What Is Claimed Is:

 A method of using a fluorescent cannabinoid compound comprising: providing a cannabinoid compound having an endogenous fluorescent property;

exciting the cannabinoid compound; and

detecting the electromagnetic radiation fluorescently emitted by the cannabinoid compound.

- 2. The method of claim 1, a wherein the electromagnetic radiation fluorescently emitted by the cannabinoid compound is in the ultraviolet-visible wavelength ranges.
- 3. The method of claim 1, a wherein the fluorescent cannabinoid compound has the structural formula

wherein:

Y comprises an electron rich element; and

W comprises C=O and the C ring has a double bond in the 6a-10 position; or R1 comprises =O and the C ring has a double bond in the 10-10a position; or W comprises C=O and the C ring is aromatic.

4. The method of claim 1, a wherein the fluorescent cannabinoid compound has the structural formula

wherein:

W comprises C=O and the C ring has a double bond in the 6a-10 position; or R1 comprises =O and the C ring has a double bond in the 10-10a position; or W comprises C=O and the C ring is aromatic; and Y comprises O, S, NH, N-alkyl, N-substituted alkyl, N=N, C=C or C≡C.

- 5. The method of claim 1, wherein the step of detecting comprises quantifying the electromagnetic radiation fluorescently emitted by the cannabinoid compound.
- 6. The method of claim 1, wherein the cannabinoid compound comprises compound formula I, and physiologically acceptable salts thereof,

wherein:

the C ring contains one double bond;

W comprises C=O, C=S or C=CH₂;

X comprises C, CH, N, S, O, SO or SO₂;

Y comprises O, S, NH, N-alkyl, N=N, C=C or C≡C;

Z comprises O, NH, N-alkyl where the alkyl group has 1 to about 5 carbon atoms or N-substituted alkyl, where the alkyl group has 1 to about 5 carbon atoms and is substituted with at least one substituent group in any possible position;

when X is S, O, SO or SO₂, R₁ is not present, or

when X is N, R₁ comprises H, alkyl, alkoxy-alkyl, alkylmercapto, alkylamino, SO₃alkyl, SO₂NQ₁Q₂, CONQ₁Q₂ or alkyl substituted in any possible position with at least one member selected from OH, CHO, COOH, C(halogen)₃, N₃, NCS, CN, PO₃H₂, SO₃H, or SO₃alkyl, or

when X is C or CH, R_1 comprises any possible member selected from H, halogen, N_3 , NCS, CN, NO_2 , NQ_1Q_2 , =O, OQ_3 , OAc, O-acyl, O-aroyl, NH-acyl, NH-aroyl, CHO, C(halogen)₃, COOQ₃, PO₃H₂, SO₃H, SO₃alkyl, SO₂NQ₁Q₂, CONQ₁Q₂, =CH₂, alkyl, alcohol, alkoxy, alkylmercapto, alkylamino, di-alkylamino or alkyl substituted in any possible position with at least substituent group,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

 R_2 comprises H, OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, NQ₁Q₂, COOQ₃, OQ₃, CQ₃, C(halogen)₃, alcohol, NH-COalkyl, NH-COaryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, NH-COalkyl-T₁, NH-CO-T₁, O-alkyl-T₁, O-T₁, NH-alkyl-T₁, NH-T₁, SO₃alkyl, SO₂NQ₁Q₂,

T₁ is in any possible position and comprises PO₃H, SO₃H, an alkyl group containing from 1 to about 16 carbons, tetrahydropyrrole, morpholine,

thiomorpholine, piperazine, a heterocyclic ring or NQ₁Q₂,

 T_1 may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring or a heteroaromatic ring,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

R₃ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members;

R₄ comprises H, OH, halogen, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms.

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

D₁, if present, comprises an alkyl group, a carbocyclic ring, a heterocyclic ring, N-alkyl or NH,

D₂ comprises an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, a heterocyclic ring, an aromatic ring, a heteroaromatic ring, 1-adamantyl-T₃, 2-adamantyl-T₃, adamantan-1-ylmethyl-T₃ or adamantan-2-ylidenemethyl-T₃, alkylamino, di-alkylamino or NH,

T₂ comprises, in any possible position, a substituent group or -CO-T₄, T₃ comprises an alkyl group having from 0 to about 9 carbon atoms, T₄ comprises H, C(halogen)₃, OH, NH₂, alkylamino, di-alkylamino, NO₂, alkyl. alkoxy, a heterocyclic ring or a heteroaromatic ring.

7. The method of claim 6 wherein X is C or CH and R₁ comprises any possible member selected from H, halogen, =CH₂, an alkyl group having 1 to about 5 carbon atoms or an alkyl group having 1 to about 5 carbon atoms and substituted in any possible position with at least one member selected from OH, CHO, COOH, CH₂OH, halogen, C(halogen)₃, N₃, NCS, CN, PO₃H₂, SO₃H, SO₃alkyl, SO₂NQ₁Q₂, CONQ₁Q₂ or NQ₁Q₂.

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members.

8. The method of claim 6 wherein R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

D₁ comprises a carbocyclic ring having 5 to 6 ring members, a heterocyclic ring having 5 to 6 ring members and 1,3 di-heteroatoms each independently selected from O, S, N and NH,

 D_2 comprises an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 or adamantan-2-ylidenemethyl- T_3 , alkylamino, di-alkylamino or NH,

 T_2 comprises, in any possible position, a substituent group or -CO- T_4 , T_3 comprises an alkyl group having from 0 to about 9 carbon atoms, and T_4 comprises alkyl, a heterocyclic ring or a heteroaromatic ring.

9. The method of claim 6 wherein:

the C ring comprises a double bond in the 6a-10a position;

W is C=O;

X comprises C or N;

Y comprises O, S, NH, N-alkyl, N=N, C=C or C≡C;

Z is O;

R₁ comprises OH, CH₂OH; halogen or C(halogen)₃;

 R_2 comprises H, OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, NQ₁Q₂, COOQ₃, OQ₃, NH-COalkyl, NH-CO-aryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, NH-COalkyl-T₁, NH-CO-T₁, O-alkyl-T₁, O-T₁, NH-alkyl-T₁, NH-T₁, SO₃alkyl, SO₂NQ₁Q₂ or CONQ₁Q₂,

 T_1 is in any possible position and comprises PO_3H , SO_3H , an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring or NQ_1Q_2 ,

 T_1 may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring or a heteroaromatic ring,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol or alkyl-NQ₁Q₂;

 R_3 comprises H, OH, halogen, CN, N_3 , NCS, NQ_1Q_2 or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members;

R₄ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

D₁, if present, comprises alkyl, a carbocyclic ring, a heterocyclic ring, alkylamino or NH,

 D_2 comprises an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 , or adamantan-2-ylidenemethyl- T_3 , alkylamino, dialkylamino or NH,

 T_2 comprises, in any possible position, a substituent group or -CO- T_4 , T_3 comprises an alkyl group having from 0 to about 9 carbon atoms,

T₄ comprises H, C-(halogen)₃, OH, NH₂, NO₂, alkyl, alkoxy, alkylamino, di-alkylamino, a heterocyclic ring or a heteroaromatic ring.

10. The method of claim 6 wherein:

the C ring comprises a double bond in the 6a-10a position;

W is C=O;

X comprises C or N;

Y comprises O, S, NH, N-alkyl, N=N, C=C or C≡C;

Z is O;

R₁ comprises OH, CH₂OH; halogen or C(halogen)₃;

 R_2 comprises H, OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, NQ₁Q₂, COOQ₃, OQ₃, NH-COalkyl, NH-CO-aryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, NH-COalkyl-T₁, NH-CO-T₁, O-alkyl-T₁, O-T₁, NH-alkyl-T₁, NH-T₁, SO₃alkyl, SO₂NQ₁Q₂ or CONQ₁Q₂,

 T_1 is in any possible position and comprises PO_3H , SO_3H , an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring or NQ_1Q_2 ,

T₁ may be substituted in any possible position with at least one member selected from a substituent group, OPO₃H₂, OSO₃H, PO₃H₂, a heterocyclic ring or a heteroaromatic ring,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

R₃ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members;

R₄ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

D₁ comprises, if present, an alkyl, a carbocyclic ring having 4 to 6 ring members or a heterocyclic ring having 4 to 6 ring members and 1,3 di-heteroatoms each heteroatom independently selected from O, S and N,

 D_2 comprises an alkyl group having from one to about sixteen carbon atoms, alkylamino, d-alkylamino, NH, a bicyclic ring, a tricyclic ring, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 or adamantan-2-ylidenemethyl- T_3 ,

T₂ comprises, in any possible position, a substituent group or -CO-T₄,

T₃ comprises an alkyl group having from 0 to about 9 carbon atoms,

T₄ comprises alkyl, C(halogen)₃ aminoalkyl, di-aminoalkyl, NH2, a heterocyclic ring or a heteroaromatic ring.

11. The method of claim 1 wherein the cannabinoid compound comprises compound formula II, and physiologically acceptable salts thereof,

wherein:

W comprises C=O, C=S, or C=CH₂;

X comprises C, CH or N;

Y comprises O, S, NH, N-alkyl, N=N, C=C or C=C;

Z comprises O, NH, N-alkyl where the alkyl group has 1 to about 5 carbon atoms or N-substituted alkyl, where the alkyl group has 1 to about 5 carbon atoms and is substituted with at least one substituent group in any possible position;

 R_1 comprises any possible member selected from H, halogen, N_3 , NCS, CN, NO₂, NQ₁Q₂, OQ₃, OAc, O-acyl, O-aroyl, NH-acyl, NH-aroyl, CHO, C(halogen)₃, COOQ₃, PO₃H₂, SO₃H, SO₃alkyl, SO₂NQ₁Q₂, CONQ₁Q₂, alkyl, alkyl substituted in any possible position with at least one substituent group,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

 R_2 comprises H, OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, NQ₁Q₂, COOQ₃, OQ₃, alcohol, NH-COalkyl, NH-COaryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, SO₂NQ₁Q₂, CONQ₁Q₂, NH-COalkyl-T₁, NH-CO-T₁, O-alkyl-T₁, O-T1, NH-alkyl-T₁, NH-T₁, SO₃alkyl, SO₂NQ₁Q₂,

T₁ is in any possible position and comprises PO₃H, SO₃H, an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring or NQ₁Q₂.

 T_1 may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring or a heteroaromatic ring,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

 R_3 comprises H, OH, halogen, C(halogen)₃, CN, N_3 , NCS, NQ_1Q_2 or C1 to C4 alkyl,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members;

R₄ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or C1 to C4 alkyl;

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$.

D₁, if present, comprises alkyl, a carbocyclic ring, a heterocyclic ring, alkylamino or NH,

D₂ comprises an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, a heterocyclic ring, an aromatic ring, a heteroaromatic ring, 1-adamantyl-T₃, 2-adamantyl-T₃, adamantan-1-ylmethyl-T₃, or adamantan-2-ylidenemethyl-T₃, alkylamino, di-alkylamino or NH,

 T_2 comprises, in any possible position, a substituent group or -CO- T_4 , T_3 comprises an alkyl group having from 0 to about 9 carbon atoms,

T₄ comprises H, C(halogen)₃, OH, NH₂, NO₂, alkyl, alkoxy, a heterocyclic ring or a heteroaromatic ring.

- 12. The method of claim 11 wherein W comprises C=O.
- 13. The method of claim 11 wherein R₁ comprises any possible member selected from H, halogen, OH, an alkyl group having 1 to about 5 carbon atoms or an alkyl group having 1 to about 5 carbon atoms and substituted in any possible position with at least one member selected from OH, CHO, COOH, C(halogen)₃, N₃, NCS, CN, PO₃H₂, SO₃H or SO₃alkyl.
- 14. The method of claim 11 wherein R₅ comprises -D₁-D₂-T₂ or -D₂-T₂,

D₁, if present, comprises alkyl, a carbocyclic ring having 4 to 6 ring members or a heterocyclic ring having 4 to 6 ring members and 1,3 di-heteroatoms each heteroatom independently selected from O, S and N,

D₂ comprises an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, 1-adamantyl-T₃, 2-adamantyl-T₃, adamantan-1-

ylmethyl-T₃ or adamantan-2-ylidenemethyl-T₃, alkylamino, di-alkylamino or NH T₂ comprises, in any possible position, a substituent group or -CO-T₄,

 T_3 comprises an alkyl group having from 0 to about 9 carbon atoms, and

T₄ comprises alkyl, a heterocyclic ring or a heteroaromatic ring.

15. The method of claim 11 wherein:

W is C=O;

X comprises C or N;

Y comprises O, S, NH, N-alkyl, N=N, C=C or C≡C;

Z is O;

R₁ comprises methyl, OH, CH₂OH; halogen or C(halogen)₃;

 R_2 comprises H, OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, C(halogen)₃, NQ₁Q₂, COOQ₃, OQ₃, NH-COalkyl, NH-CO-aryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, NH-COalkyl-T₁, NH-CO-T₁, O-alkyl-T₁, O-T₁, NH-alkyl-T₁, NH-T₁, SO₃alkyl, SO₂NQ₁Q₂ or CONQ₁Q₂,

 T_1 is in any possible position and comprises PO_3H , SO_3H , an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring or NQ_1Q_2 ,

 T_1 may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring or a heteroaromatic ring,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

R₃ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members;

R₄ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

 D_1 , if present, comprises a carbocyclic ring, a heterocyclic ring, alkylamino or NH,

 D_2 comprises an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 , or adamantan-2-ylidenemethyl- T_3 , alkylamino, dialkylamino or NH,

 T_2 comprises, in any possible position, a substituent group or -CO- T_4 , T_3 comprises an alkyl group having from 0 to about 9 carbon atoms,

T₄ comprises H, C(halogen)₃, OH, NH₂, NO₂, alkyl, alkoxy, alkylamino, di-alkylamino, a heterocyclic ring or a heteroaromatic ring.

16. The method of claim 11 wherein:

W is C=O;

X comprises C or N;

Y comprises O, S, NH, N-alkyl, N=N, C=C or C=C;

Z is O;

R₁ comprises methyl, OH or CH₂OH;

 R_2 comprises H, OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, C(halogen)₃, alcohol, NQ₁Q₂, COOQ₃, OQ₃, NH-COalkyl, NH-CO-aryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, NH-COalkyl-T₁, NH-CO-T₁, O-alkyl-T₁, O-T₁, NH-alkyl-T₁, NH-T₁, SO₃alkyl, SO₂NQ₁Q₂ or CONQ₁Q₂,

 T_1 is in any possible position and comprises PO₃H, SO₃H, an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring or NQ₁Q₂,

 T_1 may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring or a heteroaromatic ring,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

R₃ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members;

R₄ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

D₁, if present, comprises an alkyl, a carbocyclic ring having 4 to 6 ring members or a heterocyclic ring having 4 to 6 ring members and 1,3 di-heteroatoms each heteroatom independently selected from O, S and N,

 D_2 comprises an alkyl group having from one to about sixteen carbon atoms, alkylamino, d-alkylamino, NH, a bicyclic ring, a tricyclic terpine, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 or adamantan-2-ylidenemethyl- T_3 ,

T₂ comprises, in any possible position, a substituent group or -CO-T₄,

 $\ensuremath{\mathsf{T}}_3$ comprises an alkyl group having from 0 to about 9 carbon atoms, and

T₄ comprises alkyl, C(halogen)₃ aminoalkyl, di-aminoalkyl, NH2, a heterocyclic ring or a heteroaromatic ring.

- 17. The method of claim 1 comprising the step of combining the cannabinoid compound with a sample.
- 18. The method of claim 1 comprising the step of interacting the cannabinoid compound with a cannabinoid receptor.

- 19. The method of claim 1 comprising the step of selectively interacting the cannabinoid compound with predominately one type of cannabinoid receptor.
- 20. A test kit for detecting a fluorescent property comprising a cannabinoid compound having an endogenous fluorescent property and the structural formula

wherein:

Y comprises O, S, NH, N-alkyl, N-substituted alkyl, N=N, C=C or C≡C; and W comprises C=O and the C ring has a double bond in the 6a-10 position; or R1 comprises =O and the C ring has a double bond in the 10-10a position; or W comprises C=O and the C ring is aromatic.

21. A compound of formula I, and physiologically acceptable salts thereof,

wherein:

the C ring contains one double bond;

W comprises C=O, C=S or C=CH₂;

X comprises C, CH, N, S, O, SO or SO₂;

Y comprises O, S, NH, N-alkyl, N=N, C=C or C≡C;

Z comprises O, NH, N-alkyl where the alkyl group has 1 to about 5 carbon atoms or N-substituted alkyl, where the alkyl group has 1 to about 5 carbon atoms and is substituted with at least one substituent group in any possible position;

when X is S, O, SO or SO₂, R₁ is not present, or

when X is N, R₁ comprises H, alkyl, alkoxy-alkyl, alkylmercapto, alkylamino, SO₃alkyl, SO₂NQ₁Q₂, CONQ₁Q₂ or alkyl substituted in any possible position with at least one member selected from OH, CHO, COOH, C(halogen)₃, N₃, NCS, CN, PO₃H₂, SO₃H, or SO₃alkyl; or

when X is C or CH, R_1 comprises any possible member selected from H, halogen, N_3 , NCS, CN, NO_2 , NQ_1Q_2 , =O, OQ_3 , OAc, O-acyl, O-aroyl, NH-acyl, NH-aroyl, CHO, C(halogen)₃, COOQ₃, PO₃H₂, SO₃H, SO₃alkyl, SO₂NQ₁Q₂, CONQ₁Q₂, =CH₂, alkyl, alcohol, alkoxy, alkylmercapto, alkylamino, di-alkylamino or alkyl substituted in any possible position with at least substituent group,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

 R_2 comprises H, OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, NQ₁Q₂, COOQ₃, OQ₃, CQ₃, C(halogen)₃, alkyl-hydroxyl, NH-COalkyl, NH-COaryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, NH-COalkyl-T₁, NH-CO-T₁, O-alkyl-T₁, O-T₁, NH-alkyl-T₁, NH-T₁, SO₃alkyl, SO₂NQ₁Q₂,

T₁ is in any possible position and comprises PO₃H, SO₃H, an alkyl

group containing from 1 to about 16 carbons, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring or NQ_1Q_2 ,

 T_1 may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring or a heteroaromatic ring,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

R₃ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members:

R₄ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

D₁, if present, comprises an alkyl group, a carbocyclic ring, a

heterocyclic ring, N-alkyl or NH,

D₂ comprises an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, a heterocyclic ring, an aromatic ring, a heteroaromatic ring, 1-adamantyl-T₃, 2-adamantyl-T₃, adamantan-1-ylmethyl-T₃ or adamantan-2-ylidenemethyl-T₃, alkylamino, di-alkylamino or NH,

T₂ comprises, in any possible position, a substituent group or -CO-T₄, T₃ comprises an alkyl group having from 0 to about 9 carbon atoms, T₄ comprises H, C(halogen)₃, OH, NH₂, alkylamino, di-alkylamino, NO₂, alkyl, alkoxy, a heterocyclic ring or a heteroaromatic ring.

22. The compound of claim 21 wherein X is C or CH and R₁ comprises any possible member selected from H, halogen, =CH₂, an alkyl group having 1 to about 5 carbon atoms or an alkyl group having 1 to about 5 carbon atoms and substituted in any possible position with at least one member selected from OH, CHO, COOH, CH₂OH, halogen, C(halogen)₃, N₃, NCS, CN, PO₃H₂, SO₃H, or SO₃alkyl, SO₂NQ₁Q₂, CONQ₁Q₂ or NQ₁Q₂,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members.

23. The compound of claim 21 wherein R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

D₁, if present, comprises alkyl, a carbocyclic ring having 5 to 6 ring members, a heterocyclic ring having 5 to 6 ring members and 1,3 di-heteroatoms each independently selected from O, S, N and NH,

 D_2 comprises an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 or adamantan-2-ylidenemethyl- T_3 , alkylamino, di-alkylamino or NH,

 T_2 comprises, in any possible position, a substituent group or -CO- T_4 , T_3 comprises an alkyl group having from 0 to about 9 carbon atoms, and T_4 comprises alkyl, a heterocyclic ring or a heteroaromatic ring.

24. The compound of claim 21 wherein:

the C ring comprises a double bond in the 6a-10a position;

W is C=O;

X comprises C or N;

Y comprises O, S, NH, N-alkyl, N=N, C=C or C≡C;

Z is O;

R₁ comprises OH, CH₂OH; halogen or C(halogen)₃;

 R_2 comprises H, OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, NQ₁Q₂, COOQ₃, OQ₃, NH-COalkyl, NH-CO-aryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, NH-COalkyl-T₁, NH-CO-T₁, O-alkyl-T₁, O-T₁, NH-alkyl-T₁, NH-T₁, SO₃alkyl, SO₂NQ₁Q₂ or CONQ₁Q₂,

 T_1 is in any possible position and comprises PO_3H , SO_3H , an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring or NQ_1Q_2 ,

 T_1 may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring or a heteroaromatic ring,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

R₃ comprises H, OH, halogen, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having

1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members;

R₄ comprises H, OH, halogen, C-(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

D₁, if present, comprises a carbocyclic ring, a heterocyclic ring, alkylamino or NH,

 D_2 comprises an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 , or adamantan-2-ylidenemethyl- T_3 , alkylamino, dialkylamino or NH,

 T_2 comprises, in any possible position, a substituent group or -CO- T_4 , T_3 comprises an alkyl group having from 0 to about 9 carbon atoms,

T₄ comprises H, C-(halogen)₃, OH, NH₂, NO₂, alkyl, alkoxy, alkylamino, di-alkylamino, a heterocyclic ring or a heteroaromatic ring.

25. The compound of claim 21 wherein:

the C ring comprises a double bond in the 6a-10a position;

W is C=O:

X comprises C or N;

Y comprises O, S, NH, N-alkyl, N=N, C=C or C≡C;

Z is O;

R₁ comprises OH, CH₂OH; halogen or C(halogen)₃;

 R_2 comprises H, OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, C(halogen)₃, alcohol, NQ₁Q₂, COOQ₃, OQ₃, NH-COalkyl, NH-CO-aryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, NH-COalkyl-T₁, NH-CO-T₁, O-alkyl-T₁, O-T₁, NH-alkyl-T₁, NH-T₁, SO₃alkyl, SO₂NQ₁Q₂ or CONQ₁Q₂,

 T_1 is in any possible position and comprises PO_3H , SO_3H , an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring or NQ_1Q_2 ,

 T_1 may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring or a heteroaromatic ring,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

R₃ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members;

R₄ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

D₁, if present, comprises alkyl, a carbocyclic ring having 4 to 6 ring members or a heterocyclic ring having 4 to 6 ring members and 1,3 di-heteroatoms each heteroatom independently selected from O, S and N,

 D_2 comprises an alkyl group having from one to about sixteen carbon atoms, alkylamino, d-alkylamino, NH, a bicyclic ring, a tricyclic terpine, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 or adamantan-2-ylidenemethyl- T_3 ,

T₂ comprises, in any possible position, a substituent group or -CO-T₄,

T₃ comprises an alkyl group having from 0 to about 9 carbon atoms,

T₄ comprises alkyl, C(halogen)₃ aminoalkyl, di-aminoalkyl, NH2, a heterocyclic ring or a heteroaromatic ring.

26. The compound of formula II, and physiologically acceptable salts thereof,

wherein:

W comprises C=O, C=S, or C=CH₂;

X comprises C, CH or N;

Y comprises O, S, NH, N-alkyl, N=N, C=C or C=C;

Z comprises O, NH, N-alkyl where the alkyl group has 1 to about 5 carbon atoms or N-substituted alkyl, where the alkyl group has 1 to about 5 carbon atoms and is substituted with at least one substituent group in any possible position;

 R_1 comprises any possible member selected from H, halogen, C(halogen)₃, N₃, NCS, CN, NO₂, NQ₁Q₂, OQ₃, OAc, O-acyl, O-aroyl, NH-acyl, NH-aroyl, CHO, C(halogen)₃, COOQ₃, PO₃H₂, SO₃H, SO₃alkyl, SO₂NQ₁Q₂, CONQ₁Q₂, alkyl, alkyl substituted in any possible position with at least one substituent group,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

 R_2 comprises H, OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, C(halogen)₃, alcohol, NQ₁Q₂, COOQ₃, OQ₃, alkyl-hydroxyl, NH-COalkyl, NH-COaryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, SO₂NQ₁Q₂, CONQ₁Q₂, NH-COalkyl-T₁, NH-CO-T₁, O-alkyl-T₁, O-T1, NH-alkyl-T₁, NH-T₁, SO₃alkyl, SO₂NQ₁Q₂,

 T_1 is in any possible position and comprises PO₃H, SO₃H, an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring or NQ₁Q₂,

 T_1 may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring or a heteroaromatic ring,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members.

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

R₃ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or C1 to C4 alkyl,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members;

R₄ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or C1 to C4 alkyl;

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$.

D₁, if present, comprises alkyl, a carbocyclic ring, a heterocyclic ring, alkylamino or NH,

 D_2 comprises an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, a heterocyclic ring, an aromatic ring, a heteroaromatic ring, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 , or adamantan-2-ylidenemethyl- T_3 , alkylamino, di-alkylamino or NH,

 T_2 comprises, in any possible position, a substituent group or -CO- T_4 , T_3 comprises an alkyl group having from 0 to about 9 carbon atoms,

T₄ comprises H, C(halogen)₃, OH, NH₂, NO₂, alkyl, alkoxy, a heterocyclic ring or a heteroaromatic ring.

- 27. The compound of claim 26 wherein W comprises C=O.
- 28. The compound of claim 26 wherein R₁ comprises any possible member selected from H, halogen, C(halogen)₃, alkyl amino, di-alkylamino, NH₂, OH, an alkyl group having 1 to about 5 carbon atoms or an alkyl group having 1 to about 5 carbon atoms and substituted in any possible position with at least one member selected from OH, CHO, COOH, C(halogen)₃, N₃, NCS, CN, PO₃H₂, SO₃H or SO₃alkyl.
- 29. The compound of claim 26 wherein R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

D₁, if present, comprises alkyl, a carbocyclic ring having 4 to 6 ring members or a heterocyclic ring having 4 to 6 ring members and 1,3 di-heteroatoms each heteroatom independently selected from O, S and N,

 D_2 comprises an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic terpine, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 or adamantan-2-ylidenemethyl- T_3 , alkylamino, di-alkylamino or NH

T₂ comprises, in any possible position, a substituent group or -CO-T₄,

T₃ comprises an alkyl group having from 0 to about 9 carbon atoms,

and

T₄ comprises alkyl, a heterocyclic ring or a heteroaromatic ring.

30. The compound of claim 26 wherein:

W is C=O:

X comprises C or N;

Y comprises O, S, NH, N-alkyl, N=N, C=C or C≡C;

Z is O;

R₁ comprises methyl, OH, CH₂OH; halogen or C(halogen)₃;

 R_2 comprises H, OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, C(halogen)₃, alcohol, NQ₁Q₂, COOQ₃, OQ₃, NH-COalkyl, NH-CO-aryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, NH-COalkyl-T₁, NH-CO-T₁, O-alkyl-T₁, O-T₁, NH-alkyl-T₁, NH-T₁, SO₃alkyl, SO₂NQ₁Q₂ or CONQ₁Q₂,

 T_1 is in any possible position and comprises PO_3H , SO_3H , an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring or NQ_1Q_2 ,

 T_1 may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring or a heteroaromatic ring,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

R₃ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl

group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members;

R₄ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

D₁, if present, comprises alkyl, a carbocyclic ring, a heterocyclic ring, alkylamino or NH,

 D_2 comprises an alkyl group having from one to about sixteen carbon atoms, a bicyclic ring, a tricyclic ring, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 , or adamantan-2-ylidenemethyl- T_3 , alkylamino, dialkylamino or NH,

 T_2 comprises, in any possible position, a substituent group or -CO- T_4 , T_3 comprises an alkyl group having from 0 to about 9 carbon atoms,

T₄ comprises H, C(halogen)₃, OH, NH₂, NO₂, alkyl, alkoxy, alkylamino, di-alkylamino, a heterocyclic ring or a heteroaromatic ring.

31. The compound of claim 26 wherein:

W is C=O;

X comprises C or N;

Y comprises O, S, NH, N-alkyl, N=N, C=C or C=C;

Z is O;

R₁ comprises methyl, OH or CH₂OH;

 R_2 comprises H, OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, C(halogen)₃, alcohol, NQ₁Q₂, COOQ₃, OQ₃, NH-COalkyl, NH-CO-aryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, NH-COalkyl-T₁, NH-CO-T₁, O-alkyl-T₁, O-T₁, NH-alkyl-T₁, NH-T₁, SO₃alkyl, SO₂NQ₁Q₂ or CONQ₁Q₂,

 T_1 is in any possible position and comprises PO₃H, SO₃H, an alkyl group containing from 1 to about 16 carbon atoms, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring or NQ₁Q₂,

 T_1 may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring or a heteroaromatic ring,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members.

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

R₃ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members;

R₄ comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

D₁, if present, comprises alkyl, a carbocyclic ring having 4 to 6 ring members or a heterocyclic ring having 4 to 6 ring members and 1,3 di-heteroatoms each heteroatom independently selected from O, S and N,

 D_2 comprises an alkyl group having from one to about sixteen carbon atoms, alkylamino, di-alkylamino, NH, a bicyclic ring, a tricyclic ring, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 or adamantan-2-ylidenemethyl- T_3 ,

T₂ comprises, in any possible position, a substituent group or -CO-T₄,

 $\ensuremath{\mathsf{T}}_3$ comprises an alkyl group having from 0 to about 9 carbon atoms, and

 T_4 comprises alkyl, C(halogen) $_3$ aminoalkyl, di-aminoalkyl, NH2, a heterocyclic ring or a heteroaromatic ring.

32. The compound of formula III, and physiologically acceptable salts thereof,

$$R_7 \xrightarrow{R_1} R_8 \xrightarrow{R_2} R_3$$

$$R_6 \xrightarrow{B} A \xrightarrow{R_4} R_5$$

wherein:

Y comprises CH₂, CH(CH₃), C(CH₃)₂, a carbocyclic ring having 4 to 6 ring members or a heterocyclic ring having 4 to 6 ring members with 1 or 2 heteroatoms;

Z comprises O, S, NH, N-alkyl where alkyl comprises 1 to about 5 carbon atoms;

 R_1 comprises H, halogen, N_3 , NCS, CN, NO_2 , NQ_1Q_2 , =O, OQ_3 , OAc, O-acyl, O-aroyl, NH-acyl, NH-aroyl, CHO, C(halogen)₃, COOQ₃, PO₃H₂, SO₃H, SO₃alkyl, SO₂NQ₁Q₂, CONQ₁Q₂, =CH₂, alkyl, alcohol, alkoxy, alkylmercapto, alkylamino, dialkylamino or alkyl substituted in any possible position with at least one member selected from a substituent group;

 R_2 comprises H, OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, C-(halogen)₃, alcohol, NQ₁Q₂, COOQ₃, OQ₃, NH-COalkyl, NH-COaryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, alkyl-hydroxyl, NH-COalkyl-T₁, NH-CO-T₁, O-alkyl-T₁, O-T₁, NH-alkyl-T₁, NH-T₁, SO₃alkyl, SO₂NQ₁Q₂ or CONQ₁Q₂,

 T_1 is in any possible position and comprises PO₃H, SO₃H, an alkyl group containing from 1 to about 16 carbons, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring or NQ₁Q₂,

 T_1 may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring or a heteroaromatic ring,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members;

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

 R_3 , R_4 , R_6 , R_7 , or R_8 each independently comprise H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

D₁, if present, comprises alkyl, a carbocyclic ring, a heterocyclic ring.

 D_2 comprises an alkyl group having from one to about sixteen carbon atoms, alkylamino, di-alkylamino, NH, a bicyclic ring, a tricyclic ring, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 , or adamantan-2-ylidenemethyl- T_3 ,

 T_2 comprises, in any possible position, a substituent group, -CO- T_4 , a heterocyclic ring, a heterobicyclic ring structure, a heterotricyclic ring structure a heteropolycyclic ring structure or a heteroaromatic ring with or without a substituent group,

T₃ comprises an alkyl group having from 0 to about 9 carbon atoms,

T₄ comprises H, C(halogen)₃, OH, NH₂, NO₂, alkyl, alkoxy, a heterocyclic ring or a heteroaromatic ring;

with the proviso that:

when R_3 , R_4 , R_6 , R_7 and R_8 are each H; R_1 is methyl; and R_2 is OH, then Y-R₅ can not be $C(CH_3)_2(CH_2)_5CH_3$, $CH(CH_2CH_3)_2$ or $CH_2(CH_2)_3CH_3$;

when R_3 , R_4 , R_6 , R_7 and R_8 are each H; R_1 is methyl; and Y-R₅ is n-pentyl, then R_2 can not be OCOCH₃, OCH(CH₃)COCH₃, OCH₂CH(OC₂H₅)₂ or OCH₂CHO;

when R_3 , R_4 , R_6 , R_7 and R_8 are each H; R_1 is bromide; and R_2 is OH, then Y-R₅ can not be n-pentyl;

when R_1 is CH_3 ; R_2 is OH; and one of R_7 and R_8 is OH and the other is H, $Y-R_5$ can not be n-pentyl;

when R_3 , R_4 , R_6 , R_7 and R_8 are each H; formula III excludes compounds constructed by the combination of selecting R_1 from any of OH; OCH₃, OC₂H₅, OC₃H₇, OC₄H₉, and selecting Y-R₅ from any of (CH₂)_qCH₃, C(CH₃)₂(CH₂)_qCH₃; (CH₂)_q-C≡C; C≡C(CH₂)_q; alkyl substituted adamantyl, as well as selecting Y from any five member ring and R_5 from (CH₂)_qCH₃, wherein q is an integer from 3-6.

33. The compound of claim 32, wherein:

R₁ comprises halogen, C(halogen)₃, CH₂OH, a substituent group, an alkyl group having 1 to about 5 carbon atoms or an alkyl group having 1 to about 5 carbon atoms and substituted in any possible position with at least one member selected from a substituent group;

 R_2 comprises H, OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, C(halogen)₃, alcohol, NQ₁Q₂, alkyl-hydroxyl, COOQ₃, OQ₃, NH-COalkyl, NH-COaryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, NH-COalkyl-T₁, NH-CO-T₁, O-alkyl-T₁, O-T₁, NH-alkyl-T₁, NH-T₁, SO₃alkyl, SO₂NQ₁Q₂ or CONQ₁Q₂,

T₁ is in any possible position and comprises PO₃H, SO₃H, an alkyl group containing from 1 to about 16 carbons, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring or NQ₁Q₂,

 T_1 may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring or a heteroaromatic ring,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

 R_3 , R_4 , R_6 , R_7 and R_8 comprises H, OH, halogen, C(halogen)₃, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

 Q_1 and Q_2 together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

D₁, if present, comprises an alkyl group, a carbocyclic ring or a heterocyclic ring,

 D_2 comprises an alkyl group having from one to about sixteen carbon atoms, alkylamino, di-alkylamino, NH, a bicyclic ring, a tricyclic ring, 1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 or adamantan-2-ylidenemethyl- T_3 ,

 T_2 comprises, in any possible position, a substituent group or -CO- T_4 , T_3 comprises an alkyl group having from 0 to about 9 carbon atoms,

T₄ comprises H, C(halogen)₃, OH, NH₂, alkylamino, dialkylamino, NO₂, alkyl, alkoxy, a heterocyclic ring or a heteroaromatic ring.

34. The compound of formula IV, and physiologically acceptable salts thereof,

wherein:

the "C" Ring comprises a carbocyclic ring, a bicyclic ring structure, a tricyclic ring structure, a heterocyclic ring, a heterobicyclic ring structure, or a heteroaromatic ring;

Y comprises CH₂, CHCH₃, C(CH₃)₂, a carbocyclic ring, an aromatic ring, a heterocyclic ring or a heteroaromatic ring;

Z comprises O, S, NH or N-alkyl;

 R_2 comprises H, OH, OCH₃, OPO₃H₂, OSO₃H, PO₃H₂, SO₃H, halogen, C-(halogen)₃, alcohol, NQ₁Q₂, COOQ₃, OQ₃, NH-COalkyl, NH-COaryl, O-COalkyl, O-COalkyl-T₁, O-CO-T₁, NH-COalkyl-T₁, NH-CO-T₁, O-alkyl-T₁, O-T₁, NH-alkyl-T₁, NH-T₁, SO₃alkyl, SO₂NQ₁Q₂ or CONQ₁Q₂,

T₁ is in any possible position and comprises PO₃H, SO₃H, an alkyl group containing from 1 to about 16 carbons, tetrahydropyrrole, morpholine, thiomorpholine, piperazine, a heterocyclic ring or NQ₁Q₂,

 T_1 may be substituted in any possible position with at least one member selected from a substituent group, OPO_3H_2 , OSO_3H , PO_3H_2 , a heterocyclic ring or a heteroaromatic ring,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members,

Q₃ comprises H, alkyl, alcohol, or alkyl-NQ₁Q₂;

R₃ and R₄ each independently comprise H, OH, halogen, C(halogen)₃, alcohol, CN, N₃, NCS, NQ₁Q₂ or an alkyl group having 1 to about 4 carbon atoms,

Q₁ and Q₂ each independently comprise H or alkyl, or

 Q_1 and Q_2 together comprise part of a heterocyclic ring having about 4 to about 7 ring members and optionally one additional heteroatom selected from O, N or S, or

Q₁ and Q₂ together comprise part of an imide ring having about 5 to about 6 members; and

 R_5 comprises $-D_1-D_2-T_2$ or $-D_2-T_2$,

D₁, if present, comprises alkyl, a carbocyclic ring or a heterocyclic ring,

D₂ comprises an alkyl group having from one to about sixteen carbon atoms, alkylamino, di-alkylamino, NH, a bicyclic ring, a tricyclic ring,

1-adamantyl- T_3 , 2-adamantyl- T_3 , adamantan-1-ylmethyl- T_3 , or adamantan-2-ylidenemethyl- T_3 ,

T₂ comprises, in any possible position, a substituent group, -CO-T₄, a heterocyclic ring, a heterobicyclic ring structure, a heterotricyclic ring structure, a heteropolycyclic ring structure or a heteroaromatic ring with or without a substituent group,

 T_3 comprises an alkyl group having from 0 to about 9 carbon atoms,

 T_4 comprises H, halogen, OH, NH_2 , NO_2 , alkyl, alkoxy, a heterocyclic ring or a heteroaromatic ring, with the proviso that when the C ring is 4-methyl cyclohexane with a double bond between the 6 and 10a positions, then $Y-R_5$ can not be a saturated alkyl group;

with the proviso that:

when the C ring is a pyridine or N-methyl-pyridine structure having the nitrogen in the para position to the carbonyl of B ring; R₃ and R₄ are hydrogen;

then Y-R₅ can not be a straight or branched alkyl chain of 1 to 20 carbon atoms;

when the C ring is 4-methyl hexane having the methyl in the para position to the carbonyl of B ring; R_3 and R_4 are hydrogen; then Y-R₅ can not be CH_2COOH or a straight or branched chain alkyl of 1 to 20 carbon atoms;

when the C ring is a N-methyl tetrahydropridine having a nitrogen in the para position to the carbonyl of the B ring; R_3 and R_4 are hydrogen; R_2 is OH; then Y-R₅ can not be OH, N-C₅H₁₁, CH(CH₃)(CH₂)₄CH₃, (CH2)11CH₃, or CH(cyclohexanyl);

when the C ring is a tetrahydroprydine having a nitrogen in the para position to the carbonyl of the B ring; R_3 and R_4 are hydrogen; Y- R_5 is 1.2-dimethylhexanyl; R_2 is OH; then the nitrogen of C ring can not be substituted with H, CHC₆H₆, CH₃ or CH₂C≡CH;

when the C ring is a N-benzyl-tetrahydropridine having a nitrogen in the para position to the carbonyl of the B ring; R₃ and R₄ are hydrogen; R₂ is OH; then Y-R₅ can not be CH(CH₃)CH₂COOCH₃, CH(CH₃)CH₂COOH, CH(CH₃)CH₂COOH, CH(CH₃)CH₂COOH, CH(CH₃)CH₂COOH.

- 35. A pharmaceutical composition comprising a therapeutically effective amount of at least one compound selected from claim 21, claim 26, claim 32, claim 34 or a physiologically acceptable salt thereof.
- 36. A method of stimulating a cannabinoid receptor in an individual or animal comprising administering to the individual or animal a therapeutically effective amount of at least one compound selected from claim 21, claim 26, claim 32, claim 34 or a physiologically acceptable salt thereof.
- 37. A method of selectively stimulating CB2 cannabinoid receptors in an individual or animal comprising administering to the individual or animal a therapeutically effective amount of at least one compound selected from claim 21, claim 26, claim 32, claim 34 or a physiologically acceptable salt thereof.

- 38. A method of treating a condition comprising administering to an individual or animal having the conditon a therapeutically effective amount of at least one compound selected from claim 21, claim 26, claim 32, claim 34 or a physiologically acceptable salt thereof.
- 39. A method of providing a physiological response in an individual or animal comprising administering to the individual or animal a therapeutically effective amount of at least one compound selected from claim 21, claim 26, claim 32, claim 34 or a physiologically acceptable salt thereof.
- 40. A method of treating a condition selected from central and peripheral pain, neuropathy, neurodegenerative diseases including multiple sclerosis, Parkinson's disease, Huntington's chorea, Alzheimer's disease; mental disorders such as schizophrenia and depression, endotoxic shock, hypotensive shock; or of modulating appetite; or of modulating the immune system; of of reducing fertility; or of treating diseases associated with motor function such as Tourette's syndrome; or of treating inflammation; or of providing neuroprotection; or of suppressing memory; or of producing peripheral vasodilation; or of treating epilepsy, glaucoma, nausea associated with cancer chemotherapy or nausea associated with Aids wasting syndrome comprising administering to an individual or animal having the conditon a therapeutically effective amount of at least one compound selected from claim 21, claim 26, claim 32, claim 34 or a physiologically acceptable salt thereof.