Announcement

- HW 3 will be posted by 11/28(Thur). You will have 10 days to work on it
- Project Instruction will be posted by 11/1 (Mon)
- Midterm: 11/9
- Review: Class 11/2 (Some sample questions, homework feedback)
- Scope: Chap 1-7, Chap 10, 11 (Slides + Notes will be enough)

Predictive performance

- True predictive performance is found out by using it to make predictions and comparing predictions to true observations
 - external validation
- Expected predictive performance
 - approximates the external validation

Predictive performance

- True predictive performance is found out by using it to make predictions and comparing predictions to true observations
 - external validation
- Expected predictive performance
 - · approximates the external validation
- If interested in the overall goodness of the predictive distribution, then a general choice is log-score

$$\log p(y^{\text{rep}}|y,M),$$

For specific applications, we can choose utility/cost function

Outline

- What is cross-validation
 - Leave-one-out cross-validation (elpd_loo, p_loo)
 - Uncertainty in LOO (SE)
- When is cross-validation applicable?
 - data generating mechanisms and prediction tasks
 - leave-many-out cross-validation
- Fast cross-validation
 - K-fold cross-validation
- Related methods (WAIC, *IC, BF)
- Model comparison and selection (elpd_diff, se)
- Model averaging with Bayesian stacking

Posterior mean, alternative data realisation

Posterior draws

- 1) Draw σ^2 from $\sigma^2 | y \sim \mathit{Inv} \chi^2 (\mathit{n} 2, \mathit{s}^2)$
- 2) Draw β from $\beta|y,\sigma^2 \sim N(\hat{\beta},V_{\beta}\sigma^2)$
- 3) Repeat step 1) and step 2)

Posterior predictive distribution

$$p(\tilde{y}|\tilde{x}=18,x,y)=\int p(\tilde{y}|\tilde{x}=18,\theta)p(\theta|x,y)d\theta$$

Leave-one-out residual

$$y_{18} - E[p(\tilde{y}|\tilde{x} = 18, x_{-18}, y_{-18})]$$

Leave-one-out residual

$$y_{18} - E[p(\tilde{y}|\tilde{x} = 18, x_{-18}, y_{-18})]$$

Can be use to compute, e.g., RMSE, R²

Leave-one-out predictive distribution

$$p(\tilde{y}|\tilde{x} = 18, x_{-18}, y_{-18}) = \int p(\tilde{y}|\tilde{x} = 18, \theta) p(\theta|x_{-18}, y_{-18}) d\theta$$

Posterior predictive density

$$p(\tilde{y} = y_{18} | \tilde{x} = 18, x, y) \approx 0.07$$

Leave-one-out predictive density

$$p(\tilde{y} = y_{18} | \tilde{x} = 18, x, y) \approx 0.07$$
$$p(\tilde{y} = y_{18} | \tilde{x} = 18, x_{-18}, y_{-18}) \approx 0.03$$

Leave-one-out predictive densities

$$p(y_i|x_i, x_{-i}, y_{-i}), \quad i = 1, \dots, 20$$

 $\log p(y_i|x_i, x_{-i}, y_{-i}), \quad i = 1, \dots, 20$

 $\sum_{i=1}^{20} \log p(y_i|x_i, x_{-i}, y_{-i}) \approx -29.5$

elpd_loo = $\sum_{i=1}^{20} \log p(y_i|x_i,x_{-i},y_{-i}) \approx -29.5$ Expected log posterior predictive density

elpd_loo = $\sum_{i=1}^{20} \log p(y_i|x_i,x_{-i},y_{-i}) \approx -29.5$ Expected log posterior predictive density

Estimate of log posterior predictive density for new data

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i|x_i,x_{-i},y_{-i}) \approx -29.5$$

Expected log posterior predictive density

$$lpd = \sum_{i=1}^{20} log p(y_i | x_i, x, y) \approx -26.8$$

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i|x_i,x_{-i},y_{-i}) \approx -29.5$$

Expected log posterior predictive density

$$\begin{aligned} & \text{lpd} = \sum_{i=1}^{20} \log p(y_i|x_i, x, y) \approx -26.8 \\ & \text{p loo} = \text{lpd} - \text{elpd loo} \approx 2.7 \text{ Effective number of parameters} \end{aligned}$$

elpd_loo =
$$\sum_{i=1}^{20} \log p(y_i|x_i,x_{-i},y_{-i}) \approx -29.5$$

Expected log posterior predictive density

$$SE = sd(log p(y_i|x_i, x_{-i}, y_{-i})) \cdot \sqrt{20} \approx 3.3$$

Nonlinear model fit + new data

Nonlinear model fit + new data

Extrapolation is more difficult

Can LOO or other cross-validation be used with time series?

Leave-one-out cross-validation is ok for assessing conditional model

Leave-future-out cross-validation is better for predicting future

m-step-ahead cross-validation is better for predicting further future

m-step-ahead leave-a-block-out cross-validation

Can LOO or other cross-validation be used with hierarchical data?

Yes!

Fast cross-validation

K-fold cross-validation

K-fold cross-validation

- K-fold cross-validation can approximate LOO
 - all uses for LOO
- K-fold cross-validation can be used for hierarchical models
 - good for leave-one-group-out
- K-fold cross-validation can be used for time series
 - with leave-block-out

Balance k-fold approximation of LOO

Random k-fold approximation of LOO

Information Criteria

Measures of predictive accuracy are referred to as information criteria

- AIC uses maximum likelihood estimate for prediction
- DIC uses posterior mean for prediction
- BIC is an approximation for marginal likelihood
- TIC, NIC, RIC, PIC, BPIC, QIC, AICc, ...

Note: ICs may be improper when you have a very complex model (e.g. NNs with thousands of parameters)

How to compare different models?

Posterior predictive checking is often sufficient

E.g. Predicting the yields of mesquite bushes.

Arsenic well example – Model comparison

- Probability of switching well with high arsenic level in rural Bangladesh
 - Model 1 covariates: log(arsenic) and distance
 - Model 2 covariates: log(arsenic), distance and education level

Arsenic well example – Model comparison

Model 1 elpd_loo \approx -1952 Model 2 elpd_loo \approx -1938

Model 2 has a bigger *elpd loo*, thus it is better than Model 1

Selection induced bias in variable selection

Take-home messages

- It's good to think about predictions of current data, especially those are the ones we can observe
- Cross-validation can simulate predicting and observing new data
- Different variants of cross-validation are useful in different scenarios
- Cross-validation has high variance, and if you trust your model you can beat cross-validation in accuracy