ORACLE* Academy

Programación de Bases de Datos con SQL

7-2
Uniones No Igualitarias y
Uniones Externas de Oracle

Objetivos

En esta lección, aprenderá a:

- Crear y ejecutar una sentencia SELECT para acceder a los datos desde más de una tabla utilizando una unión no igualitaria
- Crear y ejecutar una sentencia SELECT para acceder a los datos desde más de una tabla utilizando una unión externa de Oracle

Copyright © 2019, Oracle y/o sus filiales. Todos los derechos reservados.

Objetivo

- ¿Qué ocurre si desea recuperar los datos de una tabla que no tiene ninguna columna correspondiente en otra tabla?
- Por ejemplo, su nota porcentual en matemáticas (92) está almacenada en la columna GRADES de una tabla; la nota con letra está almacenada en la columna LETTER_GRADE de otra tabla.
- ¿Cómo podemos unir la nota numérica con la nota con letra?
- Cuando los datos se registran utilizando un rango, la recuperación es la tarea de una unión no igualitaria.

Objetivo

- Las uniones de Oracle que ha estudiado hasta el momento han devuelto filas con un valor coincidente en ambas tablas.
- Las filas que no cumplían esas condiciones simplemente no se incluyeron.
- Sin embargo, en ocasiones, desea que se devuelvan todos los datos de una de las tablas, incluso aunque no haya datos coincidentes en la otra tabla.
- En esta lección también se tratarán las uniones externas de Oracle para solucionar este problema.

Unión no igualitaria

• Ejemplo:

- Suponga que desea conocer el valor grade_level para el salario de cada empleado.
- La tabla job_grades no tiene una columna común con la tabla employees.
- Una unión igualitaria nos permite unir las dos tablas.

tabla job_grades

GRADE_LEVEL	LOWEST_SAL	HIGHEST_SAL
Α	1000	2999
В	3000	5999
С	6000	9999
D	10000	14999
E	15000	24999
F	25000	40000

Unión no igualitaria

- Ya que no hay ninguna coincidencia exacta entre las dos columnas de cada tabla, el operador de igualdad = no se puede utilizar.
- Aunque se pueden utilizar las condiciones de comparación como < = y > =, BETWEEN... AND es una forma más efectiva de ejecutar una unión no igualitaria.
- Una unión no igualitaria es equivalente a ANSI JOIN ON (donde la condición utilizada es algo distinto al signo igual).

Unión no igualitaria

```
SELECT last_name, salary, grade_level, lowest_sal, highest_sal FROM employees, job_grades
WHERE (salary BETWEEN lowest_sal AND highest_sal);
```

LAST_NAME	SALARY	GRADE_LEVEL	LOWEST_SAL	HIGHEST_SAL
Vargas	2500	A	1000	2999
Matos	2600	A	1000	2999
Davies	3100	В	3000	5999
Rajs	3500	В	3000	5999
Lorentz	4200	В	3000	5999
Whalen	4400	В	3000	5999
Mourgos	5800	В	3000	5999
Fay	6000	С	6000	9999
•••				

- Una unión externa se utiliza para ver las filas que tengan un valor correspondiente en otra tabla, más aquellas filas de una de las tablas que no tengan ningún valor coincidente en la otra tabla.
- Para indicar qué tabla puede tener datos que faltan mediante la sintaxis de unión de Oracle, agregue un signo más (+) después del nombre de columna de la tabla en la cláusula WHERE de la consulta.

- Esta consulta devolverá los apellidos de todos los empleados, incluidos aquellos que estén asignados a un departamento y los que no.
- Se podrían obtener los mismos resultados mediante ANSI LEFT OUTER JOIN.

```
SELECT e.last_name, d.department_id,
  d.department_name
FROM employees e, departments d
WHERE e.department_id =
    d.department_id(+);
```

LAST_NAME	DEPT_ID	DEPT_NAME
Whalen	10	Administration
Fay	20	Marketing
Hartstein	20	Marketing
Vargas	50	Shipping
Higgins	110	Accounting
Grant	-	-

- Esta unión externa devolvería todos los ID de departamento y los nombres de departamento, tanto aquellos que tengan empleados asignados como los que no.
- Se podrían obtener los mismos resultados mediante ANSI RIGHT OUTER JOIN.

```
SELECT e.last_name, d.department_id,
  d.department_name
FROM employees e, departments d
WHERE e.department_id(+) =
    d.department_id;
```

LAST_NAME	DEPT_ID	DEPT_NAME
Whalen	10	Administration
Hartstein	20	Marketing
Fay	20	Marketing
Mourgos	50	Shipping
Gietz	110	Accounting
-	190	Contracting

- No es posible tener el equivalente de FULL OUTER JOIN mediante la adición de un signo (+) a ambas columnas de la condición de unión.
- Si se intenta realizar esto, se produce un error.

```
SELECT e.last_name, d.department_id, d.department_name
FROM employees e, departments d
WHERE e.department_id(+) = d.department_id(+);
```


 Se muestran las variaciones de sintaxis de la unión externa.

```
SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column = table2.column(+);
```

```
SELECT table1.column, table2.column
FROM table1, table2
WHERE table1.column(+) = table2.column;
```

```
SELECT table1.column, table2.column
FROM table1, table2
NEVER table1.column(+) = table2.column(+);
```


Unión Externa y Equivalentes ANSI

• En la siguiente tabla se muestran las uniones ANSI/ISO SQL: 99 y sus uniones externas equivalentes de Oracle.

ANSI/ISO SQL	Sintaxis de Oracle	
<pre>LEFT OUTER JOIN departments d ON (e.department_id = d.department_id);</pre>	<pre>WHERE e.department_id = d.department_id(+);</pre>	
<pre>RIGHT OUTER JOIN departments d ON (e.department_id = d.department_id);</pre>	<pre>WHERE e.department_id(+) = d.department_id;</pre>	
<pre>FULL OUTER JOIN departments d ON (e.department_id = d.department_id);</pre>	Ningún equivalente directo.	

14

Terminología

Entre los términos clave utilizados en esta lección se incluyen:

- Unión no igualitaria
- BETWEEN...AND
- Uniones Externas

Resumen

En esta lección, ha aprendido lo siguiente:

- Crear y ejecutar una sentencia SELECT para acceder a los datos desde más de una tabla utilizando una unión no igualitaria
- Crear y ejecutar una sentencia SELECT para acceder a los datos desde más de una tabla utilizando una unión externa de Oracle

Academy

Academy