		Logik	a dla inforn	natyków			
		Egzamin	końcowy (część	licencjacka)			
			3 lutego 2010)			
Zadanie 1 (1	punkt). W	pisz w puste p	ola poniższej tak	oelki moce odp	owiednich z	biorów.	
$\mathbb{N} \times \{0,1,2\}$	$\{a,b\} \times \mathbb{Q}$	$\mathcal{P}(\mathbb{Q}\setminus[0,1])$	$\mathcal{P}(\mathbb{N} \times \{0,1\})$	$\{2010, \mathbb{Q}, \mathbb{R}\}$	$(\mathbb{Q}\setminus\mathbb{N})^{\mathbb{Q}}$	$(\mathbb{R}\setminus\mathbb{Q})^{\{a,b,c\}}$	$\mathcal{P}(\{0,1\}$
wyrażenie defin Zadanie 3 (1 jest leksykogra	punkt). Jes ficznym rozs izomorfizm	lną taką bijekc	ekcja $f: \mathcal{P}(\mathbb{N})$ – ję. W przeciwny $0,1,2\} \times \{0,1,2\}$ uralnego porządów. W przeciwny	m razie wpisz s $, \leq_{lex} \rangle$ i $\langle \{0, 1, 2\} \rangle$ i ku, są izomorf	2, 3, 4, 5, 6, 7 iczne, to w	". $7,8$, ≤ \rangle , gdzie grostokąt por	≤ _{lex} niżej
					ficzne, to w		

Imię i nazwisko:

\leq_{lex} i funkcję f $X \subseteq \{0,1\} \times \mathbb{N}, z$	$: \{0,1\} \times \mathbb{N} \to \{0,1\} \times \mathbb{N} \ \mathrm{d}\epsilon$	aną wzorem $f(a,b) = \langle a, b \rangle$ $(a,b) \neq \sup\{f(x) \mid x \in X\}, \text{ to } \gamma$	ą porządku leksykograficznego γ + 1⟩. Jeśli istnieje taki zbiór w prostokąt poniżej wpisz taki
ma najmniejszy	· · · · · · · · · · · · · · · · · · ·	poniżej wpisz wyliczoną	n $f(X) = \{1\} \cup \{2x \mid x \in X\}$ wartość tego punktu stałego.
prefiksowy ≤ wz		v . Niech $X = \{abba, abab,$	m $\{a,b\}$ definiujemy porządek $ababab\}$. Wpisz w prostokąty odpowiedni kres nie istnieje.
$\sup X$		$\inf X$	
dek, który nie je	-	porządkiem w zbiorze licz	zyli regularny) i liniowy porzą- b naturalnych, to w prostokąt lku wpisz słowo "NIE".

		Imię i nazv	wisko:			
		Jeśli termy $f(termów. W pr$			v prostokąt poni: ".	żej wr
		t). Jeśli termy or tych termów.			, to w prostokąto "NIE".	t pon
v prostoką	at poniżej wpi				$\neg r \lor p$ jest sprz ciwnym przypad	

Imię i nazwisko:	
Oddane zadania:	

Logika dla informatyków

Egzamin końcowy (część zasadnicza)

3 lutego 2010

Za każde z poniższych zadań można otrzymać od -2 do 16 punktów. Osoba, która nie rozpoczęła rozwiązywać zadania otrzymuje za to zadanie 0 punktów.

Zadanie 13. Rozważmy relację równoważności na zbiorze $\mathbb{N}^{\mathbb{N}}$ wszystkich funkcji z \mathbb{N} w \mathbb{N} zdefiniowaną wzorem

$$f \sim g \iff \forall n \in \mathbb{N} \ \exists k \in \mathbb{Z} \ f(n) - g(n) = 2k.$$

- (a) Podaj moc klasy abstrakcji takiej funkcji $z: \mathbb{N} \to \mathbb{N}$, że z(n) = 0 dla wszystkich $n \in \mathbb{N}$. Uzasadnij odpowiedź.
- (b) Udowodnij, że wszystkie klasy abstrakcji relacji \sim są równoliczne.
- (c) Podaj moc zbioru ilorazowego $\mathbb{N}^{\mathbb{N}}/_{\sim}$ (czyli zbioru klas abstrakcji relacji \sim). Uzasadnij odpowiedź.

Zadanie 14. Rozważmy kratę zupełną $\langle X, \leq \rangle$ i funkcję monotoniczną $f: X \to X$. Niech $a = \inf\{f^i(\top) \mid i \in \mathbb{N}\}$, gdzie \top oznacza największy element zbioru X a f^i oznacza i-krotne złożenie funkcji f.

- (a) Udowodnij, że dla każdego punktu stałego x funkcji f zachodzi nierówność $x \leq a$.
- (b) Udowodnij, że jeśli X jest zbiorem skończonym, to a jest największym punktem stałym funkcji f.

Zadanie 15. Rozważmy instancję $S = \{t_1 \stackrel{?}{=} s_1, \dots, t_n \stackrel{?}{=} s_n\}$ problemu unifikacji. Udowodnij, że jeśli θ jest unifikatorem $S \cup \{x \stackrel{?}{=} t\}$ to istnieje takie podstawienie σ , że $\theta = \sigma\{x/t\}$, gdzie $\{x/t\}$ jest taką fukcją ze zbioru zmiennych w zbiór termów, że $\{x/t\}(x) = t$ oraz $\{x/t\}(y) = y$ dla wszystkich zmiennych $y \neq x$.

		Logic fo	or Compute	er Science			
		Fina	l exam (bachele	or part)			
			February 3, 20	10			
Task 1 (1 po	int). Write	in the empty fi	elds of the table	below the care	dinalities of	respective sets	
$\mathbb{N} \times \{0, 1, 2\}$	$\{a,b\} \times \mathbb{Q}$	$\mathcal{P}(\mathbb{Q}\setminus[0,1])$	$\mathcal{P}(\mathbb{N}\times\{0,1\})$	$\{2010, \mathbb{Q}, \mathbb{R}\}$	$(\mathbb{Q}\setminus\mathbb{N})^{\mathbb{Q}}$	$(\mathbb{R}\setminus\mathbb{Q})^{\{a,b,c\}}$	$\mathcal{P}(\{0,1\})$
			tion $f: \mathcal{P}(\mathbb{N}) \to$ herwise write th		then in the	box below write	e an
\leq_{lex} is the lexi	cographic ex	tension of the r	$\{0,1,2\} \times \{0,1,2\}$ natural order, are	e isomorphic, tl	hen in the b	ox below write	
•			$[0, \leq)$ and $\langle \mathbb{Q} \times \mathbb{N}$ herwise write a j	•			

Student name:

	Student name:		
$f: \{0,1\} \times \mathbb{N} \to \mathbb{N}$	$\{0,1\} \times \mathbb{N} \text{ defined by } f(a,b) = f(\sup X) \neq \sup\{f(x) \mid x \in X\}$	$\langle a, b+1 \rangle$. If there exists a	ic order \leq_{lex} and the function a set $X \subseteq \{0,1\} \times \mathbb{N}$, such that rite any such set X . Otherwise
·	· ·		$(x) = \{1\} \cup \{2x \mid x \in X\}$ has xed point. Otherwise write the
defined by $u \leq w$ the least upper b	$df \iff \exists v \ w = uv. \ \text{Let} \ X = \{c\}$	$abba, abab, ababab$ }. In the lower bound inf X of the s	words over the alphabet $\{a, b\}$, boxes below write respectively set X , if they exist. Otherwise,
$\sup X$	bounds do not chist, write the	$\inf X$	
to the natural or			lered set that is not isomorphic write any example of such an

	Student name:
	Sk 9 (1 point). If the terms $f(h(z), x)$ and $f(y, g(y))$ are unifiable, then in the box below write any fier of these terms. Otherwise write the word "NO".
Tas any	Sk 10 (1 point). If the terms $f(h(x), x)$ and $f(y, g(y))$ are unifiable, then in the box below write unifier of these terms. Otherwise write the word "NO".
the	sk 11 (1 point). If the set of clauses $\{\neg s \lor r, \neg q \lor r, s \lor q, \neg r \lor \neg p, \neg r \lor p\}$ is inconsistent then in box below write a resolution proof of inconsistency of this set. Otherwise write a valuation satisfying set.

Student name:	
Solutions returned:	

Logic for Computer Science

Final exam (main part)

February 3, 2010

Each of the task below is scored from -2 to 16 points. Empty solutions are scored with 0 points.

Task 13. Consider the equivalence relation on the set $\mathbb{N}^{\mathbb{N}}$ of all functions from \mathbb{N} to \mathbb{N} defined by

$$f \sim g \iff \forall n \in \mathbb{N} \exists k \in \mathbb{Z} \ f(n) - g(n) = 2k.$$

- (a) What is the cardinality of the equivalence class of the function $z : \mathbb{N} \to \mathbb{N}$, such that z(n) = 0 for all $n \in \mathbb{N}$. Justify your answer.
- (b) Prove that all equivalence classes of the relation \sim are equinumerous.
- (c) What is the cardinality of the quotient set $\mathbb{N}^{\mathbb{N}}/_{\sim}$ (that is, of the set of all equivalence classes of the relation \sim). Justify your answer.

Task 14. Consider a complete lattice $\langle X, \leq \rangle$ and a monotone function $f: X \to X$. Let $a = \inf\{f^i(\top) \mid i \in \mathbb{N}\}$, where \top is the greatest element of the set X and f^i denotes the i-fold composition of f with itself.

- (a) Prove that for all fixed points x of the function f the inequality $x \leq a$ holds.
- (b) Prove that if X is a finite set then a is the greatest fixed point of the function f.

Task 15. Consider an instance $S = \{t_1 \stackrel{?}{=} s_1, \dots, t_n \stackrel{?}{=} s_n\}$ of the unification problem. Prove that if θ is a unifier of $S \cup \{x \stackrel{?}{=} t\}$ then there exists a substitution σ such that $\theta = \sigma\{x/t\}$, where $\{x/t\}$ is a function from the set of variables to the set of terms such that $\{x/t\}(x) = t$ and $\{x/t\}(y) = y$ for all variables $y \neq x$.