1)

T(ns)	50	40	50	40	
CPU	FI	DI	FO	EX	
	50 ns	20 ns	50 ns	30 ns	
DMAC		1 byte		1 byte	
		40 ns		40ns	

1 CPU instruction, 2 bytes DMAC transfer

- a. When T = 50+40 = 90 ns, DMAC transfers first byte. Since CPU needs bus in FI and FO phases and not DI and EX, DMAC takes bus while CPU operates DI and EX operations.
- b. When T = 50+40+50+40 = 180 ns, CPU finishes first instruction. DI and EX operations take 40 ns because CPU needs to wait of transfers between I/O and Memory.
- c. In this modified cycle above, 16 instructions and 32 byte DMAC transfers finishes when T = 16 * 180 ns = 2880 ns
- d. 20 instruction = 16 instruction and 32 byte transfer + 4 normal instruction cycles. T = 16*180 + 4*(50+20+50+30) = 2880 + 600 = 3480 ns

2)

					150	
CPU	FI	DI	FO	EX	Intr Prep	ISR

1 CPU instruction, 8 bytes DMAC transfer

- a. For 32 byte DMA transfer, 4 cycles with interrupt required. T = 4*(50+20+50+30+150+800) = 4400 ns
- b. 20 instruction = 4 instruction and 32 byte transfer + 16 normal instruction cycles T = 4*1100 + 16*(50+20+50+30) = 6800 ns