Introduction

Instructor: Andrei Bulatov

Email: abulatov@sfu.ca

Room: TASC 8013

Office hours (tentative):

Monday 11:00 - 12:00 (from Sep 13th) ONLINE Wednesday 11:00 - 12:00 (from Sep 22nd) ONLINE

Teaching Assistants:

- Aditya Bhadreshkumar Panchal, email: abp3@sfu.ca
- Mona Shahsavari, email: mshahsav@sfu.ca

Course webpage

- https://canvas.sfu.ca/courses/66056
- Common email (instructor+TAs): macm101-fall2021-d100@sfu.ca (accessible from your SFU email)

Remote instruction

- Lectures:
 - Mo 8:30 9:20 in AQ 3182
 - Th 8:30 10:20 in RCB Image Theater
 - Old recordings will be available online
- Tutorials:
 - Problems will be posted in advance. Try to solve them
- Office hours
 - Live through Zoom. Links will be posted
- Quizzes
 - Online on Canvas
- Midterm and final exam
 - In person

Course objective:

To introduce basic concepts and applications of discrete mathematics.

Syllabus:

- Logic and Formal Reasoning
- Set Theory, Functions and Relations
- Mathematical Induction
- Combinatorics
- Number Theory

Textbook:

R. P. Grimaldi, *Discrete and Combinatorial Mathematics* (an Applied Introduction), Addison-Wesley, 2004.

- It is impossible to finish studying all the contents of the textbook in one semester. The contents not covered in lectures/slides are not required.
- The content and order of topics, as presented in the class, do not one-to-one correspond to any part of the book. Use of Subject Index is advised.
- In few cases the notation and terminology in the class differs from that in the book

References:

- H. Rosen, Discrete Mathematics and Its Applications,
 7/E, McGraw-Hill, 2012.
- R. L. Graham; D. E. Knuth; and O. Patashnik,
 Concrete Mathematics, Addison-Wesley, Reading, MA, 1994
- T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, *Introduction to Algorithms*, 2nd Edition, MIT Press, Cambridge, MA, 2001.
- G. Andrews, Number theory, Saunders or Dover Publications, Inc.
- H. Enderton, A Mathematical Introduction to Logic, Harcourt/Academic Press, 2001

Grading:

- 12 Tutorials (12 × 0.5%)
- 10 Assignments (10 × 2%)
- 4 Quizzes (4 × 8%)
- **1** Midterm 12%
- 1 Final Exam 30%

Previous results:

Prerequisites

- Not much of specific knowledge
- Some general knowledge is needed, as there will be examples
- Modest math erudition (e.g., 5th Euclid's postulate, see next slide)
- Basics

$$2 \times 2 = 4$$

$$7 \times 8 = 55$$

Two Mathematics

- Continuous Mathematics
 - Fifth Euclid's Postulate

Intermediate value theorem

Continuous Mathematics (cntd)

Laws of Physics

$$\vec{F} = m \frac{d^2X}{dt^2}$$
 Newton's second law of motion

$$\nabla \times \mathbf{E} = \frac{\partial \mathbf{B}}{\partial t}$$
 Maxwell's law of electromagnetism

Disciplines: geometry, calculus, differential equations, topology, ...

Applications: physics, engineering, astronomy, ...

Discrete Mathematics

- Discrete Mathematics comprises all branches of mathematics that do not use the idea of continuity.
- `Formal' definition (Wikipedia):

Discrete mathematics, sometimes called **finite mathematics**, is the study of mathematical structures that are fundamentally discrete, in the sense of not supporting or requiring the notion of continuity. Most, if not all, of the objects studied in finite mathematics are countable sets, such as the integers.

For contrast, see continuum, topology, and mathematical analysis

Discrete Mathematics (cntd)

- Removing continuity
 - Discrete fifth Euclid's Postulate (???)

Graphs

Discrete Mathematics (cntd)

Asymptotics

Properties of a discrete objects are `approximated' using a continuous function

Laws of discrete mathematics:

$$((\forall x F(X) \rightarrow G(X)) \land F(a)) \rightarrow G(a)$$

The rule of universal specification

$$X^n + Y^n = Z^n$$
 does not hold for any $n > 2$ and integer X , Y , Z Great Fermat's Theorem

Topics in DM

- Wikipedia says that Discrete mathematics usually includes:
 - logic a study of reasoning
 - set theory a study of collections of elements
 - number theory
 - combinatorics a study of counting
 - graph theory
 - algorithmics a study of methods of calculation
 - information theory
 - the theory of computability and complexity a study on theoretical limitations on algorithms ...
 - algebra a study of algebraic systems (Bulatov)
 - discrete probability theory (Grimaldi)

This is too much for us!!

DM at SFU:

MATH-232	Elementary linear algebra	CMPT-477	Introduction to formal
CMPT-413	Computational linguistics		verification
CMPT-379	Principles of compiler design	CMPT-705	Design and analysis of
CMPT-384	Symbolic computing		algorithms
CMPT-307	Data structures and algorithms	CMPT-706	Parallel algorithms
CMPT-308	Computability and complexity	CMPT-710	Computational complexity
CMPT-405	Design and analysis of	CMPT-725	Logical methods in
	computing algorithms		computational intelligence
CMPT-406	Computational geometry	CMPT-813	Computational geometry
CMPT-407	Computational complexity	CMPT-815	Algorithms of optimization
CMPT-408	Theory of computer networks /	CMPT-816	Theory of communication
	communications		networks
MACM-300	Introduction to formal languages	CMPT-721	Knowledge representation
	and automata		and reasoning
MACM-401	Symbolic computation	CMPT-814	Algorithmic graph theory
	Symbolic computation	CIVII 1-014	Algorithmo graph theory

Our goal

is to learn basic concepts and terminology that provide basis and common language for those and many other courses.

Logic

Formal logic, syllogisms

Aristotle 384 - 322 B.C.

Mathematical logic, formal reasoning

George Boole 1815 - 1864

 Computational logic, formal verification

Pentium FDIV bug 1994

 Other applications: artificial intelligence, robotics, software verification, automated theorem proving, ...

Set theory

Naïve set theory

Georg Cantor 1845 - 1918

Axiomatic set theory

Bertrand Russell 1872 - 1970

Graphs

Toy graph theoryKonigsberg 7-bridge problem

Leonard Euler 1707 - 1783

- Other applications: modeling of nearly everything,
 electric circuits, networking, linguistics, data storage, coding
 theory, games, scheduling, combinatorial algorithms, ...
- One more face

Paul Erdös 1913 - 1996

Number Theory

Arithmetic (Arithmetica)

Number theory

Algebraic geometry

?

Diophantus 200 - 284

Pierre de Fermat 1608 - 1672

Andrew Wiles 1953 - ?

Other applications: cryptography