Phys 2010 (NSCC), Fall 2005 Problem Set #8

1. A 300-kg car moves under down a level highway under the actions of two forces: a 1000-N forward force exerted on the drive wheels by the road and a 950-N resistive force. Use the work—energy theorem to find the speed of the car after it has moved a distance of 20 m.

2. A 2.0-m long pendulum is released from rest when the support string is at an angle of 25° from the vertical. What is the speed of the bob at the bottom of the swing?

3. Tarzan swings on a 30.0-m-long vine initially inclined at an angle of 37° with the vertical. What is his speed at the bottom of the swing if he pushes off with a speed of $4.00 \, \frac{\text{m}}{\text{s}}$?

4. A 70-kg diver steps off a 10-m tower and drops from rest straight down into the water. If he comes to rest 5.0 m beneath the surface, determine: (a) The work done on him by the resistive force of the water, and (b) the average resistive force exerted on him by the water.

5.	The electric	motor	of a model	train	accelera	tes the	train	from	rest t	o 0.620	$\frac{m}{s}$ in	21.0	ms.
Th	e total mass	of the	train is 875	5 g. F	ind the	work do	one on	the 1	train	in the	given	time.	

6. For the accelerating train in problem 5, find the average power delivered to the train during the acceleration.

7. A skier of mass 70 kg is pulled up a slope by a motor-driven cable. H required to pull him 60 m up a 30° slope (assumed frictionless) at a constant	
required to pull lilli of in up a 50° slope (assumed frictionless) at a constant	it speed of 2.0 s
8. How much power must a motor have to perform this task?	