عدد المسائل: خمس	امتحانات الشهادة الثانوية العامة فرع: العلوم العامة 2020/2021	ثانوية برجا الرسمية 07/623581
المدة: ثلاث ساعات	مسابقة في مادة الرياضيات	اعداد وتأليف الأستاذ: أحمد دمج 70/773620

ـ يستطيع الطالب الاجابة عن الأسئلة بالترتيب الذي يناسبه.

- يسمح باستعمال آلة حاسبة غير قابلة للبرمجة أو إختزان المعلومات او رسم البيانات.

I- (2 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner, **en justifiant**, la réponse qi lui correspond.

N ⁰	Questions	Réponses		
	Questions	(a)	(b)	(c)
1)	Soit $f(x) = \frac{x}{2+e^x}$ L'ensemble de définition de f est	$\mathbb{R}-\{\ln 2\}$	IR	[0; +∞[
2)	$e^{-\ln 3} \times e^{\ln 5} =$	<u>5</u> 3	-15	2
3)	L'équation $x^3 + e^{x-1} - 2 = 0$	admet une seule racine	admet deux racines distinctes	n'admet pas des racines
4)	Le nombre de manières de distribuer 7 crayons distinctes sur 5 personnes de telle façon que chaque personne prendre au moins un crayon est	5 ⁷	12!	16800

II- (3 points)

Dans le plan complexe rapporté à un repère orthonormé direct $(0; \vec{u}; \vec{v})$, à tout point M d'affixe z, on associe le point M' d'affixe z' tel que $z' = i z^2$.

On suppose que z = x + iy et z' = x' + iy'.

- 1) Ecrire la forme exponentielle de z' dans le cas où $z = 1 i\sqrt{3}$.
- 2) Montrer que si M décrit le cercle de centre O et de rayon 1 alors M' décrit un cercle dont on déterminera le centre et le rayon.
- 3) a) Montrer que $arg(z') = \frac{\pi}{2} + 2 arg(z) [2\pi]$.
 - b) Exprimer x' et y' en fonction de x et y.
 - c) Tracer la droite (d) d'équation $y = \frac{\sqrt{3}}{3} x$.
 - d) Montrer que si M varie la droite (d) alors M' varie sur une demi droite à déterminer.

III- (3 points)

Dans un magasin de jouets on a trois boites cubiques B₁, B₂ et B₃ de côtés respectives 20 cm, 30 cm et 40 cm.

Un enfant choisit une boite au hasard, puis il tire au hasard et simultanément 3 jouets de cette boite.

On considère les événements suivants :

A « L'enfant a choisi la boite B₁ »

B « L'enfant a choisi la boite B₂ »

C « L'enfant a choisi la boite B₃ »

M « L'enfant a tiré au moins une ours »

 On suppose que la probabilité de choisir une boite quelconque est proportionnelle au volume de cette boite.

Vérifier que
$$P(A) = \frac{8}{99}$$
, $P(B) = \frac{27}{99}$ et $P(C) = \frac{64}{99}$.

- 2) Vérifier que P(M/A) = 1 et calculer $P(M \cap A)$.
- 3) Calculer P(M \cap B) et P(M \cap C) et en déduire que P(M) = $\frac{9994}{10395}$.
- 4) Les trois jouets tirés sont des chiens. Calculer la probabilité que ces chiens ne proviennent pas de la boite B₂.

IV- (4 points)

Dans la figure ci-dessous :

- ABC est un triangle équilatéral direct de côté 4.
- Q est le milieu de [AC].
- AQP est un triangle équilatéral direct.

Soit S la similitude plane directe qui transforme P en A et A en B.

- 1) Calculer le rapport k et un angle α de S.
- 2) a) Soit W le centre de S. Montrer que WAB est un triangle demi équilatéral.
 - b) Déduire une construction du point W.
- 3) Soit $h = S \circ S \circ S$ et soit L l'antécédent de P par S.
 - a) Déterminer la nature, le centre et le rapport de h.
 - b) Montrer que B, L et W sont alignés et que $\overrightarrow{WB} = -8\overrightarrow{WL}$.
 - c) Montrer que (PL) est perpendiculaire à (WL).
 - d) En déduire une construction du point L.
- 4) Déterminer la droite (δ) , image de (AB) par S.
- 5) Le plan est rapporté au repère orthonormé direct (A; \vec{u} , \vec{v}) tel que $\vec{u} = \frac{1}{2} \overrightarrow{AB}$.
 - a) En utilisant la partie (2), trouver l'affixe du point W.
 - b) En déduire l'affixe du point L.

V- (8 points)

Soit f la fonction définie sur]0; $+\infty$ [par $f(x) = x^2 \ln \left(\frac{x}{2\sqrt{e}}\right)$ et soit (C) sa courbe représentative

dans un repère orthonormé $(0; \vec{1}, \vec{j})$.

- 1) Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \frac{f(x)}{x}$ et interpréter graphiquement.
- 2) Calculer $\lim_{x\to 0} f(x)$ (on peut utiliser la propriété : $\lim_{t\to 0} t \ln t = 0$).
- 3) Résoudre l'équation f(x) = 0.
- 4) Vérifier que $f'(x) = x \left(2 \ln \left(\frac{x}{2\sqrt{e}} \right) + 1 \right)$.
- 5) Calculer f'(2) et dresser le tableau de variations de f.
- 6) Soit g la fonction définie sur $[0; +\infty[$ par $g(x)=\begin{cases} f(x) & \text{si } x>0\\ & \text{et soit } (G) \text{ sa courbe représentative.} \\ 0 & \text{si } x=0 \end{cases}$

Calculer $\lim_{x\to 0} \frac{g(x)-g(0)}{x}$ et montrer que (x'x) est la tangente à (G) en O.

- 7) Tracer la courbe (C).
- 8) La courbe (H) ci-dessous est celle de la fonction dérivée f ' de f dans un repère orthonormé (0; 1, 1).

En utilisant (H), montrer que (C) admet un point d'inflexion W dont on déterminera ses coordonnées.

