Ejercicios de Redes 8.2

EJERCICIO 1

Convierte las siguientes direcciones a binario e indica si se trata de direcciones de tipo A, B o C:

Dirección IP (en		Tipo de clase de
decimal)	Dirección IP (octetos en binario)	red
10.0.3.2	00001010.00000000.00000011.00000010	Α
128.45.7.1	10000000.00101101.00000111.00000001	В
192.200.5.4	11000000.11001000.00000101.00000100	С
151.23.32.50	10010111.00010111.00100000.00110010	В
47.50.3.2	00101111.00110010.00000011.00000010	Α
100.90.80.70	01100100.01011010.01010000.01000110	Α
124.45.6.1	01111100.00101101.00000110.00000001	Α

	7	6	5	4	3	2	1	0
	128	64	32	16	8	4	2	1
10	0	0	0	0	1	0	1	0
45	0	0	1	0	1	1	0	1
192	1	1	0	0	0	0	0	0
200	1	1	0	0	1	0	0	0
151	1	0	0	1	0	1	1	1
124	0	1	1	1	1	1	0	0

EJERCICIO 2

Dada la dirección de red 192.168.30.0, indica qué máscara de subred deberías escoger para tener 4 subredes. Rellena a continuación la siguiente tabla:

Número de subred	Dirección de subred	Primer ordenador	Último ordenador	Broadcast
	192.168.30.0	192.168.30.1	192.168.30.62	192.168.30.63
	192.168.30.64	192.168.30.65	192.168.30.126	192.168.30.127
	192.168.30.128	192.168.30.129	192.168.30.190	192.168.30.191
	192.168.30.192	192.168.30.193	192.168.30.254	192.168.30.255

Dada la dirección de red 192.168.55.0, indica qué máscara de subred deberías escoger para tener 8 subredes. Rellena a continuación la siguiente tabla:

Número de subred	Dirección de subred	Primer ordenador	Último ordenador	Broadcast
	192.168.55.0	192.168.55.1	192.168.55.30	192.168.55.31
	192.168.55.32	192.168.55.33	192.168.55.62	192.168.55.63
	192.168.55.64	192.168.55.65	192.168.55.94	192.168.55.95
	192.168.55.96	192.168.55.97	192.168.55.126	192.168.55.127
	192.168.55.128	192.168.55.129	192.168.55.158	192.168.55.159
	192.168.55.160	192.168.55.161	192.168.55.190	192.168.55.191
	192.168.55.192	192.168.55.193	192.168.55.222	192.168.55.223
	192.168.55.224	192.168.55.225	192.168.55.254	192.168.55.255

EJERCICIO 4

Dada la dirección de clase B 150.40.0.0, indica qué máscara de subred deberías escoger para tener 4 subredes. Rellena a continuación la siguiente tabla:

Número de subred	Dirección de subred	Primer ordenador	Último ordenador	Broadcast
150.40.0.0		150.40.0.1	150.40.63.254	150.40.63.255
	150.40.64.0	150.40.64.1	150.40.127.254	150.40.127.255
	150.40.128.0	150.40.128.1	150.40.191.254	150.40.191.255
	150.40.192.0	150.40.192.1	150.40.255.254	150.40.255.255

EJERCICIO 5

 a) ¿Cuál es el intervalo decimal y binario del primer octeto para todas las direcciones IP clase B posibles?

En la clase B, los bits iniciales son desde el 10 hasta el 110; Mientras en que en decimal sería desde el 128 hasta el 191

b) ¿Qué octeto y octetos representan la parte que corresponde a la red de una dirección IP de clase C?

En la clase C, los bits iniciales son desde el 110 hasta el 1110; Mientras que en decimal sería desde el 192 hasta el 223

c) ¿Qué octeto y octetos representan la parte que corresponde al host de una dirección IP de clase A?

En la clase A, los bits iniciales son desde el 0 hasta el 10; Mientras que en decimal sería desde el 1 hasta el 127

Completa la siguiente tabla:

Dirección IP del host Clase Direc		Dirección de red	Dirección de host	Dirección de broadcast de red	Máscara de subred por defecto
216.14.55.137	С	216.14.55.0 216.14.55.1 – 216.14.55.254		216.14.55.255	/24
123.1.1.15	Α	123.0.0.0	123.0.0.1 – 123.255.255.254	123.255.255.255	/8
150.127.221.224	В	150.127.0.0	150.127.0.1 – 150.127.255.254	150.127.255.255	/16
194.125.35.199	С	194.125.35.0	194.125.35.1 – 194.125.35.254	194.125.35.255	/24
175.12.239.244	В	175.12.0.0	175.12.0.1 – 175.12.255.254	175.12.255.255	/16

EJERCICIO 7

Completa la siguiente tabla: determinar, para las siguientes direcciones de host IP, cuáles son las direcciones que son válidas para redes comerciales. Válida significa que se puede asignar a una estación de trabajo, servidor, impresora, interfaz de router, etc.

Dirección IP	¿La dirección es válida?	¿Por qué?
150.100.255.255	No	Porque es un broadcast
175.100.255.18	Sí	
195.234.253.0	No	Es una dirección de host
100.0.0.23	Sí	
188.258.221.176	No	Hay un 258
No (esta respuesta la buscado en internet		no es válida porque 127 no se puede utilizar en el primer octeto dado que está reservado para verificación de diagnóstico
No (esta respuesta la he buscado en internet)		Esta es una red de clase D y está reservada para MultiCast

EJERCICIO 8

Completa la siguiente tabla:

IP	Máscara	Subred	Broadcast
192.168.1.130	255.255.255.128 /25	192.168.1.128	192.168.1.255
10.1.1.3	255.255.0.0 /16	10.1.0.0	10.1.255.255
10.1.1.8	255.255.0.0 /16	10.1.0.0	10.1.255.255
200.1.1.23 (Jesús creo que esta IP está mal en las soluciones es 220.1.1.23)	255.0.0.0 /8	220.0.0.0	200.255.255.255
172.16.8.48 (Jesús creo que esta IP está mal en las soluciones es 172.168.8.48)	255.255.248.0 /21	172.16.8.0	172.16.x.x (no sé hasta dónde llega)
172.16.8.48	255.255.255.224 /19	172.16.8.32	172.16.8.x (no sé hasta dónde llega

Asignar direcciones IP válidas a las interfaces de red (interfaz de red = tarjeta de red) que les falte para conseguir que exista comunicación entre los hosts A, B, C, D, E y F. La máscara en todos los casos será 255.255.224.0. Justifica la respuesta.

La subred sería 172.33.32.0

A partir de ahí, puedo asignar a las otras redes diferentes direcciones, por ejemplo:

- A. 172.33.43.5
- B. 172.33.32.1
- C. 172.33.32.2
- D. 172.33.32.3
- E. 172.33.32.4
- F. 172.33.32.5

EJERCICIO 10

Tu empresa tiene una dirección de red de Clase C de 200.10.57.0. Desea subdividir la red física en 3 subredes.

a) Indica una máscara que permita dividir la red de clase C (al menos) en tres subredes.

 $2^2 = 4 ... y solo quiero 3 ...$

 n^{o} bits = 2

255.255.255.192

7	6	5	4	3	2	1	0	
128	64	32	16	8	4	2	1	
1	1	0	0	0	0	0	0	(192)

b) ¿Cuántos hosts (ordenadores) puede haber por subred?

Si se cogen prestados 2 bits de la parte host para la red ... quedarían 6 bits (8-2) para la parte host ... de modo que, 2⁶ -2 (-2 por la dirección de red y el broadcast) tendríamos que puede haber unos 62 hosts.

c) ¿Cuál es la dirección de red y la dirección de broadcast de cada una de las 3 subredes creadas?

200.10.57.0 y 200.10.57.63

200.10.57.64 y 200.10.57.127

200.10.57.128 y 200.10.57.191

200.10.57.192 y 200.10.57.255

7	6	5	4	3	2	1	0	
128	64	32	16	8	4	2	1	
0	0	0	0	0	0	0	0	(0)
0	1	0	0	0	0	0	0	(64)
1	0	0	0	0	0	0	0	(128)
1	1	0	0	0	0	0	0	(192)

Se desea subdividir la dirección de red de clase C de 200.10.57.0 en 4 subredes.

Responde a las siguientes preguntas:

1. ¿Cuál es el equivalente, en números binarios, de la dirección de red de clase C 200.10.57.0 de este ejercicio?

11001000.00001010.00111001.00000000

2. ¿Cuál(es) es (son) el (los) octeto(s) que representa(n) la porción de red y cuál(es) es (son) el (los) octeto(s) que representa(n) la porción de host de esta dirección de red de clase C?

11001000.00001010.00111001.00000000

red: red green: host

3. ¿Cuántos bits se deben pedir prestados a la porción de host de la dirección de red para poder suministrar 8 subredes?

 $2^3 = 8$... Se necesitarían pedir prestados 3 bits

4. ¿Cuál será la máscara de subred (utilizando la notación decimal) basándose en la cantidad de bits que se pidieron prestados en el paso 3?

255.255.255.224

7	6	5	4	3	2	1	0	
128	64	32	16	8	4	2	1	
1	1	1	0	0	0	0	0	(224)

5. ¿Cuál es el equivalente en números binarios de la máscara de subred a la que se hace referencia anteriormente?

11111111.111111111.11111111.11100000

EJERCICIO 12

Teniendo en cuenta la dirección IP del ejercicio anterior (200.10.57.0) completa la siguiente tabla para cada una de las posibles subredes que se pueden crear pidiendo prestados 3 bits para subredes al cuarto octeto (octeto de host).

Identifica la dirección de red, la máscara de subred, el intervalo de direcciones IP de host posibles para cada subred, la dirección de broadcast para cada subred.

7	6	5	4	3	2	1	0	
128	64	32	16	8	4	2	1	
0	0	0	0	0	0	0	0	(0)
0	0	1	0	0	0	0	0	(32)
0	1	0	0	0	0	0	0	(64)
0	1	1	0	0	0	0	0	(96)
1	0	0	0	0	0	0	0	(128)
1	0	1	0	0	0	0	0	(160)
1	1	0	0	0	0	0	0	(192)
1	1	1	0	0	0	0	0	(224)

Subred	Dirección de subred	Primer ordenador	Último ordenador	Broadcast
1	200.10.57.0	200.10.57.1	200.10.57.30	200.10.57.31
2	200.10.57.32	200.10.57.33	200.10.57.62	200.10.57.63
3	200.10.57.64	200.10.57.65	200.10.57.94	200.10.57.95
4	200.10.57.96	200.10.57.97	200.10.57.126	200.10.57.127
5	200.10.57.128	200.10.57.129	200.10.57.158	200.10.57.159
6	200.10.57.160	200.10.57.161	200.10.57.190	200.10.57.191
7	200.10.57.192	200.10.57.193	200.10.57.222	200.10.57.223
8	200.10.57.224	200.10.57.225	200.10.57.254	200.10.57.255

Completa la siguiente tabla:

IP	Máscara	Subred	Broadcast	Nº de hosts
192.168.1.130	255.255.255.128	192.168.1.128	192.168.1.255	128-2
200.1.17.15	255.255.255.0	200.1.17.0	200.1.17.255	2 ⁸ -2 = 254
133.32.4.61	255.255.255.224 /27	133.32.4.32	133.32.4.63	32-2
132.4.60.99	255.255.0.0 /16	132.4.0.0	132.4.255.255	2^{16} -2 = 65.534
222.43.15.41	255.255.255.0	222.43.15.0	222.43.15.255	2 ⁸ -2 = 254
192.168.0.1	255.255.255.192	192.168.0.0	192.168.0.63	62

EJERCICIO 14

a. Si tenemos una red 147.84.32.0 con máscara de red 255.255.255.252, indica la dirección de broadcast, la de red y la de los posibles nodos de la red.

Red: 147.84.32.0 Broadcast: 147.84.32.3

Rango host: 147.84.32.1 – 147.84.32.2

b. La red 192.168.0.0, ¿de qué clase es?

Es de la clase C, porque la red está comprendida entre el 192 y 224

c. Escribe el rango de direcciones IP que pertenecen a la subred definida por la dirección IP 140.220.15.245 con máscara 255.255.255.240.

Red: 140.220.15.240 Broadcast: 140.220.15.255

Rango host: 140.220.15.241 – 140.220.15.254

(aunque lo he conseguido sacar entre la explicación de hoy en clase y mirando el proceso de la solución, no había caído por mi cuenta en la operación AND para hallar la subred)

d. Una red de clase B en Internet tiene una máscara de subred igual a 255.255.240.0. ¿Cuál es el máximo de nodos por subred?

Sabiendo del apartado anterior, que el 240 solo deja disponibles 14 hosts ... y aquí tenemos libre el último octeto completo ...

 $14 + (2^8-2) = 268 \dots$ MAL (este fue mi 1º razonamiento y estuvo mal)

Mirando el proceso de la solución, me di cuenta de que no puedo tomar de referencia los datos del apartado anterior, ya que eso alteraría la potencia que hay que hacer, y por tanto se altera el resultado.

La forma correcta de calcularlo desde cero es:

Con el 240 sé que quedaron libres 4 bits + 8 bits del octeto libre completo ... 2^{12} - 2 = 4.094 host

Calcular la dirección de red y la dirección de broadcast (difusión) de las máquinas con las siguientes direcciones IP y máscaras de subred (si no se especifica, se utiliza la máscara por defecto).

a) 18.120.16.250

Es de la clase A, así que:

- Red: 18.0.0.0

- Broadcast: 18.255.255.255

b) 18.120.16.255/255.255.0.0

Es de la clase A, pero su máscara es /16:

- Red: 18.120.0.0 - Broadcast: 18.120.255.255

c) 155.4.220.39

Es de la clase B, así que:

- Red: 155.4.0.0 - Broadcast: 155.4.255.255

d) 194.209.14.33

Es de la clase C, así que:

Red: 194.4.220.0Broadcast: 194.209.14.255

e) 190.33.109.133/255.255.255.0

Es de la clase B, pero su máscara es /24:

- Red: 190.33.109.0 - Broadcast: 190.33.109.255

f) 190.33.109.133 / 255.255.255.128

Es de la clase B, pero su máscara llega hasta un poco más de /24, tomando prestados para la red bits de la parte host... haciendo los cálculos en la tabla, obtenemos que la máscara es /25, de manera que coge 1 bit de la parte de red, y deja otros 7 bits para host ...

$2^7 = 128$ subred

Como ya he usado la subred ... 128-1 = 127 ... y como la IP terminaba en el host 133, la subred empezará antes... si empezara en el 0 ... 0+128 = 128, y se quedaría corto, ya que empezando en el 128 ... subred 128 + 128 - 1(subred usada) = 255 broadcast

2⁷ - 2 = 126 posibles hosts
Red: 190.33.109.128
Broadcast: 190.33.109.255

g) 192.168.20.25 / 255.255.255.240

Es de la clase C, pero su máscara llega hasta un poco más del /24, tomando prestados para la red bits de la parte host... haciendo los cálculos en la tabla, obtenemos que la máscara es /28, de manera que coge 4 bits de la parte de red, y deja otros 4 bits para host ...

$2^4 = 16$ subred

Como ya he usado la subred ... 16-1 = 15 ... y como la IP terminaba en el host 25, la subred empezará antes... si empezara en el 0 ... 0+16 = 16, y se quedaría corto, ya que empezando en el 16 ... subred 16 + 16 – 1(subred usada) = 63 broadcast

 $2^4 - 2 =$ 14 posibles hosts 192.168.20.16 Red: Broadcast: 192.168.20.31

h) 192.168.20.25 / 255.255.255.192

Es de la clase C, pero su máscara llega hasta un poco más del /24, tomando prestados para la red bits de la parte host... haciendo los cálculos en la tabla, obtenemos que la máscara es /26, de manera que coge 2 bits de la parte de red, y deja otros 6 bits para host ...

$$2^6 = 64 \text{ subred}$$

Como ya he usado la subred ... 64-1 = 63 ... y como la IP terminaba en el host 25, la subred empezará antes... empezando en el 0 ... subred 0 + 64 – 1(subred usada) = 63 broadcast

 $2^6 - 2 =$ 62 posibles hosts 192.168.20.0 Red: Broadcast: 192.168.20.63

EJERCICIO 16

1. ¿Cuántos ordenadores como máximo se pueden tener en una red de clase A?

$$2^{24} - 2 = 16.777.214$$

2. ¿Cuántos ordenadores como máximo se pueden tener en una red de clase B?

$$2^{16} - 2 = 65.534$$

3. ¿Cuántos ordenadores como máximo se pueden tener en una red de clase C?

$$2^8 - 2 = 254$$

4. En una red de clase C con máscara 255.255.128, ¿cuántos ordenadores se pueden

tener en cada subred?

tener en cada subred?	7	6	5	4	3	2	1	0
El 139 aca caría en hinaria 1000000	128	64	32	16	8	4	2	1
El 128 ese sería en binario 10000000	1	0	0	0	0	0	0	0

De los 8 bits, se ha tomado prestado uno, de modo que quedarían 7 bits para asignar host, así que... $2^7 - 2 = 126$ ordenadores en cada subred

5. En una red de clase C con máscara 255.255.255.192, ¿cuántos ordenadores se pueden tener en cada subred?

El 192 ese sería en binario... 11000000

7	6	5	4	3	2	1	0
128	64	32	16	8	4	2	1
1	1	0	0	0	0	0	0

De los 8 bits, se han tomado prestados dos, de modo que quedarían 6 bits para asignar host, así que... $2^6 - 2 = 62$ ordenadores en cada subred

EJERCICIO 17

Tu empresa tiene una dirección de red de Clase B de 150.10.0.0. Desea subdividir la red física en 3 subredes.

1. Indica una máscara que permita dividir la red de clase B (al menos) en tres subredes.

La máscara sería /18 ó 255.255.192.0

	/16	/17	<mark>/18</mark>	/19	/20	/21	/22	/23
	128	64	32	16	8	4	2	1
0	0	0	0	0	1	0	1	0
64	0	1	1	0	1	1	0	1
128	1	0	0	0	0	0	0	0
192	1	1	0	0	1	0	0	0

2. ¿Cuántos hosts (ordenadores) puede haber por subred?

Se han tomado prestados de la parte de red dos bits, de modo que quedan 6 bits para la parte host, así que... $2^6 - 2 = 62$ ordenadores en cada subred

3. ¿Cuál es la dirección de red y la dirección de broadcast de cada una de las 3 subredes creadas?

Subred	Dirección de subred	Primer ordenador	Último ordenador	Broadcast
1	150.10.0.0	150.10.0.1	150.10.63.254	150.10.63.255
2	150.10.64.0	150.10.64.1	150.10.127.254	150.10.127.255
3	150.10.128.0	150.10.128.1	150.10.191.254	150.10.191.255
4	150.10.192.0	150.10.192.1	150.10.192.254	150.10.192.255

EJERCICIO 18

Dada la dirección de clase B 150.32.0.0, indica qué máscara de subred deberías escoger para tener 4 subred. Rellena a continuación la siguiente tabla:

La máscara sería 255.255.192.0 en decimal, cortando en el /18

Nº de Subred	Dirección de subred	Primer ordenador	Último ordenador	Broadcast
1	150.32.0.0	150.32.0.1	150.32.63.254	150.32.63.255
2	150.32.64.0	150.32.64.1	150.32.127.254	150.32.127.255
3	150.32.128.0	150.32.128.1	150.32.191.254	150.32.191.255
4	150.32.192.0	150.32.192.1	150.32.255.254	150.32.255.255

Completa la siguiente tabla:

IP	Máscara	Subred	Broadcast	Nº de hosts
192.168.1.130	255.255.255.128	192.168.1.128	192.168.1.255	128-2
190.50.27.1	255.255.255.0	190.50.27.0	200.1.17.255	256-2
123.40.50.145	255.255.255.224	123.40.50.128	123.40.50.159	32-2
150.40.50.25	255.255.0.0	150.40.0.0	150.40.255.255	$2^{16} - 2 = 65.534$
222.43.15.41	255.255.255.0	222.43.15.0	222.43.15.255	256-2
192.168.0.1	255.255.255.192	192.168.0.0	192.168.x.x	2 ⁶ -2 = 62

EJERCICIO 20

a. Si tenemos una red 150.84.32.0 con máscara de red 255.255.224, indica la dirección de broadcast, la de red y la de los posibles nodos de la red.

- Red: 150.84.32.0 - Broadcast: 150.84.32.31

- Rango host: 150.84.32.1 – 150.84.32.30

b. La red 192.168.0.0, ¿de qué clase es?

De la clase C

c. Escribe el rango de direcciones IP que pertenecen a la subred definida por la dirección IP 150.84.32.245 con máscara 255.255.255.240.

Red: 150.84.32.240Broadcast: 150.84.32.255

- Rango host: 150.84.32.241 – 150.84.32.254

d. Una red de clase B en Internet tiene una máscara de subred igual a 255.255.240.0. ¿Cuál es el máximo de nodos por subred?

$$2^{12} - 2 = 4.334$$