HIERARCHICAL CLUSTERING

Single-link clustering example

Introduction

- What is clustering?
 - Most important unsupervised learning problem
 - Find structure in a collection of unlabeled data
 - The process of organizing objects into groups whose members are similar in some way

Goals of Clustering

- Data reduction:
 - Finding representatives for homogeneous group
- Natural data types:
 - Finding natural clusters and describe their property
- Useful data class:
 - Finding useful and suitable groupings
- Outlier detection
 - Finding usual data objects

Applications

- Marketing
- Biology
- Libraries
- Insurance
- City-planning
- Earthquake studies

Requirements

- Scalability
- Dealing with different types of attributes
- Discovering clusters with arbitrary shape
- Minimal requirements for domain knowledge to determine input parameters
- Ability to deal with noise and outliers
- Insensitivity to order of input records
- High dimensionality
- Interpretability and usability

Clustering Algorithms

- Exclusive Clustering
 - K-means
- Overlapping Clustering
 - Fuzzy C-means
- Hierarchical Clustering
 - Hierarchical Clustering
- Probabilistic Clustering
 - Mixture of Gaussians

Hierarchical Clustering (Agglomerative)

- Given a set of N items to be clustered, and an N*N distance matrix, the basic process of hierarchical clustering is:
 - Step 1. Assign each data as a cluster, so we have N clusters from N items. Distance between clusters=distance between the items they contain
 - □ Step 2. Find the closest pair of clusters and merge them into a single cluster (become N-1 clusters)
 - Step 3. Compute the distances between the new cluster and each of the old cluster
 - □ Step 4. Repeat step 2 and 3 until all clusters are combined into a single cluster of size N.

Illustration

Ryan Baker

Different Algorithms to calculate distances

- Single-linkage clustering
 - □ **Shortest** distance from any member of one cluster to any member of the other cluster
- Complete-linkage clustering
 - □ **Greatest** distance from any member of one cluster to any member of the other cluster
- Average-linkage clustering
 - Average distance from ...
- UCLUS method by R.D'Andrade
 - Median distance from ...

Single-linkage clustering example

Cluster cities

To Start

□ Calculate the N*N proximity matrix D=[d(i,i)]

	BA	FI	MI	NA	RM	то
BA	0	662	877	255	412	996
FI	662	0	295	468	268	400
MI	877	295	0	754	564	138
NA	255	468	754	0	219	869
RM	412	268	564	219	0	669
ТО	996	400	138	869	669	0

□ The clustering are assigned sequence numbers k from 0 to (n-1) and L(k) is the level of the kth clustering.

Algorithm Summary

- □ Step 1. Begin with disjoint clustering having level L(0)=0 and sequence number m=0
- Step 2. Find the most similar(smallest distance) pair of clusters in the current clustering (r),(s) according to

```
d[(r),(s)]=\min d[(i),(j)]
```

□ Step 3. Increment the sequence number from m→m+1 Merge clusters r, s to a single cluster. Set the level of this new clustering m to

$$L(m) = d[(r),(s)]$$

Step 4. Update the proximity matrix, D by deleting the rows and columns of (r), (s) and adding a new row and column of the combined (r, s). The proximity of the new cluster (r, s) and old cluster (k) is defined by

```
d[(k),(r, s)]=min \{d[(k), (r)], d[(k), (s)]\}
```

 Step 5. Repeat from step 2 if m<N-1, else stop as all objects are in one cluster now

□ The table is the distance matrix D=[d(I,j)]. m=0 and L(0)=0 for all clusters.

				1			1
	BA	FI	MI	NA	RM	TO	
BA	0	662	877	255	412	996	
FI	662	0	295	468	268	400	
MI	877	295	0	754	564	138	
NA	255	468	754	0	219	869	
RM	412	268	564	219	0	669	
TO	996	400	138	869	669	0	

□ Merge MI with TO into MI/TO, L(MI/TO)=138 m=1

						h
	BA	FI	MI/TO	NA	RM	
BA	0	662	877	255	412	
FI	662	0	295	468	268	
MI/TO	877	295	0	754	564	
NA	255	468	754	0	219	
RM	412	268	564	219	0	

□ merge NA, RM \rightarrow NA/RM, L(NA/RM)=219, m=2

	BA	FI	MI/TO	NA/RM
BA	0	662	877	255
FI	662	0	295	268
MI/TO	877	295	0	564
NA/RM	255	268	564	0

- Merge BA and NA/RM into BA/NA/RM
- \Box L(BA/NA/RM)=255, m=3

	BA/NA/RM	FI	MI/TO
BA/NA/RM	0	268	564
FI	268	0	295
MI/TO	564	295	0

Iteration 4.

- □ Merge FI with BA/NA/RM into FI/BA/NA/RM
- \Box L(FI/BA/NA/RM)=268, M=4

	BA/FI/NA/RM	MI/TO
BA/FI/NA/RM	0	295
MI/TO	295	0

Hierarchical tree (Dendrogram)

 The process can be summarized by the following hierarchical tree

Demo

http://home.deib.polimi.it/matteucc/Clustering/ tutorial_html/AppletH.html

Complete-link clustering

- Complete-link distance between clusters C_i and C_j is the maximum distance between any object in C_i and any object in C_j
- The distance is defined by the two most dissimilar objects

$$D_{cl}(C_i, C_j) = \max_{x,y} \left\{ d(x,y) \middle| x \in C_i, y \in C_j \right\}$$

Group average clustering

 Group average distance between clusters Ci and Cj is the average distance between any object in Ci and any object in Cj

$$D_{avg}\left(C_{i}, C_{j}\right) = \frac{1}{\left|C_{i}\right| \times \left|C_{j}\right|} \sum_{x \in C_{i}, y \in C_{j}} d(x, y)$$

Comparison

Distance Algorithm	Advantage	Disadventage
Single-link	Can handle non-elliptical shapes	Sensitive to noise and outliersIt produces long, elongated clusters
Complete-link	 More balanced clusters Less susceptible to noise 	 Tends to break large clusters All clusters tend to have the same diametersmall clusters are merged with large ones
Group Average	 Less susceptible to noise and outliers 	Biased towards globular clusters

Resources

- Princeton web math
 - http://web.math.princeton.edu/math_alive/5/Notes2.pdf
- A tutorial on clustering algorithms
 - http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/ hierarchical.html
- Andrew Moore
 - K-means and Hierarchical clustering http://www.autonlab.org/tutorials/kmeans.html
- Ryan S.J.d. Baker
 - Big Data Education, video lecture week 7, couresa https://class.coursera.org/bigdata-edu-001/lecture
- Chris Caldwell
 - Graph theory tutorials
 - http://www.utm.edu/departments/math/graph/