CMSC 141 AUTOMATA AND LANGUAGE THEORY CONTEXT-FREE LANGUAGES

Mark Froilan B. Tandoc

October 17, 2014

CLOSURE PROPERTIES FOR CFL

Like regular languages, CFLs are close under union, concatenation, and Kleene star

Proof

Given two grammars for two context-free languages, with start symbols S and T. Rename the variables to ensure that the two grammars will not share any variable. Then construct a grammar for the union of the two languages by taking all the rules of both grammars and adding a new start state Z with rules $Z \to S \mid T$

Proof

Given two grammars for two context-free languages, with start symbols S and T. Rename the variables to ensure that the two grammars will not share any variable. Then construct a grammar for the union of the two languages by taking all the rules of both grammars and adding a new start state Z with rules $Z \to S \mid T$

 $Z \rightarrow S \mid I$

Proof

Given two grammars for two context-free languages, with start symbols S and T. Rename the variables to ensure that the two grammars will not share any variable. Then construct a grammar for the union of the two languages by taking all the rules of both grammars and adding a new start state Z with rules Z = C + T

$$Z \rightarrow S \mid T$$

Example $L_1 \Rightarrow$

$$\stackrel{ extstyle 1}{\mathcal{S}} o \mathsf{aSb} \mid arepsilon$$

$$L_2 \Rightarrow$$

$$T \rightarrow aTa \mid bTb \mid a \mid b \mid \varepsilon$$

Proof

Given two grammars for two context-free languages, with start symbols S and T. Rename the variables to ensure that the two grammars will not share any variable. Then construct a grammar for the union of the two languages by taking all the rules of both grammars and adding a new start state Z with rules $Z \to S \mid T$

$$\begin{array}{lll} \textbf{L}_1 \Rightarrow & \textbf{L}_1 \cup \textbf{L}_2 \Rightarrow \\ \textbf{S} & \rightarrow \textbf{aSb} \mid \varepsilon & \textbf{Z} & \rightarrow \textbf{S} \mid \textbf{T} \\ \textbf{L}_2 \Rightarrow & \textbf{S} & \rightarrow \textbf{aSb} \mid \varepsilon \\ \textbf{T} & \rightarrow \textbf{aTa} \mid \textbf{bTb} \mid \textbf{a} \mid \textbf{b} \mid \varepsilon & \textbf{T} & \rightarrow \textbf{aTa} \mid \textbf{bTb} \mid \textbf{a} \mid \textbf{b} \mid \varepsilon \end{array}$$

Proof

Same process as union, but instead, we have the rule for the start state $Z \to ST$

Proof

Same process as union, but instead, we have the rule for the start state $Z \to \mathcal{ST}$

Proof

Same process as union, but instead, we have the rule for the start state $Z \to ST$

$$egin{aligned} L_1 \Rightarrow & & & \\ S &
ightarrow aSb \mid arepsilon & & & \\ L_2 \Rightarrow & & & & \\ T &
ightarrow aTa \mid bTb \mid a \mid b \mid arepsilon & & \end{aligned}$$

Proof

Same process as union, but instead, we have the rule for the start state $Z \to ST$

CLOSURE UNDER KLEENE STAR

Proof

Given a grammar for a context-free language L with start symbol S, the grammar for L^* , with start symbol Z, contains all the rules of the original grammar along with the rules $Z \to ZS \mid \varepsilon$

Proof

Given a grammar for a context-free language L with start symbol S, the grammar for L^* , with start symbol Z, contains all the rules of the original grammar along with the rules $Z \to ZS \mid \varepsilon$ **Example**

Proof

Given a grammar for a context-free language L with start symbol S, the grammar for L^* , with start symbol Z, contains all the rules of the original grammar along with the rules $Z \to ZS \mid \varepsilon$

$$egin{aligned} \mathsf{L} \Rightarrow & & \mathsf{S} \to \mathsf{aSb} \mid arepsilon \end{aligned}$$

Proof

Given a grammar for a context-free language L with start symbol S, the grammar for L^* , with start symbol Z, contains all the rules of the original grammar along with the rules $Z \to ZS \mid \varepsilon$

$$L\Rightarrow S \rightarrow aSb \mid \varepsilon$$

$$\begin{array}{c} L^* \Rightarrow \\ Z \to ZS \mid \varepsilon \\ S \to aSb \mid \varepsilon \end{array}$$

OTHER CLOSURE PROPERTIES

OTHER CLOSURE PROPERTIES

Other closure properties for CFLs

OTHER CLOSURE PROPERTIES

Other closure properties for CFLs

string reversal

Other Closure Properties

Other closure properties for CFLs

- string reversal
- homomorphism (string substitutions)

Other Closure Properties

Other closure properties for CFLs

- string reversal
- homomorphism (string substitutions)
- inverse homomorphisms

Other Closure Properties

Other closure properties for CFLs

- string reversal
- homomorphism (string substitutions)
- inverse homomorphisms

Proofs are left as exercise

Also note, however, that CFLs are not closed under

Also note, however, that CFLs are not closed under

■ intersection

Also note, however, that CFLs are not closed under

- intersection
- set complement

Also note, however, that CFLs are not closed under

- intersection
- set complement

Proofs are left as exercise

Pumping Lemma

If A is a context-free language that is infinite, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five parts s = uvxyz satisfying:

Pumping Lemma

If A is a context-free language that is infinite, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five parts s = uvxyz satisfying:

■ for each $i \ge 0$, $uv^i x y^i z \in A$

Pumping Lemma

If A is a context-free language that is infinite, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five parts s = uvxyz satisfying:

- for each $i \ge 0$, $uv^i x y^i z \in A$
- |vy| > 0 (v and y cannot be both empty)

Pumping Lemma

If A is a context-free language that is infinite, then there is a number p (the pumping length) where, if s is any string in A of length at least p, then s may be divided into five parts s = uvxyz satisfying:

- for each $i \ge 0$, $uv^i x y^i z \in A$
- |vy| > 0 (v and y cannot be both empty)
- $|vxy| \leq p$

IDEA OF THE PROOF

Idea of the Proof

■ We use the pigeonhole principle on the nodes of the parse tree

Idea of the Proof

- We use the pigeonhole principle on the nodes of the parse tree
- Given a very long string s, its parse tree would be very tall that there must exists some interior node (say R) that must be repeated

IDEA OF THE PROOF

- We use the pigeonhole principle on the nodes of the parse tree
- Given a very long string s, its parse tree would be very tall that there must exists some interior node (say R) that must be repeated
 - $\blacksquare R \rightarrow^* x \mid vRy$

IDEA OF THE PROOF

- We use the pigeonhole principle on the nodes of the parse tree
- Given a very long string s, its parse tree would be very tall that there must exists some interior node (say R) that must be repeated
 - $\blacksquare R \rightarrow^* x \mid vRy$
- "Pumping" translates to expanding R any number of times

Pumping Lemma for CFLs

"Pumping" translates to expanding R any number of times

Pumping Lemma for CFLs

"Pumping" translates to expanding R any number of times

Pumping Lemma for CFLs

"Pumping" translates to expanding R any number of times

NON-CONTEXT FREE LANGUAGES

Some languages cannot be recognized by a PDA or a CFG

- Some languages cannot be recognized by a PDA or a CFG
- One of the simplest non-CFL is $L = \{a^n b^n c^n : n > 0\} = \{abc, aabbcc, ...\}$

- Some languages cannot be recognized by a PDA or a CFG
- One of the simplest non-CFL is $L = \{a^nb^nc^n : n > 0\} = \{abc, aabbcc, ...\}$ Can be proven using proof by contradiction and pumping lemma

- Some languages cannot be recognized by a PDA or a CFG
- One of the simplest non-CFL is $L = \{a^nb^nc^n : n > 0\} = \{abc, aabbcc, ...\}$ Can be proven using proof by contradiction and pumping lemma
- How can we still extend PDAs? 2 stacks??

Some applications of CFL

SOME APPLICATIONS OF CFL

 Compiler Design/Programming Language Design

Some applications of CFL

- Compiler Design/Programming Language Design
- Lindenmayer Systems (L-Systems)

Compiler/Programming Language Design

Can be used in tools like Lex/Flex and Yacc/Bison From http://epaperpress.com/lexandyacc

Compiler/Programming Language Design

Can be used in tools like Lex/Flex and Yacc/Bison From http://epaperpress.com/lexandyacc

```
← → C epaperpress.com/lexandyacc/calcy.html
                     %nonassoc UMINUS
                     %type <nPtr> stmt expr stmt list
       epp
                     program:
      + -
                            function
                                                 { exit(0); }
    ▼ Menu
                     function:
    Introduction
                              function stmt
                                                 { ex($2); freeNode($2); }
                             | /* NULL */
    Overview
    Bibliography
    ▼ Lex
                     stmt:
                                                           { $$ = opr(';', 2, NULL, NULL); }
    Theory
                             expr ':'
                                                           { SS - S1; }
    Practice
                            ▼ Yacc
                            Theory
                            | IF '(' expr ')' stmt %prec IFX { $$ = opr(IF, 2, $3, $5); }
    Practice I
                            | IF '(' expr ')' stmt ELSE stmt { $$ = opr(IF, 3, $3, $5, $7); }
                            | '{' stmt list '}'
                                                           ( SS = S2: )
    Practice II
    ▼ Calculator
    Description
                     stmt list:
                                                 \{ SS = S1 : \}
    Include File
                            | stmt list stmt { $$ = opr(';', 2, $1, $2); }
    Lex Input
    Yacc Input
                     expr:
    Interpreter
                              INTEGER
                                                  \{ \$\$ = con(\$1); \}
    Compiler
                                                 \{ SS = id(S1); \}
                              '-' expr %prec UMINUS { $$ = opr(UMINUS, 1, $2); }
    Graph
                             own 111 own ( 00 - own/111 2 01 02) 1
```

LINDENMAYER SYSTEMS

grammar-like structures for drawing fractals

From Wikipedia

rules : $(A \rightarrow B-A-B)$, $(B \rightarrow A+B+A)$

variables: AB constants: + start A

angle: 60°

REFERENCES

- Previous slides on CMSC 141
- M. Sipser. Introduction to the Theory of Computation. Thomson, 2007.
- J.E. Hopcroft, R. Motwani and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. 2nd ed, Addison-Wesley, 2001.
- E.A. Albacea. Automata, Formal Languages and Computations, UPLB Foundation, Inc. 2005
- JFLAP, www.jflap.org
- Various online LATEX and Beamer tutorials