

Model Development Phase Template

Date	11 July 2024
Team ID	740023
Project Title	SmartLender - Applicant Credibility Prediction for Loan Approval
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training code:

```
#decision tree model
     from sklearn.metrics import accuracy score
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.metrics import confusion_matrix, classification_report
    def DecisionTree(X_train,X_test,Y_train,Y_test):
         # Indent the code within the function
         dt=DecisionTreeClassifier()
         dt.fit(X_train,Y_train)
         yPred=dt.predict(X_test)
         acc=accuracy score(yPred,Y test)
         yPred_train = dt.predict(X_train)
         acc1=accuracy_score(yPred_train,Y_train)
         print('***DecisionTreeClassifier***')
         print('Confusion matrix')
         print(confusion_matrix(Y_test,yPred))
         print('Classification report')
         print(classification_report(Y_test,yPred))
         print('Accuracy Score of testing: ', acc)
print('Accuracy Score of training: ', acc1)
[ ] #printing the train accuracy and test accuracy respectively
    DecisionTree(X_train,X_test,Y_train,Y_test)
```



```
#Random forest model
      from sklearn.metrics import accuracy_score
      from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import confusion_matrix, classification_report # Import necessary functions
def RandomForest(X_train,X_test,Y_train,Y_test):
        rf=RandomForestClassifier()
        rf.fit(X_train,Y_train)
        yPred=rf.predict(X_test)
        acc=accuracy_score(yPred,Y_test)
yPred train = rf.predict(X train)
        acc1=accuracy_score(yPred_train,Y_train)
print('***RandomForestClassifier***')
        print('Confusion matrix')
        print(confusion_matrix(Y_test,yPred))
        print('Classification report'
        print(classification_report(Y_test,yPred))
        print('Accuracy Score of testing: ', acc)
print('Accuracy Score of training: ', acc1)
[ ] #printing the train accuracy and test accuracy respectively
      RandomForest(X_train,X_test,Y_train,Y_test)
#KNN model
      from sklearn.metrics import accuracy score
      from sklearn.neighbors import KNeighborsClassifier
      from sklearn.metrics import confusion_matrix, classification_report
     def KNN(X_train,X_test,Y_train,Y_test):
```

```
#KNN model
from sklearn.metrics import accuracy_score
from sklearn.meighbors import KNeighborsClassifier
from sklearn.metrics import confusion_matrix, classification_report
def KNN(X_train,X_test,Y_train,Y_test):
    knn=KNeighborsClassifier()
    knn.fit(X_train,Y_train)
    yPred=knn.predict(X_test)
    acc=accuracy_score(yPred,Y_test)
    yPred_train = knn.predict(X_train)
    acc1=accuracy_score(yPred_train,Y_train)
    print('***KNeighborsClassifier***')
    print('confusion_matrix(Y_test,yPred))
    print('classification_report(Y_test,yPred))
    print('classification_report(Y_test,yPred))
    print('Accuracy_score_of_training: ', acc)
    print('Accuracy_score_of_training: ', acc)
```

[97] #printing the train accuracy and test accuracy respectively
KNN(X_train,X_test,Y_train,Y_test)

```
#xgboost model
 from sklearn.metrics import accuracy_score
 from sklearn.ensemble import GradientBoostingClassifier
 from sklearn.metrics import confusion_matrix, classification_report
 def xgboost(X_train,X_test,Y_train,Y_test):
   xg=GradientBoostingClassifier()
   xg.fit(X_train,Y_train)
   yPred=xg.predict(X_test)
   acc=accuracy_score(yPred,Y_test)
   yPred_train = xg.predict(X_train)
   acc1=accuracy_score(yPred_train,Y_train)
   print('***GradientBoostingClassifier***')
   print('Confusion matrix')
   print(confusion_matrix(Y_test,yPred))
   print('Classification report')
   print(classification_report(Y_test,yPred))
   print('Accuracy Score of testing: ', acc)
print('Accuracy Score of training: ', acc1)
```

[99] #printing the train accuracy and test accuracy respectively $xgboost(X_train,X_test,Y_train,Y_test)$

Model Validation and Evaluation Report:

					F1 Scor e	
Model	Cla	ssification	Repor	rt		Confusion Matrix
Decision Tree	Classification report precises 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0	sion recall f 0.60 0.75 0.75 0.61 0.68 0.68 0.69 0.67 esting: 0.669642	1-score 0.67 0.67 0.67 0.67 0.67	support 99 125 224 224 224	67%	<pre>print(confusion_matrix(Y_test,yPred)) Confusion matrix [[74 25] [49 76]]</pre>

Random	print(cl		n_report(\	_test,yPred		<pre>print(confusion_matrix(Y_test,yPred))</pre>	
Forest	Classification rep prec		f1-score	support		75%	Confusion matrix
	0 1	0.69 0.79 0.81 0.72		99 125			[[78 21] [35 90]]
	accuracy macro avg	0.75 0.75	0.75 0.75	224 224			
	weighted avg Accuracy Score of		0.75	224			
	Accuracy Score of	training: 1.0					
KNN		classifica	tion_repo	ort(Y_test,	yPred))		<pre>print(confusion_matrix(Y_test,yPred))</pre>
KNN		classifica		ort(Y_test,	*******	66%	<pre>print(confusion_matrix(Y_test,yPred)) Confusion matrix [[68 33]</pre>
KNN	print(classifica on report		f1-score	*******	66%	Confusion matrix
KNN	print(classifica on report precision	recall	f1-score	support	66%	Confusion matrix [[68 33]
KNN	print(Classification	classifica on report precision 0.62	recall	f1-score 0.65 0.66	support	66%	Confusion matrix [[68 33]

Gradient	_		ficatio	n_repor	t(Y_test,yPred))			<pre>print(confusion_matrix(Y_test,yPred))</pre>
Boosting	Classification p	report recision	recall	f1-score	support		70%	Confusion matrix [[73 26]
	0 1	0.63 0.76	0.74 0.66	0.68 0.71	99 125			[42 83]]
	accuracy macro avg weighted avg	0.70 0.71	0.70 0.70	0.70 0.70 0.70	224 224 224			
	Accuracy Score Accuracy Score							