Probabilistic model

So far in this course, *a model* referred to a parametric family of functions, such as

$$f(x) = \beta_0 + \beta_1 x.$$

We will now discuss *probabilistic* (generative) models, such as

$$y = \beta_0 + \beta_1 x + \epsilon,$$

$$\epsilon \sim \mathcal{N}(0, \sigma^2),$$

where $\mathcal{N}(0, \sigma^2)$ denotes a Gaussian distribution with mean 0 and variance σ^2 .

Probability theory recap

Discrete probability distributions

Probability distributions can be discrete or continuous.

A discrete random variable X is described by a *probability mass function* (*PMF*):

Here X can take values x_i with probabilities p_i , with

$$p_i \ge 0, \qquad \sum_i p_i = 1.$$

Continuous probability distributions

A continuous random variable X is described by a *probability density function (PDF)*:

$$p(x) \ge 0,$$
$$\int_{\mathbb{R}} p(x)dx = 1.$$

The mean and the variance

If a discrete random variable X takes values x_i with probabilities p_i , then

$$\mathbb{E}[X] = \sum_{i} x_{i} p_{i},$$

$$Var[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^{2}\right] = \sum_{i} (x_{i} - \mathbb{E}[X])^{2} p_{i}.$$

If a continuous random variable X is described by a PDF p(x), then

$$\mathbb{E}[X] = \int x p(x) dx,$$

$$\operatorname{Var}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])^2 \right] = \int (x - \mathbb{E}[X])^2 p(x) dx.$$

Variance, covariance, and correlation

We defined

$$\operatorname{Var}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2].$$

We can similarly define

$$\operatorname{Cov}[X, Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])].$$

Note that

$$Cov[X, X] = Var[X].$$

If Cov[X, Y] = 0, then X and Y are *uncorrelated*. Reminder:

$$Corr[X, Y] = \frac{Cov[X, Y]}{\sqrt{Var[X] Var[Y]}}.$$

Some properties of mean and variance

Some useful properties of the expected value:

$$\mathbb{E}[aX] = a\mathbb{E}[X]$$

$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

$$\mathbb{E}[XY] \neq \mathbb{E}[X]\mathbb{E}[Y] \text{ (unless independent)}$$

and of variance:

$$\operatorname{Var}[aX] = a^2 \operatorname{Var}[X]$$

$$\operatorname{Var}[X+Y] \neq \operatorname{Var}[X] + \operatorname{Var}[Y] \text{ (unless uncorrelated)}$$

$$\operatorname{Var}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Multivariate probability distributions

A random variable *X* can be *multivariate* (random vector):

$$p(\mathbf{x}) \ge 0,$$

$$\int_{\mathbb{R}^2} p(\mathbf{x}) d\mathbf{x} = 1.$$

Multivariate probability distributions

If a continuous multivariate random variable X is described by a PDF $p(\mathbf{x})$, then

$$\mathbb{E}[X] = \int \mathbf{x} p(\mathbf{x}) d\mathbf{x}.$$

The variance is now replaced by a *covariance matrix*:

$$\operatorname{Cov}[X] = \mathbb{E}\left[(X - \mathbb{E}[X])(X - \mathbb{E}[X])^{\top} \right].$$

Its diagonal elements are variances of X_i :

$$Cov[X]_{ii} = Var[X_i]$$

while off-diagonal elements are covariances of X_i and X_i :

$$Cov[X]_{ij} = Cov[X_i, X_j].$$

Gaussian distribution

Gaussian (normal) distribution $\mathcal{N}(\mu, \sigma^2)$ with mean μ and variance σ^2 :

If $\mu = 0$ and $\sigma = 1$, this is called *standard* normal distribution:

$$p(x) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{x^2}{2}\right].$$

Multivariate Gaussian distribution

Multivariate Gaussian distribution $\mathcal{N}(\mu, \Sigma)$ in \mathbb{R}^k with mean μ and covariance matrix Σ :

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^k \det(\mathbf{\Sigma})}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right].$$

If $\mu=0$ and $\Sigma={f I}$, this is also called *standard* multivariate normal distribution:

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^k}} \exp\left[-\frac{1}{2} \|\mathbf{x}\|^2\right].$$

Back to the probabilistic model for linear regression

Probabilistic model

Probabilistic model for regression:

$$y = \beta_0 + \beta_1 x + \epsilon = \boldsymbol{\beta}^{\top} \mathbf{x} + \epsilon,$$

$$\epsilon \sim \mathcal{N}(0, \sigma^2).$$

Note: this assumes uncorrelated noise (errors) and equal noise variance for all points (*homoscedasticity*).

Likelihood

For a given β and given \mathbf{x}_i ,

$$y \sim \mathcal{N}(\boldsymbol{\beta}^{\top} \mathbf{x}_i, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{(y - \boldsymbol{\beta}^{\top} \mathbf{x}_i)^2}{2\sigma^2}\right].$$

Probability density to generate the entire training set $\{(\mathbf{x}_i, y_i)\}$ is

$$\prod_{i} \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{(y_i - \beta^{\top} \mathbf{x}_i)^2}{2\sigma^2} \right].$$

If we re-interpret this as a function of β (and σ^2), then it is called *the likelihood*.

Maximum likelihood

Find β and σ^2 maximizing the likelihood:

$$\prod_{i} \frac{1}{\sigma \sqrt{2\pi}} \exp \left[-\frac{(y_i - \boldsymbol{\beta}^{\top} \mathbf{x}_i)^2}{2\sigma^2} \right].$$

Product of exponentials is annoying to work with \Rightarrow take the logarithm to obtain *log-likelihood*:

$$\sum_{i} \left[\log \left[\frac{1}{\sigma \sqrt{2\pi}} \right] + \left[-\frac{(y_i - \boldsymbol{\beta}^{\top} \mathbf{x}_i)^2}{2\sigma^2} \right] \right] =$$

$$= -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i} (y_i - \boldsymbol{\beta}^{\top} \mathbf{x}_i)^2.$$

It is often convenient to think about minimizing *the negative log-likelihood*.

Maximum likelihood

Negative log-likelihood:

$$\frac{n}{2}\log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \sum_{i} (y_i - \boldsymbol{\beta}^{\top} \mathbf{x}_i)^2 =$$

$$= \frac{n}{2}\log(2\pi\sigma^2) + \frac{1}{2\sigma^2} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||^2.$$

Maximizing likelihood is equivalent to minimizing squared error!

Exercise: what is the maximum likelihood solution for σ^2 ?

Statistical properties of $\hat{\boldsymbol{\beta}}$

 $\hat{\beta}$ is an estimator of β . It is a random variable that depends on the input data. We are interested in the expected value and the (co)variance of this estimator.

We assume **X** is fixed and β is fixed. The response vector $\mathbf{y} = \mathbf{X}\beta + \boldsymbol{\epsilon}$ is random. We want to study $\mathbb{E}[\hat{\beta}]$ and $\operatorname{Cov}[\hat{\beta}]$ over $\boldsymbol{\epsilon}$.

$\hat{oldsymbol{eta}}$ is an unbiased estimator

Theorem: $\mathbb{E}[\hat{\beta}] = \beta$, i.e. it is an *unbiased* estimator.

Proof:

$$\mathbb{E}[\hat{\boldsymbol{\beta}}] = \mathbb{E}[(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}]$$

$$= \mathbb{E}[(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon})]$$

$$= \mathbb{E}[(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta}] + \mathbb{E}[(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\boldsymbol{\epsilon}]$$

$$= \boldsymbol{\beta} + \mathbf{0} =$$

$$= \boldsymbol{\beta}.$$

Note: here we assumed that n > p and \mathbf{X} has *full rank*, i.e. all singular values are non-zero, i.e. $(\mathbf{X}^{\top}\mathbf{X})^{-1}$ exists.

Covariance matrix of $\hat{\boldsymbol{\beta}}$ and Gauss-Markov

Exercise: $\operatorname{Cov}[\hat{\boldsymbol{\beta}}] = \sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1}$.

 $\operatorname{Cov}[\hat{\boldsymbol{\beta}}]$ describes uncertainty around $\hat{\boldsymbol{\beta}}$. We see that small singular values of \mathbf{X} lead to large uncertainty.

Gauss-Markov theorem: $\hat{\beta}$ has the smallest variance among all unbiased linear estimators. It is the *best linear unbiased estimator* (BLUE).

What does this mean exactly? That $\operatorname{Var}[\mathbf{a}^{\top}\hat{\boldsymbol{\beta}}] \leq \operatorname{Var}[\mathbf{a}^{\top}\hat{\boldsymbol{\beta}}]$ for any vector \mathbf{a} (or, equivalently, $\operatorname{Cov}[\tilde{\boldsymbol{\beta}}] - \operatorname{Cov}[\hat{\boldsymbol{\beta}}]$ is a *positive semi-definite* matrix, i.e. all singular values are ≥ 0).

Is the best linear unbiased estimator always the best estimator?

No.

Underfitting, overfitting,

and the bias-variance tradeoff

Polynomial regression

What if we model the relationship between y and x but include x^2 , x^3 , etc. terms?

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3.$$

This is still linear regression! What?! Yes.

Underfitting and overfitting

Underfitting Model too simple High bias

Overfitting High variance

Model too flexible

Bias-variance tradeoff

$$\begin{aligned} \operatorname{MSE} &= \mathbb{E} \Big[\big(y - \hat{f}(x) \big)^2 \Big] = \\ &= \mathbb{E} \Big[\big(f(x) + \epsilon - \hat{f}(x) \big)^2 \Big] = \\ &= \mathbb{E} \Big[\big(f(x) - \hat{f}(x) \big)^2 \Big] + \sigma^2 = \\ &= \mathbb{E} \Big[\big(f(x) - \mathbb{E}[\hat{f}(x)] + \mathbb{E}[\hat{f}(x)] - \hat{f}(x) \big)^2 \Big] + \sigma^2 = \\ &= \Big(f(x) - \mathbb{E}[\hat{f}(x)] \Big)^2 + \mathbb{E} \Big[\big(\hat{f}(x) - \mathbb{E}[\hat{f}(x)] \big)^2 \Big] + \\ &\quad + 2 \Big(f(x) - \mathbb{E}[\hat{f}(x)] \Big) \mathbb{E} \Big[\hat{f}(x) - \mathbb{E}[\hat{f}(x)] \Big] + \sigma^2 = \\ &= \underbrace{\Big(f(x) - \mathbb{E}[\hat{f}(x)] \Big)^2}_{\operatorname{Bias}^2} + \underbrace{\mathbb{E} \Big[\big(\hat{f}(x) - \mathbb{E}[\hat{f}(x)] \big)^2 \Big]}_{\operatorname{Variance}} + \sigma^2 = \\ &= \operatorname{Bias}^2 + \operatorname{Variance} + \sigma^2. \end{aligned}$$

Intuition for bias and variance

Overfitting and high variance demonstration

Bishop, Pattern Recognition and Machine Learning

Training and test error

