

Transition Logic

Prof. W. Bibel TU Darmstadt UBC Canada

Idea of Logic

- Knowledge state: KB ∧ K₀ ⊨_{cog} K_i
- \blacksquare \models cog formally describable by \models
- ⊨ studied for 2000+ years
- relationship of ⊨_{cog} and ⊨ studied scientifically only for a few decades in CogSci (before through introspection and commonsense psychology)

Dimensions of Logic Space

- Structural explorations in a given logic
 - theorem proving, proof theory, semantics
- Problems of representation in a logic
 - eg. how to represent change in FOL
- Design of a logic for modelling cognitive phenomena
 - find ⊨ modelling cognitive logical knowledge relations (eg. including change)

Knowledge Processing

- . . . for agent in an environment
- Representation for fast retrieval
- Exploiting logical relations
 - static aspect for knowledge compression
- Dynamics of knowledge state
 - dynamic aspect (need for compression)
- Both aspects fundamental for reasoning
 - eg. in planning, explanation, diagnosis etc.

4

What Is a Logic?

- A formal language for representation +
- a relationship \models : KB \land K₀ \models K_i
- Enables reduction of KB (compression)
- But what if KB changes to KB'?
- Natural reasoning suggests:
 - ", $KB \wedge K_0 \wedge t_0 \models K_i$ "
- Our solution: $KB \wedge K_0 \models_{t_0} K_i$
 - solves compression and frame problem

Natural Reasoning Under Changes

- Example: purse with credit card in pants pocket; put on pants at home; go to restaurant: credit card with me?
- Formally static: in(cc,purse); in(purse,pants); loc(me,athome); loc(pants,athome); in(x,y)∧loc(y,z)→loc(x,z); transitions: loc(me,x)∧loc(pants,x) ⇒ loc(me,x)∧loc(pants,x)∧in(pants,me); loc(me,athome) ⇒ loc(me,rest); loc(cc,rest)?

A Simple Didactic Example E₁

- U, U \rightarrow F \vdash F / H, H \rightarrow A \vdash A / D, D \rightarrow O \vdash O
 - U: block is uncovered
 - F: block is free
 - H: hand holds block
 - A: block is airborne
 - D: block is put down
 - O: block is on table
- U, U \rightarrow F is short for U \wedge (U \rightarrow F)

Transitional Problems

- A transition is a pair (E,F) of conjunctions of atoms
- A transitional problem (W,T,I,G)
 - W: world knowledge (definite nonrec. cls.)
 - T: set of transitions
 - I: initial state (set of atoms)
 - G: goal state (set of atoms)
 (finite sets; set, conjunction interchangeable)

-

Source informally

- σ(F)={{U}} in example
- for $U_1 \wedge U_2 \rightarrow F$, $\sigma(F) = \{\{U_1\}, \{U_2\}\}\}$
 - U₁ musty, U₂ lack of oxygen, F stuffy
- for $U_1 \rightarrow F$, $U_2 \rightarrow F$, ie. $U_1 \lor U_2 \rightarrow F$, $\sigma(F) = \{\{U_1, U_2\}\}$
- disjunction of conjunctions of ...
- nf: normal form, ie. nesting depth is 2
- subs $\{S_1,S_2\}=S_i$ if $S_i\subseteq S_j$ else identical

Ç

Source Definition

- For W, I, and atom A (without restricting generality):
- $σ(A) = {{A}} if A ∈ I$
- $\sigma(A) = \text{subs} [\text{nf} \{ \{ \sigma(B_{1j_1}), ..., \sigma(B_{nj_n}) \} | 1 \le j_1 \le m_1, ..., 1 \le j_n \le m_n \}] \text{if}$ $B_{11} \land ... \land B_{1m_1} \lor ... \lor B_{n1} \land ... \land B_{nm_m} \to A$
- σ(A)=⊥ else

- Illustration of Definition
- Recursive replacement of atoms by defining bodies, form dual formula, transform to DNF, remove subsumed clauses, interpret as set of sets of atoms
- Semantically, σ(A) is set of minimal sets M:
 I\M does no more entail A under W
- $U_1 \wedge U_2 \rightarrow F$: $\sigma(F) = subs[nf\{\{\sigma(U_1)\}, \{\sigma(U_2)\}\}] = subs[nf\{\{\{\{U_1\}\}\}, \{\{\{U_2\}\}\}\}\}] = \{\{U_1\}, \{U_2\}\}\}$
- $U_1 \lor U_2 \to F$: $\sigma(F) = subs[nf\{\{\sigma(U_1), \sigma(U_2)\}\}] = subs[nf\{\{\{\{U_1\}\}, \{\{U_2\}\}\}\}\}] = \{\{U_1, U_2\}\}\}$

Inference Relation

- For $s = \{S_1, ..., S_m\}$ and $t = (\{P,D\}, \{P,A\})$: $s' = \bigcup_{i=1}^m \{(S_i \setminus D') \cup A \mid D' \in \sigma(D)\}$
- $S = S_1 \lor ... \lor S_m$ state set formula, whereby S_i conjunction of atoms in it
- Inductive definition of \vdash_{T^n} for *sequences*
 - $\vdash_0 = \vdash_{\mathsf{T}^0} = \vdash$
 - step n-1 to n : W, $I \vdash_{(t_1,...,t_m)} F$ iff W, S' $\vdash F$

Deductions Modulo Transitions

- W_1 , $U \vdash_{(t_1,t_2)} O$ in example E_1
- E₂ like E₁ but additional t₃ = U⇒H :
 W₁, U ⊢_(t3,t2) O , ie. inference absorbable by additional transitions (STRIPS)
- Similar for sets of transitions: resulting plans (transitions) are partially ordered
- General case: ⊢_(T,≤) for partial order ≤ on set T

Lifting to FOL

- $C(x) \land O(x,y) \land C(z) \Rightarrow C(x) \land O(x,z) \land C(y)$
- $I=\{U(b),\exists yO(b,y),C(c)\}$
- $W = \{U(x) \rightarrow C(x),...\}$
- Variables in transitions treated as parameters, recursion and negation by stratification
- Generalization to more general formulas is harder, left open for future research

Historical Background

- Leibniz conceived "possible worlds"
- Wittgenstein's "state of affairs"
- Carnap's "state descriptions" (1946)
- Kripke's semantics for modal logic (1959ff)
- but modal logic studies global truths
 - quasi top-down (instead of bottom-up)
- and originated with different intuition

Recent History

- STRIPS 1971
 - classical deduction was never clarified and is not contained in modern systems
 - Thiébaux et al. 2003 (FF planner) introduced ⊢ within states with exponential gains but not beyond transitions as here
 - TL shares Lifschitz' semantics with STRIPS
- linear connection method 1986, linear logic 1987, transition logic 1998

Recent History ctd.

- Situation calculus 1963
 - extra situation parameter
 - suffers from inferential frame problem
- Fluent calculus with language FLUX
 - like TL and its predecessors solves inferential frame problem
 - transitions on term level; ⊢ not considered
- Modal approaches, active logics etc.

A Partial History Tree

Fluent Calculus (FC)

- state represented as term
- axioms and specification of state and actions imply constraints on solution/action and new state
- deductive plan generation
- language FLUX (Fluent Executor)
- realised in Prolog with constraints
- includes many features from KR

Aufgabe des Roboters sei es, mit seinen 3 Postfächern die Hauspost einzusammeln und auszuteilen.

Elementaraktionen des Roboters sind:
$$\begin{aligned} & \text{f\"{u}lle}(x,y) \quad x \in \{1,2,3\}, \ y \in \{1,\dots,6\} \\ & \text{leere}(x) \quad x \in \{1,2,3\} \\ & \text{gehe}(x) \quad x \in \{\text{vor}, \text{zur\"{u}ck}\} \end{aligned}$$

W. Bibel Transition Logic

20

Simple FLUX Program

```
main :- init(Z), main_loop(Z).
main_loop(Z) :-
   poss(leere(X),Z) -> execute(leere(X),Z,Z1),
                                                       main_loop(Z1);
   poss(fuelle(X,Y),Z) -> execute(fuelle(X,Y),Z,Z1),
                                                       main_loop(Z1);
   weiter(X,Z)
                        -> execute(gehe(X),Z,Z1),
                                                       main_loop(Z1);
   true.
weiter(X,Z) :-
  ( holds(leer(F),Z), holds(sendung(R1,R2),Z); holds(traegt(F,R1),Z))
 holds(position(R),Z), ( R < R1 -> X = vor ; X = zurueck ).
W. Bibel
                              Transition Logic
                                                                     21
```


FLUX Runtime Behavior (n,3)

Golog Runtime Behavior (n,3)

- Deductive approach extremely attractive
- Only competitive with a solution for both the representational and inferential frame problem (FC) and with an integration of classical ⊢ for compression (TL, partially FF)
- Efficient integration of TL into a theorem prover yet to be done

Midterm Perspective

- Hundreds of millions of facts in brain
- Goal: KBs with 100 mio. facts
- CYC so far 1.5 mio. facts
- Open Mind Common Sense database:
 - everyone can enter knowledge facts
 - input in natural language possible
 - within 2 years 0.5 mio. facts
- Deductive planning system on top

Trend in Full Swing . . .

- CYC (100k concepts, 10k predicates)
- Wordnet 1.6: Englisch, word/meaning
- Enterprise Ontology (modelling)
- Gene Ontology (biological concepts)
- Process Ontology (engineering)
- Cancer Ontology (100k concepts/terms)
- IEEE Standard Upper Ontology

A Practical Example

- Problem specification
 - given a standard laptop under worm attack
 - given an address for a patch program
 - goal: protected machine
 - find plan to achieve goal
- Requires several (static) reasoning steps in order to determine transitions