# **IE 500: Introduction to Deep Learning for Engineers**

# **Assignment 1: Image Compression**

# Question 1.

# **Code**



Figure 1: Question 1 code



Figure 2: Question 1 output

#### **Question 2.**

#### Code



Figure 3: Question 2 code

Figure 4: Question 2 output

# **Question 3.**

#### Code

Figure 5: Question 3 code

#### **Output**



Figure 6: Question 3 output

If the **product of** the given matrix and transpose of the same matrix is an **identity matrix**, then it is an orthogonal matrix. Initially defined a function called check orthogonality () and multiplied the given matrix and transpose. And using the if condition I checked if it was close to the Identity matrix. If yes, it is orthogonal, or else it's not. I used the same logic to find out if the matrix was orthogonal or not. So, for the given three matrices, only B & and C are orthogonal and these matrices are symmetric.

# **Question 4.**

#### Code



Figure 7: Question 4 code



Figure 8: Question 4 output

#### **Question 5.**

#### Code

Figure 9: Question 5 code



Figure 10: Question 5 output

#### **Question 6.**

# **Code**



Figure 11: Question 6 code



Figure 12: Question 6 output

#### **Question 7.**

#### Code

```
## Social Compression | Signar | Signar
```

Figure 13: Question 7 code



Figure 14: Question 7 output



Figure 15: Question 7: highlighting the uncompressed and compressed image size



Figure 16: mountain\_grayscale\_compressed



Figure 17: mountain\_grayscale\_orginal