Sprawozdanie z Laboratorium 3. Ciepło Właściwe

Piotr Lewandowski Dymitr Lubczyk Krzysztof Tabeau

17 kwietnia 2021

1 Część teoretyczna

1.1 Wstęp

W poniższym sprawozdaniu zamierzamy przedstawić wyniki dwóch eksperymentów mających na celu wyznaczenie ciepła właściwego kalorymetru oraz ciepła topnienia lodu. W poniższym sprawozdaniu będziemy się posługiwali takimi pojęciami jak bilans cieplny, ciepło, ciepło właściwe, kalorymetr czy temperatura, więc pokrótce pozwolimy sobie je przedstawić:

- Bilans cieplny jest to przełożenie zasady zachowania energii do opisu wymiany ciepła w procesach termodynamicznych.
- Ciepło rozumiemy przez to zmianę energii wewnętrznej, podczas jakiegoś procesu termodynamicznego.
- Ciepło właściwe jest to właściwość substancji mówiąca o tym jak wiele energii musimy dostarczyć, aby zwiększyć jej temperature, podawane dla zmiany ciała o masie 1kq przy zmianie o 1K.
- Kalorymetr jest to przyrząd pomiarowy wykorzystywany do mierzenia wymiany ciepła w procesach termodynamicznych.
- Temperatura rozumiemy przez to miarę średniej energii kinetycznej cząstek w danym ciele.

1.2 Opis układów doświadczalnych

W doświadczeniu mającym na celu wyznaczenie ciepła właściwego kalorymetru będziemy używali kalorymetru, wagi mającej na celu zmierzenie masy dolewanej wody, termometru służącego do określenia temperatury dolewanej wody oraz oczywiście wody. Przebieg doświadczenia jest następujący, do kalorymetru z wodą będącego w stanie równowagi, dolewamy wody o temperaturze wyższej niż tej w kalorymetrze i z bilansu cieplnego otrzymujemy następujące równanie

$$m_2 \cdot c_w \cdot (T_2 - T) = m_1 \cdot c_w \cdot (T - T_k) + m_k \cdot c_k \cdot (T - T_k) \tag{1}$$

które przekształcamy do

$$c_k = \frac{c_w \cdot ((m_2 \cdot (T_2 - T) + m_1 \cdot (T - T_k)))}{m_k \cdot (T - T_k)}$$
(2)

gdzie

- m_1 masa wody w kalorymetrze przed dolaniem
- m_2 masa wody dolewanej
- m_k masa kalorymetru
- c_k ciepło właściwe kalorymetru
- c_w ciepło właściwe wody
- \bullet T_k temperatura kalorymetru oraz wody w nim zawartej przed dolaniem
- T_2 temperatura wody dolewanej
- T temperatura układu po ustaleniu się stanu równowagi po dolaniu

zamierzamy wykonać pięć pomiarów, uśrednić otrzymane wyniki oraz obliczyć niepewności pomiarowe typu B.

W drugiej części eksperymentu zamierzamy wyznaczyć ciepło topnienia lodu. Procedura będzie bardzo podobna do powyższej, z wyjątkiem tego, że zamiast wrzucać kolejne porcje wody, do kalorymetru będzie wrzucali kostki lodu. Podobnie jak powyżej skorzystamy z bilansu cieplnego otrzymując

$$m_l \cdot q_l + m_l \cdot c_w \cdot T = m_1 \cdot c_w \cdot (T_k - T) + m_k \cdot c_k \cdot (T_k - T)$$

$$\tag{3}$$

co przekształcamy do

$$q_l = \frac{(T_k - T) \cdot (m_1 \cdot c_w + m_k \cdot c_k)}{m_l} - c_w \cdot T \tag{4}$$

gdzie

- m_l masa wrzucanego lodu
- q_l ciepło topnienia lodu

pozostałe oznaczenia są analogiczne do tych z doświadczenia, w którym wyznaczaliśmy ciepło właściwe kalorymetru

2 Część doświadczalna

2.1 Wykonane pomiary

Pomiary wykonane w doświadczeniu, w którym wyznaczaliśmy ciepło właściwe kalorymetru o masie 765g

$T_k[C]$	$m_1[kg]$	$T_2[C]$	$m_2[kg]$	T[C]	$c_k[\frac{J}{kg \cdot K}]$
20	0,5	40	0,3	26,22	900.19
26,22	0,8	50	0,3	31,86	901.63
31,86	1,1	60	0,3	37,26	893.10
37,26	1,4	70	0,3	42,52	914.79
42,52	1,7	90	0,3	49.10	900.80

Tablica 1: Zmiany stanu kalorymetru wraz z jego ciepłami właściwymi

Pomiary wykonane w doświadczeniu mającym na celu wyznaczenie ciepła topnienia lodu, kolejne pomiary uzyskiwaliśmy po przez wrzucanie kostek lodu do kalorymetru z woda.

				. 7 .
$m_w[kg]$	$m_l[kg]$	$T_k[C]$	T[C]	$q_l[\frac{J}{kg}]$
1	0.0243	90	86.531	333657
1.0243	0.0243	86.531	83.201	333643
1.0486	0.0243	83.201	80.0018	333632
1.0729	0.0243	80.0018	76.9258	333631
1.0972	0.0243	76.9258	73.9661	333611
1.1215	0.0243	73.9661	71.1161	333621
1.1458	0.0243	71.1161	68.3699	333611
1.1701	0.0243	68.3699	65.7219	333608
1.1944	0.0243	65.7219	63.167	333587
1.2187	0.0243	63.167	60.7003	333586
1.243	0.0243	60.7003	58.3173	333587
1.2673	0.0243	58.3173	56.0138	333591
1.2916	0.0243	56.0138	53.786	333566
1.3159	0.0243	53.786	51.6301	333576
1.3402	0.0243	51.6301	49.5427	333578
1.3645	0.0243	49.5427	47.5206	333577
1.3888	0.0243	47.5206	45.5609	333544
1.4131	0.0243	45.5609	43.6606	333555
1.4374	0.0243	43.6606	41.8171	333549
1.4617	0.0243	41.8171	40.0278	333567

Tablica 2: Temperatura wody w zależności od liczby kostek

2.2 Opracowanie wyników

W celu określania niepewności pomiarowej ciepła właściwego kalorymetru posłużyliśmy się niepewnością pomiarową typu B. Niepewność pomiarowa kalorymetru wyraża się wzorem

$$u(c_k) = \sqrt{\frac{\partial c_k}{\partial m_2} u_b^2(m_2) + \frac{\partial c_k}{\partial m_1} u_b^2(m_1) + \frac{\partial c_k}{\partial T} u_b^2(T) + \frac{\partial c_k}{\partial T_k} u_b^2(T_k) + \frac{\partial c_k}{\partial T_2} u_b^2(T_2)}$$

gdzie

$$\begin{split} \frac{\partial c_k}{\partial m_2} &= \frac{c_w}{m_k} \left(\frac{T_2 - T}{T - T_k} \right) \\ &\frac{\partial c_k}{\partial m_1} = \frac{c_w}{m_k} \\ \frac{\partial c_k}{\partial T} &= \frac{c_w}{m_k} \left(\frac{T_k - T_2}{(T - T_k)^2} \right) \\ \frac{\partial c_k}{\partial T_k} &= \frac{c_w}{m_k} \left(\frac{T_2 - T}{(T - T_k)^2} \right) \\ \frac{\partial c_k}{\partial T_2} &= \frac{c_w}{m_k} \frac{m_2}{T - T_k} \end{split}$$

Co prowadzi do ostatecznego rezultatu

$$c_k = (902 \pm 16) \frac{J}{kg \cdot K}$$

Rysunek 1: Ciepło właściwe kalorymetru

W drugim doświadczeniu wyznaczaliśmy ciepło topnienia lodu, poniżej przedstawiamy wzór na jego niepewność pomiarową

$$u(q_l) = \sqrt{\frac{\partial q_l}{\partial m_1} u_b^2(m_1) + \frac{\partial q_l}{\partial c_k} u_b^2(c_k) + \frac{\partial q_l}{\partial T} u_b^2(T) + \frac{\partial q_l}{\partial T_k} u_b^2(T_k)}$$

gdzie obliczone przez nas pochodne cząstkowe, wyrażają się wzorami

$$\begin{split} \frac{\partial q_l}{\partial m_1} &= \frac{c_w(T_k - T)}{m_l} \\ \frac{\partial q_l}{\partial c_k} &= \frac{m_k(T_k - T)}{m_l} - T \\ \frac{\partial q_l}{\partial T} &= -\frac{m_1 c_w + m_k c_k}{m_l} - c_w \\ \frac{\partial q_l}{\partial T_k} &= \frac{m_1 c_w + m_k c_k}{m_l} \end{split}$$

Co ostatecznie daje

$$q_l = (333594 \pm 102) \frac{J}{kq}$$

Rysunek 2: Ciepło topnienia lodu

2.3 Podsumowanie

Uważam, że efekt doświadczenia jest bardzo satysfakcjonujący, ponieważ udało się wyznaczyć ciepło topnienia lodu z niebywała dokładnością, jednakże ma on wiele problemów, przede wszystkim doświadczenie zostało przeprowadzone na podstawie wyników otrzymanych z symulacji, a nie zebranych podczas faktycznego doświadczenia, dodatkowo liczba zebranych próbek jest dość mala, co jest kolejnym brakiem. Uważam, ze gdyby było to możliwie, bardzo ciekawym byłoby odtworzenie tego doświadczenia w fizycznym laboratorium. Tym bardziej, że jest to bardzo podstawowe doświadczenie fizyczne i uważam, że rozwija zdolności, które powinny być w elementarzu każdego inżyniera.