Table 6.1

Parameter Symbol	Parameter Description	Typical Parameter Value		
		n-Channel	p-Channel	Units
V ₇₀	Threshold voltage $(V_{BS} = 0)$	0.7 ± 0.15	-0.7 ± 0.15	v
K'	Transconductance parameter (in saturation)	$110.0 \pm 10\%$	$50.0 \pm 10\%$	μ.Α/V ²
γ	Bulk threshold parameter	.0.4	0.57	$V^{1/2}$
λ	Channel length modulation parameter	$0.04 (L = 1 \mu m)$ $0.01 (L = 2 \mu m)$	$0.05 (L = 1 \mu m)$ $0.01 (L = 2 \mu m)$	V ⁻¹
$2 \phi_F $	Surface potential at strong inversion	0.7	0.8	V

6.1 Determine $V_{\rm ref}$ (Output Voltage) in Fig 6.1 and the conditions under which the TC of $V_{\rm ref}$ is zero. Assume K=10. Assume $(\partial V_T)/\partial T$ =0.085mV/°C, $(\partial V_{\rm BE})/\partial T$ =-2mV/°C, $V_{\rm BE}$ =0.75V, V_T =26mV.

Fig 6.1

解:

For the circuit in Fig 6.1, we get

$$V_{\mathit{ref}} = L \ln K \times V_{\mathit{T}} + V_{\mathit{BE}(D3)}.$$

 $V_{\rm ref}$ is dependent on temperature and we get

$$\frac{\partial V_{ref}}{\partial T} = L \cdot \ln K \cdot \frac{\partial V_T}{\partial T} + \frac{\partial V_{d3}}{\partial T}$$
$$\frac{\partial V_T}{\partial T} = 0.085 mV/^{\circ}C \text{ and } \frac{\partial V_{d3}}{\partial T} = -2mV/^{\circ}C$$

Let V_{ref} has zero temperature coefficient and get

$$\frac{\partial V_{ref}}{\partial T} = L \cdot \ln K \cdot \frac{\partial V_T}{\partial T} + \frac{\partial V_{d3}}{\partial T} = 0$$

It can be derived that while $L \cdot lnK = 2/0.085 = 23.5$, $\frac{\partial V_{ref}}{\partial T} = 0$, or $TC(V_{ref}) = 0$.

Assuming K=10, the corresponding $L=10.2\approx10$

Under these conditions the V_{ref} that has zero TC is

$$V_{REF} = L \ln K \times V_T + V_{BE(D3)} = 1.35V$$

6.2 Derive an expression for I_{out} in Fig 6.2. Assume all transistors are in saturation region, and $(W/L)_4=(W/L)_3$, $\lambda=0$.

Fig 6.2

解:

$$I_{out}R_{S} + \sqrt{\frac{2I_{out}}{\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{2}}} + V_{TH2} = \sqrt{\frac{2I_{out}}{\mu_{n}C_{ox}\left(\frac{W}{L}\right)_{1}}} + V_{TH1}$$

解得:
$$I_{out} = \frac{2}{\mu_n C_{ox} R_S^2} \left(\sqrt{\left(\frac{L}{W}\right)_1} - \sqrt{\left(\frac{L}{W}\right)_2} \right)^2$$

Homework for this week is a few choice questions.

6.3 A current mirror circuit is shown in Fig 6.3. In order to make I_o strictly equals to I_{ref} , what is the expression of V_b ? λ =0. (

Fig 6.3

- $A.\ 2V_{OD} + 2V_{th}$
- $B.\ 2V_{OD} + 2V_{GS}$
- $C.\ 2V_{OD} + V_{th}$
- $D.\ 2V_{OD}$

Answer: A or C

6.4 In Fig 6.3, what is the minimum value of I_0 ? $\lambda=0$. (

- $A.\ 2V_{OD} + 2V_{th}$
- $B.\ 2V_{OD} + 2V_{GS}$
- $C.\ 2V_{OD} + V_{th}$
- $D.\ 2V_{OD}$

Answer: D

6.5 How many current mirror circuit blocks exist in Fig 6.4? ()

Fig 6.4

- A. 1
- B. 2
- C. 3
- D. 4

Answer: C

6.6 Assume you are an analog IC designer. When you are designing a current mirror, what device parameter should be the same to reduce mismatch? ()

A. W

B. L

C. W/L

Answer: B