1 Auswertung

Zur Veranschaulichung des Vorgangs der Wärmevverschiebung innerhalb der, Apparatur werden zunächst beide Temperaturverläufe aufgezeichnet und es wird durch beide jeweils ein Ausgleichspolynom dritten Grades gelegt,

$$p(t) = a_3 t^3 + a_2 t^2 + a_1 t + a_0$$

mit

$$\begin{split} a_{3,\text{warm}} &= -3{,}992 \cdot 10^{-3} \, \frac{\text{K}}{\text{s}^3} \qquad a_{3,\text{kalt}} = 7{,}393 \cdot 10^{-3} \, \frac{\text{K}}{\text{s}^3} \\ a_{2,\text{warm}} &= 0{,}1118 \, \frac{\text{K}}{\text{s}^2} \qquad a_{2,\text{kalt}} = 0{,}1912 \, \frac{\text{K}}{\text{s}^2} \\ a_{1,\text{warm}} &= 0{,}8558 \, \frac{\text{K}}{\text{s}} \qquad a_{1,\text{kalt}} = -0{,}1619 \, \frac{\text{K}}{\text{s}} \\ a_{0,\text{warm}} &= 293{,}525 \, \text{K} \qquad a_{0,\text{kalt}} = 293{,}481 \, \text{K}. \end{split}$$

Tabelle 1: Temperatur im Verlauf der Messung

t/\min	T_1/K	T_2/K	P/W
0	20,6	19,8	175,0
1	21,6	19,8	175,0
2	22,2	19,8	175,0
3	23,4	19,0	177,5
4	25,3	17,2	195,0
5	26,7	15,9	200,0
6	28,7	14,0	202,5
7	30,6	12,1	205,0
8	32,6	10,3	207,5
9	34,5	8,5	207,5
10	36,3	6,8	210,0
11	38,1	5,1	210,0
12	39,8	3,5	212,5
13	41,6	2,0	212,5
14	43,2	0,8	212,5
15	44,7	0,1	210,0
16	46,2	-0,4	207,5
17	47,5	-0,9	205,0
18	48,7	-1,3	205,0
19	49,9	-1,8	205,0

Abbildung 1: Temperaturverlauf der Messung kubisch interpoliert.

Aus den beiden Messreihen ergeben sich dann eine steigende Kurve für T_1 und eine fallende für T_2 und die Differentialquotienten.

Mit den Wärmekapazitäten von Wasser und der des Reservoir 1

$$m_1 c_W = 12\,600\,\frac{\mathrm{J}}{\mathrm{K}}$$

$$m_k c_k = 660\,\frac{\mathrm{J}}{\mathrm{K}}$$

und der gemittelten Leistungsaufnahme

$$N = 200,5 \,\mathrm{Watt}$$

kann man nun die relative Güteziffer ν berechnen.

$$\nu = \frac{\varDelta Q_1}{N \cdot \varDelta T} = \frac{m_1 c_W + m_k c_k}{N} \frac{\varDelta T_1}{\varDelta t}$$

Für die Berechnung des Massedurchsatzes muss der an de Manometern abgelesene Zusammenhang zwischen Druck und Temperatur genutzt werden um L zu bestimmen. Die aus der linearen Ausgleichsrechnung erhaltenen Werte sind:

Steigung
$$m = -2520,89$$
 Achsenabschnitt $b = 21,83$

und L ergibt sich als

$$L = -m \cdot R = 20\,959,86$$

Damit ist es nun möglich den Massendurchsatz zu berechnen:

$$\frac{\Delta m}{\Delta t} = \frac{\Delta Q_2}{L \cdot \Delta t} = \frac{m_2 c_W + m_k c_k}{L} \frac{\Delta T_2}{\Delta t} \tag{1}$$

Tabelle 2: Differentialquotienten in verschiedenen Punkten

t/min	$\frac{\mathrm{d}T_1}{\mathrm{d}t}/\mathrm{K/s}$	$\frac{\mathrm{d}T_1}{\mathrm{d}t}/\mathrm{K/s}$	$\nu/$	$\frac{\Delta m}{\Delta t}/\mathrm{kg/s}$
4	1,558	-1,337	103.089	0.845
6	1,766	-1,658	116.830	1.049
10	1,894	-1,769	125.304	1.119
13	1,739	-1,386	115.027	0.877

Zuletzt wird aus den Werten für den Druck in den Gasleitungen noch die mechanische Kompressorleistung $N_{\rm mech}$ berechnet.

Tabelle 3: Temperatur im Verlauf der Messung

t/min	p_1/Pa	p_2/Pa
0	4.8	5
1	2.2	5.5
2	2.6	6.6
3	2.8	7.04
4	3.0	7.6
5	3.1	8
6	3.2	8.4
7	3.2	8.75
8	3.2	9.2
9	3.2	9.5
10	3.2	10.0
11	3.2	10.4
12	3.2	10.7
13	3.2	11.1
14	3.2	11.5
15	3.2	11.9
16	3.2	12.2
17	3.2	12.5
18	3.15	12.9
19	3.15	13.1