8.1 直角坐标系下的二重积分

基础过关

- 1. $\pi a^2, \frac{2}{3}\pi a^3$.
- 2. $I_2 < I_1 < I_3$.
- 3. $I_2 < I_1$.
- 4. $\int_0^1 dy \int_{e^y}^e f(x, y) dx$.
- 5. $\int_{-1}^{1} dx \int_{0}^{\sqrt{1-x^2}} f(x, y) dy$.
- 6. $-\frac{5}{6}$.
- 7. $\frac{1}{2}\pi R^4, \frac{1}{4}\pi R^4, \frac{1}{4}\pi R^4 + 9\pi R^2, (\frac{1}{a^2} + \frac{1}{b^2}) \cdot \frac{1}{4}\pi R^4.$
- =, $\pi \cdot \ln 2 \le \iint_{\mathcal{D}} \ln (1 + x^2 + y^2) d\sigma \le \pi \cdot \ln 3$.

- 1. $\frac{1}{8}$.
- 2. $\frac{7}{2}$.
- 3. 1-sin1.
- 4. $\frac{1}{6}(1-\cos 1)$.
- 四、1. $\frac{1}{2}(1-e^{-4})$. 2. $\frac{1}{6}(1-\cos 1)$.

能力拓展

$$-\,,\ \max_{1\le k\le 4}\{I_k\}=I_1.$$

= $-\pi$.

$$\equiv$$
, $f(x, y) = x + \frac{y}{2}$.

$$\square$$
、 $\frac{1}{2}$ (e-1).

$$\Xi \cdot \frac{1}{4}(e^{-1}-1).$$

$$\Rightarrow \frac{1}{8}$$
.

延伸探究

$$-$$
, (1) \mathbb{B} ; (2) $-\frac{7}{9}$.