概率论与数理统计:第十次作业(共八题)

作业请按时完成,过期不接受补交。同学之间可以相互讨论,但最 终的解答必须个人书写完成。

- (1) 设 x_1, \ldots, x_n 是以下总体的样本, 求未知参数的最大似然估计:
 - (a) $p(x;\theta) = \frac{1}{2\theta} e^{-\frac{|x|}{\theta}}, \ \theta > 0;$
 - (b) $p(x; \theta_1, \theta_2) = \frac{1}{\theta_2 \theta_1}, \ \theta_1 < x < \theta_2.$
 - (c) $P(X = x; p) = \frac{\binom{0}{2}p^x(1-p)^{2-x}}{1-(1-p)^2}, x = 1, 2.$
- (2) 设 $X \sim Exp(\frac{1}{\lambda}), x_1, ..., x_n$ 是其样本。
 - (a) 请说明 \bar{x} 是 λ 的矩估计也是最大似然估计, 并且是具有 相合性的无偏估计。
 - (b) 寻找形如 $a\bar{x}$ 的统计估计量,它在均方差准则下优于 \bar{x} .
- (3) 设 $x_1, ..., x_m$ 和 $y_1, ..., y_n$ 分别为来自总体 $N(\mu_1, \sigma^2)$ 和 $N(\mu_2, \sigma^2)$ 的两个相互独立的样本。求 (μ_1, μ_2, σ^2) 的最大似然估计。
- (4) 设总体的密度函数为 $p(x;\theta) = \theta x^{\theta-1}, 0 < x < 1, \theta > 0,$ x_1, \ldots, x_n 是其样本。
 - (a) $g(\theta) = \frac{1}{\theta}$ 的最大似然估计。并说明其是无偏估计。
 - (b) 求 θ 的费希尔信息量。
 - (c) 说明 $q(\theta)$ 的最大似然估计是有效估计。
- (5) 设 x_1, \ldots, x_n 是来自伽马分布 $Ga(\alpha, \lambda)$ 的样本, $\alpha > 0$ 已知。
 - (a) 求 λ 的费希尔信息量。

 - (b) 说明 $\frac{x}{\alpha}$ 是 $g(\lambda) = \frac{1}{\lambda}$ 的无偏估计。 (c) 说明 $\frac{x}{\alpha}$ 是 $g(\lambda)$ 的一致最小方差无偏估计 (UMVUE)。
- (6) 设 x_1, \ldots, x_n 以下总体的样本:

$$P(X = -1) = \frac{1 - \theta}{2}, \ P(X = 0) = \frac{1}{2}, \ P(X = 1) = \frac{\theta}{2}.$$

- (b) 计算 θ 的无偏估计的 C-R 下界。
- (c) 当 n 很大时,给出 θ 的最大似然估计的近似分布。
- (7) 设 x_1, \ldots, x_n 是来自均匀分布 $U(0, \theta)$ 的样本。假设 θ 的先验 分布为 Pareto 分布,密度函数为

$$\pi(\theta) = \frac{\beta \theta_0^{\beta}}{\theta^{\beta}}, \ \theta > \theta_0,$$

其中 β 和 θ_0 均是已知常数。求 θ 的贝叶斯估计。

(8) 设 x_1, \ldots, x_n 是以下总体的样本:

$$p(x|\theta) = \theta x^{\theta-1}, 0 < x < 1.$$

假如 θ 的先验分布为指数分布 $Exp(\lambda)$, λ 已知。求 θ 的贝叶斯分布。