Тема 7. Достаточные статистики и эффективные оценки.

1. Среднеквадратический подход к сравнению точечных оценок.

Пусть совокупность наблюдаемых величин $(\xi_1,...,\xi_n)$ является выборкой из распределения $F_{\xi}(x\mid\theta)$, где θ — скалярный параметр, который принимает значения из множества допустимых значений Θ .

В общем случае для определения неизвестного значения параметра θ могут быть предложены несколько различных оценок, и в этом случае неизбежно возникает ряд вопросов о сравнении оценок и выборе одной наилучшей оценки.

Один из подходов к сравнению оценок заключается в вычислении среднеквадратических отклонений.

Определение 7.1.

Оценка $\hat{\theta}(\xi_1,...,\xi_n)$ лучше оценки $\tilde{\theta}(\xi_1,...,\xi_n)$ в смысле среднеквадратического подхода, если:

1)
$$\forall \theta \in \Theta : M_{\theta}[(\hat{\theta}(\xi_1, ..., \xi_n) - \theta)^2] \leq M_{\theta}[(\tilde{\theta}(\xi_1, ..., \xi_n) - \theta)^2],$$

$$2) \ \exists \ \theta \in \Theta : M_{\theta}[(\hat{\theta}(\xi_1, ..., \xi_n) - \theta)^2] < M_{\theta}[(\tilde{\theta}(\xi_1, ..., \xi_n) - \theta)^2] \ .$$

Определение 7.1 означает, что оценка $\hat{\theta}(\xi_1,...,\xi_n)$ равномерно лучше оценки $\tilde{\theta}(\xi_1,...,\xi_n)$, то есть $\hat{\theta}(\xi_1,...,\xi_n)$ не хуже оценки $\tilde{\theta}(\xi_1,...,\xi_n)$ для всех допустимых значений из множества Θ и хотя бы при одном значении параметра лучше.

В соответствии с определением 7.1 оценкам $\hat{\theta}(\xi_1,...,\xi_n)$ и $\tilde{\theta}(\xi_1,...,\xi_n)$ сопоставляются функции $\hat{d}(\theta)$ и $\tilde{d}(\theta)$:

$$\begin{split} \hat{d}\left(\theta\right) &= M_{\theta} \left[\left(\hat{\theta}\left(\xi_{1}, ..., \; \xi_{n}\right) - \theta \right)^{2} \right], \\ \tilde{d}\left(\theta\right) &= M_{\theta} \left[\left(\tilde{\theta}\left(\xi_{1}, ..., \; \xi_{n}\right) - \theta \right)^{2} \right], \end{split}$$

которые не всегда оказываются сравнимыми, поскольку вполне возможно найдутся два различных значения $\theta_1 \in \Theta$ и $\theta_2 \in \Theta$ таких, что:

$$\begin{split} \hat{d}\left(\theta_{1}\right) &< \widetilde{d}\left(\theta_{2}\right), \\ \hat{d}\left(\theta_{1}\right) &> \widetilde{d}\left(\theta_{2}\right), \end{split}$$

и в этом случае из двух оценок $\hat{\theta}(\xi_1,...,\xi_n)$ и $\tilde{\theta}(\xi_1,...,\xi_n)$ не возможно выбрать наилучшую в среднеквадратическом смысле. Таким образом, отношение «лучше в среднеквадратическом смысле» является лишь отношением частичного порядка на множестве всех возможных оценок.

Кроме того, легко видеть, что среди всех возможных оценок может вообще не существовать наилучшей в среднеквадратическом смысле оценки. Действительно, предположим, что оценка $\hat{\theta}(\xi_1,...,\,\xi_n)$ является наилучшей в среднеквадратическом смысле среди всех возможных оценок параметра θ . Какова функция $\hat{d}(\theta)$ такой наилучшей оценки?

Рассмотрим произвольное допустимое значение параметра $\theta_1 \in \Theta$ и «вырожденную» оценку $\tilde{\theta}(\xi_1,...,\xi_n) = \theta_1$. Оценка $\hat{\theta}(\xi_1,...,\xi_n)$ является наилучшей, поэтому согласно определению 7.1 для любой оценки, в том числе и для $\tilde{\theta}(\xi_1,...,\xi_n)$:

$$\forall \, \theta \in \Theta : M_{\theta} [(\hat{\theta}(\xi_1, ..., \xi_n) - \theta)^2] \leq M_{\theta} [(\tilde{\theta}(\xi_1, ..., \xi_n) - \theta)^2].$$

Откуда для $\theta = \theta_1$:

$$\begin{split} \hat{d}\left(\theta_{1}\right) &= M_{\theta_{1}}[(\hat{\theta}(\xi_{1},...,\xi_{n}) - \theta_{1})^{2}] \leq M_{\theta_{1}}[(\tilde{\theta}(\xi_{1},...,\xi_{n}) - \theta_{1})^{2}] = M_{\theta_{1}}[(\theta_{1} - \theta_{1})^{2}] = 0 \ , \\ \hat{d}\left(\theta_{1}\right) &= 0 \ . \end{split}$$

Поскольку значение θ_1 было выбрано произвольно, то для любого допустимого значения параметра $\theta_1 \in \Theta$ значение $\tilde{d}(\theta_1) = 0$. Следовательно, функция $\tilde{d}(\theta)$ тождественно равна нулю на множестве Θ :

$$\forall \theta \in \Theta : \hat{d}(\theta) = 0,$$

$$\forall \theta \in \Theta : M_{\theta}[(\hat{\theta}(\xi_1,...,\xi_n) - \theta)^2] = 0.$$

Последнее равенство возможно только в том случае, когда:

$$\forall \theta \in \Theta : \hat{\theta}(\xi_1, ..., \xi_n) = \theta$$
.

Последнее равенство означает, что наилучшая оценка $\hat{\theta}(\xi_1,...,\xi_n)$ всегда точно определяет значение параметра θ по выборке $(\xi_1,...,\xi_n)$ из распределения $F_\xi(x\mid\theta)$.

В частных случаях это возможно, например, для случая выборки из распределения $R[\theta,\theta+0.5]$, где параметр θ принимает значения из множества натуральных чисел (в этом случае $\hat{\theta}(\xi_1,...,\ \xi_n)=[\xi_1]$, где $[\cdot]$ означает целую часть, будет наилучшей оценкой). Однако, указанный случай и другие подобные ему являются тривиальными, а в общем случае на существование такой наилучшей оценки $\hat{\theta}(\xi_1,...,\ \xi_n)$ рассчитывать не приходится.

Поскольку в классе всех возможных оценок наилучшей оценки может не существовать, то приходится выделять более узкие классы оценок, например, на основе смещений оценок.

Определение 7.2.

Cмещением оценки $\hat{\theta}(\xi_1,...,\xi_n)$ называется функция $b(\theta)$:

$$b(\theta) = M_{\theta}[\hat{\theta}(\xi_1, ..., \xi_n)] - \theta.$$

Согласно известному соотношению:

$$M_{\theta}[(\hat{\theta}(\xi_{1},...,\xi_{n})-\theta)^{2}] = D_{\theta}[(\hat{\theta}(\xi_{1},...,\xi_{n})-\theta)] + (M_{\theta}[\hat{\theta}(\xi_{1},...,\xi_{n})-\theta])^{2} = D_{\theta}[(\hat{\theta}(\xi_{1},...,\xi_{n})-\theta)] + b^{2}(\theta)$$

$$= D_{\theta}[(\hat{\theta}(\xi_{1},...,\xi_{n})-\theta)] + b^{2}(\theta)$$
(7.1)

поэтому в рамках среднеквадратического подхода сравнение оценок из класса оценок K_b , имеющих заданное смещение $b(\theta)$:

$$K_{b} = \{\hat{\theta}(\xi_{1},..., \xi_{n}) : M_{\theta}[\hat{\theta}(\xi_{1},..., \xi_{n})] - \theta = b(\theta)\},\$$

эквивалентно сравнению дисперсий оценок $D_{\theta}[\hat{\theta}(\xi_1,...,\xi_n)]$, поскольку в (7.1) смещение $b(\theta)$ оказывается одинаковым для всех оценок.

Определение 7.3.

Оценка $\hat{\theta}(\xi_1,...,\xi_n)$ называется эффективной в классе K_b , если для любой оценки $\tilde{\theta}(\xi_1,...,\xi_n)\in K_b$:

$$\forall\;\theta\in\Theta:M_{\theta}[(\hat{\theta}(\xi_{1},...,\;\xi_{n})-\theta)^{2}]\leq M_{\theta}[(\tilde{\theta}(\xi_{1},...,\;\xi_{n})-\theta)^{2}]\;.$$

Из всех классов оценок K_b , как правило, особо выделяют класс оценок K_0 , имеющих нулевое смещение (несмещенных оценок) $b(\theta)=0$, $\theta\in\Theta$.

Определение 7.4.

Эффективная оценка в классе K_0 называется эффективной.

Всегда ли существуют оценка, имеющая заданное смещение $b(\theta)$? Ответ на этот вопрос отрицательный. Согласно определению (7.1) если оценка $\hat{\theta}(\xi_1,...,\xi_n)$ имеет смещение $b(\theta)$ то:

$$M_{\theta}[\hat{\theta}(\xi_{1},..., \xi_{n})] = \theta + b(\theta),$$

$$\int_{R^{n}} \hat{\theta}(x_{1},..., x_{n}) dF_{\xi}(x_{1},..., x_{n}) = \theta + b(\theta)$$
(7.2)

где $F_{\xi}(x_1,...,x_n) = \prod_{i=1}^n F_{\xi}(x_i)$ — функция распределения выборки $(\xi_1,...,\xi_n)$. Таким образом,

функция $\hat{\theta}(x_1,...,x_n)$ является решением интегрального уравнения (7.2), которое в некоторых случаях не всегда имеет решение для заданной функции $b(\theta)$. Отсюда следует, что и существование несмещенных оценок представляет собой вопрос, который в частных случаях решается по-разному (в некоторых случаях несмещенных оценок не существует).

Существование эффективной оценки в классе K_b также представляет собой вопрос, не имеющий единого ответа для всех случаев, тем не менее, всегда можно быть уверенным в том, что в каждом классе K_b не может существовать двух различных эффективных оценок.

Утверждение 7.5.

Если в классе K_b существует эффективная оценка, то она единственна.

Доказательство:

Докажем утверждение от противного: предположим, что существуют две различные эффективные оценки $\hat{\theta}_1(\xi_1,...,\xi_n) \in K_b$ и $\hat{\theta}_2(\xi_1,...,\xi_n) \in K_b$.

1) Поскольку оценка $\hat{\theta}_1(\xi_1,...,\xi_n)$ эффективная в K_b , то согласно определению 7.3:

$$\forall \theta \in \Theta : M_{\theta} [(\hat{\theta}_1 - \theta)^2] \le M_{\theta} [(\hat{\theta}_2 - \theta)^2]. \tag{7.3}$$

Аналогично, в силу того, что $\hat{\theta}_{2}(\xi_{1},...,\xi_{n})$ также эффективная оценка в K_{h} :

$$\forall \theta \in \Theta : M_{\theta}[(\hat{\theta}_1 - \theta)^2] \ge M_{\theta}[(\hat{\theta}_2 - \theta)^2]$$
(7.4)

Из неравенств (7.3) и (7.4) следует равенство среднеквадратических отклонений:

$$\forall \theta \in \Theta : M_{\alpha}[(\hat{\theta}_{1} - \theta)^{2}] = M_{\alpha}[(\hat{\theta}_{2} - \theta)^{2}] \tag{7.5}$$

2) Рассмотрим оценку $\tilde{\theta}(\xi_1,...,\xi_n)$:

$$\widetilde{\theta}\left(\xi_{1},...,\xi_{n}\right) = \frac{\hat{\theta_{1}}(\xi_{1},...,\xi_{n}) + \hat{\theta_{2}}(\xi_{1},...,\xi_{n})}{2} \,.$$

Легко видеть, что оценка $\tilde{\theta} \; (\xi_1,\!...,\; \xi_n) \in K_b$, действительно:

$$\begin{split} M_{\theta}[\widetilde{\theta}] - \theta &= M_{\theta} \left[\frac{\widehat{\theta}_1 + \widehat{\theta}_2}{2} \right] - \theta &= \frac{M_{\theta}[\widehat{\theta}_1] + M_{\theta}[\widehat{\theta}_2]}{2} - \theta = \\ &= \frac{\theta + b(\theta) + \theta + b(\theta)}{2} - \theta = \theta + b(\theta) - \theta = b(\theta) \; . \end{split}$$

3) Вычислим среднеквадратическое отклонение оценки $\stackrel{\sim}{\theta}(\xi_1,...,\ \xi_n)$:

$$\begin{split} M_{\theta}[(\tilde{\theta}-\theta)^{2}] &= M_{\theta} \Bigg[\Bigg(\frac{\hat{\theta}_{1} + \hat{\theta}_{2}}{2} - \theta \Bigg)^{2} \Bigg] &= M_{\theta} \Bigg[\Bigg(\frac{\hat{\theta}_{1} - \theta + \hat{\theta}_{2} - \theta}{2} \Bigg)^{2} \Bigg] = \\ &= \frac{1}{4} M_{\theta} [(\hat{\theta}_{1} - \theta + \hat{\theta}_{2} - \theta)^{2}] = \frac{1}{4} M_{\theta} [(\hat{\theta}_{1} - \theta)^{2} + 2(\hat{\theta}_{1} - \theta)(\hat{\theta}_{2} - \theta) + (\hat{\theta}_{2} - \theta)^{2}] = \\ &= \frac{1}{4} M_{\theta} [2(\hat{\theta}_{1} - \theta)^{2} - (\hat{\theta}_{1} - \theta)^{2} + 2(\hat{\theta}_{1} - \theta)(\hat{\theta}_{2} - \theta) + 2(\hat{\theta}_{2} - \theta)^{2} - (\hat{\theta}_{2} - \theta)^{2}] = \\ &= \frac{1}{4} M_{\theta} [2(\hat{\theta}_{1} - \theta)^{2} + 2(\hat{\theta}_{2} - \theta)^{2} - (\hat{\theta}_{1} - \theta)^{2} + 2(\hat{\theta}_{1} - \theta)(\hat{\theta}_{2} - \theta) - (\hat{\theta}_{2} - \theta)^{2}] = \\ &= \frac{1}{4} M_{\theta} [2(\hat{\theta}_{1} - \theta)^{2} + 2(\hat{\theta}_{2} - \theta)^{2} - ((\hat{\theta}_{1} - \theta) - (\hat{\theta}_{2} - \theta))^{2}] = \\ &= \frac{1}{4} M_{\theta} [2(\hat{\theta}_{1} - \theta)^{2} + 2(\hat{\theta}_{2} - \theta)^{2} - ((\hat{\theta}_{1} - \theta) - (\hat{\theta}_{2} - \theta))^{2}] = \end{split}$$

$$= \frac{1}{2} M_{\theta} [(\hat{\theta}_{1} - \theta)^{2}] + \frac{1}{2} M_{\theta} [(\hat{\theta}_{2} - \theta)^{2}] - \frac{1}{4} M_{\theta} [(\hat{\theta}_{1} - \hat{\theta}_{2})^{2}].$$

Таким образом,

$$M_{\theta}[(\tilde{\theta}-\theta)^{2}] = \frac{1}{2}M_{\theta}[(\hat{\theta}_{1}-\theta)^{2}] + \frac{1}{2}M_{\theta}[(\hat{\theta}_{2}-\theta)^{2}] - \frac{1}{4}M_{\theta}[(\hat{\theta}_{1}-\hat{\theta}_{2})^{2}].$$

Откуда в силу (7.5):

$$M_{\theta}[(\tilde{\theta} - \theta)^{2}] = M_{\theta}[(\hat{\theta}_{1} - \theta)^{2}] - \frac{1}{4}M_{\theta}[(\hat{\theta}_{1} - \hat{\theta}_{2})^{2}],$$

$$M_{\theta}[(\hat{\theta}_{1} - \hat{\theta}_{2})^{2}] = 4(M_{\theta}[(\hat{\theta}_{1} - \theta)^{2}] - M_{\theta}[(\tilde{\theta} - \theta)^{2}])$$
(7.6)

Оценка $\hat{\theta_1}(\xi_1,...,\xi_n)$ по предположению является эффективной в K_b , и в пункте 2 было доказано, что $\tilde{\theta}(\xi_1,...,\xi_n) \in K_b$, тогда из определения (7.3):

$$\forall \theta \in \Theta : M_{\theta}[(\hat{\theta}_{1} - \theta)^{2}] \leq M_{\theta}[(\tilde{\theta} - \theta)^{2}],$$

$$\forall \theta \in \Theta : M_{\theta}[(\hat{\theta}_{1} - \theta)^{2}] - M_{\theta}(\tilde{\theta} - \theta)^{2} \leq 0.$$

Таким образом, из равенства (7.6):

$$\forall \theta \in \Theta : M_{\theta} [(\hat{\theta}_{1} - \hat{\theta}_{2})^{2}] = 4 \Big(M_{\theta} [(\hat{\theta}_{1} - \theta)^{2}] - M_{\theta} [(\tilde{\theta} - \theta)^{2}] \Big) \le 0,$$

$$\forall \theta \in \Theta : M_{\theta} [(\hat{\theta}_{1} - \hat{\theta}_{2})^{2}] \le 0$$

Из последнего неравенства следует, что $\hat{\theta}_1(\xi_1,...,\xi_n) = \hat{\theta}_2(\xi_1,...,\xi_n)$, что противоречит исходному утверждению о том, что оценки $\hat{\theta}_1(\xi_1,...,\xi_n)$ и $\hat{\theta}_2(\xi_1,...,\xi_n)$ являются различными.

Утверждение доказано.

2. Достаточные статистики.

Пусть, как и ранее, совокупность наблюдаемых величин $(\xi_1,...,\xi_n)$ является выборкой из распределения $F_{\xi}(x\mid\theta)$, где θ — скалярный параметр, который принимает значения из множества допустимых значений Θ .

Поскольку распределение величин $(\xi_1,...,\xi_n)$ зависит от параметра θ , то значение параметра определяет вероятности появления реализаций величин $(\xi_1,...,\xi_n)$ в эксперименте. Отсюда следует, что на основе появления той или иной реализации можно сделать вывод о неизвестном значении параметра.

Аналогичные рассуждения можно применить и к любой статистике $S(\xi_1,...,\xi_n)=(S_1(\xi_1,...,\xi_n),...,S_k(\xi_1,...,\xi_n))$ (в общем случае многомерной), распределение которой в некоторой степени зависит от параметра: значения статистики $S(\xi_1,...,\xi_n)$ также позволяют делать выводы о неизвестном значении параметра.

Класс всевозможных статистик чрезвычайно богат и разнообразен, поскольку включает в себя огромное количество статистик с самыми разными свойствами. Например, нетрудно представить себе статистику, распределение которой вовсе не зависит от параметра. На основе значений такой статистики невозможно сделать никакого содержательного вывода о неизвестном значении параметра. Напротив, следует ожидать существование статистик, распределения которых таким образом зависят от параметра, что значения статистик сообщают столько же информации о параметре, сколько и реализации исходных наблюдаемых величин ($\xi_1,...,\xi_n$). Такие статистики «вбирают в себя» полностью всю информацию о параметре, содержащуюся в совокупности величин ($\xi_1,...,\xi_n$), и потому называются статистиками достаточными для параметра.

Определение 7.6.

Статистика $S(\xi_1,...,\xi_n) = (S_1(\xi_1,...,\xi_n),...,S_k(\xi_1,...,\xi_n))$ называется достаточной для

параметра θ , если условное распределение $L_{\theta}(x_1,...,x_n\mid S)$ величин $(\xi_1,...,\xi_n)$ относительно статистики $S(\xi_1,...,\xi_n)$ не зависит от параметра θ .

Достаточные статистики имеют весьма широкое применение в самых различных задачах. В частности, если размерность достаточной статистики k меньше количества случайных величин в наблюдении n, то достаточная статистика может быть использована для «сжатия» информации о параметре без потерь в статистическом смысле: достаточно по заданной реализации $(x_1,...,x_n)$ наблюдаемых величин $(\xi_1,...,\xi_n)$ вычислить значение достаточной статистики $(s_1,...,s_k) = (S_1(x_1,...,x_n),...,S_k(x_1,...,x_n))$ после чего реализацию $(x_1,...,x_n)$ можно отбросить. Полученное значение достаточной статистики $(s_1,...,s_k)$ при условии k < n требует меньший объем памяти при хранении и меньшее время при передаче по каналу связи по сравнению с исходной реализацией $(x_1,...,x_n)$.

Использование значения $(s_1,...,s_k)$ в статистических процедурах может быть организовано не менее эффективно, чем использование исходной реализации $(x_1,...,x_n)$: для всякой статистической процедуры $\delta(\xi_1,...,\xi_n)$, основанной на использовании величин $(\xi_1,...,\xi_n)$ может быть построена «эквивалентная» процедура $\delta'(S_1,...,S_k)$, основанная на достаточной статистике $(S_1,...,S_k)$. Действительно, вычислим значение достаточной статистики $(s_1,...,s_k)=(S_1(x_1,...,x_n),...,S_k(x_1,...,x_n))$ и вектор $(x_1,...,x_n)$ отбросим (он более не потребуется). Далее, поскольку условное распределение $L_\theta(x_1,...,x_n)$ случайного вектора $(\xi_1,...,\xi_n)$ относительно достаточной статистики $(S_1,...,S_k)$ не зависит от неизвестного значения параметра θ , то может быть построен генератор реализаций случайного вектора $(\xi_1,...,\xi_n)$, на вход которого подается значение достаточной статистики $(s_1,...,s_k)$, а на выходе которого будет получена реализация $(x_1',...,x_n')$ величин $(\xi_1,...,\xi_n)$. Вектор $(x_1',...,x_n')$, вообще говоря, может отличаться от исходного вектора $(x_1,...,x_n)$, но значения достаточной статистики $(S_1,...,S_k)$ для вектора $(x_1',...,x_n')$ и для вектора $(x_1,...,x_n)$ одинаковы:

$$S_1(x'_1,..., x'_n) = S_1(x_1,..., x_n),$$
...,
 $S_k(x'_1,..., x'_n) = S_k(x_1,..., x_n)$

и в этом смысле реализация наблюдения $(x_1',...,x_n')$ «равноценна» исходной реализации наблюдения $(x_1,...,x_n)$. В завершении остается лишь применить статистическую процедуру $\delta(\xi_1,...,\xi_n)$ к вектору $(x_1',...,x_n')$.

Нахождение достаточных статистик на основе определения во многих случаях является затруднительным, поскольку требует нахождения условного распределения. Более простой способ нахождения достаточных статистик дает приводимый далее критерий факторизации.

Теорема 7.7. (Неймана – Фишера) (критерий факторизации)

Пусть $(\xi_1,...,\xi_n)$ — выборка и $L(x_1,...,x_n\mid\theta)$ — функция правдоподобия вектора $(\xi_1,...,\xi_n)$. Статистика $S(\xi_1,...,\xi_n)=(S_1(\xi_1,...,\xi_n),...,S_k(\xi_1,...,\xi_n))$ является достаточной для параметра θ тогда и только тогда, когда функция правдоподобия $L(x_1,...,x_n\mid\theta)$ имеет вид:

$$L(x_1,...,\ x_n \mid \theta) = g(S(x_1,...,\ x_n),\theta)h(x_1,...,\ x_n)\,,$$

где g и h некоторые функции.

Доказательство:

Рассмотрим доказательство только для случая, когда все случайные величины ξ_i ($i=\overline{1,n}$) дискретны.

1) Пусть статистика $S(\xi_1,...,\xi_n)$ является достаточной для параметра θ , покажем, что:

$$L(x_1, ..., x_n \mid \theta) = g(S(x_1, ..., x_n), \theta) h(x_1, ..., x_n).$$

Функция правдоподобия $L(x_1,...,x_n \mid \theta)$ равна вероятности события $A(x_1,...,x_n) = \{\omega : \xi_1(\omega) = x_1,...,\xi_n(\omega) = x_n\}$:

$$L(x_1,..., x_n \mid \theta) = P_{\theta} \{ \omega : \xi_1(\omega) = x_1,..., \xi_n(\omega) = x_n \}.$$

Рассмотрим событие $B(x_1,...,x_n) = \{\omega : S(\xi_1(\omega),...,\xi_n(\omega)) = S(x_1,...,x_n)\}$. Легко видеть, что если при некотором ω выполняются равенства $\xi_1(\omega) = x_1$, ..., $\xi_n(\omega) = x_n$, то при этом же ω выполняется равенство $S(\xi_1(\omega),...,\xi_n(\omega)) = S(x_1,...,x_n)$, поэтому, очевидно:

$$A(x_1,..., x_n) \subseteq B(x_1,..., x_n)$$

откуда следует, что совместное наступление событий A и B есть событие A:

$$A(x_1,..., x_n) = A(x_1,..., x_n) \cap B(x_1,..., x_n)$$

то есть,

$$\begin{split} \{\omega: \xi_1(\omega) = x_1, &..., \ \xi_n(\omega) = x_n\} = \\ &= A(x_1, &..., \ x_n) = A(x_1, &..., \ x_n) \cap B(x_1, &..., \ x_n) = \\ &= \{\omega: \xi_1(\omega) = x_1, &..., \ \xi_n(\omega) = x_n, S(\xi_1(\omega), &..., \ \xi_n(\omega)) = S(x_1, &..., \ x_n)\} \;. \end{split}$$

Отсюда следует равенство для вероятностей событий:

$$P_{\theta}\{\omega:\xi_{1}(\omega)=x_{1},...,\ \xi_{n}(\omega)=x_{n}\}=$$

$$= P_{\theta} \{ \omega : \xi_1(\omega) = x_1, ..., \ \xi_n(\omega) = x_n, S(\xi_1(\omega), ..., \ \xi_n(\omega)) = S(x_1, ..., \ x_n) \}$$

Вероятность справа представим по формуле умножения как произведение условной и безусловной вероятностей:

$$\begin{split} P_{\theta}\{\omega: \xi_{1}(\omega) &= x_{1}, ..., \ \xi_{n}(\omega) = x_{n}, S(\xi_{1}(\omega), ..., \ \xi_{n}(\omega)) = S(x_{1}, ..., \ x_{n})\} = \\ &= P_{\theta}\{\omega: \xi_{1}(\omega) = x_{1}, ..., \ \xi_{n}(\omega) = x_{n} \mid S(\xi_{1}(\omega), ..., \ \xi_{n}(\omega)) = S(x_{1}, ..., \ x_{n})\} \cdot \\ & \qquad \qquad \cdot P_{\theta}\{\omega: S(\xi_{1}(\omega), ..., \ \xi_{n}(\omega)) = S(x_{1}, ..., \ x_{n})\} \end{split}$$

Условная вероятность $L_{\theta}(x_1,...,x_n \mid S(x_1,...,x_n))$:

$$L_{\theta}\left(x_{1},...,\ x_{n}\mid S\left(x_{1},...,\ x_{n}\right)\right)=P_{\theta}\{\omega:\xi_{1}(\omega)=x_{1},...,\ \xi_{n}(\omega)=x_{n}\mid S\left(\xi_{1}(\omega),...,\ \xi_{n}(\omega)\right)=S\left(x_{1},...,\ x_{n}\right)\}$$
 не зависит от параметра θ , поскольку статистика $S\left(\xi_{1},...,\ \xi_{n}\right)$ является достаточной для

параметра θ , и может зависеть только от x_1 , ..., x_n и $S(x_1,...,x_n)$. Таким образом, условная вероятность $L_{\theta}(x_1,...,x_n \mid S(x_1,...,x_n))$ является функцией только x_1 , ..., x_n :

$$L_{\theta}(x_1,..., x_n \mid S(x_1,..., x_n)) = h(x_1,..., x_n)$$
.

Безусловная вероятность $P_{\theta}\{\omega:S(\xi_1(\omega),...,\xi_n(\omega))=S(x_1,...,x_n)\}$ очевидно зависит от величины $S(x_1,...,x_n)$ и, возможно, от параметра θ :

$$P_{\theta}\{\omega: S(\xi_1(\omega),..., \xi_n(\omega)) = S(x_1,..., x_n)\} = g(S(x_1,..., x_n), \theta).$$

Таким образом, для функции правдоподобия $L(x_1, ..., x_n \mid \theta)$ получим:

$$\begin{split} L(x_1, &\dots, \ x_n \mid \theta) &= P_{\theta}\{\omega : \xi_1(\omega) = x_1, \dots, \ \xi_n(\omega) = x_n\} = \\ &= P_{\theta}\{\omega : \xi_1(\omega) = x_1, \dots, \ \xi_n(\omega) = x_n, S(\xi_1(\omega), \dots, \ \xi_n(\omega)) = S(x_1, \dots, \ x_n)\} = \\ &= P_{\theta}\{\omega : \xi_1(\omega) = x_1, \dots, \ \xi_n(\omega) = x_n \mid S(\xi_1(\omega), \dots, \ \xi_n(\omega)) = S(x_1, \dots, \ x_n)\} \cdot \\ &\qquad \qquad \cdot P_{\theta}\{\omega : S(\xi_1(\omega), \dots, \ \xi_n(\omega)) = S(x_1, \dots, \ x_n)\} = \\ &= h(x_1, \dots, \ x_n) \cdot g(S(x_1, \dots, \ x_n), \theta) \,. \end{split}$$

2) Пусть имеет место разложение для функции правдоподобия $L(x_1,...,x_n\mid\theta)=g(S(x_1,...,x_n),\theta)h(x_1,...,x_n)$, покажем, что в этом случае статистика $S(\xi_1,...,\xi_n)$ является достаточной для параметра θ , то есть условная вероятность $L_{\theta}(x_1,...,x_n\mid S)$ не зависит от параметра θ . По определению условной вероятности:

$$\begin{split} L_{\theta}(x_{1},...,\ x_{n}\mid s) &= P_{\theta}\{\omega:\xi_{1}(\omega) = x_{1},...,\ \xi_{n}(\omega) = x_{n}\mid S(\xi_{1}(\omega),...,\ \xi_{n}(\omega)) = s\} = \\ &= \frac{P_{\theta}\{\omega:\xi_{1}(\omega) = x_{1},...,\xi_{n}(\omega) = x_{n},S(\xi_{1}(\omega),...,\xi_{n}(\omega)) = s\}}{P_{\theta}\{\omega:S(\xi_{1}(\omega),...,\xi_{n}(\omega)) = s\}} \end{split}$$

Если $s \neq S(x_1,...,x_n)$, то вероятность, стоящая в числителе равна нулю независимо от значения параметра θ .

Если $s = S(x_1,..., x_n)$, тогда:

$$\begin{split} \frac{P_{\theta}\{\omega:\xi_{1}(\omega)=x_{1},\ldots,\xi_{n}(\omega)=x_{n},S(\xi_{1}(\omega),\ldots,\xi_{n}(\omega))=S(x_{1},\ldots,x_{n})\}}{P_{\theta}\{\omega:S(\xi_{1}(\omega),\ldots,\xi_{n}(\omega))=S(x_{1},\ldots,x_{n})\}} = \\ &= \frac{P_{\theta}\{\omega:\xi_{1}(\omega)=x_{1},\ldots,\xi_{n}(\omega)=x_{n}\}}{P_{\theta}\{\omega:S(\xi_{1}(\omega),\ldots,\xi_{n}(\omega))=S(x_{1},\ldots,x_{n})\}} = \frac{P_{\theta}\{\omega:\xi_{1}(\omega)=x_{1},\ldots,\xi_{n}(\omega)=x_{n}\}}{\sum\limits_{\substack{(y_{1},\ldots,y_{n}):\\S(y_{1},\ldots,y_{n})=S(x_{1},\ldots,x_{n})}}} = \frac{P_{\theta}\{\omega:\xi_{1}(\omega)=x_{1},\ldots,\xi_{n}(\omega)=x_{n}\}}{\sum\limits_{\substack{(y_{1},\ldots,y_{n}):\\S(y_{1},\ldots,y_{n})=S(x_{1},\ldots,x_{n})}}} = \frac{P_{\theta}\{\omega:\xi_{1}(\omega)=x_{1},\ldots,\xi_{n}(\omega)=x_{n}\}}{\sum\limits_{\substack{(y_{1},\ldots,y_{n}):\\S(y_{1},\ldots,y_{n})=S(x_{1},\ldots,x_{n})}}} = \frac{P_{\theta}\{\omega:\xi_{1}(\omega)=x_{1},\ldots,\xi_{n}(\omega)=x_{n}\}}{\sum\limits_{\substack{(y_{1},\ldots,y_{n}):\\S(y_{1},\ldots,y_{n})=S(x_{1},\ldots,x_{n})}}} = \frac{P_{\theta}\{\omega:\xi_{1}(\omega)=x_{1},\ldots,\xi_{n}(\omega)=x_{n}\}}{\sum\limits_{\substack{(y_{1},\ldots,y_{n}):\\S(y_{1},\ldots,y_{n})=S(x_{1},\ldots,x_{n})}}} = \frac{P_{\theta}\{\omega:\xi_{1}(\omega)=x_{1},\ldots,\xi_{n}(\omega)=x_{n}\}}{\sum\limits_{\substack{(y_{1},\ldots,y_{n}):\\S(y_{1},\ldots,y_{n})=S(x_{1},\ldots,x_{n})}}}} = \frac{P_{\theta}\{\omega:\xi_{1}(\omega)=x_{1},\ldots,\xi_{n}(\omega)=x_{n}\}}{\sum\limits_{\substack{(y_{1},\ldots,y_{n}):\\S(y_{1},\ldots,y_{n})=S(x_{1},\ldots,x_{n})}}}} = \frac{P_{\theta}\{\omega:\xi_{1}(\omega)=x_{1},\ldots,\xi_{n}(\omega)=x_{n}\}}{\sum\limits_{\substack{(y_{1},\ldots,y_{n}):\\S(y_{1},\ldots,y_{n})=S(x_{1},\ldots,x_{n})}}}} = \frac{P_{\theta}\{\omega:\xi_{1}(\omega)=x_{1},\ldots,\xi_{n}(\omega)=x_{n}\}}{\sum\limits_{\substack{(y_{1},\ldots,y_{n}):\\S(y_{1},\ldots,y_{n})=S(x_{1},\ldots,x_{n})}}}}} = \frac{P_{\theta}\{\omega:\xi_{1}(\omega)=x_{1},\ldots,\xi_{n}(\omega)=x_{1},\ldots,\xi_{n}(\omega)=x_{1},\ldots,\xi_{n}(\omega)=x_{1},\ldots,\xi_{n}(\omega)=x_{$$

Таким образом,

$$L_{\theta}(x_{1},...,x_{n} \mid s) = \begin{cases} 0 & ,s \neq S(x_{1},...,x_{n}) \\ \frac{h(x_{1},...,x_{n})}{\sum\limits_{\substack{(y_{1},...,y_{n})\\S(y_{1},...,y_{n})=S(x_{1},...,x_{n})}}, s = S(x_{1},...,x_{n}) \end{cases},$$

Выражение, стоящее справа, очевидно, не зависит от параметра θ , поэтому условная вероятность $L_{\theta}(x_1,...,x_n\mid S)$ не зависит от параметра θ , и следовательно статистика $S(\xi_1,...,\xi_n)$ является достаточной для параметра θ .

Теорема доказана.

Следствие 7.8.

Пусть $S(\xi_1,...,\xi_n)$ — статистика достаточная для параметра θ , тогда МП-оценка параметра $\theta^*(\xi_1,...,\xi_n)$ является функцией достаточной статистики $S(\xi_1,...,\xi_n)$.

Доказательство:

Поскольку $S(\xi_1,...,\xi_n)$ — статистика достаточная для параметра θ , то по критерию факторизации для функции правдоподобия $L(x_1,...,x_n\mid\theta)$ имеется разложение:

$$L(x_1,..., x_n | \theta) = g(S(x_1,..., x_n), \theta)h(x_1,..., x_n)$$

В соответствии с определением МП-оценки оценка $\theta^*(\xi_1,...,\xi_n)$ доставляет наибольшее значение функции правдоподобия $L(x_1,...,x_n\mid\theta)$:

$$L(\xi_{1},...,\xi_{n} \mid \theta^{*}) = \sup_{\theta} L(\xi_{1},...,\xi_{n} \mid \theta) = \sup_{\theta} g(S(\xi_{1},...,\xi_{n}),\theta)h(\xi_{1},...,\xi_{n}) = h(\xi_{1},...,\xi_{n})\sup_{\theta} g(S(\xi_{1},...,\xi_{n}),\theta).$$

Значение параметра θ , соответствующее наибольшему значению функции $g(S(\xi_1,...,\xi_n),\theta)$, будет зависеть от ξ_1 , ..., ξ_n только через значения статистики $S(\xi_1,...,\xi_n)$, поэтому МПоценка $\theta^*(\xi_1,...,\xi_n)$ будет функцией статистики $S(\xi_1,...,\xi_n)$:

$$\theta^*(\xi_1,..., \xi_n) = G(S(\xi_1,..., \xi_n)).$$

Следствие доказано.

Следствие 7.9.

Пусть $S(\xi_1,...,\xi_n)$ — статистика, достаточная для параметра θ и $S^*(\xi_1,...,\xi_n)$ — статистика, через которую можно выразить статистику $S(\xi_1,...,\xi_n)$, то есть,

$$S(\xi_1,...,\xi_n) = G(S^*(\xi_1,...,\xi_n)),$$

где G(s) — некоторая функция, тогда статистика $S^*(\xi_1,...,\xi_n)$ тоже является достаточной для параметра θ .

Доказательство:

Действительно, если $S(\xi_1,...,\xi_n)$ — статистика, достаточная для параметра θ , то по теореме (7.7) для функции правдоподобия получим факторизацию:

$$L(x_1, ..., x_n \mid \theta) = g(S(x_1, ..., x_n), \theta) h(x_1, ..., x_n),$$

подставляя сюда выражение статистики S, через статистику S^* ,

$$S(\xi_1,..., \xi_n) = G(S^*(\xi_1,..., \xi_n))$$
,

получим факторизацию:

$$L(x_1,..., x_n \mid \theta) = g(G(S^*(x_1,..., x_n)), \theta)h(x_1,..., x_n) = g^*(S^*(x_1,..., x_n), \theta)h(x_1,..., x_n),$$

откуда по теореме 7.7 (в обратную сторону) статистика $S^*(\xi_1,...,\xi_n)$ является достаточной для параметра θ .

Следствие доказано.

В общем случае достаточных статистик может быть несколько. В частности, из определения легко видеть, что достаточной статистикой является исходная совокупность наблюдаемых случайных величин (ξ_1 ,..., ξ_n), которую называют *тривиальной достаточной статистикой*. Разумеется, тривиальная достаточная статистика не представляет большого интереса, напротив крайне желательно располагать достаточными статистиками $S(\xi_1,...,\xi_n)$ размерностями k меньше n.

Как показывает следствие 7.9 класс достаточных статистик может быть достаточно обширным, любая статистика $S^*(\xi_1,...,\xi_n)$ через которую можно выразить достаточную статистику $S(\xi_1,...,\xi_n)$ также становится достаточной. Заметим, однако, что если статистика $S(\xi_1,...,\xi_n)$ выражается через статистику $S^*(\xi_1,...,\xi_n)$, то это означает, что статистика $S(\xi_1,...,\xi_n)$ «не сложнее» статистики $S^*(\xi_1,...,\xi_n)$ (речь здесь не обязательно касается размерностей статистик). Таким образом, на множестве достаточных статистик может быть введено, по крайней мере, отношение частичного порядка путем задания подчиненности статистик.

Определение 7.10.

Статистика $\hat{T}(\xi_1,...,\xi_n)$ подчинена статистике $\tilde{T}(\xi_1,...,\xi_n)$, если:

$$\hat{T}\left(\xi_{1},...,\ \xi_{n}\right)=G\left(\widetilde{T}\left(\xi_{1},...,\ \xi_{n}\right)\right)\ ,$$

для некоторой функции G .

Определение 7.11.

Если $\hat{T}(\xi_1,...,\xi_n)$ подчинена статистике $\tilde{T}(\xi_1,...,\xi_n)$ и наоборот $\tilde{T}(\xi_1,...,\xi_n)$ подчинена статистике $\hat{T}(\xi_1,...,\xi_n)$, то статистики $\hat{T}(\xi_1,...,\xi_n)$ и $\tilde{T}(\xi_1,...,\xi_n)$ называются эквивалентными.

Поскольку отношение подчиненности фактически означает отношение «не сложнее чем», то наибольший интерес представляют достаточные статистики, которые подчинены всем другим достаточным статистикам.

Определение 7.12.

Достаточная статистика называется *минимальной*, если она подчинена любой другой достаточной статистике.

Согласно определению минимальная достаточная статистика является самой «простой» из всех достаточных статистик и её дальнейшее упрощение без потери достаточности оказывается невозможным.

Теорема 7.13.

Если функция правдоподобия $L(x_1,...,x_n\mid\theta)$ при всех $(x_1,...,x_n)$ является функцией непрерывной справа (или слева) по θ на множестве Θ , и МП-оценка $\theta^*(\xi_1,...,\xi_n)$ единственна и является достаточной статистикой, тогда $\theta^*(\xi_1,...,\xi_n)$ является минимальной достаточной статистикой.

Без доказательства.

Большое значение имеет приводимая далее теорема, которая указывает на возможность улучшения произвольных оценок с помощью достаточных статистик.

Теорема 7.14. (Блекуэлл, Рао, Колмогоров)

Пусть оценка $\hat{\theta}(\xi_1,...,\xi_n) \in K_b$, $S(\xi_1,...,\xi_n)$ — статистика достаточная для параметра θ , и случайная величина $\hat{\theta}_S$ является условным математическим ожиданием оценки $\hat{\theta}(\xi_1,...,\xi_n)$ относительно статистики $S(\xi_1,...,\xi_n)$:

$$\hat{\theta}_{S} = M_{\theta} [\hat{\theta}(\xi_{1},..., \xi_{n}) | S(\xi_{1},..., \xi_{n})],$$

тогда

- 1) случайная величина $\hat{\theta}_S$, зависит от величин $(\xi_1,...,\ \xi_n)$ только через $S(\xi_1,...,\ \xi_n)$, то есть $\hat{\theta}_S=\hat{\theta}_S(S(\xi_1,...,\ \xi_n))$ и, следовательно, $\hat{\theta}_S$ является статистикой;
 - 2) статистика $\hat{\theta}_s$ ($S(\xi_1,...,\xi_n)$) является оценкой из класса K_b :

$$\hat{\theta}_{S}(S(\xi_{1},...,\xi_{n})) \in K_{b};$$

3) оценка $\hat{\theta}_{s}(S(\xi_{1},...,\xi_{n}))$ не хуже оценки $\hat{\theta}(\xi_{1},...,\xi_{n})$ в среднеквадратическом смысле:

$$\forall \, \theta \in \Theta : M_{\theta}[(\hat{\theta}_{S} - \theta)^{2}] \leq M_{\theta}[(\hat{\theta} - \theta)^{2}].$$

Доказательство:

4) Согласно определению условного математического ожидания величина $\hat{\theta}_S = M_{\theta}[\hat{\theta}(\xi_1,...,\xi_n) \mid S(\xi_1,...,\xi_n)]$ является функций статистики $S(\xi_1,...,\xi_n)$:

$$\hat{\theta}_S = \hat{\theta}_S \left(S(\xi_1, ..., \xi_n) \right).$$

Условное математическое ожидание $\hat{\theta}_S = \hat{\theta}_S (S(\xi_1,...,\xi_n))$, вообще говоря, могло бы зависеть от параметра θ , однако, такой зависимости нет, поскольку условное распределение $(\xi_1,...,\xi_n)$ относительно статистики $S(\xi_1,...,\xi_n)$ не зависит от параметра в силу того, что статистика $S(\xi_1,...,\xi_n)$ является достаточной.

5) Вычислим математическое ожидание $M_{\theta}[\hat{\theta}_{S}(S(\xi_{1},...,\xi_{n}))]$, воспользовавшись свойством условного математического ожидания:

 $M_{\;\theta}[\hat{\theta}_{S}(S(\xi_{1},...,\;\xi_{n}))] = M_{\;\theta}[M_{\;\theta}[\hat{\theta}(\xi_{1},...,\;\xi_{n})\,|\,S(\xi_{1},...,\;\xi_{n})]] = M_{\;\theta}[\hat{\theta}(\xi_{1},...,\;\xi_{n})] = \theta + b(\theta)\,,$ где последнее равенство получено в силу условия теоремы о том, что оценка $\hat{\theta}(\xi_{1},...,\;\xi_{n})$ принадлежит классу $K_{\;b}$ и стало быть её смещение равно функции $b(\theta)$:

$$b(\theta) = M_{\theta}[\hat{\theta}(\xi_1, ..., \xi_n)] - \theta.$$

6) Рассмотрим среднеквадратическое отклонение оценки $\hat{\theta}(\xi_1,...,\xi_n)$:

$$M_{\theta}[(\hat{\theta} - \theta)^{2}] = M_{\theta}[(\hat{\theta} - \hat{\theta}_{S} + \hat{\theta}_{S} - \theta)^{2}] =$$

$$= M_{\theta}[(\hat{\theta} - \hat{\theta}_{S})^{2}] + 2M_{\theta}[(\hat{\theta} - \hat{\theta}_{S})(\hat{\theta}_{S} - \theta)] + M_{\theta}[(\hat{\theta}_{S} - \theta)^{2}].$$
(7.7)

Преобразуем средний множитель, используя свойства условного математического ожидания:

$$\begin{split} &M_{\theta}[(\hat{\theta}-\hat{\theta}_{S})(\hat{\theta}_{S}-\theta)]=M_{\theta}[M_{\theta}[(\hat{\theta}-\hat{\theta}_{S})(\hat{\theta}_{S}-\theta)\mid S]]=M_{\theta}[(\hat{\theta}_{S}-\theta)M_{\theta}[(\hat{\theta}-\hat{\theta}_{S})\mid S]]=\\ &=M_{\theta}[(\hat{\theta}_{S}-\theta)(M_{\theta}[\hat{\theta}\mid S]-M_{\theta}[\hat{\theta}_{S}\mid S])]=M_{\theta}[(\hat{\theta}_{S}-\theta)(\hat{\theta}_{S}-\hat{\theta}_{S})]=M_{\theta}[(\hat{\theta}_{S}-\theta)\cdot 0]=0\\ &\text{Таким образом, из (7.7):} \end{split}$$

$$M_{\theta}[(\hat{\theta} - \theta)^{2}] = M_{\theta}[(\hat{\theta} - \hat{\theta}_{S})^{2}] + M_{\theta}[(\hat{\theta}_{S} - \theta)^{2}].$$
 (7.8)

Поскольку $(\hat{\theta} - \hat{\theta}_s)^2$ является неотрицательной случайной величиной, то $M_{\theta}[(\hat{\theta} - \hat{\theta}_s)^2] \ge 0$, тогда из (7.8):

$$\forall \theta \in \Theta : M_{\alpha}[(\hat{\theta} - \theta)^{2}] \geq M_{\alpha}[(\hat{\theta}_{s} - \theta)^{2}].$$

Теорема доказана.

Заметим, что в теореме (7.14) оценка $\hat{\theta}(\xi_1,...,\xi_n)$ должна лишь принадлежать классу K_b и никаких других условий на оценку $\hat{\theta}(\xi_1,...,\xi_n)$ не накладывается. Это означает, что в качестве оценки $\hat{\theta}(\xi_1,...,\xi_n)$ можно использовать даже «плохие» оценки из класса K_b , в том числе и не обладающие свойством состоятельности.

Получаемая в теореме (7.14) оценка $\hat{\theta}_s(S(\xi_1,...,\xi_n))$ принадлежит классу K_b , поэтому к оценке $\hat{\theta}_s(S(\xi_1,...,\xi_n))$ теорема (7.14) может применяться повторно. Пусть $S_1(\xi_1,...,\xi_n)$ и $S_2(\xi_1,...,\xi_n)$ достаточные статистики и $\hat{\theta}(\xi_1,...,\xi_n) \in K_b$ — некоторая оценка, тогда, применяя теорему (7.14) к оценке $\hat{\theta}(\xi_1,...,\xi_n)$ и статистике $S_1(\xi_1,...,\xi_n)$, получим оценку $\hat{\theta}_{S_1}(S_1(\xi_1,...,\xi_n))$, которая не хуже $\hat{\theta}(\xi_1,...,\xi_n)$ в среднеквадратическом смысле, и, применяя теорему (7.14) к оценке $\hat{\theta}_{S_1}(S_1(\xi_1,...,\xi_n))$ и статистике $S_2(\xi_1,...,\xi_n)$, получим оценку $\hat{\theta}_{S_2}(S_2(\xi_1,...,\xi_n))$ не хуже $\hat{\theta}_{S_1}(S_1(\xi_1,...,\xi_n))$.

Последовательное применение теоремы (7.14) может приводить к последовательному улучшению оценок. Заметим, однако, что теорема (7.14) утверждает лишь, что оценка $\hat{\theta}_{S_2}(S_2(\xi_1,...,\xi_n))$ не хуже исходной оценки $\hat{\theta}_{S_1}(S_1(\xi_1,...,\xi_n))$, поэтому последовательное применение теоремы (7.14) не обязательно приводит к существенному улучшению оценки. Интуитивно ясно, что существенное улучшение оценки следует ожидать, например, в том случае, когда статистика $S_2(\xi_1,...,\xi_n)$ существенно «проще» статистики $S_1(\xi_1,...,\xi_n)$, другими словами $S_2(\xi_1,...,\xi_n)$ подчинена и не эквивалентна $S_1(\xi_1,...,\xi_n)$. В таком случае, процесс последовательного улучшения оценок должен останавливаться при использовании достаточных статистик, подчиненных всем остальным достаточным статистикам, то есть при использовании минимальных достаточных статистик. Таким образом, использование в теореме (7.14) минимальных достаточных статистик приводит к наилучшим оценкам.

Вполне возможно, что наилучшие оценки, вычисляемые как условное математическое ожидание относительно минимальных достаточных статистик, окажутся наилучшими во всем классе K_b , то есть эффективными в классе K_b . Оказывается, что эффективность таких оценок определяется свойством полноты достаточных статистик.

Определение 7.15.

Статистика $T(\xi_1,...,\xi_n)$ называется полной, если для любой функции g(t):

$$\left\{ \forall \; \theta \in \Theta : M_{\theta}[g(T)] = 0 \right\} \implies \left\{ g(t) \equiv 0 \right\}.$$

Утверждение 7.16.

Если статистика $T(\xi_1,...,\xi_n)$ является полной, тогда в каждом классе K_b существует не более одной оценки $\hat{\theta}(T(\xi_1,...,\xi_n))$, являющейся функцией $T(\xi_1,...,\xi_n)$.

Если есть класс K_b , в котором существует единственная оценка $\hat{\theta}(T(\xi_1,...,\xi_n))$, являющейся функцией $T(\xi_1,...,\xi_n)$, тогда $T(\xi_1,...,\xi_n)$ является полной статистикой.

Доказательство:

1) Пусть $T(\xi_1,...,\xi_n)$ – полная статистика.

Вполне возможно, что во всех классах K_b нет оценок, являющихся функциями от $T(\xi_1,...,\xi_n)$, в этом случае утверждение, очевидно, выполнено: в каждом классе не более одной оценки, являющейся функцией $T(\xi_1,...,\xi_n)$. Пусть все же существуют классы, в которых содержатся оценки, являющиеся функциями статистики $T(\xi_1,...,\xi_n)$, и K_b любой из этих классов. Докажем утверждение для класса K_b от противного: предположим, что в классе K_b существуют несколько различных оценок и две из них это $\hat{\theta}_1(T(\xi_1,...,\xi_n))$ и $\hat{\theta}_2(T(\xi_1,...,\xi_n))$, каждая из которых является некоторой функцией статистики $T(\xi_1,...,\xi_n)$.

Поскольку оценки $\hat{\theta}_1(T)$ и $\hat{\theta}_2(T)$ принадлежат классу K_b , то:

$$\begin{split} M_{\theta}[\hat{\theta}_1(T)] &= \theta + b(\theta)\,,\\ M_{\theta}[\hat{\theta}_2(T)] &= \theta + b(\theta)\,. \end{split}$$

Откуда следует, что математическое ожидание разности $\hat{\theta}_1(T) - \hat{\theta}_2(T)$:

$$\forall \theta \in \Theta : M_{\theta}[\hat{\theta}_{1}(T) - \hat{\theta}_{2}(T)] = M_{\theta}[\hat{\theta}_{1}(T)] - M_{\theta}[\hat{\theta}_{2}(T)] = \theta + b(\theta) - \theta - b(\theta) = 0. \tag{7.9}$$

Поскольку $T(\xi_1,...,\xi_n)$ является полной статистикой, то из определения (7.15) и (7.9) следует:

$$\hat{\theta}_1(T) - \hat{\theta}_2(T) = 0 ,$$

$$\hat{\theta}_1(T) = \hat{\theta}_2(T) .$$

Полученное равенство противоречит исходному предположению о том, что $\hat{\theta}_1(T(\xi_1,...,\ \xi_n))$ и $\hat{\theta}_2(T(\xi_1,...,\ \xi_n))$ являются различными.

2) Пусть K_b — класс, в котором существует единственная оценка $\hat{\theta}(T(\xi_1,...,\xi_n))$, являющейся функцией $T(\xi_1,...,\xi_n)$.

Рассмотрим любую функцию g(t) такую, что:

$$\forall \theta \in \Theta : M_{\theta}[g(T)] = 0, \qquad (7.10)$$

и покажем, что отсюда следует равенство g(t) = 0.

Построим оценку $\tilde{\theta}$ ($T(\xi_1,...,\xi_n)$):

$$\tilde{\theta}(T(\xi_1,...,\xi_n)) = \hat{\theta}(T(\xi_1,...,\xi_n)) + g(T(\xi_1,...,\xi_n)).$$
 (7.11)

Легко видеть, что в силу (7.10) оценка $\tilde{\theta}$ ($T(\xi_1,...,\xi_n)$) также принадлежит классу K_b , действительно:

$$M_{\theta}[\tilde{\theta}(T)] = M_{\theta}[\hat{\theta}(T) + g(T)] = M_{\theta}[\hat{\theta}(T)] + M[g(T)] = \theta + b(\theta) + 0,$$

поскольку $\hat{\theta}(T(\xi_1,...,\ \xi_n)) \in K_b$.

Таким образом, построенная оценка $\tilde{\theta}(T(\xi_1,...,\xi_n))$ и исходная оценка $\hat{\theta}(T(\xi_1,...,\xi_n))$ принадлежат классу K_b , и обе оценки $\tilde{\theta}(T(\xi_1,...,\xi_n))$ и $\hat{\theta}(T(\xi_1,...,\xi_n))$ являются функциями

статистики $T(\xi_1,...,\xi_n)$, но по условию в классе K_b есть только одна оценка, являющаяся функцией статистики $T(\xi_1,...,\xi_n)$, отсюда следует, что оценки $\tilde{\theta}(T(\xi_1,...,\xi_n))$ и $\hat{\theta}(T(\xi_1,...,\xi_n))$ совпадают:

$$\widetilde{\theta}\left(T\left(\xi_{1},...,\ \xi_{n}\right)\right)=\widehat{\theta}\left(T\left(\xi_{1},...,\ \xi_{n}\right)\right),\,$$

тогда из (7.11):

$$g(T(\xi_1,...,\xi_n)) = \tilde{\theta}(T(\xi_1,...,\xi_n)) - \hat{\theta}(T(\xi_1,...,\xi_n)) = 0$$

Поскольку функция g(t), удовлетворяющая (7.10), была выбрана произвольно, то условие определения (7.15) выполняется для любой функции g(t), следовательно статистика $T(\xi_1,...,\xi_n)$ является полной.

Утверждение доказано.

Утверждение 7.17.

Пусть оценка $\hat{\theta}(\xi_1,...,\xi_n) \in K_b$ и $S(\xi_1,...,\xi_n)$ — достаточная для параметра θ и полная статистика, тогда оценка $\hat{\theta}_S$:

$$\hat{\theta}_{S}(S(\xi_{1},...,\xi_{n})) = M_{\theta}[\hat{\theta}(\xi_{1},...,\xi_{n}) | S(\xi_{1},...,\xi_{n})],$$

является единственной эффективной оценкой в классе K_{b} .

Доказательство:

1) Согласно теореме (7.14) оценка $\hat{\theta}_S(S(\xi_1,...,\xi_n))$ принадлежит классу K_b и является функцией $S(\xi_1,...,\xi_n)$.

Поскольку $S(\xi_1,...,\xi_n)$ по условию является полной, то согласно утверждению 7.16 оценка $\hat{\theta}_S(S(\xi_1,...,\xi_n))$ — единственная оценкой K_b , которая является функцией $S(\xi_1,...,\xi_n)$.

2) Покажем, что оценка $\hat{\theta}_{S}(S(\xi_{1},...,\xi_{n}))$ является эффективной.

Пусть $\tilde{\theta}(\xi_1,...,\xi_n)$ — любая оценка из класса K_b и $\tilde{\theta}_S(S(\xi_1,...,\xi_n))$ — условное математическое ожидание оценки $\tilde{\theta}(\xi_1,...,\xi_n)$ относительно достаточной статистики $S(\xi_1,...,\xi_n)$. Согласно пунктам 1 и 2 теоремы (7.14) оценка $\tilde{\theta}_S(S(\xi_1,...,\xi_n))$ является функцией $S(\xi_1,...,\xi_n)$ и принадлежит классу K_b . Как уже было доказано в пункте 1 утверждения, в классе K_b существует только одна оценка, являющаяся функцией $S(\xi_1,...,\xi_n)$, откуда следует, что оценки $\tilde{\theta}_S(S(\xi_1,...,\xi_n))$ и $\hat{\theta}_S(S(\xi_1,...,\xi_n))$ совпадают:

$$\widetilde{\theta}_{S}(S(\xi_{1},...,\xi_{n})) = \widehat{\theta}_{S}(S(\xi_{1},...,\xi_{n})).$$

Из совпадения оценок следует равенство среднеквадратических отклонений:

$$\forall \theta \in \Theta : M_{\theta}[(\hat{\theta}_{S} - \theta)^{2}] = M_{\theta}[(\tilde{\theta}_{S} - \theta)^{2}]. \tag{7.12}$$

В соответствии с пунктом 3 теоремы (7.14) для оценки $\tilde{\theta}_{S}(S(\xi_{1},...,\xi_{n}))$ справедливо неравенство:

$$\forall \, \theta \in \Theta : M_{\theta}[(\widetilde{\theta}_{s} - \theta)^{2}] \leq M_{\theta}[(\widetilde{\theta} - \theta)^{2}],$$

из которого в силу (7.12) следует:

$$\begin{split} \forall \, \theta \in \Theta : M_{\theta} [(\hat{\theta}_{S} - \theta)^{2}] &= M_{\theta} [(\tilde{\theta}_{S} - \theta)^{2}] \leq M_{\theta} [(\tilde{\theta} - \theta)^{2}], \\ \forall \, \theta \in \Theta : M_{\theta} [(\hat{\theta}_{S} - \theta)^{2}] \leq M_{\theta} [(\tilde{\theta} - \theta)^{2}]. \end{split}$$

Поскольку оценка $\tilde{\theta}(\xi_1,...,\xi_n)$ была выбрана произвольным образом, то последнее неравенство справедливо для всех оценок из класса K_b и следовательно по определению 7.3 оценка $\hat{\theta}_S(S(\xi_1,...,\xi_n))$ является эффективной в классе K_b .

3) Согласно пунктам 1 и 2 утверждения в классе K_b существует эффективная оценка

 $\tilde{\theta}_{S}(S(\xi_{1},...,\xi_{n}))$, тогда из утверждения 7.5 оценка $\tilde{\theta}_{S}(S(\xi_{1},...,\xi_{n}))$ является единственной эффективной оценкой.

Утверждение доказано.

Следствие 7.18.

Если $\hat{\theta}(\xi_1,...,\xi_n)$ является несмещенной оценкой, то $\hat{\theta}_S(S(\xi_1,...,\xi_n))$ является единственной эффективной оценкой.

Утверждение 7.19.

Если $S(\xi_1,...,\xi_n)$ — полная достаточная статистика, тогда $S(\xi_1,...,\xi_n)$ — минимальная статистика.

3. Неравенство Рао-Крамера.

Пусть, как и ранее, $(\xi_1,...,\xi_n)$ является выборкой из распределения $F_{\xi}(x\,|\,\theta)$, которое некоторым образом зависит от скалярного параметра θ , принимающего значения из допустимого множества значений Θ .

В общем случае в совокупности величин (ξ_1 ,..., ξ_n) содержится лишь ограниченное количество информации о параметре θ , и поскольку величины (ξ_1 ,..., ξ_n) являются основой для построения оценок параметра θ , то получаемые оценки не могут быть сколь угодно «хорошими» и не могут иметь сколь угодно малые значения среднеквадратических отклонений. Отсюда возникает вопросов о том, насколько малым может быть среднеквадратическое отклонение оценки из некоторого класса. Ответ на этот вопрос в так называемых регулярных случаях дает приводимое далее неравенство Рао-Крамера.

Определение 7.20.

Пусть $(\xi_1,...,\xi_n)$ — вектор случайных величин и $L(x_1,...,x_n\mid\theta)$ функция плотности вероятности (или вероятность) вектора $(\xi_1,...,\xi_n)$. Функция $L(\xi_1,...,\xi_n\mid\theta)$ рассматриваемая как функция параметра θ называется функцией правдоподобия.

Определение 7.21.

Случайная функция $U(\xi_1,..., \xi_n \mid \theta)$:

$$U\left(\xi_{1},...,\ \xi_{n}\mid\theta\right)=\frac{\partial\ln L(\xi_{1},...,\ \xi_{n}\mid\theta)}{\partial\theta}$$

называется функцией вклада.

Определение 7.22.

Функция $I_n(\theta)$:

$$I_n(\theta) = M_{\theta}[U^2(\xi_1, ..., \, \xi_n \mid \theta)]$$

называется *информацией Фишера* о параметре θ , содержащейся в совокупности $(\xi_1,...,\xi_n)$.

Везде далее будем считать, что выполнены следующие условия, которые носят называние *условия регулярности*:

R1) Существует множество X такое, что:

$$\begin{split} \forall\;\theta\in\Theta:P\{(\,\xi_1,&...,\;\xi_n\,)\in X\,\}=1\;,\\ \forall\;\theta\in\Theta\,\forall\,(x_1,&...,\;x_n\,)\in X\;:L(x_1,&...,\;x_n\mid\theta)>0 \end{split}$$

- R2) При всех $(x_1,...,x_n) \in X$ функция $\sqrt{L(x_1,...,x_n \mid \theta)}$ непрерывно дифференцируема по параметру θ для всех допустимых значений $\theta \in \Theta$.
 - R3) При всех $\theta \in \Theta$ интеграл $I_n(\theta)$:

$$0 < \int_{X} \left(\frac{\partial \ln L(x_1, ..., x_n \mid \theta)}{\partial \theta} \right)^2 L(x_1, ..., x_n \mid \theta) dx_1 ... dx_n < \infty$$

положителен, существует и непрерывен по θ .

Заметим, что при каждом значении θ функция правдоподобия $L(x_1,...,x_n \mid \theta)$ является функцией плотности вероятности (или функцией вероятности), поэтому, как и для всякой другой функции плотности вероятности, для функции $L(x_1,...,x_n \mid \theta)$ справедливо равенство:

$$\int_{Y} L(x_{1},...,x_{n} \mid \theta) dx_{1}...dx_{n} = 1.$$

Продифференцируем левую и правую часть по θ :

$$\frac{\partial}{\partial \theta} \int_{X} L(x_1, ..., x_n \mid \theta) dx_1 ... dx_n = \frac{\partial}{\partial \theta} 1 = 0$$

и, пользуясь условиями регулярности, внесем дифференцирование под знак интеграла:

$$\int_{x} \frac{\partial L(x_1, ..., x_n \mid \theta)}{\partial \theta} dx_1 ... dx_n = 0$$

В силу условия R1 преобразуем подынтегральную функцию:

$$\begin{split} \frac{\partial L(x_1,...,x_n\mid\theta)}{\partial\theta} &= \frac{\partial L(x_1,...,x_n\mid\theta)}{\partial\theta} \frac{L(x_1,...,x_n\mid\theta)}{L(x_1,...,x_n\mid\theta)} = \\ &= \left(\frac{1}{L(x_1,...,x_n\mid\theta)} \frac{\partial L(x_1,...,x_n\mid\theta)}{\partial\theta}\right) L(x_1,...,x_n\mid\theta) = \frac{\partial\ln L(x_1,...,x_n\mid\theta)}{\partial\theta} L(x_1,...,x_n\mid\theta) \;. \end{split}$$

Таким образом.

$$\int_{V} \frac{\partial \ln L(x_1, ..., x_n \mid \theta)}{\partial \theta} L(x_1, ..., x_n \mid \theta) dx_1 ... dx_n = 0$$

Заметим, что слева от знака равенства стоит в точности $M_{\theta}[U(\xi_1,...,\xi_n\mid\theta)]$, таким образом, при выполнении условий регулярности:

$$M_{\theta}[U(\xi_1,...,\xi_n \mid \theta)] = 0.$$
 (7.13)

Кроме того, при выполнении условий регулярности из (7.13):

$$I_{n}(\theta) = M_{\theta}[U^{2}(\xi_{1},...,\xi_{n} \mid \theta)] = D_{\theta}[U^{2}(\xi_{1},...,\xi_{n} \mid \theta)] + (M_{\theta}[U(\xi_{1},...,\xi_{n} \mid \theta)])^{2},$$

$$I_{n}(\theta) = D_{\theta}[U^{2}(\xi_{1},...,\xi_{n} \mid \theta)].$$
(7.14)

Теорема 7.23. (неравенство Рао-Крамера)

Пусть выполнены условия регулярности и оценка $\hat{\theta}(\xi_1,...,\ \xi_n) \in K_b$ такова, что:

- 1) $\forall \theta \in \Theta : M_{\theta}[\hat{\theta}(\xi_1,...,\xi_n)] < c < \infty$,
- 2) функция $b(\theta)$ дифференцируема по параметру θ при всех $\theta \in \Theta$, тогда:

$$D_{\theta}[\hat{\theta}(\xi_1,...,\xi_n)] \ge \frac{[1+b'(\theta)]^2}{I_n(\theta)},$$

где $I_n(\theta)$ информация Фишера о параметре θ , содержащаяся в наблюдении $(\xi_1,...,\xi_n)$. Доказательство:

3) Поскольку $\hat{\theta}(\xi_1,...,\ \xi_n) \in K_b$, то:

$$M_{\theta}[\hat{\theta}(\xi_{1},..., \xi_{n})] = \theta + b(\theta),$$

$$\int_{X} \hat{\theta}(x_{1},..., x_{n}) L(x_{1},..., x_{n} | \theta) dx_{1}...dx_{n} = \theta + b(\theta)$$

Продифференцируем левую и правую часть по θ :

$$\frac{\partial}{\partial \theta} \int_{X} \hat{\theta}(x_1, ..., x_n) L(x_1, ..., x_n \mid \theta) dx_1 ... dx_n = \frac{\partial}{\partial \theta} (\theta + b(\theta)).$$

В силу условий регулярности в левой части можно внести дифференцирование под знак интеграла:

$$\int\limits_{V}\hat{\theta}(x_{1},...,x_{n})\frac{\partial L(x_{1},...,x_{n}\mid\theta)}{\partial\theta}dx_{1}...dx_{n}=1+b'(\theta)$$

Преобразуем правую часть в силу условия R1 (также как при выводе 7.13):

$$\int_{X} \hat{\theta}(x_{1},...,x_{n}) \frac{\partial \ln L(x_{1},...,x_{n} \mid \theta)}{\partial \theta} L(x_{1},...,x_{n} \mid \theta) dx_{1}...dx_{n} = 1 + b'(\theta)$$

$$\int_{X} \hat{\theta}(x_{1},...,x_{n}) U(x_{1},...,x_{n} \mid \theta) L(x_{1},...,x_{n} \mid \theta) dx_{1}...dx_{n} = 1 + b'(\theta)$$
(7.15)

4) При выполнении условий регулярности справедливо соотношение (7.13):

$$\int_{Y} U(x_1, ..., x_n \mid \theta) L(x_1, ..., x_n \mid \theta) dx_1 ... dx_n = 0$$

Умножим левую и правую часть на $\theta + b(\theta)$ и внесем в правой части $\theta + b(\theta)$ как множитель, не зависящий от переменных интегрирования $x_1, ..., x_n$:

$$\int_{Y} (\theta + b(\theta)) U(x_1, ..., x_n \mid \theta) L(x_1, ..., x_n \mid \theta) dx_1 ... dx_n = 0 \cdot (\theta + b(\theta)) = 0$$
(7.16)

5) Вычтем (7.16) из (7.15):

$$\int\limits_{X} (\hat{\theta}(x_{1},...,x_{n}) - (\theta + b(\theta))) U(x_{1},...,x_{n} \mid \theta) L(x_{1},...,x_{n} \mid \theta) dx_{1}...dx_{n} = 1 + b'(\theta)$$

Поскольку $\hat{\theta}(\xi_1,...,\ \xi_n)\in K_b$, то $M_{\,\theta}[\hat{\theta}(\xi_1,...,\ \xi_n)]=\theta+b(\theta)$, тогда:

$$\int\limits_{X} (\hat{\theta}(x_{1},...,x_{n}) - M_{\theta}[\hat{\theta}(\xi_{1},...,\xi_{n})]) U(x_{1},...,x_{n} \mid \theta) L(x_{1},...,x_{n} \mid \theta) dx_{1}...dx_{n} = 1 + b'(\theta)$$

В условиях регулярности математическое ожидание функции вклада $U(x_1,...,x_n \mid \theta)$ равно нулю (соотношение (7.13)), тогда:

$$\int_{X} (\hat{\theta}(x_{1},...,x_{n}) - M_{\theta}[\hat{\theta}(\xi_{1},...,\xi_{n})])(U(x_{1},...,x_{n} | \theta) - M_{\theta}[U(\xi_{1},...,\xi_{n} | \theta)]L(x_{1},...,x_{n} | \theta)dx_{1}...dx_{n} = 1 + b'(\theta).$$

$$cov_{\theta}(\hat{\theta}(\xi_{1},...,\xi_{n}),U(\xi_{1},...,\xi_{n}|\theta)) = 1 + b'(\theta). \tag{7.17}$$

В соответствии со свойством ковариации:

$$\left|\operatorname{cov}_{\theta}(\hat{\theta}(\xi_{1},...,\xi_{n}),U(\xi_{1},...,\xi_{n}\mid\theta))\right|^{2}\leq D_{\theta}[\hat{\theta}(\xi_{1},...,\xi_{n})]\cdot D_{\theta}[U(\xi_{1},...,\xi_{n}\mid\theta)]\;.$$

Таким образом,

$$\left[1+b'(\theta)\right]^2=\left|\operatorname{cov}_{\theta}(\hat{\theta}(\xi_1,...,\xi_n),U(\xi_1,...,\xi_n\mid\theta))\right|^2\leq D_{\theta}[\hat{\theta}(\xi_1,...,\xi_n)]\cdot D_{\theta}[U(\xi_1,...,\xi_n\mid\theta)]\,.$$

Отсюда,

$$D_{\theta}[\hat{\theta}(\xi_1,...,\xi_n)] \ge \frac{[1+b'(\theta)]^2}{D_{\theta}[U(\xi_1,...,\xi_n \mid \theta)]},$$

и в силу (7.14):

$$D_{\theta}[\hat{\theta}(\xi_1,...,\xi_n)] \ge \frac{[1+b'(\theta)]^2}{I_n(\theta)}$$

Теорема доказана.

Следствие 7.24.

В условиях теоремы

$$M_{\theta}[(\hat{\theta}-\theta)^2] \ge \frac{[1+b'(\theta)]^2}{I_{\theta}(\theta)} + b^2(\theta).$$

Доказательство:

$$M_{\theta}[(\hat{\theta}-\theta)^{2}] = D_{\theta}[\hat{\theta}-\theta] + \left(M_{\theta}[\hat{\theta}-\theta]\right)^{2} = D_{\theta}[\hat{\theta}] + b^{2}(\theta) \ge \frac{\left[1+b'(\theta)\right]^{2}}{I(\theta)} + b^{2}(\theta).$$

Следствие доказано.

Определение 7.25.

Оценка $\hat{\theta}(\xi_1,...,\xi_n) \in K_b$ называется R-эффективной (регулярно-эффективной) в классе K_b , если:

$$M_{\theta}[(\hat{\theta}-\theta)^{2}] = \frac{[1+b'(\theta)]^{2}}{I_{n}(\theta)} + b^{2}(\theta).$$

Определение 7.26.

Оценка R-эффективная в классе K_0 называется эффективной.

Легко видеть, что всякая R-эффективная в классе K_b оценка является эффективной в классе K_b . Действительно, пусть $\hat{\theta}(\xi_1,...,\xi_n)\in K_b$ является R-эффективной в классе K_b оценкой. Рассмотрим любую оценку $\tilde{\theta}(\xi_1,...,\xi_n)\in K_b$, согласно теореме 7.23 и следствию 7.24:

$$M_{\theta}[(\widetilde{\theta} - \theta)^{2}] \ge \frac{[1 + b'(\theta)]^{2}}{I_{n}(\theta)} + b^{2}(\theta),$$

тогда из определения 7.25:

$$M_{\theta}[(\tilde{\theta} - \theta)^{2}] \ge \frac{[1 + b'(\theta)]^{2}}{I_{n}(\theta)} + b^{2}(\theta) = M_{\theta}[(\hat{\theta} - \theta)^{2}]$$

при всяком значении $\theta \in \Theta$. Откуда по определению 7.3 оценка $\hat{\theta}(\xi_1,...,\xi_n)$ является эффективной в классе K_b .

Обратное утверждение не всегда верно, эффективная в классе K_b оценка не обязательно является R-эффективной. Другими словами, если оценка обладает наименьшим среднеквадратическим отклонением, оно не обязательно совпадает с нижней границей, утверждаемой теоремой 7.23. Причина кроется не в том, что эффективная оценка является недостаточно хорошей (в своем классе эффективная оценка является наилучшей), а в том, что нижняя граница в неравенстве Рао-Крамера является неточной.

4. Экспоненциальные семейства распределений.

Пусть $(\xi_1,...,\xi_n)$ является выборкой из распределения $F_{\xi}(x\mid\theta)$ с функцией плотности вероятности $f_{\xi}(x\mid\theta)$, где θ — скалярный параметр, который принимает значения из множества допустимых значений Θ .

Существуют случаи, в которых построение R-эффективных оценок становится особенно простым, и может быть выполнено на основе вида функции правдоподобия.

Определение 7.27.

Семейство распределений с функцией плотности вероятности $f_{\xi}\left(x\mid\theta\right)$, имеющей вид:

$$f_{\xi}(x \mid \theta) = h(x) \cdot e^{\sum_{j=1}^{k} a_{j}(\theta)b_{j}(x) + c(\theta)}$$

называется экспоненциальным семейством распределений.

Легко видеть, что для экспоненциального семейства распределений функция правдоподобия $L(\xi_1,...,\xi_n\mid\theta)$ выборки $(\xi_1,...,\xi_n)$ имеет вид:

$$\begin{split} L(\xi_{1},...,\xi_{n}\mid\theta) &= \prod_{i=1}^{n} f_{\xi}(\xi_{i}\mid\theta) = \prod_{i=1}^{n} h(\xi_{i}) \cdot e^{\sum_{j=1}^{k} a_{j}(\theta)r_{j}(\xi_{i}) + v(\theta)} \\ &= \prod_{i=1}^{n} h(\xi_{i}) \cdot e^{\sum_{i=1}^{n} \sum_{j=1}^{k} a_{j}(\theta)r_{j}(\xi_{i}) + nv(\theta)} \\ &= \prod_{i=1}^{n} h(\xi_{i}) \cdot e^{\sum_{j=1}^{k} a_{j}(\theta)\sum_{i=1}^{n} r_{j}(\xi_{i}) + nv(\theta)} \\ &= \prod_{i=1}^{n} h(\xi_{i}) \cdot e^{\sum_{j=1}^{k} a_{j}(\theta)S_{j}(\xi_{1},...,\xi_{n}) + nv(\theta)}, \end{split}$$

где
$$S_j(\xi_1,...,\xi_n) = \sum_{i=1}^n r_j(\xi_i)$$
.

Откуда непосредственно по критерию факторизации следует, что статистика $S\left(\xi_{1},...,\ \xi_{n}\right)$:

$$S(\xi_{1},...,\xi_{n}) = \begin{pmatrix} S_{1}(\xi_{1},...,\xi_{n}) \\ ... \\ S_{k}(\xi_{1},...,\xi_{n}) \end{pmatrix}$$

является достаточной для параметра θ . Более того, можно показать, что статистика $S(\xi_1,...,\xi_n)$ является минимальной достаточной статистикой и в некоторых случаях даже полной статистикой.

Теорема 7.28.

Пусть выполнены условия регулярности и оценка $\hat{\theta}(\xi_1,...,\ \xi_n) \in K_b$ такова, что:

- 1) $\forall \theta \in \Theta : M_{\theta}[\hat{\theta}(\xi_1,...,\xi_n)] < c < \infty$,
- 2) функция $b(\theta)$ дифференцируема по параметру θ при всех $\theta \in \Theta$.

Оценка $\hat{\theta}(\xi_1,...,\xi_n)$ является R-эффективной в классе K_b тогда и только тогда, когда функция правдоподобия $L(\xi_1,...,\xi_n \mid \theta)$ имеет вид:

$$L(\xi_1, \dots, \; \xi_n \mid \theta) = H(\xi_1, \dots, \; \xi_n) e^{A(\theta) \cdot \hat{\theta}(\xi_1, \dots, \; \xi_n) + V(\theta)} \; .$$

Схема доказательства:

Согласно определению 7.25 оценка $\hat{\theta}(\xi_1,...,\xi_n)$ является R-эффективной в классе K_b тогда и только тогда, когда:

$$M_{\theta}[(\hat{\theta} - \theta)^{2}] = \frac{[1 + b'(\theta)]^{2}}{I_{n}(\theta)} + b^{2}(\theta)$$
 (7.18)

Среднеквадратическое отклонение $M_{\theta}[(\hat{\theta}-\theta)^2]$ и дисперсия $D_{\theta}[\hat{\theta}(\xi_1,...,\xi_n)]$ оценки $\hat{\theta}(\xi_1,...,\xi_n)$ связаны соотношением:

$$D_{\theta}[\hat{\theta}] = D_{\theta}[\hat{\theta} - \theta] = M_{\theta}[(\hat{\theta} - \theta)^{2}] - \left(M_{\theta}[(\hat{\theta} - \theta)]\right)^{2},$$

$$D_{\theta}[\hat{\theta}] = M_{\theta}[(\hat{\theta} - \theta)^{2}] - b^{2}(\theta)$$
(7.19)

поэтому из (7.18) (с учетом (7.19)) немедленно следует:

$$D_{\theta}[\hat{\theta}] = \frac{[1 + b'(\theta)]^{2}}{I_{n}(\theta)} + b^{2}(\theta) - b^{2}(\theta) = \frac{[1 + b'(\theta)]^{2}}{I_{n}(\theta)}$$
(7.20)

и наоборот, из (7.20) следует (7.18) (благодаря (7.19)). Таким образом, соотношения (7.18) и (7.20) эквивалентны. Далее, (7.20) выполняется тогда и только тогда, когда:

$$\begin{split} D_{\theta}[\hat{\theta}]I_n(\theta) &= [1+b'(\theta)]^2 , \\ D_{\theta}[\hat{\theta}]D_{\theta}[U] &= [1+b'(\theta)]^2 \end{split}$$

При доказательстве теоремы 7.23 было доказано, что $1+b'(\theta)=\cos_{\theta}(\hat{\theta},U)$ (равенство (7.17)), тогда:

$$D_{\theta}[\hat{\theta}]D_{\theta}[U] = \left[\operatorname{cov}_{\theta}(\hat{\theta}, U)\right]^{2},$$

$$\sqrt{D_{\theta}[\hat{\theta}]D_{\theta}[U]} = \left|\operatorname{cov}_{\theta}(\hat{\theta}, U)\right|.$$
(7.21)

Таким образом, равенства (7.18) и (7.21) эквивалентны. В левой части (7.21):

$$D_{\theta}[\hat{\theta}] = \int_{X} (\hat{\theta}(x_1, ..., x_n) - (\theta + b(\theta)))^2 L(x_1, ..., x_n \mid \theta) dx_1 ... dx_n$$
 (7.22)

$$D_{\theta}[U] = \int_{X} U(x_{1},...,x_{n})^{2} L(x_{1},...,x_{n} \mid \theta) dx_{1}...dx_{n} =$$

$$= \int_{X} \left(\frac{\partial \ln L(x_{1},...,x_{n} \mid \theta)}{\partial \theta} \right)^{2} L(x_{1},...,x_{n} \mid \theta) dx_{1}...dx_{n}.$$
(7.23)

поскольку в условиях регулярности $M_{\theta}[U] = 0$.

В силу условия регулярности R3 $D_{\theta}[U] > 0$, поэтому равенство (7.21) возможно тогда и только тогда, когда функции в интегралах (7.22) и (7.23) связаны линейной зависимостью:

$$\frac{\partial \ln L(x_1, \dots, x_n \mid \theta)}{\partial \theta} = c(\theta)(\hat{\theta}(x_1, \dots, x_n) - (\theta + b(\theta))). \tag{7.24}$$

с некоторой функцией $c(\theta)$. При некоторых условиях соотношение (7.24) эквивалентно следующему равенству:

$$\ln L(x_1, ..., x_n | \theta) = \hat{\theta}(x_1, ..., x_n) \int c(\theta) d\theta + \int c(\theta) (\theta + b(\theta)) d\theta + G(x_1, ..., x_n), \qquad (7.25)$$

которое получается интегрированием (7.24) по параметру θ . Если ввести обозначения:

$$A(\theta) = \int c(\theta) d\theta , V(\theta) = \int c(\theta) (\theta + b(\theta)) d\theta ,$$

тогда в результате потенцирования придем к эквивалентному равенству:

$$L(x_{1},..., x_{n} | \theta) = e^{G(x_{1},..., x_{n})} e^{A(\theta)\hat{\theta}(x_{1},..., x_{n}) + V(\theta)},$$

$$L(x_{1},..., x_{n} | \theta) = H(x_{1},..., x_{n}) e^{A(\theta)\hat{\theta}(x_{1},..., x_{n}) + V(\theta)}.$$
(7.26)

Поскольку все соотношения от (7.18) до (7.26) являются эквивалентными, то повторение соотношений в обратную сторону от (7.26) к (7.18) доказывает теорему в сторону достаточности.

Теорема доказана.

Следствие 7.29.

В условиях теоремы 7.28 R-эффективная в классе K_b оценка $\hat{\theta}(\xi_1,...,\xi_n)$ является достаточной для параметра θ статистикой.

Доказательство:

При выполнении условий теоремы 7.28 имеет место следующая факторизация функции правдоподобия:

$$L(x_1,\dots,\ x_n\mid\theta)=H\left(x_1,\dots,\ x_n\right)e^{A(\theta)\hat{\theta}(x_1,\dots,x_n)+V(\theta)}\;.$$

Положим $h(x_1,...,x_n)=H(x_1,...,x_n)$ и $g(\hat{\theta}(x_1,...,x_n),\theta)=e^{A(\theta)\hat{\theta}(x_1,...,x_n)+V(\theta)}$ тогда:

$$L(x_1,..., x_n | \theta) = h(x_1,..., x_n) g(\hat{\theta}(x_1,..., x_n), \theta),$$

и по критерию факторизации (теорема 7.7) оценка $\hat{\theta}(\xi_1,...,\xi_n)$ является достаточной для параметра θ .

Следствие доказано.

Следствие 7.30.

В условиях теоремы 7.28 R-эффективная оценка $\hat{\theta}(\xi_1,...,\,\xi_n)$ является МП-оценкой параметра θ .

Доказательство:

1) Оценка $\hat{\theta}(\xi_1,...,\xi_n)$ является R-эффективной, следовательно, принадлежит классу K_0 (классу оценок с нулевым смещением), тогда функция смещения $b(\theta)$ оценки $\hat{\theta}(\xi_1,...,\xi_n)$ на множестве Θ равна нулю:

$$b(\theta) = 0$$
.

В условиях теоремы из R-эффективности в классе K_0 следует соотношение (7.23), в котором функция смещения $b(\theta)=0$:

$$\frac{\partial \ln L(x_1, ..., x_n \mid \theta)}{\partial \theta} = c(\theta)(\hat{\theta}(x_1, ..., x_n) - \theta). \tag{7.27}$$

2) Покажем, что в (7.26) функция $c(\theta)$ на множестве Θ принимает только положительные значения. Действительно, условия теоремы 7.28 совпадают с условиями теоремы 7.23, следовательно, выполняется равенство (7.17), в котором $b'(\theta) = 0$, поскольку $b(\theta) = 0$:

$$\operatorname{cov}_{\theta}(\hat{\theta}, U) = 1,$$

$$\operatorname{cov}_{\theta}\left(\hat{\theta}, \frac{\partial \ln L}{\partial \theta}\right) = 1,$$

и в силу (7.27):

$$\operatorname{cov}_{\theta}(\hat{\theta}, c(\theta)(\hat{\theta} - \theta)) = 1$$
.

Функция $c(\theta)$ не является случайной, поэтому функцию $c(\theta)$ можно вынести из ковариации как постоянный множитель:

$$c(\theta) \cos_{\theta} (\hat{\theta}, \hat{\theta} - \theta) = 1$$
.

Параметр θ также не является случайной величиной, поэтому по свойству ковариации удаление постоянного смещения не изменят ковариации:

$$c(\theta) \operatorname{cov}_{\theta}(\hat{\theta}, \hat{\theta}) = 1,$$

$$c(\theta) D_{\theta}[\hat{\theta}] = 1.$$
(7.28)

Оценка $\hat{\theta}(\xi_1,...,\xi_n)$ является R-эффективной, поэтому дисперсия $D_{\theta}[\hat{\theta}]$ оценки совпадает с нижней границей в неравенстве Рао-Крамера (в которой $b'(\theta) = 0$):

$$D_{\theta}[\hat{\theta}] = \frac{1}{I_n(\theta)},$$

где информация Фишера $I_n(\theta) > 0$ в силу условия регулярности R3:

$$D_{\theta}[\hat{\theta}] = \frac{1}{I_n(\theta)} > 0.$$

Таким образом, из (7.28):

$$c(\theta) = \frac{1}{D_{\theta}[\hat{\theta}]} > 0. \tag{7.29}$$

3) Теперь из (7.27) с учетом (7.29) следует, что если в качестве значений параметра θ выбирать величины меньше значения оценки $\hat{\theta}(x_1,...,x_n)$, то производная слева положительна:

$$\hat{\theta}(x_1,...,\ x_n) > \theta: \frac{\partial \ln L(x_1,...,\ x_n\mid \theta)}{\partial \theta} = c(\theta)(\hat{\theta}(x_1,...,\ x_n) - \theta) > 0 \ .$$

Если же наоборот в качестве значений параметра θ выбирать величины больше значения оценки $\hat{\theta}(x_1,...,x_n)$, то производная слева отрицательна:

$$\hat{\theta}(x_1,..., x_n) < \theta : \frac{\partial \ln L(x_1,..., x_n | \theta)}{\partial \theta} = c(\theta)(\hat{\theta}(x_1,..., x_n) - \theta) < 0.$$

Таким образом, в точке, соответствующей значению оценки $\hat{\theta}(x_1,...,x_n)$, функция $\ln L(x_1,...,x_n|\theta)$ (как функция параметра θ) имеет локальный максимум. Следовательно, для всякой реализации величин $(\xi_1,...,\xi_n)$ оценка $\hat{\theta}(\xi_1,...,\xi_n)$ доставляет наибольшее значение логарифмической функции правдоподобия $\ln L(\xi_1,...,\xi_n|\theta)$ и функции правдоподобия $L(\xi_1,...,\xi_n|\theta)$:

$$L(\xi_1,...,\xi_n\mid \hat{\theta}(\xi_1,...,\xi_n)) = \sup_{\theta\in\Theta} L(\xi_1,...,\xi_n\mid \theta).$$

Отсюда R-эффективная оценка $\hat{\theta}(\xi_1,...,\xi_n)$ является оценкой максимального правдоподобия.

Следствие доказано.

Следствие 7.33 показывает, что множество R-эффективных в классе K_b оценок содержится во множестве достаточных статистик. Другими словами, если найдена достаточная статистика, то вполне возможно она же является и R-эффективной оценкой в некотором классе K_b .

Следствие 7.34 аналогичным образом утверждает, что R-эффективные оценки содержатся в множестве МП-оценок. Следовательно, если найдена оценка по методу максимального правдоподобия, и она имеет нулевое смещение (принадлежит классу K_0), то возможно эта оценка является R-эффективной.

5. Информация Фишера.

Вычисление информации Фишера $I_n(\theta)$ непосредственно из определения 7.25 может вызывать существенные трудности, связанные необходимостью вычисления интеграла:

$$I_n(\theta) = M_{\theta}[U^2(\xi_1, ..., \xi_n \mid \theta)] = \int_X \left(\frac{\partial \ln L(x_1, ..., x_n \mid \theta)}{\partial \theta}\right)^2 L(x_1, ..., x_n) dx_1 ... dx_n.$$

Тем не менее, в условиях регулярности и при некоторых дополнительных условиях вычисление информации Фишера может быть выполнено иначе.

Утверждение 7.31.

Пусть выполнены условия регулярности и функция правдоподобия $L(\xi_1,...,\xi_n\,|\,\theta)$ дважды дифференцируема по θ , тогда:

$$I_{n}(\theta) = -M_{\theta} \left[\frac{\partial^{2} \ln L(\xi_{1},...,\xi_{n} \mid \theta)}{\partial \theta^{2}} \right].$$

Доказательство:

При выполнении условий регулярности справедливо равенство (7.13):

$$\begin{split} M_{\theta} \big[U\left(\xi_{1},...,\ \xi_{n}\mid\theta\right) \big] &= 0\ , \\ \int_{\mathbb{T}} \frac{\partial \ln L(x_{1},...,x_{n}\mid\theta)}{\partial\theta} L(x_{1},...,x_{n}\mid\theta) dx_{1}...dx_{n} &= 0\ . \end{split}$$

Продифференцировав левую и правую часть по θ получим:

$$\begin{split} \frac{\partial}{\partial \theta} \Biggl(\int_{X} \frac{\partial \ln L(x_{1}, \dots, x_{n} \mid \theta)}{\partial \theta} L(x_{1}, \dots, x_{n} \mid \theta) dx_{1} \dots dx_{n} \Biggr) &= 0 \;, \\ \int_{X} \frac{\partial}{\partial \theta} \Biggl(\frac{\partial \ln L(x_{1}, \dots, x_{n} \mid \theta)}{\partial \theta} L(x_{1}, \dots, x_{n} \mid \theta) \Biggr) dx_{1} \dots dx_{n} &= 0 \;, \\ \int_{X} \Biggl(\frac{\partial^{2} \ln L(x_{1}, \dots, x_{n} \mid \theta)}{\partial \theta^{2}} L(x_{1}, \dots, x_{n} \mid \theta) + \frac{\partial \ln L(x_{1}, \dots, x_{n} \mid \theta)}{\partial \theta} \frac{\partial L(x_{1}, \dots, x_{n} \mid \theta)}{\partial \theta} \Biggr) dx_{1} \dots dx_{n} &= 0 \;, \\ \int_{X} \frac{\partial^{2} \ln L(x_{1}, \dots, x_{n} \mid \theta)}{\partial \theta^{2}} L(x_{1}, \dots, x_{n} \mid \theta) dx_{1} \dots dx_{n} + \int_{X} \frac{\partial \ln L(x_{1}, \dots, x_{n} \mid \theta)}{\partial \theta} \frac{\partial L(x_{1}, \dots, x_{n} \mid \theta)}{\partial \theta} dx_{1} \dots dx_{n} &= 0 \;. \end{split}$$

Проведя в силу условия R1 во втором интеграле преобразование такое же как и при выводе (7.13) получим:

$$\int_{X} \frac{\partial^{2} \ln L(x_{1},...,x_{n} \mid \theta)}{\partial \theta^{2}} L(x_{1},...,x_{n} \mid \theta) dx_{1}...dx_{n} +$$

$$+ \int\limits_{V} \frac{\partial \ln L(x_1,...,x_n \mid \theta)}{\partial \theta} \frac{\partial \ln L(x_1,...,x_n \mid \theta)}{\partial \theta} L(x_1,...,x_n \mid \theta) dx_1...dx_n = 0,$$

$$\int_{X} \frac{\partial^{2} \ln L(x_{1},...,x_{n} \mid \theta)}{\partial \theta^{2}} L(x_{1},...,x_{n} \mid \theta) dx_{1}...dx_{n} + \int_{X} \left(\frac{\partial \ln L(x_{1},...,x_{n} \mid \theta)}{\partial \theta} \right)^{2} L(x_{1},...,x_{n} \mid \theta) dx_{1}...dx_{n} = 0 ,$$

$$\int_{X} \left(\frac{\partial \ln L(x_{1},...,x_{n} \mid \theta)}{\partial \theta} \right)^{2} L(x_{1},...,x_{n} \mid \theta) dx_{1}...dx_{n} = -\int_{X} \frac{\partial^{2} \ln L(x_{1},...,x_{n} \mid \theta)}{\partial \theta^{2}} L(x_{1},...,x_{n} \mid \theta) dx_{1}...dx_{n} .$$

Слева от знака равенства располагается информация Фишера $I_n(\theta) = M_{\theta}[U^2(\xi_1,...,\xi_n \mid \theta)]$, поэтому, окончательно:

$$I_n(\theta) = -\int_X \frac{\partial^2 \ln L(x_1, ..., x_n \mid \theta)}{\partial \theta^2} L(x_1, ..., x_n \mid \theta) dx_1 ... dx_n,$$

$$I_n(\theta) = -M_{\theta} \left[\frac{\partial^2 \ln L(\xi_1, ..., \xi_n \mid \theta)}{\partial \theta^2} \right].$$

Утверждение доказано.

Утверждение 7.32. (аддитивность информации Фишера)

Пусть в совокупности величин $(\xi_1,...,\xi_n)$ случайные величины ξ_i $(i=\overline{1,n})$ совместно независимы и имеют плотности вероятности $f_i(x\mid\theta)$ соответственно.

Если выполнены условия утверждения, тогда информация Фишера $I_{\mu}(\theta)$:

$$I_n(\theta) = \sum_{i=1}^n J_i(\theta),$$

где $J_i(\theta)$ информация Фишера, содержащаяся в одной случайной величине ξ_i .

Доказательство:

Поскольку случайные величины ξ_i $(i=\overline{1,n})$ совместно независимы и имеют функции плотности вероятности $f_i(x\mid\theta)$ $(i=\overline{1,n})$, то функция правдоподобия $L(\xi_1,...,\xi_n\mid\theta)$:

$$L(\xi_1,...,\xi_n | \theta) = \prod_{i=1}^n f_i(\xi_i | \theta),$$

тогда,

$$\frac{\partial^2 \ln L(\xi_1, ..., \xi_n \mid \theta)}{\partial \theta^2} = \frac{\partial^2}{\partial \theta^2} \sum_{i=1}^n \ln f_i(\xi_i \mid \theta) = \sum_{i=1}^n \frac{\partial^2 \ln f_i(\xi_i \mid \theta)}{\partial \theta^2}.$$

В условиях утверждения справедливо утверждение 7.35:

$$I_{n}(\theta) = -M_{\theta} \left[\frac{\partial^{2} \ln L(\xi_{1}, ..., \xi_{n} | \theta)}{\partial \theta^{2}} \right],$$

откуда

$$I_{n}(\theta) = -M_{\theta} \left[\sum_{i=1}^{n} \frac{\partial^{2} \ln f_{i}(\xi_{i} | \theta)}{\partial \theta^{2}} \right] = \sum_{i=1}^{n} \left(-M_{\theta} \left[\frac{\partial^{2} \ln f_{i}(\xi_{i} | \theta)}{\partial \theta^{2}} \right] \right) = \sum_{i=1}^{n} J_{i}(\theta),$$

где $J_i(\theta) = -M_{\theta} \left[\frac{\partial^2 \ln f_i(\xi_i \mid \theta)}{\partial \theta^2} \right]$ - информация Фишера, содержащаяся в одной случайной величине ξ_i .

Утверждение доказано.

Утверждение 7.33. (информация Фишера в случае выборки)

Пусть совокупность $(\xi_1,...,\ \xi_n)$ является выборкой из распределения с плотностью

вероятности $f_{\xi}(x \mid \theta)$. Если выполнены условия утверждения 7.35, тогда информация Фишера:

$$I_{\cdot \cdot}(\theta) = n \cdot I_{\cdot \cdot}(\theta)$$

где $I_1(\theta) = -M_{\theta} \left[\frac{\partial^2 \ln f_{\xi}(\xi_1 \mid \theta)}{\partial \theta^2} \right]$ — информация Фишера, содержащаяся в одной из

случайных величин $\xi_{_1},\,...,\,\xi_{_n},$ например, в случайной величине $\xi_{_1}.$

Доказательство:

В условиях утверждения справедливо утверждение 7.36, согласно которому информация Фишера:

$$\begin{split} I_{n}(\theta) &= \sum_{i=1}^{n} J_{i}(\theta), \\ J_{i}(\theta) &= -M_{\theta} \left[\frac{\partial^{2} \ln f_{i}(\xi_{i} \mid \theta)}{\partial \theta^{2}} \right]. \end{split}$$

Поскольку случайные величины ξ_i $(i=\overline{1,n})$ образуют выборку, то все плотности вероятности одинаковы, $f_i(x\mid\theta)=f_\xi(x\mid\theta)$, тогда:

$$J_{i}(\theta) = -M_{\theta} \left[\frac{\partial^{2} \ln f_{i}(\xi_{i} \mid \theta)}{\partial \theta^{2}} \right] = -M_{\theta} \left[\frac{\partial^{2} \ln f_{\xi}(\xi_{i} \mid \theta)}{\partial \theta^{2}} \right] = -M_{\theta} \left[\frac{\partial^{2} \ln f_{\xi}(\xi_{1} \mid \theta)}{\partial \theta^{2}} \right] = -M_{\theta} \left[\frac{\partial^{2} \ln f_{\xi}(\xi_{1} \mid \theta)}{\partial \theta^{2}} \right] = I_{1}(\theta),$$

и следовательно,

быстрее чем 1/n.

$$I_n(\theta) = \sum_{i=1}^n J_i(\theta) = \sum_{i=1}^n I_1(\theta) = n \cdot I_1(\theta).$$

Утверждение доказано.

Замечание 7.34.

Пусть выполнены условия теоремы 7.23 и утверждения 7.37, тогда для всякой оценки $\hat{\theta}(\xi_1,...,\xi_n)$ из класса K_b , согласно неравенству Рао-Крамера (теорема 7.23):

$$D_{\theta}[\hat{\theta}(\xi_1,...,\xi_n)] \ge \frac{\left[1 + b'(\theta)\right]^2}{I_n(\theta)}.$$

В силу утверждения 7.37 информация Фишера $I_n(\theta) = n \cdot I_1(\theta)$, тогда:

$$D_{\theta}[\hat{\theta}(\xi_1,...,\xi_n)] \geq \frac{\left[1+b'(\theta)\right]^2}{I_n(\theta)} = \frac{\left[1+b'(\theta)\right]^2}{n \cdot I_1(\theta)} = \frac{C(\theta)}{n},$$

где $C(\theta) = \frac{\left[1 + b'(\theta)\right]^2}{I_1(\theta)}$ — величина, зависящая только от θ не зависящая от n . Полученное неравенство показывает, что дисперсия всякой оценки в случае выборки не может убывать

Можно показать, что количества информации Фишера о параметре θ , содержащейся в исходной совокупности величин $(\xi_1,...,\xi_n)$ и в достаточной статистике $S(\xi_1,...,\xi_n)=(S_1(\xi_1,...,\xi_n),...,S_k(\xi_1,...,\xi_n))$ одинаково. Действительно, представим функцию плотности вероятности (или вероятности) $L_\xi(x_1,...,x_n\mid\theta)$ по формуле умножения через условную плотность вероятности (или вероятность) $L_\theta(x_1,...,x_n\mid s_1,...,s_k)$ величин $(\xi_1,...,\xi_n)$ относительно достаточной статистики $S=(S_1,...,S_k)$ и безусловной плотности вероятности (или вероятности) $L_S(s_1,...,s_k\mid\theta)$ статистики $(S_1,...,S_k)$:

$$L_{\xi}(\xi_1,...,\xi_n \mid \theta) = L_{\theta}(\xi_1,...,\xi_n \mid S_1,...,S_k) \cdot L_{S}(S_1,...,S_k \mid \theta)$$
.

Прологарифмируем левую и праву части и вычислим производные левой и правой

частей по θ :

$$\frac{\partial \ln \, L_{\boldsymbol{\xi}}\left(\boldsymbol{\xi}_{1}, \ldots, \,\, \boldsymbol{\xi}_{n} \mid \boldsymbol{\theta}\right)}{\partial \, \boldsymbol{\theta}} = \frac{\partial \ln \, L_{\boldsymbol{\theta}}\left(\boldsymbol{\xi}_{1}, \ldots, \,\, \boldsymbol{\xi}_{n} \mid \boldsymbol{S}_{1}, \ldots, \,\, \boldsymbol{S}_{k}\right)}{\partial \, \boldsymbol{\theta}} + \frac{\partial \ln \, L_{\boldsymbol{S}}\left(\boldsymbol{S}_{1}, \ldots, \,\, \boldsymbol{S}_{k} \mid \boldsymbol{\theta}\right)}{\partial \, \boldsymbol{\theta}} \,.$$

Поскольку статистика $(S_1,...,S_k)$ является достаточной для параметра θ , то согласно определению условное распределение $L_{\theta}(x_1,...,x_n\,|\,s_1,...,\,s_k)$ не зависит от параметра θ и поэтому производная от логарифма $\ln L_{\theta}(x_1,...,x_n\,|\,s_1,...,\,s_k)$ равна нулю, тогда:

$$\frac{\partial \ln \, L_{\boldsymbol{\xi}}\left(\boldsymbol{\xi}_{1}, \ldots, \,\, \boldsymbol{\xi}_{n} \mid \boldsymbol{\theta}\right)}{\partial \, \boldsymbol{\theta}} = \frac{\partial \ln \, L_{\boldsymbol{S}}\left(\boldsymbol{S}_{1}, \ldots, \,\, \boldsymbol{S}_{k} \mid \boldsymbol{\theta}\right)}{\partial \, \boldsymbol{\theta}} \, .$$

Вычисляя вторые начальные моменты от случайных величин слева и справа, в итоге приходим к равенству:

$$M_{\theta}\left[\left(\frac{\partial \ln L_{\xi}(\xi_{1},..., \xi_{n} \mid \theta)}{\partial \theta}\right)^{2}\right] = D_{\theta}\left[\left(\frac{\partial \ln L_{\xi}(S_{1},..., S_{k} \mid \theta)}{\partial \theta}\right)^{2}\right],$$

в котором величина слева есть информация Фишера о параметре θ , содержащаяся в совокупности величин $(\xi_1,...,\xi_n)$, а величина справа есть информация Фишера о параметре θ , содержащаяся в достаточной статистике $(S_1,...,S_k)$.