Supplementary Information

This section outlines how the Bayesian Data Analysis was performed. We follow the recommendations and guidlines of [1, 2, 3] amd asses the Markov Chain Monte Carlo (MCMC) chains and Posterior Predictive Checks.

1. Assesing the MCMC chains

All analysis were conducted using the R programming language and the cmdstanr library. Each model was computed using four parallel chains using 2000 iterations and an additional 200 warmup iterations. None of the iteration diverged as can be seen in the traceplots Figures 1, 2, 3, 4, 5, 6, 7, and 8 and therefore the MCMC simulation is considered valid.

In addition we investigate diagnostics of the posterior estimates, such as $Gelman-Rubin\ Potential\ Scale\ Reduction(\hat{R})$ [4] the number of efficient samples (n_{eff}) . Tables 1, 2, 3, 4, 5, 6, 7, 8 contains three columns. The first column contains \hat{R} and the other two contains two different estiamtes of the number of effective samples. As a rule of thumb we should have $\hat{R} < 1.01$ which is satisfied in all scenarios. The number of efficient samples should be at least 200, which is satisfied in all cases.

Table 1.	Diagnostics	for	the	posterior	ranks	(aggregated)
				0 0 0 0 0 0 -		\ ~~OO ~ ~ O ~~ ~ ~ ~ ~ /

Variable	Rhat	ess_bulk	ess_tail
$a_{a}[1]$	1.000	11549.08	5515.995
$a_{a}[2]$	1.000	14966.93	4698.992
$a_a lg[3]$	1.001	11387.76	5792.326
$a_a lg[4]$	1.000	13475.97	5838.628
$a_alg[5]$	1.000	13906.34	5240.604
$a_alg[6]$	1.000	13484.73	5755.981
$a_alg[7]$	1.000	13642.63	5674.657
$a_a lg[8]$	1.002	13613.50	6151.843
$a_a lg[9]$	1.001	11709.12	5973.553
$a_a lg[10]$	1.000	13512.71	6059.267
$a_alg[11]$	1.001	12780.16	5426.069
$a_alg[12]$	1.000	13816.25	5731.842
a_alg[13]	1.000	13065.28	5764.492

2. Posterior Predictive Cheks

For posterior predictive checks, we investigate how well the mean error rate is captured by the posterior distribution. Figures 9, 10, 11, 12, 13, 14, 15, 16 shows the posterior distribution of the mean for each algorithm and the Figures show that the mean is well captured by the posterior distribution.

FIGURE 1. Simulated MCMC chains for the strength parameters (aggregated data).

FIGURE 2. Simulated MCMC chains for the strength parameters (aggregated data).

FIGURE 3. Simulated MCMC chains for the strength parameters (aggregated data).

FIGURE 4. Simulated MCMC chains for the strength parameters (aggregated data).

FIGURE 5. Simulated MCMC chains for the effect parameters (aggregated data).

FIGURE 6. Simulated MCMC chains for the effect parameters (image data).

FIGURE 7. Simulated MCMC chains for the effect parameters (text data).

FIGURE 8. Simulated MCMC chains for the effect parameters (text data).

Table 2. Diagnostics for the posterior ranks (image data)

Variable	Rhat	ess_bulk	ess_tail
a_{a}	1.001	6843.458	5841.228
$a_{a}[2]$	1.001	8010.731	6203.063
$a_alg[3]$	1.000	6983.924	6518.645
$a_{a}[4]$	1.000	7532.715	6204.486
$a_alg[5]$	1.000	8215.520	5196.772
$a_alg[6]$	1.000	8507.300	5739.370
$a_alg[7]$	1.000	8227.085	5822.522
$a_a [8]$	1.001	8274.565	5946.208
$a_a [9]$	1.001	7045.012	6258.158
$a_a lg[10]$	1.000	6562.233	5746.464
$a_alg[11]$	1.001	6863.201	5678.795
$a_a lg[12]$	1.000	7220.158	5791.735
a_alg[13]	1.001	7059.938	5687.501

Table 3. Diagnostics for the posterior ranks (text data)

Variable	Rhat	ess_bulk	ess_tail
a_alg[1]	1.001	9219.006	5696.938
$a_a lg[2]$	1.000	8159.844	5501.918
$a_a lg[3]$	1.001	8194.701	5731.082
$a_{-}alg[4]$	1.001	9698.246	5792.446
$a_alg[5]$	1.000	9523.302	5751.300
$a_a [6]$	1.000	9379.086	5835.681
$a_a lg[7]$	1.000	8112.099	5414.614
$a_a g[8]$	1.001	10008.326	5965.950
$a_{a} = alg[9]$	1.000	8248.915	5321.357
$a_{a}[10]$	1.000	7389.070	5735.235
$a_{a}[11]$	1.001	8273.447	5734.861
$a_{a}[12]$	1.000	8682.404	6117.667
$a_{-}alg[13]$	1.001	7615.126	5528.505

Table 4. Diagnostics for the posterior ranks (numeric data)

Variable	Rhat	ess_bulk	ess_tail
a_{a} alg[1]	1	10066.931	6341.406
$a_alg[2]$	1	9986.580	5733.858
$a_alg[3]$	1	9972.198	5585.470
$a_{a}[4]$	1	9539.656	5750.775
$a_alg[5]$	1	9804.196	5886.244
$a_alg[6]$	1	9090.924	5964.757
$a_alg[7]$	1	9255.918	6154.528
$a_a [8]$	1	9996.392	6090.676
$a_a [9]$	1	9648.361	6529.156
$a_a lg[10]$	1	8911.369	6347.509
$a_alg[11]$	1	9361.509	6190.749
$a_alg[12]$	1	9680.378	6071.385
a_alg[13]	1	9482.599	5616.573

Table 5. Diagnostics for the posterior effects (aggregated data)

variable	rhat	ess_bulk	ess_tail
a_{a}	1.000	3875.538	5106.532
$a_{a}[2]$	1.000	2316.687	3800.909
$a_a lg[3]$	1.000	2387.592	4104.560
$a_{a}[4]$	1.000	3815.961	4953.275
$a_alg[5]$	1.001	3602.684	4895.245
$a_a lg[6]$	1.001	3892.622	5240.429
$a_a lg[7]$	1.001	3380.358	4652.745
$a_a g[8]$	1.000	3391.268	4957.767
$a_{a}[9]$	1.000	3685.936	4975.255
$a_a lg[10]$	1.000	3556.614	5042.657
$a_alg[11]$	1.001	3434.150	4687.095
$a_alg[12]$	1.000	3460.173	4839.767
$a_a = alg[13]$	1.001	3255.699	4956.926

Table 6. Diagnostics for the posterior effects (image data)

variable	rhat	ess_bulk	ess_tail
$a_{a} = alg[1]$	1.000	5726.116	4957.001
$a_{-}alg[2]$	1.002	1508.296	1981.993
$a_alg[3]$	1.002	1456.598	1921.736
$a_a lg[4]$	1.000	6636.772	5545.676
$a_alg[5]$	1.001	7268.332	5666.927
$a_a lg[6]$	1.000	6687.499	5804.222
$a_alg[7]$	1.000	6876.669	5432.274
$a_alg[8]$	1.001	5526.927	5044.321
$a_a [9]$	1.001	6553.413	5195.253
$a_a lg[10]$	1.001	7505.705	4898.517
$a_a lg[11]$	1.000	5621.637	5269.483
$a_a lg[12]$	1.000	6701.225	5162.609
a_alg[13]	1.000	7089.734	6008.329

Table 7. Diagnostics for the posterior effects (text data)

variable	rhat	ess_bulk	ess_tail
$a_{a}[1]$	1.001	6805.015	5088.715
$a_a lg[2]$	1.001	10406.872	6048.554
$a_a lg[3]$	1.000	7776.333	5465.982
$a_{-}alg[4]$	1.000	7981.526	5584.848
$a_alg[5]$	1.002	7361.233	5793.209
$a_a g[6]$	1.000	10203.453	5950.313
$a_a lg[7]$	1.001	7854.116	6110.782
$a_a g[8]$	1.001	8100.850	5459.704
$a_{a} = alg[9]$	1.000	5826.955	5488.954
$a_a lg[10]$	1.000	7574.068	5277.421
$a_a lg[11]$	1.000	7137.205	5607.689
$a_a lg[12]$	1.000	5937.118	5193.251
$a_{-}alg[13]$	1.001	8334.488	5386.165

Table 8. Diagnostics for the posterior effects (numeric data)

variable	rhat	ess_bulk	ess_tail
a_{a} alg[1]	1.000	7050.378	6189.147
$a_{a}[2]$	1.000	7428.251	6821.047
$a_{alg}[3]$	1.000	7241.839	6043.851
$a_{a}[4]$	1.000	7679.707	6553.354
$a_{a}[5]$	1.001	7987.069	6358.697
$a_{a}[6]$	1.000	8513.448	6423.963
$a_{a}[7]$	1.001	8644.972	6599.283
$a_{a}[8]$	1.000	7961.322	6731.745
$a_{a}[9]$	1.000	8236.145	6686.385
$a_{a}[10]$	1.000	7693.744	6464.176
$a_{a}[11]$	1.001	6196.071	6122.471
$a_{a}[12]$	1.000	6893.882	5953.944
$a_{a} = alg[13]$	1.000	7000.893	6042.653

Figure 9. Posteririor predictice check of the ranks for each algorithm (aggregated)

FIGURE 10. Posteririor predictice check of the ranks for each algorithm (image)

FIGURE 11. Posteririor predictice check of the ranks for each algorithm (text)

FIGURE 12. Posteririor predictice check of the ranks for each algorithm (numeric)

FIGURE 13. Posteririor predictice check of the probability of success for each algorithm (aggregated)

FIGURE 14. Posteririor predictice check of the probability of success for each algorithm (image)

FIGURE 15. Posteririor predictice check of the probability of success for each algorithm (text)

FIGURE 16. Posteririor predictice check of the probability of success for each algorithm (numerical)

References

- [1] Carlo A Furia, Robert Feldt, and Richard Torkar. Bayesian data analysis in empirical software engineering research. *IEEE Transactions on Software Engineering*, 47(9):1786–1810, 2019.
- [2] Jonah Gabry, Daniel Simpson, Aki Vehtari, Michael Betancourt, and Andrew Gelman. Visualization in bayesian workflow. Journal of the Royal Statistical Society Series A: Statistics in Society, 182(2):389–402, 2019.
- [3] David Issa Mattos, Jan Bosch, and Helena Holmström Olsson. Statistical models for the analysis of optimization algorithms with benchmark functions. *IEEE Transactions on Evolutionary Computation*, 25(6):1163–1177, 2021.
- [4] Richard McElreath. Statistical rethinking: A Bayesian course with examples in R and Stan. CRC press, 2020.