13.1)
$$\chi_{1,3,1},16$$

2) $(1+i)i = -1+i$
 $(-1+2i)i = -2-i$
 $(4-3i)i = 3+4i$

1+i

2e(2)

2-i

Ser at vinuezen meucon 2 og i 2 er $\frac{40^{\circ}}{1}$ i Mert tiltelle.

3) $fra 7 i 13.1$)

= $\chi_{1} + i y_{1} = \chi_{1} \chi_{2} + y_{1} y_{2} + \chi_{2} \chi_{1} - \chi_{1} y_{2} + \chi_{2} \chi_{2} + y_{2}^{2}$

Vi neur $(26-18i)$, $\chi_{1} = 26$, $\chi_{2} = 6$
 $(6-2i)$ $y_{1} = -18$, $y_{2} = -2$

Formelen $gir: -\frac{24}{5} - \frac{1}{5}i$

14) $\frac{1}{2}i/\frac{1}{2}z$ nar $\frac{1}{2}i$ er $-2+5i$ $\Rightarrow \frac{1}{2}i = -2-5i$
 $\frac{1}{2}z$ er $3-i$
 $\frac{1}{3}i/\frac{1}{2}z$ bruter formet:

 $\frac{1}{3}i$
 $\frac{1}{3}i/\frac{1}{2}z$
 $\frac{1}{3}i/\frac{1}{2}z$

buing 7

Principial value HI et vompleustau er en vinkel meuan -
$$\pi$$
 og π .

for $\sqrt{3} \pm i$: $\tan \theta = \frac{1}{\sqrt{3}}$ og $-\frac{1}{\sqrt{3}}$ som gir $\theta = \pm \frac{\pi}{6}$

principial value: $\frac{\pi}{6}$

21) rottene $til \sqrt[3]{1-i} = 2$
 $2^3 = 1-i$, $\arg(1-i) = \sqrt{2} (1^2 + (-1)^2)^{1/2} = r$, $\arctan(-1) = -\frac{\pi}{4}$
 $2^3 = 1-i$, $\arg(1-i) = \sqrt{2} (1^2 + (-1)^2)^{1/2} = r$, $\arctan(-1) = -\frac{\pi}{4}$
 $2^3 = 1-i$, $\arg(1-i) = \sqrt{2} (1^2 + (-1)^2)^{1/2} = r$, $\arctan(-1) = -\frac{\pi}{4}$
 $1-i$ i polarform: $\sqrt{3} = \sqrt{3} = \sqrt{3$

$$4i\theta = i\frac{\pi}{2} + 2\pi ni \quad gir \quad \theta = \frac{\pi}{8} + \frac{\pi n}{2}$$
 $4\theta = \frac{\pi}{2} + 2\pi n$
 $n = 0, \quad \theta = \frac{\pi}{8}$
 $n = 2, \quad \theta = \frac{9}{8}\pi$
 $n = 1, \quad \theta = \frac{5\pi}{8}$
 $n = 3, \quad \theta = \frac{13}{8}\pi$

そ=0.

15)
$$121^2 \cdot \text{Im}(1/2)$$

 $(x^2+y^2)(-y/x^2+y^2) = -y$
 $= -r\sin\theta \rightarrow 0$
 $f(2)$ er vontinuerig fordi $r=0$ nár

16)
$$(1m z^2) = 2xy$$
 fra en tidligere oppgane.

=
$$\frac{2xy}{x^2+y^2}$$
 i polarkoordinater:
= $\frac{2}{x^2+y^2}$ i polarkoordinater:
= $\frac{2}{x^2+y^2}$ i polarkoordinater:
= $\frac{2}{x^2+y^2}$ i polarkoordinater:
= $\frac{2}{x^2+y^2}$ i polarkoordinater:

f(z) er ille hontinuering i z=0 siden uttrymet er whengig an θ og ille r. $f(0) \neq 0$.

$$\frac{d}{dz}\left(\frac{z-i}{z+i}\right) = \frac{(i+z)-(z-i)}{(z+i)^2} = \frac{2i}{(z+i)^2}$$

18)
$$\frac{d}{dz} \left(\frac{z-i}{z+i} \right) = \frac{(i+z)-(z-i)^{-1}-\frac{2i}{(z+i)^{2}}}{(z+i)^{2}}$$

at $i:\frac{2i}{(2i)^{2}} = -\frac{1}{2}i$