Analiza matematyczna 2

dr Joanna Jureczko

Zestaw 5

Ciągi liczbowe o wyrazach zespolonych. Pochodna i całka funkcji zespolonej.

ZADANIA

5.1. Zbadać zbieżność ciagów

a)
$$z_n = n + \frac{i}{n^2}$$
, b) $z_0 = \frac{5^n}{n!} + i$, c) $z_n = (\frac{1+i}{2})^n$, d) $z_n = \frac{2n(n+1)+3ni}{n+1}$.

5.2. Obliczyć pochodną funkcji

a)
$$z = 3i - 1 + (1 + 2i)t$$
, b) $z = 2\cos t + e^{-2t}i$, c) $z = (i + 3t^3)\ln t$, d) $z = 2i\sin(3t) + t^2e^ti$.

5.3. Obliczyć całki

a)
$$\int_0^{\pi/2} (\cos t + 2ti) dt$$
, b) $\int_0^2 [1 + (1+i)t^2] dt$, c) $\int_{-1}^1 (1 - e^t i) dt$, d) $\int_0^{\pi/2} (\cos t + i \sin t) dt$.

5.4. Zbadać, czy funkcja f(z) jest holomorficzna

a)
$$f(z) = z^2$$
, b) $f(z) = \overline{z}$, c) $f(z) = zRe(z)$, d) $f(z) = \frac{1}{z^2}$.

5.5. Znaleźć część rzeczywistą i urojoną funkcji f(z) i sprawdzić, czy funkcja spełnia równanie Cauchy'ego=Riemana

a)
$$f(z) = \sin z$$
, b) $f(z) = e^z$, c) $f(z) = z^3$.

5.6. Znaleźć funkcję holomorficzną f(z) = u + vi, gdy

a)
$$u = x^2 - y^2 + 2x$$
, b) $u = \frac{x}{x^2 + y^2}$, c) $u = 2e^x \sin y$.

5.7. Obliczyć całki

- a) $\int_C Im(z)dz,$ gdzie Cjest odcinkiem o początku $z_1=0$ i końcu z=2+i,
- b) $\int_C |z| dz$, gdzie C jest krzywą o równaniu $z = e^{ti}, -\frac{\pi}{2} \leqslant t \leqslant \frac{\pi}{2}$,
- c)* $\int_0^{1+i} e^{\overline{z}} dz$ wzdłuż łamanej o wierzchołkach $z_1 = 0, z_2 = 1, z_3 = 1+i,$
- d)* $\int_C z \sin z dz,$ gdzie Cjest dowolną krzywą regularną o początku $z_1=0$ i końcu $z_2=i,$
- e)* $\int_C \sin(2z+1)dz,$ gdzie Cjest dowolną krzywą regularną o początku $z_1=0$ i końcu $z_2=\frac{\pi}{2},$
- f)* $\int_C e^z dz,$ gdzie Cjest dowolną krzywą regularną o początku $z_1=0$ i końcu $z_2=\pi i.$

ODPOWIEDZI

- **5.1.** a) rozbieżny, b) zbieżny $z_0=i$, c) zbieżny $z_0=i$, d) rozbieżny.
- **5.2.** a) z' = 1 + 2i, b) $z' = -2\sin t 2ie^{-2t}$, c) $z' = 9t^2 \ln t + (i + 3t^3) \frac{1}{t}$, d) z' =

- **5.2.** a) z = 1 + 2i, b) $z = -2 \sin i 2ie^{-1}$, c) $z = 9i \sin i + (i + 3i) \frac{1}{i}$, d) $z = (6 \cos(3t) + 2te^{t} + t^{2}e^{t})i$. **5.3.** a) $1 + \frac{\pi^{2}}{4}i$, b) $2 + \frac{8}{3}(1+i)$, c) $2 + \frac{1-e^{2}}{e}i$, d) 1+i. **5.4.** a) tak, b) nie, c) nie, d) tak, poza z = 0. **5.5.** a) $u = \frac{1}{2}(e^{y} + e^{-y}) \sin x$, $v = \frac{1}{2}(e^{-y} + e^{y}) \cos x$, b) $u = e^{x} \cos y$, $v = e^{x} \sin y$, c) $u = x^{3} 3xy^{2}$, $v = 3x^{2}y y^{3}$.
- **5.6.** a) $f(z) = z^2 + 2z + ci$, b) $f(z) = \frac{1}{z} + ci$, c) $f(z) = -2e^z i + ci$. **5.7.** a) $\frac{1}{2}(2+i)$, b) 2i, c) $e^{1-i} 2e^{-i} + 1$, d) $-e^{-1}i$, e) $\cos 1$, f) -2.