▼ 1912년 타이타닉 사고의 생존자를 예측하기

[데이터 설명]

• 891명의 승객에 대한 데이터. 생존여부 / 좌석 등급 / 성별 / 나이 / 일행 / 자녀 / 운임 등의 feature

Feature	Definition	Value
survived	생존 여부	0 = No, 1 = Yes
pclass	티겟 등급 (1등석, 2등석, 3등석)	1 = 1st, 2 = 2nd, 3 = 3rd
sex	성별	male 남성, female 여성
age	나이	((숫자))
sibsp	함께 탑승한 배우자, 형제자매의 수 합	((숫자))
parch	함께 탑승한 부모님, 자녀의 수 합	((숫자))
fare	운임 요금 (티켓 가격)	((숫자))
embarked	출항지 (한글자)	C = Cherbourg, Q = Queenstown, S = Southampton
class	티켓 등급 (단어로)	First, Second, Third
who	남성/여성/아이 구분	man, woman, child
adult_male	성인 남성인지의 여부	True, False
deck	선박에서 배정받은 좌석의 구역	A, B, C, D, E, F, G, 빈 값
embark_town	출항지 (풀네임)	((도시이름))
alive	생존 여부	yes, no
alone	혼자인지 여부	True, False

▼ 라이브러리 임포트

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
```

▼ 데이터 불러오기

```
titanic_df = sns.load_dataset('titanic')
titanic_df
```

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who
0	0	3	male	22.0	1	0	7.2500	S	Third	man
1	1	1	female	38.0	1	0	71.2833	С	First	woman
2	1	3	female	26.0	0	0	7.9250	S	Third	woman
3	1	1	female	35.0	1	0	53.1000	S	First	woman
4	0	3	male	35.0	0	0	8.0500	S	Third	man
		•••			•••					
886	0	2	male	27.0	0	0	13.0000	S	Second	man
887	1	1	female	19.0	0	0	30.0000	S	First	woman
888	0	3	female	NaN	1	2	23.4500	S	Third	woman
889	1	1	male	26.0	0	0	30.0000	С	First	man
890	0	3	male	32.0	0	0	7.7500	0	Third	man

▼ EDA 탐색적 데이터 분석 수행

.info() 함수로 데이터 컬럼별 타입(자료형), 값이 있는 행(Non-Null)의 갯수 등 titanic_df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
Column Non-Null Count Data

#	Column	Non-Null Count	Dtype
0	survived	891 non-null	 int64
1			
	pclass	891 non-null	int64
2	sex	891 non-null	object
3	age	714 non-null	float64
4	sibsp	891 non-null	int64
5	parch	891 non-null	int64
6	fare	891 non-null	float64
7	embarked	889 non-null	object
8	class	891 non-null	category
9	who	891 non-null	object
10	adult_male	891 non-null	bool
11	deck	203 non-null	category
12	embark_town	889 non-null	object
13	alive	891 non-null	object
14	alone	891 non-null	bool
dtun	oo: bool(2)	antagory(0) flo	0+64(2) in+64

dtypes: bool(2), category(2), float64(2), int64(4), object(5)

memory usage: 80.6+ KB

범주형 컬럼과, 수치형 컬럼으로 나누어서 리스트를 만듬.(추후 분석 시 반복되는 코드를 줄일 수 있음)

• 범주형(categorical) 데이터는 값이 [1, 2, 3], ["내부", "외부"]와 같이 몇 가지 분류로 한정되는 데이터임.

• 수치형(numerical) 데이터는 값이 1,2,3,5,..., 1.2, 4.51, 3.1415와 같이 숫자 축으로 무한히 위치할 수 있는 데이터임.

```
categorical_cols = ["sex", "embarked", "class", "who", "adult_male", "deck",
numerical_cols = ["age", "sibsp", "parch", "fare"]
```

▼ 데이터의 통계량 살펴보기

.describe() 함수로 각 열에 대한 대략적인 통계 값들을 볼 수 있음. (평균, 상위 25/50/75% 값, 최대/최소 값 등)

titanic_df.describe()

	survived	pclass	age	sibsp	parch	fare
count	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
# .value_counts()를 통해 각 컬럼별로 몇 개의 row가 있는지 셀 수 있음.
for col in categorical_cols:
```

```
print(col + " 카운트::")
print(titanic_df.loc[:, col].value_counts())
print()
```

sex 카운트:: male 577 female 314

Name: sex, dtype: int64

embarked 카운트::

S 644 C 168 Q 77

Name: embarked, dtype: int64

class 카운트:: Third 491 First 216 Second 184

```
Name: class, dtype: int64
who 카운트::
        537
man
        271
woman
child
         83
Name: who, dtype: int64
adult_male 카운트::
True
        537
False
        354
Name: adult_male, dtype: int64
deck 카운트::
    59
В
    47
D
    33
Ε
    32
Α
    15
F
     13
G
     4
Name: deck, dtype: int64
embark_town 카운트::
Southampton
             644
Cherbourg
               168
Queenstown
              77
Name: embark_town, dtype: int64
alive 카운트::
      549
      342
yes
Name: alive, dtype: int64
alone 카운트::
True
        537
False
        354
Name: alone, dtype: int64
```

▼ 데이터의 분포 눈으로 살펴보기

수치형 컬럼들의 분포를 그려보자. 통계량은 boxplot으로 살펴보고, 분포는 histplot으로 그리기

- 반복문을 이용하여 여러개의 차트를 그리기
- plt.subplots를 통해 여러 개의 도화지를 생성함. (nrows × ncols)
- for문 안에서는 각 도화지(ax)에 seaborn으로 차트 그리기 figure는 그림 전체를 의미함.

```
figure, ax_list = plt.subplots(nrows=1, ncols=4)
figure.set_size_inches(12,3)

for i in range(4):
    col = numerical_cols[i]
    sns.boxplot(data=titanic_df, y=col, showfliers=True, ax=ax_list[i])
    ax_list[i] set_title(f"distribution '{col}'")
```



```
figure, ax_list = plt.subplots(nrows=1, ncols=4)
figure.set_size_inches(12,3)
```

for i in range(4):
 sns.histplot(data=titanic_df.loc[:, numerical_cols[i]], ax=ax_list[i])
 ax_list[i].set_title(f"distribution '{numerical_cols[i]}'")

범주형 컬럼들의 분포 그리기. 범주형이므로 countplot을 통해 각 범주별로 개수를 셀 수 있음.

- 범주형 컬럼이 총 9개 이므로, 3x3 도화지 레이아웃으로 하나씩 그래프를 그려봄.
- ax_list_list는 [[], []] 형태의 2차원 리스트임. for 문으로 반복하기 위해 1차원 리스트로 풀어보기
- 1차원 리스트 ax_list가 9개의 도화지 (ax)를 갖도록 풀어서 할당하는데, .reshape() 라는 numpy함수 사용

```
figure, ax_list_list = plt.subplots(nrows=3, ncols=3);
figure.set_size_inches(10,10)
```

```
an_1131 - an_1131_1131.15311ap5(3)
print(ax_list_list.shape)
print(ax_list.shape)
for i in range(len(categorical_cols)):
     col = categorical_cols[i]
     sns.countplot(data=titanic_df, x=col, ax=ax_list[i])
     ax_list[i].set_title(col)
plt.tight_layout()
      (3, 3)
      (9,)
                                                       embarked
                                                                                           class
                        sex
         600
                                                                             500
                                           600
         500
                                                                             400
                                           500
         400
                                           400
                                                                             300
         300
                                           300
                                                                             200
         200
                                           200
                                                                             100
         100
                                           100
                                             0
                                                                              0
           0
                 male
                              female
                                                                                   First
                                                                                           Second
                                                                                                    Third
                        sex
                                                        embarked
                                                                                            dass
                        who
                                                       adult male
                                                                                            deck
                                                                              60
         500
                                           500
                                                                              50
         400
                                           400
                                                                             40
                                                                           count
         300
                                           300
                                                                             30
         200
                                           200
                                                                             20
         100
                                           100
                                                                             10
           0
                                                                                            Ď
                                                                                                Ė
                                                                                                    Ė
                                 child
                                                   False
                                                                 True
                                                                                     В
                                                                                         Ċ
                man
                       woman
                                                                                            deck
                        who
                                                       adult_male
                                                          alive
                                                                                           alone
                    embark town
         600
                                                                             500
                                           500
         500
                                                                             400
                                           400
         400
                                                                             300
                                           300
         300
                                                                             200
                                           200
         200
                                           100
                                                                             100
         100
```

0

no

alive

yes

0

False

True

alone

Southampton Cherbourg Queenstown

embark town

0

여기서부터는 EDA의 범위를 넘어섬. 탑승객의 '생존'에 어떤 것들이 영향을 미칠까? 몇 가지 가설을 세우고 그래프를 그려 '생존'에 영향을 미치는 요인이 무엇인지 살펴보자.

▼ 성별과 생존 여부

sns.countplot(data=titanic_df, x='sex', hue='survived');

▼ 좌석 등급과 생존 여부

sns.countplot(data=titanic_df, x='pclass', hue='survived');

▼ 9개의 범주형 분류에 대해, 생존 여부로 그래프 그리기

hue 인자로 'survived' 컬럼을 입력, 각 분류형 데이터 별로 생존/사망 분리하여 figure, ax_list_list = plt.subplots(nrows=3, ncols=3); figure.set_size_inches(10,10)

```
ax_list = ax_list_list.reshape(9)
print(ax_list_list.shape)
print(ax_list.shape)
for i in range(len(categorical_cols)):
     col = categorical_cols[i]
     sns.countplot(data=titanic_df, x=col, ax=ax_list[i], hue='survived')
     ax_list[i].set_title(col)
plt.tight_layout()
      (3, 3)
      (9,)
                                                      embarked
                        sex
                                                                                          dass
                               survived
                                                                survived
                                                                                survived
                                          400
                                                                           350
                                  0
                                                                   0
                                                                                     0
         400
                                                                           300
                                   1
                                                                   1
                                                                                   1
                                          300
                                                                           250
         300
                                                                           200
                                          200
         200
                                                                           150
                                                                           100
                                          100
         100
                                                                            50
           0
                                            0
                                                                             0
                                                  Ś
                                                          Ċ
                                                                   Q
                                                                                                   Third
                 male
                             female
                                                                                  First
                                                                                         Second
                                                       embarked
                                                                                          dass
                        sex
                       who
                                                      adult male
                                                                                          deck
                                                                            35
                               survived
                                               survived
                                                                                                  survived
         400
                                   0
                                          400
                                                   0
                                                                            30
                                  1
                                                  1
                                                                                                    1
                                                                            25
         300
                                          300
                                                                          count
                                                                            20
         200
                                          200
                                                                            15
                                                                            10
         100
                                          100
           0
                                            0
                                                                             0
                       woman
                                child
                                                  False
                                                                True
                                                                                    В
                                                                                        Ċ
                                                                                           Ď
                                                                                               Ė
                                                                                                      Ġ
               man
                                                                                À
                                                                                          deck
                        who
                                                       adult_male
                    embark_town
                                                         alive
                                                                                          alone
                               survived
                                                                survived
                                                                                survived
         400
                                                                           350
                                          500
                                  0
                                                                  0
                                                                           300
                                  1
                                                                   1
                                                                                   1
                                          400
         300
```

300

200

100

200

100

0

Southampton Cherbourg Queenstown

embark_town

250

200 150

100

50

yes

alive

False

alone

True

- 남성보다 여성의 생존률이 더 높습니다 (남성 > 여성 > 아이)
- 탑승지(embarked)가 C인 경우 생존율이 높습니다
- 1등석 > 2등석 > 3등석 순으로 생존율이 높습니다
- B,D,E 덱 위치의 승객들이 생존율이 높습니다
- 나홀로 승객은 생존율이 낮습니다
- ▼ 생존 여부별로 나이의 히스토그램 그려보기

sns.histplot(data=titanic_df, x='age', hue='survived', bins=30, alpha=0.3);

▼ 성별과 좌석 등급에 따라, 나이의 boxplot 그려보기

sns.boxplot(data=titanic_df, x='sex', y='age', hue='pclass');

- ▼ Decision Tree로 타이타닉 생존자 예측 모델 만들기
- ▼ 결측치 채우기

titanic_df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 15 columns):
```

#	Column	Non-Null Count	Dtype
0	survived	891 non-null	 int64
1	pclass	891 non-null	int64
2	sex	891 non-null	object
3	age	714 non-null	float64
4	sibsp	891 non-null	int64
5	parch	891 non-null	int64
6	fare	891 non-null	float64
7	embarked	889 non-null	object
8	class	891 non-null	category
9	who	891 non-null	object
10	adult_male	891 non-null	bool
11	deck	203 non-null	category
12	embark_town	889 non-null	object
13	alive	891 non-null	object
14	alone	891 non-null	bool
dtyp	es: bool(2),	category(2), flo	at64(2), int64(4), object(5)
memo	ry usage: 80.	6+ KB	

```
# numerical value
titanic_df['age'].fillna(titanic_df['age'].mean(), inplace=True)
# categorical value
titanic_df['deck'].fillna(titanic_df['deck'].describe()['top'], inplace=True)
titanic_df['embarked'].fillna(titanic_df['embarked'].describe()['top'], inpla
```

titanic_df

string type을 숫자로 변형
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
titanic_df['sex'] = le.fit(titanic_df['sex']).transform(titanic_df['sex'])
titanic_df['adult_male'] = le.fit(titanic_df['adult_male']).transform(titanic
titanic_df['alone'] = le.fit(titanic_df['alone']).transform(titanic_df['alone
titanic_df['embarked'] = le.fit(titanic_df['embarked']).transform(titanic_df[
titanic_df['deck']).transform(titanic_df['deck'])

titanic_df['who'] = le.fit(titanic_df['who']).transform(titanic_df['who'])

titanic_df

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who
0	0	3	1	22.000000	1	0	7.2500	2	Third	1
1	1	1	0	38.000000	1	0	71.2833	0	First	2
2	1	3	0	26.000000	0	0	7.9250	2	Third	2
3	1	1	0	35.000000	1	0	53.1000	2	First	2
4	0	3	1	35.000000	0	0	8.0500	2	Third	1
886	0	2	1	27.000000	0	0	13.0000	2	Second	1
887	1	1	0	19.000000	0	0	30.0000	2	First	2
888	0	3	0	29.699118	1	2	23.4500	2	Third	2
889	1	1	1	26.000000	0	0	30.0000	0	First	1
890	0	3	1	32.000000	0	0	7.7500	1	Third	1

891 rows × 15 columns

```
# drop duplicated columns
drop_cols = ["class", "embark_town", "alive"]
titanic_df = titanic_df.drop(drop_cols, axis=1)
titanic_df
```

	survived	pclass	sex	age	sibsp	parch	fare	embarked	who	adult_m
0	0	3	1	22.000000	1	0	7.2500	2	1	
1	1	1	0	38.000000	1	0	71.2833	0	2	
2	1	3	0	26.000000	0	0	7.9250	2	2	
3	1	1	0	35.000000	1	0	53.1000	2	2	
4	0	3	1	35.000000	0	0	8.0500	2	1	
	•••									
886	0	2	1	27.000000	0	0	13.0000	2	1	
007	1	1	^	10 000000	^	^	20 0000	0	0	

▼ 트레이닝 데이터 준비하기

000 I I I ZU.UUUUUU U U OU.UUUU U I

X = titanic_df.iloc[:,1:]
y = titanic_df['survived']

80%는 트레이닝 데이터, 20%는 테스트 데이터로 나눕니다. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rand

▼ 결정 트리 학습모델 만들기

from sklearn.tree import DecisionTreeClassifier

dt_clf = DecisionTreeClassifier()
dt_clf.fit(X_train, y_train)
y_pred = dt_clf.predict(X_test)

print('예측 정확도: %.2f' % accuracy_score(y_test, y_pred))

예측 정확도: 0.80

from sklearn.metrics import classification_report

Predict를 수행하고 classification_report() 결과 출력하기 print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.90 0.67	0.78 0.84	0.83 0.74	117 62
accuracy macro avg	0.78	0.81	0.80 0.79	179 179

weighted avg 0.82 0.80 0.80 179

×