# 2022 Enterprise Boost Program AI/ML Basic 05

## 08. 이미지를 위한 신경망

CNN으로 패션상품을 분류해보자!

전현상 Solutions Architect 2022.06.28



## AI/ML Basic Tracks





## **Table of contents**

### 08. 이미지를 위한 신경망

08-1. 합성곱 신경망의 구성 요소

- Convolution operation
- Convolutional Layer

08-2. 합성곱 신경망의 시각화



## **Convolutional Neural Networks**



## How images are stored in a Computer?

#### Grayscale image





(height x width) pixels





## How images are stored in a Computer?

Colored image





|    |    |    |    |                |     |     | 141 | 142 | 143 | 144 | 145 |
|----|----|----|----|----------------|-----|-----|-----|-----|-----|-----|-----|
|    |    |    |    |                |     |     | 151 | 152 | 153 | 154 | 155 |
|    |    |    |    |                |     |     | 161 | 162 | 163 | 164 | 165 |
|    |    |    | Ī  | 35             | 36  | 37  | 38  | 39  | 173 | 174 | 175 |
|    |    |    | Ī  | 45             | 46  | 47  | 48  | 49  | 183 | 184 | 185 |
|    |    |    | 1  | 55             | 56  | 57  | 58  | 59  | 193 | 194 | 195 |
|    | _  | _  |    | 65             | 66  | 67  | 68  | 69  | 1   | _   |     |
| 31 | 32 | 33 | 34 | 3              | 5 6 | 77  | 78  | 79  | 1 / | _   |     |
| 41 | 42 | 43 | 44 | 4              | 5 6 | 87  | 88  | 89  | ١ ١ | J   |     |
| 51 | 52 | 53 | 54 | 54 55<br>64 65 |     | _   | _   | _   | 1   |     |     |
| 61 | 62 | 63 | 64 |                |     | - [ | )   |     |     |     |     |
| 71 | 72 | 73 | 74 | 7              | 5   | - [ | 2   |     |     |     |     |
| 81 | 82 | 83 | 84 | 8              | 5   |     |     |     |     |     |     |

(height x width) x 3 pixels



## Image recognition

## Perceptron neural network



#### Convolutional neural network



Feature extraction + Classification network

Feature extraction network + Classification network

Figures copyright , 김성필, 머신러닝에서 컨벌루션 신경망까지, 딥러닝 첫걸음



## **Statistics of image gradients**











Logarithmic density of gradients from 10 natural images.



## **DNN** Image recognition

#### Colored image



600

- 2차원 input data
- Pixel array: (800, 600, 3)
- Bytes:  $800 \times 600 \times 3 = 1,440,000$  bytes



- Dense Layer에서는 모든 입력이 Hidden Layer에 연결(fully conecteted layer)
- Hidden Layer가 늘어날수록 back propagation에서 weight, bias update 계산량이 기하급수로 늘어남
- Image 의 평탄한 영역은 학습에 불필요한 영역, 특징이 잘 드러나지 않음
- 특징 추출기는 사람이 직접 설계
- 학습에서 모든 data(pixels)를 각각 node에 연결하는 것보다 효율적인 방법을 찾아보자.



## **CNN** Image recognition

#### **Convolution Layer**

- 특징점(feature point) 추출filer(kernel)을 사용하여 입력데이터를 처리
- kernel의 개수가 특징맵(feature map)개수





## **CNN** operation



## **Convolution?**

## 두 신호함수의 적분(중첩)

#### Convolution

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau$$



$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t+\tau)d\tau$$



Figures copyright, Convolution, Wikipedia.



## 2D convolution for image filtering

Convolution

$$f(x,y) * k(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau_1, \tau_2) k(x - \tau_1, y - \tau_2) d\tau_1 d\tau_2$$

$$g = f * k \qquad g[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} k[u,v] f[i-u,j-v]$$





## 2D Convolution ? Cross-Correlation

$$Y = I - K + 1$$

$$1 \cdot 1 + 2 \cdot 6 + -1 \cdot 5 + 0 \cdot 3 = 8$$

$$1 \cdot 6 + 2 \cdot 2 + -1 \cdot 3 + 0 \cdot 1 = 7$$

$$\begin{array}{|c|c|c|c|c|c|c|}
\hline
1 & 6 & 2 \\
5 & 3 & 1 \\
7 & 0 & 4
\end{array}$$

$$\star
\begin{array}{|c|c|c|c|c|}
\hline
1 & 2 \\
-1 & 0 \\
\hline
kernel & output
\end{array}$$

$$1 \cdot 3 + 2 \cdot 1 + -1 \cdot 0 + 0 \cdot 4 = 5$$



## **Convolution & Cross Correlation**





Cross-Correlation 
$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t+\tau)d\tau$$

Convolution 
$$I*K = I * rot 180(K)$$
 
$$(f*g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau$$



Convolution

## **Padding**

valid



• full cross correlation(same)



#### Keras functional parameter : padding ( default = 'valid')

- valid : kernel에 매칭되지 않는 부분 skip, (0,0)시작
- same : kernel에 매칭 되지 않는 부분 0 padding



## **Convolution Layer**



## **CNN** for Image

#### **Tensorflow keras CNN example**

model.add(keras.layers.Conv2D(32, kernel\_size=3, activation='relu', padding='same', input\_shape=(28,28,1)))



#### Weight Parameters:

- Input\_channel \* w\_kernel \* h\_kernel\* + biases
- $1 \times 3 \times 3 \times 32 + 32 = 320$



## **CNN** for Image

#### **Tensorflow keras CNN example**



## Visualization of Multi-Layer Perceptron & CNN













$$Y_{1} = B_{1} + X_{1} * K_{11} + X_{2} * K_{12} + X_{3} * K_{13}$$

$$Y_{2} = B_{2} + X_{1} * K_{21} + X_{2} * K_{22} + X_{3} * K_{23}$$

$$\vdots$$

$$Y_{d} = B_{d} + X_{1} * K_{d1} + X_{2} * K_{d2} + X_{3} * K_{d3}$$

$$X_{1} = X_{11} = X_{21} = X_{22}$$

$$X_{2} = X_{22} = X_{22$$



$$Y_i = B_i + \sum_{j=1}^n X_j \star K_{ij}, \quad i = 1 \dots d$$

$$Y_1 = B_1 + X_1 \star K_{11} + \dots + X_n \star K_{1n}$$

$$Y_2 = B_2 + X_1 \star K_{21} + \dots + X_n \star K_{2n}$$

$$\vdots$$

$$Y_d = B_d + X_1 \star K_{d1} + \dots + X_n \star K_{dn}$$



$$Y_{i} = B_{i} + \sum_{j=1}^{n} X_{j} \star K_{ij}, \quad i = 1 \dots d$$

$$Y_{1} = B_{1} + X_{1} \star K_{11} + \dots + X_{n} \star K_{1n}$$

$$Y_{2} = B_{2} + X_{1} \star K_{21} + \dots + X_{n} \star K_{2n}$$

$$\vdots$$

$$Y_{d} = B_{d} + X_{1} \star K_{d1} + \dots + X_{n} \star K_{dn}$$

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_d \end{bmatrix} = \begin{bmatrix} B_1 \\ B_2 \\ \vdots \\ B_d \end{bmatrix} + \begin{bmatrix} K_{11} & K_{12} & \dots & K1n \\ K_{21} & K_{22} & \dots & K2n \\ \vdots & \vdots & \vdots & \vdots \\ K_{d1} & K_{d2} & \dots & Kdn \end{bmatrix} \cdot |\star \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_n \end{bmatrix}$$

$$Y = B + K \cdot |\star X$$



## **Convolution Layer**

**Backward Operation** 



### **Backward Kernel**





$$Y_i = B_i + X_1 \star K_{i1} + \dots + X_n \star K_{in}$$

Simplified example



$$y_{11} = b_{11} + k_{11}x_{11} + k_{12}x_{12} + k_{21}x_{21} + k_{22}x_{22}$$

$$\begin{cases} y_{12} = b_{12} + k_{11}x_{12} + k_{12}x_{13} + k_{21}x_{22} + k_{22}x_{23} \\ y_{21} = b_{21} + k_{11}x_{21} + k_{12}x_{22} + k_{21}x_{31} + k_{22}x_{32} \\ y_{22} = b_{22} + k_{11}x_{22} + k_{12}x_{23} + k_{21}x_{32} + k_{22}x_{33} \end{cases}$$



### **Backward Kernel**

$$\begin{cases} y_{11} = b_{11} + k_{11}x_{11} + k_{12}x_{12} + k_{21}x_{21} + k_{22}x_{22} \\ y_{12} = b_{12} + k_{11}x_{12} + k_{12}x_{13} + k_{21}x_{22} + k_{22}x_{23} \\ y_{21} = b_{21} + k_{11}x_{21} + k_{12}x_{22} + k_{21}x_{31} + k_{22}x_{32} \\ y_{22} = b_{22} + k_{11}x_{22} + k_{12}x_{23} + k_{21}x_{32} + k_{22}x_{33} \end{cases}$$

$$\frac{\partial E}{\partial k_{11}} = \frac{\partial E}{\partial y_{11}} \frac{\partial y_{11}}{\partial k_{11}} + \frac{\partial E}{\partial y_{12}} \frac{\partial y_{12}}{\partial k_{11}} + \frac{\partial E}{\partial y_{21}} \frac{\partial y_{21}}{\partial k_{11}} + \frac{\partial E}{\partial y_{22}} \frac{\partial y_{22}}{\partial k_{11}}$$

$$\frac{\partial E}{\partial k_{11}} = \frac{\partial E}{\partial y_{11}} \frac{\partial y_{11}}{\partial k_{11}} + \frac{\partial E}{\partial y_{12}} \frac{\partial y_{12}}{\partial k_{11}} + \frac{\partial E}{\partial y_{21}} \frac{\partial y_{21}}{\partial k_{11}} + \frac{\partial E}{\partial y_{22}} \frac{\partial y_{22}}{\partial k_{11}}$$

$$x_{11} \qquad x_{12} \qquad x_{21} \qquad x_{22}$$

$$\frac{\partial E}{\partial k_{11}} = \frac{\partial E}{\partial y_{11}} x_{11} + \frac{\partial E}{\partial y_{12}} x_{12} + \frac{\partial E}{\partial y_{21}} x_{21} + \frac{\partial E}{\partial y_{22}} x_{22}$$



$$\frac{\partial E}{\partial k_{11}} = \frac{\partial E}{\partial y_{11}} x_{11} + \frac{\partial E}{\partial y_{12}} x_{12} + \frac{\partial E}{\partial y_{21}} x_{21} + \frac{\partial E}{\partial y_{22}} x_{22}$$

$$\frac{\partial E}{\partial k_{12}} = \frac{\partial E}{\partial y_{11}} x_{12} + \frac{\partial E}{\partial y_{12}} x_{13} + \frac{\partial E}{\partial y_{21}} x_{22} + \frac{\partial E}{\partial y_{22}} x_{23}$$

$$\frac{\partial E}{\partial k_{21}} = \frac{\partial E}{\partial y_{11}} x_{21} + \frac{\partial E}{\partial y_{12}} x_{22} + \frac{\partial E}{\partial y_{21}} x_{31} + \frac{\partial E}{\partial y_{22}} x_{32}$$

$$\frac{\partial E}{\partial k_{22}} = \frac{\partial E}{\partial y_{11}} x_{22} + \frac{\partial E}{\partial y_{12}} x_{23} + \frac{\partial E}{\partial y_{21}} x_{32} + \frac{\partial E}{\partial y_{22}} x_{33}$$



### **Backward Kernel**

$$\frac{\partial E}{\partial k_{11}} = \frac{\partial E}{\partial y_{11}} x_{11} + \frac{\partial E}{\partial y_{12}} x_{12} + \frac{\partial E}{\partial y_{21}} x_{21} + \frac{\partial E}{\partial y_{22}} x_{22}$$

$$\frac{\partial E}{\partial k_{12}} = \frac{\partial E}{\partial y_{11}} x_{12} + \frac{\partial E}{\partial y_{12}} x_{13} + \frac{\partial E}{\partial y_{21}} x_{22} + \frac{\partial E}{\partial y_{22}} x_{23}$$

$$\frac{\partial E}{\partial k_{21}} = \frac{\partial E}{\partial y_{11}} x_{21} + \frac{\partial E}{\partial y_{12}} x_{22} + \frac{\partial E}{\partial y_{21}} x_{31} + \frac{\partial E}{\partial y_{22}} x_{32}$$

$$\frac{\partial E}{\partial k_{22}} = \frac{\partial E}{\partial y_{11}} x_{22} + \frac{\partial E}{\partial y_{12}} x_{23} + \frac{\partial E}{\partial y_{21}} x_{32} + \frac{\partial E}{\partial y_{22}} x_{33}$$



$$Y = B + X \star K \Rightarrow \frac{\partial E}{\partial K} = X \star \frac{\partial E}{\partial Y}$$

Simplified version

$$\frac{\partial E}{\partial K} = X \star \frac{\partial E}{\partial Y}$$

Actual version

$$Y_i = B_i + \sum_{j=1}^n X_j \star K_{ij}, \quad i = 1 \dots d$$

$$\frac{\partial E}{\partial K_{ij}} = X_j \star \frac{\partial E}{\partial Y_i}$$



### **Backward bias**



$$Y_i = B_i + \sum_{j=1}^n X_j \star K_{ij}$$
 Forward propagation

$$Y_i = B_i + X_1 \star K_{i1} + \dots + X_n \star K_{in}$$

Simplified example



$$y_{11} = b_{11} + k_{11}x_{11} + k_{12}x_{12} + k_{21}x_{21} + k_{22}x_{22}$$

$$\begin{cases} y_{12} = b_{12} + k_{11}x_{12} + k_{12}x_{13} + k_{21}x_{22} + k_{22}x_{23} \\ y_{21} = b_{21} + k_{11}x_{21} + k_{12}x_{22} + k_{21}x_{31} + k_{22}x_{32} \\ y_{22} = b_{22} + k_{11}x_{22} + k_{12}x_{23} + k_{21}x_{32} + k_{22}x_{33} \end{cases}$$



### **Backward bias**

$$\begin{cases} y_{11} = b_{11} + k_{11}x_{11} + k_{12}x_{12} + k_{21}x_{21} + k_{22}x_{22} \\ y_{12} = b_{12} + k_{11}x_{12} + k_{12}x_{13} + k_{21}x_{22} + k_{22}x_{23} \\ y_{21} = b_{21} + k_{11}x_{21} + k_{12}x_{22} + k_{21}x_{31} + k_{22}x_{32} \\ y_{22} = b_{22} + k_{11}x_{22} + k_{12}x_{23} + k_{21}x_{32} + k_{22}x_{33} \end{cases}$$

$$\frac{\partial E}{\partial b_{11}} = \frac{\partial E}{\partial y_{11}} \begin{bmatrix} \partial y_{11} \\ \partial b_{11} \end{bmatrix} + \frac{\partial E}{\partial y_{12}} \begin{bmatrix} \partial y_{12} \\ \partial b_{11} \end{bmatrix} + \frac{\partial E}{\partial y_{21}} \begin{bmatrix} \partial y_{21} \\ \partial b_{11} \end{bmatrix} + \frac{\partial E}{\partial y_{22}} \begin{bmatrix} \partial y_{22} \\ \partial b_{11} \end{bmatrix}$$

$$1 \qquad 0 \qquad 0 \qquad 0$$

$$\frac{\partial E}{\partial b_{11}} = \frac{\partial E}{\partial y_{11}}$$

$$\frac{\partial E}{\partial b_{12}} = \frac{\partial E}{\partial y_{12}}$$

$$\frac{\partial E}{\partial b_{21}} = \frac{\partial E}{\partial y_{21}}$$

$$\frac{\partial E}{\partial b_{22}} = \frac{\partial E}{\partial y_{22}}$$

$$\frac{\partial E}{\partial B} = \frac{\partial E}{\partial \mathbf{Y}}$$

Simplified version

$$Y = B + X \star K \Rightarrow \frac{\partial E}{\partial B} = \frac{\partial E}{\partial Y}$$

$$\frac{\partial E}{\partial Y} = \begin{bmatrix} \frac{\partial E}{\partial y_{11}} & \frac{\partial E}{\partial y_{12}} \\ \frac{\partial E}{\partial y_{21}} & \frac{\partial E}{\partial y_{22}} \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{\partial E}{\partial b_{11}} & \frac{\partial E}{\partial b_{12}} \\ \frac{\partial E}{\partial b_{21}} & \frac{\partial E}{\partial b_{22}} \end{bmatrix}$$

#### Actual version

$$Y_i = B_i + \sum_{j=1}^n X_j \star K_{ij}, \quad i = 1 \dots d$$

$$\frac{\partial E}{\partial B_i} = \frac{\partial E}{\partial Y_i}$$



## **Backward input**







### **Backward bias**

$$\begin{cases} y_{11} = b_{11} + k_{11}x_{11} + k_{12}x_{12} + k_{21}x_{21} + k_{22}x_{22} \\ y_{12} = b_{12} + k_{11}x_{12} + k_{12}x_{13} + k_{21}x_{22} + k_{22}x_{23} \\ y_{21} = b_{21} + k_{11}x_{21} + k_{12}x_{22} + k_{21}x_{31} + k_{22}x_{32} \\ y_{22} = b_{22} + k_{11}x_{22} + k_{12}x_{23} + k_{21}x_{32} + k_{22}x_{33} \end{cases}$$

$$\frac{\partial E}{\partial x_{11}} = \frac{\partial E}{\partial y_{11}} \begin{bmatrix} \frac{\partial y_{11}}{\partial x_{11}} \end{bmatrix} + \frac{\partial E}{\partial y_{12}} \begin{bmatrix} \frac{\partial y_{12}}{\partial x_{11}} \end{bmatrix} + \frac{\partial E}{\partial y_{21}} \begin{bmatrix} \frac{\partial y_{21}}{\partial x_{11}} \end{bmatrix} + \frac{\partial E}{\partial y_{22}} \begin{bmatrix} \frac{\partial y_{22}}{\partial x_{11}} \end{bmatrix}$$

$$k_{11} \qquad 0 \qquad 0 \qquad 0$$



$$Y = B + X \star K \Rightarrow \frac{\partial E}{\partial X} = \frac{\partial E}{\partial Y} f_{ull}^* K$$

$$\frac{\partial E}{\partial Y} = \begin{bmatrix} \frac{\partial E}{\partial y_{11}} & \frac{\partial E}{\partial y_{12}} \\ \frac{\partial E}{\partial y_{21}} & \frac{\partial E}{\partial y_{22}} \end{bmatrix} \rightarrow \begin{bmatrix} \frac{\partial E}{\partial x_{11}} & \frac{\partial E}{\partial x_{12}} & \frac{\partial E}{\partial x_{13}} \\ \frac{\partial E}{\partial x_{21}} & \frac{\partial E}{\partial x_{22}} & \frac{\partial E}{\partial x_{23}} \\ \frac{\partial E}{\partial x_{31}} & \frac{\partial E}{\partial x_{32}} & \frac{\partial E}{\partial x_{33}} \end{bmatrix}$$

#### Actual version

$$\frac{\partial E}{\partial X_j} = \sum_{i=1}^n \frac{\partial E}{\partial Y_i} *_{full} K_{ij}$$



## **CNN Visualization**



## **Deep CNN Layer Visualization**

VGG16







# Q&A





## 감사합니다

