DS50: Prédication tumeur cérébrale

Osman Gaygusuz, Gaspard Rochu, Eléanore Renaud, Théo Gouin, Elise Albrecht, Jérémie Kimenau

Sommaire

Ol Contexte

102 Traitement des données

N Modèles utilisés

04 Conclusion

O1 Contexte

- Les tumeurs cérébrales sont de tailles et localisations variées :
 - Rendent les diagnostics complexe
 - Nécessitent l'expertise de neurochirurgiens
- Système automatisé permet:
 - Accélérer et fiabiliser l'analyse des tumeurs
 - Palier un manque de spécialistes et de connaissances

1 Traitement des données Le dataset

- Dataset de classification
- 3 tumeurs à identifier :
 - Gliome
 - Meningiome
 - Tumeur hypophysaire (*Pituitary*)
 - Pas de tumeur
- 2700 images d'entrainement
- 400 images de test

Meningiome

Pituitaire

Gliome

Pas de tumeur

1 Traitement des données Les images

Images:

- Vue du dessus
- Vue de côté
- Vue de derrière...
- Différentes tailles
- Différentes proportions
- Différentes orientations

1 Traitement des données

Recadrage des images afin de n'avoir que la partie intéressante pour le modèle

12 Traitement des données

Redimensionnement des images pour les adapter aux entrées des modèles

1 Traitement des données

Dilatation des images:

- Objectif: Remplir les potentiels petits trous dans l'image
- Conséquences: Effet de grossissement des traits

Source: https://www.mathworks.com/

Erosion des images:

- Objectif: Supprimer les potentiels pixels flottants
- Conséguences: Effet d'amincissement des traits

03 Modèles utilisés

03 Modèles utilisés Densenet

- Architecture utilisant des couches denses →
 concaténation par canal
- Permet de réduire
 considérablement le nombre de paramètres à déterminer →
 entrainement plus rapide

3 entrainement différents:

- modèle implémenté à la main
- modèle implémenté par Keras
- entrainement avec FastAl

03 Modèles utilisés Resultats

Modèle optimisé par FastAl

03 Modèles utilisés ResNet

03 Modèles utilisés ResNet

03 Modèles utilisés :

EfficientNetB1

Architecture CNN développé par Google AI : B0 à B7

Compound scaling : optimise les performances en équilibrant profondeur, la largeur et la résolution

03 Modèles utilisés :

EfficientNetB1

Accuracy pour le training set : 1.0

Accuracy pour le test set: 0.81

Modèles utilisés

image1.jpg train/ image2.jpg images/ imageA.jpg imageB.jpg dataset/ image1.txt train/ image2.txt labels/ imageA.txt imageB.txt

Mise en forme du dataset

Modèles utilisés

Résultats des tests

Précision: 77,48%

Recall: 73,75%

Accuracy: 74,1%

Convolution Neural Network (CNN) Input Output Pooling Convolution Convolution ReLU RelU RelU Flatten Feature Maps Probabilistic Feature Extraction Classification Distribution Couche récupérée pour le Grad-CAM

Modèle depuis lequel on récupère les couches : EfficientNet

Création des heatmaps

Fonctionnement de Grad-CAM (Gradientweighted Class Activation Mapping):

- 1 Sélection de la dernière couche de convolution (avant les couches entièrement connectées)
- 2 Calcul des gradients de la classe d'intérêt et pondération de ces derniers
- 3 Génération des cartes de chaleur à partir des cartes pondérées
- 4 Superposition sur l'image d'origine : formation des cartes de chaleur

Présentation des heatmaps

Heatmap facilement exploitable

Heatmap moyennement exploitable

Heatmap difficilement exploitable

Utilisation de la librairie cv2 (threshold et findContours)

- 1 Création d'un masque binaire pour récupérer les zones intéressantes (choix du threshold)
- 2 Récupération des bords des zones créées, et création des boîtes avec ces valeurs
- 3 Limitation du "bruit" avec des contraintes de taille et de proportions

Récupération des boîtes englobantes

Image avec "bruit"

Threshold trop grand

Threshold trop petit

1.0 Precision-Recall Curve glioma_tumor 0.784 meningioma_tumor 0.311 no_tumor 0.311 pitultary_tumor 0.327 all classes 0.408 mAP@0.5

Premier test : on ne garde que la plus grande boîte englobante

Résultats

Second test : on garde plus de boîtes englobantes

04 Conclusion

Modèle	Accuracy sur le test set
DenseNet121	75%
DenseNet201	76%
ResNet50	75.4%
ResNet101	74.9%
ResNet152	75.4%
YOLO	74.1%
YOLO avec heatmaps	40,8%
EfficientNetB1	81.7%

ConclusionAmélioration possible

- Augmentation des données (GANs, etc.)
- Enrichissement du dataset
- Optimisation des modèles:
 - Nas
 - Ensemble learning
- Collaboration interdisciplinaire

Questions?

Modèles utilisés YOLO

Fonctionnement

- Couches de convolution et d'activation
- Blocs résiduels (amélioration de la propagation des gradients)
- Feature Pyramid Network (gestion de la détection multi-échelle)
- Têtes de détection (prédiction des boîtes, des scores et des classes)