GSM 网无线网络优化中上下行问题分析

□文 / 沈志勇 裴祥喜 崔荣起 崔炳德

提要 GSM 网无线网络优化工作中,设备上下行平衡问题往往容易被忽略,但实际工作中,上行明显弱于下行的问题存在较多,如何处理该类问题,一直是网络优化工程师比较关心的。本文针对这一问题进行详细分析和介绍,以供大家参考。

关键词:上下行平衡;平衡等级;接收 灵敏度

中图分类号:F49 文献标识码:A

一、引言

从网管上局取出话务统计数据见表 1、表 2、表 3,依据数据分析得出上下行平衡性能,具体为一级至五级占比例合平均为 25%左右,而七级至十一级占用比例合为 59%左右, 前 且 BTS312、BTS30、BTS3012、BTS3001C和 BTS3002C基站均如此,如果以 6 为标准则为上行偏弱,需要分析该问题原因,下两表分别为各等级统计次数和比例。(表 1,表 2、表 3)

二、问题原因分析

按照协议规定,手机的接收灵敏度为-102dBm,而基站接收灵敏度为-110dBm,考虑到一般手机的灵敏度可能会比协议好2dB左右。所以,一般取手机灵敏度为-10ddBm。这样上下行灵敏度的差别就是6dB。所以,在上下行平衡的统计项中,当下行接收电平(手机上报)大于上行接收电平(基站上报)6dB时候,我们

认为是最理想的平衡状态。

所以,在上下行平衡统计中,等级 6 就是下行接收电平恰好大于上行接收电 平 6dB 的情况。表 4 就是具体的各个统 计区间说明。(表 4)

上下行平衡话统在 BSC 侧的计算公式为:

下行功率电平-上行功率电平-6dB

(灵敏度补偿)=平衡等级

上下行不平衡的原因有:

(一)基站各个载频中间上报电平有一定的波动。GSM协议0508规定,测量基站接收机的接收信号电平RMS(均方根值),在正常条件下,从-110dBm~-70dBm,其绝对精度为±4dB,在正常条件和极端温度下,从-110dBm~-48dBm之

表 2 上下行平衡测量次数各等级统计表 (单位:%)

统计	等级一	等级二	等级三	等级四	等级五	等级六	等级七	等级八	等级九	等级十	等级十一
对象	的比例	的比例	的比例	的比例	的比例	的比例	的比例	的比例	的比例	的比例	的比例
bsc1	1.80	1.91	3.73	6.84	10.89	15.01	17.39	16.19	12.26	7.46	6.51
bsc2	1.74	1.93	3.77	6.88	10.87	15.06	17.54	16.44	12.06	7.24	6.47
bsc3	2.35	2.25	4.09	7.10	10.79	14.55	16.70	15.87	11.97	7.51	6.83
bsc4	1.79	1.70	3.40	6.45	11.00	15.75	18.13	16.59	11.89	7.10	6.21

表 3 上下行平衡统计对比 (单位:%)

统计对象	bsc1	bsc2	bsc3	bsc4
等级一的比例	1.80	1.74	2.35	1.79
等级二的比例	1.91	1.93	2.25	1.70
等级三的比例	3.73	3.77	4.09	3.40
等级四的比例	6.84	6.88	7.10	6.45
等级五的比例	10.89	10.87	10.79	11.00
一至五合计百分比	25.17	25.19	26.58	24.34
等级六的比例	15.01	15.06	14.55	15.75
等级七的比例	17.39	17.54	16.70	18.13
等级八的比例	16.19	16.44	15.87	16.59
等级九的比例	12.26	12.06	11.97	11.89
等级十的比例	7.46	7.24	7.51	7.10
等级十一的比例	6.51	6.47	6.83	6.21
七至十一合计百分比	59.81	59.75	58.88	59.92

表 1 上下行平衡测量次数各等级统计表

统计	等级一	等级二	等级三	等级四	等级五	等级六	等级七	等级八	等级九	等级十	等级十一	测量报告
对象	的次数	的次数	的次数	的次数	的次数	的次数	的次数	的次数	的次数	的次数	的次数	次数
bsc1	172515	182985	356990	655250	1043046	1436823	1665144	1550103	1174248	714581	623258	9574943
bsc2	196920	219421	427861	780231	1232677	1707320	1989407	1864106	1368089	820824	733471	11340327
bsc3	153643	147200	267768	465002	706561	952677	1093975	1039129	784166	491711	447462	6549294
bsc4	68587	64922	130091	247053	420964	602797	693956	634892	454938	271588	237840	3827628

间,绝对精度为±6dB。

GSM 协议这样的规定是从三方面考虑: (1)射频器件的幅频特性(也就是随着频率的变化,射频器件的增益会有些变化,这是射频器件的特性); (2)整个接收通道器件的增益离散性; (3) 这种上报精度是不会影响网络指标的。

而华为目前的设计和生产控制水平为±3dB,在业界是属于不错的水平;由于载频所用频点的差异和载频器件的不一致性的差异,对于相同的接收信号,两个载频的上报电平,按照协议规定的理论水平一般可以差别在8dB之内,极限情况下可以相差12dB,而目前的实际水平控

制在 6dB 之内。但是,这种差别同样会对上下行平衡的话统项产生影响,可以跨越话统项的 3 级, 手机发射功率 33dBm,是其标的最大值,往往手机最大功率 ≤ 33dBm,根据调查,手机厂家出厂功率一般会偏小 1dB 左右, 肯定不会大于 33dBm,原因有两点: (1)功率小些,手机待机时间可以长点; (2) 发射指标性能可以做得好些。

(二)环境因素。网络环境实际应用时,电话通话过程中,受环境、多径影响,信号电平也会存在波动,有时波动还会很大,而电平的上报也存在误差,对于手机来说,全温有±6dB的电平误差范围,常温

表 4 各个统计区间说明

测量指标	含义
等级一的次数	(下行接收功率-6dB)小于上行接收功率,且差值超过 14dBm 的次数
等级二的次数	(下行接收功率-6dB)小于上行接收功率,且差值在11-13dBm 范围内的次数
等级三的次数	(下行接收功率-6dB)小于上行接收功率,且差值在 8~10dBm 范围内的次数
等级四的次数	(下行接收功率-6dB)小于上行接收功率,且差值在 5~7dBm 范围内的次数
等级五的次数	(下行接收功率-6dB)小于上行接收功率,且差值在 2~4dBm 范围内的次数
等级六的次数	上下行完全平衡,差值在 dBm 范围内的次数(这是最理想的情况)的次数
等级七的次数	(下行接收功率-6dB)大于上行接收功率,且差值在 2~4dBm 范围内的次数
等级八的次数	(下行接收功率-6dB)大于上行接收功率,且差值在 5~7dBm 范围内的次数
等级九的次数	(下行接收功率-6dB)大于上行接收功率,且差值在 8~10dBm 范围内的次数
等级十的次数	(下行接收功率-6dB)大于上行接收功率,且差值在 11~13dBm 范围内的次数
等级十一的次数	(下行接收功率-6dB)大于上行接收功率,且差值超过 14dBm 的次数

表 5 海兴县城大田公司呼叫失败次数统计表

小区名	日期	TCH 呼叫占用失败次数	TCH 呼叫占用失败次数(无可用信道)
海兴县城大田公司-1	12月18日	55	2
海兴县城大田公司-1	12月19日	37	1
海兴县城大田公司-1	12月20日	65	7
海兴县城大田公司-1	12月21日	75	2
海兴县城大田公司-1	12月22日	74	1
海兴县城大田公司-1	12月23日	56	4
海兴县城大田公司-1	12月24日	68	3

表 6

	等级一的比例	等级二的比例	等级三的比例	等级四的比例
2006-12-30 10:00 起 60 分钟	0.09	0.08	0.21	0.72
模块号:2. 小区号:36. 小区名:海 兴县城大四公司-1,TRX号:1				14 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2006-12-28 10:00 起 60 分钟	27.05	10.67	12,46	10.21
2006-12-28 19:00起 60分钟	45.26	8.69	6.52	6.58
2006-12-29 10:00起 60分钟	48.93	10.08	10.48	9.28
2006-12-29 19:00起 60分钟	47.70	7.57	9.12	5.70
2006-12-30 10:00 起 60 分钟	19.66	8.64	10.13	9.61

下估计也存在±2dB的偏差。

(三)各载频间计算增益的差异(一般在±3dB)加上各个载频的下行功率也略有不同(一般在±1dB),使不同载频在同等条件下上下行平衡话统不完全一致。这也表现在一些载频更换后上下行话统指标有所改善,但掉话、切换成功率等实际指标没有变化,更换下来的载频现场也没有问题,指标良好。

(四)上下行平衡指标是一个统计值, 其方法是根据基站和手机上报的测量报告中的上下行电平进行计算,其结果会受到一些外部条件的影响,如用户手机和通话环境等。从对上下行话统分析看,基站不同时段的上下行话统也存在差异。因为其为统计值,基站的上下行话统往往呈现为分布在一个或两个中心值的两边。

(五)基站配置的影响,如果基站加了 塔放,会导致上行偏强;或者基站使用了 EDU或双 CDU 无合路情况下,会导致基 站下行偏强。

(六)载频性能下降。载频某些器件部分失效或内部线缆接触不良也会导致上下行不平衡。这些基站往往上下行不平衡话统大部分集中在1或11等级上。从上面的分析看,基站上下行话统分布在2~4或8~10是正常的,并且从现场话统性能分析中,各小区掉话、切换和呼叫占用等性能也是正常的,以下为通过上下行不平衡问题处理案例。

三、具体问题分析处理案例

(一)案例一:上下行不平衡导致呼叫 占用失败较多

1、问题描述。在优化话统分析中,发现海兴县城大田公司-1的呼叫失败次数非常多。忙时的呼叫占用失败次数经常在50次以上,并且失败原因绝大部分不是由无可用信道引起的,如表5所示。(表5)

2、问题分析。对该小区进行信令跟踪。信令跟踪数据显示,当 TCH 指配到该小区的第 2 块载频 120 时,就会频繁发生指配失败。(图 1)

指配失败的原因如图 2。(图 2)

注: protocol error unspecified 表示指配失败的原因是无线接口原因,并且从上

CO-OPERATIVE FROMONY & STIFNS

下行平衡测量显示该载频上下行不平衡, 下行明显弱于上行。(表 6)

3、优化效果。经现场排查,更换有问题的天馈后,海兴县城大田公司-1的呼叫占用失败次数明显减少,见表 7。(表 7)

(二)案例二:上下行不平衡导致切换

性能差

1、问题描述。在优化中,发现沧州 BSC2 的大修厂-3 的入小区切换成功率 在 50%以下,并且相邻小区至该小区的切 换成功率都低。

2、问题分析。仔细分析路测和信令数

图 1

□ UM message

- -L3 information Contents
 - Skip Indicator and Radio resource management message----06
 Message Type:Assignment Failure---2F
 - -Assignment failure
 - RR cause:Protocol error unspecified——6F

图 2

表 7. 优化效果统计表

小区名	日期	TCH 呼叫占用失败次数	TCH 呼叫占用失败次数(无可用信道)
海兴县城大田公司-1	1月5日	.0	0
海兴县城大田公司-1	1月6日	0	0
海兴县城大田公司-1	1月7日	3	0
海兴县城大田公司-1	1月8日	0	0
海兴县城大田公司-1	1月9日	0	0
海兴县城大田公司-1	1月10日	0	0
海兴县城大田公司-1	1月11日	1	0

表 8

	等级一的比例	等级二的比例
模块号:8,小区号:57,小区名:大修厂-3,TRX:9		
2006-12-28 14:00 起 60 分钟	99.04	0.57
2006-12-28 15:00 起 60 分钟	99.16	0.62
2006-12-28 16:00 起 60 分钟	98.80	0.53
2006-12-28 17:00 起 60 分钟	97.04	1.70

据,发现入小区切换失败都是切往该小区的 TRX9。另外,该小区的载频级掉话统计显示,该小区的掉话绝大部分都发生在 TRX9 上,并且掉话时 TA 为 0 或 1,并且信令跟踪显示,当 TCH 指配到该 TRX时,会经常出现指配失败。检查上下行平衡测量,发现该小区上下行不平衡等级为 1 的比例高达 97%以上。这说明该 TRX的下行链路插损太大。(表 8)

3、优化效果。经现场排查,更换有问题的 CDU 后,大修厂-3 的切换成功率有显著提高。见表 9。(表 9)

表 9 优化效果统计表

小区名	日期	小区间切换成功率(%)
大修厂-3	12月28日	69.05
大修厂-3	12月29日	71.3
大修厂-3	12月30日	71.06
大修厂-3	12月31日	80.69
大修厂-3	1月1日	81.6
大修厂-3	1月2日	61.25
大修厂-3	1月3日	75.42
大修厂-3	1月4日	97.41
大修厂-3	1月5日	98.25
大修厂-3	1月6日	97.51
大修厂-3	1月7日	98.34

四、结论

从上述理论分析、话统分析和测试结果看,目前上下行话统处于等级 2~4 或等级 8~10 还是比较正常的,载频本身没什么问题。而如果多集中在等级 11 或等级 1,且载频所在小区其他话统指标(如掉话率、切换成功率、话务量等)有明显的下降,则可能是:(1)载频问题、合分路单元问题以及相应连线问题,可通过检查连线、换板来进行确认网络性能是否改善:(2)天馈问题,可以检查馈线连接和天馈系统。

(作者单位:中国联合网络通信集团 有限公司沧州分公司)

主要参考文献:

[1] 韩斌杰,杜新颜,张建斌. GSM 原理及 其网络优化 [M]. 北京: 机械工业出版社, 2009.

[2] 张威. GSM 网络优化——原理与工程 [M]. 北京: 人民邮电出版社, 2003.