of steen so and bearing - Osrj Suj [=] upper bound of metabolic flux [=] appr ho Assume substrates of ij are saturating (reactant conc) > saturation roeff. U; = V; (Pj.) Vi [=] characteristic max reaction velocity for my [=] gow hr PJ [=] intracellular S.S. conc. of enzyme that catalyzes rxn [=] mmol po [=] characteristic enzyme conc [=] g DW Assume: (i) Ja 2 40 min, (ii) Kx is data driven gain from @1 of Prelim1 (iii) po = 0.3 MM; (iv) Volume of Ecoli cell is I pm (v) E rol: rell weighs 4.3×10 g and is 70% water (01) half-life of p; is 24 hrinhile poisconstant (vii) (17 Ji) mi << Jik, (viii) translation time is 1.55, (ix) characterist protein length is 333 and, (x) Kr, i = 200 jum, (xi) polysme amplification constant (Ke) is unity unless otherwise specified. Mis KE, Rut (Juj Kuj+ (Juj+1)mj) (a) 0 = 7x, i u; - (µ + 0 m, i) mi D= TLi w: - (N+ 6p; 1) P! using (vii) This Rei Rei (This Ken) IN G. HONO CON At ss. mi = p+0mic Pi = p+0pi rui= KE, I RL, T (Jutomit)

```
_ elongationrate constant
                          for protein L
                              (nx,i) ūw. prej gow
 (b) Pi= (+KE, U RI, T rives one Tx, i

(H+Op, i) Tilke, i) (H+Om, i)
                                                 Parameter estimates
                                                     are in excel file
             0, 575 * MOI
                                                   with plots.
                                                           We 98:45
      \overline{u} = W_1 + W_2 f_{\overline{1}} where \overline{v} f_{\overline{1}} = \overline{I}^n W_1 = 0.25
\overline{I} + W_1 + W_2 f_{\overline{1}} where \overline{v} f_{\overline{1}} = \overline{I}^n \overline{v} = 1.85
                                                           kd = 0,09
      θρί= tyz = 1n2 = 0.0289 hr. KL, i= 200 μM= 200 x106
      μ= 102 | 102 | 0.0173 min | RLT = 278,14 g Dw
      Juli = ki = 0.655 1 0.08246 Ke, i = 0.0555
    Assuming rate constant for abortive initiation is smaller than ke, i & ki:
                        Ke. 1 - 0.005 5
  Fraction active ribosomes: 0.8 (BIND: 102344)
                                                                 Ribosomes
   Bionumbers A erage ribosome number density: 27 000 µm3

27000 Ribosomes (1x10 Phm3) (1m3) (1m01) - 44.85 L
                            nmol
  RLT = 44.85 MM
 what is ki? Rate constant for initiation assuming other reaction
  use (viii) initiation time , kI = 1.55 = 0,667 5
   (k)=ex[ ki, == <ki>(L)
 translation elongation rate: 16.5 5 = ex } BIND; 114271
      L= 330 aa L; = 300aa (KE)=(16.5 \frac{1}{5}\frac{1}{330aa}) = 0.05 \frac{1}{5}
       KE, = (0.055-1 X 300 aa) = 0.0555-1 Jui = 0.6675-1 = 0.082
Opi= 0.0289 = 1hr = 8.03×10 5 = 0.0173 m 605 = 2.883×10 3
       K_, = (0.055 s - 1)(244.85 MM) = 504.45
(8.028 x 10 - 6 s - 1 + 2.883 x 10 - 4 s - 1)(0.0825)(260 μM)) = 504.45
    p: = (504.45)(0.575 gDW)(1)( 0.25 + 98.75 fz)
                  Where FI = (0.09).95 I1.85
```

The department of the state of the second of (c) Let's say " the chalve of kp Used = 2 (Plot later) Plat the values; and the come shifts up This is because Pelkolis an constant multiplying " u(I) and 1158greater than 61,09 mM This also makes physiological sense, since amplifying polysome concentration would amplify protein concentration. person mes is the first widow of bedan place for) and a ARIT & "1000 11 0 -101

(b) The parameters used to calculate KL,i = 505 and plot the function are in the excel sheet are shown below. They are also stored in the sheet where the function was plotted.

Parameter	Value	Units	Source
Mass of single ecoli cell	4.3E-13	g	BIND:
			106437
Fraction of water in ecoli cell	0.7	fraction	BIND:
			100044
W1	0.25	unitless	Q1 Prelim
W2	98.75	unitless	Q1 Prelim
n	1.85	unitless	Q1 Prelim
К	0.09	unitless	Q1 Prelim
Kx,i	0.585	nmol/gDW	Q1 Prelim
Ave ribosome number density	27000	ribsomes/microm^3	BIND:
			108603
Translation elongation rate	16.5	aa/s	BIND:
			114271
Doubling time of ecoli	40	min	Given
Volume of ecoli cell	1	microm^3	Given
translation initiation time	1.5	S	Given
characteristic protein length	333	aa/s	Given
translation saturation coefficient	200	microM	Given

An arbitrary value Kp = 2 was chosen greater than 1. This plot clearly shows that the curve shifts upward. This makes mathematical sense because multiplying KL, i by Kp is equivalent to multiplying $p^*(I)$ by a constant greater than 1, which would cause $p^*(I)$ to increase. This also makes physiological sense since amplifying polysome concentration would increase translation to protein and protein concentration.

