Neural Nets & Theano Python Library

1: Neural Nets

Neural Nets

- Linear combination of features
 - $b + w_1 * x_1 + w_2 * x_2 + ... + w_p * x_p$
- Non-linear activation (e.g. wx -> [-1, 1])
 f(b + w_1 * x_1 + w_2 * x_2 + ... + w_p * x_p)
- Pass outputs on as inputs (multi-layer nets)
 - This gives non-linear decision boundaries
 - This gives a non-convex problem :(

Neural Nets

Linear combination of features

$$b + w_1 * x_1 + w_2 * x_2 + ... + w_p * x_p$$

Non-linear activation

Non-linear activation:

Once linear
 combination
 exceeds a cutoff
 dramatic change
 in behavior

Non-linear activation:

Once linear
 combination
 exceeds a cutoff
 dramatic change
 in behavior

Q: why use nonlinear activation instead of a *step activation* (no transition)?

Q: why use nonlinear activation instead of *linear* activation?

Example: Logistic Regression

Linear combination of features (log-odds), passed into sigmoid activation function to get *p*.

$$\ell odds = \log \frac{p}{1-p} = x_1\beta_1 + \dots + x_m\beta_m$$

$$\implies p = \exp(\ell odds)/(1 + \exp(\ell odds)))$$

Layering for nonlinearity

Single layer nets (e.g. logistic regression)
 can make linear decisions:

Linearly separable (you can draw a straight line to separate these two colors)

Not linearly separable (you can't draw a straight line to separate the two colors)

Layering for nonlinearity

- Multi-layer nets can approximate any function, i.e. can do any nonlinear separation.
 - Downside: the optimization problem is nonconvex
 - Downside: you may need *lots* of nodes / layers

1		
0.9	1	
0.8	Ĭ I	
0.7	4	
0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 -	$1 + e^{-x}$	
0.5	/	
0.4		
0.3	0.00	
0.2		
0.1 -	N N	
0		
-	•	
	U	

W

X1	X2	Y
0	0	0
0	1	1
1	0	1
1	1	1
?	?	

W

	X1	X2	WX + bias	Y
	0	0	-15	~0
	0	1	5	~1
	1	0	5	~1
	1	1	25	~1
•	+20	+20		

Either X being active enough to turn on Y

Neural Net AND

1		
0.9	1	
0.9 - 0.8 - 0.7 - 0.6 - 0.5 - 0.4 - 0.3 - 0.2 -	_	
0.7	1 1 10	
0.6	$1 + e^{-x}$	
0.5	<i>1</i>	
0.4	O Proping	
0.3		
	/ I	
0.1	U V	
0		
-	•	
	Ü	

W

X1	X2	Y
0	0	0
0	1	0
1	0	0
1	1	1
?	?	

Neural Net AND

W

	X1	X2	+ bias	Y
	0	0	-15	~0
	0	1	-5	~0
	1	0	-5	~0
	1	1	5	~1
/	+10	+10		

Need both X to be active to turn on Y

can't do it with one layer

1	
0.9	1
0.8-	1
0.8 - 0.7 - 0.6 - 0.5 -	4 . 34
0.6	$1+e^{-x}$
0.5	/
0.4 - 0.3 - 0.2 -	, and the second
0.3	() () () () () () () () () ()
0.2	01
0.1	
0	
	0
	_

W

X1	X2	Y
0	0	0
0	1	1
1	0	1
1	1	0
?	?	

insert layer that does AND, OR (we know how to make AND and OR operations!)

X1	X2	X1& X2	X1 X2	Y
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0
		?	?	

assume we have outputs of AND and OR layer...

1		
0.9	1	
0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2	ı L	
0.7	1 1 - 20	
0.6	$1 + e^{-x}$	
0.5	/	
0.4	/ v	
0.3	/ 9	
	9	
0.1		
0		
_	Ω	
	•	

0	0
1	1
1	1
1	0
?	
	1

assume we have outputs of AND and OR layer...

W

	A1:= X1&X 2	A2:= X1 X2	wA + bias	Y	_
f	0	0	-15	~0	a c
	0	1	5	~1	Y
	0	1	5	~1	d it
	1	1	-5	~0	
	-10	+20			

he OR lone an turn on, but he AND isables

Neural net computation

- In practice: many layers, many nodes, very non-convex
 - Lots of calculations
 - Many nodes
 - Try lots of starting values
 - Parallel computing (most nodes don't interact with each other)
 - e.g. for XOR, could compute AND, OR in parallel

Backpropagation briefly

- Perceptron:
 - Find error, update parameters so error might get fixed
- Back-propagation:
 - Neural nets fit using gradient descent
 - BP also finds an error, at the output layer, then it sends it backwards through the neural net

2: Theano

Theano

- It looks weird, why? Basically, speed:
 - Python (numpy) is not the most efficient language
 - Python is not parallelized

- Fitting neural nets:
 - Lots of computation
 - Better to be parallel (e.g. use a GPU / map-reduce)

- CPU: central processing unit.
 - Does program execution

- GPU: graphics processor unit.
 - Does calculations to render things for display on screen

- CPU: central processing unit.
 - Few cores, each fast & "smart", good @ serial tasks

- GPU: graphics processor unit.
 - Many cores, each slow & "dumb", good @ parallel tasks

- CPU: central processing unit.
 - o Few cores, each fast & "smart", serial
 - Smart: more features, e.g. you can run an OS

- GPU: graphics processor unit.
 - Many cores, each slow & "dumb", parallel
 - Dumb: you have to write special code that it can understand.

- CPU: central processing unit.
 - o Few cores, each fast & "smart", serial

- GPU: graphics processor unit.
 - Many cores, each slow & "dumb", parallel
 - Better for neural nets: lots of simple, parallel calculations (in sum, faster than the CPU)

Theano

- Allows construction of "more efficient code"
 - Alternatives: inline a bunch of C code

- Theano can talk to a GPU
 - Recall: GPUs are "dumb", you usually have to write another language to use them

 For both cases, theano acts like a "foreign language interpreter"

Theano Code: Symbolic Representation

```
>>> x = T.dmatrix('x')
>>> s = 1 / (1 + T.exp(-x))
>>> logistic = function([x], s)
>>> logistic([[0, 1], [-1, -2]])
                 , 0.73105858],
array([ 0.5
       [ 0.26894142, 0.11920292]])
```

Theano Code: Symbolic Representation

```
>>> x = T.dmatrix('x')
>>> s = 1 / (1 + T.exp(-x))
>>> logistic = function([x], s)
```

I'm confused! Why do we define x and s this way? Where's the data?

Theano Code: Symbolic Representation

```
>>> x = T.dmatrix('x') Define input type
>>> s = 1 / (1 + T.exp(-x)) Define function behavior
>>> logistic = function([x], s)
```

Put it all together

Theano Code: Optimization (1)

```
w = theano.shared(np.asarray((np.random.randn(*(numFeatures, numClasses))*.01))) Weights
```

```
X = T.matrix()

Y = T.matrix() Data
```

Theano Code: Optimization (1)

```
w = theano.shared(np.asarray((np.random.randn(*(numFeatures, numClasses))*.01)))

Weights

Shared: can update
```

Y = T.matrix()

Tensor: cannot update

Theano Code: Optimization (2)

```
def model(X, w):
    return T.nnet.softmax(T.dot(X, w))

y_hat = model(X, w)

cost = T.mean(T.nnet.categorical_crossentropy(y_hat, Y))
```

```
gradient = T.grad(cost=cost, wrt=w)
update = [[w, w - gradient * alpha]]
```

Gradient Descent

Theano Code: Optimization (2)

```
def model(X, w):
                                                 Loss ("cost")
  return T.nnet.softmax(T.dot(X, w))
                                               Theano "knows" many
y hat = model(X, w)
                                                    functions
cost = T.mean(T.nnet.categorical crossentropy(y hat, Y))
                                        Theano "knows" the gradient
gradient = T.grad(cost=cost, wrt=w)
                                             of these functions
update = [[w, w - gradient * alpha]]
                                             Gradient
                                              Descent
```

Theano Code: Optimization (3)

Theano 'function' set up:

- 1. Set inputs (data)
- 2. Set output (current loss; "cost")
- 3. Set update rule (do gradient descent)

Additional Assignment

Use theano to write an AND neural net

Use theano to write an OR neural net

Coming weeks: an XOR net

Additional Assignment

AND, OR rough guide:

- 1. Copy the logistic regression code
- 2. What is the data?
 - a. Two binary features
 - b. Binary output
- 3. Don't run gradient descent too long!
- 4. Instead of checking accuracy, see what weights you get.