Short Ques Logical Aues

CSE-2103

Computer Architecture

Lecture – 1, 2

M

Text Books

- Computer Architecture and Organization Hayes J.P., McGraw-Hill.
- Computer organization and design: The hardware/software interface

Patterson D.A., Hennessy J.L., Morgan Kaufmann.

Reference Book

Computer Architecture: A Quantitative Approach Patterson D.A., Hennessy J.L., Morgan Kaufmann.

Fixed-Point Arithmetic

- Addition
- Subtraction
- Multiplication
- Division

Half Adder

$X_0 Y_0$	S ₀ C ₀
0 0	0 0
0 1	1 0
1 0	1 0
1 1	1 1

$$S_0 = X_0 \oplus Y_0$$

$$C_0 = X_0 Y_0$$

Full Adder

Inputs			Outputs	
x_0	y_0	c_{-1}	c_0	s_0
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S_0 = X_0 \oplus Y_0 \oplus C_{-1}$$

$$C_0 = X_0 Y_0 + X_0 C_{-1} + Y_0 C_{-1}$$

Full Adder

Serial Binary Adder

- Least expensive circuit in terms of hardware cost.
- It adds the numbers bit by bit and so requires n clock cycle to compute the sum of two n-bit numbers.
- Circuit size independent of n.

Ripple Carry Adder

- A 1 appearing on the carry in line of a 1-bit adder cause it to generate a 1 on its carry out line. So, the carry signal propagate through the adder from right to left.
- The maximum signal propagation delay is nd, where d is the delay of a full-adder stage.
- The amount of hardware increase linearly with n.

2's Complement Adder-Subtracter

- When s = 0, then $X \oplus s = X$
- When s=1, then $X \oplus s = \overline{X}$

2's Complement Adder-Subtracter

Example: Adder/Subtractor

×

Overflow

- When the result of an arithmetic operation exceeds the standard word size n, overflow occurs.
- Example: let n=8, X=11101011=235₁₀ and Y=00101010=42₁₀ Z = X+Y = 11101011 + 0101010 = 00010101 = 21₁₀ with $C_{n-1} = C_7 = 1$. $C_7Z = 100010101 = 277_{10} = 256_{10} + 21_{10}$
- The result of an addition simply wraps around when the largest number 2ⁿ-1 is exceeds.
- For n, the number range for unsigned number is 0 to 2ⁿ-1

٧

Overflow

- We can never have overflow on adding a negative and positive number.
- Example: let n=8 X=11101011=-21₁₀ and Y=00101010=+42₁₀

$$Z = X+Y = 00010101 = 21_{10}$$
 and $C_7 = 1$.

So,
$$C_{n-1} = 1$$
 does not indicate overflow.

- Overflow in 2's complement addition can result from adding
 - 1) two positive numbers or
 - 2) two negative numbers.

Ŋ

Overflow

Case 1: Two numbers are positive.

Let
$$n = 4$$
, $7 + 3 = 0111 + 0011 = 1010$ so, $c_{n-2} = 1$

C_{n-2} =1 indicates that the magnitude of the sum exceeds the n-1 bits allocated to it.

Case 2: Two numbers are negative.

Let n=4,
$$-7 = 1001$$
, $-3 = 1101$
so, $1001+1101 = 10110$ so, $c_{n-2} = 0$
 $C_{n-2} = 0$ indicates the overflow.

Overflow

$$Z_{n-1}Z_{n-2}....Z_0 := X_{n-1}X_{n-2}....X_0 + Y_{n-1}Y_{n-2}....Y_0$$

$$V = \overline{X_{n-1}}\overline{Y_{n-1}}C_{n-2} + X_{n-1}Y_{n-1}\overline{C_{n-2}}$$

$$V = C_{n-1} \oplus C_{n-2}$$

™ Overflow Rules Table					
Number Type	Overflow Detection	When It Happens			
Unsigned	$C_n = 1$	$Sum > 2^n - 1$			
Signed (2's complement)	$C_n \oplus C_{n-1} = 1$	Positive + Positive = Negative, Negative + Negative = Positive			

X _{n-1}	Y _{n-1}	C _{n-2}	Z _{n-1}	V
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	0
1	0	0	1	0
1	0	1	0	0
1	1	0	1	1
1	1	1	1	0

7

Carry-Lookahead Adder

- It reduce the time required to form carry signals.
- It computes the input carry needed by stage I directly from carrylike signals obtained from all the preceding stages i-1, i-2,, 0, rather than waiting for normal carries to ripple slowly from stage to stage.
- Adders that use this principle are called carry-lookahead adders.

Carry-Lookahead Adder

- Two signals: generate signal, g_i = x_iy_i propagate signal, p_i = x_i + y_i
- $C_i = X_i Y_i + X_i C_{i-1} + Y_i C_{i-1}$
- $C_i = g_i + p_i C_{i-1}$
- $c_{i-1} = g_{i-1} + p_{i-1}c_{i-2}$
- $c_i = g_i + p_i g_{i-1} + p_i p_{i-1} c_{i-2}$

4-bit Carry-Lookahead Adder

$$c_i = g_i + p_i g_{i-1} + p_i p_{i-1} c_{i-2}$$

$$c_0 = g_0 + p_0 c_{in}$$

$$c_1 = g_1 + p_1 g_0 + p_1 p_0 c_{in}$$

$$c_2 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_{in}$$

$$c_3 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_{in}$$

 $z_i = x_i \oplus y_i \oplus c_{i-1}$ can be written as $z_i = p_i \oplus g_i \oplus c_{i-1}$

4-bit Carry-Lookahead Adder

M

4-bit Carry-Lookahead Adder

- Maximum delay is 4d, where d is the average gate delay. It is independent of number of input n.
- The number of gates grows in proportion to n² as n increases.
- The complexity of the carry generation logic in the carry lookahead adder, including its gate count, its maximum fan-in, and its maximum fan-out, increase steadily with n.
- It limits n to 4.

М

Adder Expansion

If we replace n 1-bit adder stages in the n-bit ripple carry adder with n k-bit adders, we obtain an nk-bit adder.

16-bit adder composed of 4-bit adders linked by ripple-carry propagation

Adder Expansion

If we replace n 1-bit adder stages in the n-bit carry look-ahead adder with n k-bit adders, we obtain an nk-bit adder.

16-bit adder composed of 4-bit adders linked by carry look-ahead

$$g = x_i y_i + x_{i-1} y_{i-1} (x_i + y_i) + x_{i-2} y_{i-2} (x_i + y_i) (x_{i-1} + y_{i-1})$$

$$+ x_{i-3} y_{i-3} (x_i + y_i) (x_{i-1} + y_{i-1}) (x_{i-2} + y_{i-2})$$

$$p = (x_i + y_i) (x_{i-1} + y_{i-1}) (x_{i-2} + y_{i-2}) (x_{i-3} + y_{i-3})$$

Complete 2's Complement Adder-Subtracter

Complete 2's Complement Adder-Subtracter

Carry-Save Adder

м

Carry-Save Adder

 One of the major speed enhancement techniques used in modern digital circuits is the ability to add numbers with minimal carry propagation.

■ The basic idea is that three numbers can be reduced to 2, in a 3:2 compressor, by doing the addition while keeping the carries and the

sum separate.

10111001 00101010 00111001 Sum: 10101010

Carry: <u>00111001</u> Result: 100011100

 The sum and carry can then be recombined in a normal addition to form the correct result.