Contents

1	Lec	ture Note 17	1
	1.1	how to classify groups with semi-directed products	1
		1.1.1 Warm up exercise: $ G = 6 \dots \dots \dots$	1
		1.1.2 Classify all groups $ G = 12 \dots \dots \dots$	1
	1.2	Part 2 of Math 4GR3: Rings and Fields	2
		1.2.1 What is a Ring?	2

1 Lecture Note 17

1.1 how to classify groups with semi-directed products

1.1.1 Warm up exercise: |G| = 6

Say G_{13} of size 6. Let $N \triangleleft G$, |N| = 3 Let H be a group, |H| = 2, $H \subseteq G$. Notice $H \cap N = \{e\}$. So G = NH.

What is Aut < N >? automorphism group. $N \cong C_3$. $Aut < N > \cong$ TODO

There are 2 homomorphisms $\phi: H \to Aut < N >$, $x \to id_N$, these are ϕ_1 , and the other one ϕ_2

 $C_3\times_{\phi_1}C_2,$ muliplication in this exmaple is $< n_1,h_1>< n_2,h_2>=n_1\phi_1(h_1,n_2)h_1h_2=n_1n_2\cdot h_1h_2$ ie $C_3\times C_2$ or C_6 $C_3\times_{\phi_2}C_2\cong S_3$

1.1.2 Classify all groups |G| = 12

 $12 = 2^2 \cdot 3$, so we have 2-Sylow subgroup of size 4 and a 3-Sylow subgroup of size 3.

1. Example $C_12 \cong C_4 \times C_3$, $C_2 \times C_2 \times C_3$, A_4 Dihearal group of with 12 elements $\to D_6$.

What about $S_3 \times C_2$? Is it actually $S_3 \times C_2 \cong D6$?

There are 3 non-isomorphic non-abelian group of order 12 but the missing one is called the dicyclic group of order 12.

G of size 12 and $n_3 \equiv 1 \mod 3$ and $n_3|4$. so either $n_3 = 1$ or 4. If $n_3 = 1$ then the 3-Sylow subgroup is normal otherwise we have $n_3 = 4$.

If we have 4 3-Sylow subgroups, then 8 elements of G have order 3 and we also have the identity 60 this only allows 3 other elements so $n_2 = 1$. In this case the 2-Sylow subgroups is normal.

- Case 1 Let $n_2 = 1$ with 2-Sylow subgroup N and some 3-Sylow subgroup H. $N \cap H = \{e\}$ and G = NH. So G is a semi-direct product. (Hint: We only get 1 non-abelian up to isomorphism.)
- Case 2 $n_3 = 1$ so we have normal 3-Sylow subgroup N and some 2-Sylow subgroup H. Again G = NH and G is a semi-direct product. There are 2 non-abelian examples here up to isomorphism.

Notice if $G \cong N \times H$ then G is abelian.

1.2 Part 2 of Math 4GR3: Rings and Fields

1.2.1 What is a Ring?

A set R with 2 binary operations + and \cdot is called a ring if

- \bullet (R,+) is an abelian group. Usually write 0 for the identity
- · is associative $x \cdot (y \cdot z) = (x \cdot y) \cdot z \forall x, y, z \in R$ If there is a unit, we usually write it as 1, i.e. $1 \cdot x = x \cdot 1 = x \forall x \in R$.
- Distributivity $x \cdot (y+z) = x \cdot y + x \cdot z$ (left-distributivity) $(y+z) \cdot x = y \cdot x + z \cdot x$ (right-distributivity) $\forall x, y, z \in R$.

1. Example

- Z iwth usual + and \cdot is a ring
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ with usual + and \cdot are rings. In fact, every non-zero element has a multiplicative inverse, so there are fields. (Multiplication is commutative as well).
- If we have multiplicative inverse but not commutative TODO
- Polynomial rings: $\mathbb{Z}\{x\}, \mathbb{R}\{x\}, \mathbb{C}\{x\}$ with usual + and ·
- Non-commutative example of a ring: $M_n(\mathbb{R})$ or $M_n(\mathbb{C})$, matrix rings $(n \times n)$ with entries in \mathbb{R} or \mathbb{C})
- Naturual example of a ring without $1 R = \{F : \mathbb{R} \to \mathbb{R}\}$, such that $\int_{-\infty}^{+\infty} |f| dx < \infty$ with usual addition of functions and usual multiplication. But natural choice for 1 would be the constant function 1 but $1 \notin \mathbb{R}$