图谱论导引(第五期)

图与代数

图的同构

图的本质是对象及其关系之集合,但同一张图或有不同的展现形式,从而我们引入"同构"的概念.读者不妨观察下图,依照字母之对应关系可确定两图的同构关系.

同构关系应当公理化语言定义. 容易得知, G与G'同构若且仅若V(G)与V(G')存在双射 φ , 使得 $\varphi(v_1) \sim \varphi(v_2) \Leftrightarrow v_1 \sim v_2$. 该定义同样适用于自同构.

容易验证以下图之自同构群

- $\operatorname{Aut}(K_n) = S_n$, 即置换群.
- $\operatorname{Aut}(C_n) = D_n$, 即二面体群.
- $\operatorname{Aut}(P_n) = \mathbb{Z}_2$, 即二元循环群.

下介绍几例较为复杂之自同构群.

Petersen图之自同构

考虑Petersen图G之集合表述,可知存在同构 $\pi: \{\mathbb{Z}_5$ 的二元子集 $\} \to V(G)$, $A \cap B = \emptyset \Leftrightarrow \pi(A) \sim \phi(B)$.

不妨取 $\mathbb{Z}_5=\{1,2,3,4,5\}$. 考察图中长度为5的圈 $\{12,34,51,23,45\}$, 则与之同构的圈必为 $\{ab,bd,ea,bc,de\}$ 形式. 实际上, 圈 $\{ab,bd,ea,bc,de\}$ 唯一确定了其余五个顶点, 因此 $\{ab,bd,ea,bc,de\}$ 对应一种同构. 显然, 上述对应即 S_5 之一元, 从而 $\mathrm{Aut}(KG(5,2))\cong S_5$.

Petersen图之本质乃二部Kneser图(bipartite Kneser graph), 对其的自同构形式将在后期介绍.

完全k部图之自同构

先考虑特殊情况. 若k=2, 则当 $m \neq n$ 时, $K_{m,n} \cong S_m \times S_n$; $K_{n,n} \cong S_n \times S_n \times S_2$. 一般地,

$$K_{n_1,n_2,\ldots,n_k}\cong \left(\prod_{i=1}^\infty (S_i)^{\lambda(i)}
ight) imes \left(\prod_{i=1}^\infty S_{\lambda(i)}
ight).$$

其中 $\lambda(i)$ 为 $\{n_i\}_{i=1}^k$ 中i之个数.

Cartesian积导出的自同构

此处介绍一类全新的图运算: Cartesian积. 定义 $G \square H$ 为 $G \ni H$ 之Cartesian积, 其中 $V(G \square H) \cong V(G) \times V(H)$, $(g_i,h_i) \sim (g_i,h_i)$ 若且仅若以下一者成立

- $g_1 = g_2$, $\exists H + h_1 \sim h_2$.
- $h_1 = h_2$, $\exists G \mapsto g_1 \sim g_2$.

例如 $P_2\square P_3=\exists$, $(P_2\dot{\cup}P_2)\square P_3=P_2\square(P_3\dot{\cup}P_3)=\exists$. 下图为较复杂的例子

其邻接矩阵即 $A(G \square H) = A(G) \otimes I_{|V(H)|} + I_{|V(G)|} \otimes A(H)$.

一般地, $\operatorname{Aut}(G) \times \operatorname{Aut}(H)$ 为 $\operatorname{Aut}(G \square H)$ 之子群. 读者可自行验证之.

对一切简单图G而言, G可分解为若干素元之Cartesian 积. 其中称H为素元若且仅若

$$H \cong H_1 \square H_2 \implies H_1 \cong K_1 \text{ or } H_2 \cong K_1.$$

对于非连通图而言,分解并非唯一:因为 $(\mathcal{G},\dot{\cup},\Box)$ 并非UFD(无加法逆元). 注意到 $(1+x+x^2)(1+x^3)=(1+x^2+x^4)(x+1)$ 在多项式"类环" $(\mathbb{N}[x],+,\cdot)$ 中不可约分解方式不唯一,从而

$$(K_1\dot{\cup}P_2\dot{\cup}K_{2,2})\Box(K_1\dot{\cup}Q_3)=(K_1\dot{\cup}K_{2,2}\dot{\cup}Q_4)\Box(K_1\dot{\cup}P_2).$$

对连通图G而言,不难发现以下规律:

- G有唯一的不可约分解 $G \cong \square_{i=1}^k G_i$.
- Aut(G)由诸 $Aut(G_i)$ 及相同素因子的置换生成.
- 若诸 G_i 两两互素, 则 $\mathrm{Aut}(G)\cong\prod_{i=1}^k\mathrm{Aut}(G_i)$.

例如, $\operatorname{Aut}(Q_n)=\mathbb{Z}_2^n\ltimes S_n$, 但半直积之具体形式仍待探究.

Cayley图与Frucht定理

试问: 给定一群, 可否作出与群同构之图? Cayley曾提出著名定理"任意有限群都为某置换群之子群"; Frucht利用Cayley图解决了上述猜想.

假设G为有限群,S为其部分元之集合。Caylay图 $\Gamma(G,S)$ 系一类边染色的有向图(从而不是先前强调的简单图),构造如下:

- $\Gamma(G,S)$ 之顶点集对应G, 顶点与元素相对应.
- S中元素s对应不同颜色 c_s .
- $g \subseteq gs$ 的边染为 c_s 色, 由g指向gs.

从而, 应当避免单位元与一对逆元同时进入S中. 若S中元素s满足 $s^2=1$, 则对应边误无向. 例如 $\Gamma(H=\langle i,j,k\rangle,\{i,j\})$ 为

如何将有向和染色的边转化为无向图之表述? 只需作转换

即可. 综上, 该定理非常简单.

实际上,Sabidussi给出了Frucht定理之加强形式:对任意群H

- 存在可数个k-正则图G使得 $\mathrm{Aut}(G)\cong H$.
- 存在可数个k-染色图G使得 $\mathrm{Aut}(G)\cong H$.
- 存在可数个k-连接图G使得 $\mathrm{Aut}(G)\cong H$.

或曰, 是否3-正则图G使得 $\mathrm{Aut}(G)\cong\{1\}$? 答案是肯定的, 读者可考虑所有非边缘点度为3的非对称树, 再依次连接图形即可. 如下图所示

自补图

图的对称性可体现于自同构关系. 注意到 C_5 之对称性亦可体现于其补图上, 即 $\overline{C_5}\cong C_5$: 我们称这一类图为自补的(self-complementary).

自补图结构复杂,但有以下判定自补图的必要条件.若G为自补图,则 $|V(G)|\equiv 0,1\mod 4$.证明容易,因为 $\binom{n}{2}$ 必为整数.自补图可数无穷,考虑 $G_1:=P_4$, $G_{i+1}:=(G_i\bigtriangledown P_2)_{V(P_2)(1)}$, $V(P_2)(2)$.这里,构造上一级图 G_{i+1} 即是在 $G_1\bigtriangledown P_2$ 的 P_2 部分的每个顶点上添上两条边,具体如下所示

对强正则图 $G(v,k,\lambda,\mu)$ 而言, $\overline{G}(v,v-k-1,v-2k+\mu-2,v-2k+\lambda)$. 从而G自补的必要条件为v-k-1=k,从而 $\overline{G}(v,k,\mu-1,\lambda+1)$ 满足 $\mu-\lambda=1$. 例如(自然无向无染色的)Cayley图 $\Gamma(\mathbb{Z}_{13},\{1,3,6,7,10,12\})$ 为自补的强正则图.

Douglas习题中的几道趣题

Douglas之著作Introduction to graph theory系闻名遐迩的通用图论教材. 上一学期, 笔者有幸旁听的研究生课正采用此教材, 然而第一节的趣题大多被omit了. 这些趣题大多是"脑筋急转弯"类, 适合部分法国幼儿园(esp. Jardin d'enfants Bourbaki)课堂互动用. "简易"等级者以找规律为主流, 例如

1.1.20. Determine which pairs of graphs below are isomorphic.

1.1.21. Determine whether the graphs below are bipartite and whether they are isomorphic. (The graph on the left appears on the cover of Wilson-Watkins [1990].)

下分享"叹号"等级(particularly useful or instructive)习题一则:

题: 定义最小圈(girth)为图中最短的圈, 如Petersen图之最小圈长度为5. 若k-正则图G的最小圈长度为不小于4, 试求 $\min |V(G)|$? 若最小圈长度不小于5, 为之奈何?

解: (默认 $k\geq 2$, 其余情况显然)对最小圈长度为4者, 不妨取a-b-c-d-a为最小圈之一, 从而顶点a,b,c,d分别与最小圈外的k-2个顶点相连, 同时任意相邻点无公共邻点. "最节省点"之考虑即是置a,c在最小圈外的顶点相同, b,c亦然. 从而得最优解为 $K_{k,k}$ 之情形, 此时 $\min |V(G)|=2k$.

对最小圈长度为5者,可考虑如下对称的"点渗透"过程: 任取a为图中一点,记 $N(a)=\{b_1,b_2,\ldots,b_k\}$, $N(b_i)=\{c_{i,1},c_{i,2},\ldots,c_{i,k-1}\}$. 由于最短圈长度为5,从而 $c_{i,j}$ 互不相同. 此处,我们业已选出 $1+k+k(k-1)=1+k^2$ 个点,故min $|V(G)|\geq k^2+1$.

能否取等? 首先, 不乏取等之情形, 例如以下情形(Petersen图)

定义Moore图为"满渗透"的k-正则图(连通),即任一点的前p次邻域渗透恰好覆盖了 $1+k\sum_{i=0}^{p-1}(k-1)^i$ 个点. 等价的定义

$$|V| = 1 + k \sum_{i=0}^{D-1} (k-1)^i.$$

其中D为图的直径,即 $\max_{i,j\in V}|i-j|$. 时至今日,Moore图之分类已至决胜阶段,可稽之成果如下:

- 所有完全图 K_n , 最小圈长度为3.
- 所有奇圈 C_{2n+1} , 最小圈长度为2n+1.
- Hoffman-Singleton定理导出的所有可能的最小圈长度为5者,包括:
 - 皮为2者, C₅.
 - o 度为3者, Petersen图.
 - 。 度为7者, Hoffman-Singleton图. 如下所示

利用强正则图之性质,可计算其特征多项式为 $(x-7)(x-2)^{28}(x+3^{21})$. 以特征值均为整数故,或称之"整图".

。 可能存在的度为57的图, 有待研究.