PROVA SCRITTA DI RETI LOGICHE E CALCOLATORI DEL 20/06/2016 – TRACCIA A

ESERCIZIO 1:

Si realizzi una rete sequenziale sincrona R con un ingresso X ed una uscita Z. La rete riconosce sequenze del tipo **1(10)**ⁿ**0**, dove n è un numero intero maggiore di 0 e multiplo di 4. Quindi i valori ammissibili per n sono nell'insieme {4,8,12,16,20,...}. Non appena la rete riconosce una sequenza valida, restituisce 1 e riprende il proprio funzionamento dal principio. Si guardi l'esempio per maggiore chiarezza.

4-	Δ.	4	2	3	4	5	6	7	8	9	10	11	12	12	14	15	16	17	18	19	20	21	22	23
٠.	U	'		J		J	0	<u>'</u>	0	3	10	1 1	12	10	17	10	10	17	10	13	20	۲ ا		20
X:	0	1	1	0	0	1	0	1	1	0	1	1	1	0	1	0	1	0	1	0	0	0	0	<u></u>
Z:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	

Nell'esempio, la rete riceve la prima sequenza valida a partire dall'istante t=11, infatti in tale istante di tempo la rete riceve la sequenza di start "1", negli istanti da 12 a 19 riceve quattro volte consecutive la sequenza "10" e nell'istante 20 riceve la sequenza di stop "0". Quindi all'istante t=21 riprende il proprio funzionamento. Si noti che la sequenza "1100" ricevuta negli istanti da 1 a 4 non rappresenta una sequenza valida in quanto in questo caso n=1.

PROVA SCRITTA DI RETI LOGICHE E CALCOLATORI DEL 20/06/2016 – TRACCIA B

ESERCIZIO 1:

Si realizzi una rete sequenziale sincrona R con un ingresso X ed una uscita Z. La rete riconosce sequenze del tipo 1(01)ⁿ1, dove n è un numero intero maggiore di 0 e multiplo di 4. Quindi i valori ammissibili per n sono nell'insieme {4,8,12,16,20,...}. Non appena la rete riconosce una sequenza valida, restituisce 1 e riprende il proprio funzionamento dal principio.

Si guardi l'esempio per maggiore chiarezza.

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
X:	0	1	0	1	1	1	0	1	0	0	1	1	0	1	0	1	0	1	0	1	1	0	0	<u></u>
Z:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	

Nell'esempio, la rete riceve la prima sequenza valida a partire dall'istante t=11, infatti in tale istante di tempo la rete riceve la sequenza di start "1", negli istanti da 12 a 19 riceve quattro volte consecutive la sequenza "01" e nell'istante 20 riceve la sequenza di stop "1". Quindi all'istante t=21 riprende il proprio funzionamento. Si noti che la sequenza "1011" ricevuta negli istanti da 1 a 4 non rappresenta una sequenza valida in quanto in questo caso n=1.

PROVA SCRITTA DI RETI LOGICHE E CALCOLATORI DEL 20/06/2016 – TRACCIA C

ESERCIZIO 1:

Si realizzi una rete sequenziale sincrona R con un ingresso X ed una uscita Z. La rete riconosce sequenze del tipo **0(01)**ⁿ1, dove n è un numero intero maggiore di 0 e multiplo di 4. Quindi i valori ammissibili per n sono nell'insieme {4,8,12,16,20,...}. Non appena la rete riconosce una sequenza valida, restituisce 1 e riprende il proprio funzionamento dal principio. Si guardi l'esempio per maggiore chiarezza.

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
X:	1	0	0	1	1	0	1	0	0	1	0	0	0	1	0	1	0	1	0	1	1	1	1	<u></u>
Z:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	

Nell'esempio, la rete riceve la prima sequenza valida a partire dall'istante t=11, infatti in tale istante di tempo la rete riceve la sequenza di start "0", negli istanti da 12 a 19 riceve quattro volte consecutive la sequenza "01" e nell'istante 20 riceve la sequenza di stop "1". Quindi all'istante t=21 riprende il proprio funzionamento. Si noti che la sequenza "0011" ricevuta negli istanti da 1 a 4 non rappresenta una sequenza valida in quanto in questo caso n=1.

PROVA SCRITTA DI RETI LOGICHE E CALCOLATORI DEL 20/06/2016 – TRACCIA D

ESERCIZIO 1:

Si realizzi una rete sequenziale sincrona R con un ingresso X ed una uscita Z. La rete riconosce sequenze del tipo **0(10)**ⁿ**0**, dove n è un numero intero maggiore di 0 e multiplo di 4. Quindi i valori ammissibili per n sono nell'insieme {4,8,12,16,20,...}. Non appena la rete riconosce una sequenza valida, restituisce 1 e riprende il proprio funzionamento dal principio. Si guardi l'esempio per maggiore chiarezza.

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
X:	1	0	1	0	0	0	1	0	1	1	0	0	1	0	1	0	1	0	1	0	0	1	1	<u></u>
Z:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	

Nell'esempio, la rete riceve la prima sequenza valida a partire dall'istante t=11, infatti in tale istante di tempo la rete riceve la sequenza di start "0", negli istanti da 12 a 19 riceve quattro volte consecutive la sequenza "10" e nell'istante 20 riceve la sequenza di stop "0". Quindi all'istante t=21 riprende il proprio funzionamento. Si noti che la sequenza "0100" ricevuta negli istanti da 1 a 4 non rappresenta una sequenza valida in quanto in questo caso n=1.

PROVA SCRITTA DI RETI LOGICHE E CALCOLATORI DEL 20/06/2016 – TRACCIA A

ESERCIZIO 2: Estendere il set di istruzioni della macchina ad accumulatore con l'operazione **SUMH X**, definita come segue.

A partire dalla locazione X+1 della RAM è memorizzato un vettore V di L elementi, dove L è contenuto in M[X] ed è un numero pari.

L'istruzione modificherà il vettore come segue: per ogni elemento V[i] della prima metà del vettore (tale che i=0,...,n/2-1), V[i] viene posto a V[i]+V[n/2+i] se la condizione V[i]>V[n/2+i] è vera, mentre V[i] viene posto a 0 se la predetta condizione è falsa.

Al termine dell'istruzione la dimensione del vettore memorizzata in M[X] dovrà essere posta uguale a n/2 e l'accumulatore dovrà contenere il numero di elementi per cui la condizione è stata soddisfatta.

	PR	IMA			DC	PO	
X		:	:	X		:	:
1052	L	1052	8	1052	L	1052	4
	V[0]	1053	3		V[0]	1053	0
	V[1]	1054	6	AC	V[1]	1054	8
	V[2]	1055	9	2	V[2]	1055	0
	V[3]	1056	12		V[3]	1056	15
	V[4]	1057	8			1057	8
	V[5]	1058	2			1058	2
	V[6]	1059	11			1059	11
	V[7]	1060	3			1060	3
		:	:			:	:

La figura sulla destra mostra un esempio dello stato della memoria e dei registri prima e dopo l'esecuzione dell'istruzione.

PROVA SCRITTA DI RETI LOGICHE E CALCOLATORI DEL 20/06/2016 – TRACCIA B

ESERCIZIO 2: Estendere il set di istruzioni della macchina ad accumulatore con l'operazione **SUMH X**, definita come segue.

A partire dalla locazione X+1 della RAM è memorizzato un vettore \boldsymbol{V} di L elementi, dove L è contenuto in M[X] ed è un numero pari.

L'istruzione modificherà il vettore come segue: per ogni elemento V[i] della prima metà del vettore (tale che i=0,...,n/2-1), V[i] viene posto a V[i]+V[n/2+i] se V[i] e V[n/2+i] sono entrambi negativi, mentre V[i] viene posto a 0 altrimenti.

Al termine dell'istruzione la dimensione del vettore memorizzata in M[X] dovrà essere posta uguale a n/2 e l'accumulatore dovrà contenere il numero di elementi per cui la condizione è stata soddisfatta.

	PR	IMA			DC	PO	
X		:	:	X	_	:	:
1052	L	1052	8	1052	L	1052	4
	V[0]	1053	-3		V[0]	1053	0
	V[1]	1054	-6	AC	V[1]	1054	-8
	V[2]	1055	9	2	V[2]	1055	0
	V[3]	1056	-12		V[3]	1056	-15
	V[4]	1057	8			1057	8
	V[5]	1058	-2			1058	2
	V[6]	1059	11			1059	11
	V[7]	1060	-3			1060	3
		:	:			:	:

La figura sulla destra mostra un esempio dello stato della memoria e dei registri prima e dopo l'esecuzione dell'istruzione.

PROVA SCRITTA DI RETI LOGICHE E CALCOLATORI DEL 20/06/2016 – TRACCIA A

ESERCIZIO 3: Scrivere una procedura assembly che riceve due vettori **V** e **W** composti entrambi da n elementi, con n pari, e modifica l'array **W** come di seguito specificato:

- a) per ogni elemento **W**[i] della prima metà del vettore (tale che i=0,...,n/2-1), **W**[i] viene posto a **W**[i]+**V**[n/2+i] se la condizione **W**[i]>**V**[n/2+i] è vera, mentre **W**[i] viene posto a 0 se la predetta condizione è falsa.
- b) per ogni elemento $\mathbf{W}[i]$ della seconda metà del vettore (tale che i=n/2,...,n-1), $\mathbf{W}[i]$ viene posto a $\mathbf{W}[i]+\mathbf{V}[i-n/2]$ se la condizione $\mathbf{W}[i]>\mathbf{V}[i-n/2]$ è vera, mentre $\mathbf{W}[i]$ viene posto a 0 se la predetta condizione è falsa.

Scrivere inoltre il programma principale che invoca opportunamente la procedura descritta.

La figura sulla destra mostra un esempio dello stato della memoria assumendo che l'indirizzo di partenza del vettore **V** sia 1052, l'indirizzo di partenza del vettore **W** sia 1072 e la lunghezza dei vettori sia uguale a 10.

		PR	MA		_			DO	OPO		_
1071 1070	11	V[9]	1091 1090	12	W[9]	1071 1070	11	V[9]	1091 1090	22	W[9]
1069 1068	4	V[8]	1089 1088	10	W[8]	1069 1068	4	V[8]	1089 1088	14	W[8]
1067 1066	2	V[7]	1087 1086	2	W[7]	1067 1066	2	V[7]	1087 1086	0	W[7]
1065 1064	1	V[6]	1085 1084	3	W[6]	1065 1064	1	V[6]	1085 1084	0	W[6]
1063 1062	9	V[5]	1083 1082	5	W[5]	1063 1062	9	V[5]	1083 1082	7	W[5]
1061 1060	10	V[4]	1081 1080	9	W[4]	1061 1060	10	V[4]	1081 1080	0	W[4]
1059 1058	4	V[3]	1079 1078	5	W[3]	1059 1058	4	V[3]	1079 1078	9	W[3]
1057 1056	9	V[2]	1077 1076	6	W[2]	1057 1056	9	V[2]	1077 1076	8	W[2]
1055 1054	6	V[1]	1075 1074	3	W[1]	1055 1054	6	V[1]	1075 1074	4	W[1]
1053 1052	2	v[0]	1073 1072	8	W[0]	1053 1052	2	V[0]	1073 1072	0	w[o]

PROVA SCRITTA DI RETI LOGICHE E CALCOLATORI DEL 20/06/2016 - TRACCIA B

ESERCIZIO 3: Scrivere una procedura assembly che riceve due vettori **V** e **W** composti entrambi da n elementi, con n pari, e modifica l'array **W** come di seguito specificato:

- a) per ogni elemento V[i] della prima metà del vettore (tale che i=0,...,n/2-1), W[i+n/2] viene posto a V[i]-W[i+n/2] se la condizione W[i+n/2]< V[i] è vera, mentre W[i+n/2] viene posto a 0 se la condizione è falsa.
- b) per ogni elemento **V**[i] della seconda metà del vettore (tale che i=n/2,...,n-1), **W**[i-n/2] viene posto a **V**[i]+**W**[i-n/2] se la condizione **V**[i]>**W**[i-n/2] è vera, mentre **W**[i-n/2] viene posto a 0 se la condizione è falsa.

Scrivere inoltre il programma principale che invoca opportunamente la procedura descritta.

La figura sulla destra mostra un esempio dello stato della memoria assumendo che l'indirizzo di partenza del vettore ${\bf V}$ sia 1052, l'indirizzo di partenza del vettore ${\bf W}$ sia 1072 e la lunghezza dei vettori sia uguale a 10.

		PR	IMA		_			DO	OPO		_
1071 1070	11	V[9]	1091 1090	12	W[9]	1071 1070	11	V[9]	1091 1090	0	W[9]
1069 1068	4	V[8]	1089 1088	10	W[8]	1069 1068	4	V[8]	1089 1088	0	W[8]
1067 1066	2	V[7]	1087 1086	2	W[7]	1067 1066	2	V[7]	1087 1086	7	W[7]
1065 1064	1	V[6]	1085 1084	3	W[6]	1065 1064	1	V[6]	1085 1084	3	W[6]
1063 1062	9	V[5]	1083 1082	5	W[5]	1063 1062	9	V[5]	1083 1082	0	W[5]
1061 1060	10	V[4]	1081 1080	9	W[4]	1061 1060	10	V[4]	1081 1080	2	W[4]
1059 1058	4	V[3]	1079 1078	5	W[3]	1059 1058	4	V[3]	1079 1078	0	W[3]
1057 1056	9	V[2]	1077 1076	6	W[2]	1057 1056	9	V[2]	1077 1076	0	W[2]
1055 1054	6	V[1]	1075 1074	3	W[1]	1055 1054	6	V[1]	1075 1074	0	W[1]
1053 1052	2	V[0]	1073 1072	8	w[o]	1053 1052	2	V[0]	1073 1072	1	w[o]

PROVA SCRITTA DI RETI LOGICHE E CALCOLATORI DEL 20/06/2016 – TRACCIA C

ESERCIZIO 3: Scrivere una procedura assembly che riceve due vettori **V** e **W** composti entrambi da n elementi, con n pari, e modifica l'array **W** come di seguito specificato:

- a) per ogni elemento W[i] della prima metà del vettore (tale che i=0,...,n/2-1), W[i] viene posto a W[i]+V[n/2+i] se la condizione W[i]<0 è vera, mentre W[i] viene posto a 0 se la predetta condizione è falsa.
- b) per ogni elemento **W**[i] della seconda metà del vettore (tale che i=n/2,...,n-1), **W**[i] viene posto a **W**[i]+**V**[i-n/2] se la condizione **W**[i]<0 è vera, mentre **W**[i] viene posto a 0 se la predetta condizione è falsa.

Scrivere inoltre il programma principale che invoca opportunamente la procedura descritta.

La figura sulla destra mostra un esempio dello stato della memoria assumendo che l'indirizzo di partenza del vettore ${\bf V}$ sia 1052, l'indirizzo di partenza del vettore ${\bf W}$ sia 1072 e la lunghezza dei vettori sia uguale a 10.

1071 44 1/03 1091 40 1/03 1071 44 1/03 1091	
11 V[9] 1091 -12 W[9] 1071 11 V[9] 1091 -2	W[9]
1069 4 V[8] 1089 10 W[8] 1068 4 V[8] 1088 0	w[8]
1067 2 V[7] 1087 -2 W[7] 1067 2 V[7] 1087 7	W[7]
1065 1064 1 V[6] 1085 3 W[6] 1065 1 V[6] 1085 0	W[6]
1063 9 V[5] 1083 5 W[5] 1063 9 V[5] 1083 0	W[5]
1061 10 V[4] 1081 -9 W[4] 1061 10 V[4] 1081 2	W[4]
1059 4 V[3] 1079 -5 W[3] 1059 4 V[3] 1078 -1	W[3]
1057 9 V[2] 1077 -6 W[2] 1056 9 V[2] 1076 -4	W[2]
1055 6 V[1] 1075 3 W[1] 1055 6 V[1] 1075 0	W[1]
1053 2 V[0] 1073 -8 W[0] 1053 2 V[0] 1073 1072 1	W[0]

PROVA SCRITTA DI RETI LOGICHE E CALCOLATORI DEL 20/06/2016 – TRACCIA D

ESERCIZIO 3: Scrivere una procedura assembly che riceve due vettori **V** e **W** composti entrambi da n elementi, con n pari, e modifica l'array **W** come di seguito specificato:

- a) per ogni elemento V[i] della prima metà del vettore (tale che i=0,...,n/2-1), W[i+n/2] viene posto a W[i+n/2]-V[i] se la condizione W[i+n/2]>0 è vera, mentre W[i+n/2] viene posto a 0 se la predetta condizione è falsa.
- b) per ogni elemento **V**[i] della seconda metà del vettore (tale che i=n/2,...,n-1), **W**[i-n/2] viene posto a **W**[i-n/2]-**V**[i] se la condizione **W**[i-n/2]>0 è vera, mentre **W**[i-n/2] viene posto a 0 se la predetta condizione è falsa. Scrivere inoltre il programma principale che invoca opportunamente la procedura descritta.

La figura sulla destra mostra un esempio dello stato della memoria assumendo che l'indirizzo di partenza del vettore ${\bf V}$ sia 1052, l'indirizzo di partenza del vettore ${\bf W}$ sia 1072 e la lunghezza dei vettori sia uguale a 10.

		PR	IMA		_	_	
1071 1070	11	V[9]	1091 1090	-12	W[9]	1071 1070	11
1069 1068	4	V[8]	1089 1088	10	W[8]	1069 1068	4
1067 1066	2	V[7]	1087 1086	-2	W[7]	1067 1066	2
1065 1064	1	V[6]	1085 1084	3	W[6]	1065 1064	1
1063 1062	9	V[5]	1083 1082	5	W[5]	1063 1062	9
1061 1060	10	V[4]	1081 1080	-9	W[4]	1061 1060	10
1059 1058	4	V[3]	1079 1078	-5	W[3]	1059 1058	4
1057 1056	9	V[2]	1077 1076	-6	W[2]	1057 1056	9
1055 1054	6	V[1]	1075 1074	3	W[1]	1055 1054	6
1053 1052	2	V[0]	1073 1072	-8	W[0]	1053 1052	2

		DO	OPO		_
1071 1070	11	V[9]	1091 1090	0	W[9]
1069 1068	4	V[8]	1089 1088	6	W[8]
1067 1066	2	V[7]	1087 1086	0	W[7]
1065 1064	1	V[6]	1085 1084	-3	W[6]
1063 1062	9	V[5]	1083 1082	3	W[5]
1061 1060	10	V[4]	1081 1080	0	W[4]
1059 1058	4	V[3]	1079 1078	0	W[3]
1057 1056	9	V[2]	1077 1076	0	W[2]
1055 1054	6	V[1]	1075 1074	2	W[1]
1053 1052	2	V[0]	1073 1072	0	w[o]