MAT2440, Classwork15, Spring2025

ID:______ Name:_____

- 1. The Second Method: A Proof by Contradiction
- (a) To prove a statement p is **true**, we first find a <u>contradition</u> q such that $\neg p \rightarrow q$ is <u>true</u>. Since q is false and $\neg p \rightarrow q$ is true, it concludes that $\neg p$ is <u>true</u> which implies p is <u>true</u>.
- (b) To prove a statement $p \to q$ is **true**, we first **assume** p and $\neg q$ are $\underline{\text{true}}$. Then using $\neg q$ shows $\neg p$ is $\underline{\text{true}}$ Because p and $\neg p$ are both $\underline{\text{true}}$, we have a $\underline{\text{contradition}}$. It implies the **assumption** " $\neg q$ is true" is wrong which means q is $\underline{\text{true}}$.
- 2. Give a contradiction proof of the theorem "If n^2 is an odd integer, then n is odd."

Assume n2 is odd and n is even (7 Qcns)

Then N=2k which implies $n^2=(2k)^2=4k^2$ and it is even Here we get a contradition since n^2 cannot both even and odd.

Therefore, n is odd.

3. Rational and Irrational numbers:

The real number r is <u>rational</u> if there exist integers a and b with $b \neq 0$ such that

$$r = \frac{a}{b}.$$

A real number that is not rational is called _______.

4. Prove that a product of a non-zero rational number and an irrational number is irrational.

4. Frove that a product of a non-zero rational number and an irrational number is irrational.

Assume the product of a rational number and an irrational is rational and integers.

A i = C (a,b,c,d) are non-zero integers.

Then $i = \frac{C}{d} \cdot \frac{b}{a} = \frac{cb}{da} \Rightarrow i$ is a rational number. Here is a contradition that i is both rational and irrational which implies the assumption is wrong, and a product of a non-zero rational number and an irrational one is irrational.

5	The	Thind	Mathad.	٨	Droofby	Contro	nacition
Э.	1 ne	1 nira	Methoa:	Α	Proof by	Contra	position

Proofs by	make use of the fact that the conditional statement $p \rightarrow q$ is
equivalent to its contrapositi	we This means that $p \to q$ can be proved by
showing $\neg q \rightarrow \neg p$ is	

6. Give a proof by Contraposition of the theorem "If n^2 is an odd integer, then n is odd."

7. Mistakes in Proofs: An Example

What is wrong with this famous supposed "proof" that 1 = 2?

Proof: We use these steps, where a and b are two equal positive integers.

Step	Reason
(1). $a = b$	Given
$(2). a^2 = ab$	Multiply both sides of (1) by a
$(3). a^2 - b^2 = ab - b^2$	Subtract b^2 from both sides of (2)
(4). (a - b)(a + b) = b(a - b)	Factor both sides of (3)
(5). a + b = b	Divide both sides of (4) by $a - b$
(6). $2b = b$	Replace a by b in (5) since $a = b$
(7). 2 = 1	Divide both sides of (6) by b