CAPSTONE PROJECT

NETWORK INTRUSION DETECTION

Presented By:

1. Shivam Kumar Mishra – [Dr BC Roy Engineering College]-Electronics and Communication Engineering

OUTLINE

- Problem Statement
- Proposed System/Solution
- System Development Approach
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

The Challenge is to Create a robust Network Intrusion Detection System (NIDS) using machine learning. The system should be capable of analyzing network traffic data to identify and classify various types of cyber-attacks (e.g., DoS, Probe, R2L, U2R) and distinguish them from normal network activity. The goal is to build a model that can effectively secure communication networks by providing an early warning of malicious activities.

PROPOSED SOLUTION

The proposed system leverages machine learning algorithms to detect and classify network intrusions based on traffic patterns.

Key Components:

Data Collection

Network traffic data is sourced from publicly available datasets such as KDD Cup 99 or NSL-KDD, containing labeled examples of normal and malicious connections.

Pre-processing

Data is cleaned, transformed, and encoded to prepare it for training. Feature selection and normalization ensure improved model accuracy.

Model Development

Various classification models like Random Forest, SVM, and Neural Networks are tested. The best-performing model is chosen based on precision, recall, and F1-score.

Deployment

The trained model is deployed via a REST API interface for real-time network traffic analysis.

Detection

The model detects and classifies suspicious traffic, sending alerts when a potential intrusion is identified.

SYSTEM APPROACH

- IBM Watson Studio was used to develop the machine learning workflow.
- The project uses cloud-based tools and services (e.g., IBM Cloud, Google Colab, or AWS) for scalability and ease of access.
- The dataset is loaded and processed using Python libraries such as Pandas, NumPy, and Scikit-learn.
- Model training, evaluation, and visualization are handled with tools like Matplotlib, Seaborn, and TensorFlow/Keras for deep learning approaches.
- Version control and collaboration were maintained using GitHub and IBM Cloud Object Storage.

ALGORITHM & DEPLOYMENT

- Models such as Random Forest, Decision Trees, and Deep Neural Networks were evaluated.
- Feature selection techniques and cross-validation were applied to enhance performance.
- The best model—Random Forest—achieved high classification accuracy and was selected for deployment.
- Deployment involved hosting the model as a REST API using IBM Watsonx.ai Studio or Flask for real-time packet classification.
- Input features include attributes like duration, protocol type, service, flag, and byte count, commonly found in network flow records.
- The system classifies traffic into normal or specific attack types (e.g., DoS, Probe, etc.) for prompt mitigation.

RESULT

CONCLUSION

- A machine learning-based Network Intrusion Detection System (NIDS) was successfully developed.
- The system analyzes network traffic data to detect and classify various cyber-attacks such as DoS,
 Probe, R2L, and U2R.
- Supervised learning models like Random Forest provided high accuracy and reliability in intrusion detection.
- Preprocessing and feature engineering significantly improved model performance.
- The final model was deployed via a REST API for real-time traffic analysis and alert generation.
- This approach helps enhance network security by enabling early detection of malicious activities.
- The system can be integrated into existing cybersecurity frameworks to reduce the risk of attacks.

FUTURE SCOPE

- Integration with Real-Time Network Monitoring Tools:
- Extend the system to work seamlessly with real-time packet sniffers like Wireshark or Zeek for live traffic detection.
- Adoption of Deep Learning Models:
- Implement LSTM or CNN-based models for improved detection of complex patterns and zero-day attacks.
- Continuous Learning:
- Enable online learning techniques to update the model as new types of attacks emerge in real-world networks.
- Deployment on Edge Devices:
- Deploy lightweight models on routers or IoT gateways for decentralized, faster threat detection.
- Enhanced Visualization Dashboards:
- Build dashboards for monitoring intrusion attempts, model performance, and threat history for better incident response.

REFERENCES

- Kaggle dataset link https://www.kaggle.com/datasets/sampadab17/network-intrusion-detection.
- IBM Cloud Documents.
- IBM Watson Studio Tutorials.

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence Shivam Kumar Mishra Has successfully satisfied the requirements for: Getting Started with Artificial Intelligence Issued on: Jul 15, 2025 Issued by: IBM SkillsBuild Verify: https://www.credly.com/badges/123a5ab7-f8e6-4e15-b753-58c2ea42e059

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Shivam Kumar Mishra

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 16, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/8b967192-e16d-4f87-b766-9837ac4ab67c

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Shivam Mishra

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 16 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

