THE TACTIGON™

Perfect Link Between Human and Digital Worlds

TACTIGON SKIN

01

It's a Platform

It' also compatible with Arduino IDE. You can download APP and the system change functionality

02

Ergonomic Form Factor

The hand are free and you can use the device in very simple way. It's very easy to wear it

03

Hand + Finger Recognition

It's no a glove it's no a bracelet it's no a ring. It's new way for the hand gesture controller. The system recognize the movement of the hand and the fingers with capacity key

Examples

Rover Control

CAD/CAM software

Robotic harm

AR/VR

TACTIGON SKIN & TheTactigon One

HW Architecture

Sensor Fusion Algorithm

-detection of orientation in the space of the device in terms of Eulero Angles: roll, pitch, yaw

- Based on Kalman filter
- Running by default at 50 Hz. Customizable in next API release

HW Architecture

HW Details

Microcontroller: Flash Memory: 512 KB

• STM32 RAM: 80KB

• 32 bit

• 32Mhz EEPROM: 16KB

IMU:

• 3 Axis gyroscope (FS: 2000 deg/s) Temperature Sensor

• 3 Axis accelerometer (FS: 16g)

• 3 Axis magnetometer (FS: 16 Gauss) Barometric Pressure Sensorr

Connectivity:

- Bluetooth Low Energy
- Up 2 UART
- 4 GPIO

Battery: 3.7 Li Ion Rechargeable via Micro USB connector

Software Architecture – CORE

```
CORE
- Sensors management: call drivers, get data
- Sensor Fusion
- Battery management
- BLE management:

    connection manager

    Role management (CENTRAL, PERIPHERAL)

    Read/write BLE characteristics

- Virtual COM port management for fw downloading and debug
- Hook to Arduino setup() function
- Hook to Arduino loop() function
```


Software Execution

```
void main()
                                                                 Arduino code
                            core code
    system_init()
                                                 setup()
    while(1)
         //50Hz timing
               ble_management()
               others() (*)
         //custom timing (dflt: 50Hz)
                                                 loop()
               sensors_read()
               sensor fusion()
         //continuos loop
                                                  (*) VCOM, battery management,
                                                    GPIOs, UARTs, power button,...
```

T-SKIN BLE Peripheral Role

MAC = {11 22 33 44 55 66} BLE name = "....."

Heart Rate Band

BLE Characteristics [20 byte] 128bit UUID

MAC = {11 22 33 44 55 66} BLE_name = "....."

SmartWatch

BLE Characteristics [20 byte] 128bit UUID

T- SKIN BLE Central role

MAC = {11 22 33 44 55 66}
BLE_name = "....."

Any BLE devices

BLE Characteristics [20 byte]
128bit UUID

MAC = {11 22 33 44 55 66}
BLE_name = "....."

BLE - COM converter

BLE Characteristics [20 byte]
128bit UUID

Raw data Sensors

Acceleration x,y,z

Battery Charge Status

Angular Speed x,y,z

Environment Temperature

Earth Mag Field x,y,z

Barometric Pressure

ROVER project

PC connection project

Conclusions

Tactigon board is:

- Very little
- Equipped with inertial sensors
- Powerful: it can run Sensor Fusion algorithm on board
- Self powered with Lithium battery

Suitable for gesture controller

Arduino: to be open to all possible use cases

Design and ergonomic approach: T-Skin

