Table des matières

1	Entier	rs naturels	2
	I.1	Les propriétés admises de l'ensemble $\mathbb N$	2
	I.2	Le principe de récurrence	3
	I.3	Division euclidienne	4
	I.4	Raisonnement par récurrence	5
	I.5	Pratique du raisonnement par récurrence	5
II	Ensen	nbles finis	6
	II.1	Cardinal d'un ensemble fini	6
	II.2	Propriétés des cardinaux	11
III	Dénor	mbrements	13
	III.1	Applications entre ensembles finis	13
	III.2	Arrangements et combinaisons	14
	III.3	Binôme de Newton	16

I Entiers naturels

I.1 Les propriétés admises de l'ensemble N

Conformément au programme, l'ensemble $\mathbb{N} = \{0, 1, 2, \ldots\}$ est supposé connu, ainsi que ses propriétés (opérations + et \times , relation d'ordre). Voici quelques-unes de ces propriétés.

• Addition

- L'opération + est associative : $\forall (m, n, p) \in \mathbb{N}^3, m + (n + p) = (m + n) + p$.
- Elle est + est commutative : $\forall (m, n) \in \mathbb{N}^2, m + n = n + m$.
- -0 est élément neutre : $\forall n \in \mathbb{N}, n+0=n$.

On note \mathbb{N}^* l'ensemble \mathbb{N} privé de 0.

- Tout élément de $\mathbb N$ est simplifiable pour l'addition :

$$\forall (m, n, p) \in \mathbb{N}^3, m + p = n + p \Rightarrow m = n.$$

 $- \forall (m, n) \in \mathbb{N}^2, m + n = 0 \Leftrightarrow m = n = 0.$

• Multiplication

- L'opération \times est associative : $\forall (m, n, p) \in \mathbb{N}^3, m(np) = (mn)p$.
- Elle est commutative : $\forall (m, n) \in \mathbb{N}^2, mn = nm$.
- Elle est distributive par rapport à la loi $+: \forall (m, n, p) \in \mathbb{N}^3, m(n+p) = mp + mp$.
- 1 est élément neutre : $\forall n \in \mathbb{N}, n1 = n$.
- Tout élément $non \ nul$ de \mathbb{N} est simplifiable pour le produit :

$$\forall (m,n) \in \mathbb{N}^2, \forall p \in \mathbb{N}^*, mp = np \Rightarrow m = n.$$

• Relation d'ordre

On pose : $\forall (m, n) \in \mathbb{N}^2$, $m \leqslant n \Leftrightarrow \exists p \in \mathbb{N}$, m + p = n.

- C'est une relation d'ordre total sur \mathbb{N} (ça signifie que deux éléments m et n de \mathbb{N} sont toujours comparables: on a toujours $m \leq n$ ou $n \leq m$)
- L'entier 0 est le minimum de N pour cette relation d'ordre.
 - ▶ Démonstration:

Cela résulte évidemment de l'égalité 0 + n = n, valable pour tout n de $\mathbb{N} \blacktriangleleft$

– Pour tous entiers m, n, p, si $m \le n$ alors $\begin{cases} m + p \le n + p \\ mp \le np \end{cases}$

Remarques

- Si $m \le n$, l'entier p tel que m + p = n est noté n m. L'opération différence n'est pas partout définie sur \mathbb{N} (l'entier p n'existe que si $m \le n$) et n'est pas très "intéressante" (pas commutative, ni associative, pas d'élément neutre).
- On note indifféremment $n \ge m$ et $m \le n$ (mais plus souvent $m \le n$).

On note m < n pour écrire : $(m \le n)$ et $(m \ne n)$.

Soit (m, n) dans \mathbb{N}^2 . On pose : $[[m, n]] = \{p \in \mathbb{N}, m \leq p \leq n\}$ (ensemble vide si n < m).

- On $mn = 1 \Leftrightarrow m = n = 1$, et on a $mn = 0 \Leftrightarrow (m = 0)$ ou (n = 0).

- Si $a_m, a_{m+1}, \ldots, a_n$ sont dans \mathbb{N} , on notera $\sum_{j=m}^n a_j$, ou $\prod_{m \leqslant j \leqslant n} a_j$, plutôt que $a_m + a_{m+1} + \ldots + a_n$. De même on notera $\prod_{j=m}^n a_j$, ou $\prod_{m \leqslant j \leqslant n} a_j$ plutôt que $a_m a_{m+1} \ldots a_n$. Par convention, dans le cas où n < m on pose $\sum_{j=m}^n a_j = 0$ et $\prod_{j=m}^n a_j = 1$.

Factorielle

Pour tout n de \mathbb{N} , on note $n! = \prod_{k=1}^{n} k$ (et en particulier 0! = 1)

Puissances d'un entier

Pour tous m, n de \mathbb{N} , on pose $m^n = \prod_{j=1}^n m$ (et en particulier $m^0 = 1$).

On a alors les propriétés suivantes : $m^n m^p = m^{n+p}$, $(m^n)^p = m^{np}$, $(mn)^p = m^p n^p$.

I.2 Le principe de récurrence

Dans N, on admet en particulier la propriété fondamentale :

Toute partie non vide de N possède un plus petit élément

Remarques et exemples

- Soit n dans \mathbb{N} . L'ensemble $A = \{m \in \mathbb{N}, m > n\}$ est non vide. Le plus petit élément de A est bien sûr n+1 (c'est le successeur de n). Autrement dit, pour tout n de \mathbb{N} , on a : $m > n \iff m \geqslant n+1$.
- Soit n dans \mathbb{N}^* . L'ensemble A des m de \mathbb{N} tel que m < n est non vide (il contient 0). Le plus grand élément de cet ensemble est bien sûr n-1 (c'est le prédécesseur de n). Autrement dit, pour tout n de \mathbb{N} , on a : $m < n \iff m \leqslant n-1$.

La propriété "du plus petit élément" possède deux corollaires très importants :

Principe de récurrence

Soit A une partie de \mathbb{N} , contenant 0. On suppose que : $\forall n \in A, n+1 \in A$. Alors $A = \mathbb{N}$.

Autrement dit, si une partie A de $\mathbb N$ contient 0 et si elle contient le successeur de chacun de ses éléments, alors cette partie A est égale à $\mathbb N$ tout entier.

▶ Démonstration:

On raisonne par l'absurde, donc on suppose que le complémentaire B de A dans \mathbb{N} n'est pas vide. Soit b le plus petit élément de B (on utilise l'axiome du plus petit élément).

On trouve $b \ge 1$ (car 0 est dans A, donc pas dans B, et b est dans B).

On peut donc parler de l'entier a = b - 1, et a est dans A.

Par hypothèse sur A, on en déduit que b = a + 1 est dans A, et c'est absurde.

Plus grand élément d'une partie non vide majorée

Toute partie majorée non vide de N possède un plus grand élément

▶ Démonstration:

Soit A une partie majorée non vide de $\mathbb N$. Soit B l'ensemble des majorants de A. L'ensemble B est une partie non vide de $\mathbb N$ donc possède un plus petit élément b. Pour tout élément a de A, on a l'inégalité $a \le b$. Si b = 0, alors nécessairement $A = \{0\}$ et A possède bien un plus grand élément... On suppose donc b > 0. Par définition de b, l'entier b - 1 n'est pas dans B. Il existe donc un élément a de A tel que b - 1 < a. On a alors $b - 1 < a \le b$, ce qui implique b = a: l'entier b est donc dans A. Ainsi b est un majorant de A qui appartient à A: c'est l'élément maximum de A

I.3 Division euclidienne

Définition

On dit que n divise m (ou que m est un multiple de n) si : $\exists q \in \mathbb{N}, m = nq$. On note alors $n \mid m$. On définit ainsi une relation d'ordre partiel sur \mathbb{N} . Pour cette relation, 1 est le minimum de \mathbb{N} .

▶ Démonstration:

Pour tout entier
$$n$$
, on a $n=n\cdot 1$ donc $\begin{cases} n\mid n \pmod{1} & \text{(l'entier 1 est minimum)} \\ 1\mid n \pmod{1} & \text{(l'entier 1 est minimum)} \end{cases}$ La relation est transitive car $\begin{cases} n\mid n' \\ n'\mid n'' \Rightarrow \end{cases} \begin{cases} n'=nq \\ n''=n'q' \Rightarrow n''=n(qq')\Rightarrow n\mid n'' \end{cases}$ $\begin{cases} n\mid m \\ m\mid n \end{cases} \begin{cases} m=nq \\ n=mp \end{cases} \Rightarrow n=n(qp)\Rightarrow \begin{cases} n=0 \text{ ou} \\ pq=1 \end{cases} \end{cases} \begin{cases} m=n=0 \text{ ou} \\ p=q=1 \end{cases} \Rightarrow m=n$ C'est un ordre partiel car par exemple 2 et 3 ne sont pas comparables \blacktriangleleft

Définition

Soit (m, n) dans $\mathbb{N} \times \mathbb{N}^*$. Il existe un unique couple (q, r) de \mathbb{N}^2 tel que : (m = nq + r) et $(r \le n - 1)$ Le passage du couple (m, n) au couple (q, r) s'appelle division euclidienne de m par n. Dans cette division, m est le dividende, n le diviseur, q le quotient, et r le reste.

▶ Démonstration:

Soit A le sous-ensemble de \mathbb{N}^* formé des entiers k tels que m < kn. Notons que k = m+1 convient toujours car $(m+1)n-m = m(n-1)+n \geqslant n \geqslant 1$. L'ensemble A étant non vide, il a un minimum $q' \geqslant 1$. Notons q' = q+1 $(q \in \mathbb{N})$. Par définition $\begin{cases} q \notin A & \text{c'est-à-dire } \\ q+1 \in A \end{cases}$ $q \in m = m - nq$ est un entier naturel strictement inférieur à n. On a donc trouvé un couple $(q,r) \in \mathbb{N}^2$ tel que m = nq + r, avec $r \leqslant n-1$. Supposons alors qu'on ait aussi m = nq' + r', avec $(q',r') \in \mathbb{N}^2$ et $r' \leqslant n-1$. On doit montrer que les couples (q,r) et (q',r') sont égaux. Sans perdre de généralité, on peut supposer $q' \geqslant q$. Par différence on trouve $n(q'-q) = r - r' \leqslant r < n$. La seule possibilité est q'-q=0. On trouve donc q' = q, puis r' = r. Le couple (q,r) obtenu plus haut est donc unique \blacktriangleleft

Remarque

 $n \mid m \Leftrightarrow (m = n = 0)$ ou $(n \neq 0)$ et le reste dans la division de m par n est nul).

I.4 Raisonnement par récurrence

Soit \mathcal{P} un prédicat, de référentiel \mathbb{N} .

Rappelons qu'on écrit $\mathcal{P}(n)$ pour dire " $\mathcal{P}(n)$ est vraie".

Récurrence simple (ou faible)

```
On suppose \mathcal{P}(0) et, pour tout entier n, \mathcal{P}(n) \Rightarrow \mathcal{P}(n+1).
Alors, pour tout entier n, \mathcal{P}(n).
```

▶ Démonstration:

```
Notons A l'ensemble des entiers n de \mathbb{N} pour lesquels \mathcal{P}(n) est vraie.
Les deux hypothèses signifient que 0 est dans A et que : \forall n \in A, n+1 \in A.
L'axiome de récurrence donne A = \mathbb{N} : la propriété \mathcal{P} est donc vraie pour tout n de \mathbb{N}
```

Voici donc comment montrer qu'une propriété $\mathcal{P}(n)$ est vraie pour tous les entiers naturels :

- On vérifie que l'entier 0 satisfait à la propriété : c'est le pas initial de la récurrence.
- On se **donne** ensuite un entier n, pour lequel on suppose que $\mathcal{P}(n)$ est vraie. C'est l'hypothèse de récurrence.
- On démontre alors que $\mathcal{P}(n+1)$ est vraie (c'est le "passage du rang n au rang n+1"). On exprime l'implication $\mathcal{P}(n) \Rightarrow \mathcal{P}(n+1)$ en disant que la propriété \mathcal{P} est héréditaire.
- On conclut en annonçant que, par récurrence, la propriété est vraie pour tout entier n.

I.5 Pratique du raisonnement par récurrence

Le raisonnement de récurrence admet plusieurs variantes, dont celle-ci, qui ne diffère de l'original que par le "pas initial" qui peut se situer en n_0 (entier naturel) plutôt qu'en 0 :

Soit n_0 un entier naturel.

```
On suppose \mathcal{P}(n_0).
On suppose également que : \forall n \geq n_0, \, \mathcal{P}(n) \Rightarrow \mathcal{P}(n+1).
Alors, \forall n \geq n_0, \, \mathcal{P}(n).
```

Une autre variante réside dans la manière d'avancer dans la récurrence.

Il arrive en effet que l'hypothèse $\mathcal{P}(n)$ seule soit insuffisante pour démontrer $\mathcal{P}(n+1)$.

Le cas le plus fréquent est celui de la *récurrence double*, où le pas initial et l'hypothèse de récurrence portent sur deux entiers consécutifs.

Récurrence de pas double

Soit n_0 un entier naturel.

```
On suppose \mathcal{P}(n_0) et \mathcal{P}(n_0+1).
On suppose également que : \forall n \geq n_0, (\mathcal{P}(n) \text{ et } \mathcal{P}(n+1)) \Rightarrow \mathcal{P}(n+2).
Alors, \forall n \geq n_0, \mathcal{P}(n).
```

Il reste à voir une dernière version du raisonnement par récurrence. Pour démontrer $\mathcal{P}(n+1)$, on peut en effet utiliser tout ou partie des hypothèses $\mathcal{P}(n_0)$, $\mathcal{P}(n_0+1)$, ..., et $\mathcal{P}(n)$.

Récurrence forte

```
Soit n_0 un entier naturel. On suppose \mathcal{P}(n_0).
On suppose aussi que : \forall n \geq n_0, (\mathcal{P}(n_0), \mathcal{P}(n_0+1), \dots, \mathcal{P}(n)) \Rightarrow \mathcal{P}(n+1).
Alors, \forall n \geq n_0, \mathcal{P}(n).
```

Voici enfin quelques conseils pour "réussir" un raisonnement par récurrence :

- Ne pas oublier le "pas initial" (la propriété est souvent triviale, mais on **doit** la prouver).
- Ne pas écrire : "Supposons que pour **tout** n, $\mathcal{P}(n)$. Montrons $\mathcal{P}(n+1)$ " alors qu'il faut écrire : "Soit n un entier naturel ; on suppose $\mathcal{P}(n)$. Montrons $\mathcal{P}(n+1)$ ".
- Bien articuler le pas initial et l'hypothèse de récurrence.
 - Si le pas initial est par exemple n_0 , et si on veut démontrer $\mathcal{P}(n) \Rightarrow \mathcal{P}(n+1)$, alors n doit être supérieur ou égal à n_0 . On peut tout à fait prouver $\mathcal{P}(n-1) \Rightarrow \mathcal{P}(n)$, mais dans ce cas n doit être strictement supérieur à n_0 .
- Bien séparer le "passage du rang n au rang n + 1", où l'entier n est **fixé**, et la conclusion finale (qui est obligatoire, et qui doit porter sur **tous** les entiers naturels n).

II Ensembles finis

II.1 Cardinal d'un ensemble fini

Pour tout entier naturel, on note $E_n = \{m \in \mathbb{N}, 1 \leq m \leq n\}$. En particulier $E_0 = \emptyset$.

Dans les trois énoncés suivants, n et p sont des entiers naturels.

Proposition

Il existe une injection de E_n dans E_p si et seulement si $n \leq p$.

Il existe une surjection de E_n sur E_p si et seulement si $n \ge p$.

Il existe une bijection de E_n sur E_p si et seulement si n = p.

- ▶ Démonstration:

```
Si n \leq p, on définit une injection f de E_n dans E_p en posant : \forall k \in E_n, f(k) = k.

Réciproquement, prouvons que l'existence d'une injection de E_n dans E_p implique n \leq p.

On va le montrer par récurrence sur n. Si n = 1 c'est évident puisque par hypothèse 1 \leq p.

Soit n dans \mathbb{N}^*. Supposons la propriété démontrée "au rang n".

On suppose alors qu'il existe une injection f: E_{n+1} \to E_p: il faut prouver n+1 \leq p.

Tout d'abord p > 1, sinon f ne serait pas injective (on aurait f(1) = f(2) = 1.)

Si f(n+1) < p, soit g la bijection de E_p sur lui-même qui échange f(n+1) et p en laissant fixe tous les autres. Si au contraire f(n+1) = p, soit g l'application identité de E_p.

Par construction h = g \circ f est une injection de E_{n+1} dans E_p telle que h(n+1) = p.

Sa restriction à E_n est donc une injection de E_n dans E_{p-1}.

L'hypothèse de récurrence nous donne alors n \leq p-1 donc n+1 \leq p.

On a ainsi prouvé la propriété au rang n+1, ce qui achève la récurrence
```

- **D**émonstration:

Si $n \ge p$, l'application $f: E_n \to E_p$ définie par $f(k) = \min(k, p)$ est surjective.

Réciproquement supposons qu'il existe une surjection f de E_n sur E_p .

On définit alors une application g de E_p dans E_n en associant à tout j de E_p l'un quelconque (il y en a toujours au moins un) des éléments k de E_n tels que f(k) = j.

Par construction, l'application $f \circ g$ est l'identité de E_p .

Puisque $f \circ g$ est injective, il en est de même de g.

L'existence d'une injection g de E_p dans E_n implique donc $p \leq n$ (proposition précédente.)

− ► Démonstration:

Si n = p, l'application identité est une bijection de E_n sur E_p . Réciproquement c'est une simple conséquence des deux propriétés précédentes

Proposition

Soit n un entier naturel non nul, et f une application de E_n dans lui-même.

Alors: f est bijective $\Leftrightarrow f$ est injective $\Leftrightarrow f$ est surjective.

▶ Démonstration:

Il suffit de vérifier l'équivalence entre "f injective" et "f surjective".

 \diamond Soit f une injection de E_n dans lui-même.

Supposons par l'absurde que f ne soit pas surjective.

Alors il existe k de E_n qui ne possède pas d'antécédent par f.

On remarque que cette situation implique nécessairement $n \ge 2$.

Si k < n, on note g la bijection de E_n sur lui-même qui échange k et n et laisse fixe tous les autres. Si k = n, on prend pour g l'identité de E_n .

Par construction $g \circ f$ est une injection de E_n dans E_{n-1} , ce qui est absurde.

Conclusion : si f est injective de E_n dans lui-même, alors elle est bijective.

 \diamond Soit f une surjection de E_n sur lui-même.

On définit une application g de E_n dans lui-même en associant à tout j de E_n l'un quelconque (il y en a toujours au moins un) des éléments k de E_n tels que f(k) = j.

Par construction, l'application $f \circ g$ est l'identité de E_n .

Puisque $f \circ q$ est injective, il en est de même de qu

La démonstration précédente nous apprend alors que g est bijective.

Puisque $f \circ g$ est l'identité de E_n , il en découle $f = g^{-1}$. L'application f est donc bijective.

Conclusion : si f est surjective de E_n sur lui-même, alors elle est bijective \triangleleft

On peut maintenant donner la définition d'un ensemble fini.

Proposition

Un ensemble non vide E est dit fini s'il existe une bijection de E_n sur E, avec $n \ge 0$.

L'entier n, s'il existe, est unique et est appelé le cardinal de E. On note $n = \operatorname{card}(E)$.

En particulier card $(\emptyset) = 0$. Un ensemble non fini est dit *infini*.

▶ Démonstration:

L'unicité de l'entier n résulte du fait que s'il existe une bijection f de E_n sur E et une bijection g de E_p sur E alors $g^{-1} \circ f$ est une bijection de E_n sur E_p , ce qui implique n = p

Remarques

- $-\operatorname{card}(E)$ représente bien sûr le "nombre d'éléments" de E.
- Dans la définition, on aurait pu aussi bien dire : "s'il existe une bijection de E sur E_n "
- Si $m \leq n$, l'intervalle [m, n] est fini de cardinal n m + 1. En effet l'application f définie par f(k) = k m + 1 est bijective de [m, n] sur E_{n-m+1} .
- S'il existe une bijection f de E fini sur F, alors F est fini et card $(E) = \operatorname{card}(F)$.
 - ▶ Démonstration:

```
Si E = \emptyset alors F = \emptyset. Sinon, soit g une bijection de E_n sur E, avec n = \operatorname{card}(E) \geqslant 1. Alors f \circ g est une bijection de E_n sur F. L'ensemble F est donc fini de cardinal n \blacktriangleleft
```

On peut caractériser les parties finies de \mathbb{N} :

Proposition

Une partie A non vide de \mathbb{N} est finie \Leftrightarrow elle est majorée. En particulier \mathbb{N} est infini.

▶ Démonstration:

```
\diamond Montrons par récurrence que toute partie A de \mathbb{N}, de cardinal n \geqslant 1, est majorée.
```

```
Si n = 1: A qui est en bijection avec E_1 = \{1\} et est donc un singleton est majoré...
```

Supposons la propriété vraie pour un entier $n \ge 1$ donné, et soit $A \subset \mathbb{N}$ de cardinal n+1.

Soit f une bijection de E_{n+1} sur A, et soit a = f(n+1).

La restriction de f à E_n est une bijection de E_n sur $B = A \setminus \{a\}$.

L'ensemble B est de cardinal n donc majoré. Soit m un majorant de B.

Pour tout x de A, on a $x \leq \max(a, m)$. Donc A est majoré, ce qui achève la récurrence.

 \diamond Montrons par récurrence sur n que si $A \subset [0, n]$, alors A est fini et card $(A) \leqslant n + 1$.

```
Si n = 0, alors A = \{0\}. Donc A est fini et card (A) = 1.
```

Supposons la propriété vraie pour $n \ge 0$ donné. Soit A une partie de [0, n+1].

Il faut montrer que A est finie et que card $(A) \leq n+2$.

Si $A \subset [0, n]$, on applique l'hypothèse de récurrence : card $(A) \leq n + 1 \leq n + 2$.

Sinon n+1 est dans A. Si $A=\{n+1\}$, il est fini de cardinal $1 \le n+2...$

Sinon l'ensemble $B = A \setminus \{n+1\}$ est non vide et inclus dans [0, n].

Cet ensemble est donc fini et card $(B) = p \leq n + 1$. Soit f une bijection E_p sur B.

On prolonge f en une bijection g de E_{p+1} sur A en posant f(p+1) = n+1.

Il en résulte que A est fini avec card $(A) = p + 1 \le n + 2$, ce qui achève la récurrence.

♦ N est infini car non majoré (conséquence de l'existence de l'application "succession") ◀

On en déduit le résultat suivant :

Proposition

Soit E un ensemble fini. Soit A une partie de E.

Alors A est un ensemble fini et $\operatorname{card}(A) \leq \operatorname{card}(E)$.

Plus précisément, on a card (A) = card(E) si et seulement si A = E.

▶ Démonstration:

- Soit A une partie de l'ensemble fini E. Si A = ∅, il est fini et card (A) ≤ card (E)...
 On suppose donc A non vide. Soit n = card (E) ≥ 1 et f une bijection de E sur E_n.
 L'application g: k → g(k) = f(k) 1 est bijective de E dans [0, n 1].
 Elle induit donc une bijection de A sur une partie non vide B = f(A) de [0, n 1].
 La proposition précédente nous apprend que B est finie, et que card (B) ≤ n.
 Or il y a une bijection de A sur B. Donc A est fini et card (A) = card (B) ≤ card (E).
- ♦ Soit $A \subset E$, avec E fini et card $(A) = \operatorname{card}(E)$. Il faut montrer que A = E. Si A est vide, alors card $(E) = \operatorname{card}(A) = 0$: l'ensemble E est vide également. Sinon soient $n = \operatorname{card}(A) = \operatorname{card}(E) \geqslant 1$, $f: E_n \to A$ et $g: E \to E_n$ deux bijections. Soit φ l'injection canonique de A dans E, définie par $\varphi(a) = a$ pour tout a de A. L'application $\psi = g \circ \varphi \circ f$ est une injection de E_n dans lui-même. On sait que cela implique que l'application ψ est bijective. On en déduit que $\varphi = g^{-1} \circ \psi \circ f^{-1}$ est bijective et en particulier surjective. Autrement dit tout élément de E est un élément de E. On a donc l'égalité E E

Remarque

Si E est infini, il peut exister des bijections de E sur une partie stricte de E.

Par exemple, l'application $n \mapsto 2n$ est une bijection de \mathbb{N} sur l'ensemble des entiers pairs, et la succession $n \mapsto n+1$ est une bijection de \mathbb{N} sur \mathbb{N}^* .

Les deux propositions suivantes peuvent permettre de montrer qu'un ensemble est fini.

Proposition

Soit E un ensemble fini. Soit F un ensemble quelconque.

Soit f une application surjective de E sur F.

Alors F est fini, et card $(F) \leq \operatorname{card}(E)$.

De plus on a card $(F) = \operatorname{card}(E) \Leftrightarrow f$ est bijective.

▶ Démonstration:

 \diamond On définit une application g de F vers E en associant à tout y de F l'un quelconque (il en existe toujours au moins un) des éléments x de E tels que f(x) = y.

Par construction, l'application $f \circ g$ est l'identité de F. En particulier g est injective.

L'application g réalise donc une bijection de F sur son image A = g(F).

Puisque A est une partie de E, A est finie et card $(A) \leq \operatorname{card}(E)$.

La bijection entre A et F montre que F est fini et card $(F) = \operatorname{card}(A) \leqslant \operatorname{card}(E)$.

 \diamond Si f est injective, c'est une bijection de E sur F. Donc card $(F) = \operatorname{card}(E)$.

Inversement: $\operatorname{card}(F) = \operatorname{card}(E) \Rightarrow \operatorname{card}(A) = \operatorname{card}(E)$ (notations précédentes.)

Or $A \subset E$. Il en découle A = E. Mais par construction deux éléments distincts de A ont des images distinctes par f. Il en découle que f est injective \triangleleft

Proposition

Soient E et F deux ensembles.

Soit f une application injective de E dans F.

Si f(E) est fini, alors E est fini et card (E) = card (f(E)).

▶ Démonstration:

C'est évident puisque f réalise une bijection de E sur f(E)

Voici des résultats très proches des précédents. Il s'agit plutôt ici de caractériser l'existence d'applications injectives, surjectives ou bijectives entre deux ensembles dont l'un est fini.

Proposition

Soient E et F deux ensembles non vides, l'ensemble F étant fini. Il existe une injection de E dans $F \Leftrightarrow (E \text{ est fini et } \operatorname{card}(E) \leqslant \operatorname{card}(F))$.

▶ Démonstration:

- ♦ Soit f une injection de E dans F. L'ensemble f(E) est une partie de l'ensemble fini F. Ainsi f(E) est fini, puis E lui-même car f est injective (proposition précédente.) On a enfin card (E) = card (f(E)) ≤ card (F).
- ♦ Réciproquement, on suppose $n \le m$, avec $n = \operatorname{card}(E)$ et $m = \operatorname{card}(F)$. Puisque $n \le m$, on sait qu'il existe une injection f de E_n dans E_m . Soit g une bijection de E sur E_n , et h une bijection de E_m sur F. Alors $h \circ f \circ g$ est une injection de E dans F \blacktriangleleft

Proposition

Soient E et F deux ensembles non vides, l'ensemble E étant fini. Il existe une surjection de E sur $F \Leftrightarrow (F$ est fini et card $(F) \leqslant \text{card }(E)$). Il existe une bijection de E sur $F \Leftrightarrow (F$ est fini et card (E) = card (F)).

► Démonstration:

- ♦ Pour la première propriété, le sens direct a déjà été vu. Réciproquement, on suppose $m \le n$, avec $m = \operatorname{card}(F)$ et $n = \operatorname{card}(E)$. Puisque $n \ge m$, on sait qu'il existe une surjection f de E_n dans E_m . Soit g une bijection de E sur E_n , et h une bijection de E_m sur F. Alors $h \circ f \circ g$ est une surjection de E dans F.
- ⋄ On sait que si E est fini et si $f: E \to F$ est bijective, alors F est fini et card (E) = card (F). Réciproquement, si F est fini et si card $(F) = \text{card }(E) = n \ge 1$, il existe une bijection f de E sur E_n et une bijection g de E_n sur $F: g \circ f$ est alors une bijection de E sur F

Proposition

Soient E et F deux ensembles finis non vides de même cardinal. Soit f une application de E vers F. f est bijective $\Leftrightarrow f$ est injective $\Leftrightarrow f$ est surjective.

▶ Démonstration:

On pose $n = \operatorname{card}(E)$. On utilise la proposition analogue avec E_n à la place de E et F. On sait qu'il existe une bijection g de E_n sur E et une bijection h de F sur E_n . Si f est injective alors $\varphi = h \circ f \circ g$ est injective de E_n dans lui-même. On en déduit que φ est bijective, ainsi donc que $f = h^{-1} \circ \varphi \circ g^{-1}$. C'est la même démonstration si on suppose au départ que f est surjective \blacktriangleleft

II.2 Propriétés des cardinaux

On voit ici comment calculer le cardinal d'ensembles construits à partir d'ensembles finis.

Proposition (Réunion d'ensembles finis disjoints)

Si E et F sont finis disjoints, alors $E \cup F$ est fini et $\operatorname{card}(E \cup F) = \operatorname{card}(E) + \operatorname{card}(F)$. Si E_1, \ldots, E_n sont finis disjoints deux à deux, $\bigcup_{i=1}^n E_i$ est fini et $\operatorname{card}(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n \operatorname{card}(E_i)$.

▶ Démonstration:

Soient E et F deux ensembles finis disjoints.

Si l'un d'eux est vide, alors $E \cup F$ est fini et card $(E \cup F) = \operatorname{card}(E) + \operatorname{card}(F)$.

On suppose donc card $(E) = n \ge 1$ et card $(F) = m \ge 1$.

Soit f une bijection de E sur E_n et g une bijection de F sur E_m .

On definit alors $h: E \cup F \to E_{m+n}$ par $\begin{cases} \forall x \in E, \ h(x) = f(x) \\ \forall x \in F, \ h(x) = n + g(x) \end{cases}$ Il est clair que h est bijective, avec : $\begin{cases} \forall k \in \{1, \dots, n\}, \ h^{-1}(k) = f^{-1}(k) \\ \forall k \in \{n+1, \dots, n+m\}, \ h^{-1}(k) = g^{-1}(k-n) \end{cases}$ Donc $E \cup F$ est fini et card $(E \cup F) = n + m = \operatorname{card}(E) + \operatorname{card}(F)$.

Par récurrence, on généralise à n ensembles E_1, E_2, \ldots, E_n , finis et disjoints deux à deux \triangleleft

Proposition (Réunion de deux ensembles finis)

Si E et F sont finis, alors $E \cup F$ est fini et card $(E \cup F) = \operatorname{card}(E) + \operatorname{card}(F) - \operatorname{card}(E \cap F)$. En particulier : card $(E \cup F) \leq \operatorname{card}(E) + \operatorname{card}(F)$, avec égalité $\Leftrightarrow E \cap F = \emptyset$.

▶ Démonstration:

L'ensemble $E \setminus F$ est fini car inclus dans E. On a l'union disjointe $E = (E \setminus F) \cup (E \cap F)$.

On en déduit card $(E) = \operatorname{card}(E \setminus F) + \operatorname{card}(E \cap F)$.

De même, on a l'union disjointe $E \cup F = (E \setminus F) \cup F$.

Ainsi: card $(E \cup F) = \text{card}(E \setminus F) + \text{card}(F) = \text{card}(E) + \text{card}(F) - \text{card}(E \cap F)$.

Enfin: $\operatorname{card}(E \cup F) = \operatorname{card}(E) + \operatorname{card}(F) \Leftrightarrow \operatorname{card}(E \cap F) = 0 \Leftrightarrow E \cap F = \emptyset$

Proposition (Généralisation à n ensembles finis)

Si
$$E_1, E_2, \ldots, E_n$$
 sont finis, alors $\bigcup_{i=1}^n E_i$ est fini et card $(\bigcup_{i=1}^n E_i) \leqslant \sum_{i=1}^n \operatorname{card}(E_i)$.
On a l'égalité card $(\bigcup_{i=1}^n E_i) = \sum_{i=1}^n \operatorname{card}(E_i) \Leftrightarrow \operatorname{les} E_i$ sont disjoints deux à deux.

▶ Démonstration:

On procède par récurrence sur l'entier $n \ge 2$. Le résultat est connu si n = 2.

On suppose que ces propriétés sont vraies pour un entier $n \ge 2$ donné.

On se donne n+1 ensembles finis $E_1, E_2, \ldots, E_n, E_{n+1}$. Soit $F = \bigcup_{i=1}^n E_i$.

Par hypothèse de récurrence, F est fini et card $(F) \leq \sum_{i=1}^{n} \operatorname{card}(E_i)$.

Donc
$$\bigcup_{i=1}^{n+1} E_i = F \cup E_{n+1}$$
 est fini et card $(\bigcup_{i=1}^{n+1} E_i) \leqslant \operatorname{card}(F) + \operatorname{card}(E_{n+1}) \leqslant \sum_{i=1}^{n+1} \operatorname{card}(E_i)$.

$$Donc \bigcup_{i=1}^{n+1} E_i = F \cup E_{n+1} \text{ est fini et } \operatorname{card} \left(\bigcup_{i=1}^{n+1} E_i \right) \leqslant \operatorname{card} \left(F \right) + \operatorname{card} \left(E_{n+1} \right) \leqslant \sum_{i=1}^{n+1} \operatorname{card} \left(E_i \right).$$

$$L'\acute{e}galit\acute{e} \operatorname{card} \left(\bigcup_{i=1}^{n+1} E_i \right) = \sum_{i=1}^{n+1} \operatorname{card} \left(E_i \right) \, \acute{e}quivaut \, \grave{a} \left\{ \begin{array}{l} \operatorname{card} \left(F \cup E_{n+1} \right) = \operatorname{card} \left(F \right) + \operatorname{card} \left(E_{n+1} \right) \\ \operatorname{card} \left(\bigcup_{i=1}^{n} E_i \right) = \sum_{i=1}^{n} \operatorname{card} \left(E_i \right) \end{array} \right.$$

et signifie que E_{n+1} est disjoint de $F = \bigcup_{i=1}^{n} E_i$, les ensembles E_1, \dots, E_n étant eux-mêmes disjoints deux à deux. Ceci prouve la propriété au rang n+1 et achève la récurrence

Le résultat précédent peut être généralisé (mais la démonstration est admise) :

Proposition (Formule du crible)

Soient E_1, \ldots, E_n des ensembles finis. Posons $I = \{1, 2, \ldots, n\}$. On a card $(\bigcup_{i=1}^n E_i) = \sum_{J \subset I} (-1)^{1+\operatorname{card}(J)} \operatorname{card}(\bigcap_{j \in J} E_j)$

Par exemple, si E, F, G sont trois ensembles finis :

$$\operatorname{card}(E \cup F \cup G) = \operatorname{card}(E) + \operatorname{card}(F) + \operatorname{card}(G)$$
$$- \operatorname{card}(E \cap F) - \operatorname{card}(E \cap G) - \operatorname{card}(F \cap G)$$
$$+ \operatorname{card}(E \cap F \cap G).$$

▶ Démonstration:

```
Soit H = F \cup G. On a card (E \cup F \cup G) = \operatorname{card}(E \cup H) = \operatorname{card}(E) + \operatorname{card}(H) - \operatorname{card}(E \cap H).

Mais card (H) = \operatorname{card}(F) + \operatorname{card}(G) - \operatorname{card}(F \cap G).

On a donc déjà : card (E \cup F \cup G) = \operatorname{card}(E) + \operatorname{card}(F) + \operatorname{card}(G) - \operatorname{card}(F \cap G) - \operatorname{card}(E \cap H).

D'autre part, E \cap H = E \cap (F \cup G) = (E \cap F) \cup (E \cap G). On en déduit : \operatorname{card}(E \cap H) = \operatorname{card}(E \cap F) + \operatorname{card}(E \cap G) - \operatorname{card}((E \cap F) \cap (E \cap G))

= \operatorname{card}(E \cap F) + \operatorname{card}(E \cap G) - \operatorname{card}((E \cap F \cap G))

L'expression attendue de card (E \cup F \cup G) en découle \blacktriangleleft
```

Proposition (Principe des bergers)

Soit E, F deux ensembles finis, et f une application de E vers F.

Alors card
$$(E) = \sum_{y \in F} \operatorname{card} \widehat{f}(\{y\}).$$

Donc si tous les éléments de F ont le même nombre q d'antécédents : card (E) = q card (F).

▶ Démonstration:

En effet, les ensembles $A_y = f(\{y\})$, quand y parcourt F, forment une partition de E. Ils sont donc disjoints deux à deux et leur réunion est égale à E. Il en découle $\operatorname{card}(E) = \operatorname{card}(\bigcup_{y \in F} A_y) = \sum_{y \in F} \operatorname{card}(A_y)$. Si tous les y de F ont q antécédents, chaque $\operatorname{card}(A_y)$ vaut q, et il y a $\operatorname{card}(F)$ éléments y dans F. On en déduit $\operatorname{card}(E) = q \operatorname{card}(F)$

Proposition (Produit cartésien d'ensembles finis)

Si E et F sont finis, alors $E \times F$ est fini et $\operatorname{card}(E \times F) = \operatorname{card}(E) \operatorname{card}(F)$. Plus généralement, si E_1, E_2, \ldots, E_n sont finis, alors $\operatorname{card}(\prod_{i=1}^n E_i) = \prod_{i=1}^n \operatorname{card}(E_i)$. En particulier, si E est fini, alors pour tout $n \ge 1$: $\operatorname{card}(E^n) = \operatorname{card}(E)^n$.

▶ Démonstration:

Si E ou F est vide, alors $E \times F$ est vide et on a $\operatorname{card}(E \times F) = \operatorname{card}(E) \operatorname{card}(F) = 0$. Sinon, soit f l'application de $E \times F$ vers F définie par : $\forall (x,y) \in E \times F$, f(x,y) = y. L'application f est surjective. Pour tout g de f, f est visiblement une bijection. L'application f est surjective. Pour tout g de f est visiblement une bijection. Il en découle que pour tout g de f en g card g est visiblement une bijection. Le principe des bergers donne : $\operatorname{card}(E \times F) = g \operatorname{card}(F) = \operatorname{card}(F)$. La suite de la proposition se démontre par une récurrence évidente sur g

III Dénombrements

III.1 Applications entre ensembles finis

On note $\mathcal{F}(E,F)$ l'ensemble des applications d'un ensemble E vers un ensemble F.

Proposition (Nombre d'applications entre deux ensembles finis)

Si E et F sont finis non vides, $\mathcal{F}(E,F)$ est fini et $\operatorname{card}(\mathcal{F}(E,F)) = \operatorname{card}(F)^{\operatorname{card}(E)}$. Ce résultat justifie que l'on note souvent F^E l'ensemble $\mathcal{F}(E,F)$.

▶ Démonstration:

```
Posons n = \operatorname{card}(E). Soit a une bijection de E_n sur E. On note E = \{a_1, a_2, \ldots, a_n\}. Toute application f: E \to F est caractérisée par le n-uplet (f(a_1), f(a_2), \ldots, f(a_n)). L'application \varphi: \mathcal{F}(E, F) \to F^n définie par \varphi(f) = (f(a_1), \ldots, f(a_n)) est donc bijective. On en déduit \operatorname{card}(\mathcal{F}(E, F)) = \operatorname{card}(F^n) = \operatorname{card}(F)^n = \operatorname{card}(F)^{\operatorname{card}(E)} \blacktriangleleft
```

Proposition (Ensemble des parties d'un ensemble fini)

|| Soit E un ensemble fini, de cardinal n. Alors $\mathcal{P}(E)$ est fini et card $(\mathcal{P}(E)) = 2^n$.

▶ Démonstration:

```
A toute partie A de E, on associe sa fonction caractéristique \chi_A : E \to \{0,1\}.
On sait que l'application A \mapsto \chi_A est une bijection de \mathcal{P}(E) sur l'ensemble \mathcal{F}(E,\{0,1\}).
On sait que l'ensemble \mathcal{F}(E,\{0,1\}) est fini, de cardinal 2^n.
On en déduit card (\mathcal{P}(E)) = 2^n
```

Proposition (Nombre d'injections ou de bijections entre deux ensembles finis)

Soient E et F deux ensembles finis non vides.

Notons card (E) = p, et card (F) = n, avec $1 \le p \le n$.

Le nombre d'injections de E dans F est $\frac{n!}{(n-p)!}$.

En particulier, si card (E) = card(F) = n, le nombre de bijections de E dans F est n! C'est le cas si E = F (les bijections de E sur E sont appelées permutations de E).

▶ Démonstration:

```
Soit \mathcal{I}(E,F) l'ensemble des applications injectives de E dans F. C'est un ensemble non vide car p \leq n, et il est fini car inclus dans \mathcal{F}(E,F). On raisonne par récurrence sur l'entier p \geq 1. Si p = 1, c'est évident : il y a n applications de E dans F, toutes injectives ! Supposons le résultat prouvé à l'ordre p \geq 1. On se donne donc E de cardinal p + 1, et F de cardinal n \geq p + 1. Soit a un élément fixé de E, et soit E' = E - \{a\}. A tout élément f de \mathcal{I}(E,F), on associe \varphi(f) = f(a), image de a par f. On définit ainsi une application \varphi de \mathcal{I}(E,F) dans F. Soit b un élément de F. Posons F' = F - \{b\}. Une injection g: E' \to F' a un seul prolongement injectif f: E \to F tel que f(a) = b. On dispose ainsi d'une bijection de \varphi^{-1}(b) sur \mathcal{I}(E',F'). L'hypothèse de récurrence donne : card (\mathcal{I}(E',F')) = \frac{(n-1)!}{((n-1)-p))!} = \frac{(n-1)!}{(n-(p+1))!} On en déduit card \varphi^{-1}(b) = \frac{(n-1)!}{(n-(p+1))!} pour tout b de F. Le lemme des bergers donne alors card (\mathcal{I}(E,F)) = \operatorname{card}(F) \frac{(n-1)!}{(n-(p+1))!} = \frac{n!}{(n-(p+1))!}
```

On a ainsi démontré la propriété au rang p+1, ce qui achève la récurrence.

Puisque E est fini, une application $f: E \to E$ est bijective si et seulement si elle est injective. Le nombre de bijections de E dans E est donc $\frac{n!}{(n-n)!} = \frac{n!}{0!} = n!$

III.2 Arrangements et combinaisons

Définition

Soient p, n deux entiers tels que $0 \le p \le n$.

On pose
$$A_n^p = \frac{n!}{(n-p)!}$$
 et $\binom{n}{p} = \frac{1}{p!} A_n^p = \frac{n!}{p!(n-p)!}$

On constate que, si
$$1 \le p \le n$$
:
$$\begin{cases} \mathbf{A}_n^p = n(n-1)\cdots(n-p+1) \\ \binom{n}{p} = \frac{n(n-1)\cdots(n-p+1)}{p(p-1)\cdots2\cdot1} \end{cases}$$

$$\text{Par exemple}: \begin{cases} \forall\, n\in\mathbb{N}, \mathbf{A}_n^0=1,\ \mathbf{A}_n^n=n!,\ \binom{n}{0}=\binom{n}{n}=1.\\ \forall\, n\in\mathbb{N}^*, \mathbf{A}_n^1=n,\ \mathbf{A}_n^{n-1}=n!,\ \binom{n}{1}=\binom{n}{n-1}=n. \end{cases}$$

On sait que si $1 \leq p \leq n$, A_n^p représente le nombre d'applications injectives d'un ensemble à p éléments vers un ensemble à n éléments.

Proposition (Arrangements)

Soit F un ensemble fini de cardinal $n \ge 1$. Soit p un entier vérifiant $1 \le p \le n$.

Un arrangement de p éléments de F est un p-uplet (y_1, y_2, \ldots, y_p) formé de p éléments de F, distincts deux à deux.

Le nombre d'arrangements de p éléments de F est A_n^p (on parle souvent d'arrangements de péléments parmi n).

▶ Démonstration:

Se donner un arrangement (y_1, y_2, \dots, y_p) de p éléments de F, c'est se donner une application injective f de E_p dans F, définie par : $\forall k \in E_p, f(k) = y_k$. Il y a donc autant d'arrangements de p éléments de Fque de telles applications injectives, c'est-à-dire A_n^p

Proposition (Combinaisons)

Soit F un ensemble fini de cardinal $n \ge 1$. Soit p un entier vérifiant $0 \le p \le n$.

Une combinaison de p éléments de F est une partie de F, de cardinal p.

Si $p \ge 1$, elle peut donc s'écrire $\{y_1, y_2, \dots, y_p\}$, où y_1, y_2, \dots, y_p sont distincts deux à deux dans F (on parle souvent de combinaison sans répétitions).

Le nombre de combinaisons de p éléments de F est égal à $\binom{n}{p}$ (on parle souvent de combinaisons de p éléments parmi n).

▶ Démonstration:

Il y a un seul arrangement de 0 éléments de F: c'est la partie vide, et on a bien $\binom{n}{0} = 1$.

On suppose donc $p \ge 1$. Soit φ l'application qui à un arrangement (y_1, y_2, \dots, y_p) de p éléments de Fassocie la combinaison $\{y_1, y_2, \dots, y_p\}$. L'application φ est sujective et chaque combinaison de p éléments de F est l'image de p! arrangements différents.

En effet les arrangements fournissant la même combinaison que $(y_1, y_2, ..., y_p)$ sont ceux qui s'en déduisent par une des p! permutations possibles sur les p éléments $y_1, y_2, ..., y_p$.

Le principe des bergers permet alors d'écrire : $A_n^p = p! \binom{n}{p}$.

On en déduit
$$\binom{n}{p} = \frac{1}{p!} A_n^p = \frac{n!}{p!(n-p)!}$$

Propriétés fondamentales des coefficients $\binom{n}{n}$

Pour tous entiers
$$n, p$$
 avec $0 \le p \le n : \binom{n}{p} = \binom{n}{n-p}$.
Si $1 \le p \le n-1$, alors $\binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1}$.

▶ Démonstration:

 \diamond Soit E un ensemble fini de cardinal n.

Pour tout k de $\{0,\ldots,n\}$, soit $\mathcal{P}_k(E)$ l'ensemble des parties de E ayant k éléments.

L'application $A \mapsto \overline{A}$ est une bijection de $\mathcal{P}(E)$ sur lui-même.

Pour tout p de $\{0,\ldots,n\}$, elle induit une bijection de $\mathcal{P}_p(E)$ sur $\mathcal{P}_{n-p}(E)$.

Il en résulte l'égalité card $(\mathcal{P}_p(E)) = \operatorname{card}(\mathcal{P}_{n-p}(E))$.

On a donc prouvé l'égalité $\binom{n}{p} = \binom{n}{n-p}$.

$$\text{Remarque: on peut bien sûr \'ecrire } \binom{n}{n-p} = \frac{n!}{(n-p)! \left(n-(n-p)\right)!} = \frac{n!}{(n-p)!p!} = \binom{n}{p}.$$

♦ On pourrait mettre en place des bijections, mais un simple dénombrement suffit.

On suppose que les entiers n et p vérifient $1 \le p \le n-1$.

On fixe un élément a d'un ensemble E de cardinal n.

Il y a $\binom{n}{p}$ manières différentes de choisir une partie A de E ayant p éléments.

Deux cas sont possibles, qui s'excluent mutuellement :

- Ou bien a n'appartient pas à A:
 - Il y a alors $\binom{n-1}{p}$ manières de former A car il reste à choisir p éléments parmi les n-1 éléments de $E \setminus \{a\}$.
- Ou bien a appartient à A:

Il y a alors $\binom{n-1}{p-1}$ manières de former A car il reste à choisir p-1 éléments parmi les n-1 éléments de $E\setminus\{a\}$.

Ce dénombrement prouve que
$$\binom{n}{p} = \binom{n-1}{p} + \binom{n-1}{p-1}$$

Cette dernière formule, avec $\binom{n}{0} = \binom{n}{n} = 1$, permet de calculer les $\binom{n}{p}$ de proche en proche. On place souvent les $\binom{n}{p}$ dans un tableau triangulaire, dont les lignes et les colonnes sont numérotées à partir de 0. Le coefficient $\binom{n}{p}$ vient alors se placer à l'intersection de la ligne d'indice n et de la colonne d'indice p.

Le tableau ci-dessous est connu sous le nom de "triangle de Pascal" :

	p = 0	p = 1	p=2	p=3	p=4	p=5	p=6	• • •
n = 0	1							
n=1	1	1						
n=2	1	2	1					
n=3	1	3	3	1				
n=4	1	4	6	4	1			
n=5	1	5	10	10	5	1		
n=6	1	6	15	20	15	6	1	
:	÷	÷	:	:	:	:	··.	٠
n	$\binom{n}{0}$	$\binom{n}{1}$	$\binom{n}{2}$	$\binom{n}{3}$	$\binom{n}{4}$	$\binom{n}{5}$	$\binom{n}{6}$	٠
:	:	:	:	•	:	:	•	·

Autres propriétés

Sous réserve que les coefficients ci-dessous soient définis, on a les égalités :

$$\binom{n}{p+1} = \frac{n-p}{p+1} \binom{n}{p}, \quad \binom{n}{p} = \frac{n}{p} \binom{n-1}{p-1}, \quad \binom{n}{p} = \frac{n}{n-p} \binom{n-1}{p}$$

► Démonstration:

$$\Leftrightarrow \ \, \text{On suppose } 0 \leqslant p < n: \binom{n}{p+1} = \frac{n!}{(p+1)!(n-p-1)!} = \frac{n-p}{p+1} \, \frac{n!}{p!(n-p)!} = \frac{n-p}{p+1} \, \binom{n}{p}.$$

$$\diamond \ \ On \ suppose \ 1 \leqslant p \leqslant n : \binom{n}{p} = \frac{n!}{p!(n-p)!} = \frac{n}{p} \frac{(n-1)!}{(p-1)!((n-1)-(p-1))!} = \frac{n}{p} \binom{n-1}{p-1}.$$

$$\diamond \ \ On \ suppose \ 0 \leqslant p < n : \binom{n}{p} = \frac{n!}{p!(n-p)!} = \frac{n}{n-p} \ \frac{(n-1)!}{p!(n-p-1)!} = \frac{n}{n-p} \binom{n-1}{p} \ \blacktriangleleft$$

III.3 Binôme de Newton

Le résultat suivant est particulièrement important.

C'est sans doute en utilisant la formule du binôme qu'on a le plus de chances de rencontrer les coefficients $\binom{n}{p}$ (qui pour cette raison sont appelés coefficients du binôme).

Proposition (Formule du binôme de Newton)

$$\forall (x,y) \in \mathbb{C}^2, \forall n \in \mathbb{N}, (x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$
. En particulier : $(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$.

▶ Démonstration:

On procède par récurrence sur \mathbb{N} . La propriété est évidente si n=0.

En effet
$$(xy)^0 = 1$$
 et $\sum_{k=0}^{n} {n \choose k} x^k y^{n-k} = {n \choose 0} x^0 y^0 = 1$.

Supposons la propriété démontrée au rang $n \ge 0$, et considérons $(x+y)^{n+1}$. On a :

$$(x+y)^{n+1} = (x+y)(x+y)^n = (x+y)\left(\sum_{k=0}^n \binom{n}{k} x^k y^{n-k}\right)$$

$$= \sum_{k=0}^n \binom{n}{k} x^{k+1} y^{n-k} + \sum_{k=0}^n \binom{n}{k} x^k y^{n+1-k}$$

$$= \binom{n}{n} x^{n+1} y^0 + \sum_{k=0}^{n-1} \binom{n}{k} x^{k+1} y^{n-k} + \sum_{k=1}^n \binom{n}{k} x^k y^{n+1-k} + \binom{n}{0} x^0 y^{n+1}$$

$$= x^{n+1} + \sum_{k=1}^n \binom{n}{k-1} x^k y^{n+1-k} + \sum_{k=1}^n \binom{n}{k} x^k y^{n+1-k} + y^{n+1}$$

$$= x^{n+1} + \sum_{k=1}^n (\binom{n}{k-1} + \binom{n}{k}) x^k y^{n+1-k} + y^{n+1}$$

$$= \binom{n+1}{n+1} x^{n+1} y^0 + \sum_{k=1}^n \binom{n+1}{k} x^k y^{n+1-k} + \binom{n+1}{0} x^0 y^{n+1}$$

$$= \sum_{k=0}^{n+1} \binom{n+1}{k} x^k y^{n+1-k}$$

Ce qui démontre la propriété au rang n+1 et achève la récurrence

Compléments

Axiomes de Peano

On pourrait définir l'ensemble $\mathbb N$ à partir d'un nombre réduit d'axiomes.

Une telle définition est hors-programme en MPSI.

L'introduction la plus connue de \mathbb{N} est par les Axiomes de Peano.

Si on est intéressé par le sujet, on pourra se référer à

http://megamaths.perso.neuf.fr/cenn0001.pdf http://fr.wikipedia.org/wiki/Axiomes_de_Peano http://fr.wikipedia.org/wiki/Giuseppe_Peano

Ensembles dénombrables

NB: la notion d'ensemble dénombrable est hors-programme des classes préparatoires.

Définition

Un ensemble E est dit $d\acute{e}nombrable$ s'il existe une bijection de $\mathbb N$ sur E. Un ensemble E est dit au plus $d\acute{e}nombrable$ s'il est fini ou dénombrable.

Remarques

- $\mathbb N$ est évidemment lui-même un ensemble dénombrable.

 \mathbb{N}^* est dénombrable car la succession $n \mapsto n+1$ est une bijection de \mathbb{N} sur \mathbb{N}^* .

De même, l'ensemble des entiers pairs et celui des entiers impairs sont dénombrables (considérer les applications $n\mapsto 2n$ et $n\mapsto 2n+1$.)

- Tout ensemble dénombrable est infini (car ℕ est lui-même infini.)
- Si E est dénombrable, et si on note $n \mapsto a_n$ une bijection de \mathbb{N} sur E, on peut donc écrire $E = \{a_n, n \in \mathbb{N}\}$, les a_n étant distincts deux à deux. Le caractère dénombrable de E est donc une manière de "numéroter" distinctement les différents éléments de E.
- Si E est dénombrable (resp. au plus dénombrable) et s'il existe une bijection de E sur un ensemble F, alors F est dénombrable (resp. au plus dénombrable).

Proposition (Parties d'un ensemble dénombrable)

 \parallel Toute partie F d'un ensemble dénombrable E est au plus dénombrable.

▶ Démonstration:

Quitte à utiliser une bijection de $\mathbb N$ sur E, on peut toujours supposer que $E=\mathbb N$. Soit F une partie de $\mathbb N$. Montrons que si F est infinie alors F est dénombrable. On forme une application f de $\mathbb N$ dans F, par récurrence, de la manière suivante :

- $\diamond f(0)$ est le minimum de F (qui est une partie non vide de \mathbb{N} .)
- \diamond Pour tout n de \mathbb{N}^* , $f(n) = \min(F \setminus \{f(0), \dots, f(n-1)\})$ (non vide car F est infini.)

```
f est injective. En effet, si m < n, alors f(n) \notin \{f(0), \ldots, f(m)\} \Rightarrow f(n) \neq f(m). L'application f réalise donc une bijection de \mathbb{N} sur f(\mathbb{N}). Il en découle que f(\mathbb{N}) est infini. Supposons par l'absurde que f ne soit pas bijective. Il existe alors un élément x de F qui n'a pas d'antécédent par f. Pour tout entier n \ge 1, l'elément x est donc dans F \setminus \{f(0), \ldots, f(n-1)\}. Par définition de f(n), il en découle f(n) \le a. Or on a également f(0) \le a. L'ensemble f(\mathbb{N}) est donc inclus dans [0,a], ce qui implique qu'il est majoré donc fini. On arrive ainsi à une absurdité. L'application f est donc une bijection de \mathbb{N} sur F: l'ensemble F est dénombrable \blacktriangleleft
```

Proposition (Produit cartésien d'ensembles dénombrables)

```
L'ensemble \mathbb{N} \times \mathbb{N} est dénombrable.
```

Si E_1, \ldots, E_n sont dénombrables, leur produit cartésien $\prod_{k=1}^n E_k$ est dénombrable.

▶ Démonstration:

 \diamond Tout entier n non nul s'ecrit d'une manière unique $n=2^p(2q+1)$, avec $(p,q)\in\mathbb{N}^2$.

En effet, p est l'exposant maximum k tel que $2^k \mid n$, et 2q+1 est l'entier (nécessairement impair) résultant du quotient exact de n par 2^p .

L'application $(p,q) \mapsto 2^p(2q+1)$ est donc une bijection de \mathbb{N}^2 sur \mathbb{N}^* .

Comme \mathbb{N}^* est dénombrable, il en résulte que \mathbb{N}^2 est dénombrable.

♦ On commence par traiter le cas de la réunion de deux ensembles dénombrables.

Soient E_1 et E_2 deux ensembles dénombrables.

Soient $f: \mathbb{N} \to E_1$ et $g: \mathbb{N} \to E_2$ deux bijections.

Alors l'application $h: \mathbb{N}^2 \to E_1 \times E_2$ définie par h(m,n) = (f(m),g(n)) est une bijection.

Il en découle que l'ensemble $E_1 \times E_2$ est dénombrable.

Le passage au cas de plus de deux ensembles s'effectue par une récurrence évidente ◀

Proposition (Une caractérisation des ensembles au plus dénombrables)

Soient E un ensemble dénombrable. Un ensemble F non vide est au plus dénombrable si et seulement s'il existe une surjection de E sur F.

▶ Démonstration:

 \diamond Quitte à utiliser une bijection de $\mathbb N$ sur E, on peut toujours supposer que $E=\mathbb N$.

Soit f une surjection de \mathbb{N} vers F.

Pour tout y de F, on note g(y) le plus petit des antécédents de y par f.

On définit ainsi une application $g: F \to \mathbb{N}$ qui vérifie $f \circ g = \mathrm{Id}_F$ par construction.

L'application $f \circ g$ étant injective, il en est de même de g.

L'application g réalise donc une bijection de F sur une partie de \mathbb{N} .

Cette dernière étant au plus dénombrable, il en est de même de F.

♦ La réciproque est évidente.

Si F est dénombrable il existe une bijection (donc une surjection) f de \mathbb{N} sur F.

Supposons donc card $(F) = n \ge 1$, et soit f une bijection de [0, n-1] sur F.

L'application g définie par $g(k) = \min(k, n-1)$ est alors une surjection de \mathbb{N} sur $F \blacktriangleleft$

Remarques et conséquences

- La proposition précédente signifie qu'un ensemble non vide E est au plus dénombrable si et seulement s'il peut s'écrire $E = \{a_n, n \in \mathbb{N}\}$, (les a_n étant non nécessairement distincts.)
- L'ensemble \mathbb{Z} est dénombrable car il est infini (il contient \mathbb{N}) et l'application définie sur \mathbb{N}^2 par f(m,n)=m-n est une sujection de \mathbb{N}^2 sur \mathbb{Z} .
- L'ensemble \mathbb{Q} est dénombrable car il est infini (il contient \mathbb{N}) et l'application f définie sur $\mathbb{Z} \times \mathbb{N}^*$ par $f(m,n) = \frac{m}{n}$ est une surjection de $\mathbb{Z} \times \mathbb{N}^*$ sur \mathbb{Q} .

Proposition (Réunions d'ensembles au plus dénombrables)

```
Soit (E_n)_{n\in\mathbb{N}} une suite d'ensembles au plus dénombrables.
Alors leur réunion F=\bigcup_{n\in\mathbb{N}}E_n est un ensemble au plus dénombrable.
```

▶ Démonstration:

```
Pour tout n de \mathbb{N}, on sait qu'il existe une surjection, que nous noterons f_n, de \mathbb{N} sur E_n.
 On définit alors g: \mathbb{N}^2 \to F en posant g(n,m) = f_n(m). Montrons que g est surjective.
 Soit x un élément de F. Il existe au moins un entier n tel que x appartienne à E_n.
 Mais l'application f_n: \mathbb{N} \to E_n étant surjective, il existe m dans \mathbb{N} tel que f_n(m) = x.
 On a ainsi trouvé (n,m) dans \mathbb{N}^2 tel que g(n,m) = x. L'application g est donc surjective.
 Il en découle que F est au plus dénombrable \blacktriangleleft
```

Remarques

- Si l'un au moins des E_n est dénombrable, alors $F = \bigcup_{n \in \mathbb{N}} E_n$ est dénombrable.
- Une union *finie* d'ensembles au plus dénombrables est au plus dénombrable : il suffit en effet de compléter une famille finie E_0, E_1, \ldots, E_n par des E_k égaux par exemple à E_n .

Proposition

 $\|$ L'ensemble $\mathcal{P}(\mathbb{N})$ est infini non dénombrable.

▶ Démonstration:

```
Supposons par l'absurde qu'il existe une surjection f de \mathbb{N} sur \mathcal{P}(\mathbb{N}).

Considérons la partie de A de \mathbb{N} définie par A = \{n \in \mathbb{N}, n \notin f(n)\}.

Puisque f est surjective, il existe un élément a de \mathbb{N} tel que f(a) = A.

On se pose alors la question de savoir si a est ou n'est pas élément de A.

- Si a \in A, cela signifie, par définition de A, que a n'est pas dans f(a) = A: c'est absurde.

- Si a \notin A, cela signifie que a est dans f(a) = A: c'est toujours aussi absurde.
```

Conclusion : l'hypothèse de l'existence d'une surjection de $\mathbb N$ dans $\mathcal P(\mathbb N)$ est absurde.

Il en résulte que l'ensemble $\mathcal{P}(\mathbb{N})$ (qui est manifestement infini) est non dénombrable \triangleleft

Proposition

 $\|$ L'ensemble \mathbb{R} est infini non dénombrable.

► Démonstration:

```
Tout x de [0,1[ a un unique développement décimal illimité x=0,a_1a_2...a_n...
Pour simplifier les notations, on note a_k=d_k(x). Soit f une application de \mathbb{N}^* sur [0,1[. On définit x=0,a_1a_2...a_n... par son développement décimal de la manière suivante : Si d_n(f(n))=0 alors d_n(x)=1. Sinon d_n(x)=0.
Ainsi : \forall\,n\in\mathbb{N}^*,\,x\neq f(n) car leurs décimales de rang n sont distinctes.
Le réel x n'a donc pas d'antécédent par f. On peut donc conclure : Il n'y a pas de surjection de \mathbb{N}^* sur [0,1[ donc à fortiori sur \mathbb{R} : \mathbb{R} n'est pas dénombrable \blacktriangleleft
```

Si on est intéressé par le sujet "dénombrabilité", on pourra se référer à http://fr.wikipedia.org/wiki/Ensemble_dénombrable

Plus précisément, pour la non-dénombrabilité de \mathbb{R} , on pourra consulter : http://fr.wikipedia.org/wiki/Argument_de_la_diagonale_de_Cantor