NOXIOUS

CLEANING OUR AIR

<u>TEAM 4</u>: Will Beardall, Harry Beaven, Julia Berry, Tina Drobnič, Miroslav Gašpárek, Matthew Sargent

THE PROBLEM

- Air pollution is global issue
- Many different pollutants, we focus on nitrous oxides No_x, such as NO and NO₂

- Negative health effects: asthma, COPD, lung cancer
- Indoor air pollution; unvented combustion e.g. gas stoves and improved insulation in first world countries→build up of noxious gases

WHAT'S BEING DONE?

- Number of car users is increasing in densely populated areas such as cities
- Home air filtration/ detection systems are bulky, expensive, unsightly
- No solution currently for developing countries

THE NOXIOUS SOLUTION

- Our solution will be safe, inexpensive, gives real-time quantitative readout of levels of nitrogen oxides present in the air and once over a threshold level triggers a detoxification pathway to improve air quality
- Ideal for smaller scale air filtering e.g. in the home

REGULATIONS AND RISK ASSESSMENT

 The European Commission has deemed the current GMO risk assessment methodologies to be sufficient - as such this project will follow the Genetically Modified Organisms (Contained Use) Regulations (2014)

- For a synthetic biology device to be realised, there needs to exist one or more of the following barriers between the organism and the user:
- Physical
- Biological
- Chemical

REGULATIONS AND RISK ASSESSMENT

The device should have an accompanying risk assessment and as per the aforementioned regulations should consider:

- (a) identification of any potentially harmful effects;
- (b) characteristics of the proposed activity;
- (c) the severity of any potentially harmful effects;
- (d) the likelihood of them occurring; and
- (e) disposal of waste and effluent

REGULATIONS AND RISK ASSESSMENT

Event	Cause/Effect	L	S	RPN	Mitigation
Release of GMO	Destruction of container, leakage - harm to user	3	5	YES	 Chemical/mechanical and biological kill switches Chassis selection Ultrafiltrate membranes
Release of harmful chemicals	Destruction of container, leakage, incomplete breakdown - harm to user	2	5	YES	 Denitrifying pathway selection Fast conversion of intermediates Active pumping of air to prevent back diffusion
Death of bacteria	Insufficient nutrients, high metabolic burden,	2	2	YES	 Use of a nutrient rich broth like LB User can 'feed' bacteria by spraying nutrients into filter The denitrifying pathway can be split between different strains
Inaccurate sensor	Incorrect rate constants, model not being correct - user may be misled as to the quality of their air	?	1	N/A	- This would be confirmed in wet labs and tweaked accordingly
Filtration does not occur	Incorrect rate constant, model not being correct - air quality does not change	?	2	N/A	- This would be confirmed in wet labs and tweaked accordingly
Dual Use	Having a product readily available for civilian purchase - harvesting of intermediates	1	5	YES	 Intermediates are fully converted and cannot diffuse out Kill switches ensure bacteria cannot be harvested and reincubated Intermediates are in very low concentrations

PHYSICAL IMPLEMENTATION

The device provides a physical barrier between the user and the bacteria - an ultrafiltrate membrane allows particle flow but keeps the bacteria contained

The compartmentalised filtration units allows for minimal final intermediate concentrations and the implementation of a mechanical kill switch

THE CHASSIS - <u>E. coli</u>

The chassis chosen must satisfy a variety of criteria:

- Gram-negative
- Non-pathogenic
- Able to hold a large synthetic circuit in the genome

A future chassis - Cyanobacteria

- Photosynthetic
- Currently poor characterisation as a chassis

MULTIPLE CHASSIS

Two chassis with a codependent kill switch

- Lightens metabolic load on the bacteria
- Reduces levels of genomic integration required
- Conforms to the required standards of a biological barrier

A third Chassis with biosensor activity will also be included.

GENOMIC INTEGRATION

Plasmid based systems are not an option:

- Stability
- Copy Number
- Require Antibiotic regulation

Genomic integration provides greater stability and regulation of copy number

Biofiltering: Circuit layout and parts

- Process of **denitrification** by four enzymes (produced in R. denitrificans)
- Feedback from enzyme-producing machinery to gas concentration NO3 Nap NO2 nirS NO norCB NO20 nosZ
- Inputs: NO3, NO2, NO, Output: N2
- Plasmid 1: NO3 and NO2 conversion enzymes
- Plasmid 2: NO and N2O conversion enzymes
- Assembly of the circuit on two plasmids: (due to size of the circuit)

A two-plasmid denitrification circuit schematics.

A schematics of denitrification pathway.

Parts to be used:

NarL repressor - BBa_K1682018 (length: 2831 bp) NsrR repressor - BBa_K1682011 (length: 426 bp)

Plasmid 1:

PyeaR promoter - BBa_K216005 (length: 100 bp)
Ribosome Binding Site 1 – BBa_B0034 (length: 12 bp)
napA enzyme ORF - BBa_K896007 (length: 3127 bp)
Ribosome Binding Site 2 – BBa_B0034 (length: 12 bp)
nirS enzyme ORF - BBa_K1356003 (length: 1707 bp)
Terminator BBa_B0014 (length: 95 bp)

Plasmid 2:

PyeaR promoter - BBa_K216005 (length: 100 bp)
Ribosome Binding Site 3 – BBa_B0034 (length: 12 bp)
norCB enzyme ORF - BBa_K1356004 & BBa_K1356005 (length: 441 bp & 1401 bp)
Ribosome Binding Site 4 – BBa_B0034 (length: 12 bp)
nosZ enzyme ORF - BBa_K1356006 (length: 1911 bp)
Terminator BBa_B0014 (length: 95 bp)

Length of Plasmid 1: 5053 bp **Length of Plasmid 2:** 3972 bp

Biofiltering: Modeling

- Deterministic modelling in MATLAB
- 27 reactions (nonlinear ODEs), 39 parameters, 24 species
- Parameters values are in the Appendix A
- Modelling results demonstrate that cells can successfully convert the average environmental values of NOx species into N2, if $\sim 10^{11}$ 10^{12} E.coli are used -> ~ 0.1 -1 liter volume of E. Coli
- The required volume justifies the use of device in households

A two-plasmid denitrification circuit schematics.

Depending on NOx concentration in the medium, E. coli would express different

coloured protein

BIOSENSOR MODEL

Varying affinities of NarL for PyeaR promoters modelled by Hill equation with increasing K_m values

General rates of transcription, translation, and degradation for *E. coli*

gRNAs silence expression by CRISPRi

dCas9 constitutively expressed on different plasmid

KILL SWITCH BLOCKS

KILL SWITCH BLOCKS

KILL SWITCH BLOCKS

KILL SWITCH MODEL

- Deterministic modelling in CellDesigner
- 2 mutually dependent strains modelled
- Optimised for 4*108 cells of each species per ml
- RBS and promoter strengths tuned with model
- RBS and promoters from Anderson set
- Repressors from Stanton et al, 2014 and Glasgow
- Colicin used in both strains
- Colicin toxicity: 14-200 molecules per cell

Development considerations

- Low-level antitoxin if pPhIF and pSrp (repressors) leaky
- Risk of mutation increasing antitoxin production
- Upper density limit if food control insufficient

KILL SWITCH TOPOLOGY

CONCLUSION

NOx pollution:

- Linked with respiratory disease
- A rising concern in the home

Air pollutant	Concentration of exposure	Effect	Reference
SO _x		Infant deaths	36
NO _x		Respiratory tract symptoms	40,56
		Asthma exacerbations	41
		Reduced lung function growth	42
		Lymphoma (especially	46
		Hodgkin's) incidence	

Current methods of NOx removal are too expensive and unsuitable for the average home

Cheap, effective and safe way to detect reduce NOx levels in the home that can be scaled to the industrial level

Appendix A: Modelling of Denitrification process

Denitrification

```
(Reactions modelled using Michaelis-Menten kinetics and mass-action kinetics )
1) NO_3 \xrightarrow{Nap} NO_2, reaction rate: v = k_{cat1}[Nap] \frac{[NO_3]}{K_{m+1}[NO_3]}
2) NO_2 \xrightarrow{\text{nirS}} NO, reaction rate: v = k_{cat2}[nirS] \frac{m_1}{K_{max} + |NO_2|}
3a) NO + NO \leftrightarrow 2 NO, reaction rate: v = k_{dimf}[NO]^2 - k_{dimr}[2NO]
3b) 2 NO \xrightarrow{\text{norCB}} N<sub>2</sub>O, reaction rate: v = k_{cat3}[norCB] \frac{[NO]}{K_{cat} + |NO|}
4) N<sub>2</sub>O \xrightarrow{\text{nosZ}} N<sub>2</sub>, reaction rate: v = k_{cat4}[nosZ] \frac{[N_2O]}{K_{cat4}[N_2O]}
```


Sequestration of the promoter and repression of repressors

(Reactions modelled using mass-action kinetics)

```
 NO<sub>3</sub> + Nar 
   — NO<sub>3</sub>:Nar, reaction rate: v = k<sub>5f</sub> [NO<sub>3</sub>][Nar] − k<sub>5r</sub> [NO<sub>3</sub> : Nar]

6) NO_2 + Nar \longrightarrow NO_2:Nar, reaction rate: v = k_{6f}[NO_2][Nar] - k_{6r}[NO_2:Nar]

 NO + NsrR ← NO:NsrR, reaction rate: v = k<sub>7f</sub>[NO][NsrR] − k<sub>7r</sub>[NO : NsrR]

 NsrR + PyeaR → NsrR:PyeaR, reaction rate: v = k<sub>8f</sub> [NsrR][PyeaR] - k<sub>8r</sub>[NsrR:PyeaR]

 Nar + PycaR → NsrR:PycaR, reaction rate: v = k<sub>9,t</sub> [Nar][PycaR] - k<sub>9,r</sub> [NsrR:PycaR]
```

Transcription

```
(Reactions modelled using mass-action kinetics)
10) RNAP + PyeaR → RNAP:PyeaR, reaction rate: v = k<sub>10f</sub>[RNAP][PyeaR] - k<sub>10r</sub>[RNAP : PyeaR]
11) RNAP:PyeaR → mRNA:Nap + RNAP + PyeaR, reaction rate: v = k<sub>11</sub> [RNAP : PyeaR]
12) RNAP: PveaR → mRNA: nirS + RNAP + PveaR. reaction rate: v = k<sub>124</sub> [RNAP : PveaR]

 RNAP:PyeaR → mRNA:norCB + RNAP + PyeaR, reaction rate: v = k<sub>13f</sub> [RNAP: PyeaR]

14) RNAP:PyeaR → mRNA:nosZ + RNAP + PyeaR, reaction rate: v = k<sub>14</sub> [RNAP : PyeaR]
```

Translation

```
(Reactions modelled using mass-action kinetics)
15) mRNA:Nap → Nap + mRNA:napA, reaction rate: v = k<sub>15,ℓ</sub>[mRNA: Nap]
16) mRNA:nirS -- nirS + mRNA:nirS, reaction rate: v = k<sub>16.6</sub> [mRNA: nirS]
17) mRNA:norCB → norCB + mRNA:norCB, reaction rate; v = k<sub>17</sub> [mRNA:norCB]
18) mRNA:nosZ → norZ + mRNA:norZ, reaction rate: v = k<sub>18f</sub> [mRNA:norZ]
```

mRNA Decay

```
(Reactions modelled using mass-action kinetics)
19) mRNA:Nap \longrightarrow null, reaction rate: v = k_{19f}[mRNA:Nap]
20) mRNA:nirS → null, reaction rate: v = k<sub>20.f</sub>[mRNA: nirS]
21) mRNA:norCB \longrightarrow null. reaction rate: v = k_{21.6}[mRNA:norCB]
22) mRNA:nosZ → null. reaction rate: v = k<sub>22.t</sub> [mRNA: nosZ]
```

Enzyme/protein dilution

```
(Reactions modelled using mass-action kinetics)

 Nap → null, reaction rate: v = k<sub>23f</sub>[Nap]

24) nirS → null, reaction rate: v = k<sub>24f</sub>[nirS]
25) norCB → null, reaction rate: v = k<sub>25,f</sub> [norCB]
26) nosZ \longrightarrow null, reaction rate: v = k_{26f}[nosZ]
```

A schematics of denitrification pathway.

A two-plasmid denitrification circuit schematics.

Appendix B: Values of parameters

Parameter	Value	Units	Reference
Km1	45	uM	[1]
kcat1	2.5	1/s	[1]
Km2	12	uM	[2]
kcat2	74	1/s	[2]
Km3	35	uM	[2]
kcat3	81.2833	1/s	[2]
Km4	6.7	uM	[2]
kcat4	264	1/s	[2]
kdimf	28	1/(uM*s)	[3] *approximated
kdimr	0.022	1/s	[3] *approximated
k5f	28	1/(uM*s)	[3] *approximated
k5r	0.022	1/s	[3] *approximated
k6f	28	1/(uM*s)	[3] *approximated
k6r	0.022	1/s	[3] *approximated
k7f	28	1/(uM*s)	[3] *approximated
k7r	0.022	1/s	[3] *approximated
k8f	28	1/(uM*s)	[3] *approximated
k8r	0.022	1/s	[3] *approximated
k9f	28	1/(uM*s)	[3] *approximated
k9r	0.022	1/s	[3] *approximated

	1	1	
Parameter	Value	Units	Reference
k10f	1	1/(uM*s)	[3] *approximated
k10r	1	1/s	[3] *approximated
k11f	0.016	1/s	[4] * approximated
			calculated for average gene size of 1000 bp
k12f	0.016	1/s	[4] * approximated
			calculated for average gene size of 1000 bp
k13f	0.016	1/s	[4] * approximated
			calculated for average gene size of 1000 bp
k14f	0.016	1/s	[4] * approximated
			calculated for average gene size of 1000 bp
k15f	0.024	1/s	[4] * approximated
			calculated for average protein size of 1000 bp
k16f	0.024	1/s	[4] * approximated
			calculated for average protein size of 1000 bp
k17f	0.024	1/s	[4] * approximated
			calculated for average protein size of 1000 bp
k18f	0.024	1/s	[4] * approximated
			calculated for average protein size of 1000 bp
k19f	0.0018	1/s	[5] * approximated
k20f	0.0018	1/s	[5] * approximated
k21f	0.0018	1/s	[5] * approximated
k22f	0.0018	1/s	[5] * approximated
k23f	0.000014	1/s	[5] * approximated
k24f	0.000014	1/s	[5] * approximated
k25f	0.000014	1/s	[5] * approximated
k26f	0.000014	1/s	[5] * approximated

REFERENCES

- [1] Sparacino-Watkins, C., Stolz, J. and Basu, P. (2014). Nitrate and periplasmic nitrate reductases. Chem. Soc. Rev., 43(2), pp.676-706.
- [2] Woolfenden, H., Gates, A., Bocking, C., Blyth, M., Richardson, D. and Moulton, V. (2013). Modeling the effect of copper availability on bacterial denitrification. *MicrobiologyOpen*, p.n/a-n/a.
- [3] Bionumbers.hms.harvard.edu. (2018). Reference Links for Key Numbers in Biology. [online] Available at:
- http://bionumbers.hms.harvard.edu/KeyNumbers.aspx [Accessed 12 Feb. 2018].
- [4] Del Vecchio, D. and Murray, R. (n.d.). Biomolecular Feedback Systems.
- [5] Alon, U. (2006). An Introduction to Systems Biology. Hoboken: CRC Press.

REFERENCES

- 1. Walton H, Dajnak D, Beevers S, Williams M, Watkiss P, Hunt A (2015). 'Understanding the Health Impacts of Air Pollution in London'
- 2. Brauer M, Freedman G, Frostad J, van Donkelaar A, Martin R V., Dentener F, et al. (2015). 'Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013', Environmental Science & Technology
- 3. European Environment Agency (2017). 'European Union emission inventory report 1990–2015 under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP)', European Environment Agency
- 4. Belanger K, Holford TR, Gent JF, Hill ME, Kezik JM, Leaderer BP (2013). 'Household Levels of Nitrogen Dioxide and Pediatric Asthma Severity', Epidemiology
- 5. Hamra GB, Laden F, Cohen AJ, Raaschou-Nielsen O, Brauer M, Loomis D (2015). 'Lung Cancer and Exposure to Nitrogen Dioxide and Traffic: A Systematic Review and Meta-Analysis', Environmental Health Perspectives
- 6. European Commission (2010). 'Air Quality Standards- Environment European Commission'
- 7. UK Government Department for Environment, Food and Rural Affairs (2017). 'UK Plan for tackling roadside nitrogen dioxide concentrations: Technical report'