Podatkovne strukture in algoritmi – 2009/10 2.Kolokvij

Kolokvij morate pisati posamič. Pri reševanju je dovoljena literatura. Čas pisanja kolokvija je 120 minut. Veliko uspeha!

NALOGA	TOČK	OD TOČK	NALOGA	TOČK	OD TOČK
1			3		
2			4		

IME IN PRIIMEK:	_
ŠTUDENTSKA ŠTEVILKA:	
DATUM:	
Podpis:	

1. naloga: Vrste s prednostjo.

VPRAŠANJA:

- 1. Izvedete sledeče operacije nad Binomski kopici.
 - (a) ...
- 2. Napišite algoritem, ki ureja števila z vrsto prednostjo.
- 3. Kaj je časovna zahtevnost algoritma, če se uporablja
 - (a) Binomsko kopico
 - (b) Fibonaccijevo kopico

Dokažite trditve.

4. Glede na časovno zahtevnost operacij kdaj bi rajše uporabljali Binomsko kopico kot pa Fibonaccijevo?

2. naloga: ...

VPRAŠANJA:

- 1. Implementirali boste množico. Množica naj ima dve operacij, Vstavi(x) ter Obstaja(x):Boolean. Vstavi() vstavi element, če še ni v množici, Obstaja() pa pogleda, če je tak element že v množici.
 - (a) Implementirajte množico s poljem.
 - (b) Podajte drugo implementacijo množice, ki ne temelji na polju.
- 2. Kaj so časovne zahtevnosti operacij v obeh primerih? Trditve dokažite.

3. naloga: Urejanje.

VPRAŠANJA:

- 1. Napišite algoritem za urejanje ASCII črk v linearnem času. Algoritem naj samo uporablja polje fiksne dolžine k. Posamezni elementi polja so lahko seznami poljubne velikosti. Določite k.
- 2. Kaj je časovna zahtevnost vašega algoritma? Trditev dokažite.
- 3. Moramo urejati 1GB poljubnih števil. Kateri algoritem predlagate? Odgovor utemeljite.

4. naloga: Grafi.

VPRAŠANJA:

1. Podana je sledeča matrika sosednosti.

. . .

Izvedete Primov algoritm za iskanje minimalnega vpetega drevesa. Napišite vsebino polja d ter π v poteku algoritma.

- 2. Narišite minimalno vpeto drevo, ki ga vrne algoritem.
- 3. Primov algoritem je zelo podoben Dijkstru. V čem se razlikuje njihovo delovanje?
- 4. Kako bi implementirali graf, če želimo uporabljati Dijkstrov algoritem? Bodite pozorni, da ne povečate časovno zahtevnost algoritma!
- 5. Veliko implementacij Dijkstrovega algoritma uporablja neurejeno polje kot vrsto s prednostjo. Kaj je časovna zahtevnost take implementacije? Trditev dokažite.