See also: http://en.wikibooks.org/High_School_Mathematics_Extensions/Discrete_Probability

Introduction

Discrete Probability (crash course, cont.)

Recap

U: finite set (e.g. $U = \{0,1\}^n$)

Prob. distr. P over U is a function P: U \longrightarrow [0,1] s.t. $\sum_{x \in U} P(x) = 1$

$$A \subseteq U$$
 is called an **event** and $Pr[A] = \sum_{x \in A} P(x) \in [0,1]$

A **random variable** is a function $X:U \rightarrow V$.

X takes values in V and defines a distribution on V

Independence

<u>Def</u>: events A and B are independent if Pr[A and B] = Pr[A] · Pr[B] random variables X,Y taking values in V are independent if ∀a,b∈V: Pr[X=a and Y=b] = Pr[X=a] · Pr[Y=b]

Example:
$$U = \{0,1\}^2 = \{00, 01, 10, 11\}$$
 and $r \leftarrow U$

Define r.v. X and Y as: X = lsb(r), Y = msb(r)

$$Pr[X=0 \text{ and } Y=0] = Pr[r=00] = \frac{1}{4} = Pr[X=0] \cdot Pr[Y=0]$$

Review: XOR

XOR of two strings in {0,1}ⁿ is their bit-wise addition mod 2

An important property of XOR

Thm: Y a rand. var. over $\{0,1\}^n$, X an indep. uniform var. on $\{0,1\}^n$ Then $Z := Y \oplus X$ is uniform var. on $\{0,1\}^n$

Proof: (for n=1)

Pr[Z=0] =

The birthday paradox

Let $r_1, ..., r_n \in U$ be indep. identically distributed random vars.

Thm: when
$$n = 1.2 \times |U|^{1/2}$$
 then $Pr[\exists i \neq j: r_i = r_i] \geq \frac{1}{2}$

notation: |U| is the size of U

Example: Let
$$U = \{0,1\}^{128}$$

After sampling about 2⁶⁴ random messages from U, some two sampled messages will likely be the same

End of Segment