

Tractable and Intractable Algorithms

Paolo Camurati and Stefano Quer Dipartimento di Automatica e Informatica Politecnico di Torino

Exponential growth

- Exponential growth dwarfs technological change
- Example
 - ➤ The Travelling Salesman Problem Algorithm on n points needs n! steps using brute force
 - Suppose
 - We have a giant parallel computing device ...
 - With as many processors as electrons in the universe ...
 - Where each processor has power of today's supercomputers ...
 - And each processor works for the life of the universe...

Exponential growth

Quantity	Value	
Electrons in universe	10 ⁷⁹	$(30, 2^{30})$
Instruction per seconds (supercomputers)	10 ¹³	
Age of universe (seconds)	1017	

Then

$$> 1000! >> 10^{1000} >> 10^{79} \cdot 10^{13} \cdot 10^{17}$$

The parallel machine will not help solve 1000 TSP problems via brute force

 $(20, 2^{20})$

Exponential growth

- Which problems can be solved in practice?
 - > Those with poly-time algorithms
- Which problems have poly-time algorithms?
 - > Not so easy to know!

Many known poly-time algorithms for sorting

No known poly-time algorithms for TSP

Growth

- Which of these problems have poly-time algorithms?
 - ➤ LSOLVE: Given a system of linear equations, find a solution
 - Gaussian elimination solves N-by-N system in N³ time
 - > LP: Given a system of linear inequalities, find a solution
 - Ellipsoid algorithm is poly-time
 - ➤ ILP: Given a system of linear inequalities, find a 0-1 solution
 - No poly-time algorithm known or believed to exist!
 - ➤ SAT: Given a system of boolean equations, find a binary solution
 - No poly-time algorithm known or believed to exist!

The P Class

- Decidable and tractable decision problems
 - ➤ There exists a polynomial algorithm that solves them (Edmonds-Cook-Karp thesis, 1970s)
 - > That is, P problems are solvable in polinomial time
 - An algorithm is polynomial iff, working on n data, given a constant c>0, it terminates in a finite number of steps upper-bounded by n^c
 - In practice c should not exceed 2
 - > Problems in P are supposed to be tractable

Most of the problems we are going to consider are in P

The NP Class

- Nondeterministic machine can guess the desired solution to a problem
- Example
 - int $v[N] = \{0\};$
 - > Initializes entries to 0
 - ➤ A nondeterministic machine may inizialize entries to the final solution
- NP problems are problems solvable in poly time on a nondeterministic machine

The NP Class

- NP stands for Non-deterministic Polynomial
- There exist decidable problems for which
 - We have exponential algorithms, but we don't know any polynomial algorithms
 - However we can't rule out the existence of polynomial algorithms
- We have polynomial verification algorithms, to check whether a solution (certificate) is really such
 - Sudoku, satisfyability of a boolean function, factorization, graph isomorphism

P versus NP

- Thus
 - > P = class of search problems solvable in poly-tyme
 - > NP = class of all search problem
- \bullet Does P = NP?

Copyright © 1990, Matt Groening

Copyright © 2000, Twentieth Century Fox

P versus NP

- \triangleright We know that $P \subseteq NP$
- We don't know whether P is a proper subset of NP or it coincides with NP
- It is probable that P is a proper subset of NP

The NP-C Class

- Definition
 - An NP problem is NP-complete if every problem in NP poly-time reduce to it
- Problems in NP-C are the hardest within NP

The NP-C Class

- A problem is NP-complete if
 - ➤ It is NP
 - ➤ Any other problem in NP may be reduced to it by means of a polynomial transformation

P versus NP versus NP-C

- ➤ If we find a polynomial algorithm for any problem in this class, we could find polynomial algorithms for all NP problems, through transformations
- > This is **highly improbable**!
- ➤ The existence of the NP-C class makes it probable that P

 NP

Example of NP-C problem

- Satisfyiability
 - Given a Boolean function, find if there exists an assignment to the input variables such that the function is true.
- Hamilton Cycle, Clique, Graph Connectivity, Primality, Determinant

The NP-H Class

- ❖ A problem is NP-hard if every problem in NP may be reduced to it in polynomial time (even if it does not belong to NP)
- Any other problem in NP may be reduced to it by means of a polynomial transformation
 - > Permanent of a matrix

