

Tuning FreeBSD for routing and firewalling

Olivier Cochard-Labbé

whoami(1)

olivier.cochard@

Disclaimer

http://www.brendangregg.com/Slides/MeetBSD2014_Performance.pdf

Benchmarking a router

- Router job: Forward packets between its interfaces at maximum rate
- Reference value: Packet Forwarding Rate in packets-per-second (pps) unit
 - NOT a bandwidth (in bit-per-second unit)
- RFC 2544: Benchmarking Methodology for Network Interconnect Devices

Some Line-rate references

- Gigabit line-rate: 1.48M frames-per-second
- 10 Gigabit line rate: 14.8M frames-per-second
- Small packets: 1 frame = 1 packet
- Gigabit Ethernet is a full duplex media:
 - A line-rate Gigabit router MUST be able to receive AND transmit in the same time, then to forward at 3Mpps

I want bandwidth values!

- Packets-per-second * Packets-size
- Estimated using Simple Internet Mix (IMIX) packet size trimodal reference distribution
- IPv4 layer:
 - PPS*(7*40 + 4*576 + 1500)/12*8
- Ethernet layer (switch counters):
 - PPS*(7*(40+14)+4*(576+14)+(1500+14))/ 12*8
- Since about 2004, Internet packets size distribution is bimodal (44% less than 100B and 37% more than 1400B in 2006)

6 / 52

Minimum router's performance

Link speed	Line-rate router	Full- duplex line-rate router	Minimum rate, using IMIX distribution for reaching link speed	Full-duplex minimum IMIX link speed router
1Gb/s	1.48 Mpps	3 Mpps	350 Kpps	700 Kpps
10Gb/s	14.8 Mpps	30 Mpps	3.5 Mpps	7 Mpps

Simple benchmark lab

- As a telco we measure the worse case (Denial-of-Service):
 - Smallest packet size
 - Maximum link rate

Hardware details

Servers	CPU	cores	GHz	Network card (driver name)
HP ProLiant DL360p Gen8	Intel E5-2650 v2	8x2	2.6	10G Chelsio T540-CR (cxl) 10G Emulex OneConnect be3 (oce)
SuperMicro 5018A-FTN4	Intel Atom C2758	8	2.4	10G Chelsio T540-CR (cxl)
SuperMicro 5018A-FTN4	Intel Atom C2758	8	2.4	10G Intel 82599 (ix)
Netgate RCC-VE 4860	Intel Atom C2558	4	2.4	Gigabit Intel i350 (igb)
PC Engines APU2	AMD GX-412 TC	4	1	Gigabit Intel i210AT (igb)

- No Mellanox NIC
- No 16 cores-in-one-socket CPUs
- No multi-socket

Multi-queue NIC & RSS

Multi-queue NIC & RSS

1) Needs multiple flows

- Local tunnel (IPSec, GRE,...) presents only one flow: Performance problem with 1G home fiber ISP using PPPoE as example
- 2) Needs multi-CPUs
- Benefit of physical cores vs logical cores (Hyper Threading) vs multiple socket?

Monitoring queues usage

- Python script from melifaro@ parsing sysctl NIC stats (RX queue mainly)
- Support: cxl, ix, igb, bxe and oce

https://github.com/ocochard/BSDRP/blob/master/BSDRP/Files/usr/local/bin/nic-queue-usage

```
[root@hp]~# nic-queue-usage cx10
                                                                                                  854K/s] [QT 6811K/s 16440K/s -> 13K/s]
    856K/s] [Q1 862K/s] [Q2 846K/s] [Q3 843K/s] [Q4
                                                          843K/s] [Q5 843K/s] [Q6 861K/s] [Q7
                  871K/s] [Q2
                               853K/s] [Q3
                                            857K/s] [Q4
                                                          856K/s] [Q5
                                                                       855K/s] [Q6
                                                                                    871K/s] [Q7
                                                                                                  859K/s] [QT
                                                                                                              6889K/s 16670K/s -> 13K/s]
                 851K/s] [Q2
                               834K/s] [Q3
                                            835K/s] [Q4
                                                          836K/s] [Q5
                                                                       836K/s] [Q6
                                                                                    858K/s] [Q7
                                                                                                          TQ]
                                                                                                               6750K/s \ 16238K/s \rightarrow 13K/s
    844K/s] [Q1 846K/s] [Q2 826K/s] [Q3 824K/s] [Q4
                                                          825K/sl [05
                                                                       823K/s] [Q6
                                                                                    843K/sl [07
                                                                                                               6671K/s 16168K/s -> 12K/s1
                  847K/s] [Q2
                               828K/s] [Q3
                                            829K/s] [Q4
                                                          830K/s] [Q5
                                                                       832K/s] [Q6
                                                                                    849K/sl [07
                                                                                                  842K/s] [QT
                                                                                                               6692K/s 16105K/s \rightarrow 13K/s
                  874K/s] [Q2
                               855K/s] [Q3
                                            855K/s] [Q4
                                                          854K/s] [Q5
                                                                       853K/s] [Q6
                                                                                                  855K/s] [QT
                                                                                                              6885K/s 16609K/s \rightarrow 13K/s
                                                                                    869K/s] [Q7
                               814K/s] [Q3
                                            811K/s] [Q4
                                                          814K/s] [Q5 813K/s] [Q6
                                                                                    832K/s] [Q7
```

Summary of all queues

Global NIC RX counter

Global NIC TX counter

HyperThreading & cxgbe(4)

```
CPU: Intel Xeon CPU E5-2650 v2 @ 2.60GHz (2593.81-MHz K8-class CPU)
(...)
FreeBSD/SMP: Multiprocessor System Detected: 16 CPUs
FreeBSD/SMP: 1 package(s) \times 8 core(s) \times 2 hardware threads
(...)
cxl0: <port 0> numa-domain 0 on t5nex0
cxl0: Fthernet address: 00:07:43:2e:e4:70
cxl0: 16 txq, 8 rxq (NIC); 8 txq, 2 rxq (TOE)
cxl1: <port 1> numa-domain 0 on t5nex0
cxl1: Fthernet address: 00:07:43:2e:e4:78
cxl1: 16 txq, 8 rxq (NIC); 8 txq, 2 rxq (TOE)
```

HyperThreading & cxgbe(4)

- Config 1: default (8 rx queues)
- Config 2: 16 rx queues to use ALL 16 CPUs
 - hw.cxgbe.nrxq10g=16
- Config 3: disabling HT (8 rx queues)
 - machdep.hyperthreading_allowed=0
- FreeBSD 11.1-RELEASE amd64

Disabling Hyper-Threading

ministat(1) is my friend

```
x Xeon E5-2650-cxgbe, HT-enabled & 8rxg(default): inet4 packets-per-second
+ Xeon E5-2650-cxgbe, HT-enabled & 16rxq: inet4 packets-per-second
* Xeon E5-2650-cxgbe, HT-disabled & 8rxg: inet4 packets-per-second
       XX X +
                                                                  ***
                                   Median
              Min
                           Max
                                               Avg
                                                               Stddev
                                    4648451
                                               4648293.8
                                                            94545.404
          4500078
                       4735822
Χ
          4925106
                                    5104512
                                               5088362.1
                                                            102920.87
                       5198632
Difference at 95.0% confidence
       440068 +/- 144126
       9.46731% +/- 3.23827%
       (Student's t, pooled s = 98821.9)
                     5801231.5
           5765684
                                    5783115
                                               5785004.7 13724.265
Difference at 95.0% confidence
       1.13671e+06 +/- 98524.2
                                           Tips 1: Disable Hyper-threading
       24.4544% +/- 2.62824%
       (Student's t, pooled s = 67554.4)
```

Queues/cores impact

Number of queues impact on forwarding performance (HP ProLiant DL360p Gen8 with 8 cores Intel Xeon E5-2650 2.60GHz, Chelsio T540-CR)

Analysing bottleneck

kldload hwpmc
pmcstat -S CPU_CLK_UNHALTED_CORE -l 20 -0 data.out
stackcollapse-pmc.pl data.out > data.stack
flamegraph.pl data.stack > data.svg

Random harvest sources

```
~# sysctl kern.random.harvest
kern.random.harvest.mask_symbolic: [UMA],
[FS_ATIME],SWI,INTERRUPT,NET_NG,NET_ETHER,NET_TUN,MOUSE,KEYBOARD,
ATTACH,CACHED
kern.random.harvest.mask_bin: 00111111111
kern.random.harvest.mask: 511
```

- Config 1: default
- Config 2: Do not use INTERRUPT neither NET_ETHER as entropy sources

harvest_mask="351"

Security impact regarding the random generator

kern.random.harvest.mask

setup	511 (default) median	351 median	ministat
E5_2650-cxl Xeon & Chelsio NIC	5.76 Mpps	5.79 Mpps	No diff. proven at 95.0% confidence
E5_2650-oce Xeon & Emulex NIC	1.33 Mpps	1.33 Mpps	No diff. proven at 95.0% confidence
C2758-cxl Atom & Chelsio NIC	2.83 Mpps	3.17 Mpps	12.52% +/- 1.82%
C2758-ix Atom & Intel NIC	2.3 Mpps	2.43 Mpps	6.14% +/- 1.84%
C2558-igb Atom & Intel NIC	951 Kpps	1 Mpps	4.75% +/- 1.08%
GX412-igb AMD & Intel NIC	726 Kpps	749 Kpps	3.14% +/- 0.70%

10Gb/s full duplex IMIX	7 Mpps
1Gb/s full duplex IMIX	700 Kpps

Tips 2: harvest_mask="351" (but ask to your security officer first)

arpresolve & ip_findroute

- Yandex contributions (melifaro@ & ae@)
- Published January 2016: projects/routing

https://wiki.freebsd.org/ProjectsRoutingProposal

Patches refreshed for FreeBSD 12-head:

https://people.freebsd.org/~ae/afdata.diff

https://people.freebsd.org/~ae/radix.diff

Patches backported to FreeBSD 11.1:

https://people.freebsd.org/~olivier/fbsd11.1.ae.afdata-radix.patch

Yandex's patches

setup	11.1	11.1-Yandex	ministat
E5_2650-cxl Xeon & Chelsio NIC	5.75 Mpps	10.9 Mpps	90.56% +/- 1.24
E5_2650-oce Xeon & Emulex NIC	1.33 Mpps	1.33 Mpps	No diff. proven at 95.0% confidence
C2758-cxl Atom & Chelsio NIC	3.15 Mpps	4.2 Mpps	34.4% +/- 2.9%
C2758-ix Atom & Intel NIC	2.43 Mpps	3.08 Mpps	26% +/- 1.18
C2558-igb Atom & Intel NIC	1 Mpps	1.2 Mpps	20.17% +/- 2.56%
GX412-igb AMD & Intel NIC	747 Kpps	729 Kpps	-2.37% +/- 0.58%

10Gb/s full duplex IMIX	7 Mpps
1Gb/s full duplex IMIX	700 Kpps

Avoid some NIC

- 10G Emulex OneConnect (be3)
 - No configurable number of rx/tx queues (4)
 - No configurable Ethernet Flow control
 - 1.33Mpps is not even a gigabit line-rate

Tips 4: Use good NIC (Chelsio, Intel, Mellanox)

Linear performance?

Packets per second (minimum size, 2000 flows)

Number of queues impact on forwarding performance (HP ProLiant DL360p Gen8 with 8 cores Intel Xeon E5-2650 2.60GHz, Chelsio T540-CR)

NIC hardware acceleration features

- Checksum offload: rxcsum, txcsum, ...
- VLAN offload: vlanmtu, vlanhwtag, vlanhwfilter, vlanhwcsum,...
- TSO:TCP Segmentation Offload
 - NIC split large segment into MTU-sized packets
 - MUST be disabled on a router (and incompatible with ipfw nat)
- LRO: Large Received Offload
 - Breaks the end-to-end principle on a router: MUST be disabled

Disabling LRO & TSO

Server	Enabled (default) median	Disabled median	ministat
E5_2650-cxl Xeon & Chelsio NIC	10.84 Mpps	10.92 Mpps	0.74% +/- 0.26%
C2758-cxl Atom & Chelsio NIC	4.20 Mpps	4.18 Mpps	No diff. proven at 95.0% confidence
C2758-ix Atom & Intel NIC	3.06 Mpps	3.06 Mpps	No diff. proven at 95.0% confidence
C2558-igb Atom & Intel NIC	1.2 Mpps	1.2 Mpps	No diff. proven at 95.0% confidence
GX412-igb AMD & intel NIC	729 Kpps	727 Kpps	No diff. proven at 95.0% confidence

Tips 5: Disable LRO & TSO on your router/firewall

hw.igb|ix.rx_process_limit

Server	100(igb), 256(ix), default median	-1 (disabled) median	ministat
C2758-ix Atom & Intel NIC	3.12 Mpps	3.85 Mpps	22.66% +/- 2.14%
C2558-igb Atom & Intel NIC	1.10 Mpps	1.13 Mpps	1.65% +/- 0.9%
GX412-igb AMD & Intel NIC	730 Kpps	735 Kpps	No diff. proven at 95.0% conf.

Tips 6: Disable rx_process_limit on igb&ix

Queue/IRQ pins to CPU?

- # grep -R bus_bind_intr src/sys/dev/*
 - bxe: QLogic NetXtreme II Ethernet 10Gb PCIe
 - cxgbe: Chelsio T4-, T5-, and T6-based (into #ifdef RSS)
 - e1000 (igb, em, lem) : Intel Gigabit
 - ixgbe: Intel 10 Gigabit
 - ixl: Intel XL710 Ethernet 40Gb
 - qlnxe: Cavium 25/40/100 Gigabit Ethernet
 - sfxge: Solarflare 10Gb
 - vxge: Neterion X3100 10Gb

Can be useful on cxgbe

Queue/IRQ pins to CPU

Config 1: default

ifconfig_cxl0="inet 198.18.0.10/24"

Config 2: Queue/IRQ pining

```
chelsio affinity enable="YES"
~# service chelsio affinity start
Bind t5nex0:0a IRO 284 to CPU 0
Bind t5nex0:0a IRO 285 to CPU 1
Bind t5nex0:0a IRO 286 to CPU 2
Bind t5nex0:0a IRO 287 to CPU 3
Bind t5nex0:0a IRO 288 to CPU 4
Bind t5nex0:0a IRO 289 to CPU 5
Bind t5nex0:0a IRO 290 to CPU 6
Bind t5nex0:0a IRO 291 to CPU 7
(\ldots)
```

Queue/IRQ pins to CPU

```
x Xeon E5_2650-cxl, default: inet4 packets-per-second
+ Xeon E5 2650-cxl, IRQ pinned to CPU: inet4 packets-per-second
XX XX X
                                         Median
    N
                Min
                              Max
                                                           Ava
                                                                      Stddev
           10939210
                                        10952795
                                                      10951860
                                                                   12056.937
                         10969716
           11132364
                         11161395
                                        11151483
                                                      11146670
                                                                   12273,277
Difference at 95.0% confidence
                                         Small benefit and only if pps >10Mpps
        194810 +/- 17742.8
        1.77878% +/- 0.163429%
        (Student's t, pooled s = 12165.6)
x Atom C2750-cxl, default: inet4 packets-per-second
+ Atom C2750-cxl, IRQ pinned to CPU: inet4 packets-per-second
X
   X
                Min
                              Max
                                         Median
                                                           Avg
                                                                      Stddev
            4059502
                          4232479
                                         4149250
                                                       4139666
                                                                   760529798
          4112849.5
                          4212811
                                         4173030
                                                     4160909.7
                                                                   43836,876
No difference proven at 95.0% confidence
```

Tuning summary

- Yandex's patches: AFDATA and RADIX locks
- boot/loader.conf
 - machdep.hyperthreading_allowed="0"
 - hw.igb.rx_process_limit="-1"
 - hw.em.rx_process_limit="-1"
 - hw.ix.rx_process_limit="-1"
- etc/rc.conf
 - harvest_mask="351"
 - ifconfig_X="YYY -tso4 -tso6 -lro -vlanhwtso"

Before vs after tuning (IPv4)

setup	Default 11.1 (median)	Patched & tuned 11.1 (median)	ministat
E5_2650-cxl Xeon & Chelsio NIC	4.64 Mpps	11.15 Mpps	139.8% +/- 5.0%
E5_2650-oce Xeon & Emulex NIC	1.33 Mpps	1.33 Mpps	No diff. proven at 95.0% conf.
C2758-cxl Atom & Chelsio NIC	2.83 Mpps	4.19 Mpps	50.49% +/- 5.33%
C2758-ix Atom & Intel NIC	2.29 Mpps	3.85 Mpps	66.97% +/- 2.7%
C2558-igb Atom & Intel NIC	951 Kpps	1.13 Mpps	18.58% +/- 1.17%
GX412-igb AMD & Intel NIC	726 Kpps	735 Kpps	1.03% +/- 0.56%

10Gb/s full duplex with IMIX	7 Mpps
1Gb/s full duplex with IMIX	700 Kpps

inet4 vs inet6 performance

setup	inet4 (median)	inet6 (median)	ministat
E5_2650-cxl Xeon & Chelsio NIC	10.94 Mpps	9.18 Mpps	-16.12% +/- 0.19%
C2758-cxl Atom & Chelsio NIC	4.29 Mpps	3.43 Mpps	-19.08% +/- 1.61%
C2758-ix Atom & Intel NIC	3.81 Mpps	3.43 Mpps	-9.84% +/- 1.3%
C2558-igb Atom & Intel NIC	1.23 Mpps	1.08 Mpps	-11.79% +/- 0.5%
GX412-igb AMD & Intel NIC	734 Kpps	709 Kpps	-3.6% +/- 0.70%

Configuration impact

- VLAN tagging
- VIMAGE & VNET jail

VLAN tagging

Config 1: No VLAN

```
ifconfig_cxl0="inet 198.18.0.10/24"
ifconfig_cxl1="inet 198.19.0.10/24"
```

Config 2: VLAN tagging

```
vlans_cxl0="2"
ifconfig_cxl0="up"
ifconfig_cxl0_2="inet 198.18.0.10/24"
vlans_cxl1="4"
ifconfig_cxl1="up"
ifconfig_cxl1_4="inet 198.19.0.10/24"
```

VLAN tagging

```
x Xeon E5 2650-cxl, no VLAN tagging: inet4 packets-per-second
+ Xeon E5 2650-cxl, VLAN tagging: inet4 packets-per-second
                                                                         XX
                                                                        XXX
                                                                        | A |
I MA I
               Min
                                         Median
                                                                     Stddev
                              Max
                                                          Avg
           10917371
                         10970686
                                       10945136
                                                     10946743
                                                                  22298.313
X
                                                    9075563.7
            9056449
                         9104195
                                        9064032
                                                                  21531.387
Difference at 95.0% confidence
        -1.87118e+06 +/- 31966.4
        -17.0935% +/- 0.267353%
        (Student's t, pooled s = 21918.2)
```

-17% with tagging: Known problem Yet another patch from Yandex https://reviews.freebsd.org/D12040

Adding VIMAGE support

options	VIMAGE
---------	--------

E5_2650-cxl Xeon & Chelsio NIC	GENERIC (median) Mpps	VIMAGE (median) Mpps	ministat
inet 4 forwarding	10.9	10.2	-6.25% +/- 0.29%
inet 6 forwarding	9.18	9.39	2.24% +/- 0.33

Multi-tenant router


```
host /etc/rc.conf
ifconfig_cxl0="up -tso4 -tso6 -lro -vlanhwtso"
ifconfig_cxl1="up -tso4 -tso6 -lro -vlanhwtso"
jail_enable="YES"
jail_list="jrouter"
```

```
Jail jrouter /etc/rc.conf
gateway_enable=YES
ipv6_gateway_enable=YES
ifconfig_cxl0="inet 198.18.0.10/24"
ifconfig_cxl1="inet 198.19.0.10/24"
static_routes="generator receiver"
route_generator="-net 198.18.0.0/16 198.18.0.108"
route_receiver="-net 198.19.0.0/16 198.19.0.108"
```

VNET jail: impact on PPS

E5_2650-cxl Xeon & Chelsio NIC	No Jail (median) Mpps	VNET-Jail (median) Mpps	Ministat
inet 4 forwarding	10.8	11.0	No diff. proven at 95.0% confidence
inet 6 forwarding	10.0	10.0	No diff. proven at 95.0% confidence

VNET-jail rocks!

Firewalls

- How these impact PPS:
 - Enabling ipfw / pf / ipf with inet4 & inet6
 - Number of rules
 - Table size
 - Number of UDP flows

Impact of firewalls on PPS

Impact of enabling ipfw/pf/ipf on FreeBSD 11.1 forwarding performance HP ProLiant DL360p Gen8 with 8 cores Intel Xeon E5-2650 2.60GHz and Chelsio T540-CR

Note: Minimum firewall rules, harvest.mask=351, AFDATA and RADIX locks patched

40 / 52

Warning: do not conclude a firewall is "better" than another with this bench

Impact of stateless firewall configurations on FreeBSD 11.1 forwarding performance (harvest.mask=351, hw.igb.rx_process_limit=-1, AFDATA and RADIX locks patched) Netgate RCC-VE 4860, 4 cores Intel Atom C2558E and Intel i350

Packets per second (minimum

Theorical equity using simple IMIX distribution (Ethernet throughput) 41 / 52

Keep MINIMUM numbers of rules with ipfw/ipf

Theorical equity using simple IMIX distribution (Ethernet throughput)

Stateless: Table size impact

Impact of stateless firewall configurations on FreeBSD 11.1 forwarding performance (harvest.mask=351, hw.igb.rx_process_limit=-1, AFDATA and RADIX locks patched)

Netgate RCC-VE 4860, 4 cores Intel Atom C2558E and Intel i350

2000 flows)

Packets per second (minimum size,

ipfw stateful: states impact

One UDP flow create 1 state (dynamic rule)

check-state

ipfw add allow ip from any to any keep-state

keys	Default value	Maximum value
<pre>dynamic rules net.inet.ip.fw.dyn_max</pre>	16 384	4 194 304
hash table size [max_dyn / 64 ?] (power of 2) net.inet.ip.fw.dyn_buckets	256	65 536 (max)

Theorical equity using simple IMIX distribution (Ethernet throughput)

ipfw stateful: states impact

ipfw state numbers impact on forwarding performance (Netgate RCC-VE 4860, 4 cores Intel Atom C2558E)

benchs

Packets per second (minimum size) minimum,median,maximum values of 5 b

Number of UDP flow (=ipfw dynamic rules) net.inet.ip.fw.dyn_buckets=65536 and net.inet.ip.fw.dyn_max=4000000

pf stateful: States impact

- One UDP flow consumes 2 pf states
- Linear relationship between maximum number of states and hash table size

keys	Default value	Maximum with 8GB RAM
<pre>states limit set limit { states X }</pre>	10 000	10 000 000
Hash table size = state x 3 (power of 2) net.pf.pf_states_hashsize	32 768	33 554 432
RAM consummed (hashsize x 80) vmstat -m grep pf_hash	2.5Mb	2.5Gb

simple IMIX distribution (Ethernet throughput) Theorical equity using

pf stateful: States impact

Impact of UDP flows numbers on pf performance (Netgate RCC-VE 4860, 4 cores Intel Atom C2558E)

benchs

Packets per second (minimum size)

minimum, median, maximum values of

Number of UDP flows (pf states are double) net.pf.states_hashsize=33554432 and set limit { states 10000000 }

Note: For a stateful firewall... use pf

Back in 2012

EuroBSDcon 2012 dev summit:

Problems

- No MPLS features in FreeBSD
- Waiting for netmap be usable for forwarding

Changes since

Still no MPLS

 User space forwarding solutions based on Intel's DPDK & Cisco's FD.io Vector Packet Processing lead the market... on Linux (12Mpps/core)

 And no "production ready" DPDK/Netmap forwarding solution on FreeBSD

Conclusion

 But kernel-space forwarding performance is still improved!

Cf projects/routing

https://wiki.freebsd.org/ProjectsRoutingProposal

 Cf Nanako Momiyama's talk "IP Forwarding Fastpath" (EuroBSDCon 2016 & BSDCan 2017)

https://2016.eurobsdcon.org/PresentationSlides/NanakoMomiyama_TowardsFastIPForwarding.pdf

Resources

 Benches scripts, configurations, RAW results, flamegraph

https://github.com/ocochard/netbenches

BSD Router Project (nanoBSD based on FreeBSD)

https://bsdrp.net

Questions?

Thanks!