MAP551 - PC 1 - Théorie de l'explosion thermique

Paul Calot

23 septembre 2020

1 Astuces

- Regarder que la solution est physiquement possible (température évolue dans le bon sens, bonne condition initiale etc.) -> attention peut être plus compliqué qu'il n'y paraît;
- Valider l'évolution ensuite (si on arrive à tracer);
- Tracer plan de phase (vitesse en fonction de la position, fuel en fonction de la température) => l'évolution des différentes grandeurs.

2 Modèle simplifié 1 - explosion adiabatique

2.1 2.1.1

2.1.1 2.1.1.a

En posant : $H = T_r Y + T$ on obtient $d_t H = T_r d_t Y + d_t T = 0$.

Par conséquent :

$$\forall t \ge 0, H(t) = cte = H(0) = T_r Y(0) + T(0) = Tr + T_0 = T_b$$

Donc:

$$\forall t > 0, H(t) = T_b$$

Puis, on a $T = H - T_r Y$ d'où :

$$d_t Y = -Be^{-\frac{E}{RT}Y} = -Be^{-\frac{E}{R(T_b - T_r Y)}} Y = \Phi(Y)$$

On a également $Y = \frac{T_b - T}{T_n}$ donc :

$$d_t T = T_r B e^{-\frac{E}{RT}} (\frac{T_b - T}{T_r}) = B(T_b - T) e^{-\frac{E}{RT}} = \Lambda(T)$$

2.1.2 2.1.1.b

On remarque que :

$$d_t T > 0 \Leftrightarrow T_b > T$$

car B>0 et la fonction exponentielle est toujours scrictement positive. Et $T_b=T\Leftrightarrow d_tT=0$.

De plus et par hypothèse, $T_r > 0$ donc $T_b > T(0)$ donc $d_t T(0) > 0$. Donc T est strictement croissante tant qu'elle est inférieure à T_b . Lorsque $T = T_b$, $d_t T = 0$ et donc T n'évolue plus. Par conséquent, T_b est une borne supérieure de T pour une condition initiale $T(0) < T_b$ que T atteindra, au pire, en un temps infini.

Donc,

$$\lim_{t \to \infty} Y = \lim_{t \to \infty} \frac{T_b - T}{T_r} = 0$$

2.1.3 2.1.1.c

On a $Y = \frac{T_b - T}{T_r}$, donc :

2.1.4 2.1.1.d

Traçons quelques graphs pour commencer:

On a :

T (K) β	30	100
1000	3.0e-3	≈ 0
2400	0.98	0.28

Table 1 – Valeur de $\Lambda(T)$ pour certaines valeurs de T et de β .

"Forte non linéarité dépendant de l'énergie d'activation" : plus E_a augmente, plus β augmente et plus Λ augmente. Cependant cette augmentation n'est pas proportionnelle à l'augmentation de β à température égale.

2.22.1.2

2.2.12.1.2.a

On a : $dt\Theta = dtT \frac{1}{T_{FK}} = \frac{\Lambda(T)}{T_{FK}}$ Puis en utilisant $T = T_{FK}\Theta + T_0$, on obtient :

$$dt\Theta = B(T_r - T_{FK}\Theta)e^{-\frac{E}{R(T_{FK}\Theta + T_0)}}$$

2.1.2.b 2.2.2

Sous les hypothèses (H0) et (H1) ainsi que celle de cette question, on a:

1.
$$T_r - T_{FK}\Theta = T_r - \frac{T_0\Theta}{\beta} = T_r * (1 + o(1))$$
 car $\Theta << \beta$ et par (H2).

2.
$$\frac{E}{R(T_{FK}\Theta + T_0)} = \frac{E}{RT_0(1 + \frac{\Theta}{\beta})} = \frac{E}{RT_0} (1 - \frac{\Theta}{\beta}) + o(\frac{\Theta}{\beta})$$

D'où:

$$d_t\Theta = BT_r(1+o(1))e^{-\frac{E}{RT_0}(1-\frac{\Theta}{\beta}+o(\frac{\Theta}{\beta})} \approx BT_re^{-\frac{E}{RT_0}}e^{\Theta} = \frac{1}{t_I}e^{\Theta}$$

avec
$$t_I = \frac{1}{B(T_b - T_0)e^{\frac{E}{RT_0}}}$$
.

En repassant en coordonnées non adimensionnée, on obtient : $e^{\Theta} = e^{\frac{T-T_0}{T_{FK}}}$ qui est donc la fonction exponentielle appliquée à une forme linéaire de T. Partant de T qui était au dénominateur de la fraction dans l'exponentielle, on comprendre l'appellation "linéarisation de Frank-Kamenetskii".

2.2.3 2.1.2.c

Notons que : $\tau = \frac{t}{t_I} \Rightarrow d\tau = \frac{dt}{t_I}$.

En utilisant (5) et le changement de variable $\tau = \frac{t}{t_I}$, on obtient:

$$d_{\tau}\tilde{\theta}(\tau) = t_I d_t \tilde{\Theta}(t) = e^{\tilde{\Theta}(t)} = e^{\tilde{\theta}(\tau)}$$

Afin de résoudre cette équation, commençons par séparer les variables:

$$d_{ au}\tilde{ heta}(au) = e^{\tilde{ heta}(au)} \Leftrightarrow \frac{d\tilde{ heta}(au)}{\tilde{ heta}(au)} = d au$$

 $d_{\tau}\tilde{\theta}(\tau) = e^{\tilde{\theta}(\tau)} \Leftrightarrow \frac{d\tilde{\theta}(\tau)}{e^{\tilde{\theta}(\tau)}} = d\tau$ Pour résoudre cela, il suffit de remarquer que :

$$\frac{u'}{e^{-u}} = \frac{u'}{e^{-u}} = -d(e^{-u})$$

 $\frac{u'}{e^u} = \frac{u'}{e^{-u}} = -d(e^{-u})$ Ce qui dans notre cas, permet d'écrire :

 $d_{\tau}\tilde{\theta}(\tau) = e^{\tilde{\theta}(\tau)} \Leftrightarrow -(e^{-\tilde{\theta}(\tau)} - 1) = t$ par intégration entre 0

Ce qui donne dans le cas $\tilde{\theta}(\tau) > 0$ (ce qui est toujours vrai donc on garde l'équivalence):

$$\tilde{\theta}(\tau) = -ln(1-\tau)$$

Graphiquement, cela donne:

Modèle simplifié 2 - explosion avec prise en compte des pertes thermiques

On suppose que la température reste homogène et que la température des parois sont constantes (terme physique).

4 Modèle simplifié 3 - explosion avec prise en compte de la convection

On commence à regarder la possibilité d'avoir une échelle spatiale.