Introducción a la estimación espectral

Episodio III: técnicas paramétricas para espectros de línea

Andrés Altieri

Procesamiento de Señales II Facultad de Ingeniería, Universidad de Buenos Aires

Segundo cuatrimestre de 2015

Contenidos

El modelo de sinusoides

Técnica MUSIC o de Pisarenko

3 Apéndice: El problema de estimación de direcciones de arribo

Contenidos

El modelo de sinusoides

El modelo de sinusoides en ruido

 En muchas aplicaciones vinculadas a comunicaciones, radar, etc. se trabaja con un modelo de sinusoides complejas inmersas en ruido:

$$y[m] = \sum_{k=1}^{K} \alpha_k e^{j\omega_k m + \phi_k} + v[m].$$

donde:

- Las $\{\omega_k\}_k$ son las frecuencias de las sinusoides
- Las $\{\phi_k\}_k$ son sus fases.
- Las $\{\alpha_k\}_k$ son sus amplitudes, desconocidas pero fijas.
- $\{v[m]\}_m$ es ruido blanco complejo, circular, de media nula y varianza σ_v^2 .
- ► Asumimos que el número *K* de sinusoides es conocido, si no hay que estimarlo.

Objetivo

Estimar las frecuencias ω_k de cada sinusoide. Típicamente hay pocas muestras y la frecuencias podrían ser muy cercanas. Luego de las ω_k pueden estimarse amplitud y fase.

Por qué sinusoides complejas

- Las sinusoides son complejas, porque estan asociadas a un proceso de modulación/demodulación.
- La señal que es recibida en tiempo continuo es:

$$\alpha_k(\cos(\omega_k t + \phi_k)\cos(\omega_c t) + \sin(\omega_k t + \phi_k)\sin(\omega_c t))$$

donde ω_c es la frecuencia de portadora, $\omega_c \gg \omega_k$.

 Luego es demodulada a banda base, filtrada con un pasabajos, muestreada y tratada como una señal compleja, dando:

$$\alpha_k(\cos(\omega_k m + \phi_k) + j\sin(\omega_k m + \phi_k)) = \alpha_k e^{j\omega_k m + \phi_k}.$$

La tasa de muestreo f_s debe cumplir el teorema del muestreo, es decir:

$$f_s > 2 \max\{f_1, \dots, f_K\}.$$

Modelo para el ruido

- El modelo asume ruido blanco.
- Si éste no lo es, las técnicas que presentaremos pueden perder desempeño.
- Para mitigar esto, podría hacerse lo siguiente:
 - Si el tiempo de decorrelación del ruido en tiempo contínuo (previo al muestreo) es conocido, digamos, T_c , podría elegirse el período de muestreo $T_s > T_c$ para que el ruido muestreado sea blanco.

En ese caso la frecuencia de muestreo f_s debería cumplir:

$$2\max\{f_1,\ldots,f_K\} < f_s < \frac{1}{T_c}.$$

- Si la estadística del ruido es conocida, podría implementarse un filtro blanqueador. Las sinusoides no se verían afectas más que en su amplitud.
- Si no es conocido, podría utilizarse la técnica LS no lineal para estimar las frecuencias.

El modelo de las fases ϕ_k

- Si se asume que las fases son constantes desconocidas, el modelo obtenido no es ESA.
- La aleatoriedad viene unicamente del ruido. Por ejemplo, la media no es constante:

$$\mathbb{E}\left[y[m]\right] = \sum_{k=1}^{K} \alpha_k e^{j\omega_k m + \phi_k} + \mathbb{E}\left[v[m]\right] = \sum_{k=1}^{K} \alpha_k e^{j\omega_k m + \phi_k} \neq \text{cte.}$$

• Por lo tanto, normalmente se considera lo siguiente:

Modelo para la fase

Las fases $\{\phi_k\}_k$ son variables aleatorias independientes (entre sí y del ruido) y uniformes $[-\pi, \pi]$.

Antes de comenzar la transmisión, cada fase se elije en forma uniforme $[-\pi, \pi]$ e independiente de todo, y luego se mantiene constante.

Recapitulación del problema

• Contamos con N muestras de una señal discreta

$$y[m] = \sum_{k=1}^{K} \alpha_k e^{i(\omega_k m + \phi_k)} + v[m],$$

que es la suma de K (conocido) sinusoides complejas.

- Queremos estimar las frecuencias ω_k de cada sinusoide.
- Asumimos que las amplitudes α_k son fijas pero desconocidas.
- Luego de estimar ω_k podemos estimar las amplitudes $\alpha_k e^{j\phi_k}$.
- Las fases ϕ_k son IID uniformes en $[-\pi; \pi]$.
- El ruido es gaussiano blanco, circular, de varianza σ_{ν}^2 , independiente de las fases.

Momentos de la señal y: media

• Buscamos la media de la señal y:

$$\mathbb{E}[y[m]] = \mathbb{E}\left[\sum_{k=1}^{K} \alpha_k e^{j(\omega_k m + \phi_k)} + v[m]\right]$$
$$= \sum_{k=1}^{K} \alpha_k e^{j\omega_k m} \mathbb{E}\left[e^{j\phi_k}\right] + \mathbb{E}[v[m]]$$
$$= 0$$

donde usamos que:

$$\mathbb{E}\left[e^{j\phi_k}\right] = \int_{-\pi}^{\pi} \frac{1}{2\pi} e^{j\phi_k} d\phi_k = 0$$

Conclusión

$$\mathbb{E}\left[y[m]\right] = 0 \quad \forall m$$

Momentos de la señal y: autocovarianza

• La autocovarianza:

$$\begin{split} r[m,m-n] &= \mathbb{E}\left[y[m]y^*[m-n]\right] \\ &= \mathbb{E}\left[\left\{\sum_{k=1}^K \alpha_k e^{j(\omega_k m + \phi_k)} + v[m]\right\} \right. \\ &\qquad \times \left\{\sum_{p=1}^K \alpha_p e^{-j[\omega_p (m-n) + \phi_p]} + v[m-n]^*\right\}\right] \\ &= \sum_{k=1}^K \sum_{p=1}^K \alpha_k \alpha_p e^{j[\omega_k m - \omega_p (m-n)]} \mathbb{E}\left[e^{j[\phi_k - \phi_p]}\right] + \mathbb{E}\left[v[m]v[m-n]^*\right] \\ &= \sum_{k=1}^K \alpha_k^2 e^{j\omega_k n} + \sigma_v^2 \delta_{n,0} \equiv r_y[n]. \end{split}$$

- Usamos que el ruido es blanco de media nula, independiente de las fases.
- Además, usamos que las fases son independientes:

$$\mathbb{E}\left[e^{i[\omega_k m - \omega_p(m-n)]}\right] = \mathbb{1}\{k = p\}.$$

Momentos de la señal y: por qué espectro de líneas

Características de la señal y

• La señal y es ESA, de media nula y autocovarianza:

$$r_{\mathbf{y}}[n] = \sum_{k=1}^{K} \alpha_k^2 e^{j\omega_k n} + \sigma_{\mathbf{v}}^2 \delta_{n,0}.$$

• La PSD de la señal y es:

$$\phi_{y}(\omega) = \text{DTFT}(r_{y})(\omega) = 2\pi \sum_{k=1}^{K} \alpha_{k}^{2} \delta(\omega - \omega_{p}) + \sigma^{2}.$$

De ahi el nombre de espectro de líneas.

Técnicas de alta resolución

- Las técnicas que describiremos son algunas de las llamadas de *técnicas de alta resolución* (o super).
- Se llaman asi porque, en teoría, permiten separar dos frecuencias f_1, f_2 tales que:

$$|f_1 - f_2| < 1/N$$

que es el límite de resolución del periodograma.

- Proveen estimadores consistentes de las frecuencias.
- Nos enfocaremos en los estimadores que se basan en el modelo de la matriz de covarianza de la señal.
- Existen otros basados en modelado ARMA o técnicas de LS no lineal.

Representación matricial de la señal y (I)

 Supongamos que tenemos contamos con muestras de una sinusoide x de amplitud α:

$$x[m] = \alpha e^{j(\omega m + \phi)}.$$

• En el instante [m-n] dicha sinusoide vale:

$$x[m-n] = \alpha e^{j(\omega(m-n)+\phi)} = \alpha e^{j(\omega m+\phi)} e^{-j\omega n} = x[m]e^{-j\omega n}.$$

• Armamos un vector con $L \le N$ muestras:

$$\mathbf{x}[m] = \begin{bmatrix} x[m] \\ x[m-1] \\ \vdots \\ x[m-L+1] \end{bmatrix} = \begin{bmatrix} 1 \\ e^{-j\omega} \\ \vdots \\ e^{-j\omega(L-1)} \end{bmatrix} x[m]$$

Representación matricial (II)

Si llamamos:

$$\mathbf{a}(\omega) = \begin{bmatrix} 1 & e^{-j\omega} & \dots & e^{-j\omega(L-1)} \end{bmatrix}^T$$

entonces para una sinusoide podemos escribir:

$$\mathbf{x}[n] = \mathbf{a}[\omega] \alpha e^{j(\omega n + \phi)}$$

• Ahora supongamos que tenemos las K sinusoides y las L muestras:

$$\mathbf{y}[L] = \left[\begin{array}{c} y[L] \\ y[L-1] \\ \vdots \\ y[1] \end{array} \right] = \left[\begin{array}{c} \mathbf{a}(\omega_1) & \dots & \mathbf{a}(\omega_K) \end{array} \right] \left[\begin{array}{c} \alpha_1 e^{j(\omega_1 L + \phi_1)} \\ \vdots \\ \alpha_K e^{j(\omega_K L + \phi_K)} \end{array} \right] + \left[\begin{array}{c} v[L] \\ v[L-1] \\ \vdots \\ v[1] \end{array} \right]$$

o en forma más compacta (omitiendo los índices de tiempo):

$$y = Ae + v$$
.

Matriz de covarianza de las muestras (I)

- El vector de muestras tiene media nula.
- Su covarianza vale:

$$\mathbb{E}\left[\mathbf{y}\mathbf{y}^{H}\right] = \mathbb{E}\left[(\mathbf{A}\mathbf{e})(\mathbf{A}\mathbf{e})^{H}\right] + \sigma_{v}^{2}\mathbf{I} = \mathbf{A}\mathbb{E}\left[\mathbf{e}\mathbf{e}^{H}\right]\mathbf{A}^{H} + \sigma_{v}^{2}\mathbf{I}.$$

• Al hacer \mathbf{ee}^H obtenemos una matriz de $K \times K$ que tiene todos los productos de los elementos de \mathbf{e} tomados de a dos. Por ejemplo, si K=2 tenemos:

$$\begin{split} \mathbf{e}\mathbf{e}^H &= \left[\begin{array}{cc} \alpha_1 e^{j(\omega_1 n + \phi_1)} \\ \alpha_2 e^{j(\omega_2 n + \phi_2)} \end{array} \right] \left[\begin{array}{cc} \alpha_1 e^{-j(\omega_1 n + \phi_1)} & \alpha_2 e^{-j(\omega_2 n + \phi_2)} \end{array} \right] \\ &= \left[\begin{array}{cc} \alpha_1^2 & \alpha_1 \alpha_2 e^{((\omega_1 - \omega_2) n + (\phi_1 - \phi_2))i} \\ \alpha_1 \alpha_2 e^{((\omega_2 - \omega_1) n + (\phi_2 - \phi_1))i} & \alpha_2^2 \end{array} \right]. \end{split}$$

Matriz de covarianza de las muestras (II)

• Al tomar esperanza, tenemos que:

$$E[\mathbf{e}\mathbf{e}^H] = \begin{bmatrix} \alpha_1^2 & 0 & \dots & 0 \\ 0 & \alpha_2^2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \alpha_K \end{bmatrix} \triangleq \mathbf{D}$$

según vimos al calcular la covarianza.

Observaciones

Podemos escribir:

$$\mathbf{R} \triangleq \mathbb{E}\left[\mathbf{y}\mathbf{y}^H\right] = \mathbf{A}\mathbf{D}\mathbf{A}^H + \sigma_v^2\mathbf{I}$$

donde vemos que:

- La matriz **D** es constante y contiene las amplitudes de las sinusoides al cuadrado.
- En la matriz $\mathbf{A} \equiv \mathbf{A}(\omega)$ depende de las ω_k a estimar y depende de L.

Segundo cuatrimestre de 2015

Propiedades de A (un poco de álgebra)

- A es de $L \times K$ con $L \ge K$ (más muestras que sinusoides).
- Supongamos que K = L y busquemos el nucleo de A^T . Sea

$$\mathbf{z} = \begin{bmatrix} z_0 & \dots & z_{L-1} \end{bmatrix}^T.$$

Hacemos:

$$\mathbf{A}^{T}\mathbf{z} = \begin{bmatrix} \mathbf{a}^{T}(\omega_{1})\mathbf{z} \\ \mathbf{a}^{T}(\omega_{2})\mathbf{z} \\ \vdots \\ \mathbf{a}^{T}(\omega_{K})\mathbf{z} \end{bmatrix} = \begin{bmatrix} z_{0} + z_{1}e^{-j\omega_{1}} + z_{2}(e^{-j\omega_{1}})^{2} + \dots + z_{L-1}(e^{-j\omega_{1}})^{(L-1)} \\ z_{0} + z_{1}e^{-j\omega_{2}} + z_{2}(e^{-j\omega_{2}})^{2} + \dots + z_{L-1}(e^{-j\omega_{2}})^{(L-1)} \\ \vdots \\ z_{0} + z_{1}e^{-j\omega_{K}} + z_{2}(e^{-i\omega_{K}})^{2} + \dots + z_{L-1}(e^{-j\omega_{K}})^{(L-1)} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

- Son polinomios en $e^{j\omega_k}$.
- Sería buscar K = L raices distintas en un polinomio de orden L 1. ¡No existen!

Conclusión

- Por lo anterior, si K = L entonces **A** es inversible, lo que implica que sus columnas son L.I. y $rg(\mathbf{A}) = K$.
- Si agregamos más filas, es decir, L > K, las columnas de A siguen siendo L.I.
- Por lo tanto $rg(\mathbf{A}) = K$ siempre que $L \geq K$.

(FIUBA) Segundo cuatrimestre de 2015

Trabajando con ADA^H

- **D** es inversible y $rg(\mathbf{A}) = K$. Esto implica que
 - $ightharpoonup \operatorname{rg}(\mathbf{AD}) = K.$
 - $rg(\mathbf{A}\mathbf{D}\mathbf{A}^H) = K.$
 - ightharpoonup **ADA**^H es hermitica y diagonalizable.
 - ▶ **ADA**^H es de $L \times L$ y tiene rango K o sea que tiene L K autovalores nulos y el resto positivos
- Entonces $\mathbf{R} = \mathbf{A}\mathbf{D}\mathbf{A}^H + \sigma_v^2\mathbf{I}$ tiene las siguientes propiedades:
 - ► Es hermítica y es diagonalizable.
 - ► Tiene L K autovalores que valen σ_v^2 y K autovalores mayores que σ_v^2 , es decir:

$$\tilde{\mathbf{D}} = \begin{bmatrix} \lambda_1 + \sigma_v^2 & 0 & \dots & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ 0 & \ddots & \lambda_K + \sigma_v^2 & \ddots & \vdots \\ 0 & \ddots & & \sigma_v^2 & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & & \sigma_v^2 \end{bmatrix}$$

Contenidos

Técnica MUSIC o de Pisarenko

Técnica MUSIC o de Pisarenko

- MUSIC significa MUltiple SIgnal Classification.
- Esta técnica se apoya en las propiedades de la matriz R expuestas hasta ahora para estimar las frecuencias deseadas.
- La técnica de Pisarenko [1973] es MUSIC[1979] con L = K + 1.
- Es una de las técnicas más simples de entender.

Principio del método MUSIC (I)

- **R** tiene L-K autovalores de valor σ_v^2 y L-K autovectores L.I. asociados al σ_v^2 .
- Sea G que una matriz con los autovectores asociados a σ_v^2 :

$$\mathbf{G} = [\mathbf{g}_1, \dots, \mathbf{g}_{L-K}]$$

• Entonces tenemos:

$$\mathbf{RG} = (\mathbf{ADA}^H + \sigma_v^2 \mathbf{I})\mathbf{G} = \sigma_v^2 \mathbf{G}$$

y por lo tanto:

$$ADA^{H}G = 0$$

Principio del método MUSIC (II)

- Como **AD** es de $L \times K$ y rg(AD) = K entonces las columnas de **AD** son L.I.
- Podemos multiplicar por $(\mathbf{AD})^H$ a izquierda para obtener:

$$(\mathbf{A}\mathbf{D})^H(\mathbf{A}\mathbf{D})\mathbf{A}^H\mathbf{G} = 0$$

• Como $\operatorname{rg}((\mathbf{AD})^H(\mathbf{AD})) = \operatorname{rg}(\mathbf{AD}) = K \operatorname{y}(\mathbf{AD})^H(\mathbf{AD})$ es de $K \times K$ tenemos que $(\mathbf{AD})^H(\mathbf{AD})$ es inversible.

Conclusión

• Finalmente, tenemos que:

$$\mathbf{A}\mathbf{D}\mathbf{A}^H\mathbf{G} = 0 \Leftrightarrow \mathbf{A}^H\mathbf{G} = 0.$$

Esto implica que las columas de **A** son ortogonales a las de G^H , es decir, $Col(A) \subset Nul(G^H)$.

• Pero como rg(A) = K y rg(G) = L - K entonces dim(Nul(G)) = K y entonces:

$$Col(\mathbf{A}) = Nul(\mathbf{G}^H).$$

Solución

• Sabemos que la columna *j*-ésima de **A** es de la forma:

$$\mathbf{a}(\omega_j) = \begin{bmatrix} 1 & e^{-i\omega_j} & \dots & e^{-i\omega_j(L-1)} \end{bmatrix}^T$$

donde nuestro objetivo es averiguar ω_j .

Observaciones

• Como $G^H A = 0$, sabemos que

$$\mathbf{G}^H\mathbf{a}(\omega_j)=\mathbf{0} \quad j=1,\ldots,K.$$

es decir, las ω_i que queremos estimar son soluciones de la ecuación:

$$\mathbf{G}^H\mathbf{a}(\omega)=\mathbf{0}.$$

• ξ Hay otras soluciones que no sean las que buscamos ? No, porque los vectores $\mathbf{a}(\omega_j)$ son L.I. si las ω_j son diferentes y $\dim(\operatorname{Nul}(\mathbf{G}^H)) = K$, por lo que no hay un conjunto de más de K vectores L.I..

Además las columnas de **A** son L.I. y por lo tanto generan todo el núcleo de G^H . Por ende, no puede haber más que las K soluciones halladas, que son las frecuencias que deseamos estimar.

Método teórico de resolución para MUSIC

Algoritmo MUSIC teórico

- Calculamos $\mathbf{A}\mathbf{D}\mathbf{A}^H + \sigma_v^2\mathbf{I}$ y la diagonalizamos.
- ② Armamos **G** la matriz con los autovectores asociados a $\lambda = 0$.
- **3** Obtenemos las ω_i resolviendo la ecuación $\mathbf{G}^H \mathbf{a}(\omega_i) = \mathbf{0}$ que tiene K soluciones.
 - Observar que se requiere como mínimo que $L \ge K + 1$, de otro modo **G** no puede armarse (al menos una muestra más que el número de sinusoides).
 - Dado que no conocemos exactamente la matriz **G** deben recurrirse a otra estrategia para obtener soluciones aproximadas.
 - Esto da lugar a dos versiones del algoritmo MUSIC.

Consideraciones prácticas

• En la práctica debemos **estimar G** de modo que resolviendo:

$$\hat{\mathbf{G}}^H \mathbf{a}(\omega) = \mathbf{0}$$

puede **no dar** K soluciones.

• Se busca una solución en un dominio ampliado reemplazando:

$$\mathbf{a}(\omega) = \begin{bmatrix} 1 & e^{-j\omega} & \dots & e^{-j\omega(L-1)} \end{bmatrix}^T$$

por:

$$\mathbf{p}(z) = \begin{bmatrix} 1 & z & z^2 & \dots & z^{L-1} \end{bmatrix}^T$$

• Se tiene que:

$$\mathbf{p}(z)|_{z=e^{j\omega}}=\mathbf{a}(\omega)$$

Puede resolverse:

$$\hat{\mathbf{G}}^H \mathbf{p}(z) = 0$$

La solución de esta ecuación dará L-1 soluciones, de las cuales K deberían estar cerca del círculo unitario y ser cercanas a las verdaderas si $\hat{\mathbf{G}}$ es un buen estimador.

Ejemplo (I)

- Consideremos una sola sinusoide (K = 1) y tomamos L = 2.
- En ese caso \mathbf{G} es de 2×1 .
- Supongamos que la G verdadera es de la forma:

$$\mathbf{G}^H = \left[\begin{array}{cc} -e^{-i} & 1 \end{array} \right].$$

Resolvemos:

$$\mathbf{G}^{H}\mathbf{a}(\omega) = \begin{bmatrix} -e^{-i} & 1 \end{bmatrix} \begin{bmatrix} 1 \\ e^{-i\omega} \end{bmatrix} = e^{-i\omega} - e^{-i} = 0$$

para obtener la frecuencia buscada:

$$\omega = 1$$

Ejemplo (II)

• Supongamos al estimar **G** hubo algunos errores numéricos y obtuvimos:

$$\hat{\mathbf{G}}^H = \begin{bmatrix} -e^{-i} & 0.99 \end{bmatrix}.$$

- Al intentar resolver $\hat{\mathbf{G}}^H \mathbf{a}(\omega) = 0$ encontramos un problema porque no tiene solución para ω real.
- Sin embargo al resolver la ecuación $\hat{\mathbf{G}}^H \mathbf{p}(z) = \mathbf{0}$:

$$\hat{\mathbf{G}}^H \mathbf{p}(z) = \begin{bmatrix} -e^{-i} & 0.99 \end{bmatrix} \begin{bmatrix} 1 \\ z \end{bmatrix} = 0$$

obtenemos:

$$z = 1.01e^{-i}$$
.

• La solución obtenida no está en el círculo unitario pero la fase de *z* nos da la frecuencia buscada, es decir, deducimos que:

$$\omega \approx 1$$

Ejemplo (III)

- Cero obtenido: $\omega = 1,01e^{-i}$.
- $\omega = 1 \ [rad].$

Cómo reducir la complejidad computacional

Además sabemos que:

$$\text{Nul}(\mathbf{G}^H) = \text{Nul}(\mathbf{G}\mathbf{G}^H),$$

de modo que los que se verifica:

$$\mathbf{G}^{H}\mathbf{p}(z) = \mathbf{0} \Leftrightarrow \mathbf{p}(z)^{H}\mathbf{G}\mathbf{G}^{H}\mathbf{p}(z) = 0$$

Resolviendo entonces la ecuación:

$$\mathbf{p}(z^{-1})^T \mathbf{G}^H \mathbf{G} \mathbf{p}(z) = 0$$

obtenemos el mismo resultado que resolviendo el problema original.

- Es buscar los ceros de un polinomio real de orden 2(L-1)
- Esto da lugar a MUSIC en su versión de las raíces.

MUSIC versión de las raíces

Solución propuesta

- Estimar de **R** de $L \times L$ a partir de las N muestras de y.
- Oiagonalizar el estimado de R y obtener un estimado de G.
- Armar el vector

$$\mathbf{p}(z) = \begin{bmatrix} 1 & z & z^2 & \dots & z^{L-1} \end{bmatrix}$$

• Se obtiene el polinomio de orden 2(L-1):

$$\mathbf{p}(z^{-1})^T \mathbf{G}^H \mathbf{G} \mathbf{p}(z),$$

que tiene 2(L-1) raíces, en pares recíprocos conjugados.

- Suscar las L-1 raíces que están en el círculo $|z| \le 1$.
- De las L-1 raíces obtenidas seleccionar las K raíces más cercanas al círculo unidad $\{c_i\}_{k=1}^K$ y estimar

$$\hat{\omega}_k = \operatorname{fase}\{c_k\} \quad k = 1, \dots, K.$$

Otra alternativa a la solución del problema

• Hemos visto que nuestro problema puede reformularse a resolver:

$$\mathbf{p}(z^{-1})^T \hat{\mathbf{G}} \hat{\mathbf{G}}^H \mathbf{p}(z) = 0 \tag{1}$$

con z complejo.

Observación

- Sabemos que las *K* soluciones buscadas estarán muy cerca del círculo unitario, pero no exactamente sobre él.
- Esto implica que si evaluamos $\mathbf{a}(\omega)^H \mathbf{G}^H \mathbf{G} \mathbf{a}(\omega)$ cerca de una solución de (1) tendremos:

$$\mathbf{a}(\omega)^H \hat{\mathbf{G}} \hat{\mathbf{G}}^H \mathbf{a}(\omega) \approx 0.$$

• Esto nos da otra forma de resolver el problema.

MUSIC versión espectral

Algoritmo espectral

- Estimar de **R** de $L \times L$ a partir de las N muestras de y(n).
- Diagonalizar $\hat{\mathbf{R}}$ y obtener $\hat{\mathbf{G}}$.
- Obtener las frecuencias deseadas buscando los ω en $[-\pi;\pi]$ donde la función:

$$\frac{1}{\mathbf{a}(\omega)^H\hat{\mathbf{G}}\hat{\mathbf{G}}^H\mathbf{a}(\omega)}$$

tiene sus K máximos (donde $\mathbf{a}(\omega)^H \hat{\mathbf{G}} \hat{\mathbf{G}}^H \mathbf{a}(\omega)$ es casi nula).

Approach forwards-backwards para estimar R (I)

• Podriamos usar el estimador de R:

$$\hat{\mathbf{R}} \approx \frac{1}{N} \sum_{n=L}^{N} \mathbf{y}[n] \mathbf{y}[n]^{H}.$$

que es el que usamos en la Parte 2 para el estimador LS de procesos autoregresivos. Es el estimador de la covarianza de un predictor lineal de un paso hacia adelante (en *forwards*).

• Se observó empíricamente que para estimar la frecuencia es mejor utilizar el estimador modificado:

$$\hat{\mathbf{R}}_{\mathrm{FB}} = \frac{1}{2} (\hat{\mathbf{R}} + \mathbf{J} \hat{\mathbf{R}}^T \mathbf{J}).$$

donde:

$$\mathbf{J} = \left[\begin{array}{ccc} 0 & & 1 \\ & \ddots & \\ 1 & & 0 \end{array} \right]$$

• $\mathbf{J}\hat{\mathbf{R}}^T\mathbf{J}$ es la matriz de covarianza asociada a un predictor en *backwards*, es decir, a un predictor que predice la muestra *i* en funcion de las *L* muestras posteriores.

Algunos ejemplos (I)

• En las siguientes simulaciones consideraremos frecuencias normalizadas, es decir, sabiendo que:

$$-\pi < \omega < \pi$$

definiremos una frecuencia normalizada:

$$\bar{\omega} = \frac{\omega}{\pi}.$$

De esta forma trabajamos con frecuencias en el intervalo [-1; 1].

- Al hablar de la "resolución" de una técnica, en este contexto nos referimos a la capacidad de detectar y distinguir dos frecuencias próximas.
- Diremos que dos frecuencias son "próximas"si:

$$|\bar{\omega}_1 - \bar{\omega}_2| < \frac{1}{N}.$$

Algunos ejemplos (II)

 Supongamos que disponemos de K = 3 sinusoides complejas de frecuencias normalizadas:

$$\bar{\omega}_1 = \frac{1}{4}$$
 $\bar{\omega}_2 = \frac{1}{4} + \frac{0.5}{N}$ $\hat{\omega}_3 = \frac{1}{4} + \frac{1}{N}$

donde N es el número de muestras.

- Dichas sinusoides pueden considerarse próximas.
- Consideraremos distintos valores para las amplitudes α_k y distintos valores de K y L para analizar la performance del método.
- Consideramos N = 20 siempre.
- No colocamos ruido en estas pruebas.

Algoritmo de Pisarenko (K = 3, L = K + 1, N = 20)

Frecuencias reales:

$$\bar{\omega}_1 = 0.250$$

$$\bar{\omega}_2 = 0.275$$

$$\bar{\omega}_3 = 0.300$$

$$\alpha_i = 1$$
 $i = 1, 2, 3$

Estimación por método espectral:

$$\bar{\omega}_1 = 0.250$$

$$\bar{\omega}_2 = 0.275$$

$$\bar{\omega}_3 = 0.300$$

Estimación por método de frecuencia:

$$\bar{\omega}_1 = 0.250$$

$$\bar{\omega}_2 = 0.275$$

$$\bar{\omega}_3 = 0.300$$

Algunos ejemplos: sinusoides más cercanas y distinta amplitud

 Supongamos que disponemos de K = 3 sinusoides complejas de frecuencias normalizadas:

$$\bar{\omega}_1 = \frac{1}{4}$$
 $\bar{\omega}_2 = \frac{1}{4} + \frac{0,1}{N}$ $\hat{\omega}_3 = \frac{1}{4} + \frac{0,2}{N}$

donde N es el número de muestras.

- Dichas sinusoides pueden considerarse muy próximas.
- Consideremos:

$$\alpha_1 = 0.1$$
 $\alpha_2 = 0.3$ $\alpha_3 = 0.5$

Algoritmo de Pisarenko (K = 3, L = 4, N = 20)

Frecuencias reales:

$$\bar{\omega}_1 = 0.250$$

$$\bar{\omega}_2 = 0.255$$

$$\bar{\omega}_3 = 0,260$$

$$\alpha_1 = 1$$
 $\alpha_2 = 0.3$ $\alpha_3 = 0.5$

Estimación por método espectral:

$$\bar{\omega}_1 = 0,2497$$

$$\bar{\omega}_3 = 0,2603$$

Estimación por método de frecuencia:

$$\bar{\omega}_1 = 0.2497$$

$$\bar{\omega}_2 = 0.2597$$

$$\bar{\omega}_3 = 0.2603$$

Algoritmo MUSIC para (K = 3, L = 10, N = 20)

Frecuencias reales:

$$\bar{\omega}_1 = 0.250$$

$$\bar{\omega}_2 = 0.255$$

$$\bar{\omega}_3 = 0.260$$

$$\alpha_1 = 1 \qquad \alpha_2 = 0.3 \qquad \alpha_3 = 0.5$$

Estimación por método espectral:

$$\bar{\omega}_1 = 0.250$$

$$\bar{\omega}_3 = 0,254$$

$$\bar{\omega}_3 = 0.261$$

Estimación por método de frecuencia:

$$\bar{\omega}_1 = 0.250$$

$$\bar{\omega}_2 = 0.260$$

$$\bar{\omega}_3 = 0.255$$

Algoritmo MUSIC para (K = 3, L = 10, N = 20)

Frecuencias reales:

$$\bar{\omega}_1 = 0.250$$

$$\bar{\omega}_2 = 0.255$$

$$\bar{\omega}_3 = 0,260$$

$$\alpha_1 = 1 \qquad \alpha_2 = 0.3 \qquad \alpha_3 = 0.5$$

Estimación por método espectral:

$$\bar{\omega}_1 = 0.250$$

$$\bar{\omega}_3 = 0,254$$

$$\bar{\omega}_3 = 0,261$$

Estimación por método de frecuencia:

$$\bar{\omega}_1 = 0,250$$

$$\bar{\omega}_2 = 0.260$$

- Aumentar L mejora la capacidad de discriminar en frecuencia.
- Observar los (L K 1) ceros adicionales

Otras técnicas

- Existen formas de reducir la complejidad computacional de MUSIC e incluso técnicas modificadas para que no haya ceros de ruido.
- Existen otras técnicas similares con algunas ventajas y desventajas:
 - ► Técnica de Tufts-Kumaresan o *min-norm* [1983]:
 - * Utiliza que Col(G) es (asintoticamente) ortogonal a Col(A). Se busca un $g \in Col(G)$ y se buscan los ceros del polinomio:

 $\mathbf{g}^T a(\omega)$.

El g se elije de modo que la primera componente sea 1 y su norma también.

* Tiene una precisión similar a MUSIC con un costo computacional menor, pues el g se halla sin buscar autovectores y autovalores.

menor.

- ► Técnica ESPRIT (Estimation of Signal Parameters by Rotational Invariance Techniques) [1986-1990]:
 - ★ Tiene una exactitud un poco mayor que los demás.
 - La ventaja principal es que no hay frecuencias espurias porque no aparecen los ceros del ruido.

Contenidos

3 Apéndice: El problema de estimación de direcciones de arribo

Apéndice: el problema de estimación de posición de fuentes radiantes

El problema de estimación de posición de fuentes radiantes

$$\mathbf{y}(n) = \left[egin{array}{ccccc} 1 & 1 & \dots & 1 \ e^{i\omega_c au_1} & e^{i\omega_c au_2} & dots & e^{i\omega_c au_N} \ dots & dots & dots & dots \ e^{i\omega_c(M-1) au_1} & e^{i\omega_c(M-1) au_2} & dots & e^{i\omega_c(M-1) au_N} \end{array}
ight] \left[egin{array}{c} s_1(n) \ dots \ s_N(n) \end{array}
ight] + \mathbf{v}(n)$$

Planteo del problema

- Disponemos de un conjunto de sensores que reciben señales de fuentes remotas.
- Queremos determinar la dirección desde donde arriban las señales.

(FIUBA) Segundo cuatrimestre de 2015

41 / 45

Acerca de las fuentes

Para modelar las fuentes tomaremos las siguientes hipótesis:

- Contamos con un número conocido de fuentes (*N*).
- ② Cada una de las fuentes transmite un señal $s_i(t)$ (j = 1, ..., N).
- El medio de transmisión es no dispersivo.
- Las fuentes están muy alejadas y se comportan como emisores puntuales (sin volumen). Esto permite hacer una aproximación de onda plana:

3 Además cada una de las señales $s_j(t)$ de las fuentes las vamos a muestrear en los sensores, obteniendo señales discretas $s_j(n)$, que agruparemos en un vector **x**:

$$\mathbf{e}(n) = \begin{bmatrix} s_1(n) & \dots & s_N(n) \end{bmatrix}^T.$$

Con estas hipótesis la posición de las fuentes queda únicamente determinado por el ángulo con el que arriban al array las señales de cada fuente

Acerca de los sensores (1)

Consideraremos que tenemos M sensores equiespaciados una distancia d. Cuando una fuente emite una señal, ésta no llega al mismo tiempo a todos los sensores:

El tiempo adicional de viaje de la señal entre sensor y sensor es:

$$\frac{d\sin(\phi_j)}{c}$$

donde ϕ_i es el ángulo de arribo de la señal $s_i(n)$ y c es la velocidad de propagación.

Acerca de los sensores (2)

Por lo tanto, referido al sensor 1, el sensor k-ésimo demora:

$$(k-1)\frac{d\sin(\phi_j)}{c}$$

segundos en recibir las señal enviada por la fuente j-ésima. Si para cada señal $s_i(n)$ definimos:

$$\tau_j = \frac{d\sin(\phi_j)}{c}$$

y asumimos que los sensores son idénticos, lineales y se comportan del mismo modo para cualquier dirección de arribo podemos escribir a la señal recibida por el array entero como:

$$\mathbf{y}(n) = \begin{bmatrix} 1 & 1 & \dots & 1 \\ e^{i\omega_c\tau_1} & e^{i\omega_c\tau_2} & \vdots & e^{i\omega_c\tau_N} \\ \vdots & \vdots & \vdots & \vdots \\ e^{i\omega_c(M-1)\tau_1} & e^{i\omega_c(M-1)\tau_2} & \vdots & e^{i\omega_c(M-1)\tau_N} \end{bmatrix} \begin{bmatrix} s_1(n) \\ \vdots \\ s_N(n) \end{bmatrix}$$

La equivalencia entre ambos modelos

• El modelo de arrays de sensores es muy similar al de frecuencias de sinusoides:

$$\mathbf{y}(n) = \left[egin{array}{ccccc} 1 & 1 & \ldots & 1 \ e^{i\omega_c au_1} & e^{i\omega_c au_2} & dots & e^{i\omega_c au_N} \ dots & dots & dots & dots \ e^{i\omega_c (M-1) au_1} & e^{i\omega_c (M-1) au_2} & dots & e^{i\omega_c (M-1) au_N} \end{array}
ight] \left[egin{array}{c} s_1(n) \ dots \ s_N(n) \end{array}
ight]$$

- En el vector $\mathbf{e}(n)$ teníamos sinusoidales y ahora tenemos señales arbitrarias.
- De todas formas no nos interesa la forma exacta de las señales $s_j(n)$. Sólo nos interesa lo siguiente:
 - ightharpoonup Que las señales continuas $s_j(t)$ estén muestreadas de acuerdo al teorema de Shannon.
 - Que las señales estén descorrelacionadas entre sí.
 - Que los sensores estén lo suficientemente juntos entre si como para que cuando los sensores tomen las muestras de las señales que llegan, la dirección de arribo esté unívocamente definida.
 - Con estas consideraciones, el método Music puede aplicarse a la estimación de direcciones de arribo.