Seven algorithms for the same task

Testing if your data is uniformly distributed

You have n i.i.d. samples from some unknown distribution over

$$[k] = \{1,2,...,k\}$$

and want to know: is it *the* uniform distribution? Or is it **statistically far** from it, say, at total variation distance ε ?

Total variation distance:

$$d_{\text{TV}}(\mathbf{p}, \mathbf{q}) = \sup_{S \subseteq [k]} (\mathbf{p}(S) - \mathbf{q}(S)) = \frac{1}{2} ||\mathbf{p} - \mathbf{q}||_1 \in [0, 1]$$

"a measure of *how distinguishable* two distributions are given a single sample"

Uniformity testing algorithm:

Input: ε in [0,1], n i.i.d. samples from unknown p over [k]

Output: accept or reject

- If p=u, accept with probability ≥ .99
- If $TV(p,u)>\varepsilon$, reject with probability $\geq .99$

Uniformity testing ⇔ Identity testing

.99 is arbitrary

Optimal n is $\Theta(\sqrt{k/\epsilon^2})$

Nice, but how?

(Some ideas?)

Nice, but how? And also, what?

- Data efficiency: does the algo achieve optimal sample complexity?
- Time efficiency: how fast is the algo to run?
- Memory efficiency: how much memory does the algo require ?
- Simplicity: is the algo simple to describe and implement?
- Simplicity': is the algo simple to analyse?
- Robustness: how "tolerant" is the algo to noise?
- Elegance: OK, that's a bit subjective, but you get it
- Generalizable: Does the algo have useful "bonus features"?

Nice, but how? And also, what?

	Sample complexity	Notes	References
Collision-based	$\frac{k^{1/2}}{\varepsilon^2}$	Tricky	[GR00, DGPP19]
Unique elements	$\frac{k^{1/2}}{\varepsilon^2}$	$\varepsilon \gg 1/k^{1/4}$	[Pan08]
Modified χ^2	$\frac{k^{1/2}}{\varepsilon^2}$	Nope	[VV17, ADK15, DKN15]
Empirical distance to uniform	$\frac{k^{1/2}}{\varepsilon^2}$	Biased	[DGPP18]
Random binary hashing	$\frac{k}{\varepsilon^2}$	Fun (+ fast, small space)	[ACT19]
Bipartite collisions	$\frac{k^{1/2}}{\varepsilon^2}$	$\varepsilon \gg 1/k^{1/10}$	[DGKR19]
Empirical subset weighting	$\frac{k^{1/2}}{\varepsilon^2}$	$\varepsilon \gg 1/k^{1/4}$	

Key Insight (4 of the Dwarfs)

Forget about TV distance, ℓ₂ distance is a good proxy:

$$d_{\text{TV}}(\mathbf{p}, \mathbf{u}_k) = \frac{1}{2} \|\mathbf{p} - \mathbf{u}_k\|_1 \le \frac{\sqrt{k}}{2} \|\mathbf{p} - \mathbf{u}_k\|_2$$

so if p is at $TV \ge \varepsilon$, it is at $\ell_2 \ge 2\varepsilon/\sqrt{k}$.

Key Insight (4 of the Dwarfs)

Also,

$$\|\mathbf{p} - \mathbf{u}_k\|_2^2 = \sum_{i=1}^k (\mathbf{p}(i) - 1/k)^2 = \sum_{i=1}^k \mathbf{p}(i)^2 - 1/k = \|\mathbf{p}\|_2^2 - 1/k$$

so it suffices to estimate $\|p\|_2$. How?

Fact.

$$\Pr_{x,y \sim \mathbf{p}} [x = y] = \sum_{i=1}^{k} \mathbf{p}(i)^2 = \|\mathbf{p}\|_2^2$$

I.e., the squared ℓ_2 norm is the "collision probability."

Natural idea.

$$Z_1 = \frac{1}{\binom{n}{2}} \sum_{s \neq t} \mathbb{1}_{\{x_s = x_t\}}$$

Take n samples $x_1,...x_n$. For each of the $\binom{n}{2}$ pairs, check if a *collision* occurs. Count those collisions, and use the result as unbiased estimator for $\|p\|_2^2$; threshold appropriately.

Natural idea.

$$Z_1 = \frac{1}{\binom{n}{2}} \sum_{s \neq t} \mathbb{1}_{\{x_s = x_t\}}$$

Take n samples $x_1,...x_n$. For each of the $\{n \text{ choose } 2\}$ pairs, check if a collision occurs. Count those collisions, and use the result as unbiased estimator for $\|p\|_2^2$; threshold appropriately.

✓ Simple ✓ Fast ✓ Intuitive ✓ Elegant

Not so **simple'**

More detail:

We want to threshold Z_1 at $(1+2\epsilon^2)/k$ or so, to distinguish **uniform** $(\mathbb{E}[Z_1] = 1/k)$ from **far from uniform** $(\mathbb{E}[Z_1] = \|p\|_2^2 \ge (1+4\epsilon^2)/k)$.

So we want to bound the variance of Z_1 and use Chebyshev's inequality. This gets... messy.

(Getting $\Theta(\sqrt{k/\epsilon^4})$ is not hard. The optimal $\Theta(\sqrt{k/\epsilon^2})$ is challenging.)

Take n samples, count the number Z₂ of elements that appear exactly once.

Take n samples, count the number Z₂ of elements that appear exactly once.

$$\mathbb{E}[Z_2] = n \sum_{i=1}^{\kappa} \mathbf{p}(i) (1 - \mathbf{p}(i))^{n-1}$$

Take n samples, count the number Z₂ of elements that appear exactly once.

$$\mathbb{E}[Z_2] = n \sum_{i=1}^{\kappa} \mathbf{p}(i) (1 - \mathbf{p}(i))^{n-1}$$

Under uniform: $\approx n - n^2/k$ Under "far" p: $\approx n - n^2 ||p||_2^2 \le n - n^2/k - 2n^2 \epsilon^2/k$

More detail:

Assuming the variance is small enough,

the $n^2 \epsilon^2 / k$ gap in expectation

- + Chebyshev (again)
- + all approximations from the previous slide holding

let us test as long as $n=\Omega(\sqrt{k/\epsilon^2})$.

More detail:

Assuming the variance is small enough,

the $n^2 \varepsilon^2/k$ gap in expectation

- + Chebyshev (again)
- + all approximations from the previous slide holding

let us test as long as $n=\Omega(\sqrt{k/\epsilon^2})$.

✓ Simple ✓ Fast ✓ Intuitive ✓ Elegant

More detail:

Assuming the variance is small enough,

the $n^2 \varepsilon^2/k$ gap in expectation

- + Chebyshev (again)
- + all approximations from the previous slide holding

let us test as long as $n=\Omega(\sqrt{k/\epsilon^2})$.

Problem: can't work for $\varepsilon \gg 1/k^{\frac{1}{4}}$, since then $n \gg k$ (but we can't have that many distinct elements...)

Next stop: χ^2

Idea: the χ^2 divergence between distributions is a metric thing, related to KL divergence and others. Pearson's χ^2 test is a staple of Statistics. Can we have a test inspired by that?

Next stop: χ^2

Idea: the χ^2 divergence between distributions is a metric thing, related to KL divergence and others. Pearson's χ^2 test is a staple of Statistics. Can we have a test inspired by that?

$$Z_3 = \sum_{i=1}^k \frac{(N_i - n/k)^2 - N_i}{n/k}$$

where N_i = # times we see i among the n samples.

Next stop: χ^2

Idea: the χ^2 divergence between distributions is a metric thing, related to KL divergence and others. Pearson's χ^2 test is a staple of Statistics. Can we have a test inspired by that?

$$Z_3 = \sum_{i=1}^k \frac{(N_i - n/k)^2 - N_i}{n/k}$$

where N_i = # times we see i among the n samples. It works.*

 $(\mathbb{E}[Z_3] = nk||p||_2^2$ and, again, Chebyshev.)

We've been doing a lot of specific stuff, with ad hoc estimators. Why?

We've been doing a lot of specific stuff, with ad hoc estimators. Why?

Can't we just:

- 1. take our n samples
- 2. compute the empirical distribution \hat{p}
- 3. see if the "plugin" distance TV(p̂,u) is large
- 4. be done

?

Of course not: the empirical distance $TV(\hat{p},u)$ will be very large $TV(\hat{p},u) = 1-o(1)$

even if p is uniform, for any $n \ll k$.

But still yes: the empirical distance $TV(\hat{p},u)$ will be very large $TV(\hat{p},u) = 1-o(1)$

even if p is uniform, for any $n \ll k$, indeed.

But that "o(1)" is not the same if p=u and if TV(p,u) > ε . And somehow that's enough!

But still yes: the empirical distance $TV(\hat{p},u)$ will be very large $TV(\hat{p},u) = 1-o(1)$

even if p is uniform, for any $n \ll k$, indeed.

But that "o(1)" is not the same if p=u and if TV(p,u) > ε . And somehow that's enough!

Need more than Chebyshev for that one.

✓ Simple ✓ Fast Intuitive?!? ✓ Elegant ✓ Generalises

Also, the first one we see not relying on ℓ_2 norm as a proxy.

I don't like big numbers, like k.

I don't like big numbers, like k.

Fact. Distinguishing between a fair coin (Bernoulli(½)) and a coin with bias α (Bernoulli(½± α)) can be done with $\Theta(1/\alpha^2)$ samples.

I don't like big numbers, like k.

Fact. Distinguishing between a fair coin (Bernoulli(½)) and a coin with bias α (Bernoulli(½± α)) can be done with $\Theta(1/\alpha^2)$ samples.

If we had k=2, we could use that.

I don't like big numbers, like k.

Fact. Distinguishing between a fair coin (Bernoulli(½)) and a coin with bias α (Bernoulli(½± α)) can be done with $\Theta(1/\alpha^2)$ samples.

If we had k=2, we could use that. So let's **make** k=2.

Partition the domain [k] in two equal parts at random, S and $[k]\S$. Then if a sample is in S, it's *tails*; otherwise, it's *heads*.

Partition the domain [k] in two equal parts at random, S and $[k]\S$. Then if a sample is in S, it's *tails*; otherwise, it's *heads*.

Of course, if p=u, then p(S)=|S|/k=½. Fair coin!

Binary hashing

Partition the domain [k] in two equal parts at random, S and $[k]\S$. Then if a sample is in S, it's *tails*; otherwise, it's *heads*.

- Of course, if p=u, then $p(S)=|S|/k=\frac{1}{2}$. Fair coin!
- If $TV(p,u) \ge \varepsilon$, however...

$$\Pr_{S\subseteq[k]}\left[|\mathbf{p}(S)-\mathbf{u}_k(S)|=\Omega(\varepsilon/\sqrt{k})\right]=\Omega(1)$$

Biased coin! (With constant probability over choice of S)

Binary hashing

Now we can use our fact, with $\alpha := \varepsilon/\sqrt{k}$. Give sample complexity

$$\Theta(1/\alpha^2) = \Theta(k/\epsilon^2)$$

Binary hashing

Now we can use our fact, with $\alpha := \varepsilon/\sqrt{k}$. Gives sample complexity

$$\Theta(1/\alpha^2) = \Theta(k/\epsilon^2)$$

✓ Simple ✓ Fast ✓ Fun ✓ Elegant ✓ Generalises Not optimal

("Sometimes optimal": very useful in some settings!)

Bipartite collision tester

This one is a bit... boring: like the collision-based, but you divide the n samples in two sets S_1 , S_2 and count collisions between S_1 and S_2 only.

$$Z_5 = \frac{1}{n_1 n_2} \sum_{(x,y) \in S_1 \times S_2} \mathbb{1}_{\{x=y\}}$$

Bipartite collision tester

This one is a bit... boring: like the collision-based, but you divide the n samples in two sets S_1 , S_2 and count collisions between S_1 and S_2 only.

$$Z_5 = \frac{1}{n_1 n_2} \sum_{(x,y) \in S_1 \times S_2} \mathbb{1}_{\{x=y\}}$$

Advantage? Also sample-optimal, sometimes useful (more flexible), e.g., with **memory** constraints.

Bipartite collision tester

This one is a bit... boring: like the collision-based, but you divide the n samples in two sets S_1 , S_2 and count collisions between S_1 and S_2 only.

$$Z_5 = \frac{1}{n_1 n_2} \sum_{(x,y) \in S_1 \times S_2} \mathbb{1}_{\{x=y\}}$$

Advantage? Also sample-optimal, sometimes useful (more flexible), e.g., with **memory** constraints.

[Analysis: Chebyshev returns.]

Take the first s of your n samples. That's a set S.

Take the first s of your n samples. That's a set S.

$$\mathbb{E}[\mathbf{p}(S)] = \sum_{i=1}^{k} \mathbf{p}(i)(1 - (1 - \mathbf{p}(i))^{s})$$

which is $\approx s \|p\|_2^2$.

Take the first s of your n samples. That's a set S.

$$\mathbb{E}[\mathbf{p}(S)] = \sum_{i=1}^{k} \mathbf{p}(i)(1 - (1 - \mathbf{p}(i))^{s})$$

which is $\approx s \|p\|_2^2$. Then use the remaining n'=n-s samples to estimate p(S): is it $\approx s/k$, or $\geq s(1+2\epsilon^2)/k$?

Then use the remaining n'=n-s samples to estimate p(S):

is it
$$\approx s/k$$
, or $\geq s(1+2\varepsilon^2)/k$?

For it to work, we need

$$n-s \gtrsim \frac{k}{s\varepsilon^4}$$

and we can optimise: s=n/2 gives us the optimal $n=O(\sqrt{k/\epsilon^2})$.

Then use the remaining n'=n-s samples to estimate p(S):

is it
$$\approx s/k$$
, or $\geq s(1+2\varepsilon^2)/k$?

For it to work, we need

$$n-s \gtrsim \frac{k}{s\varepsilon^4}$$

and we can optimise: s=n/2 gives us the optimal $n=O(\sqrt{k/\epsilon^2})$.

✓ Simple ✓ Fast $\sqrt{\text{Fun}}$ ✓ Elegant ✓ Generalises but needs $\varepsilon \gg 1/k^{\frac{1}{4}}$

Then use the remaining n'=n-s samples to estimate p(S):

is it
$$\approx s/k$$
, or $\geq s(1+2\varepsilon^2)/k$?

For it to work, we need

$$n-s \gtrsim \frac{k}{s\varepsilon^4}$$

and we can optimise: s=n/2 gives us the optimal $n=O(\sqrt{k/\epsilon^2})$.

✓ Simple ✓ Fast $\sqrt{\text{Fun}}$ ✓ Elegant ✓ Generalises but needs $\varepsilon \gg 1/k^{\frac{1}{4}}$

Can you see why?

Thank you. (Questions?)

	Sample complexity		References
Collision-based	$\frac{k^{1/2}}{\varepsilon^2}$	Tricky	[GR00, DGPP19]
Unique elements	$\frac{k^{1/2}}{\varepsilon^2}$	$\varepsilon \gg 1/k^{1/4}$	[Pan08]
Modified χ^2	$\frac{k^{1/2}}{\varepsilon^2}$	Nope	[VV17, ADK15, DKN15]
Empirical distance to uniform	$\frac{k^{1/2}}{\varepsilon^2}$	Biased	[DGPP18]
Random binary hashing	$\frac{k}{arepsilon^2}$	Fun (+ fast, small space)	[ACT19]
Bipartite collisions	$\frac{k^{1/2}}{\varepsilon^2}$	$\varepsilon \gg 1/k^{1/10}$	[DGKR19]
Empirical subset weighting	$\frac{k^{1/2}}{\varepsilon^2}$	$\varepsilon \gg 1/k^{1/4}$	