COMPo147: Discrete Mathematics Notes

Jieyou Xu

January 29, 2019

Contents

1	Log	ic and I	Proofs	7
	1.1	Propos	sitional Logic	7
		1.1.1	Propositions	7
		1.1.2	Composition of Propositions	8

4 CONTENTS

Introduction

Notes are based on lecture notes by Professor Max Kanovich [Kan19] and discrete mathematics books [Ros12].

6 CONTENTS

Chapter 1

Logic and Proofs

1.1 Propositional Logic

1.1.1 Propositions

Definition 1.1.1.1. A proposition is statement which is either *true* or *false* but not both.

Propositions can be denoted via uppercase letters, *P*, *Q*, *R*, *S*,

Example 1.1.1.2. Let P = "Computer Science is life".

Definition 1.1.1.3. The negation of a proposition P can be denoted as $\neg P$ or \bar{P} .

Table 1.1: Truth Table of $\neg P$

Example 1.1.14. "Computer Science is not life" can be denoted as $\neg P$ or \overline{P} .

Definition 1.1.1.5. The logical AND or conjunction of P and Q can be denoted as $P \wedge Q$.

P	Q	$P \wedge Q$
O	O	O
O	1	O
1	O	O
1	1	1

Table 1.2: Truth Table of $P \wedge Q$

Definition 1.1.1.6. The logical OR or disjunction of P and Q can be denoted as $P \vee Q$.

P	Q	$P \vee Q$
0	O	О
O	1	1
1	O	1
1	1	1

Table 1.3: Truth Table of $P \lor Q$

Definition 1.1.1.7. The logical XOR or exclusive or of P and Q can be denoted as $P \oplus Q$.

P	Q	$P \oplus Q$
O	O	О
O	1	1
1	O	1
1	1	O

Table 1.4: Truth Table of $P \oplus Q$

Definition 1.1.1.8. The implication between P and Q can be denoted as $P \rightarrow Q$.

Note that in $P \rightarrow Q$, P is known as the premise and Q is the conclusion.

$$\begin{array}{ccccc} P & Q & P \to Q \\ \hline 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

Table 1.5: Truth Table of $P \oplus Q$

Definition 1.1.1.9. Given implication $P \to Q$, its converse is then $Q \to P$.

Definition 1.1.1.10. Given implication $P \to Q$, its contrapositive is then $\neg Q \to \neg P$.

Note that the contrapositive $\neg Q \rightarrow \neg P$ is *equivalent* to the original implication $P \rightarrow Q$.

Definition 1.1.1.1. The biconditional or bi-implication between P and Q can be denoted as $P \leftrightarrow Q$.

1.1.2 Composition of Propositions

Example 1.1.2.1. Given a compound proposition $(P \land Q) \rightarrow (\neg Q \lor P)$

P	Q	$P \leftrightarrow Q$
O	0	1
O	1	0
1	O	O
1	1	1

Table 1.6: Truth Table of $P \leftrightarrow Q$

$$P \quad Q \quad (P \wedge Q) \quad \neg Q \quad (\neg Q \vee P) \quad (P \wedge Q) \rightarrow (\neg Q \vee P)$$

Table 1.7: Truth Table of $P \leftrightarrow Q$

Bibliography

- [Kan19] Max Kanovich. Discrete mathematics lecture notes. http://www.cs.ucl.ac.uk/people/M.Kanovich.html/, 2019. Accessed: January 29, 2019.
- [Ros12] Kenneth H. Rosen. *Discrete Mathematics and its Applications*. The McGraw-Hill Companies, Inc, seventh edition, 2012.