

ÂNIMA EDUCAÇÃO

ARIEL SOARES FRANCO (RA: 12722210594)

GUSTAVO MAURI PINTO (RA: 12924112023)

MANUELLE REIS SANTANA (RA: 1272116405)

PATRICK RUBNER (RA: 1292212379)

TEORIA DA COMPUTAÇÃO E COMPILADORES (A3)

ARIEL SOARES FRANCO (RA: 12722210594)

GUSTAVO MAURI PINTO (RA: 12924112023)

MANUELLE REIS SANTANA (RA: 1272116405)

PATRICK RUBNER (RA: 1292212379)

TEORIA DA COMPUTAÇÃO E COMPILADORES (A3)

Relatório do projeto realizado pelos alunos da turma da UC de Teoria da Computação e compiladores, apresentado ao professor responsável como requisito parcial de avaliação do semestre.

Orientador: Prof. Matusalém Carlos Rosa

SUMÁRIO

6	CONSIDERAÇÕES	10
5	APLICAÇÃO E SEUS RESULTADOS	9
	4.2 NÃO FUNCIONAIS	
	4.1 FUNCIONAIS	
4	REQUISITOS	7
3	MÉTODOS APLICADOS	6
2	PROPOSTA	5
1	INTRODUÇAO	4

1 INTRODUÇÃO

A segurança, tanto pública quanto patrimonial, tem se tornado um dos principais desafios da sociedade contemporânea. Em um cenário marcado pelo aumento da criminalidade e pela crescente sensação de insegurança, a identificação e rastreabilidade de indivíduos em ambientes públicos tornaram-se fundamentais para a prevenção e resolução de ocorrências. No entanto, a ausência de mecanismos eficientes para monitoramento e reconhecimento de pessoas com histórico judicial ou envolvimento em atividades ilícitas contribui significativamente para a vulnerabilidade desses espaços.

Nesse contexto, o uso de tecnologias baseadas em visão computacional, como o reconhecimento facial, surge como uma ferramenta promissora. Esses sistemas permitem automatizar a identificação de indivíduos a partir de imagens, promovendo maior controle, rastreamento e resposta rápida a situações de risco. Este trabalho propõe o desenvolvimento de um sistema simples de reconhecimento facial aplicado à análise de imagens, com foco na identificação de pessoas previamente cadastradas, possibilitando sua utilização em contextos diversos que demandam reforço na segurança e monitoramento.

2 PROPOSTA

- Carregamento automático de imagens contendo rostos conhecidos a partir de uma pasta chamada faces.
- Leitura de uma imagem de entrada a partir da pasta frames.
- Detecção dos rostos presentes na imagem de entrada.
- Reconhecimento dos rostos detectados comparando-os com os rostos conhecidos.
- Exibição da imagem com caixas ao redor dos rostos detectados, nomes dos indivíduos reconhecidos e percentual de confiança.
- Diferenciação visual usando cores para indicar o nível de confiança do reconhecimento:
 - Verde para rostos conhecidos com confiança ≥ 90%.
 - Roxo para rostos conhecidos com confiança < 90%.
 - Vermelho para rostos desconhecidos.
- Exibição da imagem final redimensionada para melhor visualização.

3 MÉTODOS APLICADOS

Categoria	Tecnologia	Versão	Função no Sistema
Linguagem de Programação	Python	3.13	Linguagem principal usada para desenvolvimento do sistema e integração das bibliotecas.
SGBD	SQLite	-	Sistema de banco de dados leve utilizado para armazenar informações locais, como registros de usuários, logs de detecção e metadados.
Biblioteca de Visão Computacional	OpenCV-Pyt hon	4.10.0. 84	Usada para capturar, processar e exibir imagens, além de desenhar as caixas de identificação facial.
Biblioteca de Reconhecimento Facial	face-recognit ion	1.3.0	Responsável por detectar e codificar rostos, além de comparar rostos detectados com os conhecidos.
Modelos Pré-Treinados	face-recognit ion-models	≥ 0.3.0	Conjunto de modelos de machine learning usados internamente pela biblioteca face-recognition para realizar as detecções faciais com alta precisão.

4 REQUISITOS

4.1 Requisitos Funcionais

	Requisito	Descrição
D		
F01	Carregar imagens conhecidas	O sistema deve carregar todas as imagens da pasta faces e extrair suas codificações faciais.
F02	Carregar imagem de análise	O sistema deve carregar uma única imagem da pasta frames para reconhecimento.
F03	Detectar rostos na imagem	O sistema deve localizar todos os rostos presentes na imagem de entrada.
F04	Realizar reconhecimento facial	O sistema deve comparar as faces detectadas com as faces conhecidas para identificar indivíduos.
F05	Calcular percentual de similaridade	O sistema deve calcular um percentual que indica o nível de confiança no reconhecimento.
F06	Indicar visualmente o reconhecimento	O sistema deve desenhar caixas ao redor dos rostos, mostrando nomes e porcentagens.
F07	Diferenciar níveis de confiança por cor	Verde para confiança ≥ 90%, roxo para confiança < 90%, vermelho para desconhecidos.
F08	Redimensionar a imagem para exibição	A imagem final deve ser exibida em uma janela redimensionada, mantendo proporção e no máximo 1000px.

4.2 Requisitos Não Funcionais

	Requisito	Descrição		
D				
	Linguagem	O sistema deve ser implementado em		
NF1		Python.		
	Bibliotecas	Utilização das bibliotecas		
NF2		face_recognition, opencv-python, numpy e		
		os.		
	Plataforma	O sistema deve rodar em ambientes		
NF3		Windows, Linux ou macOS que suportem as		
		bibliotecas mencionadas.		
	Interface	Interface gráfica simples via janela OpenCV		
NF4		para exibição dos resultados.		
	Performance	O processamento deve ser feito em tempo		
NF5		real para imagens estáticas, com feedback imediato.		

5 APLICAÇÃO E SEUS RESULTADOS

- 1. Inicialização do script sh.
- 2. Carregar as imagens conhecidas e extrair seus vetores de face.
- 3. Carregar a imagem de entrada.
- 4. Detectar rostos na imagem.
- 5. Para cada rosto detectado, calcular similaridade com rostos conhecidos.

- 6. Determinar se o rosto é conhecido ou desconhecido, e definir a cor da caixa conforme a confiança.
- 7. Desenhar as caixas, nomes e porcentagens na imagem.
- 8. Redimensionar e exibir a imagem com os resultados.
- 9. Aguardar interação do usuário para fechar a janela.

6 CONSIDERAÇÕES

- As imagens na pasta faces devem conter somente uma face clara para garantir precisão nas codificações.
- O sistema considera apenas uma imagem de entrada por execução, que deve estar na pasta frames.
- O percentual de confiança é baseado na distância entre as codificações faciais, conforme função face_distance.
- O sistema pode ser estendido para múltiplas imagens ou vídeos no futuro.