4

简单查找 Simply Searching

郝家胜

hao@uestc.edu.cn

自动化工程学院

内容回顾

• 算法的概念

• 算法的描述

• 算法的效率

内容提要

• 顺序查找

• 二分查找

查找问题

• 问题描述

条件:设给定的一组数据为A[1], A[2],...,A[n] ,其关键字属性为 key,且满足 A[1].key ≤ A[2].key ≤ ... ≤ A[n].key

要求:

找到满足 A[i].key 与给定值 k 相同的索引值 i.

成绩表

А	В	С	D	Е	F	G	Н	I	J K	
三年一班第一次定期考查成績表										
座號		國文	英文	數學	自然	社會	總分	平均	名次 等第	f
1	蘇有朋	92	82	78	87	89	428	85.6	1乙	
2	林心如	86	88	90	66	92	422	84.4	2乙	
3	孫燕姿	80	96	56	75	93	400	80.0	4 乙	
4	孫協志	58	68	66	75	72	339	67.8	10 丁	
5	松隆子	77	89	53	68	88	375	75.0	7丙	
6	木村拓哉	82	48	69	76	87	362	72.4	9丙	
7	常盤貴子	94	75	85	58	93	405	81.0	3 乙	
8	織田裕二	55	87	92	76	85	395	79.0	6丙	
9	金賢珠	65	90	68	80	93	396	79.2	5 丙	
10	車仁表	70	84	45	78	91	368	73.6	8 丙	
	平均	75.9	80.7	70.2	73.9	88.3	389	77.8		
	最高分	94	96	92	87	93	428	85.6		
	最低分	55	48	45	58	72	339	67.8		
	不及格人數	2	1	3	1	0		,		

- 自然语言描述
 - S1: 从第一个数据开始
 - -S2: 取其关键字与给定值比较,

若相等,查找成功,结束;否则转S3

- S3: 切换到下一个元素
- S4: 若数据存在,转S2, 否则查找失败, 结束

• 流程图

• 伪代码

```
SSEARCH (A, n, k)
► 在A[1..n]中查找key为k的A[n]
i \leftarrow 1
do
    if A[i]. key == k then
           do succeed(i)
           exit
       else
           i \leftarrow i + 1
       end
until i > n
do failed(i)
```


• 时间复杂度分析

• 结论: O(n)

- 自然语言描述
 - S1: 从中间数据开始
 - -S2: 取其关键字与给定值比较,

若相等, 查找成功, 结束; 否则转S3

- S3: 若大于给定值,切换到左边中间数据;否则切换到右边中间数据
- S4: 若数据存在, 转S2, 否则查找失败, 结束

• 流程图

• 伪代码

```
SSEARCH (A, n, k)
► 在A[1..n]中查找key为k的A[n]
low \leftarrow 1, high \leftarrow n
while low \le high do
       mid \leftarrow (low + high)/2
       if A[mid].key == k then
           do succeed(i)
            exit
       else if A[mid].key < k
             low \leftarrow mid + 1
       else
            high \leftarrow mid - 1
       end
end
do_failed(i)
end
```


• 时间复杂度分析

• 结论: O(log n)

小结

- 顺序查找
 - 平均查找长度为n/2, 算法效率为O(n)
 - 效率低,仅适合短表

- 二分查找
 - 算法效率为O(log n)
 - 要求数据有序

思考与实践

· 二分查找的N-S图表示

• 用伪代码描述判断闰年的算法

附录

伪代码描述的循环

当型语句:

直到型语句:

伪代码中的:

循环语句

$S = 1 + 2 + 3 + \cdots + 100$

自然语言一当型循环, 先计数后累加:

S2
$$i \leftarrow 0$$
;

转S3;

S4 输出S.

当型循环流程图和伪代码条件 的一致性.

S←0
$$i \leftarrow 0$$
; While i≤99 $i \leftarrow i+1$ $S \leftarrow S+i$ End while Print S

$S = 1 + 2 + 3 + \cdots + 100$

自然语言一直到型循环先累加后计数:

S2
$$i \leftarrow 1$$
;

S4
$$i \leftarrow i + 1$$
;

S5 如果i不大于100,

转S3;

S6 输出S.

直到型循环语句伪代码格式:

Do

循环体

Until P

$$S \leftarrow 0$$
 $i \leftarrow 1$;
 Do
 $S \leftarrow S + i$
 $i \leftarrow i + 1$
 $Until i > 100$
 $Print S$

时间复杂度计算原则

- As n increases
 - Highest complexity term dominates
 - Lower complexity terms are ignored
- Examples

```
-2 n + 100 \Rightarrow O(n)
- n log(n) + 10 n \Rightarrow O(nlog(n))
- \frac{1}{2} n^{2} + 100 n \Rightarrow O(n^{2})
- n^{3} + 100 n^{2} \Rightarrow O(n^{3})
- \frac{1}{100} 2^{n} + 100 n^{4} \Rightarrow O(2^{n})
```

