

Custom Lab - Group 21

Investigating Aluminum Beam Degradation Due to Surface Oxidation

Phuoc Nguyen

Andy Ho

Jared Sitton

Eric Bermudez

Peter Bhatta

• Objective:

• Determine the impact corrosion on the flexural rigidity(EI) and bulk modulus(K) of aluminum-6061-T4.

• Purpose:

- Develop more robust designs that consider the reduction in strength due to corrosion.
- Find levels of corrosion in which there is minimal strength loss making design still optimal for use

Hypothesis:

We predict that as more aluminum corrodes there will be a decrease in the EI constant and bulk modulus

Theory and Experimental/Setup

Theory

- Why does corrosion happen?
 - Electrochemical reaction between a metal and its surroundings.
- How does corrosion happen?
 - Anodic current and cathodic current via oxidation and reduction, respectively.
- What effect will this have on the material properties and how will they be measured?
 - Flexural Rigidity and Bulk Modulus measured by vibrational beam setup from Lab 3

Experimental/Setup

- Used the vibrating beam set up from Lab Natural Frequency of a vibrating beam
- Corrosion solution (NaCl, Hydrogen Peroxide, White Vinegar)
- Fabricated four Aluminium 6061-T4 samples using laser cutter at Jacobs

Calibration Method

- Applied polyfit and polyval in the MATLAB code
- Increased the number of spans which make the data go smoothly during calibration

Determine the Maximum Values and The Uncertainty

- Used equation of sinusoidal sin(t) = sin(2*pi*fn*t)
- Took derivative twice from the equation sinusoidal waveform(displacement->velocity->acceleration)
- Used Uncertainty propagation to determine the uncertainty
- of Maximum values

Determine the Value of EI Constant and its uncertainty

- Used formula of the deflection of the beam in case of cantilever beam
- Used Uncertainty propagation to determine the uncertainty EI constant

Results

Discussion/Conclusion

- Applying Cantilever beam problem with F acting
- Determined the deflection
- Slope of the Strain Gage from three hours of corroding beam
- Determined Bulk Modulus(K)

Conclusion

- Some constraints & Uncertainty
- Succeed to investigate how EI constant, K change, and corrosion affects
- Changing slope, indicating damage & degradation in the beam after corroding for hours
- Beams loses its stiffness, creates more oscillations which indicates higher damping

,where $K_{corrosion}$ is Bulk modulus after corroding.

Percentage of corrosion is 5% = 0.05

The K is being affected by the corrosion, which can be determined by

$$Corrosion \, contribution = \frac{{^K}_{corrosion} {^*V}_{corrosion} {^*0.05}}{{^V}_{corrosion}} \, \, (N/m),$$

Type of bulk modulus	K for one hour	K for two hours	K for three hours
Values of Bulk modulus and its uncertainty(N/m)	0.4084 ± 0.1871	0.4049 ± 0.1855	0.4415±0.2024
Corrosion contribution(N/m)	0.0204	0.0202	0.0221

Contributions

Contributions -

- Andy Ho
 - o Data collection, methods section, helped with equipment/experiment slides and formatting,
- Phuoc Nguyen
 - o Data analysis, MATLAB code, Results/ Discussion
- Jarred Sitton
 - Abstract, Introduction, Analyzed similar experiments
- Eric Bermudez
 - Theory, corrosion research, facilitated metal corrosion, data collection
- Peter Bhatta
 - Designed/Manufactured custom hardware, data collection, methods section

References

References

- [1] https%3A%2F%2Fdspace.mit.edu%2Fbitstream%2Fhandle%2F1721.1%2F36391%2F2-007Spring-2003%2FNR%2Frdonlyres%2FMechanical-Engineeri ng%2F2-007Design-and-Manufacturing-ISpring2003%2FE175EAAA-B85C-428F-A728-1B45E71E592B%2F0%2Fbending.pdf
- [2] "Uncertainty of Vernier Caliper." *Bing*, www.bing.com/search?pglt=41&q=uncertainty+of+vernier+caliper&cvid=a229e519d32f40e1bf0c710753f2ac33&gs_lcrp=EgZjaHJvbWUqBggBEAAYQ DIGCAAQRRg5MgYIARAAGEAyBggCEAAYQDIGCAMQABhAMgYIBBAAGEAyBggFEAAYQDIGCAYQABhAMgYIBxAAGEAyBggIEAAYQ NIBCDcyNTVqMGoxqAIAsAIA&FORM=ANNTA1&PC=NMTS. Accessed 24 Apr. 2024.
- [3]"Beams Natural Vibration Frequency." *Engineeringtoolbox.com*, 2017, www.engineeringtoolbox.com/structures-vibration-frequency-d_1989.html.
 - [4] Vedantu. "Rust Formula." VEDANTU, 2023, www.vedantu.com/formula/rust-formula.
- [5]"Bulk Modulus Formula, Definition, Derivation, Examples." *PHYSICS WALLAH*, 10 Nov. 2023, www.pw.live/exams/school/bulk-modulus-formula/. Accessed 24 Apr. 2024.
- [6] World Material. "AL 6061-T6 Aluminum Alloy Properties, Density, Tensile & Yield Strength, Thermal Conductivity, Modulus of Elasticity, Welding." *The World Material*, 24 May 2020, www.theworldmaterial.com/al-6061-t6-aluminum-alloy/.
- [7] Vargel, Christian Germain, Jean-Marc Dunlop, Hugh. (2020). "Corrosion of Aluminium" (2nd Edition) https://app.knovel.com/hotlink/pdf/id:kt012ECH42/corrosion-aluminium-2nd
- [8] Necsulescu, Daniela Alina. "The Effects of Corrosion on the Mechanical Properties of Aluminum Alloy 7075-T6." UPB Sci. Bull, vol. 73, 2011, pp. 223-229, https://www.scientificbulletin.upb.ro/rev_docs_arhiva/full62997.pdf

Requirements link (3-4 slides)

Introduction

- Why you're doing measurements
 General scope of experiments
 Your hypothesis

Theory

What do you use to compare with experiments?

Equations, graph, etc.

can take whole page for section if extensive, but goal is to just give basic overview with a few equations and graph

Experimental Setup/Methods

How did you run your experiment?

What sensors did you use?

Show diagram/photos!

Results

Show the results!

Compare with theory here or in discussion

Some raw and the most important final results

Prepare us to draw a conclusion on the next slide

Discussion/Conclusion

Compare with theory

What did we learn?

Did the measurements work?

If not, what was the issue? Uncertainty?

Discuss implications & what you'd change

Corrosive Effects on Material Constants in Aluminium 6061-T4

Introduction:

Objective: Explore the impact of corrosion on flexural rigidity(EI) and bulk modulus(K) of aluminum-6061-T4.

Purpose: Enables the development of more robust designs that consider the reduction in strength due to corrosion.

Hypothesis: As more aluminum corrodes there will be a decrease in the El constant and bulk modulus.

