Arun Lakshmanan

Research Interests

Using tools from statistical learning theory to address problems arising from model uncertainty in robotics and control theory; collision detection methods for motion planning that can handle uncertainty of obstacles in the environment; safe simultaneous learning and control for robots; safe model predictive control under uncertainty; fast approximate Bayesian inference methods; sampling-based motion planning methods.

EDUCATION

Ph.D. Mechanical Science and Engineering

Jan 2017 - present

Advanced Controls Research Laboratory

Advisor: Naira Hovakimyan

University of Illinois at Urbana-Champaign, Urbana, IL.

M.S. Aerospace Engineering

Aug 2014 - Dec 2016

University of Illinois at Urbana-Champaign, Urbana, IL.

B.Tech. Mechanical Engineering

July 2010 - May 2014

VIT University, Vellore, India.

EMPLOYMENT Facebook Reality Labs, Redmond, WA.

May 2018 - Aug 2018

Advisors: Douglas Lanman, Nick Colonnese

Research Intern

Paracosm/Occipital, Gainesville, FL.

May 2017 - Jul 2017

Mentors: Jack Morrison, Quinn Martin

Robotics Perception Intern

Qualcomm Research, Philadelphia, PA.

May 2016 - Aug 2016

Advisor: Matthew Turpin

Research Intern

TECHNICAL Summary

Proficiency of programming languages (from most to least comfortable): Julia, C++, C, Python, Simulink. Extensive experience with robotics development on quadrotors and ground robots - typically this would involve a C++/C firmware stack, ROS/LCM communication middleware, and a Julia/Python/Simulink layer that handles the high-level decision making. The following are some of the open-source packages published on Github:

- CurveProximityQueries.jl: A Julia package that implements methods to compute proximity queries between parameteric curves or convex bodies in 2/3D.
- ConvexBodyProximityQueries.jl: A Julia package that implements methods to compute proximity queries between convex bodies in 2/3D.
- cf-firmware: A firmware fork of the original Crazyflie repository that additionally implements geometric control, path following for trajectories, and handles control for attached manipulators.

PUBLICATIONS

Andrew Patterson, Arun Lakshmanan, and Naira Hovakimyan.

Intent-aware probabilistic trajectory estimation for collision prediction with uncertainty quantification. In *IEEE Conference on Decision and Control 2019*, Dec 2019. https://arxiv.org/pdf/1904.02765.pdf

Arun Lakshmanan, Andrew Patterson, Venanzio Cichella, and Naira Hovakimyan. Proximity queries for absolutely continuous curves. In *Proceedings of Robotics: Science and Systems*, June 2019.

http://www.roboticsproceedings.org/rss15/p42.pdf

Robert M Jones, Donglie Sun, Gabriel B Haberfeld, **Arun Lakshmanan**, Thiago Marinho, and Naira Hovakimyan.

Design and control of a small aerial manipulator for indoor environments. In AIAA Information Systems-AIAA Infotech@ Aerospace, Jan 2017.

https://arc.aiaa.org/doi/10.2514/6.2017-1374

Arun Lakshmanan.

Piecewise Bézier curve trajectory generation and control for quadrotors. *Master's Thesis, University of Illinois at Urbana-Champaign*, Dec 2016.

https://www.ideals.illinois.edu/handle/2142/95352

Thiago Marinho, Christopher Widdowson, Amy Oetting, **Arun Lakshmanan**, Hang Cui, Naira Hovakimyan, Ranxiao Frances Wang, Alex Kirlik, Amy Laviers, and Dušan Stipanović.

Carebots: Prolonged elderly independence using small mobile robots. In *Mechanical Engineering*, *ASME*, Sep 2016. https://asmedigitalcollection.asme.org/memagazineselect/article-pdf/138/09/S8/6359956/me-2016-sep5.pdf

Thiago Marinho, **Arun Lakshmanan**, Venanzio Cichella, Christopher Widdowson, Hang Cui, Robert M Jones, Bentic Sebastian, and Camille Goudeseune.

VR study of human-multicopter interaction in a residential setting. In 2016 IEEE Virtual Reality (VR), Mar 2016. https://ieeexplore.ieee.org/document/7504790