Annotation and Evaluation

Digging into Data: Jordan Boyd-Graber

University of Maryland

April 15, 2013

COLLEGE OF INFORMATION STUDIES

Exam

- Solutions posted
- Most missed question: "One coin in a collection of 9 has two heads. The rest are fair. If a coin, chosen at random from the lot and then tossed, turns up heads 3 times in a row, what is the probability that it is the two-headed coin?"

Exam

- Solutions posted
- Most missed question: "One coin in a collection of 9 has two heads. The rest are fair. If a coin, chosen at random from the lot and then tossed, turns up heads 3 times in a row, what is the probability that it is the two-headed coin?"

Solution

Let A be the event that the two-headed coin was selected. Let B be the event that three heads were observed.

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} = \frac{1 \cdot 1/9}{1/9 + 8/9 \cdot (1/2)^3} = \frac{1/9}{2/9} = 1/2$$
 (1)

Homework 2

- Some very imaginative
- Too open ended answers: more next time
- Need to be very careful about what data you collect features from and which dataset you report on!

Free-response Questions

- SVM
 - Diagonal line does better than axis-aligned
 - Most who attempted it did fine
- Suicide
 - Not enough training data
 - Baseline: always say no
- Decision Tree
 - Wrong base
 - Math errors

Rest of this course

- Less time with me lecturing
- Use the class time to connect with your project teammates to work on project
- But don't forget about HW3

Outline

Annotation

Agreement

3 Evaluation

Where do labeled data come from?

- For supervised classification, we've assumed that our data are already available
- Not always the case
- This comes from annotation

Examples of annotation

- Whether an e-mail is spam or not
- Whether a document is relevant to a court case (e-Discovery)
- Which meaning the noun "break" has
 - A time where you're not working
 - A stroke of luck
 - A fracture or other discontinuity
 - A change in how things are done
- Whether an image has a van or not

Why do we annotate?

We manually annotate texts for several reasons

- to understand the nature of text (e.g., what % of sentences in news articles are opinions?)
- to establish the level of human performance (e.g., how well can people assign POS tags?)
- to evaluate a computer model for some phenomenon (e.g., how often does my tagger or parser Pnd the correct answer?)

The process of annotation

- Develop a set of annotations
- Define each of the annotations
- Have annotations annotate the same data
- See if they agree (more on this later)
 - If not, go back to Step 1
 - Why not?
 - Bad annotators?
 - Bad definitions?
 - Unexpected data?

Who does the annotation?

- Undergrads
- Grad students
- Crowdsourcing
 - Scammers
 - Diverse population
 - ★ Worldwide
 - Bored office workers
 - ★ Individuals at home
 - Equity issues
- Users
 - Reviews
 - Blog categories
 - Metadata
 - Often noisy

Why is it important to have agreement?

 Think about what happens to a classifier if it has inconsistent data (same data, different annotations)

Why is it important to have agreement?

- Think about what happens to a classifier if it has inconsistent data (same data, different annotations)
 - For an SVM: there's separating hyperplane
 - ► For a decision tree: decreases information gain of all the features
- Your classifier is only as good as the data it gets
- If your annotators only agree on 40% of the data, your accuracy will be less than 40%
- Common problem: disagreement is undetected because each item is only annotated once
- Resulting complaint: machine learning sucks

Annotation Tools

- WordFreak (for text)
- LabelMe (for images)
- OpenAnnotation (an XML framework)
- Bamboo (visualization and annotation for humanists)

Outline

Annotation

Agreement

3 Evaluation

What does agreement mean?

- Simple answer: how often do two annotators give the same answer
- More complicated: above, adjusting for chance agreement
- Most important for class-imbalanced data

Computing Agreement

$$\kappa = \frac{P_a - P_c}{1 - P_c} \tag{2}$$

- P_a: Probability of coders agreeing
- P_c: Probability of coders agreeing by chance

	Annotator B		
Annotator A	Υ	N	
Υ	20	5	25
N	10	15	25
	30	20	

	Anno		
Annotator A	Υ	Ν	
Υ	20	5	25
N	10	15	25
	30	20	

	Annotator B		
Annotator A	Υ	N	
Y	20	5	25
N	10	15	25
	30	20	

Probability of agreement

$$P_a = \frac{15 + 20}{50} = 0.7$$

	Annotator B		
Annotator A	Υ	Ν	
Y	20	5	25
N	10	15	25
	30	20	

Probability of agreement

$$P_a = \frac{15+20}{50} = 0.7$$

	Annotator B		
Annotator A	Υ	N	
Y	20	5	25
N	10	15	25
	30	20	

Probability of agreement

$$P_a = \frac{15 + 20}{50} = 0.7$$

Chance agreement

- A says yes with probability .5
- B says yes with probability .6
- The probability that both of them say yes (assuming independence) is .3; the probability both say no is .2. The probability of chance agreement is then $P_c = 0.2 + 0.3$.

	Annotator B		
Annotator A	Υ	Ν	
Y	20	5	25
N	10	15	25
	30	20	

Probability of agreement

$$P_a = \frac{15 + 20}{50} = 0.7$$

Chance agreement

- A says yes with probability .5
- B says yes with probability .6
- The probability that both of them say yes (assuming independence) is .3; the probability both say no is .2. The probability of chance agreement is then $P_c = 0.2 + 0.3$.

	Anno		
Annotator A	Υ	N	
Υ	20	5	25
N	10	15	25
	30	20	

Probability of agreement

$$P_a = \frac{15 + 20}{50} = 0.7$$

Chance agreement

- A says yes with probability .5
- B says yes with probability .6
- The probability that both of them say yes (assuming independence) is .3; the probability both say no is .2. The probability of chance agreement is then $P_c = 0.2 + 0.3$.

	Annotator B		
Annotator A	Υ	Ν	
Y	20	5	25
N	10	15	25
	30	20	

Agreement:

$$\kappa = \frac{.7 - .5}{1 - .5} = .4\tag{3}$$

Typically, you want above 0.7 agreement.

Outline

Annotation

Agreement

Evaluation

Cross Validation

- Split your data into N folds
- For each fold:
 - Train your data on all the other folds
 - Compute accuracy/precision/recall on this fold
- Average over all folds
- Uses all available data

Intrinsic vs. Extrinsic Evaluation

- We've focused on intrinsic evaluation
 - Correctly predicting spoilers
 - Assigning words/documents to correct category
 - Detecting whether an image has a cow in it
- More realistic: extrinsic evaluation
 - Number of spoilers seen by social media user
 - Number of relevant documents returned by IR system
 - Throughput of automatic cow milking system
- Bottom line: extrinsic evaluations are harder, but they're more often the thing you care about.

Convincing Results

- Give baseline performance
 - Most frequent class
 - Random guessing
 - Current "best practice"
- Give qualitative results
 - Examples that were right / wrong
 - Error analysis
 - Tell a story
- Give "blue sky" bounds
 - Oracle results for pipeline systems
 - Human ability

Takeaways

- Effective data science depends not just on algorithms, but also having good data
- Agreement measures the quality of the inputs into algorithms
- Effective evaluation is important for communicating your results