Further Pure 3 Notes

Jacob Santry

June 28, 2017

Contents

Group Theory						
1.1	Background Work	1				
1 2	Modulo Arithmetic	6				

Group Theory

1.1 Background Work

Set Notation

$$A = \{ ext{Colours of the rainbow} \}$$

$$Red \in A$$
Is an element of.
or $B\{2, 5, 11, 17\}$
or $C = \{x : x > 2\}$
Such that.

Special sets

 $\begin{array}{l} \mathbb{R} = & \{ \text{Real numbers} \} \\ \mathbb{C} = & \{ \text{Complex numbers} \} \\ \mathbb{Z} = & \{ \text{Integers} \} \\ \mathbb{Z}^+ = & \{ \text{Real numbers} \} \\ \text{ [also } N = & \{ \text{Natural numbers} \} \text{]} \\ \mathbb{Q} = & \{ \text{Rational numbers} \} \end{array}$

Binary Operations

The operation, *, acts on the two elements of a set to produce a unique "product" (i.e. outcome).

Properties of Binary Operations

1. Commutative: an operation, *, is communative iff

$$x * y = y * x \quad \forall x, y.$$

2. Associativity: operation, *, is associative iff

$$x * (y * z) = (x * y) * z \quad \forall x, y, z$$

3. Distributive property: operation, *, is distributive over operation o, iff

$$x * (y \circ z) = (x * y) \circ (x * z) \quad \forall x, y, z$$

1.2 Modulo Arithmetic

Aritmetic modulo n returns the remainder after division by n.

e.g.

$$3 +_6 5 = 2$$

$$3 \times_6 5 = 3$$

both of these calculations are restricted to the set $\mathbb{Z}_{\not\trianglerighteq} = \{0,\!1,\!2,\!3,\!4,\!5\}$ so $\mathbb{Z}_n = \{0, 1, \dots, n-1\}$

Definitions of a group

A group, G, consist of a set, S, together with an operation,x. The following criteria must be satisfied

1. Closed: i.e.

$$x * y \in S \quad \forall x, y \in S.$$

2. Associative: i.e.

$$x * (y * z) = (x * y) * z \quad \forall x, y, z \in S.$$

3. Identity: i.e.

$$\exists e \in S \quad \text{st. } x * e = e * x = x \quad x \in S.$$

4. Inverse: i.e.

$$\forall x \in S \quad \exists x^{-1} \quad \text{st. } x * x^{-1} = x^{-1} * x = e.$$

If, in addition, a group is commutative it is known as an Abelian group.

Finite groups

e.g. To show that $\mathbb{Z}_{\not \triangleright}$ together with $+_4$ form a group.

$+_4$	0	1	2	3
0	0	2	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

- 1. Closed \checkmark by inspection
- 2. Associative ✓ because addition of integers if associative.
- 3. Identity ✓ e=0
- 4. Inverse

$$0^{-1} = 0$$

$$1^{-1} = 3$$

$$2^{-1} = 2$$

 $2^{^{-1}} = \mathop{2}_{\uparrow}$ 2 is a self-inverse element.

$$3^{-1} = 1$$

 \therefore (Z₄,+₄) is a group. This group is also commutative- it has a symetry about the leading diagonal. An operation table like this is known as a Cayley Table and if it represents a group it must exhibit the properties of a Latin Square (i.e. each of the elements exactly once in every row and column).

Order of a group

The order of a group os the number of elements it contains.