RF Field Engineer Course: A Practical Introduction

Jordan Hanson June 8, 2021

Whittier College Department of Physics and Astronomy

Course Introduction

- 1. Professor Jordan Hanson
- 2. Email: jhanson2@whittier.edu, 918particle@gmail.com
- 3. Mobile: 562-351-0047
- 4. Zoom Credentials: (ID) 796 092 0745 (Passcode) 667725
- 5. Reading: Stimson's Introduction to Airborne Radar, 3rd Edition. (Hughes Radar Handbook)
- 6. Box Folder: https://app.box.com/s/ qalsptcztyeq8hjvu3pmf4mlodmopop7

Summary

Reading: Stimson3 ch. 1-6

- Week 1: Units and estimation. Key skills: mental math, wave concepts
 - · Electromagnetic units, estimation, and decibels
 - · Waves and the wave equation
 - · Reflections, refraction, and diffraction
 - · Phase, amplitude, frequency, polarization
- Week 2: Basic Training in Mathematics. **Key skills**: estimate pulse bandwidth, pulse trains and uncertainty principle
 - Complex numbers: applications to phasors and radio waves, complex imdedance of filters and antennas
 - Fourier series and transforms, filters and attenuation, properties of waveforms, power spectra, and spectrograms, cross-correlation and convolution
 - Statistics and probability: applications to noise, signal-to-noise ratio

Reading: Stimson3 ch. 7-11

- Week 3: RF Antenna Properties. Key skills: characterize an antenna, diagnose a problem with an antenna system
 - · Radiation pattern, directivity, and gain
 - · Complex impedance and reflection coefficient, S11, S21
 - · Bandwidth, narrow and wide
 - · Antenna temperature
 - Angular resolution
 - · Attenuation: applications to remote sensing
- Week 4: Electronically Scanned Antenna Systems
 - · Basics: spacing, wavelength, and scan angle
 - Design classes: AESA and PESA
 - · Wideband considerations: Scan losses, time-delays
 - · Bonus: FDTD demonstrations of ESAs
- Week 5: Review of Weeks 1-4, pulsed radar concepts

Reading: Stimson3 ch. 12-13, part IV (18-22), 23

- Week 6: Range Equations. Key skills: diagnose issues with distance target detection, estimate radar cross section (RCS)
 - · Radar cross-section
 - Noise and noise figure, signal-to-noise ratio (SNR)
 - Thermal noise floor and detection probability
 - Ranging techniques: pulse compression, frequency modulation
- Week 7: Overview of Pulse Doppler Radar (Cumulative Example)
 - Connections with Telemetry
 - · See Stimson3 part IV
 - Connections to digital signal processing: sampling and digitization
- · Week 8: Clutter and Attenuation
 - · Clutter: sources and spectra
 - · Attenuation: absorption and scattering, components

Course Summary

- Week 9: Link Budgets (Cumulative Example)
 - · Assembling the pieces
 - Example calculations
- · Week 10: Course Review
 - Review Weeks 1-9
 - · Skill Review
 - 1. Estimation and approximations
 - 2. Conceptual challenge questions
 - 3. Worked examples

RF radiation travels at a constant speed.

$$\frac{c}{n} = \nu \lambda \tag{1}$$

$$\Delta x = \left(\frac{c}{n}\right) \Delta t \tag{2}$$

$$T = \frac{1}{\nu} \tag{3}$$

- c: speed of light in vaccuum, 0.299792458 m/ns, \approx 0.3 m GHz
- \cdot ν : frequency of the radiation, Hz.
- \cdot λ : wavelength of the radiation, meters.
- \cdot Δx : displacement
- Δt : time duration

- How does it work conceptually? Distance equals speed multiplied by time duration.
- How do you correct for the speed in the cable?
- How could we apply this to radar? Remember, this is a reflection.

- 20 ns x 0.3 (m/ns) \approx 6 m. Why 6 meters?
- How do you correct for the speed in the cable?
- How could we apply this to radar? Remember, this is a reflection.

- 20 ns x 0.3 (m/ns) \approx 6 m. Why 6 meters?
- Typical speed in RF cable: 85% speed of light. What is Δt for 6 meters at reduced speed?
- How could we apply this to radar? Remember, this is a reflection.

- 20 ns x 0.3 (m/ns) \approx 6 m. Why 6 meters?
- Typical speed in RF cable: 85% speed of light. What is Δt for 6 meters at reduced speed?
- If a radar echo returns 30 microseconds later, how far away is the reflector?

- What's the period of a 20 MHz sine wave? Which part of the waveform at left represents this oscillation?
- If a signal is repeated regularly, it has a PRF, or pulse repetition frequency.
 Work out the PRF of the waveform at left.
- · What does duty cycle mean?

- $1/20.0 \text{ MHz}^{-1} = 0.05 \,\mu\text{s} =$ 50 ns. These oscillations are within the pulses.
- If a signal is repeated regularly, it has a PRF, or pulse repetition frequency.
 Work out the PRF of the waveform at left.
- What does duty cycle mean?

- $1/20.0 \text{ MHz}^{-1} = 0.05 \,\mu\text{s} = 50 \,\text{ns}$. These oscillations are within the pulses.
- It appears the pulses are separated by \approx 10 μ s. Invert to find 1/10 MHz.
- · What does duty cycle mean?

- $1/20.0 \text{ MHz}^{-1} = 0.05 \,\mu\text{s} = 50 \,\text{ns}$. These oscillations are within the pulses.
- It appears the pulses are separated by \approx 10 μs . Invert to find 1/10 MHz.
- 100 percent corresponds a constant 20 MHz sine tone. Fifty percent is half-on, half-off ... $D = PW/T \times 100$.

What is the wavelength of the received radio wave in the figure? Recall c \approx 0.3 m/ns.

- What is the period? Pay attention to the units on the axes.
- What is the frequency? (How do you convert period to frequency?)
- · What is the wavelength?
- What size antenna woud receive this signal?

What is the wavelength of the received radio wave in the figure? Recall c \approx 0.3 m/ns.

- The period appears to be about 10.0 ns.
- What is the frequency? (How do you convert period to frequency?)
- · What is the wavelength?
- What size antenna woud receive this signal?

What is the wavelength of the received radio wave in the figure? Recall c \approx 0.3 m/ns.

- The period appears to be about 10.0 ns.
- Invert the period: $1/10 \text{ ns}^{-1} = 100 \text{ MHz}.$
- · What is the wavelength?
- What size antenna woud receive this signal?

What is the wavelength of the received radio wave in the figure? Recall $c \approx 0.3$ m/ns.

- The period appears to be about 10.0 ns.
- Invert the period: $1/10 \text{ ns}^{-1} = 100 \text{ MHz}.$
- What is the wavelength of a 100 MHz signal?

0.3 m GHz = 100 MHz(
$$\lambda$$
) (4)

$$\frac{0.3 \,\mathrm{m}\,\mathrm{GHz}}{100 \,\mathrm{MHz}} = \lambda \tag{5}$$

$$\lambda = 3 \,\mathrm{m}$$
 (6)

· What size antenna?

What is the wavelength of the received radio wave in the figure? Recall $c \approx 0.3$ m/ns.

- The period appears to be about 10.0 ns.
- Invert the period: $1/10 \text{ ns}^{-1} = 100 \text{ MHz}.$
- What is the wavelength of a 100 MHz signal?

0.3 m GHz = 100 MHz(
$$\lambda$$
) (7)

$$\frac{0.3 \text{ m GHz}}{100 \text{ MHz}} = \lambda \tag{8}$$

$$\lambda = 3 \,\mathrm{m}$$
 (9)

· About 1.5 meter dipole.

Decibels

Decibels

RF parameters have a large dynamic range, and it becomes necessary to use logarithmic definitions.

$$P_{\rm dB} = 10\log_{10}\left(\frac{P_2}{P_1}\right) \tag{10}$$

$$\frac{P_2}{P_1} = 10^{P_{\rm dB}/10} \tag{11}$$

- P_{dB} : power ratio in decibels.
- P_1 : input power, transmitted power.
- P_2 : output power, received power.

Historical motivations for the decibel:

• $V(x) = V_i \exp(-x/\lambda)$, λ is attenuation factor, such that if $x = \lambda$ for telephone cable, $P_{\rm dB} \approx -1$.

Decibels

RF parameters have a large dynamic range, and it becomes necessary to use logarithmic definitions.

$$P_{\rm dB} = 10\log_{10}\left(\frac{P_2}{P_1}\right) \tag{12}$$

$$\frac{P_2}{P_1} = 10^{P_{\rm dB}/10} \tag{13}$$

- P_{dB} : power ratio in decibels.
- P_1 : input power, transmitted power.
- P_2 : output power, received power.

Historical motivations for the decibel:

• Let P_1 and P_2 be the initial and final acoustic power. $P_{\rm dB} \approx -1$ represents smallest change we can hear.

If our transmit power is 1 W, and our return (echo) is only 2.5 mW, what is that in decibels?

$$P_{\rm dB} = 10 \log_{10} \left(\frac{P_2}{P_1} \right) \qquad (14)$$

$$\frac{P_2}{P_1} = 10^{P_{\rm dB}/10} \tag{15}$$

- 1. Which is P_2 and which is P_1 ? What's the ratio?
- 2. Perform logarithm on power of 10 and decimal separately.
- 3. Memorize the basics.

If our transmit power is 1 W, and our return (echo) is only 2.5 mW, what is that in decibels?

$$P_{\rm dB} = 10 \log_{10} \left(\frac{P_2}{P_1} \right) \tag{16}$$

$$\frac{P_2}{P_1} = 10^{P_{\rm dB}/10} \tag{17}$$

- 1. Transmit power (P_1) is 1 W, and receive power (P_2) is 2.5 mW, so $P_2/P_1 = 2.5$ mW W⁻¹ = 2.5×10^{-3}
- Perform logarithm on power of 10 and decimal separately.
- 3. Memorize the basics.

If our transmit power is 1 W, and our return (echo) is only 2.5 mW, what is that in decibels?

$$P_{\rm dB} = 10 \log_{10} \left(\frac{P_2}{P_1} \right) \qquad (18)$$

$$\frac{P_2}{P_1} = 10^{P_{\rm dB}/10} \tag{19}$$

- 1. Transmit power (P_1) is 1 W, and receive power (P_2) is 2.5 mW, so $P_2/P_1 = 2.5$ mW W⁻¹ = 2.5×10^{-3}
- 2. Take the log_{10} of the number and multiply by 10: $10 log_{10}(2.5) + 10 log_{10}(10^{-3}) = -30 + 10 log_{10}(2.5).$
- 3. Memorize the basics.

If our transmit power is 1 W, and our return (echo) is only 2.5 mW, what is that in decibels?

$P_{ m dB}$	P_2/P_1
0	1
1	1.26
2	1.6
3	2
4	2.5
5	3.2
6	4
7	5
8	6.3
9	8

- 1. Transmit power (P_1) is 1 W, and receive power (P_2) is 2.5 mW, so $P_2/P_1 = 2.5$ mW W⁻¹ = 2.5×10^{-3}
- 2. Take the \log_{10} of the number and multiply by 10: $10 \log_{10}(2.5) + 10 \log_{10}(10^{-3}) = -30 + 10 \log_{10}(2.5)$.
- 3. So we know it's about -30 dB. What is $10 \log_{10}(2.5)$? About +4, so -30 + 4 = -26 dB.

25

Graphical Analysis and Radar Echoes

Figure 1

- What does it mean to have a signal at all frequencies at a single time, for the transmitter?
- 2. What determines the echo time, *T*?
- 3. How will the graph change if the radar target moves closer to the transmitter?

Figure 2

- A pulse is a short time-duration signal. Pulses can be conceptualized as many signals of different frequencies added together with the right phases.
- 2. What determines the echo time, *T*?
- 3. How will the graph change if the radar target moves closer to the transmitter?

Figure 3

- A pulse is a short time-duration signal. Pulses can be conceptualized as many signals of different frequencies added together with the right phases.
- 2. T = R/c, the range divided by the speed of light.
- 3. How will the graph change if the radar target moves closer to the transmitter?

Figure 4

- A pulse is a short time-duration signal. Pulses can be conceptualized as many signals of different frequencies added together with the right phases.
- 2. T = R/c, the range divided by the speed of light.
- T = R/c, so if R decreases, T will decrease and thus the echo line will move left.

Figure 5

- What does it mean to chirp?
 What is the chirp rate, and what are the units of chirp rate?
- 2. How are *T* and *F*, the time difference and frequency difference of the transmitter and echo, connected to range?
- 3. How can we derive the range without explicitly measuring *T*?

Figure 6

- A chirp is a signal for which the frequency changes with time. The linear chirp rate is the slope of the transmitter signal, with units of 1 Hz s⁻¹.
- 2. How are *T* and *F*, the time difference and frequency difference of the transmitter and echo, connected to range?
- 3. How can we derive the range without explicitly measuring T?

Figure 7

- 1. A chirp is a signal for which the frequency changes with time. The linear chirp rate is the slope of the transmitter signal, with units of 1 Hz s⁻¹.
- 2. R = (c/2)T. Show that F = kT.
- 3. How can we derive the range without explicitly measuring T?

Figure 8

- A chirp is a signal for which the frequency changes with time. The linear chirp rate is the slope of the transmitter signal, with units of 1 Hz s⁻¹.
- 2. R = (c/2)T. Show that F = kT.
- 3. This means: R = (c/2)(F/k), so the range can be found without measuring T. Build a chirping system that measures F.

Figure 9

- 1. What is significance the ratio of frequencies?
- 2. What is the relationship between transmitter and echo frequencies?
- 3. What is a practical limitation of this technique?

Figure 10

- 1. If $f_e > f_t$, the target is approaching the transmitter. If $f_e < f_t$, the target is moving away from the transmitter.
- 2. What is the relationship between transmitter and echo frequencies?
- 3. What is a practical limitation of this technique?

Figure 11

- 1. If $f_e > f_t$, the target is approaching the transmitter. If $f_e < f_t$, the target is moving away from the transmitter.
- 2. $\Delta f \approx 2(\Delta v/c)f_t$, with Δv equal to the relative velocity.
- 3. What is a practical limitation of this technique?

Finally, the doppler shift of RF waves is a small effect introduced by relative target-source motion that changes the frequency.

Figure 12

- 1. If $f_e > f_t$, the target is approaching the transmitter. If $f_e < f_t$, the target is moving away from the transmitter.
- 2. $\Delta f \approx 2(\Delta v/c)f_t$, with Δv equal to the relative velocity, and $\Delta f = f_e f_t$.
- 3. For Earth-bound, anthropogenic targets, $\Delta v/c \ll$ 1, so frequency shifts are very small.

37

$$\Delta f = 2(\Delta v/c)f_t \qquad (20)$$

- 1. If the relative velocity, or range rate, of the target is 400 km h^{-1} , and $f_t = 400 \text{ MHz}$, what is f_e ?
- 2. How would we observe this shift? (Think about a *beat frequency*).

Conclusion

Summary

Introductory concepts:

- · Units, estimation, approximation
- Decibels
- · Graphical analysis, range, and doppler shift
- 1. Professor Jordan Hanson
- 2. Email: jhanson2@whittier.edu, 918particle@gmail.com
- 3. Mobile: 562-351-0047
- 4. Zoom Credentials: (ID) 796 092 0745 (Passcode) 667725
- 5. Reading: Stimson's Introduction to Airborne Radar, 3rd Edition. (Hughes Radar Handbook)
- 6. Box Folder: https://app.box.com/s/ qalsptcztyeq8hjvu3pmf4mlodmopop7