Plan:

- 1. Define predictive analysis
- 2. Explain the relationship between ML and Al
- 3. Walk through the four general steps to predictive analysis

Machine Learning: Basics

Shannon E. Ellis, Ph.D UC San Diego

Department of Cognitive Science sellis@ucsd.edu

- **Problem:** Detecting whether credit card charges are fraudulent.
- Data science question: Can we use the time of the charge, the location of the charge, and the price of the charge to predict whether that charge is fraudulent or not?
- **Type of analysis:** Predictive analysis

What is machine learning?

"Machine learning is the science of getting computers to act without being explicitly programmed"

- Andrew Ng, Stanford, ex-Google, chief scientist at Baidu, Coursera founder, Stanford Adjunct Faculty

Machine Learning Generalizations

Basic Steps to Prediction

model assessment

data partitioning

feature selection

feature selection determines which variables are most predictive and includes them in the model

model selection

big datasets

simple models

To modes of machine learning

Supervised Learning

You tell the computer how to classify the observations

Unsupervised Learning

The computer determines how to classify based on properties within the data

Approaches to machine learning

Supervised Learning

Prediction accuracy dependent on training data

Unsupervised Learning

Clustering (categorical) & dimensionality reduction (continuous)

can automatically identify structure in data

CLASSICAL MACHINE LEARNING

model assessment

Root Mean Squared Error (RMSE)

continuous variable prediction

$$Accuracy = \frac{\text{# of samples predicted correctly}}{\text{# of samples predicted}} * 100$$

		Actual	
		Positive	Negative
Predicted	Positive	True Positive (TP)	False Positive (FP)
	Negative	False Negative (FN)	True Negative (TN)

A 2x2 table is a type of confusion matrix

TP TP + FN

TN + FP

<u>categorical</u> variable prediction

Accuracy	What % were predicted correctly?		
Sensitivity	Of those that were positives, what % were predicted to be positive?		
Specificity	Of those that were <i>negatives</i> , what % were predicted to be negative?		