Saarbrücker Forschungstage @ DFKI Spielwiese

Infos und How-to's rund um den Workshop Humanoide Roboter und heuristische Spiele-KI an den Saarbrücker Forschungstagen

Kai Waelti

27. June 2019

Intro

- Einführung in einfache Robotik mit humanoiden Roboter Pepper
- Grundlegende Algorithmen der künstlichen Intelligenz KI und
- Computer Vision CV werden diskutiert
- Den Studenten wird alles zum tüfteln bereitgestellt

Living Labs @ DFKI

Figure 1: End-to-End Demonstration Systems in Several Living Labs

Das DFKI ist ein Joint Venture mit

Figure 2: Joint Venture DFKI

Das Pentagon der Innovation

Figure 3: Standorte DFKI

Video

Geplantes Verhalten

- Tic Tac Toe gegen Pepper am Whiteboard spielen
- Sprachlich wird Startbefehl gegeben
- Pepper fordert Spieler auf seine Spielzüge zu spielen
 - Spieler muss für Pepper spielen
- Erkennen und rückmelden von falschen und unerlaubten Spielzügen
- Verkünden von Gewinner

Problembeschreibung und Leistungsmass

- Umgebung erkennen
 - Spielfeld, Magnete, Mitspieler
- Aktuatoren
 - Lautsprecher zu kommunizieren
 - Arme zum nächsten Spielzug anzeigen
 - Display zur besseren Verständigung
- Sensoren
 - Mikrofon für Spielstart und -abbruch
 - Kamera für Fotos der Umgebung und Spielfeldanalyse
- Leistungsmass
 - Anzahl korrekt beendeter Spiele messen
 - Peppers Ziel ist es möglichst viele Spiele zu gewinnen und möglichst wenige zu verlieren

Lösungsansatz - Agententypen

- Grundstruktur: Model-based Agent
 - Ausgelegt für befolgen eines festen Ablauf
 - mit Ziel: Spiel erfolgreich beenden

Figure 4: Model-based Reflex Agent

Ansatz für Spracheingabe für Spielstart / -abbruch

- Für Spielstart und -abbruch: Simple Reflex Agent
 - Wertet Spracheingaben aus und startet ein Spiel
 - wenn die richtigen Worte gefallen sind

Figure 5: Simple Reflex Agent

Ansatz für die Spiellogik

- Spiellogik: Utility-based Agent
 - Input: momentanes Spielfeld
 - daraus werden alle möglichen Spielzüge ermittelt
 - mithilfe einer Heuristik (dazu später mehr) berechnet wie jeder Spielzug für Pepper ist
 - aus allen Berechnungen wird dann die beste ausgeführt

Heuristik

Eine Art Vermutung, die auf der Grundlage bestimmter Annahmen getroffen werden. Damit können keine perfekten Ergebnisse garantiert werden aber ist schnell berechnet.

Utility-based Agent Precepts Sensors State How the world evolves What the world Environment is like now What my actions do What it will be like if I do action A How happy I will be Utility in such a state What action I should do now Actions

Agent

Actuators

Was macht was und was ist wofür zuständig

- Main.py
 - Ist das Startup File für das Hauptprogramm
 - Damit werden alle Komponenten gestartet
- DetectBoard.py
 - Ist die Datei die den Hauptsächlichen Bildverarbeitungscode beinhaltet
 - Im Ordner image_processing befinden sich zudem noch 3 weitere Hilfsdateien mit Hilfsfunktionen die von DetectBoard.py aufgerufen werden
- TicTacToe.py
 - Darin wird die gesamte Spiellogik abgewickelt
 - TicTacToeAiHeuristic.py
 - Darin befindet sich die Spiellogik bestehend aus klar vordefinierten Bedingungsregeln
 - Als Alternative zeigt TicTacToeAiRand.py eine rein zufällige Spielstrategie

Wie weiter?

- Ideen diskutieren
- Interessen herausfinden
- Gruppen bilden
- Tüfteln
- ???
- Feedback

ldeen woran getüftelt werden kann

- Mach Pepper unbesiegbar
- Die Bildverarbeitung verstehen und experimentieren
- Andere/Mehr Behaviors und Animationen
- Eigene Idee(n) einbringen :)

Eingesetzte externe Software

Ubuntu Linux 18.04

- + Python 2.7
- + OpenCV 3.4
- + NaoQi 2.5
- + Entwicklungsumgebung PyCharm 2019.2
- → Bereitgestellte VM hat alles nötige

Workflow

Demo:)