Computer Assignment 1

CPE 261456 (Introduction to Computational Intelligence)

โดย

นายธนาคม หัสแดง

รหัสนักศึกษา 590610624

เสนอ

ผศ.ดร. ศันสนีย์ เอื้อพันธ์วิริยะกุล

คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่

วิธีการทำงานของโปรแกรม

เริ่มต้นโปรแกรมจะต้องใส่ค่า input ที่กำหนด ได้แก่

- รูปแบบ neural เช่น [1,2] มี รูปแบบเป็น 2 hidden layer , ขนาด 1 และ 2 ตามลำดับ
- cross validation size เช่น [80,20] คือ train 80% , test 20 %
- dataset_number ได้แก่ 0 คือ cross.pat , 1 คือ flood data
- learning rate
- momentum rate
- activation funct
- epoch

โดยขั้นตอนการทำงานของโปรแกรมนั้น

- 1) เมื่อได้ค่าจากที่กำหนด โปรแกรม จะมา random weight ให้เส้นแต่ละเส้นที่เชื่อมต่อระหว่าง hidden node ซึ่งค่าอยู่ระหว่าง
- 2) เข้ากระบวนการ train โดยเริ่มทำ feedforward network ก่อนโดยแต่ละ layer ได้จากการ dot product ระหว่าง matrix output ของ layer ก่อนหน้า กับ matrix weight ทุก เส้นที่เข้า layer นั้น
- 3) เมื่อทำ feedforward จนครบแล้ว ทำ back propagation โดยเริ่มจาก หา error โดยนำ ค่าที่ควรจะเป็น ลบ ค่าที่ได้จาก output node

$$e_i(t) = d_i(t) - y_i(t)$$

4) นำ error ที่ได้ไปหา gradient จากสูตร

$$\delta_j(t) = e_j(t)\varphi_j(v_j(t))$$

5) จากนั้นนำ gradient ไปหา gradient ใน node ก่อหน้า เรื่อยๆ โดยใช้สูตรนี้

$$\delta_{j}^{(l)}(t) = \varphi_{j}^{(l)}(v_{j}^{(l)}(t)) \sum_{k} \delta_{k}^{(l+1)}(t) w_{kj}^{(l+1)}(t)$$

6) นำ gradient ที่ได้จาก สูตรข้อที่แล้ว ไปคำนวณเพื่อปรับ weight จากสูตรนี้

$$\Delta w_{ji}^{(l)}(t) = \alpha \Delta w_{ji}^{(l)}(t-1) + \eta \delta_j^{(l)}(t) y_i^{(l-1)}(t)$$

- 7) จะได้ weight ใหม่ ละนำ weight ใหม่นี้ ไปวนทำซ้ำจนกว่าจะครบรอบจำนวนการ train โดยในการทดลองจะแบ่งรูปแบบการทดลองออกเป็น 4 แบบ คือ
 - ทดลองเปลี่ยนแปลงรูปแบบ และ ขนาดของ Hidden nodes อยู่ในช่วง 1 hidden layer , 1 - 14 hidden node

2 hidden layer , 1 - 14 hidden node

- ทดลองเปลี่ยนแปลงค่า learning rate

อยู่ในช่วง [0,1]

- ทดลองเปลี่ยนแปลงค่า momentum rate อยู่ในช่วง [0,1]

- ทดลองเปลี่ยนแปลงจำนวนรอบการtrain (#epoch) จำนวน = [100,250,500,1000,2000,5000,10000]

ผลการทดลอง และ วิเคราะห์ผลการทดลอง

การทดลองการ Predict ระดับน้ำที่สะพานนวรัตน์ ในอีก 7 ชั่วโมงข้างหน้า

การทดลองที่ 1 : เปลี่ยนแปลงรูปแบบ และ ขนาดของ Hidden nodes ได้ผลออกมาดังนี้

- แบบที่มี 1 Hidden layer โดยมีจำนวน hidden node ในช่วง [1,14]

N	leura	l	learning rate	momentum rate	#epoch	avg error	min error
8	1	1	0.12	0.07	1000	7164.8043	5082.60379
8	2	1	0.12	0.07	1000	1652.6775	965.8234
8	3	1	0.12	0.07	1000	2031.4607	1415.775045
8	4	1	0.12	0.07	1000	1865.2652	977.076397
8	5	1	0.12	0.07	1000	1985.9267	889.900016
8	6	1	0.12	0.07	1000	2013.6769	1023.431926
8	7	1	0.12	0.07	1000	1725.3579	841.863129
8	8	1	0.12	0.07	1000	1646.1176	765.831823
8	9	1	0.12	0.07	1000	1483.529	622.305481
8	10	1	0.12	0.07	1000	1518.4148	1100.5419
8	11	1	0.12	0.07	1000	1599.0754	866.237965
8	12	1	0.12	0.07	1000	1577.579	954.451523
8	13	1	0.12	0.07	1000	1587.2177	889.086242
8	14	1	0.12	0.07	1000	1761.6648	835.167171

- แบบที่มี 2 Hidden layers โดยมีจำนวน hidden node ในช่วง [1,14]

	Nueral			learning rate	momentum rate	#epoch	avg error	min error
8	1	1	1	0.12	0.07	1000	5516.4951	748.26251
8	1	2	1	0.12	0.07	1000	3708.5619	1371.029158
8	1	3	1	0.12	0.07	1000	3155.9771	760.803352
8	1	4	1	0.12	0.07	1000	2656.2176	1536.920681
8	1	5	1	0.12	0.07	1000	2392.8342	777.855455
8	1	6	1	0.12	0.07	1000	3366.0247	1561.07911
8	1	7	1	0.12	0.07	1000	2518.1337	1404.836716

8	1	8	1	0.12	0.07	1000	2737.1659	1340.636519
8	1	9	1	0.12	0.07	1000	3338.8515	2171.40841
8	1	10	1	0.12	0.07	1000	3536.498	2387.668942
8	1	11	1	0.12	0.07	1000	3648.6302	1619.456906
8	1	12	1	0.12	0.07	1000	3185.9712	2006.314481
8	1	13	1	0.12	0.07	1000	3281.3899	833.441194
8	1	14	1	0.12	0.07	1000	3154.9063	1701.194597
8	2	1	1	0.12	0.07	1000	1956.6006	331.905532
8	2	2	1	0.12	0.07	1000	1057.3282	540.626287
8	2	3	1	0.12	0.07	1000	1577.91	581.259077
8	2	4	1	0.12	0.07	1000	1415.5879	607.984881
8	2	5	1	0.12	0.07	1000	2065.6567	939.260526
8	2	6	1	0.12	0.07	1000	1409.9576	791.087206
8	2	7	1	0.12	0.07	1000	1696.3733	916.727339
8	2	8	1	0.12	0.07	1000	1575.5773	698.286952
8	2	9	1	0.12	0.07	1000	1739.8666	862.713732
8	2	10	1	0.12	0.07	1000	1895.4892	1175.725987
8	2	11	1	0.12	0.07	1000	1808.4549	865.057561
8	2	12	1	0.12	0.07	1000	2193.6483	1156.382942
8	2	13	1	0.12	0.07	1000	1936.9181	1296.594458
8	2	14	1	0.12	0.07	1000	2723.2142	1267.92419
8	3	1	1	0.12	0.07	1000	949.3388	454.842003
8	3	2	1	0.12	0.07	1000	1320.1741	296.109474
8	3	3	1	0.12	0.07	1000	669.1097	242.489452
8	3	4	1	0.12	0.07	1000	743.9345	325.883742
8	3	5	1	0.12	0.07	1000	699.9933	421.561319
8	3	6	1	0.12	0.07	1000	1020.9736	596.238355
8	3	7	1	0.12	0.07	1000	851.5826	442.342435
8	3	8	1	0.12	0.07	1000	1797.1074	486.748268
8	3	9	1	0.12	0.07	1000	1272.6671	601.910687
8	3	10	1	0.12	0.07	1000	1136.7645	632.909929
8	3	11	1	0.12	0.07	1000	1276.3388	365.760042

8	3	12	1	0.12	0.07	1000	926.9166	456.225739
8	3	13	1	0.12	0.07	1000	946.3836	603.125697
8	3	14	1	0.12	0.07	1000	1248.2746	515.2925
8	4	1	1	0.12	0.07	1000	1022.4401	597.503242
8	4	2	1	0.12	0.07	1000	573.2888	369.085345
8	4	3	1	0.12	0.07	1000	623.9521	334.753068
8	4	4	1	0.12	0.07	1000	550.9211	225.177503
8	4	5	1	0.12	0.07	1000	537.8885	370.719016
8	4	6	1	0.12	0.07	1000	851.0001	312.437955
8	4	7	1	0.12	0.07	1000	638.4713	354.573619
8	4	8	1	0.12	0.07	1000	604.0285	371.550281
8	4	9	1	0.12	0.07	1000	772.8395	376.826929
8	4	10	1	0.12	0.07	1000	523.0501	285.709897
8	4	11	1	0.12	0.07	1000	984.5883	404.361523
8	4	12	1	0.12	0.07	1000	782.9617	349.3292
8	4	13	1	0.12	0.07	1000	637.3624	351.443639
8	4	14	1	0.12	0.07	1000	767.2578	395.014632
8	5	1	1	0.12	0.07	1000	941.1699	198.699342
8	5	2	1	0.12	0.07	1000	542.1616	263.149648
8	5	3	1	0.12	0.07	1000	480.2532	136.25831
8	5	4	1	0.12	0.07	1000	466.0922	335.295223
8	5	5	1	0.12	0.07	1000	460.4622	369.243123
8	5	6	1	0.12	0.07	1000	484.1003	227.930761
8	5	7	1	0.12	0.07	1000	477.6297	284.867377
8	5	8	1	0.12	0.07	1000	522.7573	225.844468
8	5	9	1	0.12	0.07	1000	515.4249	266.265294
8	5	10	1	0.12	0.07	1000	596.2404	206.125958
8	5	11	1	0.12	0.07	1000	579.3274	233.703677
8	5	12	1	0.12	0.07	1000	656.604	312.020045
8	5	13	1	0.12	0.07	1000	910.7839	504.722261
8	5	14	1	0.12	0.07	1000	892.0943	370.88109
8	6	1	1	0.12	0.07	1000	952.7672	542.319465

8	6	2	1	0.12	0.07	1000	451.268	305.261035
8	6	3	1	0.12	0.07	1000	361.4295	132.773965
8	6	4	1	0.12	0.07	1000	385.9407	210.490761
8	6	5	1	0.12	0.07	1000	398.1112	222.010584
8	6	6	1	0.12	0.07	1000	434.5291	261.772616
8	6	7	1	0.12	0.07	1000	403.0513	289.483129
8	6	8	1	0.12	0.07	1000	403.8919	177.755813
8	6	9	1	0.12	0.07	1000	440.3116	173.238439
8	6	10	1	0.12	0.07	1000	504.8552	276.593935
8	6	11	1	0.12	0.07	1000	532.5468	224.445671
8	6	12	1	0.12	0.07	1000	514.2662	255.085139
8	6	13	1	0.12	0.07	1000	4787.1547	233.959539
8	6	14	1	0.12	0.07	1000	11581.2328	284.833652
8	7	1	1	0.12	0.07	1000	898.3208	285.527342
8	7	2	1	0.12	0.07	1000	532.7709	227.344726
8	7	3	1	0.12	0.07	1000	397.3186	186.002771
8	7	4	1	0.12	0.07	1000	371.4991	200.507455
8	7	5	1	0.12	0.07	1000	400.0784	162.9456
8	7	6	1	0.12	0.07	1000	419.6482	265.717826
8	7	7	1	0.12	0.07	1000	399.1256	165.408535
8	7	8	1	0.12	0.07	1000	407.3365	186.449494
8	7	9	1	0.12	0.07	1000	422.2662	210.755374
8	7	10	1	0.12	0.07	1000	437.5094	131.230994
8	7	11	1	0.12	0.07	1000	417.6192	242.783768
8	7	12	1	0.12	0.07	1000	480.1298	376.269761
8	7	13	1	0.12	0.07	1000	428.1383	264.672303
8	7	14	1	0.12	0.07	1000	4450.0058	144.307148
8	8	1	1	0.12	0.07	1000	883.7643	389.243245
8	8	2	1	0.12	0.07	1000	472.9024	241.776887
8	8	3	1	0.12	0.07	1000	332.7103	208.521477
8	8	4	1	0.12	0.07	1000	373.4889	229.478855
8	8	5	1	0.12	0.07	1000	368.8708	103.714887

8	8	6	1	0.12	0.07	1000	334.489	184.165355
8	8	7	1	0.12	0.07	1000	383.8156	162.078713
8	8	8	1	0.12	0.07	1000	364.8624	122.606268
8	8	9	1	0.12	0.07	1000	408.4629	209.942503
8	8	10	1	0.12	0.07	1000	350.2632	177.752726
8	8	11	1	0.12	0.07	1000	376.6573	156.222026
8	8	12	1	0.12	0.07	1000	513.0171	314.8894
8	8	13	1	0.12	0.07	1000	408.6436	223.020781
8	8	14	1	0.12	0.07	1000	4204.1879	277.875471
8	9	1	1	0.12	0.07	1000	907.5957	236.885419
8	9	2	1	0.12	0.07	1000	426.9488	171.5012
8	9	3	1	0.12	0.07	1000	327.1263	233.751323
8	9	4	1	0.12	0.07	1000	353.1213	152.509071
8	9	5	1	0.12	0.07	1000	350.8856	218.317826
8	9	6	1	0.12	0.07	1000	334.416	229.561426
8	9	7	1	0.12	0.07	1000	358.197	152.488223
8	9	8	1	0.12	0.07	1000	345.9645	196.114594
8	9	9	1	0.12	0.07	1000	372.5477	146.300465
8	9	10	1	0.12	0.07	1000	395.4041	252.889239
8	9	11	1	0.12	0.07	1000	4541.4758	207.7888
8	9	12	1	0.12	0.07	1000	404.5233	174.356077
8	9	13	1	0.12	0.07	1000	428.3002	229.433513
8	9	14	1	0.12	0.07	1000	4121.8224	258.448813
8	10	1	1	0.12	0.07	1000	941.9389	645.694103
8	10	2	1	0.12	0.07	1000	387.6876	152.747939
8	10	3	1	0.12	0.07	1000	369.5347	168.442006
8	10	4	1	0.12	0.07	1000	356.4045	205.522084
8	10	5	1	0.12	0.07	1000	333.8694	225.60259
8	10	6	1	0.12	0.07	1000	311.8568	165.207439
8	10	7	1	0.12	0.07	1000	323.2105	140.949806
8	10	8	1	0.12	0.07	1000	317.1925	153.371177
8	10	9	1	0.12	0.07	1000	338.6478	121.17429

8	10	10	1	0.12	0.07	1000	337.3392	116.443739
8	10	11	1	0.12	0.07	1000	362.556	255.226723
8	10	12	1	0.12	0.07	1000	366.6477	187.311884
8	10	13	1	0.12	0.07	1000	347.4094	215.173768
8	10	14	1	0.12	0.07	1000	8696.3028	168.605032
8	11	1	1	0.12	0.07	1000	933.0619	181.623894
8	11	2	1	0.12	0.07	1000	382.6432	246.668103
8	11	3	1	0.12	0.07	1000	358.6149	174.407552
8	11	4	1	0.12	0.07	1000	324.4401	95.371916
8	11	5	1	0.12	0.07	1000	326.1993	94.074548
8	11	6	1	0.12	0.07	1000	327.7679	160.472474
8	11	7	1	0.12	0.07	1000	371.013	189.201642
8	11	8	1	0.12	0.07	1000	353.2321	267.749526
8	11	9	1	0.12	0.07	1000	376.318	155.396239
8	11	10	1	0.12	0.07	1000	372.3794	160.112087
8	11	11	1	0.12	0.07	1000	368.3131	226.77429
8	11	12	1	0.12	0.07	1000	411.2677	150.274029
8	11	13	1	0.12	0.07	1000	397.9464	183.059129
8	11	14	1	0.12	0.07	1000	5235.7427	217.919374
8	12	1	1	0.12	0.07	1000	956.513	472.758384
8	12	2	1	0.12	0.07	1000	603.9178	209.935858
8	12	3	1	0.12	0.07	1000	339.8969	112.78801
8	12	4	1	0.12	0.07	1000	321.0256	137.159681
8	12	5	1	0.12	0.07	1000	308.1273	147.687632
8	12	6	1	0.12	0.07	1000	341.6304	188.887484
8	12	7	1	0.12	0.07	1000	338.2958	171.697994
8	12	8	1	0.12	0.07	1000	360.2356	216.590365
8	12	9	1	0.12	0.07	1000	345.4566	122.253881
8	12	10	1	0.12	0.07	1000	405.1147	217.996806
8	12	11	1	0.12	0.07	1000	369.2777	202.677455
8	12	12	1	0.12	0.07	1000	5043.9227	147.837352
8	12	13	1	0.12	0.07	1000	433.9423	220.212065

8	12	14	1	0.12	0.07	1000	7197.3368	149.982832
8	13	1	1	0.12	0.07	1000	914.6108	437.932335
8	13	2	1	0.12	0.07	1000	395.89	136.190629
8	13	3	1	0.12	0.07	1000	320.6174	160.338584
8	13	4	1	0.12	0.07	1000	336.2324	150.919642
8	13	5	1	0.12	0.07	1000	305.9969	119.335687
8	13	6	1	0.12	0.07	1000	328.9036	132.212545
8	13	7	1	0.12	0.07	1000	338.9665	148.343881
8	13	8	1	0.12	0.07	1000	343.2261	115.439161
8	13	9	1	0.12	0.07	1000	342.5435	122.023684
8	13	10	1	0.12	0.07	1000	378.361	204.997571
8	13	11	1	0.12	0.07	1000	360.0913	205.463119
8	13	12	1	0.12	0.07	1000	3967.7374	144.681361
8	13	13	1	0.12	0.07	1000	4314.594	208.730119
8	13	14	1	0.12	0.07	1000	340.3364	198.808458
8	14	1	1	0.12	0.07	1000	928.4872	463.328235
8	14	2	1	0.12	0.07	1000	363.5879	210.564494
8	14	3	1	0.12	0.07	1000	338.729	158.965135
8	14	4	1	0.12	0.07	1000	344.9195	190.446419
8	14	5	1	0.12	0.07	1000	317.8834	135.407745
8	14	6	1	0.12	0.07	1000	388.7381	152.854126
8	14	7	1	0.12	0.07	1000	304.3679	139.9853
8	14	8	1	0.12	0.07	1000	354.4205	188.808513
8	14	9	1	0.12	0.07	1000	340.786	205.925
8	14	10	1	0.12	0.07	1000	359.6813	235.904797
8	14	11	1	0.12	0.07	1000	342.0143	104.739203
8	14	12	1	0.12	0.07	1000	363.639	137.280545
8	14	13	1	0.12	0.07	1000	4275.7731	236.76819
8	14	14	1	0.12	0.07	1000	4075.1118	122.936671

^{*} ข้อมูลในตารางเป็นข้อมูลที่ผ่านการ cross validation ทั้งหมดแล้ว แต่นำมาเพียงค่าเฉลี่ย และ ค่าน้อยสุดเท่านั้น

แบบที่ 3 : นำรูปแบบ (Neural) ที่ได้ sum average error น้อยที่สุด [8-10-6-1] มาแสดง cross validation

------ Variable --

Datafile : Flood data set Neural name : 8-10-6-1 Learning rate: 0.12

Momentum rate: 0.07

Activaion Function: sigmoid

Cross validation: [90: 10]

#Epoch: 1000

	Round : 0					
Desired Output	Predict	Error				
405	370.77320091	 34 . 23				
208	225.92039829	17.92				
377	354.87588910	22.12				
290	284.39025817	5.61				
156	161.57561649	-5.58				
297	276.07609583	20.92				
404	383.88675319	20.11				
486	476.48785124	9.51				
213	226.36173719	-13.36				
315	307.83524630	7.16				
489	476.16481451	12.84				
323	307.75773914	15.24				
410	389.51897714	20.48				
410	359.33131820	50.67				
472	478.17342950	-6.17				
308	296.25959142	11.74				
255	243.66167612	11.34				
286	271.56372012	14.44				
331	332.05725203	-1.06				
397	384.19954496	12.8				
153	159.66848790	-6.67				
447	435.64802127	11.35				
467	455.50291710	j 11.5				
340	259.72064613	80.28				
462	451.26188606	10.74				
153	160.21327249	7.21				
251	261.08606972	-10.09				
262	263.64635918	-1.65				
471	460.25641010	10.74				
454	430.90011982	23.1				
237	189.52913617	47.47				
Mean Square Error = 554.632529						

	Round : 1				
Desired Output	Predict	Error			
245	220 00400100	l 42.00			
215	228.98409188	-13.98			
450 471	446.11696959	3.88 -0.9			
296	471.90381168 311.49531402	-15.5			
471		-0.37			
·	471.37209202	•			
488	481.66848519	6.33			
333	349.58084233	-16.58			
245	251.07747021	-6.08			
478	483.98731045	-5.99			
339	359.19262037	-20.19			
294	323.40437618	-29.4			
328	357.20813008	-29.21			
160	172.42720033	-12.43			
448	457.01687486	-9.02			
315	334.94992034	-19.95			
444	451.84862072	-7.85			
218	224.45434965	-6.45			
325	354.10878800	-29.11			
154	171.57136357	-17.57			
234	238.67517069	-4.68			
153	171.40442765	-18.4			
450	457.59452855	-7.59			
232	237.08346048	-5.08			
351	371.60974961	-20.61			
215	228.51354484	-13.51			
436	445.46973834	-9.47			
490	482.69673255	7.3			
325	366.80425759	-41.8			
455	460.18813801	-5.19			
390	408.45891537	-18.46			
217	225.42741211	-8.43			
Mean Square Frror = 265.744068					

Mean Square Error = 265.744068

	Round : 2	
Desired Output	Predict	Error
211	226.14259472	-15.14
420	391.98462884	28.02
168	165.26558125	2.73
424	395.82616749	28.17
253	262.17024301	-9.17
259	210.38167494	48.62
490	478.95571533	11.04
361	348.12869709	12.87
238	240.77170501	-2.77
468	458.92566109	9.07
433	406.58786966	26.41
302	290.34255934	11.66
328	338.60322832	-10.6
245	237.22900762	7.77
382	368.88801453	13.11
259	264.73058743	-5.73
294	280.35255991	13.65
290	284.31128929	5.69
153	161.32162645	-8.32
417	380.85579797	36.14
209	223.46103010	-14.46
215	221.99040391	-6.99
214	223.64871443	-9.65
276	268.29772166	7.7
230	228.28270389	1.72
230	227.82848814	2.17
233	228.73783863	4.26
459	449.63967366	9.36
208	222.66216934	-14.66
303	299.24598873	3.75
470	479.25460445	-9.25
Mean So	 quare Error = 267.226545	

	Round : 3				
Desired Output	Predict	Error			
447	468.68076296	-21.68			
457	457.97216990	-0.97			
239	251.93900213	-12.94			
433	444.18249896	-11.18			
155	168.05403183	-13.05			
427	439.47069292	-12.47			
236	248.87352017	-12.87			
345	369.72978414	-24.73			
350	282.15440064	67.85			
333	354.85097285	-21.85			
305	320.69511101	-15.7			
164	169.28962084	-5.29			
209	232.69736478	-23.7			
156	168.12814167	-12.13			
268	285.54232668	-17.54			
435	450.66254425	-15.66			
291	312.66642827	-21.67			
314	317.34512388	-3.35			
412	408.56117091	3.44			
253	279.68946082	-26.69			
475	477.88165829	-2.88			
460	462.50703226	-2.51			
311	334.97536589	-23.98			
467	469.79983648	-2.8			
172	170.83290655	1.17			
483	482.50070510	0.5			
390	378.35610572	11.64			
256	280.53536668	-24.54			
315	321.73085887	-6.73			
322	355.44401609	-33.44			
468	480.24641752	-12.25			
Mean Square Error = 398.033252					

	Round : 4	
Desired Output	Predict	Error
329	348.41337602	-19 . 41
481	478.61106347	2.39
322	324.11290221	-2.11
431	444.55509279	-13.56
317	341.18001776	-24.18
247	259.73835512	-12.74
216	229.71455631	-13.71
188	170.95052571	17.05
470	471.72912050	-1.73
430	440.22675868	-10.23
422	433.93376919	-11.93
465	475.62397935	-10.62
214	233.84881578	-19.85
344	366.02408998	-22.02
156	166.57189155	-10.57
475	482.92090837	-7.92
311	328.08159066	-17.08
470	471.44687717	-1.45
416	429.47882542	-13.48
490	481.75224433	8.25
240	239.51746647	0.48
296	321.77782505	-25.78
465	467.97131157	-2.97
360	300.91885773	59.08
486	479.78818213	6.21
247	259.45629700	-11.46
294	309.90887571	-15.91
337	362.43037925	-25.43
156	166.24011300	-10.24
231	239.76061639	-8.76
215	230.63364406	-15.63
Mean	Square Error = 303.737113	

	Round : 5	
Desired Output	Predict	Error
310	330.039 1 9811	-20.04
210	232.95772613	-22.96
251	278.80484344	-26.8
290	269.26328213	20.74
353	376.37832045	-23.38
398	388.53508968	9.46
250	277.17509554	-27.18
444	453.66323451	-9.66
243	241.04421382	1.96
274	285.76933349	-11.77
481	483.09017439	-2.09
468	475.95539565	-7.96
335	354.60879674	-19.61
305	323.14429198	-18.14
291	308.38134144	-17.38
271	284.97642608	-13.98
247	256.91537714	-9.92
214	231.68589431	-17.69
210	232.22859138	-22.23
464	474.73242620	-10.73
470	471.36850700	-1.37
300	256.73865847	43.26
208	230.59960243	-22.6
471	472.41882704	-1.42
303	326.15358888	-23.15
221	224.17414403	-3.17
315	339.09241983	-24.09
246	253.02941639	-7.03
314	260.12356406	53.88
328	264.71605459	63.28
260	255.74767475	4.25
Mean So	 guare Error = 531.434852	

Mean Square Error = 531.434852

	Round : 6	
Desired Output	Predict	Error
393	 413.72995345	 - 20. 73
209	228.71601890	-19.72
465	463.27160876	1.73
246	197.59508937	48.4
288	308.84763476	-20.85
292	302.29439218	-10.29
250	248.23501389	1.76
270	254.72753858	15.27
232	230.88275510	1.12
153	168.34414320	-15.34
280	292.95595743	-12.96
293	320.57223646	-27.57
230	226.86181810	3.14
232	237.59154057	-5.59
420	419.59771119	0.4
333	361.25564334	-28.26
390	410.09888580	-20.1
288	309.38539561	-21.39
490	482.16653718	7.83
307	332.17486805	-25.17
469	469.45149737	-0.45
234	236.87079527	-2.87
192	175.24605705	16.75
319	342.51457298	-23.51
265	285.81082968	-20.81
381	402.39257530	-21.39
240	237.09942603	2.9
485	482.41509841	2.58
327	346.36250049	-19.36
238	233.41025022	4.59
470	476.53029713	-6.53
Mean S	quare Error = 312.511232	

	Round : 7	
Desired Output	Predict	Error
236	227.37716568	8.62
209	222.04322552	-13.04
490	477.93702590	12.06
280	240.20086389	39.8
341	335.48320546	5.52
401	389.62146283	11.38
437	421.31962711	15.68
178	167.25501467	10.74
308	302.49406377	5.51
308	292.91227544	15.09
330	311.69518742	18.3
440	425.78608362	14.21
356	344.31438057	11.69
466	454.20385818	11.8
376	364.80097243	11.2
212	222.93145456	-10.93
284	272.11436832	11.89
428	398.68557271	29.31
235	227.92313160	7.08
319	315.51569066	3.48
327	304.57794348	22.42
307	300.43819775	6.56
427	404.76849831	22.23
288	274.42242414	13.58
242	228.50995991	13.49
362	350.75499448	11.25
305	300.64447443	4.36
405	381.26388950	23.74
231	226.24299838	4.76
374	357.00310989	17.0
313	309.23954573	3.76
Mean Sa		

Mean Square Error = 235.954742

	Round : 8	
Desired Output	Predict	Error
368	356.99992931	11.0
247	246.11107987	0.89
451	448.91854573	2.08
470	461.71956217	8.28
489	477.41487696	11.59
298	300.85854784	-2.86
225	218.55662009	6.44
370	353.09921397	16.9
211	226.05706632	-15.06
340	329.15200912	10.85
490	478.31523191	11.68
441	428.39896731	12.6
438	413.36672946	24.63
380	341.26404345	38.74
460	463.15259791	-3.15
456	458.68883546	-2.69
322	319.56751590	2.43
153	161.07589421	-8.08
300	302.29249982	-2.29
209	223.60697429	-14.61
251	261.98237726	-9.98
413	372.52882951	40.47
326	311.62982086	14.37
396	381.44811208	14.55
288	244.11343515	43.89
349	339.97671631	9.02
457	447.20982239	9.79
360	349.70512038	10.29
320	325.56761348	-5.57
224	181.20663205	42.79
445	421.14555707	23.85
Mean S	quare Error = 339.171619	

====

	Round : 9	
Desired Output	Predict	Error
303	316 . 71937285	-13.72
207	181.93088810	25.07
240	248.84069049	-8.84
412	428.82178350	-16.82
165	168.64905526	-3.65
294	318.80293082	-24.8
153	165.58830019	-12.59
245	243.31922992	1.68
390	387.22893962	2.77
309	331.07810301	-22.08
490	481.35231587	8.65
357	380.94991190	-23.95
241	239.31787434	1.68
370	334.37013702	35.63
484	479.01192651	4.99
328	364.05797839	-36.06
249	264.96735890	-15.97
153	165.44680601	-12.45
234	244.13943222	-10.14
270	231.34661892	38.65
300	312.62371835	-12.62
469	470.96571651	-1.97
317	346.00724989	-29.01
244	245.18538894	-1.19
365	385.33855420	-20.34
490	481.60742481	8.39
213	233.31654134	-20.32
235	234.89906399	0.1
385	406.43065065	-21.43
488	480.09228757	7.91
306	320.60658281	-14.61
Mean Squ	are Error = 333.992703	
****** Mean Square Err	or Average : 354.2439 <u>*****</u>	***

วิเคราะห์ ผลการทดลองที่ 1 :

จากผลการทดลอง จะเห็นได้ว่าเมื่อมีจำนวนของ hidden layer มากขึ้น จะทำให้ค่าเฉลี่ย error ที่น้อยที่สุด น้อยลง ซึ่งเป็นผลดี แต่ในทางกลับกัน ค่าเฉลี่ย error ที่มากที่สุดก็ากขึ้นด้วยเช่นกัน แต่ในด้านการเพิ่มจำนวน node นั้น จะเห็นได้ว่า เมื่อเพิ่ม node มา ณ นำรวนหนึ่งจะทำให้ได้ ผล ค่าเฉลี่ย error ดีที่สุด และเมื่อเลยจำนวนนั้นไป ก็จะทำให้ ค่าเฉลี่ย error กลับมา เพิ่มขึ้นเหมือนเดิม ทำให้ไม่สามารถ ระบุได้ว่า โครงข่ายที่มีจำนวน hidden node และ hidden layer มากกว่า จะทำให้ได้ผลที่ดีกว่า

การทดลองที่ 2 : ทดลองปรับเปลี่ยนค่า learning rate ได้ผลออกมาดังนี้

	Neu	ral		learning rate	momentum rate	#epoch	avg error	min error
8	10	6	1	0.01	0.07	1000	1088.2838	656.271535
8	10	6	1	0.02	0.07	1000	635.2292	430.302574
8	10	6	1	0.03	0.07	1000	542.74	270.381681
8	10	6	1	0.04	0.07	1000	478.7582	149.082584
8	10	6	1	0.05	0.07	1000	484.7064	265.421706
8	10	6	1	0.06	0.07	1000	435.6343	295.178552
8	10	6	1	0.07	0.07	1000	377.9354	189.861503
8	10	6	1	0.08	0.07	1000	358.4872	222.197171
8	10	6	1	0.09	0.07	1000	356.9589	152.670406
8	10	6	1	0.1	0.07	1000	352.9311	125.20439
8	10	6	1	0.11	0.07	1000	358.1204	198.785526
8	10	6	1	0.12	0.07	1000	327.3557	216.388581
8	10	6	1	0.13	0.07	1000	335.1534	170.452629
8	10	6	1	0.14	0.07	1000	336.9682	109.6899
8	10	6	1	0.15	0.07	1000	315.2094	200.870584
8	10	6	1	0.16	0.07	1000	366.516	163.31709
8	10	6	1	0.17	0.07	1000	336.8556	125.6643
8	10	6	1	0.18	0.07	1000	306.1344	168.4127
8	10	6	1	0.19	0.07	1000	292.607	140.367326
8	10	6	1	0.2	0.07	1000	328.1722	202.265074
8	10	6	1	0.21	0.07	1000	382.1865	146.035561
8	10	6	1	0.22	0.07	1000	489.3023	218.883432
8	10	6	1	0.23	0.07	1000	3418.3531	135.207203
8	10	6	1	0.24	0.07	1000	336.7429	139.443052
8	10	6	1	0.25	0.07	1000	393.7602	201.724974
8	10	6	1	0.26	0.07	1000	348.8319	136.937929
8	10	6	1	0.27	0.07	1000	3715.0814	186.353461
8	10	6	1	0.28	0.07	1000	4946.1013	270.093848
8	10	6	1	0.29	0.07	1000	3706.2845	136.177481

8	10	6	1	0.3	0.07	1000	368.8305	155.565803
8	10	6	1	0.31	0.07	1000	425.1009	206.309555
8	10	6	1	0.32	0.07	1000	3329.0156	199.069268
8	10	6	1	0.33	0.07	1000	11178.4446	188.688074
8	10	6	1	0.34	0.07	1000	411.4788	100.266287
8	10	6	1	0.35	0.07	1000	603.6889	96.480868
8	10	6	1	0.36	0.07	1000	7088.769	139.345184
8	10	6	1	0.37	0.07	1000	4043.8564	210.701171
8	10	6	1	0.38	0.07	1000	4588.3563	126.938132
8	10	6	1	0.39	0.07	1000	439.9288	179.633542
8	10	6	1	0.4	0.07	1000	11403.7181	134.583748
8	10	6	1	0.41	0.07	1000	3948.249	269.049284
8	10	6	1	0.42	0.07	1000	7618.9512	166.008703
8	10	6	1	0.43	0.07	1000	8280.4785	220.653226
8	10	6	1	0.44	0.07	1000	17787.6101	232.491948
8	10	6	1	0.45	0.07	1000	14429.4743	280.196919
8	10	6	1	0.46	0.07	1000	7276.0209	332.711526
8	10	6	1	0.47	0.07	1000	11721.7104	194.968513
8	10	6	1	0.48	0.07	1000	7596.1607	366.856165
8	10	6	1	0.49	0.07	1000	15374.2064	240.555645
8	10	6	1	0.5	0.07	1000	15684.3007	375.325829
8	10	6	1	0.51	0.07	1000	8013.5618	106.775997
8	10	6	1	0.52	0.07	1000	16373.0858	322.478526
8	10	6	1	0.53	0.07	1000	14892.878	271.055935
8	10	6	1	0.54	0.07	1000	11570.4866	244.303603
8	10	6	1	0.55	0.07	1000	22985.0154	281.465797
8	10	6	1	0.56	0.07	1000	13946.7056	272.55549
8	10	6	1	0.57	0.07	1000	10211.7795	385.571652
8	10	6	1	0.58	0.07	1000	18606.3792	387.265197
8	10	6	1	0.59	0.07	1000	18649.6331	316.278494
8	10	6	1	0.6	0.07	1000	18638.11	423.496306
8	10	6	1	0.61	0.07	1000	21792.8739	298.6313

8	10	6	1	0.62	0.07	1000	19347.3982	474.642061
8	10	6	1	0.63	0.07	1000	30116.0812	310.680829
8	10	6	1	0.64	0.07	1000	21187.0564	249.949835
8	10	6	1	0.65	0.07	1000	20806.031	662.498523
8	10	6	1	0.66	0.07	1000	12342.4332	533.440358
8	10	6	1	0.67	0.07	1000	17574.0337	702.399165
8	10	6	1	0.68	0.07	1000	7835.9091	376.934626
8	10	6	1	0.69	0.07	1000	22101.9256	911.575458
8	10	6	1	0.7	0.07	1000	13905.63	405.544342
8	10	6	1	0.71	0.07	1000	7413.2925	277.54161
8	10	6	1	0.72	0.07	1000	25194.8564	559.229645
8	10	6	1	0.73	0.07	1000	19621.8791	393.824355
8	10	6	1	0.74	0.07	1000	22068.3688	289.733668
8	10	6	1	0.75	0.07	1000	11343.4747	651.34461
8	10	6	1	0.76	0.07	1000	14451.2518	637.2289
8	10	6	1	0.77	0.07	1000	14569.2544	511.788361
8	10	6	1	0.78	0.07	1000	25289.4024	486.361013
8	10	6	1	0.79	0.07	1000	15977.0739	702.987181
8	10	6	1	0.8	0.07	1000	25348.8293	890.604871
8	10	6	1	0.81	0.07	1000	27542.3081	935.180494
8	10	6	1	0.82	0.07	1000	25424.6877	884.477945
8	10	6	1	0.83	0.07	1000	29141.7123	907.877545
8	10	6	1	0.84	0.07	1000	21053.6292	345.081577
8	10	6	1	0.85	0.07	1000	33604.7665	857.729335
8	10	6	1	0.86	0.07	1000	31009.273	1554.961126
8	10	6	1	0.87	0.07	1000	19982.7678	376.776565
8	10	6	1	0.88	0.07	1000	29053.4125	1300.4717
8	10	6	1	0.89	0.07	1000	25794.1247	935.764703
8	10	6	1	0.9	0.07	1000	33318.3047	1221.756939
8	10	6	1	0.91	0.07	1000	27406.4285	1773.661271
8	10	6	1	0.92	0.07	1000	26150.9604	915.542977
8	10	6	1	0.93	0.07	1000	26601.6468	1581.962455

8	10	6	1	0.94	0.07	1000	23113.1403	711.210516
8	10	6	1	0.95	0.07	1000	31108.9688	13672.02911
8	10	6	1	0.96	0.07	1000	30826.1995	902.732945
8	10	6	1	0.97	0.07	1000	27408.1697	647.39191
8	10	6	1	0.98	0.07	1000	29109.3576	1469.210365
8	10	6	1	0.99	0.07	1000	31108.8764	1835.908368

วิเคราะห์ ผลการทดลองที่ 2 :

จากกราฟจะเห็นว่า เมื่อมีการเพิ่ม learning rate มา ณ จำนวนหนึ่งจะทำให้ได้ค่าเฉลี่ย error น้อยที่สุด และเมื่อเลย ไปก็จะทำให้ค่าเฉลี่ย error กลับมามากเหมือนเดิม จึงสรุปได้ว่า ไม่ควรปรับ learning rate ให้มากเกิน หรือ น้อยจนเกินไป เพราะอาจทำให้ได้ ค่าที่ผิดพลาดมากขึ้น

การทดลองที่ 3 : ทดลองปรับเปลี่ยนค่า momentum rate ได้ผลออกมาดังนี้

	Neural		learning rate	momentum rate	#epoch	avg error	min error	
8	10	6	1	0.12	0.01	1000	417.9439	205.995071
8	10	6	1	0.12	0.02	1000	378.2068	161.236206
8	10	6	1	0.12	0.03	1000	339.7103	135.283165
8	10	6	1	0.12	0.04	1000	350.3838	141.217977
8	10	6	1	0.12	0.05	1000	335.9183	213.591506
8	10	6	1	0.12	0.06	1000	351.836	200.585913
8	10	6	1	0.12	0.07	1000	340.4021	216.091952
8	10	6	1	0.12	0.08	1000	350.2639	169.31669
8	10	6	1	0.12	0.09	1000	328.4914	188.838555
8	10	6	1	0.12	0.1	1000	286.6255	115.998045
8	10	6	1	0.12	0.11	1000	314.3821	124.896926
8	10	6	1	0.12	0.12	1000	309.4609	168.393377
8	10	6	1	0.12	0.13	1000	297.6905	167.701845
8	10	6	1	0.12	0.14	1000	314.6435	122.545223
8	10	6	1	0.12	0.15	1000	305.7064	147.6504
8	10	6	1	0.12	0.16	1000	318.3457	164.839935
8	10	6	1	0.12	0.17	1000	274.7055	135.547297
8	10	6	1	0.12	0.18	1000	301.1172	180.52441
8	10	6	1	0.12	0.19	1000	313.8709	231.539387
8	10	6	1	0.12	0.2	1000	282.6256	135.247055
8	10	6	1	0.12	0.21	1000	267.5511	103.939352
8	10	6	1	0.12	0.22	1000	277.7556	166.224555
8	10	6	1	0.12	0.23	1000	270.8673	131.595719
8	10	6	1	0.12	0.24	1000	274.3726	108.1973
8	10	6	1	0.12	0.25	1000	244.408	57.033835
8	10	6	1	0.12	0.26	1000	244.5223	90.533845
8	10	6	1	0.12	0.27	1000	248.7649	100.172394
8	10	6	1	0.12	0.28	1000	241.8185	143.093087
8	10	6	1	0.12	0.29	1000	250.8404	83.313342

8	10	6	1	0.12	0.3	1000	264.9354	141.858942
8	10	6	1	0.12	0.31	1000	256.2628	108.215955
8	10	6	1	0.12	0.32	1000	251.8611	122.858168
8	10	6	1	0.12	0.33	1000	261.6185	98.050455
8	10	6	1	0.12	0.34	1000	230.9231	66.918216
8	10	6	1	0.12	0.35	1000	291.9732	70.516168
8	10	6	1	0.12	0.36	1000	242.9574	121.111035
8	10	6	1	0.12	0.37	1000	272.9097	115.517913
8	10	6	1	0.12	0.38	1000	268.0814	75.964245
8	10	6	1	0.12	0.39	1000	225.7939	57.409168
8	10	6	1	0.12	0.4	1000	286.9338	88.879606
8	10	6	1	0.12	0.41	1000	227.9588	76.359065
8	10	6	1	0.12	0.42	1000	277.9418	90.379874
8	10	6	1	0.12	0.43	1000	272.9327	179.196681
8	10	6	1	0.12	0.44	1000	248.2151	77.5047
8	10	6	1	0.12	0.45	1000	240.8145	98.547923
8	10	6	1	0.12	0.46	1000	298.7145	125.49951
8	10	6	1	0.12	0.47	1000	241.9852	75.871674
8	10	6	1	0.12	0.48	1000	277.0441	100.6098
8	10	6	1	0.12	0.49	1000	233.4685	67.591568
8	10	6	1	0.12	0.5	1000	271.1003	113.390977
8	10	6	1	0.12	0.51	1000	244.4433	60.044035
8	10	6	1	0.12	0.52	1000	306.9308	139.677368
8	10	6	1	0.12	0.53	1000	324.7371	177.724258
8	10	6	1	0.12	0.54	1000	288.6314	120.378452
8	10	6	1	0.12	0.55	1000	283.0301	103.825732
8	10	6	1	0.12	0.56	1000	298.4787	111.966871
8	10	6	1	0.12	0.57	1000	410.5639	125.106003
8	10	6	1	0.12	0.58	1000	285.2626	75.500906
8	10	6	1	0.12	0.59	1000	305.1473	105.956816
8	10	6	1	0.12	0.6	1000	288.2339	148.326826
8	10	6	1	0.12	0.61	1000	334.8939	106.676174

8	4.0							
	10	6	1	0.12	0.62	1000	261.0405	71.771729
8	10	6	1	0.12	0.63	1000	291.0575	120.026939
8	10	6	1	0.12	0.64	1000	313.5467	135.924952
8	10	6	1	0.12	0.65	1000	320.4432	157.553981
8	10	6	1	0.12	0.66	1000	266.6498	128.407371
8	10	6	1	0.12	0.67	1000	320.7064	83.519784
8	10	6	1	0.12	0.68	1000	359.8212	188.157623
8	10	6	1	0.12	0.69	1000	314.745	141.81001
8	10	6	1	0.12	0.7	1000	364.4573	236.529803
8	10	6	1	0.12	0.71	1000	339.5914	111.882461
8	10	6	1	0.12	0.72	1000	342.0262	90.495371
8	10	6	1	0.12	0.73	1000	307.4924	176.960981
8	10	6	1	0.12	0.74	1000	331.3283	136.097974
8	10	6	1	0.12	0.75	1000	358.8389	163.814877
8	10	6	1	0.12	0.76	1000	324.7596	113.049413
8	10	6	1	0.12	0.77	1000	331.1051	169.858442
8	10	6	1	0.12	0.78	1000	303.0437	77.657235
8	10	6	1	0.12	0.79	1000	358.4213	128.666629
8	10	6	1	0.12	0.8	1000	332.5498	133.259755
8	10	6	1	0.12	0.81	1000	324.6445	86.191961
8	10	6	1	0.12	0.82	1000	413.3361	131.414068
8	10	6	1	0.12	0.83	1000	355.2569	99.861055
8	10	6	1	0.12	0.84	1000	361.4424	104.592626
8	10	6	1	0.12	0.85	1000	325.5952	204.343487
8	10	6	1	0.12	0.86	1000	325.1699	119.204777
8	10	6	1	0.12	0.87	1000	348.7668	205.618613
8	10	6	1	0.12	0.88	1000	303.6299	64.499326
8	10	6	1	0.12	0.89	1000	316.0362	67.739561
8	10	6	1	0.12	0.9	1000	310.7712	166.940948
8	10	6	1	0.12	0.91	1000	401.0397	170.68859
8	10	6	1	0.12	0.92	1000	349.3447	117.633819
8	10	6	1	0.12	0.93	1000	300.8867	121.677177

8	10	6	1	0.12	0.94	1000	438.2552	129.18911
8	10	6	1	0.12	0.95	1000	371.1347	185.277539
8	10	6	1	0.12	0.96	1000	391.6313	104.172406
8	10	6	1	0.12	0.97	1000	392.9988	229.046977
8	10	6	1	0.12	0.98	1000	415.4817	200.936603
8	10	6	1	0.12	0.99	1000	493.9534	247.560665

วิเคราะห์ ผลการทดลองที่ 3 :

จากกราฟจะเห็นว่า ณ ตอนที่ momentum rate น้อย จะทำให้ได้ค่าเฉลีย error มาก แต่เมื่อ เพิ่มมาถึงช่วง 0.2 - 0.4 จะเห็นว่า ค่าเฉลี่ยนั้น น้อยลง แต่เมื่อเลยช่วงไป ก็จะกลับมามากเหมือนเดิม ดังนั้น จึงควรปรับค่า momentum ให้อยู่ในช่วงที่ไม่มากหรือไม่น้อยจนเกินไป

การทดลองที่ 4 : ทดลองปรับจำนวนรอบการ train ของ neural network ได้ผลออกมาดังนี้

	Ne	ural		learning rate	momentum rate	#epoch	avg error	min error
8	10	6	1	0.12	0.07	100	1577.9041	1197.087468
8	10	6	1	0.12	0.07	250	1169.5606	813.187245
8	10	6	1	0.12	0.07	500	669.2213	236.051923
8	10	6	1	0.12	0.07	1000	339.831	195.642913
8	10	6	1	0.12	0.07	2500	202.0886	105.891355
8	10	6	1	0.12	0.07	5000	157.0216	67.772248
8	10	6	1	0.12	0.07	10000	124.3311	28.719516

วิเคราะห์ ผลการทดลองที่ 4 :

จากกราฟจะเห็นว่าเมื่อเราเพิ่มจำนวนรอบของการ train จะทำให้ค่าเฉลี่ย error ค่อยๆน้อยลง นั่นจึงสรุปได้ว่า ยิ่งจำนวนรวบการ train มากขึ้นก็ยิ่งทำให้โปรแกรมทำงานได้ถูกต้องมากยิ่งขึ้น

ทดลองกับ cross.pat

การทดลองที่ 1 : เปลี่ยนแปลงรูปแบบ และ ขนาดของ Hidden nodes ได้ผลออกมาดังนี้

- แบบที่มี 1 Hidden layer โดยมีจำนวน hidden node ในช่วง [1,14]

N	leura	ıl	learning rate	momentum rate	#epoch	avg accuracy	max accuracy
2	1	2	0.12	0.07	1000	0.615	0.7
2	2	2	0.12	0.07	1000	0.77	0.9
2	3	2	0.12	0.07	1000	0.735	0.8
2	4	2	0.12	0.07	1000	0.715	0.85
2	5	2	0.12	0.07	1000	0.77	0.9
2	6	2	0.12	0.07	1000	0.775	0.95
2	7	2	0.12	0.07	1000	0.73	0.85
2	8	2	0.12	0.07	1000	0.785	1
2	9	2	0.12	0.07	1000	0.8	0.9
2	10	2	0.12	0.07	1000	0.755	0.9
2	11	2	0.12	0.07	1000	0.765	0.85
2	12	2	0.12	0.07	1000	0.845	0.95
2	13	2	0.12	0.07	1000	0.75	0.9
2	14	2	0.12	0.07	1000	0.5	0.55

- แบบที่มี 2 Hidden layers โดยมีจำนวน hidden node ในช่วง [1,14]

	Mai	ıral		Loorning rote	manantum rata	Hanaah	OVG GOOVEGOV	book occilicon
	Neu	ıraı		learning rate	momentum rate	#epoch	avg accuracy	max accuracy
2	1	1	2	0.12	0.07	1000	0.44	0.5
2	1	2	2	0.12	0.07	1000	0.56	0.7
2	1	3	2	0.12	0.07	1000	0.645	0.85
2	1	4	2	0.12	0.07	1000	0.595	0.75
2	1	5	2	0.12	0.07	1000	0.65	0.8
2	1	6	2	0.12	0.07	1000	0.645	0.8
2	1	7	2	0.12	0.07	1000	0.615	0.75
2	1	8	2	0.12	0.07	1000	0.635	0.8
2	1	9	2	0.12	0.07	1000	0.62	0.75

0.8	0.625	1000	0.07	0.12	2	10	1	2
0.7	0.615	1000	0.07	0.12	2	11	1	2
0.7	0.615	1000	0.07	0.12	2	12	1	2
0.85	0.675	1000	0.07	0.12	2	13	1	2
0.75	0.615	1000	0.07	0.12	2	14	1	2
0.5	0.45	1000	0.07	0.12	2	1	2	2
0.85	0.705	1000	0.07	0.12	2	2	2	2
0.9	0.79	1000	0.07	0.12	2	3	2	2
0.95	0.73	1000	0.07	0.12	2	4	2	2
0.9	0.74	1000	0.07	0.12	2	5	2	2
0.85	0.775	1000	0.07	0.12	2	6	2	2
0.85	0.775	1000	0.07	0.12	2	7	2	2
0.85	0.76	1000	0.07	0.12	2	8	2	2
0.95	0.785	1000	0.07	0.12	2	9	2	2
0.85	0.74	1000	0.07	0.12	2	10	2	2
0.85	0.74	1000	0.07	0.12	2	11	2	2
0.85	0.68	1000	0.07	0.12	2	12	2	2
0.9	0.73	1000	0.07	0.12	2	13	2	2
0.9	0.725	1000	0.07	0.12	2	14	2	2
0.5	0.42	1000	0.07	0.12	2	1	3	2
0.85	0.75	1000	0.07	0.12	2	2	3	2
0.9	0.76	1000	0.07	0.12	2	3	3	2
0.95	0.805	1000	0.07	0.12	2	4	3	2
0.9	0.775	1000	0.07	0.12	2	5	3	2
0.9	0.8	1000	0.07	0.12	2	6	3	2
0.9	0.795	1000	0.07	0.12	2	7	3	2
0.9	0.755	1000	0.07	0.12	2	8	3	2
0.9	0.77	1000	0.07	0.12	2	9	3	2
1	0.785	1000	0.07	0.12	2	10	3	2
0.95	0.75	1000	0.07	0.12	2	11	3	2
0.8	0.75	1000	0.07	0.12	2	12	3	2
0.85	0.735	1000	0.07	0.12	2	13	3	2

2	3	14	2	0.12	0.07	1000	0.735	0.85
2	4	1	2	0.12	0.07	1000	0.38	0.5
2	4	2	2	0.12	0.07	1000	0.76	0.85
2	4	3	2	0.12	0.07	1000	0.755	0.95
2	4	4	2	0.12	0.07	1000	0.735	0.95
2	4	5	2	0.12	0.07	1000	0.77	0.95
2	4	6	2	0.12	0.07	1000	0.85	1
2	4	7	2	0.12	0.07	1000	0.765	0.9
2	4	8	2	0.12	0.07	1000	0.81	0.95
2	4	9	2	0.12	0.07	1000	0.785	0.9
2	4	10	2	0.12	0.07	1000	0.78	0.95
2	4	11	2	0.12	0.07	1000	0.785	0.9
2	4	12	2	0.12	0.07	1000	0.775	0.95
2	4	13	2	0.12	0.07	1000	0.74	0.85
2	4	14	2	0.12	0.07	1000	0.785	0.9
2	5	1	2	0.12	0.07	1000	0.4	0.5
2	5	2	2	0.12	0.07	1000	0.755	0.9
2	5	3	2	0.12	0.07	1000	0.785	0.9
2	5	4	2	0.12	0.07	1000	0.805	1
2	5	5	2	0.12	0.07	1000	0.825	0.95
2	5	6	2	0.12	0.07	1000	0.82	0.95
2	5	7	2	0.12	0.07	1000	0.805	0.95
2	5	8	2	0.12	0.07	1000	0.745	0.9
2	5	9	2	0.12	0.07	1000	0.825	0.9
2	5	10	2	0.12	0.07	1000	0.765	0.9
2	5	11	2	0.12	0.07	1000	0.83	0.95
2	5	12	2	0.12	0.07	1000	0.765	0.9
2	5	13	2	0.12	0.07	1000	0.805	0.95
2	5	14	2	0.12	0.07	1000	0.775	0.9
2	6	1	2	0.12	0.07	1000	0.45	0.5
2	6	2	2	0.12	0.07	1000	0.75	0.9
2	6	3	2	0.12	0.07	1000	0.81	0.95

0.95	0.83	1000	0.07	0.12	2	4	6	2
0.95	0.805	1000	0.07	0.12	2	5	6	2
0.9	0.77	1000	0.07	0.12	2	6	6	2
1	0.855	1000	0.07	0.12	2	7	6	2
0.95	0.805	1000	0.07	0.12	2	8	6	2
0.9	0.745	1000	0.07	0.12	2	9	6	2
1	0.79	1000	0.07	0.12	2	10	6	2
0.95	0.795	1000	0.07	0.12	2	11	6	2
0.95	0.83	1000	0.07	0.12	2	12	6	2
1	0.82	1000	0.07	0.12	2	13	6	2
0.9	0.795	1000	0.07	0.12	2	14	6	2
0.5	0.42	1000	0.07	0.12	2	1	7	2
0.85	0.75	1000	0.07	0.12	2	2	7	2
0.9	0.82	1000	0.07	0.12	2	3	7	2
0.9	0.785	1000	0.07	0.12	2	4	7	2
1	0.8	1000	0.07	0.12	2	5	7	2
0.95	0.885	1000	0.07	0.12	2	6	7	2
0.95	0.82	1000	0.07	0.12	2	7	7	2
1	0.78	1000	0.07	0.12	2	8	7	2
0.95	0.78	1000	0.07	0.12	2	9	7	2
0.95	0.81	1000	0.07	0.12	2	10	7	2
0.95	0.755	1000	0.07	0.12	2	11	7	2
0.95	0.83	1000	0.07	0.12	2	12	7	2
0.9	0.76	1000	0.07	0.12	2	13	7	2
0.95	0.845	1000	0.07	0.12	2	14	7	2
0.5	0.42	1000	0.07	0.12	2	1	8	2
0.9	0.765	1000	0.07	0.12	2	2	8	2
1	0.815	1000	0.07	0.12	2	3	8	2
0.95	0.825	1000	0.07	0.12	2	4	8	2
0.95	0.8	1000	0.07	0.12	2	5	8	2
1	0.835	1000	0.07	0.12	2	6	8	2
0.95	0.8	1000	0.07	0.12	2	7	8	2

1	0.805	1000	0.07	0.12	2	8	8	2
0.95	0.83	1000	0.07	0.12	2	9	8	2
0.9	0.77	1000	0.07	0.12	2	10	8	2
1	0.835	1000	0.07	0.12	2	11	8	2
0.95	0.805	1000	0.07	0.12	2	12	8	2
0.9	0.825	1000	0.07	0.12	2	13	8	2
0.9	0.8	1000	0.07	0.12	2	14	8	2
0.5	0.41	1000	0.07	0.12	2	1	9	2
0.85	0.78	1000	0.07	0.12	2	2	9	2
0.95	0.835	1000	0.07	0.12	2	3	9	2
0.95	0.85	1000	0.07	0.12	2	4	9	2
1	0.78	1000	0.07	0.12	2	5	9	2
0.95	0.815	1000	0.07	0.12	2	6	9	2
0.95	0.795	1000	0.07	0.12	2	7	9	2
0.95	0.845	1000	0.07	0.12	2	8	9	2
1	0.82	1000	0.07	0.12	2	9	9	2
0.95	0.785	1000	0.07	0.12	2	10	9	2
0.9	0.805	1000	0.07	0.12	2	11	9	2
1	0.84	1000	0.07	0.12	2	12	9	2
0.95	0.795	1000	0.07	0.12	2	13	9	2
0.95	0.81	1000	0.07	0.12	2	14	9	2
0.5	0.41	1000	0.07	0.12	2	1	10	2
0.9	0.76	1000	0.07	0.12	2	2	10	2
0.8	0.76	1000	0.07	0.12	2	3	10	2
0.95	0.82	1000	0.07	0.12	2	4	10	2
0.9	0.825	1000	0.07	0.12	2	5	10	2
0.9	0.83	1000	0.07	0.12	2	6	10	2
0.95	0.84	1000	0.07	0.12	2	7	10	2
1	0.83	1000	0.07	0.12	2	8	10	2
0.95	0.835	1000	0.07	0.12	2	9	10	2
0.95	0.785	1000	0.07	0.12	2	10	10	2
1	0.87	1000	0.07	0.12	2	11	10	2

2	10	12	2	0.12	0.07	1000	0.785	0.95
2	10	13	2	0.12	0.07	1000	0.83	0.95
2	10	14	2	0.12	0.07	1000	0.78	0.9
2	11	1	2	0.12	0.07	1000	0.39	0.45
2	11	2	2	0.12	0.07	1000	0.73	0.9
2	11	3	2	0.12	0.07	1000	0.795	1
2	11	4	2	0.12	0.07	1000	0.89	0.95
2	11	5	2	0.12	0.07	1000	0.82	0.95
2	11	6	2	0.12	0.07	1000	0.85	1
2	11	7	2	0.12	0.07	1000	0.8	1
2	11	8	2	0.12	0.07	1000	0.825	1
2	11	9	2	0.12	0.07	1000	0.85	1
2	11	10	2	0.12	0.07	1000	0.835	0.9
2	11	11	2	0.12	0.07	1000	0.825	1
2	11	12	2	0.12	0.07	1000	0.835	0.9
2	11	13	2	0.12	0.07	1000	0.825	0.95
2	11	14	2	0.12	0.07	1000	0.83	0.9
2	12	1	2	0.12	0.07	1000	0.42	0.5
2	12	2	2	0.12	0.07	1000	0.72	0.85
2	12	3	2	0.12	0.07	1000	0.86	0.95
2	12	4	2	0.12	0.07	1000	0.82	0.95
2	12	5	2	0.12	0.07	1000	0.825	0.95
2	12	6	2	0.12	0.07	1000	0.815	1
2	12	7	2	0.12	0.07	1000	0.9	1
2	12	8	2	0.12	0.07	1000	0.85	1
2	12	9	2	0.12	0.07	1000	0.855	0.95
2	12	10	2	0.12	0.07	1000	0.86	1
2	12	11	2	0.12	0.07	1000	0.885	1
2	12	12	2	0.12	0.07	1000	0.89	1
2	12	13	2	0.12	0.07	1000	0.84	1
2	12	14	2	0.12	0.07	1000	0.865	0.95
2	13	1	2	0.12	0.07	1000	0.38	0.5
	13		2	0.12	0.07	1000	0.50	0.5

1								
2	13	2	2	0.12	0.07	1000	0.75	0.9
2	13	3	2	0.12	0.07	1000	0.84	1
2	13	4	2	0.12	0.07	1000	0.86	0.95
2	13	5	2	0.12	0.07	1000	0.86	1
2	13	6	2	0.12	0.07	1000	0.76	0.85
2	13	7	2	0.12	0.07	1000	0.84	1
2	13	8	2	0.12	0.07	1000	0.855	0.95
2	13	9	2	0.12	0.07	1000	0.87	1
2	13	10	2	0.12	0.07	1000	0.835	1
2	13	11	2	0.12	0.07	1000	0.865	0.95
2	13	12	2	0.12	0.07	1000	0.88	1
2	13	13	2	0.12	0.07	1000	0.815	1
2	13	14	2	0.12	0.07	1000	0.885	1
2	14	1	2	0.12	0.07	1000	0.43	0.5
2	14	2	2	0.12	0.07	1000	0.74	0.95
2	14	3	2	0.12	0.07	1000	0.845	0.95
2	14	4	2	0.12	0.07	1000	0.82	0.95
2	14	5	2	0.12	0.07	1000	0.86	1
2	14	6	2	0.12	0.07	1000	0.875	1
2	14	7	2	0.12	0.07	1000	0.845	0.95
2	14	8	2	0.12	0.07	1000	0.855	0.95
2	14	9	2	0.12	0.07	1000	0.915	1
2	14	10	2	0.12	0.07	1000	0.845	0.95
2	14	11	2	0.12	0.07	1000	0.845	0.95
2	14	12	2	0.12	0.07	1000	0.855	0.95
2	14	13	2	0.12	0.07	1000	0.855	1
2	14	14	2	0.12	0.07	1000	0.905	1

^{*} ข้อมูลในตารางเป็นข้อมูลที่ผ่านการ cross validation ทั้งหมดแล้ว แต่นำมาเพียงค่าเฉลี่ย และ ค่าน้อยสุดเท่านั้น

แบบที่ 3 : นำรูปแบบ (Neural) ที่ได้ sum average error น้อยที่สุด [2-14-9-2] มาแสดง cross validation

------ Variable -----

Datafile : cross.pat
Neural name : 2-14-9-2
Learning rate : 0.12
Momentum rate : 0.07
Activaion Function : sigmoid
Cross validation : [90 : 10]
#Epoch : 1000

Round Desired Output	: 0 Predict
1	1
0	0
0	1
1	ı î
_ 1	
0	i o
0	j ø
1	j 0
1	j 1
0	1
1	1
1	1
0	1
0	0
0	[0
1	1
1] 1
0	0
0	0
1	1

Confusion Matrix					
	6		0	 6 	
	1		13	14 	
	7		13	20	
Accuracy :	0.95				

Desired Output	d : 3 Predict
0	0
1	1
0	0
1	1
0	0
1	1
0	1
0	0
0	0
0	0
1	1
0	0
1	1
0	0
1	0
1	1
0	[0
1	1
0	0
0	0

Confusion Matrix					
11	1	 12 			
1	7	 8			
12	8	20			
Accuracy : 0.9					

Round Desired Output	: 4	 Predict
0	 	1
0	i	0
0	i	1
1	i	0
1	İ	1
0	Ì	1
0	1	0
0	1	0
0	ļ	0
1	ļ	1
0	ļ	0
0	!	0
1	!	1
1	!	1
0	!	0
0	!	0
0	!	0
0	! _	0
1	Ţ	0
0	Т	0

Round Desired Output	: 5 Predict
0	1
0	0
1] 1
1	1
1	1
1	1
1	1
0	0
0	0
0	0
1	1
1	1
0	[0
1	[0
1	1
1	1
1] 1
0	0
0	1
0	0

Confusion Matrix					
7 	2	9			
1	10	11			
8	12	20			
Accuracy : 0.85					

Round	: 6
Desired Output	Predict
1 1 0	1
1	1
0	0
1	1
0	0
0 0	0
1	1
1	1
1 1 1	1
1	1
1	j 1
0	j 0
0	j 0
0	j 0
0	j 0
0	j 0
1	j 1
0	j 0
0	j 0
1	j 1

Round	: 7
Desired Output	Predict
	 !
1	0
1	1
1] 1
0	. 0
0	0
1	1
0	0
0	0
1	1
1	1
1	1
1 1 1	1
1	1
1	j 1
1	j 1
0	j ø
1	j ø
1	j 1
1	j 1
1	j 1
	·

Confusion Matrix					
 5 	0	 5			
2	13	 			
7	13	20			
Accuracy : 0.9					

Round Desired Output	:8 Predict
1	 1
0	j 0
1	j 1
0	j ø
1	j 0
1	j 0
1	0
0	0
1	1
0	0
1	1
1	1
0	[0
0	[0
0	[0
1	1
0	[0
0	0
0	0
1	1

Round Desired Output	: 9 Predict	-
0 0 0 0 0 0 1 1 1 1 0 1 0 1	0 0 0 0 1 0 1 1 0 1 0 1 0 1	-
Confusio	on Matrix	
11	2	13
0	7	7
11 Accuracy : 0.9	9	20

วิเคราะห์ ผลการทดลองที่ 1 :

Accuracy Average: 0.835 *******

จากผลการทดลอง จะเห็นได้ว่าเมื่อเพิ่มจำนวน hidden layers ทำให้ได้ ค่าเฉลี่ย accuracy ที่มากที่สุด เป็น 1 ซึ่งเป็นผลที่ดีมาก แต่ในทางกลับกันก็มีค่า accuracy ที่ได้ 0.4 เช่นกัน ซึ่งเป็นค่าที่น้อยกว่า กรณีที่เป็น 1 hidden layer เสียอีก จึงทำให้สรุปได้ว่า การเพิ่ม hidden layer นั้นมีผลต่อ accuracy แต่การเพิ่มเท่าไหร่นั้น ก็ต้องมาพิจารณาจากหลายๆปัจจัย(learning rate, mometum rate) ซึ่งไม่ใช่ว่า ยิ่ง hidden node เยอะยิ่งดี แต่อาจจะ ยิ่งแย่ลงก็ได้

การทดลองที่ 2 : ทดลองปรับเปลี่ยนค่า learning rate ได้ผลออกมาดังนี้

	Neu	ral		learning rate	momentum rate	#epoch	avg accuracy	max accuracy
2	14	9	2	0.01	0.07	1000	0.49	0.65
2	14	9	2	0.02	0.07	1000	0.68	0.9
2	14	9	2	0.03	0.07	1000	0.82	0.95
2	14	9	2	0.04	0.07	1000	0.84	0.95
2	14	9	2	0.05	0.07	1000	0.84	0.95
2	14	9	2	0.06	0.07	1000	0.845	1
2	14	9	2	0.07	0.07	1000	0.865	0.95
2	14	9	2	0.08	0.07	1000	0.82	0.9
2	14	9	2	0.09	0.07	1000	0.83	1
2	14	9	2	0.1	0.07	1000	0.855	0.95
2	14	9	2	0.11	0.07	1000	0.845	0.9
2	14	9	2	0.12	0.07	1000	0.88	1
2	14	9	2	0.13	0.07	1000	0.875	1
2	14	9	2	0.14	0.07	1000	0.89	1
2	14	9	2	0.15	0.07	1000	0.85	1
2	14	9	2	0.16	0.07	1000	0.88	0.95
2	14	9	2	0.17	0.07	1000	0.845	1
2	14	9	2	0.18	0.07	1000	0.895	1
2	14	9	2	0.19	0.07	1000	0.82	1
2	14	9	2	0.2	0.07	1000	0.84	1
2	14	9	2	0.21	0.07	1000	0.88	0.95
2	14	9	2	0.22	0.07	1000	0.76	0.85
2	14	9	2	0.23	0.07	1000	0.785	0.85
2	14	9	2	0.24	0.07	1000	0.77	0.85
2	14	9	2	0.25	0.07	1000	0.84	1
2	14	9	2	0.26	0.07	1000	0.86	1
2	14	9	2	0.27	0.07	1000	0.85	0.95
2	14	9	2	0.28	0.07	1000	0.82	0.95

2	14	9	2	0.29	0.07	1000	0.815	0.95
2	14	9	2	0.3	0.07	1000	0.79	0.9
2	14	9	2	0.31	0.07	1000	0.795	0.9
2	14	9	2	0.32	0.07	1000	0.805	0.85
2	14	9	2	0.33	0.07	1000	0.83	0.9
2	14	9	2	0.34	0.07	1000	0.735	0.9
2	14	9	2	0.35	0.07	1000	0.765	0.95
2	14	9	2	0.36	0.07	1000	0.75	0.95
2	14	9	2	0.37	0.07	1000	0.76	0.9
2	14	9	2	0.38	0.07	1000	0.755	0.95
2	14	9	2	0.39	0.07	1000	0.835	0.95
2	14	9	2	0.4	0.07	1000	0.76	0.85
2	14	9	2	0.41	0.07	1000	0.7	0.9
2	14	9	2	0.42	0.07	1000	0.68	0.95
2	14	9	2	0.43	0.07	1000	0.7	0.95
2	14	9	2	0.44	0.07	1000	0.745	0.95
2	14	9	2	0.45	0.07	1000	0.73	0.9
2	14	9	2	0.46	0.07	1000	0.78	1
2	14	9	2	0.47	0.07	1000	0.665	0.9
2	14	9	2	0.48	0.07	1000	0.68	0.95
2	14	9	2	0.49	0.07	1000	0.685	0.85
2	14	9	2	0.5	0.07	1000	0.685	0.95
2	14	9	2	0.51	0.07	1000	0.73	0.95
2	14	9	2	0.52	0.07	1000	0.62	0.95
2	14	9	2	0.53	0.07	1000	0.69	0.95
2	14	9	2	0.54	0.07	1000	0.535	0.65
2	14	9	2	0.55	0.07	1000	0.54	0.8
2	14	9	2	0.56	0.07	1000	0.64	0.85
2	14	9	2	0.57	0.07	1000	0.625	0.9
2	14	9	2	0.58	0.07	1000	0.56	0.8
2	14	9	2	0.59	0.07	1000	0.6	0.85
2	14	9	2	0.6	0.07	1000	0.605	0.85

2	14	9	2	0.61	0.07	1000	0.625	0.8
2	14	9	2	0.62	0.07	1000	0.525	0.75
2	14	9	2	0.63	0.07	1000	0.665	0.95
2	14	9	2	0.64	0.07	1000	0.675	0.8
2	14	9	2	0.65	0.07	1000	0.54	0.65
2	14	9	2	0.66	0.07	1000	0.55	0.8
2	14	9	2	0.67	0.07	1000	0.555	0.75
2	14	9	2	0.68	0.07	1000	0.48	0.7
2	14	9	2	0.69	0.07	1000	0.49	0.65
2	14	9	2	0.7	0.07	1000	0.555	0.9
2	14	9	2	0.71	0.07	1000	0.535	0.7
2	14	9	2	0.72	0.07	1000	0.585	0.75
2	14	9	2	0.73	0.07	1000	0.545	0.75
2	14	9	2	0.74	0.07	1000	0.55	0.7
2	14	9	2	0.75	0.07	1000	0.615	0.8
2	14	9	2	0.76	0.07	1000	0.525	0.8
2	14	9	2	0.77	0.07	1000	0.575	0.7
2	14	9	2	0.78	0.07	1000	0.48	0.65
2	14	9	2	0.79	0.07	1000	0.485	0.75
2	14	9	2	0.8	0.07	1000	0.495	0.65
2	14	9	2	0.81	0.07	1000	0.5	0.65
2	14	9	2	0.82	0.07	1000	0.585	0.75
2	14	9	2	0.83	0.07	1000	0.58	0.8
2	14	9	2	0.84	0.07	1000	0.475	0.65
2	14	9	2	0.85	0.07	1000	0.52	0.8
2	14	9	2	0.86	0.07	1000	0.48	0.65
2	14	9	2	0.87	0.07	1000	0.52	8.0
2	14	9	2	0.88	0.07	1000	0.515	0.65
2	14	9	2	0.89	0.07	1000	0.48	0.7
2	14	9	2	0.9	0.07	1000	0.52	0.7
2	14	9	2	0.91	0.07	1000	0.51	0.9
2	14	9	2	0.92	0.07	1000	0.55	0.75

2	14	9	2	0.93	0.07	1000	0.515	0.75
2	14	9	2	0.94	0.07	1000	0.45	0.6
2	14	9	2	0.95	0.07	1000	0.46	0.6
2	14	9	2	0.96	0.07	1000	0.515	0.8
2	14	9	2	0.97	0.07	1000	0.505	0.6
2	14	9	2	0.98	0.07	1000	0.495	0.65
2	14	9	2	0.99	0.07	1000	0.5	0.6

วิเคราะห์ ผลการทดลองที่ 2 :

จากกราฟ เมื่อพิจารการเพิ่ม learning rate จากตอนแรกที่ learning rate น้อยมากๆ จะทำให้ได้ accuracy น้อมาก โดยประมาณ 0.5 แต่เมื่อเพิ่มมาได้จำนวนหนึ่ง ทำให้ได้ค่า accuracy ที่สูงมาก แต่เมื่อเพิ่มไปอีกกลับทำให้ได้ accuracy ที่ต่ำลง ซึ่งมีผลเหมือนกันกับ ข้อมูลการทดลองที่ 1 ซึ่งจะสรุปได้ว่า ต้องทำการเพิ่ม learning rate ให้ไม่มาก หรือ น้อย จนเกินไป จะทำให้ได้ accuracy ที่ดีที่สุด

การทดลองที่ 3 : ทดลองปรับเปลี่ยนค่า momentum rate ได้ผลออกมาดังนี้

max accuracy	avg accuracy	#epoch	momentum rate	learning rate		ral	Neu	
0.9	0.875	1000	0.01	0.12	2	9	14	2
0.9	0.865	1000	0.02	0.12	2	9	14	2
0.95	0.895	1000	0.03	0.12	2	9	14	2
0.95	0.86	1000	0.04	0.12	2	9	14	2
0.95	0.85	1000	0.05	0.12	2	9	14	2
1	0.86	1000	0.06	0.12	2	9	14	2
1	0.85	1000	0.07	0.12	2	9	14	2
0.95	0.855	1000	0.08	0.12	2	9	14	2
1	0.875	1000	0.09	0.12	2	9	14	2
0.95	0.865	1000	0.1	0.12	2	9	14	2
1	0.86	1000	0.11	0.12	2	9	14	2
1	0.85	1000	0.12	0.12	2	9	14	2
1	0.885	1000	0.13	0.12	2	9	14	2
1	0.88	1000	0.14	0.12	2	9	14	2
0.95	0.88	1000	0.15	0.12	2	9	14	2
1	0.885	1000	0.16	0.12	2	9	14	2
1	0.85	1000	0.17	0.12	2	9	14	2
0.95	0.875	1000	0.18	0.12	2	9	14	2
1	0.905	1000	0.19	0.12	2	9	14	2
1	0.88	1000	0.2	0.12	2	9	14	2
1	0.865	1000	0.21	0.12	2	9	14	2
1	0.915	1000	0.22	0.12	2	9	14	2
0.95	0.86	1000	0.23	0.12	2	9	14	2
1	0.9	1000	0.24	0.12	2	9	14	2
1	0.925	1000	0.25	0.12	2	9	14	2
1	0.885	1000	0.26	0.12	2	9	14	2
0.95	0.905	1000	0.27	0.12	2	9	14	2
1	0.865	1000	0.28	0.12	2	9	14	2
0.95	0.88	1000	0.29	0.12	2	9	14	2

1	0.86	1000	0.3	0.12	2	9	14	2
0.95	0.885	1000	0.31	0.12	2	9	14	2
1	0.88	1000	0.32	0.12	2	9	14	2
1	0.88	1000	0.33	0.12	2	9	14	2
1	0.88	1000	0.34	0.12	2	9	14	2
1	0.915	1000	0.35	0.12	2	9	14	2
0.95	0.895	1000	0.36	0.12	2	9	14	2
1	0.935	1000	0.37	0.12	2	9	14	2
0.95	0.885	1000	0.38	0.12	2	9	14	2
1	0.88	1000	0.39	0.12	2	9	14	2
0.95	0.9	1000	0.4	0.12	2	9	14	2
0.95	0.865	1000	0.41	0.12	2	9	14	2
1	0.91	1000	0.42	0.12	2	9	14	2
1	0.91	1000	0.43	0.12	2	9	14	2
0.95	0.845	1000	0.44	0.12	2	9	14	2
0.95	0.88	1000	0.45	0.12	2	9	14	2
1	0.93	1000	0.46	0.12	2	9	14	2
1	0.885	1000	0.47	0.12	2	9	14	2
1	0.905	1000	0.48	0.12	2	9	14	2
1	0.9	1000	0.49	0.12	2	9	14	2
1	0.885	1000	0.5	0.12	2	9	14	2
1	0.93	1000	0.51	0.12	2	9	14	2
1	0.875	1000	0.52	0.12	2	9	14	2
1	0.895	1000	0.53	0.12	2	9	14	2
1	0.895	1000	0.54	0.12	2	9	14	2
0.95	0.875	1000	0.55	0.12	2	9	14	2
1	0.91	1000	0.56	0.12	2	9	14	2
1	0.895	1000	0.57	0.12	2	9	14	2
1	0.925	1000	0.58	0.12	2	9	14	2
1	0.905	1000	0.59	0.12	2	9	14	2
1	0.895	1000	0.6	0.12	2	9	14	2
1	0.895	1000	0.61	0.12	2	9	14	2

1	0.895	1000	0.62	0.12	2	9	14	2
0.95	0.9	1000	0.63	0.12	2	9	14	2
0.95	0.88	1000	0.64	0.12	2	9	14	2
1	0.92	1000	0.65	0.12	2	9	14	2
1	0.88	1000	0.66	0.12	2	9	14	2
1	0.865	1000	0.67	0.12	2	9	14	2
1	0.865	1000	0.68	0.12	2	9	14	2
1	0.885	1000	0.69	0.12	2	9	14	2
1	0.875	1000	0.7	0.12	2	9	14	2
0.95	0.865	1000	0.71	0.12	2	9	14	2
0.95	0.875	1000	0.72	0.12	2	9	14	2
1	0.905	1000	0.73	0.12	2	9	14	2
1	0.89	1000	0.74	0.12	2	9	14	2
1	0.92	1000	0.75	0.12	2	9	14	2
0.95	0.865	1000	0.76	0.12	2	9	14	2
1	0.89	1000	0.77	0.12	2	9	14	2
0.95	0.84	1000	0.78	0.12	2	9	14	2
0.95	0.885	1000	0.79	0.12	2	9	14	2
0.95	0.87	1000	0.8	0.12	2	9	14	2
0.9	0.84	1000	0.81	0.12	2	9	14	2
1	0.83	1000	0.82	0.12	2	9	14	2
1	0.84	1000	0.83	0.12	2	9	14	2
1	0.85	1000	0.84	0.12	2	9	14	2
1	0.875	1000	0.85	0.12	2	9	14	2
0.95	0.835	1000	0.86	0.12	2	9	14	2
0.95	0.855	1000	0.87	0.12	2	9	14	2
0.95	0.85	1000	0.88	0.12	2	9	14	2
1	0.84	1000	0.89	0.12	2	9	14	2
0.95	0.85	1000	0.9	0.12	2	9	14	2
0.9	0.82	1000	0.91	0.12	2	9	14	2
1	0.845	1000	0.92	0.12	2	9	14	2
1	0.845	1000	0.93	0.12	2	9	14	2

2	14	9	2	0.12	0.94	1000	0.825	0.95
2	14	9	2	0.12	0.95	1000	0.815	0.9
2	14	9	2	0.12	0.96	1000	0.85	0.95
2	14	9	2	0.12	0.97	1000	0.91	1
2	14	9	2	0.12	0.98	1000	0.78	0.9
2	14	9	2	0.12	0.99	1000	0.85	0.95

วิเคราะห์ ผลการทดลองที่ 3 :

จากกราฟจะเห็นว่า accuracy ที่ได้นั้น ในช่วงแรกที่ momentum น้อยๆนั้น จะทำให้ได้ accuracy ที่ ต่ำกว่า ช่วงกลางที่มี momentum เยอะกว่า และในอีกด้านก็เช่นกัน ในช่วงที่ momentum มากๆนั้นก็น้อยกว่า momentum ในช่วงกลางเช่นกัน ถึงแม้ว่า จะเป็นจำนวน accuracy ที่ต่างกันไม่มากนักแต่การได้ ผล accuracy ที่ดีขึ้นก็เป็นเรื่องที่ดี จึงสรุปได้ว่า ไม่ควรปรับ momentum rate ให้มากหรือน้อยเกินไป ซึ่งอาจทำให้ได้ accuracy ที่น้อยลง

ผลการทดลองที่ 4 : ทดลองปรับจำนวนรอบการ train ของ neural network ได้ผลออกมาดังนี้

	Nue	eral		learning rate	momentum rate	#epoch	avg accuracy	max accuracy
2	14	9	2	0.12	0.07	100	0.5	0.65
2	14	9	2	0.12	0.07	250	0.65	0.9
2	14	9	2	0.12	0.07	500	0.765	0.95
2	14	9	2	0.12	0.07	1000	0.875	1
2	14	9	2	0.12	0.07	2000	0.94	1
2	14	9	2	0.12	0.07	5000	0.945	1
2	14	9	2	0.12	0.07	10000	0.945	1

วิเคราะห์ ผลการทดลองที่ 4 :

จากกราฟ จะเห็นได้ว่า เมื่อเพิ่มจำนวนรอบการ train ขึ้น จะยิ่งทำให้ได้ accuracy ที่ดีขึ้น

Code:

```
#!/usr/bin/env python
# coding: utf-8
import numpy as np
def load txt(path):
  f=open(path, "r")
  if(path[-3:] == 'txt'):
    contents =f.readlines()
    dataset = np.zeros((len(contents)-2,len(contents[2].split('\t'))-1))
    label = np.zeros((len(contents)-2))
    for i in range(len(contents)-2):
       x = contents[i+2].split("\t")
       for j in range(len(x)):
         if j != len(x) - 1:
           dataset[i][j] = float(x[j])
           label[i] = float(x[j][:-1])
  else:
    contents =f.readlines()
    n data = int(len(contents)/3)
    dataset = np.zeros((n data,2))
    label = np.zeros((n data,2))
    j = 0
    count = 0
    for i in range(len(contents)):
       if(j == 1):
         dataset[count][0] = float(contents[i].split()[0])
         dataset[count][1] = float(contents[i].split()[1])
       if(j == 2):
         label[count][0] = int(contents[i].split()[0])
         label[count][1] = int(contents[i].split()[1])
         count = count + 1
         j = -1
      j += 1
```

return dataset, label

```
def norm(data r):
  data = data_r.copy()
  if data.ndim!= 1:
    maxx = [0]*len(data[0])
    minn = [9999]*len(data[0])
    for i in range(len(data[0])):
      for j in range(len(data)):
         if(data[j][i] > maxx[i]):
           maxx[i] = data[j][i]
         if(data[j][i] < minn[i]):</pre>
           minn[i] = data[j][i]
    for i in range(len(data[0])):
      for j in range(len(data)):
         data[j][i] = (data[j][i]-minn[i])/(maxx[i]-minn[i])
  else:
    maxx = 0
    minn = 0
    for j in range(len(data)):
      if(data[j] > maxx):
         maxx = data[i]
      if(data[j] < minn):
         minn = data[j]
    for j in range(len(data)):
      data[j] = (data[j]-minn)/(maxx-minn)
  return data, maxx, minn
def convert norm(pred,mx,mn):
  return pred*(mx - mn) + mn
import numpy as np
class NN:
  def init (self,shape,nueral shape,acti funct):
    shape[1:1] = nueral shape
    self.shape = shape
    self.act func = acti funct
    self.weights = self.init weights(self.shape)
    self.outputs = None
    self.deltas = None
    self.del_old_weights = None
```

```
definit old weights(self,network shape):
            weight arrays = []
            for i in range(0, len(network shape) - 1):
              cur idx = i
              next idx = i + 1
              weight array = np.zeros((network shape[next idx], network shape[cur idx]))
              weight arrays.append(weight array)
            return weight arrays
         def init weights(self,network shape):
            weight arrays = []
            for i in range(0, len(network shape) - 1):
              cur idx = i
              next idx = i + 1
              weight array = 2*np.random.rand(network shape[next idx],
network shape[cur idx]) - 1
              weight arrays.append(weight array)
            return weight arrays
         def predict(self,sample):
            current input = (sample.copy()).T
            outputs = []
            for network_weight in self.weights:
              current output temp = np.dot(network weight, current input)
              current output = self.acti funct(current output temp)
              outputs.append(current output)
              current input = current output
            if(self.shape[-1] == 1):
              return current output.T
            else:
              tp = None
              fp = None
              for i in range(len(outputs[-1])):
                if( i == 0):
                   tp = outputs[-1][i]
                else:
```

```
fp = outputs[-1][i]
         tp = np.vstack((tp, fp)).T
    return np.argmax(tp, axis=1)
def train(self,sample, d out, training rate,momentum rate,epoch,show=True):
  sample T = (sample.copy()).T
  d out T = (d out.copy()).T
  for i in range(epoch):
    self.FW NN(sample T)
    self.BW NN(d out T)
    self.update weights(sample T,learning rate,momentum rate,i)
    sqe = self.sum sqaure error(self.predict(sample),d out T)
    if(show and i % 10 == 0):
       print('Epoch : #'+str(i)+', Sum Square Error : '+str(sqe))
    if sqe < np.finfo(np.float32).eps:
       break
def FW NN(self,input):
  current input = input
  outputs = []
  for w in self.weights:
    current output tmp = np.dot(w, current input)
    current output = self.acti funct(current output tmp)
    outputs.append(current output)
    current input = current output
  self.outputs = outputs
def BW NN(self,d out):
  deltas = []
  O error = d out - self.outputs[len(self.outputs)-1]
  O delta = O error *self.derivertive acti funct(self.outputs[len(self.outputs)-1])
  deltas.append(O delta)
  cur delta = 0 delta
  back idx = len(self.outputs) - 2
  for w in self.weights[::-1][:-1]:
    hidd error = np.dot(w.T, cur delta)
    hidd delta = hidd error * self.derivertive acti funct(self.outputs[back idx])
    deltas.append(hidd delta)
```

```
cur delta = hidd delta
              back idx -= 1
            self.deltas = deltas
         def update weights(self,sample,learning_rate,momentum_rate,count):
            index current weight = len(self.weights) - 1
            current dels = []
            for d in self.deltas:
              sample used = None
              if index current weight - 1 < 0:
                 sample used = sample
              else:
                 sample used = self.outputs[index current weight - 1]
              current delta = learning rate*np.dot(d, sample used.T)
              if(count == 0):
                 self.weights[index current weight] += current delta
              else:
                 self.weights[index current weight] +=
momentum rate*self.del old weights[index current weight]+ current delta
              index current weight -= 1
              current dels.insert(0, current delta)
            self.del old weights = current dels
         def acti funct(self,v):
            if self.act func == 'sigmoid':
              return 1/(1 + np.exp(-v))
            if self.act func == 'tanh':
              return np.tanh(v)
            if self.act func == 'linear':
              return v
            return v
         def derivertive acti funct(self,v):
            if self.act func == 'sigmoid':
              return v * (1 - v)
            if self.act func == 'tanh':
              return 1 - (v ** 2)
            if self.act func == 'linear':
```

```
return 1
           return v
        def sum sqaure error(self,pred,real):
           real m = real.copy()
           sums = 0
           if(real.ndim > 1):
             tp = None
             fp = None
             for i in range(len(real m)):
               if( i == 0):
                 tp = real m[i]
               else:
                 fp = real m[i]
                 tp = np.vstack((tp, fp)).T
             real m = np.argmax(tp, axis=1)
           for i in range(len(pred)):
             sums = sums + np.square(pred[i]-real m[i])
           return sums/2
         def conf matrix(self,pred,true,is norm=False,confuse=True):
           true m = np.zeros(len(true))
           if(true.ndim > 1):
             for i in range(len(true)):
               true m[i] = np.argmax(true[i], axis=0)
           if(is norm):
             sqr error = 0
             print('Desired Output\t\t|\tPredict\t\t\t|\tError')
             print('-----')
             for i in range(len(true)):
               error = round(true[i] - round(pred[i][0],8),2)
               print(str(int(true[i]))+'\t\t\t|\t'+str(format(round(pred[i][0],8),
'.8f'))+'\t\t|\t'+str(error))
               sqr error = sqr error + (error * error)
             print('-----')
```

```
print('=========')
return round(sqr error/len(true),6)
```

print('\t\t Mean Square Error = '+str(round(sqr error/len(true),6)))

return round(sqr_error/ten(true),

else:

```
print('Desired Output\t\t|\tPredict\t\t\t')
     print('----')
     for i in range(len(true)):
        print(str(int(true m[i]))+'\t\t\t|\t'+str(pred[i]))
   if(confuse):
     print('\n\t\t Confusion Matrix')
     TP = 0
     FN = 0
     FP = 0
     TN = 0
     for i in range(len(true)):
        if((pred[i] == 0)) and (true m[i] == 0):
          TN = TN + 1
       elif((pred[i] == 1) and (true m[i] == 1)):
          TP = TP + 1
       elif((pred[i] == 1) and (true m[i] == 0)):
          FP = FP + 1
       else:
          FN = FN + 1
     print(' -----')
     for i in range(8):
       print('|\t\t|\t\t|')
       if(i == 1):
          print('|\t '+str(TN)+'\t '|\t '+str(FP)+'\t '|\t '+str(FP+TN))
        if(i == 3):
          print(' -----')
       if(i == 5):
          print('|\t '+str(FN)+'\t '+str(TP)+'\t '+str(FN+TP))
     print(' -----')
     print(' \ '+str(TN+FN)+' \ '+str(FP+TP)+' \ '+str(TN+FP+FN+TP))
     print(")
     print('Accuracy : '+str((TN+TP)/(TN+FP+FN+TP)))
     return((TN+TP)/(TN+FP+FN+TP))
def load data(name,cross):
 is norm = False
 if(name == 1):
    dataset,label = load_txt("./Flood_dataset.txt")
    dataset,mx dataset,mn dataset = norm(dataset)
   label,mx_label,mn_label = norm(label)
```

```
is norm = True
           max min = [mx dataset,mn dataset,mx label,mn label]
         else:
           dataset,label = load txt("./cross.pat")
         n sample = np.arange(len(dataset))
         np.random.shuffle(n sample)
         if(is norm):
           return dataset, label, n sample, max min
         else:
           return dataset, label, n sample
       def
MLP(Neural, learning rate, momentum rate, activation, epoch, cross valda train test, data num):
         if(data num == 0):
           print('-----\n')
           dataset,label,n sample = load data(data num,cross valda train test)
           data name = 'cross.pat'
         else:
           print('\n-----\n')
           dataset,label,n sample,max min = load data(data num,cross valda train test)
           data name = 'Flood data set'
         n test per round = int(len(dataset)*cross valda train test[1]/100)
         print('Datafile : ' +str(data name),end='\n')
         print('Neural name : '+str(len(dataset[0]))+'-',end=")
         for i in range(len(Neural)):
           print(str(Neural[i])+'-',end=")
         print(label.ndim,end='\n')
         print('Learning rate : '+str(learning rate),end='\n')
         print('Momentum rate : '+str(momentum rate),end='\n')
         print('Activation Function : ' +str(activation),end='\n')
         print('Cross validation : ['+str(cross valda train test[0])+' :
'+str(cross valda train test[1])+']',end='\n')
         print('#Epoch : '+str(epoch),end='\n')
         error avg = []
         acc avg = []
         for i in range(10):
           test data = n sample[i*n test per round:i*n test per round+n test per round]
           train data = list(set(n sample) - set(test data))
           nn = NN([len(dataset[0]),label.ndim],Neural,activation)
```

nn.train(dataset[train data],label[train data],learning rate,momentum rate,epoch,False)

```
pred = nn.predict(dataset[test data])
          if(data num == 1):
            print('\n-----')
            pred = convert norm(pred,max min[2],max min[3])
            test label = convert norm(label[test data],max min[2],max min[3])
            error avg.append(nn.conf matrix(pred,test label,is norm=True,confuse=False))
          else:
            print('\n-----')
acc avg.append(nn.conf matrix(pred,label[test data],is norm=False,confuse=True))
        if(data num == 1):
          print('\n****** Mean Square Error Average: '+
str(round(np.sum(error\_avg)/len(error\_avg),4))+'~********')
        else:
          print('\n****** Accuracy Average: '+
str(round(np.sum(acc avg)/len(acc avg),4))+' ********')
      Neural = [10,6]
      cross_valda_train_test = [90,10] # train 90 , test 10
      data num = 1 # 0 = cross.pat , 1 = flood data set
      learning rate = 0.12
      momentum rate = 0.07
      activation = 'sigmoid'
      epoch = 1000
      MLP(Neural, learning rate, momentum rate, activation, epoch, cross valda train test, data
_num)
```