Molekula Dinamika

NAGY PÉTER M07ILF 2018.04.15.

Tartalomjegyzék

1.	Bevezetés	3
2.	Elméleti áttekintés	3
3.	Mérési feladatok	3
	3.1. 1.Feladat	3
	3.2. 2.Feladat	4
	3.3. 3.Feladat	5
4.	Függelék	9
	4.1. A 3. feladathoz a modosított md3.cpp kód	9

1. Bevezetés

A kisérlet célja számítógépes szimulációs környezetben megvalósított molekulák dinamikai vizsgálata.

2. Elméleti áttekintés

A molekula dinamikai szimulációkban a részecskék jellemző darabszáma Avogadro szám nagyságrendű. Számítógéppel ennyi részecskét nem vagyunk képesek szimulálni, de képesek vagyunk annyi darabot, hogy arra már értelmezhető legyen a termodinamika törvényei. Folyamatos közelítéseket alkalmazva tudjuk növelni a szimulált részecskék darab számát, de ovatosnak kell leni nehogy tul durva közelítésekkel éljünk és teljesen eltávolodjunk a fizikai valóságtól. Legyen N darab olyan részecskénk a kisérletben amelyeknek tudjuk a kezdő pozicióját és a sebességét. A Newton törvények alapján számoljuk ki páronként a kölcsönhatásokat majd léptessük a rendszert. A rendszer egyensúlyi állapotában teljesül az enrgia ekvipartició tétel.

$$\langle K \rangle = \langle \frac{1}{2}mv^2 \rangle = \langle \frac{3}{2}kT \rangle$$
 (1)

A szimuláció során ¡K¿ mutatja, hogy a rendszer egyensúlyban van-e. Egyensúlyban mérhetők a termodinamikai mennyiségek.

3. Mérési feladatok

3.1. 1.Feladat

A feladat az md.cpp és az md2.cpp programok megértése és összehasonlítása volt. Az md.cpp egy Lennard-Jones szimuláció amely a velocity-Verlet algoritmussal léptet. A különbség az md2.cpp programban ott van, hogy a kezdeti sebességet Maxwell-Boltzmann eloszlás szerint generálja, figyeli a pillanatnyi hőmérsékletet és ha az nem felel meg a megjelölt értéknek akkor újra skáláza azt. Megfigyelhető, hogy az md2.cpp kimenetéből kapott eredmény esetében gyorsabban relaxál az egyensúlyi állapotába. De a kezdetben nagyobb ugrásokat produkál az újra skálázgatás miatt.

1. ábra. md1.cpp kimenete

2. ábra. md1.cpp kimenete

3.2. 2.Feladat

Az md3.cpp különböző egyszerűsítésekket használ, hogy javítsan az eredményt. Egy adott r_{cutoff} érték felett 0 értéket ad a potenciálnakettől gyorsabb lesz az algoritmus. Az r_{max} beállítja azt az értéket amelyen belül figyeljük a szomszédos atomokat. Az r_{cutoff} modosításval csökkenthetjük a futási időt, minnél kisebb az értéke annál gyorsabban fut le a program.

Futási idő $r_{cutoff}=2.5$ esetén: 29.6406 sec Futási idő $r_{cutoff}=1.0$ esetén: 10.6562 sec

3. ábra. md3.cpp kimenete

3.3. 3.Feladat

A kódon végzet modosításokat a függelékben közlöm.

4. ábra. energia

5. ábra. nyomás

6. ábra. hőmérséklet

7. ábra. Kompresszibilítási tényező

8. ábra. Fajhő

4. Függelék

4.1. A 3. feladathoz a modosított md3.cpp kód

```
int main() {
    clock_t start = clock();
    initialize();
    updatePairList();
    updatePairSeparations();
    computeAccelerations();
    double dt = 0.01;
    ofstream file("T3.data");
      file << "% Energy" << "\t" << "T" << "\t" << "P" << "\t" << "Z" << "\t" << "Cv" << endl;
    double a_sum = 0;
    double out_T = 0;
    double E = 0;
    double E_2 = 0;
    double Energy = 0;
    double Ek=0;
    for (int i = 0; i < 5000; i++) {
        velocityVerlet(dt);
        a_sum = 0.;
        Ek = 0.;
        for(int j=0; j<N;j++){</pre>
            for(int k=0; k<3;k++){
                Ek=+pow(v[j][k],2);
            }
        }
            for (int p = 0; p < nPairs; p++) {
            a_sum+=pow(1/rSqdPair[p],6)-pow(1/rSqdPair[p],3);
        Energy=Ek/2+4*a_sum;
        file << i <<"\t" << Energy << "\t" << (out_T=instantaneousTemperature()) << "\t" <<
        (N*out_T+(1.0/3)*a_sum)/(pow(L,3)) << "\t" << (N*out_T+(1.0/3)*a_sum)/(N*out_T) << "\t";
        E_2 = pow(Energy, 2);
        E = Energy;
        file << (((E_2/N)-pow((E/N), 2))/(pow(out_T, 2))) << endl;
        if (i \% 200 == 0)
            rescaleVelocities();
        if (i % updateInterval == 0) {
            updatePairList();
            updatePairSeparations();
        }
    }
    file.close();
    clock_t stop = clock();
double time = (double)(stop-start)/CLOCKS_PER_SEC;
ofstream proc("time.dat");
proc << "szamitasi ido: " << time;</pre>
proc.close();
}
```

Hivatkozások

[1] Jegyzet

https://stegerjozsef.web.elte.hu/teaching/szamszim/moldin.pdf

[2] Forráskód

https://stegerjozsef.web.elte.hu/teaching/szamszim/moldin.tgz