Quantum Hackenbush

17 July 2024

Jelle Pleunes, Leiden University. Supervisors: Walter Kosters and Evert van Nieuwe

Supervisors: Walter Kosters and Evert van Nieuwenburg, LIACS

Discover the world at Leiden University

Introduction

QUANTUM HACKENBUSH

- "HACKENBUSH?"
- QUANTUM(-inspired) HACKENBUSH
- Results
- Future research

Combinatorial game, just like tic-tac-toe or chess.

- Combinatorial game, just like tic-tac-toe or chess.
 - Two-player
 - Deterministic
 - Perfect-information
 - Short (finite and loopfree)

- Combinatorial game, just like tic-tac-toe or chess.
 - Two-player
 - Deterministic
 - Perfect-information
 - Short (finite and loopfree)
- Played on graph with blue and red edges.

Combinatorial games

Definition

A *short game* is an ordered pair

$$G = \left\{ G_1^L, \ldots, G_m^L \mid G_1^R, \ldots, G_n^R \right\}$$

of Left options G^L and Right options G^R .

Combinatorial games

Definition

A *short game* is an ordered pair

$$G = \left\{ G_1^L, \ldots, G_m^L \mid G_1^R, \ldots, G_n^R \right\}$$

of Left options G^L and Right options G^R .

Combinatorial games

Definition

A *short game* is an ordered pair

$$G = \left\{ G_1^L, \ldots, G_m^L \middle| G_1^R, \ldots, G_n^R \right\}$$

of Left options G^L and Right options G^R .

$$G = \left\{ \begin{array}{c|c} & & & \\ & & & \\ \end{array} \right\}$$

4

Given game state (position) G, assuming both players play optimally:

What do we want to study?

Given game state (position) G, assuming both players play optimally:

• Winnability: which player is able to win?

	$\exists \mathbf{G}^R \in \mathscr{P} \cup \mathscr{R}$	$\forall \mathbf{G}^{R} \in \mathscr{N} \cup \mathscr{L}$
$\exists \mathbf{G}^{L} \in \mathscr{P} \cup \mathscr{L}$	$G \in \mathscr{N}$	$oldsymbol{G} \in \mathscr{L}$
$\forall \mathbf{G}^{L} \in \mathscr{N} \cup \mathscr{R}$	$oldsymbol{G} \in \mathscr{R}$	$G \in \mathscr{P}$

What do we want to study?

Given game state (position) G, assuming both players play optimally:

• Winnability: which player is able to win?

	$\exists \mathbf{G}^R \in \mathscr{P} \cup \mathscr{R}$	$\forall \mathbf{G}^{\mathbf{R}} \in \mathscr{N} \cup \mathscr{L}$
$\exists \mathbf{G}^{L} \in \mathscr{P} \cup \mathscr{L}$	$G \in \mathscr{N}$	$oldsymbol{G}\in\mathscr{L}$
$\forall \mathbf{G}^{L} \in \mathscr{N} \cup \mathscr{R}$	$oldsymbol{G} \in \mathscr{R}$	$G \in \mathscr{P}$

• Advantage: by how much does a player win?

$$G_1 = G_2 =$$

We know $G_1, G_2 \in \mathcal{L}$.

We know $G_1, G_2 \in \mathscr{L}$.

But: $G_1 = 1$ and $G_2 = 2$.

$$G_1 = G_2 =$$

We know $G_1, G_2 \in \mathscr{L}$.

But: $G_1 = 1$ and $G_2 = 2$.

Alternating turns: $G \rightarrow G^L \rightarrow G^{LR} \rightarrow G^{LRL} \rightarrow \cdots$ Why give Left two turns in a row?

Definition

In the disjunctive sum

$$G + H$$

the player must move in exactly one of the components.

Definition

In the disjunctive sum

$$G + H$$

the player must move in exactly one of the components.

Definition

In the disjunctive sum

$$G + H$$

the player must move in exactly one of the components.

$$G + H \rightarrow G^{L} + H \rightarrow G^{L} + H^{R} \rightarrow G^{LL} + H^{R}$$

Disjunctive sums in HACKENBUSH

Simplest number theorem

Theorem

A short game G, where $G^L < G^R$ for all G^L , G^R , is:

- Integer $G^L < n < G^R$ smallest in absolute value, if it exists.
- Fraction $G^L < \frac{i}{2^j} < G^R$ with smallest j, otherwise.

Simplest number theorem

Theorem

A short game G, where $G^L < G^R$ for all G^L, G^R , is:

- Integer $G^L < n < G^R$ smallest in absolute value, if it exists.
- Fraction $G^L < \frac{i}{2^j} < G^R$ with smallest j, otherwise.

Examples:

•
$$\{ | \} = 0$$

•
$$\{-999, -21 \mid 42, 181\} = 0$$

•
$$\{1 \mid 2\} = \frac{3}{2} = 1\frac{1}{2}$$

Simplest number theorem

Theorem

A short game G, where $G^L < G^R$ for all G^L, G^R , is:

- Integer $G^L < n < G^R$ smallest in absolute value, if it exists.
- Fraction $G^L < \frac{i}{2^j} < G^R$ with smallest j, otherwise.

Examples:

•
$$\{0 \mid \} = 1$$

•
$$\{-999, -21 \mid 42, 181\} = 0$$

•
$$\{1 \mid 2\} = \frac{3}{2} = 1\frac{1}{2}$$

Not all games are numbers! Take $\{0 \mid 0\} = *$.

"Half" a move

Quantum-inspired combinatorial games

10

Altered variant of a ruleset, in which *superposed moves* are allowed, leading to *superposed game states*.

Preliminaries

11

A labelled short game $\hat{\boldsymbol{G}}$:

Preliminaries

11

A labelled short game $\hat{\mathbf{G}}$:

Definition

A *ruleset* is a pair of move functions $\mathcal{R} = (\rho_L, \rho_R)$.

$$\rho_L \left(\begin{array}{c|c} 3 & 4 & \\ 1 & 2 & 5 \end{array} \right) \equiv \begin{array}{c} 4 & \\ 2 & 5 \end{array}$$

Discover the world at Leiden University

How do we label moves?

• Hackenbush: $move \iff edge_id$.

12

- Hackenbush: move ←⇒ edge_id.
- Not so easy for other games, such as NIM:

Definition

NIM is played on a number of heaps, each containing at least one token. On their turn, the player selects one heap to remove a (nonzero) number of tokens from.

Definition 1

NIM-Subtract: the player selects \underline{a} heap and removes a (nonzero) number of tokens off the top.

Definition 2

NIM-DECREASE: the player selects <u>a heap</u> and cuts it at some height, leaving a smaller heap.

NIM-SUBTRACT labelling

14

Definition 1

NIM-Subtract: the player selects \underline{a} heap and removes a number of tokens off the top.

Definition 2

NIM-DECREASE: the player selects <u>a heap</u> and cuts it at some height, leaving a smaller heap.

Main idea 16

Discover the world at Leiden University

Main idea

$$\left\{\begin{array}{c} \mathbf{3} \, | \, \mathbf{4} \, | \\ \mathbf{1} \, | \, \mathbf{2} \, | \, \mathbf{5} \, | \end{array}\right\} \stackrel{\left\{\mathbf{1},\,\mathbf{2}\right\}}{\longrightarrow} \left\{\begin{array}{c} \mathbf{4} \, | & \mathbf{3} \, | \\ \mathbf{2} \, | \, \mathbf{5} \, | \end{array}\right\}$$

Main idea

16

$$\left\{\begin{array}{c} 3 \ | \ 4 \ | \\ 1 \ | \ 2 \ | \ 5 \ | \end{array}\right\} \xrightarrow{\left\{\begin{array}{c} 1,2 \right\}} \left\{\begin{array}{c} 4 \ | \\ 2 \ | \ 5 \ | \end{array}\right\} \xrightarrow{\left\{\begin{array}{c} 4 \ | \ 5 \ | \\ 2 \ | \ 5 \ | \end{array}\right\}} \left\{\begin{array}{c} 4 \ | \ 5 \ | \\ 2 \ | \ 5 \ | \end{array}\right\} \xrightarrow{\left\{\begin{array}{c} 4 \ | \ 5 \ | \\ 2 \ | \ 5 \ | \end{array}\right\}} \left\{\begin{array}{c} 4 \ | \ 3 \ | \\ 2 \ | \ 5 \ | \end{array}\right\}$$

QUANTUM HACKENBUSH

The flavours 18

When is an unsuperposed move allowed?

- **A**: Never.
- B: Never, except if the only option.
- ullet C: Only if legal in all realisations.
- C': Only if legal in all realisations in which the player still has at least one legal move.
- \mathcal{D} : Always.

Some properties of HACKENBUSH

• **Dead-ending**: moves cannot "come back".

19

- Dead-ending: moves cannot "come back".
- Non-repeating: any move can only be played once.

Some properties of HACKENBUSH

- Dead-ending: moves cannot "come back".
- Non-repeating: any move can only be played once.
- **Persistent**: interpretation of move does not change.

Some properties of HACKENBUSH

- Dead-ending: moves cannot "come back".
- Non-repeating: any move can only be played once.
- Persistent: interpretation of move does not change.
- Consistent: any move always has the same effect.

Useful theorem

20

Theorem

Under flavour $f \in \{A, B, D\}$, if a realisation is *weakly covered*, then it can be left out of the superposed game state without changing its legal superposed move options.

Theorem

Under flavour $f \in \{A, B, D\}$, if a realisation is *weakly covered*, then it can be left out of the superposed game state without changing its legal superposed move options.

$$moves \left(\begin{array}{c} 1 \\ 1 \\ \end{array} \right)$$

$$moves \left(\begin{array}{c} 1 \\ 1 \\ \end{array} \right)$$

$$\left\{ \begin{array}{c} 1 \\ 1 \\ \end{array} \right\}^{f} \equiv \left\{ \begin{array}{c} 1 \\ 1 \\ \end{array} \right\}^{f}$$

Discover the world at Leiden University

Theorem

Under flavour $f \in \{A, B, D\}$, if a realisation is *weakly covered*, then it can be left out of the superposed game state without changing its legal superposed move options.

Discover the world at Leiden University

Theorem by Thea van Roode

Starting from the ground, count number of edges until first colour change, sign determined by colour of grounded edge. Then, divide by 2 for every next edge, add for blue and subtract for red.

Discover the world at Leiden University

Theorem by Thea van Roode

Theorem by Thea van Roode

Theorem

Under flavour $f \in \{\mathcal{B}, \mathcal{D}\}$, any HACKENBUSH stalk has the same value as in the classical case.

Proof

The realisation containing the tallest stalk weakly covers all other realisations.

Discover the world at Leiden University

Theorem

Under flavour \mathcal{A} , any Hackenbush stalk has the same value as in the classical case, ignoring the first edge of either colour.

Theorem

Under flavour \mathcal{A} , any Hackenbush stalk has the same value as in the classical case, ignoring the first edge of either colour.

Theorem

Under flavour \mathcal{A} , any Hackenbush stalk has the same value as in the classical case, ignoring the first edge of either colour.

Theorem

Under flavour ${\cal A}$, any Hackenbush stalk has the same value as in the classical case, ignoring the first edge of either colour.

$$\left\{\begin{array}{c|c} X & X & \end{array}\right\}^{A}$$

$$\downarrow \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & = 1 + 1 + 1 - \frac{1}{2} = 2\frac{1}{2}$$

	4	5	6
000100	{1 1}	{ 2 2 }	{3 3 }
001000		{ 2 1 }	{3 2 }
001001		$\{1 \mid 1, \{1 \mid 1\}\}$	$\{2 \mid 2, \{2 \mid 2\}\}$
001011		$\{\frac{1}{2} \mid \frac{1}{2}\}$	$\{1\frac{1}{2} \mid 1\frac{1}{2}\}$
001100		$ \{\frac{1}{2} \mid \frac{1}{2}\} \\ \{\frac{1}{2} \mid \frac{1}{2}\} $	$\{1\frac{f}{2} \mid 1\frac{f}{2}\}$
010000			$\{3 \mid 1\}$
010001			$\{2 \mid 1, \{2 \mid 1\}\}$
010010			$\{1\frac{1}{2} \mid 1, \{1 \mid 1\}\}$
010011			$\{1 \mid 1, \{1 \mid 1, \{1 \mid 1\}\}\}$
010100			$\left\{\frac{3}{4} \mid \frac{3}{4}\right\}$
010110			$\{\frac{1}{2}, \{\frac{1}{2} \mid \frac{1}{2}\} \mid \frac{1}{2}\}$
010111			$\{\frac{1}{2} \mid \frac{1}{4}\}$
011000			$ \left\{ \frac{1}{2} \mid \frac{1}{4} \right\} \\ \left\{ \frac{3}{4} \mid \frac{1}{2} \right\} $
011001			
011011			$\left\{\frac{1}{4} \mid \frac{1}{4}\right\}$
011100			$ \left\{ \frac{1}{2} \mid \frac{1}{2}, \left\{ \frac{1}{2} \mid \frac{1}{2} \right\} \right\} \\ \left\{ \frac{1}{4} \mid \frac{1}{4} \right\} \\ \left\{ \frac{1}{4} \mid \frac{1}{4} \right\} $

Values of binary-encoded stalks under flavour C.

\mathcal{A}	0	1	2	3	4	5	\mathcal{B}	0	1	2	3	4	5	C	0	1	2	3	4	5
0	P	P	\mathscr{R}	R	R	R	0	P	R	R	\mathscr{R}	R	\mathscr{R}	0	Đ	R	R	R	R	\mathscr{R}
1	\mathscr{P}	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}	1	\mathscr{L}	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}	1	\mathscr{L}	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}
2	$\frac{\mathscr{P}}{\mathscr{L}}$	\mathscr{L}	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}	2	\mathscr{L}	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}	2	\mathscr{L}	Đ	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}
3	\mathscr{L}	9 R L L	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}	3	\mathscr{L}	9	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}	3	\mathscr{L}	\mathscr{L}	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}
4	\mathscr{L}	\mathscr{L}	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}	4	\mathscr{L}	<u>R</u> <u>P</u> L	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}	4	\mathscr{L}	\mathscr{L}	\mathscr{R}	\mathscr{R}	\mathscr{R}	\mathscr{R}
5	\mathscr{L}	\mathscr{L}	$\frac{\mathscr{R}}{\mathscr{L}}$	\mathscr{R}	\mathscr{R}	\mathscr{R}	5	\mathscr{L}	\mathscr{L}	$\frac{\mathscr{R}}{\mathscr{R}}$ \mathscr{L}	\mathscr{R}	\mathscr{R}	\mathscr{R}	5	\mathscr{L}	\mathscr{L}	$\frac{\mathscr{R}}{\mathscr{L}}$	\mathscr{R}	\mathscr{R}	\mathscr{R}
6	\mathscr{L}	$_{\mathscr{L}}$	\mathscr{L}	\mathscr{R}	\mathscr{R}	\mathscr{R}	6	\mathscr{L}	\mathscr{L}	\mathscr{L}	\mathscr{R}	\mathscr{R}	\mathscr{R}	6	\mathscr{L}	$_{\mathscr{L}}$	\mathscr{L}	\mathscr{R}	\mathscr{R}	\mathscr{R}
7	\mathscr{L}	\mathscr{L}	\mathscr{L}				7	\mathscr{L}	\mathscr{L}	\mathscr{L}				7	\mathscr{L}	\mathscr{L}	\mathscr{L}			
8							8							8						
c'	0	1	2	3	4	5	\mathcal{D}	0	1	2	3	4	5		1					
$\frac{c'}{0}$	0 <i>P</i>	$\frac{1}{\mathscr{R}}$	2 R	3 R	4 R	<u>5</u>	D	P	1 R	2 R	3 R	4 R	5 R		ı					
	P								${\mathscr R}$											
0		R R	R	R	R	R	0	9 L L	${\mathscr R}$	R R R	R	R	\mathscr{R}		' •	,	ī			
0	9 L L	R R	R R	$\mathcal R$	${\mathscr R}$	R R	0 1	9 L L L	${\mathscr R}$	R R	R R	${\mathscr R}$	${\mathscr R}$		ļ		I .	•		
0 1 2	9 L L	R R	R R R	R R R	R R R	$\frac{\mathscr{R}}{\mathscr{R}}$	0 1 2	9 L L L L	R R <u>R</u> L L	R R R	R R R R	R R R	R R R		<u></u>			···.]	_	
0 1 2 3	9 L L	$\begin{array}{c} \mathcal{R} \\ \mathcal{R} \\ \hline \mathcal{P} \\ \mathcal{L} \end{array}$	R R R	R R R	R R R	R R R	0 1 2 3	9 L L L L L	R R <u>R</u> L L	R R R	R R R R	R R R	R R R				L]	_	
0 1 2 3 4	9 L L L L	$\begin{array}{c} \mathcal{R} \\ \mathcal{R} \\ \hline \mathcal{P} \\ \mathcal{L} \end{array}$	R R R	R R R R	R R R R	R R R R	0 1 2 3 4	9 L L L L L L L L	R R L L L L	R R R	R R R R	R R R R	R R R R		_	 n	Ļ	m	_	
0 1 2 3 4 5	9 L L L L L	R R	R R R	R R R R	R R R R	R R R R	0 1 2 3 4 5	9 L L L L L	R R <u>R</u> L L	R R R	R R R R	R R R R R	R R R R R				L	<u></u> m	_	

Outcome classes for different \mathbf{n} (vertical) and \mathbf{m} (horizontal). Max. move width $\mathbf{2}$.

$$\mathcal{N}\text{-positions}$$

$$\begin{cases}
3 & 4 & \\
1 & 2 & 5
\end{cases}
\end{cases}$$

$$\begin{cases}
1,2 \\
2 & 5
\end{cases}$$

$$\begin{cases}
3,5 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
3 & 4 \\
1 & 2 & 5
\end{cases}
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 & 3 & 3 \\
2 & 5
\end{cases}$$

$$\begin{cases}
4 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 & 3 \\
3 & 3 & 3 & 3 & 3 & 3 \\
3 & 3 &$$

27

Future research

- Proving conjectures.
- Different classes of positions.
- Efficient representation of superposed game states.
- Quantum circuit to play Quantum Hackenbush.

Finishing up

Summary and conclusion

- Values.
- Defining quantum-inspired combinatorial games.
- Quantum Hackenbush stalks.
- Outcome classes, $\mathcal N$ -positions.

Think (and taste) carefully...

References

- E. R. Berlekamp, J. H. Conway, and R. K. Guy. "Winning ways for your mathematical plays, Volume 1". In: (No Title) (2001).
- P. Dorbec and M. Mhalla. "Toward quantum combinatorial games". In: arXiv preprint arXiv:1701.02193 (2017).
- T. van Roode. "Partizan forms of Hackenbush combinatorial games." Master thesis. University of Calgary, 2002.

Image credits

https://gamedicechip.com/wp-content/uploads/2016/12/91pWycQg6lL._SL1500_.jpg

https://designer.microsoft.com