Linear Reference Tracking MPC

Timothy Werner

Abstract—This paper briefly introduces the implemented Linear Reference Tracking MPC scheme.

I. THE TRACKING PROBLEM

We consider linear discrete time systems, sampled at rate δ of the form

$$\mathbf{x}_{k+1} = A\mathbf{x}_k + B\mathbf{u}_k \tag{1a}$$

$$\mathbf{y}_k = C\mathbf{x}_k,\tag{1b}$$

where $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^n$ are the states, $\mathbf{u} \in \mathcal{U} \subseteq \mathbb{R}^p$ are the inputs and $\mathbf{y} \in \mathcal{Y} \subseteq \mathbb{R}^q$ are the outputs of the system. The goal is to steer the output along a known reference trajectory $\mathbf{r} \in \mathcal{Y}$, i.e. to render the reference error

$$\mathbf{e}_k := \mathbf{y}_k - \mathbf{r}_k \triangleq C\mathbf{x}_k - \mathbf{r}_k \to 0,$$

as $k \to \infty$. Note that we consider the state-space, the input-space and the output-space to be constrained. We will also consider rate constraints because all physical systems are rate-constrained. This extension also appears natural for two more reasons which will be discussed briefly in the following. To this end, we define the rate as

$$\Delta \mathbf{u}_k := \mathbf{u}_k - \mathbf{u}_{k-1}. \tag{2}$$

II. THE LINEAR TRACKING MPC

It appears natural to consider the tracking error as defined above as the objective to be minimized. We can thus formulate the cost

$$\mathcal{J}_{j} := \sum_{k=0}^{N-1} \|\mathbf{e}_{j+k}\|_{Q}^{2} + \|\Delta \mathbf{u}_{j+k}\|_{R_{\Delta}}^{2}$$
 (3)

where N is the discrete MPC horizon over which the optimal input sequence is to be found and we denoted $\|\mathbf{e}\|_Q^2 := \mathbf{e}^\top Q \mathbf{e}$. Note that a rate-regularization was introduced to the cost, which ensures a smooth tracking, which is one of the two main reasons to consider input rates.

III. IMPLEMENTATION

A. The Cost Function

To enforce stability on the controller, we introduce a terminal constraint that drives the predicted trajectory onto the desired trajectory ${\bf r}$ near the end of the prediction horizon. We further introduce a direct penalty on the inputs ${\bf u}$ due to a state augmentation to be introduced later. We have thus

$$\mathcal{J}_{j} := \sum_{k=0}^{N-1} \|\mathbf{e}_{j+k}\|_{Q}^{2} + \|\Delta \mathbf{u}_{j+k}\|_{R_{\Delta}}^{2} + \|\mathbf{u}_{j+k}\|_{R}^{2} + \|\mathbf{e}_{j+N}\|_{P}^{2}$$

$$(4)$$

If we further investigate the terms, omitting the constant terms w.r.t to x and u, we find

$$\mathcal{J}_{j} := \sum_{k=0}^{N-1} \mathbf{x}_{j+k}^{\top} C^{\top} Q C \mathbf{x}_{j+k} \\
+ \mathbf{u}_{j+k}^{\top} R \mathbf{u}_{j+k} \\
+ \Delta \mathbf{u}_{j+k}^{\top} R_{\Delta} \Delta \mathbf{u}_{j+k} \\
- 2 \mathbf{r}_{j+k}^{\top} Q C \mathbf{x}_{j+k} \\
+ \mathbf{x}_{j+N}^{\top} C^{\top} P C \mathbf{x}_{j+N} \\
- 2 \mathbf{r}_{j+N}^{\top} P C \mathbf{x}_{j+N}$$
(5)

B. State Augmentation

We define the new state $\tilde{\mathbf{x}}_k := \begin{bmatrix} \mathbf{x}_k^\top & \mathbf{u}_{k-1}^\top \end{bmatrix}^\top$ and combining (1a) and (2), we find the new augmented system

$$\tilde{\mathbf{x}}_{k+1} = \begin{bmatrix} A & B \\ & I \end{bmatrix} \tilde{\mathbf{x}}_k + \begin{bmatrix} B \\ I \end{bmatrix} \Delta \mathbf{u}_k, \tag{6}$$

which we will refer to as

$$\tilde{\mathbf{x}}_{k+1} = \tilde{A}\tilde{\mathbf{x}}_k + \tilde{B}\Delta\mathbf{u}_k.$$

This state augmentation was mainly performed to ensure zero steady state error independent of the weights chosen for error penalty and input penalty. With a mere error and input penalty, the steady state error would be directly dependent on the weights chosen for either term. Imagine to this end a high weight on the inputs and a low weight on the reference error. The controller would not put a lot of effort in tracking the reference, since in would cost a lot of input. A high weight on tracking error and a low weight on the inputs on the other hand would lead to a bang-bang behavior which is in general not a desired control strategy. Choosing the reference error and the rates to be minimized on the other hand resolves in a well posed problem, where the weights on error and input rates shift the pareto-solution between aggressive and smooth tracking. The drawback of this method is that the dimension of the problem is raised from (N+1)n + Np to (N+1)(n+p) + Np. Rewriting the cost function in terms of (6), we find

$$\mathcal{J}_{j} := \sum_{k=0}^{N-1} \tilde{\mathbf{x}}_{j+k}^{\top} \tilde{Q} \tilde{\mathbf{x}}_{j+k} \\
+ \Delta \mathbf{u}_{j+k}^{\top} R_{\Delta} \Delta \mathbf{u}_{j+k} \\
- C_{Q}^{\top} \tilde{\mathbf{x}}_{j+k} \\
+ \tilde{\mathbf{x}}_{j+N}^{\top} \tilde{P} \tilde{\mathbf{x}}_{j+N} \\
- C_{P}^{\top} \tilde{\mathbf{x}}_{i+N},$$
(7)

with

$$\begin{split} \tilde{Q} &:= \begin{bmatrix} C^\top Q C & \\ & R \end{bmatrix}, \\ \tilde{P} &:= \begin{bmatrix} C^\top P C & \\ & R \end{bmatrix}, \\ C_Q^\top &:= \begin{bmatrix} 2\mathbf{r}_k^\top Q C & 0 \end{bmatrix}, \end{split}$$

and

$$C_P^\top := \begin{bmatrix} 2\mathbf{r}_k^\top PC & 0 \end{bmatrix}$$

C. The Optimization Problem

With this defined, we can formulate the QP to be solved at time instance t = j.

minimize
$$\mathcal{J}_i$$
 (8a)

subject to
$$\tilde{\mathbf{x}}_0^{\top} = \begin{bmatrix} \mathbf{x}_j & \left(\mathbf{u}_{0|j-1}^{\top}\right)^* \end{bmatrix}^{\top}$$
 (8b)

$$\tilde{\mathbf{x}}_{j+k+1} = \tilde{A}\tilde{\mathbf{x}}_{j+k} + \tilde{B}\Delta\mathbf{u}_{j+k}$$
 (8c)

$$\underline{\mathbf{x}} \le \mathbf{x}_{i+k} \le \overline{\mathbf{x}} \tag{8d}$$

$$\underline{\mathbf{u}} \le \mathbf{u}_{j+k} \le \overline{\mathbf{u}} \tag{8e}$$

$$\underline{\Delta \mathbf{u}} \le \Delta \mathbf{u}_{j+k} \le \overline{\Delta \mathbf{u}} \tag{8f}$$

The solution of this yields the optimal input sequence Ω_j^* and the corresponding predicted state trajectory Ξ_j^* at time instance j

$$\mathbf{\Omega}_j^* := \left\{ \mathbf{u}_{0|j}^* \quad \mathbf{u}_{1|j}^* \quad \cdots \quad \mathbf{u}_{N-1|j}^* \right\} \tag{9}$$

$$\mathbf{\Xi}_{j}^{*} := \left\{ \mathbf{x}_{0|j}^{*} \quad \mathbf{x}_{1|j}^{*} \quad \cdots \quad \mathbf{x}_{N|j}^{*} \right\}$$
 (10)

(11)

where $\{k|j\}$ indicates the value at MPC stage $k \in [0,N]$ at time instance t=j. The controller will then output $\mathbf{u}(\mathbf{x}_j,j)=\mathbf{u}_{0|j}^*$ and apply it to (1a). Note that (8b) depends on the first stage of the optimal input sequence of the previous time step $\left(\mathbf{u}_{0|j-1}^{\top}\right)^*$. This ensures satisfaction of the rate constraints of the resulting closed-loop input sequence

$$\mathbf{\Omega}_j := \left\{ \mathbf{u}_{0|0}^* \quad \mathbf{u}_{1|\delta}^* \quad \cdots \right\}. \tag{12}$$