Rotation d'un corps solide autour d'un axe fixe

I- Mouvement de rotation d'un solide autour d'un axe fixe

1-Exemple:

On considère un solide (S) en mouvement de rotation autour d'un axe fixe (Δ).

- Les deux point A et B décrivent des trajectoires circulaires centrées sur l'axe (Δ).
- Les deux point M et N situés sur l'axe (Δ) sont immobiles.

2- Définition :

Un solide possède un mouvement de rotation autour d'un axe fixe (Δ) si :

Tous les points du solide décrivent des trajectoires circulaires centrées sur l'axe de rotation, sauf les points qui appartiennent à cet axe.

II- Repérage d'un point du solide :

Soit M un point quelconque choisi sur la trajectoire circulaire. On oriente la trajectoire dans un sens arbitraire. La position du point M est repéré par :

1- Abscisse angulaire:

On appelle abscisse angulaire du point M à un instant t la valeur algébrique de l'angle :

$$\theta = (\overrightarrow{OM_0}, \overrightarrow{OM})$$

L'unité de mesure de l'abscisse angulaire est le radian (rad).

2- abscisse curviligne:

On appelle abscisse curviligne du point mobile M à un instant t la valeur algébrique de l'arc :

$$s = \widehat{M_0 M}$$

L'unité de mesure de l'abscisse curviligne est le mètre (m).

S est une grandeur algébrique sa signe dépend de l'orientation de la trajectoire.

3- La relation entre l'abscisse curviligne et l'abscisse angulaire :

L'abscisse curviligne et l'abscisse angulaire sont proportionnelles :

abscisse curviligne
$$\Rightarrow s(t) = R.\theta(t)$$
 abscisse angulaire (rad) rayon (m)

III- Vitesse d'un solide en rotation :

1- Vitesse angulaire

1.1- Vitesse angulaire moyenne

Lorsqu'on un corps est en mouvement autour d'un axe fixe (Δ). Le point M occupe la position M_1 à l'instant t_1 et la position M_2 à l'instant t_2 , les deux positions étant repérées par des abscisses angulaires θ_1 et θ_2 .

Définition:

La vitesse angulaire moyenne ω_m du point M entre t_1 et t_2 est donnée par la relation suivante :

$$\omega_m = \frac{\Delta\theta}{\Delta t} = \frac{\theta_2 - \theta_1}{t_2 - t_1}$$

 $\Delta\theta$ est l'angle de rotation du solide pendant la durée Δt .

2- La vitesse angulaire instantanée :

En considérant t_{i-1} et t_{i+1} deux instants très proches et qui encadrent l'instant t_i .

La vitesse angulaire instantanée à l'instant t_i est la vitesse angulaire moyenne entre les instants t_{i+1} et t_{i-1} .

$$\omega_{i} = \frac{\theta_{i+1} - \theta_{i-1}}{t_{i+1} - t_{i-1}}$$

3- Relation entre vitesse linéaire et vitesse angulaire :

Vitesse linéaire d'un point du solide

Pendant la durée $\Delta t=t_2-t_1$; le point M parcourt la distance $\widehat{M_1M_2}~$ la vitesse linéaire s'écrit :

$$V = \frac{\widehat{M_1 M_2}}{t_2 - t_1} = \frac{\Delta s}{\Delta t}$$

On sait que : $\Delta s = R.\Delta \theta$

Donc : $v = R.\frac{\Delta\theta}{\Delta t}$

vitesse linéaire
$$\rightarrow$$
 V= R . ω \leftarrow vitesse angulaire (rad.s⁻¹) rayon (m)

Remarque:

Tous les points du solide ont à chaque instant la même vitesse de rotation, mais ils n'ont pas généralement la même vitesse instantanée.

IV- Mouvement de rotation uniforme

1- Définition :

Le mouvement de rotation d'un solide est dite uniforme si sa vitesse angulaire ω reste constante au cours du temps.

2- Les propriétés de rotation uniforme

2.1- La période :

La période T d'un mouvement de rotation uniforme est la durée d'un tour.

On : $\Delta\theta = \omega . \Delta t$ pour un tour $2\pi = \omega . T$

avec T en seconde (s) et ω en radian par seconde (rad/s).

2.2- la fréquence :

La fréquence f d'un mouvement de rotation uniforme est le nombre de tours par seconde.

fréquence
$$f = \frac{1}{T} = \frac{\omega}{2\pi}$$
 vitesse angulaire (rad.s⁻¹)

Remarque:

La vitesse angulaire ω peut être exprimée en $tr.s^{-1}$ ou $tr.min^{-1}$

avec:

$$\begin{cases} 1tr.min^{-1} = \frac{2\pi}{60}rad.s^{-1} \\ tr.s^{-1} = 2\pi.s^{-1} \end{cases}$$

V- Equation horaire d'un mouvement de rotation uniforme

 θ et θ_0 sont des abscisse angulaires, d'un point M du solide, successivement aux instants t et t_0 .

On écrit :
$$\omega = \frac{\theta - \theta_0}{t - t_0}$$

$$\theta = \omega \cdot (t - t_0) + \theta_0$$

Si
$$t_0 = 0$$
 on a: $\theta = \omega . t + \theta_0$

Activité : (voir fin du cour)

L'équation horaire d'un mouvement de rotation uniforme en abscisse angulaire :

L'équation horaire d'un mouvement de rotation uniforme en abscisse curviligne s(t):

abscisse curviligne à t=0 (m) abscisse curviligne à l'instant t
$$s(t) = v.t + s_0$$
 (m) vitesse linéaire (m.s⁻¹)

Activité:

La figure suivante représente l'enregistrement de mouvement d'un point M située au centre d'un autoporteur en rotation autour d'un axe fixe. (L'autoporteur est lié par un fil à un axe métallique fixé sur une table horizontale). L'intervalle de temps entre deux enregistrements consécutifs est égal à 40 ms.

On considère l'axe Ox passant par M_0 comme direction référentielle. Les position du point M sont déterminées par l'abscisse angulaire $\theta i = (\overrightarrow{Ox}, \overrightarrow{OM}i)$ ou bien par l'abscisse curviligne $S = (\widehat{M_0M_i})$. Le moment d'enregistrement de point M_2 correspond à l'origine des temps

- 1) Montrer que le mouvement de M est circulaire uniforme.
- 2) Compléter le tableau suivant :

	M_0	M_1	M_2	M ₃	M_4	M_5	M ₆	M_7	M ₈	M ₉	M ₁₀	M_{11}
Θ (rad)	0											
S (m)	0											
t(s)			0									

- En utilisant une échelle convenable, tracer les deux courbes θ=f(t) et s=f(t).
- En déduire les équations horaires du mouvement de point M.
- 5) Déterminer la vitesse angulaire de rotation de l'autoporteur et la vitesse de translation du point M graphiquement et par le calcule.
- 6) Vérifier la relation v = r.ω, tel que v est la vitesse de translation, ω la vitesse angulaire et r le rayon de la trajectoire.

Exploitation:

1- Montrons que le mouvement est circulaire et uniforme :

La trajectoire du point M est circulaire, la distance entre deux points consécutifs reste constante donc le mouvement est circulaire uniforme.

2- Complétons le tableau :

On prend comme exemple l'abscisse curviligne en position M_2 :

$$s_2 = \widehat{M_0 M_2} = r(\theta_2 - \theta_0)$$

r rayon de la trajectoire

$$s_3 = 2.5 \times \left(\frac{\pi}{3} - 0\right) = 1.62 \ cm$$

Position	M_0	M_1	M_2	M_3	M_4	M_5	M_6	M_7	<i>M</i> ₈	M_9	M ₁₀	M_{11}
t(ms)	-80	-40	0	40	80	120	160	200	240	280	320	360
$\theta(rad)$	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{11\pi}{6}$
s(cm)	0	1,31	2,62	3,93	5,24	6,54	7,85	9,16	10,47	11,78	13,09	14,40

3- Les courbes $\theta = f(t)$ et s = f(t)

4- Les équations horaires du mouvement :

La courbe $\theta = f(t)$ est une fonction affine son équation s'écrit :

$$\theta = \omega t + \theta_0$$

A t=0 on a :
$$\begin{cases} \theta(t=0) = \theta_0 \\ \theta(t=0) = \frac{\pi}{3} \end{cases} \Longrightarrow \theta_0 = \frac{\pi}{3}$$

 ω représente le coefficient directeur :

$$\omega = \frac{\Delta \theta}{\Delta t} = \frac{\theta_6 - \theta_3}{t_6 - t_3} = \frac{\pi - \frac{\pi}{2}}{(160 - 40) \times 10^{-3}} = 13,09 \ rad. \ s^{-1}$$

L'équation horaire s'écrit :

$$\theta=13,09\ t+\frac{\pi}{3}$$

De la même façon on obtient l'équation horaire : $s = V.t + s_0$

$$V = \frac{\Delta s}{\Delta t} = \frac{s_6 - s_3}{t_6 - t_3} = \frac{(7,85 - 3,93) \times 10^{-2}}{(160 - 40) \times 10^3} = 0,33m. \, s^{-1}$$

$$s_0 = R\theta_0 = 2,5 \times 10^{-2} \times \frac{\pi}{3} = 2,62.10^{-2}m$$

$$s = 0.33 t + 2.62.10^{-2}$$

5- graphiquement:

la vitesse angulaire est le coefficient directeur du graphe = f(t), donc :

$$\omega = 13, 10 \ rad. \ s^{-1}$$

la vitesse linéaire est le coefficient directeur du graphe = f(t), donc :

$$\forall = 0, 33 \ m. \ s^{-1}$$

-Par calcul:

$$\omega = \frac{\Delta \theta}{\Delta t} = \frac{\theta_2 - \theta_0}{t_2 - t_0} = \frac{\frac{\pi}{3} - 0}{([0 - (-80)] \times 10^3)} = 13,09 \, rad. \, s^{-1}$$

$$V = \frac{\Delta s}{\Delta t} = \frac{s_2 - s_0}{t_2 - t_0} = \frac{(2,62 - 0) \times 10^{-2}}{[0 - (-80)] \times 10^3} = 0,33m. \, s^{-1}$$

6- Vérification de la relation $V = R. \omega$:

$$V = \frac{\Delta s}{\Delta t} = \frac{R.\Delta \theta}{\Delta t} = R.\frac{\Delta \theta}{\Delta t}$$
 donc: $V = R.\omega$

$$R. \omega = 2.5 \times 10^{-2} \times 13.09 = 0.33 \ m.s^{-1}$$

Donc la relation $V = R \cdot \omega$ est vérifiée.