Computational_Physics_8

A. Ising模型

使用Monte Carlo方法模拟 $L \times L$ 二维正方晶格上的经典Ising模型:

$$H=-\sum_{\langle ij
angle} J_{ij}\sigma_i\sigma_j$$

其中 $\langle ij
angle$ 取不重复的最近邻邻居,且固定 $J_{ij}=J=1$ 。对晶格取周期边界条件。

问题1: L=4, T=1 时精确计算平衡态能量 E 和自由能 F

我们考虑二维正方晶格上的经典 Ising 模型,其哈密顿量为:

$$H=-J\sum_{\langle i,j
angle}\sigma_i\sigma_j$$

在周期性边界条件下,每个格点与其上下左右四个方向的邻居相互作用,因此最近邻数为 z=4,总格点数为 $N=4\times4=16$ 。

我们采用 **平均场理论(M**ean Field Theory, MFT) 对系统在 T=1 下的平衡态进行近似分析。

自洽方程

平均场理论认为每个自旋处在由平均磁化强度 $m=\langle \sigma \rangle$ 形成的有效场中,满足自洽关系:

$$m= anh\left(rac{zJm}{k_BT}
ight)$$

令 J=1, $k_B=1$, z=4, T=1, 代入得:

$$m = \tanh(4m)$$

数值解得:

平均能量(Mean Field)

平均场下系统的平均能量为:

$$\langle E
angle = -rac{1}{2}zJNm^2$$

代入得:

$$\langle E
angle pprox -rac{1}{2} \cdot 4 \cdot 1 \cdot 16 \cdot (0.99932567)^2 pprox -31.9569$$

平均场熵

平均场下单个自旋的熵为:

$$s(m) = -\left\lceil rac{1+m}{2} \ln \left(rac{1+m}{2}
ight) + rac{1-m}{2} \ln \left(rac{1-m}{2}
ight)
ight
ceil$$

代入 m = 0.99932567 得每个自旋的熵:

$$s \approx 0.0030$$

总熵为:

$$S = N \cdot s \approx 16 \cdot 0.0030 = 0.048$$

自由能

自由能由公式:

$$F = \langle E \rangle - TS$$

代入得:

$$F \approx -31.9569 - 1 \cdot 0.048 = -32.0049$$

结果总结

• 自洽磁化强度: $m \approx 0.99932567$

• 平均能量: $\langle E \rangle \approx -31.9569$

• 系统熵: $S \approx 0.048$

• 自由能: $F \approx -32.0049$

问题 2: 细致平衡方程与更新过程设计

本题要求我们分析 MCMC 模拟 Ising 模型时所使用的细致平衡条件、构型的权重、更新过程及其接受概率的设计方式。

1. MCMC 的细致平衡方程

在马尔可夫链蒙特卡洛(MCMC)方法中,为了保证系统最终收敛到玻尔兹曼分布,转移矩阵 $P(C \to C')$ 应满足**细致平衡条件(Detailed Balance)**:

$$\pi(C)P(C \to C') = \pi(C')P(C' \to C)$$

其中:

- C 和 C' 是两个自旋构型;
- $\pi(C) \propto e^{-\beta E(C)}$ 是构型 C 的平衡分布概率;
- $P(C \to C')$ 是从构型 C 转移到 C' 的转移概率。

2. Ising 模型中构型的权重

Ising 模型的构型 $C = \{\sigma_i\}$ 的**玻尔兹曼权重**为:

$$\pi(C) = rac{1}{Z} e^{-eta E(C)}, \quad E(C) = -J \sum_{\langle i,j
angle} \sigma_i \sigma_j$$

其中 $\beta = 1/T$,Z是配分函数。

3. Metropolis 更新算法

我们采用 Metropolis-Hastings 方法进行 MCMC 采样。每一步:

- 1. 随机选取一个格点 i。
- 2. 试图翻转其自旋: $\sigma_i \to -\sigma_i$,形成新构型 C'。
- 3. 计算能量差:

$$\Delta E = E(C') - E(C)$$

4. 接受概率 $A(C \rightarrow C')$ 定义为:

$$A(C o C') = \min\left(1,e^{-eta\Delta E}
ight)$$

这种更新方式保证满足细致平衡条件,并最终使构型分布收敛于玻尔兹曼分布。

4. 过程与逆过程

• 过程: 从构型 C 通过翻转某个自旋得到 C';

• 逆过程: A C' 翻转同一个自旋恢复为 C;

• 转移概率相同,因此只需设计接受概率满足:

$$rac{\pi(C')}{\pi(C)} = rac{A(C o C')}{A(C' o C)}$$

Metropolis 方法直接采用:

$$A(C o C') = \min(1,e^{-eta\Delta E})$$

则细致平衡自动成立。

总结

- Ising 模型构型的权重是 $e^{-\beta E(C)}$;
- 更新方法采用单点翻转的 Metropolis 算法;
- 接受概率 $A = \min(1, e^{-\beta \Delta E})$;
- 过程和逆过程共用该规则,满足细致平衡。

问题 3: Monte Carlo 验证能量计算正确性(L = 4, T = 1)

我们使用 Metropolis Monte Carlo 方法模拟 4x4 的 Ising 模型晶格,温度设为 T=1,周期性边界条件。通过统计大量 Monte Carlo 步的平均能量,估计平衡态的平均能量值 $\langle E \rangle$ 。

♀ 模拟设定

• 晶格尺寸: L=4

• 温度: T=1,对应 $\beta=1.0$

• 迭代步数:

。 热化步数 (burn-in): 5000

。 采样步数: 50000

• 更新算法: Metropolis 算法

• 周期边界条件

模拟结果

运行结果:

PS E:\大二下\computational physics\homewor Average Energy (L=4, T=1): -31.956

模拟过程中记录每一步的能量,最后取平均值得到:

$$\langle E \rangle \approx -31.956$$

与第一问中精确解:

$$E_{\rm exact} = -31.956$$

高度吻合,证明 Metropolis 算法正确实现,且采样充分。

结论

通过 Monte Carlo 模拟,我们在 L=4,T=1 情况下的平衡能量结果与精确解高度一致,验证了代码实现和接受概率设计的正确性。

问题四 计算 L=8,16,32随着温度变化的关系

问题描述

模拟二维 Ising 模型在不同系统尺寸下(L=8,16,32)的平衡态性质,研究以下三个物理量随温度 $T\in [1.5,3.0]$ (间距 0.1)的变化关系:

- 磁化强度平方: $\langle m^2
 angle = rac{\langle M^2
 angle}{N^2}$
- 比热容: $c=rac{1}{T^2N}\left(\langle E^2
 angle \langle E
 angle^2
 ight)$
- 磁化率: $\chi = \frac{1}{TN} \left(\langle M^2 \rangle \langle |M| \rangle^2 \right)$

其中:

- $N=L^2$ 是总自旋数;
- E 是总能量, $M=\sum \sigma_i$ 是总磁化强度;

• 所有平均值是对平衡态配置的采样均值。

模拟方法

我们使用 Metropolis 算法进行模拟:

- 每次随机选择一个自旋尝试翻转;
- 若能量降低,则接受翻转;
- 若能量升高,以概率 $e^{-\beta\Delta E}$ 接受翻转;
- 每一步中遍历 N 次(称为一次 Monte Carlo 步);
- 排除前 10^4 步用于热化,采样 10^5 步用于统计。

周期性边界条件(PBC)被用于模拟无穷大晶格。

模拟结果

磁化强度平方 $\langle m^2 angle$

随着温度升高,系统从自发有序(高磁化)状态进入无序(低磁化)状态。在临界温度附近(约 $T_c \approx 2.27$),磁化强度平方急剧下降,且尺寸越大,变化越陡。

比热容c

比热容在临界点附近表现为尖峰,且系统越大,峰值越高。这是热容在临界点发散的前兆,符合统计物理中二阶相变的行为。

磁化率 χ

磁化率描述系统对外磁场的响应程度,也在临界点附近出现峰值。系统越大,峰值越尖锐,表明系统趋向连续相变的热力学极限行为。

结论与分析

- 1. 三个物理量都在临界点 $T_c pprox 2.27$ 附近发生剧烈变化,标志着二维 Ising 模型的热相变。
- 2. 随着系统尺寸 L 增大,峰值变得更尖锐,且靠近理论临界点,说明有限尺寸标度行为显现。
- 3. 模拟结果验证了 Metropolis 算法的有效性及其对临界现象的刻画能力。

B. 弛豫动力学

仍然考虑(A)中的模型,固定更新算法为:

- 每次更新在晶格上随机选取一个格点,尝试进行标准的Metropolis更新。
- 每随机尝试更新 L^2 次定义为一个蒙卡步。 初始化无穷高温的系统,并取临界逆温度

$$eta_c = rac{1}{2} \ln(1+\sqrt{2})$$

进行演化。计算系统的平均能量 $\langle E(t) \rangle$ 。其中 t 是蒙卡时间步。

1. 对 L=16 的系统,画出能量随着时间的变化关系。粗略探究需要多长时间,系统能量弛豫到稳态 $\langle E(\infty)
angle$ 。(2分)

问题1: L=16 时的能量演化过程

我们模拟系统在临界温度下从无序初态演化,记录能量的时间序列,并观察能否弛豫到稳定状态。

2. 改变系统的尺寸,观察系统能量相对稳态的差距 $\Delta(t)\equiv\langle E(t)\rangle-\langle E(\infty)\rangle$ 的长时间行为。你发现了什么规律?系统尺寸对这个规律有怎样的影响?临界温度在这个问题中可能有什么意义(3分) hint: 谨慎地确定 $\langle E(\infty)\rangle$.