Boosting as Maximum Entropy

• corresponding optimization problem:

$$\min_{D \in \mathcal{P}} \operatorname{RE} \left(D \parallel \operatorname{uniform} \right) \leftrightarrow \max_{D \in \mathcal{P}} \operatorname{entropy} (D)$$

where

$$\mathcal{P} = \text{feasible set}$$

$$= \left\{ D : \sum_{i} D(i) y_{i} g_{j}(x_{i}) = 0 \ \forall j \right\}$$

- P ≠ ∅ ⇔ weak learning assumption does not hold
 in this case, D_t → (unique) solution
- if weak learning assumption does hold then
 - P = ∅
 - D_t can never converge
 - dynamics are fascinating but unclear in this case