Langages et leurs définitions

- Path = $\{ \langle G, s, t \rangle \mid G \text{ est un graphe orienté possédant un chemin de } s à t \}$
- Ham
Path = { < G, s, t > | G est un graphe non-orienté t.
qGpossède un chemin hamiltonien de s à
t }
- HamCycle = $\{ < G > | G \text{ est un graphe non-orienté t.q } G \text{ possède un cycle hamiltonien} \}$ (cycle passant par tous les sommets une et une seule fois).
- EULERCYCLE = $\{ \langle G \rangle \mid G \text{ est un graphe non orienté t.q } G \text{ possède un cycle Eulerien} \}$ (cycle passant par chaque arc du graphe une et une seule fois).
- CLIQUE = $\{ \langle G, k \rangle \mid G \text{ est un graphe non-orienté possédant une clique de taille } k \}$ (une clique est un sous ensemble de sommets du graphe tous 2 à 2 distincts reliés par une arrête).
- Sat = { < $\Phi > | ~\Phi ~{\rm est}$ une formule booléenne satisfiable }
- LP = { < A, \overrightarrow{b} > | A est une matrice $m \times n$ de réels t.q $\exists \overrightarrow{x}$ un vecteur de réels vérifiant $A\overrightarrow{x} \geq \overrightarrow{b}$ }
- Composite = $\{ \langle n \rangle \mid n \in \mathbb{N} \setminus \{0,1\} \text{ et } n \text{ est composé } \}$
- Prime = $\{ \langle n \rangle \mid n \in \mathbb{N} \setminus \{0, 1\} \text{ et } n \text{ est premier } \}$
- 3-Color = $\{ \langle G \rangle \mid G \text{ est un graphe non-orienté t.q } G \text{ est 3-colorable } \}$
- QBF = $\{ \langle \Phi \rangle \mid \Phi \text{ est une formule booléenne totalement quantifiée t.q } \Phi \text{ est vraie } \}$
- 3-Sat = $\{ \langle \Phi \rangle \mid \Phi \text{ est une formule booléenne sous forme 3CNF satisfiable } \}$
- Sudoku = { < G > | G est une grille de taille $n^2 \times n^2$ partiellement complétée en respectant les règles du sudoku généralisé }
- VERTEX-COVER = $\{ \langle G, k \rangle \mid G \text{ est un graphe non-orienté possédant une couverture de taille } k \}$ (une couverture est un sous ensemble de sommets du graphe G tel que pour toute arrête (u, v) de G, soit $u \in C$ soit $v \in C$).
- TSP = { < G, k > | G est un graphe non-orienté, comple, pondéré et qui possède un cycle hamiltonien de poids $\le k$ }
- IND = $\{ \langle G, k \rangle \mid G \text{ est un graphe non-orienté possédant un ensemble indépendant de taille } k \}$ (un ensemble indépendant I est un sous ensemble de sommets tel que toute paire de sommets de I est non reliée par une arrête).
- IP = { $< A, \overrightarrow{b} > | A \text{ est une matrice } m \times n \text{ d'entiers t.q } \exists \overrightarrow{x} \text{ un vecteur d'entiers vérifiant } A\overrightarrow{x} \geq \overrightarrow{b}$ }

Langages et leurs appartenances aux classes

- Ратн $\in P$
- НамPатн $\in NP$
- Hamcycle $\in NP$
- EuleurCycle $\in P$
- CLIQUE $\in NP$
- − Sat ∈ NP
- Sat $\in PSPACE$
- LP $\in P$
- Composite $\in P$
- Prime $\in P$
- 3-Color ∈ NP
- QBF $\in PSPACE$ -Complet

Réductions polynomiale

- 3-Sat \leq_p Clique
- Sudoku $\leq_p 3$ -Sat
- CLIQUE \leq_p Vertex-Cover

- HamCycle \leq_p TSP 3-Sat \leq_p IP 3-Sat \leq_p 3-Color

Langages NP-Complet

- Sat
- 3-Sат
- CLIQUE
- Vertex-Cover
- HAMCYCLE
- TSP
- Ind
- IP
- 3-Color
- MaxSat
- Sudoku