Contents

	4
	4

Formulario di Fondamenti di Telecomunicazioni

Giuseppe Bumma

March 3, 2023

1 Numeri complessi

Unità immaginaria $j^2 = -1$ Forma classica $z = a + j\ell$

Coordinate Polari

$$a = r\cos(\phi)$$

$$r = \sqrt{a^2 + b^2}$$

$$degree = \begin{cases} \arctan\left(\frac{b}{a}\right) & a > 0 \\ \operatorname{sgn}(y) \cdot \frac{\pi}{2} & x = 0 \\ \arctan\left(\frac{b}{a}\right) + \pi & a < 0 \end{cases}$$

Forma esponenziale

$$e^{j\phi} = \cos(\phi) + i\sin(\phi)$$
 $z = a + ib = re^{j\phi}$

2 Sinusoide e fasori

Funzione sinusoidale $x(t) = A\cos(\omega t + \theta) = Re\left\{Ae^{j(\omega t + \theta)}\right\}$

2.1 Analisi di Fourier

Prima forma (esponenziale)	formula di sintesi: $x(t)=\sum_{n=-\infty}^{+\infty}c_ne^{jn\omega_0t}$ formula di analisi: $c_n=\frac{1}{T}\int_{-T/2}^{+T/2}x(t)e^{-jn\omega_0t}dt$
Convergenza puntuale	$\lim_{N \to \infty} \left\{ x(t) - \sum_{n=-N}^{N} c_n e^{jn\omega_0 t} \right\} = 0$
Convergenza in media quadratica	$\lim_{N \to \infty} \left\{ \int_T \left x(t) - \sum_{n=-N}^N c_n e^{-jn\omega_0 t} \right ^2 dt \right\} = 0$
I^o forma serie di Fourier	$x(t) = c_0 + \sum_{n=1}^{+\infty} Re\left\{2c_n e^{jn\omega_0 t}\right\}$
	$A_o = c_0 \qquad \qquad \phi_n = -arg\{c_n\}$
	$A_n = 2 c_n $
II^o forma serie di Fourier	$x(t) = A_0 + \sum_{n=1}^{+\infty} A_n \cos(n\omega_0 t - \phi_n)$
	$a_o = 2c_0 b_n = -I_m\{2c_n\}$
	$a_n = Re\{2c_n\}$
III^o forma serie di Fourier	$x(t) = \frac{1}{2}a_0 + \sum_{n=1}^{+\infty} a_n \cos(n\omega_0 t) + \sum_{n=1}^{+\infty} b_n \sin(n\omega_0 t)$

2.2 Trasformata e integrale di Fourier

Formula di Analisi	$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$
Formula di sintesi (antitrasformata)	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega)e^{j\omega t} d\omega$
Spettro di ampiezza monolatero	$V(\omega) = \frac{ X(\omega) }{\pi} \omega \ge 0$
Integrale di Fourier (solo se $x(t) \in \mathbb{R}$)	$x(t) = \int_0^{+\infty} V(\omega) \cos[\omega t - \phi(\omega)] d\omega$
Proprità trasformata di Fourier	Coniugazione: $F[x^*(t)] = X^*(-\omega)$
	Traslazione temporale: $F[x(t-t=o)] = X(\omega)e^{-j\omega t_0}$
	Derivata: $F[\dot{x}(t)] = j\omega X(\omega)$
	Integrale: $F\left[\int_{-\infty}^{t} x(\xi) \ d\xi\right] = \frac{X(\omega)}{j\omega} \text{ se } X(0) = \left[\int_{-\infty}^{+\infty} x(t) \ dt\right] = 0$
	Convoluzione:
	$x(t) \cdot y(t) = \int_{-\infty}^{+\infty} x(\tau)y(t-\tau) \ d\tau \Longrightarrow$
	$F[x(t) \cdot y(t)] = X(\omega)Y(\omega)$