Linear Algebra Review

Sanjay Singh*†

*Department of Information and Communication Technology Manipal Institute of Technology, Manipal University Karnataka-576104, INDIA sanjay.singh@manipal.edu

[†]Centre for Artificial and Machine Intelligence (CAMI) Manipal University, Karnataka-576104, INDIA

January 28, 2017

Sanjay Singh

Linear Algebra Review

Notation: Sets and Graphs

- A: A set
- R: Set of real numbers
- $\{0, 1, 2, \dots, n\}$: Set of all integers between 0 and n
- [a,b]: Real intervals including a and b
- (a,b]: Interval excluding a but including b
- $\mathbb{A}\setminus\mathbb{B}$: Set subtraction
- \mathcal{G} : A graph
- $Pa_{\mathcal{G}}(x_i)$: Parent of x_i in G

Indexing Notation

- a_i : Element i of vector a, with indexing starting at 1
- a_i: All elements of a except for element i
- A_{i.:}: Row i of matrix A
- $A_{:,j}$: Column j of matrix A
- $A_{i,j,k}$: Element (i,j,k) of a 3-D tensor A
- A:,:,k: 2-D slice of a 3-D tensor

Sanjay Singh

Linear Algebra Review

Linear Algebra Operations

- I_n : Identity matrix with n rows and n columns
- A^T : Transpose of matrix A
- A⁺: Moore-Pensrose pseudoinverse of A
- $A \odot B$: Element-wise (Hadamard) product of A and B
- det(A): Determinant of A
- $x \in \mathbb{R}^n$: A vector with n entries
- $A \in \mathbb{R}^{m \times n}$: A matrix with m rows and n columns, entries of A are real numbers

Scalars, Vectors, Matrices and Tensors

Study of linear algebra involves following types of mathematical objects

- Scalars- just a single number
- Vectors-it is an array of numbers
- Matrices-a 2-D array of numbers
- Tensors-are useful for representing higher order relations, for example when we need array with more than two axes

Sanjay Singh

Linear Algebra Review

• Product of two matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is the matrix $C = AB \in \mathbb{R}^{m \times p}$, where

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

• Given two vectors $x, y \in \mathbb{R}^n$, quantity $x^T y$ called **inner product** or dot product of vectors, is a real number given by

$$x^{T}y \in \mathbb{R} = [x_1, x_2, \dots, x_n] \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^{n} x_i y_i$$

- Note that, $x^T y = y^T x$
- Given vectors $x \in \mathbb{R}^m, y \in \mathbb{R}^n$ (not of same size), $xy^T \in \mathbb{R}^{m \times n}$ is called the outer product

$$xy^{T} \in \mathbb{R}^{m \times n} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & \dots & y_{n} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & \dots & x_{1}y_{n} \\ x_{2}y_{1} & x_{2}y_{2} & \dots & x_{2}y_{n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m}y_{1} & x_{m}y_{2} & \dots & x_{m}y_{n} \end{bmatrix}$$

Usage of Outer Product

- Let $\mathbf{1} \in \mathbb{R}^n$, and $A \in \mathbb{R}^{m \times n}$ whose columns are all equal to some vector $x \in \mathbb{R}^m$
- Using outer product, we can represent A compactly as,

$$A = \begin{bmatrix} x_1 & x_1 & \dots & x_1 \\ x_2 & x_2 & \dots & x_2 \\ \vdots & \vdots & \ddots & \vdots \\ x_m & x_m & \dots & x_m \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} = x \mathbf{1}^T$$

Sanjay Singh

Linear Algebra Review

Matrix-Vector Products

Given matrix $A \in \mathbb{R}^{m \times n}$ and a vector $x \in \mathbb{R}^n$, their product $y = Ax \in \mathbb{R}^m$

•
$$y = Ax = \begin{bmatrix} - & a_1^T & - \\ - & a_2^T & - \\ & \vdots & \\ - & a_1^T & - \end{bmatrix} x = \begin{bmatrix} a_1^T x \\ a_2^T x \\ \vdots \\ a_m^T x \end{bmatrix}$$

$$[a_1]x_1 + [a_2]x_2 + \ldots + [a_n]x_n.$$

• Identity matrix $I \in \mathbb{R}^{n \times n}$, defined as

$$I_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

- For all $A \in \mathbb{R}^{m \times n}$, AI = A = IA
- Diagonal matrix is a matrix where all non-diagonal elements are 0, and denoted $D = diag(d_1, d_2, \dots, d_n)$ with

$$D_{ij} = egin{cases} d_i & i = j \ 0 & i
eq j \end{cases}$$

- I = diag(1, 1, ..., 1)
- $A \in \mathbb{R}^{n \times n}$ is symmetric if $A = A^T$, and it is **anti-symmetric** if $A = -A^T$
- $A = \frac{1}{2}(A + A^T) + \frac{1}{2}(A A^T)$
- $A \in \mathbb{S}^n$ means that A is a symmetric $n \times n$ matrix

Sanjay Singh

Linear Algebra Review

Trace

Trace of a square matrix $A \in \mathbb{R}^{n \times n}$, denoted by tr(A) (or trA) is the sum of diagonal elements in the matrix

$$\bullet trA = \sum_{i=1}^{n} A_{ii}$$

- For $A,B,C\in\mathbb{R}^{n\times n}$, it has following properties
 - $trA = trA^T$
 - tr(A + B) = trA + trB
 - $\alpha \in \mathbb{R}$, $tr(\alpha A) = \alpha tr A$
 - For A, B such that AB is square trAB = trBA
 - For A, B, C such that ABC is square trABC = trBCA = trCAB

A **norm** of a vector ||x|| is a measure of the "length" of the vectors

Commonly used Euclidean or L₂ norm is defined as

$$||x||_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

- Note that $||x||_2^2 = x^T x$
- A norm is any function $f: \mathbb{R}^n \to \mathbb{R}$ that satisfies the following properties
 - For all $x \in \mathbb{R}^n$, $f(x) \ge 0$ (non-negative)
 - f(x) = 0 iff x = 0 (definiteness)
 - For all $x \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$, $f(\alpha x) = |\alpha| f(x)$ (homogeneity)
 - For all $x, y \in \mathbb{R}^n$, $f(x + y) \le f(x) + f(y)$ (triangle inequality)

Sanjay Singh

Linear Algebra Review

• L_1 and L_{∞} norm is defined as

$$||x||_1 = \sum_{i=1}^n |x_i|, \quad ||x||_{\infty} = \max_i |x_i|$$

• In general, L_p norm is defined as

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

Norm of a matrix, such as Frobenius norm is defined as

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n A_{ij}^2} = \sqrt{tr(A^T A)}$$

Linear Independence and Rank

- Set of vectors $\{x_1, x_2, \dots, x_n\} \in \mathbb{R}^m$ is said to be (linearly) independent if no vectors can be presented as a linear combination of remaining vectors
- Conversely, they are called as dependent, i,e $x_n = \sum_{i=1}^{n-1} \alpha_i x_i$, for some $\alpha_i \in \mathbb{R}$
- Column rank of a matrix $A \in \mathbb{R}^{m \times n}$ is the number of independent columns of A
- Row rank is the largest number of rows of A that constitute a linearly independent set
- For any matrix $A \in \mathbb{R}^{m \times n}$ the column rank is equal to the row rank, and collectively called as rank of A, denoted by rank(A)
- Basic properties of rank:
 - For $A \in \mathbb{R}^{m \times n}$, $rank(A) \leq min(m, n)$. If rank(A) = min(m, n), then A is said to be full rank
 - For $A \in \mathbb{R}^{m \times n}$, $rank(A) = rank(A^T)$
 - For $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times p}$, $rank(AB) \leq min(rank(A), rank(B))$
 - For $A, B \in \mathbb{R}^{m \times n}$, $rank(A + B) \leq rank(A) + rank(B)$

Sanjay Singh

Linear Algebra Review

Inverse

- Inverse of a square matrix $A \in \mathbb{R}^{n \times n}$ is denoted by A^{-1} , $A^{-1}A = I = AA^{-1}$
- A is invertible iff it is a non-singular i.e $det(A) \neq 0$
- A to be invertible, it must be full rank
- Properties of inverse, all assume that $A, B \in \mathbb{R}^{n \times n}$
 - $(A^{-1})^{-1} = A$
 - $(AB)^{-1} = B^{-1}A^{-1}$
 - $(A^{-1})^T = (A^T)^{-1}$

Orthogonal Matrices

- Two vectors $x, y \in \mathbb{R}^n$ are orthogonal if $x^T y = 0$
- A vector $x \in \mathbb{R}^n$ is normalized if $||x||_2 = 1$
- A square matrix $U \in \mathbb{R}^{n \times n}$ is orthogonal if all its columns are orthogonal to each other and are normalized (the columns are then referred to as being **orthonormal**)
- ullet From orthogonality and normality, $U^TU=I=UU^T$
- If U is not square but its columns are still orthonormal, then $U^TU=I\neq UU^T$
- Operating on a vector with an orthogonal matrix will not change its Euclidean norm i.e., $||Ux||_2 = ||x||_2$, for any $x \in \mathbb{R}^n$, $U \in \mathbb{R}^{n \times n}$

Sanjay Singh

Linear Algebra Review

Range and Nullspace of a Matrix

• **Span** of a set of vectors $\{x_1, x_2, \dots, x_n\}$ is the set of all vectors that can be expressed as a linear combination of $\{x_1, x_2, \dots, x_n\}$ i.e.,

$$span(\{x_1, x_2, \dots, x_n\}) = \left\{v : v = \sum_{i=1}^n \alpha_i x_i, \quad \alpha_i \in \mathbb{R}\right\}$$

- **Projection** of a vector $y \in \mathbb{R}^m$ onto span of $\{x_1, x_2, \dots, x_n\}$ is the vector $v \in span(\{x_1, x_2, \dots, x_n\})$, such that v is as close to y as measured by the Euclidean norm $||v y||_2$
- Projection is denoted as

$$Proj(y; \{x_1, x_2, \dots, x_n\}) = argmin_{v \in span(\{x_1, x_2, \dots, x_n\})} \|y - v\|_2$$

• **Range** of a matrix $A \in \mathbb{R}^{m \times n}$, denoted by $\mathcal{R}(A)$ is the span of columns of A

$$\mathcal{R}(A) = \{ v \in \mathbb{R}^m : v = Ax, x \in \mathbb{R}^n \}$$

• **Nullspace** of a matrix $A \in \mathbb{R}^{m \times n}$, denoted as $\mathcal{N}(A)$ is the set of all vectors that equal 0 when multiplied by A i.e.,

$$\mathcal{N}(A) = \{ x \in \mathbb{R}^n : Ax = 0 \}$$

- Vectors in $\mathcal{R}(A)$ are of size m, while vectors in $\mathcal{N}(A)$ are of size n
- Vectors in $\mathcal{R}(A^T)$ and $\mathcal{N}(A)$ are both in \mathbb{R}^n i.e

$$\{w: w = u+v, u \in \mathcal{R}(A^T), v \in \mathcal{N}(A)\} = \mathbb{R}^n, \quad \mathcal{R}(A^T) \cap \mathcal{N}(A) = \{0\}$$

- $\mathcal{R}(A^T)$ and $\mathcal{N}(A)$ are disjoint subsets that together span the entire space of \mathbb{R}^n
- Sets of this type are called orthogonal complements, and denoted by $\mathcal{R}(A^T) = \mathcal{N}(A)^{\perp}$

Sanjay Singh

Linear Algebra Review

Determinant

- Determinant of $A \in \mathbb{R}^{n \times n}$ is a function $det : \mathbb{R}^{n \times n} \to \mathbb{R}$ and is denoted by |A| or det A
- Determinant satisfies the following properties
 - Determinant of the identity is 1, |I| = 1
 - Given a matrix $A \in \mathbb{R}^{n \times n}$, if we multiply a single row in A by a scalar $\alpha \in \mathbb{R}$, then $\alpha |A|$
 - If we exchange any two rows of A, then the determinant of the new matrix is -|A|
- For $A \in \mathbb{R}^{n \times n}$, $|A| = |A^T|$
- For $A, B \in \mathbb{R}^{n \times n}$, |AB| = |A||B|
- For $A \in \mathbb{R}^{n \times n}$, |A| = 0 iff A is singular
- For $A \in \mathbb{R}^{n \times n}$ and A non-singular, $|A^{-1}| = 1/|A|$
- $|A| = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} |A_{\setminus i, \setminus j}|$, where $A_{\setminus i, \setminus j}$ is the matrix that results from deleting ith row and jth column from A

Quadratic Forms and Positive Semidefinitve Matrices

• Given $A \in \mathbb{R}^{n \times n}$ and a vector $x \in \mathbb{R}^n$, the scalar value $x^T A x$ is called a **quadratic form**

•
$$x^T A x = \sum_{i=1}^n x_i (Ax)_i = \sum_{i=1}^n x_i \left(\sum_{j=1}^n A_{ij} x_j \right) = \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

- Some definitions
 - A symmetric matrix $A \in \mathbb{S}^n$ is **positive definite** (PD) if for all non-zero vectors $x \in \mathbb{R}^n, x^T A x > 0$
 - A symmetric matrix $A \in \mathbb{S}^n$ is **positive semidefinite** (PSD) if for all vectors $x \in \mathbb{R}^n$, $x^T A x > 0$
 - A symmetric matrix $A \in \mathbb{S}^n$ is **negative definite** (ND) if for all vectors $x \in \mathbb{R}^n, x^T A x < 0$
 - A symmetric matrix $A \in \mathbb{S}^n$ is **negative semidefinite** (NSD) if for all vectors $x \in \mathbb{R}^n, x^T A x \leq 0$
 - Finally, a symmetric matrix $A \in \mathbb{S}^n$ is **indefinite** if it is neither PSD nor NSD.
 - Given $A \in \mathbb{R}^{n \times n}$, the matrix $G = A^T A$ (also known as **Gram matrix**) is always positive semidefinite

Sanjay Singh

Linear Algebra Review

Eigenvalues and Eigenvectors

• Given $A \in \mathbb{R}^{n \times n}$, we say that $\lambda \in \mathbb{C}$ is an eigenvalue of A and $x \in \mathbb{C}^n$ is the corresponding eigenvector if

$$Ax = \lambda x, \quad x \neq 0$$

- To obtain eigenvector corresponding to the eigenvalue λ_i , we solve linear equation $(\lambda_i I A)x = 0$
- Properties of eigenvalues and eigenvectors

•
$$trA = \sum_{i=1}^{n} \lambda_i$$

- $\bullet |A| = \prod_{i=1}^{n} \lambda_i$
- Rank of A is equal to the number of non-zero eigenvalues of A
- For $|A| \neq 0$, $1/\lambda_i$ is an eigenvalue of A^{-1} with associated eigenvector x_i , i.e $A^{-1}x_i = (1/\lambda_i)x_i$
- Eigenvlaues of a diagonal matrix $D = diag(d_1, \dots, d_n)$ are the diagonal entries d_1, \dots, d_n

We can write eigenvector equations simultaneously as

$$AX = X\Lambda$$

, where

$$X \in \mathbb{R}^{n \times n} = \begin{bmatrix} | & | & | \\ x_1 & x_2 & \dots & x_n \\ | & | & | \end{bmatrix}, \quad \Lambda = diag(\lambda_1, \dots, \lambda_n)$$

- If the eigenvectors are linearly independent, then X will be invertible so $A = X\Lambda X^{-1}$
- A matrix that can be written in this form is called diagonalizable

Sanjay Singh

Linear Algebra Review

Matrix Calculus

- Matrix calculus???
- It is the extension of calculus to the vector setting
- Actual calculus is relatively trivial, however, notations are bit different
- We'll particularly focus on
 - Gradient
 - Hessian
 - Gradient and Hessian of quadratic and linear functions
 - Least Squares
 - Gradient of determinant

• Suppose $F: \mathbb{R}^{m \times n} \to \mathbb{R}$, then the gradient of f (wrt $A \in \mathbb{R}^{m \times n}$) is a matrix of partial derivatives, defined as

$$\nabla_{A}f(A) \in \mathbb{R}^{m \times n} = \begin{bmatrix} \frac{\partial f(A)}{\partial A_{11}} & \frac{\partial f(A)}{\partial A_{12}} & \cdots & \frac{\partial f(A)}{\partial A_{1n}} \\ \frac{\partial f(A)}{\partial A_{21}} & \frac{\partial f(A)}{\partial A_{22}} & \cdots & \frac{\partial f(A)}{\partial A_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f(A)}{\partial A_{m1}} & \frac{\partial f(A)}{\partial A_{m2}} & \cdots & \frac{\partial f(A)}{\partial A_{mn}} \end{bmatrix}$$

• An $m \times n$ matrix with

$$(\nabla_A f(A))_{ij} = \frac{\partial f(A)}{\partial A_{ij}}$$

• If A is just a vector $x \in \mathbb{R}^n$,

$$\nabla_{x} f(x) = \begin{bmatrix} \frac{\partial f(x)}{\partial x_{1}} \\ \frac{\partial f(x)}{\partial x_{2}} \\ \vdots \\ \frac{\partial f(x)}{\partial x_{n}} \end{bmatrix}$$

Sanjay Singh

Linear Algebra Review

- Gradient of a function is only defined if the function is real-valued, i.e., it returns a scalar value
- We cannot take the gradient of $Ax, A \in \mathbb{R}^{n \times n}$ wrt x, as it is vector-valued
- From the properties of partial derivatives
 - $\nabla_x (f(x) + g(x)) = \nabla_x f(x) + \nabla_x g(x)$
 - For $\alpha \in \mathbb{R}$, $\nabla_x(\alpha f(x)) = \alpha \nabla_x f(x)$
- Gradients are natural extension of partial derivative for multi-variate functions
- Working with gradients can be tricky due to notational reasons

Example

Let $f: \mathbb{R}^m \mapsto \mathbb{R}$ be the function defined by

$$f(z) = z^T z$$

then $\nabla_z f(z) = 2z$.

Hessian

- Suppose that $f: \mathbb{R}^n \mapsto \mathbb{R}$
- Hessian matrix wrt x, written as $\nabla_x^2 f(x)$ is given by

$$\nabla_{x}^{2}f(x) \in \mathbb{R}^{n \times n} = \begin{bmatrix} \frac{\partial^{2}f(x)}{\partial^{2}x_{1}^{2}} & \frac{\partial^{2}f(x)}{\partial x_{1}\partial x_{2}} & \cdots & \frac{\partial^{2}f(x)}{\partial x_{1}\partial x_{n}} \\ \frac{\partial^{2}f(x)}{\partial x_{2}\partial x_{1}} & \frac{\partial^{2}f(x)}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2}f(x)}{\partial x_{2}\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2}f(x)}{\partial x_{n}\partial x_{1}} & \frac{\partial^{2}f(x)}{\partial x_{n}\partial x_{2}} & \cdots & \frac{\partial^{2}f(x)}{\partial x_{n}^{2}} \end{bmatrix}$$

• $\nabla_x^2 f(x) \in \mathbb{R}^{n \times n}$, with

$$(\nabla_x^2 f(x))_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$$

- Hessian is always symmetric, since $\frac{\partial^2 f(x)}{\partial x_i \partial x_j} = \frac{\partial^2 f(x)}{\partial x_j \partial x_i}$
- Gradient is the analogue of first derivative for function
- Hessian as the analogue of second derivative, but with few caveats

Sanjay Singh

Linear Algebra Review

Gradient and Hessian of Quadratic and Linear Function

• For some $x \in \mathbb{R}^n$, let $f(x) = b^T x$ for some $b \in \mathbb{R}^n$, then

$$f(x) = \sum_{i=1}^{n} b_i x_i$$

SO

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \left(\sum_{i=1}^n b_i x_i = b_k \right)$$

• We can say that $\nabla_x b^T x = b$

Consider a quadratic function $f(x) = x^T A x$ for $A \in \mathbb{S}^n$, which can be written as

$$f(x) = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_i x_j$$

To take partial derivative, we'll consider term including x_k and x_k^2 factors separately

$$\frac{\partial f(x)}{\partial x_k} = \frac{\partial}{\partial x_k} \sum_{i=1}^n \sum_{j=1}^n A_{ij} x_i x_j$$

$$= \frac{\partial}{\partial x_k} \left[\sum_{i \neq k} \sum_{j \neq k} A_{ij} x_i x_j + \sum_{i \neq k} A_{ik} x_i x_k + \sum_{j \neq k} A_{kj} x_k x_j + A_{kk} x_k^2 \right]$$

$$= \sum_{i \neq k} A_{ik} x_i + \sum_{j \neq k} A_{kj} x_j + 2A_{kk} x_k$$

$$= \sum_{i=1}^n A_{ik} x_i + \sum_{j=1}^n A_{kj} x_j$$

$$= 2 \sum_{i=1}^n A_{ki} x_i$$

Sanjay Singh

Linear Algebra Review

- The *k*th entry of $\nabla_x f(x)$ is the inner product of the *k*th row of A and x a/b
- $\nabla_x x^T A x = 2Ax$ (think of $\partial/(\partial x)ax^2 = 2ax$)
- Hessian of the quadratic function $f(x) = x^T A x$

$$\frac{\partial^2 f(x)}{\partial x_k \partial x_l} = \frac{\partial}{\partial x_k} \left[\frac{\partial f(x)}{\partial x_l} \right] = \frac{\partial}{\partial x_k} \left[2 \sum_{i=1}^n A_{li} x_i \right] = 2A_{lk} = 2A_{kl}$$

- So, $\nabla_x^2 x^T A x = 2A$
- Recap

 - $\nabla_x x^T A x = 2Ax$ (if A symmetric) $\nabla_x^2 x^T A x = 2A$ (if A symmetric)

Gradient of Determinant

• Consider $A \in \mathbb{R}^{n \times n}$, we want to find $\nabla_A |A|$, since

$$|A| = \sum_{i=1}^{n} (-1)^{i+j} A_{ij} |A_{\setminus i, \setminus j}|$$

SO

$$\frac{\partial}{\partial A_{kl}}|A| = \frac{\partial}{\partial A_{kl}}\sum_{i=1}^{n} (-1)^{i+j}A_{ij}|A_{\setminus i,\setminus j}| = (-1)^{k+l}|A_{\setminus k,\setminus l}| = (adj(A))_{lk}$$

Sanjay Singh

Linear Algebra Review

- Consider a function $f: \mathbb{S}^n_{++} \mapsto \mathbb{R}, f(A) = \log |A|$
- $\frac{\partial \log |A|}{\partial A_{ij}} = \frac{\partial \log |A|}{\partial |A|} \frac{\partial |A|}{\partial A_{ij}} = \frac{1}{|A|} \frac{\partial |A|}{\partial A_{ij}}$
- Now it is obvious that

$$\nabla_A \log |A| = \frac{1}{|A|} \nabla_A |A| = A^{-1}$$