			Hedding	conjun	ción Disylmción	Disylicitor Disylicitor	vo ondicio	no dicondic	ord corium	or Control
р	q	~p	~ q	рΛq	рVq	p <u>V</u> q	$p \rightarrow q$	p ↔ q	P↓q	p ↑ q
V	′ V	F	F	V	V	F	V	V	F	F
V	′	F	V	F	V	V	F	F	F	V
F	: V	V	F	F	V	V	V	F	F	V
1 6	:	1 1/	1/	_			1/	1/	\ \/	1/

1 IDEMPOTENCIA

- 1.1. p Λ p ⇔ p
- 1.2. p V p ⇔ p
- 2 Conmutatividad
- $2.1.\,p\,\Lambda\,q \Leftrightarrow q\,\Lambda\,p$
- 2.2. $p V q \Leftrightarrow q V p$
- 2.3. $p \underline{V} q \Leftrightarrow q \underline{V} p$
- 2.4. $p \leftrightarrow q \Leftrightarrow q \leftrightarrow p$
- 2.5. p ↓ q ⇔ q ↓ p
- 2.6. p ↑ q ⇔ q ↑ p

3. Asociatividad

- 3.1. $(p \land q) \land r \Leftrightarrow p \land (q \land r)$
- 3.2. $(p V q) V r \Leftrightarrow p V (q V r)$
- 3.3. $(p \vee q) \vee r \Leftrightarrow p \vee (q \vee r)$
- 3.4. $(p \leftrightarrow q) \leftrightarrow r \Leftrightarrow p \leftrightarrow (q \leftrightarrow r)$

4 Distributividad

- 4.1. $p \Lambda (q V r) \Leftrightarrow (p \Lambda q) V (p \Lambda r)$
- 4.2. $p V (q \Lambda r) \Leftrightarrow (p V q) \Lambda (p V r)$
- 4.3. $p \rightarrow (q \land r) \Leftrightarrow (p \rightarrow q) \land (p \rightarrow r)$
- 4.4. $p \rightarrow (q V r) \Leftrightarrow (p \rightarrow q) V (p \rightarrow r)$
- 4.5. $p \rightarrow (q \leftrightarrow r) \Leftrightarrow (p \rightarrow q) \leftrightarrow (p \rightarrow r)$

<u>5 Leyes de la condicional (implicación material)</u>

- 5.1. p \rightarrow q \Leftrightarrow ~p V q Def. Implicación material
- 5.2. $p \rightarrow q \Leftrightarrow p \uparrow \sim q$ Def. Implicación material
- 5.3. p \rightarrow q \Leftrightarrow \sim q \rightarrow \sim p Ley Transposición
- 5.4. $p \rightarrow (q \rightarrow r) \Leftrightarrow q \rightarrow (p \rightarrow r)$ Ley condicional simple

5.5. $(p \land q) \rightarrow r \Leftrightarrow p \rightarrow (q \rightarrow r)$ 1er Export

5.6.
$$(p \land q) \rightarrow r \Leftrightarrow q \rightarrow (p \rightarrow r)$$
 2da Export

6 Leyes Bicondicional

- 6.1. $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$
- 6.2. $p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\sim p \land \sim q)$
- 6.3. $p \leftrightarrow q \Leftrightarrow (\sim p \leftrightarrow \sim q)$
- 6.4. $p \leftrightarrow q \Leftrightarrow (\sim q \leftrightarrow \sim p)$

7 Negación de las operaciones binarias

- 7.1. \sim (p \wedge q) \Leftrightarrow (\sim p V \sim q) Ley Morgan
- 7.2. \sim (p V q) \Leftrightarrow (\sim p \wedge \sim q) Ley Morgan

8 <u>Leyes de identidad</u>

- 8.1. P ∧ T ⇔ P
- 8.2. P ∧ F ⇔ F
- 8.3. P V T ⇔ T
- 8.4. P V F ⇔ P

9 <u>Leyes de Complementación</u>

- 9.1. p V ~p ⇔ T Ley 3er.Excluido
- 9.2. p ∧ ~p ⇔ F Ley de contradicción
- 9.4. **₽**⇔ T
- 9.5. ~(~p) ⇔ p Ley Doble Negación o Involución

10 Leyes de absorción

- 10.1. p Λ (p V q)⇔p
- 10.2. p V (p Λ q)⇔p
- 10.3. $p \Lambda (\sim p V q) \Leftrightarrow p \Lambda q$
- 10.4. p V (~ p Λ q)⇔p V q

p->q p	p^q p^q	p v p	13) Leyes de las proposiciones bicondici		
q	p q	р	p ↔ q p ↔ q		
2) Modus tollendo tollens (MT)	6) Regla de adjunción (A)	10) Leyes de Morgan(LD) ~(p \ q)	$p \rightarrow q$ $q \rightarrow p$ $p \rightarrow q$		
p ->q ~ q	p q	~p ^~q ~p ^~q	$p \leftrightarrow q$ $q \rightarrow p$		
~ p	p^q	~p^~q 	$(p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q$		
3) Modus tollendo ponens (MTP)	7) Ley del silogismo hipotético(SH)	11) Ley del Silogismo disyuntivo (SD)	14) Regla de dilema destructivo(DD)		
p ^v q p ^v q ~ p ~ p ~ p ~	p->q q->r	p v q p->r q->s	~ r V ~ s p ->r q ->s		
p q	p ->r	r v s	~p ^ ~q		
4) Doble negación(DN)	8) Ley de adición (LA)	12) Leyes conmutativas (LC)	15) Regla de Absorción (RA)		
~(~p) p	р	p^q p v q	p → q		
p ~(~p)	p V q	q^p q ^v p	p → (p ^ q)		