NANYANG TECHNOLOGICAL UNIVERSITY SCHOOL OF ELECTRICAL & ELECTRONIC ENGINEERING EE4341 ADVANCED ANALOG CIRCUITS TUTORIAL 2

1. Calculate the mean-squared noise-voltage spectral density in V^2/Hz at v_o for the circuit in Fig. 1 and then calculate the rms noise voltage in a 100 kHz equivalent noise bandwidth. Neglect capacitive effects, flicker noise and series resistance in the diode. Assume that $V_D = 0.60V$. Boltzmann's constant $k = 1.38 \times 10^{-23}$ J/K, $q = 1.6 \times 10^{-19}$ C and T = 300K. If a 1000 pF capacitor is now connected across the diode, including flicker noise, calculate and plot the output mean-squared noise voltage spectral density at v_o in V^2/Hz on log scales from f = 1Hz to f =10 MHz.

Fig. 1

2. The amplifier circuit in Fig. 2 has a -3dB bandwidth of 10 kHz (single-pole response). Boltzmann's constant $k = 1.38 \times 10^{-23}$ J/K, $q = 1.6 \times 10^{-19}$ C and T = 300K. Ignoring flicker noise and the thermal noise of the load resistance, determine the value of v_s so that SNR = 0 dB. Show that if a BJT is driven from a signal source with a source resistance R_s , the value of biasing collector current for maximum sensitivity is given by the following expression.

$$I_c = \frac{V_T \sqrt{\beta}}{R_s + {r_{bb}}'}$$
, where $V_T = kT/q$.

Determine the value of I_c for max SNR for the amplifier circuit shown in Fig. 2. What is v_s for SNR = 0 dB under the new biasing condition? | Answer $I_C = 2.9 \text{ mA}$ $V_s = 176 \text{ nV}$ |

Fig. 2