Scilab Textbook Companion for Operational Amplifiers And Linear Integrated Circuits

by R. F. Coughlin And F. F. Driscoll¹

Created by Chandan C B E

Instrumentation Engineering
Sri Jayachamarajendra college of Engineering
College Teacher
Rathnakara S
Cross-Checked by
Mukul Kulkarni

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Operational Amplifiers And Linear Integrated Circuits

Author: R. F. Coughlin And F. F. Driscoll

Publisher: Prentice Hall

Edition: 5

Year: 1998

ISBN: 0132285037

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
2	First Experiences with an opamp	6
3	Inverting and Noninverting Amplifiers	11
4	Comparators and Controls	25
5	Selected Applications of Opamp	30
6	Signal Generators	39
7	OpAmps With Diodes	46
8	Differential Instrumentation and Bridge Amplifiers	47

List of Scilab Codes

Exa 2.1	ProbOnOutputvoltage	6
Exa 2.2	ProbOnPWM	Ĝ
Exa 2.3	ProbOnHighTime	10
Exa 3.1	ProbOnOpampDescriptions	11
Exa 3.2	ProbOnCurrentinOpamp	12
Exa 3.3	ProbOnOpampParameters	12
Exa 3.4		13
Exa 3.5	ProbOnVoltageGain	14
Exa 3.6	ProbonOutputVoltage	15
Exa 3.7	ProbOnOutputvoltage	15
Exa 3.8	ProbOnOutputvoltage	16
Exa 3.9	ProbOnOutputvoltage	16
Exa 3.10	ProbOnDCVoltage	17
Exa 3.11	ProbonThreeChannelInvertingAmplifier	18
Exa 3.12	ProbOnOutputvoltage	19
Exa 3.13		20
Exa 3.14		20
Exa 3.15		22
Exa 3.16		22
Exa 3.17		23
Exa 3.18		24
Exa 4.1		25
Exa 4.2		25
Exa 4.3		26
Exa 4.4		26
Exa 4.5		27
Exa 4.6		28
Exa. 5.1		30

Exa 5.2	ProbOnInputResistance
Exa 5.3	DesignASimpleSwitchArrangement
Exa 5.4	ProbOnZenerCurrentAndVoltage
Exa 5.5	ProbOnOpampParameters
Exa 5.6	ProbOnOpampParameters
Exa 5.7	ProbOnOpampParameters
Exa 5.8	ProbOnShortCircuitCurrent
Exa 5.9	ProbOnPhotoDetectors
Exa 5.10	ProbOnPhotoDetector
Exa 5.11	ProbOnOpticalCoupler
Exa 5.12	ProbonCurrentDivider
Exa 5.13	ProbOnPhaseShifter
Exa 5.14	ProbOnPhaseAngle
Exa 6.1	ProbOnThresholdVoltage
Exa 6.2	ProbOnMultivibrator
Exa 6.3	ProbOnFrequency
Exa 6.5	ProbOnDurationOfOutputPulse
Exa 6.6	ProbonTriangularGenerator
Exa 6.7	ProbOnUnipolarTriangularWaveGenerator 4
Exa 6.8	DesignOnSawtoothWaveGenerator
Exa 6.9	ProbOnFrequency
Exa 6.10	ProbOnFrequency
Exa 6.12	ProbOnAD639A
Exa 6.13	ProbOnFrequency
Exa 7.1	ProbOnDeadZoneCircuit
Exa 8.1	ProbOnOutputVoltage
Exa 8.2	ProbOnDifferentialAmplifier
Exa 8.3	ProbOnVoltageGain
Exa 8.4	ProbOnVoltageGain
Exa 8.5	ProbOnInstrumentationAmplifier
Exa 8.6	ProbOnCollectorVoltage
Exa 8.7	ProbOnVoltages
Exa 8.8	ProbOnVtoIConverter
Exa 8.9	ProbOnStrainGage
Exa 8.10	ProbOnWheatstoneBridge
Exa 8 11	ProbOnAD620 5

Chapter 2

First Experiences with an opamp

Scilab code Exa 2.1 ProbOnOutputvoltage

```
1 //Chapter 2
\frac{2}{\text{Example }}2-1
3 //ProbOnOutputvoltage
4 //Page 19, figure 2-3
5 clear; clc;
6 //Given
7 Vplus=15; Vminus=-15; Vsatp=13; Vsatm=-13; // All in
      Volts
8 Ao1=200000; //gain
9 //Example 2-1(a)
10 Vam = -10*(10^-6); //voltage at minus input
11 Vap=-15*(10^-6);//voltage at plus input
12 Ed1=Vap-Vam; // Differential Input Voltage
13 Vout1=Ed1*Aol; // Output Voltage
14 format(10);
15 if (Vout1>15) then
     disp("Value of o/p voltage1 = 13.0000V") //
        positive saturation voltage
17 elseif (Vout1 < -15) then
```

```
disp("Value of o/p voltage1 = -13.0000V")//
18
        negative saturation voltage
19 else
     printf("\n Value of o/p voltage1 = %.4 f V \n"
20
        , Vout1)
21 end
22
23 / \text{Example } 2 - 1(b)
24 Vbm = -10*(10^-6); //voltage at minus input
25 Vbp=+15*(10^-6); //voltage at plus input
26 Ed2=Vbp-Vbm; // Differential Input Voltage
27 Vout2=Ed2*Aol;//Output Voltage
28 format(10);
29 if(Vout2>15) then
     disp("Value of o/p voltage2 = 13.0000V")//positive
30
         saturation voltage
31 elseif(Vout2<-15) then
32
     disp("Value of o/p voltage2 = -13.0000V")//
        negative saturation voltage
33 else
     printf("\n Value of o/p voltage2 = %.4 f V \n"
34
        , Vout2)
35 end
36
37 //Example 2-1(c)
38 Vcm = -10*(10^-6); // voltage at minus input
39 Vcp=-5*(10^-6); // voltage at plus input
40 Ed3=Vcp-Vcm; // Differential Input Voltage
41 Vout3=Ed3*Aol;//Output Voltage
42 format(10);
43 if (Vout3>15) then
     disp("Value of o/p voltage3 = 13.0000V")//positive
44
         saturation voltage
45 elseif (Vout3 < -15) then
     disp("Value of o/p voltage3 = -13.0000V")//
        negative saturation voltage
47 else
     printf("\n\ Value of o/p voltage3 = %.4 f V \n\"
48
```

```
, Vout3)
49 end
50
51 / \text{Example } 2-1(d)
52 Vdm=+1.000001; // voltage at minus input
53 Vdp=+1.000000; //voltage at plus input
54 Ed4=Vdp-Vdm; // Differential Input Voltage
55 Vout4=Ed4*Aol;//Output Voltage
56 format(10);
57 if (Vout4>15) then
     disp("Value of o/p voltage4 = 13.0000V")//positive
58
         saturation voltage
59 elseif (Vout4<-15) then
     disp("Value of o/p voltage4 = -13.0000V")//
60
        negative saturation voltage
61 else
     printf("\n Value of o/p voltage4 = %.4 f V \n"
62
        , Vout4)
63 end
64
65 / \text{Example } 2 - 1(e)
66 Vem=+5*(10^-3);//voltage at minus input
67 Vep=0; //voltage at plus input
68 Ed5=Vep-Vem; // Differential Input Voltage
69 Vout5=Ed5*Aol; // Output Voltage
70 format(10);
71 if (Vout5>15) then
     disp("Value of o/p voltage5 = 13.0000V")//positive
72
         saturation voltage
73 elseif(Vout5<-15) then
     disp("Value of o/p voltage5 = -13.0000V")//
74
        negative saturation voltage
75 else
     printf("\n Value of o/p voltage5 = %.4 f V \n"
76
        , Vout5)
77 end
78
79 //Example 2-1(f)
```

```
80 Vfm=0; //voltage at minus input
81 Vfp=+5*(10^-3); // voltage at plus input
82 Ed6=Vfp-Vfm; // Differential Input Voltage
83 Vout6=Ed6*Aol;//Output Voltage
84 format(10);
85 if (Vout6>15) then
     disp("Value of o/p voltage6 = 13.0000V")//positive
86
         saturation voltage
87 elseif (Vout6 < -15) then
     disp("Value of o/p voltage6 = -13.0000V")//
        negative saturation voltage
89 else
90
    printf("\n\ Value of o/p voltage6 = %.4 f V \n\"
        , Vout6)
91 end
```

Scilab code Exa 2.2 ProbOnPWM

```
1 //Chapter 2
2 //Example 2-2
3 //ProbOnPWM
4 //Page 34
5 clear; clc;
6 //Given
7 f=50; // in Hz
8 Vtemp=4; //input signal in volts
9 Ecm=10; //maximum peak voltage of sawtooth carrier wave in volts
10
11 //Example 2-2(a)
12 T=1/f;
13 Th=(Vtemp*T)/Ecm; // High time in seconds
14 printf("\n\n High Time = %.4 f s \n\n", Th)
```

```
15
16 //Example 2-2(b)
17 d=(Th/T)*100;//duty cycle in percentage
18 printf("\n\n Duty cycle = %.4 f percent \n\n",d)
```

Scilab code Exa 2.3 ProbOnHighTime

```
1  //Chapter 2
2  //Example 2-3
3  //ProbOnHighTime
4  //Page 34,35, figure 2-16(d)
5  clear; clc;
6  //Given
7  Vtemp=4; //in volts
8  Ecm=5; //maximum peak voltage of a sawtooth carrier wave
9  T=0.01; //in seconds
10  //calculate
11  Th=T*(1-(Vtemp/Ecm)); // High Time
12  printf("\n\n High Time = %.4 f s \n\n", Th)
```

Chapter 3

Inverting and Noninverting Amplifiers

Scilab code Exa 3.1 ProbOnOpampDescriptions

```
1 //Chapter 3
2 //Example 3-1
3 //ProbOnOpampDescriptions
4 // Page 46,47 figure 3-1
5 clear; clc;
6 //Given
7 Rf=100*(10^3); // Feedback Resistance in ohms
8 Ri=10*(10^3);//Input Resistance in ohms
9 Ei=1;//Input volts
10 // Calculate
11 //Example 3-1(a)
12 I=Ei/Ri; // Equation for current through Rf
13 printf("\n Current through Rf = \%.4 f A \n",I)
14 //Example 3-1(b)
15 Vout = - (Rf/Ri) * Ei; // Equation for Output Voltage
16 printf("\n Value of output voltage = \%.4 f V \n"
      , Vout)
17 //Example 3-1(c)
18 Acl=-(Rf/Ri);//Closed loop gain of the amplifier
```

```
19 printf("\n\n Value of closed loop gain = \%.4 \, f \ \n\n", Acl)
```

Scilab code Exa 3.2 ProbOnCurrentinOpamp

```
1 //Chapter 3
2 //Example 3-2
3 //ProbOnCurrentinOpamp
4 //Page 47, figure 3-2
5 clear; clc;
6 //Given
7 Vout=10; //output voltage
8 I=0.1*(10^-3);//current through Rf in amperes
9 Rl=25*(10^3);//Load resistance in ohms
10 // Calculate
11 //Example 3-1(a)
12 Il=Vout/R1;
13 printf("\n\n Value of load current = \%.4 f A \setminus n \setminus n",
      I1)
14 //Example 3-1(b)
15 Iout=I+I1;
16 printf("\n\n Total current into the output pin of
      the opamp = \%.4 \, f \, A \, \ln n, Jout)
17 printf("\n\n The input resistance seen by Ei is Ri.
      In order to keep input resistance of the circuit
      high. Ri should be equal to or greater than 10
      KiloOhm")
```

Scilab code Exa 3.3 ProbOnOpampParameters

```
1 //Chapter 3
\frac{2}{\sqrt{\text{Example }3-3}}
3 //ProbOnOpampParameters
4 / Page 48,49, figure 3-2
5 clear; clc;
6 //Given
7 Rf=250*(10^3); //Feedback Resistance in Ohms
8 Ri=10*(10^3);//Input Resistance in Ohms
9 Ei=0.5; //Input voltage
10 // Calculate
11 //Example 3-3(a)
12 I=Ei/(Ri);
13 printf("\n Value of current through Rf = \%.6 f A \n
      n \setminus n", I)
14 //Example 3-3(b)
15 VRf = I * Rf;
16 printf("\n\n Voltage through Rf = \%.4 \text{ f V } \text{ } \text{n}", VRf)
17 //Example 3-3(c)
18 Ei1=-0.5;
19 Vout = -(Rf/Ri) * Ei1;
20 printf("\n\n Output Voltage = \%.4 f V \n\n", Vout)
21 printf("\n Thus the magnitude of the output
      voltage does equal the voltage across Rf and Acl
      =-25")
```

Scilab code Exa 3.4 ProbOnOpampResistance

```
1 //Chapter 3
2 //Example 3-4
3 //ProbOnOpampResistance
4 //Page 49
5 clear; clc;
6 //Given
```

```
7  Vout=12.5; //in volts
8  Il=2*10^-3; //in amperes
9  Rl=Vout/Il; //Load resistance in ohm
10  //example 3-4(a)
11  printf("\n\n Value of Load Resistance = %.8 f ohm \n \n", Rl)
12  //example 3-4(b)
13  I=0.05*10^-3;
14  Iout=I+Il;
15  printf("\n\n Value of output current = %.8 f amp \n\n", Iout)
16  //example 3-4(c)
17  printf("\n\n The circuit input resistance is Rl=10 Kohm")
```

Scilab code Exa 3.5 ProbOnVoltageGain

```
1 //Chapter 3
2 //Example 3-5
3 //ProbOnVoltageGain
4 //Page 50, figure 3-3
5 clear; clc;
6 //Given
7 Rf=20*10^3;
8 Ri=10*10^3;
9 Acl=-(Rf/Ri); //Voltage Gain
10 printf("\n\n Value of Voltage Gain = %.6 f \n\n", Acl)
```

Scilab code Exa 3.6 ProbonOutputVoltage

```
1 //Chapter 3
2 //Example 3-6
3 //ProbonOutputVoltage
4 //Page 51
5 clear; clc;
6 Ei=-5; //input voltage
7 Acl=-2; // Voltage Gain
8 Vout=Ei*Acl; //output voltage
9 printf("\n\n Value of Output Voltage = %.4f V \n\n", Vout)
```

This code can be downloaded from the website wwww.scilab.in

Scilab code Exa 3.7 ProbOnOutputvoltage

```
1 //Chapter 3
2 //Example 3-7
3 //ProbOnO/Pvoltage
4 //Page 51
5 clear; clc;
6 Ri=10*10^3; //input resistance in ohm
7 Gain= 25;
8 Rf=Gain*Ri; //feedback resistance in ohm
9 printf("\n\n Value of Rf = %.4 f ohm \n\n", Rf)
10 xcos('Figure3_7.xcos');
```

Scilab code Exa 3.8 ProbOnOutputvoltage

```
1 //Chapter 3
2 //Example 3-8
3 //ProbOnO/Pvoltage
4 //Page 52, Figure 3-4
5 clear; clc;
6 //Given
7 E1=2; E2=3; E3=1; //input voltage
8 R=10*10^3; //in ohm
9 Vout=-(E1+E2+E3);
10 printf("\n\n Value of o/p voltage = %.4 f V \n\n", Vout)
```

Scilab code Exa 3.9 ProbOnOutputvoltage

```
1 //Chapter 3
2 //Example 3-9
3 //ProbOnO/Pvoltage
4 //Page 53, Figure 3-4
5 clear; clc;
6 //Given
7 E1=2; E2=3; E3=-1; //input voltage
8 R=10*10^3; //in ohm
9 Vout=-(E1+E2+E3);
10 printf("\n\n Value of o/p voltage = %.4 f V \n\n", Vout)
```

This code can be downloaded from the website wwww.scilab.in

Scilab code Exa 3.10 ProbOnDCVoltage

```
1 //Chapter 3
 2 //Example 3-10
 3 //ProbOnDCVoltage
4 //Page 53,54
5 clear; clc;
6 xcos('Figure3_10.xcos');
 7 //Figure 3-5(b)
8 x = [0 1 2]
9 y = [-5, 5, -5]
10 subplot (2,2,1)
11 a = gca()
12 a.thickness = 1;
13 a.x_location = 'middle';
14 plot2d(x,y,style=3,rect=[0,-5,2,5])
15 xtitle ( " \operatorname{Eac}\ \operatorname{Vs}\ \operatorname{t} " , " \operatorname{t}(\operatorname{ms}) " , " \operatorname{Eac}(\operatorname{V}) " );
16 subplot (2,2,2)
17 x1 = [0 \ 0.5 \ 1 \ 1.5 \ 2]
18 \quad y1 = [10 \quad 5 \quad 0 \quad 5 \quad 10]
19 \quad a = gca()
20 a.thickness = 1;
21 a.x_location = 'middle';
22 \text{ plot2d}(x1,y1,style=3,rect=[0,-15,2,15])
23 xtitle ("Edc Vs t", "t(ms)", "Edc(V)");
24 \quad y2 = [5 \quad 0 \quad -5 \quad 0 \quad 5]
25 y3 = [-2.5 -7 -12.5 -7 -2.5]
26 \text{ plot2d}(x1,y2,style=2)
27 \text{ plot2d}(x1,y3,style=1)
```

```
28 legend ( " Edc = - 5 V " , " Edc = 0 V ", " Edc = 7 V"
      );
29 xtitle (" Waveshapes of Vo for Edc = 0V, -5V, 7V")
30 / \text{Figure } 3-5(c)
31 subplot (2,2,3)
32 \quad x4 = [-5 \quad 0 \quad 5]
33 y4 = [10 5 0]
34 y5 = [5 0 -5]
35 \text{ y6} = [-2.5 -7.5 -12.5]
36 \quad a = gca()
37 a.thickness = 1;
38 a.y_location = 'middle';
39 a.x_location = 'middle';
40 plot2d(x4,y4,style=3,rect=[-5,-15,5,15])
41 plot2d(x4,y5,style=2,rect=[-5,-15,5,15])
42 plot2d(x4,y6,style=1,rect=[-5,-15,5,15])
43 legend ( " Edc = - 5 V " , " Edc = 0 V ", " Edc = 7 V"
      );
44 xtitle (" Vo Vs Eac " , " \operatorname{Eac}(V)", " Vo ");
45 xtitle (" Output-Input Characteristic")
46 printf("\n If Edc = 0 V , Eac appears inverted at
      Vo ( Gain is -1 )")
47 printf("\n If Edc = - 5 V , Eac appears at the
      output as a 5 V dc-offset voltage upon which
      rides the inverted Eac ")
48 printf("\n If Edc = 7 V, then Eac shifts down by
      7 V ")
```

Scilab code Exa 3.11 ProbonThreeChannelInvertingAmplifier

```
1 //Chapter 3
2 //Example 3-11
3 //ProbonThreeChannelInvertingAmplifier
```

```
4  //Page 56
5  clear; clc;
6  //Channel 1
7  Ri= 10*10^3; //Choosing Input resistance
8  Acl = -10;
9  Rf1 = - (Acl * Ri);
10  printf("\n\n Value of Rf1 = %.4 f ohm \n\n", Rf1)
11  //Channel 2
12  Acl1 = -5;
13  Rf2 = - (Acl1 * Ri);
14  printf("\n\n Value of Rf2 = %.4 f ohm \n\n", Rf2)
15  //channel 3
16  Acl2 = -2;
17  Rf3 = - (Acl2 * Ri);
18  printf("\n\n Value of Rf3 = %.4 f ohm \n\n", Rf3)
```

Scilab code Exa 3.12 ProbOnOutputvoltage

```
1 //Chapter 3
2 //Example 3-12
3 //ProbOnOutputvoltage
4 //Page 57
5 clear; clc;
6 //Given
7 R1=100000; R2=100000; R3=100000; R=100000//in ohm
8 Rf=33*10^3; //in ohm
9 E1=5; E2=5; E3=-1; //in volts
10 n=3; //number of inputs
11 Vout=-(E1+E2+E3)/n; //output voltage
12 printf("\n\n Value of output voltage = %.4 f V \n\n", Vout)
```

Scilab code Exa 3.13 ProbOnOpampParameters

```
1 //Chapter 3
2 //Example 3-13
3 //ProbOnOpampParameters
4 //Page 58, Figure 3-8
5 clear; clc;
6 //Given
7 Ei=4; //in volts
8 Rl=10*10^3; //in ohm
9 I=0; //in ampere
10 Vout=Ei; //output voltage
11 Il=Vout/R1;//load current
12 IO=I+I1; //output current
13 printf("\n\ Value of o/p voltage = %.4 f V \n\,
      Vout)
14 printf("\n\n Value of load current = \%.4 f A \setminus n \setminus n",
15 printf("\n Value of output current = \%.4 f A \n"
      ,IO)
```

Scilab code Exa 3.14 ProbOnVoltageGain

```
1 //Chapter 3
2 //Example 3-14
3 //ProbOnVoltageGain
4 //Page 62,63, Figure 3-11
5 clear; clc;
```

```
6 // Given
 7 \text{ Rf} = 40*10^3;
 8 R1 = 10*10^3;
9 //Example 3-14(a)
10 Acl = (Rf + R1)/R1;
11 printf("\n Value of Voltage Gain = \%.4 \, f \n", Acl
12 / \text{Example } 3 - 14(b)
13 x = [0 2.5 5 7.5 10]
14 y = [-2 \ 0 \ 2 \ 0 \ -2]
15 subplot (2,2,1)
16 \quad a = gca()
17 a.thickness = 1;
18 a.x_location = 'middle';
19 plot2d(x,y,style=3,rect=[0,-2,10,2])
20 xtitle ( " \rm Ei~Vs~t " , " \rm t\,(ms) " , " \rm Ei\,(V) " );
21 subplot (2,2,2)
22 \times 1 = [0 \ 2.5 \ 5 \ 7.5 \ 10]
23 \text{ y1} = [-10 \ 0 \ 10 \ 0 \ -10]
24 \times 2 = [0 \ 2.5 \ 5 \ 7.5 \ 10]
25 \quad y2 = [-2 \quad 0 \quad 2 \quad 0 \quad -2]
26 \quad a = gca()
27 a.thickness = 1;
28 a.x_location = 'middle';
29 plot2d(x1,y1,style=3,rect=[0,-15,10,15])
30 \text{ plot2d}(x2,y2,style=1)
31 xtitle ( "Vo Vs t ", "t(ms)", "Vo and Ei"); 32 legend ( "Vo Vs t ", "Ei Vs t ");
33 xtitle ("CRO waveshape of Vo and Ei Vs t")
34 subplot (2,2,3)
35 / \text{Example } 3 - 14(c)
36 \quad x = [-2 \ -1 \ 0 \ 1 \ 2]
37 y = [-10 -5 0 5 10]
38 \quad a = gca()
39 a.thickness = 1;
40 a.x_location = 'middle';
41 a.y_location = 'middle';
42 plot2d(x,y,style=3,rect=[-2,-15,2,15])
```

```
43 xtitle ( "Vo Vs Ei ", "Ei(V) ", "Vo(V) ");
44 legend ( "Slope = +5");
45 xtitle ( "Input-output characteristic of a noninverting Amplifier")
```

This code can be downloaded from the website wwww.scilab.in

Scilab code Exa 3.15 DesignAnAmplifier

```
//Chapter 3
//Example 3-15
//DesignAnAmplifier
//Page 64
clear; clc;
//Given
Acl = 10; // Gain is positive, so choose noninvering amplifier
R1 = 10*10^3;
Rf = (Acl*R1)-R1;
printf("\n\n Value of Rf = %.4 f ohm \n\n", Rf)
xcos('Figure3_15.xcos')//Design will be as shown in the figure
```

Scilab code Exa 3.16 ProbOnServoAmplifier

```
1 //Chapter 3
2 //Example 3-16
3 //ProbOnServoAmplifier
```

```
4 //Page 72
5 clear; clc;
6 // Given
7 Ei=2;//in volts
8 Vf=Ei; //feedback voltage
9 Vout=2*Vf;//output voltage
10 Vr=-Vout; // Reference voltage
11 Vcap=3*Ei;//capacitor voltage
12 printf("\n Value of feedback voltage = \%.4 f V \n
     n", Vf)
13 printf("\n Value of output voltage = \%.4 f V \n"
     , Vout)
14 printf("\n Value of reference voltage = %.4 f V \n
     \n",\n")
15 printf("\n Value of capacitor voltage = %.4 f V \n
     \n", \n (cap)
```

Scilab code Exa 3.17 ProbOnEquilibriumVoltage

```
1 //Chapter 3
2 //Example 3-17
3 //ProbOnEquilibriumVoltage
4 //Page 72
5 clear; clc;
6 //Given
7 Ei=4; //in volts
8 Vf=Ei; //feedback voltage
9 Vout=2*Vf; //output voltage
10 Vr=-Vout; //Reference voltage
11 Vcap=3*Ei; // capacitor voltage
12 printf("\n\n Value of feedback voltage = %.4 f V \n\n", Vf)
13 printf("\n\n Value of output voltage = %.4 f V \n\n"
```

```
,Vout)  
14  printf("\n\n Value of reference voltage = %.4 f V \n \n", Vr)  
15  printf("\n\n Value of capacitor voltage = %.4 f V \n \n", Vcap)
```

Scilab code Exa 3.18 ProbOnEquilibriumTime

```
//Chapter 3
//Example 3-18
//ProbOnEquilibriumTime
//Page 73, Figure 3-17
clear; clc;
//Given
Ri=10^5; // in ohm
C=10^-6; // in farad
T=3*Ri*C; // Time constant
ETime=5*T; // equilibrium time
printf("\n\n Value of Equilibrium Time = %.4f s \n\n", ETime)
```

Chapter 4

Comparators and Controls

Scilab code Exa 4.1 ProbOnThresholdVoltage

```
1 //Chapter 4
2 //Example 4-1
3 //ProbOnThresholdVoltage
4 //Page 90
5 clear; clc;
6 //Given
7 Vsat = 14; //Saturation Voltage
8 R1 = 1000; R2 = 100; //Load resistances
9 Vut = (R2/(R1*R2))*Vsat;
10 printf("\n\n Value of Upper Threshold Voltage = %.6 f V \n\n", Vut)
```

Scilab code Exa 4.2 ProbOnLowerThresholdVoltage

```
1 //Chapter 4
2 //Example 4-2
3 //ProbOnLowerThresholdVoltage
```

Scilab code Exa 4.3 ProbOnOutputvoltage

```
//Chapter 4
//Example 4-3
//ProbOnOutputVoltage
//Page 91,Figure 4-4
clear;clc;
printf ("\n\n The dashed lines drawn on Ei in thew figure locate Vut and Vlt.\n\n At time t=0, Ei is below Vlt, so Vo is at +Vsat. When Ei goes above Vut, at times (a) and (c), Vo switches quickly to -Vsat. \n\nWhen Ei again goes below Vlt, at times (b) and (d), Vo switches quickly to +Vsat. \n\nObserve how positive feedback has eliminated the false crossings")
```

Scilab code Exa 4.4 DesignUsingVutAndVlt

```
1 //Chapter 4
2 //Example 4-4
```

```
3 //DesignUsingVutAndVlt
4 //Page 96
5 clear; clc;
6 //Given
7 Vut = 12; Vlt = 8; //Upper and Lower Threshold
8 Vsatp = 15; Vsatm = -15; // Saturation Voltages
9 R = 10*10^3 ; //Choosing R
10 // Design
11 Vh = Vut - Vlt ; // Hysteresis Voltage
12 Vctr = (Vut + Vlt)/2;//Center Voltage
13 n = (Vsatp - Vsatm)/Vh ; // Resistor Factor
14 Vref = Vctr / (1 + (1/n)); //Reference Voltage
15 Resistance = n * R;
16 printf ("\n\n Hysteresis Voltage = %.4 f V \n\n", Vh
17 printf ("\n\n Center Voltage = \%.4 \,\mathrm{f} V\n\n", Vctr)
18 printf ("\n\n Resistor Factor = %.4 f \n\n", n)
19 printf ("\n Reference Voltage = \%.4 \, f \n", Vref)
20 printf ("\n Feedback resistor = \%.4 f \n\n",
     Resistance)
```

This code can be downloaded from the website wwww.scilab.in

Scilab code Exa 4.5 designInvertingVoltageDetector

```
1 // Chapter 4
2 // Example 4-5
3 // designInvertingVoltageDetector
4 // Page 97
5 clear; clc;
6 // Given
```

```
7 Vsatp = 15; Vsatm = -15; // Saturation Voltages
8 Vh = 4; // Hysteresis Voltage
9 Vctr = 10; // Center voltage
10 n = ((Vsatp - Vsatm)/Vh)-1;
11 R = 10*10^3; // Input Resistance
12 Vref = ((n + 1)*(Vctr))/n; // Reference Voltage
13 Resistance = n * R // Feedback Resistance
14 printf (" \n\n Resistance Factor = %.4f ", n)
15 printf (" \n\n Reference Voltage = %.4f ", Vref)
16 printf (" \n\n Feedback Resistance = %.4f ",
Resistance)
17 xcos('Figure4_5.xcos');
```

Scilab code Exa 4.6 DesignOnInvertingVoltageLevelDetector

```
1 //Chapter 4
\frac{2}{\text{Example }}4-6
3 // DesignOnInvertingVoltageLevelDetector
4 // Page 100
5 clear; clc;
6 //Given
7 Vut = 13.5; Vlt = 10.5; //Upper and Lower
      Threshold Voltages
8 Vref = -15; // Reference Voltage
9 Vsatp = 13; Vsatm = -13; // Saturation Voltages
10 R = 10*10^3; // Input Resistance
11 Vctr = (Vut + Vlt)/2;
12 Vh = Vut - Vlt ;
13 m = -(Vref / Vctr);
14 Resistance = m * R;
15 n = (Vsatp-Vsatm)/Vh ;
16 \text{ Resistance1} = n * R ;
17 printf (" \n\ Hysteresis Voltage = \%.4 \, f ", Vh )
```

```
18 printf (" \n\n Center Voltage = %.4 f ", Vctr )
19 printf (" \n\n Resistor mR = %.4 f ", Resistance)
20 printf (" \n\n Resistor nR = %.4 f ", Resistance1)
```

Chapter 5

Selected Applications of Opamp

Scilab code Exa 5.1 ProbOnMeterCurrent

```
1 //Chapter 5
2 //Example 5-1
3 //ProbOnMeterCurrent
4 //Page 121,122, Figure 5-1
5 clear; clc;
6 //Given
7 Ei = 0.5; //Input voltage
8 Ri = 1*10^3; //Input resistance in ohm
9 Im = Ei / Ri ; //Meter Current
10 printf (" \n\n Meter Current = %.4f", Im )
```

Scilab code Exa 5.2 ProbOnInputResistance

```
1 //Chapter 5
2 //Example 5-2
3 //ProbOnInputResistance
4 //Page 121,122, Figure 5-3
```

```
5 clear; clc;
6 //Given
7 Efs = 5 ; //Full scale Voltage
8 Ifs = 50*10^-6; //Full scale Meter Current
9 Ri = Efs / Ifs ; // Input Resistance
10 printf ( "\n\n Input Resistance = %.4f", Ri )
```

This code can be downloaded from the website wwww.scilab.in

Scilab code Exa 5.3 DesignASimpleSwitchArrangement

```
1 //Chapter 5
2 //Example 5-3
3 // Design A Simple Switch Arrangement
4 // Page 124
5 clear; clc;
6 //Given
7 Edc = 5; Erms = 5; Epeak = 5; Eptop = 5; //
     Voltages of meters
8 Ifs = 50*10^-6; // Full scale Meter Current
9 Ri1 = Edc / Ifs ; // DC Voltmeter
10 Ri2 = 0.90 * (Erms / Ifs ); // Rms ac voltmeter (
     Sine wave only )
11 Ri3 = 0.636 * (Epeak / Ifs ); // Peak Reading
     Voltmeter (Sine wave only)
12 Ri4 = 0.318 * (Eptop / Ifs ); //Peak-to-Peak ac
     Voltmeter (sine wave only)
13 printf ("\n Ri1 = %.4 f ohm", Ri1 )
14 printf ("\n\n Ri2 = \%.4 f ohm", Ri2)
15 printf ("\n Ri3 = %.4 f ohm", Ri3 )
16 printf ("\n\n Ri4 = %.4f ohm", Ri4)
17 x\cos ('Figure 5_3.xcos')
```

Scilab code Exa 5.4 ProbOnZenerCurrentAndVoltage

```
//Chapter 5
//Example 5-4
//ProbOnZenerCurrentAndVoltage
//Page 125,126, Figure 5-3(a)
clear; clc;
//Given
Vo = 10.3; //Voltage across the load resistor
Ei = 5; //Input voltage
Ri = 1*10^3; //Input Resistance
//Example 5-4(a)
I = Ei / Ri; //Zener Current
printf ( "\n\n Zener Current = %.4 f A", I )
//Example 5-4(b)
Vt = Vo - Ei; //Zener Voltage
printf ( "\n\n Zener Voltage = %.4 f V", Vt )
```

Scilab code Exa 5.5 ProbOnOpampParameters

```
1 //Chapter 5
2 //Example 5-5
3 //ProbOnOpampParameters
4 //Page 126, Figure 5-3(b)
5 clear; clc;
6 //Given
7 Ei = 1; //Reference voltage
```

```
8 Ri = 1*10^3 ; //Input Resistance
9 Vo = 0.6 ; //Outpur Voltage
10 //example 5-5(a)
11 I = Ei / Ri ; //Diode Current
12 printf ( "\n\n Diode Current = %.4 f A ", I )
13 //example 5-5(b)
14 Vdiode = Vo ;
15 printf ( "\n\n Voltage drop across the diode = %.4 f V ", Vdiode )
```

Scilab code Exa 5.6 ProbOnOpampParameters

```
1 //Chapter 5
\frac{2}{\text{Example }}5-6
3 //ProbOnOpampParameters
4 //Page 128,129, Figure 5-5
5 clear; clc;
6 //Given
7 R = 10*10^3 ; //Resistance
8 E2 = 0; //Source across negative terminal
9 Rl = 5*10^3; // Load Resistance
10 E1 = 5 ; // source across positive terminal
11 // \text{example } 5-6(a)
12 Il = (E1 - E2)/R; //Load Current
13 printf ("\n Load current across Rl = %.4 f A", Il
14 // \text{example } 5-6(b)
15 Vl = Il * Rl ; // Voltage across Rl
16 printf ("\n\n Voltage across load resistance = \%.4 f
     V ", V1 )
17 // \text{example } 5-6(c)
18 Vo = (2*V1)-E2; //Output voltage
19 printf ("\n\ Output Voltage = \%.4 \, f \, V", Vo)
```

Scilab code Exa 5.7 ProbOnOpampParameters

```
1 //Chapter 5
2 //Example 5-7
3 //ProbOnOpampParameters
4 // Page 128,129, Figure 5-5
5 clear; clc;
6 //Given
7 R = 10*10^3 ; //Resistance
8 E2 = 5; //Source across negative terminal
9 Rl = 5*10^3; // Load Resistance
10 E1 = 0; // source across positive terminal
11 // \text{example } 5-6(a)
12 I1 = (E1 - E2)/R; //Load Current
13 printf ("\n\n Load current across Rl = \%.4 \, f \, A", Il
14 / \text{example } 5-6(b)
15 Vl = Il * Rl ; // Voltage across Rl
16 printf ("\n\n Voltage across load resistance = \%.4 f
     V ", V1 )
17 //example 5-6(c)
18 Vo = (2*V1)-E2; //Output voltage
19 printf ("\n\ Output Voltage = \%.4 \, f V", Vo)
20 printf ("\n\n Vl and Il are reversed in polarity
     and direction respectively from example 5-6. If
     the polarity of E2 is reversed, Il and Vl change
       sign but not magnitude ")
```

Scilab code Exa 5.8 ProbOnShortCircuitCurrent

Scilab code Exa 5.9 ProbOnPhotoDetectors

```
1 //Chapter 5
\frac{2}{\sqrt{\text{Example }5-9}}
3 //ProbOnPhotoDetectors
4 //Page 134,135, Figure 5-9
5 clear; clc;
6 //Given
7 Rf = 10*10^3; // Feedback Resistance
8 I = 10*10^-6; //Current through Photo Detector
9 //example 5-9(a)
10 Vo = Rf * I ; //Vo for Dark Condition
11 printf ("\n\n Output Voltage for dark Condition = \%
      .4f V ", Vo)
12 / \exp 5 - 9(b)
13 I1 = 1*10^-3; //Current in presence of sunlight
14 Vol = Rf * I1; //output voltage in light condition
15 printf ("\n Output voltage in light condition = %
      .4 f V ", Vol )
```

Scilab code Exa 5.10 ProbOnPhotoDetector

```
1 //Chapter 5
2 //Example 5-10
3 //ProbOnPhotoDetector
4 //Page 134,135, Figure 5-9
5 clear; clc;
6 //Given
7 Rf = 100*10^3 ;//Feedback Resistance
8 // \text{example } 5 - 10(a)
9 Il1 = 1*10^-6; //Load current 1
10 Vo1 = Rf * Il1 ; //Output voltage in photo detector
11 printf ("\n\n Output Voltage in photo detector for
      Il1 = \%.4 f V  ", Vo1 )
12 // \text{example } 5-10(b)
13 I12 = 50*10^-6; // Load current 2
14 Vo2 = Rf * I12 ; //Output Voltage in photo detector
15 printf ("\n\n Output Voltage in photo detector for
      I12 = \%.4 f V ", Vo2)
```

Scilab code Exa 5.11 ProbOnOpticalCoupler

```
1 //Chapter 5
2 //Example 5-11
3 //ProbOnOpticalCoupler
4 //Page 136, Figure 5-10
5 clear; clc;
```

```
6 //Given
7 R = 1*10^3;
8 R1 = 99*10^3;
9 m = R1 / R; //multiplier
10 Isc = 10*10^-6; //Current on short-circuit condition
11 Il = (1 + m)*Isc;
12 printf ( "\n\n Load current = %.4f A ", Il)
```

Scilab code Exa 5.12 ProbonCurrentDivider

```
//Chapter 5
//Example 5-12
//ProbonCurrentDivider
//Page 138, Figure 5-12
clear; clc;
//Given
Im = 100*10^-6; //Meter current
Isc = 0.5; // Current in short-circuit condition
Rf = 20; // Feedback resistance
Rm = 0.8*10^3; //Meter resistance
d = Isc / Im; //Current divider
R1 = d * Rf;
Rscale = R1 - Rm;
Printf ( "\n\n Resistance dRf = %.4 f ohm ", R1)
printf ( "\n\n Rscale = %.4 f ohm ", Rscale)
```

Scilab code Exa 5.13 ProbOnPhaseShifter

```
1 //Chapter 5
```

```
2 //Example 5-13
3 //ProbOnPhaseShifter
4 //Page 140, Figure 5-13(b)
5 clear; clc;
6 //Given
7 f = 10^3; //Frequency of Ei in Hz
8 Ci = 0.01*10^-6;
9 m = tan(%pi/4);
10 Ri = m / (2*%pi*f*Ci);
11 printf ("\n\n Value of Ri = %.4 f ohm ", Ri )
```

Scilab code Exa 5.14 ProbOnPhaseAngle

```
1 //Chapter 5
2 //Example 5-14
3 //ProbOnPhaseAngle
4 //Page 140, Figure 5-13(b)
5 clear; clc;
6 //Given
7 f = 10^3;
8 Ri = 100*10^3;
9 Ci = 0.01*10^-6;
10 phaseangle = 2*atan(2*%pi*f*Ri*Ci);
11 printf ("\n\n Phase angle = %.4 f radians ", phaseangle)
```

Chapter 6

Signal Generators

Scilab code Exa 6.1 ProbOnThresholdVoltage

```
1 //Chapter 6
2 //Example 6-1
3 //ProbOnThresholdVoltage
4 //Page 149,151, Figure 6-1
5 clear; clc;
6 //Given
7 R1 = 100*10^3;
8 R2 = 86*10^3;
9 Vsatp = 15; Vsatm = -15; //Saturation voltages
10 Vut = (R2 * Vsatp)/(R1 + R2);
11 Vlt = (R2 * Vsatm)/(R1 + R2);
12 printf ( "\n\n Upper Threshold Voltage = %.4f V ", Vut )
13 printf ( "\n\n Lower Threshold Voltage = %.4f V ", Vlt )
```

Scilab code Exa 6.2 ProbOnMultivibrator

```
1 //Chapter 6
2 //Example 6-2
3 //ProbOnMultivibrator
4 //Page 151
5 clear; clc;
6 //Given
7 Rf = 100*10^3; //Feedback Resistance
8 C = 0.1*10^-6;
9 T = 2 * Rf * C;
10 printf ("\n\n Period = %.4f sec ", T)
```

Scilab code Exa 6.3 ProbOnFrequency

```
1 //Chapter 6
2 //Example 6-3
3 //ProbOnFrequency
4 //Page 151
5 clear; clc;
6 //Given
7 T = 20*10^-3; //Period
8 f = 1 / T;
9 printf ("\n\n Frequency = %.4 f Hz ", f)
```

Scilab code Exa 6.5 ProbOnDurationOfOutputPulse

```
1 //Chapter 6
2 //Example 6-5
3 //ProbOnDurationOfOutputPulse
4 //Page 155
```

```
5 clear; clc;
6 //Given
7 Rf = 100*10^3 ; //Feedback Resistance
8 C = 0.1*10^-6;
9 t = (Rf * C) / 5;
10 printf ( "\n\n Duration of output pulse of one-shot = %.4 f sec ", t )
```

Scilab code Exa 6.6 ProbonTriangularGenerator

```
1 //Chapter 6
\frac{2}{\sqrt{\text{Example }6-6}}
3 // ProbonTriangularGenerator
4 //Page 157,158, Figure 6-6
5 clear; clc;
6 // Given
7 \text{ Vsatm} = -13.8 ;
8 Vut = 5; //Upper Threshold Voltage
9 R = 10*10^3;
10 f = 1000; //Frequency
11 C = 0.05*10^-6;
12 p = -Vsatm / Vut ;
13 p1 = p * R ;
14 Ri = p / (4*f*C);
15 printf ( "\n\n Value of p = \%.4\,\mathrm{f} ", p )
16 printf ( "\n\n Value of p1 = \%.4 \,\mathrm{f} ", p1 )
17 printf ( "\n\ Value of Ri = %.4f ", Ri )
```

Scilab code Exa 6.7 ProbOnUnipolarTriangularWaveGenerator

```
1 //Chapter 6
2 //Example 6-7
3 //ProbOnUnipolarTriangularWaveGenerator
4 //Page 159
5 clear; clc;
6 //Given
7 p = 2.8;
8 Vsatm = -13.8;
9 Ri = 28*10^3;
10 C = 0.05*10^-6;
11 Vut = - ((Vsatm+0.6)/p);
12 f = p / (2*Ri*C);
13 printf ( "\n\n Peak Voltage = %.4 f V ", Vut )
14 printf ( "\n\n frequency = %.4 f Hz ", f )
```

This code can be downloaded from the website wwww.scilab.in

Scilab code Exa 6.8 DesignOnSawtoothWaveGenerator

```
//Chapter 6
//Example 6-8
//DesignOnSawtoothWaveGenerator
//Page 163
clear;clc;
//Design a voltage divider to give voltage reference
10 V
//Here Ri = 10 KiloOhm and C = 0.1 microfarad
//The Circuit will be as shown below
xcos('Figure6_8.xcos');
//Checking Frequency value
Ri = 10*10^3;
Ci = 0.1*10^-6;
```

```
13 Ei = 1 ;
14 Vref = 10 ;
15 f = Ei / (Ri*Ci*Vref) ;
16 printf ( "\n\n Frequency is %.4 f Hz ", f )
```

Scilab code Exa 6.9 ProbOnFrequency

```
1 //Chapter 6
2 //Example 6-9
3 //ProbOnFrequency
4 //Page 164
5 clear; clc;
6 //Given
7 Ri = 10*10^3;
8 Ci = 0.1*10^-6;
9 Ei = 2;
10 Vref = 10;
11 f = Ei / (Ri*Ci*Vref);
12 printf ( "\n\n Frequency is %.4 f Hz ", f )
```

Scilab code Exa 6.10 ProbOnFrequency

```
1 //Chapter 6
2 //Example 6-10
3 //ProbOnFrequency
4 //Page 164
5 clear; clc;
6 //Given
7 Ri = 10*10^3;
```

```
8 Ci = 0.1*10^-6;
9 Ei = 2;
10 Vref = 2;
11 f = Ei / (Ri*Ci*Vref);
12 printf ( "\n\n Frequency is %.4 f Hz ", f )
```

Scilab code Exa 6.12 ProbOnAD639A

```
1 //Chapter 6
2 //Example 6-12
3 //ProbOnAD639A
4 // Page 170,171, Figure 6-11
5 clear; clc;
6 // Given
7 \text{ Ei} = 1;
8 	 t1 = 45 	 ; 	 t2 = 90 	 ; 	 t3 = 225 	 ; 	 t4 = 405;
9 Vang1 = (20*10^-3)*t1; //example 6-12(a)
10 Vang2 = (20*10^-3)*t2; //example 6-12(b)
11 Vang3 = (20*10^-3)*t3; //example 6-12(c)
12 Vang4 = (20*10^-3)*t4; //example 6-12(d)
13 Vo1 = Ei*sin(t1); //example 6-12(a)
14 Vo2 = Ei*sin(t2); //example 6-12(b)
15 Vo3 = Ei*sin(t3); //example 6-12(c)
16 Vo4 = Ei*sin(t4); //example 6-12(d)
17 printf ("\n\n Input Voltages are \%.4f,\%.4f,\%.4f,\%.4
      f V", Vang1, Vang2, Vang3, Vang4)
18 printf ( "\n\n Output Voltages are \%.4\,\mathrm{f}, \%.4\,\mathrm{f}, \%.4\,\mathrm{f}, \%
      .4 f V ", Vo1, Vo2, Vo3, Vo4)
19 printf ("\n Angles are in radians")
```

Scilab code Exa 6.13 ProbOnFrequency

```
1 //Chapter 6
2 //Example 6-13
3 //ProbOnFrequency
4 //Page 173,174, Figure 6-12(a)
5 clear; clc;
6 //Given
7 R1 = 10*10^3;
8 R2 = 100*10^3;
9 C = 0.025*10^-6;
10 f1 = 1 / (4*R1*C);
11 f2 = 1 / (4*R2*C);
12 printf ( "\n\n Frequency when Ri is 10KiloOhm is %.4 f Hz ", f1)
13 printf ( "\n\n Frequency when Ri is 100KiloOhm is %.4 .4 f Hz ", f2)
```

Chapter 7

OpAmps With Diodes

Scilab code Exa 7.1 ProbOnDeadZoneCircuit

```
1 //Chapter 7
2 //Example 7-1
3 //ProbOnDeadZoneCircuit
4 //Page 201,202, Figure 7-15
5 clear; clc;
6 V = 15;
7 mR = 30*10^3;
8 R = 10*10^3;
9 Ei = -10;
10 Vref = V / 3;
11 Voa = -Ei-Vref;
12 Vob = Ei / 2;
13 printf ( "\n\n Values of Voa and Vob are %.4 f V , % .4 f V" , Voa, Vob)
```

Chapter 8

Differential Instrumentation and Bridge Amplifiers

Scilab code Exa 8.1 ProbOnOutputVoltage

```
1 //Chapter 8
2 //Example 8-1
3 //ProbOnOutputVoltage
4 //Page 216, Figure 8-1
5 clear; clc;
6 //Given
7 m = 100; // Differential Gain
8 E1 = 10*10^-3; E2 = 10*10^-3; //input voltages
9 E3 = 0*10^-3; E4 = -20*10^-3; //input voltages
10 Vout1 = (m*E1)-(m*E2); //example 8-1(a)
11 Vout2 = (m*E1)-(m*E3); //example 8-1(b)
12 Vout3 = (m*E1)-(m*E4); //example 8-1(c)
13 printf ( "\n\n Output Voltages are %.4 f V, %.4 f V, %.4 f V, %.4 f V ", Vout1, Vout2, Vout3)
```

Scilab code Exa 8.2 ProbOnDifferentialAmplifier

```
1 //Chapter 8
2 //Example 8-2
3 //ProbOnDifferentialAmplifier
4 //Page 220,221, Figure 8-5(b)
5 clear; clc;
6 //Given
7 a = 2/9; //Differential Gain
8 E1 = 10*10^-3; E2 = 5*10^-3; //Input Voltages
9 Vout = (E1 - E2)*(1+(2/a));
10 printf ( "\n\n output voltage = %.4 f V ", Vout )
```

Scilab code Exa 8.3 ProbOnVoltageGain

```
1 //Chapter 8
2 //Example 8-3
3 //ProbOnVoltageGain
4 //Page 223
5 clear; clc;
6 R = 25*10^3;
7 aR = 50;
8 a = aR / R;
9 Gain = 1 + (2/a);
10 printf ( "\n\n Voltage Gain = %.4f " , Gain )
```

Scilab code Exa 8.4 ProbOnVoltageGain

```
1 //Chapter 8
```

```
2  //Example 8-4
3  //ProbOnVoltageGain
4  //Page 223
5  clear; clc;
6  a = %i;  //Infinity
7  Gain = 1+(2/a);
8  printf ( "\n\n Voltage Gain = %.4 f ", Gain )
```

Scilab code Exa 8.5 ProbOnInstrumentationAmplifier

```
1 //Chapter 8
2 //Example 8-5
3 //ProbOnInstrumentationAmplifier
4 //Page 222,223, Figure 8-6
5 clear; clc;
6 m = 1001; //Gain
7 E1 = 5.001; E2 = 5.002; //example 8-5(a)
8 E3 = 5.001; E4 = 5.000; //example 8-5(b)
9 E5 = -1.001; E6 = -1.002; //example 8-5(c)
10 Vout1 = m*(E1-E2); Vout2 = m*(E3-E4); Vout3 = m*(E5-E6);
11 printf ( "\n\n Output Voltages are %.4 f V , %.4 f V, %.4 f V ", Vout1, Vout2, Vout3)
```

Scilab code Exa 8.6 ProbOnCollectorVoltage

```
1 //Chapter 8
2 //Example 8-6
3 //ProbOnCollectorVoltage
```

```
4  //Page 226,227, Figure 8-9(b)
5  clear; clc;
6  //Given
7  Vout = 5 ; //Output Voltage
8  Vce = Vout;
9  printf ( "\n\n Collector Voltage = %.4 f V ", Vce )
```

Scilab code Exa 8.7 ProbOnVoltages

Scilab code Exa 8.8 ProbOnVtoIConverter

```
1 //Chapter 8
2 //Example 8-8
3 //ProbOnVtoIConverter
4 //Page 228, Figure 8-10
```

```
5 clear; clc;
6 Rs = 1*10^3; E1 = 100*10^-3;
7 E2 = 0; Rl = 5*10^3;
8 Gain = 10;
9 Il = 10*((E1-E2)/Rs);
10 Vr = Il * Rs;
11 Vref = Il * Rl;
12 V9 = Vref + Gain*(E1 - E2);
13 printf ( "\n\n Current across Load Resistor = %.4f A ", Il)
14 printf ( "\n\n Voltage across R = %.4f V ", Vr)
15 printf ( "\n\n Reference Voltage = %.4f V ", Vref)
16 printf ( "\n\n Voltage at terminal 9 = %.4f V ", V9
```

Scilab code Exa 8.9 ProbOnStrainGage

```
1 //Chapter 8
2 //Example 8-9
3 //ProbOnStrainGage
4 //Page 230,231
5 clear; clc;
6 //Given
7 GF = 2 ;//Gage factor
8 DR = 0.001;
9 R = 120;
10 L = DR /(R*GF);
11 printf ( "\n\n Change in length is %.9f inches per inch ", L )
```

Scilab code Exa 8.10 ProbOnWheatstoneBridge

Scilab code Exa 8.11 ProbOnAD620

```
1 //Chapter 8
2 //Example 8-11
3 //ProbOnAD620
4 //Page 237,238, Figure 8-17
5 clear; clc;
6 //Given
7 Vout = 100*10^-3; E = 5; R = 120;
8 Gain = 1000;
9 E1 = 30 *10^6;
10 Gf = 2; //Gage factor
11 Vbridge = Vout / Gain;
12 DL = 20*10^-6;
13 DR = (R * Vbridge)/E;
```

```
14 Rratio = DR / R ; // Change in Resistance
15 Strain = DL / Gf ; // Change in Length
16 Stress = E1 * Strain ;
17 printf ( "\n\n Change in Resistance = %.4 f ohm ", DR
      )
18 printf ( "\n\n Ratio of Resistance = %.9 f ohm per
      ohm ", Rratio )
19 printf ( "\n\n Strain value = %.9 f ", Strain )
20 printf ( "\n\n Stress value = %.9 f psi ", Stress )
```