

(19) RU (11) 2 091 789 (13) C1

(51) MПК⁶ G 01 N 30/06

РОССИЙСКОЕ АГЕНТСТВО ПО ПАТЕНТАМ И ТОВАРНЫМ ЗНАКАМ

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

- (21), (22) Заявка: 94002762/25, 28.01.1994
- (46) Дата публикации: 27.09.1997
- (56) Ссылки: 1. Рахманова Т.В. и др. Журнал аналит.химии, 1991, т. 46, N 6, с. 1163 1165. 2. Жильников В.Г. и др. Журнал аналит.химии, 1991, т. 46, N 9, с. 1138 1844. 3. Федоров Л.А. Диоксин как фундаментальный фактор техногенного загрязнения живой и неживой природы. Практическая сертификация. М.: ИПМП "Контроль", N 4-5, 1992, с. 16 21.
- (71) Заявитель: Войсковая часть 61469
- (72) Изобретатель: Иванов К.Н., Миллер С.В., Головков В.Ф., Гормай В.В., Шаповалов В.Н., Чернова Т.Д., Мельников И.Н., Белоусов Е.Б., Клюев Н.А., Бродский Е.С., Лямин И.А.
- (73) Патентообладатель: Войсковая часть 61469

(54) СОСТАВ ВНУТРЕННЕГО СТАНДАРТА ДЛЯ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ ПОЛИХЛОРИРОВАННЫХ ДИБЕНЗО-N-ДИОКСИНОВ

(57) Реферат:

Использование: количественное определение полихлорированных дибензо-п-диоксинов. Сущность определения: в качестве внутреннего стандарта используют смесь монофтор-полихлорированных дибезо-п-диоксинов при следующем соотношении ингредиентов, об. %:

Монофтор-тетрахлордибензо-п-диоксин - 15 - 70

Монофтор-пентахлордибензо-п-диоксин - 70 - 15

Монофтор-гептахлордибензо-п-диоксин -Остальное

Для количественного определения тетрахлордибензо-п-диоксинов используют 2-фтор-6,7, 8, 9-тетрахлордибензо-п-диоксин. Для количественного определения пентахлордибензо-п-диоксинов используют 2-фтор-1,3,4,7,8-пентахлордибензо-п-диоксин. Для количественного определения гекса и гептахлордибензо-п-диоксинов используют 2-фтор-1,3,4,6,7,8,9-гептахлордибензо-п-диоксин. 3 з. п. ф-лы, 3 табл.

(19) RU (11) 2 091 789 (13) C1

(51) Int. Cl. 6 G 01 N 30/06

RUSSIAN AGENCY FOR PATENTS AND TRADEMARKS

(12) ABSTRACT OF INVENTION

(21), (22) Application: 94002762/25, 28.01.1994

(46) Date of publication: 27.09.1997

(71) Applicant: Vojskovaja chast' 61469

(72) Inventor: Ivanov K.N., Miller S.V., Golovkov V.F., Gormaj V.V., Shapovalov V.N., Chernova T.D., Mel'nikov I.N., Belousov E.B., Kljuev N.A., Brodskij E.S., Ljamin I.A.

(73) Proprietor: Vojskovaja chast' 61469

(54) INTERNAL-STANDARD COMPOSITION FOR QUANTITATIVE DETERMINATION OF POLYCHLORINATED DIBENZO-N-DIOXINS

(57) Abstract:

FIELD: analytical methods. SUBSTANCE: as internal standard in quantitative determination of monofluoro-polychlorinated dibenzo-p-dioxins, a polyhalogenated dioxin mixture is used containing 15-70 wt % monofluorotetrachlorodibenzo-p- dioxin, 70-15 wt % monofluoropentachlorodibenzo-p-dioxin, and

monofluoroheptachlorodibenzo-p-dioxin to the balance. For determining tetrachlorodibenzo-p-dioxins, 2-fluoro-6,7,8,9-tetrachlorodibenzo-p-dioxin and, for determining hexa- and heptachlorodibenzo-p-dioxins, 2-fluoro-1,3,4,6,7,8,9-heptachlorodibenzo-p-dioxin are utilized. EFFECT: improved reliability of analysis. 4 cl, 3 tbl

 ∞

_

Изобретение относится к исследованиям и анализу материалов путем разделения на составные части и может быть использовано при контроле загрязнений в промышленности, сельском и лесном хозяйстве и охране окружающей среды.

Поступление в окружающую среду полихлорированных дибензо-п-диоксинов (ПХДД) в настоящее время является одной из глобальных экологических проблем, решение которой связывают с наличием надежных методов обнаружения ПХДД, в том числе и наиболее токсичного из них 2,3,7,8-тетрахлордибензо-п-диоксина, в объектах окружающей среды.

Важным элементом этих методов являются стандарты ПХДД, которые должны иметь близкие к определенным соединениям физико-химические, газохроматографические и масс-спектральные характеристики и они предназначены для контроля всех стадий процесса выделения, очистки и детектирования определяемых соединений.

Существует ряд методов определения ПХДД, в которых используются различные наборы стандартов.

Для определения 2,3,7,8-тетрахлордибензо-п-диоксина (ТХДД) в золе мусоросжигательных установок применяли градуировочные растворы, используя в качестве вещества сравнения препарат ТХДД с содержанием более 98% основного вещества [1]

Недостатком данного метода является использование внешнего стандарта для проведения количественного анализа, не позволяющего в полной мере судить о полноте выделения искомых соединений, что может привести к искажению полученных результатов.

Для повышения точности количественного определения содержания полихлорированных дибензо-п-диоксинов в объектах окружающей среды применяют метод, где в качестве стандарта используют меченные по углероду изопоты.

Для определения содержания тетрахлорзамещенных дибензо-п-диоксинов в промышленном гербициде 2,4-D в качестве внутреннего стандарта использовали С ¹³ 1,2,3,4-ТХДД (Бродский Е. С. Клюев Н. А. Жильников В. Г. Муренец Н. В. Бочаров Б. В. Русинов Г. Л. Журнал аналит. химии. 1992, т. 47, N 8, 1497).

Однако использование одного внутреннего стандарта для количественного определения ПХДД в многокомпонентных смесях приводит к искажению результатов анализа вследствие несоответствия экстракционной способности различных ПХДД.

Для количественного определения ПХДД используют также смесь внешнего внутреннего стандартов. Так, определение тетрахлордибензо-п-диоксинов в природных и методами сточных водах хроматографии и хроматомасс-спектрометрии низкого и высокого разрешения проводили с использованием внешнего стандартного 1,2,3,4-ТХДД, а В качестве образца внутреннего меченый стандарта С ¹³-1,2,3,4-ТХДД [2]

В методике, разработанной Агентством по охране окружающей среды США [3] в качестве внутреннего стандарта для контроля эффективности экстракции и детектирования

рекомендуется использовать набор из 5 ¹³C полихлорированных меченых по контроля дибензо-п-диоксинов. Лпя очистки эффективности процесса используется СІ 4-2,3,7,8-тетрахлордибензо-п-диоксин. Такой набор стандартов позволяет все стадии процесса контролировать выделения, очистки и детектирования определяемых соединений.

Данный состав стандартов для количественного определения ПХДД является наиболее близким к предлагаемому и рассматривается в качестве прототипа.

При всех несомненных достоинствах (возможность количественного определения ПХДД) прототип имеет, однако, ряд недостатков, основными из которых следует считать:

высокую стоимость проведения анализа из-за присутствия в нем меченых образцов;

невозможность проведения количественного определения ПХДД с использованием газовой хроматографии, оснащенной электронно-захватным детектором, в связи с тем, что меченый и стандартный образцы имеют одинаковый индекс удерживания;

высокую степень опасности проведения количественного определения ПХДД из-за наличия во внутреннем стандарте высокотоксичных меченых образцов и в первую очередь

2,3,7,8-тетрахлордибензо-п-диоксина.

Задача изобретения снижение стоимости анализа, расширение спектра используемой аналитической аппаратуры, а также снижение степени опасности проведения анализа тетра-, пента-, гекса-, гептахлордибензо-п-диоксинов в объектах окружающей среды.

Задача достигается применением внутреннего стандарта, состоящего из смеси монофтор-полихлорированных дибензо-п-диоксинов при следующем соотношении ингредиентов, об.

Монофтор-тетрахлордибензо-п-диоксин 15-70:

Монофтор-пентахлордибензо-п-диоксин 70-15:

Монофтор-гептахлоридбензо-п-диоксин Остальное

Использование предлагаемого внутреннего стандарта позволяет оценить степень извлечения ПХДД из определяемого объекта и провести калибровку аппаратуры, они же выступают в качестве реперов. Характеристики образцов, входящих в патентуемый состав, представлены в табл. 1.

Структура и чистота синтезированных соединений подтверждена нами с использованием инструментальных методов анализа (элементный анализ, газовая хроматография, хроматомасс-спектрометрия, ядерный магнитный резонанс).

Для доказательства работоспособности предлагаемых стандартов были использованы различные ПХДД, синтезированные по известным методикам. Чистота ПХДД составляла, по данным ГХ/МС, 98 99%

При этом была проведена токсикологическая оценка синтезированных фторхлордибензо-п-диоксинов на нелинейных белых мышах при внутрижелудочной

-3-

20

аппликации, при этом показано, что патентуемые соединения в дозах до 50 мг/кг не проявляют токсического действия (LD $_{50}$ > 50 мг/кг, что соответствует уровню токсичности пестицидов.

Для оценки экстракционной способности синтезированных соединений был определен их параметр гидрофобности (log P), а также хроматографические параметры в условиях высокоэффективной жидкостной хроматографии (элюент-метанол, λ 235 нм, колонка Zorbax ODS, расход элюента 1 мл/мин).

подтверждения возможности Для осуществления изобретения и установления оптимального соотношения заявляемых (примеры 1 16) ингредиентов использованы матрицы дистиплированной воды (1 л), грунта (20 г), придонного ила (20 г). В матрицу вносили 100 мкл смеси одиннадцати полихлорированных дибензо-п-диоксинов гексане В концентрацией 1_•10⁻² мг/мл каждого. примере 1 вносили также 100 предлагаемого стандарта с концентрацией 5 •10⁻² мг/мл каждого фторированного ПХДД. Затем экстрагировали 2 раза по 50 мл

Экстракт упаривали на роторном испарителе до 1 мл, а затем на песчанной бане до 10 мкл в токе азота. Определение коэффициента экстракции осуществляли с использованием газового хроматографа и хроматомасс-спектрометра.

Количественное определение проводили при следующих условиях.

Газовая хроматография:

Колонка кварцевая капиллярная ДВ-5 с неподвижной жидкой фазой SE-54 (60 м₀0,32 мм₀0,25 мкм)

Начальная температура колонки 70°C Скорость подъема температуры 20°C/мин Промежуточная температура колонки 180°C

Время выдержки 3 мин Скорость подъема температуры 4°С/мин Конечная температура колонки 290°С Время выдержки 20 мин Температура инжектора 290°С

Температура детектора 290°C Скорость газа-носителя 1 мл/мин Коэффициент деления потока 1/40.

Хроматомасс-спектрометрия: Колонка кварцевая капиллярная ДВ-5 с неподвижной жидкой фазой SE-54(60 м₀0,32 мм₀0,25 мкм)

Температура инжектора 310°C
Температура детектора 270°C
Температура источников ионов 240°C
Температура интерфейса 240°C
Начальная температура колонки 50°C
Время выдержки 8 мин
Скорость подъема температуры 20°C/мин

Скорость подъема температуры 20°С/мин Промежуточная температура колонки 220°С

Скорость подъема 2°С/мин
Конечная температура колонки 300°С
Время выдержки 15 мин
Коэффициент сброса 1/9
Входное давление 1 ат
Доза вкола 1 мкл
Время задержки сброса данных 1440с

Скорость сканирования 0,33 с/ден Диапазон масс сканирования 180 530 ед. Энергия ионизации 70 eV

В табл. 2 представлены результаты определения степени экстракции (G)ПХДД и фторхлордибензо-п-диоксинов из указанных выше матриц (пример 1).

Анализ табл. 2 показывает, что представленные соединения имеют сходную степень экстракции. При этом установлено также, что экстракционная способность ФХДД стандартов сопоставима экстракционной способностью ПДХХ, содержащих в молекуле число атомов хлора, одинаковое с фторированным аналогом.

Таким образом, показана возможность использования в качестве внутреннего стандарта смеси

фторхлордибензо-п-диоксинов в соотношении 1:1:1 для количественного определения ПХДД различными инструментальными методами (ГХ, ГХ/МС).

Анализ полученных результатов показывает, что уверенное количественное определение ПХДД из различных объектов окружающей среды достигается применением в качестве внутреннего стандарта смеси фторхлордибензо-п-диоксинов при

следующем соотношении ингредиентов, об. 2-фтор-6,7,8,9-тетрахлордибензо-п-диокси и 15.70

2-фтор-1,3,4,7,8-пентахлордибенэо-п-диок син 70 15:

2-фтор-1,3,4,6,7,8,9-гелтахлордибензо-п-д иоксин Остальное

Изменение состава внутреннего стандарта в предлагаемом интервале не влечет изменения возможности количественного определения ПХДД в объектах среды. Отклонение от вышеуказанных соотношений ингредиентов приводит к невоспроизводимости результатов и затруднении количественного анализа указанных соединений.

В литературе отсутствуют конкретные стоимостные выражения для меченых и фторированных ПХДД, однако имеющихся каталожных данных (Cambridge isotope laboratories) позволяет сделать вывод о том, что меченные стандарты как минимум в 5 10 раз дороже соответствующих им немеченных образцов.

Стоимость же фторхлорсодержащих дибензо-п-диоксинов будет находиться на уровне полихлорированных аналогов.

В табл. 3 представлена сравнительная о характеристика предлагаемом состава внутреннего стандарта и прототипа.

Таким образом, показано, что предлагаемый состав внутреннего стандарта для проведения количественного определения ПХДД в различных объектах окружающей среды выгодно отличается от прототипа, что позволяет рекомендовать его для использования при контроле загрязнений в промышленности, сельском и лесном хозяйстве и охране окружающей среды, а также при выявлении путей поступления загрязнителей типа полихлорированных дибензо-п-диоксинов в среду обитания человека.

Формула изобретения:

1. Состав внутреннего стандарта для количественного определения полихлорированных дибензо-п-диоксинов,

4

используют отличающийся тем, что используют смесь монофтор-полихлорированных 2-фтор-6,7,8,9-тетрахлордибензо-п-диоксин. 3. Состав внутреннего стандарта по п.1, следующем дибензо-п-диоксинов при отличающийся тем, что для количественного соотношении ингредиентов, об. определения пентахлордибензо-п-диоксинов Монофтор-тетрахлордибензо-п-диоксин 15 используют 2-фтор-1,3,4,7,8-пентахлордибензо-п-диоксин. Монофтор-пентахлордибензо-п-диоксин 70 4. Состав внутреннего стандарта по п.1, 15 отличающийся тем, что для количественного Монофтор-гептахлордибензо-п-диоксин Остальное определения гексагепта-хлордибензо-п-диоксинов используют 2. Состав внутреннего стандарта по п.1, отличающийся тем, что для количественного 2-фтор-1,3,4,6,7,8,9-гепта-хлордибензо-п-диок определения тетрахлордибензо-п-диоксинов син. 15 20 25 30 35 40 45 50 55

60

 α

Образец	T _{rus} , C	Данные элеме	Степень чистоты, %	
		вычисл., %	найдено, %	
2-F-6,7,8,9 -	166-167	C - 42,40 H - 0,89	C - 42,25 H- 0,76	98,5
тхдд		Cl - 41,71 F - 5,59	CI - 41,63 F - 5,48	
2-F-1,3,4,7,8 -	170-171	C - 33,50 H - 0,54	C - 38,36 H - 0,43	99,0
ПХДД		CI - 47,35 F - 5,07	CI - 47,28 F - 4,98	
2-F-1,3,4,6,7,8,9	228-229	C - 32,51 H	C - 32,47 H	99,0
-ГпХДД		CI - 55,98 F - 4,29	CI - 55,87 F - 4,33	

Таблица2 Степень экстракции (G, %) ПХДД и фторхлордибензо -п - диоксинов

Nº n/n	ПХДД или ФХДД	Объект исследования		
		Вода	Грунт	Придонный ил
1	2,3,7,8 - ТХДД	85/87	70/72	70/72
2	1,3,7,8 - ТХДД	84/85	69/71	69/72
3	1,3,6,8 - ТХДД	84/86	70/72	70/71
4	1,2,3.4 - ТХДД	79/83	68/72	69/72
5	1,2,7,8 - ТХДД	83/85	65/71	68/73
6	Į 1,2,3,7,8 - ПХД Д	79/85	73/69	68/70
7	1,2,3,4,7 - ПХДД	84/86	72/73	69/72
8	1,2,3,6,7,8 - ГХДД	76/78	65/73	72 <i>[</i> 70
9	1,2,3,7,8,9 - ГХДД	81/79	67/74	66/72
10	1,2,3,4,7,8 - ГХДД	74/81	70/73	· 68/74
11	1,2,3,4,7,8 - ГпХДД	66/72	68/71	73/78
12	2-F-6,7,8,9 - ТХДД	80/81	69/74	70 <i>/</i> 72
13	2-F-1,3,4,8,9 - ПХДД	81/84	68/72	69/68
14	2-F-1,.3,4,6,7,8,9 -	68/72	73/78	69/75
	ГкХДД			

Примечание: В числителе - значения ГХ; в знаменателе - значения ГХ/МС.

Таблица3 Сравнительная характеристика заявляемого состава внутреннего стандарта и прототипа

Состав	Стоимость	Возможность использования ГХ	Токсичность используемых стандартов, LD ₅₀ , мкг/кг, мышь
По прототипу 2,3,7,8 - ТХДД 1,2,3,7,8 - ПХДД 1,2,3,6,7,8 - ГХДД	_	отсутствует	114-284* 337,5* 1250
Заявляемый состав	в 5 и более раз дешевле	имеется	более 50000