Университет ИТМО Факультет ПИиКТ

ЛИНЕЙНАЯ АЛГЕБРА

I CEMECTP

Лектор: Дмитрий Валерьевич Карпов

Автор: Александр Калиев Проект на GitHub

Содержание

1	202	3-09-08-1	2	
	1.1	Ring and field	2	
	1.2	Sub-field and sub-ring	4	
	1.3	Homomorphism	4	
	1.4	Homomorphism types	5	
	1.5	Isomorphic rings	6	
2	2023-09-08-2			
	2.1	Complex numbers	7	
3	2023-09-15			
	3.1	root of complex number	8	
	3.2	root of n for 1	8	
	3.3	Integers	9	
	3.4	divisibility	9	
	3.5	GCD	9	
	3.6	Euclid algorithm	10	
	3.7	Linear GCD representation	10	
	3.8	GCD of n numbers	11	
	3.9	relatively prime numbers	11	
	3 10	Prime numbers	19	

$1 \quad 2023-09-08-1$

1.1 Ring and field

Let K be a set, we call it's elements *numbers*. Two operations are also defined:

$$+: K \times K \mapsto K$$

$$\cdot: K \times K \mapsto K.$$

Properties:

- 1. (Ассоциативность +): $\forall a, b, c \in K : (a + b) + c = a + (b + c)$
- 2. (Commutativity +): $\forall a,b \in K : a+b=b+a$
- 3. Zero: $\exists 0 \in K : a + 0 = a$
- 4. (Inverse element for +): $\forall a \in K \exists (-a) \in K : a + (-a) = 0$
- 5. (Distributivity): $\forall a,b,c \in K : a \cdot (b \cdot c) = (a+b) \cdot c \& a \cdot (b+c) = a \cdot b + a \cdot c$
- 6. (Associativity ·): (ab)c = a(bc)
- 7. (Commutativity \cdot): ab = ba
- 8. (Neutral element ·): $\exists 1 : \forall a \in K : 1 \cdot a = a$.
- 9. (Inverse element for \cdot):

$$\forall a \in K \setminus \{0\} \ \exists (a)^{-1} \in K : a \cdot (a)^{-1} = (a)^{-1} \cdot a = 1$$

$$\triangleright 1 - 6 \Rightarrow K - ring$$

$$\triangleright 1 - 7 \Rightarrow K - commutative ring$$

$$\triangleright 1 - 6 \& 8 \Rightarrow K - ring with 1$$

$$\triangleright 1-6, 8, 9 \Rightarrow K-body$$

$$\triangleright 1-9 \Rightarrow K-field$$

Свойство 1.1.1. Zero is the only one.

Доказательство. Let there be 0_1 and 0_2 . Then:

$$0_1 = 0_1 + 0_2 = 0_2 + 0_1 = 0_2.$$

Cooũcmoo 1.1.2. $\forall a \in K$, the reverse element for + is the only one.

Доказательство. Let there be 2 reverse elements for $a \in K$: $b_1 \& b_2$. Then:

$$b_1 = b_1 + 0 = b_1 + (a + b_2) = (b_1 + a) + b_2 = 0 + b_2 = b_2$$

Свойство 1.1.3. $\forall a \in K : -(-a) = a$

Доказательство.
$$a = a + ((-a) + (-(-a))) = (a + (-a)) + (-(-a)) = (-(-a))$$

Свойство 1.1.4. No more than 1 unit in a ring.

Доказательство. Let there be $1_1 \& 1_2$. Then:

$$1_1 = 1_1 \cdot 1_2 = 1_2.$$

Определение 1.1. Let K be a ring with 1. An element $a \in K$ is reversible, if $\exists a^{-1} \in K$

 \triangleleft in the fiels, all elements except 0 are reversible.

Coourmo 1.1.5. Let K be a ring with 1. Then, $\forall a \in K \exists$ no more than 1 reverse element for ...

Доказательство. Let there be 2 reverse elements: $b_1 \& b_2$. Then:

$$b_1 = b_1 \cdot 1 = b_1 \cdot (a \cdot b_2) = (b_1 \cdot a) \cdot b_2 = 1 \cdot b_2 = b_2$$

Cooucmoo 1.1.6. Let K be a ring with 1. Then, \forall reversible $a \in K : (a^{-1})^{-1} = a$

Доказательство. $a=a\cdot 1=a\cdot (a^{-1}\cdot (a^{-1})^{-1})=(a\cdot a^{-1})\cdot (a^{-1})^{-1}=1\cdot (a^{-1})^{-1}=(a^{-1})^{-1}$ \square Свойство 1.1.7. -0 = 0

Доказательство. Follows from the 0 + 0 = 0.

Cooutemeo 1.1.8. If K is a ring with 1, then $1^{-1} = 1$

Доказательство. Follows from $1 \cdot 1 = 1$

Определение 1.2.

▷ Substraction – addition a reverse element for +:

$$a - b := a + (-b).$$

 \triangleright Division on a reversible element b is a multiplication by b^{-1} :

$$\frac{a}{b} := a \cdot b^{-1}.$$

1.2 Sub-field and sub-ring

Определение 1.3.

- \triangleright Let $K \subset L$ (both are rings with the same operations). Then K is a **sub-ring** of L, and L is an **supra-ring** of K.
- \triangleright Let $K \subset L$ (both are fields with the same operations). Then K is a **sub-field** of L; L is a **supra-field** of K.

Лемма 1.1. Let L be a ring, $K \subset L$. Conditions:

- 1. Closedness of $+: \forall a,b \in K: a+b \in K$
- 2. Closedness of $\cdot : \forall a,b \in K \ a \cdot b \in K$
- 3. Existence of reverse element for + $\forall a \in K \ \exists -a \in K$
- 4. Existence of reverse element for $\forall a \in K, a \neq 0, \exists a^{-1} \in K.$

Then K is a field, then, it's a sub-field of L.

Доказательство.

- \triangleright By Lemma 1, K commutative sub-ring of L.
- \triangleright It remains to check the existence of 1 in K. Consider any non-zero element $a \in K$. Then $a^{-1} \in K$, and that means, that $a \cdot a^{-1} = 1 \in K$.

1.3 Homomorphism

Определение 1.4. \triangleleft Let K, L be a rings. Then a relation $f: K \mapsto L$ is called **homomorphism**, if $\forall a, b \in K$:

$$f(a + b) = f(a) + f(b) & f(ab) = f(a)f(b)$$

A kernel of homomorphism f is denoted as $\operatorname{Ker} f = \{x \in K : f(x) = 0\}$ An image of homomorphism f is denoted as $\operatorname{Im} f = \{y \in L : \exists x \in K : f(x) = y\}$.

Cooutemed 1.3.1. If $f: K \mapsto L$ is homomorphism, then $f(0_K) = 0_L$.

Доказательство. $f(0_K) = f(0_K + 0_k) = f(0_K) + f(0_K)$. Substracting from left and right side $f(0_k)$, we get $f(0_K) = 0_L$

Лемма 1.2. Let K, L be rings, $f: K \mapsto L$ – homomorphism of rings. Then:

- \triangleright Ker f is a sub-ring of K.
- \triangleright Im f is a sub-ring of L.

Доказательство. It's enough to check conditions from Lemma 1.

- 1. $ightharpoonup \operatorname{Let} a, b \in \operatorname{Ker} f$. Then $f(a+b) = f(a) + f(b) = 0 + 0 = 0 \Rightarrow a+b \in \operatorname{Ker} f$. $ho f(ab) = f(a)f(b) = 0 \cdot 0 = 0 \Rightarrow ab \in \operatorname{Ker} f$. $ho f(-a) = -f(a) = -0_L = 0_L$.
- 2. $ightharpoonup \text{Let } y,y' \in \text{Im } f, \text{ and } x,x' \in K \text{ are such that } f(x) = y \ \& \ f(x') = y'.$ $ightharpoonup \text{Then } y + y' = f(x) + f(x') = f(x + x') \in \text{Im } f \ \& \ y \cdot y' = f(x) \cdot f(x') \in \text{Im } f.$ $ightharpoonup y = -f(x) = f(-x) \in \text{Im } f.$

1.4 Homomorphism types

- \triangleright Let $f: K \mapsto L$ homomorphism of rings.
- \triangleright If f is an injection, then f is **monomorphism**
- \triangleright If f is a surjection (Im f = L), then f is an **epimorphism**
- \triangleright If f is a biection, then f is isomorphism
- \triangleright Isomorphism = monomorphism + epimorphism.

Лемма 1.3. Let $f: K \mapsto L$ be a homomorphism of rings. Then f is monomorphism if and only if $Ker f = \{0\}$.

 \mathcal{A} оказательство. \Rightarrow

- \triangleright If f is monomorphism, then f is an injection.
- \triangleright Let $a \in \operatorname{Ker} f$. From f(a) = 0 = f(0) implies, that a = 0 (because of the injection f).

 \Leftarrow

 \triangleright Let f(a) = f(b). Then f(a - b) = f(a) - f(b) = 0.

 \triangleright That means that $a - b \in \operatorname{Ker} f = \{0\}$, from this a = b. In conclusion, f is an injection, and that means f is monomorphism.

Лемма 1.4. Let $f: K \mapsto L$ be an isomorphism of rings. Then $f^{-1}: L \mapsto K$ is an isomorphism of rings.

Доказательство.

- \triangleright It's enough to proof that f^{-1} is homomorphism (because relation that is reverse to biection is a biection).
- \triangleright Consider any $a,b \in L$.
- \triangleright Let $w = f^{-1}(a+b) f^{-1}(a) f^{-1}(b)$. Because of f is a biection, we have:

$$f(w) = f(f^{-1}(a+b)) - f(f^{-1}(a)) - f(f^{-1}(b)) = a+b-a-b = 0$$

- \triangleright From (f(w) = 0 = f(0)) and because of f is a biection, we implie that w = 0.
- ightharpoonup Therefore, $f^{-1}(a+b) = f^{-1}(a) + f^{-1}(b)$
- ightharpoonup Let $z = f^{-1}(ab) f(f^{-1}(a)) \cdot f(f^{-1}(b)) = ab ab = 0$.
- \triangleright From f(z) = 0 = f(0) and because of f is a biection, we implie that z = 0

Therefore,
$$f^{-1}(ab) = f^{-1}(a) \cdot f^{-1}(b)$$
.

1.5 Isomorphic rings

Определение 1.5. If $\exists f: K \mapsto L \ (f \text{--isomorphism})$, then we say that K, L are isomorphic. Denotion: $K \simeq L$.

Теорема 1.1. \simeq is a relation of equality on the set of all rings.

Доказательство.

- \triangleright Reflexivity is obvious: id: $K \mapsto K$ (id(x) = x $\forall x \in K$) is obviously an isomorphism
- ▷ Symmetry is proven in Lemma 5.
- \triangleright Let's prove transitivity: let K, L, M be rings, $K \simeq L \& L \simeq M$.
- \triangleright Then there are isomorphisms $f: K \mapsto L \& g: L \mapsto M$. Let's prove that $g \cdot f: K \mapsto M$ (set up by rule gf(a) := g(f(a))) is also an isomorphism.

- ▷ Composition of these biections is obviously a biection.
- \triangleright Checking that gf is homomorphism of rings:

$$gf(a+b) = g(f(a+b)) = g(f(a) + f(b)) = g(f(a)) + g(f(b)) = gf(a) + gf(b)$$
$$gf(ab) = g(f(ab)) = g(f(a) \cdot f(b)) = g(f(a)) \cdot g(f(b)) = gf(a) \cdot gf(b)$$

 $2 \quad 2023 - 09 - 08 - 2$

2.1 Complex numbers

Определение 2.1.

▷ A set of *complex numbers* contains sorted pairs of real numbers:

$$\mathbb{C} = \{(a,b) : a,b \in \mathbb{R}\}\$$

- \triangleright Addition: (a,b) + (a',b') := (a + a', b + b')
- \triangleright Multiplication: $(a,b) \cdot (a',b') := (aa' bb', ab' + ba').$

Определение 2.2.

- \triangleright Let $z = (a,b) \in \mathbb{C}$
- \triangleright A real part of z is denoted as Re(z) := a.
- \triangleright An **imaginary parst** of z is denoted as Im(z)
- \triangleright Complex conjugation: $\overline{z} := (a, -b)$
- \triangleright Norm of z is denoted as $N(z) := a^2 + b^2$
- ightharpoonup Module of z is denoted as $|z| := \sqrt{N(z)} = \sqrt{a^2 + b^2}$
- \triangleright Obviously, $\overline{\overline{z}} = z$.

Теорема 2.1. \mathbb{C} is a field.

Доказательство. \triangleright (1) and (2) because addition in \mathbb{C} is componented, so associativity and commutativity are inherited from \mathbb{R} .

 \triangleright (3) Zero in \mathbb{C} is 0 := (0,0).

- \triangleright (4) Reverse element for +. For z=(a,b) set -z:=(-a,-b).
- ▷ (7) Commutativity of multiplication:

$$(a,b) \cdot (a',b') = (aa' - bb', ab' + ba') = (a'a - b'b, a'b + b'a) = (a',b') \cdot (a,b)$$

▷ (5) It's enough to check one distributivity (because multiplication is commutative):

$$(a,b) \cdot ((c_1,d_1) + (c_2,d_2)) = (a,b) \cdot (c_1 + c_2, d_1 + d_2) = (ac_1 + ac_2 - bd_1 - bd_2, ad_1 + ad_2 + bc_1 + bc_2) = (ac_1 - bd_1, ad_1 + bc_1) + (ac_2 - bd_2, ad_2 + bc_2) = (a,b) \cdot (c_1, d_1) + (a,b) \cdot (c_2, d_2)$$

 \triangleright

Замечание (Незавершённый конспект). Данный конспект не завершён.

3 2023-09-15

3.1 root of complex number

 \triangleright let $a \in \mathbb{C}, n \in \mathbb{N}$. Solve $z^n = a$

 $\triangleright a = (r, \varphi), z = (\rho, \psi).$

 \triangleright By Moaur formula, $\rho = \sqrt[n]{r}$

 $\triangleright n\psi = \varphi + 2\pi k, k \in \mathbb{Z}$. Dividing by n, we get:

$$\psi = \frac{\varphi}{n} + \frac{2\pi k}{n}$$

 \triangleright For $k \in \{0,1,\ldots,n-1\}$, we get n different arguments.

 \triangleright Every k can be factorized as k=qn+r. Then $\frac{2\pi k}{n}=\frac{2\pi r}{n}+2\pi q$

3.2 root of n for 1

 \triangleright Consider $z^n = 1$

 \triangleright From last section we get: $\psi_k = \frac{2\pi k}{n}$, where $k \in \{0,1,\ldots,n-1\}$

ightharpoonup Using Moaur formula $\varepsilon_k=\varepsilon_1^k$. Then, all roots of 1 is powers ε_1

Замечание. $e^{i\varphi}=(\cos\alpha,\sin\alpha)$

Materials

3.3 Integers

3.4 divisibility

Определение 3.1. Let $a,b \in \mathbb{Z}, b \neq 0$. Then a:b or b|a, if a=bc, where $c \in \mathbb{Z}$

Свойство 3.4.1. If $a:b,b:c \Rightarrow a:c$

Доказательство. Then $a = kb, b = nc(k, n \in \mathbb{Z}) \Rightarrow a = knc$.

Ceoŭcmeo 3.4.2. Let $a,b:d, x,y \in \mathbb{Z}$. Then ax + by:d

Доказательство. Then $a = kd, b = nd \Rightarrow ax + by = (kx + ny)d$

Свойство 3.4.3. Let $a,b \in \mathbb{N}$, $a:d \Rightarrow a \geqslant d$.

Теорема 3.1. Let $a \in \mathbb{Z}, b \in \mathbb{N} \Rightarrow \exists !q,r \in \mathbb{Z} : 0 \leqslant r < b \& a = bq + r$

Доказательство. $\triangleright \exists$. Let q be an integer that $bq \leqslant a < b(q+1)$ and r = a - bq. Then $0 \leqslant r < b$

- \triangleright !. Let $a = bq_1 + r_1 = bq_2 + r_2$, where $0 \le r_1, r_2 < b$
- ightarrow Не умаляя общности $r_1 > r_2 \Rightarrow 0 < r_1 r_2 < b$
- \triangleright From other side, $r_1 r_2 = b(q_2 q_1) \geqslant b!$?

$3.5 \quad GCD$

Определение 3.2. Let $a_1, \ldots, a_n \in \mathbb{Z}$. Denote $OD(a_1, \ldots, a_n)$ as a set of every divisors of these numbers. GCD is denoted as (a_1, \ldots, a_n)

Coourmo 3.5.1. If $b \in \mathbb{N}$, $a:b \Rightarrow OD(a,b)$ is all divisors of b and (a,b) = b

Доказательство. \triangleright If d is common divisor of a,b, then d|b.

 \triangleright If d|b, then a:d using property 1 of divisibility. That means that (a,b)=d.

Свойство 3.5.2. let $a,b,c,k \in \mathbb{Z}, c=a+kb$. Then $OD(a,b)=OD(c,b) \Rightarrow (a,b)=(c,b)$

Доказательство. \triangleright Let $d \in OD(a,b)$. Then $c:d \Rightarrow d \in OD(c,b)$

 \triangleright If $d \in OD(c,b)$, then $a = c - kb : d \Rightarrow d \in OD(a,b)$

3.6 Euclid algorithm

 \triangleright Let $a,b \in \mathbb{N}, a > b$

$$1 \ a = bq_1 + r_1$$

$$2 b = r_1 q_2 + r_2$$

$$3 r_1 = r_2 q_3 + r_3$$

1. ...

 $n r_{n-2}$

 $\triangleright b > r_1 > r_2 > \dots$ and algorithm will stop.

Теорема 3.2. $(a,b) = r_n \& OD(a,b)$ are all r_n divisors

Доказательство. Using Euclid algorithm

Теорема 3.3. Let $a,b,m \in \mathbb{N}$. Then

1.
$$(am, bm) = m(a,b)$$

2. if
$$d \in OD(a,b)$$
, then $(\frac{a}{d}, \frac{b}{d}) = \frac{(a,b)}{d}$

Замечание. Using Euclid algorithm, basing on 1st line of algorithm.

Упражнение. Proof the theorem above.

3.7 Linear GCD representation

Теорема 3.4. Let $a,b \in \mathbb{Z}$. Then $\exists x,y \in \mathbb{Z} : (a,b) = ax + by$

▷ It's called linear representation of GCD.

Доказательство. $\Rightarrow GD(y) = GD(-y) \Rightarrow (a,b) = (a,-b)$. Then we assume that $a,b \in \mathbb{N}$.

 \triangleright HYO $a \geqslant b$. Using Euclid algorithm, let $r_0 = b, r_{-1} = a$

 \triangleright Prove that $(a,b) = x_k r_k + y_k r_{k-1} \forall k = \{n,\ldots,0\}$ (where $(a,b) = r_n$) by induction

 $\triangleright k = n$ is obvious.

 $\triangleright k \mapsto k-1$. We know that $r_k = r_{k-2} + r_{k-1}q_k$:

ИТМО, ФПИиКТ, осень 2023

3.8 GCD of n numbers

Теорема 3.5. Let $n \ge 2, a_1, \ldots, a_n \in \mathbb{Z}$. Puts $m_2 = (a_1, a_2), m_3 = (m_2, a_3), \ldots, m_n = (m_{n-1}, a_n)$. Then $m_n = (a_1, a_2, \ldots, a_n)$, and $OD(a_1, \ldots, a_n)$ are all m_n divisors.

Доказательство. Using induction (trivial)

Следствие. for $a_1, \ldots, a_n \in \mathbb{Z} \exists$ linear representation of GCD : $x_1, \ldots, x_n \in \mathbb{Z}$: $(a_1, \ldots, a_n) = x_1 a_1 + \cdots + x_n a_n$

Доказательство. Trivial proof using induction.

3.9 relatively prime numbers

Определение 3.3. $\triangleright a_1, \ldots, a_n \in \mathbb{Z} : (a_1, \ldots, a_n) = 1 \Rightarrow$ these are relatively prime

Попарно взаимно простые

Свойство 3.9.1. If $a,b,c \in \mathbb{Z}$ & $(a,b) = 1 \Rightarrow (ac,b) = (c,b)$

Доказательство. \triangleright Let d = (c,b) & f = (ac,b)

$$\triangleright c:d \Rightarrow ac:d \Rightarrow d \in OD(ac,b) \Rightarrow f:d$$

$$\triangleright b: f \Rightarrow bc: f \Rightarrow f \in OD(ac, bc)$$

$$hightharpoonup \Rightarrow ^{\text{th } 2, 3} c = c(a,b) = (ac,bc) : f$$

$$\Rightarrow$$
, $f \in OD(c,b) \Rightarrow$ th. 2 $d:f$

 \triangleright From $d, f \in \mathbb{N}, d: f, f: d \Rightarrow d = f$

Свойство 3.9.2. If $a,b,c\in\mathbb{Z}, (a,b)=1$ & $ac\dot{\cdot}b\Rightarrow c\dot{\cdot}b$

Доказательство. Using corollary above (trivial).

Cooũcmoo 3.9.3. Let $a_1, ..., a_n; b_1, ..., b_m \in \mathbb{Z} \& (a_i, b_j) = 1 \Rightarrow (a_1 ... a_n, b_1 ... b_m)$

Доказательство. Using doubled induction.

3.10 Prime numbers

Определение **3.4.** ▷ Number that has 2 divisors.

- ▷ Else: factorizable
- $\triangleright P$ a set of all primes.
- \triangleright If $p \in P$, then 1|P,P|P
- $\triangleright 1 \notin P$

Определение 3.5. Let $a \in \mathbb{N}$. Itself divisor of a is any it's divisor, not equal to 1 and a. (Intrivial divisort)

Coourmo 3.10.1. If $a \in \mathbb{N}$ is factorizable, then $\exists a = bc : b,c \in \mathbb{N}, a > b,c > 1$

Ceoŭemeo 3.10.2. Let $a \in \mathbb{N}, a \neq 1, d$ – minimal Intrivial divisor of a. Then $d \in P$.

Доказательство. \triangleright using definition, d > 1

- \triangleright Let d be factorizable. Using corl. 1 d = bc, where d > b > 1
- \triangleright From $a:d,d:b\Rightarrow a:b!$?. Then b< d is itself divisor of a

Теорема 3.6. There is infinite number of primes.

Доказательство. \triangleright Let $m = p_1 p_2 \dots p_n + 1$, q is minimal itself divisor.

Coourmo 3.10.3. Let $a \in \mathbb{Z}, p \in P$. Then $a: p \vee (a,p) = 1$.

Cooudmoo 3.10.4. Let $a_1, \ldots, a_n \in \mathbb{Z}, p \in P$ such that $a_1 \ldots a_n : p \Rightarrow \exists i \in \{1, \ldots, n\}$, such that $a_i : p$

Доказательство. Let not a_i :p. Then $(a_i, p) = 1$.

Using corl. 4,
$$(a_1, \ldots, a_n, p) = 1$$
!?

Teopema 3.7 (OTA). $\forall a > 1$ can be factorized into multiplication of primes. This factorization is the only one.

Доказательство. \exists . Base $n \in P$ is obvious. \mapsto .

- \triangleright Let $a \notin P$, and for all b < a theorem is proven.
- \triangleright Then a = bc, where $1 < b, c < a \Rightarrow b = p_1 \dots p_n$ and $c = q_1 \dots q_m$
- \triangleright Then $a = p_1 \dots p_n q_1 \dots q_n$ is what we wanted.

!. Let $a = p_1 \dots p_n = q_1 \dots q_m$ – two factorizations a into prime factorizations, and a is minimal integer, for which factorization is the only one.

$$\triangleright$$
 from $a = p_1 \dots p_n : q_i \Rightarrow p_i : q_1$ for some $i \in \{1, \dots, n\}$. HYO $i = 1$.

- ightharpoonup From $p_1, q_1 \in P \& p_1 : q_1 \Rightarrow p_1 = q_1$
- ightharpoonup Then $a' = \frac{a}{p_1} = p_2 \dots p_n = q_2 \dots q_n$. But factorization a' into multiplication of primes is the only one with the precision of permutations of elements of multiplication.

Замечание. In particular, n = m.

3.11 Canonic factorization

Определение 3.6. $n = p_{11}^k p_{22}^k \dots p_{ss}^k$