MATH 307: Group Homework 8

Henry Zhong, Zhitao Chen, John Mays, Huaijin Xin $04/09/21,\,{\rm Dr.}\,\,{\rm Guo}$

Problem 1

. . .

Problem 2

. . .

Problem 3

 $A \in F^{n \times n} = U \Sigma V^*$ where U, V are unitary and Σ is diagonal.

$$A^*A = (U\Sigma V^*)^*(U\Sigma V^*)$$

$$= (V\Sigma^*U^*)(U\Sigma V^*)$$

$$= V\Sigma^*U^*U\Sigma V^*$$

$$= V\Sigma^*I\Sigma V^*$$

$$= V\Sigma^*\Sigma V^*$$

$$= V(\Sigma^*\Sigma)V^*$$

Since V is a unitary matrix, it is also invertible, and $V^* = V^{-1}$. Therefore,

$$V(\Sigma^*\Sigma)V^* = V(\Sigma^*\Sigma)V^{-1}$$

Furthermore, the resultant matrix of $\Sigma^*\Sigma$ will also be a diagonal matrix = $\operatorname{diag}(|\sigma_1|^2, |\sigma_2|^2, \dots, |\sigma_n|^2)$

Since V is invertible, $V^* = V^{-1}$, and $\Sigma^*\Sigma$ is a diagonal matrix, $V(\Sigma^*\Sigma)V^*$ is an eigendecomposition of A^*A .

Problem 4

. . .