

Analyse de Systèmes Hamiltoniens à Ports pour la génération de lois de commande par platitude différentielle : application en électroacoustique

Antoine Falaize^a, Tristan Lebrun^b, Thomas Hélie^b

01 décembre 2017

Journées Techniques de Contrôle en Vibrations, Acoustique et Musique GIPSA-lab, Grenoble, France
http://www.gipsa-lab.fr/colloque/JTCVAM2017/accueil.html

a Équipe M2N, CNRS UMR 7356 LaSIE, ULR, La Rochelle, France b Équipe S3AM, CNRS UMR 9912 STMS, IRCAM, UPMC, Paris, France

Problématique : contrôler la sortie d'un transducteur

Plusieurs causes de distortions ¹

- · suspensions mecaniques ,
- couplage fluide-structure,
- · bobine à noyau ferromagnétique,
- · variations de température.

FALAIZE, "Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios :
 Approche par réseau de composants et formulation Hamiltonienne à Ports", 2016, §7.

Problématique : contrôler la sortie d'un transducteur

Plusieurs causes de distortions ¹

- · suspensions mecaniques (ici),
- couplage fluide-structure,
- bobine à noyau ferromagnétique,
- variations de température.

 FALAIZE, "Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios : Approche par réseau de composants et formulation Hamiltonienne à Ports", 2016, §7.

Approche et outils

Présentée au CFM 2015²

- Modèle physique <u>structurellement passif</u> Systèmes Hamiltoniens à Ports ³ (SHP)
- Méthode numérique préservant la passivité → <u>stabilité</u>
 Gradient discret ⁴
- Compensation des non-linéarités <u>modélisées</u>
 Platitude différentielle ⁵ (feedforward)
- 4. Correction des défauts non modélisés

 Bouclage type Lyapunov (feedback)
- FALAIZE et al., "Compensation of loudspeaker's nonlinearities based on flatness and port-Hamiltonian approach", 2015.
- MASCHKE, VAN DER SCHAFT et BREEDVELD, "An intrinsic Hamiltonian formulation of network dynamics:
 Non-standard Poisson structures and gyrators", 1992.
- ITOH et ABE, "Hamiltonian-conserving discrete canonical equations based on variational difference quotients", 1988.
- 5. FLIESS et al., "Differential flatness and defect : an overview", 1993.

Objectif : formalisation \rightarrow procédure automatisée

Modélisation (OK)

- Système = Composants + Interconnexions.
- Méthode d'analyse de graphes ⁶.
- · Génération automatique de la structure SHP.

Platitude (présentation d'aujourd'hui)

- Détermination automatique de la sortie plate du modèle.
- Méthode d'analyse de graphes ⁷ (≠ Modélisation).
- ⇒ Loi de commande (exacte sur le modèle).

- 6. FALAIZE et HÉLIE, "Passive guaranteed simulation of analog audio circuits : A port-Hamiltonian approach",

Plan

Introduction

Systèmes Hamiltoniens à Ports (SHP)

Modèle-jouet d'un haut-parleur électrodynamique

Simulation directe

Planification de trajectoire et platitude

Résultats : simulations et mesures

Systèmes Hamiltoniens à Ports (SHP)

Représentation d'état (RE) standard

Entrée u, État x, Observation y

Dynamique
$$\frac{d\mathbf{x}}{dt} = \mathbf{f}(\mathbf{x}, \mathbf{w}, \mathbf{u})$$

Contrainte $\mathbf{0} = \mathbf{g}(\mathbf{x}, \mathbf{w}, \mathbf{u})$
Observation $\mathbf{y} = \mathbf{h}(\mathbf{x}, \mathbf{w}, \mathbf{u})$

SHP: RE structurée selon les échanges de puissances

$$\begin{array}{c} \text{Stockages} \\ \text{Dissipations} \\ \text{Sources} \end{array} \left(\begin{array}{c} \frac{dx}{dt} \\ w \\ y \end{array} \right) = \left(\begin{array}{cccc} J_{xx} & J_{xw} & J_{xy} \\ -J_{xw}^{\mathsf{T}} & J_{ww} & J_{wy} \\ -J_{xy}^{\mathsf{T}} & -J_{wy}^{\mathsf{T}} & J_{yy} \end{array} \right) \cdot \left(\begin{array}{c} \nabla H(x) \\ z(w) \\ u \end{array} \right)$$

Les systèmes Hamiltoniens à Ports

Structure SHP

Encode le bilan de puissance

$$\begin{array}{lll} \mathfrak{a} & = & \left(\nabla H(x), z(w), u \right)^\intercal, & \mathfrak{a}^\intercal \, \mathfrak{b} & = & \nabla H^\intercal \, \frac{\mathrm{d}x}{\mathrm{d}t} + z(w)^\intercal \, w + u^\intercal \, y \\ \mathfrak{b} & = & \left(\frac{\mathrm{d}x}{\mathrm{d}t}, w, y \right)^\intercal, & = & \frac{\mathrm{d}E}{\mathrm{d}t} + \underset{}{P_\mathrm{D}} + \underset{}{P_\mathrm{S}} = 0. \\ \mathfrak{b} & = & J \cdot \mathfrak{a}, \quad (J \; \text{antisym.} \Rightarrow \mathfrak{a}^\intercal \, J \, \mathfrak{a} = 0). \end{array}$$

Le Haut-parleur électrodynamique

Le haut-parleur électrodynamique

Figure 1 – Vue schématique.

Modèle de Thiele et Small

Partie électrique

- a source de tension
- r résistance du fil
- c inductance de la bobine
- L f.e.m induite

Figure 2 – Modèle électromécanique équivalent.

Modèle de Thiele et Small

Partie électrique

- a source de tension
- r résistance du fil
- c inductance de la bobine
- L f.e.m induite

Partie mécanique

- m masse eq.
- s force de rappel
- d amortissement
- L force de Laplace

Figure 2 – Modèle électromécanique équivalent.

Modèle de Thiele et Small

Partie électrique

- a source de tension
- r résistance du fil
- c inductance de la bobine
- L f.e.m induite

Partie mécanique

m masse eq.

s force de rappel

d amortissement

L force de Laplace

$$\begin{array}{rcl} v_{\mathsf{a}}(t) & = & R_{\mathsf{r}} \cdot i_{\mathsf{a}}(t) + L \cdot \frac{\mathrm{d} i_{\mathsf{a}}(t)}{\mathrm{d} t} + B\ell \cdot \frac{\mathrm{d} q(t)}{\mathrm{d} t}, \\ m \cdot \partial_t^2 q(t) & = & B\ell \cdot i_{\mathsf{a}}(t) - R_{\mathsf{d}} \cdot \frac{\mathrm{d} q(t)}{\mathrm{d} t} - F_{\mathsf{S}}(q). \end{array}$$

 $F_{S}(q)$: Force de rappel de la suspension \rightsquigarrow Non linéaire

Suspension non linéaire

Thiele et Small

Force de rappel linéaire de raideur k_0 :

$$F_k(x) \equiv F_{lin}(x) = k_0 x.$$

Suspension non linéaire

Thiele et Small

Force de rappel linéaire de raideur k_0 :

$$F_k(x) \equiv F_{lin}(x) = k_0 x.$$

Dans ce travail

Saturation en position (phénoménologique) :

$$F_{k}(x) = F_{lin}(x) + F_{sat}(x)$$

$$F_{sat}(x) = k_{s} \frac{4}{4-\pi} \left(\tan \left(\frac{\pi \cdot x}{2 \cdot x_{sat}} \right) - \frac{\pi \cdot x}{2 \cdot x_{sat}} \right).$$
(1)

Le terme non linéaire F_{sat} ne s'exprime pas autours de l'origine q=0.

Suspension non linéaire

Dans ce travail

Saturation en position (phénoménologique) :

$$F_{k}(x) = F_{lin}(x) + F_{sat}(x)$$

$$F_{sat}(x) = k_{s} \frac{4}{4-\pi} \left(\tan \left(\frac{\pi \cdot x}{2 \cdot x_{sat}} \right) - \frac{\pi \cdot x}{2 \cdot x_{sat}} \right).$$
(1)

Le terme non linéaire F_{sat} ne s'exprime pas autours de l'origine q=0.

Modèle SHP du haut-parleur

La matrice de connexion est obtenue à partir des lois de Kirchhoff et de Newton appliquées à

$$\frac{d\mathbf{x}}{dt} = [v_{\mathsf{C}}, m \frac{d^{2}q}{dt^{2}}, \frac{dq}{dt}]^{\mathsf{T}}, \quad \nabla \mathbf{H}(\mathbf{x}) = [i_{\mathsf{C}}, \frac{dq}{dt} F_{\mathsf{S}}]^{\mathsf{T}}
\mathbf{w} = [i_{\mathsf{F}}, \frac{dq}{dt}]^{\mathsf{T}}, \quad \mathbf{z} = [v_{\mathsf{F}}, F_{\mathsf{d}}]^{\mathsf{T}}
\mathbf{y} = i_{\mathsf{a}}, \quad \mathbf{u} = v_{\mathsf{a}}$$
(2)

$$\mathbf{J}_{xx} = \begin{pmatrix} 0 & -BI & 0 \\ +BI & 0 & -1 \\ 0 & +1 & 0 \end{pmatrix}, \ \mathbf{J}_{xw} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, \ \mathbf{J}_{xy} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}
\mathbf{J}_{ww} = 0, \ \mathbf{J}_{wy} = 0, \ \mathbf{J}_{yy} = 0.$$
(3)

Simulation directe

Méthode numérique dédiée aux SHP (Gradient discret 8)

- · Préserve la structure passive des SHP à temps discret
- Garantit la stabilité du schéma numérique (même dans le cas non linéaire)

Figure 2 – Gauche : Tension v_a (V). Droite : Position q (m).

ITOH et ABE, "Hamiltonian-conserving discrete canonical equations based on variational difference quotients",
 1988; LOPES, HÉLIE et FALAIZE, "Explicit second-order accurate method for the passive guaranteed simulation of port-Hamiltonian systems.", 2015.

Platitude et planification de trajectoire : Le principe

Si il existe $n_{\mu} = \dim(\mathbf{u})$ variables indépendantes μ telles que

$$\mu = \varphi_{\mu}(\mathbf{x}, \mathbf{u}, \frac{\mathrm{d}\mathbf{u}}{\mathrm{d}t}, \cdots, \frac{\mathrm{d}^{p}\mathbf{u}}{\mathrm{d}t^{p}}),$$

$$\mathbf{x} = \varphi_{\mathbf{x}}(\boldsymbol{\mu}, \frac{d\boldsymbol{\mu}}{dt}, \cdots, \frac{d^{n}\boldsymbol{\mu}}{dt^{n}}),$$

$$\mathbf{u} = \varphi_{\mathbf{u}}(\boldsymbol{\mu}, \frac{\mathrm{d}\boldsymbol{\mu}}{\mathrm{d}t}, \cdots, \frac{\mathrm{d}^{m}\boldsymbol{\mu}}{\mathrm{d}t^{m}})$$

Alors pour toute trajectoire admissible $\mu^\star: t \mapsto \mu^\star(t)$

$$\mathbf{x}^{\star} = \varphi_{\mathbf{x}} \left(\boldsymbol{\mu}^{\star}, \frac{\mathrm{d} \boldsymbol{\mu}^{\star}}{\mathrm{d} t}, \cdots, \frac{\mathrm{d}^{n} \boldsymbol{\mu}^{\star}}{\mathrm{d} t^{n}} \right)$$

$$\mathbf{u}^{\star} = \varphi_{\mathbf{u}} \left(\boldsymbol{\mu}^{\star}, \frac{\mathrm{d} \boldsymbol{\mu}^{\star}}{\mathrm{d} t}, \cdots, \frac{\mathrm{d}^{m} \boldsymbol{\mu}^{\star}}{\mathrm{d} t^{m}} \right)$$

Exemple:
$$u(t) = J \frac{d^2 \theta(t)}{dt^2} + mgl \sin \theta(t)$$

Variable plate : θ

On souhaite suivre la trajectoire $\theta^*(t)$

Commande: $u^*(t) = J \frac{d^2 \theta^*(t)}{dt^2} + mgl \sin \theta^*(t)$

Platitude et planification de trajectoire : Difficulté

- Qui est $\mu (= \varphi_{\mu})$?
- Qui est φ_x ?
- Qui est $\varphi_{\mathbf{u}}$?

Résultat : Analyse automatique de la platitude pour les SHP

Principe

- sortie plate 0 ≡ base de la chaine d'intégration
- ullet On cherche un diagramme de Hasse o arbre si le système est plat

Hypothèses

- (H1) $\dim(\mathbf{u}) = \dim(\mathbf{y}) = 1$,
- (H2) $H(\mathbf{x}) = \sum_{i=1}^{n_E} H_i(x_i)$ et $\mathbf{z}(\mathbf{w}) = (\mathbf{z}_1(\mathbf{w}_1), \cdots, \mathbf{z}_{n_D}(\mathbf{w}_{n_D}))^\mathsf{T}$,
- (H3) lois constitutives bijectives $(H''_n(x_n) > 0 \text{ et } z'_m(w_m) > 0).$

lci: illustration sur le RLC

Circuit

SHP

$$\begin{pmatrix} \frac{\mathrm{d}x_{L}}{\mathrm{d}t} \\ \frac{\mathrm{d}x_{C}}{\mathrm{d}t} \\ w_{R} \\ y \end{pmatrix} = \begin{pmatrix} 0 & -1 & -1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} H'_{L}(x_{L}) \\ H'_{C}(x_{C}) \\ z_{R}(w_{R}) \\ u \end{pmatrix}. \tag{4}$$

Circuit v_{R} v_{L} v_{C} v_{R} v_{L} v_{C} v_{C} v_{C}

1. Graphe d'initialisation

SHP

$$\begin{pmatrix} \frac{\mathrm{d}x_{l}}{\mathrm{d}t} \\ \frac{\mathrm{d}x_{C}}{\mathrm{d}t} \\ \frac{W_{R}}{V} \end{pmatrix} = \begin{pmatrix} 0 & -1 & -1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} H'_{L}(x_{L}) \\ H'_{C}(x_{C}) \\ z_{R}(w_{R}) \\ u \end{pmatrix}.$$

16/24

(4)

2. Graphe solution

SHP

$$\begin{pmatrix} \frac{\mathrm{d}x_{l}}{\mathrm{d}t} \\ \frac{\mathrm{d}x_{c}}{\mathrm{d}t} \\ w_{R} \\ y \end{pmatrix} = \begin{pmatrix} 0 & -1 & -1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} H'_{L}(x_{L}) \\ H'_{C}(x_{C}) \\ z_{R}(w_{R}) \\ u \end{pmatrix}.$$

17/24

(5)

Circuit

3. Diagramme de Hasse

SHP

$$\begin{pmatrix} \frac{\mathrm{d}x_{l}}{\mathrm{d}t} \\ \frac{\mathrm{d}x_{C}}{\mathrm{d}t} \\ w_{R} \\ y \end{pmatrix} = \begin{pmatrix} 0 & -1 & -1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} H'_{L}(x_{L}) \\ H'_{C}(x_{C}) \\ z_{R}(w_{R}) \\ u \end{pmatrix}. \tag{6}$$

Application au haut-parleur

- ullet sortie plate \equiv position de la membrane
- $\mu = \varphi_{\boldsymbol{\mu}}(\mathbf{x}_3)$

$$\bullet \ \mathbf{x} = \varphi_{\mathbf{x}}(\mu, \frac{\mathrm{d}\mu}{\mathrm{d}t}, \frac{\mathrm{d}^{2}\mu}{\mathrm{d}t^{2}}) = \begin{pmatrix} \frac{L}{BI} \left(M \cdot \frac{\mathrm{d}^{2}\mu}{\mathrm{d}t^{2}} + A \cdot \frac{\mathrm{d}\mu}{\mathrm{d}t} + F_{\mathrm{S}}(\mu) \right) \\ M \cdot \frac{\mathrm{d}\mu}{\mathrm{d}t} \\ \mu \end{pmatrix}$$

Expression analytique de l'entrée $v_{\rm ampli} = \mathbf{u}$

$$\begin{split} \mathbf{u} &= \varphi_{\mathbf{u}} \big(\mu, \frac{\mathrm{d} \mu}{\mathrm{d} t}, \frac{\mathrm{d}^2 \mu}{\mathrm{d} t^2}, \frac{\mathrm{d}^3 \mu}{\mathrm{d} t^3} \big) = & \quad \frac{\mathit{M} \cdot \mathit{L}}{\mathit{BI}} \cdot \frac{\mathrm{d}^3 \mu}{\mathrm{d} t^3} + \frac{\mathit{A} \, \mathit{L} + \mathit{R} \, \mathit{M}}{\mathit{BI}} \cdot \frac{\mathrm{d}^2 \mu}{\mathrm{d} t^2} \\ &+ \big(\mathit{F}_{\mathrm{S}}' \big(\mu \big) + \frac{\mathit{L} + \mathit{R} \, \mathit{A}}{\mathit{BI}} + \mathit{BI} \big) \cdot \frac{\mathrm{d} \mu}{\mathrm{d} t} \\ &+ \frac{\mathit{R}}{\mathit{BI}} \, \mathit{F}_{\mathrm{S}} \big(\mu \big). \end{split}$$

Résultats de simulation

Simulation directe

Figure 3 – Gauche : Tension v_a (V). Droite : Position q (m).

Résultats de simulation

Simulation corrigée

Figure 3 – Gauche : Tension v_a (V). Droite : Position q (m).

Résultats de simulation

En pratique : thèse de Tristan Lebrun

Résultats de mesure

Mesure directe

Figure 3 – Gauche : Tension v_a (V). Droite : Position q (m).

Résultats de mesure

Mesure corrigée

Figure 3 – Gauche : Tension v_a (V). Droite : Position q (m).

Multi-entrées?

Analyse matricielle

- Hypothèses : SHP séparé par blocs et sous forme échelonnée réduite.
- 1 algorithme 9.

FALAIZE, "Modélisation, simulation, génération de code et correction de systèmes multi-physiques audios :
 Approche par réseau de composants et formulation Hamiltonienne à Ports", 2016, §4.

Conclusion

Contribution

Deux algorithmes pour analyser formellement la platitude d'un SHP.

Perspectives

- 1. Estimation de paramètres pour les SHP $\stackrel{?}{\Rightarrow}$ Formalisation.
- 2. Raffinement du contrôleur $\stackrel{?}{\Rightarrow}$ IDA-PBC ¹⁰.
- 3. Platitude d'ordre > 0.

ORTEGA et al., "Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems", 2002.

PyPHS: bibliothèque python sous licence CeCILL 12

Paradigme : Les Systèmes Hamiltoniens à Ports (SHP)

- Approche en réseau, structure SHP commune à de très nombreux systèmes.
- Garantit la passivité des modèles et des simulations (méthodes numériques dédiées).
- Calculs symboliques ⇒ manipulation/optimisation/ génération.
- ullet Code c++ \equiv modèle physique numérique passif optimisé.

Présentation de la librairie ce lundi 04/12/2017 15h30 à l'IRCAM (Paris) 11

- 11. Streaming http://videos.ircam.fr/
- $12.\,$ CEA-CNRS-INRIA Logiciel Libre http://www.cecill.info/

