

Exame Especial de **Introdução aos Sistemas Eletromagnéticos - Parte I**Eng. Biomédica 2°Ano/1°Semestre

02/09/201	14
Duração: 1	۱h

NTO A I

Nome	N° Aluno
1	or 3 questões de escolha múltipla e por 3 questões de
desenvolvimento.	
Das questões indicadas, responda no	máximo a 4 e indique neste rectângulo as respostas

Escolha múltipla

• Para cada questão há uma única hipótese correta.

efectivamente respondidas.

- Assinale a resposta correta no enunciado com um círculo.
- Se pretende anular uma resposta escreva "Anulado" na respetiva caixa.
- Cotação: Resposta correta = 2; Resposta errada = 0,66
- 1. Cinco cargas pontuais iguais, cada uma com uma carga $Q=2\,nC$, encontram-se igualmente espaçadas na periferia de uma circunferência de raio $R=3\,cm$, tal como se esquematiza na figura.
- 1.1 O campo elétrico no centro da circunferência é de:

A: $\vec{E} = 20 \hat{x} kV/m$	B: $\vec{E} = 48 \hat{x} kV/m$
C: $\vec{E} = 100 \hat{x} kV/m$	D: $\vec{E} = 70 \hat{x} + kV/m$

1.2 O potencial elétrico no centro da circunferência, tomando como nulo o potencial no infinito, é de:

A: $V = 600 V$	B: V=1800 V
C: V=1200 V	D: $V = 3000 V$

2. Uma espira retangular encontra-se a rodar a uma velocidade angular constante no seio de um campo de indução magnética, tal como está representado na figura. No instante t=0, a espira encontra-se na posição representada na figura.

Escolha a hipótese correta relativa à corrente induzida na espira.

- A: No instante imediatamente após t=0, é induzida na espira uma corrente no sentido anti-horário.
- B: No instante imediatamente após t=0, é induzida na espira uma corrente no sentido horário.
- C: Não é induzida na espira qualquer corrente, ao longo do seu movimento.
- D: É induzida na espira uma corrente contínua, ao longo do seu movimento.

Desenvolvimento

- Apresente todos os passos de resolução e justifique convenientemente todos os cálculos.
- Indique as unidades dos resultados obtidos.
- Cada questão tem a cotação de 2 valores.
- 3. Um electrão ($q_e = -1.6 \times 10^{-19} \, \mathrm{C}$ e $m_e = 9.1 \times 10^{-31} \, \mathrm{kg}$) lança-se com uma velocidade de $v_e = 3 \times 10^7 \, \mathrm{ms}^{-1}$ paralelamente a um campo eléctrico de grandeza $E = 2 \, \mathrm{kV/cm}$. Determine o espaço percorrido pelo electrão até a sua velocidade se anular.
- **4.** Um cabo elétrico, com uma resistividade $\rho = 1,68 \times 10^{-8} \ \Omega m$ e um comprimento $l = 100 \ m$, transporta uma corrente de 20 A. Determine o raio mínimo do fio para que a potência dissipada no cabo não ultrapasse $50 \ W$. Nestas condições determine a queda de potencial entre as extremidades do cabo.
- **5.** Um fio de comprimento total $L=50\,cm$, com a forma planar representada na figura, encontra-se numa região onde existe um campo de indução magnética uniforme $\vec{B}=2,0\,\hat{z}$ mT. O fio é percorrido por uma corrente $I=5\,A$, com o sentido representado na figura. Caracterize (intensidade, direção e sentido) a força magnética resultante sobre o fio.

Soluções:

- 1.1 B 1.2 D 2 A

- 3. x = 1,28 cm
- **4.** $r_{min} = 2,07 \ mm$; $\Delta V = 2,5 \ V$
- **5.** $\vec{F} = -2,1 \hat{y} \quad mN$