1 Convergence Part 1

Definition

- 1) f(x) is **continuous** at x = a if $\lim_{x \to a} f(x) = f(a)$.
- 2) f(x) is **piecewise continuous** on the interval [a,b] if f(x) is defined and continuous at all but a finite number of points $x_i \in [a,b], 1 \le i \le N$, where f(x) has either a jump discontinuity or a removable discontinuity and $f(a^+) = \lim_{x \to a^+} f(x)$ and $f(b^-) = \lim_{x \to b^-} f(x)$ exist.
- 3) A differentiable function f(x) is **piecewise smooth** on [a,b] if both f(x) and f'(x) are piecewise continuous on [a,b], *i.e.* $f \in$ piecewise C^1 .
- 4) The function f(x) is **continuous piecewise smooth** on [a,b] if f(x) is piecewise smooth on [a,b] and has no discontinuities in (a,b).

Note.

- a) f'(x) will not be continuous at the discontinuities of f(x) (if any) and may have its own additional discontinuities.
- b) If f'(x) is piecewise continuous on (a,b), then f(x) is also piecewise continuous on (a,b). Why? (Jaden: f' is piecewise continuous on $(a,b) \Rightarrow f'$ exists on $(a,b) \Rightarrow f$ is piecewise differentiable on $(a,b) \Rightarrow f$ is piecewise continuous on (a,b).)

Example. $f(x) = \frac{1}{x}$ where $x \neq 0$ and $x \in [-1,1]$ is not piecewise continuous because the left and right limits do not exist at x = 0.

Example. Consider $x \in [-1, 1]$, if

$$f(x) = |x|^{\frac{1}{4}} = \begin{cases} x^{\frac{1}{4}} & \text{if } x \in [0, 1] \\ (-x)^{\frac{1}{4}} & \text{if } x \in [-1, 0) \end{cases}$$

$$f'(x) = \begin{cases} \frac{1}{4}x^{-\frac{3}{4}} & \text{if } x \in (0,1) \\ -\frac{1}{4}(-x)^{-\frac{3}{4}} & \text{if } x \in (-1,0) \end{cases}$$

f(x) is piecewise continuous on [-1,1] but the derivative is not piecewise continuous.

Example. f(x) = |x| is piecewise smooth.

To prove convergence, we want:

- 1) $|a_0| < \infty$
- 2) $a_n \to 0, b_n \to 0$ as $n \to \infty$. Otherwise the series will diverge.

Note. As $n \to \infty$, the periodicity goes to zero. So $\int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right)$ is the cumulative rapidly oscillating positive and negative area bounded by |f(x)|. Intuitively they cancel each other out as oscillation increases to infinity.

Restrictions

- 1 If f(-L) = f(L), then we require that $\tilde{f}(x)$, the periodic extension of f(x), be piecewise smooth on [-L, L].
- 2 If $f(-L) \neq f(L)$, then redefine $f_{new}(-L) = f_{new}(L) = \frac{f(-L) + f(L)}{2}$. We denote the adjusted function $\overline{f}(x)$. Now we require that the periodic extension of the adjusted function, $\tilde{f}(x)$, be piecewise smooth on [-L, L].

Notation. We will use \tilde{f} instead of $\tilde{\tilde{f}}$ for brevity.

Lemma: 1

The set of real functions defined on [-L, L] that satisfy Restriction 1 and 2 form a vector space (satisfies linearity).

Lemma: 2

If f(x) satisfies Restriction 1 and 2 then there exists a number $0 < M < \infty$ such that

$$|\tilde{f}(x)| < M \quad \forall x \in \mathbb{R}.$$

Proof

Any closed interval on \mathbb{R} is compact. Since f is piecewise continuous, the image of a compact set is also compact. And compact set in \mathbb{R} means it's closed and bounded by Heine-Borel Theorem.

Lemma: 3

If f(x) satisfies Restriction 1 and 2 and if M is the positive constant from Lemma 2 then the Fourier coefficients satisfy:

$$|a_0| < M, |a_n| < 2M, \text{ and } |b_n| < 2M.$$

Proof

Given $a \in \mathbb{R}$, $-|a| \le a \le |a|$. Thus given f(x) defined on [-L, L],

$$-|f(x)| \le f(x) \le |f(x)| \Rightarrow -\int_{-L}^{L} |f(x)| dx \le \int_{-L}^{L} f(x) dx \le \int_{-L}^{L} |f(x)| dx$$
$$\Rightarrow \left| \int_{-L}^{L} f(x) dx \right| \le \int_{-L}^{L} f(x) dx$$

$$|a_n| = \left| \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx \right|$$

$$\leq \frac{1}{L} \int_{-L}^{L} |f(x)| \left| \cos\left(\frac{n\pi x}{L}\right) \right| dx$$

$$\leq \frac{1}{L} \int_{-L}^{L} |f(x)| dx$$

$$\leq \frac{1}{L} \int_{-L}^{L} M dx = \frac{M}{L} 2L = 2M$$

That is, $|a_n| < 2M$. Repeat for $b_n < 2M$ and $a_0 < M$.

Lemma: 4, Riemann-Lebesgue Lemma (special case)

If f(x) satisfies Restriction 1 and 2 then $a_n \to 0$ and $b_n \to 0$ as $n \to \infty$.

Proof

Suppose $\tilde{f}(x)$, denote any discontinuities as $\{x_1, x_2, \dots x_N\}$ with $x_0 = -L$ and $x_{N+1} = L$. Then we can write

$$a_n = \frac{1}{L} \int_{-L}^{L} \tilde{f}(x) \cos\left(\frac{n\pi x}{L}\right) dx = \sum_{p=1}^{N+1} \frac{1}{L} \int_{x_{p-1}}^{x_p} \tilde{f}(x) \cos\left(\frac{n\pi x}{L}\right) dx.$$

Now let

$$\alpha_{n,p} = \frac{1}{L} \int_{x}^{x_p} \tilde{f}(x) \cos\left(\frac{n\pi x}{L}\right) dx.$$

where $\tilde{f}(x) = u$ and $\cos\left(\frac{n\pi x}{L}\right) dx = dv$. Then using integration by parts,

$$\begin{split} \alpha_{n,p} &= \frac{1}{L} \left(uv \big|_{x_{p-1}}^{x_p} - \int_{x_{p-1}}^{x_p} v du \right) \\ |a_{n,p}| &= \frac{1}{n\pi} \left| \tilde{f}(x) \sin \left(\frac{n\pi x_p}{L} \right) - \tilde{f}(x) \sin \left(\frac{n\pi x_{p-1}}{L} \right) - \int_{x_{p-1}}^{x_p} \tilde{f}'(x) \sin \left(\frac{n\pi x}{L} \right) dx \right| \\ &\leq \frac{1}{n\pi} \left[\left| \tilde{f}(x) \sin \left(\frac{n\pi x_p}{L} \right) \right| + \left| \tilde{f}(x) \sin \left(\frac{n\pi x_{p-1}}{L} \right) \right| \\ &+ \int_{x_{p-1}}^{x_p} \left| \tilde{f}'(x) \sin \left(\frac{n\pi x}{L} \right) \right| dx \right] \quad \text{using triangle inequality} \\ &\leq \frac{1}{n\pi} \left| \tilde{f}(x) \right| + \left| \tilde{f}(x) \right| + \int_{x_{p-1}}^{x_p} |\tilde{f}(x)| dx \\ &\leq \frac{1}{n\pi} \cdot C \end{split}$$

where C represents the constant that bounds $\tilde{f}(x)$ and $\tilde{f}'(x)$ on [-L, L]. As $n \to \infty$,

$$|\alpha_{n,p}| \to 0 \Rightarrow a_n = \sum_{n=1}^{N+1} \alpha_{n,p} \to 0.$$