- → Definition typischer Merkmale/Kriterien zur Einordnung von Parallelrechnersystemen
- 5.1 Motivation
- 5.2 Klassifikation nach Flynn
- 5.3 Klassifikation nach dem ECS
- 5.4 Klassifikation mittels Kiviat-Graph
- 5.5 Klassifikation nach Giloi
- 5.6 Klassifikation nach Waldschmidt

5.1 Motivation

- Klassifikation als Hilfsmittel zur Strukturierung gut geeignet
- erleichtert Übersicht und Vergleich
- insbes. im Bereich Parallelrechner sehr viele verschied. Lösungen
- nur wenige Standards
- z.T. unterschiedl. Begriffe für gleichen Gegenstand
- hohe Dynamik der Entwicklung (auch Ablösung ehemals guter Konzepte)
- Klassifikation nur bzgl. Hardware reicht heute i.allg. nicht mehr, denn Software beeinflusst das Gesamtsystem wesentlich (z.B. via Fähigkeiten des Compilers, des BS, usw.)

Eine erste Klassifikation könnten übrigens die "Ebenen der Parallelität" sein (vgl. Kap. 1.6)

5.2 Klassifikation nach FLYNN (1972) (I)

- älteste Taxonomie für Parallelrechner
- einfach, daher (bzgl. Hardware) immer noch oft benutzt
- Rechner werden durch 2 Informationsströme charakterisiert:
 - Befehlsstrom (instructions)
 - Datenstrom (data)
- qualitative Unterscheidung bzgl.
 - einfache Ströme
 - mehrfache Ströme
- quantitative Aspekte unberücksichtigt
- Anordnung von Prozessoren, Speicher, Verbindungsnetz sowie Rolle der Software ebenfalls unberücksichtigt

Parallelverarbeitung:

5. Klassifikation

5.2 Klassifikation nach FLYNN (1972) (II)

	Single Instruction	Multiple Instruction
Single Data	SISD	MISD
Multiple Data	SIMD	MIMD

(Bild-Quelle unbekannt)

5.2 Klassifikation nach FLYNN (1972) (III)

- SISD Single Instruction, Single Data
 - es gibt nur eine Verarbeitungseinheit
 - dieser Prozessor hat Zugriff auf nur einen Programmspeicher und nur einen Datenspeicher
 - pro Verarbeitungsschritt ist die Abarbeitung eines Befehls über einem Datenelement möglich
 - = klassischer Von-Neumann-Rechner (also z.B. klass. PC)
 - rein sequentielle Verarbeitung, keine Parallelität

Bild-Quelle: Rauber/Rünger: Parallele und verteilte Programmierung. Springer, 2000

5.2 Klassifikation nach FLYNN (1972) (IV)

- MISD Multiple Instruction, Single Data
 - es gibt mehrere Verarbeitungseinheiten
 - die Prozessoren haben Zugriff auf jeweils einen eigenen Programmspeicher, aber nur auf einen gemeinsamen Datenspeicher
 - pro Verarbeitungsschritt ist die Abarbeitung jeweils eines Befehls durch alle Prozessoren über dem selben Datenelement möglich
 - Prinzip ist umstritten, praktisch kaum sinnvoll realisierbar!

Bild-Quelle: Rauber/Rünger: Parallele und verteilte Programmierung. Springer, 2000

5.2 Klassifikation nach FLYNN (1972) (V)

- SIMD Single Instruction, Multiple Data
 - es gibt mehrere Verarbeitungseinheiten
 - diese Prozessoren haben Zugriff auf nur einen einzigen Programmspeicher und auf einen (gemeinsamen oder verteilten) Datenspeicher
 - pro Verarbeitungsschritt holt eine Steuereinheit einen Befehl aus dem Programmspeicher und übergibt ihn an alle Prozessoren;
 - Alle Prozessoren arbeiten also synchron parallel denselben Befehl jeweils über einem separaten (eigenen) Datenelement ab und schreiben das Ergebnis in den Datenspeicher
 - Anwendung z.B. bei Vektoroperationen

5.2 Klassifikation nach FLYNN (1972) (VI)

- SIMD war lange Zeit das führende Prinzip
 - einfache Programmierung (nur ein Befehlsstrom!),
 - keine Synchronisation auf Programmebene nötig
- aber Berechnungseinheiten sind (teure) Spezialprozessoren
 - Entwicklung geriet in Widerspruch zur Mikroprozessortechnik (billigere Universalprozessoren)
- Prinzip ist heute z.T. in vielen Mikroprozessoren integriert
 - vgl. Intel MMX-Erweiterung, 3DNow!, ...
- Architekturbeispiele:
 - erster Parallelrechner Illiac IV (1968),
 - Connection Machine CM-1, CM-2 von Thinking Machines
 - •MP-1, MP-2 von MassPar
 - •DAP (Distributed Array Processor) von ICL (1981)

•...

5.2 Klassifikation nach FLYNN (1972) (VII)

- MIMD Multiple Instruction, Multiple Data
 - es gibt mehrere Verarbeitungseinheiten
 - diese Prozessoren haben separaten Zugriff auf jeweils einen eigenen Programmspeicher und auf einen (gemeinsamen oder verteilten) Datenspeicher
 - pro Verarbeitungsschritt verarbeitet jeder Prozessor einen Befehl aus seinem lokalen Programmspeicher über einem Datenelement aus dem Datenspeicher
 - Die Prozessoren können asynchron zueinander arbeiten!

5/9

Bild-Quelle:

Rauber/Rünger: Parallele und verteilte

Programmierung Springer, 2000

5.2 Klassifikation nach FLYNN (1972) (VIII)

- MIMD ist das heute am meisten verwendete Prinzip bei Parallelrechnern
- profitiert vor allem von der Mikroprozessorentwicklung, da diese als (billige) Rechenknoten in großer Zahl eingesetzt werden können
- Architekturbeispiele:
 - Intel Paragon
 - KSR-1, KSR-2 Kendall Square Research
 - Cray T3D, T3E
 - SPP-Serie von HP
 - IBM SP2
 - SGI Origin
 - Cluster,...
- wegen Vielfalt der existierenden MIMD-Varianten gibt es hierfür weitere Klassifikationskriterien (später)

Parallelverarbeitung: 5. Klassifikation

5.2 Klassifikation nach FLYNN (1972) (IX)

- Multiple Single Instruction Multiple Data (MSIMD)
 - Rechnerarchitektur, die eine Zwischenstellung einnimmt (passt nicht direkt in das FLYNN-Schema)
 - "MIMD-artige parallele Zusammenschaltung" mehrerer unabhängiger SIMD-Rechner ("Multivektorrechner-System")
 - Bsp: Earth Simulator (mehrere Jahre Anführer der TOP500!)

5.3 Klassifikation nach dem ECS

- Erlanger Classifcation System ECS (nach Händler, 1977)
- Fokus liegt auf Nebenläufigkeit und Parallelverarbeitung
- Tripel (*k*,*d*,*w*) erlaubt Gruppenzuordnung von Rechnern, wobei:
 - *k* = Anzahl der Kontrolleinheiten
 - *d* = Anzahl der Prozessoren
 - *w* = Anzahl der Bits pro Einheit
 - Bsp.: Parallelrechner mit 64 Prozessoren, jeder Prozessor hat je eine Recheneinheit für Fest- und Gleitkommazahlen, Wortlänge von 32 Bit → ECS = (64, 2, 32)
- für Systeme mit Nebenläufigkeit <u>und</u> Pipelining: zusätzl. Tripel (k',d',w')
- es entstehen Tripelpaare (k x k', d x d', w x w')
- Bsp.: Intel Paragon XP/S: 1840 Knoten, jeder Knoten = 2 x Intel i860 Jeder Prozessor kann zwei Instruktionen gleichzeitig abarbeiten.
 Wortlänge = 64 Bit, dreistufige Pipeline
 - \rightarrow ECS = (1840 x 2; 1 x 2; 64 x 3)

(Bsp. Nach Waldschmidt: Parallelrechner. Teubner 1995)

Klassifikation mittels Kiviat-Graph (I) 5.4

- Kiviat-Graph (nach Ferrari, 1978)
 - zur quantitativen Beschreibung von Eigenschaften, wie
 - Prozessorleistung [Bytezugriffe zum Speicher / sec.]
 - Hauptspeicherkapazität und Zugriffszeit
 - Peripheriespeicherkapazität und Zugriffszeit
 - Übertragungsrate der Verbindung zu anderen Rechnern
 - Übertragungsrate der Verbindung zu zusätzl. ext. Geräten
 - berücksichtigt alle wesentl. Hardwarekomponenten (Verarbeitung, Transport, Speicherung)
 - damit Überprüfung der "Ausgewogenheit" hins. Leistung der einzelnen Komponenten möglich (z.B. Amdahl-Regeln:
 - HS-Kapazität [byte] ≥ Anzahl Befehle/s
 - E/A-Übertragungsrate [bit/s] ≥ Anzahl Befehle/s
 - Rolle der Software unberücksichtigt

5.4 Klassifikation mittels Kiviat-Graph (II)

Kiviat-Graph (Beispiel)

Bild-Quelle: Waldschmidt: Parallelrechner. Teubner 1995

Parallelverarbeitung: 5. Klassifikation

5.5 Klassifikation nach Giloi (I)

- 1. Taxonomie hins. Operationsprinzipien (1980)
 - qualitative Beschreibung von vielen Rechnerarchitekturen
 - Informationsstruktur
 - Steuerstruktur
 - keine Quantifizierung von Merkmalen

Parallelverarbeitung:

5. Klassifikation

5.5 Klassifikation nach Giloi (II)

Bild-Quelle: Waldschmidt: Parallelrechner.

Teubner 1995

CONTROL STRUCTURE

Parallelverarbeitung: 5. Klassifikation

5.5 Klassifikation nach Giloi (III)

- 2. Taxonomie von Parallelrechnerarchitekturen (1993)
 - Versuch, wesentl. Kriterien (Hard- und Software!) zu beschreiben
 - Anordnung und Auswahl der Kriterien nicht ganz eindeutig

5. Klassifikation

5.5 Klassifikation nach Giloi (IV)

Bild-Quelle: Waldschmidt: Parallelrechner. Teubner 1995

Klassifikation nach Waldschmidt (I) 5.6

- Versuch einer integrierten Klassifikation von Hard- und Software für Parallelrechner (1995)
- Berücksichtigung quantitativer Aspekte (soweit möglich), ansonsten qualitative Bewertung
- "Entwurfsraum" (keine baumförmige Darstellung möglich, da sich Alternativen nicht zwangsläufig ausschließen)

5.6 Klassifikation nach Waldschmidt (II)

Typen parallel	ler Alg	orithmen	I E DE FEAT				
Datenparallelität					rin ul		
Funktionsparalle	lität						
Redundante Par	allelität						
Mischformen							
Parallele Prog	rammi	ersprachen (F	PS)				
Paradigma Parallelität		Kommunikation	Sprachtyp	Kommur	Kommunikationsbibliothel		
Imperativ		Implizit	Gemeinsamer Speicher	Erweiterung	Architekturabhängig		
Logisch, relation	al	Explizit	Nachrichtenorientiert	seq. PS	Architekturunabhängig		
Objektorientiert,	direkti	V		Parallele PS			
Funktional, appli	kativ						
Parallele Betri	ebsyst	eme (BS)					
Ausführungsort	Betriebsart		Mehrproz/prog.betrie	eb Prozeßmod	Prozeßmodell/raum		
Wirtsrechner	Einpr	ozeßbetrieb	Timesharing	Schwergewichtig		UMA	
Parallelrechner M		prozeßbetrieb	Spacesharing	Leichtgewichtig		NUMA	
	Mehr	orogrammbetrie	b	Global	2001.0.0.0	NORMA	
				Lokal			
Parallele Hard	ware:	Verarbeitende	Elemente				
Ausführungsmod	lell A	ell Art des Parallelismus Ebene des Pa		elismus			
Von Neumann Nebenläufigkeit		Programm/Proze	Programm/Prozeß				
Nicht von Neumann		Pipelining	Maschinenbefehl/Gruppen/Datenstruktur				
		Combination	Teile von Maschinenbefehlen/Datenwort				

Quelle: Waldschmidt: Parallelrechner. Teubner 1995

5.6 Klassifikation nach Waldschmidt (III)

(Fortsetzung der Tabelle)

Kommunikationssteuerung	Topologie	Verbindungsart	Verbindungsaufbau	Arbeitsweise
Prozessorknoten	Regulär	Leitungsvermittlung	Verteilt	Synchron
Kommunikationswerk	Irregulär	Paketvermittlung	Zentral	Asynchron
Autonomer Kommunikations-	Statisch			Gemischt
Prozessor/Rechner	Dynamisch			
	Einstufig			
	Mehrstufig			
Parallele Hardware: Speich	nerstruktur			
Parallelisierung				
Funktionale Auftrennung der	Adreßräume			
Räumliche Aufteilung auf Basi	is von Datenzi	ıgriffen		
Verteilung des Speichers				
Parallelisierung der Speicher-B	Sinnenstruktur			
Speicherhierarchie			Table 7 Holles	The second second
Parallele Hardware: Peripl	neriestruktu	r		
Parallelisierung				
Geräteebene				
Architekturelemente				
Softwareebene				

Quelle: Waldschmidt: Parallelrechner. Teubner 1995