

SwapFinder

Smart Contract Security Audit

V1.0

No. 202209021725

Contents

Summary of audit results		1
1 Overview		3
1.1 Project Overview		3
1.2 Audit Overview		3
2 Findings		4
[SwapFinder-1] The uniswapV3SwapCallback	function lacks access control	5
[SwapFinder-2] The parameters of swapPlus f	unction can be arbitrarily specified	6
[SwapFinder-3] Missing event trigger		
[SwapFinder-4] Redundant code	1357 DEV	9
3 Appendix		10
3.1 Vulnerability Assessment Metrics and Stat		
3.2 Audit Categories	(SELBEOSIN	12
3.3 Disclaimer		14
3.4 About BEOSIN		15

Summary of audit results

After auditing, 2 Medium-risk and 2 Info-risk items were identified in the SwapFinder project. Specific audit details will be presented in the Findings section. Users should pay attention to the following aspects when interacting with this project:

*Notes:

Risk Description:

1. For the project party, it is necessary to pay attention to the possible loss of contract funds, phishing attacks and fee-free swap risks in SwapFinder-2; For the user, it is necessary to pay attention to check whether the address of the pair contract(srcReceiver) and the payment address(dstReceiver) in the swap parameter are correct when interacting.

Project Description:

1. Business overview

The SwapFinder includes a contract that provides the function of exchanging tokens. Users can exchange various tokens through the contract, and support direct swap through BNB to tokens or swap tokens to BNB. Through contract exchange, users need to be charged a certain amount of handling fees and commission as a reward for referrers.

1 Overview

1.1 Project Overview

Project Name	SwapFinder
Platform	BNB Chain Blackenalii Security
Audit scope	https://github.com/SwapFinder/SwapFinderContract
Commit Hash	405caf18a80471058e238800081f3667b46d0cf3(inital) b2a2150b8f82487857db61e670058e4f9a62dbab(final)

1.2 Audit Overview

Audit work duration: August 30, 2022 – September 02, 2022

Audit methods: Formal Verification, Static Analysis, Typical Case Testing and Manual Review.

Audit team: Beosin Security Team

2 Findings

Index	Risk description	Severity level	Status
SwapFinder-1	The <i>uniswapV3SwapCallback</i> function lacks access control	Medium	Fixed
SwapFinder-2	The parameters of <i>swapPlus</i> function can be arbitrarily specified	Medium	Acknowledged
SwapFinder-3	Missing event trigger	Info	Fixed
SwapFinder-4	Redundant code	Info	Partially Fixed

Status Notes:

- SwapFinder-2 is unfixed and will cause loss of contract funds, free swap fee, Phishing attack, etc.
- SwapFinder-4 is partially fixed and will not cause any issues.

[SwapFinder-1] The uniswapV3SwapCallback function lacks access control

Severity Level	Medium
Туре	General Vulnerability
Lines	AggregationExecutor.sol#L772-787
Description	The visibility of <i>uniswapV3SwapCallback</i> function is external, and there is no access control, Anyone can call this function to withdraw funds in the contract.

```
function uniswapV3SwapCallback(
   int256 amount0Delta,
   int256 amount1Delta,
   bytes calldata _data
) external {
   require(amount0Delta > 0 || amount1Delta > 0);
   SwapCallbackData memory data = abi.decode(_data, (SwapCallbackData));

   (bool isExactInput, uint256 amountToPay) =
        amount0Delta > 0
        ? (data.tokenIn < data.tokenOut, uint256(amount0Delta))
        : (data.tokenOut < data.tokenIn, uint256(amount1Delta));

   // isExactInput
   require(isExactInput, 'NOT_EXACT_INPUT');
   TransferHelper.safeTransfer(data.tokenIn, msg.sender, amountToPay);

}</pre>
```

Figure 1 Source code of uniswapV3SwapCallback function

Recommendations	It is recommended to restrict the function to only be accessed by the pair contract of
	Uniswap.

Status Fixed. The project party has deleted the function.

Corrority I ovol

Modium

[SwapFinder-2] The parameters of swapPlus function can be arbitrarily specified

Severity Level	Medium
Туре	General Vulnerability
Lines	AggregationExecutor.sol#L661-691
Description	Users can arbitrarily specify all parameters during swap, When the feeRate and receiveRate are specified as 0, the fee can be waived for swap; when a larger feeRate and receiveRate are specified, and the referrer and feeTo are set as their own addresses, the funds in the contract can be withdrawn; and when the front-end is

```
function swapPlus(SwapDescription memory desc)
         external
         payable
         nonReentrant
         returns (uint256 amountOut)
         require(desc.minReturnAmount > 0, 'INVALID MIN RETURN');
         bool srcETH = isETH(desc.srcToken);
         require(msg.value >= (srcETH ? desc.amount : 0), 'INVALID VALUE');
         uint256 amountIn = calAmountIn(desc);
         if (srcETH) {
           wrapETH();
           if (desc.srcReceiver != address(this)) safeTransfer(WETH, desc.srcReceiver, amountIn);
           transferFromSender(desc.srcToken, desc.srcReceiver, amountIn);
         bool dstETH = isETH(desc.dstToken);
680
         bool toThis = (desc.feeIn == 1 && desc.feeRate > 0) || dstETH;
         address to = toThis ? address(this) : desc.dstReceiver;
         uint256 balanceBefore = balanceOf(desc.dstToken, to);
         swapV2V3(desc.path, amountIn, to);
         if (dstETH) unwrapWETH();
         amountOut = balanceOf(desc.dstToken, to).sub(balanceBefore);
686
         require(amountOut >= desc.minReturnAmount, 'INSUFFICIENT_OUTPUT_AMOUNT');
687
         if (toThis) {
           amountOut = calAmountOut(desc, amountOut);
           safeTransfer(desc.dstToken, desc.dstReceiver, amountOut);
```

hijacked by an attacker, these parameters can be exploited and designated as

malicious in order to conduct a phishing attack, where the user may lose funds.

Figure 2 Source code of swapPlus function


```
struct SwapDescription {
         address srcToken;
         address dstToken;
         address srcReceiver;
383
         address dstReceiver;
384
         uint256 amount;
         uint256 minReturnAmount;
         uint256 feeIn;
         uint256 feeRate;
388
         address feeTo;
389
         uint256 receiveRate;
390
         address referrer;
         Path[] path;
         RouterPath[] routerPath;
```

Figure 3 Source code of AggregationExecutor contract

Recommendations	It is recommended to minimize user-controlled parameters based on business logic.
Status	Acknowledged.

Severity Level	Info			
Туре	Coding	g Conventions		
Lines	Aggreg	AggregationExecutor.sol #L513-528		
Description	In the	In the SwapFinder contract, there is no event trigger for following functions. It is		
	recommended to add the corresponding event.			
	513	<pre>function initialize() external initializer {</pre>		
	514	feeRate = 30;		
	515	owner = 0x4D55F58B61393117Ff8F55F47d6B07005DDe2053;		
	516	}		
	517			
	518	<pre>function setOwner(address addr) external onlyOwner {</pre>		
	519	owner = addr;		
	520	}		
	521			
	522	function withdraw(
	523	address to,		
	524	address token,		
	525	uint256 amount		
	526) external onlyOwner {		
	527	<pre>safeTransfer(token, to, amount);</pre>		
	528	}		

Figure 4 Source code of AggregationExecutor contract

Recommendations It is recommended to add function events.	
Status	Fixed. The project party has deleted related code.

[SwapFinder-4] Redundant code **Severity Level** Info **Coding Conventions Type** Lines SwapFinder.sol#L492, L514 **Description** In the SwapFinder contract, there is some redundant code that is not used. uint256 public feeRate; 492 address public owner; address private constant ETH = 0xEeeeeEeeeEeEeEeEeEeEeeeEeeee /// @dev The minimum value that can be returned from #getSqrtRatio uint160 private constant _MIN_SQRT_RATIO = 4295128739 + 1; 498 /// @dev The maximum value that can be returned from #getSqrtRatio uint160 private constant _MAX_SQRT_RATIO = 14614467034852101032872 modifier onlyOwner() { require(owner == msg.sender, '!owner'); 504 506 receive() external payable {} function getRevision() internal pure override returns (uint256) { return REVISION; function initialize() external initializer { 514 feeRate = 30;

Figure 5 Source code of AggregationExecutor contract

Recommendations	It is recommended to remove redundant code.	
Status	Partially Fixed. The project party has deleted a part of related code.	

3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels: "critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the severity level.

Impact Likelihood	Severe	High	Medium	Low
Probable	Critical	High	Medium	Low
Possible	High	High	Medium	Low
Unlikely	Medium	Medium	Low	Info
Rare	Low	Low	Info	Info

3.1.2 Degree of impact

Severe

Severe impact generally refers to the vulnerability can have a serious impact on the confidentiality, integrity, availability of smart contracts or their economic model, which can cause substantial economic losses to the contract business system, large-scale data disruption, loss of authority management, failure of key functions, loss of credibility, or indirectly affect the operation of other smart contracts associated with it and cause substantial losses, as well as other severe and mostly irreversible harm.

• High

High impact generally refers to the vulnerability can have a relatively serious impact on the confidentiality, integrity, availability of the smart contract or its economic model, which can cause a greater economic loss, local functional unavailability, loss of credibility and other impact to the contract business system.

Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the confidentiality, integrity, availability of the smart contract or its economic model, which can cause a small amount of economic loss to the contract business system, individual business unavailability and other impact.

Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which can pose certain security threat to the contract business system and needs to be improved.

3.1.4 Likelihood of Exploitation

Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no special exploitation threshold, and the vulnerability can be triggered consistently.

Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.

Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation conditions are very demanding and the vulnerability is highly difficult to trigger.

Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions for exploitation are extremely difficult to achieve.

3.1.5 Fix Results Status

Status	Description		
Fixed	The project party fully fixes a vulnerability.		
Partially Fixed	The project party did not fully fix the issue, but only mitigated the issue.		
Acknowledged	The project party confirms and chooses to ignore the issue.		

3.2 Audit Categories

	No.	Categories	Subitems
Ð	BEO Blockchain	Coding Conventions	Compiler Version Security
			Deprecated Items
			Redundant Code
			require/assert Usage
			Gas Consumption
	2	General Vulnerability	Integer Overflow/Underflow
			Reentrancy
			Pseudo-random Number Generator (PRNG)
			Transaction-Ordering Dependence
			DoS (Denial of Service)
			Function Call Permissions
			call/delegatecall Security
IN			Returned Value Security
			tx.origin Usage
			Replay Attack
			Overriding Variables
			Third-party Protocol Interface Consistency
	Blackchain 3	51N Security	Business Logics
			Business Implementations
		3 Business Security	Manipulable Token Price
			Centralized Asset Control
			Asset Tradability
			Arbitrage Attack

Beosin classified the security issues of smart contracts into three categories: Coding Conventions, General Vulnerability, Business Security. Their specific definitions are as follows:

Coding Conventions

Audit whether smart contracts follow recommended language security coding practices. For example, smart contracts developed in Solidity language should fix the compiler version and do not use deprecated keywords.

General Vulnerability

General Vulnerability include some common vulnerabilities that may appear in smart contract projects. These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as integer overflow/underflow and denial of service attacks.

Business Security

Business security is mainly related to some issues related to the business realized by each project, and has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.

^{*}Note that the project may suffer stake losses due to the integrated third-party protocol. This is not something Beosin can control. Business security requires the participation of the project party. The project party and users need to stay vigilant at all times.

3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement. The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used within the conditions and scope agreed in the service agreement. Other third parties shall not transmit, disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code team, the business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the technology currently available to Beosin. However, due to the technical limitations of any organization, and in the event that the code provided by the Served Party is missing information, tampered with, deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be utilized as investment suggestions of any type. This report represents an extensive evaluation process designed to help our customers improve code quality while mitigating the high risks in Blockchain.

3.4 About BEOSIN

BEOSIN is the first institution in the world specializing in the construction of blockchain security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet elites from world-renowned academic institutions.BEOSIN has more than 20 years of research in formal verification technology, trusted computing, mobile security and kernel security, with overseas experience in studying and collaborating in project research at well-known universities. Through the security audit and defense deployment of more than 2,000 smart contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide, BEOSIN has accumulated rich experience in security attack and defense of the blockchain field, and has developed several security products specifically for blockchain.

Official Website

https://www.beosin.com

Telegram

https://t.me/+dD8Bnqd133RmNWNl

Twitter

https://twitter.com/Beosin_com

Email

