High-Speed Serial Interface Circuits and Systems

Design Exercise6 – TX Drivers

Current-Mode Logic (CML) Driver

- Current Steering
- Both sides are terminated by 50Ω
- Basic structure in high-performance serial link

CML Driver

- Output driver Specification
 - 50 Ω
 - V_outp = V_outn = 200mV
 - $Vdiff_pk_pk = 400mV$

- Input MOSFET
 - Length: 180n
 - Width: 20u
- Source MOSFET
 - Length: 1u
 - Width: 750u
- Vbias
 - Voltage: 0.7
- Input_source
 - rand_bit_stream
 - Tperiod : 1n
 - Seed: 1
 - Vlogic _high: 1.8
 - Vlogic _low : 0
 - Vrise : 20p
 - Vfall: 20p
- Mtline
 - Type of Input: Tline
 - Impedance: 50ohm
 - Delay Time : 150p

CML Driver Simulation Results

CML Driver Current

- Differential termination
 - Impedance matching with differential termination: 2Z_O

$$V_{d_{-}1} = (I/4)(2R)$$

$$V_{d_{-}0} = -(I/4)(2R)$$

$$V_{d_{-}pp} = IR$$

$$I = \frac{V_{d_{-}pp}}{R}$$

Simulation Results (Current)

- Total RMS current: 8.0 mA (V_{diff_pp} 400mV condition)
- Termination RMS current : 2.0 mA (V_{diff_pp} 400mV condition)

Simulation Results (Different Z_0)

Transmission Line: 50ohm

Transmission Line: 750hm

Replica Circuit for Output Swing

- Output swing voltage control
- Negative feedback

CML Driver w/ Replica

Simulation Results for Different Swing

.._differential_c

200.0

 $V_{\text{diff}}pp : 400mV$ $(V_{\text{ref}} = 1.8 - 0.4 V)$

Total RMS current: 16.0 mA

 $V_{\text{diff}}pp : 500mV$ $(V_{\text{ref}} = 1.8 - 0.5 V)$

Total RMS current: 20.0 mA

Voltage-Mode (VM) Driver

VM Driver Schematic

- Input MOSFET
 - Length: 180n
 - Width: 30u
- Current source MOSFET
 - Length: 180n
 - Width: 800u
- VZP bias
 - Voltage: 935mV
- VZN bias
 - Voltage: 495mV
- VDRV
 - Voltage: 400mV

- Output driver Specification
 - 50 Ω
 - Vdiff_outp = 200mV
 - Vdiff_pk_pk = 400mV

Simulation Results

VM Driver Current

- Differential termination
 - Impedance matching with differential termination: 2Z_O

$$V_{d_{-1}} = (V_s / 2)$$

$$V_{d_{-0}} = -(V_s / 2)$$

$$V_{d_{-pp}} = V_s$$

$$I = \frac{V_{d_{-pp}}}{4P}$$

Simulation Results (Current)

- Total RMS current : 2.0 mA (V_{diff_pp} 400mV condition)
- Termination RMS current : 2.0 mA (V_{diff pp} 400mV condition)

Replica Circuit for VM Driver

Regulator Circuit for VM Driver

VM Driver w/ Replica

Simulation Results for Different Swing

V_diff_pp : 400mV Total RMS current : 4.0 mA

V_diff_pp: 500mV Total RMS current: 5.0 mA

Simulation Results (Different Z_0)

Transmission Line: 50ohm

Transmission Line: 75ohm

Power Consumption Comparison

- Current mode output driver
 - RMS current: 16.0 mA (V_{diff pp} 400mV condition)
- Voltage mode output driver
 - RMS current: 4.0 mA (V_{diff_pp} 400mV condition)

Current mode output driver

Voltage mode output driver

Homework

- Current mode and voltage mode output driver
 - $-\,$ Design $V_{\text{diff},\text{p2p}}$ 600mV Current and voltage mode driver with 50ohm impedance.
 - Derive mosfet size.
 - Plot the output waveform and current waveform.
 - Compare and analyze between current mode and voltage mode output driver.
 - Plot the eye diagram in case of transmission line impedance 75ohm and 50ohm. (Differential Rx termination 50ohm condition)
 - Plot the eye diagram in case of differential Rx termination 75ohm and 50ohm. (Transmission line impedance 50ohm condition)