Fonction dérivée

Première 6

1 Rappel: fonction dérivée

Définition 1 Soit f une fonction définie en tous point d'un intervalle I et telle que pour tout $x \in I$, f soit dérivable en x. La fonction

$$f': x \mapsto f'(x)$$

s'appelle la fonction dérivée de f.

Motivation générale : Le calcul du nombre dérivé peut parfois s'avérer long et fastidieux. Le but de ce chapitre est de trouver des *formules* permettant de déterminer les nombres dérivés de certaines fonctions usuelles.

2 Les dérivées des fonctions usuelles

On a démontré en exercice que la fonction dérivée d'une fonction affine de la forme : f(x) = mx + p avec $m, p \in \mathbb{R}$, était la fonction définie pour tout $x \in \mathbb{R}$ par

$$f'(x) =$$

On démontre par des calculs les formule suivantes :

Fonction	Fonction dérivée	Domaine de dérivabilité
$f: x \mapsto k$		\mathbb{R}
$f: x \mapsto x$		
$f: x \mapsto mx$		${\mathbb R}$
$f: x \mapsto mx + p \ (m, p \in \mathbb{R})$		${\mathbb R}$
$f: x \mapsto x^n$, <i>n</i> entier strictement positif		
$f: x \mapsto \frac{1}{x}$		
$f: x \mapsto \frac{1}{x^n}$, <i>n</i> entier strictement positif		
$f: x \mapsto \sqrt{x}$, définie sur $[0; +\infty[$		

Exemples : Déterminons les fonctions dérivées des fonctions suivantes, on n'oubliera pas de mentionner le domaine de dérivabilité :

- 1. *f*, définie par f(x) = 3x + 4.
- 2. g, définie par g(x) = 3.
- 3. h, définie par $h(x) = x^2$.
- 4. *i*, définie par $i(x) = x^3$.
- 5. j, définie par $j(x) = \frac{1}{x^{37}}$.

Version enseignant

Fonction	Dérivée	Domaine de dérivabilité
$f: x \mapsto k$	$f': x \mapsto 0$	${\mathbb R}$
$f: x \mapsto x$	$f': x \mapsto 1$	${\mathbb R}$
$f: x \mapsto mx$	$f': x \mapsto m$	${\mathbb R}$
$f: x \mapsto mx + p \ (m, p \in \mathbb{R})$	$f': x \mapsto 1$	${\mathbb R}$
$f: x \mapsto x^n$, <i>n</i> entier strictement positif	$f': x \mapsto nx^{n-1}$	${\mathbb R}$
$f: x \mapsto \frac{1}{x}$	$f': x \mapsto \frac{-1}{x^2}$	$]-\infty,0[\cup]0;+\infty[$
$f: x \mapsto \frac{1}{x^n}$, <i>n</i> entier strictement positif	$f': x \mapsto \frac{-n}{x^{n+1}}$	$]-\infty,0[\cup]0;+\infty[$
$f: x \mapsto \sqrt{x}$, définie sur $[0; +\infty[$	$f': x \mapsto \frac{1}{2\sqrt{x}}$]0;+∞[

3 Dérivée d'une somme et d'un produit par une constante

3.1 Dérivée d'une somme

Rappel : Soit u et v deux fonctions définies sur un intervalle I, on appelle somme de u et de v la fonction que l'on note (u+v) et qui associe à x, u(x)+v(x).

Proposition 1 Soit u et v deux fonctions définies sur un même intervalle I alors, pour tout $x \in I$, (u+v)'(x) = u'(x) + v'(x). On peut donc écrire que

$$(u+v)'=u'+v'.$$

Exemples : Déterminons les fonctions dérivées des fonctions suivantes, on n'oubliera pas de mentionner le domaine de dérivabilité :

- 1. u + v où, $u(x) = x^2$, v(x) = 3x + 4.
- 2. f + g où, $f(x) = x^5$, $g(x) = x^2$.
- 3. *i* définie par $i(x) = x^4 + x + 1$
- 4. *j*, définie par $j(x) = \sqrt{x} + 2x + 3$.

3.2 Dérivée d'un produit par une constante

Soit *k* un nombre réel fixé.

Proposition 2 Soit u une fonction définie et dérivable sur un intervalle I, la dérivée de la fonction $ku : x \mapsto ku(x)$ est la fonction qui à x associe ku'(x). On peut donc écrire :

$$(ku)' = ku'.$$

Exemple : la fonction dérivée de la fonction $f: x \mapsto 5x^4$ est

Remarque : On peut déduire de la proposition précédente et de celle concernant la somme que si u et v sont dérivables sur I alors :

$$(u-v)'=u'-v'.$$

4 Signe de la dérivée et sens de variation d'une fonction

Proposition 3 *Soit une fonction f définie et dérivable sur un intervalle I.* :

- Si $f'(x) \ge 0$ pour tout x de I alors f est croissante sur I.
- Si $f'(x) \leq 0$ pour tout x de I alors f est décroissante sur I.

Cette proposition peut être raffinée et donne le théorème suivant :

Théorème 1 Soit une fonction f définie et dérivable sur un intervalle I. :

- $Si\ f'(x) = 0$ sur I alors f est constante sur I.
- Si f'(x) > 0 pour tout x de I sauf éventuellement pour un nombre fini de valeurs de x où f' s'annule, alors f est strictement croissante sur I.
- Si f'(x) < 0 pour tout x de I sauf éventuellement pour un nombre fini de valeurs de x où f' s'annule, alors f est strictement décroissante sur I.

Application : Variations de la fonction cube : Soit $f: x \mapsto x^3$.

Exemple : Imaginons connaître des informations sur le signe de la dérivée d'une fonction, on va pouvoir en déduire des choses sur celui de f.

х	-5		1	8
f'(x)	3	+	0	
) (10)		'		

5 Extremums

On appelle extremum d'une fonction sur un intervalle I un éventuel maximum ou minimum de cette fonction.

Définition 2 — Soit f une fonction définie sur un intervalle I, a un élément de I. On dit que f admet un minimum en a sur I si pour tout $x \in I$, $f(x) \ge f(a)$.

— Soit f une fonction définie sur un intervalle I, a un élément de I. On dit que f admet un maximum en a sur I si pour tout $x \in I$, $f(x) \le f(a)$.

Exemples : a) Sur \mathbb{R} , la fonction $x \mapsto x^2$ admet un maximum en 0. b)

Figure 1 – On donne $f(0) = -\frac{1}{3}$, $f(-1) = -\frac{2}{3}$.

6 Dérivée d'un produit et d'un quotient de fonction

Dans la table qui suit, les fonctions u et v sont supposées définies et dérivables sur un même intervalle I. On note $\mathcal Z$ l'ensemble des x tels que v(x)=0.

Forme de la fonction	Fonction dérivée	Domaine de dérivabilité
$x \mapsto u(x) + v(x)$		
$x \mapsto ku(x)$ (k constante)		
$x \mapsto u(x)v(x)$		
$x \mapsto \frac{1}{u(x)}$		
$x \mapsto \frac{u(x)}{v(x)}$		

Exemples:

Déterminer les expressions des fonctions dérivées par les expressions suivantes :

1.
$$f(x) = (3x+4)(x+1)$$
.

2.
$$g(x) = \sqrt{x}(x^2 + 1)$$
.

3.
$$h(x) = \frac{1}{3x+1}$$
.

4.
$$i(x) = \frac{x-2}{x^2+3}$$
.

Version enseignant

Forme de la fonction	Dérivée	Domaine de dérivabilité
$x \mapsto u(x) + v(x)$	$x \mapsto u'(x) + v'(x)$	I
ku (k constante)	ku'	I
$x \mapsto u(x)v(x)$	$x \mapsto u'(x)v(x) + u(x)v'(x)$	I
$x \mapsto \frac{1}{u(x)}$	$x \mapsto \frac{-1}{u(x)^2}$	I
$x \mapsto \frac{u(x)}{v(x)}$	$x \mapsto \frac{u'(x)v(x) - u(x)v'(x)}{v(x)^2}$	$I\setminus \mathcal{Z}$