Corrida

Prova Fase 2 - Turno B - OBI2023

A Quadradônia foi escolhida para sediar uma prova internacional de corrida de rua. As ruas da Quadradônia são todas alinhadas aos eixos Norte-Sul e Leste-Oeste. As quadras da cidade são quadradas, todas de mesma dimensão. A partida e a chegada da corrida são em uma mesma interseção de ruas.

Para realizar a corrida será necessário cercar a área da cidade onde será feito o percurso. A cerca será colocada a *no mínimo* uma quadra de distância de qualquer ponto do percurso da corrida, e deve ser retilínea e alinhada aos eixos.

As figuras (a) e (b) abaixo mostram mapas da cidade ilustrando duas possibilidades de percurso e respectivas possibilidades de cercas.

Dado o percurso da corrida, sua tarefa é escrever um programa para determinar o menor comprimento possível da cerca, em número de quadras.

Entrada

A primeira linha contém um inteiro N, o número de segmentos que definem o percurso da corrida. As N linhas seguintes descrevem os segmentos, na ordem em que são percorridos na corrida, a partir do ponto de partida/chegada. Cada linha contém um inteiro C_i e um caractere D_i , indicando respectivamente o comprimento do segmento, em número de quadras, e a direção do segmento, onde 'N' indica Norte, 'S' indica Sul, 'L' indica Leste e '0' indica Oeste.

Saída

Seu programa deve produzir uma única linha, contendo um único inteiro, o menor comprimento possível da cerca, em número de quadras.

Restrições

- $2 \le N \le 100\ 000$
- $1 \le C_i \le 10$ 000 para $1 \le i \le N$
- D_i é 'N', 'S', 'L' ou 'O' para $1 \le i \le N$

Informações sobre a pontuação

A tarefa vale 100 pontos. Os pontos estão distribuídos em subtarefas, cada uma com suas **restrições** adicionais às definidas acima:

• Subtarefa 1 (11 pontos): N = 2, ou seja, o percurso utiliza uma única rua. (Veja o exemplo de entrada 1.)

• Subtarefa 2 (30 pontos):

$$-D_i =$$
 'N' ou 'L' para $1 \le i \le N-2$

$$-D_{N-1}=$$
 'S'

$$-D_{N}='0'$$

Ou seja, o percurso da corrida forma uma escadinha. (Veja os exemplos de entrada 3 e 4.)

• Subtarefa 3 (25 pontos):

$$-N \le 100$$

$$-C_i \le 10 \text{ para } 1 \le i \le N$$

• Subtarefa 4 (34 pontos): Nenhuma restrição adicional.

Seu programa pode resolver corretamente todas ou algumas das subtarefas acima (elas não precisam ser resolvidas em ordem). Sua pontuação final na tarefa é a soma dos pontos de todas as subtarefas resolvidas corretamente por qualquer uma das suas submissões.

Exemplos

Exemplo de entrada 1	Exemplo de saída 1
2	22
7 L	
7 0	

Explicação do exemplo 1:

o percurso consiste de uma única rua. A figura abaixo ilustra o percurso e a menor cerca possível, que tem comprimento de 22 quadras.

Exemplo de entrada 2	Exemplo de saída 2
8	32
2 L	
3 S	
3 L	
3 N	
2 L	
5 S	
7 0	
5 N	

2

Explicação do exemplo 2:

O percurso consiste de oito segmentos. A figura ao lado ilustra o percurso e a menor cerca possível.

Exemplo de entrada 3	Exemplo de saída 3
8	30
3 N	
1 L	
1 N	
2 L	
1 N	
3 L	
5 S	
6 0	

Explicação do exemplo 3:

A figura ao lado ilustra o percurso, que tem 8 segmentos. A menor cerca possível para esse percurso tem comprimento 30 quadras. Observe que esse exemplo e o próximo satisfazem às restrições da subtarefa 2.

Exemplo de entrada 4	Exemplo de saída 4	
8	30	
2 N		
2 L		
2 N		
3 L		
1 N		
1 L		
5 S		
6 0		

Explicação do exemplo 4:

A figura ao lado ilustra o percurso, que tem 8 segmentos. A menor cerca possível para esse percurso tem comprimento 30 quadras. Observe que esse exemplo satisfaz às restrições da subtarefa 2.

Exemplo de entrada 5	Exemplo de saída 5
7	32
5 L	
3 S	
3 0	
5 N	
4 0	
2 S	
2 L	

Explicação do exemplo 5:esse é o exemplo da figura (b) do enunciado. A menor cerca possível para esse percurso é 32 quadras.