x commutes with everything. Multiplication:

$$\left(\sum_{i=0}^{n} a_i x^i\right) \left(\sum_{j=0}^{n} b_j x^j\right) = \sum_{k=0}^{n} c_k x^k$$

where

$$c_k = \sum_{i=0}^k a_i b_{k-i}.$$

Example. The coefficient of x^3 is contributed by terms with degree up to 3. So $c_3 = a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0$.

Proposition

The zero element in R[x] is the zero polynomial 0_R . If R has identity, then so does R[x]: constant polynomial 1_R . If R has zero divisors, then so does R[x].

Example. $R = \mathbb{Z}_6, \mathbb{Z}_6[x]$. $2 \times 3 = 0$, then think of these as constant polynomials, so they are zero divisors of R[x].

Theorem

If R is a domain, then R[x] is a domain.

Proof

- (i) R[x] is commutative, we can show by doing multiplication the other way around.
- (ii) R[x] has identity: we can check 1_R is the identity.
- (iii) R[x] has no zero divisors: Suppose $f(x), g(x) \in R[x]$ and $f(x) \neq 0, g(x) \neq 0$. We need to show that $f(x)g(x) \neq 0$.

Let f(x) have degree n and g(x) have degree m. So $f(x) = a_n x^n + \dots, a_n \neq 0, g(x) = b_m x^m + \dots, b_n \neq 0$. So

$$f(x)g(x) = a_n b_m x^{m+n} + \dots$$

Then $a_n b_m \neq 0$ because R is a domain and $a_n, b_m \neq 0$.

Corollary

If R is a domain and $f(x), g(x) \in R[x]$ are nonzero, then $\deg(f(x)g(x)) = \deg f(x) + \deg g(x)$.

Example (counterexample when R is not a domain). $\mathbb{Z}_6[x]$. Consider

$$(1+2x)(1-x+3x^2) = 1 - x + 3x^2 + 2x - 2x^2 + 6x^3$$
$$= 1 + x + x^2$$

Is $x^6 = x^0$? No because coefficient of x^6 is 1 but that of x^0 is 0.

Note. The exponents are not ring elements. They are natural numbers.

What are the units in R[x]?

If R is not a domain, there is no easy answer.

If R is a domain, the units in R[x] are the constant units in R.

Example. $In\mathbb{Q}[x]$, the units are the nonzero constants because units in \mathbb{Q} are $\mathbb{Q} \setminus \{0\}$.

Example. The units in $\mathbb{Z}_5[x]$ are $\{1,2,3,4\}$. The units in $\mathbb{Z}[x]$ are ± 1 .

Theorem

If R is a domain, then U(R[x]) = U(R).

Proof

Suppose f(x)g(x) = 1 (they are units). The degree 0 polynomials are the nonzero constant polynomials. The degree of 1 is 0, and equals to the sum of degrees of f, g, thus f, g has degree 0 too. This means that f(x), g(x) are nonzero constants, so they are units in R.