Data Structures and Algorithms ¹

BITS-Pilani K. K. Birla Goa Campus

¹Material for the presentation taken from Cormen, Leiserson, Rivest and Stein, *Introduction to Algorithms, Fourth Edition*;

Lecture plan

 Ch. 20: Elementary Graph Algorithms (Section 20.5 (Strongly connected components) not part of CS F211 syllabus)

Lecture plan

- Ch. 20: Elementary Graph Algorithms (Section 20.5 (Strongly connected components) not part of CS F211 syllabus)
- Ch. 21: Finding minimum spanning trees (Algorithms of Kruskal and Prim)

Lecture plan

- Ch. 20: Elementary Graph Algorithms (Section 20.5 (Strongly connected components) not part of CS F211 syllabus)
- Ch. 21: Finding minimum spanning trees (Algorithms of Kruskal and Prim)
- ► Ch. 19 : Data structures for Disjoint sets (Section 19.3 will be part of CS F211 syllabus).

▶ Data structure to represent a collection of disjoint sets that groups *n* distinct elements.

- ▶ Data structure to represent a collection of disjoint sets that groups *n* distinct elements.
- ► Suppose we have **nine** vertices labelled 1 to 9.

- ▶ Data structure to represent a collection of disjoint sets that groups *n* distinct elements.
- Suppose we have **nine** vertices labelled 1 to 9. Possible collections of disjoint sets:

- ▶ Data structure to represent a collection of disjoint sets that groups *n* distinct elements.
- Suppose we have **nine** vertices labelled 1 to 9. Possible collections of disjoint sets:

Eg. 1 $\{3,2,5\},\{4,9\},\{7,8,1\},\{6\}$ (All vertices are present)

- ▶ Data structure to represent a collection of disjoint sets that groups *n* distinct elements.
- ► Suppose we have **nine** vertices labelled 1 to 9.

Possible collections of disjoint sets:

Eg. 1 $\{3,2,5\},\{4,9\},\{7,8,1\},\{6\}$ (All vertices are present)

Eg. 2 {4,6}, {5,7,9}, {8}, {3,1}, {2}

- ▶ Data structure to represent a collection of disjoint sets that groups *n* distinct elements.
- ► Suppose we have **nine** vertices labelled 1 to 9.

Possible collections of disjoint sets:

Eg. 1
$$\{3,2,5\},\{4,9\},\{7,8,1\},\{6\}$$
 (All vertices are present)

(We will not have empty set in the collection.)

- Data structure to represent a collection of disjoint sets that groups n distinct elements.
- Suppose we have **nine** vertices labelled 1 to 9. Possible collections of disjoint sets:
 - **Eg. 1** $\{3,2,5\},\{4,9\},\{7,8,1\},\{6\}$ (All vertices are present)
 - **Eg. 2** {4,6}, {5,7,9}, {8}, {3,1}, {2}

(We will not have empty set in the collection.)

▶ Suppose we have *n* elements. What is the maximum number of disjoint sets that we can have in the above collection?

Operations on Disjoint Sets

► Three operations :

Operations on Disjoint Sets

- ► Three operations :
- 1. MAKE-SET(X)
- 2. UNION(X,Y)
- 3. FIND-SET(X)

Operations on Disjoint Sets

- Three operations :
- 1. MAKE-SET(X)
- 2. UNION(X,Y)
- 3. FIND-SET(X)
- The above operations must be performed as efficiently as possible.

Data structure for Disjoint Sets

Suppose we have the following disjoint sets for 9 items.

$${3,2,5},{4,9},{7,8,1},{6}$$

Data structure for Disjoint Sets

▶ Suppose we have the following disjoint sets for 9 items.

$${3,2,5}, {4,9}, {7,8,1}, {6}$$

► Each set will be identified by a representative element:

Data structure for Disjoint Sets

▶ Suppose we have the following disjoint sets for 9 items.

$$\{3,2,5\},\{4,9\},\{7,8,1\},\{6\}$$

► Each set will be identified by a representative element: Representative for the first set can be 3, for the second set the representative can be 9 and so on.

Section 19.3 : Disjoint forest Data Structure

► A disjoint set is represented as a rooted tree.

Section 19.3 : Disjoint forest Data Structure

- ► A disjoint set is represented as a rooted tree.
- ► Set $\{b, h, c, e\}$

$\overline{\mathrm{U}}$ NION(e,g)

\overline{U} NION(e,g)

▶ The two sets must be replaced by the union set.

UNION(e,g)

- ▶ The two sets must be replaced by the union set.
- ▶ What is the maximum number of UNION operations that we can perform if the collection of disjoint sets contain *n* elements?

UNION(e,g)

- ▶ The two sets must be replaced by the union set.
- What is the maximum number of UNION operations that we can perform if the collection of disjoint sets contain n elements? (n-1)

Operations on disjoint set

- 1. MAKE-SET(X)
- 2. FIND-SET(X)

FIND-SET(b) with path compression.

$$FIND-SET(x)$$

- 1 if $x \neq x.p$
- x.p = FIND-Set(x.p)
- 3 **return** x.p

FIND-Set(b) with path compression.

$$FIND-SET(x)$$

- 1 if $x \neq x.p$
- 2 x.p = FIND-SET(x.p)
- 3 **return** x.p

Rank of all the nodes remain the same.

FIND-Set(b) with path compression.

$$FIND-SET(x)$$

1 if
$$x \neq x.p$$

$$2 x.p = FIND-SET(x.p)$$

3 **return** x.p

Rank of all the nodes remain the same.

What is the advantage of path compression?

► FIND-SET(b)

FIND-SET(x)

1 **if**
$$x \neq x.p$$

$$2 x.p = FIND-SET(x.p)$$

3 **return** x.p

Union procedure

3. UNION(X,Y)

▶ We associate a *rank* with each node of the disjoint set tree.

- ▶ We associate a *rank* with each node of the disjoint set tree.
- ▶ Rank is an upperbound on the height of the tree.

- ▶ We associate a *rank* with each node of the disjoint set tree.
- Rank is an upperbound on the height of the tree.
- ► Rank is 0 when MAKE-SET creates a singleton set.

- ▶ We associate a *rank* with each node of the disjoint set tree.
- Rank is an upperbound on the height of the tree.
- ▶ Rank is 0 when MAKE-SET creates a singleton set.
- ▶ If the ranks are the same, we choose one of the roots as the parent and increment its rank.

- ▶ We associate a *rank* with each node of the disjoint set tree.
- Rank is an upperbound on the height of the tree.
- ▶ Rank is 0 when MAKE-SET creates a singleton set.
- ▶ If the ranks are the same, we choose one of the roots as the parent and increment its rank.
- Otherwise, we make a Tree with a lower rank a child of a Tree with a higher rank. Rank of the union tree remains unchanged.

Pseudocode for MAKE-SET and UNION

```
MAKE-SET(x)
  x.p = x
2 \quad x.rank = 0
Union(x, y)
   LINK(FIND-SET(x), FIND-SET(y))
LINK(x, y)
   if x.rank > y.rank
       y.p = x
3
   else x.p = y
       if x.rank == y.rank
           v.rank = v.rank + 1
```

Effect of the two heuristics

▶ What are the two heuristics trying to achieve?

Effect of the two heuristics

- What are the two heuristics trying to achieve?
- ▶ Suppose we perform *m* operations and have *n* elements in the collection of disjoint sets.

Effect of the two heuristics

- What are the two heuristics trying to achieve?
- ▶ Suppose we perform *m* operations and have *n* elements in the collection of disjoint sets.
- Overall running time will be $O(m\alpha(n))$, where $\alpha(n) = o(\lg n)$. (α is a very slowly growing function.)

ightharpoonup G(V, E) is a connected, undirected graph. Let w be a real valued weight function.

ightharpoonup G(V, E) is a connected, undirected graph. Let w be a real valued weight function.

Weight function $w: E \to \mathbb{R}$.

ightharpoonup G(V, E) is a connected, undirected graph. Let w be a real valued weight function.

Weight function $w: E \to \mathbb{R}$.

► Spanning tree is simply an acyclic subgraph where all vertices remain connected.

Weight of a spanning tree:

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$

► Weight of <u>a spanning tree</u>:

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$

Minimum spanning tree is a spanning tree with minimum weight.

Minimum Spanning Tree

Minimum Spanning Tree

Contains |V| - 1 edges.

Minimum Spanning Tree

Contains |V| - 1 edges.

Generic method for find the MST

Generic method for find the MST

► Generic method manages a set of edges *A*, which is initially empty.

Generic method for find the MST

- Generic method manages a set of edges A, which is initially empty.
- ▶ **Invariant**: Prior to each iteration, *A* is a subset of some minimum spanning tree.

▶ **Safe edge** : if $A \cup \{(u, v)\}$ is a subset of some minimum spanning tree.

▶ **Safe edge** : if $A \cup \{(u, v)\}$ is a subset of some minimum spanning tree.

```
GENERIC-MST(G, w)

1 A = \emptyset

2 while A does not form a spanning tree

3 find an edge (u, v) that is safe for A

4 A = A \cup \{(u, v)\}

5 return A
```

▶ **Safe edge** : if $A \cup \{(u, v)\}$ is a subset of some minimum spanning tree.

```
GENERIC-MST(G, w)

1 A = \emptyset

2 while A does not form a spanning tree

3 find an edge (u, v) that is safe for A

4 A = A \cup \{(u, v)\}

5 return A
```

How to find a safe edge?

▶ A **cut** (S, V - S) of an undirected graph G = (V, E) is a partition of V.

▶ A **cut** (S, V - S) of an undirected graph G = (V, E) is a partition of V. e.g. $(\{R, Q\}, \{T, P, W\})$

- ▶ A **cut** (S, V S) of an undirected graph G = (V, E) is a partition of V. e.g. $(\{R, Q\}, \{T, P, W\})$
- An edge (u, v) **crosses** the cut (S, V S) if one of its endpoints is in S and the other is in V S.

- ▶ A **cut** (S, V S) of an undirected graph G = (V, E) is a partition of V. e.g. $(\{R, Q\}, \{T, P, W\})$
- An edge (u, v) **crosses** the cut (S, V S) if one of its endpoints is in S and the other is in V S.
- ▶ Find an edge that crosses the cut $({R, Q}, {T, P, W})$.

▶ A cut (S, V - S) respects a set A of edges if no edge in A crosses the cut.

- ▶ A cut (S, V S) respects a set A of edges if no edge in A crosses the cut.
- Find a cut that respects $A = \{(R, T), (Q, W), (P, W)\}$?

An edge is a **light edge** crossing a cut if its weight is minimum among any edge crossing the cut.

- ► An edge is a **light edge** crossing a cut if its weight is minimum among any edge crossing the cut.
- ► Find the light edge for the cut $({R, T}, {P, Q, W})$?

Adding an edge to MST creates a cycle

► Adding an edge to a MST creates a cycle.

Adding an edge to MST creates a cycle

- ▶ Adding an edge to a MST creates a cycle.
- ▶ We can find another spanning tree by breaking the cycle.

▶ How to find a safe edge?

```
GENERIC-MST(G, w)

1 A = \emptyset
```

- 2 **while** A does not form a spanning tree
- 3 find an edge (u, v) that is safe for A
- $A = A \cup \{(u, v)\}$
- 5 return A

▶ **Theorem:** Let A be a set of edges which are included in some minimum spanning tree. Let (S, V - S) be any cut that respects A, and let (u, v) be a light edge crossing (S, V - S). Then, edge (u, v) is safe for A.

▶ Let $A = \{\}$.

- ▶ Let $A = \{\}$.
- ▶ Find any cut (S, V S) that respects A.

- ▶ Let $A = \{\}$.
- Find any cut (S, V S) that respects A. Let us say $(\{R, T, P\}, \{Q, W\})$

- ▶ Let $A = \{\}$.
- Find any cut (S, V S) that respects A. Let us say $(\{R, T, P\}, \{Q, W\})$
- ▶ Find a light edge crossing the cut (S, V S).

- ▶ Let $A = \{\}$.
- Find any cut (S, V S) that respects A. Let us say $(\{R, T, P\}, \{Q, W\})$
- ▶ Find a light edge crossing the cut (S, V S). Edge (P, W)

1. Set A is empty

- ▶ Let $A = \{\}$.
- Find any cut (S, V S) that respects A. Let us say $(\{R, T, P\}, \{Q, W\})$
- ▶ Find a light edge crossing the cut (S, V S). Edge (P, W)
- ▶ The light edge (P, W) will be a safe edge.

► $A = \{(P, W)\}.$

- ► $A = \{(P, W)\}.$
- ▶ Find any cut (S, V S) that respects A.

- ► $A = \{(P, W)\}.$
- Find any cut (S, V S) that respects A. Let us say $(\{R, P, W\}, \{T, Q\})$

- ► $A = \{(P, W)\}.$
- Find any cut (S, V S) that respects A. Let us say $(\{R, P, W\}, \{T, Q\})$
- Find a light edge crossing the cut (S, V S).

- ► $A = \{(P, W)\}.$
- Find any cut (S, V S) that respects A. Let us say $(\{R, P, W\}, \{T, Q\})$
- ▶ Find a light edge crossing the cut (S, V S). Edge (R, T)

- ► $A = \{(P, W)\}.$
- Find any cut (S, V S) that respects A. Let us say $(\{R, P, W\}, \{T, Q\})$
- ▶ Find a light edge crossing the cut (S, V S). Edge (R, T)
- ▶ The light edge (R, T) will be a safe edge.

►
$$A = \{(P, W), (R, T)\}.$$

- ► $A = \{(P, W), (R, T)\}.$
- ▶ Find any cut (S, V S) that respects A.

- ► $A = \{(P, W), (R, T)\}.$
- Find any cut (S, V S) that respects A. Let us say $(\{R, T\}, \{P, Q, W\})$

- ► $A = \{(P, W), (R, T)\}.$
- Find any cut (S, V S) that respects A. Let us say $(\{R, T\}, \{P, Q, W\})$
- Find a light edge crossing the cut (S, V S).

- ► $A = \{(P, W), (R, T)\}.$
- Find any cut (S, V S) that respects A. Let us say $(\{R, T\}, \{P, Q, W\})$
- ▶ Find a light edge crossing the cut (S, V S). Edge (R, P)

- $ightharpoonup A = \{(P, W), (R, T)\}.$
- Find any cut (S, V S) that respects A. Let us say $(\{R, T\}, \{P, Q, W\})$
- ▶ Find a light edge crossing the cut (S, V S). Edge (R, P)
- ▶ The light edge (R, P) will be a safe edge.

- ► $A = \{(P, W), (R, T), (R, P)\}.$
- ▶ Find a cut (S, V S) that respects A.

- $ightharpoonup A = \{(P, W), (R, T), (R, P)\}.$
- Find a cut (S, V S) that respects A. Only possibility $(\{R, T, P, W\}, \{Q\})$

- $A = \{ (P, W), (R, T), (R, P) \}.$
- Find a cut (S, V S) that respects A. Only possibility $(\{R, T, P, W\}, \{Q\})$
- ▶ Find a light edge crossing the cut (S, V S).

- $A = \{ (P, W), (R, T), (R, P) \}.$
- Find a cut (S, V S) that respects A. Only possibility $(\{R, T, P, W\}, \{Q\})$
- ▶ Find a light edge crossing the cut (S, V S). Edge (Q, W)

- $A = \{ (P, W), (R, T), (R, P) \}.$
- Find a cut (S, V S) that respects A. Only possibility $(\{R, T, P, W\}, \{Q\})$
- ▶ Find a light edge crossing the cut (S, V S). Edge (Q, W)
- ▶ The light edge (Q, W) will be a safe edge.

 $ightharpoonup A = \{(P, W), (R, T), (R, P), (Q, W)\}.$

- $A = \{(P, W), (R, T), (R, P), (Q, W)\}.$
- ▶ Set *A* forms a spanning tree. The generic algorithm terminates

- $A = \{(P, W), (R, T), (R, P), (Q, W)\}.$
- ► Set *A* forms a spanning tree. The generic algorithm terminates

GENERIC-MST
$$(G, w)$$

- $1 \quad A = \emptyset$
- 2 **while** A does not form a spanning tree
- 3 find an edge (u, v) that is safe for A
- $A = A \cup \{(u, v)\}$
- 5 return A

Theorem

▶ **Theorem:** Let A be a set of edges which are included in some minimum spanning tree. Let (S, V - S) be any cut that respects A, and let (u, v) be a light edge crossing (S, V - S). Then, edge (u, v) is safe for A.

▶ **Corollary:** Let A be a set of edges which are included in some minimum spanning tree. Let $C = (V_C, E_C)$ be a connected component (tree) in the forest $G_A = (V, A)$. If (u, v) is a light edge connecting C to some other component in G_A , then (u, v) is safe for A.

▶ Let $A = \{(R, T), (P, W)\}.$

- ▶ Let $A = \{(R, T), (P, W)\}.$
- $G_A = (V, A)$ is a forest containing three trees.

- ► Let $A = \{(R, T), (P, W)\}.$
- $ightharpoonup G_A = (V, A)$ is a forest containing three trees.
- ▶ Let *C* be the tree containing the vertices *P* and *W*.

- ▶ Let $A = \{(R, T), (P, W)\}.$
- ▶ $G_A = (V, A)$ is a forest containing three trees.
- \blacktriangleright Let C be the tree containing the vertices P and W.

Kruskal's Algorithm : Step 1

- ► *A* = {}
- $ightharpoonup G_A$ contains 5 trees each having one vertex.

Kruskal's Algorithm: Step 2

- ► $A = \{(Q, W)\}$
- $ightharpoonup G_A$ contains 4 trees.

Kruskal's Algorithm: Step 3

- $ightharpoonup A = \{(Q, W), (R, T)\}$
- $ightharpoonup G_A$ contains 3 trees.

Kruskal's Algorithm: Step 4

- $ightharpoonup A = \{(Q, W), (R, T), (P, W)\}$
- $ightharpoonup G_A$ contains 2 trees.

Kruskal's Algorithm: Step 5

- $A = \{(Q, W), (R, T), (P, W), (R, P)\}$
- $ightharpoonup G_A$ contains 1 tree.

Kruskal's Algorithm : Step 5

- $ightharpoonup A = \{(Q, W), (R, T), (P, W), (R, P)\}$
- $ightharpoonup G_A$ contains 1 tree.

▶ If we keep considering more edges, it will always connect the same component.

Kruskal's Algorithm

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

Disjoint forest data structure

Make-set(x)

 $Union(x,\!y)$

FIND-SET(X)

Running time for Kruskal's Algorithm

```
MST-KRUSKAL(G, w)

1 A = \emptyset

2 for each vertex v \in G.V

3 MAKE-SET(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) \in G.E, taken in nondecreasing order by weight

6 if FIND-SET(u) \neq FIND-SET(v)

7 A = A \cup \{(u, v)\}

UNION(u, v)

9 return A
```

Prim's Algorithm

▶ Edges in set A always form a single component in the forest G_A .

Prim's Algorithm

- Edges in set A always form a single component in the forest G_A .
- ightharpoonup We start growing the tree from an initial root vertex r.

►
$$A = \{(P, W)\}$$

$$ightharpoonup A = \{(P, W), (Q, W)\}$$

$$ightharpoonup A = \{(P, W), (Q, W), (R, P)\}$$

$$ightharpoonup A = \{(P, W), (Q, W), (R, P), (R, T)\}$$

Prim's Algorithm

```
MST-PRIM(G, w, r)
     for each u \in G.V
         u.key = \infty
         u.\pi = NIL
 4 r.key = 0
 5 \quad O = G.V
 6
     while Q \neq \emptyset
          u = \text{EXTRACT-MIN}(O)
 8
          for each v \in G.Adj[u]
 9
              if v \in Q and w(u, v) < v. key
10
                   \nu.\pi = u
11
                   v.kev = w(u, v)
```

Max-priority Queue / Min-priority Queue

► BUILD-MIN-HEAP

Max-priority Queue / Min-priority Queue

- ► BUILD-MIN-HEAP
- ► HEAP-EXTRACT-MIN

Max-priority Queue / Min-priority Queue

- ► Build-Min-Heap
- ► HEAP-EXTRACT-MIN
- ► Heap-Decrease-Key

Running time of Prim's Algorithm

```
MST-PRIM(G, w, r)
     for each u \in G.V
         u.key = \infty
         u.\pi = NIL
 4 r.key = 0
 5 \quad O = G.V
     while Q \neq \emptyset
         u = \text{EXTRACT-MIN}(Q)
 8
         for each v \in G.Adj[u]
 9
              if v \in O and w(u, v) < v. key
10
                   \nu.\pi = u
11
                   v.kev = w(u, v)
```

Running time of Prim's Algorithm