TOPOLOGÍA. UAM, 22 de diciembre de 2015

- **1.** Sean X, Y, Z espacios topológicos. Sea $A \subset X$. Si $f_1 : X \to Y$ y $f_2 : X \to Y$ son dos aplicaciones continuas homotópicas relativamente a $A, y g : Y \to Z$ es una aplicación continua, demuestra que las aplicaciones $g \circ f_1$ y $g \circ f_2$ son homotópicas relativemente a A.
- 2. Considera $\mathbb{S}^1=\{\ z\in\mathbb{C}:||z||=1\}$ con la topología usual. Demuestra que la aplicación

$$\begin{array}{ccc} \mathbb{S}^1 & \stackrel{p}{\longrightarrow} & \mathbb{S}^1 \\ z & \longmapsto & z^3 \end{array}$$

es una aplicación recubridora.

3. Sea M la banda de Moebius descrita como el cociente de $[0,1] \times [0,1]$ por la relación de equivalencia:

$$(s_1, t_1) \sim (s_2, t_2) \Leftrightarrow \begin{cases} (s_2, t_2) = (s_1, t_1) & 0 < s_1, s_2 < 1 \\ (s_2, t_2) = (1 - s_1, 1 - t_1) & s_1 = 0, 1 \end{cases}$$

Pongamos $S = \{[(s, \frac{1}{2})] : 0 \le s \le 1 \} \subset M$.

- 1. Demuestra que S es un retracto deformación fuerte de M.
- 2. Demuestra que la banda de Moebius M y el cilindro son homotópicamente equivalentes.
- **4.** Demuestra que si X es un espacio topológico conexo y homotópicamente equivalente a Y, entonces Y es conexo. (Indicación: Si $f: X \to Y$, $g: Y \to X$ son tales que $f \circ g$ es homotópica a id_Y , construir una curva que una cada punto de $g \in Y \setminus f(X)$ con un punto de f(X) y usar estas curvas para describir Y.)