ELTE IK Diszkrét modellek alkalmazásai 10. gyakorlat

Koch-Gömöri Richárd

2021. november 24.

Koch-Gömöri Richárd

ELTE IK Diszkrét modellek alkalmazásai

2021. november 24.

1/15

Eml: faktorizáció

Adja meg a 42 egész szám prímtényezős felbontását. (faktorizáció) $42 = 2 \cdot 3 \cdot 7$

$$150 = 2 \cdot 3 \cdot 5^2$$

ált. prímtényezős alak: $n=p_1^{a_1}\cdot p_2^{a_2}\cdot ...\cdot p_k^{a_k}$ a 150 esetében $k=3, p_1=2, a_1=1, p_2=3, a_2=1, p_3=5, a_3=2$

A számelmélet alaptétele miatt minden természetes számnak létezik prímtényezős felbontása.

Euler-féle φ -függvény

def (Euler-féle φ -függvény): $n \in \mathbb{N}$ esetén $\varphi(n)$ eredménye az n-nél kisebb, n-hez relatív prímek száma.

pl. $\varphi(8)$ kiszámításához:

$$1, 2, 3, 4, 5, 6, 7 \implies \varphi(8) = 4$$

tétel: Ha n > 1 természetes szám, és n prímtényezős felbontása

$$n = p_1^{a_1} \cdot p_2^{a_2} \cdot ... \cdot p_k^{a_k}$$
 akkor $\varphi(n) = n \cdot \prod_{j=1}^k \left(1 - \frac{1}{p_j}\right)$

pl. 8 prímtényezős felbontása: 2³

$$\varphi(8) = 8 \cdot \left(1 - \frac{1}{2}\right) = 8 \cdot \frac{1}{2} = 4$$

 $\implies \varphi(n)$ kiszámolásához n faktorizációja szükséges

Koch-Gömöri Richárd

ELTE IK Diszkrét modellek alkalmazásai

2021. november 24.

3 / 15

Euler-féle φ -függvény

 $\varphi(n)$ kiszámításához n faktorizációja (prímtényezős felbontása) szükséges

1 kivétel:

ha n prímszám ugyanis ekkor $\varphi(n) = n - 1$

pl. 53471161 prímszám, $\varphi(53471161) = 53471161 - 1 = 53471160$

tétel: Ha $a,b\in\mathbb{N}$ relatív prímek, akkor $arphi(a\cdot b)=arphi(a)\cdotarphi(b)$

$$n = p_1 \cdot p_2$$
 esetben $\varphi(n) = \varphi(p_1 \cdot p_2) = \varphi(p_1) \cdot \varphi(p_2) = (p_1 - 1) \cdot (p_2 - 1)$

Euler-féle φ -függvény

pl.
$$\varphi(35) = ?$$

 $35 = 5 \cdot 7$
 $\varphi(35) = \varphi(5 \cdot 7) = \varphi(5) \cdot \varphi(7) = 4 \cdot 6 = 24$

Koch-Gömöri Richárd

ELTE IK Diszkrét modellek alkalmazásai

2021. november 24.

5 / 15

bővített euklideszi algoritmus

Keressük meg Inko(2004, 56)-t

Inko(2004, 56) = 4

Ekkor a 4 felírható 2004 és 56 lineáris kombinációjaként azaz:

Létezik $U, V \in \mathbb{Z}$: $4 = 2004 \cdot U + 56 \cdot V$

bővített euklideszi algoritmussal: $U=-5,\,V=179$

Diofantikus egyenlet

def (Diofantikus egyenlet): Ismert a, b, c egész számok és x, y egész ismeretlenek esetén az ax + by = c egyenletet diofantikus egyenletnek nevezzük.

RSA-ban csak olyan diofantikus egyenletek megoldására van szükségünk, ahol $c=1\,$

Oldjuk meg például a 2x + 5y = 1 egyenletet.

 $lnko(2,5) = 1 \mid 1 \implies megoldható$

bővített euklideszi algoritmussal: Inko $(2,5)=1=-2\cdot 2+1\cdot 5$ tehát

$$U = -2, V = 1$$

ekkor a megoldás:

$$x = -b \cdot t + U$$
, $y = a \cdot t + V$, ahol $t \in \mathbb{Z}$ tetszőleges

a feladatban:

$$x = -5t - 2$$

$$y = 2t + 1$$

ahol $t \in \mathbb{Z}$ tetszőleges

Koch-Gömöri Richárd

ELTE IK Diszkrét modellek alkalmazásai

2021. november 24.

7 / 15

Diofantikus egyenlet

Oldjuk meg például a 2x + 5y = 1 egyenletet.

$$x = -5t - 2$$

$$y = 2t + 1$$

ahol $t \in \mathbb{Z}$ tetszőleges

pl. t = 1 esetén:

$$x = -5 \cdot 1 - 2 = -7$$

$$y=2\cdot 1+1=3$$

pl. t = 2 esetén:

$$x = -5 \cdot 2 - 2 = -12$$

$$y=2\cdot 2+1=5$$

nyilvános/aszimmetrikus kulcsú titkosítás

Koch-Gömöri Richárd

ELTE IK Diszkrét modellek alkalmazásai

2021. november 24.

9 / 15

RSA kulcsgenerálás

elő kell állítani alkalmas n, e, d értékeket

n, e nyilvánosságra hozható, d nem

 \implies d-t úgy kell generálni, hogy n,e ismeretében d-t nehéz legyen megkeresni

d generálásához újabb one-way function szükséges:

válasszunk p_1, p_2 prímszámokat

legyen $n := p_1 \cdot p_2$

 $n = p_1 \cdot p_2$ szorzat kiszámítása könnyű

ha n ismert, p_1, p_2 ismeretlen, akkor $n=p_1\cdot p_2$ prímtényezőkre bontás (faktorizálás) nehéz

a számelmélet alaptétele miatt a prímtényezős felbontás biztosan létezik, és ez a felbontás egyértelmű

Legyen $n \in \mathbb{N}$, $m \in \mathbb{Z}$, Inko(n, m) = 1. Ekkor $m^{\varphi(n)} \equiv 1 \pmod{n}$

pl.
$$n = 8, m = 5, Inko(8, 5) = 1$$

$$5^{\varphi(8)} \equiv 1 \pmod{8}$$

$$5^4 \equiv 1 \pmod{8}$$

$$625 \equiv 1 \pmod{8}$$
 igaz

Euler-tétel (mod nélküli írásmóddal): $m^{\varphi(n)}=1$ (n)

$$1^k = 1 \implies m^{k \cdot \varphi(n)} = 1 \ (n)$$

$$1 \cdot m = m \implies m^{k \cdot \varphi(n) + 1} = m \ (n)$$

korábban láttuk hogy $m = m^{e \cdot d}$ (n)

$$d$$
-t kifejezve: $d = \frac{k \cdot \varphi(n) + 1}{e}$ (n)

Koch-Gömöri Richárd

ELTE IK Diszkrét modellek alkalmazásai

2021. november 24.

11 / 15

RSA publikus kulcs, privát kulcs

$$d = \frac{k \cdot \varphi(n) + 1}{e} (n)$$

ha n prímtényezős alakja ismert, akkor $\varphi(n)$ -t könnyű kiszámolni, így d kiszámítása könnyű

a kulcsgeneráló $n=p_1\cdot p_2$ felbontásból könnyedén kiszámolja $\varphi(n)$ -t, azonban aki nem ismeri p_1, p_2 -t annak faktorizálnia kell(ene) n-t

(n, e) publikus kulcs (public key), d privát kulcs (private key) ez egy aszimmetrikus titkosítás (asymmetric public-private key cryptosystem), röviden nyilvános kulcsú titkosítás

(n,e) ismeretében bárki titkosíthat üzenetet, azt visszafejteni csak d ismeretében lehet

Alice: Legyen $p_1 := 61, p_2 := 53$

Alice: $n = p_1 \cdot p_2 = 61 \cdot 53 = 3233$

Alice: $\varphi(n) = \varphi(3233) = \varphi(61) \cdot \varphi(53) = 60 \cdot 52 = 3120$

Alice: válasszunk kicsi e-t, amire Inko(e, 3120) = 1

Alice: pl. e := 17 alkalmas

Alice: d-t előállító képlet: $d = \frac{k \cdot 3120 + 1}{17}$

Alice: rendezzük: $17 \cdot d - 3120 \cdot k = 1$

Alice: bővített euklideszi algoritmussal: k = 15, d = 2753

Alice: publikus kulcs: (3233, 17), privát kulcs: 2753

Koch-Gömöri Richárd

ELTE IK Diszkrét modellek alkalmazásai

2021. november 24.

13 / 15

példa

eml. titkosítás: $c = m^e \mod n$, visszafejtés: $c^d \mod n = m$

Alice: publikus kulcs: (3233, 17), privát kulcs: 2753

Alice nyilvánosságra hozza a publikus kulcsát: (3233, 17)

Bob: titkosítsuk az m = 65 üzenetet

Bob: titkosítás: $c = 65^{17} \mod 3233 = 2790$

Bob "2790" \Longrightarrow Alice

Alice: visszafejtés: $2790^{2753} \mod 3233 = 65$

RSA biztonság

a kulcsgeneráló $n=p_1\cdot p_2$ felbontásból könnyedén kiszámolja $\varphi(n)$ -t, azonban aki nem ismeri p_1,p_2 -t annak faktorizálnia kell(ene) n-t

RSA-2048

2017 őszi adat:

- RSA-2048 faktorizálásához
- a legjobb (ismert) algoritmussal:
- $2,5\cdot 10^{30}$ év szükséges
- $1,38\cdot 10^{10}$ év a világegyetem életkora