Lesson Objectives

- 1. Vertical and Horizontal Lines
- 2. Find equation of a line given its slope and a point (not y-intercept)
- 3. Find equation of a line given two points
- 4. Find equation of a line through a given point that is parallel or perpendicular to a given line

A. Vertical and Horizontal Lines

1. Vertical Lines

- Have _____slope
- Pass through the ____-AXIS
- Are written in the form: ______, where *a* is some constant (number)
- *a* is the *x*-intercept, located at (*a*, 0).
- **EXAMPLE:** Find the slope of the line in the figure. If the slope is undefined, so state. Then write an equation of the given line.

[*Woodbury 3.3.37]

This is a VERTICAL line, so the slope of the line is ______.

Since it passes through the x-AXIS

at – **7**, then the equation is _____

2. Horizontal Lines

- Have ______ slope
- Pass through the _____-AXIS
- Are written in the form: ______, where b is some constant (number)
- *b* is the *y*-intercept, located at (0, *b*)
- EXAMPLE: Determine the equation of the given line, as well as the slope of the line. If the slope is undefined, state this. [*Woodbury 3.3.39]
 This line passes through the y-AXIS at 6, so the equation of the line is

Since this is a **HORIZONTAL** line, the slope is .

- 3. Other examples with horizontal and vertical lines
- **EXAMPLE:** Write an equation for the line passing through the given pair of points.

$$(-8, -3)$$
 and $(-8, -10)$. [2.1-14]

Always examine your given points before you do any math with them.

What do you notice? The ____-coordinates are _____

The equation of the line, therefore, is simply ______.

Recommend you make a quick of this situation to help you understand it better.

Notice that the **red** line through those points passes through the *x*-axis at x = -8.

• **EXAMPLE:** Find the equation of the line satisfying the following conditions.

If possible, write the equation in slope-intercept form.

Vertical, passing through (-6.29, -0.82) [2.1-24]

Vertical lines are of the form

Simply use the _____-coordinate of the through-point, so the equation is ______.

Recommend you make a quick SKETCH of this situation to help you understand it better.

Notice that the **red** vertical line passes through the *x*-axis at the SAME *x*-coordinate: x = -6.29.

EXAMPLE: Determine the equation of the line described. Put the answer in slope-intercept form, if possible. Through (-9, -7) perpendicular to x = 2. [2.1-35] A line perpendicular to x = a (vertical line) is a line of the form _____ (horizontal line). So, use the _____-coordinate of the through-point. The equation is: _____ Recommend you make a quick SKETCH of this situation to help you understand it better. Notice that the line x = 2 is shown in red. The line perpendicular to it that passes through (-9, -7)is the purple line passing through the y-axis at y = -7. B. Find equation of a line given its slope and a point (not y-intercept) **EXAMPLE:** Find an equation of the line that has the given slope and contains the given point. If possible, write the equation in slope-intercept form. Check that the ordered pair that represents the given point satisfies the equation. $m = \frac{7}{4}$, (3, -4) [*Lehmann 5.4.7] [SOLUTION] Use the formula: In words, this also means: y-coordinate = slope (x-coordinate) + y-intercept Substitute all the given values: y = mx + bSimplify: Solve for *b*: Update: So, the equation is: y =

C. Find Equation of Line Given Two Points

• **EXAMPLE:** Write an equation in slope-intercept form for the line described.

x-intercept (-4,0), y-intercept (0,5)[2.1.9]

First, you need the ______, so use the slope formula. $m = \frac{y_2 - y_1}{x_2 - x_1} =$

Next, you need the $_$ ____, which is given (0,5), so $_$ ____

So the equation of the line is: y =

EXAMPLE: Find an equation of the line containing the given pair of points.

$$(-1, -4)$$
 and $(-7, -8)$

[2.1.23]

Next, you need the _____, which is _____ one of the two given points.

Use the **SLOPE-INTERCEPT** formula: y =______, and choose _____ point.

Either way works - you'll get the same value for b choosing either point.	
Using $(-7, -8)$ and $m=rac{2}{3}$	
y = mx + b	

Finally, write your equation using your *m* and *b*:

D. Parallel or Perpendicular Lines

1. Parallel lines have ______ slope (m), different y-intercept (b)

• **EXAMPLE:** Find the slope-intercept form of the line parallel to -2x + 3y = 6 and passing through the point (-3, -4). [2.1.45]

Given line: -2x + 3y = 6. This is in ______ form: _____

We need it in **SLOPE-INTERCEPT** form: y = mx + b, so we can know its SLOPE (*m*).

We need to convert the given equation. This is a VERY important skill you need to know how to do – it will occur in later sections as well!

Given line: -2x + 3y = 6

The goal is to get $\frac{y}{y}$ by itself: $\frac{y}{y}$ = (all the other stuff)

Add 2x: Simplify:

Divide by 3:

Simplified: This is *still* the *original* line – not the answer!

Slope of GIVEN line: $m{m}=$

Need (same slope), so slope of *NEW* line: m =

Equation so far: y = We still need the *y*-intercept, *b*.

Use through-point (,) with slope ${\pmb m}=$ ___ and plug into y=mx+b: y=mx+b (x , y)

Finally, write your equation using your m and b: The equation of the new PARALLEL line is: y =

2. Lines have ______ slopes

"switch" sign & "flip" fraction

• **EXAMPLE:** Write the equation of the line containing the given point and perpendicular to the given line. Express your answer in the form y = mx + b. [2.1.43]

$$(4,6); 4x + y = 5$$

Given line: 4x + y = 5 is in standard form. Convert to slope-intercept form to know its slope.

Given line: 4x + y = 5 The goal is to get y by itself: y = (all the other stuff)

Subtract 4x:

Simplified: y = This is *still* the *original* line – not the answer!

Slope of given line: m =_____ Not done – don't use this slope in the *NEW* equation!

Need: _____ (OPPOSITE RECIPROCAL)

_____ sign and _____ fraction.

Convert given slope = -4:

Opposite (Switch): m =____ now do reciprocal (Flip): m =___

Slope of the **NEW** line is m = Equation so far: y =

Use through-point (,) with slope $m = __$ and plug into y = mx + b: y = mx + b (x , y)

Finally, write your equation using your *m* and *b*:

The equation of the PERPENDICULAR line is: y =

Sources used:

= b

1. Desmos website: www.desmos.com

- 2. Pearson MyLab Math College Algebra with Modeling and Visualization, 6th Edition, Rockswold
- 3. Pearson MyLab Math Elementary and Intermediate Algebra: Functions and Authentic Apps, 2nd Edition, Lehmann
- 4. Pearson MyLab Math Elementary and Intermediate Algebra, 3rd Edition, Woodbury.
- 5. Wabbitemu calculator emulator version 1.9.5.21 by Revolution Software, BootFree ©2006-2014 Ben Moody, Rom8x ©2005-2014 Andree Chea. Website https://archive.codeplex.com/?p=wabbit