描述

AT8325是一款包含三路半桥且可独立控制的驱动芯片,用于 驱动一个三相直流无刷电机,或驱动螺线管等其它负载。每路半桥 高、低边均配置N通道功率MOSFET,可输出5.5A峰值电流。低边 MOSFET的源端,即芯片的功率地可选择接检流电阻到地,以检测 输出电流。

内部保护功能包含过流保护, 短路保护和过温保护, 并提供一 个故障检测输出管脚。

AT8325提供一种4mm×4mm的QFN24封装,并带有裸露散热 焊盘,能有效改善散热性能,且为无铅封装,符合环保标准。

应用

- 手持云台
- 消费类产品
- 办公自动化设备
- 工厂自动化

型号选择

订货型号	封装	包装信息				
AT8325QNL	QFN4*4-24	编带,5000颗/盘				

特点

- •三路独立半桥电机驱动器
- ●驱动三相直流无刷电机(BLDC)
- ●三个独立用于电流检测的接地引脚
- ●低R_{DS(ON)}电阻,HS+LS=130mΩ
- ●±5.5A峰值输出电流
- ●宽电压供电, 5.5V-18V
- ●过温保护
- ●短路保护
- ◆欠压锁定保护

封装形式

典型应用原理图

管脚定义

管脚列表

管脚名	管脚名 管脚序号 QFN24		说明									
			22.7									
	电源与地											
GND	2,14,19	器件地	 所有GND管脚和芯片裸焊盘需接到电源地									
PPAD	-	相门地	/// 有GND自冲和心// 株片無而按到电源地									
VM	6,13	功率电源	电机电源,所有VM管脚需接在一起,且做好电源滤波									
CPL	3	电荷泵电容	两管脚间加0.1uF电容									
СРН	4	电 何水电台										
VCP	5	电荷泵电压	接0.1uF电容到VM									
VDD	15	15 电源输出 3.3V参考电平输出										
	控制输入											
EN1	24											
EN2	22	使能控制输入	逻辑高电平,半H桥使能输出;逻辑低电平,半H桥输出关闭。内置下拉电阻									
EN3	20											
IN1	1		逻辑高电平,半H桥输出高;逻辑低电平,半H桥输出低。内置下拉电阻									
IN2	23	通道控制输入										
IN3	21											
nSLEEP	17	休眠模式输入	逻辑高电平,芯片正常工作;逻辑低电平,芯片进入休眠模式。内置下拉电阻									
nRESET	16	复位输入	高电平,芯片正常工作;低电平,芯片进入复位状态。内置下拉电阻									
			状态信息									
nFAULT	18	故障指示输出	开漏输出,若使用需外接上拉电阻。当出现过温或过流时,输出低电平									
			輸出									
PGND1	8											
PGND2	PGND2 9		半桥NMOS源端;直接接地或者接检流电阻到地									
PGND3	12											
OUT1	7											
OUT2	10	半桥输出	接负载									
OUT3	11											

功能模块框图

电路工作极限 at Ta = 25°C

参数	符号	条件	范围	单位
功率电源	VM		-0.3 –20	V
连续输出电流	I_{OUT}		±3.5	A
输出峰值电流	Ipeak		>5.5	A
逻辑输入电压	V_{IN}		-0.7 to 6	V
半桥地端电压	PGNDx		± 0.6	V
工作温度	T_{A}	Range S	-40 to 85	°C
最大结温	T _J (max)		150	°C
储藏温度	T_{stg}		-55 to 150	°C

热阻特性 at T_A = 25°C

热计量	QFN 24PINS	单 位
θ _{JA} - 硅核到环境的热阻系数 ^(*)	38	°C/W

(*)自然对流条件下硅核到环境的热阻系数是通过在 JESD51-7 中所指定的 JEDEC 标准高 K 值电路板上进行仿真模拟获得,环境条件如 JESD51-2a 中所述。

推荐工作条件 at TA=25°C

参数	符号	最小	典型	最大	单位
功率电源	VM	5.5	-	18	V
逻辑输入电压	$ m V_{IN}$	0	-	5.25	V
输出电流	I _{PEAK}	0	-	5.0	A
ENx、INx PWM 信号	fрwм	0	-	500	kHz
PGNDx 管脚电压	Vpgnd	-500	-	500	mV
VDD 负载电流	Iv3P3	0	-	10	mA

- (1) 所有VM管脚必须连接到同一个供电电源。
- (2) 芯片大电流工作时,做好芯片散热。

电气特性 at T_A = 25°C, VM= 12 V

参数		测试条件	最小	典型	最大	单位
电源供电	1					
Ivm	VM 静态工作电流	f _{PWM} < 50 kHz	-	4	10	mA
I_{VMQ}	VM 休眠电流	nSLEEP = 0	-	1.5	2	mA
内置整流	t(V3P3)					
VDD	3.3V 整流	$I_{OUT} = 0$ to 10 mA	3.1	3.3	3.5	V
逻辑输入						
V _{IL}	逻辑输入低电压		-	0.6	0.7	V
V _{IH}	逻辑输入高电压		2	-	5.25	V
V _{HYS}	逻辑输入迟滞		-	0.25	-	V
I _{IL}	逻辑输入电流_低电平	$V_{IN} = 0$	-2	-	2	uA
I _{IH}	逻辑输入电流_高电平	$V_{IN} = 3.3 \text{ V}$	-	33	100	uA
Rpd	输入内部下拉电阻		-	100	-	kΩ
nFAULT	输出(开漏输出)					
V _{OL}	输出低电平	$I_O = 5 \text{ mA}$	-	-	0.5	V
I_{OH}	输出高电平漏电流	$V_0 = 3.3 \text{ V}$	-	-	1	uA
H桥 FE	rs					
$R_{DS(ON)} \\$	高侧+低侧 FET 导通电阻	$I_{O} = 1 A$, $T_{J} = 25$ °C	-	130	-	mΩ
$I_{\rm OFF}$	输出关断漏电流		-2	-	2	uA
保护电路	\$					
Іоср	过流峰值		5.5	6.5	-	A
$t_{ m DEG}$	OCP 防抖动延时		-	5	-	us
t_{TSD}	过温阈值	结温	150	160	180	°C
t _{HYS}	过温迟滞	结温	-	35	-	°C
休眠模式						
t _{WAKE}	休眠唤醒时间	退出休眠模式到半H桥开启	-	2.5	3	ms

动态时序

 $T_A = 25$ °C, VM = 12 V, $RL = 12\Omega$

参数	测试条件	最小	典型	最大	单位
延时 t ₁ —— ENx 高到 OUTx 高	INx = 1	-	20	100	ns
延时 t ₂ —— ENx 低到 OUTx 低	INx = 1	1	120	300	ns
延时 t3 —— ENx 高到 OUTx 低	INx = 0	-	30	100	ns
延时 t4 —— ENx 低到 OUTx 高	INx = 0	-	60	200	ns
延时 t5 —— INx 高到 OUTx 高	$\mathbf{ENx} = 1$	-	30	100	ns
延时 t6 —— INx 低到 OUTx 低	$\mathbf{ENx} = 1$	-	120	300	ns
输出上升时间 t _r —— 接阻性负载到地		-	10	20	ns
输出下降时间 t f —— 接阻性负载到地		-	10	20	ns
死区时间 t _{DEAD}		-	50	100	ns

模块功能描述

AT8325 集成三路独立半桥,每路可输出 5.5A 峰值电流,5.5V 到 18V 单电源供电。

输出级

AT8325 包含三路半桥驱动器,半桥的低边 FET 的源端为各自独立管脚(PGND1、PGND2、PGND3),可根据需要选择在此管脚接独立的检流电阻;或将此3管脚连一起,通过一个检流电阻到地;或者此3个管脚直接接地。

如果使用检流电阻,请保证此3管脚(PGND1、PGND2、PGND3)的电压不超过±500mV。

半桥控制逻辑

输入管脚 IN1、IN2、IN3 直接控制着半桥的输出状态 OUT1、OUT2 和 OUT3, EN1、EN2、EN3 控制半桥的使能。下表列出了其逻辑关系。

nSLEEP	INx	ENx	OUTx
1	X	0	Z
1	0	1	L
1	1	1	Н
0	X	X	Z

半桥控制逻辑

电荷泵

AT8325 内置了电荷泵,产生一个高于电源电压的驱动电压,用于驱动高边 NMOSFET 的栅,以得到更小的导通电阻。

电荷泵电路需要两颗外置电容来实现功能。详见下原理图。

当 nSLEEP 管脚输入低电平, 电荷泵电路不工作。

电荷泵电路

休眠、复位操作

nRESET 管脚输入低电平时,芯片复位内部逻辑,同时全部半桥被关断,逻辑输入被忽略。

nSLEEP 管脚输入低电平时,器件将进入休眠模式。进入休眠模式后,器件的全部半桥被关断,电荷泵停止工作,逻辑输入被忽略。当 nSLEEP 输入翻转为高电平时,系统恢复到正常的操作状态。为使电荷泵输出电压达到稳定,在 nSLEEP 恢复高电平并延时 3ms 后再进行正常操作。

保护电路

AT8325 有过流保护、短路保护、过温保护和欠压保护。

过流保护 (OCP)

在每一个输出 MOSFET 上有一个电流检测电路,此电路检测流过 MOSFET 的电流,当电流过大,且维持时间超过 OCP 屏蔽时间,将关断相应半桥的 MOSFET,nFAULT 管脚输出低电平。若要恢复正常工作,需 nRESET或者 nSLEEP 信号维持 5us 低电平脉冲后变为高电平或者 VM 重新上电。

H 桥高边和低边的过流是被独立检测的。对地短路,对 VM 短路,和输出之间短路,都会造成过流关断。

过温保护 (TSD)

如果结温超过安全限制阈值,全部半桥被关断,nFAULT管脚输出低电平。一旦结温降到一个安全水平, 所有操作会自动恢复正常。

欠压锁定保护(UVLO)

在任何时候,如果 VCP 管脚上的电压降到低于欠压锁定阈值,内部所有电路会被禁止,内部被复位。当 VCP 电压上升到阈值电压以上,所有功能自动恢复。

电路应用信息

AT8325 可以驱动无刷直流电机(BLDC),或螺线管等其它负载。

直流无刷电机控制

直流无刷电机一般工作在一个确定的电压,例如 12V 或者 16V。对于获得相同的功率来说,工作电压越高,所需要的电流就相对越小。更高的工作电压也容易获得更高的转速。AT8325 允许工作的最高电压为 18V。

一般来说,工作在相对低的电压,容易获得更精准的电流控制。AT8325 最低支持 5.5V 工作。

通过控制独立的 3 个半桥,AT8325 可以实现梯形(120°)输出。同时,AT8325 既可在 INx 端口做 PWM 控制,也可在 ENx 端口做 PWM 控制。

112- 4-		OUT1 (U 相))	(OUT2 (V 相))	OUT3 (W 相)			
状态	IN1	EN1	OUT1	IN2	EN2	OUT2	IN3	EN3	OUT3	
1	X	0	Z	1	1	Н	0	1	L	
2	1	1	Н	X	0	Z	0	1	L	
3	1	1	Н	0	1	L	X	0	Z	
4	X	0	Z	0	1	L	1	1	Н	
5	0	1	L	X	0	Z	1	1	Н	
6	0	1	L	1	1	Н	X	0	Z	
制动	0	1	L	0	1	L	0	1	L	
空转	X	0	Z	X	0	Z	X	0	Z	

梯形控制时序

有刷电机和螺线管负载控制

EN1	IN1	OUT1	EN2	IN2	OUT2	电机状态
1	0	L	1	1	Н	反向
1	0	L	1	0	L	制动(低侧管慢衰减)
1	1	Н	1	1	Н	制动(高侧管慢衰减)
0	X	Z	0	X	Z	滑行

有刷电机控制真值表

版图注意事项

PCB 板上应覆设大块的散热片,地线的连接应有很宽的地线覆线。为了优化电路的电特性和热参数性能,芯片应该直接紧贴在散热片上。

对电源 VM,应该连接不小于 47uF 的电容对地耦合,电容应尽可能的靠近器件摆放。

为了避免因高速 dV/dt 变换引起的电容耦合问题,驱动电路输出端电路覆线应远离逻辑控制输入端的覆线。逻辑控制端的引线应采用低阻抗的走线以降低热阻引起的噪声。

地线设置

芯片所有的地线都应连接在一起,且连线还应尽可能的短。一个位于器件下的星状发散的地线覆设,将是一个较优设计。

在覆设的地线下方增加一个铜散热片会更好地优化电路性能。

PCB 版图示例

编带料盘信息

Α0	料槽宽度
В0	料槽长度
КО	料槽厚度
W	载带整体宽度
P1	相邻槽中心间距

编带 PIN1 方位象限分配

器件	封装	封装标识	管脚 数	SPQ	料盘 直径 (mm)	料盘 宽度 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 象限
AT8325QNL	QFN	QNL	24	5000	330	12	4.45	4.45	1.2	8	12	Q2

编带料盘包装尺寸

器件	封装类型	封装标识	管脚数	SPQ	长度(mm)	宽度(mm)	高度(mm)
AT8325QNL	QFN	QNL	24	5000	365	365	70

封装信息

QFN24

符号	毫米 (mm)				
<u>गि</u> 'च	MIN	MAX			
А	0.700	0.800			
A1	0.000	0.050			
A3	0.20(REF)				
D	3.95	4.05			
E	3.95	4.05			
D2	2.55	2.80			
E2	2.55	2.80			
k	0.15(MIN)				
b	0.18	0.30			
е	0.50(REF)				
L	0.30	0.50			

Top View

