10/21/04

Reading for next time: Chapter 6-7. **Thur. 11 Nov.** Midterm 6.30-8.30.

- Normal Approximation to the Binomial.
- Confidence Intervals: intuition and graphics.
- Confidence Intervals: formulas.

Normal Approximation to the Binomial

- 1. Sum of many independent 0/1 components with probabilities equal p (with n large enough such that $npq \ge 3$), then the binomial number of success in n trials can be approximated by the Normal distribution with mean $\mu = np$ and standard deviation $\sqrt{np(1-p)}$.
- 2. For n large, the sampling distristribution of \hat{p} can be approximated by a normal distribution with mean=p and standard deviation $\sqrt{\frac{p(1-p)}{n}}$.

Histogram of rbinom(10000, 20, 0.5)

Histogram of rbinom(10000, 20, 0.3)

Continuity Correction:

$$P(a \le X \le b) \simeq P(\frac{a - \frac{1}{2} - np}{\sqrt{np(1 - p)}} \le Z \le \frac{b + \frac{1}{2} - np}{\sqrt{np(1 - p)}})$$

[&]quot;Statisticians are the only people who insist on being wrong 5% of the time"

CONFIDENCE INTERVALS (S& W Chap 6)

Confidence interval for unknown μ (with known σ)

Interpretation of C.I.- repeated sampling and the confidence stack

What a confidence interval depends on: C, n and σ

Choice of sample size

Two Remarks to complement the last lecture on normal approximation and CLT:

1. Example: Consider incomes in town, where $\mu = 39.97$ and $\sigma = 13.75$: X_1 NOT normal.

Sample, n=50 ,
$$P(\bar{X}_{50} \ge 44)$$
?

$$\bar{X}_{50} \sim \mathcal{N}(39.97, \frac{13.75}{\sqrt{50}})$$

 $ar{X}_{50}$ is approximately normally distributed with mean around 40 and sd 1.94,

$$P = P(\bar{X}_{50} \ge 44) = P(\frac{\bar{X}_{50} - 40}{1.94} > \frac{44 - 40}{1.94}) \simeq P(Z > 2.06) = 2\%$$

2. Remark. Adding independent variables brings the sum closer to being normal.

Hence, if you start at the normal, you should stay there!

If
$$X \sim N(\mu, \sigma^2)$$
 then $\bar{X} = \frac{X_1 + X_2 \cdots X_n}{n} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n})$ exactly.

More generally, if X and Y are normal, independent, then aX+bY Normal

for any constants a, b (— a linear combination). What are the mean & variance of aX+bY?

Typical poll says "support for Bush is 52% with margin of error of 4%" This is an example of a confidence interval.

C.I.'s are one of the strangest animals in the statistical zoo, and one has to be careful with their interpretation. There has been quite a lot of philosophical debate about them, but neverthess they remain a very useful tool for assessing the accuracy of estimates.

CONFIDENCE INTERVAL Estimate +/- Margin of Error: E +/- M

2 key components:

1) interval

(E-M, E+M) (with estimate E at center)

- 2) confidence level C 95%, 99% or other
- C = Probability that *the method* yields an interval containing the true value (of the unknown parameter).

The confidence stack: Imagine drawing lots of samples – each generating a 95% C.I.


```
cis=function(n=15,mean=2.5,sd=2,B=25)
lower=rep(0,25)
                                           lower=rep(0,B)
upper=rep(0,25)
                                           upper=rep(0,B)
meanx=rep(0,25)
                                           meanx=rep(0,B)
stdex=rep(0,25)
                                           stdex=rep(0,B)
plot(c(0,5),c(0,26),type='n')
                                           plot(c(mean-sd, mean+sd), c(0, B+1), type='n')
                                           for ( i in (1:B)){
for ( i in (1:25)){
samplex=rnorm(15, 2.5, 2)
                                           samplex=rnorm(n,mean,sd)
meanx[i]=mean(samplex)
                                           meanx[i]=mean(samplex)
stdex[i]=sqrt(var(samplex)/15)
                                           stdex[i]=sqrt(var(samplex)/n)
lower[i]=meanx[i]-1.96*stdex[i]
                                           lower[i]=meanx[i]-1.96*stdex[i]
upper[i]=meanx[i]+1.96*stdex[i]
                                           upper[i]=meanx[i]+1.96*stdex[i]
lines(c(lower[i],upper[i]),c(i,i))
                                           lines(c(lower[i],upper[i]),c(i,i))}
lines(c(2,2),c(0,26))
                                           lines(c(mean, mean), c(0, B+1))
                                           cis(B=100)
```

Some intervals do not overlap with the true value μ , the randomness comes from the sample chosen NOT the mean which has a fixed unknown value.

Examples:

- a) C.I. for population mean μ , with **known** popn SD σ
- b) C.I. for pop mean μ , unknown σ .
- c) C.I. for difference in two means, unknown σ .

Preparation: Book's notation: z_{α} = location on standard normal curve with area $1-2\alpha$ under $(-z_{\alpha}, z_{\alpha})$: quantiles

Conf. Interval for mean μ , with known σ

Suppose a random variable X has mean μ (unknown) and SD σ (known), and that we have n independent observations x_1, x_2, \ldots, x_n of this r.v.

A level C, or
$$100(1-2\alpha)\%$$
 confidence interval for μ is $[\bar{x}-z_{\alpha}\frac{\sigma}{\sqrt{n}},\bar{x}+z_{\alpha}\frac{\sigma}{\sqrt{n}}]$

The interval is "exact" if X itself has a normal distribution approximately correct (by the CLT) for any X if n is large, usually we suppose n > 20.

Standard error of the sample mean (and other sample statistics)

If σ known, then SD of sample mean, $\sigma(\bar{x}) = \frac{\sigma}{\sqrt{n}}$, when σ is unkown, we use the estimated standard error of the mean:

$$s_{\bar{x}} = SE_{\bar{x}} = \frac{s}{\sqrt{n}}$$

The sample mean is an example of a *statistic T*, (a quantity derived from a sample of data, such as \bar{x}). Other examples of statistics include the sample standard deviation s, sample coefficient of variation CV sample skewness and kurtosis.

Warning about names for variability of random variables and statistics: Important to distinguish between the *population value* of the variability of a statistic, (which is generally unknown, since it depends on the whole population), and a *sample estimate* which is based on observed data from a probability sample. The latter is a random quantity (if we drew another sample, we would get a different estimate).

The term "*standard error*" is usually reserved for the SD of the sample mean The term "*standard error of T*" refers to the SD of a sample statistic *T*.

Example Confidence interval for the mean of IQs, for a population whose known variance is $\sigma^2=225=15^2$, Sample size n=50. $\bar{x}=113.9$ observed mean. Special feature of IQs: normally distributed, and $\sigma=15$ is known, so C=95%, $z_{\frac{\alpha}{2}}=1.96$ margin of error $M=1.96\times15/\sqrt{50}=1.96\times2.12=4.2$

95% CI is
$$[113.9 - 4.2, 113.9 + 4.2] = [109.7, 118.1]$$

A level C, or $100(1-\alpha)$ % confidence interval for μ is

$$[\bar{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \bar{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}]$$

But to return to reality, we don't know σ . Thus we must estimate the standard deviation of \bar{X} with:

$$SE_{\bar{X}} = \frac{s}{\sqrt{n}}$$

But s is just a function of our X_i 's and thus is a random variable too – it has a sampling distribution too. Before we could say if we knew σ

$$P(-z_{\alpha/2} < \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} < z_{\alpha/2}) = 1 - \alpha$$

which after algebra gave the confidence interval.

[Remember for any s, z_s is **defined** as where 1-2s of the area falls in $(-z_s, z_s)$. So $z_s = \mathtt{qnorm}(1-s) = -\mathtt{qnorm}(s) = 1-s$ quantile. i.e. z_s is the positive side.]

Now we want a similar setup, so that:

$$P(?? < \frac{\bar{X} - \mu}{SE_{\bar{Y}}} < ??) = \alpha$$

We need know the probability distribution of $T = \frac{\bar{X} - \mu}{SE_{\bar{X}}}$. T has the Student's t-distribution with n-1 degrees of freedom. We write this as $T \sim t_{n-1}$. The degrees of freedom= ν is the only parameter of this distribution.