$11a_{10} (K11a_{10})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -3u^{58} - 8u^{57} + \dots + 2b + 1, \ u^{58} + 6u^{57} + \dots + 2a - 4, \ u^{59} + 3u^{58} + \dots - 3u - 1 \rangle$$

$$I_2^u = \langle -au + b, \ u^2a + a^2 - au + 2u^2 + 2a - u + 3, \ u^3 - u^2 + 2u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 65 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$I_1^u = \langle -3u^{58} - 8u^{57} + \dots + 2b + 1, \ u^{58} + 6u^{57} + \dots + 2a - 4, \ u^{59} + 3u^{58} + \dots - 3u - 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -\frac{1}{2}u^{58} - 3u^{57} + \dots + 2u + 2 \\ \frac{3}{2}u^{58} + 4u^{57} + \dots - \frac{5}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{2}u^{58} - u^{57} + \dots + 6u + 1 \\ -\frac{1}{2}u^{58} - u^{57} + \dots + \frac{3}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{5} - 2u^{3} - u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 3u^{58} + 5u^{57} + \dots - \frac{7}{2}u - \frac{1}{2} \\ \frac{7}{2}u^{58} + 10u^{57} + \dots - \frac{13}{2}u - \frac{5}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{7}{2}u^{58} + 6u^{57} + \dots - 4u - 1 \\ \frac{9}{2}u^{58} + 13u^{57} + \dots - \frac{19}{2}u - \frac{7}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} \frac{7}{2}u^{58} + 6u^{57} + \dots - 4u - 1 \\ \frac{9}{2}u^{58} + 13u^{57} + \dots - \frac{19}{2}u - \frac{7}{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$3u^{58} + \frac{13}{2}u^{57} + \dots - 5u - \frac{1}{2}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{59} + 4u^{58} + \dots - 4u - 1$
c_2	$u^{59} + 30u^{58} + \dots - 4u - 1$
c_3, c_8	$u^{59} + u^{58} + \dots + 32u + 64$
c_5	$u^{59} - 4u^{58} + \dots - 22u - 137$
c_6, c_7, c_{10}	$u^{59} - 3u^{58} + \dots - 3u + 1$
c_9, c_{11}	$u^{59} + 3u^{58} + \dots - 67u + 73$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{59} + 30y^{58} + \dots - 4y - 1$
c_2	$y^{59} + 2y^{58} + \dots + 24y - 1$
c_{3}, c_{8}	$y^{59} + 35y^{58} + \dots - 35840y - 4096$
<i>C</i> ₅	$y^{59} - 26y^{58} + \dots - 288860y - 18769$
c_6, c_7, c_{10}	$y^{59} + 49y^{58} + \dots - 9y - 1$
c_9, c_{11}	$y^{59} - 43y^{58} + \dots - 79169y - 5329$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.856020 + 0.073484I		
a = -1.65134 - 0.50020I	-10.46570 + 1.43686I	-11.55835 - 0.61012I
b = -0.984871 + 0.337502I		
u = -0.856020 - 0.073484I		
a = -1.65134 + 0.50020I	-10.46570 - 1.43686I	-11.55835 + 0.61012I
b = -0.984871 - 0.337502I		
u = -0.847080 + 0.128915I		
a = -2.75122 - 0.10346I	-8.54972 + 10.26440I	-9.15841 - 6.91772I
b = -1.61866 + 0.64547I		
u = -0.847080 - 0.128915I		
a = -2.75122 + 0.10346I	-8.54972 - 10.26440I	-9.15841 + 6.91772I
b = -1.61866 - 0.64547I		
u = -0.829204 + 0.107730I		
a = 2.27299 - 0.15394I	-5.74133 + 5.06975I	-6.65758 - 3.49400I
b = 1.31540 - 0.76071I		
u = -0.829204 - 0.107730I		
a = 2.27299 + 0.15394I	-5.74133 - 5.06975I	-6.65758 + 3.49400I
b = 1.31540 + 0.76071I		
u = 0.131822 + 1.175380I		
a = -0.041304 + 1.180220I	1.39618 - 2.09190I	0
b = 0.142720 + 0.203347I		
u = 0.131822 - 1.175380I		
a = -0.041304 - 1.180220I	1.39618 + 2.09190I	0
b = 0.142720 - 0.203347I		
u = -0.410091 + 1.123290I		
a = -0.975892 - 0.863707I	-5.50561 - 5.74082I	0
b = -1.57994 - 0.54447I		
u = -0.410091 - 1.123290I		
a = -0.975892 + 0.863707I	-5.50561 + 5.74082I	0
b = -1.57994 + 0.54447I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.796588 + 0.044117I		
a = 2.81269 + 0.63796I	-4.83655 - 3.88458I	-8.90529 + 3.78678I
b = 1.175990 + 0.375378I		
u = 0.796588 - 0.044117I		
a = 2.81269 - 0.63796I	-4.83655 + 3.88458I	-8.90529 - 3.78678I
b = 1.175990 - 0.375378I		
u = -0.379560 + 1.151180I		
a = 0.596247 + 0.686778I	-2.55192 - 0.70368I	0
b = 1.32673 + 0.59766I		
u = -0.379560 - 1.151180I		
a = 0.596247 - 0.686778I	-2.55192 + 0.70368I	0
b = 1.32673 - 0.59766I		
u = -0.754668 + 0.026465I		
a = 0.58720 - 1.61512I	-2.49974 + 2.68394I	-8.69632 - 3.80104I
b = 0.31567 - 1.50166I		
u = -0.754668 - 0.026465I		
a = 0.58720 + 1.61512I	-2.49974 - 2.68394I	-8.69632 + 3.80104I
b = 0.31567 + 1.50166I		
u = -0.409182 + 1.194340I		
a = -0.691302 - 0.078308I	-7.01962 + 3.10038I	0
b = -1.089200 - 0.246358I		
u = -0.409182 - 1.194340I		
a = -0.691302 + 0.078308I	-7.01962 - 3.10038I	0
b = -1.089200 + 0.246358I		
u = 0.486405 + 0.550204I		
a = -1.088040 + 0.443756I	-3.53532 - 5.79141I	-7.16103 + 7.27058I
b = -1.261210 - 0.450390I		
u = 0.486405 - 0.550204I		
a = -1.088040 - 0.443756I	-3.53532 + 5.79141I	-7.16103 - 7.27058I
b = -1.261210 + 0.450390I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.730409		
a = -1.99609	-1.92594	-4.78130
b = -0.729874		
u = 0.342721 + 1.230370I		
a = 1.28582 - 1.39129I	-1.186550 - 0.224277I	0
b = 1.069880 - 0.258043I		
u = 0.342721 - 1.230370I		
a = 1.28582 + 1.39129I	-1.186550 + 0.224277I	0
b = 1.069880 + 0.258043I		
u = 0.573054 + 0.406970I		
a = -0.64175 + 1.45528I	-3.99025 + 1.99015I	-8.92828 - 0.31986I
b = -1.081700 + 0.295661I		
u = 0.573054 - 0.406970I		
a = -0.64175 - 1.45528I	-3.99025 - 1.99015I	-8.92828 + 0.31986I
b = -1.081700 - 0.295661I		
u = -0.042991 + 1.296740I		
a = 0.612344 + 1.253280I	4.23548 + 3.29913I	0
b = 0.970255 - 0.994207I		
u = -0.042991 - 1.296740I		
a = 0.612344 - 1.253280I	4.23548 - 3.29913I	0
b = 0.970255 + 0.994207I		
u = -0.312666 + 1.260280I		_
a = -0.947892 + 0.316493I	1.31708 + 1.15944I	0
b = 0.51778 + 1.49782I		
u = -0.312666 - 1.260280I		
a = -0.947892 - 0.316493I	1.31708 - 1.15944I	0
b = 0.51778 - 1.49782I		
u = 0.308900 + 1.284590I		
a = -1.32494 + 0.68919I	2.08956 - 3.75051I	0
b = -0.810078 - 0.293298I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.308900 - 1.284590I		
a = -1.32494 - 0.68919I	2.08956 + 3.75051I	0
b = -0.810078 + 0.293298I		
u = 0.007860 + 1.322200I		
a = -0.505680 - 1.017660I	5.58829 - 1.44801I	0
b = -0.342454 + 1.026550I		
u = 0.007860 - 1.322200I		
a = -0.505680 + 1.017660I	5.58829 + 1.44801I	0
b = -0.342454 - 1.026550I		
u = -0.324436 + 1.292440I		
a = 1.260280 + 0.208066I	1.62049 + 6.58252I	0
b = 0.14207 - 1.55287I		
u = -0.324436 - 1.292440I		
a = 1.260280 - 0.208066I	1.62049 - 6.58252I	0
b = 0.14207 + 1.55287I		
u = 0.349284 + 1.299200I		
a = 1.86046 - 0.79136I	-0.64183 - 8.01411I	0
b = 1.262440 + 0.472314I		
u = 0.349284 - 1.299200I		
a = 1.86046 + 0.79136I	-0.64183 + 8.01411I	0
b = 1.262440 - 0.472314I		
u = 0.247609 + 1.341690I		
a = -0.878663 - 0.254927I	3.12629 - 3.79302I	0
b = -0.010321 - 0.575786I		
u = 0.247609 - 1.341690I		
a = -0.878663 + 0.254927I	3.12629 + 3.79302I	0
b = -0.010321 + 0.575786I		
u = 0.616427 + 0.135220I		
a = -0.772422 - 1.104090I	-1.53739 - 0.64054I	-8.33837 + 0.19638I
b = -0.025567 - 0.410528I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.616427 - 0.135220I		
a = -0.772422 + 1.104090I	-1.53739 + 0.64054I	-8.33837 - 0.19638I
b = -0.025567 + 0.410528I		
u = -0.385237 + 1.320760I		
a = -0.84823 - 1.32751I	-6.10402 + 5.89251I	0
b = -0.882451 + 0.394924I		
u = -0.385237 - 1.320760I		
a = -0.84823 + 1.32751I	-6.10402 - 5.89251I	0
b = -0.882451 - 0.394924I		
u = 0.090653 + 1.377440I		
a = -0.326353 - 0.822204I	4.93456 - 3.07605I	0
b = 0.672970 + 0.735433I		
u = 0.090653 - 1.377440I		
a = -0.326353 + 0.822204I	4.93456 + 3.07605I	0
b = 0.672970 - 0.735433I		
u = -0.363885 + 1.340010I		
a = 1.36573 + 1.29503I	-1.19374 + 9.36497I	0
b = 1.28712 - 0.87319I		
u = -0.363885 - 1.340010I		
a = 1.36573 - 1.29503I	-1.19374 - 9.36497I	0
b = 1.28712 + 0.87319I		
u = 0.406682 + 0.444506I		
a = 0.364648 - 0.579230I	-0.77600 - 1.53921I	-3.61158 + 4.49048I
b = 0.813057 + 0.301724I		
u = 0.406682 - 0.444506I		
a = 0.364648 + 0.579230I	-0.77600 + 1.53921I	-3.61158 - 4.49048I
b = 0.813057 - 0.301724I		
u = -0.371273 + 1.354390I		
a = -1.46770 - 1.56354I	-3.8828 + 14.6473I	0
b = -1.62445 + 0.72234I		

Solutions to I_1^u	$\int \sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.371273 - 1.354390I		
a = -1.46770 + 1.56354I	-3.8828 - 14.6473I	0
b = -1.62445 - 0.72234I		
u = 0.190850 + 1.391990I		
a = 0.542814 + 0.866023I	1.68472 - 0.64264I	0
b = -0.845987 + 0.391644I		
u = 0.190850 - 1.391990I		
a = 0.542814 - 0.866023I	1.68472 + 0.64264I	0
b = -0.845987 - 0.391644I		
u = 0.10837 + 1.41748I		
a = 0.253825 + 0.832571I	2.74503 - 7.63920I	0
b = -1.231490 - 0.673169I		
u = 0.10837 - 1.41748I		
a = 0.253825 - 0.832571I	2.74503 + 7.63920I	0
b = -1.231490 + 0.673169I		
u = -0.007745 + 0.362586I		
a = -1.362500 + 0.139689I	0.56495 - 1.37410I	1.41861 + 4.46189I
b = 0.062326 + 0.756000I		
u = -0.007745 - 0.362586I		
a = -1.362500 - 0.139689I	0.56495 + 1.37410I	1.41861 - 4.46189I
b = 0.062326 - 0.756000I		
u = -0.228387 + 0.196319I		
a = 2.95823 - 0.48432I	-0.26736 + 2.47932I	1.42598 - 4.73162I
b = 0.678923 - 0.739397I		
u = -0.228387 - 0.196319I		
a = 2.95823 + 0.48432I	-0.26736 - 2.47932I	1.42598 + 4.73162I
b = 0.678923 + 0.739397I		

II. $I_2^u = \langle -au + b, \ u^2a + a^2 - au + 2u^2 + 2a - u + 3, \ u^3 - u^2 + 2u - 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a\\au \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1\\u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + a - u + 3\\au + 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u\\u^{2} - u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1\\u^{2} - u + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} au + a\\au \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{2} + 1\\u^{2} - u + 1 \end{pmatrix}$$

- $a_4 = \begin{pmatrix} a \\ au \end{pmatrix}$
- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^2a 4au 3u^2 + a + 3u 8$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$(u^2+u+1)^3$
c_3,c_8	u^6
C4	$(u^2 - u + 1)^3$
c_6, c_7	$(u^3 - u^2 + 2u - 1)^2$
c_9, c_{11}	$(u^3 - u^2 + 1)^2$
c_{10}	$(u^3 + u^2 + 2u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5	$(y^2 + y + 1)^3$
c_3, c_8	y^6
c_6, c_7, c_{10}	$(y^3 + 3y^2 + 2y - 1)^2$
c_{9}, c_{11}	$(y^3 - y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.215080 + 1.307140I		
a = -0.706350 + 0.266290I	3.02413 - 4.85801I	-2.09851 + 6.80481I
b = -0.500000 - 0.866025I		
u = 0.215080 + 1.307140I		
a = 0.583789 + 0.478572I	3.02413 - 0.79824I	1.45566 - 0.28364I
b = -0.500000 + 0.866025I		
u = 0.215080 - 1.307140I		
a = -0.706350 - 0.266290I	3.02413 + 4.85801I	-2.09851 - 6.80481I
b = -0.500000 + 0.866025I		
u = 0.215080 - 1.307140I		
a = 0.583789 - 0.478572I	3.02413 + 0.79824I	1.45566 + 0.28364I
b = -0.500000 - 0.866025I		
u = 0.569840		
a = -0.87744 + 1.51977I	-1.11345 + 2.02988I	-5.85715 - 2.43783I
b = -0.500000 + 0.866025I		
u = 0.569840		
a = -0.87744 - 1.51977I	-1.11345 - 2.02988I	-5.85715 + 2.43783I
b = -0.500000 - 0.866025I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2+u+1)^3)(u^{59}+4u^{58}+\cdots-4u-1)$
c_2	$((u^2 + u + 1)^3)(u^{59} + 30u^{58} + \dots - 4u - 1)$
c_3, c_8	$u^6(u^{59} + u^{58} + \dots + 32u + 64)$
C ₄	$((u^2 - u + 1)^3)(u^{59} + 4u^{58} + \dots - 4u - 1)$
<i>C</i> ₅	$((u^2+u+1)^3)(u^{59}-4u^{58}+\cdots-22u-137)$
c_{6}, c_{7}	$((u^3 - u^2 + 2u - 1)^2)(u^{59} - 3u^{58} + \dots - 3u + 1)$
c_9, c_{11}	$((u^3 - u^2 + 1)^2)(u^{59} + 3u^{58} + \dots - 67u + 73)$
c_{10}	$((u^3 + u^2 + 2u + 1)^2)(u^{59} - 3u^{58} + \dots - 3u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y^2 + y + 1)^3)(y^{59} + 30y^{58} + \dots - 4y - 1)$
c_2	$((y^2 + y + 1)^3)(y^{59} + 2y^{58} + \dots + 24y - 1)$
c_3, c_8	$y^6(y^{59} + 35y^{58} + \dots - 35840y - 4096)$
<i>C</i> ₅	$((y^2 + y + 1)^3)(y^{59} - 26y^{58} + \dots - 288860y - 18769)$
c_6, c_7, c_{10}	$((y^3 + 3y^2 + 2y - 1)^2)(y^{59} + 49y^{58} + \dots - 9y - 1)$
c_9, c_{11}	$((y^3 - y^2 + 2y - 1)^2)(y^{59} - 43y^{58} + \dots - 79169y - 5329)$