MATH 6301 Real Analysis I Homework 4

Jonas Wagner jonas.wagner@utdallas.edu

2022, October $27^{\rm th}$

Contents

Problem 1	5	
Problem 2	4	
Problem 3	Ę	
Problem 4	6	
Problem 5	7	

Instructions:

- 1. Print this booklet
- 2. Use the space provided to write your solutions in this booklet
- 3. Hand in your assignment to your instructor on the due date during the class time.

Question	Weight	Your Score	Comments
1.	10		
2.	10		
3.	10		
4.	10		
5.	10		
Total:	50		

PROBLEM:

Assume that $U \subset \mathbb{R}^n$ is an open set and $f: U \to \mathbb{R}$ is a differentiable function. Show that for every k = 1, 2, ..., n, the partial derivative

$$\frac{\partial f}{\partial x_k} : U \to \mathbb{R}$$

is \mathcal{B}_n -measurable (here \mathcal{B}_n stands for the σ -algebra of Borel sets in \mathbb{R}^n).

PRELIMINARIES:

Definition 1. Let $S \subset P(X)$ is a σ -algebra and $E \in S$. The function $f: E \to \overline{\mathbb{R}}$ is called <u>measurable</u> relative to S (i.e. S-measurable) iff

$$\forall_{a \in \mathbb{R}} f^{-1}(a, \infty] := \{ x \in E : f(x) > a \} \in \mathcal{S}$$

Remark 1. Assume that $f: E \to \overline{\mathbb{R}}$, $E \in \mathcal{S} \subset P(X)$ is S-measurable. Then the following are also S-measurable

- 1. $f^2: E \to \overline{R}$
- 2. $|f|: E \to \overline{R}$
- 3. $\frac{1}{f}: E \to \overline{R}$
- 4. $a \cdot f : E \to \overline{R}, \ a \in \mathbb{R}$

Definition 2. Let $U \subset \mathbb{R}^n$ and $f: U \to \mathbb{R}$ be a differentiable function. The partial derivative $\frac{\partial f}{\partial x_k}$ is defined as follows

$$\frac{\partial f}{\partial x_k} := \lim_{n \to \infty} \frac{f(x_1, \dots, x_k + 1/n, \dots, x_n) - f(x_1, \dots, x_k, \dots, x_n)}{1/n}$$

SOLUTION:

Let $U \subset \mathbb{R}^n$ and $f: U \to \mathbb{R}$ be a differentiable function. The partial derivative, $\frac{\partial f}{\partial x_k}$, can be increasingly estimated by the sequence of simple functions where for each borel-set region $(a,b) \in \mathcal{B}_n$ the simple function value of $[\frac{\partial f}{\partial x_k}\Big|_{(a,b)}]_i$ is defined by

$$\frac{f(a_1,\cdots,a_k+1/i,\cdots,a_n)-f(a_1,\cdots,a_k,\cdots,a_n)}{1/i}$$

Since this simple function can approximate $\frac{\partial f}{\partial x_k} \forall_{k=1,\dots,n}$, it is \mathcal{B}_n -measurable.

PROBLEM:

Let X be a space and $S \subset \mathcal{P}(X)$ a σ -algebra in X. We say that the map $f: X \to \mathbb{R}^n$ is S-measurable if and only if

$$\forall_{V \in \mathcal{B}_n} f^{-1}(V) \in \mathcal{S}$$

Assume that $f: X \to \mathbb{R}^n$ is a map that for all $v \in \mathbb{R}^n$ the function $\phi_y(x) := f(x) \bullet v$, $x \in X$, is S-measurable. Show that the map f is S-measurable.

SOLUTION:

In order for $\phi_y(x)$ to be measurable each dimension of the dot product must be measurable. (i.e)

$$\phi_y(x) = f_1(x) \cdot v_1 + \dots + f_n(x) \cdot v_n$$
 measurable $\implies f_i(x)$ measurable $\forall_{i=1 \to n}$

we now know that each dimension measurable in \mathcal{B} , therefore f is measurable in \mathcal{B}_n .

PROBLEM:

Let X be a bounded set in Banach space \mathcal{E} . We define the following function $\mu^*: \mathcal{P}(X) \to \mathbb{R}$ by

$$\mu^*(A) := \inf \big\{ r > 0 \ : \ \exists_{x_1, x_2, \dots, x_k \in X} A \subset \bigcup_{j=1}^k B_r(x_j) \big\}, A \subset X$$

where $B_r(x_0) := \{x \in \mathcal{E} : ||x - x_0|| < r\}$. Verify if the function μ^* is an outer measure on X and if it is check if it is a metric outer measure.

(The function μ^* defined above is called a measure of non-compactness. Can you guess what would be μ^* if $\mathcal{E} = \mathbb{R}^n$?)

PRELIMINARIES:

Definition 3. Outer Measure

SOLUTION:

PROBLEM:

For two given spaces X and Y and assume that $\underline{\mu}_1^*:\mathcal{P}(X)\to\overline{\mathbb{R}}$ and $\underline{\mu}_2^*:\mathcal{P}(Y)\to\overline{\mathbb{R}}$ are two outer measures. Define the function $\nu^*:\mathcal{P}(X\times Y)\to\overline{\mathbb{R}}$ by

$$\nu^*(C) := \inf \left\{ \sum_{k=1}^{\infty} \mu_1^*(A_k) \mu_1^*(B_k) : C \subset \bigcup_{k=1}^{\infty} A_k \times B_k, \ A_k \subset X, \ B_k \subset Y \right\}$$

Check if the function ν^* is an outer measure on $X \times Y$.

PRELIMINARIES:

SOLUTION:

PROBLEM:

A set $I \subset \mathbb{R}^n$ is called an *interval* in \mathbb{R}^n if there exists $a_1 \leq b_1, a_2 \leq b_2, \dots, a_n \leq b_n$ such that

$$(a_1,b_1)\times(a_2,b_2)\times\cdots\times(a_n,b_n)\subset I\subset [a_1,b_2]\times[a_2,b_2]\times\cdots\times[a_n,b_n]$$

We denote by \mathcal{F} the family of all intervals in \mathbb{R}^n . Consider the set

$$X := [c_1, d_1] \times [c_2, d_2] \times \cdots \times [c_n, d_n], \quad c_k < d_k$$

Is the family $\mathcal{R} \subset \mathcal{P}(X)$, given by

$$\mathcal{R} := \left\{ A \subset X : \exists_{I_1, I_2, \dots, I_N \in \mathcal{F}} A := \bigcup_{k=1}^N I_k, I_k \subset X \right\}$$

and algebra of sets in X? Justify your answer.

SOLUTION:

This does form an algebra