Aula 7 - Projeções no Tempo e no Espaço

Luíz Fernando Esser

Fundamentos de Modelagem de Distribuição de Espécies no R

Na última aula...

- ✓ Problemas com os modelos
- ✓ Subsampling
- ✓ Validação Cruzada
- ✓ Bootstraping
- ✓ Matriz de Confusão
- ✓ Binarização
- ✓ Métrica sem binarização

Garbage in, garbage out.

TSS (True Skill Statistics) = Sensitivity + Specificity -1

Informação Ambiental

O que vamos fazer hoje?

Teórica (13:30 ~ 15:10):

- Entendendo as projeções
- Projeções no Espaço
- Projeções no Tempo
- **GCM**
- Mudanças Climáticas
- **L** Ensemble

Framework - SDM

Resumindo...

Dados Ambientais Dados de Espécie

Dados Coletados (Esperados)

Dados Modelados (Observados)

AUC médio = 0.873

Projetar modelos com:
AUC > média
AUC ao redor da média
AUC > 0.9

Entendendo a Projeção (ou Predição)

Elemento Móvel/Mutável

1	2	3
4	5	6

Elemento Móvel/Mutável

Cell	Temp	Prec	Prob
1	26	2300	p1
2	25	200	p2
3	21	1000	р3
4	10	1200	p4
5	17	1700	p5
6	28	350	p6

Problema:

Ausência de climas análogos!

Passado:

http://www.paleoclim.org

Passado e Futuro:

http://chelsa-climate.org

https://www.worldclim.org

General Circulation Models

CMIP6 - Coupled Model Intercomparison Project Phase 6

Treino em série histórica

Teste em dados do passado

Projeções para o Futuro (SSPs)

Fonte: http://www.climate.be/textbook/chapter3_node8.html

O que é clima?

Média do tempo (meteorológico) em 20 ou 30 anos.

Shared Socioeconomic Pathways

Fonte: CarbonBrief

Problema:

Muitos cenários!

Como tirar informações relevantes de uma montanha de modelos?

5 algoritmos * 10 cv * 10 runs * 10 pa = 5 000 modelos

4 SSPs * 4 tempos * 10 GCMs + 1 cenário = 160 cenários

5 000 modelos * 160 cenários

= 800 000 mapas

5 000 modelos = 5 000 valores de AUC

Projetar somente os melhores 10%

En	
12/09	emple.

Cell	M1	M2
1	0.1	0.3
2	0.2	0.4
3	0.3	0.5
4	0.4	0.6
5	0.5	0.7
6	0.6	0.8

Média / Mediana / Média ponderada pelo AUC...

Ensemble0.2 0.3 0.40.5 0.6 0.7

Incerteza de cada célula:

Desvio padrão

Entropia

Votação direta (Committee Average)

Ensemble

Alinhavando...

- ✓ Entendendo as projeções
- ✓ Projeções no Espaço
- ✓ Projeções no Tempo
- ✓ GCM
- ✓ Mudanças Climáticas
- ✓ Ensemble