DRAHIT: STITLE

Contents

Cnapt	er 0. Introduction	1
0A	Why you want to read this book	1
0B	Why we wrote this book	2
0C	What's with practice?	3
0D	What's in this book	4
	• Exercises and hints	7
	 Relation of this book to other texts 	7
0E	Prerequisites, notation and conventions	7
	 Commutative algebra 	8
	 Projective geometry 	8
	 Sheaves and cohomology 	9
Chapt	er 1. Linear series and morphisms to projective space	11
1A	Divisors	12
1B	Divisors and rational functions	13
	Generalizations	13
	 Divisors of functions 	14
	 Invertible sheaves 	15
	 Invertible sheaves and line bundles 	17
1C	Linear series and maps to projective space	18
1D	The geometry of linear series	20
	• An upper bound on $h^0(\mathcal{L})$	20
	 Incomplete linear series 	21
	Sums of linear series	23
	• Which linear series define embeddings?	23

ii Contents

Exe	rcises	26
Chapt	er 2. The Riemann–Roch theorem	29
2A	How many sections?	29
	 Riemann–Roch without duality 	30
2B	The most interesting linear series	31
	• The adjunction formula	32
	Hurwitz's theorem	34
2C	Riemann–Roch with duality	37
	• Residues	40
2.5	- Arithmetic genus and geometric genus	41
2D	The canonical morphism - Geometric Riemann–Roch	43 45
	Linear series on a hyperelliptic curve	43
2E	Clifford's theorem	47
	Curves on surfaces	48
21	• The intersection pairing	48
	• The Riemann–Roch theorem for smooth surfaces	50
	Blowups of smooth surfaces	50
2G	Quadrics in \mathbb{P}^3 and the curves they contain	51
	 The classification of quadrics 	51
	 Some classes of curves on quadrics 	52
2H	Exercises	53
Chapt	er 3. Curves of genus 0	57
3A	Rational normal curves	58
3B	Other rational curves	64
	 Smooth rational quartics 	64
	• 3B1 Some open problems about rational curves	67
3C	The Cohen-Macaulay property	68
3D	Exercises	71
Chapt	er 4. Smooth plane curves and curves of genus 1	75
4A	Riemann, Clebsch, Brill and Noether	75
4B	Smooth plane curves	77
	• 4B1 Differentials on a smooth plane curve	77
	• 4B2 Linear series on a smooth plane curve	79
	• 4B3 The Cayley-Bacharach-Macaulay theorem	81
4C	Curves of genus 1 and the group law of an elliptic curve	83
4D	Low degree divisors on curves of genus 1	84

Contents

	 4D1 The dimension of families 4D2 Double covers of P¹ 4D3 Plane cubics 4D4 Genus 1 quartics in P³ 4D5 Genus 1 quintics in P⁴ 	84 85 85 86 88
4E	Exercises	90
Chapte	er 5. Jacobians	93
-	Symmetric products and the universal divisor	94
	• 5A1 Finite group quotients	95
5B	The Picard varieties	97
5C	Jacobians	98
5D	Abel's theorem	101
5E	The $g + 3$ theorem	103
5F	The schemes $W_d^r(C)$	105
5G	Examples in low genus	106
	• 5G1 Genus 1	106
	• 5G2 Genus 2	106
	• 5G3 Genus 3	106
	Martens' theorem	106
5I	Exercises	108
Chapt	er 6. Hyperelliptic curves and curves of genus 2 and 3	111
6A	Hyperelliptic curves	111
	• 6A1 The equation of a hyperelliptic curve	111
	• 6A2 Differentials on a hyperelliptic curve	113
6B	Branched covers with specified branching • 6B1 Branched covers of P ¹	114
(0		115
6C	Curves of genus 2 \cdot 6C1 Maps of C to \mathbb{P}^1	117 117
	• 6C2 Maps of C to \mathbb{P}^2	118
	• 6C3 Embeddings in \mathbb{P}^3	119
	• 6C4 The dimension of the family of genus 2 curves	120
6D	Curves of genus 3	121
	• 6D1 Other representations of a curve of genus 3	121
6E	Theta characteristics	123
	• 6E1 Counting theta-characteristics	127
6F	Exercises	129
Chapt	er 7. Fine moduli spaces	133

iv Contents

7A	What is a moduli problem?	133 135
7D	• 7A1 Some moduli problems	
	What is a solution to a moduli problem?	136
7C	Hilbert schemes	137
	• 7C1 The tangent space to the Hilbert scheme	138
	• 7C2 Parametrizing twisted cubics	140
	7C3 Construction of the Hilbert scheme in general7C4 Grassmannians	141
	 7C4 Grassmannians 7C5 Equations defining the Hilbert scheme 	143 144
7D		145
7D 7E	Bounding the number of maps between curves Exercises	
/E	Exercises	146
Chapt	er 8. Moduli of curves	149
8A	Curves of genus 1	149
	• 8A1 M_1 is a coarse moduli space	150
	• 8A2 The good news	151
	• 8A3 Compactifying M_1	152
8B	Higher genus	155
	• 8B1 Stable, semistable, unstable	157
8C	Stable curves	158
	• 8C1 How we deal with the fact that \overline{M}_g is not fine	159
8D	Can one write down a general curve of genus g?	160
8E	Hurwitz spaces	162
	• 8E1 The dimension of M_g	163
	• 8E2 Irreducibility of M_g	164
8F	The Severi variety	164
	• 8F1 Local geometry of the Severi variety	165
8G	Exercises	168
Chapt	er 9. Curves of genus 4 and 5	171
_	Curves of genus 4	171
<i>)</i> 11	• 9A1 The canonical model	171
	• 9A2 Maps to projective space	172
9B	Curves of genus 5	176
	Canonical curves of genus 5	177
, ,	• 9C1 First case: the intersection of the quadrics is a curve	178
	• 9C2 Second case: the intersection of the quadrics is a surface	180
9D	Exercises	181
Cnapt	er 10. Hyperplane sections of a curve	183

Contents

10A Linearly general position	183
10B Castelnuovo's theorem	187
 10B1 Proof of Castelnuovo's bound 	188
 10B2 Consequences and special cases 	192
10C Other applications of linearly general position	193
 10C1 Existence of good projections 	193
• 10C2 The case of equality in Martens' theorem	195
• 10C3 The $g + 2$ theorem	196
10D Exercises	198
Chapter 11. Monodromy of Hyperplane Sections	203
11A Uniform position and monodromy	203
• 11A1 The monodromy group of a generically finite morphism	204
• 11A2 Uniform position	205
11B Flexes and bitangents are isolated	206
• 11B1 Not every tangent line is tangent at a flex	206
 11B2 Not every tangent is bitangent 	207
11C Proof of the uniform position theorem	207
• 11C1 Uniform position for higher-dimensional varieties	209
11D Applications of uniform position	209
• 11D1 Irreducibility of fiber powers	209
• 11D2 Numerical uniform position	210
• 11D3 Sums of linear series	210
• 11D4 Nodes of plane curves	211
11E Exercises	212
Chapter 12. Brill-Noether theory and applications to genus 6	215
12A What linear series exist?	215
12B Brill-Noether theory	215
• 12B1 A Brill-Noether inequality	217
• 12B2 Refinements of the Brill-Noether theorem	218
12C Linear series on curves of genus 6	221
• 12C1 General curves of genus 6	222
• 12C2 Del Pezzo surfaces	223
• 12C3 The canonical image of a general curve of genus 6	225
12D Other curves of genus 6	226
 12D1 D has a base point 	226
• 12D2 C is not trigonal and the image of ϕ_D is two to one onto a	a
plane curve of degree 3.	227
12E Exercises	228

vi Contents

Chapter 13. Inflection points	231
13A Inflection points, Plücker formulas and Weierstrass points	231
• 13A1 Definitions	231
• 13A2 The Plücker formula	232
• 13A3 Flexes of plane curves	234
• 13A4 Weierstrass points	234
 13A5 Another characterization of Weierstrass points 	235
13B Finiteness of the automorphism group	236
13C Curves with automorphisms are special	239
13D Inflections of linear series on \mathbb{P}^1	240
• 13D1 Schubert cycles	241
 13D2 Special Schubert cycles and Pieri's formula 	241
→ 13D3 Conclusion	244
13E Exercises	246
Chapter 14. Proof of the Brill Noether Theorem	249
14A Castelnuovo's approach	249
• 14A1 Upper bound on the codimension of $W_d^r(C)$	251
14B Specializing to a g-cuspidal curve	252
 14B1 Constructing curves with cusps 	252
 14B2 Smoothing a cuspidal curve 	253
14C The family of Picard varieties	253
 14C1 The Picard variety of a cuspidal curve 	253
 14C2 The relative Picard variety 	254
 14C3 Limits of invertible sheaves 	255
14D Putting it all together	258
• 14D1 Non-existence	258
• 14D2 Existence	258
14E Brill-Noether with inflection	258
14F Exercises	260
Chapter 15. Using a singular plane model	263
15A Nodal plane curves	263
 15A1 Differentials on a nodal plane curve 	264
 15A2 Linear series on a nodal plane curve 	265
15B Arbitrary plane curves	269
• 15B1 The conductor ideal and linear series on the normalization	1270
► 15B2 Differentials	272
15C Exercises	275
Chapter 16 Linkage and the canonical sheaves of singular curves	279

Contents vii

16A Introduction	279
16B Linkage of twisted cubics	280
16C Linkage of smooth curves in \mathbb{P}^3	282
16D Linkage of purely 1-dimensional schemes in \mathbb{P}^3	283
16E Degree and genus of linked curvesDualizing sheaves for singular curves	284 284
16F The construction of dualizing sheaves • 16F1 Proof of Theorem 16.5	286 288
16G The linkage equivalence relation	291
16H Comparing the canonical sheaf with that of the normalization	292
16I A general Riemann-Roch theorem	295
16J Exercises	296
• 16J1 Ropes and Ribbons	298
• 16J2 General adjunction	299
Chapter 17. Scrolls and the Curves They Contain	301
Introduction	301
17A Some classical geometry	302
17B 1-generic matrices and the equations of scrolls	305
17C Scrolls as Images of Projective Bundles	310
17D Curves on a 2-dimensional scroll	312
 17D1 Finding a scroll containing a given curve 	312
 17D2 Finding curves on a given scroll 	314
17E Exercises	318
Chapter 18. Free resolutions and canonical curves	323
18A Free resolutions	323
18B Classification of 1-generic $2 \times f$ matrices	325
• 18B1 How to look at a resolution	326
→ 18B2 When is a finite free complex a resolution?	327
18C Depth and the Cohen-Macaulay property	328
► 18C1 The Gorenstein property	329
18D The Eagon-Northcott complex	330
• 18D1 The Hilbert-Burch theorem	334
• 18D2 The general case of the Eagon-Northcott complex	336
18E Green's Conjecture	339
 18E1 Low genus canonical embeddings 	342
18F Exercises	343

viii Contents

Chapter 19. Hilbert Schemes	347
19A Degree 3	347
• 19A1 The other component of $\mathcal{H}_{0,3,3}$	348
19B Extraneous components	349
19C Degree 4	350
• 19C1 Genus 0	350
• 19C2 Genus 1	351
19D Degree 5	351
• 19D1 Genus 2	352
19E Degree 6	353
• 19E1 Genus 4	353
• 19E2 Genus 3	353
19F Degree 7	353
19G The expected dimension of $\mathcal{H}_{g,r,d}^{\circ}$	353
19H Some open problems	356
19H1 Brill-Noether in low codimension19H2 Maximally special curves	356 356
• 19H3 Rigid curves?	357
19I Degree 8, genus 9	358
19J Degree 9, genus 10	359
19K Estimating the dimension of the restricted Hilbert schemes using	337
the Brill-Noether theorem	360
19L Exercises	361
Chapter 20. A historical essay on some topics in algebraic geometry	367
20A Greek mathematicians and conic sections	367
20B The first appearance of complex numbers	369
20C Conic sections from the 17th to the 19th centuries	370
20D Curves of higher degree from the 17th to the early 19th century	374
20E The birth of projective space	382
20F Riemann's theory of algebraic curves and its reception	383
20G First ideas about the resolution of singular points	386
20H The work of Brill and Noether	387
20I Bibliography	388

DRAHIT: STITLE

The Riemann–Roch theorem

2A. How many sections?

To study curves via their maps to projective spaces, we want to estimate the dimension of the space of global sections of an invertible sheaf \mathcal{L} . The beginning of the story is the Riemann–Roch theorem.

Though we would like to be able to compute $h^0(\mathcal{L})$, it is much easier to compute the Euler characteristic

indexed

$$\chi(\mathcal{L}) := \sum_{i \ge 0} (-1)^i h^i(\mathcal{L}).$$

This computes $h^0(\mathcal{L})$ itself in many cases, by virtue of the following result:

Theorem 2.1 (Serre–Grothendieck vanishing theorem). If \mathcal{F} is a coherent sheaf on a projective scheme X of dimension n, then for any i, the vector space $H^i(\mathcal{F})$ is finite-dimensional, and is 0 if i > n. Moreover, if $X \subset \mathbb{P}^m$ then for $d \gg 0$, $\mathcal{F}(d)$ is generated by its global sections and $H^i(\mathcal{F}(d)) = 0$ for all i > 0.

Proof. This is a combination of theorems due to Grothendieck and Serre. See [?, Theorems III.2.7 and III.5.2], and also [?] for a reasonably concrete proof.

A shortcoming of this vanishing theorem is the lack of a bound on the number d needed to achieve the second assertion. For smooth curves and invertible sheaves this is corrected by Theorem 2.16, which gives a bound in terms of the genus and the degree.

One immediate consequence of Theorem 2.1 is that on a smooth variety the groups of invertible sheaves and divisor classes are the same:

Corollary 2.2. If X is a projective variety that is nonsingular in codimension 1, every invertible sheaf \mathcal{L} on X is of the form $\mathcal{L} = \mathcal{O}_{\mathcal{C}}(D)$ for some Cartier divisor D on X. Thus if X is a smooth projective variety the map div is an isomorphism from the group of invertible sheaves to the group of divisor classes.

Proof. Let $H \subset \mathbb{P}^r$ be a general hyperplane, and E the divisor of intersection of C with H. We know that for $n \gg 0$, $\mathcal{L}(n)$ has sections; and if F is the divisor of zeroes of one such section, we have

$$\mathcal{L} = \mathcal{O}_C(F - nE).$$

If X is smooth, then, since a regular local ring is a unique factorization domain, every codimension-one subvariety is defined locally by a single nonzerodivisor, and thus corresponds to a Cartier divisor. This implies that div is surjective. Furthermore any isomorphism between invertible sheaves is defined by multiplication with a global rational function, so that invertible sheaves defining linearly equivalent divisors are isomorphic. Thus div is injective as well. \Box

indexed

(de): this proof is pretty swift, and the result fundamental. Let's give a

Riemann–Roch without duality. It follows from Theorem 2.1 that on any scheme artshorne citation too. $X \subset \mathbb{P}^r$ we have $\chi(\mathcal{L}(d)) = h^0(\mathcal{L}(d))$ for large d, and that $\chi(\mathcal{L}) = h^0(\mathcal{L}) - h^1(\mathcal{L})$ in the case of a curve.

Theorem 2.3 (easy Riemann–Roch). *If* C *is a smooth projective curve, and* \mathcal{L} *is an invertible sheaf on* C*, then* $\chi(\mathcal{L}) = \deg \mathcal{L} + \chi(\mathcal{O}_C)$.

Proof. The result is tautological if $\mathcal{L} = \mathcal{O}_C$. Every invertible sheaf on C has the form $\mathcal{L} = \mathcal{O}_C(D)$ for some divisor D. If $p \in C$, then writing $\kappa(p)$ for the structure sheaf of the subscheme $p \in C$, the long exact sequence in cohomology associated to the short exact sequence

$$0 \to \mathcal{L}(-p) \to \mathcal{L} \to \mathcal{L} \otimes \kappa(p) \to 0$$

together with the isomorphism $\mathcal{L} \otimes \kappa(p) \cong \kappa(p)$ and the vanishing of higher cohomology of a sheaf with zero-dimensional support allows us to compute

$$\chi(\mathcal{L}) = \chi(\mathcal{L}(-p)) + \chi(\kappa(p)) = \chi(\mathcal{L}(-p)) + 1.$$

Since every divisor on C can be reached by adding and subtracting points, this suffices.

Since the Euler characteristic of a sheaf is well-behaved, we can extend the result of Theorem 2.3 to invertible sheaves on any one-dimensional scheme C, by defining deg $\mathcal{L} := \chi(\mathcal{L}) - \chi(\mathcal{O}_C)$. We will use this definition to express the self-intersection of a divisor on a surface in Section 2F.

We can make the Riemann–Roch theorem still more useful by understanding the error term $h^1(\mathcal{L})$. This requires the canonical divisor and Serre duality, to which we now turn.

2B. The most interesting linear series

The most important vector bundles on a manifold are the tangent and cotangent bundles. For reasons that will become clear, the focus in algebraic geometry is on the cotangent bundle or, equivalently, the sheaf of differential 1-forms. On a smooth curve C the *canonical sheaf* is the sheaf of differentials, which is an invertible sheaf; on a smooth variety of dimension n we define the canonical sheaf to be the n-th exterior power of the sheaf of differentials. A section of ω_C is thus a differential form, and the class of the divisor of such a form is usually denoted K_C .

indexed

Cheerful Fact 2.4. Canonical sheaves are defined for any projective scheme; see Definition 16.6. They are usually called *dualizing sheaves* in that generality. The condition for the dualizing sheaf to be an invertible sheaf is that the scheme is (locally) Gorenstein, something that is true, for example, for any subscheme of \mathbb{P}^r that is locally a complete intersection (see Section 16F).

On projective space we can compute the canonical sheaf directly; other computations of the canonical sheaf will usually reduce to this central case.

Theorem 2.5. The canonical sheaf of
$$\mathbb{P}^r$$
 is $\mathcal{O}_{\mathbb{P}^r}(-r-1)$.

indexed

Proof. Let x_0, \ldots, x_r be the projective coordinates on \mathbb{P}^r and let $U = \mathbb{P}^r \setminus H$ be the affine open set where $x_0 \neq 0$. Thus $U \cong \mathbb{A}^r$ with coordinates $z_1 := x_1/x_0$, $\ldots, z_r := x_r/x_0$. The space of r-dimensional differential forms on U is spanned by $d(x_1/x_0) \wedge \cdots \wedge d(x_r/x_0)$, which is regular everywhere in U. In view of the formula

$$d\frac{x_i}{x_0} = \frac{x_0 \, dx_i - x_i \, dx_0}{x_0^2}$$

we get

$$d\frac{x_1}{x_0} \wedge \dots \wedge d\frac{x_r}{x_0} = \frac{dx_1 \wedge \dots \wedge dx_r}{x_0^r} - \sum_{i=1}^r x_i \frac{dx_1 \wedge \dots \wedge \widehat{dx_i} \wedge \dots \wedge dx_r}{x_0^{r+1}}$$

which has a pole of order r+1 along the locus H defined by x_0 . Thus the divisor of this differential form is -(r+1)H, and this is the canonical class.

Cheerful Fact 2.6. A different derivation: there is a short exact sequence of sheaves, called the Euler sequence [?, II.8]:

Ch. II → II (or else Chapter II, §8 if you feel it's safer)

$$0 \to \Omega_{\mathbb{P}^r} \to \mathcal{O}_{\mathbb{P}^r}^{r+1}(-1) \to \mathcal{O}_{\mathbb{P}^r} \to 0.$$

Summing over all twists, and taking global sections, that is, applying H_*^0 , we see that $H_*^0(\Omega_{\mathbb{P}^r})$ fits into an exact sequence:

$$0 \to H^0_*(\Omega_{\mathbb{P}^r}) \to S^{r+1}(-1) \xrightarrow{\delta_1} S \to \mathbb{C} \to 0,$$

where S is the homogeneous coordinate ring of \mathbb{P}^r and δ_1 sends the i-th basis vector of $S^{r+1}(-1)$ to the i-th variable of S; that is, $H^0_*(\Omega_{\mathbb{P}^r})$ is the second syzygy of the residue field \mathbb{C} of S. We can extend this sequence to the Koszul complex that is the free resolution of \mathbb{C} , [?, §17.5]:

$$0 \to S(-r-1) \xrightarrow{\delta_{r+1}} \bigwedge^r S^{r+1}(-r) \xrightarrow{\delta_r} \cdots \to S^{r+1}(-1) \to S \to \mathbb{C} \to 0.$$

For each i, the i-th exterior power of the map $H^0_*(\Omega_{\mathbb{P}^r}) \to S^{r+1}(-1)$ is an inclusion, and represents $\bigwedge^i(\Omega_{\mathbb{P}^r})$ as the sheaf associated to the graded module that is the (i+1)-st syzygy of \mathbb{C} . In particular, the canonical module $\omega_{\mathbb{P}^r} = \bigwedge^r(\Omega_{\mathbb{P}^r})$ is the sheaf associated to the (r+1)-st syzygy, S(-r-1).

For more on syzygies, see Chapter 18.

The most important invariant of a smooth curve can be defined in terms of the canonical sheaf:

Definition 2.7. If *C* is an irreducible smooth curve we define the genus g(C) to be the dimension of $H^0(\omega_C)$.

Computations of the canonical sheaf on a variety usually involve comparing the variety to a variety whose canonical sheaf is already known. The most useful results of this type are the *adjunction formula* and *Hurwitz's theorem*.

The adjunction formula. In the simplest case, the adjunction formula says that the canonical divisors of a smooth plane curve C of degree d are the intersections of C with curves of degree d-3 (see Figure 2.1). More generally, for a divisor X on a smooth variety Y, it says that the canonical sheaf on X is $\omega_Y(X)|_X$. This is an immediate consequence of the still more general formula below because the normal bundle of X is $\mathcal{O}_Y(X)$.

In general, the adjunction formula describes the difference between the canonical divisor of a subscheme and the restriction of the canonical divisor from the ambient variety. If $X \subset Y$ we define the *conormal sheaf* of X in Y to be $\mathcal{I}_{X/Y}/\mathcal{I}_{X/Y}^2$, and the *normal sheaf* of X in Y to be its dual,

$$\mathcal{N}_{X/Y} = \mathcal{H}om(\mathcal{I}_{X/Y}/\mathcal{I}_{X/Y}^2, \mathcal{O}_Y).$$

Figure 2.1. On a smooth plane quartic, the canonical divisors are its intersections with lines.

If X and Y are smooth, X is locally a complete intersection in Y, so $\mathcal{I}_{X/Y}/\mathcal{I}_{X/Y}^2$ is a vector bundle on X of rank equal to the codimension, dim $Y-\dim X$. When, in addition, the codimension is 1, so that X is a divisor and $\mathcal{I}_X=\mathcal{O}_Y(-X)$, we get

$$\mathcal{N}_{X/Y} = \mathcal{O}_X(X).$$

Proposition 2.8 (adjunction formula). Let $X \subset Y$ a smooth subscheme of codimension c in a smooth variety Y, and let K_Y be the canonical class of Y. The canonical class K_X of X is

$$\omega_X = \bigwedge^c \mathcal{N}_{X/Y} \otimes \omega_Y.$$

In particular, when X is a divisor, K_X is the restriction to X of the divisor $K_Y + X$ on Y.

Proof. Because X is locally a complete intersection in Y there is an exact sequence of sheaves

$$0 o \mathcal{I}_{X/Y}/\mathcal{I}_{X/Y}^2 o \Omega_Y|_X o \Omega_X o 0,$$

where Ω_X is the sheaf of differential forms on X (see [?, Proposition 16.3]), and $\mathcal{I}_{X/Y}|_X = \mathcal{O}_Y(-X)|_X = \mathcal{O}_X(-X)$. The proposition follows by taking top exterior powers, as in Lemma 2.9.

Lemma 2.9. If

$$0 \to \mathcal{E} \to \mathcal{F} \to \mathcal{G} \to 0$$

is a short exact sequence of locally free sheaves of ranks e,f,g on a scheme X, then there is a natural isomorphism

$$\bigwedge^e \mathcal{E} \otimes \bigwedge^g \mathcal{G} \to \bigwedge^f \mathcal{F}.$$

Proof of Lemma 2.9. We may define a map $\bigwedge^e \mathcal{E} \otimes \bigwedge^g \mathcal{G} \to \bigwedge^f \mathcal{F}$ in terms of local sections as

$$(\epsilon_1 \wedge \cdots \wedge \epsilon_e) \otimes (\gamma_1 \wedge \cdots \wedge \gamma_g) \mapsto \epsilon_1 \wedge \cdots \wedge \epsilon_e \wedge \gamma_1 \wedge \cdots \wedge \gamma_g.$$

This is globally well-defined because changing one of the γ_i by a local section of \mathcal{E} would not change the exterior product. To check that the map is an isomorphism, it is enough to show that this is true locally.

Because $\mathcal G$ is locally free, there is a covering of X by open sets U so that the sequence

$$0 \to \mathcal{E}|_{II} \to \mathcal{F}|_{II} \to \mathcal{G}|_{II} \to 0$$

is a split exact sequence of free modules, $\mathcal{F}|_U = \mathcal{E}|_U \oplus \mathcal{G}|_U$. It follows that

$$\bigwedge^f \mathcal{F}|_U = \bigoplus_{i+j=f} \bigwedge^i \mathcal{E}|_U \otimes \bigwedge^j \mathcal{G}|_U.$$

In our case all the exterior powers of \mathcal{E} vanish above the e-th, and all the exterior powers of \mathcal{G} vanish above the g-th, so

$$\bigwedge^f \mathcal{F}|_U = \bigwedge^e \mathcal{E}|_U \otimes \bigwedge^g \mathcal{G}|_U,$$

with isomorphism given as above.

Corollary 2.10. If $C \subset \mathbb{P}^2$ is a smooth plane curve of degree d, then $\omega_C = \mathcal{O}_C(d-3)$; more generally, if $X \subset \mathbb{P}^r$ is a smooth complete intersection of hypersurfaces of degrees d_1, \ldots, d_c in \mathbb{P}^r then $\omega_X = \mathcal{O}_X(\sum d_i - r - 1)$.

Proof. Since
$$\mathcal{N}_{X/Y} = \bigoplus_{i=1}^{c} \mathcal{O}_{X}(d_{i})$$
, the result follows from Theorem 2.8.

Hurwitz's theorem. Given a (nonconstant) morphism $f: C \to X$ of smooth projective curves, the Riemann–Hurwitz formula computes the canonical sheaf C in terms of that of X and the local geometry of f. To do this we define the *ramification index* of f at $p \in C$, denoted $\operatorname{ram}(f, p)$, by the formula

indexed

$$f^{-1}(q) = \sum_{\substack{p \in C \\ f(p) = q}} (\text{ram}(f, p) + 1) \cdot p$$

for any point $q \in X$.

Proposition 2.11. If $f: C \to X$ is a (nonconstant) morphism of smooth projective curves, there are only finitely many points $p \in C$ such that ram(f, p) > 0.

In light of this result we define the *ramification divisor* of *f* to be the divisor

$$R = \sum_{p \in C} \operatorname{ram}(f, p) \cdot p \in \operatorname{Div}(C).$$

and the branch divisor to be

$$B = \sum_{q \in X} \Big(\sum_{p \in f^{-1}(q)} \mathrm{ram}(f,p) \Big) \cdot q \ \in \ \mathrm{Div}(X).$$

Note that *R* and *B* have the same degree, which is $\sum_{p \in C} \operatorname{ram}(f, p)$.

Proof. The result follows from the separability of the map of fields of rational functions, $K(X) \to K(C)$, which holds because we are in characteristic 0 (in characteristic p the Frobenius map provides a counterexample). A proof using separability is given in [?, Section IV.2]. Here is an analytic version:

indexed

In terms of local parameters z on C around p and w on X around f(p), we can write the morphism as $z \mapsto w = z^m$ for some integer m > 0; that is, if w is a local parameter on X and z is a local parameter in the source, then the map

$$\mathbb{C}\{\{w\}\}\cong\widehat{\mathcal{O}}_{X,f(p)}\xrightarrow{\widehat{f}^*}\widehat{\mathcal{O}}_{C,p}\cong\mathbb{C}\{\{z\}\}$$

of convergent power series rings induced by f^* sends w to uz^m , where u is a power series with nonvanishing constant term. In this case $\operatorname{ram}(f,p) = m-1$. These power series expansions are valid in a neighborhood of p, and the derivative of f vanishes at the ramification points in this neighborhood. Since the zeros of a nonconstant analytic function are isolated, the ramification points are isolated. Since C is compact in the classical topology, there are only finitely many.

Hurwitz's theorem describes the difference between the canonical divisor of C and the pullback of the canonical divisor of X.

Theorem 2.12 (Hurwitz's theorem). [?, Proposition IV.2.3] *If* $f: C \to X$ *is a nonconstant morphism of smooth curves, with ramification divisor R, then*

$$K_C = f^*(K_X) + R,$$

or equivalently $\omega_C = (f^*\omega_X)(R)$.

Proof. Let B be the branch divisor of f. Choose a rational 1-form ω on X, and let $\eta = f^*(\omega)$ be its pullback to C. Since we have the freedom to multiply by any rational function on X, we can arrange for the zeroes and poles of ω to avoid B, so that ω is regular and nonzero at each branch point. (Actually the calculation goes through even without this assumption, albeit with more complicated notation.)

With this arrangement, for every zero of ω of multiplicity m we have exactly d zeroes of η , each with multiplicity m; and likewise for the poles of ω . At a point p where (locally) f has the form $z \mapsto w = z^e$ and $\omega = dw$, we have $\eta = z^{e-1}dz$; that is, η has a zero of multiplicity $\operatorname{ram}(f, p)$ at p. Thus the divisor K_C of η is $K_C = f^*(K_X) + R$.

Example 2.13. Let $C \subset \mathbb{P}^2$ be a smooth plane curve and let p be a point of \mathbb{P}^2 not on C. Suppose that the coordinates on \mathbb{P}^2 are chosen so that the ideal sheaf of p is generated by the vector space of linear forms $W = \langle x_0, x_1 \rangle$. The linear series $(\mathcal{O}_C(1), W)$ defines the projection of C from p to \mathbb{P}^1 , a map of degree $d = \deg C$ (see Figure 2.2).

Figure 2.2. Projection of a plane cubic from a general point p to \mathbb{P}^1 is a three-to-one map.

The canonical sheaf of \mathbb{P}^1 has degree -2, so by Hurwitz's theorem K_C has degree $-2d + \deg R$, where R is the ramification divisor. We may choose coordinates so that none of the branch points lie on the line $x_0 = 0$. Taking this to be the line at infinity, we may compute R after passing to the affine open set $x_0 \neq 0$, where the projection map is given by the function $z = x_1/x_0$. Suppose that C is defined, in this open set, by the equation f(x,y) = 0. A point $q \in C$ is a ramification point if the tangent line to C at q passes through p, that is, if dx and

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$$

are linearly dependent. Since C is smooth, $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ cannot vanish simultaneously, this happens if and only if $\partial f/\partial y$ vanishes at q. The intersection of C with the curve defined by $\partial f/\partial y=0$ has degree d(d-1) by Bézout's theorem, so the degree of the ramification divisor R is d(d-1). Thus the degree of the canonical divisor on C is $\deg K_C=-2d+d(d-1)=d(d-3)$, which is in accord with Corollary 2.10.

Example 2.14. Let $V = H^0(\mathcal{O}_{\mathbb{P}^1}(d))$ be the vector space of homogeneous polynomials of degree d in two variables. In the projectivization $\mathbb{P}(V^*) \cong \mathbb{P}^d$, let Δ be the locus of polynomials with a repeated factor. Since Δ is defined by the vanishing of the discriminant, it is a hypersurface. What is its degree?

To answer this, we intersect Δ with a general line; the degree of Δ is the degree of the intersection. Let $W \subset V$ be a general 2-dimensional linear subspace, that is, a general pencil of forms of degree d on \mathbb{P}^1 . The linear series $W = (\mathcal{O}_{\mathbb{P}^1}, W)$ defines a morphism $\phi_W : \mathbb{P}^1 \to \mathbb{P}(W) \cong \mathbb{P}^1$ and the fiber over the point of $\mathbb{P}(W)$ corresponding to a form f of degree d is the divisor $\{f = 0\} \subset \mathbb{P}^1$. Thus the intersection of Δ with the line is the locus of polynomials in W with a multiple root; that is, the branch locus of ϕ_W , where we would count an m-fold root m-1 times if there were multiple roots. By Hurwitz's formula, the degree

Figure 2.3. A Riemann surface of genus 3.

of the branch locus *B* of a degree *d* morphism from \mathbb{P}^1 to \mathbb{P}^1 is B of a degree $\omega_{\text{INO-P}}$ $\deg B = \deg \omega_{\mathbb{P}^1} - d \deg \omega_{\mathbb{P}^1} = 2d - 2.$

$$\deg B = \deg \omega_{\mathbb{D}^1} - d \deg \omega_{\mathbb{D}^1} = 2d - 2d$$

Thus deg $\Delta = 2d - 2$.

2C. Riemann-Roch with duality

We now return to the task of understanding $h^0(\mathcal{L})$ for an invertible sheaf \mathcal{L} on a smooth curve. Since $\chi(\mathcal{L}) = h^0(\mathcal{L}) - h^1(\mathcal{L})$ is easier to compute, we would like to understand $h^1(\mathcal{L})$ in a more concrete way. The key is duality:

Theorem 2.15 (Serre duality). *If C* is a smooth curve and *D* is a divisor on *C*, then

$$H^{1}(D) = H^{0}(K_{C} - D)^{*} := \operatorname{Hom}_{\mathbb{C}}(H^{0}(K_{C} - D), \mathbb{C}),$$

and thus $h^{1}(D) = h^{0}(K_{C} - D)$.

For proofs see [?, Theorem III.5.2 and III.7.6].

For example we see that if C is a smooth connected curve then $h^1(\mathcal{O}_C) =$ $h^0(K_C) = g(C)$ and thus $\chi(\mathcal{O}_C) = 1 - g(C)$. Using this we can recast Theorem 2.3 in the more useful form:

Theorem 2.16 (Riemann-Roch). If D is any divisor on C, then

$$h^{0}(D) - h^{0}(K_{C} - D) = \deg D - g(C) + 1.$$

In particular deg $K_C = 2g(C) - 2$.

Proof. Combine Theorem 2.3 with Theorem 2.15. For the second statement, apply the formula with $D = K_C$.

See Sections 16E and Theorem 16.24 for the corresponding results on singular curves.

We can now explain the relationship between the genus of a smooth curve, as we have defined it and the topological genus, the "number of holes" in the Riemann surface (Figure 2.3):

Cheerful Fact 2.17. (Hodge theory) The sole topological invariant of a smooth projective curve C, viewed as an analytic space, is its genus. As a manifold it is a compact, oriented surface, and its genus is half the rank of its first singular cohomology, $H^1(C;\mathbb{C})$, which is equal to its first de Rham cohomology. Breaking up the de Rham cohomology of any smooth projective complex variety X in terms of holomorphic and antiholomorphic differential forms we get the Hodge decomposition

$$H^{i}(X,\mathbb{C}) = H^{i}_{\operatorname{de}\operatorname{Rham}}(X) = \bigoplus_{j=0}^{i} H^{j}(\bigwedge^{i-j}\Omega_{X}).$$

For a smooth curve *C*, this says in particular that

$$H^1(C;\mathbb{C}) = H^0(\omega_C) \oplus H^1(\mathcal{O}_C) = H^0(\omega_C) \oplus (H^0(\omega_C))^{\vee},$$

so $h^0(\omega_C)$ is half the rank of the middle singular cohomology group, justifying the name "genus". For details, see [?, p. 116].

A divisor E of negative degree satisfies the equation $H^0(E) = 0$, so we get the form of the Riemann–Roch theorem originally proved by Riemann:

indexed

Corollary 2.18. For any divisor D of degree d we have

$$h^0(D) \ge d - g + 1,$$

 $h^0(D) \geq d-g+1,$ with equality if d>2g-2.

It was Gustav Roch, a student of Riemann's, who supplied the correction term $h^0(K_C - D)$ for divisors of lower degree. The dimension $h^0(K_C - D) =$ $h^1(D)$ was called the *superabundance* of D: the "expected" number of sections was d - g + 1, and $h^1(\mathcal{L})$ reflected how much larger the actual number was.

indexed

Corollary 2.18 and Proposition 1.11 together show that all high degree divisors come from hyperplane sections in suitable embeddings; and unlike the general vanishing theorems, they give a bound on the degree necessary for vanishing of cohomology and for global generation:

Corollary 2.19. Let D be a divisor of degree d on a smooth, connected projective curve of genus g.

- (1) If d > 2g 2 then $H^1(\mathcal{O}_C(D)) = 0$.
- (2) If $d \geq 2g$ then $\mathcal{O}_{C}(D)$ is generated by global sections; that is, the complete linear series |D| is basepoint free; and $\mathcal{O}_C(D)$ is very ample unless $D=K_C+E$ for some divisor E of degree 2.
- (3) If $d \ge 2g + 1$ then $\mathcal{O}_{\mathcal{C}}(D)$ is very ample; that is, the associated morphism $\phi_D: C \to \mathbb{P}^{d-g}$ is an embedding, and D is the preimage of the intersection of C with a hyperplane in \mathbb{P}^{d-g} .

Proof. If d > 2g - 2 then K - D has negative degree, and thus

$$h^1(D) = h^0(K - D) = 0.$$

The last two parts follow from the Riemann–Roch theorem and Proposition 1.11

Since the complement of a hyperplane in projective space is an affine space, we get an affine embedding result too:

Corollary 2.20. If C is any smooth projective curve and $\Gamma \subset C$ a nonempty finite subset then $C \setminus \Gamma$ is affine (that is, isomorphic to a closed subscheme of an affine space).

Proof. Let D be the divisor defined by Γ . By Corollary 2.19 a high multiple of D is very ample, and gives an embedding $\phi: C \to \mathbb{P}^n$ such that the preimage of the intersection of C with some hyperplane H is a multiple of D. It follows that $C \setminus \Gamma$ is embedded in $\mathbb{A}^n = \mathbb{P}^n \setminus H$.

We can use Corollary 2.18 to determine the Hilbert polynomial of a projective curve. To do this, let $C \subset \mathbb{P}^r$ be a smooth curve of degree d and genus g, and consider the exact sequence of sheaves

$$0 \to \mathcal{I}_{C/\mathbb{P}^r}(m) \to \mathcal{O}_{\mathbb{P}^r}(m) \to \mathcal{O}_C(m) \to 0$$

and the corresponding exact sequence

$$H^0(\mathcal{O}_{\mathbb{P}^r}(m)) \xrightarrow{\rho_m} H^0(\mathcal{O}_C(m)) \to H^1(\mathcal{I}_{C/\mathbb{P}^r}(m)) \to 0.$$

The *Hilbert function* $h_C(m)$ of C is defined in terms of the homogeneous coordinate ring R_C of C by

$$h_C(m) = \dim_{\mathbb{C}}(R_C)_m = \operatorname{rank} \rho_m,$$

where $(R_C)_m$ is the degree m component of the homogeneous coordinate ring of C in \mathbb{P}^n .

By Theorem 2.1 we have $H^1(\mathcal{I}_{C/\mathbb{P}^r}(m)) = 0$ for large m so, for large m, $h_C(m) = h^0(\mathcal{O}_C(m))$. Using Theorem 2.1 again, we see that, for large m,

$$h^0(\mathcal{O}_C(m)) = \chi(\mathcal{O}_C(m)).$$

Finally, by the Riemann-Roch theorem,

$$\chi(\mathcal{O}_C(m)) = dm - g + 1,$$

so, for large m, the Hilbert function $h_C(m) = dm - g + 1$ is in agreement with the Hilbert polynomial $p_C(m) := \chi(\mathcal{O}_C(m))$.

More generally, we define the *arithmetic genus*:

Definition 2.21. If $C \subset \mathbb{P}^n$ is a 1-dimensional projective scheme with Hilbert polynomial $p_C(m) = \chi(\mathcal{O}_C(m))$, the *arithmetic genus* of $p_a(C)$ is $1 - \chi(\mathcal{O}_C) = 1 - p_C(0)$. If C is reduced and irreducible, then the *geometric genus* g(C) is the genus of the normalization of C.

We see from the Riemann–Roch theorem that if C is smooth and connected, then $p_a(C) = g(C) = h^0(\omega_C)$, the genus of C. We will see that for reduced and irreducible curves $p_a(C) \geq g(C)$, with equality only when C is smooth. For some examples with curves that are not reduced and irreducible, see Exercise 2-8.

The Riemann–Roch theorem and Serre duality have extensions to arbitrary coherent sheaves in place of invertible sheaves and to singular curves, which we will explain in Chapter 16.

Divisors D for which $h^0(K_C - D) > 0$ are called *special divisors*. The existence or nonexistence of divisors D with given $h^0(D)$ and $h^1(D)$ often serves to distinguish one curve from another, and will be an important part of our study.

Residues. The Riemann–Roch theorem is so central to the study of curves that it is worth understanding from another point of view. We remarked at the beginning of Chapter 1 that a smooth projective curve over $\mathbb C$ is the same thing as a compact Riemann surface. We will briefly adopt the complex analytic viewpoint, and give an explanation of a special case of Theorem 2.16.

If $D = \sum a_i p_i$ is an effective divisor on a compact Riemann surface X then we write L(D) for the vector space of meromorphic functions on X with poles of order at most a_i at p_i .

Theorem 2.22. Let X be a compact Riemann surface of genus g, and let D be an effective divisor of degree d on X. Suppose that K-D is also effective for some canonical divisor K. The dimension of L(D) is $d-g+1+\dim_{\mathbb{C}}L(K-D)$.

Because meromorphic functions on a Riemann surface are rational functions on the corresponding algebraic curve, and $L(D) = H^0(\mathcal{O}_C(D))$, the assertion is equivalent to Theorem 2.16.

Proof. Recall that the *residue* of a meromorphic 1-form ϕ at a point p on X is defined by an integral: choose a disc $\Delta \subset X$ containing p and in which ϕ is holomorphic except for its pole at p. The residue $\mathrm{Res}_p(\phi)$ is $\frac{1}{2\pi i}$ times the integral of ϕ along the boundary of Δ . If z is a local coordinate on Δ zero at p and we write the differential ϕ as

$$\phi = \sum_{i=-n}^{\infty} a_i z^i \, dz$$

then by Cauchy's formula, the residue of ϕ at p is the coefficient a_{-1} .

ndexed

Proposition 2.23. If ϕ is a meromorphic differential on a compact Riemann surface X, then the sum of the residues of ϕ at all the poles of ϕ is 0.

Proof. Apply Stokes' theorem to the complement of the union of small discs indexed around each of the poles of ϕ .

Let $D = \sum a_i p_i$ be an effective divisor on X, and set $d = \sum a_i = \deg D$. Locally, a function with a pole of order at most n at p may be written in terms of a local coordinate z at p as $\sum_{i=-n}^{\infty} a_i z^i$; the sum $\sum_{i=-n}^{-1} a_i z^i$ is called its *polar part*. By the maximum principle, a meromorphic function in L(D) is determined, up to the addition of a constant, by its polar parts at the points p_i . Thus we have $\dim L(D) \leq d+1$.

When is a given collection $c_1, \ldots, c_d \in \mathbb{C}[z^{-1}]$ the polar parts of a global meromorphic function f on X? A necessary condition is that if $\phi \in L(K)$ is a holomorphic differential on X, then

$$\sum \operatorname{Res}_{p_i}(f \cdot \phi) = 0.$$

This gives g linear relations on the c_i . However, if ϕ is a holomorphic differential vanishing at all the points p_i then the corresponding relation is trivial. Thus the number of linearly independent relations on the polar parts of f is actually $g - \dim L(K - D)$; and we arrive at an inequality

$$\dim L(D) \le d + 1 - g + \dim L(K - D).$$

This is a priori only an inequality. But we can apply the same logic to an effective divisor K-D, and we see that

$$\dim L(K - D) \le \deg(K - D) + 1 - g + L(K - (K - D))$$

$$= 2g - 2 - d + 1 - g + L(D)$$

$$= g - d - 1 + L(D).$$

Adding the two inequalities we have

$$L(D) + L(K - D) < L(D) + L(K - D).$$

Since the sum of the inequalities is an equality, we conclude that each inequality is also an equality; this is the Riemann–Roch formula in our special case.

Arithmetic genus and geometric genus. Throughout this book, we will be primarily concerned with the geometry of smooth curves. Of course singular curves will arise — for example, as images of smooth curves under morphisms that are not embeddings. At least when C is a 1-dimensional variety (that is, a reduced irreducible 1-dimensional scheme) we can regard C as the image of a smooth curve in an optimal way:

_

Proposition 2.24. If C_0 is a projective variety of dimension 1 then the normalization $\nu: C \to C_0$ of C_0 is a birational morphism from a smooth curve C. The curve C is again projective, and the pair (C, ν) is unique up to isomorphism. In particular, every birational map of smooth curves is an isomorphism.

Proof. We use the result that the normalization (= integral closure) of a domain finitely generated over a field is again finitely generated, and nonsingular in codimension 1 [?, Theorem 4.14 and 11.5]. Thus, starting with a projective embedding of C we normalize the homogeneous coordinate ring of C. The resulting ring may have generators in many degrees, but a suitable Veronese subring will be generated in a single degree, and thus is the homogeneous coordinate ring of a smooth projective curve.

Localization commutes with normalization, and any map from a normal ring to a domain factors uniquely through any normalization. Therefore the normalization constructed above is independent of the choices. \Box

A different procedure for finding a smooth curve birational to a given curve is explained in Exercises 2-13 to 2-15.

Still assuming that C_0 is reduced and irreducible, we can relate the arithmetic and geometric genera of C_0 using the map of sheaves

$$\mathcal{O}_{C_0} \to \nu_* \mathcal{O}_C$$
.

Since the normalization map of rings is injective and finite, this map is injective. The cokernel \mathcal{F} is a coherent sheaf supported on the singular points of C_0 , and is thus finite over \mathbb{C} . The definition implies that there is a short exact sequence

$$0 \to \mathcal{O}_{C_0} \to \nu_* \mathcal{O}_C \to \mathcal{F} \to 0.$$

Proposition 2.25. Suppose that C_0 is a reduced, irreducible curve and let $\nu: C \to C_0$ be its normalization. Let $\mathcal{F} = \nu_* \mathcal{O}_C/\mathcal{O}_{C_0}$. If we set $\delta(C_0) := h^0(\mathcal{F})$, then

$$p_a(C_0) - g(C) = \delta(C_0)$$

Proof. Since the normalization map $\nu: C \to C_0$ is finite, the direct images $R^i \nu_* \mathcal{O}_C$ vanish for i > 0, so the Leray spectral sequence (see 2.26 just below) computes $\chi(\nu_* \mathcal{O}_C) = \chi(\mathcal{O}_C)$. Thus

$$p_a(C_0) - g(C) = \chi(\mathcal{O}_C) - \chi(\mathcal{O}_{C_0}) = \chi(\mathcal{F}) = h^0(\mathcal{F})$$

since the support of \mathcal{F} is finite.

The operation of normalization localizes, so we can understand \mathcal{F} by looking at it locally. Writing R for the affine ring of some affine subset $U \subset C_0$ we see that $\mathcal{O}_C|_U$ is the integral closure \bar{R} of R, so $\mathcal{F}|_U$ is \bar{R}/R . Thus the annihilator

of $\mathcal{F}|_U$, called the *conductor* $\mathfrak{f}_{\overline{R}/R}$, is an ideal of both \overline{R} and R, and correspondingly $\nu^{-1}(\mathfrak{f}_{C/C_n})$ is also an ideal sheaf in \mathcal{O}_C .

Informally, we may say that $\delta(C_0)$ is the number of linear conditions a locally defined function f on C has to satisfy to be the pullback of a function from C_0 . The length of the stalk of \mathcal{F} at a particular singular point $p \in C_0$ is called the δ -invariant δ_p of the singularity. Thus

$$p_a(C_0) - g(C) = \sum_{p \in (C_0)_{\text{sing}}} \delta_p.$$

Cheerful Fact 2.26. In general, the Leray spectral sequence addresses the situation of a morphism $f: X \to Y$ of varieties or schemes, and a coherent sheaf \mathcal{G} on the source X; it says in this circumstance that there is a spectral sequence

 $H^p(R^q f_*(\mathcal{G})) \Longrightarrow H^{p+q}(\mathcal{G}).$

(This is a special case of the spectral sequence for the derived functors of a composite functor (H^0 composed with f_*); see [?, II.4.17.1] or [?, Section III.7] for proofs.)

In the simplest cases the δ invariant is easy to compute:

- (1) A *node* of a curve C_0 is a point p such that an analytic neighborhood of p in C_0 consists of two smooth arcs intersecting transversely at p (See Figure 2.4, left.) Equivalently, the completion of the local ring $\mathcal{O}_{C_0,p}$ is isomorphic to k[[x, y]]/(xy). If $p \in C_0$ is a node, its preimage in the normalization Cof C_0 consists of two points $r, s \in C$. The condition for a function f on Cto descend to C_0 — that is, to be the pullback of a function on C_0 — is that f(r) = f(s); this is one linear condition, so $\delta_p = 1$.
- (2) A cusp (strictly speaking, an ordinary cusp) of a curve C_0 is a point p such that an analytic neighborhood of p in C_0 is given by the equation $y^2 = x^3$. (See Figure 2.4, second from left.) If $p \in C_0$ is an ordinary cusp then its preimage in the normalization C of C_0 will consist of one point $r \in C$. The condition for a function f on C is that the derivative f'(r) = 0; again, this is one linear condition, so $\delta_p = 1$.

We will give more examples at the end of Chapter 15.

2D. The canonical morphism

We now return to the world of smooth curves.

The canonical sheaf on \mathbb{P}^1 has negative degree, so $|K_{\mathbb{P}^1}| = \emptyset$. If C is a curve of genus 1 then the canonical sheaf has a nonzero global section, and since the sheaf has degree 2g - 2 = 0 this is nowhere vanishing, whence $\omega_C = \mathcal{O}_C$,

Figure 2.4. Simple planar curve singularities.

and $K_C = 0$. Thus in studying the canonical series we restrict our attention to curves C of genus $g \ge 2$.

Theorem 2.27. Let C be a smooth curve of genus ≥ 2 .

- (1) $|K_C|$ is basepoint free.
- (2) $|K_C|$ is very ample if and only if C admits no map of degree 2 to \mathbb{P}^1 .

A curve of genus ≥ 2 is said to be *hyperelliptic* if there exists a morphism indexed $f: C \to \mathbb{P}^1$ of degree 2. It is easy to describe this in terms of linear series:

Lemma 2.28. Let C be a smooth, projective curve of genus $g \geq 2$. If C has an invertible sheaf \mathcal{L} of degree ≤ 2 with two independent sections, then \mathcal{L} has degree 2 and $|\mathcal{L}|$ defines a morphism of degree 2 to \mathbb{P}^1 , so C is hyperelliptic. In particular, if g(C) = 2 then the canonical series $|K_C|$ defines a 2-to-1 morphism to \mathbb{P}^1 , so C is hyperelliptic.

Proof. Since $C \not\cong \mathbb{P}^1$, Theorem 1.7 shows that C cannot have a 1-dimensional linear series of degree < 2. Thus \mathcal{L} has degree exactly 2, and no basepoints, so it defines a morphism of degree 2 to \mathbb{P}^1 as claimed.

Proof of Theorem 2.27. A point p is a basepoint of $|K_C|$ if and only if

$$h^0(K_C - p) = h^0(K_C) = g.$$

By the Riemann–Roch theorem, this is equivalent to $h^0(p) = 2$, which would imply that $C \cong \mathbb{P}^1$ by Theorem 1.7. Thus K_C has no basepoints.

By Proposition 1.11 we must show that for any two points $p, q \in C$ we have

$$h^0(K_C(-p-q)) = h^0(K_C) - 2 = g - 2.$$

Applying the Riemann–Roch theorem we see that this fails if and only if $h^0(\mathcal{O}_C(p+q)) \ge 2$ for some $p,q \in C$. By Lemma 2.28, this implies that C is

hyperelliptic. Conversely, if C is hyperelliptic then for some divisor D = p + q we have $h^0(D) = 2$, whence $h^0(K - p - q) = h^0(K) - 1$ by the Riemann–Roch formula.

The image of the canonical morphism of a nonhyperelliptic curve of genus g > 2 is called a *canonical curve*, and (for a nonhyperelliptic curve) we speak of the image as being *canonically embedded*.

ndexed

indexed

Geometric Riemann–Roch. There is a useful way of expressing the Riemann–Roch formula in terms of the geometry of the canonical map. Suppose $C \subset \mathbb{P}^r$ is a smooth curve and D an effective divisor on C, thought of as a subscheme of C. We define the $\operatorname{span} \overline{D}$ of D to be the intersection of the hyperplanes $H \subset \mathbb{P}^r$ containing D. More generally, if $\phi: C \to \mathbb{P}^r$ is a map and D an effective divisor on C, we define the span $\overline{\phi(D)} \subset \mathbb{P}^r$ to be the intersection

$$\overline{\phi(D)} := \bigcap_{\substack{H \subset \mathbb{P}^r \text{ a hyperplane} \\ D \subset \phi^{-1}(H)}} H.$$

Now suppose C is a smooth curve of genus $g \ge 2$ and $\phi_K : C \to \mathbb{P}^{g-1}$ is the canonical morphism. If D is an effective divisor on C of degree d, then since the hyperplanes in \mathbb{P}^{g-1} containing $\phi_K(D)$ correspond (up to scalars) to sections of K_C vanishing on D, we see that

$$h^0(K_C-D)=\operatorname{codim}\overline{\phi_K(D)}\subset \mathbb{P}^{g-1}=g-1-\dim\overline{\phi_K(D)}.$$

Applying the Riemann–Roch theorem we obtain the *geometric Riemann–Roch theorem*:

Corollary 2.29. If D is a divisor on a smooth curve C of genus ≥ 2 then

$$r(D) = d - 1 - \dim \overline{\phi_K(D)}.$$

In particular, if $D = \sum_{i=1}^{d} p_i$ is a sum of distinct points, then the dimension of the linear series |D| is equal to the number of linear relations among the images of the p_i on the canonical image of C. Thus, for example, a divisor given as the sum D = p + q + r of three points will move in a pencil if and only if the three points are collinear on the canonical model.

In general, the condition that a form of degree d vanishes at a given point p in \mathbb{P}^r is expressed by one homogeneous linear equation on the coefficients of the form, obtained by evaluating the variables at the coordinates of p. Thus the condition of vanishing on a set Γ of γ points is given by γ linear equations and the same is true when Γ is a finite subscheme of length γ , as one sees from the exact sequence

$$0 \to H^0(\mathcal{I}_\Gamma(d)) \to H^0(\mathcal{O}_{\mathbb{P}^r}(d)) \xrightarrow{ev} H^0(\mathcal{O}_\Gamma(d)) \to 0,$$

bearing in mind that

$$H^0(\mathcal{O}_{\Gamma}(d)) \cong H^0(\mathcal{O}_{\Gamma}) \cong \mathbb{C}^{\gamma}.$$

However, the linear equations may be dependent; that is, the map marked ev above may have rank $< \gamma$. We will say that the points of Γ *fail to impose independent conditions on hypersurfaces of degree d* by the amount equal to $\gamma - \text{rank}(ev)$.

With this terminology, the geometric Riemann–Roch theorem says that the dimension of the complete linear series |D| on a smooth curve C is the amount by which the points of D fail to impose independent conditions on canonical divisors, and the geometric version simply translates this into hyperplanes in the canonical embedding of C. The Cayley–Bacharach–Macaulay theorem 4.5 is a useful special case.

Remark 2.30. For a singular curve C_0 to have a canonical morphism it is necessary first of all that its canonical sheaf ω_{C_0} be invertible; when this is the case, we say that C_0 is (locally) Gorenstein, and then the theory above can be applied. See for example [?] and [?] for examples.

Linear series on a hyperelliptic curve. We can describe the canonical map of a hyperelliptic curve — and indeed all its special linear series — quite precisely:

Corollary 2.31. Let C be a smooth hyperelliptic curve of genus $g \geq 2$. The curve C admits a unique degree 2 morphism $\pi: C \to \mathbb{P}^1$, and the canonical map $\phi_K: C \to \mathbb{P}^{g-1}$ is the composition of π with the Veronese map of degree g-1 from \mathbb{P}^1 to the rational normal curve of degree g-1; in particular, every canonical divisor is a sum of g-1 fibers of π and vice versa.

Proof. If D is a general fiber of a degree 2 map $\pi: C \to \mathbb{P}^1$ so that D=p+q and r(D)=1, then by the Riemann–Roch theorem or its geometric version, D imposes only one condition on sections of K_C ; that is, $\phi_K(p)=\phi_K(q)$. Consequently the degree of the canonical morphism ϕ_K is at least 2, and the image is thus a nondegenerate curve in \mathbb{P}^{g-1} of degree $\leq (2g-2)/2=g-1$. By Theorem 1.7, the image of ϕ_K is the rational normal curve of degree g-1 and every fiber of ϕ_K is a divisor linearly equivalent to D. It follows that π is determined by K, so it is unique. Since every canonical divisor is the pullback of a hyperplane section of the rational normal curve, every canonical divisor is a sum of g-1 fibers of π .

We can use these ideas to analyze all special divisors.

Corollary 2.32. Let C be a smooth hyperelliptic curve with map $\pi: C \to \mathbb{P}^1$ of indexed degree 2. Every special divisor D of degree d on C is a sum of s fibers of π and d-2s points p_1, \ldots, p_{d-2s} with distinct images under the canonical map; and in

this case we have r(D) = s and the points p_i are base points of the linear series |D|. Thus no divisor on a hyperelliptic curve is both special and very ample.

Proof. Suppose that D contains the sum E of s fibers of π and no more; and write D = E + D', with $\deg D' = d - 2s$.

If $\phi_K: C \to \mathbb{P}^{g-1}$ is the canonical map, then $\phi_K(D')$ consists of d-2s distinct points, while $\phi_K(E)$ consists of s points. By Corollary 1.9 the span of $\phi_K(D)$ has dimension $\min\{g-1, d-s-1\}$, so $r(D) = d-1-\min\{g-1, d-s-1\} = \max\{s, d-g\}$. Since D is a special divisor, r(D) > d-g, so r(D) = s. Since r(E) = s, we see that E is basepoint free, so D' is the base locus of D.

2E. Clifford's theorem

While the Riemann–Roch theorem gives a lower bound for the dimension of a linear series, $r(\mathcal{L}) := h^0(\mathcal{L}) - 1 \ge \deg \mathcal{L} - g$, Clifford's theorem gives an upper bound. If $\deg \mathcal{L} > 2g - 2$, then the Riemann–Roch inequality becomes an equality, so it is enough to treat the case $\deg \mathcal{L} \le 2g - 2$. The bound is actually a corollary of the Riemann–Roch theorem.

Corollary 2.33. Let C be a curve of genus g and \mathcal{L} a line bundle of degree $d \le 2g - 2$. Then

$$r(\mathcal{L}) \leq \frac{d}{2}$$
.

Proof. If \mathcal{L} is nonspecial then, since $g \ge d/2+1$, we have $r(\mathcal{L}) = d-g+1 \le d/2$. Otherwise we have

$$r(K_C \otimes \mathcal{L}^{-1}) = r(\mathcal{L}) + g - d - 1$$

by the Riemann-Roch theorem, and so by Proposition 1.10

$$g=r(K_C)+1\geq r(\mathcal{L})+r(K_C\otimes\mathcal{L}^{-1})+1=2r(\mathcal{L})+g-d;$$
 hence $r(\mathcal{L})\leq d/2.$

The usual statement of Clifford's theorem includes a description of when equality can occur:

Theorem 2.34. Let C be a curve of genus g and \mathcal{L} a line bundle of degree $d \le 2g - 2$. If

$$r(\mathcal{L}) = \frac{d}{2},$$

the largest possible value, then either

- (1) d = 0 and $\mathcal{L} = \mathcal{O}_C$;
- (2) d = 2g 2 and $\mathcal{L} = K_C$; or
- (3) *C* is hyperelliptic, and $|\mathcal{L}|$ is a multiple of the g_2^1 on *C*.

Figure 2.5. The result, D', of moving D infinitesimally along a normal vector field meets D twice.

From Corollary 2.31 and Corollary 2.29 we see that the equality does indeed hold in each of the cases enumerated. See Corollary 10.13 for the converse and [?, IV.5.4] for a different proof.

2F. Curves on surfaces

We will often analyze curves on a smooth surface. Compared to the theory of linear series on curves, there is a new element: the intersection pairing. We refer to [?, Chapter V] and [?, Chapter I] for proofs of the unproven statements in this section. We suppose for this section that S is a smooth projective surface, and write Pic(S) for the group of invertible sheaves on S.

The intersection pairing. When two codimension-1 subschemes D, E on S meet transversely we define $D \cdot E$ to be the number of points in which they meet. It is less obvious how one might define an intersection number $D \cdot E$ in more general cases, including the case D = E. However a codimension-1 subvariety of S has a fundamental class in $H^2(X, \mathbb{Z})$, and the product just defined agrees with the cup product pairing

$$H^2(S,\mathbb{Z})\times H^2(S,\mathbb{Z})\to H^4(S,\mathbb{Z})\cong \mathbb{Z},$$

showing that it is possible. For example, the self-intersection $D \cdot D$ can be realized geometrically by choosing a normal vector field σ on D and using it to push a copy D' of D infinitesimally away from D; then one can count the points where σ vanishes (see Figure 2.5. Here one must take orientations into account, and the result is that $D \cdot D$ may be negative. In the previous case (and when σ is complex analytic) the multiplicities are all positive because a complex subvariety is canonically oriented using the orientation of $\mathbb C$ itself.

This pairing can be realized algebraically as follows:

First, if D and E have no common components, then the *intersection multiplicity* $m_S(D, E, p)$ at $p \in S$ is defined as the vector space dimension of the local ring $\mathcal{O}_{S,p}/(\mathcal{I}_{D,p} + \mathcal{I}_{E,p})$, and

$$D \cdot E = \sum_{p} m_{S}(D, E, p).$$

Quite generally, the intersection product can be computed using the (algebraic) Euler characteristic. This works even for Cartier divisors on a singular surface: Setting $\mathcal{L}:=\mathcal{O}_S(D)$ and $\mathcal{M}:=\mathcal{O}_S(E)$ to simplify the notation, we have

indexed

$$D \cdot E = \chi(\mathcal{O}_S) - \chi(\mathcal{L}^{-1}) - \chi(\mathcal{M}^{-1}) + \chi(\mathcal{L}^{-1} \otimes \mathcal{M}^{-1}).$$

Theorem 2.35. The pairing $(D, E) \mapsto (D \cdot E)$ is the unique bilinear map $Pic(S) \times Pic(S) \to \mathbb{Z}$ extending the case of intersections of two curves meeting transversely at smooth points of S.

An important special case is that of the self-intersection $D \cdot D = D^2$. The general formula reduces immediately to the case of an effective divisor, and in that case it resembles the C^{∞} construction above:

Corollary 2.36. If D is a codimension 1 subscheme of S, then the self-intersection $D \cdot D$ is the degree of the normal bundle $\mathcal{N}_{D/S} := \mathcal{O}_D(D)$.

Proof. Substituting $\mathcal{O}_S(-D)$ for both \mathcal{L}^{-1} and \mathcal{M}^{-1} we have the exact sequences

$$0 \to \mathcal{O}_S(-D) \to \mathcal{O}_S \to \mathcal{O}_D \to 0$$
$$0 \to \mathcal{O}_S(-2D) \to \mathcal{O}_S(-D) \to \mathcal{O}_D(-D) \to 0;$$

the Riemann-Roch theorem then gives

$$\begin{split} \chi(\mathcal{O}_S) - \chi(\mathcal{O}_S(-D)) &= \chi(\mathcal{O}_D) = -p_a(D) + 1, \\ \chi(\mathcal{O}_S(-D)) - \chi(\mathcal{O}_S(-2D)) &= \chi(\mathcal{O}_D(-D)) = -\deg \mathcal{O}_D(D) - p_a(D) + 1. \end{split}$$

Subtracting the second of these equations from the first we see that $D \cdot D = \deg \mathcal{O}_D(D)$.

Using the intersection pairing we can turn the adjunction formula of Proposition 2.8 into a numerical formula:

Theorem 2.37 (adjunction formula). If C is a Cartier divisor on a smooth surface S then

$$p_a(C) = \frac{(K_X + C) \cdot C}{2} + 1.$$

The Riemann–Roch theorem for smooth surfaces. Often we wish to compute the dimension of the space of sections of an invertible sheaf, but as with the case of curves, the Euler characteristic is more accessible:

Theorem 2.38 (Riemann–Roch for surfaces). Let \mathcal{L} be an invertible sheaf on a smooth surface S. The Euler characteristic $\chi(D) := h^0(\mathcal{L}) - h^1(\mathcal{L}) + h^2(\mathcal{L})$, where $\mathcal{L} = \mathcal{O}_S(D)$, is given by

$$\chi(D) = \chi(\mathcal{O}_S) + \frac{(D-K_S) \cdot D}{2} + 1.$$

Blowups of smooth surfaces. It is useful to know what happens under mappings of surfaces, particularly the case of the mapping corresponding to blowing up a point.

Theorem 2.39. If $\pi: X \to Y$ is a birational map of smooth surfaces, then the pullback map on divisors preserves the intersection pairing. If X is the blowup of Y at a point p with exceptional divisor $E = \pi^{-1}(p)$, then:

- (1) $\operatorname{Pic} X = \pi^*(\operatorname{Pic} Y) \oplus \mathbb{Z} E$.
- (2) The canonical class on X is given by $K_X = \pi^*(K_Y) + E$.
- (3) The intersection pairing on Pic X is given by:
 - $\pi^*(D) \cdot \pi^*(D') = D \cdot D'$ for all $D, D' \in Pic Y$.
 - $\pi^*(D) \cdot E = 0$ for all $D \in \text{Pic } Y$.
 - $E \cdot E = -1$.
 - $K_X \cdot E = -1$.
 - If C is a curve that has an m-fold point at p then $\pi^{-1}(C)$ contains E with multiplicity m, so that the proper transform \tilde{C} that is, the closure in X of the preimage of $C \setminus \{p\}$ has class

$$\tilde{C} \sim \pi^* C - mE$$
.

Using these facts, we can compare the adjunction formula applied to a curve C on a smooth surface S to the formula applied to the proper transform $\tilde{C} \subset \tilde{S}$: we have

$$\tilde{C} \cdot \tilde{C} = C \cdot C - m^2$$
 and $\tilde{C} \cdot K_{\tilde{S}} = C \cdot K_S + m$.

Combining these, we arrive at the formula

$$p_a(\tilde{C}) = p_a(C) - \binom{m}{2},$$

and thus the δ -invariant of $p \in C$ is $\binom{m}{2}$ plus the sum of the δ -invariants of all the points of \tilde{C} in the preimage of p. One can resolve the curve singularity by repeatedly blowing up in this way and thus compute the δ -invariant of any singularity as a sum of binomial coefficients.

In the special case where \tilde{C} is smooth — for example, if the point $p \in C$ is an *ordinary m-fold point*, consisting of m smooth branches with distinct tangent lines — we conclude that the δ -invariant of the point p is $\binom{m}{2}$.

Blowups occur frequently in the theory of surfaces, and are characterized by *Castelnuovo's theorem* [?, Theorem V.5.7].

Theorem 2.40. If $E \subset X$ is a curve on a smooth projective surface X and that $E^2 = E \cdot K_X = -1$ then E can be "blown down" in the sense that X is the blowup of a smooth surface Y at a point $p \in Y$, and E is the exceptional divisor.

2G. Quadrics in \mathbb{P}^3 and the curves they contain

We will frequently be interested in curves on a quadric surface in \mathbb{P}^3 , and we can describe these curves and their intersections very concretely.

The classification of quadrics. The form defining a quadric $Q \subset \mathbb{P}^3$ can be written in suitable coordinates x_i as

$$q = \sum_{i=0}^{3} x_i^2,$$

where $r \le 4$ is the *rank* of Q. (The corresponding statement is also true in \mathbb{P}^r , with $m \le r + 1$.) Equivalently, this is the rank of the symmetric matrix M representing the bilinear form $\frac{1}{2}(q(x+y)-q(y)-q(y))$.

- (1) A quadric of rank 1 is a double plane.
- (2) A quadric of rank 2 is the union of two distinct planes.
- (3) A quadric Q of rank 3 is a cone over a smooth plane conic. The cone point is called the vertex. Every line on such a quadric passes through the vertex. The Picard group of Q is \mathbb{Z} [?, Exercise II.6.5].

indexed

(4) A quadric Q of rank 4 is smooth and is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3$, embedded by the Segre embedding. Every line on such a quadric has the form $\mathbb{P}^1 \times \{p\}$ or $\{p\} \times \mathbb{P}^1$; the two families of such lines are called *rulings*. In the Picard group of Q is $\mathbb{Z} \times \mathbb{Z}$, generated by the lines of the rulings. [?, Example II.6.1].

(5) Quadrics in \mathbb{P}^r : Inside the space $\mathbb{P}(\mathcal{O}_{\mathbb{P}^r}(2)) = \mathbb{P}^{\binom{r+2}{2}-1}$ the space of singular quadrics is a hypersurface of degree r+1, called the *discriminant*, which is defined by the determinant of a generic symmetric $(r+1) \times (r+1)$ matrix M. More generally, the rank k locus is defined by the $(k+1) \times (k+1)$ minors of M.

It follows that an irreducible nondegenerate curve cannot be contained in a quadric of rank 1 or 2.

Some classes of curves on quadrics.

Example 2.41. Let C be a reduced curve on a quadric Q of rank 3 in \mathbb{P}^3 . If C has even degree 2m then C is a complete intersection of the quadric with a hypersurface of degree m. Therefore if the curve is smooth it cannot contain the vertex of the quadric. The genus of C is $(m-1)^2$.

If C has odd degree 2m + 1, then the union of C with a line on the quadric has even degree, so if L_1, L_2 are lines on the quadric, then

$$C \cup L_1 = Q \cap F_1$$
 and $C \cup L_2 = Q \cap F_2$

are complete intersections of Q with forms of degree m+1, and the homogeneous ideal of C is generated by the equations of Q, F_1 and F_2 . The genus of C is m(m-1). The curve C contains the vertex, and is a Weil divisor, not a Cartier divisor. These things follow from the description of the desingularization of Q in Corollary 17.25.

Example 2.42. If C is a reduced curve on a quadric Q of rank 4, then in terms of the isomorphism $Q \cong \mathbb{P}^1 \times \mathbb{P}^1$ we can express the divisor class of C as $(a,b) \in \operatorname{Pic}(Q) = \mathbb{Z} \oplus \mathbb{Z}$. The intersection form on Q is determined by the fact that the lines of a ruling are all linearly equivalent, so that $(1,0)^2 = (0,1)^2 = 0$ and $(1,0) \cdot (0,1) = 1$; thus $(a,b) \cdot (d,e) = ae + bd$. The hyperplane section has class (1,1), and the canonical class is $(K_{\mathbb{P}^3} + Q)|_{Q} = (-2,-2)$ by the adjunction formula.

Thus if C has class (a, b) then the degree of C is a + b, while the genus of C is (a - 1)(b - 1). Note that if a = b, the curve is a complete intersection, and if b = a + 1 then the curve is residual to a line in a complete intersection of the quadric with a surface of degree b. In these cases we get the same genus and degree as we would for a curve on a rank 3 quadric.

The cohomology of $\mathcal{O}_Q(a,b)$ is determined by the Künneth formula (or the Leray spectral sequence) as

$$H^i(\mathcal{O}_Q(a,b)) = \bigoplus_{i=s+t} H^s(\mathcal{O}_{\mathbb{P}^1}(a)) \otimes H^t(\mathcal{O}_{\mathbb{P}^1}(b)).$$

The degrees of the generators of the homogeneous ideal of *C* can be determined from the exact sequence

$$0 \to \mathcal{I}_{Q/\mathbb{P}^3} \to \mathcal{I}_{C/\mathbb{P}^3} \to \mathcal{I}_{C/Q} \to 0.$$

Since $\mathcal{I}_{C/Q}(m) = (m-a, m-b)$ we see that, supposing $0 < a \le b$ and 1 < b there are no generators other than the equation q of Q having degree < b, and there are b-a+1 generators of degree exactly b; with q these are the minimal generators of the homogeneous ideal (Exercise 2-12).

2H. Exercises 53

2H. Exercises

Exercise 2-1. (1) The degree of a zero-dimensional subscheme $X \subset \mathbb{P}^r$ is by definition the value of the Hilbert polynomial of X, which is a constant. Show that this is the sum of the lengths of the components of X. (Hint: use the Serre–Grothendieck vanishing theorem.)

indexed

- (2) The degree of a projective subscheme $X \subset \mathbb{P}^r$ of dimension n is defined to be the degree of the 0-dimensional scheme that is the intersection of X with a general plane of degree r-n. Prove that this is the leading coefficient of the Hilbert polynomial, multiplied by n!. (Hint: compare the Hilbert polynomial of X with that of a hyperplane section of X.)
- (3) If $C \subset \mathbb{P}^r$ is a smooth curve of genus g and degree d, show that the Hilbert polynomial of C is $H_C(m) = dm g + 1$. (Hint: use the Riemann–Roch formula together with the Serre–Grothendieck vanishing theorem.)

Exercise 2-2. If $C \subset \mathbb{P}^r$ is a 1-dimensional variety with normalization $\phi : \widetilde{C} \to C$, and $X \subset \mathbb{P}^r$ is any subscheme that does not contain C we define the of intersection $\operatorname{mult}(C,X;p)$ at the point $p \in X \cap C$ to be the sum of the lengths of the finite scheme $\phi^{-1}(X)$ at the points of $\phi^{-1}(p)$.

- (1) Show that C is singular at p if and only if $\operatorname{mult}(C, X; p) \geq 2$ for all X containing p. Show further that if $H \subset \mathbb{P}^r$ is a hyperplane then $\deg C = \sum_{p \in C} \operatorname{mult}(C, H; p)$.
- (2) Show that the degree of the image of C under projection from p is the degree of C minus mult(C, H; p) for a general hyperplane H.

Hint: for the degree formula note that $\sum_{p \in C} \operatorname{mult}(C, H; p) p$ is the divisor associated to the morphism $\widetilde{C} \to \mathbb{P}^r$ with image C.

In the following series of exercises, we will work with the smooth projective curve birational to a possibly singular affine curve $C^{\circ} := V(f(x,y)) \subset \mathbb{A}^2$; this is the unique smooth projective curve containing the normalization of C° as a Zariski dense open subset.

indexed

Exercise 2-3. Let C be the smooth projective curve birational to the affine plane curve $C^{\circ} := V(y^3 + x^3 - 1)$, and let $\pi : C \to \mathbb{P}^1$ be the map given by the rational function x.

- (1) Show that the closure $\overline{C^{\circ}}$ of C° in \mathbb{P}^2 is smooth (i.e., $C = \overline{C^{\circ}}$).
- (2) Find the branch points and ramification points of π , and deduce that the genus of C is 1.
- (3) For any two points $p, q \in C$ find the complete linear series |p + q|. (Hint: let r be the third point of intersection of the line \overline{pq} with the closure of C° , and consider the pencil of lines through r.)

- (4) Find the unique map $\eta: C \to \mathbb{P}^1$ of degree 2 such that $\eta((1,0)) = \eta((0,1))$, and determine the ramification points of η .
- (5) Show that *C* is isomorphic to the smooth projective curve associated to the affine plane curve $y^2 + x^3 = 1$.

For the next three exercises, let C° be the affine plane curve given as the zero locus of $y^2 - x^6 + 1$, and let C be the corresponding smooth projective curve. The map $C^{\circ} \to \mathbb{A}^1$ given by the projection $(x, y) \mapsto x$ extends to a map $\pi: C \to \mathbb{P}^1$, expressing C as a 2-sheeted cover of \mathbb{P}^1 branched over the points $1, \zeta, \ldots, \zeta^5$, where ζ is any primitive sixth root of unity. In addition, let p and $q \in C$ be the two points lying over the point $\infty \in \mathbb{P}^1$.

Exercise 2-4. With C° and C as above show that the map $C^{\circ} \to \mathbb{A}^1$ given by the projection $(x, y) \mapsto x$ extends to a map $\pi : C \to \mathbb{P}^1$, expressing C as a 2-sheeted cover of \mathbb{P}^1 branched over the points $1, \zeta, \dots, \zeta^5$, where ζ is any primitive sixth root of unity. Show that there are two distinct points p and $q \in C$ lying over the point $\infty \in \mathbb{P}^1$, so that C is unramified over ∞ .

What is the genus of *C*?

Exercise 2-5. With *C* as in Exercise 2-4:

(1) Let r_{α} be the ramification point over ζ^{α} . Show that

$$p+q \sim 2r_{\alpha}$$
 and $\sum_{\alpha=0}^{5} r_{\alpha} \sim 3p + 3q$.

(2) Find the vector space $H^0(\mathcal{O}_C(D))$ where $D = r_0 + r_2 + r_4$, and find the (unique) divisor E on C such that $E + r_1 \sim r_0 + r_2 + r_4$.

Exercise 2-6. With C as in Exercise 2-4: Let D be the divisor $D = p + q + r_0 + r_3$

- (1) Find the vector space $H^0(\mathcal{O}_C(D))$.
- (2) Describe the map $\phi_{|D|}: C \to \mathbb{P}^2$.
- (3) Find the equation of the image curve $\phi_{|D|}(C) \subset \mathbb{P}^2$, and describe its singularities.

Hint: for the first part, find rational functions in x and y whose pullback to C has poles along $D = p + q + r_0 + r_3$ but nowhere else. For the last part, observe that the equation of the image corresponds to the kernel of the map $\operatorname{Sym}^{v} H^0(\mathcal{O}_{C}(D)) \to H^0(\mathcal{O}_{C}(4D))$.

Exercise 2-7. Let C be the smooth projective curve associated to the affine curve $y^3 = x^5 - 1$. The map $\pi : C \to \mathbb{P}^1$ given by the function x expresses C as a cyclic, 3-sheeted cover of \mathbb{P}^1 , branched over the fifth roots of unity and the point at ∞ . By way of notation, if we take $\eta = e^{2\pi i/5}$ a primitive fifth root of unity, we'll denote by r_α the point $(\eta^\alpha, 0) \in C$ lying over η^α , and by p the point lying over $\infty \in \mathbb{P}^1$.

2H. Exercises 55

(1) Verify that there is indeed a unique point $p \in C$ lying over $\infty \in \mathbb{P}^1$, and the map has ramification index 2 at p.

- (2) Show that the genus of *C* is 4.
- (3) Establish the linear equivalences

$$3p \sim 3r_{\alpha}$$
 and $r_1 + \cdots + r_5 \sim 5p$.

- (4) Find a basis for the space $H^0(K_C)$ of regular differentials on C.
- (5) Show that *C* is not hyperelliptic.
- (6) Describe the canonical map $\phi_K:C\to\mathbb{P}^3$ and find the equations of the image.
- (7) Let D be the divisor $D = r_1 + \cdots + r_5$. Show that $h^0(K_C(-D)) = 1$; deduce that r(D) = 2, and find a basis for $H^0(\mathcal{O}_C(D))$.
- (8) If E = 3p, show that r(E) = 1; that |E| is the unique g_3^1 on C and that $2E \sim K$.

Exercise 2-8. (1) Show that the arithmetic genus of the disjoint union of two lines is -1.

- (2) Let $L \subset Q \subset \mathbb{P}^3$ be a line on a smooth quadric surface in \mathbb{P}^3 . Show that the divisor 3L, regarded as a 1-dimensional scheme, has $p_a(3L) = -2$.
- (3) Compare these results with the result of simply applying the adjunction formula.

Exercise 2-9. Show that a curve of genus $g \ge 3$ cannot be simultaneously hyperelliptic and a three-sheeted cover of \mathbb{P}^1 . See Proposition 9.5 for a generalization.

Exercise 2-10. Show that normalization of the affine curve

$$C=V(xy(x-y))\subset \mathbb{A}^2$$

is the disjoint union of three affine lines (that is, $\operatorname{Spec}(\mathbb{C}[x] \times \mathbb{C}[y] \times \mathbb{C}[z]$). Compute the linear conditions on the values and derivatives of three polynomial functions f, g, h defined on these three lines that they "descend" to give a regular function on the planar triple point.

indexed

Exercise 2-11. Let $p \in C$ be a singular point of a reduced curve C. Show that if $\delta_p = 1$, then p must be either a node or an ordinary cusp. Hint: first show that there are at most two points in the normalization of C lying over p.

Exercise 2-12. Suppose that $C \subset Q \subset \mathbb{P}^3$ is a curve on a smooth quadric Q, and that C lies in the class (a, b) with $0 \le a \le b$.

- (1) Compute the generators of the homogeneous ideal of C in the case a = 0; and in the case (a, b) = (1, 1) not treated in Example 2.42.
- (2) Prove the assertion made at the end of Example 2.42 about the generation of the homogeneous ideal by forms of degrees 2 and *b*.

The following three exercises give a proof (in arbitrary characteristic) of resolution of singularities for curves; that is, every reduced curve is birational to a smooth curve.

Exercise 2-13. Let $C_0 \subset \mathbb{P}^2$ be an irreducible and reduced plane curve of degree d. Show that for large m, the m-th Veronese map $\mathbb{P}^2 \hookrightarrow \mathbb{P}^{\binom{m+2}{2}-1}$ embeds C_0 as a curve C of degree md spanning a linear space \mathbb{P}^N of dimension

$$N = md - \binom{d-1}{2}.$$

Hint: observe that the linear forms in $\mathbb{P}^{\binom{m+2}{2}-1}$ vanishing on the image of C_0 correspond to elements of the kernel of the map $H^0(\mathcal{O}_{\mathbb{P}^2}(m)) \to H^0(\mathcal{O}_C(m))$.

Exercise 2-14. We define the *multiplicity* $m_p(C)$ of a point $p \in C$ on a curve $C \subset \mathbb{P}^r$ to be the degree of the component of the intersection $H \cap C$, where $H \subset \mathbb{P}^r$ is a general hyperplane through p. (The Show that if the projection $\pi_p: C \to \mathbb{P}^{r-1}$ from p is birational onto its image, then the degree of the image curve $C_0 = \pi_p(C) \subset \mathbb{P}^{r-1}$ is $\deg C_0 = \deg C - m_p(C)$, and more generally if $\pi_p: C \to \mathbb{P}^{r-1}$ has degree k onto its image, then

$$\deg C_0 = \frac{\deg C - m_p(C)}{k}.$$

Note that the definition of multiplicity is trickier for varieties of dimension greater than 1; see [?].

Exercise 2-15. Returning to the situation of Exercise 2-13, suppose we take the curve $C \subset \mathbb{P}^N$ and project it from a singular point, then do the same to its image $C_1 \subset \mathbb{P}^{N-1}$ and continue in this fashion to produce a sequence of curves $C_n \subset \mathbb{P}^{N-n}$. Combining the last two exercises with the statement of Corollary 1.8, show that

- (1) all the projection maps are birational onto their images; and
- (2) for some n, the process terminates; that is, the image curve C_n is smooth.