® 日本国特許庁(JP) ⑪特許出願公開

## ② 公 開 特 許 公 報 (A) 昭63-66983

⑤Int Cl.4

識別記号

庁内整理番号

43公開 昭和63年(1988) 3月25日

H 01 S 3/103

7377-5F

審査請求 未請求 発明の数 2 (全4頁)

半導体レーザーの周波数変調方法及びその装置 49発明の名称

> 21)特 願 昭61-210584

願 昭61(1986)9月9日 22出

千葉県我孫子市つくし野5-7-16 79発 明 者 入江 捷廣

千葉県我孫子市天王台1-1-30-401 伸 和 79発 明者 大 西

株式会社 基礎解析研 東京都渋谷区代々木3-24-3 頣 ①出

究所

弁理士 荒井 郊代 理 人 俊之

> 明 糸田

:1、発明の名称

半導体レーザーの周波数変調方法及びその装置 2、特許請求の範囲

(1)、半導体レーザーの活性層の膜厚を、圧電性 を有する結晶体の前記圧電性を利用して電気的に 制御することにより、前記半導体レーザーの周波 数を変調させることを特徴とする半導体レーザー の周波数変調方法。

(2)、ダブルヘテロ構造を有する半導体レーザー の両外面または一方外面に、圧電性を有する結晶 体を当接配置して構成される半導体レーザー素子 体と、該半導体レーザー素子体の両外面に当接す る姿勢で、且つ一定間隔を維持して前記半導体レ ーザー素子体を挟持する一対の抉持治具とから成 る半導体レーザーの周波数変調装置。

3、発明の詳細な説明

「産業上の利用分野」

本発明は、半導体レーザー光の発振及び受光に 際して、その周波数の変調を可能にする方法とそ の装置に関するものである。

「従来の技術」

周知のように、半導体レーザーはその周波数が 安定しているところに大きな特徴を有するもので ある。しかしながら、逆に言えば、レーザー発振 光の周波数を変調制御させることが困難なもので あった。

即ち、半導体レーザーは、一般にGaAsのような 直接選移型の材料を用いた発光ダイオードを基盤 とするもので、ホモ接合型、単一ヘテロ接合型、 ダブルヘテロ接合型等種々のタイプのものが製作 されているが、これ等の半導体レーザーは、活性 層の充分なキャリアー注入と、光の閉じ込めを効 率良く行うために、活性層の屈折率を周囲のクラ ッド層のそれより大きくすることが条件である。 そして、従来の半導体レーザーでは、この活性層 の膜厚が固定されているので、レーザー発振光の 周波数が固定されることになって一定となり、そ れ故に、周波数の変調が不可能なのである.

処が、昨今の光通信等に於ける情報量の向上に

特開昭63-66983(2)

対する要求の下では、一定の周波数のみによるものでは対応できなくなる成れが憂慮され、この情報量の更なる向上を目的としてレーザー発振光の周波数を変調させることが考えられる。

而して、このレーザー発振光の周波数を変調させる手段として、以下のことが理論的に可能である。

即ち、第2図は、従来のダブルヘテロ接合型のAl<sub>x</sub>Ga<sub>1-x</sub>As半導体の例を示すものである。GaAs活性層の膜厚 4 zは、 4 z < 300人を満たす程度であるが、この程度の膜厚になると量子井戸効果が表れて、第3図に示すように離算的なエネルギー準位となり、半値幅の狭いレーザー光が得られる。

この場合のエネルギー固有値Enは、

 $En = (\hbar^2 / 2\pi^{\bullet})(\pi n / Lz)^2$   $n = 1, 2, 3 \cdots \cdots (1)$  となる。ここで、 $\hbar (= h / 2\pi)$ ; プランク定数、 $\pi^{\bullet}$ ; キャリアの有効質量である。

発振されるレーザー光の周波数は、n=1電子からn=1重い正孔、またはn=1電子からn=1軽い正孔の透移に対応する。

(ここでPは外圧)

と表すと、α=10meV/kbarとなるのである。

「発明が解決しようとする問題点」

このように、レーザー発掘光の周波数を変調させることが可能であることは理論的に明らかにされたが、その具体的な実現手段として上記文献で開示されたものは、活性層の膜厚の変化を直接、機械的に圧力を加えることによって達成するものであった。

しかしながら、このような機械的手段では、極めて微細にして、精緻な変化を要求する上記課題では、技術的に多くの困難が伴い、正確な制御が得られず、装置が大掛かりでコストの嵩むものにならざるを得ない。

本発明は、上述した従来の問題点、欠点、不都合を解消するべく開発された半導体レーザーの周波数変調方法とその装置であって、半導体レーザーの活性層に於ける膜厚の変化を正確且つ簡単に得られるようにすることを目的とする。

「問題を解決するための手段及び作用」

従って、式(1)より、Lzを変化させることにより、レーザー発振光の周波数を変調させることが 可能となるのである。

この理論に基いて、レーザー発振光の周波数を変調させる手段が米国の雑誌フィジカル・レビュー誌に発表されている。(Physical Review B volum33 第8416ページ、1986年6月15日発行)

そしてここでは、活性層の膜厚を変化させる手段として、第2図で矢視で示す如く、直接、機械 的に圧力を加えるものが開示されている。

つまり、前記96人の膜厚に対してエネルギー変化を、

 $\Delta E = E hh(P) - E hh(O) = \alpha P \cdots (2)$ 

以下、本発明の構成を、本発明の実施例を示す図面に基づいて説明する。

本発明の半導体レーザーの周波数変調方法は、 先ず、半導体レーザー2の活性層3の膜厚を、圧 電性を有する結晶体5の前記した圧電性を利用し て電気的に制御することにより、半導体レーザー 2の周波数を変調させるものである。

そして、この周波数変調方法を具体的に実現する半導体レーザーの周波数変調装置は、ダブルへテロ構造を有する半導体レーザー2の両外面にたは一方外面に、圧電性を有する結晶体5を当接配置して構成される半導体レーザー素子体1と、この半導体レーザー素子体1の両外面に当接するやりで、且つ一定間隔を維持して前記した半導体レーザー素子体1を挟持する一対の挟持治具6とから機成されている。

上述した手段、構成にあって、結晶体5に電場をかけて膨張させると、半導体レーザー素子体1は一対の挟持治具6によって挟持され、しかも一対の挟持治具6は一定間隔を維持しているので、

特開昭63-66983(3)

半導体レーザー2に圧力が加えられることになり、 その活性暦3の膜厚が変動することになる。

第1図に於いて、結晶体 5 の膜厚方向の長さを L、この L の増加を Δ L とすると、発生する圧力 P との関係は、

 $\Lambda L / L = S \cdot P \cdots \cdots (3)$ 

である。尚、ここでのSは弾性定数。

また、結晶体5にかける電界をEとすると、

 $\Delta L / L = d \cdot E \cdots \cdots (4)$ 

(ここで d は圧電定数)

であり、式(3)、(4)

 $E = S \cdot P / d \cdots (5)$ 

の式が得られる。

式(3)、(4)に対して、結晶体5の異方性は無視してあるが、異方性のある場合にも拡張される。

このようにして結晶体 5 の 腹厚を 制御することにより、レーザー発振光の 周波数を変調させることが可能となるのである。

即ち、電圧変調に追随した圧電性の結晶体 5 の 圧力変調により、活性層 3 の膜厚を変調させ、も

さて、上記した穀子を用いて半導体レーザー 2 なり結晶体 5 なりを構成した場合、結晶体 5 にかける電界区の具体的な数値は以下の如くなる。

つまり、laeVの変化に対して、式(2)より0.1kbarの圧力を発生させれば良いのであるから、LiNb0,の $d \approx 16.2 \times 10^{-13}$  C/N、 $S \approx 5 \times 10^{-13}$  ㎡  $N^{-1}$ 、とすると、laeV程度の変調を行わせしめるには、

 $E = 3.12 \times 10^4$  ( V / cm )

の電界をかければ良い。

上記実施例では、5 A 程度の波長制御に対応している。

「効果」

本発明は、以上説明したような構成となっており、作用する。

従って、レーザー発掘光の周波数を極めて容易に、しかも確実にして微細に且つ精緻に変調制御させることが可能であり、技術的な多くの問題点を解消し、装置を小規模にしてコストの低いものに抑えることができ、更には、この装置を使用す

ってレーザー光の周波数変調を行わしめるもので ある。

「実施例」

以下に、本発明の一実施例を、ダブルヘテロ接合型のA1<sub>x</sub> Ga<sub>1-x</sub> As半導体、即ち、ダブルヘテロ構造を有する人為的な周期性をもった単一量子井戸、または多重量子井戸から構成される半導体を半導体レーザー2とし、LiNbO<sub>3</sub> を圧電性の結晶体5として半導体レーザー素子体1を構成した場合を説明する。

LiNbO。結晶体 5 は、AlxGairx As半導体レーザー2に対してエピタキシャル成長または接着により一体化されているが、半導体レーザー2の一方片面でも両面であっても良い。 蓋し、半導体レーザー カーカー対の挟持治具 6 によって挟持され、しかもこの一対の挟持治具 6 は一定間隔を維持しているので、結晶体 5 は半導体レーザー2の一方片面に対してだけであっても充分に圧力を加えることが可能なのである。

ることにより、昨今の光通信等に於ける情報量の向上に対する要求に応えて密度の濃い大量の情報処理が簡単に達成されるようになり、光通信に於ける光の直接的な周波数変調、ラマン散乱やフォトルミネッセンスによる各種の光学的な評価への活用が期待できる等、多くの優れた作用効果を奏する画期的な発明である。

4、図面の簡単な説明

第1回は、本発明の構成を示す断面図である。 第2回は、従来の半導体レーザーの断面図であ

第3回は、半導体レーザーのエネルギー準位を 示す説明例である。

符号の説明

出願人 株式会社 基礎解析研究所代理人 井理士 荒 井 俊 之

u •

## 特開昭63-66983(4)



