

ICMC - Instituto de Ciências Matemáticas e da Computação

Disciplina: SCC0202 - Algoritmo e Estrutura de Dados I Projeto 1

Aluno: Alec Campos Aoki (15436800)

Aluno: Jhonatan Barboza da Silva (15645049)

Aluno: Jõao Ricardo de Almeida Lustosa (15463697)

1. Modelagem da Solução

A lógica usada para resolver o problema é simples. Buscamos, nessa ordem:

- 1. Ler a entrada de dados e armazená-la;
 - (a) Número total de cidades a serem visitadas;
 - (b) Cidade inicial (e final);
 - (c) Quantidade de conexões (estradas) existentes;
 - (d) Pares de cidades e o comprimento da conexão entre elas.
- 2. Gerar todas as permutações possíveis dos caminhos que percorrem todas as cidades, partindo da inicial e voltando ao final;
 - (a) Gerar todas as permutações possíveis, uma a uma (sem repetir permutações);
 - (b) Verificar se a permutação gerada é válida;
 - (c) Armazená-la se sua distância for a menor encontrada até o momento, e descartá-la caso o contrário;
- 3. Retornar a distância e seu caminho.

1.1 Leitura de Dados

Para ler os dados do problema, criamos uma struct chamada INDICE que armazena três inteiros: dois representando duas cidades, e o terceiro representando a distância entre elas. Armazenamos todos os INDICES em uma Estrutura de Dados lista, mais especificamente uma lista sequencial, pois iremos consultar frequentemente esses dados, e essa estrutura nos permite fazer isso facilmente.

1.2 Gerar Permutações

Para guardar as permutações conforme geramos elas, utilizamos a Estrutura de Dados **fila**, mais especificamente uma fila simplesmente encadeada não-ordenada. Essa fila consiste de um TAD, e foi escolhida pois suas operações de inserção e remoção são eficazes e simples. Utilizar uma Estrutura de Dado muito flexível como

uma lista duplamente encadeada demandaria recursos a mais desnecessariamente, e utilizar uma estrutura sequencial poderia dificultar as operações de inserção e remoção.

Geramos as permutações enfileirando cidades na fila e checando, a cada caso, se:

- 1. A permutação já está completa, isto é, se seu tamanho equivale à quantidade total de cidades;
- 2. O elemento a ser inserido já está na permutação.

Após conseguirmos uma permutação completa, checamos se ela é totalmente válida (ou seja, se não estamos conectando cidades que não possuem conexões diretas entre si) e, caso seja, se a distância desse percurso é a menor que encontramos até o momento. Se for, atualizamos nosso melhor caminho. Senão, realizamos uma nova permutação. Note que, se temos n cidades, teremos $P_n = n!$ permutações, cada uma de tamanho n. Ao checarmos todas as permutações possíveis, teremos achado o percurso com menor distância. Importante notar que também que transformamos todas as operações usadas para solucionar o Problema do Caixeiro Viajante em um TAD próprio para facilitar a organização e modularização do código.

2. Implementação

Para compilar o código, executar o comando "make all". Para rodar o código, executar o comando "make run". O programa principal é o arquivo "main.c"; a implementação do TAD da solução está no arquivo "PCV.c", a implementação do TAD da fila está no arquivo "fila.c" e a implementação do TAD da lista está no arquivo "lista.c".

3. Análise de Complexidade

3.1 Análise Assintótica

Vamos começar analisando a complexidade das operações da lista. As operações usadas são:

- 1. Criar a lista: O(1);
- 2. Inserir na lista: $\Omega(n)$;
 - (a) Apesar de inserir ser O(1), teremos que inserir no mínimo n vezes, por isso $\Omega(n)$;
- 3. Apagar a lista: O(1).

Analisando agora a complexidade das operações da fila. As operações usadas são:

1. Alocar/criar a fila: O(1);

- 2. Inicializar a fila: O(1);
- 3. Enfileirar um elemento: O(1);
 - (a) Pois enfileiramos sempre no fim da fila;
- 4. Desenfileirar um elemento: O(1);
 - (a) Pois desenfileiramos sempre do início da fila;
- 5. Checar se a fila está vazia/cheia: O(1);
- 6. Apagar a fila: O(n);
 - (a) Como temos que percorrer cada nó na fila e apagar seu item (e o nó), vamos executar n operações. Logo, a complexidade de apagar a fila é O(n) (supondo que temos n elementos enfileirados).

Podemos perceber que a operação mais custosa é apagar a fila. Em nossa implementação, essa operação é executada toda vez que geramos uma permutação. Como temos n! permutações, executamos a operação de apagar a fila n! vezes, e como essa operação tem custo O(n), temos uma complexidade de $O(n \times n!)$. Vamos analisar as operações da nossa implementação da solução caso haja uma complexidade maior que a encontrada.

- 1. Ler dados: $\Omega(n)$;
- 2. Verificar se o elemento a ser inserido na permutação já está presente: O(n);
- 3. Alocar uma permutação: O(1);
- 4. Verificar se a permutação encontrada é o melhor caminho: O(n);
 - (a) Verificar se o elemento está presente: O(n);
 - (b) Imprimir o melhor caminho: O(n);
 - (c) Calcular a distância: O(n);
- 5. Gerar as permutações: $O(n \times n!)$:
 - (a) Alocar uma permutação: O(1);
 - (b) Inicializar uma fila: O(1);
 - (c) Enfileirar na fila: $O(n \times n!)$;
 - i. Pensamos aqui no pior caso, em que enfileiramos todos os elementos a cada permutação, ou seja, temos que executar a operação enfileirar $n \times n!$;
 - (d) Apagar a fila: $O(n \times n!)$;

Figura 1: Gráficos 1 e 2, Tempo de Execução x Quantidade de Cidades

3	4	5	6	7
0.000032	0.000051	0.000087	0.000259	0.001541
8	9	10	11	12
0.010502	0.082572	0.730486	6.631656	77.403269

Tabela 1: Quantidade de Cidades x Tempo de Execução (em segundos)

6. Apagar o vetor em que estão armazenados os dados de entrada e a fila com o melhor caminho: O(1).

Temos, portanto, que a complexidade da nossa solução é $O(n \times n!)$, já que na notação $big\ O$ consideramos como limite superior o processo representado pela função com maior taxa de crescimento.

3.2 Tempo de Execução

Medimos o tempo de execução para cada n (utilizando a biblioteca "time.h") três vezes e utilizamos a média desses tempos para criar os gráficos abaixo, cada qual com o eixo y (segundos) em uma escala diferente.

Devido à natureza da notação big O (isto é, ela desconsidera constantes que multiplicam/somam à função, além de considerar somente a função com maior taxa de crescimento), fator esse somado a atributos inerentes ao computador que roda o código, o formato do gráfico não é idêntico à função $y = n \times n!$. Podemos, contudo, afirmar que seu comportamento é similar, ou seja, que a análise assintótica condiz com a realidade.

Figura 2: Gráficos 3 e 4, $y=n\times n!$

4. Solução Otimizada

4.1 Modelagem da Solução

Otimizamos o algoritmo da Força Bruta utilizando os conceitos de Programação Dinâmica e Matriz de Adjacência. Uma Matriz de Adjacência é uma forma de representar um grafo e suas conexões em uma matriz (se o grafo tem n elementos, a matriz terá formato $n \times n$). O conceito de Programação Dinâmica é utilizado pois iremos computar a solução para o caminho de tamanho N utilizando soluções já calculadas para um caminho de tamanho N-1. Essa solução consiste de:

- 1. Ler as entradas, como na solução anterior;
- 2. Guardar as informações coletadas (os pares de cidades a distância entre elas) em uma matriz de adjacência;
 - (a) Sendo cada cidade um inteiro ($A \in B$, por exemplo), preenchemos as posições [A][B] e [B][A] com a distância direta entre essas duas cidades (sendo a distância também um inteiro);
 - (b) Caso não haja uma conexão direta entre duas cidades, preenchemos suas posições na matriz com um valor inválido (0, por exemplo);
- 3. Calculamos todas as distâncias possíveis considerando a cidade inicial e as cidades com quem ela tem uma conexão direta (ou seja, resolvemos o problema para um percurso de tamanho N=2);
 - (a) Guardamos, nesse passo, o conjunto de nós que visitamos (representado em nossa implementação por um vetor) e o índice do último nó visitado;
- 4. Adicionamos então outro nó (coerente com a matriz de adjacência) a esta solução e utilizamos as respostas anteriormente obtidas para calcular o novo percurso com a menor distância;
 - (a) Fazemos isso utilizando chamadas recursivas;
 - (b) A cada chamada, verificamos se visitamos todas as cidades (e se as conexões são válidas):
 - (c) Se ainda não visitamos todas as cidades, chamamos essa função recursivamente;
 - (d) Caso contrário, temos nosso percurso de menor distância;
- 5. Retornamos a distância e o caminho encontrados.

Note que usamos a Estrutura de Dados **pilha** (mais especificamente, uma pilha encadeada) para armazenar o melhor caminho, pelo mesmo motivo que escolhemos uma fila na solução anterior.

4.2 Análise Assintótica

Temos que a complexidade das operações da pilha é O(1) para toda função, com exceção de apagar a pilha, que tem complexidade O(n) (assumindo n elementos nela) pelo mesmo motivo que a fila. Vamos analisar cada função da nossa implementação da solução otimizada para descobrirmos a complexidade dela (assumindo n cidades e o pior caso).

- 1. Encontrar o menor número entre dois inteiros: O(1);
- 2. Alocar e inicializar a matriz de adjacência: $O(n^2)$;
- 3. Ler os dados: $\omega(n)$;
- 4. Verificar se todas as cidades foram visitadas: O(n);
- 5. Criar e inicializar o vetor para verificar as cidades visitadas: O(n);
- 6. Criar o vetor auxiliar para armazenarmos o caminho atual: O(1);
- 7. Calcular a melhor rota: $O(n \times n!)$;
 - (a) Visitar as cidades não visitadas: O(n!), pois precisamos checar todas as permutações possíveis de caminhos (estamos fazendo n! chamadas recursivas);
 - (b) Verificar se todas as cidades foram visitadas: O(n), pois temos que percorrer o vetor de tamanho n;
 - (c) Como chamamos a função recursivamente n! vezes, e cada chamada tem custo O(n), a complexidade total desse algoritmo é $O(n \times n!)$;
- 8. Liberar a memória: O(n);
 - (a) Apagar a pilha: O(n).

Temos, portanto, que a complexidade do algoritmo continua sendo $O(n \times n!)$. A otimização deste código está na simplificação do código e na redução de operações redundantes quando comparado à implementação de força bruta. O uso da Matriz de Adjacência, por exemplo, permite acesso em tempo constante (O(1)) à distância entre cidades, enquanto no algoritmo anterior, precisamos percorrer o caminho com as n cidades para achar a distância (O(n)). Além disso, ao utilizar um vetor para checarmos se já visitamos uma certa cidade, evitamos revisitar cidades e temos a chance de terminar o programa "cedo", sem precisar gerar permutações desnecessárias ou inválidas.

4.3 Tempo de Execução

Medimos o tempo da mesma forma que anteriormente. Note que o formato da função se mantém similar a $y = n \times n!$, o que coincide novamente com a notação big O. Perceba, contudo, que ao compararmos os tempos de execução dos dois algoritmos, o algoritmo Otimizado é muito mais rápido que o Força Bruta (para um valor razoável de n), o que também condiz com sua implementação.

Figura 3: Gráficos 5 e 6, Tempo de Execução x Quantidade de Cidades

3	4	5	6	7
0.000001	0.000001	0.000004	0.000013	0.000063
8	9	10	11	12
0.000440	0.003713	0.035417	0.391957	4.284960

Tabela 2: Quantidade de Cidades ${\bf x}$ Tempo de Execução (em segundos)

Figura 4: Gráficos 7 e 8, comparação entre o tempo de execução dos dois algoritmos