TTL 4-Banger Calculator

- · Add, subtract, multiply, and divide
- 8 numeric digits plus an Error and sign digit
 - Max num: +99,999,999 to -99,999,999
 - Min Num: +0.0000001 to -0.0000001
- Floating decimal point
- Signals error on overflow for all operations, keyboard input overflow, and divide by 0
- Leading zero blanking
- All 74hcXX logic implementation (plus 2 4XXX) chips
- 3 major logic blocks:
 - 1. SEQ: Micro-sequencer engine with a 2816 EEPROM microprogram store
 - 24-bit micro-instruction word
 - Unconditional branch, 16 conditional branches, 1 NMI-type interrupt
 - Single level loop counter (no nesting)
 - Clock and reset generation
 - 2. DSKY: Keyboard and Display unit
 - 9-digit LED display sequencing, 20-key keyboard encoding (3 keys not used)
 - 3. REG: Register-Arithmetic unit
 - 1 digit BCD adder/subtractor
 - 3, 8-digit registers (4-bits X 8)
 - Exponent calculator (counters), 8 status and control register bits, operation progress tracking state machine
- Architectural Deficits (intentional)

No rounding logic No guard digits

Architectural Bugs (unintentional)

Accuracy loss dividing 2 8-digit integers
Underflow condition in addition not accounted for

Power-On Reset Startup

Sequencer Instruction Timing

Dig7 Dig6 Dig5 Dig4 Dig3 Dig2 Dig1 Dig0 **DSKY** 7 Seg XDig0[3:0] SDec 6 3 Dp Xdp[2:0] 1:8 Dec REG SignSeg ErrorSeg DigSel KeyDet IV[2:6], HWInt Key Col Pri Col /3 Reg Enc Row 5 IntAck uSEQ Clr 1 Data[1,2] 2 4 x1 Data[3:0] 1:10 Dec Row 4

10

x2

х3

Ent

0

6

ArithStatPhs

BCD Arithmetic

```
A, B={0..9] BCD/Hex
S=[0..18]BCD, [0..12]Hex
 7
+ 5
----
0xC
       If S>9 then
+ 6
        Add 6 to S
12 bcd
        Co
                Ci Co
                           Ci
46
           0100
                      0110
                              addend
                              addend
+55
           0101
                      0101
101
           1001
                      1011
                              sum
                              bdc correction
           0000
                      0110
         1 0000 1 1 0001
```

For a decimal digit Z:		Co		Ci Co		Ci	
The 9's complement (9-Z) on the decimal number wheel is the same	46		0100		0110		minuend
	-28		0010		1000		subtrahend
as comp(Z _{bcd})+0xA on the hex number wheel	18		0010		1000		a de la
The 10's complement of a multi-digit number			1101		0111	1	L's complement of subtrahenc
is the 9's complement of each digit with 1		_	1010		1010	_ a	ndd 10
added-with-carry to the multi-digit result		1	0111	1	0001	9	9's complement of subtrahence
		_	0100		0110	_ 1 a	ndd minuend + 1
							f result digit > 9
-В			1011		1000		hen
ompute 10's complement of B {		_	0110		0000	_	ndd 6 else add 0
Take 1's complement of each digit of B Add b'1010 to each digit of B Add 1 B (add 1 to digit 1 and propagate carry)		1	0001		1000	F	inal carry=1 sum is pos
Add 1 b (add 1 to digit 1 and propagate earry)							
dd A							
final carry out then difference is positive		Со		Ci Co		Ci	
Discard carry out	57		0101		0111		
lse difference is negative	-78		0111		1000		
Take 10's complement	<u>-78</u> -21						
			1000		0111	1	L's complement of subtrahenc
			1010		1010	a	add 10
		1	0010	1	0001		9's complement
		_	0101		0111	_1 a	add minuend + 1
						F	inal carry is 0 so difference is
		0	0111		1001	r	neg
			1000		0110	1	L's complement
		_	1010		1010	_ a	ndd 10
		1	0010		0000	g	9's complement
		_	0000		0000	_1 a	ndd 1
			0010		0001		

JMP ONE MicroCode Organization **FOUR** JMP JMP **SEVEN** JMP ZERO JMP TWO Reset Vector (CLR) JMP FIVE **EIGHT** JMP **Interrupt Vector Table** JMP DP JMP THREE **→**DSKY Loop JMP SIX Interrupt Routines NINE JMP **ZERO** JMP ENTOP1 ONE JMP PLUS TWO JMP **MINUS** JMP MULT THREE JMP DIV **FOUR HWIntEn** CLR JMP **FOVE** Display Enable X1(CLR) JMP SIX Display XDig0 JMP X2(CLR) **SEVEN** Display XDig1 JMP X3(CLR) **EIGHT** Display XDig2 Display XDig3 NINE Display XDig4 DP Display XDig5 CLR Display XDig6 ENTOP1 Display XDig7 MINUS Display DigError Display Disable **SUB** Activate Row0, Sense Columns **PLUS** Activate Row1, Sense Columns MULT Activate Row2, Sense Columns DIV Activate Row3, Sense Columns

MicroCode Structure and Syntax Example

			1[5:0], 123		1[3:0]	I[22]	I[13:8]	I[7:5]	I[18:16]	I[21:19]	1[3:0]	I[14]	I[15]	Logis	im uR	OM Image	
			1[5:0], 3[7]	2[7:0], 3[2:0]	1[3:0]	3[6]	2[5:0]	1[7:5]	3[2:0]	3[5:3]	1[3:0]	2[6]	2[7]	D[7:0] I[15:8]	I[23:16]	
Addr	Hex	Label		SEQ	DSK	Υ			REG			ALU 1[7:0] 2[7:0] 3			[7:0]	3[7:0] 4	
			Bra	Target	Sel[3:0]	KeyAck	RegCmd	SelCtl1	SelCtl2	SelCtl3	KeyMCntSel	Sub_Add	B CarryEn	v2.0 raw		-	
507	1FB	ENTOP1	BRSignXexp	SETOP1DPFIR										3E	01	02	If Op1 has neg exponent (DPFirst) then save in (
510	1FE		JMP	TSTDIGEMPTY										10	04	02	otherwise goto test for empty X reg
513	201	SETOP1DPFIR							StatBitEn	StatBit1	SignYexp			05	00	1B	
516		TSTDIGEMPTY	BRDigEmpty	ENTERZERO										32	0D	02	If no digit hit yet, Jump to enter0
519	207		BRDPFree	ADJEXPFIXDP										37	16	02	If DP was never hit then goto adjust exp and fix
522	20A		JMP	LEFTJUST										10	1F	02	Otherwise go to left justify
525	20D	ENTERZERO							CntrEn	CntrIncr	XDigCnt			01	00	36	Incr Xreg Dig count (enter a 0)
528	210								StatBitEn	StatBit1	FixDP			00	00	1B	and fix the DP
531	213		JMP	LEFTJUST										10	1F	02	then left justify
534	216	ADJEXPFIXDP							CntrEn		XYSexpCnt			04	00	06	If X is whole integer, fix DP and adjust exponen
537	219								CntrEn		XYDexpCnt			03	00	06	
540	21C								StatBitEn	StatBit1	FixDP			00	00	1B	
543	21F	LEFTJUST	BRDigFull	COPYXY										31	2E	02	Left justify X until Xdig is full
546	222						LeftJustX	SelXData			0			00	02	00	Shift left with 0's in at msd
549	225								CntrEn	CntrIncr	XDigCnt			01	00	36	and adjust Xdp and Xdig count to match
552	228								CntrEn	CntrIncr	XDPCnt			02	00	36	
555	22B		JMP	LEFTJUST										10	1F	02	
558	22E	COPYXY					CopyXY	SelXReg	SelXXIsd	SelYXIsd				20	05	28	Copy Xreg to Yreg
561	231						CopyXY	SelXReg	SelXXIsd	SelYXIsd				20	05	28	
564	234						CopyXY	SelXReg	SelXXIsd	SelYXIsd				20	05	28	
567	237						CopyXY	SelXReg	SelXXIsd	SelYXIsd				20	05	28	
570	23A						CopyXY	SelXReg	SelXXIsd	SelYXIsd				20	05	28	
573	23D						CopyXY	SelXReg	SelXXIsd	SelYXIsd				20	05	28	
576	240						CopyXY	SelXReg	SelXXIsd	SelYXIsd				20	05	28	
579	243						CopyXY	SelXReg	SelXXIsd	SelYXIsd				20	05	28	
582	246		BRSignX	CPSIGXSIGY										34	4C	02	Copy Xsign to Ysign
585	249		JMP	RMLDZEROS										10	4F	02	
588	24C	CPSIGXSIGY							StatBitEn	StatBit1	SignY			04	00	1B	

MicroInstruction Fields

SelCtl1 (I5br:I7)

SelXReg	001	Select X reg MSD source from X reg or Y reg group
LoadX9	010	Load X9 source into X9 reg
SelXQmsd	011	Select X reg source from Q Dig7
LoadQL	100	Load QL source into QL reg
SHDexpXDP	101	Load Dexp counter value into XDP counter
Reserved1	110	Currently unassigned
Reserved2	111	Currently unassigned
SelXData	000	Select X LSD reg source from D[3:0]
SelXSumX9	000	Select X reg MSD source from Sum or X9 group

SelCtl2 (I16:I18)

SelQLQlsd	001	Select QL reg source from Q reg LSD
SelYQYlsd	010	Select Y and Q reg MSD sources from Y reg LSD
StatBit1	011	Set selected status bit to 1
SelX9Xmsd	100	Select X9 reg source from X reg MSD
SelYXIsd	101	Select Y reg source from X reg LSD
CntrIncr	110	Increment selected and enabled counter
RowHold	111	DSKY row latch disable (hold)
SelYZero	000	Select Y reg MSD source from 0
SelQZero	000	Select Q reg MSD source from 0
SelX9Zero	000	Select X9 reg source from 0
SelQLZero	000	Select QL reg source from 0

SelCtl3 (I19:I21)

ClrXPh1	001	Clear X reg domain devices
ClrYPh2	010	Clear Y reg domain devices
StatBitEn	011	Enable status latches for write
SelXYIsd	100	Select X reg MSD source from Y reg LSD
SelXSum	100	Select X reg MSD source from SUM
NxtPh	101	Advance tracking state machine state
CntrEn	110	Enable selected counter for up/down advance
SHSexpDexp	111	Load Sexp counter value into Dexp
SelXX9	000	Select X reg MSD source from X9 reg
SelXXIsd	000	Select X reg MSD source from X reg LSD

RegCmd (18:113)

CircX	000001	Shift X reg from MSD toward LSD
DPAdjX	000001	
ShrX	000001	
EntNumX	000010	Shift X reg from LSD toward MSD
LeftJustX	000010	
ApendDivdn	000010	
RmLdZeroX	000010	
DPAdjY	000100	Shift X reg from MSD toward LSD
СоруХҮ	000101	Shift X and Y reg from MSD toward LSD
ExchXY	000101	
AddSub	000101	
DivXY10	000101	
ShrX9X8QDiv10	010001	Shift X and Q reg from MSD toward LSD
CopyYQ	010100	Shift Y and Q reg from MSD toward LSD
CopyQ0QL	100000	Shift Q reg from LSD toward MSD
CopyQX	100010	Shift X and Q reg from LSD toward MSD

Branches (D3:D0)

NA	Unconditional Branch						
0000	Branch if DexpCnt=0						
0001	Branch of DigCnt=8						
0010	Branch if DigCnt=0						
0011	Branch if Dexp>=8						
0100 Branch if SignX status bit set							
0101	Branch if SignY status bit set						
0110	Branch if in or beyond Op2Ph tracking state						
0111	Branch of DP status bit has not been set						
1000	Branch if Qlreg=0						
1001	Branch if X9reg=0						
1010	Branch if XDpCnt>=8						
1011	Branch if no key is currently pressed						
1100	Branch if arithmetic (SUM) sign bit is set						
1101	Branch if arithmetic carry out bit is set						
1110	Branch if Op2's exponent sign status bit is set						
1111	Branch if LoopCnt>0						
0110	Branch if Op1's exponent sign status bit is set						
0101	Branch if current negative exponent calculated						
	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1100 1101 1110 1110						

Immediate Data Labels (D3:D0)

0	0000	Immedate data 0							
1	0001	Immedate data 1							
2	0010	Immedate data 2							
3	0011	Immedate data 3							
4	0100	Immedate data 4							
5	0101	Immedate data 5							
6	0110	Immedate data 6							
7	7 0111 Immedate data 7								
8	1000	Immedate data 8							
9	1001	Immedate data 9							
XDigCnt	0001	Select the XDigit counter							
XDPCnt	0010	Select the XDP counter							
XYDexpCnt	0011	Select the Dexp counter							
XYSexpCnt	0100	Select the Sexp counter							
X9Cnt	0101	Select the X9 counter							
QLCnt	0110	Select the QL counter							
FixDP	0000	Select the DP status bit							
SignXexp	0001	Select the Op2 exponent sign status bit							
NegExpTerm	0010	Select the negative exponent accumulation							
		terminated status bit							
SignX	0011	Select the Op2 sign status bit							
SignY	0100	Select the Op1 sign status bit							
SignYexp	0101	Select the Op1 exponent sign status bit							
AssertError	0110	Select the Error status bit							

Add/Sub (I14:I15)

SubAddB	0	Add Digit 0 of Y register with Digit 0 of X register
	1	Subtract Digit 0 of X register from Digit 0 of Y register
CarryEn	0	Disable Carry In to Adder/Subtractor for one instruction
,	1	Enable Carry In to Adder/Subtractor for one instruction

SEQ/DSKY (122:123)

ı		0	NA
١	KeyAck		Write state of keyboard into keyboard register, reset
		1	sequencer loop counter
I		0	NA
-	HWIntEn		Enable branch to interrupt service routine if HWInt is active
I		1	for one instruction

1-9 Service Routine

```
SHL <num> into Xreg
Incr XdigCnt
If Dp_Not_Fixed then
Incr SexpCnt
If Op1Ph then
Incr DexpCnt
Else
Decr DexpCnt
Else
The TypCnt
Set NegExpTerm // Indicate negative exponent accumulation terminated
```

Dp Service Routine

```
Set FixDp

If Dp is first key hit then
    Set SignXexp
    SHL "0" into Xreg
    Incr XDigCnt

Decr SexpCnt

If Op1Ph then
    Decr DexpCnt

Else
    Incr DexpCnt

JMP DSKY
```

Zero Service Routine

```
SHL "0" int Xreg
If Not SignXexp then // If Xreg is > 1
  If XDigEmpty then // And Xreg is empty
                     // Then key hit can be ignored
     JMP DSKY
  Else
                 // Building operand > 1
    Incr XdigCnt
                     // Building the fractional part
    If DpFixed Then
      Incr XDp Cnt
      JMP DSKY
    Else
                      // Building the integer part
      Incr SexpCnt
      If Op1Ph Then
        Incr DexpCnt
      Else
         Decr DexpCnt
      JMP DSKY
                   // Building operand < 1
Else
  Incr XdigCnt
  Incr XDpCnt
  If NegExpTerm Then // If no more leading 0's then done
    JMP DSKY
                     // Account for the larger negative exponent
  Else
    Decr SexpCnt
  If Op1Ph Then
    Decr DexpCnt
  Else
    Incr DexpCnt
              // QL used to mirror DexpCnt count of leading 0's (used by Div)
     Incr QL
 JMP DSKY
```

Enter Op1 Service Routine

```
If Dp was first key hit then // Xreg < than 1
  Set SignYexp bit
If no numeric key was hit then
  Incr XDigCnt; Set FixDp
Flse
  If Dp was not hit then // Xreg is pure integer
    Ser FixDp; Decr Dexp, Sexp
Left Justify Xreg
Copy Xreg Into Yreg
Copy SignX into SignY
Remove Leading Zeros // Does nothing unless operand is < 1
              // The operand in X is mantissa
              // The operand in Y is displayable version
Exchange X<>Y
              // Move to EOp1Ph
NxtPh
Clear X9
IMP DSKY
```

Zero Service Routine

JMP RESET

```
MINUS
If Not Op2Ph Then // If not in Op2 then "-" means sign bit
                                                                         Add and Subtract Service Routine
  Set SignX
 JMP DSKY
                    // If in Op2 then "-" means subtract
Else
  Invert SignX
                                                                                     OPADD
PLUS
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; ADD
                                                                                                                               // Shift Xreg and Yreg right,
                    // If no key hit for Op2 then enter "0"
If DigEmpty Then
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; ADD, CarryEn // with Lsd's going through ALU
 Incr XDigCnt
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; ADD, CarryEn // and the Sum shifting into
  Set FixDp
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; ADD, CarryEn // Xreg msd, and 0's shifting
Else
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; ADD, CarryEn // into Yreg msd
  If DpFree Then
                    // Op2 is pure integer, fix Dp and adj exp
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; ADD, CarryEn
    Set FixDp
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; ADD, CarryEn
    Decr SexpCnt
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; ADD, CarryEn
    Incr DexpCnt
Left Justify Xreg
                    // Remove leading 0's from Op2<1
While X8 == 0
  SHL Xreg, 0
                                                                                     OPSUB
  Incr XDpCnt
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; SUB
                    // Get operands exponent-aligned (DpAdj)
While DexpCnt != 0
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; SUB, CarryEn
  If DintOvrfl Then
                    // Shift Yreg right, count Dexp up
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; SUB, CarryEn
    SHR Yreg, 0
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; SUB, CarryEn
    Incr DexpCnt
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; SUB, CarryEn
                    // Shift Xreg right, count Dexp down
  Else
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; SUB, CarryEn
    SHR Xreg, 0
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; SUB, CarryEn
    Decr DexpCnt
                                                                                     SHR Xreg, Sum; SHR Yreg, 0; SUB, CarryEn
                    // Restore léading 0's to Op2, if any
While DpOvrfl
                                                                                                       // Get 10's complement and BCD adjust
                                                                                     If IsNeg Then
  SHR Xreg; SHR Yreg
                                                                                       Exch Xreg<>Yreg
  Decr XDpCnt
                                                                                       SHR Xreg, Sum; SHR Yreg, 0; SUB
If (SignX XOR SignY) == \emptyset Then // If Op signs same, then ADD
                                                                                       SHR Xreg, Sum; SHR Yreg, 0; SUB, CarryEn
 Xreg = Xreg + Yreg
                                                                                       SHR Xreg, Sum; SHR Yreg, 0; SUB, CarryEn
 If CarryO Then
                     // If final carry out then shift in X9, adj XDp
                                                                                       SHR Xreg, Sum; SHR Yreg, 0; SUB, CarryEn
    Incr X9
                                                                                       SHR Xreg, Sum; SHR Yreg, 0; SUB, CarryEn
    SHR Xreg, X9
                                                                                       SHR Xreg, Sum; SHR Yreg, 0; SUB, CarryEn
    Decr XDpCnt
                                                                                       SHR Xreg, Sum; SHR Yreg, 0; SUB, CarryEn
                                                                                                                                                      Ex: 150.006
                     // Op signs are different
Else
                                                                                       SHR Xreg, Sum; SHR Yreg, 0; SUB, CarryEn
                                                                                                                                                         - 150.04
  If (Sign X == 1 AND SignY == 0) Then // Yreg must be the negative op for ALU
                                                                                       Set SignX
                                                                                                      // Since result is negative
    Exch Xreg<>Yreg
                                                                                     While X8 == 0 AND NOT DpOvrfl // Remove excess leading 0's, if any
    Exch SignX<>SignY
                                                                                       SHL Xreg. 0
 Xreg = Xreg − Yreg <
                                                                                       Incr XDpCnt
If DpOvrfl Then
  Set Error
```

JMP DSKY

Mult Service Routine

```
If DigEmpty Then
                   // If no key hit for Op2 then enter "0"
 Incr XDigCnt
  Set FixDp
Else
 If DPFree Then // Else if Dp not hit then FixDp and adj exps
    Set FixDp
    Decr SexpCnt
    Incr DexpCnt
Left Justify Xreg
While X8 == 0
                 // Remove any leading 0's in Op2
 SHL Xreg, 0; Incr XDpCnt
                 // Move to OprPh
NxtPh
If (SignX XOR SignY) == 1 Then
  Set SignX
Else
 Clear SignX
Copy Yreg to Qreg // Get régs set up for Mult loop
Copy Xreg to Yreg, clearing Xreg
Mult Loop --
If (SignXexp == SignYexp == 0 AND DpOvrfl) Then // Overflow handler
  Set Error
  JMP DSKY
If (SignXexp == SignYexp == 1 AND DpOvrfl) Then // Underflow handler
 ClrXPh
  JMP DSKY
If DpOvrfl Then // Product is <1
  While DpOvrfl // Insert leading 0's to product <1
    SHR Xreg, 0 // leaving XDP at 0 (7 after inv)
    Incr XDpCnt
Else
                 // Product is >1
  While X8 == 0 // Remove leading 0's to product >1, if any
    SHL Xreg, 0
    Decr XDpCnt // Move Dp to the left
JMP DSKY
```

```
Copy Q0 into QL; SHR Qreg
NxtPh
                            // Move to MultDivPh
Shift SexpCnt into XDpCnt
                            // SexpCnt has the DP placement for product
For 7 Loops
 While QL != 0
    SHR Xreg, Sum; SHR Yreg, YO; ADD
                                              // Shift Xreg and Yreg right,
    SHR Xreg, Sum; SHR Yreg, YO; ADD, CarryEn // with Xmsd getting getting the Sum
    SHR Xreg, Sum; SHR Yreg, YO; ADD, CarryEn // and Ymsd circulating Ylsd
    SHR Xreg, Sum; SHR Yreg, YO; ADD, CarryEn
    If CarryO Then
      Incr X9
    Decr QL
  SHR Xreg, X9; SHR Qreg, 0
 Clr X9
  Copy Q0 into QL
  While QL != 0
    SHR Xreg, Sum; SHR Yreg, YO; ADD
                                              // Shift Xreg and Yreg right,
    SHR Xreg, Sum; SHR Yreg, Y0; ADD, CarryEn // with Xmsd getting getting the Sum
    SHR Xreg, Sum; SHR Yreg, YO; ADD, CarryEn // and Ymsd circulating Ylsd
    SHR Xreg, Sum; SHR Yreg, YO; ADD, CarryEn
    If CarryO Then
      Incr X9
    Decr QL
  If X9 != 0 Then
    SHR Xreg, X9
    Incr XDpCnt
```

```
For 8 Loops
                          // Check for Op2==0
                                                                Div Service Routine
      Load X8 into X9
      If X9 == 0 Then
         SHR Xreg, X1
      Else Continue A
    Set Error
    JMP DSKY
A:
    If NOT DpFixed Then
                          // If Dp never entered
      Set FixDp
                           // Fix Dp and exp adj
      Decr SexpCnt
      Incr DexpCnt
      NxtPh
                          // Move to OprPh
    If (SignX XOR SignY) == 0 Then // Compute sign of quotient
      Clear SignX
    Else
     Set SignX
                         // Divide both ops by 10 if Xreg is full
    If Op2 < 1 Then
      If DigFull Then
        SHR Xreg, 0; SHR Y, 0
    Copy Yreg to Qreg
    Copy Xreg to Yreg, clearing Xreg
    Move to MultDivPh
    Copy DexpCnt to XDpCnt // Exponent for quotient is DexpCnt
                     // Remove the extra "0" in front of Dp
    If SignXexp Then
      Decr XDigCnt
      While QL != 0
        Decr QL // QL is a copy of DexpCnt to use for removing leading 0's
        Decr XDigCnt
    While NOT DigEmpty // Init dividend with XDigCnt digits of Qreg
      SHL Xreg, Q8; SHL Qreg, 0
      Decr XDigCnt
                        // Begin test if one more dividend digit is needed
    X = X-Y
    If IsNeg Then
      X = X+Y // Restore dividend
      SHL Xreg, Q8; SHL Qreg, 0 // Add one more digit to dividend
      Decr XDpCnt
    Else
     X = X+Y // Restore dividend
```

```
While (X = X-Y) >= 0
                           // First of 8 outer loop iterations
  Incr QL // Accumulate quotient
X = X+Y // Restore dividend to positive
                          // Remaining 7 outer loop iterations
For 7 Loops
                      // Append dividend with additional digit
  SHL Xreg, Q8
  SHL Qreg, 0; Copy QL to Q0 // Accumulate quotent
  Clr QL
  While (X = X-Y) >= 0
                       // Inner loop
    Incr QL
  X = X+Y
SHL Xreg, Q8
SHL Qreg, 0; Copy QL to Q0
Clr QL
                       // Copy quotient to Xreg
Copy Qreg to Xreg
If (SignYexp == 1 AND SignXexp == 0) Then // Underflow handler
  If DPOvrfl Then
    Clr Xreg
    JMP DSKY
If (SignXexp == 1 AND SignYexp) == 0 Then // Overflow Handler
  If DPOvrfl Then
    Set Error
    JMP DSKY
If NOT DPOvrfl Then // Quotient >=1; Done
  JMP DSKY
Repeat
  SHR Xreg, 0
  Incr XDpCnt
Until DPOvrfl
JMP DSKY
```

9+0.0000001=9.0000001 99999999+.1=99999999 99+0.0000001=99

Dexp Counter values for All Op1 and Op2 Combinations

DPFirst=1 Dintovrfl=1

							Xexp(+), Y	exp=(+)						Х	exp(-), Ye	exp=(+)			Dintoviti=.
			OP2(X)		10000000	1000000	100000	10000	1000	100	10	1	0.1	0.01	0.001	0.0001	0.00001	0.000001	0.0000001
0000	0		OP1 (Y)	exp	7	6	5	4	3	2	1	0	-1	-2	-3	-4	-5	-6	-7
0001	1	-15	10000000) 7	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0010	2	-14	1000000	ϵ	-1	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0011		-13	100000	5	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11	12
0100		-12	10000) 4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10	11
0101		-11	1000) 3	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9	10
0110		-10	100) 2	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8	9
	7		10) 1	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7	8
0111	/	-9	1	. C	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
1000	8	-8																	
1001	9	-7	0.1	1	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
1010	10	-6	0.01	2	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5
1011	11	-5	0.001	3	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4
1100	12	-4	0.0001	4	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3
1101	13	-3	0.00001	5	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2
1110	14	-2	0.000001	ε	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	1
1111	15	-1	0.0000001	7	-14	-13	-12	-11	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
							Xexp(+), Y	exp=(-)						X	exp(-), Ye	exp=(-)			

Add Overflow

(DintOvrfl=1)(SignYexp=0)(SignXexp=0)

(DintOvrfl=1)(SignYexp=1)(SignXexp=1)

Overflow happens when Op1 and Op2 are both 8-digit integers and the sum results in a final carry out digit 8.

Op2(X) is DPFirst AND DintOVrfl

Add Underflow (DintOvrfl=1)(SignYexp=0)(SignXexp=1) Use Yreg

Add Underflow (DintOvrfl=1)(SignYexp=1)(SignXexp=0) Use Xreg

Op2(X) is NOT DintOvrfl AND NOT DPFirst

Because SignYexp is only available to Mult and Div (due to arch oversight) I can't Use these expressions to detect underflow.

Dexp and Sexp Counter Values From All Combinations of Op1 and Op2

OP2

	0.00000	0.0000	0.0	00001 0.00	0.00	0.0000	1 0.0001	0.0001	0.001	0.001	0.01	0.01	0.1	0.1	0 0	1	1	10	10	100	100	1000	1000	1000	00 1000	0 100	000 1000	00 10	00000 100000	0 1000	0000 1000	00000
A div C		-7	-7	-6	-6	-5 -	5 -4	1 -4	-3	-3	-2	-2	-1	-1		0	0	1	1	2	2	3	3		4	4	5	5	6	6	7	7
	Dexp	Sexp	Dexp	Sexp	Dexp	Sexp	Dexp	Sexp	Dexp	Sexp	Dexp S	exp [exp Se	exp		Dexp S	exp [exp S	Sexp [Dexp S	Sexp	Dexp	Sexp	Dexp	Sexp	Dexp	Sexp	Dexp	Sexp	Dexp	Sexp	
0.0000001 -7	7	0	-14	-1	-13	-2 -1	2 -3	-11	-4	-10	-5	-9	-6	-8		-7	-7	-8	-6	-9	-5	-10	-4	-1	11 -	-3	-12	-2	-13	1	-14	0
0.000001 -6	6	1	-13	0	-12	-1 -1	1 -2	-10	-3	-9	-4	-8	-5	-7		-6	-6	-7	-5	-8	-4	-9	-3	-1	10 -	-2	-11	-1	-12	o	-13	1
0.00001 -5	5	2	-12	1	-11	0 -1	0 -1	L -9	-2	-8	-3	-7	-4	-6		-5	-5	-6	-4	-7	-3	-8	-2		-9 -	.1	-10	0	-11	1	-12	2
0.0001 -4	4	3	-11	2	-10	1 -	9 (8- (-1	-7	-2	-6	-3	-5		-4	-4	-5	-3	-6	-2	-7	-1		-8	0	-9	1	-10	2	-11	3
0.001 -3	3	4	-10	3	-9	2 -	8 1	L -7	0	-6	-1	-5	-2	-4		-3	-3	-4	-2	-5	-1	-6	0		-7	1	-8	2	-9	3	-10	4
0.01 -2	2	5	-9	4	-8	3 -	7 2	2 -6	1	-5	0	-4	-1	-3		-2	-2	-3	-1	-4	0	-5	1		-6	2	-7	3	-8	4	-9	5
0.1 -	1	6	-8	5	-7	4 -	6 3	3 -5	2	-4	1	-3	0	-2		-1	-1	-2	0	-3	1	-4	2		-5	3	-6	4	-7	5	-8	6
OP1 ⁰																																
1 (0	7	-7	6	-6	5 -	5 4	1 -4	3	-3	2	-2	1	-1		0	0	-1	1	-2	2	-3	3		-4	4	-5	5	-6	6	-7	7
10	1	8	-6	7	-5	6 -	4 5	5 -3	4	-2	3	-1	2	0		1	1	0	2	-1	3	-2	4		-3	5	-4	6	-5	7	-6	8
100	2	9	-5	8	-4	7 -	3 6	5 -2	5	-1	4	0	3	1		2	2	1	3	0	4	-1	5		-2	6	-3	7	-4	8	-5	9
1000	3	10	-4	9	-3	8 -	2 7	7 -1	6	0	5	1	4	2		3	3	2	4	1	5	0	6		-1	7	-2	8	-3	9	-4	10
10000 4	4	11	-3	10	-2	9 -	1 8	3 0	7	1	6	2	5	3		4	4	3	5	2	6	1	7		0	8	-1	9	-2 1	o	-3	11
100000 5	5	12	-2	11	-1	10	0 9) 1	. 8	2	7	3	6	4		5	5	4	6	3	7	2	8		1	9	0	10	- 1 1	1	-2	12
1000000 6	6	13	-1	12	0	11	1 10) 2	9	3	8	4	7	5		6	6	5	7	4	8	3	9		2 1	.0	1	11	0 1	2	-1	13
10000000	7	14	0	13	1	12	2 11	1 3	10	4	9	5	8	6		7	7	6	8	5	9	4	10		3 1	.1	2	12	1 1	3	0	14

Division Overflows

Anytime Dexp is positive number greater than 7 Within the positive exp1, negative exp2 quadrant

(DPOvrfl=1)(SignYexp=0)(SignXexp=1)

Mult Overflows

Anytime Sexp is positive number greater than 7 Within the positive exp1, positive exp2 quadrant

(DPOvrfl=1)(SignYexp=SignXexp=0)

0

Div Underflows

Mult Underflows

(DPOvrfl=1)(SignYexp=SignXexp=1)