

(12) United States Patent Song

(10) Patent No.:

US 6,359,499 B1

(45) Date of Patent:

Mar. 19, 2002

(54) TEMPERATURE AND PROCESS INDEPENDENT CMOS CIRCUIT

(75) Inventor: Yonghua Song, Saratoga, CA (US)

(73) Assignee: Marvell International Ltd., Hamilton

(BM)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 09/599,907

(22) Filed: Jun. 23, 2000

(51) **Int. Cl.**⁷ **H01L 35/00**; H01L 37/00; H03K 3/42; H03K 17/78

(56) References Cited

U.S. PATENT DOCUMENTS

5,097,156	Α	3/1992	Shimabukuro et al 307/491
5,157,350	Α	10/1992	Rubens 330/254
5,180,994	Α	* 1/1993	Martin et al 331/38
5,327,029	Α	7/1994	Ericson et al 307/491
5,521,544	Α	5/1996	Hatanaka 327/356
5,966,040	Α	10/1999	Gai et al 327/357
5,327,029 5,521,544	A A	7/1994 5/1996	Ericson et al

5,986,494	Α		11/1999	Kimura	327/359
6,018,269	Α	+	1/2000	Viswanathan	330/254
6,242,963	B1	٠	6/2001	Su et al	327/359

^{*} cited by examiner

Primary Examiner—Terry D. Cunningham Assistant Examiner—Quan Tra

(74) Attorney, Agent, or Firm-Eric B. Janofsky

(57) ABSTRACT

A analog function is constructed based on CMOS (complimentary metal-oxide semiconductor) technology. It is capable of providing an output voltage, which is proportional to the product of two input voltages. This analog function is insensitive to temperature and process variations by using a PMOS device as a load device for an NMOS analog function. The PMOS characteristics are used cancel or balance the variations in process and temperature in the other NMOS devices. To further control the function of the loading devices a loading device controller within the analog function compensates for changes in voltage level of the output signal due to variations in temperature and variations in manufacturing process within the function core circuit. The loading device controller has a loading control voltage terminal to provide the loading control voltage to provide temperature and process compensating biasing voltage for the load devices.

44 Claims, 5 Drawing Sheets

