

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO Centro Tecnológico Departamento de Engenharia Elétrica

Princípios de Comunicações

Analise de Sinais (Revisão) Semestre Letivo 2020/1

Prof.: Jair A. Lima Silva

PPGEE/DEL/UFES

Índice

I. Séries de Fourier

- a. Trigonométrica
- b. Exponencial Complexa

- Fourier demonstrou que uma função periódica f(t) qualquer pode ser representada por uma série <u>infinita</u> de somas de <u>funções senoidais e cossenoidais</u>.
- A 1ª parcela da soma possui frequência $f_0=1/T_0$ (**frequência fundamental**), para T_o o periodo de repetição da função.
- As outras parcelas são <u>múltiplos inteiros desta frequência</u> fundamental, ou seja, $f_n = n/T_0$ (**frequências harmônicas**), com $n = 1, 2, 3, \infty$.

• Portanto, f(t) pode ser expandida na **série infinita**:

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cdot \cos(2\pi \cdot f_n \cdot t) + b_n \cdot \sin(2\pi \cdot f_n \cdot t) \right], \quad (0 < t < T_0)$$

$$T_0 = \frac{1}{f_0}, \ f_n = n \times f_0, \ 2\pi \cdot f_n = w_n$$

$$a_0 = \frac{2}{T_0} \int_{-T_0/2}^{+T_0/2} f(t) \cdot dt \rightarrow \text{valor médio (componente CC)}$$

$$a_n = \frac{2}{T_0} \int_{-T_0/2}^{+T_0/2} f(t) \cdot \cos(2\pi \cdot f_n \cdot t) \cdot dt \rightarrow \text{Coeficient es}$$

$$b_n = \frac{2}{T_0} \int_{-T_0/2}^{+T_0/2} f(t) \cdot \sin(2\pi \cdot f_n \cdot t) \cdot dt \rightarrow \text{Coeficient es}$$

• <u>Exercício Exemplo</u>: Encontre a equação da expansão em série Trigonométrica de Fourier da onda quadrada unipolar (**trem de pulsos retangulares**) mostrada na Figura abaixo.

• Exercício Exemplo (cont): Aplicado ao Padrão Repetitivo de Bits

$$x(t) = \begin{cases} A \dots |t| < \frac{T_s}{2} \\ 0 \dots \frac{T_s}{2} < |t| < \frac{T_0}{2} \end{cases}$$

Onda Quadrada – Domínio do Tempo

$$x(t) = \begin{cases} A \dots |t| < \frac{T_s}{2} \\ 0 \dots \frac{T_s}{2} < |t| < \frac{T_0}{2} \end{cases}$$

 $x(t) = \begin{cases} A.....|t| < \frac{T_s}{2} & \text{Expandindo a função em uma} \\ 0......\frac{T_s}{2} < |t| < \frac{T_0}{2} & \text{escolhendo-se o eixo de simetria} \end{cases}$ Expandindo a função em uma para função par teremos que:

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cdot \cos(2\pi \cdot f_n \cdot t) \right] \qquad onde \begin{cases} 0 < t < T_0 \\ T_0 = \frac{1}{f_0}, \ f_n = n \cdot f_0 \end{cases}$$

onde
$$\begin{cases} 0 < t < T_0 \\ T_0 = \frac{1}{f_0}, \ f_n = n \cdot f_0 \end{cases}$$

Onda Quadrada – Domínio do Tempo

$$a_0 = \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} x(t) \cdot dt = \frac{2A \cdot T_s}{T_0}$$

$$a_n = \frac{2}{T_0} \int_{-T_0/2}^{T_0/2} x(t) \cdot \cos(2\pi f_n t) \cdot dt = \frac{2}{T_0} \cdot \left[\frac{A \cdot \sin(2\pi f_n t)}{2\pi f_n} \right]_{-T_s/2}^{T_s/2}$$

$$a_n = \frac{2A}{T_0} \cdot \frac{\sin(\pi \cdot f_n \cdot T_s)}{\pi \cdot f_n} = \frac{2A \cdot T_s}{T_0} \cdot \frac{\sin(\pi \cdot f_n \cdot T_s)}{\pi \cdot f_n \cdot T_s}$$

$$a_n = \frac{2A \cdot T_s}{T_0} \cdot \operatorname{sinc}(\pi \cdot f_n \cdot T_s)$$

Onda Quadrada – Domínio do Tempo

$$a_0 = \frac{2A \cdot T_s}{T_0}$$

$$a_n = \frac{2A \cdot T_s}{T_0} \cdot \operatorname{sinc}(\pi \cdot f_n \cdot T_s)$$

$$x(t) = \frac{AT_s}{T_0} + \sum_{n=1}^{\infty} \frac{AT_s}{T_0} \cdot \operatorname{sinc}(\pi \cdot f_n \cdot T_s) \cdot \cos(2\pi \cdot f_n \cdot t)$$

DC

Coeficientes

Harmonicas

Ia. Série Trigonométrica de Fourier Espectro da onda quadrada no Matlab

• Exercício Exemplo: Calcule as 6 primeiras raias da expansão da forma de onda quadrada anterior considerando que $A=0.5~V,\,T_0=3xT_s=1~ms$. Escreva a equação da expansão para este caso.

Exercício Exemplo (cont):

$$a_0 = \frac{2AT_s}{T} = \frac{1}{3} = 0,333$$

$$a_n = \frac{sen(n\pi/3)}{n\pi}$$

$$a_1 = \frac{sen(\pi/3)}{\pi} = 0.275$$

$$a_3 = \frac{sen(\pi)}{3\pi} = 0$$

$$a_5 = \frac{sen(5\pi/3)}{5\pi} = -0.055$$
 $a_6 = \frac{sen(2\pi)}{6\pi} = 0$

$$a_1 = \frac{sen(\pi/3)}{\pi} = 0,275$$
 $a_2 = \frac{sen(2\pi/3)}{2\pi} = 0,137$

$$a_3 = \frac{sen(\pi)}{3\pi} = 0$$
 $a_4 = \frac{sen(4\pi/3)}{4\pi} = -0,068$

$$a_6 = \frac{sen(2\pi)}{6\pi} = 0$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(\frac{sen(n\pi/3)}{n\pi} \right) \cos(n\omega t)$$

 $f(t) \approx 0.166 + 0.275\cos(\omega t) + 0.137\cos(2\omega t) - 0.068\cos(4\omega t) - 0.055\cos(5\omega t)$

No Padrão Repetitivo para T/TS=3

Ib. Série Exponencial Complexa de Fourier

• Da equação de Euler:

$$e^{jwt} = \cos(wt) + j\sin(wt)$$

$$\cos(wt) = \frac{e^{jwt} + e^{-jwt}}{2} \quad e \quad \sin(wt) = \frac{e^{jwt} - e^{-jwt}}{2j}$$

• Substituindo estas equações na expressão Canônica da expansão em série de Fourier,...

• e lembrando que $nw = 2\pi f_n$, para $n = 1, 2, 3, ... \infty$

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\frac{a_n}{2} \cdot \left(e^{jnwt} + e^{-jnwt} \right) + \frac{b_n}{2j} \cdot \left(e^{jnwt} - e^{-jnwt} \right) \right]$$

• Com 1/j = -j, têm-se que

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[\frac{1}{2} (a_n - jb_n) e^{jnwt} + \frac{1}{2} (a_n + jb_n) e^{-jnwt} \right]$$

• Definindo-se:

$$C_0 = \frac{a_0}{2}, \quad C_n = \frac{1}{2}(a_n - jb_n), \quad e \quad C_{-n} = \frac{1}{2}(a_n + jb_n)$$

• Considerando-se que C_n e C_{-n} são os coeficientes das componentes de **frequências positivas** e **negativas** respectivamente, obtém-se que,

$$x(t) = C_0 + \sum_{n=1}^{\infty} \left(C_n e^{jnwt} + C_{-n} e^{-jnwt} \right)$$

• com as exponenciais representado respectivamente, as harmônicas de frequências positivas e negativas.

• A troca de sinais dos limites do segundo somatório, provoca mudança de sinal no argumento do somatório, tal que:

$$x(t) = C_0 + \sum_{n=1}^{\infty} C_n e^{jnwt} + \sum_{n=-1}^{-\infty} C_n e^{jnwt}$$

• Se incluirmos o valor DC e se estendermos os limites da soma de - ∞ a + ∞ ,...

• Se incluirmos o valor DC e se estendermos os limites da soma de - ∞ a + ∞ ,...

$$x(t) = \sum_{n = -\infty}^{\infty} C_n \cdot e^{jnwt}$$

$x(t) = \sum_{n=-\infty}^{\infty} C_n \cdot e^{jnwt}$ Série Exponencial Complexa de Fourier

$$C_0 = \frac{1}{T_0} \int_{-T_0/2}^{-+T_0/2} x(t) dt$$
, $C_n = \frac{1}{T_0} \int_{-T_0/2}^{+T_0/2} x(t) e^{-jnwt} dt$,

$$C_n = A_n + jB_n$$
, $\left| C_n \right| = \sqrt{A_n^2 + B_n^2}$ e $\theta_n = tg^{-1} \left(\frac{B_n}{A_n} \right)$

• Considerações,...

$$x(t) = \sum_{n = -\infty}^{\infty} C_n \cdot e^{jnwt}$$

Série Exponencial
Complexa de Fourier
ou
Série de Fourier de Tempo
Contínuo
ou
Série de Fourier

- ✓ O espectro gerado terá componentes nas frequências positivas e frequências negativas (Espectro Simétrico)
- ✓ O eixo de simetria será a frequência zero (DC)

Considerações,...

$$x(t) = \sum_{n=-\infty}^{\infty} C_n \cdot e^{jnwt}, \qquad x(t) \xrightarrow{SF} C_n$$

✓ O Teorema de Parseval se aplica, ou seja, a potência média é a mesma em ambos os domínios:

$$C_0 = \frac{1}{T_0} \int_{T_0} |x(t)|^2 dt = \sum_{n = -\infty}^{\infty} |C_n|^2$$

(a) Domínio tempo de e(t)

Ib. Série Exponencial de Fourier

Representação Trignométrica ou real (um fasor)

Representação Complexa (dois fasores)

(c) Doisfasores na expansão complexa

(b) Fasor único (expansão trigonométrica)

No Exemplo Série Trigonométrica f(t) de Fourier A=0,5v $T=3T_s$ (a) Função f(t) com T=3T_s (b) Coeficientes da SF trigonométrica C_n $C_0 = 0.166$ 0,137 0.068 0,068 -0,034 (c) Coeficientes da SF complexa Série Exponencial Complexa de Fourier $|\mathbf{c}_0| = 0.166$ 0,068 0.068

(d) Coeficientes da SF complexa em valor absoluto