# Étale cohomology

by Prof. Dr. Jens Franke notes by Stefan Albrecht

University Bonn – winter term 2023/24

## **Contents**

| 1 | Mot | ivation and basic definitions | 2 |
|---|-----|-------------------------------|---|
|   | 1.1 | Introduction and motivation   | 2 |
|   | 1.2 | Flat morphisms                | 3 |

### 1 Motivation and basic definitions

#### 1.1 Introduction and motivation

Problem: For varieties X over an algebraically closed field k (and hopefully more general schemes) define a cohomology theory  $H^*(X)$  with properties similar to  $H^*_{\text{sing}}(X(\mathbb{C})_{\text{ord. top. space}})$ . Hopefully, there exists a Lefschitz fixed point formula

$$\#(\text{fixed points of }f\text{ with multiplicity}) = \sum_{i=0}^{2\dim X} (-1)^i \operatorname{Tr}(f^*|H^i(X)). \tag{L}$$

The aim of Grothendieck was to apply this to a program proposed by Weil of studying the congruence zeta function of X by applying (L) to  $f = F_X$  given by  $[x_0, \ldots, x_n] \mapsto [x_0^q, \ldots, x_n^q]$ , yielding

$$#X(\mathbb{F}_q) = \sum_{i=0}^{2 \dim X} (-1)^i \operatorname{Tr}(F_X^* | H^i(X)).$$

**Counterexamples**  $H^*_{dR}(X) = \mathbb{H}^*(X_{\operatorname{Zar}}, \mathcal{O}_X \to \Omega^1_X \to \cdots)$  (de Rham cohomology) is ok if the characteristic of k is zero but not in char p where it is unsuitable for Weil's program. Similarly,  $H^*(X_{\operatorname{Zar}}, \mathbb{Z})$  does not work:  $\underline{\mathbb{Z}}(X) \to \underline{\mathbb{Z}}(V)$  is surjective when X is irreducible, implying vanishing higher sheaf cohomology.

Restrictions on the ring of coefficients: If X is a supersingular elliptic curve over  $\overline{\mathbb{F}}_q$  then  $H^1(X)$  ought to be two-dimensional, but  $\operatorname{End}(X) \otimes \mathbb{Q}$  is a quaternion algebra over  $\mathbb{Q}$  which is non-split precisely over  $\mathbb{Q}_p$  and  $\mathbb{R}$ , in which case it cannot act on a two-dimensional vector space. This excludes  $\mathbb{Q}_p$  and  $\mathbb{R}$  as the field of definition and hence also  $\mathbb{Q}$  and  $\mathbb{Z}$ .

**Etale cohomology** with coefficients  $\mathbb{Z}/l^n\mathbb{Z}$ , l a prime invertible in k. Then

$$H^*(X, \mathbb{Q}_l) := (\underline{\lim} H^*(X_{\operatorname{\acute{e}t}}, \mathbb{Z}/l^n\mathbb{Z})) \otimes_{\mathbb{Z}_l} \mathbb{Q}_l.$$

Deligné used this to show the Riemann hypothesis for congurence zeta function.

Other theories include Crystilline cohomology with coefficients in  $W(\overline{F}_q)$ . Scholze has a way of working with  $\mathbb{Z}_p$  directly, using the pro-étale site, and a proposal to work with  $\mathbb{C}$  coefficients. But it is not clear how to do this.

Hence we will mostly study finite coefficients. If one works over  $\mathbb{C}$ , the exact exponential sequence  $0 \to 2\pi i \mathbb{Z} \to \mathcal{O}_X \to \mathcal{O}_X^{\times} \to 0$  is important. and we want at least the exactness of

$$0 \to \mu_{l^n} \to \mathcal{O}_X^{\times} \xrightarrow{f \mapsto f^{l^n}} \mathcal{O}_X^{\times} \to 0. \tag{*}$$

Note that  $\mu_{l^n}\cong \mathbb{Z}/l^n\mathbb{Z}$  non-canonically if  $k=\bar{k}$  and l is invertible in k. Unfortunately, but not unexpectedly, this is not exact on  $X_{\operatorname{Zar}}$ . If this were exact, one could hope to get some information from it provided that  $H^1(C,\mathcal{O}_C^\times)\cong \mathbb{Z}\times\operatorname{Jac}_C(k)$ . The idea of Grothendieck was to enforce the exactness of (\*) by considering  $V\to F(V)$  for étale morphisms  $V\to X$  instead of only Zariski open subsets. Then, when  $f\in\mathcal{O}_V^\times(V)$  one has an  $l^n$ -th root of f on  $U=\{(x,\varphi)\mid x\in V, \varphi^{l^n}=f(x)\}$ .

#### 1.2 Flat morphisms

**Definition 1.** M is a *flat* A-module if  $T \mapsto M \otimes_A T$  is exact or, equivalently, if  $\operatorname{Tor}_p^A(M,T) = 0$  for all T and p > 0. An A-algebra B is flat if it is flat as an A-module.

**Definition 2.** For a morphism  $f: X \to Y$  of schemes, f is called *flat* if it satisfies the following equivalent conditions:

- a) For all  $x \in X$ ,  $\mathcal{O}_{X,x}$  is a flat  $\mathcal{O}_{Y,f(x)}$ -algebra.
- b) For affine open subsets  $U \subseteq X, V \subseteq Y$  s.t.  $f(U) \subseteq V, \mathcal{O}_X(U)$  is flat as an  $\mathcal{O}_Y(V)$ -algebra.
- c) There are affine open subsets  $U_i \subseteq X, V_i \subseteq Y$  s.t.  $f(U_i) \subseteq V_i, \mathcal{O}_X(U_i)$  is a flat  $\mathcal{O}_Y(V_i)$ -algebra and  $X = \bigcup_{i \in I} U_i$ .

**Remark 1.** a) See stacksproject 01U2

b) Other literature: SGA1: Etale fundamental group, SGA41: Topoi, Grothendieck topology, SGA42: Etale topology, SGA43: Proper and smooth base change, SGA4½: various stuff and <u>Arcata</u> – Introduction to etale cohomology by Delinge, SGA5: *l*-adic cohomology Milne: Etale cohomology, Kiehl-Freitag: Etale cohomology and Weil conjectures Matsumura: Commutative Algebra, Matsumura: Commutative Ring Theory

Let A be a ring, X quasi-compact and separated Spec A-scheme and  $\mathcal{M}$  a quasi-coherent  $\mathcal{O}_X$ -module. Then  $H^*(X,\mathcal{M})$  can be calculated using  $\check{H}(\mathcal{U},-)$  for affine coverings. Hence, by the exactness of  $-\otimes_A \widetilde{A}$ , this gives

**Proposition 1.** a) Let  $\widetilde{A}$  be a flat A-algebra, then  $H^*(\widetilde{X}, \widetilde{M}) \cong H^*(X, M) \otimes_A \widetilde{A}$ , where  $\widetilde{X} = X \times_{\operatorname{Spec} A} \operatorname{Spec} \widetilde{A} \xrightarrow{p} X$  and  $\widetilde{M} = p^*M$ .

b) Let  $f: X \to Y$  be a quasi-compact separated morphism and  $g: \widetilde{Y} \to Y$  a flat morphism,  $\mathcal{M}$  a quasi-coherent  $\mathcal{O}_X$ -module. Then  $g^*R^*f_*\mathcal{M} \cong R^*\widetilde{f}_*\widetilde{g}^*\mathcal{M}$  where  $\widetilde{X} = X \times_Y \widetilde{Y}$ .

**Remark 2.** Base change results for etale cohomology are similar. We have b) if f is proper or if f is of finite type and g is smooth, and the sheaves are of torsion.

**Definition 3.** f is called *faithfully flat* if it is flat and surjective on points.  $\widetilde{A}$  is a faithfully flat A-algebra if it is flat and  $R \otimes_A \widetilde{A} = 0$  implies T = 0.

**Definition 4.** <sup>1</sup> Let  $f: X \to Y$  be a morphism of schemes. A descent datum (of quasi-coherent sheaves of modules) for f is a quasi-coherent  $\mathcal{O}_X$ -module  $\mathcal{M}$  with an isomorphism  $\mu: p_1^*\mathcal{M} \cong p_2^*\mathcal{M}$ , where

$$X \times_Y X \times_Y X \xrightarrow{p_{12}, p_{13}} X \times_Y X \xrightarrow{p_{1}, p_{2}} X$$

 $<sup>^{1}</sup>$ see tag 023A or SGA1,VI for fibred categories: descend data for X-schemes to Y-schemes and ample line bundles

are the different projections, and the diagram



must commute. A morphism of descent data is a morphism  $\varphi: \mathcal{M} \to \widetilde{\mathcal{M}}$  compatible with  $\mu$  and  $\widetilde{\mu}$ , i.e.  $(p_2^*\varphi)\mu = \widetilde{\mu}(p_1^*\varphi)$ 

**Remark 3.** We have a functor

$$\operatorname{QCoh}(Y) \to \operatorname{Desc}_{\operatorname{QCoh}(X),f}, \quad \mathcal{N} \mapsto (f^*\mathcal{N}, \text{ the canonical iso } p_1^*f^*\mathcal{N} \cong p_2^*f^*\mathcal{N}).$$

One would like this to be an equivalence of categories. It has a right adjoint

$$(\mathcal{RM})(U) = \{ m \in \mathcal{M}(f^{-1}U) \mid \mu p_1^* m = p_2^* m \}$$

**Proposition 2** (stacks loc.cit., SGA1.VII.1, Milne). *If f is faithfully flat and quasi-compact, the above functor*  $QCoh(Y) \to Desc_{QCoh(X),f}$  *is an equivalence of categories.* 

*Proof.* If f has a section, the inverse image along that section is an inverse functor. In general, base change with  $f: X \to Y$  reduces to this situation, provided that f is separated, which is a situation one can reduce to.

**Corollary 5.** If f is faithfully flat,  $\mathcal{O}_Y(V) = \{\lambda \in \mathcal{O}_X(f^{-1}U) \mid p_1^*\lambda = p_2^*\lambda\}.$ 

**Remark 4.** Both quasi-compactness and quasi-coherence in proposition 2 are needed. Consider  $Y = \operatorname{Spec} R$ , R a PID with  $\operatorname{Spec} R$  infinite,

$$X = \coprod_{m \in \text{mSpec}} \operatorname{Spec} R_m, \qquad N_1 = \coprod_{m \in \text{mSpec } R} R/m \to N_2 = \prod_{m \in mSpec R} R/m,$$

then it is easy to see that this inclusion does not split, bit it splits canonically after applying  $-\otimes_R R_m$ , giving rise to a morphism of descent data which does not descend to a morphism  $N_2 \to N_1$ .

**Definition 6.** A morphism  $i: X \to Y$  in a category  $\mathcal{A}$  is an effective monomorphism if for all objects T.

$$\operatorname{Hom}_{\mathcal{A}}(T,X) \xrightarrow{\varphi \mapsto i\varphi} \{ f \in \operatorname{Hom}_{\mathcal{A}}(T,Y) \mid \sigma f = \widetilde{\sigma} f \text{ for all } \sigma,\sigma': Y \to S \text{ s.t. } \sigma i = \widetilde{\sigma} i \}$$

is bijective.  $p: X \to Y$  is an effective epimorphism if it is an effective monomorphism in  $\mathcal{A}^{op}$ , i.e.

$$\operatorname{Hom}_{\mathcal{A}}(Y,T) \xrightarrow{\varphi \mapsto \varphi p} \{ f \in \operatorname{Hom}_{\mathcal{A}}(X,T) \mid f\sigma = f\widetilde{\sigma} \text{ for all } \sigma, \widetilde{\sigma}: S \to X \text{ s.t. } p\sigma = p\widetilde{\sigma} \}.$$

**Remark 5.** If  $X \times_Y X$  exists, f being an effective epimorphism is equivalent to it being a coequalizer of  $X \times_Y X \stackrel{p_1}{\underset{p_2}{\Longrightarrow}} X$ .

**Proposition 3** (SGA1.VIII.4 or stacks 023Q). Every fpqc (quasi-compact faithfully flat) morphism of schemes is an effective epimorphism.