Modelo de Medição (Processo)

RUTH - ISO 15939

Integrantes:

BRENO LUCENA CORDEIRO - 202017343

DANNYECLISSON RODRIGO MARTINS DA COSTA- 211061592

LEONARDO PORPORATI BARCELLOS- 231039113

LUIS FERNANDO DE ZARBIELLI -211043807

MATEUS SANTOS NEGRINI - 200024825

RAPHAEL MENDES DA SILVA - 211039690

O que é a ISO?

A norma ISO/IEC15939 define um processo de medição de software flexível e adaptável que apoia a gestão e a melhoria contínua de produtos e processos através da coleta, análise e comunicação de dados quantitativos e qualitativos.

Para que serve?

A medição definida pela ISO/IEC 15939 atua como uma ferramenta essencial para monitorar planos, avaliar a qualidade e fundamentar decisões estratégicas e operacionais de forma objetiva.

Ela padroniza o processo de medição de software, permitindo que as organizações desenvolvam, implementem e aprimorem suas medições com consistência, estrutura e alinhamento às metas do negócio.

Visão Geral do Processo

O processo de medição é cíclico e iterativo, permitindo feedback contínuo e evolução incremental das práticas de medição. Segue uma lógica de:

Planejar-Executar-Verificar-Agir (PDCA)

Atividades do Processo

O processo é dividido em quatro atividades principais:

- 1. Estabelecer & Sustentar Compromisso de Medição
- 2. Planejar o Processo de Medição
- 3. Executar o Processo de Medição
- 4. Avaliar a Medição

Propósito e Resultados Esperados do Processo

- Estabelecer e sustentar o compromisso organizacional com a medição
- Identificar necessidades de informação
- Definir e/ou selecionar medidas adequadas
- Planejar e executar as atividades de medição
- Coletar, armazenar, analisar e interpretar dados
- Produzir produtos de informação para tomada de decisão
- Avaliar o processo de medição
- Comunicar melhorias

Figure 1: Software Measurement Process Model.

Papéis

Stakeholder

 Parte interessada. Utiliza resultados da medição e/ou participa no processo de medição.

Measurement Sponsor

- Patrocina o estabelecimento do processo de medição
- Measurement User
 - Usa produtos da informação.
- Measurement Analyst
 - Planeja, executa, avalia e melhora as medições

- Measurement librarian
 - Gerencia banco de dados de medidas.
- Data provider
 - Usuário fonte de dados
- Measurement process owner
 - Responsável pelo processo de medição

- 1. Estabelecer e manter o processo de medição
 - 1.1 Aceitar os requerimentos para a medição
 - 1.2 Alocar recursos

- 1.1 Aceitar os requerimentos para a medição
 - 1.1.1 Escopo da medição é identificado
 - todos os stakeholder devem ser identificados tambem
 - pode ser identificado por entrevistas ou documentos de inspeção
 - 1.1.2 Estabelece o comprometimento da gerencia e da equipe para medição

- 1.2 Alocar recursos
 - 1.2.1 Individuos serão alocados para um processo da medição
 - 1.2.2 Esses individuos serão providenciados com os devidos recursos

• 2. Planejar o processo de medição

- 2.1 Caracterizar unidade de organização
- 2.2 Identificar necessidades de informação
- 2.3 Selecionar medidas
- 2.4 Definir processos de coleção de dados, analise e processos de reportagem
- 2.5 Definir criterios para avaliar os produtos de informação e os processos de medida
- 2.6 Revisar, aprovar e prover recursos para tarefas de medida
- 2.7 Adquirir e aplicar tecnologias de suporte

- 2.1 Caracterizar unidade de organização
 - 2.1.1 Caracteristicas da unidade organizacional relevantes são descritas
- 2.2 Identificar necessidades de informação
 - 2.2.1 Essa necessidade surge do processo técnico e gerencial
 - 2.2.2 Necessidades são priorizadas (junto ao stakeholder)
 - 2.2.3 Essas necessidades são documentadas

- 2.3 Selecionar medidas
 - 2.3.1 Medidas candidatas para a necessidade de informação são selecionadas
 - 2.3.2 Medições são coletadas entre essas candidatas (refletindo a priorização)
 - 2.3.3 Documenta os nomes, unidades, definição formal, metodo de coleta de dados e o link com a necessidade de informações das medições
- 2.4 Definir processos de coleção de dados, analise e processos de reportagem
 - 2.4.1 Define os processos de coleção de dados (incluindo verificação e armazenamento),
 - 2.4.2 Define os processos de analise de dados e reportagem de produtos de informação
 - 2.4.2 Define processos da gerencia de configuração

- 2.5 Definir criterios para avaliar os produtos de informação e os processos de medida
 - 2.5.1 Criterios de avaliação de produtos de informação e de medições são definidos
- 2.6 Revisar, aprovar e prover recursos para tarefas de medida
 - 2.6.1 Resultados do planejamento de medidas devem ser revisados e aprovados
 - 2.6.2 Recursos devem ser disponibilizados para implementar as tarefas de medição planejadas
- 2.7 Adquirir e aplicar tecnologias de suporte
 - 2.7.1 Tecnologias de suporte disponiveis serão avaliadas e as apropiadas serão selecionadas

- 3. Executar o processo de medição
 - 3.1 Integrar procedimentos
 - 3.2 Coletar dados
 - 3.3 Analisar os dados e desenvolver produtos de informação
 - 3.4 Comunicar os resultados

- 3.1 Integrar procedimentos
 - 3.1 Geração e coleção dos dados integrada nos processos relevantes
 - 3.2 Os procedimentos integrados de coleção de dados devem ser comunicados para os provedores dos dados
 - 3.3 Analise e reportagem dos dados integrada nos processos relevantes
- 3.2 Coletar dados
 - 3.2.1 Coletar os dados
 - 3.2.2 Armazena-los
 - 3.2.3 Verifica-los

- 3.3 Analisar os dados e desenvolver produtos de informação
 - 3.3.1 Dados ccoletados analisados
 - 3.3.2 Analise é interpretada
 - 3.3.3 O produto informacional é avaliado
- 3.4 Comunicar os resultados
 - 3.4.1 Os produtos de informação são documentados
 - 3.4.2 Esses produtos são comunicados aos measurement users

• 4. Avaliar medição

- 4.1 Avaliar produtos de infiormação e o processo de medição
- 4.2 Identificar melhoras em potencial

- 4.1 Avaliar produtos de infiormação e o processo de medição
 - 4.1.1 Os produtos de informação são avaliados usando os criterios e conclusões das forças e frquezas dele
 - 4.1.2 As medições são avaliadas usando os criterios e conclusões das forças e frquezas dela
 - 4.1.3 Lições são armazenadas no "Measurement Experience Base"

- 4.2 Identificar melhoras em potencial
 - 4.2.1 Melhoras no produto de informação são identificadas
 - 4.2.2 Melhoras nas medições são identificadas
 - 4.2.3 Potenciais melhoras são comunicadas aos process owner e measurement analyst

Figure 1: Software Measurement Process Model.

Cenário: Desenvolvimento de um Sistema Web

Uma empresa está desenvolvendo um sistema web e deseja acompanhar a produtividade da equipe de desenvolvimento e monitorar a qualidade do código entregue.

1. Necessidade de Informação

Estamos sendo produtivos? A qualidade do código está dentro do esperado?

- 2. Medidas Selecionadas
 - Produtividade = Linhas de Código / Horas trabalhadas
 - Qualidade = Número de defeitos / Linhas de código

3. Componentes do Modelo de Medição

Componente	Produtividade	Qualidade
Entidade	Projeto	Módulo de código
Atributo	Linhas de código, tempo de esforço	Número de defeitos, tamanho do módulo
Medida Base	LOC e horas registradas	LOC e nº de defeitos encontrados
Método de Medição	Contagem automática + registro em timesheet	Inspeções de código e ferramenta de bugs
Medida Derivada	LOC ÷ horas	Defeitos ÷ LOC
Indicador	Produtividade da equipe (LOC/hora)	Densidade de defeitos (defeitos por 1000 LOC)
Critério de decisão	Média histórica da equipe	Limite aceitável: até 5 defeitos/1000 LOC

- 4. Exemplo de Produto de Informação
 - Gráfico semanal de produtividade por desenvolvedor
 - Relatório com taxa de defeitos por sprint
 - Dashboards para gestores com semáforo:
 - Verde: dentro do padrão
 - Amarelo: atenção
 - Vermelho: ação corretiva
- 5. Resultados Esperados
 - Monitoramento contínuo com base em dados reais
 - Tomada de decisão objetiva para ajustes de prazos ou revisão de código
 - Base de experiência (histórico) para futuros projetos

6. Integração com o Ciclo PDCA

Planejar: definir métricas e metas

Executar: coletar dados nos sprints

Verificar: comparar com os critérios definidos

Agir: tomar ações corretivas se necessário (ex: refatorar código)

