Chapter 6

Prune-and-search Strategy

Outlines

- The general method
- The selection problem
- Linear programming with two variable
- The 1-center problem

6-1 The general method

- The prune-and-search strategy always consists of several iterations.
- At each iteration, it prunes away a fraction, say f (0< f< I) of the input data, and then it invokes the same algorithm recursively to solve the problem for the remaining data.
- After p iterations, the size of input data will be q, which is so small that the problem can be solved directly in some constant time c'.

The time-complexity analysis

- Assume that the time needed to execute the prune-and-search in each iteration worst case run time of the prune-andis $O(n^k)$ for some constant k, and the search algorithm is T(n).
- Then $T(n)=T((I-f)n)+O(n^k)$

$$=>T(n)=O(n^k)$$

A simple example: Binary search

sorted sequence : (search 9)

step 3 step 1 step 2

• After each comparison, a half of the data set are pruned away. Binary search can be viewed as a special divide-andconquer method, since there exists no solution in another half and then no merging is done.

6-2 The selection problem

- Input: A set S of n elements
- Output: The kth smallest element of S
- The median problem: to find the $\left|\frac{n}{2}\right|$ -th smallest element.
- The straightforward algorithm:
- step 1: Sort the n elements
- step 2: Locate the kth element in the sorted list.
- Time complexity: O(nlogn)

Prune-and-search concept for the selection problem

$$S = \{a_1, a_2, ..., a_n\}$$

Let $p \in S$, use p to partition S into 3 subsets S_1 , S_2 , S_3 :

$$S_1 = \{ a_i \mid a_i$$

$$S_3 = \{ a_i \mid a_i > p , 1 \le i \le n \}$$

3 cases:

- If $|S_1| > k$, then the kth smallest element of S is in S_1 , prune away S_2 and S_3 .
- Else, if $|S_1| + |S_2| > k$, then p is the kth smallest element of S.
- $|S_2|$)-th smallest element in S_3 , prune away S_1 and S_2 . Else, the kth smallest element of S is the $(k - |S_1| -$

How to select P?

The n elements are divided into $\left| \frac{n}{5} \right|$ subsets. (Each subset has 5 elements.)

Prune-and-search approach

Input: A set S of n elements.

Output: The kth smallest element of S.

elements to the last subset if n is not a net multiple Step 1: Divide S into | n/5 | subsets. Each subset contains five elements. Add some dummy ~

Step 2: Sort each subset of elements.

Step 3: Find the element p which is the median of the medians of the |n/5| subsets. 9

the elements less than, equal to, and greater than p, Step 4: Partition S into S₁, S₂ and S₃, which contain respectively.

the problem that selects the kth smallest element Step 5: If $|S_1| \ge k$, then discard S_2 and S_3 and solve from S₁ during the next iteration;

else if $|S_1| + |S_2| \ge k$ then p is the kth smallest element of S; otherwise, let $k' = k - |S_1| - |S_2|$, solve the problem that selects the k'th smallest element from S₃ during the next iteration.

9

Example

 $S = \{1, 25, 2, 24, 3, 23, 4, 22, 5, 21, 6, 20, 7, 19, 8, 18, 9,$ 17, 10, 16, 11, 15, 12, 14, 13}, 找 第 k 小 的 元 素

Ans

F條件以找出第A小的元素 [Step 5] 利用三個判

24 25

> . S

若 k = 11 (搜尋範圍 lS/l)

- 若k=13 (搜尋範圍 IS,|+ IS₂I)
- 若 k = 22 (搜尋範圍 l5₃l)

Time complexity

- At least n/4 elements are pruned away during each iteration.
- The problem remaining in step 5 contains at most 3n/4 elements.
- Time complexity: T(n) = O(n)

• step 1: O(n)

• step 2: O(n)

step 3: T(n/5)

• step 4: O(n)

• step 5: T(3n/4)

T(n) = T(3n/4) + T(n/5) + O(n)

Let
$$T(n) = a_0 + a_1n + a_2n^2 + \dots$$
, $a_1 \neq 0$
 $T(3n/4) = a_0 + (3/4)a_1n + (9/16)a_2n^2 + \dots$
 $T(n/5) = a_0 + (1/5)a_1n + (1/25)a_2n^2 + \dots$
 $T(3n/4 + n/5) = T(19n/20) = a_0 + (19/20)a_1n + (361/400)a_2n^2 + \dots$
 $+ \dots$
 $T(3n/4) + T(n/5) \le a_0 + T(19n/20)$

$$\Rightarrow$$
 T(n) \leq cn + T(19n/20)
 \leq cn + (19/20)cn +T((19/20)^2n)

$$\leq$$
 cn + $(19/20)$ cn + $(19/20)^2$ cn + ... + $(19/20)$ pcn + T($(19/20)^{p+1}$ n) , $(19/20)^{p+1}$ n \leq 1 \leq (19/20)pn = $\frac{1 - (\frac{19}{20})^{p+1}}{1 - \frac{19}{20}}$ cn+b Applying the formula obtained in

= 0(n)

≤ 20 cn +b

Applying the formula obtained in Section 6.1

6 -14

The general prune-and-search

- It consists of many iterations.
- algorithm recursively to solve the problem for the At each iteration, it prunes away a fraction, say f, of the input data, and then it invokes the same remaining data.
- After p iterations, the size of input data will be q which is so small that the problem can be solved directly in some constant time c.

Time complexity analysis

Assume that the time needed to execute the prune-and-search in each iteration is $O(n^k)$ for some constant k and the worst case run time of the prune-and-search algorithm is T(n). Then

$$T(n) = T((1-f)n) + O(n^k)$$

We have

 $T(n) \le T((1-f)n) + cn^k$ for sufficiently large n.

$$\leq T((1-f)^2n) + cn^k + c(1-f)^kn^k$$

 $\leq c' + cn^k + c(1 - f)^k n^k + c(1 - f)^{2k} n^k + ... + c(1 - f)^{pk} n^k$ $= c' + cn^{k}(1 + (1 - f)^{k} + (1 - f)^{2k} + \dots + (1 - f)^{pk}).$ Since 1 - f < 1, as $n \to \infty$,

 $\therefore T(n) = O(n^k)$

Thus, the time-complexity of the whole prune-andsearch process is of the same order as the timecomplexity in each iteration.

∞

Linear Programming (Linear Optimization)

Maximize or minimize $c_1x_1 + c_2x_2 + \cdots + c_dx_d$

subject to:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1d}x_d \le b_1$$

 $a_{21}x_1 + a_{22}x_2 + \dots + a_{2d}x_d \le b_2$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nd}x_d \le b_n$$

Example in 2D

$$max \quad x_1 + 8x_2$$

subject to:

$$(1)$$
 X_1

$$-3x + 4x < 16$$

(1)
$$x_1$$
 ≥ 3
(2) $x_2 \geq 2$
(3) $-3x_1 + 4x_2 \leq 14$
(4) $4x_1 - 3x_2 \leq 25$
(5) $x_1 + x_2 \leq 15$

$$(2)$$
 \mathbf{v}_1 $\mathbf{v}_2 =$

constraints optimum basic

6-3 Linear programming with two variables

Minimize ax + by

subject to
$$a_i x + b_i y \ge c_i$$
, $i = 1, 2, ..., n$

Simplified two-variable linear programming problem:

Minimize y

subject to
$$y \ge a_i x + b_i$$
, $i = 1, 2, ..., n$

The boundary F(x):

$$F(x) = \max_{1 \le x \le n} \{a_i x + b_i\}$$
The optimum solution x_0 :

$$F(x_0) = \min_{-\infty < x < \infty} F(x)$$

subject to $y \ge a_i x + bi$, i = 1, 2, ..., n **Minimize y**

Constraints deletion

- Assume x_m is known
- If $x_0 < x_m$ and the intersection of $a_3x + b_3$ and $a_2x + b_2$ is greater than x_m , then one of these two constraints is always smaller than the other for $x < x_m$. Thus, this constraint can be deleted.
- It is similar for $x_0 > x_m$.

FIGURE 6-4 An illustration of why a constraint may be eliminated.

How do we know whether Suppose an x_m is known.

$$x_0 < x_m \text{ or } x_0 > x_m$$
?

Suppose x_m is chosen.

Let $y_m = F(x_m) = \max_{1 \le i \le m} \{a_i x_m + b_i\}$ Case 1: y_m is on only one constraint.

• If
$$g > 0$$
, then $x_0 < x_m$.

If
$$g < 0$$
, then $x_0 > x_m$.

 $\rightarrow x$ The cases where x_m is on only one constrain.

intersection of several Case 2: y_m is the

constraints.

 $\mathbf{g}_{\max} = \max_{1 \le i \le n} \{a_i \mid a_i x_m + b_i = F(x_m)\}$

max. slope

 $\mathbf{g}_{\min} = \min_{1 < i < n} \left\{ a_i \mid a_i x_m + b_i = F(x_m) \right\}$ min. slop

If $g_{min} > 0$, $g_{max} > 0$, then x_0

If $g_{min} < 0$, $g_{max} < 0$, then $x_0 > x_m$

If $g_{min} < 0$, $g_{max} > 0$, then (x_m, y_m) is the optimum solution.

Cases of x_m on the intersection of several constraints.

How to choose x_m?

intersection. Among these n/2 intersections, choose the median of their x-coordinates as We arbitrarily group the n constraints into n/2 pairs. For each pair, find their

Prune-and-Search approach

<u>Input:</u> Constrains S: $a_i x + b_i$, i=1, 2, ..., n.

Output: The value x_0 such that y is minimized at x_0 subject to $y \ge a_j x + b_j$, i=1, 2, ..., n.

Step 1: If S contains no more than two constraints, solve this problem by a brute force method.

pair of constraints $a_ix + b_i$ and $a_jx + b_j$, find the intersection p_{ij} of them and denote its x-value as x_{ij} . Step 2: Divide S into n/2 pairs of constraints. For each

Step 3: Among the x_{ij} 's, find the median x_m .

Step 4: Determine
$$y_{m} = F(x_{m}) = \max_{1 < i < m} \{a_{i}x_{m} + b_{i}\}\$$

$$g_{\min} = \min_{1 < i < m} \{a_{i} \mid a_{i}x_{m} + b_{i} = F(x_{m})\}\$$

$$g_{\max} = \max_{1 < i < m} \{a_{i} \mid a_{i}x_{m} + b_{i} = F(x_{m})\}\$$
Step 5:

Case 5a: If g_{min} and g_{max} are not of the same sign, y_m is the solution and exit. Case 5b: otherwise, $x_0 < x_m$, if $g_{min} > 0$, and $x_0 > x_m$, if

Step 6:

Case 6a: If $x_0 < x_m$, for each pair of constraints whose x-coordinate intersection is larger than x_m , prune away the constraint which is always smaller than the other for $x \le x_m$.

Case 6b: If $x_0 > x_m$, do similarly.

Let S denote the set of remaining constraints. Go to Step

There are totally $\lfloor n/2 \rfloor$ intersections. Thus, $\lfloor n/4 \rfloor$ constraints are pruned away for each iteration.

Time complexity: O(n)

6-4 The 1-center problem

Given n planar points, find a smallest circle to cover these n points.

The pruning rule

 $L_{1\,2}$: bisector of segment connecting p_1 and p_2 ,

 L_{34} : bisector of segments connecting p_3 and p_4

Assume that the center of optimum circle must be in the shaded area, then P₁ can be eliminated without affecting

our solution. The area where the

The constrained 1-center problem

The center is restricted to lying on a straight line (y=y').

Median of the x_{ij}

Prune-and-search approach

- Input: n points and a straight line y = y'.
- Output: The constrained center on the straight line

Step 1: If n is no more than 2, solve this problem by a bruteforce method. Step 2: Form disjoint pairs of points (p₁, p₂), (p₃, p₄), ..., (p_{n-1}, p_n). If there are odd number of points, just let the final pair be (p_n, p_1) . Step 3: For each pair of points, (p_i, p_{i+1}) , find the point $x_{i,i+1}$ on the line y = y' such that $d(p_i, \bar{x}_{i,i+1}) = d(p_{i+1}, x_{i,i+1})$.

Step 5: Calculate the distance between p_i and x_m for all i. Let p; be the point which is farthest from x_m. Let x; denote the projection of p_i onto y = y'. If x_i is to the left (right) of x_m , then the optimal solution, x*, must be to the left (right) of Step 4: Find the median of the $\lfloor \frac{n}{2} \rfloor$ $x_{i,i+1}$'s. Denote it as x_m .

Step 6: If $x^* < x_m$, for each $x_{i,i+1} > x_m$, prune the point p_i if p_i is closer to x_m than p_{i+1} , otherwise prune the point p_{i+1} ; If $x^* > x_m$, do similarly.

Step 7: Go to Step 1.

Time complexity O(n)

The general 1-center problem

By the constrained 1-center algorithm, we can determine the center $(x^*,0)$ on the line y=0.

• We can do more

- Let (x_s, y_s) be the center of the optimum circle.

We can determine whether $y_s > 0$, $y_s < 0$ or $y_s = 0$.

Similarly, we can also determine whether $x_s > 0$, $x_s < 0$ or x_s

The sign of optimal y

- Let I be the set of points which are farthest from
- Case 1: I contains one point $P = (x_p, y_p)$. y_s has the same sign as that of y_p. the x-value of p must be equal to x* (proof by contradiction)

Case 2: I contains more than one point.

Find the smallest arc spanning all points in I.

Let $P_1 = (x_1, y_1)$ and $P_2 = (x_2, y_2)$ be the two end points of the smallest spanning arc.

If this arc $\geq 180^{\circ}$, then $y_s = 0$.

else y_s has the same sign as that of

Optimal or not optimal

an acute triangle:

an obtuse(純角)

triangle:

The circle is not optimal.

The x-value of end points p1 and p2 must be of opposite signs

The circle is optimal.

The optimum center must be located in region 3. Thus, the sign of y_3 must be the sign of $=\frac{a+d}{2}$. Similarly, x_s has the same sign as that of $=\frac{a+c}{a+c}$.

An example of 1-center problem

- One point for each of n/4 intersections of L_{i+} and L_{i-} is pruned away.
- Thus, n/16 points are pruned away in each iteration.

Prune-and-search approach

Input: A set $S = \{p_1, p_2, ..., p_n\}$ of n points.

Output: The smallest enclosing circle for S.

Step 1: If S contains no more than 16 points, solve the problem by a brute-force method.

segment $p_i p_{i+1}$. Denote them as $L_{i/2}$, for i = 2, 4, ..., n, p₄), ..., (p_{n-1}, p_n). For each pair of points, (p̄_i, p_{i+1}), find the perpendicular bisector of line and compute their slopes. Let the slope of L_{\(\triangle\)} be Step 2: Form disjoint pairs of points, (p₁, p₂), (p₃, denoted as s_k , for k = 1, 2, 3, ..., n/2.

Step 3: Compute the median of s_k 's, and denote it by

axis coincide with $y = s_m x$. Let the set of L_k 's with positive (negative) slopes be I⁺ (I⁻). (Both of them Step 4: Rotate the coordinate system so that the xare of size n/4.)

Step 5: Construct disjoint pairs of lines, (L_{i+}, L_{i-}) for i = 1, 2, ..., n/4, where $L_{i+} \in I^+$ and $L_{i-} \in I^-$. Find the intersection of each pair and denote it by (a_i, (b_i) , for i = 1, 2, ..., n/4.

9

y=y*. Let the solution of this constrained 1-center Apply the constrained 1-center subroutine to S, requiring that the center of circle be located on Step 6: Find the median of b;'s. Denote it as y*. problem be (x', y^*) .

solution. If it is, exit; otherwise, record y_s > y* or Step 7: Determine whether (x', y^*) is the optimal

- located on $x = x^*$. Let the solution of this contained 1-Step 8: If $y_s > y^*$, find the median of a_i 's for those (a_i , b_i)'s where $b_i < y^*$. If $y_s < y^*$, find the median of a_i 's of those t hose (a_i, b_i) 's where $b_i > y^*$. Denote the algorithm to S, requiring that the center of circle be median as x*. Apply the constrained 1-center center problem be (x^*, y^*) .
- solution. If it is, exit; otherwise, record $x_s > x^*$ and Step 9: Determine whether (x^*, y^*) is the optimal

Step 10

Case 1: $x_s < x^*$ and $y_s < y^*$.

Find all (a_i, b_i) 's such that $a_i > x^*$ and $b_i > y^*$. Let (a_i, b_i) be the intersection of L_{i+} and L_{i-} . Let L_{i-} be the bisector of p_j and p_k . Prune away $p_j(p_k)$ if $p_j(p_k)$ is closer to $(x^*,$ y^*) than $p_k(p_i)$.

Case 2: $x_s > x^*$ and $y_s > y^*$. Do similarly.

Case 3: $x_s < x^*$ and $y_s > y^*$. Do similarly.

Case 4: $x_s > x^*$ and $y_s < y^*$. Do similarly.

Step 11: Let S be the set of the remaining points. Go to Step 1.

Time complexity :

$$T(n) = T(15n/16) + O(n)$$

= O(n)