(4)

となり、等しいことがわかる。

(6.51) にあるように、p([M]) を考える。H で並び替えすると H!になるが、同じバイナリ列 i が H_i 個あると、入れ替えたものがおなじになるので個数が $1/H_i!$ になる。また、バイナリ列は N 行あるが、それぞれ $\{1,0\}$ なので、 2^N 種類ありうる。0!=1 も考慮すると、[m] は

$$\frac{H!}{\prod_{i=0}^{2^{N}-1} H_i!} \tag{5}$$

種類ある。(この式は [42] の 2.2 の最後の行に記載がある。本では i は 1 からになっているが、種類を表すものなのでなんでも良い。種類は [42] にあるように最大 2^N 種類ある。)

それぞれ、同じ確率なので、(6.51) の 2 行目まで、[42] の (3) の式のようになる。

$$p([M]) = \frac{H!}{\prod_{i=0}^{2^{N}-1} H_{i}!} \prod_{h=1}^{H} \frac{\Gamma(\frac{\alpha\beta}{H} + \beta)\Gamma(N_{h} + \frac{\alpha\beta}{H})\Gamma(N - N_{h} + \beta)}{\Gamma(\frac{\alpha\beta}{H})\Gamma(\beta)\Gamma(\frac{\alpha\beta}{H} + \beta + N)}$$
(6)

i は自由としているが、 $N_h=0$ となるのはすべての列が 0 になる、1 種類なので、すべて 0 となる列の個数を H_0 とし、 $H=H_0+H_+=\sum_{i=0}^{2^N-1}H_i=H_0+\sum_{i=1}^{2^N-1}H_i$ で、 $H_+=\sum_{i=1}^{2^N-1}H_i$ とする。

[42] の (3) について、 $N_h=0$ となる列を分けて考える。上記のガンマ関数の特性より $\Gamma(n+1)=n!, n\in N$ にも注意し、 $\beta=1$ とすると、

$$p([M]) = \frac{H!}{\prod_{i=0}^{2^{N}-1} H_{i}!} \prod_{h=1}^{H} \frac{\frac{\alpha}{H} \Gamma(N_{h} + \frac{\alpha}{H}) \Gamma(N - N_{h} + 1)}{\Gamma(N + 1 + \frac{\alpha}{H})}$$

$$= \frac{H!}{H_{0}! \prod_{i=1}^{2^{N}-1} H_{i}!} (\frac{\frac{\alpha}{H}}{\Gamma(N + 1 + \frac{\alpha}{H})})^{H} (\Gamma(\frac{\alpha}{H}) \Gamma(N + 1))^{H_{0}} \prod_{h=1, N_{h} \neq 0}^{H_{+}} \Gamma(N_{h} + \frac{\alpha}{H}) \Gamma(N - N_{h} + 1)$$

$$= \frac{H!}{H_{0}! \prod_{i=1}^{2^{N}-1} H_{i}!} (\frac{\frac{\alpha}{H}}{\prod_{j=0}^{N} (j + \frac{\alpha}{H}) \Gamma(\frac{\alpha}{H})})^{H} (\Gamma(\frac{\alpha}{H}) N!)^{H-H} \prod_{h=1, N_{h} \neq 0}^{H_{+}} (\prod_{j=0}^{N_{h}-1} (j + \frac{\alpha}{H})) \Gamma(\frac{\alpha}{H}) (N - N_{h})!$$

$$= \frac{H!}{H_{0}! \prod_{i=1}^{2^{N}-1} H_{i}!} (\frac{1}{\prod_{j=1}^{N} (j + \frac{\alpha}{H})})^{H} N!^{H} (\frac{\alpha}{H})^{H} \prod_{h=1, N_{h} \neq 0}^{H_{+}} \frac{\prod_{j=1}^{N_{h}-1} (j + \frac{\alpha}{H}) (N - N_{h})!}{N!}$$

$$= \frac{\alpha^{H}}{\prod_{i=1}^{2^{N}-1} H_{i}!} \frac{H!}{H_{0}! H^{H}} (\frac{N!}{\prod_{j=1}^{N} (j + \frac{\alpha}{H})})^{H} \prod_{h=1, N_{h} \neq 0}^{H_{+}} \frac{(N - N_{h})! \prod_{j=1}^{N_{j}-1} (j + \frac{\alpha}{H})}{N!}$$

このさきの詳細は元論文でも別の資料 (Infinite latent feature models and the Indian buffet process. Technical Report 2005-001) を参照するようになっている。別資料を参照すると、そもそも、行列はスパースであることが仮定されている。つまり、

$$H_{+} << H, H_{0} \approx H \tag{8}$$

そのため、 H_+ が有限であること、 N_h が有限であることが仮定されている。(これを考えると、行列の図はスパースでない。と思ったが、よく考えると、本当は無限の列を考えるので、結果有限になり、残りの無限が 0 になり、全体として考えるとスパース。サンプリングされる料理の数は有限なので、結果的にスパースになっている。)

別資料の Appendix にあるように、それぞれの項について、検討する。(60)-(62) に関して考えると、

$$\frac{H!}{H_0!H^{H_+}} = \frac{\prod_{h=1}^{H_+}(H-h+1)}{H^{H_+}} = \frac{\prod_{h=1}^{H_+}(H-(h-1))}{H^{H_+}} = \frac{\prod_{h=1}^{H_+}(H-(h-1))}{H^{H_+}} = \frac{H^{H_+} - H^{H_+-1} \sum_{h=0}^{H_+-1} h + H^{H_+-2} (\sum_{h=0}^{H_+-1} \sum_{j=h+1}^{H_+-1} h j) + \dots + (-1)^{H_+-2} (\sum_{h=1}^{H_+-1} \frac{1}{h})(H_+-1)! + (-1)^{H_+-1}(H_+-1)!}{H^{H_+}} = \frac{H^{H_+} - H^{H_+-1}}{H^{H_+}} + \frac{H^{H_+} - H^{H_+-1}}{H^{H_+-1}} + \frac{H^{H_+} - H^{H_+-1}}{H^{H_+-1}} + \frac{H^{H_+} - H^{H_+-1}}{H^{H_+-1}} = \frac{H^{H_+$$

 H_{+} が有限で、H を無限への極限とするので、

$$\lim_{H \to \infty} \frac{H!}{H_0! H^{H_+}} = \lim_{H \to \infty} (1 + \frac{H_+^{H_+ + 1}}{H}) = 1 \tag{10}$$

なお、各項を-としたものに関しても考えると、それよりは大きくなる。しかし、これも極限で1になるので、1になることがわかる。

次に(63)を考える。これも、上記と同様に考えられる。

$$(N_{h}-1)! \leq \prod_{j=1}^{N_{h}-1} (j + \frac{\alpha}{H}) =$$

$$(N_{h}-1)! + \frac{\alpha}{H}(N_{h}-1)! \sum_{j=1}^{N_{h}-1} \frac{1}{j} + (\frac{\alpha}{H})^{2}(N_{h}-1)! \sum_{j=1}^{N_{h}-2} \sum_{k=j+1}^{N_{h}-1} \frac{1}{jk} + \dots + (\frac{\alpha}{H})^{N_{h}-2} \sum_{j=1}^{N_{h}-1} j + (\frac{\alpha}{H})^{N_{h}-1}$$

$$= (N_{h}-1)! + \frac{\alpha^{N_{h}-1}}{H}(N_{h}-1)^{N_{h}}$$

$$(11)$$

 N_h, α が有限なので、

$$\lim_{H \to \infty} \prod_{j=1}^{N_h - 1} (j + \frac{\alpha}{H}) = (N_h - 1)! \tag{12}$$

これらを踏まえると、

$$p([M]) = \frac{\alpha^{H+}}{\prod_{i=1}^{2^{N}-1} H_i!} \frac{H!}{H_0! H^{H_+}} \left(\frac{N!}{\prod_{j=1}^{N} (j + \frac{\alpha}{H})}\right)^H \prod_{h=1, N_h \neq 0}^{H_+} \frac{(N - N_h)! \prod_{j=1}^{N_h - 1} (j + \frac{\alpha}{H})}{N!}$$

$$\approx \frac{\alpha^{H_+}}{\prod_{i=1}^{2^{N}-1} H_i!} \left(\frac{N!}{\prod_{j=1}^{N} (j + \frac{\alpha}{H})}\right)^H \prod_{h=1, N_h \neq 0}^{H_+} \frac{(N - N_h)! (N_h - 1)!}{N!}$$
(13)

最後に (64)-(70) を考える。(64)-(66) に関しては記載の通りでわかりやすい。

(67) に関して、 $\lim_{H o \infty} (1 + \frac{x}{K})^H$ を考える。これが収束すれば、以下が成り立つ。

$$\lim_{H \to \infty} \left(\frac{1}{1 + \frac{x}{K}}\right)^H = \frac{1}{\lim_{H \to \infty} \left(1 + \frac{x}{K}\right)^H} \tag{14}$$

ネイピア数の定義を考え、変数変換も考えるとこのリンクにあるように以下の性質が成り立つ。

$$\lim_{H \to \infty} (1 + \frac{x}{K})^H = \lim_{\frac{H}{x} \to \infty} ((1 + \frac{x}{K})^{\frac{H}{x}})^x = e^x$$
 (15)

よって、(67) が成り立つ。これを使うと、(68) が成り立ち、(70) が導かれる。

これらから、元論文の(4)が導かれる。

$$p([M]) = \frac{\alpha^{H_{+}}}{\prod_{i=1}^{2^{N}-1} H_{i}!} \frac{H!}{H_{0}!H^{H_{+}}} \left(\frac{N!}{\prod_{j=1}^{N} (j + \frac{\alpha}{H})}\right)^{H} \prod_{h=1,N_{h}\neq 0}^{H_{+}} \frac{(N-N_{h})! \prod_{j=1}^{N_{j}-1} (j + \frac{\alpha}{H})}{N!}$$

$$\approx \frac{\alpha^{H_{+}}}{\prod_{i=1}^{2^{N}-1} H_{i}!} e^{-\alpha H_{N}} \prod_{h=1,N_{h}\neq 0}^{H_{+}} \frac{(N-N_{h})! (N_{h}-1)!}{N!}$$
(16)

さて、上記では $\beta = 1$ としていたが、 β をそのままとして、再度検討する。

$$p([M]) = \frac{H!}{\prod_{i=0}^{2^{N}-1} H_i!} \prod_{h=1}^{H} \frac{\Gamma(\frac{\alpha\beta}{H} + \beta)\Gamma(N_h + \frac{\alpha\beta}{H})\Gamma(N - N_h + \beta)}{\Gamma(\frac{\alpha\beta}{H})\Gamma(\beta)\Gamma(\frac{\alpha\beta}{H} + \beta + N)}$$

$$= \frac{H!}{H_0! \prod_{i=1}^{2^{N}-1} H_i!} (\frac{\Gamma(\frac{\alpha\beta}{H} + \beta)\Gamma(\frac{\alpha\beta}{H})\Gamma(N + \beta)}{\Gamma(\frac{\alpha\beta}{H})\Gamma(\beta)\Gamma(\frac{\alpha\beta}{H} + \beta + N)})^{H-H_+} \prod_{h=1}^{H_+} \frac{\Gamma(\frac{\alpha\beta}{H} + \beta)\Gamma(N_h + \frac{\alpha\beta}{H})\Gamma(N - N_h + \beta)}{\Gamma(\frac{\alpha\beta}{H})\Gamma(\beta)\Gamma(\frac{\alpha\beta}{H} + \beta + N)}$$

$$= \frac{H!}{H_0! \prod_{i=1}^{2^{N}-1} H_i!} (\frac{\Gamma(\frac{\alpha\beta}{H} + \beta)\Gamma(\frac{\alpha\beta}{H})\Gamma(N + \beta)}{\Gamma(\frac{\alpha\beta}{H})\Gamma(\beta)\Gamma(\frac{\alpha\beta}{H} + \beta + N)})^{H} \prod_{h=1}^{H_+} \frac{\Gamma(N_h + \frac{\alpha\beta}{H})\Gamma(N - N_h + \beta)}{\Gamma(\frac{\alpha\beta}{H})\Gamma(N + \beta)}$$

$$= \frac{H!}{H_0! \prod_{i=1}^{2^{N}-1} H_i!} (\frac{\Gamma(\frac{\alpha\beta}{H} + \beta)\Gamma(\frac{\alpha\beta}{H})\Gamma(N + \beta)}{\Gamma(\frac{\alpha\beta}{H})\Gamma(\beta)\Gamma(\frac{\alpha\beta}{H} + \beta + N)})^{H} \prod_{h=1}^{H_+} \frac{\Gamma(N_h + \frac{\alpha\beta}{H})\Gamma(N - N_h + \beta)}{\Gamma(\frac{\alpha\beta}{H})\Gamma(N + \beta)}$$

$$= \frac{H!}{H_0! \prod_{i=1}^{2^{N}-1} H_i!} (\frac{\Gamma(\frac{\alpha\beta}{H} + \beta)\Gamma(N + \beta)}{\Gamma(\beta)\Gamma(\frac{\alpha\beta}{H} + \beta + N)})^{H} \prod_{h=1}^{H_+} \frac{\alpha\beta}{H} \prod_{j=1}^{N_h-1} (j + \frac{\alpha\beta}{H})\Gamma(\frac{\alpha\beta}{H})\Gamma(N - N_h + \beta)}{\Gamma(\frac{\alpha\beta}{H})\Gamma(N + \beta)}$$

$$= \frac{H!}{H_0! \prod_{i=1}^{2^{N}-1} H_i!} (\frac{\Gamma(\frac{\alpha\beta}{H} + \beta)\Gamma(\beta)\prod_{j=0}^{N-1} (j + \beta)}{\Gamma(\beta)\Gamma(\frac{\alpha\beta}{H} + \beta)})^{H} (\frac{\alpha\beta}{H})^{H_+} \prod_{h=1}^{H_+} \frac{\prod_{j=1}^{N_h-1} (j + \frac{\alpha\beta}{H})\Gamma(N - N_h + \beta)}{\Gamma(N + \beta)}$$

$$= \frac{(\alpha\beta)^{H_+}}{\prod_{i=1}^{2^{N}-1} H_i!} \frac{H!}{H_0! H^{H_+}} (\frac{\prod_{j=1}^{N} (j + \beta - 1)}{\prod_{j=1}^{N} (j + \beta - 1)})^{H} \prod_{h=1}^{H_+} \frac{\prod_{j=1}^{N_h-1} (j + \frac{\alpha\beta}{H})\Gamma(N - N_h + \beta)}{\Gamma(N + \beta)}$$

$$= \frac{(\alpha\beta)^{H_+}}{\prod_{i=1}^{2^{N}-1} H_i!} \frac{H!}{H_0! H^{H_+}} (\frac{\prod_{j=1}^{N} (j + \beta - 1)}{\prod_{j=1}^{N} (j + \beta - 1)})^{H} \prod_{h=1}^{H_+} \frac{\prod_{j=1}^{N_h-1} (j + \frac{\alpha\beta}{H})\Gamma(N - N_h + \beta)}{\Gamma(N + \beta)}$$

$$= \frac{(\alpha\beta)^{H_+}}{\prod_{i=1}^{2^{N}-1} H_i!} \frac{H!}{H_0! H^{H_+}} (\frac{\prod_{j=1}^{N} (j + \beta - 1)}{\prod_{j=1}^{N} (j + \beta - 1)})^{H} \prod_{h=1}^{H_+} \frac{\prod_{j=1}^{N_h-1} (j + \frac{\alpha\beta}{H})\Gamma(N - N_h + \beta)}{\Gamma(N + \beta)}$$

$$= \frac{(\alpha\beta)^{H_+}}{\prod_{i=1}^{N} H_i!} \frac{H!}{H_0! H^{H_+}} \prod_{j=1}^{N} ((\frac{1}{1 + \frac{\alpha\beta}{H(j + \beta - 1)}})^{H} \prod_{j=1}^{N} \frac{\prod_{j=1}^{N} (j + \alpha\beta}{H^{N_+}})\Gamma(N - N_h + \beta)}{\Gamma(N + \beta)}$$

先の検討を再度考えると以下のようになる。

$$\lim_{H \to \infty} \frac{H!}{H_0! H^{H_+}} = \lim_{H \to \infty} \left(1 + \frac{H_+^{H_+ + 1}}{H}\right) = 1 \tag{18}$$

この資料の(12) を考慮して、さらに N_h が整数なのでガンマ関数の性質から、

$$\lim_{H \to \infty} \prod_{j=1}^{N_h - 1} (j + \frac{\alpha \beta}{H}) = (N_h - 1)! = \Gamma(N_h)$$
 (19)

$$\lim_{H \to \infty} \left(\frac{1}{1 + \frac{\alpha\beta}{H(j+\beta-1)}}\right)^H = exp\left(-\frac{\alpha\beta}{j+\beta-1}\right)$$
 (20)

よって、

$$\lim_{H \to \infty} \prod_{j=1}^{N} \left(\frac{1}{1 + \frac{\alpha \beta}{H(j + \beta - 1)}} \right)^{H} = exp(-\left(\alpha \sum_{j=1}^{N} \frac{\beta}{j + \beta - 1}\right))$$
 (21)

これらを踏まえて (17) を考慮すると、

$$p([M]) = \frac{(\alpha\beta)^{H_{+}}}{\prod_{i=1}^{2^{N-1}} H_{i}!} \frac{H!}{H_{0}! H^{H_{+}}} \prod_{j=1}^{N} \left(\left(\frac{1}{1 + \frac{\alpha\beta}{H(j+\beta-1)}} \right)^{H} \right) \prod_{h=1}^{H_{+}} \frac{\prod_{j=1}^{N_{h}-1} (j + \frac{\alpha\beta}{H}) \Gamma(N - N_{h} + \beta)}{\Gamma(N + \beta)}$$

$$= \frac{(\alpha\beta)^{H_{+}}}{\prod_{i=1}^{2^{N}-1} H_{i}!} exp(-\left(\alpha \sum_{j=1}^{N} \frac{\beta}{j+\beta-1}\right)) \prod_{h=1}^{H_{+}} \frac{\Gamma(N_{h}) \Gamma(N - N_{h} + \beta)}{\Gamma(N + \beta)}$$
(22)

となり、(6.51)が成り立つことがわかる。