Компьютерная обработка результатов измерений

Лекция 1. Общие сведения об измерениях. Виды сигналов и методы их анализа.

Емельянов Эдуард Владимирович

Специальная астрофизическая обсерватория РАН Лаборатория физики оптических транзиентов

- Физические измерения
- 2 Величины
- Сигналы и их виды
- Литература

Физические измерения

Экспериментальное определение значения измеряемой величины с применением средств измерений называется измерением.

Важнейшей особенностью измерений является принципиальная невозможность получения результатов измерения, в точности равных истинному значению измеряемой величины (особенно эта особенность проявляется в микромире, где господствует принцип неопределенности). Эта особенность приводит к необходимости оценки степени близости результата измерения к истинному значению измеряемой величины, т.е. вычислять погрешность измерения.

Величины

Мерой называется средство измерений, предназначенное для воспроизведения и хранения значения физической величины. Результатом сравнения оцениваемой вещи с мерой является именованное число, называемое **значением величины**.

Физические величины

- постоянные (инварианты, константы, априорно фиксированные значения);
- изменяющиеся (по определенному закону от t);
- случайные (не имеющие точного значения).

Величины

Физические величины

Основные:

- длина (метр);
- масса (килограмм);
- время (секунда);
- сила электрического тока (Ампер);
- термодинамическая температура (Кельвин);
- количество вещества (моль);
- 🔹 сила света (кандела).

Вспомогательные:

- плоский угол (градус);
- телесный угол (стерадиан).

Производные величины (например, $1 \, \text{Kn} = 1 \, \text{A} \cdot \text{c}$).

Величины

Размер величины — ее количественная характеристика. Цель любого измерения — получение информации о размере физической величины. **Размерность** — качественная характеристика измеряемой величины. Если с изменением основной величины в n раз производная изменится в n^p раз, то говорят, что данная производная единица обладает размерностью p относительно основной единицы. Например, размерность объема (м³) равна трем.

Анализ размерностей помогает установить связи между физическими величинами. Например: определить время падения тела под действием силы тяжести (g) с высоты $h.\ t=Ch^x\cdot g^y.$ Составим уравнение размерностей: $T=L^x\cdot (LT^{-2})^y.$ Отсюда $y=-1/2,\ x=1/2.$ Искомое выражение: $t=C\sqrt{h/g}$ (как мы знаем, $C=\sqrt{2}$).

Виды измерений

Прямые при которых искомое значение физической величины получают непосредственно.

Косвенные на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной (например, измерение сопротивления при помощи вольтметра и амперметра).

Совместные проводимые одновременно для нескольких неодноименных величин для определения зависимости между ними (например, для измерения зависимости сопротивления от температуры, $R=R_0(1+AT)$, измеряют R при нескольких разных T, откуда вычисляют R_0 и A).

Совокупные при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях (например, измерение сопротивлений резисторов, соединенных треугольником).

Виды измерений

- Равноточные выполненные одинаковыми по точности средствами измерений.
- **Неравноточные** выполненных различающимися по точности средствами измерений и (или) в разных условиях.
- Однократные, многократные (в зависимости от возможности проведения повторных измерений).
- Статические для величин, принимаемых в соответствии с конкретной измерительной задачей за неизменные на протяжении времени измерения.
- Динамические для изменяющейся по размеру физической величины.
- Абсолютные основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
- Относительные сравнение с эталонными мерами.

Методы измерений

- Метод непосредственной оценки непосредственно по средству измерения со шкалой.
- Нулевой метод такое сравнение с мерой, при котором результирующий эффект воздействия управляемой величины и меры сводят к нулю (например, измерение сопротивления при помощи моста Уитстона).
- Дифференциальный (разностный) метод измеряемая величина сравнивается с эталоном, значение которого незначительно от нее отличается (например, взвешивание на рычажных весах с гирями).
- Метод измерения замещением поочередное измерение величины и замещающей меры (пример: измерение сопротивления при помощи стабильного источника напряжения, амперметра и опорного резистора).

Качество измерений

Точность — близость результатов к истинному значению измеряемой величины.

Достоверность — степень доверия к результатам измерения.

Сходимость — близость результатов при измерении одним и тем же методом в одинаковых условиях.

Воспроизводимость — близость результатов при измерении одним и тем же методом, но в разных условиях.

Пример: измерение толщины индикатором часового типа. Цена деления индикатора: 10 мкм. В результате измерений получили ряд данных: 1.71, 1.69, 1.60, 1.70, 1.72, среднее значение: (1.68 ± 0.05) мм. Если отбросить явно ошибочное 1.60, получим: (1.71 ± 0.01) мм. Для оценки воспроизводимости измерим штангенциркулем (с ценой деления 0.05 мм). Если в пределах погрешности получим $1.70\cdot1.72$ мм, то метод измерения дал хорошую воспроизводимость.

При измерении температуры терморезистором АЦП может обеспечить цену деления $0.03^{\circ}C$, однако, точность и воспроизводимость измерений будет определяться характеристиками самого терморезистора и измерительной схемы. Точность можно оценить по эталонному термометру в единичном измерении; воспроизводимость — по множеству измерений с прохождением контрольной точки "сверху"и "снизу".

Формы представления результатов

Общая форма представления

Точечная оценка результата измерения, характеристики погрешностей измерения, указание условий измерения.

Характеристики погрешностей указывают в абсолютных или относительных единицах. Этими характеристиками могут быть: среднее квадратическое отклонение погрешности; среднее квадратическое отклонение случайной погрешности; среднее квадратическое отклонение систематической погрешности; нижняя граница интервала погрешности измерений; верхняя граница интервала погрешности измерений; нижняя граница интервала систематической погрешности измерений; верхняя граница интервала систематической погрешности измерений; вероятность попадания погрешности в указанный интервал.

Формы представления результатов

Требования к оформлению результата

- Наименьшие разряды оценки и погрешности должны совпадать. Например: вместо $x=1.23\pm0.5$ пишем $x=1.2\pm0.5$; вместо $y=5.1\cdot10^4\pm25$ пишем $(51.000\pm0.025)\cdot10^3$.
- * Характеристики погрешностей выражаются числом, содержащим не более двух значащих цифр, причем с округлением в бо́льшую сторону. Например: вместо $x=1.014\pm0.111$ пишем $x=1.01\pm0.12$.
- Допускается характеризовать погрешность числом с одной значащей цифрой (с округлением по классическиму правилу).

Примеры: (8.334 ± 0.012) г, P=0.95.~32.014 мм, характеристики погрешностей и условия измерений по РД 50-98-86, вариант 7к. $(32.010\cdots32.018)$ мм, P=0.95, измерение индикатором ИЧ 10 кл. точности 0 на стандартной стойке с настройкой по концевым мерам длины 3 кл. точности; измерительное перемещение не более 0.1 мм; температурный режим измерений $\pm2^{\circ}C.~72.6360$ мм; $\Delta_{\rm H}=-0.0012$ мм, $\Delta_{\rm B}=+0.0018$ мм; P=0.95.

Табличное

Позволяет избежать многократной записи единиц измерения, обозначений измеряемой величины, используемых множителей. В таблицы, помимо основных измерений, могут быть включены и результаты промежуточных измерений.

Для удобства импортирования данных и одновременно наглядности чтения удобно хранить в формате TSV (tab separated values) или CSV (comma separated values). SED позволит легко преобразовать TSV/CSV в таблицу MTFX.

Графическое

На основе графика легко можно сделать вывод о соответствии теоретических представлений данным эксперимента, определить вид функциональной зависимости измеряемой величины.

Таблица 3.4: Зависимость спектрального разрешения от геометрии прибора.

θ	α	β	$\cos \alpha$	$\cos \beta$	M	$\cos \theta$	D	В	L_b
11	75.3	53.3	0.2537	0.5976	0.4245	0.9816	0.7122	0.5960	64.8
10	74.3	54.3	0.2706	0.5835	0.4637	0.9848	0.7318	0.6336	59.3
9	73.3	55.3	0.2874	0.5693	0.5048	0.9877	0.7523	0.6710	
8	72.3	56.3	0.3040	0.5548	0.5479	0.9903	0.7740	0.7079	
7	71.3	57.3	0.3206	0.5402	0.5935	0.9925	0.7966	0.7450	
6	70.3	58.3	0.3371	0.5255	0.6415	0.9945	0.8205	0.7818	
5	69.3	59.3	0.3535	0.5105	0.6925	0.9962	0.8461	0.8185	
4	68.3	60.3	0.3697	0.4955	0.7461	0.9976	0.8730	0.8546	
3	67.3	61.3	0.3859	0.4802	0.8036	0.9986	0.9017	0.8912	
2	66.3	62.3	0.4019	0.4648	0.8647	0.9994	0.9323	0.9275	
1	65.3	63.3	0.4179	0.4493	0.9301	0.9998	0.9649	0.9639	

Таблица 2. Спектрографы скрещенной дисперсии в фокусе Кассегрена. Обозначения: D – диаметр телескопа; d – диаметр коллимированного пучка; θ_b – угол блеска; disp – последовательность диспергирующих элементов по ходу лучей (ech – эшелле, gr – решетка, pr – призма, filt – фильтр); R – спектральное разрешение); Obs – обсерватория. *) копии спектрографа Harvard Coll. Obs., использовавшегося на телескопе $D=1.52\,\mathrm{m}$)

Год	D(M)	$d\left(c_{M}\right)$	$\operatorname{tg}\theta_b$	$_{ m disp}$	\mathbf{R}	Obs
1971	0.9	5.5	2	$\operatorname{ech}/\operatorname{gr}$	16000	Pine Bluff Obs. [175]
1976	0.91	5	2	pr/ech	40000	Goddard SFC [119]
1977	0.61	9	2	$\operatorname{ech}/\operatorname{gr}$	43000	Mt. John Obs. [80]
1978	0.9		2	$\mathrm{pr}/\mathrm{ech}/\mathrm{pr}$	40000	Royal Greenwich [121]
1978	1.0	*	2	$\operatorname{ech}/\operatorname{gr}$	52000	Ritter Obs. [107]
1980	1.0	*	2	$\operatorname{ech}/\operatorname{gr}$	52000	Lowell Obs. [107]
1980	1.0		2	$\rm ech/gr$	30000	Siding Spring Obs.
1981	1.0	7.7	2	$\operatorname{ech}/\operatorname{gr}$	54000	Vienna Obs. [196]
1982	0.61	*	2	$\operatorname{ech}/\operatorname{gr}$		Las Campanas [107]
1982	0.61	5	3.2	$\mathrm{filt}/\mathrm{ech}$	150000	Whipple Obs. [87]
1986	1.22		2	$\operatorname{ech}/\operatorname{gr}$	50000	Rangapur Obs.

Рис. 4.7: Спектр Арктура с использованием эталона Фабри-Перо (тонкая линия) и без его применения (жирная линия).

Рис. 4.8: Спектр неба с использованием абсорбционной ячейки на парах йода (тонкая линия) и без нее (жирная линия).

Выбор типа графика

- График подходит для изображения динамики какой-то зависимости, наглядной визуализации экстремумов, перегибов и прочих характерных мест (например, фотометрическая кривая).
- Столбцевая диаграмма позволяет визуализировать различие в нескольких наборах данных (например, падение покупательной способности рубля с течением времени).
- Круговая диаграмма лучше всего подходит для демонстрации вклада отдельных частей в целое (например, химический состав атмосферы звезды).
- Гистограмма похожа на график с дискретным аргументом (например, $0,1,2,\ldots$ или $0-9,10-19,20-29,\ldots$). Гистограммы отлично характеризуют изображения.

Визуализация в виде таблицы

Идеал — полное отсутствие таблиц в тексте. Исключения: данные в таблице — текст или пиктограммы.

Если в таблице слишком много данных, ее никто не будет читать. Исключение — справочники (но они нынче в электронном виде).

Программное обеспечение

Хорошо: LaTEX, GNUplot, GNU Octave, R....

Плохо: LibreOffice (Writer, Calc).

Ужасно: проприетарное ПО (М\$ Word и т.п.).

Если некоторая изменяющаяся величина измеряется непрерывно (или квазинепрерывно), мы имеем дело с потоком информации, или **сообщением**. В теории информации физический процесс, значения параметров которого отображают передаваемое сообщение, называется **сигналом**.

Модуляция–демодуляция. Зашумление. **Помехи**: аддитивные, мультипликативные, фазовые.

Add/mult

Аналоговый

Описывается непрерывной (или кусочно—непрерывной) функцией x(t): $t\in [t_0,t_1]$, $x\in [x_0,x_1]$. Аудиосигналы, телевизионные сигналы и т.п.

Дискретный

Описывается решетчатой функцией (последовательностью, временным рядом) x(nT): $x\in [x_0,x_1],\ n=\overline{1,N},\ T$ — интервал дискретизации. Величину f=1/T называют частотой дискретизации. Если интервал дискретизации является постоянной величиной, дискретный сигнал можно задать в виде ряда $\{x_1,\ldots,x_N\}$.

Цифровой

Описывается квантованной решетчатой функцией и отличается от обычного дискретного сигнала тем, что каждый уровень квантования кодируется двоичным кодом. Таким образом, если величина $x \in [x_0,x_1]$ квантуется N разрядным кодом, для обратного представления из кода K_x в значение x применяется преобразование: $x=x_0+K_x\cdot(x_1-x_0)/2^N$. К цифровым сигналам относятся сигналы, используемые в системах связи с импульсно–кодовой модуляцией.

Дискретизация

Дискретизация строит по заданному аналоговому сигналу x(t) дискретный сигнал $x_n(nT)$, причем $x_n(nT)=x(nT)$. Операция **восстановления** состоит в том, что по заданному дискретному сигналу строится аналоговый сигнал.

Теорема Котельникова-Найквиста

- любой аналоговый сигнал может быть восстановлен с какой угодно точностью по своим дискретным отсчётам, взятым с частотой $f>2f_c$, где f_c максимальная частота, которой ограничен спектр реального сигнала;
- если максимальная частота в сигнале равна или превышает половину частоты дискретизации (наложение спектра), то способа восстановить сигнал из дискретного в аналоговый без искажений не существует.

Теорема Котельникова-Найквиста

Фурье:
$$X_s(f) \stackrel{\mathrm{def}}{=} \sum_{n=-\infty}^{\infty} T \cdot x(nT) \; e^{-i2\pi nTf}$$

B окне:
$$X(f) = \sum_{n=-\infty}^{\infty} x(nT) \cdot \underbrace{T \cdot \mathrm{rect}(Tf) \cdot e^{-i2\pi nTf}}_{\mathcal{F}\left\{\mathrm{sinc}\left[\frac{\pi}{T}(t-nT)\right]\right\}}$$

Формула Уиттекера-Шеннона

Восстановить непрерывную функцию из дискретной:

$$x(t) = \sum_{n=-\infty}^{\infty} x(nT) \cdot \operatorname{sinc}\left[\frac{\pi}{T}(t-nT)\right]$$

Квантование

Для преобразования дискретного сигнала в цифровой вид применяется операция **квантования** или **аналогово-цифрового преобразования** (АЦП), которая по заданному дискретному сигналу $x_n(nT)$ строит цифровой кодированный сигнал $x_d(nT)$, причем $x_n(nT) \approx x_d(nT)$. Обратная квантованию операция называется операцией **цифро-аналогового преобразования** (ЦАП).

Квантование

Для преобразования дискретного сигнала в цифровой вид применяется операция **квантования** или **аналогово-цифрового преобразования** (АЦП), которая по заданному дискретному сигналу $x_n(nT)$ строит цифровой кодированный сигнал $x_d(nT)$, причем $x_n(nT) \approx x_d(nT)$. Обратная квантованию операция называется операцией **цифро-аналогового преобразования** (ЦАП).

Основная литература

- · Интернет–энциклопедия: http://wikipedia.org (Википедия).
- Гонсалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2012. 1104 с.
- Витязев В.В. Вейвлет-анализ временных рядов: Учеб. пособие. СПб.: Изд-во С.-Петерб. ун-та., 2001. 58 с.
- Гонсалес Р., Вудс Р., Эддинс С. Цифровая обработка изображений в среде MATLAB. М.: Техносфера, 2006 616 с.
- Гмурман В. Е. Теория вероятностей и математическая статистика. Учеб. пособие для вузов. Изд. 7-е, стер. М.: Высш. шк., 2001. 479 с.
- Говорухин В., Цибулин В. Компьютер в математическом исследовании. Учебный курс. — СПб.: Питер, 2001. — 624 с.
- Сергиенко А.Б. Цифровая обработка сигналов. СПб.: Питер, 2005. 604 с.
- · Чен К., Джиблин П., Ирвинг А. MATLAB в математических исследованиях: Пер. с англ. М.: Мир, 2001. 346 с.

Дополнительная литература

- Бахвалов Н. С., Жидков Н. П., Кобельков Г. М. Численные методы. М.: Высш. шк., 1987. 630 с.
- · Кнут Д. Э. Все про Т_ЕХ./ Пер. с англ. М. В. Лисиной. Протвино: AO RDT_EX, 1993. 592 с.: ил.
- Львовский С. М. Набор и верстка в системе LATEX. 3-е изд., исрп. и доп. — М.: МЦНМО, 2003. — 448 с.
- Физическая энциклопедия/ Гл. ред. А.М. Прохоров. М.: Сов. энциклопедия. Тт. I V. 1988.
- Цифровая обработка сигналов: Справочник/ Л.М. Гольденберг,
 Б.Д. Матюшкин, М.Н. Поляк. М.: Радио и связь, 1985. 312 с., ил.
- http://www.imageprocessingplace.com/
- Pan G. W. Wavelets in electromagnetic and device modeling. John Wiley
 Sons, Inc., Hobocen, New Jersey, 2003. 531 p.

Спасибо за внимание!

mailto

eddy@sao.ru edward.emelianoff@gmail.com

