Selling Training Data (Preliminary)

Jingmin Huang, Wei Zhao and Renjie Zhong*

Renmin University of China

Berkeley Theory Lunch

Selling Training Data

- Consider data buyers purchase supplementary data from a monopolistic data broker to train its predictive model.
- Data buyers may have baseline datasets either collected by themselves or from other external sources.
- Private datasets impact evaluation of supplementary datasets by:
 - altering buyers' outside option
 - 2 affecting the way how supplementary datasets are merged (with private datasets) in statistical decision making
- Our question: what is the optimal data selling mechanism for a screening problem with private datasets as buyer's type.

Timeline

- lacktriangledown The data broker posts a mechanism $\mathcal{M}=\{\mathcal{E},t\}$
 - lacksquare a collection of datasets (information structures) ${\cal E}$
 - 2 associated tariff $t: \mathcal{E} \to \mathbb{R}_+$
- 2 The data buyer purchases the supplementary dataset E and pays the price t(E). Then he trains his predictive model by merging his private dataset E^P and E.
- **3** The true state ω is realized.
- The buyer employs his predictive model to make predictions and chooses action to maximize his expected payoff.

Statistical Decision Making

- a simplified cute model for this talk (hypothesis testing):
 - lacktriangle two states : ω_1 (null hypothesis), ω_2 (alternative hypothesis), prior: $\mu_0=(\frac{1}{2},\frac{1}{2})$
 - lacktriangle hypothesis test: binary action $\{a_1,a_2\}$ and payoff $u(a_i,\omega_j)=1_{i=j}$ (correct identification)

two states for tractability: the likelihood ratio between states $\mu(\omega_1)/\mu(\omega_2)$ can be ranked others can be generalized (finite actions, finite signals, arbitrary payoff matrix, any prior now)

Private Data

- \blacksquare private experiment: two signals s'_1 (acceptance), s'_2 (rejection)
- private type: (α, β) , Type I error $\alpha = \Pr(s'_2|\omega_1)\mu(\omega_1)$, Type II error $\beta = \Pr(s'_1|\omega_2)\mu(\omega_2)$
- lacktriangle buyer with high-quality private dataset is low type (data quality preference $\alpha+\beta$)

Private Experiment $(\pi'_1 + \pi'_2 \ge 1)$

 (π'_1, π'_2) is an equivalent way to describe buyer's private type; but the reduced form (α, β) directly reflects the preference to the supplementary data.

Supplementary Data

E is obedient for type (α, β) if every signal $s_k = (a_{k_1}, a_{k_2})$ is obeyed for (α, β) , i.e.

$$a_{k_j} \in \operatorname{arg\,max}_{a_{i'} \in A} \mathsf{E}[u_{ij'}|s_k,s_j'] \text{ for all } s_k \text{ and } j=1,2.$$

Lemma

The outcome of every menu \mathcal{M} can be attained by a direct and straight mechanism $\mathcal{M} = \{\mathcal{E}_{\Theta}, t\}$, where each type $\theta = (\alpha, \beta)$ buys obedient \mathcal{E}_{θ} from \mathcal{E}_{Θ} , and pays $t : \mathcal{E}_{\Theta} \to \mathbb{R}_+$.

Table: Straight Experiment

Data broker recommends action profiles for different private signal implementations.

Figure: Data Merging

■ Type-wise reduction data structure (π_1, π_2) : reduce Type i error by a ratio π_i

 π_i : probability inducing **Type i** error from identifying ω_{-i} in ω_i

Lemma

The revenues can always be weakly improved by replacing a direct and straight mechanism $\mathcal{M} = \{\mathcal{E}_{\Theta}, t\}$ with an alternative direct and straight mechanism $\mathcal{M} = \{\mathcal{E}_{\Theta}', t'\}$, where $\mathcal{E}_{\theta}' \in \mathcal{E}_{\Theta}'$ is Type-wise reduction for all θ .

 \blacksquare obedience constraint: $\pi_1\alpha+\pi_2\beta\leq\min\{\frac{1}{2}\pi_1,\frac{1}{2}\pi_2\}$

$$egin{array}{c|ccccc} E & (a_1,a_1) & (a_1,a_2) & (a_2,a_1) & (a_2,a_2) \\ \hline \omega_1 & 1-\pi_1 & \pi_1 & 0 & 0 \\ \omega_2 & 0 & \pi_2 & 0 & 1-\pi_2 \\ \hline \end{array}$$

Table: Type-wise Reduction Experiment

In the reduced-form, designer allocates the reduction ratio of Type I and II error

Figure: Reducing Type I error

revelation principle for $\theta = (\alpha, \beta)$:

1 direct mechanism $\mathcal{M} = \{E_{\theta}, t_{\theta}\}_{\theta \in \Theta}$: IC + IR

straight information design with Type-wise reduction E_{θ} ($\pi_1(\theta), \pi_2(\theta)$): Ob-edience value of experiment (π_1, π_2) for (α, β): incremental probability of correct identification

$$V(E,\theta) = \underbrace{\alpha + \beta}_{\text{initial overall error}} - \min \underbrace{\{\alpha \pi_1 + \beta \pi_2, \frac{1}{2} \pi_1, \frac{1}{2} \pi_2\}}_{\text{new overall error}}$$

Designer's Problem

$$\max_{\mathcal{M}} \int_{\Theta} t_{\theta} dF(\theta)$$

$$\alpha \pi_{1}(\theta) + \beta \pi_{2}(\theta) \leq \min\{\frac{1}{2}\pi_{1}(\theta), \frac{1}{2}\pi_{2}(\theta)\}$$

$$\alpha + \beta - \alpha \pi_{1}(\theta) - \beta \pi_{2}(\theta) - t_{\theta} \geq 0, \ \forall \theta \in \Theta$$

$$\alpha + \beta - \alpha \pi_{1}(\theta) - \beta \pi_{2}(\theta) - t_{\theta} \geq \alpha + \beta - \underbrace{\min\{\alpha \pi_{1}(\theta') + \beta \pi_{2}(\theta'), \frac{1}{2}\pi_{1}(\theta'), \frac{1}{2}\pi_{2}(\theta')\}}_{\text{two-step deviation}} - t_{\theta'}, \forall \theta, \theta' \in \Theta$$

Remark: double deviation always exists in our model and traditional FOC method cannot work

Key Attributes of Data Goods

- data goods: sell (reduced) statistical error (specific multi-dimensional goods)
- interdependence between different Types of error imposes rigidity on the menu structure:
 - **1** obedience, $\alpha \pi_1 + \beta \pi_2 \leq \min\{\frac{1}{2}\pi_1, \frac{1}{2}\pi_2\}$, constrains the allocation of statistical error
 - 2 double-deviation, $\min\{\alpha\pi_1+\beta\pi_2,\frac{1}{2}\pi_1,\frac{1}{2}\pi_2\}$, weakens the differentiation
- inclusion, exclusion and extraction principles + allocation rigidity shape the bundling policy
- trade-off: extraction of low type surplus v.s. reduce information rent
- the seller can exploit the horizontal difference to neutralize the vertical difference, through subtly designing the lower-tiered dataset to nullify the impact of private datase

Data Goods and Other Goods

flexibility: physical goods < information goods < data goods < bundling of physical goods

- physical goods: posted-price, no-haggling
- information goods: position and informativeness (separately "multi-dimensional" goods)
 - **1** position: the Type of error (either Type I or II) $(\alpha,0)$ or $(0,\beta)$
 - 2 informativeness: the probability of corresponding Type error α or β
 - 3 allocation: reducing corresponding Type error- $(\pi_1, \pi_2) = (\pi_1, 1)$ when $(\alpha, 0)$, or $(1, \pi_2)$ when $(0, \beta)$

the design and price of information \iff one-dimensional allocation (differentiated informativeness) + one-dimensional preference with incongruent order

- 3 data goods: allocate different Types of error (specific multi-dimesional goods)
- Multi-dimensional goods: optimal bundling policy tends to be complex and infinite

Data v.s. Information (Bergemann et al.2018): Two Type Case

high type (α, β) , low type (α', β') , $\alpha + \beta \ge \alpha' + \beta'$ Binary Situation

data v.s. information \iff private experiment (α, β) v.s. private signal $(\alpha, 0)$ or $(0, \beta)$

Continuous Type Space

Assumption

The statistical error of buyer's private data is perfectly correlated: for the private type (α, β) , it holds that $k\alpha + \beta = m$, with $m \in [0, \frac{1}{2})$ and $k \in [0, 2m]$.

one-dimensional preference: $(\alpha, m - k\alpha)$, where $\alpha \in \mathcal{A} = [\underline{\alpha}, \overline{\alpha}] = [0, \frac{\frac{1}{2} - m}{1 - k}]$ draws from distribution F with a continuous, strictly positive density f

three characteristics:

- 1 the coexistence of both horizontal and vertical differences
- 2 the obedience constraints
- 3 the possibilities of double deviation

optimal mechanism

The optimal selling mechanism is two-tiered pricing:

- 2 $(E_{\alpha}, t_{\alpha}) = (E^*, t^*)$ for $\alpha \in [\underline{\alpha}, \alpha^*)$, where $\pi_1^* = 1 k(1 \frac{\alpha^*}{\overline{\alpha}})$, $\pi_2^* = \frac{\alpha^*}{\overline{\alpha}}$ 3 $\alpha^* \in \arg\max_{\alpha} \alpha \ ((1 - k)\overline{\alpha} - \frac{1}{2}F(\alpha))$

Double deviation reduce the dimension of multi-goods allocation (rigidity).

Lemma (Dimension Reduction)

In the optimal mechanism,
$$\frac{1}{2}\pi_2(\alpha) + t_{\alpha} = \frac{1}{2}\pi_2(\alpha') + t_{\alpha'}$$
 for all $\alpha, \alpha' \in [\underline{\alpha}, \overline{\alpha}]$,

- double deviation $\{\frac{1}{2}\pi_1, \frac{1}{2}\pi_2\}$: buyer only commits one Type of error in hypothesis testing.
 - ⇒ "drop" his own dataset in statistical decision making
- to exclude double deviations, between two supplementary datasets,

price gap = informativeness/value gap in statistical decision making which is the differences in reduction ratio of a specific type error

■ such linkage reduces the dimensions ⇒ one-dimensional screening the possibility of two- step deviation limits the flexibility of menu structure brought by

multi-dimension nature of data allocation.

Now we restrict to two-tiered structure, the data seller can:

- exploit horizontal differences to neutralize vertical difference ⇒ inclusion of the low type
- improve E along the neutralization line $\frac{1-\pi_1}{1-\pi_2}=k$ and extract all the additional value

$$V(E^*, \alpha) = \alpha + (m - k\alpha) - \alpha \pi_1^* - (m - k\alpha)\pi_2^* = m(1 - \pi_2^*) + \alpha[(1 - k) - (\pi_1^* - k\pi_2^*)] = m(1 - \pi_2^*)$$

Such operation can be continued until it hits the obedient boundary (rigidity)

Proof Sketch

Denote $V(E, \alpha) = \max\{V_r(E, \alpha), V_n(E, \alpha)\}$, where

$$V_r(E,\alpha) = \alpha(1-\pi_1) + (m-k\alpha)(1-\pi_2), \quad V_n(E,\alpha) = \alpha + (m-k\alpha) - \min\{\frac{1}{2}\pi_1, \frac{1}{2}\pi_2\}$$

two properties of the value functions:

Property 1. ("same difference")

$$V_n(E', \alpha') - V_n(E, \alpha') = V_n(E', \alpha) - V_n(E, \alpha), \forall E, E', \alpha, \alpha'.$$

Property 2. ("increasing difference")

 $V_r(E', \alpha') - V_r(E, \alpha') \ge V_r(E', \alpha) - V_r(E, \alpha), \forall \alpha' > \alpha \text{ if and only if } \pi'_1 - k\pi'_2 \le \pi_1 - k\pi_2,$ where inequality binds if and only if $\pi'_1 - k\pi'_2 = \pi_1 - k\pi_2$.

Denote $\lambda(\alpha): \mathcal{A} \to \mathcal{A}$ the type of buyers who are exactly indifferent to following seller's recommendation or not, when merging his own private dataset.

(i)
$$\lambda(\alpha) = \frac{(\frac{1}{2} - m)\pi_2(\alpha)}{\pi_1(\alpha) - k\pi_2(\alpha)}$$
 if $\pi_1(\alpha) \neq 0$; (ii) $\lambda(\alpha) = \bar{\alpha}$ otherwise.

Lemma (Characterization of Obedience Zone)

Optimal menu (E_{α}, t_{α}) satisfies

- $1 \pi_2(\alpha)/\pi_1(\alpha) \leq 1$
- **2** There exists a threshold α^* such that
 - I for any $\alpha < \alpha$, $\alpha < \lambda(\alpha)$ and there exists some $\alpha' > \lambda(\alpha)$ such that $IC[\alpha' \to \alpha]$ binds;
 - **2** $E_{\alpha} = \bar{E}$ if and only if $\alpha \geq \alpha^*$.

a class of perturbations $\{(-k\Delta\pi, -\Delta\pi: \Delta\pi \geq 0)\}$ on supplementary datasets, which does not change the difference in evaluating the dataset between V_r , but enlarge it between V_r and V_n exploit such perturbation of informativeness improvement to the maximal degree

⇒ either double-deviation IC, or Ob is binding

Define $\gamma(\alpha)$ some type who is indifferent between choosing $E_{\gamma(\alpha)}$ and conducting double deviation by choosing E_{α} .

$$\gamma(\alpha) = \begin{cases} \alpha & \text{if } \alpha = \lambda(\alpha) \\ \tilde{\alpha} \in \{\alpha' > \lambda(\alpha) : \mathsf{IC}[\alpha' \to \alpha] \text{ is binding} \} & \text{if } \alpha < \lambda(\alpha) \end{cases}$$

Lemma (Properties of λ and γ)

In optimal menu,

- \mathbf{Z} $\pi(\alpha) := \pi_1(\alpha) k\pi_2(\alpha)$ is non-increasing for $\alpha \in [0, \bar{\alpha}]$;

Two key observations:

- The supplementary dataset amplifies the quality gap of baseline/private datasets.
- The private dataset narrows the quality gap of supplementary datasets.

Lemma (Equivalent Transformation of Constraints)

In the optimal mechanism, the IC, IR and Ob conditions are equivalent to

- $\mathbf{1}$ $\frac{1}{2}\pi_2(\alpha) + t_\alpha = t^*$ for all $\alpha \in [\underline{\alpha}, \bar{\alpha}]$, where t^* is the associated tariff for \bar{E} ;
- $V(E_{\alpha}, \alpha) = \int_{\alpha}^{\alpha} (1 k \pi(t)) dt + V(E_{\underline{\alpha}}, \underline{\alpha})$
- $\pi(\alpha): [\underline{\alpha}, \bar{\alpha}] \stackrel{-}{\to} [0, 1-k]$ is non-increasing;
- IR[$\hat{\theta}$] holds for some $\hat{\alpha} = \inf\{\alpha | \pi(\alpha) \le 1 k\}$.

Condition 1: price gap should exactly measure difference in Type II error reduction.

Seller's optimization problem can be transformed as a classic optimization problem

$$\max_{\pi} \int_{\underline{\alpha}}^{\overline{\alpha}} \frac{-1}{1 - 2m} \left[\int_{\alpha}^{\bar{\alpha}} (1 - F(t) - tf(t)) dt + 2m\alpha \right] d\pi(\alpha)$$
s.t.
$$\begin{cases} \pi : [\underline{\alpha}, \bar{\alpha}] \to [0, 1 - k] \text{ is non-increasing} \\ \pi(\bar{\alpha}) = 0 \end{cases}$$

Future Work

- robust optimal mechanism
- distributional assumptions sufficient for a simple optimal menu (?)
- many states
- concrete applications

Literature Review

- Information Design as Screening Tools: Admati and Pfleiderer (1986), Admati and Pfleiderer (1990), Babaioff et al. (2012), Bergemann et al. (2018), Yang (2022), Segura-Rodriguez (2022), Bonatti et al. (2023), Bonatti et al. (2024), Rodriguez Olivera (2024)
- Multi-dimensional Screening: Adams and Yellen (1976), McAfee et al. (1989), Armstrong and Rochet (1999), Manelli and Vincent (2007), Hart and Reny (2015), Daskalakis et al. (2017), Carroll (2017), Haghpanah and Hartline (2021); Yang (2022), Deb and Roesler (2023)

Thank You!

Binary Situation

binary type (low (α', β') and high (α, β) , $\alpha' + \beta' \leq \alpha + \beta$, uniform distribution): four polices •

Lemma: sell fully informative \overline{E} to type-H & type-L experiment E should be obedient for type-H

	α
The Low-type Buyer (α', β') located inside $\alpha' + \beta' \le \alpha + \beta$	

Region	Data Menu	Selling Policy
I	$(\overline{E},\overline{E})$	Inclusive Grand Bundling
II	(\overline{E},ϕ)	Exclusive Grand Bundling

grand bundling: sell \overline{E} with $(\pi_1, \pi_2) = (0, 0)$

I: low rent, high type-L surplus - including type-L

II: high rent, low type-L surplus - excluding type-L

boundary line: inclusion/exclusion of type-L (rent extraction v.s. surplus extraction)

Region	Data Menu	Selling Policy	Binding Constraints
III	(\overline{E},E^*)	Nested Bundling	(IR-L),(IC-H),(Ob-H)

$$(\alpha, \beta) > (\alpha', \beta') \Rightarrow \pi_1 \alpha + \pi_2 \beta > \pi_1 \alpha' + \pi_2 \beta'$$
, given (π_1, π_2)

⇒ information rent > 0 & higher tendency to make another Type error ((Ob-H) is binding)

 E^* : only reduce some Type error by a constant ratio (e.g. when $\frac{\beta}{2} < \beta' < \beta$ and $\alpha' < \frac{\alpha}{2}$)

exploitation of data structure:

$$1 \cdot \alpha + \pi_2^* \beta = \frac{1}{2} \pi_2^*$$

two benefits for including β' : relatively low rent and high surplus

Region	Data Menu	Selling Policy	Binding Constraints
IV $ (\overline{E}, E_{(\alpha,\beta)}) $ Partial Grand		Partial Grand Bundling	(IR-L),(IC-H),(Ob),(IR-H)

The Low-type Buyer (α', β') located inside $\alpha' + \beta' \leq \alpha + \beta$

 $E_{(\alpha,\beta)}$: reduce both Types of error

(i) exploitation of data structure: $\alpha \pi_1^* + \beta \pi_2^* = \frac{1}{2} \pi_i^*$

(ii) no information rent:

$$\alpha \pi_1^* + \beta \pi_2^* = \alpha' \pi_1^* + \beta' \pi_2^*$$

$$\begin{array}{c|cccc} & (s_1,s_1) & (s_1,s_2) & (s_2,s_2) \\ \hline \omega_1 & 1-\pi_1^*(\alpha',\beta') & \pi_1^*(\alpha',\beta') & 0 \\ \omega_2 & 0 & \pi_2^*(\alpha',\beta') & 1-\pi_2^*(\alpha',\beta') \\ \end{array}$$