ME 210 – PROBABILIDADE I PROF. ÉLCIO LEBENSZTAYN

Name	TO A .	
Nome completo:	 KA:	

Instruções:

- 1. Preencha o seu nome completo e RA em todas as folhas da prova.
- 2. Desligue ou desative os seus equipamentos eletrônicos.
- 3. A prova é individual, sem consulta, com duração de 2 horas.
- 4. A prova pode ser feita a lápis, e é permitido o uso de calculadora.
- 5. Justifique adequadamente as questões, deixando claras as respostas.
- 6. Todas as questões têm o mesmo valor.

Distribuição de X	$p_X(x)$ ou $f_X(x)$	E(X)	Var(X)
Binomial (n, p)	$\binom{n}{x} p^x (1-p)^{n-x}, x = 0, 1, \ldots, n$	np	np(1-p)
Poisson(λ)	$\frac{e^{-\lambda}\lambda^x}{x!},x=0,1,\ldots$	λ	λ
Geométrica(p)	$p(1-p)^{x-1}, x=1,2,$	1/p	$(1-p)/p^2$
Bin. Negativa (r, p)	$\binom{x-1}{r-1} p^r (1-p)^{x-r}, x=r,r+1,\ldots$	r/p	$r\left(1-p\right)/p^2$
Hipergeom. (n, R, N) , $p = R/N$	$\binom{R}{x}\binom{N-R}{n-x}\binom{N}{n}^{-1}$	np	$\left(\frac{N-n}{N-1}\right)np(1-p)$
Uniforme (a,b)	$(b-a)^{-1}, a < x < b$	(a+b)/2	$(b-a)^2/12$
Normal (μ, σ^2)	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\},x\in\mathbb{R}$	μ	σ^2
Exponencial(λ)	$\lambda e^{-\lambda x}, x > 0$	$1/\lambda$	$1/\lambda^2$

\overline{z}	0,00	0,05	0,11	0,16	0,22	0,27	0,33	0,38
$\Phi(z)$	0,5	0,5199	0,5438	0,5636	0,5871	0,6064	0,6293	0,648
\overline{z}	0,44	0,50	0,56	0,63	0,69	0,76	0,84	0,91
$\Phi(z)$	0,67	0,6915	0,7123	0,7357	0,7549	0,7764	0,7995	0,8186
\overline{z}	1,00	1,09	1,19	1,31	1,42	1,62	1,86	2,33
$\Phi(z)$	0,8413	0,8621	0,883	0,9049	0,9222	0,9474	0,9686	0,9901

Valores de $\Phi(z) = P(Z \le z)$, onde $Z \sim N(0, 1)$.

Nome completo:	RA:	
----------------	-----	--

1. Um cliente que visita o departamento de roupas masculinas de uma loja compra um terno com probabilidade 2/5, uma gravata com probabilidade 5/12 e uma camisa com probabilidade 1/2. O cliente compra um terno e uma gravata com probabilidade 2/15, um terno e uma camisa com probabilidade 17/60 e uma gravata e uma camisa com probabilidade 1/4; compra os três itens com probabilidade 1/12.

- (a) Qual a probabilidade de que o cliente não compre nenhum dos itens?
- (b) Dado que o cliente não vai comprar uma gravata, qual a probabilidade condicional de que compre um terno?

a)
$$P(T) = 2/5$$
, $P(G) = 5/12$, $P(C) = 1/2$
 $P(T \cap G) = 2/15$, $P(T \cap C) = 1/2$
 $P(T \cap C \cap G) = 1/42$
 $P(T \cap C \cap G^{c}) = 1 - P(T \cup C \cup G) = 1 - 0.733 = 0.267$

independentes P(TUCUG) = P(T) + P(G) + P(C) - P(TNG) - P(TNC)
- P(GNC) + P(TNGNC)

 $= \frac{2+5+1}{5} + \frac{1}{12} - \frac{2-17}{15} - \frac{1}{10} + \frac{1}{12}$ = 0,733

b) $P(T \mid G^c) = P(T \cap G^c) = 0.067 + 0.2 = 0.457$ $P(G^c) = 0.583$

 $P(G^c) = 1 - P(G) = 1 - \frac{9}{12} = 0.583$ $P(T \cap G^c) = P(T) - P(T \cap G)$ $P(T) = P(T \cap G) + P(T \cap G^c)$ $= \frac{2}{15} - \frac{2}{15} = 0.266$

 $P(T^{c} \cap C^{c} \cap G^{c}) = 1 - P(TUCUG)$ $P(TUCUG) = P(T) + P(C) + P(G) - P(T\cap C) - P(T\cap G) - P(T\cap G)$ $+ P(T\cap C\cap G)$ $P(A|B) = P(A\cap B)$ $P(A) + P(A^{c}) = 1$ $P(T\cap G^{c}) - P(T) - P(T\cap G)$

Nome completo:		RA:
----------------	--	-----

2. A nota de um estudante em um exame vestibular é uma variável aleatória com distribuição normal com média 72 e desvio padrão 7,5. Desejamos obter as notas de corte c_1 e c_2 (com $c_1 < c_2$) que dividem os vestibulandos em três categorias:

-	Categoria	Nota
•	A	Superior a c ₂
-	В	Entre c_1 e c_2
-	C	Inferior a c_1

Os valores de c_1 e c_2 são obtidos de forma que as categorias A, B e C correspondam respectivamente a 20%, 60% e 20% da população de estudantes que fazem o vestibular.

(a) Determine os valores de c_1 e c_2 .

(b) Uma amostra aleatória de 9 provas é selecionada. Calcule a probabilidade de que a amostra seja formada por exatamente 3 estudantes de cada categoria.

- 31 = 0,84

Seja X uma variável aleatória contínua com densidade dada por

$$f(x) = \begin{cases} 4x^3 & \text{se } 0 < x < 1, \\ 0 & \text{caso contrário.} \end{cases}$$

- (a) Calcule a média e a variância da variável aleatória W = 10 X 8.
- (b) Encontre a densidade da variável aleatória $Y = -\log X$.

(b) Encontre a densidade da variável aleatória
$$Y = -\log X$$
. $E(x) = \int_{-\infty}^{\infty} x f(x) dx$

(a) $W = 10x - 8$

$$E(w) = 10 E(x) - 8 = 10 \frac{4}{5} - 8 = 0$$

$$E(x) = \int_{-\infty}^{\infty} x f(x) dx = \int_{-\infty}^{\infty} x f(x) dx = 4 \cdot \int_{-\infty}^{\infty} x^4 dx = 4 \cdot x^5 dx$$

$$= 4$$

$$Van(x) = E(x^2) - [E(x)]^2$$

-
$$Var(x) = V(10x-8) = 10^{9} Var(x) - 50^{9}0,026 = 2,67$$

 $Var(x) = E(x^{2}) - E(x)]^{2} = \frac{2}{3} - \left[\frac{4}{5}\right]^{2} = 0,0266$
 $E(x^{2}) - C^{2} = \frac{2}{3} - \left[\frac{4}{5}\right]^{2} = 0,0266$

$$E(\chi^2) = \int_{-\infty}^{\infty} x^2 f(x) dx = \int_{0}^{1} \chi^2 .4 \chi^3 dx = 4 \int_{0}^{1} \chi^3 dx = 4 \chi^6 \left[\frac{1}{3} \chi^6 \right] \frac{2}{3} \chi^6 \left[\frac{2}{3} \chi^6 \right] \frac{2}{3} \chi^6 \left[\frac{2}$$

$$\frac{dx}{dy} = -2^{-4}y$$

$$f(x) = 4x^3$$

 $f(x(y)) = 4e^{-3y}$

$$g(y) = f(x(y)) \cdot \left| \frac{dx}{dy} \right|$$

- 4. Uma fábrica utiliza dois métodos para a produção de lâmpadas: 70% delas são produzidas pelo método A e o resto pelo método B. A duração em horas de uma lâmpada tem distribuição exponencial com *média* igual a 800 ou 1000, conforme se utilize o método A ou o B.
 - (a) Escolhe-se ao acaso uma lâmpada da produção. Dado que essa lâmpada durou mais de 900 horas, qual a probabilidade condicional de que tenha sido produzida pelo método A?
 - (b) Seleciona-se uma amostra aleatória de 10 lâmpadas. Calcule a probabilidade de que pelo menos duas delas funcionem mais de 900 horas.

tentado A-0,7 - 2: 1/200 fri-2e-2x x>0

altodo B-0,3 - 7: 1/200 fri-2e-2x

Lucação em horas distribuição exponencial com

edra ignal - 800 (F) a L000 (B)

 $\in (\chi) = 1/\chi$

$$P(A|\chi)900) = P(A|\chi)900) = -0.7e^{-9/8} = 0.7$$

$$P(\chi)900) = 0.7.P(\chi)900|A) + 0.3P(\chi)900|B) = 0.7.e^{-9/8} + 0.3e^{-9/8}$$

$$P(\chi)900|A) = \int_{900}^{\infty} f(\chi)d\chi = \int_{900}^{\infty} e^{-9/8} d\chi = e^{-9/8}$$

b) $n = 10 \text{ lanpada}_{2}$ $\rho = 0.7 (x>900)$ $P(Y \geqslant 2) = 1 - P(x=0) - P(x=1) = 1 - [0.3]^{10} - [7(0.3)^{9}]$ Genomial $(n, \beta) = (10, 0.7) = 1 - (0.3)^{10}(8)$ = 0.999 $P(x=0) = {10 \choose x} P^{x} (1-\beta)^{n-x}$ $P(x=0) = {10 \choose 0} (0.7)^{9} (1-0.7)^{10-0} = 0.3^{10}$ $P(y-1) = {10 \choose 1} (0.7)^{1} (1-0.7)^{10-1} = 10.0, 7(0.3)^{9}$

Nome completo:	RA:
----------------	-----

5. Uma urna contém três bolas pretas e duas bolas brancas. Realizam-se três extrações, sem reposição. Sejam X o número de bolas pretas obtidas e Y o número de bolas brancas extraídas antes de obter a primeira bola preta.

(a) Determine a função de probabilidade conjunta de X e Y, bem como as marginais. São X e Yindependentes?

a)
$$\frac{1}{x}$$
 0 1 2 $\frac{1}{2}$ (X) Surprise de prob morginair $\frac{1}{2}$ 1/10 1/20 1/10 3/10 $\frac{3}{10}$ $\frac{1}{2}$ $\frac{1}{2}$ 1/2 1/2 $\frac{3}{2}$ $\frac{1}{2}$ $\frac{1}{$

Eurpoès de prob morginais

$$P_{x}(x) = \sum_{x} \rho(x,y), x \in \mathbb{R}$$

 $P_{y}(y) = \sum_{x} \rho(x,y)$

6)
$$Cor(x, y) = E(xy) - E(x)E(y)$$

= $\frac{7}{10} - \frac{18^9}{10} = \frac{2}{10} = -\frac{1}{5}$

$$E(xy) = \sum_{y} xy \cdot P(x=x, y=y)$$

$$= 1 \cdot \frac{1}{10} + 2 \cdot \frac{1}{10} + 2 \cdot \frac{1}{5} = \frac{17}{10} \quad E(x) = \sum_{x} x P(x=x, y) = 1 \cdot \frac{3}{3} + 2 \cdot \frac{1}{6} + \frac{3}{10}$$

$$\frac{(P(X=x,Y=y)=P(X=x).P(Y=y))}{(P(X=x,Y=y)=P(X=x).P(Y=y))}$$

$$\frac{(P(X=x,Y=y)=P(X=x).P(Y=y))}{(P(X=1,Y=1)=P(X=1).P(Y=y))}$$

$$\frac{1}{10} + \frac{3}{10} \cdot \frac{3}{10} \cdot$$

$$E(x) = \sum_{x} x P(x=x,y) = 1.3 + 2.6 + 31 = 10$$

 $E(y) = \sum_{y} y P(x+y=y) = 1.3 + 2.1$