First examples of computations in F(S)

We fix a field k of characteristic 2 (eg_ Fz) to avoid signs. We also work without gradings.

hom $(l_0,l_1) = \langle p,q \rangle$ 2-dimensional k-vector space

The only operation is μ' : hom $(L_0, L_1) \rightarrow hom (L_0, L_1)$ that counts bigons $q_1 = 1 \text{ input}$ $L_1 \downarrow L_0$ $Q_2 = 2 \text{ output}$

 $a_0 = 1$ input $a_0 = 0$ intput.

There are two such bigons in the picture, and they are rigid modulo IR = Aut (H, (0, so)).

Both have input p and output q.

So
$$\mu'(p) = q + q = 0$$
 (char = 2)
 $\mu'(q) = 0$ (no bigons with input q)

Thus $\mu'=0$ and $\mu'\circ\mu'=0$ so we have humology is omorphie to the complex itself.

$$H\left(hom\left(L_0,L_1\right),\mu^1\right)=hum\left(L_0,L_1\right)=\angle P_1Q>$$
 $z-dim\ k-v.s.$

Next example: same but roles of Lo and L, swapped

hom $(L_1, L_0) = K \langle P, q \rangle$ again, but now we look for bigons like U_0

There are still two bigons, but now the input is 9 and the output is P.

$$\mu'(q) = p + p = 0$$
 (cher z)
 $\mu'(p) = 6$ (no bigms with nupot p)

So again H (how (L,, Lo), µ') = < p, 2>

Observe that this computation is evidently "dual" to the one cansidered before.

Next, same Lo but change L1:

This looks locally like the first case. Now there are 4 bigons

Thus
$$\mu'(p) = 9+5$$

 $\mu'(r) = 9+5$
 $\mu'(9) = 0$
 $\mu'(s) = 0$

Still have $\mu' \circ \mu' = 0$ but $\mu' \neq 0$.

 $\mu'(s) = 0$ Note $\mu'(p+r) = q+s+q+s=0$ (Chr2) $\ker(\mu') = \operatorname{Span} \{q, s, p+r \} 3-\dim$

Im (µ1) = Span { 9+5} 1 -dim.

So
$$H(hom(L_0,L_1),\mu') = \frac{\ker \mu'}{Im\mu'} = \frac{\langle q,s,p+r \rangle}{\langle q+s \rangle} = \langle [p+r], (q)=[s] \rangle$$
 $= \frac{\langle q,s,p+r \rangle}{\langle q+s \rangle} = \langle [p+r], (q)=[s] \rangle$

In all cases, we got 2-dim cohomology This is not an accident, it represents the cohomology H'(S';K) of $S'=L_0=L$, For the next set of exemples, let S=disk (or plane)

Consider hom (Li, Lj) for i<j

hum
$$(L_0, L_1) = \langle a_{01} \rangle$$

hum $(L_0, L_2) = \langle a_{02} \rangle$
hum $(L_0, L_3) = \langle a_{03} \rangle$
hum $(L_1, L_2) = \langle a_{12} \rangle$
hum $(L_1, L_3) = \langle a_{13} \rangle$
hum $(L_2, L_3) = \langle a_{23} \rangle$

Let's compate μ^2 , counting triangles

Import

Lk (i ejek

andput

μ2: hom (L,, Lz) & ham (Lo, L,) → hom (Lo, Lz)

So $\mu^2(a_{12}, a_{01}) = a_{02}$

In summary $\mu^2(a_{jk}, a_{ij}) = a_{ik}$ for This operation is associatine!

$$\mu^{2}(\alpha_{13}, \mu^{2}(\alpha_{12}, \alpha_{01})) = \mu^{2}(\alpha_{23}, \alpha_{02}) = \alpha_{03}$$

$$\mu^{2}(\mu^{2}(\alpha_{23}, \alpha_{12}), \alpha_{01}) = \mu^{2}(\alpha_{13}, \alpha_{01}) = \alpha_{03}$$

This associativity is "withessed" by a 1-paremeter family of 4-gons that interpolates between the two products

4-you with slit on Lz

4-you without Slit

4-gen with slit on L3

 $\mu^{2}(\mu^{2}(a_{23}, a_{12}), a_{01})$

In terms of domains, the movie is

Next, let us change by so that it is not straight

hum $(l_0, l_1) = \langle a_{01} \rangle$ hum $(l_0, l_2) = \langle a_{02} \rangle$ hum $(l_0, l_3) = \langle a_{03}, b_{03} \rangle$ hum $(l_1, l_2) = \langle a_{12} \rangle$ hum $(l_1, l_3) = 0$ hum $(l_2, l_3) = \langle a_{23} \rangle$

We still have
$$\mu^2(a_{12}, a_{01}) = a_{02}$$

 $\mu^2(a_{23}, a_{02}) = a_{03}$

but
$$\mu^2(a_{23}, q_{12}) = 0$$

So
$$\mu^{2}(a_{23}, \mu^{2}(a_{12}, a_{01})) = \mu^{2}(a_{23}, a_{02}) = a_{03}$$

 $\mu^{2}(\mu^{2}(a_{23}, a_{12}), a_{01}) = \mu^{2}(0, a_{01}) = 0$

And (strict) associativity fails!

But we also have μ' and μ^3 Now!

$$\mu^{1}(b_{03}) = a_{03}$$

$$\mu^{3}(a_{23}, a_{12}, a_{01}) = b_{03}$$

Thus $\mu^2(a_{23},\mu^2(\alpha_{12},q_{01})) - \mu^2(\mu^2(\alpha_{23},q_{12}),q_{01})$ = α_{03} - 0

$$= \mu'(\mu^3(a_{23}, a_{12}, a_{01}))$$

So μ^2 is associative up to hemotopy.

Ohe last simple example

hom $(L_0, L_1) = \langle a \rangle$ ham $(L_0, L_2) = 0$ hom $(L_0, L_3) = \langle d \rangle$ hom $(L_1, L_2) = \langle b \rangle$ hom $(L_1, L_3) = 0$ hom $(L_2, L_3) = \langle c \rangle$

Now $\mu' \equiv 0$ and $\mu^2 \equiv 0$ so μ^2 is associative.

But $\mu^3(c,b,a) = d \neq 0$. So even though associativity holds, we still get some higher in for mation.

higher homotopical