Pince z-x-z ,MGI d'un robot ABB

Objectif : initier l'étudiant à traduire une intuition en équations exploitables, à l'aide des transformations homogènes.

Intuition 1 à prouver: sur le graphique ci-dessous, si on connaît l'orientation et la position du repère outil (repère 6) par rapport au repère 0, alors on connaît les coordonnées de l'origine du repère 5 dans le repère 0. **Intuition 2 à prouver:** si on connaît les coordonnées de l'origine du repère 5 dans le repère 0, on peut en déduire les angles θ 1, θ 2, θ 3

Intuition 3 à prouver:

si on connaît l'orientation et la position de l'outil du repère 6 par rapport au repère 0, et les angles θ 1, θ 2, θ 3, on peut en déduire les angles θ 4, θ 5, θ 6,

Rappel1, Denavit Hartenberg : ${}^{i-1}T_i = \underbrace{rot_z(\theta_i).trans_z(d_i)}_{\text{vis d'axe } z_{i-1}} \underbrace{.rot_x(\alpha_i).trans_x(a_i)}_{\text{vis d'axe } x_i} = \underbrace{dh(\theta_i, ai, di, \alpha_i)}_{\text{tr de Denavit Hartenberg}}$

Rappel 2, équations que l'on sait résoudre :

- 1 équation et 1 inconnue
- 2 équations et 2 inconnues

Principe des preuves : écrire formellement les matrices supposées connues,

par exemple pour l'intuition 1

on connaît
$${}^{0}T_{6} = \begin{bmatrix} t_{11} & t_{12} & t_{13} & o_{1} \\ t_{21} & t_{22} & t_{23} & o_{2} \\ t_{31} & t_{32} & t_{33} & o_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
, on en déduit ${}^{0}O_{5} = fct({}^{0}T_{6}, {}^{?}T_{?})$, et on s'aperçoit que ${}^{0}O_{5}$ ne

dépend que des termes connus de ${}^{0}T_{6}$

pour l'intuition 2

- On connaît
$${}^{0}O_{5d} = \begin{bmatrix} x_5 \\ y_5 \\ z_5 \end{bmatrix}$$
 (le d en indice signifié 'désirée"), on écrit la même quantité ${}^{0}O_5$ en fonction de

 0T_5 = $fct(\theta_1,...,\theta_5)$, on s'aperçoit qu'elle ne dépend que de $\theta_1,...,\theta_3$

pas de chance on ne sait pas résoudre directement l'équation ${}^{0}O_{5d} = {}^{0}O_{5}(\theta_{1}, \theta_{2}, \theta_{3})$,

- on écrit les mêmes équations dans le repère 1

 $^{1}O_{5d} = fct(^{?}T_{?}, ^{0}O_{5d})^{^{1}}$, on écrit la même quantité $^{1}O_{5}$ en fonction de $^{1}T_{5}(\theta_{2}, ..., \theta_{5})$ on peut à présent en déduire $\theta_{1}, ..., \theta_{3}$

pour l'intuition 3

on connaît ${}^{0}T_{6d}$ depuis l'orientation et la position du repère 6, ainsi que ${}^{0}T_{3}$ depuis les angles $(\theta_{1}, \theta_{2}, \theta_{3})$

on peut donc supposer connue la matrice ${}^3T_{6d}$: on pose donc ${}^3T_{6d} = \begin{bmatrix} t_{11} & t_{12} & t_{13} & o_1 \\ t_{21} & t_{22} & t_{23} & o_2 \\ t_{31} & t_{32} & t_{33} & o_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$, et on calcule son

homologue ${}^{3}T_{6} = fct(\theta_{4}, \theta_{5}, \theta_{6})$.

si on n'arrive pas à trouver des équations que l'on sait résoudre, on écrit la même chose dans un autre repère, soit ${}^4T_{6d}(\theta_4) = {}^4T_6(\theta_5, \theta_6)$, soit ${}^3T_{5d}(\theta_6) = {}^3T_5(\theta_4, \theta_5)$