ANÁLISIS MATEMÁTICO (AMA)

UT2 - Problemas Propuestos: FUNCIONES ELEMENTALES

1. Determina los dominios de las funciones:

a)
$$f(x) = \log\left(\frac{x^2 - 1}{x}\right)$$

b)
$$g(x) = \frac{x^2+1}{x^2-1}$$

c)
$$h(x) = \sqrt[4]{x^2 - 2x - 3}$$

d)
$$j(x) = \frac{\log(2-x)}{|x|+x}$$

e)
$$k(x) = \sqrt{1 - |x+2|} + \frac{1}{\sqrt{|x|-x}}$$

f)
$$l(x) = \sqrt{\log(x^2 - x)}$$

g)
$$m(x) = \arcsin\left(\frac{x}{x^2 - 2}\right)$$
.

2. Encuentra los dominios respectivos y determina qué funciones de las que siguen son pares, cuáles son impares y cuáles ni pares ni impares:

a)
$$f(x) = \log\left(\frac{1+x}{1-x}\right)$$

b)
$$g(x) = \sqrt{1 + x - x^2} - \sqrt{1 - x + x^2}$$

c)
$$h(x) = \sqrt{x^2 - 1} + x$$

d)
$$j(x) = \frac{x \cdot |x|}{2^x + 2^{-x}}$$

e)
$$k(x) = \cos(\sin(x+\pi))$$

f)
$$r(x) = ax^3 + b$$
, según $a, b \in \mathbb{R}$

g)
$$s(x) = \frac{e^{2x} - e^{-2x}}{x^2 + 1}$$

h)
$$u(x) = \frac{e^{2x} + 1}{e^{2x} - 1}$$

i)
$$v(x) = \frac{e^{x^2} + 1}{x^3 - x}$$
.

3. Calcula las derivadas de las funciones:

a)
$$f(x) = x\sqrt{x} (3\log(x) - 2)$$

b)
$$g(x) = \log(e^{-x} + xe^{-x})$$

c)
$$h(x) = \frac{x^3 - 3}{5 - x^2}$$

d)
$$j(x) = 3\sin(x) - \cos^3(x)$$

e)
$$k(x) = \frac{\sin(x) - \cos(x)}{\sin(x) + \cos(x)}$$

f)
$$m(x) = (x^2 - 2)\sin(x) + 2x\arctan(x)$$

g)
$$n(x) = 2\sqrt{x} - \frac{1}{\sqrt[3]{x}} + \sqrt{1+x^2}$$
.

- 4. a) Encuentra el valor de la derivada de la función k(x) del problema anterior en el punto de abscisa $x = \pi$ y determina la ecuación de la recta tangente a la gráfica de k(x) en ese punto.
 - b) La recta tangent a la gráfica de la función h(x) del problema anterior en el punto x=1 corta a la gráfica de h(x) en un segundo punto. Determina la distancia entre los dos puntos de corte.
- 5. Mediante el uso de las derivadas correspondientes, halla los intervalos de crecimiento y decrecimiento de las funciones:

a)
$$f(x) = x^2 (x - 3)$$

b)
$$g(x) = \frac{x}{x-2}$$

c)
$$h(x) = x + sen(x)$$

d)
$$p(x) = x \log(x)$$

e)
$$q(x) = \frac{e^x}{x}$$

f)
$$r(x) = \sqrt[3]{\frac{x^4}{1-x}}$$

6. Encuentra los dominios y determina (a partir del estudio de sus derivadas) las regiones de crecimiento y decrecimiento y los puntos en que toman máximos o mínimos relativos las funciones:

a)
$$f(x) = \frac{16}{x(4-x^2)}$$

b)
$$g(x) = x^3 + 8x^2 + 4x - 48$$

c)
$$h(x) = x^2 \cdot e^{-x}$$

d)
$$k(x) = \frac{e^x}{x^4}$$

ANÁLISIS MATEMÁTICO (AMA)

UT2 - Ejercicios adicionales: FUNCIONES ELEMENTALES

- 1. Simplifica la expresión $\frac{x \cdot \sqrt[3]{x} \cdot \sqrt{x}}{\sqrt[4]{x^3} \cdot \sqrt[3]{\sqrt{x^5}}}.$
- 2. Resuelve las ecuaciones:
 - a) $25^{x+1} + 5^{x+2} = 50$
 - b) $\log(x) \log(x-1) = \log(x+2) \log(5)$.
- 3. Descompón en fracciones simples:
 - a) $\frac{3x}{x^2 6x + 8}$
 - b) $\frac{x^4 + x^2 + x + 5}{x^3 2x + 4}$
 - c) $\frac{x^2+1}{(x+2)^3}$.
- 4. Encuentra el dominio y la función inversa, si existe (donde exista), de cada una de las funciones:
 - a) $f(x) = \frac{2x}{x-1}$
 - b) $g(x) = \frac{x}{1+|x|}$
 - c) $h(x) = \sqrt{x^2 + 1} x$.
- 5. Determina los siguientes conjuntos.
 - a) $A = \left\{ \frac{1}{x} : x \in \mathbb{R} \right\}$
 - b) $B = \{x \in [0, 2\pi] : \sin x > 0\}$
 - c) $C = \{ \log x : x \in \mathbb{R} \}$
 - d) $D = \left\{ x \in \mathbb{R} : \cos x \ge \frac{1}{2} \right\}$
 - e) $E = \{x \in \mathbb{R} : x^3 \le 1\}$
- 6. Determina si son o no periódicas las funciones que siguen:
 - a) $\sin(3x \pi)$
 - b) $\left|\cos(4x)\right|$
 - c) $\tan(x^2)$
 - d) $\sin^2(x)$
 - e) |x [x]|, donde [x] es la parte entera de x; es decir, el major entero menor o igual que x.

Encuentra también el período T de cada una de las periódicas.

- 7. Demuestra que las siguientes funciones son periódicas:
 - a) f(x) = 10sen(3x), de periodo $\frac{2\pi}{3}$.
 - b) $h(x) = cos^2(x)$ de periodo π .
- 8. a) ¿Qué ángulo determinan las curvas $y=x^3$ e $y=\frac{1}{x^2}$ en el punto en el que se cortan sus gráficas?
 - b) ¿En qué punto de la curva definida por $y^2 = 2x^3$ la recta tangente es perpendicular a la recta de ecuación 3y 4x = 2?
- *9. Se definen las funciones hiperbólicas: seno, coseno y tangente por

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$
 , $\cosh(x) = \frac{e^x + e^{-x}}{2}$, $\tanh(x) = \frac{\sinh(x)}{\cosh(x)}$

Encuentra sus gráficas y justifica analíticamente que:

- a) sinh es impar y cosh es par. Ninguna de ellas es periódica
- b) $\cosh^2(x) \sinh^2(x) = 1$, $\cosh^2(x) + \sinh^2(x) = \cosh(2x)$
- c) sinh y tanh soón crecientes en \mathbb{R} ; cosh es creciente en $]0,+\infty[$. ¿Dónde son cóncavas o convexas?
- d) Sus inversas respectivas (encuentra también sus gráficas): argsinh, argcosh y argctanh, son, respectivamente:

$$\log\left(x + \sqrt{x^2 + 1}\right) , x \in \mathbb{R}; \quad \log\left(x + \sqrt{x^2 - 1}\right) , x \ge 1; \quad \frac{1}{2}\log\left(\frac{1 + x}{1 - x}\right) , x \in [-1, 1].$$

*10. Determina la continuidad y derivabilidad de las siguientes funciones:

a)
$$f(x) = \begin{cases} x^2 - x & \text{si } x \ge 1 \\ -x + 1 & \text{si } x < 1 \end{cases}$$

b)
$$g(x) = \begin{cases} \cos(x) & \text{si } x \ge 0 \\ 1 & \text{si } x < 0 \end{cases}$$

c)
$$h(x) = \begin{cases} x^3 - 2 & \text{si } x > -3\\ 27x & \text{si } x \le -3 \end{cases}$$

11. Encuentra los dominios y determina (a partir del estudio de sus derivadas) las regiones de crecimiento y decrecimiento y los puntos en que toman máximos o mínimos relativos las funciones:

a)
$$l(x) = \sin(x)\cos^2(x)$$

*b)
$$m(x) = x \cos(x)$$

12. Calcula las segundas derivadas de las funciones:

a)
$$f(x) = e^{x^2}$$

$$g(x) = \sin^2(x)$$

c)
$$h(x) = \log(x + \sqrt{a^2 + x^2})$$
.

13. Determina las regiones de concavidad y convexidad de las funciones del ejercicio anterior.

14. Encuentra los máximos y mínimos absolutos de:

a)
$$f(x) = \sqrt{x(10-x)}$$
, en su dominio

b)
$$g(x) = 2x^3 + 3x^2 - 12x + 1$$
, en $[-1, 5]$ y en $[-10, 12]$

c)
$$h(x) = -\sin(3x)$$
 en $[-2, 2]$.

*15. Encuentra los máximos y los mínimos absolutos de $f(x) = \sin^4(x) + \cos^4(x)$, en \mathbb{R} .

*16. Si
$$f(x)=\frac{1}{1+x^2}$$
 y $g(x)=e^{-x^2}$ verifica que, para $x\in[0,1]$:

$$|f''(x)| \le 8$$
, $|f^{(iv)}(x)| \le 384$, $|g''(x)| \le 6$, $|g^{(iv)}(x)| \le 76$.