

Введение в системное программирование

Определение

Системное программирование

Что это за понятие?

Определение

Системное программирование

Что это за понятие?

Процесс конструирования программных систем

Определение

Системное программирование

Что это за понятие?

Процесс конструирования программных систем

А это что такое?

Простая программа

ТО К ЧЕМУ МЫ ПРИВЫКЛИ

- ✓ Разработана индивидуально
- ✓ Решает частную задачу

Простая программа

ТО К ЧЕМУ МЫ ПРИВЫКЛИ

- ✓ Разработана индивидуально
- ✓ Решает частную задачу
- Пригодна для запуска автором и его ближайшим окружением
- Для работы требует той же системы, в которой была разработана

Простая программа

ТО К ЧЕМУ МЫ ПРИВЫКЛИ

- ✓ Разработана индивидуально
- ✓ Решает частную задачу
- Пригодна для запуска автором и его ближайшим окружением
- Для работы требует той же системы, в которой была разработана
- Простая не значит плохая! В большинстве случаев вполне устраивает

Дополнительные требования:

Дополнительные требования:

✔ Разработка в обобщённом стиле: без привязки к системе, форматам, значениям параметров

Дополнительные требования:

- ✓ Разработка в обобщённом стиле: без привязки к системе, форматам, значениям параметров
- ✓ Требование надёжности: критический сбой есть проблема автора, а не пользователя

Дополнительные требования:

- ✔ Разработка в обобщённом стиле: без привязки к системе, форматам, значениям параметров
- ✓ Требование надёжности: критический сбой есть проблема автора, а не пользователя
- ✓ Наличие полной и удобной для использования документации

Дополнительные требования:

- ✓ Разработка в обобщённом стиле: без привязки к системе, форматам, значениям параметров
- ✓ Требование надёжности: критический сбой есть проблема автора, а не пользователя
- ✓ Наличие полной и удобной для использования документации
- ✓ Обеспечение сопровождения устранение ошибок, расширение функциональности.

Дополнительные требования:

Дополнительные требования:

✓ Согласование компонент по функциям

Дополнительные требования:

- ✓ Согласование компонент по функциям
- ✓ Согласование по форматам данных

Дополнительные требования:

- ✓ Согласование компонент по функциям
- ✓ Согласование по форматам данных
- К функциональному тестированию компонент добавляется системное тестирование комплекса.

Системный программный продукт

✓ Комплекс взаимодействующих программ, надлежащим образом написанный, протестированный и задокументированный с обеспечением сопровождения в процессе его применения пользователями.

Системный программный продукт

- ✓ Комплекс взаимодействующих программ, надлежащим образом написанный, протестированный и задокументированный с обеспечением сопровождения в процессе его применения пользователями.
- ✔ Системное программирование процесс разработки сложных программных систем в целом или их отдельных компонент с использованием специальных средств, инструментов, парадигм программирования и моделей разработки.

Системный программный продукт

- ✓ Комплекс взаимодействующих программ, надлежащим образом написанный, протестированный и задокументированный с обеспечением сопровождения в процессе его применения пользователями.
- ✔ Системное программирование процесс разработки сложных программных систем в целом или их отдельных компонент с использованием специальных средств, инструментов, парадигм программирования и моделей разработки.

Парадигма программирования

✓ Парадигма — совокупность идей и понятий, определяющая стиль программирования.

Парадигма программирования

- ✓ Парадигма совокупность идей и понятий, определяющая стиль программирования.
- Определяет в каких терминах описывается логика программы.
- Многие языки программирования поддерживают несколько парадигм.

Парадигма программирования

- ✓ Парадигма совокупность идей и понятий, определяющая стиль программирования.
- Определяет в каких терминах описывается логика программы.
- Многие языки программирования поддерживают несколько парадигм.
 - **✓** Императивное
 - ✓ Объектно-ориентированное
 - ✓ Обобщенное
 - ✓ Защитное
 - **✓** Функциональное
 - ✓ Логическое

Модель разработки

✓ Модель разработки — определяет каким образом будут выполняться действия по разработке программной системы, посредством описания «последовательности» этих действий.

Модель разработки

- ✓ Модель разработки определяет каким образом будут выполняться действия по разработке программной системы, посредством описания «последовательности» этих действий.
- Определяет логику прохождения стадий разработки.
- ✓ Не привязывается к конкретным языкам программирования.

Модель разработки

- ✓ Модель разработки определяет каким образом будут выполняться действия по разработке программной системы, посредством описания «последовательности» этих действий.
- Определяет логику прохождения стадий разработки.
- ✓ Не привязывается к конкретным языкам программирования.
 - **✓** Сверху-вниз
 - ✓ Каскадная
 - **✓** Спиральная
 - **✓** Инкрементная
 - ✓ RAD, визуальное
 - ✓ XР (экстремальная)

Главный императив

Главный Технический Императив Разработки ПО:

Управление Сложностью

Современные задачи

НАМ НЕ ПОВЕЗЛО

✓ Простые задачи решены до нас

Современные задачи

НАМ НЕ ПОВЕЗЛО

- ✓ Простые задачи решены до нас
- ✓ Объём программного кода сложных задач 100 тыс. и миллионы строк исходного кода на языке высокого уровня

Современные задачи

НАМ НЕ ПОВЕЗЛО

- ✓ Простые задачи решены до нас
- ✓ Объём программного кода сложных задач 100 тыс. и миллионы строк исходного кода на языке высокого уровня
- ✓ Один разработчик не в состоянии охватить все аспекты подобной программы.

Сложность программного обеспечения

✓ Со сложностью можно попытаться справиться, но избавиться от неё нельзя.

Сложность программного обеспечения

- ✓ Со сложностью можно попытаться справиться, но избавиться от неё нельзя.
- Чем сложнее система, тем легче её развалить

Сложность программного обеспечения

- ✓ Со сложностью можно попытаться справиться, но избавиться от неё нельзя.
- Чем сложнее система, тем легче её развалить
- ✓ Объем программных систем проявление сложности, но не причина.

Сложность программного обеспечения

- ✓ Со сложностью можно попытаться справиться, но избавиться от неё нельзя.
- Чем сложнее система, тем легче её развалить
- ✓ Объем программных систем проявление сложности, но не причина.

А ПОЧЕМУ ОНО ТАКОЕ?

Причины сложности

Причины сложности

✓ Не знаем чего хотим (неполнота требований)

- ✓ Не знаем чего хотим (неполнота требований)
- ✓ Нечёткость функциональных требований

- ✓ Не знаем чего хотим (неполнота требований)
- ✓ Нечёткость функциональных требований
- ✓ Субъективность эргономических требований

- ✓ Не знаем чего хотим (неполнота требований)
- ✓ Нечёткость функциональных требований
- ✓ Субъективность эргономических требований
- ✓ Проблема взаимопонимания между заказчиком и разработчиком

- ✓ Не знаем чего хотим (неполнота требований)
- ✓ Нечёткость функциональных требований
- ✓ Субъективность эргономических требований
- ✓ Проблема взаимопонимания между заказчиком и разработчиком
- ✓ Смена правил по ходу игры (гибкость требований)

Причины сложности

✓ Члены команды должны взаимодействовать

- ✓ Члены команды должны взаимодействовать
- ✓ Закон Брукса: добавление разработчиков увеличивает сроки реализации проекта — время для понимания сути проекта + увеличение количества связей в команде

- ✓ Члены команды должны взаимодействовать
- ✓ Закон Брукса: добавление разработчиков увеличивает сроки реализации проекта — время для понимания сути проекта + увеличение количества связей в команде
- ✓ Затраты на системное тестирование есть функция от числа разработчиков

Причины сложности

Гибкость программного обеспечения

✔ Разработка ПО как творческий процесс стимулирует создание «лучшего из всех» с чистого листа

Гибкость программного обеспечения

- ✔ Разработка ПО как творческий процесс стимулирует создание «лучшего из всех» с чистого листа
- ✓ Все программисты оптимисты

Гибкость программного обеспечения

- ✓ Разработка ПО как творческий процесс стимулирует создание «лучшего из всех» с чистого листа
- ✓ Все программисты оптимисты
- ✓ Отсутствие единых стандартов поощряет на разработку своих базовых блоков (для строительства здания возводим кирпичные заводы)

Причины сложности

✔ Огромное количество возможных состояний даже в простейших программах

- ✔ Огромное количество возможных состояний даже в простейших программах
- ✓ Немыслимое количество возможных переходов из состояния в состояние

- ✔ Огромное количество возможных состояний даже в простейших программах
- ✔ Немыслимое количество возможных переходов из состояния в состояние
- ✓ Объективные трудности в математическом аппарате исследования больших дискретных систем

- ✓ Огромное количество возможных состояний даже в простейших программах
- ✓ Немыслимое количество возможных переходов из состояния в состояние
- ✓ Объективные трудности в математическом аппарате исследования больших дискретных систем
- ✓ Никогда нельзя быть уверенным в безошибочности программы

Введение в системное программирование