The Impulse Response and Convolution (Part 2)

Scope and Background Reading

This session continues our introduction to time convolution.

As we shall see, in the determination of a system's response to a signal input, time convolution involves integration by parts and is a tricky operation. But time convolution becomes multiplication in the Laplace Transform domain, and is much easier to apply.

The material in this presentation and notes is based on Chapter 6 of <u>Steven T. Karris, Signals and Systems: with Matlab Computation and Simulink Modelling, 5th Edition.</u>

(http://site.ebrary.com/lib/swansea/docDetail.action?docID=10547416) and builds on the time response of a state-space model that was developed in the <u>previous session</u>

(http://nbviewer.ipython.org/github/cpjobling/EG-247-
Resources/blob/master/week4/state space.ipynb).

Agenda

The material to be presented will need two sessions.

Last Session

- The Impulse Response of a System in Time Domain
- · Even and Odd Functions of Time

This Session

- Time Convolution
- · Graphical Evaluation of the Convolution Integral
- System Response by Convolution
- · System Response by Laplace

Time Convolution

Consider a system whose input is the Dirac delta ($\delta(t)$), and its output is the impulse response h(t). We can represent the inpt-output relationship as a block diagram

In general

Add an arbitrary input

Let u(t) be any input whose value at $t = \tau$ is $u(\tau)$, Then because of the sampling property of the delta function

(output is $u(\tau)h(t-\tau)$)

Integrate both sides

Integrating both sides over all values of τ ($-\infty < \tau < \infty$) and making use of the fact that the delta function is even, i.e.

$$\delta(t - \tau) = \delta(\tau - t)$$

we have:

Use the sifting property of delta

The second integral on the left side reduces to u(t)

The Convolution Integral

The integral

$$\int_{-\infty}^{\infty} u(\tau)h(t-\tau)d\tau$$

or

$$\int_{-\infty}^{\infty} u(t-\tau)h(\tau)d\tau$$

is known as the *convolution integral*; it states that if we know the impulse response of a system, we can compute its time response to any input by using either of the integrals.

The convolution integral is usually written u(t) * h(t) or h(t) * u(t) where the asterisk (*) denotes convolution.

Convolution and State-Space Models

In the previous session, we found that the impulse response of a SISO system (with d=0) was $h(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{B}$

Therefore, if we know h(t), we can use the convolution integral to compute the response y(t) to any input u(t) using the relation

$$h(t) = \int_{-\infty}^{\infty} \mathbf{C} e^{\mathbf{A}(t-\tau)} \mathbf{B} u(\tau) d\tau$$

$$h(t) = \mathbf{C}e^{\mathbf{A}t} \int_{-\infty}^{\infty} e^{-\mathbf{A}\tau} \mathbf{B}u(\tau) d\tau$$

Graphical Evaluation of the Convolution Integral

The convolution integral is most conveniently evaluated by a graphical evaluation. The text book gives three examples (6.4-6.6) which we will demonstrate using a <u>graphical visualization tool</u> (http://www.mathworks.co.uk/matlabcentral/fileexchange/25199-graphical-demonstration-of-convolution) developed by Teja Muppirala of the Mathworks.

The tool: convolutiondemo.m (matlab/convolutiondemo.m) (see license.txt (matlab/license.txt)).

Convolution by Graphical Method - Summary of Steps

For simplicity, we give the rules for u(t), but the procedure is the same if we reflect and slide h(t)

- 1. Substitute u(t) with $u(\tau)$ this is a simple change of variable. It doesn't change the definition of u(t).
- 2. Reflect $u(\tau)$ about the vertical axis to form $u(-\tau)$
- 3. Slide $u(-\tau)$ to the right a distance t to obtain $u(t-\tau)$
- 4. Multiply the two signals to obtain the product $u(t \tau)h(\tau)$
- 5. Integrate the product over all t from $-\infty$ to ∞ .

Example 1

(This is example 6.4 in the textbook)

The signals h(t) and u(t) are shown below. Compute h(t) * u(t) using the graphical technique.

Prepare for convolutiondemo

To prepare this problem for evaluation in the convolutiondemo tool, we need to determine the Laplace Transforms of h(t) and u(t).

h(t)

The signal h(t) is the straight line f(t) = -t + 1 but this is defined only between t = 0 and t = 1. We thus need to gate the function by multiplying it by $u_0(t) - u_0(t - 1)$ as illustrated below:

Thus

$$h(t) = (-t+1)(u_0(t) - u_0(t-1)) = (-t+1)u_0(t) - (-(t-1)u_0(t-1)) = -tu_0(t) + u_0(t) + (t-1)u_0(t) - (-(t-1)u_0(t) + u_0(t) + u_0(t) + u_0(t) + u_0(t) + (t-1)u_0(t) - (-(t-1)u_0(t) + u_0(t) + u_0$$

u(t)

The input u(t) is the gating function:

$$u(t) = u_0(t) - u_0(t-1)$$

so

$$U(s) = \frac{1}{s} - \frac{e^{-s}}{s} = \frac{1 - e^{-s}}{s}$$

convolutiondemo settings

• Let
$$g = (1 - \exp(-s))/s$$

• Let
$$h = (s + exp(-s) - 1)/s^2$$

• Set range
$$-2 < \tau < -2$$

Summary of result

1. For
$$t < 0$$
: $u(t - \tau)h(\tau) = 0$

2. For
$$t=0$$
: $u(t-\tau)=u(-\tau)$ and $u(-\tau)h(\tau)=0$

3. For
$$0 < t \le 1$$
: $h * u = \int_0^t (1)(-\tau + 1)d\tau = \tau - \tau^2/2\Big|_0^t = t - t^2/2$

3. For
$$0 < t \le 1$$
: $h * u = \int_0^t (1)(-\tau + 1)d\tau = \tau - \tau^2/2\Big|_0^t = t - t^2/2$
4. For $1 < t \le 2$: $h * u = \int_{t-1}^1 (-\tau + 1)d\tau = \tau - \tau^2/2\Big|_{t-1}^1 = t^2/2 - 2t + 2$

5. For
$$2 \le t$$
: $u(t - \tau)h(\tau) = 0$

Example 2

This is example 6.5 from the text book.

$$h(t) = e^{-t}$$

 $u(t) = u_0(t) - u_0(t-1)$

Answer 2

$$y(t) = \begin{cases} 0 : t \le 0 \\ 1 - e^{-t} : 0 < t \le 1 \\ e^{-t} (e - 1) : 1 < t \le 2 \\ 0 : 2 \le t \end{cases}$$

Example 3

This is example 6.6 from the text book.

$$h(t) = 2(u_0(t) - u_0(t-1))$$

$$u(t) = u_0(t) - u_0(t-2)$$

Answer 3

$$y(t) = \begin{cases} 0: t \le 0 \\ 2t: 0 < t \le 1 \\ 2: 1 < t \le 2 \\ -2t + 6: 2 < t \le 3 \\ 0: 3 \le t \end{cases}$$

System Response by Convolution

Example 4

This is example 6.7 from the textbook.

For the circuit shown below, use the convolution integral to find the capacitor voltage when the input is the unit step function $u_0(t)$ and $v_c(0^-)=0$

Solution 4

$$h(t) = \frac{1}{RC}e^{-t/RC}u_0(t)$$

which when C=1 F and R=1 Ω reduces to

$$h(t) = e^{-t}u_0(t)$$

It is relatively straight forward to show that

$$y(t) = (1 - e^{-t}) u_0(t)$$

System Response by Laplace

In the discussion of Laplace, we stated that

$$\mathcal{L}\left\{f(t) * g(t)\right\} = F(s)G(s)$$

We can use this property to make the solution of convolution problems even simpler.

Example 5

Solve Example 4 using Laplace.

Solution 5

$$h(t) = e^{-t}u_0(t) \Leftrightarrow H(s) = \frac{1}{s+1}$$

$$u(t) = u_0(t) \Leftrightarrow U(s) = \frac{1}{s}$$

$$y(t) = h(t) * u(t) \Leftrightarrow Y(s) = H(s)U(s) = \left(\frac{1}{s}\right) \times \left(\frac{1}{s+1}\right)$$

By PFE

$$Y(s) = \frac{r_1}{s} + \frac{r_2}{s+1}$$

The residues are $r_1 = 1$, $r_2 = -1$, so

$$Y(s) = \frac{1}{s} - \frac{1}{s+1} \Leftrightarrow y(t) = \left(1 - e^{-t}\right) u_0(t)$$

Impulse Response and Transfer Functions

A consequence of Laplace is that the transform of the impulse response of a transfer function G(s) is given by the transfer function itself.

$$y(t) = g(t) * \delta(t) \Leftrightarrow Y(s) = G(s).1 = G(s)$$

Thus the Laplace transform of any system subject to an input u(t) is simply

$$Y(s) = G(s)U(s)$$

and

$$y(t) = \mathcal{L}^{-1} \left\{ G(s)U(s) \right\}$$

Using tables, solution of a convolution problem by Laplace is usually simpler than using convolution directly. And if the system is particularly complex we can always fall back on the State-Space solution:

$$y(t) = \mathbf{C}e^{\mathbf{A}t} \int_0^t e^{-\mathbf{A}\tau} \mathbf{B}u(\tau) d\tau$$