Exercícios - Notação Assintótica - O

Prof. André Vignatti

Exercício 1. Mostre que $\log_b n = O(\log_a n)$ para todo a>1, b>1

Exercício 2 (Teorema da Multiplicação). Sejam $\overline{f}(n), \overline{g}(n)$ funções não negativas tais que $\overline{f}(n) = O(f(n))$ e $\overline{g}(n) = O(g(n))$. Mostre que

$$\overline{f}(n)\overline{g}(n) = O(f(n)g(n)).$$

Exercício 3. Usando os Teoremas da Soma e Multiplicação, dê uma estimativa usando a notação O para $f(x) = (x+1)\log(x^2+1) + 3x^2$.

Exercício 4. Mostre que f(n) = O(f(n)).

Exercício 5. Mostre que O(1)f(n) = O(f(n)) (dica: veja nas notas de aula como fazer demonstração com a notação assintótica do lado esquerdo).

Exercício 6. $2^{n+1} \in O(2^n)$? $2^{2n} \in O(2^n)$? Explique.

Exercício 7. Prove que:

- (a) $2^n \in O(n!)$
- **(b)** $\log n! \in O(n \log n)$

Exercício 8. Considere o seguinte algoritmo.

Algoritmo misterio(n)

- (a) Qual é o valor retornado pelo algoritmo? Expresse sua resposta em função de n.
- (b) Usando a notação O, analise o pior caso de execução do algoritmo.

Exercício 9. Considere o seguinte algoritmo.

- (a) Qual é o valor retornado pelo algoritmo? Expresse sua resposta em função de n.
- (b) Usando a notação O, analise o pior caso de execução do algoritmo.

Exercício 10. Considere o seguinte algoritmo.

Algoritmo misterio3(n)

```
 \begin{array}{|c|c|c|} \hline r \leftarrow 0 \\ \textbf{para } i \leftarrow 1 \ \textbf{at\'e } n \ \textbf{faça} \\ \hline & \textbf{para } j \leftarrow 1 \ \textbf{at\'e } i \ \textbf{faça} \\ \hline & \textbf{para } k \leftarrow j \ \textbf{at\'e } i + j \ \textbf{faça} \\ \hline & \textbf{para } l \leftarrow 1 \ \textbf{at\'e } i + j - k \ \textbf{faça} \\ \hline & \textbf{tetorna } r \end{array}
```

- (a) Qual é o valor retornado pelo algoritmo? Expresse sua resposta em função de n.
- (b) Usando a notação O, analise o pior caso de execução do algoritmo.