21-373, Algebraic Structures, Department of Mathematical Sciences, Carnegie Mellon University Fall 2011: (Math Studies Section) Monday, Wednesday, Friday, 10:30 am, Porter Hall 226B. Luc Tartar, University Professor of Mathematics, Wean Hall 6212, tartar@cmu.edu

Assignment 3 - Saturday September 24, 2011. Due Friday September 30

Exercise 15: Prove that D_{12} and S_4 are not isomorphic.

Exercise 16: Write the cycle decompositions of all the elements of order 4 in S_4 , and of all the elements of order 2 in S_4 .

Exercise 17: Let σ the 8-cycle (12345678), τ the 12-cycle (123456789101112), and ω the 14-cycle (1234567891011121314). For which positive integer i is σ^i an 8-cycle? For which positive integer j is τ^j a 12-cycle? For which positive integer k is ω^k a 14-cycle?

Exercise 18: Show that in the three following cases, the centralizer of H is H, and the normalizer of H is G:

```
i) G = S_3 and H = \{e, (123), (132)\},\
```

- ii) $G = D_4$ and $H = \{e, a^2, b, a^2b\},\$
- iii) $G = D_5$ and $H = \{e, a, a^2, a^3, a^4\}.$

[In a group G, for any subset $X \subset G$, the centralizer of X is $C_G(X) = \bigcap_{x \in X} C_G(x)$ (where the centralizer $C_G(x)$ is the stabilizer of x for the action of conjugation, i.e. $\{g \in G \mid gx = xg\}$). In D_n , a denotes an element of order n and b an element of order n and n and n and n are element of order n and n and n are element of order n and n are element of n are element of n and n are element of n and n are element of n are element of n and n are element of n are element of n and n are element of n are element of n and n are element of n are element of n and n are element of n are

Exercise 19: For $m \ge 1$ and $q_1, \ldots, q_m \in \mathbb{Q}^*$, prove that the (finitely generated) subgroup $H = \langle q_1, \ldots, q_m \rangle$ of \mathbb{Q} is a subgroup of $K = \langle \frac{1}{D} \rangle$, where D is the least common multiplier of the denominators of q_1, \ldots, q_m . Show that H is cyclic (hence \mathbb{Q} is not finitely generated).

Exercise 20: A non trivial Abelian group G is called *divisible* if for each $a \in G$ and each positive integer k there exists $b \in G$ with kb = a. Show that \mathbb{Q} is divisible, that no finite Abelian group is divisible, and that $G_1 \times G_2$ is divisible if and only if both G_1 and G_2 are divisible.

Exercise 21: Show that the group of rigid motion symmetries of a platonic solid (tetrahedron, cube, octahedron, dodecahedron, icosahedron) have respectively orders 12, 24, 24, 60, 60, i.e. 2E, where E is the number of edges. Show that for the tetrahedron this group is isomorphic to a subgroup of S_4 , and that for the cube or the octahedron this group is isomorphic to S_4 .

[A Platonic solid is a convex polyhedron which is regular, so that its faces all are regular polygons with k sides, and ℓ edges arrive at each vertex, so that the number of faces F, of edges E, and of vertices V satisfy $kF = \ell V = 2E$; using $k, \ell \geq 3$ (which implies $k, \ell \leq 5$) and the relation F - E + V = 2 (that the Euler characteristic of the sphere \mathbb{S}^2 is 2), one finds there are five such regular polyhedron: the tetrahedron (4 triangular faces), the hexahedron = cube (6 square faces), the octahedron (8 triangular faces), the dodecahedron (12 pentagonal faces), and the icosahedron (20 triangular faces).]