Digital System Design

Latches and Flip-Flops

Alfonso Fernandez

Academia de Sistemas Digitales Escuela Superior de Cómputo, ESCOM Instutito Politécnico Nacional, IPN

Contents

Introduction

Latches

Master-Slave Flip-Flops

Examples

Edge-Triggered Flip-Flops

Contents

Introduction

Latches

Master-Slave Flip-Flops

Examples

Edge-Triggered Flip-Flops

Combinational Systems

Combinational circuits are an interconnection of OR, AND, and NOT gates.

Examples of combinational systems are Encoder/Decoder, MUX/DEMUX, Adders, Multipliers, among others.

Sequential Systems

On the other side, in sequential circuits, there are two new blocks, called **latch** and **flip-flop**.

Latches are storage elements that operate with signal levels, whereas flip-flops are controlled by a clock transition.

Contents

Introduction

Latches

Master-Slave Flip-Flops

Examples

Edge-Triggered Flip-Flop

Simple Latch

A simple latch can be designed using an OR gate with feedback.

Set	Q	Q_+
0	Q	Q
1	X	1

Equivalent Simple Latch

SR Latch (Improved Simple Latch)

S	R	Q_{+}	\overline{Q}_+
0	0	Q	\overline{Q}
0	1	0	1
1	0	1	0
1	1	0	0 (forbidden)

SR Latch with NAND Gates

S	R	Q_{+}	\overline{Q}_{+}
0	0	1	1 (forbidden)
0	1	1	0
1	0	0	1
1	1	Q	\overline{Q}

Critical Race

SR Latch with Control Input

En	S	R	Q_+	\overline{Q}_+
0	X	X	Q	\overline{Q}
1	0	0	Q	\overline{Q}
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1 (forbidde

SR Latch with Control Input: Timing Diagram

SR Latch with Control Input: Questa Simulation

In this simulation, we consider that the propagation delay t_d in NAND gates is $0.025\,T$, where T is the time period of the clock signal.

D Latch (Transparent Latch) with Control Input

En	D	Q_{+}	\overline{Q}_+
0	Χ	Q	\overline{Q}
1	0	0	1
1	1	1	0

Improved D Latch with Control Input

En	D	Q_{+}	\overline{Q}_+
0	Χ	Q	\overline{Q}
1	0	0	1
1	1	1	0

JK Latch with Control Input

En	J	K	Q_{+}	\overline{Q}_+
0	X	Χ	Q	\overline{Q}
1	0	0	Q	\overline{Q}
1	0	1	0	1
1	1	0	1	0
1	1	1	\overline{Q}	Q

T Latch with Control Input

En	T	Q_+	\overline{Q}_+
0	Χ	Q	\overline{Q}
1	0	Q	\overline{Q}
1	1	\overline{Q}	Q

Bistable Multivibrator Element

Contents

Introduction

Latches

Master-Slave Flip-Flops

Examples

Edge-Triggered Flip-Flop

SR Latch and Feedback

Stable and Unstable Feedback

Master-Slave SR Flip-Flop

Timing Diagram - Part I

SR Flip-flop: Characteristic Table, Characteristic Equation, and State Diagram

clk	S	R	Q_{+}
T _	0	0	Q
T _	0	1	0
T _	1	0	1
<u>_</u>	1	1	_

$$SR = 00$$

$$SR = 01$$

$$Q = 0$$

$$SR = 01$$

$$SR = 00$$

$$SR = 10$$

$$Q_+ = S + \overline{R}Q$$

Timing Diagram - Part II

Master-Slave D Flip-Flop

Timing Diagram

D Flip-flop: Characteristic Table, Characteristic Equation, and State Diagram

clk	D	Q_{+}
7_	0	0
_t _	1	1

$$Q_+ = D$$

Master-Slave JK Flip-Flop

Timing Diagram

JK Flip-flop: Characteristic Table, Characteristic Equation, and State Diagram

clk	J	K	Q_+
_	0	0	Q
₹_	0	1	0
₹_	1	0	1
<u> </u>	1	1	\overline{Q}

$$JK = 10$$

$$JK = 11$$

$$JK = 00$$

$$JK = 01$$

$$JK = 01$$

$$JK = 01$$

$$JK = 10$$

$$Q_+ = J\overline{Q} + \overline{K}Q$$

Master-Slave T Flip-Flop

Timing Diagram

T Flip-flop: Characteristic Table, Characteristic Equation, and State Diagram

clk	T	Q_{+}
7_	0	Q
<u></u>	1	\overline{Q}

$$Q_+ = T \oplus Q$$

Key Observation

Master-slave flip-flops depend on the stability of the inputs when the clock pulse is high.

Master-Slave JK Flip-Flop with Asynchronous Set and Clear

Characteristic Table

SET	CLR	clk	J	K	Q_+	\overline{Q}_{+}
0	1	Χ	Χ	Χ	1	0
1	0	X	X	X	0	1
0	0	Χ	X	X	1	1
1	1	7_	0	0	Q	\overline{Q}
1	1	7_	0	1	0	1
1	1	7_	1	0	1	0
1	1	7_	1	1	\overline{Q}	Q

Texas Instruments: 74LS76A—Master-Slave JK Flip-Flop

Contents

Introduction

Latches

Master-Slave Flip-Flops

Examples

Edge-Triggered Flip-Flop

Contents

Introduction

Latches

Master-Slave Flip-Flops

Examples

Edge-Triggered Flip-Flops

Edge-Triggered D Flip-Flop

Edge-Triggered D Flip-Flop: Details (D=0)

Edge-Triggered D Flip-Flop: Details (D=1)

Edge-Triggered D Flip-Flops with Asynchronous Set and Clear

Edge-Triggered JK and T Flip-Flops

Texas Instruments: SN7474—Edge-Triggered D Flip-Flop

