IESG-BADOU/LYGBA	BEPC BLANC	Classe: 3ème
AN/SC: 2021-2022	Épreuve de Mathématiques	Durée : 2h00

EXERCICE 1 (8pts)

Le professeur de mathématiques rentre en surprenant **Bill** et **David** entrain de se quereller alors pour les punir, il décide de leur mettre un exercice de mathématiques, celui qui fausse recopie cinq fois le corrigé, voici l'exercice :

Le plan est muni du repère orthonormé (O; I; J), on donne A(6; -1); B(2; -2) et C(5; 3). A la question, quelle serait la nature du triangle ABC formé par ces trois points? Bill se précipite et répond "rectangle" tandis que *David* dit "rectangle et isocèle".

Après avoir placé ces points dans un repère orthonormé (O; I; J) et calculé les distances AB; ACet **BC**, dis celui qui à raison en justifiant ta réponse.

Critères	CM 1	CM 2	CM 3	CP
Barème	2 pts	2 pts	2 pts	2 pts

EXERCICE 2 (6pts)

- A/ Complète sans recopier le texte
- 1. $\frac{(x-5)(x+4)}{(x+4)(5x+2)}$ existe si et seulement si $x \neq \cdots$ (a) \cdots et $x \neq \cdots$ (b) \cdots puis sa forme simplifiée est \cdots (c) \cdots .
- 2. Si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires alors il existe un nombre réel k tel que \overrightarrow{CD} = \cdots (d) \cdots
- B/ Réponds par Vrai ou Faux :
 - (a) Les vecteurs $\overrightarrow{AB}(x; y)$ et vecteurs $\overrightarrow{CD}(x'; y')$ sont colinéaires lorsque xx' + yy' = 0.
 - (b) $|1-5\sqrt{2}|=5\sqrt{2}-1$.
 - (c) $(3+2\sqrt{2})$ et $(3-2\sqrt{2})$ sont inverse l'un à l'autre.
 - (d) $]4; \longrightarrow [\cap [-1; \longrightarrow [$ est égale à [-1; 4[.
- C/ Choisis la bonne réponse
- 1. L'écriture simplifié de $-\frac{3}{2}(\overrightarrow{AB} + \overrightarrow{CD}) + 3(\frac{1}{2}\overrightarrow{AB} \overrightarrow{CD})$ est : (a) $-\frac{9}{2}\overrightarrow{CD}$ (b) $3\overrightarrow{AB} \frac{9}{2}\overrightarrow{CD}$

- (c) $-\frac{3}{2}\overrightarrow{AB}$
- 2. Le volume d'une pyramide de base carrée de $\mathbf{5}$ \mathbf{c} \mathbf{m} de coté et de $\mathbf{10}$ \mathbf{c} \mathbf{m} de hauteur est :
 - (a) $V = 8.5 cm^3$
- (b) $V = 250cm^3$
- (c) $V = 83,33cm^3$
- 3. La solution de l'inéquation 3x + 1 > 4x 6 est :
 - (a)] **←;7**[

(b) $]7; \longrightarrow [$

- (c) {**7**}
- 4. La solution de l'équation 3x 1 = 7x + 3 est :
 - (a) $\{-1\}$

(b) $]-1; \longrightarrow [$

EXERCICE 3 (6pts)

1. Resoudre les systèmes d'équation suivants :

(a)
$$\begin{cases} -x+3 > 3x-2 \\ 3x+2 < 5x+3 \end{cases}$$

(b)
$$\begin{cases} x - 2y - 4 = 0 \\ 2x + y - 3 = 0 \end{cases}$$

- 2. La figure ci-contre qui n'est pas au grandeurs réelle représente un cône de révolution de sommet S, de hauteur SO = 12cm et de base le cercle de diamètre AB = 10cm.
 - (a) Quel est le nom du segment [SB]?
 - (b) Démontre que SB = 13cm
 - (c) Calcul le périmètre de la base.

- (d) Calcule l'aire latérale de ce cône.
- (e) Calcule le volume de ce cône.

On donne $\pi = 3.14$