Universidad del Valle de Guatemala Algoritmos y Bases de datos Juan Diego Avila 20090 Jose Pablo Monzon 20309 Rolando Natanael 20029

Resultados hoja de trabajo 5

AyB)

Cuadro 1. Tabla de resultados del programa de simulacion

Procesos	Intervalos de 10	Intervalos de 5	Intervalos de 1
25	27.7895	30.649	41.41
50	57.0025	68.1512	72.1422
100	126.6094	134.1497	146.6459
150	182.7894	194.068	197.6082
200	268.3362	264.5706	264.2751

Figura 1. Grafico de tiempo promedio al correr la simulacion con distintos intervalos.

Tabla 2. Resultados de utilizar 200 de memoria RAM

Procesos	Intervalos de 10	Intervalos de 5	Intervalos de 1
25	28.67	31.21	44.58
50	72.36	75.39	74.08
100	129.3	141.7	146.1
150	208.8	203.1	210.8
200	262.2	277.1	288.9

Figura 2. Grafico de tiempo promedio al correr la simulacion utilizando 200 de memoria

Tabla 3. Resultados de utilizar un procesador de 6 instrucciones

Procesos	Intervalos de 10	Intervalos de 5	Intervalos de 1
25	11.72	14.65	21.9
50	29.58	34.89	40.24
100	70.14	78.5	84.02
150	106	112.5	113.8
200	151.6	153.1	155.6

Figura 3. Grafico de tiempo promedio al correr la simulacion utilizando 6 instrucciones por intervalos.

Tabla 4. Resultados de utilizando dos procesadores

Procesos	Intervalos de 10	Intervalos de 5	Intervalos de 1
25	7.811	19.61	19.86
50	25.47	30.21	37.2
100	60.82	63.61	64.58
150	89.48	95.69	101.9
200	124.1	129.5	136.3

Figura 4. Grafico de tiempo promedio al correr la simulacion utilizando dos procesadores

Comparacion de procesos

Figura 5. Grafico de tiempo comparando diferentes maneras de optimizar el sistema

Al analizar el comportamiento con cada uno de los procesos se observa que la manera mas eficaz de disminuir el tiempo es aumentando el numero de procesadores, de esta manera ademas de realizar todos los procesos mas rapidamente se observa que es mas estable a comparacion de aumentar la memoria. Sin embargo si es muy costoso utilizar dos procesadores tambien es recomendable utilizar un procesador que logre manejar mas instrucciones a la vez, que genera un cambio similar pero u poco menor que al tener dos procesadores.