LECTURE 1

MACHINE LEARNING BASICS

Sung Kim <hunkim+ml@gmail.com> http://hunkim.github.io/ml

Basic Concepts

- 01. What is ML?
- 02. What is Learning?
 - · Supervised
 - · Unsupervised
- 03. What is Regression?
- 04. What is Classification?

Machine Learning

- 01. Limitations of Explicit Programming
 - · Spam Filter: Many Rules
 - · Automatic Driving: Too Many Rules
- 02. Machine Learning
 - "Field of study that gives computers the ability to learn without being explicitly programmed" Arthur Samuel (1959)

Supervised/Unsupervised Learning

- 01. Supervised Learning
 - · Learning with Labeled Examples Training Set

Supervised Learning

An Example Training Set for Four Visual Categories.

Supervised/Unsupervised Learning

- 01. Supervised Learning
 - · Learning with Labeled Examples
- 02. Unsupervised Learning: Un-labeled Data
 - · Google News Grouping
 - · Word Clustering

Supervised Learning

Most Common Problem Type in ML

- · Image Labeling: Learning from Tagged Images
- · Email Spam Filter: Learning from Labeled (Spam or Ham) Email
- · Predicting Exam Score: Learning from Previous Exam Score and Time Spent

Training Data Set

AlphaGo

Types of Supervised Learning

- 01. Predicting Final Exam Score Based on Time Spent
 - · Regression
- 02. Pass/non-pass Based on Time Spent
 - · Binary Classification
- 03. Letter Grade (A, B, C, D and F) Based on Time Spent
 - · Multi-label Classification

Predicting Final Exam Score Based on Time Spent

X (hours)	Y (score)
10	90
9	80
3	50
2	30

Pass/non-pass Based on Time Spent

9	P P		
·	P		
3			<u>:</u> .
	F		
2	F	1	V.

Letter Grade (A,B,...) Based on Time Spent

10 A
9 B
3 D
2 F

NEXT LECTURE

LINEAR REGRESSION