HoTT = type theory + homotopy interpretation,
formal logic "=" of type theory as hom computer science
types of as-spaces Q1. Can we do homotopy theory in type theory? 2011: Can we define a sphere? 2013: Book with T_3LS^2) 2017: Localization and completion @ primes ① Formalizing synthetic homology ②
Q2. How does Hott compare to other foundational systems and why do we care? > Building models of Hott in higher categories. Stype semantics (higher) (type syntax) (categories) want this correspondence > elementary (4)
2010: model in sSet 2011: conjecture that there is amodel in 00-topos what is Stype 2 theories? what is that?
New type theories · HoTT types-as-(00,0) categories · ??? types-as-(00,1) categories
Directed type theory 5

Cubical Type Theory

> Build type theory implementing I and its powers CCHM: CTT 6

(Differential) Cohesive HoTT

$$S^1 = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$$

S':

base: S'

loop: base base

topology

us. homotopy theory

Q3. How to bring topology into HoTT point set topology

- · Modalities
- · Browner's fixed pt. Thm in Cohesive HoTT What else? (3)

Modalities in HoTT Egbert propositions - as - types. modal operator is an operator on types. comonadic monadic we study idempotent modalities Vuevodsky notion of a type X being contractible.

**There is afterm of type X is contractible (>> is (ontr(X)):= \(\sum_{x:X}\) \(\frac{1}{y:X}\) \(\frac{x=y}{y:X}\) X is a mere proposition \iff is $Prop(X) = \prod_{x,y} x = \sum_{x,y} x =$ examples of propositions: · Any contractible type . The empty type · The types is Contr(X) and is Prop(X) for any type X. A type X is a set if there is a term of mere proposition

schematic diagram of a universe

n-types (homotopy groups of degree above
n are trivial)

sets 0-types

propositions (-11-types

contractible types

each "layer" in the previous picture is a sub-univerge see Hott Book Ch.7.

Defin a modal operator is a function 0: U > U
from a universe to itself.

a modal unit we mean a family of. functions $no: T_{A: VB}A \rightarrow oA$

a reflective subuniverse is a family is Modal: U -> Prop

a reflective subuniverse is Σ -closed to if whenever is Modal(X) and is Modal(PX) for all x: X we have is Modal ($\Sigma_{(x:X)}$ P(X))

let Q be a mere proposition. The closed modality determined by Q consists of

· the subuniverse of types A satisfying Q-island.
· the model operator A -> Q * A ie.,

the pushout (homotopy pushout)

$$\begin{array}{ccc}
Q \times A & \longrightarrow A \\
\downarrow & \downarrow \\
Q & \longrightarrow Q \times A
\end{array}$$

· the modal unit is the map A -> Q*A in the pushout square

· It is Z-closed since the dependent
If U,V = R and UUV = R and UNV = \$
from ULIV to R.
then $U=\phi$ or $V=\phi$
p-discrete,
PU,V:R→Prop. #-codiscrete because UnV=\$, UUV=ULIV=U+V" why?
because UNV=9, UVV-01-1
\Rightarrow have a fcn $f: U+V \rightarrow 1+1$
f(Inl(u)) = inl (x)
f(Inr(V)) = inr(*)
If A is discrete $(A \rightarrow B) = (A \rightarrow bB) = all set maps from Ato$
If A, B are discrete then A+B is discrete:
b(A+B) A+B A
A>b(APD)
b(A+B) -A+B
B and similarly fo
:. 1+1 is discrete (since 1 and 1 are discrete)
0
So f: IR = 1+1 f must factor through why? b/c 1+1 is discrete.
η $=$ Ω $=$ 1
911-1
either $\overline{f}(x) = inl(x)$ or $inr(x)$
if $f(x) = in I(x)$ then $f(x) = in I(x) \Rightarrow V = \emptyset$