

Transient Optimization for the Betterment of Turbine Electrified Energy Management

2023 AIAA SciTech Forum

Jonathan Kratz, Dennis Culley, Julian Lehan*

NASA Glenn Research Center

January 24th, 2023

*Intern from the University of Alabama

Background

- Challenge maintaining operability during engine power transients throughout a vast operating envelope
- Engine design and associated performance is constrained by operability requirements
 - Improving operability can enable better efficiency and/or reduced weight
- A related study demonstrated operability improvements by optimizing fuel flow transient limit logic
- Turbine Electrified Energy
 Management (TEEM) by leveraging an electrical power system

*Image Credit to NASA and the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA)

Background (cont.)

NASA

- Various applications of TEEM have been illustrated in literature
- The tendency is to:
 - Add power to the HPS during accelerations
 - Transfer power from the LPS to the HPS during decelerations
 - Alternatives: Extract power from the LPS or inject power to the HPS
 - Prior applications use proportional integral (PI) controllers that seek to control shaft speeds to keep them coordinated with the engine actuation (fuel flow rate)
- Activation/deactivation logic is present to determine when the engine is experiencing a transient

Background (cont.)

Hypotheses:

- Optimized fuel flow transient limit logic will reduce power system requirements for TEEM
- Optimization techniques can be employed to further improve the effectiveness of TEEM
- An open loop schedule-based TEEM control approach can be derived from optimization results and used in place of a close loop controller.

Prior Closed-Loop Logic with Activation

Simplified Scheduled Approach

Overview of Optimization Approach

- NASA
- A genetic algorithm is applied to identify the "optimal" EM power input profiles that maximizes operability as defined by the transient excursion integral (TEI)
- The fuel flow, w_f, profile is prescribed (leveraged from prior study)
- The inputs are the EM power inputs at various times during the transient, under some constraints
 - Acceleration only uses power input on the HPS
 - Deceleration uses either power transfer from the LPS to the HPS, power extraction from the LPS, or power injection to the HPS
 - Power level starts out high & remains there for some duration
 - The power level decreases monotonically to zero
- The fitness of each solution is judged based on the TEI
- An iterative root solving technique is leveraged to stretch/compress the fuel flow input profile to achieve the desired thrust response time
- Optimized results are used to derive a power schedule for implementing TEEM

Time

power profile $W_c = \text{corrected}$ flow rate

Data points

defining

EM Power

TSU = transient

PR = pressure

stack usage

Application - AGTF30 Engine

- Conceptual two-spool geared turbofan
- Produces ~30,000 lb_f of force at sea level static (SLS) conditions
- Envisioned for single-aisle applications
- Included advanced technologies
 - Compact core
 - Variable area fan nozzle
- MATLAB/Simulink® model developed with the Toolbox for Modeling & Analysis of Thermodynamic Systems (T-MATS)
- Includes a baseline controller with representative performance
- Includes engine health parameters

Advanced Geared Turbofan 30,000 lb_f (AGTF30)

Optimization Results – A Quick Comparison

Simulation Characteristics

- Sea Level Static
- Acceleration
- Baseline TEEM controller applied when TEEM is used

Conclusions

- Significant benefit with TEEM
- Significantly enhanced benefit with the optimized w_f profile
- Optimizing the w_f
 profile with and
 without TEEM has only
 a small impact

Option	TSU,	TEI, lb _m /s	Energy Usage,
	%		kW-hr
Baseline w _f , no TEEM	37.7	5.85	0
Baseline w _f , TEEM applied	23.5	3.14	0.42
Simplified w _f , no TEEM	37.9	5.98	0
Simplified w _f , TEEM applied	16.0	1.89	0.49
w _f optimized without TEEM, no TEEM	22.4	4.20	0
w _f optimized without TEEM, TEEM applied	3.1	0.28	0.67
w _f optimized with TEEM, TEEM applied	2.5	0.17	0.65

1/24/2023 Time, s AA SciTech Forum 7

Optimization Results - Trade Space Analysis - Acceleration

NASA

- Goal: Quantify the operability impact for various options to identify the trades between operability, thrust responsiveness, and power system requirements
- Conducted optimizations for a variety of conditions
 - Accelerations & decelerations
 - New and End of Life (EOL) engine
 - Baseline & Optimized w_f profile
 - Various EM power levels
 - Various thrust response times
 - Various EM usage scenarios for decelerations (power transfer vs. HPS injection vs. LPS extraction)
- Example of optimized profiles shown to the right →

Optimization Results - Trade Space Analysis - Acceleration

1/24/2023 2023 AIAA SciTech Forum

9

Optimization Results - Trade Space Analysis - Acceleration

- Impact tends to increase with decreasing thrust response time
- Effectiveness tends to dwindle as EM power increases

Optimization Results – Trade Space Analysis - Deceleration

- There is no need to increase the power transfer above 150hp
- A minimum TEI is achieved for a given thrust response time and shifts to higher power transfer values as the thrust response time decreases

Schedule-Based Control Results

- Derived a power schedule for each EM using the optimization data
- Leveraged optimized fuel flow transient limit schedules designed a priori

NASA

Schedule-Based Control Results

- Executed a series of burst and chop transients
- EOL engine assumed
- Optimized acceleration schedule utilized
- EM Limits: 150hp (LPS), 450hp (HPS)
- Power inputs are very similar

Schedule-Based Control Results

Conclusions

- A genetic algorithm has been applied to optimize power system sizing and usage for implementing TEEM. Demonstrated:
 - EM power can be reduced by 200-400 hp with optimized w_f transient limit logic
 - TEEM enables significant benefits of ~3-4% TSU per 100 hp of injection during accelerations and up to 3.5% TSU per 100 hp of transfer during decelerations
 - Results from such an analysis could guide power system sizing decisions
- The schedule-based control approach appears to result in near optimal performance with simpler implementation
 - Demonstrated similar performance to a closed loop approach with less complexity
- Potential directions for future work
 - Further exploration of the scheduled-based control approach for implementing TEEM in other applications

Acknowledgments

• Funded by the Transformational Tools & Technologies (TTT) project under the Aeronautics Research Mission Directorate (ARMD)

Questions/Discussion

Contact Information

Jonathan Kratz – jonathan.kratz@nasa.gov

EXTRA CHARTS

Objectives

- Apply optimization techniques to optimize the use of an electrical power system for improving *transient operability of an electrified turbofan
- Evaluate the optimized solutions against a baseline
- Explore the response time, operability, and electrical system requirement trade space
- Derive a schedule-based approach implementing the operability control from optimized results
- Compare the schedule-based approach to a prior proposed approach

^{*} Transient refers to and change in engine power/thrust demand associated with acceleration or deceleration of the engine shafts.

Contents and Organization

- Background
- Overview of the Optimization Approach
- Application for Illustrating the Approach
- Transient Optimization Results
- Schedule-Based Control Strategy Results
- Conclusions

1/24/2023

Optimization Results - Trade Space Analysis - Acceleration TSU of EOL Engine with Optimized w_f Input, % TSU of EOL Engine with Baseline w_f Input, %

20

Optimization Results – Trade Space Analysis - Acceleration

Optimization Results – Trade Space Analysis - Acceleration

Optimization Results – Trade Space Analysis - Acceleration

Optimization Results – Trade Space Analysis - Deceleration

- Based on power levels, order of effectiveness appears to be power transfer, power injection on the HPS, and power extraction on the LPS
- No reason to have an electric machine much larger than 150hp with power transfer

Optimization Results – Trade Space Analysis - Deceleration

Power transfer is able to achieve the same TEI as the HPS only and LPS only options with 75% and 33% of the power magnitude, respectively

1/24/2023 2023 AIAA SciTech Forum 25