1. Let $G = \{1, f_X, f_Y, f_{d_1}, f_{d_2}, r_{\pi/2}, r_{\pi}, r_{3\pi/2}\}$ be the group of symmetries of a square. Let

$$S = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x| \le 1, |y| \le 1\}$$

It is a square centred at origin, with each side of length 2 units. For $g \in G$ and $P \in S$ let g.P denote the point after operating the symmetry g on P. (Observe that $g.P \in S$, else g would not be a symmetry!).

- (a) Take some explicit $P \in S$ and $g, h \in G$, and show that h.(g.P) = (hg).P.
- (b) Fix a point $P = (\frac{1}{2}, \frac{1}{3}) \in S$. As g varies, mark g.P on the square S. What you have marked is called the *orbit* of P.
- (c) Fix a point $P = (\frac{1}{2}, \frac{1}{2}) \in S$. Mark the orbit of P. Identify all $g \in G$ which do not move P, *i.e.*, find the set $\{g \in G : g.P = P\}$. This set will be called the *stabilizer* of P.

- Worth recalling Exercise 04 of Tutorial 02.

(a). Lets take
$$P = (-1, \frac{1}{2}) \in S$$
, $g = f_d$, $h = r_{\pi/2}$

then
$$g \cdot P = f_{d_1} \cdot (-1, \frac{1}{2}) = (-\frac{1}{2}, 1)$$

and
$$h \cdot (g \cdot P) = r_{\pi/2} \cdot \left(-\frac{1}{2}, 1\right) = \left(-1, -\frac{1}{2}\right)$$

You may use rotation/reflection matrices here.

Now
$$h g = \gamma_{\pi/2} f_{d_1} = f_{\times}$$
.
So $h g \cdot P = f_{\times} \cdot (-1, \frac{1}{2}) = (-1, -\frac{1}{2})$

Thus
$$h \cdot (g \cdot P) = (-1, -\frac{1}{2}) = hg \cdot P$$

(b) and (c).

- Orbit of (\frac{1}{2}, \frac{1}{2})
- Orbit of $(\frac{1}{2}, \frac{1}{3})$

For
$$P = (\frac{1}{2}, \frac{1}{2})$$
 if $g \cdot P = P$
then $g = 1$ or f_{d_2}

Therefore, stabilizer of P is {1, fd }.

- Just think: In there a point on the square whose stabilizer has exactly 4 elements?

2. Take the Klein 4-group $V_4 := \{1, a, b, c\}$. The composition table of this group is given by $a^2 = b^2 = c^2 = 1$, ab = ba = c, ac = ca = b, bc = cb = a. Consider the set

$$S = \{(1,1,1), (1,1,-1), (1,-1,1), (1,-1,-1), (-1,1,1), (-1,1,-1), (-1,-1,1), (-1,-1,-1)\}.$$

For each $P = (x, y, z) \in S$, define

$$1.P := (x, y, z), \quad a.P := (x, -y, -z), \quad b.P := (-x, y, -z), \quad c.P := (-x, -y, z).$$

Show that the association of a $g \in V_4$ and $P \in S$ to $g.P \in S$ as defined above, is a group action.

We are already given that 1.P = P. We check hg.P = h.(g.P) for other passibilities of q, $h \in V_4$.

h	9	hg	g . P	h.(g.P)	hg.P
a	Ь	C	(-2, 4, -2)	(-x,-4,z)	(-≠,-y,z)
Ь	a	C	(x,-y,-z)	(-x, -y, z)	(-x,-y,z)
a	c	6	(-x,-y,z)	(-z, y, -z)	(-7, y, -z)
C	a	Ь	(x,-4,-2)	(- x, y, -z)	(->5,4,-Z)
Ь	С	a	(-x,-y,z)	(x,-y,-z)	(n, -y, -z)
c	Ь	a	(-x, 4,-z)	(n, -y, -z)	(x, -4, -z)
a	a	1	(x,-y,-z)	(×, 4, Z)	(x, y, z)
Ь	6	1	(-x, 4, -z)	(x, y, z)	(x, y, z)
C	С	1	(-x,-y,z)	(2, y, z)	(x,y,z)