RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFTEN DEUTSCHE POST LEHRSTUHL FÜR OPTIMIERUNG VON DISTRIBUTIONSNETZWERKEN Universitätsprofessor Dr.rer.nat.habil. Hans-Jürgen Sebastian

Klausur Methoden und Anwendungen der Optimierung (PT1) 9. Februar 2012

Klausurnummer:

Name:										
Vorname	y:									
Matrikel	nummer:									
Studieng	ang / Fachrichtung	j.								
Hinweise:										
	n Sie die Felder oben v nterschreiben Sie die l		g aus l	ozw. k	orrigi	eren S	Sie ggf	die e	${ m entsprechend}$	en Einträge
	iche Einträge in dem I men (Kein Bleistift!).	Klausurex	æmpla	ar sinc	d mit	dokur	menter	nechte	en Schreibute	ensilien vor-
	ntworten sind in dies Blätter.	em Klaus	surexe	mplar	einzı	ıtrage	en. Be	i Bed	larf erhalten	Sie weitere
	d keine Hilfsmittel au enrechnern und Vorles							sonder	re ist die Ber	nutzung von
• Handy	ys dürfen nicht zur Kl	ausur mit	gebra	cht we	erden	bzw. s	sind a	uszus	chalten.	
• Die H	öchstpunktzahl beträg	gt 90 Pun	kte; d	ie Bea	ırbeitı	ıngsz€	eit bet	rägt	90 Minuten.	
• Beant	worten Sie die Aufgab	en möglic	chst st	ichpu	nktar	tig.				
• Überp	orüfen Sie die Klausur	auf Vollst	tändig	gkeit (Seiten	1 bis	10)!			
Mit meiner diese zu akz	Unterschrift bestätig æptieren.	e ich, die	obige	en Hir	ıweise	zur I	Kennt	nis ge	enommen zu	haben und
Untersch	rift:									
	Aufgabe	Fragen	A1	A2	A3	A4	A5	Σ	Note	
	erreichbare Punkte	30	13	11	12	13	11	90		

erreichte Punkte

Name:

Aufgabenteil (60 Punkte)

Aufgabe 1: Schnittebenenverfahren von Gomory (13 Punkte)

Gegeben ist das folgende ganzzahlige lineare Optimierungsproblem:

max
$$z = x_1 + x_2$$

s.d. $2x_1 + x_2 \le 4$
 $x_1 + 2x_2 \le 3$
 $x_1, x_2 \in \mathbb{N}_0$

Die Anwendung des Simplex-Algorithmus auf dessen LP-Relaxation führt zu folgendem optimalen Endtableau:

	x_1	x_2	s_1	s_2	b_i^*
x_1	1	0	2/3	-1/3	5/3
x_2	0	1	-1/3	2/3	2/3
Δz_j	0	0	1/3	1/3	7/3

Da die optimale Lösung der LP-Relaxation für das ursprüngliche Problem nicht zulässig ist, soll diese mit Hilfe des Schnittebenenverfahrens von Gomory bestimmt werden.

(a) Stellen Sie die dafür notwendige Gomory-Restriktion für die Basisvariable x_1 auf. (3 Punkte)

(b) Erweitern Sie obiges Endtableau des primalen Simplex-Algorithmus um die in (a) aufgestellte Gomory-Restriktion und führen Sie einen dualen Simplex-Schritt durch. (6 Punkte)

	b_i^*
Δz_j	

Name:

	b_i^*
Δz_j	

(c) Ist die in Aufgabenteil (b) bestimmte Lösung zulässig für das ursprüngliche Problem? Begründen Sie Ihre Antwort! (1 Punkt)

(d) Bestimmen Sie für die in Aufgabenteil (a) aufgestellte Gomory-Restriktion die Gleichung der entsprechenden Schnittebene und geben Sie diese explizit an. (3 Punkte)

Aufgabe 2: Implizite Enumeration / Ersatznebenbedingung (11 Punkte)

Gegeben ist das folgende binäre lineare Optimierungsproblem B.

$$\max z = -8x_1 - 4x_2 - 5x_3 - 12x_4 - 6x_5$$
s.d.
$$-2x_1 + 3x_2 - 4x_3 - 8x_4 + 3x_5 \le -2$$

$$4x_1 - 2x_2 + 3x_3 - 4x_5 \le 0$$

$$-4x_1 + x_2 + 3x_3 - 4x_4 + x_5 \le -6$$

$$x_1, \dots, x_5 \in \{0; 1\}$$

Die optimale Lösung der LP-Relaxation von B lautet $x^T = (2/3, 0, 0, 1, 2/3)$.

(a) Zeigen Sie, dass die Nebenbedingung

$$-8x_1 - \frac{2}{3}x_2 + 22x_3 - 18\frac{2}{3}x_4 - 6x_5 \le -28$$

beste Ersatznebenbedingung für obiges binäres Problem B ist. Hinweis: Benutzen Sie den Satz des komplementären Schlupfes. (8 Punkte)

(b) Überprüfen Sie, welche Variablen anhand der in Aufgabenteil (a) aufgestellten bzw. gegebenen Ersatznebenbedingung fixiert werden können und geben Sie deren Werte explizit an. (3 Punkte)

Name: Matrikel-Nr.:

Aufgabe 3: Dijkstra-Algorithmus (12 Punkte)

Gegeben ist der folgende Digraph mit sechs Knoten:

(a) Tragen Sie hierfür in der untenstehenden Tabelle für jede Iteration des Dijkstra-Algorithmus den ausgewählten Knoten, die Menge der vorläufig markierten Knoten, die Menge der endgültig markierten Knoten sowie die Labels $d(1), \ldots, d(5)$ ein. (9 Punkte)

Iteration	Ausgewählter Knoten i	vorläufig markierte Knoten	endgültig markierte Knoten	d(1)	d(2)	d(3)	d(4)	d(5)
Initialisierung	-	S	-	∞	∞	∞	∞	∞

(a) Geben Sie die ermittelten kürzesten Wege von Knoten S zu den Knoten 1, 2, 3, 4 und 5 sowie deren Länge explizit an. (3 Punkte)

Name: Matrikel-Nr.:

Aufgabe 4: Transportproblem (13 Punkte)

Gegeben ist ein Transportproblem mit folgenden Angebots- und Nachfragemengen:

Nachfragemengen							
b_1	b_2	b_3	b_4	b_5			
500	200	300	200	300			

sowie folgender Kostenmatrix:

c_{ij}	B_1	B_2	B_3	B_4	B_5
A_1	7	4	2	1	3
A_2	4	7	3	5	7
A_3	1	6	2	0	1
A_4	4	6	2	1	6

(a) Bestimmen Sie mit Hilfe der Nordwest-Ecken-Regel eine zulässige Lösung für das obige Transportproblem und bestimmen Sie deren Zielfunktionswert. (2 Punkte)

NWE	B_1	B_2	B_3	B_4	B_5	a_i
A_1						300
A_2						300
A_3						300
A_4						600
b_j	500	200	300	200	300	

Zielfunktionswert:

Verwenden Sie nun folgende Lösung als Ausgangsbasislösung für die MODI-Methode:

	B_1	B_2	B_3	B_4	B_5	a_i
A_1		100			200	300
A_2	300					300
A_3	200				100	300
A_4		100	300	200		600
b_j	500	200	300	200	300	

 $Matrikel ext{-}Nr.:$

(b) Bestimmen Sie dazu in der folgenden Tabelle die dazugehörige duale Lösung. (2 Punkte)

	B_1	B_2	B_3	B_4	B_5	u_i
A_1	7	4	2	1	3	0
A_2	4	7	3	5	7	
A_3	1	6	2	0	1	
A_4	4	6	2	1	6	
v_{j}						

(c) Überprüfen Sie die so bestimmte duale Lösung auf Zulässigkeit, indem Sie die Werte der Δz_{ij} bestimmen. (2 Punkte)

	B_1	B_2	B_3	B_4	B_5	u_i
A_1						
A_2						
A_3						
A_4						
v_j						

(d) Tragen Sie in die nachfolgende Tabelle die nächste Basislösung ein. (2 Punkte)

	B_1	B_2	B_3	B_4	B_5	a_i
A_1						300
A_2						300
A_3						300
A_4						600
b_j	500	200	300	200	300	

Name: Matrikel-Nr.:

(e) Führen Sie nun einen weiteren Schritt der MODI-Methode durch. Vervollständigen Sie dazu in der folgenden Tabelle die Werte der u_i und der v_j für die Basislösung aus (d). (2 Punkte)

	B_1	B_2	B_3	B_4	B_5	u_i
A_1	7	4	2	1	3	0
A_2	4	7	3	5	7	
A_3	1	6	2	0	1	
A_4	4	6	2	1	6	
v_j						

(f) Bestimmen Sie die Werte der Δz_{ij} für die in (e) bestimmte duale Lösung. (2 Punkte)

	B_1	B_2	B_3	B_4	B_5	u_i
A_1						
A_2						
A_3						
A_4						
v_j	_					

(g) Ist die in Aufgabenteil (d) ermittelte Basislösung optimal? Begründen Sie Ihre Antwort! (1 Punkt)

Aufgabe 5: Nichtlineare Optimierung (11 Punkte)

Gegeben ist das folgende nichtlineare Optimierungsproblem:

min
$$f(x)$$
 = $(x_1 - 4)^2 + (x_2 - 3)^2$
s.d.
$$x_1^2 + (x_2 - 2)^2 - 13 \le 0$$
$$(x_1 - 3)^2 - x_2 \le 0$$
$$2x_1 + x_2 - 6 \le 0$$
$$x_1, x_2 \in \mathbb{R}$$

(a) Geben Sie für obiges Problem die Kuhn-Tucker-Bedingungen KTB' an. Verwenden Sie dabei die Standardform, d.h. nicht die Formulierung als Sattelpunkt der Lagrange-Funktion. (6 Punkte)

- (b) Welcher der beiden folgenden Punkte erfüllt die Kuhn-Tucker-Bedingungen für obiges Problem? (5 Punkte)
 - $P_1(1; 4)$

 $P_2(2; 2)$

Weiter Aufgabe 5