

Learning of Bayesian networks with missing data

Presentazione della tesi di laurea magistrale di:

Andrea Ruggieri

Matricola: 806808

Email: a.ruggieri4@campus.unimib.it

Relatori:

Relatore: Prof. Fabio Stella

Co-relatore: Ph.D. Alessandro Bregoli

La presenza di valori mancanti in un dataset è problematica

Assenza di informazioni

Alcune informazioni risultano essere cruciali ai fini di prendere decisioni. Inoltre, l'assenza di alcuni dati potrebbe rendere impossibile la risoluzione del problema.

Difficoltà nel predire i valori mancanti

Alcuni tipi di dati mancanti sono complicati da rimpiazzare in quanto è necessario avere una corretta conoscenza del dominio.

Bias nei dati e nei risultati

I dati risultano essere distorti dalla realtà. Inoltre, i modelli di machine learning non funzionano o esibiscono una perdita di efficacia in presenza di dati mancanti.

When we deal with low data quality, even the results are of low quality.

Garbage in, garbage out

Nelle prossime slide...

INTRODUZIONE ALL'ALGORITMO EM **IMPLEMENTAZIONE**

SPERIMENTAZIONE

RISULTATI E CONCLUSIONI

SVILUPPI FUTURI

STATO DELL'ARTE E OBIETTIVI

INTRODUZIONE ALL'ALGORITMO EM

1998 Friedman
pubblicò the Bayesian
Structural EM
Algorithm: l'obbiettivo
è apprendere la
struttura di una rete
Bayesiana su dati
mancanti o variabili
nascoste.

2010 – 2016 Diversi studiosi dimostrarono l'efficacia dell'algoritmo EM

Limite

Gli studiosi hanno focalizzato la loro attenzione su una versione semplificata dell'algoritmo EM che prende il nome di EM Hard-assignment o EM Hard. I risultati della versione completa (EM Soft-Assignment o EM Soft) dell'algoritmo EM sono solo teorici.

Gli obiettivi di questo lavoro sono:

- 1. Progettare e sviluppare un pacchetto R che renda disponibile il codice per le diverse versioni dell'algoritmo EM.
- 2. Valutare e sperimentare le diverse versioni dell'algoritmo EM.
- 3. Fornire al lettore indicazioni utili qualora abbia l'esigenza di rimpiazzare valori mancanti.

L'ALGORITMO EM

INTRODUZIONE ALL'ALGORITMO EM

Begin procedure *EM_Algorithm*(...){

 $\forall \theta \in BN$ viene fissato un valore iniziale $\hat{\theta}_0$

while
$$(\left|\hat{\theta}_{t-1} - \hat{\theta}_{t}\right| < \epsilon)$$
{

Expectation step: l'algoritmo usa i parametri correnti θ^t per computare le Expected Sufficient Statistics:

• Per ogni dato o, vengono computate tutte le probabilità marginali:

$$Q(X, U) = P(X, U|o, \theta)$$

• Calcolo delle Expected Sufficient Statistics (ESS):

$$\overline{M}_{\theta}[u] = \sum_{m=1}^{M} \sum_{h[m] \in Val(H[m])} Q(h[m]) I\{\xi[m] < Y > = y\}$$

Maximisation step: vengono utilizzate le ESS per eseguire la maximum likelihood estimation:

$$\theta_{x|u}^{t+1} = \frac{M_{\theta^t}[x,u]}{\overline{M}_{\theta^t}[u]}$$

Considerazioni:

- L'inizializzazione dei parametri risulta essere cruciale e può avvenire in diversi modi.
- Il passo di Maximisation risulta essere lineare.
- L'algoritmo EM garantisce sempre la convergenza.

EM HARD E EM SOFT A CONFRONTO

INTRODUZIONE ALL'ALGORITMO EM

Algorithm 1: The Soft version of the EM algorithm.

Choose an initial value $\hat{\theta}_0$ for θ .;

while
$$|\hat{\theta}_{j-1} - \hat{\theta}_j| < \varepsilon$$
, increasing j: do

$$\hat{\theta}_i = \hat{\theta}_{i-1}$$

Expectation step: all possible cases of completion of the missing data are computed: $Q(X, U) = P(X, U|o, \theta)$.;

ESS: We use the marginal probabilities to compute:

$$\bar{M}_{\theta}[u] = \sum_{m=1}^{M} \sum_{h[m] \in Val(H[m])} Q(h[m]) I\{\xi[m] < Y >= y\}.;$$

Maximisation step: compute the new estimate $\hat{\theta}_i$ given the ESS;

end

Estimate θ with the last $\hat{\theta}_j$.

Algorithm 2: The Hard version of the EM algorithm.

Choose an initial value $\hat{\theta}_0$ for θ .

while
$$|\hat{\theta}_{j-1} - \hat{\theta}_j| < \varepsilon$$
, increasing j : do

$$\hat{\theta}_i = \hat{\theta}_{i-1}$$
.

Expectation step: all possible cases of completion are computed but it selects the single assignment which maximizes: $P(h|o[m], \theta^t)$.

ESS: We use the selected marginal probability to compute:

$$\bar{M}_{\theta}[u] = \sum_{m=1}^{M} I\{\xi[m] < X >= x^{1}\}.$$

Maximisation step: compute the new estimate $\hat{\theta}_i$ given the ESS;

end

Estimate θ with the last $\hat{\theta}_j$.

APPROCCIO METODOLOGICO

IMPLEMENTAZIONE

L'algoritmo EM Soft funziona su un esempio elementare costituito da soli due nodi binari.

Validazione dei risultati: calcoli manuali.

L'algoritmo EM Soft funziona al massimo un genitore e/o un figlio. Tutti i nodi sono binari.

Validazione dei risultati: calcoli manuali e test di unità.

L'algoritmo EM Soft funziona su reti semplici. Ogni nodo ha su reti complesse. Non ci sono su reti complesse. Non ci sono limiti alla struttura della rete. Tutti i nodi sono binari.

> Validazione dei risultati: test di unità.

L'algoritmo EM Soft funziona limiti alla struttura della rete. I nodi possono assumere valori discreti.

Validazione dei risultati: test di unità.

Viene fornita l'implementazione di EM Hard e di EM (Soft) Forced. L'algoritmo funziona su tutti i tipi di rete.

Validazione dei risultati: test di unità e calcoli manuali.

FORMULAZIONE DI UN ESPERIMENTO

SPERIMENTAZIONE

Selezione e analisi delle proprietà del dataset

Definizione del numero di **repliche**

Scelta delle dimensionalità dei subset (o sample size)

Individuazione delle variabili su cui vengono generati i valori mancanti

Identificazione del tipo (MCAR, MAR o MNAR) di dato mancante

Scelta della **frequenza** di valori mancanti da generare

Generazione dei dataset parziali utilizzando il metodo ampute di Mice.

TEST ESEGUITI

SPERIMENTAZIONE

- Sulla base della **dimensione della rete**, l'algoritmo EM è stato eseguito su reti di *piccole* (2-19 nodi), *medie* (20-49 nodi) e *grandi* (>=50 nodi) dimensioni.
- Sulla base del tipo e distribuzione dei dati mancanti, l'algoritmo EM è stato sperimentato su dati MCAR, MAR e MNAR. I valori mancanti sono stati generati uniformemente su tutto il dataset o focalizzando l'attenzione su specifici nodi (nodi foglia, nodi radice, nodi più connessi...).
- Sulla base della frequenza, l'algoritmo EM è stato sperimentato su dataset che esibiscono una rara (<1%), bassa (<3%), media (<10%) e alta (>=10%) frequenza di valori mancanti.

Dataset	Network size	Distribution	Frequency of missing values	replicates	Number of data	
Asia		Random patterns	low 10		100; 200; 300; 400; 500; 1000; 1500; 2000	
	Small	MNAR e MCAR	medium 10		100; 200; 300; 400; 500; 1000; 1500; 2000	
		MINAR e MOAR	high	10	100; 200; 300; 400; 500; 1000; 1500; 2000	
Sports		Random patterns	low	10	100, 200, 400, 800, 1200, 1600, 5000	
	Small	MNAR e MCAR	high	10	100, 200, 400, 800, 1200, 1600	
		Most central nodes	low	10	100, 200, 400, 800, 1200, 1600, 2000	
			high	10	100, 200, 400, 800, 1200, 1600	
		Random patterns	low	8	200; 400; 600; 1000; 1500	
Alarm	Medium	MNAR e MCAR	medium	8	200; 400; 600; 1000; 1500	
		36 1 3	low	8	200; 400; 600; 1000; 1500	
		Most central nodes	medium	8	200; 400; 600; 1000; 1500	
	Medium	Random patterns	low	8	200, 400, 800, 1100	
		MNAR e MCAR	medium	8	400, 800, 1100	
Property		Most central nodes	low	8	200, 400, 800, 1100	
		Leaves	low	8	200, 400, 800, 1100	
		Random patterns	rare	8	300, 600, 1000, 1400	
		MNAR.	low	8	300, 600, 1000, 1400	
		Roots	rare	8	300, 600, 1000, 1400	
		With major outdegree	rare	8	300, 600, 1000, 1400	
ForMed	Large	Leaves	low	8	300, 600, 1000, 1400	
1011101		Random patterns MCAR	low	8	300, 600, 1000, 1400	
		Most central nodes	low	8	300, 600, 1000, 1400	
	Large	Random patterns	rare	8	300, 600, 1000, 1400	
Pathfinder		MNAR	low	8	1000	
		Most central nodes	low	8	300,600,1000, 1400	
		With major indegree	rare	8	300,600,1000	
		With major outdegree	rare	8	300,600,1000	
		leaves	rare	8	300,600,1000	
		Random patterns MCAR	rare	8	300,600,1000	
Hailfinder	Large	Random patterns	low	8	300, 600, 900, 1200	
		MNAR	rare	8	300, 600, 900, 1200	
		Random patterns MCAR	rare	8	300, 600, 900, 1200	
		Most central nodes	low	8	300, 600, 900, 1200	
		Leaves	low	8	300, 600, 900, 1200	

Lista degli esperimenti eseguiti.

APPROCCIO METODOLOGICO

SPERIMENTAZIONE

Una **replica** termina quando *EM Hard*, *EM Soft* e *EM Forced* hanno terminato la computazione sul dataset parziale D_i associato a rep_i .

Un' **iterazione** termina quando per un specifico sample size, tutte le repliche vengono completate.

Un **esperimento** è la computazione di tutte le iterazioni.

Iteration 1 Esperimento dataset ASIA, random patterns, tipo MCAR								
100 data	200 data	300 data	400 data	500 data	1000 data	1500 data	2000 data	
rep1	rep1	rep1	rep1	rep1	rep1	rep1	rep1	
rep2	rep2	rep2	rep2	rep2	rep2	rep2	rep2	
rep3	rep3	rep3	rep3	rep3	rep3	rep3	rep3	
rep4	rep4	rep4	rep4	rep4	rep4	rep4	rep4	
rep5	rep5	rep5	rep5	rep5	rep5	rep5	rep5	
rep6	rep6	rep6	rep6	rep6	rep6	rep6	rep6	
rep7	rep7	rep7	rep7	rep7	rep7	rep7	rep7	
rep8	rep8	rep8	rep8	rep8	rep8	rep8	rep8	
rep9	rep9	rep9	rep9	rep9	rep9	rep9	rep9	
tep10	rep10	rep10	rep10	rep10	rep10	rep10	rep10	

Esempio di esperimento condotto sul dataset ASIA.

VALUTAZIONE DEI RISULTATI

SPERIMENTAZIONE

Alla fine di ogni esperimento sono stati ricavati due tipi di risultati:

- Risultati generali derivanti dal calcolo della media e dalla deviazione standard al termine di ogni iterazione;
- Analisi node-by-node che ha lo scopo di identificare eventuali nodi appresi in modo errato.

I **risultati generali** sono stati elaborati attraverso le seguenti **metriche di valutazione**:

- Percentuale di rimpiazzamenti corretti;
- Differenza in valore assoluto tra le distribuzioni di probabilità;
- Divergenza Kullback-Leibler.

VALUTAZIONE DEI RISULTATI

SPERIMENTAZIONE

Alla fine di ogni esperimento sono stati ricavati due tipi di risultati:

- Risultati generali derivanti dal calcolo della media e dalla deviazione standard al termine di ogni iterazione;
- Analisi node-by-node che ha lo scopo di identificare eventuali nodi appresi in modo errato.

L' **analisi node-by-node** è stata effettuata considerando la distribuzione di probabilità marginale di ciascun nodo.

In particolare, al termine di ogni replica, è stata calcolata la **differenza in valore assoluto** tra i parametri della rete reale (ground truth) e quelli appresi dall'algoritmo EM.

Esempio di analisi node-by-node associato all'esperimento introdotto nella slide precedente.

VALUTAZIONE

RISULTATI E CONCLUSIONI

Grafo ottenuto dall'analisi dei risultati.

VALUTAZIONE

RISULTATI E CONCLUSIONI

Caso presentato	Algoritmo consigliato	Numero iterazioni consigliate	Breve motivazione	Dataset validato
A	EM HARD, EM SOFT	3,4	L'aumento del numero di iterazioni e di valoro mancanti non produce differenze statisticamente significative e i due algoritmi tendono ad imparare esattamente la stessa distribuzione di probabilità. Per motivi computazionali, è consigliabile impostare un numero di iterazioni basso.	ASIA ALARM
В	EM HARD	3	EM Hard tende ad avere un andamento stabile e con deviazione standard più accentuata. Al contrario, EM Soft tende ad esibire fenomeni di overfitting.	SPORTS PROPERTY
С	EM SOFT	3,4,5	EM Hard potrebbe non imparare correttamente la distribuzione uniforme dei dati e quindi apprendere meno efficacemente la distribuzione di probabilità marginale delle variabili.	SPORTS PROPERTY
D	EM HARD	3,4,5	All'aumentare dei dati, la divergenza di <i>EM SOFT</i> tende ad avvicinarsi a quella di <i>EM Hard</i> . <i>EM Hard</i> garantisce una minore deviazione standard e, conseguentemente, una minore volatilità dei risultati.	SPORTS PROPERTY
E	EM HARD	3, tante	Il fenomeno di overfitting si aggrava in <i>EM Soft</i> quanto più si aumenta il numero di iterazioni e dei valori mancanti.	FORMED HAILFINDER PATHFINDER
F	EM HARD	4, tante	EM Hard risulta essere preferibile in termini di tempo computazionale. Anche la varianza risulta essere più contenuta, riducendo il rischio di overfitting.	FORMED HAILFINDER PATHFINDER
G	EM SOFT	5, tante	EM Hard fatica ad apprendere correttamente le variabili complesse (64 possibili valori). EM Soft risulta essere più preciso e anche la divergenza risulta essere significativamente migliore.	PATHFINDER

ULTERIORI CONSIDERAZIONI

RISULTATI E CONCLUSIONI

- EM Hard converge più velocemente e con un numero di iterazioni più basso. Al contrario, EM Soft può convergere molto lentamente poiché ad ogni iterazione aggiorna i parametri con maggior cautela.
- La scelta dell'iperparametro NUMBER_ITERATION risulta essere fondamentale in *EM Soft*: un numero troppo alto potrebbe condurre a **fenomeni di overfitting**.
- Osservando gli intervalli di confidenza è possibile rimarcare che *EM Hard* fornisce risultati con una deviazione standard minore rispetto alla variante *EM Soft*. Quando non è facile stabilire quale algoritmo applicare, la scelta consigliata è quella di usare *EM Hard*.
- EM HARD è altresì consigliabile qualora le capacità hardware siano limitate e il tempo computazionale risulti essere un problema rilevante.
- Se i dati mancanti sono di tipo **MCAR** valgono, in generale, le **stesse considerazioni** effettuate per i dati mancanti di tipo MAR e MNAR. Tuttavia, il rischio di overfitting per i dati di tipo MCAR e MAR risulta essere maggiore.

QUALCHE IDEA PER IL FUTURO

SVILUPPI FUTURI

Testare l'algoritmo EM su un numero maggiore di dataset. Effettuare comparazioni tra le versioni dell'algoritmo EM e gli altri algoritmi presenti in letteratura. Adattare l'algoritmo EM a funzionare con dati di tipo stringa. Integrare questi metodi all'interno di una libreria R.

Ottimizzare

l'algoritmo EM in modo da ridurre ulteriormente i tempi di computazione e lo spazio di memoria richiesto.