Hence ' H_0 : the five tyre brands have almost the same average life) is accepted viz., the five tyre brands do not differ significantly in their lives.

Example 4 -

In order to determine whether there is significant difference in the durability of 3 makes of computers, samples of size 5 are selected from each make and the frequency of repair during the first year of purchase is observed. The results are as

	Makes	
Α	В	C
5	8	7
6	10	3
8	11	5
9	12	4
7	4	1

In view of the above data, what conclusion can you draw?

Make			x_{ij}			T_{i}	n_i	T_i^2 / n_i	$\sum_{i} x_{ij}^2$
A B C	5 8 7	6 10 3	8 11 5	9 12 4	7 4 1	35 45 20	5 5 5	245 405 80	255 445
					Total	100	15	730	100 800

$$T = \sum T_i = 100 \; ; \; \sum \sum x_{ij}^2 = 800 ; \; N = \sum n_i = 15$$

$$Q = \sum \sum x_{ij}^2 - \frac{T^2}{N} = 800 - \frac{100^2}{15} = 133.33$$

$$Q_1 = \sum \frac{T_i^2}{n_i} - \frac{T^2}{N} = 730 - 666.67 = 63.33$$

$$Q_2 = Q - Q_1 = 70$$

ANOVA table

S.V.	S.S.	d.f.	M.S.	$\overline{F_0}$
Between makes	$Q_1 = 63.33$	h - 1 = 2	31.67	31.67 5.83
Within makes	$Q_2 = 70$	N-h=12	5.83	= 5.43
Total	Q = 133.33	N - 1 = 14	-	

From the *F*-tables,
$$F_{5\%}$$
 ($v_1 = 2$, $v_2 = 12$) = 3.88 $F_0 > F_{5\%}$

Hence the null hypothesis (H_0 : the 3 makes of computers do not differ in the durability) is rejected.

viz., there is significant difference in the durability of the 3 makes of computers.

Example 5

Three varieties of a crop are tested in a randomised block design with four replications, the layout being as given below: The yields are given in kilograms. Analyse for significance

C48	A51	B52	A49
A47	B49	C52	C51
B49	C53	A49	B50

Rewriting the data such that the rows represent the blocks and the columns represent the varieties of the crop (as assumed in the discussion of analysis of variance for two factors of classification), we have the following table:

Crops

Blocks	A	В	C
1	47	49	48
2	51	49	53
3	49	52	52
4	49	50	51

We shift the origin to 50 and work out with the new values of x_{ij} .

Crops

Blocks	A	В	С	T_i	T_i^2/k	$\sum_{j} x_{ij}^2$
1	- 3	- 1	- 2	- 6	36/3 = 12	14
2	1	- 1	3	3	9/3 = 3	11
3	- 1	2	2	3	9/3 = 3	9
4	- 1	0	. 6 (1 -	0	0/3 = 0	2
T_j	- 4	0	4	T = 0	$\sum \frac{T_i^2}{k} = 18$	36
T_{j}^{2}/h	$\frac{16}{4} = 4$	$\frac{0}{4} = 0$	$\frac{16}{4} = 4$	$\sum \frac{T_i^2}{h} = 8$	v at	
$\sum_{i} x_{ij}^{2}$	12	6	18	36	1	

$$Q = \sum \sum x_{ij}^2 - \frac{T^2}{N} = 36 - \frac{0^2}{12} = 36$$

$$Q_1 = \frac{1}{k} \sum T_i^2 - \frac{T^2}{N} = 18 - 0 = 18$$

$$Q_2 = \frac{1}{h} \sum T_j^2 - \frac{T^2}{N} = 8 - 0 = 8$$

$$Q_3 = Q - Q_1 - Q_2 = 36 - 18 - 8 = 10$$

ANOVA table

S.V.	S.S.	d.f.	M.S.	$\overline{F_{\alpha}}$
Between rows (blocks)	$Q_1 = 18$	h-1=3	6	$\frac{6}{1.67} = 3.6$
Between columns (crops)	$Q_2 = 8$	k - 1 = 2	4	$\frac{4}{1.67} = 2.4$
Residual	$Q_3 = 10$	(h-1)(k-1)=6	1.67	- -
Total	Q = 36	hk - 1 = 11	_	_

From F-tables, $F_{5\%}$ ($v_1 = 3$, $v_2 = 6$) = 4.76 and $F_{5\%}$ ($v_1 = 2$, $v_2 = 6$) = 5.14 Considering the difference between rows, we see that F_0 (= 3.6) $< F_{5\%}$ (= 4.76) Hence the difference between the rows is not significant. (H_0 is accepted) viz., the blocks do not differ significantly with respect to the yield.

Considering the difference between columns, we see that F_0 (= 2.4) < $F_{5\%}$ (= 5.14)

Hence the difference between the columns is not significant. (H_0 is accepted) viz., the varieties of crop do not differ significantly with respect to the yield.

Evennle 6 -