

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (Four Year) Degree in Industrial Mathematics

Fourth Year- Semester II Examination – February/March 2019

MAT 4302- FINANCIAL MATHEMATICS

Time: Three (03) hours

		me. Three (03) hours
Answer All question	ons	
The use of a non-p	rogrammable calculator is permitted	
1. Briefly explain	n each of the following providing examples:	
	(a) BEP in FM	(20 marks)
	(b) I_{OSI} versus I_{ESI}	(20 Marks)
	(c) Continuous compounding method (CCM)	(20 marks)
	(d) Types of assets	(20 marks)
	(e) Coupon Bonds	(20 marks)
2. Obtain the co	mplete solution of a linear non-homogeneous re	ecurrence relation
via five-step method.		(30 marks)
John currently	y has 5900 US-dollars in a savings account that p	ays 5 %
Interest each	month and he withdraws 300 US-dollars each m	onth as monthly
expenditure.	Model the Scenario as a dynamical system.	(40 marks)
		(continued)

Find the stationary level (Y_{ss}) and determine when the account get depleted. (30 marks)

3. A micro-market model is described by the sets in the usual notation

$$S = \{(Q, P): Q - P^3 = 5 - 20P\}$$
 and $D = \{(Q, P): Q + 2P = 40\}.$

Depict S and D by indicating the market forces Q_s and Q_d in their explicit forms as functions of unit price and sketching their graphs. (90 marks)

Determine the *equilibrium set E* in the market model and comment on your results via the zeros of the excess demand E_d (p). (10 marks)

- 4. (a) Define the return k (s, t) on an investment and discus its characteristic properties with respect to the models SIM, CIM and CCIM. (30 marks)
 - (b) Find the exact time (ET) and approximate time (AT) from 19th September 2018 to 29th March 2020. (30 marks)
 - (c) A bank charges 6% interest (SIM) in advance. Find the *face* of a nine-month money- note which a merchant must sign in order to receive 6000 dollars from the bank.

 (40 marks)

5. In a money-market the bond prices are given by A(0) = 90, A(1) = 100 and ; stock prices are given by S(0) = 25 dollars and

$$S(1) = \{ \frac{30 \text{ with probability } p,}{20 \text{ with probality } 1 - p} \text{ , where } 0$$

Find a portfolio whose value at time 1 is

$$W(1) = \{ \frac{2160 \text{ if stock prices go up,}}{1040 \text{ if stock prices go down}}$$
. (50 marks)

Determine the initial wealth of the *investor* and find K_{A_i} , K_S and K_W in the Usual notation. (50 marks)

- 6. (a) Explain the terminology SB-Portfolio, NAP, Radom-variable and Expected-value in Financial Mathematics. (20 marks)
 - (b) Write down the standard result for the expected value E(K(n,m)) of the aggregate return K(n,m) which can be utilized under independent events in connection with the expected value E(K(i)) of one step returns K(i), where $n \le i \le m$. (20 marks)

The table given below depicts the dynamical behavior of a stock-market.

Market Scenario

Scenario	Probability	S(0)	S(1)	S(2)
ω_1	0.25	100	110	120
ω_2	0.25	100	105	100
ω_3	0.50	100	90	100

Find the expected returns $E(K(1))$, $E(K(2))$ and $E(K(0,2))$.	(30 marks)
Calculate the value of R [K (1), K (2)] = $\frac{[1+E(K(0,2))]}{[1+E(K(1))][1+E(K(2))]}$.	(10 marks)
Using the above result comment on the returns $K(1)$ and $K(2)$.	(20 marks)

-END-