III B. Tech I Semester Supplementary Examinations, August-2021 **OPERATIONS RESEARCH**

(Mechanical Engineering) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer **ALL** the question in **Part-A** 3. Answer any **FOUR** Questions from **Part-B** PART - A (14 Marks) a) State the general linear programming problem (LPP) and put it in [2M]the standard form. b) Give the mathematical formulation of transportation problem. [2M]c) Discuss briefly the various types of replacement problems. [2M]d) Name a few applications of queuing in mechanical engineering. [3M] e) Discuss the significance of inventory. [3M] f) Distinguish between mathematical models and simulation models. [2M]PART – B (56 Marks) a) Write the advantages, limitations and applications of linear 2. [6M]programming. b) Use Penalty method to maximize $z = 3x_1 - x_2$ [8M]Subject to the constraints $2x_1 + x_2 \ge 2$; $x_1 + 3x_2 \le 3$; $x_2 \le 4$ $x_1, x_2 \ge 0.$ a) There are five jobs each of which must go through the machines A, [10M] 3. B and C in the order ABC. Determine the sequence that will minimize the total elapsed time.

Job No	1	2	3	4	5
Machine A	5	7	6	9	5
Machine B	2	1	4	5	3
Machine C	3	7	5	6	7

b) Briefly explain the Vogel's Approximation Method.

[4M]

4. a) Briefly explain what you mean by "individual and group [6M] replacement policy" in Replacement Analysis.

R16

SET - 1

- b) Find the cost period of individual replacement of an installation of [8M] 300 lighting bulbs, given the following:
 - i) Cost of replacing individual bulb is Rs. 3

ii) Conditional probability of failure is given below:

Week number:	0	1	2	3	4
Conditional probability of failure:	0	1/10	1/3	2/3	0

5. a) How do you classify the queuing models? Explain.

[7M] [7M]

b) Write the assumptions made in game theory. Solve the following game graphically.

1	-3	
3	5	
-1	6	
4	1	
2	2	
-5	0	

6. a) Derive EOQ with the assumption involved in.

[7M]

- b) A manufacturer purchases items in lots of 800 units which is a four months requirement. The cost per unit is Rs. 100 and the ordering cost is Rs. 120 per patch order. The inventory carrying cost is estimated as 20% of the average inventory investment.
 - i) Determine the annual variable cost managing the inventory.
 - ii) How much saving can be obtained from the EOQ purchases?
- 7. a) Discuss the applications of dynamic programming.

[7M]

b) Why simulation is used? Write the typical applications of [7M] simulation.

2 of 2