Research presentation for PhD admits

Edgar Dobriban

March 3, 2022

Overview

Overview

Uncertainty quantification: calibratior

Fairness: Bayes-optimal classifiers

High-dim. statistics & deterministic equivalents

 Goal: work on important problems at the interface of statistics and machine learning

- Goal: work on important problems at the interface of statistics and machine learning
- ▶ Mainly study theoretical problems, but also methods/algorithms

- Goal: work on important problems at the interface of statistics and machine learning
- ▶ Mainly study theoretical problems, but also methods/algorithms
- Work with interdisciplinary team of students/postdocs/collaborators: stats, math/applied math, computer science, electrical engineering, biostats

- Goal: work on important problems at the interface of statistics and machine learning
- ▶ Mainly study theoretical problems, but also methods/algorithms
- Work with interdisciplinary team of students/postdocs/collaborators: stats, math/applied math, computer science, electrical engineering, biostats
- Advising style:
 - Open to new problems/directions—we can work on anything!

- Goal: work on important problems at the interface of statistics and machine learning
- ▶ Mainly study theoretical problems, but also methods/algorithms
- Work with interdisciplinary team of students/postdocs/collaborators: stats, math/applied math, computer science, electrical engineering, biostats
- Advising style:
 - ▶ Open to new problems/directions—we can work on anything!
 - Usually work closely on first project, then as hands-on/off as you would like.

Research Interests: see my website for details

- the efficient statistical analysis of "big data" using advanced tools, such as those from random matrix theory
 - o dimension reduction, PCA: [1], [2], [3], [4], [5], [6]
 - multiple testing: [1], [2], [3]
 - o high-dimensional regression: [1], [2]
 - o invariance-based randomization tests
- the theoretical foundations of modern machine learning, including deep learning
 - o data augmentation: [1], [2]
 - · weight normalization
 - o (stochastic) gradient descent and flow: [1], [2]
 - overparametrization
 - o sketching and random projections, [1], [2], [3], [4], [5]
 - o distributed learning: [1], [2], [3]
 - o adversarial robustness: [1], [2]
 - retraining of ML models
 - o uncertainty quantification: [1], [2]
 - o fairness: [1]
 - o reinforcement learning inspired by child-like learning
- in addition, we occasionally work on important applications and methods, such as
 - genomics
 - o group testing for COVID-19

Uncertainty quantification for ML - My course at Penn

Topics in Deep Learning - My course at Penn

STAT 991: Topics in deep learning (UPenn)

STAT 991: Topics in Deep Learning is a seminar class at UPenn started in 2018. It surveys advanced topics in deep learning based on student presentations.

Fall 2019

- Syllabus.
- Lecture notes. (~170 pages, file size ~30 MB, mostly covering notes from previous semesters.)

Lectures

Lectures 1 and 2: Introduction and uncertainty quantification (jackknife+, and Pearce at al, 2018), presented by Edgar Dobriban.

Lecture 3: NTK by Jiayao Zhang. Blog post on the off-convex blog.

Lecture 4: Adversarial robustness by Yinjun Wu.

Lecture 5: ELMo and BERT by Dan Deutsch.

Lecture 6: TCAV by Ben Auerbach (adapted from Been Kim's slides).

Lecture 7: Spherical CNN by Arjun Guru and Claudia Zhu.

Lecture 8: DNNs and approximation by Yebiao Jin.

Overview

Overview

Uncertainty quantification: calibration

Fairness: Bayes-optimal classifiers

High-dim. statistics & deterministic equivalents

Context

Prediction accuracy of machine learning methods is steadily increasing

Context

- Prediction accuracy of machine learning methods is steadily increasing
- Success stories: AlphaFold, cancer tissue image classification, computer vision. NLP ...

denomination.

90.7 GDT

Computational prediction

Title: United Methodists Agree to Historic Split Subtitle: Those who oppose gay marriage will form their own denomination Article: After two days of intense debate, the United Methodist Church has agreed to a historic split - one that is expected to end in the creation of a new denomination, one that will be "theologically and socially conservative," according to The Washington Post. The majority of delegates attending the church's annual General Conference in May voted to strengthen a ban on the ordination of LGBTO clergy and to write new rules that will "discipline" clergy who officiate at same-sex weddings. But those who opposed these measures have a new plan: They say they will form a

separate denomination by 2020, calling their church the Christian Methodist Figure 3.14: The GPT-3 generated news article that humans had the greatest difficulty distinguishing from a human written article (accuracy: 12%).

Context

- Prediction accuracy of machine learning methods is steadily increasing
- Success stories: AlphaFold, cancer tissue image classification, computer vision, NLP ...

T1037/6vr4 T1049/6y41
90.7 GDT 93.3 GDT
INA polymerase domain) (adhesin tip)

© Experimental result

© Computational prediction

Title: United Methodists Agree to Historic Split
Subtitle: Those who oppose gay marriage will form their own denomination
Article: After two days of intense debate, the United Methodist Church
has agreed to a historic split - one that is expected to end in the
creation of a new denomination, one that will be "theologically and
socially conservative," according to The Washington Post. The majority of
delegates attending the church's annual General Conference in May voted to
strengthen a ban on the ordination of LGETQ clergy and to write new rules
that will "discipline" clergy who officiate at same-sex weddings. But
those who opposed these measures have a new plan: They say they will form a
separate denomination by 2020, calling their church the Christian Methodist
denomination.

Figure 3.14: The GPT-3 generated news article that humans had the greatest difficulty distinguishing from a human written article (accuracy: 12%).

 Meanwhile, growing concerns: safety, ethics, energy- and sample-efficiency, uncertainty

Calibration

► Calibration: construct probability predictions that reflect true probabilities. For binary classification, for all appropriate *z*,

$$P(y=1|f(x)=z)\approx z$$

Calibration

► Calibration: construct probability predictions that reflect true probabilities. For binary classification, for all appropriate *z*,

$$P(y=1|f(x)=z)\approx z$$

Modern finding: powerful ML methods (e.g., deep CNNs) are over-confident and mis-calibrated

Figure: Guo et al, 2017

T-Cal: An optimal test of calibration

T-Cal

- ► Theoretical result: minimax optimal under Hölder smoothness
 - Empirical results: large power in simulations; can use it to detect mis-calibration of state-of-the-art deep networks

Overview

Overview

Jncertainty quantification: calibratior

Fairness: Bayes-optimal classifiers

High-dim. statistics & deterministic equivalents

Motivation

- Machine learning algorithms are becoming integrated into more and more high-stakes decision-making processes.
- Algorithm-based decision-making systems could retain or even amplify historical unfairness in data.

COMPAS Algorithm

Amazon Recruitment System

RETAIL OCTOBER 10, 2018 / 7:04 PM / UPDATED 3 YEARS AGO

Amazon scraps secret AI recruiting tool that showed bias against women

By Jeffrey Dastin	8 MIN READ	f	

SAN FRANCISCO (Reuters) - Amazon.com Inc's <u>AMZN.O</u> machine-learning specialists uncovered a big problem: their new recruiting engine did not like women.

Group Fairness

- ▶ Consider a classification problem with two types of feature: the usual feature $X \in \mathcal{X}$, and the protected (or, sensitive) feature $A \in \mathcal{A} = \{0,1\}$.
- ▶ Binary labels in $\mathcal{Y} = \{0, 1\}$, prediction \hat{Y} .

Fair Bayes-optimal Classifier under Demographic Parity

Several group fairness measures have been proposed. Measure "unfairness" by *Difference in demographic parity*:

$$DDP = P(\hat{Y} = 1|A = 1) - P(\hat{Y} = 1|A = 0).$$

For input x, let $f(x) := P(\hat{Y} = 1 | X = x)$.

Goal: Find δ -fair Bayes-optimal classifier with respect to demographic parity; defined as

$$f_{D,\delta}^{\star} \in \underset{f:|DDP(f)| \leqslant \delta}{\operatorname{argmin}} [P(Y \neq \widehat{Y})].$$

Main Theorem

Denote

$$p_a:=P(A=a)$$
 $\eta_a(x):=P(Y=1|A=a,X=x)$ $S_a(t):=P(\eta_a(X)>t|A=a)$

Theorem (Fair Bayes-optimal Classifier under Demographic Parity)

Let $D^* = \mathsf{DDP}(f^*)$, where f^* is unconstrained Bayes-optimal classifier. For any $\delta > 0$, all δ -fair Bayes optimal classifiers $f^*_{D,\delta}$ have the following form:

- When $|D^*| \leq \delta$, $f_{D,\delta}^* = f^*$.
- When $|D^*| > \delta$, for all $x \in \mathcal{X}$ and $a \in \mathcal{A}$,

$$f_{D,\delta}^{\star}(x,a) = I\left(\eta_{a}(x) > \frac{1}{2} + \frac{(2a-1)t_{D,\delta}^{\star}}{2p_{a}}\right) + at_{D,\delta}^{\star}I\left(\eta_{a}(x) = \frac{1}{2} + \frac{(2a-1)t_{D,\delta}^{\star}}{2p_{a}}\right), \tag{1}$$

Main Theorem

Theorem (continued)

where $t_{D,\delta}^{\star}$ is defined as

$$t_{D,\delta}^{\star} = \sup \left\{ t : S_1 \left(\frac{1}{2} + \frac{t}{2p_1} \right) > S_0 \left(\frac{1}{2} - \frac{t}{2p_0} \right) + \frac{D^{\star}}{|D^{\star}|} \delta \right\}.$$
 (2)

Here, $au_{D,\delta}^{\star} \in [0,1]$ can be an arbitrary constant if $P_{X|A=1}(\eta_1(X)=rac{1}{2}+rac{t}{2p_1})=0$, and otherwise

$$\tau_{D,\delta}^{\star} = \frac{S_1 \left(\frac{1}{2} + \frac{t}{2p_1}\right) - S_0 \left(\frac{1}{2} - \frac{t}{2p_0}\right) - \frac{D^{\star}}{|D^{\star}|}}{P_{X|A=1}(\eta_1(X) = \frac{1}{2} + \frac{t}{2p_1})}.$$
 (3)

Illustration of Theorem

Proof Sketch

Lemma (Generalized Neyman-Pearson lemma)

Let $f_0, f_1, ..., f_m$ be m+1 real-valued functions defined on a Euclidean space \mathcal{X} . Assume they are ν -integrable for a σ -finite measure ν . Let ϕ_0 be any function of the form

$$\phi_0(x) = \begin{cases} 1, & f_0(x) > \sum_{i=1}^m c_i f_i(x); \\ \gamma(x) & f_0(x) = \sum_{i=1}^m c_i f_i(x); \\ 0, & f_0(x) < \sum_{i=1}^m c_i f_i(x), \end{cases}$$
(4)

where $0 \leqslant \gamma(x) \leqslant 1$ for all $x \in \mathcal{X}$.

Proof Sketch

Lemma (continued)

For given constants $t_1,...,t_m \in \mathbb{R}$, let \mathcal{T} be the class of Borel functions $\phi: \mathcal{X} \mapsto \mathbb{R}$ satisfying

$$\int_{\mathcal{X}} \phi f_i d\nu \le t_i, \quad i = 1, 2, ..., m.$$
 (5)

and \mathcal{T}_0 be the set of ϕs in \mathcal{T} satisfying (5) with all inequalities replaced by equalities. If $\phi_0 \in \mathcal{T}_0$, then $\phi_0 \in \underset{\phi \in \mathcal{T}_0}{\operatorname{argmax}} \int_{\mathcal{X}} \phi f_0 d\nu$. Moreover, if $c_i \geqslant 0$ for all $i=1,\ldots,m$, then $\phi_0 \in \underset{\phi \in \mathcal{T}}{\operatorname{argmax}} \int_{\mathcal{X}} \phi f_0 d\nu$.

Overview

Overview

Jncertainty quantification: calibratior

Fairness: Bayes-optimal classifiers

High-dim. statistics & deterministic equivalents

Motivation

- ▶ Standard linear model $Y = X\beta + \varepsilon$, where
 - 1. Y is $n \times 1$ outcome, X is $n \times p$ feature matrix.
 - 2. β is *p*-dim parameter
- Ordinary least squares

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$$

▶ Mean squared error of OLS, assuming $\mathbb{E}\varepsilon = 0$, $\operatorname{cov}(\varepsilon) = \sigma^2 I_n$

$$\mathbb{E}\|\hat{\beta} - \beta\|^2 = \sigma^2 \operatorname{tr}[(X^\top X)^{-1}]$$

► How large is this? (How hard? How much error?)

Motivation ctd

▶ When $X_{ij} \sim \mathcal{N}(0,1)$ are iid standard normal,

$$\mathbb{E}\operatorname{tr}[(X^{\top}X)^{-1}] = \frac{p}{n-p-1}.$$

▶ More general data distributions? There are only approximate expressions.

Deterministic equivalents

- We have sequences of (not necessarily symmetric) $p_n \times p_n$ random matrices A_n and deterministic matrices B_n of growing dimensions
- **Definition**: B_n is a deterministic equivalent for A_n ,

$$A_n \simeq B_n$$

if

$$\lim_{n\to\infty}|\text{tr}(\mathit{C}_nA_n)-\text{tr}(\mathit{C}_nB_n)|=0$$

almost surely, for any $p_n \times p_n$ sequence C_n of (not necessarily symmetric) deterministic real matrices with bounded trace norm, i.e.,

$$\lim \sup_{n\to\infty} \|C_n\|_{tr} = \lim \sup_{n\to\infty} \sum_i \sigma_i(C_n) < \infty.$$

e.g,
$$C_n = c_n c_n^{\top}$$
, $||c_n||_2$ bounded

Sample covariance matrices

Example (Mestre et al., 2011)

Let $\hat{\Sigma} = X^{\top}X/n$, where $X = Z\Sigma^{1/2}$ and Z is an $n \times p$ random matrix with iid entries of zero mean, unit variance and finite $8+\eta$ moment. Also, $\Sigma^{1/2}$ is any sequence of $p \times p$ positive semi-definite matrices satisfying $\sup \|\Sigma\|_2 < \infty$. As $n, p \to \infty$ proportionally, for any $\lambda > 0$

$$(\widehat{\Sigma} + \lambda I_p)^{-1} \asymp (q_p \Sigma + \lambda I_p)^{-1},$$

where q_p is the solution of a fixed point equation.

This is the simplest way I know how to think of a broad class of results in random matrix theory.

Distributed linear regression

- ▶ Standard linear model $Y = X\beta + \varepsilon$
- ▶ Data distributed across k machines. The i-th machine has matrix X_i $(n_i \times p)$ and outcomes Y_i .

$$X = \begin{bmatrix} X_1 \\ \dots \\ X_k \end{bmatrix}, Y = \begin{bmatrix} Y_1 \\ \dots \\ Y_k \end{bmatrix}$$

- ► Global least squares infeasible
- ▶ Local least squares estimator $\hat{\beta}_i = (X_i^\top X_i)^{-1} X_i^\top Y_i$ (assume $n_i > p$)
- Send to parameter server, average
- ▶ How does this compare to OLS on full data?

A general framework

- ► Important to study not only estimation, but also prediction/test error, residual error, confidence intervals etc
- Predict the linear functional

$$L_A = A\beta + Z$$

Using the plug-in estimator

$$\hat{L}_A(\hat{\beta}_0) = A\hat{\beta}_0$$

- ► A fixed $d \times p$ matrix; mean and covariance of Z has the structure: $Z \sim (0, h\sigma^2 I_d), h \geqslant 0$
- ▶ The noise can be correlated with ε : Cov $[\varepsilon, Z] = N$ (e.g., to study residuals)
- ► Relative efficiency:

$$E(A; X_1, \ldots, X_k) := \frac{\mathbb{E}\|L_A - \hat{L}_A(\hat{\beta})\|^2}{\mathbb{E}\|L_A - \hat{L}_A(\hat{\beta}_{dist})\|^2}.$$

Examples: Predict $L_A = A\beta + Z$ by $\hat{L}_A(\hat{\beta}_0) = A\hat{\beta}_0$

Statistical learning problem	L_A	ĹΑ	Α	h	Ν
Parameter estimation	β	\hat{eta}	I_p	0	0
Regression function estimation	Xβ	Xβ̂	Χ	0	0
Confidence interval for marginal effect	β_j	\hat{eta}_j	$E_j^{ op}$	0	0
Test error	$x_t^{\top} \beta + \varepsilon_t$	$x_t^{\top} \hat{\beta}$	x_t^{\top}	1	0
Training error/Residual	$X\beta + \varepsilon$	Xβ̂	Χ	1	$\sigma^2 I_n$

Finite sample results

When h = 0 (no noise), the MSE of estimating $L_A = A\beta$ by OLS $\hat{L}_A = A\hat{\beta} = A(X^\top X)^{-1}X^\top Y$ is

$$M(\hat{\beta}) = \sigma^2 \cdot \operatorname{tr}\left[(X^\top X)^{-1} A^\top A \right].$$

For the distributed estimator $\hat{\beta}_{dist}(w) = \sum_i w_i \hat{\beta}_i$, $\sum_i w_i = 1$

$$M(\hat{\beta}_{dist}) = \sigma^2 \cdot \sum_{i=1}^k w_i^2 \cdot \operatorname{tr}\left[(X_i^\top X_i)^{-1} A^\top A \right].$$

So optimal efficiency is

$$E(A; X_1, \dots, X_k) = \operatorname{tr}\left[(X^\top X)^{-1} A^\top A\right] \cdot \sum_{i=1}^k \frac{1}{\operatorname{tr}\left[(X_i^\top X_i)^{-1} A^\top A\right]}.$$

CDE:
$$\operatorname{tr}[(X_i^\top X_i)^{-1} A^\top A] \simeq \frac{p}{n_i - p} \cdot \operatorname{tr}[\Sigma^{-1} A^\top A]/p$$
.

Plot efficiencies

Figure: The loss of efficiency is much worse for estimation $(\frac{\mathbb{E}\|\hat{\beta}-\beta\|^2}{\mathbb{E}\|\hat{\beta}_{dist}-\beta\|^2})$ than for test error $(\frac{\mathbb{E}(\mathbf{x}_t^\top\hat{\beta}-\mathbf{y}_t)^2}{\mathbb{E}(\mathbf{x}_t^\top\hat{\beta}_{dist}-\mathbf{y}_t)^2})$.