Αλγοριθμική Επιχειρησιακή Έρευνα Δεύτερη Εργασία

Σιώρος Βασίλειος Ανδρινοπούλου Χριστίνα Οκτώβριος 2019

1. Find a differentiable function f: R R such that f does not have an extremum at its critical point.

2. Given a positive integer S, which decompositions a 1 + + an = S with the ai positive integers have the largest product a 1 an?

3. Find the optimal solution to the Diet Problem when the cost function is Cost(x1, x2) = x1 + x2.

4. Let A,B $\mathbb{R}^{n\times n}$. Show that the traditional way of computing their product AB requires a total of $(2n-1)n^2$ arithmetic operations.

Οι πίναχες A και B είναι τετραγωνικοί $(n \times n)$, δηλαδή αποτελόυνται από n γραμμές και από nστήλες, όπως φαίνεται παρακάτω:

$$A = \begin{bmatrix} a_{11} & a_{22} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

$$B = \begin{bmatrix} b_{11} & b_{22} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \dots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{bmatrix}$$

$$B = \begin{bmatrix} b_{11} & b_{22} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \dots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{bmatrix}$$

$$A \times B = \begin{bmatrix} a_{11} & a_{22} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} b_{11} & b_{22} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \dots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{bmatrix} = \begin{bmatrix} z_{11} & z_{22} & \dots & z_{1n} \\ z_{21} & z_{22} & \dots & z_{2n} \\ \vdots & \vdots & \dots & \vdots \\ z_{n1} & z_{n2} & \dots & z_{nn} \end{bmatrix} = Z$$

Για τον πολλαπλασιασμό των πινάχων Α και Β αρχεί να πολλαπλασιάσουμε την:

1η γραμμή του A με την 1η στήλη του B, για το $z_{11} \to n$ γινόμενα και (n-1) προσθέσεις 1η γραμμή του A με την 2η στήλη του B, για το $z_{12} o n$ γινόμενα και (n-1) προσθέσεις n

1η γραμμή του A με την n στήλη του B, για το $z_{1n} \to n$ γινόμενα και (n-1) προσθέσεις

 2η γραμμή του A με την 1η στήλη του B, για το $z_{21}\to n$ γινόμενα και (n-1) προσθέσεις 2η γραμμή του A με την 2η στήλη του B, για το $z_{22}\to n$ γινόμενα και (n-1) προσθέσεις n(n+(n-1))

2η γραμμή του A με την n στήλη του B, για το $z_{2n} \to n$ γινόμενα και (n-1) προσθέσεια

n γραμμή του A με την 1η στήλη του B, για το
$$z_{n1}\to$$
 n γινόμενα και (n-1) προσθέσεις n γραμμή του A με την 2η στήλη του B, για το $z_{n2}\to$ n γινόμενα και (n-1) προσθέσεις n γραμμή του A με την n στήλη του B, για το $z_{nn}\to$ n γινόμενα και (n-1) προσθέσεις $n(n+(n-1))$

Η κάθε γραμμή του πίνακα Α πολλαπλασιάζεται με όλες τις στήλες του Β και προκύπτει μία νέα γραμμή στον πίνακα Z. H παραπάνω διαδικασία απαιτεί n(n+(n-1)) αριθμητικές παραστάσεις και επειδή αυτό θα συμβεί n φορές απαιτούνται συνολικά $n^2(n+(n-1))=n^2(2n-1)$.

5. Consider the problem of solving a system of n linear equations in n unknowns. Show that the Gaussian elimination method requires O(n3) arithmetic operations in order to either compute a solution or to decide that no solution exist.

6. Suppose that we are given a set of vectors in Rn that form a basis and let y be an arbitrary vector in Rn. We wish to express y as a linear combination of the basis vectors. How can this by accomplished?

7. Study the the Readings		title:	Do	dogs	know	Calculus?	found	in