Instruction set of the ULM (Ulm Lecture Machine)

Contents

		4
1.1		4
1.2	Expressing the Interpretation of a Bit Pattern	4
1.3	Registers and Virtual Memory	4
Dire	ectives	6
2.1	.align <expr></expr>	6
2.2	O I	6
		6
	, ,	6
		6
	· ·	6
		6
	O .	6
	0 1	7
	± ±	7
		7
		7
	*	7
2.10	iqua sospis	,
Inst	ructions	8
3.1	addq	9
3.2	getc	11
3.3	halt	12
3.4	jb	13
3.5	jmp	14
3.6	jnz	15
3.7		16
3.8	load	17
3.9	movb	18
3.10	movq	19
	•	20
		21
		22
	•	23
ISA	Source File for the LILM Generator	24
	1.1 1.2 1.3 Direction 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12 2.13 Inst: 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14	1.2 Expressing the Interpretation of a Bit Pattern 1.3 Registers and Virtual Memory Directives 2.1 .align <expr> 2.2 .bss 2.3 .byte <expr> 2.4 .data 2.5 .equ <ident>, <expr> 2.6 .global <ident> 2.7 .globl <ident> 2.8 .long <expr> 2.9 .space <expr> 2.10 .string <string-literal> 2.11 .text 2.12 .word <expr> 2.13 .quad <expr> 2.14 .dadq 3.2 getc 3.3 halt 3.4 jb 3.5 jmp 3.6 jnz 3.7 jz 3.8 load 3.9 movb 3.10 movq 3.10 movq</expr></expr></string-literal></expr></expr></ident></ident></expr></ident></expr></expr>

Chapter 1

Description of the ULM

1.1 Data Types

Binary digits are called *bits* and have the value 0 or 1. A *bit pattern* is a sequence of bits. For example

$$X := x_{n-1} \dots x_0$$
 with $x_k \in \{0, 1\}$ for $0 \le k < n$

denotes a bit pattern *X* with *n* bits. The number of bits in bit pattern is also called its size or width. The ULM architecture defines a *byte* as a bit pattern with 8 bits. Table 1.1 lists ULM's definitions for *word*, *long word*, *quad word* that refer to specific sizes of bit patterns.

1.2 Expressing the Interpretation of a Bit Pattern

For a bit pattern $X = x_{n-1} \dots x_0$ its *unsigned integer* value is expressed and defined through

$$u(X) = u(x_{n-1} \dots x_0) := \sum_{k=0}^{n-1} x_k \cdot 2^k$$

Signed integer values are represented using the two's complement and in this respect the notation

$$s(X) = s(x_{n-1}x_{n-2}\dots x_0) := \begin{cases} u(x_{n-2}\dots x_0), & \text{if } x_{n-1} = 0, \\ u(x_{n-2}\dots x_0) - 2^{n-1}, & \text{else} \end{cases}$$

is used.

1.3 Registers and Virtual Memory

The ULM has 256 registers denoted as %0x00, ..., %0xFF. Each of these registers has a width of 64 bits. The %0x00 is a special purpose register and also denoted as *zero register*. Reading form the zero register always gives a bit pattern where all bits have value 0 (zero bit pattern). Writing to the zero register has no effect.

The (virtual) memory of the ULM is an array of 2^{64} memory cells. Each memory cell can store exactly one byte. Each memory cell has an index which is called its *address*. The address is in the range from 0 to 2^{64-1} and the first memory cell of the array has address 0. In notations $M_1(a)$ denotes the memory cell with address a.

Data Size	Size in Bytes	Size in Number of Bits
Bytes	-	8
Word	2	16
Long Word	4	32
Quad Word	8	64

Table 1.1: Names for specific sizes of bit patterns.

1.3.1 Endianness

For referring to data in memory in quantities of words, long words and quad words the definitions

```
\begin{array}{lll} M_2(a) & := & M_1(a)M_1(a+1) \\ M_4(a) & := & M_2(a)M_2(a+2) \\ M_8(a) & := & M_4(a)M_4(a+4) \end{array}
```

are used. The ULM architecture is a big endian machine. Therefore we have the equalities

```
\begin{array}{rcl} u(M_2(a)) & = & u(M_1(a)M_1(a+1)) \\ u(M_4(a)) & = & u(M_2(a)M_2(a+2)) \\ u(M_8(a)) & = & u(M_4(a)M_4(a+4)) \end{array}
```

1.3.2 Alignment of Data

A quantity of k bytes are aligned in memory if they are stored at an address which is a multiple of k, i. e.

```
M_k(a) is aligned \Leftrightarrow a \mod k = 0
```

Chapter 2

Directives

2.1 .align <expr>

Pad the location counter (in the current segment) to a multiple of <expr>>.

2.2 .bss

Set current segment to the BSS segment.

2.3 .byte <expr>

Expression is assembled into next byte.

2.4 .data

Set current segment to the data segment.

2.5 .equ <ident>, <expr>

Updates the symbol table. Sets the value of <ident> to <expr>.

2.6 .global <ident>

Updates the symbol table. Makes the symbol <ident> visible to the linker.

2.7 .globl <ident>

Equivalent to .globl <ident>:

Updates the symbol table. Makes the symbol <ident> visible to the linker.

2.8 .long <expr>

Expression <expr> is assembled into next long word (4 bytes).

2.9 .space <expr>

2.9 .space <expr>

Emits <expr> bytes. Each byte with value 0x00.

2.10 .string <string-literal>

Emits bytes for the zero-terminated <string-literal>.

2.11 .text

Set current segment to the text segment.

2.12 .word <expr>

Expression <expr> is assembled into next word (2 bytes).

2.13 .quad <expr>

Expression <expr> is assembled into next quad word (8 bytes).

Chapter 3

Instructions

3.1 addq

3.1 addq

3.1.1 Assembly Notation

addq %x, %y, %z

Alternative Assembly Notation

movq %x, %z

Format

3	2 2	24 2	20 1	6 1	2 0
	0x11	z	у	х	

Effect

$$(u(\%y) + u(\%x)) \mod 2^{64} \to u(\%z)$$

Updates the status flags:

Flag Condition

ZF
$$u(\%y) + u(\%x) = 0$$

CF
$$u(\%y) + u(\%x) \ge 2^{64}$$

OF
$$s(\%y) + s(\%x) \notin \{-2^{63}, \dots, 2^{63} - 1\}$$

SF
$$s(\%y) + s(\%x) < 0$$

3.1.2 Assembly Notation

addq imm, %y, %z

Format

3	2	24 2	.0 1	6	0
	0x12	z	у	imm	

Effect

$$(u(\%y) + u(imm)) \mod 2^{64} \to u(\%z)$$

Updates the status flags:

Flag Condition

$$ZF \qquad u(\%y) + u(imm) = 0$$

CF
$$u(\%y) + u(imm) \ge 2^{64}$$

OF
$$s(\%y) + s(imm) \notin \{-2^{63}, \dots, 2^{63} - 1\}$$

SF
$$s(\%y) + s(imm) < 0$$

3.2 getc 11

3.2 getc

3.2.1 Assembly Notation

getc %x

Format

$$s(ulm_readChar()) \wedge_b 255 \mod 2^{64} \rightarrow u (\%x)$$

3.3 halt

3.3.1 Assembly Notation

halt imm

Format

Effect

halt program execution with exit code $u(imm) \mod 2^8$

3.3.2 Assembly Notation

 $halt \, \%x$

Format

Effect

halt program execution with exit code $u(\%x) \mod 2^8$

3.4 jb

3.4 jb

3.4.1 Assembly Notation

jb offset

Format

Effect

If the condition

$$CF = 1$$

evaluates to true then

$$(u(\%IP) + s(\textit{offset})) \mod 2^{64} \rightarrow u(\%IP)$$

3.5 jmp

3.5.1 Assembly Notation

jmp offset

Format

Effect

$$(u(\%IP) + s(\textit{offset})) \mod 2^{64} \rightarrow u(\%IP)$$

3.5.2 Assembly Notation

jmp %y, %x

Alternative Assembly Notation

call %y, %x

ret %y

Format

$$(u(\%IP) + 4) \mod 2^{64} \rightarrow u(\%x)$$

 $u(\%y) \rightarrow u(\%IP)$

3.6 jnz 15

3.6 jnz

3.6.1 Assembly Notation

jnz offset

Alternative Assembly Notation

jne offset

Format

Effect

If the condition

$$ZF = 0$$

evaluates to true then

$$(u(\%IP) + s(\textit{offset})) \mod 2^{64} \rightarrow u(\%IP)$$

3.7 jz

3.7.1 Assembly Notation

jz offset

Alternative Assembly Notation

je offset

Format

Effect

If the condition

$$ZF = 1$$

evaluates to true then

$$(u(\%IP) + s(\textit{offset})) \mod 2^{64} \rightarrow u(\%IP)$$

3.8 load 17

3.8 load

3.8.1 Assembly Notation

load imm, %dest

Format

$$u(imm) \bmod 2^{64} \rightarrow u (\%dest)$$

3.9 movb

3.9.1 Assembly Notation

movb %data, offset(%addr)

Alternative Assembly Notation

movb %data, (%addr)

Format

32	2	4 2	0 1	6 0
	0x22	data	addr	offset

Effect

 $\textit{u}(\%\textit{data}) \bmod 2^8 \to \textit{u}\left(M_1\left(\textit{addr}\right)\right) \text{ with } \textit{addr} = \left(\textit{s}(\textit{offset}) + \textit{u}(\%\textit{addr})\right) \bmod 2^{64}$

3.10 movq 19

3.10 movq

3.10.1 Assembly Notation

movq offset(%addr), %data

Alternative Assembly Notation

movq (%addr), %data

Format

32	2 2	4 2	0 1	6
	0x23	data	addr	offset

Effect

$$u\left(M_8\left(\textit{addr}\right)\right) \to u\left(\%\textit{data}\right) \text{ with } \textit{addr} = \left(\textit{s}\left(\textit{offset}\right) + u(\%\textit{addr})\right) \bmod 2^{64}$$

3.10.2 Assembly Notation

movq %data, offset(%addr)

Alternative Assembly Notation

movq %data, (%addr)

Format

3	2 :	24 2	0 1	6 0
	0x24	data	addr	offset

$$u(\%data) \mod 2^{64} \rightarrow u(M_8(addr))$$
 with $addr = (s(\textit{offset}) + u(\%addr)) \mod 2^{64}$

3.11 movsbq

3.11.1 Assembly Notation

movsbq offset(%addr), %data

Alternative Assembly Notation

movsbq (%addr), %data

Format

32	2 2	4 2	0 1	6 0
	0x21	data	addr	offset

$$s\left(M_1\left(\textit{addr}\right)\right)
ightarrow \textit{u}\left(\%\textit{data}\right) \text{ with } \textit{addr} = \left(\textit{s}\left(\textit{offset}\right) + \textit{u}\left(\%\textit{addr}\right)\right) \text{ mod } 2^{64}$$

3.12 movzbq 21

3.12 movzbq

3.12.1 Assembly Notation

movzbq offset(%addr), %data

Alternative Assembly Notation

movzbq (%addr), %data

Format

32	. 2	4 2	0 1	6)
	0x20	data	addr	offset	

$$\textit{u}\left(M_1\left(\textit{addr}\right)\right)
ightarrow \textit{u}\left(\%\textit{data}\right) \text{ with } \textit{addr} = \left(\textit{s}(\textit{offset}) + \textit{u}\left(\%\textit{addr}\right)\right) \bmod 2^{64}$$

3.13 putc

3.13.1 Assembly Notation

putc %x

Format

Effect

ulm_printChar(%x)

3.13.2 Assembly Notation

putc imm

Format

Effect

ulm_printChar(imm)

3.14 subq 23

3.14 subq

3.14.1 Assembly Notation

subq %x, %y, %z

Format

Effect

$$(u(\%y) - u(\%x)) \mod 2^{64} \to u(\%z)$$

Updates the status flags:

Flag Condition

ZF
$$u(\%y) - u(\%x) = 0$$

CF
$$u(\%y) - u(\%x) < 0$$

OF
$$s(\%y) - s(\%x) \notin \{-2^{63}, \dots, 2^{63} - 1\}$$

SF
$$s(\%y) - s(\%x) < 0$$

3.14.2 Assembly Notation

subq imm, %y, %z

Format

3	2 2	24 2	.0 1	6	0
	0x14	z	у	imm	

Effect

$$(u(\%y) - u(imm)) \mod 2^{64} \to u(\%z)$$

Updates the status flags:

Flag Condition

ZF
$$u(\%y) - u(imm) = 0$$

CF
$$u(\%y) - u(imm) < 0$$

OF
$$s(\%y) - s(imm) \notin \{-2^{63}, \dots, 2^{63} - 1\}$$

SF
$$s(\%y) - s(imm) < 0$$

Chapter 4

ISA Source File for the ULM Generator

```
1 U8 (OP u 8) (imm u 8)
  R (OP u 8) (x u 4)
3 RR (OP u 8) (y u 4) (x u 4)
4 REL_JMP (OP u 8) (offset j 24)
5 U20_R (OP u 8) (dest u 4) (imm u 20)
  R_R = R = R (OP u 8) (z u 4) (y u 4) (x u 4)
   U16_R_R (OP u 8) (z u 4) (y u 4) (imm u 16)
   MR_R (OP u 8) (data u 4) (addr u 4) (offset s 16)
   R_MR (OP u 8) (data u 4) (addr u 4) (offset s 16)
11
   # CU (control unit) instructions
13
14
   0x01 U8
   : halt imm
        ulm_halt(imm);
17
18
   0x02R
   : halt %x
        ulm\_halt(ulm\_regVal(\mathbf{x}));
21
  0x03 REL_JMP
  : jnz offset
   : jne offset
        ulm\_conditionalRelJump(ulm\_statusReg[ULM\_ZF] == 0, offset);
   0x04 REL_JMP
   : jz offset
29
   : je offset
        ulm_conditionalRelJump(ulm_statusReg[ULM_ZF] == 1, offset);
   0x05 REL_JMP
33
   : jmp offset
        ulm_unconditionalRelJump(offset);
```

```
0x06 REL_JMP
   : jb offset
        ulm_conditionalRelJump(ulm_statusReg[ULM_CF] == 1, offset);
   0x07 RR
41
   : jmp %y, %x
   : call %y, %x
   : ret %y
        ulm_absJump(ulm_regVal(y), x);
45
   # ALU (arithmetic logic unit)
   0x10 U20_R
   : load imm, %dest
        ulm_setReg(imm, dest);
   0x11RRR
   : addq %x, %y, %z
57
   : movq %x, %z
        ulm\_add64(ulm\_regVal(\mathbf{x}), ulm\_regVal(y), z);
60
   0x12 U16_R_R
61
   : addq imm, %y, %z
        ulm_add64(imm, ulm_regVal(y), z);
63
   0x13 R_R_R
   : subq %x, %y, %z
        ulm_sub64(ulm_regVal(x), ulm_regVal(y), z);
   0x14 U16_R_R
   : subq imm, %y, %z
        ulm_sub64(imm, ulm_regVal(y), z);
71
72
   #
73
   # bus instructions
75
   0x20 MR R
   : movzbq offset(%addr), %data
   : movzbq (%addr), %data
        ulm_fetch64(offset, addr, 0, 1, ULM_ZERO_EXT, 1, data);
80
   0x21 MR_R
   : movsbq offset(%addr), %data
   : movsbq (%addr), %data
        ulm_fetch64(offset, addr, 0, 1, ULM_SIGN_EXT, 1, data);
   0x22 R MR
   : movb %data, offset(%addr)
```

```
: movb %data, (%addr)
         ulm_store64(offset, addr, 0, 0, 1, data);
90
91
    0x23 MR_R
    : movq offset(%addr), %data
93
    : movq (%addr), %data
94
         ulm_fetch64(offset, addr, 0, 1, ULM_ZERO_EXT, 8, data);
95
    0x24 R\_MR
    : movq %data, offset(%addr)
    : movq %data, (%addr)
         ulm_store64(offset, addr, 0, 0, 8, data);
100
101
102
    \#i/o instructions
103
    0x30R
105
    : putc %x
106
         ulm_printChar(ulm_regVal(x));
107
108
    0x31 U8
109
    : putc imm
110
         ulm_printChar(imm);
111
112
    0x32 R
113
    : getc %x
114
         ulm_setReg(ulm_readChar() & 0xFF, x);
```