Mikroskopia optyczna

Prowadzący: dr inż. Wojciech Krauze

Wykonał:

Oleg Łyżwiński 305158

Cel projektu

Celem projektu była analiza danych zawierających jedno pole widzenia z zestawu FISH 550000013. Dane zawierały komórki mięśni poprzecznie prążkowanych serca (hiPSC-derived cardiomyocytes).

Parametry układu

Dane były zbierane za pomocą mikroskopu 3i spinning-disk (mikroskop konfokalny z dyskiem Nipkova) wyposażonego w obiektyw 63x/1.2 W C-Apochromat Korr UV-vis IR objective (Zeiss) oraz soczewkę tubusową 0.83x. Uzyskano finalne powiększenie równe 52.29x. Zastosowano głowicę z wirującym dyskiem CSU-W1 (Yokogawa) oraz kamerę Prime BSI sCMOS (rozmiar piksela 0,124 μm w X-Y, krok skanowania wosi z 0,33 μm). Do obrazowania fluorescencyjnego wykorzystano standardowe linie laserowe (405, 488, 561, 640 nm oraz następujące zestawy filtrów pasmowo-przepustowych (BP) (Chroma):

- 450/50 nm do detekcji DAPI (jest to fluorescencyjnym barwnikiem używanym do barwienia DNA. DAPI wiąże się silnie z bogatymi w adenozynę i tyminę regionami DNA, co umożliwia wizualizację jądra komórkowego. DAPI emituje niebieskie światło, gdy jest wzbudzany światłem o długości fali 358 nm, a jego emisja ma maksimum około 461 nm. Stosowany jest głównie w mikroskopii fluorescencyjnej do wykrywania i wizualizacji jądra komórkowego w preparatach biologicznych.),
- 525/50 nm do detekcji mEGFP (enhanced Green Fluorescent Protein to zmutowana wersja zielonego białka fluorescencyjnego. Emituje zielone światło, gdy jest wzbudzany światłem o długości fali około 488 nm, a jego maksimum emisji wynosi około 509 nm. Stosowany jest do oznaczania białek.),
- 600/50 nm do detekcji barwnika Alexa 546 (to barwnik fluorescencyjny emitujący światło w czerwono-pomarańczowym zakresie widma. Alexa 546 jest wzbudzana światłem o długości fali około 556 nm, a jej maksimum emisji wynosi około 573 nm. Stosowany jest w technikach immunofluorescencji, Fluorescence in situ hybridization (FISH) oraz w znakowaniu kwasów nukleinowych i białek.),
- 690/50 nm do detekcji barwnika Alexa 647 (Alexa Fluor 647 to barwnik fluorescencyjny emitujący światło w dalekiej czerwieni. Alexa 647 jest wzbudzana światłem o długości fali około 650 nm, a jej maksimum emisji wynosi około 668 nm. Pasmo 690/50 nm obejmuje część tej emisji. Stosowany jest w zaawansowanych technikach mikroskopii fluorescencyjnej, w tym w obrazowaniu wielokolorowym).

W przypadku wszystkich obrazowań żywych komórek, komórki obrazowano w pozbawionym czerwieni fenolowej RPMI-1640 (Gibco #11835030) uzupełnionym pożywką insulinową zawierającą B27, w komorze inkubacyjnej utrzymującej temperaturę 37°C i 5% CO2. Obrazy jasnego pola uzyskano przy użyciu źródła światła LED o szczytowej emisji 740 nm w wąskim zakresie i filtra BP 706/95 nm do zbierania obrazów w jasnym polu.^[1]

Poniżej przedstawiono sześć kanałów wczytanych dla pola widzenia nr. 10:

Gdzie:

- CO białka beta-myosin heavy chain MYH7,
- C1 DNA, użyty barwnik FISH (Fluorescence In Situ Hybridization),
- C2 oraz C4- kanał światła białego,
- C3 alpha-myosin heavy chain MYH6
- C5 białka formujące wiązki mikrofilamentów, użyty barwnik mEGFP.

Wstępne przygotowanie obrazów.

Wczytane obrazy poddano dwóm filtracjom: gaussowskiej z sigmą równą 9 oraz medianowej z rozmiarem macierzy 12.

```
# Filtracja medianowa i gaussowska
layer_gaussian_filtered = gaussian_filter(layer, sigma=9)
layer_median_filtered = median_filter(layer, size=12)
```

Poniżej przedstawiono obrazy po filtracji

Oryginalny obraz

Filtracja gaussowska

Filtracja medianowa

Uzyskano następujące wartości odchylenia standardowego tła dla poszczególnie przefiltrowanych obrazów:

```
Odchylenie standardowe tła oryginalnego obrazu : 4.167875212310873
Odchylenie standardowe tła po filtracji medianowej : 1.6740708092209582
Odchylenie standardowe tła po filtracji gausowskiej : 1.5949144596368399
```

Segmentacja

Kolejnym krokiem było przygotowanie obrazu zawierającego zaznaczoną komórkę. W tym celu w programie Napari utworzono warstwę, na której zaznaczono jedną z komórek po czym przerobiono warstwę na plik .tif, który wykorzystano w celu nauczenia sieci neuronowej rozpoznawania obszaru zawierającego DNA:

Wykonano segmentację wykorzystując klasę ObjectSegmenter z biblioteki napari-accelerated-pixel-and-objectclassification. Poniżej przedstawiono kod służący do treningu oraz predykcji:

Uzyskano następującą warstwę z zaznaczonymi komórkami:

Wykorzystując poniższy algorytm odfiltrowano z warstwy oznaczone komórki, które były połączone lub nie znajdowały się w pełni w polu widzenia:

```
def remove_joined_and_incomplete_cells(labels):
    # Usuniecie małych obiektów
    labels = remove_small_objects(labels, min_size=4000)
# Otwarcie morfologiczne w celu poprawy segmentacji
labels = opening(labels, square(3))
# Pobranie właściwości obiektów
properties = regionprops(labels)
final_labels = np.zeros_like(labels)

for prop in properties:
    # Sprawdzenie, czy obiekt jest wystarczająco okrągły (ekscentryczność < 0.85)
# oraz czy jest zwarty (solidity > 0.95)
if prop.eccentricity < 0.85 and prop.solidity > 0.95:
    minr, minc, maxr, maxc = prop.bbox
# Sprawdzenie, czy obiekt jest w pełni zawarty w granicach obrazu
    if minr > 0 and minc > 0 and maxr < labels.shape[0] and maxc < labels.shape[1]:
    # Przypisanie etykiety do finalnego obrazu
    final_labels[labels == prop.label] = prop.label</pre>
```

Uzyskano następujący obraz z zaznaczonymi komórkami:

Segmentacja na podstawie przetwarzania obrazu

Wykonano segmentacje jąder komórkowych za pomocą klasycznej segmentacji. Wykorzystano do tego binaryzację Otsu, usuwanie małych obiektów, sprawdzenie okrągłości oraz zwartości. Poniżej przedstawiono kod wykonujący wyżej wymienione operacje:

```
def segment(image):
    # threshold Otsu
    thresh = threshold_otsu(image)
    bw = closing(image > thresh, square(3))
    cleared = clear_border(bw)

# usuniecie malych obiektów
    cleared = remove_small_objects(cleared, min_size=8000)

# otwarcie morfologiczne
    cleared = opening(cleared, square(5))

label_image = label(cleared)

# pomiar obszarów
    properties = measure.regionprops(label_image)

final_labels = np.zeros_like(label_image)

for prop in properties:
    # Sprawdzenie, czy obiekt jest wystarczająco okrągły (ekscentryczność < 0.85)
    # oraz czy jest zwarty (solidity > 0.95)
    if prop.eccentricity < 0.85 and prop.solidity > 0.95:
        minr, minc, maxr, maxc = prop.bbox
        # Sprawdzenie, czy obiekt jest w pełni zawarty w granicach obrazu
        if minr > 0 and minc > 0 and maxr < label_image.shape[0] and maxc < label_image.shape[1]:
        # Przypisanie etykiety do finalnego obrazu
        final_labels[label_image == prop.label] = prop.label

return final_labels</pre>
```

Poniżej przedstawiono efekt segmentacji opartej na binaryzacji (dla jednej warstwy):

Uzyskana warstwa z zaznaczonymi komórkami zawiera 17 zaznaczonych obszarów, jest to efekt identyczny do uzyskanego w wyniku segmentacji z użyciem sieci neuronowych. Zaletom algorytmu segmentującego komórki na podstawie binaryzacji jest trzy razy krótszy czas obliczeń.

Uzyskane wyniki pomiarów

Wykorzystując funkcję (Tools -> Measurement tables -> Statistics of labelled pixels) wbudowaną w Napari wykonano pomiar jąder komórkowych. Uzyskano nstępujące wyniki:

	min_x	_min_y	_min_z	_max_x	_max_y	_max_z	_width	_height	_depth	area	objętośc um
0	578	38	0	1721	541	24	1144	504	25	395227	18,33609
1	575	194	0	1557	544	23	983	351	24	359019	15,99001
2	503	209	0	1360	762	23	858	554	24	118586	5,28159
3	15	229	1	1358	767	21	1344	539	21	226689	8,834252
4	123	266	0	1227	688	19	1105	423	20	188762	7,005911
5	130	392	0	1702	1228	19	1573	837	20	115707	4,294471
6	130	565	0	1703	1260	19	1574	696	20	107563	3,992206
7	405	648	0	1559	1340	16	1155	693	17	102264	3,226203
8	399	676	1	1701	1489	17	1303	814	17	155285	4,898899
9	544	739	0	1702	1674	18	1159	936	19	130181	4,59009
10	539	859	1	1701	1676	17	1163	818	17	137277	4,330786
11	442	859	0	1699	1691	17	1258	833	18	145502	4,860282
12	542	1117	0	1757	1711	17	1216	595	18	140944	4,708029
13	433	1190	0	1763	1694	16	1331	505	17	129771	4,093988
14	429	1366	0	1764	1712	16	1336	347	17	113500	3,580674

Wartość objętości wyznaczono na podstawie wzoru:

$$V_{Vrzeczywista} = \frac{area \cdot (pixel_{size})^2 \cdot dpath \cdot step_z}{M}$$

gdzie:

 $pixel_{size} = 0,124 \, \mu m$

 $step_z = 0.33 \, \mu m$

Powiększenie: M = 52,29 x

Dwie pierwsze wartości (index 0 i 1) znacząco odbiegają od pozostałych, zostały więc usunięte z dalszych rozważań.

Poniżej przedstawiono wykres pudełkowy dla pozostałych danych:

Na podstawie wykresu pudełkowego należy odrzucić wartości $8.834251683~\mu m^3$ i $7.00591062~\mu m^3$.

Uzyskano następującą wartość objętości jąder komórkowych:

Średnia objętość jądra komórkowego	4,350656 μm ³		
Odchylenie standardowe	0,605570 μm ³		

[1] Kaytlyn A. Gerbin, Tanya Grancharova, Rory M. Donovan-Maiye, Melissa C. Hendershott, Helen G. Anderson, Jackson M. Brown, Jianxu Chen, Stephanie Q. Dinh, Jamie L. Gehring, Gregory R. Johnson, HyeonWoo Lee, Aditya Nath, Angelique M. Nelson, M. Filip Sluzewski, Matheus P. Viana, Calysta Yan, Rebecca J. Zaunbrecher, Kimberly R. Cordes Metzler, Nathalie Gaudreault, Theo A. Knijnenburg, Susanne M. Rafelski, Julie A. Theriot, Ruwanthi N. Gunawardane, Cell states beyond transcriptomics: Integrating structural organization and gene expression in hiPSC-derived cardiomyocytes, Volume 12, Issue 6, 2021,Pages 670-687.e10,ISSN 2405-4712, https://doi.org/10.1016/j.cels.2021.05.001.