METADATA: Small Area Indicators File

Dataset: small_area_indicators.csv

OVERVIEW

- Purpose: Small area estimation inputs and outputs for poverty mapping
- Geographic Level: Sub-district administrative units
- Methodology: Fay-Herriot and EBLUP models
- Coverage: 500 small areas across 150 districts
- Reference Period: 2024 estimates based on 2022 census and 2024 survey

SMALL AREA ESTIMATION FRAMEWORK

- Direct Estimator: Horvitz-Thompson from survey data
- Model-Based: Fay-Herriot area-level model
- Auxiliary Data: Census and administrative sources
- Validation: Benchmarked to district estimates

VARIABLE DEFINITIONS

IDENTIFICATION

- area_id [String]: Unique small area identifier (SA####)
- **district_code** [String]: Parent district code (D###)
- area_name [String]: Small area name
- area_type [String]: Area classification
 - Urban formal: Planned urban areas
 - Urban informal: Informal settlements
 - Rural village: Traditional villages
 - Rural scattered: Dispersed settlements
 - Commercial: Business districts
 - Industrial: Manufacturing areas

POPULATION CHARACTERISTICS

• total_population [Integer]: Estimated population

• sample_size [Integer]: Survey sample size in area

DIRECT ESTIMATES

- **direct_estimate_poverty** [Numeric]: Direct poverty rate (0-1)
- direct_estimate_se [Numeric]: Standard error of direct estimate

AUXILIARY VARIABLES (from Census/Admin)

- auxiliary_mean_income [Numeric]: Average income from tax records
- auxiliary_unemployment [Numeric]: Unemployment rate from labor office
- auxiliary_education_years [Numeric]: Mean years of schooling
- auxiliary_asset_index [Numeric]: Composite asset score
- auxiliary_dependency_ratio [Numeric]: Dependent/working age ratio
- auxiliary_urbanization [Numeric]: Proportion urban (0-1)

SATELLITE INDICATORS

- satellite_nightlights [Numeric]: Nighttime lights intensity
- satellite_vegetation [Numeric]: NDVI vegetation index
- distance_to_road_km [Numeric]: Distance to nearest paved road
- distance_to_market_km [Numeric]: Distance to nearest market

CLIMATE VARIABLES

- climate_rainfall_mm [Numeric]: Annual rainfall (millimeters)
- climate_temperature_c [Numeric]: Mean annual temperature (Celsius)

MODEL-BASED ESTIMATES

- **fh_estimate** [Numeric]: Fay-Herriot poverty estimate
- fh_mse [Numeric]: Mean squared error of FH estimate
- model_based_estimate [Numeric]: Alternative model estimate
- model_based_mse [Numeric]: MSE of model-based estimate
- synthetic_estimate [Numeric]: Regression synthetic estimate
- composite_estimate [Numeric]: Weighted composite estimate

QUALITY ASSESSMENT

- reliability_flag [String]: Estimate reliability
 - Reliable: CV < 20%
 - Use with caution: CV 20-30%
 - Unreliable: CV > 30%

FAY-HERRIOT MODEL SPECIFICATION

Area-level model:

$$y_i = X_i'\beta + v_i + e_i$$

where:

- y_i: Direct estimate for area i
- X_i: Vector of auxiliary variables
- v_i: Area random effect $\sim N(0, \sigma_v^2)$
- e_i: Sampling error ~ N(0, ψ_i)
- ψ_i: Known sampling variance

AUXILIARY DATA SOURCES

- 1. Census 2022: Demographics, education, housing
- 2. Administrative Records:
 - Tax authority (income)
 - Labor ministry (unemployment)
 - Education ministry (enrollment)
- 3. Satellite Data:
 - VIIRS nighttime lights (2023)
 - MODIS vegetation indices (2023)
- 4. Geographic Data:
 - OpenStreetMap (roads, facilities)
 - Climate databases (WorldClim)

MODEL DIAGNOSTICS

- Residual Analysis: Standardized residuals checked
- Influence Diagnostics: Leverage points identified
- Model Fit: R² and AIC compared across models
- Cross-Validation: Leave-one-out validation performed

ESTIMATION QUALITY METRICS

Indicator	Target	Acceptable
CV (National)	< 5%	< 10%
CV (District)	< 15%	< 20%
CV (Small Area)	< 25%	< 35%
Coverage Rate	95%	90%
Bias	< 2%	< 5%
4	'	· •

BENCHMARKING PROCEDURES

1. Internal Consistency: Small areas sum to district totals

2. External Validation: Comparison with admin records

3. Time Consistency: Reasonable trends from previous estimates

MISSING DATA HANDLING

Auxiliary Variables: Multiple imputation for missing values

• Direct Estimates: Areas with sample < 10 use synthetic only

• Quality Flags: Applied based on data availability

USAGE GUIDELINES

1. **Poverty Mapping**: Use fh_estimate for best precision

2. Uncertainty: Always report with MSE/confidence intervals

3. Aggregation: Use proper weighting when combining areas

4. Time Series: Account for model changes between years

5. Policy Use: Check reliability_flag before decisions

LIMITATIONS

1. Model Assumptions: Normality, linear relationships

2. Auxiliary Quality: Admin data may have coverage gaps

3. Spatial Correlation: Not explicitly modeled

4. Temporal Lag: Auxiliary data from different periods

VALIDATION RESULTS

Internal Validation R²: 0.75

- External Validation: Correlation 0.82 with admin data
- Bias Assessment: Average bias -1.3%
- Coverage Properties: 94% of 95% Cls contain true values

FILE SPECIFICATIONS

Format: CSV

• Records: 500 small areas

• Variables: 28

• File Size: 350 KB

Encoding: UTF-8

VERSION INFORMATION

• **Version**: 1.0

• **Production Date**: 2024-02-15

• Methodology Document: SAE_Methodology_v2.pdf

• **Software Used**: R (sae package v1.3)

CONTACT

• Technical Lead: Dr. James Mwangi

• Email: small.area@sadc-stats.org

• Phone: +267 XXX XXXX

CITATION

SADC Statistical Unit (2024). Small Area Poverty Indicators 2024.

Model-based estimates using Fay-Herriot methodology.

Southern African Development Community, Gaborone, Botswana.