MATH 321 WEEK 10 UNCLAIMED PROBLEM SOLUTIONS

- (1) 2.5.6
 - Let $b \ge 0$. Then the sequence $(b^{1/n})$ is monotone decreasing and bounded below by 0; therefore, $\lim(b^{1/n})$ exists, and we may call it L.
 - To compute L, notice that $(b^{1/2n})$ is a subsequence, so $(b^{1/2n}) \to L$ by Theorem 2.5.2. But $(b^{1/2n})(b^{1/2n}) = b^{1/n}$, so by the Algebraic Limit Theorem,

$$L = \lim(b^{1/n}) = \lim(b^{1/2n})\lim(b^{1/2n}) = L \cdot L.$$

Because limits are unique, $L = L^2$, and thus L = 0.

- (2) 2.6.2
 - (a) $\left(\frac{(-1)^n}{n}\right)$ converges, hence is Cauchy, but is not monotone.
 - (b) Impossible. If (a_n) is Cauchy, then it converges, and therefore (a_n) must be bounded. Hence, it's impossible for a Cauchy sequence to have an unbounded subsequence.
 - (c) Impossible. If (a_{n_k}) is a Cauchy subsequence, then (a_{n_k}) converges to some limit a, hence is bounded: there exists $M \in \mathbb{R}$ so that $|a_{n_k}| \leq M$ for all k. If (a_n) were also bounded, it would converge by the Monotone Convergence Theorem; therefore, (a_n) must be unbounded. Suppose that (a_n) is monotone increasing; the decreasing case follows similarly. Then there exists N so that $a_N > M$, and in fact $a_n \geq a_N > M$ for all $n \geq N$ by monotonicity. In that case, we can choose k so that $n_k > N$ (otherwise we'd contradict the infinite-ness of (a_{n_k})). By monotonicity, $a_{n_k} \geq a_N > M$ as well, a contradiction since we assumed (a_{n_k}) was bounded by M. Therefore, no divergent, monotone sequence can have a Cauchy subsequence.
 - (d) The sequence (0, 1, 0, 2, 0, 3, 0, 4, ...) is certainly unbounded, but the subsequence (0, 0, 0, 0, ...) converges to 0, and hence is Cauchy.
- (3) 2.6.4
 - (a) This sequence is Cauchy. Since (a_n) and (b_n) are Cauchy, there exist $N_1, N_2 \in \mathbb{N}$ so that when $n \geq N = \max\{N_1, N_2\}, |a_{n+1} a_n|$ and $|b_{n+1} b_n|$ are both less than $\frac{\epsilon}{2}$. Moreover, whenever $n \geq N$, the reverse triangle inequality tells us that

$$\begin{aligned} \left| |a_{n+1} - b_{n+1}| - |a_n - b_n| \right| &\leq \left| (a_{n+1} - b_{n+1}) - (a_n - b_n) \right| \\ &= \left| (a_{n+1} - a_n) + (b_n - b_{n+1}) \right| \\ &\leq \left| a_{n+1} - a_n \right| + \left| b_{n+1} - b_n \right| \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{aligned}$$

(b) This sequence is not guaranteed to be Cauchy. Consider the sequence $s_n = \sum_{k=1}^n \frac{(-1)^k}{k}$ of partial sums of the alternating harmonic series. Then (s_n) converges because the series does, so (s_n) is Cauchy. Now, let's define $t_n = (-1)^n s_n$ and consider the differences between successive terms of (t_n) . The difference between t_n and t_{n+1} , in absolute value, is

$$|t_{n+1} - t_n| = \left| (-1)^{n+1} \sum_{k=1}^{n+1} \frac{(-1)^k}{k} - (-1)^n \sum_{k=1}^n \frac{(-1)^k}{k} \right|$$
$$= |(-1)^{n+1}| \left| \sum_{k=1}^{n+1} \frac{(-1)^k}{k} + \sum_{k=1}^n \frac{(-1)^k}{k} \right|$$
$$= \left| \sum_{k=1}^{n+1} \frac{(-1)^k}{k} + \sum_{k=1}^n \frac{(-1)^k}{k} \right| = |s_{n+1} + s_n|,$$

which we can't hope to make smaller than any $\epsilon > 0$ given.

(c) Consider the sequence (a_n) , where $a_n = \frac{(-1)^n}{n}$ for all n. Then

$$[a_n] = \begin{cases} -1 & \text{if } n = 1\\ 0 & \text{if } n = 2, 4, 6, 8, \dots\\ -1 & if n = 3, 5, 7, 9, \dots \end{cases}$$

so that $(\lfloor a_n \rfloor) = (-1, 0, -1, 0, -1, 0, -1, 0, \dots)$ does not converge, hence is not Cauchy. However, $(a_n) \to 0$, so (a_n) is Cauchy.