Binary Sessions + DbC

Hernán Melgratti

ICC University of Buenos Aires-Conicet

21 February 2020 @ Pisa

Binary Sessions + DbC

- An extension of FuSe with dynamically checked contracts that states properties¹
 - about exchanged messages
 - the structure of the protocol

¹M., Luca Padovani: Chaperone contracts for higher-order sessions. PACMPL 1(ICFP).

FuSe + Service channels (shared channels)

```
module type Service = sig

type \alpha t

val register : ((\beta, \alpha) \text{ st} \rightarrow \text{unit}) \rightarrow (\alpha, \beta) \text{ st} t

val connect : (\alpha, \beta) \text{ st} t \rightarrow (\alpha, \beta) \text{ st}

end
```

- $ightharpoonup \alpha$ is the session type from the client's viewpoint
- register f creates a new shared channel and registers the service f to it.
 - ► Each connection spawns a new thread running f
 - returns the shared channel
- connect ch connects with the service on the shared channel ch
 - return the client endpoint of the established session.

FuSe + Service channels (shared channels)

```
let server ep =
  let p, ep = receive ep in
  let root = ... in
  let ep = send root ep in
  close ep

let math_service = register server
```

```
val server : ?poly.!float.end \rightarrow unit val math_service : !poly.?float.end Service.t
```

```
let user () =
  let ep = connect math_service in
  let ep = send (from_list [2.0; -3.0; 1.0]) ep in
  let _, ep = receive ep in
  close ep
```

FuSe + Service channels

type α t

module type Service =

```
val connect : (\alpha, \beta) st t \to (\alpha, \beta) st
end
module Service : ServiceSig = struct
  type \alpha t = UnsafeChannel.t
  let register f =
    let ch = UnsafeChannel.create () in
    let rec server () =
      let _ = Thread.create f (UnsafeChannel.receive ch) in
      server ()
    in
    let = Thread.create server () in ch
  let connect ch =
    let a, b = FuSe.create () in
    UnsafeChannel.send a ch;
    h
end
```

val register : $((\beta, \alpha) \text{ st} \rightarrow \text{unit}) \rightarrow (\alpha, \beta) \text{ st t}$

A simple FuSe program + Contracts

```
Roots of a polynomial
let server ep =
  let p, ep = receive ep in
  let root = ... in (* assumes p is a linear equation *)
  let ep = send root ep in
  close ep
let math_service = register server contract "Server"
                (*service with a contract and a blame label *)
let user () =
  let ep = connect math_service "Client" in
  let ep = send (from_list [2.0; -3.0; 1.0]) ep in
  let _, ep = receive ep in
  close ep
```

Language for Contracts

Constructors

```
\begin{aligned} &\text{flat\_c} \ : \ (t \to \mathsf{bool}) \to \mathsf{con}(t) \end{aligned} \qquad \qquad t = \omega \\ &\text{send\_c} \ : \ \mathsf{con}(t) \to \mathsf{con}(T) \to \mathsf{con}(\mathsf{L}t.T) \\ &\text{receive\_c} \ : \ \mathsf{con}(t) \to \mathsf{con}(T) \to \mathsf{con}(?t.T) \end{aligned} &\text{end\_c} \ : \ \mathsf{con}(\mathsf{end})
```

Dependent Contracts

Contracts

```
let contract = send_c (flat_c (fun p \rightarrow degree p == 1)) @@ receive_c (flat_c (fun _ \rightarrow true)) @@ end_c
```

- ▶ The continuation does not impose any restriction to the communication protocol
- ... but tedious to write

any_c

Constructors

```
\begin{aligned} & \text{flat\_c} : \ (t \to \mathsf{bool}) \to \mathsf{con}(t) & t = \omega \\ \\ & \text{send\_c} : \ \mathsf{con}(t) \to \mathsf{con}(T) \to \mathsf{con}(!t.T) \\ & \text{receive\_c} : \ \mathsf{con}(t) \to \mathsf{con}(T) \to \mathsf{con}(?t.T) \\ \\ & \text{end\_c} : \ \mathsf{con}(\mathsf{end}) \\ \\ & \text{any\_c} : \ \mathsf{con}(\alpha) \end{aligned}
```

```
let contract = send_c (flat_c (fun p \rightarrow degree p == 1)) @@ any_c (* trivial contract *)
```

- ▶ Can we give some guarantee about the response?
- ▶ We would like to specify that the response is a root of the polynomial

Dependent Contracts

Constructors

send_d : $con(t) \rightarrow (t \rightarrow con(T)) \rightarrow con(!t.T)$ t :: ω receive_d : $con(t) \rightarrow (t \rightarrow con(T)) \rightarrow con(?t.T)$

Contracts

Contracts for choices

Simplified version of choices

```
left : T \oplus S \to T
right : T \oplus S \to S
branch : T \& S \to T + S
```

```
type \alpha+\beta=[ Left of \alpha\mid Right of \beta ] val left: (0,\ (\rho_1,\ \sigma_1)\ \text{st}+(\rho_2,\ \sigma_2)\ \text{st})\to (\sigma_1,\ \rho_1)\ \text{st} val right: (0,\ (\rho_1,\ \sigma_1)\ \text{st}+(\rho_2,\ \sigma_2)\ \text{st})\to (\sigma_2,\ \rho_2)\ \text{st} val branch: ((\rho_1,\ \sigma_1)\ \text{st}+(\rho_2,\ \sigma_2)\ \text{st},0) \to (\rho_1,\ \sigma_1)\ \text{st}+(\rho_2,\ \sigma_2)\ \text{st}
```

```
let left ep = send true ep
let right ep = send false ep
let branch ep =
  use ep;
  if UnsafeChannel.receive ep.channel
  then Left (fresh ep)
  else Right (fresh ep)
```

Contracts for choices

Constructors

```
flat_c : (t \rightarrow bool) \rightarrow con(t)
                                                                                   t :: ω
     send_c : con(t) \rightarrow con(T) \rightarrow con(!t.T)
receive_c : con(t) \rightarrow con(T) \rightarrow con(?t.T)
      end_c : con(end)
      any_c : con(\alpha)
     send_d : con(t) \rightarrow (t \rightarrow con(T)) \rightarrow con(!t.T)
                                                                         t :: ω
receive_d : con(t) \rightarrow (t \rightarrow con(T)) \rightarrow con(?t.T)
 choice_c : con(bool) \rightarrow con(T) \rightarrow con(S) \rightarrow con(T \oplus S)
 branch_c : con(bool) \rightarrow con(T) \rightarrow con(S) \rightarrow con(T\&S)
```

Contracts for choices

```
let server ep =
  let p, ep = receive ep in
  (* it sends as many messages as the real roots of p *)
val server : ?poly.rec A.(!float.A ⊕ end)-> unit
let contract =
  send_d (flat_c (fun p \rightarrow degree p > 0)) @@
  fun p \rightarrow
      let rec missing_roots n =
        if n > 0 then
          branch c
             any c
             (receive_c (flat_c (root_of p)) @@
                missing_roots (n - 1))
            end c
        else
          branch_c (flat_c not) any_c end_c
      in missing_roots (degree p)
```

First order interaction and blame

First order interaction and blame

First order user

```
let user () =
  let x = connect source_chan "User" in
  let y = connect operator_chan "User" in
  let v1, x = receive x in
  let v2, x = receive x in
  let y = send v1 y in
  let y = send v2 y in
  let w, y = receive y in
  print_int w; close x; close y
```

Which party should be blamed if v2 < 0? User

Higher-order communication and blame

Higher-order communication and blame

Delegating user

```
let user_deleg () =
  let x = connect source_chan "User" in
  let y = connect operator_deleg_chan "User" in
  let y = send x y in
  let res, y = receive y in
  print_int res; close y
```

Which party should be blamed if te second value generated by source_chan is negative? User (despite it is not involved in the communication)

$\lambda \mathsf{CoS}$

Syntax

Evanossion			value
Expression	::=	V	
		X	variable
		e_1e_2	application
		let $x, y = e_1$ in e_1	₂ pair splitting
		case e of $e_1 \mid e_2$	case analysis
		$mon^{k,l}(e_2,e_1)$	monitor
		$v \triangleleft^k e$	busy monitor
		blame <i>k</i>	blame
Value v, w, κ_1, κ_2	::=	$c^n v_1 \cdots v_n$	applied constant
		$\lambda x.e$	abstraction
		ε	endpoint
Process P, Q) ::=	$\langle e \rangle_k$	thread
		$P \parallel Q$	composition
	j	$a \Leftarrow_{\nu}^{\kappa_1} v$	service
	ĺ	$P \parallel Q$ $a \Leftarrow_{k}^{\kappa_{1}} v$ $(\nu a)P$	session
		,	
Endpoint 8	:::=	a ^p	lone endpoint
•		$mon^{k,l}(\kappa_1,\varepsilon)$ mo	onitored endpoint
	1	()	

$\lambda \mathsf{CoS}$

Constants

C ⁿ	n max	Sugared	Description
()	0		unit
true, false	0		boolean values
pair	2	(v, w)	pair creation
inl, inr	1		left/right injection
fix	0		fixpoint combinator
connect	0		initiate session
close	0		terminate session
receive	0		input
send	1		output
branch	0		offer choice
left	0		choose left
right	0		choose right
flat_c	1		flat contract
end_c	0		closed endpoint
receive_c	2	$?\kappa_1.\kappa_2$	non-dependent input
send_c	2	$!\kappa_1.\kappa_2$	non-dependent output
receive_d	2	$: \kappa_1 \mapsto w$	dependent input
send_d	2	$!\kappa_1\mapsto w$	dependent output
branch_c	3	$?\kappa_1 \mapsto \kappa_2 : \kappa_3$	external choice
choice_c	3	$!\kappa_1 \mapsto \kappa_2 : \kappa_3$	internal choice
dual	0		compute dual contract

Typing of λCoS

Types

```
Session Type T,S::= end |\; !t.T\; |\; ?t.T\; |\; T \oplus S\; |\; T \& S 
 Type t,s::= unit |\; bool\; |\; t \to^{\iota} s\; |\; t+s\; |\; T\; |\; con(t)\; |\; t \times s\; |\; \#T 
 Kind \iota::=1\; |\; \omega
```

Type schemes of λCoS constants

```
(): unit
true.false: bool
          pair : t \rightarrow s \rightarrow^{\iota} t \times s
           inl: t \rightarrow t + s
           inr : s \rightarrow t + s
        close \cdot end \rightarrow unit
          send: t \rightarrow !t.T \rightarrow^{\iota} T
                                                                                          t :: L
    receive : ?t, T \rightarrow t \times T
         left T \oplus S \to T
        right: T \oplus S \rightarrow S
      branch: T \& S \rightarrow T + S
    connect : \#T \to T
        flat_c : (t \rightarrow bool) \rightarrow con(t)
                                                                                          t .. (1)
        end c : con(end)
      send_c : con(t) \rightarrow con(T) \rightarrow con(!t.T)
 receive_c : con(t) \rightarrow con(T) \rightarrow con(?t.T)
      send_d : con(t) \rightarrow (t \rightarrow con(T)) \rightarrow con(!t.T)
                                                                                        t :: ω
 receive_d : con(t) \rightarrow (t \rightarrow con(T)) \rightarrow con(?t.T)
                                                                                        t :: ω
   choice_c : con(bool) \rightarrow con(T) \rightarrow con(S) \rightarrow con(T \oplus S)
   branch_c : con(bool) \rightarrow con(T) \rightarrow con(S) \rightarrow con(T \& S)
          dual : con(T) \rightarrow con(\overline{T})
```

λCoS

Typing

Typing rules for expressions

[t-const] $t \in \mathsf{typeof}(\mathbf{c})$ $\Gamma :: \omega$ $\Gamma \vdash c : t$

ft-namel Γ :: ω Γ . $u: t \vdash u: t$

 $\Gamma \vdash e : t$

[t-fun]

$$\frac{\Gamma, x : t \vdash e : s \qquad \Gamma :: \iota}{\Gamma \vdash \lambda x . e : t \rightarrow^{\iota} s}$$

[t-app]

$$\frac{\Gamma_1 \vdash e_1 : t \to^{\iota} s \qquad \Gamma_2 \vdash e_2 : t}{\Gamma_1 + \Gamma_2 \vdash e_1 e_2 : s}$$

$$\frac{\Gamma_1 \vdash e_1 : t_1 \times t_2}{\Gamma_1 \vdash \Gamma_2 \vdash \text{let } x, y = e_1 \text{ in } e_2 : t}$$

ft-casel

$$\frac{\Gamma_1 \vdash e : t_1 + t_2 \qquad \Gamma_2 \vdash e_i : t_i \rightarrow^{\iota_i} t^{(i=1,2)}}{\Gamma_1 + \Gamma_2 \vdash \mathsf{case} \ e \ \mathsf{of} \ e_1 \ | \ e_2 : t}$$

[t-blame]

$$\Gamma \vdash \mathsf{blame}\ k:t$$

[t-monitor]

$$\frac{\Gamma_1 \vdash e_1 : t \qquad \Gamma_2 \vdash e_2 : \mathsf{con}(t)}{\Gamma_1 + \Gamma_2 \vdash \mathsf{mon}^{k,l}(e_2, e_1) : t}$$

[t-busy-monitor]

$$\frac{\Gamma_1 \vdash e : \mathsf{bool} \qquad \Gamma_2 \vdash v : t}{\Gamma_1 + \Gamma_2 \vdash v \triangleleft^k e : t}$$

λCoS

Typing

Typing rules for processes

 $\Gamma \vdash P$

[t-thread]

 $\frac{\Gamma \vdash e : \mathsf{unit}}{\Gamma \vdash \langle e \rangle_k}$

 $\frac{\Gamma_i \vdash P_i \stackrel{(i=1,2)}{}{\Gamma_1 + \Gamma_2 \vdash P_1 \parallel P_2}$

[t-session]

 $\frac{\Gamma, a^{+}: T, a^{-}: \overline{T} \vdash P}{\Gamma \vdash (\nu a)P}$

[t-service]

 $\frac{\emptyset \vdash \kappa_1 : \mathsf{con}(T) \quad \Gamma \vdash v : \overline{T} \to \mathsf{unit}}{\Gamma + a : \#T \vdash a \Leftarrow^{\kappa_1}_{\iota} v}$

[t-par]

```
\mathscr{E} ::= [] | \mathscr{E} e | v \mathscr{E} | \mathsf{mon}^{\sigma}(e, \mathscr{E}) | v \triangleleft^{k} \mathscr{E} | \mathsf{let} x, y = \mathscr{E} \mathsf{in} e | \mathsf{case} \mathscr{E} \mathsf{of} e_{1} | e_{2} | \mathsf{mon}^{\sigma}(\mathscr{E}, v)
```

Session establishment

$$\begin{bmatrix} (r - \mathsf{connect}] \\ \left\langle \mathscr{E}[\mathsf{connect} \ a] \right\rangle_k \\ a \Leftarrow_l^{\kappa_1} \ v \end{bmatrix} \rightarrow (\nu b) \left(\langle \mathscr{E}[\mathsf{mon}^{l,k}(\kappa_1, b^+)] \rangle_k \\ \left\langle v \ \mathsf{mon}^{k,l}(\mathsf{dual} \ \kappa_1, b^-) \rangle_l \right) \parallel a \Leftarrow_l^{\kappa_1} \ v \quad b \ \mathsf{fresh}$$

$$\mathscr{E} ::= [] \mid \mathscr{E}e \mid v\mathscr{E} \mid \mathsf{mon}^{\sigma}(e,\mathscr{E}) \mid v \triangleleft^{k} \mathscr{E} \mid \mathsf{let} \ x,y = \mathscr{E} \ \mathsf{in} \ e \mid \mathsf{case} \ \mathscr{E} \ \mathsf{of} \ e_{1} \mid \ e_{2} \mid \mathsf{mon}^{\sigma}(\mathscr{E}, v)$$

Reduction of expressions (2)

```
\mathscr{E} ::= [] \mid \mathscr{E}e \mid v\mathscr{E} \mid \mathsf{mon}^{\sigma}(e,\mathscr{E}) \mid v \triangleleft^{k} \mathscr{E} \mid \mathsf{let} \ x,y = \mathscr{E} \ \mathsf{in} \ e \mid \mathsf{case} \ \mathscr{E} \ \mathsf{of} \ e_{1} \mid e_{2} \mid \mathsf{mon}^{\sigma}(\mathscr{E},v)
```

Communication (simplified)

- ▶ Note that v can be of a non basic type, hence the monitor cannot be evaluated.
- ► Endpoints have a stack of monitors

```
\operatorname{\mathsf{mon}}^{\vec{\sigma}}(\vec{\kappa},e) for \operatorname{\mathsf{mon}}^{\sigma_n}(\kappa_n,\cdots\operatorname{\mathsf{mon}}^{\sigma_1}(\kappa_1,e)\cdots)
\operatorname{\mathsf{mon}}^{\vec{\sigma}}(\vec{\kappa},e) for \operatorname{\mathsf{mon}}^{\sigma_1}(\kappa_1,\cdots\operatorname{\mathsf{mon}}^{\sigma_n}(\kappa_n,e)\cdots)
```

Communication

Dependent communication

```
\begin{split} & [\mathsf{r} - \mathsf{comm} - \mathsf{d}] \\ & \left( \langle \mathscr{E}[\mathsf{send} \ v \ \mathsf{mon}^{\overrightarrow{\sigma}}(\overline{!\kappa_1 \mapsto w_1}, a^p)] \rangle_k \\ & \langle \mathscr{E}'[\mathsf{receive} \ \mathsf{mon}^{\overleftarrow{\varrho}}(\overline{?\kappa_2 \mapsto w_2}, a^{\overline{p}})] \rangle_l \right) \\ & \qquad \qquad + \\ & \left( \langle \mathscr{E}[\mathsf{mon}^{\overrightarrow{\sigma}}(\overline{w_1 v}, a^p)] \rangle_k \\ & \qquad \qquad \langle \mathscr{E}'[(\mathsf{mon}^{\overleftarrow{\varrho}}(\overline{\kappa_2}, \mathsf{mon}^{\overleftarrow{-\sigma}}(\overline{\kappa_1}, v)), \mathsf{mon}^{\overleftarrow{\varrho}}(\overline{w_2 v}, a^{\overline{p}}))] \rangle_l \right) \end{split}
```

Choices

```
\begin{cases} \langle \mathscr{E}[\mathsf{left} \, \mathsf{mon}^{\overrightarrow{\sigma}}(\overrightarrow{:}_{\kappa_1 \mapsto \kappa_2 : \kappa_3}, a^p)] \rangle_k \\ \langle \mathscr{E}'[\mathsf{branch} \, \mathsf{mon}^{\overrightarrow{\varrho}}(\overrightarrow{:}_{\kappa_4 \mapsto \kappa_5 : \kappa_6}, a^{\overline{p}})] \rangle_l \end{cases}
                                                                                      \begin{cases} \langle \mathscr{E}[\mathsf{mon}^{\overrightarrow{\sigma}}(\overrightarrow{\kappa_2},a^p)] \rangle_k \\ \langle \mathscr{E}'[(\lambda \; \mathsf{.inl} \; \mathsf{mon}^{\overleftarrow{\varrho}}(\overrightarrow{\kappa_5},a^{\overline{p}})) \; \mathsf{mon}^{\overleftarrow{\varrho}}(\overrightarrow{\kappa_4},\mathsf{mon}^{\neg\sigma}(\overleftarrow{\kappa_1},\mathsf{true}))] \rangle_l \end{cases}
[r-right]
 \begin{cases} \langle \mathscr{E}[\mathsf{right}\;\mathsf{mon}^{\overrightarrow{\sigma}}(\overline{(1\kappa_1\mapsto\kappa_2:\kappa_3},a^p)]\rangle_k \\ \langle \mathscr{E}'[\mathsf{branch}\;\mathsf{mon}^{\overrightarrow{\varrho}}(\overline{(2\kappa_4\mapsto\kappa_5:\kappa_5},a^{\overline{\varrho}})]\rangle_l \end{cases}
                                                                                   \begin{cases} \langle \mathscr{E}[\mathsf{mon}^{\overrightarrow{\sigma}}(\overrightarrow{\kappa_2}, a^p)] \rangle_k \\ \langle \mathscr{E}'[(\lambda \ \mathsf{.inr} \ \mathsf{mon}^{\widehat{\ell}}(\overrightarrow{\kappa_5}, a^{\overline{p}})) \ \mathsf{mon}^{\widehat{\ell}}(\overline{\kappa_4}, \mathsf{mon}^{\neg \sigma}(\overleftarrow{\kappa_1}, \mathsf{false}))] \rangle_t \end{cases}
```

Session termination

$$(\nu a) \begin{pmatrix} \langle \mathscr{E}[\mathsf{close} \ \mathsf{mon}^{\overrightarrow{\sigma}}(\overrightarrow{\mathsf{end_c}}, a^+)] \rangle_k \\ \langle \mathscr{E}'[\mathsf{close} \ \mathsf{mon}^{\overrightarrow{\varrho}}(\overrightarrow{\mathsf{end_c}}, a^-)] \rangle_l \end{pmatrix} \rightarrow \langle \mathscr{E}[()] \rangle_k \parallel \langle \mathscr{E}'[()] \rangle_l$$

Properties

Subject reduction

- ▶ If $\Gamma :: \omega$ and $\Gamma \vdash P$ and $P \rightarrow Q$, then $\Gamma \vdash Q$.
- ▶ If Γ is balanced and $\Gamma \vdash P$ and $P \to Q$, then there exists Γ' such that $\Gamma \to^* \Gamma'$ and $\Gamma' \vdash Q$.

Blame safety

Goal

- ▶ to ensure that a process that *honours it contracts* cannot be blamed
 - Roughly, if a process sends a value, it is one accepted by the contracts of the monitored channel.
 - lacktriangle ... the formal definition is involved because of dependent contracts and delegation

Contract entailment

 $\kappa_1\leqslant\kappa_2$ if each value that satisfies κ_1 also satisfies κ_2

$$flat_c (\geq 3) \leq flat_c (\geq 0)$$

Contract entailment

 $e_1 \leqslant e_2$ implies either:

- 1. $e_1 \Downarrow \text{flat_c } w_1 \text{ and } e_2 \Downarrow \text{flat_c } w_2 \text{ and for every } v \in w_1 \text{ we have } v \in w_2 \text{, or}$
- 2. $e_1 \Downarrow end_c$ and $e_2 \Downarrow end_c$, or
- 3. $e_1 \Downarrow !\kappa_1.\kappa_2$ and $e_2 \Downarrow !\kappa_3.\kappa_4$ and $\kappa_3 \leqslant \kappa_1$ and $\kappa_2 \leqslant \kappa_4$, or
- 4. ..

Locally correctness

$k \mathcal{C} P$: k is (locally) correct in P

- 1. $P = \mathcal{P}_k[\text{send } v \text{ mon-'-(!flat_c } w._, _)] \text{ implies } v \in w, \text{ and}$
- 2. $P = \mathcal{P}_k[\text{send } v \text{ mon-'-}(!\text{flat_c } w \mapsto _, _)] \text{ implies } v \in w, \text{ and } v \in w$
- 3. $P = \mathscr{P}_k[\text{send mon-'-}(\kappa_1, \varepsilon) \text{ mon-'-}(!\kappa_2, _, _)] \text{ implies } \kappa_1 \leqslant \kappa_2, \text{ and }$
- 4. $P = \mathcal{P}_k[\text{left mon-'-(!flat_c } w \mapsto _:_,_)] \text{ implies true } \in w, \text{ and}$
- 5. $P = \mathcal{P}_k[\text{right mon-}-(!\text{flat_c } w \mapsto _:_,_)]$ implies false $\in w$, and
- 6. $P \rightarrow Q$ implies $k \mathscr{C} Q$.

$$\mathscr{P}_k ::= \langle \mathscr{E} \rangle_k \mid (\mathscr{P}_k \parallel P) \mid (P \parallel \mathscr{P}_k) \mid (\nu a) \mathscr{P}_k$$

Property

Blame safety

If $\Gamma \vdash P$ where P is a user process and k is locally correct in P, then $P \to^* Q$ implies blame $k \not\subset Q$.

GADT for contracts

```
type [_] =

| Flat : (\alpha \to bool) \to [\alpha]

| End : [end]

| Receive : [\alpha] \times (\alpha \to [A]) \to [?\alpha.A]

| Send : [\alpha] \times (\alpha \to [A]) \to [!\alpha.A]

| Branch : [bool] \times [A] \times [B] \to [A \& B]

| Choice : [bool] \times [A] \times [B] \to [A \oplus B]
```

Contract primitives

```
let flat_c w = Flat w let any_c = Flat (fun \_ \to \text{true}) let receive_d k f = Receive (k, f) let receive_c k1 k2 = receive_d k1 (fun \_ \to \text{k2}) ...
```

Monitored endpoint

```
type A mt = 
 | Channel of linearity_tag_type \times A st 
 | Monitor of [\langle \alpha, \beta \rangle] \times \text{string} \times \text{string} \times \langle \alpha, \beta \rangle
```

Implementation of primitives

```
let rec send v =
  function
   | Channel (lin, ep) → Channel (lin, FuSe.send v ep)
  | Monitor (Send (k, w), pos, neg, ep) \rightarrow
    wrap (w v) pos neg (send (wrap k neg pos v) ep)
  | Monitor (Flat _, _, _) → assert false (*IMPOSSIBLE*)
let wrap : type a. [a] \rightarrow string \rightarrow string \rightarrow a \rightarrow a
  = fun k pos neg v \rightarrow
  match k with
  | Flat w \rightarrow if unlimited v && w v
                      then v else raise (Blame pos)
   End as k \rightarrow Monitor(k, pos, neg, v)
    Receive \underline{\ } as k \to Monitor (k, pos, neg, v)
    Send \underline{\ } as k \rightarrow Monitor (k, pos, neg, v)
    Branch _ as k \rightarrow Monitor (k, pos, neg, v)
    Choice \_ as k \rightarrow Monitor (k, pos, neg, v)
```