

June 2003 Revised March 2004

NC7NP34

TinyLogic® ULP Triple Buffer

General Description

The NC7NP34 is a triple buffer from Fairchild's Ultra Low Power (ULP) Series of TinyLogic®. Ideal for applications where battery life is critical, this product is designed for ultra low power consumption within the V_{CC} operating range of 0.9V to 3.6V V_{CC}.

The internal circuit is composed of a minimum of inverter stages, including the output buffer, to enable ultra low static and dynamic power.

The NC7NP34 is designed for optimized power and speed, and is fabricated with an advanced CMOS technology to achieve high speed, low noise operation while maintaining extremely low CMOS power dissipation.

Features

- Space saving US8 package
- Ultra small MicroPak™ Pb-free package
- 0.9V to 3.6V V_{CC} supply operation
- 3.6V overvoltage tolerant I/O's at V_{CC} from 0.9V to 3.6V

4.0 ns typ for 3.0V to 3.6V $\rm V_{\rm CC}$

5.0 ns typ for 2.3V to 2.7V $V_{\rm CC}$

6.0 ns typ for 1.65V to 1.95V V_{CC}

7.0 ns typ for 1.40V to 1.60V V_{CC}

11.0 ns typ for 1.10V to 1.30V V_{CC}

27.0 ns typ for 0.90V V_{CC}

- Power-Off high impedance inputs and outputs
- Static Drive (I_{OH}/I_{OL})

±2.6 mA @ 3.00V V_{CC}

±2.1 mA @ 2.30V V_{CC}

±1.5 mA @ 1.65V V_{CC}

±1.0 mA @ 1.40V V_{CC}

 ± 0.5 mA @ 1.10V V_{CC} $\pm 20~\mu A$ @ 0.9V V_{CC}

- Low noise switching using design techniques of Quiet Series™ noise/EMI reduction circuitry
- Ultra low dynamic power

Ordering Code:

Order Number	Package Number		Package Description	Supplied As
NC7NP34K8X	MAB08A	NP34	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3k Units on Tape and Reel
NC7NP34L8X	MAC08A	X7	8-Lead MicroPak, 1.6 mm Wide	5k Units on Tape and Reel

Battery Life vs. V_{CC} Supply Voltage

TinyLogic ULP and ULP-A with up to 50% less power consumption can extend your battery life significantly.

Battery Life = (V_{battery} *I_{battery}*.9)/(P_{device})/24hrs/day

Where, P_{device} = (I_{CC} * V_{CC}) + (C_{PD} + C_L) * V_{CC}² * f Assumes ideal 3.6V Lithium Ion battery with current rating of 900mAH and derated 90% and device frequency at 10MHz, with C₁ = 15 pF load

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. Quiet Series™ and MicroPak™ are trademarks of Fairchild Semiconductor Corporation.

Logic Symbol

IEEE/IEC

Pin Descriptions

Pin Names	Description
A ₁ , A ₂ , A ₃	Input
Y ₁ , Y ₂ , Y ₃	Output

Function Table

I = A

Input	Output
Α	Υ
L	L
Н	Н

H = HIGH Logic Level L = LOW Logic Level

Connection Diagrams

Pin Assignments for US8

(Top View)

Pin One Orientation Diagram

AAA represents Product Code Top Mark - see ordering code

Note: Orientation of Top Mark determines Pin One location. Read the Top

Product Code Mark left to right, Pin One is the lower left pin (see diagram).

Pad Assignments for MicroPak

(Top Thru View)

Absolute Maximum Ratings(Note 1)

 $\begin{array}{lll} \mbox{Supply Voltage (V$_{CC}$)} & -0.5\mbox{V to } +4.6\mbox{V} \\ \mbox{DC Input Voltage (V$_{IN}$)} & -0.5\mbox{V to } +4.6\mbox{V} \\ \end{array}$

DC Output Voltage (V_{OUT}) HIGH or LOW State (Note 2)

 $\label{eq:VCC} \begin{array}{ll} \mbox{HIGH or LOW State (Note 2)} & -0.5\mbox{V to V}_{CC} + 0.5\mbox{V} \\ \mbox{V}_{CC} = 0\mbox{V} & -0.5\mbox{V to 4.6\mbox{V}} \\ \mbox{DC Input Diode Current (I}_{IK}) \mbox{V}_{IN} < 0\mbox{V} & \pm 50\mbox{ mA} \\ \end{array}$

DC Output Diode Current (I_{OK})

 $\begin{array}{lll} \rm V_{OUT} < 0V & -50~mA \\ & \rm V_{OUT} > V_{CC} & +50~mA \\ DC~Output~Source/Sink~Current~(I_{OH}/I_{OL}) & \pm~50~mA \\ \end{array}$

 $\operatorname{DC}\operatorname{V}_{\operatorname{CC}}$ or Ground Current per

Supply Pin (I_{CC} or Ground) \pm 50 mA Storage Temperature Range (T_{STG}) -65° C to +150 $^{\circ}$ C

Recommended Operating Conditions (Note 3)

Supply Voltage 0.9V to 3.6VInput Voltage (V_{IN}) 0V to 3.6V

Output Voltage (V_{OUT})

HIGH or LOW State $$\rm OV\ to\ V_{CC}$$ $\rm V_{CC}=\rm OV$ $\rm OV\ to\ 3.6V$

Output Current in I_{OH}/I_{OL}

 $\begin{array}{lll} {\rm V_{CC}} = 3.0 {\rm V} \; {\rm to} \; 3.6 {\rm V} & \pm 2.6 \; {\rm mA} \\ {\rm V_{CC}} = 2.3 {\rm V} \; {\rm to} \; 2.7 {\rm V} & \pm 2.1 \; {\rm mA} \\ {\rm V_{CC}} = 1.65 {\rm V} \; {\rm to} \; 1.95 {\rm V} & \pm 1.5 \; {\rm mA} \\ \end{array}$

 $V_{CC} = 1.40 \text{V to } 1.60 \text{V}$ $\pm 1.0 \text{ mA}$ $V_{CC} = 1.10 \text{V to } 1.30 \text{V}$ $\pm 0.5 \text{ mA}$

 $V_{CC} = 0.9V \\$ Free Air Operating Temperature (T_A) $-40^{\circ}C \ \, to +85^{\circ}C$

Minimum Input Edge Rate (Δt/ΔV)

 $V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$ 10 ns/V

Note 1: Absolute Maximum Ratings: are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: IO Absolute Maximum Rating must be observed.

Note 3: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V _{CC}	T _A = -	+25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions
Syllibol	Farameter	(V)	Min	Max	Min	Max	Ullits	Conditions
V _{IH}	HIGH Level	0.90	0.65 x V _{CC}		0.65 x V _{CC}			
	Input Voltage	$1.10 \leq V_{CC} \leq 1.30$	0.65 x V _{CC}		0.65 x V _{CC}			
		$1.40 \leq V_{CC} \leq 1.60$	0.65 x V _{CC}		0.65 x V _{CC}		V	
		$1.65 \leq V_{CC} \leq 1.95$	0.65 x V _{CC}		0.65 x V _{CC}		V	
		$2.30 \leq V_{CC} \leq 2.70$	1.6		1.6			
		$3.00 \leq V_{CC} \leq 3.60$	2.1		2.1			
V _{IL}	LOW Level	0.90		0.35 x V _{CC}		0.35 x V _{CC}		
	Input Voltage	$1.10 \leq V_{CC} \leq 1.30$		$0.35 \times V_{\rm CC}$		$0.35 \times V_{\rm CC}$		
		$1.40 \leq V_{CC} \leq 1.60$		$0.35 \times V_{\rm CC}$		$0.35 \times V_{\rm CC}$	V	
		$1.65 \leq V_{CC} \leq 1.95$		$0.35 \times V_{\rm CC}$		$0.35 \times V_{\rm CC}$	V	
		$2.30 \leq V_{CC} \leq 2.70$		0.7		0.7		
		$3.00 \leq V_{CC} \leq 3.60$		0.9		0.9		
V _{OH}	HIGH Level	0.90	V _{CC} - 0.1		V _{CC} - 0.1			
	Output Voltage	$1.10 \leq V_{CC} \leq 1.30$	V _{CC} - 0.1		$V_{CC} - 0.1$			
		$1.40 \leq V_{CC} \leq 1.60$	V _{CC} - 0.1		$V_{CC} - 0.1$			I _{OH} = -20 μA
		$1.65 \le V_{CC} \le 1.95$	V _{CC} - 0.1		$V_{CC} - 0.1$			ΙΟΗ - 20 μ/
		$2.30 \leq V_{CC} \leq 2.70$	V _{CC} - 0.1		V _{CC} - 0.1			
		$3.00 \leq V_{CC} \leq 3.60$	V _{CC} - 0.1		V _{CC} - 0.1		V	
		$1.10 \le V_{CC} \le 1.30$	0.75 x V _{CC}		0.70 x V _{CC}			$I_{OH} = -0.5 \text{ mA}$
		$1.40 \le V_{CC} \le 1.60$	1.07		0.99			$I_{OH} = -1.0 \text{ mA}$
		$1.65 \leq V_{CC} \leq 1.95$			1.22			$I_{OH} = -1.5 \text{ mA}$
		$2.30 \leq V_{CC} \leq 2.70$			1.87			$I_{OH} = -2.1 \text{ mA}$
		$3.00 \leq V_{CC} \leq 3.60$	2.61		2.55			$I_{OH} = -2.6 \text{ mA}$

DC Electrical Characteristics (Continued)

Symbol	Parameter	v _{cc}	T _A =	+25°C	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions
Syllibol	Farameter	(V)	Min	Max	Min	Min Max		Conditions
V _{OL}	LOW Level	0.90		0.1		0.1		
	Output Voltage	$1.10 \leq V_{CC} \leq 1.30$		0.1		0.1		
		$1.40 \leq V_{CC} \leq 1.60$		0.1		0.1		I - 20 A
		$1.65 \leq V_{CC} \leq 1.95$		0.1		0.1		$I_{OL} = 20 \mu A$
		$2.30 \leq V_{CC} \leq 2.70$		0.1		0.1		
		$3.00 \leq V_{CC} \leq 3.60$		0.1		0.1	V	
		$1.10 \le V_{CC} \le 1.30$		0.30 x V _{CC}		0.30 x V _{CC}		$I_{OL} = 0.5 \text{ mA}$
		$1.40 \le V_{CC} \le 1.60$		0.31		0.37		I _{OL} = 1.0 mA
		$1.65 \le V_{CC} \le 1.95$		0.31		0.35		I _{OL} = 1.5 mA
		$2.30 \leq V_{CC} \leq 2.70$		0.31		0.33		I _{OL} = 2.1 mA
		$3.00 \leq V_{CC} \leq 3.60$		0.31		0.33		I _{OL} = 2.6 mA
IN	Input Leakage Current	0.90 to 3.60		±0.1		±0.5	μΑ	$0 \le V_I \le 3.6V$
OFF	Power Off Leakage Current	0		0.5		0.5	μΑ	$0 \le (V_I, V_O) \le 3.6V$
cc	Quiescent Supply Current	0.90 to 3.60		0.9		0.9	μΑ	$V_I = V_{CC}$ or GND

AC Electrical Characteristics

Symbol	Parameter	v _{cc}		T _A = +25°C	;	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Figure
Syllibol		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PHL}	Propagation Delay	0.90		27.0						
t _{PLH}		$1.10 \le V_{CC} \le 1.30$	3.5	11.0	21.8	3.0	34.3			
		$1.40 \le V_{CC} \le 1.60$	2.5	7.0	14.8	2.0	15.0	ns	C _L = 10 pF	Figures
		$1.65 \leq V_{CC} \leq 1.95$	2.0	6.0	12.0	1.5	12.2	115	$R_L = 1 M\Omega$	1, 2
		$2.30 \leq V_{CC} \leq 2.70$	1.5	5.0	9.4	1.0	9.9			
		$3.00 \leq V_{CC} \leq 3.60$	1.0	4.0	8.3	1.0	9.0			
t _{PHL}	Propagation Delay	0.90		30.0						
t _{PLH}		$1.10 \le V_{CC} \le 1.30$	4.0	11.0	22.8	3.5	37.3			Figures 1, 2
		$1.40 \leq V_{CC} \leq 1.60$	3.0	8.0	15.5	2.5	16.5	ns	C _L = 15 pF	
		$1.65 \le V_{CC} \le 1.95$	2.5	6.0	12.6	2.0	13.6	115	$R_L = 1 M\Omega$	
		$2.30 \leq V_{CC} \leq 2.70$	2.0	5.0	9.9	1.5	10.8			
		$3.00 \leq V_{CC} \leq 3.60$	1.5	4.0	8.7	1.0	9.5			
t _{PHL}	Propagation Delay	0.90		32.0						
t _{PLH}		$1.10 \le V_{CC} \le 1.30$	5.0	13.0	25.9	4.0	46.3			
		$1.40 \le V_{CC} \le 1.60$	4.0	9.0	17.8	3.5	18.2	ns	C _L = 30 pF	Figures
		$1.65 \le V_{CC} \le 1.95$	3.0	7.0	14.4	2.0	15.9	113	$R_L = 1 M\Omega$	1, 2
		$2.30 \leq V_{CC} \leq 2.70$	2.0	6.0	11.3	1.5	12.8			
		$3.00 \leq V_{CC} \leq 3.60$	1.5	5.0	9.2	1.0	10.7			
C _{IN}	Input Capacitance	0		2.0				pF		
C _{OUT}	Output Capacitance	0		4.0				pF		
C _{PD}	Power Dissipation Capacitance	0.9 to 3.60		8.0				pF	$V_I = 0V \text{ or } V_{CC},$ f = 10 MHz	

AC Loading and Waveforms

FIGURE 1. AC Test Circuit

FIGURE 2. AC Waveforms

Symbol	V _{CC}									
,	$3.3V \pm 0.3V$	$\textbf{2.5V} \pm \textbf{0.2V}$	$1.8V \pm 0.15V$	1.5V ± 0.10V	1.2V ± 0.10V	0.9V				
V _{mi}	1.5V	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2				
V _{mo}	1.5V	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2	V _{CC} /2				

Tape and Reel Specification TAPE FORMAT for US8

THE ET CHAINAT TO COO									
Package	Таре	Number	Cavity	Cover Tape					
Designator	Section	Cavities	Status	Status					
	Leader (Start End)	125 (typ)	Empty	Sealed					
K8X	Carrier	3000	Filled	Sealed					
	Trailer (Hub End)	75 (typ)	Empty	Sealed					

TAPE DIMENSIONS inches (millimeters)

REEL DIMENSIONS inches (millimeters)

Tape Size	Α	В	С	D	N	W1	W2	W3
0	7.0	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/-0.039
8 mm	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 + 1.50/-0.00)	(14.40)	(W1 + 2.00/-1.00)

Physical Dimensions inches (millimeters) unless otherwise noted

LAND PATTERN RECOMMENDATION

0.4 TYP

0.20-0.35-

GAGE PLANE 0.12

SEATING PLANE

NOTES:

- CONFORMS TO JEDEC REGISTRATION MO-187
 B. DIMENSIONS ARE IN MILLIMETERS.
 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

DETAIL A

MAB08AREVC

8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide Package Number MAB08A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Notes:

- 1. PACKAGE REGISTRATION WITH JEDEC IS ANTICIPATED
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y.14M-1994

MAC08AREVB

8-Lead MicroPak, 1.6 mm Wide Package Number MAC08A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com