Quantum Groups

Hoyan $\mathrm{Mok^1}$

September 30, 2022

 $^{^1} hoyanmok@outlook.com$

Preface

Contents

Pr	reface	i
Co	ontents	ii
1	Poisson-Lie Groups and Lie Bialgebras §1 Poisson Manifolds	1 1
A	Appendix	5
In	Index	

Chapter 1

Poisson-Lie Groups and Lie Bialgebras

§1 Poisson Manifolds

Definition 1.1 (Poisson bracket). Let M be a smooth manifold of finite dimension m, $C^{(\infty)}(M)$ be the algebra of smooth real-valued functions on M.

A **Poisson bracket** on M is an \mathbb{R} -bilinear map

$$\{,\}: C^{(\infty)}(M) \times C^{(\infty)}(M) \to C^{(\infty)}(M),$$
 (1-1)

which satisfies the following conditions:

1. Anti-symmetric:

$$\{f,g\} = -\{g,f\}, \tag{1-2}$$

2. Jacobi identity:

$${f,{g,h}} + {g,{h,f}} + {h,{f,g}} = 0,$$
 (1-3)

3. Leibniz identity:

$$\{f, \{gh\}\} = \{f, g\}h + \{f, h\}g, \tag{1-4}$$

for any $f, g, h \in C^{(\infty)}(M)$.

 $X_f = \{f, \} \colon g \mapsto \{f, g\}$ defines a vector field on M, called the **Hamiltonian vector field**.

$$B_M: T^*M \to TM; df \mapsto X_f.$$
 (1-5)

 $\exists w_M \in TM^{\otimes 2} \ (\textbf{Poisson bivector}), \text{ s.t. } \{f,g\} = (\mathrm{d} f \otimes \mathrm{d} g)(w_M).$ In coordinates:

$$\{f,g\} = w^{ij}(x)\partial_i f(x)\partial_j g(x). \tag{1-6}$$

Definition 1.2 (Poisson map). Let N, M be two Poisson manifolds. If $F: N \to M$ is smooth and $\forall f, g \in C^{(\infty)}(M)$,

$$\{f,g\}_M \circ F = \{f \circ F, g \circ F\}_N,$$
 (1-7)

then F is called a **Poisson map**.

If y = F(x), $x \in N$, in coordinates:

$$\begin{split} w_M^{ij}(y) \frac{\partial f}{\partial y^i}(y) \frac{\partial g}{\partial y^i}(y) &= w_N^{k\ell}(x) \frac{\partial f \circ F}{\partial x^k}(x) \frac{\partial g \circ F}{\partial x^\ell}(x) \\ &= w_N^{k\ell}(x) \frac{\partial f}{\partial y^i}(y) \frac{\partial g}{\partial y^j}(y) \frac{\partial F^i}{\partial x^k} \frac{\partial F^j}{\partial x^\ell} \end{split}$$

 \Rightarrow

$$(F'(x) \otimes F'(x))(w_N(x)) = w_M(F(x)).$$
 (1-8)

Definition 1.3 (Poisson submanifold). Let S be a submanifold of M. The inclusion map $S \hookrightarrow M$ is a Poisson map iff $\forall x \in S$, $w_M(x) \in (T_x S)^{\otimes 2}$. In this case, S is called a **Poisson submanifold** of M.

Definition 1.4 (Product of Poisson manifolds). Let M and N be Poisson manifolds, their product $M \times N$, with $\{,\}_{M \times N}$ defined as

$$\{f, g\}_{M \times N}(x, y) = \{x \mapsto f(x, y), x \mapsto g(x, y)\}_{M}(x)$$

$$+ \{y \mapsto f(x, y), y \mapsto g(x, y)\}_{N}(y),$$
(1-9)

is also a Poisson manifold.

 $X_f = \{f,\}: g \mapsto \{f,g\}$ defines a vector field on M, called the **Hamiltonian vector field**.

$$B_M \colon T^*M \to TM; \ \mathrm{d}f \mapsto X_f.$$
 (1-10)

If B is an isomorphism, M is said to be **symplectic**. Equivalently this means that $\forall x \in M$, w(x) is a non-degenerate bilinear form on T_x^*M . In this case, $(B \otimes B)^{-1}(w) =: \omega \in T^*M \otimes T^*M$ is a non-degenerate 2-form on M.

Definition 1.5 (Symplectic leaves). Let M be a Poisson manifold. Define an equivalence relation \sim as $x \sim y$ iff x and y can be joined by a piecewise smooth curve on M, each smooth segment of which is part of an integral curve of a Hamiltonian vector field on M. Then each class in M/\sim is called a *symplectic leaf*.

Theorem 1.1 (Symplectic leaves are Poisson submanifolds). $\forall L \in M/\sim (defined\ in\ Def.\ 1.5),\ L\ is\ a\ Poisson\ submanifold\ of\ M.$

Example: Lie-Poisson structure

Definition 1.6 (Lie-Poisson structure). Let \mathfrak{g} be a mD Lie algebra, whose bases are x_i ($i \in m$), and Lie bracket is defined as

$$[x_i, x_j] = c_{ij}^k x_k.$$
 (1-11)

We can define the Poisson bracket on \mathfrak{g}^* as

$$\{f_1, f_2\}(\xi) = \langle [(\mathrm{d}f_1)_{\xi}, (\mathrm{d}f_2)_{\xi}], \xi \rangle, \tag{1-12}$$

or in coordinates form:

$$\{f_1, f_2\}(\xi) = c_{ij}^k \frac{\partial f_1}{\partial x^i} \frac{\partial f_2}{\partial x^j} \langle \xi, x_k \rangle.$$
 (1-13)

4CHAPTER 1. POISSON-LIE GROUPS AND LIE BIALGEBRAS

Note that the bases of $T^*\mathfrak{g}^*\cong (\mathfrak{g}^*)^*\cong \mathfrak{g}$ can be considered as x_i i.e. bases of \mathfrak{g} ,

$$\mathrm{d}f = \frac{\partial f}{\partial x_i} x_i,\tag{1-14}$$

and where the x_i which partial derivative with respect to are coordinates on \mathfrak{g}^* .

Appendix A

Appendix

Index

Here listed the important symbols used in these notes.

Hamiltonian vector field, 2, 3 Poisson submanifold, 2
Poisson bivector, 2
Poisson bracket, 1 symplectic, 3
Poisson map, 2 symplectic leaf, 3