Project Name	Global Sales Data Analytics
Name	GAYATHRI.V
Roll No	620619104002
Team ID	PNT2022TMID41454

Assignment -4

Import Libraries

import pandas as pd
import
matplotlib.pyplot as
pltimport numpy as
np
import seaborn as sns
from sklearn.model_selection import
train_test_splitfrom
sklearn.preprocessing import
StandardScaler
from sklearn.linear_model import
LinearRegressionfrom sklearn.tree
import DecisionTreeRegressor

Import Dataset

```
data =
pd.read_csv('abalone.c
sv')data
```

8			
	W	W	
	e	e	
	i	i	
	g	g	
	h	h	
	t	t	

	W	
	e i	
	g	
	g h t	
0		
0	2	
9 5	2 2 4 5	
O		
	0	
5	1	
4 0	0	
· ·	0	
0		
. 0	. 0	
9	0 9 9 5	
0	0	
2		
2 2 5 5	0	
5	0 4 8 5	
0		
1 3	2 5	
3 5	5 6 5	
0		
. 6	0	
7	1	
7	4	
	5	
0		
1	2	
2 5	2 1 5 5	
	5	

		0		
	·		0	
		5	•	
		1	1	
		6	1 4	
		9	0	
		O	0	
	1	0	0	
	,	8	8	
		J	0 8 9 5	
		O		
			0	
		2		
		5	0 3 9 5	
		O	9	
			5	
•••				
		•		
		•	•	
4172		O	0	
		1	3 7 0	
		6	7	
		5		
		0	0	
	,		0	
		8		
		8	2	
		0	3	
			0	
4173		O	0	
		1	4	
			3	
			0	
		O	_	
		9 6	2 1	
		6 6	1	
4173		7 0 1 3 5	2 3 9 0 4 3 9 0	

		0	4 5	
4174		0	0	
	(2	5	
		5	2	
		9	5 2 5 5	
	(1		
			0	
		1		
		/	2	
		6	o 7	
		0	2 8 7 5	
4175		0		
4175	'			
	(1	5 3 1 0	
	ı	5	3	
	(0	1	
		4	0	
	;	1	0	
		0		
		9	2	
		4	2 6 1	
		5	1	
			0	
4176		0	0	
	'	1 9	9 4 5 5	
		5	5	
			5	
	(1		
			0	
		9		
		4	3	
		8 5	3 7 6 5	
			5	

Sex Length Diameter Height Whole

Shucked

Viscera

Shell

4177 rows × 9 columns

data.info()

<class

```
'pandas.core.frame.DataFra
me'>RangeIndex: 4177
entries, 0 to 4176
Data columns (total 9 columns):
    Column
                   Non-Null Count Dtype
                   4177 non-null
                                   object
    Sex
                                   float64
    Length
                   4177 non-null
                 4177 non-null
                                   float64
    Diameter
                   4177 non-null float64
    Height
    Whole weight
                   4177 non-null float64
    Shucked weight 4177 non-null float64
    Viscera weight 4177 non-null
                                   float64
    Shell weight
                   4177 non-null float64
    Rings
                    4177 non-
null int64dtypes: float64(7),
int64(1), object(1)
memory usage: 293.8+ KB
```

Univariate Analysis


```
sns.boxplot(x=data
['Length'])
```

```
plt.xlabel('Length
');
```

plt.hist(data[
'Height']);
plt.xlabel('He

ight');

```
plt.hist(data['D
iameter']);
plt.xlabel('Diam
eter');
1000
 800
 600
 400
 200
   0
                 0.2
         0.1
                                       0.5
                                               0.6
                        0.3
                                0.4
                          Diameter
```



```
sns.boxplot(x=data['Whol
e weight'])
plt.xlabel('Whole
weight');
```



```
sns.boxplot(x=data['Shucke
d weight'])
plt.xlabel('Shucked
weight');
```



```
plt.hist(data['Viscera
weight']);
plt.xlabel('Viscera
weight');
```



```
plt.hist(data['Shell
weight']);
plt.xlabel('Shell
weight');
```


Bivariate Analysis

```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Height"], y=data["Whole
weight"]);plt.xlabel('Height');
plt.ylabel('Whole weight');
```


plt.figure(figsize=(10, 6))

```
sns.lineplot(x=data["Length"],
y=data["Height"]);
plt.xlabel('Length');
plt.ylabel('Height');
```

```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Diameter"],
y=data["Height"]);
plt.xlabel('Diameter');
plt.ylabel('Height');
```

```
plt.figure(figsize=(10, 6))
sns.lineplot(x=data["Length"],
y=data["Diameter"]);
plt.xlabel('Length');
plt.ylabel('Diameter');
```

```
plt.figure(figsize=(10, 6))
plt.scatter(x=data["Shucked weight"], y=data["Whole
weight"]);plt.xlabel('Shucked weight');
plt.ylabel('Whole weight');
```

```
plt.figure(figsize=(10, 6))
plt.scatter(x=data["Viscera weight"], y=data["Whole
weight"]);plt.xlabel('Viscera weight');
plt.ylabel('Whole weight');
```

Multi-variate Analysis

```
sns.pairplot(data, hue='Sex');
```

```
plt.figure(figsize=(10, 6));
sns.heatmap(data.corr(), annot=True);
```

				weight	weight	weight	
coun	4177.00000	4177.00000	4177.00000	4177.00000	4177.00000	4177.00000	4
t	0	0	0	0	0	0	1
mea	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	
n							
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	

75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	

Handling Missing Values

```
data.isna().sum()
     Sex
                        0
                        0
     Length
     Diameter
                        0
     Height
                        0
     Whole weight
                        0
     Shucked weight
                        0
     Viscera weight
     Shell weight
     Rings
     dtype: int64
```

Outlier Handling

```
numeric_cols = ['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked
weight', 'Viscera

def boxplots(cols):
    fig, axes = plt.subplots(4, 2, figsize=(15, 20))
    t=0
    for i in range(4):
        for j in range(2):
            sns.boxplot(ax=axes[i][j], data=data,
            x=cols[t])t+=1

    plt.show()

def Flooring_outlier(col):
    Q1 =
    data[col].quantile
    (0.25)Q3 =
```

```
data[col].quantile
   (0.75)
   IQR = Q3 - Q1
   whisker_width = 1.5
   lower_whisker = Q1 -
   (whisker_width*IQR) upper_whisker =
   Q3 + (whisker_width*IQR)
   data[col]=np.where(data[col]>upper_whisker,upper_whisker,np.where(data[col]
   lower_whis
print('Before Outliers
Handling')
print('='*100)
boxplots(nume
ric_cols) for
col in
numeric_cols:
   Flooring_outlier(col)
print('\n\nAfter Outliers
Handling')print('='*100)
boxplots(numeric_cols)
    Before Outliers Handling
    ______
    =======
```


After Outliers Handling

=======

Encode Categorical Columns

data = pd.get_dummies(data, columns
= ['Sex'])data

			weight	weight	weight	weight	
0	0.455	0.365	0.095 0.514 0	0.2245	0.1010	0.1500	15.0
1	0.350	0.265	0.090 0.225 5	0.0995	0.0485	0.0700	7.0
2	0.530	0.420	0.135 0.677 0	0.2565	0.1415	0.2100	9.0
3	0.440	0.365	0.125 0.516 0	0.2155	0.1140	0.1550	10.0
4	0.330	0.255	0.080 0.205 0	0.0895	0.0395	0.0550	7.0
	4172 0.56 5	0.450	0.165 0.887 0	0.3700	0.2390	0.2490	11.0
	4173 0.59 0	0.440	0.135 0.966 0	0.4390	0.2145	0.2605	10.0
	4174 0.60 0	0.475	0.205 1.176 0	0.5255	0.2875	0.3080	9.0
	4175 0.62 5	0.485	0.150 1.094 5	0.5310	0.2610	0.2960	10.0
	4176 0.71	0.555	0.195 1.948	0.9455	0.3765	0.4950	12.0

0 5

```
Y = data[['Rings']]
X = data.drop(['Rings'], axis=1)
```

Scale the independent Variables

```
scaler =
StandardScaler()
X =
scaler.fit_trans
form(X)X
```

array([[-0.58311728,	-0.44088378, -	1.15809314,	,	-0.67483383,
-0.68801788,	1.31667716],			
[-1.46569411,	-1.45976205, -	1.28875125,	,	-0.67483383,
-0.68801788,	1.31667716],			
[0.04729474,	0.11949927, -	0.1128283 ,	,	1.48184628,
-0.68801788,	-0.75948762],			
• • • • •				
[0.63567929,	0.67988232,	1.71638519,	,	-0.67483383,
-0.68801788,	1.31667716],			
[0.84581663,	0.78177015,	0.27914602,	,	1.48184628,
-0.68801788,	-0.75948762],			
[1.56028358,	1.49498494,	1.45506898,	,	-0.67483383,
-0.68801788,	1.31667716]])			

Train Test Split

```
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,
random_state=42)
```

Model Training & Testing

Colab HYPERLINK

"https://colab.research.google.com/sign up?utm_source=footer&utm_medium= link&utm_campaign=footer_links" HYPERLINK

"https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links"paid HYPERLINK
"https://colab.research.google.com/signup?utm_source=footer&utm_medium=link&utm_campaign=footer_links"

HYPERLINK

"https://colab.research.google.com/ signup?utm_source=footer&utm_ medium=link&utm_campaign=foo ter_links"products - Cancel

HYPERLINK

"https://colab.research.google.com/canc el-subscription"_ HYPERLINK "https://colab.research.google.com/ cancel-subscription" contracts HYPERLINK "https://colab.research.google.com/can

"https://colab.research.google.com/can cel-subscription"_HYPERLINK "https://colab.research.google.com/ cancel-subscription"here