

CZ3003 COMPUTER GRAPHICS and VISUALIZATION

LAB 3 REPORT

Parametric Surfaces and Solids

LAB GROUP: SSP6

Sam Jian Shen (U1821296L)

School of Computer Science and Engineering Nanyang Technological University

Contents

Surface	3
3D Plane	3
3D Triangle	4
Bilinear surface	5
Sphere	7
Ellipsoid	8
Cone	9
Solid	10
Box	10
Sphere	11
Cylinder	12
Cone	13
Rotational Sweeping	14
To Surface	14
To Solid	15
Translational Sweeping	16
To Surface	16
To Solid	17
Sine Equation	18

Surface

- In general solid utilize 2 parameters to craft out a surface

3D Plane

- Theory
 - o To find a point(P) of the plane can be formed with 1 point(P_0) and 2 vectors ($V_{1\&2}$) of a given magnitude(u)
 - $P = P_0 + vV_1 + uV_2$ where $V_1 = P_1 P_0$, $V_2 = P_2 P_1$
 - Since a point consist of 3 coordinates (x,y,z)
 - o The equations can be derived as:
 - Ax + By + Cz + D = 0
- In order to model a 3D plane we need to provide given values of points
- Let $P_0 = (0,0,0)$
- $P_1 = (0,1,0) P_2 = (1,1,1)$
- $V_1 = (0,1,0) V_2 = (1,0,1)$
- Sub into this eqn $P = P_0 + vV_1 + uV_2$
 - o X = u
 - O Y = v
 - o Z = u

View Mode	Normal (75,75)	High Resolution (200,200)	Low Resolution (5,5)	Remarks
Smooth		2	X	It has no difference in appearance.
Wireframe	Source: 3D Plane.wrl	Source: 3D Plane_HighRes.wrl	Source: 3D Plane_LowRes. wrl	The number of rendering vertices point is more significant as the resolution goes higher. The number of "rectangle" it can produce depends on resolution values. For example, low resolution is 5x5 = 25.

*Note that the resolution is referred to as the parameter u and v. It is to define how many separators between the domain range. For example, I can customize the resolution such that it is 5 x 200 for my plane shown below. The purpose of resolution may not be obvious on the plane but it is to ensure smooth/rough surfaces, we will be able to evidently prove this statement at the later experiment.

Source: 3D Plane SpecialRes.wrl

3D Triangle

- Theory
 - o For a 3D triangle, it requires a bilinear equation to deal with.
 - o It is base on 4 points to derived such equation
 - For triangle 2 of the points can let it be the same
 - It is important to choose the right point when sub into the equation (which we will discuss later at the experiment)
 - o The equation as follows, where u and v is the parameter
 - First derived 2 different vectors in the same direction (the order matter)
 - $P' = P_1 + u(P_2 P_1)$
 - $P'' = P_3 + u(P_4 P_3)$
 - o In this case let $P_4 = P_3 // (Triangle rule)$
 - The final equation would be:

$$\bullet \quad P = P' + v(P'' - P')$$

- In order to model a 3D triangle we need to provide given values of points
- Let $P_1 = (3,3,3)$
- $P_2 = (2,3,4)$
- $P_3 = P_4 = (1,2,3)$
- Sub into P = P' + v(P'' P') eqn
 - o x=3-u-2*v+u*v;
 - o y=3-v;
 - \circ z=3+u-u*v;

View Mode	Normal	High Resolution	Low Resolution	Remarks
Smooth	(75,75)	(200,200)	(5,5)	It has no difference in appearance.
Wireframe	Source: 3D Triangle.wrl	Source: 3D Triangle _HighRes.wrl	Source: 3D Triangle _LowRes.wrl	The number of rendering vertices point is more significant as the resolution goes higher. The number of "rectangle" it can produce depends on resolution values. For example, low resolution is 5x5 = 25.

Bilinear surface

- Theory
 - o It is base on 4 points to derived such equation
 - o The equation as follows, where u and v is the parameter
 - First derived 2 different vectors in the same direction (the order matter)
 - $P' = P_1 + u(P_2 P_1)$
 - $P'' = P_3 + u(P_4 P_3)$
 - The final equation would be (with final vector):
 - $\bullet \quad P = P' + v(P'' P')$
- In order to model a 3D triangle we need to provide given values of points
- Let $P_1 = (-2, -2, 2)$
- $P_2 = (-2,3,0)$
- $P_3 = (2,-2,-2)$
- $P_4 = (2,2,2)$
- Sub into P = P' + v(P'' P') eqn
 - o x=-2+4*v;
 - o y=-2+5*u-u*v;
 - o z=2-2*u-4*v+8*u*v;

View Mode	Normal (75,75)	High Resolution (200,200)	Low Resolution (5,5)	Remarks
Smooth				It has differences in terms of the smoothness of the surface. This can be easily seen when the resolution is low we can see the turning point at the edge. It is more obvious when set graphic to "flat"
Wireframe	Source: Bilinear Surface.wrl	Source: Bilinear Surface_HighRes. wrl	Source: Bilinear Surface_LowRes.wrl	The number of rendering vertices point is more significant as the resolution goes higher. The number of "rectangle" it can produce depends on resolution values. For example, low resolution is 5x5 = 25.

*Note that the choosing the 4 points must follow certain rules to ensure bilinear surface. Firstly, the initial 2 vectors chosen must be in follow the same directions. It should not cross one another. If cross one another the result would look like this as shown below.

Source: Bilinear Surface (Wrong usage).wrl

Sphere

- To achieve we use a circle equation and using the rotational sweeping method, it rotates 180 degrees to form the surface.
 - o Rotational sweeping
 - Where f(n) is circle function, the rest is rotational in circle form
 - X = f(u)'*cos(pi*v);
 - Y = f(u)";
 - Z = f(u)'* sin(pi*v); //pi 180degree rotate
- Parametric Equation
 - o x=1*cos(2*pi*u)*cos(pi*v);
 - o y=(1*sin(2*pi*u));
 - o z=(1*cos(2*pi*u))*sin(pi*v);

View Mode	Normal (75,75)	High Resolution (200,200)	Low Resolution (20,20)	Remarks
Smooth	Z	Z	Z	It has differences in terms of the smoothness of the surface. This can be easily seen when the resolution is low we can see the turning point at the edge. It is more obvious when set graphic to "flat"
Wireframe	Source: Sphere.wrl	Source: Sphere_HighRes.w	Source: Sphere_LowRes.wrl	The number of rendering vertices point is more significant as the resolution goes higher. The number of "rectangle" it can produce depends on resolution values. For example, low resolution is 20x20 = 400.

Ellipsoid

- To achieve we use an ellipsoid equation and using the rotational sweeping method just like a sphere, it rotates 180 degrees to form the surface.
 - o Rotational sweeping
 - Where f(n) is circle function , the rest is rotational in circle form
 - Where a,b,c is a real number
 - X = a*f(u)'*cos(pi*v);
 - Y = b*f(u)";
 - Z = c*f(u)'* sin(pi*v); //pi 180degree rotate
- Parametric Equation (Let a = 0.5, b = 1, c = 0.3)
 - o x=0.5*cos(2*pi*u)*cos(pi*v);
 - o y=(1*sin(2*pi*u));
 - o z=(0.3*cos(2*pi*u))*sin(pi*v);

View Mode	Normal (75,75)	High Resolution (200,200)	Low Resolution (20,20)	Remarks
Smooth	Z	Z	Z	It has differences in terms of the smoothness of the surface. This can be easily seen when the resolution is low we can see the turning point at the edge. It is more obvious when set graphic to "flat"
Wireframe	Source: Ellipsoid.wrl	Source: Ellipsoid_HighRes. wrl	Source: Ellipsoid_LowRes.wr	The number of rendering vertices point is more significant as the resolution goes higher. The number of "rectangle" it can produce depends on resolution values. For example, low resolution is 20x20 = 400.

Cone

- To achieve we use a cone surface, there are 2 ways either rotational or translational method. In this experiencement we will be using translational method
 - o Translational sweeping
 - Where f(n) is circle function , the rest is rotational in circle form
 - Where a,b,c is a real number
 - X = v*f(v)' //v;changes to the circle radius it move from origin to 1
 - Y = v*f(v)'';
 - Z = v //v;move the Z-axis from origin to 1
- Parametric Equation
 - o x=v*cos(2*pi*u); //In this case is 2*pi because full circle rotation form parameter u
 - o y=v*sin(2*pi*u);
 - o z=v;"

View Mode	Normal (75,75)	High Resolution (200,200)	Low Resolution (20,20)	Remarks
Smooth			Z	It has differences in terms of the smoothness of the surface. This can be easily seen when the resolution is low we can see the turning point at the edge. It is more obvious when set graphic to "flat"
Wireframe	Source: Cone.wrl	Source: Cone_HighRes.wrl	Source: Cone_LowRes.wrl	The number of rendering vertices point is more significant as the resolution goes higher. The number of "rectangle" it can produce depends on resolution values. For example, low resolution is 20x20 = 400.

For surface, the resolution determines the smoothness of the surface. Having high-resolution result in more computational power to render all the vertices and vectors which results in lower performance. Low resolution will result in a rough surface.

Solid

- In general solid utilize 3 parameters to craft out a solid

Box

- It is derived from 3 different vectors (straight-line equation) with
- All the point that matches accordingly u,v,w parameter will be shown (render only the surface area) as internal are not visible by the observer.
 - o As long it satisfies "close" in a solid object.
- Parametric Equation
 - o x=u;
 - o y=v;
 - o z=w;

View Mode	VRML (Normal)	Remarks
Smooth		A cube with length, breadth and height of value 1
Wireframe		The number of "rectangle" base on the resolution. In this case is 75x75x75 = 421875
	Source: Solid Box.wrl	

Sphere

- It is derived from 3 different vectors (straight-line equation) with
- All the point that matches accordingly u,v,w parameter will be shown (render only the surface area) as internal are not visible by the observer.
 - o As long it satisfies "close" in a solid object.
- In surface the sphere can be considered a solid iff it is full sphere, not partial sphere.
- Changing the parameter w reduce the radius of the sphere
 - o In this case reduce by 0.3

Souce: Sphere_Partial.wrl

- Parametric Equation
 - o x=w*cos(2*pi*v)*1*cos(2*pi*u);
 - o y=w*sin(2*pi*v);
 - o z=w*cos(2*pi*v)*1*sin(2*pi*u);
 - o Note*: the only different compare to surface is additional radius as 3rd parameter.

View Mode	VRML (Normal)	Remarks
Smooth	Z	A solid sphere with radius of value 1.
Wireframe	Source: Solid Sphere.wrl	The number of "rectangle" base on the resolution. In this case is 75x75x75 = 421875

Cylinder

- Basically it is derived from the surface cylinder, the only differences are the radius of the circle varies with the 3rd parametric value. Such that the top and bottom of the cylinder can be formed into a solid cylinder.
- Parametric Equation
 - o x=w*cos(2*pi*u);
 - o y=w*sin(2*pi*u);
 - o z=v;

View Mode	VRML (Normal)	Remarks
Smooth	N. N	A solid cylinder which refer to top and bottom cover from a surface cylinder
Wireframe	Source: Solid Cylinder.wrl	The number of "rectangle" base on the resolution. In this case is 75x75x75 = 421875

Cone

- Basically it is derived from the surface cone, the only differences are the radius of the circle varies with the 3rd parametric value. Such that the bottom of the cone can be formed into a solid cone.
- The parameter v follows the rule on the surface cone as mentioned before.
- Parametric Equation
 - o x=v*w*cos(2*pi*u);
 - o y=v*w*sin(2*pi*u);
 - o z=v;

View Mode	VRML (Normal)	Remarks
Smooth	Z.	A solid cone refers to the bottom of the cone from a surface cylinder.
Wireframe	Source: Solid Cone.wrl	The number of "rectangle" base on the resolution. In this case is 75x75x75 = 421875

Rotational Sweeping

- To illustrate I am using the cylinder as an example.
- The rotational sweeping make used of rotation to form surface or solids.

To Surface

- Eqn
 - o x=0.5*cos(2*pi*v);
 - o y=u;
 - o z=0.5*sin(2*pi*v);
- Steps
 - o It starts off with rendering a straight-line base on 1st domain
 - The line will move in a circular motion with respect to x and y-axis base on 2nd domain
 - o Once a circular forms the cylinder surface is formed

The check how it was rendered, changes towards the domain range for v

	VMRL	Domain	Remarks
Quarter	Source: Cylinder Surface Rotational QuarterRender.wrl	U = [0,1] V = [0,0.25]	The partial render ¼ of cylinder surface
Half	Source: Cylinder Surface_Rotational_HalfRender.wrl	U = [0,1] V = [0,0.5]	The partial render 1/2 of cylinder surface
Full	Source: Cylinder Surface_Rotational.wrl	U = [0,1] V = [0,1]	A full cylinder surface

To Solid

- Eqn
 - o x=0.5*cos(2*pi*v)*w;
 - o y=u;
 - o z=0.5*sin(2*pi*v)*w;
- Steps
 - o It starts off with rendering a straight-line base on 1st domain
 - The line will move in a circular motion with respect to x and y-axis base on 2nd domain
 - o Once a circular form the cylinder surface is formed
 - o Afterward it renders the 3rd domain with respect to the circle equation's radius (which result in changing of the volume of the solid object)

The check how it was rendered, changes towards the domain range for w

	VMRL	Domain	Remarks
Quarter	Source: Solid Cylinder_Rotational_QuarterRender.wrl	U = [0,1] V = [0,1] W= [0,0.25]	The partial render ¼ of cylinder solid volumn
Half	Source: Solid Cylinder_Rotational_HalfRender.wrl	U = [0,1] V = [0,1] W= [0,0.5]	The partial render 1/2 of cylinder solid volumn
Full	Source: Solid Cylinder_Rotational.wrl	U = [0,1] V = [0,1] W= [0,1]	A full cylinder solid

Translational Sweeping

- To illustrate I am using a cylinder as an example.
- Translational it used 2 points unique movement (be it straight-line or curvy) it will form a solid/surface

To Surface

- Eqn
 - o x=0.5*cos(2*pi*u);
 - o y=0.5*sin(2*pi*u);
 - o z=v;
- Steps
 - o It starts off with rendering a circle line base on 1st domain with respect o x and y-axis
 - The circle will move in a straight line in this case with 2nd domain in term of the z coordinate
 - o Once a distance reach end of 2nd domain, the cylinder surface is formed

The check how it was rendered, changes towards the domain range for \boldsymbol{w}

	VMRL	Domain	Remarks
Quarter	1	U = [0,1]	The partial
		V = [0,1]	render ¼ of
		W= [0,0.25]	cylinder
	Source: Cylinder		surface
	Surface_Translational_QuarterRender.wrl		
Half	Source: Cylinder	U = [0,1] V = [0,1] W= [0,0.5]	The partial render 1/2 of cylinder surface
Full	Surface_Translational_HalfRender.wrl	11 - [0 1]	A full cylinder
Full	Source: Cylinder	U = [0,1] V = [0,1] W= [0,1]	A full cylinder surface
	Surface_Translational.wrl		

To Solid

- Eqn
 - o x=0.5*cos(2*pi*u)*w;
 - o y=0.5*sin(2*pi*u)*w;
 - o z=v;
- Steps
 - o It starts off with rendering a circle line base on 1st domain with respect o x and y-axis.
 - $\circ\quad$ The circle will move in a straight line in this case with 2^{nd} domain in term of the z coordinate
 - Once a distance reach end of 2nd domain, the cylinder surface is formed
 - o Afterward it renders the 3rd domain with respect to the circle equation's radius (which result in changing of the volume of the solid object)

The check how it was rendered, changes towards the domain range for w

	VMRL	Domain	Remarks
Quarter	Source: Solid Cylinder_Translational_QuarterRender.wrl	U = [0,1] V = [0,1] W= [0,0.25]	The partial render ¼ of cylinder solid volumn
Holf	Cylinder_Translational_QuarterRender.wii	11 - [0 1]	The partial
Half	Source: Solid Cylinder_Translational_HalfRender.wrl	U = [0,1] V = [0,1] W= [0,0.5]	The partial render 1/2 of cylinder solid volumn
Full	Source: Solid Cylinder_Translational_Translational.wrl	U = [0,1] V = [0,1] W= [0,1]	A full cylinder solid

Base on observation rendering solid is the same between rotational and translational sweeping.

Sine Equation

- For the sake of illustration, I also use 2 periods/cycle of the sine wave (4*pi*u)

Sweeping Method	Steps	Para Eqn	VRML	Remarks
None	Curve	x=u; y=sin(u); z=0;	Y X	Less than a period sine wave
		x=u; y=sin(4*pi*u); z=0;	Source: sine_wave_curve.wrl	2 period sine wave from the origin with respect to x and y axis.
Rotational	Surface	x=u*(cos(2*pi*v));	Source: sine_wave_curve_extend.wrl	Less than
Notational	Suridee	y=sin(u); z=u*(sin(2*pi*v));	Z	a period sine wave surface with 360 degree rotational sweeping
		/ /0 ** \	Source: sine_wave_curve_surface.wrl	
		x=u*(cos(2*pi*v)); y=sin(4*pi*u); z=u*(sin(2*pi*v));"		2-period sine wave surface from the origin with respect to x and y-axis with 360 degrees
			Source: sine_wave_surface_extend.wrl	rotational sweeping

		x=u*(cos(pi*v)); y=sin(4*pi*u); z=u*(sin(pi*v));"	Source: sine_wave_surface_partial_render.wrl	Cross- section
Translational	Solid	x=u*(cos(2*pi*v)); y=sin(u)+5*w; z=u*(sin(2*pi*v));"	Source: sine_wave_solid.wrl	The solid is extend, 5 times value with translation sweeping method with y = f(u) + 5w
		x=u*(cos(2*pi*v)); y=sin(4*pi*u)+5*w; z=u*(sin(2*pi*v));	X- X	In this case the using 2 periods to turn into solid, notice the sine wave basically shift downward while forming the solid sine wave.

^{*}Note, all domain value remain unchanged in sine wave experiment.