Analyzing China & US. Economic Relationships with Singapore Markets

Motivations

Motivations - Split Relationship - Cultural Ties

LANGUAGE MOST FREQUENTLY SPOKEN AT HOME FOR RESIDENT POPULATION AGED 5 AND ABOVE

Motivations - Split Relationship - Strong Economic Ties

Top trade in goods partners of the EU with a focus on Singapore, 2021 (€ billion)

Motivation - Split Relationship - Singapore's Favorability Ratings

Motivation - Tensions - High Trade Tensions

US-China trade war tariffs: An up-to-date chart

a. US-China tariff rates toward each other and rest of world (ROW)

Motivation - Tensions - US Hostile view of China

Two in five Americans view China as an enemy of the U.S.

Do you consider the following country to be an ally or an enemy of the United States? China (% of U.S. adult citizens)

Note: Responses of "not sure" are not shown.

Motivations - Middle Powers Stuck In Middle

Research Question

Which Superpower economy (U.S. or China) has a greater relationship with Singapore Financial Markets?

Hypothesis

H0: The United States & China's Economies have near equal relationship on Singapore's markets.

H1: One superpower's economy has a more substantial relationship with Singapore's markets.

Literature Review

Theory & Literature Review

- Stock Market Linkages between the Asean Countries, China and the US: A
 Fractional Integration/cointegration Approach 2021
 - Fractional Cointegration over a series of asian countries between China & the US
 - Focused on general stock market & financial indices.
 - Found closer long term relationship with United States

Exploring Data

Exploring Data - Description of Data

Singapore

STI: Singapore FTSE Strait Times Index (Investing.com)

United States

SPY: S&P 500 Prices (Investing.com)

US Interest Rates: Discount Rate (FRED)

Production Index United States: Production: Industry: Total Industry Excluding Construction for United States (FRED)

USD: How many Singapore dollars are needed to purchase a US Dollar (Investing.com)

China

SHG: Shanghai Composite Index Prices

Chinese Interest Rates: Discount Rate (FRED)

Production Index China: Production: Industry: Total Industry Excluding Construction for United China (FRED)

CNY: How many Singapore dollars are needed to purchase a Chinese Yen

Exploring Data - Analysis - Frequency Distributions

Exploring Data - Analysis - Over Time

Exploring Data - Analysis - Unit Root Tests

Raw Data

	ADF Statistic	p-value	1%	5%	10%	Stationary
Production Index United States	-4.738997	0.000071	-3.510712	-2.896616	-2.585482	True
US Interest Rates	-3.702849	0.004073	-3.511712	-2.897048	-2.585713	True
China Interest Rates	-3.566120	0.006443	-3.509736	-2.896195	-2.585258	True
Production Index China	-2.570815	0.099180	-3.518281	-2.899878	-2.587223	False
STI_Price	-2.058086	0.261699	-3.509736	-2.896195	-2.585258	False
SHG_Price	-1.998478	0.287241	-3.512738	-2.897490	-2.585949	False
CNY	-1.189168	0.678238	-3.510712	-2.896616	-2.585482	False
USD	-0.731810	0.838337	-3.509736	-2.896195	-2.585258	False
SPY_Price	2.977513	1.000000	-3.508783	-2.895784	-2.585038	False

Returns

	ADF Statistic	p-value	1%	5%	10%	Stationary
Production Index China	-9.380165	6.992015e-16	-3.508783	-2.895784	-2.585038	True
Production Index United States	-8.913760	1.086592e-14	-3.508783	-2.895784	-2.585038	True
USD	-7.637972	1.929603e-11	-3.508783	-2.895784	-2.585038	True
US Interest Rates	-7.257332	1.717181e-10	-3.508783	-2.895784	-2.585038	True
SPY_Price	-6.911232	1.210916e-09	-3.508783	-2.895784	-2.585038	True
STI_Price	-6.741941	3.102912e-09	-3.509736	-2.896195	-2.585258	True
CNY	-6.571515	7.914444e-09	-3.509736	-2.896195	-2.585258	True
China Interest Rates	-6.152980	7.484435e-08	-3.510712	-2.896616	-2.585482	True
SHG_Price	-5.366548	3.980530e-06	-3.511712	-2.897048	-2.585713	True

Exploring Data - Cross Correlations - Returns Data

Exploring Data - Crisis Variable

Crisis Quarters:

& Research

Research Methodology

Research - Research Methodology

Steps:

- Cointegration Analysis
- VEC Models
- Granger Causality Tests
- Impulse Response
- Variance Decomposition

Research - VEC Analysis - Cointegration Analysis

Research - VAR Analysis - Crisis Dummy Variables Lag-12

	STI_PRICE	SPY_PRICE	USD_RETU	US_INTERE	PRODUCTI
R-squared 4	0.921730	0.941569	0.824779	0.992629	0.977694
Adj. R-squared	0.554464	0.667391	0.002588	0.958039	0.873027
Sum sq. resids	0.043282	0.018625	0.006746	1.605681	32.90571
S.E. equation	0.057701	0.037851	0.022780	0.351446	1.590977
F-statistic	2.509709	3.434152	1.003148	28.69775	9.341037
Log likelihood	173.2358	204.8577			75.52632
Akaike AIC	-2.966289	-3.809538	-4.825087	0.647271	3.667369
Schwarz SC	-1.050499		VE12000000000000000000000000000000000000		5.583159
Mean dependent	0.011884	0.019727			0.418406
S.D. dependent	0.086446	0.065631	0.022809	1.715685	4.464873
Determinant resid covaria	ance (dof adj.)	1.40E-10			
Determinant resid covaria	ance	2.19E-14			
Log likelihood		647.2844	_		
Akaike information criteri	on	-8.994250			
Schwarz criterion		0.584701			
Number of coefficients		310			
	STI_PRICE	SHG_PRICE	. CNY_RETU	CHINA_INT	PRODUCTI
R-squared	0.886788	0.844958	0.786334	0.884459	0.748168
Adj. R-squared	0.355562	0.117451	-0.216253	0.342303	-0.433506
Sum sq. resids	0.062605	0.210116	0.007868	0.022917	89.55978
S.E. equation	0.069396	0.127133	0.024601	0.041986	2.624731
F-statistic	1.669323	1.161444	0.784305	1.631374	0.633142
Log likelihood	159.3945	113.9889	237.1717	197.0815	-113.0736
Akaike AIC	-2.597187	-1.386372	-4.671246	-3.602174	4.668629
Schwarz SC	-0.681397	0.529419	-2.755456	-1.686384	6.584419
Mean dependent	0.011884	0.018868	-0.003664	0.002233	-0.462096
3.D. dependent	0.086446	0.135328	0.022307	0.051771	2.192225
Determinant resid cova	riance (dof adj.)	7.48E-11			
Determinant resid cova	riance	1.17E-14			
Log likelihood		670.8601			
Akaike information crite					
akaike information chie	erion	-9.622935			
Schwarz criterion	erion	-9.622935 -0.043985			

Research - VAR Analysis - Engle Granger Causality Test

Excluded	Chi-sq	df	Prob.
SPY_PRICE_RETURNS	18.08217	12	0.1132
USD_RETURNS	11.04844	12	0.5248
US_INTEREST_RATES	19.89324	12	0.0691
PRODUCTION_INDEX	14.56607	12	0.2660
All	59.78296	48	0.1184

Excluded	Chi-sq	df	Prob.
SHG_PRICE_RETURNS	9.909474	12	0.6239
CNY_RETURNS	6.791385	12	0.8711
CHINA_INTEREST_RA	15.75222	12	0.2029
PRODUCTION_INDEX	9.344915	12	0.6732
All	37.31886	48	0.8674

Research - VAR Analysis - Impulse Response

1 2 3 4 5 6 7 8 9 10

Research - VAR Model - Variance Decomposition

Research - Residual Analysis

ne (

Component	Jarque-Bera	df	Prob.
1	0.005670	2	0.9972
2	1.474088	2	0.4785
3	0.309648	2	0.8566
4	3.343680	2	0.1879
5	5.253672	2	0.0723
Joint	10.38676	10	0.4072

*	** **	

Component	Jarque-Bera	df	Prob.
1	0.327879	2	0.8488
2	1.222480	2	0.5427
3	2.310084	2	0.3150
4	0.815849	2	0.6650
5	0.102304	2	0.9501
Joint	4.778596	10	0.9055

^{&#}x27;Approximate p-values do not account for coefficient estimation

Autocorrelation - Portmanteau Test

Lags	Q-Stat	Prob.*	Adj Q-Stat	Prob.*	df
1	43.65656		44.24651		
2	91.51039		93.41141		
3	138.7550		142.6246		
4	178.5221		184.6321		
5	219.1267		228.1369		
6	243.0595		254.1509		
7	273.4924		287.7165		
8	298.5496		315.7657		
9	331.2778		352.9568		
10	355.7102		381.1480		
11	370.2586		398.1970		
12	383.0495		413.4243		
13	396.4518	0.0000	429.6366	0.0000	25

VAR Residual Portmanteau Tests for Autocorrelations Null Hypothesis: No residual autocorrelations up to lag h Date: 12/05/23 Time: 20:33 Sample: 199903 2021Q1 ncluded observations: 75

Lags	Q-Stat	Prob.*	Adj Q-Stat	Prob.*	df
1	41.65197		42.21483		
2	88.02043		89.85366		
3	138.7422	222	142.6888		
4	172.6345		178.4906		
5	200.7571		208.6219		
6	230.5849		241.0435		
7	251,2972		263.8879		
8	268.3278		282.9520		
9	285.9448		302.9713		
10	303.9070		323.6969		
11	315.0080		336.7059		
12	331,1730	202	355.9500		
13	352.5187	0.0000	381.7714	0.0000	25

Research - ARDL(4) Model - Model Analysis

Dependent Variable: STI_PRICE_RETURNS

Wethod: ARDL

Date: 12/05/23 Time: 20:55

Sample (adjusted): 2000Q3 2021Q1

ncluded observations: 83 after adjustments Waximum dependent lags: 3 (Automatic selection) Wodel selection method: Akaike info criterion (AIC)

Dynamic regressors (3 lags, automatic): CRISIS(-1) SHG_PRICE_RETUR NS(-1) CNY_RETURNS(-1) CHINA_INTEREST_RATES(-1)

NS(-1) CNY_RETURNS(-1) CHINA_INTEREST_RATES(-1)
PRODUCTION_INDEX_CHINA_RETURNS(-1)

Fixed regressors: C

Number of models evaluated: 3072 Selected Model: ARDL(3, 2, 0, 1, 3, 2)

Variable

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
STI_PRICE_RETURNS(-1)	0.257720	0.162718	1.583845	0.1180
STI_PRICE_RETURNS(-2)	-0.185569	0.138844	-1.336523	0.1860
STI_PRICE_RETURNS(-3)	0.225233	0.126892	1.774992	0.0805
CRISIS(-1)	-0.077080	0.035658	-2.161637	0.0343
CRISIS(-2)	0.063383	0.037163	1.705548	0.0928
CRISIS(-3)	0.066694	0.039512	1.687946	0.0961
SHG_PRICE_RETURNS(-1)	0.032797	0.077164	0.425025	0.6722
CNY_RETURNS(-1)	1.145425	0.437340	2.619071	0.0109
CNY_RETURNS(-2)	-0.609190	0.456379	-1.334834	0.1865
CHINA_INTEREST_RATES(-1)	0.127491	0.061996	2.056420	0.0437
CHINA_INTEREST_RATES(-1) CHINA_INTEREST_RATES(-2)	-0.295419	0.088842	-3.325219	0.0014
CHINA_INTEREST_RATES(-3)	0.049078	0.093834	0.523033	0.6027
CHINA_INTEREST_RATES(-4)	0.115622	0.059015	1.959199	0.0543
PRODUCTION_INDEX_CHINA_RETURN	-0.003645	0.004186	-0.870605	0.3871
PRODUCTION_INDEX_CHINA_RETURN	-0.006148	0.004066	-1.511932	0.1353
PRODUCTION_INDEX_CHINA_RETURN	-0.008416	0.003892	-2.162610	0.0342
С	0.005244	0.105825	0.049557	0.9606
R-squared	0.493341	Mean depend	dent var	0.008579
Adjusted R-squared	0.370515	S.D. depende	ent var	0.087801
S.E. of regression	0.069661	Akaike info cr	iterion	-2.309899
Sum squared resid	0.320275	Schwarz crite	rion	-1.814474
.og likelihood	112.8608	Hannan-Quir	n criter.	-2.110865
-statistic	4.016575	Durbin-Watso	on stat	1.854019
Prob(F-statistic)	0.000030			

'Note: p-values and any subsequent tests do not account for model selection.

Dependent Variable: STI_PRICE_RETURNS Method: ARDL

Date: 12/05/23 Time: 20:57 Sample (adjusted): 2000Q3 2021Q1

ncluded observations: 83 after adjustments

Maximum dependent lags: 3 (Automatic selection) Model selection method: Akaike info criterion (AIC)

Dynamic regressors (3 lags, automatic): CRISIS(-1) SPY_PRICE_RETURN

S(-1) USD_RETURNS(-1) US_INTEREST_RATES(-1)
PRODUCTION_INDEX_UNITED_STATES_RETURNS(-1)

Fixed regressors: C

Number of models evalulated: 3072 Selected Model: ARDL(1, 2, 0, 0, 3, 1)

Variable	Coefficient	Std. Error	t-Statistic	Prob.*
STI_PRICE_RETURNS(-1)	0.427761	0.167873	2.548129	0.0130
CRISIS(-1)	-0.006358	0.039987	-0.159010	0.8741
CRISIS(-2)	0.085116	0.033595	2.533592	0.0135
CRISIS(-3)	0.141281	0.036780	3.841214	0.0003
SPY_PRICE_RETURNS(-1)	-0.183305	0.205553	-0.891765	0.3756
USD_RETURNS(-1)	-0.165058	0.383119	-0.430826	0.6679
US_INTEREST_RATES(-1)	-0.049738	0.027009	-1.841535	0.0698
US_INTEREST_RATES(-2)	0.141357	0.045242	3.124437	0.0026
US_INTEREST_RATES(-3)	-0.036247	0.039964	-0.906989	0.3675
US_INTEREST_RATES(-4)	-0.063951	0.025557	-2.502322	0.0147
DDUCTION_INDEX_UNITED_STATES	-0.000123	0.003107	-0.039653	0.9685
RODUCTION_INDEX_UNITED_STATES	0.004413	0.003019	1.461585	0.1483
C	0.011072	0.017010	0.650905	0.5172
R-squared	0.397476	Mean depend	dent var	0.008579
Adjusted R-squared	0.294186	S.D. dependent var		0.087801
S.E. of regression	0.073764	Akaike info cr	iterion	-2.232995
Sum squared resid	0.380875	Schwarz crite	rion	-1.854140
Log likelihood	105.6693	Hannan-Quir	n criter.	-2.080792
F-statistic	3.848161	Durbin-Watso	on stat	2.105286
Prob(F-statistic)	0.000162			

Note: p-values and any subsequent tests do not account for model selection.

Dependent Variable: STI_PRICE_RETURNS
Method: ARDL
Date: 12/05/23 Time: 20:59
Sample (adjusted): 2000Q3 2021Q1
ncluded observations: 83 after adjustments

Maximum dependent lags: 3 (Automatic selection)
Model selection method: Akaike info criterion (AIC)

Oynamic regressors (3 lags, automatic): CRISIS(-1) SHG_PRICE_RETUR NS(-1) CNY_RETURNS(-1) CHINA_INTEREST_RATES(-1) PRODUCTION_INDEX_CHINA_RETURNS(-1) SPY_PRICE_RETURN

S(-1) USD_RETURNS(-1) US_INTEREST_RATES(-1) PRODUCTION_INDEX_UNITED_STATES_RETURNS(-1) Fixed regressors: C

Number of models evalulated: 786432

Selected Model: ARDL(1, 2, 0, 3, 3, 1, 3, 1, 3, 0)

	Variable	Coefficient	Std. Error	t-Statistic	Prob.*
	STI_PRICE_RETURNS(-1)	0.484976	0.164317	2.951473	0.0046
	CRISIS(-1)	-0.010733	0.038989	-0.275290	0.7841
	CRISIS(-2)	0.181311	0.038345	4.728357	0.0000
	CRISIS(-3)	0.163775	0.039401	4.156665	0.0001
	SHG_PRICE_RETURNS(-1)	0.003230	0.075812	0.042605	0.9662
	CNY RETURNS(-1)	1.279368	0.421571	3.034764	0.0036
	CNY_RETURNS(-2)	-0.897220	0.417066	-2.151263	0.0358
III	CNY RETURNS(-3)	0.089529	0.408419	0.219210	0.8273
Ш	CNY RETURNS(-4)	-1.042154	0.424058	-2.457574	0.0171
	CHINA_INTEREST_RATES(-1)	0.225178	0.061750	3.646610	0.0006
	CHINA INTEREST RATES(-2)	-0.356776	0.082965	-4.300314	0.0001
1	CHINA_INTEREST_RATES(-3)	-0.114648	0.092706	-1.236681	0.2214
	CHINA INTEREST RATES(-4)	0.283808	0.068792	4.125598	0.0001
PROD	UCTION_INDEX_CHINA_RETURN	0.001822	0.004700	0.387716	0.6997
PROD	UCTION INDEX CHINA RETURN	-0.010644	0.004044	-2.632400	0.0109
	SPY PRICE RETURNS(-1)	-0.360507	0.209052	-1.724490	0.0901
	SPY_PRICE_RETURNS(-2)	0.273807	0.161351	1.696965	0.0953
	SPY PRICE RETURNS(-3)	0.471385	0.158894	2.966658	0.0044
	SPY_PRICE_RETURNS(-4)	-0.239761	0.152740	-1.569733	0.1221
	USD RETURNS(-1)	-0.979960	0.394150	-2.486263	0.0159
	USD RETURNS(-2)	0.642035	0.367256	1,748194	0.0859
	US INTEREST RATES(-1)	-0.004897	0.024390	-0.200793	0.8416
	US INTEREST RATES(-2)	0.048901	0.043823	1.115880	0.2692
	US_INTEREST_RATES(-3)	0.035736	0.042406	0.842729	0.4030
	US INTEREST RATES(-4)	-0.084461	0.026532	-3.183385	0.0024
PROD	UCTION_INDEX_UNITED_STATES	0.000365	0.002763	0.132170	0.8953

(-			
R-squared	0.675815	Mean dependent var	0.008579
Adjusted R-squared	0.525300	S.D. dependent var	0.087801
S.E. of regression	0.060493	Akaike info criterion	-2.515458
Sum squared resid	0.204928	Schwarz criterion	-1.728606
Log likelihood	131.3915	Hannan-Quinn criter.	-2.199345
F-statistic	4.490030	Durbin-Watson stat	1.835046
Prob(F-statistic)	0.000001		

'Note: p-values and any subsequent tests do not account for model selection.

Research - ARDL Model - Residual Analysis

Date: 12/05/23 Time: 20:55 Sample: 1999Q3 2021Q1 ncluded observations: 83

2-statistic probabilities adjusted for 3 dynamic regressors

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob*
1 1 1	1 1 1 1	1	0.061	0.061	0.3222	0.570
1 1 1	1.11	2	0.035	0.031	0.4272	0.808
1 10 1	1 11	3	0.063	0.060	0.7823	0.85
(E)	10 1	4	-0.160	-0.170	3.0682	0.54
1 1 1	1 (1)	5	0.025	0.043	3.1240	0.68
, p	1 1	6	0.147	0.155	5.1030	0.53
1 10 1	1 10	7	0.091	0.096	5.8743	0.55
1 1	1.0	8	0.010	-0.049	5.8844	0.66
3 13	0 0	9	0.011	-0.007	5.8968	0.75
100	(0)	10	-0.159	-0.129	8.3456	0.59
10 1	101	11	-0.117	-0.082	9.6978	0.55
1 1	E E	12	0.005	-0.002	9.7005	0.64
101	101	13	-0.076	-0.075	10.288	0.67
110	1.0	14	-0.027	-0.063	10.361	0.73
1 10 1	1 11	15	0.048	0.040	10.599	0.78
	10 1	16	-0.207	-0.166	15.095	0.51
101	101	17	-0.112	-0.072	16.432	0.49
10 1	101	18	-0.082	-0.067	17.168	0.51
"" I (I	1 10 1	19	-0.037	0.041	17.322	0.56
1 (1)	1 1 1	20	0.086	0.058	18.156	0.57
1 (3)	1 1 1	21	0.086	0.051	18.993	0.58
3 3	1.10	22	-0.001	-0.002	18.993	0.64
1 1 1	1 11	23	0.022	0.059	19.051	0.69
10 1	141	24	-0.083	-0.077	19.871	0.70
10 1	101	25	-0.129	-0.106	21.881	0.64
1 1	1111	26	0.017	-0.046	21.918	0.69
1 1 1	1 (1)	27	0.034	-0.023	22.067	0.73
1.00	10	28	-0.047	-0.116	22.354	0.76
1 🖮		29	0.218	0.183	28.580	0.48
1 0 1	1 10	30	0.083	0.089	29.494	0.49
10 1	101	31	-0.129	-0.089	31.748	0.42
1 ()	101	32	-0.011	-0.076	31.765	0.47
10 1	141	33	-0.112	-0.068	33.543	0.44
1 10 1	1 10 1	34	0.050	0.086	33.902	0.47
1 ()	10 1	35	-0.011	-0.139	33.921	0.52
1 1 1	1 11 1	36	0.017	-0.040	33,962	0.56

'Probabilities may not be valid for this equation specification

Date: 12/05/23 Time: 20:58 Sample: 1999Q3 2021Q1 ncluded observations; 83

2-statistic probabilities adjusted for 1 dynamic regressor

1 -0.060 -0.060 0.3067 0.580 2 -0.133 -0.137 1.8513 0.396 3 0.039 0.022 1.9823 0.576 4 -0.055 -0.071 2.2523 0.689 5 -0.059 -0.061 2.5690 0.766 6 -0.070 -0.099 3.0242 0.806 7 -0.148 -0.180 5.0467 0.654 8 0.052 -0.000 5.3026 0.725 9 0.023 -0.029 5.3548 0.802 10 -0.000 -0.004 5.3548 0.866 11 0.151 0.123 7.5770 0.751 12 0.014 0.012 7.5975 0.816 13 -0.007 0.016 7.6026 0.868 14 0.018 0.001 7.6374 0.907 15 0.037 0.075 7.7819 0.932 16 -0.073 -0.039 8.3393 0.938 17 -0.043 -0.009 8.5405 0.954 18 0.052 0.084 8.8286 0.964 19 0.038 0.051 8.9873 0.974 20 0.079 0.121 9.6871 0.973 21 0.013 0.047 9.7063 0.982 22 -0.117 -0.102 11.298 0.970 23 0.111 0.095 12.754 0.957 24 -0.085 -0.097 13.612 0.955 25 -0.212 -0.178 19.061 0.794 26 0.093 0.038 20.129 0.785 27 0.003 -0.014 20.130 0.825 28 -0.149 -0.168 22.965 0.735 29 0.055 -0.055 23.354 0.760 30 0.161 0.126 26.815 0.633 31 0 129 0 087 29 062 0 566 32 0.006 -0.010 29.067 0.616 33 -0.195 -0.158 34.438 0.399 34 0.035 -0.029 34.614 0.438 35 -0.024 -0.055 34.699 0.483 36 -0.161 -0.087 38.609 0.353 Series: Residuals Sample 2000Q3 2021Q1 Observations 83 1.03e-16

Mean Median -0.001071 Maximum 0.160890 Minimum -0.213810 Std. Dev. 0.068153 -0.392788 Skewness 3.409423 Kurtosis Jarque-E Probabil

Bera	2.713954	0		ı
lity	0.257438	-0.15	-0.10	
		Date: 12	05/23 Time: 21:00	
			1999Q3 2021Q1	

Q1 ncluded observations: 83 2-statistic probabilities adjusted for 1 dynamic regressor

-0.05

0.00

0.05

35 0.078 -0.056 43.581 0.151

36 -0.031 0.049 43.721 0.176

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob*
1 10 1	l (b)	1 0.08	1 0.081	0.5677	0.451
10 1	(6)	2 -0.12	0 -0.127	1.8225	0.402
1 [1	(1)	3 -0.05	9 -0.039	2.1308	0.546
		4 -0.24	4 -0.256	7.4330	0.115
3 (3	1 (1)	5 -0.01	4 0.015	7.4519	0.189
1 (1	(0)	6 -0.01	0.088	7.4620	0.280
1.11	0.00	7 0.02	7 0.017	7.5280	0.376
1 10 1	0.0	8 0.08	0 -0.001	8.1298	0.421
1 11	()	9 0.06	4 0.067	8.5197	0.483
· 🖂 ·		10 -0.15	8 -0.197	10.923	0.364
3 1 3	((1)	11 0.02	3 0.099	10.973	0.446
1 (2)	(1)	12 0.10	2 0.062	11.999	0.446
= 1		13 -0.17	9 -0.175	15.222	0.294
1 11 1	(10	14 0.04		15.398	0.352
1 (0)	((0)	15 0.11	9 0.126	16.865	0.327
· 🖷 ·			8 -0.196	19.173	0.260
		17 -0.22	0 -0.292	24.324	0.111
' '	111		9 -0.021	25.190	0.120
, p.	()	19 0.06		25.708	0.139
1 🗎	1 1 1	20 0.20		30.243	0.066
1 11 1	(4)	21 0.08		30.669	0.079
'티 '	(0)		9 -0.109	32.607	0.068
1 11	(1)	23 0.07	6 0.052	33.281	0.076
14 1	(4)	24 -0.09		34.275	0.080
' E '	(10)	25 -0.09	9 0.033	35.457	0.080
1 10 1	(0)	26 0.04		35.736	0.097
0.00	(1)	27 0.07	5 0.040	36.447	0.106
3 (3	(4)		9 -0.056	36.459	0.131
1 11	()	29 0.07	9 0.128	37.264	0.140
1 (2)	()	30 0.13		39.823	0.108
1 1	(1)	31 0.00		39.830	0.133
14 1	(0)	32 -0.07	6 -0.111	40.628	0.141
141	() (33 -0.08		41.712	0.142
1 10 1	1 ()(34 0.08	2 0.059	42.686	0.146

*Probabilities may not be valid for this equation specification.

Probabilities may not be valid for this equation specification.

Series: Residuals

Observations 83

Sample 2000Q3 2021Q1

0.081 0.5677 0.451 127 1.8225 0.402

Research - Interpretation

Accept the null hypothesis: Due to the ARDL model having a stronger relationship from Chinese Economic variables & the US economic variables having a stronger short term variation than China. Therefore there is no conclusive evidence that China has a significantly stronger relationship even though it is arguably slightly stronger due to the models proposed here from ARDL & Cointegration.

Policy Implications

Policy Implications

- Singapore should remain agnostic culturally & economically between these 2 superpowers and continue to split their growth off the backs of these superpowers.
 - Continue trade relationships and investment flows to each country.
 - Continue to stabilize culture to not favor one side or the other.

Future Research

Understand Economic Relationship between China & US between every Pacific
 & American Middle Economic Superpower

Bibliography

- * Brunel University London Stock Market Linkages between the Asean Countries, China and the US: A Fractional Integration/cointegration Approach https://www.tandfonline.com/doi/full/10.1080/1540496X.2021.1898366
- * Lowy Institute Asia Power Index https://power.lowyinstitute.org/
- * Regional Responses to U.S.-China Competition in the Indo-Pacific (Singapore) https://www.rand.org/content/dam/rand/pubs/research_reports/RR4400/RR4412z5/RAND_RR4412z5.pdf
- * The influence of Chinese and US financial markets on Asia-Pacific https://www.bis.org/publ/bppdf/bispap82i_rh.pdf