

IIC3670 Procesamiento de Lenguaje Natural

https://github.com/marcelomendoza/IIC3670

Generación condicional con atención

Generación condicional con atención (transformer seq2seq)

- GENERATIVE PRETRAINED TRANSFORMERS -

Se elimina el encoder!!!

Se elimina el encoder!!!

Transformer decoder

Seq2seq

- Luego, el **decoder** resuelve la siguiente tarea:

secuencias largas
$$p(w^1,...,w^{n+\eta}) = \prod_{j=1}^{n+\eta} p(w^i|w^1,...,w^{j-1})$$

Transformer decoder

Divide la oración en batches del mismo tamaño

- UC - M. Mendoza -

Transformer decoder

LLM

tokens
$$L_1(\mathcal{U}) = \sum_i \log P(u_i|u_{i-k},\dots,u_{i-1};\Theta)$$

$$U=(u_{-k},\dots,u_{-1})$$
 contexto de u Token embedding matrix $h_0=UW_e+W_p$ Position embedding matrix $h_l={
m transformer_block}(h_{l-1}) orall i\in [1,n]$ # layers

task
$$P(u) = \operatorname{softmax}(h_n W_e^T)$$

Idea propuesta en:

GENERATING WIKIPEDIA BY SUMMARIZING LONG SEQUENCES Peter J. Liu, Mohammad Saleh, Etienne Poty, Ben Goodrich, Ryan Sepassi, Łukasz Kaiser, Noam Shazeer ICLR 2018

GPT 1

Transformer decoder + supervised fine tuning

GPT 1

Supervised fine-tuning

La secuencia de entrada depende de la tarea

- INSTRUCT GPT -

Human in the loop

Inicialmente este tema se abordó para construcción de resúmenes

Collect human feedback

20

Human in the loop

Inicialmente este tema se abordó para construcción de resúmenes

Stiennon et al. Learning to summarize from human feedback, NeurIPS 2020

Human in the loop

Inicialmente este tema se abordó para construcción de resúmenes

Stiennon et al. Learning to summarize from human feedback, NeurIPS 2020

Reward Model (RM)

- El RM es un modelo lineal que entrega un escalar (regresión).
- Se entrena el modelo para predecir a partir de resúmenes cuál es mejor:

$$\label{eq:continuous} \begin{split} \log(r_{\theta}) &= -E_{(x,y_0,y_1,i)\sim D}[\log(\sigma(r_{\theta}(x,y_i) - r_{\theta}(x,y_{1-i})))] \\ & \qquad \qquad \\ & \qquad \qquad \\ \text{resumen preferido} & \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \\ & \qquad \qquad \qquad \\ & \qquad$$

- Una vez que termina el entrenamiento, se normaliza el RM para que el reward tenga un score medio en 0.

Proximal Policy Optimization (PPO)

A new post is sampled from the dataset.

The policy π generates a summary for the post.

The reward model calculates a reward for the summary.

The reward is used to update the policy via PPO.

- La salida del RM es un reward para el sistema.
- Se penaliza la divergencia entre el modelo mejorado (RL) y el original SFT para evitar que las salidas de los modelo sean muy distintas a las vistas por el RM durante el entrenamiento.
- El full reward queda dado por:

$$R(x,y) = r_{\theta}(x,y) - \beta \log[\pi_{\phi}^{\text{RL}}(y|x)/\pi^{\text{SFT}}(y|x)]$$