

Semi-supervised Feature Selection for Efficient Detection of Systemic Deviations to Develop Trustworthy Al

Girmaw Abebe Tadesse, William Ogallo, Aisha Walcott-Bryant, Skyler Speakman IBM Research | Africa

Email: girmaw.abebe.tadesse@ibm.com

1. Introduction

- Identifying systemic deviations in datasets and model outputs helps to achieve trustworthy Al
- Multiple techniques have been proposed in the state-of-the-art¹ to detect systemic deviations in tabular data, but the computational complexity grows with the dimension of the feature space.

 We propose a model-free and sparsity-based automated feature selection (SAFS) framework for efficient discovery of anomalous patterns

2. Proposed framework

- SAFS employs sparsity of the odds ratios of feature values
- Deviation across values of a given feature is encoded using Hoyer-based sparsity metric²
- Top K features are selected based on sparsitybased ranking and fed into the MDSS-based subgroup discovery technique¹

$$H(o_m) = (\sqrt{C_m} - \frac{\sum_{u=1}^{C_m} o_m^u}{\sum_{u=1}^{U_m} o_m^2})(\sqrt{C_m} - 1)^{-1}$$

curr service

drug abuse

psychoses depression

obesity vent_firstday paralysis

urineoutput car

3. Experiments

- Dataset: Medical Information Mart for Intensive Care (MIMIC-III)³
- Outcome: Patients death within 28 days of the onset of ICU admission
- N=19,658 patients, and M = 41 features
- Baseline methods
- · Mutual-information based Filter4
- Backward-elimination based Wrapper⁵, and
- Embedded techniques (XGBoost, CatBoost and Committee)⁶
- · Performance metric
- · Computation time and characterization of identified subgroup

Results

Top K	Size	Odds Ratio (95% CI)	P-Value
4	4312	2.48 (2.3, 2.67)	< 0.01
8	2811	3.00 (2.75, 3.26)	< 0.01
12	4383	2.48 (2.31, 2.67)	< 0.01
16	4383	2.48 (2.31, 2.67)	< 0.01
20	4383	2.48 (2.31, 2.67)	< 0.01
25	3078	2.93 (2.7, 3.18)	< 0.01
29	3078	2.93 (2.7, 3.18)	< 0.01
33	3078	2.93 (2.7, 3.18)	< 0.01
37	3078	2.93 (2.7, 3.18)	< 0.01
41	4218	2.54 (2.36, 2.73)	< 0.01

- 3x reduction in computation time using just half of the features
- · Consistent subgroup detection
- Superior to the baselines

		Proposed				
K	Filter	Wrapper	XGB	CatB	Committee	SAFS
4	337.19	311.27	337.19	339.23	337.19	340.61
8	340.61	311.27	337.19	340.61	340.61	341.90
12	340.61	311.27	340.61	340.61	340.61	344.13
16	340.61	316.09	340.61	344.13	340.61	344.13
20	340.61	340.86	340.61	344.13	344.13	344.13
25	340.61	346.64	348.53	348.45	348.53	348.77
29	344.59	346.64	348.77	348.77	348.77	348.77
33	348.77	346.64	348.77	348.77	348.77	348.77
37	348.45	348.91	348.91	348.91	348.91	348.77
41	348.91	348.91	348.91	348.91	348.91	348.91

0.2 0.4 0.6 0.8 1.0

4. Conclusions

- We proposed a sparsity-based automated feature selection (SAFS) framework for anomalous subgroup discovery without training a particular model.
- SAFS outperformed multiple baseline feature selection methods and achieved more than 3× reduction in computational time but with competitive detection performance using just half of the features.
- · Future work aims to extend SAFS to select layers and nodes, e.g., for adversarial detection in deep learning frameworks

References

- Neill et al. Fast subset scan for multivariate event detection. Statistics in Medicine (2013)
- 2. Hurley and Rickard. Comparing measures of sparsity. IEEE Tran. on Info. Theory 55, 10 (2009)
- 3. Johnson et al., MIMIC-III, a freely accessible critical care database.
- 4. Estévez et al. Normalized mutual information feature selection. IEEE Tran. on Neu. Net. (2009)
- 5. Miao and Niu. A survey on feature selection. Pro. Comp. Sci. 91 (2016), 919-926.
- Wanjiru et al. Automated Supervised Feature Selection for Differentiated Patterns of Care. (2021) arXiv preprint arXiv:2111.03495