Affine Objects

Mohamed Hashi

May 4, 2016

1 Introduction

Hoi, dit is de introductie.

2.1 Basic Category Theory

Definition 1 (Presheaf category). Let C be a category. Let $\alpha \in C$. Let $f: \alpha' \to \alpha$ We define

$$\hat{C} := [C^{op}, Set],$$

and the functor $h:C\to \widehat{C}$ as follows

$$a \mapsto \text{Hom}(-, a),$$

$$f \mapsto f \circ -.$$

This functor is fully faithful by the Yoneda lemma.

Definition 2 (Sections functor). For any $a \in C$ define the functor

$$\Gamma(\alpha; -) : \widehat{C}(A) \to A$$

by

$$\mathfrak{F} \to \mathfrak{F}(\mathfrak{a}).$$

Let $L:I\to C$ be diagram and assume that $\mathop{\hbox{\rm colim}}_{h(-)\circ L}$ exists in $\widehat{C}(A).$ Define

$$\Gamma(\underset{i \in I}{\text{colim}}L(i); -): \hat{C}(A) \to A$$

by

$$\mathfrak{F} \to \text{Hom}(\underset{\mathfrak{i} \in I}{\text{colim}} L(\mathfrak{i}), \mathfrak{F}) = \underset{\mathfrak{i} \in I}{\text{lim}} \text{Hom}(L(\mathfrak{i}), \mathfrak{F}).$$

By definition of a colimit these definitions coincide when a colimit exists in C.

Remark. The category \hat{C} is cocomplete so even if C does not have a terminal object, we can still compute the global sections.

Definition 3 (Over/Under categories). Let C and C' be categories. Let $F: C \to C'$ and $z \in C'$. Define the category C_z and C^z as

$$Obj(C_z) := \{(a, w) \mid a \in C, w : F(a) \to z\},$$

$$Hom((a, w), (b, v)) := \{f : a \to b \mid v \circ F(f) = w\},$$

and

Obj(
$$C^z$$
) := {(a, w) | $a \in C, w : z \to F(a)$ },
Hom((a, w), (b, v)) := { $f : a \to b \mid F(f) \circ w = v$ }.

We get faithful functors $C_z \to C : (a, w) \to a$ and $C^z \to C : (a, w) \to a$. We will call both functors localization functors and denote them by u. We will suppress the functor F where there can be no confusion.

Definition 4 (Restriction).

Definition 5 (direct image). Let $f: C \to D$. Define the direct image functor $f_*: \hat{D} \to \hat{C}$ as

$$f_* = - \circ f.$$

Definition 6 (inverse image). Let C, D be a categories. Let $f: C \to D$ be a functor. Define the inverse image functor $f^*: \hat{C} \to \hat{D}$ as follows. Let $\mathfrak{F} \in \hat{C}$. For any $d \in D$

$$f^*(F)(d) = \underset{\mathsf{D}_d}{\text{colim}} \mathfrak{Fu}.$$

2.2 Topology

Definition 7 (Sieve). Let C be a category and $a \in C$. A sieve S on a is a subpresheaf of h(a). Explicitly, for each $c \in C$, S(c) is a subset of Hom(c, a) such that $fg \in S(Dom(g))$ for all $f \in S(c)$ and for all $g \in h(c)$.

The maximal sieve on a, which is h(a), will be denoted by max(a).

Definition 8 (Sieve category). Let C be a category and $a \in C$. The sieve category Sieves(a) is the subobject poset of the presheaf h(a).

Definition 9 (Pullback of sieve). Let C be a category and $a, b \in C$. Let S be a sieve on a. Let $f: b \to a$.

For any $c \in C$ the sieve f^*S on b is given by $f^*S(c) = \{g \in Hom(c,b) : fg \in S(c)\}.$

To show that this is actually a subpresheaf of h(b), let $k: c \to c'$ and $h \in f^*S(c')$. Hence $fh \in S(c')$ and so $fhk \in S(c)$. Conclude that $hk \in f^*S(c')$.

This defines a functor f^* : Sieves(a) \rightarrow Sieves(b).

Definition 10 (Grothendieck Topology). A Grothendieck topology \mathcal{T} is a family $\mathcal{T}(a)$ of 'covering' sieves for every $a \in C$ with the following conditions:

- $\max(\alpha) \in \mathfrak{I}(\alpha)$
- $f^*R \in \mathfrak{I}(\mathfrak{a}')$ if $R \in \mathfrak{I}(\mathfrak{a})$ for all $f : \mathfrak{a}' \to \mathfrak{a}$
- if $f^*R \in \mathfrak{T}(\alpha')$ for all $f \in S$ with $S \in \mathfrak{T}(\alpha)$ then $R \in \mathfrak{T}(\alpha)$

Definition 11 (Basis). Let C be a category with pullbacks. A Grothendieck pretopology \mathcal{B} is a collection $\mathcal{B}(a)$ of families $\{f_i:a_i\to a\}$ of 'covering' morphisms for every $a\in C$ with the following conditions.

- every isomorphism is a covering singleton family,
- (Stability) The pullback of a covering family is a covering family. If $\{f_i : a_i \to a\}$ is covering and $g : b \to a$, then $\{f'_i : a_i \times_a b \to b\}$ is covering.
- (Transitivity) If $\{f_i: a_i \to a\}$ is a covering family and $\{f_{ij}: a_{ij} \to a_i\}$ for every i, then $\{f_{ij}: a_{ij} \to a\}$ is a covering family.

Generating a topology from a basis: take any sieve containing a covering family to be a covering sieve.

2.2.1 Sheaves

Definition 12 (Matching family). Let C be a category. Let \mathfrak{F} be a presheaf on on C. Let $\mathfrak{a} \in C$ be an object. Let R be a sieve on \mathfrak{a} . A set $\{x_i\}_{i\in R}$ with $x_i \in \Gamma(Dom(i);\mathfrak{F})$

indexed by a sieve R and such that $x_{g \circ i} = \mathfrak{F}(g)(x_i)$ for any $g : b \to Dom(i)$ and $b \in C$ is called a 'matching family'.

Definition 13 (Matching family/Morphisms). Let C be a category. Let $\mathfrak F$ be a presheaf on on C. Let $a \in C$ be an object. Let R be a sieve on a. Define $\Gamma(R;\mathfrak F) = \operatorname{Hom}(R,\mathfrak F)$. An element $\phi \in \Gamma(R;\mathfrak F)$ is uniquely identified by the matching family $\{\phi(i)\}_{i\in R}$ of images. Conversely, any matching family $\{x_i\}_{i\in R}$, with $x_i \in \Gamma(\operatorname{Dom}(i);\mathfrak F)$ indexed by R and such that $x_{g\circ i} = \mathfrak F(g)(x_i)$ for any $g: b \to \operatorname{Dom}(i)$ and $b \in C$, uniquely identifies a map $\phi: R \to \mathfrak F$. Namely, take $\phi_a(y) = x_y$.

Definition 14 (Amalgamation). An amalgamation of a matching family $\{x_i\}_R$ is an element $x \in \Gamma(1;\mathfrak{F})$ such that $\mathfrak{F}(\mathfrak{i})(x) = x_\mathfrak{i}$.

When you consider the matching family as a morphism ϕ , an amalgamation is a morphism $\phi: h(a) \to \mathfrak{F}$ that extends ϕ .

Definition 15 (Sheaves). Let (C, \mathcal{T}) be a site. Let $\mathfrak{F} \in \hat{C}$.

A presheaf that admits a unique amalgamation of every matching family is called a sheaf. The category Shv(C) is the full subcategory in \hat{C} all sheaves. Let i be the inclusion functor $Shv(C) \to \hat{C}$.

In other words, we call \mathfrak{F} a sheaf if the map

$$\mathfrak{F}(\alpha) \to \mathfrak{F}(R)$$

$$a: x \mapsto \{\mathfrak{F}(\mathfrak{i})(x)\}_{\mathfrak{i} \in R}$$

is an isomorphism.

Definition 16 (Plus construction). Let (C, \mathcal{T}) be a site. Let $a, a' \in C$ and $f : a \to a'$. Let $\mathfrak{F} \in \hat{C}$. Define the functor $(-)^+ : \hat{C} \to \hat{C}$ as follows

On objects:

$$\mathfrak{F}^+(\mathfrak{a}) = \frac{\{(R,\phi) \mid R \in \mathfrak{T}(\mathfrak{a}), \phi \in \Gamma(R;\mathfrak{F})\}}{\sim},$$

$$\mathfrak{F}^+(f)([(R, \varphi)]) = [(f^*R, \varphi h(f))].$$

The equivalence relation is defined as:

$$(R, \varphi) \sim (S, \varphi)$$

if $\phi = \varphi$ on some $Q \subset R \cap S$

Let $L: \mathfrak{F} \to \mathfrak{F}'$. Then

$$(L^+)_{\mathfrak{a}}([(R,\phi)]) = [(R,L\circ\phi)]$$

This functor comes with a natural transformation $\omega: \mathrm{Id} \to (-)^+$ defined by

$$\omega_{\mathfrak{F},\mathfrak{a}}(x) = [(\max(\mathfrak{a}), y]$$

$$y(i) = \mathfrak{F}(i)(x)$$
.

Definition 17. Define $sh = (-)^+ \circ (-)^+$.

Lemma 18. Let Y = (C, T) be a site. The functor sh is left adjoint to the inclusion $Shv(Y) \to Shv(C)$ with unit

$$\omega^2: Id \xrightarrow{\omega} (-)^+ \xrightarrow{\omega} sh$$

Proof.

2.2.2 Relative topology

Definition 19 (Sieve functors). Let C be a category. Let $a, b \in C$. Let $f: b \to a \in C_a$. Let $w: c \to a$. Let $g: w \to f \in C_a$.

For every sieve $S \in \mathsf{Sieves}(f)$ define the sieve S' by $S'(c) = \bigcup_{g \in \mathsf{Hom}(c,b)} S(g)$.

Let $h \in S'(c)$ and $k : c \to b$. Note that $hk \in S(gk)$ since S is a sieve on f, hence $hk \in S'(c)$. This shows that S' is a subpresheaf of h(b).

Let $S \in \mathsf{Sieves}(f)$. Let $h: S \to \mathfrak{F} \in \widehat{\mathsf{C}_{\mathsf{a}}}$.

Define $h': S' \to u^*\mathfrak{F}$ to be

$$(h')_c = \bigcup_{g \in Hom(c,b)} h_g.$$

For every sieve $R \in \mathsf{Sieves}(b)$ define the sieve $R^f \subset h(f)$ as follows. For each $g: c \to \alpha \in \mathsf{C}_\alpha$,

$$R^{f}(q) = \{p : c \rightarrow b \in R(c) \mid q = f \circ p\}.$$

This is a sieve because if $p \in R^f(g)$ and $h : g' \to g$ arbitrary, then gh = fph so $ph \in R^f(gh)$.

Let $S \in \mathsf{Sieves}(b)$. Let $h: S \to \mathfrak{G} \in \hat{\mathsf{C}}$. Define $h^f: S^f \to \mathfrak{Gu}$ by setting for each $g: c \to \alpha \in \mathsf{C}_\alpha$

$$(h^f)_g = h_b \big|_{S^f(g)}$$

Define functors

$$L^f : \mathsf{Sieves}(f) \to \mathsf{Sieves}(b),$$

 $Q^f : \mathsf{Sieves}(b) \to \mathsf{Sieves}(f).$

By, for every sieve $S \in Sieves(f)$

$$L^{f}(S) = S',$$

for every $h: S \to R \in \mathsf{Sieves}(f)$.

$$L^f(h) = h'$$
,

For every sieve $R \in \mathsf{Sieves}(b)$

$$Q^f(R) = R^f$$

For every sieve $k: S \to R \in \mathsf{Sieves}(b)$.

$$Q^f(k) = k^f.$$

(Necessary to proof the functor axioms?)

Lemma 20. Let C be a category. Let $a,b\in C$. Let $f:b\to a\in C_a$. We have the equalities $L^fQ^f=\mathit{Id}$ and $Q^fL^f=\mathit{Id}$.

Proof. Let $w:c\to a$. Let $g:w\to f\in C_a$.

Let $S \in \text{Sieves}(f)$. Let $h \in Q^f L^f(S)(g)$. Hence g = fh and $h \in L^f(S)(c)$. This implies $h \in S(fh) = S(g)$. Let $h \in S(g)$. So g = fh and $h \in L^f(S)(\text{Dom}(g)) = L^f(S)(c)$. This implies $h \in Q^f L^f(S)(g)$. Therefore $Q^f L^f(S)$ and S are the same sieve.

Let $h:S\to R\in \mathsf{Sieves}(f)$. Let $\mathfrak{p}\in S(g)$. Then by construction $L^fQ^f(h)_g(\mathfrak{p})=Q^f(h)_c'(\mathfrak{p})=h_c(\mathfrak{p})$.

Let $R \in \text{Sieves}(b)$. Let $h \in L^fQ^f(R)(c)$. Hence $h \in Q^f(R)(g)$ for some $g : c \to a$. So g = hf and $h \in R(c)$. Let $h \in R(c)$. Hence $h \in Q^f(R)(hf)$ and since Dom(hf) = c we get $h \in L^fQ^f(R)(c)$. Therefore L^fQ^f and R are the same sieve.

Let $h: S \to R \in Sieves(b)$. Let $p \in S(c)$. Then by construction $Q^fL^f(h)_c(p) = L^f(h)_{pf}(p) = h_c(p)$.

So
$$L^fQ^f = Id$$
 and $Q^fL^f = Id$.

Definition 21 (Relative topology). Let (C, \mathcal{T}) be a site. Let $a \in C$.

Set $\mathfrak{T}_{\mathfrak{a}}(f) = \{R^f : R \in \mathfrak{T}(b)\}$. Define the induced topology $\mathfrak{T}_{\mathfrak{a}}$ on $C_{\mathfrak{a}}$ by, for each $f \in C_{\mathfrak{a}}$

$$\mathfrak{T}_{\mathfrak{a}}(f) = Q^f(\mathfrak{T}(\text{Dom}(f))).$$

Lemma 22. \mathcal{T}_{α} defines a Grothendieck topology

Proof. Axiom 1: Q^f is an equivalence of posets. So the terminal object is send to the terminal object. Hence $max(f) \in \mathcal{T}_{\alpha}(f)$.

Axiom 2 & 3 are consequences of: Q^f is an equivalence and Q^f commutes with sieve pullback.

Lemma 23. Let C be a category. Let $a,b \in C$. Let $(x_i)_T$ be a matching family for some presheaf $\mathfrak F$ on b indexed by sieve T. For any $f:b\to a$ the family $(x_i)_{T^f}$ is matching again.

Proof. Let $u: C_a \to C$ be the localization functor. Only when a domain has an 'a' as subscript, is it taken in C_a .

We have $x_i \in \Gamma(\text{Dom}(i); \mathfrak{F})$. Hence also $x_i \in \Gamma(fi; \mathfrak{Fu}) = \Gamma(\text{Dom}(i)_\alpha; \mathfrak{Fu})$, where now i is considered as a morphism in C_α . Note that

$$(\mathfrak{Fu})(\mathfrak{p})(x_{\mathfrak{i}}) = \mathfrak{F}(\mathfrak{p})(x_{\mathfrak{i}}) = x_{\mathfrak{iop}}$$

for any $p: c \to Dom(i)$, since $(x_i)_T$ is a matching family in C.

Lemma 24. Let Y = (C, T). Let $a, b \in C$. Let $f : b \to a$. Sheafifying and restricting commute. We will exhibit an natural isomorphism

$$s: sh_b \circ *|_b \to *|_b \circ sh_a.$$

Proof. We will construct the natural transformation

$$s: sh_b \circ *|_b \to *|_b \circ sh_a$$

and prove it is an isomorphism.

Considering the matching families as morphisms, s is given by

$$(\varphi, R) \mapsto (\varphi', R').$$

Let $g: c \to b \in Y_b$.

Well-definedness:

Suppose $x=(\phi,V)$ and $y=(\phi,W)$ are equivalent sections, or matching families, over g. Let $L^g(R)$ be the covering sieve on which they are the same. Then $\phi'=\phi'$ on $Q^gL^g(R)=R$. So $s_g(x)=s_g(y)$ Hence this map is well-defined.

Injectivity: Let $s_g(\phi, V) = s_g(\phi, W)$. Then there is some covering sieve $R \subset V'^f \cap W'^f$ on c on which they agree. Hence ϕ and ϕ coincide on R'_q by the equivalence.

Surjectivity: Let $y = (\phi, V)$ be an element of $\Gamma(g; \mathfrak{K})$. Then $s_g(\phi'^g, V'^g) = y$. Hence s_g is surjective.

Naturality: Let $h:d\to b$ and $t:d\to c$, such that gt=h. We will show that $s_h\mathfrak{H}(t)=\mathfrak{K}(t)s_q$. See below diagram.

$$\begin{array}{ccc} \Gamma(h;\mathfrak{H}) & \xrightarrow{\quad s_h \quad } \Gamma(h;\mathfrak{K}) \\ \\ \mathfrak{H}(t) & & & \mathfrak{K}(t) \\ \\ \Gamma(g;\mathfrak{H}) & \xrightarrow{\quad s_g \quad } \Gamma(g;\mathfrak{K}) \end{array}$$

Let $x=(\phi,V)\in\Gamma(g;\mathfrak{H}).$ Then $\mathfrak{K}(t)(s_g(x))=(\phi'h(\mathfrak{u}(f)),t^*(V'))$ and $s_h(\mathfrak{H}(t)(x))=((\phi h(f))',(t^*V)')=(\phi'h(\mathfrak{u}(f)),(t^*V)').$ Hence s is natural.

2.3 Modules

Definition 25 (Presheaf modules). Let $Y = (C, \mathcal{T}, \mathcal{D})$ be a ringed site. Let $R = \Gamma(1; \mathcal{D})$.

A presheaf module on Y is a presheaf of sets $\mathfrak F$ on C together with a map of presheaves

$$\mathfrak{O} imes \mathfrak{F} o \mathfrak{F}$$

such that for every object $\alpha \in C$ the map $\Gamma(\alpha; \mathfrak{D}) \times \Gamma(\alpha; \mathfrak{F}) \to \Gamma(\alpha; \mathfrak{F})$ defines a $\Gamma(\alpha; \mathfrak{D})$ -module structure on $\Gamma(\alpha; \mathfrak{F})$.

A morphism

$$\mathfrak{F} o \mathfrak{G}$$

is a morphism of presheaf modules if

commutes. The category of presheaf modules on Y will be denoted PMod(Y).

Definition 26. Let M, N be an R-module.

Define

$$\lambda: R\text{-}\mathsf{Mod} \to \mathsf{PMod}(Y)$$

by for all $\alpha \in C$,

$$\lambda(M)(a) = M \otimes_R \Gamma(a; \mathfrak{O}),$$

for all $f:b\to\alpha\in\mathsf{C}$,

$$\lambda(M)(f) : Id \otimes \mathfrak{O}(f),$$

for all $g: M \to N \in R\text{-Mod}$,

$$\lambda(g) = (\alpha : g \otimes Id).$$

Lemma 27. Let $Y = (X, \mathcal{T}, \mathfrak{O})$ be a ringed site. The functor λ is left adjoint to

$$\Gamma(1;-): \mathit{PMod}(Y) \to R\text{-Mod}$$

.

Proof. Let α be an object of C. Let M,N be R-modules. Let $\mathfrak{F},\mathfrak{G}\in PMod(Y)$ be presheaf modules.

Let $\phi:\lambda(M)\to \mathfrak{G}$ be a morphism of presheaf modules. Let $\varphi:M\to \Gamma(1;\mathfrak{G})$ be a morphism of presheaf modules.

Define

$$\alpha = \mathsf{H}_{\mathsf{M},\mathfrak{G}} : \mathsf{Hom}(\lambda(\mathsf{M}),\mathfrak{G}) \to \mathsf{Hom}(\mathsf{M},\Gamma(1;\mathfrak{G}))$$

by

$$\alpha(\varphi) = \varphi_1$$

where φ_1 is the component of φ on the global sections.

Define

$$\beta = L_{M,\mathfrak{G}} : \text{Hom}(M, \Gamma(1;\mathfrak{G})) \to \text{Hom}(\lambda(M), \mathfrak{G})$$

by

$$\beta(\phi)_{\alpha} = \phi \otimes_{R} \Gamma(\alpha; \mathfrak{O}).$$

We will show that β and α are mutually inverse.

Let $d=\beta(\alpha(\phi))$. Let $m\otimes g\in M\otimes_R\Gamma(\alpha;\mathfrak{O})$. Let $p:\lambda(M)(1)\to\lambda(M)(\alpha)$ be the projection map. Let $q:\mathfrak{G}(1)\to\mathfrak{G}(\alpha)$ be the projection map. Then $d_\alpha(m\otimes g)=\phi_1(m)\otimes g$ and

$$\begin{split} \phi_{\alpha}(m\otimes g) &= g\phi_{\alpha}(m\otimes 1) \text{ by linearity} \\ &= g\phi_{\alpha}(p(m)) \\ &= gq(\phi_1(m)) \text{ by naturality of } \phi \\ &= g(\phi_1(m)\otimes 1) \\ &= \phi_1(m)\otimes g. \end{split}$$

Hence $d = \phi$. In words, the natural transformations from presheaves of the from $\lambda(M)$ are uniquely determined by their global sections component.

Let $d = \alpha(\beta(\phi))$. Let $m \in M$. Then $d(m) = (\phi \otimes_R R)(m) = \phi(m)$. Hence $d = \phi$, which makes H and L mutual inverses.

Naturality in M and &

Let $g:N\to M$ and $h:\mathfrak{F}\to\mathfrak{G}.$ Let $\rho\in Hom(\lambda(N),\mathfrak{F}).$ Let $k=H_{M,\mathfrak{G}}(h\circ\rho\circ\lambda(f)).$ Let $l=h_1\circ H_{N,\mathfrak{F}}(\rho)\circ f.$

Unfolding the definition for H shows that $k = h_1 \rho_1 f$ and $l = h_1 \rho_1 f$ as well. This proves naturality in M and \mathfrak{G} and the adjunction between λ and $\Gamma(1;-)$.

Definition 28. Define

$$\Lambda: R\text{-}\mathsf{Mod} \to \mathsf{Mod}(Y)$$

by $sh \circ \lambda$.

It follows from lemma .. that we have the adjunction $\Lambda \dashv \Gamma(1; -)$.

3 Caffine objects

3.1 introduction

Definition 29 (Caffine object). Let $Y = (C, \mathcal{T}, \mathfrak{D})$ be a ringed site. Let $a \in C$ be an object. We call a caffine if the unit η and co-unit ϵ of the adjunction $\Gamma(1; -) \dashv \Lambda(-)$ on Y_a are natural isomorphisms.

Example 30 (Examples of caffine objects). The main example to keep in mind is Spec $R \in Sch$.

Example 31. Let $(*, \mathfrak{R})$ be a ringed space. This space is always caffine, because all presheaves are sheaves. If R is non-local, then this space is not a scheme. This is an example of a non-scheme caffine ringed space.

3.2 Restrictive maps between caffine objects

Lemma 32. Let $(C, \mathcal{T}, \mathfrak{O})$ be a ringed site. Let α be caffine. Let M be a $\Gamma(\alpha; \mathfrak{O})$ -module. The component $\omega^2_{\lambda(M),\alpha}$ at α of the sheafification morphism $\omega^2_{\Lambda(M)}:\lambda(M)\to\Lambda(M)$ is equal to the unit of $\Lambda\dashv\Gamma(1;-)$ in C_α .

Proof. Consider the following maps, which you get by repeatedly calling on an adjunction.

$$\begin{split} Id:\Lambda(M) &\to \Lambda(M) \\ \omega_{\Lambda(M)}^2:\lambda(M) &\to \Lambda(M) \text{ use sheafification adjunction, see lemma }.. \\ \omega_{\lambda(M),\alpha}^2M &\to \Gamma(\alpha;\Lambda(\mathfrak{M})) \text{ take sections at }\alpha \end{split}$$

3 Caffine objects

We took the adjunct of Id with respect to the sheafification adjunction as the first step. Then we took the adjunct of the result wrt the λ adjunction. Hence we get the adjunct of Id wrt the Λ adjunction. so the last map is actually the unit of the Λ adjunction. This map is an isomorphism because we assume α to be caffine.

Theorem 33 (Morphism between caffines is restrictive). Let Y = (C, T, D). Let $f : b \to a \in C$ be a morphism between caffine objects, then f is restrictive.

Proof. Let \mathfrak{F} be a quasi-coherent module on $Y_{\mathfrak{a}}$. Let $M = \Gamma(\mathfrak{a}; \mathfrak{F})$. Since \mathfrak{a} is caffine, we have $\mathfrak{F} = \Lambda(M)$.

We have to show that the adjunct, along the extension of scalars adjunction, of $\mathfrak{F}(f)$

$$\Gamma(\mathfrak{a};\mathfrak{F})\otimes_{\Gamma(\mathfrak{a};\mathfrak{O})}\Gamma(\mathfrak{b};\mathfrak{O})\to\Gamma(\mathfrak{b};\mathfrak{F})$$

is an isomorphism.

Consider

By a previous lemma, the left square commutes. By definition the two 'triangles' commute too and the outer square commute, hence the right square also commutes. Therefore $M \otimes \Gamma(b; \mathfrak{O}) \cong \Gamma(b; \Lambda(\mathfrak{M})) \cong \Gamma(b; \mathfrak{F})$.

The requirement is not to find any isomorphism but a specific one. So I think this is not enough and we need to do some bookkeeping and see if the witnessing isomorphism is our map.

3 Caffine objects

Let i be the morphism of presheaves at $\lambda(M)$ of the natural transformation ω^2 coming with sh_α as defined in lemma ?. Let j be the morphism at $\lambda(M\otimes\Gamma(b;\mathfrak{O}))$ of the natural transformation ω^2 coming with sh_α as defined in lemma ? .

Consider

We have seen that the component j_b at b, the global component, is an isomorphism in lemma ?. since b is caffine. The map $s_{\lambda(M)}$ is an isomorphism as constructed in lemma ?.

We will prove commutativity of the triangle. Let $g:c\to b\in Y_b$. Let $\mathfrak{M}=\lambda(M\otimes\Gamma(c;\mathfrak{D}))$. Let $x=m\otimes r\in\mathfrak{M}$.

- TODO

Evaluating everything on the terminal object, in this case on b, shows that two out of three maps are isomorphisms, hence i_b is an isomorphism.