Foundation of Cryptography, Lecture 3

Hardcore Predicates for Any One-way Function Handout Mode

Iftach Haitner, Tel Aviv University

Tel Aviv University.

March 4, 2014

Informal Discussion

```
f is one-way \implies predicting x from f(x) is hard.
```

But predicting parts of x might be easy.

```
e.g., let f be a OWF then g(x, w) = (f(x), w) is one-way
```

Can we find a function of x that is totally unpredictable — looks uniform — given f(x)?

Such functions have many cryptographic applications

Formal Definition

Definition 1 (hardcore predicates)

A poly-time computable $b: \{0,1\}^n \mapsto \{0,1\}$ is an hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if

$$\Pr_{\substack{x \overset{\mathsf{R}}{\leftarrow} \{0,1\}^n}} [\mathsf{P}(f(x)) = b(x)] \le \frac{1}{2} + \mathsf{neg}(n)$$

for any PPT P.

- Does any OWF has such a predicate?
- Is there a generic hardcore predicate for all one-way functions? Let f be a OWF and let b be a predicate, then g(x) = (f(x), b(x)) is one-way.
- Does the existence of hardcore predicate for f implies that f is one-way? Consider f(x, y) = x, then b(x, y) = y is a hardcore predicate for fAnswer to above is positive, in case f is one-to-one

Weak Hardcore Predicates

For $x \in \{0,1\}^n$ and $i \in [n]$, let x_i be the *i*'th bit of x.

Theorem 2

For
$$f \colon \{0,1\}^n \mapsto \{0,1\}^n$$
, define $g \colon \{0,1\}^n \times [n] \mapsto \{0,1\}^n \times [n]$ by

$$g(x,i) = f(x), i$$

Assuming f is one way, then

$$\Pr_{\substack{x \stackrel{R}{\leftarrow} \{0,1\}^n, i \stackrel{R}{\leftarrow} [n]}} [A(f(x),i) = x_i] \le 1 - 1/2n$$

for any PPT A.

Proof: ?

We can now construct an hardcore predicate "for" *f*:

- **1** Construct a weak hardcore predicate for g (i.e., $b(x, i) := x_i$).
- ② Amplify it into a (strong) hardcore predicate for g^t via parallel repetition

The resulting predicate is not for f but for (the one-way function) g^t ...

The Goldreich-Levin Hardcore predicate

For
$$x, r \in \{0, 1\}^n$$
, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

Theorem 3 (Goldreich-Levin)

For
$$f: \{0,1\}^n \mapsto \{0,1\}^n$$
, define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as $g(x,r) = (f(x),r)$.

If f is one-way, then $b(x,r) := \langle x,r \rangle_2$ is an hardcore predicate of g.

- Note that if f is one-to-one, then so is g.
- A slight cheat, b is defined for g and not for the original OWF f

Proof by reduction: a PPT A for predicting b(x, r) "too well" from (f(x), r), implies an inverter for f

Section 1

Proving GL – The Information Theoretic Case

Min entropy

Definition 4 (min-entropy)

The min entropy of a random variable (or distribution) X, is defined as

$$\mathsf{H}_{\infty}(X) := \min_{y \in \mathsf{Supp}(X)} \log \frac{1}{\mathsf{Pr}_X[y]}.$$

Examples:

- Z is uniform over a set of size 2^k .
- $Z = X \mid_{f(X)=y}$, where $f: \{0,1\}^n \mapsto \{0,1\}^n$ is 2^k to 1, $y \in f(\{0,1\}^n) := \{f(x) \colon x \in \{0,1\}^n\}$ and X is uniform over $\{0,1\}^n$.

In both cases, $H_{\infty}(Z) = k$.

Pairwise independent hashing

Definition 5 (pairwise independent function family)

A function family $\mathcal{H} = \{h \colon \{0,1\}^n \mapsto \{0,1\}^m\}$ is pairwise independent, if $\forall x \neq x' \in \{0,1\}^n$ and $y,y' \in \{0,1\}^m$, it holds that $\Pr_{h \leftarrow \mathcal{H}}[h(x) = y \land h(x') = y')] = 2^{-2m}$.

Lemma 6 (leftover hash lemma)

Let X be a rv over $\{0,1\}^n$ with $H_{\infty}(X) \ge k$ and let $\mathcal{H} = \{h \colon \{0,1\}^n \mapsto \{0,1\}^m\}$ be pairwise independent, then $SD((H,H(X)),(H,U_m)) \le 2^{(m-k-2))/2}$,

where H is uniformly distributed over \mathcal{H} and U_m is uniformly distributed over $\{0,1\}^m$.

Efficient function families

Definition 7 (efficient function families)

An ensemble of function families $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ is efficient, if

Samplable. Exists PPT that given 1^n , outputs (the description of) a uniform element in \mathcal{F}_n .

Efficient. Exists poly-time algorithm that given $x \in \{0, 1\}^n$ and (a description of) $f \in \mathcal{F}_n$, outputs f(x).

Proving GL for compressing functions

Definition 8

Function $f: \{0,1\}^n \mapsto \{0,1\}^n$ is d(n) regular, if $|f^{-1}(y)| = d(n)$ for every $y \in f(\{0,1\}^n)$.

Lemma 9

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a $d(n) \in 2^{\omega(\log n)}$ regular function, and let $\mathcal{H} = \{\mathcal{H}_n\}$ be an efficient family of Boolean pairwise independent functions over $\{0,1\}^n$. Define $g: \{0,1\}^n \times \mathcal{H}_n \mapsto \{0,1\}^n \times \mathcal{H}_n$ as

$$g(x,h)=(f(x),h),$$

then b(x, h) = h(x) is an hardcore predicate of g.

How does it relate to Goldreich-Levin?

 $\{\mathcal{H}_n = \{b_r(\cdot) = b(r, \cdot)\}_{r \in \{0,1\}^n}\}$ is (almost) pairwise independent.

Proving Lemma 9

The lemma follows by the next claim:

Claim 10

SD $((f(U_n), H, H(U_n)), (f(U_n), H, U_1)) = \text{neg}(n)$, where $H = H_n$ is uniformly distributed over \mathcal{H}_n .

Proving the claim. For $y \in f(\{0,1\}^n)$, let X_y be uniformly distributed over $f^{-1}(y) := \{x \in \{0,1\}^n : f(x) = y\}$. Compute

$$SD((f(U_n), H, H(U_n)), (f(U_n), H, U_1))$$

$$= \sum_{y \in f(\{0,1\}^n)} Pr[f(U_n) = y] \cdot$$

$$SD((f(U_n), H, H(U_n) \mid f(U_n) = y), (f(U_n), H, U_1 \mid f(U_n) = y))$$

$$= \sum_{y \in f(\{0,1\}^n)} Pr[f(U_n) = y] \cdot SD((y, H, H(X_y)), (y, H, U_1))$$

$$\leq \max_{y \in f(\{0,1\}^n)} SD((y, H, H(X_y)), (y, H, U_1))$$

$$= \max_{y \in f(\{0,1\}^n)} SD((H, H(X_y)), (H, U_1))$$

Proving Lemma 9, cont.

Since $H_{\infty}(X_y) = \log(d(n))$ for any $y \in f(\{0,1\}^n)$, the leftover hash lemma (Lemma 6) yields that

$$SD((H, H(X_y)), (H, U_1)) \leq 2^{(1-H_{\infty}(X_y)-2))/2}$$

$$= 2^{(1-\log(d(n)))/2} = \text{neg}(n). \quad \Box$$

Section 2

Proving GL – The Computational Case

Proving Goldreich-Levin Theorem

Theorem 11 (Goldreich-Levin)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ as g(x,r) = (f(x),r).

If f is one-way, then $b(x,r) := \langle x,r \rangle_2$ is an hardcore predicate of g.

Proof: Assume \exists PPT A, $p \in \text{poly}$ and infinite set $\mathcal{I} \subseteq \mathbb{N}$ with

$$\Pr[A(g(U_n, R_n)) = b(U_n, R_n)] \ge \frac{1}{2} + \frac{1}{p(n)}, \tag{1}$$

for any $n \in \mathcal{I}$, where U_n and R_n are uniformly (and independently) distributed over $\{0,1\}^n$.

We show \exists PPT B and $q \in$ poly with

$$\Pr_{y \leftarrow f(U_n)}[\mathsf{B}(y) \in f^{-1}(y)] \ge \frac{1}{q(n)},\tag{2}$$

for every $n \in \mathcal{I}$. In the following fix $n \in \mathcal{I}$.

Focusing on a good set

Claim 12

There exists a set $S \subseteq \{0,1\}^n$ with

$$\bullet$$
 $\frac{|\mathcal{S}|}{2^n} \geq \frac{1}{2p(n)}$, and

2
$$\Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}, \forall x \in S.$$

Proof: Let
$$S := \{x \in \{0,1\}^n \colon \Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{2p(n)}\}.$$

$$\Pr[\mathsf{A}(g(U_n,R_n)) = b(U_n,R_n)] \leq \Pr[U_n \notin \mathcal{S}] \cdot \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in \mathcal{S}]$$
$$\leq \left(\frac{1}{2} + \frac{1}{2p(n)}\right) + \Pr[U_n \in \mathcal{S}] \square$$

We conclude the theorem's proof showing exist $q \in \text{poly}$ and PPT B:

$$\Pr[\mathsf{B}(f(x)) \in f^{-1}(f(x)) \ge \frac{1}{q(n)},$$
 (3)

for every $x \in S$. In the following we fix $x \in S$.

The Perfect Case

$$\Pr\left[\mathsf{A}(f(x),R_n)=b(x,R_n)\right]=1$$

$$A(f(x),r) = b(x,r)$$

$$A(f(x),r) \neq b(x,r)$$

In particular,
$$A(f(x), e^i) = b(x, e^i)$$
 for every $i \in [n]$, where $e^i = (\underbrace{0, \dots, 0}_{i-1}, \underbrace{1, \underbrace{0, \dots, 0}_{n-i}})$.

Hence,
$$x_i = \langle x, e^i \rangle_2 = b(x, e^i) = A(f(x), e^i)$$

Algorithm 13 (Inverter B on input y)

Return $(A(y, e^1), \dots, A(y, e^n))$.

Easy case

$$\Pr\left[\mathsf{A}(f(x),R_n)=b(x,R_n)\right]\geq 1-\mathsf{neg}(n)$$

- A(f(x),r) = b(x,r)
- $A(f(x),r) \neq b(x,r)$

Fact 14

- ② $\forall r \in \{0,1\}^n$, the rv $(R_n \oplus r)$ is uniformly distributed over $\{0,1\}^n$.

Hence, $\forall i \in [n]$:

- Pr[A(f(x), R_n) = $b(x, R_n) \land A(f(x), R_n \oplus e^i) = b(x, R_n \oplus e^i)$] $\geq 1 - \text{neg}(n)$

Algorithm 15 (Inverter B on input y)

Return $(A(y, R_n) \oplus A(y, R_n \oplus e^1)), \dots, A(y, R_n) \oplus A(y, R_n \oplus e^n)).$

Proving Fact 14

1 For $w, w, y \in \{0, 1\}^n$:

$$b(x,y) \oplus b(x,w) = \left(\bigoplus_{i=1^n} x_i \cdot y_i\right) \oplus \left(\bigoplus_{i=1^n} x_i \cdot w_i\right)$$
$$= \bigoplus_{i=1^n} x_i \cdot (y_i \oplus w_i)$$
$$= b(x,y \oplus w)$$

2 For $r, y \in \{0, 1\}^n$:

$$\Pr\left[R_n \oplus r = y\right] = \Pr\left[R_n = y \oplus r\right] = 2^{-n}$$

Intermediate Case

$$\Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{3}{4} + \frac{1}{q(n)}$$

For any $i \in [n]$

$$A(f(x),r) = b(x,r)$$

$$A(f(x),r) \neq b(x,r)$$

$$\Pr[A(f(x), R_n) \oplus A(f(x), R_n \oplus e^i) = x_i]$$

$$\geq \operatorname{Pr}[A(f(x),R_n)=b(x,R_n)\wedge A(f(x),R_n\oplus e^i)=b(x,R_n\oplus e^i)]$$

$$\geq 1 - \left(1 - \left(\frac{3}{4} + \frac{1}{q(n)}\right)\right) - \left(1 - \left(\frac{3}{4} + \frac{1}{q(n)}\right)\right) = \frac{1}{2} + \frac{2}{q(n)}$$

Algorithm 16 (Inverter B on input $y \in \{0, 1\}^n$)

- For every $i \in [n]$
 - Sample $r^1, \ldots, r^v \in \{0, 1\}^n$ uniformly at random
 - 2 Let $m_i = \text{maj}_{i \in [v]} \{ (A(y, r^i) \oplus A(y, r^i \oplus e^i)) \}$
- Output (m_1, \ldots, m_n)

B's Success Provability

The following claim holds for "large enough" $v = v(n) \in poly(n)$.

Claim 17

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \operatorname{neg}(n)$.

Proof: For $j \in [v]$, let the indicator $v \in W^j$ be 1, iff

$$A(f(x), r^j) \oplus A(f(x), r^j \oplus e^i) = x_i.$$

We want to lowerbound $\Pr\left[\sum_{j=1}^{\nu} W^j > \frac{\nu}{2}\right]$.

• The W^j are iids and $E[W^j] \ge \frac{1}{2} + \frac{2}{q(n)}$ for every $j \in [v]$

Lemma 18 (Hoeffding's inequality)

Let X^1, \ldots, X^v be iids over [0, 1] with expectation μ . Then,

$$\Pr[|\frac{\sum_{j=i}^{v} X^{j}}{v} - \mu| \ge \varepsilon] \le 2 \cdot \exp(-2\varepsilon^{2}v)$$
 for every $\varepsilon > 0$.

We complete the proof taking $X^j = W^j$, $\varepsilon = 1/4q(n)$ and $v \in \omega(\log(n) \cdot q(n)^2)$.

The actual (hard) case

$$\Pr[A(f(x), R_n) = b(x, R_n)] \ge \frac{1}{2} + \frac{1}{q(n)}$$

- What goes wrong? $\Pr[A(f(x), R_n) \oplus A(f(x), R_n \oplus e^i) = x_i] \ge \frac{2}{g(n)}$
- Hence, using a random guess does better than using A :-
- Idea: guess the values of $\{b(x, r^1), \dots, b(x, r^v)\}\$ (instead of calling $\{A(f(x), r^1), \dots, A(f(x), r^v)\}\$)

Problem: negligible success probability

Solution: choose the samples in a correlated manner

Algorithm B

- Fix $\ell = \ell(n)$ (will be $O(\log n)$) and set $v = 2^{\ell} 1$.
- In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty choice

Algorithm 19 (Inverter B on $y = f(x) \in \{0, 1\}^n$)

- **①** Sample uniformly (and independently) $t^1, \ldots, t^{\ell} \in \{0, 1\}^n$
- ② Guess the value of $\{b(x, t^i)\}_{i \in [\ell]}$
- **3** For all $\mathcal{L} \subseteq [\ell]$: set $r^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} t^i$ and compute $b(x, r^{\mathcal{L}}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$.
- For all $i \in [n]$, let $m_i = \text{maj}_{\mathcal{L} \subseteq [\ell]} \{ \mathsf{A}(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) \}$
- - Fix $i \in [n]$, and let $W^{\mathcal{L}}$ be 1 iff $A(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i$.
 - ullet We want to lowerbound $\Pr\left[\sum_{\mathcal{L}\subseteq [\ell]} \mathbf{\textit{W}}^{\mathcal{L}} > rac{\textit{v}}{2}
 ight]$
 - Problem: the $W^{\mathcal{L}}$'s are dependent!

Analyzing B's success probability

- Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.
- ② For $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

Claim 20

- **1** $\forall \mathcal{L} \subseteq [\ell], R^{\mathcal{L}}$ is uniformly distributed over $\{0, 1\}^n$.
- ② $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

Proof: (1) is clear, we prove (2) in the next slide.

Proving Fact 20(2)

Assume wlg. that $1 \in (\mathcal{L}' \setminus \mathcal{L})$.

$$\begin{split} \Pr[R^{\mathcal{L}} &= w \land R^{\mathcal{L}'} = w'] \\ &= \sum_{(t^2, \dots, t^\ell) \in \{0, 1\}^{(\ell-1)n}} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot \\ &= \Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ &= \sum_{(t^2, \dots, t^\ell) : (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ &= \sum_{(t^2, \dots, t^\ell) : (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ &= \sum_{(t^2, \dots, t^\ell) : (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot 2^{-n} \\ &= 2^{-n} \cdot 2^{-n} \\ &= \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] \end{split}$$

Pairwise independence variables

Definition 21 (pairwise independent random variables)

A sequence of random variables X^1, \dots, X^v is pairwise independent, if $\forall i \neq j \in [v]$ and $\forall a, b$, it holds that

$$\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$$

- By Claim 20, $r^{\mathcal{L}}$ and $r^{\mathcal{L}'}$ (chosen by B) are pairwise independent for every $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$.
- Hence, also $W^{\mathcal{L}}$ and $W^{\mathcal{L}'}$ are. (Recall, $W^{\mathcal{L}}$ is 1 iff $A(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i)$

Lemma 22 (Chebyshev's inequality)

Let $X^1, ..., X^{\nu}$ be pairwise-independent random variables with expectation μ and variance σ^2 . Then, for every $\varepsilon > 0$,

$$\Pr\left[\left|\frac{\sum_{j=1}^{v} X^j}{v} - \mu\right| \geq \varepsilon\right] \leq \frac{\sigma^2}{\varepsilon^2 v}$$

B's success provability, cont.

Assuming that B always guesses $\{b(x,t^i)\}$ correctly, then for every $\mathcal{L}\subseteq [\ell]$

- ▶ $E[W^{\mathcal{L}}] \ge \frac{1}{2} + \frac{1}{q(n)}$

Taking $\varepsilon = 1/2q(n)$ and $v = 2n/\varepsilon^2$ (i.e., $\ell = \lceil \log(2n/\varepsilon^2) \rceil$), Lemma 22 yields that

$$\Pr[m_i = x_i] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}$$
 (4)

Hence, by a union bound, B outputs x with probability $\frac{1}{2}$. Taking the guessing into account, yields that B outputs x with probability at least $2^{-\ell}/2 \in \Omega(n/q(n)^2)$.

Reflections

- Hardcore functions:
 Similar ideas allows to output log n "pseudorandom bits"
- Alternative proof for the LHL: Let X be a rv with over $\{0,1\}^n$ with $H_{\infty}(X) \ge t$, and assume $SD((R_n, \langle R_n, X \rangle_2), (R_n, U_1)) > \alpha = 2^{-c \cdot t}$ for some universal c > 0.
 - \Rightarrow Exists (a possibly inefficient) algorithm D that distinguishes $(R_n, \langle R_n, X \rangle_2)$ from (R_n, U_1) with advantage α
 - \implies Exists algorithm A that predicts $\langle R_n, X \rangle_2$ given R_n with prob $\frac{1}{2} + \alpha$
 - \implies (by GL) Exists algorithm B that guesses X from nothing, with prob $\alpha^{O(1)} > 2^{-t}$

Reflections cont.

List decoding:

An encoder $C: \{0,1\}^n \mapsto \{0,1\}^m$ and a decoder D, such that the following holds for any $x \in \{0,1\}^n$ and c of hamming distance $\frac{1}{2} - \delta$ from C(x): $D(c, \delta)$ outputs a list of size at most $poly(1/\delta)$ that whp. contains x

The code we used here is known as the Hadamard code

• LPN - learning parity with noise: Find x given polynomially many samples of $\langle x, R_n \rangle_2 + N$, where $\Pr[N=1] \leq \frac{1}{2} - \delta$.

The difference comparing to Goldreich-Levin – no control over the R_n 's.