

Amendments to the claims

1. (currently amended) A compound of Formula (I):

or a stereoisomer, or pharmaceutically acceptable salt form or prodrug thereof, wherein:

A^1 is C_1-C_3 alkylene substituted by 0-2 C_1-C_4 alkyl;

A^2 is $-C(=O)R^{9b}$, $-S(=O)R^{9b}$, $-S(=O)_2R^{9b}$, $-CONHR^{9b}$,

$-S(=O)_2NHR^{9b}$, $-C(=O)OR^{9b}$,

$-A^3-R^{9a}$;

$-A^3-A^4-R^{9a}$,

$-A^3-A^4-A^5-R^{9a}$, or

$-A^3-A^4-A^5-A^6-R^{9a}$,

W is selected from the group:

$-B(OR^{26})(OR^{27})$,

$-C(=O)C(=O)Q$,

$-C(=O)C(=O)NHQ$,

$-C(=O)C(=O)OQ$,

$-C(=O)CF_2C(=O)NHQ$,

$-C(=O)CF_3$,

$-C(=O)CF_2CF_3$,

$-C(=O)H$, and

$-C(=O)W^1$;

W^1 is OR^8 or $NR^{11}R^{11a}$,

Q is selected from the group:

$-(CR^{10}R^{10e})_m Q^1,$

$-(CR^{10}R^{10e})_m Q^2,$

C_1-C_4 alkyl substituted with $Q^1,$

C_2-C_4 alkenyl substituted with $Q^1,$

C_2-C_4 alkynyl substituted with $Q^1,$

an amino acid residue,

$-A^7-A^8,$ and

$-A^7-A^8-A^9,$

m is 1, 2, 3, or 4;

Q^1 is selected from the group:

$-CO_2R^{11}, -SO_2R^{11}, -SO_3R^{11}, -P(O)_2R^{11}, -P(O)_3R^{11},$

aryl substituted with 0-4 $Q^{1a};$ and

5-6 membered heterocyclic group consisting of carbon atoms and

1-4 heteroatoms selected from the group: O, S, and N;

optionally saturated, partially unsaturated or unsaturated;

and said 5-6 membered heterocyclic group is substituted

with 0-4 $Q^{1a},$

Q^{1a} is H, F, Cl, Br, I, NO_2 , CN , NCS , CF_3 , $OCF_3,$

$-CO_2R^{19}, -C(=O)NR^{19}R^{19a}, -NHC(=O)R^{19}, -SO_2R^{19},$

$-SO_2NR^{19}R^{19a}, -NR^{19}R^{19a}, -OR^{19}, -SR^{19}, C_1-C_4$ alkyl,

C_1-C_4 alkoxy, C_1-C_4 haloalkyl, or C_1-C_4 haloalkoxy,

Q^2 is $X-NR^{12}-Z$, $NR^{12}-Y-Z$, or $X-NR^{12}-Y-Z$,

X is $C(=O)$, S , $S(=O)$, $S(=O)_2$, $P(O)$, $P(O)_2$, or
 $-P(O)_3$;

Y is $C(=O)$, S , $S(=O)$, $S(=O)_2$, $P(O)$, $P(O)_2$, or
 $-P(O)_3$;

Z is selected from the group:

C_1-C_4 haloalkyl,

C_1-C_4 alkyl substituted with $0-3 Z^a$,

C_2-C_4 alkenyl substituted with $0-3 Z^a$,

C_2-C_4 alkynyl substituted with $0-3 Z^a$,

C_3-C_{10} cycloalkyl substituted with $0-5 Z^b$,

aryl substituted with $0-5 Z^b$,

$5-10$ membered heterocyclic group consisting of carbon atoms and $1-4$ heteroatoms selected from the group: O , S , and N , optionally saturated, partially unsaturated or unsaturated, and said $5-10$ membered heterocyclic group is substituted with $0-4 Z^b$,

an amino acid residue,

$-A^7-A^8$, and

$-A^7-A^8-A^9$,

Z^a is selected from the group:

H , F , Cl , Br , I , NO_2 , CN , NCS , CF_3 , OCF_3 ,

$-CO_2R^{20}$, $C(=O)NR^{20}R^{20a}$, $NHC(=O)R^{20}$, $NR^{20}R^{20a}$,

-OR^{20} , SR^{20} , $\text{S}(\text{=O})\text{R}^{20}$, SO_2R^{20} , $\text{SO}_2\text{NR}^{20}\text{R}^{20a}$, $\text{C}_1\text{-C}_4\text{-alkyl}$,
 $\text{C}_1\text{-C}_4\text{-haloalkyl}$, $\text{C}_1\text{-C}_4\text{-haloalkoxy}$,
 $\text{C}_3\text{-C}_{10}\text{-cycloalkyl substituted with 0-5 Z}^b$,
 $\text{C}_3\text{-C}_{10}\text{-carboycile substituted with 0-5 Z}^b$,
 $\text{aryl substituted with 0-5 Z}^b$, and
 $\text{5-10 membered heterocyclic group consisting of carbon atoms}$
 $\text{and 1-4 heteroatoms selected from the group: O, S, and N;}$
 $\text{optionally saturated, partially unsaturated or unsaturated,}$
 $\text{and said 5-10 membered heterocyclic group is substituted}$
 with 0-4 Z^b ;

Z^b is selected from the group:

$\text{H, F, Cl, Br, I, NO}_2$, CN, NCS, CF_3 , OCF_3 ,
 $\text{-CO}_2\text{R}^{20}$, $\text{C}(\text{=O})\text{NR}^{20}\text{R}^{20a}$, $\text{NHC}(\text{=O})\text{R}^{20}$, $\text{NR}^{20}\text{R}^{20a}$,
 -OR^{20} , SR^{20} , $\text{S}(\text{=O})\text{R}^{20}$, SO_2R^{20} , $\text{SO}_2\text{NR}^{20}\text{R}^{20a}$, $\text{C}_1\text{-C}_4\text{-alkyl}$,
 $\text{C}_1\text{-C}_4\text{-haloalkyl}$, $\text{C}_1\text{-C}_4\text{-haloalkoxy}$,
 $\text{C}_3\text{-C}_{10}\text{-cycloalkyl substituted with 0-5 Z}^e$,
 $\text{C}_3\text{-C}_{10}\text{-carboycile substituted with 0-5 Z}^e$,
 $\text{aryl substituted with 0-5 Z}^e$, and
 $\text{5-10 membered heterocyclic group consisting of carbon atoms}$
 $\text{and 1-4 heteroatoms selected from the group: O, S, and N;}$
 $\text{optionally saturated, partially unsaturated or unsaturated,}$
 $\text{and said 5-10 membered heterocyclic group is substituted}$
 with 0-4 Z^e ;

Z^e is $\text{H, F, Cl, Br, I, NO}_2$, CN, NCS, CF_3 , OCF_3 ,
 $\text{-CO}_2\text{R}^{20}$, $\text{C}(\text{=O})\text{NR}^{20}\text{R}^{20a}$, $\text{NHC}(\text{=O})\text{R}^{20}$, $\text{NR}^{20}\text{R}^{20a}$,

--OR^{20} , --SR^{20} , --S(=O)R^{20} , $\text{--SO}_2\text{R}^{20}$, $\text{--SO}_2\text{NR}^{20}\text{R}^{20a}$, $\text{C}_1\text{--C}_4\text{--alkyl}$,
 $\text{C}_1\text{--C}_4\text{--haloalkyl}$, or $\text{C}_1\text{--C}_4\text{--haloalkoxy}$;

R^1 is selected from the group: H, F;

$\text{C}_1\text{--C}_6$ alkyl substituted with 0-3 R^{1a} ;

$\text{C}_2\text{--C}_6$ alkenyl substituted with 0-3 R^{1a} ;

$\text{C}_2\text{--C}_6$ alkynyl substituted with 0-3 R^{1a} ; and

$\text{C}_3\text{--C}_6$ cycloalkyl substituted with 0-3 R^{1a} ;

R^{1a} is selected at each occurrence from the group:

Cl, F, Br, I, CF_3 , CHF_2 , OH, =O, SH, CO_2R^{1b} , SO_2R^{1b} ,

SO_3R^{1b} , $\text{P(O)}_2\text{R}^{1b}$, $\text{P(O)}_3\text{R}^{1b}$, C(=O)NHR^{1b} ,

--NHC(=O)R^{1b} , $\text{SO}_2\text{NHR}^{1b}$, --OR^{1b} , --SR^{1b} , $\text{C}_3\text{--C}_6$ cycloalkyl, $\text{C}_1\text{--C}_6$

alkoxy, $\text{S(C}_1\text{--C}_6\text{--alkyl)}$;

$\text{C}_1\text{--C}_4$ alkyl substituted with 0-3 R^{1e} ;

aryl substituted with 0-5 R^{1e} ;

$\text{--O(CH}_2\text{)}_n\text{--aryl}$ substituted with 0-5 R^{1e} ;

$\text{--S(CH}_2\text{)}_n\text{--aryl}$ substituted with 0-5 R^{1e} ; and

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated, and said 5-10 membered heterocyclic group is substituted with 0-3 R^{1e} ;

n is 0, 1 or 2;

R^{1b} is H;

$\text{C}_1\text{-C}_4$ alkyl substituted with 0-3 R^{1e} ;

$\text{C}_2\text{-C}_4$ alkenyl substituted with 0-3 R^{1e} ;

$\text{C}_2\text{-C}_4$ alkynyl substituted with 0-3 R^{1e} ;

$\text{C}_3\text{-C}_6$ cycloalkyl substituted with 0-5 R^{1e} ;

aryl substituted with 0-5 R^{1e} ;

aryl $\text{C}_1\text{-C}_4$ alkyl substituted with 0-4 R^{1e} ; or

5-6 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated, and said 5-10 membered heterocyclic group is substituted with 0-4 R^{1e} ;

R^{1e} is selected at each occurrence from the group:

$\text{C}_1\text{-C}_4$ alkyl, Cl, F, Br, I, OH, SH, CN, NO_2 , OR^{1d} , $-\text{C}(=\text{O})\text{OR}^{1d}$, $\text{NR}^{1d}\text{R}^{1d}$, SO_2R^{1d} , SO_3R^{1d} , $\text{C}(=\text{O})\text{NHR}^{1d}$, $-\text{NHC}(=\text{O})\text{R}^{1d}$, $\text{SO}_2\text{NHR}^{1d}$, CF_3 , OCF_3 , $\text{C}_3\text{-C}_6$ cycloalkyl, phenyl, and benzyl;

R^{1d} is selected at each occurrence from the group: H, $\text{C}_1\text{-C}_4$ alkyl, phenyl and benzyl;

R^2 is selected from the group: H, $\text{C}_1\text{-C}_4$ alkyl, $\text{C}_2\text{-C}_4$ alkenyl, $\text{C}_2\text{-C}_4$ alkynyl, $\text{C}_3\text{-C}_4$ cycloalkyl, and $\text{C}_3\text{-C}_4$ cycloalkyl($\text{C}_1\text{-C}_4$ alkyl)-;

alternatively, R^1 and R^2 can be combined to form a 4-7 membered cyclic group consisting of carbon atoms, substituted with 0-2 R^{14} ;

R^3 is selected from the group: R^4 ,

-(CH₂)_p-NH- R^4 ,
-(CH₂)_p-NHC(=O)- R^4 ,
-(CH₂)_p-C(=O)NH- R^4 ,
-(CH₂)_p-C(=O)O- R^4 ,
-(CH₂)_p-C(=O)C(=O)- R^4 ,
-(CH₂)_p-C(=O)C(=O)NH- R^4 ,
-(CH₂)_p-NHC(=O)NH- R^4 ,
-(CH₂)_p-NHC(=O)NHC(=O)- R^4 ,
-(CH₂)_p-NHS(=O)₂- R^4 ,
-(CH₂)_p-S(=O)₂NH- R^4 ,
-(CH₂)_p-C(=O)- R^4 ,
-(CH₂)_p-O- R^4 , and
-(CH₂)_p-S- R^4 ;

p is 0, 1, or 2;

R^4 is selected from the group:

C₁-C₆ alkyl substituted with 0-3 R^{4a} ;
C₂-C₆ alkenyl substituted with 0-3 R^{4a} ;
C₂-C₆ alkynyl substituted with 0-3 R^{4a} ;
C₃-C₁₀ cycloalkyl substituted with 0-4 R^{4b} ;
C₃-C₁₀ carbocycle substituted with 0-4 R^{4b} ;
aryl substituted with 0-5 R^{4b} ; and
aryl-C₁-C₄ alkyl substituted with 0-5 R^{4b} ; and

~~5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-4 R^{4b};~~

R^{4a} is, at each occurrence, independently selected from:

~~H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃,~~
~~=O, OH, CO₂H, C(=NH)NH₂, CO₂R¹¹, C(=O)NR¹¹R^{11a},~~
~~NHC(=O)R¹¹, NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=O)R^{11a},~~
~~S(=O)R^{11a}, SO₂R¹¹, SO₂NR¹¹R^{11a}, NHC(=NH)NHR¹¹,~~
~~C(=NH)NHR¹¹, =NOR¹¹, NR¹¹C(=O)OR^{11a},~~
~~NR¹¹C(=O)NR¹¹R^{11a}, NR¹¹SO₂NR¹¹R^{11a}, NR¹¹SO₂R^{11a},~~
~~OP(O)(OR¹¹)₂~~

C₁-C₄ alkyl substituted with 0-3 R^{4b};

C₂-C₄ alkenyl substituted with 0-3 R^{4b};

C₂-C₄ alkynyl substituted with 0-3 R^{4b};

C₃-C₇ cycloalkyl substituted with 0-4 R^{4c};

C₃-C₁₀ carbocycle substituted with 0-4 R^{4c}; and

aryl substituted with 0-5 R^{4c}; and

~~5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-3 R^{4e};~~

R^{4b} is, at each occurrence, independently selected from:

~~H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃, =O, OH, CO₂H,~~
~~-C(=NH)NH₂, CO₂R¹¹, C(=O)NR¹¹R^{11a},~~
~~-NHC(=O)R¹¹, NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=O)R^{11a},~~
~~-S(=O)R^{11a}, SO₂R¹¹, SO₂NR¹¹R^{11a}, NHC(=NH)NHR¹¹,~~
~~-C(=NH)NHR¹¹, =NOR¹¹, NR¹¹C(=O)OR^{11a},~~
~~-OC(=O)NR¹¹R^{11a}, NR¹¹C(=O)NR¹¹R^{11a}, NR¹¹SO₂NR¹¹R^{11a},~~
~~NR¹¹SO₂R^{11a}, OP(O)(OR¹¹)₂,~~

C₁-C₄ alkyl substituted with 0-3 R^{4c};

C₂-C₄ alkenyl substituted with 0-3 R^{4c};

C₂-C₄ alkynyl substituted with 0-3 R^{4c};

C₃-C₆ cycloalkyl substituted with 0-4 R^{4d}; and

aryl substituted with 0-5 R^{4d}; and

~~5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-3 R^{4d},~~

R^{4c} is, at each occurrence, independently selected from:

~~H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃, =O, OH, CO₂H,~~
~~-C(=NH)NH₂, CO₂R¹¹, C(=O)NR¹¹R^{11a},~~
~~-NHC(=O)R¹¹, NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=O)R^{11a},~~
~~-S(=O)R^{11a}, SO₂R¹¹, SO₂NR¹¹R^{11a},~~
~~C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy,~~

C₁-C₄ alkyl substituted with 0-3 R^{4d};

C₂-C₄ alkenyl substituted with 0-3 R^{4d};

C₂-C₄ alkynyl substituted with 0-3 R^{4d};

C₃-C₆ cycloalkyl substituted with 0-4 R^{4d}; and

aryl substituted with 0-5 R^{4d} ; and
~~5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated or unsaturated; and said 5-10 membered heterocyclic group is substituted with 0-3 R^{4d} ,~~

R^{4d} is, at each occurrence, independently selected from:

H , F , Cl , Br , I , $-NO_2$, $-CN$, $-NCS$, $-CF_3$, $-OCF_3$, $=O$, OH , $-CO_2H$,
 $-CO_2R^{11}$, $C(=O)NR^{11}R^{11a}$, $NHC(=O)R^{11}$,
 $-NR^{11}R^{11a}$, OR^{11a} , SR^{11a} , $C(=O)R^{11a}$, $S(=O)R^{11a}$,
 $-SO_2R^{11}$, $SO_2NR^{11}R^{11a}$, C_1-C_4 -alkyl, C_1-C_4 -alkoxy,
 C_1-C_4 -haloalkyl, C_1-C_4 -haloalkoxy, phenyl, and benzyl,

R^8 is H or C_1-C_4 -alkyl;

R^{9a} is selected from the group: H , $-S(=O)R^{9b}$, $-S(=O)_2R^{9b}$,

$-S(=O)_2NHR^{9b}$, $-C(=O)R^{9b}$, $-C(=O)OR^{9b}$, $-C(=O)NHR^{9b}$,
 $-C(=O)NHC(=O)R^{9b}$;

C_1-C_6 alkyl substituted with 0-3 R^{9c} ;

C_2-C_6 alkenyl substituted with 0-3 R^{9c} ;

C_2-C_6 alkynyl substituted with 0-3 R^{9c} ;

C_3-C_6 cycloalkyl substituted with 0-3 R^{9d} ;

C_3-C_{14} carbocycle substituted with 0-4 R^{9d} ;

aryl substituted with 0-5 R^{9d} ; and

~~5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated, partially unsaturated or unsaturated;~~

~~and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9d},~~

R^{9b} is selected from the group: H;

C₁-C₆ alkyl substituted with 0-3 R^{9c};

C₂-C₆ alkenyl substituted with 0-3 R^{9c};

C₂-C₆ alkynyl substituted with 0-3 R^{9c};

C₃-C₆ cycloalkyl substituted with 0-3 R^{9d};

C₃-C₁₄ carbocycle substituted with 0-4 R^{9d}; and

aryl substituted with 0-5 R^{9d}; and

~~5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated,~~

~~and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9d},~~

R^{9c} is selected from the group: CF₃, OCF₃, Cl, F, Br, I, =O, OH,

C(=O)OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, CN, NO₂,

C₁-C₆ alkyl substituted with 0-3 R^{9d};

C₂-C₆ alkenyl substituted with 0-3 R^{9d};

C₂-C₆ alkynyl substituted with 0-3 R^{9d};

C₃-C₆ cycloalkyl substituted with 0-3 R^{9e};

C₃-C₁₄ carbocycle substituted with 0-4 R^{9e}; and

aryl substituted with 0-5 R^{9e}; and

~~5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated,~~

~~and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9e},~~

and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9e};

R^{9d} is selected at each occurrence from the group:

CF₃, OCF₃, Cl, F, Br, I, =O, OH, C(O)OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, CN, NO₂;

C₁-C₄ alkyl substituted with 0-3 R^{9e};

C₁-C₄ alkoxy substituted with 0-3 R^{9e};

C₃-C₆ cycloalkyl substituted with 0-3 R^{9e}; and

aryl substituted with 0-5 R^{9e}; and

5-6 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated, partially unsaturated or unsaturated; and said 5-6 membered heterocyclic group is substituted with 0-4 R^{9e};

R^{9e} is selected at each occurrence from the group:

C₁-C₄ alkyl, C₁-C₄ alkoxy, CF₃, OCF₃, Cl, F, Br, I, =O, OH, phenyl, C(O)OR¹¹, NH₂, NH(CH₃), N(CH₃)₂, -CN, and NO₂;

R¹⁰ is selected from the group: CO₂R¹¹, NR¹¹R^{11a}, and C₁-C₆ alkyl substituted with 0-1 R^{10a};

R^{10a} is selected from the group: halo, NO₂, CN, CF₃, -CO₂R¹¹, NR¹¹R^{11a}, OR¹¹, SR¹¹, C(=NH)NH₂, and aryl substituted with 0-1 R^{10b};

R^{10b} is selected from the group: CO_2H , NH_2 , OH , SH , and
 $C(=NH)NH_2+$

R^{10e} is H or C_1-C_4 alkyl;

alternatively, R^{10} and R^{10e} can be combined to form a C_3-C_6 cycloalkyl group substituted with 0-1 R^{10a} ,

R^{11} and R^{11a} are, at each occurrence, independently selected from the group: H;

C_1-C_6 alkyl substituted with 0-3 R^{11b} ;

C_2-C_6 alkaryl substituted with 0-3 R^{11b} ;

C_2-C_6 alkynyl substituted with 0-3 R^{11b} ;

C_3-C_7 cycloalkyl substituted with 0-3 R^{11b} ;

aryl substituted with 0-3 R^{11b} ; and

aryl(C_1-C_4 alkyl)- substituted with 0-3 R^{11b} ;

R^{11b} is OH, C_1-C_4 alkoxy, F, Cl, Br, I, NH_2 , or $-NH(C_1-C_4$ alkyl);

R^{12} is H or C_1-C_4 alkyl;

R^{14} is C_1-C_4 alkyl or C_2-C_4 alkaryl;

R^{19} and R^{19a} are independently selected from the group: H, C_1-C_4 alkyl, C_1-C_4 haloalkyl, aryl, aryl(C_1-C_4 alkyl), C_3-C_6 cycloalkyl, and C_3-C_6 cycloalkyl(C_1-C_4 alkyl);

alternatively, $\text{NR}^{19}\text{R}^{19a}$ may form a 5-6 membered heterocyclic group consisting of carbon atoms, a nitrogen atom, and optionally a second heteroatom selected from the group: O, S, and N;

R^{20} and R^{20a} are independently selected from the group: H, $\text{C}_1\text{-}\text{C}_4$ alkyl, $\text{C}_1\text{-}\text{C}_4$ haloalkyl, aryl, aryl($\text{C}_1\text{-}\text{C}_4$ alkyl), $\text{C}_3\text{-}\text{C}_6$ cycloalkyl, and $\text{C}_3\text{-}\text{C}_6$ cycloalkyl($\text{C}_1\text{-}\text{C}_4$ alkyl);

alternatively, $\text{NR}^{20}\text{R}^{20a}$ may form a 5-6 membered heterocyclic group consisting of carbon atoms, a nitrogen atom, and optionally a second heteroatom selected from the group: O, S, and N;

OR^{26} and OR^{27} are independently selected from:

- a) -OH,
- b) -F,
- c) $\text{NR}^{28}\text{R}^{29}$,
- d) $\text{C}_1\text{-}\text{C}_8$ alkoxy, and

when taken together, OR^{26} and OR^{27} form:

- e) a cyclic boronic ester where said cyclic boronic ester contains from 2 to 20 carbon atoms, and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O; and
- f) a cyclic boronic amide where said boronic amide contains from 2 to 20 carbon atoms and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O; or
- g) a cyclic boronic amide ester where said boronic amide ester contains from 2 to 20 carbon atoms and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O;

R²⁸ and R²⁹, are independently selected from: H, C₁-C₄-alkyl, ary1(C₁-C₄-alkyl), and C₃-C₇-cycloalkyl;

A³, A⁴, A⁵, A⁶, A⁷, A⁸, and A⁹ are independently selected from an amino acid residue; and

an amino acid residue, at each occurrence, independently comprises a natural amino acid, a modified amino acid or an unnatural amino acid wherein said natural, modified or unnatural amino acid is of either D or L configuration. is valine.

2. (currently amended) A compound of Claim 1, or a stereoisomer, or a pharmaceutically acceptable salt form or prodrug thereof, wherein:

A¹ is -CH₂- or CH₂CH₂-;

A² is C(=O)R^{9b}, S(=O)R^{9b}, S(=O)₂R^{9b}, CONHR^{9b},
S(=O)₂NHR^{9b}, C(=O)OR^{9b},
A³-R^{9a},
A³-A⁴-R^{9a},
A³-A⁴-A⁵-R^{9a}, or
A³-A⁴-A⁵-A⁶-R^{9a},

W is selected from the group:

-B(OR²⁶)(OR²⁷),
-C(=O)C(=O)Q,
-C(=O)C(=O)NHQ,
-C(=O)C(=O)OQ,

$\text{C}(=\text{O})\text{CF}_2\text{C}(=\text{O})\text{NH-Q}$,
 $\text{C}(=\text{O})\text{CF}_3$,
 $\text{C}(=\text{O})\text{CF}_2\text{CF}_3$,
 $\text{C}(=\text{O})\text{H}$, and
 $\text{C}(=\text{O})\text{W}^1$,

W^1 is OR^8 or $\text{NR}^{11}\text{R}^{11a}$,

Q is selected from the group:

$(\text{CR}^{10}\text{R}^{10e})_m\text{Q}^1$,
 $\text{C}_1\text{--C}_4$ alkyl substituted with Q^1 ,
 $\text{C}_2\text{--C}_4$ alkenyl substituted with Q^1 , and
 $\text{C}_2\text{--C}_4$ alkynyl substituted with Q^1 ,

m is 1 or 2;

Q^1 is selected from the group:

CO_2R^{11} , SO_2R^{11} , SO_3R^{11} , $\text{P}(\text{O})_2\text{R}^{11}$, $\text{P}(\text{O})_3\text{R}^{11}$,
phenyl substituted with 0-4 Q^{1a} , and
5-6 membered heterocyclic group consisting of carbon atoms and
1-4 heteroatoms selected from the group: O, S, and N,
optionally saturated, partially unsaturated or unsaturated,
and said 5-6 membered heterocyclic group is substituted
with 0-4 Q^{1a} ,

Q^{1a} is H, F, Cl, Br, I, NO_2 , CN, NCS, CF_3 , OCF_3 ,
 CO_2R^{19} , $\text{C}(=\text{O})\text{NR}^{19}\text{R}^{19a}$, $\text{NHC}(=\text{O})\text{R}^{19}$, SO_2R^{19} ,
 $\text{SO}_2\text{NR}^{19}\text{R}^{19a}$, $\text{NR}^{19}\text{R}^{19a}$, OR^{19} , SR^{19} , $\text{C}_1\text{--C}_4$ alkyl,

~~C₁-C₄ alkoxy, C₁-C₄ haloalkyl, or C₁-C₄ haloalkoxy,~~

R¹ is selected from the group: H, F,

~~C₁-C₆ alkyl substituted with 0-3 R^{1a};~~

~~C₂-C₆ alkenyl substituted with 0-3 R^{1a}; and~~

~~C₂-C₆ alkynyl substituted with 0-3 R^{1a}; and~~

~~C₃-C₆ cycloalkyl substituted with 0-3 R^{1a},~~

~~R^{1a} is selected at each occurrence from the group:~~

~~C₁, F, Br, I, CF₃, CHF₂, OH, =O, SH, CO₂R^{1b}, SO₂R^{1b},~~

~~SO₃R^{1b}, P(O)₂R^{1b}, P(O)₃R^{1b}, C(=O)NHR^{1b},~~

~~NHC(=O)R^{1b}, SO₂NHR^{1b}, OR^{1b}, SR^{1b}, C₃-C₆ cycloalkyl, C₁-C₆ alkoxy, S(C₁-C₆ alkyl);~~

~~C₁-C₄ alkyl substituted with 0-3 R^{1c},~~

~~aryl substituted with 0-5 R^{1c},~~

~~O(CH₂)_n aryl substituted with 0-5 R^{1c},~~

~~S(CH₂)_n aryl substituted with 0-5 R^{1c}, and~~

~~5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated, partially unsaturated or unsaturated, and said 5-10 membered heterocyclic group is substituted with 0-3 R^{1c},~~

~~n is 0, 1 or 2;~~

~~R^{1b} is H,~~

~~C₁-C₄ alkyl substituted with 0-3 R^{1c},~~

$\text{C}_2\text{-C}_4$ alkenyl substituted with 0-3 R^{1e} ;

$\text{C}_2\text{-C}_4$ alkynyl substituted with 0-3 R^{1e} ;

$\text{C}_3\text{-C}_6$ cycloalkyl substituted with 0-5 R^{1e} ;

aryl substituted with 0-5 R^{1e} ;

aryl $\text{C}_1\text{-C}_4$ alkyl substituted with 0-4 R^{1e} ; or

5-6 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N; optionally saturated, partially unsaturated or unsaturated, and said 5-10 membered heterocyclic group is substituted with 0-4 R^{1e} ;

R^{1e} is selected at each occurrence from the group:

$\text{C}_1\text{-C}_4$ alkyl, Cl, F, Br, I, OH, SH, CN, NO_2 , OR^{1d} , $\text{C}(-\text{O})\text{OR}^{1d}$, $\text{NR}^{1d}\text{R}^{1d}$, SO_2R^{1d} , SO_3R^{1d} , $\text{C}(-\text{O})\text{NHR}^{1d}$, $\text{NHC}(-\text{O})\text{R}^{1d}$, $\text{SO}_2\text{NHR}^{1d}$, CF_3 , OCF_3 , $\text{C}_3\text{-C}_6$ cycloalkyl, phenyl, and benzyl;

R^{1d} is selected at each occurrence from the group: H, $\text{C}_1\text{-C}_4$ alkyl, phenyl and benzyl;

R^2 is selected from the group: H, $\text{C}_1\text{-C}_4$ alkyl, $\text{C}_2\text{-C}_4$ alkenyl, $\text{C}_2\text{-C}_4$ alkynyl, $\text{C}_3\text{-C}_4$ cycloalkyl, and $\text{C}_3\text{-C}_4$ cycloalkyl($\text{C}_1\text{-C}_4$ alkyl);

alternatively, R^1 and R^2 can be combined to form a 4-7 membered cyclic group consisting of carbon atoms; substituted with 0-2 R^{14} ;

R^3 is selected from the group: R^4 ,

$-(CH_2)_p-NH-R^4$,
 $-(CH_2)_p-NHC(=O)-R^4$,
 $-(CH_2)_p-C(=O)NH-R^4$,
 $-(CH_2)_p-C(=O)O-R^4$,
 $-(CH_2)_p-C(=O)C(=O)-R^4$,
 $-(CH_2)_p-C(=O)C(=O)NH-R^4$,
 $-(CH_2)_p-NHC(=O)NH-R^4$,
 $-(CH_2)_p-NHC(=O)NHC(=O)-R^4$,
 $-(CH_2)_p-NHS(=O)_2-R^4$,
 $-(CH_2)_p-S(=O)_2NH-R^4$,
 $-(CH_2)_p-C(=O)-R^4$,
 $-(CH_2)_p-O-R^4$, and
 $-(CH_2)_p-S-R^4$,

C_1-C_6 alkyl substituted with phenyl,

C_1-C_6 alkenyl substituted with phenyl,

$-CH_2CONHPh$, and

(2-phenylquinolin-4-yl)methyl;

p is 0, 1, or 2;

R^4 is selected from the group:

~~C_1-C_6 alkyl substituted with 0-3 R^{4a} ,~~
 ~~C_2-C_6 alkenyl substituted with 0-3 R^{4a} ,~~
 ~~C_2-C_6 alkynyl substituted with 0-3 R^{4a} ,~~
 ~~C_3-C_{10} cycloalkyl substituted with 0-4 R^{4b} ,~~
 ~~C_3-C_{10} carbocycle substituted with 0-4 R^{4b} ,~~
~~aryl substituted with 0-5 R^{4b} ,~~

~~aryl- C_1-C_4 alkyl substituted with 0-5 R^{4b} , and~~
~~5-10 membered heterocyclic group consisting of carbon atoms~~
~~and 1-4 heteroatoms selected from the group: O, S, and N,~~
~~optionally saturated, partially unsaturated or~~
~~unsaturated; and said 5-10 membered heterocyclic group is~~
~~substituted with 0-3 R^{4b} ,~~

R^{4a} is, at each occurrence, independently selected from:

~~H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃,~~
~~=O, OH, CO₂H, C(=NH)NH₂, CO₂R¹¹, C(=O)NR¹¹R^{11a},~~
~~-NHC(=O)R¹¹, NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=O)R^{11a},~~
~~S(=O)R^{11a}, SO₂R¹¹, SO₂NR¹¹R^{11a}, NHC(=NH)NHR¹¹,~~
~~C(=NH)NHR¹¹, NOR¹¹, NR¹¹C(=O)OR^{11a},~~
~~NR¹¹C(=O)NR¹¹R^{11a}, NR¹¹SO₂NR¹¹R^{11a}, NR¹¹SO₂R^{11a},~~
~~-OP(O)(OR¹¹)₂,~~

~~C_1-C_4 alkyl substituted with 0-3 R^{4b} ,~~

~~C_2-C_4 alkenyl substituted with 0-3 R^{4b} ,~~

~~C_2-C_4 alkynyl substituted with 0-3 R^{4b} ,~~

~~C_3-C_7 cycloalkyl substituted with 0-4 R^{4e} ,~~

~~C_3-C_{10} carbocycle substituted with 0-4 R^{4e} ,~~

~~aryl substituted with 0-5 R^{4e} , and~~

~~5-10 membered heterocyclic group consisting of carbon atoms~~
~~and 1-4 heteroatoms selected from the group: O, S, and N,~~
~~optionally saturated, partially unsaturated or~~
~~unsaturated; and said 5-10 membered heterocyclic group is~~
~~substituted with 0-3 R^{4e} ,~~

R^{4b} is, at each occurrence, independently selected from:

~~H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃, =O, OH, CO₂H,~~
~~-C(=NH)NH₂, CO₂R¹¹, C(=O)NR¹¹R^{11a},~~
~~-NHC(=O)R¹¹, NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=O)R^{11a},~~
~~-S(=O)R^{11a}, SO₂R¹¹, SO₂NR¹¹R^{11a}, NHC(=NH)NHR¹¹,~~
~~-C(=NH)NHR¹¹, =NOR¹¹, NR¹¹C(=O)OR^{11a},~~
~~-OC(=O)NR¹¹R^{11a}, NR¹¹C(=O)NR¹¹R^{11a}, NR¹¹SO₂NR¹¹R^{11a},~~
~~NR¹¹SO₂R^{11a}, OP(O)(OR¹¹)₂,~~
~~ε₁-ε₄-alkyl substituted with 0-3 R^{4e},~~
~~ε₂-ε₄-alkenyl substituted with 0-3 R^{4e},~~
~~ε₂-ε₄-alkynyl substituted with 0-3 R^{4e},~~
~~ε₃-ε₆-cycloalkyl substituted with 0-4 R^{4d},~~
~~aryl substituted with 0-5 R^{4d}, and~~
~~5-10 membered heterocyclic group consisting of carbon atoms~~
~~and 1-4 heteroatoms selected from the group: O, S, and N,~~
~~optionally saturated or unsaturated; and said 5-10~~
~~membered heterocyclic group is substituted with 0-3 R^{4d},~~

R^{4e} is, at each occurrence, independently selected from:

~~H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃, =O, OH, CO₂H,~~
~~-C(=NH)NH₂, CO₂R¹¹, C(=O)NR¹¹R^{11a},~~
~~-NHC(=O)R¹¹, NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=O)R^{11a},~~
~~-S(=O)R^{11a}, SO₂R¹¹, SO₂NR¹¹R^{11a},~~
~~ε₁-ε₄-haloalkyl, ε₁-ε₄-haloalkoxy,~~
~~ε₁-ε₄-alkyl substituted with 0-3 R^{4d},~~
~~ε₂-ε₄-alkenyl substituted with 0-3 R^{4d},~~
~~ε₂-ε₄-alkynyl substituted with 0-3 R^{4d},~~
~~ε₃-ε₆-cycloalkyl substituted with 0-4 R^{4d},~~

aryl substituted with 0-5 R^{4d} , and
 5-10 membered heterocyclic group consisting of carbon atoms
 and 1-4 heteroatoms selected from the group: O, S, and N,
 optionally saturated or unsaturated; and said 5-10
 membered heterocyclic group is substituted with 0-3 R^{4d} ,

R^{4d} is, at each occurrence, independently selected from:

H, F, Cl, Br, I, NO₂, CN, NCS, CF₃, OCF₃, =O, OH, CO₂H,
 CO₂R¹¹, C(=O)NR¹¹R^{11a}, NHC(=O)R¹¹,
 NR¹¹R^{11a}, OR^{11a}, SR^{11a}, C(=O)R^{11a}, S(=O)R^{11a},
 SO₂R¹¹, SO₂NR¹¹R^{11a}, C₁-C₄ alkyl, C₁-C₄ alkoxy,
 C₁-C₄ haloalkyl, C₁-C₄ haloalkoxy, phenyl, and benzyl,

R^8 is H or C₁-C₄ alkyl;

R^{9a} is selected from the group: H, S(=O)R^{9b}, S(=O)₂R^{9b},

S(=O)₂NHR^{9b}, C(=O)R^{9b}, C(=O)OR^{9b}, C(=O)NHR^{9b},
 C(=O)NHC(=O)R^{9b},

C₁-C₆ alkyl substituted with 0-3 R^{9c} ,

C₂-C₆ alkenyl substituted with 0-3 R^{9c} ,

C₂-C₆ alkynyl substituted with 0-3 R^{9c} ,

C₃-C₆ cycloalkyl substituted with 0-3 R^{9d} ,

C₃-C₁₄ carbocycle substituted with 0-4 R^{9d} ,

aryl substituted with 0-5 R^{9d} , and

5-10 membered heterocyclic group consisting of carbon atoms
 and 1-4 heteroatoms selected from the group: O, S, and N,
 optionally saturated, partially unsaturated or unsaturated;

and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9d} ,

R^{9b} is selected from the group: H,

ϵ_1 - ϵ_6 alkyl substituted with 0-3 R^{9e} ,

ϵ_2 - ϵ_6 alkenyl substituted with 0-3 R^{9e} ,

ϵ_2 - ϵ_6 alkynyl substituted with 0-3 R^{9e} ,

ϵ_3 - ϵ_6 cycloalkyl substituted with 0-3 R^{9d} ,

ϵ_3 - ϵ_{14} carboecycle substituted with 0-4 R^{9d} ,

aryl substituted with 0-5 R^{9d} , and

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated, partially unsaturated or unsaturated, and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9d} ,

R^{9e} is selected from the group: CF_3 , OCF_3 , Cl , F , Br , I , $=O$, OH ,

$C(O)OR^{11}$, NH_2 , $NH(CH_3)$, $N(CH_3)_2$, CN , NO_2 ,

ϵ_1 - ϵ_6 alkyl substituted with 0-3 R^{9d} ,

ϵ_2 - ϵ_6 alkenyl substituted with 0-3 R^{9d} ,

ϵ_2 - ϵ_6 alkynyl substituted with 0-3 R^{9d} ,

ϵ_3 - ϵ_6 cycloalkyl substituted with 0-3 R^{9e} ,

ϵ_3 - ϵ_{14} carboecycle substituted with 0-4 R^{9e} ,

aryl substituted with 0-5 R^{9e} , and

5-10 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O, S, and N, optionally saturated, partially unsaturated or unsaturated,

and said 5-10 membered heterocyclic group is substituted with 0-4 R^{9e} ,

R^{9d} is selected at each occurrence from the group:

CF_3 , OCF_3 , Cl , F , Br , I , $=O$, OH , $C(O)OR^{11}$, NH_2 , $NH(CH_3)$,

$N(CH_3)_2$, CN , NO_2 ,

C_1-C_4 alkyl substituted with 0-3 R^{9e} ,

C_1-C_4 alkoxy substituted with 0-3 R^{9e} ,

C_3-C_6 cycloalkyl substituted with 0-3 R^{9e} ,

aryl substituted with 0-5 R^{9e} ; and

5-6 membered heterocyclic group consisting of carbon atoms and 1-4 heteroatoms selected from the group: O , S , and N , optionally saturated, partially unsaturated or unsaturated; and said 5-6 membered heterocyclic group is substituted with 0-4 R^{9e} ,

R^{9e} is selected at each occurrence from the group:

C_1-C_4 alkyl, C_1-C_4 alkoxy, CF_3 , OCF_3 , Cl , F , Br , I , $=O$, OH ,

phenyl, $C(O)OR^{11}$, NH_2 , $NH(CH_3)$, $N(CH_3)_2$, CN , and NO_2 ,

R^{10} is selected from the group: CO_2R^{11} , $NR^{11}R^{11a}$, and C_1-C_6 alkyl substituted with 0-1 R^{10a} ,

R^{10a} is selected from the group: halo, NO_2 , CN , CF_3 ,

$-CO_2R^{11}$, $NR^{11}R^{11a}$, OR^{11} , SR^{11} , $C(=NH)NH_2$, and aryl

substituted with 0-1 R^{10b} ,

R^{10b} is selected from the group: CO_2H , NH_2 , OH , SH , and
 $C(=NH)NH_2$,

R^{10e} is H or C_1-C_4 alkyl;

alternatively, R^{10} and R^{10e} can be combined to form a C_3-C_6 cycloalkyl group substituted with 0-1 R^{10a} ,

R^{11} and R^{11a} are, at each occurrence, independently selected from the group: H;

C_1-C_6 alkyl substituted with 0-3 R^{11b} ,

C_2-C_6 alkenyl substituted with 0-3 R^{11b} ,

C_2-C_6 alkynyl substituted with 0-3 R^{11b} ,

C_3-C_7 cycloalkyl substituted with 0-3 R^{11b} ,

aryl substituted with 0-3 R^{11b} ; and

aryl(C_1-C_4 alkyl) substituted with 0-3 R^{11b} ,

R^{11b} is OH, C_1-C_4 alkoxy, F, Cl, Br, I, NH_2 , or $NH(C_1-C_4$ alkyl);

R^{12} is H or C_1-C_4 alkyl;

R^{14} is C_1-C_4 alkyl or C_2-C_4 alkenyl;

R^{19} and R^{19a} are independently selected from the group: H, C_1-C_4 alkyl, C_1-C_4 haloalkyl, aryl, aryl(C_1-C_4 alkyl), C_3-C_6 cycloalkyl, and C_3-C_6 cycloalkyl(C_1-C_4 alkyl);

alternatively, $NR^{19}R^{19a}$ may form a 5-6 membered heterocyclic group consisting of carbon atoms, a nitrogen atom, and optionally a second heteroatom selected from the group: O, S, and N;

and

OR^{26} and OR^{27} are independently selected from:

- a) OH ,
- b) F ,
- c) $NR^{28}R^{29}$,
- d) C_1-C_8 alkoxy, and

when taken together, OR^{26} and OR^{27} form:

- e) a cyclic boronic ester where said cyclic boronic ester contains from 2 to 20 carbon atoms, and, optionally, 1, 2, or 3 heteroatoms which can be N, S, or O pinanediol.,

R^{28} and R^{29} , are independently selected from: H, C_1-C_4 alkyl, aryl (C_1-C_4 alkyl), and C_3-C_7 cycloalkyl;

A^3 , A^4 , A^5 , and A^6 , are independently selected from an amino acid residue; and

an amino acid residue, at each occurrence, independently comprises a natural amino acid, a modified amino acid or an unnatural amino acid wherein said natural, modified or unnatural amino acid is of either D or L configuration.

3. (canceled)

4. (canceled)

5. (canceled)

6. (canceled)

7. (currently amended) A compound of Claim 1, or a stereoisomer or a pharmaceutically acceptable salt form ~~or prodrug~~ thereof, selected from:— the group consisting of

(4*S*)-*N*-{[(1*R*)-1-[(3*αS*,4*S*,6*S*,7*αR*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2*S*)-3-methyl-2-[(phenylacetyl)-amino]-butanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

tert-butyl (1*S*)-*N*-{[(1*R*)-1-[(3*αS*,4*S*,6*S*,7*αR*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}amino)carbonyl]-2-oxo-3-(3-phenylpropyl)imidazolidinyl]carbonyl}-2-methylpropylcarbamate;

(4*S*)-*N*-{[(1*R*)-1-[(3*αS*,4*S*,6*S*,7*αR*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2*S*)-2-[(anilinocarbonyl)amino]-3-methylbutanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

(4*S*)-*N*-{[(1*R*)-1-[(3*αS*,4*S*,6*S*,7*αR*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2*S*)-2-[(9*H*-fluoren-1-ylcarbonyl)amino]-3-methylbutanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

(4*S*)-*N*-{[(1*R*)-1-[(3*αS*,4*S*,6*S*,7*αR*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2*S*)-2-[(4-

methoxyphenyl)acetyl]amino}-3-methylbutanoyl)-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

(4*S*)-*N*-{[(1*R*)-1-[(3*αS*,4*S*,6*S*,7*αR*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]-3-butenyl}-3-{(2*S*)-2-[(9*H*-fluoren-1-ylcarbonyl)amino]-3-methylbutanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

9*H*-fluoren-9-ylmethyl (1*S*)-*N*-{[(1*R*)-1-[(3*αS*,4*S*,6*S*,7*αR*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}amino]carbonyl]-2-oxo-3-(3-phenylpropyl)imidazolidinyl]carbonyl}-2-methylpropylcarbamate;

(4*S*)-*N*-{[(1*R*)-1-[(3*αS*,4*S*,6*S*,7*αR*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2*S*)-3-methyl-2-[(3-(trifluoromethyl)benzyl)amino]butanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

(4*S*)-*N*-{[(1*R*)-1-[(3*αS*,4*S*,6*S*,7*αR*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-{(2*S*)-2-[(1,1'-biphenyl)-4-ylmethyl]amino]-3-methylbutanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

9*H*-fluoren-9-ylmethyl (1*S*)-1-((5*S*)-5-[(1*R*)-1-[(3*αS*,4*S*,6*S*,7*αR*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl]amino)carbonyl]-2-oxo-3-[(2-phenyl-4-quinolinyl)methyl]imidazolidinyl]carbonyl}-2-methylpropylcarbamate;

*N-((1*S*)-1-{{(5*S*)-5-{{(1*R*)-1-[(3*α*S, 4*S*, 6*S*, 7*α*R)-hexahydro-3*α*, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl]propyl}-amino)carbonyl]-2-oxo-3-(3-phenylpropyl)imidazolidinyl]carbonyl}-2-methylpropyl)-2-chloronicotinamide;*

*(4*S*)-N-{{(1*R*)-1-[(3*α*S, 4*S*, 6*S*, 7*α*R)-hexahydro-3*α*, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl]propyl}-3-{(2*S*)-2-[(4-butylbenzoyl)amino]-3-methylbutanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;*

*isobutyl (1*S*)-1-{{(5*S*)-5-{{(1*R*)-1-[(3*α*S, 4*S*, 6*S*, 7*α*R)-hexahydro-3*α*, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl]propyl}amino)carbonyl]-2-oxo-3-(3-phenylpropyl)imidazolidinyl]carbonyl}-2-methylpropylcarbamate;*

*(4*S*)-N-{{(1*R*)-1-[(3*α*S, 4*S*, 6*S*, 7*α*R)-hexahydro-3*α*, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl]propyl}-3-{(2*S*)-2-[(benzoylamino)carbonyl]amino}-3-methylbutanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;*

*(4*S*)-N-{{(1*R*)-1-[(3*α*S, 4*S*, 6*S*, 7*α*R)-hexahydro-3*α*, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl]propyl}-3-{(2*S*)-3-methyl-2-(1-naphthoylamino)butanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;*

*(4*S*)-N-{{(1*R*)-1-[(3*α*S, 4*S*, 6*S*, 7*α*R)-hexahydro-3*α*, 5, 5-trimethyl-4, 6-methano-1, 3, 2-benzodioxaborol-2-yl]propyl}-3-{(2*S*)-2-(acetylamino)-3-methylbutanoyl}-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;*

(4*S*)-*N*-{[(1*R*)-1-[(3*αS*,4*S*,6*S*,7*αR*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]propyl}-3-[(2*S*)-2-(benzoylamino)-3-methylbutanoyl]-2-oxo-1-(3-phenylpropyl)-4-imidazolidinecarboxamide;

benzyl (5*S*)-5-[(1*R*)-1-[(3*αS*,4*S*,6*S*,7*αR*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]-3-butenyl]amino)carbonyl]-2-oxo-3-[(2*E*)-3-phenyl-2-propenyl]-1-imidazolidinecarboxylate; and

benzyl (5*S*)-5-[(1*R*)-1-[(3*αS*,4*S*,6*S*,7*αR*)-hexahydro-3*α*,5,5-trimethyl-4,6-methano-1,3,2-benzodioxaborol-2-yl]-3-butenyl]amino)carbonyl]-3-(2-anilino-2-oxoethyl)-2-oxo-1-imidazolidinecarboxylate.

7. (currently amended) A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt form ~~or prodrug~~ thereof.

8. (canceled)

9. (canceled)

10. (canceled)

11. (canceled)

12. (canceled)

13. (canceled)

14. (previously canceled)

15. (previously canceled)

16. (previously canceled)

17. (previously canceled)

18. (previously canceled)

19. (previously canceled)

20. (previously canceled)

21. (previously canceled)