Epreuve : Sciences physiques Section : sciences de l'informatique **Correction session principale 2012**

Chimie

Lame de cuivre Lame de zinc Solution de sulfate de cuivre Solution de sulfate de zinc

2- a- Equation chimique associée

b- $E_i = V_{bD} - V_{bG} < 0$, ainsi on a : $V_{bD} < V_{bG}$, d'où la lame de cuivre est le pôle (+) et la lame de zinc le pôle (-).

3- a- Au niveau de la lame de cuivre on a : Cu²⁺ + 2e⁻ Cu — Zn²⁺ + 2e⁻ au niveau de la lame de Zinc on a : Zn

b- La réaction spontanée qui se produit est symbolisée par :

4-a- $n_{Cu} = \frac{m}{M}$, d'où on a : $n_{Cu} = 0,002$ mol .

b- Le zinc subit une oxydation lorsque la pile débite du courant, une telle transformation est symbolisée par : Zn → Zn²+ + 2e⁻. Ainsi la concentration de la solution de (B) en Zn²⁺ augmente.

c- On a $n_{(Zn^{2+})} = n_{0(Zn^{2+})} + n_{(Zn^{2+})}$, avec $n_{(Zn^{2+})}^{(2+)} = n_{(Cu)d\acute{e}pos\acute{e}}$

$$\text{Ainsi}, \qquad n_{(Zn}^{2^+}) \ = \text{CV} + \frac{m}{M} \, .$$

Par suite : $[Zn^{2+}] = C + \frac{m}{MV}$, ce qui donne $[Zn^{2+}] = 14.10^{-2} \text{ mol.L}^{-1}$.

Physique

Exercice 1

- **2-** $T_1 = 6,66$ ms et $T_2 = 4$ ms, ce qui donne : $N_1 = 150$ Hz et $N_2 = 250$ Hz.
- 3- a- Pour les deux chronogrammes, la courbe (a) garde une amplitude pratiquement constante pour deux fréquences différentes.
 - b- L'amplitude du signal de sortie du quadripôle dépend de sa fréquence. En effet,, pour N₂, l'amplitude du signal est très atténuée.
 - c- Il s'agit d'un filtre passif car les composants du circuit sont passifs.

Section : sciences de l'informatique

- 3- b- L'amplitude du signal de sortie du quadripôle dépend de sa fréquence. En effet,, pour N₂, l'amplitude du signal est très atténuée.
- c- Il s'agit d'un filtre passif car les composants du circuit sont passifs.
- **4-a-** On a : $U_{Em} = 5 \text{ V}$, $U_{Sm} = 3.2 \text{ V}$, ce qui donne T = 0.64.

b-
$$T_1 = \frac{T_0}{\sqrt{2}}$$
.

- **c-** Pour la fréquence N_1 on a $\frac{T_1}{T_2} = 0, 7 \approx \frac{1}{\sqrt{2}}$, d'où N_1 est une fréquence de coupure.
- 5-a- Les tensions d'entrée et de sortie du filtre sont en phase c'est la résonance d'intensité, ce qui donne $LC\omega_0^2$ = 1. Ainsi $N_0 = \frac{1}{2\pi\sqrt{IC}} \approx 128 Hz$.
- **b-** A la résonance d'intensité on peut écrire : $U_{Em} = (R+r)I_0$ et $U_{Sm} = RI_0$,

Ainsi :
$$T_0 = \frac{R}{R+r}$$

- **c-** A partir de l'expression de T_0 on a : $r = \frac{R}{T_0} R \approx 20 \Omega$.
- **6- a-** Comme $T_3 = T_1$, on a alors: $T_3 = \frac{T_0}{\sqrt{2}}$, d'où N_3 est une fréquence de coupure.
 - b- Ce filtre possède deux fréquences de coupure non nulles et un T₀ pour N₀ comprise entre ces deux fréquences N₃ et N₁. Ainsi, il s'agit d'un filtre passe-bande.

c-
$$\Delta N = N_1 - N_3 = 45 \text{ Hz}.$$

d- Q =
$$\frac{N_0}{\Delta N}$$
 = 2,8.

Exercice 2

- **1- a-** $d_1 = 4\lambda_1$, ce qui donne $\lambda_1 = 8$ mm.
 - **b-** la célérité $v_1 = \lambda_1 N_1 = 0.16 \text{ m.s}^{-1}$.
- **2-a-** On a $v_2 = \lambda_2 N_2 = 0.18 \text{ m.s}^{-1}$.
 - b- Dans l'eau, la célérité de l'onde dépend de sa fréquence d'où l'eau est un exemple de milieu dispersif.

3-a-
$$\Delta \varphi = \frac{2\pi AB}{\lambda}$$
, par suite : $\varphi = \pi$ rad, pour $\lambda = \lambda_2$

- **b-** Le point B vibre en opposition de phase par rapport au point A.
- c- Il y a quatre points qui vibrent en opposition de phase par rapport à A et ils sont

situés à :
$$\lambda_2/2$$
, $3\lambda_2/2$, $5\lambda_2/2$ et $7\lambda_2/2$ de A.

4-a-Le phénomène de diffraction.

Section : sciences de l'informatique

4-b-

La valeur de la longueur d'onde se conserve au delà de l'ouverture.

Exercice 3

- 1- L'une des armatures est une électrode en aluminium, tandis que l'autre armature est un électrolyte.
- 2- Respecter les bornes indiquées sur le condensateur.
- 3- Le non respect de la polarité peut entrainer la destruction du diélectrique.
- 4- Réaliser un dipôle RC soumis à un échelon de tension et déterminer la valeur de la constante du temps et par suite la valeur de la capacité.