

Facultad de Ciencias Exactas, Ingeniería y Agrimensura

Departamento de Matemática - Escuela de Ciencias Exactas y Naturales

ANÁLISIS MATEMÁTICO II

Licenciatura y Profesorado en Física, Licenciatura en Ciencias de la Computación, Licenciatura y Profesorado en Matemática - Año 2020

Práctica 9: Funciones de varias variables - Límite y continuidad.

1. Sea A un subconjunto de \mathbb{R}^n :

- un punto $u \in \mathbb{R}^n$ de denomina un **punto de frontera** de A, si para cada r > 0, $B_r(u) \cap A \neq \emptyset$ y $B_r(u) \cap \mathcal{C}A \neq \emptyset$. El conjunto de puntos de frontera de A se denomina la **frontera** de A, y se denota por ∂A .
- un punto $u \in \mathbb{R}^n$ se denomina un **punto exterior** de A, si existe r > 0 tal que $B_r(u) \subset \mathcal{C}A$. El conjunto de puntos exteriores de A se denota por extA.
- El conjunto de puntos de acumulación de A, se denota por A'.

Indique en cada caso el interior $\overset{\circ}{A}$, el conjunto de puntos de acumulación A', la clausura \overline{A} , la frontera ∂A , el complemento $\mathcal{C}A$ y el exterior extA del conjunto A. Determine si el conjunto A dado es abierto, cerrado, o ninguno de los dos. Haga un bosquejo del conjunto en el plano o en el espacio según corresponda.

a)
$$A = \{(x, y) : xy > 0\}$$

e)
$$A = \{(x, y) : 1 < x^2 + y^2 \le 4\}$$

b)
$$A = \{(x,y) : x > 0, y > 0, y < 2 - x\}$$

f)
$$A = \{(x,y): (x^2 + y^2 - 4)(1 - x^2 - y^2) > 0\}$$

c)
$$A = \{(x, y) : |x| + |y| < 1\}$$

g)
$$A = \{(x, y, z) : |x - 1| < 2, |y| < 1, |z| \le 1\}$$

$$d) \ A = \left\{ (x,y) : x^2 + y^2 > 1 \right\}$$

h)
$$A = \{(x, y, z) : x^2 + 5y^2 + 3z^2 > 7\}$$

2. Sean A y B subconjuntos de \mathbb{R}^n . Pruebe que:

- a) Si A y B son abiertos, entonces $A \cap B$ es abierto $y A \cup B$ es abierto.
- b) Si A y B son cerrados, entonces $A \cap B$ es cerrado y $A \cup B$ es cerrado.
- 3. Para cada una de las siguientes funciones, determine su dominio natural, es decir, el mayor subconjunto de \mathbb{R}^n donde la función está definida, y representelo gráficamente.

1

a)
$$f(x,y) = \frac{1}{\sqrt{1 - 2x^2 - y^2}}$$

b)
$$f(x,y) = \sqrt{\frac{1-x^2}{y^2-1}}$$

c)
$$f(x, y, z) = \ln(xyz)$$

d)
$$f(x, y, z) = \arcsin \frac{1}{x + y + z}$$

4. Represente gráficamente los conjuntos de nivel correspondientes al k dado, para cada $f: S \to \mathbb{R}$, donde S es el dominio natural de f.

a)
$$f(x,y) = 6 - 3x - 2y$$
 $k = -6, 0, 6.$

b)
$$f(x,y) = \sqrt{9 - x^2 - y^2}$$
 $k = -1, 0, 1, 3$

c)
$$f(x,y) = x + y^2$$
 $k = -1, 0, 2.$

d)
$$f(x, y, z) = x - 3y - z$$
 $k = -1, 2, 3.$

e)
$$f(x,y,z) = x^2 + 2y^2 + 5z^2$$
 $k = -1, 1, 2$

5. Usando coordenadas polares describa las curvas de nivel de la función $f: \mathbb{R}^2 \to \mathbb{R}$ dada por:

$$f(x,y) = \begin{cases} \frac{2xy}{\sqrt{x^2 + y^2}} & \text{si} \quad (x,y) \neq (0,0) \\ 0 & \text{si} \quad (x,y) = (0,0) \end{cases}$$

6. Determine en cada caso el conjunto de \mathbb{R}^2 en el cual f es continua:

a)
$$f(x,y) = \frac{1}{x^4 + y^4 - 2x^2y^2}$$

b)
$$f(x,y) = \arcsin\left(\frac{x}{\sqrt{x^2+y^2}}\right)$$

$$c) f(x,y) = \log(x^2 + y^2)$$

7. Muestre que la función $f(x,y) = \frac{x-y}{x+y}$ no posee límite en los puntos de la recta y+x=0.

8. Considere la función $f(x,y) = x \sin(1/y) + y \sin(1/x)$ con $x \neq 0, y \neq 0$. ¿Tiene límite en (0,0)?

9. Demuestre que las siguientes funciones son continuas en \mathbb{R}^2 . En cada caso se define f(0,0) como $\lim_{(x,y)\to(0,0)} f(x,y).$

$$a) f(x,y) = \frac{\sin xy}{\sqrt{x^2 + y^2}}$$

b)
$$f(x,y) = y^2 \log(x^2 + y^2)$$

c)
$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$$

- 10. Sea $f(x, y, z) = \frac{x^2 + y^2 z^2}{x^2 + y^2 + z^2}$. Muestre que no existe $\lim_{(x, y, z) \to (0, 0, 0)} f(x, y, z)$.
- 11. Muestre que $g(x,y) = \frac{x^2}{x^2 + y^2 x}$ tiende a cero si (x,y) se aproxima a (0,0) por cualquier recta, y sin embargo g no tiene límite en (0,0).
- 12. Analice la existencia de los siguientes límites:

a)
$$\lim_{(x,y)\to(0,0)} xy^3(x+y)^{-1}$$

c)
$$\lim_{(x,y)\to(0,0)} \frac{sen(xy)}{xy}$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$$

d)
$$\lim_{(x,y)\to(0,0)} (1-\cos(x^2+y^2))(x^2+y^2)^{-1}$$

- 13. Pruebe que toda función lineal $A: \mathbb{R}^m \to \mathbb{R}^n$ es continua.
- 14. Pruebe que existe la siguiente derivada respecto de t: $\frac{d}{dt}|_{t=0}A(tv)$, donde $A: \mathbb{R}^m \to \mathbb{R}^n$ es lineal, y donde esa derivada se toma componente a componente.

Ayuda: piense en el cociente incremental correspondiente y convenza que está bien definido.