SPECTROSCOPIC UNITS

CHRIS STOUGHTON

Spectra are expressed in various units:

- $F_{\gamma} = \text{photons/cm}^2/\text{Å/sec}$
- $F_{\lambda} = \text{ergs/cm}^2/\text{Å/sec}$
- $F_{\nu} = \text{ergs/cm}^2/\text{Hz/sec}$
- $F_{AB} = Magnitude$

We express spectra in F_{γ} . The spectra we gathered for MKIDStd may be expressed in other units.

For spectra expressed in F_{λ} , we use $E = h\nu$ and $c = \lambda\nu$:

$$(1) F_{\gamma} = F_{\lambda} \lambda / hc$$

The python package scipy.constants is a convenient way to get constants.

from scipy.constants import *

defines h=6.62606957e-34 Joule-sec and c=299792458.0 meters/sec.

For λ expressed in \mathring{A} :

(2)
$$F_{\gamma} = F_{\lambda} \times \lambda(\mathring{A}) \times \frac{10^{-10} m/\mathring{A}}{ch 10^7 erg/J} = K \times F_{\lambda} \times \lambda(\mathring{A})$$

where K = 5.03E7/erg/Å.

Some spectra are expressed in AB magnitudes. Our good friends at http://en.wikipedia.org/wiki/AB_magnitude tell us that when flux is in erg/s/cm²/Å the AB flux is

(3)
$$AB = -2.5 \log_{10} F_{\lambda} - 5 \log_{10} \lambda - 2.406$$

Given an AB magnitude and λ in \mathring{A} ,

(4)
$$F_{\lambda} = (10^{-2.406/2.5})(10^{-0.4AB})/\lambda^2$$