Manual of MNSIM_Python:

A Behavior-Level Modeling Tool for NVM-based CNN Accelerators

Zhenhua Zhu^{1*}, Hanbo Sun¹, Kaizhong Qiu¹, Lixue Xia², Dimin Niu², Qiuwen Lou³, Xiaoming Chen⁴, Yuan Xie⁵, X. Sharon Hu³, Yu Wang^{1*}, and Huazhong Yang¹

¹Tsinghua University, ²Alibaba Group, ³University of Notre Dame,

⁴Institute of Computing Technology, Chinese Academy of Sciences,

⁵University of California, Santa Barbara

*zhuzhenh18@mails.tsinghua.edu.cn, yu-wang@tsinghua.edu.cn

MNSIM_Python version 1.0 is still a beta version. If you have any questions and suggestions about MNSIM_Python please contact us via e-mail. We hope that MNSIM_Python can be helpful to your research work, and sincerely invite every PIM researcher to add your ideas to MNSIM_Python to enlarge its function.

MNSIM Python is designed based on these papers:

[IEEE TCAD] Lixue Xia, Boxun Li, Tianqi Tang, Peng Gu, Pai-yu Chen, Shimeng Yu, Yu Cao, Yu Wang, Yuan Xie, Huazhong Yang, MNSIM: Simulation Platform for Memristor-based Neuromorphic Computing System, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol.37, No.5, 2018, pp.1009-1022.

[DAC'19] Zhenhua Zhu, Hanbo Sun, Yujun Lin, Guohao Dai, Lixue Xia, Song Han, Yu Wang, Huazhong Yang, A Configurable Multi-Precision CNN Computing Framework Based on Single Bit RRAM, in Design Automation Conference (DAC), 2019.

[ASPDAC'20] Hanbo Sun, Zhenhua Zhu, Yi Cai, Xiaoming Chen, Yu Wang, Huazhong Yang, An Energy-Efficient Quantized and Regularized Training Framework for Processing-In-Memory Accelerators, to appear in the 25th Asia and South Pacific Design Automation Conference (ASP-DAC 2020), 2020.

[ASPDAC'17] Tianqi Tang, Lixue Xia, Boxun Li, Yu Wang, Huazhong Yang, Binary Convolutional Neural Network on RRAM, in Proceedings of the 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), 2017, pp.782-787.

Index

<u>1.</u>	INTRODUCTION	<u>2</u>
<u>2.</u>	RUNNING MNSIM_PYTHON	3
A)	BASIC RUNNING METHOD	3
в)	PARSER INFORMATION	3
C)	HARDWARE DESCRIPTION AND MODIFICATION	4
D)	CNN DESCRIPTION AND WEIGHTS FILE	5
<u>3.</u>	ARCHITECTURE DESIGN USED IN MNSIM_PYTHON	6
<u>4.</u>	ENTIRE MODELING FLOW	7
<u>5.</u>	FUTURE WORK AND UPDATE	9
6.	REFERENCES	10

1. Introduction

MNSIM_Python is a behavior-level modeling tool for NVM-based CNN accelerators, which is developed in Python. Compared with the former version MNSIM (available in: https://github.com/Zhu-Zhenhua/MNSIM_V1.1), MNSIM_Python models the CNN computing accuracy and hardware performance (i.e., area, power, energy, and latency) in behavior-level. This tool is developed for Non-Volatile Memory (NVM) based Processing-In-Memory (PIM) architecture designers and CNN algorithm researchers who want to fast evaluate the CNN accuracy and hardware performance of their architecture or algorithm model design. It should be noted that this tool is mainly used to estimate and compare the relative dis-/advantages of different architecture/NN design solutions. For achieving more accurate simulation results, please use circuits-

level simulators.

Thanks for using MNSIM Python

2. Running MNSIM_Python

a) Basic running method

1st: Make sure the MNSIM_Python location is added into the system environment variables:

e.g.: export PYTHONPATH=PYTHONPATH:/Users/user1/MNSIM Python/

2nd: Download the default weights files to the file /MNSIM Python/:

https://cloud.tsinghua.edu.cn/d/e566b3daaed44804b640/.

3rd: Go to the tool directory and run MNSIM Python:

e.g.: cd /Users/user1/MNSIM_Python/ python main.py

b) Parser information

The detailed parser information is listed as below:

Parser name	Description	Default	
-HWdes			
hardware_description	file name	SimConfig.ini	
-Weights	NNI vysishta fila lagation and fila nama	/MNSIM Python/	
weights	NN weights file location and file name	vgg8_params.pth	
-NN	NN model name	vaa8	
NN	TNN Model name	vgg8	
-DisHW	D: 11 1 1 11:	г 1	
disable_hardware_modeling	Disable hardware modeling	False	
DisAssa			
-DisAccu disable accuracy simulation	Disable accuracy simulation	False	
disable_accuracy_simulation			
-SAF	Enable MNSIM_Python to simulate the	False	
enable_SAF	effect of Stuck-At-Fault	1 alsc	
-Var	Enable MNSIM Python to simulate the	_ ,	
enable variation	effect of device variation	False	
_			
-FixRange	Enable MNSIM_Python to fixed ADC	False	
enable_fixed_Qrange	quantization range (- max , max)		
-DisPipe	Disable the inner-layer pipeline structure	T 1	
disable_inner_pipeline	modeling in MNSIM_Python	False	
D	D-4		
-D device	Determine the device (platform) running MNSIM Python	CPU	
device			
-DisModOut	Disable module simulation results	T 1	
disable_module_output	output, only output the entire system	raise	
	simulation results Disable layer-wise simulation results		
-DisLayOut	output, only output the whole NN model	False	
disable_layer_output	simulation results	1 4150	
	Simulation results	1	

e.g.: Simulate the NN computing accuracy considering SAF and variation python main.py -SAF -Var

e.g.: Simulate AlexNet and the weights file is stored in [/example/AlexNet.pth] python main.py -NN 'AlexNet' -Weights "/example/AlexNet.pth"

c) Hardware description and modification

Figure 1 The overall architecture assumption used in MNSIM_Python

In MNSIM_Python, we propose a basic PIM architecture assumption as shown in Figure 1. Users can describe their PIM architectures design with a few modifications (e.g., change the crossbar size, PE number, or add new hardware modules). More details of the architecture design will be discussed in Section 3.

[SimConfig.ini] is the hardware config description file, which contains eight parts:

[Device level]: model the device characteristics

[Crossbar level]: model the crossbar configuration

[Interface level]: describe characteristics of Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs)

[Process element level]: model the PE configuration (Figure 1 ③)

[Digital module level]: model the digital module configuration (e.g., registers, shifters, adders, etc.)

[Tile level]: model the tile configuration (Figure 1 2)

[Architecture level]: describe the architecture level configuration and buffer design

[Algorithm level]: Configure the simulation settings (needs to be updated later)

For more details about [SimConfig.ini], users can refer to the default configuration file

(/MNSIM_Python/SimConfig.ini).

d) CNN description and weights file

In MNSIM_Python, we provide four basic network models and weights files, i.e., LeNet (-NN 'lenet'), AlexNet (-NN 'alexnet'), VGG-8 (-NN 'vgg8'), and VGG-16 (-NN 'vgg16'). These basic network models are trained on Cifar-10. The basic weights file can be downloaded from https://cloud.tsinghua.edu.cn/d/e566b3daaed44804b640/.

If the users want to test their own CNN models other than the default CNN models, two steps are needed:

1. Describe the user designed network structure in /MNSIM_Python/MNSIM/ Interface/network.py get_net(hardware_config, cate). For example, the code describing AlexNet is shown below:

```
if cate.startswith('alexnet'):
    layer_config_list.append({'type': 'conv', 'in_channels': 3,
    'out_channels': 64, 'kernel_size': 3, 'padding': 1, 'stride': 2})
    layer_config_list.append({'type': 'relu'})
    layer_config_list.append({'type': 'ronv', 'in_channels': 64,
    'kernel_size': 2, 'stride': 2})
    layer_config_list.append({'type': 'conv', 'in_channels': 64,
    'out_channels': 192, 'kernel_size': 3, 'padding': 1})
    layer_config_list.append({'type': 'relu'})
    layer_config_list.append({'type': 'ronv', 'in_channels': 192,
    'out_channels': 384, 'kernel_size': 3, 'padding': 1})
    layer_config_list.append({'type': 'relu'})
    layer_config_list.append({'type': 'pooling', 'mode': 'MAX',
    'kernel_size': 2, 'stride': 2})
    layer_config_list.append({'type': 'relu'})
    layer_config_list.append({'type': 'relu'})
```

Here, the input variable string 'alexnet' is the NN model name used in input parser, other required information is shown in Table 2:

Layer Type	Variable	Description
conv (Convolutional layer + batch norm operations)	in_channels	Input channel number
	out_channels	Output channel number
	kernel_size	The convolutional kernel size
	stride	The stride size of the sliding window
relu (Nonlinear activation layer)		Current version only supports ReLU
pooling	mode	Pooling function type: max pooling (MAX)

(Pooling layer)		or average (AVG) pooling
	kernel_size	Pooling window's size
	stride	The stride size of the sliding window
view		Change the 3D matric to 1D vector (transition between conv and fc layer)
fc	in_features	The length of fc layer's input vector
(Fully-connected layer)	out_features	The length of fc layer's output vector

Table 2 Layer required information

What is more, MNSIM_Python also supports the multi-precision CNN (i.e., different layers have different weights', input activations', and output activations' precision). Users need to add descriptions of the precision parameters of each layer after defining the CNN structure in /MNSIM_Python/MNSIM/Interface/network.py. For example, if we want to specify that the parameters of each layer are the same (weight precision is 9-bit, activation precision is 9-bit, and the fixed-point decimal point position is -2), the code is shown below:

```
for i in range(len(layer_config_list)):
    quantize_config_list.append({'weight_bit': 9, 'activation_bit': 9,
    'point_shift': -2})
    input_index_list.append([-1])
```

2. Provide the weights file (*.pth) of the user designed network. The weights file is required to be generated by PyTorch (with torch.save).

3. Architecture design used in MNSIM Python

In order to model the computing accuracy and hardware performance of PIM accelerators under different architecture design parameters, we propose a basic architecture assumption for MNSIM_Python, which is shown in Figure 1. The architecture design refers to our DAC'19 paper: *Zhenhua Zhu, Hanbo Sun, Yujun Lin, Guohao Dai, Lixue Xia, Song Han, Yu Wang, Huazhong Yang, A Configurable Multi-Precision CNN Computing Framework Based on Single Bit RRAM, in Design Automation Conference (DAC), 2019.*

In this paper, we demonstrated that multi-precision CNN quantization can improve the classification accuracy while reducing the storage burden and computing latency further. To support the acceleration of multi-precision CNNs in limited precision device-based PIM accelerators (e.g., 1-bit RRAM), a data splitting scheme is proposed as shown in Figure 2. In our architecture design, we use multiple crossbars to store multi-bit weights. For the input activation, due to the limited resolution of DACs, multiple cycles are needed for fetching these data.

Figure 2 Data splitting scheme

The architecture is mainly composed of several NVM banks. In each NVM bank, an array of **NVM tiles** is organized and connected in a way similar to Network-on-Chip (NoC). To reduce the complexity of control logic and data path, we specify each tile will only process one layer of CNN, while for some large-scale layers, matrix splitting and multiple tiles will be needed. One NVM tile is adjacent to a data forwarding unit, which receives data from other tiles, merges (i.e., add or concatenate) them, and outputs the result to the local tile or other tiles. According to the layer type, i.e., CONV layers, pooling layers, or FC layers, the NVM tile can be configured as a pooling module or an MVM module, which are realized by the pooling module and the crossbar process elements (PEs) array. The NVM PEs in one tile are linked as an H-Tree structure to reduce the intra tile interconnection overhead. Each connection node of the H-Tree is a joint module, which manages the data forwarding and summations of PE results. To solve the limited NVM device precision problem and to support multi-precision algorithms, multiple low precision NVM crossbars represent and store a part of high precision weight values. For example, eight 1-bit NVM crossbars are required for storing 8-bit CONV kernels. Computing results of different crossbars are merged together by shifter and adder tree.

4. Entire modeling flow

The entire modeling flow is shown in Figure 3. The input variables include specific weights & input feature (*.pth), CNN structure (/Interface/network.py), and

architecture design (SimConfig.ini). The modeling process can be divided into two parts: accuracy simulation and hardware performance modeling.

Figure 3 Entire modeling flow

Figure 4 illustrates the detailed accuracy evaluation process of PIM-based CNN computing accuracy, which contains five steps (/MNSIM_Python/MNSIM/Interface/). Firstly, considering crossbar size, NVM device precision, and DAC resolution, we split the weight matrix and feature data into sub-matrices and sub-vectors. Secondly, non-ideal factors are introduced to update the sub-matrix values. Here we only take Stuck-At-Faults (SAFs) and resistance variations into consideration, other non-ideal factors will be updated in the latter version. Thirdly, Matrix-Vector Multiplications (MVMs) are performed between updated sub-matrices and sub vectors. Fourthly, the MVMs results are quantized according to the ADC resolution. In MNSIM_Python, we provide two quantization modes:

1. Normal fixed quantization range: determine the quantization range according to the crossbar size $(M \times N)$, device precision (p_{NVM}) , and DAC resolution p_{DAC} :

$$[0, 2^{p_{DAC} + \log_2 M + p_{NVM}} - 1]$$

2. Dynamic quantization range: determine the quantization range according to the data distribution through NN training with training dataset. For this mode, please refer to our ASPDAC'20 paper for more information: *Hanbo Sun, Zhenhua Zhu, Yi Cai, Xiaoming Chen, Yu Wang, Huazhong Yang, An Energy-Efficient Quantized and Regularized Training Framework for Processing-In-Memory Accelerators, to appear in the 25th Asia and South Pacific Design Automation Conference (ASP-DAC 2020), 2020.*

Finally, the quantized MVM results are merged into the CONV results and propagated to the later layers to get the final classification accuracy.

Figure 4 Accuracy evaluation of PIM-based CNN inference

The hardware modeling part is based on our previous work: Lixue Xia, Boxun Li, Tianqi Tang, Peng Gu, Pai-yu Chen, Shimeng Yu, Yu Cao, Yu Wang, Yuan Xie, Huazhong Yang, MNSIM: Simulation Platform for Memristor-based Neuromorphic Computing System, in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), vol.37, No.5, 2018, pp.1009-1022. Firstly, according to CNN structure and architecture design, the hardware resource usage and tile-level data dependency description are generated (/MNSIM Python/ MNSIM/Mapping Model/). Secondly, in terms of the mapping results, the power and area are modeled from the bottom level (e.g., device) to the top level (e.g., tile) (/MNSIM Python/MNSIM/Hardware Model/). Please note that the area and power results are based on the behavior-level modeling analysis. The parameters in the modules come from circuits-level simulation results, existing paper results, and other simulators (i.e., CACTI [1, 2] and NVSIM [3]). Thirdly, computing latency is estimated w/ or w/o considering inner-layer pipeline (/MNSIM Python/MNSIM/Latency Model/). The inner-layer pipeline structure is discussed in our paper: Tianqi Tang, Lixue Xia, Boxun Li, Yu Wang, Huazhong Yang, Binary Convolutional Neural Network on RRAM, in Proceedings of the 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), 2017, pp.782-787. Finally, the latency results and power results are used to calculate the computing energy efficiency.

5. Future work and update

There are still many incompleteness and imperfections in the current version of MNSIM Python and we will continue to update and improve MNSIM Python.

Figure 5 The completed version of MNSIM_Python

The completed version of MNSIM_Python we plan is shown in Figure 5. Compared with the current version, we will add a Network-Architecture-Search (NAS) module for PIM system to generate a "suitable" CNN structure for PIM and NN training module in PIM to model the on-line training architecture based on NVM [4].

Here is our update plan:

Recent updates:

- 1. Complement the missing digital module simulation data;
- 2. Update the buffer modeling and add more different buffer design options (e.g., NVM-based buffer design);
- 3. Design the network structure parameters automatic extraction module;
- 4. Optimize the modeling accuracy;
- 5. Support more kinds of non-ideal factors;
- 6. Add the NN training module for NVM-based PIM system.

Long term planning:

- 1. Add PIM-based on-line training module;
- 2. Add NAS module for PIM;
- 3. Design the interface between MNSIM_Python and other circuits-level simulators.

6. References

- [1] S. J. E. Wilton and N. P. Jouppi, "Cacti: an enhanced cache access and cycle time model," JSSC, 1996, vol. 31, no. 5, pp. 677–688, 1996.
- [2] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, "Cacti 6.0: A tool to model large caches," HP laboratories, vol. 27, p. 28, 2009.
- [3] X. Dong et al., "Nvsim: A circuit-level performance, energy, and area model for

emerging nonvolatile memory," IEEE TCAD, 2012.

[4] Ming Cheng, Lixue Xia, Zhenhua Zhu, Yi Cai, Yuan Xie, Yu Wang, Huazhong Yang, TIME: A Training-in-memory Architecture for RRAM-based Deep Neural Networks, to appear in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019.