Quick Select
LO Define problem
3) Algorithm to solve it
(3) Aug case run-time
(f) Code up + compare US theoretical result
Given an array of nitems,
Given an array of nitems, find the kind smallest.
Tool: Partition Algorithm 8 9 6 12 27 19 12 3 19 25 4 8 77 18 8 9
12 3 19 25 4 8 77 18 8 9
part elem high
1000
Worsted the 3rd smallest item in the array: Now I want the 3rd smallest
aray: Now I want the 3. Smelles!
in (8) 3/9/9/4/
Wanted De 6th Smallest Hem

Wanter 12e 9th snellest: [77/18/27/19] (3rd snellest)

Case analysis T(n) = aug case run-time arch Select of 1 n-2 $nT(n) = \frac{1}{n} (n-1) + n$ = 1 T(1) + 1-2 T(n-2) +n $=\frac{2}{n}T(2)+\frac{n-3}{n}T(n-3)+n$ $= \frac{3}{n} T(3) + \frac{n-4}{n} T(n-4) + n$ $= \frac{1}{n} T(n-1) + n$

 $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$

$$nT(n) = 2\left[\frac{1}{n}T(1) + \frac{2}{n}T(2) + \frac{3}{n}T(3) + ... \frac{n-1}{n}T(n-1)\right] + n^{2}$$

$$- n^{2}T(n) = 2\left[T(1) + 2T(2) + 3T(3) + ... + (n-1)T(n-1)\right] + n^{3}$$

$$(n+1)^{2}T(n+1) = 2\left[T(1) + 2T(2) + ... + (n-1)T(n-1) + nT(n)\right] + (n+1)^{2}T(n)$$

$$(n+1)^{2}T(n+1) = \left[n^{2}+2n\right]T(n) + \left(3n^{2}+3n+1\right)$$

$$(n+1)^{2}T(n+1) = \frac{n(n+2)}{(n+1)(n+2)}T(n) + \frac{(3n^{2}+3n+1)}{(n+1)(n+2)}$$

$$\frac{(n+1)^{2}T(n+1)}{(n+1)(n+2)} = \frac{n(n+2)}{(n+1)(n+2)}T(n) + \frac{3}{(n+1)(n+2)}$$

$$\frac{(n+1)^{2}T(n+1)}{(n+1)(n+2)} = \frac{nT(n)}{n+1} + 3$$

$$= \frac{nT(n)}{n+1} + 3$$

$$= \frac{nT(n)}{n+1} + 3$$

$$= \frac{nT(n)}{n+1} + 3$$

$$= \frac{3(n+1)}{n+1} = \frac{0(n)}{n+1}$$

$$= \frac{3n+3}{n+1} = \frac{nT(n)}{(n+1)\cdot 0(n)} = \frac{(n+1)\cdot 0(n)}{(n+1)\cdot 0(n)} = \frac{(n+1)\cdot 0(n)}{(n+1)\cdot 0(n)}$$

$$= \frac{2\cdot 0(n)}{n+1} = 0(n)$$