In the Claims

1(Currently Amended) A compound of the structural formula I:

$$R_{4}$$
 N
 R_{4}
 R_{5}
 N
 R_{7}
 R_{8}
 R_{8}
 R_{8}
 R_{8}
 R_{9}
 R_{1}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{1}
 R_{2}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{7}
 R_{1}
 R_{2}
 R_{3}
 R_{3}
 R_{4}
 R_{5}
 R_{5}
 R_{5}
 R_{7}
 R_{7

5

Formula I

or a pharmaceutically acceptable salt, *in vivo* hydrolysable ester, enantiomer, diastereomer or mixture thereof: wherein,

10 R represents hydrogen, or C₁₋₆ alkyl;

R^c and R^d independently represents hydrogen or halo;

R^e represents N or O;

15

X represents -(CHR7) $_p$ -, -(CHR7) $_p$ CO-;

Y represents -CO(CH₂)_n-, CH₂, or -CH(OR)-;

20 Q represents N, or O, wherein R2 is absent when Q is O;

 R_w represents H, C_{1-6} alkyl, $-C(O)C_{1-6}$ alkyl, $-C(O)OC_{1-6}$ alkyl, $-SO_2N(R)_2$, $-SO_2C_{1-6}$ alkyl, $-SO_2C_{6-10}$ aryl, NO_2 , CN or $-C(O)N(R)_2$;

R2 represents hydrogen, C₁₋₁₀ alkyl, OH, C₂₋₆ alkenyl, C₁₋₆ alkylSR, - (CH₂)_nO(CH₂)_mOR, -(CH₂)_nC₁₋₆ alkoxy, -(CH₂)_nC₃₋₈ cycloalkyl, -(CH₂)_nC₃₋₁₀ heterocyclyl, -N(R)₂, -COOR, or -(CH₂)_nC₆₋₁₀ aryl, said alkyl, heterocyclyl, or aryl optionally substituted with 1-3 groups selected from R^a;

R3 represents hydrogen, C₁₋₁₀ alkyl, -(CH₂)_nC₃₋₈ cycloalkyl, -(CH₂)_nC₃₋₁₀ heterocyclyl, -(CH₂)_nCOOR, -(CH₂)_nC₆₋₁₀ aryl, -(CH₂)_nNHR₈, -(CH₂)_nN(R₂, -(CH₂)_nN(R₈)CO₂R, -(CH₂)_nN(R₈)COR, -(CH₂)_nNHCOR, -(CH₂)_nCONH(R₈), aryl, -(CH₂)_nC₁₋₆ alkoxy, CF₃, -(CH₂)_nSO₂R, -(CH₂)_nSO₂N(R)₂, -(CH₂)_nCON(R)₂, -(CH₂)_nCONHC(R)₃, -(CH₂)_nCONHC(R)₂CO₂R, -(CH₂)_nCOR₈, nitro, cyano or halogen, said alkyl, alkoxy, heterocyclyl, or aryl optionally substituted with 1-3 groups of R^a;

- or, R2 and R3 taken together with the intervening Q form a 3-10 membered carbocyclic or heterocyclic carbon ring optionally interrupted by 1-2 atoms of O, S, C(O) or NR, and optionally having 1-4 double bonds, and optionally substituted by 1-3 groups selected from Ra;
- R4 and R5 independently represent hydrogen, C₁₋₆ alkoxy, OH, C₁₋₆ alkyl, COOR, SO₃H, -O(CH₂)_nN(R)₂, -O(CH₂)_nCO₂R, -OPO(OH)₂, CF₃, OCF₃, -N(R)₂, nitro, cyano, C₁₋₆ alkylamino, or halogen;

represents C₆ 10 aryl or C₃ 10 heterocyclyl phenyl, napthyl, phenanthrenyl, pyridyl, said aryl or heterocyclyl phenyl, napthyl, phenanthrenyl, pyridyl optionally substituted with 1-3 groups selected from Ra;

Z represents $(CH_2)_n PO(OR)(OR^*)_;$

25 R* represents hydrogen, or C₁₋₆ alkyl;

R7 represents hydrogen, C₁-6 alkyl, -(CH₂)_nCOOR or -(CH₂)_nN(R)₂,

R8 represents -(CH₂)_nC₃₋₈ cycloalkyl, -(CH₂)_n 3-10 heterocyclyl, C₁₋₆ alkoxy or - (CH₂)_nC₅₋₁₀ heteroaryl, -(CH₂)_nC₆₋₁₀ aryl said heterocyclyl, aryl or heteroaryl optionally substituted with 1-3 groups selected from R^a;

Ra represents F, Cl, Br, I, CF₃, N(R)₂, NO₂, CN, -COR₈, -CONHR₈, -CON(R₈)₂, - O(CH₂)_nCOOR, -NH(CH₂)_nOR, -COOR, -OCF₃, -NHCOR, -SO₂R, -SO₂NR₂, -SR, (C₁-C₆ alkyl)O-, -(CH₂)_nO(CH₂)_mOR, -(CH₂)_nC₁₋₆ alkoxy, (aryl)O-, -(CH₂)_nOH, (C₁-C₆ alkyl)S(O)_m-, H₂N-C(NH)-, (C₁-C₆ alkyl)C(O)-, (C₁-C₆ alkyl)OC(O)NH-, -

 $(C_1-C_6 \text{ alkyl})NR_w(CH_2)_nC_{3-10} \text{ heterocyclyl-}R_w, -(C_1-C_6 \text{ alkyl})O(CH_2)_nC_{3-10} \\ \text{ heterocyclyl-}R_w, -(C_1-C_6 \text{ alkyl})S(CH_2)_nC_{3-10} \text{ heterocyclyl-}R_w, -(C_1-C_6 \text{ alkyl})-C_{3-10} \\ \text{ heterocyclyl-}R_w, -(CH_2)_n-Z^1-C(=Z^2)N(R)_2, -(C_2-6 \text{ alkenyl})NR_w(CH_2)_nC_{3-10} \\ \text{ heterocyclyl-}R_w, -(C_2-6 \text{ alkenyl})O(CH_2)_nC_{3-10} \text{ heterocyclyl-}R_w, -(C_2-6 \text{ alkenyl})-C_{3-10} \text{ heterocyclyl-}R_w, -(C_2-6 \text{ alkenyl})-C_{3-10} \text{ heterocyclyl-}R_w, -(C_2-6 \text{ alkenyl})-Z^1-C(=Z^2)N(R)_2, -(CH_2)_nSO_2R, -(CH_2)_nSO_3H, -(CH_2)_nPO(OR)_2, \\ \text{ C_3-10cycloalkyl, C_{6-10} aryl, C_{3-10} heterocyclyl, C_{2-6} alkenyl, and C_1-C_{10} alkyl, said alkyl, alkenyl, alkoxy, heterocyclyl and aryl optionally substituted with 1-3 groups selected from C_1-C_6 alkyl, $CN, $NO_2, $OH, $CON(R)_2$ and $COOR;}$

10

Z1 and Z2 independently represents NRw, O, CH2, or S;

g is 0-1;

m is 0-3;

n is 0-3; and

15 p is 0-3.

2(Original). The compound according claim 1 wherein p is 1-3, Y is -CO(CH₂)_n, Q is N, X is -(CHR₇)_p-, or -(CHR₇)_pCO-,.

20

25

3(Original). The compound according claim 1 wherein Q is O and R2 is absent.

4(Original). The compound according to claim 2 wherein Z is PO(OR)(OR*), R₂ is C₁₋₁₀ alkyl or C₁₋₆ alkylOH, Y is -CO(CH₂)_n and R₃ is (CH₂)_nC₃₋₁₀ heterocyclyl, said heterocyclyl and alkyl optionally substituted with 1 to 3 groups of R₃

3 groups of Ra.

5(Original). The compound according to claim 4 wherein is a 6 membered heteroaryl or phenyl optionally substituted with 1-3 groups selected from Ra.

30

6(Currently Amended). A compound according to claim 1 5

wherein

Het

is pyridyl optionally substituted with 1-3 groups selected from Ra.

7(Original). • A compound according to claim 1 which is in the form of a sodium or disodium salt.

8(Original). A compound which is:

or a pharmaceutically acceptable salt, in vivo hydrolysable ester, enantiomer, diastereomer or mixture thereof.

9(Previously Presented). A method for the treatment of ocular hypertension or glaucoma comprising administering a compound of formula I accordingly to claim 1.

10(Previously Presented). A method for the treatment of macular edema, macular degeneration, increasing retinal and optic nerve head blood velocity, increasing retinal and optic nerve oxygen tension, and/or a neuroprotective effect comprising administering a compound of formula I accordingly to claim 1.

11. Canceled.

15

10

5

12. Canceled.

13(Original). A composition comprising a compound of formula I of claim 1 and a pharmaceutically acceptable carrier.

20

14(Original). The composition according to Claim 13 wherein the compound of formula I is applied as a topical formulation, said topical formulation administered as a solution or suspension and optionally containing xanthan gum or gellan gum.

25

30

35

15(Currently Amended). A composition according to claim 14 wherein one or more of an active ingredient belonging to the group consisting of: β-adrenergic blocking agent, parasympatho-mimetic agent, sympathomimetic agent, carbonic anhydrase inhibitor, EP4 agonist, a prostaglandin or derivative thereof, hypotensive lipid, neuroprotectant, and/or 5-HT2 receptor agonist is optionally added.

16(Original). A composition according to claim 15 wherein the β-adrenergic blocking agent is timolol, betaxolol, levobetaxolol, carteolol, or levobunolol; the parasympathomimetic agent is pilocarpine; the sympathomimetic agent is epinephrine, brimonidine, iopidine, clonidine, or para-aminoclonidine, the carbonic anhydrase inhibitor is dorzolamide, acetazolamide, metazolamide or brinzolamide; the prostaglandin is latanoprost, travaprost, unoprostone, rescula, or

S1033, the hypotensive lipid is lumigan, the neuroprotectant is eliprodil, R-eliprodil or memantine; and the 5-HT2 receptor agonist is 1-(2-aminopropyl)-3-methyl-1H-imdazol-6-ol fumarate or 2-(3-chloro-6-methoxy-indazol-1-yl)-1-methyl-ethylamine.