Sets & Relations

Basics of Sets

sets & Relations

Relational Database

×	У	Likes(x,y)	
Alice	Alice	TRUE	
	Jabberwock	FALSE	
	Flamingo	TRUE	
Jabberwock	Alice	FALSE	
	Jabberwock	TRUE	
	Flamingo	FALSE	
Flamingo	Alice	FALSE	
	Jabberwock	FALSE	
	Flamingo	TRUE	

Relational DB Table

Likes		
X	y	
Alice	Alice	
Alice	Flamingo	
Jabberwock	Jabberwock	
Flamingo	Flamingo	

- Queries to the DB are set/logical operations
 - SELECT x

 FROM Likes

 WHERE y='Alice' OR y='Flamingo'

Sets: Basics

- Unordered collection of "elements"
 - $oe.g.: \mathbb{Z}, \mathbb{R}$ (infinite sets), oeta (empty set), oeta (1, 2, 5), ...
- Will always be given an implicit or explicit universe (universal set) from which the elements come
 - (Aside: In developing the foundations of mathematics, often one starts from "scratch", using only set theory to create the elements themselves)
- Set membership: e.g. 0.5 ∈ \mathbb{R} , 0.5 ∉ \mathbb{Z} , \emptyset ∉ \mathbb{Z}
- Set inclusion: e.g. Z, ⊆ \mathbb{R} , \emptyset ⊆ Z
- Set operations: complement, union, intersection, difference

Set Operations

Sets as Predicates

×	Winged(x)	Flies(x)	Pink(x)	inClub(x)
Alice	FALSE	FALSE	FALSE	TRUE
Jabberwock	TRUE	TRUE	FALSE	FALSE
Flamingo	TRUE	TRUE	TRUE	TRUE

- Given a predicate can define the set of elements for which it holds
 - WingedSet = { x | Winged(x) } = {J'wock, Flamingo}
 - FliesSet = { x | Flies(x) } = {J'wock, Flamingo}
 - PinkSet = { x | Pink(x) } = {Flamingo}
- © Conversely, given a set, can define a membership predicate for it e.g. given set $Club = \{Alice, Flamingo\}$. Then, define predicate inClub(x) s.t. $inClub(x) = True \ iff \ x \in Club$

Set Operations

Unary operator

Binary operators

Associative

S complement

Symbol: S

 $in\overline{S}(x) = \neg inS(x)$

S union T

Symbol: SUT

inS∪T(x)

= inS(x) \vee inT(x)

S <u>intersection</u> T

Symbol: S ∩ T

inS∩T(x)

= inS(x) \wedge inT(x)

S difference T

Symbol: S - T

(Alternately: S\T)

|inS-T(x)|

 \equiv inS(x) \land \neg inT(x)

 \equiv inS(x) \leftrightarrow inT(x))

 $S-T = S \cap \overline{T}$

S symmetric diff. T

Symbol: S \(D \) T

 $inS\Delta T(x)$

 \equiv inS(x) \oplus inT(x)

Note: Notation inS(x) used only to explicate the connection with predicate logic. Will always write $x \in S$ later.

De Morgan's Laws

- SUT = S∩T
 - - $\equiv \neg(x \in S \lor x \in T) \equiv \neg(x \in S) \land \neg(x \in T)$
 - $\equiv x \in \overline{S} \land x \in \overline{T} \equiv x \in \overline{S} \cap \overline{T}$

S U T

- $S \cap T = \overline{S} \cup \overline{T}$
 - - $\equiv \neg(x \in S \land x \in T) \equiv \neg(x \in S) \lor \neg(x \in T)$
 - $\equiv x \in \overline{S} \lor x \in \overline{T} \equiv x \in \overline{S} \cup \overline{T}$

Distributivity

```
R \cap (S \cup T) = (R \cap S) \cup (R \cap T)
          x \in R \cap (S \cup T) = 
               = x \in R \land (x \in S \lor x \in T) = (x \in R \land x \in S) \lor (x \in R \land x \in T)
               \equiv \mathbf{x} \in (\mathbf{R} \cap \mathbf{S}) \cup (\mathbf{R} \cap \mathbf{T})
  x \in R \cup (S \cap T) = 
               \equiv x \in R \lor (x \in S \land x \in T) \equiv (x \in R \lor x \in S) \land (x \in R \lor x \in T)
               \equiv x \in (R \cup S) \cap (R \cup T)
```

Set Inclusion

×	Winged(x)	Flies(x)	Pink(x)
Alice	FALSE	FALSE	FALSE
Jabberwock	TRUE	TRUE	FALSE
Flamingo	TRUE	TRUE	TRUE

- PinkSet ⊆ FliesSet = WingedSet
- S ⊆ T same as the proposition $\forall x x \in S \rightarrow x \in T$
- **③** S ⊇ T same as the proposition $\forall x \ x \in S \leftarrow x \in T$
- S = T same as the proposition ∀x x∈S ↔ x∈T

Set Inclusion

- S ⊆ T same as the proposition $\forall x \quad x \in S \rightarrow x \in T$
- If S = \emptyset , and T any arbitrary set, S ⊆ T
 - \bullet $\forall x$, vacuously we have $x \in S \rightarrow x \in T$
- \odot If $S\subseteq T$ and $T\subseteq R$, then $S\subseteq R$

If no such x, already done

- **②** Consider arbitrary $x \in S$. Since $S \subseteq T$, $x \in T$. Then since $T \subseteq R$, $x \in R$.
- $lackbox{0} S \subseteq T \longleftrightarrow \overline{T} \subseteq \overline{S}$

$$\equiv \ \forall x \ \underline{x \in \overline{T}} \to \underline{x \in \overline{S}}$$

Proving Set Equality

- To prove S = T, show $S \subseteq T$ and $T \subseteq S$
- ø e.g., L(a,b) = { x : ∃u,v ∈ \mathbb{Z} x=au+bv }

 M(a,b) = { x : (gcd(a,b) | x) }
- © [Recall] Theorem: L(a,b) = M(a,b)
- Proof in two parts:
 - lacksquare L(a,b) \subseteq M(a,b) : i.e., $\forall x \in \mathbb{Z}$ $x \in L(a,b) \rightarrow x \in M(a,b)$

Let x=au+bv. $gla, glb \Rightarrow glx$

First show that
g∈L(a,b)

(as the smallest +ve
element in L(a,b))

Let x=ng. But g=au+bv ⇒ x=au'+bv'

Inclusion-Exclusion

- S| + |T| counts every element that is in S or in T
 - But it double counts the number of elements that are in both:
 i.e., elements in S∩T
- So, |S|+|T| = |S∪T| + |S∩T|
- Or, |S∪T| = |S| + |T| |S∩T|

Cartesian Product

 \circ Not the same as $(R \times S) \times T$ (but "essentially" the same)

S

$$\circ$$
 ($\overline{S} \times \overline{T}$) \cup ($\overline{S} \times T$) \cup ($S \times \overline{T}$)

Sets & Relations

Relations

Relations: Basics

More commonly written as: x Likes y, $x \sqsubseteq y$, $x \ge y$, $x \sim y$, xLy, ...

- Informal y, a relation is specified as what is related to what
- Formally, a predicate over the domain SxS
 - e.g. Likes(x,y)
- Alternately, a subset of SxS, namely the pairs for which the relation holds
 - Dikes = { /Alice, Alice),

Homogeneous and binary (the default notion for us) (Alice, Flamingo),
(J'wock,J'wock),
(Flamingo,Flamingo) }

x,y	Likes(x,y)	
Alice, Alice	TRUE	
Alice, Jabberwock	FALSE	
Alice, Flamingo	TRUE	
Jabberwock, Alice	FALSE	
Jabberwock, Jabberwock	TRUE	
Jabberwock, Flamingo	FALSE	
Flamingo, Alice	FALSE	
Flamingo, Jabberwock	FALSE	
Flamingo, Flamingo	TRUE	

Many ways to look at it!

R ⊆ S × S

a set of

ordered-pairs
{ (a,b) | a □ b }

{ (A,A), (A,F),
 (J,J), (F,F) }

Boolean matrix, M_{a,b} = T iff a□b

(directed) graph

Operations on Relations

- Since a relation is a set, namely R ⊆ S×S, all set operations extend to relations
 - © Complement (with the universe being S×S), Union, Intersection, Symmetric Difference
- © Converse (a.k.a. Transpose)

Composition

"Boolean matrix multiplication"
$$(M \cap M')_{xy} = \bigvee_{w} (M_{xw} \wedge M'_{wy})$$

(Ir)Reflexive Relations

- Reflexive (e.g. Knows, ≤)
 - The kind of relationship that everyone has with All self-loops

themselves

All of diagonal included

None of it

- Irreflexive (e.g. Gave birth to, ≠)
 - The kind that nobody has with themselves
- No self-loops

- Neither (e.g. is a prime factor of)
 - Some, but not all, have this relationship with themselves

(Anti)Symmetric Relations

- Symmetric (e.g. sits next to)
 - The relationship is reciprocated symmetric matrix
- Anti-symmetric (e.g. parent of, prime factor of, ⊆)
 - No reciprocation (except possibly with self)
- Neither (e.g. likes)
 - Reciprocated in some pairs (with distinct members) and only one-way in other pairs
 Some bidirectional,
- Both (e.g., =)
 - Each one related only to self (if at all)

self-loops & bidirectional edges only

no bidirectional edges

no edges except self-loops

some unidirectional

Transitive Relations

- Transitive (e.g., Ancestor of, subset of, divides, ≤)
 - if a is related to b and b is related to c, then a is related to c
- \odot R is transitive \leftrightarrow R \circ R \subseteq R

 $\leftrightarrow \forall k > 1 \ R^k \subseteq R$

if there is a "path" from a to z, then there is edge (a,z)

Intransitive: Not transitive

Reflexive: All self-loops

Irreflexive:
No self-loops

Only self-loops & bidirectional edges

The complete relation $R = S \times S$ is reflexive, symmetric and transitive

Reflexive closure of R: Minimal relation $R' \supseteq R$ s.t. R' is reflexive Symmetric closure of R: Minimal relation $R' \supseteq R$ s.t. R' is symmetric Transitive closure of R: Minimal relation $R' \supseteq R$ s.t. R' is transitive Each of these is unique [Why?]

Equivalence Relation

- A relation that is reflexive, symmetric and transitive
 - e.g. is a relative, has the same last digit, is congruent mod 7, ...
- Equivalence class of x: $Eq(x) = \{y | x \sim y\}$.
- Every element is in its own equivalence class (by reflexivity)
- Oclaim: If Eq(x) \cap Eq(y) \neq Ø, then Eq(x) = Eq(y).
 - The second in the property of the proper
 - Consider an arbitrary $w \in Eq(x)$: i.e., $x \sim w$.
 - **3** By symmetry, $z\sim x$. Then, by transitivity, $z\sim w$. Then, $y\sim w$.
 - Thus, $w \in Eq(y)$. i.e., $Eq(x) \subseteq Eq(y)$.

Equivalence Relation

- A relation that is reflexive, symmetric and transitive
 - e.g. is a relative, has the same last digit, is congruent mod 7, ...
- Equivalence class of x: Eq(x) \triangleq {y|x ~ y}.
- Every element is in its own equivalence class (by reflexivity)
- Oclaim: If Eq(x) \cap Eq(y) \neq Ø, then Eq(x) = Eq(y).
- The equivalence classes partition the domain

 $P_1,...,P_t \subseteq S$ s.t. $P_1 \cup ... \cup P_t = S$ $P_i \cap P_j = \emptyset$

Square blocks along the diagonal, after sorting the elements by equivalence class

"Cliques" for each class

Reflexive: All self-loops

Irreflexive: No self-loops

Symmetric:
Only self-loops &
bidirectional edges

Anti-symmetric: No bidirectional edges

implies edge (a,b)

Equivalence:
Cliques, disconnected

Reflexive closure of R: Small from each other R s.t. R' is reflexive

Symmetric closure of R: Smallest relation $R' \supseteq R$ s.t. R' is symmetric

<u>Transitive closure of R:</u> Smallest relation R' ⊇ R s.t. R' is transitive

An equivalence relation R is its own reflexive, symmetric and transitive closure

Sets & Relations

Posets

Transitive: Path from a to b implies edge (a,b)

Landscape of Transitive Relations

Anti-symmetric: No bidirectional edges

Symmetric: Only self-loops & bidirectional edges

Acyclic

Cannot follow a sequence of non-self-loop edges and get back to where you started from

has same last name as

Anti-Symmetric

Symmetric

Transitive:
Path from a to b
implies edge (a,b)

Landscape of Transitive Relations

Strict

Partial Orders Irreflexive

Anti-symmetric: No bidirectional edges

Symmetric:
Only self-loops &
bidirectional edges

Reflexive: All self-loops

Irreflexive:
No self-loops

Reflexive Partial Orders

Anti-Symmetric

has same last name as

Equivalences

Symmetric

Partial Order

Strict partial order: irreflexive, rather than reflexive

- A transitive, anti-symmetric and reflexive relation
 - ② e.g. ≤ for integers, divides for integers, ⊆ for sets, "containment" for line-segments
- Equivalently, transitive and acyclic (and ir/reflexive) (a pair of bidirectional edges is a "cycle")
 - Order" refers to these properties
- "Partial": not every two elements need be "comparable"
 - i.e., {a,b} s.t. neither a b nor b a
 - \odot e.g., neither $A \subseteq B$ nor $B \subseteq A$

Posets

- Partially ordered set (a.k.a Poset)
 - A non-empty set and a partial order over it
 - Denoted like (S, ≤)
- e.g. $S = \{S_1, S_2, S_3, S_4, S_5\}$ where $S_1 = \{0, 1, 2, 3\}, S_2 = \{1, 2, 3, 4\}, S_3 = \{1, 2, 3\}, S_4 = \{3, 4\}, \text{ and } S_5 = \{2\}. \text{ Poset } (S, \subseteq)$

Check:

- Anti-symmetric
 (no bidirectional edges),
- Transitive,
- Reflexive (all self-loops)
- More generally, (S, ⊆) where S is any set of sets
- Verify: P⊆P; P⊆Q ∧ Q⊆R → P⊆R; P⊆Q ∧ Q⊆P → P=Q
- @ e.g. Divisibility poset: (I+, |)
 - \odot Verify: ala; alb \wedge blc \rightarrow alc; alb \wedge bla \rightarrow a=b

Extremal & Extremum

- Maximal & minimal elements of a poset (S, ≤)
 - x∈S is maximal if ∃y∈S-{x} s.t. x≤y
 - $x \in S$ is minimal if $\exists y \in S \{x\}$ s.t. $y \leq x$
 - Need not exist (e.g., in (ℤ,≤)).
 - Need not be unique when it exists (e.g., divisibility poset restricted to integers > 1)

one minimal element

Proof by induction on |S| [Exercise]

 $x \in S$ is the greatest element if $\forall y \in S, y \leq x$ $x \in S$ is the least element if $\forall y \in S, x \leq y$

Useful in induction proofs about finite posets

Need not exist.
Unique when one exists.

Other Relations from a Poset

- Consider partial order ≤
- - a < b iff a ≠ b and a ≤ b
 </pre>
- - Well-defined for finite posets: Define $a \sqsubseteq b$ iff $a \leqslant b$ and $∄m ∉ {a,b}$, $a \leqslant m \leqslant b$. [Prove by induction]

Running Example

Divisibility poset: (I+, |)

- Claim: | is the transitive closure of the reflexive closure of □ [Verify]
- © Claim:

 is the transitive reduction of the reflexive reduction of | [Verify]
 - Note: Divisibility poset has a transitive reduction even though it is infinite

Hasse Diagram

- For a poset (S, ≤), the transitive reduction of the reflexive reduction of ≤, if it exists, has all the information about the poset
 - Recall: For finite posets, guaranteed to exist

Hasse Diagram: the graph of this relation (with arrowheads implicit)

Bounding Elements

- Ø Given a poset (S, ≤) and T ⊆ S
- Need not exist.

 Need not be unique when one exists.

Do exist in finite posets

- Maximal element in T : $x \in T$ s.t. $\forall y \in T$, $\underline{x \leq y \rightarrow y = x}$ Minimal element in T : $x \in T$ s.t. $\forall y \in T$, $\underline{y \leq x \rightarrow y = x}$
- Greatest element in T : $x \in T$ s.t. $\forall y \in T$ $y \leq x$ Least element in T : $x \in T$ s.t. $\forall y \in T$, $x \leq y$

Need not exist.
Unique when one exists.

- Oupper Bound for T: $x \in S$ s.t. $\forall y \in T$, $y \leq x$ Lower Bound for T: $x \in S$ s.t. $\forall y \in T$, $x \leq y$
- Least Upper Bound for T: Least in {x| x u.b. for T}
 Greatest Lower Bound for T: Greatest in {x| x l.b. for T}

Running Example

Divisibility poset: (I+, |)

- Lower bound
 - When is c a lower bound for T={a,b}?
 - \circ cla and clb \Rightarrow c is a common divisor for $\{a,b\}$
 - Greatest lower bound for {a,b} = gcd(a,b)
- Upper bound
 - $\ensuremath{\mathfrak{G}}$ d is an upper bound for $\{a,b\} \Rightarrow a|d$, $b|d \Rightarrow d$ a common multiple for $\{a,b\}$
 - Least upper bound for {a,b} = lcm(a,b)

Total/Linear Order

- In some posets every two elements are "comparable": for {a,b}, either a b or b a
 - © Can arrange all the elements in a line, with <u>all</u> <u>possible</u> right-pointing edges (plus, all self-loops)

If finite, has <u>unique</u> maximal and <u>unique</u> minimal elements (left and right ends)

Order Extension

- \lozenge A poset P'=(S, \le) is an extension of a poset P=(S, \le) if $\forall a,b \in S$, $a \le b \rightarrow a \le b$
- Any finite poset can be extended to a total ordering (this is called topological sorting)
 - Prove by induction on |S|
 - Induction step: Remove a minimal element, extend to a total ordering, reintroduce the removed element as the minimum in the total ordering.
 - For infinite posets? The "Order Extension Principle" is typically taken as an axiom! (Unless an even stronger axiom called the "Axiom of Choice" is used)

Running Example

Divisibility poset: (I+, |)

- The totally ordered set (\mathbb{Z}^+, \leq) , where \leq is the standard "less-than-or-equals" relation, is an extension of the divisibility poset
 - \odot Because a|b \rightarrow a \leq b
- - \circ For any $(a,b) \in \mathbb{Z}^+ \times \mathbb{Z}^+$, $a \sqsubseteq b$ iff:
 - @ a=1, or
 - a,b both prime or both composite, and a ≤ b, or
 - a prime and b composite

Sets & Relations

Chains and Anti-Chains

Chains & Anti-Chains

In a poset (S,≤)

- \odot C \subseteq S is said to be a chain: \odot A \subseteq S is an anti-chain if $\forall a,b \in C$, either $a \leq b$ or b≤a
 - if ∀a,b∈A, neither a≤b nor b≤a, unless a=b
- i.e., (C,≤) is a total order : ⊙ (A,≤) is same as (A,=)
- Subset of a chain is a chain. Similarly for anti-chains.
- A singleton set is both a chain and an anti-chain
- For any chain C and antichain A, $|C \cap A| \leq 1$ (Why?)

Height in a Poset

- In a poset (S, \le) , for any $a \in S$, we define Finite if S is finite height(a) = max size of a chain with a as the maximum
 - Note: every a has {a} as such a chain
- © E.g., In (\mathbb{Z}^+ , |), height(1)=1, height(p)=2 for all primes p. For m=p₁d₁·...·p_td_t (p_i primes), height(m) = 1+ Σ_i d_i
- Height of the poset (S,≤)
 = max { height(a) | a∈S}
 = max { |C| | chain C}
 - Size of the largest chain in the poset
 - Possibly ∞ (only if S infinite)

Anti-Chains from Height

- © Let $A_h = \{ a \mid height(a) = h \}$
- For every finite h, Ah is an anti-chain (possibly empty)
 - Otherwise, ∃a≠b, a≤b with height(a) = height(b) = h. height(a) = h ⇒ ∃chain C s.t. a=max(C) and |C|=h
 - \Rightarrow b \notin C and C'=C \cup {b} is a chain with b=max(C')

How? \Rightarrow height(b) \geq h+1!

Anti-Chains from Height

- © Let $A_h = \{ a \mid height(a) = h \}$
- For every finite h, Ah is an anti-chain (possibly empty)
- In a finite poset, since every element has a finite height, every element appears in some A_h: i.e., A_h's partition S
- Mirsky's Theorem: The least number of anti-chains needed to partition S is exactly the size of a largest chain

For chain C⊆S, need ≥ |C| anti-chains to cover C, as |C∩A| ≤ 1 for anti-chain A

Partitioning with (Anti)Chains

Mirsky's Theorem: The least number of anti-chains needed to partition S is exactly the size of a largest chain

Later

Dilworth's Theorem: The least number of chains needed to partition S is exactly the size of a largest anti-chain

