Chapter 7 Analytic Geometry

7.1 One-Dimensional Coordinate System

Point coordinates: x_0 , x_1 , x_2 , y_0 , y_1 , y_2

Real number: λ

Distance between two points: d

607. Distance Between Two Points $d = AB = |\mathbf{x}_2 - \mathbf{x}_1| = |\mathbf{x}_1 - \mathbf{x}_2|$

Figure 86.

608. Dividing a Line Segment in the Ratio λ

$$\mathbf{x}_0 = \frac{\mathbf{x}_1 + \lambda \mathbf{x}_2}{1 + \lambda}$$
, $\lambda = \frac{\mathbf{AC}}{\mathbf{CB}}$, $\lambda \neq -1$.

$$\begin{array}{c|cccc}
C(x_0) & & & C(x_0) \\
\hline
A(x_1) & B(x_2) & & & A(x_1) & B(x_2) & & \times \\
& & & & & & & & \lambda < 0
\end{array}$$

Figure 87.

609. Midpoint of a Line Segment

$$\mathbf{x}_{0} = \frac{\mathbf{x}_{1} + \mathbf{x}_{2}}{2}$$
, $\lambda = 1$.

7.2 Two-Dimensional Coordinate System

Point coordinates: x_0 , x_1 , x_2 , y_0 , y_1 , y_2

Polar coordinates: r, φ

Real number: λ

Positive real numbers: a, b, c, Distance between two points: d

Area: S

610. Distance Between Two Points

$$d = AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Figure 88.

611. Dividing a Line Segment in the Ratio λ

$$\mathbf{x}_{0} = \frac{\mathbf{x}_{1} + \lambda \mathbf{x}_{2}}{1 + \lambda}, \quad \mathbf{y}_{0} = \frac{\mathbf{y}_{1} + \lambda \mathbf{y}_{2}}{1 + \lambda},$$
$$\lambda = \frac{\mathbf{AC}}{\mathbf{CB}}, \quad \lambda \neq -1.$$

Figure 89.

Figure 90.

612. Midpoint of a Line Segment

$$\mathbf{x}_0 = \frac{\mathbf{x}_1 + \mathbf{x}_2}{2}, \ \mathbf{y}_0 = \frac{\mathbf{y}_1 + \mathbf{y}_2}{2}, \ \lambda = 1.$$

613. Centroid (Intersection of Medians) of a Triangle

$$\mathbf{x}_0 = \frac{\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3}{3}$$
, $\mathbf{y}_0 = \frac{\mathbf{y}_1 + \mathbf{y}_2 + \mathbf{y}_3}{3}$,

where $A(x_1,y_1)$, $B(x_2,y_2)$, and $C(x_3,y_3)$ are vertices of the triangle ABC.

Figure 91.

614. Incenter (Intersection of Angle Bisectors) of a Triangle $x_0 = \frac{ax_1 + bx_2 + cx_3}{a + b + c}, \ y_0 = \frac{ay_1 + by_2 + cy_3}{a + b + c},$ where a = BC, b = CA, c = AB.

Figure 92.

615. Circumcenter (Intersection of the Side Perpendicular Bisectors) of a Triangle

$$\mathbf{x}_{0} = \frac{\begin{vmatrix} \mathbf{x}_{1}^{2} + \mathbf{y}_{1}^{2} & \mathbf{y}_{1} & 1 \\ \mathbf{x}_{2}^{2} + \mathbf{y}_{2}^{2} & \mathbf{y}_{2} & 1 \\ \mathbf{x}_{3}^{2} + \mathbf{y}_{3}^{2} & \mathbf{y}_{3} & 1 \end{vmatrix}}{\begin{vmatrix} \mathbf{x}_{1} & \mathbf{y}_{1} & 1 \\ \mathbf{x}_{2}^{2} + \mathbf{y}_{3}^{2} & \mathbf{y}_{3} & 1 \end{vmatrix}}, \quad \mathbf{y}_{0} = \frac{\begin{vmatrix} \mathbf{x}_{1} & \mathbf{x}_{1}^{2} + \mathbf{y}_{1}^{2} & 1 \\ \mathbf{x}_{2} & \mathbf{x}_{2}^{2} + \mathbf{y}_{2}^{2} & 1 \\ \mathbf{x}_{3} & \mathbf{x}_{3}^{2} + \mathbf{y}_{3}^{2} & 1 \end{vmatrix}}{\begin{vmatrix} \mathbf{x}_{1} & \mathbf{y}_{1} & 1 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 1 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 1 \end{vmatrix}}$$

Figure 93.

616. Orthocenter (Intersection of Altitudes) of a Triangle

$$\mathbf{x}_{0} = \frac{\begin{vmatrix} \mathbf{y}_{1} & \mathbf{x}_{2}\mathbf{x}_{3} + \mathbf{y}_{1}^{2} & 1 \\ \mathbf{y}_{2} & \mathbf{x}_{3}\mathbf{x}_{1} + \mathbf{y}_{2}^{2} & 1 \\ \mathbf{y}_{3} & \mathbf{x}_{1}\mathbf{x}_{2} + \mathbf{y}_{3}^{2} & 1 \end{vmatrix}}{\begin{vmatrix} \mathbf{x}_{1} & \mathbf{y}_{1} & 1 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 1 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 1 \end{vmatrix}}, \ \mathbf{y}_{0} = \frac{\begin{vmatrix} \mathbf{x}_{1}^{2} + \mathbf{y}_{2}\mathbf{y}_{3} & \mathbf{x}_{1} & 1 \\ \mathbf{x}_{2}^{2} + \mathbf{y}_{3}\mathbf{y}_{1} & \mathbf{x}_{2} & 1 \\ \mathbf{x}_{3}^{2} + \mathbf{y}_{1}\mathbf{y}_{2} & \mathbf{x}_{3} & 1 \end{vmatrix}}{\begin{vmatrix} \mathbf{x}_{1} & \mathbf{y}_{1} & 1 \\ \mathbf{x}_{2} & \mathbf{y}_{2} & 1 \\ \mathbf{x}_{3} & \mathbf{y}_{3} & 1 \end{vmatrix}}$$

Figure 94.

617. Area of a Triangle

$$S = (\pm) \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} = (\pm) \frac{1}{2} \begin{vmatrix} x_2 - x_1 & y_2 - y_1 \\ x_3 - x_1 & y_3 - y_1 \end{vmatrix}$$

618. Area of a Quadrilateral

$$S = (\pm)\frac{1}{2}[(x_1 - x_2)(y_1 + y_2) + (x_2 - x_3)(y_2 + y_3) + (x_3 - x_4)(y_3 + y_4) + (x_4 - x_1)(y_4 + y_1)]$$

Figure 95.

Note: In formulas 617, 618 we choose the sign (+) or (-) so that to get a positive answer for area.

$$d = AB = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\varphi_2 - \varphi_1)}$$

Figure 96.

620. Converting Rectangular Coordinates to Polar Coordinates $x = r \cos \varphi$, $y = r \sin \varphi$.

Figure 97.

621. Converting Polar Coordinates to Rectangular Coordinates $r = \sqrt{x^2 + y^2} \ , \ \tan \phi = \frac{y}{x} \ .$

7.3 Straight Line in Plane

Point coordinates: $X, Y, x, x_0, x_1, y_0, y_1, a_1, a_2, ...$

Real numbers: k, a, b, p, t, A, B, C, A₁, A₂, ...

Angles: α, β

Angle between two lines: φ

Normal vector: n

Position vectors: r, a, b

- **622.** General Equation of a Straight Line Ax + By + C = 0
- 623. Normal Vector to a Straight Line The vector $\vec{n}(A, B)$ is normal to the line Ax + By + C = 0.

Figure 98.

624. Explicit Equation of a Straight Line (Slope-Intercept Form) y = kx + b.

Figure 102.

628. Intercept Form

$$\frac{\mathbf{x}}{\mathbf{a}} + \frac{\mathbf{y}}{\mathbf{b}} = 1$$

Figure 103.

The gradient of the line is $k = \tan \alpha$.

Figure 99.

625. Gradient of a Line

$$k = tan \ \alpha = \frac{y_2 - y_1}{x_2 - x_1}$$

Figure 100.

626. Equation of a Line Given a Point and the Gradient $y = y_0 + k(x - x_0)$, where k is the gradient, $P(x_0, y_0)$ is a point on the line.

Figure 101.

627. Equation of a Line That Passes Through Two Points

$$\frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$$
or
$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0.$$

629. Normal Form $x \cos \beta + y \sin \beta - p = 0$

Figure 104.

630. Point Direction Form

$$\frac{\mathbf{x}-\mathbf{x}_1}{\mathbf{X}} = \frac{\mathbf{y}-\mathbf{y}_1}{\mathbf{Y}},$$

where (X, Y) is the direction of the line and $P_1(x_1, y_1)$ lies on the line.

Figure 105.

- 631. Vertical Line x = a
- 632. Horizontal Line y = b
- 633. Vector Equation of a Straight Line
 r = a + tb,
 where
 O is the origin of the coordinates,
 X is any variable point on the line,
 a is the position vector of a known point A on the line,
 b is a known vector of direction, parallel to the line,
 t is a parameter,

 $\vec{r} = OX$ is the position vector of any point X on the line.

Figure 106.

634. Straight Line in Parametric Form

$$\begin{cases} \mathbf{x} = \mathbf{a}_1 + \mathbf{t}\mathbf{b}_1 \\ \mathbf{y} = \mathbf{a}_2 + \mathbf{t}\mathbf{b}_2 \end{cases},$$

where

(x, y) are the coordinates of any unknown point on the line, (a_1, a_2) are the coordinates of a known point on the line, (b_1, b_2) are the coordinates of a vector parallel to the line, t is a parameter.

Figure 107.

635. Distance From a Point To a Line
The distance from the point P(a, b) to the line Ax + By + C = 0 is

$$d = \frac{|Aa + Bb + C|}{\sqrt{A^2 + B^2}}.$$

Figure 108.

636. Parallel Lines

Two lines $y = k_1x + b_1$ and $y = k_2x + b_2$ are parallel if $k_1 = k_2$.

Two lines $A_1x + B_1y + C_1 = 0$ and $A_2x + B_2y + C_2 = 0$ are parallel if

$$\frac{\mathbf{A}_1}{\mathbf{A}_2} = \frac{\mathbf{B}_1}{\mathbf{B}_2}.$$

Figure 109.

637. Perpendicular Lines

Two lines $y = k_1x + b_1$ and $y = k_2x + b_2$ are perpendicular if

$$k_2 = -\frac{1}{k_1}$$
 or, equivalently, $k_1 k_2 = -1$.

Two lines $A_1x + B_1y + C_1 = 0$ and $A_2x + B_2y + C_2 = 0$ are perpendicular if

$$A_1A_2 + B_1B_2 = 0$$
.

Figure 110.

638. Angle Between Two Lines

$$\tan \varphi = \frac{\mathbf{k}_2 - \mathbf{k}_1}{1 + \mathbf{k}_1 \mathbf{k}_2},$$

$$\cos \varphi = \frac{\mathbf{A}_1 \mathbf{A}_2 + \mathbf{B}_1 \mathbf{B}_2}{\sqrt{\mathbf{A}_1^2 + \mathbf{B}_1^2} \cdot \sqrt{\mathbf{A}_2^2 + \mathbf{B}_2^2}}.$$

Figure 111.

639. Intersection of Two Lines

If two lines $A_1x + B_1y + C_1 = 0$ and $A_2x + B_2y + C_2 = 0$ intersect, the intersection point has coordinates

$$\mathbf{x}_0 = \frac{-C_1B_2 + C_2B_1}{A_1B_2 - A_2B_1}, \ \mathbf{y}_0 = \frac{-A_1C_2 + A_2C_1}{A_1B_2 - A_2B_1}.$$

7.4 Circle

Radius: R

Center of circle: (a, b)

Point coordinates: x, y, x_1 , y_1 , ... Real numbers: A, B, C, D, E, F, t 640. Equation of a Circle Centered at the Origin (Standard Form)

$$x^2 + y^2 = R^2$$

Figure 112.

641. Equation of a Circle Centered at Any Point (a, b) $(x-a)^2 + (y-b)^2 = R^2$

642. Three Point Form

$$\begin{vmatrix} x^2 + y^2 & x & y & 1 \\ x_1^2 + y_1^2 & x_1 & y_1 & 1 \\ x_2^2 + y_2^2 & x_2 & y_2 & 1 \\ x_3^2 + y_3^2 & x_3 & y_3 & 1 \end{vmatrix} = 0$$

Figure 114.

643. Parametric Form

$$\begin{cases} x = R \cos t \\ y = R \sin t \end{cases}, \ 0 \le t \le 2\pi.$$

644. General Form

 $Ax^2 + Ay^2 + Dx + Ey + F = 0$ (A nonzero, $D^2 + E^2 > 4AF$). The center of the circle has coordinates (a, b), where

$$a = -\frac{D}{2A}, b = -\frac{E}{2A}.$$

The radius of the circle is

CHAPTER 7. ANALYTIC GEOMETRY

$$R = \sqrt{\frac{D^2 + E^2 - 4AF}{2|A|}} \ .$$

7.5 Ellipse

Semimajor axis: a

Semiminor axis: b

Foci: $F_1(-c, 0)$, $F_2(c, 0)$

Distance between the foci: 2c

Eccentricity: e

Real numbers: A, B, C, D, E, F, t

Perimeter: L

Area: S

645. Equation of an Ellipse (Standard Form)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Figure 115.

CHAPTER 7. ANALYTIC GEOMETRY

646. $r_1 + r_2 = 2a$, where r_1 , r_2 are distances from any point P(x,y) on the ellipse to the two foci.

Figure 116.

647.
$$a^2 = b^2 + c^2$$

648. Eccentricity

$$e = \frac{c}{a} < 1$$

649. Equations of Directrices

$$x = \pm \frac{a}{e} = \pm \frac{a^2}{c}$$

650. Parametric Form $x = a \cos t$

$$\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}, \ 0 \le t \le 2\pi.$$

Figure 118.

658. Equations of Asymptotes

$$y = \pm \frac{b}{a}x$$

659.
$$c^2 = a^2 + b^2$$

660. Eccentricity

$$e = \frac{c}{a} > 1$$

661. Equations of Directrices

$$x = \pm \frac{a}{e} = \pm \frac{a^2}{c}$$

CHAPTER 7. ANALYTIC GEOMETRY

651. General Form

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0$$
,
where $B^{2} - 4AC < 0$.

- 652. General Form with Axes Parallel to the Coordinate Axes $Ax^2 + Cy^2 + Dx + Ey + F = 0$, where AC > 0.
- 653. Circumference L = 4aE(e), where the function E is the complete elliptic integral of the second kind.
- 654. Approximate Formulas of the Circumference $L = \pi \left(1.5(a+b) \sqrt{ab}\right),$ $L = \pi \sqrt{2(a^2 + b^2)}.$
- **655.** $S = \pi ab$

7.6 Hyperbola

Transverse axis: a

Conjugate axis: b

Foci: $F_1(-c, 0)$, $F_2(c, 0)$

Distance between the foci: 2c

Eccentricity: e

Asymptotes: s, t

Real numbers: A, B, C, D, E, F, t, k

656. Equation of a Hyperbola (Standard Form)

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Figure 117.

657. $|\mathbf{r}_1 - \mathbf{r}_2| = 2a$,

where r_1 , r_2 are distances from any point P(x,y) on the hyperbola to the two foci.

CHAPTER 7. ANALYTIC GEOMETRY

- 662. Parametric Equations of the Right Branch of a Hyperbola $\begin{cases} x = a \cosh t \\ y = b \sinh t \end{cases}, \ 0 \le t \le 2\pi.$
- 663. General Form $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,$ where $B^2 - 4AC > 0$.
- 664. General Form with Axes Parallel to the Coordinate Axes $Ax^2 + Cy^2 + Dx + Ey + F = 0$, where AC < 0.
- 665. Asymptotic Form

$$xy = \frac{e^2}{4},$$

or

$$y = \frac{k}{x}$$
, where $k = \frac{e^2}{4}$.

In this case, the asymptotes have equations x = 0 and y = 0.

Figure 119.

7.7 Parabola

Focal parameter: p

Focus: F

Vertex: $M(x_0, y_0)$

Real numbers: A, B, C, D, E, F, p, a, b, c

666. Equation of a Parabola (Standard Form) $y^2 = 2px$

Figure 120.

Equation of the directrix

$$x = -\frac{p}{2}$$
,

Coordinates of the focus

$$F\left(\frac{p}{2},0\right)$$

Coordinates of the vertex M(0,0).

- 667. General Form $Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0,$ where $B^{2} - 4AC = 0$.
- 668. $y = ax^2$, $p = \frac{1}{2a}$. Equation of the directrix

$$y = -\frac{p}{2}$$
,

Coordinates of the focus

$$F\left(0,\frac{p}{2}\right)$$

Coordinates of the vertex M(0,0).

Figure 121.

669. General Form, Axis Parallel to the y-axis $Ax^2 + Dx + Ey + F = 0$ (A, E nonzero),

$$y = ax^2 + bx + c$$
, $p = \frac{1}{2a}$.

Equation of the directrix

$$y=y_{_{0}}-\frac{p}{2}\text{ ,}$$

Coordinates of the focus

CHAPTER 7. ANALYTIC GEOMETRY

$$F\left(x_0, y_0 + \frac{p}{2}\right)$$

Coordinates of the vertex

$$\mathbf{x}_{0} = -\frac{b}{2a}$$
, $\mathbf{y}_{0} = a\mathbf{x}_{0}^{2} + b\mathbf{x}_{0} + c = \frac{4ac - b^{2}}{4a}$.

Figure 122.

7.8 Three-Dimensional Coordinate System

Point coordinates: x_0 , y_0 , z_0 , x_1 , y_1 , z_1 , ...

Real number: λ

Distance between two points: d

Area: S Volume: V 670. Distance Between Two Points

$$d = AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Figure 123.

671. Dividing a Line Segment in the Ratio λ

$$x_{_{0}}=\frac{x_{_{1}}+\lambda x_{_{2}}}{1+\lambda}\text{ , }y_{_{0}}=\frac{y_{_{1}}+\lambda y_{_{2}}}{1+\lambda}\text{ , }z_{_{0}}=\frac{z_{_{1}}+\lambda z_{_{2}}}{1+\lambda}\text{ ,}$$

where

$$\lambda = \frac{AC}{CB}, \ \lambda \neq -1.$$

Figure 124.

Figure 125.

672. Midpoint of a Line Segment

$$\mathbf{x}_{0} = \frac{\mathbf{x}_{1} + \mathbf{x}_{2}}{2}$$
, $\mathbf{y}_{0} = \frac{\mathbf{y}_{1} + \mathbf{y}_{2}}{2}$, $\mathbf{z}_{0} = \frac{\mathbf{z}_{1} + \mathbf{z}_{2}}{2}$, $\lambda = 1$.

673. Area of a Triangle

The area of a triangle with vertices $P_1(x_1, y_1, z_1)$, $P_2(x_2, y_2, z_2)$, and $P_3(x_3, y_3, z_3)$ is given by

$$S = \frac{1}{2} \sqrt{ \begin{vmatrix} y_1 & z_1 & 1 \\ y_2 & z_2 & 1 \\ y_3 & z_3 & 1 \end{vmatrix}^2 + \begin{vmatrix} z_1 & x_1 & 1 \\ z_2 & x_2 & 1 \\ z_3 & x_3 & 1 \end{vmatrix}^2 + \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}^2 } \ .$$

674. Volume of a Tetrahedron

The volume of a tetrahedron with vertices $P_1(x_1, y_1, z_1)$, $P_2(x_2, y_2, z_2)$, $P_3(x_3, y_3, z_3)$, and $P_4(x_4, y_4, z_4)$ is given by

$$V = \pm \frac{1}{6} \begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix},$$

or

$$V = \pm \frac{1}{6} \begin{vmatrix} x_1 - x_4 & y_1 - y_4 & z_1 - z_4 \\ x_2 - x_4 & y_2 - y_4 & z_2 - z_4 \\ x_3 - x_4 & y_3 - y_4 & z_3 - z_4 \end{vmatrix}.$$

Note: We choose the sign (+) or (-) so that to get a positive answer for volume.

Figure 126.

7.9 Plane

Point coordinates: x, y, z, x_0 , y_0 , z_0 , x_1 , y_1 , z_1 , ...

Real numbers: A, B, C, D, A_1 , A_2 , a, b, c, a_1 , a_2 , λ , p, t, ...

Normal vectors: \vec{n} , \vec{n}_1 , \vec{n}_2

Direction cosines: $\cos \alpha$, $\cos \beta$, $\cos \gamma$

Distance from point to plane: d

675. General Equation of a Plane

$$Ax + By + Cz + D = 0$$

676. Normal Vector to a Plane The vector \vec{n} (A, B, C) is normal to the plane Ax + By + Cz + D = 0.

Figure 127.

677. Particular Cases of the Equation of a Plane Ax + By + Cz + D = 0

If A = 0, the plane is parallel to the x-axis.

If B = 0, the plane is parallel to the y-axis.

If C = 0, the plane is parallel to the z-axis.

If D = 0, the plane lies on the origin.

If A = B = 0, the plane is parallel to the xy-plane.

If B = C = 0, the plane is parallel to the yz-plane.

If A = C = 0, the plane is parallel to the xz-plane.

678. Point Direction Form $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$, where the point $P(x_0,y_0,z_0)$ lies in the plane, and the vector (A,B,C) is normal to the plane.

Figure 128.

679. Intercept Form

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Figure 129.

680. Three Point Form

$$\begin{vmatrix} \mathbf{x} - \mathbf{x}_3 & \mathbf{y} - \mathbf{y}_3 & \mathbf{z} - \mathbf{z}_3 \\ \mathbf{x}_1 - \mathbf{x}_3 & \mathbf{y}_1 - \mathbf{y}_3 & \mathbf{z}_1 - \mathbf{z}_3 \\ \mathbf{x}_2 - \mathbf{x}_3 & \mathbf{y}_2 - \mathbf{y}_3 & \mathbf{z}_2 - \mathbf{z}_3 \end{vmatrix} = 0,$$
or
$$\begin{vmatrix} \mathbf{x} & \mathbf{y} & \mathbf{z} & 1 \\ \mathbf{x}_1 & \mathbf{y}_1 & \mathbf{z}_1 & 1 \\ \mathbf{x}_2 & \mathbf{y}_2 & \mathbf{z}_2 & 1 \\ \mathbf{x}_3 & \mathbf{y}_3 & \mathbf{z}_3 & 1 \end{vmatrix} = 0.$$

Figure 130.

681. Normal Form

 $x\cos\alpha + y\cos\beta + z\cos\gamma - p = 0$,

where p is the perpendicular distance from the origin to the plane, and $\cos\alpha$, $\cos\beta$, $\cos\gamma$ are the direction cosines of any line normal to the plane.

Figure 131.

682. Parametric Form

$$\begin{cases} x = x_1 + a_1 s + a_2 t \\ y = y_1 + b_1 s + b_2 t , \\ z = z_1 + c_1 s + c_2 t \end{cases}$$

where (x,y,z) are the coordinates of any unknown point on the line, the point $P(x_1,y_1,z_1)$ lies in the plane, the vectors (a_1,b_1,c_1) and (a_2,b_2,c_2) are parallel to the plane.

Figure 132.

683. Dihedral Angle Between Two Planes
If the planes are given by $A_1x + B_1y + C_1z + D_1 = 0,$ $A_2x + B_2y + C_2z + D_2 = 0,$ then the dihedral angle between them is $\cos \varphi = \frac{\vec{n}_1 \cdot \vec{n}_2}{\left|\vec{n}_1\right| \cdot \left|\vec{n}_2\right|} = \frac{A_1A_2 + B_1B_2 + C_1C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \cdot \sqrt{A_2^2 + B_2^2 + C_2^2}}.$

Figure 133.

- 684. Parallel Planes Two planes $A_1x + B_1y + C_1z + D_1 = 0$ and $A_2x + B_2y + C_2z + D_2 = 0$ are parallel if $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}.$
- 685. Perpendicular Planes Two planes $A_1x + B_1y + C_1z + D_1 = 0$ and $A_2x + B_2y + C_2z + D_2 = 0$ are perpendicular if $A_1A_2 + B_1B_2 + C_1C_2 = 0$.
- **686.** Equation of a Plane Through P(x₁, y₁, z₁) and Parallel To the Vectors (a₁, b₁, c₁) and (a₂, b₂, c₂) (Fig.132)

$$\begin{vmatrix} \mathbf{x} - \mathbf{x}_1 & \mathbf{y} - \mathbf{y}_1 & \mathbf{z} - \mathbf{z}_1 \\ \mathbf{a}_1 & \mathbf{b}_1 & \mathbf{c}_1 \\ \mathbf{a}_2 & \mathbf{b}_2 & \mathbf{c}_2 \end{vmatrix} = \mathbf{0}$$

687. Equation of a Plane Through $P_1(x_1, y_1, z_1)$ and $P_2(x_2, y_2, z_2)$, and Parallel To the Vector (a, b, c)

$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a & b & c \end{vmatrix} = 0$$

Figure 134.

688. Distance From a Point To a Plane The distance from the point $P_1(x_1, y_1, z_1)$ to the plane Ax + By + Cz + D = 0 is

$$d = \left| \frac{Ax_1 + By_1 + Cz_1 + D}{\sqrt{A^2 + B^2 + C^2}} \right|.$$

Figure 135.

689. Intersection of Two Planes
If two planes $A_1x + B_1y + C_1z + D_1 = 0$ and $A_2x + B_2y + C_2z + D_2 = 0$ intersect, the intersection straight line is given by

$$\begin{cases} x = x_1 + at \\ y = y_1 + bt, \\ z = z_1 + ct \end{cases}$$

$$\frac{\mathbf{x} - \mathbf{x}_1}{\mathbf{a}} = \frac{\mathbf{y} - \mathbf{y}_1}{\mathbf{b}} = \frac{\mathbf{z} - \mathbf{z}_1}{\mathbf{c}},$$
where

$$a = \begin{vmatrix} B_1 & C_1 \\ B_2 & C_2 \end{vmatrix}, b = \begin{vmatrix} C_1 & A_1 \\ C_2 & A_2 \end{vmatrix}, c = \begin{vmatrix} A_1 & B_1 \\ A_2 & B_2 \end{vmatrix},$$

$$x_1 = \frac{b \begin{vmatrix} D_1 & C_1 \\ D_2 & C_2 \end{vmatrix} - c \begin{vmatrix} D_1 & B_1 \\ D_2 & B_2 \end{vmatrix}}{a^2 + b^2 + c^2},$$

$$y_1 = \frac{c \begin{vmatrix} D_1 & A_1 \\ D_2 & A_2 \end{vmatrix} - a \begin{vmatrix} D_1 & C_1 \\ D_2 & C_2 \end{vmatrix}}{a^2 + b^2 + c^2},$$

$$z_1 = \frac{a \begin{vmatrix} D_1 & B_1 \\ D_2 & B_2 \end{vmatrix} - b \begin{vmatrix} D_1 & A_1 \\ D_2 & A_2 \end{vmatrix}}{a^2 + b^2 + c^2}.$$

7.10 Straight Line in Space

Point coordinates: $x, y, z, x_1, y_1, z_1, ...$

Direction cosines: $\cos \alpha$, $\cos \beta$, $\cos \gamma$

Real numbers: A, B, C, D, a, b, c, a1, a2, t, ...

Direction vectors of a line: \vec{s} , \vec{s}_1 , \vec{s}_2

Normal vector to a plane: \vec{n}

Angle between two lines: φ

690. Point Direction Form of the Equation of a Line

$$\frac{\mathbf{x}-\mathbf{x}_1}{\mathbf{a}}=\frac{\mathbf{y}-\mathbf{y}_1}{\mathbf{b}}=\frac{\mathbf{z}-\mathbf{z}_1}{\mathbf{c}},$$

where the point $P_1(x_1,y_1,z_1)$ lies on the line, and (a,b,c) is the direction vector of the line.

Figure 136.

691. Two Point Form

$$\frac{\mathbf{x} - \mathbf{x}_1}{\mathbf{x}_2 - \mathbf{x}_1} = \frac{\mathbf{y} - \mathbf{y}_1}{\mathbf{y}_2 - \mathbf{y}_1} = \frac{\mathbf{z} - \mathbf{z}_1}{\mathbf{z}_2 - \mathbf{z}_1}$$

Figure 137.

692. Parametric Form

$$\begin{cases} x = x_1 + t \cos \alpha \\ y = y_1 + t \cos \beta \end{cases},$$
$$z = z_1 + t \cos \gamma$$

where the point $P_1(x_1, y_1, z_1)$ lies on the straight line, $\cos\alpha$, $\cos\beta$, $\cos\gamma$ are the direction cosines of the direction vector of the line, the parameter t is any real number.

Figure 138.

693. Angle Between Two Straight Lines
$$\cos \varphi = \frac{\vec{s}_1 \cdot \vec{s}_2}{\left|\vec{s}_1\right| \cdot \left|\vec{s}_2\right|} = \frac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \cdot \sqrt{a_2^2 + b_2^2 + c_2^2}}$$

Figure 139.

- 694. Parallel Lines

 Two lines are parallel if $\vec{s}_1 || \vec{s}_2$,
 or $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$.
- 695. Perpendicular Lines Two lines are parallel if $\vec{s}_1 \cdot \vec{s}_2 = 0$, or $a_1a_2 + b_1b_2 + c_1c_2 = 0$.
- 696. Intersection of Two Lines

 Two lines $\frac{\mathbf{x} \mathbf{x}_1}{\mathbf{a}_1} = \frac{\mathbf{y} \mathbf{y}_1}{\mathbf{b}_1} = \frac{\mathbf{z} \mathbf{z}_1}{\mathbf{c}_1}$ and

CHAPTER 7. ANALYTIC GEOMETRY

$$\frac{\mathbf{x} - \mathbf{x}_{2}}{\mathbf{a}_{2}} = \frac{\mathbf{y} - \mathbf{y}_{2}}{\mathbf{b}_{2}} = \frac{\mathbf{z} - \mathbf{z}_{2}}{\mathbf{c}_{2}} \text{ intersect if}$$

$$\begin{vmatrix} \mathbf{x}_{2} - \mathbf{x}_{1} & \mathbf{y}_{2} - \mathbf{y}_{1} & \mathbf{z}_{2} - \mathbf{z}_{1} \\ \mathbf{a}_{1} & \mathbf{b}_{1} & \mathbf{c}_{1} \\ \mathbf{a}_{2} & \mathbf{b}_{2} & \mathbf{c}_{2} \end{vmatrix} = \mathbf{0}.$$

697. Parallel Line and Plane

The straight line $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$ and the plane Ax + By + Cz + D = 0 are parallel if $\vec{n} \cdot \vec{s} = 0$, or Aa + Bb + Cc = 0.

Figure 140.

698. Perpendicular Line and Plane

The straight line $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$ and the plane Ax + By + Cz + D = 0 are perpendicular if $\vec{n} \parallel \vec{s}$, or

 $\frac{A}{a} = \frac{B}{b} = \frac{C}{c}$.

Figure 141.

7.11 Quadric Surfaces

Point coordinates of the quadric surfaces: x, y, z Real numbers: A, B, C, a, b, c, k₁,k₂,k₃, ...

699. General Quadratic Equation $Ax^2 + By^2 + Cz^2 + 2Fyz + 2Gzx + 2Hxy + 2Px + 2Qy + 2Rz + D = 0$

700. Classification of Quadric Surfaces

Case	Rank(e)	Rank(E)	Δ	k signs	Type of Surface
1	3	4	< 0	Same	Real Ellipsoid
2	3	4	>0	Same	Imaginary Ellipsoid
3	3	4	>0	Different	Hyperboloid of 1 Sheet
4	3	4	< 0	Different	Hyperboloid of 2 Sheets
5	3	3		Different	Real Quadric Cone
6	3	3	ĵ	Same	Imaginary Quadric Cone
7	2	4	< 0	Same	Elliptic Paraboloid
8	2	4	>0	Different	Hyperbolic Paraboloid
9	2	3		Same	Real Elliptic Cylinder
10	2	3		Same	Imaginary Elliptic Cylinder
11	2	3	ĵ .	Different	Hyperbolic Cylinder
12	2	2		Different	Real Intersecting Planes
13	2	2	Ţ	Same	Imaginary Intersecting Planes
14	1	3			Parabolic Cylinder
15	1	2]		Real Parallel Planes
16	1	2			Imaginary Parallel Planes
17	1	1			Coincident Planes

Here

$$e = \begin{pmatrix} A & H & G \\ H & B & F \\ G & F & C \end{pmatrix}, E = \begin{pmatrix} A & H & Q & P \\ H & B & F & Q \\ G & F & C & R \\ P & Q & R & D \end{pmatrix}, \Delta = det(E),$$

 k_1, k_2, k_3 are the roots of the equation,

$$\begin{vmatrix} A-x & H & G \\ H & B-x & F \\ G & F & C-x \end{vmatrix} = 0.$$

701. Real Ellipsoid (Case 1)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Figure 142.

702. Imaginary Ellipsoid (Case 2)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = -1$$

703. Hyperboloid of 1 Sheet (Case 3)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

Figure 143.

704. Hyperboloid of 2 Sheets (Case 4)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$$

Figure 144.

705. Real Quadric Cone (Case 5)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$

Figure 145.

706. Imaginary Quadric Cone (Case 6)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$$

707. Elliptic Paraboloid (Case 7)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - z = 0$$

Figure 146.

708. Hyperbolic Paraboloid (Case 8)

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} - z = 0$$

Figure 147.

709. Real Elliptic Cylinder (Case 9)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Figure 148.

710. Imaginary Elliptic Cylinder (Case 10)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$

711. Hyperbolic Cylinder (Case 11) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Figure 149.

712. Real Intersecting Planes (Case 12)

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

713. Imaginary Intersecting Planes (Case 13)

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$

714. Parabolic Cylinder (Case 14)

$$\frac{x^2}{a^2} - y = 0$$

Figure 150.

715. Real Parallel Planes (Case 15)

$$\frac{\mathbf{x}^2}{\mathbf{a}^2} = 1$$

716. Imaginary Parallel Planes (Case 16)

$$\frac{\mathbf{x}^2}{\mathbf{a}^2} = -1$$

717. Coincident Planes (Case 17)

$$x^2 = 0$$

7.12 Sphere

Radius of a sphere: R

Point coordinates: $x, y, z, x_1, y_1, z_1, ...$

Center of a sphere: (a,b,c) Real numbers: A, D, E, F, M

718. Equation of a Sphere Centered at the Origin (Standard Form)

$$x^2 + y^2 + z^2 = R^2$$

Figure 151.

719. Equation of a Circle Centered at Any Point (a,b,c) $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$

720. Diameter Form
$$(x-x_1)(x-x_2)+(y-y_1)(y-y_2)+(z-z_1)(z-z_2)=0$$
,

CHAPTER 7. ANALYTIC GEOMETRY

where

 $P_1(x_1, y_1, z_1)$, $P_2(x_2, y_2, z_2)$ are the ends of a diameter.

721. Four Point Form

$$\begin{vmatrix} x^2 + y^2 + z^2 & x & y & z & 1 \\ x_1^2 + y_1^2 + x_1^2 & x_1 & y_1 & z_1 & 1 \\ x_2^2 + y_2^2 + x_2^2 & x_2 & y_2 & z_2 & 1 \\ x_3^2 + y_3^2 + x_3^2 & x_3 & y_3 & z_3 & 1 \\ x_4^2 + y_4^2 + x_4^2 & x_4 & y_4 & z_4 & 1 \end{vmatrix} = 0$$

722. General Form

 $Ax^2 + Ay^2 + Az^2 + Dx + Ey + Fz + M = 0$ (A is nonzero). The center of the sphere has coordinates (a,b,c), where

$$a = -\frac{D}{2A}$$
, $b = -\frac{E}{2A}$, $c = -\frac{F}{2A}$.

The radius of the sphere is

$$R = \frac{\sqrt{D^2 + E^2 + F^2 - 4A^2M}}{2A}.$$