Министерство образования Республики Беларусь Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных машин

ОТЧЁТ по лабораторной работе № 5 на тему: Исследование работы счетчиков

Студент гр. 250501

Снитко Д. А.

Преподаватель

Некревич Ю. И.

1 ЦЕЛЬ РАБОТЫ

Изучение работы двоичного, двоично-десятичного и реверсивного счетчиков.

2 ИСХОДНЫЕ ДАННЫЕ К РАБОТЕ

Лабораторная станция NI ELVIS.

Лабораторные модули dLab12, dLab13 и dLab14.

Поставленные задачи:

- 1. Изучить работу двоичного счетчика, двоично-десятичного счетчика и реверсивного счетчика в статическом режиме.
- 1.1. Построить таблицу истинности и диаграмму состояний для каждого счетчика.
- 1.2. Вычислить коэффициент пересчета K_{cq} двоичного и двоично-десятичного счетчиков и для реверсивного счетчика в режимах счета на увеличение и уменьшение.
- 1.3. Определить для двоичного и двоично-десятичного счетчиков тип исследуемых счетчиков: суммирующие или вычитающие.
- 1.4. Определить для реверсивного счетчика, при каком сигнале «L» происходит параллельная загрузка.
- 1.5. Определить, удается ли зарегистрировать изменение сигнала окончания счета (сигнала переноса) «PU» при появлении на выходе реверсивного счетчика кода «1111» в режиме счета на увеличение и сигнала «PD» при появлении на выходе реверсивного счетчика кода «0000» в режиме счета на уменьшение.
- 2. Изучить работу двоичного, двоично-десятичного и реверсивного счетчиков в динамическом режиме.
- 2.1. Определить для двоичного и двоично-десятичного счетчиков, по какому перепаду на тактовом входе «С» происходят изменения состояний данных счетчиков.
- 2.2. Построить для двоичного и двоично-десятичного счетчиков таблицы, описывающие режимы работы счетчиков.
- 2.3. Определить для реверсивного счетчика, по какому перепаду на тактовых входах «CU» и «CD» происходит изменение состояния счетчика.
- 2.4. Определить для реверсивного счетчика, при каких состояниях счетчика формируются сигналы переноса «PU» и «PD».
- 2.5. Определить для реверсивного счетчика, при каких уровнях входных сигналов на входах «R» и «L» происходит сброс и загрузка счетчика.
- 2.6. Определить условия для реверсивного счетчика, при которых происходит формирование сигналов переноса «PU» и «PD» в режимах сброса и параллельной загрузки.

3 ТЕОРИТИЧЕСКИЕ СВЕДЕНИЯ

3.1 Двоичный счетчик

3.1.1 Определение

Счетчиком называется устройство для подсчета числа входных импульсов. С поступлением каждого импульса на вход «С» состояние счетчика изменяется на единицу. Счетчик можно реализовать на нескольких триггерах, при этом состояние счетчика будет определяться состоянием его триггеров. В суммирующих счетчиках каждый входной импульс увеличивает число на его выходе на единицу, в вычитающих счетчиках каждый входной импульс уменьшает это число на единицу. Наиболее простые счетчики – двоичные. На рисунке 3.1 представлен суммирующий двоичный счетчик.

Рисунок 3.1 – Двоичный суммирующий счетчик

3.1.2 Особенности построения

При построении счетчика триггеры соединяют последовательно, Выход каждого триггера непосредственно действует на тактовый вход следующего. Для того, чтобы реализовать суммирующий счетчик, необходимо счетный вход очередного триггера подключать к инверсному выходу предыдущего. Для того, чтобы изменить направление счета (реализовать вычитающий счетчик), можно предложить следующие способы:

- Считывание выходных сигналов счетчика не с прямых, а с инверсных выходов триггеров.
- Изменение структуры связей в счетчике путем подачи на счетный вход триггера сигнала не с инверсного, а с прямого выхода предыдущего каскада.

3.1.3 Коэффициент пересчета

Счетчики характеризуются числом состояний в течение одного периода (цикла) счета. Число состояний определяется количеством

триггеров k в структуре счетчика. Так для двоичного счетчика при k=3 число состояний равно $N=2^3=8$ (выходной код изменяется от 000 до 111).

Число состояний счетчика принято называть коэффициентом пересчета $K_{cч}$. Этот коэффициент равен отношению числа импульсов $N_{вых}$ на выходе к числу импульсов $N_{вых}$ на выходе старшего разряда счетчика за период счета (формула 3.1):

(3.1)

Если на вход счетчика подавать периодическую последовательность импульсов с чистотой $f_{\text{вх}}$, то частота $f_{\text{вых}}$ на выходе старшего разряда счетчика будет меньше в $K_{\text{сч}}$ раз (формула 3.2):

(3.2)

Поэтому счетчики можно использовать в качестве делителей частоты, величина K_{cq} в этом случае будет называться коэффициентом деления. Для увеличения K_{cq} приходится увеличивать число триггеров в схеме счетчика. Каждый дополнительный триггер удваивает число состояний счетчика, следовательно, и число K_{cq} . Для уменьшения коэффициента K_{cq} можно в качестве выхода счетчика рассматривать выходы триггеров промежуточных каскадов. Например, для счетчика на трех триггерах K_{cq} 8, если взять выход 2-го триггера, то K_{cq} = 4. При этом K_{cq} всегда будет являться целой степенью числа 2, а именно: 2, 4, 8, 16 и т.д.

3.1.4 Условное графическое обозначение

На рисунке 3.3 показано условное графическое обозначение двоичного счетчика К555ИЕ5.

7p

Рисунок 3.3 — Условное графическое обозначение двоичного счетчика К555ИЕ5

3.2 Двоично-десятичный счетчик

3.2.1 Счетчик с любым целым коэффициентом пересчета Ксч

Счетчик с коэффициентом пересчета $K_{cч}$, равным любому целому числу, можно реализовать на основе двоичного счетчика путем ввода обратных связей для исключения запрещенных состояний. Например, для счетчика на трех триггерах реализуется $K_{cч}$ в пределах от 2 до 7, но при этом

один или два триггера могут оказаться лишними. При использовании всех трех триггеров можно получить $K_{cq} = 5...7$, т.е. $2^2 < K_{cq} < 2^3$. Счетчик с $K_{cq} = 5$ должен иметь 5 состояний, которые в простейшем случае образуют последовательность: $\{0, 1, 2, 3, 4\}$. Циклическое повторение этой последовательности означает, что коэффициент деления счетчика равен 5.

Для построения суммирующего счетчика с $K_{cq} = 5$ надо, чтобы после формирования последнего числа из последовательности $\{0, 1, 2, 3, 4\}$ счетчик переходил не к числу 5, а к числу 0. В двоичном коде это означает, что от числа 100 нужно перейти к числу 000, а не 101. Изменение естественного порядка счета возможно при введении дополнительных связей между триггерами счетчика. Можно воспользоваться следующим способом: как только счетчик попадает в нерабочее состояние (в данном случае 101), этот факт должен быть опознан и выработан сигнал, который перевел бы счетчик в состояние 000.

Нерабочее состояние счетчик описывается логическим уравнением (уравнение 3.3):

(3.3)

Состояния 110 и 111 также являются нерабочими и поэтому учтены при составлении уравнения. Если на выходе эквивалентной логической схемы F=0, значит, счетчик находится в одном из рабочих состояний: 0 1 2 3 4. Как только он попадает в одно из нерабочих состояний 5 6 7, формируется сигнал F=1. Появление сигнала F=1 должно переводить счетчик в начальное состояние 000, следовательно, этот сигнал нужно использовать для воздействия на установочные входы триггеров счетчика, которые осуществляли бы сброс счетчика в состояние $Q_1=Q_2=Q_3=0$. Один из вариантов построения счетчика с $K_{cq}=5$ представлен на рисунке 3.4.

Рисунок 3.4 – Схема счетчика с коэффициентом пересчета 5

При последовательном включении триггера и счетчика с K_{cq} =5 образуется десятичный счетчик, у которого K_{cq} =10. Такие счетчики широко используются для построения цифровых измерительных приборов с удобным для оператора десятичным отсчетным устройством.

3.2.2 Условное графическое обозначение

На рисунке 3.5 приведено условное графическое обозначение двоично-десятичного счетчика К555ИЕ2.

Рисунок 3.5 — Условное графическое обозначение двоично-десятичного счетчика K555ИE2

3.3 Реверсивный счетчик

3.3.1 Определение

Реверсивным называется счетчик, который может работать как в режиме суммирования, так и в режиме вычитания. Направление счета в реверсивном счетчике определяется способом передачи сигнала между триггерами соседних разрядов, таким образом, реверсивный счетчик должен обязательно содержать в своем составе устройства, выполняющие функцию управления последовательностью счета. Счетчики находят широкое применение в вычислительных и управляющих устройствах, цифровых измерительных приборах. Отметим, что счетчик является цифровым аналогом генератора линейно изменяющегося напряжения, т.к. на его выходе может быть сформирован линейно изменяющийся код.

3.3.2 Типы реверсивных счетчиков

В зависимости от выбранного способа управления внутренними триггерами реверсивные счетчики могут быть как асинхронными (последовательными) так и синхронными (параллельными). Для построения асинхронного реверсивного счетчика достаточно с помощью коммутационных узлов обеспечить подачу сигналов с прямого при суммировании или с инверсного при вычитании выхода предыдущего триггера на вход последующего триггера.

В схеме в качестве коммутационного узла использованы логические элементы «Исключающее ИЛИ». При V=0 элементы Исключающее ИЛИ работают как повторители входных логических сигналов, в результате чего реализуется схема суммирующего счетчика. При V=1 элементы Исключающее ИЛИ инвертируют выходные сигналы триггеров предыдущих каскадов, в результате чего схема выполняет функции вычитающего счетчика.

На рисунке 3.6 показан один из вариантов построения асинхронного двоичного реверсивного счетчика.

Рисунок 3.6 – Схема реверсивного асинхронного двоичного счетчика

Последовательные счетчики проще параллельных по устройству, но работают медленнее, кроме того, при переключении последовательной цепочки триггеров из-за задержки распространения тактового сигнала на их выходах могут кратковременно возникать ложные комбинации сигналов, нарушающие нормальную работу счетчика. В результате при смене направления счета записанная информация может быть потеряна.

Более совершенным в этом плане является синхронный реверсивный счетчик, в котором счетные импульсы поступают одновременно на входы всех триггеров.

Временная диаграмма переключений синхронного счетчика показана на рисунке 3.7.

Рисунок 3.7 – Диаграмма переключений синхронного счетчика

3.3.3 Условное графическое обозначение

Рассмотрим более подробно устройство реверсивного счетчика на примере микросхемы типа К555ИЕ7. Эта микросхема представляет собой 4-разрядный синхронный реверсивный двоичный счетчик, т.е. все триггеры счетчика переключаются одновременно от одного счетного импульса. Условное графическое обозначение микросхемы типа ИЕ7 приведено на рисунке 3.8.

Рисунок 3.8 – Условное графическое обозначение двоичного реверсивного счетчика K555ИЕ7

Логическая структура микросхемы типа ИЕ7 приведена на рисунке 3.9.

Рисунок 3.9 – Логическая структура микросхемы К555ИЕ7

Основу микросхемы ИЕ7 составляют четыре ЈК-триггера, а вспомогательные операции выполняются логическими элементами 2И-ИЛИ. Счетчик имеет управляющий вход L, называемый также входом предварительной записи. Тактовые импульсы подаются на счетные входы: CU - прямого счета и CD - обратного счета. Если на вход CU приходит фронт тактового импульса, то содержимое счетчика увеличивается на единицу. Аналогичный перепад, поданный на вход СD, уменьшает на единицу содержимое счетчика. Информационные входы D0-D3 позволяют записать в счетчик начальное число, от которого будет выполняться изменение состояния счетчика. Запись производится подачей логического нуля на управляющий вход L. При этом информация с D1-D4 записывается в триггеры счетчика и появляется на его выходах Q0 - O3. независимо от состояния сигналов на счетных входах CU и CD. Выходы счетчика Q3, Q2, Q1, Q0 имеют веса 8-4-2-1. Для каскадного наращивания нескольких счетчиков предусмотрены выходы: PU (служит для окончания счета на увеличение и переноса счета в следующий разряд) и PD (служит для окончания счета на уменьшение и, соответственно, обратного переноса). Эти выходы подключаются, соответственно, к входам CU и CD, следующего (старшего) счетчика.

3.3.4 Режимы работы

В зависимости от состояний входов возможны различные режимы работы реверсивного счетчика, отраженные в таблице 3.1:

Таблица 3.1 – Режимы работы реверсивного счетчика

Режим				B	ход						Вых	ход		
	R	L	CU	CD	D0	D1	D2	D3	Q0	Q1	Q2	Q3	PU	PD
Сброс	1	X	X	0	X	X	X	X	0	0	0	0	1	0
	1	X	X	1	X	X	X	X	0	0	0	0	1	1
Параллельная	0	0	X	0	0	0	0	0	0	0	0	0	1	0
загрузка	0	0	X	1	0	0	0	0	0	0	0	0	1	1
	0	0	0	X	1	1	1	1	1	1	1	1	0	1
	0	0	1	X	1	1	1	1	1	1	1	1	1	1
Счет на	0	1	1	1	X	X	X	X	Счет на 1				1	1
увеличение									увеличение					
Счет на	0	1	1	1	X	X	X	X	Счет на 1			1	1	
уменьшение										умены	шение			

Описание режимов работы двоичного счетчика:

- Режим счета реализуется, когда L=1: при подаче счетных импульсов на счетный вход CU происходит увеличение двоичного выходного кода, при подаче счетных импульсов на счетный вход CD уменьшение, информационные входы D0-D3 могут находиться в любом состоянии, что обозначено в таблице символом X.
- Режим параллельной записи обеспечивается, когда L=0, при этом кодовые наборы, установленные на информационных входах, повторяются на выходах соответствующих разрядов, независимо от состояния счетных входов;
- Сброс счетчика осуществляется подачей высокого уровня напряжения на вход R, что приводит к отключению всех других входов и запрещению записи. В результате на информационных выходах устанавливаются сигналы $Qn=0\ (n=0,1,2,3)$, на выходе окончания счета на увеличение сигнал PU=1, а сигнал на выходе окончания счета на уменьшение PD дублирует состояние счетного входа CD. Во всех других режимах R=0.

Режимы сброса и параллельной записи используются для начальной установки счетчика. Режим счета является основным рабочим режимом устройства.

4 ВЫПОЛНЕНИЕ РАБОТЫ

4.1 Изучение работы двоичного счетчика

4.1.1 Главное окно программы для исследования работы двоичного счетчика представлено на рисунке 4.1, а в левом верхнем углу данного рисунка расположено условное графическое изображение электронного устройства.

Рисунок 4.1 – Главная панель приложения для исследования двоичного счетчика

4.1.2 Установим на входах асинхронного сброса счетчика сигналы R1=0, R2=0 и выполним сброс счетчика, изменяя значения сигналов R1 и R2 сначала в «1», а затем в «0». Подавая импульсы на вход С 16 раз, получим таблицу истинности и временную диаграмму состояний. Таблица истинности приведена на рисунке 4.2.

	R2	R1	C	Q3	Q2	Q1	Q0
Шаг 1	0	0	П	0	0	0	1
Шаг 2	0	0	П	0	0	1	0
Шаг 3	0	0	П	0	0	1	1
Шаг 4	0	0	П	0	1	0	0
Шаг 5	0	0	П	0	1	0	1
Шаг 6	0	0	п	0	1	1	0
Шаг 7	0	0	П	0	1	1	1
Шаг 8	0	0	П	1	0	0	0
Шаг 9	0	0	П	1	0	0	1
Шаг 10	0	0	П	1	0	1	0
Шаг 11	0	0	П	1	0	1	1
Шаг 12	0	0	П	1	1	0	0
Шаг 13	0	0	п	1	1	0	1
Шаг 14	0	0	П	1	1	1	0
Шаг 15	0	0	П	1	1	1	1
Шаг 16	0	0	П	0	0	0	0

Рисунок 4.2 — Таблица истинности двоичного счетчика при работе в статическом режиме

Временная диаграмма состояний данного электронного прибора приведена на рисунке 4.3.

Рисунок 4.3 – Диаграмма состояний двоичного счетчика при работе в статическом режиме

- **4.1.3** По полученным таблице истинности и временной диаграмме состояний можно определить, что данный счетчик является счетчиком суммирующего типа с коэффициентом пересчета K_{cu} =16.
- **4.1.4** Подавая на входы асинхронного сброса R1 и R2 счетчика всевозможные комбинации сигналов логических «0» и «1», получим временную диаграмму состояний, представленную на рисунке 4.4.

Рисунок 4.4 — Диаграмма состояний двоичного счетчика при работе в динамическом режиме

4.1.5 В таблице 4.1 показано, каким режимам работы счетчика соответствуют его входные сигналы.

Таблица 4.1 – режимы работы двоичного счетчика

Вход R2	Вход R1	Режим работы
0	0	
0	1	Режим счета
1	0	
1	1	Режим сброса

4.1.6 По полученной диаграмме состояний и выходным индикаторам Q1, Q2, Q3, Q4 можно сделать вывод, что переключение счетчика происходит по перепаду синхросигнала из «1» в «0».

4.2 Исследование работы двоично-десятичного счетчика

4.2.1 Главное окно программы для исследования работы двоичного счетчика представлено на рисунке 4.5, а в левом верхнем углу данного рисунка расположено условное графическое изображение электронного устройства.

Рисунок 4.5 – Главная панель приложения для исследования двоично-десятичного счетчика

4.2.2 Установим на входах асинхронной установки и асинхронного сброса счетчика сигналы S1=0, S2=0, R1=0, R2=0 и выполним сброс счетчика, изменяя значения сигналов R1 и R2 сначала в «1», а затем в «0». Подавая импульсы на вход С 10 раз, получим таблицу истинности и временную диаграмму состояний.

Таблица истинности приведена на рисунке 4.6.

	52	51	R2	R1	C	Q3	Q2	Q1	Q0
Шаг 1	0	0	0	0	П	0	0	0	1
Шаг 2	0	0	0	0	П	0	0	1	0
Шаг 3	0	0	0	0	П	0	0	1	1
Шаг 4	0	0	0	0	П	0	1	0	0
Шаг 5	0	0	0	0	П	0	1	0	1
Шаг 6	0	0	0	0	П	0	1	1	0
Шаг 7	0	0	0	0	П	0	1	1	1
Шаг 8	0	0	0	0	П	1	0	0	0
Шаг 9	0	0	0	0	П	1	0	0	1
Шаг 10	0	0	0	0	П	0	0	0	0

Рисунок 4.6 – Таблица истинности двоично-десятичного счетчика при работе в статическом режиме

Временная диаграмма состояний данного электронного прибора приведена на рисунке 4.7.

Рисунок 4.7 – Диаграмма состояний двоично-десятичного счетчика при работе в статическом режиме

- **4.2.3** По полученным таблице истинности и временной диаграмме состояний можно определить, что данный счетчик является счетчиком суммирующего типа с коэффициентом пересчета $K_{cq}=10$.
- **4.2.4** Подавая на входы асинхронного сброса R1 и R2 счетчика всевозможные комбинации сигналов логических «0» и «1», получим временную диаграмму состояний.

Временная диаграмма состояний данного электронного прибора приведена на рисунке 4.8.

Рисунок 4.8 – Диаграмма состояний двоично-десятичного счетчика при изменении сигналов асинхронного сброса

4.2.5 Подавая на входы асинхронной установки S1 и S2 счетчика всевозможные комбинации сигналов логических «0» и «1», получим временную диаграмму состояний.

Временная диаграмма состояний данного электронного прибора приведена на рисунке 4.9.

Рисунок 4.9 — Диаграмма состояний двоично-десятичного счетчика при изменении сигналов асинхронной установки

4.2.6 В таблице 4.2 показано, каким режимам работы счетчика соответствуют его входные сигналы.

Таблица 4.2 – режимы работы двоично-десятичного счетчика

1 иолица 112	Pentimbi pac	двен по	досин шого с	101 IIIIM			
Вход R2	Вход R1	Bход S2	Вход S1	Режим работы			
0	0	×	×				
0	1	×	×				
1	0	×	×				
×	×	0	0	Режим счета			
×	×	0	1				
×	×	1	0				
1	1	×	×	Режим сброса			
×	×	1	1	Предварительная			
				установка (уст. в 9)			

4.2.7 По полученной диаграмме состояний и выходным индикаторам Q1, Q2, Q3, Q4 можно сделать вывод, что переключение счетчика происходит по перепаду синхросигнала из «1» в «0».

4.3 Исследование работы реверсивного счетчика

4.3.1 Главное окно программы для исследования работы реверсивного счетчика представлено на рисунке 4.10, а в левом верхнем углу данного рисунка расположено условное графическое изображение устройства.

Рисунок 4.10 – Главная панель приложения для исследования двоично-десятичного счетчика

4.3.2 Установим на входах асинхронной установки и асинхронного сброса счетчика сигналы L=1, R=0 и выполним сброс счетчика, установив значение сигнала R сначала в «1», а затем в «0». Подавая импульсы на вход CU 16 раз, получим таблицу истинности и временную диаграмму состояний. Таблица истинности приведена на рисунке 4.11.

	R	L	D3	D2	D1	D0	CU	CD	Q3	Q2	Q1	Q0	PU	PD
War 1	0	1	0	0	0	0	LF	1	0	0	0	1	1	1
Шаг 2	0	1	0	0	0	0	LF	1	0	0	1	0	1	1
Шаг 3	0	1	0	0	0	0	LF	1	0	0	1	1	1	1
Шаг 4	0	1	0	0	0	0	LF	1	0	1	0	0	1	1
Шаг 5	0	1	0	0	0	0	LF	1	0	1	0	1	1	1
Шаг б	0	1	0	0	0	0	LF	1	0	1	1	0	1	1
War 7	0	1	0	0	0	0	LF	1	0	1	1	1	1	1
Шаг 8	0	1	0	0	0	0	LF	1	1	0	0	0	1	1
Шаг 9	0	1	0	0	0	0	LF	1	1	0	0	1	1	1
Шаг 10	0	1	0	0	0	0	LF	1	1	0	1	0	1	1
War 11	0	1	0	0	0	0	LF	1	1	0	1	1	1	1
Шаг 12	0	1	0	0	0	0	LF	1	1	1	0	0	1	1
Шаг 13	0	1	0	0	0	0	LF	1	1	1	0	1	1	1
Шаг 14	0	1	0	0	0	0	LF	1	1	1	1	0	1	1
Шаг 15	0	1	0	0	0	0	LF	1	1	1	1	1	1	1
Шаг 16	0	1	0	0	0	0	LF	1	0	0	0	0	1	1

Рисунок 4.11 — Таблица истинности реверсивного счетчика при работе в статическом режиме

Временная диаграмма состояний данного электронного прибора приведена на рисунке 4.12.

Рисунок 4.12 — Временная диаграмма состояний реверсивного счетчика при работе в статическом режиме

- **4.3.3** По полученным таблице истинности и временной диаграмме состояний можно определить, что в статическом режиме исследования данного электронного прибора возможно зарегистрировать изменение сигнала окончания счета (сигнала переноса) PU при появлении на выходе кода «1111». Также можно определить коэффициент пересчета K_{cq} в режиме счета на увеличение, который будет равен 16.
- **4.3.4** Установим на входах асинхронной установки и асинхронного сброса счетчика сигналы L=1, R=0 и выполним сброс счетчика, установив значение сигнала R сначала в «1», а затем в «0». Подавая импульсы на вход CD 16 раз, получим таблицу истинности и временную диаграмму состояний. Таблица истинности приведена на рисунке 4.13.

	R	L	D3	D2	D1	DO	CU	CD	Q3	Q2	Q1	Q0	PU	PD
Шаг 1	0	1	0	0	0	0	1	LF	1	1	1	1	1	1
Шаг 2	0	1	0	0	0	0	1	LF	1	1	1	0	1	1
Шаг 3	0	1	0	0	0	0	1	LF	1	1	0	1	1	1
Шаг 4	0	1	0	0	0	0	1	LF	1	1	0	0	1	1
Шаг 5	0	1	0	0	0	0	1	LF	1	0	1	1	1	1
Шаг б	0	1	0	0	0	0	1	LF	1	0	1	0	1	1
Шаг 7	0	1	0	0	0	0	1	LF	1	0	0	1	1	1
Шаг 8	0	1	0	0	0	0	1	LF	1	0	0	0	1	1
Шаг 9	0	1	0	0	0	0	1	LF	0	1	1	1	1	1
Шаг 10	0	1	0	0	0	0	1	LF	0	1	1	0	1	1
War 11	0	1	0	0	0	0	1	LF	0	1	0	1	1	1
Шаг 12	0	1	0	0	0	0	1	LF	0	1	0	0	1	1
War 13	0	1	0	0	0	0	1	LF	0	0	1	1	1	1
Шаг 14	0	1	0	0	0	0	1	LF	0	0	1	0	1	1
War 15	0	1	0	0	0	0	1	LF	0	0	0	1	1	1
Шаг 16	0	1	0	0	0	0	1	LF	0	0	0	0	1	1

Рисунок 4.13 — Таблица истинности реверсивного счетчика при работе в статическом режиме

Временная диаграмма состояний данного электронного прибора приведена на рисунке 4.14.

Рисунок 4.14 — Временная диаграмма состояний реверсивного счетчика при работе в статическом режиме

- **4.3.5** По полученным таблице истинности и временной диаграмме состояний можно определить, что в статическом режиме исследования данного электронного прибора возможно зарегистрировать изменение сигнала окончания счета (сигнала переноса) РD при появлении на выходе кода «0000». Также можно определить коэффициент пересчета К_{сч} в режиме счета на уменьшение, который будет равен 16.
- **4.3.6** Установим на входах асинхронной установки и асинхронного сброса счетчика сигналы L=1, R=0 и выполним сброс счетчика, установив значение сигнала R сначала в «1», а затем в «0». После этого подадим на входы параллельной загрузки D0, D1, D2, D3 значения сигналов D0=0, D1=1, D2=1, D3=0, далее выполним параллельную загрузку счетчика, установив вход управления загрузкой L сначала в состояние «0», а после в состояние «1». Далее повторим параллельную загрузку для следующих значений сигналов: D0=0, D1=0, D2=0, D3=0 и D0=1, D1=1, D2=1, D3=1, получив при этом значения на выходах счетчика, представленные в таблице 4.3

Таблица 4.3 – работа реверсивного счетчика в режиме параллельной загрузки

						1			1 2
	D0	D1	D2	D3	L	Q0	Q1	Q2	Q3
Шаг 1	0	1	1	0	1	0	0	0	0
Шаг 2	0	1	1	0	0	0	1	1	0
Шаг 3	0	1	1	0	1	0	1	1	0
Шаг 4	0	0	0	0	1	0	1	1	0
Шаг 5	0	0	0	0	0	0	0	0	0
Шаг 6	0	0	0	0	1	0	0	0	0
Шаг 7	1	1	1	1	1	0	0	0	0
Шаг 8	1	1	1	1	0	1	1	1	1
Шаг 9	1	1	1	1	1	1	1	1	1

- **4.3.7** По полученным результатам можно определить, что в режиме параллельной загрузки реверсивного счетчика параллельная загрузка происходит при подаче на вход управления загрузкой L значения «0».
- **4.3.8** Управляя состоянием входных сигналов в динамическом режиме, получим временную диаграмму работы реверсивного счетчика в режимах счета на увеличение и на уменьшение. Данная временная диаграмма представлена на рисунке 4.15.

Рисунок 4.15 — Временная диаграмма состояний реверсивного счетчика при работе в режиме счета на увеличение и уменьшение

- **4.3.9** По данной временной диаграмме можно определить, что изменения состояния реверсивного счетчика в режимах счета на увеличение и на уменьшение происходят при появлении переднего фронта на тактовых входах CD и CU. Также можно определить, что формирование сигнала переноса PU происходит при Q0=1, Q1=1, Q2=1, Q3=1 и появлении на тактовом входе CU переднего фронта, а для PD при Q0=0, Q1=0, Q2=0, Q3=0 и при появлении на тактовом входе CD переднего фронта.
- **4.3.10** По данной временной диаграмме можно определить, что сброс происходит при появлении на входе R сигнала логического «1», а параллельная загрузка происходит при появлении на входе управления загрузкой L логического «0». Значение сигнала переноса «PU» в режиме сброса и установки значения «1111» всегда равно «1», сигнал «PD» дублирует состояние счетного входа «CD». При установке значения «0000», значение сигнала «PD» равно «1», сигнал «PU» дублирует состояние входа «CU».
- **4.3.11** Управляя состоянием входных сигналов в динамическом режиме, получим временную диаграмму работы реверсивного счетчика в

режимах параллельной загрузки и сброса. Данная временная диаграмма представлена на рисунке 4.16.

Рисунок 4.16 – Временная диаграмма состояний реверсивного счетчика при работе в режимах параллельной загрузки и сброса

5 ВЫВОДЫ

Изучена работа двоичного счетчика, двоично-десятичного счетчика и реверсивного счетчика в статическом режиме и в динамическом режиме.

Построены таблицы истинности и диаграммы состояний для каждого счетчика.

Вычислены коэффициент пересчета K_{eq} двоичного и двоичнодесятичного счетчиков и для реверсивного счетчика в режимах счета на увеличение и уменьшение.

Определен для двоичного и двоично-десятичного счетчиков тип исследуемых счетчиков: суммирующие или вычитающие.

Определено для двоичного и двоично-десятичного счетчиков, по какому перепаду на тактовом входе «С» происходят изменения состояний данных счетчиков.

Построены для двоичного и двоично-десятичного счетчиков таблицы, описывающие режимы работы счетчиков.

Определено для реверсивного счетчика, по какому перепаду на тактовых входах «CU» и «CD» происходит изменение состояния счетчика.

Определено для реверсивного счетчика, при каких состояниях счетчика формируются сигналы переноса «PU» и «PD».