사이킷런(sklearn)

- 1. 사이킷런(sklearn) 개요
- 2. 회귀분석(boston 주택가격 예측하기)
- 3. 분류 분석(iris 붓꽃분류)

1. 사이킷런(sklearn) 개요

❖ 사이킷런

- 파이썬으로 머신러닝을 수행하기 위한 쉽고 효율적인 개발 라이브러리를 제공
- 다양한 <u>분류, 회귀, 서포트 벡터 머신, 랜덤 포레스트, 그라디언트 부스팅, k-평균, DBSCAN</u>을 포함한 <u>클러</u> <u>스터링</u> 알고리즘을 지원
- 파이썬의 수치 및 과학 라이브러리 <u>NumPy</u> 및 <u>SciPy</u>와 함께 운용되도록 설계
- 다양한 머신러닝 분석용 데이터셋 을 제공
 - load_boston: 보스톤 집값 데이터
 - load_iris: 아이리스 붓꽃 데이터
 - load_diabetes: 당뇨병 환자 데이터
 - load_digits: 손글씨 데이터
 - load_linnerud: multi-output regression 용 데이터
 - load_wine: 와인 데이터
 - load_breast_cancer: 위스콘신 유방암 환자 데이터

1. 사이킷런(sklearn) 개요

❖ 분석 평가 지표

- 회귀 분석 결과에 대한 평가 지표는 예측값과 실제값의 차이인 오류의 크기가 됨
- 정확한 평가를 위해 오류의 절대값 평균이나 제곱의 평균, 제곱 평균의 제곱근 또는 분산 비율 을 사용

평가 지표	수식	사이킷런 라이브러리
MAE: Mean Absolute Error	$\frac{1}{n}\sum_{i=1}^{n}\left Y_{i}-\widehat{Y}_{i}\right $	metrics.mean_absolute_error()
MSE: Mean Squared Error	$\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-\widehat{Y}_{i})^{2}$	metrics.mean_squared_error()
RMSE: Root Mean Squared Error	$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(Y_{i}-\widehat{Y}_{i})^{2}}$	없음
R ² : Variance score, 결정 계수coefficient of determination	예측값의 분산 실제값의 분산	metrics.r2_score()

❖ 데이터 수집, 준비 및 탐색

■ 주택가격분석'으로 노트북 페이지를 추가하고 입력

In [1]:	!pip install sklearn # 사이킷런 설치
In [2]:	import numpy as np
	import pandas as pd
	from sklearn.datasets import load_boston boston = load_boston() print(boston)

In [2]: 사이킷런에서 제공하는 데이터셋sklearn.datasets 중에서 보스톤 주택 가격 데이터셋을 사용하기 위해 load_boston을 임포트하고, 데이터셋을 로드하여load_boston() 객체boston를 생성

❖ 데이터 수집, 준비 및 탐색

■ 데이터가 이미 정리된 상태이므로 데이터셋 구성을 확인

In [3]:	prir	t(b	os	ston.	DES	SCF	R)																
In [4]:			_	df = df. he	•		taF	rar	ne(l	oost	ton.	data	ı, col	umr	าร =	b	0	sto	on. f	eatı	ıre_	nan	nes)
Out[4]:	C	RIM	ZN	INDUS	CHAS	S NC	ОX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT								
	0 0.00	632	18.0	2.31	0.	0.5	38 6.	.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98								
	1 0.02	731	0.0	7.07	0.	0.4	69 6.	.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14								
	2 0.02	729	0.0	7.07	0.0	0.4	69 7.	185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03								
	2 0 0	237	0.0	2.18	0.	0.4	58 6.	.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94								
	3 0.03	201	1818																				
i. [e]	4 0.06	905	0.0	2.18		0.4	*****		54.2		086	222.0	18.7	396.90	5.33								
In [5]:	4 0.06 bos	oos tor	0.0 1_C	2.18 df['Pl	RICI	Ξ'] :	*****		AWT-1		086		18.7	396.90	5.33								
	4 0.06 bos	tor	0.0 1_C 1_C	df['Pi	RICI ad(Ξ'] :	*****		AWT-1	.tar	get			396.90	5.33								
In [5]: Out[5]:	bos bos	tor	0.0 1_C 1_C	df['P df. he	RICI ad(E'] :	= k	OOS	ton	.tar	get	PTRATIC											
	bos bos	tor tor w z	0.0 1_C 1_C	df['P df. he	RICI ad(E'] :	= k	AGE 65.2	ton	RAD	get	PTRATIC) B 3 396.90	LSTAT	PRICE								
	4 0.06 bos bos cr	tor tor <u>v</u> z 2 18	0.0 1_C 1_C 2N IN	df['P	RICI Pad(E']:) NOX .538 (.469 (.	= t	AGE 65.2 78.9	DIS	.tar	get TAX 296.0	PTRATIO 15.) B 3 396.90	LSTAT 4.98	PRICE 24.0								
	4 0.06 bos cr 0 0.006 1 0.027	905 tor tor z 2 18 1 0 9 0 7 0	0.0 \begin{align*} \begin{align*} \text{C} \\ \text{N} & \text{IN} \\ \text{B} & \text{O} & \text{O} \\ \text{O} & \text{O} & \text{O} \\ \te	df['Pldf.he	RICI	E'] :) NOX .538 (.469 (.469).458 (.458 (.458).	RM 6.575 6.421	AGE 65.2 78.9 61.1 45.8	ton DIS 4.09000 4.9671	.tar	TAX 296.0 242.0	PTRATIO 15.	B 3 396.90 3 396.90 3 392.83	LSTAT 4.98 9.14	PRICE 24.0 21.6								

- In [3]: 데이터셋에 대한 설명boston.DESCR 을 확인
- In [4]: 데이터셋 객체의 data 배열
 boston.data, 즉 독립 변수 X가 되는 피
 처들을 DataFrame 자료형으로 변환하
 여 boston_df를 생성, boston_df의 데
 이터 5개를 확인bostone_df.head()
- In [5]: 데이터셋 객체의 target 배열
 boston.target, 즉 종속 변수인 주택 가격('PRICE') 컬럼을 boston_df에 추가boston_df의 데이터 5개를 확인bostone_df.head()

❖ 데이터 수집, 준비 및 탐색

■ 데이터가 이미 정리된 상태이므로 데이터셋 구성을 확인

In [6]:	print('보스톤 주택 가격 데이터셋 크기: ', boston_df.shape)						
Out[6]:	보스톤 주택 가격 데이터셋 크기: (506, 14)						
In [7]:	boston_df.info()						
Out[7]:	Rangelndex: 506 entries, 0 to 505 Data columns (total 14 columns): CRIM 506 non-null float64 ZN 506 non-null float64 INDUS 506 non-null float64 NOX 506 non-null float64 RM 506 non-null float64 RM 506 non-null float64 DIS 506 non-null float64 RAD 506 non-null float64 RAD 506 non-null float64 PTRATIO 506 non-null float64 B 506 non-null float64 PTRATIO 506 non-null float64 PRICE 506 non-null float64 CHAS 506 non-null float64 RAD 506 non-null float64 RAD 506 non-null float64 CHAS 506 non-null float64 RAD 506 non-null float64 RAD 506 non-null float64 CHAS 506 non-null float64 RAD 506 non-null float64 RAD 506 non-null float64 CHAS 506 non-null float64 RAD 506 non-null float64 RAD 506 non-null float64 RAD 506 non-null float64 B 506 non-null float64 CHAS 506 non-null float64 RAD 506 non-null float64	≥ ∦ <u>1</u> ,					

- 14개의 독립 변수(피처)의 의미
 - CRIM: 지역별 범죄 발생률
 - ZN: 25,000평방피트를 초과하는 거주 지역 비율
 - INDUS: 비상업 지역의 넓이 비율
 - CHAS: 찰스강의 더미변수(1은 강의 경계, 0은 경계 아님)
 - NOX: 일산화질소 농도
 - RM: 거주할 수 있는 방 개수
 - AGE: 1940년 이전에 건축된 주택 비율
 - DIS: 5개 주요 고용센터까지 가중 거리
 - RAD: 고속도로 접근 용이도
 - TAX: 10,000달러당 재산세 비율
 - PTRATIO: 지역의 교사와 학생 수 비율
 - B: 지역의 흑인 거주 비율
 - LSTAT: 하위 계층의 비율
 - PRICE(MEDV): 본인 소유 주택 가격의 중앙값

❖ 분석 모델 구축, 결과 분석 및 시각화

- 선형 회귀를 이용해 분석 모델 구축하기
 - 사이킷런의 선형 분석 모델 패키지sklearn.linear_model에서 선형 회귀LinearRegression를 이용하여 분석 모델을 구축

In [8]:	from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error, r2_score)
In [9]:	#X, Y 분할하기 Y = boston_df['PRICE'] X = boston_df. drop (['PRICE'], axis = 1, inplace = False)
In [10]:	#훈련용 데이터와 평가용 데이터 분할하기 X_train, X_test, Y_train, Y_test = train_test_split (X, Y, test_size = 0.3, random_state = 156)

In [8]: 사이킷런을 사용하여 머신러닝 회귀 분석을 하기 위한 LinearRegression과 데이터셋 분리 작업을 위한 train_test_split, 성능 측정을 위한 평가 지표인 mean_squared_ error, r2_score를 임포트

In [9]: PRICE 피처를 회귀식의 종속 변수 Y로 설정하고 PRICE를 제외 drop()한 나머지 피처를 독립 변수 X로 설정

In [10]: X와 Y 데이터 506개를 학습 데이터와 평가 데이터로 7:3 비율로 분할test_size=0.3

❖ 분석 모델 구축, 결과 분석 및 시각화

- 선형 회귀를 이용해 분석 모델 구축하기
 - 사이킷런의 선형 분석 모델 패키지sklearn.linear_model에서 선형 회귀LinearRegression를 이용하여 분석 모델을 구축

In [11]:	#선형 회귀 분석 : 모델 생성
	r = LinearRegression()
In [12]:	#선형 회귀 분석 : 모델 훈련
	Ir .fit (X_train, Y_train)
Out[12]:	LinearRegression()
In [13]:	#선형 회귀 분석 : 평가 데이터에 대한 예측 수행 -> 예측 결과 Y_predict 구하기
	Y_predict = lr. predict (X_test)

In [11]: 선형 회귀 분석 모델 객체 Ir을 생성

In [12]: 학습 데이터 XX_train와 YY_train를 가지고 학습을 수행fit().

In [13]: 평가 데이터 XX_test를 가지고 예측을 수행하여predict() 예측값YY_predict를 구함

❖ 분석 모델 구축, 결과 분석 및 시각화

- 선형 회귀를 이용해 분석 모델 구축하기
 - 선형 회귀 분석 모델을 평가 지표를 통해 평가하고 회귀 계수를 확인하여 피처의 영향을 분석

```
In [14]:

mse = mean_squared_error(Y_test, Y_predict)

rmse = np.sqrt(mse)

print('MSE : {0:.3f}, RMSE : {1:.3f}'.format(mse, rmse))

print('R^2(Variance score) : {0:.3f}'.format(r2_score(Y_test, Y_predict)))

Out[14]:

MSE : 17.297, RMSE : 4.159

R^2(Variance score) : 0.757

In [15]:

print('Y 절편 값: ', Ir.intercept_)

print('회귀 계수 값: ', np.round(Ir.coef_, 1))

Out[15]:

Y 절편 값: 40.995595172164336

회귀 계수 값: [-0.1 0.1 0. 3. -19.8 3.4 0. -1.7 0.4 -0. -0.9 0. -0.6]
```

 In [14]: 회귀 분석은 지도 학습이므로 평가 데이터 x에 대한 결과값 YY_test를 이미 알고 있는 상태에서 평가 데이터 YY_test와

 In [13]에서 구한 예측 결과Y_predict의 오차를 계산하여 모델을 평가. 평가 지표 MSE를 구하고mean_squared_error()

 구한 값의 제곱근을 계산하여np.sqrt(mse) 평가 지표 RMSE를 구함 그리고 평가 지표 R2 을 구함r2_score()

In [15]: 선형 회귀의 Y절편 Ir.intercept_과 각 피처의 회귀 계수 Ir.coef_를 확인

❖ 분석 모델 구축, 결과 분석 및 시각화

- 선형 회귀를 이용해 분석 모델 구축하기
 - 선형 회귀 분석 모델을 평가 지표를 통해 평가하고 회귀 계수를 확인하여 피처의 영향을 분석

In [16]:	coef = pd. Series (data = np.round(lr. coef_ , 2), index = X.columns) coef. sort_values (ascending = False)							
Out[16]:	RM 3.35 CHAS 3.05 RAD 0.36 ZN 0.07 INDUS 0.03 B 0.01 AGE 0.01 TAX -0.01 CRIM -0.11 LSTAT -0.57 PTRATIO -0.92 DIS -1.74 NOX -19.80 dtype: float64	In [16]: 회귀 모델에서 구한 회귀 계수 값Ir.coef_과 피처 이름X.columns을 묶어서 Series 자료 형으로 만들고, 회귀 계수 값을 기준으로 내림차순으로 정렬하여 ascending=False 확인 sort_ values() • 회귀 모델 결과를 토대로 보스톤 주택 가격에 대한 회귀식 YPRICE = -0.11XCRIM + 0.07XZN + 0.03XINDUS + 3.05XCHAS – 19.80XNOX + 3.35XRM + 0.01XAGE - 1.74XDIS + 0.36XRAD - 0.01XTAX - 0.92XPTRATIO + 0.01XB - 0.57XLSTAT + 41.00						

❖ 회귀 분석 결과를 산점도 + 선형 회귀 그래프로 시각화하기

• 선형 회귀를 이용해 분석 모델 구축하기

```
In [17]: import matplotlib.pyplot as plt import seaborn as sns

In [18]: fig, axs = plt.subplots(figsize = (16, 16), ncols = 3, nrows = 5)

x_features = ['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD', 'TAX', 'PTRATIO', 'B', 'LSTAT']

for i, feature in enumerate(x_features):
    row = int(i/3)
    col = i%3
    sns.regplot(x = feature, y = 'PRICE', data = boston_df, ax = axs[row][col])
```

In [17]: 시각화에 필요한 모듈을 임포트

In [18]: 독립 변수인 13개 피처와 종속 변수인 주택 가격, PRICE와의 회귀 관계를 보여주는 13개 그래프를 subplots()를 사용하여 5행 3열 구조로 모아서 나타냄

seaborn의 regplot()은 산점도 그래프와 선형 회귀 그래프를 함께 그려줌

- ❖ 회귀 분석 결과를 산점도 + 선형 회귀 그래프로 시각화하기
 - 선형 회귀를 이용해 분석 모델 구축하기

그림 10-3 13개 피처와 주택 가격의 회귀 관계를 나타낸 산점도/선형 회귀 그래프

1. 분류 분석(iris 붓꽃분류)

❖ 라이브러리 및 데이터 셋 로딩

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from sklearn import metrics
from sklearn.metrics import confusion_matrix #오차행렬은 sklearn.metircs 패키지 내 confusion_matrix로 확인 가능

```
iris = load_iris() #lord_iris import
iris_data = iris.data #중요 데이터 iris_data 변수에 저장 후 데이터 크기 확인
iris_label = iris.target #iris_label변수에 iris 데이터의 target저장
```

```
print(iris)
print(iris_data)
print(iris_label)
```

❖ 훈련데이터와 테스트 데이터 분류

```
#(3)train, test 데이터 분리
#X:feature데이터만 / y:정답label데이터만
#X데이터셋을 머신러닝 모델에 입력 -> 모델이 내뱉는 품종 예측 결과를 정답 y와 비교하여 학습
X_train, X_test, y_train, y_test = train_test_split(iris_data, #feature(입력받는 특징 데이터)
iris_label, #label(모델이 맞춰야하는 정답값)
test_size=0.2, #test dataset 크기 조절(0.2=전체 20%를 test데이터로 사용)
random_state=7) #train데이터와 test데이터 분리시 적용되는 랜덤성)
```

print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)

❖ 모델 훈련 및 테스트

```
logistic_model = LogisticRegression()
logistic_model.fit(X_train, y_train)
y_pred = logistic_model.predict(X_test)
scores=metrics.accuracy_score(y_test, y_pred)
print(scores)

print(classification_report(y_test, y_pred))
print(confusion_matrix(y_test, y_pred))
```