Comparación de metodologías para la estimación del R efectivo asociado al COVID-19 en Chile, según comuna y semana

Gabriel Arriagada, Luis Gutiérrez, Jaime Cerda, Leonardo Jofré, Danilo Garrido, Inés Varas, Jessica Pavani, Oscar Ortiz, Iván Gutiérrez

Pontificia Universidad Católica de Chile

13 de agosto de 2021

Introducción

- 1. La pandemia de COVID-19 ha generado una necesidad por indicadores de la velocidad de propagación de la pandemia.
- Uno de los indicadores más populares es el número de reproducción efectiva o R efectivo, que describe a cuántas personas infecta una persona infecciosa totalmente en promedio durante su tiempo siendo infeccioso.
- 3. En Chile, el R efectivo puede calcularse de forma fiable a nivel nacional y regional, pero a nivel comunal algunos métodos de estimación se vuelven demasiado volátiles para ser útiles.
- 4. En este trabajo, probamos varios métodos de estimación con datos chilenos e investigamos cuáles generan estimaciones sensatas del R efectivo a nivel comunal/semanal.

Metodología

Se compararon 6 métodos de estimación del R-efectivo:

- Cislaghi (2020).
- Systrom (2020).
- ▶ Wallinga y Lipsitch (2007).
- ► Martinez-Beneito y col. (2020).
- Asikainen y Annunziato (2020).
- El método del Instituto Robert Koch (RKI).

Se puso un especial énfasis en que las estimaciones del R efectivo estuvieran dentro de rangos razonables y reflejaran la tendencia general de los contagios.¹

¹Los detalles relacionados con la metodología y el pre-procesamiento de los datos pueden encontrarse en la versión extensa de este informe, disponible en este enlace. El código para reproducir los resultados está disponible en este repositorio.

Resultados preliminares

Figura: Percentil 50 del R efectivo, según comuna y método.

Resultados preliminares

Figura: R efectivo para 4 comunas seleccionadas, según semana epidemiológica y método.

Resultados preliminares

En términos generales:

- Las medianas estimadas por todos los métodos son razonables.
- ► Sin embargo:
 - 1. Algunos métodos (como el de Systrom) arrojan predicciones fuera de rango (específicamente, negativas).
 - 2. Algunos métodos (como el de Cislaghi) son muy volátiles.
 - Algunos métodos (como el de Martínez-Beneito) son demasiado estables.
- ► En nuestra opinión, el método que mejor se comporta en general es el de Wallinga y Lipsitch (2007).

Aplicación

- Una posible aplicación del R-efectivo estimado previamente es usarlo como variable respuesta en un modelo para estimar el efecto de las fases del plan paso a paso sobre el R-efectivo.
- Consideremos, por ejemplo, el siguiente modelo:

$$\begin{aligned} y_{rct}|x_{rct},u_{rc},v_{r} &\overset{ind}{\sim} \mathsf{Gamma}(\nu,\mathsf{rate} = \nu/\mu_{rct}),\\ \mu_{rct} &= (x'_{rct}\beta + u_{rc} + v_{r})^{-1},\\ u_{rc} &\overset{iid}{\sim} N(0,\sigma_{u}^{2}),\\ v_{r} &\overset{iid}{\sim} N(0,\sigma_{v}^{2}), \end{aligned} \tag{1}$$

donde

- 1. y_{rct} representa el R-efectivo para la c-ésima dentro de la r-ésima región durante la t-ésima semana epidemiológica.
- 2. x_{rct} es un vector de variables explicativas.
- 3. u_{rc} y v_r son efectos aleatorios.

Aplicación

Entre las variables explcativas, se cuentan:

- La fase del plan paso en la semana pasada (como dummies).
- Características sociodemográficas de cada comuna (un índice de desarrollo socioeconómico², un índice de ruralidad³, % de la población en diversos tramos de edad),
- Características relacionadas con la conectividad de cada comuna (e.g., si tiene un puerto o un aeropuerto).
- Características sanitarias de cada comuna (rezagos del % de la población con una y con dos vacunas y del % de la población en las comunas vecinas que se encuentra en cuarentena).
- Una base de B-splines (generados a partir de la semana epidemiológica y con un nodo por cada decil de esta variable).

²Elaborado por la OCHISAP.

³Elaborado por el MDS.

Aplicación

► El siguiente Cuadro resume los resultados:

término	estimado	valor-p
(Intercepto)	0.48	0.00
Índice de desarrollo socioeconómico	0.08	0.01
Índice de ruralidad	0.13	0.00
Fase 2 (rezago 1)	-0.07	0.00
Fase 3 (rezago 1)	-0.16	0.00
Fase 4 (rezago 1)	-0.22	0.00
% de personas con esquema de		
vacunación completo (rezago 5)	-0.34	0.00
% de vecinos en cuarentena (rezago 1)	0.04	0.00

Cuadro: Estimación de β para el modelo descrito en la ecuación (1).

Como se puede apreciar, a mayor grado de apertura, menor es el coeficiente asociado a la fase, y por consiguiente, mayor es el R-efectivo esperado.⁴

⁴La razón es la siguiente. Sea $x_{rct,k}$ la k-ésima componente del vector x_{rct} . Entonces, $\partial E[y_{rct}|x_{rct,k}]/\partial x_{rct,k} = -\beta_k/(x'_{rct}\beta)^2$, de modo que el efecto marginal tiene siempre el signo contrario al del coeficiente β_k .

References I

- Asikainen, T. & Annunziato, A. (2020). Effective reproduction number estimation from data series (inf. téc.). Joint Research Centre (European Commission). https://doi.org/10.2760/036156
- Cislaghi, C. (2020). *Un cruscotto per monitorare l'evoluzione dell'epidemia*. Consultado el 9 de abril de 2021, desde https://www.scienzainrete.it/articolo/cruscotto-monitorare-levoluzione-dellepidemia/cesare-cislaghi/2020-04-09
- Martinez-Beneito, M. A., Mateu, J. & Botella-Rocamora, P. (2020).

 Spatio-temporal small area surveillance of the Covid-19 pandemics.

 arXiv e-prints, arXiv:2011.03938.
- Systrom, K. (2020). *The Metric We Need to Manage COVID-19*. Consultado el 3 de junio de 2020, desde http://systrom.com/blog/the-metric-we-need-to-manage-covid-19/
- Wallinga, J. & Lipsitch, M. (2007). How generation intervals shape the relationship between growth rates and reproductive numbers. *Proceedings of the Royal Society B: Biological Sciences, 274*(1609), 599-604. https://doi.org/10.1098/rspb.2006.3754